Матрицы

На этом уроке мы покажем, как по *матрице* размера m на n построить линейное отображение из \mathbb{R}^n в \mathbb{R}^m . То есть линейное отображение, которое на вход принимает вектор из n чисел, а на выход выдаёт вектор из m чисел.

Начнём мы со следующего примера, который будем разбирать первые несколько шагов этого урока.

Линейное отображение $\mathbb{R}^3 \; o \mathbb{R}^2$

Построим пример линейного отображения $f: \mathbb{R}^3 o \mathbb{R}^2$.

Будем строить f из двух более простых линейных отображений f_1 и f_2 , которые мы сейчас определим.

Пусть f_1 это линейное отображение из \mathbb{R}^3 в \mathbb{R} . Как мы узнали из последних шагов прошлого урока, любое отображение из \mathbb{R}^3 в \mathbb{R} задаётся строкой из 3 чисел. Давайте зададим f_1 строкой (3,5,7). То есть для любого $\vec{x}=(x_1,x_2,x_3)\in\mathbb{R}^3$ имеем $f_1(\vec{x}):=3x_1+5x_2+7x_3$.

Аналогично, f_2 это линейное отображение из \mathbb{R}^3 в \mathbb{R} , задаваемое строкой (4,4,4). То есть $f_2(\vec{x}):=4x_1+4x_2+4x_3$.

Теперь определим $f(\vec{x})$ для любого $\vec{x} \in \mathbb{R}^3$. Так как f отображает \mathbb{R}^3 в \mathbb{R}^2 , вектор $f(\vec{x})$ должен лежать в \mathbb{R}^2 . Значит, $f(\vec{x})$ должен быть столбцом из двух чисел. Определим этот столбец так:

$$f(\vec{x}) := \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \end{pmatrix} = \begin{pmatrix} 3x_1 + 5x_2 + 7x_3 \\ 4x_1 + 4x_2 + 4x_3 \end{pmatrix}$$

Например,

$$f\begin{pmatrix} 1\\ -2\\ 0 \end{pmatrix} = \begin{pmatrix} 3\cdot 1 + 5\cdot (-2) + 7\cdot 0\\ 4\cdot 1 + 4\cdot (-2) + 4\cdot 0 \end{pmatrix} = \begin{pmatrix} -7\\ -4 \end{pmatrix}$$

Найдите f(9,1,-7). Напоминаем, что

$$f(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \end{pmatrix} = \ \begin{pmatrix} 3x_1 + 5x_2 + 7x_3 \\ 4x_1 + 4x_2 + 4x_3 \end{pmatrix}.$$

Полученный вами вектор напишите в строчку: например, (-20, 5). Число пробелов роли не играет.

Напишите текст

Проверка линейности f

Мы определили отображение $f:\mathbb{R}^3 \to \mathbb{R}^2$. Но мы не доказали, что это отображение является линейным – то есть, что для f выполняются первое и второе условие линейности.

Проверку первого условия мы дадим как задачу на следующем шаге. А пока проверим, что для f выполняется второе условие линейности.

Рассмотрим произвольный вектор $ec x \in \mathbb{R}^3$ и число $c \in \mathbb{R}$, и докажем что f(cec x) = cf(ec x). По построению отображения f выполнено:

$$f(c ec{x}) = egin{pmatrix} f_1(c ec{x}) \ f_2(c ec{x}) \end{pmatrix}.$$

Так как f_1 и f_2 – линейные отображения, для них выполнено второе условие линейности. То есть $f_1(c\vec{x})=cf_1(\vec{x})$ и $f_2(c\vec{x})=cf_2(\vec{x})$. Значит.

$$\begin{pmatrix} f_1(c\vec{x}) \\ f_2(c\vec{x}) \end{pmatrix} = \begin{pmatrix} cf_1(\vec{x}) \\ cf_2(\vec{x}) \end{pmatrix}.$$

По определению операции умножения вектора на число выполнено:

$$\begin{pmatrix} cf_1(\vec{x}) \\ cf_2(\vec{x}) \end{pmatrix} = c \cdot \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \end{pmatrix} = cf(\vec{x}).$$

Мы доказали, что для f выполнено второе условие линейности.

Повторим наше доказательство в сжатом виде:

$$f(c\vec{x}) = \begin{pmatrix} f_1(c\vec{x}) \\ f_2(c\vec{x}) \end{pmatrix} = \begin{pmatrix} cf_1(\vec{x}) \\ cf_2(\vec{x}) \end{pmatrix} = c \cdot \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \end{pmatrix} = cf(\vec{x}).$$

Задача с проверкой. Матрицы 1.

Докажите, что для f выполняется первое условие линейности. То есть $f(\vec{x})+f(\vec{y})=f(\vec{x}+\vec{y})$ для любых $\vec{x},\vec{y}\in\mathbb{R}^3$.

Напоминаем, что f задаётся так:

$$f(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \end{pmatrix} = \begin{pmatrix} 3x_1 + 5x_2 + 7x_3 \\ 4x_1 + 4x_2 + 4x_3 \end{pmatrix}.$$

Заполните пропуски

Пусть
$$\overrightarrow{x}=\begin{pmatrix}5\\6\\-3\end{pmatrix}$$
 , $\overrightarrow{y}=\begin{pmatrix}4\\2\\-5\end{pmatrix}$.

1. Тогда
$$f(\overrightarrow{x})=($$
 ,).

2. И
$$f(\overrightarrow{y})=($$

3. A
$$f(\overrightarrow{x}) + f(\overrightarrow{y}) = ($$
 ,

4. При этом
$$\overrightarrow{x}+\overrightarrow{y}= \overbrace{\begin{pmatrix} 5 \\ 6 \\ -3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \\ -5 \end{pmatrix} = \begin{pmatrix} 9 \\ 8 \\ -8 \end{pmatrix}}.$$

5. Следовательно,
$$f(\overrightarrow{x}+\overrightarrow{y})=($$

Тем самым $f(\overrightarrow{x}) + f(\overrightarrow{y}) = f(\overrightarrow{x} + \overrightarrow{y}).$

Матрица размера 2 на 3.

Напомним, мы определили f так:

$$f(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \end{pmatrix} = \begin{pmatrix} 3x_1 + 5x_2 + 7x_3 \\ 4x_1 + 4x_2 + 4x_3 \end{pmatrix}.$$

То есть $f_1:\mathbb{R}^3 o\mathbb{R}$ задаётся строкой (3,5,7) и $f_2:\mathbb{R}^3 o\mathbb{R}$ задаётся строкой (4,4,4).

Тогда отображение f можно записать в виде таблицы из двух строк, где первая строка соответствует f_1 , а вторая строка соответствует f_2 . Вот так:

$$f(\vec{x}) = egin{pmatrix} 3 & 5 & 7 \ 4 & 4 & 4 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} 3x_1 + 5x_2 + 7x_3 \ 4x_1 + 4x_2 + 4x_3 \end{pmatrix}.$$

- ullet Чему равна первая координата вектора $f(ec{x})$? Результату действия первой строки таблицы на вектор $ec{x}$.
- ullet Что нужно сделать, чтобы получить вторую координату вектора $f(ec{x})$? Подействовать второй строкой таблицы на вектор $ec{x}$.

Эта таблица называется матрицей. Заметьте, что матрица $\begin{pmatrix} 3 & 5 & 7 \\ 4 & 4 & 4 \end{pmatrix}$ полностью определяет отображение f. То есть зная эту матрицу, можно найти $f(\vec{x})$ для любого $\vec{x} \in \mathbb{R}^3$.

На следующем шаге с теорией мы зададим линейное отображение $f:\mathbb{R}^n o\mathbb{R}^m$ матрицей размера m на n.

Полученный вами вектор напишите в строчку: например, (-20, 5). Число пробелов роли не играет.

Напишите текст

Матрица m на n.

Построим линейное отображение $f:\mathbb{R}^n o \mathbb{R}^m$ по матрице размера m на n. В примере, который мы использовали в первой половине урока, было m=2 и n=3. Если что-то в общей теории будет не ясно, то вернитесь к примеру, и посмотрите, как теория работала на нём.

Пусть дана такая матрица:

$$A:=egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix},$$

где $a_{ij} \in \mathbb{R}$ для всех i,j. Числа a_{ij} называют элементами матрицы. Заметьте, что первый индекс элемента матрицы равен номеру его строки, а второй индекс – номеру его столбца.

Мы хотим по матрице A построить линейное отображение $f:\mathbb{R}^n o \mathbb{R}^m.$

Пусть
$$A:=\begin{pmatrix} -4&2&21&-2\\3&16&23&5\\3&4&6&-7\\16&2&-25&14 \end{pmatrix}$$

Найдите a_{32}

Введите численный ответ

Введите число

Строим линейное отображение по матрице

$$A:=egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Посмотрим на первую строку матрицы – это строка $(a_{11}, a_{12}, \ldots, a_{1n})$. Ей, как и любой строке длины n, соответствует линейное отображение из \mathbb{R}^n в \mathbb{R} . Обозначим это отображение за f_1 . Отображение f_1 будет отвечать за первую координату отображения f. Вот формула для действия строки $(a_{11}, a_{12}, \ldots, a_{1n})$ на векторе \vec{x} :

$$f_1(ec{x}) = (a_{11}, a_{12} \dots, a_{1n}) egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} := \ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = \sum\limits_{j=1}^n a_{1j}x_j \in \mathbb{R}.$$

Повторим это не для первой строки, а для строки номер i. Да, будет почти то же самое, но давайте всё-таки проговорим, чтобы не запутаться в индексах.

Строка номер i это $(a_{i1},\ a_{i2},\ \dots,\ a_{in})$. Ей, как и любой строке длины n, соответствует линейное отображение из \mathbb{R}^n в \mathbb{R} . Обозначим это отображение за f_i . Отображение f_i будет отвечать за i-ую координату отображения f. Вот формула для действия строки $(a_{i1},\ a_{i2},\ \dots,\ a_{in})$ на векторе \vec{x} :

$$f_i(ec{x}) = (a_{i1}, a_{i2} \dots, a_{in}) egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} := a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = \sum\limits_{j=1}^n a_{ij}x_j \in \mathbb{R}.$$

Пользуясь отображениями f_1,\ldots,f_m , мы так определяем действие отображения f на векторе $ec{x}$:

$$f(ec{x}) = egin{pmatrix} f_1(ec{x}) \ f_2(ec{x}) \ dots \ f_m(ec{x}) \end{pmatrix} = egin{pmatrix} \sum\limits_{j=1}^n a_{1j}x_j \ \sum\limits_{j=1}^n a_{2j}x_j \ dots \ \sum\limits_{j=1}^n a_{mj}x_j \end{pmatrix} \in \mathbb{R}^m.$$

Действие матрицы A на векторе $ec{x}$

Обозначение. Полученный способом с предыдущего шага вектор $f(\vec{x})$ называется результатом действия матрицы A на векторе \vec{x} и обозначается $A\vec{x}$.

Записывают действие матрицы A на векторе \vec{x} так:

$$Aec{x} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} = egin{pmatrix} \sum\limits_{j=1}^n a_{1j}x_j \ \sum\limits_{j=1}^n a_{2j}x_j \ dots \ \sum\limits_{j=1}^n a_{mj}x_j \end{pmatrix} \in \mathbb{R}^m$$

Также можно говорить, что мы умножили A на \vec{x} и получили $A\vec{x}$.

Принцип "строка на столбец" в конце прошлого урока мы вводили именно для умножения A на $ec{x}$.

Комментарий. Конечно, можно было не вводить отображения f_1, \ldots, f_m , а сразу дать формулу для $A\vec{x}$. Но так было бы сложнее понять, что каждая строка матрицы отвечает за своё отдельное линейное отображение из \mathbb{R}^n в \mathbb{R} .

Отображение f задано матрицей $\begin{pmatrix} -4 & 2 & 21 & -2 \\ 3 & 16 & 23 & 5 \\ 3 & 4 & 6 & -7 \end{pmatrix}$.

Из какого пространства в какое бьёт отображение f?

Выберите один вариант из списка

 $f: \mathbb{R}^4 o \mathbb{R}^3$

 $f: \mathbb{R}^3 \to \mathbb{R}^4$ $f: \mathbb{R}^3 \to \mathbb{R}^2$

 $f: \mathbb{R}^3 \to \mathbb{R}^3$

 $f: \mathbb{R}^4 o \mathbb{R}^4$

Отображение f задано матрицей $\begin{pmatrix} -4 & 2 & 21 & -2 \\ 3 & 16 & 23 & 5 \\ 3 & 4 & 6 & -7 \end{pmatrix}$.

Найдите
$$f \begin{pmatrix} 0 \\ 2 \\ -1 \\ 0 \end{pmatrix}$$
.

Полученный вами вектор напишите в строчку: например, (-20, 5). Число пробелов роли не играет.

Пример. Найдём $f \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$. По определению это равняется

$$\begin{pmatrix} -4 & 2 & 21 & -2 \\ 3 & 16 & 23 & 5 \\ 3 & 4 & 6 & -7 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} (-4) \cdot 1 & + & 2 \cdot 0 & + & 21 \cdot 1 & + & (-2) \cdot 0 \\ 3 \cdot 1 & + & 16 \cdot 0 & + & 23 \cdot 1 & + & 5 \cdot 0 \\ 3 \cdot 1 & + & 4 \cdot 0 & + & 6 \cdot 1 & + & (-7) \cdot 0 \end{pmatrix} = \begin{pmatrix} 17 \\ 26 \\ 9 \end{pmatrix}.$$

Напишите текст

Отображение f задано матрицей $\begin{pmatrix} -10 & -2 \\ 5 & 3 \\ 9 & 4 \end{pmatrix}$.

Найдите $f \begin{pmatrix} -7 \\ 17 \end{pmatrix}$.

Полученный вами вектор напишите в строчку: например, (-20, 5). Число пробелов роли не играет.

Напишите текст

Отображение f задано матрицей $\begin{pmatrix} 0.2 & 1 & 0.6 \\ -2 & 0.875 & -1.5 \\ 0.7 & 0.3 & -1.2 \end{pmatrix}$.

Найдите
$$f egin{pmatrix} 2 \ 5 \ 4 \end{pmatrix}$$
 .

Полученный вами вектор напишите в строчку: например, (-20, 5). Число пробелов роли не играет.

Напишите текст

Задача. Матрицы 2. На прошлых шагах мы показали, как по матрице A размера m на n построить отображение $f:\mathbb{R}^n o\mathbb{R}^m$. Однако мы пока не доказывали, что получившееся отображение f является линейным. Докажите, что отображение f линейно. То есть проверьте, что для f выполняются первое и второе условия линейности. **Комментарий.** Мы уже решали эту задачу для случая матрицы размера m=2 на n=3.

Что мы прошли на этом уроке

- ullet Мы начали изучать матрицы таблицы с m строками и n столбцами, состоящие из чисел.
- Вспомнив, как строкой из n чисел задать линейное отображение из \mathbb{R}^n в \mathbb{R} , мы научились по матрице размера m на n строить линейное отображение из \mathbb{R}^n в \mathbb{R}^m .
- В частности, из формулы для умножения строки на столбец мы вывели формулу для умножения матрицы на вектор.

Что нас ждёт на следующем уроке

На следующем уроке мы

- ближе познакомимся с матрицами, разобрав много примеров
- покажем, что матрицы и линейные отображения это одно и то же