Balancing Chemical Equations Notes

Chemical Change is represented by chemical equations

Symbols and terms used in c	hemical equation	ons:	
Yields	Reactants		Product
Solid	liquid		gas
Aqueous	gas released		precipitate
Exothermic	Endothermic		
Counting Atoms			
NaCl		Na	
		Cl	
$MgCl_2$		Mg	
		Cl	
$Mg(NO_3)_2$		Mg	
		N	
		О	
2NH ₄ NO ₃			
		Н	
		N	
		O	

Conservation of Atoms

Balance the following equations. No fractions!

$$1) \underline{\hspace{1cm}} H_2 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} H_2 O$$

2)
$$\underline{\hspace{1cm}}$$
 K + $\underline{\hspace{1cm}}$ O₂ \rightarrow $\underline{\hspace{1cm}}$ K₂O

$$3)$$
 ___Al + ___O₂ \rightarrow ___Al₂O₃

4)
$$\underline{\hspace{1cm}}$$
 Fe + $\underline{\hspace{1cm}}$ Cl₂ \rightarrow $\underline{\hspace{1cm}}$ Fe Cl₃

5)
$$\underline{\hspace{1cm}}$$
 Na + $\underline{\hspace{1cm}}$ Cl₂ \rightarrow $\underline{\hspace{1cm}}$ NaCl

$$6) \underline{\hspace{1cm}} \operatorname{Cr} + \underline{\hspace{1cm}} \operatorname{S}_{8} \to \underline{\hspace{1cm}} \operatorname{Cr}_{2} \operatorname{S}_{3}$$

7)
$$\underline{\hspace{1cm}} H_2 + \underline{\hspace{1cm}} N_2 \rightarrow \underline{\hspace{1cm}} NH_3$$

8)
$$\underline{\hspace{1cm}}$$
 Mg + $\underline{\hspace{1cm}}$ HCl \rightarrow $\underline{\hspace{1cm}}$ MgCl₂ + $\underline{\hspace{1cm}}$ H₂

9)
$$_$$
HCl + $_$ NaOH \rightarrow $_$ NaCl + $_$ H₂O

10)
$$\underline{\hspace{0.1cm}}$$
 CCl₄ + $\underline{\hspace{0.1cm}}$ HF \rightarrow $\underline{\hspace{0.1cm}}$ CCl₂F₂ + $\underline{\hspace{0.1cm}}$ HCl

11) ___C
$$H_4$$
 + ___ O_2 \rightarrow ___ CO_2 + ___ H_2O

12)
$$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$$

Writing Chemical Equations

Sometimes we must create the equation that describes our reaction.					
How do you know what state of matter something is in?					
Gases					
Liquids					
Aqueous					
Solids					
Solid sulfur plus oxygen gas yields sulfur dioxide gas					
Solid carbon reacts with oxygen gas to make carbon dioxide gas					
Sodium metal reacts with chlorine gas to make sodium chloride solid					
Calcium carbonate is heated to form carbon dioxide and calcium oxide					

Methane (CH₄) gas is burned in oxygen gas to produce carbon dioxide and water vapor

Reaction Prediction

Classes of Chemical Reactions

Combination (synthesis):

- A) Metal oxides will react with water to form bases
- B) Some nonmetal oxides will react with water to form ternary acids
- C) Many elements will react with oxygen to form oxides
- D) Metals can combine with nonmetals to form ionic compounds

Decomposition:

- A) Metallic carbonates, when heated, form metal oxides, plus carbon dioxide
- B) Many metallic hydroxides, when heated, decompose into metallic oxides and water
- C) Metallic chlorates, when heated, decompose into metallic chlorides and oxygen
- D) Some acids, when heated, decompose into non—metallic oxides and water

E) Some oxides, when heated decompose
F) Some Decomposition reactions are produced by electricity
G) Ammonium salts decompose to give off ammonia gas
Single Replacement:
Metal Replaces Metal
Non-metal replaces non-metal
A) An active metal will replace hydrogen in water
B) A metal may replace hydrogen in an acid
C) A metal in a compound may be replaced by a more active metal

D) A halogen will replace a halogen below it in the Periodic Table

Double Replacement:

	\mathbf{A}) An	acid	and a	base	will	react to	form	a	salt	and	wate
--	--------------	------	------	-------	------	------	----------	------	---	------	-----	------

- B) Two compounds may react to form a precipitate
- C) A metal oxide may react with an acid to form a salt and water
- D) Two compounds may react to form a gas

Combustion:

- A) Hydrocarbons can combust in oxygen to make carbon dioxide and water
- B) Metals can be burned in oxygen to produce oxides.
- C) Non-metals can be burned in oxygen to produce oxides

Exothermic Reactions

Endothermic Reactions

Solutions and Precipitation Reactions

What does it mean to be soluble?

What is the difference between dissolving and dissociating?

Why do substances dissolve?

What is the difference between a solute and a solvent?

What is a precipitate?

What is really present in a beaker full of NaCl in water?

Can you boil off the water and get the NaCl back?

What is really present in a beaker full of NaCl and AgNO₃ in water?

Can you boil off the water and get the NaCl and AgNO₃ back?

Table of Solubility Rules for Inorganic Compounds

Soluble Compounds	Insoluble Compounds
compounds of Group 1 elements	carbonates (CO_3^{2-}), chromates (CrO_4^{2-}), oxalates ($C_2O_4^{2-}$), and phosphates (PO_4^{3-}), <i>except</i> those of the Group 1 elements and NH_4^+
ammonium (NH ₄ ⁺) compounds	sulfides (S $^{2-}$), <u>except</u> those of the Group 1 and Group 2 elements and $\mathrm{NH_4}^+$
chlorides (Cl ⁻), bromides (Br ⁻), and iodides (I ⁻), <u>except</u> those of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ *	hydroxides (OH ⁻) and oxides (O ²⁻), \underline{except} those of the Group 1 and Group 2 elements [†]
nitrates (NO ₃ ⁻), acetates (C ₂ H ₃ O ₂ ⁻), chlorates (ClO ₃ ⁻), and perchlorates (ClO ₄ ⁻)	
sulfates (SO ₄ ²⁻), <u>except</u> those of Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Ag ⁺ , Hg ₂ ²⁺ , and Pb ^{2+‡}	

^{*}PbCl₂ is slightly soluble.

Let's think about the last example:

First the molecular equation:

Second the complete ionic equation:

Finally the net ionic:

Another example:

 $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow$

[†]Ca(OH)₂ and Sr(OH)₂ are sparingly soluble; Mg(OH)₂ is only very slightly soluble.

[‡]Ag₂SO₄ is slightly soluble