corrigé distribué le 17/05/25 MP2I PV

Une trigonalisation

Soit la matrice $A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \\ 1 & -1 & 3 \end{pmatrix}$.

Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à A. On notera $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

- 1. Calculer $A 2I_3$ et donner une base (u_1, u_2) de $Ker(f 2id_{\mathbb{R}^3})$.
- 2. Soit $u_3 = e_1 + e_2 + e_3$. Notons $\mathcal{B}' = (u_1, u_2, u_3)$.
 - (a) Justifier que \mathcal{B}' est une base de \mathbb{R}^3 .
 - (b) Écrire $P = P_{\mathcal{B},\mathcal{B}'}$, la matrice de passage de \mathcal{B} à \mathcal{B}' .
 - (c) Calculer la matrice de passage de \mathcal{B}' à \mathcal{B} .
- 3. (a) Calculer $\operatorname{Mat}_{\mathcal{B}}(f(u_3))$ puis $\operatorname{Mat}_{\mathcal{B}'}(f(u_3))$. Donner alors $T = \operatorname{Mat}_{\mathcal{B}'}(f)$. on vérifiera que T est triangulaire supérieure et que tous ses coefficients diagonaux sont égaux à 2.
 - (b) En écrivant T sous la forme $T = 2I_3 + N$, où N est une matrice à préciser, déterminer pour tout entier naturel n la matrice T^n comme combinaison linéaire de I_3 et N, puis de I_3 et T.
- 4. En utilisant la formule du changement de base, prouver que

$$\forall n \in \mathbb{N} \quad A^n = n2^{n-1}A - (n-1)2^nI_3.$$

Matrices équitables (E3A-E4A MPI 2024)

Soient n un entier naturel supérieur ou égal à 2 et $A = (a_{i,j})_{(i,j) \in [\![1,n]\!]^2} \in \mathcal{M}_n(\mathbb{K})$ où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On dit que A est **équitable** si :

$$\forall (i, j, k) \in [1, n]^3, \quad a_{i,j} = a_{i,k} a_{k,j}$$

- 1. Donner deux exemples de matrices équitables pour n=3.
- 2. Déterminer l'ensemble des matrices A pour lesquelles A et -A sont équitables.

- 3. Démontrer que si A est équitable, alors sa transposée A^{\top} est aussi équitable.
- 4. On suppose que A est équitable. Montrer que pour tout $(i, j) \in [1, n]^2, a_{i,i} = a_{j,j}$.

On suppose désormais que A est une matrice équitable non nulle.

- 5. Soit $k \in [1, n]$. Calculer $a_{k,k}$.
- 6. Soit B une matrice équitable non nulle. Montrer que A+B n'est pas équitable.
- 7. Montrer que pour tout $(i,j) \in [1,n]^2, a_{i,j} \neq 0$.
- 8. Pour tout $(i,j) \in [1,n]^2$, exprimer $a_{i,j}$ à l'aide de $a_{i,1}$ et $a_{j,1}$.
- 9. Diagonalisation de A.
 - (a) Montrer que A est de rang 1. Que vaut dim KerA?
 - (b) Donner une base de Ker(A).

 Indication: laissez tomber le système linéaire: exploitez les relations entre colonnes et travaillez avec l'endomorphisme canoniquement associé à A.
 - (c) Calculer A^2 . Pour C_1 la première colonne de A, vérifier notamment que $AC_1 = nC_1$.
 - (d) Montrer que la matrice A est semblable à Diag(n, 0, ..., 0). Autre formulation : montrer qu'il existe une base de \mathbb{K}^n dans laquelle la matrice de f, canoniquement associé à A est la matrice Diag(n, 0, ..., 0).
 - (e) Montrer que la matrice A est semblable à la matrice J dont tous les coefficients sont égaux à 1 .
- 10. Démontrer que A est symétrique si, et seulement si, A est à coefficients dans $\{-1,1\}$.
- 11. Déterminer le cardinal de l'ensemble des matrices équitables symétriques non nulles.
- 12. Si G est un sous-groupe fini de (\mathbb{K}^*, \times) , déterminer le cardinal de l'ensemble des matrices équitables à coefficients dans G.
- 13. Déterminer toutes les matrices carrées équitables de taille 2 à coefficients dans le groupe \mathbb{U}_2 .