有限体积法代码细节

sis-flag

2022年9月6日

区域 Ω 是二维多边形区域。我们要在区域上求解稳态扩散问题

$$-\nabla \cdot (a \nabla u) = f \quad x \in \Omega$$
$$u = u_0 \quad x \in \Gamma_D$$
$$a\nabla u \cdot n = q \quad x \in \Gamma_N$$

其中 u(x) 是未知函数, a(x) 是 2×2 对称正定的矩阵, 表示扩散系数。

非结构网格

非结构网格指的是不规则的多边形网格。二维网格中的要素有: 节点 (Point), 边 (Edge), 单元 (Unit)。三维的情况下,网格为多面体,要素有: 节点 (Point), 边 (Edge), 面 (Face), 体 (Cell)。这里只考虑二维情况。

理论上来说,想要记录二维网格的所有信息,只需要记录所有点的坐标,和每个单元的 顶点是哪些(逆时针排序)就可以了。我们在保存网格信息的时候,也只需要把这两个数组 写入文件。

在编写数值格式的程序时,我们还需要计算网格更多的信息。数值格式中需要用到的属性有:每个点的坐标,每条边的中点坐标、边长和法向量,每个单元的中心坐标和面积,以及记录三者之间相互连接关系的表。具体每个类中具有的属性如下:

Point (节点)	Edge (边)	Unit (单元)
xp, yp (坐标)	xe, ye (middle 中点坐标)	xc, yc (center 中心坐标)
	nx, ny (法向单位向量)	
	len (length 边的长度)	area (单元的面积)
nE (neighbor edges 与之相	nP (neighbor points 与之相	nP (neighbor points 与之相
连的边的编号)	连的节点的编号)	连的节点的编号)
nU (neighbor units 与之相	nU (neighbor units 与之相	nE (neighbor edges 与之相
连的单元的编号)	连的单元的编号)	连的边的编号)
isbdp (is boundary point 布		isbdu (布尔型单元是否靠近
尔型是否边界点)		边界)

某条边是否是边界上的边不用存储,直接看它相邻单元的个数即可。

边的法向量都是由 nU[1] 指向 nU[2] 的,如果在边界上,法向量默认指向区域外。同时,边的法向量也相当于由 nP[1] 指向 nP[2] 的方向向量顺时针旋转 90 度的方向。

计算单元面积用的是这里的公式: https://zhuanlan.zhihu.com/p/110025234

判断某一点是否在单元内部,用的是这里的公式https://www.cnblogs.com/luxiaoxun/p/3722358.html。

九点格式

在单元 K 上, 九点格式表示为

$$\sum_{e \in nE(K)} \mathcal{F}_{K,e} = |K| f(K)$$

因此九点格式最终要求解的是一个 Units.len 维的线性方程组, 右端项就是 |K| f(K)。

在程序中, 我们要遍历每条边来装配总体的系数矩阵。

边 e = AB 是一条位于内部的边,它的法向为 n_e ,从单元 K 指向单元 L。

边 e 上沿着 ne 方向的流量为在两个单元上计算出的流量平均

$$\mathcal{F}_e = \frac{1}{2}(F_{K,e} + F_{L,e})$$

在 K 单元上计算出的流量为

$$F_{K,e} = |e| (\alpha_{K,A} (u(K) - u(A)) + \alpha_{K,B} (u(K) - u(B)))$$

其中的系数 $\alpha_{K,A}, \alpha_{K,B}$ 由这个方程给出

$$a(K)^T n_e = \alpha_{K,A} \overrightarrow{KA} + \alpha_{K,B} \overrightarrow{KB}$$

在 L 单元上计算流量方法类似。其中的系数 $\alpha_{K,A},\alpha_{K,B}$ 由这个方程给出。注意这里 n_e 的方向没变

$$a(L)^T n_e = \alpha_{L,A} \overrightarrow{LA} + \alpha_{K,B} \overrightarrow{LB}$$

总的流量表达式为

$$F_e = \frac{|e|}{2} \left(\alpha_{K,A} \left(u(K) - u(A) \right) + \alpha_{K,B} \left(u(K) - u(B) \right) + \alpha_{L,A} \left(u(L) - u(A) \right) + \alpha_{L,B} \left(u(L) - u(B) \right) \right)$$
注意 n_e 上的流量既是单元 K 流出的,也是 L 流入的,因此边上的流量矩阵中, K 和 L 对应的行一定互为相反数。

网格节点处的函数值通过相邻的网格中心处函数值线性插值得到。

$$u(A) = \sum_{K \in \mathcal{N}(A)} w_{A,K} u(K)$$

此时就可以把边界上的流量用单元中心表示出来。对于边 AB 上的流量,需要用到与 A 和 B 相邻的所有单元。

考虑流量表达式中和 u(K), u(L) 有关的项,计算边上的流量时,相当于把边流量矩阵加到总体矩阵中去

$$\frac{|e|}{2} \begin{pmatrix} \alpha_{K,A} + \alpha_{K,B} & \alpha_{L,A} + \alpha_{L,B} \\ -\alpha_{K,A} - \alpha_{K,B} & -\alpha_{L,A} - \alpha_{L,B} \end{pmatrix}$$

它在总体矩阵中对应第 K,L 行和第 K,L 列。

考虑流量表达式中和 u(A) 有关的项。如果节点 A 在区域内部,假设节点 A 相邻的单元编号为 K_1, K_2, \cdots, K_n 。边流量矩阵对应

$$-\frac{|e|}{2}(\alpha_{K,A} + \alpha_{L,A})\begin{pmatrix} w_{A,K_1} & w_{A,K_2} & \cdots & w_{A,K_n} \\ -w_{A,K_1} & -w_{A,K_2} & \cdots & -w_{A,K_n} \end{pmatrix}$$

它在总体矩阵中对应第 K, L 行和第 K_1, K_2, \cdots, K_n 列。

流量表达式中和 u(B) 有关的项和它的计算方法是相同的。

如果节点 A 在区域边界,它直接通过方程的边界条件得到,就是在右端项中 K,L 对应的位置加上

$$\frac{|e|}{2}(\alpha_{K,A} + \alpha_{L,A}) \begin{pmatrix} u(A) \\ -u(A) \end{pmatrix}$$

下面考虑区域边界上的边。边 e=AB 是一条位于区域边界的边,它的法向为 n_e ,从单元 K 指向区域外。

如果边上是 Dirichelt 边界条件,此时边上的流量就是

$$F_e = |e| (\alpha_{K,A} (u(K) - u(A)) + \alpha_{K,B} (u(K) - u(B)))$$

由于 u(A), u(B) 可以用边界条件直接得到,这相当于直接在总体矩阵的第 K 行第 K 列加上

$$|e| (\alpha_{K,A} + \alpha_{K,B})$$

然后在第 K 的单元对应的右端项处加上

$$|e| (\alpha_{K,A} u(A) + \alpha_{K,B} u(B))$$

如果边上是 Neumann 边界条件,此时边上的流量直接就是

$$F_e = \int_e g(x) \ dx \approx |e| \ g(e)$$

用边的长度乘以 g(x) 在边中点上的取值得到。直接在 K 对应的右端项里减去它就可以。

程序里只实现了 Dirichlet 边界条件。

五点格式

五点格式中,我们首先假定单元节点上的函数值已知。我们同样要遍历每条边来装配总体的系数矩阵。

边 e = AB 是一条位于内部的边,它的法向为 n_e ,从单元 K 指向单元 L。

单元 K 上计算的流量为

$$F_{Ke} = |e| (\alpha_1 (u(K) - u(P_1)) + \alpha_2 (u(K) - u(P_2)))$$

其中 P_1 , P_2 在 K 的顶点中选择,使联合法向量可以表示成这两个向量的凸组合。 α_1 , $\alpha_2 > 0$ 是组合系数。

$$\kappa(K)^T n_e = \alpha_1 \overrightarrow{KP_1} + \alpha_2 \overrightarrow{KP_2}$$

同理,在相邻的另一个单元上,我们也可以得到另一侧的流量 $F_{L,e}$,对应凸组合的两个点是 P_3, P_4 。注意这里 n_e 是从 K 指向 L 的,因此要加负号。 $\alpha_3, \alpha_4 > 0$ 是组合系数。

$$-\kappa(L)^T n_e = \alpha_3 \overrightarrow{LP_3} + \alpha_4 \overrightarrow{LP_4}$$

我们可以把两个流加权平均起来,得到最终的流量

$$\mathcal{F}_e = \mu_K F_{K,e} - \mu_L F_{L,e}$$

其中 μ_K, μ_L 是权重。表达式为

$$\mu_K = \frac{t_L}{t_K + t_L}, \quad \mu_L = \frac{t_K}{t_K + t_L}, \quad (t_K + t_L \neq 0). \qquad \mu_K = \mu_L = \frac{1}{2}, \quad (t_K + t_L = 0).$$

其中

$$t_K = \alpha_1 u(P_1) + \alpha_2 u(P_2), \quad t_L = \alpha_3 u(P_3) + \alpha_4 u(P_4)$$

最终流量为

$$\mathcal{F}_e = |e| \left(\mu_K \left(\alpha_1 + \alpha_2 \right) u(K) + \mu_L \left(\alpha_3 + \alpha_4 \right) u(L) \right)$$

最终流量里关于节点函数值的项已经被消掉了,只有和 u(K), u(L) 有关的项。因此在计算边上的流量时,只要把这个边流量矩阵加到总体矩阵中去

$$|e| \begin{pmatrix} \mu_K (\alpha_1 + \alpha_2) & -\mu_L (\alpha_3 + \alpha_4) \\ -\mu_K (\alpha_1 + \alpha_2) & \mu_L (\alpha_3 + \alpha_4) \end{pmatrix}$$

它在总体矩阵中对应第 K,L 行和第 K,L 列。

边界条件的处理类似。如果边上是 Dirichelt 边界条件,此时边上的流量就是

$$F_{K,e} = |e| (\alpha_1 (u(K) - u(P_1)) + \alpha_2 (u(K) - u(P_2)))$$

由于 u(A), u(B) 可以用边界条件直接得到,这相当于直接在总体矩阵的第 K 行第 K 列加上

$$|e| (\alpha_1 + \alpha_2)$$

然后在第 K 的单元对应的右端项处加上

$$|e| (\alpha_1 u(P_1) + \alpha_2 u(P_2))$$

对于精确解为正的问题,变量 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\mu_K,\mu_L,t_K,t_L$ 都应该大于 0,在程序里要仔细检查。

插值方法

假设节点 A 相邻的单元编号为 K_1, K_2, \dots, K_n ,这里通过 K_1, K_2, \dots, K_n 的单元中心 值线性组合近似 A 点处的函数值。这里计算的都是线性插值,我们只需要算出插值的权重 w 就可以了。

平均插值就是权重全部为 1/n。逆距离插值是把 K_1, K_2, \dots, K_n 到 A 点距离的倒数归一化之后做为权重。这两种方法都是一阶的,但是保正。

二阶插值的权重是下面这个优化问题的解,我们一方面想让插值和逆距离插值 w_0 接近,另一方面插值要满足二阶条件。

$$\min \|w - w_0\|^2$$

$$s.t. Aw = b \quad w > 0$$

其中

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \frac{\partial u}{\partial x}^{(K_1)}(x_1 - x_A) & \frac{\partial u}{\partial x}^{(K_2)}(x_2 - x_A) & \cdots & \frac{\partial u}{\partial x}^{(K_n)}(x_n - x_A) \\ \frac{\partial u}{\partial y}^{(K_1)}(y_1 - y_A) & \frac{\partial u}{\partial y}^{(K_2)}(y_2 - y_A) & \cdots & \frac{\partial u}{\partial y}^{(K_n)}(y_n - y_A) \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

优化问题的解为

$$\lambda = (A A^T)^{-1} (A w_0 - b)$$
 $w = w_0 - A^T \lambda$

扩散系数在整个区域上可能出现间断,这会导致解的梯度不连续,也就是 $\nabla u^{(K_i)}$ 不一定相等。下面给出求 $\nabla u^{(K_i)}$ 的公式。

由于我们事先知道间断线的位置,我们可以在生成网格的时候把网格边放在间断线处。可以假设 $\nabla u^{(K_i)}$ 在单元内部是连续的。设 n_i 是 K_i 和 K_{i+1} 单元之间对应边的法向量, t_i 是 对应的方向向量。

相邻两个单元之间的流连续条件为

$$n_i^T (\kappa^{(K_i)} \nabla u^{(K_i)}) = n_i^T (\kappa^{(K_{i+1})} \nabla u^{(K_{i+1})})$$

由于解是连续的,解的梯度应该在切向相同

$$t_i^T \nabla u^{(K_i)} = t_i^T \nabla u^{(K_{i+1})}$$

梯度要满足的方程为

$$\begin{pmatrix} n_1^T \kappa^{(K_1)} & -n_1^T \kappa^{(K_2)} \\ t_1^T & -t_1^T \\ & n_2^T \kappa^{(K_2)} & -n_2^T \kappa^{(K_3)} \\ & t_2^T & -t_2^T \\ & & \ddots & \ddots \\ -n_n^T \kappa^{(K_1)} & & & n_n^T \kappa^{(K_n)} \\ -t_n^T & & & & t_n^T \end{pmatrix} \begin{pmatrix} \nabla u^{(K_1)} \\ \nabla u^{(K_2)} \\ \vdots \\ \nabla u^{(K_n)} \end{pmatrix} = 0$$

这里面有 2n 个方程,2n 个未知数,而且是齐次方程,应该只有零解。但是零解肯定不是我们想要的,这里我们找另一种形式的最小二乘解。

$$\min_{\|x\|=1} \|Ax\|$$

从这个角度考虑,得到的梯度应该是系数矩阵最小奇异值对应的右奇异向量。

这样就可以算出梯度, 进而得到二阶插值。

二阶插值不一定保正。我们的策略是,先用二阶插值试一试,如果得到的结果是保正的,就留下,如果权重中存在小于 0 的值,就改成逆距离插值。