

Preference Fine-Tuning (Part 2)

> FINE-TUNING WITH RL & REWARD MODEL

The LLM weights are updated to create a human-aligned model via reinforcement learning, leveraging the reward model, and starting with a high-performing base model.

Goal: To align the LLM with provided instructions and human behavior.

Example:

Prompt: "A tree is..."

Iteration 1: "...a plant with a trunk." → Reward: 0.3
...

Iteration 4: "...a provider of shade and oxygen." → Reward: 1.6
...

Iteration n: "...a symbol of strength and resilience." → Reward: 2.9

As the process advances successfully, the reward will gradually increase until it meets the predefined evaluation criteria for helpfulness.

Updated model: The resulting updated model should be more aligned with human preferences.

Reinforcement learning algorithm: Proximal policy optimization (PPO) is a popular choice.

PPO ALGORITHM FOR LLMS

PPO iteratively updates the policy to **maximize the reward**, adjusting the LLM weights incrementally to **maintain proximity to the previous version** within a defined range for **stable learning**.

The **PPO objective** is used to update the LLM weights by backpropagation:

Value Loss: Minimize it to improve return prediction accuracy.

Policy Loss: Maximize it to get higher rewards while staying within reliable bounds.

Entropy Loss: Maximize it to promote and sustain model creativity.

$$L^{ENT} = entropy(\pi_{\theta}(.|s_t))$$

The higher the entropy, the more creative the policy.

REWARD HACKING

The agent **learns to cheat the system** by maximizing rewards at the expense of alignment with desired behavior.

To prevent reward hacking, **penalize RL updates** if they significantly deviate from the frozen original LLM, using **KL divergence.**

DIRECT PREFERENCE OPTIMIZATION

An RLHF pipeline is difficult to implement:

- Need to train a reward model
- New completions needed during training
- Instability of the RL algorithm

Direct Preference Optimization (DPO) is a simpler and more stable **alternative to RLHF**. It solves the same problem by minimizing a training loss directly based on the preference data (without reward modeling or RL).

Identity Preference Optimization (IPO) is a variant of DPO less prone to overfitting.

≥ RL FROM AI FEEDBACK

Obtaining the reward model is labor-intensive; scaling through AI-supervision is more precise and requires fewer human labels.

Constitutional AI (Bai, Yuntao, et al., 2022)

Approach that relies on a **set of principles** governing AI behavior, along with a small number of examples for few-shot prompting, collectively forming the "**constitution**."

Example of constitutional principle: "Please choose the response that is the most helpful, honest, and harmless."

Supervised Learning Stage

2. Reinforcement Learning (RL) Stage - RLAIF

