DS n° 04 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom : Note :

Porter directement les réponses sur la feuille, sans justification.

Bornes supérieurs et inférieures.

Soit $f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & |2x^3 - 24x^2 + 37x - 5| \end{array} \right.$ et $g: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & -\operatorname{Arctan}^2(x) \end{array} \right.$. Alors, dans $\overline{\mathbb{R}}$,

 $\sup f = \boxed{ \qquad \qquad (1) \qquad \qquad \sup g = \boxed{ }}$

 $\inf f = \boxed{ \qquad \qquad (2) \qquad \qquad \inf g = \boxed{ }$

De plus (on répondra aux réponses suivantes par \mathbf{OUI} ou \mathbf{NON}) :

 $\sup f = \max f : \boxed{ (5) \qquad \qquad \sup g = \max g : } \boxed{ (7)}$

 $\inf f = \min f: \qquad \qquad (6) \qquad \qquad \inf g = \min g: \qquad \qquad (8)$

Arithmétique.

Décomposer en produits de facteurs premiers les nombres suivants.

 $693 = \boxed{ (9) \quad 275128 = }$

Écrire la division euclidienne de 354 629 par 496.	
	(11)
Calculer les PGCD et PPCM suivants.	
$612 \land 3144 = \boxed{ (12) \qquad 612 \lor 3144 = }$	(13)
Une relation de Bézout pour 612 et 3144 est	
	(14)
Le reste de la division euclidienne de 42^{521356} par 17 est :	(15)
Donner les ensembles des couples (x,y) solutions sur \mathbb{Z}^2 des équations suivantes.	
10x + 14y = 4 :	(16)
21x + 49y = 54 :	(17)
Suites numériques	
Déterminer les limites de suites suivantes (écrire PAS DE LIMITE le cas échéant).	
$\frac{3^n \operatorname{sh}(n) + \operatorname{e}^n \operatorname{cos}(n)}{n^2 \sqrt{n} + 3^n \operatorname{ch}(n)} \xrightarrow[n \to +\infty]{}$	(18)
$\tan\left[\operatorname{Arcsin}\left(\frac{n^2}{n^2+n+1}\right)\right] \xrightarrow[n \to +\infty]{}$	(19)
Donner un exemple de suite réelle sans limite, dont toutes les suites extraites divergent.	
	(20)
— FIN —	