Sequence Models from a Signal Processing Perspective

Julius Smith
West Coast Machine Learning

June 13, 2024

Basic Idea

Architectures

Processing

Attention

History Samples

Background

My Path to CCRMA (Center for Computer Research in Music and Acoustics)

Background

- Path to CCRMA
- Courses

Basic Idea

Architectures

Processing

Attention

History Samples

Musician: Math: Physics: EE: Control: DSP: System ID: SAIL/CCRMA

(a) Some Gig

(b) Tube Amp

- Path to CCRMA
- Courses

Basic Idea

Architectures

Processing

Attention

History Samples

Courses Developed for CCRMA

- Music 320A: Audio Spectrum Analysis
- Music 320B: Audio Filter Analysis and Structures
- Music 420A: PHYSICAL AUDIO SIGNAL PROCESSING
- Music 421A: TIME-FREQUENCY AUDIO SIGNAL PROCESSING

421A

All four textbooks free online

Basic Idea

Architectures

Processing

Attention

History Samples

Music 320 Project Idea

Basic Idea

- One Pole Filter
- Inner Product
- Orthogonality
- Model Dimension

Architectures

Processing

Attention

History Samples

Assignment: Do Something Cool with a *One-Pole Recursive Digital Filter*

One Pole at z = p

$$y(n) = g x(n) + p y(n-1), n = 0, 1, 2, ...$$

 $H(z) = \frac{Y(z)}{X(z)} = \frac{g}{1 - p z^{-1}}$

Idea: Let's Make an Associative Memory!

- x(n) can be a *long vector* $\underline{x}(n) \in \mathbb{R}^N$ representing *anything we want* any "label"
- Set g=1 and p=1 to make y(n) a sum of all input vectors ("integrator")
- ullet Choose the dimension N so large that vectors in the sum are mostly orthogonal
- Retrieve similar vectors using a matched inner product $\underline{w}^T\underline{x} > b$, for some suitable threshold b (Hey! That's a simulated neuron! ("Perceptron"))

Basic Idea

- One Pole Filter
- Inner Product
- Orthogonality
- Model Dimension

Architectures

Processing

Attention

History Samples

Vector Retrieval by Inner Product

Given the sum of vectors

$$\underline{y}(n) = \sum_{m=0}^{n} \underline{x}(m)$$

and a "query vector" $\underline{w} = \underline{x}(k)$, find the query in the sum using an *inner product:*

$$\underline{w}^T \underline{y}(n) = \sum_{m=0}^n \underline{w}^T \underline{x}(m) \approx \underline{x}^T(k) \underline{x}(k) = \|\underline{x}(k)\|^2 > b(k)$$

where b(k) is the *detection threshold* for $\underline{x}(k)$

- This works because the spatial dimension is so large that $\underline{x}^T(j)\,\underline{x}(k) \approx \epsilon$ for $j \neq k$
- Retrieval threshold b(k) depends on $\|\underline{x}(k)\|^2$
 - ⇒ **suggestion:** reserve the radial dimension for similarity scoring
- I.e., only populate the **hypersphere** in \mathbb{R}^N : $\|\underline{x}(k)\| = 1, \forall k$
- We just invented RMSNorm, used extensively in neural networks (not LayerNorm)

Basic Idea

- One Pole Filter
- Inner Product
- Orthogonality
- Model Dimension

Architectures

Processing

Attention

History Samples

Orthogonality in High Dimensions

Let $\mathbf{a} \in \mathbb{R}^N$ and $\mathbf{b} \in \mathbb{R}^N$ be two normally random, real, unit-norm vectors in N dimensions. $\|\mathbf{a}\| = \|\mathbf{b}\| = 1$.

The dot-product of $\mathbf{a}^T = [a_1, a_2, \dots, a_N]$ and $\mathbf{b}^T = [b_1, b_2, \dots, b_N]$ is defined as

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{N} a_i b_i.$$

The squared dot product is

$$(\mathbf{a} \cdot \mathbf{b})^2 = \left(\sum_{i=1}^N a_i b_i\right)^2 = \sum_{i=1}^N \sum_{j=1}^N a_i a_j b_i b_j.$$

Expected value (average):

$$E[(\mathbf{a} \cdot \mathbf{b})^2] = \sum_{i=1}^{N} \sum_{j=1}^{N} E[a_i a_j] E[b_i b_j] = \sum_{i=1}^{N} \frac{1}{N} \frac{1}{N} = \boxed{\frac{1}{N}}$$

Basic Idea

- One Pole Filter
- Inner Product
- Orthogonality
- Model Dimension

Architectures

Processing

Attention

History Samples

Orthogonality in High Dimensions, Continued

We just showed the *expected squared dot product of two normally random unit vectors in* \mathbb{R}^N *is* 1/N, *i.e.*,

$$E\left[(\mathbf{a}\cdot\mathbf{b})^2\right] = \left|\frac{1}{N}\right|$$

since $E[a_ib_j]=0$ for $i\neq j$, $E[a_i^2]=E[b_i]^2=1/N$, and ${\bf a}$ and ${\bf b}$ are independent. Suggestions:

- ullet Initialize biases larger than 1/N
- Divide the sum of M vectors by \sqrt{M} :
 - "power normalization"
 - "RMSNorm-preserving"
 - o Done in Hawk & Griffin, e.g.
 - "Keep vector sums near the unit sphere"
- Apply RMSNorm when training the initial vocabulary embedding ("word2sphere")
- Set the model dimension just sufficient for the layer width at each level

Basic Idea

- One Pole Filter
- Inner Product
- Orthogonality
- Model Dimension

Architectures

Processing

Attention

History Samples

Model Dimension vs. Model & Vocab Size (ChatGPT-4o, not checked)

Original Transformer

$$\circ$$
 $d = 512 (65 \text{ M})$

• BERT

- o d = 768 (110 M, 30 K)
- \circ d = 1024 (340 M, 30 K)

• **GPT-2**

- \circ d = 768 (124 M, 50 K)
- \circ d = 1024 (345 M, 50 K)
- \circ d = 1280 (774 M, 50 K)
- o d = 1600 (1.5 B, 50 K)

GPT-3

- \circ d = 2048 (2.7 B, 50 K)
- \circ d = 4096 (6.7 B, 50 K)
- \circ d = 6144 (13 B, 50 K)
- \circ d = 12288 (175 B, 50 K)

T5

- \circ d = 512 (60 M, 32 K)
- \circ d = 768 (220 M, 32 K)
- \circ d = 1024 (770 M, 32 K)
- o d = 1024 (3 B, 32 K)
- \circ d = 1024 (11 B, 32 K)

ALBERT

- \circ d = 768 (12 M, 30 K)
- \circ d = 1024 (18 M, 30 K)
- o d = 2048 (60 M, 30 K)
- \circ d = 4096 (235 M, 30 K)

DistilBERT

 \circ d = 768 (66 M, 30 K)

Megatron-Turing NLG

 \circ d = 20480 (530 B, 50 K)

Basic Idea

- One Pole Filter
- Inner Product
- Orthogonality
- Model Dimension

Architectures

Processing

Attention

History Samples

Log10 Model Dimension versus Log10 Model Size

Basic Idea

Architectures

Processing

Attention

History Samples

Architectures

Cumulative Vector Memory

Background

Basic Idea

Architectures

- Vector Memory
- Gating
- Gated RNN
- Skip Connection
- State Expansion

Processing

Attention

History Samples

Basic Idea

Architectures

- Vector Memory
- Gating
- Gated RNN
- Skip Connection
- State Expansion

Processing

Attention

History Samples

Gated Vector Memory

- **Problem:** Need a *memory reset*
- Solution: Set feedback gain to zero for one step to clear the memory
- **Problem:** Need an *input gate* to suppress unimportant inputs
- **Solution:** Set *input gain to zero* for unimportant inputs
- We just invented **gating**, used extensively in neural sequence models

Basic Idea

Architectures

- Vector Memory
- Gating
- Gated RNN
- Skip Connection
- State Expansion

Processing

Attention

History Samples

Gated Recurrent Network

Idea: Learn the input and feedback gates as functions of input \underline{x}_n based on many input-output examples (\underline{x}_n, y_n) ("training data"):

Vector Memory with Learned Input and Feedback Gates

Suggestions:

- Use learned, input-based, activations for gating (LSTM, GRU, Mamba smoothed input)
- ullet While activated, optionally set memory duration via p magnitude (SSMs, Mamba)
 - \circ Initialize \underline{p} for desired initial memory duration (exponential fade time)
 - $\begin{array}{ll} \circ & \text{Learn } \underline{p}(\underline{x}_n) \text{ as } \mathbf{I} \cdot e^{-\Delta} \approx \mathbf{I} \mathbf{I}\Delta \text{, where } \Delta = \text{softPlus}(\text{parameter}(\underline{x}_n,\underline{Y}_n)) \\ & \text{(guaranteed stable no "exploding gradients") [Also multiply } \underline{g}(\underline{x}_n) \text{ by } \Delta \text{]} \\ \end{array}$
 - \circ Consider *separate meaning-driven activation* multiplying feedback: $\sigma(\mathbf{L}\underline{x})p(\underline{x})$

Basic Idea

Architectures

- Vector Memory
- Gating
- Gated RNN
- Skip Connection
- State Expansion

Processing

Attention

History Samples

Output Gating

Idea: Since we have input and feedback gates, why not an output gate and bypass?

Gated RNN with **Skip Connection**

Output gating allows network to be "bypassed" when not helpful.

- "Obvious" Suggestion: The bypass path should be scaled for power normalization
- **Better yet:** Don't scale the bypass and use RMSNorm at the input of the next layer (prevents a "bad layer" from isolating deeper layers from the input with garbage)

Basic Idea

Architectures

- Vector Memory
- Gating
- Gated RNN
- Skip Connection
- State Expansion

Processing

Attention

History Samples

State Expansion

Idea: *Expand* vector-memory dimension to an integer multiple of the model dimension:

"Structured State-Space Models" (SSM) look like this (e.g., Mamba)

- Increased storage capacity
- Feedback matrix A typically diagonal since 2022 (see "S4D")
 Parallel bank of vector one-poles ("linearly" gated, state-expanded RNNs)
- In Mamba-2, $\mathbf{A}=p\,\mathbf{I}$, i.e., shared memory duration across expanded state
- Gating matrices in Mamba[-2] are simple linear input projections: $[\mathbf{B}(\underline{x}_n), \mathbf{C}(\underline{x}_n)] = \mathbf{L} \underline{x}_n$

Basic Idea

Architectures

Processing

Attention

History Samples

Memory Access

Basic Idea

Architectures

Processing

- Perceptrons
- Sequences

Attention

History Samples

Detecting Multiple Vectors in Parallel

Idea: Detect multiple memory vectors in parallel using an array of "Perceptrons"

Each Perceptron detects one or more memory vectors similar to its weight vectors

$$y_i(n) = \underline{w}_i^T \underline{h}(n) > b_i$$

where $y_i(n)$ denotes the ith output at time n, i=0,...,M-1, and $\underline{h}(n)$ denotes the ("hidden" [expanded-] state) vector memory

• Note that the C matrix can provide these weights:

$$\underline{y}(n) = \mathbf{C} \underline{h}(n) > \underline{b}$$

- The Perceptrons indicate *which weight-vectors* \underline{w}_i *are present* in the vector memory \underline{h}
- Idea: (Backpropagation—1980s?): To facilitate *learning* \underline{w}_i via gradient descent, replace ">" by something smoother, such as $1 + \tanh[\mathbf{C} \underline{h}(n) \underline{b}]$

Basic Idea

Architectures

Processing

- Perceptrons
- Sequences

Attention

History Samples

Sequence Modeling

- If each vector represents a word, a vector sum is simply a bag of words
- To model a sequence of words, we have various sequence-position-encoding options:
 - 1. Amplitude Decay Multiply the sum by a forgetting factor each sequence step (RNNs) poor choice (conflates with angular distance on the hypersphere)
 - 2. Sinusoidal Amplitude Modulation Add a sinusoid with increasing frequency to each vector summing into the history (used in the original Transformer)
 - 3. Phase Shift Multiply by the sum by $e^{j\Delta}$ each sample ("RoPE") apparently most used today

Basic Idea

Architectures

Processing

Attention

History Samples

Attention

Basic Idea

Architectures

Processing

Attention

- Attention
- Dot-Product Attention
- Multi-Head Attention
- Hypersphere

History Samples

Attention Layer

Idea: Also use *FIR Filtering* (SSM State Expansion Factor $N \geq M$):

Separately learnable FIR coefficient matrices $\underline{d}_k[\underline{x}(n)], \underline{c}_j[\underline{x}(n-j), k]$, depending on

- 1. input position j in the input sequence ("context buffer" or "expanded state" + RoPE),
- 2. input *vector* $\underline{x}(n-j)$, j = 0, 1, 2, ..., M,
- 3. output-position k being computed, $k = 0, 1, 2, \dots, M$ (M + 1 outputs)

Idea: Add relevance gating suppressing unimportant inputs to each output ("attention")

Idea: Create *new embedding vectors* as *sums* of existing embedding vectors ("attention")

Idea: Measure relevance using an *inner product* between the output and input positions ("dot-product attention")

Basic Idea

Architectures

Processing

Attention

- Attention
- Dot-Product Attention
- Multi-Head Attention
- Hypersphere

History Samples

Dot-Product Attention

Relevance Gating

Let \underline{x}_k denote $\underline{x}(n-k)$

The contribution from input \underline{x}_j to the nonlinear FIR sum for output \underline{y}_k can be calculated as

$$\underline{c}_{kj} = \left[\left(\sum_{m \in \mathcal{R}_k} \underline{x}_m \right)^T \underline{x}_j \right] \underline{x}_j$$

or more generally $\underline{c}_{kj}=(Q_k^T\underline{x}_j)\underline{x}_j$, where $Q_k[\underline{x}_k,k]$ is called the *query* vector for position k in the input sequence

The query Q_k can be a sum of *all vectors supported in the attention sum*:

$$Q_k = \underline{x}_k + \underline{x}_{m_1} + \dots + \underline{x}_{m_k}$$

 $\Rightarrow (Q_k^T \underline{x}_j)\underline{x}_j \approx \underline{x}_j$, if \underline{x}_j is similar to *any vector* in the query sum.

Basic Idea

Architectures

Processing

Attention

- Attention
- Dot-Product Attention
- Multi-Head Attention
- Hypersphere

History Samples

Multi-Head Attention

Idea: To support multiple meaning possibilities, *partition the model space* into parallel independent *attention calculations* ("multi-head attention")

- Each attention head can form an independent input interpretation
- Useful for ambiguous sequences, especially in the lower layers
- Also introduced in the Transformer paper (2017)

Now we need *down-projections* for the query $Q(\underline{x})$, *key* $K(\underline{x})$, and *value* $V(\underline{x})$ Relevance of input j to output k in attention-head l is now proportional to

$$\left[Q_{k,l}^T(\underline{x}_k)K_{j,l}(\underline{x}_j)\right]V_{j,l}(\underline{x}_j)$$

where Q, K, and V are learned down-projections of the input \underline{x} for each attention-head l and for all sequence indices j and k in the context buffer ("Transformer")

Other useful generalizations can be imagined for these learned vectors, such as grouping grammatical functions, creating new model-space regions, etc.

Where Meaning Lies

Background

Basic Idea

Architectures

Processing

Attention

- Attention
- Dot-Product Attention
- Multi-Head Attention
- Hypersphere

History Samples

Basic Idea

Architectures

Processing

Attention

History Samples

Sequence Modeling Snapshots

LSTM and **GRU**

Background

Basic Idea

Architectures

Processing

Attention

History Samples

- LSTM & GRU
- SSM & Mamba
- Hawk & Griffin
- HGRN2
- RWKV+

1997: LSTM

The Long Short-Term Memory (LSTM) cell can process data sequentially and keep its hidden state through time.

2014: GRU

Gated Recurrent Unit, fully gated version

Structured State Space and Mamba

Background

Basic Idea

Architectures

Processing

Attention

History Samples

- LSTM & GRU
- SSM & Mamba
- Hawk & Griffin
- HGRN2
- RWKV+

2023: Mamba (S6)

Figure 2: (**Architecture**.) Our simplified block design combines the H3 block, which is the basis of most SSM architectures, with the ubiquitous MLP block of modern neural networks. Instead of interleaving these two blocks, we simply repeat the Mamba block homogenously. Compared to the H3 block, Mamba replaces the first multiplicative gate with an activation function. Compared to the MLP block, Mamba adds an SSM to the main branch. For σ we use the SiLU / Swish activation (Hendrycks & Gimpel, 2016; Ramachandran et al., 2017).

Hawk and Griffin

Background

Basic Idea

Architectures

Processing

Attention

History Samples

- LSTM & GRU
- SSM & Mamba
- Hawk & Griffin
- HGRN2
- RWKV+

Figure 2 | a) The main backbone of our mode architecture is the residual block, which is stacked N times. b) The gated MLP block that we use. c) The recurrent block that we propose as an alternative to Multi Query Attention (MQA). It uses our proposed RG-LRU layer, defined in Section 2.4.

Gated "Linear" RNNs with State Expansion

Background

Basic Idea

Architectures

Processing

Attention

History Samples

- LSTM & GRU
- SSM & Mamba
- Hawk & Griffin
- HGRN2
- RWKV+

Figure 1: The neural architecture of HGRN2. Each HGRN2 layer includes a token mixer layer HGRU2 and a channel mixerlayer GLU. HGRU2 employs recurrent computation through Eq. 3, where i_t is the input vector, g_t is the forget gate (not lower bounded), β^i is the lower bound of the forget gate value, o_t is the output gate for layer i.

RWKV, Eagle, Finch

Background

Basic Idea

Architectures

Processing

Attention

History Samples

- LSTM & GRU
- SSM & Mamba
- Hawk & Griffin
- HGRN2
- RWKV+

2024: Eagle-Finch RWKV

Figure 1: RWKV architecture overview. **Left:** time-mixing and channel-mixing blocks; **top-right:** RWKV time-mixing block as RNN cell; **center-bottom:** token-shift module in FeedForward module and Eagle time-mixing; **bottom-right:** token-shift module in Finch time-mixing. All shape annotations assume a single head for simplicity. Dashed arrows (left, top-right) indicate a connection in Finch, but not in Eagle.

