Term	Symbol/Notation	Intuitive Explanation
Vector	$ec{v}$	An element of a vector space; a list of numbers that represent direction and magnitude
		in space.
Matrix	A	A rectangular grid of numbers representing a linear transformation or operator acting
		on vectors.
Transpose	A^T	Flips a matrix over its diagonal, swapping rows and columns; geometrically, it corre-
		sponds to reflecting vectors in certain ways.
Conjugate Transpose (Hermitian adjoint)	A^{\dagger}	Transpose combined with complex conjugation; preserves inner product structure in
		complex vector spaces.
Determinant	$\det(A)$	Scalar value showing how much a matrix scales volume or area; zero means the matrix
		squashes space into a lower dimension (non-invertible).
Rank	rank(A)	The dimension of the space spanned by the matrix columns; how many directions the
		matrix can "reach."
Inverse	A^{-1}	A matrix which reverses the effect of A, so $AA^{-1} = I$; exists only if $det(A) \neq 0$.
Eigenvalue	λ	Scalars such that multiplying a vector by the matrix just scales it by λ , without
		changing direction.
Eigenvector	\vec{x}	A nonzero vector that changes only in scale (by λ) under the transformation A.
Orthogonal Vectors	$ec{u} \perp ec{v}$	Two vectors at right angles, with zero dot product, meaning they are independent
		directions.
Orthonormal Basis		A set of vectors that are mutually orthogonal and each of unit length; provides a
		"nice" coordinate system.
Unitary Matrix	U	A complex square matrix that preserves lengths and angles, satisfies $U^{\dagger}U = I$; quan-
		tum operations are unitary.
Hermitian Matrix	Н	A matrix equal to its own conjugate transpose, $H = H^{\dagger}$; corresponds to measurable
		observables in quantum mechanics.
Positive Definite Matrix	M	Matrix for which $\vec{x}^{\dagger}M\vec{x} > 0$ for all nonzero \vec{x} ; represents "positive energy" or "dis-
		tance" in many contexts.
Singular Value Decomposition (SVD)	$A = U\Sigma V^{\dagger}$	Factorization expressing any matrix as rotation (or unitary) U , scaling Σ , and another
		rotation V^{\dagger} .
Norm	$ \vec{v} $	A measure of vector length or size; commonly Euclidean norm $\sqrt{\sum_{i} v_{i}^{2}}$.
Inner Product	$\langle ec{u}, ec{v} angle$	Generalizes dot product; measures "angle" and length relationships between vectors.
Projection	$\operatorname{proj}_{\vec{u}} \vec{v}$	The component of vector \vec{v} along vector \vec{u} ; "shadow" cast on \vec{u} .
Linear Independence	1 34	Vectors are linearly independent if no vector can be written as a combination of
		others; crucial for basis formation.
Span		The set of all possible linear combinations of a set of vectors; the "space" they cover.
Kernel (Null Space)	Ker(A)	Set of vectors sent to zero by A; shows directions lost in transformation.
Image (Range)	$\operatorname{Im}(A)$	Set of all outputs $A\vec{x}$; the space reachable by transformation A .
Diagonalization	$A = PDP^{-1}$	Expressing a matrix as a product of eigenvector matrix P , diagonal eigenvalue matrix
		D , and inverse P^{-1} .
Trace	$\operatorname{tr}(A)$	Sum of diagonal elements; equals sum of eigenvalues; related to total "scaling" effect.
Condition Number	$\kappa(A)$	Ratio of largest to smallest singular value; measures sensitivity of matrix inversion to
_ · · · · · · · · · - · · · · · · · · · 	\ /	