

Informe N°8: Ensayo de un ventilador radial

Laboratorio de Máquinas

Profesores

Cristóbal Galleguillos Ketterer Tomás Herrera Muñoz

Alumno

Héctor Muzio Harris

Resumen

En este ensayo, se realizaron diferentes mediciones a un ventilador centrifugo radial, en las cuales se iba restringiendo controladamente el área de la sección de descarga.

Los resultados obtenidos muestran una completa relación con respecto a las curvas características de este tipo de ventiladores.

Índice

Introducción	4
Objetivo	5
Trabajo de laboratorio	5
Tabla de valores medidos	6
Fórmulas	7
Tabla de valores calculados	8
Desarrollo	9
Genere la Curva P Vs Q	9
¿Qué tipo de ventilador es? Descríbalo con detalle	9
Genere la curva de potencia eléctrica vs caudal	10
¿Cuál es la potencia máxima consumida?	10
¿Cuál es su posible potencia en el eje?	11
Genere la curva de rendimiento vs caudal	12
¿Cuál es el punto de óptimo rendimiento?	12
¿Las curvas tiene la forma esperada para ese tipo de ventilador?	13
Conclusión	14
Referencias	15

Introducción

Hoy en día los ventiladores son recurrentemente solicitados por las industrias, debido a que cumplen funciones vitales para algunos procesos productivos. Su principal virtud es la de transportar fluidos debido a las diferentes presiones que alcanzan.

Partículas refinadas contenidas en el aire, que comúnmente conocemos como los olores, además de ventilación de minas, recirculación de fluidos en algunos sistemas de refrigeración, son ejemplos en donde es necesaria la presencia de ventiladores que, al no alcanzar presiones muy altas, tienen una función completamente distinta a la de los compresores, pero que en si, tienen muchas similitudes en su funcionamiento.

Objetivo

Determinar el comportamiento de un ventilador radial.

Trabajo de laboratorio

Hacer un reconocimiento del dispositivo de ensayo.

Poner en marcha la instalación, con la descarga totalmente abierta.

Luego de inspeccionar los instrumentos y su operación y esperar que se estabilice su funcionamiento, tome las siguientes mediciones:

- Pe4 presión diferencial [mmH2O]
- nx velocidad del ventilador [rpm]
- ta temperatura ambiente [°C]
- td temperatura de descarga [°C]
- W1, W2 Potencia eléctrica, método 2 watt. [kW]

Finalizadas estas, estrangular la descarga colocando un disco con una abertura menor.

El procedimiento se repite hasta colocar el disco menor y luego tapar totalmente la descarga.

La presión atmosférica, [mmHg], se mide al inicio del ensayo.

Tabla de valores medidos

	ENSAYO DE UN VENTILADOR						
			VAI OR	ES MEDIDOS			
			TALEST	NED WEDIDOO			
	nx	P _{e4}	P _{e4}	ta	td	W ₁	W ₂
	[rpm]	[mmca]	[Pa]	[°C]	[°C]	[kW]	[kW]
1	1831	5	49	21	23	0,44	0,82
2	1845	30	294	22	23	0,34	0,7
3	1867	45	441	22	23	0,19	0,56
4	1867	48,5	475,3	21	23	0,14	0,52
5	1871	57	558,6	21,5	23	0,11	0,49
media	1856,2						

Tabla 1: Valores Medido

Fuente: Material suministrado por l profesores

Fórmulas

Caudal.

$$q_{vm} = \alpha * s_5 * (\frac{2*P_{e4}}{\rho_{05}})^{\frac{1}{2}} [\frac{m^3}{s}]$$

DATOS				
D_5	D_5/D_4	α		
[mm]	[-]	[-]		
00	00	0.600		
90	0.15	0.6025		
120	0.2	0.604		
180	0.3	0.611		
300	0.5	0.641		

 P_{e4} en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{{V_1}^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[\frac{m}{s} \right]$$

$$s_1 = 0.070686 [m2]$$

Potencia eléctrica.

$$N_{elec} = W_1 + W_2 [KW]$$

Potencia hidráulica.

$$N_h = q_{vm} * \Delta P [W]$$

Rendimiento global.

$$N_{gl} = \frac{N_h*100}{N_{elec}} \ [\%]$$
 Corregir los valores respecto a la velocidad

Tabla de valores calculados

Medición	ρ ₅	P5	ρ_0	ρ4	S ₅	S ₁	R aire
N°	kg/m3	Pa	kg/m3	kg/m3	m²	m²	Nm/Kg°K
1	1,19126438	101165,03	1,19936822	1,19184138	0,070685835	0,070686	286,9
2	1,19126438	101165,03	1,19530256	1,19472636	0,0254469	0,070686	
3	1,19126438	101165,03	1,19530256	1,19645735	0,011309734	0,070686	
4	1,19126438	101165,03	1,19936822	1,19686125	0,006361725	0,070686	
5	1,19126438	101165,03	1,19733194	1,19784215	0	0,070686	

Tabla 2

Medición	q _{vm}	q _{vm}	ΔΡ	V ₁	$ ho_{med}$	Ne	Nh	n _{gl}
N°	m3/s	m3/h	Pa	m/s	kg/m3	Kw	Kw	%
1	0,410959837	1479,455413	54	5,8138788	1,1956048	1,26	0,02232099	1,77150732
2	0,345430505	1243,549817	298	4,88683056	1,19501446	1,04	0,10285289	9,88970136
3	0,185874377	669,1477589	442	2,62957838	1,19587996	0,75	0,08217272	10,9563625
4	0,108274648	389,7887313	476	1,53176934	1,19811473	0,66	0,05150297	7,80347963
5	0	0	559	0	1,19758704	0,6	0	0

Tabla 3

Correcciones

q _{vm}	ΔΡ	Ne
m3/h	Pa	Kw
1.499,817	55,820	1,313
1.251,099	301,379	1,059
665,277	436,988	0,737
387,534	470,182	0,649
-	549,798	0,586

Tabla 4

Desarrollo

Genere la Curva P Vs Q

Gráfico 1

¿Qué tipo de ventilador es? Descríbalo con detalle.

EL ventilador al cual se le realizó el ensayo corresponde a uno de desplazamiento negativo, el cual está formado por un rodete que gira con respecto a su centro, por lo que se puede decir que es una turbomáquina. Su principal función es aumentar la presión de gases, pero al ser un ventilador, no se pretende presiones excesivamente altas, sino que tiene el fin de transportar o trasladar diferentes tipos de gases.

El ventilador en cuestión es de tipo radial, por lo que está más destinados a aumentar la presión del fluido, pero a bajos caudales.

La característica que le da su nombre es que la salida del gas es perpendicular al eje del rodete, por lo que el fluido, debido a la acción centrifuga se traslada de forma radial por el rodete hasta salir. Por otra parte, la entrada del gas es paralela al eje del rodete. [referencia 1]

Genere la curva de potencia eléctrica vs caudal

Gráfico 2

¿Cuál es la potencia máxima consumida?

La potencia eléctrica máxima consumida se obtiene cerca de los 1500 $\left[\frac{m^3}{h}\right]$, la cual se consiguió en la primera medición, y su valor fue de 1,313 [Kw], con los factores de corrección correspondientes.

¿Cuál es su posible potencia en el eje?

Considerando que los valores de potencia eléctrica son los correspondientes a los entregados por el motor eléctrico, tendríamos que calcular las perdidas generadas por el sistema de transmisión de correas, el cual corresponde a correas trapezoidales. Suponiendo que su eficiencia es 95%, [referencia 2], podemos calcular la potencia en el eje para las distintas mediciones, obteniendo:

Medición	Neje
	[Kw]
1	1,247
2	1,006
3	0,700
4	0,616
5	0,557

Tabla 5

Ahora si se supone que la potencia entregada en los datos corresponde a la suministrada por la red eléctrica, sería necesario a lo ya calculado, restarle las pérdidas del motor eléctrico. Se supuso una eficiencia de 92% [referencia 3], de esta manera se obtiene:

Medición	Neje
	[Kw]
1	1,147
2	0,926
3	0,644
4	0,567
5	0,512

Tabla 6

Genere la curva de rendimiento vs caudal

Gráfico 3

¿Cuál es el punto de óptimo rendimiento?

El punto de optimo rendimiento se encuentra cercano al caudal de 900 $\left[\frac{m^3}{h}\right]$, si bien es una estimación por medio de los gráficos, se puede concluir esto debido al comportamiento de la curva. [Gráfico número 3]

¿Las curvas tiene la forma esperada para ese tipo de ventilador?

En el gráfico N°4, se pueden apreciar las curvas características para un ventilador radial.

Gráfico 4

Fuente: referencia 4

Como se aprecia en el gráfico N°4, y en comparación con los gráficos N°1,2 y 3, en todos estos casos los resultados obtenidos por medio del ensayo y posterior cálculo coinciden con respecto a las curvas características de un ventilador radial, por lo que se puede decir que el ensayo se realizó de manera correcta, y que el ventilador de la escuela se encuentra apto para este tipo de ejercicios.

Conclusión

A modo de cierre es necesario señalar que, gracias a este ensayo se pudo comprobar la influencia de las perdidas de carga en la salida de un ventilador radial, provocando diferentes tipos de variantes a medida que estas pérdidas iban aumentando.

Mientras disminuía el área de la sección de salida, se pudo apreciar como iba decreciendo el caudal, hasta llegar a cero cuando se obstruía por completo la salida. La velocidad del fluido en la sección 1 tuvo el mismo comportamiento.

Por otra parte, el comportamiento de la diferencia de presión se mostro completamente opuesto, ya que a medida que las restricciones de área aumentaban esta iba aumentando.

Por último, señalar que el rendimiento general no siguió ninguna de estas tendencias, ya que a medida que se realizaba el ensayo, fue subiendo hasta estabilizarse y lograr su valor máximo, para después de esto, caer hasta llegar a cero cuando la sección de salida estaba completamente tapada.

Referencias

- 1. Tomás Ignacio Herrera Muñoz, PPT Ventilador Radial
- 2. Douglas Wright, V-BELT DRIVES, mayo del 2005, encontrar en: http://www-mdp.eng.cam.ac.uk/web/library/enginfo/textbooks_dvd_only/DAN/V-belts/intro/intro.html
- 3. Revista el Industrial, Nuevos métodos de medición de Eficiencia para Motores AC de Baja Tensión según última revisión de Norma IEC, encontrar en : http://www.emb.cl/electroindustria/articulo.mvc?xid=941&ni=nuevos-metodos-de-medicion-de-eficiencia-para-motores-ac-de-baja-tension-segun-ultima-revision-de-norma-iec
- 4. Roberto Javier Ontaneda Zapata, Diseño y construcción de un rodete de ventilador centrífugo de 100 cfm para el laboratorio de termofluidos de la Universidad Politécnica Salesiana Campus Kennedy, Tesis de grado, Universidad Politécnica Salesiana, marzo 2015.

Nota: Las tablas y gráficos no referenciados corresponden a autoría propia.