Contents

Co	ontents	j
1	Limits	1
	1.1 Cluster Points	1
	1.2 Limits	2
	1.3 Left and Right Limits	4
	1.4 Infinite Limits	
	1.5 Limits at Infinity	
2	Continuity	7
	2.1 Continuity	7
	2.2 Uniform Continuity	11
3		15
	3.1 Differentiation	15
	3.2 The Pillars of Differentiation	

Last update: 2024 December 9

Chapter 1

Limits

§ 1.1. Cluster Points

Definition 1.1.1. Let $c \in \mathbb{R}$ and $\delta > 0$.

- (1) The δ -neighborhood around c is denoted $V_{\delta}(c) = (c \delta, c + \delta)$.
- (2) The deleted δ -neighborhood around c is denoted $\dot{V}_{\delta}(c) = (c \delta, c) \cup (c, c + \delta)$.

Lemma 1.1.1. *If* $c \in \mathbb{R}$ *and* $\delta > 0$ *, then:*

- $(1) \ x \in V_{\delta}(c) \iff |x-c| < \delta;$
- $(2) \ x \in \dot{V}_{\delta}(c) \iff 0 < |x c| < \delta.$

Definition 1.1.2. Let $D \subseteq \mathbb{R}$. A number $c \in \mathbb{R}$ is a *cluster point of* D if

$$(\forall \varepsilon > 0)(\dot{V}_{\delta}(c) \cap D \neq \emptyset).$$

Example 1.1.1.

- (1) The cluster points of (0,1) are [0,1].
- (2) The cluster points of \mathbb{Q} are \mathbb{R} .
- (3) If $F \subseteq \mathbb{R}$ is a finite set, then F has no cluster points.

Definition 1.1.3. If $D \subseteq \mathbb{R}$ is a subset, then

$$\overline{D}:=\bigcap_{\substack{C\supseteq D\\ \text{C closed in \mathbb{R}}}}C.$$

Proposition 1.1.2. Let $D \subseteq \mathbb{R}$ and $c \in \mathbb{R}$.

(1) c is a cluster point of D if and only if there exists a sequence $(x_n)_n$ in D with $x_n \neq c$ and $(x_n)_n \rightarrow c$.

1

(2) $c \in \overline{D}$ if and only if there exists a sequence $(x_n)_n$ in D with $(x_n)_n \to c$.

CHAPTER 1. LIMITS 1.2. LIMITS

Proof. (1) (\Rightarrow) Let c be a cluster point of D. By induction, for each $n \ge 1$ there exists $x_n \in V_{\frac{1}{n}(c)} \cap D \ne \emptyset$. We obtain a sequence $(x_n)_n$ in D, satisfying $x_n \ne c$ and $|x_n - c| < \frac{1}{n}$. Whence $(x_n)_n \to c$. (\Leftarrow) Now suppose such a sequence $(x_n)_n$ exists. Given $\delta > 0$, there exists $N \in \mathbb{N}$ so that $n \ge N$ implies $|x_n - c| < \delta$. Whence $x_n \in \dot{V}_{\delta}(c) \cap D$.

$$(2) (\Rightarrow)$$
 Office hours

§ 1.2. Limits

Definition 1.2.1. Let $f: D \to \mathbb{R}$ and c be a cluster point of D. Then:

$$\lim_{x \to c} f(x) = L \text{ if } (\forall \epsilon > 0)(\exists \delta > 0) \ni (x \in \dot{V}_{\delta}(c) \cap D \implies f(x) \in V_{\epsilon}(L)).$$

$$\ni (x \in D, 0 < |x - c| < \delta \implies |f(x) - L| < \epsilon).$$

Example 1.2.1.

(1) Prove that $\lim_{x\to 2} 3x + 4 = 10$.

Solution. Note that:

$$|f(x) - L| = |3x + 4 - 10|$$

= $|3x - 6|$
= $3|x - 2|$.

If ϵ is given, pick $\delta = \frac{\epsilon}{3}$. If $|x-2| < \delta$, then $|x-2| < \frac{\epsilon}{3}$, giving $|3x+4-10| < 3|x-2| < \epsilon$.

(2) Prove that $\lim_{x\to 3} x^2 = 9$.

Solution. Note that:

$$|f(x) - L| = |x^2 - 9|$$

= $|x - 3||x + 3|$.

If 0 < |x - 3| < 1 don't get the rest of the examples

Proposition 1.2.1 (Sequential Characterization of a Limit). Let $f : D \to \mathbb{R}$ and c a cluster point of D. The following are equivalent:

- (1) $\lim_{x \to c} f(x) = L$;
- $(2) \ (\forall (x_n)_n \in D^{\mathbb{N}})(x_n \neq c \ \land \ (x_n)_n \to c \implies (f(x_n))_n \to L).$

Proof. (\Rightarrow) Suppose $\lim_{x\to c} f(x) = L$. Let $(x_n)_n$ be in D with $x_n \neq c$ and $(x_n)_n \to c$. Given $\epsilon > 0$, we know there exists $\delta > 0$ such that $x \in D$ and $0 < |x - c| < \delta$ implies $|f(x) - L| < \epsilon$. We know there exists some $N \in \mathbb{N}$ with $n \geqslant N$ implying $|x_n - c| < \delta$. Whence $|f(x_n) - L| < \epsilon$; i.e., $(f(x_n))_n \to L$.

CHAPTER 1. LIMITS 1.2. LIMITS

(⇐) Towards a contradiction, suppose that for every sequence $(x_n)_n$ in D such that $x_n \neq c$ and $(x_n)_n \rightarrow c$, it holds that $(f(x_n))_n \rightarrow L$, yet $\lim_{x \rightarrow c} f(x) \neq L$. Then by definition:

$$(\exists \varepsilon_0 > 0) (\forall \delta > 0) \ni (x \in \dot{V}_\delta(c) \cap D \ \land \ f(x) \notin V_{\varepsilon_0}(L)).$$

So for each $\delta = \frac{1}{n}$, we can find $x_n \in \dot{V}_{\frac{1}{n}}(c) \cap D$ and $f(x_n) \notin V_{\epsilon_0}(L)$, or equivalently $(x_n)_n \to c$ and $(f(x_n))_n \to L$. This is a contradiction, since $(x_n)_n \to c$ implies $(f(x_n))_n \to L$. This establishes that $\liminf_{x \to c} f(x) = L$.

Theorem 1.2.2 (Sequential Characterization of Divergence I). *Let* $f : D \to \mathbb{R}$ *and* c *a cluster point of* D. *The following are equivalent:*

(1) $\lim_{x \to c} f(x) \neq L$;

$$(2) (\exists (x_n)_n \in D^{\mathbb{N}}) ((x_n \neq c \land (x_n)_n \to c) \land (f(x_n))_n \to L)$$

Proof. This follows from negating Proposition 1.2.1.

Theorem 1.2.3 (Sequential Characterization of Divergence II). *Let* $f : D \to \mathbb{R}$ *and* c *a cluster point of* D. *The following are equivalent:*

(1) $\lim_{x \to c} f(x)$ does not exist;

(2)
$$(\exists (x_n)_n \in D^{\mathbb{N}})((x_n \neq c \land (x_n)_n \rightarrow c) \land (f(x_n))_n \text{ diverges})$$

Proof. (\Leftarrow) This direction follows from the converse of Proposition 1.2.1. (\Rightarrow) Let $(y_n)_n$ be a sequence in D with $y_n \neq c$ and $(y_n)_n \rightarrow c$. We proceed by cases. Case 1: $(f(y_n))_n$ is divergent. Then we are done. Case 2: don't understand this shit at all

Example 1.2.2.

(1) d.n.e. examples, do later

Theorem 1.2.4. *Suppose* $f, g : D \to \mathbb{R}$ *and* c *is a cluster point of* D.

- (1) If $\lim_{x\to c} = L_1$ and $\lim_{x\to c} g(x) = L_2$, then:
 - (i) $\lim_{x \to c} (f(x) \pm g(x)) = L_1 \pm L_2;$
 - (ii) $\lim_{x\to c} (\alpha f(x)) = \alpha L_1$ for some $\alpha \in \mathbb{R}$;
 - (iii) $\lim_{x \to c} f(x)g(x) = L_1L_2$;
 - (iv) $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}$ if $L_2 \neq 0$.
- (2) $\lim_{x \to c} |f(x)| = |L_1|$.

- (3) $\lim_{x\to c} \sqrt{f(x)} = \sqrt{L_1}$ if $f(x) \ge 0$ for all $x \in D$.
- (4) If $f \in \mathbb{R}[x]$, then:
 - (1) $\lim_{x \to c} f(x) = f(c);$
 - (2) If $f(x) = \frac{p(x)}{q(x)}$ with $q(c) \neq 0$, then $\liminf_{x \to c} f(x) = f(c)$.

Proof. These follow from previous results related to sequences.

Theorem 1.2.5. Let $f: D \to \mathbb{R}$ and c a cluster point of D.

- (1) If $f(x) \le b$ for all $x \in \dot{V}_{\delta}(c)$ and $\liminf_{x \to c} f(x) = L$ exists, then $L \le b$.
- (2) If $f(x) \ge \alpha$ for all $x \in \dot{V}_{\delta}(c)$ and $\liminf_{x \to c} f(x) = L$ exists, then $L \ge \alpha$.

Proof. (1) Let $(x_n)_n$ be a sequence in $\dot{V}_{\delta}(c)$ with $(x_n)_n \to c$. We know $(f(x_n))_n \to L$, and since $f(x_n) \le b$ for all n, so must $L \le b$.

(2) This follows similarly.

Theorem 1.2.6. Let f, g, h : D $\rightarrow \mathbb{R}$ and c a cluster point of D. Suppose $f(x) \leq g(x) \leq h(x)$ with $x \in \dot{V}_{\delta}(c)$ for some $\delta > 0$. If $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$, then $\lim_{x \to c} g(x) = L$.

Proof. sequences.

§ 1.3. Left and Right Limits

Definition 1.3.1. Let $D \subseteq \mathbb{R}$ and $f : D \to \mathbb{R}$.

(1) Let c be a cluster point of $D \cap (c, \infty)$. Then

(2) Let c be a cluster point of D \cap ($-\infty$, c). Then:

$$\lim_{x \to c^{-}} f(x) = L \text{ if } (\forall \epsilon > 0)(\exists \delta > 0) \ni (x \in D \cap (c - \delta, c) \implies f(x) \in V_{\epsilon}(L))$$

$$\ni (x \in D, 0 < c - x < \delta \implies |f(x) - L| < \epsilon).$$

Proposition 1.3.1. *Let* $f: D \to \mathbb{R}$ *and* c *a cluster point of* D. *Then:*

$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^{\pm}} f(x) = L.$$

CHAPTER 1. LIMITS 1.4. INFINITE LIMITS

Proposition 1.3.2. *Let* $f: D \to \mathbb{R}$ *and* c *a cluster point of* $D \cap (c, \infty)$. *Then* $\lim_{x \to c^+} f(x) = L$ *if and only if:*

$$(\forall (x_n)_n \in (\mathsf{D} \cap (c,\infty))^\mathbb{N})((x_n)_n \to c \implies (\mathsf{f}(x_n))_n \to \mathsf{L}).$$

Proposition 1.3.3. *Let* $f: D \to \mathbb{R}$ *and* c *a cluster point of* $D \cap (-\infty, c)$. *Then* $\lim_{x \to c^-} f(x) = L$ *if and only if:*

$$(\forall (x_n)_n \in (D \cap (-\infty, c))^{\mathbb{N}})((x_n)_n \to c \implies (f(x_n))_n \to L).$$

§ 1.4. Infinite Limits

Definition 1.4.1. Let $f: D \to \mathbb{R}$ and c a cluster point of D. Then:

$$(1) \lim_{x \to c} f(x) = +\infty \iff (\forall M > 0)(\exists \delta > 0) \ni (x \in \dot{V}_{\delta}(c) \implies f(x) > M).$$

(2)
$$\lim_{x \to c} f(x) = -\infty \iff (\forall M > 0)(\exists \delta > 0) \ni (x \in \dot{V}_{\delta}(c) \implies f(x) < -M).$$

Note 1. The definitions for left-handed and right-handed limits follow similarly.

Example 1.4.1. Show that $\lim_{x\to 1} \frac{3}{(x-1)^2} = \infty$.

Solution. Let M be given. Then:

$$g(x) > M \iff \frac{3}{(x-1)^2} > M$$

$$\iff \frac{3}{M} > (x-1)^2$$

$$\iff \sqrt{\frac{3}{M}} > |x-1|.$$

So given M, let $\delta = \sqrt{\frac{3}{M}}$. If $0 < |x - 1| < \delta$, then by above, g(x) > M.

Example 1.4.2. Show that $\lim_{x\to 3^-} \frac{-2}{3-x} = -\infty$.

Solution. Let M be given. Then:

$$g(x) < -M \iff \frac{-2}{3-x} < -M$$

$$\iff \frac{2}{3-x} > M$$

$$\iff \frac{2}{M} > 3-x \qquad \text{sign did not flip since } x < 3.$$

So given M, let $\delta = \frac{2}{M}$. For $x \in (3 - \delta, 3)$, we have $3 - x < \delta$. By work above, g(x) < -M.

§ 1.5. Limits at Infinity

Definition 1.5.1. Let $f:(a,\infty)\to\mathbb{R}$.

$$(1) \lim_{x \to \infty} f(x) = L \iff (\forall \epsilon > 0) (\exists \alpha > 0) \ni (x > \alpha \implies f(x) \in V_{\epsilon}(L)).$$

$$(2) \lim_{x \to +\infty} f(x) = \infty \iff (\forall M > 0)(\exists \alpha) \ni (x > \alpha \implies f(x) > M).$$

Example 1.5.1. dont wanna type

Remark. Each of these limits at infinity have sequential expressions. figure it out and reformat.

Proposition 1.5.1. *Let* $f : (a, \infty) \to \mathbb{R}$. *Then:*

(1)
$$\lim_{x \to \infty} f(x) = L \iff ()$$

Proposition 1.5.2. *something about limits of rational functions*

Corollary 1.5.3. something about polynomials.

Chapter 2

Continuity

§ 2.1. Continuity

Definition 2.1.1. Let $f: D \to \mathbb{R}$ be a function and let $c \in D$.

(1) f is continuous at x = c if:

$$\begin{split} (\forall \varepsilon > 0)(\exists \delta > 0) \ni (|x - c| < \delta, x \in D \implies |f(x) - f(c)| < \varepsilon) \\ \ni (x \in D \cap V_{\delta}(c) \implies f(x) \in V_{\varepsilon}(f(c))) \\ \ni f(D \cap V_{\delta}(c)) \subseteq V_{\varepsilon}(f(c)). \end{split}$$

(2) f is *continuous on* D if f is continuous at every $c \in D$.

Proposition 2.1.1. Let c be a cluster point of D with $c \in D$. Then f is continuous at x = c if and only if $\lim_{x\to c} f(x) = f(c)$.

Proposition 2.1.2. Let $f: D \to \mathbb{R}$ and $c \in D$. Then f is continuous at x = c if and only if:

$$(\forall (x_n)_n \in D^{\mathbb{N}})((x_n)_n \to c \implies (f(x_n))_n \to f(c)).$$

Example 2.1.1.

- (1) Polynomial and rational functions are continuous.
- (2) Given that $\lim_{x\to c} x = c$, we've shown that $\lim_{x\to c} \sqrt{x} = \sqrt{c}$ for $c \ge 0$. Whence $f(x) = \sqrt{x}$ is continuous on $[0, \infty)$.

Note 2. The negation of Proposition 2.1.2 is:

$$(\exists (x_n)_n \in D^{\mathbb{N}})((x_n)_n \to c \land (f(x_n))_n \nrightarrow f(c)).$$

7

Example 2.1.2. Show that sign : $\mathbb{R} \to \mathbb{R}$ is not continuous at x = 0.

Solution. Let $x_n = \frac{1}{n}$. Then $(x_n)_n \to 0$. But $(sign(x_n))_n = (1)_n \to 1 \neq sign(0)$.

Example 2.1.3. Show that $\mathbb{1}_{\mathbb{Q}}(x)$ is not continuous at every point.

Solution. Fix any $c \in \mathbb{R}$. We proceed by cases.

Case 1: $c \in \mathbb{Q}$. Since $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} , we can find a sequence $(r_n)_n \in (\mathbb{R} \setminus \mathbb{Q})^{\mathbb{N}}$ with $(r_n)_n \to c$. Then $(\mathbb{1}_{\mathbb{Q}}(r_n))_n = (0)_n \to 0 \neq \mathbb{1}_{\mathbb{Q}}(c)$.

Case 2: $c \in \mathbb{R} \setminus \mathbb{Q}$. Since \mathbb{Q} is dense in \mathbb{R} , we can find a sequence $(r_n)_n \in \mathbb{Q}^{\mathbb{N}}$ with $(r_n)_n \to c$. Then $(\mathbb{1}_{\mathbb{Q}}(r_n))_n = (1)_n \to 1 \neq \mathbb{1}_{\mathbb{Q}}(c)$.

Definition 2.1.2. A function F is said to be an *extension* of another function f if:

- (1) $x \in Dom(f)$ implies $x \in Dom(F)$;
- (2) $Dom(f) \subseteq Dom(F)$;
- (3) $F|_{Dom(f)} = F$.

Example 2.1.4. Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined by $f(x) = x \sin(\frac{1}{x})$. Note that this function is not continuous at x = 0 since $0 \notin Dom(f)$. This discontinuity is removable however; consider the function:

$$\widetilde{f}(x) = \begin{cases} f(x), & x = 0 \\ 0, & x = 0. \end{cases}$$

Then \tilde{f} is continuous on \mathbb{R} and extends f.

Example 2.1.5. Let $g:(0,\infty)\to\mathbb{R}$ be defined by $g(x)=\sin\left(\frac{1}{x}\right)$. Note that g is continuous on $(0,\infty)$. However, we are unable to extend g to a continuous function on $[0,\infty)$.

By way of contradiction, suppose such an $f : [0, \infty) \to \mathbb{R}$ exists. Then:

$$f(0) = \lim_{x \to 0} f(x)$$

= $\lim_{x \to 0} g(x)$ which does not exists. \perp

Definition 2.1.3. A function $f: D \to \mathbb{R}$ is *Lipschitz* with constant $c \ge 0$ if $|f(x) - f(y)| \le c|x - y|$. When c = 1, f is called a *contraction*. When |f(x) - f(y)| = |x - y|, f is called an *isometry*.

Proposition 2.1.3. *If* f *is Lipschitz, then* f *is continuous*

Proof. Let $c \in Dom(f)$ and $(x_n)_n \to c$ be any sequence in Dom(f). By definition:

$$|f(x_n) - f(c)| \le k|x_n - c|.$$

Since $(x_n - c)_n \to 0$, by "Lemma" $(f(x_n))_n \to f(c)$. Whence f is continuous for all $c \in Dom(f)$.

Theorem 2.1.4 (Extreme Value Theorem). *Let* $f : [a, b] \to \mathbb{R}$ *be a continuous function. We have:*

- (1) f is always bounded;
- (2) There exists x_M , x_m such that:

$$\sup_{x \in [a,b]} f(x) = f(x_M)$$
$$\inf_{x \in [a,b]} f(x) = f(x_m).$$

Proof. (1) Suppose towards contradiction that f is not bounded. Then:

$$(\forall n \ge 1)(\exists x_n) \ni |f(x_n)| \ge n.$$

We inductively obtain a sequence $(x_n)_n \in [a, b]^N$. By the Bolzano-Weierstass theorem, there exists a convergent subsequence $(x_{n_k})_k \to x_0 \in [a, b]$. Now since f is continuous, $(f(x_{n_k}))_k \to f(x_0)$; i.e., $(f(x_{n_k}))_k$ is bounded. \bot But $|f(x_{n_k})_k| \ge n_k$.

(2) Let $u = \sup_{x \in [a,b]} f(x) < \infty$. Note that:

$$(\forall n \in \mathbb{N})(\exists x_n \in [a, b]) \ni \left(u - \frac{1}{n} < f(x_n) \leqslant u\right).$$

By Bolzano-Weierstrass, there exists a subsequence $(x_{n_k})_k \to x_0$ for some $x_0 \in [a, b]$. Since f is continuous, $(f(x_{n_k}))_k \to f(x_0)$ But since $(f(x_n))_n \to u$, it must be that $f(x_0) = u$.

A similar argument follows for $\inf_{x \in [a,b]} f(x) = f(x_m)$.

Lemma 2.1.5 (Contagion Lemma). Let y = f(x) be continuous at x = c.

- (1) If f(c) > 0, then there exists $\delta > 0$ such that $f(x) \geqslant \frac{f(c)}{2} > 0$ for all $x \in V_{\delta}(c)$.
- (2) If f(c) < 0, then there exists $\delta > 0$ such that $f(x) \leqslant \frac{f(c)}{2} < 0$ for all $x \in V_{\delta}(c)$.

Proof. (1) Let $\varepsilon = \frac{f(c)}{2}$. Then $V_{\varepsilon}(f(c)) = \left(\frac{f(c)}{2}, \frac{3f(c)}{2}\right)$. Since f is continuous, there exists $\delta > 0$ such that $x \in V_{\delta}(c)$ implies $f(x) \in V_{\varepsilon}(f(c))$. Whence $f(x) > \frac{f(c)}{2}$.

(2) This follows similarly.

Lemma 2.1.6 (Location of Roots). Let $f : [a, b] \to \mathbb{R}$ be continuous with f(a)f(b) < 0. Then there exists $c \in (a, b)$ with f(c) = 0.

Proof. Without loss of generality, suppose f(a) < 0 and f(b) > 0. Let $N := \{x \in [a,b] \mid f(x) < 0\}$. Note that $N \neq \emptyset$ because $a \in N$. Moreover, N is bounded. So $c := \sup N$ exists. By the contagion lemma, there exists $\delta > 0$ so that f(x) < 0 on $V_{\delta}(a)$. Hence $c \neq a$. Similarly, there exists $\eta > 0$ so that f(x) > 0 on $V_{\eta}(b)$. So $c \neq b$. Thus a < c < b.

If f(c) < 0, then by the contagion lemma there exists $\delta > 0$ so that f(x) < 0 on $V_{\delta}(c)$. So $\sup N > c$. \bot

If f(c) > 0, then by the contagion lemma there exists $\delta > 0$ so that f(x) > 0 on $V_{\delta}(c)$. By the supremum property, there exists $x \in N$ with $c - \delta < x \le c$. Thus f(x) < 0 and f(x) > 0. \bot

Thus
$$f(c) = 0$$
.

Theorem 2.1.7 (Initial Value Theorem). Let I be an interval and $f: I \to \mathbb{R}$ a continuous function. If $[a,b] \subseteq I$ and $k \in \mathbb{R}$ with f(a) < k < f(b) or f(a) > k > f(b), then there exists $c \in (a,b)$ with f(c) = k.

Proof. Let g(x) = f(x) - k. Then g(a)g(b) < 0. By location of roots, there exists c ∈ (a, b) with g(c) = 0. Thus f(c) = k.

Corollary 2.1.8. *Let* $f : [a,b] \to \mathbb{R}$ *be a continuous function. If* $k \in [\inf_{[a,b]} f, \sup_{[a,b]} f]$, *then there exists* $c \in [a,b]$ *so that* f(c) = k.

Proof. By the Extreme Value Theorem, there exists x_m, x_M such that $\inf f = f(x_m)$ and $\sup f = f(x_M)$. Without loss of generality, suppose $x_m \le x_M$. Then applying the Initial Value Theorem on $[x_m, x_M]$ says there exists $c \in (x_m, x_M)$ with f(c) = k.

Corollary 2.1.9. Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Then there exists $c \le d$ with f([a,b]) = [c,d].

Proof. This follows directly from the Extreme Value Theorem and the previous corollary.

Corollary 2.1.10. *If* I *is any interval and* $f: I \to \mathbb{R}$ *is continuous, then* f(I) *is an interval.*

Proof. Homework.

Corollary 2.1.11. Let p(x) be a polynomial of odd degree. Then there exists $z \in \mathbb{R}$ with p(z) = 0.

Proof. Suppose the leading term of p(x) is positive. Since deg(p) is odd,

$$\lim_{x \to \infty} p(x) = \infty$$

$$\lim_{x \to -\infty} p(x) = -\infty.$$

With M = 1, there exists α such that $x \ge \alpha$ implies $p(x) \ge 1$. Similarly, there exists β such that $x \le \beta$ implies $p(x) \le -1$.

We can find $x_1 < x_2$ with $p(x_1)p(x_2) < 0$. Applying the location of roots lemma gives the desired result.

§ 2.2. Uniform Continuity

Definition 2.2.1. Let $f: D \to \mathbb{R}$ be a function. Then f is *uniformly continuous on* D if:

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni (\forall \mathfrak{u}, \mathfrak{v} \in D)(|\mathfrak{u} - \mathfrak{v}| < \delta \implies |f(\mathfrak{u}) - f(\mathfrak{v})| < \varepsilon).$$

Proposition 2.2.1. *If* f *is Lipschitz then* f *is uniformly continuous.*

Proof. We have $|f(x) - f(y)| \le c|x - y|$ for all $x, y \in D$. Given ε , let $\delta = \frac{\varepsilon}{c}$. If $|u - v| < \delta$, then:

$$|f(u) - f(v)| \le c|u - v|$$

$$< c\delta$$

$$< \epsilon.$$

Proposition 2.2.2. *If* $f : D \to \mathbb{R}$ *is uniformly continuous on* D, f *is continuous on* D.

Proof. Let $c \in D$. We want to show continuity at x = c. Let $\epsilon > 0$. Choose $\delta > 0$ as in the definition of uniform continuity. Then $x \in D$, $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$.

Recall. f is continuous at x = c if:

$$(\forall \epsilon > 0)(\exists \delta > 0) \ni |x - c| < \delta \implies |f(x) - f(x)| < \epsilon.$$

Note that δ might depend on ϵ and c.

 $f: D \to \mathbb{R}$ is cts on D if f is continuous at every point $c \in D$.

f is uniformly conitnuous at D if:

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni (\forall u, v \in D)(|u - v| < \delta \implies |f(u) - f(v)| < \varepsilon).$$

Example 2.2.1. Let $f(x) = \frac{1}{x}$ on $[\alpha, \infty)$, where $\alpha > 0$ is fixed. But notice that:

$$|f(u) - f(v)| = \left|\frac{1}{u} - \frac{1}{v}\right| = \frac{|u - v|}{uv} \leqslant \frac{1}{a^2}|u - v|$$

This function is Lipschitz with constant $\frac{1}{a^2}$. So f is uniformly continuous on $[a, \infty)$.

However, f is not uniformly continuous on $(0, \infty)$.

Proposition 2.2.3. *Let* $f: D \to \mathbb{R}$. *The following are equivalent:*

(1) f is not uniformly continuous on D;

$$(2) (\exists \epsilon_0 > 0)(\forall \delta > 0) \ni (\exists u_\delta, v_\delta \in D)(|u_\delta - v_\delta| \land |f(u_\delta) - f(v_\delta)| \geqslant \epsilon_0).$$

$$(3) \ (\exists \varepsilon_0 > 0) \ni (\exists (u_n)_n, (v_n)_n \in D^{\mathbb{N}}) ((u_n - v_n)_n \to 0 \ \land \ |f(u_n) - f(v_n)| \geqslant \varepsilon_0)$$

Example 2.2.2. Consider $f(x) = \frac{1}{x}$ on $(0, \infty)$. Let $u_n = \frac{1}{n}$ and $v_n = \frac{1}{n+1}$. We have:

$$|u_n - v_n| = \left| \frac{1}{n} - \frac{1}{n+1} \right| = \frac{1}{n(n+1)} \le \frac{1}{n}.$$

Since $\left(\frac{1}{n}\right)_n \to 0$, $(u_n - v_n)_n \to 0$. But now:

$$|f(v_n) - f(u_n)| = |(n+1) - n| = 1 := \epsilon_0.$$

So f is not uniformly continuous on $(0, \infty)$.

Theorem 2.2.4 (Compactness Argument). *If* $f : [a,b] \to \mathbb{R}$ *is continuous,* f *is uniformly continuous.*

Proof. By way of contradiction, if not uniformly continuous, we have an $\epsilon_0 > 0$, and sequences $(u_n)_n, (v_n)_n \in [a, b]^N$ with $(u_n - v_n)_n \to 0$ and $|f(u_n) - f(v_n)| \ge \epsilon_0$.

Bolzano-Weierstrass says there exists a convergent subsequence $(u_{n_k})_k \to z \in [a, b]$. Observe that:

$$|v_{n_k} - z| = |v_{n_k} - u_{n_k} + u_{n_k} - z|$$

$$\leq |v_{n_k} - u_{n_k}| + |u_{n_k} - z|.$$

Since $(v_{n_k} - u_{n_k})_k \to 0$ and $(u_{n_k} - z)_k \to 0$, we have that $(v_{n_k})_k \to z$.

But since f is continuous, we have that $(f(u_{n_k}))_k \to f(z)$ and $(f(v_{n_k}))_k \to f(z)$.

Hence
$$(f(u_{n_k}) - f(v_{n_k}))_k \to 0$$
. \perp Since $|f(u_{n_k}) - f(v_{n_k})| \ge \epsilon_0 > 0$

Example 2.2.3. Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \sqrt{x}$. Since f is continuous on [0,1], it is uniformly continuous. We will show that f is not Lipschitz. Suppose towards contradiction it is. Then:

$$|f(x) - f(y)| \le c|x - y|$$

for all $x, y \in [0, 1]$. Taking y = 0 gives:

$$\sqrt{x} \le cx$$

for all $x \in [0, 1]$. But:

$$\frac{1}{\sqrt{x}} \le c$$

for all $x \in [0, 1]$ is a contradiction, as $\frac{1}{\sqrt{x}}$ is blowing up as x approaches 0.

Lemma 2.2.5. If $f: D \to \mathbb{R}$ is uniformly continuous and $(x_n)_n$ is Cauchy, then $(f(x_n))_n$ is also Cauchy.

Proof. If $\epsilon > 0$, We want to show that $|f(x_n) - f(x_m)|$ is small for large m.

We know that for $u, v \in D$, $|u - v| < \delta$ implies $|f(u) - f(v)| < \epsilon$.

Now there exists N such that n, $m \ge N$ implies $|x_n - x_m| < \delta$.

So if n, m \ge N, then $|x_n - x_m| < \delta$, which implies that $|f(x_n) - f(x_m)| < \epsilon$.

Thus $(f(x_n))_n$ is Cauchy.

Theorem 2.2.6. *Let* $f : (a, b) \to \mathbb{R}$. *The following are equivalent:*

- (1) f is uniformly continuous;
- (2) There exists a continuous function $\tilde{f}: [a,b] \to \mathbb{R}$ such that $\tilde{f}(x) = f(x)$ for all $x \in (a,b)$.

Proof. (2) \Rightarrow (1) Since \tilde{f} : [a, b] $\rightarrow \mathbb{R}$ is continuous, it is uniformly continuous. Since \tilde{f} = f on [a, b], f must also be uniformly continuous.

 $(1) \Rightarrow (2)$ Claim: $\lim_{x\to a^+} f(x)$ exists. Let $(x_n)_n$ be a sequence in (a,b) with $(x_n)_n \to a$.

Since $(x_n)_n$ is convergent, it is Cauchy. By our previous lemma $(f(x_n))_n$ is also Cauchy, hence convergent.

Say $(f(x_n))_n \to L$. Let $(y_n)_n$ be any other sequence in (a,b) with $(y_n)_n \to a$. By the same argument, $(f(y_n))_n \to L'$.

Consider $(z_n)_n = (x_1, y_1, x_2, y_2, x_3, y_3, ...)$. Then $(z_n)_n \to a$. By the same argument again, $(f(z_n))_n \to L''$.

Since $(f(x_n))_n$ and $(f(y_n))_n$ are subsequences of $(f(z_n))_n$, we know that $(f(x_n))_n \to L''$ and $(f(y_n))_n \to L''$.

So L = L'' = L'. The claim is proved.

Now simply define:

$$\widetilde{f}(x) = \begin{cases} L, & x = a \\ f(x), & x \in (a, b) \\ \lim_{x \to b^{-}} f(x), & x = b. \end{cases}$$

The above limit exists by same argument.

Example 2.2.4. $y = \sin(\frac{1}{x})$ is not uniformly continuous on (0,1) because $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist.

Recall. $f_n(x) = x^n$, $(f_n)_n \to \delta_1$ pointwise but not uniformly.

Proposition 2.2.7. If $(f_n : D \to \mathbb{R})_n$ is a sequence of continuous functions and $(f_n)_n \to f$ uniformly on D, then f is continuous.

Proof. Let $\epsilon > 0$ be given. Fix $c \in D$.

Since f_n converges uniformly, there exists N large such that for all $n \ge N$ we have $|f_n(x) - f(x)| < \frac{\epsilon}{3}$ for all $x \in D$.

Moreover, there exists $\delta > 0$ such that $|x - c| < \delta$ implies $|f_N(x) - f_N(c)| < \frac{\epsilon}{3}$.

Then $|x - c| < \delta$ implies:

$$\begin{split} |f(x) - f(c)| &= |f(x) - f_N(x) + f_N(x) - f_N(c) + f_N(c) - f(c)| \\ &\leq \dots \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ &= \epsilon. \end{split}$$

14

Chapter 3

Differentiation

Throughout, I is an open interval.

§ 3.1. Differentiation

Definition 3.1.1.

(1) Let $f: I \to \mathbb{R}$ and $c \in I$ a cluster point. Then f is differentiable at c if:

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} := f'(c)$$

exists and is finite. We say f'(c) is the *derivative of* f *at* x = c.

(2) If f is differentiable at every $c \in I$, we say f is differentiable at I.

Example 3.1.1. Let f(x) = ax + b. Then:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{a(x - c)}{(x - c)} = a.$$

Example 3.1.2. Let f(x) = |x| and c = 0. Then:

$$f'(0) = \lim_{x \to 0} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}.$$

Since this limit does not exist, f is not differentiable at c = 0.

Example 3.1.3. Let $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$. Is f differentiable at c = 0?

Solution. Observe that:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0.$$

Hence f is differentiable at c = 0.

Proposition 3.1.1. *If* f *is differentiable at* x = c, *then* f *is continuous at* x = c.

Proof. Let $(x_n)_n$ be a sequence with $(x_n)_n \to c$, $x_n \ne c$. Note that:

$$|f(x_n) - f(c)| = \left| \frac{f(x_n) - f(c)}{x_n - c} (x_n - c) \right| = f'(c)|x_n - c|.$$

Since f'(c) is a constant and $(x_n-c)_n\to 0$, by "Lemma" $(f(x_n))_n\to f(c)$.

Theorem 3.1.2. Let f, g: $I \to \mathbb{R}$ be differentiable at x = c.

(1)
$$(\alpha f + g)'(c) = \alpha f'(c) + g'(c);$$

(2)
$$(f \cdot g)'(c) = f'(c)g(c) = f(c)g'(c);$$

(3)
$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}$$
 provided $g(c) \neq 0$.

Proof. (2) Let $(x_n)_n \in I^{\mathbb{N}}$ with $(x_n)_n \to c$, $x_n \neq c$. We have:

$$\frac{fg(x_n) - fg(c)}{x_n - c} = \frac{f(x_n)g(x_n) - f(c)g(c)}{x_n - c}$$

$$= \frac{f(x_n)g(x_n) - f(x_n)g(c) + f(x_n)g(c) - f(c)g(c)}{x_n - c}$$

$$= f(x_n)\left(\frac{g(x_n) - g(c)}{x_n - c}\right) + g(c)\left(\frac{f(x_n) - f(c)}{x_n - c}\right)$$

$$\xrightarrow{n \to \infty} f(c)g'(c) + g(c)f'(c).$$

Proposition 3.1.3 (Power Rule).

- (1) If $f(x) = x^n$ for $n \in \mathbb{N}_0$, then $f'(x) = nx^{n-1}$.
- (2) If $f(x) = x^n$ for $n \in \mathbb{Z}$, then $f'(x) = nx^{n-1}$.
- (3) If $f(x) = x^r$ for $r \in \mathbb{Q}$ then $f'(x) = rx^{r-1}$.

Proof. (1) Induction and product rule. (2) Induction and quotient rule. (3) Inverse function theorem. □

Proposition 3.1.4 (Chain Rule). Let $I \xrightarrow{f} J \xrightarrow{g} \mathbb{R}$ and $Ran(f) \subseteq J$. Then $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$ whenever f is differentiable at c and g is differentiable at f(c).

Proof. Apply Careterodry's Theorem.

§ 3.2. The Pillars of Differentiation

Definition 3.2.1. Let I be an open interval and $f: I \to \mathbb{R}$.

- (1) f has a local minimum if $(\exists \delta > 0) \ni (\forall x \in V_{\delta}(c))(f(x) \geqslant f(c))$
- (2) f has a local maximum if $(\exists \delta > 0) \ni (\forall x \in V_{\delta}(c))(f(x) \leq f(c))$

Theorem 3.2.1 (Fermat's Theorem). If f(x) = y has a local minimum or maximum at x = c, then f'(c) = 0 or f'(c) does not exist.

Proof. If f'(c) does not exist, we are done. Assume f'(c) exists and is finite. Assume f'(c) is a local maximum. For n large enough, $x_n \in V_{\delta}(c)$. Then:

$$\exists \delta > 0 \ni f(x) \leqslant f(c) \forall x \in V_{\delta}(c).$$

Let $(x_n)_n$ be a decreasing sequence with $(x_n)_n \to c$, $x_n \neq c$. Then:

$$\frac{f(x_n) - f(c)}{x_n - c} \le 0,$$

which implies $f'(c) \le 0$. Now let $(x_n)_n$ be an increasing sequence with $(x_n)_n \to c$, $x_n \ne c$. For n large enough, $x_n \in V_\delta(c)$. Then:

$$\frac{f(x_n) - f(c)}{x_n - c} \ge 0,$$

which implies $f'(c) \ge 0$. By antisymmetry, f'(c) = 0.

Theorem 3.2.2 (Rolle's Theorem). Let $f : [a, b] \to \mathbb{R}$ be continuous (on [a, b]) and differentiable on (a, b). Suppose that f(a) = f(b). Then there exists $c \in (a, b)$ with f'(c) = 0.

Proof. By the Extreme Value Theorem, there exists $x_M \in [a,b]$ with $\sup_{x \in [a,b]} f(x) = f(x_M)$. Again by the Extreme Value Theorem, there exists $x_m \in [a,b]$ with $\inf_{x \in [a,b]} f(x) = f(x_m)$.

If $x_M \neq a$, b, then by Fermat's Theorem, $f'(x_M) = 0$.

If $x_m \neq a$, b, then by Fermat's Theorem, $f'(x_m) = 0$.

If both of the above cases fail, then by our condition $f(x_m) = f(x_M)$. So f(x) = K for some $k \in \mathbb{R}$. Then clearly f'(c) = 0 for all $c \in (a, b)$.

Theorem 3.2.3 (Mean Value Theorem). Let $f : [a,b] \to \mathbb{R}$ be continuous and differentiable on (a,b). There exists $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Proof. Consider $g : [a, b] \to \mathbb{R}$ defined by:

$$g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}\right)(x - a)$$

Then g is certainly continuous on [a, b] and differentiable on (a, b) because f is.

Note that g(a) = f(a) and g(b) = f(b). By Rolle's Theorem, there exists $c \in (a, b)$ such that:

$$0 = g'(c)$$

$$= f'(c) - \left(\frac{f(b) - f(a)}{b - a}\right)$$

Whence
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
.

Corollary 3.2.4. ***Let $f : [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b) with f'(x) = 0 for all $x \in (a, b)$. Then f is constant.

Proof. Let $x_1, x_2 \in [a, b]$ with $x_1 \neq x_2$. Without loss of generality, suppose $x_1 < x_2$.

Apply the Mean Value Theorem to f on $[x_1, x_2]$. Then there exists $c \in (x_1, x_2)$ with $0 = f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$.

Simplifying the above equation gives $f(x_1) = f(x_2)$. Whence f is constant.

Theorem 3.2.5. Let I be an open interval and $f: I \to \mathbb{R}$ differentiable.

- (1) f is increasing on I if and only if $f' \ge 0$;
- (2) f is decreasing on I if and only if $f' \leq 0$.

Proof. $\stackrel{(1)}{(\Rightarrow)}$ Let $c \in I$. Since f is differentiable, the limit f'(c) is defined, allowing us to write:

$$f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c}.$$

Since we are approaching c from the right, and since f is increasing, it must be that $f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \ge 0$.

- (i) Let $x_1, x_2 \in I$ with $x_1 < x_2$. Apply the Mean Value Theorem to f on $[x_1, x_2] \subseteq I$. Then there exists $c \in (x_1, x_2)$ with $f'(c) = \frac{f(x_2) f(x_1)}{x_2 x_1} \ge 0$. Since $x_2 x_1 \ge 0$, it must be that $f(x_2) f(x_1) \ge 0$. Thus $f(x_2) \ge f(x_1)$, establishing that f is increasing.
- $(\stackrel{(2)}{\Rightarrow})$ This direction follows similarly.
- (⇐) This direction follows similarly.

Example 3.2.1. Show that $sin : \mathbb{R} \to \mathbb{R}$ is Lipschitz.

Solution. Pick $x, y \in \mathbb{R}$ and suppose without loss of generality that x < y.

Apply the Mean Value Theorem to sin on [x, y]. Then there exists $c \in (x, y)$ with:

$$\frac{\sin(y) - \sin(x)}{y - x} = \sin'(c) = \cos(c).$$

Applying the absolute value to both sides gives:

$$\left| \frac{\sin(y) - \sin(x)}{y - x} \right| = |\cos(c)| \le 1.$$

Multiplying |y - x| on both sides gives the desired result.

Exercise 3.2.1. If $f: I \to \mathbb{R}$ is differentiable with f' bounded on I, then f is Lipschitz.

Lemma 3.2.6. Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$ continuous, and $c \in I$ with f differentiable at x = c.

- (1) If f'(c) > 0, then there exists $\delta > 0$ such that f(x) > f(c) for all $x \in (c, c + \delta)$.
- (2) If f'(c) < 0, then there exists $\delta > 0$ such that f(x) > f(c) for all $x \in (c \delta, c)$.

Proof. (1) $0 < f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c}$ (if the limit exists then the one-sided limit exists). Setting $\varepsilon = \frac{f'(c)}{2}$, there exists $\delta > 0$ such that for $x \in (c, c + \delta)$, $\frac{f(x) - f(c)}{x - c} \in V_{\varepsilon}(f'(c))$. Equivalently, $\frac{f(x) - f(c)}{x - c} > \frac{f'(c)}{2} > 0$. Since x - c > 0 for $x \in (c, c + \delta)$, we get that f(x) - f(c) > 0 for $x \in (c, c + \delta)$.

(2) This follow similarly.

Theorem 3.2.7 (Darboux's Theorem). Let $f : [a, b] \to \mathbb{R}$ be differentiable. Let k be a number strictly between f'(a) and f'(b). Then there exists $c \in (a, b)$ with f'(c) = k.

Proof. Let h(x) = kx - f(x) on [a, b]. Then h is continuous on [a, b].

By the Extreme Value Theorem, h attains its supremum; i.e., there exists $c \in [a, b]$ with $h(c) \ge h(x)$ for all $x \in [a, b]$.

h'(a) = k - f'(a) and h'(b) = k - f'(b). Without loss of generality, suppose:

$$h'(a) = k - f'(a) > 0$$

 $h'(b) = k - f'(b) < 0.$

By the previous lemma, there exists $\delta > 0$ such that h(x) > h(a) on $(a, a + \delta)$.

By the previous lemma, there exists $\eta > 0$ such that h(x) > h(b) on $(b - \eta, b)$.

So $c \neq a$ and $c \neq b$. So $c \in (a, b)$. Thus h'(c) = 0 by Fermat's theorem.

Thus
$$f'(c) = k$$
.

Question. Does there exists $f : \mathbb{R} \to \mathbb{R}$ differentiable with f'(x) = sign(x)? *Answer.* No! sign(x) does not satisfy the Intermediate Value Theorem on [-1,1].

Corollary 3.2.8. Let $f: I \to \mathbb{R}$ be differentiable and $f' \neq 0$ on I. Then f is monotone.

Proof. Homework