UNIT-2

Aaditya gupta

October 2, 2024

1 Attenuation

$$\alpha_{dB}L = 10\log_{10}\frac{P_i}{P_o}$$
 L: length of fiber (1)

2 Linear Scattering Loss

2.1 Rayleigh scattering

$$\gamma_R = \frac{8\pi^3}{3\lambda^4} n^8 p^2 \beta_c K T_F \tag{2}$$

where γ_R is Rayleigh scattering coefficient, λ is optical wavelength, n is refractive index of medium, p is average photoelastic coefficient, β_c is isothermal compressibility at a fictive temperature T_F and K is Boltzmann constant

3 Nonlinear Scattering Loss

3.1 Stimulated Brillouin Scattering

$$P_B = 4.4 \times 10^{-3} d^2 \lambda^2 \alpha_{dB} v \text{ watts}$$
 (3)

where d and λ are fiber core diameter and operating wavelength, measured in micrometers. v is source bandwidth.

3.2 Stimulated Raman Scattering

$$P_R = 5.9 \times 10^{-2} d^2 \lambda^2 \alpha_{dB} \tag{4}$$