

Christoph Molnar, Bernd Bischl 2018-07-12

IML Methods

INTERPRETABLE MACHINE LEARNING

- Machine learning (ML) has huge potential to improve research, products and processes
- ML models usually operate as intransparent black boxes
- The lack of explanation hurts trust and creates barrier for adoption
- \Rightarrow We need interpretability for machine learning models

WHEN DO WE NEED INTERPRETABILITY?

- Debugging the models
- Increasing trust
- Newly developed systems with unknown consequences
- Decisions about humans
- Critical applications that decide about life and death
- Models using proxies instead of causal inputs
- When the loss function does not cover all constraints

Doshi-Velez, F., and Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learning, (Ml), 1-13. Retrieved from http://arxiv.org/abs/1702.08608

WHAT TOOLS DO WE HAVE?

PERMUTATION FEATURE IMPORTANCE

- Calculates the increase of the model's prediction error after permuting the feature
- Features are important if permuting one feature's value increases the model error

PERMUTATION FEATURE IMPORTANCE

- 1. Estimate model error on test data
- 2. For each feature x_i
- Shuffle the feature

	OI	19111	.aı	
x_1		x_j		x_p
3		1.4		6.0
5		1.2		7.2
0		0.0		0.0

shuffled x_j

		J	
x_1	 x_j		x_p
3	2.0		6.0
5	1.4		7.2
6	1.2		8.9

- Estimate the error of the model after shuffling
- Calculate importance as increase in error
- Average the feature importance over multiple repetitions

Show the marginal effect of a feature on the predicted outcome of a fitted model

$$f_{x_S}(x_S) = \mathbb{E}_{x_C} f(x_S, x_C)$$

Friedman, J.H. 2001. "Greedy Function Approximation: A Gradient Boosting Machine." Annals of Statistics 29: 1189-1232.

- Select a feature x_j
- Choose grid points along x_j
- For each grid point:
 - Overwrite feature x_j in the dataset with the current grid value
 - Get the predictions for these points from the ML model
 - Average the predictions
- Draw a curve with the grid points on the x-axis and the average prediction on the y-axis.

i	x_1	x_2	x_3	$\hat{f}_\S^{(i)}$
1	1	2	3	0.4
2	1	4	5	0.6
3	1	6	7	0.1
1	2	2	3	0.6
2	2	4	5	0.8
3	2	6	7	0.5
1	3	2	3	0.7
2	3	4	5	0.9
3	3	6	7	0.6

i	x_1	x_2	x_3	$\hat{f}_\S^{(i)}$
1	1	2	3	0.4
2	1	4	5	0.6
3	1	6	7	0.1
1	2	2	3	0.6
2	2	4	5	0.8
3	2	6	7	0.5
1	3	2	3	0.7
2	3	4	5	0.9
3	3	6	7	0.6

i	x_1	x_2	x_3	$\hat{f}_\S^{(i)}$
1	1	2	3	0.4
2	1	4	5	0.6
3	1	6	7	0.1
1	2	2	3	0.6
2	2	4	5	0.8
3	2	6	7	0.5
1	3	2	3	0.7
2	3	4	5	0.9
3	3	6	7	0.6

LIME

Local Interpretable model-agnostic Explanations

- Fits local, interpretable models that can explain single predictions of any black-box model
- Local surrogate models, that are interpretable like a LM or CART and are learned on predictions of original model

Ribeiro, M. T., (2016, August). Why should i trust you?: Explaining the predictions of any classifier

LIME

How to fit local surrogate model

- 1. Choose instance of interest x
- 2. Perturb data and get black box predictions for them
- 3. Weight new samples by their proximity to x
- 4. Fit a weighted, interpretable model on this new data set

Ribeiro, M. T., (2016, August). Why should i trust you?: Explaining the predictions of any classifier

iml Package

THE IML PACKAGE

- R6 package for **model-agnostic** Interpretable Machine Learning methods
- Analyses a fixed machine learning model
- Model can be from mlr, caret, or anything else (for the latter you might have to write a few line of glue code)
- Available on CRAN and Github: https://github.com/christophM/iml
- Detailed explanations for the methods can be found in the book "Interpretable Machine Learning": https://christophm.github.io/interpretable-ml-book/agnostic.html

Molnar et al., (2018). iml: An R package for Interpretable Machine Learning . Journal of Open Source Software, 3(26), 786, https://doi.org/10.21105/joss.00786

PACKAGE IML

The iml package contains the following IML tools

- Permutation Feature Importance (FeatureImp)
- Feature Interactions (Interaction)
- Partial Dependence Plots (Partial)
- LIME (LocalModel)
- Shapley Values (Shapley)
- Tree Surrogates (TreeSurrogate)

EXAMPLE

• Load neccessary packages

```
library(mlr)
library(iml)
```

• Import data:

```
load("bike.RData")
```

UCI BIKE SHARING DATA SET

Hourly and daily count of rental bikes between years 2011 and 2012 in Capital bikeshare system with the corresponding weather and seasonal information.

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

(Excluded year and day info)

##	season	mntl	1	holi	iday	weekday		wor]	kingday	
##	SPRING:181	JAN :	62 NC	HOLIDAY	7:710	SUN:105	NO WO	RKING D	AY:231	
##	SUMMER: 184	MAR :	62 HC	LIDAY	: 21	MON:105	WORKI	NG DAY	:500	
##	FALL :188	MAY :	62			TUE:104				
##	WINTER: 178	JUL :	62			WED:104				
##		AUG :	62			THU:104				
##		OKT :	62			FRI:104				
##		(Other):3	359			SAT:105				
##	we	athersit	te	emp	hı	ım	winds	peed	cr	ıt
##	GOOD	:463	Min.	:-5.2	Min.	: 0.0	Min.	: 1.5	Min.	: 22
##	MISTY	:247	1st Qu.	: 7.8	1st Qu.	:52.0	1st Qu.	: 9.0	1st Qu.	:3152
##	RAIN/SNOW/ST	ORM: 21	Median	:15.4	${\tt Median}$:62.7	Median	:12.1	Median	:4548
##			Mean	:15.3	Mean	:62.8	Mean	:12.8	Mean	:4504
##			3rd Qu.	:22.8	3rd Qu.	:73.0	3rd Qu.	:15.6	3rd Qu.	:5956
##			Max.	:32.5	Max.	:97.2	Max.	:34.0	Max.	:8714
##										

FIT MLR MODEL AND CREATE IML PREDICTOR

• We have to fit a ML model first

```
task = makeRegrTask(data = bike, target = "cnt")
lrn = makeLearner("regr.randomForest")
mod = train(lrn, task)
```

• We can use one IML model for all methods

```
# Create data frame without target column
bike.x = bike[names(bike) != 'cnt']

predictor = Predictor$new(mod, data = bike.x, y = bike$cnt)
```

PERMUTATION FEATURE IMPORTANCE PLOT

```
importance = FeatureImp$new(predictor, loss = 'mse')
plot(importance)
```


ACCESS RESULTS IN TABLE FORMAT

• All results can be viewed in table form

imp	001	rtance\$resu]	lts		
##		feature	original.error	permutation.error	importance
##	1	temp	336711	2573065	7.64
##	2	hum	336711	1183987	3.52
##	3	mnth	336711	1102907	3.28
##	4	season	336711	824275	2.45
##	5	windspeed	336711	803497	2.39
##	6	weekday	336711	657163	1.95
##	7	weathersit	336711	616884	1.83
##	8	workingday	336711	401488	1.19
##	9	holiday	336711	355549	1.06

```
pdp = Partial$new(predictor, "temp", ice = TRUE)
pdp$plot()
```


• ice = TRUE: Individual Conditional Expectation (ICE)
Plots visualizes the relationship between the predicted
response and the feature for *individual* observations

REUSE PD OBJECTS

• PD objects can be reused, e.g. for fitting other features

```
pdp$set.feature("weathersit")
pdp$plot()
```


LIME PLOT

plot(lim)

• Select one instance

```
id = 726
pred = predictor$predict(bike.x[id,])[1,1]
cbind(bike[id,], yhat = pred)

## season mnth holiday weekday workingday weathersit
## 726 SPRING DEZ NO HOLIDAY WED WORKING DAY RAIN/SNOW/STORM
## temp hum windspeed cnt yhat
## 726 3.44 82.3 21.2 441 955

lim = LocalModel$new(predictor, x.interest = bike.x[id,], k = 3)
```

