

Text-guided visual representation learning for medical image retrieval systems

Guillaume Sérieys*, Camille Kurtz*, Laure Fournier**, Florence Cloppet*

*LIPADE, Université Paris Cité, Paris (France)
**Dept of Radiology, Hôpital Européen Georges Pompidou, Paris (France)

firstname.lastname@u-paris.fr

icpR₂₂

- Clinical and imaging data stored in PACS (Picture **Archiving** and Communication System)
- Physicians VS difficult case

PACS

• Search by keywords

CBIR (Content-Based Image Retrieval) for computer-aided diagnosis

Introduction - Background & Motivation

Clinical routines

- Clinical and imaging data stored in PACS
 (Picture **Archiving** and Communication System)
- Physicians VS difficult case

PACS

• Search by keywords

CBIR (Content-Based Image Retrieval) for computer-aided diagnosis

Introduction - Content-Based Image Retrieval

Approach	Examples		Limitations		
Hand-crafted descriptor	Color histograms	Describe images as a whole	Inaccurate		
	Scale Invariant Feature Transform	Describe key points within images	High dimensionality		
Distance metric learning	Contextual constraints	Simplicity	Inadequate for nonlinear data		
	Kernel-based	Simplicity	Nonlinear data		
Deep learning	Supervised approaches	High performance	High labelling cost		
	Unsupervised approaches	Low labelling cost	Lower performances		

Introduction - Problematic

Feature Extraction

- Deep learning → Automatically learning features
- Large quantity of multimodal and multiparametric data

Medical Imaging specificities

- Large data quantity BUT difficult task: complex nature + scarcity of **labelled** data
- Fine-grained visual features ≠ Natural images
- Transferring model weights from ImageNet pretraining
 suboptimal results on medical images
- Additional information in PACS: radiological reports (texts)
 - Automation of label extraction from reports is limited
 Expert crafted rules to extract labels from reports are inaccurate and domain-specific

Radiograph shows pleural effusion in the right lobe...

 Learning visual representation from text supervision

Feature Extraction

- Deep learning → Automatically learning features
- Large quantity of multimodal and multiparametric data

Medical Imaging specificities

- Large data quantity BUT difficult task: complex nature + scarcity of labelled data
- Fine-grained visual features ≠ Natural images
- Transferring model weights from ImageNet pretraining
 => suboptimal results on medical images
- Additional information in PACS: radiological reports (texts)
 - Automation of label extraction from reports is limited => Expert crafted rules to extract labels from reports are inaccurate and domain-specific

Radiograph shows pleural effusion in the right lobe...

• Learning visual representation from text supervision

Methodology - Big Picture

Learning medical visual representation from text supervision

• ConVIRT framework => use positive pairs of image and text in a **contrastive learning fashion**

Methodology - Starting point

Learning medical visual representation from text supervision

CLIP => Clinical CLIP

A. Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", Feb. 2021.

Methodology - Contribution

Learning medical visual representation from text supervision

CLIP => Towards Clinical CLIP

Learning representations from PubMed resources

Pre-Training Data set

- ROCO (Radiology Objects in Context)
 - 81,825 radiology images with corresponding captions, keywords and UMLS (Unified Medical Language System) CUIs (Concept Unique Identifiers) and SemTypes (Semantic Types)

Multimodal image dataset (CT, X-Ray, PET, MRI, etc.)

T033 Finding

Download: wget -r ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_package/38/bc/PMC1808459.tar.gz -P /path/to/Dir Figure name: 1477-7819-5-24-1.jpg

T023 Body Part, Organ, or Organ Component T109 Organic Chemical

CC BY [Rekhi et al. (2007)]

Learning representations from PubMed resources

Pre-Training protocol

• Number of epochs: 100

• **Learning rates**: 3e-6 to fine-tune CLIP, 3e-5 otherwise

• **Optimizer**: Adam

Evaluation on the CBIR task

Custom retrieval Data Set

- From ROCO dataset + expert annotations from Hôpital Européen Georges Pompidou
- 8x200 images
- Retrieval Settings
 - Organ
 - Modality
 - Organ + modality

CheXpert 8x200 retrieval Data set

- 224 316 annotated chest radiographs from 65240 patients
- 8 independent categories of diagnosis

Performance metric

 Precision at K (P@K) with K = number of retrieved images

Evaluation - Qualitative results

"Coronal plain computed tomography image showing multiple large tumor masses with edge enhancement inside the abdominal cavity and liver."

ResNet-50 with ImageNet Init.

Initial CLIP-RN50

Evaluation - Qualitative results

"Coronal plain computed tomography image showing multiple large tumor masses with edge enhancement inside the abdominal cavity and liver."

ResNet-50 with ImageNet Init.

CLIP-RN50 with ROCO Init.

Evaluation - Qualitative results

"Coronal plain computed tomography image showing multiple large tumor masses with edge enhancement inside the abdominal cavity and liver."

ResNet-50 with ImageNet Init.

Clinical CLIP-RN50

		ROCO	-	Custom retrieval dataset					CheXpert 8×200						
	CUI@K			P@K						P@K					
Method	@5	@10	@50	@5	@10	@30	@5	@10	@30	@5	@10	@30	@5	@10	@50
General init. methods				Modality		Organ		Modality/Organ							
Random	1.5	3.0	5.3	20.0	20.0	20.0	12.5	12.3	12.4	11.4	11.4	10.0	12.5	12.5	12.5
ImageNet	10.5	10.6	11.2	46.8	42.6	37.2	30.8	28.3	22.9	44.8	41.4	31.0	16.5	15.5	14.5
CLIP-RN50	14.9	15.1	16.5	84.0	81.2	73.7	50.4	42.5	33.8	60.0	62.9	51.3	17.0	17.0	15.3
CLIP-RN101	15.2	15.5	17.1	85.6	84.6	80.7	47.9	45.2	39.0	65.7	64.8	55.4	11.5	13.1	14.0
CLIP-RN50x4	16.6	17.0	18.5	85.6	85.2	80.5	48.8	45.6	39.4	65.7	65.2	58.4	16.5	16.4	15.7
CLIP-ViT-B/32	15.5	15.8	17.3	86.4	86.4	79.6	53.3	49.2	40.8	70.5	68.1	57.1	16.8	14.4	14.4
In-domain init. methods															
ConVIRT (random init.)	12.3	12.4	13.1	68.4	63.2	52.0	40.8	31.0	24.1	50.5	48.1	37.1	20.3	19.5	15.8
ConVIRT (ImageNet init.)	12.0	12.1	12.9	59.6	54.0	44.8	40.8	35.2	27.0	55.2	48.0	32.9	18.5	17.3	14.5
CLIP-RN50 (ROCO init.)	17.4	17.7	19.3	85.6	86.8	80.9	48.3	46.3	37.4	61.9	63.3	55.6	12.5	15.0	16.0
CLIP-RN101 (ROCO init.)	17.2	17.5	19.1	84.4	85.0	80.6	51.3	49.2	37.5	61.9	65.2	57.0	17.5	18.5	15.3
CLIP-RN50x4 (ROCO init.)	18.0	18.2	20.0	83.2	83.6	78.6	50.8	46.5	36.2	68.6	67.6	57.8	15.0	16.6	15.5
CLIP-ViT-B/32 (ROCO init.)	18.2	18.6	20.4	87.2	86.8	81.3	61.3	58.5	48.3	70.5	69.1	62.9	13.8	15.8	15.0
Clinical CLIP-RN50	18.3	18.9	20.9	93.2	91.6	85.4	65.4	60.2	50.4	69.5	71.9	64.6	18.5	17.9	18.1
Clinical CLIP-RN101	18.8	19.3	21.3	90.0	89.6	83.9	65.8	62.1	52.1	71.4	71.9	64.9	21.0	19.8	18.1
Clinical CLIP-RN50x4	19.1	19.5	21.4	93.2	91.6	83.0	63.8	62.1	52.2	72.4	71.9	64.6	22.5	21.0	17.9
Clinical CLIP-ViT-B/32	18.2	18.7	20.8	90.4	89.2	83.2	62.9	57.9	49.8	69.5	69.5	63.3	17.5	16.3	14.9

Conclusions & Perspectives

Take home message

- It is possible to learn / optimize a visual representation of medical images from weak text supervision => thanks to contrastive learning from pairs of image and text
- "Dormant" data from the medical imaging literature (PubMed) can be re-employed to supervise the learning of neuronal models
- Interest of in-domain text encoders such as Clinical BERT in the model pre-training

Next steps

- To evaluate the performance of our methods in more specific retrieval tasks but by finetuning the methods to the specific domain
- To deal with the multimodal aspect of medical imaging: multimodal variational autoencoders (MVAE) to learn a joint representation of multiple modalities
- Go to "real case" applications by considering radiological reports from PACS as originally intended

Text-guided visual representation learning for medical image retrieval systems

Guillaume Sérieys, Camille Kurtz, Laure Fournier, Florence Cloppet

firstname.lastname@u-paris.fr

This work was supported by diiP, IdEx Université Paris Cité, ANR-18-IDEX-0001 and with access to the HPC resources of IDRIS (GENCI 2021-AD011012656)

