

Contact: Luis Emilio García-Castillo legcasti@ing.uc3m.es,
Adrián Amor aamor@ing.uc3m.es,
Sergio Llorente sllorent@ing.uc3m.es

uc3m Universidad Carlos III de Madrid

- 1 On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

- 1 On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

We start considering different alternatives to implement

the TX/RX conditions in the context of the present FEM formulation coded in HOFEM

- On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

FEM Formulation

• Formulation based on double curl vector wave equation (use of E or H).

$$\nabla \times (f_r^{-1}\nabla \times \mathbf{V}) - k_0^2 g_r \mathbf{V} = -jk_0 H_0 \mathbf{P} + \nabla \times f_r^{-1} \mathbf{L}$$

Table: Formulation magnitudes and parameters

	V	V^d	$\bar{\bar{f}}_r$	$ar{ar{g}}_r$	h	Р	L
Form. E	E	Н	$ar{ar{\mu_r}}$	$\bar{\epsilon}_r$	η	J	М
Form. H	н	E	$ar{\epsilon_r}$	$ar{ar{\mu_r}}$	$-\frac{1}{\eta}$	М	-J

FEM Formulation (cont.)

• Use of **H**(curl) spaces:

$$\boldsymbol{H}(\boldsymbol{curl})_0 = \{\boldsymbol{W} \in \boldsymbol{H}(\boldsymbol{curl}), \ \boldsymbol{\hat{\boldsymbol{n}}} \times \boldsymbol{W} = 0 \ \ \text{on} \ \ \boldsymbol{\Gamma}_D\} \tag{1}$$

$$\mathbf{H}(\operatorname{curl}) = \{ \mathbf{W} \in L^2, \, \mathbf{\nabla} \times \mathbf{W} \in L^2 \}$$
 (2)

and Galerkin method leads to (with respect to the double-curl term only) to:

$$\int_{\Omega} (\mathbf{\nabla} \times \mathbf{F}) \cdot \left(\overline{f_r}^{-1} \mathbf{\nabla} \times \mathbf{V} \right) d\Omega + \underbrace{\int_{\Gamma} \mathbf{F} \cdot (\hat{\mathbf{n}} \times \underbrace{(\overline{f_r}^{-1} \mathbf{\nabla} \times \mathbf{V})}_{-jk_0 h_0 \mathbf{V}^d}) d\Gamma}_{\text{"natural" b.c.}}$$

- More precisely

 - ► Form. **E**: $\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V} = -jk_0\eta_0 \mathbf{H}$ ► Form. **H**: $\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V} = +j\frac{k_0}{m_0} \mathbf{E}$

FEM Formulation (cont.)

The integral boundary term
$$\int_{\Gamma} \mathbf{F} \cdot (\hat{\mathbf{n}} \times (\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V})) d\Gamma$$

- Can be used to weakly impose some boundary conditions of the problem
- For instance, Neumann boundary condition

$$\hat{\mathbf{n}} \times \left(\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V}\right) = \mathbf{\Psi}_{N}$$

$$\longrightarrow \int_{\Gamma} \mathbf{F} \cdot (\hat{\mathbf{n}} \times (\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V})) d\Gamma = \int_{\Gamma} \mathbf{\Psi}_{N} d\Gamma$$

• For instance, ABC boundary condition

$$\hat{\mathbf{n}} \times \left(\bar{f}_r^{-1} \nabla \times \mathbf{V}\right) + \gamma \,\hat{\mathbf{n}} \times \hat{\mathbf{n}} \times \mathbf{V} = \Psi_{\mathsf{C}}$$

$$\longrightarrow \int_{\Gamma} \mathbf{F} \cdot (\hat{\mathbf{n}} \times (\bar{f}_r^{-1} \nabla \times \mathbf{V})) \, d\Gamma = \int_{\Gamma} \Psi_{\mathsf{C}} d\Gamma + \gamma \int_{\Gamma} (\hat{\mathbf{n}} \times \mathbf{F}) \cdot (\hat{\mathbf{n}} \times \mathbf{V}) \, d\Gamma_{\mathsf{C}}$$

FEM Formulation (cont.)

- Note that the implementation of above boundary conditions is straightforward because
 - ► Either, the integrand of the boundary term was a known function
 - ▶ or, it can be expressed in terms of the primal unknown **V**
- At the end of the day, the contribution of the boundary term is translated into algebra as
 - ▶ extra contributions for the values of the matrix coefficients (related to the existing *g_i* associated to the corresponding boundary).
 - ▶ I.e., no extra degrees of freedom g_i are needed

What does it happen when that is not the case?

FEM Continuity Conditions

• Assuming $\mathbf{V} = \sum_i g_i \mathbf{N}_i \leftrightarrow \{g\}$

Between Neighbour Elements 1 and 2

- Two continuity conditions:
 - ▶ Strong continuity of $\hat{\mathbf{n}} \times \mathbf{V}$

$$\{g\}_1 = \{g\}_2$$

Weak continuity of $\hat{\mathbf{n}} \times \mathbf{V}^d$

$$\int_{\Gamma} \mathbf{F} \cdot (\hat{\mathbf{n}}_1 \times (\bar{f}_r^{-1} \nabla \times \mathbf{V}_1)) d\Gamma$$

$$+ \int_{\Gamma} \mathbf{F} \cdot (\hat{\mathbf{n}}_2 \times (\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V}_2)) d\Gamma = 0$$

We simply omit the term

Note that $\hat{\textbf{n}} \times \textbf{F}_1 = \hat{\textbf{n}} \times \textbf{F}_2$ and that

$$\mathbf{F} \cdot (\hat{\mathbf{n}} \times (\bar{\bar{f}}_r^{-1} \mathbf{\nabla} \times \mathbf{V}) = (\hat{\mathbf{n}} \times \mathbf{F}) \cdot (\hat{\mathbf{n}} \times (\bar{\bar{f}}_r^{-1} \mathbf{\nabla} \times \mathbf{V})$$

FEM Continuity Conditions (cont.)

Between Elements Simulating a Thin Sheet

- In general, we need to break continuity on
 - **n** $\mathbf{\hat{n}} \times \mathbf{V}$ ⇒ Duplication of degrees of freedom: $\{g\}_1, \{g\}_2$
 - $\hat{\mathbf{n}} \times \mathbf{V}^d \Rightarrow \text{The integral boundary}$ term can not be omitted
- Two linearly independent equations involving four magnitudes E₁, E₂, H₁, H₂:

$$[]_{2\times 2} \{X\}_{2\times 1} = \{B\}_{2\times 1}$$

- Different possibilities depending on the magnitudes chosen as sources (right hand side B) and responses X
- Clear analogy with two-port network parameters of linear circuit analysis:

$$\mathbf{E} \leftrightarrow V \qquad \mathbf{H} \leftrightarrow I$$

 $\mathbf{E}_1 \, \mathbf{H}_1$ $\mathbf{E}_2 \, \mathbf{H}_2$

The Immittance Approach

The Simplest (Least Invasive) Approach

• We express $\hat{\mathbf{n}} \times \mathbf{V}^d$ for region 1 and region 2 in terms of $\hat{\mathbf{n}} \times \mathbf{V}$ of region 1 and region 2, i.e.,

$$\begin{cases}
\mathbf{\hat{n}} \times \mathbf{V}_1^d \\
\mathbf{\hat{n}} \times \mathbf{V}_2^d
\end{cases} = \begin{bmatrix}
YZ_{11} & YZ_{12} \\
YZ_{21} & YZ_{22}
\end{bmatrix} \begin{cases}
\mathbf{\hat{n}} \times \mathbf{V}_1 \\
\mathbf{\hat{n}} \times \mathbf{V}_2
\end{cases}$$

- This is equivalent to an immitance characterization of the equivalent two-port network connecting upper and lower regions separated by the sheet.
 - * Form. **E**: V = E, $V^d = H$, immittance \equiv admitance
 - ★ Form. **E**: V = E, $V^d = H$, immittance \equiv impedance
- We substitute $\hat{\mathbf{n}} \times \mathbf{V}^d$ on the integral boundary terms corresponding to region 1 and region 2 by its linear combination of $\hat{\mathbf{n}} \times \mathbf{V}_1$ and $\hat{\mathbf{n}} \times \mathbf{V}_2$.

The Immittance Approach (cont.)

The Simplest (Least Invasive) Approach

• For instance, with **E**-formulation we have

$$\int_{\Gamma} \mathbf{F}_{1} \cdot (\hat{\mathbf{n}} \times (\bar{\mu}_{r}^{-1} \nabla \times \mathbf{E}_{1})) d\Gamma =$$

$$y_{11} \int_{\Gamma} \mathbf{F}_{1} \cdot (\hat{\mathbf{n}} \times \mathbf{E}_{1})) d\Gamma + y_{12} \int_{\Gamma} \mathbf{F}_{1} \cdot (\hat{\mathbf{n}} \times \mathbf{E}_{2})) d\Gamma$$

$$\begin{split} \int_{\Gamma} \mathbf{F}_2 \cdot (\hat{\mathbf{n}} \times (\bar{\bar{\mu_r}}^{-1} \nabla \times \mathbf{E}_2)) d\Gamma = \\ y_{21} \int_{\Gamma} \mathbf{F}_2 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_1)) d\Gamma + y_{22} \int_{\Gamma} \mathbf{F}_2 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_2)) d\Gamma \end{split}$$

where $\hat{\mathbf{n}} \times \mathbf{F}_1 = \hat{\mathbf{n}} \times \mathbf{F}_2$ (conformal mesh above-below the sheet).

The Immittance Approach (cont.)

The Simplest (Least Invasive) Approach

• Thus, the TX/RX continuity conditions imposed by the sheet are translated into algebra simply as extra contributions for the values of the matrix coefficients (related to the duplicated degrees of freedom $\{g\}_1$, $\{g\}_2$ associated to the sheet).

Advantages

- Simple (non code invasing)
 - * No new variational unknowns
 - No new equations but simply additional terms to the existing ones
 - lpha Only requires replication of uknonws on sheet: $\{g\}_1
 eq \{g\}_2$
- Reciprocity of the material $(y_{12} = y_{21}) \Rightarrow$ symmetry of FEM matrix
- Short circuit (PEC) and open circuit (PMC) conditions naturally reproducible

The Immittance Approach (cont.)

The Simplest (Least Invasive) Approach

Disadvantages

- ► Total transmission (sheet transparency) not reproducible
 - * Singular system of equations
 - This situation must be either avoided or taken into account explicitly

The Immittance Approach Special Cases

Short Circuit (PEC) Sheet

- We have $y_{12} = y_{21} = 0$ and $y_{11} = y_{22} = \infty$
- Thus, the equation associated to $\{g\}_1$ has a dominant term

$$\ldots + y_{11} \int_{\Gamma} \mathbf{F}_1 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_1) d\Gamma + y_{12} \int_{\Gamma} \mathbf{F}_1 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_2) d\Gamma \approx \infty \int_{\Gamma} \mathbf{F}_1 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_1) d\Gamma$$

that corresponds to impose $\hat{\mathbf{n}} \times \mathbf{E}_1 = 0$, i.e., algebraically $\{g\}_1 = 0$

 \bullet Analogously, with equation associated to $\{g\}_2$

$$\ldots + y_{21} \int_{\Gamma} \mathbf{F}_2 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_1) d\Gamma + y_{22} \int_{\Gamma} \mathbf{F}_2 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_2) d\Gamma \approx \infty \int_{\Gamma} \mathbf{F}_2 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_2) d\Gamma$$

that corresponds to impose $\hat{\mathbf{n}} \times \mathbf{E}_2 = 0$, i.e., algebraically $\{g\}_2 = 0$

Open Circuit (PMC) Sheet

- We have $y_{12} = y_{21} = 0$ and $y_{11} = y_{22} = 0$
- Thus, the equation associated to $\{g\}_1$ is equivalent to have

$$\int_{\Gamma} \mathbf{F}_1 \cdot (\hat{\mathbf{n}} \times (\bar{\bar{\mu}_r}^{-1} \nabla \times \mathbf{E}_1)) d\Gamma = 0$$

that corresponds to weakly impose $\hat{\mathbf{n}} \times \bar{\mu_r}^{-1} \nabla \times \mathbf{E}_1 = 0$ (Neumann b.c.) i.e., $\hat{\mathbf{n}} \times \mathbf{H}_1 = 0$.

ullet Analogously, with equation associated to $\{g\}_2$

$$\int_{\Gamma} \mathbf{F}_2 \cdot (\hat{\mathbf{n}} \times (\bar{\bar{\mu_r}}^{-1} \nabla \times \mathbf{E}_2)) d\Gamma = 0$$

that corresponds to weakly impose $\hat{\mathbf{n}} \times \bar{\mu_r}^{-1} \nabla \times \mathbf{E}_2 = 0$ (Neumann b.c.) i.e., $\hat{\mathbf{n}} \times \mathbf{H}_2 = 0$.

Total Transmission (sheet transparency)

It is clear that from

$$\begin{cases} \mathbf{\hat{n}} \times \mathbf{V}_1^d \\ \mathbf{\hat{n}} \times \mathbf{V}_2^d \end{cases} = \begin{bmatrix} YZ_{11} & YZ_{12} \\ YZ_{21} & YZ_{22} \end{bmatrix} \begin{cases} \mathbf{\hat{n}} \times \mathbf{V}_1 \\ \mathbf{\hat{n}} \times \mathbf{V}_2 \end{cases}$$

is not possible to impose full continuity of $\hat{\mathbf{n}} \times \mathbf{V}$, $\hat{\mathbf{n}} \times \mathbf{V}^d$, i.e.,

$$\left\{ \begin{array}{l} \mathbf{\hat{n}} \times \mathbf{V}_1 \\ \mathbf{\hat{n}} \times \mathbf{V}_1^d \end{array} \right\} = \left\{ \begin{array}{l} \mathbf{\hat{n}} \times \mathbf{V}_2 \\ \mathbf{\hat{n}} \times \mathbf{V}_2^d \end{array} \right\}$$

• Technically, we have $y_{12} = y_{21} = \infty$ and $y_{11} = y_{22} = \infty$

Total Transmission (sheet transparency)

ullet Thus, the equation associated to $\{g\}_1$ has two dominant terms

$$\ldots + \infty \int_{\Gamma} \mathbf{F}_1 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_1) d\Gamma + \infty \int_{\Gamma} \mathbf{F}_1 \cdot (\hat{\mathbf{n}} \times \mathbf{E}_2) d\Gamma$$

ullet Analogously, with equation associated to $\{g\}_2$

$$\ldots + \infty \int_{\Gamma} \mathbf{F}_2 \cdot (\mathbf{\hat{n}} \times \mathbf{E}_1)) d\Gamma + \infty \int_{\Gamma} \mathbf{F}_2 \cdot (\mathbf{\hat{n}} \times \mathbf{E}_2)) d\Gamma$$

Total Transmission (sheet transparency)

- Both equations tends to be the same equation
 - ⇒ Singular FEM matrix

(I mush still check signs for y_{ij}) Nevertheless, the above resulting equations can never impose continuity of $\hat{\mathbf{n}} \times \mathbf{V}$

Workaround

- We must identify the case, i.e., when y_{ii} is "large enough"
- Then, we have two main possibilities:
 - Ignore TR/RX boundary conditions for that sheet, i.e., do nothing
 - * Do not replicate degres of freedom $\{g\}$
 - * Do not alter FEM equations
 - Recover full continuity, i.e., continuity of $\hat{\mathbf{n}} \times \mathbf{V}$ and $\hat{\mathbf{n}} \times \mathbf{V}^d$ once replication of $\{g\}$ has been performed
 - Several possibilities

How to Recover Full Continuity?

- We keep the integral boundary term $\int_{\Gamma} \mathbf{F} \cdot (\hat{\mathbf{n}} \times (\bar{f}_r^{-1} \nabla \times \mathbf{V})) d\Gamma$ for region 1 and region 2
- We add two equations to recover continuity of $\hat{\mathbf{n}} \times \mathbf{V}$ and $\hat{\mathbf{n}} \times \mathbf{V}^d$

Continuity of $\hat{\mathbf{n}} \times \mathbf{V}$

We add one strong condition equation

$$\{g\}_1 = \{g\}_2$$

- Performed at the algebraic level, i.e., operating in the matrix by fixing all coefficients on the corresponding row to zero except the two being related (paired)
- The above operation is simple, trivial I would say.
- However, if I am not wrong, it introduces asymmetry in the FEM matrix

Continuity of $\hat{\mathbf{n}} \times \mathbf{V}^d$, i.e., of $\hat{\mathbf{n}} \times (\bar{\bar{f}}_r^{-1} \nabla \times \mathbf{V})$

• We add a equation to weakly force continuity of the dual variable

$$\int_{\Gamma} \mathbf{F}_{1} \cdot (\hat{\mathbf{n}} \times (\bar{\bar{\mu}_{r}}^{-1} \nabla \times \mathbf{E}_{1})) d\Gamma = \int_{\Gamma} \mathbf{F}_{2} \cdot (\hat{\mathbf{n}} \times (\bar{\bar{\mu}_{r}}^{-1} \nabla \times \mathbf{E}_{2})) d\Gamma$$
(3)

- Note that the above equation after discretization introduces asymmetry in the matrix
 - Although, $\hat{\mathbf{n}} \times \mathbf{F}_1 = \hat{\mathbf{n}} \times \mathbf{F}_2$ due to conformity of the mesh
 - the discretization of $\hat{\mathbf{n}} \times \nabla \times \mathbf{E}$ involves all basis functions of the finite element, i.e., not only basis functions on the common boundary (sheet)

The [g], [h], [ABCD] Approaches

- ① On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

TITULO

Hola

- 1 On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

We describe the implementation of the TX/RX conditions uisng the characterization of the material sheet in terms of

its immittance (impedance/admittance) matrix

- On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

Formulation

$$\begin{split} \hat{n}_1 \times \left(\mu_r^{-1} \nabla \times \mathbf{E}_1\right) - \frac{jk_0}{\eta} y_{11} \hat{n}_1 \times \left(\hat{n}_1 \times \mathbf{E}_1\right) - \\ - \frac{jk_0}{\eta} y_{12} \hat{n}_2 \times \left(\hat{n}_2 \times \mathbf{E}_2\right) = 0, \\ \hat{n}_2 \times \left(\mu_r^{-1} \nabla \times \mathbf{E}_2\right) - \frac{jk_0}{\eta} y_{21} \hat{n}_1 \times \left(\hat{n}_1 \times \mathbf{E}_1\right) - \end{split}$$

$$\hat{n}_2 \times (\mu_r^{-1} \nabla \times \mathbf{E}_2) - \frac{jk_0}{\eta} y_{21} \hat{n}_1 \times (\hat{n}_1 \times \mathbf{E}_1) - \frac{jk_0}{\eta} y_{22} \hat{n}_2 \times (\hat{n}_2 \times \mathbf{E}_2) = 0,$$

Note that y_{xx} are relative to the vacuum admittance.

Formulation (cont.)

Find $\mathbf{E} \in \mathbf{H}_0(\operatorname{curl},\Omega)$ such that

$$\begin{split} &\left(\nabla\times\mathbf{w},\mu_{r}^{-1}\nabla\times\mathbf{E}\right)_{\Omega}-k_{0}^{2}\left(\mathbf{w},\varepsilon_{r}\mathbf{E}\right)_{\Omega}+jk_{0}\left\langle \hat{n}\times\mathbf{w},\hat{n}\times\mathbf{w}\right\rangle _{\Gamma_{C}}=\\ &\left(\mathbf{w},\mathbf{F}\right)_{\Omega}-\left\langle \hat{n}\times\left(\mathbf{w}\times\hat{n}\right),\mathbf{\Psi}_{N}\right\rangle _{\Gamma_{N}}-\left\langle \hat{n}\times\left(\mathbf{w}\times\hat{n}\right),\mathbf{\Psi}_{C}\right\rangle _{\Gamma_{C}}\quad\forall\,\mathbf{w}\in\mathbf{H}_{0}(\operatorname{curl},\Omega). \end{split}$$

with

$$\begin{split} \left(\mathbf{w}, \mathbf{v}\right)_{\Omega} &= \int_{\Omega} \mathbf{w}^* \cdot \mathbf{v} d\Omega, \\ \left\langle \mathbf{w}, \mathbf{v} \right\rangle_{\Gamma} &= \int_{\Gamma} \mathbf{w}^* \cdot \mathbf{v} d\Gamma. \end{split}$$

Formulation (cont.)

For *upper* elements on $\Gamma_{\rm TR}$ (side 1), we have

 LHS_1

$$+ j \frac{k_0}{\eta} \left\langle \hat{\boldsymbol{n}} \times (\mathbf{w}_1 \times \hat{\boldsymbol{n}}), y_{11} \hat{\boldsymbol{n}} \times (\mathbf{w}_1 \times \hat{\boldsymbol{n}}) \right\rangle_{\Gamma_{TR}} + j \frac{k_0}{\eta} \left\langle \hat{\boldsymbol{n}} \times (\mathbf{w}_1 \times \hat{\boldsymbol{n}}), y_{12} \hat{\boldsymbol{n}} \times (\mathbf{w}_2 \times \hat{\boldsymbol{n}}) \right\rangle_{\Gamma_{TR}} = RHS_1,$$

whereas for lower elements (side 2), we get

$$+j\frac{k_0}{\eta}\Big\langle \hat{n} \times (\mathbf{w}_2 \times \hat{n}), y_{21}\hat{n} \times (\mathbf{w}_1 \times \hat{n})\Big\rangle_{\Gamma_{\mathsf{TR}}} + j\frac{k_0}{\eta}\Big\langle \hat{n} \times (\mathbf{w}_2 \times \hat{n}), y_{22}\hat{n} \times (\mathbf{w}_2 \times \hat{n})\Big\rangle_{\Gamma_{\mathsf{TR}}} = \mathrm{RHS}_2,$$

FEM implementation

- The DOFs will be doubled for the faces and the interior edges.
- The exterior edges of $\Gamma_{\rm TR}$ are not doubled.
 - Identified by code: the edges associated to two faces are interior.
 - \blacktriangleright If the boundaries of the sheet belong to PBC, the edges of $\Gamma_{\rm TR}$ are also doubled

- On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

Problem to be solved

Simulation of an infinite medium with transmission/reflection sheet that divides the space into two halves.

 Γ_{TR}: Transmission/reflection sheet defined with

$$\mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}.$$

- Γ_C : ABC with excitation with polarization E_y
- The vertical faces are set to PBC

Testbench

- $\mathbf{Y} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$: sanity check, we should get same result as the two halves with a PMC.
- \bullet $\mathbf{Y}=\mathbb{I}:$ sanity check, we should get same result as the two halves with an ABC.
- ullet Change lower Γ_C by PEC and solve analytic problem with four media: final test.
 - ▶ Obtain parameters for **Y** of the equivalent problem.
 - ▶ Get same solutions for the electric field.
 - ► Transparent? Puede ser que aproximar con 1e6. Quizás con ABCD.

- On the FEM Implementation of TX/RX Conditions in HOFEM
 - Existing FEM Formulation in HOFEM
 - Two-Port Network Parameters

- [Z]/[Y] Approach
 - FEM Formulation
 - Testing
 - HOFEM Implementation

HOFEM implementation

- New boundary condition: TRBC.
 - ▶ We define a normal, \hat{n}_{TRBC} to detect lower and upper side. Upper side is the closer to \hat{n}_{TRBC} .
 - ► Definition of y₁₁, y₁₂, y₂₁, and y₂₂ as relative values with respect to vacuum admittance.
- Two options for implementation
 - ▶ Integers defined in tetrahedra_element.
 - Allocatable array of 1 × N_{elem,TR} where the two positions (stored in boundary conditions module, accessible from mesh_reordering_module and elementary_terms_3D):
 - **1** 10× Neighbor element identifier (to couple \mathbf{w}_2 and \mathbf{w}_1).
 - ② Integer 1,2 (side) (to extract the values of y_{11}, y_{12}, y_{21} , and y_{22}).
- Significant methods involved:
 - ► Postprocessing over reordering_DOF_algorithm_3D.
 - calc_boundary_3D_nxNi_nxNi_term_of_this_element.
 - Construction of the MUMPS-related matrix: different number of non-zeros per element, assembly of coupled elements (now single-element assembly).

