Lab1: Asynkron seriell dataöverföring via optisk länk. 2007-09-06

Laboration 1

Asynkron seriell dataöverföring via optisk länk

Kravspecifikation

Lennart Bengtsson Version 1.4

Status

Granskad	
Godkänd	

_IPs	
Sida	1

PROJEKTIDENTITET

Laborationsgrupp, vt-01 2003 Linköpings Tekniska Högskola, Institutionen för systemteknik

Gruppdeltagare

	eFFg
Namn	Ansvar
Gruppmedlem 1	Sändare
Gruppmedlem 2	Sändare
Gruppmedlem 3	Sändare
Gruppmedlem 4	Mottagare
Gruppmedlem 5	Mottagare
Gruppmedlem 6	Mottagare

Kund: Datorteknik, ISY, 581 83 Linköping, Kundtel.: 013-28 10 00, Fax: 013-13 92 82, da@isy.liu.se

In	nehål	1	
S	TATU:	S	1
Pl	ROJE	KTIDENTITET	2
D	OKUN	MENTHISTORIK	4
1	IN	LEDNING	5
	1.1	Parter	
	1.1	MÅL	
	1.3	ANVÄNDNING	
	1.4	BAKGRUNDSINFORMATION	
	1.5	Definitioner	
2	Ö	VERSIKT AV SYSTEMET	6
	2.1	GROV BESKRIVNING AV PRODUKTEN	6
	2.2	INGÅENDE KOMPONENTER	6
	2.3	BEROENDEN TILL ANDRA SYSTEM	6
	2.4	INGÅENDE DELSYSTEM	
	2.5	DESIGNFILOSOFI	
	2.6	GENERELLA KRAV PÅ HELA SYSTEMET	
3	DI	ELSYSTEM 1: SÄNDARE	7
	3.1	INLEDANDE BESKRIVNING AV DELSYSTEM 1	7
	3.2	Gränssnitt	8
	3.3	DESIGNKRAV	8
4	DI	ELSYSTEM 2: MOTTAGARE	8
	4.1	INLEDANDE BESKRIVNING AV DELSYSTEM 2	9
	4.2	Gränssnitt	9
	4.3	Designkrav	10
5	EF	KONOMI	10
6	LF	EVERANSKRAV OCH DELLEVERANSER	10
7	DO	OKUMENTATION	10
8		VALITETSKRAV	
۸.	DDENI	NIV A - PINKONFICUPATION FÖR YCG536 (UTNPAC UP NATARI AN)	11

Lab1: Asynkron seriell dataöverföring via optisk länk. 2007-09-06

Dokumenthistorik

Version Datum		Utförda förändringar	Utförda a	Utförda av Granskad		
0.1	2002-06-03	Preliminärt utkast	LB			
0.9	2002-06-13	Första utkast	LB			
1.0	2002-11-17	Ändringar efter granskning	LB	TS		
1.1	2003-11-17	Korrigeringar efter första laborationsrundan	LB	TS		
1.2	2004-10-06	Rättning av smärre korrekturfel	LB	TS		
1.3	2005-04-12	Förtydliganden kring VHDL-koden	LB	TS		
1.4	2007-09-06	Lay-out-förändringar	LB	TS		

1 Inledning

En siffra inmatad från ett hexadecimalt tangentbord ska sändas seriellt över en IRlänk och presenteras på mottagarsidan på en sjusegmentdisplay.

Figur 1. Systemet i dess omgivning.

I detta dokument kommer alla krav att beskrivas med en tabellrad enligt nedan:

Kravnummer är löpande genom hela texten. Kolumn två anger om det rör sig om ett original eller ett reviderat krav. I kolumn tre finner man kravets ordalydelse och i kolumn fyra dess prioritet. Prioritet 1 betyder obligatorisk uppgift, prioritet 2 frivillig.

1.1 Parter

Kund är Datorteknik, ISY. Producent är laborationsgruppen.

1.2 Mål

Att utveckla hårdvara, i form av en CPLD, för en seriell sändare av ett hexadecimalt tecken samt för en dito mottagare.

1.3 Användning

Konstruktionen utgör laboration 1 i kursen Elektronikprojekt Y.

1.4 Bakgrundsinformation

Pinkonfiguration för Xilinx XC9536 (PC44) finns i appendix A.

1.5 Definitioner

IR = infrarött.

Elektronikprojekt Y ©Lennart Bengtsson

2 Översikt av systemet

Systemet ska bestå av två delar: sändare respektive mottagare.

Sändaren ska hämta indata från det hexadecimala tangentbordet och leverera utdata till IRsändaren.

Mottagaren ska hämta indata från IR-mottagaren och leverera utdata till sjusegmentdisplayen.

2.1 Grov beskrivning av produkten

Sändaren respektive mottagaren ska drivas med var sin klocka. Klockorna ska justeras till samma frekvens. En sändning ska inledas med en startbit, vilken ska följas av fyra databitar med LSB först och avslutas med en stoppbit. Varje bit ska vara 16 klockintervall lång. Det utsända pulståget måste vara rippelfritt.

Mottagaren ska känna av när inkommande signal växlar från noll till ett (= startbit). Inkommande databitar ska sedan läsas av så nära mitten av bitintervallet som möjligt. På så sätt kan en viss avvikelse i klockfrekvens tillåtas.

2.2 Ingående komponenter

2 st CPLDer Xilinx XC9536 PC44 (sändare resp. mottagare).

VHDL-kod.

Hexadecimalt tangentbord.

IR-sändare.

IR-mottagare.

2 st klockmoduler.

Sjusegmentdisplay med hex/7-segment avkodare.

Lysdiod med drivare.

2.3 Beroenden till andra system

Inget.

Ingående delsystem

Konstruktionen ska bestå av två delar: sändare respektive mottagare.

2.5 Designfilosofi

Gruppens ena halva ska ansvara för sändaren, den andra halvan för mottagaren. Delarna ska simuleras och kunna testas var för sig. De båda klocksignalerna ska sedan ställas in så att de har samma frekvens, varefter sändarens och mottagarens gemensamma funktion ska testas.

2.6 Generella krav på hela systemet

Krav nr 1	Original	Systemet ska kunna sända och ta emot ett hexadecimalt tecken.	1
Krav nr 2	Original	Informationen ska överföras seriellt via optisk länk.	1
Krav nr 3	Original	Data ska kunna sändas och mottas med upp till c:a 60 bit/s.	1
Krav nr 4	Original	Indata levereras parallellt från tangentbordet.	1
Krav nr 5	Original	Utdata presenteras parallellt på sjusegmentdisplay.	1
Krav nr 6	Original	Systemet ska innehålla funktioner för enkelfelsupptäckt.	2
Krav nr 7	Original	Systemet ska innehålla funktioner för enkelfelsrättning.	2

3 Delsystem 1: Sändare

Sändaren ska utgöras av en CPLD (XC9536), ett hexadecimalt tangentbord, en klockmodul samt en IR-sändare.

Figur 2. Sändare

3.1 Inledande beskrivning av delsystem 1

För varje knappnedtryckning ska en startbit sändas följd av fyra databitar och en stoppbit, se figur 3. LSB ska sändas först. Varje bit ska vara 16 klockintervall lång. Pulståget ska vara rippelfritt. Under pågående sändning får inga tryckningar göras.

Figur 3. Pulståg från sändaren

Krav nr 8	Original	Pulståget ska vara rippelfritt.	1
Krav nr 9	Original	Pulståget ska har en startbit (logiskt ett), 4 databitar samt en stoppbit (logiskt noll).	1
Krav nr 10	Original	Minst signifikant bit (LSB) ska sändas först.	1
Krav nr 11	Original	Varje bit ska vara 16 klockintervall lång.	1
Krav nr 12	Original	Ny sändning påbörjas först när innevarande avslutats.	1
Krav nr 13	Original	En knappnedtryckning ska, oberoende av längd, resultera i att en och endast en siffra sänds.	1
Krav nr 14	Original	Sändaren ska simuleras i ModelSim.	1
Krav nr 15	Original	Sändaren ska kunna testas separat.	1
Krav nr 16	Original	Paritetsbit ska sändas för att möjliggöra enkelfelsupptäckt.	2
Krav nr 17	Original	Erforderligt antal paritetsbitar ska sändas för att möjliggöra enkelfelsrättning.	2

3.2 Gränssnitt

Hexadecimalt tangentbord: En tangentnedtryckning medför att data (x_8, x_4, x_2, x_1) läggs ut på datautgångarna. När data ligger stabilt aktiveras signalen strobe (aktivt hög). När tangenten släpps upp går strobe låg, men data ligger kvar.

IR-sändaren: Sänder en modulerad signal så länge dess insignal är logiskt ett.

Klockmodul: Frekvensen är justerbar i området 1-1000 Hz.

3.3 Designkrav

Krav nr 18	Original	Sändaren ska implementeras med en Xilinx XC9536.	1
Krav nr 19	Original	Funktionen ska definieras i VHDL som en enda komponent.	1

4 Delsystem 2: Mottagare

Mottagaren ska utgöras av en CPLD (XC9536), en BCD/7-segmentavkodare med tillhörande display, en klockmodul samt en IR-mottagare. (Ev. lysdiod).

Figur 4. Mottagare

4.1 Inledande beskrivning av delsystem 2

Mottagningen ska starta så snart en positiv puls har detekterats på ingången. Efter 8 klockpulser, d.v.s på mitten av en förmodad startpuls ska ett nytt test utföras. Visar testet att insignalen nu återgått till noll, är detta att betrakta som en störning och inget data följer. Om insignalen fortfarande är ett, är det en giltig startbit som följs av databitar. Dessa ska läsas av så nära mitten som möjligt i intervallen, så att en viss avvikelse mellan klockfrekvenserna kan tillåtas.

Figur 5. Mottaget pulståg

Krav nr 20	Original	En startpuls kortare än 8 klockintervall ska betraktas som en störning.	1
Krav nr 21	Original	Avläsning av databitar och ska göras så nära bitens mitt som möjligt.	1
Krav nr 22	Original	När samtliga bitar mottagits ska siffran kunna avläsas på displayen.	1
Krav nr 23	Original	Mottagaren ska simuleras i ModelSim.	1
Krav nr 24	Original	Mottagaren ska kunna testas separat.	1
Krav nr 25	Original	Om enkelfel inträffar ska en lysdiod tändas.	2
Krav nr 26	Original	Om enkelfelsrättning utförts ska en lysdiod tändas.	2

4.2 Gränssnitt

Displaymodul: Innehåller avkodare och 7-segmentdisplay.

IR-mottagare: Demodulerar insignalen och genererar en etta så länge insignal finns, annars en nolla.

Klockmodul: Frekvensen är justerbar i området 1-1000 Hz.

4.3 Designkrav

Krav nr 27	Original	Mottagaren ska implementeras med en Xilinx XC9536.	1
Krav nr 28	Original	Funktionen ska definieras i VHDL som en enda komponent.	1

5 Ekonomi

Labhandledare och utrustning finns tillgängliga under laborationstiden, 4 timmar.

6 Leveranskrav och delleveranser

Systemet ska levereras till labhandledaren senast vid laborationens slut.

Dokumentation

Blockschema, eventuella tillståndsgrafer och VHDL-kod.

Kvalitetskrav

Alla funktioner testas innan systemet visas för handledaren.

Appendix A

Asynkron seriell dataöverföring via optisk länk.

Appendix A: Pinkonfiguration för XC9536 (utdrag ur datablad)

XC9536 In-System Programmable CPLD

XC9536 I/O Pins

Function Block	Macrocell	PC44	VQ44	CS48	BScan Order	Notes	Function Block	Macrocell	PC44	VQ44	CS48	BScan Order	Notes
1	1	2	40	D6	105		2	1	1	39	D7	51	
1	2	3	41	C7	102		2	2	44	38	E5	48	
1	3	5	43	B7	99	[1]	2	3	42	36	E6	45	[1]
1	4	4	42	C6	96		2	4	43	37	E7	42	
1	5	6	44	B6	93	[1]	2	5	40	34	F6	39	[1]
1	6	8	2	A6	90		2	6	39	33	G7	36	[1]
1	7	7	1	A7	87	[1]	2	7	38	32	G6	33	
1	8	9	3	C5	84		2	8	37	31	F5	30	
1	9	11	5	B5	81		2	9	36	30	G5	27	
1	10	12	6	A4	78		2	10	35	29	F4	24	
1	11	13	7	B4	75		2	11	34	28	G4	21	
1	12	14	8	A3	72		2	12	33	27	E3	18	
1	13	18	12	B2	69		2	13	29	23	F2	15	
1	14	19	13	B1	66		2	14	28	22	G1	12	
1	15	20	14	C2	63		2	15	27	21	F1	9	
1	16	22	16	C3	60		2	16	26	20	E2	6	
1	17	24	18	D2	57		2	17	25	19	E1	3	
1	18	-	-	-	54		2	18	-	-	-	0	

Note: [1] Global control pin

Note: [1] Global control pin

XC9536 Global, JTAG and Power Pins

Pin Type	PC44	VQ44	CS48
I/O/GCK1	5	43	B7
I/O/GCK2	6	44	B6
I/O/GCK3	7	1	A7
I/O/GTS1	42	36	E6
I/O/GTS2	40	34	F6
I/O/GSR	39	33	G7
TCK	17	11	A1
TDI	15	9	B3
TDO	30	24	G2
TMS	16	10	A2
V _{CCINT} 5 V	21,41	15,35	C1,F7
V _{CCIO} 3.3 V/5 V	32	26	G3
GND	23,10,31	17,4,25	A5, D1, F3
No Connects	_	_	C4, D3, D4, E4