PROBLEM 1

a) NAIVE BAYES ASSUMES THE INDEPENDENCE OF FEATURES. HERE, WE HAVE X = temperature and Y = season. WE check for Independence between the X and Y features, resulting in P(X|Y) = P(X) and P(Y|X) = P(Y). Since P(X) = P(Y) = 0.5 by MARMINAURING THE TABLE.

b)
$$P(z=1|A=0,B=1,C=0) = P(A=0,B=1,C=0|z=1)P(Z=1)$$
 $P(A|B,C)$
 $P(A=0,B=1,C=0|z=1)$
 $P(A=0,B=1,C=0|z=1)$
 $P(A=0|Z=1)P(B=1|Z=1)P(C=0|Z=1)$

(4 WHICH RESULTS IN THE FOLLOWING PROBABILITIES:

 $P(A=0)=.75$
 $P(B=1)=.5$
 $P(Z=1)=.75$
 $P(Z=1)=.75$
 $P(Z=1)=.75$
 $P(Z=1)=.75$

-> PLUKLING IN THESE VALUES

$$(, P(7=1 | A=0, B=1, C=0) = \frac{(.66)(.33)(.66)(.75)}{(.75)(.5)(.75)} = \boxed{.3833}$$

PROBLEM Z

W4 = [1,0,0] WB = [0,1,1] WC = [0,0,1]

FEATURE VECTOR	LABEL	Wa	~ .	we
		[1,0,0]	[0,1,0]	[0,0]
[1,-2,3]	A	[2,-2,3]	[-1,1,-3]	[-1,2,-2]
[1, 1, -2]	В	[1 -3 -1]	[0,2,-5]	[-2,1,0]
[, ~, ~, 4]	_	[1 -3 -1]	[0,2,-5]	[-2,1,0]

no learning
return o or 1 based on mativation win
classify y as our party may date for weight

by bind - add to exchaution welve