

Chapitre 1

Linéarisation des critères maxmin et minmax regret

1.1 Programme linéare maxmin

$$\max \quad t$$
 sous contraintes
$$t \leq \sum_{i=1}^n v_{i,1} x_i$$

$$t \leq \sum_{i=1}^n v_{i,2} x_i$$

$$\sum_{i=1}^n w_i x_i \leq W$$

$$x_i \in \{0,1\}, \quad \forall i=1,\dots,n$$

Solution optimale trouvé avec Gurobi :

$$x^* = [2, 3, 4, 7, 8, 9]$$

 $z(x^*) = [66, 66]$

1.2 Programme linéaire minmax regret

$$\begin{aligned} & \text{min} \quad t \\ & \text{sous contraintes} \quad t \geq z_1^* - \sum_{i=1}^n v_{i,1} x_i \\ & \quad t \geq z_2^* - \sum_{i=1}^n v_{i,2} x_i \\ & \quad \sum_{i=1}^n w_i x_i \leq W \\ & \quad x_i \in \{0,1\}, \quad \forall i=1,\dots,n \end{aligned}$$

 z_i^\ast étant la meilleure valeure pour le scénario i

Solution optimale trouvé avec Gurobi :

$$x^{'*} = [2, 3, 6, 7, 8, 9]$$
$$z(x_1^*, x_2^*) = [112, 118]$$
$$z(x^{'*}) = [62, 70]$$

1.3 Représentation dans le plan

1.4 Analyse de pérformance

FIGURE 1.1 – Comparaison des temps d'exécution pour les modèles maxmin et minmax regret.

Chapitre 2

Linéarisation du critère maxOWA

2.1 $L_k(z)$ comme valeur optimale

Explication : Étant donné que le vecteur $(z_{(1)}, \ldots, z_{(n)})$ est ordonné en ordre croissant, la somme $\sum_{i=1}^k z(i)$ correspond à la somme des k plus petites valeurs de z_i et donc à la valeur optimale du programme linéaire.

2.2 Utiliser le dual pour trouver les composantes du L(z)

Primal:

$$\min \sum_{i=1}^{n} a_{ik} z_{i}$$
s.c.
$$\sum_{i=1}^{n} a_{ik} = k$$

$$0 \le a_{ik} \le 1, \quad i = 1, \dots, n$$

Dual:

$$\max k \cdot r_k - \sum_{i=1}^n b_{ik}$$
s.c. $r_k - b_{ik} \le z_i$, $\forall i = 1, ..., n$
 $b_{ik} \ge 0$, $\forall i = 1, ..., n$

Trouver L(z) avec z = [2, 9, 6, 8, 5, 4] (voir le code pour calculation par programmation linéaire):

$$L_1(z) = 2$$

 $L_2(z) = 6$
 $L_3(z) = 11$
 $L_4(z) = 17$
 $L_5(z) = 25$
 $L_6(z) = 34$

2.3 Reécrire l'OWA

Montrer que

$$g(x) = \sum_{i=1}^{n} w_i z_{(i)}(x)$$
$$= \sum_{k=1}^{n} w'_k L_k(z(x))$$

Explication:

$$\begin{aligned} \text{par d\'efinition} &: z_{(k)}(x) = L_k(z(x)) - L_{k-1}(z(x)) \\ g(x) &= \sum_{i=1}^n w_i z_{(i)}(x) \\ &= w_1 z_{(1)} + w_2 z_{(2)} + \ldots + w_n z_{(n)} \\ &= w_1 L_1(z(x)) + w_2 (L_2(z(x)) - L_1(z(x))) + \ldots + w_n (L_n(z(x)) - L_{n-1}(z(x))) \\ &= (w_1 - w_2) L_1(z(x)) + (w_2 - w_3) (L_2(z(x))) + \ldots + (w_{n-1} - w_n) L_n \\ &= \sum_{k=1}^n w_k' L_k(z(x)) \end{aligned}$$

2.4 Formulation maxOWA pour le problème SAD

$$\sum_{k=1}^{n} w_k' \left(k \cdot r_k - \sum_{i=1}^{n} b_{ik} \right)$$
s.c.
$$r_k - b_{ik} \le z_i(x)$$

$$b_{ik} \ge 0$$

$$\sum_{i=1}^{n} w_i x_i \le W,$$

$$x_i \in \{0, 1\}, \quad i = 1, \dots, n.$$

Solution optimale trouvé avec Gurobi :

$$x^* = [2, 3, 4, 7, 8, 9]$$

 $z(x^*) = [66, 66]$

2.5 Formulation linéaire pour le critère de minOWA

Primal:

 $L_k(z) = \sum_{i=1}^k r(x,s_{(i)}),$ regret en ordre décroissant, donc :

$$\max \sum_{i=1}^{n} a_{ik} r(x, s_{(i)})$$
s.c.
$$\sum_{i=1}^{n} a_{ik} = k$$

$$0 \le a_{ik} \le 1, \quad i = 1, \dots, n$$

$$r(x, s_{(i)}) = z_i^* - z_i(x)$$

Dual:

$$\min \quad k \cdot r_k + \sum_{i=1}^n b_{ik}$$
s.c.
$$r_k + b_{ik} \ge r(x, s_{(i)}), \quad \forall i = 1, \dots, n$$

$$b_{ik} \ge 0, \quad \forall i = 1, \dots, n$$

Formulation entière :

$$\min \sum_{k=1}^{n} w_k' \left(k \cdot r_k + \sum_{i=1}^{n} b_{ik} \right)$$
s.c.
$$r_k + b_{ik} \ge r(x, s_{(i)}), \quad i = 1, \dots, n$$

$$b_{ik} \ge 0, \quad i = 1, \dots, n$$

$$\sum_{i=1}^{n} w_i x_i \le W$$

$$x_i \in \{0, 1\} \quad \forall i = 1, \dots, n$$

Solution optimale trouvé avec Gurobi :

$$x^{'*} = [2, 4, 5, 7, 8, 9]$$

$$z(x_1^*, x_2^*) = [112, 118]$$

$$z(x^{'*}) = [62, 70]$$

2.6 Analyse de performance

FIGURE 2.1 – Comparaison des temps d'exécution pour les modèles maxOWA et minOWA des regrets.

Chapitre 3

Application à la recherche d'un chemin robuste dans un graphe

3.1 Modelisation du problème de plus court chemin comme problème du flot de coût minimum

```
G=(V,E), source : s\in V, puit : t\in V a(u,v) : cout pour passer de u à v, f(u,v)=1 si (u,v)\in plus court chemin
```

Programme linéaire :

$$\begin{split} \min \sum_{(u,v) \in E} a(u,v) f(u,v) \\ s.c. \sum_{(u,v) \in E} f(u,v) &= \sum_{(v,w) \in E} f(v,w) \quad \forall v \in V \setminus \{s,t\} \\ &\sum_{s,v \in E} f(s,v) >= 1 \\ &f(u,v) \in (0,1) \quad \forall (u,v) \in E \end{split} \quad \text{, contrainte de conservation du flux }$$

3.2 Application aux exemples

Solution optimale trouvé avec Gurobi pour l'instance 1:

$$x_1^* = [a, b, d, f]$$

$$x_2^* = [a, c, d, f]$$

$$z(x^*) = [8, 4]$$

Pour l'instance 2 :

$$x_1^* = [a, d, c, f, g]$$

 $x_2^* = [a, c, e, g]$
 $z(x^*) = [5, 6]$

3.3 Programmes linéaires pour trouver un chemin robuste

x est une solution valide si :

$$\sum_{(u,v)\in E} f(u,v) = \sum_{(v,w)\in E} f(v,w) \quad \forall v\in V\setminus \{s,t\} \qquad \text{, contrainte de conservation du flux}$$

$$\sum_{s,v\in E} f(s,v) >= 1 \qquad \text{, contrainte de flux sortant de la source}$$

$$f(u,v)\in \{0,1\} \quad \forall (u,v)\in E$$

minmax

Comme on veut trouver le plus court chemin, on calcule le min des solutions maximales pour un chemin X. Programme linéaire pour n scénarios :

$$\begin{aligned} & \text{min} \quad t \\ & s.c. \quad t \geq \sum_{(u,v) \in E} a_i(u,v) f(u,v) \\ & \qquad \qquad x \in X \\ & \qquad f(u,v) \in \{0,1\} \quad \forall (u,v) \in E \end{aligned}$$

minmax des regrets

Programme linéaire pour n scénarios :

$$\min t$$

$$s.c. \quad t \ge \sum_{(u,v)\in E} (a_i(u,v)f(u,v)) - z_i^* \qquad i \in \{1,\dots,n\}$$

$$x \in X$$

$$f(u,v) \in \{0,1\} \quad \forall (u,v) \in E$$

minOWA

$$\min \sum_{k=1}^{n} w_k' \left(k \cdot r_k + \sum_{i=1}^{n} b_{ik} \right)$$
s.c. $r_k + b_{ik} \ge z_i(x)$ $i = 1, \dots, n$

$$x \in X$$

$$b_{ik} \ge 0, \quad i = 1, \dots, n$$

minOWA des regrets

$$\min \sum_{k=1}^{n} w_k' \left(k \cdot r_k + \sum_{i=1}^{n} b_{ik} \right)$$
s.c. $r_k + b_{ik} \ge r(x, s_{(i)}), \quad i = 1, \dots, n$

$$b_{ik} \ge 0, \quad i = 1, \dots, n$$

$$x \in X$$

Résultats

minMax et minMax des regrets

Instance	Méthode	Chemin	Valeur de la fonction objectif	Vecteur_z
Instance 0	minmax	a,b,d,f	9	[8, 9]
	minMax des regrets	a,b,e,f	3	[11, 7]
Instance 1	minmax	a,b,e,g	10	[10, 10]
	minMax des regrets	a,b,e,g	5	[10, 10]

Table 3.1 – Comparaison des résultats des méthodes minmax et minMax des regrets.

Méthode	Instance	k	Chemin	Vecteur_z	Valeur de la fonction objectif
	0	2	a,b,d,f	[8, 9]	26
		4	a,b,d,f	[8, 9]	44
		8	a,b,d,f	[8, 9]	80
minOWA		16	a,b,d,f	[8, 9]	152
	1	2	a,b,e,g	[10, 10]	30
		4	a,b,e,g	[10, 10]	50
		8	a,b,e,g	[10, 10]	90
		16	a,b,e,g	[10, 10]	170
		2	a,b,e,f	[11, 7]	9
	0	4	a,b,e,f	[11, 7]	15
		8	a,b,e,f	[11, 7]	27
minOWA des regrets		16	a,b,e,f	[11, 7]	51
minowit des regrets	1	2	a,d,f,g	[6, 12]	13
		4	a,b,e,g	[10, 10]	24
	1	8	a,b,e,g	[10, 10]	44
		16	a,b,e,g	[10, 10]	84

Table 3.2 – Comparaison des méthodes min OWA et min OWA des regrets.

Instance	z^*
0	[8, 4]
1	[5, 6]

Table 3.3 – Valeurs de z^{\ast} pour chaque instance

minOWA et minOWA des regrets

3.4 Analyse de pérformance

FIGURE 3.1 – Comparaison des temps d'exécution pour les modèles min Max, min MaxRegret, min OWA et min OWA des regrets.