PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-065172 (43)Date of publication of application: 05.03.1999

(51)Int.Cl. 6036 9/09 6036 9/08 G03G 9/087

(21)Application number: 09-224798 (71)Applicant: MINOLTA CO LTD

(22)Date of filing: 21 08 1997 (72)Inventor · YASUNO MASAHIRO

KUROSE KATSUNOBU FUKUDA HIROYUKI

(54) YELLOW DEVELOPER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a yellow developer furnished with excellent transfer property, with high translucency and color reproducibility for an OHP.

SOLUTION: In a vellow developer used for forming a full color image to reproduce a multicolor image, this yellow developer is formed by making a color resin solution consisting of a compound classified to at least, a binder resin and pigment yellow 180 and a non-water soluble organic solution disperse and emulsify in a water dispersion liquid and then, removing the non-water soluble organic solution.

LEGAL STATUS

[Date of request for examination] 28 05 2002

[Date of sending the examiner's decision of rejection] Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3531433 [Date of registration] 12 03 2004

[Number of appeal against examiner's decision of

Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

http://www.10.indl.ncini.co.in/DA1/recult/detail/main/wAAAzaaWaDA411065172D1.htm

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-65172

[43]公開日 平成11年(1999)3月5日	
-------------------------	--

(21)出願番号	4	膜平9-224798	(71)出職人	0000060	79		
			客查請求	未請求	請求項の数5	OL	(全 13 頁)
					381		
	9/087				3 2 1		
	9/08						
G 0 3 G	9/09		G 0 3 G	9/08	361		
(51) Int.Cl. ⁶		識別記号	FΙ				

(21)出願番号	特膜平9-224798	(71)出職人	000006079
			ミノルタ株式会社
(22) 出顧日	平成9年(1997)8月21日	Α	大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル
		(72)発明者	安野 政裕
			大阪市中央区安土町二丁目3番13号 大阪
			国際ピル ミノルタ株式会社内
		(72)発明者	黒嶽 克宜
			大阪市中央区安土町二丁目3番13号 大阪
			国際ピル ミノルタ株式会社内
		(72) 発明者	福田 洋幸
			大阪市中央区安土町二丁目3番13号 大阪
			国際ビル ミノルタ株式会社内

(54) 【発明の名称】 イエロー現像剤

(57)【要約】

【課題】 OHPの透光性および色再現性に優れ、優れ た転写性を有するイエロー現像剤を提供すること。 【解決手段】 多色画像を再現するフルカラー画像形成 に使用されるイエロー現像剤において、このイエロー現 像剤が、少なくともバインダー樹脂、ピグメントイエロ -180に分類される化合物および非水溶性有機溶剤か らなる着色樹脂溶液を、水性分散液中に乳化分散させた 後、非水溶性有機溶剤を除去することにより形成された トナー粒子を含有するイエロー現像剤。

【特許請求の範囲】

【請求項1】 多色画像を再現するフルカラー画像形成 に使用されるイエロー現像剤において、このイエロー現 像剤が、少なくともバインダー樹脂、ピグメントイエロ -180に分類される化合物および非水溶性有機溶剤か らなる着色樹脂溶液を、水性分散液中に乳化分散させた 後、非水溶性有機溶剤を除去することにより形成された トナー粒子を含有することを特徴とするイエロー現像 剎。

1

0~70℃、軟化点が95~120℃、数平均分子量が 2500~6000および重量平均分子量/数平均分子 量が2~8である請求項1記載のイエロー現像剤。

【請求項3】 前記バインダー樹脂の酸価が1~30K OHmg/gである請求項1または2記載のイエロー現

【請求項4】 前記トナー粒子の体積平均粒径が2~9 иm、トナー粒子の粒径分布において体積平均粒径の2 倍以上の粒径を有するトナー粒子の含有量が2重量%以 有量が5個数%以下である請求項1~3記載のイエロー 現像剤。

【請求項5】 前記トナー粒子の円形度が0.94~ 1. 0. 円形度の標準偏差が0. 045以下である請求 項1~4記載のイエロー現像剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、静電潜像現像用イ エロー現像剤に関し、特にフルカラー静電式複写機やフ 形成装置に用いるイエロー現像剤に関する。

[0002]

【従来の技術】従来より、感光体等の静電潜像担持体上 に形成された静電潜像をトナーを用いて現像し、このト ナー像を記録紙等の記録部材上に転写して画像形成を行 う画像形成方法が、複写機、プリンター、ファクシミリ 等に幅広く用いられており、近年では複数色のカラート ナーを重ね合わせることにより多色画像を再現するフル カラー画像形成装置も実用化されている。

ては、例えば、光ビームを照射する等のデジタル書き込 みにより負に帯電された有機系感光体上にドット単位で 静電潜像を形成し、この潜像を負荷電性のマゼンタトナ ー、シアントナー、イエロートナーおよび必要に応じて ブラックトナーを使用して反転現像し、各色のトナー像 を重ね合わせることにより多色画像の再現を行ってい

【0004】上述したフルカラー画像形成は、主に絵、 写真、グラフィック画像等を再現するのに使用され、上 述したように複数色のカラートナーの重ね合わせにより 50 能な製造方法として、懸濁重合法や乳化分散法等に代表

多色画像の再現が行われる。このような多色画像は、単 に記録紙への画像形成に留まらずオーバーヘッドプロジ ェクター用シート (OHPシート) に対しても汎用され ている。このため、トナーには所望の色に対応する分光 反射率を有していること、重ね合わせの際に下層となる トナーの色を隠蔽してしまわず優れた透光性を有してい ることが要求される。この要求は特に淡色であるイエロ ートナーにおいて顕著である。

2

【0005】また、従来よりイエロートナーに使用され 【請求項2】 前記バインダー樹脂のガラス転移点が5 10 る着色剤としては、公知の有機顔料および染料が知られ ているが、それぞれに種々の欠点を有している。例え ば、染料は一般的にトナーの結着樹脂中に溶解した状態 で存在するため、透光性および色の彩度等が優れている が、耐熱性や耐光性が低いという欠点を有している。耐 光性が低く光による退色が生じるため彩度に優れた画像 が得られてもそれを長期間維持することができないとい う問題が生じてしまう。また、耐熱性が低いために加熱 定着を行うと染料は定着部付近で昇華して機内汚染を生 じやすいという問題もある。また、定着ローラに塗布さ 下で、且つ体積平均粒径の1/3以下のトナー粒子の含 20 れたシリコーンオイル等の離型剤に溶解するものもあり 画像を汚してしまう等の問題もある。このような観点か ら顔料を用いることが好ましいが、顔料は凝集性が強く トナー粒子中でも均一に微分散することが困難であるた めトナーの隠蔽力が強くなってしまい透光性が低下して しまう。また、顔料粒子の凝集が生じるとこの粒子によ る光散乱に起因して原稿を正確に再現するための分光反 射特性が得られず、また、上述した隠蔽力の強さに起因 して十分な透光性が得られないためOHPシートに用い た場合に、投影像が暗く彩度が低くなる等の欠点を有し ルカラーレーザービームプリンター等のフルカラー画像 30 ている。また、顔料の中にも耐熱性が低くトナーの製造 時や加熱定着時に分解してしまうものもある。

【0006】さらにフルカラー用のトナーは上述したよ うに、各色のトナーを重ね合わせて多色画像を再現する ため優れた転写性が要求される。トナーの帯電量が高す ぎると感光体へのトナーの付着力が強くなって転写性が 低下し、またトナーの帯電量分布がブロードであっても 転写性は低下する。このためフルカラー用のトナーは適 正な帯電量および帯電量分布を有していることが必要と される。このような要求は、トナーを転写ローラを用い 【0003】このようなフルカラー画像形成装置におい 40 て中間転写体上に転写し、この中間転写体上で各色のト ナーを重ね合わせ、これを転写紙上に転写ローラを用い て転写する場合に特に顕著である。

> 【0007】一方、従来より静電潜像現像用トナーは、 少なくとも着色剤および熱可塑性樹脂を混合後溶融混練 して一様な分散体にし、これを粉砕装置によって適切な 粒径に粉砕してトナー粒子を製造する、いわゆる粉砕法 により製造することが一般的であった。

> 【0008】近年、製造コストの低減や高画質化の観点 から、小粒径で形状の揃ったトナー粒子を得ることが可

W.

される湿式中での造粒法が注目されている。これらの湿 式浩粒法によれば、概して小粒径のトナー粒子を得るこ とが容易であることから高画質化に十分対応することが 可能である。また収率も良好で製造コストを低減するこ とも可能である。

3

【0009】しかしながら、懸濁重合法においては使用 できるモノマーが限られており、例えばフルカラートナ 一用のバインダー樹脂として有用なポリエステル樹脂や エポキシ樹脂を用いたトナーを得ることができないとい う問題点がある。

【0010】一方、乳化分散法は、バインダー樹脂およ び着色剤を適当な有機溶剤に溶解あるいは分散させた着 色樹脂溶液を調整し、これを水性分散液中に加えて攪拌 することにより着色樹脂溶液の液滴を形成し、加熱によ ってこの液滴から有機溶剤を除去してトナー粒子の造粒 を行う方法である。乳化分散法の場合には、有機溶剤に ある程度溶解する樹脂であれば使用可能であるため、バ インダー樹脂として使用できる樹脂の種類の選択幅が広 く、例えばポリエステル樹脂やエポキシ樹脂をバインダ 一樹脂としたトナー粒子も製造することができる。

【0011】しかしながら、乳化分散法によって着色剤 としてイエロー顔料を用いたトナー粒子を製造する場合 にも、上述したようにトナー粒子中にイエロー顔料を均 一に微分散させることが困難であり、透光性低下を招く という技術課題が依然として存在した。

[0012]

【発明が解決しようとする課題】本発明は、上述した問 題を解決したフルカラー画像形成用のイエロー現像剤を 提供することを目的とする。

【0013】即ち、本発明は、透光性および色再現性に 30 優れたイエロー現像剤を提供することを目的とする。

【0014】また、本発明は、適正な帯電量および帯電 量分布を有するイエロー現像剤を提供することを目的と する.

【0015】また、本発明は、多色画像形成時にも優れ た転写性を有するイエロー現像剤を提供することを目的 とする。

[0016]

【課題を解決するための手段】本発明は、多色画像を再 現するフルカラー画像形成に使用されるイエロー現像剤 40 において、このイエロー現像剤が、少なくともバインダ ー樹脂、ピグメントイエロー180に分類される化合物 および非水溶性有機溶剤からなる着色樹脂溶液を、水性 分散液中に乳化分散させた後、非水溶性有機溶剤を除去 することにより形成されたトナー粒子を含有するイエロ 一現像剤に関する。

[0017]

【発明の実施の形態】本発明のフルカラー用イエロー現 像剤のトナー粒子には、イエロー着色剤としてC. I.

せる。C. I. ピグメントイエロー180は乳化分散法 によりトナー粒子を調整した場合に、トナー粒子中にお ける分散性に優れている。その結果乳化分散法により調 整されたC. I. ピグメントイエロー180を含有する トナー粒子は透光性および色再現性に優れているという 特性を示す。また、C. I. ピグメントイエロー180 は耐光性に優れ、また耐熱性にも優れているためトナー の定着時に加熱しても分解して有害な物質を発生するこ とがなく優れた安全性を有している。なお、含有量が少 10 なすぎると十分な彩度が得られず、また多すぎるとトナ

一の荷電への影響が強くなるため、C. I. ピグメント イエロー180の含有量はバインダー樹脂100重量部 に対して2~15重量部が好ましい。

【0018】本発明に使用するバインダー樹脂として は、例えばスチレンーアクリル系共重合樹脂、ポリエス テル系樹脂、エポキシ系樹脂等を使用することができ る。さらに、C. I. ピグメントイエロー180のバイ ンダー樹脂中での分散性を向上させるために、バインダ ー樹脂として1.0~30.0KOHmg/g、好まし 20 くは1.0~25.0KOHmg/g、より好ましくは 2. 0~20. 0KOHmg/gの酸価を有する樹脂を 用いることが好ましい。これは酸価が1.0KOHmg /gより小さいと分散性向上の効果が小さくなり、3 0. 0KOHmg/gより大きくなると負帯電性が強く なるとともに環境変動による帯電量の変化が大きくなる ためである。

【0019】このような酸価を有するバインダー樹脂と して特にポリエステル系樹脂、エポキシ系樹脂が好まし

【0020】本発明において、好ましいポリエステル樹 脂はアルコール成分としてビスフェノールAアルキレン オキサイド付加物を主成分として使用し、酸成分として フタル酸系ジカルボン酸類あるいはフタル酸系ジカルボ ン酸類と脂肪族ジカルボン酸類を使用して重縮合反応に より合成されたものである。

【0021】ビスフェノールAアルキレンオキサイド付 加物としては、ビスフェノールAプロビレンオキサイド 付加物、ビスフェノールAエチレンオキサイド付加物が 好適であり、これらを混合して用いることが好ましい。 【0022】また、アルコール成分としてビスフェノー ルAアルキレンオキサイド付加物とともに下記ジオール や多価アルコールを若干使用してもよい。このようなア ルコール成分としては、例えばエチレングリコール、ジ エチレングリコール、トリエチレングリコール、1,2 ープロピレングリコール、1、3ープロピレングリコー ル、1、4-ブタンジオール、ネオペンチルグリコール 等のジオール類、ソルビトール、1,2,3,6-ヘキ サンテトロール、1、4-ソルビタン、ペンタエリスリ トール、ジペンタエリスリトール、トリペンタエリスリ ピグメントイエロー180に分類される化合物を含有さ 50 トール、1, 2, 4ープタントリオール、1, 2, 5ー

ペンタントリオール、グリセロール、2-メチルプロバ ントリオール、2-メチル-1、2、4-ブタントリオ ール、トリメチロールエタン、トリメチロールプロパ ン、1、3、5-トリヒドロキシメチルベンゼン等が挙 げられる。

【0023】フタル酸系ジカルボン酸類としては、テレ フタル酸、イソフタル酸等のフタル酸系ジカルボン酸、 その酸無水物またはその低級アルキルエステル等を使用 することができる。

【0024】また、フタル酸系ジカルボン酸類とともに 10 使用可能な脂肪族ジカルボン酸類としては、 フマール 酸、マレイン酸、コハク酸、炭素数4~18のアルキル またはアルケニルコハク酸等の脂肪族ジカルボン酸、そ の酸無水物またはその低級アルキルエステル等が挙げら れる。

【0025】また、トリメリット酸等の多価カルボン酸 等を樹脂の酸価を調整するためにトナーの透光性等を掲 なわない範囲で少量使用してもよい。このような多価カ ルボン酸成分としては、例えば、1、2、4-ベンゼン ゼントリカルボン酸、2、5、7-ナフタレントリカル ボン酸、1,2,4-ナフタレントリカルボン酸、1, 2、4-ブタントリカルボン酸、1、2、5-ヘキサン ントリカルポン酸、1、3-ジカルポキシル-2-メチ ルー2-メチレンカルボキシプロパン、1、2、4-シ クロヘキサントリカルボン酸、テトラ (メチレンカルボ キシル) メタン、1、2、7、8-オクタンテトラカル ボン酸、ピロメリット酸、これらの無水物、低級アルキ ルエステル等を挙げることができる。

【0026】本発明のトナー粒子に用いるバインダー樹 30 脂は、ガラス転移点が55~75℃、好ましくは60~ 70℃、軟化点が95~120℃、好ましくは100~ 118℃、数平均分子量が2500~6000、好まし くは3000~5500、重量平均分子量/数平均分子 量が2~8、好ましくは3~7のものである。ガラス転 移点が低くなるとトナーの耐熱性が低下し、また高くな ると透光性や混色性が低下する。軟化点が低くなると定 着時に高温オフセットが発生し易くなり、高くなると定 着強度が低下する。数平均分子量が小さくなると画像を 折り曲げた際にトナーが剥離し易くなり、大きくなると 40 単独あるいは二種類以上を併用して使用できる。 定着強度が低下する。また重量平均分子量/数平均分子 量が小さくなると高温オフセットが発生し易くなり、大 きくなると透光性が低下する。

【0027】また、トナー粒子にはポリプロピレンワッ クス、ポリエチレンワックス、カルナバワックス、サゾ ールワックス等のワックス類を添加すること好ましい。 これは耐オフセット性を向上させるだけではなく、非磁 性1成分現像装置における規制部材 (ブレード) や現像 剤担持体 (現像ローラ) 等に対するトナーの固着の問題 を低減させることができるためである。特に酸価が0.

5~30KOHmg/gのワックスを用いることが上記 酸価を有するバインダー樹脂に対する分散性の観点から 好ましい。このようなワックスの添加量は、バインダー 樹脂100重量部に対して0.5~5重量部、好ましく は1~3 重量部が好ましい。これは添加量が0.5 重量 部上り少ないと添加による効果が不十分となり、5重量 部より多くなると透光性や色再現性が低下するためであ

【0028】本発明においては、上述したバインダー樹 脂およびC、 I、ピグメントイエロー180等のトナー 組成物を使用して乳化分散法によりトナー粒子を製造す ることにより、C. I. ピグメントイエロー180がバ インダー樹脂中に均一に分散され透光性や混色性に優れ たイエロートナー粒子を得ることができる。

【0029】本発明においては、まず少なくともバイン ダー樹脂、C. I. ピグメントイエロー180および非 水溶性有機溶剤からなる着色樹脂溶液を調整する。

【0030】非水溶性有機溶剤は、トナー組成物(バイ ンダー樹脂、C. I. ピグメントイエロー180および トリカルボン酸(トリメリット酸)、1,2,5-ベン 20 必要に応じて荷電制御剤、ワックス等)を溶解あるいは 分散する為に用いられ、例えばトルエン、ベンゼン、キ シレン、塩化メチレン、クロロホルム、四塩化炭素、ジ メチルエーテル、ジエチルエーテル、酢酸メチル、酢酸 エチル、酢酸ブチル、プロピオン酸メチル、プロピオン 酸エチル、プロピオン酸プチル、シュウ酸ジメチル、シ ュウ酸ジエチル、コハク酸ジメチル、コハク酸ジエチ ル、ジエチレングリコールジメチルエーテル、ジエチレ ングリコールジエチルエーテル、ジエチレングリコール ジプチルエーテル、エチレングリコールモノアセター

> ト、ジエチレングリコールモノアセタート、エタノー ル、プロパノール、ブタノール、ジアセトンアルコー ル、アセトン、メチルエチルケトン、メチルイソブチル ケトン、N、N-ジメチルホルムアミド、2-メトキシ エタノール、2-エトキシエタノール、ジエチレングリ コールモノメチルエーテル、ジエチレングリコールモノ エチルエーテル、ジエチレングリコールモノブチルエー テル、ジプロピレングリコールモノメチルエーテル、ジ プロピレングリコールモノエチルエーテル、2-メトキ シエチルアセテート、2-エトキシエチルアセテート等

> 【0031】非水溶性有機溶媒にトナー組成物を溶解な いし分散させて着色樹脂溶液を調整するには、ボールミ ル、サンドミル、ホモミキサー、超音波ホモジナイザー などの装置を用いることができる。着色樹脂溶液におけ る固形分濃度は、この着色樹脂溶液を水系分散液中に乳 化分散させてなるO/W型エマルジョンを加熱して液滴 中上り非水溶性有機溶媒を除去する際に、液滴が容易に 微粒子へと疑問できるように5~50重量%、好ましく は10~40重量%とすることが好ましい。

【0032】次いで上記着色樹脂溶液が水系媒体中に乳

化分散されたO/W型エマルジョンを形成する。なお、 O/W型エマルジョンとは、水系媒体中に油性液体(着 色樹脂溶液) が液滴となって分散している状態の懸濁液

【0033】O/W型エマルジョンを形成するために は、上記着色樹脂溶液を水系媒体中に添加して、着色樹 脂溶液の液滴を水系媒体中に分散させる方法、あるいは 着色樹脂溶液に水系媒体を添加して転相を生じせしめ て、着色樹脂溶液の液滴を水系媒体中に分散させる方法 等を採用することができる。また、この方法以外にもミ クロ多孔体を使用し、このミクロ多孔体の細孔から着色 樹脂溶液 (分散相) を水系媒体 (連続相) 中に分散させ TO/W型エマルジョンを形成させてもよい。

【0034】ミクロ多孔体を使用したO/W型エマルジ ョンの形成法の概要を図1に示し、図1中のミクロ多孔 体1の一部(図1中の円で囲んだ部分)を拡大して図2 に示した。着色樹脂溶液 (分散相) 2は、水系媒体 (連 統相) 3中に、ミクロ多孔体1の細孔を通じて圧入され ることにより、連続相3中に均一な小粒径の液滴に造粒 ロ多孔体を用いたO/W型エマルジョンの形成の詳細 は、特開平5-134455号に記載されている通りで ある。

【0035】また、安定したO/W型エマルジョンを形 成するために、O/W型エマルジョンにおける着色樹脂 溶液の体積 (V p) と水性分散液の体積 (V w) との比 (Vp/Vw) が、Vp/Vw≤1、好ましくは0.3 ≦Vp/Vw≤0.7とすることが望ましい。

【0036】O/W型エマルジョンを形成するために使 用する水系分散液としては、水や、水にエマルジョンを 30 破壊しない程度の水溶性有機溶媒を含んだもの、例え ば、水/メタノール混液(重量比50/50~100/ 0) 、水/エタノール混液 (重量比50/50~100 /0)、水/アセトン混液(50/50~100/ 0)、水/メチルエチルケトン混液(重量比70/30 ~100/0) などが使用可能である。

【0037】このような水系媒体には適当な分散安定剤 を添加することが好ましい。例えばポリビニールアルコ ール、ゼラチン、アラビアゴム、メチルセルロース、エ チルセルロース、メチルヒドロキシプロピルセルロー ス、カルボキシメチルセルロースのナトリウム塩、ドデ シルベンゼン硫酸ナトリウム、ドデシルベンゼンスルフ ォン酸ナトリウム、オクチル硫酸ナトリウム、ラウリル 酸ナトリウム、燐酸カルシウム、燐酸マグネシウム、燐 酸アルミニウム、炭酸カルシウム、炭酸マグネシウム、 硫酸バリウム、ベントナイト等が挙げられ、これらの分 散安定剤は0.05~3重量%使用できる。

【0038】また、着色樹脂溶液の水性分散液への分散 途中あるいは分散終了後に、分散安定剤を追加して添加 するようにしてもよい。このような分散安定剤の再添加 50 持体や中間転写体に対するトナー粒子の静電的な付着力

は、液滴あるいは析出した樹脂微粒子の凝集の防止に有 効である。

【0039】液滴の分散安定性を向上させるため、分散 安定剤とともに分散安定補助剤を用いてもよい。分散安 定補助剤としては、サポニンなどの天然界面活性剤、ア ルキレンオキサイド系、グリセリン系、グリシドール系 などのノニオン系界面活性剤、カルボン酸、スルホン 酸、リン酸、硫酸エステル基、リン酸エステル基等の酸 性基を含むアニオン系界面活性剤などが挙げられる。特 10 に、ドデシルベンゼンスルホン酸ナトリウムやラウリル 硫酸ナトリウムなどのアニオン系界而活性剤が好まし

【0040】本発明においては、O/W型エマルジョン を攪拌しながら加熱して非水溶性有機溶剤を除去するこ とにより、水系媒体中に所定の粒径の着色樹脂粒子が分 散された懸濁液を得る。この後、濾過等により水系媒体 を除去して着色樹脂粒子を単離し、洗浄後乾燥し、必要 に応じて分級処理を行いトナー粒子を得ることができ る。またこの他にもO/W型エマルジョンを乾燥雰囲気 されてO/W型エマルジョンが形成される。なお、ミク 20 中に嘈霧し、液滴中の非水溶性有機溶媒を完全に除去し て着色樹脂微粒子を形成し合わせて水系分散液を蒸発除 去する方法を用いてもよい。なお、分散安定剤として燐 酸カルシウム等のように水に不溶のものを用いた場合に は、塩酸等の酸によって溶解させて除去すればよい。 【0041】乳化分散法には、懸濁重合法などに比べて 使用可能な樹脂の種類が多いという特徴がある。即ち、 懸濁重合法においては、重合可能なモノマーがビニル系 モノマーに限定されるため得られる樹脂もビニル系の樹 脂に限定されてしまうが、乳化分散法では、非水溶性有 機溶媒にある程度溶解可能な樹脂であれば使用可能であ り、ビニル系の樹脂のみならず例えば懸濁重合法では製 造できないポリエステルやエポキシ樹脂等も使用可能で

【0042】そして、本発明に係るトナー粒子は、体積 平均粒径を2~9μm、好ましくは2~7μmに調整す ることが画像の高精細再現性の観点から好ましい。さら に体稿平均粒径の2倍以上の粒径を有するトナー粒子の 含有量が2重量%以下、好ましくは1重量%以下で、月 つ体積平均粒径の1/3以下の粒径を有するトナー粒子 40 の含有量が5個数%以下であるような粒径分布を有する ことが、トナーの帯電量分布を狭くし、カブリを防止す る観点から必要である。

【0043】なお、トナー粒子の粒径および粒径分布 は、コールターマルチサイザー (コールターカウンター 社製)を用い、アパチャー径50 μ mで測定した。

【0044】また、本発明に係るトナー粒子は、その円 形度 (平均円形度) が 0. 94~1. 0であり、且つ円 形度の標準偏差が0.045以下であることが必要であ る。これは円形度が0.94より小さい場合には、像担 (6)

が強くなってしまうため、転写不良が生じやすくなるた めである。また円形度の標準偏差が0.045より大き い場合には、トナー粒子毎の帯電量のバラツキが大きく たり、カブリや転写不良の要因となるためである。さら に上述した観点から円形度は好ましくは0.945~ 0.99、より好ましくは0.95~0.98であり、 円形度の標準偏差は好ましくは0.040以下、より好 ましくは0.035以下である。

【0045】なお、円形度は(相当円の周囲長/粒子投 PIA-1000:東亞医用電子社製)を用いて水分散 系で測定した。

【0046】本発明においては、トナー粒子に対して 0. 2~3 重量%の無機微粒子を外添することが流動性 等を向上させる観点で好ましい。このような無機微粒子 としてはシリカ、チタニア、アルミナ、チタン酸ストロ ンチウム、酸化錫等を単独であるいは2種以上混合して 使用することができる。無機微粒子は疎水化剤で表面処 理されたものを使用することが環境安定性向上の観点か 以下の樹脂微粒子を外添してもよい。

【0047】本発明のイエロー現像剤は、キャリアと混 合して用いる二成分現像剤として、またキャリアを使用 しない一成分現像剤として使用可能である。特に、フル カラー画像形成装置の小型化の観点からは、現像剤担持 体である現像スリーブに現像剤規制部材であるブレード を圧接させた構成を有しており、規制部を通過させる際 にトナーを荷置させる非磁性一成分現像方式に用いるこ とが好ましい。

【0048】また、本発明のトナーを二成分現像剤と1、30 て用いる場合に好ましいキャリアは、例えば、鉄、マグ ネタイト、フェライト等の磁性体粒子を樹脂で被覆して なる樹脂コートキャリア、あるいは磁性体微粉末を結着 樹脂中に分散して成るバインダー型キャリアである。被 覆樹脂としてシリコーン系樹脂、オルガノポリシロキサ ンとビニル系単量体との共重合樹脂 (グラフト樹脂) ま たはポリエステル系樹脂を用いた樹脂コートキャリア、 あるいは結着樹脂としてスチレンーアクリル系樹脂、ポ リエステル系樹脂あるいはこれらの混合物を用いたバイ ンダー型キャリアを使用することがトナースペント等の 40 観点から好ましい。

【0049】好ましい二成分現像方式は、マグネットロ ーラが内部に固定配置された現像剤機送部材(現像スリ ープ)上に薄層の現像剤層、具体的には0.7~10m g/cm²、好ましくは1~7.5mg/cm²の現像 剤量で現像剤層を担持して、現像領域に供給し、現像領 域に振動電界、好主しくは直流電圧と交流電圧とを重得 した現像バイアス印加の下に現像を行う現像方法であ る。この場合、使用する磁性キャリアとして体積平均均 径が20~50 µm、好ましくは25~40 µmのもの 50

を使用することが高画質の確保とキャリア付着防止の観 点から好ましい。

[0050]

【実施例】以下、本発明について実施例を挙げて具体的 に説明するが、これに限定されるものではない。以下の 実施例、比較例で使用したバインダー樹脂は次のもので

【0051】 (ポリエステル系樹脂A~Eの製造例) 温 度計、機律器、流下式コンデンサーおよび窒素導入管を 影像の周囲長)で表され、フロー式粒子像分析装置(F 10 取り付けたガラス製4つロフラスコに、表1に示すモル 比でアルコール成分および酸成分を重合開始剤(ジブチ ル錫オキサイド)とともに入れた。これをマントルヒー ター中で窒素雰囲気下にて、機律しながら加熱すること により反応させて、表1に示す数平均分子量(Mn)、 重量平均分子量/数平均分子量 (Mw/Mn)、ガラス 転移点(Tg)、軟化点(Tm)、酸価および水酸価を 有するポリエステル樹脂A~Eを得た。得られた各ポリ エステル樹脂を1mm以下に粗砕したものを以下のトナ 一の製造で用いた。なお表 1 中、P O はポリオキシプロ ら好ましい。また、このような無機酸化物以外に 1 um 20 ビレン (2.2) -2.2 ービス (4 ーヒドロキシフェ ニル) プロパンを、EOはポリオキシエチレン (2. 0) -2, 2ービス (4ーヒドロキシフェニル) プロパ ンを、GLはグリセリンを、TPAはテレフタル酸を、 TMAはトリメリット酸を、FAはフマル酸を表す。 [0052]

【表1】

, KOHMB/B)
,
1
ı
6.0
4.0
∢

*マトグラフィー(807-IT型:日本分光工業社製) を使用し、キャリア溶媒としてテトラヒドロフランを使 用して、ポリスチレン換算により分子量を求めた。

12

【0054】ガラス転移点は示差走査熱量計(DSC-200:セイコー電子社製)を用いて秤量された試料1 Omgについて測定し、リファレンスとしてアルミナを 用い、30~80°Cの範囲におけるメイン吸熱ピークの ショルダー値をガラス転移点とした。

【0055】軟化点については、フローテスター (CF 10 T-500: 島津製作所社製) を用い、試料1.0gに ついて1. 0mm×1. 0mmのダイを使用し、昇温速 度3.0℃/min、荷重30kgの条件で測定を行 い、試料が1/2流出したときの温度を軟化点とした。 【0056】酸価は秤量された試料を適当な溶媒に溶解 し、フェノールフタレイン等の指示薬を使用して酸性基 を中和するのに必要な水酸化カリウムのmg数で表し た。

【0057】水酸価は秤量された試料を無水酢酸で処理 1. 得られたアセチル化物を加水分解1. 游離する酢酸 20 を中和するのに必要な水酸化カリウムのmg数で表し

【0058】 (顔料マスターバッチA~Eの製造) ポリ エステル樹脂Aとイエロー顔料(C.I.ピグメントイ エロー180) とを樹脂:顔料が7:3の重量比になる ように加圧ニーダーに仕込み混練した。得られた混練物 を冷却後フェザーミルにより粉砕し顔料マスターバッチ Aを得た。また、ポリエステル樹脂Aをポリエステル樹 脂B~Eに変更する以外は同様にして顔料マスターバッ チB~Eを得た。

30 【0059】 (実施例1) ポリエステル樹脂A93重量 部、顔料マスターバッチA10重量部、下記式(A)で 示されるホウ素化合物1重量部およびトルエン400重 量部を超音波ホモジナイザー (出力400 u A) を用い て30分間混合して溶解・分散させることにより着色樹 脂溶液を調製した。

[0060] 【化1】

【0053】なお、分子量はゲルパーミエーションクロ*

【0061】一方、分散安定剤として4重量%の水酸化 リン酸カルシウムを含有する水溶液1000重量部に、 ラウリル硫酸ナトリウム (和光純薬社製) 0. 1 重量部 を溶解させることにより水性分散液を調製した。 【0062】上記の水性分散液100重量部をTKホモ

で攪拌している中に、上記着色樹脂溶液50重量部を滴 下し、着色樹脂溶液の液滴を水性分散液中に懸濁させ た。この懸濁液を60℃、100mmHgの条件で5時 間放置することにより、液滴からトルエンを除去し、着 色樹脂微粒子を析出させた。次いで濃塩酸により水酸化 ミクサー(特殊機化工業社製)により毎分4000回転 50 リン酸カルシウムを溶解した後ろ過と水洗を繰り返し行 (8)

った。

【0063】この後、スラリー乾燥装置(ディスパーコ ート:日清エンジニアリング社製)により80℃で着色 樹脂粒子の乾燥を行い、イエロートナー粒子を得た。 このイエロートナー粒子100重量部に対して、砂水性 シリカ (TS-500:キャボジル社製) 0.5重量部 と、疎水性二酸化チタン (STT-30A:チタン丁業 社製) 1. 0重量部とを添加し、ヘンシェルミキサーで

混合処理してイエロートナーAを得た。

13

エステル樹脂Aをポリエステル樹脂B~Eに変更し、顔 料マスターバッチAを顔料マスターバッチB~Eに変更 する以外は同様にしてイエロートナーB~Eを得た。 【0065】(実施例6)実施例1において、酸化型低 分子量ポリプロピレンワックス (100TS:三洋化成 工業社製、軟化点140℃、酸価3.5KOHmg/ g) 1 重量部を添加して着色樹脂溶液を調整する以外は 同様にしてイエロートナーFを得た。

【0066】 (実施例7) ポリエステル樹脂B93重量 部、顔料マスターバッチB10重量部およびサリチル酸 20 ー19に変更する以外は同様にしてイエロートナーHを 亜鉛錯体(E-84:オリエント化学工業社製)2重量 部をボールミルで十分混合した後、140℃に加熱した 3本ロールで混練した。混練物を放置冷却後、フェザー ミルで粗粉砕し、得られた粗粉砕物100重量部および 塩化メチレン/トルエン (8/2) の混合溶剤400重 量部を混合して溶解・分散させることにより着色樹脂溶 液(分散相)を調製した。次に分散安定剤としてメチル セルロース (メトセルK35 LV:ダウケミカル計製) 4%水溶液60重量部、ジオクチルスルホサクシネート ソーダ (ニッコールOTP75:日米ケミカル計劃) 1 30 %水溶液5重量部、ヘキサメタリン酸ソーダ(和光純薬 社製) 0.5重量部をイオン交換水1000重量部に溶 解した水性分散液 (連続相) を調整した。

細孔分布曲線において、「累積細孔容積が全体の10% を占める時の細孔径(ø 10) | を「累積細孔容積が全 体の90%を占める時の細孔径(φ90)」で除した値 ε (φ10/φ90) が1, 2、平均細孔径が2, 0μ mであるCaO-B2O3-SiO2-Al2O3 系多孔質 ガラスを使用し、図3に示す装置を用いて水性分散液 (連続相) 中に着色樹脂溶液 (分散相) を圧入して〇/ W型エマルジョンを調整した。なお、図3において、分

【0067】ミクロ多孔体として、その細孔の相対累積

散相はタンク4からポンプPにより連続的にミクロ多利 体6に圧入され、ミクロ多孔体6の内側にタンク5から ポンプPにより連続的に供給される連続相と混合されて エマルジョンが形成される。このようにして形成された エマルジョンはエマルジョンタンク7に輸送される。

14

【0068】その後、エマルジョンタンク7内の溶液を 取り出し、この溶液を攪拌槽中で攪拌しながら系の温度 を50℃に保ち、塩化メチレン/トルエン混合溶剤を除 去して着色樹脂微粒子を析出させた後、ろ渦レ水洗を繰 【0064】(実施例2~5)実施例1において、ポリ 10 り返し行った。この後、スラリー乾燥装置(ディスパー コート:日清エンジニアリング社製)により80℃で着 色樹脂粒子の乾燥を行い、イエロートナー粒子を得た。 【0069】このイエロートナー粒子100重量部に対 して、疎水性シリカ (TS-500:キャボジル社製) 0. 5重量部と、疎水性二酸化チタン (STT-30 A: チタン工業社製) 1. 0 重量部とを添加し、ヘンシ エルミキサーで混合処理してイエロートナーGを得た。 【0070】(比較例1)実施例4において、C. I. ピグメントイエロー180をC. I. ソルベントイエロ

> 【0071】(比較例2)実施例1において、C. I. ピグメントイエロー180をC. I. ピグメントイエロ -133に変更する以外は同様にしてイエロートナーI を得た。

【0072】(比較例3)実施例1において、C. I. ピグメントイエロー180をC. I. ピグメントイエロ -169に変更する以外は同様にしてイエロートナー「 を得た。

【0073】(比較例4)実施例1において、C. I. ピグメントイエロー180をC. I. ピグメントイエロ -62に変更する以外は同様にしてイエロートナーKを 得た。

【0074】 上記実施例1~7及び比較例1~4で得ら れたトナーA~Kの体積平均粒径((D50)、体積平均 粒径の2倍以上の粒径を有するトナー粒子 (>2D50) の含有量の重量%、体積平均粒径の1/3以下の粒径を 有するトナー粒子 (< D50/3) の含有量の個数%. ト ナー粒子の平均円形度および円形度の標準偏差を表 2 に 40 示した。

[0075]

【表2】

1.0

15

						10
	H + -	Die (µm)	>2D:: (重量%)	<d:o 3<br="">(個数%)</d:o>	平均円形度	円形度の 標準偏差
実施例1	Α	6. D	0.1	3.1	D. 991	0.026
実施例 2	В	6.1	0.1	2.8	0. 991	0.023
実施例 3	С	6. D	0.2	2.7	0.990	0.023
実施例 4	D	5.9	0.1	3.0	0.991	0.024
実施例 5	E	6. 1	0.1	2.9	0.990	0.024
実施例 6	F	6.4	0.3	2.3	0.989	0.030
実施例7	G	6.0	0	0.3	0.994	0.019
比較例1	н	6.3	0.8	5.1	0.981	0.031
比較例 2	- 1	8.5	0.6	5.3	0.943	0.042
比較例 3	J	8.4	2. 2	5.0	0.937	0.048
比較例 4	к	6.2	1. 7	5.4	0.941	0.046

【0076】 (シアントナーおよびマゼンタトナートナ 一の製造) 実施例6において、C. I. ピグメントイエ ロー180をC、I、ピグメントブルー15-3に変更 する以外は同様にしてシアントナーを得た。シアントナ 20 ラックグラフト重合体14重量部を使用すること以外は -の体積平均粒径は6.2 μm、体積平均粒径の2倍以 上の粒径を有するトナー粒子の含有量は0.4重量%。 体積平均粒径の1/3以下の粒径を有するトナー粒子の 含有量は2.7個数%、トナー粒子の平均円形度は0. 988、円形度の標準偏差は0.031であった。

【0077】また、実施例6において、C. 1. ビグメ ントイエロー180をC. I. ピグメントレッド184 に変更する以外は同様にしてマゼンタトナーを得た。マ ゼンタトナーの体積平均粒径は6.3 um、体積平均粒 径の2倍以上の粒径を有するトナー粒子の含有量は0. 4 重量%、体積平均粒径の1/3以下の粒径を有するト ナー粒子の含有量は3.4個数%、トナー粒子の平均円 形度は0.986、円形度の標準偏差は0.033であ った。

【0078】 (ブラックトナーの製造) 槽拌機、不活件 ガス導入管、環流冷却管および湿度計を備えたフラスコ にビニルアルコール0. 1重量部を溶解した脱イオン水 200重量部を入れ、そこにスチレン98重量部および イソプロペニルオキサゾリン2重量部からなる重合性単 量体にベンゾイルバーオキサイド8重量部を溶解した混 40 合物を投入し、高速で播拌して均一な縣渦液を調整1. た。次いで窒素ガスを導入しながら80℃に加熱し、5 時間攪拌しながら重合反応を行った後、冷却し、重合体 懸濁液を得て、さらに、濾過、洗浄を繰り返した後乾燥 し、反応性基としてオキサゾリン基を有する重合体を得 た。ここで得られた重合体40重量部とカーボンブラッ ク (MA-100S: 三菱化学社製、PH3. 2) 20 重量部を3本ロールを用いて170℃で混練した。この 湿練物を冷却後フェザーミルで粉砕しカーボンブラック グラフト 重合体を得た。

【0079】実施例6において、ポリエステル樹脂A9 3 重量部および顔料マスターバッチA10 重量部に代え てポリエステル樹脂A86重量部およびト記カーボンプ 同様にしてブラックトナーを得た。ブラックトナーの体 積平均粒径は6.5μm、体積平均粒径の2倍以上の粒 径を有するトナー粒子の含有量は0.5重量%、体積平 均粒径の1/3以下の粒径を有するトナー粒子の含有量 は3.7個数%、トナー粒子の平均円形度は0.98 円形度の標準偏差は0.035であった。

【0080】上記各トナーに対して下記の各評価を行い その結果を表3に示した。

【0081】(ドット面積率の異なる画像のOHP透光 30 性および色再現性) 下記に説明するフルカラープリンタ を用いて常温常湿環境下 (25°C. 60%RH) でOH Pシート上に、150線のスクリーンでドット面積率1 00%、50%および20%の画像を画出しし、オーバ ーヘッドプロジェクターで投影した場合のイエローの発 色を目視により評価した。鮮やかに発色している場合を ○、少し発色している場合を△、発色していない場合を ×として評価した。

【0082】この評価に用いたフルカラープリンタは図 4 に示される構成のものであり、図中矢印 a 方向に回転 駆動される有機感光体ドラム10(以下感光体10)

と、レーザー走査光学系20と、フルカラー現像装置3 0 と、図中矢印 b 方向に回転駆動される無端状の中間転 写ベルト40と、給紙部60とで構成されている。 威光 体10の周囲には、さらに感光体10表面を所定の電位 に帯電させる帯電ブラシ11及び感光体10上に残留し たトナーを除去するクリーナーブレード12aを備えた クリーナー12が設けられている。

【0083】レーザー走査光学系20はレーザーダイオ ード、ポリゴンミラー、f θ 光学素子を内蔵した周知の 50 もので、その制御部にはシアン (C)、マゼンタ

(M)、イエロー (Y)、ブラック (BK) 毎の印字データがホストコンピュータから転送される。レーザー走 売光学系 20は各色毎の印字データを順放し、サービー ムとして出力し、感光体10上を走査購光する。これに より感光体10上に各色毎の静電譜像が順次形成され ま

【0084】ワルカラー現像装置30はC、M、Y、B Kの非磁性トナーからなる1成分現像剤を収容した4つ の色別現像器31C、31M、31Y、31BKを一体 化したもので、支軸81を支点として時計回り方向に回 転可能である。各現像器は埋像スリーブ32、トナー規 制プレード34を備えている、実像スリーブ32の回転 により機造されるトナーは、ブレード34と現像スリー ブ32との正接部(規制部)を連過することにより帯電 される。

【0085】中間転写ベルト40は支持ローラ41、42およびテンションローラ43、44に無端状に張り渡され感光体10と同期して四中矢印b方向に回転駆動される。中間転写ベルト40の側部には図示しない突起が設けられ、この突起をマイクロスイッチ45が検出する20とにより、震光、現象、転写等の作像処理が創ぎれる。中間転写ベルト40は回転自在な1次転写ローラ46に押圧されて感光体10に接触している。この接触部が1次転写都7、である。よ、中間転写ベルト40は支持ローラ42に支持された部分で回転自在な2次転写ローラ47が接触している。この接触部が2次転写部7である。まつは

【0086】さらに、前記現像装置30と中間転空ベルト40の間のスペースにはクリーナー50が設置されている。クリーナー50は中間転空ベルト40上の残留ト30ナーを発去するためのブレード51を有している。このブト45は大板写ローラ47は中間転空ベルト40に対して接離可能である。

【0087】総紙館60は、画後形成装置本体1の正面 側に開放可能な総紙トレイ61と、給紙ローラ62と、 タイミングローラ63とから構成されている。配録シートSは給紙トレイ61上に積載され、給紙ローラ62の 回転によって1枚すつ図中右方向へ給紙され、タイミン グローラ63で中間転写ベルト40上に形成された画像 と同期をとって2次転写部へ送り出される。記録シート 40 水平機送路65は前記給紙能を含んでエアーサクショ ンベルト66等で構成され、定着器70から機関会ローラ72、73、74を備えた垂直搬送路71が設けられている。記録シートSはこの重直搬送路71が設けられている。記録シートSはこの重直搬送路71が設けられている。記録シートSはこの重直搬送路71が設けられている。記録シートSはこの重直搬送路71から画像形成装置本体10ヶ面へ排出もある。

【0088】 ここで、上記フルカラーブリンタのプリント動作について説明する。プリント動作が開始されると、感光体10および中間転写ベルト40が同じ周速度で回転駆動され、感光体10は帯電ブラシ11によって所定の電似に帯電される。

【0089】続いて、レーザー走査光学系20によって シアン画像の露光が行われ、感光体10上にシアン画像 の静電潜像が形成される。この時電潜像は声に現像器 31℃で現像されると共に、トナー画像は1次転写部で 中間転写ベルト40上に転写される。12枚転写終了直後 に現像器31Mが現像部D~助り替えられ、続いてマゼ ンタ画像の露光、現像、1次転写が行われる。さらに現 像器31Yへの切り替え、イエロー画像の震光、現像、 1次転写が行われる。さらに現像器31BKへの切り替

18

の色別実際審31C、31M、31Y、31BKを一体 1次転写が行われる。さらに現像器31BKへの切り替 化したもので、支輪81を支点として時計回り方向に回 10 え、ブラック画像の露光、現像、1次転写が行われ、1 転可能である。各現像器は現像スリーブ32、トナー規 制プレード34を備えている。現像スリーブ32の回転 られていく。

> 【0090】最終の1次転写が終了すると、記録シート Sが2次転写師へ送りこまれ、中間転写ベルト40上に 形成されたフルカラートナー画像が記録シートS上に転 写される。この2次転写が終了すると記録シートSはベ ルト型接触即就定着器70~搬送され、フルカラートナ 一画像が記録シートS上に定着されてプリンタ本体1の 日面に排出かれる。

0 【0091】なお、上記画像形成は、感光体表面電位 550 V、現像バイアス電圧-200V、1次転写バイ アス電圧900 V、2次転写バイアス電圧を500Vを基準にして、記録シート上のペタ画像部のトナー付着量が 0.7mg/cm となる設定条件で、且っ定着温度1 60℃の条件で行った。また、下記のカブリ、中抜け、 転写性およびドット再現性の評価は、低温低速環境(1 0℃、15%RH)および高温高温環境(30℃、85 %RH)の両環境下で行って、悪い方の評価結果を奏3 に示した。

【0092】 (カブリ) 上記フルカラーブリンクを用い でイエロートナー単色でB/W比5%の文字パターン・ ブリントし、得られた画像を目視によって確認し、ほと んどカブリが見られないものを○、若干カブリが認めら れる実用上問題のないものを○、オブリが全面に渡って 存在し実用上問題のあるものをととして評価した。

【0093】(中抜け)上記フルカラーブリンタを用いてイエロートナーとシアントナーとを重ね合わせたグリーン色の「E」の文字をブリントし、「E」の文字に画像欠損のないものを〇、若干画像欠損が認められるがグ0リーン色の「E」の文字を認識することができ実用上間

題のないものを△、画像欠損がひどくグリーン色の 「E」の文字を認識することが困難であるものを×とし て評価した。

【0094】(振写性)上記フルカラーブリンタを用いてイエロートナー単色でブリントした画像について、感光体ドラム上のトナー付着重に対する転写紙上のトナー付着の割合を求め、80%以上であるものを○、70%以上80%未満のものを△、70%未満のものを×として評価した。

50 【0095】 (ドット再現性) 600dpiで2ドット

20

網点の画像を画出しし、ルーペ (50倍) でドットを観 察し、ドットが1つずつ再現されており、ドットの大き さのバラツキも小さいものを○、ドットとドットは分離 されており欠損はないが、ドットの大きさにバラツキが 多いものを \triangle 、2ドットの1つ1つが欠損していたり、 くっついていたりし、十分にドット再現されていないも のを×として評価した。

【0096】 (耐光性) 上記フルカラープリンタを用い てイエロートナー単色でプリントした画像について、紫 外線照射装置にて紫外線を30分間照射し、退色が認め 10 られないものを○、若干退色が認められるものの実用上*

*問題のないものを A. 退色が大きいものを X と 1. て評価

【0097】 (耐熱性) 50ccのガラスビンにトナー 5gを入れ、55℃で24時間放置した後のトナーの凝 集性を確認し、凝集物の発生していないものを○、若干 の凝集物は存在するが、外力で簡単にほぐれるものを △、凝集物が存在し、外力では簡単にほぐれないものを ×として評価した。

[0098]

【表3】

十返巴が認められるものの美用上*									
	〇HP選光性およ び色再現性			カブリ	中抜け	転写性	ドット 再現性	耐光性	耐熱性
	100%	50 X	20 %						
実施例1	0	0	0	0	0	0	0	0	0
実施例2	0	0	0	0	0	0	0	.0	0
実施例3	0	0	0	0	0	0	0	0	0
実施例4	0	0	0	0	0	0	0	0	0
実施例5	0	0	0	0	0	0	0	0	0
実施例6	0	0	0	0	0	0	0	0	0
実施例7	0	0	0	0	0	0	0	0	0
比較例1	0	0	0	Δ	0	0	0	×	х
比較例2	0	Δ	×	Δ	Δ	Δ	Δ	Δ	0
比較例3	0	Δ	×	×	×	×	×	Δ	0
比較例4	0	Δ	×	×	×	×	×	Δ	0

【0099】また、実施例6で得られたイエロートナー F、上記製造例で得られたシアントナー、マゼンタトナ ーおよびブラックトナーについて、上記フルカラーブリ 30 ンタを用いてB/W比6%のフルカラー画像の3000 枚の耐刷テストを行った。耐刷終了後の画像について、 カプリ、中抜けおよび転写性の評価を行ったところ全て ○ランクを維持していた。

【0100】 (キャリア製造例) 酸価2KOHmg/g でガラス転移点60℃のビスフェノールA型ポリエステ ル樹脂100重量部、磁性粉 (EPT-1000;戸田 工業社製) 400重量部、カーボンブラック (ケッチェ ンプラックEC:ライオン油脂社製)5 重量部およびシ リカ (H2000:ヘキスト社製) 2重量部をヘンシェ 40 ルミキサーで十分に混合した後、二軸押出混練機で溶融 混練した。得られた混練物を冷却後、フェザーミルで粗 粉砕し、さらにジェットミルで微粉砕した後、風力分級 機で微粉分級を行った。この後サフュージングシステム (SFS-1型:日本ニューマチック社製)により30 0℃で加熱処理し、体積平均粒径が35 umのキャリア を得た。

【0101】次に、本発明のイエロー現像剤を二成分現 像剤として使用する場合について、図5の現像装置を用

Bと上記製造例で得られたキャリアをトナー濃度が7重 量%となるように混合したイエロー理像剤を用いた。

【0102】図5の現像装置100において、現像領域 に搬送される現像剤の搬送量4.5mg/cm³、Ds 0. 35mm、感光体102の周速度120mm/se c、現像スリーブ111の周速度300mm/sec、 感光体表面電位-450Vの条件で、且つ現像バイアス 電源112から-350Vの直流電圧と、ピーク・ピー ク電圧が1.4KV、周波数が3KH2の矩形波でdu t v 比 (現像:回収) が1:1の交流電圧とを重畳させ た現像バイアスの下で、反転現像を行った。上記イエロ -現像剤を用いて1万枚の画像形成を行い、濃度ムラお よびカブリについて初期および耐刷後の画像を評価した ところ、いずれも濃度ムラおよびカブリのない画像が得 られていた。

【0103】なお、上記評価に用いた図5の現像装置の 構成について簡単に説明する。現像装置100において は、その内部にトナーTとキャリアとを含む現像剤10 1が収容されており、現像剤を搬送するための現像剤搬 送部材として、複数の磁棒を有するマグネットローラ1 10が内部に固定配置された円筒状の現像スリーブ11 1が回転可能に配置されている。現像スリーブ111は いて実験を行った。現像剤としては前記イエロートナー 50 現像領域において負帯電性有機系感光体102と適当な

21

間隔Dsを介して対向するように配置されている。 【0104】また、現像スリーブ111は現像ペイアス 電源112上接続されており、現像ペイアス電源 112 から交流電圧に直流電圧を重量させた現像パイアス電圧 を印加させて、現像領域に振動電界を作用させている。 「0105] 現像領域よりも現像剤の搬送方向上流域で マグネットローラ110の磁機別上対向する値膜に、 磁性ブレード113を現像スリーブ111と所定間隔を 介して設け、磁性ブレード113によって現像スリーブ 111トにおける現像の場を刺刺している。

101061また、現像実際100においては、その上部にトナーTを収容するトナー収容部114が設けられており、現像メリーブ111から現像剤中のトナーを用いて現像を行った結果、現像装置100内における現像剤中のトナー濃度が低下すると、トナー収容部114の下部に設けられたトナー補給ローラ115を開始させてトナーTを補給するようになっている。補給されたトナーは混合機件部材116により現像別と混合機件されて現像メリーブ111に供給される。

【0107】そして、現像装置100においては、磁性 20 ブレード113によって現像スリーブ111上の現像剤 の量を規制し、現像飛を現像スリーブ111上で薄層状 態にして現像腕域に搬送し、現像パイアス電源112か ら現像パイアス電圧を印加して現像領域に振動機果を作*

*用させ、現像スリーブ111によって搬送されてきた現 像剤中におけるトナーを現像スリーブ111から感光体 102の静電潜像部に供給して現像を行う。

[0108]

【発明の効果】本発明によれば、透光性および色再現性 に優れたイエロー現像剤を得ることができる。

【0109】また、本発明によれば、多色画像形成時に も優れた転写性を有するイエロー現像剤を得ることがで きる。

10【0110】また、本発明によれば、非磁性一成分現像 方式においても適用できるイエロー現像剤を得ることが できる。

【図面の簡単な説明】

【図1】 ミクロ多孔体を使用したエマルジョン形成法 を説明するための概略図である。

【図2】 ミクロ多孔体の断面の拡大図である。

【図3】 ミクロ多孔体を用いたエマルジョン形成装置 の概略構成図である。

【図4】 フルカラープリンタの概略説明図である。

0 【図5】 2成分現像装置の概略説明図である。

【符号の説明】

10: 威光体ドラム、20: レーザー光学系、30:フルカラー現像装置、40: 中間転写ベルト、60: 給紙手段、70: 定着装置。

[図4]

