

Similarity-based Lexicographic Method for Hierarchical Multiobjective Linear Programs

Devanand R, Ashutosh Mahajan and N. Hemachandra

Department
Industrial Engineering and
Operations Research,
IIT Bombay, India

Acknowledgment: I thank Tushar Shekhar, my external advisor, and manager at Blue Yonder, for his support and suggestions.

At High Level

We define the **concept of similarity** between intermediate linear programs (LPs) appearing while solving the hierarchical multiobjective linear program (**h-MOLP**) for the decision of whether we should solve the current LP from **scratch** or use the **available feasible solution** obtained from the **previous** LP solve.

h-MOLP with bounded variables

lexmin
$$c^{1^T}x$$
, $c^{2^T}x$, \cdots , $c^{t^T}x$ subject to $Ax = b$, $l \le x \le u$.

lexmin: $c^{1^{\mathsf{T}}}x$ is more important than $c^{2^{\mathsf{T}}}x$ which is, more important than $c^{3^{\mathsf{T}}}x$, and so on and, $c^{t^{\mathsf{T}}}x$ is of least importance.

Lexicographic Methods

- 1. LP^k Constraint-addition rule
- 2. $modLP^k$ Variable fixing rule

$$LP^{k} := \min c^{k}x \qquad \mod LP^{k} := \min c^{k}x$$

s.t. $Ax = b$, s.t. $Ax = b$,
$$c^{i}x = y^{i}, i = 1, \dots, k - 1, \qquad x_{j} = f_{j}, j \in J^{k} \subseteq \{1, \dots, n\},$$

$$l \leq x \leq u.$$

$$l \leq x \leq u.$$

Remarks

- 1. Both provide Pareto-optimal solution
- 2. Most literature describes LP^k rule in the discussion of the method
- 3. Most solvers prefer implementing the modLP^k
- 4. Assumption: h-MOLP is nontrivial alternative optimal solutions while solving the underlying LPs, and we have conflicting objectives

Motivation

- To obtain **one solution** point both need the solution of **many** LPs
- To speed it up, many solvers provide a feature of Reoptimization
- However, a rule is required to **selectively decide** when to use Reoptimization

Prefer Solving from Scratch

Prefer Reoptimization

Notion of Similarity

 LP^1 is **similar** to LP^2 , if the solution of LP^1 helps solve LP^2 faster than just solving it from scratch.

Definition 1. Let $LP^1 := \min\{c^1x \mid Ax = b, \ l^1 \leq x \leq u^1\}$ and $LP^2 := \min\{c^2x \mid Ax = b, \ l^2 \leq x \leq u^2\}$ are two LPs. We assume that the feasible sets of both LP^1 and LP^2 are non-empty. With respect to p and p, the optimal solution and the optimal basis of LP^1 , we say LP^1 and LP^2 are "similar" if

$$\left[1 - \left(\frac{\sum_{j=1}^{n} I_{p_j} |c_j^2 - c_j^1|}{\sum_{j=1}^{n} |c_j^2 - c_j^1|}\right)\right] \ge \kappa,$$

where $0 \le \kappa \le 1$ is the given parameter. I_{p_j} the indicator function is equal to 1 if $e_j \ne 0$ and $\overline{c_j^1} = 0$, else is set to 0. Here, reduced cost of LP^1 is $\overline{c^1} := c^1 - c_B^1 B^{-1} A$ and $e := c^2 - c_B^2 B^{-1} A$ is assumed as the estimated reduced cost of LP^2 .

Result

Consider p, B and $\overline{c^1}$ are at optimality of LP^1 . Consider a perturbed cost vector $c^2 = c^1 + \delta$ where $\delta \neq 0$ is given. Let $e = c^2 - c_B^2 B^{-1} A$. For any component $p_i, i \in \{1, \dots, n\}$, if $\overline{c_i^1} \cdot e_i \leq 0$ and, $\overline{c_i^1}$ and e_i both can not together be zero, the basis B of LP^1 is not the optimal basis of LP^1 with perturbed cost vector c^2 .

SimLex: Similarity-based Decision to Reoptimize

Performance comparison: SimLex Vs Variable-fixing. Blue points at level 1 indicate solving with hotstart and at level 0 indicate solving from scratch

Result and Future Work

- 1. Comparison is done over default CPLEX12.10 and other rules
- 2. Apply this idea with 1) **MOPLIB**, a library of benchmark multi objectives programs, and, 2) model of the **master production schedules** (MPS)
- 3. Reported 25% (SGM-50) speedup from our rule over default CPLEX rule on obtaining MPS on 13 large scaled consumer and products goods (CPG) industry dataset
- 4. **Ideal parameter selection** of κ for similarity computation is not emphasized and is the main works that need to be done