

User Manual

[BB-SPH1800]

Copyright Statement:

- BB-SPH1800 and its related intellectual property are owned by Shenzhen Embest Technology
 Co., Ltd.
- Shenzhen Embest Technology has the copyright of this document and reserves all rights. Any
 part of the document should not be modified, distributed or duplicated in any approach and form
 with the written permission issued by Embest Technology Co., Ltd.

Disclaimer:

Shenzhen Embest Technology does not take warranty of any kind, either expressed or implied,
as to the program source code, software and documents in the CD/DVD-ROMs provided along
with the products, and including, but not limited to, warranties of fitness for a particular purpose;
 The entire risk as to the quality or performance of the program is with the user of products.

Rev. Note Author Rev1.0 Initial Tony Guan

Catalog

Revision	Histo	ory	3
Catalog	4		
Chapter	1 P	roduct Overview	5
1.1	В	rief Introduction	5
	1.1.	1 Packing List	5
	1.1.	2 Product Features	5
1.2	In	nterfaces & Buttons	7
1.3	Sy	ystem Block Diagram	8
1.4	Pi	roduct Dimensions(mm)	8
Chapter	2 In	ntroduction to Hardware System	9
1.5	В	B-SPH1800 introduction	9
1.6	In	ntroduction to Peripheral Chips	9
	1.6.	1 TDA19988	9
	1.6.2	2 AR8035	9
1.7	D	etails of Interfaces	10
	1.7.	1 PH180 interfaces	10
	1.7.	2 LCD/HDMI	21
	1.7.	3 Camera	25
	1.7.	4 Gigabit Ethernet	26
	1.7.	5 TFCard	27
	1.7.0	6 USB	28
	1.7.	7 RS485&CAN	29
	1.7.	8 Button	30
	1.7.9		
	1.7.:		
	1.7.		
	1.7.		
Tochnica		port and Warranty	
TECHIIILG	ม วนม	NOTE ATTA AVAILABLE	

Chapter 1 Product Overview

1.1 Brief Introduction

BB-SPH1800 is the simplified version base board of SOM-PH8700/PH8800 Designed by Embest for PH180 related SOM modules for areas such as medical instruments, video surveillance and industrial control. In the compact body size design, BB-SPH1800 provide lots of external interfaces for SOM-PH8700/PH8800(Gigabit Ethernet interface, USB interfaces, a 24-bit LCD interface, a 12-bit camera interface, a HDMI interface, a TF card slot, RS232, CAN, Rs485 and so on). Meanwhile, it has a 40Pin on-board DIP connector which include I2C, I2S, UART, MMC, Gigabit Ethernet and so on used to do the function extension.

1.1.1 Packing List

SOM-PH8700/SOM-PH8800 Core Board X1 (option one of two)

BB-SPH1800 base board X1

4.3 inch LCD or 7 inch LCD Panel
 X1 (option)

Desiccant X1

Antistatic Bag
 X1

Generic Safety Leaflet X1

Quick Start Guide X1

Packing Box
 X1

1.1.2 Product Features

Electrical Features

- Operating Temperature: 0~70°C (Commercial)
- Power Supply: 5V/4A (The power adapter with short circuit current limit)
- Operating Humidity: 20% ~ 90% (no condensation)
- Main Board Size: 120 mm × 90 mm

PCB Specification: 4 layer design

• Data Transfer Interfaces:

- A DB9 RS232 Uart interface
- A 12 bit Digital Camera interface
- A Gigabit Ethernet interface
- Two RS485 interface
- Two CAN interface
- A high-speed USB2.0 Host interface
- A USB OTG
- A TF Card
- A 40 Pin Extended Interface (I2C,I2S,UART,MMC, Gigabit Ethernet and so on)

Debugging Interfaces

• A 4Pin Uart serial debugging interface.

Audio/Video Interfaces

- A 24-bit true-color LCD interface (supporting 4-wire touchscreen)
- A HDMI interface

• Other Interfaces & Buttons:

- A power Jack (+5V round DC power jack)
- A system Reset Button, a boot Button
- A RTC

1.2 Interfaces & Buttons

Figure 1-1 BB-SPH1800 Top

Figure 1-2 BB-SPH1800 Bottom

1.3 System Block Diagram

Figure 1-3 BB-SPH1800 System Block Diagram

1.4 Product Dimensions(mm)

Figure 1-4 Product Dimensions

Chapter 2 Introduction to Hardware System

This chapter will introduce in detail the structure, expansion and peripheral interfaces of BB-SPH1800 hardware system.

1.5 BB-SPH1800 introduction

BB-SPH1800 is the simplified version base board of SOM-PH8700/PH8800 Designed by Embest, That make a precise presentation of the AM335X/AM437X Soc feature. The customs can free replace each other with SOM-PH8700/PH8800 , Provide a perfect solution for the resource extension.

1.6 Introduction to Peripheral Chips

1.6.1 TDA19988

TDA19988 is a video encoder designed to drive high-resolution displays through HDMI. It is suited for mobile Internet devices, laptops, tablet computers, portable e-books and smart phones.

This chip possesses advanced scaling engine that supports 1080P HDTV. The integrated frequency shifting engine can provide 60fps under 1080p mode. Additionally, TDA19988 supports IIS digital audio input.

1.6.2 AR8035

AR8035 is a low-power and low-cost Ethernet PHY chip and integrated with a 10/100/1000Mb transceiver. It is a single-port tri-speed Ethernet PHY and supports MAC.TM RGMII interfaces.

AR8035 is compliant with the IEEE 802.3az Energy Efficiency Ethernet Standard and the Atheros's proprietary SmartEEE standard, which allows traditional MAC/SoC devices incompatible with 802.3az to

function as a complete 802.3az system.

1.7 Details of Interfaces

This section will introduce in detail the constructions, principles, interface definitions and considerations of use of peripherals, so that users may have a deep understanding of the hardware circuitry of the board

1.7.1 PH180 interfaces

BB-SPH1800 connect with the core board with the PH180 Interfaces defined by Embest.

P1, P2 of PH180 interfaces defined as below

PIN-OUT for P2

Pin	Signal Name	Function		unction Signal Pin Description	
2	VRTC	PWR	CTL	PWRON_RESETn	1
4	MMC0_DAT0		CIL	WARM_RESETn	3
6	MMC0_DAT1			MMC0_CMD	5
8	MMC0_DAT2	SD/MMC		MMC0_CD	7
10	MMC0_DAT3			MMC0_CLK	9
12	GND1	GND		SPIO_CSO	11
14	SPIO_SCLK	SPI		SPIO_D1	13
16	SPIO_DO			UART2_RXD	15
18	UARTO_RXD			UART2_TXD	17
20	UARTO_TXD	UART		UART2_RTS	19
22	UART3_RXD	UAKI		UART2_CTS	21
24	UART3_TXD			UART1_RXD	23
26	CANO_RX	CAN		UART1_TXD	25
28	CAN0_TX	CAN		UART1_RTS	27

30	I2CO_SDA			UART1_CTS	29
32	I2CO_SCL	I2C	GND	GND3	31
34	GND2	GND		CAM_D1	33
36	CAM_D0			CAM_D3	35
38	CAM_D2			CAM_D5	37
40	CAM_D4	CSI		CAM_D7	39
42	CAM_D6			CAM_D9	41
44	CAM_D8			CAM_D10	43
46	GND4	GND		CAM_D11	45
48	CAM_FIELD		GND	GND5	47
50	CAM_WEN			CAM_PCLK	49
52	GBE_GREEN		GND	GND6	51
54	GBE_YELLOW			CAM_HD	53
56	GND8	GND		CAM_VD	55
58	GBE_TRP2		GND	GND7	57
60	GBE_TRN2			GBE_TRP0	59
62	GBE_TRP3	ETH		GBE_TRN0	61
64	GBE_TRN3			GBE_TRP1	63
66	GND9	GND		GBE_TRN1	65
68	USB0_DM		GND	GND10	67
70	USB0_DP			GBE_MDC	69
72	GND11	GND		GBE_MDIO	71
74	USB1_DM	LICD		USB0_ID	73
76	USB1_DP	USB		USB0_VBUS	75
78	GND12	GND		USB1_VBUS	77
80	SPI1_SCLK			LCD_PWM	79
82	SPI1_D0	SPI	CTL	BOOTO_SEL	81
84	SPI1_D1			BOOT1_SEL	83

86	SPI1_CS0			BOOT2_SEL	85
88	GND13	GND		GND14	87
90	5V_VDD1	PWR		5V_VDD2	89

PIN-OUT for P1

Pin	Signal Name	Function		Signal Name	Pin
2	WAKE_UP	CTL		PWR_GOOD	1
4	MCASPO_AHCLKX			RESET_OUTn	3
6	MCASPO_FSX			MCASPO_ACLKX	5
8	MCASPO_AHCLKR	125		MCASPO_ACLKR	7
10	MCASP0_FSR			MCASP0_AXR0	9
12	VDDA_ADC			MCASP0_AXR1	11
14	ADC0	ADC		ADC1	13
16	ADC2	ADC		ADC3	15
18	GNDA_ADC			HDMI_CEC/ADC4	17
20	HDMI_HPD/ADC5			HDMI_TX2-/ADC6	19
22	HDMI_DSCL/IO1			HDMI_TX2+/ADC7	21
24	HDMI_DSDA/IO2		GND	GND2	23
26	HDMI_TX1-/IO3	HDMI/GPI	1	HDMI_TXC-/IO7	25
28	HDMI_TX1+/IO4	HDIVII/GPI	J	HDMI_TXC+/IO8	27
30	HDMI_TX0-/IO5		GND	GND3	29
32	HDMI_TX0+/IO6			LCD_D11	31
34	GND4	GND		LCD_D12	33
36	LCD_D0			LCD_D13	35
38	LCD_D1			LCD_D14	37
40	LCD_D2			LCD_D15	39
42	LCD_D3		GND	GND6	41
44	LCD_D4	LCD		LCD_DE	43

46	LCD_D5			LCD_D16	45
48	LCD_D6			LCD_D17	47
50	LCD_D7			LCD_D18	49
52	LCD_D8			LCD_D19	51
54	LCD_D9			LCD_D20	53
56	LCD_D10			LCD_D21	55
58	LCD_HSYNC			LCD_D22	57
60	LCD_VSYNC			LCD_D23	59
62	GND5	GND	CAN	CAN1_RX	61
64	LCD_PCLK	CAN		CAN1_TX	63
66	GND7	GND		I2C_SCL	65
68	IO1/ETH_TXEN	I2C		I2C_SDA	67
70	IO2/ETH_RXDV			IO3/ETH_TXD3	69
72	IO4/ETH_TXD2		IO5/ETH_TXD1		71
74	IO6/ETH_TXD0	GPIO/ETH		IO7/ETH_TXCK	73
76	IO8/ETH_RXCK			IO9/ETH_RXD3	75
78	IO10/ETH_RXD2			IO11/ETH_RXD1	77
80	IO12/ETH_RXD0			RVD1/MMC2_CLK	79
82	RVD2/MMC2_CMD			RVD3/MMC2_D0	81
84	RVD4/MMC2_D1	RVD/MMC		RVD5/MMC2_D2	83
86	RVD6/MMC2_D3			RVD7/MMC2_D4	85
88	RVD5/MMC2_D5			RVD9/MMC2_D6	87
90	GND8	GND		GND9	89

P1, P2 of BB-SPH1800 Signal Description as below

P2 fo	or BB- SPH1800				
Pin	Signal Name	INPUT/OUTPUT	ACTIVE	Power	Description

			H/L	level	
1	PWRON_RESETn	0	L	3.3V	POWER_RESET
2	VRTC	0		3.3V	NC
3	WARM_RESETn	0	L	3.3V	RESET
4	MMC0_DAT0	1/0		3.3V	ммсо
5	MMC0_CMD	I		3.3V	ммсо
6	MMC0_DAT1	1/0		3.3V	ммсо
7	MMC0_CD	0		3.3V	ммсо
8	MMC0_DAT2	1/0		3.3V	ммсо
9	MMC0_CLK	I		3.3V	ммсо
10	MMC0_DAT3	1/0		3.3V	ммсо
11	SPIO_CSO	I		3.3V	SPI0
12	GND1	G		0V	GND
13	SPIO_D1	0		3.3V	SPI0
14	SPIO_SCLK	I		3.3V	SPI0
15	UART2_RXD	I		3.3V	UART2
16	SPIO_DO	1		3.3V	SPI0
17	UART2_TXD	0		3.3V	UART2
18	UARTO_RXD	0		3.3V	UARTO
19	UART2_RTS	I		3.3V	UART2
20	UARTO_TXD	I		3.3V	UARTO
21	UART2_CTS	0		3.3V	UART2
22	UART3_RXD	0		3.3V	UART3
23	UART1_RXD	I		3.3V	UART1
24	UART3_TXD	I		3.3V	UART3

25	UART1_TXD	0	3.3V	UART1
26	CANO_RX	0	3.3V	CANO_UART
27	UART1_RTS	1	3.3V	UART1
28	CANO_TX	1	3.3V	CANO_UART
29	UART1_CTS	0	3.3V	UART1
30	I2CO_SDA	1/0	3.3V	12C0
31	GND3	G	0V	GND
32	I2CO_SCL	ı	3.3V	12C0
33	CAM_D1	0	3.3V	CAM
34	GND2	G	0V	GND
35	CAM_D3	0	3.3V	CAM
36	CAM_D0	I	3.3V	CAM
37	CAM_D5	0	3.3V	CAM
38	CAM_D2	I	3.3V	CAM
39	CAM_D7	0	3.3V	CAM
40	CAM_D4	ı	3.3V	CAM
41	CAM_D9	0	3.3V	CAM
42	CAM_D6	I	3.3V	CAM
43	CAM_D10	0	3.3V	CAM
44	CAM_D8	I	3.3V	CAM
45	CAM_D11	0	3.3V	CAM
46	GND4	G	0V	GND
47	GND5	G	0V	CAM
48	CAM_FIELD	0	3.3V	CAM
49	CAM_PCLK	0	3.3V	CAM
50	CAM_WEN	0	3.3V	CAM
51	GND6	G	0V	GND

52	GBE_GREEN	ı	L	3.3V	MIIA_LED_LINK
53	CAM_HD	0		3.3V	CAM
54	GBE_YELLOW	1	L	3.3V	MIIA_LED_ACT
55	CAM_VD	0		3.3V	CAM
56	GND8	G		0V	GND
57	GND7	G		0V	GND
58	GBE_TRP2	0			GBE Data
59	GBE_TRP0	I			GBE Data
60	GBE_TRN2	0			GBE Data
61	GBE_TRN0	I			GBE Data
62	GBE_TRP3	0			GBE Data
63	GBE_TRP1	I			GBE Data
64	GBE_TRN3	0			GBE Data
65	GBE_TRN1	I			GBE Data
66	GND9	G		0V	GND
67	GND10	G		0V	GND
68	USB0_DM				USB0
69	GBE_MDC	1		3.3V	MDIO CIk
70	USB0_DP				USB0
71	GBE_MDIO	1/0		3.3V	MDIO DATA
72	GND11	G		0V	GND
73	USB0_ID	0			USB0
74	USB1_DM				USB1
75	USB0_VBUS	I		5V	POWER 5V for USB0
76	USB1_DP				USB1

77	USB1_VBUS	ı		5V	POWER 5V for USB0
78	GND12	G		0V	GND
79	LCD_PWM	1		3.3V	PWM for LCD
80	SPI1_SCLK	I		3.3V	SPI1
81	BOOTO_SEL	0		3.3V	воото
82	SPI1_D0	I		3.3V	SPI1
83	BOOT1_SEL	0		3.3V	BOOT1
84	SPI1_D1	0		3.3V	SPI1
85	BOOT2_SEL	0		3.3V	BOOT2
86	SPI1_CS0	I		3.3V	SPI1
87	GND14	G		0V	GND
88	GND13	G		0V	GND
89	5V_VDD2	0		5V	POWER 5v for core board
90	5V_VDD1	0		5V	POWER 5v for core board
P1 fo	or BB- SPH1800		l	l	
Pin	Signal Name	INPUT/OUTPUT	ACTIVE H/L	Power level	Description
1	PWR_GOOD	I	Н	3.3V	Core board power good
2	WAKE_UP	0		1.8V	NC
3	RESET_OUTn	1	L	3.3V	RESET
4	MCASPO_AHCLKX	I		3.3V	I2S_mclk
5	MCASPO_ACLKX	1		3.3V	I2S_BCLK

6	MCASP0_FSX	ı		3.3V	I2S_LRCLK
7	MCASPO_ACLKR	0		3.3V	I2S_BCLK
8	MCASPO_AHCLKR	0		3.3V	I2S_mclk
9	MCASP0_AXR0	1/0		3.3V	I2S_DATA0
10	MCASP0_FSR	0		3.3V	I2S_LRCLK
11	MCASP0_AXR1	1/0		3.3V	I2S_DATA1
12	VDDA_ADC	I		1.8V	NC
13	ADC1	0		1.8V	TOUCH SCREEN X-
14	ADC0	0		1.8V	TOUCH SCREEN X+
15	ADC3	0		1.8V	TOUCH SCREEN Y-
16	ADC2	0		1.8V	TOUCH SCREEN Y+
17	HDMI_CEC/ADC4	0		1.8V	NC
18	GNDA_ADC	G		0V	GND
19	HDMI_TX2-/ADC6	0	L	1.8V	NC
20	HDMI_HPD/ADC5	0		1.8V	NC
21	HDMI_TX2+/ADC7	0	L	1.8V	NC
22	HDMI_DSCL/IO1	0	L	3.3V	IO_SPIO_IRQ
23	GND2	GND		0V	GND
24	HDMI_DSDA/IO2	I	L	3.3V	IO_RTC_INTn
25	HDMI_TXC-/IO7	0		3.3V	IO_CAM_CLK(CAM_CL K)
26	HDMI_TX1-/IO3	0	Н	3.3V	IO_HDMI_HPD
27	HDMI_TXC+/IO8	I		3.3V	IO_CAM_STROBE

28	HDMI_TX1+/IO4	О	L	3.3V	IO_ETH2_INT
29	GND3	0		0V	GND
30	HDMI_TX0-/IO5	0	L	3.3V	GPIO_LED1
31	LCD_D11	1		3.3V	LCD
32	HDMI_TX0+/IO6	I	Н	3.3V	NC
33	LCD_D12	1		3.3V	LCD
34	GND4	G		0V	GND
35	LCD_D13	I		3.3V	LCD
36	LCD_D0	1		3.3V	LCD
37	LCD_D14	1		3.3V	LCD
38	LCD_D1	1		3.3V	LCD
39	LCD_D15	1		3.3V	LCD
40	LCD_D2	1		3.3V	LCD
41	GND6	G		0V	GND
42	LCD_D3	1		3.3V	LCD
43	LCD_DE	1		3.3V	LCD
44	LCD_D4	1		3.3V	LCD
45	LCD_D16	1		3.3V	LCD
46	LCD_D5	1		3.3V	LCD
47	LCD_D17	1		3.3V	LCD
48	LCD_D6	1		3.3V	LCD
49	LCD_D18	I		3.3V	LCD
50	LCD_D7	I		3.3V	LCD
51	LCD_D19	I		3.3V	LCD
52	LCD_D8	I		3.3V	LCD
53	LCD_D20	I		3.3V	LCD
54	LCD_D9	I		3.3V	LCD

55	LCD_D21	I	3.3V	LCD
56	LCD_D10	I	3.3V	LCD
57	LCD_D22	I	3.3V	LCD
58	LCD_HSYNC	I	3.3V	LCD
59	LCD_D23	I	3.3V	LCD
60	LCD_VSYNC	I	3.3V	LCD
61	CAN1_RX	0	3.3V	CAN1_UART
62	GND5	0	0V	GND
63	CAN1_TX	0	3.3V	CAN1_UART
64	LCD_PCLK	I	3.3V	LCD
65	I2C_SCL	I	3.3V	12C1
66	GND7	G	0V	GND
67	I2C_SDA	G	3.3V	I2C1
68	IO1/ETH_TXEN	1	3.3V	ЕТН
69	IO3/ETH_TXD3	I	3.3V	ЕТН
70	IO2/ETH_RXDV	0	3.3V	ЕТН
71	IO5/ETH_TXD1	1	3.3V	ЕТН
72	IO4/ETH_TXD2	1	3.3V	ЕТН
73	IO7/ETH_TXCK	1	3.3V	ЕТН
74	IO6/ETH_TXD0	I	3.3V	ЕТН
75	IO9/ETH_RXD3	0	3.3V	ETH
76	IO8/ETH_RXCK	0	3.3V	ETH
77	IO11/ETH_RXD1	0	3.3V	ETH
78	IO10/ETH_RXD2	0	3.3V	ETH
79	RVD1/MMC2_CLK	I	3.3V	MMC1

80	IO12/ETH_RXD0	О	3.3V	ЕТН
81	RVD3/MMC2_D0	1/0	3.3V	MMC1
82	RVD2/MMC2_CMD	1	3.3V	MMC1
83	RVD5/MMC2_D2	1/0	3.3V	MMC1
84	RVD4/MMC2_D1	1/0	3.3V	MMC1
85	RVD7/MMC2_D4	1/0	3.3V	MMC1
86	RVD6/MMC2_D3	1/0	3.3V	MMC1
87	RVD9/MMC2_D6	1/0	3.3V	MMC1
88	RVD5/MMC2_D5	1/0	3.3V	MMC1
89	GND9	G	0V	GND
90	GND8	G	0V	GND

1.7.2 LCD/HDMI

The powerful video performance is one of the important features of BB-SPH1800. It supports multiple types of displays including 50-pin medium-/small-sized LCD modules, HDMI monitors. LCD/HDMI shares the same video data source. Now let's take a deep look at the hardware implementation of the display function of LCD/HDMI interfaces.

LCD

The LCD interface (J9) of BB-SPH1800 is implemented with a 50-pin FPC connector which connects LCD module to the board. Currently LCD8000-43T (4.3 inch), LCD8000-70T (7 inch) and VGA8000 conversion module are supported by the board. The following table contains pin definitions of LCD interface (including the fixed pins of the connector).

chart 1-1 LCD Display

LCD Display: J9

	LCD Display: J9			
Pin	Signal Description	Device	Signal Type	
1	DSS_D0			
2	DSS_D1			
3	DSS_D2			
4	DSS_D3		Data	
5	DSS_D4		Blue	
6	DSS_D5			
7	DSS_D6			
8	DSS_D7			
9	GND		Ground	
10	DSS_D8			
11	DSS_D9			
12	DSS_D10			
13	DSS_D11		Data	
14	DSS_D12		Green	
15	DSS_D13			
16	DSS_D14			
17	DSS_D15			
18	GND		Ground	
19	DSS_D16			
20	DSS_D17			
21	DSS_D18			
22	DSS_D19		Data	
23	DSS_D20		Red	
24	DSS_D21			
25	DSS_D22			
26	DSS_D23			

	LCD Display: J9				
27	GND	Ground			
28	DSS_DEN				
29	DSS_HSYNC	Data Sync			
30	DSS_VSYNC	37.10			
31	GND	Ground			
32	DSS_PCLK	Clock			
33	GND	Ground			
34	TOUCH_X+				
35	TOUCH_X-	Touch			
36	TOUCH_Y+	Panel			
37	TOUCH_Y-				
38	SPIO_CLK				
39	SPI0_MOSI	SPI			
40	SPI0_MISO	381			
41	SPIO_CSn				
42	LCD_I2C_SCL	12C			
43	LCD_I2C_SDA	120			
44	GND	Ground			
45	3.3V_LCD_VDD	Power 3.3V			
46	3.3V_LCD_VDD	rowei 3.3V			
47	5V_LCD_VDD	Power 5V			
48	5V_LCD_VDD	Power 5V			
49	LCD_RESETn	Reset			
50	LCD_PWM	Control			
51	GND	Carrind			
52	GND	Ground			

HDMI

The HDMI interface on BB-SPH1800 is named as J61, which is a standard 19-pin HDMI connector. The following table contains pin definitions of the interface (including the fixed pins of the connector).

chart 1-2 HDMI Display

	HDMI Display: J12			
Pin	Signal Name	Device	Signal Type	
1	HDMI_TX2+	TDA19988		
2	GND	TDA19988		
3	HDMI_TX2-	TDA19988		
4	HDMI_TX1+	TDA19988		
5	GND	TDA19988		
6	HDMI_TX1-	TDA19988	Differential	
7	HDMI_TX0+	TDA19988	Data & Clock, GND as reference for signal	
8	GND	TDA19988		
9	HDMI_TX0-	TDA19988		
10	HDMI_CLK+	TDA19988		
11	GND	TDA19988		
12	HDMI_CLK-	TDA19988		
13	NC		Other	
14	NC		Other	
15	HDMICONN_I2CSCL	TDA19988	12C	
16	HDMICONN_I2CSDA	TDA19988	120	
17	GND		Ground	
18	5V_VDD		Power 5V	
19	HDMICONN_HPLG		Status	
20	GND_SHELDS		Ground	

	HDMI Display: J12					
21	GND_SHELDS					
22	GND_SHELDS					
23	GND_SHELDS					

1.7.3 Camera

The 30-pin FPC connector (J8) on BB-SPH1800 is used to support 12-bit input of digital cameras. The following table contains pin definitions of the FPC connector;

chart 1-3 Camera

	Camera(J8)			
Pin	Signal Description	Device	Signal Type	
1	GND		Ground	
2	CAM_D0			
3	CAM_D1			
4	CAM_D2			
5	CAM_D3			
6	CAM_D4			
7	CAM_D5		Data	
8	CAM_D6		Data	
9	CAM_D7			
10	CAM_D8			
11	CAM_D9			
12	CAM_D10			
13	CAM_D11			
14	GND		Ground	

	Camera(J8)			
15	PCLK		Clock	
16	GND		Ground	
17	CAM_HS		SYNC	
18	VDD_5V		Power 5V	
19	CAM_VS		SYNC	
20	3.3V_CAMERA		Power 3.3V	
21	CAM_CLK		Clock	
22	CAM_CLK1		CIOCK	
23	GND		Ground	
24	CAM_FLD			
25	CAM_WEN		Status	
26	CAM_STROBE			
27	CAM_SDA		12C	
28	CAM_SCL		120	
29	GND		Ground	
30	VDDIO		Power for IO	
31	GND		Douter	
32	GND		Power	

1.7.4 Gigabit Ethernet

BB-SPH1800 can provide two relatively high network performance of gigabit Ethernet. A Ethernet is implemented by utilizing part of the EMAC controller integrated in Core Board and the PHY on core board. Another AR8035 is added on BB-SPH1800 to realize connections between the extended interface and the EMAC. The RJ-45 interface is named as J17 to provide connection to network devices.

RJ-45

The following table contains pin definitions of RJ-45 (J17) Ethernet interface;

chart 1-4 Ethernet Interface

	RJ45 Ethernet: J17			
Pin	Signal Description	Device	Signal Type	
1	MIIA_TRP0			
2	MIIA_TRN0	AR8035	Data	
3	MIIA_TRP1	ANOUSS	Data	
4	MiIA_TRN1			
5	NC			
6	NC			
7	MIIA_TRP2			
8	MIIA_TRN2	AR8035	Data	
9	MIIA_TRP3			
10	MIIA_TRN3			
11	MIIA_LED_LINK/ Pull-up			
12	Pull-down/ MIIA_LED_LINK	LED Control	LED	
13	MIIA_LED_ACT	LED CONTROL	LLU	
14	Pull-up			
15	GND		GND	
16	GND		GND	
17	NC			
18	NC			

1.7.5 **TFCard**

TF card are used to provide solid storage of boot code and system. MMC Interface

TF card Interface

The following table contains pin definitions of TF Card interface

chart 1-5 TF Card interface

	TF card connector: TF1				
Pin	Signal Description	Device	Signal Type		
1	MMC_DAT2		Data		
2	MMC_DAT3		Data		
3	MMC_CMD		Command		
4	3.3V_VDD		Power 3.3V		
5	MMC_CLK		Clock		
6	GND		Ground		
7	MMC_DAT0		Data		
8	MMC_DAT1		Data		
9	MMC_CD		Detect		
10	NC				
11	NC				
12	GND_SHIELDS		Fixed		
13	GND_SHIELDS				

1.7.6 USB

To satisfy diverse applications involving USB interfaces, BB-SPH1800 provides 2 USB ports. However, there is only one USB controller in HPS, one is used to USB OTG . The following table contains pin definitions of USB.

• USB HOST

chart 1-6 USB interface

	USB Connector: P3					
Pin	Signal Description	Device	Signal Type			
1	VBUS1					
2	DN1		USB1 HOST			
3	DP1					

	USB Connector: P3			
4	GND			
5	GND_SHIELDS		Fixed	
6	GND_SHIELDS		rixeu	

USB OTG

chart 1-7 USB interface

	USB Connector: J13			
Pin	Signal Description	Device	Signal Type	
1	VBUS1			
2	DN1			
3	DP1		USBO OTG	
4	ID			
5	GND			
6	NC			
7	GND_SHIELDS			
8	NC		Fixed	
9	GND_SHIELDS			

1.7.7 RS485&CAN

J62 of BB-SPH1800 is RS485&CAN Interface, The following table contains pin definitions of RS485&CAN

chart 1-8 RS485&CAN interface

RS485&CAN:J62			
Pin	Signal Description	Device	Signal Type
1	CANL2		CAN
2	CANH2		CAIN

RS485&CAN:J62			
3	CANL1		
4	CANH1		
5	GND_ISO		Ground
6	GND_ISO		Ground
7	GND_SHIELDS		
8	RS485_B3		DC 40F
9	RS485_A2		- RS485
10	RS485_B2		

1.7.8 Button

There are 2 buttons on BB-SPH1800. S2 button can reset the system. S3 button can set where the board boot from.

1.7.9 **UART**

J4 and CN4 are two uart connectors specially provided on BB-SPH1800. A RS232 interface J4 is defined by the customs to do the communication ,a UART interface CN4 (TTL) is used to debug with the PC,.

chart 1-9 RS232 interface

RS232 Connector: J4			
Pin	Signal Description	Device	Signal Type
1	NC		
2	RXD		ncaaa
3	TXD		RS232
4	NC		
5	GND		Ground
6	NC		RS232
7	RTS		NJ2J2

RS232 Connector: J4			
8	CTS		
9	NC		
10	GND_SHIELDS		Fixed
11	GND_SHIELDS		rixeu

chart 1-10 UART interface

	UART Connector: CN4			
Pin	Signal Description	Device	Signal Type	
1	3.3V		3.3V output	
2	UARTO_TXD		LIADT	
3	UARTO_RXD		UART	
4	GND		Ground	

1.7.10LED

The LEDs on BB-SPH1800 can be used to indicate board status.

The following table contains the LEDs function define.

chart 1-11 LED

LED Ref	Signal Name	LED Function
D7		Bright indicate 3.3V good
D60		Bright indicate core board power good
D68		User defined

1.7.11RTC

There is a RTC circuitry on BB-SPH1800. When a battery is inserted in J60, the board can keep a proper clock after power supply is turned off. A CR1220 battery and a RTC chip are involved in the implementation of RTC circuitry. Please refer to schematics and datasheet for its working principle and detailed circuit.

1.7.12 Extended interface

To facilitate users' function expansion, part of resources of BB-SPH1800 has been extended by using one 40-pin connectors.

The following table contains pin definitions of extended interface.

chart 1-12 Extended interface

	Extended interface: J58			
Pin	Signal Description	Device	Signal Type	
1	MMC1_CLK			
2	MMC1_CMD			
3	MMC1_DAT0			
4	MMC1_DAT1			
5	MMC1_DAT2		ммс	
6	MMC1_DAT3			
7	MMC1_DAT4			
8	MMC1_DAT5			
9	MMC1_DAT6			
10	GND		Ground	
11	GND		Ground	
12	I2C1_SDA		12C	
13	I2C1_SCL		120	
14	UART4_TXD			
15	UART4_RXD		UART	
16	UART2_TXD		OAN	
17	UART2_RXD			
18	GND		Ground	
19	GND			
20	5V_EX		5V output	

	Extended interface: J58			
21	5V_EX			
22	UART2_RTS		HART	
23	UART2_CTS		UART	
24	MCASPO_ACLKR			
25	MCASPO_AHCLKR		12S	
26	MCASPO_AXR1		123	
27	MCASPO_FSR			
28	3.3V_EX		3.3V output	
29	GND		Ground	
30	GND			
31	MIIB_LED_LINK			
32	MIIB_LED_ACT		Gigabit Ethernet	
33	MIIB_TRP3			
34	MIIB_TRN3			
35	MIIB_TRP2	AR8035		
36	MIIB_TRN2	ANOUSS		
37	MIIB_TRP1			
38	MIIB_TRN1			
39	MIIB_TRP0			
40	MIIB_TRN0			

Technical Support and Warranty

Technical Support

Embest Technology provides its product with one-year free technical support including:

- Providing software and hardware resources related to the embedded products of Embest Technology;
- Helping customers properly compile and run the source code provided by Embest Technology;
- Providing technical support service if the embedded hardware products do not function properly under the circumstances that customers operate according to the instructions in the documents provided by Embest Technology;
- Helping customers troubleshoot the products.
- The following conditions will not be covered by our technical support service. We will take appropriate measures accordingly:
 - Customers encounter issues related to software or hardware during their development process;
 - Customers encounter issues caused by any unauthorized alter to the embedded operating system;
 - Customers encounter issues related to their own applications
 - Customers encounter issues caused by any unauthorized alter to the source code provided by Embest Technology.

Warranty Conditions

- 1) 12-month free warranty on the PCB under normal conditions of use since the sales of the product;
- 2) The following conditions are not covered by free services; Embest Technology will charge accordingly:
 - Customers fail to provide valid purchase vouchers or the product identification tag is damaged, unreadable, altered or inconsistent with the products;
 - Not according to the user's manual operation causes damage to the product;
 - Products are damaged in appearance or function caused by natural disasters (flood, fire, earthquake, lightning strike or typhoon) or natural aging of components or other force majeure;
 - Products are damaged in appearance or function caused by power failure, external forces, water, animals or foreign materials;

- Products malfunction caused by disassembly or alter of components by customers or, products
 disassembled or repaired by persons or organizations unauthorized by Embest Technology, or altered in
 factory specifications, or configured or expanded with the components that are not provided or
 recognized by Embest Technology and the resulted damage in appearance or function;
- Product failures caused by the software or system installed by customers or inappropriate settings of software or computer viruses;;
- Products purchased from unauthorized sales;
- Warranty (including verbal and written) that is not made by Embest Technology and not included in the scope of our warranty should be fulfilled by the party who committed. Embest Technology has no any responsibility;
- 3) Within the period of warranty, the freight for sending products from customers to Embest Technology should be paid by customers; the freight from Embest to customers should be paid by us. The freight in any direction occurs after warranty period should be paid by customers;
- 4) Please contact technical support if there is any repair request.

Note:

Embest Technology will not take any responsibility on the products sent back without the permission of the company.

Contact Information

Technical Support

Tel: +86-755-25635626-872/875/897

Email: support@embest-tech.com

Sales Information

Tel: +86-755-25635626-860/861/862

Fax: +86-755-25616057

Email: chinasales@embest-tech.com

Company Information

Wabsite: http://www.embest-tech.cn

Address: Tower B 4/F,Shanshui Building,Nanshan Yungu Innovation Industry Park,Liuxian Ave.No.1183,Nanshan District,Shenzhen,Guangdong,China

