Taylor and Maclaurin Series

1. **Quote.** "Great things are done by a series of small things brought together."

(Vincent Willem van Gogh, Dutch Post-Impressionist painter, 1853-1890)

2. **Problem.** Suppose the function f has a power series representation with radius of convergence R, that is,

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$
, for all x such that $|x-a| < R$,

Can we express the coefficients c_n in terms of the function f? (Hint: We've alreadly looked at this in the case of polynomials. What is the nth derivative of f, evaluated at x = a? That is, calculate $f^{(n)}(a)$.)

3. Theorem. (Power series representation is unique).

If f has a power series representation at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$$
, for all x such that $|x-a| < R$,

then its coefficients are given by the formula $c_n = \frac{f^{(n)}(a)}{n!}$.

Here we adopt the convention that $f^{(0)}(x) = f(x)$; we already know that 0! = 1.

So *if* a function f has a power series representation at a, then this representation $must\ be$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

and this representation is called the **Taylor series of the function** f at a. For the special case a=0, the Taylor series becomes

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \cdots$$

and this is called the **Maclaurin series** of f(x).

4. **Examples.** Find the Maclaurin series of the following functions.

- (a) $f(x) = e^x$
- **(b)** $f(x) = \cos x$

5. Some Terminology.

(a)
$$T_n(x) = \sum_{k=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^k$$
 is the *n*th-degree **Taylor polynomial** of f at a

That is,
$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Notice that
$$\lim_{n\to\infty} T_n(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!} (x-a)^i$$
, the Taylor series of f .

(b) The **remainder** of the Taylor series is defined as $R_n = f(x) - T_n(x)$.

6. Theorem.

Suppose $f(x) = T_n(x) + R_n(x)$, where T_n and R_n are as above. If

$$\lim_{n \to \infty} R_n(x) = 0, \quad \text{for } |x - a| < R,$$

then, on the interval (a - R, a + R), the function f is equal to the sum of its Taylor series.

7. Bounds on the size of the remainder.

8. Theorem.

Suppose $f(x) = T_n(x) + R_n(x)$, where T_n and R_n are as above. If $f^{(n+1)}$, the $(n+1)^{st}$ derivative of f is continuous, then for every x there is a point t_x (note, it's not the same for all x) between a and x such that

$$R_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(t_x)}{(n+1)!}(x-a)^{n+1}.$$

What does this theorem say for n = 0?

To show that any specific function f does have a power series representation, we must prove that $\lim_{n\to\infty} R_n(x) = 0$.

To do this, we usually use the following two facts.

Fact 1: Taylor's Inequality.

If

$$\left| f^{(n+1)}(x) \right| \le M \text{ for } |x-a| \le d$$

then the remainder of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$.

Fact 2. For every real number x, we have $\lim_{n\to\infty}\frac{x^n}{n!}=0$.

9. Example. Prove

(a)
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, for every real number x

(b)
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
, for every real number x

10. Some important power series representations.

These Maclaurin series can be derived just as in the previous examples.

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$
 (-1,1)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \quad (-\infty, \infty)$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad (-\infty, \infty)$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \quad (-\infty, \infty)$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \quad (-1,1)$$

$$\ln\left(1+x\right) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad (-1,1]$$

11. **Example.** Find the Maclaurin series for the following functions.

(a)
$$f(x) = x^2 e^{-3x}$$

(b)
$$g(x) = \sin(x^2)$$

(b)
$$g(x) = \sin(x^2)$$

(c) $h(x) = \frac{x}{9 - x^2}$

12. **Example.** Find the sum of the series.

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

13. **Example.** Use series to evaluate

$$\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}.$$

- 14. **Example.** Find the Taylor series for the following functions centered at the given value of a.
 - (a) $f(x) = e^{-x}$, a = 1
 - **(b)** $g(x) = \sin(2x), a = \pi$

Notes.