

Model Order Reduction of Rarefied Gases Using Neural Networks

Zachary Schellin | Institut für Numerische Fluiddynamik

Outline

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Introduction

The BGK-Mode

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Governing equations

- The Boltzmann equation approximated by Q the BGK operator as a source term with

$$\partial_t f + v \partial_x f = \frac{1}{\tau} (M_t - f) \tag{1}$$

- The equilibrium solution is a Maxwellian distribution M_f with

$$M_{f} = \frac{\rho(x,t)}{(2\pi RT(x,t))^{\frac{3}{2}}} \exp(-\frac{(v-u(x,t))^{2}}{2RT(x,t)})$$
 (2)

– The duration to evolve into equilibrium is given by the relaxation time au with

$$\tau^{-1} = \frac{\rho(x, t)T^{1-\nu}(x, t)}{Kn} \tag{3}$$

- The rarefaction level is defined over the Knudsen number **Kn** with

$$Kn = \frac{\lambda}{I} \tag{4}$$

¹PhysRev.94.511.

Knudsen number

- Solution is f(x, v, t) in 1D and $f(x, y, v_x, v_y, t)$ in 2D and $f(x, y, z, v_x, v_y, v_z, t)$ in 3D

Figure: Partitioning of *Kn*, the Knudsen number, into levels of rarefaction.

2

²NumaKUL.

Discretization in space and velocity space in 1D

- Space and time discretization considering a uniform grid i.e.
 - $x_i = i\Delta x$ and $i \in \mathbb{Z}$, $v_k = k\Delta v$ and $k \in \mathbb{Z}$, $t^i = i\Delta t$ and $t \in \mathbb{N}$,
- is leading from the full PDE to a set of ODE's in time

$$\partial_t f_{j,k} = -(v_k)_1 D_x f_{j,k}(t) + \frac{1}{\tau} (M_{f_{j,k}}(t) - f_{j,k}(t)). \tag{5}$$

- KJ first-order differential equations need to be evaluated when K and J are the number of gridpoints in space and velocity space.
- In 3D there are K^3J^3 first-order differential equations.
- The discretization in velocity space requires the computation of the moments of f.

Moments/ Expected values of f

- Collision invariants $\Phi(v) = [1, v, \frac{1}{2}v^2]$
- The first moment/ Density is

$$\rho(x,t) = \int f \, \mathrm{d}v \,, \tag{6}$$

the second moment/ Momentum is

$$\rho(x,t)u(x,t)=\int vf\,\mathrm{d}v\,,\qquad (7)$$

- the third moment/ kinetic Energy is

$$E(x, t) = \int \frac{1}{2} v^2 f \, \mathrm{d}v.$$

(8) Figure: Illustration of the linkage between the macroscopic quantities of the gas flow and the distribution function f.

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Sod's shock tube

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t = 0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities

Sod's shock tube

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t = 0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities

Sod's shock tube

Figure: Problem setup of Sod's shock tube for the BGK model in 1D at t > 0s.

- Test case for numerical schemes solving
- non-linear hyperbolic conservation laws in gas dynamics (Gary A. Sod in 1978)
- Idea:
 - Solve problem analytically (Rankine-Hugoniot jump conditions)
 - Solve problem numerically
 - Compare results expecially resolution of discontinuities
 - » x₁ head of rarefaction wave
 - » x₂ tail of rarefaction wave
 - » x₃ contact discontinuity
 - » x₄ position of shockwave

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, Kn = 0.00001, "Continuum Flow"
 - R, Kn = 0.001, "Slip flow"
- Present discontinuities

<u>H</u>	R
• X ₁	• X ₁
• X ₂	• X ₂
• X ₃	• X ₃
• X ₄	• X ₄

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, Kn = 0.00001, "Continuum Flow"
 - R, Kn = 0.001, "Slip flow"
- Present discontinuities

i resent discontinuities		
<u>H</u>	R	
• X ₁	•	<i>X</i> ₁
• X ₂	•	<i>X</i> ₂
• X ₃	•	<i>X</i> ₃
• V.		٧.

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, *Kn* = 0.00001, "Continuum Flow"
 - **R**, Kn = 0.001, "Slip flow"
- Present discontinuities

H		R	
• X	1	•	<i>X</i> ₁
• X	2	•	<i>X</i> ₂
• X	3	•	<i>X</i> ₃
• X ₄		•	XΛ

Figure: Moments of **H** and **R** at t = 0.12s and $v = v_0$ in Sod's shock tube.

- Two solutions of the BGK model in Sod's shock tube
- Two levels of rarefaction
 - **H**, *Kn* = 0.00001, "Continuum Flow"
 - **R**, Kn = 0.001, "Slip flow"
- Present discontinuities

н	R
• X ₁	• x ₁
• X ₂	• X ₂
• X ₃	• X ₃
• X ₄	• X ₄

- Spatial resolution J = 200

- Velocious resolution K = 40

- Temporal resolution I = 25

Figure: Solution f for **H** and **R** in x and v.

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Goal: Reduce computational cost

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM.

- Goal: Reduce computational cost

f(x, v, t) with KJ ODE's in time for 1D

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)

(b) Evolving the ROM in time.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)

(b) Evolving the ROM in time.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- Reduce: POD(f(x, v, t)) = q(x, n, t)

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - P is # n with P << K

(b) Evolving the ROM in time.

Figure: In the online phase the operator *Q* is different for the FOM and the BOM

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - P is # n with P << K
 - KJ ODE's vs. PJ ODE's

(a) Evolving the FOM in time.

(b) Evolving the ROM in time.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- **Require**: Solution of *f* (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - *P* is # n with *P* << *K*
 - KJ ODE's vs. PJ ODE's
- Evolve in time $\rightarrow Q(q, t) = \tilde{f}$

(b) Evolving the ROM in time.

- Goal: Reduce computational cost
 - f(x, v, t) with KJ ODE's in time for 1D
- Require: Reduction algorithm
 - Proper Orthogonal Decomposition (POD)
 - Neural Networks (NN)
- Require: Solution of f (only few timesteps)
- **Reduce**: POD(f(x, v, t)) = q(x, n, t)
 - P is # n with P << K
 - KJ ODE's vs. PJ ODE's
- Evolve in time $\rightarrow Q(q, t) = \tilde{t}$
- $-f- ilde{f}<\epsilon$

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

- Solution of a PDE is f(x, v, t) can be obtained

- Solution of a PDE is f(x, v, t) can be obtained
 - · Discretization into a system of ODE's

- Solution of a PDE is f(x, v, t) can be obtained
 - · Discretization into a system of ODE's
 - · Separation of variables ansatz

- Solution of a PDE is f(x, v, t) can be obtained
 - · Discretization into a system of ODE's
 - · Separation of variables ansatz

»
$$f(t, v, x) = \sum_{i=1}^{n} a_i(t) \Phi_i(x, v)$$
 (9)

- Solution of a PDE is f(x, v, t) can be obtained
 - · Discretization into a system of ODE's
 - · Separation of variables ansatz

»
$$f(t, v, x) = \sum_{i=1}^{n} a_i(t) \Phi_i(x, v)$$
 (9)

– How to get Φ_i ?

- Solution of a PDE is f(x, v, t) can be obtained
 - · Discretization into a system of ODE's
 - · Separation of variables ansatz

»
$$f(t, v, x) = \sum_{i=1}^{n} a_i(t) \Phi_i(x, v)$$
 (9)

- How to get Φ_i
 - **Preprocessing**: Seperating the spatial and temporal axis of the solution f(x, v, t)

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

Introduction

The BGK-Model

Sod's shock tube

Model Order Reduction

Proper Orthogonal Decomposotion (POD)

Neural Networks

Results

ToDo

- ToDo schreiben
- ToDo abarbeiten

