Calibration-Chaboche

March 14, 2019

1 Calibration du modèle de Chaboche

1.1 Remerciements

• Antoine Dumas, Phiméca

1.2 Références

• J. Lemaitre and J. L. Chaboche (2002) "Mechanics of solid materials" Cambridge University Press.

1.3 Description du modèle

La loi de Chaboche est un modèle de comportement mécanique, qui prédit la contrainte en fonction de la déformation. Ce modèle est

$$\sigma = G(\epsilon, R, C, \gamma) = R + \frac{C}{\gamma}(1 - \exp(-\gamma\epsilon))$$

où - ϵ est la déformation, - σ est la contrainte (Pa), - R, C, γ sont des paramètres.

Les variables suivent les lois de probabilité suivantes:

Random var.	Distribution
\overline{R}	Lognormale ($\mu = 750$ MPa, $\sigma = 11$)
C	Normale ($\mu = 2750 \text{ MPa}, \sigma = 250$)
γ	Normale ($\mu = 10$, $\sigma = 2$)
ϵ	Uniforme($a=0$, $b=0.07$).

1.4 Problème de calage

Pour créer le problème de calage, nous procédons de la manière suivante. Nous faisons l'hypothèse que :

$$\epsilon \sim Uniform(0, 0.07)$$

et que -
$$R = 750 \times 10^6$$
, - $C = 2750 \times 10^6$, - $\gamma = 10$.

De plus, nous considérons un bruit de mesure gaussien sur la contrainte:

$$n \sim \mathcal{N}\left(0,40 \times 10^6\right)$$

et nous supposons que les erreurs de mesures sont indépendantes. Nous fixons le nombre d'observations à

$$n = 100$$
.

Nous générons un échantillon aléatoire de taille m en utilisant le modèle:

$$\sigma_i = G(\epsilon_i, R, C, \gamma) + n_i$$

pour i = 1, ..., n. Dans ce contexte, le vecteur des paramètres à caler est

$$\theta = (R, C, \gamma).$$

In [1]: import openturns as ot

Out [4]:

