

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Multiscale Modelling

Mateusz Sitko

Faculty of Metals Engineering and Industrial Computer Science Department of Applied Computer Science and Modelling

Mateusz Sitko

B5*704

msitko@agh.edu.pl

http://home.agh.edu.pl/~msitko/

Office hours:

Monday 09:30 - 10:30

- 1 application (c++, java, c#..) (wa = 0.8):
 - 1st Grain growth algorithm modifications (Cellular automata)
 - 2nd Monte Carlo grain growth + MC static recrystallization algorithm
- 2 reports (wr = 0.2):
 - 1st application part
 - 2nd application part
 - Final degree will be positive if each part gets
 min 3.0 and average is above 3.0

- 2 unexcused absences (remainder medical leave)
- 1 short test?

??????

Exam "0" – final degree min 4.0 (in 1st term)
??????

Classes calendar

	groups:	groups: 3,4	Issues
1	3-10	4-10	Organizational class - simple grain growth CA + visualization
2	10-10	11-10	Microstructures export/import to/from txt files, pictures.
3	17-10	18-10	Modification of cellular automata grain growth algorithm- inclusions (at the beginning/end of the simulation)
4	24-10	25-10	Modification of CA grain growth algorithm - influence of grain curvature
5	31-10	08-11	Modification of CA grain growth algorithm - substructures CA
6	07-11	15-11	Modification of CA grain growth algorithm - boundaries coloring
7	14-11	22-11	Reports 1st part
8	21-11	29-11	Monte Carlo grain growth algorithm
9	28-11	06-12	Modification of MC grain growth algorithm - substructures CA, MC
10	05-12	13-12	MC static recrystallization algorithm - energy distribution
11	12-12	20-12	MC static recrystallization algorithm - nucleation
12	19-12	03-01	MC static recrystallization algorithm - growth
13	09-01	10-01	Reports 2nd part
14	16-01	17-01	Final degree

CA method

The main idea of the cellular automata technique is to divide a specific part of the material into one-, two-, or three-dimensional lattices of finite cells, where cells have clearly defined interaction rules between each other. Each cell in this space is called a cellular automaton, while the lattice of the cells is known as cellular automata space.

- CA Space finite set of cells, where each cell is described by a set of internal variables describing the state of a cell.
- Neighborhood describes the closest neighbors of a particular cell. It can be in 1D, 2D and 3D space.
- Transition rules f, the state of each cell in the lattice is determined by the previous states of its neighbors and the cell itself by the f function

$$\gamma_i^{t+1} = f\left(\gamma_j^t\right)$$

where
$$j \in N(i)$$

N(i) – neighbours of the *i*th cell, γ_i – state of the *i*th cell

Simple Grain Growth CA algorithm

Initial space

1st step

2nd step

last step

Neighbourhoods types

• Von Neumann

Moore

• Pentagonal random

c)

• Hexagonal random

Boundary conditions

• **absorbing boundary conditions** – the state of cells located on the edges of the CA space are properly fixed with a specific state to absorb moving quantities.

0	0	0	0	0
0	1	4	7	0
0	2	5	8	0
0	3	6	9	0
0	0	0	0	0

 periodic boundary conditions – the CA neighborhood is properly defined and take into account cells located on subsequent edges of the CA space.

9	3	6	9	3
7	1	4	7	1
8	2	5	8	2
9	3	6	9	3
7	1	4	7	1

