Notes for Paper

Create by

CHEN HUANNENG

Update at 21 February 2025

Final review by Abel

Notes for Paper

Mira hacia el cielo, eres infinito Romperás el capullo, volarás tan alto Sigue avanzando, has llegado lejos

> Mira Hacia El Cielo G.E.M.

Chen Huaneng (Abel)
Xiamen University
huanengchen@foxmail.com

Contents

1	TDRP: Truck-Drone collaborative Routing Problem · · · · · · · · · · · · · · · · · · ·	1
1	Traveling Salesman Problem with Drone · · · · · · · · · · · · · · · · · · ·	3
	1.1 Flying Sidekick Traveling Salesman Problem · · · · · · · · · · · · · · · · · · ·	3
	1.1.1 Flying Sidekick Traveling Salesman Problem with Multiple Drops · · · · · · · · · · · · · · · · · · ·	6
Re	eferences····	7

B CONTENTS

Part

1

TDRP: Truck-Drone collaborative Routing Problem

Traveling Salesman Problem with Drone

1.1 Flying Sidekick Traveling Salesman Problem

Flying Sidekick Traveling Salesman Problem (FSTSP) 由 Murray(2015) 等[1]提出。

FSTSP 数学模型的符号含义如表1-1。

表 1-1: FSTSP 模型符号及含义

符号	含义
0	起点车场
c+1	终点车场
$\mathbf{C} = \{1, 2, \cdots, c\}$	全部客户集合
$\mathbf{C}'\subseteq\mathbf{C}$	无人机可访问的客户集合
$N_0 = \{0, 1, 2, \cdots, c\}$	流出节点集合
$N_{+} = \{1, 2, \cdots, c+1\}$	流入节点集合
$N = \{0, 1, 2, \cdots, c, c+1\}$	全部节点集合
$\langle i, j, k \rangle \in P, i \in N_0, j \in \mathbf{C}', j \neq i, k \in N_+, k \neq i, k \neq j$	无人机飞行路径集合(符合模型约束的路
	径)
$ au_{ij}'/ au_{ij}$	弧 (i,j) 的飞行/行驶时间成本
S_L/S_R	无人机发射/回收耗时
e	无人机续航时长
$x_{ij} \in \{0, 1\}$	卡车路由决策变量
$y_{ijk} \in \{0,1\}$	无人机路由决策变量
$1 \le u_i \le c + 2$	卡车破子圈辅助变量
t_i'/t_i	无人机/卡车有效到达时间戳辅助变量
$p_{ij} \in \{0, 1\}$	无人机架次先后辅助变量

FSTSP 数学模型可以表示为 MILP 1.1。

Model 1.1: FSTSP MILP $\min \ \ t_{c+1} \tag{1-1}$

(1-2)

continued

s.t.
$$\sum_{\substack{i \in N_0 \\ i \neq j}} x_{ij} + \sum_{\substack{i \in N_0 \\ i \neq j}} \sum_{\substack{k \in N_+ \\ i \neq j \ (i, i, k) \in P}} y_{ijk} = 1, \quad \forall j \in C$$

$$\sum_{j \in N_+} x_{0j} = 1 \tag{1-3}$$

$$\sum_{i \in N_0} x_{i,c+1} = 1 \tag{1-4}$$

$$u_i - u_j + 1 \le (c+2)(1 - x_{ij}), \quad \forall i \in C, j \in \{N_+ : j \ne i\}$$
 (1-5)

$$\sum_{\substack{i \in N_0 \\ i \neq j}} x_{ij} = \sum_{\substack{k \in N_+ \\ k \neq j}} x_{jk}, \quad \forall j \in C$$

$$(1-6)$$

$$\sum_{\substack{j \in C \\ j \neq i}} \sum_{\substack{k \in N_+ \\ (j, j, k) \in P}} y_{ijk} \le 1, \quad \forall i \in N_0$$

$$\tag{1-7}$$

$$\sum_{\substack{i \in N_0 \\ i \neq k}} \sum_{\substack{j \in C \\ \langle i, j, k \rangle \in P}} y_{ijk} \le 1, \quad \forall k \in N_+$$

$$(1-8)$$

$$2y_{ijk} \le \sum_{\substack{h \in N_0 \\ h \ne i}} x_{hi} + \sum_{\substack{l \in C \\ l \ne k}} x_{lk}, \quad \forall i \in C, j \in \{C : j \ne i\}, k \in \{N_+ : \langle i, j, k \rangle \in P\}$$
 (1-9)

$$y_{0jk} \le \sum_{\substack{h \in N_0 \\ h \ne k}} x_{hk}, \quad \forall j \in C, k \in \{N_+ : \langle 0, j, k \rangle \in P\}$$

$$(1-10)$$

$$u_k - u_i \ge 1 - (c+2)(1 - \sum_{\substack{j \in C \\ \langle i,j,k \rangle \in P}} y_{ijk}), \quad \forall i \in C, k \in \{N_+ : k \ne i\}$$
 (1-11)

$$t_i' \ge t_i - M(1 - \sum_{\substack{j \in C \\ j \ne i}} \sum_{\substack{k \in N_+ \\ \langle i, j, k \rangle \in P}} y_{ijk}), \quad \forall i \in C$$

$$(1-12)$$

$$t_{i}' \le t_{i} + M(1 - \sum_{\substack{j \in C \\ j \ne i}} \sum_{\substack{k \in N_{+} \\ (i,j,k) \in P}} y_{ijk}), \quad \forall i \in C$$
(1-13)

$$t'_{k} \ge t_{k} - M(1 - \sum_{\substack{i \in N_{0} \\ i \ne k}} \sum_{\substack{j \in C \\ (i,j,k) \in P}} y_{ijk}), \quad \forall k \in N_{+}$$
(1-14)

$$t'_{k} \le t_{k} + M(1 - \sum_{\substack{i \in N_{0} \\ i \ne k}} \sum_{\substack{j \in C \\ (i, j, k) \in P}} y_{ijk}), \quad \forall k \in N_{+}$$
(1-15)

$$t_{k} \ge t_{h} + \tau_{hk} + s_{L} \left(\sum_{\substack{l \in C \\ l \neq k}} \sum_{\substack{m \in N_{+} \\ \langle k, l, m \rangle \in P}} y_{klm} \right) + s_{R} \left(\sum_{\substack{i \in N_{0} \\ i \neq k}} \sum_{\substack{j \in C \\ \langle i, j, k \rangle \in P}} y_{ijk} \right) - M(1 - x_{hk}),$$
(1-16)

$$\forall h \in N_0, k \in \{N_+ : k \neq h\}$$

$$t'_{j} \ge t'_{i} + \tau'_{ij} - M(1 - \sum_{\substack{k \in N_{+} \\ \langle i, j, k \rangle \in P}} y_{ijk}), \quad \forall j \in C', i \in \{N_{0} : i \neq j\}$$

$$(1-17)$$

$$t'_{k} \ge t'_{j} + \tau'_{jk} + s_{R} - M(1 - \sum_{\substack{i \in N_{0} \\ \langle i, j, k \rangle \in P}} y_{ijk}), \quad \forall j \in C', k \in \{N_{+} : k \neq j\}$$
 (1-18)

$$t'_k - (t'_j - \tau'_{ij}) \le e + M(1 - y_{ijk}), \quad \forall k \in N_+, j \in \{C : j \ne k\}, i \in \{N_0 : \langle i, j, k \rangle \in P\}$$

(1-19)

(1-20)

约束1-1追求最小化卡车到达终点车场 c+1 的有效时间 t_{c+1} , 通过约束

约束条件可以分为四类[2]:

• 客户有关的约束: 约束1-2要求对于任何一位顾客 j,必须且只能被卡车(或无人机)服务一次。

• 卡车有关的约束:

- 卡车流平衡约束:约束1-3要求卡车从起点车场流出,约束1-4要求卡车从终点车场流入,约束1-6要求卡车在中间节点满足流入和流出相等的流平衡约束。
- 卡车破子圈约束: 约束1-5是 MTZ 形式的破子圈约束[3-4],去除了子圈存在的可能,这里 M 取到了 $u_i u_j + 1$ 的上界 c + 2, u_i 可以理解为点 i 的访问次序,比如 $u_1 = 5$ 可以理解为点 1 是从出发点开始,第五个被访问到的点。

• 无人机有关的约束:

- 无人机发射、回收节点流约束: 约束1-7表示无人机可以从非终点车场流出,约束1-8表示 无人机可以从非起点车场流入。
- 无人机访问、回收节点时间戳约束: 约束1-17表示无人机访问顾客的时间戳应该符合时间逻辑,即不早于起飞时间戳 t_i' + 前往服务顾客点的飞行时长 τ_{ij}' , 约束1-18表示无人机回到卡车的时间戳应该符合时间逻辑,即不早于访问顾客点的 t_j' + 返回卡车的飞行时长 τ_{jk}' + 回收无人机用时 s_{Ro}
- 无人机电量续航约束:约束1-19表示无人机的飞行时间不能超过其续航时间,即到达汇合点 t_k' 的有效时间-无人机的起飞时间 $t_j' \tau_{ij}'$ (不直接使用 t_i' 是因为 t_i' 不是起飞的时间戳 而是无人机到达 i 点的时间戳)要在无人机的续航时间 e 之内。

• 无人机和卡车同步有关的约束:

- 无人机发射、回收点卡车访问约束: 约束1-9要求对于非起点发射的无人机($\forall i \in C$),卡车必须经过无人机的起飞点 $\sum_{\substack{h \in N_0 \\ h \neq i}} x_{hi}$ 和降落点 $\sum_{\substack{l \in C \\ l \neq k}} x_{lk}$,约束1-10要求对于从起点车场起飞的无人机来说,卡车必须经过无人机的降落点,约束1-11要求卡车必须先访问无人机的起飞点再访问无人机的降落点。
- 无人机发射点时间戳约束:约束1-12和1-13为无人机发射点的有效时间约束,要求无人机 在发射节点的有效时间等于卡车在该点的有效时间,共同实现了卡车和无人机在发射节点 时间上的对齐。
- 无人机回收点时间戳约束:约束1-14和1-15为无人机回收点的有效时间约束,要求无人机 在回收节点的有效时间等于卡车在该点的有效时间,共同实现了卡车和无人机在回收节点 时间上的对齐。

- 卡车访问顾客节点时间戳约束:

1.1.1 Flying Sidekick Traveling Salesman Problem with Multiple Drops

References

- [1] MURRAY C C, CHU A G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery[J/OL]. Transportation Research Part C: Emerging Technologies, 2015, 54: 86-109. DOI: 10.1016/j.trc.2015.03.005.
- [2] 运筹 OR 帷幄. 交通 | 带飞行助手的旅行商问题: 无人机协助的配送优化建模及求解(附代码) [EB/OL]. 2024[2025-02-21]. https://zhuanlan.zhihu.com/p/3235861366.
- [3] 运筹 OR 帷幄. 优化 | 浅谈旅行商问题(TSP)的七种整数规划模型[EB/OL]. 2022 年 01 月 19 日 20:37[2025-02-23]. https://mp.weixin.qq.com/s/tDYOxlSQHKRJkf5EcaBJ1A.
- [4] 运筹 OR 帷幄. 优化 | TSP 中两种不同消除子环路的方法及 callback 实现(Python 调用 Gurobi 求解)[EB/OL]. 2020 年 09 月 26 日 20:30[2025-02-23]. https://mp.weixin.qq.com/s/i7I-o0LiC_JP3vVOQw2AIw.