Progetto di Analisi Immagini e Video

Alati Maria Francesca Galimberti Giulia Katia

Introduzione

- · Obiettivo: Classificazione multi-classe e multi-label di trailer di film
- Struttura del progetto:
 - Data analysis
 - 2. Loading the dataset
 - 3. Loading the model
 - 4. Train
 - 5. Plot the loss
 - 6. Test Suite

Loading the dataset

Dataset:

- Frame 100 x 100 pixel
- 15 frame per trailer

Dataloaders:

• Batch size = 4

R(2+1)D Model

L'idea fondamentale alla base di questa architettura è approssimare una convoluzione 3D utilizzando una convoluzione spaziale 2D seguita da una convoluzione temporale 1D.

R(2+1)D Model

- La R(2+1)D è composta da cinque (2+1)D blocchi convoluzionali.
- Poiché ogni blocco è composto da una convoluzione spaziale e una convoluzione temporale, la non linearità è doppia rispetto a una CNN 3D composta con lo stesso numero di blocchi.

Parametri:

```
lr = 1e-4

criterion = nn.BCEWithLogitsLoss()

optimizer = optim.SGD(train_params, lr=lr, momentum=0.8, weight_decay=5e-3)

scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.1)

epochs = 10
```

Train

Plot the loss

Di seguito si mostra l'andamento della Loss nelle 10 epoche eseguite

Per la valutazione del modello è stato utilizzato il test set, il seguente Classification Report mostra i valori ottenuti

Test

			precision	recall	f1-score	support
	micro	a∨g	0.16	0.56	0.25	3167
	macro	avg	0.02	0.12	0.03	3167
weighted		avg	0.14	0.56	0.21	3167
sa	mples	avg	0.16	0.59	0.24	3167

Grazie per l'attenzione!