# Majeure Machine Learning

Techniques

## Contenu



- Différents algorithmes supervisés
- Méthodes ensemblistes
- Différents algorithmes non-supervisés
- Hyperparameters Tuning

# Ce que vous devrez savoir faire



- Comprendre le principe de fonctionnement de certains algorithmes de ML
- Comprendre les méthodes ensemblistes
- Etre capable de choisir les bonnes techniques
- Comprendre les différentes techniques d'Hyperparameters Tuning

# Apprentissage Supervisé



# Algorithmes paramétriques

Définition : Nombre de paramètres est fixe et donc la complexité ne dépend pas du nombre de lignes des données

## Régression

 $\bar{}$  - Linéaire :  $\hat{y}(x) = heta_1 x_1 + heta_0$ 

Régression

Polynomiale :  $\hat{y}(x) = heta_2 x^{\mathbf{2}} + heta_1 x_1 + heta_0$ 



Classification - Logistique :  $\hat{y}(x) = \sigma( heta_1 x_1 + heta_0)$   $\sigma(x) = rac{1}{1+e^{-x}}$ 



## Naive\* Bayes

#### Théorème de Bayes :

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

- 
$$P(X_1...X_n|Y) = \prod_{i=1}^n P(X_i|Y)$$
 => Likelihood

- P(Y) = 1/n\_classes => Prior
- $P(X_n)$  = Gaussian, Bernoulli... => Evidence

\*Naive => Fait l'hypothèse que les features sont indépendantes les unes des autres.

Peu probable mais marche plutôt bien quand même

## **SVM** (Support Vector Machine)

#### <u>Marge</u> **SVM Parameter C** C = 100C = 1







# Algorithmes non-paramétriques

Définition : Nombre de paramètres et donc complexité du modèle dépendante du nombre de lignes

## Arbre de décision (CART)

#### Régression



Tester toutes les séparations possibles Trouver la feature et la valeur qui sépare le mieux les données\* Séparer par cette valeur Entrer dans une des séparations

Si Nb\_element > min\_element\_par\_feuille :

Recommencer le process

#### Sinon:

Si nb elements > 0:

Prédiction = mean(elements) / majorité(elements)

Sinon:

Prédiction = élément Changer de séparation ou remonter

#### Classification

#### **Decision Tree**



#### \* Cost function:

Classification : Gini criterion

Régression : Somme des erreurs au carré

## K-Nearest-Neighbors



Prédiction = moyenne / majorité des k plus proches voisins



## Algorithmes ensembliste

Même avec un seul algorithme on peut améliorer sa performance à l'aide d'un ensemble

## **Bootstrapping**

Objectif: Pouvoir générer plusieurs ensembles d'entraînement

```
egin{align*} D_{bootsrap} \leftarrow \{\} \ pour \ N \ it lpha rations \ choisir al lpha to irement \ et \ uniform lpha ment \ un \ entier \ n \ parmi \ \{1, \dots N\} \ D_{bootsrap} \leftarrow D_{bootsrap} \cup \{(x_n, t_n)\} \ retourner D_{bootsrap} \ \end{cases}
```



# Combinaisons de modèles - Bagging (bootstrap aggregaation)

A utiliser lorsque les modèles ont une forte capacité

- **Bagging :** entraı̂ne M modèles avec un algorithme donné, sur M ensembles de données bootstrap
- $\bullet \ \ \mathsf{pour} \ m=1,\,...,\,M$ 
  - génère un ensemble de données bootstrap  $\mathcal{D}_{ ext{bootstrap}}$  à partir de  $\mathcal{D}$
  - entraîner un modèle  $y_m(\mathbf{x})$  sur  $\mathcal{D}_{ ext{bootstrap}}$
- · retourner le modèle ensemble (comité)

$$y_{\text{COM}}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x})$$



## Combinaisons de modèles - Boosting



## Combinaisons de modèles - Stacking

Meta-Classifier: c'est un modèle qui va prendre en entrée les prédictions des sous-modèles (peu importe les types de modèles) et qui va apprendre à les combiner pour en obtenir un résultat optimum



#### Random forest

#### Random forest = tree bagging + feature sampling

Feature sampling => donner accès à différentes informations selon les arbres (explication jeu du "qui est-ce")



A chaque nœud : tirage aléatoire de m variables parmi les p variables



Classification: classe majoritaire prédite par les B arbres Régression: moyenne des valeurs prédites par les B arbres

## **Gradient Boosting**

Gradient Boosting = Descente de Gradient + Boosting

Dans le **boosting** l'importance du vote de chaque classifier est calculé par (selon sa performance) :

$$lpha_i = rac{1}{2} ln(rac{1-erreur_i}{erreur_i})$$

Le **Gradient Boosting** calcule ce poids différemment. On applique alors une descente de gradient afin d'optimiser ce poids pour chaque arbre afin d'obtenir le meilleur "meta-model"

Fonction de coût

## **Comparatif**

| Algorithme        | Hyperparamètres                                                                                                 | Avantages                                                                           | Inconvénients                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Régression        | <ul> <li>Degré si polynomiale</li> <li>Type de régularisation</li> <li>Coefficient de régularisation</li> </ul> | - Rapide<br>- Explicable                                                            | - Peu adaptée aux problèmes complexes et non linéaires                            |
| Arbre de décision | <ul> <li>Nombre minimum d'éléments de feuille</li> <li>Profondeur maximum</li> </ul>                            | - Non-linéaire<br>- Explicable<br>- Rapide                                          | <ul> <li>Enclin à overfitting</li> <li>Performances moyennes</li> </ul>           |
| Naive Bayes       | - Loi de la probabilité d'évidence                                                                              | - Rapide<br>- Nécessite peu d'exemples<br>- Efficace                                | <ul> <li>Hypothèse d'indépendance forte</li> <li>Performances moyennes</li> </ul> |
| SVM               | - Kernel<br>- Coefficient de régularisation                                                                     | <ul> <li>Très performant</li> <li>Applicable à tous les problèmes</li> </ul>        | - Long et coûteux                                                                 |
| KNN               | - К                                                                                                             | - Très rapide                                                                       | - Performances moyennes                                                           |
| Random Forest     | <ul> <li>Nombre d'arbres</li> <li>+ Hyperparamètres des arbres</li> </ul>                                       | <ul> <li>Très performant</li> <li>Applicable à tous les problèmes</li> </ul>        | - Long et coûteux<br>- Enclin à overfitting                                       |
| Gradient Boosting | <ul> <li>Fonction de coût</li> <li>Hyperparamètres des arbres</li> </ul>                                        | <ul> <li>Très (Très) performant</li> <li>Applicable à tous les problèmes</li> </ul> | - Très long et coûteux                                                            |

18

# Apprentissage Non-Supervisé



# Clustering

#### **K-Means**



## **DBSCAN** (Density-Based Spatial Clustering of Applications with noise)

- Détecte automatiquement les clusters
- Se base sur la densité
- Et sur un nombre minimum d'éléments
- Détecte des outliers
- Peut trouver des formes de clusters non-circulaires



Red: Core Points

Yellow: Border points. Still part of the cluster because it's within epsilon of a core point, but not does not meet the min\_points criteria

Blue: Noise point. Not assigned to a cluster

#### **Autres**





## Réduction de dimensions

#### Motivation

| X1  | X2  | Х3  | <br>Xn  |
|-----|-----|-----|---------|
| v11 | v12 | v13 | <br>v1n |
| v21 | v22 | v23 | <br>v2n |
|     |     |     | <br>    |
| vm1 | vm2 | vm3 | <br>vmn |

Pas de visualisation possible



| K1  | К2  | К3  |
|-----|-----|-----|
| u11 | u12 | u13 |
| u21 | u22 | u23 |
| ••• |     |     |
| um1 | um2 | um3 |



Amélioration du temps d'apprentissage

#### Deux exemples de solutions

## PCA (Principal Component Analysis)

- Procédé d'algèbre linéaire
- Simple et efficace
- Peut être limité

#### <u>T-SNE</u> (T-Distributed Stochastic Neighbor Embedding)

- Utilisation d'embeddings
- Adapté à quelques milliers de lignes
- Lourd





## Détection d'anomalie

#### **Gaussian Detection**





Calcul de la moyenne et de la variance par feature



#### Principe de l'algorithme:

- Pour chaque feature:
  - On calcule la moyenne et la variance
  - On en déduit une loi normale
- On calcule la probabilité finale en multipliant les lois normales précédemment calculées
- On fixe une valeur de seuil (valeur arbitraire)
- Si la probabilité de notre exemple est inférieure à la valeur de seuil alors on la détecte comme anomalie



# Hyperparameters Tuning

#### Problématique

#### Exemple:

#### Algorithme A

- Hyperparam 1 : 0.0001 -> 1000

- Hyperparam 2 : 2 -> 200

Hyperparam 3 : 1 -> 4

Objectif: 2 combinaisons

=> Comment choisir les valeurs optimales ?

## Grid search

- <u>Hyperparam 1:</u> [0.1, 1, 10]
- Hyperparam 2 : [5, 75, 150]
- <u>Hyperparam 3</u>: [1, 2, 4]



## Random search

- Hyperparam 1: norm(0.01, 10)
- Hyperparam 2 : randint(5, 200)
- Hyperparam 3: randint(1, 4)



## **Tuning**

#### Exemple:

#### Algorithme A

- Hyperparam 1 : 0.0001 -> 1000
- Hyperparam 2 : 2 -> 200
- Hyperparam 3 : 1 -> 4

Objectif: 2 combinaisons

#### Grid Search:

- H1 = 0.1, H2 = 5, H3 = 1
- H1 = 1, H2 = 150, H3 = 4

#### Random Search:

- H1 = 8.5, H2 = 112, H3 = 3
- H1 = 0.5, H2 = 65, H3 = 2

=> Le random Search permet d'explorer plus et est moins biaisé par les hypothèses faites par la personne mettant en place l'algorithme

## **Tuning + Cross Validation**





# Fin du chapitre 4