Final Project Part 2

Business Problem

A travel insurance company is interested in understanding the factors that contribute to a flight being delayed in order to evaluate claims and alter their policies for flight reimbursements.

Logistic Regression Model

I have built a logistic regression model using a cleaned <u>Kaggle dataset</u> of flight delay data from US airports, categorized by carriers. The dataset contains 150128 rows. A logistic regression model was chosen because my goal was to categorize flights based on them being delayed or not delayed. A logistic regression model is best suited for situations where there is a binary outcome – in this case, 'delayed' or 'not delayed'. The model formula is as follows:

```
logit(p) = 2.2751 + 2.6860 * carrier_delay + 0.2634 * weather_delay + 3.6682 * nas_delay + 0.2293 * security_delay + 3.5569 * late_aircraft_delay
```

The tuned model accuracy is 0.92. Here, the response variable is whether or not a flight has been delayed by more than fifteen minutes (as indicated by the variable arr_del15, which gives the number of flights that were delayed by more than fifteen minutes, and for our purposes has been adapted to a binary variable). The model has 6 parameters, and the 5 features included are as follows:

- nas_delay: delay attributed to the National Airspace System
- late_aircraft_delay: delay attributed to late aircraft arrival
- carrier_delay: delay attributed to the carrier
- weather_delay: delay attributed to the weather
- security_delay: delay attributed to security

Here, weather_delay and security_delay are the weakest features and have the least influence on whether or not a flight is delayed, while nas_delay and late_aircraft_delay are the strongest features.

Key Considerations

None of the features are highly correlated with one another, suggesting that each delay is attributed to only
one cause

• Interaction terms such as nas_delay * weather_delay and carrier_delay * late_aircraft_delay were explored during model development but were found to have minimal contribution

- Exploring different interaction terms (e.g. late_aircraft_delay * nas_delay) could improve the model slightly but show no logical overlap and might contribute to overfitting
- Variables were scaled to address differences in magnitudes across predictors
- We omit airport (as a one-hot encoded categorical variable) to avoid multicollinearity as well as to improve explainability of the final model

Performance Evaluation

Below is a confusion matrix generated to visualize the performance of the model

- We have the following metrics:
 - o Accuracy: 92%
 - Precision (delayed flights): 93%
 - Recall (delayed flights): 89%
 - F1-score (delayed flights): 91%
- Since the model has high accuracy and precision, we can say that it performs well overall and rarely predicts delays when a flight is actually on time
- However, 89% recall is discouraging, as it shows that the model sometimes fails to predict a delayed flight
 and instead classifies it as on time ideally we would target a higher recall and fewer false negatives overall

• The shortcomings of the model relate to the presence of large delays that create significant outliers in each feature, as seen in the boxplots below

• The model is highly sensitive to outliers, which may be solved by applying log transformations

Other Insights

- We assumed a linear relationship between the predictors and the log-odds of the response, and though we attempted to use interaction terms to mitigate this, the terms did not improve the model and were instead discarded
- To capture non-linear relationships we could utilise supervised learning approaches such as Random Forest models
- The current features may miss seasonal effects such as extreme winter weather, as well as
 geography-specific effects such as hurricanes and tornadoes; this could be improved or investigated by
 one-hot encoding airport and using month as a feature

Appendix 1

Model reports:

Intercept: 2.2750592844247635

Coefficients:

	Feature	Coefficient
2	nas_delay	3.668182
4	late_aircraft_delay	3.556894
0	carrier_delay	2.686042
1	weather_delay	0.263401
3	security_delay	0.229323

Accuracy: 0.9180043961899687

Classification Report:

	precision	recall	f1-score	support
0	0.91	0.94	0.92	16032
1	0.93	0.89	0.91	13994
			0.00	00006
accuracy			0.92	30026
macro avg	0.92	0.92	0.92	30026
weighted avg	0.92	0.92	0.92	30026

Best Hyperparameters: {'C': 100, 'penalty': 'l2', 'solver': 'liblinear'}

Tuned Model Accuracy: 0.92

Classification Report for Tuned Model:

support	f1-score	recall	precision	
16032	0.92	0.94	0.91	0
13994	0.91	0.89	0.93	1
30026	0.92			accuracy
30026	0.92	0.92	0.92	macro avg
30026	0.92	0.92	0.92	weighted avg

Feature Importance:

	Feature	Coefficient
2	nas_delay	3.668182
4	late_aircraft_delay	3.556894
0	carrier_delay	2.686042
1	weather_delay	0.263401
3	security_delay	0.229323

Please find reproducible Python code attached separately