

# 数字图像处理 Digital Image Processing

# 灰度图像分割及处理 Gray Image Segmentation and Processing





# 灰度图像分割及处理

- 1. 边缘检测
- 2. Hough变换
- 3. 边界特征表达及描述
- 4. 阈值图像分割
- 5. 基于区域的分割
- 6. 数学形态学
- 7. 灰度图像分割应用





## 面向区域的图像分割

- ◆基本概念
- ◆像素集合的区域增长
- ◆区域分裂与合并

## ◆基本概念

目标:将区域R划分为若干个子区域R<sub>1</sub>, R<sub>2</sub>, ···, R<sub>n</sub>, 这些

子区域满足5个条件:

1) 完备性:  $\bigcup_{i=1}^{n} R_i = R$ 

2) 连通性:每个R;都是一个连通区域

3)独立性:对于任意 $i \neq j$ , $R_i \cap R_i = \Phi$ 

4) 单一性:每个区域内的灰度级相等,

 $P(R_i) = TRUE, i = 1, 2, \dots, n$ 

5) 互斥性: 任两个区域的灰度级不等,

 $P(R_i \cup R_j) = FALSE, i \neq j$ 





# ◆像素集合的区域增长

- 1. 根据图像的不同应用<u>选择一个或一组种子</u>,它或者 是最亮或最暗的点,或者是位于点簇中心的点:
- 2. 选择一个描述符(条件);
- 3. 从该种子开始向外扩张,首先把种子像素加入结果 集合,然后不断将与集合中各个像素连通、且满足 描述符的像素加入集合;

4. 上一过程进行到不再有满足条件的新结点加入集合为止。\_\_\_\_\_





# ◆区域生长的实例

- ▶ 从满足检测准则的点开始(或者已知点)在各个方向上生长出区域。
- ▶ 例如:每一步所接受的邻近点的灰度级与当前像素的灰度级相差小于2。

#### 第一步



#### 第二步

| 5 | 5 | 8 | 6 |
|---|---|---|---|
| 4 | 8 | 9 | 7 |
| 2 | 2 | 8 | 3 |
| 3 | 3 | 3 | 3 |





# ◆区域生长的实例

- ▶ 从满足检测准则的点开始(或者已知点)在各个方向上生长出区域。
- ▶ 例如:每一步所接受的邻近点的灰度级与先前物体的平均灰度级相差小于2。

#### 第一步



均值9

#### 第二步



均值为: (9+8+8+8)/4=8.25

#### 第三步



均值为: (9+8+8+8+7)/5=8



- ◆平均灰度相似性检测准则算法:
  - 》 算法实现步骤与单连接区域增长相似。设某一图像区域0, 其中象素数为N,则均值为:

$$m = \frac{1}{N} \sum_{(x,y) \in O} f(x,y)$$

 $\triangleright$  设检测阈值为 K,于是,区域 O 的均匀测度度量可写为

$$\max_{(x,y)\in O} |f(x,y)-m| < K$$

▶ 在图像区域 O 中,各象素灰度值与均匀值的差不超过阈值 K, 则其均匀测度度量为真。



**例:**设有一数字图像,如图所示。检测灰度为9,平均灰度均匀测度度量的 阈值为2,采用区域增长技术对图像进行分割。

| 1 | 2 | 6 | 4 | 6 |
|---|---|---|---|---|
| 1 | 5 | 6 | 8 | 5 |
| 5 | 8 | 9 | 7 | 6 |
| 5 | 7 | 8 | 5 | 8 |
| 5 | 6 | 7 | 8 | 3 |



| 1 | 2 | 6 | 4 | 6 |
|---|---|---|---|---|
| 1 | 5 | 6 | 8 | 5 |
| 5 | 8 | 9 | 7 | 6 |
| 5 | 7 | 8 | 5 | 8 |
| 5 | 6 | 7 | 8 | 3 |



| 0 | 0 | 1 | 0 | 1 |
|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |



(8+8+9+7+7+8+7+8)/8=7.75

(6+6+6+8+8+9+7+6+7+8+8+6+7+8)/14=7.14









# ◆区域分裂与合并

分裂-合并的区域分割方法,利用图象数据塔式的层次结构,将图像划分成不相交的区域,以某一检测准则从四叉树数据结构的任一层开始,对区域进行分裂或合并。并逐步改善区域划分的性能,直到最后将图象分成数量最少的均匀区域为止。



四叉树









例:有一 8×8 图像,以小区平均灰度值与该区内的四个值中任一之差小于等于 6 作为合并准则,来完成对图像分割。

11 12 31 32 32 31 33 34 16 17 33 34 36 37 39 38 91 92 92 36 35 38 37 38 94 95 51 37 38 37 38 39 96 58 52 38 39 38 36 36 97 57 53 73 76 79 35 37 98 99 54 71 96 95 94 92 100 97 98 97 97 96 99 99





| 11  | 12 | 31 | 32 | 32 | 31 | 33 | 34 |
|-----|----|----|----|----|----|----|----|
| 16  | 17 | 33 | 34 | 36 | 37 | 39 | 38 |
| 91  | 92 | 92 | 36 | 35 | 38 | 37 | 38 |
| 94  | 95 | 51 | 37 | 38 | 37 | 38 | 39 |
| 96  | 58 | 52 | 38 | 39 | 38 | 36 | 36 |
| 97  | 57 | 53 | 73 | 76 | 79 | 35 | 37 |
| 98  | 99 | 54 | 71 | 96 | 95 | 94 | 92 |
| 100 | 97 | 98 | 97 | 97 | 96 | 99 | 99 |



| 14    | 33 | 34 | 36 |
|-------|----|----|----|
| 94    |    | 37 | 38 |
|       |    |    | 36 |
| 98. 5 |    | 96 | 96 |

| 1     | 4   | 33 |    | 36. 25 |    |  |
|-------|-----|----|----|--------|----|--|
| 94    |     | 92 | 36 |        |    |  |
|       |     | 51 | 37 |        |    |  |
|       | 58  | 52 | 38 | 39 38  | 36 |  |
| 97    | 57  | 53 | 73 | 76 79  |    |  |
| 98. 5 |     | 54 | 71 | 96     | 96 |  |
| 90    | . 5 | 98 | 97 | 90     | 90 |  |





数字图像处理讲义,陶文兵@华中科技大学2018年秋





**2**×2