Rábalabaxúrias [UFMG]

Bruno Monteiro, Pedro Papa e Rafael Grandsire

Índice			1.16 Centro da Arvore	
			1.17 Sack (DSU em arvores)	16
1	Grafos	4	1.18 AGM Direcionada	16
	1.1 Centroid decomposition	4	1.19 Centroid	17
	1.2 Tarjan para Pontes	5	1.20 Topological Sort	17
	1.3 Prufer code	5	1.21 Kruskal	18
	1.4 Dinic	6	1.22 Blossom - matching maximo em grafo geral	18
	1.5 Dominator Tree - Kawakami	7	1.23 Max flow com lower bound	19
	1.6 Kosaraju	8	1.24 Isomorfismo de Arvores	20
	1.7 Dijkstra	9	1.25 Algoritmo de Kuhn	20
	1.8 Heavy-Light Decomposition sem Update	9	1.26 Virtual Tree	21
	1.9 LCA com binary lifting	10	1.27 Euler Path / Euler Cycle	22
	1.10 Heavy-Light Decomposition - vertice	11	1.28 MinCostMaxFlow Papa	23
	1.11 LCA com HLD	12	1.29 Link-cut Tree - aresta	24
	1.12 LCA com RMQ	12	1.30 Link-cut Tree - vertice	26
	1.13 Heavy-Light Decomposition - aresta	13	1.31 Link-cut Tree	27
	1.14 Bellman-Ford	14	1.32 Line Tree	28
	1.15 Tarjan para SCC	14	1.33 Floyd-Warshall	29

2	Mat	tematica	29		3.3	Primitivas de Polinomios	41
	2.1	Ordem de elemento do grupo	29		3.4	Primitivas de matriz - exponenciacao	48
	2.2	Teorema Chines do Resto	30		3.5	Primitivas Geometricas	49
	2.3	Pollard's Rho Alg	30		3.6	Primitivas Geometricas Inteiras	53
	2.4	Algoritmo de Euclides extendido	31		3.7	Primitivas Geometricas 3D	56
	2.5	Eliminacao Gaussiana de XOR	31		3.8	Primitivas de matriz	56
	2.6	Algoritmo de Euclides	32	4	.		۲٥
	2.7	Binomial Distribution	32	4		ruturas	58
	2.8	Divisão de Polinomios	32		4.1	BIT com update em range	58
	2.9	Deteccao de ciclo - Tortoise and Hare	32		4.2	Sparse Table	58
		FFT	33		4.3	Min queue - stack	59
		Baby step Giant step	34		4.4	Min queue - deque	59
		Miller-Rabin	35		4.5	Splay Tree	59
		Inverso Modular	36		4.6	SQRT-decomposition	61
		Karatsuba	36		4.7	BIT 2D	62
		Variacoes do crivo de Eratosthenes	36		4.8	DSU	62
		Totiente	37		4.9	Treap Implicita	62
		2-SAT	38		4.10	Splay Tree Implicita	63
					4.11	MergeSort Tree	66
		Exponenciacao rapida	38		4.12	2 SegTree	66
	2.19	Produto de dois long long mod m	39		4.13	S SegTree Colorida	67
3	Pri	mitivas	39		4.14	SegTree Iterativa com Lazy Propagation	68
	3.1	Complex	39		4.15	SegTree Beats	69
	3.2	Aritmetica Modular	40		4.16	S SegTree Esparca	71

	4.17	SegTree Iterativa	72	6.2	Inversion Count	88
	4.18	SegTree Persistente	72	6.3	Gray Code	88
	4.19	SegTree 2D Iterativa	73	6.4	Triangulos em Grafos	88
	4.20	Split-Merge Set	74	6.5	RMQ com Divide and Conquer	89
	4.21	BIT	76	6.6	MO - DSU	89
	4.22	Order Statistic Set	76	6.7	LIS2 - Longest Increasing Subsequence	90
	4.23	Treap	77	6.8	Nim	90
	4.24	Split-Merge Set - Lazy	78	6.9	Arpa's Trick	91
	4.25	RMQ < O(n), O(1) > - cartesian tree $$	81	6.10	Simple Polygon	91
	4.26	DSU Persistente	81	6.11	Segment Intersection	92
	4.27	Treap Persistent Implicita	82	6.12	Conectividade Dinamica	93
	4.28	$RMQ < O(n), O(1) >$ - min queue $\ \ . \ \ . \ \ . \ \ .$	82	6.13	Distinct Range Query com Update	93
	4.29	SQRT Tree	83	6.14	LIS - Longest Increasing Subsequence	95
	4.30	Wavelet Tree	84	6.15	Algoritmo Hungaro	95
۲	DP		85	6.16	Mo algorithm - distinct values	96
Э	5.1	SOS DP	85	6.17	Binomial modular	97
		Convex Hull Trick (Rafael)		6.18	Colocacao de Grafo de Intervalo	98
	5.2 5.3	Mochila	85 85	6.19	Distinct Range Query - Wavelet	98
	5.4		86	6.20	Area da Uniao de Retangulos	99
		Divide and Conquer DP		6.21	Closest pair of points	100
	5.5	Longest Common Subsequence	86	6.22	Area Maxima de Histograma	100
6	Pro	blemas	87	6.23	Conj. Indep. Maximo com Peso em Grafo de Intervalo	101
	6.1	Sweep Direction	87	6.24	Distinct Range Query - Persistent Segtree	101

	6.25 Dominator Points	102	8.3 template.cpp
	6.26 Mo algorithm - DQUERY path on trees	103	8.4 fastIO.cpp
	6.27 Mininum Enclosing Circle	104	8.5 vimrc
	6.28 Min fixed range	105	8.6 stress.sh
	6.29 Conectividade Dinamica 2	105	8.7 rand.cpp
	6.30 Points Inside Polygon	107	
7	Strings	108	1 Grafos
	7.1 Algoritmo Z	108	1.1 Centroid decomposition
	7.2 String hashing	108	// Computa pai[i] = pai de i na arv. da centroid
	7.3 Automato de Sufixo	109	<pre>// Descomentar o codigo comentado para computar // dist[i][x] = distancia na arv. original entre o i e</pre>
	7.4 Suffix Array - O(n)	110	// o x-esimo ancestral na arv. da centroid
	7.5 Manacher	112	// O(n log(n))
	7.6 eertree	113	int n;
	7.7 String hashing - modulo 2^61 - 1	113	<pre>vector < int > g[MAX]; int subsize[MAX];</pre>
	7.8 Max Suffix	114	<pre>int rem[MAX]; int pai[MAX];</pre>
	7.9 KMP	114	<pre>void dfs(int k, int last) {</pre>
	7.10 Suffix Array - O(n log n)	115	<pre>subsize[k] = 1; for (int i = 0; i < (int) g[k].size(); i++)</pre>
	7.11 Ahocorasick	115	<pre>if (g[k][i] != last and !rem[g[k][i]]) { dfs(g[k][i], k);</pre>
	7.12 Trie	116	<pre>subsize[k] += subsize[g[k][i]]; }</pre>
			}
3	Extra	118	<pre>int centroid(int k, int last, int size) {</pre>
	8.1 makefile	118	<pre>for (int i = 0; i < (int) g[k].size(); i++) { int u = g[k][i];</pre>
	8.2 debug.cpp	118	<pre>if (rem[u] or u == last) continue;</pre>

```
if (subsize[u] > size / 2)
            return centroid(u, k, size);
    // k eh o centroid
    return k:
}
//vector<int> dist[MAX];
//void dfs_dist(int k, int last, int d=0) {
      dist[k].push_back(d);
      for (int j : g[k]) if (j != last and !rem[j])
//
          dfs_dist(j, k, d+1);
//}
void decomp(int k, int last = -1) {
    dfs(k, k);
    // acha e tira o centroid
    int c = centroid(k, k, subsize[k]);
    rem[c] = 1;
    pai[c] = last;
    //dfs_dist(c, c);
    // decompoe as sub-arvores
    for (int i = 0; i < (int) g[c].size(); i++)</pre>
        if (!rem[g[c][i]]) decomp(g[c][i], c);
}
void build() {
    memset(rem, 0, sizeof rem);
    decomp(0);
    //for (int i = 0; i < n; i++) reverse(dist[i].begin(),
       dist[i].end());
}
     Tarjan para Pontes
// Computa pontos de articulação
// e pontes
```

dfs_art(1, -1, d);

```
Prufer code
```

// O(n+m)

}

}

int d = 0;

}

int in[MAX];

int low[MAX];

int parent[MAX];

vector < int > g[MAX];

parent[v] = p;

 $if (p == -1){$

int k = 0;

memset(in, -1, sizeof in);

low[v] = in[v] = d++;

is_art[v] = false; for (int j : g[v]){

void dfs_art(int v, int p, int &d){

if (j == p) continue;

dfs_art(j, v, d);

if (low[j] >= in[v]) is_art[v] = true;

low[v] = min(low[v], low[j]);

else low[v] = min(low[v], in[j]);

k += (parent[j] == v); if (k > 1) is_art[v] = true;

//if (low[j] > in[v]) this edge is a bridge

 $if (in[j] == -1){$

is_art[v] = false;

for (int j : g[v])

bool is_art[MAX];

```
// Traduz de lista de arestas para prufer code
// e vice-versa
// Os vertices tem label de 0 a n-1
// Todo array com n-2 posicoes e valores de
// O a n-1 sao prufer codes validos
//
// O(n)
vector < int > to_prufer(vector < pair < int , int >> tree) {
    int n = tree.size()+1;
    vector < int > d(n, 0);
    vector < vector < int >> g(n);
    for (auto [a, b] : tree) d[a]++, d[b]++,
        g[a].push_back(b), g[b].push_back(a);
    vector < int > pai(n, -1);
    queue < int > q; q.push(n-1);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int v : g[u]) if (v != pai[u])
            pai[v] = u, q.push(v);
    }
    int idx, x;
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector < int > ret;
    for (int i = 0; i < n-2; i++) {</pre>
        int y = pai[x];
        ret.push_back(y);
        if (--d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
            d.begin();
    return ret;
}
vector<pair<int, int>> from_prufer(vector<int> p) {
    int n = p.size()+2;
    vector < int > d(n, 1);
    for (int i : p) d[i]++;
    p.push_back(n-1);
    int idx, x;
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector<pair<int, int>> ret;
```

```
for (int y : p) {
        ret.push_back({x, y});
        if (--d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
           d.begin();
    }
    return ret;
}
1.4 Dinic
// O(min(m * max_flow, n^2 m))
// Grafo com capacidades 1 -> O(sqrt(n)*m)
struct dinic {
    const bool scaling = false; // com scaling -> 0(nm
       log(MAXCAP)),
    int lim;
                                 // com constante alta
    struct edge {
        int to, cap, rev, flow; // para, capacidade, id da
           reversa, fluxo
        bool res; // se a aresta eh residual
        edge(int to_, int cap_, int rev_, bool res_)
            : to(to_), cap(cap_), rev(rev_), flow(0),
               res(res ) {}
    };
    vector < vector < edge >> g;
    vector < int > lev, beg;
    dinic(int n): g(n) {}
    void add(int a, int b, int c) { // de a pra b com cap. c
        g[a].push_back(edge(b, c, g[b].size(), false));
        g[b].push_back(edge(a, 0, g[a].size()-1, true));
    }
    bool bfs(int s, int t) {
        lev = vector<int>(g.size(), -1); lev[s] = 0;
        beg = vector<int>(g.size(), 0);
        queue < int > q; q.push(s);
        while (q.size()) {
```

```
int u = q.front(); q.pop();
        for (auto& i : g[u]) {
            if (lev[i.to] != -1 or (i.flow == i.cap))
               continue:
            if (scaling and i.cap - i.flow < lim)</pre>
               continue;
            lev[i.to] = lev[u] + 1;
            q.push(i.to);
        }
    }
    return lev[t] != -1;
int dfs(int v, int s, int f = INF){
    if (!f or v == s) return f;
    for (int& i = beg[v]; i < g[v].size(); i++) {</pre>
        auto& e = g[v][i];
        if (lev[e.to] != lev[v] + 1) continue;
       int foi = dfs(e.to, s, min(f, e.cap - e.flow));
        if (!foi) continue;
        e.flow += foi, g[e.to][e.rev].flow -= foi;
        return foi;
    }
    return 0;
11 max_flow(int s, int t) {
   11 f = 0;
    for (lim = scaling ? (1 << 30) : 1; lim; lim /= 2)
        while (bfs(s, t)) while (int ff = dfs(s, t)) f
    return f;
vector<pair<int, int> > get_cut(int s, int t) {
    max_flow(s, t);
    vector<pair<int, int> > cut;
    vector<int> vis(g.size(), 0), st = {s};
    vis[s] = 1:
    while (st.size()) {
        int u = st.back(); st.pop_back();
        for (auto e : g[u]) if (!vis[e.to] and e.flow <</pre>
           e.cap)
            vis[e.to] = 1, st.push_back(e.to);
    }
```

1.5 Dominator Tree - Kawakami

```
// Se vira pra usar ai
//
// build - O(n)
// dominates - O(1)
int n;
namespace DTree {
    vector < int > g[MAX];
    // The dominator tree
    vector<int> tree[MAX];
    int dfs_l[MAX], dfs_r[MAX];
    // Auxiliary data
    vector < int > rg[MAX], bucket[MAX];
    int idom[MAX], sdom[MAX], prv[MAX], pre[MAX];
    int ancestor[MAX], label[MAX];
    vector<int> preorder;
    void dfs(int v) {
        static int t = 0;
        pre[v] = ++t;
        sdom[v] = label[v] = v;
        preorder.push_back(v);
        for (int nxt: g[v]) {
            if (sdom[nxt] == -1) {
                prv[nxt] = v;
                dfs(nxt);
```

```
rg[nxt].push_back(v);
    }
}
int eval(int v) {
    if (ancestor[v] == -1) return v;
    if (ancestor[ancestor[v]] == -1) return label[v];
    int u = eval(ancestor[v]);
    if (pre[sdom[u]] < pre[sdom[label[v]]]) label[v] = u;</pre>
    ancestor[v] = ancestor[u];
    return label[v];
}
void dfs2(int v) {
    static int t = 0;
    dfs_1[v] = t++;
    for (int nxt: tree[v]) dfs2(nxt);
    dfs_r[v] = t++;
}
void build(int s) {
    for (int i = 0; i < n; i++) {</pre>
        sdom[i] = pre[i] = ancestor[i] = -1;
        rg[i].clear();
        tree[i].clear();
        bucket[i].clear();
    preorder.clear();
    dfs(s);
    if (preorder.size() == 1) return;
    for (int i = int(preorder.size()) - 1; i >= 1; i--) {
        int w = preorder[i];
        for (int v: rg[w]) {
            int u = eval(v);
            if (pre[sdom[u]] < pre[sdom[w]]) sdom[w] =</pre>
               sdom[u];
        }
        bucket[sdom[w]].push_back(w);
        ancestor[w] = prv[w];
        for (int v: bucket[prv[w]]) {
            int u = eval(v);
            idom[v] = (u == v) ? sdom[v] : u;
        bucket[prv[w]].clear();
    }
```

```
for (int i = 1; i < preorder.size(); i++) {
    int w = preorder[i];
    if (idom[w] != sdom[w]) idom[w] = idom[idom[w]];
        tree[idom[w]].push_back(w);
    }
    idom[s] = sdom[s] = -1;
    dfs2(s);
}

// Whether every path from s to v passes through u
bool dominates(int u, int v) {
    if (pre[v] == -1) return 1; // vacuously true
    return dfs_l[u] <= dfs_l[v] && dfs_r[v] <= dfs_r[u];
}
};</pre>
```

1.6 Kosaraju

```
// O(n + m)
int n;
vector < int > g[MAX];
vector<int> gi[MAX]; // grafo invertido
int vis[MAX];
stack<int> S;
int comp[MAX]; // componente conexo de cada vertice
void dfs(int k) {
    vis[k] = 1:
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (!vis[g[k][i]]) dfs(g[k][i]);
    S.push(k);
}
void scc(int k, int c) {
    vis[k] = 1;
    comp[k] = c;
    for (int i = 0; i < (int) gi[k].size(); i++)</pre>
        if (!vis[gi[k][i]]) scc(gi[k][i], c);
```

```
void kosaraju() {
    for (int i = 0; i < n; i++) vis[i] = 0;
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);

for (int i = 0; i < n; i++) vis[i] = 0;
    while (S.size()) {
        int u = S.top();
        S.pop();
        if (!vis[u]) scc(u, u);
    }
}</pre>
```

1.7 Dijkstra

```
// encontra menor distancia de x
// para todos os vertices
// se ao final do algoritmo d[i] = INF,
// entao x nao alcanca i
//
// O(m log(n))
int d[MAX]:
vector<pair<int,int>> g[MAX]; // {vizinho, peso}
int n;
void dijkstra(int x) {
    for(int i=0; i < n; i++) d[i] = INF;</pre>
    d[x] = 0;
    priority_queue < pair < int , int >> pq;
    pq.push({0,x});
    while(pq.size()) {
        auto [ndist,u] = pq.top(); pq.pop();
        if(-ndist > d[u]) continue;
        for (auto [idx,w]: g[u]) if (d[idx] > d[u] + w) {
            d[idx] = d[u] + w;
```

```
pq.push({-d[idx], idx});
}
}
```

1.8 Heavy-Light Decomposition sem Update

```
// query de min do caminho
//
// Complexidades:
// build - O(n)
// query_path - O(log(n))
#define f first
#define s second
namespace hld {
    vector<pair<int, int> > g[MAX];
    int pos[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    int men[MAX], seg[2*MAX];
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.f != p) {
            sobe[i.f] = i.s; pai[i.f] = k;
            h[i.f] = (i == g[k][0] ? h[k] : i.f);
            men[i.f] = (i == g[k][0] ? min(men[k], i.s) :
               i.s):
            build_hld(i.f, k, f); sz[k] += sz[i.f];
            if (sz[i.f] > sz[g[k][0].f] or g[k][0].f == p)
               swap(i, g[k][0]);
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    }
    void build(int root = 0) {
        t = 0;
        build_hld(root);
```

1.9 LCA com binary lifting

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// MAX2 = ceil(log(MAX))
// Complexidades:
// build - O(n log(n))
// lca - O(log(n))
vector < vector < int > > g(MAX);
int n, p;
int pai[MAX2][MAX];
int in[MAX], out[MAX];
void dfs(int k) {
    in[k] = p++;
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (in[g[k][i]] == -1) {
            pai[0][g[k][i]] = k;
            dfs(g[k][i]);
        }
    out[k] = p++;
```

```
}
void build(int raiz) {
    for (int i = 0; i < n; i++) pai[0][i] = i;</pre>
    p = 0, memset(in, -1, sizeof in);
    dfs(raiz);
    // pd dos pais
    for (int k = 1; k < MAX2; k++) for (int i = 0; i < n;
        pai[k][i] = pai[k - 1][pai[k - 1][i]];
}
bool anc(int a, int b) { // se a eh ancestral de b
    return in[a] <= in[b] and out[a] >= out[b];
}
int lca(int a, int b) {
    if (anc(a, b)) return a;
    if (anc(b, a)) return b;
    // sobe a
    for (int k = MAX2 - 1; k >= 0; k--)
        if (!anc(pai[k][a], b)) a = pai[k][a];
    return pai[0][a];
}
// Alternativamente:
// 'binary lifting' gastando O(n) de memoria
// Da pra add folhas e fazer queries online
// 3 vezes o tempo do binary lifting normal
//
// build - O(n)
// kth, lca, dist - O(log(n))
int d[MAX], p[MAX], pp[MAX];
void set_root(int i) { p[i] = pp[i] = i, d[i] = 0; }
void add_leaf(int i, int u) {
    p[i] = u, d[i] = d[u]+1;
```

```
pp[i] = 2*d[pp[u]] == d[pp[pp[u]]]+d[u] ? pp[pp[u]] : u;
}
int kth(int i, int k) {
    int dd = max(0, d[i]-k);
    while (d[i] > dd) i = d[pp[i]] >= dd ? pp[i] : p[i];
    return i;
}
int lca(int a, int b) {
    if (d[a] < d[b]) swap(a, b);</pre>
    while (d[a] > d[b]) a = d[pp[a]] >= d[b] ? pp[a] : p[a];
    while (a != b) {
        if (pp[a] != pp[b]) a = pp[a], b = pp[b];
        else a = p[a], b = p[b];
    }
    return a;
}
int dist(int a, int b) { return d[a]+d[b]-2*d[lca(a,b)]; }
vector < int > g[MAX];
void build(int i, int pai=-1) {
    if (pai == -1) set_root(i);
    for (int j : g[i]) if (j != pai) {
        add_leaf(j, i);
        build(j, i);
}
1.10 Heavy-Light Decomposition - vertice
// SegTree de soma
// query / update de soma dos vertices
```

```
// SegTree de soma
// query / update de soma dos vertices
//
// Complexidades:
// build - O(n)
// query_path - O(log^2 (n))
// update_path - O(log^2 (n))
```

```
// query_subtree - O(log(n))
// update_subtree - O(log(n))
namespace seg { ... }
namespace hld {
    vector < int > g[MAX];
    int pos[MAX], sz[MAX];
    int peso[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = peso[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i != p) {
            pai[i] = k;
            h[i] = (i == g[k][0] ? h[k] : i);
            build_hld(i, k, f); sz[k] += sz[i];
            if (sz[i] > sz[g[k][0]] or g[k][0] == p) swap(i,
               g[k][0]);
        }
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    }
    void build(int root = 0) {
        t = 0;
        build_hld(root);
        seg::build(t, v);
    }
    ll query_path(int a, int b) {
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return seg::query(pos[b], pos[a]);
        return seg::query(pos[h[a]], pos[a]) +
           query_path(pai[h[a]], b);
    }
    void update_path(int a, int b, int x) {
        if (pos[a] < pos[b]) swap(a, b);
        if (h[a] == h[b]) return (void)seg::update(pos[b],
           pos[a], x);
        seg::update(pos[h[a]], pos[a], x);
           update_path(pai[h[a]], b, x);
```

```
}
ll query_subtree(int a) {
    return seg::query(pos[a], pos[a]+sz[a]-1);
}
void update_subtree(int a, int x) {
    seg::update(pos[a], pos[a]+sz[a]-1, x);
}
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}</pre>
```

1.11 LCA com HLD

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// Para buildar pasta chamar build(root)
// anc(a, b) responde se 'a' eh ancestral de 'b'
//
// Complexidades:
// build - O(n)
// lca - O(log(n))
// anc - 0(1)
vector < int > g[MAX];
int pos[MAX], h[MAX], sz[MAX];
int pai[MAX], t;
void build(int k, int p = -1, int f = 1) {
    pos[k] = t++; sz[k] = 1;
    for (int& i : g[k]) if (i != p) {
        pai[i] = k;
        h[i] = (i == g[k][0] ? h[k] : i);
        build(i, k, f); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]] or g[k][0] == p) swap(i,
           g[k][0]);
    if (p*f == -1) t = 0, h[k] = k, build(k, -1, 0);
```

```
}
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);</pre>
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}
bool anc(int a, int b) {
    return pos[a] <= pos[b] and pos[b] <= pos[a]+sz[a]-1;</pre>
}
1.12 LCA com RMQ
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// dist(a, b) retorna a distancia entre a e b
//
// Complexidades:
// build - O(n)
// lca - 0(1)
// dist - O(1)
template < typename T> struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }
    int msb(int x) { return
        __builtin_clz(1)-__builtin_clz(x); }
    rmq() {}
    rmq(const \ vector < T > \& v_) : v(v_), n(v.size()), mask(n),
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
            at = (at << 1) &((1 << b) -1);
            while (at and op(i, i-msb(at&-at)) == i) at ^=
                at&-at;
        for (int i = 0; i < n/b; i++) t[i] =</pre>
           b*i+b-1-msb(mask[b*i+b-1]);
```

```
for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1));}
    T query(int 1, int r) {
        if (r-l+1 <= b) return small(r, r-l+1);</pre>
        int ans = op(small(1+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x <= y) {
            int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
               t[n/b*j+y-(1<<j)+1]));
        }
        return ans;
    }
};
namespace lca {
    vector < int > g[MAX];
    int v[2*MAX], pos[MAX], dep[2*MAX];
    int t;
    rmq<int> RMQ;
    void dfs(int i, int d = 0, int p = -1) {
        v[t] = i, pos[i] = t, dep[t++] = d;
        for (int j : g[i]) if (j != p) {
            dfs(j, d+1, i);
            v[t] = i, dep[t++] = d;
        }
    }
    void build(int n, int root) {
        t = 0;
        dfs(root);
        RMQ = rmq < int > (vector < int > (dep, dep + 2*n - 1));
    int lca(int a, int b) {
        a = pos[a], b = pos[b];
        return v[RMQ.query(min(a, b), max(a, b))];
    }
```

1.13 Heavy-Light Decomposition - aresta

```
// SegTree de soma
// query / update de soma das arestas
// Complexidades:
// build - O(n)
// \text{ query_path - } O(\log^2 (n))
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
#define f first
#define s second
namespace seg { ... }
namespace hld {
    vector<pair<int, int> > g[MAX];
    int pos[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.f != p) {
            sobe[i.f] = i.s; pai[i.f] = k;
            h[i.f] = (i == g[k][0] ? h[k] : i.f);
            build_hld(i.f, k, f); sz[k] += sz[i.f];
            if (sz[i.f] > sz[g[k][0].f] or g[k][0].f == p)
               swap(i, g[k][0]);
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
```

```
}
void build(int root = 0) {
    t = 0;
    build_hld(root);
    seg::build(t, v);
ll query_path(int a, int b) {
    if (a == b) return 0;
    if (pos[a] < pos[b]) swap(a, b);</pre>
    if (h[a] == h[b]) return seg::query(pos[b]+1,
       pos[a]):
    return seg::query(pos[h[a]], pos[a]) +
       query_path(pai[h[a]], b);
void update_path(int a, int b, int x) {
    if (a == b) return:
    if (pos[a] < pos[b]) swap(a, b);
    if (h[a] == h[b]) return (void)seg::update(pos[b]+1,
       pos[a], x);
    seg::update(pos[h[a]], pos[a], x);
       update_path(pai[h[a]], b, x);
11 query_subtree(int a) {
    if (sz[a] == 1) return 0;
    return seg::query(pos[a]+1, pos[a]+sz[a]-1);
void update_subtree(int a, int x) {
    if (sz[a] == 1) return;
    seg::update(pos[a]+1, pos[a]+sz[a]-1, x);
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}
```

1.14 Bellman-Ford

}

```
// Calcula a menor distancia
// entre a e todos os vertices e
// detecta ciclo negativo
// Retorna 1 se ha ciclo negativo
// Nao precisa representar o grafo,
// soh armazenar as arestas
//
// O(nm)
int n, m;
int d[MAX];
vector<pair<int, int> > ar; // vetor de arestas
vector < int > w;
                             // peso das arestas
bool bellman_ford(int a) {
    for (int i = 0; i < n; i++) d[i] = INF;</pre>
    d[a] = 0:
    for (int i = 0; i <= n; i++)
        for (int j = 0; j < m; j++) {</pre>
            if (d[ar[j].second] > d[ar[j].first] + w[j]) {
                if (i == n) return 1;
                d[ar[j].second] = d[ar[j].first] + w[j];
            }
        }
    return 0;
}
```

| 1.15 | Tarjan para SCC

```
// O(n + m)
int n;
vector<int> g[MAX];
stack<int> s;
int vis[MAX], comp[MAX];
int id[MAX], p;
```

```
// se quiser comprimir ciclo em grafo nao direcionado,
// colocar um if na dfs para nao voltar pro vertice que veio
int dfs(int k) {
    int lo = id[k] = p++;
    s.push(k);
    vis[k] = 2; // ta na pilha
    // calcula o menor cara q ele alcanca
    // que ainda nao esta em um scc
    for (int i = 0; i < g[k].size(); i++) {</pre>
        if (!vis[g[k][i]])
            lo = min(lo, dfs(g[k][i]));
        else if (vis[g[k][i]] == 2)
            lo = min(lo, id[g[k][i]]);
    }
    // nao alcanca ninguem menor -> comeca scc
    if (lo == id[k]) while (1) {
        int u = s.top();
        s.pop(); vis[u] = 1;
        comp[u] = k;
        if (u == k) break;
    return lo;
}
void tarjan() {
    memset(vis, 0, sizeof(vis));
    p = 0;
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
}
1.16 Centro da Arvore
// Centro eh o vertice que minimiza
// a maior distancia dele pra alguem
// O centro fica no meio do diametro
// A funcao center retorna um par com
```

```
// o diametro e o centro
// O(n+m)
vector < int > g[MAX];
int n, vis[MAX];
int d[2][MAX];
// retorna ultimo vertice visitado
int bfs(int k, int x) {
        queue < int > q; q.push(k);
    memset(vis, 0, sizeof(vis));
    vis[k] = 1;
    d[x][k] = 0;
    int last = k;
    while (q.size()) {
        int u = q.front(); q.pop();
        last = u;
        for (int i : g[u]) if (!vis[i]) {
            vis[i] = 1;
            q.push(i);
            d[x][i] = d[x][u] + 1;
        }
    }
    return last;
pair<int, int> center() {
    int a = bfs(0, 0);
    int b = bfs(a, 1);
    bfs(b, 0);
    int c, mi = INF;
   for (int i = 0; i < n; i++) if (max(d[0][i], d[1][i]) <</pre>
        mi = max(d[0][i], d[1][i]), c = i;
   return {d[0][a], c};
```

1.17 Sack (DSU em arvores)

```
// Responde queries de todas as sub-arvores
// offline
// O(n log(n))
int sz[MAX], cor[MAX], cnt[MAX];
vector < int > g[MAX];
void build(int k, int d=0) {
    sz[k] = 1;
    for (auto& i : g[k]) {
        build(i, d+1); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]]) swap(i, g[k][0]);
}
void compute(int k, int x, bool dont=1) {
    cnt[cor[k]] += x;
    for (int i = dont; i < g[k].size(); i++)</pre>
        compute(g[k][i], x, 0);
}
void solve(int k, bool keep=0) {
    for (int i = int(g[k].size())-1; i >= 0; i--)
        solve(g[k][i], !i);
    compute(k, 1);
        // agora cnt[i] tem quantas vezes a cor
        // i aparece na sub-arvore do k
    if (!keep) compute(k, -1, 0);
}
```

1.18 AGM Direcionada

```
// Fala o menor custo para selecionar arestas tal que
// o vertice 'r' alcance todos
// Se nao tem como, retorna LINF
```

```
// O(m log(n))
struct node {
    pair<ll, int> val;
    ll lazy;
    node *1, *r;
    node() {}
    node(ii v) : val(v), lazy(0), l(NULL), r(NULL) {}
    void prop() {
        val.f += lazy;
        if (1) 1->lazy += lazy;
        if (r) r->lazy += lazy;
        lazy = 0;
   }
};
void merge(node*& a, node* b) {
    if (!a) swap(a, b);
    if (!b) return;
   a->prop(), b->prop();
    if (a->val > b->val) swap(a, b);
    merge(rand()%2 ? a->1 : a->r, b);
pair<11, int> pop(node*& R) {
    R->prop();
    auto ret = R->val;
    node* tmp = R;
    merge(R->1, R->r);
    R = R -> 1;
    if (R) R->lazy -= ret.f;
    delete tmp;
    return ret;
void apaga(node* R) { if (R) apaga(R->1), apaga(R->r),
   delete R; }
ll dmst(int n, int r, vector<pair<ii, int>>& ar) {
    vector < int > p(n); iota(p.begin(), p.end(), 0);
    function < int(int) > find = [&](int k) { return
       p[k] == k?k:p[k] = find(p[k]); };
    vector < node *> h(n);
```

```
for (auto e : ar) merge(h[e.f.s], new node({e.s,
       e.f.f}));
    vector < int > pai(n, -1), path(n);
    pai[r] = r;
    11 \text{ ans} = 0;
    for (int i = 0; i < n; i++) { // vai conectando todo
       mundo
        int u = i, at = 0;
        while (pai[u] == -1) {
            if (!h[u]) { // nao tem
                for (auto i : h) apaga(i);
                return LINF;
            path[at++] = u, pai[u] = i;
            auto [mi, v] = pop(h[u]);
            ans += mi;
            if (pai[u = find(v)] == i) { // ciclo}
                while (find(v = path[--at]) != u)
                     merge(h[u], h[v]), h[v] = NULL,
                        p[find(v)] = u;
                pai[u] = -1;
            }
        }
    for (auto i : h) apaga(i);
    return ans;
}
1.19 Centroid
// Computa os 2 centroids da arvore
//
// O(n)
int n, subsize[MAX];
vector < int > g[MAX];
```

void dfs(int k, int p=-1) {

```
subsize[k] = 1:
   for (int i : g[k]) if (i != p) {
        dfs(i, k);
        subsize[k] += subsize[i];
    }
}
int centroid(int k, int p=-1, int size=-1) {
    if (size == -1) size = subsize[k];
   for (int i : g[k]) if (i != p) if (subsize[i] > size/2)
        return centroid(i, k, size, t);
    return k;
}
pair<int, int> centroids(int k=0) {
    dfs(k);
   int i = centroid(k), i2 = i;
    for (int j : g[i]) if (2*subsize[j] == subsize[k]) i2 =
       j;
    return {i, i2};
}
1.20 Topological Sort
// Retorna uma ordenacaoo topologica de g
// Se g nao for DAG retorna um vetor vazio
//
// O(n + m)
vector < int > g[MAX];
vector < int > topo_sort(int n) {
    vector < int > ret(n,-1), vis(n,0);
    int pos = n-1, dag = 1;
    function < void(int) > dfs = [&] (int v) {
        vis[v] = 1;
        for(auto u : g[v]) {
            if(vis[u] == 1) dag = 0;
            else if(!vis[u]) dfs(u);
```

```
}
    ret[pos--] = v, vis[v] = 2;
};

for(int i=0; i<n; i++) if(!vis[i]) dfs(i);
    if(!dag) ret.clear();
    return ret;
}</pre>
```

1.21 Kruskal

```
// Gera e retorna uma AGM e seu custo total a partir do
   vetor de arestas (edg)
// do grafo
//
// O(m log(m) + m a(m))
typedef tuple <int, int, int> t3;
vector < t3 > edg; // {peso,[x,y]}
// DSU em O(a(n))
void dsu_build();
int find(int a);
void unite(int a, int b);
pair<11, vector <t3>> kruskal(int n) {
    dsu_build(n);
    sort(edg.begin(), edg.end());
    11 cost = 0;
    vector < t3 > mst;
    for(auto [w,x,y] : edg) if(find(x) != find(y)) {
        mst.push_back({w,x,y});
        cost += w;
        unite(x,y);
    return {cost,mst};
}
```

1.22 Blossom - matching maximo em grafo geral

```
// O(n^3)
// Se for bipartido, nao precisa da funcao
// 'contract', e roda em O(nm)
vector < int > g[MAX];
int match[MAX]; // match[i] = com quem i esta matchzado ou -1
int n, pai[MAX], base[MAX], vis[MAX];
queue < int > q;
void contract(int u, int v, bool first = 1) {
    static vector < bool > bloss;
    static int 1;
    if (first) {
        bloss = vector < bool > (n, 0);
        vector < bool > teve(n, 0);
        int k = u; l = v;
        while (1) {
            teve[k = base[k]] = 1;
            if (match[k] == -1) break;
            k = pai[match[k]];
        while (!teve[l = base[l]]) l = pai[match[l]];
    }
    while (base[u] != 1) {
        bloss[base[u]] = bloss[base[match[u]]] = 1;
        pai[u] = v;
        v = match[u];
        u = pai[match[u]];
    }
    if (!first) return;
    contract(v, u, 0);
   for (int i = 0; i < n; i++) if (bloss[base[i]]) {</pre>
        base[i] = 1;
        if (!vis[i]) q.push(i);
        vis[i] = 1;
    }
}
int getpath(int s) {
    for (int i = 0; i < n; i++) base[i] = i, pai[i] = -1,
```

```
vis[i] = 0:
    vis[s] = 1; q = queue < int > (); q.push(s);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int i : g[u]) {
            if (base[i] == base[u] or match[u] == i)
               continue:
            if (i == s or (match[i] != -1 and pai[match[i]]
                ! = -1))
                 contract(u, i);
            else if (pai[i] == -1) {
                pai[i] = u;
                if (match[i] == -1) return i;
                i = match[i];
                vis[i] = 1; q.push(i);
            }
        }
    return -1;
}
int blossom() {
    int ans = 0;
    memset(match, -1, sizeof(match));
    for (int i = 0; i < n; i++) if (match[i] == -1)</pre>
        for (int j : g[i]) if (match[j] == -1) {
            match[i] = j;
            match[j] = i;
            ans++;
            break;
        }
    for (int i = 0; i < n; i++) if (match[i] == -1) {</pre>
        int j = getpath(i);
        if (j == -1) continue;
        ans++:
        while (j != -1) {
            int p = pai[j], pp = match[p];
            match[p] = j;
            match[j] = p;
            j = pp;
        }
    }
```

```
return ans;
}
```

1.23 Max flow com lower bound

```
// Manda passar pelo menos 'lb' de fluxo
// em cada aresta
// O(dinic)
struct lb_max_flow : dinic {
    vector < int > d;
    vector < int > e;
    lb_max_flow(int n):dinic(n + 2), d(n, 0){}
    void add(int a, int b, int c, int lb = 0){
        c -= lb:
        d[a] -= lb;
        d[b] += lb;
        dinic::add(a, b, c);
    }
    bool check_flow(int src, int snk, int F){
        int n = d.size();
        d[src] += F;
        d[snk] -= F;
        for (int i = 0; i < n; i++){</pre>
             if (d[i] > 0){
                 dinic::add(n, i, d[i]);
             } else if (d[i] < 0){</pre>
                 dinic::add(i, n+1, -d[i]);
        }
        int f = \max_{f \in \mathcal{F}} \{n, n+1\};
        return (f == F);
    }
};
```

1.24 Isomorfismo de Arvores

```
// Duas arvores T1 e T2 sao isomorfas
// sse T1.getHash() = T2.getHash()
// O(n log(n))
map < vector < int > , int > mapp;
struct tree {
    int n:
    vector < vector < int > > g;
    vector < int > subsize;
    tree(int n) {
        g.resize(n);
        subsize.resize(n);
    void dfs(int k, int p=-1) {
        subsize[k] = 1;
        for (int i : g[k]) if (i != p) {
            dfs(i, k);
            subsize[k] += subsize[i];
        }
    }
    int centroid(int k, int p=-1, int size=-1) {
        if (size == -1) size = subsize[k];
        for (int i : g[k]) if (i != p)
            if (subsize[i] > size/2)
                return centroid(i, k, size);
        return k:
    pair < int , int > centroids(int k=0) {
        dfs(k):
        int i = centroid(k), i2 = i;
        for (int j : g[i]) if (2*subsize[j] == subsize[k])
           i2 = j;
        return {i, i2};
    int hashh(int k, int p=-1) {
        vector < int > v;
        for (int i : g[k]) if (i != p) v.push_back(hashh(i,
```

```
k));
sort(v.begin(), v.end());
if (!mapp.count(v)) mapp[v] = int(mapp.size());
return mapp[v];
}
ll getHash(int k=0) {
  pair<int, int> c = centroids(k);
  ll a = hashh(c.first), b = hashh(c.second);
  if (a > b) swap(a, b);
  return (a<<30)+b;
};</pre>
```

1.25 Algoritmo de Kuhn

```
// Computa matching maximo em grafo bipartido
// 'n' e 'm' sao quantos vertices tem em cada particao
// chamar add(i, j) para add aresta entre o cara i
// da particao A, e o cara j da particao B
// (entao i < n, j < m)
// Para recuperar o matching, basta olhar 'ma' e 'mb'
// recover() recupera o min vertex cover como um par de
// {caras da particao A, caras da particao B}
//
// O(|V| * |E|)
// Na pratica, parece rodar tao rapido quanto o Dinic
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct kuhn {
    int n, m;
    vector < vector < int >> g;
    vector < int > vis, ma, mb;
    kuhn(int n_, int m_) : n(n_), m(m_), g(n),
        vis(n+m), ma(n, -1), mb(m, -1) {}
    void add(int a, int b) { g[a].pb(b); }
```

```
bool dfs(int i) {
    vis[i] = 1;
    for (int j : g[i]) if (!vis[n+j]) {
        vis[n+j] = 1;
        if (mb[j] == -1 or dfs(mb[j])) {
            ma[i] = j, mb[j] = i;
            return true;
        }
    }
    return false;
int matching() {
    int ret = 0, aum = 1;
    for (auto& i : g) shuffle(i.begin(), i.end(), rng);
    while (aum) {
        for (int j = 0; j < m; j++) vis[n+j] = 0;
        aum = 0:
        for (int i = 0; i < n; i++)</pre>
            if (ma[i] == -1 and dfs(i)) ret++, aum = 1;
    }
    return ret;
pair < vector < int >, vector < int >> recover() {
    int M = matching();
    for (int i = 0; i < n+m; i++) vis[i] = 0;</pre>
    for (int i = 0; i < n; i++) if (ma[i] == -1)
       assert(!dfs(i));
    vector<int> ca, cb;
    for (int i = 0; i < n; i++) if (!vis[i])</pre>
       ca.push_back(i);
    for (int i = 0; i < m; i++) if (vis[n+i])</pre>
       cb.push_back(i);
    //assert(ca.size() + cb.size() == M);
    return {ca. cb}:
}
  Virtual Tree
```

1.26

};

// Comprime uma arvore dado um conjunto S de vertices, de

```
forma que
// o conjunto de vertices da arvore comprimida contenha S e
// minimal e fechado sobre a operacao de LCA
// Se |S| = k, a arvore comprimida tem O(k) vertices
//
// O(k log(k))
template < typename T > struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }
    int msb(int x) { return
       __builtin_clz(1)-__builtin_clz(x); }
    rmq() {}
    rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
            at = (at << 1) & ((1 << b) -1);
            while (at and op(i, i-msb(at&-at)) == i) at ^=
               at&-at;
        for (int i = 0; i < n/b; i++) t[i] =</pre>
           b*i+b-1-msb(mask[b*i+b-1]);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1));}
    T query(int 1, int r) {
        if (r-l+1 \le b) return small(r, r-l+1);
        int ans = op(small(l+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x <= y) {
            int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
               t[n/b*j+y-(1<<j)+1]));
        }
```

```
return ans:
    }
};
namespace lca {
    vector < int > g[MAX];
    int v[2*MAX], pos[MAX], dep[2*MAX];
    int t;
    rmq < int > RMQ;
    void dfs(int i, int d = 0, int p = -1) {
        v[t] = i, pos[i] = t, dep[t++] = d;
        for (int j : g[i]) if (j != p) {
            dfs(j, d+1, i);
            v[t] = i, dep[t++] = d;
        }
    }
    void build(int n, int root) {
        t = 0;
        dfs(root);
        RMQ = rmq < int > (vector < int > (dep, dep + 2*n - 1));
    int lca(int a, int b) {
        a = pos[a], b = pos[b];
        return v[RMQ.query(min(a, b), max(a, b))];
    int dist(int a, int b) {
        return dep[pos[a]] + dep[pos[b]] - 2*dep[pos[lca(a,
            b)]];
    }
}
vector < int > virt[MAX];
#warning lembrar de buildar o LCA antes
int build_virt(vector<int> v) {
    auto cmp = [&](int i, int j) { return lca::pos[i] <</pre>
       lca::pos[j]; };
    sort(v.begin(), v.end(), cmp);
    for (int i = v.size()-1; i; i--)
       v.push_back(lca::lca(v[i], v[i-1]));
    sort(v.begin(), v.end(), cmp);
```

1.27 Euler Path / Euler Cycle

```
// Para declarar: 'euler < true > E(n); ' se quiser
// direcionado e com 'n' vertices
// As funcoes retornam um par com um booleano
// indicando se possui o cycle/path que voce pediu,
// e um vector de {vertice, id da aresta para chegar no
   vertice}
// Se for get_path, na primeira posicao o id vai ser -1
// get_path(src) tenta achar um caminho ou ciclo euleriano
// comecando no vertice 'src'.
// Se achar um ciclo, o primeiro e ultimo vertice serao
   'src'.
// Se for um P3, um possiveo retorno seria [0, 1, 2, 0]
// get_cycle() acha um ciclo euleriano se o grafo for
   euleriano.
// Se for um P3, um possivel retorno seria [0, 1, 2]
// (vertie inicial nao repete)
//
// O(n+m)
template < bool directed = false > struct euler {
    vector < vector < ii >> g;
    vector<int> used;
    euler(int n_) : n(n_), g(n) {}
    void add(int a, int b) {
        int at = used.size();
        used.push_back(0);
        g[a].push_back({b, at});
```

```
if (!directed) g[b].push_back({a, at});
#warning chamar para o src certo!
    pair < bool, vector < ii >> get_path(int src) {
        if (!used.size()) return {true, {}};
        vector < int > beg(n, 0);
        for (int& i : used) i = 0;
        // {{vertice, anterior}, label}
        vector<pair<ii, int>> ret, st = {{src, -1}, -1}};
        while (st.size()) {
            int at = st.back().f.f;
            int& it = beg[at];
            while (it < g[at].size() and used[g[at][it].s])</pre>
               it++:
            if (it == g[at].size()) {
                if (ret.size() and ret.back().f.s != at)
                    return {false, {}};
                ret.push_back(st.back()), st.pop_back();
            } else {
                st.push_back({{g[at][it].f, at},
                   g[at][it].s});
                used[g[at][it].s] = 1;
            }
        }
        if (ret.size() != used.size()+1) return {false, {}};
        vector<ii> ans;
        for (auto i : ret) ans.pb({i.f.f, i.s});
        reverse(ans.begin(), ans.end());
        return {true, ans};
    pair < bool, vector < ii >> get_cycle() {
        if (!used.size()) return {true, {}};
        int src = 0;
        while (!g[src].size()) src++;
        auto ans = get_path(src);
        if (!ans.f or ans.s[0].f != ans.s.back().f) return
           {false, {}};
        ans.s[0].s = ans.s.back().s;
        ans.s.pop_back();
        return ans;
};
```

1.28 MinCostMaxFlow Papa

```
// min_cost_flow(s, t, f) computa o par (fluxo, custo)
// com max(fluxo) <= f que tenha min(custo)</pre>
// min_cost_flow(s, t) -> Fluxo maximo de custo minimo de s
// Se tomar TLE, aleatorizar a ordem dos vertices no SPFA
template < typename T > struct mcmf {
    struct edge {
        int to, rev, flow, cap; // para, id da reversa,
           fluxo, capacidade
        bool res; // se eh reversa
        T cost; // custo da unidade de fluxo
        edge(): to(0), rev(0), flow(0), cap(0), cost(0),
           res(false){}
        edge(int to_, int rev_, int flow_, int cap_, T
           cost_, bool res_)
            : to(to_), rev(rev_), flow(flow_), cap(cap_),
               res(res_), cost(cost_){}
    };
    vector < vector < edge >> g;
    vector<int> par_idx, par;
    mcmf(int n) : g(n), par_idx(n), par(n) {}
    void add(int u, int v, int w, T cost) { // de u pra v
       com cap w e custo cost
        edge a = edge(v, g[v].size(), 0, w, cost, false);
        edge b = edge(u, g[u].size(), 0, 0, -cost, true);
        g[u].push_back(a);
        g[v].push_back(b);
    }
    bool spfa(int s, int t) {
        deque < int > q;
        vector < bool > is_inside(g.size(), 0);
        T inf = numeric_limits <T>::max() / 3;
        vector<T> dist(g.size(), inf);
```

```
dist[s] = 0;
    is_inside[s] = true;
    q.push_back(s);
    while (!q.empty()) {
        int u = q.front();
        is_inside[u] = false;
        q.pop_front();
        for (int i = 0; i < (int)g[u].size(); i++)</pre>
            if (g[u][i].cap > g[u][i].flow && dist[u] +
               g[u][i].cost < dist[g[u][i].to]) {</pre>
                dist[g[u][i].to] = dist[u] +
                    g[u][i].cost;
                par_idx[g[u][i].to] = i;
                par[g[u][i].to] = u;
                if (is_inside[g[u][i].to]) continue;
                if (!q.empty() && dist[g[u][i].to] >
                    dist[q.front()])
                    q.push_back(g[u][i].to);
                 else q.push_front(g[u][i].to);
                 is_inside[g[u][i].to] = true;
            }
    }
    return dist[t] != inf;
}
pair < int , T > min_cost_flow(int s, int t, int flow = INF)
   ₹
    int f = 0:
    T ret = 0:
    while (f <= flow && spfa(s, t)) {</pre>
        int mn_flow = flow - f, u = t;
        while (u != s){
            mn_flow = min(mn_flow,
                g[par[u]][par_idx[u]].cap -
               g[par[u]][par_idx[u]].flow);
            u = par[u];
```

```
}
            u = t;
            while (u != s) {
                g[par[u]][par_idx[u]].flow += mn_flow;
                g[u][g[par[u]][par_idx[u]].rev].flow -=
                    mn_flow;
                ret += g[par[u]][par_idx[u]].cost * mn_flow;
                u = par[u];
            }
            f += mn_flow;
        }
        return make_pair(f, ret);
    }
    // Opicional: Retorna todas as arestas originais por
       onde passa fluxo = capacidade.
    vector < pair < int , int >> recover() {
        vector < pair < int , int >> used;
        for (int i = 0; i < g.size(); i++) for (edge e :</pre>
           g[i])
            if(e.flow == e.cap && !e.res) used.push_back({i,
                e.to});
        return used;
   }
};
      Link-cut Tree - aresta
1.29
// Valores nas arestas
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nas arestas do caminho v--w
```

// Todas as operacoes sao O(log(n)) amortizado

24

namespace lct {

struct node {

```
int p, ch[2];
    ll val, sub;
    bool rev;
    int sz, ar;
    ll lazy;
    node() {}
    node(int v, int ar_) :
    p(-1), val(v), sub(v), rev(0), sz(ar_), ar(ar_),
       lazv(0) {
       ch[0] = ch[1] = -1;
    }
};
node t[2*MAX]; // MAXN + MAXQ
map<ii, int> aresta;
int sz;
void prop(int x) {
    if (t[x].lazy) {
       if (t[x].ar) t[x].val += t[x].lazy;
       t[x].sub += t[x].lazy*t[x].sz;
       if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
           t[x].lazy;
        if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
           t[x].lazy;
    }
    if (t[x].rev) {
        swap(t[x].ch[0], t[x].ch[1]);
        if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
        if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
    t[x].lazy = 0, t[x].rev = 0;
}
void update(int x) {
    t[x].sz = t[x].ar, t[x].sub = t[x].val;
    for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {</pre>
        prop(t[x].ch[i]);
       t[x].sz += t[t[x].ch[i]].sz;
       t[x].sub += t[t[x].ch[i]].sub;
    }
}
bool is_root(int x) {
```

```
return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^(t[p].ch[0] == x) ? x : p);
        rotate(x);
    }
    return prop(x), x;
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
       t[v].p)
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
}
void make_tree(int v, int w=0, int ar=0) { t[v] =
   node(w, ar); }
int find_root(int v) {
    access(v), prop(v);
    while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
    return splay(v);
}
bool conn(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
}
void rootify(int v) {
```

```
access(v):
        t[v].rev ^= 1;
    11 query(int v, int w) {
        rootify(w), access(v);
        return t[v].sub;
    void update(int v, int w, int x) {
        rootify(w), access(v);
        t[v].lazy += x;
    void link_(int v, int w) {
        rootify(w);
       t[w].p = v;
    void link(int v, int w, int x) { // v--w com peso x
        int id = MAX + sz++;
        aresta[make_pair(v, w)] = id;
        make_tree(id, x, 1);
        link_(v, id), link_(id, w);
    }
    void cut_(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
    }
    void cut(int v, int w) {
        int id = aresta[make_pair(v, w)];
        cut_(v, id), cut_(id, w);
    }
    int lca(int v, int w) {
        access(v);
        return access(w);
   }
1.30 Link-cut Tree - vertice
```

}

```
// Valores nos vertices
// make_tree(v, w) cria uma nova arvore com um
// vertice soh com valor 'w'
```

```
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nos vertices do caminho v--w
//
// Todas as operacoes sao O(log(n)) amortizado
namespace lct {
    struct node {
        int p, ch[2];
        ll val, sub;
        bool rev;
        int sz;
        ll lazy;
        node() {}
        node(int v) : p(-1), val(v), sub(v), rev(0), sz(1),
           lazy(0) {
            ch[0] = ch[1] = -1;
        }
    };
    node t[MAX];
    void prop(int x) {
        if (t[x].lazy) {
            t[x].val += t[x].lazy, t[x].sub +=
               t[x].lazy*t[x].sz;
            if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
               t[x].lazv;
            if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
               t[x].lazy;
        }
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        t[x].lazy = 0, t[x].rev = 0;
    }
    void update(int x) {
        t[x].sz = 1, t[x].sub = t[x].val;
        for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {</pre>
            prop(t[x].ch[i]);
```

```
t[x].sz += t[t[x].ch[i]].sz;
        t[x].sub += t[t[x].ch[i]].sub;
    }
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x);
    }
    return prop(x), x;
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last:
}
void make_tree(int v, int w) { t[v] = node(w); }
int find_root(int v) {
    access(v), prop(v);
    while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
    return splay(v);
}
bool connected(int v, int w) {
```

```
access(v), access(w);
        return v == w ? true : t[v].p != -1;
    }
    void rootify(int v) {
        access(v);
        t[v].rev ^= 1;
    }
    11 query(int v, int w) {
        rootify(w), access(v);
        return t[v].sub;
    }
    void update(int v, int w, int x) {
        rootify(w), access(v);
        t[v].lazy += x;
    }
    void link(int v, int w) {
        rootify(w);
        t[w].p = v;
    }
    void cut(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
    }
    int lca(int v, int w) {
        access(v);
        return access(w);
   }
}
```

1.31 Link-cut Tree

```
// Link-cut tree padrao
//
// Todas as operacoes sao O(log(n)) amortizado
namespace lct {
    struct node {
        int p, ch[2];
        node() { p = ch[0] = ch[1] = -1; }
};
```

```
node t[MAX];
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
}
void splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
       if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0]} == x) ? x : p);
        rotate(x);
    }
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; last = w, splay(v), w = t[v].p)
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
}
int find_root(int v) {
    access(v);
    while (t[v].ch[0]+1) v = t[v].ch[0];
    return splay(v), v;
}
void link(int v, int w) { // v deve ser raiz
    access(v):
    t[v].p = w;
void cut(int v) { // remove aresta de v pro pai
    access(v);
    t[v].ch[0] = t[t[v].ch[0]].p = -1;
}
```

```
int lca(int v, int w) {
    return access(v), access(w);
}
```

1.32 Line Tree

```
// Reduz min-query em arvore para RMQ
// Se o grafo nao for uma arvore, as queries
// sao sobre a arvore geradora maxima
// Queries de minimo
//
// build - O(n log(n))
// query - O(log(n))
int n;
namespace linetree {
    int id[MAX], seg[2*MAX], pos[MAX];
    vector < int > v[MAX], val[MAX];
    vector<pair<int, pair<int, int> > ar;
    void add(int a, int b, int p) { ar.pb({p, {a, b}}); }
    void build() {
        sort(ar.rbegin(), ar.rend());
        for (int i = 0; i < n; i++) id[i] = i, v[i] = {i},
           val[i].clear();
        for (auto i : ar) {
            int a = id[i.second.first], b =
               id[i.second.second]:
            if (a == b) continue:
            if (v[a].size() < v[b].size()) swap(a, b);</pre>
            for (auto j : v[b]) id[j] = a, v[a].push_back(j);
            val[a].push_back(i.first);
            for (auto j : val[b]) val[a].push_back(j);
            v[b].clear(), val[b].clear();
        }
        vector < int > vv;
        for (int i = 0; i < n; i++) for (int j = 0; j <
           v[i].size(); j++) {
```

```
pos[v[i][j]] = vv.size();
            if (j + 1 < v[i].size()) vv.push_back(val[i][j]);</pre>
            else vv.push_back(0);
        }
        for (int i = n; i < 2*n; i++) seg[i] = vv[i-n];</pre>
        for (int i = n-1; i; i--) seg[i] = min(seg[2*i],
           seg[2*i+1]);
    int query(int a, int b) {
        if (id[a] != id[b]) return 0; // nao estao conectados
        a = pos[a], b = pos[b];
        if (a > b) swap(a, b);
        b--;
        int ans = INF;
        for (a += n, b += n; a \le b; ++a/=2, --b/=2) ans =
           min({ans, seg[a], seg[b]});
        return ans;
    }
};
```

1.33 Floyd-Warshall

```
// encontra o menor caminho entre todo
// par de vertices e detecta ciclo negativo
// returna 1 sse ha ciclo negativo
// d[i][i] deve ser 0
// para i != j, d[i][j] deve ser w se ha uma aresta
// (i, j) de peso w, INF caso contrario
//
// O(n^3)

int n;
int d[MAX][MAX];

bool floyd_warshall() {
   for (int k = 0; k < n; k++)
   for (int i = 0; i < n; i++)
   for (int j = 0; j < n; j++)
        d[i][j] = min(d[i][j], d[i][k] + d[k][j]);</pre>
```

```
for (int i = 0; i < n; i++)
        if (d[i][i] < 0) return 1;

return 0;
}</pre>
```

2 Matematica

2.1 Ordem de elemento do grupo

```
// Calcula a ordem de a em Z_n
// O grupo Zn eh ciclico sse n =
// 1, 2, 4, p^k ou 2 p^k, p primo impar
// Retorna -1 se nao achar
//
// O(sqrt(n) log(n))
int tot(int n); // totiente em O(sqrt(n))
int expo(int a, int b, int m); // (a^b) %m em O(log(b))
// acha todos os divisores ordenados em O(sqrt(n))
vector < int > div(int n) {
    vector<int> ret1, ret2;
    for (int i = 1; i*i <= n; i++) if (n % i == 0) {
        ret1.pb(i);
        if (i*i != n) ret2.pb(n/i);
    }
    for (int i = ret2.size()-1; i+1; i--) ret1.pb(ret2[i]);
    return ret1;
}
int ordem(int a, int n) {
    vector < int > v = div(tot(n));
    for (int i : v) if (expo(a, i, n) == 1) return i;
    return -1;
}
```

2.2 Teorema Chines do Resto

```
// Combina equacoes modulares lineares: x = a (mod m)
// O m final eh o lcm dos m's, e a resposta eh unica mod o
   lcm
// Os m nao precisam ser coprimos
// Se nao tiver solucao, o 'a' vai ser -1
tuple < 11, 11, 11 > ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd(b%a, a);
    return \{g, y - b/a*x, x\};
}
struct crt {
    ll a, m;
    crt() : a(0), m(1) {}
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        auto [g, x, y] = ext_gcd(m, C.m);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 \text{ or } C.a == -1) \text{ return } crt(-1, 0);
        11 lcm = m/g*C.m;
        11 ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
    }
};
```

2.3 Pollard's Rho Alg

```
// Usa o algoritmo de deteccao de ciclo de Brent
// A fatoracao nao sai necessariamente ordenada
// O algoritmo rho encontra um fator de n,
// e funciona muito bem quando n possui um fator pequeno
//
// Complexidades (considerando mul constante):
// rho - esperado O(n^(1/4)) no pior caso
// fact - esperado menos que O(n^(1/4) log(n)) no pior caso
```

```
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
ll uniform(ll 1, ll r){
    uniform_int_distribution < ll > uid(l, r);
    return uid(rng);
}
11 mul(ll a, ll b, ll m) {
   ll ret = a*b - ll(a*(long double)b/m+0.5)*m;
   return ret < 0 ? ret+m : ret;</pre>
}
ll expo(ll a, ll b, ll m) {
   if (!b) return 1;
    ll ans = expo(mul(a, a, m), b/2, m);
   return b%2 ? mul(a, ans, m) : ans;
}
bool prime(ll n) {
   if (n < 2) return 0;
   if (n <= 3) return 1;
    if (n % 2 == 0) return 0;
    11 d = n - 1;
    int r = 0;
    while (d % 2 == 0) {
        r++;
        d /= 2;
    }
    for (int i : {2, 325, 9375, 28178, 450775, 9780504,
       795265022}) {
       if (i >= n) break;
        ll x = expo(i, d, n);
        if (x == 1 or x == n - 1) continue;
        bool deu = 1;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
           if (x == n - 1) {
                deu = 0:
```

```
break:
            }
        if (deu) return 0;
    return 1;
}
11 rho(11 n) {
    if (n == 1 or prime(n)) return n;
    if (n % 2 == 0) return 2;
    while (1) {
        11 x = 2, y = 2, ciclo = 2, i = 0, d = 1;
        ll c = uniform(1, n-1):
        while (d == 1) {
            if (++i == ciclo) ciclo *= 2, y = x;
            x = (mul(x, x, n) + c) \% n;
            if (x == y) break;
            d = \_gcd(abs(x-y), n);
        if (x != y) return d;
}
void fact(ll n, vector<ll>& v) {
    if (n == 1) return;
    if (prime(n)) v.pb(n);
    else {
        11 d = rho(n):
       fact(d, v);
        fact(n / d, v);
   }
}
```

2.4 Algoritmo de Euclides extendido

```
// acha x e y tal que ax + by = mdc(a, b) (nao eh unico)
//
// O(log(min(a, b)))
tuple < 11, 11, 11 > ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd(b\%a, a);
   return \{g, y - b/a*x, x\};
}
     Eliminação Gaussiana de XOR.
// insert(mask) insere uma mask no espaco vetorial
// get(X) retorna outra uma mask com os caras da base
// cujo xor da X, ou -1 se n tem como
//
// O(log(MAXN))
int basis[LOG]; // basis[i] = mask do cara com bit mais
   significativo i
int rk: // tamanho da base
void insert(int mask) {
    for (int i = LOG - 1; i >= 0; i--) if (mask>>i&1) {
        if (!basis[i]) {
            basis[i] = mask, rk++;
            return:
        }
        mask ^= basis[i];
   }
}
int get(int mask) {
   int ret = 0;
   for (int i = LOG - 1; i >= 0; i--) if (mask>>i&1) {
        if (!basis[i]) return -1;
        mask ^= basis[i], ret |= (1<<i);
    return ret;
```

}

2.6 Algoritmo de Euclides

```
// O(log(min(a, b)))
int mdc(int a, int b) {
    return !b ? a : mdc(b, a % b);
}
```

2.7 Binomial Distribution

```
// binom(n, k, p) retorna a probabilidade de k sucessos
// numa binomial(n, p)
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
double logfact[MAX];
void calc(){
    logfact[0] = 0;
    for (int i = 1; i < MAX; i++)</pre>
        logfact[i] = logfact[i-1] + log(i);
}
double binom(int n, int k, double p){
    return exp(logfact[n] - logfact[k] - logfact[n-k] + k *
       log(p) + (n-k) * log(1 - p));
}
int main(){//if you want to sample from a bin(n, p)
    calc():
    int n; double p;
    cin >> n >> p;
    binomial_distribution < int > distribution (n, p);
    int IT = 1e5;
    vector<int> freq(n+1, 0);
    for (int i = 0; i < IT; i++){</pre>
        int v = distribution(rng);
        //P(v == k) = (n \text{ choose } k)p^k (1-p)^(n-k) = binom(n,
           k, p)
        freq[v]++;
```

2.8 Divisão de Polinomios

```
// Divide p1 por p2
// Retorna um par com o quociente e o resto
// Os coeficientes devem estar em ordem
// decrescente pelo grau. Ex:
// 3x^2 + 2x - 1 \rightarrow [3, 2, -1]
// O(nm), onde n e m sao os tamanhos dos
// polinomios
typedef vector<int> vi;
pair < vi , vi > div(vi p1, vi p2) {
    vi quoc, resto;
    int a = p1.size(), b = p2.size();
    for (int i = 0; i <= a - b; i++) {
        int k = p1[i] / p2[0];
        quoc.pb(k);
        for (int j = i; j < i + b; j++)
            p1[j] = k * p2[j - i];
    }
    for (int i = a - b + 1; i < a; i++)
        resto.pb(p1[i]);
    return mp(quoc, resto);
}
```

2.9 Deteccao de ciclo - Tortoise and Hare

```
// Linear no tanto que tem que andar pra ciclar,
// O(1) de memoria
// Retorna um par com o tanto que tem que andar
// do f0 ate o inicio do ciclo e o tam do ciclo
pair<11, 11> find_cycle() {
    11 \text{ tort} = f(f0);
    ll hare = f(f(f0));
    11 t = 0;
    while (tort != hare) {
        tort = f(tort);
        hare = f(f(hare));
        t++;
    }
    11 st = 0;
    tort = f0;
    while (tort != hare) {
        tort = f(tort);
        hare = f(hare);
        st++;
    }
    11 len = 1;
    hare = f(tort);
    while (tort != hare) {
        hare = f(hare);
        len ++;
    return {st, len};
}
2.10 FFT
// Exemplos na main
// Soma O(n) & Multiplicacao O(nlogn)
template < typename T > void fft(vector < T > &a, bool f, int N,
   vector<int> &rev){
    for (int i = 0; i < N; i++)</pre>
```

```
if (i < rev[i])</pre>
             swap(a[i], a[rev[i]]);
    int 1, r, m;
    vector <T> roots(N);
    for (int n = 2; n <= N; n *= 2){</pre>
        T \text{ root} = T :: rt(f, n, N);
        roots[0] = 1;
        for (int i = 1; i < n/2; i++)</pre>
             roots[i] = roots[i-1]*root;
        for (int pos = 0; pos < N; pos += n){
            1 = pos+0, r = pos+n/2, m = 0;
             while (m < n/2) {
                 auto t = roots[m]*a[r]:
                 a[r] = a[1] - t;
                 a[1] = a[1] + t:
                 1++; r++; m++;
            }
        }
    }
    if (f) {
        auto invN = T(1)/N;
        for(int i = 0; i < N; i++) a[i] = a[i]*invN;</pre>
    }
}
template < typename T> struct poly : vector < T> {
    poly(const vector<int> &coef):vector<T>(coef.size()){
        for (int i = 0; i < coef.size(); i++) this->at(i) =
            coef[i];
    poly(const vector<T> &coef):vector<T>(coef){}
    poly(unsigned size, T val = 0):vector<T>(size, val){}
    poly(){}
    T operator()(T x){
        T ans = 0, curr_x(1);
        for (auto c : *this) {
             ans += c*curr_x;
             curr_x *= x;
        return ans;
    }
```

```
poly<T> operator+(const poly<T> &r){
    polv < T > 1 = *this;
    int sz = max(l.size(), r.size());
    l.resize(sz);
    for (int i = 0; i < r.size(); i++)</pre>
        l[i] += r[i];
    return 1:
poly<T> operator - (poly<T> &r){
    for (auto &it : r) it = -it;
    return (*this)+r;
poly<T> operator*(poly<T> r){
    poly < T > 1 = *this;
    int ln = 1.size(), rn = r.size();
    int N = ln+rn+1;
    int log_n = T::fft_len(N);
    int n = 1 << log_n;</pre>
    vector < int > rev(n);
    for (int i = 0; i < n; ++i){</pre>
        rev[i] = 0;
        for (int j = 0; j < log_n; ++j)</pre>
            if (i & (1<<j))</pre>
                 rev[i] = 1 << (log_n-1-j);
    }
    if (N > n) throw logic_error("resulting poly to
       big");
    l.resize(n);
    r.resize(n);
    fft(1, false, n, rev);
    fft(r, false, n, rev);
    for (int i = 0; i < n; i++)</pre>
        l[i] *= r[i];
    fft(1, true, n, rev);
    return 1;
friend ostream& operator << (ostream &out, const poly <T>
   &p){
    if (p.empty()) return out;
    out << p.at(0);
    for (int i = 1; i < p.size(); i++)</pre>
        out << " + " << p.at(i) << "x^" << i;
```

```
out << endl:
        return out;
    }
};
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
const int MOD = 998244353;
using mint = mod_int < MOD >;
int main(){
    uniform_int_distribution < int > uid(0, MOD-1);
    int n = (1 << mint::fft_len()/2);</pre>
    auto rand_vec = [&](){
        vector < int > rd(n);
        for (int &i : rd) i = uid(rng);
        return rd;
    };
    poly<mint> p = rand_vec();
    poly < mint > q = rand_vec();
    poly < mint > sum = p+q;
    poly<mint> mult = p*q;
    for (int i = 1; i <= 5000; i++){</pre>
        int x = uid(rng);
        auto P = p(x), Q = q(x), M = mult(x);
        if (P*Q != M) throw logic_error("bad implementation
           :(");
    cout << "sucesso!" << endl;</pre>
    exit(0);
    exit(0):
}
2.11 Baby step Giant step
```

// Resolve Logaritmo Discreto a^x = b mod m, m primo em

```
0(sqrt(n)*hash(n))
// Meet In The Middle, decompondo x = i * ceil(sqrt(n)) - j,
   i,j<=ceil(sqrt(n))
int babyStep(int a, int b, int m)
{
    unordered_map < int , int > mapp;
    int sq=sqrt(m)+1;
    11 asq=1;
    for(int i=0; i<sq; i++)</pre>
         asq=(asq*a)%m;
    11 curr=asq;
    for(int i=1; i<=sq; i++)</pre>
         if(!mapp.count(curr))
             mapp[curr]=i;
         curr=(curr*asq)%m;
    int ret=INF;
    curr=b;
    for(int j=0; j<=sq; j++)</pre>
         if (mapp.count(curr))
             ret=min(ret,(int)(mapp[curr]*sq-j));
         curr=(curr*a)%m;
    if(ret<INF) return ret;</pre>
    return -1;
}
int main()
{
    int a,b,m;
    while(cin>>a>>b>>m,a or b or m)
         int x=babyStep(a,m,b);
         if(x!=-1)
             cout << x << endl;</pre>
         else
             cout << "No Solution" << endl;</pre>
    return 0;
```

2.12 Miller-Rabin

```
// Testa se n eh primo, n <= 3 * 10^18
//
// O(log(n)), considerando multiplicacao
// e exponenciacao constantes
// multiplicacao modular
11 mul(ll a, ll b, ll m) {
    return (a*b-ll(a*(long double)b/m+0.5)*m+m)%m;
}
ll expo(ll a, ll b, ll m) {
    if (!b) return 1;
    11 ans = expo(mul(a, a, m), b/2, m);
   return b%2 ? mul(a, ans, m) : ans;
}
bool prime(ll n) {
   if (n < 2) return 0;
   if (n <= 3) return 1;
   if (n % 2 == 0) return 0;
    11 d = n - 1;
    int r = 0;
    while (d % 2 == 0) {
        r++;
        d /= 2;
    }
    // com esses primos, o teste funciona garantido para n
       <= 2^64
    // funciona para n <= 3*10^24 com os primos ate 41
    for (int i: {2, 325, 9375, 28178, 450775, 9780504,
       1795265022}) {
        if (i >= n) break;
        ll x = expo(i, d, n);
        if (x == 1 \text{ or } x == n - 1) \text{ continue};
        bool deu = 1;
        for (int j = 0; j < r - 1; j++) {
```

```
x = mul(x, x, n);
if (x == n - 1) {
    deu = 0;
    break;
}
if (deu) return 0;
}
return 1;
}
```

2.13 Inverso Modular

```
// Computa o inverso de a modulo b
// Se b eh primo, basta fazer
// a^(b-2)

11 inv(11 a, 11 b) {
    return a > 1 ? b - inv(b%a, a)*b/a : 1;
}

// computa o inverso modular de 1..MAX-1 modulo um primo
11 inv[MAX]:
inv[1] = 1;
for (int i = 2; i < MAX; i++) inv[i] = MOD -
    MOD/i*inv[MOD%i]%MOD;</pre>
```

2.14 Karatsuba

```
// Os pragmas realmente deixam muito mais rapido
// Para n ~ 2e5, roda em < 1 s
//
// O(n^1.58)

#pragma GCC optimize("Ofast")
#pragma GCC target ("avx,avx2")
template < typename T > void kar(T* a, T* b, int n, T* r, T* tmp) {
```

```
if (n <= 64) {
        for (int i = 0; i < n; i++) for (int j = 0; j < n;
            r[i+j] += a[i] * b[j];
        return;
    }
    int mid = n/2;
    T * atmp = tmp, *btmp = tmp+mid, *E = tmp+n;
    memset(E, 0, sizeof(E[0])*n);
    for (int i = 0; i < mid; i++) {</pre>
        atmp[i] = a[i] + a[i+mid];
        btmp[i] = b[i] + b[i+mid];
    }
    kar(atmp, btmp, mid, E, tmp+2*n);
    kar(a, b, mid, r, tmp+2*n);
    kar(a+mid, b+mid, mid, r+n, tmp+2*n);
    for (int i = 0; i < mid; i++) {</pre>
        T \text{ temp} = r[i+mid];
        r[i+mid] += E[i] - r[i] - r[i+2*mid];
        r[i+2*mid] += E[i+mid] - temp - r[i+3*mid];
    }
}
template < typename T> vector < T> karatsuba (vector < T> a,
   vector <T> b) {
    int n = max(a.size(), b.size());
    while (n&(n-1)) n++;
    a.resize(n), b.resize(n);
    vector \langle T \rangle ret(2*n), tmp(4*n);
    kar(&a[0], &b[0], n, &ret[0], &tmp[0]);
    return ret;
}
2.15 Variações do crivo de Eratosthenes
```

```
// "0" crivo
//
// Encontra maior divisor primo
// Um numero eh primo sse div[x] == x
// fact fatora um numero <= lim</pre>
```

```
// A fatoracao sai ordenada
// crivo - O(n log(log(n)))
// fact - O(log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++) if (divi[i] == 1)</pre>
        for (int j = i; j <= lim; j += i) divi[j] = i;</pre>
}
void fact(vector<int>& v, int n) {
    if (n != divi[n]) fact(v, n/divi[n]);
    v.push_back(divi[n]);
}
// Crivo de divisores
// Encontra numero de divisores
// ou soma dos divisores
//
// O(n log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++)</pre>
        for (int j = i; j <= lim; j += i) {</pre>
            // para numero de divisores
            divi[j]++;
            // para soma dos divisores
             divi[j] += i;
}
// Crivo de totiente
```

```
// Encontra o valor da funcao
// totiente de Euler
// O(n log(log(n)))
int tot[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) tot[i] = i;</pre>
    for (int i = 2; i <= lim; i++) if (tot[i] == i)</pre>
        for (int j = i; j <= lim; j += i)</pre>
            tot[j] -= tot[j] / i;
}
// Crivo de funcao de mobius
// O(n log(log(n))
char meb[MAX];
void crivo(int lim) {
    for (int i = 2; i <= lim; i++) meb[i] = 2;</pre>
    meb[1] = 1;
    for (int i = 2; i <= lim; i++) if (meb[i] == 2)</pre>
        for (int j = i; j <= lim; j += i) if (meb[j]) {</pre>
            if (meb[j] == 2) meb[j] = 1;
            meb[j] *= j/i\%i ? -1 : 0;
2.16 Totiente
// O(sqrt(n))
int tot(int n){
    int ret = n;
    for (int i = 2; i*i <= n; i++) if (n % i == 0) {
        while (n \% i == 0) n /= i;
```

```
ret -= ret / i:
    if (n > 1) ret -= ret / n;
    return ret;
}
2.17 2-SAT
// Retorna se eh possivel atribuir valores
// ans[i] fala se a variavel 'i' eh verdadeira
// Grafo tem que caber 2n vertices
// add(x, y) adiciona implicacao x -> y
// Para adicionar uma clausula (x ou y)
// chamar add(nao(x), y)
// Se x tem que ser verdadeiro, chamar add(nao(x), x)
// O(|V|+|E|)
vector < int > g[MAX];
int n, vis[MAX], comp[MAX];
stack<int> s;
int id[MAX], p;
vector < int > ord;
int ans[MAX];
int dfs(int k) {
    int lo = id[k] = p++;
    s.push(k);
    vis[k] = 2;
    for (int i = 0; i < g[k].size(); i++) {</pre>
        if (!vis[g[k][i]])
            lo = min(lo, dfs(g[k][i]));
        else if (vis[g[k][i]] == 2)
            lo = min(lo, id[g[k][i]]);
    if (lo == id[k]) while (1) {
```

int u = s.top();

comp[u] = k;

s.pop(); vis[u] = 1;

```
ord.pb(u):
        if (u == k) break;
    return lo;
void tarjan() {
    memset(vis, 0, sizeof(vis));
    p = 0;
    for (int i = 0; i < 2*n; i++) if (!vis[i]) dfs(i);</pre>
}
int nao(int x) { return (x + n) \% (2*n); }
// x \rightarrow y = !x ou y
void add(int x, int y){
    g[x].pb(y);
    // contraposicao
    g[nao(y)].pb(nao(x));
}
bool doisSAT(){
    tarjan();
    for (int i = 0; i < n; i++)</pre>
        if (comp[i] == comp[nao(i)]) return 0;
    memset(ans, -1, sizeof(ans));
    for(auto at: ord) {
        if (ans[at] != -1) continue;
        ans[at] = 1;
        ans[nao(at)] = 0;
    }
    return 1;
}
```

2.18 Exponenciacao rapida

2.19 Produto de dois long long mod m

3 Primitivas

3.1 Complex

```
struct cplx{
   double r, i;
```

```
cplx(complex < double > c):r(c.real()), i(c.imag()){}
cplx(){}
cplx(double r_{-}, double i_{-} = 0):r(r_{-}), i(i_{-})
double abs(){ return hypot(r, i); }
double abs2(){ return r*r + i*i; }
cplx inv() { return cplx(r/abs2(), i/abs2()); }
cplx& operator+=(cplx a){
    r += a.r; i += a.i;
    return *this;
}
cplx& operator -=(cplx a){
    r -= a.r; i -= a.i;
    return *this;
}
cplx& operator*=(cplx a){
    double r_{-} = r*a.r - i*a.i;
    double i_ = r*a.i + i*a.r;
    r = r_{.};
    i = i_;
    return *this;
}
cplx conj(){
    return cplx(r, -i);
cplx& operator/=(cplx a){
    auto a_ = a.inv();
    return (*this)*=a_;
cplx operator-(){ return cplx(-r, -i); }
cplx& operator = (double e){
    return *this = pow(complex < double > (r, i), e);
friend ostream &operator << (ostream &out, cplx a) {</pre>
    return out << a.r << " + " << a.i << "i":
friend cplx operator+(cplx a, cplx b){ return a+=b; }
friend cplx operator-(cplx a, cplx b){ return a-=b; }
friend cplx operator*(cplx a, cplx b){ return a*=b; }
friend cplx operator/(cplx a, cplx b){ return a/=b; }
friend cplx operator^(cplx a, double e) { return a^=e; }
//fft
```

```
static int fft_len(int N){
   int n = 1, log_n = 0;
   while (n <= N) { n <<= 1; log_n++; }
   return log_n;
}
static cplx rt(bool f, int n, int N){
   const static double PI = acos(-1);
   double alpha = (2*PI)/n;
   if (f) alpha = -alpha;
   return cplx(cos(alpha), sin(alpha));
}
};</pre>
```

3.2 Aritmetica Modular

```
// O mod tem q ser primo
template < int p> struct mod_int {
    ll pow(ll b, ll e) {
        if (e == 0) return 1;
        ll r = pow(b*b%p, e/2);
        if (e\%2 == 1) r = (r*b)\%p;
        return r;
    11 inv(11 b) { return pow(b, p-2); }
    using m = mod_int;
    int v;
    mod int() {}
    mod int(ll v ) {
        if (v_ >= p || v_ <= -p) v_ %= p;
        if (v_{-} < 0) v_{-} += p;
        v = v_{-};
    }
    m& operator+=(const m &a) {
        v += a.v;
        if (v >= p) v -= p;
        return *this;
    }
    m& operator -= (const m &a) {
```

```
v -= a.v:
    if (v < 0) v += p;
    return *this;
}
m& operator*=(const m &a) {
    v = (v*ll(a.v))\%p;
    return *this;
}
m& operator/=(const m &a) {
    v = (v*inv(a.v))%p;
    return *this;
}
m operator-(){ return m(-v); }
m& operator^=(11 e) {
    if (e < 0){
        v = inv(v):
        e = -e;
    v = pow(v, e\%(p-1));
    return *this;
}
bool operator == (const m &a) { return v == a.v; }
bool operator!=(const m &a) { return v != a.v; }
friend istream &operator>>(istream &in, m& a) {
    11 val; in >> val;
    a = m(val);
    return in;
friend ostream &operator << (ostream &out, m a) {</pre>
    return out << a.v;</pre>
friend m operator+(m a, m b) { return a+=b; }
friend m operator-(m a, m b) { return a-=b; }
friend m operator*(m a, m b) { return a*=b; }
friend m operator/(m a, m b) { return a/=b; }
friend m operator^(m a, ll e) { return a^=e; }
static int fft_len(int n = -1){
    // max k such that 2^k | p-1
    if (p == 998244353) return 20;
    throw logic_error("find an order");
    return -1;
```

```
static m rt(bool f, int n, int N){
    // an element of order fft_len
    if (p == 998244353){
        m r(695449733);
        if (f) r = r^(-1);
        return r^(N/n);
    }

    throw logic_error("find a root");
    return -1; // return x so that x^(2^k) != x*x^(2^k)
        = 1
}

};

typedef mod_int<(int)1e9+7> mint;
```

3.3 Primitivas de Polinomios

```
#include <bits/stdc++.h>
using namespace std;
namespace algebra {
    const int inf = 1e9;
    const int magic = 500; // threshold for sizes to run the
       naive algo
    namespace fft {
        const int maxn = 1 << 18;</pre>
        typedef double ftype;
        typedef complex <ftype > point;
        point w[maxn];
        const ftype pi = acos(-1);
        bool initiated = 0;
        void init() {
            if(!initiated) {
                 for(int i = 1; i < maxn; i *= 2) {</pre>
                     for(int j = 0; j < i; j++) {</pre>
```

```
w[i + j] = polar(ftype(1), pi * j /
                    i);
            }
        }
        initiated = 1;
    }
}
template < typename T>
    void fft(T *in, point *out, int n, int k = 1) {
        if(n == 1) {
            *out = *in;
        } else {
            n /= 2:
            fft(in, out, n, 2 * k);
            fft(in + k, out + n, n, 2 * k);
            for(int i = 0; i < n; i++) {</pre>
                 auto t = out[i + n] * w[i + n];
                 out[i + n] = out[i] - t;
                 out[i] += t;
            }
        }
    }
template < typename T>
    void mul_slow(vector<T> &a, const vector<T> &b) {
        vector <T> res(a.size() + b.size() - 1);
        for(size_t i = 0; i < a.size(); i++) {</pre>
            for(size_t j = 0; j < b.size(); j++) {</pre>
                 res[i + j] += a[i] * b[j];
            }
        }
        a = res;
    }
template < typename T>
    void mul(vector<T> &a, const vector<T> &b) {
        if(min(a.size(), b.size()) < magic) {</pre>
            mul_slow(a, b);
            return;
        init();
```

```
shift) - 1;
            size_t n = a.size() + b.size() - 1;
            while(__builtin_popcount(n) != 1) {
                n++;
            }
            a.resize(n);
            static point A[maxn], B[maxn];
            static point C[maxn], D[maxn];
            for(size_t i = 0; i < n; i++) {</pre>
                A[i] = point(a[i] & mask, a[i] >> shift);
                if(i < b.size()) {</pre>
                    B[i] = point(b[i] & mask, b[i] >>
                        shift):
                } else {
                    B[i] = 0:
                }
            }
            fft(A, C, n); fft(B, D, n);
            for(size_t i = 0; i < n; i++) {</pre>
                point c0 = C[i] + conj(C[(n - i) \% n]);
                point c1 = C[i] - conj(C[(n - i) \% n]);
                point d0 = D[i] + conj(D[(n - i) \% n]);
                point d1 = D[i] - conj(D[(n - i) \% n]);
                A[i] = c0 * d0 - point(0, 1) * c1 * d1;
                B[i] = c0 * d1 + d0 * c1;
            }
            fft(A, C, n); fft(B, D, n);
            reverse(C + 1, C + n);
            reverse(D + 1, D + n);
            int t = 4 * n;
            for(size_t i = 0; i < n; i++) {</pre>
                int64_t A0 = llround(real(C[i]) / t);
                T A1 = llround(imag(D[i]) / t);
                T A2 = llround(imag(C[i]) / t);
                a[i] = A0 + (A1 << shift) + (A2 << 2 *
                    shift):
            }
            return;
template < typename T>
```

static const int shift = 15, mask = (1 <<</pre>

```
T bpow(T x, size_t n) {
        return n ? n % 2 ? x * bpow(x, n - 1) : bpow(x *
           x, n / 2) : T(1);
template < typename T>
   T bpow(T x, size_t n, T m) {
        return n ? n % 2 ? x * bpow(x, n - 1, m) % m :
           bpow(x * x \% m, n / 2, m) : T(1);
template < typename T>
   T gcd(const T &a, const T &b) {
        return b == T(0) ? a : gcd(b, a % b);
template < typename T>
    T nCr(T n, int r) { // runs in O(r)}
        T res(1):
        for(int i = 0; i < r; i++) {</pre>
            res *= (n - T(i));
            res /= (i + 1);
        return res;
   }
template < int m>
    struct modular {
        int64_t r;
        modular() : r(0) {}
        modular(int64_t rr) : r(rr) {if(abs(r) >= m) r}
           %= m; if(r < 0) r += m;}
        modular inv() const {return bpow(*this, m - 2);}
        modular operator * (const modular &t) const
           {return (r * t.r) % m;}
        modular operator / (const modular &t) const
           {return *this * t.inv();}
        modular operator += (const modular &t) {r +=
           t.r; if(r >= m) r -= m; return *this;}
        modular operator -= (const modular &t) {r -=
           t.r; if(r < 0) r += m; return *this;}
        modular operator + (const modular &t) const
           {return modular(*this) += t;}
        modular operator - (const modular &t) const
           {return modular(*this) -= t;}
```

```
modular operator *= (const modular &t) {return
           *this = *this * t;}
        modular operator /= (const modular &t) {return
           *this = *this / t;}
        bool operator == (const modular &t) const
           {return r == t.r;}
        bool operator != (const modular &t) const
           {return r != t.r;}
        operator int64_t() const {return r;}
   };
template < int T>
    istream& operator >> (istream &in, modular<T> &x) {
       return in >> x.r:
   }
template < typename T>
   struct poly {
        vector <T> a;
        void normalize() { // get rid of leading zeroes
            while(!a.empty() && a.back() == T(0)) {
                a.pop_back();
           }
        }
        polv(){}
        poly(T a0) : a{a0}{normalize();}
        poly(vector <T> t) : a(t) { normalize();}
        poly operator += (const poly &t) {
            a.resize(max(a.size(), t.a.size()));
            for(size_t i = 0; i < t.a.size(); i++) {</pre>
                a[i] += t.a[i];
            normalize();
            return *this;
        poly operator -= (const poly &t) {
            a.resize(max(a.size(), t.a.size()));
```

```
for(size_t i = 0; i < t.a.size(); i++) {</pre>
        a[i] -= t.a[i];
    normalize();
    return *this;
poly operator + (const poly &t) const {return
   polv(*this) += t;}
poly operator - (const poly &t) const {return
   poly(*this) -= t;}
poly mod_xk(size_t k) const { // get same
   polynomial mod x^k
   k = min(k, a.size());
    return vector <T > (begin(a), begin(a) + k);
poly mul_xk(size_t k) const { // multiply by x^k
   poly res(*this);
   res.a.insert(begin(res.a), k, 0);
    return res;
}
poly div_xk(size_t k) const { // divide by x^k,
   dropping coefficients
   k = min(k, a.size());
   return vector<T>(begin(a) + k, end(a));
poly substr(size_t l, size_t r) const { //
   return mod_xk(r).div_xk(l)
   1 = min(1, a.size());
   r = min(r, a.size());
    return vector<T>(begin(a) + 1, begin(a) + r);
poly inv(size_t n) const { // get inverse series
   mod x^n
    assert(!is_zero());
   poly ans = a[0].inv();
    size_t a = 1;
    while (a < n) {
        poly C = (ans * mod_xk(2 * a)).substr(a,
           2 * a):
        ans -= (ans * C).mod_xk(a).mul_xk(a);
        a *= 2:
```

```
}
    return ans.mod_xk(n);
}
poly operator *= (const poly &t) {fft::mul(a,
   t.a); normalize(); return *this;}
polv operator * (const polv &t) const {return
   poly(*this) *= t;}
poly reverse(size_t n, bool rev = 0) const { //
   reverses and leaves only n terms
    poly res(*this);
    if(rev) { // If rev = 1 then tail goes to
        res.a.resize(max(n. res.a.size())):
    std::reverse(res.a.begin(), res.a.end());
    return res.mod_xk(n);
}
pair < poly , poly > divmod_slow(const poly &b)
   const { // when divisor or quotient is small
    vector<T> A(a);
    vector<T> res:
    while(A.size() >= b.a.size()) {
        res.push_back(A.back() / b.a.back());
        if(res.back() != T(0)) {
            for(size_t i = 0; i < b.a.size();</pre>
               i++) {
                A[A.size() - i - 1] -=
                   res.back() * b.a[b.a.size() -
                   i - 1]:
            }
        A.pop_back();
    std::reverse(begin(res), end(res));
    return {res, A};
}
pair < poly , poly > divmod(const poly &b) const {
   // returns quotiend and remainder of a mod b
```

```
if(deg() < b.deg()) {</pre>
        return {poly{0}, *this};
    int d = deg() - b.deg();
    if(min(d, b.deg()) < magic) {</pre>
        return divmod_slow(b);
    poly D = (reverse(d + 1) * b.reverse(d +
       1).inv(d + 1)).mod xk(d + 1).reverse(d +
       1. 1):
    return {D, *this - D * b};
}
poly operator / (const poly &t) const {return
   divmod(t).first:}
poly operator % (const poly &t) const {return
   divmod(t).second;}
poly operator /= (const poly &t) {return *this =
   divmod(t).first;}
poly operator %= (const poly &t) {return *this =
   divmod(t).second;}
poly operator *= (const T &x) {
    for(auto &it: a) {
        it *= x;
    normalize();
    return *this;
poly operator /= (const T &x) {
    for(auto &it: a) {
        it /= x;
    normalize();
    return *this:
poly operator * (const T &x) const {return
   poly(*this) *= x;}
poly operator / (const T &x) const {return
   poly(*this) /= x;}
void print() const {
    for(auto it: a) {
```

```
cout << it << ' ':
    cout << endl;</pre>
T eval(T x) const { // evaluates in single point
    T res(0);
    for(int i = int(a.size()) - 1; i >= 0; i--) {
        res *= x;
        res += a[i];
    }
    return res;
}
T& lead() { // leading coefficient
    return a.back();
}
int deg() const { // degree
    return a.empty() ? -inf : a.size() - 1;
bool is_zero() const { // is polynomial zero
    return a.empty();
T operator [](int idx) const {
    return idx >= (int)a.size() || idx < 0 ?</pre>
       T(0) : a[idx];
}
T& coef(size_t idx) { // mutable reference at
   coefficient
   return a[idx];
bool operator == (const poly &t) const {return a
   == t.a:}
bool operator != (const poly &t) const {return a
   != t.a:}
poly deriv() { // calculate derivative
    vector <T> res;
    for(int i = 1; i <= deg(); i++) {</pre>
        res.push_back(T(i) * a[i]);
    }
```

```
return res;
poly integr() { // calculate integral with C = 0
    vector < T > res = {0};
   for(int i = 0; i <= deg(); i++) {</pre>
        res.push_back(a[i] / T(i + 1));
    return res;
size_t leading_xk() const { // Let p(x) = x^k *
   t(x), return k
   if(is_zero()) {
        return inf;
    int res = 0;
    while (a[res] == T(0)) {
        res++;
    return res;
poly log(size_t n) { // calculate log p(x) mod
   x^n
    assert(a[0] == T(1));
    return (deriv().mod_xk(n) *
       inv(n)).integr().mod_xk(n);
poly exp(size_t n) { // calculate exp p(x) mod
   x^n
   if(is_zero()) {
        return T(1);
    assert(a[0] == T(0));
    poly ans = T(1);
    size_t a = 1;
    while(a < n) {</pre>
        poly C = ans.log(2 * a).div_xk(a) -
           substr(a, 2 * a);
        ans -= (ans * C).mod_xk(a).mul_xk(a);
        a *= 2;
    return ans.mod_xk(n);
```

```
}
poly pow_slow(size_t k, size_t n) { // if k is
    return k ? k % 2 ? (*this * pow_slow(k - 1,
       n)).mod_xk(n) : (*this *
       *this).mod_xk(n).pow_slow(k / 2, n):
       T(1);
}
poly pow(size_t k, size_t n) { // calculate
   p^k(n) mod x^n
    if(is_zero()) {
        return *this;
    }
    if(k < magic) {</pre>
        return pow_slow(k, n);
    int i = leading_xk();
    T j = a[i];
    poly t = div_xk(i) / j;
    return bpow(j, k) * (t.log(n) *
       T(k) .exp(n).mul_xk(i * k).mod_xk(n);
poly mulx(T x) { // component-wise
   multiplication with x^k
    T cur = 1;
    polv res(*this);
    for(int i = 0; i <= deg(); i++) {
        res.coef(i) *= cur;
        cur *= x;
    }
    return res;
poly mulx_sq(T x) { // component-wise
   multiplication with x^{k^2}
    T cur = x;
    T \text{ total} = 1;
    T xx = x * x;
    poly res(*this);
    for(int i = 0; i <= deg(); i++) {</pre>
        res.coef(i) *= total;
        total *= cur;
        cur *= xx;
```

```
}
    return res;
vector<T> chirpz_even(T z, int n) { // P(1),
   P(z^2), P(z^4), ..., P(z^2(n-1))
   int m = deg();
    if(is_zero()) {
        return vector <T>(n, 0);
    }
    vector < T > vv(m + n);
    T zi = z.inv();
   T zz = zi * zi;
    T cur = zi;
    T \text{ total} = 1;
    for (int i = 0; i \le max(n - 1, m); i++) {
        if(i <= m) {vv[m - i] = total;}</pre>
        if(i < n) {vv[m + i] = total;}</pre>
        total *= cur;
        cur *= zz;
    poly w = (mulx_sq(z) * vv).substr(m, m +
       n).mulx_sq(z);
    vector <T> res(n);
    for(int i = 0; i < n; i++) {</pre>
        res[i] = w[i];
    return res;
vector<T> chirpz(T z, int n) { // P(1), P(z),
   P(z^2), ..., P(z^{(n-1)})
    auto even = chirpz_even(z, (n + 1) / 2);
    auto odd = mulx(z).chirpz_even(z, n / 2);
    vector <T> ans(n);
    for(int i = 0; i < n / 2; i++) {</pre>
        ans [2 * i] = even[i];
        ans[2 * i + 1] = odd[i];
    if(n % 2 == 1) {
        ans[n - 1] = even.back();
    return ans;
```

```
template < typename iter >
    vector<T> eval(vector<poly> &tree, int v,
       iter 1, iter r) { // auxiliary evaluation
       function
        if(r - 1 == 1) {
            return {eval(*1)};
        } else {
            auto m = 1 + (r - 1) / 2;
            auto A = (*this \% tree[2 *
               v]).eval(tree, 2 * v, 1, m);
            auto B = (*this \% tree[2 * v +
               1]).eval(tree, 2 * v + 1, m, r);
            A.insert(end(A), begin(B), end(B));
            return A;
vector<T> eval(vector<T> x) { // evaluate
   polynomial in (x1, ..., xn)
   int n = x.size();
    if(is_zero()) {
        return vector <T>(n, T(0));
    vector<poly> tree(4 * n);
    build(tree, 1, begin(x), end(x));
    return eval(tree, 1, begin(x), end(x));
template < typename iter >
    poly inter(vector<poly> &tree, int v, iter
       1, iter r, iter ly, iter ry) { //
       auxiliary interpolation function
        if(r - 1 == 1) {
            return {*ly / a[0]};
        } else {
            auto m = 1 + (r - 1) / 2:
            auto my = ly + (ry - ly) / 2;
            auto A = (*this \% tree[2 *
               v]).inter(tree, 2 * v, 1, m, ly,
               my);
            auto B = (*this \% tree[2 * v +
               1]).inter(tree, 2 * v + 1, m, r,
               mv, rv);
            return A * tree[2 * v + 1] + B *
```

```
tree[2 * v]:
                }
   };
template < typename T>
    poly<T> operator * (const T& a, const poly<T>& b) {
        return b * a;
template < typename T>
    poly<T> xk(int k) { // return x^k
        return poly<T>{1}.mul_xk(k);
   }
template < typename T>
    T resultant(poly<T> a, poly<T> b) { // computes
       resultant of a and b
        if(b.is zero()) {
            return 0;
        } else if(b.deg() == 0) {
            return bpow(b.lead(), a.deg());
        } else {
            int pw = a.deg();
            a \%= b;
            pw -= a.deg();
            T \text{ mul} = bpow(b.lead(), pw) * T((b.deg() &
                a.deg() & 1) ? -1 : 1);
            T ans = resultant(b, a);
            return ans * mul;
        }
template < typename iter >
    poly<typename iter::value_type> kmul(iter L, iter R)
       \{ // \text{ computes } (x-a1)(x-a2)...(x-an) \text{ without } 
       building tree
        if(R - L == 1) {
            return vector < typename
                iter::value_type>{-*L, 1};
        } else {
            iter M = L + (R - L) / 2;
            return kmul(L, M) * kmul(M, R);
```

```
}
    template < typename T, typename iter >
        poly<T> build(vector<poly<T>> &res, int v, iter L,
           iter R) { // builds evaluation tree for
           (x-a1)(x-a2)...(x-an)
            if(R - L == 1) {
                return res[v] = vector<T>{-*L, 1};
                iter M = L + (R - L) / 2;
                return res[v] = build(res, 2 * v, L, M) *
                    build(res, 2 * v + 1, M, R);
            }
        }
    template < typename T>
        poly<T> inter(vector<T> x, vector<T> y) { //
           interpolates minimum polynomial from (xi, yi)
           pairs
            int n = x.size();
            vector<poly<T>> tree(4 * n);
            return build(tree, 1, begin(x),
               end(x)).deriv().inter(tree, 1, begin(x),
               end(x), begin(y), end(y));
        }
};
using namespace algebra;
const int mod = 1e9 + 7;
typedef modular < mod > base;
typedef poly<base> polyn;
using namespace algebra;
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    int n = 100000;
    polyn a;
    vector < base > x;
    for(int i = 0; i <= n; i++) {</pre>
        a.a.push_back(1 + rand() % 100);
        x.push_back(1 + rand() \% (2 * n));
```

```
    sort(begin(x), end(x));
    x.erase(unique(begin(x), end(x)), end(x));
    auto b = a.eval(x);
    cout << clock() / double(CLOCKS_PER_SEC) << endl;
    auto c = inter(x, b);
    polyn md = kmul(begin(x), end(x));
    cout << clock() / double(CLOCKS_PER_SEC) << endl;
    assert(c == a % md);
    return 0;
}
</pre>
```

3.4 Primitivas de matriz - exponenciacao

```
#define MODULAR false
template < typename T> struct matrix : vector < T>> {
    int n, m;
    void print() {
        for (int i = 0; i < n; i++) {
             for (int j = 0; j < m; j++) cout <<</pre>
                (*this)[i][j] << " ";
             cout << endl;</pre>
        }
    }
    matrix(int n_, int m_, bool ident = false) :
             vector < vector < T >> (n_, vector < T > (m_, 0)), n(n_),
                m(m) {
        if (ident) {
             assert(n == m);
             for (int i = 0; i < n; i++) (*this)[i][i] = 1;</pre>
    }
    matrix(const vector < vector < T >> & c) :
       vector < vector < T >> (c),
        n(c.size()), m(c[0].size()) {}
    matrix<T> operator*(matrix<T>& r) {
        assert(m == r.n);
        matrix<T> M(n, r.m);
```

```
for (int i = 0; i < n; i++) for (int k = 0; k < m;
           k++)
            for (int j = 0; j < r.m; j++) {
                T \text{ add} = (*this)[i][k] * r[k][j];
#if MODULAR
                M[i][j] += add%MOD;
                if (M[i][j] >= MOD) M[i][j] -= MOD;
#else
                M[i][j] += add;
#endif
            }
        return M;
    }
    matrix<T> operator^(ll e){
        matrix <T> M(n, n, true), at = *this;
        while (e) {
            if (e\&1) M = M*at;
           e >>= 1;
            at = at*at;
        }
        return M;
    void apply_transform(matrix M, ll e){
        auto& v = *this;
        while (e) {
            if (e\&1) v = M*v;
            e >>= 1;
            M = M * M;
        }
    }
};
3.5 Primitivas Geometricas
typedef double ld;
const ld DINF = 1e18;
```

```
typedef double ld;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;
#define sq(x) ((x)*(x))
```

```
bool eq(ld a, ld b) {
    return abs(a - b) <= eps;</pre>
struct pt { // ponto
    ld x, y;
    pt() {}
    pt(ld x_{-}, ld y_{-}) : x(x_{-}), y(y_{-}) \{ \}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;
        if (!eq(y, p.y)) return y < p.y;
        return 0:
    }
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y);
    }
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (const ld c) const { return pt(x*c , y*c
       ); }
    pt operator / (const ld c) const { return pt(x/c , y/c
       ); }
    ld operator * (const pt p) const { return x*p.x + y*p.y;
    ld operator ^ (const pt p) const { return x*p.y - y*p.x;
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
    }
};
struct line { // reta
    pt p, q;
    line() {}
    line(pt p_, pt q_) : p(p_), q(q_) {}
    friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
    }
};
```

```
// PONTO & VETOR
ld dist(pt p, pt q) { // distancia
    return hypot(p.y - q.y, p.x - q.x);
}
ld dist2(pt p, pt q) { // quadrado da distancia
    return sq(p.x - q.x) + sq(p.y - q.y);
}
ld norm(pt v) { // norma do vetor
    return dist(pt(0, 0), v);
}
ld angle(pt v) { // angulo do vetor com o eixo x
    ld ang = atan2(v.y, v.x);
    if (ang < 0) ang += 2*pi;</pre>
    return ang;
}
ld sarea(pt p, pt q, pt r) { // area com sinal
    return ((q-p)^(r-q))/2;
}
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return eq(sarea(p, q, r), 0);
}
int paral(pt u, pt v) { // se u e v sao paralelos
    if (!eq(u^v, 0)) return 0;
    if ((u.x > eps) == (v.x > eps) and (u.y > eps) == (v.y >
       eps))
        return 1:
    return -1:
}
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
    return sarea(p, q, r) > eps;
}
pt rotate(pt p, ld th) { // rotaciona o ponto th radianos
```

```
return pt(p.x * cos(th) - p.y * sin(th),
            p.x * sin(th) + p.y * cos(th));
}
pt rotate90(pt p) { // rotaciona 90 graus
   return pt(-p.y, p.x);
// RETA
bool isvert(line r) { // se r eh vertical
    return eq(r.p.x, r.q.x);
}
ld getm(line r) { // coef. ang. de r
   if (isvert(r)) return DINF;
   return (r.p.y - r.q.y) / (r.p.x - r.q.x);
}
ld getn(line r) { // coef. lin. de r
    if (isvert(r)) return DINF;
    return r.p.y - getm(r) * r.p.x;
}
bool paraline(line r, line s) { // se r e s sao paralelas
    return paral(r.p - r.q, s.p - s.q);
}
bool isinseg(pt p, line r) { // se p pertence ao seg de r
    if (p == r.p or p == r.q) return 1;
   return paral(p - r.p, p - r.q) == -1;
}
ld get_t(pt v, line r) { // retorna t tal que t*v pertence a
   reta r
    return (r.p^r.q) / ((r.p-r.q)^v);
}
pt proj(pt p, line r) { // projecao do ponto p na reta r
   if (r.p == r.q) return r.p;
   r.q = r.q - r.p; p = p - r.p;
    pt proj = r.q * ((p*r.q) / (r.q*r.q));
```

```
return proj + r.p;
}
pt inter(line r, line s) { // r inter s
    if (paraline(r, s)) return pt(DINF, DINF);
    if (isvert(r)) return pt(r.p.x, getm(s) * r.p.x +
       getn(s));
    if (isvert(s)) return pt(s.p.x, getm(r) * s.p.x +
       getn(r));
    1d x = (getn(s) - getn(r)) / (getm(r) - getm(s));
    return pt(x, getm(r) * x + getn(r));
}
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
    if (isinseg(r.p, s) or isinseg(r.q, s)
        or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
    return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
            ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
}
ld disttoline(pt p, line r) { // distancia do ponto a reta
    return 2 * abs(sarea(p, r.p, r.q)) / dist(r.p, r.q);
}
ld disttoseg(pt p, line r) { // distancia do ponto ao seg
    if ((r.q - r.p)*(p - r.p) < 0) return dist(r.p, p);
    if ((r.p - r.q)*(p - r.q) < 0) return dist(r.q, p);
    return disttoline(p, r);
}
ld distseg(line a, line b) { // distancia entre seg
    if (interseg(a, b)) return 0;
    ld ret = DINF;
    ret = min(ret, disttoseg(a.p, b));
    ret = min(ret, disttoseg(a.q, b));
    ret = min(ret, disttoseg(b.p, a));
    ret = min(ret, disttoseg(b.q, a));
```

```
return ret;
}
// POLIGONO
// distancia entre os retangulos a e b (lados paralelos aos
// assume que ta representado (inferior esquerdo, superior
   direito)
ld dist_rect(pair<pt, pt> a, pair<pt, pt> b) {
    1d hor = 0, vert = 0;
    if (a.s.x < b.f.x) hor = b.f.x - a.s.x;
    else if (b.s.x < a.f.x) hor = a.f.x - b.s.x;
    if (a.s.y < b.f.y) vert = b.f.y - a.s.y;
    else if (b.s.y < a.f.y) vert = a.f.y - b.s.y;</pre>
    return dist(pt(0, 0), pt(hor, vert));
}
ld polarea(vector<pt> v) { // area do poligono
    ld ret = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        ret += sarea(pt(0, 0), v[i], v[(i + 1) % v.size()]);
    return abs(ret);
}
// se o ponto ta dentro do poligono: retorna O se ta fora,
// 1 se ta no interior e 2 se ta na borda
int inpol(vector < pt > & v, pt p) { // O(n)
    int qt = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (v[i] == p) return 2;
        int j = (i+1)%v.size();
        bool igual = eq(v[i].y, p.y) and eq(v[j].y, p.y),
           baixo = v[i].y+eps < p.y;</pre>
        if (!igual and baixo == (v[j].y+eps < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (eq(t, 0)) return 2;
        if (!igual and baixo == (t > eps)) qt += baixo ? 1 :
            -1;
    }
    return qt != 0;
```

```
}
bool interpol(vector<pt> v1, vector<pt> v2) { // se dois
   poligonos se intersectam - O(n*m)
    int n = v1.size(), m = v2.size();
    for (int i = 0; i < n; i++) if (inpol(v2, v1[i])) return</pre>
    for (int i = 0; i < n; i++) if (inpol(v1, v2[i])) return</pre>
       1:
    for (int i = 0; i < n; i++) for (int j = 0; j < m; j++)
        if (interseg(line(v1[i], v1[(i+1)%n]), line(v2[j],
           v2[(j+1)%m]))) return 1;
    return 0:
}
ld distpol(vector<pt> v1, vector<pt> v2) { // distancia
   entre poligonos
    if (interpol(v1, v2)) return 0;
    ld ret = DINF;
    for (int i = 0; i < v1.size(); i++) for (int j = 0; j <</pre>
       v2.size(); j++)
        ret = min(ret, distseg(line(v1[i], v1[(i + 1) %
           v1.size()]),
                     line(v2[j], v2[(j + 1) % v2.size()])));
    return ret;
}
vector<pt> convex_hull(vector<pt> v) { // convex hull - O(n
   log(n))
    if (v.size() <= 1) return v;</pre>
    vector <pt> 1, u;
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (1.size() > 1 \text{ and } !ccw(l[1.size()-2],
           1.back(), v[i]))
            1.pop_back();
        1.pb(v[i]);
    for (int i = v.size() - 1; i >= 0; i--) {
        while (u.size() > 1 and !ccw(u[u.size()-2],
```

```
u.back(), v[i]))
            u.pop_back();
        u.pb(v[i]);
    }
    1.pop_back(); u.pop_back();
   for (pt i : u) l.pb(i);
    return 1;
}
struct convex_pol {
    vector < pt > pol;
    convex_pol(vector<pt> v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(log(n))
        if (pol.size() == 1) return p == pol[0];
        int 1 = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2;
            if (ccw(p, pol[0], pol[m])) l = m+1;
            else r = m;
        if (1 == 1) return isinseg(p, line(pol[0], pol[1]));
        if (1 == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
   }
};
// os segmentos precisam ser ter o p < q</pre>
bool operator < (const line& a, const line& b) { //</pre>
   comparador pro sweepline
   if (a.p == b.p) return ccw(a.p, a.q, b.q);
   if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or a.p.x+eps
       < b.p.x))
        return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
}
// CIRCUNFERENCIA
pt getcenter(pt a, pt b, pt c) { // centro da circunf dado 3
   pontos
```

```
b = (a + b) / 2:
    c = (a + c) / 2;
    return inter(line(b, b + rotate90(a - b)),
            line(c, c + rotate90(a - c)));
}
vector<pt> circ_line_inter(pt a, pt b, pt c, ld r) { //
   intersecao da circunf (c, r) e reta ab
    vector<pt> ret;
    b = b-a, a = a-c;
    1d A = b*b;
    1d B = a*b:
    1d C = a*a - r*r;
    1d D = B*B - A*C;
    if (D < -eps) return ret;</pre>
    ret.push_back(c+a+b*(-B+sqrt(D+eps))/A);
    if (D > eps) ret.push_back(c+a+b*(-B-sqrt(D))/A);
    return ret;
}
vector<pt> circ_inter(pt a, pt b, ld r, ld R) { //
   intersecao da circunf (a, r) e (b, R)
    vector<pt> ret;
    1d d = dist(a, b);
    if (d > r+R or d+min(r, R) < max(r, R)) return ret;</pre>
    1d x = (d*d-R*R+r*r)/(2*d);
    1d v = sqrt(r*r-x*x);
    pt v = (b-a)/d;
    ret.push_back(a+v*x + rotate90(v)*y);
    if (y > 0) ret.push_back(a+v*x - rotate90(v)*y);
    return ret;
}
// comparador pro set para fazer sweep angle com segmentos
double ang;
struct cmp {
    bool operator () (const line& a, const line& b) const {
        line r = line(pt(0, 0), rotate(pt(1, 0), ang));
        return norm(inter(r, a)) < norm(inter(r, b));</pre>
   }
};
```

3.6 Primitivas Geometricas Inteiras

```
#define sq(x) ((x)*(11)(x))
struct pt { // ponto
    int x, y;
    pt() {}
    pt(int x_{-}, int y_{-}) : x(x_{-}), y(y_{-}) \{ \}
    bool operator < (const pt p) const {</pre>
        if (x != p.x) return x < p.x;
        return y < p.y;</pre>
    }
    bool operator == (const pt p) const {
        return x == p.x and y == p.y;
    }
    pt operator + (const pt p) const { return pt(x+p.x,
       (v.q+v); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (const int c) const { return pt(x*c, y*c);
    11 operator * (const pt p) const { return x*(11)p.x +
       v*(ll)p.v; }
    ll operator ^ (const pt p) const { return x*(ll)p.y -
       v*(ll)p.x; }
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
    }
};
struct line { // reta
    pt p, q;
    line() {}
    line(pt p_, pt q_) : p(p_), q(q_) {}
    friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
    }
};
// PONTO & VETOR
11 dist2(pt p, pt q) { // quadrado da distancia
```

```
return sq(p.x - q.x) + sq(p.y - q.y);
}
ll sarea2(pt p, pt q, pt r) { // 2 * area com sinal
    return (q-p)^(r-q);
}
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return sarea2(p, q, r) == 0;
}
int paral(pt u, pt v) { // se u e v sao paralelos
    if (u^v) return 0;
    if ((u.x > 0) == (v.x > 0) and (u.y > 0) == (v.y > 0))
       return 1:
    return -1:
}
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
    return sarea2(p, q, r) > 0;
}
int quad(pt p) { // quadrante de um ponto
  return (p.x<0)^3*(p.y<0);
}
bool compare_angle(pt p, pt q) { // retorna se ang(p) <</pre>
   ang(q)
    if (quad(p) != quad(q)) return quad(p) < quad(q);</pre>
    return ccw(q, pt(0, 0), p);
}
pt rotate90(pt p) { // rotaciona 90 graus
    return pt(-p.y, p.x);
}
// RETA
bool paraline(line r, line s) { // se r e s sao paralelas
    return paral(r.p - r.q, s.p - s.q);
}
```

```
bool isinseg(pt p, line r) { // se p pertence ao seg de r
   if (p == r.p or p == r.q) return 1;
   return paral(p - r.p, p - r.q) == -1;
}
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
   if (isinseg(r.p, s) or isinseg(r.q, s)
        or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
   return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
            ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
}
int segpoints(line r) { // numero de pontos inteiros no
    return 1 + \_gcd(abs(r.p.x - r.q.x), abs(r.p.y - r.q.y));
}
double get_t(pt v, line r) { // retorna t tal que t*v
   pertence a reta r
   return (r.p^r.q) / (double) ((r.p-r.q)^v);
}
// POLIGONO
// quadrado da distancia entre os retangulos a e b (lados
   paralelos aos eixos)
// assume que ta representado (inferior esquerdo, superior
   direito)
11 dist2_rect(pair<pt, pt> a, pair<pt, pt> b) {
   int hor = 0, vert = 0;
   if (a.s.x < b.f.x) hor = b.f.x - a.s.x;
    else if (b.s.x < a.f.x) hor = a.f.x - b.s.x:
   if (a.s.y < b.f.y) vert = b.f.y - a.s.y;</pre>
    else if (b.s.y < a.f.y) vert = a.f.y - b.s.y;</pre>
    return sq(hor) + sq(vert);
}
11 polarea2(vector<pt> v) { // 2 * area do poligono
   ll ret = 0;
   for (int i = 0; i < v.size(); i++)</pre>
```

```
ret += sarea2(pt(0, 0), v[i], v[(i + 1) % v.size()]);
    return abs(ret);
}
// se o ponto ta dentro do poligono: retorna O se ta fora,
// 1 se ta no interior e 2 se ta na borda
int inpol(vector<pt>& v, pt p) { // O(n)
    int qt = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (v[i] == p) return 2;
        int j = (i+1)%v.size();
        bool igual = v[i].y == p.y and v[j].y == p.y, baixo
           = v[i].y < p.y;
        if (!igual and baixo == (v[j].y < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (!t) return 2;
        if (!igual and baixo == (t > 0)) qt += baixo ? 1 :
            -1;
    return qt != 0;
}
vector<pt> convex_hull(vector<pt> v) { // convex hull - O(n
   log(n))
    if (v.size() <= 1) return v;</pre>
    vector <pt> 1, u;
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (1.size() > 1 and !ccw(l[1.size()-2],
           1.back(), v[i]))
            l.pop_back();
        1.pb(v[i]);
    }
    for (int i = v.size() - 1; i >= 0; i--) {
        while (u.size() > 1 and !ccw(u[u.size()-2],
           u.back(), v[i]))
            u.pop_back();
        u.pb(v[i]);
    }
    1.pop_back(); u.pop_back();
    for (pt i : u) 1.pb(i);
    return 1:
```

```
11 interior_points(vector<pt> v) { // pontos inteiros dentro
   de um poligono simples
   11 b = 0;
   for (int i = 0; i < v.size(); i++)</pre>
        b += segpoints(line(v[i], v[(i+1)\%v.size()])) - 1;
    return (polarea2(v) - b) / 2 + 1;
}
struct convex_pol {
    vector<pt> pol;
    convex_pol(vector<pt> v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(\log(n))
        if (pol.size() == 1) return p == pol[0];
        int 1 = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2;
            if (ccw(p, pol[0], pol[m])) l = m+1;
            else r = m;
        if (l == 1) return isinseg(p, line(pol[0], pol[1]));
        if (1 == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
   }
};
// os segmentos precisam ser ter o p < q</pre>
bool operator < (const line& a, const line& b) { //</pre>
   comparador pro sweepline
   if (a.p == b.p) return ccw(a.p, a.q, b.q);
   if (a.p.x != a.q.x and (b.p.x == b.q.x or a.p.x < b.p.x))
        return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
}
// comparador pro set pra fazer sweep angle com segmentos
pt dir;
struct cmp {
```

```
bool operator () (const line& a, const line& b) const {
        return get_t(dir, a) < get_t(dir, b);</pre>
};
```

Primitivas Geometricas 3D

```
typedef double ld;
const ld DINF = 1e18:
const ld pi = acos(-1.0);
const ld eps = 1e-9;
#define sq(x)((x)*(x))
bool eq(ld a, ld b) {
    return abs(a - b) <= eps;</pre>
}
struct pt { // ponto
    ld x, y, z;
    pt() {}
    pt(ld x_{-}, ld y_{-}, ld z_{-}) : x(x_{-}), y(y_{-}), z(z_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;
        if (!eq(y, p.y)) return y < p.y;</pre>
        if (!eq(z, p.z)) return z < p.z;
        return 0;
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y) and eq(z, p.z);
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y, z+p.z); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y, z-p.z); }
    pt operator * (const ld c) const { return pt(x*c , y*c
       , z*c ); }
    pt operator / (const ld c) const { return pt(x/c , y/c
       , z/c ); }
    ld operator * (const pt p) const { return x*p.x + y*p.y
```

```
+ z*p.z; }
    void rotate_x(ld a) {
        1d ny = y*cos(a) - z*sin(a);
        1d nz = y*sin(a) + z*cos(a);
        y = ny;
        z = nz;
    }
    void rotate_y(ld a) {
        1d nx = x*cos(a) + z*sin(a);
        1d nz = -x*sin(a) + z*cos(a);
        x = nx;
        z = nz;
    }
    void rotate_z(ld a) {
        1d nx = x*cos(a) - y*sin(a);
        ld ny = x*sin(a) + y*cos(a);
        x = nx;
        y = ny;
    }
};
// converte de coordenadas polares para cartesianas
// (angulos devem estar em radianos)
pt convert(ld rho, ld th, ld phi) {
    return pt(sin(phi) * cos(th), sin(phi) * sin(th),
       cos(phi)) * rho;
}
// distancia
ld dist(pt a, pt b) {
    return sqrt(sq(a.x-b.x) + sq(a.y-b.y) + sq(a.z-b.z));
}
```

Primitivas de matriz

```
11 mod(ll v) { return (v + MOD) % MOD; }
11 sum(11 1, 11 r) { return mod(1+r); }
11 mult(ll 1, ll r) { return mod(l*r); }
11 inverse(ll 1){ return inv(1, MOD); }
```

```
bool equal(ll\ l,\ ll\ r) { return mod(l-r) == 0; }
template < typename T> struct matrix {
    vector < vector < T >> in;
    int row, col;
    void print(){//
        for (int i = 0; i < row; i++){</pre>
             for (int j = 0; j < col; j++)</pre>
                 cout << in[i][j] << " ";</pre>
             cout << endl:</pre>
        }
    }
    matrix(int row, int col, int op = 0):row(row), col(col),
       in(row, vector<T>(col, 0)){
        if (op) for (int i = 0; i < row; i++) in[i][i] = 1;</pre>
    matrix(initializer_list<initializer_list<T>> c):
        row(c.size()), col((*c.begin()).size()){
             in = vector < vector < T >> (row, vector < T > (col, 0));
            int i, j;
            i = 0;
            for (auto &it : c){
                 i = 0;
                 for (auto &jt : it){
                     in[i][j] = jt;
                     j++;
                 }
                 i++;
            }
    T &operator()(int i, int j){ return in[i][j]; }
    //in case of a transposed matrix, swap i and j
    matrix<T>& operator*=(T t){
        matrix < T > &l = *this;
        for (int i = 0; i < row; i++)</pre>
            for (int j = 0; j < col; j++)</pre>
                 l(i, j) = mult(l(i, j), t); //% MOD) % MOD;
        return 1;
    matrix<T> operator+(matrix<T> &r){
```

```
matrix<T> &1 = *this:
    matrix<T> m(row, col, 0);
    for (int i = 0; i < row; i++)</pre>
        for (int j = 0; j < col; j++)
             m(i, j) = sum(l(i, j), r(i, j)); //% MOD) %
                MOD;
    return m;
}
matrix <T> operator*(matrix <T> &r){
    matrix <T> &1 = *this;
    int row = l.row;
    int col = r.col;
    int K = 1.col;
    matrix<T> m(row, col, 0);
    for (int i = 0; i < row; i++)</pre>
        for (int j = 0; j < col; j++)</pre>
             for (int k = 0; k < K; k++)
                 m(i, j) = sum(m(i, j), mult(l(i, k),
                    r(k, j)));
    return m;
}
matrix<T> operator^(long long e){
    matrix < T > &m = (*this);
    if (e == 0) return matrix(m.row, m.row, 1);
    if (e == 1) return m;
    if (e == 2) return m*m;
    auto m_{-} = m^{(e/2)}; m_{-} = m_{*}m_{-};
    if (e\%2 == 1) m_{-} = m_{-} * m;
    return m_;
}
void multiply_r(int i, T k){
    matrix < T > &m = (*this);
    for (int j = 0; j < col; j++)</pre>
        m(i, j) = mult(m(i, j), k);
void multiply_c(int j, T k){
    matrix < T > &m = (*this);
    for (int i = 0; i < row; j++)</pre>
        m(i, j) = mult(m(i, j), k);
void sum_r(int i1, int i2, T k){
    matrix < T > &m = (*this);
```

```
for (int j = 0; j < col; j++)</pre>
             m(i1, j) = sum(m(i1, j), mult(k, m(i2, j)));
    }
    bool gaussian(int I, int J){
        matrix < T > &m = (*this);
        T \text{ tmp} = m(I, J);
        if (equal(tmp, 0)) return false;
        multiply_r(I, inverse(tmp));
        for (int i = 0; i < row; i++)</pre>
             if (i != I) sum_r(i, I, mult(-1, m(i, J)));
        multiply_r(I, tmp);
        return true;
    T determinant(){
        matrix < T > m = (*this);
        for (int i = 0; i < row; i++)</pre>
             if (!m.gaussian(i, i)) return 0;
        T ans = 1;
        for (int i = 0; i < row; i++)</pre>
             ans = mult(ans, m(i, i));
        return ans;
};
```

4 Estruturas

4.1 BIT com update em range

```
// Operacoes 0-based
// query(l, r) retorna a soma de v[l..r]
// update(l, r, x) soma x em v[l..r]
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
```

```
namespace bit {
    11 bit[2][MAX+2];
    int n;
    void build(int n2, int* v) {
        n = n2;
        for (int i = 1; i <= n; i++)
            bit [1] [min(n+1, i+(i\&-i))] += bit [1][i] +=
                v[i-1];
    }
    ll get(int x, int i) {
        11 \text{ ret} = 0;
        for (; i; i -= i&-i) ret += bit[x][i];
        return ret;
    }
    void add(int x, int i, ll val) {
        for (; i <= n; i += i&-i) bit[x][i] += val;</pre>
    }
    11 get2(int p) {
        return get(0, p) * p + get(1, p);
    }
    11 query(int 1, int r) {
        return get2(r+1) - get2(1);
    void update(int 1, int r, 11 x) {
        add(0, 1+1, x), add(0, r+2, -x);
        add(1, 1+1, -x*1), add(1, r+2, x*(r+1));
    }
};
```

4.2 Sparse Table

```
// Resolve RMQ
// MAX2 = log(MAX)
//
// Complexidades:
// build - O(n log(n))
// query - O(1)
namespace sparse {
```

4.3 Min queue - stack

```
// Tudo O(1) amortizado
template < class T> struct minstack {
    stack<pair<T, T> > s;
    void push(T x) {
        if (!s.size()) s.push({x, x});
        else s.push({x, std::min(s.top().second, x)});
    }
    T top() { return s.top().first; }
    T pop() {
        T ans = s.top().first;
        s.pop();
        return ans;
   }
    T size() { return s.size(); }
    T min() { return s.top().second; }
};
template < class T> struct minqueue {
    minstack <T> s1, s2;
    void push(T x) { s1.push(x); }
    void move() {
```

```
if (s2.size()) return;
while (s1.size()) {
    T x = s1.pop();
    s2.push(x);
}

T front() { return move(), s2.top(); }
T pop() { return move(), s2.pop(); }
T size() { return s1.size()+s2.size(); }
T min() {
    if (!s1.size()) return s2.min();
    else if (!s2.size()) return s1.min();
    return std::min(s1.min(), s2.min());
}
};
```

4.4 Min queue - deque

```
// Tudo 0(1) amortizado

template < class T > struct minqueue {
    deque < pair < T, int > > q;

    void push(T x) {
        int ct = 1;
        while (q.size() and x < q.front().f)
            ct += q.front().s, q.pop_front();
        q.push_front({x, ct});
    }

    void pop() {
        if (q.back().s > 1) q.back().s--;
        else q.pop_back();
    }
    T min() { return q.back().f; }
};
```

4.5 Splay Tree

```
// SEMPRE QUE DESCER NA ARVORE, DAR SPLAY NO
// NODE MAIS PROFUNDO VISITADO
// Todas as operacoes sao O(log(n)) amortizado
// Se quiser colocar mais informacao no node,
// mudar em 'update'
template < typename T > struct splaytree {
    struct node {
        node *ch[2], *p;
        int sz;
        T val;
        node(T v) {
            ch[0] = ch[1] = p = NULL;
            sz = 1;
            val = v;
        void update() {
            sz = 1;
            for (int i = 0; i < 2; i++) if (ch[i]) {
                sz += ch[i]->sz;
            }
        }
    };
    node* root;
    splaytree() { root = NULL; }
    splaytree(const splaytree& t) {
        throw logic_error("Nao copiar a splaytree!");
    \simsplaytree() {
        vector < node *> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue;
            q.push_back(x->ch[0]), q.push_back(x->ch[1]);
            delete x;
        }
    }
    void rotate(node* x) { // x vai ficar em cima
        node *p = x->p, *pp = p->p;
```

```
if (pp) pp -> ch[pp -> ch[1] == p] = x;
    bool d = p -> ch[0] == x;
    p - ch[!d] = x - ch[d], x - ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x->p = pp, p->p = x;
    p->update(), x->update();
node* splay(node* x) {
    if (!x) return x;
    root = x;
    while (x->p) {
        node *p = x->p, *pp = p->p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
            rotate(x), rotate(x); // zigzag
        else rotate(p), rotate(x); // zigzig
    }
    return x;
node* insert(T v, bool lb=0) {
    if (!root) return lb ? NULL : root = new node(v);
    node *x = root, *last = NULL;;
    while (1) {
        bool d = x -> val < v;
        if (!d) last = x;
        if (x->val == v) break;
        if (x->ch[d]) x = x->ch[d];
        else {
            if (lb) break;
            x \rightarrow ch[d] = new node(v);
            x - ch[d] - p = x;
            x = x -  ch[d];
            break;
        }
    }
    splay(x);
    return lb ? splay(last) : x;
}
int size() { return root ? root->sz : 0; }
int count(T v) { return insert(v, 1) and root->val == v;
node* lower_bound(T v) { return insert(v, 1); }
```

```
void erase(T v) {
        if (!count(v)) return;
        node *x = root, *1 = x -> ch[0];
        if (!1) {
            root = x -> ch[1];
            if (root) root->p = NULL;
            return delete x;
        }
        root = 1, 1->p = NULL;
        while (1->ch[1]) 1 = 1->ch[1];
        splay(1);
        1 - ch[1] = x - ch[1];
        if (1->ch[1]) 1->ch[1]->p = 1;
        delete x;
        1->update();
    int order_of_key(T v) {
        if (!lower_bound(v)) return root ? root->sz : 0;
        return root->ch[0] ? root->ch[0]->sz : 0;
    node* find_by_order(int k) {
        node* x = root;
        while (1) {
            if (x->ch[0] \text{ and } x->ch[0]->sz >= k+1) x =
               x - > ch[0];
            else {
                if (x->ch[0]) k -= x->ch[0]->sz;
                if (!k) return splay(x);
                if (!x->ch[1]) {
                     splay(x);
                    return NULL;
                }
                k--, x = x->ch[1];
            }
        }
    T min() {
        node* x = root;
        while (x->ch[0]) x = x->ch[0]; // max -> ch[1]
        return splay(x)->val;
    }
};
```

4.6 SQRT-decomposition

```
// Resolve RMQ
// 0-indexed
// MAX2 = sqrt(MAX)
// O bloco da posicao x eh
// sempre x/q
//
// Complexidades:
// build - O(n)
// query - 0(sqrt(n))
int n, q;
int v[MAX];
int bl[MAX2];
void build() {
    q = (int) sqrt(n);
    // computa cada bloco
    for (int i = 0; i <= q; i++) {
        bl[i] = INF;
        for (int j = 0; j < q and q * i + j < n; j++)
            bl[i] = min(bl[i], v[q * i + j]);
    }
}
int query(int a, int b) {
    int ret = INF;
    // linear no bloco de a
    for (; a <= b and a % q; a++) ret = min(ret, v[a]);
    // bloco por bloco
    for (; a + q <= b; a += q) ret = min(ret, bl[a / q]);</pre>
    // linear no bloco de b
    for (; a <= b; a++) ret = min(ret, v[a]);</pre>
    return ret:
}
```

4.7 BIT 2D

```
// BIT de soma 1-based
// Para mudar o valor da posicao (x, y) para k,
// faca: poe(x, y, k - sum(x, y, x, y))
// Complexidades:
// poe - 0(\log^2(n))
// \text{ query - } O(\log^2(n))
int n;
int bit[MAX][MAX];
void poe(int x, int y, int k) {
    for (int y2 = y; x \le n; x += x & -x)
        for (y = y2; y \le n; y += y \& -y)
            bit[x][y] += k;
}
int sum(int x, int y) {
    int ret = 0;
    for (int y2 = y; x; x -= x & -x)
        for (y = y2; y; y -= y & -y)
            ret += bit[x][y];
    return ret;
}
int query(int x, int y, int z, int w) {
    return sum(z, w) - sum(x-1, w)
        - sum(z, y-1) + sum(x-1, y-1);
}
4.8 DSU
// Une dois conjuntos e acha a qual conjunto um elemento
   pertence por seu id
//
// dsu_build: 0(n)
// find e unite: O(a(n)) \sim = O(1) amortizado
```

```
int id[MAX], sz[MAX];
void dsu_build(int n) { for(int i=0; i<n; i++) sz[i] = 1,</pre>
   id[i] = i; }
int find(int a) { return id[a] = a == id[a] ? a :
   find(id[a]); }
void unite(int a, int b) {
    a = find(a), b = find(b);
   if(a == b) return;
   if(sz[a] < sz[b]) swap(a,b);
    sz[a] += sz[b];
    id[b] = a;
}
4.9 Treap Implicita
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T> struct treap {
    struct node {
        node *1, *r;
        int p, sz;
        T val, sub, lazy;
        bool rev;
        node(T \ v) : l(NULL), r(NULL), p(rng()), sz(1),
           val(v), sub(v), lazy(0), rev(0) {}
        void prop() {
            if (lazy) {
                val += lazy, sub += lazy*sz;
                if (1) 1->lazy += lazy;
                if (r) r->lazy += lazy;
```

```
if (rev) {
             swap(1, r);
             if (1) 1->rev ^= 1;
             if (r) r->rev ^= 1;
        }
        lazy = 0, rev = 0;
    }
    void update() {
        sz = 1, sub = val;
        if (1) 1->prop(), sz += 1->sz, sub += 1->sub;
        if (r) r\rightarrow prop(), sz += r\rightarrow sz, sub += r\rightarrow sub;
    }
};
node* root;
treap() { root = NULL; }
treap(const treap& t) {
    throw logic_error("Nao copiar a treap!");
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!1 or !r) return void(i = 1 ? 1 : r);
    1->prop(), r->prop();
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r \rightarrow 1, r \rightarrow 1), i = r;
    i->update();
void split(node* i, node*& 1, node*& r, int v, int key =
   0) {
```

```
if (!i) return void(r = 1 = NULL);
        i->prop();
        if (key + size(i->1) < v) split(i->r, i->r, r, v,
            key+size(i->1)+1), 1 = i;
        else split(i \rightarrow 1, l, i \rightarrow 1, v, key), r = i;
        i->update();
    }
    void push_back(T v) {
        node* i = new node(v);
        join(root, i, root);
    }
    T query(int 1, int r) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        T ans = M->sub;
        join(L, M, M), join(M, R, root);
        return ans;
    }
    void update(int 1, int r, T s) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        M->lazy += s;
        join(L, M, M), join(M, R, root);
    }
    void reverse(int 1, int r) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        M \rightarrow rev = 1;
        join(L, M, M), join(M, R, root);
    }
};
```

4.10 Splay Tree Implicita

```
// vector da NASA
// Um pouco mais rapido q a treap
// O construtor a partir do vector
// eh linear, todas as outras operacoes
// custam O(log(n)) amortizado
```

```
template < typename T > struct splay {
    struct node {
        node *ch[2], *p;
        int sz;
        T val, sub, lazy;
        bool rev;
        node(T v) {
            ch[0] = ch[1] = p = NULL;
            sz = 1;
            sub = val = v;
            lazy = 0;
            rev = false;
        }
        void prop() {
            if (lazy) {
                val += lazy, sub += lazy*sz;
                if (ch[0]) ch[0]->lazy += lazy;
                if (ch[1]) ch[1]->lazy += lazy;
            }
            if (rev) {
                swap(ch[0], ch[1]);
                if (ch[0]) ch[0]->rev ^= 1;
                if (ch[1]) ch[1]->rev ^= 1;
            lazy = 0, rev = 0;
        void update() {
            sz = 1, sub = val;
            for (int i = 0; i < 2; i++) if (ch[i]) {</pre>
                ch[i]->prop();
                sz += ch[i]->sz;
                sub += ch[i] -> sub;
            }
        }
    };
    node* root;
    splay() { root = NULL; }
    splay(node* x) {
        root = x;
        if (root) root->p = NULL;
```

```
}
splay(vector < T > v) { // O(n)}
    root = NULL;
    for (T i : v) {
        node* x = new node(i);
        x \rightarrow ch[0] = root;
        if (root) root->p = x;
        root = x;
        root ->update();
    }
}
splay(const splay& t) {
    throw logic_error("Nao copiar a splay!");
\simsplay() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
void rotate(node* x) { // x vai ficar em cima
    node *p = x->p, *pp = p->p;
    if (pp) pp - ch[pp - ch[1] == p] = x;
    bool d = p \rightarrow ch[0] == x;
    p - ch[!d] = x - ch[d], x - ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x->p = pp, p->p = x;
    p->update(), x->update();
}
node* splaya(node* x) {
    if (!x) return x;
    root = x, x->update();
    while (x->p) {
        node *p = x->p, *pp = p->p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
            rotate(x), rotate(x); // zigzag
```

```
else rotate(p), rotate(x); // zigzig
    }
    return x;
node* find(int v) {
    if (!root) return NULL;
    node *x = root;
    int key = 0;
    while (1) {
        x->prop();
        bool d = key + size(x->ch[0]) < v;
        if (\text{key} + \text{size}(x->\text{ch}[0]) != v \text{ and } x->\text{ch}[d]) {
             if (d) key += size(x->ch[0])+1;
             x = x - ch[d];
        } else break;
    return splaya(x);
}
int size() { return root ? root->sz : 0; }
void join(splay<T>& 1) { // assume que 1 < *this</pre>
    if (!size()) swap(root, 1.root);
    if (!size() or !l.size()) return;
    node* x = 1.root;
    while (1) {
        x->prop();
        if (!x->ch[1]) break;
        x = x -> ch[1];
    1.splaya(x), root->prop(), root->update();
    x - ch[1] = root, x - ch[1] - p = x;
    root = 1.root, 1.root = NULL;
    root ->update();
}
node* split(int v) { // retorna os elementos < v</pre>
    if (v <= 0) return NULL;</pre>
    if (v >= size()) {
        node* ret = root;
        root = NULL;
        ret ->update();
        return ret;
    }
    find(v);
```

```
node*1 = root -> ch[0];
    root -> ch [0] = NULL;
    if (1) 1->p = NULL;
    root ->update();
    return 1;
}
T& operator [](int i) {
    find(i);
    return root -> val;
}
void push_back(T v) { // 0(1)
    node* r = new node(v);
    r - > ch[0] = root;
    if (root) root->p = r;
    root = r, root->update();
}
T query(int 1, int r) {
    splay <T> M(split(r+1));
    splay<T> L(M.split(1));
    T ans = M.root->sub;
    M. join(L), join(M);
    return ans;
}
void update(int 1, int r, T s) {
    splay <T> M(split(r+1));
    splay <T> L(M.split(1));
    M.root->lazy += s;
    M. join(L), join(M);
}
void reverse(int 1, int r) {
    splay <T> M(split(r+1));
    splay<T> L(M.split(1));
    M.root->rev ^= 1;
    M.join(L), join(M);
}
void erase(int 1, int r) {
    splay <T> M(split(r+1));
    splay<T> L(M.split(1));
    join(L);
}
```

};

4.11 MergeSort Tree

//

```
// query(a, b, val) retorna numero de
// elementos em [a, b] <= val</pre>
// Usa O(n log(n)) de memoria
// Complexidades:
// build - O(n log(n))
// query - O(log^2(n))
#define ALL(x) x.begin(),x.end()
int v[MAX], n;
vector < int > tree [4*MAX];
void build(int p, int l, int r) {
    if (1 == r) return tree[p].push_back(v[1]);
    int m = (1+r)/2;
    build(2*p, 1, m), build(2*p+1, m+1, r);
    merge(ALL(tree[2*p]), ALL(tree[2*p+1]),
       back_inserter(tree[p]));
}
int query(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a) return 0; // to fora</pre>
    if (a \le 1 \text{ and } r \le b) // to totalmente dentro
        return lower_bound(ALL(tree[p]), val+1) -
            tree[p].begin();
    int m = (1+r)/2;
    return query(a, b, val, 2*p, 1, m) + query(a, b, val,
       2*p+1, m+1, r);
}
4.12 SegTree
// Recursiva com Lazy Propagation
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
```

```
// Complexidades:
// build - O(n)
// query - 0(log(n))
// update - 0(log(n))
namespace seg {
    ll seg[4*MAX], lazy[4*MAX];
    int n, *v;
    ll build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = v[1];
        int m = (1+r)/2;
        return seg[p] = build(2*p, 1, m) + build(2*p+1, m+1,
           r):
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        build();
    }
    void prop(int p, int l, int r) {
        seg[p] += lazy[p]*(r-l+1);
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazy[p] = 0;
    }
    ll query(int a, int b, int p=1, int l=0, int r=n-1) {
        prop(p, l, r);
        if (a <= 1 and r <= b) return seg[p];</pre>
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        int m = (1+r)/2;
        return query (a, b, 2*p, 1, m) + query (a, b, 2*p+1,
           m+1, r);
    }
    ll update(int a, int b, int x, int p=1, int l=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) {</pre>
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        }
```

```
if (b < l or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = update(a, b, x, 2*p, 1, m) +
            update(a, b, x, 2*p+1, m+1, r);
};
// Se tiver uma seg de max, da pra descobrir em O(\log(n))
// o primeiro e ultimo elemento >= val numa range:
// primeira posicao >= val em [a, b] (ou -1 se nao tem)
int get_left(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
   if (b < 1 or r < a or seg[p] < val) return -1;</pre>
    if (r == 1) return 1;
    int m = (1+r)/2;
    int x = get_left(a, b, val, 2*p, 1, m);
    if (x != -1) return x;
    return get_left(a, b, val, 2*p+1, m+1, r);
}
// ultima posicao >= val em [a, b] (ou -1 se nao tem)
int get_right(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
   if (b < l or r < a or seg[p] < val) return -1;</pre>
    if (r == 1) return 1;
    int m = (1+r)/2;
    int x = get_right(a, b, val, 2*p+1, m+1, r);
    if (x != -1) return x;
    return get_right(a, b, val, 2*p, 1, m);
}
4.13 SegTree Colorida
// Cada posicao tem um valor e uma cor
```

```
// Cada posicao tem um valor e uma cor
// O construtor receve um vector de {valor, cor}
// e o numero de cores (as cores devem estar em [0, c-1])
// query(c, a, b) retorna a soma dos valores
// de todo mundo em [a, b] que tem cor c
// update(c, a, b, x) soma x em todo mundo em
```

```
// [a, b] que tem cor c
// paint(c1, c2, a, b) faz com que todo mundo
// em [a, b] que tem cor c1 passe a ter cor c2
//
// Complexidades:
// construir - O(n log(n)) espaco e tempo
// query - O(log(n))
// update - 0(log(n))
// paint - O(log(n)) amortizado
struct seg_color {
    struct node {
        node *1, *r;
        int cnt;
        ll val, lazy;
        node() : 1(NULL), r(NULL), cnt(0), val(0), lazy(0) {}
        void update() {
            cnt = 0, val = 0;
            for (auto i : {1, r}) if (i) {
                i->prop();
                cnt += i->cnt, val += i->val;
            }
        }
        void prop() {
            if (!lazy) return;
            val += lazy*(ll)cnt;
            for (auto i : {1, r}) if (i) i->lazy += lazy;
            lazy = 0;
        }
    };
    int n;
    vector < node *> seg;
    seg_color(vector<pair<int, int>>& v, int c) :
       n(v.size()), seg(c, NULL) {
        for (int i = 0; i < n; i++)</pre>
            seg[v[i].second] = insert(seg[v[i].second], i,
               v[i].first, 0, n-1);
    \simseg_color() {
        queue < node *> q;
```

```
for (auto i : seg) q.push(i);
    while (q.size()) {
        auto i = q.front(); q.pop();
        if (!i) continue;
        q.push(i \rightarrow l), q.push(i \rightarrow r);
        delete i;
    }
}
node* insert(node* at, int idx, int val, int l, int r) {
    if (!at) at = new node();
    if (l == r) return at->cnt = 1, at->val = val, at;
    int m = (1+r)/2;
    if (idx <= m) at->l = insert(at->l, idx, val, l, m);
    else at->r = insert(at->r, idx, val, m+1, r);
    return at->update(), at;
}
11 query(node* at, int a, int b, int l, int r) {
    if (!at or b < l or r < a) return 0;</pre>
    at ->prop();
    if (a <= l and r <= b) return at->val;
    int m = (1+r)/2;
    return query(at->1, a, b, 1, m) + query(at->r, a, b,
       m+1, r);
}
11 query(int c, int a, int b) { return query(seg[c], a,
   b, 0, n-1); }
void update(node* at, int a, int b, int x, int l, int r)
   {
    if (!at or b < l or r < a) return;</pre>
    at->prop();
    if (a <= 1 and r <= b) {
        at - > lazy += x;
        return void(at->prop());
    }
    int m = (1+r)/2;
    update(at->1, a, b, x, 1, m), update(at->r, a, b, x,
       m+1, r);
    at ->update();
void update(int c, int a, int b, int x) { update(seg[c],
   a, b, x, 0, n-1); }
```

```
void paint(node*& from, node*& to, int a, int b, int 1,
       int r) {
        if (to == from or !from or b < 1 or r < a) return;
        from ->prop();
        if (to) to->prop();
        if (a <= 1 and r <= b) {
            if (!to) {
                to = from;
                from = NULL;
                return;
            int m = (1+r)/2;
            paint(from->1, to->1, a, b, 1, m),
               paint(from->r, to->r, a, b, m+1, r);
            to->update();
            delete from;
            from = NULL;
            return;
        if (!to) to = new node();
        int m = (1+r)/2;
        paint(from->1, to->1, a, b, 1, m), paint(from->r,
           to->r, a, b, m+1, r);
        from ->update(), to ->update();
   }
    void paint(int c1, int c2, int a, int b) {
       paint(seg[c1], seg[c2], a, b, 0, n-1); }
};
```

4.14 SegTree Iterativa com Lazy Propagation

```
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
// Para mudar, mudar as funcoes junta, poe e query
// LOG = ceil(log2(MAX))
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
```

```
namespace seg {
    11 seg[2*MAX], lazy[2*MAX];
    int n;
    ll junta(ll a, ll b) {
        return a+b;
    // soma x na posicao p de tamanho tam
    void poe(int p, ll x, int tam, bool prop=1) {
        seg[p] += x*tam;
        if (prop and p < n) lazy[p] += x;</pre>
    }
    // atualiza todos os pais da folha p
    void sobe(int p) {
        for (int tam = 2; p /= 2; tam *= 2) {
            seg[p] = junta(seg[2*p], seg[2*p+1]);
            poe(p, lazy[p], tam, 0);
        }
    }
    // propaga o caminho da raiz ate a folha p
    void prop(int p) {
        int tam = 1 << (LOG-1);
        for (int s = LOG; s; s--, tam /= 2) {
            int i = p >> s;
            if (lazy[i]) {
                poe(2*i, lazy[i], tam);
                poe(2*i+1, lazy[i], tam);
                lazy[i] = 0;
            }
        }
   }
    void build(int n2, int* v) {
        n = n2:
        for (int i = 0; i < n; i++) seg[n+i] = v[i];</pre>
        for (int i = n-1; i; i--) seg[i] = junta(seg[2*i],
           seg[2*i+1]);
        for (int i = 0; i < 2*n; i++) lazy[i] = 0;
```

```
}
    11 query(int a, int b) {
        11 \text{ ret} = 0;
        for (prop(a+=n), prop(b+=n); a \le b; ++a/=2, --b/=2)
            if (a%2 == 1) ret = junta(ret, seg[a]);
            if (b%2 == 0) ret = junta(ret, seg[b]);
        }
        return ret;
    }
    void update(int a, int b, int x) {
        int a2 = a += n, b2 = b += n, tam = 1;
        for (; a <= b; ++a/=2, --b/=2, tam *= 2) {
            if (a\%2 == 1) poe(a, x, tam);
            if (b\%2 == 0) poe(b, x, tam);
        sobe(a2), sobe(b2);
    }
};
4.15 SegTree Beats
// \text{ query}(a, b) - \{\{\min(v[a..b]), \max(v[a..b])\}, \sup(v[a..b])\}
// updatemin(a, b, x) faz com que v[i] <- min(v[i], x),</pre>
// para i em [a, b]
// updatemax faz o mesmo com max, e updatesum soma x
// em todo mundo do intervalo [a. b]
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log^2 (n)) amortizado
// (se nao usar updatesum, fica log(n) amortizado)
#define f first
```

#define s second

typedef long long 11;

const 11 LINF = 0x3f3f3f3f3f3f3f3f11;

```
namespace beats {
    struct node {
        int tam;
        ll sum, lazy; // lazy pra soma
        ll mi1, mi2, mi; // mi = #mi1
        ll ma1, ma2, ma; // ma = #ma1
        node(11 x = 0) {
            sum = mi1 = ma1 = x:
            mi2 = LINF, ma2 = -LINF;
            mi = ma = tam = 1;
            lazy = 0;
        }
        node(const node& 1, const node& r) {
            sum = 1.sum + r.sum, tam = 1.tam + r.tam;
            lazy = 0;
            if (1.mi1 > r.mi1) {
                mi1 = r.mi1, mi = r.mi;
                mi2 = min(1.mi1, r.mi2);
            } else if (l.mi1 < r.mi1) {</pre>
                mi1 = 1.mi1, mi = 1.mi;
                mi2 = min(r.mi1, 1.mi2);
            } else {
                mi1 = 1.mi1, mi = 1.mi+r.mi;
                mi2 = min(1.mi2, r.mi2);
            if (1.ma1 < r.ma1) {</pre>
                ma1 = r.ma1, ma = r.ma;
                ma2 = max(1.ma1, r.ma2);
            } else if (l.ma1 > r.ma1) {
                ma1 = l.ma1, ma = l.ma;
                ma2 = max(r.ma1, l.ma2);
            } else {
                ma1 = l.ma1, ma = l.ma+r.ma;
                ma2 = max(1.ma2, r.ma2);
            }
        }
        void setmin(ll x) {
            if (x >= ma1) return;
            sum += (x - ma1)*ma;
            if (mi1 == ma1) mi1 = x;
```

```
if (mi2 == ma1) mi2 = x;
        ma1 = x;
    void setmax(ll x) {
        if (x <= mi1) return;</pre>
        sum += (x - mi1)*mi;
        if (ma1 == mi1) ma1 = x;
        if (ma2 == mi1) ma2 = x;
        mi1 = x:
    void setsum(ll x) {
        mi1 += x, mi2 += x, ma1 += x, ma2 += x;
        sum += x*tam;
        lazy += x;
   }
};
node seg[4*MAX];
int n, *v;
node build(int p=1, int l=0, int r=n-1) {
   if (1 == r) return seg[p] = {v[1]};
    int m = (1+r)/2;
    return seg[p] = \{build(2*p, 1, m), build(2*p+1, m+1,
       r)}:
}
void build(int n2, int* v2) {
    n = n2, v = v2;
    build();
}
void prop(int p, int l, int r) {
    if (1 == r) return;
    for (int k = 0; k < 2; k++) {
        if (seg[p].lazy) seg[2*p+k].setsum(seg[p].lazy);
        seg[2*p+k].setmin(seg[p].ma1);
        seg[2*p+k].setmax(seg[p].mi1);
    }
    seg[p].lazy = 0;
pair < pair < 11, 11 > , 11 > query(int a, int b, int p=1, int
   1=0, int r=n-1) {
   if (b < 1 or r < a) return {{LINF, -LINF}, 0};</pre>
```

```
if (a \le 1 \text{ and } r \le b) \text{ return } \{\{seg[p].mi1,
        seg[p].ma1}, seg[p].sum};
    prop(p, 1, r);
    int m = (1+r)/2;
    auto L = query(a, b, 2*p, 1, m), R = query(a, b,
        2*p+1, m+1, r);
    return {{min(L.f.f, R.f.f), max(L.f.s, R.f.s)},
        L.s+R.s};
}
node updatemin(int a, int b, 11 x, int p=1, int 1=0, int
   r=n-1) {
    if (b < 1 or r < a or seg[p].ma1 <= x) return seg[p];</pre>
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].ma2 < x) {
        seg[p].setmin(x);
        return seg[p];
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = {updatemin(a, b, x, 2*p, 1, m),
                     updatemin(a, b, x, 2*p+1, m+1, r)};
}
node updatemax(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a or seg[p].mi1 >= x) return seg[p];
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].mi2 > x) {
        seg[p].setmax(x);
        return seg[p];
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemax(a, b, x, 2*p, 1, m),
                      updatemax(a, b, x, 2*p+1, m+1, r)};
}
node updatesum(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
    if (b < 1 or r < a) return seg[p];</pre>
    if (a <= 1 and r <= b) {</pre>
        seg[p].setsum(x);
        return seg[p];
    prop(p, 1, r);
    int m = (1+r)/2;
```

4.16 SegTree Esparca

```
// Query: soma do range [a, b]
// Update: flipa os valores de [a, b]
// O MAX tem q ser Q log N para Q updates
//
// Complexidades:
// build - O(1)
// query - 0(log(n))
// update - O(log(n))
namespace seg {
    int seg[MAX], lazy[MAX], R[MAX], L[MAX], ptr;
    int get_l(int i){
        if (L[i] == 0) L[i] = ptr++;
        return L[i];
    }
    int get_r(int i){
        if (R[i] == 0) R[i] = ptr++;
        return R[i];
    }
    void build() { ptr = 2; }
    void prop(int p, int 1, int r) {
        if (!lazy[p]) return;
        seg[p] = r-l+1 - seg[p];
        if (1 != r) lazy[get_l(p)]^=lazy[p],
           lazy[get_r(p)]^=lazy[p];
        lazy[p] = 0;
    }
    int query(int a, int b, int p=1, int l=0, int r=N-1) {
        prop(p, 1, r);
        if (b < 1 or r < a) return 0;
```

```
if (a <= l and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, get_l(p), l, m)+query(a, b,
           get_r(p), m+1, r);
    }
    int update(int a, int b, int p=1, int l=0, int r=N-1) {
        prop(p, 1, r);
        if (b < l or r < a) return seg[p];</pre>
        if (a <= 1 and r <= b) {
            lazy[p] ^= 1;
            prop(p, 1, r);
            return seg[p];
        int m = (1+r)/2;
        return seg[p] = update(a, b, get_l(p), l,
           m)+update(a, b, get_r(p), m+1, r);
};
```

4.17 SegTree Iterativa

```
// Consultas O-based
// Valores iniciais devem estar em (seg[n], ..., seg[2*n-1])
// Query: soma do range [a, b]
// Update: muda o valor da posicao p para x
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
int seg[2 * MAX];
int n;

void build() {
   for (int i = n - 1; i; i--) seg[i] = seg[2*i] +
        seg[2*i+1];
}
```

```
int query(int a, int b) {
    int ret = 0;
    for(a += n, b += n; a <= b; ++a /= 2, --b /= 2) {
        if (a % 2 == 1) ret += seg[a];
        if (b % 2 == 0) ret += seg[b];
    }
    return ret;
}

void update(int p, int x) {
    seg[p += n] = x;
    while (p /= 2) seg[p] = seg[2*p] + seg[2*p+1];
}</pre>
```

4.18 SegTree Persistente

```
// SegTree de soma, update de somar numa posicao
//
// query(a, b, t) retorna a query de [a, b] na versao t
// update(a, x, t) faz um update v[a]+=x a partir da
// versao de t, criando uma nova versao e retornando seu id
// Por default, faz o update a partir da ultima versao
//
// build - O(n)
// query - O(log(n))
// update - O(log(n))
const int MAX = 3e4+10, UPD = 2e5+10, LOG = 20;
const int MAXS = 4*MAX+UPD*LOG;
namespace perseg {
    11 seg[MAXS];
   int rt[UPD], L[MAXS], R[MAXS], cnt, t;
    int n, *v;
    ll build(int p, int l, int r) {
        if (1 == r) return seg[p] = v[1];
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
```

```
return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
           r);
    void build(int n2, int* v2) {
        n = n2, v = v2;
        rt[0] = cnt++;
        build(0, 0, n-1);
    }
    ll query(int a, int b, int p, int l, int r) {
        if (b < 1 or r < a) return 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    }
    ll query(int a, int b, int tt) {
        return query(a, b, rt[tt], 0, n-1);
    ll update(int a, int x, int lp, int p, int l, int r) {
        if (l == r) return seg[p] = seg[lp]+x;
        int m = (1+r)/2;
        if (a <= m)
            return seg[p] = update(a, x, L[lp], L[p]=cnt++,
               1, m) + seg[R[p]=R[lp]];
        return seg[p] = seg[L[p]=L[lp]] + update(a, x,
           R[lp], R[p] = cnt ++, m+1, r);
    int update(int a, int x, int tt=t) {
        update(a, x, rt[tt], rt[++t]=cnt++, 0, n-1);
        return t;
   }
};
```

4.19 SegTree 2D Iterativa

```
// Consultas 0-based
// Um valor inicial em (x, y) deve ser colocado em
   seg[x+n][y+n]
// Query: soma do retangulo ((x1, y1), (x2, y2))
// Update: muda o valor da posicao (x, y) para val
```

```
// Nao pergunte como que essa coisa funciona
//
// Para query com distancia de manhattan <= d, faca
// nx = x+y, ny = x-y
// Update em (nx, ny), query em ((nx-d, ny-d), (nx+d, ny+d))
//
// Se for de min/max, pode tirar os if's da 'query', e fazer
// sempre as 4 operacoes. Fica mais rapido
//
// Complexidades:
// build - O(n^2)
// \text{ query - O(log^2(n))}
// update - 0(log^2(n))
int seg[2*MAX][2*MAX], n;
void build() {
    for (int x = 2*n; x; x--) for (int y = 2*n; y; y--) {
        if (x < n) seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
        if (y < n) seg[x][y] = seg[x][2*y] + seg[x][2*y+1];
    }
}
int query(int x1, int y1, int x2, int y2) {
    int ret = 0, y3 = y1 + n, y4 = y2 + n;
    for (x1 += n, x2 += n; x1 <= x2; ++x1 /= 2, --x2 /= 2)
        for (y1 = y3, y2 = y4; y1 \le y2; ++y1 /= 2, --y2 /=
            2) {
             if (x1\%2 == 1 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x1][y1];
             if (x1\%2 == 1 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x1][y2];
             if (x2\%2 == 0 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x2][y1];
             if (x2\%2 == 0 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x2][y2];
        }
    return ret;
}
void update(int x, int y, int val) {
    int y2 = y += n;
    for (x += n; x; x /= 2, y = y2) {
        if (x \ge n) seg[x][y] = val;
        else seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
```

```
while (y /= 2) seg[x][y] = seg[x][2*y] +
         seg[x][2*y+1];
}
```

4.20 Split-Merge Set

```
// Representa um conjunto de inteiros nao negativos
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge, que custa O(log(N)) amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
// numero de elementos distintos no set
template < typename T, bool MULTI = false, typename SIZE_T = int >
   struct sms {
    struct node {
        node *1, *r;
        SIZE_T cnt;
        node() : l(NULL), r(NULL), cnt(0) {}
        void update() {
            cnt = 0;
            if (1) cnt += 1->cnt;
            if (r) cnt += r->cnt;
        }
    };
    node* root;
    T N;
    sms() : root(NULL), N(0) {}
    sms(T v) : sms() { while (v >= N) N = 2*N+1; }
    sms(const sms& t) : root(NULL), N(t.N) {
        for (SIZE_T i = 0; i < t.size(); i++) {</pre>
            T at = t[i];
            SIZE_T qt = t.count(at);
            insert(at, qt);
            i += qt-1;
        }
```

```
}
sms(initializer_list<T> v) : sms() { for (T i : v)
   insert(i); }
\simsms() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
friend void swap(sms& a, sms& b) {
    swap(a.root, b.root), swap(a.N, b.N);
}
SIZE_T size() const { return root ? root->cnt : 0; }
SIZE_T count(node* x) const { return x ? x->cnt : 0; }
void clear() {
    sms tmp;
    swap(*this, tmp);
}
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        node* nroot = new node();
        nroot ->1 = root;
        root = nroot;
        root ->update();
   }
}
node* insert(node* at, T idx, SIZE_T qt, T 1, T r) {
    if (!at) at = new node();
    if (1 == r) {
        at->cnt += qt;
        if (!MULTI) at->cnt = 1;
        return at;
    T m = 1 + (r-1)/2;
    if (idx \le m) at->1 = insert(at->1, idx, qt, 1, m);
    else at->r = insert(at->r, idx, qt, m+1, r);
    return at->update(), at;
```

```
}
void insert(T v, SIZE_T qt=1) { // insere 'qt'
   ocorrencias de 'v'
    if (qt <= 0) return erase(v, -qt);</pre>
    assert(v >= 0);
    expand(v);
    root = insert(root, v, qt, 0, N);
}
node* erase(node* at, T idx, SIZE_T qt, T 1, T r) {
    if (!at) return at;
    if (1 == r) at->cnt = at->cnt < qt ? 0 : at->cnt -
    else {
        T m = 1 + (r-1)/2;
        if (idx \le m) at->1 = erase(at->1, idx, qt, 1,
            m):
        else at->r = erase(at->r, idx, qt, m+1, r);
        at ->update();
    if (!at->cnt) delete at, at = NULL;
    return at;
void erase(T v, SIZE_T qt=1) { // remove 'qt'
   ocorrencias de 'v'
    if (v < 0 \text{ or } v > N \text{ or } !qt) \text{ return};
    if (qt < 0) insert(v, -qt);</pre>
    root = erase(root, v, qt, 0, N);
}
void erase_all(T v) { // remove todos os 'v'
    if (v < 0 \text{ or } v > N) return;
    root = erase(root, v, numeric_limits < SIZE_T >:: max(),
        0, N);
}
SIZE_T count(node* at, T a, T b, T l, T r) const {
    if (!at or b < 1 or r < a) return 0;</pre>
    if (a <= 1 and r <= b) return at->cnt;
    T m = 1 + (r-1)/2;
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1, r);
}
```

```
SIZE_T count(T v) const { return count(root, v, v, 0,
SIZE_T order_of_key(T v) { return count(root, 0, v-1, 0,
SIZE_T lower_bound(T v) { return order_of_key(v); }
const T operator [](SIZE_T i) const { // i-esimo menor
   elemento
    assert(i >= 0 and i < size());</pre>
    node* at = root;
    T 1 = 0, r = N;
    while (1 < r) {
        T m = 1 + (r-1)/2;
        if (count(at->1) > i) at = at->1, r = m;
            i -= count(at->1):
            at = at->r; l = m+1;
        }
    }
    return 1;
}
node* merge(node* 1, node* r) {
    if (!1 or !r) return 1 ? 1 : r;
    if (!1->1 \text{ and } !1->r) \{ // \text{ folha} \}
        if (MULTI) 1->cnt += r->cnt;
        delete r;
        return 1;
    1 - > 1 = merge(1 - > 1, r - > 1), 1 - > r = merge(1 - > r, r - > r);
    1->update(), delete r;
    return 1;
}
void merge(sms& s) { // mergeia dois sets
    if (N > s.N) swap(*this, s);
    expand(s.N);
    root = merge(root, s.root);
    s.root = NULL;
}
node* split(node*& x, SIZE_T k) {
    if (k <= 0 or !x) return NULL;
```

```
node* ret = new node();
        if (!x->1 \text{ and } !x->r) x->cnt -= k, ret->cnt += k;
            if (k \le count(x->1)) ret->1 = split(x->1, k);
            else {
                ret->r = split(x->r, k - count(x->1));
                 swap(x->1, ret->1);
            ret ->update(), x->update();
        }
        if (!x->cnt) delete x, x = NULL;
        return ret;
    }
    void split(SIZE_T k, sms& s) { // pega os 'k' menores
        s.clear();
        s.root = split(root, min(k, size()));
        s.N = N;
    }
    // pega os menores que 'k'
    void split_val(T k, sms& s) { split(order_of_key(k), s);
};
```

4.21 BIT

```
// BIT de soma 1-based, v 0-based
// Para mudar o valor da posicao p para x,
// faca: poe(x - query(p, p), p)
// l_bound(x) retorna o menor p tal que
// query(1, p+1) > x
                      (0 based!)
// Complexidades:
// build - O(n)
// poe - O(log(n))
// query - O(log(n))
// l_bound - O(log(n))
int n;
int bit[MAX];
int v[MAX];
```

```
void build() {
    bit[0] = 0;
    for (int i = 1; i <= n; i++) bit[i] = v[i - 1];</pre>
    for (int i = 1; i <= n; i++) {
        int j = i + (i \& -i);
        if (j <= n) bit[j] += bit[i];</pre>
    }
}
// soma x na posicao p
void poe(int x, int p) {
    for (; p <= n; p += p & -p) bit[p] += x;</pre>
}
// soma [1, p]
int pref(int p) {
    int ret = 0;
    for (; p; p -= p & -p) ret += bit[p];
    return ret;
}
// soma [a, b]
int query(int a, int b) {
    return pref(b) - pref(a - 1);
}
int l_bound(ll x) {
    int p = 0;
   for (int i = MAX2; i+1; i--) if (p + (1<<i) <= n
        and bit [p + (1 << i)] <= x) x -= bit <math>[p += (1 << i)];
    return p;
}
      Order Statistic Set
4.22
```

```
// Funciona do C++11 pra cima
#include <ext/pb_ds/assoc_container.hpp>
```

```
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
// para declarar:
ord_set < int > s;
// coisas do set normal funcionam:
for (auto i : s) cout << i << endl;</pre>
cout << s.size() << endl;</pre>
// k-esimo maior elemento O(\log|s|):
// k=0: menor elemento
cout << *s.find_by_order(k) << endl;</pre>
// quantos sao menores do que k O(log|s|):
cout << s.order_of_key(k) << endl;</pre>
// Para fazer um multiset, tem que
// usar ord_set<pair<int, int> > com o
// segundo parametro sendo algo para diferenciar
// os ementos iguais.
// s.order_of_key({k, -INF}) vai retornar o
// numero de elementos < k
4.23 Treap
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
```

node(T v) : l(NULL), r(NULL), p(rng()), sz(1),

template < typename T> struct treap {

struct node {

T val;

node *1, *r;

val(v) {}

void update() {

int p, sz;

```
if (1) sz += 1->sz;
        if (r) sz += r->sz;
   }
};
node* root;
treap() { root = NULL; }
treap(const treap& t) {
    throw logic_error("Nao copiar a treap!");
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!l or !r) return void(i = 1 ? l : r);
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r->1, r->1), i = r;
    i->update();
}
void split(node* i, node*& l, node*& r, T v) {
    if (!i) return void(r = 1 = NULL);
    if (i->val < v) split(i->r, i->r, r, v), l = i;
    else split(i \rightarrow 1, l, i \rightarrow 1, v), r = i;
    i->update();
}
int count(node* i, T v) {
    if (!i) return 0;
    if (i->val == v) return 1;
    if (v < i->val) return count(i->l, v);
    return count(i->r, v);
```

```
}
    void index_split(node* i, node*& 1, node*& r, int v, int
       kev = 0) {
        if (!i) return void(r = 1 = NULL);
        if (key + size(i->1) < v) index_split(i->r, i->r, r,
           v, key+size(i->1)+1), l = i;
        else index_split(i->1, 1, i->1, v, key), r = i;
        i->update();
    }
    int count(T v) {
        return count(root, v);
    void insert(T v) {
        if (count(v)) return;
        node *L, *R;
        split(root, L, R, v);
        node* at = new node(v);
        join(L, at, L);
        join(L, R, root);
    void erase(T v) {
        node *L, *M, *R;
        split(root, M, R, v+1), split(M, L, M, v);
        if (M) delete M;
        M = NULL;
        join(L, R, root);
    }
};
4.24 Split-Merge Set - Lazy
// Representa um conjunto de inteiros nao negativos
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge e o insert_range, que custa O(log(N))
   amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
```

// numero de elementos distintos no set

template < typename T > struct sms {

```
struct node {
    node *1, *r;
    int cnt;
    bool flip;
    node(): 1(NULL), r(NULL), cnt(0), flip(0) {}
    void update() {
        cnt = 0;
        if (1) cnt += 1->cnt;
        if (r) cnt += r->cnt;
    }
};
void prop(node* x, int size) {
    if (!x or !x->flip) return;
    x \rightarrow flip = 0;
    x \rightarrow cnt = size - x \rightarrow cnt;
    if (size > 1) {
        if (!x->1) x->1 = new node();
        if (!x->r) x->r = new node();
        x - > 1 - > flip ^= 1;
        x->r->flip ^= 1;
    }
}
node* root;
T N;
sms() : root(NULL), N(0) {}
sms(T v) : sms() { while (v >= N) N = 2*N+1; }
sms(sms& t) : root(NULL), N(t.N) {
    for (int i = 0; i < t.size(); i++) insert(t[i]);</pre>
sms(initializer_list<T> v) : sms() { for (T i : v)
   insert(i): }
void destroy(node* r) {
    vector < node *> q = {r};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
```

```
\simsms() { destroy(root); }
friend void swap(sms& a, sms& b) {
    swap(a.root, b.root), swap(a.N, b.N);
int count(node* x, T size) {
    if (!x) return 0;
    prop(x, size);
    return x->cnt;
int size() { return count(root, N+1); }
void clear() {
    sms tmp;
    swap(*this, tmp);
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        prop(root, N+1);
        node* nroot = new node();
        nroot ->1 = root;
        root = nroot;
        root ->update();
    }
}
node* insert(node* at, T idx, T l, T r) {
    if (!at) at = new node();
    else prop(at, r-l+1);
    if (1 == r) {
        at->cnt = 1;
        return at;
   }
    T m = 1 + (r-1)/2:
    if (idx \le m) at->1 = insert(at->1, idx, 1, m);
    else at->r = insert(at->r, idx, m+1, r);
    return at->update(), at;
}
void insert(T v) {
    assert(v >= 0);
    expand(v);
    root = insert(root, v, 0, N);
```

```
}
node* erase(node* at, T idx, T 1, T r) {
    if (!at) return at;
    prop(at, r-l+1);
    if (1 == r) at -> cnt = 0;
    else {
        T m = 1 + (r-1)/2;
        if (idx \le m) at > 1 = erase(at > 1, idx, 1, m);
        else at->r = erase(at->r, idx, m+1, r);
        at->update();
    return at;
}
void erase(T v) {
    if (v < 0 \text{ or } v > N) return:
    root = erase(root, v, 0, N);
}
int count(node* at, T a, T b, T l, T r) {
    if (!at or b < l or r < a) return 0;
    prop(at, r-l+1);
    if (a <= 1 and r <= b) return at->cnt;
    T m = 1 + (r-1)/2;
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1, r);
}
int count(T v) { return count(root, v, v, 0, N); }
int order_of_key(T v) { return count(root, 0, v-1, 0,
   N): }
int lower_bound(T v) { return order_of_key(v); }
const T operator [](int i) { // i-esimo menor elemento
    assert(i >= 0 and i < size()):
    node* at = root:
    T 1 = 0, r = N;
    while (1 < r) {
        prop(at, r-l+1);
        T m = 1 + (r-1)/2;
        if (count(at->1, m-1+1) > i) at = at->1, r = m;
            i \rightarrow count(at \rightarrow 1, r-m);
```

```
at = at -> r : l = m+1 :
        }
    }
    return 1;
}
node* merge(node* a, node* b, T tam) {
    if (!a or !b) return a ? a : b;
    prop(a, tam), prop(b, tam);
    if (b \rightarrow cnt == tam) swap(a, b);
    if (tam == 1 \text{ or } a \rightarrow cnt == tam) {
        destroy(b);
        return a;
    }
    a - 1 = merge(a - 1, b - 1, tam > 1), a - r = merge(a - r, tam > 1)
       b->r, tam>>1);
    a->update(), delete b;
    return a;
void merge(sms& s) { // mergeia dois sets
    if (N > s.N) swap(*this, s);
    expand(s.N);
    root = merge(root, s.root, N+1);
    s.root = NULL;
}
node* split(node*& x, int k, T tam) {
    if (k <= 0 or !x) return NULL;</pre>
    prop(x, tam);
    node* ret = new node();
    if (tam == 1) x->cnt = 0, ret->cnt = 1;
    else {
        if (k \le count(x->1, tam>>1)) ret->1 =
            split(x->1, k, tam>>1);
        else {
             ret -> r = split(x -> r, k - count(x -> l,
                tam>>1), tam>>1);
             swap(x->1, ret->1);
        ret->update(), x->update();
    }
    return ret;
```

```
}
void split(int k, sms& s) { // pega os 'k' menores
    s.clear();
    s.root = split(root, min(k, size()), N+1);
    s.N = N;
}
// pega os menores que 'k'
void split_val(T k, sms& s) { split(order_of_key(k), s);
   }
void flip(node*& at, T a, T b, T l, T r) {
    if (!at) at = new node();
    else prop(at, r-l+1);
    if (a <= 1 and r <= b) {</pre>
        at ->flip ^= 1;
        prop(at, r-l+1);
        return:
    if (r < a or b < 1) return;
    T m = 1 + (r-1)/2;
    flip(at->1, a, b, 1, m), flip(at->r, a, b, m+1, r);
    at ->update();
}
void flip(T 1, T r) { // flipa os valores em [1, r]
    assert(1 >= 0 and 1 <= r);
    expand(r);
    flip(root, 1, r, 0, N);
}
// complemento considerando que o universo eh [0, lim]
void complement(T lim) {
    assert(lim >= 0);
    if (lim > N) expand(lim);
    flip(root, 0, lim, 0, N);
    sms tmp:
    split_val(lim+1, tmp);
    swap(*this, tmp);
}
void insert_range(T 1, T r) { // insere todo os valores
   em [1, r]
    sms tmp;
    tmp.flip(l, r);
    merge(tmp);
```

```
// trocar v[...] para ... na query
template < typename T > struct rmq {
    vector <T> v;
    int n, b;
    vector < int > id, st;
    vector < vector < int >> table;
    vector < vector < int >>> entre;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }
    rmq(vector<T>& v_) {
        v = v_{n}, n = v.size();
        b = (\_builtin\_clz(1) - \_builtin\_clz(n) + 1)/4 + 1;
        id.resize(n);
        table.assign(4*b, vector<int>((n+b-1)/b));
        entre.assign(1<<b<<b, vector<vector<int>>(b,
            vector < int > (b, -1));
        for (int i = 0; i < n; i += b) {
            int at = 0, 1 = min(n, i+b);
            st.clear();
            for (int j = i; j < l; j++) {
                 while (st.size() and op(st.back(), j) == j)
                    st.pop_back(), at *= 2;
                 st.push_back(j), at = 2*at+1;
            for (int j = i; j < 1; j++) id[j] = at;</pre>
            if (entre[at][0][0] == -1) for (int x = 0; x <</pre>
               1-i; x++) {
                 entre[at][x][x] = x;
                for (int y = x+1; y < 1-i; y++)
                     entre[at][x][y] =
                        op(i+entre[at][x][y-1], i+y) - i;
            }
```

```
table [0][i/b] = i+entre[at][0][1-i-1];
        for (int j = 1; (1<<j) <= (n+b-1)/b; j++)
            for (int i = 0; i+(1 << j) <= (n+b-1)/b; i++)
                table[j][i] = op(table[j-1][i],
                   table [j-1][i+(1<<(j-1))]);
    T query(int i, int j) {
        if (i/b == j/b) return
           v[i/b*b+entre[id[i]][i%b][j%b]];
        int x = i/b+1, y = j/b-1, ans = i;
        if (x <= y) {
            int t = __builtin_clz(1) - __builtin_clz(y-x+1);
            ans = op(ans, op(table[t][x],
               table [t] [y-(1<<t)+1]);
        ans = op(ans, op(i/b*b+entre[id[i]][i\%b][b-1],
           j/b*b+entre[id[j]][0][j%b]));
        return v[ans];
   }
};
```

4.26 DSU Persistente

```
// Persistencia parcial, ou seja, tem que ir
// incrementando o 't' no une
//
// Complexidades:
// build - O(n)
// find - O(log(n))
// une - O(log(n))

int n, p[MAX], sz[MAX], ti[MAX];

void build() {
   for (int i = 0; i < n; i++) {
      p[i] = i;
      sz[i] = 1;
      ti[i] = -INF;
}</pre>
```

```
int find(int k, int t) {
    if (p[k] == k or ti[k] > t) return k;
    return find(p[k], t);
}

void une(int a, int b, int t) {
    a = find(a, t); b = find(b, t);
    if (a == b) return;
    if (sz[a] > sz[b]) swap(a, b);

    sz[b] += sz[a];
    p[a] = b;
    ti[a] = t;
}
```

4.27 Treap Persistent Implicita

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
mt19937_64 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct node {
    node *1, *r;
    ll sz, val, sub;
    node(11 v): 1(NULL), r(NULL), sz(1), val(v), sub(v) {}
    node(node* x) : l(x->l), r(x->r), sz(x->sz),
       val(x->val), sub(x->sub) {}
    void update() {
        sz = 1, sub = val;
        if (1) sz += 1->sz, sub += 1->sub;
        if (r) sz += r->sz, sub += r->sub;
        sub %= MOD;
};
ll size(node* x) { return x ? x->sz : 0; }
```

```
void update(node* x) { if (x) x->update(); }
 node* copy(node* x) { return x ? new node(x) : NULL; }
 node* join(node* 1, node* r) {
    if (!1 or !r) return 1 ? copy(1) : copy(r);
     node* ret;
     if (rng() % (size(l) + size(r)) < size(l)) {</pre>
        ret = copy(1);
        ret->r = join(ret->r, r);
     } else {
         ret = copy(r);
         ret - > 1 = join(1, ret - > 1);
     }
     return update(ret), ret;
}
void split(node* x, node*& 1, node*& r, ll v, ll key = 0) {
     if (!x) return void(1 = r = NULL);
     if (key + size(x->1) < v) {
         1 = copv(x);
         split(1->r, 1->r, r, v, key+size(1->1)+1);
     } else {
         r = copy(x);
         split(r->1, 1, r->1, v, key);
     }
     update(1), update(r);
 vector < node *> treap;
 void init(const vector<ll>& v) {
     treap = {NULL};
    for (auto i : v) treap[0] = join(treap[0], new node(i));
}
      RMQ < O(n), O(1) > - min queue
// O(n) pra buildar, query O(1)
// Para retornar o indice, basta
// trocar v[...] para ... na query
```

```
template < typename T > struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }</pre>
    int msb(int x) { return
       __builtin_clz(1) - __builtin_clz(x); }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1));}
    rmg(const \ vector < T > \& \ v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
            at = (at << 1) & ((1 << b) -1);
            while (at and op(i, i-msb(at&-at)) == i) at ^=
                at&-at;
        }
        for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< i) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    T query(int 1, int r) {
        if (r-l+1 <= b) return v[small(r, r-l+1)];</pre>
        int ans = op(small(l+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x <= y) {
            int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
                t[n/b*j+y-(1<<j)+1]));
        }
        return v[ans];
    }
};
4.29
      SQRT Tree
// RMQ em O(log log n) com O(n log log n) pra buildar
```

```
// Funciona com qualquer operacao associativa
// Tao rapido quanto a sparse table, mas usa menos memoria
// (log log (1e9) < 5, entao a query eh praticamente O(1))
//
// build - O(n log log n)
// query - O(log log n)
namespace sqrtTree {
    int n, *v;
    int pref[4][MAX], sulf[4][MAX], getl[4][MAX],
       entre[4][MAX], sz[4];
    int op(int a, int b) { return min(a, b); }
    inline int getblk(int p, int i) { return
       (i-getl[p][i])/sz[p]; }
    void build(int p, int l, int r) {
        if (1+1 >= r) return;
        for (int i = 1; i <= r; i++) getl[p][i] = 1;
        for (int L = 1; L <= r; L += sz[p]) {
            int R = min(L+sz[p]-1, r);
            pref[p][L] = v[L], sulf[p][R] = v[R];
            for (int i = L+1; i <= R; i++) pref[p][i] =</pre>
                op(pref[p][i-1], v[i]);
            for (int i = R-1; i >= L; i--) sulf[p][i] =
                op(v[i], sulf[p][i+1]);
            build(p+1, L, R);
        for (int i = 0; i <= sz[p]; i++) {
            int at = entre[p][1+i*sz[p]+i] =
               sulf[p][l+i*sz[p]];
            for (int j = i+1; j <= sz[p]; j++)</pre>
               entre[p][l+i*sz[p]+j] = at =
                    op(at, sulf[p][1+j*sz[p]]);
        }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        for (int p = 0; p < 4; p++) sz[p] = n2 = sqrt(n2);
        build(0, 0, n-1);
    }
    int query(int 1, int r) {
        if (1+1 >= r) return 1 == r ? v[1] : op(v[1], v[r]);
```

4.30 Wavelet Tree

```
// Usa O(sigma + n log(sigma)) de memoria,
// onde sigma = MAXN - MINN
// Depois do build, o v fica ordenado
// count(i, j, x, y) retorna o numero de elementos de
// v[i, j) que pertencem a [x, y]
// kth(i, j, k) retorna o elemento que estaria
// na poscicao k-1 de v[i, j), se ele fosse ordenado
// sum(i, j, x, y) retorna a soma dos elementos de
// v[i, j) que pertencem a [x, y]
// sumk(i, j, k) retorna a soma dos k-esimos menores
// elementos de v[i, j) (sum(i, j, 1) retorna o menor)
//
// Complexidades:
// build - O(n log(sigma))
// count - O(log(sigma))
// kth - 0(log(sigma))
// sum - O(log(sigma))
// sumk - O(log(sigma))
int n, v[MAX];
vector < int > esq[4*(MAXN-MINN)], pref[4*(MAXN-MINN)];
void build(int b = 0, int e = n, int p = 1, int l = MINN,
   int r = MAXN) {
    int m = (1+r)/2; esq[p].push_back(0);
       pref[p].push_back(0);
    for (int i = b; i < e; i++) {</pre>
        esq[p].push_back(esq[p].back()+(v[i]<=m));</pre>
```

```
pref[p].push_back(pref[p].back()+v[i]);
    }
    if (1 == r) return;
    int m2 = stable_partition(v+b, v+e, [=](int i){return i
       <= m;}) - v;
    build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
}
int count(int i, int j, int x, int y, int p = 1, int l =
   MINN, int r = MAXN) {
   if (y < 1 or r < x) return 0;</pre>
   if (x \le 1 \text{ and } r \le y) \text{ return } j-i;
   int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei, j-ej,
       x, y, 2*p+1, m+1, r);
}
int kth(int i, int j, int k, int p=1, int 1 = MINN, int r =
   MAXN) {
   if (1 == r) return 1;
   int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return kth(ei, ej, k, 2*p, 1, m);</pre>
    return kth(i-ei, j-ej, k-(ej-ei), 2*p+1, m+1, r);
}
int sum(int i, int j, int x, int y, int p = 1, int l = MINN,
   int r = MAXN) {
    if (y < 1 or r < x) return 0;
   if (x <= l and r <= y) return pref[p][j]-pref[p][i];</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return sum(ei, ej, x, y, 2*p, 1, m) + sum(i-ei, j-ej, x,
       y, 2*p+1, m+1, r);
}
int sumk(int i, int j, int k, int p = 1, int l = MINN, int r
   = MAXN)
    if (1 == r) return l*k;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return sumk(ei, ej, k, 2*p, 1, m);</pre>
    return pref[2*p][ej]-pref[2*p][ei]+sumk(i-ei, j-ej,
       k-(ej-ei), 2*p+1, m+1, r);
}
```

5 DP

5.1 SOS DP

```
// O(n 2^n)
//iterative version
for(int mask = 0; mask < (1<<N); ++mask){</pre>
    dp[mask][-1] = A[mask]; //handle base case separately
        (leaf states)
    for(int i = 0; i < N; ++i){</pre>
        if (mask & (1<<i))</pre>
             dp[mask][i] = dp[mask][i-1] +
                dp[mask^(1<<i)][i-1];</pre>
        else dp[mask][i] = dp[mask][i-1];
    F[mask] = dp[mask][N-1];
}
//memory optimized, super easy to code.
for(int i = 0; i < (1 << N); ++i) F[i] = A[i];
for(int i = 0; i < N; ++i) for(int mask = 0; mask < (1<<N);
   ++mask){
    if (mask & (1<<i))</pre>
        F[mask] += F[mask^(1<<i)];
}
```

5.2 Convex Hull Trick (Rafael)

```
// linear

struct CHT {
    int it;
    vector<ll> a, b;
    CHT():it(0){}
    ll eval(int i, ll x){
        return a[i]*x + b[i];
    }
    bool useless(){
```

```
int sz = a.size();
        int r = sz-1, m = sz-2, 1 = sz-3;
        return (b[1] - b[r])*(a[m] - a[1]) <
            (b[1] - b[m])*(a[r] - a[1]);
    }
    void add(ll A, ll B){
        a.push_back(A); b.push_back(B);
        while (!a.empty()){
            if ((a.size() < 3) || !useless()) break;</pre>
            a.erase(a.end() - 2);
            b.erase(b.end() - 2);
        }
    }
    ll get(ll x){
        it = min(it, int(a.size()) - 1);
        while (it+1 < a.size()){</pre>
            if (eval(it+1, x) > eval(it, x)) it++;
            else break;
        return eval(it, x);
    }
};
```

5.3 Mochila

```
void solve(vector<int>& ans, int 1, int r, int cap) {
    if (1 == r) {
        if (w[1] <= cap) ans.push_back(1);</pre>
        return;
    int m = (1+r)/2;
    get_dp(0, 1, m, cap), get_dp(1, m+1, r, cap);
    int left_cap = -1, opt = -INF;
    for (int j = 0; j \le cap; j++)
        if (int at = dp[0][j] + dp[1][cap - j]; at > opt)
            opt = at, left_cap = j;
    solve(ans, 1, m, left_cap), solve(ans, m+1, r, cap -
       left_cap);
}
vector < int > knapsack(int n, int cap) {
    vector < int > ans;
    solve(ans, 0, n-1, cap);
    return ans;
}
```

5.4 Divide and Conquer DP

```
// Tudo 1-based!!!
// Particiona o array em k subarrays
// maximizando o somatorio das queries
//
// O(k n log n), assumindo quer query(l, r) eh O(1)

typedef long long ll;

ll dp[MAX][2];

void solve(int k, int l, int r, int lk, int rk) {
   if (l > r) return;
   int m = (l+r)/2, p = -1;
   ll& ans = dp[m][k&1] = -LINF;
   // ans = dp[m][~k&1], p = m+1; // para intervalos vazios
   for (int i = lk; i <= min(rk, m); i++) {</pre>
```

```
ll at = dp[i-1][~k&1] + query(i, m);
    if (at > ans) ans = at, p = i;
}
solve(k, l, m-1, lk, p), solve(k, m+1, r, p, rk);
}

ll DC(int n, int k) {
    dp[0][0] = dp[0][1] = 0;
    // garante que todo mundo pertence a algum intervalo
    for (int i = 1; i <= n; i++) dp[i][0] = -LINF;
    // se puder usar inervalos vazios, usar solve(i, 1, n, 1, n)
    for (int i = 1; i <= k; i++) solve(i, i, n, i, n);
    return dp[n][k&1];
}</pre>
```

5.5 Longest Common Subsequence

```
// Computa a LCS entre dois arrays usando
// o algoritmo de Hirschberg para recuperar
//
// O(n*m), O(n+m) de memoria
int lcs_s[MAX], lcs_t[MAX];
int dp[2][MAX];
// dp[0][j] = max lcs(s[li...ri], t[lj, lj+j])
void dp_top(int li, int ri, int lj, int rj) {
    memset(dp[0], 0, (rj-lj+1)*sizeof(dp[0][0]));
    for (int i = li; i <= ri; i++) {</pre>
        for (int j = rj; j >= lj; j--)
            dp[0][i - 1i] = max(dp[0][i - 1i],
            (lcs_s[i] == lcs_t[j]) + (j > lj ? dp[0][j-1 -
               li] : 0));
        for (int j = lj+1; j <= rj; j++)</pre>
            dp[0][j-1j] = max(dp[0][j-1j], dp[0][j-1
               -lj]);
    }
}
```

```
// dp[1][j] = max lcs(s[li...ri], t[lj+j, rj])
void dp_bottom(int li, int ri, int lj, int rj) {
    memset(dp[1], 0, (rj-lj+1)*sizeof(dp[1][0]));
    for (int i = ri; i >= li; i--) {
        for (int j = lj; j <= rj; j++)</pre>
            dp[1][i - 1i] = max(dp[1][i - 1i],
            (lcs_s[i] == lcs_t[j]) + (j < rj ? dp[1][j+1 -
               li]: 0));
        for (int j = rj-1; j >= lj; j--)
            dp[1][j-1j] = max(dp[1][j-1j], dp[1][j+1-
               li]);
   }
}
void solve(vector<int>& ans, int li, int ri, int lj, int rj)
    if (li == ri){
        for (int j = lj; j <= rj; j++)</pre>
            if (lcs_s[li] == lcs_t[j]){
                ans.push_back(lcs_t[j]);
                break:
        return;
    if (lj == rj){
        for (int i = li; i <= ri; i++){</pre>
            if (lcs_s[i] == lcs_t[li]){
                ans.push_back(lcs_s[i]);
                break:
            }
        }
        return;
    }
    int mi = (li+ri)/2;
    dp_top(li, mi, lj, rj), dp_bottom(mi+1, ri, lj, rj);
    int j_{-} = 0, mx = -1;
    for (int j = lj-1; j <= rj; j++) {
        int val = 0;
        if (j >= lj) val += dp[0][j - lj];
        if (j < rj) val += dp[1][j+1 - lj];
```

6 Problemas

6.1 Sweep Direction

```
// Passa por todas as ordenacoes dos pontos definitas por
   "direcoes"
// Assume que nao existem pontos coincidentes
// O(n^2 \log n)
void sweep_direction(vector<pt> v) {
    int n = v.size();
    sort(v.begin(), v.end(), [](pt a, pt b) {
        if (a.x != b.x) return a.x < b.x;
        return a.y > b.y;
    });
    vector < int > at(n);
    iota(at.begin(), at.end(), 0);
    vector < ii > swapp;
    for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++)
        swapp.push_back({i, j}), swapp.push_back({j, i});
    sort(swapp.begin(), swapp.end(), [&](ii a, ii b) {
```

```
pt A = rotate90(v[a.f] - v[a.s]);
        pt B = rotate90(v[b.f] - v[b.s]);
        if (quad(A) == quad(B) and !sarea2(pt(0, 0), A, B))
           return a < b;</pre>
        return compare_angle(A, B);
    });
    for (auto par : swapp) {
        assert(abs(at[par.f] - at[par.s]) == 1);
        int l = min(at[par.f], at[par.s]), r = n-1
           max(at[par.f], at[par.s]);
        // l e r sao quantos caras tem de cada lado do par
           de pontos
        // (cada par eh visitado duas vezes)
        swap(v[at[par.f]], v[at[par.s]]);
        swap(at[par.f], at[par.s]);
}
```

6.2 Inversion Count

```
// Computa o numero de inversoes para transformar
// l em r (se nao tem como, retorna -1)
// O(n log(n))
template < typename T > 11 inv_count(vector < T > 1, vector < T > r =
   {}) {
    if (!r.size()) {
        r = 1;
        sort(r.begin(), r.end());
    }
    int n = 1.size();
    vector < int > v(n), bit(n);
    vector<pair<T, int>> w;
    for (int i = 0; i < n; i++) w.push_back({r[i], i+1});</pre>
    sort(w.begin(), w.end());
    for (int i = 0; i < n; i++) {</pre>
        auto it = lower_bound(w.begin(), w.end(),
            make_pair(l[i], 0));
        if (it == w.end() or it->first != l[i]) return -1;
```

```
// nao da
v[i] = it->second;
it->second = -1;
}

ll ans = 0;
for (int i = n-1; i >= 0; i--) {
   for (int j = v[i]-1; j; j -= j&-j) ans += bit[j];
   for (int j = v[i]; j < n; j += j&-j) bit[j]++;
}
return ans;
}</pre>
```

6.3 Gray Code

```
// Gera uma permutacao de 0 a 2^n-1, de forma que
// duas posicoes adjacentes diferem em exatamente 1 bit
//
// O(2^n)

vector<int> gray_code(int n) {
    vector<int> ret(1<<n);
    for (int i = 0; i < (1<<n); i++) ret[i] = i^(i>>1);
    return ret;
}
```

6.4 Triangulos em Grafos

```
// get_triangles(i) encontra todos os triangulos ijk no grafo
// Custo nas arestas
// retorna {custo do triangulo, {j, k}}
//
// O(m sqrt(m) log(n)) se chamar para todos os vertices
vector<ii> g[MAX]; // {para, peso}

#warning o 'g' deve estar ordenado
vector<pair<int, ii>> get_triangles(int i) {
```

6.5 RMQ com Divide and Conquer

```
// Responde todas as queries em
// O(n log(n))
typedef pair<pair<int, int>, int> iii;
#define f first
#define s second
int n, q, v[MAX];
iii qu[MAX];
int ans[MAX], pref[MAX], sulf[MAX];
void solve(int l=0, int r=n-1, int ql=0, int qr=q-1) {
    if (1 > r or q1 > qr) return;
    int m = (1+r)/2;
    int qL = partition(qu+ql, qu+qr+1, [=](iii x){return
       x.f.s < m;) - qu;
    int qR = partition(qu+qL, qu+qr+1, [=](iii x){return
       x.f.f <= m; }) - qu;
    pref(m) = sulf(m) = v(m);
    for (int i = m-1; i >= 1; i--) pref[i] = min(v[i],
       pref[i+1]);
    for (int i = m+1; i <= r; i++) sulf[i] = min(v[i],</pre>
```

```
sulf[i-1]);
    for (int i = qL; i < qR; i++)</pre>
        ans[qu[i].s] = min(pref[qu[i].f.f], sulf[qu[i].f.s]);
    solve(1, m-1, ql, qL-1), solve(m+1, r, qR, qr);
}
6.6 MO - DSU
// Dado uma lista de arestas de um grafo, desponde
// para cada query(1, r), quantos componentes conexos
// o grafo tem se soh considerar as arestas l, l+1, ..., r
// Da pra adaptar pra usar MO com qualquer estrutura
   rollbackavel
//
// O(m \ sqrt(m) \log(n))
struct dsu {
    int n, ans;
    vector < int > p, sz;
    stack<int> S;
    dsu(int n_{-}) : n(n_{-}), ans(n), p(n), sz(n) {
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;</pre>
    }
    int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    }
    void add(pair<int, int> x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --;
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
```

```
int query() { return ans; }
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
};
int n;
vector<ii> ar; // vetor com as arestas
vector<int> MO(vector<ii> &q) {
    int SQ = sqrt(q.size()) + 1;
    int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
            q[l].first < q[r].first;
        return q[1].second < q[r].second;</pre>
    });
    vector < int > ret(m);
    for (int i = 0; i < m; i++) {</pre>
        dsu D(n);
        int fim = q[ord[i]].first/SQ*SQ + SQ - 1;
        int last_r = fim;
        int j = i-1;
        while (j+1 < m and q[ord[j+1]].first / SQ ==</pre>
            q[ord[i]].first / SQ) {
            auto [1, r] = q[ord[++j]];
            if (1 / SQ == r / SQ) {
                 dsu D2(n):
                for (int k = 1; k <= r; k++) D2.add(ar[k]);</pre>
                ret[ord[j]] = D2.query();
                 continue;
            }
             while (last_r < r) D.add(ar[++last_r]);</pre>
```

```
for (int k = 1; k <= fim; k++) D.add(ar[k]);</pre>
        ret[ord[i]] = D.query();
        for (int k = 1; k <= fim; k++) D.rollback();</pre>
    }
    i = j;
return ret;
```

6.7 LIS2 - Longest Increasing Subsequence

```
// Calcula o tamanho da LIS
// O(n.log(n))
template < typename T > int lis(vector < T > &v) {
    vector <T> ans;
    for (T t : v){
        // Para non-decreasing use upper_bound()
        auto it = lower_bound(ans.begin(), ans.end(), t);
        if (it == ans.end()) ans.push_back(t);
        else *it = t;
    }
    return ans.size();
}
```

6.8 Nim

```
// Calcula movimento otimo do jogo classico de Nim
// Assume que o estado atual eh perdedor
// Funcao move retorna um par com a pilha (O indexed)
// e quanto deve ser tirado dela
// XOR deve estar armazenado em x
// Para mudar um valor, faca insere(novo_valor),
// atualize o XOR e mude o valor em v
```

```
// MAX2 = teto do log do maior elemento
// possivel nas pilhas
// O(log(n)) amortizado
int v[MAX], n, x;
stack<int> pi[MAX2];
void insere(int p) {
    for (int i = 0; i < MAX2; i++) if (v[p] & (1 << i))</pre>
       pi[i].push(p);
}
pair < int , int > move() {
    int bit = 0; while (x >> bit) bit++; bit--;
    // tira os caras invalidos
    while ((v[pi[bit].top()] & (1 << bit)) == 0)</pre>
       pi[bit].pop();
    int cara = pi[bit].top();
    int tirei = v[cara] - (x^v[cara]);
    v[cara] -= tirei;
    insere(cara);
    return make_pair(cara, tirei);
}
// Acha o movimento otimo baseado
// em v apenas
//
// O(n)
pair < int , int > move() {
    int x = 0;
    for (int i = 0; i < n; i++) x ^= v[i];</pre>
    for (int i = 0; i < n; i++) if ((v[i]^x) < v[i])
        return make_pair(i, v[i] - (v[i]^x));
}
```

6.9 Arpa's Trick

```
// Responde RMQ em O((n+q)\log(n)) offline
// Adicionar as queries usando arpa::add(a, b)
// A resposta vai ta em ans[], na ordem que foram colocadas
int n, v[MAX], ans[MAX];
namespace arpa {
    int p[MAX], cnt;
    stack<int> s;
    vector<pair<int, int> > 1[MAX];
   int find(int k) { return p[k] == k ? k : p[k] =
       find(p[k]); }
   void add(int a, int b) { l[b].push_back({a, cnt++}); }
    void solve() {
       for (int i = 0; (p[i]=i) < n; s.push(i++)) {
            while (s.size() and v[s.top()] >= v[i])
               p[s.top()] = i, s.pop();
            for (auto q : l[i]) ans[q.second] =
               v[find(q.first)];
       }
   }
}
6.10 Simple Polygon
// Verifica se um poligono com n pontos eh simples
//
// O(n log n)
bool operator < (const line& a, const line& b) { //
   comparador pro sweepline
   if (a.p == b.p) return ccw(a.p, a.q, b.q);
   if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or a.p.x+eps
       < b.p.x))
       return ccw(a.p, a.q, b.p);
   return ccw(a.p, b.q, b.p);
```

```
bool simple(vector<pt> v) {
    auto intersects = [&](pair<line, int> a, pair<line, int>
        if ((a.s+1)%v.size() == b.s or (b.s+1)%v.size() ==
           a.s) return false;
        return interseg(a.f, b.f);
    };
    vector<line> seg;
    vector<pair<pt, pair<int, int>>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        pt at = v[i], nxt = v[(i+1)%v.size()];
        if (nxt < at) swap(at, nxt);</pre>
        seg.push_back(line(at, nxt));
        w.push_back({at, {0, i}});
        w.push_back({nxt, {1, i}});
        // casos degenerados estranhos
        if (isinseg(v[(i+2)%v.size()], line(at, nxt)))
           return 0:
        if (isinseg(v[(i+v.size()-1)%v.size()], line(at,
           nxt))) return 0;
    sort(w.begin(), w.end());
    set < pair < line , int >> se;
    for (auto i : w) {
        line at = seg[i.s.s];
        if (i.s.f == 0) {
            auto nxt = se.lower_bound({at, i.s.s});
            if (nxt != se.end() and intersects(*nxt, {at,
               i.s.s})) return 0:
            if (nxt != se.begin() and intersects(*(--nxt),
               {at, i.s.s})) return 0;
            se.insert({at, i.s.s});
        } else {
            auto nxt = se.upper_bound({at, i.s.s}), cur =
               nxt, prev = --cur;
            if (nxt != se.end() and prev != se.begin()
                and intersects(*nxt, *(--prev))) return 0;
            se.erase(cur);
    }
    return 1;
```

6.11 Segment Intersection

}

```
// Verifica, dado n segmentos, se existe algum par de
   segmentos
// que se intersecta
//
// O(n log n)
bool operator < (const line& a, const line& b) { //</pre>
   comparador pro sweepline
    if (a.p == b.p) return ccw(a.p, a.q, b.q);
    if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or a.p.x+eps
       < b.p.x))
        return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
}
bool has_intersection(vector<line> v) {
    auto intersects = [&](pair<line, int> a, pair<line, int>
       b) {
        return interseg(a.f, b.f);
    vector<pair<pt, pair<int, int>>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (v[i].q < v[i].p) swap(v[i].p, v[i].q);</pre>
        w.push_back({v[i].p, {0, i}});
        w.push_back({v[i].q, {1, i}});
    }
    sort(w.begin(), w.end());
    set < pair < line, int >> se;
    for (auto i : w) {
        line at = v[i.s.s];
        if (i.s.f == 0) {
            auto nxt = se.lower_bound({at, i.s.s});
            if (nxt != se.end() and intersects(*nxt, {at,
               i.s.s})) return 1;
            if (nxt != se.begin() and intersects(*(--nxt),
                {at, i.s.s})) return 1;
```

```
se.insert({at, i.s.s});
} else {
    auto nxt = se.upper_bound({at, i.s.s}), cur =
        nxt, prev = --cur;
    if (nxt != se.end() and prev != se.begin()
        and intersects(*nxt, *(--prev))) return 1;
    se.erase(cur);
}
return 0;
}
```

6.12 Conectividade Dinamica

```
// Offline com Divide and Conquer e
// DSU com rollback
// O(n log^2(n))
typedef pair<int, int> T;
namespace data {
    int n, ans;
    int p[MAX], sz[MAX];
    stack<int> S;
    void build(int n2) {
        n = n2;
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;
        ans = n;
    }
    int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    }
    void add(T x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --;
        if (sz[a] > sz[b]) swap(a, b);
```

```
S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    }
    int query() {
        return ans;
    }
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
   }
};
int ponta[MAX]; // outra ponta do intervalo ou -1 se for
   query
int ans[MAX], n, q;
T qu[MAX];
void solve(int l = 0, int r = q-1) {
    if (1 >= r) {
        ans[1] = data::query(); // agora a estrutura ta certa
        return;
    }
    int m = (1+r)/2, qnt = 1;
    for (int i = m+1; i <= r; i++) if (ponta[i]+1 and
       ponta[i] < 1)</pre>
       data::add(qu[i]), qnt++;
    solve(1, m);
    while (--qnt) data::rollback();
   for (int i = 1; i <= m; i++) if (ponta[i]+1 and ponta[i]
       > r)
        data::add(qu[i]), qnt++;
    solve(m+1, r);
    while (qnt--) data::rollback();
}
```

6.13 Distinct Range Query com Update

```
// build - O(n log(n))
// \text{ query - O(log^2(n))}
// update - O(log^2(n))
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
int v[MAX], n, nxt[MAX], prv[MAX];
map < int , set < int > > ocor;
namespace bit {
    ord_set < ii > bit [MAX];
    void build() {
        for (int i = 1; i <= n; i++)</pre>
            bit[i].insert({nxt[i-1], i-1});
        for (int i = 1; i <= n; i++) {</pre>
            int j = i + (i\&-i);
            if (j <= n) for (auto x : bit[i])</pre>
                bit[j].insert(x);
        }
    int pref(int p, int x) {
        int ret = 0;
        for (; p; p -= p\&-p) ret += bit[p].order_of_key({x,}
            -INF }):
        return ret;
    int query(int 1, int r, int x) {
        return pref(r+1, x) - pref(1, x);
    void update(int p, int x) {
        int p2 = p;
        for (p++; p <= n; p += p&-p) {</pre>
            bit[p].erase({nxt[p2], p2});
             bit[p].insert({x, p2});
        }
    }
```

```
}
void build() {
    for (int i = 0; i < n; i++) nxt[i] = INF;</pre>
    for (int i = 0; i < n; i++) prv[i] = -INF;</pre>
    vector<ii> t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});</pre>
    sort(t.begin(), t.end());
    for (int i = 0; i < n; i++) {</pre>
        if (i and t[i].f == t[i-1].f) prv[t[i].s] = t[i-1].s;
        if (i+1 < n \text{ and } t[i].f == t[i+1].f) nxt[t[i].s] =
            t[i+1].s:
    }
    for (int i = 0; i < n; i++) ocor[v[i]].insert(i);</pre>
    bit::build();
}
void muda(int p, int x) {
    bit::update(p, x);
    nxt[p] = x;
}
int query(int a, int b) {
    return b-a+1 - bit::query(a, b, b+1);
}
void update(int p, int x) { // mudar valor na pos. p para x
    if (prv[p] > -INF) muda(prv[p], nxt[p]);
    if (nxt[p] < INF) prv[nxt[p]] = prv[p];</pre>
    ocor[v[p]].erase(p);
    if (!ocor[x].size()) {
        muda(p, INF);
        prv[p] = -INF;
    } else if (*ocor[x].rbegin() < p) {</pre>
        int i = *ocor[x].rbegin();
        prv[p] = i;
        muda(p, INF);
        muda(i, p);
    } else {
```

```
int i = *ocor[x].lower_bound(p);
if (prv[i] > -INF) {
         muda(prv[i], p);
         prv[p] = prv[i];
     } else prv[p] = -INF;
     prv[i] = p;
     muda(p, i);
}
v[p] = x; ocor[x].insert(p);
}
```

6.14 LIS - Longest Increasing Subsequence

```
// Calcula e retorna uma LIS
// O(n.log(n))
template < typename T > vector <T > lis(vector <T > & v) {
    int n = v.size(), m = -1;
    vector <T> d(n+1, INF);
    vector < int > 1(n);
    d[0] = -INF;
    for(int i=0; i<n; i++) {</pre>
        // Para non-decreasing use upper_bound()
        int t = lower_bound(d.begin(), d.end(), v[i]) -
            d.begin();
        d[t] = v[i], l[i] = t, m = max(m, t);
    }
    int p = n;
    vector <T> ret;
    while (p--) if (l[p] == m) {
        ret.push_back(v[p]);
        m - - ;
    reverse(ret.begin(),ret.end());
    return ret;
}
```

6.15 Algoritmo Hungaro

```
// Resolve o problema de assignment (matriz n x n)
// Colocar os valores da matriz em 'a' (pode < 0)</pre>
// assignment() retorna um par com o valor do
// assignment minimo, e a coluna escolhida por cada linha
// O(n^3)
template < typename T > struct hungarian {
    int n:
    vector < vector < T >> a;
    vector <T> u, v;
    vector < int > p, way;
    T inf;
    hungarian(int n_{-}): n(n_{-}), u(n+1), v(n+1), p(n+1),
        wav(n+1) {
        a = vector < vector < T >> (n, vector < T > (n));
        inf = numeric_limits <T>::max();
    }
    pair <T, vector <int >> assignment() {
        for (int i = 1; i <= n; i++) {
             p[0] = i;
             int j0 = 0;
             vector <T> minv(n+1, inf);
             vector < int > used(n+1, 0);
             do {
                 used[j0] = true;
                 int i0 = p[j0], j1 = -1;
                 T delta = inf;
                 for (int j = 1; j <= n; j++) if (!used[j]) {</pre>
                     T cur = a[i0-1][j-1] - u[i0] - v[j];
                     if (cur < minv[j]) minv[j] = cur, way[j]</pre>
                     if (minv[j] < delta) delta = minv[j], j1</pre>
                         = j;
                 for (int j = 0; j <= n; j++)
                     if (used[j]) u[p[j]] += delta, v[j] -=
                         delta;
                     else minv[j] -= delta;
```

```
j0 = j1;
} while (p[j0] != 0);
do {
    int j1 = way[j0];
    p[j0] = p[j1];
    j0 = j1;
} while (j0);
}
vector<int> ans(n);
for (int j = 1; j <= n; j++) ans[p[j]-1] = j-1;
return make_pair(-v[0], ans);
}
};</pre>
```

6.16 Mo algorithm - distinct values

```
// O(s*n*f + q*(n/s)*f) optimize over s, insert/erase = O(f)
// for s = sqrt(n), O((n+q)*sqrt(n)*f)
const int MAX = 3e4+10;
const int SQ = sqrt(MAX);
int v[MAX];
int ans, freq[MAX];
inline void insert(int p) {
    int o = v[p];
    freq[o]++;
    ans += (freq[o] == 1);
}
inline void erase(int p) {
    int o = v[p];
    ans -= (freq[o] == 1);
    freq[o]--;
}
inline 11 hilbert(int x, int y) {
    static int N = (1 << 20);
    int rx, ry, s;
```

```
11 d = 0:
    for (s = N/2; s>0; s /= 2) {
        rx = (x \& s) > 0;
        ry = (y \& s) > 0;
        d += s * 11(s) * ((3 * rx) ^ ry);
        if (ry == 0) {
            if (rx == 1) {
                x = N-1 - x;
                y = N-1 - y;
            swap(x, y);
        }
    }
    return d;
}
#define HILBERT true
vector<int> MO(vector<ii> &q) {
    ans = 0;
    int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
#if HILBERT
    vector < ll > h(m);
    for (int i = 0; i < m; i++) h[i] = hilbert(q[i].first,</pre>
       q[i].second);
    sort(ord.begin(), ord.end(), [&](int 1, int r) { return
       h[1] < h[r]; \});
#else
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
           q[l].first < q[r].first;
        if ((q[1].first / SQ) % 2) return q[1].second >
           q[r].second;
        return q[1].second < q[r].second;</pre>
    });
#endif
    vector < int > ret(m);
    int 1 = 0, r = -1;
    for (int i : ord) {
        int ql, qr;
```

```
tie(q1, qr) = q[i];
while (r < qr) insert(++r);
while (l > ql) insert(--l);
while (l < ql) erase(l++);
while (r > qr) erase(r--);
ret[i] = ans;
}
return ret;
}
```

6.17 Binomial modular

```
// Computa C(n, k) mod m em O(m + log(m) log(n))
// = O(rapido)
11 divi[MAX];
ll expo(ll a, ll b, ll m) {
    if (!b) return 1;
    ll ans = expo(a*a\%m, b/2, m);
    if (b\%2) ans *= a;
    return ans%m;
}
11 inv(ll a, ll b){
    return 1<a ? b - inv(b%a,a)*b/a : 1;
}
ll gcde(ll a, ll b, ll& x, ll& y) {
    if (!a) {
        x = 0:
        y = 1;
        return b;
    }
    11 X, Y;
    ll g = gcde(b \% a, a, X, Y);
    x = Y - (b / a) * X;
    y = X;
```

```
return g:
}
struct crt {
    ll a, m;
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        11 x, y;
        ll g = gcde(m, C.m, x, y);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 \text{ or } C.a == -1) \text{ return } crt(-1, 0);
        11 lcm = m/g*C.m;
        ll ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
    }
};
pair < 11, 11 > divide_show(11 n, int p, int k, int pak) {
    if (n == 0) return {0, 1};
    11 blocos = n/pak, falta = n%pak;
    ll periodo = divi[pak], resto = divi[falta];
    ll r = expo(periodo, blocos, pak)*resto%pak;
    auto rec = divide_show(n/p, p, k, pak);
    ll v = n/p + rec.f;
    r = r*rec.s \% pak;
    return {y, r};
}
11 solve_pak(ll n, ll x, int p, int k, int pak) {
    divi[0] = 1;
    for (int i = 1; i <= pak; i++) {</pre>
        divi[i] = divi[i-1];
        if (i%p) divi[i] = divi[i] * i % pak;
    }
    auto dn = divide_show(n, p, k, pak), dx = divide_show(x,
       p, k, pak),
                             dnx = divide\_show(n-x, p, k,
                                 pak);
```

```
11 y = dn.f-dx.f-dnx.f, r = (dn.s*inv(dx.s,
       pak)%pak)*inv(dnx.s, pak)%pak;
    return expo(p, y, pak) * r % pak;
}
ll solve(ll n, ll x, int mod) {
    vector<ii> f;
    int mod2 = mod;
    for (int i = 2; i*i <= mod2; i++) if (mod2%i==0) {</pre>
        int c = 0;
        while (mod2\%i==0) mod2 /= i, c++;
        f.pb({i, c});
    }
    if (mod2 > 1) f.pb(\{mod2, 1\});
    crt ans(0, 1);
    for (int i = 0; i < f.size(); i++) {</pre>
        int pak = 1;
        for (int j = 0; j < f[i].s; j++) pak *= f[i].f;
        ans = ans * crt(solve_pak(n, x, f[i].f, f[i].s,
           pak), pak);
    }
    return ans.a;
}
```

6.18 Colocacao de Grafo de Intervalo

```
// Colore os intervalos com o numero minimo
// de cores de tal forma que dois intervalos
// que se interceptam tem cores diferentes
// As cores vao de 1 ate n
//
// O(n log(n))

vector<int> coloring(vector<pair<int, int>>& v) {
   int n = v.size();
   vector<pair<int, pair<int, int>>> ev;
   for (int i = 0; i < n; i++) {
       ev.push_back({v[i].first, {1, i}});
       ev.push_back({v[i].second, {0, i}});
   }</pre>
```

```
sort(ev.begin(), ev.end());
    vector < int > ans(n), avl(n);
   for (int i = 0; i < n; i++) avl.push_back(n-i);</pre>
    for (auto i : ev) {
        if (i.second.first == 1) {
            ans[i.second.second] = avl.back();
            avl.pop_back();
        } else avl.push_back(ans[i.second.second]);
    }
    return ans;
}
6.19 Distinct Range Query - Wavelet
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
int v[MAX], n, nxt[MAX];
namespace wav {
    vector < int > esq[4*(1+MAXN-MINN)];
    void build(int b = 0, int e = n, int p = 1, int l =
       MINN, int r = MAXN) {
        if (1 == r) return;
        int m = (1+r)/2; esq[p].push_back(0);
        for (int i = b; i < e; i++)</pre>
           esq[p].push_back(esq[p].back()+(nxt[i]<=m));</pre>
        int m2 = stable_partition(nxt+b, nxt+e, [=](int
           i) {return i <= m;}) - nxt;
        build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
    }
    int count(int i, int j, int x, int y, int p = 1, int l =
       MINN, int r = MAXN) {
        if (y < 1 or r < x) return 0;
        if (x <= l and r <= y) return j-i;</pre>
        int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
        return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei,
           j-ej, x, y, 2*p+1, m+1, r);
```

```
}

void build() {
    for (int i = 0; i < n; i++) nxt[i] = MAXN+1;
    vector < ii > t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});
    sort(t.begin(), t.end());
    for (int i = 0; i < n-1; i++) if (t[i].f == t[i+1].f)
        nxt[t[i].s] = t[i+1].s;

wav::build();
}

int query(int a, int b) {
    return wav::count(a, b+1, b+1, MAXN+1);
}
</pre>
```

6.20 Area da Uniao de Retangulos

```
// O(n log(n))
const int MAX = 1e5+10;
namespace seg {
    pair < int , 11 > seg [4*MAX];
    ll lazy[4*MAX], *v;
    int n;
    pair<int, ll> merge(pair<int, ll> l, pair<int, ll> r){
        if (1.second == r.second) return {1.first+r.first,
           1.second}:
        else if (l.second < r.second) return l;</pre>
        else return r;
    }
    pair < int, 11 > build(int p=1, int 1=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = {1, v[1]};
        int m = (1+r)/2;
        return seg[p] = merge(build(2*p, 1, m), build(2*p+1,
```

```
m+1, r)):
    }
    void build(int n2, l1* v2) {
        n = n2, v = v2;
        build();
    }
    void prop(int p, int l, int r) {
        seg[p].second += lazy[p];
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazy[p] = 0;
    }
    pair < int, ll > query (int a, int b, int p=1, int l=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) return seg[p];</pre>
        if (b < 1 or r < a) return {0, LINF};</pre>
        int m = (1+r)/2;
        return merge(query(a, b, 2*p, 1, m), query(a, b,
           2*p+1, m+1, r);
    }
    pair<int, 11> update(int a, int b, int x, int p=1, int
       1=0, int r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) {
            lazv[p] += x;
            prop(p, 1, r);
            return seg[p];
        if (b < 1 or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = merge(update(a, b, x, 2*p, 1, m),
                update(a, b, x, 2*p+1, m+1, r));
    }
};
11 seg_vec[MAX];
ll area_sq(vector<pair<ii, ii>> &sq){
    vector<pair<ii, ii>> up;
    for (auto it : sq){
        int x1, y1, x2, y2;
```

```
tie(x1, y1) = it.first;
    tie(x2, y2) = it.second;
    up.push_back({{x1+1, 1}, {y1, y2}});
    up.push_back({{x2+1, -1}, {y1, y2}});
sort(up.begin(), up.end());
memset(seg_vec, 0, sizeof seg_vec);
11 H_MAX = MAX;
seg::build(H_MAX-1, seg_vec);
auto it = up.begin();
11 \text{ ans} = 0;
while (it != up.end()){
    11 L = (*it).first.first;
    while (it != up.end() && (*it).first.first == L){
        int x, inc, y1, y2;
        tie(x, inc) = it->first;
        tie(y1, y2) = it -> second;
        seg::update(y1+1, y2, inc);
        it++;
    }
    if (it == up.end()) break;
    11 R = (*it).first.first;
   11 W = R-L;
    auto jt = seg::query(0, H_MAX-1);
    11 H = H_MAX - 1;
   if (jt.second == 0) H -= jt.first;
    ans += W*H;
}
return ans;
```

6.21 Closest pair of points

}

```
// O(nlogn)
pair < pt, pt > closest_pair_of_points(vector < pt > &v) {
    #warning changes v order
    int n = v.size();
    sort(v.begin(), v.end());
```

```
for (int i = 1; i < n; i++){</pre>
        if (v[i] == v[i-1]){
            return make_pair(v[i-1], v[i]);
    }
    auto cmp_y = [&](const pt &l, const pt &r){
        if (1.y != r.y) return 1.y < r.y;</pre>
        return l.x < r.x;</pre>
    };
    set < pt, decltype(cmp_y) > s(cmp_y);
    int 1 = 0, r = -1;
    11 d2_min = numeric_limits < ll >:: max();
    pt pl, pr;
    const int magic = 5;
    while (r+1 < n) {
        auto it = s.insert(v[++r]).first;
        int cnt = magic/2;
        while (cnt-- && it != s.begin())
             it--;
        cnt = 0;
        while (cnt++ < magic && it != s.end()){</pre>
             if (!((*it) == v[r])){
                 11 d2 = dist2(*it, v[r]);
                 if (d2_min > d2){
                     d2_min = d2;
                     pl = *it;
                     pr = v[r];
             }
             it++;
        while (1 < r \&\& sq(v[1].x-v[r].x) > d2_min)
            s.erase(v[1++]);
    }
    return make_pair(pl, pr);
}
```

6.22 Area Maxima de Histograma

// Assume que todas as barras tem largura 1,

```
// e altura dada no vetor v
// O(n)
typedef long long 11;
11 area(vector<int> v) {
    11 \text{ ret} = 0;
    stack<int> s;
    // valores iniciais pra dar tudo certo
    v.insert(v.begin(), -1);
    v.insert(v.end(), -1);
    s.push(0);
    for(int i = 0; i < (int) v.size(); i++) {</pre>
        while (v[s.top()] > v[i]) {
            ll h = v[s.top()]; s.pop();
            ret = max(ret, h * (i - s.top() - 1));
        }
        s.push(i);
    }
    return ret;
}
```

Conj. Indep. Maximo com Peso em Grafo de Intervalo

```
// Retorna os indices ordenados dos
// intervalos selecionados
// Se tiver empate, retorna o que minimiza o comprimento
   total
// O(n log(n))
vector < int > ind_set(vector < tuple < int, int, int >>& v) {
    vector<tuple<int, int, int>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        w.push_back(tuple(get<0>(v[i]), 0, i));
        w.push_back(tuple(get<1>(v[i]), 1, i));
```

```
}
    sort(w.begin(), w.end());
    vector < int > nxt(v.size());
    vector < pair < ll, int >> dp(v.size());
    int last = -1;
    for (auto [fim, t, i] : w) {
        if (t == 0) {
            nxt[i] = last;
            continue;
        }
        dp[i] = \{0, 0\};
        if (last != -1) dp[i] = max(dp[i], dp[last]);
        pair<ll, int> pega = {get<2>(v[i]), -(get<1>(v[i]) -
           get < 0 > (v[i]) + 1);
        if (nxt[i] != -1) pega.first += dp[nxt[i]].first,
           pega.second += dp[nxt[i]].second;
        if (pega > dp[i]) dp[i] = pega;
        else nxt[i] = last;
        last = i;
    }
    pair<11, int> ans = {0, 0};
    int idx = -1;
    for (int i = 0; i < v.size(); i++) if (dp[i] > ans) ans
       = dp[i], idx = i;
    vector<int> ret;
    while (idx != -1) {
        if (get < 2 > (v[idx]) > 0 and
            (nxt[idx] == -1 or get<1>(v[nxt[idx]]) <</pre>
               get<0>(v[idx]))) ret.push_back(idx);
        idx = nxt[idx];
    sort(ret.begin(), ret.end());
    return ret:
}
6.24 Distinct Range Query - Persistent Segtree
```

```
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
```

```
const int MAX = 3e4+10, LOG = 20;
const int MAXS = 4*MAX+MAX*LOG;
namespace perseg {
    11 seg[MAXS];
    int rt[MAX], L[MAXS], R[MAXS], cnt, t;
    int n, *v;
    ll build(int p, int l, int r) {
        if (1 == r) return seg[p] = 0;
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
        return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
           r);
    }
    void build(int n2) {
        n = n2;
        rt[0] = cnt++;
        build(0, 0, n-1);
    }
    ll query(int a, int b, int p, int l, int r) {
        if (b < l or r < a) return 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    ll query(int a, int b, int tt) {
        return query(a, b, rt[tt], 0, n-1);
   }
    11 update(int a, int x, int lp, int p, int l, int r) {
        if (1 == r) return seg[p] = seg[lp] + x;
        int m = (1+r)/2:
        if (a \le m)
            return seg[p] = update(a, x, L[lp], L[p]=cnt++,
               1, m) + seg[R[p]=R[lp]];
        return seg[p] = seg[L[p]=L[lp]] + update(a, x,
           R[lp], R[p] = cnt++, m+1, r);
    }
    void update(int a, int x, int tt=t) {
```

```
update(a, x, rt[tt], rt[++t]=cnt++, 0, n-1);
   }
};
int qt[MAX];
void build(vector<int>& v) {
    int n = v.size();
    perseg::build(n);
    map<int, int> last;
    int at = 0;
    for (int i = 0; i < n; i++) {
        if (last.count(v[i])) {
            perseg::update(last[v[i]], -1);
            at++:
        perseg::update(i, 1);
        qt[i] = ++at;
        last[v[i]] = i;
   }
}
int query(int 1, int r) {
    return perseg::query(1, r, qt[r]);
}
6.25 Dominator Points
// Se um ponto A tem ambas as coordenadas >= B, dizemos
// que A domina B
// is_dominated(p) fala se existe algum ponto no conjunto
// que domina p
// insert(p) insere p no conjunto
// (se p for dominado por alguem, nao vai inserir)
//
// Complexidades:
// is_dominated - O(log(n))
// insert - O(log(n)) amortizado
```

struct dominator_points {

```
set < pair < int , int >> se;
    dominator_points() {}
    bool is_dominated(pair<int, int> p) {
        auto it = se.lower_bound(p);
        if (it == se.end()) return 0;
        return it->second >= p.second;
    bool insert(pair<int, int> p) {
        if (is_dominated(p)) return 0;
        auto it = se.lower_bound(p);
        while (it != se.begin()) {
            it--;
            if (it->second > p.second) break;
            it = se.erase(it):
        se.insert(p);
        return 1;
};
```

6.26 Mo algorithm - DQUERY path on trees

```
int ans, freq[MAX], freqv[MAX];
void dfs(int i, int p, int &t){
    v[t] = i;
    st[i] = t++;
   for (int j : g[i]){
        if (j == p) continue;
        dfs(j, i, t);
    }
    v[t] = i;
    en[i] = t++;
}
void update(int o){//only change this function
    if (freqv[o] == 1){//insert w[o]
        ans += (freq[w[o]] == 0);
        freq[w[o]]++;
    }
    if (freqv[o] != 1){//erase w[o]
        ans -= (freq[w[o]] == 1);
        freq[w[o]]--;
    }
}
void insert(int p){
    int o = v[p];
    freqv[o]++;
    update(o);
}
void erase(int p){
    int o = v[p];
   freqv[o]--;
    update(o);
}
vector<tuple<int, int, int>> make_queries(vector<ii>> &q_){
    vector<tuple<int, int, int>> q;
    for (auto &it : q_){
        int 1, r;
```

```
tie(1, r) = it:
        if (st[r] < st[l]) swap(l, r);</pre>
        int p = LCA::lca(1, r);
        int init = (p == 1) ? st[1] : en[1];
        q.push_back({init, st[r], st[p]});
    return q;
}
vector<int> MO(vector<ii> &q_){
    LCA::build(0);//any LCA alg works
    int t = 0:
    dfs(0, -1, t);
    auto q = make_queries(q_);
    ans = 0:
    memset(freq, 0, sizeof freq);
    memset(freqv, 0, sizeof freqv);
    int m = q.size();
    vector < int > ord(m), ret(m);
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&](int 1, int r){
        int sl = get < 0 > (q[1])/SQ;
        int sr = get<0>(q[r])/SQ;
        if (sl != sr) return sl < sr;</pre>
        return get<1>(q[1]) < get<1>(q[r]);
    });
    int 1 = 0, r = 0;
    insert(0):
    for (int i : ord){
        int ql, qr, qp;
        tie(ql, qr, qp) = q[i];
        while (r < qr) insert(++r);</pre>
        while (1 > q1) insert(--1);
        while (1 < q1) erase(1++);</pre>
        while (r > qr) erase(r--);
        if (qp < 1 || qp > r){
            //lca out of range
            insert(qp);
```

6.27 Mininum Enclosing Circle

```
// O(n) com alta probabilidade
const double EPS = 1e-12;
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct pt {
    double x, y;
    pt(double x_{-} = 0, double y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    pt operator + (const pt& p) const { return pt(x+p.x,
       (v.q+v); }
   pt operator - (const pt& p) const { return pt(x-p.x,
       { ; (v.q-v
    pt operator * (double c) const { return pt(x*c, y*c); }
   pt operator / (double c) const { return pt(x/c, y/c); }
};
double dot(pt p, pt q) { return p.x*q.x+p.y*q.y; }
double cross(pt p, pt q) { return p.x*q.y-p.y*q.x; }
double dist(pt p, pt q) { return sqrt(dot(p-q, p-q)); }
pt center(pt p, pt q, pt r) {
    pt a = p-r, b = q-r;
   pt c = pt(dot(a, p+r)/2, dot(b, q+r)/2);
   return pt(cross(c, pt(a.y, b.y)), cross(pt(a.x, b.x),
       c)) / cross(a, b);
}
struct circle {
    pt cen;
```

```
double r;
    circle(pt cen_, double r_) : cen(cen_), r(r_) {}
    circle(pt a, pt b, pt c) {
        cen = center(a, b, c);
        r = dist(cen, a);
    bool inside(pt p) { return dist(p, cen) < r+EPS; }</pre>
};
circle minCirc(vector<pt> v) {
    shuffle(v.begin(), v.end(), rng);
    circle ret = circle(pt(0, 0), 0);
    for (int i = 0; i < v.size(); i++) if</pre>
       (!ret.inside(v[i])) {
        ret = circle(v[i], 0);
        for (int j = 0; j < i; j++) if (!ret.inside(v[j])) {</pre>
            ret = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
            for (int k = 0; k < j; k++) if
                (!ret.inside(v[k]))
                ret = circle(v[i], v[j], v[k]);
        }
    return ret;
}
```

6.28 Min fixed range

```
// https://codeforces.com/contest/1195/problem/E
//
// O(n)
// ans[i] = min_{0 <= j < k} v[i+j]

vector<int> min_k(vector<int> &v, int k){
   int n = v.size();
   deque<int> d;
   auto put = [&](int i){
      while (!d.empty() && v[d.back()] > v[i])
            d.pop_back();
      d.push_back(i);
   };
```

```
for (int i = 0; i < k-1; i++)
        put(i);

vector < int > ans(n-k+1);

for (int i = 0; i < n-k+1; i++) {
        put(i+k-1);
        while (i > d.front()) d.pop_front();
        ans[i] = v[d.front()];
}

return ans;
}
```

6.29 Conectividade Dinamica 2

```
// Offline com link-cut trees
// O(n log(n))
namespace lct {
    struct node {
        int p, ch[2];
        int val, sub;
        bool rev;
        node() {}
        node(int v) : p(-1), val(v), sub(v), rev(0) { ch[0]}
           = ch[1] = -1;
    };
    node t[2*MAX]; // MAXN + MAXQ
    map<ii, int> aresta;
    int sz;
    void prop(int x) {
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        t[x].rev = 0;
    }
    void update(int x) {
        t[x].sub = t[x].val;
```

```
for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {
        prop(t[x].ch[i]);
       t[x].sub = min(t[x].sub, t[t[x].ch[i]].sub);
    }
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
   t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
   t[x].p = pp, t[p].p = x;
   update(p), update(x);
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
       if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x);
    }
    return prop(x), x;
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
       t[v].p)
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
void make_tree(int v, int w=INF) { t[v] = node(w); }
bool conn(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
}
void rootify(int v) {
```

```
access(v):
        t[v].rev ^= 1;
   }
    int query(int v, int w) {
        rootify(w), access(v);
        return t[v].sub;
   }
    void link_(int v, int w) {
        rootify(w);
        t[w].p = v;
   }
    void link(int v, int w, int x) { // v--w com peso x
        int id = MAX + sz++;
        aresta[make_pair(v, w)] = id;
        make_tree(id, x);
        link_(v, id), link_(id, w);
   }
    void cut_(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
   }
    void cut(int v, int w) {
        int id = aresta[make_pair(v, w)];
        cut_(v, id), cut_(id, w);
   }
void dyn_conn() {
    int n, q; cin >> n >> q;
    vector < int > p(2*q, -1); // outra ponta do intervalo
    for (int i = 0; i < n; i++) lct::make_tree(i);</pre>
    vector<ii> qu(q);
   map<ii, int> m;
    for (int i = 0; i < q; i++) {</pre>
        char c; cin >> c;
        if (c == '?') continue;
        int a, b; cin >> a >> b; a--, b--;
        if (a > b) swap(a, b);
        qu[i] = {a, b};
        if (c == '+') {
            p[i] = i+q, p[i+q] = i;
            m[make_pair(a, b)] = i;
```

}

```
} else {
        int j = m[make_pair(a, b)];
        p[i] = j, p[j] = i;
    }
}
int ans = n;
for (int i = 0; i < q; i++) {</pre>
    if (p[i] == -1) {
        cout << ans << endl; // numero de comp conexos</pre>
        continue;
    }
    int a = qu[i].f, b = qu[i].s;
    if (p[i] > i) { // +
        if (lct::conn(a, b)) {
            int mi = lct::query(a, b);
            if (p[i] < mi) {</pre>
                p[p[i]] = p[i];
                 continue;
            lct::cut(qu[p[mi]].f, qu[p[mi]].s), ans++;
            p[mi] = mi;
        lct::link(a, b, p[i]), ans--;
    } else if (p[i] != i) lct::cut(a, b), ans++; // -
```

6.30 Points Inside Polygon

}

```
// Encontra quais pontos estao
// dentro de um poligono simples nao convexo
// o poligono tem lados paralelos aos eixos
// Pontos na borda estao dentro
// Pontos podem estar em ordem horaria ou anti-horaria
//
// O(n log(n))
#define f first
#define s second
#define pb push_back
```

```
typedef long long 11;
typedef pair<int, int> ii;
const 11 N = 1e9+10;
const int MAX = 1e5+10;
int ta[MAX];
namespace seg {
    unordered_map<11, int> seg;
    int query(int a, int b, ll p, ll l, ll r) {
        if (b < l or r < a) return 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        11 m = (1+r)/2;
        return query(a, b, 2*p, 1, m)+query(a, b, 2*p+1,
           m+1, r);
    }
    int query(ll p) {
        return query (0, p+N, 1, 0, 2*N);
    }
    int update(ll i, int x, ll p, ll l, ll r) {
        if (i < l or r < i) return seg[p];</pre>
        if (1 == r) return seg[p] += x;
        11 m = (1+r)/2;
        return seg[p] = update(i, x, 2*p, 1, m)+update(i, x,
           2*p+1, m+1, r);
    }
    void update(ll a, ll b, int x) {
        if (a > b) return;
        update(a+N, x, 1, 0, 2*N);
        update(b+N+1, -x, 1, 0, 2*N);
   }
};
void pointsInsidePol(vector<ii>& pol, vector<ii>& v) {
    vector<pair<int, pair<int, ii> > ev; // {x, {tipo, {a,
       b}}}
   // -1: poe ; id: query ; 1e9: tira
   for (int i = 0; i < v.size(); i++)</pre>
        ev.pb({v[i].f, {i, {v[i].s, v[i].s}}});
   for (int i = 0; i < pol.size(); i++) {</pre>
        ii u = pol[i], v = pol[(i+1)\%pol.size()];
```

```
if (u.s == v.s) {
        ev.pb(\{min(u.f, v.f), \{-1, \{u.s, u.s\}\}\});
        ev.pb({max(u.f, v.f), {N, {u.s, u.s}}});
        continue;
    }
    int t = N;
    if (u.s > v.s) t = -1;
    ev.pb({u.f, {t, {min(u.s, v.s)+1, max(u.s, v.s)}}});
}
sort(ev.begin(), ev.end());
for (int i = 0; i < v.size(); i++) ta[i] = 0;</pre>
for (auto i : ev) {
    pair<int, ii> j = i.s;
    if (j.f == -1) seg::update(j.s.f, j.s.s, 1);
    else if (j.f == N) seg::update(j.s.f, j.s.s, -1);
    else if (seg::query(j.s.f)) ta[j.f] = 1; // ta dentro
}
```

7 Strings

}

7.1 Algoritmo Z

```
// Complexidades:
// z - O(|s|)
// match - O(|s| + |p|)

vector<int> get_z(string s) {
   int n = s.size();
   vector<int> z(n, 0);

   // intervalo da ultima substring valida
   int l = 0, r = 0;
   for (int i = 1; i < n; i++) {
        // estimativa pra z[i]
        if (i <= r) z[i] = min(r - i + 1, z[i - 1]);
        // calcula valor correto</pre>
```

```
while (i + z[i] < n and s[z[i]] == s[i + z[i]])
        z[i]++;
        // atualiza [l, r]
        if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
}

return z;
}

// quantas vezes p aparece em s
int match(string s, string p) {
    int n = s.size(), m = p.size();
    vector<int> z = get_z(p + s);

int ret = 0;
    for (int i = m; i < n + m; i++)
        if (z[i] >= m) ret++;

return ret;
}
```

7.2 String hashing

```
// Para evitar colisao: testar mais de um
// mod; so comparar strings do mesmo tamanho
// ex : str_hash<1e9+7> h(s);
// ll val = h(10, 20);
//
// Complexidades:
// build - O(|s|)
// operator() - O(1)

mt19937 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());
int uniform(int l, int r) {
    uniform_int_distribution<int> uid(l, r);
    return uid(rng);
}
```

```
template < int MOD > struct str_hash {
    static int P;
    int n;
    string s;
    vector<ll> h, power;
    str_hash(string s_) : n(s_.size()), s(s_), h(n),
       power(n) {
        power[0] = 1;
        for (int i = 1; i < n; i++) power[i] = power[i-1]*P</pre>
           % MOD;
        h[0] = s[0];
        for (int i = 1; i < n; i++) h[i] = (h[i-1]*P + s[i])
           % MOD:
    }
    11 operator()(int i, int j) { // retorna hash da
       substring s[i..j]
        if (!i) return h[j];
        ll ret = h[j] - h[i-1]*power[j-i+1] % MOD;
        return ret < 0 ? ret+MOD : ret;</pre>
    }
};
template < int MOD > int str_hash < MOD > :: P = uniform(27, MOD - 1);
// primeiro parametro deve ser maior que o tamanho do
   alfabeto
```

7.3 Automato de Sufixo

```
// Automato que aceita os sufixos de uma string
// Todas as funcoes sao lineares

namespace sam {
   int cur, sz, len[2*MAX], link[2*MAX], acc[2*MAX];
   int nxt[2*MAX][26];

  void add(int c) {
     int at = cur;
     len[sz] = len[cur]+1, cur = sz++;
     while (at != -1 and !nxt[at][c]) nxt[at][c] = cur,
        at = link[at];
   if (at == -1) { link[cur] = 0; return; }
```

```
int q = nxt[at][c];
    if (len[q] == len[at]+1) { link[cur] = q; return; }
    int qq = sz++;
    len[qq] = len[at]+1, link[qq] = link[q];
    for (int i = 0; i < 26; i++) nxt[qq][i] = nxt[q][i];</pre>
    while (at != -1 and nxt[at][c] == q) nxt[at][c] =
       qq, at = link[at];
    link[cur] = link[q] = qq;
}
void build(string& s) {
    cur = 0, sz = 0, len[0] = 0, link[0] = -1, sz++;
    for (auto i : s) add(i-'a');
    int at = cur:
    while (at) acc[at] = 1, at = link[at];
}
// coisas que da pra fazer:
11 distinct_substrings() {
    11 \text{ ans} = 0;
    for (int i = 1; i < sz; i++) ans += len[i] -
       len[link[i]];
    return ans;
}
string longest_common_substring(string& S, string& T) {
    build(S);
    int at = 0, 1 = 0, ans = 0, pos = -1;
    for (int i = 0; i < T.size(); i++) {</pre>
        while (at and !nxt[at][T[i]-'a']) at = link[at],
           1 = len[at];
        if (nxt[at][T[i]-'a']) at = nxt[at][T[i]-'a'],
           1++;
        else at = 0, 1 = 0;
        if (1 > ans) ans = 1, pos = i;
    return T.substr(pos-ans+1, ans);
}
11 dp[2*MAX];
11 paths(int i) {
    auto& x = dp[i];
    if (x) return x;
    x = 1;
    for (int j = 0; j < 26; j++) if (nxt[i][j]) x +=</pre>
```

```
paths(nxt[i][j]);
    return x;
}

void kth_substring(int k, int at=0) { // k=1 : menor
    substring lexicog.
    for (int i = 0; i < 26; i++) if (k and nxt[at][i]) {
        if (paths(nxt[at][i]) >= k) {
            cout << char('a'+i);
            kth_substring(k-1, nxt[at][i]);
            return;
        }
        k -= paths(nxt[at][i]);
    }
};</pre>
```

7.4 Suffix Array - O(n)

```
// Rapidao
// Computa o suffix array em 'sa', o rank em 'rnk'
// e o lcp em 'lcp'
// query(i, j) retorna o LCP entre s[i..n-1] e s[j..n-1]
// Complexidades (assumindo rmg <0(n), 0(1)>):
// O(n) para construir
// query - 0(1)
struct suffix_array {
    string s;
    int n;
    vector < int > sa, cnt, rnk, lcp;
    rmq<int> RMQ;
    bool cmp(int a1, int b1, int a2, int b2, int a3=0, int
       b3=0) {
        return a1 != b1 ? a1 < b1 : (a2 != b2 ? a2 < b2 : a3
           < b3);
    template < typename T> void radix(int* fr, int* to, T* r,
       int N, int k) {
```

```
cnt = vector < int > (k+1, 0):
    for (int i = 0; i < N; i++) cnt[r[fr[i]]]++;</pre>
    for (int i = 1; i <= k; i++) cnt[i] += cnt[i-1];</pre>
    for (int i = N-1; i+1; i--) to[--cnt[r[fr[i]]]] =
       fr[i];
}
void rec(vector<int>& v, int k) {
    auto &tmp = rnk, &m0 = lcp;
    int N = v.size()-3, sz = (N+2)/3, sz2 = sz+N/3;
    vector < int > R(sz2+3);
    for (int i = 1, j = 0; j < sz2; i += i%3) R[j++] = i;
    radix(&R[0], &tmp[0], &v[0]+2, sz2, k);
    radix(&tmp[0], &R[0], &v[0]+1, sz2, k);
    radix(&R[0], &tmp[0], &v[0]+0, sz2, k);
    int dif = 0;
    int 10 = -1, 11 = -1, 12 = -1;
    for (int i = 0; i < sz2; i++) {</pre>
        if (v[tmp[i]] != 10 or v[tmp[i]+1] != 11 or
            v[tmp[i]+2] != 12)
            10 = v[tmp[i]], 11 = v[tmp[i]+1], 12 =
                v[tmp[i]+2], dif++;
        if (tmp[i]%3 == 1) R[tmp[i]/3] = dif;
        else R[tmp[i]/3+sz] = dif;
    }
    if (dif < sz2) {</pre>
        rec(R, dif);
        for (int i = 0; i < sz2; i++) R[sa[i]] = i+1;</pre>
    } else for (int i = 0; i < sz2; i++) sa[R[i]-1] = i;</pre>
    for (int i = 0, j = 0; j < sz2; i++) if (sa[i] < sz)
       tmp[j++] = 3*sa[i];
    radix(&tmp[0], &m0[0], &v[0], sz, k);
    for (int i = 0; i < sz2; i++)</pre>
        sa[i] = sa[i] < sz ? 3*sa[i]+1 : 3*(sa[i]-sz)+2;
    int at = sz2+sz-1, p = sz-1, p2 = sz2-1;
    while (p \ge 0 \text{ and } p2 \ge 0) {
        if ((sa[p2]%3==1 and cmp(v[m0[p]], v[sa[p2]],
            R[m0[p]/3],
```

```
R[sa[p2]/3+sz])) or (sa[p2]%3==2 and
                cmp(v[m0[p]], v[sa[p2]],
            v[m0[p]+1], v[sa[p2]+1], R[m0[p]/3+sz],
                R[sa[p2]/3+1]))
            sa[at--] = sa[p2--];
        else sa[at--] = m0[p--];
    }
    while (p >= 0) sa[at--] = m0[p--];
    if (N\%3==1) for (int i = 0; i < N; i++) sa[i] =
       sa[i+1];
}
suffix_array(const string& s_) : s(s_), n(s.size()),
   sa(n+3),
        cnt(n+1), rnk(n), lcp(n-1) {
    vector < int > v(n+3);
    for (int i = 0; i < n; i++) v[i] = i;
    radix(&v[0], &rnk[0], &s[0], n, 256);
    int dif = 1;
    for (int i = 0; i < n; i++)</pre>
        v[rnk[i]] = dif += (i and s[rnk[i]] !=
           s[rnk[i-1]]);
    if (n \ge 2) rec(v, dif);
    sa.resize(n);
    for (int i = 0; i < n; i++) rnk[sa[i]] = i;</pre>
    for (int i = 0, k = 0; i < n; i++, k -= !!k) {
        if (rnk[i] == n-1) {
            k = 0;
            continue;
        }
        int j = sa[rnk[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k])
           k++:
        lcp[rnk[i]] = k;
    RMQ = rmq < int > (lcp);
}
int query(int i, int j) {
    if (i == j) return n-i;
    i = rnk[i], j = rnk[j];
```

```
return RMQ.query(min(i, j), max(i, j)-1);
}
pair < int, int > next(int L, int R, int i, char c) {
    int l = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
        if (i+sa[m] >= n or s[i+sa[m]] < c) l = m+1;</pre>
        else r = m;
    }
    if (1 == R+1 \text{ or } s[i+sa[1]] > c) \text{ return } \{-1, -1\};
    L = 1;
    1 = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
        if (i+sa[m] >= n or s[i+sa[m]] <= c) l = m+1;</pre>
        else r = m;
    }
    R = 1-1;
    return {L, R};
}
// quantas vezes 't' ocorre em 's' - O(|t| log n)
int count_substr(string& t) {
    int L = 0, R = n-1;
    for (int i = 0; i < t.size(); i++) {</pre>
        tie(L, R) = next(L, R, i, t[i]);
        if (L == -1) return 0;
    return R-L+1;
}
// exemplo de f que resolve o problema
//
   https://codeforces.com/edu/course/2/lesson/2/5/practice/com
ll f(ll k) { return k*(k+1)/2; }
11 dfs(int L, int R, int p) { // dfs na suffix tree
   chamado em pre ordem
    int ext;
    if (L == R) ext = n - sa[L];
    else ext = RMQ.query(L, R-1);
```

```
// Tem 'ext - p' substrings diferentes que ocorrem
           'R-L+1' vezes
        // O LCP de todas elas eh 'ext'
        ll ans = (ext-p)*f(R-L+1);
        // L eh terminal, e folha sse L == R
        if (sa[L]+ext == n) L++;
        /* se for um SA de varias strings separadas como
           s#t$u&, usar no lugar do if de cima
           (separadores < 'a', diferentes e inclusive no
        while (L \leq R && (sa[L]+ext == n || s[sa[L]+ext] \leq
           'a')) {
           L++:
        } */
        while (L <= R) {
            auto [1, r] = next(L, R, ext, s[sa[L]+ext]);
            ans += dfs(1, r, ext);
           L = r+1;
        }
        return ans;
    }
    // sum over substrings: computa, para toda substring t
       distinta de s,
    // \sum f(# ocorrencias de t em s) - 0 (n log n)
    11 sos() { return dfs(0, n-1, 0); }
}:
```

7.5 Manacher

```
// manacher recebe um vetor de T e retorna o vetor com
   tamanho dos palindromos
// ret[2*i] = tamanho do maior palindromo centrado em i
// ret[2*i+1] = tamanho maior palindromo centrado em i e i+1
//
// Complexidades:
// manacher - O(n)
```

```
// palindrome - <0(n), 0(1)>
// pal_end - O(n)
template < typename T> vector < int > manacher(const vector < T > &
   s) {
    int 1 = 0, r = -1, n = s.size();
    vector < int > d1(n), d2(n);
    for (int i = 0; i < n; i++) {</pre>
        int k = i > r ? 1 : min(d1[l+r-i], r-i);
        while (i+k < n \&\& i-k >= 0 \&\& s[i+k] == s[i-k]) k++;
        d1[i] = k--;
        if (i+k > r) l = i-k, r = i+k;
    }
    1 = 0, r = -1;
    for (int i = 0; i < n; i++) {
        int k = i > r ? 0 : min(d2[1+r-i+1], r-i+1); k++;
        while (i+k \le n \&\& i-k \ge 0 \&\& s[i+k-1] == s[i-k])
           k++;
        d2[i] = --k;
        if (i+k-1 > r) l = i-k, r = i+k-1;
    }
    vector \langle int \rangle ret (2*n-1);
    for (int i = 0; i < n; i++) ret[2*i] = 2*d1[i]-1;</pre>
    for (int i = 0; i < n-1; i++) ret[2*i+1] = 2*d2[i+1];
    return ret;
}
// verifica se a string s[i..j] eh palindromo
template < typename T > struct palindrome {
    vector < int > man;
    palindrome(const vector < T > & s) : man(manacher(s)) {}
    bool query(int i, int j) {
        return man[i+j] >= j-i+1;
    }
};
// tamanho do maior palindromo que termina em cada posicao
template < typename T > vector < int > pal_end(const vector < T > & s)
    vector<int> ret(s.size());
    palindrome <T> p(s);
```

```
ret[0] = 1;
for (int i = 1; i < s.size(); i++) {
    ret[i] = min(ret[i-1]+2, i+1);
    while (!p.query(i-ret[i]+1, i)) ret[i]--;
}
return ret;
}</pre>
```

7.6 eertree

```
// Constroi a eertree, caractere a caractere
// Inicializar com a quantidade de caracteres maxima
// size() retorna a quantidade de substrings pal. distintas
// depois de chamar propagate(), cada substring palindromica
// ocorre qt[i] vezes. O propagate() retorna o numero de
// substrings pal. com repeticao
//
// O(n) amortizado, considerando alfabeto O(1)
struct eertree {
    vector < vector < int >> t;
    int n, last, sz;
    vector<int> s, len, link, qt;
    eertree(int N) {
        t = vector(N+2, vector(26, int()));
        s = len = link = qt = vector < int > (N+2);
        s[0] = -1;
        link[0] = 1, len[0] = 0, link[1] = 1, len[1] = -1;
        sz = 2, last = 0, n = 1;
    }
    void add(char c) {
        s[n++] = c -= 'a';
        while (s[n-len[last]-2] != c) last = link[last];
        if (!t[last][c]) {
            int prev = link[last];
            while (s[n-len[prev]-2] != c) prev = link[prev];
            link[sz] = t[prev][c];
            len[sz] = len[last]+2;
```

```
t[last][c] = sz++;
}
    qt[last = t[last][c]]++;
}
int size() { return sz-2; }
ll propagate() {
    ll ret = 0;
    for (int i = n; i > 1; i--) {
        qt[link[i]] += qt[i];
        ret += qt[i];
    }
    return ret;
}
};
```

7.7 String hashing - modulo 2⁶¹ - 1

```
// Usa modulo 2^61 - 1 \sim 2e18
// Eh quase duas vezes mais lento
// Complexidades:
// build - O(|s|)
// operator() - 0(1)
const 11 MOD = (111<<<61) -1;</pre>
ll mulmod(ll a, ll b) {
    const static ll LOWER = (111<<30)-1, GET31 = (111<<31)-1;</pre>
    11 \ 11 = a\&LOWER, h1 = a>>30, 12 = b\&LOWER, h2 = b>>30;
    11 m = 11*h2 + 12*h1, h = h1*h2;
    ll ans = 11*12 + (h>>1) + ((h&1)<<60) + (m>>31) +
       ((m\&GET31) << 30) + 1;
    ans = (ans\&MOD) + (ans >> 61);
    ans = (ans\&MOD) + (ans>>61);
    return ans-1;
}
mt19937_64
   rng(chrono::steady_clock::now().time_since_epoch().count());
```

```
ll uniform(ll l, ll r) {
    uniform_int_distribution < ll> uid(l, r);
    return uid(rng);
}
struct str_hash {
    static 11 P;
    int n;
    string s;
    vector<ll> h, power;
    str_hash(string s_) : n(s_.size()), s(s_), h(n),
       power(n) {
        power[0] = 1;
        for (int i = 1; i < n; i++) power[i] =</pre>
           mulmod(power[i-1], P);
        h[0] = s[0];
        for (int i = 1; i < n; i++) h[i] = (mulmod(h[i-1],
           P) + s[i]) % MOD;
    11 operator()(int i, int j) { // retorna hash da
       substring s[i..j]
       if (!i) return h[j];
        ll ret = h[j] - mulmod(h[i-1], power[j-i+1]);
        return ret < 0 ? ret+MOD : ret;</pre>
    }
};
11 str_hash::P = uniform(27, MOD-1);
// primeiro parametro deve ser maior que o tamanho do
   alfabeto
     Max Suffix
```

```
// computa o indice do maior sufixo da
// string, lexicograficamente
//
// O(n)
int max_sulf(string s) {
    s += '#';
    int ans = max_element(s.begin(), s.end()) - s.begin();
```

```
for (int i = ans+1, j = 0; i < s.size(); i++) {
        if (ans+j < i and s[i] == s[ans+j]) j++;
        else {
            if (ans+j < i and s[i] > s[ans+j]) ans = i-j;
            j = 0;
        }
    }
    return ans;
}
7.9 KMP
// mathcing(s, t) retorna os indices das ocorrencias
// de s em t
// autKMP constroi o automato do KMP
//
// Complexidades:
// pi - O(n)
// match - 0(n + m)
// construir o automato - O(|sigma|*n)
// n = |padrao| e m = |texto|
vector<int> pi(string s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {</pre>
        while (j \text{ and } s[j] != s[i]) j = p[j-1];
        if (s[j] == s[i]) j++;
        p[i] = j;
    }
    return p;
}
vector<int> matching(string& t, string& s) {
    vector < int > p = pi(s+'$'), match;
    for (int i = 0, j = 0; i < t.size(); i++) {
        while (j \text{ and } s[j] != t[i]) j = p[j-1];
        if (s[j] == t[i]) j++;
        if (j == s.size()) match.push_back(i-j+1);
    }
    return match;
```

7.10 Suffix Array - $O(n \log n)$

```
// kasai recebe o suffix array e calcula lcp[i],
// o lcp entre s[sa[i],...,n-1] e s[sa[i+1],..,n-1]
// Complexidades:
// suffix_array - O(n log(n))
// kasai - O(n)
vector<int> suffix_array(string s) {
    s += "$";
    int n = s.size(), N = max(n, 260);
    vector < int > sa(n), ra(n);
    for(int i = 0; i < n; i++) sa[i] = i, ra[i] = s[i];</pre>
    for(int k = 0; k < n; k ? k *= 2 : k++) {
        vector < int > nsa(sa), nra(n), cnt(N);
        for(int i = 0; i < n; i++) nsa[i] = (nsa[i]-k+n)%n,
            cnt[ra[i]]++;
        for(int i = 1; i < N; i++) cnt[i] += cnt[i-1];</pre>
        for(int i = n-1; i+1; i--) sa[--cnt[ra[nsa[i]]]] =
           nsa[i];
```

```
for(int i = 1, r = 0; i < n; i++) nra[sa[i]] = r +=</pre>
           ra[sa[i]] !=
            ra[sa[i-1]] or ra[(sa[i]+k)%n] !=
                ra[(sa[i-1]+k)%n];
        ra = nra;
        if (ra[sa[n-1]] == n-1) break;
    return vector < int > (sa.begin() +1, sa.end());
}
vector<int> kasai(string s, vector<int> sa) {
    int n = s.size(), k = 0;
    vector < int > ra(n), lcp(n);
    for (int i = 0; i < n; i++) ra[sa[i]] = i;
    for (int i = 0; i < n; i++, k -= !!k) {
        if (ra[i] == n-1) { k = 0; continue; }
        int j = sa[ra[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k]) k++;
        lcp[ra[i]] = k;
    }
    return lcp;
7.11 Ahocorasick
// Complexidades:
// all linear O(n*sigma)
// example of query returns number of nonoverlapping matches
namespace aho {
    const vector<pair<char, char>> vt = {
        {'a', 'z'},
        {'A', 'Z'},
        {'0', '9'}
    };//example of alphabet
```

void fix(char &c){
 int acc = 0;

```
for (auto p : vt){
            if (p.first <= c && c <= p.second){</pre>
                c = c - p.first + acc;
                return;
            }
            acc += p.second - p.first + 1;
        }
    }
    void unfix(char &c){
        int acc = 0;
        for (auto p : vt){
            int next_acc = acc + p.second - p.first;
            if (acc <= c && c <= next_acc){</pre>
                c = p.first + c - acc;
                return;
            }
            acc = next_acc + 1;
        }
    void fix(string &s){ for (char &c : s) fix(c); }
    void unfix(string &s){ for (char &c : s) unfix(c); }
    const int SIGMA = 70; //fix(vt.back().second) + 1;
    const int MAXN = 1e5+10;
    int to[MAXN][SIGMA];
    int link[MAXN], end[MAXN];
    int idx;
    void init(){
#warning dont forget to init before inserting strings
        memset(to, 0, sizeof to);
        idx = 1;
    void insert(string &s){
        fix(s):
        int v = 0:
        for (char c : s){
            int &w = to[v][c];
            if (!w) w = idx++;
            v = w;
        }
```

```
end[v] = 1:
    }
    void build(){
#warning dont forget to build after inserting strings
         queue < int > q;
         q.push(0);
         while (!q.empty()){
             int cur = q.front(); q.pop();
             int l = link[cur];
             end[cur] |= end[1];
             for (int i = 0; i < SIGMA; i++){</pre>
                 int &w = to[cur][i];
                 if (w){
                     link[w] = ((cur != 0) ? to[1][i] : 0);
                     q.push(w);
                 else w = to[l][i];
             }
         }
    }
    int query(string &s){
        fix(s);
        int v = 0;
         int counter = 0;
         for (char c : s){
             v = to[v][c];
             if (end[v]) {
                 counter++;
                 v = 0; //remove if matches could overlap
             }
         }
         return counter;
    }
}
7.12 Trie
// trie T() constroi uma trie para o alfabeto das letras
    minusculas
// trie T(tamanho do alfabeto, menor caracter) tambem pode
```

```
ser usado
//
// T.insert(s) - 0(|s|*sigma)
// T.erase(s) - O(|s|)
// T.find(s) retorna a posicao, O se nao achar - O(|s|)
// T.count_pref(s) numero de strings que possuem s como
   prefixo - O(|s|)
//
// Nao funciona para string vazia
struct trie {
    vector < vector < int >> to;
    vector<int> end, pref;
    int sigma; char norm;
    trie(int sigma_=26, char norm_='a') : sigma(sigma_),
       norm(norm_) {
        to = {vector < int > (sigma)};
        end = \{0\}, pref = \{0\};
    void insert(string s) {
        int x = 0;
        for(auto c : s) {
            int &nxt = to[x][c-norm];
            if(!nxt) {
                nxt = to.size();
                to.push_back(vector<int>(sigma));
                end.push_back(0), pref.push_back(0);
            x = nxt, pref[x]++;
        end[x]++;
    void erase(string s) {
        int x = 0;
        for(char c : s) {
            int &nxt = to[x][c-norm];
            x = nxt, pref[x] --;
            if(!pref[x]) nxt = 0;
        }
        end[x]--;
    }
    int find(string s) {
```

```
int x = 0;
    for(auto c : s) {
        x = to[x][c-norm];
        if(!x) return 0;
    }
    return x;
}
int count_pref(string s) {
    return pref[find(s)];
}
};
```

8 Extra

8.1 makefile

```
CXX = g++
CXXFLAGS = -fsanitize=address,undefined -01
   -fno-omit-frame-pointer -g -Wall -Wshadow -std=c++17
   -Wno-unused-result -Wno-sign-compare -Wno-char-subscripts
#-fuse-ld=gold
```

8.2 debug.cpp

```
void debug_out(string s, int line) { cerr << endl; }
template < typename H, typename... T>
void debug_out(string s, int line, H h, T... t) {
   if (s[0] != ',') cerr << "Line(" << line << ") ";
   do { cerr << s[0]; s = s.substr(1);
   } while (s.size() and s[0] != ',');
   cerr << " = " << h;
   debug_out(s, line, t...);
}
#ifdef DEBUG
#define debug(...) debug_out(#__VA_ARGS__, __LINE__,
   __VA_ARGS__)
#else
#define debug(...)
#endif</pre>
```

8.3 template.cpp

```
#include <bits/stdc++.h>
using namespace std;

#define _ ios_base::sync_with_stdio(0);cin.tie(0);
#define endl '\n'
#define f first
```

```
#define s second
#define pb push_back

typedef long long ll;
typedef pair < int, int > ii;

const int INF = 0x3f3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f3f3f1l;

int main() { _
    exit(0);
}
```

8.4 fastIO.cpp

```
int read_int() {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (1) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true;
    else result = ch-'0';
    while (1) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result *10 + (ch - '0');
    if (minus) return -result;
    else return result;
}
```

8.5 vimrc

```
set ts=4 si ai sw=4 number mouse=a syntax on
```

8.6 stress.sh

```
make a a2 gen || exit 1
for ((i = 1; ; i++)) do
    ./gen $i > in
    ./a < in > out
    ./a2 < in > out2
    if (! cmp -s out out2) then
        echo "--> entrada:"
        cat in
        echo "--> saida1:"
        cat out
        echo "--> saida2:"
        cat out2
        break;
    fi
    echo $i
done
```

8.7 rand.cpp

```
mt19937 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());
int uniform(int 1, int r){
    uniform_int_distribution<int> uid(1, r);
    return uid(rng);
}
```