SOLUTIONS FOR HOMEWORK 2

9.12. (a) Pick $a \in (L,1)$. By the definition of the limit, there exists $N \in \mathbb{N}$ s.t. $\left| \left| \frac{s_{n+1}}{s_n} \right| - L \right| < a - L$. In particular, for such n, $\left| \frac{s_{n+1}}{s_n} \right| < L + (a - L) = a$.

Use induction to show that, for $n \geq N$, $|s_n| \leq a^{n-N}|s_N|$. Indeed, the basis (the case of n = N) is clear. For the step, suppose $n \geq N$, and $|s_n| \leq a^{n-N}|s_N|$. Then $|s_{n+1}| = \frac{|s_{n+1}|}{|s_n|} \cdot |s_n| < a^{n-N}|s_N| \cdot a \leq a^{(n+1)-N}|s_N|$.

To conclude the proof, recall that $\lim a^n = 0$ (Theorem 9.7(b)), and invoke Squeeze Theorem.

- (b) Per Hint, let $t_n = \frac{1}{s_n}$. Then $\lim \left| \frac{t_{n+1}}{t_n} \right| = \lim \left| \frac{s_n}{s_{n+1}} \right| = \frac{1}{L} < 1$, hence by Part (a), $\lim |t_n| = 0$. By Theorem 9.10, $\lim |s_n| = \lim \frac{1}{|t_n|} = +\infty$.
- **9.14.** Let $s_n = a^n/n^p$. By Theorem 9.7(a), $\lim \frac{1}{n^p} = 0$. If $|a| \le 1$, then $|s_n| \le \frac{1}{n^p}$, hence $\lim s_n = 0$ (Exercise 9.5(b)).

If |a| > 1, then

$$\lim \left| \frac{s_{n+1}}{s_n} \right| = \lim \left| \frac{a^{n+1}/a^n}{(n+1)^p/n^p} \right| = |a| \left(\lim \frac{n+1}{n} \right)^{-p} = |a| \left(1 + \lim \frac{1}{n} \right)^{-p} = |a|,$$

hence, by Exercise 9.12(b), $\lim |s_n| = +\infty$.

If a > 1, then $s_n > 0$ for any n, hence $\lim s_n = +\infty$.

If a<-1, then $s_n>0$ if n is even, and $s_n<0$ if n is odd. Suppose, for the sake of contradiction, that $s=\lim s_n$ exists. Then $s=\lim_k s_{2k}\geq 0$, and also, $s=\lim_k s_{2k-1}\leq 0$.

Thus, if $\lim s_n$ exists, it has to equal 0. This, in turn, would imply $\lim |s_n| = 0$, which is not true: |a| > 1, hence $\lim |a_n| = \lim \frac{|a|^n}{n^p} = +\infty$. Thus, $\lim s_n$ does not exist.

10.6 (a) Note that, if
$$m > n$$
, then $\left| s_m - s_n \right| = \left| \sum_{k=n}^{m-1} (s_{k+1} - s_k) \right| \le \sum_{k=n}^{m-1} |s_{k+1} - s_k| < \infty$

$$\sum_{k=1}^{m-1} \frac{1}{2^k} = \frac{1}{2^n} \left(1 + \dots \frac{1}{2^{m+n-1}} \right) = \frac{1}{2^n} \cdot \frac{1 - 1/2^{m-n}}{1 - 1/2} < \frac{1}{2^{n-1}}.$$

For $\varepsilon > 0$, find $N \in \mathbb{N}$ s.t. $\frac{1}{2^N} < \varepsilon$ (this is possible, since $\lim_{N \to \infty} \frac{1}{2^N} = 0$). Then, if m, n > N, we have $|s_n - s_m| < \varepsilon$ for n, m > N. Indeed, without loss of generality we can assume that m > n. By the reasoning above, $|s_m - s_n| < \frac{1}{2^N} < \varepsilon$.

(b) No, the conclusion of (a) need not hold. Indeed, consider $s_n = \sum_{k=1}^n \frac{1}{k}$. We have $|s_{n+1} - s_n| = \frac{1}{n+1} < \frac{1}{n}$. In Lecture 6 we showed that (s_n) is unbounded, hence divergent.

10.8 We need to show that $\sigma_{n+1} - \sigma_n \ge 0$ for any n. We have

$$\sigma_{n+1} - \sigma_n = \frac{1}{n+1} (s_1 + \ldots + s_n + s_{n+1}) - \frac{1}{n} (s_1 + \ldots + s_n) = \frac{1}{n+1} s_{n+1} - (\frac{1}{n} - \frac{1}{n+1}) (s_1 + \ldots + s_n).$$

Writing
$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}$$
, we obtain $\sigma_{n+1} - \sigma_n = \frac{1}{n+1} \left(s_{n+1} - \frac{1}{n} \left(s_1 + \dots + s_n \right) \right) = \frac{1}{n(n+1)} \left(n s_{n+1} - \sum_{k=1}^{n} s_k \right) = \frac{1}{n(n+1)} \sum_{k=1}^{n} (s_{n+1} - s_k).$

As (s_n) is increasing, $s_{n+1} - s_k \ge 0$ for any k, hence the summands on the right are non-negative. Thus, $\sigma_{n+1} - \sigma_n \ge 0$.

10.10 (a)
$$s_1 = 1$$
, $s_2 = \frac{2}{3}$, $s_3 = \frac{5}{9}$, $s_4 = \frac{14}{27}$.

(b) Basis for induction. $s_1 = 1 > \frac{1}{2}$.

Inductive step. We need to show that, if $s_n > \frac{1}{2}$, then $s_{n+1} > \frac{1}{2}$.

$$s_{n+1} = \frac{1}{3}(1+s_n) > \frac{1}{3}(1+\frac{1}{2}) = \frac{1}{2}.$$

- (c) For $n \ge 1$, $s_n s_{n+1} = s_n \frac{1}{3}(1 + s_n) = \frac{2}{3}s_n \frac{1}{3} = \frac{2}{3}(s_n \frac{1}{2})$; the right hand side is positive, by (b).
- (d) (s_n) is decreasing and bounded below, hence convergent. Let $s = \lim s_n$. Passing to the limit in the equation $s_{n+1} = \frac{1}{3}(1+s_n)$, obtain $s = \frac{1}{3}(1+s)$. Solve this equation to obtain $s = \frac{1}{2}$.
- 10.12. (a) (t_n) is a decreasing sequence of positive numbers. As (t_n) is bounded below (by 0), it must be bounded, hence convergent.
- (b) We shall see that $\lim t_n = \frac{1}{2}$
- (c) The basis for induction is straightforward. For the inductive step, we shall show that, if $t_n = \frac{n+1}{2n}$, then $t_{n+1} = \frac{n+2}{2(n+1)}$.

Note that $1 - \frac{1}{(n+1)^2} = \frac{(n+1)^2 - 1}{(n+1)^2} = \frac{n(n+2)}{(n+1)^2}$, hence, in the light of the induction hypothesis, $t_{n+1} = \frac{n(n+2)}{(n+1)^2} t_n = \frac{n(n+2)}{(n+1)^2} \cdot \frac{n+1}{2n} = \frac{n+2}{2(n+1)}$, as we claimed.

(d)
$$\lim \frac{n+1}{2n} = \lim \frac{1+1/n}{2} = \frac{\lim(1+1/n)}{2} = \frac{(1+\lim 1/n)}{2} = \frac{1}{2}$$
, hence $\lim t_n = \frac{1}{2}$.