進捗報告

1 今週やったこと

GA の改良

2 実験

2.1 問題

後の順番で学習した個体が有利になるという欠点を修正するため, w と α の訓練を分離した. また適応度を正確にするため, 実際にサンプリングした α とその時点の w で損失を計算した. 以下が改良した GA の手順.

- 1. 一様乱数で初期個体生成
- 2. 重みwを $\sum_{i \in P} \nabla_w \mathcal{L}_{\mathrm{train}}(w^*, lpha_i^{\mathrm{sampled}})$ で更新
- 3. 個体 α を $\nabla_{\alpha} \mathcal{L}_{\text{valid}}(w^*, \alpha_i)$ で更新
- 4. 適応度 $\mathcal{L}_{ ext{test}}(w, \alpha^{ ext{sampled}})$ で個体 α を評価・選択
- 5. 交叉・突然変異
- 6. 収束するまで 2. に戻る

(P は個体群, α^{sampled} は隣接行列にサンプリングした $\alpha)$

 α の個体表現と交叉 交叉は行列の同じ位置を参照する一様交叉を採用した. 遺伝子が実数なので, ブレンド 交叉も試したが優良解が壊れやすいので導入するときはエリート保存戦略と組合せたい.

2.2 実験設定

表 1,2 にモデルと GA の設定を示した. 初期収束を回避するため, トーナメントサイズや交叉アルゴリズムを変更した.

初期個体は各辺に [0,1] の一様乱数を与えた.

表 1: モデルの設定

base model	VGG19	
Optim(w)	SGD(lr=0.001, momentum=0.9)	
$\operatorname{Optim}(\alpha)$	Adam(lr=0.003, β =(0.5, 0.999))	
Loss	Cross Entropy Loss	
dataset	cifar10	
pretrain	true	
batch size	64	
train size	12500	
valid size	5000	

表 2: GA の設定

個体数	10
世代数	20
選択	トーナメント
サイズ	2
交叉	一様交叉
交叉率	0.5
変異	ガウス分布
変異率	0.2
(遺伝子座ごと)	0.1

2.3 結果

図 2,3 に GA の結果の精度とロスを示した.

図1には個体群のショートカット数を示した.ショートカットが多いほうが精度が高くなりそうだが,8本程度に収束している.同時期の精度や損失を見ると大きく向上しているので,第一段階としてショートカット本数の学習ができたと思われる.

3 今後の予定

来週は発表の資料を作成する.

sshのエラーに実験を中断されられたが、次回はこれを修正してさらに大規模に実験する.

Listing 1: error log

図 1: 世代ごとのショートカット数

1 client_loop: send disconnect: Connection
reset by peer

4 ソースコード

github の notebook リポジトリ参照.

図 2: 世代ごとの精度 (平均と標準偏差)

図 3: 世代ごとのロス (平均と標準偏差)

図 4: 1世代目の最良個体

図 5: 20 世代目の最良個体