# Reactome Analysis Result

17 August, 2022

## Introduction

This report summarizes the pathway analysis result created by the **Reactome Analysis Service**. For more information, visit https://www.reactome.org.

In this reports, pathways found differentially expressed at an adjusted p-value <=0.05 are considered to be significantly regulated.



## **Analysis Overview**

- Number of datasets analysed: 3
- Reactome version: 81
- Disease pathways were included

#### **Dataset summaries**

## RNASEQ\_NORM\_1:

- 2397 pathways
- 9635 fold changes for genes / proteins

#### PROTEOMICS\_INT\_2:

- 2096 pathways
- 4553 fold changes for genes / proteins

#### PROTEOMICS\_INT\_3:

- 1683 pathways
- 1987 fold changes for genes / proteins

Number of datasets the different pathways were found to be significantly regulated in:

## Pathway analysis

## RNASEQ\_NORM\_1

















#### Pathway correlation

Correlation between all datasets (if more than one). Every point represents one pathway, with the x-axis showing the average fold-change of one dataset and the y-axis the average fold-change of the other dataset. Only pathways that were observed in both

## Similar regulated pathways

Pathways that show the same direction on all of the datasets. The direction of regulation is only assessed for significantly regulated pathways.

## Response of EIF2AK1 (HRI) to heme deficiency (R-HSA-9648895)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | < 0.001       | 0.855            | 0.998            |
| Av. FC     | 0.306         | 0.061            | 1.399            |
| N Genes    | 14            | 5                | 3                |

## Unfolded Protein Response (UPR) (R-HSA-381119)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Down             |
| FDR        | 0.001         | 0.2              | 0.998            |
| Av. FC     | 0.101         | 0.068            | 0.674            |
| N Genes    | 84            | 52               | 16               |

## Attenuation phase (R-HSA-3371568)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | < 0.001       | 0.275            | 0.998            |
| Av. FC     | -0.158        | -0.052           | -0.03            |
| N Genes    | 21            | 14               | 8                |

## HSF1-dependent transactivation (R-HSA-3371571)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.001         | 0.635            | 0.998            |
| Av. FC     | -0.132        | -0.014           | 0.085            |
| N Genes    | 27            | 18               | 12               |

## Prefoldin mediated transfer of substrate to CCT/TriC (R-HSA-389957)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.002         | 0.746            | 0.998            |
| Av. FC     | -0.107        | 0.001            | 0.444            |
| N Genes    | 22            | 21               | 5                |

# HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand (R-HSA-3371497)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.002         | 0.781            | 0.998            |
| Av. FC     | -0.098        | -0.001           | 0.588            |
| N Genes    | 41            | 36               | 10               |

## Formation of tubulin folding intermediates by CCT/TriC (R-HSA-389960)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.002         | 0.555            | 0.998            |
| Av. FC     | -0.113        | -0.025           | 0.588            |
| N Genes    | 16            | 15               | 2                |

#### Resolution of Sister Chromatid Cohesion (R-HSA-2500257)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.003         | 0.29             | 0.998            |
| Av. FC     | -0.068        | -0.013           | 0.273            |
| N Genes    | 112           | 95               | 45               |

## Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding (R-HSA-389958)

| F          | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.004         | 0.69             | 0.998            |
| Av. FC     | -0.101        | -0.002           | 0.444            |
| N Genes    | 23            | 22               | 5                |

## RHO GTPases Activate Formins (R-HSA-5663220)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.006         | 0.368            | 0.998            |
| Av. FC     | -0.064        | -0.007           | 0.755            |
| N Genes    | 122           | 98               | 46               |

EML4 and NUDC in mitotic spindle formation (R-HSA-9648025)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.008         | 0.449            | 0.998            |
| Av. FC     | -0.065        | -0.006           | 0.26             |
| N Genes    | 103           | 86               | 39               |

## E2F mediated regulation of DNA replication (R-HSA-113510)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.008         | 0.186            | 0.998            |
| Av. FC     | -0.106        | -0.058           | 0.296            |
| N Genes    | 21            | 17               | 5                |

## Mitotic Prometaphase (R-HSA-68877)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.009         | 0.692            | 0.998            |
| Av. FC     | -0.057        | 0.003            | 0.431            |
| N Genes    | 187           | 147              | 75               |

## Amplification of signal from the kinetochores (R-HSA-141424)

| Regulation Down Down Down   FDR 0.01 0.302 0.998   Av. FC -0.067 -0.012 0.277   N Genes 91 76 36 |            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|--------------------------------------------------------------------------------------------------|------------|---------------|------------------|------------------|
| Av. FC -0.067 -0.012 0.277                                                                       | Regulation | Down          | Down             | Down             |
|                                                                                                  | FDR        | 0.01          | 0.302            | 0.998            |
| N Genes 91 76 36                                                                                 | Av. FC     | -0.067        | -0.012           | 0.277            |
| 17 Genes 51                                                                                      | N Genes    | 91            | 76               | 36               |

# Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal (R-HSA-141444)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.01          | 0.302            | 0.998            |
| Av. FC     | -0.067        | -0.012           | 0.277            |
| N Genes    | 91            | 76               | 36               |

## HSF1 activation (R-HSA-3371511)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.011         | 0.646            | 0.998            |
| Av. FC     | -0.112        | -0.025           | 0.671            |
| N Genes    | 24            | 18               | 9                |

## RHOBTB GTPase Cycle (R-HSA-9706574)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.013         | 0.548            | 0.998            |
| Av. FC     | -0.091        | -0.018           | 0.243            |
| N Genes    | 31            | 29               | 12               |

## RHOBTB2 GTPase cycle (R-HSA-9013418)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Down             |
| FDR        | 0.013         | 0.513            | 0.998            |
| Av. FC     | -0.104        | -0.026           | 0.221            |
| N Genes    | 22            | 20               | 10               |

## Folding of actin by CCT/TriC (R-HSA-390450)

| RN         | ASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|-------------|------------------|------------------|
| Regulation | Down        | Down             | Up               |
| FDR        | 0.014       | 0.323            | 0.998            |
| Av. FC     | -0.102      | -0.057           | 1.2              |
| N Genes    | 9           | 9                | 2                |

## Anchoring of the basal body to the plasma membrane (R-HSA-5620912)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.03          | 0.855            | 0.998            |
| Av. FC     | -0.065        | 0.014            | 0.507            |
| N Genes    | 95            | 56               | 35               |

## AURKA Activation by TPX2 (R-HSA-8854518)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.035         | 0.713            | 0.998            |
| Av. FC     | -0.061        | 0.005            | 0.567            |
| N Genes    | 71            | 51               | 31               |

## Platelet sensitization by LDL (R-HSA-432142)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Down             | Up               |
| FDR        | 0.045         | 0.95             | 0.998            |
| Av. FC     | -0.117        | -0.011           | 0.397            |
| N Genes    | 15            | 13               | 3                |

## Fatty acid metabolism (R-HSA-8978868)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Down             |
| FDR        | 0.848         | 0.001            | 0.998            |
| Av. FC     | 0.002         | 0.091            | 0.628            |
| N Genes    | 116           | 60               | 9                |

## Gluconeogenesis (R-HSA-70263)

|            | RNASEQ_NORM_1          | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|------------------------|------------------|------------------|
| Regulation | $\mathbf{U}\mathbf{p}$ | Up               | Up               |
| FDR        | 0.009                  | 0.008            | 0.998            |
| Av. FC     | 0.146                  | 0.129            | 0.344            |
| N Genes    | 27                     | 18               | 7                |

## $\operatorname{HDMs}$ demethylate histones (R-HSA-3214842)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.403         | 0.008            | 0.998            |
| Av. FC     | 0.081         | 0.208            | 1.752            |
| N Genes    | 22            | 16               | 10               |

Asparagine N-linked glycosylation (R-HSA-446203)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.01          | 0.013            | 0.998            |
| Av. FC     | 0.05          | 0.074            | 1.071            |
| N Genes    | 253           | 157              | 35               |

## The citric acid (TCA) cycle and respiratory electron transport (R-HSA-1428517)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Up               | Down             |
| FDR        | 0.763         | 0.014            | 0.998            |
| Av. FC     | -0.006        | 0.086            | 0.239            |
| N Genes    | 169           | 118              | 9                |

## Erythrocytes take up carbon dioxide and release oxygen (R-HSA-1237044)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Up               | Up               |
| FDR        | 0.805         | 0.014            | 0.998            |
| Av. FC     | -0.054        | 0.257            | 0.344            |
| N Genes    | 5             | 5                | 1                |

## O2/CO2 exchange in erythrocytes (R-HSA-1480926)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Up               | Up               |
| FDR        | 0.805         | 0.014            | 0.998            |
| Av. FC     | -0.054        | 0.257            | 0.344            |
| N Genes    | 5             | 5                | 1                |

## Pyruvate metabolism and Citric Acid (TCA) cycle (R-HSA-71406)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Up               | Down             |
| FDR        | 0.876         | 0.014            | 0.998            |
| Av. FC     | 0.011         | 0.119            | 0.05             |
| N Genes    | 47            | 38               | 6                |

## ER to Golgi Anterograde Transport (R-HSA-199977)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.158         | 0.025            | 0.998            |
| Av. FC     | 0.041         | 0.074            | 1.314            |
| N Genes    | 127           | 95               | 28               |

## Respiratory electron transport (R-HSA-611105)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Up               | Down             |
| FDR        | 0.708         | 0.028            | 0.998            |
| Av. FC     | -0.016        | 0.087            | 0.127            |
| N Genes    | 103           | 69               | 2                |

## COPI-mediated anterograde transport (R-HSA-6807878)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.386         | 0.029            | 0.998            |
| Av. FC     | 0.033         | 0.078            | 2.319            |
| N Genes    | 82            | 64               | 15               |

## Erythrocytes take up oxygen and release carbon dioxide (R-HSA-1247673)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Down          | Up               | Up               |
| FDR        | 0.627         | 0.03             | 0.998            |
| Av. FC     | -0.113        | 0.328            | 0.344            |
| N Genes    | 2             | 3                | 1                |

## Glycosphingolipid metabolism (R-HSA-1660662)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Down             |
| FDR        | 0.688         | 0.032            | 0.998            |
| Av. FC     | 0.026         | 0.149            | 0.153            |
| N Genes    | 34            | 12               | 1                |

Branched-chain amino acid catabolism (R-HSA-70895)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.937         | 0.032            | 0.998            |
| Av. FC     | 0.002         | 0.118            | 2.482            |
| N Genes    | 21            | 15               | 3                |

## XBP1(S) activates chaperone genes (R-HSA-381038)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Down             |
| FDR        | 0.003         | 0.034            | 0.998            |
| Av. FC     | 0.103         | 0.111            | 0.675            |
| N Genes    | 46            | 26               | 10               |

## Transport to the Golgi and subsequent modification (R-HSA-948021)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.104         | 0.034            | 0.998            |
| Av. FC     | 0.043         | 0.072            | 1.314            |
| N Genes    | 149           | 101              | 28               |

## Metabolism of lipids (R-HSA-556833)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.8           | 0.034            | 0.998            |
| Av. FC     | 0.004         | 0.066            | 0.838            |
| N Genes    | 520           | 245              | 91               |

## Mitochondrial Fatty Acid Beta-Oxidation (R-HSA-77289)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               | Up               |
| FDR        | 0.843         | 0.034            | 0.998            |
| Av. FC     | 0.018         | 0.11             | 3.075            |
| N Genes    | 31            | 20               | 2                |

Major pathway of rRNA processing in the nucleolus and cytosol (R-HSA-6791226)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | 0.104         | < 0.001          | 0.998            |
| Av. FC     | 0.025         | -0.101           | 0.859            |
| N Genes    | 169           | 156              | 48               |

## rRNA processing in the nucleus and cytosol (R-HSA-8868773)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | 0.146         | < 0.001          | 0.998            |
| Av. FC     | 0.022         | -0.098           | 0.802            |
| N Genes    | 179           | 164              | 53               |

# Differently regulated pathways

## SRP-dependent cotranslational protein targeting to membrane (R-HSA-1799339)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.128         | -0.106           | 0.8              |
| N Genes    | 99            | 90               | 24               |

## Peptide chain elongation (R-HSA-156902)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.099         | -0.18            | 0.973            |
| N Genes    | 76            | 70               | 22               |

## Eukaryotic Translation Elongation (R-HSA-156842)

|            | RNASEQ_NORM_1          | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|------------------------|------------------|------------------|
| Regulation | $\mathbf{U}\mathbf{p}$ | Down             | Down             |
| FDR        | < 0.001                | < 0.001          | 0.998            |
| Av. FC     | 0.099                  | -0.18            | 0.819            |
| N Genes    | 80                     | 73               | 25               |

## Viral mRNA Translation (R-HSA-192823)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.095         | -0.174           | 1.015            |
| N Genes    | 76            | 70               | 21               |

#### Selenocysteine synthesis (R-HSA-2408557)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.094         | -0.174           | 0.972            |
| N Genes    | 80            | 71               | 22               |

## Response of EIF2AK4 (GCN2) to amino acid deficiency (R-HSA-9633012)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Up               |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.108         | -0.156           | 1.422            |
| N Genes    | 87            | 75               | 25               |

# Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) (R-HSA-975956)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.085         | -0.165           | 0.831            |
| N Genes    | 81            | 75               | 25               |

## Eukaryotic Translation Termination (R-HSA-72764)

|            | RNASEQ_NORM_1          | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|------------------------|------------------|------------------|
| Regulation | $\mathbf{U}\mathbf{p}$ | Down             | Down             |
| FDR        | < 0.001                | < 0.001          | 0.998            |
| Av. FC     | 0.085                  | -0.171           | 0.959            |
| N Genes    | 79                     | 72               | 22               |

Formation of a pool of free 40S subunits (R-HSA-72689)

|            | RNASEQ_NORM_1       | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------------|------------------|------------------|
| Regulation | $\operatorname{Up}$ | Down             | Down             |
| FDR        | < 0.001             | < 0.001          | 0.998            |
| Av. FC     | 0.079               | -0.168           | 1.02             |
| N Genes    | 88                  | 82               | 29               |

## Selenoamino acid metabolism (R-HSA-2408522)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.08          | -0.131           | 0.811            |
| N Genes    | 98            | 88               | 26               |

## L13a-mediated translational silencing of Ceruloplasmin expression (R-HSA-156827)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.073         | -0.157           | 0.949            |
| N Genes    | 98            | 92               | 33               |

## GTP hydrolysis and joining of the $60\mathrm{S}$ ribosomal subunit (R-HSA-72706)

|            | RNASEQ_NORM_1          | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|------------------------|------------------|------------------|
| Regulation | $\mathbf{U}\mathbf{p}$ | Down             | Down             |
| FDR        | < 0.001                | < 0.001          | 0.998            |
| Av. FC     | 0.073                  | -0.155           | 0.917            |
| N Genes    | 99                     | 93               | 34               |

## Eukaryotic Translation Initiation (R-HSA-72613)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.069         | -0.148           | 0.857            |
| N Genes    | 106           | 99               | 37               |

## Cap-dependent Translation Initiation (R-HSA-72737)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.069         | -0.148           | 0.857            |
| N Genes    | 106           | 99               | 37               |

#### Nonsense-Mediated Decay (NMD) (R-HSA-927802)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.06          | -0.136           | 0.698            |
| N Genes    | 100           | 93               | 31               |

Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) (R-HSA-975957)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.06          | -0.136           | 0.698            |
| N Genes    | 100           | 93               | 31               |

## Cellular response to starvation (R-HSA-9711097)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Up               |
| FDR        | < 0.001       | < 0.001          | 0.998            |
| Av. FC     | 0.062         | -0.102           | 1.226            |
| N Genes    | 139           | 98               | 32               |

Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S (R-HSA-72662)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | 0.001         | < 0.001          | 0.998            |
| Av. FC     | 0.064         | -0.138           | 0.521            |
| N Genes    | 56            | 54               | 22               |

Peroxisomal lipid metabolism (R-HSA-390918)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               |                  |
| FDR        | 0.867         | 0.002            |                  |
| Av. FC     | 0             | 0.148            |                  |
| N Genes    | 25            | 10               |                  |

#### Alpha-oxidation of phytanate (R-HSA-389599)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Up               |                  |
| FDR        | 0.72          | 0.032            |                  |
| Av. FC     | 0.033         | 0.243            |                  |
| N Genes    | 6             | 2                |                  |

## Translation initiation complex formation (R-HSA-72649)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | 0.002         | < 0.001          | 0.998            |
| Av. FC     | 0.056         | -0.138           | 0.535            |
| N Genes    | 55            | 54               | 21               |

## Formation of the ternary complex, and subsequently, the 43S complex (R-HSA-72695)

|            | RNASEQ_NORM_1 | PROTEOMICS_INT_2 | PROTEOMICS_INT_3 |
|------------|---------------|------------------|------------------|
| Regulation | Up            | Down             | Down             |
| FDR        | 0.002         | < 0.001          | 0.998            |
| Av. FC     | 0.06          | -0.143           | 0.606            |
| N Genes    | 48            | 47               | 18               |

## Protein / Gene level results

Classical differential expression analysis performed on the genes / proteins of every dataset.

**Note:** Depending on the gene set analysis method used, the approach used to assess differential expression at the gene / protein level may vary to the approach used for the pathway level.



Top up-regulated protein/genes

RNASEQ\_NORM\_1

| Identifier | $\log FC$ | AveExpr  | t        | P.Value | adj.P.Val | В         |
|------------|-----------|----------|----------|---------|-----------|-----------|
| BNIP3      | 1.2427625 | 6.666911 | 19.28203 | 0e+00   | 2.59e-05  | 10.348714 |
| SEC24D     | 0.6398932 | 6.929024 | 18.64700 | 0e + 00 | 2.59 e-05 | 10.095921 |
| INHBE      | 1.3613345 | 1.474636 | 18.54210 | 0e + 00 | 2.59 e-05 | 10.053016 |
| HK2        | 0.7739812 | 8.063837 | 18.47567 | 0e+00   | 2.59 e-05 | 10.025672 |

| WARS 0.7830369 7.383098 17.63031 0e+00 3.04e-05 9.66              | 4363 |
|-------------------------------------------------------------------|------|
|                                                                   | 5610 |
| LSP1 $0.8618299$ $6.497991$ $17.30090$ $0e+00$ $3.23e-05$ $9.518$ | 3977 |
| SSR4 0.5746453 6.660866 16.77911 0e+00 3.83e-05 9.27              | 9021 |
| SEC61B 0.5886769 7.187222 16.48316 1e-07 4.10e-05 9.13            | 3560 |
| LRRC32  1.8553619  2.540811  15.85869  1 e-07  5.30 e-05  8.83    | 1288 |

# PROTEOMICS\_INT\_2

| Identifier | $\log FC$ | AveExpr   | t         | P.Value   | adj.P.Val | В          |
|------------|-----------|-----------|-----------|-----------|-----------|------------|
| BNIP3      | 1.1814335 | 7.095424  | 10.570358 | 0.0000049 | 0.0223701 | 2.2934506  |
| PFKFB1     | 1.0848575 | 4.237815  | 7.311704  | 0.0000759 | 0.1354340 | 1.0059610  |
| CYP51A1    | 0.5598672 | 8.613711  | 7.148307  | 0.0000892 | 0.1354340 | 0.9148148  |
| SDHB       | 0.3250245 | 8.961145  | 5.634463  | 0.0004605 | 0.3650219 | -0.1041238 |
| ATP6V0A1   | 0.3992999 | 4.494340  | 5.570446  | 0.0004967 | 0.3650219 | -0.1550398 |
| HK2        | 0.4156871 | 11.404262 | 5.500468  | 0.0005399 | 0.3650219 | -0.2115019 |
| PCK2       | 0.3516007 | 9.592376  | 5.411571  | 0.0006008 | 0.3650219 | -0.2844544 |
| ALDOC      | 0.4882969 | 9.790111  | 5.357668  | 0.0006414 | 0.3650219 | -0.3293650 |
| FAM162A    | 0.5963219 | 7.819647  | 5.099026  | 0.0008824 | 0.3807273 | -0.5520980 |
| STAT2      | 0.3194455 | 6.956504  | 4.991894  | 0.0010099 | 0.3831570 | -0.6479329 |

## PROTEOMICS\_INT\_3

| Identifier | $\log FC$ | AveExpr  | t        | P.Value | adj.P.Val | В        |
|------------|-----------|----------|----------|---------|-----------|----------|
| TULP4      | 8.427462  | 5.776730 | 60.73663 | 0       | 0         | 16.97889 |
| PER1       | 8.102803  | 5.699838 | 55.00517 | 0       | 0         | 16.59636 |
| COPA       | 7.749832  | 4.994465 | 53.27123 | 0       | 0         | 16.46311 |
| KAT8       | 7.556984  | 5.268666 | 51.21708 | 0       | 0         | 16.29298 |
| KIAA1328   | 7.463462  | 5.036851 | 51.06115 | 0       | 0         | 16.27948 |
| BAG4       | 7.439379  | 4.081694 | 51.02099 | 0       | 0         | 16.27599 |
| RTEL1      | 7.572201  | 5.136767 | 48.89557 | 0       | 0         | 16.08298 |
| PQBP1      | 6.679322  | 4.693230 | 48.03592 | 0       | 0         | 16.00001 |
| RPL23A     | 8.072335  | 5.540185 | 47.77731 | 0       | 0         | 15.97446 |
| MAPRE2     | 7.057584  | 4.206044 | 47.07278 | 0       | 0         | 15.90346 |

# Top down-regulated protein/genes

RNASEQ\_NORM\_1

| Identifier | $\log FC$  | AveExpr  | t         | P.Value | adj.P.Val | В         |
|------------|------------|----------|-----------|---------|-----------|-----------|
| HBEGF      | -1.2444479 | 5.041363 | -30.46771 | 0e+00   | 0.0000022 | 13.395315 |
| HIVEP3     | -1.9003565 | 3.251268 | -26.74282 | 0e + 00 | 0.0000035 | 12.614251 |
| TRAC       | -0.8630870 | 6.092586 | -22.26763 | 0e + 00 | 0.0000117 | 11.394708 |
| GPR18      | -0.5467458 | 5.160644 | -15.14328 | 1e-07   | 0.0000686 | 8.460012  |
| CD72       | -0.7607923 | 4.946547 | -14.17771 | 2e-07   | 0.0000763 | 7.923390  |
| IL7R       | -0.6886743 | 3.780107 | -14.09995 | 2e-07   | 0.0000763 | 7.878276  |
| SP110      | -0.5184055 | 4.360343 | -14.02405 | 2e-07   | 0.0000768 | 7.833957  |
| IKZF1      | -0.4989903 | 8.312841 | -13.33832 | 3e-07   | 0.0001004 | 7.420393  |
| MSI2       | -0.6381131 | 7.463337 | -13.08064 | 4e-07   | 0.0001039 | 7.258603  |
| FMO1       | -1.1932337 | 2.564377 | -12.88241 | 4e-07   | 0.0001120 | 7.131652  |

## PROTEOMICS\_INT\_2

| Identifier | $\log FC$  | AveExpr   | t         | P.Value   | adj.P.Val | В          |
|------------|------------|-----------|-----------|-----------|-----------|------------|
| HMGCR      | -0.6090163 | 5.263031  | -5.164688 | 0.0008130 | 0.3807273 | -0.4944042 |
| CHKA       | -0.4438984 | 6.852022  | -5.065900 | 0.0009198 | 0.3807273 | -0.5815047 |
| CDC34      | -0.3135711 | 4.712287  | -4.606131 | 0.0016642 | 0.4638571 | -1.0108703 |
| JCHAIN     | -0.7426979 | 8.702611  | -4.576017 | 0.0017320 | 0.4638571 | -1.0403963 |
| RPS6KA4    | -0.2663223 | 6.592079  | -4.474660 | 0.0019829 | 0.4751627 | -1.1410577 |
| UBE2T      | -0.4721240 | 8.594440  | -4.256525 | 0.0026668 | 0.5869069 | -1.3644296 |
| RPL21      | -0.2504983 | 9.640674  | -4.211907 | 0.0028359 | 0.5869069 | -1.4112507 |
| UBE2S      | -0.4052257 | 8.105481  | -4.128781 | 0.0031825 | 0.5889594 | -1.4995067 |
| RPL37A     | -0.3179965 | 9.939984  | -4.072322 | 0.0034438 | 0.5889594 | -1.5602055 |
| KPNA2      | -0.2668472 | 10.712666 | -4.050660 | 0.0035501 | 0.5889594 | -1.5836568 |

# ${\bf PROTEOMICS\_INT\_3}$

| Identifier | $\log FC$ | AveExpr  | t          | P.Value   | adj.P.Val | В         |
|------------|-----------|----------|------------|-----------|-----------|-----------|
| SRPK1      | -2.811971 | 8.311077 | -14.814316 | 0.0000002 | 0.0000033 | 7.8311715 |
| CLTA       | -1.811336 | 6.090622 | -9.263430  | 0.0000097 | 0.0001200 | 3.8858127 |
| PPP1R2     | -1.673190 | 9.555277 | -8.464242  | 0.0000196 | 0.0002306 | 3.1386990 |
| CDK12      | -1.528140 | 9.039439 | -8.313926  | 0.0000225 | 0.0002601 | 2.9914457 |
| GMPS       | -2.550105 | 9.018591 | -8.161085  | 0.0000260 | 0.0002981 | 2.8394118 |

| CHAMP1 | -1.171488 | 10.565311 | -7.152468 | 0.0000702 | 0.0007750 | 1.7738538 |
|--------|-----------|-----------|-----------|-----------|-----------|-----------|
| FLI1   | -0.975170 | 9.650450  | -6.200357 | 0.0001986 | 0.0020993 | 0.6581888 |
| SAP130 | -1.553133 | 8.724277  | -6.045810 | 0.0002376 | 0.0024588 | 0.4660601 |
| ESS2   | -1.452025 | 8.105474  | -5.857576 | 0.0002967 | 0.0030236 | 0.2276819 |
| ABCF1  | -1.172273 | 9.924015  | -5.802776 | 0.0003168 | 0.0032120 | 0.1573698 |