

HAS-hev 再生制动系统

目录

	1.1 维修诊断注意事项	1
2、	故障诊断流程	4
3	诊断检查	5
_	3.1 初步检査	
4	HAS-HEV 系统结构	9
	4.1 HAS-HEV 系统组成	
	4. 2 HAS-HEV 液压布置图	
	4.3 制动管路连接示意图	
	4.4 液压助力控制模块 (ACM-H) ECU 电路图	
	4.6 电子稳定控制模块 (ESP) 液压布置图	
	4.7 电子稳定控制模块 (ESP) ECU 电路图	
_	故障诊断	
Э		
	5.1 无故障码故障维修	17
6	液压助力控制模块故障码表	. 18
	6.1 液压助力控制模块(ACM-H)故障码	18
7	ACM-H 故障码诊断	10
'		
	7.1 ECU 供电故障	
	7.2 CAN 总线通讯故障	
	7.4 CAN 总线节点故障	
	7.5 泵电机故障	
	7.6 电磁阀故障	
	7.7 电磁阀泄漏检测	
	7.8 助力器压力过高或过低	
	7.9 蓄能器压力传感器故障	
	7.10 感应活塞压力传感器故障	
	7.11 踏板行程传感器故障	
	7.13 达到最大使用寿命	
	7.14 制动液污染	
	7.15 制动偏硬	
	7.16 制动偏软	
	7.17 诊断模式下压力过高	
	7.18 动力总成故障	25
8	ESP 故障码表	. 26
	8. 1 ESP 故障码	26
	ESP 故障诊断	
	9.1 ECU 供电故障	28

BYD HT TE BYD AUTO

9.2 电磁阀故障	28
9.3 电磁阀继电器故障	28
9.4 泵马达故障	29
9.5 轮速传感器线路故障	29
9.6 轮速传感器信号故障	
9.7 ECU 故障	30
9.8 CAN 总线故障	30
9.9 压力传感器故障	
9.10 方向盘转角传感器故障	
9.11 偏航率传感器(集成惯性传感器)故障	
9.12 ESP 关闭开关故障	
9.13 ESP 配置信息故障	32
9.14 制动灯开关(BLS)故障	32
9.15 制动系统异常(ESP 作用时间过长)	
9.16 离合器/倒档信号异常(HHC 驻坡控制功能)	33
9.17 CAN 总线节点故障	34
10、拆卸与安装	35
10.1 ACM-H/ESP 总成拆卸步骤	
10.2 ACM-H/ESP 总成安装步骤	
10.3 制动执行单元(BOU)和液压助力控制模块(ACM-H)的排气	
10.4 排气说明	35
记事	36

1、注意事项

1.1维修诊断注意事项

HAS-hev是涉及到安全的部件,因此对它进行维修诊断时,除遵守一般的安全和预防措施外,还必须遵守下列诊断注意事项。

(a) HAS-hev系统必须由经过专业培训并掌握维修技能的技师进行维修,并只允许使用原厂零部件进行更换。

(b) 制动执行单元(BOU)、电子稳定控制模块(ESP)、液压助力器控制模块(ACM-H)不能进行拆检或对部分零部件进行更换/互换。博世公司不提供单独的备件,并且对经过分解后的制动执行单元(BOU)、电子稳定控制模块(ESP)、液压助力控制模块(ACM-H)不承担保修。

- (c) 以下两种情况说明HAS-hev 系统检测到故障:
 - 启动发动机或上电至OK, ESP 系统警告灯 点亮3 秒后熄灭1 秒然后又亮起。
 - 启动发动机或上电至OK, ESP 系统警告灯立刻点亮或不点亮。

此时驾驶员可以进行常规制动,但应尽可能减速慢行并立即到服务站进行检修。

BYD 比亚迪汽车 BYD AUTO

- (d) 接插电子稳定控制模块(ESP)和液压助力控制模块(ACM-H)线束需要注意以下几点:
- 插拔线束插头前,必须退电至 0FF 档。
- 确保接插件的干燥和清洁,避免有任何异物进入。
- 线束的接插必须在水平方向和垂直方向安装到位,以免损坏接插件或造成系统故障。

制动执行单元右侧

制动执行单元左侧

(e) 连接制动执行单元(BOU)的制动管路时,必须确保正确连接。制动执行单元(BOU)不能判断制动管路是否正确连接,错误连接可能导致严重事故。

接口	描述	接口尺寸
B1	踏板行程传感器	电子接插件
B211	助力器活塞管路(BPC)	ISO M12×1
B212	感应活塞管路 (SPC)	ISO M12×1
B213	踏板反馈模拟管路(PFS)	ISO M12×1
В3	助力器活塞排气螺栓	JASO M10×1
В5	踏板反馈模拟器排气螺栓	JASO M10×1
В6	感应活塞排气螺栓	JASO M10×1
В8	制动主缸出油管	ISO M12×1

BYD tt亚迪汽车 BYD AUTO

比亚迪 HA 乘用车维修手册

(f)连接电子稳定控制模块(ESP)的制动管路时,必须确保正确连接。电子稳定控制模块(ESP)不能判断制动管路是否正确连接,错误连接可能导致严重事故。连接制动管路时,必须遵照电子稳定控制模块(ESP)上的标记:

MC1: 连接制动主缸的制动管路1;

MC2: 连接制动主缸的制动管路2;

FL: 连接左前轮制动轮缸的制动管路;

FR: 连接右前轮制动轮缸的制动管路;

RL: 连接左后轮制动轮缸的制动管路;

RR: 连接右后轮制动轮缸的制动管路。

(g)连接液压助力控制模块(ACM-H)的制动管路时,必须确保正确连接。错误连接可能导致严重事故。连接制动管路时,必须遵照液压助力控制模块(ACM-H)上的标记:

接口	描述	接口尺寸
A110	连接储液壶 (RSV)	ISO M14×1.5K
A111	助力器活塞管路(BPC)	ISO M12 \times 1K
A112	感应活塞管路 (SPC)	ISO M12×1K
A113	踏板反馈模拟管路(PFS)	ISO M12 \times 1K

(h) HAS-hev 在以下情况会产生噪音:

车辆上电或启动发动机后,会产生短暂的"嗡"的声音,这是系统进行自检的声音,属正常现象。

ACM-H 正常工作时会有声音,主要体现在以下方面:

- 1) ACM-H 液压单元内电机、电磁阀及回流泵动作的声音。
- 2) 因紧急制动而引起悬架与车身的撞击声。

2、故障诊断流程

故障诊断流程

3 诊断检查

3.1 初步检查

对 HAS-HEV 系统进行诊断前,应首先检查可能导致系统故障并且容易接触的部件,目视检查和外观检查程序能快速确定故障,从而无需再做进一步的诊断

BYD tt亚迪汽车 BYD AUTO

(a) 确保车辆上只安装推荐尺寸的轮胎和轮毂。 同轴轮胎的花纹样式和深度必须一样。

原厂标配的轮胎:205/50Z R17 93W

(b)检查HAS-HEV各部件插头是否松动,制动管路连接处是否有泄漏。

(c)、检查液压助力控制模块(ACM-H)以及电子稳定控制模块(ESP)的保险丝,确保保险丝正确安装并且型号正确。

液压助力控制模块(ACM-H)有三个保险丝,分别是:

泵电机保险丝(40A)

电磁阀保险丝(25A)

电子控制单元保险丝(5A)

电子稳定控制模块(ESP)有三个保险丝,分别 是:

泵电机保险丝(40A)

电磁阀保险丝(25A)

电子控制单元保险丝(5A)

(d) 检查蓄电池电压,检查蓄电池接线柱是否腐蚀或松动。液压助力控制模块(ACM-H)以及电子稳定控制模块(ESP)的正常工作电压范围是10V~16V。

(

BYD tt亚迪汽车 BYD AUTO

(e) 检查液压助力控制模块(ACM-H)以及电子稳定控制模块(ESP)接地线的搭铁点是否松动,搭铁位置是否被改变。接地线必须具有良好的密封性,以避免水、湿气在毛细(虹吸)效应作用下,经由线束中的孔道渗入接插件,引起功能失效。

建议措施:线束的裸露端涂上密封胶,并采用了热缩管封套。

(f) 对下列电气部件进行视检和外观检查:

液压助力控制模块(ACM-H)以及电子稳定控制模块(ESP)相关部件的线束和接插件是否正确连接、是否被夹伤或割伤。

线束布线是否过于靠近高压或大电流装置, 如高压电或部件、发电机和电机、售后加装的 立体声放大器。

注意: 高压或大电流装置可能会使电路产生感应噪声,从而干扰电路的正常工作。

液压助力控制模块(ACM-H)以及电子稳定控制模块(ESP)相关部件对电磁干扰(EMI)很敏感。如果怀疑有间歇性故障,检查售后加装的防盗装置、灯或移动电话是否安装不正确。

(g) ESP 是一种主动安全系统。它的主要作用是最大限度的利用地面附着,保持汽车的可操纵性和行驶的稳定性。但是,当超过物理极限或在湿滑路面上高速行车时,ESP 也不能完全防止汽车发生滑移。

(h)如果HAS-hev 系统噪音过大,可能由以下原因导致:

电子稳定控制模块(ESP)、液压助力器控制模块(ACM-H)与支架的固定松动。

电子稳定控制模块(ESP)、液压助力器控制模块(ACM-H)支架与车身的固定松动。

制动执行单元(BOU)及储液壶未正确安装。

O BIDAUIO	
	电子稳定控制模块(ESP)、液压助力器控制
	模块(ACM-H)支架上的减震垫圈缺失或损坏。
	制动管路卡扣或支架损坏。

4.1 HAS-hev 系统组成

HAS-hev 系统由制动执行单元(BOU)、电子稳定控制模块(ESP)、液压助力控制模块(ACM-H)组成。

4.2 HAS-hev 液压布置图

BOU: 制动执行单元(Brake Operation Unit)

ACM-H: 液压助力控制模块(Actuation Control Module – Hydraulic)

PFS: 踏板反馈模拟器(Pedal Feel Simulator)

SP: 感应活塞 (Sense Piston)

PWG/PTS: 踏板行程传感器 (Pedal Travel Sensor)

4.3 制动管路连接示意图

4.4 液压助力控制模块 (ACM-H) ECU电路图

4.5 液压助力控制模块(ACM-H)ECU针脚定义

针脚	功能	针脚	功能
1	电机的电源端 (正极)	20	未定义
2	未定义	21	未定义
3	未定义	22	未定义
4	未定义	23	未定义
5	未定义	24	未定义
6	未定义	25	阀继电器的电源端
7	未定义	26	CAN_H(CAN高)
8	未定义	27	未定义
9	未定义	28	ECU的电源端(点火电源线)
10	未定义	29	未定义
11	未定义	30	未定义
12	未定义	31	踏板行程传感器接地
13	电机的接地端	32	未定义
14	CAN_L(CAN低)	33	踏板行程传感器电源
15	未定义	34	未定义
16	未定义	35	未定义
17	未定义	36	踏板行程传感器第1信号通道
18	未定义	37	踏板行程传感器第2信号通道
19	未定义	38	ECU接地端

4.6 电子稳定控制模块(ESP)液压布置图

本车制动系统采用X型布置。如下图所示,电子稳定控制模块(ESP)包含1个电机、1个压力传感器、2个回流泵、2个蓄能器与12个电磁阀。

图中英文简写含义如下:

MC1	4.1-1.)	TT ATT	+ ++ +\ 11
MC1	制动主缸第一回路	FLAV	左前轮出液阀
MC2	制动主缸第二回路	FREV	右前轮进液阀
M	马达	FRAV	右前轮出液阀
RP1	回流泵 1	RLEV	左后轮进液阀
RP2	回流泵 2	RLAV	左后轮出液阀
A1	蓄能器 1	RREV	右后轮进液阀
A2	蓄能器 2	RRAV	右后轮出液阀
FL	左前轮	HSV1	高压开关阀 1
FR	右前轮	HSV2	高压开关阀 2
RL	左后轮	USV1	回路控制阀 1
RR	右后轮	USV2	回路控制阀 2
FLEV	左前轮进液阀	UP	压力传感器

4.7 电子稳定控制模块 (ESP) ECU 电路图

4.8 电子稳定控制模块 (ESP) ECU 针脚定义

针脚	功能	针脚	功能
1	电机的电源端 (正)	20	未定义
2	未定义	21	未定义
3	未定义	22	未定义
4	轮速传感器的信号端(右前)	23	未定义
5	未定义	24	未定义
6	未定义	25	阀继电器的电源端
7	未定义	26	CAN_H (CAN 高)
8	轮速传感器的信号端(左前)	27	未定义
9	未定义	28	ECU 的电源端(点火电源线)
10	未定义	29	轮速传感器的信号端(右后)
11	未定义	30	制动灯开关
12	ESP 禁用开关	31	轮速传感器电源端(左后)
13	电机的接地端	32	未定义
14	CAN_L (CAN 低)	33	未定义
15	未定义	34	未定义
16	轮速传感器电源端(右前)	35	未定义
17	轮速传感器电源端(右后)	36	未定义
18	轮速传感器的信号端(左后)	37	未定义
19	轮速传感器的信号端(左前)	38	ECU 接地端

5 故障诊断

5.1 无故障码故障维修

如果制动系统存在故障,但电子稳定控制模块(ESP)及液压助力控制模块(ACM-H)都没有存储故障码,此类故障称为无故障码故障。无故障码故障一般由基础制动系统故障所致。比如:

制动液泄漏 (可能引起制动偏软,制动踏板行程过长,严重的可能引起制动失效)

使用劣质的制动液(使用劣质制动液会腐蚀制动管路、电子稳定控制模块(ESP)及液压助力控制模块(ACM-H)内部元件,严重的还会导致制动失效)

制动管路有空气(可能引起制动偏软,甚至制动失效)

制动管路堵塞(可能引起制动偏硬,甚至制动失效)

制动盘过度磨损(可能引起制动偏软,制动踏板行程过长)

制动执行单元(BOU)故障(可能引起制动偏硬或偏软,制动踏板行程过长,严重的还会导致制动失效)

制动管路连接错误(可能引起HAS-hev 性能下降,出现摆尾、刹车距离长等现象。正确安装方法请参照"1.1 注意事项"章节)

注意: 电子稳定控制模块(ESP) 或液压助力控制模块(ACM-H)无供电及供电异常中断会导致ESP 警告灯长亮,但没有故障码的现象。

故障排除建议: 针对故障现象检查相应部件,并根据车辆维修手册进行故障排除。

6 液压助力控制模块故障码表

6.1 液压助力控制模块(ACM-H)故障码

DTC	故障码描述
C190004	ECU电源电压过高
C190104	ECU电源电压过低
U000500	CAN总线电压过高
U000700	CAN总线电压过低
U000104	CAN总线关闭
U100104	CAN总线被动错误
C100104	CAN硬件故障
U027004	CAN节点: ESP超时
U057108	CAN节点: ESP数据中断
U057100	CAN节点: ABS故障
U057101	CAN节点: ESP稳定参数错误
U012604	CAN节点: 主电动机超时
U046908	CAN节点: 主电动机数据被破坏或中断
C102004	回流泵故障(供电异常、信号异常、卡死、硬件损坏、过热)
C101004	BivC1阀故障(短路、信号错误、硬件损坏)
C101104	BivC2阀故障(短路、信号错误、硬件损坏)
C101204	BivS阀故障(短路、信号错误、硬件损坏)
C102404	BovC1阀故障(短路、信号错误、硬件损坏)
C102504	BovC2阀故障(短路、信号错误、硬件损坏)
C102604	BovS阀故障(短路、信号错误、硬件损坏)
C103804	SsvC1阀故障(短路、信号错误、硬件损坏)
C103904	SsvC2阀故障(短路、信号错误、硬件损坏)
C103A04	BsV阀故障(短路、信号错误、硬件损坏)
C007208	一般阀故障(阀过热保护、信号无效、硬件损坏、未校准)
C004904	BOV或BIV泄漏检测
C108004	助力器压力过高或过低
C109004	压力供给故障(蓄能器或液压助力泵故障、硬件损坏)
C004404	蓄能器压力传感器故障(线路故障、信号错误、硬件损坏)
C004504	感应活塞压力传感器故障(线路故障、信号超范围、信号错误、未校准)
C004704	主缸活塞压力传感器故障(线路故障、超出范围、信号错误或未标定)
C004804	踏板行程传感器故障(线路故障、供电异常、信号错误)
C109504	<u> </u>
C10D104	达到最大使用寿命
C10D708	制动液被杂质微粒污染
C10F108	制动偏硬,相对当前的踏板行程,制动压力过高
C10F208	制动偏软,相对当前的踏板行程,制动压力过低
C10E200	在诊断模式下制动压力过高
P1B1008	动力总成故障。制动系统控制请求与动力总成反馈不符

7 ACM-H 故障码诊断

7.1 ECU 供电故障

故障代码: C190004、C190104

故障可能原因

- (1) 蓄电池电压过高或过低;
- (2) 发电机输出电压不稳;
- (3) 车身接地不良。

维修诊断方法

- (1) 测量蓄电池电压,必要时对蓄电池进行充电(电压标准值10V~16V);
- (2) 检查发电机输出电压是否正常、稳定;
- (3) 检查ACM-H的3个接地点,包括ACM-H电控单元接地、电磁阀接地、液压助力泵电机接地;
- (4) 打开车上所有大功率用电器并测量ACM-H供电电压,在高用电负载的情况下可能出现供电不足:
- (5)测量车辆发动时、开关车上大功率用电器时产生的电压波动,潜在的用电器故障可能导致供电电路大幅度的电压波动。

7.2 CAN 总线通讯故障

故障代码: U000500、U000700、U000104、U100104

故障可能原因

- (1) 蓄电池电压过高或过低(电压标准值10V~16V);
- (2) 发电机输出电压不稳;
- (3) CAN总线终端电阻故障;
- (4) CAN总线线束存在开路或短路;
- (5) 车身CAN总线控制器或网关故障。

- (1) 测量蓄电池电压,必要时对蓄电池进行充电;
- (2) 检查发电机输出电压是否正常、稳定;
- (3) 检查所有CAN总线终端电阻;
- (4)检查CAN总线电路,是否存在开路、短路(对地短路、对电源短路及交叉搭线)、线束破损、接插件松动:
- (5) 拔下CAN总线相关的插头,检查接插件是否有异常(污染、针脚弯折、潮湿等)并重新插好;
- (6) 检查CAN总线控制器及网关。

7.3 CAN 总线硬件故障

故障代码: C100104

故障可能原因

- (1) 蓄电池电压过高或过低(电压标准值10V~16V);
- (2) 发电机输出电压不稳;
- (3) ACM-ECU损坏。

维修诊断方法

- (1) 测量蓄电池电压,必要时对蓄电池进行充电;
- (2) 检查发电机输出电压是否正常、稳定;
- (3) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.4 CAN 总线节点故障

故障代码: U027004、 U057108、U012004、U046908

故障可能原因

- (1) CAN 总线通讯中断;
- (2) ESP 节点/主电机节点供电不良;
- (3) ESP 节点/主电机节点故障(与CAN 总线脱离或ECU 故障)。

维修诊断方法

- (1) 检查CAN 总线通讯是否正常;
- (2)退电至OFF档,分别测量CAN-H、CAN-L线从ESP节点/主电机节点到ACM-ECU的电阻;(标准值:小 于5**Ω**)
- (3) 从ESP节点/主电机节点的接插件测量CAN-H和CAN-L线之间的电阻(保持插头在接插状态);(标准值: 60Ω)
- (4) 检查ESP节点/主电机节点供电;
- (5) 读取ESP/主电机的故障码,根据故障码进行相应检查。

7.5 泵电机故障

故障代码: C102004

故障可能原因

- (1) 系统过热保护;
- (2) 泵电机接地不良;
- (3) 泵电机供电不正常(供电电压低、保险丝损坏或接触不良);
- (4) 泵电机继电器故障;
- (5) 泵电机故障。

维修诊断方法

(1) 冷车10分钟后上电看故障是否消失;

比亚迪 HA 乘用车维修手册

- (2) 用21W试灯测量ACM-ECU接插件接地针脚和车身接地点之间的电压降; (标准值: 小于0.2V)
- (3) 检查泵电机供电线路、保险丝以及电源电压;
- (4) 用21W 试灯测量ACM-ECU接插件泵电机供电针脚和蓄电池正极之间的电压降; (标准值:小于0.2V)
- (5) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.6 电磁阀故障

故障代码: C101004、C101104、 C101204、C102404、 C102504、C102604、 C103804、C103904、C103A04、 C007208

故障可能原因

- (1) 电磁阀供电不良(供电电压低、保险丝损坏或接触不良);
- (2) 系统过热保护;
- (3) 电磁阀未标定;
- (4) ACM-ECU损坏。

维修诊断方法

- (1) 检查阀继电器供电线路、保险丝以及电源电压;
- (2)用21W试灯测量ACM-ECU接插件阀继电器供电针脚和蓄电池正极之间的电压降;(标准值:小于0.2V)
- (3) 冷车10分钟后再读取故障码;
- (4) 重新标定电磁阀;
- (5) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.7 电磁阀泄漏检测

故障代码: C004904

故障可能原因

- (1) 制动管路泄漏;
- (2) 制动液被污染;
- (3) 电磁阀故障。

维修诊断方法

- (1) 检查制动管路是否正确连接,是否有泄漏现象;
- (2) 更换制动液;
- (3) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.8 助力器压力过高或过低

故障代码: C108004、C109004

故障可能原因

- (1) 基础制动管路泄漏;
- (2) 液压助力器活塞管路有空气;

- (3) 助力器活塞压力传感器故障;
- (4) 液压助力器活塞管路泄漏;
- (5) 电磁阀故障。

维修诊断方法

- (1) 检查制动管路是否正确连接,是否有泄漏现象;
- (2) 对制动管路进行排气;
- (3) 更换制动执行单元(BOU),并进行制动管路排气;
- (4) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.9 蓄能器压力传感器故障

故障代码: C004404

故障可能原因

- (1) 电源电压过低/过高(通讯电源/主电源);
- (2) 基础制动管路泄漏:
- (3) 制动管路有空气;
- (4) ACM-H泵马达保险丝损坏;
- (5) ACM-ECU供电中断或电阻过高;
- (6) ACM-ECU接地断开或接地电阻过高:
- (7) 助力器进/出液阀故障;
- (8) 液压助力器活塞管路泄漏;
- (9) 液压助力控制模块(ACM-H)泵/蓄能器管路故障。

维修诊断方法

- (1) 检查ACM-ECU供电是否正常:
- (2) 检查ACM-H泵马达供电是否正常;
- (3) 检查ACM-ECU接地是否正常;
- (4) 检查ACM-H泵马达接地是否正常;
- (5) 检查制动管路是否正确连接,是否有泄漏现象;
- (6) 对制动管路进行排气;
- (7) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.10 感应活塞压力传感器故障

故障代码: C004504

故障可能原因

- (1) ACM-ECU配置不正确;
- (2) 感应活塞压力传感器未正确标定;
- (3) 感应活塞压力传感器故障。

维修诊断方法

(1) 对ACM-ECU重新刷写配置;

- (2) 重新标定感应活塞压力传感器;
- (3) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.11 踏板行程传感器故障

故障代码: C004804

故障可能原因

- (1) 电源电压过低(通讯电源/主电源);
- (2) 同时踩油门和刹车;
- (3) 踏板行程传感器信号线故障(开路、对地短路、对电源短路);
- (4) ACM-ECU接地断开或接地电阻过高;
- (5) 踏板没有正确归位(踏板不在初始位置);
- (6) 踏板行程传感器未正确标定;
- (7) 踏板行程传感器供电中断;
- (8) 踏板行程传感器损坏。

维修诊断方法

- (1) 检查蓄电池及踏板行程传感器供电电压;
- (2) 检查踏板行程传感器线路;
- (3) 检查ACM-ECU接地线是否存在开路或接地电阻过高;
- (4) 反复踩踏制动踏板,看能否正确归位;
- (5) 重新标定踏板行程传感器;
- (6) 更换踏板行程传感器。

7.12 阀继电器故障

故障代码: C109504

故障可能原因

- (1) 电磁阀供电线断开或对地短路;
- (2) ACM-ECU接地线开路或接地电阻过高;
- (3) ACM-ECU损坏。

维修诊断方法

- (1) 检查电磁阀供电线路、保险丝以及电源电压;
- (2) 用21W试灯测量ACM-ECU接插件接地针脚和车身接地点之间的电压降; (标准值: 小于0.2V)
- (3) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.13 达到最大使用寿命

故障代码: C10D104

故障可能原因

- (1) 液压助力控制模块(ACM-H) 达到最大使用寿命,不可继续使用。 维修诊断方法
- (1) 更换液压助力控制模块(ACM-H),并进行制动管路排气。

7.14 制动液污染

故障代码: C10D708

故障可能原因

(1) 制动液被杂质微粒污染。

维修诊断方法

(1) 更换制动液,并进行制动管路排气。

7.15 制动偏硬

故障代码: C10F108

故障可能原因

- (1) 踏板行程传感器故障:
- (2) 感应活塞压力传感器标定错误;
- (3) 感应活塞压力传感器故障;
- (4) 电磁阀故障;
- (5) 液压助力控制模块(ACM-H)到制动执行单元(BOU)踏板反馈模拟器(PFC)之间的管路堵塞。

维修诊断方法

- (1) 对踏板行程传感器进行功能测试,必要时更换踏板行程传感器:
- (2) 重新标定感应活塞压力传感器,必要时更换液压助力控制模块(ACM-H):
- (3) 更换液压助力控制模块(ACM-H)到制动执行单元(BOU)踏板反馈模拟器(PFC)之间的制动管路。

7.16 制动偏软

故障代码: C10F208

故障可能原因

- (1) 踏板行程传感器故障;
- (2) 感应活塞压力传感器标定错误;
- (3) 感应活塞压力传感器故障;
- (4) 踏板反馈模拟管路(PFC)或感应活塞管路(SPC)有空气;
- (5) 液压助力控制模块(ACM-H)到制动执行单元(BOU)感应活塞(PFC)之间的管路有泄漏;
- (6) 液压助力控制模块(ACM-H) 到制动执行单元(BOU) 踏板反馈模拟器(PFC) 之间的管路有泄漏。

- (1) 对踏板行程传感器进行功能测试,必要时更换踏板行程传感器;
- (2) 重新标定感应活塞压力传感器,必要时更换液压助力控制模块(ACM-H);
- (3) 对制动管路进行排气;
- (4) 更换液压助力控制模块(ACM-H)到制动执行单元(BOU)感应活塞(PFC)之间的制动管路;
- (5) 更换液压助力控制模块(ACM-H)到制动执行单元(BOU)踏板反馈模拟器(PFC)之间的制动管路。

7.17 诊断模式下压力过高

故障代码: C10E200

故障可能原因

(1) 诊断模式下压力过高。

维修诊断方法

(1) 此故障码仅用于信息提示,不需要进行维修。

7.18 动力总成故障

故障代码: P1B1008

故障可能原因

(1)制动系统控制请求与动力总成反馈不符。

维修诊断方法

(1) 对动力总成进行维修。

8 ESP 故障码表

8.1 ESP故障码

8.1 ESP故障	当
DTC	故障码描述
C0800	供电电压过高/过低
C0032	左前轮速传感器线路故障
C0031	左前轮速传感器信号故障
C0035	右前轮速传感器线路故障
C0034	右前轮速传感器信号故障
C0038	左后轮速传感器线路故障
C0037	左后轮速传感器信号故障
C003B	右后轮速传感器线路故障
C003A	右后轮速传感器信号故障
C0245	轮速传感器频率故障(各车轮之间轮速差异过大)
C0010	左前轮进油阀故障
C0011	左前轮出油阀故障
C0014	右前轮进油阀故障
C0015	右前轮出油阀故障
C0018	左后轮进油阀故障
C0019	左后轮出油阀故障
C001C	右后轮进油阀故障
C001D	右后轮出油阀故障
C0001	导向阀1故障
C0002	导向阀2故障
C0003	高压阀1故障
C0004	高压阀2故障
C0121	电磁阀继电器故障
C0020	泵马达故障
C0550	ECU故障
C1001	CAN总线硬件故障
U1000	CAN总线关闭
C0072	阀过热保护
C0046	压力传感器故障
U0126	方向盘转向角传感器CAN通讯故障
C0460	方向盘转向角传感器信号异常
C1066	方向盘转向角传感器未标定或标定失败
C0061	横向加速度传感器信号异常
C0062	纵向加速度传感器信号异常

	ACTO
C0063	横摆角速度传感器信号异常
C0196	集成惯性传感器故障(ESP9i)
C00A8	集成惯性传感器未标定或标定失败(ESP9i)
C004C	ESP PATA 开关故障
C1212	ESP配置信息故障
C0040	制动灯开关故障
C0082	制动系统异常(例如ESP作用时间过长)
DTC	故障码描述
C1080	离合器信号异常(HHC)
C108C	倒档信号异常(HHC)
C0200	转毂测试模式启动或误触发
U0293	液压助力控制模块 (ACM) 信号超时
U0594	液压助力控制模块(ACM)数据中断
U0294	主电机(MG)信号超时
U0595	主电机(MG)数据中断
U0302	变速箱 (TCU) 信号超时
U0585	变速箱 (TCU) 数据中断

9、ESP 故障诊断

9.1 ECU 供电故障

故障代码: C0800

故障可能原因

- (1) 蓄电池电压过高或过低;
- (2) 发电机输出电压不稳;
- (3) 车身接地不良。

维修诊断方法

- (1) 测量蓄电池电压,必要时对蓄电池进行充电(电压标准值10V~16V);
- (2) 检查发电机输出电压是否正常、稳定;
- (3) 检查ESP的3个接地点,包括ESP电控单元接地、电磁阀接地、液压助力泵电机接地;
- (4) 打开车上所有大功率用电器并测量ESP供电电压,在高用电负载的情况下可能出现供电不足;
- (5)测量车辆发动时、开关车上大功率用电器时产生的电压波动,潜在的用电器故障可能导致供电电路大幅度的电压波动。

9.2 电磁阀故障

故障代码: C0010、C0011、 C0014、C0015、C0018、C0019、 C001C、C001D、C0001、 C0002、C0003、C0004、C0072

故障可能原因

- (1) 系统过热保护;
- (2) ESP电控单元损坏。

维修诊断方法

- (1) 冷车10分钟后再读取故障码;
- (2) 更换ESP总成,并进行制动管路排气。

9.3 电磁阀继电器故障

故障代码: C0010

故障可能原因

- (1) 电磁阀供电不良(供电电压低、保险丝损坏或接触不良);
- (2) ESP电控单元接地不良;
- (3) ESP电控单元损坏。

维修诊断方法

- (1) 检查阀继电器供电线路、保险丝以及电源电压;
- (2) 用21W试灯测量ESP接插件阀继电器供电针脚和蓄电池正极之间的电压降; (标准值:小于0.2V)
- (3) 用21W试灯测量ESP接插件ESP ECU接地针脚和车身接地点之间的电压降; (标准值:小于0.2V)
- (4) 将车辆加速到15km/h 以上进行ESP系统动态自检;
- (5) 如完成动态自检后故障仍不能消除则更换ESP总成,并进行制动管路排气。

9.4 泵马达故障

故障代码: C0020

故障可能原因

- (1) 系统过热保护;
- (2) 泵马达供电不良(供电电压低、保险丝损坏或接触不良);
- (3) 泵马达接地不良:
- (4) 泵马达损坏。

维修诊断方法

- (1) 冷车10分钟后再读取故障码;
- (2) 检查泵马达供电线路、保险丝以及电源电压;
- (3) 用21W试灯测量ESP接插件泵马达供电针脚和蓄电池正极之间的电压降; (标准值:小于0.2V)
- (4) 用21W试灯测量ESP接插件泵马达接地针脚和车身接地点之间的电压降; (标准值:小于0.2V)
- (5) 将车辆加速到15km/h 以上进行ESP系统动态自检;
- (6) 如完成动态自检后故障仍不能消除则更换ESP总成,并进行制动管路排气。

9.5 轮速传感器线路故障

故障代码: C0032、C0035、C0038、C003B

故障可能原因

- (1) 轮速传感器线路断开,接插松动、断裂。
- (2) 轮速传感器信号线与电源线接反。
- (3) 信号线对地短路。

- (1) 检查轮速传感器线束是否存在开路、短路;
- (2) 检查轮速传感器线路上各接插件是否松动、断裂;
- (3) 检查轮速传感器电源线、信号线是否接反;
- (4) 将车辆加速到15km/h以上进行ESP系统动态自检;
- (5) 如完成动态自检后故障仍不能消除则更换轮速传感器。

9.6 轮速传感器信号故障

故障代码: C0031、 C0034、C0037、C003A、C0245

故障可能原因

- (1) 轮速传感器线束弯折,接插松动、断裂;
- (2) 轮速传感器信号线对电源短路;
- (3) 轮速传感器电源线对地短路;
- (4) 齿圈未安装、缺齿、齿圈脏有异物、退磁、齿圈偏心;
- (5) 传感器与齿圈之间的气隙过大;
- (6) 轮速传感器受到外界磁场干扰; (车轮或车轴未退磁)
- (7) 轮速传感器本体故障;
- (8) 齿圈齿数错误;
- (9) 轮胎尺寸不合规范。

维修诊断方法

- (1) 检查轮速传感器线束是否存在弯折;
- (2) 检查轮速传感器线路上各接插件是否松动、断裂;
- (3) 检查轮速传感器线束是否对电源或对地短路;
- (4) 检查轮速传感器是否正确固定;
- (5)用诊断仪读取轮速传感器数据流,在车辆行进中记录各车轮轮速及加速度显示是否一致,车速显示是否准确;
- (6) 若存在轮速显示不一致,需检查相应车轮轮速传感器信号齿圈是否有缺齿、赃污、异物、退磁、偏心现象;
- (7)对轮速传感器进行任何维修动作后,需要将车辆加速到15km/h以上进行ESP系统动态自检;
- (8) 如完成动态自检后故障仍不能消除则更换轮速传感器。

9.7 ECU 故障

故障代码: C0550

故障可能原因

(1) ECU损坏。

维修诊断方法

(1) 更换ESP总成,并进行制动管路排气。

9.8 CAN 总线故障

故障代码: C1001、U1000

故障可能原因

- (1) 蓄电池电压过高或过低(电压标准值10V~16V);
- (2) 发电机输出电压不稳;

(3) ESP 电控单元损坏。

维修诊断方法

- (1) 测量蓄电池电压,必要时对蓄电池进行充电;
- (2) 检查发电机输出电压是否正常、稳定;
- (3) 更换ESP总成,并进行制动管路排气。

9.9 压力传感器故障

故障代码: C0046

故障可能原因

- (1) 制动灯开关故障或其电路故障;
- (2) 压力传感器故障;

维修诊断方法

- (1) 检查制动灯开关及其电路是否正常;
- (2) 更换ESP总成,并进行制动管路排气。

9.10 方向盘转角传感器故障

故障代码: U0126、C0460、C1066

故障可能原因

- (1) 转向角传感器未正确标定;
- (2) 转向角传感器线路故障;
- (3) 转向角传感器插头松动或破裂;
- (4) 转向角传感器损坏。

维修诊断方法

- (1) 取消转向角传感器的标定并重新进行标定;
- (2) 检查转向角传感器线束;
- (3) 检查并重新插好转向角传感器插头;
- (4) 更换转向角传感器。

9.11 偏航率传感器(集成惯性传感器)故障

故障代码: C0061、 C0062、C0063、C0196、C00A8

偏航率传感器包含横向加速度、纵向加速度、横摆角速度三个信号。

故障可能原因

- (1) ESP安装位置不正确; (必须保证ESP在车身上保持水平)
- (2) 偏航率传感器(集成惯性传感器)未正确标定;

(3) 偏航率传感器(集成惯性传感器)损坏。

维修诊断方法

- (1) 调整ESP安装位置,并检查支架是否有弯曲、磨损;
- (2) 重新标定偏航率传感器(集成惯性传感器);
- (3) 更换ESP总成,并进行制动管路排气。

9.12 ESP 关闭开关故障

故障代码: C004C

故障可能原因

- (1) ESP关闭开关被物品压住;
- (2) ESP关闭开关或其电路损坏。

维修诊断方法

- (1) 通过ESP关闭开关手动关闭并重新打开ESP 功能;
- (2) 检查ESP关闭开关。

9.13 ESP 配置信息故障

故障代码: C1212

故障可能原因

- (1) 配置信息没有写入;
- (2) 配置信息不匹配。

维修诊断方法

(1) 用诊断仪写入正确的配置信息。

9.14 制动灯开关 (BLS) 故障

故障代码: C0040

故障可能原因

- (1) 制动灯开关线路开路或短路;
- (2) 制动灯开关安装错误;
- (3) 制动灯开关损坏。

- (1) 检查制动灯开关及其线束;
- (2) 更换制动灯开关。

9.15 制动系统异常(ESP作用时间过长)

故障代码: C0082

故障可能原因

- (1) 连续激烈驾驶或长时间连续使用刹车;
- (2) 轮速传感器信号不准确;
- (3) 方向盘转角传感器、横摆角速度传感器信号异常。

维修诊断方法

- (1) 用诊断仪读取轮速传感器数据流,观察是否有某车轮轮速持续偏高或偏低;
- (2) 开车做8字形试车,测试中方向盘左右都需要打到底,再次读取故障码;
- (3) 如无方向盘转角传感器或横摆角速度传感器相关故障码,需要检查ESP的安装位置是否水平并且 紧固。ESP的支架不能用于安装其它设备装置。

9.16 离合器/倒档信号异常(HHC 驻坡控制功能)

故障代码: C1080、C108C

故障可能原因

- (1) 离合器信号异常;
- (2) 离合器信号线开路或短路;
- (3) 倒档开关故障;
- (4) 倒档信号线开路或短路;

- (1) 检查离合器信号线;
- (2) 检查倒档开关;
- (3) 检查倒档信号线。

9.17 CAN 总线节点故障

故障代码: U0293、U0594、U0294、U0595、U0303、U0585

故障可能原因

- (1) CAN 总线通讯中断;
- (2) 液压助力模块(ACM) 节点/主电机(MG) 节点/变速箱(TCU) 节点供电不良;
- (3) 液压助力模块(ACM) 节点/主电机(MG) 节点/变速箱(TCU) 节点故障(与CAN 总线脱离或ECU故障)。

- (1) 检查CAN 总线通讯是否正常;
- (2) 退电至0FF档,分别测量CAN-H、CAN-L线从液压助力模块(ACM)节点/主电机(MG)节点/变速箱(TCU)节点到ESP 的电阻;(标准值:小于5 Ω)
- (3) 从液压助力模块(ACM)节点/主电机(MG)节点/变速箱(TCU)节点的接插件测量CAN-H和CAN-L 线之间的电阻(保持插头在接插状态);(标准值: 60Ω)
- (4) 检查液压助力模块(ACM)节点/主电机(MG)节点/变速箱(TCU)节点供电;
- (5)读取液压助力模块(ACM)节点/主电机(MG)节点/变速箱(TCU)节点的故障码,根据故障码进行相应检查。

10、拆卸与安装

10.1 ACM-H/ESP 总成拆卸步骤

- 1、退电至 0FF 档, 断开蓄电池负极。
- 2、从 ACM-H/ESP 总成上拆卸线束。
- 3、制动踏板踩到底,并用踏板支撑架固定,以避免制动管路从制动主缸上取下后,制动液流出。
- 4、拆下制动管路,并用塞子将 ACM-H/ESP 总成上的螺纹孔和制动管路的油孔堵住,以免杂质进入。
- 5、将 ACM-H/ESP 从固定支架上取下。

10.2 ACM-H/ESP 总成安装步骤

- 1、将 ACM-H/ESP 总成安装到支架上, 拧紧力矩为 8±2Nm。
- 2、取下 ACM-H/ESP 螺纹孔和制动管路上的塞子,将制动管路接入 ACM-H/ESP 总成, 拧紧力矩为 16±2Nm。
- 3、向储液罐加注制动液至 Max 位置,并按规定方法排气。
- 4、更换 ACM-H/ESP 总成之后必须写入配置信息。(如果有的话)
- 5、更换ACM-H/ESP总成之后必须对感应活塞压力传感器、电磁阀、踏板行程传感器、方向盘转向角传感器、偏航率传感器(集成传感器)进行标定。

10.3 制动执行单元(BOU)和液压助力控制模块(ACM-H)的排气

HAShev系统分为几个回路,每一个回路都需进行排气。排气时需要在储液罐处施加2bar的正压力。

- 1、储液罐到踏板反馈模拟器回路排气 排气螺丝-1
- 2、储液罐经由传感器舱和BSV到助力器舱回路排气 排气螺丝-3
- 3、储液罐经由传感器舱和SSV到踏板压力模拟器前舱回路排气 排气螺丝-2
- 4、储液罐经由传感器舱和BSV, BOV返回储液罐和储液罐经由ACM-H内部泵和BIV到助力器舱回路排气注意:排气过程中,储液罐上应保持2bar正压

10.4 排气说明

- ·在更换制动系统部件(如更换制动液、制动管路、液压单元)后,或制动踏板偏软时,必须进行排气。
- ·更换的液压单元必须是已注油的制动执行单元(BOU)、液压助力控制模块(ACM-H)或电子稳定控制模块(ESP)。
- ·排气时必须保证制动系统结构完整,所有的高压液压单元已经连接好。
- ·在排气前需拉起驻车制动。
- ·制动液有腐蚀性,如不小心沾到皮肤上,须清洗干净。

记事