

TRABAJO FIN DE GRADO DOBLE GRADO EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS

CRIPTOANÁLISIS DEL CRIPTOSISTEMA DE MCELIECE CLÁSICO MEDIANTE ALGORITMOS GENÉTICOS

Autor

PAULA VILLANUEVA NÚÑEZ

Director

GABRIEL NAVARRO GARULO

FACULTAD DE CIENCIAS E.T.S. DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Granada, a 29 de enero de 2022

ÍNDICE GENERAL

1.	PREI	LIMINARES	3
	1.1.	Anillos	3
	1.2.	Cuerpos finitos	4
	1.3.	Polinomios	4
	1.4.	Algoritmos genéticos	5
	1.5.	Clases de complejidad	6
2.	INTRODUCCIÓN A LA TEORÍA DE CÓDIGOS LINEALES		7
	2.1.	Introducción	7
	2.2.		8
	2.3.	Código dual	9
	2.4.	Pesos y distancias	10
	2.5.		13
3.	CÓD	IGOS DE GOPPA	15
	3.1.	Espacio afín, espacio proyectivo y homogeneización	15
	3.2.		15
	9		15
			15
Bib	liogra		16
σσ.			

PRELIMINARES

En este capítulo se desarrollarán las herramientas necesarias para poder afrontar el criptosistema de McEliece que precisa este trabajo. Se abordarán conceptos relacionados con el álgebra lineal, anillos, cuerpos finitos, polinomios, algoritmos genéticos, etc.

1.1 ANILLOS

En esta sección introduciremos el concepto de anillo para poder definir el concepto de cuerpo.

Definición 1. Un *anillo* $(A, +, \cdot)$ es un conjunto A junto con dos operaciones binarias $A \times A \to A$ denotadas por la suma (denotada por +) y producto (denotado por ·) que verifican los siguientes axiomas:

Propiedad asociativa de la suma:

$$a + (b + c) = (a + b) + c$$
 $\forall a, b, c \in A$

• Existencia del elemento neutro para la suma:

$$0 + a = a = a + 0 \quad \forall a \in A$$

• Existencia del elemento inverso para la suma:

$$\forall a \in A \ \exists -a \in A \ a + (-a) = 0 = (-a) + a$$

Propiedad conmutativa de la suma:

$$a + b = b + a$$
 $\forall a, b \in A$

Propiedad asociativa del producto:

$$a(bc) = (ab)c \quad \forall a, b, c \in A$$

• Propiedad distributiva del producto:

$$a(b+c) = ab + ac$$
, $(b+c)a = ba + ca$ $\forall a, b, c \in A$

• Existencia del elemento neutro para el producto:

$$1a = a = a1 \quad \forall a \in A$$

Un anillo de llama *conmutativo o abeliano* si se verifica la propiedad conmutativa del producto

$$ab = ba \qquad \forall a, b \in A$$

Añadir algo de ideales.

1.2 CUERPOS FINITOS

Con estos conceptos previos podemos ya definir el de cuerpo.

Definición 2. Un *cuerpo* $(A, +, \cdot)$ es un anillo conmutativo no trivial en el que todo elemento no nulo tiene un inverso multiplicativo. Se dice que un cuerpo es *finito* si tiene un número finito de elementos.

En los códigos lineales son comunes los siguientes cuerpos: *cuerpo binario* con dos elementos, *cuerpo ternario* con tres elementos y *cuerpo cuaternario* con cuatro elementos.

Diremos que la característica de un cuerpo es el número de elementos que tiene.

Todos los cuerpos finitos tienen un número de elementos $q = p^n$, para algún número primo p y algún entero positivo n. Denotaremos por \mathbb{F}_q a los cuerpos finitos con característica q.

1.3 POLINOMIOS

En esta sección vamos a introducir el concepto de polinomio junto con sus operaciones.

Definición 3. Sea A un anillo conmutativo. El *conjunto de polinomios* en la indeterminada X con coeficientes en A es el conjunto de todas las sumas formales finitas

$$f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

Este conjunto de representa por A[X].

En el conjunto de polinomios definimos una suma y un producto.

Sean $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ y $g = b_m X^m + b_{m-1} X^{m-1} + \cdots + b_1 X + b_0$ dos polinomios. Supongamos que $m \le n$, tomando $b_i = 0$ para todo $n \ge i > m$, definimos las operaciones de suma y producto de polinomios

$$f + g = (a_n + b_n)X^n + \dots + (a_1 + b_1)X + (a_0 + b_0)$$
$$f \cdot g = a_n b_m X^{n+m} + (a_n b_{m+1} + a_{n-1} b_m)X^{n+m-1} + \dots + (a_1 b_0 + a_0 b_1)X + a_0 b_0$$

De esta forma, diremos que el conjunto A[X] con las operaciones anteriores es un anillo de polinomios en X con coeficientes en A.

Definición 4. Para un polinomio $f = a_n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \neq 0$ el mayor índice n tal que $a_n \neq 0$ se llama $grado\ de\ f$ y se representa por gr(f). Si f = 0 definimos $gr(f) = -\infty$.

Llamaremos *término* (*de grado i*) a cada uno de los sumandos $a_i X^i$ del polinomio f. El *término líder* es el término no nulo de mayor grado. El coeficiente $a_n \neq 0$ del término líder se llama *coeficiente líder* y el término de grado cero a_0 se llama *término constante*.

A continuación tenemos algunas propiedades de los polinomios.

Proposición 1. Sea A un anillo conmutativo y sean $f,g \in A[X]$ dos polinomios, tenemos que

$$gr(f+g) \le \max(gr(f), gr(g)),$$

 $gr(f \cdot g) \le gr(f) + gr(g)$

 $Si\ gr(f) \neq gr(g)$, se verifica

$$gr(f+g) = \max(gr(f), gr(g))$$

Si A es un dominio de integridad, entonces

$$gr(f \cdot g) = gr(f) + gr(g)$$

Añadir más propiedades

1.4 ALGORITMOS GENÉTICOS

Añadir introducción a la sección: qué es y para qué sirve (tratar problemas que no son P, o que no se sabe que sean P). Didáctica!!!!

Los *algoritmos genéticos* son algoritmos de optimización, búsqueda y aprendizaje inspirados en los procesos de evolución natural y evolución genética.

En general, los algoritmos genéticos siguen el siguiente procedimiento (explicarlo mejor).

```
t=0
inicializar la poblacion P(t)
evaluar la poblacion P(t)
Mientras (no se cumpla la condicion de parada) hacer
t=t+1
seleccionar P' desde P(t-1)
recombinar P'
mutar P'
reemplazar P(t) a partir de P(t-1) y P'
evaluar P(t)
```

Existen dos modelos de algoritmos genéticos, el modelo generacional y el modelo estacionario.

En el modelo generacional, durante cada iteración se crea una población completa con nuevos individuos. Así, la nueva población reemplaza directamente a la antigua.

En el modelo estacionario, durante cada iteración se escogen dos padres de la población y se les aplican los operadores genéticos. De este modo, los descendientes reemplazan a los cromosomas de la población anterior. Este modelo es elitista y produce una convergencia rápida cuando se reemplazan los peores cromosomas de la población.

Añadir más cosas

1.5 CLASES DE COMPLEJIDAD

Explicar que es un problema NP-completo y demás.

INTRODUCCIÓN A LA TEORÍA DE CÓDIGOS LINEALES

El inicio de la teoría de códigos surgió a partir de la publicación de Claude Shannon sobre "Una teoría matemática sobre la comunicación" en 1948. En este artículo, Shannon explica que es posible transmitir mensajes fiables en un canal de comunicación que puede corromper la información enviada a través de él siempre y cuando no se supere la capacidad de dicho canal.

Con la teoría de códigos, se pueden codificar datos antes de transmitirlos de tal forma que los datos alterados puedan ser decodificados al grado de precisión especificado. Así, el principal problema es determinar el mensaje que fue enviado a partir del recibido. El Teorema de Shannon garantiza que el mensaje recibido coincidirá con el que fue enviado un cierto porcentaje de las veces. Esto hace que el objetivo de la teoría de códigos sea crear códigos que cumplan las condiciones de este teorema.

En esta sección se introducen los conceptos y resultados fundamentales sobre la teoría de códigos lineales.

2.1 INTRODUCCIÓN

Supongamos que se quiere enviar un mensaje, por lo que habrá un emisor y un receptor que se comunican en una dirección. Este mensaje es enviado por un *canal de comunicación*, cuyas características dependen de la naturaleza del mensaje a ser enviado. En general, hay que hacer una *traducción* entre el mensaje original (o *palabra fuente*) x y el tipo de mensaje c que el canal está capacitado para enviar (*palabras código*). Este proceso se llama *codificación*. Una vez codificado el mensaje, se envía a través del canal, y el intermediario (el receptor) recibe un mensaje codificado (*palabra recibida*) posiblemente erróneo, ya que en todo proceso de comunicación hay ruido e interferencias. Una vez recibido, empieza el proceso llamado *corrección de errores*, que consiste en recuperar el mensaje original corrigiendo los errores que se hubieran producido. El mensaje recibido c' es traducido nuevamente a términos originales x', es decir, es *decodificado*. La siguiente figura representa un esquema de este proceso.

Figura 1: Esquema del modelo de comunicación

Las flechas indican que la comunicación es en un solo sentido.

En general, $x' \neq x$ y es deseable que este error sea detectado (lo cual permite pedir una retransmisión del mensaje) y en lo posible corregido.

La *Teoría de Códigos Autocorrectores* se ocupa del segundo y cuarto pasos del esquema anterior, es decir, de la codificación y decodificación de mensajes, junto con el problema de detectar y corregir errores. A veces no es posible pedir retransmisión de mensajes y es por eso que los códigos autocorrectores son tan útiles y necesarios.

La calidad de un código con mensajes de longitud k y palabras código de longitud n vendrá dada por las siguientes características.

- El cociente $\frac{k}{n}$, el *ratio de información* del código, que mide el esfuerzo necesario para transmitir un mensaje codificado.
- La distancia mínima relativa $\frac{d}{n}$ que es aproximadamente el doble de la proporción de errores que se pueden corregir en cada mensaje codificado.
- La complejidad de los procedimientos de codificar y decodificar.

De esta forma, uno de los objetivos centrales de la teoría de códigos autocorrectores es construir códigos que sean de calidad. Esto es, códigos que permitan codificar muchos mensajes, que se puedan trasmitir rápida y eficientemente, que detecten y corrijan simultáneamente la mayor cantidad de errores posibles y que haya algoritmos de decodificación fáciles y efectivos. Por lo que habrá que encontrar un balance entre estas distintas metas, pues suelen ser contradictorias entre sí.

2.2 CÓDIGOS LINEALES

Se considera \mathbb{F}_q^n , que denota al espacio vectorial de las n-tuplas sobre el cuerpo finito \mathbb{F}_q . Generalmente los vectores $(a_1,...,a_n)$ de \mathbb{F}_q^n se denotarán por $a_1 \cdots a_n$.

Definición 5. Un (n, M) *código* C sobre \mathbb{F}_q es un subconjunto de \mathbb{F}_q^n de tamaño M. A los elementos de C los llamaremos *palabras código*.

Con el fin de aportar más utilidad a los códigos, se impone linealidad. Así, si \mathcal{C} un subespacio k-dimensional de \mathbb{F}_q^n , entonces se dice que \mathcal{C} es un [n,k] código lineal sobre

 \mathbb{F}_q . De esta forma, los códigos lineales tendrán q^k palabras código. Estos se pueden presentar con una matriz generadora o con una matriz de paridad.

Definición 6. Una *matriz generadora* para un [n,k] código \mathcal{C} es una matriz $k \times n$ donde sus filas forman una base de \mathcal{C} .

Definición 7. Para cada conjunto de k columnas independientes de una matriz generadora G, se dice que el conjunto de coordenadas correspondiente conforman un conjunto de información de C. Las r = n - k restantes coordenadas se denominan conjunto de redundancia y el número r es la redundancia de C.

En general, la matriz generadora no es única. Sin embargo, si las k primeras coordenadas conforman un conjunto de información, entonces el código tiene una única matriz generadora de la forma $(I_k|A)$, donde I_k denota a la matriz identidad $k \times k$. Esta matriz se dice que está en *forma estándar*.

Como un código lineal es un subespacio de un espacio vectorial, es el núcleo de alguna transformación lineal.

Definición 8. Una matriz de paridad H de dimensión $(n - k) \times n$ de un [n, k] código C se define como

$$C = \left\{ \mathbf{x} \in \mathbb{F}_q^n : H\mathbf{x}^T = 0 \right\}.$$

Al igual que con la matriz generadora, la matriz de paridad no es única. Con el siguiente resultado podremos obtener una matriz de paridad cuando $\mathcal C$ tiene una matriz generadora en forma estándar.

Teorema 1. Si $G = (I_k|A)$ es una matriz generadora para el [n,k] código C en forma estándar, entonces $H = (-A^T|I_{n-k})$ es una matriz de paridad de C.

Demostración. Como $HG^T = -A^T + A^T = 0$, se tiene que \mathcal{C} está contenido en el núcleo de la transformación lineal $x \mapsto Hx^T$. Esta transformación lineal tiene un núcleo de dimensión k, pues H tiene rango n - k, que coincide con la dimensión de \mathcal{C} .

2.3 CÓDIGO DUAL

Se sabe que \mathcal{C} es un subespacio de un espacio vectorial, por lo que podemos calcular un subespacio ortogonal a dicho subespacio y así obtener lo que se denomina *espacio dual u ortogonal* de \mathcal{C} , denotado por \mathcal{C}^{\perp} . Se define este concepto con la operación del producto escalar como sigue.

Definición 9. El *espacio dual* de C viene dado por

$$\mathcal{C}^{\perp} = \left\{ \mathbf{x} \in \mathbb{F}_q^n : \mathbf{x} \cdot \mathbf{c} = 0 \quad \forall \mathbf{c} \in \mathcal{C} \right\}$$

Se observa que C^{\perp} es un [n, n-k] código.

El siguiente resultado muestra cómo obtener las matrices generadora y de paridad de \mathcal{C}^{\perp} a partir de las de \mathcal{C} .

Proposición 2. Si tenemos una matriz generadora G y una matriz de paridad H de un código C, entonces H y G son matrices generadoras y de paridad, respectivamente, de C^{\perp} .

Se dice que un código \mathcal{C} es auto-ortogonal si $\mathcal{C} \subseteq \mathcal{C}^{\perp}$ y auto-dual cuando $\mathcal{C} = \mathcal{C}^{\perp}$.

2.4 PESOS Y DISTANCIAS

Es importante saber lo que difieren las palabras código. En este apartado se estudiará esta idea y cómo puede influir a la teoría de códigos.

Definición 10. La *distancia de Hamming* $d(\mathbf{x}, \mathbf{y})$ entre dos vectores $\mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$ se define como el número de coordenadas en las que \mathbf{x} e \mathbf{y} difieren.

Teorema 2. La función distancia d(x, y) satisface las siguientes propiedades.

- 1. No negatividad: $d(\mathbf{x},\mathbf{y}) \geq 0 \quad \forall \mathbf{x},\mathbf{y} \in \mathbb{F}_q^n$.
- 2. $d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$.
- 3. Simetría: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$.
- 4. Designal dad triangular: $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{F}_q^n$

Demostración. Las tres primeras afirmaciones se obtienen directamente a partir de la definición. La cuarta propiedad se obtiene a partir de la no negatividad. Esto es, sean $x,y,z\in\mathbb{F}_q^n$ distingamos dos casos. Si $x\neq z$ tenemos que $y\neq x$ o $y\neq z$, entonces por la no negatividad se cumple la afirmación. En el caso en el que x=z, tendríamos que d(x,z)=0 y también se da la afirmación.

Se dice que la *distancia mínima* de un código \mathcal{C} es la distancia más pequeña entre las distintas palabras código. Esta medida es fundamental a la hora de determinar la capacidad de corregir errores de \mathcal{C} .

Teorema 3 (Decodificación de máxima verosimilitud). Es posible corregir hasta

$$t:=\left\lfloor\frac{d(\mathcal{C})-1}{2}\right\rfloor,$$

errores, donde d(C) denota la distancia mínima del código C.

Demostración. Usando la decodificación de máxima verosimilitud, un vector $y \in \mathbb{F}^n$ es decodificado en una palabra código $c \in \mathcal{C}$, que es cercana a y con respecto a la

distancia de Hamming. Formalmente, y es decodificado en una palabra código $c \in \mathcal{C}$ tal que $d(c,y) \leq d(c',y)$, $\forall c' \in \mathcal{C}$. Si hay varios $c \in \mathcal{C}$ con esta propiedad, se elige uno arbitrariamente.

Si la palabra código $c \in C$ fue enviada y no han ocurrido más de t errores durante la transmisión, el vector recibido es

$$y = c + e \in \mathbb{F}^n$$
,

donde e denota al vector error. Esto satisface

$$d(c, y) = d(e, 0) \le t$$

y por lo tanto c es el único elemento de C que se encuentra en una bola de radio t alrededor de y. Un decodificador de máxima verosimilitud produce este elemento c, y así se obtiene el código correcto.

Definición 11. El *peso Hamming* $\operatorname{wt}(\mathbf{x})$ de un vector $\mathbf{x} \in \mathbb{F}_q^n$ se define como el número de coordenadas no nulas en \mathbf{x} .

El siguiente resultado muestra la relación entre la distancia y el peso.

Teorema 4. Si $\mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$, entonces $d(\mathbf{x}, \mathbf{y}) = wt(\mathbf{x} - \mathbf{y})$. Si \mathcal{C} es un código lineal, entonces la distancia mínima d coincide con el peso mínimo de las palabras código no nulas de \mathcal{C} .

Demostración. Sean $x,y \in \mathbb{F}_q^n$, por la definición de distancia de Hamming tenemos que d(x,y) = wt(x-y). Se supone ahora que C es un código lineal, luego para todo $x,y \in C$, $x-y \in C$, luego para cualquier par de elementos $x,y \in C$, existe $z \in C$ tal que $d(x,y) = wt(z) \geq wt(C)$, donde wt(C) es el peso mínimo de C. Por tanto, $d \geq wt(C)$. Por otro lado, para todo $x \in C$, se tiene que wt(x) = d(x,0). Como C es lineal, $0 \in C$, luego $d(x,0) \geq d$. Entonces, $wt(C) \geq d$. Se concluye que wt(C) = d, como se quería.

Como consecuencia de este teorema, para códigos lineales, la distancia mínima también se denomina *peso mínimo* de un código. Si se conoce el peso mínimo d de un [n,k] código, se denota por un [n,k,d] código.

Se ha demostrado que el problema de calcular la distancia mínima de un código lineal binario es NP-difícil, y el problema de decisión correspondiente es NP-completo. Esto es, formalmente, dada una matriz binaria H de dimensión $m \times n$ y un número entero w > 0, saber si existe un vector no nulo $x \in \mathbb{F}_2^n$ de peso menor que w tal que $Hw^T = 0$ es un problema NP-completo.

Demostración. Para ello, se hace uso de una transformación polinomial del problema de Decodificación de Máxima Verosimilitud al problema de Distancia Mínima.

El problema de Decodicificación de Máxima Verosimilitud es NP-completo y consiste en dados una matriz binaria H de dimensión $m \times n$, un vector $s \in \mathbb{F}_2^m$ y un número entero w > 0. ¿Existe un vector $x \in \mathbb{F}_2^n$ de peso menor o igual que w tal que $Hx^t = s$?

El problema de Decodificación de Máxima Verosimilitud sigue siendo NP-completo bajo ciertas restricciones, luego se reformula este problema como la versión de campo finito de Suma de Subconjuntos, un problema NP-completo conocido. Además, calcular la distancia mínima para la clase de códigos lineales sobre un cuerpo de característica 2 es NP-difícil, y el problema de decisión correspondiente Distancia Mínima sobre $GF(2^m)$, abreviado MD_{2^m} , es NP-completo. Luego esta prueba se basa en una transformación polinomial de Decodificación de Máxima Verosimilitud a MD_{2^m} . Sin embargo, esto no prueba que Distancia Mínima sea NP-completo, ya que el posible conjunto de entradas a Distancia Mínima es un pequeño subconjunto del conjunto de posibles entradas a MD_{2^m} . Para ello, se mapea el código C# sobre $GF(2^m)$ a un código binario C, de tal forma que la distancia mínima de C# puede determinarse a partir de la distancia mínima de C. Dado que la longitud de C está acotada por la longitud de un polinomio de C#, y el mapeo en sí se puede lograr en tiempo polinomial, esto completa la prueba de la NP-completitud de Distancia Mínima.

Como hemos visto, la distancia mínima es importante en un código lineal. Sin embargo, calcular este parámetro para un código dado puede resultar realmente duro. A continuación se presenta un algoritmo para el cálculo de la distancia.

Algoritmo de Brouwer-Zimmermann. Cálculo de la distancia mínima de un [n,k] código lineal C.

Input: una matriz generadora $G_1 = (I_k|A_1)$ de C.

Output: la distancia mínima d(C).

- (1) m := 2
- (2) $k_1 := k$
- (3) repeat
- (4) Aplicar la eliminación Gaussiana y posibles permutaciones de las columnas de la matriz A_{m-1} desde

$$G_{m-1} = \left(\begin{array}{c|c} A'_{m-1} & I_{k_{m-1}} & A_{m-1} \\ \hline 0 & 0 \end{array} \right)$$
 para obtener la matriz generadora $G_m = \left(\begin{array}{c|c} A'_m & A_m \\ \hline 0 & 0 \end{array} \right)$

- (5) until rank $(A_m) = 0$
- (6) $C_0 := \{0\}$
- (7) i := 0
- (8) repeat
- (9) i := i + 1
- (10) $C_i := C_{i-1} \cup \bigcup_{j=1}^m \{ v \cdot G_j : v \in \mathbb{F}(q)^k, \ wt(v) = i \}$
- (11) $\bar{d}_i := min\{wt(c) : c \in C_i, c \neq 0\}$
- (12) $d'_i := \sum_{j=1, k-k_j \le i}^m (i+1) (k-k_j)$
- (13) until $\bar{d}_i \leq d'_i$
- (14) return \bar{d}_i

Definición 12. Sea A_i , también denotada por $A_i(\mathcal{C})$, el número de palabras código con peso i en \mathcal{C} . Se dice que la lista A_i para $0 \le i \le n$ es la distribución del peso o espectro del peso de \mathcal{C} .

2.5 CLASIFICACIÓN POR ISOMETRÍA

Como se ha visto, las propiedades de codificación de un código dependen principalmente de las distancias de Hamming entre diferentes palabras codificadas y entre palabras codificadas y no codificadas. Además, puede ser que un código pueda mapearse sobre otro por medio de un mapa que conserve las distancias de Hamming. De esta forma, se puede definir una relación de equivalencia entre dos códigos que preservan la distancia de Hamming.

Tenemos que dos (n,k)-códigos $C,C'\subseteq H(n,q)$ son de la misma cualidad si existe un mapeo

$$\iota: H(n,q) \to H(n,q)$$

con $\iota(C) = C'$ que preserva la distancia de Hamming, es decir,

$$d(w, w') = d(\iota(w), \iota(w')), \quad \forall w, w' \in H(n, q).$$

Los mapeos con la propiedad anterior se llaman isometrías.

Definición 13. Dos códigos lineales $C, C' \subseteq H(n,q)$ se llaman *isométricos* si existe una isometría de H(n,q) que mapea C sobre C'.

Las permutaciones de las coordenadas son isometrías, que se denominan *isometrías* permutacionales.

Definición 14. Sea S_n el grupo isométrico en el conjunto $X = n = \{0, ..., n-1\}$. Dos códigos lineales $C, C' \subseteq H(n,q)$ son isométricos permutacionalmente si existe una isometría permutacional de H(n,q) que mapea C sobre C'. Esto es, hay una permutación π en el grupo simétrico S_n tal que

$$C' = \pi(C) = \{\pi(c) : c \in C\}, \text{ and } d(c,\tilde{c}) = d(\pi(c),\pi(\tilde{c})), \forall c,\tilde{c} \in C,$$

donde

$$\pi(c) = \pi(c_0, ..., c_{n-1}) := (c_{\pi^{-1}(0)}, ..., c_{\pi^{-1}(n-1)})$$

CÓDIGOS DE GOPPA

3.1 ESPACIO AFÍN, ESPACIO PROYECTIVO Y HOMOGENEIZACIÓN

Los códigos de geometría algebraica se definen con respecto a curvas tanto en el espacio afín como en el espacio proyectivo.

Sea \mathbb{F} un cuerpo, posiblemente infinito. Se define el *espacio afín n-dimensional sobre* \mathbb{F} , denotado por $\mathbb{A}^n(\mathbb{F})$, como el espacio vectorial n-dimensional ordinario \mathbb{F}^n . Los puntos en $\mathbb{A}^n(\mathbb{F})$ son $(x_1,...,x_n)$ donde $x_i \in \mathbb{F}$.

3.2 ALGUNOS CÓDIGOS CLÁSICOS

3.2.1 Códigos Reed-Solomon generalizados

Para $k \geq 0$, \mathcal{P}_k denota el conjunto de polinomios de grado menor que k, incluyendo el polinomio nulo, en $\mathbb{F}_q[x]$. Sea n un número entero tal que $1 \leq n \leq q$, $\gamma = (\gamma_0, ..., \gamma_{n-1})$ una n-tupla de elementos distintos de \mathbb{F}_q , y $\mathbf{v} = (v_0, ..., v_{n-1})$ una n-tupla de elementos no nulos de \mathbb{F}_q . Sea k un número entero tal que $1 \leq k \leq n$. Entonces los códigos

$$GRS_k(\gamma, \mathbf{v}) = \{(v_0 f(\gamma_0), ..., v_{n-1} f(\gamma_{n-1})) : f \in \mathcal{P}_k\}$$

son los códigos Reed-Solomon generalizados (códigos GRS).

3.2.2 Códigos clásicos de Goppa

Los códigos clásicos de Goppa se introdujeron por V. D. Goppa en 1970. Estos códigos son generalizaciones de códigos BCH y subcódigos de subcuerpos de ciertos códigos GRS.

Para motivar la definición de los códigos Goppa, se introduce una construcción de los códigos BCH de longitud n sobre \mathbb{F}_q . Sea $t = ord_q(n)$ y sea β la raíz enésima primitiva de la unidad en \mathbb{F}_{q^t} . Se elige $\delta > 1$ y sea \mathcal{C} el código BCH de longitud n y distancia δ . Entonces $c(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \in \mathbb{F}_q[x]/(x^n-1)$ está en \mathcal{C} si y solo si $c(\beta^j) = 0$ para $1 \le j \le \delta - 1$. Tenemos que

$$(x^{n}-1)\sum_{i=0}^{n-1}\frac{c_{i}}{x-\beta^{-i}}=\sum_{i=0}^{n-1}c_{i}\sum_{l=0}^{n-1}x^{l}(\beta^{-i})^{n-1-l}=\sum_{l=0}^{n-1}x^{l}\sum_{i=0}^{n-1}c_{i}(\beta^{l+1})^{i}.$$

Como $c(\beta^{l+1})=0$ para $0 \le l \le \delta-2$, el lado derecho de la ecuación es un polinomio cuyo término de menor grado tiene grado al menos $\delta-1$. Por lo tanto, el lado derecho se puede escribir como $x^{\delta-1}p(x)$, donde p(x) es un polinomio en $\mathbb{F}_{q^t}[x]$. Así, se puede decir que $c(x) \in \mathbb{F}_q[x]/(x^n-1)$ está en \mathcal{C} si y solo si

$$\sum_{i=0}^{n-1} \frac{c_i}{x - \beta^{-i}} = \frac{x^{\delta - 1} p(x)}{x^n - 1}$$

o equivalentemente

$$\sum_{i=0}^{n-1} \frac{c_i}{x - \beta^{-i}} \equiv 0 (mod x^{\delta - 1})$$

La última equivalencia es la base para la definición de los códigos clásicos de Goppa.