Ejemplo:

Determinar el polinomio de Newton mediante diferencias divididas para la función fox)= x3-2x2-2; a demas. de evaluar f (1.5) y P(1.5) en el de grado.

(4), además calcule el error porcential

- 1000000 ·

Puntos: 0 1 2 3 4 5. \times -2 -1 0 2 3 6 f(x) -18 -5 -2 -2 7 142

	L						
(i)_	-2	(18)	~ \	97			
(<u>2</u>) _	-1	-5	(13)		62		
3.	O	-2	3	(5)	~	b3	
9	2	- 2	O	_1	1	ر ر	64
(5)	3	7	9	3	(6	6-6-
(<u>(</u>)	6	142	45	9	1	0	0
Fila		2	3	1	3	6	(7)

Pn(x)=bo+b1(x-x0)+b2(x-x0)(x-x1)+b3(x-x0)(x-x1)(x-x2)+
b4(x-x0)(x-x1)(x-x2) fx-x3)+b5(x-x0)(x-x1)(x-x2)(x-x3)(x-x4).
Como b4 4 b5 es caro el polinomio. quedaria.

 $P_{n(x)} = b_{0} + b_{1}(x-x_{0}) + b_{2}(x-x_{0})(x-x_{1}) + b_{3}(x-x_{0})(x-x_{1})(x-x_{2})$ $P_{3}(x) = -18 + 13(x+q) + (-5)(x+q)(x+1) + 1(x+2)(x+1)(x-0)$ $= -18 + 13x + 26 - 5(x^{2} + 3x + 2) + (x^{2} + 3x + 2)(x)$ $= 8 + 13x - 5x^{2} - 15x - 10 + x^{3} + 3x^{2} + 2x$

P3(x+ x3 - 2x2-2

Evaluación f(1.5) $f(x) = P(x) = (1.5)^3 - 2(1.5)^2 - 2 = -3.125$

[Ep=0%]