习题 2.7. 给定正规式 $(a \mid b)^*ab(a \mid b)^*$, 请:

- (a) 叙述该正规式描述的语言;
- (b) 手工构造 NFA, 给出它处理输入串 bab 的状态转换序列;
- (c) 手工构造 DFA, 给出它处理输入串 bab 的状态转换序列;
- (d) 用算法 2.3将 NFA 变换成 DFA;
- (e) 用算法 2.4构造最简的 DFA。

0,0,1,2

0,0,1,2

(a) 一个串中一定含有ab子串的串

习题 2.7. 给定正规式 $(a \mid b)^*ab(a \mid b)^*$, 请:

- (a) 叙述该正规式描述的语言;
- (b) 手工构造 NFA, 给出它处理输入串 bab 的状态转换序列;
- (c) 手工构造 DFA, 给出它处理输入串 bab 的状态转换序列;
- (d) 用算法 2.3将 NFA 变换成 DFA;
- (e) 用算法 2.4构造最简的 DFA。

基于算法2.2从正规式构造的NFA

图 2.11: 识别正规式 ε 的 NFA

图 2.12: 识别正规式 a 的 NFA

图 2.14: 识别正规式 st 的 NFA

图 2.13: 识别正规式 slt 的 NFA

开始

图 2.15: 识别正规式 s* 的 NFA

习题 2.7. 给定正规式 (a | b)*ab(a | b)*, 请:

- (a) 叙述该正规式描述的语言;
- (b) 手工构造 NFA, 给出它处理输入串 bab 的状态转换序列;
- (c) 手工构造 DFA, 给出它处理输入串 bab 的状态转换序列;
- (d) 用算法 2.3将 NFA 变换成 DFA;
- (e) 用算法 2.4构造最简的 DFA。

状态	输入符号	
	а	b
А	В	С
В	В	D
С	В	С
D	Е	F
Е	Е	G
F	Е	F
G	Е	F

状态集合:

 $A = \{0, 1, 2, 4, 7\}$

 $B = \{1, 2, 3, 4, 6, 7, 8\}$

 $C = \{1, 2, 4, 5, 6, 7\}$

 $D = \{1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 16\}$

 $E = \{1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16\}$

 $F = \{1, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15, 16\}$

 $G = \{1, 2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16\}$

基于算法2.2从正规式构造的NFA

- (a) 叙述该正规式描述的语言;
- (b) 手工构造 NFA, 给出它处理输入串 bab 的状态转换序列;
- (c) 手工构造 DFA, 给出它处理输入串 bab 的状态转换序列;
- (d) 用算法 2.3将 NFA 变换成 DFA;
- (e) 用算法 2.4构造最简的 DFA。

接受状态子集 {D, E, F, G} 非接受状态子集 {A, B, C}

Step 1:

$$\{D, E, F, G\} \stackrel{a,b}{\Rightarrow} \{D, E, F, G\}$$

$$\{A, C\} \stackrel{a,b}{\Rightarrow} \{A, B, C\}$$

$$\{B\} \stackrel{\nu}{\Rightarrow} \{D, E, F, G\}$$

Step 2:

$$\{A, C\} \stackrel{b}{\Rightarrow} \{A, C\}
 \{A, C\} \stackrel{a}{\Rightarrow} \{B\}$$

$$\{A, C\} \stackrel{u}{\Rightarrow} \{B\}$$

习题 2.16. 构造一个最简的 DFA, 它接受所有大于 101 的二进制整数。

构造思路一:

- 位数大于 3 的数:
 - > 1(0|1)(0|1)(0|1)(0|1)*
- 位数等于 3 的数:
 - **>** 11(0|1)

1(0|1)(0|1)(0|1)(0|1)* | 11(0|1)

构造思路二:

- 所有以 11 开头, 且长度大于等于 3 的数:
 ▶ 11(0|1)(0|1)*
- 所有以 10 开头, 且长度大于等于 4 的数:
 - **>** 10(0|1)(0|1)(0|1)∗

11(0|1)(0|1)* | 10(0|1)(0|1)(0|1)*

常见错误:

- 1. 没有涉及死状态接受所有的不合法输入
- 2. 给出的不是最简DFA

