Probing the Universe with Radio-loud AGN

Matthew Alger

Supervisors:

Julie Banfield, Christian Wolf, Cheng Soon Ong (Data61/ANU), Ivy Wong (UWA/ICRAR)

Slides: http://www.mso.anu.edu.au/~alger/thesis-proposal

Radio AGN

Radio Active Galactic Nuclei

- AGN are actively-accreting supermassive black holes in the middle of galaxies.
- AGN are part of the lifecycle of a galaxy and understanding them is important for understanding galaxy evolution.
- Radio AGN affect the host galaxy and neighbouring environment through AGN feedback processes.

Centaurus A, a nearby radio AGN. Image: ESO/WFI (Optical); MPIfR/ESO/APEX/A. Weiss et al. (Submillimetre); NASA/CXC/CfA/R. Kraft et al. (X-ray)

Radio Active Galactic Nuclei

Nearby(ish) radio galaxy Cygnus A:

- ~120 kpc across
- z = 0.056
- $P_{1.4 \text{ GHz}} = 6 \times 10^{27} \text{ W Hz}^{-1}$

Cygnus A. Image: NRAO/AUI

Radio-loud Galaxy Classifications

3C31: Fanaroff-Riley type I. *Image: NRAO/AUI*

Cygnus A: Fanaroff-Riley type II. Image: NRAO/AUI

+ Radio quasars, BL Lac, ...

Radio Alignment

- Radio galaxies align at scales of 20–40 Mpc (e.g. Taylor & Jagannathan 2016, Contigiani et al. 2017)
- Bent galaxies trace clusters (e.g. Banfield et al. 2016, Johnston-Hollitt et al. 2014)

Angle and size of radio jets in the ELAIS-N1 field. *Image: Taylor & Jagannathan (2016).*

Complementary Problems

- Host galaxy cross-identification
- Radio morphology identification

Host Galaxy Cross-identification

- Match radio emission to its host galaxy.
- Hard in radio: Radio emission can be diffuse and extended.
 - Radio emission can be extended at scales of tens of arcminutes and multiple megaparsecs.
 - Often no clear relationship between radio emission and host galaxy.
 - High-resolution surveys like FIRST make this easier.

FIRSTJ023838.0+023450 at 1.4 GHz. *Image: FIRST*

FIRSTJ023838.0+023450 in optical/infrared.

Image: WISE (Infrared),

SDSS (optical)

Host Galaxy Cross-identification

Current approaches:

- Manual
 - CDFS Norris et al. (2006)
 - ELAIS-S1 Middelberg et al. (2008)
 - CoNFIG Gendre & Wall (2008)
- Crowdsourced
 - Radio Galaxy Zoo Banfield et al. (2015)
- Automated
 - Nearest neighbour Norris et al. (2006)
 - Bayesian hypothesis testing Fan et al. (2015)
 - Likelihood ratio Weston et al. (in prep)

Radio Morphology Identification

Radio Morphology Identification

- Complicated by the complex structure often present in radio galaxies.
- Often unclear which radio components are part of the same radio source.
- Two subproblems:
 - Classification
 - Source identification

Radio image centred on 10h 48m 01.177s +15° 14′ 38.40″. *Image: FIRST*

Radio Morphology Identification

Current approaches:

- Manual
 - CDFS Norris et al. (2006)
 - ELAIS-S1 Middelberg et al. (2008)
 - CoNFIG Gendre & Wall (2008)
- Crowdsourced
 - Radio Galaxy Zoo Banfield et al. (2015)
- Automated
 - Mixture models Kirshner et al. (2003)
 - Bayesian hypothesis testing Fan et al. (2015)
 - Neural networks Aniyan & Thorat (2017)

Radio is Tricky

- Different wavelengths can show very different structure of radio galaxies.
- High resolution imaging is necessary, but diffuse radio emission is invisible at higher resolutions.

Astronomical Data

- Wide-area surveys
- Machine learning

Wide-area Surveys

- Radio
 - NVSS (1.4 GHz, 45" resolution, 1 800 000 sources)
 - FIRST (1.4 GHz, 5" resolution, 946 000 sources)
 - TGSS ADR1 (150 MHz, 25" resolution, 630 000 sources)
- Infrared
 - o AllWISE
- Optical
 - o SDSS

Wide-area Surveys

Data Mining in Radio

- Upcoming radio surveys will be big:
 - EMU/WODAN will find ~100,000,000 new radio sources.
 - If constructed, SKA could generate data up to 10 PB/year.
 - Need automated methods to process this data.

Australian SKA Pathfinder. *Image: CSIRO*

Machine Learning in Astronomy

Unsupervised

- Dimensionality reduction
- Clustering
- Self-organising maps
 (e.g. Polsterer et al. 2015)

Supervised

- Regression (e.g. photo-z)
- Classification
 (e.g. Aniyan & Thorat, 2017)
- Object localisation (e.g. host galaxy cross-identification)

Part of a self-organising map of FIRST radio sources. *Image: Polsterer et al. (2015)*

Proposal

- Outline
- Current work
- Key problems
- Projected outcomes

Proposed Project

- Develop machine learning methods for use in wide-area surveys, incorporating multi-wavelength and multi-resolution imagery.
- Data-mine FIRST, NVSS, and TGSS for radio AGN (including morphologies and cross-identifications).
- Estimate proportions of FR I/FR II, distributions of geometric properties, polarisation properties, and host galaxy properties.
- Use radio alignment to map large-scale structure.

Multi-wavelength, Multi-resolution ML

- Methods I will develop will incorporate multiple surveys.
- Necessary to get the full picture of radio objects.
- Sensor fusion is an active research area in machine learning (self-driving cars, geophysics).

IC 708 in (a) FIRST, (b) NVSS intensity, (c) TGSS, (d) NVSS polarisation, (e) SDSS, and (f) WISE.

Generic Approach

image

First attempt:

- Given an image of radio emission, check each square patch to see if the AGN is located there
- Not terribly efficient

Scanning to find the AGN. *Image: FIRST*

First attempt:

- Given an image of radio emission, check each square patch to see if the AGN is located there
- Not terribly efficient

• Second attempt:

- Given an image of radio emission, check each *galaxy* in that image to see if it looks like it is the host galaxy
- Much more efficient!

Candidate host galaxies. Image: FIRST/WISE

- Morphology is a big problem!
 - There may be multiple AGN in one image (especially for deeper surveys like EMU).
 - The host galaxy may not be anywhere near the radio emission.

The host galaxy of FIRSTJ151227.2+454026 is several arcminutes away. Image: FIRST

ATLAS3 J033402.87-282405.8C breaks the assumption that there is only one source in the image.

Image: ATLAS

Key Problems

- Host galaxy cross-identification
 - Casting the problem as an ML task
 - Finding relevant radio data requires morphology
- Radio morphology identification
 - Classification tasks in ML expect clear, well-defined classes (which we don't have)
 - No good way to encode "other" classes
 - Finding morphology made easier with cross-identifications
- Source detection
 - Radio components comprising a source may be disconnected
 - Components can be arbitrarily far apart on the sky
 - Difficult to identify objects with unknown size

Other Problems

- Feature extraction
 - Much better understood in optical than radio
 - Limited research, e.g. Proctor (2006), Polsterer et al. (2015),
 Aniyan & Thorat (2017), Lukic et al. (in prep)
 - Standard image feature extraction techniques may not work
- Latent angle of radio objects
 - Could be considered as latent variables in probabilistic model
 - Leads to potentially difficult EM algorithm
 - Links to AGN unification

Outcomes

- Methods for getting science out of wide-area radio surveys at scale.
- Methods for combining multi-wavelength and multi-resolution surveys at scale.
- Bounds on radio AGN class proportions.
- Estimated distributions of polarisation and geometry.
- More complete redshift-class distributions.

Where to now?

- Finish writing paper on host cross-identification.
- Develop a basic feature extractor.
- Combine FIRST and TGSS for morphology classification and visualisation.
- Work on Radio Galaxy Zoo DR1.

Feature Extraction Approaches

