Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Ордена Трудового Красного Знамени

федеральное государственное бюджетное образовательное учреждение высшего образования

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Кафедра «Теории электрических цепей»

Электротехника

Лабораторная работа № 17

«Исследование на ЭВМ резонансных явлений в пассивном иактивном параллельном колебательном контуре»

Выполнил: студент группы БВТ2306

Кесслер А. С.

Оглавление

Цель работы	3
Формулы для выполнения лабораторной работы	4
Полученные данные	7
Эксперимент	8
Вывод	12
Контрольные вопросы	13

Цель работы

С помощью программы Mirco-Cap получить входные и передаточные параллельного колебательного контура при различных добротностях.

Формулы для выполнения лабораторной работы

Простой пассивный параллельный колебательный контур состоит из конденсатора, катушки индуктивности и резистора (рис. 1).

Из условия резонанса тока, в параллельном пассивном колебательном контуре, записываемого в виде

$$Im(\underline{Y}_{BX}) = 0$$
,

где комплексная входная проводимость контура равна

$$\underline{Y}_{BX} = \frac{1}{R} + j \left(\omega C - \frac{1}{\omega L} \right),$$

можно найти резонансную частоту контура

$$Im(\underline{Y}_{BX}) = \omega_{p}C - \frac{1}{\omega_{p}L} = 0$$
,

$$\omega_p = \frac{1}{\sqrt{LC}}$$
,

и так как

$$\omega_p = 2\pi f_p$$
,

окончательно получим

$$f_p = \frac{1}{2\pi\sqrt{LC}} \,.$$

Остальные параметры простого последовательного контура вычисляются по следующим форму-

лам.

Характеристическое сопротивление

$$\rho = \sqrt{\frac{L}{C}}.$$

Добротность

$$Q = \frac{R}{\rho} = \frac{f_p}{\prod}.$$

Нижняя граничная частота

$$\omega_{\rm i} = -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}},$$

$$f_1 = \frac{\omega_1}{2\pi}$$
.

Верхняя граничная частота

$$\begin{split} \omega_2 &= -\frac{1}{2RC} + \sqrt{\left(\frac{1}{2RC}\right)^2 + \frac{1}{LC}} \;, \\ f_2 &= \frac{\omega_2}{2\pi} \,. \end{split}$$

Абсолютная полоса пропускания $\Pi = f_2 - f_1$.

Комплексное входное сопротивление

$$\underline{Z}_{BX} = \frac{1}{\frac{1}{R} + j \left(\omega C - \frac{1}{\omega L}\right)} = Z(\omega) e^{j\varphi(\omega)}.$$

Модуль входного сопротивления при условии, что меняется только частота источника напряже-

ния

$$Z(\omega) = \frac{1}{\sqrt{\left(\frac{1}{R}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}}.$$

$$\varphi(\omega) = \frac{-180}{\pi} \arctan\left[\left(\omega C - \frac{1}{\omega L} \right) R \right].$$

Комплексные токи
$$\underline{I} = \frac{\underline{U}_1}{\underline{Z}_{BX}}, \underline{I}_R = \frac{\underline{U}_1}{R}, \underline{I}_L = \frac{\underline{U}_1}{j\omega L}, \underline{I}_C = \frac{\underline{U}_1}{-\underline{j}}.$$

Определение добротности по резонансной кривой

Добротность Q последовательного контура можно определить при помощи резонансной кривой по формуле

$$Q = \frac{f_p}{f_2 - f_1}.$$

Необходимые для этого построения показаны на рис. 3.

Рис. 3

Для контура первого типа (рис. 2) значения индуктивности катушки и ёмкости конденсатора оставим прежними. Зададимся величиной добротности Q_p. В этом случаи величина сопротивления вычисляется по формуле

$$R = \frac{p}{Q_p} = \frac{\sqrt{\frac{L}{C}}}{Q_p} \, .$$

Резонансная частота такого контура вычисляется по следующей формуле

$$\omega_p = \frac{1}{\sqrt{LC}} \sqrt{1 - \frac{R^2}{\rho^2}} \,,$$

$$f_{\rm pl} = \frac{\omega_{\rm p}}{2\pi} \, .$$

Комплексное входное сопротивление может быть записано в виде

$$\underline{Z}_{BX} = \frac{\left(R + j\omega L\right) \frac{-j}{\omega C}}{R + j\left(\omega L - \frac{1}{\omega C}\right)}.$$

Модуль входного сопротивления при резонансе можно вычислить по следующей формуле $Z\Big(\,f_{\rho 1}^{}\Big) = RQ^2\,.$

Исследуем с помощью ЭВМ характеристики пассивного параллельного колебательного контура.

Полученные данные

По предварительному расчету $R=14\kappa Om, f_p=5 \ \kappa \Gamma \mu, C=30*10^-9$							Получено экспериментально						
р, Ом	Q	f ₁ , кГ	f ₂ , кГ	П, кГ	Z(f _p), Ом	f ₀ , кГц		f _{p,} Гц	Z(f _p), Om	f ₁ , кГ	f ₂ , кГ	П, кΓ	Q
160	18,	4,8	5,1	0,2	1400		5	500	1400	4,8	5,1	0,2	18,5
По предварительному расчету $C_2=30*10^{-9} \Phi$, $L=0.038\Gamma H$											НО		
Ç)	R, 0	Ом	f _{p1} , кГц	Z(f _p), кОм			f _{p1} , кГц			Z(f _p), кОм		
2	,	53	0	5	2,589			5			2,589		
10	00	10)	5	125,1			5			125,1		

Табл 1 Данные полученные экспериментально и по предварительному расчету

Эксперимент

Рис 1 Зависимость модуля входного сопротивления от частоты

Рис 2 Теоретическая зависимость фазы входного сопротивления от частоты

Рис 3 График зависимостей модулей входного тока, модуля тока в резисторе, модуля тока в катушке и модуля тока в конденсаторе

Рис 4 Зависимость модуля входного сопротивления от частоты

Рис 5 Зависимость фазы входного сопротивления от частоты

Рис 6 График зависимостей модулей входного тока, модуля тока в резисторе, модуля тока в катушке и модуля тока в конденсаторе

Рис 7 Частотные характеристики контуров первого типа для значений добротности 2

Рис 8 Частотные характеристики контуров первого типа для значений добротности 100

Рис 9 График зависимостей модулей входного тока, модуля тока в резисторе, модуля тока в катушке и модуля тока в конденсаторе

Вывод

В ходе выполнения лабораторной работы С помощью программы Mirco-Cap мы получили входные и передаточные параллельного колебательного контура при различных добротностях.

Контрольные вопросы