Unidad 01. Nociones básicas Introducción a los conceptos de esfuerzos y deformaciones

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil Análisis Estructural Básico

2023b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada (Gere and Goodno, 2012).

Introducción

Ideas principales para comenzar:

- Todas las estructuras están sometidas a cargas, a las cuales llamaremos solicitaciones.
- Todas las solicitaciones harán que la estructura se esfuerce, y estos **esfuerzos** generarán **deformaciones**. En ocaciones, las deformaciones causarán los esfuerzos.

Esfuerzo

Una medida de la intensidad de una solicitación actuando en una superficie dada (una presión), según la inclinación de la carga tendrá diferentes características y efectos.

Deformación

Una medida del cambio de dimensiones de la estructura respecto a su forma original sin solicitaciones actuantes.

Introducción

Los conceptos fundamentales de la mecánica de materiales son esfuerzos y deformaciones.

Algunas definiciones importantes:

- Barra prismática: (prismatic bar) miembro estructural recto que tiene la misma sección transversal en toda su longitud.
- Fuerza axial: (axial force) una carga actuando en dirección del largo de la barra, generando compresiones o tracciones.
- Sección transversal: (cross section) corte perpendicular al eje longitudinal de la barra.

Figure: Barra prismática en tracción: (a) diagrama de cuerpo libre de un segmento de la barra, (b) segmento de la barra antes de la carga, (c) segmento de la barra después de la carga, y (d) esfuerzo normal en la barra.

Sobre la sección transversal de la barra actúa un **esfuerzo** σ distribuido contínuo, y la fuerza P actuando en esa sección transversal será la resultante del esfuerzo. $P = \sigma A$.

Esfuerzo normal σ (normal stress)

La intensidad del esfuerzo uniformemente distribuido en una barra prismática cargada axialmente, de sección transversal arbitraria:

$$\sigma = \frac{P}{A}$$

- Unidades: [FL⁻²].
- Esfuerzo de tracción (tensile stresses) cuando genera estiramientos en la barra. Se toman positivos (+).
- Esfuerzo de compresión (compressive stresses) cuando comprime la barra. Se toman negativos (-).

Figure: Barra prismática en tracción: (a) diagrama de cuerpo libre de un segmento de la barra, (b) segmento de la barra antes de la carga, (c) segmento de la barra después de la carga, y (d) esfuerzo normal en la barra

Limitaciones: esfuerzos normales, $\sigma = P/A$

- Los esfuerzos son uniformemente distribuidos en la sección transversal, esto cuando la fuerza axial actúa en el centroide de la misma.
- Los esfuerzos en los extremos de la barra dependerán del tipo de apoyo, es decir, de la forma como se transmita la fuerza P a la barra. Usualmente se generan concentraciones de esfuerzos.
- La fórmula $\sigma = P/A$ da buena precisión a una distancia b de sus extremos.
- Cuando el esfuerzo no es uniformente distribuido, la ecuación anterior medirá un promedio en la sección.

Figure: Barra de ojo hecha de acero sometida a cargas de tracción P.

La elongación de la barra δ es el resultado cumulativo de alargamientos de todos los elementos del material en el volumen de la barra. Una unidad de longitud L de la barra se elongará $1/L \times \delta$.

Deformación unitaria ε (normal strain)

Medida de cuánto se estira o contrae una barra, o *elongación por unidad de longitud*:

$$\varepsilon = \frac{\delta}{L}$$

- Adimensional.
- Consideraciones similares para deformaciones unitarias por tracción (tensile strains) y por compresión (compressive strains).

Figure: Barra prismática en tracción: (a) diagrama de cuerpo libre de un segmento de la barra, (b) segmento de la barra antes de la carga, (c) segmento de la barra después de la carga, y (d) esfuerzo normal en la barra.

Esfuerzo uniaxial y deformación unitaria uniaxial

 Las ecuaciones anteriores solo tiene consideraciones geométricas y estáticas, por lo que se pueden usar para cualquier material y cualquier carga.

Requerimiento

Si:

- La barra es prismática.
- La deformación de la barra es uniforme en todo su volumen, para lo cual el material deberá ser homogeneo.
- Las cargas son aplicadas en el centroide de la sección transversal.

Se llama un estado de esfuerzo uniaxial y deformación unitaria uniaxial.

Línea de acción de la fuerza axial para una distribución uniforme de esfuerzos

Suposición

El esfuerzo normal σ es uniformemente distribuido sobre la sección transversal si la línea de acción de las fuerzas axiales pasa por el centroide de la sección transversal.

Momentos de la fuerza P.

$$M_x = P\bar{y}$$
 $M_y = -P\bar{x}$.

• Momentos de los esfuerzos distribuidos σ :

$$M_x = \int \sigma y dA \quad M_y = -\int \sigma x dA.$$

• Igualando y despejando:

$$\bar{y} = \frac{\int y dA}{A} \quad \bar{x} = \frac{\int x dA}{A}.$$

Figure: Distribución de esfuerzos uniformes en una barra prismática: (a) fuerzas axiales P, y (b) sección transversal de la barra.

(b)

9 / 10

Referencias

Gere, J. M. and Goodno, B. J. (2012). Mechanics of materials. Cengage learning.