Занятие 19

Асимптоты графиков рункций.

Гремаевназ. асисингогой графика ф-уш y= f(x), есми расстоение $\rho(M, \ell)$, уве M(x, f(x)), стемитая к нумо при бесконетном удаленим тогки M от нагала координат (т.е. при $\rho(0, M) \rightarrow \infty$).

Typewar x=a sbr. Beptikanbhoù acumptotoù, есми хотя от один из односторонних пределов

 $\lim_{x\to a\pm 0} f(x) = \infty \cdot \underbrace{\text{Tip.}}_{x=a} f(x) \Big|_{x=a}^{x=a}$

Jupanas y=kx+B labor Hakrohhod acummorod, eccu Flim fix = k u Flym (f(x)-kx) = b

Найти асимптот градика ф-уши.

N5.454

$$y = \frac{\sqrt{1x^2 - 3I}}{x}$$

Непрерозвные Ф-ушу не испект вергикальных асциптот.

Решение. D(y): x + 0.

1) Beptier. acusentoto: x = 0 (oc6 Oy), mx.

 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{|x^2 - 3|}}{x} = \infty$

2) Hakrohere acerelentoto y = kx + b: $k = \lim_{x \to \infty} \frac{b(x)}{x} = \lim_{x \to \infty} \frac{\sqrt{1x^2 - 31}}{x^2} = \lim_{x \to \infty} \frac{|x|\sqrt{11 - \frac{3}{x^2}}|}{|x|^2} = \lim_{x \to \infty} \frac{\sqrt{11 - \frac{3}{x^2}}|}{|x|} = 0$

 $b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\sqrt{1x^2 - 31}}{x} =$

 $=\lim_{X\to\infty}\frac{|x|\sqrt{1-\frac{3}{X^2}}}{X}=\begin{cases}1 & \text{npu} & x\to +\infty\\-1 & \text{npu} & x\to -\infty\end{cases}$

 $y = 1 \text{ h/m} x \rightarrow +\infty$ $y = -1 \text{ h/m} x \rightarrow -\infty$ rosurgorer. ac-ros

Ombem: X=0; y=±1 npy x > ± 0.

N5.455

$$y = 3x + arcty 5x$$

Penienne.

$$\mathcal{D}(y) = (-\infty; +\infty)$$

- 1) Вертик. асимингот нег, т.к. функция непрерывна
- 2) Harrohmore accercum 70707: y = kx + 6. $k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{3x + \operatorname{arctg5x}}{x} = \lim_{x \to \infty} (3 + \frac{\operatorname{arctg5x}}{x}) = 3$ $7.K. \operatorname{arctg5x} : \frac{1}{x} = 6.M.9.$

$$b = \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} (3x + \operatorname{arctg} 5x - 3x) = \lim_{x \to \infty} \operatorname{arctg} 5x = \lim_{x \to \infty} (3x + \operatorname{arctg} 5x - 3x) = \lim_{x \to \infty} \operatorname{arctg} 5x =$$

Ombem: $y = 3 \times \pm \frac{\pi}{2}$ hpu $x \to \pm \infty$.

N5.456

$$y = \frac{\ln(x+1)}{x^2} + 2x$$

Решение.

$$\mathcal{D}(g): \begin{cases} x+1>0 & \begin{cases} x>-1 \\ x\neq 0 & \end{cases}$$

$$x \in (-1; 0) \cup (0; +\infty)$$

1) Вергик. асичентоты.

1) Beptilk. accuellations.
$$1 - 2$$
a) $\lim_{x \to -1+0} f(x) = \lim_{x \to -1} \left(\frac{\ln(x+1)}{x^2} + 2x \right) = -\infty = \sum_{x = -1} x = -1$

a)
$$\lim_{x \to -1+0} f(x) = \lim_{x \to -1} \left(\frac{\int_{x^2} f(x)}{x^2} + \int_{x \to -1} f(x) \right) = -\infty$$

$$= \int_{x \to -1+0} f(x) = \lim_{x \to -1} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} \frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} \frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{x \to 0} f(x) \right) = \lim_{x \to 0} \left(\frac{\int_{x} f(x)}{x^2} + \int_{$$

$$= \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x} = \infty \implies x = 0$$

2) Haurohnore accerning is
$$y = kx + b$$
.

$$= (\frac{1}{0}) = \lim_{X \to 0} \frac{1}{X^2} - \lim_{X \to 0} X$$

$$2) Hauroheore occiounioin: $y = kx + 6.$

$$k = \lim_{X \to \infty} \frac{f(x)}{x} = \lim_{X \to \infty} \left(\frac{\ln(x+1)}{x^3} + 2 \right) = \lim_{X \to \infty} \frac{\ln(x+1)}{x^3} + \lim_{X \to \infty} 2 = \lim_{X \to \infty} \frac{1}{x^4} + 2 = 2$$

$$k = \lim_{X \to \infty} \frac{f(x)}{x} = \lim_{X \to \infty} \left(\frac{\ln(x+1)}{x^3} + 2 \right) = \lim_{X \to \infty} \frac{\ln(x+1)}{x^3} + \lim_{X \to \infty} 2 = \lim_{X \to \infty} \frac{1}{x^4} = 2$$$$

$$b = \lim_{x \to \infty} \left(\frac{x^3}{x} \right) + 2x - 2x = \lim_{x \to \infty} \left(\frac{x+1}{x} \right) = \lim_{x \to \infty} \left(\frac{x+1}{x^2} \right) = \lim_{x \to \infty} \left(\frac{x+1}{x^2}$$

$$\Rightarrow$$
 $y=2x$

Интервалы возрастания и убывания функции. Глогки экстремума

Опр. Бункуш f(x) нау.

возрастающей | убывающей у (x_1) (x_2) (x_3) (x_4) (x_4)

DOCFATORNOE YCLOBULE MONOTORNOCH &-GUM Ha [9,8]

Suyor f(x) gupt Ha (4,8).

ECM f'(x) > 0 f(x) bospacsaer f(x) bospacsaer f(x) bospacsaer f(x) yorbaer


```
Достаточные условия т. экстремума непр. ф-уши
  Гизсть f(x) непрерозвна в U(xo) 4 дидя. в U(xo).
                       Ecun
                              \forall x \in \mathcal{U}(x_0), x <
VxeU(xo), X<Xo
                                f'(x)>0 u
 f(x) <0 u
                             \forall x \in \mathcal{U}(x_0), x > x_0
Yx = U(xo), X>Xo
                                 f'(x) <0
  f'(x) > 0
                               XO - TORKA MAKE
 XO-TORKA MUCH.
                      Ecour
```

Ecoul $\forall x \in \mathcal{U}(x_0)$, $x \neq x_0$, $f'(x) \ge 0$ usual f'(x) > 0 (unlear ognition of the part), mo to the elem. Toykoù \Rightarrow kcrpemyna.

Tycomo f(x) guaga guaga

Найги интервалог возрастания и убывания и потки экстрешума функций.

N5.404

1.
$$\mathcal{D}(g)$$
: $1-x^2 \ge 0 \Rightarrow x \in [-1; 1]$

1)
$$y' = 1 \cdot \sqrt{1 - x^2} + x \cdot \frac{1 \cdot (-2x)}{2\sqrt{1 - x^2}} = \frac{1 - x^2 - x^2}{\sqrt{1 - x^2}} = \frac{1 - 2x^2}{\sqrt{1 - x^2}} = \frac{-2(x - \frac{\sqrt{2}}{2})(x + \frac{\sqrt{2}}{2})}{\sqrt{1 - x^2}}$$

2)
$$\mathcal{D}(y')$$
: $x \in (-1, 1)$

3)
$$y'=0$$
 $1-2x^2=0$ $x^2=\frac{1}{2}$ $x=\pm \frac{\sqrt{2}}{2}$ -KPUT. TOUKLY

3.
$$\frac{y'}{y} - \frac{1}{y} - \frac{1}{2} = \frac{1}{2}$$

5. Touky >Kcopenyna Akcopenyny
$$X_{min} = -\frac{\sqrt{2}}{2}$$

$$X_{max} = \frac{\sqrt{2}}{2}$$

$$y_{min}(-\frac{\sqrt{2}}{2}) = -\frac{1}{2}$$

$$y_{max}(\frac{\sqrt{2}}{2}) = \frac{1}{2}$$

Сканировано с CamScanner

Br. X=±1 Maquik univer Bepsiek, Kacarenbuggo.

$$y = \frac{x}{e_n x}$$

Penienie.

1.
$$\mathcal{D}(g): \begin{cases} x>0 & fx>0 \\ \ln x\neq 0 & (x\neq 1) \end{cases} \quad x \in (0;1) \cup (1;+\infty)$$

2. Hyunureckie Porku:
1)
$$y' = \frac{1 \cdot \ln x - x \cdot \frac{1}{x}}{(\ln x)^2} = \frac{\ln x - 1}{\ln x}$$

3)
$$y'=0$$
 $\ln x=1$

4. VIHTERBANG МОНОТОННЕОСТЕ: y > на (0;1) ч (1;е) y > на (е; + ∞) DONOELHUTECIONO.

P-e otigero Buja. T. nepecer. c oceans K-5:

e Ox: y =0⇒x=0¢D(y) e Oy: x=0¢D(y) HEFT-K nepecer. cocenu

Ny !	
E	\rightarrow \times
0	e
\ \;	(Hapyulen no O

X	(0,1)	(1; e)	e	(e;+∞)
41	_	_	D	+
y	>>	V	е	7

2. Kputureckue Torku:

1)
$$y' = e^{x} \cos x - e^{x} \sin x = e^{x} (\cos x - \sin x)$$

$$2) \mathcal{D}(y') = \mathcal{D}(y)$$

$$3)y'=0$$
 $cosx=Sinx$

$$X = \frac{\Im}{4} + \Im n, n \in \mathbb{Z}$$

KPUT. TUTKY

4. Интервант монотонности:

У М на
$$(\frac{\pi}{4} + 2\pi n; \frac{5\pi}{4} + 2\pi n), n \in \mathbb{Z}$$

у Л на $(\frac{5\pi}{4} + 2\pi n; \frac{9\pi}{4} + 2\pi n), n \in \mathbb{Z}$

