Отчёт по лабораторной работе №8

Предмет: Математическое моделирование

Манаева Варвара Евгеньевна, НФИбд-01-20. 1032201197

Содержание

1	Цель работы						
2			лабораторной работы риант №28 [1]				
3	_		кое введение я информация о модели [2]				
4	Выполнение лабораторной работы						
	4.1	Реше	ние с пом	лощью программ	11		
		4.1.1	Julia .		11		
			4.1.1.1	Программный код решения на Julia	11		
			4.1.1.2	Результаты работы кода на Julia	13		
		4.1.2	OPenMo	odelica	15		
			4.1.2.1	Программный код решения на OPenModelica	15		
			4.1.2.2	Результаты работы кода на OpenModelica	17		
5	Выв	оды			19		
Сп	исок	литера	туры		20		

Список иллюстраций

4.1	"График прибыли компаний в зависимости от времени в первом	
	случае"	14
4.2	"График прибыли компаний в зависимости от времени во втором	
	случае"	15
4.3	"График прибыли компаний в зависимости от времени в первом	
	случае\$"	17
4.4	"График прибыли компаний в зависимости от времени во втором	
	спуцае"	18

1 Цель работы

Изучить модель конкуренции для двух фирм и в двух случаях. Построить графики с помощью представленных уравнений, описивающих случаи.

Задачи:

- Изучить теоретическую справку;
- Запрограммировать решение на Julia;
- Запрограммировать решение на OpenModelica;
- Сравнить результаты работы программ;

2 Задание лабораторной работы

2.1 Вариант №28 [1]

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a1}{c1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}$$

$$a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}$$

$$b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}$$
$$c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}$$
$$c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}$$

также введена нормировка $t=c_1\Theta$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\Theta} &= M_1 - (\frac{b}{c_1} + 0.0018) M_1 M_2 - \frac{a1}{c1} M_1^2 \\ & \frac{dM_2}{d\Theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_0^1 = 8 \, M_0^2 = 9$$

$$p_{cr} = 35 \, N = 93 \, q = 1$$

$$\tau_1 = 35 \, \tau_2 = 30$$

$$\tilde{p}_1 = 13.3 \, \tilde{p}_2 = 14.5$$

3 Теоретическое введение

3.1 Общая информация о модели [2]

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - M оборотные средства предприятия
 - au длительность производственного цикла
 - p рыночная цена товара
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции
 - δ доля оборотных средств, идущая на покрытие переменных издержек
- k постоянные издержки, которые не зависят от количества выпускаемой продукции
 - Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она

равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q=q-k\frac{p}{S}=q(1-\frac{p}{p_{cr}})$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде:

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - k = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{or}})p - k$$

Уравнение для рыночной цены p представим в виде:

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau \tilde{p}} + Nq(1 - \frac{p}{p_{cr}}))$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном М уравнение описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0$$

равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

Тогда уравнения динамики оборотных средств приобретает вид

$$\frac{dM}{dt} = -\frac{M\delta}{\tau}(\frac{p}{p_{cr}}-1) - M^2(\frac{\delta}{\tau\tilde{p}})^2\frac{p_{cr}}{Nq} - k$$

Это уравнение имеет два стационарных решения, соответствующих условию dM/dt=0

$$\widetilde{M_{1,2}} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}}\tilde{p}\frac{\tau}{\delta}), b = kNq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Получается, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b << a^2$) и играют роль, только в случае, когда оборотные средства малы.

При b << a стационарные значения M равны

$$\widetilde{M_{+}} = Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \widetilde{M_{-}} = k\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})}$$

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M_{-}} неустойчиво, так, что при $M < \widetilde{M}_-$ оборотные средства падают (dM/dt < 0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит,

что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр au будем считать временем цикла, с учётом сказанного.

4 Выполнение лабораторной работы

4.1 Решение с помощью программ

4.1.1 Julia

4.1.1.1 Программный код решения на Julia

Решить дифференциальное уравнение, расписанное в постановке задачи лабораторной работы, поможет библиотека DifferentialEquations[3]. Итоговые изображения в полярных координатах будут строиться через библиотеку PyPlot.

```
using PyPlot
using DifferentialEquations;
function f1(du, u, p, t)
    du[1] = u[1]-(b/c1)*u[1]*u[2]-(a1/c1)*u[1]*u[1]
    du[2] = (c2/c1)*u[2]-(b/c1)*u[1]*u[2]-(a2/c1)*u[2]*u[2]
end
function f2(du, u, p, t)
    du[1] = u[1]-(b/c1+d)*u[1]*u[2]-(a1/c1)*u[1]*u[1]
    du[2] = (c2/c1)*u[2]-(b/c1)*u[1]*u[2]-(a2/c1)*u[2]*u[2]
end

range = (0, 20)
Pcr = 35
t1, t2 = 35, 30
```

```
p1, p2 = 13.3, 14.5
N = 93
q = 1
M1, M2 = 8, 9
a1 = Pcr / (t1*t1*p1*p1*N*q);
a2 = Pcr / (t2*t2*p2*p2*N*q);
b = Pcr / (t1*t1*t2*t2*p1*p1*p2*p2*N*q);
c1 = (Pcr - p1) / (t1*p1);
c2 = (Pcr - p2) / (t2*p2);
d = 0.00018
ode = ODEProblem(f1, [M1,M2], range)
sol = solve(ode, dtmax=0.01)
m1 = [u[1] \text{ for } u \text{ in sol.} u]
m2 = [u[2] \text{ for } u \text{ in sol.} u]
clf()
title("Случай 1 (линейный)")
plot(sol.t, m1, color="crimson")
plot(sol.t, m2, color="darkblue")
xlabel("Время")
ylabel("Доход компаний")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Математическое_моделирование
2023_mathmod\\labs\\lab8\\report\\image\\graph1_t.png")
savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Математическое_моделирование
2023_mathmod\\labs\\lab8\\presentation\\image\\graph1_t.png")
clf()
ode = ODEProblem(f2, [M1,M2], range)
sol = solve(ode, dtmax=0.01)
m1 = \lceil u \lceil 1 \rceil for u in sol.u
```

```
m2 = [u[2] for u in sol.u]

title("Случай 2 (линейный)")

plot(sol.t, m1, color="crimson")

plot(sol.t, m2, color="darkblue")

xlabel("Время")

ylabel("Доход компаний")

savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Maтематическое_моделирование

2023_mathmod\\labs\\lab8\\report\\image\\graph2_t.png")

savefig("C:\\Users\\emanaev\\work\\study\\2022-2023\\Maтематическое_моделирование

2023_mathmod\\labs\\lab8\\presentation\\image\\graph2_t.png")

clf()
```

4.1.1.2 Результаты работы кода на Julia

Решение для нестационарного состояния, заданного заданием лабораторной работы (рис. ??, 4.1).

Рис. 4.1: "График прибыли компаний в зависимости от времени в первом случае"

Решение для стационарного состояния, заданного заданием лабораторной работы (рис. ??, 4.2).

Рис. 4.2: "График прибыли компаний в зависимости от времени во втором случае"

4.1.2 OPenModelica

4.1.2.1 Программный код решения на OPenModelica

```
model konkurencia

parameter Real p_cr = 35;//критическая стоимость продукта

parameter Real tau1 = 35;//длительность производственного цикла фирмы 1

parameter Real p1 = 13.3;//себестоимость продукта у фирмы 1

parameter Real tau2 = 30;//длительность производственного цикла фирмы 2

parameter Real p2 = 14.5; //себестоимость продукта у фирмы 2

parameter Real N = 93; //число потребителей производимого продукта
```

```
parameter Real q = 1; //максимальная потребность одного человека в продукте в еди
parameter Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
parameter Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
parameter Real b = p_{cr}/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
parameter Real c1 = (p_cr-p1)/(tau1*p1);
parameter Real c2 = (p_cr-p2)/(tau2*p2);
parameter Real d = 0.00018;
Real M1_1(start=8);
Real M2_1(start=9);
Real M1_2(start=8);
Real M2_2(start=9);
equation
 der(M1_1) = M1_1-(b/c1)*M1_1*M2_1-(a1/c1)*M1_1*M1_1;
 der(M2_1) = (c2/c1)*M2_1-(b/c1)*M1_1*M2_1-(a2/c1)*M2_1*M2_1;
  der(M1_2) = M1_2-(b/c1+d)*M1_2*M2_2-(a1/c1)*M1_2*M1_2;
  der(M2_2) = (c2/c1)*M2_2-(b/c1)*M1_2*M2_2-(a2/c1)*M2_2*M2_2;
  annotation(experiment(StartTime=0, StopTime=20, Tolerance=1e-
6, Interval=0.05));
end konkurencia:
```

4.1.2.2 Результаты работы кода на OpenModelica

Решение для нестационарного состояния, заданного заданием лабораторной работы (рис. 4.3):

Рис. 4.3: "График прибыли компаний в зависимости от времени в первом случае\$"

Решение для стационарного состояния, заданного заданием лабораторной работы (рис. 4.4):

Рис. 4.4: "График прибыли компаний в зависимости от времени во втором случае"

5 Выводы

В ходе выполнения лабораторной работы была изучена модель конкуренции для двух фирм в двух случаях. Были запрограммированы решения для задачи лабораторной работы на Julia и OpenModelica. Были построены графики прибыли компаний для двух условий задачи.

Были записаны скринкасты лабораторной работы и презентации лабораторной работы.

Список литературы

- 1. Задания к лабораторной работе №8 (по вариантам) [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971673/mod_resou rce/content/2/Задание%20к%20лабораторной%20работе%20№%207.pdf.
- 2. Лабораторная работа №8 [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971672/mod_resource/content/2/Лабораторная%20работа%20№%207.pdf.
- 3. DifferentialEquations.jl: Efficient Differential Equation Solving in Julia [Электронный ресурс]. 2023. URL: https://docs.sciml.ai/DiffEqDocs/stable/.