

THE COPPERBELT UNIVERSITY

DEPARTMENT OF CHEMISTRY

CH110: TUTORIAL SHEET 2

REACTIONS IN AQUEOUS SOLUTIONS

Term I (2023-2024)

1. The compounds K₂CO₃, Na₂CO₃, KCl and NaCl are soluble in water, but CaCO₃ is not. Given the following molecular equation:

 $CaCl_2(aq) + Na_2CO_3(aq) \rightarrow CaCO_3(s) + 2NaCl(aq)$

- (a) Write molecular equation for the reaction between solutions of CaCl₂ and K₂CO₃
- (b) Write the *ionic equation* for the reaction between solutions of CaCl₂ and K₂CO₃
- (c) What is meant by the term *spectator ion*
- (d) Write down the spectator ion(s) for this reaction if any
- (e) Write the *net ionic equation* for the reaction between solutions of $CaCl_2$ and K_2CO_3
- 2. What volume of 16 M sulfuric acid must be used to prepare 1.5 L of a 0.10-M H₂SO₄ solution?
- 3. Assign oxidation numbers to all the elements in the following compounds and ion: (a) Na_2O , (b) HNO_2 , (c) Cr_2O_7 -2
- 4. Define molarity. Calculate the molarity of a solution prepared by dissolving 1.56 g of gaseous HCl in enough water to make 26.8 mL of solution.
- 5. Glycine (H₂NCH₂COOH) is the simplest amino acid. What is the molarity of an aqueous solution that contains 0.715 mol of glycine in 495 mL?
- 6. Specialized cells in the stomach release HCl to aid digestion. If they release too much, the excess can be neutralized with an antacid to avoid discomfort. A common antacid contains magnesium hydroxide, Mg(OH)₂, which reacts with the acid to form water and magnesium chloride solution. As a government chemist testing commercial antacids, you use 0.10 *M* HCl to simulate the acid concentration in the

stomach. How many liters of "stomach acid" react with a tablet containing 0.10~g of $Mg(OH)_2$?

- 7. Predict whether a reaction occurs when each of the following pairs of solutions are mixed. If a reaction does occur, write balanced molecular, total ionic, and net ionic equations, and identify the spectator ions.
 - (a) Potassium fluoride(aq) + strontium nitrate(aq) \rightarrow
 - (b) Ammonium perchlorate(aq) + sodium bromide(aq) \rightarrow
- 8. You perform an acid-base titration to standardize an HCl solution by placing 50.00 mL of HCl in a flask with a few drops of indicator solution. You put 0.1524 *M* NaOH into the buret, and the initial reading is 0.55 mL. At the end point, the buret reading is 33.87 mL. What is the concentration of the HCl solution?
- 9. Identify the oxidizing agent and reducing agent in each of the following:
 - (a) $2Al(s) + 3H_2SO_4(aq) \rightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$
 - (b) $PbO(s) + CO(g) \rightarrow Pb(s) + CO_2(g)$
 - (c) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- 10. Permanganate ion is a strong oxidizing agent, and its deep purple color makes it useful as an indicator in redox titrations. It reacts in basic solution with the oxalate ion to form carbonate ion and solid manganese dioxide. Balance the skeleton ionic equation for the reaction between NaMnO₄ and Na₂C₂O₄ in basic solution:

$$MnO_4^-(aq) + C_2O_4^{2-}(aq) \rightarrow MnO_2(s) + CO_3^{2-}(aq)$$

11. Balance the redox reaction between dichromate ion and iodide ion to form chromium(III) ion and solid iodine, which occurs in acidic solution.

$$Cr_2O_7^{2-}(aq) + I^{-}(aq) \rightarrow Cr^{3+}(aq) + I_2(s)$$

Solutions

Solution 1:

(a) Write molecular equation for the reaction between solutions of $CaCl_2$ and K_2CO_3

$$CaCl_2(aq) + K_2CO_3(aq) \rightarrow CaCO_3(s) + 2KCl(aq)$$

(b) Write the ionic equation for the reaction between solutions of CaCl₂ and K₂CO₃

$$Ca^{2+}(aq) + 2Cl^{-}(aq) + 2K^{+}(aq) + CO_{3}^{-}(aq) \rightarrow CaCO_{3}(s) + 2Cl^{-}(aq) + 2K^{+}(aq)$$

(c) What is meant by the term spectator ion

A **spectator ion** is an **ion** that exists as a reactant and a product in a chemical equation

(d) Write down the spectator ion(s) for this reaction if any

$$2Cl^{-}(aq) + 2K^{+}(aq) \rightarrow 2Cl^{-}(aq) + 2K^{+}(aq)$$

(e) Write the net ionic equation for the reaction between solutions of $CaCl_2$ and K_2CO_3

$$Ca^{2+}(aq) + CO_3^-(aq) \rightarrow CaCO_3(s)$$

Solution 2:

Solution

Where are we going?

To find the volume of H2SO4 required to prepare the solution

What do we know?

- 1.5 L of 0.10 M H₂SO₄ is required
- We have 16 M H₂SO₄

What information do we need to find the volume of H_2SO_4 ?

Moles of H₂SO₄ in the required solution

How do we get there?

What are the moles of H_2SO_4 required?

$$M \times V = \text{mol}$$

1.5 L-solution $\times \frac{0.10 \text{ mol H}_2\text{SO}_4}{\text{L-solution}} = 0.15 \text{ mol H}_2\text{SO}_4$

What volume of 16 M H₂SO₄ contains 0.15 mole of H₂SO₄?

$$V \times \frac{16 \text{ mol H}_2\text{SO}_4}{\text{L solution}} = 0.15 \text{ mol H}_2\text{SO}_4$$

Solving for V gives

$$V = \frac{0.15 \text{ mol H}_2 \text{SO}_4^-}{\frac{16 \text{ mol H}_2 \text{SO}_4^-}{1 \text{ L. solution}}} = 9.4 \times 10^{-3} \text{ L or } 9.4 \text{ mL solution}$$

Solution 3:

Solution

- (a) By rule 2, we see that sodium has an oxidation number of +1 (Na⁺) and oxygen's oxidation number is -2 (O²⁻).
- (b) This is the formula for nitrous acid, which yields a H⁺ ion and a NO₂[−] ion in solution. From rule 4, we see that H has an oxidation number of +1. Thus, the other group (the nitrite ion) must have a net oxidation number of −1. Oxygen has an oxidation number of −2, and if we use x to represent the oxidation number of nitrogen, then the nitrite ion can be written as

$$[N^{(x)}O_2^{(2-)}]^-$$

so that $x + 2(-2) = -1$
or $x = +3$

(c) From rule 6, we see that the sum of the oxidation numbers in the dichromate ion Cr₂O₇^{2−} must be −2. We know that the oxidation number of O is −2, so all that remains is to determine the oxidation number of Cr, which we call y. The dichromate ion can be written as

so that
$$[Cr_2^{(y)}O_7^{(2-)}]^{2-}$$

$$2(y) + 7(-2) = -2$$
or
$$y = +6$$

Solution 4:

Solution From the molar mass of glucose, we write

$$4.07~\underline{g}~C_6H_{12}O_6\times\frac{1~\text{mol}~C_6H_{12}O_6}{180.2~\underline{g}~C_6H_{12}O_6}=~2.259\times~10^{-2}~\text{mol}~C_6H_{12}O_6$$

Next, we calculate the volume of the solution that contains 2.259×10^{-2} mol of the solute. Rearranging Equation (4.2) gives

$$V = \frac{n}{M}$$
= $\frac{2.259 \times 10^{-2} \text{ mol C}_6 \text{H}_{12} \text{O}_6}{3.16 \text{ mol C}_6 \text{H}_{12} \text{O}_6 / \text{L soln}} \times \frac{1000 \text{ mL soln}}{1 \text{ L soln}}$
= 7.15 mL soln

Solution 5:

Molarity =
$$\frac{0.715 \text{ mol glycine}}{495 \text{ mL soln}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 1.44 M \text{ glycine}$$

Solution 6:

SOLUTION Writing the balanced equation:
$$Mg(OH)_2(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + 2H_2O(l)$$
 Converting from grams of $Mg(OH)_2$ to moles:
$$Moles of Mg(OH)_2 = 0.10 \frac{gMg(OH)_2}{gMg(OH)_2} \times \frac{1 \text{ mol } Mg(OH)_2}{58.33 \frac{gMg(OH)_2}{gMg(OH)_2}} = 1.7 \times 10^{-3} \text{ mol } Mg(OH)_2$$
 Converting from moles of $Mg(OH)_2$ to moles of HCl :
$$Moles of HCl = 1.7 \times 10^{-3} \frac{mol Mg(OH)_2}{mol Mg(OH)_2} \times \frac{2 \text{ mol } HCl}{1 \frac{mol Mg(OH)_2}{gMg(OH)_2}} = 3.4 \times 10^{-3} \text{ mol } HCl$$
 Converting from moles of HCl to liters:
$$Volume (L) \text{ of } HCl = 3.4 \times 10^{-3} \frac{mol HCl}{mol HCl} \times \frac{1 \text{ L}}{0.10 \text{ mol } HCl} = 3.4 \times 10^{-2} \text{ L}$$

Solution 7:

(a) Write the molecular equation

$$2KF(aq) + Sr(NO_3)_2(aq) \longrightarrow SrF_2(s) + 2KNO_3(aq)$$
Writing the total ionic equation:
$$2K^+(aq) + 2F^-(aq) + Sr^{2+}(aq) + 2NO_3^-(aq) \longrightarrow SrF_2(s) + 2K^+(aq) + 2NO_3^-(aq)$$
Writing the net ionic equation:
$$Sr^{2+}(aq) + 2F^-(aq) \longrightarrow SrF_2(s)$$
The spectator ions are K^+ and NO_3^- .

(b) The other ion combinations are ammonium bromide and sodium perchlorate. It shows that all ammonium, sodium, and most perchlorate compounds are soluble, and all bromides are soluble except those of Ag+, Pb²⁺, Cu+, and Hg₂²⁺. Therefore, *no* reaction occurs. The compounds remain dissociated in solution as solvated ions.

Solution 8:

SOLUTION Writing the balanced equation:

$$NaOH(aq) + HCl(aq) \longrightarrow NaCl(aq) + H_2O(1)$$

Finding volume (L) of NaOH solution added:

Volume (L) of solution =
$$(33.87 \text{ mL soln} - 0.55 \text{ mL soln}) \times \frac{1 \text{ L}}{1000 \text{ mL}}$$

= 0.03332 L soln

Finding amount (mol) of NaOH added:

Moles of NaOH =
$$0.03332 \frac{\text{L soln}}{1 \text{ L soln}} \times \frac{0.1524 \text{ mol NaOH}}{1 \text{ L soln}}$$

= $5.078 \times 10^{-3} \text{ mol NaOH}$

Finding amount (mol) of HCl originally present: Since the molar ratio is 1/1,

Moles of HCl =
$$5.078 \times 10^{-3} \frac{\text{mol NaOH}}{\text{mol NaOH}} \times \frac{1 \frac{\text{mol HCl}}{1 \frac{\text{mol NaOH}}{1 \text{mol NaOH}}} = 5.078 \times 10^{-3} \frac{\text{mol HCl}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}}} = 5.078 \times 10^{-3} \frac{\text{mol HCl}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}}}} = 5.078 \times 10^{-3} \frac{\text{mol HCl}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}}}} = 5.078 \times 10^{-3} \frac{\text{mol HCl}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}}} = 5.078 \times 10^{-3} \frac{\text{mol HCl}}{1 \frac{\text{mol NaOH}}{1 \frac{\text{mol NaOH}}}}} = 5.078 \times 10^{-3} \frac{\text{mol HCl}}{1 \frac{\text{mol NaOH}}}$$

Calculating molarity of HCl:

Molarity of HCl =
$$\frac{5.078 \times 10^{-3} \text{ mol HCl}}{50.00 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}}$$

= 0.1016 *M* HCl

Solution 9:

SOLUTION (a) Assigning oxidation numbers:

The O.N. of Al increased from 0 to +3 (Al lost electrons), so Al was oxidized;

Al is the reducing agent.

The O.N. of H decreased from +1 to 0 (H gained electrons), so H⁺ was reduced; H₂SO₄ is the oxidizing agent.

(b) Assigning oxidation numbers:

$$\begin{array}{c|cccc}
-2 & -2 & -2 & -2 \\
+2 & & +2 & & | & +4 & | \\
PbO(s) + CO(g) & \longrightarrow Pb(s) + CO_2(g)
\end{array}$$

Pb decreased its O.N. from +2 to 0, so PbO was reduced; PbO is the oxidizing agent. C increased its O.N. from +2 to +4, so CO was oxidized; CO is the reducing agent. In general, when a substance (such as CO) becomes one with more O atoms (such as CO₂), it is oxidized; and when a substance (such as PbO) becomes one with fewer O atoms (such as Pb), it is reduced.

(c) Assigning oxidation numbers:

$$\begin{array}{ccc}
0 & 0 & +1-2 \\
 & | & | & | \\
2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)
\end{array}$$

 O_2 was reduced (O.N. of O decreased from 0 to -2); O_2 is the oxidizing agent. H_2 was oxidized (O.N. of H increased from 0 to +1); H_2 is the reducing agent. Oxygen is always the oxidizing agent in a combustion reaction.

Solution 10:

SOLUTION

1. Divide into half-reactions.

$$MnO_4$$
 \longrightarrow MnO_2

Balance.

Atoms other than O and H,
 Not needed

O atoms with H₂O, MnO₄[−] → MnO₂ + 2H₂O

e. H atoms with H⁺,
 4H⁺ + MnO₄⁻ → MnO₂ + 2H₂O

d. Charge with e⁻,

3e⁻ + 4H⁺ + MnO_4 ⁻ \longrightarrow MnO_2 + 2H₂O [reduction] $C_2O_4^{2-} \longrightarrow CO_3^{2-}$

 Atoms other than O and H, C₂O₄^{2−} → 2CO₃^{2−}

b. O atoms with H₂O, 2H₂O + C₂O₄^{2−} → 2CO₃^{2−}

e. H atoms with H⁺, 2H₂O + C₂O₄^{2−} → 2CO₃^{2−} + 4H⁺

d. Charge with e⁻, 2H₂O + C₂O₄²⁻ → 2CO₃²⁻ + 4H⁺ + 2e⁻ [oxidation]

3. Multiply each half-reaction, if necessary, by some integer to make e lost equal e gained.

$$2(3e^{-} + 4H^{+} + MnO_{4}^{-} \longrightarrow MnO_{2} + 2H_{2}O)$$

 $6e^{-} + 8H^{+} + 2MnO_{4}^{-} \longrightarrow 2MnO_{2} + 4H_{2}O$

$$3(2H_2O + C_2O_4^{2-} \longrightarrow 2CO_3^{2-} + 4H^+ + 2e^-)$$

 $6H_2O + 3C_2O_4^{2-} \longrightarrow 6CO_3^{2-} + 12H^+ + 6e^-$

4. Add half-reactions, and cancel substances appearing on both sides. The six e⁻ cancel, eight H⁺ cancel to leave four H⁺ on the right, and four H₂O cancel to leave two H₂O on the left:

$$-6e^{-} + 8H^{+} + 2MnO_{4}^{-} \longrightarrow 2MnO_{2} + 4H_{2}O$$

 $2 6H_{2}O + 3C_{2}O_{4}^{2-} \longrightarrow 6CO_{3}^{2-} + 4 12H^{+} + 6e^{-}$
 $2MnO_{4}^{-} + 2H_{2}O + 3C_{2}O_{4}^{2-} \longrightarrow 2MnO_{2} + 6CO_{3}^{2-} + 4H^{+}$

4 Basic. Add OH⁻ to both sides to neutralize H⁺, and cancel H₂O. Adding four OH⁻ to both sides forms four H₂O on the right, two of which cancel the two H₂O on the left, leaving two H₂O on the right:

$$2MnO_4^- + 2H_2O + 3C_2O_4^{2-} + 4OH^- \longrightarrow 2MnO_2 + 6CO_3^{2-} + [4H^+ + 4OH^-]$$

 $2MnO_4^- + 2H_2O + 3C_2O_4^{2-} + 4OH^- \longrightarrow 2MnO_2 + 6CO_3^{2-} + 24H_2O$

Including states of matter gives the final balanced equation:

$$2\text{MnO}_4^-(aq) + 3\text{C}_2\text{O}_4^{\ 2-}(aq) + 4\text{OH}^-(aq) \longrightarrow 2\text{MnO}_2(s) + 6\text{CO}_3^{\ 2-}(aq) + 2\text{H}_2\text{O}(l)$$

5. Check that atoms and charges balance.

Solution 11:

Step 1. Divide the reaction into half-reactions, each of which contains the oxidized and reduced forms of one species. The two chromium species make up one half-reaction, and the two iodine species make up the other:

$$Cr_2O_7^{2-} \longrightarrow Cr^{3+}$$
 $I^- \longrightarrow I_2$

Step 2. Balance atoms and charges in each half-reaction. We use H₂O to balance O atoms, H⁺ to balance H atoms, and e⁻ to balance positive charges.

- For the Cr₂O₇²⁻/Cr³⁺ half-reaction:
 - a. Balance atoms other than O and H. We balance the two Cr on the left with a coefficient 2 on the right:

$$Cr_2O_7^{2-} \longrightarrow 2Cr^{3+}$$

b. Balance O atoms by adding H₂O molecules. Each H₂O has one O atom, so we add seven H₂O on the right to balance the seven O in Cr₂O₇²⁻:

$$Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$$

c. Balance H atoms by adding H⁺ ions. Each H₂O contains two H, and we added seven H₂O, so we add 14 H⁺ ions on the left:

$$14H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 2Cr^{3+} + 7H_{2}O$$

d. Balance charge by adding electrons. Each H⁺ ion has a 1+ charge, and 14 H⁺ plus Cr₂O₇²⁻ gives 12+ on the left. Two Cr³⁺ give 6+ on the right. There is an excess of 6+ on the left, so we add six e⁻ on the left:

$$6e^{-} + 14H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 2Cr^{3+} + 7H_{2}O_{7}^{3+}$$

This half-reaction is balanced, and we see it is the *reduction* because electrons appear on the *left, as reactants:* the reactant $Cr_2O_7^{2-}$ gains electrons (is reduced), so $Cr_2O_7^{2-}$ is the *oxidizing agent.* (Note that the O.N. of Cr decreases from +6 on the left to +3 on the right.)

For the I⁻/I₂ half-reaction:

a. Balance atoms other than O and H. Two I atoms on the right require a coefficient 2 on the left:

$$2I^{-} \longrightarrow I_{2}$$

- b. Balance O atoms with H₂O. Not needed; there are no O atoms.
- Balance H atoms with H⁺. Not needed; there are no H atoms.
- d. Balance charge with e⁻. To balance the 2- on the left, we add two e⁻ on the right:

$$2I^- \longrightarrow I_2 + 2e^-$$

This half-reaction is balanced, and it is the *oxidation* because electrons appear on the *right*, as products: the reactant I⁻ loses electrons (is oxidized), so I⁻ is the *reducing agent*. (Note that the O.N. of I increases from -1 to 0.)

Step 3. Multiply each half-reaction, if necessary, by an integer so that the number of e⁻ lost in the oxidation equals the number of e⁻ gained in the reduction. Two e⁻ are lost in the oxidation and six e⁻ are gained in the reduction, so we multiply the oxidation by 3:

$$3(2I^{-} \longrightarrow I_2 + 2e^{-})$$

$$6I^{-} \longrightarrow 3I_2 + 6e^{-}$$

Step 4. Add the half-reactions together, canceling substances that appear on both sides, and include states of matter. In this example, only the electrons cancel:

$$\frac{6e^{-} + 14H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 2Cr^{3+} + 7H_{2}O}{6I^{-} \longrightarrow 3I_{2} + 6e^{-}}$$

$$6I^{-} (aq) + 14H^{+}(aq) + Cr_{2}O_{7}^{2-}(aq) \longrightarrow 3I_{2}(s) + 7H_{2}O(l) + 2Cr^{3+}(aq)$$

Step 5. Check that atoms and charges balance:

Reactants (6I, 14H, 2Cr, 7O; 6+) ----- products (6I, 14H, 2Cr, 7O; 6+)