NC State University

Department of Electrical and Computer Engineering

ECE 463/521: Fall 2013 (Rotenberg)

Project #1: Cache Design, Memory Hierarchy Design

by

<< Neal G O'Hara >>

NCSU Honor Pledge: "I have neither given nor received unauthorized aid on this test or assignment."						
Student's electronic signature:Neal O'Hara (sign by typing your name)						
Course number:ECE 521 (463 or 521 ?)						

Section 9.1. L1 Cache exploration: SIZE and ASSOC

Graph #1

L1 cache: SIZE is varied, ASSOC is varied, BLOCKSIZE = 32.

L2 cache: None Prefetching: None

Discussion

1) For each associativity, increasing the cache size decreases the miss rate exponentially. For each cache size, increasing the associtivity decreases the miss rate with diminishing returns, ie. 2 ASSOC is much better than Direct Map, but Fully ASSOC is not much better than 8 ASSOC.

- 2) From the graph and data, the compulsory miss rate appears to be around 0.02582, ie. where the graphs bottom out.
- 3) Conflict miss rate can be approximated by Direct Map Miss Rate Fully ASSOC Miss Rate. This calculates out to:

Size	(Conflict Miss	Rate
	1024		0.0565
	2048		0.05914
	4096		0.05063
	8192		0.02788
	16384		0.01975
	32768		0.01144
	65536		0.00709
	131072		0.00651
	262144		0.00002
	524288		0.00002
	1048576		0.00002

GRAPH #2

Same as GRAPH #1, but the y-axis should be AAT instead of L1 miss rate.

Formula Used:

Miss_Penalty (in ns) =
$$20 \text{ ns} + 0.1*(BLOCKSIZE / 16 B/ns)$$

= $20 + 0.1*(32/16) = 20.2 \text{ ns}$

Average access time (AAT) = HT_L1 + MR_L1* Miss_Penalty

Discussion

1) By graph and data, one can see that a fully associative, 16 kb cache has the best AAT, at 0.737676 ns.

GRAPH #3

Add the following L2 cache to the memory hierarchy: 512KB, 8-way set-associative, same block size as L1 cache.

Vary the L1 cache size only between 1KB and 256KB (since L2 cache is 512KB).

Formula Used:

Miss_Penalty (in ns) =
$$20 \text{ ns} + 0.1*(BLOCKSIZE / 16 B/ns)$$

= $20 + 0.1*(32/16) = 20.2 \text{ ns}$

Average access time (AAT) = HT_L1 + MR_L1* (HT_L2 + MR_L2*Miss_Penalty)

HT_L2 for 512KB, 8 ASSOC cache = 0.578177 ns

Discussion

- 1) The following Caches (table below), with their respective L1 Size, L1 ASSOCC, and AAT, fell within 5% of the best AAT time for the previous section. The arrows indicate the AATs less than the best from the earlier section.
- 2) The best configuration is the 8192 B Direct Map L1 cache, at 0.724131 ns AAT. This is 0.013544 ns faster.

L1 Size	ASS	C	AAT
1024 1		1	0.7482140203
204	18	1	0.7360724325 <<<<
409	96	1	0.7264853848 <<<<
819	92	1	0.7241316772 <<<<
1638	34	1	0.7466289097
102	24	2	0.752105966
204	18	2	0.7452006822
409	96	2	0.7462198834
819	92	2	0.7431297667
1638	34	2	0.7650462608
1024		4	0.750889763
2048		4	0.7316914528 <<<<
409	96	4	0.7418935145
8192		4	0.7572925555
16384		4	0.7718738789
2048		8	0.7546846124
4096		8	0.741647682
8192		8	0.7573364297
1024		FΑ	0.7562345789
2048		FΑ	0.749305264
4096		FΑ	0.7331548946 <<<<
8192		FΑ	0.7427629287
16384		FA	0.7424010957
32768		FΑ	0.7614754162

Section 9.2. L1 cache exploration: SIZE and BLOCKSIZE

GRAPH #4

L1 cache: SIZE is varied, BLOCKSIZE is varied, ASSOC = 4.

L2 cache: None. Prefetching: None.

Discussion

1) The 32KB cache has the lowest miss rate at the high end of the Block Sizes, while the 1KB cache has the lowest miss rate at the low end of Block Sizes. This indicates the smaller caches prefer smaller blocks, while larger caches prefer larger blocks. In these scales, 1, 2, and 4 KB count as small, and 16 and 32 KB count as large. 8KB is right in the middle, about the same miss rate on either end of the spectrum.

Section 9.3. L1 + L2 co-exploration

GRAPH #5

L1 cache: SIZE is varied, BLOCKSIZE = 32, ASSOC = 4. L2 cache: SIZE is varied, BLOCKSIZE = 32, ASSOC = 8.

Prefetching: None.

Formula Used:

Miss_Penalty (in ns) =
$$20 \text{ ns} + 0.1*(BLOCKSIZE / 16 B/ns)$$

= $20 + 0.1*(32/16) = 20.2 \text{ ns}$

Average access time (AAT) = HT_L1 + MR_L1* (HT_L2 + MR_L2*Miss_Penalty)

L1 Size	L1 Hit			
	1024	0.14682	L2 Size (KB)	L2 Hit (ns)
	2048	0.154496	32768	0.288511
	4096	0.185685	65536	0.341213
	8192	0.211173	131072	0.401236
1	L6384	0.233936	262144	0.458925
3	32768	0.27125	524288	0.578177
6	65536	0.319481	1048576	0.705819
13	31072	0.38028		
26	62144	0.457685		

Formula:

Area = A1 + A2

A1(2KB L1 with Blocksize = 32, ASSOC = 4) = 0.018662359 mm^2

A2(64KB with Blocksize = 32, ASSOC = 8) = 0.360317611 mm^2

Discussion

- 1) The 64KB L2 cache with L1 cache of 2KB has the lowest AAT of 0.710306 ns.
- 2) Best_AAT_Total_Area = 0.397897997 mm^2
 The only memory with 5% of the above's AAT, with a smaller area, is the 64KB L2 cache with L1 cache of 1KB. The smallest five L1 caches of the 32KB L2 configuration all have smaller areas, but are not within 5% of the area. The first three are within 5% of the AAT however.

Section 9.4 Stream Buffer Study

L1 cache: SIZE = 1KB - 16KB, ASSOC = 4, BLOCKSIZE = 16 - 64.

L2 cache: SIZE = 64KB, ASSOC = 8, BLOCKSIZE = same as L1's block size.

L1 prefetcher: number of stream buffers = 1 to 4, stream buffer depth = 1 to 4 blocks.

L2 prefetcher: none.

Formula Used:

Miss_Penalty (in ns) = 20 ns + 0.1*(BLOCKSIZE / 16 B/ns)

Average access time (AAT) = HT L1 + MR L1* (HT L2 + MR L2*Miss Penalty)

1) Using the formula above, the calculated minimum AAT is 0.2303341 ns, for a Blocksize of 64b, L1 cache size of 4KB, and 4 way associativity, with a Stream Buffer 4 deep and 4 wide (all with the inluded L2 cache of 64KB, 8 way associativity).

This configuration has a total area of 0.393085372 mm², and a total energy of 0.02315942 nJ.

2) After calculating the within %5 AATs of the other configurations, 1 setting comes out top in terms of minimum energy, area, and AAT. The 2KB L1 cache with 64b blocksize costs 0.37409918 mm^2 and 0.0226543 nJ, and ranks at 0.2343843195 ns for AAT. This makes it the best overall cache setting of the variety we simulated, because it combines cheaper area and energy consumption with a very similar AAT to the minimum.