STAT303-2 Assignment 2 Complete v1

January 18, 2022

1 STAT303-2: Assignment 2

1.1 Instructions:

- a. You may talk to a friend, discuss the questions and potential directions for solving them. However, you need to write your own solutions and code separately, and not as a group activity.
- b. Do not write your name on the assignment. (1 point)
- c. Export your Jupyter notebook as a PDF file. If you get an error, make sure you have down-loaded the MikTex software (for windows) or MacTex (for mac). Note that after installing MikTex/MacTex, you will need to check for updates, install the updates if needed, and re-start your system. Submit the PDF file. (1 point)
- d. Please include each question (or question number) followed by code and your answer (if applicable). Write your code in the 'Code' cells and your answer in the 'Markdown' cells of the Jupyter notebook. Ensure that the solution is well-organized, clear, and concise (3 points)
- 1. It's easy enough to identify different sections of the homework assignment (e.g., if there are different sections of an assignment, they're clearly distinguishable by section headers or the like)
- 2. It's clear which code/markdown blocks correspond to which questions.
- 3. There aren't excessively long outputs of extraneous information (e.g., no printouts of entire data frames without good reason)

This assignment is due at 11:59pm on Wednesday, January 26th. Good luck!

Submissions will be graded with a maximum of $\bf 43~points - 38~points$ for code & answers, 5 points for anonymity and proper formatting.

1.2 Part 1

The dataset *infmort.csv* gives the infant mortality rates of different countries in the world.

This part is worth 17 points overall.

(1a) Make one plot including the following subplots: (i) a boxplot of mortality against region, (ii) a boxplot of income against region, and (iii) a scatter plot of mortality against income. Be sure to include appropriate axis labels.

What trends do you see in these plots? Mention the trend separately for each subplot.

(3 points for code and plots, 2 points for written answers)

```
[428]:
      import pandas as pd
       import seaborn as sns
       import statsmodels.formula.api as smf
       import numpy as np
       import matplotlib.pyplot as plt
[429]:
      data = pd.read_csv('infmort.csv')
[430]:
      fig = plt.figure()
       fig.subplots_adjust(hspace=0.4, wspace=0.2)
       sns.set(rc = {'figure.figsize':(20,12)})
       sns.set(font_scale = 2)
       ax = fig.add_subplot(2, 2, 1)
       sns.boxplot(x = 'region', y = 'mortality', data = data)
       ax = fig.add_subplot(2, 2, 2)
       sns.boxplot(x = 'region', y = 'income', data = data)
       ax = fig.add_subplot(2, 2, 3)
       sns.scatterplot(x = 'income', y = 'mortality', data = data)
```

[430]: <AxesSubplot:xlabel='income', ylabel='mortality'>

Sample Answer (accept any reasonable answer that makes observations about each subplot):

The first boxplot (top, left) shows that many countries in Europe have low mortality, whereas African countries have high mortality. The second boxplot (top, right) shows that many Europian countries have high per capita income, whereas African countries have low per capita income. The scatterplot shows an inverse relationship between mortality and income, that is, mortality seems to decrease with increase in income.

- (1b) Europe seems to have the lowest infant mortality, but it also has the highest per capita annual income. We want to see if Europe still has the lowest mortality if we remove the effect of income from the mortality. We will answer this question with the following steps.
- (1b-i) Within one visualization, use subplots to plot: (1) mortality against income, (2) log(mortality) against income, (3) mortality against log(income), and (4) log(mortality) against log(income). Be sure to include appropriate axis labels.

(2 points for code)

```
[103]: fig = plt.figure()
       fig.subplots_adjust(hspace=0.4, wspace=0.2)
       sns.set(rc = {'figure.figsize':(20,12)})
       sns.set(font_scale = 2)
       ax = fig.add subplot(2, 2, 1)
       sns.scatterplot(x = 'income', y = 'mortality', data = data)
       ax = fig.add_subplot(2, 2, 2)
       p2 = sns.scatterplot(x = data.income, y = np.log(data.mortality))
       p2.set_ylabel('log mortality')
       ax = fig.add_subplot(2, 2, 3)
       p3 = sns.scatterplot(x = np.log(data.income), y = 'mortality', data = data)
       p3.set_xlabel('log income')
       ax = fig.add_subplot(2, 2, 4)
       p4 = sns.scatterplot(x = np.log(data.income), y = np.log(data.mortality))
       p4.set_xlabel('log income')
       p4.set_ylabel('log mortality')
```

[103]: Text(0, 0.5, 'log mortality')

(1b-ii) Based on the plots from (1b-i), postulate (describe) an appropriate model to predict mortality as a function of income. Fit the corresponding model and print the model summary.

(1 point for answer, 2 points for code)

From these plots a linear model for $\log(\text{mortality})$ against $\log(\text{income})$ seems appropriate. Below is the regression.

```
[431]: model = smf.ols(formula='np.log(mortality)~np.log(income)',data = data).fit() model.summary()
```

[431]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	<pre>np.log(mortality)</pre>	R-squared:	0.502
Model:	OLS	Adj. R-squared:	0.497
Method:	Least Squares	F-statistic:	99.84
Date:	Tue, 18 Jan 2022	Prob (F-statistic):	1.14e-16
Time:	01:24:56	Log-Likelihood:	-104.34
No. Observations:	101	AIC:	212.7
Df Residuals:	99	BIC:	217.9
Df Model:	1		
Covariance Type:	nonrobust		

==

0.975]	coef	std err	t	P> t	[0.025	
Intercept	7.1458	0.317	22.575	0.000	6.518	
7.774 np.log(income) -0.410	-0.5118	0.051	-9.992	0.000	-0.613	
Omnibus:		38.668	Durbin-Watso	 on:		1.898
Prob(Omnibus):		0.000	Jarque-Bera	(JB):		129.408
Skew:		1.255	Prob(JB):			7.93e-29
Kurtosis:		7.945	Cond. No.			29.3
(1b-iii) Update the dictor. Print the mod	lel summary	·.		· , , , -		
(1b-iii) Update the dictor. Print the mode (2 points for code) model = smf.ols(f →fit() model.summary()	lel summary ormula='np	.log(mortal	ity)~region+n	· , , , -		
(1b-iii) Update the dictor. Print the mod (2 points for code) model = smf.ols(f →fit()	lel summary ormula='np	.log(mortal	ity)~region+n	· , , , -		
(1b-iii) Update the dictor. Print the mode (2 points for code) model = smf.ols(f →fit() model.summary() <class 'statsmode'<="" td=""><td>del summary ormula='np ls.iolib.s</td><td>ummary.Summ</td><td>ity)~region+npary'> sion Results</td><td>o.log(inco</td><td>ome)',data</td><td>. = data)</td></class>	del summary ormula='np ls.iolib.s	ummary.Summ	ity)~region+npary'> sion Results	o.log(inco	ome)',data	. = data)
(1b-iii) Update the dictor. Print the model (2 points for code) model = smf.ols(f	del summary ormula='np ls.iolib.s	ummary.Summ	ity)~region+npary'> sion Results	o.log(inco	ome)',data	. = data)
(1b-iii) Update the dictor. Print the model (2 points for code) model = smf.ols(f → fit() model.summary() <class 'statsmode"""="" td="" —————————————————————————————————<=""><td>ormula='np ls.iolib.s ====== np.log(</td><td>ummary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.OLS</td><td>ity)~region+nj ary'> sion Results =========== R-squared: Adj. R-squar</td><td>p.log(inco</td><td>ome)',data</td><td>======================================</td></class>	ormula='np ls.iolib.s ====== np.log(ummary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.OLS	ity)~region+nj ary'> sion Results =========== R-squared: Adj. R-squar	p.log(inco	ome)',data	======================================
(1b-iii) Update the dictor. Print the model (2 points for code) model = smf.ols(f → fit() model.summary() <class 'statsmode"""="================================</td"><td>del summary ormula='np ls.iolib.s ====== np.log(</td><td>ummary.Summary</td><td>ity)~region+npary'> sion Results ====================================</td><td>p.log(inco</td><td>ome)',data</td><td>======================================</td></class>	del summary ormula='np ls.iolib.s ====== np.log(ummary.Summary	ity)~region+npary'> sion Results ====================================	p.log(inco	ome)',data	======================================
(1b-iii) Update the dictor. Print the model (2 points for code) model = smf.ols(f fit() model.summary() <class """="" 'statsmode="" date:<="" dep.="" method:="" model:="" td="" variable:=""><td>del summary ormula='np ls.iolib.s ====== np.log(</td><td>ummary.Summary</td><td>ity)~region+nj ary'> sion Results ====================================</td><td>p.log(inco</td><td>ome)',data</td><td>======================================</td></class>	del summary ormula='np ls.iolib.s ====== np.log(ummary.Summary	ity)~region+nj ary'> sion Results ====================================	p.log(inco	ome)',data	======================================
(1b-iii) Update the dictor. Print the model of the dictor of the model of the dictor. Print the model of the dictor. Print the model of the dictor. Print the model of the model of the dictor. Time:	del summary ormula='np ls.iolib.s ====== np.log(ummary.Summary	ity)~region+npary'> sion Results ====================================	p.log(inco	ome)',data	-= data 0.616 0.606 38.58 3.29e-19
(1b-iii) Update the dictor. Print the model of the dictor of the model of the dictor. Print the model of the dictor of the dictor. Print the model of the dictor of the d	del summary ormula='np ls.iolib.s ====== np.log(ummary.Summary	ity)~region+np ary'> sion Results ====================================	p.log(inco	ome)',data	======= 0.616 0.600 38.55 3.29e-19 -91.189
(1b-iii) Update the dictor. Print the model of the dictor. Time: No. Observations: Df Residuals:	del summary ormula='np ls.iolib.s ====== np.log(Ummary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.Summary.OLS Regressamortality) OLS Squares 7 Jan 2022 17:11:32 101 96	ity)~region+npary'> sion Results ====================================	p.log(inco	ome)',data	-= data 0.616 0.606 38.55 3.29e-19
(1b-iii) Update the dictor. Print the model of the dictor of the model of the dictor. Print the model of the dictor of the dictor. Print the model of the dictor of the d	del summary ormula='np ls.iolib.s ====== np.log(ummary.Summary	ity)~region+np ary'> sion Results ====================================	p.log(inco	ome)',data	====== 0.61 0.60 38.5 3.29e-1 -91.18 192.

0.975]

coef std err t P>|t| [0.025]

Intercept	6.4030	0.358	3 17.871	0.000	5.692
7.114 region[T.Americas]	-0.6022	0.190	-3.166	0.002	-0.980
-0.225	0.0022	0.10	0.100	0.002	0.000
region[T.Asia]	-0.7233	0.163	-4.431	0.000	-1.047
-0.399	-1.2028	0.259	9 -4.647	0.000	-1.717
region[T.Europe] -0.689	-1.2020	0.25	-4.047	0.000	-1.717
np.log(income)	-0.2994	0.067	7 -4.441	0.000	-0.433
-0.166					
Omnibus:		44.959	 Durbin-Watso		 1.847
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	174.758
Skew:		1.428	Prob(JB):		1.13e-38
Kurtosis:		8.777	Cond. No.		42.8
============	=======	=======			=========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

(1b-iv) Use the model developed in the previous question (1b-iii) to compute adjusted_mortality for each observation in the data, where adjusted mortality is the mortality after removing the estimated effect of income. Make a boxplot of adjusted mortality against region. Be sure to include appropriate axis labels.

(3 points for code)

```
[117]: adj_mortality = np.log(data.mortality) - model.params['np.log(income)']*np.

→log(data.income)
```

```
[121]: p = sns.boxplot(x = data.region, y = adj_mortality)
p.set_ylabel('adjusted mortality')
```

[121]: Text(0, 0.5, 'adjusted mortality')

(1b-v) Does Europe still has the lowest mortality after removing the effect of income from mortality? After adjusting for income, do more African / Asian / American countries seem to do better than European countries with regard to mortality?

(2 points for answers)

Yes, Europe still has the lowest mortality, on an average. However, once we adjust for the income, some of the Asian countries seem to be doing better than the European countries.

1.3 Part 2

The dataset $soc_ind.csv$ contains the GDP per capita of some countries along with several social indicators.

This part is worth 21 points overall.

(2a) For a simple linear regression model predicting gdpPerCapita, which predictor will provide the best model fit (ignore categorical predictors)? Let that predictor be P.

(1 point for code, 1 point for answer)

economicActivityFemale	0.963079		1.000000	1			
economicActivityMale	0.083285		0.096822				
gdpPerCapita	0.073671		0.050022				
0 1	-0.192510		-0.177559				
illiteracyFemale							
illiteracyMale	-0.169524		-0.141644				
infantMortality	-0.008166		0.011667				
lifeFemale	-0.000561		-0.029456				
lifeMale	-0.082617		-0.103137				
	economicActivit	yMale	gdpPerCapi	ta i	lliterac	yFemale	\
Index	0.0	83285	0.0736	71	-0	.192510	
economicActivityFemale	0.0	96822	0.0529	64	-0	.177559	
economicActivityMale	1.0	00000	-0.1672	31	0	.428277	
gdpPerCapita	-0.1	167231	1.0000	00	-0	.457012	
illiteracyFemale	0.4	128277	-0.4570	12	1	.000000	
illiteracyMale	0.4	150352	-0.4716	89	0	.959948	
infantMortality	0.3	382949	-0.5840	60	0	.792230	
lifeFemale	-0.3	367124	0.6040	29	-0	.783343	
lifeMale	-0.2	295536	0.5922	67	-0	.709332	
	${\tt illiteracyMale}$	infan	tMortality	life	Female	lifeMale	
Index	-0.169524		-0.008166	-0.	000561 -	0.082617	
${\tt economicActivityFemale}$	-0.141644		0.011667	-0.	029456 -	0.103137	
${\tt economicActivityMale}$	0.450352		0.382949	-0.	367124 -	0.295536	
gdpPerCapita	-0.471689		-0.584060	0.	604029	0.592267	
illiteracyFemale	0.959948		0.792230	-0.	783343 -	0.709332	
illiteracyMale	1.000000		0.755333	-0.	750800 -	0.684587	
infantMortality	0.755333		1.000000	-0.	947045 -	0.915713	
lifeFemale	-0.750800		-0.947045	1.	000000	0.974262	

As lifeFemale has the highest linear correlation with gdpPerCapita, it will provide the best model fit.

-0.915713

0.974262 1.000000

-0.684587

(2b) Make a scatterplot of gdpPerCapita vs P. Does the relationship between gdpPerCapita and P seem linear or non-linear?

(1 point for code, 1 point for answer)

lifeMale

```
[434]: sns.scatterplot(x = data.lifeFemale, y = data.gdpPerCapita)
```

[434]: <AxesSubplot:xlabel='lifeFemale', ylabel='gdpPerCapita'>

Based on the scatterplot above, the relationship between gdpPerCapita and lifeFemale seems non-linear.

(2c) If the relationship identified in (2b) is non-linear, investigate transformation(s) of the predictor P in the model that might improve the model fit. To do so, use scatterplots displaying values of gdpPerCapita against corresponding values of P under different transformation(s).

When you've settled on an optimal model, report the predictors included in that model. Fit your new model and report the change in the R-squared value of this transformed model as compared to the simple linear regression model with only P.

(4 points for code, 2 points for answers)

```
[435]: #Visualzing model fit with only P as predictor
model = smf.ols(formula='gdpPerCapita~lifeFemale',data = data).fit()
sns.scatterplot(x = data.lifeFemale, y = data.gdpPerCapita)
sns.lineplot(x = data.lifeFemale, y = model.fittedvalues)
```

[435]: <AxesSubplot:xlabel='lifeFemale', ylabel='gdpPerCapita'>


```
[436]: #Adding square of lifeFemale as a predictor and visualizing model fit model = smf.ols(formula='gdpPerCapita~lifeFemale+I(lifeFemale**2)',data = data).

ofit()
sns.scatterplot(x = data.lifeFemale, y = data.gdpPerCapita)
sns.lineplot(x = data.lifeFemale, y = model.fittedvalues)
```

[436]: <AxesSubplot:xlabel='lifeFemale', ylabel='gdpPerCapita'>

The transformation seems to improve the model fit for higher values of *lifeFemale*, but not for its smaller values.

```
[420]: #Adding square and cube of lifeFemale as predictors and visualizing model fit model = smf.

→ols(formula='gdpPerCapita~lifeFemale+I(lifeFemale**2)+I(lifeFemale**3)',data_
→= data).fit()

sns.scatterplot(x = data.lifeFemale, y = data.gdpPerCapita)

sns.lineplot(x = data.lifeFemale, y = model.fittedvalues)
```

[420]: <AxesSubplot:xlabel='lifeFemale', ylabel='gdpPerCapita'>

The squared and cube transformations of *lifeFemale* seem to provide a better model fit than previous models.

```
[437]: #R-squared of the simple linear regression model with only P as predictor model = smf.ols(formula='gdpPerCapita~lifeFemale',data = data).fit() model.rsquared
```

[437]: 0.3648504777962377

[438]: #R-squared of the transformed model

```
model = smf.

→ols(formula='gdpPerCapita~lifeFemale+I(lifeFemale**2)+I(lifeFemale**3)',data

→= data).fit()

model.rsquared
```

[438]: 0.5216581673999969

The predictors of the transformed model are lifeFemale, lifeFemale², and lifeFemale³

The R-squared of the model with transformed model is around 16 percentage points higher than the R-squared of the model with only P.

(2d) Plot the regression curve of the transformed model (developed in the previous question (2c)) over the scatterplot in (2b) to visualize model fit. Also include the regression line of the simple linear regression model with only P on the same plot. Be sure to include a legend to distinguish the two models.

(3 points for code)

[423]: <matplotlib.legend.Legend at 0x1fc84908910>

(2e) Develop a model to predict gdpPerCapita with P and continent as predictors. For a given value of P, which continents **do not** have a significant difference between their mean gdpPerCapita and that of Africa? Consider a significance level of 5%.

(1 point for code, 1 point for answer)

```
[439]: model = smf.ols(formula='gdpPerCapita~lifeFemale+continent',data = data).fit() model.summary()
```

[439]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

ors regression results						
Dep. Variable:	gdpPerCapita	R-squared:	0.508			
Model:	OLS	Adj. R-squared:	0.488			
Method:	Least Squares	F-statistic:	25.43			
Date:	Tue, 18 Jan 2022	Prob (F-statistic):	1.28e-20			
Time:	01:34:19	Log-Likelihood:	-1723.6			
No. Observations:	155	AIC:	3461.			
Df Residuals:	148	BIC:	3483.			
Df Model:	6					
Covariance Type:	nonrobust					
=======================================						
=========			-			
	coef	std err t	P> t			
[0.025 0.975]						

Intercept	-7.208e+04	1.14e+04	-6.305	0.000
-9.47e+04 -4.95e+04				
<pre>continent[T.Asia]</pre>	1324.7980	4805.099	0.276	0.783
-8170.667 1.08e+04				
continent[T.Europe]	9167.0203	5785.650	1.584	0.115
-2266.134 2.06e+04				
<pre>continent[T.North America]</pre>	-1.446e+04	5947.502	-2.431	0.016
-2.62e+04 -2704.270				
continent[T.Oceania]	-1.429e+04	6063.764	-2.357	0.020
-2.63e+04 -2307.304				
<pre>continent[T.South America]</pre>	-1.329e+04	6462.516	-2.056	0.042
-2.61e+04 -516.198				
lifeFemale	1393.4213	194.062	7.180	0.000
1009.931 1776.911				
Omnibus:	======================================	Durbin-Watso	========= on :	1.942
Prob(Omnibus):	0.000	Jarque-Bera		231.081
Skew:	1.701	-		6.63e-51
Kurtosis:	7.920	Cond. No.		721.
	========	=========		=========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11 11 11

Based on the p-values, Asia and Europe do not have a significant difference between their mean gdpPerCapita and that of Africa, for a given value of P. Note that the level with no dummy variable - Africa is the baseline in this model. So we can directly make comparisons with Africa using the p-values of other dummy variables.

(2f) The model developed in (e) has a limitation. It assumes that the increase in mean gdpPer-Capita with a unit increase in P does not depend on the continent. Eliminate this limitation by including interaction of continent with P in the model developed in (e). Print the model summary of the model with interactions.

(2 points for code)

```
[425]: model = smf.ols(formula='gdpPerCapita~lifeFemale*continent',data = data).fit() model.summary()
```

[425]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: gdpPerCapita R-squared: 0.605

Coef std err t	Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	0LS Least Squares Tue, 18 Jan 2022 01:21:19 155 143 11 nonrobust	Prob (F-s Log-Likel AIC: BIC:	ic: tatistic): ihood:	0.574 19.90 7.99e-24 -1706.6 3437. 3474.
0.261 -4.74e+04 1.29e+04 continent[T.Asia] -1.094e+05 2.63e+04 -4.156 0.000 -1.61e+05 -5.74e+04 continent[T.Europe] -2.774e+05 6.63e+04 -4.185 0.000 -4.08e+05 -1.46e+05 continent[T.North America] -6.6e+04 4.88e+04 -1.352 0.178 -1.62e+05 3.05e+04 continent[T.Oceania] -1.367e+05 5.78e+04 -2.364 0.019 -2.51e+05 -2.24e+04 continent[T.South America] -7830.3082 8.18e+04 -0.096 0.924 -1.69e+05 1.54e+05 lifeFemale 0.107 -93.711 950.830 lifeFemale:continent[T.Asia] 1755.1049 400.782 4.379 0.000 962.882 2547.328 lifeFemale:continent[T.Europe] 3944.6364 869.916 4.535 0.000 2225.080 5664.193 lifeFemale:continent[T.North America] 921.1328 667.359 1.380 0.170 -398.031 2240.297 lifeFemale:continent[T.Oceania] 1898.4382 812.766 2.336 0.021 291.851 3505.026 lifeFemale:continent[T.South America] 135.3138 1134.388 0.119 0.905 -2107.022 2377.650					
0.261 -4.74e+04 1.29e+04 continent[T.Asia] -1.094e+05 2.63e+04 -4.156 0.000 -1.61e+05 -5.74e+04 continent[T.Europe] -2.774e+05 6.63e+04 -4.185 0.000 -4.08e+05 -1.46e+05 continent[T.North America] -6.6e+04 4.88e+04 -1.352 0.178 -1.62e+05 3.05e+04 continent[T.Oceania] -1.367e+05 5.78e+04 -2.364 0.019 -2.51e+05 -2.24e+04 continent[T.South America] -7830.3082 8.18e+04 -0.096 0.924 -1.69e+05 1.54e+05 lifeFemale 0.107 -93.711 950.830 lifeFemale:continent[T.Asia] 1755.1049 400.782 4.379 0.000 962.882 2547.328 lifeFemale:continent[T.Europe] 3944.6364 869.916 4.535 0.000 2225.080 5664.193 lifeFemale:continent[T.North America] 921.1328 667.359 1.380 0.170 -398.031 2240.297 lifeFemale:continent[T.Oceania] 1898.4382 812.766 2.336 0.021 291.851 3505.026 lifeFemale:continent[T.South America] 135.3138 1134.388 0.119 0.905 -2107.022 2377.650			-1.723e+04	1.53e+04	-1.129
continent[T.Europe] -2.774e+05 6.63e+04 -4.185 0.000 -4.08e+05 -1.46e+05 -6.6e+04 4.88e+04 -1.352 0.178 -1.62e+05 3.05e+04 -1.367e+05 5.78e+04 -2.364 0.019 -2.51e+05 -2.24e+04 -7830.3082 8.18e+04 -0.096 0.924 -1.69e+05 1.54e+05 -7830.3082 8.18e+04 -0.096 0.107 -93.711 950.830 -95.830 -964.214 1.622 0.107 -93.711 950.830 1755.1049 400.782 4.379 0.000 962.882 2547.328 -964.6364 869.916 4.535 0.000 2225.080 5664.193 -966.7359 1.380 0.170 -398.031 2240.297 -97.2107.022 2376.60 116Female:continent[T.South America] 1898.4382 812.766 2.336 0.021 291.851 3505.026 135.3138 1134.388 0.119 0.905 -2107.022 2377.650	0.261 -4.74e+04 continent[T.Asia]				
continent[T.North America] -6.6e+04 4.88e+04 -1.352 0.178	continent[T.Europe	e]	-2.774e+05	6.63e+04	-4.185
continent[T.Oceania] -1.367e+05 5.78e+04 -2.364 0.019 -2.51e+05 -2.24e+04 -7830.3082 8.18e+04 -0.096 continent[T.South America] -7830.3082 8.18e+04 -0.096 0.924 -1.69e+05 1.54e+05 -2.364 1.692 lifeFemale 428.5595 264.214 1.622 0.107 -93.711 950.830 -95.1049 400.782 4.379 0.000 962.882 2547.328 1755.1049 400.782 4.379 0.000 2225.080 5664.193 3944.6364 869.916 4.535 0.000 2225.080 5664.193 116eFemale:continent[T.North America] 921.1328 667.359 1.380 0.170 -398.031 2240.297 1898.4382 812.766 2.336 0.021 291.851 3505.026 1898.4382 812.766 2.336 0.905 -2107.022 2377.650	continent[T.North	America]	-6.6e+04	4.88e+04	-1.352
0.924 -1.69e+05 1.54e+05 lifeFemale 428.5595 264.214 1.622 0.107 -93.711 950.830 1755.1049 400.782 4.379 0.000 962.882 2547.328 1755.1049 400.782 4.535 0.000 2225.080 5664.193 3944.6364 869.916 4.535 0.170 -398.031 2240.297 2240.297 116eFemale:continent[T.Oceania] 1898.4382 812.766 2.336 0.021 291.851 3505.026 135.3138 1134.388 0.119 0.905 -2107.022 2377.650 ====================================			-1.367e+05	5.78e+04	-2.364
0.107 -93.711 950.830 lifeFemale:continent[T.Asia] 1755.1049 400.782 4.379 0.000 962.882 2547.328 lifeFemale:continent[T.Europe] 3944.6364 869.916 4.535 0.000 2225.080 5664.193 lifeFemale:continent[T.North America] 921.1328 667.359 1.380 0.170 -398.031 2240.297 lifeFemale:continent[T.Oceania] 1898.4382 812.766 2.336 0.021 291.851 3505.026 lifeFemale:continent[T.South America] 135.3138 1134.388 0.119 0.905 -2107.022 2377.650 ====================================			-7830.3082	8.18e+04	-0.096
0.000 962.882 2547.328 lifeFemale:continent[T.Europe] 3944.6364 869.916 4.535 0.000 2225.080 5664.193 lifeFemale:continent[T.North America] 921.1328 667.359 1.380 0.170 -398.031 2240.297 lifeFemale:continent[T.Oceania] 1898.4382 812.766 2.336 0.021 291.851 3505.026 lifeFemale:continent[T.South America] 135.3138 1134.388 0.119 0.905 -2107.022 2377.650 ====================================	0.107 -93.711		428.5595	264.214	1.622
0.000 2225.080 5664.193 lifeFemale:continent[T.North America] 921.1328 667.359 1.380 0.170 -398.031 2240.297 lifeFemale:continent[T.Oceania] 1898.4382 812.766 2.336 0.021 291.851 3505.026 lifeFemale:continent[T.South America] 135.3138 1134.388 0.119 0.905 -2107.022 2377.650	0.000 962.882	2547.328			
<pre>0.170</pre>	0.000 2225.080	5664.193			
0.021 291.851 3505.026 lifeFemale:continent[T.South America] 135.3138 1134.388 0.119 0.905 -2107.022 2377.650	0.170 -398.031	2240.297			2.000
0.905 -2107.022 2377.650 Exercise - 2107.022 2377.650 0mnibus: 73.348 Durbin-Watson: 1.900 Prob(Omnibus): 0.000 Jarque-Bera (JB): 290.376 Skew: 1.785 Prob(JB): 8.82e-64	0.021 291.851	3505.026			
Omnibus: 73.348 Durbin-Watson: 1.900 Prob(Omnibus): 0.000 Jarque-Bera (JB): 290.376 Skew: 1.785 Prob(JB): 8.82e-64	0.905 -2107.022	2377.650		1134.388	0.119
Skew: 1.785 Prob(JB): 8.82e-64	Omnibus:				1.900

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

[2] The condition number is large, 5.23e+03. This might indicate that there are strong multicollinearity or other numerical problems.

(2g) Use the model developed in (2f) to plot regression lines for Africa, Asia, Europe, and Oceania. Put gdpPerCapita on the vertical axis and P on the horizontal axis. Use a legend to distinguish among the regression lines of the continents.

(3 points for code)

```
[426]: | #Visualizing the developed model with interaction terms
      x = np.linspace(data.lifeFemale.min(),data.lifeFemale.max(),100)
      plt.plot(x, model.params['lifeFemale']*x+model.params['Intercept'], '-r',__
       →label='Africa')
      plt.plot(x, (model.params['lifeFemale']+model.params['lifeFemale:continent[T.
      plt.plot(x, (model.params['lifeFemale']+model.params['lifeFemale:continent[T.
      →Europe]'])*x+model.params['Intercept']+model.params['continent[T.Europe]'],_
      plt.plot(x, (model.params['lifeFemale']+model.params['lifeFemale:continent[T.
      →Oceania]'])*x+model.params['Intercept']+model.params['continent[T.
      →Oceania]'], '-p', label='Oceania')
      plt.legend(loc='upper left')
      plt.xlabel('lifeFemale')
      plt.ylabel('GDP per capita')
      plt.show()
```


(2h) Based on the plot develop in the previous question, which continent has the highest increase in mean gdpPerCapita for a unit increase in P, and which one has the least?

(1 point for answers)

Europe has the highest increase in mean gdpPerCapita for a unit increase in P as the slope of its regression line is the highest. Africa has the least increase in mean gdpPerCapita for a unit increase in P, as the slope of its regression line is the least.