Linear Algebra 1

Exercise Number 12

- 1) Let $S, T : \mathbf{R}^2 \to \mathbf{R}^2$ be two linear transformations defined as S(x, y) = (x + y, 0) and T(x, y) = (-y, x). Compute the transformations $5S 3T, ST, TS, S^2$ and T^2 .
- 2) Let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be the linear transformation defined by T(x, y, z) = (x + z, x z, y). Prove that T is invertible and find T^{-1} .
- 3) Let $D: P_4(x) \to P_4(x)$ denote the linear transformation defined by D(p) = p'. For all $n \in \mathbb{N}$ compute D^n .
- 4) Let V be a vector space. Let $T: V \to V$ denote a linear transformation. Suppose that $\dim \operatorname{Im} T = \dim \operatorname{Im} T^2$, prove that $\operatorname{Ker} T \cap \operatorname{Im} T = \{0\}$.
 - 5) Let $T:U\to V$ and $R:V\to W$ be two linear transformations. Prove that
- a) $ImRT \subset ImR$.
- b) $Ker T \subset Ker RT$.
- c) ImRT = R(ImT).
 - 6) Let $V = P_2(x)$. Let

$$B = \{2x, 3x + x^2, -1\}$$
 $B' = \{1, 1 + x, 1 + x + x^2\}$

be two bases for V. Find the transformation matrix M from basis B to basis B'. Verify that for all $v \in V$, $[v]_B = M[v]_{B'}$.

7) Repeat the previous exercise with $V = F^3$ and

$$B = \{(1,1,1), (0,1,1), (0,0,1)\} \quad B' = \{(1,1,0), (1,2,0), (1,2,1)\}$$

8) Let $V = F^4$. Let $B = \{(1, 0, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 1)\}$. Given the matrix

$$M = \begin{pmatrix} 2 & 3 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

find a basis B' of V such that the matrix M is the transformation matrix from basis B to basis B'.

9) Let $T: F^2 \to F^3$ denote the linear transformation T(x,y) = (ax,bx+cy,dy). Here $a,b,c,d \in F$. Given the two bases

$$B = \{(1,0), (1,1)\}$$
 $C = \{(1,0,0), (1,1,0), (1,1,1)\}$

of F^2 and F^3 respectively, compute the matrix $[T]_C^B$. Verify that $[Tv]_C = [T]_C^B[v]_B$ for all $v \in F^2$.

- 10) Let $V = \mathbf{C}$ be a vector space over the field $F = \mathbf{R}$. Define the linear transformation $T: V \to V$ by $Tz = \bar{z}$. Compute the matrix $[T]_B$ where $B = \{1 + i, 2 + i\}$.
- **11)** Let $V = F^n$. Define the linear transformation $T: V \to V$ by $T((a_1, \ldots, a_n)) = (0, a_1, \ldots, a_{n-1})$. Let B denote the standard basis of V. For $k \in \mathbb{N}$ compute the matrix $[T^k]_B$.
- 12) Let V be a vector space and let $T: V \to V$ be a linear transformation. A subspace W of V will be said to be invariant under T, if $T(W) \subset W$. Let W and U be two invariant subspaces under T and assume that $V = U \oplus W$. Let $\dim U = n$ and $\dim W = m$. Prove that there is a basis B of V such that

$$[T]_B = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \quad A_1 \in Mat_{n \times n}, \quad A_2 \in Mat_{m \times m}$$

13) Let $T: P_3(x) \to P_3(x)$ be a linear transformation defined by T(p(x)) = xp'(x). Let

$$B = \{1 + x, 1 - x, x^2, x^3\} \qquad C = \{1, 1 + x, (1 + x)^2, (1 + x)^3\}$$

be two bases for $P_3(x)$. Compute $[T]_B$ and $[T]_C$. Find the transformation matrix M from basis B to basis C and verify the relation $[T]_C = M^{-1}[T]_C M$.

- **14)** a) If A is similar to B, prove that A^t is similar to B^t .
- b) Let A be an invertible matrix. Prove that AB is similar to BA.
- c) Prove that two similar matrices have the same trace.
- d) Prove that there are no square matrices A and B such that AB BA = I.