Алгоритм Прюфера

Ермилов И.М.

23.05.2017

Теорема 1. (Прюфера) Каждому дереву с $n \geq 3$ помеченными вершинами первичной спецификации $[a_1^{\alpha_1},...,a_n^{\alpha_n}]$ и матрицей смежности A можно поставить во взаимно однозначное соответствие (n-2)-выборку в \overline{KC} n-базисе первичной спецификации $[a_1^{\alpha_1},...,a_n^{\alpha_n}]$ или, что то же самое, размещение n-2 различных предметов в n различных ячейках, где α_i - число предметов в i-ой ячейке, i=1,2,...,n.

Доказательство. Для доказательства теоремы опишем алгоритм, позволяющий построить нам по дереву, заданным матрицей смежности, строить размещение предметов в ячейки и обратно.

<u>Дано:</u> Матрица смежности дерева с n помеченными вершинами с заданной первичной спецификацией. Требуется построить (n-2)-выборку в $\overline{KC}n$ -базисе первичной спецификации $[a_1^{\alpha_1},...,a_n^{\alpha_n}]$.

Шаг 1. Ищем в матрице A строку с минимальным номером a_{i_0} такую, что в строке a_{i_0} ровно одна единица(это означает, что вершина концевая). Значит, a_{i_0} соединена с единственной вершиной a_{i_1} (номер столбца, в котором стоит единица в строке a_{i_0}). Элемент с номером 1 добавляем в ячейку a_{i_1} , а из матрицы A "удаляем" единицу с позиций (a_{i_0,i_1}) и (a_{i_1,i_0}) .

Шаг ј. Рекурсивно, аналогично *шагу 1*, пока в матрице не останутся две строки, в которых содержится ровно по одной единице.

И так, ячейки, метки которых совпадали с метками концевых вершина в исходном дереве (все строки с одной единицей в матрице смежности A), оказываются пустыми. Каждая неконцевая вершина a_i используется ровно α_i раз (количество единиц в строке a_i минус один). Следовательно, первичная спецификация размещения совпадает с первичной спецификацией дерева.

Иначе говоря, у нас существует отображение из множества деревьев с n помеченными вершинами в (n-2)-выборки в $\overline{KC}n$ -базисе.

Докажем инъективность данного отображения. Пусть у нас даны два различных дерева с матрицами смежности A_1 и A_2 соответственно. Доказательство разобьем на два случая.

Cлучай 1. Если в матрице A_1 и A_2 в каждой строке число единиц совпадает, но стоят на разных позициях, тогда мы получим различные выборки.

Пусть в k-ой строке в матрице A_1 единица стоит на i_1 -ом месте, а в матрице A_2 на i_2 -ом месте. Соответственно, в матрице A_1 нуль стоит на i_2 -ом месте, а в A_2 на i_1 -ом месте. Если мы на каком-то j-ом шаге работы алгоритма из k-ой строки матрицы A_1 хотим удалить единицу с позиции i_1 , то это означает, что либо в k-ой строке на данном шаге стоит ровно одна единица, либо в строке i_1 на данном шаге стоит ровно одна единица (концевая). Аналогичный факт верен для матрицы A_2 .

Пусть вершина a_k на j-ом шаге работы алгоритма является концевой, то есть в матрицах A_1 и A_2 в k-ой строке стоит ровно одна единица, на местах i_1 и i_2 соответственно. Тогда предмет с номером j попадет в ячейку с номером i_1 в случае с первой матрицей или в ячейку с номером i_2 в случае со второй матрицей.

Если же a_k не является концевой вершиной, тогда для матрицы A_1 вершина a_{i_1} является концевой на j-ом шаге работы алгоритма. Это означает, что предмет с номером j в первой выборке будет лежать в ячейке с номером k, в то время как в матрице A_2 на j-ом шаге работы алгоритма в строке i_1 на k-ой позиции стоит нуль, что означает, что предмет с номером j не попадет в ячейку с номером k.

Случай 2. Если в матрице в столбцах стоят различное число единиц, то мы, очевидно, получим различные первичные спецификации.

Таким образом, мы показали, что для разных деревьев мы получаем различные выборки.

<u>Дано:</u>(n-2)-выборка в $\overline{KC}n$ -базисе первичной спецификации $[a_1^{\alpha_1},...,a_n^{\alpha_n}]$. Требуется построить матрицу смежности A дерева с n помеченными вершинами с первичной спецификацией $[a_1^{\alpha_1},...,a_n^{\alpha_n}]$.

Шаг 1. Выбираем пустую ячейку с минимальным номером a_{i_0} и выбираем ячейку с номером a_{i_1} , в которой лежит предмет с минимальным номером, то есть для данного шага - с номером 1. Добавляем в матрицу A единицы на позиции (a_{i_0,i_1}) и (a_{i_1,i_0}) .

Шаг ј. Рекурсивно, аналогично *шагу 1*. В конце, остается две пустых ячейки a_i и a_j , добавляем единицы в матрицу A на позиции $(a_{i,j})$ и $(a_{j,i})$.

И так, ячейка с меткой a_i используется в алгоритма ровно α_i раз,

пока не станет пустой. Затем, в ходе работы алгоритма будет построено еще одно ребро, инцидентное вершине a_i (добавление единиц в матрицу(α_i =(число единиц в строке a_i)+1)). Значит, первичные спецификации исходного размещения и построенного графа совпадают.

Иначе говоря, у нас существует отображение из множества n-2 выборок в множество деревьев с n помеченными вершина. Докажем инъективность данного отображения. Доказательство разобьем на два случая:

Cлучай 1. Пусть нам даны выборки с различными первичными спецификациями $[a_1^{\alpha_1},...,a_i^{\alpha_i},...,a_n^{\alpha_n}]$ и $[a_1^{\alpha_1},...,a_i^{\alpha_i},...,a_n^{\alpha_n}]$. Тогда в матрицах A_1 и A_2 в i-ой строке будет различное число единиц, а значит и деревья разные.

 $\mathit{Cлучай}\ 2.\ \Pi$ усть теперь нам даны две разные n-2 выборки, но первичные спецификации совпадают.

Не ограничивая общности, пусть в первой выборке предмет с номером k лежит в ячейке a_{i_1} , а во второй выборке предмет с номером k лежит в ячейке с номером a_{i_2} . Тогда, допустим, на k-ом шаге работы алгоритма a_k — пустая ячейка с минимальным текущим номером. Тогда, в строке, соответствующей ячейке a_k будут стоять единицы в матрице A_1 на позиции a_{i_1} , а в матрице A_2 на позиции a_{i_2} , причем в первой матрице на позиции a_{i_1} стоит нуль, так как a_k была пустой ячейкой. И, в дальнейшем, в ходе работы алгоритма k-ая строка заполняться не будет, а на предыдущих шагах, очевидно, в матрице A_1 и A_2 в k-ой строке на позициях a_{i_2} и a_{i_1} соответственно единица появиться не могла(это означает, что в ячейке a_k лежал предмет с номером l < k, тогда, очевидно, единица на соответствующие позиции попасть не могла). Таким образом, мы получили, что матрицы A_1 и A_2 разные.

Следовательно, мы получим разные деревья.

Таким образом, мы показали, что из разных выборок мы можем получить различные деревья. Остается заметить, что мощность множества деревьев с n помеченными вершинами совпадает с мощностью множества (n-2)-выборок в $\overline{KC}n$ -базисе, что и завершает доказательство теоремы.