State Transition Table for NFA with 6-Transition

The state transition table for an NFA with E-moves is similar to that of an NFA or DFA. The only difference is that along with the columns labelled by input symbols from 5, there is an additional Column lasielled

Thus
$$\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^{Q}$$

$$e.g. \qquad Q \qquad \qquad Q$$

trefat !	ΣU[e]	all strain			€ 35	who we	
> vo.	00	-C-2110		ra hang	(0.7	. 3.	•
1 (10 1)	→96° ~	1-2) }	lisme	-3 =	150,7	16/12/	." .1;
· Ludina	9/1	_ /	{a1}		{9/2}		
1 C- m	×92	() () () () () () () ()	1-1-1	\ {°\z\z\		<i>F</i> 0	
Mint E	rul M	V1 -612	4	5 ch.	at of	4 2	1/1

€ - Closure vf. a State portessas

Jim

It is the set of all states having distance Zero from state 'q' known as E-closure (q)

Here No is also added to the set because every state is at distance zero from itself

similarly
$$\in$$
 -closure $(q_1) = \{q_1, q_2\}$
 \in - closure $(q_2) = \{q_2\}$

NFA with E-moves to NFA without E-moves

Let us consider a NFA with E-moves

$$M_1 = (Q, \Sigma, \delta, \varphi_0, F)$$

$$S: \Theta \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^{\epsilon}$$

This cambe converted to an NFA without E-mores

$$M_2 = (0, \Sigma, \delta', \psi_0, F')$$

Here set of fried states (F&F') might not be gove for each state we know this that we know this this you know to thoke where does this you know not support state you get have and support of its different and state of the state

$$|S'(v, a) = \in -closue(S(E-closus(a), a))$$

Example 1 comes! the following NFA with E-moves to its equivalent NFA without E-moves accepting the same language.

Solution: Asper Definition of E-closure $E-closure (90) = {990, eV_1, 929}$ $E-closure (71) = {929}$ $E-closure (92) = {823}$

With E-moves

F= 9 423

V2 € €-closure (40) = {40, 01, 92} (1.e. of is at zero distance from Vo & v1 Therefore set of final states without 6-mores (10 ex given by F'= { do, 41, 42} Now we can obtained & 8'(No,0) = E- closure (8(e-closure (No))) = E-dosnie (8({ 20, 21, 22, 0)) (= (E : dosme (& (vo, 0) U & (v1, 0) U & (42, 0)) $q_0 \stackrel{\epsilon^+}{\rightleftharpoons} q_1 \stackrel{\Rightarrow}{\rightarrow} q \stackrel{\epsilon^+}{\rightleftharpoons} q_2 = \epsilon - \text{dosine} \left(\{q_0\} \cup \phi\right)$ V2 3 9(Fr 91) = 1€ - closure (900) = {40,41,42} 5'(90,1) = (€-) closure (8 (€-closure (20),1)). = E- dosme (5 (500, 91, 423, 1)) = E- chrsm (S(vo, 1) N S(vg, 1) US(vh, 1)) σο (Φ υ (νι) υ φ) = e - closur (VI) = { \\ \, \, \\ \, \\ \} s'(Vo, 2) = ∈ - closur (s(∈-closure (9.), 2)) = e- chrome (S ({ vo, 0/2, 9/2 }, 2)) 6.2.64 = E- Chrome (5(42,2) U 5(41,2) U 5(42,2)) = E- chrome (& U & U & EVIS) q₀ = €- chom (q₂)

S'(V1,0) = 6-choru (S(6-choru (V1),0)) 4 = E- chome (& ({ 91, 913,0)) = E- drsim (8(21,0) U 8(22,0)) E- dosmi (PUP) = 6- dvsm (Φ) ((0 ((40) Trus (0 - 0) 8) ms go = 3 Simplarly we can obtain. (10) (91,1) (= VE = drong (1913 UP) 6x.262 81 (41,2) = 6- choner (16 9 U (42)) = {974} (8 P) = 6 - chosey (8 P) (1. ν) (1. δ' (1. αν2, 1) = (-) chom (Φ) 8' (2,2) = 6- disme (2) 1 fright forz (top / fry State diagram

1

Step 1:	NFB to NFB with	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1
2 °	1 5 6 NEW to WELL MANN		
θ E · · · · · · · · · · · · · · · · · ·	= - [1413]	>% \{ No, 91, 92	रिम्बरी रिक्स
	- - { v/3 fan }	9, -	Truy lay
	Per A L. C.	4. 4.7. 3	
× (1)	- Tray Fray	and the same of th	- /mj

(P) hardedly Water from ((10 m)) o ((1 m) o ((1 m)) = (1 (1 m) o (1 m)) = marketh from headhard athord: First warres NED to NED without 6-disule consider the following E-MFA, compute the E - closure of each state. 173 1593 (a) 1 1 py (12) 113 1 17 (UrTU-2-12-13 -- 'phos o distructor por E-closur (P) = {p} E-domic (V) = { [1, [V]] . (1, [V, v]) E - chromic (N) = { h, a, p} LAND WITH THE