Содержание

1	Периодические функции и гармонический анализ	1
2	Ортогональные и ортонормированные системы функций	3
3	Ряды Фурье по ортогональным системам функций	6
4	Определение тригонометрического ряда Фурье	7

1 Периодические функции и гармонический анализ

В математике имеется отдельный раздел, в рамках которого изучаются свойства периодических функций. Этот раздел называется гармоническим анализом.

Простейшей периодической функцией является синусоида, т.е. функция вида $y(t)=A\sin{(\omega t+\alpha)}$. Здесь t— это вещественная независимая переменная, постоянная A— это амплитуда функции, ω — ее частота и α — это фаза синусоиды. Синусоида y=y(t) удовлетворяет следующему условию периодичности: $y(t+T)=y(t) \ \forall t \in \mathbb{R}$, где $T=\frac{2\pi}{\omega}$ — это период функции y=y(t).

Отметим, что область определения любой периодической функции— это вся числовая прямая. Линейная комбинация любых двух периодических функций с одинаковым периодом T— это также периодическая функция с тем же периодом.

Таким образом, если сложить несколько синусоид вида $y_k(t) = A_k \sin{(k\omega t + \alpha_k)},$ $k = 1, 2, \ldots, N$, т.е. рассмотреть линейную комбинацию $\sum\limits_{k=1}^N A_k \sin{(k\omega t + \alpha_k)},$ $k = 1, 2, \ldots, N$, то получится периодическая функция с периодом $T = \frac{2\pi}{\omega},$ график которой по форме существенно отличается от графика одной синусоиды.

Оказывается, что последовательность всех синусоид вида $y_k(t) = A_k \sin{(k\omega t + \alpha_k)},$ $k = 1, 2, \ldots, N$ является в пространстве всевозможных периодических функций с тем же периодом $T = \frac{2\pi}{\omega}$ весьма представительным множеством. Точнее, любую достаточно гладкую функцию $\varphi(t)$ с условием пе-

риодичности $\varphi(t+T)=\varphi(t)\ \forall t\in\mathbb{R},$ можно разложить в ряд вида

$$A_0 + \sum_{k=1}^{+\infty} A_k \sin(k\omega t + \alpha_k), \qquad ((SS))$$

где $\omega = \frac{2\pi}{T}$.

По другому этот фундаментальный факт формулируют следующим образом: каждое сложное колебание $\varphi(t)$ разлагается на отдельные гармонические колебания вида $y_k(t) = A_k \sin{(k\omega t + \alpha_k)}$.

Синусоиды, входящие в разложение (SS) функции $\varphi(t)$, называются ее гармониками. В зависимости от номера k в разложении (SS) гармоника может быть первой, второй и т.д.

Процесс разложения колебания, т.е. периодической функции, в ряд по ее гармоникам, называется гармоническим анализом этой функции.

Преобразуем ряд (SS) к эквивалентному виду, воспользовавшись хорошо известной тригонометрической формулой $\sin(k\omega t + \alpha_k) = \sin(\alpha_k)\cos(k\omega t) + \cos(\alpha_k)\sin(k\omega t)$. В результате получим разложение вида

$$a_0 + \sum_{k=1}^{+\infty} (a_k \cos(k\omega t) + b_k \sin(k\omega t)), \tag{(TS)}$$

коэффициенты в котором задаются формулами $a_0 = A_0$, $a_k = A_k \sin{(\alpha_k)}$, $b_k = A_k \cos{(\alpha_k)}$, $k = 1, 2, \dots, N$.

Сделав в разложении (TS) замену переменной $x=\omega t$, придем к тригонометрическому ряду

$$a_0 + \sum_{k=1}^{+\infty} (a_k \cos(kx) + b_k \sin(kx)).$$
 ((TS'))

Таким образом, задача разложения сложного колебания в ряд (SS) по простым гармоникам сводится к задаче разложения периодической функции с периодом $T=2\pi$ в тригонометрический ряд (TS').

Последовательность функций $1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(kx), \sin(kx), \dots$, по которой ведется разложение (TS'), называется тригонометрической системой и является простейшим примером так называемых ортогональных систем функций.

2 Ортогональные и ортонормированные системы функций

Пусть задана последовательность функций

$$\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x), \dots$$
 ((Φ))

Предположим, что области определения функций этой последовательности имеют непустое пересечение, которое также является областью.

Определение

Любой функциональный ряд вида

$$\sum_{k=1}^{\infty} a_k \varphi_k(x), \tag{(S\Phi)}$$

где a_k — числа, называется рядом по системе функций (Ф). Числа a_k при этом называются коэффициентами ряда. Степенной ряд $\sum\limits_{k=0}^{\infty}a_kx^k$, например, является рядом по системе функций $1,x,x^2,\ldots,x^k,\ldots$

Пусть коэффициенты a_k таковы, что ряд $(S\Phi)$ сходится в любой точке области определения некоторой функции f(x) и при этом $\sum_{k=1}^{\infty} a_k \varphi_k(x) = f(x) / \forall x \in D_f$. Тогда говорят, что функция f(x) разложена в ряд по системе функций (Φ) .

Определение

Функции $\varphi(x)$ и $\psi(x)$, определенные на промежутке Δ , называются ортогональными на Δ , если их произведение интегрируемо на Δ и при этом справедливо равенство $\int\limits_{\Delta} \varphi(x)\psi(x)dx=0$. В частности, тождественно нулевая функция ортогональна любой другой функции.

Определение

Последовательность функций

$$\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x), \dots$$
 ((Φ))

называется ортогональной на промежутке Δ , если все эти функции определены на Δ , все произведения вида $\varphi_n(x) \cdot \varphi_m(x)$ интегрируемы на Δ и при этом справедливы равенства

$$\int_{\Delta} \varphi_n(x)\varphi_m(x)dx = 0, \ n \neq m. \tag{(\Phi')}$$

Если выполнены условия (Φ') , то говорят также, что функции последовательности (Φ) попарно ортогональны друг другу на промежутке Δ .

Лемма

Тригонометрическая система функций $1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(kx), \sin(kx), \dots$ ортогональна на интервале $(-\pi, +\pi)$.

Доказательство

Используя формулу Ньютона Лейбница, получаем равенства $\int_{-\pi}^{+\pi} \cos{(kx)}dx = \int_{-\pi}^{+\pi} \sin{(kx)}dx = 0$, т.е. нулевая гармоника тригонометрической системы ортогональна всем другим гармоникам этой системы. Далее, проинтегрируем по интервалу $(-\pi, +\pi)$ обе части тригонометрического равенства $2\sin{(nx)}\cos{(mx)} = \sin{((n+m)x)} + \sin{((n-m)x)}$. Тогда для любых натуральных m и n получим $\int_{-\pi}^{+\pi} \sin{(nx)}\cos{(mx)}dx = \frac{1}{2}\int_{-\pi}^{+\pi} \sin{((n+m)x)}dx + \frac{1}{2}\int_{-\pi}^{+\pi} \sin{((n-m)x)}dx = 0$. Таким образом, функции $\sin{(nx)}$ и $\cos{(mx)}$ ортогональны на интервале $(-\pi, +\pi)$. Поочередно проинтегрировав по интервалу $(-\pi, +\pi)$ тригонометрические равенства $2\cos{(nx)}\cos{(mx)} = \cos{((n+m)x)} + \cos{((n-m)x)}, 2\sin{(nx)}\cos{(mx)} = \cos{((n-m)x)} - \cos{((n+m)x)}, 3$ аключаем, что для любых натуральных m и n, $n \neq m$, гармоники $\cos{(nx)}$ и $\cos{(mx)}$ ортогональны друг другу, равно как и гармоники $\sin{(nx)}$ и $\sin{(mx)}$. \square

Следствие

Тригонометрическая система $1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(kx), \sin(kx), \dots$ ортогональна на любом промежутке длины 2π . Это утверждение следует

из периодичности всех функций рассматриваемой последовательности с одним и тем же периодом 2π , вследствие чего интеграл по промежутку длины 2π от произведения любых двух функций тригонометрической системы будет совпадать с интегралом по интервалу $(-\pi, +\pi)$ от этого произведения.

Важным обобщением тригонометрической системы является следующая последовательность

$$1, \cos(\frac{\pi x}{l}), \sin(\frac{\pi x}{l}), \cos(\frac{2\pi x}{l}), \sin(\frac{2\pi x}{l}), \dots, \cos(\frac{k\pi x}{l}), \sin(\frac{k\pi x}{l}), \dots$$

Здесь l — положительное число. Отметим, что каждая из функций системы (T_l) периодична с периодом 2l. Систему (T_l) также называют тригонометрической.

Определение

Последовательность функций

$$\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x), \dots,$$
 ((Φ))

определенных на промежутке Δ , называется ортонормированной на Δ , если эта система ортогональна на Δ и при этом справедливы равенства

$$\int_{\Lambda} |\varphi_n(x)|^2 dx = 1, \ n = 1, 2, \dots$$
 ((O_N))

Условие (O_N) часто называют нормировкой (или калибровкой) функций последовательности.

Пример. Система функций

$$\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi \cos(x)}}, \frac{1}{\sqrt{\pi \sin(x)}}, \frac{1}{\sqrt{\pi \cos(2x)}}, \frac{1}{\sqrt{\pi \sin(2x)}}, \dots, \frac{1}{\sqrt{\pi \cos(kx)}}, \frac{1}{\sqrt{\pi \sin(kx)}}, \dots$$

ортонормирована на любом промежутке длины 2π .

Аналогично, система функций

$$\frac{1}{\sqrt{2l}}, \frac{1}{\sqrt{l\cos\left(\frac{\pi x}{l}\right)}}, \frac{1}{\sqrt{l\sin\left(\frac{\pi x}{l}\right)}}, \frac{1}{\sqrt{l\cos\left(\frac{2\pi x}{l}\right)}}, \frac{1}{\sqrt{l\sin\left(\frac{2\pi x}{l}\right)}}, \dots, \frac{1}{\sqrt{l\cos\left(\frac{k\pi x}{l}\right)}}, \frac{1}{\sqrt{l\sin\left(\frac{k\pi x}{l}\right)}}, \dots$$

ортонормирована на любом промежутке длины 2l.

Последовательности функций (NT) и (NT_l) называют нормированными тригонометрическими системами.

3 Ряды Фурье по ортогональным системам функций

Пусть функция f(x) разложена в ряд по ортогональной на промежутке Δ системе функций

$$\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x), \dots,$$
 ((Φ))

т.е. имеет место равенство

$$f(x) = \sum_{k=1}^{+\infty} a_k \varphi_k(x) \ x \in \Delta. \tag{(E_{\Phi})}$$

Тогда возникает важный вопрос: как найти коэффициенты a_k этого разложения ?

Для того чтобы справиться с этой задачей, умножим обе части равенства (E_{Φ}) на функцию $\varphi_n(x)$, после чего проинтегрируем получившееся соотношение по промежутку Δ . В результате получим $\int_{\Delta} f(x)\varphi_n(x)dx =$

 $\int (\sum_{k=1}^{+\infty} a_k \varphi_k(x) \varphi_n(x)) dx$. Предположим, что операции интегрирования и бесконечного суммирования в правой части можно поменять местами.

Тогда получим
$$\int\limits_{\Delta} f(x)\varphi_n(x)dx = \sum\limits_{k=1}^{+\infty} (\int\limits_{\Delta} a_k \varphi_k(x)\varphi_n(x))dx = \sum\limits_{k=1}^{+\infty} a_k \int\limits_{\Delta} \varphi_k(x)\varphi_n(x)dx = \sum\limits_{k=1}^{+\infty} a_k \int\limits_{\Delta} \varphi_k(x)\varphi_k(x)dx = \sum\limits_{k=1}^{+\infty} a_k \int\limits_{\Delta} \varphi_k(x)$$

 $\sum_{k=1}^{+\infty} a_k \delta_k^n \int_{\Delta} |\varphi_k(x)|^2 dx.$ Здесь δ_k^n — это символ Кронекера. Последнее равенство справедливо в силу ортогональности системы функций (Φ). Таким образом, имеем равенство $\int_{\Delta} f(x) \varphi_n(x) dx = a_n \int_{\Delta} |\varphi_n(x)|^2 dx.$ Предположим

еще, что среди функций системы (Ф) нет тождественно нулевых. Тогда $\int\limits_{\Delta} |\varphi_n(x)|^2 dx \neq 0, \, n=1,2,\ldots$ и при этом

$$a_n = \frac{\int\limits_{\Delta} f(x)\varphi_n(x)dx}{\int\limits_{\Delta} |\varphi_n(x)|^2 dx}, \ n = 1, 2, \dots$$
 ((FC))

Это и есть искомые коэффициенты разложения (E_{Φ}) .

Числа a_n , определяемые для заданной функции f(x) по формулам (FC), называются коэффициентами Фурье функции f(x). При этом ряд $\sum_{k=1}^{\infty} a_k \varphi_k(x)$ называется рядом Фурье функции f(x) по ортогональной системе (Φ) .

Заметим, что для заданной ортогональной системы (Φ) , не содержащей тривиальных функций, по формулам (FC) всегда можно найти коэффициенты Фурье данной интегрируемой функции f(x). Следовательно, можно рассмотреть ряд Фурье по системе (Φ) с этими коэффициентами. Однако нужно иметь ввиду, что этот ряд Фурье, во- первых, может расходиться в некоторых точках промежутка Δ и, во-вторых, если он сходится, то его сумма в общем случае не обязательно совпадает с f(x). По этой причине вместо знака равенства функции f(x) сумме ее ряда Фурье иногда используется иной символ знак эквивалентности:

$$f(x) \sim \sum_{k=1}^{+\infty} a_k \varphi_k(x) \ x \in \Delta.$$
 ((E'_\Phi))

Это замечание относится, в частности, к разложениям по ортогональным тригонометрическим системам, т.е. к тригонометрическим рядам Фурье.

Для того чтобы выяснить, сходится ли тригонометрический ряд Фурье к значениям соответствующей функции f(x), эту функцию изначально подчиняют некоторым дополнительным условиям. Точнее, требуют, чтобы f(x) принадлежала некоторому функциональному классу.

4 Определение тригонометрического ряда Фурье

Пусть функция f(x) определена на конечном интервале (a,b) и при этом

$$\int_{a}^{b} |f(x)|^{2} dx < +\infty. \tag{(L_2)}$$

Совокупность всех функций f(x), удовлетворяющих условию (L_2) , образует линейное пространство, которое обозначается как $L_2(a,b)$.

Для любой функции f(x) из пространства $L_2(a,b)$ определены ее коэффициенты Фурье по ортогональной на (a,b) тригонометрической системе $\frac{1}{\sqrt{2l}},\frac{1}{\sqrt{l\cos{(\frac{\pi x}{l})}}},\frac{1}{\sqrt{l\sin{(\frac{\pi x}{l})}}},\frac{1}{\sqrt{l\cos{(\frac{2\pi x}{l})}}},\frac{1}{\sqrt{l\sin{(\frac{2\pi x}{l})}}},\dots,\frac{1}{\sqrt{l\cos{(\frac{k\pi x}{l})}}},\frac{1}{\sqrt{l\sin{(\frac{k\pi x}{l})}}},\dots,$ $k=1,2,\dots$, где $l=\frac{b-a}{2}$. Соответствующий функции f(x) тригонометрический ряд Фурье обычно записывается в следующем виде: $\frac{a_0}{2} + \sum_{k=0}^{+\infty} \left(a_k \cos\left(\frac{k\pi x}{l}\right) + \frac{1}{2}\right)$ $b_k \sin\left(\frac{k\pi x}{l}\right)$). Коэффициенты Фурье этого разложения вычисляются по формулам $a_0 = \frac{1}{l} \int_a^b f(x) dx$, $a_k = \frac{1}{l} \int_a^b f(x) \cos\left(\frac{k\pi x}{l}\right) dx$, $b_k = \frac{1}{l} \int_a^b f(x) \sin\left(\frac{k\pi x}{l}\right) dx$, $k = 1, 2, \dots$ Иногда, чтобы подчеркнуть, что речь идет о коэффициентах Фурье именно функции f(x), пишут $a_k = a_k(f)$, $b_k = b_k(f)$. Пример. Найти ряд Фурье функции $f(x)= {\rm sign}\, x,$ где $x\in (-1,+1).$ Решение. Имеем a=-1, b=1 и $l=\frac{b-a}{2}=1.$ Искомый ряд Фурье имеет вид $\frac{a_0}{2} + \sum_{k=1}^{+\infty} (a_k \cos(k\pi x) + b_k \sin(k\pi x))$. Для его коэффициентов в силу нечетности функции $f(x) = \operatorname{sign} x$ имеем равенства $a_0 = \int_{1}^{+1} f(x) dx =$ $\int_{-1}^{+1} \operatorname{sign} x dx = 0, \ a_k = \int_{-1}^{+1} f(x) \cos(k\pi x) dx = \int_{-1}^{+1} \operatorname{sign} x \cos(k\pi x) dx = 0. \ \text{Про-}$ изведение $f(x)\sin(k\pi x)$ это четная функция и поэтому $b_k=\int_{-1}^{+1}f(x)\sin(k\pi x)dx=$ $2\int\limits_{0}^{+1}\sin{(k\pi x)}dx=\frac{2}{k\pi}[1-(-1)^k]$. Следовательно, $b_{2k}=0$ и $b_{2k+1}=\frac{4}{(2k+1)\pi}$ и $f(x) \sim \sum_{k=0}^{+\infty} \frac{4}{(2k+1)\pi} \sin((2k+1)\pi x), x \in (-1,+1)$. Сходимость полученного ряда Фурье в каждой точке из интервала (-1, +1) требуется исследовать

отдельно.