Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A compound of formula (1):

$$(R^4)_m$$

$$(1)$$

$$(R^4)_m$$

$$(1)$$

wherein:

A is phenylene-or-heteroarylene;

n is 0, 1 or 2;

m is 0, 1 or 2;

 R^1 is independently selected from halo, nitro, cyano, hydroxy, carboxy, carbamoyl, N-(1-4C)alkylcarbamoyl, N-(1-4C)alkyl) $_2$ carbamoyl, sulphamoyl, N-(1-4C)alkylsulphamoyl, N-(1-4C)alkyl) $_2$ sulphamoyl, $-S(O)_b(1-4C)$ alkyl (wherein b is 0,1,or 2), $-OS(O)_2(1-4C)$ alkyl, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy, (1-4C)alkanoyl, (1-4C)alkanoyloxy, hydroxy(1-4C)alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy and $-NHSO_2(1-4C)$ alkyl;

or, when n is 2, the two R¹ groups, together with the carbon atoms of A to which they are attached, may form a 4 to 7 membered saturated ring, optionally containing 1 or 2 heteroatoms independently selected from O, S and N, and optionally being substituted by one or two methyl groups;

R⁴ is independently selected from halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy and (1-4C)alkanoyl;

r is 1 or 2; and

when r is 1 the group

$$(R^4)_m$$

$$N$$

$$N$$

$$H$$

is a substituent on carbon (2) and

when r is 2 (thereby forming a six membered ring) the same group is a substituent on carbon (2) or on carbon (3);

Y is selected from $-C(O)R^2$, $-C(O)OR^2$, $-C(O)NR^2R^3$, -(1-4C)alkyl [optionally substituted by 1 or 2 substituents independently selected from hydroxy, $-C=NR^2$, (1-4C)alkoxy, aryloxy, heterocyclyloxy, $-S(O)_bR^2$ (wherein b is 0, 1 or 2), $-O-S(O)_bR^2$ (wherein b is 0, 1 or 2), $-NR^2R^3$, $-N(OH)R^2$, $-NR^2C(=O)R^2$, $-NHOHC(=O)R^2$, $-SO_2NR^2R^3$, $-N(R^2)SO_2R^2$ [[,]]and aryl-and heterocyclyl], -C(O)NOH, -C(O)NSH, -C(N)OH, -C(N)SH, $-SO_2H$, $-SO_3H$, $-SO_2N(OH)R^2$, -(2-4C)alkenyl, $-SO_2NR^2R^3$, -(1-4C)alkyl $-C(O)R^2$, -(1-4C)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)alkyl-C(O)

 R^2 and R^3 are independently selected from hydrogen, -O(1-4C)alkyl, -S(1-4C)alkyl, -N(1-4C)alkyl, heterocyclyl, aryl and (1-4C)alkyl [optionally substituted by 1 or 2 R^8 groups]; or wherein NR^2R^3 may form a 4 to 7 membered saturated, partially saturated or unsaturated ring, optionally containing 1, 2 or 3 additional heteroatoms independently selected from N, O and S (provided there are no O-O, O-S or S-S bonds), wherein any -CH₂- may optionally be replaced by -C(=O)-, and any N or S atom may optionally be oxidised to form an N-oxide or SO or SO₂ group respectively, and wherein the ring is optionally substituted by 1 or 2 substituents independently selected from halo, cyano, (1-4C)alkyl, hydroxy, (1-4C)alkoxy and (1-4C)alkylS(O)_b- (wherein b is 0, 1 or 2);

R⁸ is independently selected from hydrogen, hydroxy, (1-4C)alkyl, (2-4C)alkenyl, (1-4C)alkoxy, cyano(1-4C)alkyl, amino(1-4C)alkyl [optionally substituted on nitrogen by 1 or 2 groups selected from (1-4C)alkyl, hydroxy, hydroxy(1-4C)alkyl, dihydroxy(1-4C)alkyl, -CO₂(1-4C)alkyl, aryl and aryl(1-4C)alkyl], halo(1-4C)alkyl, dihalo(1-4C)alkyl, trihalo(1-4C)alkyl, hydroxy(1-4C)alkyl, dihydroxy(1-4C)alkoxy, (1-4C)alkoxy, (1-4C)alkoxy, (1-4C)alkoxy, hydroxy(1-4C)alkoxy, 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof, aryl,

heterocyclyl, heterocyclyl(1-4C)alkyl, (3-7C)cycloalkyl (optionally substituted with 1 or 2 hydroxy groups, (1-4C)alkyl or -CO₂(1-4C)alkyl), (1-4C)alkanoyl, (1-4C)alkylS(O)_b- (wherein b is 0, 1 or 2), (3-6C)cycloalkylS(O)_b- (wherein b is 0, 1 or 2), arylS(O)_b- (wherein b is 0, 1 or 2), heterocyclylS(O)_b- (wherein b is 0, 1 or 2), benzylS(O)_b- (wherein b is 0, 1 or 2), (1-4C)alkylS(O)_c(1-4C)alkyl- (wherein c is 0, 1 or 2), -N(OH)CHO, -C(=N-OH)NH₂, -C(=N-OH)NH(1-4C)alkyl, -C(=N-OH)N((1-4C)alkyl)₂, -C(=N-OH)NH(3-6C)cycloalkyl, -C(=N-OH)N((3-6C)cycloalkyl)₂, -COCOOR⁹, -C(O)N(R⁹)(R¹⁰), -NHC(O)R⁹, -C(O)NHSO₂(1-4C)alkyl, -NHSO₂R⁹, (R⁹)(R¹⁰)NSO₂-, -COCH₂OR¹¹, -COCH₂OH, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂OR⁹, -CH₂COOR⁹, -CH₂COOR⁹, -CH₂COOR⁹, -CH₂COOR⁹, -CH₂CH(CO₂R⁹)OH, -CH₂C(O)NR⁹R¹⁰, -(CH₂)_wCH(NR⁹R¹⁰)CO₂R^{9'} (wherein w is 1, 2 or 3), and -(CH₂)_wCH(NR⁹R¹⁰)CO(NR^{9'}R^{10'}) (wherein w is 1, 2 or 3);

R⁹, R⁹, R¹⁰ and R¹⁰ are independently selected from hydrogen, hydroxy, (1-4C)alkyl (optionally substituted by 1 or 2 R¹¹), (2-4C)alkenyl, (3-7C)cycloalkyl (optionally substituted by 1 or 2 hydroxy groups), cyano(1-4C)alkyl, trihalo(1-4C)alkyl, aryl, heterocyclyl, heterocyclyl(1-4Calkyl), -CO₂(1-4C)alkyl; or

R⁹-and R¹⁰-together with the nitrogen to which they are attached, and/or R^{9'}-and R^{10'}-together with the nitrogen to which they are attached, form a 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents independently selected from oxo, hydroxy, carboxy, halo, nitro, cyano, carbonyl, (1-4C)alkoxy and heterocyclyl; or the ring may be optionally substituted on two adjacent carbons by -O-CH₂-O- to form a cyclic acetal wherein one or both of the hydrogens of the -O-CH₂-O- group may be replaced by a methyl; R¹¹ is independently selected from (1-4C)alkyl, and hydroxy(1-4C)alkyl; or a pharmaceutically acceptable salt or pro-drug thereof.

2. (cancelled)

- 3. (previously presented) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1, wherein n is 0.
- 4 (previously presented) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 wherein r is 1.
- 5. (previously presented) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 wherein m is 1.

- 6. (previously presented) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 wherein Y is selected from -C(O)OR², -C(O)NR²R³, -(1-4C)alkyl [optionally substituted by a substituent selected from hydroxy, (1-4C)alkoxy, -S(O)_bR² (wherein b is 0, 1 or 2), -O-S(O)_bR² (wherein b is 0, 1 or 2), -NR²R³, -NR²C(=O)R² and -SO₂NR²R³], -(1-4C)alkylC(O)R², -(1-4C)alkylC(O)OR², -(1-4C)alkylC(O)OR², -(1-4C)alkylC(O)OR², -(1-4C)alkylC(O)OR², -(1-4C)alkylN(R²)C(O)OR², -(1-4C)alkylN(R²)C(O)NR²R³, -(1-4C)alkylSC(O)R², -(1-4C)alkylOC(O)NR²R³, -(1-4C)alkylSC(O)R², -(1-4C)alkylOC(O)NR²R³, -(1-4C)alkylSO₂(2-4C)alkenyl and -SO_cR² (wherein c is 0, 1 or 2).
- 7. (currently amended) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 wherein R² and R³ are independently selected from hydrogen, heterocyclyl, -O(1-4C)alkyl, -N(1-4C)alkyl, (1-4C)alkyl [optionally substituted by 1 or 2 R⁸ groups]; or an NR²R³ group forms a morpholine, thiomorpholine (and oxidised versions thereof), pyrrolidine, or piperidine ring and wherein the ring is optionally substituted by 1 or 2 substituents independently selected from chloro, fluoro, hydroxy and methoxy.
- 8. (currently amended) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 wherein R⁸ is independently selected from hydrogen, hydroxy, -C(O)N(R⁹)(R¹⁰), -NHC(O)R⁹, -COOR⁹, -CH₂OR⁹, -CH₂COOR⁹, -CH₂COOR⁹, -CH₂COOR⁹, and aryl, heterocyclyl, and 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof.
- 9. (currently amended) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 wherein R⁹ and R¹⁰ are independently selected from hydrogen, hydroxy and (1-4C)alkyl) or R⁹ and R¹⁰ together with the nitrogen to which they are attached form a morpholine, thiomorpholine (and oxidised versions thereof), pyrrolidine, or piperidine ring.
- 10. (original) A pharmaceutical composition which comprises a compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 in association with a pharmaceutically-acceptable diluent or carrier.

11-15 (cancelled)

16. (withdrawn) A process for the preparation of a compound of formula (1) as claimed in claim1, which process comprises:

reacting an acid of the formula (2):

or an activated derivative thereof; with an amine of formula (3):

$$NH_2$$
 $()_r$
 A
 $(R^1)_n$

and thereafter if necessary:

- i) converting a compound of the formula (1) into another compound of the formula (1);
- ii) removing any protecting groups;
- iii) forming a pharmaceutically acceptable salt or in vivo hydrolysable ester.
- 17. (previously presented) A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 wherein R⁴ is selected from chloro, fluoro and methyl.
- 18. (currently amended) A compound of the formula (I) wherein

A is phenylene;

n is 0;

m is 1;

R⁴ is chloro:

Y is selected from $-C(O)OR^2$, $-C(O)NR^2R^3$, -(1-4C)alkyl [optionally substituted by a substituent selected from $-S(O)_bR^2$ (wherein b is 0, 1 or 2), $-O-S(O)_bR^2$ (wherein b is 0, 1 or 2), $-NR^2R^3$, $-NR^2C(=O)R^2$ and $-SO_2NR^2R^3$], -(1-4C)alkyl $-C(O)OR^2$, -(1-4C)alkyl $-C(O)R^2$,

-(1-4C)alkylC(O)NR²R³ , -(1-4C)alkylSC(O)R², -(1-4C)alkylSO₂(2-4C)alkenyl and -SO_cR² (wherein c is 0, 1 or 2);

R² and R³ are independently selected from hydrogen, heterocyclyl, and (1-4C)alkyl [optionally substituted by 1 or 2 R⁸ groups]; or an NR²R³ group forms a morpholine, thiomorpholine (and exidised versions thereof), pyrrolidine, or piperidine ring and wherein the ring is optionally substituted by 1 or 2 substituents independently selected from chlore, fluore, hydroxy and methoxy:

R⁸ is independently selected from hydrogen, hydroxy, -C(O)N(R⁹)(R¹⁰), -NHC(O)R⁹, -COOR⁹[[,]] and aryl, heterocyclyl, and 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof;

R⁹ and R¹⁰ are independently selected from hydrogen, hydroxy and (1-4C)alkyl)-or-R⁹-and-R¹⁰ together with the nitrogen to which they are attached form a morpholine ring.

19. (previously presented) A compound of the formula (I) selected from

Methyl (1R,2R)-2-{[(5-chloro-1H-indole-2-yl)carbonyl]amino}indane-1-carboxylate;

5-Chloro-N-[(1R,2R)-1-(hydroxymethyl)-2,3-dihydro-1H-inden-2-yl]-indole-2-carboxamide;

(1R,2R)-2-{[(5-chloro-1*H*-indole-2-yl)carbonyl]amino}indane-1-carboxylic acid;

5-Fluoro-*N*-[(1*R*,2*R*)-1-({[(2-hydroxyethyl)amino]sulfonyl}methyl)-2,3-dihydro-1*H*-inden-2-yl]-1*H*-indole-2-carboxamide;

N-[(1*R*,2*R*)-1-({[(2-Hydroxyethyl)amino]sulfonyl}methyl)-2,3-dihydro-1*H*-inden-2-yl]-5-methyl-1*H*-indole-2-carboxamide:

 $N-[(1R,2R)-1-(\{[(2-Hydroxyethyl)amino]sulfonyl\}methyl)-2,3-dihydro-1$ *H*-inden-2-yl]-1*H*-indole-2-carboxamide;

5-Chloro-*N*-[(1*R*,2*R*)-1-({[(2-hydroxyethyl)amino]sulfonyl}methyl)-2,3-dihydro-1*H*-inden-2-yl]-1*H*-indole-2-carboxamide;

5-Fluoro-*N*-((1*R*,2*R*)-1-{[(3-hydroxypropyl)sulfonyl]methyl}-2,3-dihydro-1*H*-inden-2-yl)-1*H*-indole-2-carboxamide;

 $N-((1R,2R)-1-\{[(3-Hydroxypropyl)sulfonyl]methyl\}-2,3-dihydro-1<math>H$ -inden-2-yl)-5-methyl-1H-indole-2-carboxamide;

 $N-((1R,2R)-1-\{[(3-Hydroxypropyl)sulfonyl]methyl\}-2,3-dihydro-1H-inden-2-yl)-1H-indole-2-carboxamide;$

5-Chloro-*N*-((1*R*,2*R*)-1-{[(3-hydroxypropyl)sulfonyl]methyl}-2,3-dihydro-1*H*-inden-2-yl)-1*H*-indole-2-carboxamide;

[((1R,2R)-2-{[(5-Chloro-1H-indol-2-yl)carbonyl]amino}-2,3-dihydro-1H-inden-1-yl)thio]acetic acid;

Methyl [((1*R*,2*R*)-2-{[(5-chloro-1*H*-indol-2-yl)carbonyl]amino}-2,3-dihydro-1*H*-inden-1-yl)thio]acetate;

5-Fluoro-N-((1R,2R)-1-{[(2-hydroxyethyl)sulfonyl]methyl}-2,3-dihydro-1H-inden-2-yl)-1H-indole-2-carboxamide;

5-Chloro-*N*-((1*R*,2*R*)-1-{[(2-hydroxyethyl)sulfonyl]methyl}-2,3-dihydro-1*H*-inden-2-yl)-1*H*-indole-2-carboxamide;

N-((1*R*,2*R*)-1-{[(2-Hydroxyethyl)sulfonyl]methyl}-2,3-dihydro-1*H*-inden-2-yl)-5-methyl-1*H*-indole-2-carboxamide;

N-((1*R*,2*R*)-1-{[(2-Hydroxyethyl)sulfonyl]methyl}-2,3-dihydro-1*H*-inden-2-yl)-1*H*-indole-2-carboxamide; and

 $N-\{(1R,2R)-1-[(2-Amino-2-oxoethyl)thio]-2,3-dihydro-1H-inden-2-yl\}-5-chloro-1H-indole-2-carboxamide.$

- 20. (withdrawn) A method of producing a glycogen phosphorylase inhibitory effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (1) as claimed in claim 1.
- 21. (withdrawn) A method of treating type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia or obesity in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (1) as claimed in claim 1.
- 22. (withdrawn) A method of treating type 2 diabetes in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (1) as claimed in claim 1.