

Simulationsumgebung SimSTB

Version	0.2
Datum	24.07.2019

1 Allgemeines

Oft muss ein Programm nicht nur über die Konsole mit dem Benutzer kommunizieren, sondern auch über analoge und digitale Schnittstellen mit einem technischen System.

Die Simulationsumgebung **SimSTB** erlaubt es, dies für Schulungszwecke auch ohne zusätzliche Hardware mittels Simulation durchzuführen.

SimSTB besteht aus zwei Teilen:

- 1. Der eigentlichen **Simulationsumgebung** und **Steuerprogrammen** für diese. Die Steuerprogramme sind in Abschnitt 3 beschrieben. Die Installation in Abschnitt 2.
- 2. Einer **Programmier-Schnittstelle**, um aus eigenen Programmen die Simulationsumgebung zu nutzen. In Abschnitt 4 ist beschrieben, wie Sie eigene Programme erstellen können.

Um die Simulationsumgebung SimSTB aus eigenen Programmen zu nutzen, stehen 4 einfache C++-Funktionen zur Verfügung.

Schnittstelle	Funktion	Kanäle	Тур	Richtung
Digitaler Eingang	digEin	0 15	digital	Eingang
Digitaler Ausgang	digAus	0 15	digital	Ausgang
Analoger Eingang	anaEin	07	analog	Eingang
Analoger Ausgang	anaAus	07	analog	Ausgang

Die Kanäle bestimmen die Anzahl der jeweiligen Schnittstellen.

2 Lokale Installation der Simulationsumgebung

- 1. Kopieren Sie das bereitgestellte Simulationsverzeichnis samt Unterverzeichnissen nach "C:\"
- 2. Kontrollieren Sie, ob folgende Verzeichnis-Struktur und Dateien vorhanden sind.

3 Steuerung der Simulationsumgebung SimSTB

Im Unterverzeichnis bin finden Sie drei Programme zur Bedienung der Simulationsumgebung:

1. Simulations Monitor

Mit Hilfe des Programms SimMonitor. exe können Sie digitalen und analogen Ein- und Ausgänge überwachen. Die Werte werden im Sekundentakt aktualisiert. Starten können Sie den Monitor über einen einfachen Doppelklick auf die Exe-Datei.

2. Simulations Steuerung

Mit Hilfe des Programms SimSTBuerung . exe können Sie digitalen und analogen Ein- und Ausgänge manuell setzen.

setzen.

Die digitalen Eingänge können mit Hilfe der Befehle (1)

– (4) sowohl pauschal als auch individuell gesetzt

werden. Die analogen Eingänge können mit Hilfe der

Befehle (5) – (6) sowohl pauschal als auch individuell

gesetzt werden. Die Ausgänge können mit Hilfe der

Befehle (a) und (b) zurückgesetzt werden.

Analoge Eingangssteuerung
(5) - Alle analogen Eingänge 6
(6) - Analogen Eingänge 6
(a) - Alle digitalen Ausgänge 6

Analoge Ausgangssteuerung
(b) - Alle analogen Ausgänge 6

3. Analoger Eingangsdatengenerator

Mit Hilfe des Programms SimAnaEinGenerator.exe können Sie simulierte Messwerte für die analogen Eingänge erzeugen. Zur Zeit können Zufallswerte und sinusförmige Werte erzeugt werden.

```
Generator für analoge Eingangssignale
Id: 0
Form: 1
Amplitude: 15
Periodendauer (s): 30

Startzeit: Thu Feb 07 07:35:55 2019
Aktuelle Zeit: Thu Feb 07 07:38:20 2019
Verstrichene Zeit (s): 145

Wert: -12.9904
```


4 Erstellung eigener Programme für die Simulationsumgebung SimSTB

- 1. Um die Simulationsumgebung SimSTB nutzen zu können, müssen die Header und CPP-Dateien aus dem source-Verzeichnis der Simulationsumgebung in das Verzeichnis kopiert werden, indem auch die CPP-Datei des nutzenden Programms ist.
- 2. Die Datei simulation.cpp ist als bereits existierende Datei in das Projekt einzubinden. Ansonsten kann sie, wie auch die Header-Datei simintern.h vollständig ignoriert werden.
- 3. Die Header-Datei simulation.h muss in der eigenen CPP-Datei inkludiert werden. Dabei sind Anführungszeichen und keine spitzen Klammern zu verwenden.
- 4. Danach kann normal weiter programmiert werden, wobei man die vier Funktionen zur Nutzung der Simulationsumgebung benutzen darf.

Funktionsprototypen:

```
const int DIGMAXLAENGE = 16;
const int ANAMAXLAENGE = 8;

bool digEin( int id);
void digAus( int id, bool wert);

double anaEin( int id);
void anaAus( int id, double wert);
```

Beispiel-Code (Auszug; vollständig in Unterordner beispiele):

```
#include "simulation.h"
. . .
int main()
{
     bool ende = false;
     double wert;
      . . .
     while ( ende != true)
                                                 Analoger Eingang
            wert = anaEin( 0);
            cout << wert << endl;</pre>
            Sleep( 1000);
                                                 Digitaler Eingang
            ende = digEin(0); -
                                                  Digitaler und
     digAus(15, 1);
     anaAus (7, -123.456);
                                                Analoger Eingang
```


5 SimSTB Ein- und Ausgangsbelegung

O AE7

SinSTE Ein- und Ausgangsbelegung

Digital Eingänge		
	0	DE0
	0	DE1
	0	DE2
	0	DE3
	0	DE4
	0	DE5
	0	DE6
	0	DE7
	0	DE8
	0	DE9
	0	DE10
	0	DE11
	0	DE12
	0	DE13
	0	DE14
	0	DE15
Analoge Eingänge		
		AE0
		AE1
		AE2
		AE3
	0	AE4
		AE5
	0	AE6

Digitale Ausgänge					
DA0	0				
DA1	0				
DA2	0				
DA3	0				
DA4	0				
DA5	0				
DA6	0				
DA7	0				
DA8	0				
DA9	0				
DA10	0				
DA11	0				
DA12	0				
DA13	0				
DA14	0				
DA15	0				
Analoge Ausgänge					
AA0					
AA1					
AA2					
AA3					
AA4	0				
AA5					
AA6					
AA7	0				

