

ECE 697CEFoundations of Computer Engineering

Lesson 5

Finite State Machines

Journal into maintenance mode y the current framework environmen splays help for a command env framework environment isplay an inspiring quote ists commands

Rationale

- Sequential circuits have states that store the effect of previously applied inputs
- Number of states for practical implementations is finite or limited
- Moore Machine: output associated to current state only
 - state -> output
- Mealy Machine: output associated to both state and specific input
 - (state, input) -> output

Objectives

- Apply the principles of finite state machine to create sequential circuits.
- Sequential circuits have outputs that are based on its inputs and current state.

Poll: Prior Knowledge

The provided figure is an example of what?

- 1) Monotonic Function
- 2) Minimization
- 3) Fault Detection
- 4) Don't Care Combination
- 5) Karnaugh Map

Prior Knowledge

- State-less circuit = current inputs alone determine the output
- Let's review from Lesson 2: Boolean Switching Functions
 - Minimization
 - Karnaugh Map
 - Unate & Monotonic Functions
 - Symmetric Functions

Orchestrated Discussion (Hand Raise): Critical Thinking Exercise

• Discuss two questions about the previous lesson.

Sequential Circuits and Finite State Machines

- Sequential circuit: Output = Function of (external inputs + stored information)
- <u>Finite-state machine (FSM):</u> abstract model to describe the synchronous sequential machine and its spatial counterpart, the iterative network
- Example: Serial binary adder: block diagram, addition process, state table and state diagram

Fig: Block diagram

Fig: Addition process

Internal States of Machines

Serial adder:

- Output at time t_i is a function of
 - Input values at the time x_1 and x_2
 - Carry generated at t_{i-1}
- Carry in turn depends on input at t_{i-1} and carry at t_{i-2} and so on
- State A means no carry was produced, state B means a carry was produced in the previous add.
- Use <u>internal states</u> to preserve information regarding input values from the time it is set to operating
- State diagram and state tables describe the behavior

	NS, z						
PS	$x_1x_2=00$	01	11	10			
A	A, 0	A, 1	B, 0	A, 1			
B	A, 1	B, 0	B, 1	B, 0			

Fig: State table

Fig: State diagram

Finite State Machines

<u>Finite State Machines:</u> Machines whose past histories can affect their future behavior in only finite number of ways.

- Serial adder:
 - Response to signal at time t is only a function of input at t and carry at t-1
 - Group input histories to 2 classes:
 - Those resulting in a 1 carry at t
 - Those resulting in a 0 carry at t
- Every FSM contains a finite number of latches used to encode the current state.
- The current state stores information about the previous inputs.

Finite-State Model

Deterministic machines:

- Next state S(t+1) determined uniquely by
 - present state S(t)
 - present input x(t)
- State transition function -> δ

$$S(t+1) = \delta \{S(t), x(t)\}$$

• Output function -> λ

Mealy machine :
$$z(t) = \lambda \{S(t), x(t)\}$$

Moore machine :
$$z(t) = \lambda \{S(t)\}$$

Video: Finite-State Model

- A Typical Mealy Model

 Mealy machine: Output depends on the present state and the present inputs
- A Mealy model:
 - 2 D flip flops
 - Input x(t)
 - Output z(t)

Fig: Logic diagram of a typical Mealy circuit

A Typical Mealy Model

- D input of flip-flop determines the next state value
- Typical state equations

•
$$y_1(t+1) = y_1(t)x(t) + y_2(t)x(t)$$

•
$$y_2(t+1) = \overline{y_1}(t)x(t)$$

Typical output equation

•
$$z(t) = \{y_1(t) + y_2(t)\}\overline{x}(t)$$

Fig: Logic diagram of a typical Mealy circuit

A Typical Mealy Model

PS		NS			O/P		
		X =	= 0	х	= 1	x = 0	x = 1
y ₁	y ₂	Υ,	Y2	Υ,	Y ₂	z	z
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Fig: State table

Fig: State diagram

Mealy Circuit Model

• Block schematic of a Mealy Circuit Model

Fig: Mealy circuit model

A Typical Moore Model on the present state of the system

- A typical Moore model:
 - 2 T flip-flops
 - Input x(t)
 - Output z(t)

Fig: Logic diagram of a Moore model

An Typical Moore Model inputs of flip-flops

Its state equations

•
$$y_1(t+1) = y_2(t)x(t) \oplus y_1(t)$$

•
$$y_2(t+1) = x(t) \oplus y_2(t)$$

- Its output equations
 - $z(t) = y_1(t)y_2(t)$

Fig: Logic diagram of a Moore model

A Typical Moore Model

PS		NS				O/P
		X =	= 0	X =	= 1	
У1	y ₂	Y ₁	Y ₂	Υ ₁	Y ₂	z
0	0	0	0	0	1	0
0	1	0	1	1	0	0
1	0	1	0	1	1	0
1	1	1	1	0	0	1

Fig: State table

Fig: State diagram

Moore Circuit Model

Block schematic of a Moore Model

Fig: Moore circuit model

Group Discussion and Report Back (Pen): Mealy and Moore Models

• Using the provided circuit models, identify at least 3 differences between the Mealy and Moore models.

Fig 1: Mealy circuit model

Fig 2: Moore circuit model

Sequence Detector for Moore Model

- Sequence detector for 01 or 10.
- Output 1 when the sequence is seen
- Moore Model: Output is a function of only state

Fig: State diagram

reset	input	current state	next state	output
1	-	-	Α	
0	0	A	В	0
0	1	Α	C	0
0	0	В	В	0
0	1	В	D	0
0	0	С	E	0
0	1	С	C	0
0	0	D	E	1
0	1	D	C	1
0	0	E	В	1
0	1	E	D	1

Fig: State table

Sequence Detector for Mealy Model

- Sequence detector for 01 or 10
- Output 1 when the sequence is seen
- Mealy Model: Output is a function of state and inputs

Fig: State diagram

reset	input	current state	next state	output
1	-	_	Α	0
0	0	A	В	0
0	1	A	С	0
0	0	В	В	0
0	1	В	С	1
0	0	C	В	1
0	1	C	C	0

Fig: State table

Homing Sequence

Homing sequence is X=101, since the final state can be uniquely determined by observing outputs.

Starting at A, we end-up in state C with outputs 100 Starting at B, we end-up in state A with outputs 100 Starting at C, we end-up in state B with outputs 101 Starting at D, we end-up in state C with outputs 011

Present State	Input X=0	Input X=1
Α	C,1	D,0
В	D,0	B,1
С	B,0	C,1
D	C,0	A,0

If we observe outputs, at the end of 3rd input, we know the current state, even though the initial state was unknown

Distinguishing Sequence

- A sequence X is a distinguishing sequence for machine M if the output sequence produced in response to X is distinct for each initial state.
- Distinguishing = separating for nondeterministic machines
- A distinguishing (input) sequence α allows to determine the initial state of the machine under experiment
- After applying α at any state s and observing an output response β the initial state s becomes known

Fig: Distinguishing sequence lpha

Synchronizing Sequence

- A synchronizing sequence is a sequence of inputs that will force the machine to a specified final state independent of the initial state or output sequence.
- A synchronizing sequence α takes the machine under experiment to a given state after applying α
- After applying α at any state the final state is s'

Fig: Synchronizing sequence α

Summary of this Lesson

- Answer questions related to Project 1: Finite State Machines in Verilog
 - Due in Lesson 10

Post-work for Lesson 5

Homework

After the Live Lecture, you will complete and submit a homework assignment.
 Go to the online classroom to view and submit the assignment.

To Prepare for the Next Lesson

- Read the Required Readings for Lesson 4.
- Complete the Pre-work for Lesson 4.
- Continue working on the Project.

Go to the online classroom for details.