مباراة ولوج السنة الأولى لكلية طب الأسنان (الدار البيضاء) 2015/2014

مادة الفيزياء

تمرين 1: الموجات

يعبر عن سرعة انتشار الصوت في غاز ثنائي الجزيئة بالعلاقة التالية : $v=\sqrt{\frac{1,4P}{\rho}}$ مع P ضغط الغاز و ρ الكتلة الحجمية للغاز

الذي نعتبره كاملا ويخضع لقانون الغازات الكاملة.

 $R=8,31\ Pa.m^3.mol^{-1}.K^{-1}$: نعطي M(0)=16g/mol و ثابتة الغازات الكاملة M(H)=1g/mol نعطي : M(H)=1g/mol

يمكن التعبير عن سرعة الصوت ho في غاز ثنائي الجزيئة بالعلاقة التالية : ho

$$(A): \ v = \sqrt{\frac{1,4RT}{M}} \qquad (B): \ v = \sqrt{\frac{MT}{1,4R}} \qquad (C): \ v = \sqrt{\frac{1,4MT}{R}} \qquad (D): \ v = \sqrt{\frac{1,4T}{RM}} \qquad (E):$$

$$\Rightarrow v = \sqrt{\frac{1,4T}{RM}} \qquad (E):$$

ين أن ينس طروف التجربة تبين أن $\mathbf{Q.2}$ مقارنة سرعة الصوت في كل من غاز الهيدروجين وغاز الأوكسجين في نفس طروف التجربة تبين أن $\mathbf{Q.2}$

جواب : (E) سرعة الأكسجين أكبر : (D) تتناقص السرعة : (C) سرعة الهيدروجين أكبر : (B) السرعة لا تتعلق : (A) أخر من سرعة الأوكسجين بتزايد الكتلة المولية من سرعة الأوكسجين بطبيعة الغاز.

وياس سرعة الصوت في الهواء عند درجة الحرارة $\theta=0^{\circ}\mathrm{C}$ أعطى القيمة $v=331,45~\mathrm{m/s}$ الكتلة المولية للهواء هي $\mathbf{Q.3}$

(A) : $340g \ / \ mol$ (B) : $2,89kg \ / \ mol$ (C) : $2,89.10^{-2}kg \ / \ mol$ (D) : $28,9.10^{-2}g \ / \ mol$ (E) : $9.89kg \ / \ mol$ (E) : $9.89kg \ / \ mol$

Q.4 بالنسبة لنفس مسافة الانتشار L=10 وعند درجة الحرارة $\theta=20^{\circ}$ فإن التأخر الزمني للصوت المنتشر في الهيدروجين بالنسبة للصوت المنتشر في الأوكسجين قيمة هي :

(A) : $\tau = 2.3s$ (B) : $\tau = 2.3.10^{-2}s$ (C) : $\tau = 2.3.10^{-1}s$ (D) : $\tau = 3.2.10^{-2}s$ (E) : جواب آخر

نحدث موجة صوتية متتالية بواسطة رنان يهتز بتردد 880Hz في مدخل أنبوب مملوء بغاز الهيدروجين (H_2) عند درجة $\theta=20^{\circ}$ المسافة $\theta=1$ المسافة المسافة $\theta=1$ المسافة $\theta=1$ المسافة ا

(A) : $\delta \approx 17,4cm$ (B) : $\delta \approx 74cm$ (C) : $\delta \approx 152cm$ (D) : $\delta \approx 12cm$ (E) : جواب آخر : التحولات النووية.

 $ho_{0.6}$ تعرف الفصيلة المشعة على أنها :

(A) : $^{238}_{92}U$ مجموعة نظائر (B) مجموعة النويدات المستقرة : (B) مجموعة نظائر (C) تفتت العناصر: (B) مجموعة نظائر (B) بناورية فصيلة المستقرة : (B) مجموعة نظائر (B) مجموعة نظائر (B) بناورية فصيلة المستقرة : (B) مجموعة نظائر (B) مجموعة نظائر (B) بناورية فصيلة المستقرة : (B) مجموعة المست

Q.7 طبيعة النويدة Y:

(A) : ${}^{128}_{82}Pb$ (B) : ${}^{124}_{82}Pb$ (C) : ${}^{206}_{82}Pb$ (D) : ${}^{238}_{92}U$ (E) : +

Q.8 طبيعة التفتت رقم 3 عبارة عن :

جواب آخر : (E)

(A) : اندماج (B) : β^- تقتت (C) : β^+ تقتت (D) : γ اندماج (E) : جواب آخر

(C):5,64

(C): 9160,85 jours

(A): 1,64

(B): 3,64

(A): 13800 jours (B):915,85 jours

: هي الطاقة ΔE ب MeV الناتجة عن التفتت رقم 3 هي $\mathbf{Q.9}$

جواب آخر: (E) : 9160,58 jours

عمر النصف لنويدة البولونيوم هو $t_{1/2} = 138$ jours المدة الزمنية لتفتت 99% من عينة من البولونيوم هو $\mathbf{Q.10}$

المدة الرمنية للقلك %99% عمر اللصف للويدة البولوليوم هو $\mathfrak{l}_{1/2} = 138$ المدة الرمنية للقلك %99% من عليه من البولوليوم هو $\mathfrak{l}_{1/2}$

النشاط الإشعاعي لعينة من البولونيوم كتلتها $m m_0 = 2g$ عند اللحظة نصف عمر النصف هو : m Q.11

(D): 7,64

 $(A): 2,36.10^{15} \, \mathrm{Bq} \quad (B): 2,36.10^{16} \, \mathrm{Bq} \quad (C): 2,36.10^{17} \, \mathrm{Bq} \quad (D): 2,36.10^{18} \, \mathrm{Bq} \quad (E):$ جواب آخر E: 1 الكهرباء.

التركيب الأول : نطبق توترا u=600V بين مربطي تركيب كهربائي مكون من ثلاث مكثفات مركبة على التوالي سعتها $C_1=2C_2=5C_3=10 \mu F$

التركيب الثاني : نركب المكثفين C_1 و C_3 (غير مشحونين بدئيا) في دارة تحتوي على مولد مؤمثل للتيار وقاطع للتيار K (الشكل جانبه).

g عند غلق قاطع التيار K يمر في الفرع CD تيار كهربائي شدته $I_0=5\mu$ نعطي نعطي CD عند غلق قاطع التيار

: ويمة التوتر U_{MN} بين مربطي المكثف $\mathbf{Q.12}$

جواب آخر : (A) : 120 V (B) : 130 V (C) : 140 V (D) : 150 V (E) : جواب آخر

: هي المكثف المكافئ التركيب AB هي Q. $13\mathrm{C_e}$

(A): $1,25\mu F$ (B): $2,25\mu F$ (C): $3,25\mu F$ (D): $4,25\mu F$ (E): جواب آخر

: $E_{
m e}$ الطاقة الكهربائية التي يختزنها المكثف المكافئ عند نهاية الشحن هي ${f Q.14}$

 $(A): E_e = 0.525 J \qquad (B): E_e = 0.425 J \qquad (C): E_e = 0.325 J \qquad (D): E_e = 0.225 J \qquad (E): E_e = 0.000 J \qquad (E): E$

: h بارتفاع m=5g إذا تحولت الطاقة الكهربائية E_e كليا إلى طاقة حركية فأنها ترفع رأسيا كرية كتلتها 0.15

(A): h = 1m (B): h = 2.5m (C): h = 4.5m (D): h = 0.5m (E): A = 0.5m

المدة الزمنية Δt اللازمة التي يجب أن يبقى خلالها قاطع التيار مغلقا للحصول على توتر $U_{\rm CD}=50$ هي :

تمرين 4: الميكانيك.

نعتبر نابضا لفاته غير متصلة وكتلته مهملة وصلابته $\mathrm{m}=\mathrm{atitic}\left(\mathrm{S}\right)$ کتلته بطرفه الحر جسما (s) کتلته $\mathrm{k}=20N/\mathrm{m}$ (π) والمستوى (S) بين الجسم (S) والمستوى (شاكاكات بين الجسم (S) والمستوى المائل بزاوية $\alpha=30^\circ$ بالنسبة للمستوى الأفقى. نزيح الجسم عن موضع توازنه المنطبق مع أصل المعلم (O,\vec{i}) بمسافة في المنحى الموجب ثم نحرره بدون سرعة $X_m = 2cm$ بدئية، فيمر لأول مرة بالموضع O عند اللحظة t=0، نأخذ : g = 10N/kq

المالة النابض عند توازن الجسم (S) هي Δl_0 Q.17

(A) : $\Delta l_0 = 2 \text{ cm}$ (B) : $\Delta l_0 = 3 \text{ cm}$

(C) : $\Delta l_0 = 4 \text{ cm}$

(D) : $\Delta l_0 = 5$ cm (E) : جواب آخر

0.18 المعادلة التفاضلية المميزة للحركة تكتب على الشكل التالى:

(A) : $\ddot{x} + \frac{k}{ma}x = 0$ (B) : $\ddot{x} + \frac{k \sin \alpha}{ma}x = 0$ (C) : $\ddot{x} + \frac{k}{ma \sin \alpha}x = 0$ (D) : $\ddot{x} + \frac{k}{m}x = 0$ (E) : $= \frac{k}{ma} = 0$

: على الشكل التالي (T_0, ϕ) حيث $x = 2.10^{-2} \cos\left(\frac{2\pi}{T_0}t + \phi\right)$ يأخذان القيم التالية Q.19

(A) : $\left(0,628s, -\frac{\pi}{2}\right)$ (B) : $\left(6,28s, -\frac{\pi}{2}\right)$ (C) : $\left(0,628s, \frac{\pi}{2}\right)$ (D) : $\left(6,28s, \frac{\pi}{2}\right)$ (E) : جواب آخر

 $t = 1,75T_0$ شدة القوة التي يطبقها النابض على الجسم (S) عند اللحظة Q.20

(A): F = 4.4N

(B) : F = 3.4N

(C): F = 2.4N

(D) : F = 1,4N (E) : جو اب آخر

مادة الكيمياء

تمرین 1: دراسة عمود ذی محروق.

توضح التبيانة مبدأ الاشتغال الكهركيميائي لعمود ذي محروق. يتكون العمود ذي محروق من مقصورتين يفصل بينهما إلكتروليت (عبارة عن محلول يسمح بمرور الأيونات) يتم تزويد المقصورة 1 بغاز ثنائي الهيدروجين والمقصورة 2 بغاز ثنائي الأوكسجين.

يشتغل العمود لمدة $\Delta t = 200 \; h$ ويزود الدارة الخارجية بتيار شدته آابتة I = 288.535 A

معطيات:

- $V_m = 24L.mol^{-1}$: الوسط النفاعلي حمضي $F = 9,65.10^4 C.mol^{-1}$
- . $O_{2(g)} / H_2 O_{(l)}$ و $H^+_{(aq)} / H_{2(g)}$ المزدوجات مختزل $H_2 O_{(l)} / H_2 O_{(l)}$ عند اشتغال العمود:

0.1على مستوى إلكترود المقصورة 1:

- $(A): H_2 + 2e^- \implies 2H^+$ يحدث اختز ال كاثو دى $(B): 2H^+ + 2e^- \implies H_2$ يحدث اختز ال كاثو دى
 - جواب : (E)
- $(C): H_2 \implies 2H^+ + 2e^-$ تحدث أكسدة أنو دية $(D): O_2 + 2H^+ + 2e^- \implies H_2O$ آخر تحدث أكسدة أنو دية

0.2 المعادلة الحصيلة لاشتغال العمود هي:

- $O_2 + 2H^+ + 2e \rightleftharpoons H_2O_2$ (A): $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$
- (B) $H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$ $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ جواب : (E)
- $O_2 + 2H^+ + 2e \rightleftharpoons H_2O_2$ (C): $MnO_4^- + 4H^+ + 1e^- \rightleftharpoons Mn^{2+} + 4H_2O$
- (D) $O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$ $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$
- 0.3 كمية مادة غاز ثنائي الهيدروجين اللازمة لاشتغال العمود لمدة 200 ساعة هي:
- جواب آخر : (A) : n = 1076,4 mol (B) : n = 10764 mol (C) : n = 2152,8 mol (D) : n = 538,2 mol (E) : جواب آخر
 - Q.4 حجم غاز ثنائي الهيدروجين اللازم لاشتغال العمود لمدة 24 ساعة هي :

- (A): 3100 L
- (B):775 L
- (C): 1550 L
 - (D): 2550 L
- جواب آخر: (E)

تمرين 2: معايرة محلول للماء الأوكسيجيني.

 ho_0 نصب في كأس $ho_0 = 100$ من محلول ho_0 للماء الأوكسيجيني $ho_0 = 100$ تركيزه $2 \text{mol.} 1^{-1}$ نضيف للمحلول السابق حجما V من محلول لحمض الكبريتيك H_2SO_4 تركيزه $V_1 = 100 \text{mL}$ من الماء المقطر فنحصل على محلول S_1 حجمه

ننجز معايرة الماء الأوكسيجيني الموجود في المحلول S_1 بواسطة محلول بنفسجي لبر منغنات البوتاسيوم $(K^+ + MnO^-)$ تركيزه وم. نحصل على التكافؤ عندما نصب $V_{ar}=30,4mol.L^{-1}$ من محلول برمنغنات البوتاسيوم. $C_{ar}=0.15mol.L^{-1}$

معطيات:

- H_2O_2/H_2O_2 و O_2/H_2O_2 و MnO_4^-/Mn^{2+} و MnO_4^-/Mn^{2+} و O_2/H_2O_3 و O_3/H_2O_3
 - حمض الكبريتيك حمض ثنائى: كل جزيئة تحرر أيونين من +H.

0.5 أنصاف معادلات الأكسدة – اختزال الموافقة لتفاعل المعايرة هما:

(A):
$$O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$$

 $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$

(B):
$$H_2O_2 + 2H^+ + 2e^- \rightleftharpoons 2H_2O$$

 $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$ (E):

(C):
$$O_{2} + 2H^{+} + 2e^{-} \rightleftharpoons H_{2}O_{2}$$
$$MnO_{4}^{-} + 4H^{+} + 1e^{-} \rightleftharpoons Mn^{2+} + 4H_{2}O$$

(D):
$$O_2 + 2H^+ + 2e^- \rightleftharpoons H_2O_2$$

 $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$

Q.6 المعادلة الحصيلة لتفاعل المعايرة هي:

$$2MnO_4 + 10H_2O \implies 2Mn^{2-} + 8H_2O_2 + 4H^4$$
 (A)

$$2MnO_4 + 6H^- + 5H_2O_2 \implies 2Mn^{2-} + 8H_2O$$
 (B)

$$2MnO_4^- + 6H^+ + 5H_2O_2 = 2Mn^{2+} + 8H_2O + 5O_2$$
 (C)

$$MnO_4^- + 6H^+ + H_2O_2$$
 \longrightarrow $Mn^{2+} + O_2$ (D)

E) جو اب آخر

Q.7 يتم الكشف عن نقطة التكافؤ عندما يصبح المحلول المعاير:

- (A) : محايدا قاعديا: (B)
- جواب آخر: (E) عديم اللون: (D) بنفسجيا: (C)

- (A): $2,14 \text{mol.L}^{-1}$ (B): $0,76 \text{mol.L}^{-1}$ (C): $1,14 \text{mol.L}^{-1}$ (D): $0,57 \text{mol.L}^{-1}$ (E): جواب آخر
- \mathbf{C}_0 قيمة التركيز المولى \mathbf{C}_0 للمحلول \mathbf{O}_0

 - - 0.9 الحجم الأدنى لمحلول حمض الكبريتيك اللازم صبه في الكأس هو:
- (A) : $V \approx 2,30 \text{ mL}$ (B) : $V \approx 3,42 \text{ mL}$ (C) : $V \approx 6,84 \text{ mL}$ (D) : $V \approx 2,70 \text{ mL}$ (E) : جواب آخر

تمرین 3: تصنیع مرکب عضوی.

لتصنيع مركب عضوي \mathbf{E} ، ننجز في حوجلة خليطا متساوي المولات من أندريد الإثانويك التصنيع مركب عضوي \mathbf{E} 0 ننجز في حوجلة خليطا متساوي المولات من \mathbf{E} 102g.mol (كثافته \mathbf{E} 1,08 وكتلته المولية \mathbf{E} 104g.mol والبروبان \mathbf{E} 1 وكتلته المولية \mathbf{E} 1 وكتلته المولية \mathbf{E} 3 وكتلته المولية قطرات من حمض الكبريتيك المركز إلى الخليط التفاعلي (حفاز). ونستعمل التركيب التجريبي الممثل جانبه.

M(0) = 16g.mol⁻¹ و M(C) = 12g.mol⁻¹ و M(H) = 1g.mol⁻¹:

Q.10 المركب E المصنع هو:

(A) : بروبانوات الإيثيل (B) ايثانوات البروبيل (C) ايثانوات البروبيل (D) ايثانوات الإيثيل ايثانوات الإيثيل (D) ميثانوات الإيثيل المركب n_2 كميات المادة n_1 المادة n_2 كميات المادة n_3 البروبان n_4 كميات المادة n_4 المركب n_5 كميات المادة n_5 المركب n_6 كميات المادة n_6 المركب n_6 كميات المادة n_6 كميات المادة n_6 المركب n_6 كميات المادة n_6 كميات المادة كميات الم

(A) $n_1 = n_2 = 7,5$ mol (B) $n_1 = n_2 = 8,5$ mol (C) $n_1 = n_2 = 5,0$ mol (D) $n_1 = n_2 = 10,0$ mol (E): جواب آخر

 E الحجم V_1 للبروبان – I – أول المستعمل لتصنيع و V_1 من المركب $\mathrm{Q.12}$

 $(A): V_1 = 277,7 \; \text{mL} \quad (B): V_1 = 300,0 \; \text{mL} \quad (C): V_1 = 637,5 \; \text{mL} \quad (D): V_1 = 375,0 \; \text{mL} \quad (E):$ جواب آخر حمض الکبریتیك : $\mathbf{O.13}$

جواب آخر: (B) زيادة سرعة التفاعل: (D) تنقية المركب العضوي المصنع: (C) زيادة مردود التفاعل: (B) تفادي ضياع المتفاعلات: (D) الصيغة نصف المنشورة للمركب العضوي (D) المصنع:

وبان -1 و بروبان -1 و أول -1

تمرین 4: معایرة محلول قاعدی بقیاس pH.

نعاير حجما $V_B = 10 \text{mL}$ من محلول مائى للقاعدة $NH_{4(qq)}^+/NH_{3(qq)}$ الموافقة للمزدوجة. بإضافة محلول مائى لحمض الكلور يدريك

 $. \ C_A = 3,155 mol. L^{-1}$ ترکیزه $\left(H_3 O^+_{(aq)} + C l^-_{(aq)} \right)$

- $K_e = 10^{-4}$
- . $N\!H_{4(aq)}^+ / N\!H_{3(aq)}$ و $H_3O^+_{(aq)} / H_2O_{(l)}$: المزدوجات قاعدة / حمض الممكن تدخلها في تفاعل المعايرة +

Q.16 المعادلة الحصيلة لتفاعل بين القاعدة المعايرة وأيون الأكسونيوم هي :

(A):
$$H_3O^+_{(aq)} + NH_{3(aa)} \longrightarrow NH_{2(aq)} + H_2O_{(l)}$$

$$(A): H_{3}O^{+}_{(aq)} + NH_{3(aq)} + H_{2}O_{(l)} \qquad (B): H_{3}O^{+}_{(aq)} + NH^{+}_{4(aq)} + NH_{3(aq)} + H_{2}O_{(l)} \qquad (E): +\infty$$

$$(C): H_3O^+_{(aq)} + NH_{3(aq)} + NO_{2(aq)} + H_2O_{(l)} \qquad (D): H_3O^+_{(aq)} + NH_{3(aq)} + NH_{4(aq)}^+ + H_2O_{(l)}$$

D):
$$H_3O^+_{(aq)} + NH_{3(aa)} \longrightarrow NH^+_{4(aa)} + H_2O_{(l)}$$
 آخر

نحو: NH_{+}^{+} بعد نقطة التكافؤ ينحو تركيز أيونات الأمونيوم NH_{+}^{+} نحو

$$(C) \cdot 6 \cdot 31 \cdot 10^{-2} \text{mol I}^{-1} \quad (C) \cdot 3 \cdot 1$$

$$C_B$$
 تركيز المحلول المعاير C_B هو :

(A): $3,61.10^{-2}$ mol.L⁻¹ (B): $6,31.10^{-2}$ mol.L⁻¹ (C): $3,1.10^{-2}$ mol.L⁻¹

:
$$NH_4^+/NH_3$$
 ثابتة الحمضية للمزدوجة **Q.19**

(A):
$$K_a = 10^{-11}$$

(A):
$$K_a = 10^{-11}$$
 (B): $K_a = 6.3.10^{-10}$

(C):
$$K_a = 10^{-6.5}$$

التناقص : (C)

(D):
$$K_a = 10^{-5,3}$$
 (E): جواب آخر

 $[HO^{-}]=10^{-7} mol.L^{-1}$: هو يركيز المحلول المعاير هو **Q.20**

(A):
$$[HO^{-}]=10^{-7} mol.L^{-1}$$

(B):
$$[HO^{-}] = 5.310^{-3} mol.L^{-1}$$

(C):
$$[HO^{-}] = 1,9910^{-9} mol.L^{-1}$$

(D):
$$[HO^{-}] = 5.010^{-6} mol.L^{-1}$$

مادة علوم الحياة والأرض

بالنسبة لكل سؤال، أحد بدائرة الإجابة الصحيحة والوحيدة على ورقة الإجابات المرافقة لهذا الموضوع

- 1) تفرز اللمفاويات T8 القاتلة:
 - A. مادة البرفورين.
- B. الكريونات المناعية.
 - C. الأنترلوكينات.
 - D. بروتينات التكملة.
 - 2) يعتمد التلقيح على مبدأ:
- A. تدخل لمفاويات ذاكرة تكونت قبل الاتصال الأول بمولد مضاد.
- B. تدخل بلعميات ذاكرة تكونت بعد الاتصال الأول بمولد مضاد.
- C. ظهور لمفاويات ذاكرة تكونت بعد الاتصال الأول بمولد مضاد.
- E. ظهور بلعميات ذاكرة تكونت بعد الاتصال الثاني بمولد مضاد.
 - 3) تسلسل أطوار الأستجابة المناعية النوعية هو كالتالي:
 - A. طور الحث ثم طور التضخيم فطور التنفيذ.
 - B. طور التنفيذ ثم طور التضخيم فطور الحث.
 - C. طور التضخيم ثم طور التنفيذ فطور الحث.
 - D. طور التضخيم ثم طور الحث فطور التنفيذ.
 - 4) الساركومير يشكل وحدة اللييف العضلي التي:
 - A. تفصل بین حزین Z متتالیین.
 - B. تفصل بين منطقتين H متتاليتين.
 - C. تتكون من شريط فاتح وشريط قاتم.
 - D. تتكون من شريط قاتم ونصف شريط فاتح.
 - 5) خلال الرعشة العضلية يمكن أن نسجل:
 - A. تثبیت المیوزین علی التربومیوزین.
 - B. تثبیت الكالسیوم على التربومیوزین.
 - C. حلمأة ال ADP وتحرير الطاقة.
 - D. حلمأة ال ATP وتحرير الطاقة.
 - 6) خلال إحدى طرق تجديد ATP:
 - A. يتم استعمال الفوسفوكرياتين كطريقة بطيئة حي لا هوائية.
 - B. يتم استعمال الفوسفوكرياتين كطريقة سريعة حي هوائية.
 - C. يتم استعمال الفوسفوكرياتين كطريقة بطيئة حى هوائية.
 - D. يتم استعمال الفوسفوكرياتين كطريقة سريعة حي لا هوائية.
- 7) يمكن تطبيق إهاجتين، فعالتين وبنفس الشدة، على عضلة من تسجيل المخطط العضلي التالى:
 - A. عدة رعشات عضلية ذات التحام غير تام.
 - B. رعشتان عضلیتان ذات التحام غیر تام.
 - C. رعشتان عضلیتان معزولتین بوسع متزاید.
 - D. رعشتان عضلیتان معزولتین بوسع متناقص.
 - 8) خلال الرعشة العضلية، يصبح ساركوبلازم الألياف العضلية قاعديا تنيجة:
 - A. تحرير الكريتان بعد استعمال الفوسفو كرياتين.
 - B. تحرير الفوسفوكرياتين بعد استعمال الكريتان.
 - C. تحرير الحمض الفوسفوري بعد حلمأة ال ATP.
 - D. تحرير ال ATP بعد حلمأة الحمض الفوسفوري.
 - 9) في بداية الرعشة العضلية، يصبح سار كوبلازم الألياف العضلية حمضيا تنيجة:
 - A. تحرير الكريتان بعد استعمال الفوسفوكرياتين.
 - B. تحرير الفوسفو كرياتين بعد استعمال الكريتان.

- C. تحرير الحمض الفوسفوري بعد حلمأة ال ATP.
- D. تحرير ال ATP بعد حلمأة الحمض الفوسفوري.
 - 10) تظهر بنية الليف العضلى:
 - A. شبكة سار كوبلاز مية تحيط بالللييفات العضلية.
 - B. شبكة سار كوبلاز مية تحيط بخييطات الأكتين.
 - C. عدة نوى متموضعة في مركز الليف العضلي.
- D. نواة واحدة متموضعة في مركز الليف العضلي.
 - 11) يمثل الانقسام الاختزالي انقساما خلويا:
- A. يحافظ على الصيغة الصبغية بين الخلية الأم والخلايا البنات.
- B. يمكن من الحصول دائما على 4 خلايا أحادية الصيغة الصبغية.
 - C. يتضمن أنقساما منصفا متبوعا بإنقسام تعادلي.
 - D. يتضمن أنقساما تعادليا متبوعا بإنقسام منصف.
 - 12) التخليط البيصبغي:
- A. يمكن من ظهور توليفات جديدة من الحليلات المحمولة على صبغيات مختلفة وغير متماثلة.
 - B. يمكن من ظهور توليفات جديدة من الحليلات المحمولة على صبيغيات صبغيات متماثلة.
 - C. يقلل من احتمال ظهور أفراد بمظاهر خارجية جديدة التركيب.
 - D. يزيد من احتمال ظهور أفراد بمظاهر خارجية أبوية.
 - 13) في إطار التوالد الجنسي، نفسر ظهور أفراد بمظاهر خارجية جديدة التركيب:
 - A. بتدخل أمشاج جديدة التركيب خلال ظاهرة الإخصاب.
 - B. بتدخل أمشاج أبوية خلال ظاهرة الإخصاب.
 - C. بظهور أمشاج جديدة التركيب خلال ظاهرة تشكل الأمشاج.
 - D. بظهور أمشاج أبوية خلال ظاهرة تشكل الأمشاج.
 - 14) في حالة مورثتين مرتبطتين تفصل بيهعما مسافة صغيرة جدا:
 - A. تكون حليلات هاتين المورثتين خاضعتين لسيادة تامة.
 - B. تكون حليلات هاتين المورثتين متساوية السيادة.
 - كون احتمال افتراق هاتين المورثتين بفعل ظاهرة العبور صغيرا جدا.
 - D. يكون احتمال افتراق هاتين المورثتين بفعل ظاهرة العبور كبيرا جدا.
 - 15) في حالة مرض وراثي غير مرتبط بالجنس وسائد:
 - A. بإمكان زواج أبوين مصابين بالمرض أن يعطى أطفالا غير مصابين.
 - B. ليس بإمكان زواج أبوين مصابين بالمرض أن يعطى أطفالا غير مصابين.
 - C. بإمكان زواج أبوين غير مصابين بالمرض أن يعطي أطفالا مصابين.
 - D. ليس بإمكان زواج أبوين غير مصابين بالمرض أن يعطي أطفالا مصابين.
 - 16) في حالة مرض مرتبط بالجنس ومتنحى:
 - A. ليس بإمكان زواج أبوين مصابين بالمرض أن يعطى بناتا مصابات.
 - B. بإمكان زواج أبوين مصابين بالمرض أن يعطي ذكورا غير مصابين.
 - ليس بإمكان زواج أبوين غير مصابين بالمرض أن يعطى بناتا مصابات.
 - D. ليس بإمكان زواج أبوين غير مصابين بالمرض أن يعطى ذكورا مصابات
 - 17) تتم عملية تحويل ARN فيروسي السيدا إلى ADN فيروسي:
 - A. على مستوى الفيروس.
 - B. على مستوى سيتوبلازم اللمفاويات T4 المتطفل عليها.
 - C. بعد تبرعم فيروسات جديدة انطلاقا من اللمفاويات T4.
 - D. خلال تبرعم فيروسات جديدة انطلاقا من اللمفاويات T4.
 - 18) يعتبر فيروس السيدا فيروسا قهريا نظرا لما يلي:
 - A. لأنه يتوفر على مادة وراثية.
 - B. لأن مادته الوراثية هي ال ADN.
 - C. لأن مادته الوراثية هي ال ARN.

- D. لأنه يتطفل على اللمفاويات T4 ذات ADN.
 - 19) ترجمة الخبر الوراثي هي:
- A. تركيب سلاسل متعددة النيكليوتيدات حسب تسلسل الوحدات الرمزية المحمولة على ال ARNm.
 - B. تركيب سلاسل ببتيدية حسب تسلسل الوحدات الرمزية المحمولة على ال ARNm.
 - C. تركيب سلاسل ببتيدية حسب تسلسل الوحدات الرمزية المحمولة على ال ARNt.
 - D. تركيب سلاسل متعددة النيكليوتيدات حسب تسلسل الوحدات الرمزية المحمولة على ال ARNt.
 - 20) استنساخ ال ADN يتطلب تدخل الأنزيمات التالية:
 - A. الهيليكاز والناسخ العكسي.
 - B. الهيليكاز وال ARN بوليمراز.
 - C. الهيليكاز وال ADN بوليمراز.
 - D. الهيليكاز وأنزيم الربط.

تصحيح مباراة ولوج السنة الأولى لكلية طب الأسنان (الدار البيضاء) 2015/2014

مادة الفيزياء

تمرين 1- الموجات.

$$v = \sqrt{\frac{1,4P}{\rho}}$$
 : كاتتاب سرعة الصوت في غاز ثنائي الجزيئية كالتالي و Q.1

$$\frac{P}{Q} = \frac{R.T}{M}$$
 يخضع الغاز لقانون الغاز ات الكاملة أي $P.V = n.R.T$ إذن $P.V = n.R.T$ إذن

$$\upsilon = \sqrt{\frac{1,4R.T}{M}}$$
 : ن انتج أن

. $v(O_2) < v(H_2)$: نتعلق سرعة الصوت بالكتلة المولية، وبما أن $M(H_2) < M(O_2)$ فإن : Q.2

Q.3 : حساب الكتلة المولية للهواء :

$$v^2 = \frac{1.4R.T}{M} \Rightarrow M = \frac{1.4R.T}{v^2}$$

$$M = \frac{1,4 \times 8,31 \times 273,15}{33145^2} = 28.9g / mol$$
 تطبیق عددي

$$au=rac{L}{V}$$
 : حساب التأخر الزمني au . نعلم أن au

$$t(O_2) = \frac{L}{V(O_2)}$$
 بالنسبة للأكسجين

$$t(\boldsymbol{H}_{2}) = \frac{L}{V(\boldsymbol{H}_{2})}$$
 و بالنسبة للهيدروجين

$$\tau = t(O_2) - t(H_2)$$

$$\tau = \frac{L}{\sqrt{1.4RT}} \left(\sqrt{M(O_2)} - \sqrt{M(H_2)} \right)$$
: إذن

$$au = \frac{10}{\sqrt{1,4 \times 8,31 \times 293,15}} \left(\sqrt{32} - \sqrt{2}\right) \sqrt{10^3} = 23s$$
 تطبیق عددي

$$\delta = \frac{\lambda}{2}$$
 : والمسافة الفاصلة بين طبقتين متتاليتين تهتزان على تعاكس في الطور، أي $\delta = \frac{\lambda}{2}$

حساب ٨.

$$\lambda = \frac{V(H_2)}{v} = \frac{\sqrt{\frac{1,4.R.T}{M(H_2)}}}{v}$$
لدينا

$$\lambda = \frac{\sqrt{1,4 \times 8,31 \times 293,15}}{880\sqrt{2}} = 1,48m$$
 تطبیق عددي:

$$\delta = \frac{1,48}{2} = 0,74m = 74cm$$
 : فرمنه نستنتج أن

تمرين 2- التحولات النووية.

Q.6 : النشاط الإشعاعي تفتت طبيعي لنواة مشعة إلى نواة متولدة أكثر استقرارا مع انبعاث دقيقة.

Z=82 و N=124 و حصل على N=124 و N=124 و N=124

$$A = Z + N = 124 + 82 = 206$$
: ونعلم أن

 $_{82}^{206}Pb$ إذن النويدة Y هي الرصاص

 $^{210}_{84}Po \longrightarrow ^{206}_{82}Pb + ^{4}_{2}He$: معادلة التقتت : Q.8

 $\Delta E = \Delta m.c^2$: لحساب الطاقة نستعمل العلاقة : O.9

 $\Delta E = (m(\alpha) + m(Pb) - m(Y)) c^2$: أي

 $\Delta E = (4,0015 + 210,0482 - 206,0385)u.c^2 = 8,0112 \times 931,5 = 7462,4 MeV$: تطبیق عددي

 $\frac{N}{N_0}$ = 0,01 و $N=N_0e^{-\lambda t}$: حسب قانون التناقص الإشعاعي نكتب : Q.10

$$\frac{N}{N_0} = \exp \left[-\frac{\ln(2)}{t_{1/2}} t \right] : \varphi^{\dagger}$$

$$\ln\left(\frac{N}{N_0}\right) = -\frac{\ln(2)}{t_{1/2}}t$$

$$t = -\frac{\ln(0,01)}{\ln(2)}t_{1/2} = 916,85 jours$$
: الأذن

 $a(t) = \frac{a_0}{2}$: حسب قانون التناقص الإشعاعي لدينا : Q.11

$$a(t) = \lambda \left(\frac{m_0 N_A}{M(Po)}\right) = \frac{\ln(2)}{t_{1/2}} \left(\frac{m_0 N_A}{M(Po)}\right) : \mathcal{G}^{\dagger}$$

$$a(t) = 2.10^{38} Bq$$
: نظبيق عددي $a(t) = \frac{0.69}{138 \times 24 \times 3600} \times \frac{2 \times 6,02 \cdot 10^{23}}{210.0482 \times 1.66 \cdot 10^{-27} \times 10^3}$: نظبيق عددي

$$q_{\scriptscriptstyle 1}=q_{\scriptscriptstyle 2}=q$$
: نجتاز المكثفات نفس الشدة ن $_{\scriptscriptstyle 0}$: Q.12

$$C_{2}U_{M\!N}=C_{eq}U$$
 : أي

$${U}_{M\!N}=rac{C_{eq}}{C_2}U$$
 : ومنه

$$rac{1}{C_{eq}} = rac{1}{C_1} + rac{1}{C_2} + rac{1}{C_3} : C_{eq}$$
 نحسب

$$C_{eq} = \frac{10}{8} = 1,25 \mu F$$
 وبالتالي:

$$U_{MN} = \frac{1,25}{5}600 = 150V$$
: إذن

 $1.25 \mu F$: قيمة سعة المكثف المكافئ للتركيب AB هي : Q.13

$$E_c = \frac{1}{2} C_{eq} U^2$$
: حساب الطاقة المخزونة في المكثف المكثف : Q.14

$$E_c = 0.5 \times 1,25.10^{-6} \times 600^2 = 0,225 J$$
: تطبیق عددي

$$h = \frac{E_e}{mg}$$
 : لدينا : $E_e = mgh$: لدينا : $Q.15$

$$h = \frac{0.225}{0.005 \times 10} = 4.5m$$
: تطبیق عددي

$$I_0 = \frac{Q}{\Delta t} = \frac{C_{eq}.U_{CD}}{\Delta t}$$
: نعلم أن : Q.16

$$\Delta t = rac{C_{\it eq}\,.U_{\it CD}}{I_{\it 0}}$$
 : أن

 $C_{\scriptscriptstyle 3}$ و مال المكثف المكثف المكافئ للتركيب على التوازي المكثفين المكثف المكافئ التركيب

$$C_{eq} = C_1 + C_3 = 10 + 5 = 15 \mu F$$

$$\Delta t = rac{15.10^{-6} imes 50}{5.10^{-6}}$$
: لدينا العلاقة

$$\Delta t = 150s$$
 : إذن

 $\vec{P} + \vec{R} + \vec{T} = \vec{0}$: الجسم (S) الجسم (S) الجسم (S) الجسم الجسم (S) الجسم (S) الجسم

 $P_x + R_x + T_x = 0$: (Ox) نسقط العلاقة على المحور

 $mg\sin(\alpha) - K\Delta l = 0$

$$\Delta l = \frac{mg\sin{(lpha)}}{K}$$
: ومنه نستنتج أن

$$\Delta l = \frac{0.2 \times 10 \times 0.5}{20} = 5cm$$
: تطبیق عددي

 $\vec{P} + \vec{R} + \vec{T} = m.\vec{a}_x$: بتطبيق القانون الثاني لنيوتن نكتب : Q.18

 $mg\sin(\alpha) - K(\Delta l + x) = m\ddot{x}$: (Ox) نسقط على المحور

 $\ddot{x}+\omega^2x=0$ ومنه نحصل على المعادلة التفاضلية للحركة $\ddot{x}+\dfrac{K}{m}x=0$ أي $\ddot{x}+\dfrac{K}{m}$ أو $\ddot{x}=m\ddot{x}$

$$T_0 = 2\pi \sqrt{\frac{0.2}{20}} = 0,628s$$
 : إذن $T_0 = 2\pi \sqrt{\frac{m}{K}}$: الدور الخاص $T_0 = 2\pi \sqrt{\frac{m}{K}}$

 $x_0 = 0$ عند ϕ ، عند تحدید قیمة

$$. \varphi = \pm \frac{\pi}{2}$$
 : الخن $\cos(\varphi) = 0$: الجن $x_0 = 2\omega^2 . \cos(\varphi)$ و $x_0 = 0$: الحينا

.
$$\varphi = -\frac{\pi}{2}$$
 المنحى الموجب فإن (S) وبنا أن الجسم (أي أزيح عن موضع توازنه في المنحى الموجب فإن الجسم

 $t=1,75T_0$: عند ، $T=M(\Delta l+x)$: كالتالي : Q.20

$$x = 2.10^{-2} \, m$$
 : $\dot{\varphi}^{\dagger} x = 2.10^{-2} \cdot \cos(\frac{2\pi}{T_0} t - \frac{\pi}{2})$: إذن

 $T = 20(5-2).10^{-2} = 0,6N$: تطبیق عددي

مادة الكيمياء

تمرين 1.

ورة يحدث بالكترود المقصورة H_2 على مستوى الكترود المقصورة H_2 نام مستوى الكترود المقصورة يحدث $Q_2 + 4H^- + 4e^-$ على مستوى الكترود المقصورة يحدث الختزال كاثودي $Q_2 + 4H^- + 4e^-$

$$O_1 + 2H_{\pm} \implies 2H_{\pm}O_{\pm}$$
 المعادلة الحصيلة لاشتغال العمود هي : Q.2

يا الهيدروجين اللازمة لاشتغال العمود لمدة : 200 ساعة : 200 عادة : 200 ساعة : 200

$$n(H_2) = \frac{n(e^-)}{2} = \frac{I.\Delta t}{2F}$$
: لدينا

$$n(H_2) = \frac{200 \times 288.5 \times 3600}{2 \times 96500} = 1076,4 \text{mol}$$
 تطبیق عددي:

$$rac{V(O_2)}{V_m} = rac{n'(H_2)}{2}$$
 : خسب المعاملات التناسبية نكتب : $q(O_2) = rac{n'(H_2)}{2}$: حسب المعاملات التناسبية نكتب : Q.4

$$V(O_2) = \frac{n'(H_2)}{2} V_m$$
 أي:

 $\Delta t = 24h$ المتكون خلال $n'(H_2)$

$$n'(H_2) = n(H_2) \frac{24}{200}$$
 لدينا:

$$V(O_2) = \frac{1076,4}{2} \times 24 = 1550L$$
: تطبیق عددي

تمرین 2.

Q.5 : أنصاف معادلة الأكسدة – اختزال :

$$MnO_4^- + 8H^+ + 5e^- \implies Mn^{2+} + 4H_2O$$

$$O_1 + 2H^+ + 2e^- \Longrightarrow 2H_1O_1$$
,

 $\cdot 2MnO_4^- + 5H_2O_2 + 6H^+ \longrightarrow 2Mn^{2+} + 5O_2 + 8H_2O$ المعادلة الحصيلة لتفاعل المعايرة هي $\cdot Q.6$

Q.7 : عند التكافؤ يصبح لون الخليط بنفسجيا.

$$\frac{C_{OX}V_{OX.E}}{2} = \frac{C_0V_{RED}}{5}$$
 : عند التكافؤ : Q.8

$$C_0 = rac{2}{5} \cdot rac{C_{OX} V_{OX.E}}{V_{RED}} = rac{2}{5} \cdot rac{0.15 imes 30.4}{20} = 0.57 mol/L$$
: تطبیق عددي

(2,4ml) لقد تم استعمال H_2SO_4 كحفاز لذا فقد أضيف بكمية قليلة (Q.9

تمرين 3.

$$CH_3COOCH_3 + CH_3CH_2CH_2CH_2OH \xrightarrow{H^+} H_2O_+E_-$$
: معادلة التفاعل : Q.10

$$n_1=n_2=n(E)=rac{m(E)}{M(E)}$$
 انطلاقا من المعادلة السابقة وحسب المعاملات التناسبية نكتب : ${
m Q.11}$

$$n_1 = n_2 = \frac{510}{102} = 5mol$$
:

: حجم البروبان 1-أول هو : Q.12

$$d = \frac{\rho}{\rho_0} = \frac{m}{V \cdot \rho_0} \Rightarrow m = d \cdot V_1 \cdot \rho_0$$
 ونعلم أن $n_1 = \frac{m}{M_1} \Rightarrow m = n_1 \cdot M_1$

 $d.V_{1}.
ho_{0}=n_{1}.M_{1}$: ومنه نستنج أن

$$V_1 = \frac{n_1.M_1}{d.\rho_0}$$
 : ز

$$V_{1} = \frac{5 \times 60}{0.8 \times 1} = 357L$$
: تطبیق عددي

Q.13 : يلعب حمض الكبريتيك دور حفاز فهو يزيد من سرعة التفاعل.

Q.14 : الصيغة النصف منشورة للإستر (E) هي :

0.15: التفاعل سريع نسبيا وكليا.

تمرین 4.

Q.16 : المعادلة الحصيلة للتفاعل بين القاعدة والمعايرة وأيون الأكسونيوم هي :

$$H_3O_{(m)} \Longrightarrow H_2O + H_{(2i)}$$
 $NH_3(aq) + H^+ \Longrightarrow NH_4 + (aq)$ $NH_{2(m)} + H_3O_{(m)}^+ \Longrightarrow H_2O + NH_{4(m)}^+ + H_3O_{(m)}^+ \Longrightarrow H_2O + NH_{4(m)}^+ \Longrightarrow : Q.17$ $n(H_3O^+) = n(NH_3)$ يكون V_a يكون V_a

 $n(H_3O^+)=cte$ و $n(NH_3)=0$: بعد نقطة التكافؤ لدينا

 $C_{A}V_{AE}=C_{B}V_{B}$: تركيز المحلول المعاير ، عند التكافؤ لدينا : Q.18

$$C_{\scriptscriptstyle B} = rac{3,155 imes 10^{-2} imes 2 imes 10}{10} = 6,31.10^{-2} \, mol \, / \, L \, \, :$$
 إذن $C_{\scriptscriptstyle B} = rac{C_{\scriptscriptstyle A} V_{\scriptscriptstyle AE}}{V_{\scriptscriptstyle B}} \, \, :$ إذن

$$pH = pK_A + Log \frac{[NH_3]}{[NH_3^+]}$$
: لدينا العلاقة : Q.19

$$\frac{[NH_3]}{[NH_3^+]} = 1$$
 عند نصف التكافؤ

$$pH = pK_A = 9,2$$
: إذن

$$K_A = 10^{-9,2} = 6,3.10^{-10}$$
: ومنه نستنتج أن

$$pH = 5,3$$
: عند نقطة التكافؤ لدينا : Q.20

$$[H_2O^+] = 10^{-pH}$$
: ونعلم أن

$$[H_3O^+] = 10^{-5,3}$$
: إذن

$$[OH^{-}] = rac{K_{e}}{[H_{2}O^{+}]} : \dot{U}^{2}[H_{3}O^{+}].[OH^{-}] = K_{e} : \dot{U}^{2}$$
لاينا

$$[OH^{-}] = \frac{10^{-14}}{10^{-5.3}} = 10^{-8.7} = 1,99.10^{-9} \, mol \, / \, l$$
: نطبیق عددي