Florian Galliot ¹, Jonas Sénizergues ²

¹I2M. Université d'Aix-Marseille

²LaBRI, Université de Bordeaux

August 27, 2025

Two players, **Left** and **Right**, play on a hypergraph H = (V, E) $(E \subset 2^V)$.

Left and **Right** take turns picking a previously unpicked vertex.

Hyperedges represent the goals.

"Achievement" \rightarrow Hyperedges represent goals to achieve: winning sets.

Two players, **Left** and **Right**, play on a hypergraph H = (V, E) $(E \subset 2^V)$.

Left and **Right** take turns picking a previously unpicked vertex.

Hyperedges represent the goals.

"Achievement" \rightarrow Hyperedges represent goals to achieve: winning sets.

Two players, **Left** and **Right**, play on a hypergraph H = (V, E) $(E \subset 2^V)$.

Left and **Right** take turns picking a previously unpicked vertex.

Hyperedges represent the goals.

"Achievement" → Hyperedges represent goals to achieve: winning sets.

Two players, **Left** and **Right**, play on a hypergraph H = (V, E) $(E \subset 2^V)$.

Left and **Right** take turns picking a previously unpicked vertex.

Hyperedges represent the goals.

"Achievement" \rightarrow Hyperedges represent goals to achieve: winning sets.

Maker-Maker Convention

Maker-Maker convention = Hyperedges are winning sets for both players (the first player to fill an hyperedge wins).

By strategy-stealing argument, only the first player to play, **Left**, can have a winning strategy.

Question: Does Left have a winning strategy?

Theorem (Koepke 2025 (+ Biskov 2004))

6-uniform Maker-Maker game is PSPACE-complete.

Theorem (Trivial)

2-uniform Maker-Maker game is in LOGSPACE.

Maker-Breaker Convention

Maker-Breaker convention = Hypergedges are winning sets for Left , Right wins if Left does not win.

Theorem (Schaefer 1978)

11-uniform Maker-Breaker game is PSPACE-complete.

Theorem (Koepke 2025)

5-uniform Maker-Breaker game is PSPACE-complete.

Theorem (Galliot, Gravier, Sivignon 2022)

3-uniform Maker-Breaker game is polynomial.

Intermediate position of Maker-Maker games

A Maker-Maker instance

Intermediate position of Maker-Maker games

Not a Maker-Maker instance

Intermediate position of Maker-Maker games

Not a Maker-Maker instance

Two distinct colors of hyperedges, representing winning conditions for **Left** and **Right** (black hyperedges are both red and blue).

Definition

An **Achievement positional game** is a triplet $H = (V, E_L, E_R)$ such that

- (V, E_L) and (V, E_R) are hypergraphs.
- E_L (resp. E_R) are winning conditions for Left (resp. Right).
- Can be seen as a hyperedge-colored hypergraph with three colors (red, blue, and black = red and blue).

Special cases:

- $E_L = E_R \rightarrow \text{Maker-Maker games}$
- $E_R = \emptyset \sim \text{Maker-Breaker games}$

Deciding the outcome

Question: How hard is it to decide whether **Left** has a winning strategy?

PSPACE-c in general (includes both Maker-Maker and Maker-Breaker conventions).

Natural fragments of interest:

- Bounds on the size for hyperedges in E_L and E_R
 → Extension of Maker-Breaker games
- Bound k (resp. k-1) on elements of $E_L \cap E_R$ (resp. $E_L \triangle E_R$) \rightarrow Intermediate positions of rank k Maker-Maker games
- E_R is a maximal set of minimal transversal of E_L
 - \rightarrow Maker-Breaker games ... except size definition

Bounding sizes

Question: Does **Left** has a winning strategy? Maximum respective sizes for elements of E_L (in blue) and E_R (in red).

	0	1	2	3	4	5+
0	L		L	Р	?	PSPACE-c
1						
2	L					PSPACE-c
3+	L					PSPACE-c

First row \sim Maker-Breaker games.

Hyperedges have size at least 1, thus 0 means no hyperedge.

Rows (resp. Columns) 0 and 1 are merged due to trivial reductions.

Bounding sizes

Question: Does **Left** has a winning strategy? Maximum respective sizes for elements of E_L (in blue) and E_R (in red).

	0	1	2	3	4	5+
0	L		L	Р	?	PSPACE-c
1						
2	L		Р	NP-hard	NP-hard	PSPACE-c
3+	L		co-NP -c	PSPACE -c	PSPACE -c	PSPACE-c

First row \sim Maker-Breaker games.

Hyperedges have size at least 1, thus 0 means no hyperedge.

Rows (resp. Columns) 0 and 1 are merged due to trivial reductions.

The (2,2) fragment

There is an easy reduction to eliminate hyperedges of size 1.

If every edge has size 2, **Left** wins if and only if there is a blue P_3 , since **Right** gets a non-losing pairing strategy otherwise.

If Left cannot win, can she prevent Right from winning? If she loses the initiative, Right wins if there is a red P_3 left.

The (2,2) fragment

Theorem (Galliot, Sénizergues 2025)

Computing the outcome (**Left** wins, Draw, or **Right** wins) of an achievement positional game when hyperedges have size at most 2 can be done in time $O(|V|^2(|E_L| + |E_R|)$.

Sketch of the proof:

- Classify the sequences of forced moves from a given first move depending on how they end (direct loss, Left to play, Right to play).
- Playing a sequence of the second type is always optimal for Left when possible.
- Computing the maximal forced sequence of x in a given configuration takes time $O(|E_L| + |E_R|)$.

The (2,k) fragment is co-NP-c

In co-NP? Left must destroy every red P_3 before losing the initiative to draw the game. Certificate: the sequence of (forcing) moves, easy to check.

co-NP-hard? Reduction from 3-SAT to the complementary problem.

For a clause $c = \neg x \lor y \lor z$, gadget as follows:

NP-hardness (k,2)

Adding blue butterflies to transform draw into victory for Left.

Sketch of the proof: when **Left** destroys the last red P_3 , **Right** can play on one of the butterflies. **Left** plays the center of the other and wins since **Right** can only destroy one of the resulting blue P_3 before losing the initiative.

The (3,3) fragment is PSPACE-complete

Theorem (Galliot, Sénizergues 2025)

Deciding whether **Left** (resp. **Right**) has a winning strategy is PSPACE-complete when both players have hyperedges of size at most 3.

(Proof by reduction from Quantified Boolean Formula (QBF).)

Corollary

4-uniform Maker-Maker with pre-attributed vertices is PSPACE-complete.

Bounding E_L and E_R : a room for improvement?

		0	1	2	3	4	5+
ĺ	0	L		L	Р	?	PSPACE-c
	1						
ĺ	2	L		Р	NP-hard	NP-hard	PSPACE-c
ĺ	3+	L		co-NP -c	PSPACE -c	PSPACE -c	PSPACE-c

Bounding E_L and E_R : a room for improvement?

	0	1	2	3	4	5+
0	L		L	Р	?	PSPACE-c
1						
2	L		Р	PSPACE -c	PSPACE -c	PSPACE-c
3+	L		co-NP -c	PSPACE -c	PSPACE -c	PSPACE-c

Theorem (Galliot, Sénizergues 2025+)

Deciding whether **Left** has a winning strategy is PSPACE-complete even when vertices in E_L and E_R are of respective maximum sizes 3 and 2.

About Maker-Maker

For Maker-Maker, ranks 3, 4 and 5 are open.

About Maker-Maker

For Maker-Maker, ranks 3, 4 and 5 are open.

Theorem (Galliot, Sénizergues 2025+)

Rank 4 Maker-Maker games is PSPACE-complete

Uniformity for ranks 4 and 5?

Is Maker-Breaker that hard really?

When E_R is a maximal set of minimal transversal of $E_L \rightarrow$ Maker-Breaker games ... except size definition

Do Maker-Breaker stays hard when the size of the transversal is included?

Thank you for your attention

