Practical_5_regression_2022

Soumarya Basak

14/05/2022

Transformation Of Variable

Problem 1

Import the data

```
library(readr)
library(tidyverse)
## -- Attaching packages -----
                                      ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                             1.0.7
                     v dplyr
## v tibble 3.1.6
                     v stringr 1.4.0
## v tidyr
          1.1.4
                     v forcats 0.5.1
## v purrr
          0.3.4
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(readxl)
df <- read.csv("C:\\Users\\souma\\Dropbox\\Mstat_CU\\Sem 2\\Regression_analysis_1\\Data Sets\\problem_s</pre>
colnames(df) \leftarrow c("y","x")
##
## 1 10 50.1187
## 2 11 58.9342
## 3 16 111.4305
## 4 18 136.1330
## 5 25 237.9567
## 6 24 222.0031
## 7 26 254.3634
## 8 29 306.2504
## 9 31 343.0164
## 10 31 343.0164
## 11 34 401.3416
## 12 35 421.6146
## 13 36 442.2973
```

Plot of the Data

The Scatter Plot of the Data

Comment:

Fit a model

```
model1 \leftarrow lm(y \sim x, data = df)
summary(model1)
##
## Call:
## lm(formula = y \sim x, data = df)
##
## Residuals:
##
       Min
                 1Q Median
                                  ЗQ
                                         Max
## -1.6455 -0.8771 0.2497 0.7440 1.1430
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.376417
                           0.629721
                                       13.30 4.01e-08 ***
               0.065227
                           0.002194
                                       29.73 7.35e-12 ***
## x
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.026 on 11 degrees of freedom
## Multiple R-squared: 0.9877, Adjusted R-squared: 0.9866
## F-statistic: 884 on 1 and 11 DF, p-value: 7.35e-12
```

Comment: From the above model fit we see that both the coefficients are significant, and also the adjusted R squared is 0.98 and the residual standard error is also low, so it is a quite good fit.

Regression Plot

From the plot we also see the plot fits well. So I am quite satisfied.

Although, it is a good fit, lets try a Box Tidwell transformation,

$$x \to x^* = x^{(1/2)}$$

Box-Tidwell transformation

This transformation makes a non-linear model to linear, here the plot is a arc of a parabolic curve, i.e. y^2 depends on x linearly, so we make a square root transformation.

$$x \to x^* = x^{(1/2)}$$

```
df$x1 \leftarrow df$x^(1/2)
##
       У
                X
## 1
     10 50.1187 7.079456
## 2
     11 58.9342 7.676861
     16 111.4305 10.556065
      18 136.1330 11.667605
## 5
     25 237.9567 15.425845
## 6 24 222.0031 14.899768
     26 254.3634 15.948774
## 7
## 8 29 306.2504 17.500011
## 9 31 343.0164 18.520702
## 10 31 343.0164 18.520702
## 11 34 401.3416 20.033512
## 12 35 421.6146 20.533256
## 13 36 442.2973 21.030865
Now regressing y with respect to x^{1/2},
model2 \leftarrow lm(y \sim x1, data = df)
summary(model2)
##
## Call:
## lm(formula = y \sim x1, data = df)
##
## Residuals:
##
        Min
                   1Q
                       Median
                                      3Q
                                              Max
## -0.25859 -0.21765 -0.02082 0.22066 0.34613
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                            0.22497 -15.86 6.34e-09 ***
## (Intercept) -3.56727
## x1
                1.86754
                            0.01406 132.83 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2311 on 11 degrees of freedom
## Multiple R-squared: 0.9994, Adjusted R-squared: 0.9993
## F-statistic: 1.764e+04 on 1 and 11 DF, p-value: < 2.2e-16
For this model the coefficient are also significant, and the Adjusted R-squared value is 0.99, which is larger
than previous value and the residual standard error is also lower than the previous one. SO, the transformation
more stabilizes the model.
plot(df$x1,df$y,pch=19,col="blue",
     xlab = expression(sqrt(x)),ylab = "y",main = expression( "Regression Plot with "~ sqrt(x) ~" as re
abline(model2, col='red')
```

Regression Plot with \sqrt{x} as regressor

Problem 2

import the data

```
df2<- read.csv("C:\\Users\\souma\\Dropbox\\Mstat_CU\\Sem 2\\Regression_analysis_1\\Data Sets\\problem_s
colnames(df2)<- c("y","x1","x2")
df2</pre>
```

```
##
         y x1 x2
## 1 6.46 28 33
## 2 5.65 21 25
## 3 6.02 22 35
     5.60 17 35
## 5 5.47 16 35
     6.32 28 24
     5.80 22 29
## 7
     5.52 22 22
## 9 6.05 28 26
## 10 6.10 29 24
## 11 5.31 17 25
## 12 5.21 15 33
## 13 5.19 19 21
## 14 5.80 17 39
## 15 5.84 22 31
## 16 6.06 25 38
```

```
## 17 5.75 24 20
## 18 4.91 15 25
# variables plot
plot(df2)
```


Fit the linear Regression

```
model3 \leftarrow lm(y \sim x1+x2, data = df2)
summary(model3)
##
## Call:
## lm(formula = y \sim x1 + x2, data = df2)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
## -0.23721 -0.09533 0.02282 0.07600 0.20155
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.044288
                          0.223767 13.605 7.64e-10 ***
                          0.006377 13.096 1.30e-09 ***
## x1
               0.083508
## x2
               0.030664
                          0.004999
                                     6.135 1.91e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.1213 on 15 degrees of freedom
## Multiple R-squared: 0.9234, Adjusted R-squared: 0.9132
## F-statistic: 90.4 on 2 and 15 DF, p-value: 4.288e-09
```

From the above fit we can say that all the coefficients are significant. and the Adjusted R squared is 0.91 and residual sum of square is 0.1213

Residual Plot

Fitted Vs Residual Plot


```
plot(density(res), main = "Density plot of the residuals")
```

Density plot of the residuals

The variability of the model is not stabilized and also the errors doesn't follows the assumption of normality so we need transformation of response variable.

Transformation of Variable

```
## Geometric Mean of Y
y_g <- exp(mean(log(df2$y)))

lambda <- c(-2,-1, -0.5,0, 0.5,2,3)
rss <- c()
a<- c()

for(i in 1:length(lambda)){

   if(lambda[i]!= 0){
        m <-lm( ((y^lambda[i])/y_g) ~ x1 + x2 , data = df2 )
   }
   if(lambda[i]==0){
        m <-lm( log(y) ~ x1 + x2 , data = df2 )
   }
   rss <- c(rss, sum((summary(m)$residuals)^2))
   a<- c(a, summary(m)$adj.r.squared)
}

library(knitr)</pre>
```

kable(cbind(lambda, "RSS"=round(rss,9), "Adj_R_squared"=a))

lambda	RSS	Adj_R_squared
-2.0	0.0000012	0.8812271
-1.0	0.0000080	0.8956760
-0.5	0.0000106	0.9015071
0.0	0.0074078	0.9063771
0.5	0.0003080	0.9102693
2.0	0.8507640	0.9159984
3.0	63.7191012	0.9148843

So the model fits well when the $\lambda = -2$, so the model will be more precise if we take $\lambda = 2$ and transform the response variable.

THe model with lambda =-0.5

```
model4 \leftarrow m \leftarrow lm(((y^(-0.5))/y_g) \sim x1 + x2 , data = df2)
summary(model4)
##
## Call:
## lm(formula = ((y^(-0.5))/y_g) \sim x1 + x2, data = df2)
##
## Residuals:
                             Median
##
         Min
                      1Q
                                             3Q
                                                       Max
## -0.0011481 -0.0005297 -0.0001685 0.0006283 0.0015403
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.072e-02 1.549e-03 58.553 < 2e-16 ***
               -5.387e-04 4.415e-05 -12.200 3.45e-09 ***
## x1
               -2.018e-04 3.461e-05 -5.832 3.30e-05 ***
## x2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0008399 on 15 degrees of freedom
## Multiple R-squared: 0.9131, Adjusted R-squared: 0.9015
## F-statistic: 78.8 on 2 and 15 DF, p-value: 1.104e-08
res2 <- resid(model4)</pre>
plot(density(res2), main = paste("The RSS=",sum(res2^2),", The density Plot of the residuals"))
```

The RSS= 1.0582049624089e-05, The density Plot of the residuals

N = 18 Bandwidth = 0.0003983

Final Model

$$y^* = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 x_2$$

where

$$y^* = \frac{y^{-1/2}}{Y_g}$$

Here the estimated coefficients are,

$$y^* = (9.072e - 02) + (-5.387e - 04) \times x_1 + (-2.018e - 04) \times x_2$$

This is the final model.

Here is a big question..... which lambda should we choose