

Neural Search in Action

Yusuke Matsui The University of Tokyo

Martin Aumüller
IT University of Copenhagen

Han Xiao Jina Al

Yusuke Matsui ******東京大学 THE UNIVERSITY OF TOKYO

Lecturer (Assistant Professor), the University of Tokyo, Japan

- ✓ Image retrieval
- ✓ Large-scale indexing

ARM 4-bit PQ [Matsui+, ICASSP 22]

CVPR 2020 Tutorial on Image Retrieval in the Wild

Image Retrieval in the Wild [Matsui+, CVPR 20, tutorial]

Martin Aumüller

Associate Professor, IT University of Copenhagen, Denmark

- ♠ http://itu.dk/people/maau
- @maumueller
- ✓ Similarity search using hashing
- ✓ Benchmarking & workload generation

PUFFINN
[Aumüller+, ESA 2019]

Billion-Scale ANN Challenge [Aumüller+, NeurIPS 21, Competition]³

Han Xiao

Founder & CEO of Jina Al

https://jina.ai

DocArray

Stars | 2.3K

@hxiao

- ✓ Multimodal search & generation
- ✓ Model tuning & serving; prompt tuning & serving

Embed images and sentences into fixedlength vectors with CLIP

Easy, low-latency and highly scalable service that can easily be integrated into new and existing solutions.

CLIP-as-service

Target audiences

- > Those who want to try Neural Search
- ➤ Those who have tried Neural Search but would like to know more about the algorithm in depth

Our talk

- Million-scale search (Yusuke)
- Billion-scale search (Martin)
- Query language (Han)

Theory and Applications of Graph-based Search

Yusuke Matsui
The University of Tokyo

- Background
- > Graph-based search
 - ✓ Basic (construction and search)
 - ✓ Observation
 - **✓** Properties
- > Representative works
 - ✓ HNSW, NSG, NGT, Vamana
- Discussion

Nearest Neighbor Search; NN

- > N D-dim database vectors: $\{x_n\}_{n=1}^N$
- \triangleright Given a query q, find the closest vector from the database
- ➤ One of the fundamental problems in computer science
- ➤ Solution: linear scan, O(ND), slow \otimes

Approximate Nearest Neighbor Search; ANN

- > Faster search
- >Don't necessarily have to be exact neighbors
- >Trade off: runtime, accuracy, and memory-consumption

Real-world use cases 1: multimodal search

- > Encoder determines the upper bound of the accuracy of the system
- > ANN determines a trade-off between accuracy, runtime, and memory

Image are from: https://github.com/haltakov/natural-language-image-search
Credit: Photos by Genton Damian, bruce mars, Dalal Nizam, and Richard Burlton on Unsplash

Real-world use cases 2: LLM + embedding

Real-world use cases 2: LLM + embedding

Three levels of technology

Algorithm

- Scientific paper
- > Math
- Often, by researchers

Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable Small World (HNSW) [Malkov+, TPAMI 2019]

ScaNN (4-bit PQ) [Guo+, ICML 2020]

Library

- > Implementations of algorithms
- Usually, a search function only
- > By researchers, developers, etc

faiss **NMSLIB** hnswlib **ScaNN**

Service (e.g., vector DB)

- Library + (handling metadata, serving, scaling, IO, CRUD, etc)
- Usually, by companies

Three levels of technology

Algorithm

- Scientific paper
- > Math
- Often, by researchers

Product Quantization +
Inverted Index (PQ, IVFPQ)
[Jégou+, TPAMI 2011]

Hierarchical Navigable Small World (HNSW) [Malkov+, TPAMI 2019]

ScaNN (4-bit PQ) [Guo+, ICML 2020]

Library

- Implementations of algorithms
- Usually, a search function only
- By researchers, developers, etc.

faiss

Service (e.g., vector DB)

- Library + (handling metadata, serving, scaling, IO, CRUD, etc)
- > Usually, by companies

Pinecone

This talk mainly focuses algorithms

hnswlib Vald Vertex AI Matching Engine

ScaNN Weaviate

- Background
- > Graph-based search
 - ✓ Basic (construction and search)
 - ✓ Observation
 - **✓** Properties
- > Representative works
 - ✓ HNSW, NSG, NGT, Vamana
- Discussion

Graph search

- > De facto standard if all data can be loaded on memory
- > Fast and accurate for real-world data
- Important for billion-scale situation as well
 - ✓ Graph-search is a building block for billion-scale systems

- Traverse graph towards the query
- Seems intuitive, but not so much easy to understand
- Review the algorithm carefully

Graph search

De facto standard if all data can be loaded on memory

t for billion-scale situation as well

- Fast and accurate for real-world data
- Import
 - ✓ Grap

The purpose of this tutorial is to make graph search **not a black box**

systems

- Traverse graph towards the query
- Seems intuitive, but not so much easy to understand
- Review the algorithm carefully

Increment approach

Add a new item to the current graph incrementally

Refinement approach

> Iteratively refine an initial graph

Increment approach

Add a new item to the current graph incrementally

Refinement approach

> Iteratively refine an initial graph

Each node is a database vector

- Each node is a database vector
- Given a new database vector,

- Each node is a database vector
- >Given a new database vector, create new edges to neighbors

- Each node is a database vector
- >Given a new database vector, create new edges to neighbors

- Each node is a database vector
- >Given a new database vector, create new edges to neighbors

Increment approach

Add a new item to the current graph incrementally

Refinement approach

> Iteratively refine an initial graph

- > Create an initial graph (e.g., random graph or approx. kNN graph)
- Refine it iteratively (pruning/adding edges)

- Given a query vector
- > Start from an entry point (e.g., \omega)

 \triangleright Start from an entry point (e.g., \bigcirc). Record the distance to q.

➤ Pick up the unchecked best candidate (M). Check it.

- ➤ Pick up the unchecked best candidate (M). Check it.
- > Find the connected points.

- ➤ Pick up the unchecked best candidate (). Check it.
- > Find the connected points.
- Record the distances to q.

- ➤ Pick up the unchecked best candidate (). Check it.
- > Find the connected points.
- Record the distances to q.

- ➤ Pick up the unchecked best candidate (). Check it.
- > Find the connected points.
- Record the distances to q.

- ➢ Pick up the unchecked best candidate (™). Check it.
- > Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

- ➢ Pick up the unchecked best candidate (™). Check it.
- Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

> Pick up the unchecked best candidate (1)

Pick up the unchecked best candidate (1). Check it.

- Pick up the unchecked best candidate (1). Check it.
- > Find the connected points.

- Pick up the unchecked best candidate (1). Check it.
- > Find the connected points.
- > Record the distances to q.

- > Find the connected points.
- > Record the distances to q.

15.3

13.2

- Pick up the unchecked best candidate (1). Check it.
- Find the connected points.
- > Record the distances to q.

15.3

13.2

- Pick up the unchecked best candidate (1). Check it.
- > Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

- Pick up the unchecked best candidate (1). Check it.
- > Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

➤ Pick up the unchecked best candidate (B)

➤ Pick up the unchecked best candidate (B). Check it.

- Pick up the unchecked best candidate (B). Check it.
- > Find the connected points.

- ➤ Pick up the unchecked best candidate (B). Check it.
- > Find the connected points.
- > Record the distances to q.

- ➤ Pick up the unchecked best candidate (B). Check it.
- > Find the connected points.
- > Record the distances to q.

- Pick up the unchecked best candidate (B). Check it.
- > Find the connected points.
- > Record the distances to q.

- Pick up the unchecked best candidate (B). Check it.
- > Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

- Pick up the unchecked best candidate (B). Check it.
- > Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

> Pick up the unchecked best candidate ().

> Pick up the unchecked best candidate (). Check it.

- Pick up the unchecked best candidate (). Check it.
- > Find the connected points.

- Pick up the unchecked best candidate (). Check it.
- > Find the connected points.
- > Record the distances to q.

- Pick up the unchecked best candidate (). Check it.
- > Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

> Pick up the unchecked best candidate (D).

Best

(size = 3)

Pick up the unchecked best candidate (D). Check it.

- Pick up the unchecked best candidate (D). Check it.
- > Find the connected points.

- Pick up the unchecked best candidate (D). Check it.
- > Find the connected points.
- > Record the distances to q.

- Pick up the unchecked best candidate (D). Check it.
- > Find the connected points.
- > Record the distances to q.

- Pick up the unchecked best candidate (D). Check it.
- > Find the connected points.
- > Record the distances to q.

- Pick up the unchecked best candidate (D). Check it.
- Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

- Pick up the unchecked best candidate (D). Check it.
- > Find the connected points.
- > Record the distances to q.
- ➤ Maintain the candidates (size=3)

- > All candidates are checked. Finish.
- ➤ Here, is the closet to the query ()

- > All candidates are checked. Finish.
- ➤ Here, is the closet to the query ()

- Background
- > Graph-based search
 - ✓ Basic (construction and search)
 - ✓ Observation
 - **✓** Properties
- > Representative works
 - ✓ HNSW, NSG, NGT, Vamana
- Discussion

Observation: runtime

 \triangleright Item comparison takes time; O(D)

- The overall runtime ~ #item_comparison
 - ~ length_of_search_path * average_outdegree

outdegree = 2

outdegree = 2

#item_comparison =
$$3 * (1 + 2 + 2)/3 = 5$$

Observation: runtime

 \triangleright Item comparison takes time; O(D)

- The overall runtime ~ #item_comparison
 - ~ length_of_search_path * average_outdegree

Observation: candidate size

Slow. But find a better solution

size = 1: Greedy search

size > 1: Beam search

- ➤ Larger candidate size, better but slower results
- Online parameter to control the trade-off
- Called "ef" in HNSW

Graph search algorithms

Table 2: Summary of important representative graph-based ANNS algorithms

Algorithm	Base Graph	Edge	Build Complexity	Search Complexity
KGraph [31]	KNNG	directed	$O(S ^{1.14})$	$O(S ^{0.54})^{\frac{1}{7}}$
NGT [46]	KNNG+DG+RNG	directed	$O(S ^{1.14})^{\ddagger}$	$O(S ^{0.59})^{\ddagger}$
SPTAG [27]	KNNG+RNG	directed	$O(S \cdot \log(S ^c + t^t))^{\dagger}$	$O(S ^{0.68})^{\ddagger}$
NSW [65]	DG	undirected	$O(S \cdot \log^2(S))^{\ddagger}$	$O(\log^2(S))^{\dagger}$
IEH [54]	KNNG	directed	$O(S ^2 \cdot \log(S) + S ^2)^{\frac{1}{2}}$	$O(S ^{0.52})^{\ddagger}$
FANNG [43]	RNG	directed	$O(S ^2 \cdot \log(S))$	$O(S ^{0.2})$
HNSW [67]	DG+RNG	directed	$O(S \cdot \log(S))$	$O(\log(S))$
EFANNA [36]	KNNG	directed	$O(S ^{1.13})^{\ddagger}$	$O(S ^{0.55})^{\ddagger}$
DPG [61]	KNNG+RNG	undirected	$O(S ^{1.14} + S)^{\ddagger}$	$O(S ^{0.28})^{\frac{1}{7}}$
NSG [38]	KNNG+RNG	directed	$O(S ^{\frac{1+c}{c}} \cdot \log(S) + S ^{1.14})^{\dagger}$	$O(\log(S))$
HCNNG [72]	MST	directed	$O(S \cdot \log(S))$	$O(S ^{0.4})^{\ddagger}$
Vamana [88]	RNG	directed	$O(S ^{1.16})^{\ddagger}$	$O(S ^{0.75})^{\ddagger}$
NSSG [37]	KNNG+RNG	directed	$O(S + S ^{1.14})$	$O(\log(S))$

 $^{^{\}dagger}$ c, t are the constants. ‡ Complexity is not informed by the authors; we derive it based on the related papers' descriptions and experimental estimates. See Appendix D for deatils.

Figure 3: Roadmaps of graph-based ANNS algorithms.
 The arrows from a base graph (green shading) to an algorithm (gray shading) and from one algorithm to another indicate the dependence and development relationships.

- > The basic structure is same: (1) designing a good graph + (2) beam search

The initial seed matters

- ➤ Starting from a good seed → Shorter path → Faster search
- > Finding a good seed is also an ANN problem
- ➤ Solve a small ANN problem by tree [NST; Iwasaki+, arXiv 18], hash [Effana; Fu+, arXiv 16] or LSH [LGTM; Arai+, DEXA 21]

This time, there are no neighbors. So let's make an edge

Find the 2nd nearest one to A

Find the 2nd nearest one to A done For all neighbors of A, compare and
 If is the shortest, make an edge

Shortest! Not make an edge

Find the 2nd nearest one

- For all neighbors of A, compare and
- > If is the shortest, make an edge

Edge selection: RNG-pru Find the 3rd nearest one to A

Edge selection: RNG-pru Find the 3rd nearest one to A

Edge selection: RNG-pru Find the 3rd nearest one to A

Edge selection: RNG-pru Find the 4th nearest one to A

Edge selection: RNG-pruffind the 4th nearest one to A

Edge selection: RNG-pruffind the 4th nearest one to A

Edge selection: RNG-pruning

RNG-pruning is an effective edge-pruning technique, and used in several algorithms

Pros: Implementation is easy

Cons: Require many distance computations

- Background
- > Graph-based search
 - ✓ Basic (construction and search)
 - ✓ Observation
 - **✓** Properties
- Representative works
 - **✓ HNSW, NSG, NGT, Vamana**
- Discussion

Hierarchical Navigable Small World; HNSW

- Construct the graph hierarchically [Malkov and Yashunin, TPAMI, 2019]
- Fix #edge per node by RNG-pruning
- > The most famous algorithm; works very well in real world

Hierarchical Navigable Small World; HNSW

- Used in various services
 - ✓ milvus, weaviate, qdrant, vearch, elasticsearch,
 OpenSearch, vespa, redis, Lucene...
- > Three famous implementations
 - ✓ NMSLIB (the original implementation)
 - √ hnswlib (light-weight implementation from NMSLIB)
 - ✓ Faiss (re-implemented version by the faiss team)

Navigating Spreading-out Graph (NSG) [Fu+, VLDB 19]

- Monotonic RNG
- In some cases, slightly better than HNSW
- Used in Alibaba's Taobao
- Recall the def. of RNG is "no point in a lune"
- The path "p -> q" is ling

RNG Monotonic RNG

Monotonic RNG can make more edges

Images are from [Fu+, VLDB 19]151

Navigating Spreading-out Graph (NSG) [Fu+, VLDB 19]

The original implementation: https://github.com/ZJULearning/nsg

- Implemented in faiss as well
- ➤ If you're using faiss-hnsw and need a little bit more performance with the same interface, worth trying NSG

IndexHNSWFlat(int d, int M, MetricType metric)
IndexNSGFlat(int d, int R, MetricType metric)

Neighborhood Graph and Tree (NGT)

[Iwasaki+, arXiv 18]

- Make use of range search for construction
- Obtain a seed via VP-tree

- Current best methods in ann-benchmarks are NGT-based algorithms
- Quantization is natively available

- Repository: https://github.com/yahoojapan/NGT
- > From Yahoo Japan
- Used in Vald

Image are from the original repository

DiskANN (Vamana) [Subramanya+, NeurlPS 19]

- Vamana: Graph-based search algorithm
- > DiskANN: Disk-friendly search system using Vamana
- From MSR India https://github.com/microsoft/DiskANN

- > Good option for huge data (not the main focus of this talk, though)
- > The same team is actively developing interesting functionalites
 - ✓ Data update: FreshDiskANN [Singh+, arXiv 21]
 - ✓ Filter: Filtered-DiskANN [Gollapudi+, WWW 23]

- Background
- > Graph-based search
 - ✓ Basic (construction and search)
 - ✓ Observation
 - **✓** Properties
- > Representative works
 - ✓ HNSW, NSG, NGT, Vamana
- Discussion

Just NN? Vector DB?

- Vector DB companies say "Vector DB is cool"
 - √ https://weaviate.io/blog/vector-library-vs-vector-database
 - ✓ https://codelabs.milvus.io/vector-database-101-what-is-a-vector-database/index#2
 - √ https://zilliz.com/learn/what-is-vector-database
- > My own idea:

If speed is the only concern, just use libraries

- ➤ Which vector DB? → No conclusions!
- ➤ If you need a clean & well designed API, I recommend taking a look at docarray in Jina AI (see Han's talk today!)

Useful resources

- > Several companies have very useful blog series
- Pinecone Blog
 - ✓ https://www.pinecone.io/learn/
- Weaviate Blog
 - ✓ https://weaviate.io/blog
- Jina Al Blog
 - ✓ https://jina.ai/news/
- Zilliz Blog
 - √ https://zilliz.com/blog
- > Romain Beaumont Blog
 - √ https://rom1504.medium.com/

Pro

- The basic framework is still same (HNSW and IVFPQ!)
- ➤ HNSW is still de facto standard; although several papers claim they perform better
- Disk-based systems are getting attention
- > Vector DB has gained rapid popularity for LLM applications.
- ➤ Because of LLM, we should suppose **D** as ~1000 (not ~100)
- GPU-ANN is powerful, but less widespread than I expected;
 CPUs are more convenient for LLM
- Competitions (SISAP and bigann-benchmarks)
- New billion-scale datasets
- A breakthrough algorithm that goes beyond graph-based methods awaits.

- Background
- > Graph-based search
 - ✓ Basic (construction and search)
 - ✓ Observation
 - **✓** Properties
- > Representative works
 - ✓ HNSW, NSG, NGT, Vamana
- Discussion

Reference

- [Jégou+, TPAMI 2011] H. Jégou+, "Product Quantization for Nearest Neighbor Search", IEEE TPAMI 2011
- [Guo+, ICML 2020] R. Guo+, "Accelerating Large-Scale Inference with Anisotropic Vector Quantization", ICML 2020
- [Malkov+, TPAMI 2019] Y. Malkov+, "Efficient and Robust Approximate Nearest Neighbor search using Hierarchical Navigable Small World Graphs," IEEE TPAMI 2019
- [Malkov+, IS 13] Y, Malkov+, "Approximate Nearest Neighbor Algorithm based on Navigable Small World Graphs", Information Systems 2013
- [Fu+, VLDB 19] C. Fu+, "Fast Approximate Nearest Neighbor Search With The Navigating Spreading-out Graphs", 2019
- [Subramanya+, NeurIPS 19] S. J. Subramanya+, "DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node", NeurIPS 2019
- [Baranchuk+, ICML 19] D. Baranchuk+, "Learning to Route in Similarity Graphs"
- [Wang+, VLDB 21] M. Wang+, "A Comprehensive Survey and Experimental Comparison of Graph-Based Approximate Nearest Neighbor Search", VLDB 2021
- [Toussaint, PR 80] G. T. Toussaint, "The Relative Neighbouhood Graph of A Finite Planar Set", Pattern Recognition 1980
- [Fu+, arXiv 16] C. Fu and D. Cai, "Efanna: An Extremely Fast Approximate Nearest Neighbor Search Algorithm based on knn Graph", arXiv 2016
- [Arai+, DEXA 21] Y. Arai+, "LGTM: A Fast and Accurate kNN Search Algorithm in High-Dimensional Spaces", DEXA 2021
- [Iwasaki+, arXiv 18] M. Iwasaki and D. Miyazaki, "Optimization if Indexing Based on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data", arXiv 2018
- [Singh+, arXiv 21] A. Singh+, "FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search", arXiv 2021
- [Gollapudi+, WWW 23] S. Gollapudi+, "Filtered-DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters", WWW 2023

Reference

- [Pinecone] https://www.pinecone.io/
- [Milvus] https://milvus.io/
- [Qdrant] https://qdrant.tech/
- [Weaviate] https://weaviate.io/
- [Vertex AI Matching Engine] https://cloud.google.com/vertex-ai/docs/matching-engine
- [Vald] https://vald.vdaas.org/
- [Vearch] https://vearch.github.io/
- [Elasticsearch] https://www.elastic.co/jp/blog/introducing-approximate-nearest-neighbor-search-in-elasticsearch-8-0
- [OpenSearch] https://opensearch.org/docs/latest/search-plugins/knn/approximate-knn/
- [Vespa] https://vespa.ai/
- [Redis] https://redis.com/solutions/use-cases/vector-database/
- [Lucene] https://lucene.apache.org/core/9 1 0/core/org/apache/lucene/util/hnsw/HnswGraphSearcher.html
- [SISAP] SISAP 2023 Indexing Challenge https://sisap-challenges.github.io/
- [Bigann-benchmarks] Billion-Scale Approximate Nearest Neighbor Search Challenge: NeurIPS'21 competition track https://big-ann-benchmarks.com/

Thank you!

Time	Session	Presenter
13:30 - 13:40	Opening	Yusuke Matsui
13:40 – 14:30	Theory and Applications of Graph-based Search	Yusuke Matsui
14:30 – 15:20	A Survey on Approximate Nearest Neighbors in a Billion-Scale Settings	Martin Aumüller
15:20 – 15:30	Break	
15:30 – 16:20	Query Language for Neural Search in Practical Applications	Han Xiao

Acknowledgements

- > I would like to express my deep gratitude to Prof. Daichi Amagata, Naoki Ono, and Tomohiro Kanaumi for reviewing the contents of this tutorial and providing valuable feedback.
- ➤ This work was supported by JST AIP Acceleration Research JPMJCR23U2, Japan.