Automate d'exploration de l'hémostase ★

C2-09

Afin de valider le choix des moteurs, on étudie le déplacement sur l'axe \overrightarrow{x} . On note V_x la vitesse selon cet axe. On rappelle que la distance maximum à parcourir est $x_M^{\max} = 550\,\mathrm{mm}$ en 1 seconde. La loi de commande sur chaque axe est définie par un trapèze de vitesse (figure 1) avec les temps d'accélération et de décélération (T_a) identiques. De plus, les moteurs se mettent en route et s'arrêtent en même temps. T est la durée totale du déplacement. Nous allons chercher à optimiser cette loi de commande de sorte que le moteur fournisse une puissance instantanée minimale.

FIGURE 1 – Loi de commande de vitesse en trapèze

Pas de corrigé pour cet exercice.

Le modèle de calcul pour cette commande d'axe est le suivant :

- ▶ le mouvement de rotation du moteur (vitesse ω_m^x) est transformé en mouvement de translation (vitesse V^x);
- ▶ le rapport de transmission de la chaîne cinématique est $\lambda = \frac{V^x}{\omega_m^x}$;
- ▶ la distance à parcourir est x_M^{max} ;
- ▶ l'inertie équivalente de l'ensemble des pièces en mouvement ramenée à l'arbre moteur est J_e ;
- ▶ les frottements et la pesanteur sont négligés, il n'y a donc pas de couple résistant.

Question 1 Exprimer la vitesse maximale V_M^x en fonction de x_M^{\max} , T et T_a .

Question 2 Par application du théorème de l'énergie cinétique sur l'ensemble des pièces en mouvement, exprimer le couple moteur C_m en fonction de V_x , T_a , J_e et λ durant les trois phases du mouvement.

Question 3 Préciser à quel(s) instant(s) t la puissance fournie par le moteur est maximale (P_{max}).

Question 4 Exprimer cette puissance P_{max} en fonction de V_M^x , λ , J_e , et T_a .

Question 5 Donner alors l'expression de P_{max} en fonction de x_M^{max} , λ , J_e , et T_a .

Question 6 À partir de cette expression, montrer que P_{max} est minimale pour un réglage du temps d'accélération T_a tel que $T_a = \frac{T}{3}$.

Pour cette nouvelle commande avec $T_a = \frac{T}{3}$, on cherche à valider le choix du moteur en étudiant le déplacement maximum suivant \overrightarrow{x} . Les caractéristiques de la chaîne cinématique sont :

- ► vitesse maximale du moteur : $N_{\rm max}^{\rm mot} = 4150 \, {\rm tr \, min^{-1}};$ ► rapport de réduction du réducteur $k = \frac{1}{10};$ ► rayon de poulie $R_p = 20 \, {\rm mm}.$

Question 7 Déterminer la vitesse de rotation maximum ω_{\max}^x que doit atteindre le moteur. Le choix de celui-ci est-il validé?

Corrigé voir .

