ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE ODSEK ZA SIGNALE I SISTEME

ODSEK ZA FIZIČKU ELEKTRONIKU

- 1. U pojačavaču sa slike 1, parametri MOS tranzistora su: $B = \mu_n C_{ox} W / L = 2 \text{mA/V}^2$, $\lambda \to 0$, $V_T = 1 \text{V}$, dok su parametri bipolarnog tranzistora $\beta_F = \beta_0 \to \infty$, $V_{BE} = 0.7 \text{ V}$, $V_t = kT/q = 25 \text{mV}$ i $V_A \to \infty$. Poznato je i: $V_{DD} = 5 \text{ V}$, $R_1 = 6.8 \text{ k}\Omega$, $R_2 = 1 \text{ M}\Omega$ i $R_3 = 2.7 \text{ k}\Omega$.
- a) [5] Odrediti jednosmerne vrednosti struja drejna i kolektora, kao i jednosmernu vrednost izlaznog napona V_I .
- b) [5] Odrediti naponsko pojačanje pojačavača $a = v_i / v_u$.
- **2.** a) [6] Nacrtati detaljnu električnu šemu diferencijalnog pojačavača sa NPN tranzistorima na ulazu, kolom za svođenje na jednostruki izlaz i Widlar-ovim strujnim izvorom za polarizaciju ulaznih tranzistora. Na raspolaganju su tranzistori, otpornici i jedna baterija za napajanje.
 - b) [2] Izračunati vrednosti struja i nacrtati smerove struja svih tranzistora u pojačavaču za maksimalni diferencijalni ulazni napon.
 - c) [2] Izračunati vrednosti struja i nacrtati smerove struja svih tranzistora u pojačavaču za minimalni diferencijalni ulazni napon.
- 3. a) [3] Nacrtati instrumentacioni pojačavač sa tri operaciona pojačavača, napajan iz jedne baterije.
 - b) [2] Izračunati pojačanje pojačavača iz tačke a).
 - c) [2] Nacrtati zavisnost pojačanja pojačavača iz tačke a) od otpornika za podešavanje pojačanja.
 - d) [2] Nacrtati zavisnost pojačanja pojačavača iz tačke a) od otpornika u povratnoj sprezi ulaznih operacionih pojačavača.
 - e) [1] Nacrtati zavisnost izlaznog napona pojačavača iz tačke a) od napona baterije za napajanje.
- **4.** Za stabilizator sa slike 4 je poznato: $V_{EB} = 0.7 \text{ V}$, $\beta_{F1} = 100$, $\beta_{F2} = \beta_{F3} >> 1$, $V_u = -12 \text{ V}$, $R_1 = 5 \text{ k}\Omega$, $V_Z = 3.3 \text{ V}$, struja inverzne polarizacije Zener diode $I_Z \ge 2 \text{ mA}$, a maksimalna dozvoljena snaga disipacije rednog tranzistora $P_{DQ1\text{max}} = 9.04 \text{ W}$.
- a) [2] Odrediti otponost R_2 tako da se na izlazu dobija stabilisani napon $V_P = -5 \text{ V}$.
- b) [3] Odrediti i nacrtati karakteristiku stabilizatora $v_p(i_p)$.
- c) [3] Kolika je maksimalna struja stabilizatora na izlazu, imajući u vidu dozvoljenu disipaciju rednog tranzistora? Odrediti otpornost R_S u tom slučaju.
- d) [2] Kolika je maksimalna otpornost $R_{0\max}$ za koju stabilizator ispravno radi u celom opsegu izlaznih struja?

Slika 1 Slika 4