MIT OpenCourseWare http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Saman Amarasinghe, 6.189 Multicore Programming Primer, January (IAP) 2007. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 11

Parallelizing Compilers

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Types of Parallelism

- Instruction Level Parallelism (ILP)
- → Scheduling and Hardware
- Task Level Parallelism (TLP)
- → Mainly by hand
- Loop Level Parallelism (LLP) or Data Parallelism
- → Hand or Compiler Generated

Pipeline Parallelism

→ Hardware or Streaming

Divide and Conquer Parallelism → Recursive functions

Why Loops?

- 90% of the execution time in 10% of the code
 - Mostly in loops
- If parallel, can get good performance
 - Load balancing
- Relatively easy to analyze

Programmer Defined Parallel Loop

- FORALL
 - No "loop carried dependences"
 - Fully parallel

FORACROSS

5

Some "loop carried dependences"

Parallel Execution

Example

```
FORPAR I = 0 to N

A[I] = A[I] + 1
```

Block Distribution: Program gets mapped into

```
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1
   FOR I = P*Iters to MIN((P+1)*Iters, N)
   A[I] = A[I] + 1
```

SPMD (Single Program, Multiple Data) Code

```
If(myPid == 0) {
    ...
    Iters = ceiling(N/NUMPROC);
}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
    A[I] = A[I] + 1
Barrier();
```

Parallel Execution

Example

```
FORPAR I = 0 to N

A[I] = A[I] + 1
```

Block Distribution: Program gets mapped into

```
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1
   FOR I = P*Iters to MIN((P+1)*Iters, N)
   A[I] = A[I] + 1
```

Code that fork a function

```
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);
...
void func1(integer myPid)
{
   FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
}
```

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Parallelizing Compilers

- Finding FORALL Loops out of FOR loops
- Examples

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7

- Iterations are represented as coordinates in iteration space
 - $[i] = [i_1, i_2, i_3, ..., i_n]$

2 3 4 5 6 7 \leftarrow J

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations
 - → Lexicographic order

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7

- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations
 - → Lexicographic order
- Iteration i is lexicograpically less than j is is, i is if if there exists c s.t. i₁ = j₁, i₂ = j₂,... i_{c-1} = j_{c-1} and i_c < j_c

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7

- An affine loop nest
 - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
 - Array accesses are integer linear functions of constants, loop constant variables and loop indexes

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

FOR
$$I = 0$$
 to 6
FOR $J = I$ to 7

 Affine loop nest → Iteration space as a set of liner inequalities

$$0 \le |$$

$$| \le 6$$

$$| \le J$$

$$| \le 7$$

Data Space

- M dimensional arrays → m-dimensional discrete cartesian space
 - a hypercube

Integer A(10)

Float B(5, 6)

Dependences

True dependence

```
a =
= a
```

Anti dependence

```
= a
```

Output dependence

```
a = a =
```

a

Definition:

Data dependence exists for a dynamic instance i and j iff

- either i or j is a write operation
- i and j refer to the same variable
- i executes before j
- How about array accesses within loops?

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

FOR I = 0 to 5
$$A[I] = A[I] + 1$$

FOR
$$I = 0$$
 to 5
A[I] = A[I] + 1

FOR I = 0 to 5
$$A[2*I] = A[2*I+1] + 1$$

Recognizing FORALL Loops

- Find data dependences in loop
 - For every pair of array acceses to the same array
 If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations).
 Then there is a data dependence between the statements
 - (Note that same array can refer to itself output dependences)
- Definition
 - Loop-carried dependence:
 dependence that crosses a loop boundary
- If there are no loop carried dependences → parallelizable

Data Dependence Analysis

Example

```
FOR I = 0 to 5
A[I+1] = A[I] + 1
```

- Is there a loop-carried dependence between A[I+1] and A[I]
 - Is there two distinct iterations i_w and i_r such that A[i_w+1] is the same location as A[i_r]
 - \exists integers i_w , i_r $0 \le i_w$, $i_r \le 5$ $i_w \ne i_r$ $i_w + 1 = i_r$
- Is there a dependence between A[I+1] and A[I+1]
 - Is there two distinct iterations i₁ and i₂ such that A[i₁+1] is the same location as A[i₂+1]
 - \exists integers i_1 , i_2 $0 \le i_1$, $i_2 \le 5$ $i_1 \ne i_2$ $i_1 + 1 = i_2 + 1$

Integer Programming

Formulation

- ∃ an integer vector i such that i ≤ b where is an integer matrix and b is an integer vector
- Our problem formulation for A[i] and A[i+1]
 - \exists integers i_w , i_r $0 \le i_w$, $i_r \le 5$ $i_w \ne i_r$ $i_w + 1 = i_r$
 - $i_w \neq i_r$ is not an affine function
 - divide into 2 problems
 - Problem 1 with i_w < i_r and problem 2 with i_r < i_w
 - If either problem has a solution → there exists a dependence
 - How about $i_w + 1 = i_r$
 - Add two inequalities to single problem
 i_w+ 1 ≤ i_r, and i_r ≤ i_w+ 1

Integer Programming Formulation

Problem 1

$$0 \le i_{w}$$

$$i_{w} \le 5$$

$$0 \le i_{r}$$

$$i_{r} \le 5$$

$$i_{w} < i_{r}$$

$$i_{w} + 1 \le i_{r}$$

$$i_{r} \le i_{w} + 1$$

Integer Programming Formulation

Problem 1

$$0 \le i_{w} \longrightarrow -i_{w} \le 0$$

$$i_{w} \le 5 \longrightarrow i_{w} \le 5$$

$$0 \le i_{r} \longrightarrow -i_{r} \le 0$$

$$i_{r} \le 5 \longrightarrow i_{r} \le 5$$

$$i_{w} < i_{r} \longrightarrow i_{w} - i_{r} \le -1$$

$$i_{w} + 1 \le i_{r} \longrightarrow i_{w} - i_{r} \le -1$$

$$i_{r} \le i_{w} + 1 \longrightarrow -i_{w} + i_{r} \le 1$$

Integer Programming Formulation

Problem 1

$$0 \le i_{w} \qquad \rightarrow \qquad -i_{w} \le 0$$

$$i_{w} \le 5 \qquad \rightarrow \qquad i_{w} \le 5$$

$$0 \le i_{r} \qquad \rightarrow \qquad -i_{r} \le 0$$

$$i_{r} \le 5 \qquad \rightarrow \qquad i_{r} \le 5$$

$$i_{w} < i_{r} \qquad \rightarrow \qquad i_{w} - i_{r} \le -1$$

$$i_{w} + 1 \le i_{r} \qquad \rightarrow \qquad i_{w} - i_{r} \le -1$$

$$i_{r} \le i_{w} + 1 \qquad \rightarrow \qquad -i_{w} + i_{r} \le 1$$

and problem 2 with i_r < i_w

Generalization

An affine loop nest

```
FOR i_1 = f_{11}(c_1...c_k) to I_{u1}(c_1...c_k)

FOR i_2 = f_{12}(i_1,c_1...c_k) to I_{u2}(i_1,c_1...c_k)

.....

FOR i_n = f_{1n}(i_1...i_{n-1},c_1...c_k) to I_{un}(i_1...i_{n-1},c_1...c_k)

A[f_{21}(i_1...i_n,c_1...c_k), f_{22}(i_1...i_n,c_1...c_k),...,f_{2m}(i_1...i_n,c_1...c_k)]
```

Solve 2*n problems of the form

Multi-Dimensional Dependence

```
FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1
```


Multi-Dimensional Dependence

What is the Dependence?

What is the Dependence?

What is the Dependence?

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Interprocedural Parallelization
- Loop Transformations
- Granularity of Parallelism

Scalar Privatization

Example

```
FOR i = 1 to n

X = A[i] * 3;

B[i] = X;
```

- Is there a loop carried dependence?
- What is the type of dependence?

Privatization

- Analysis:
 - Any anti- and output- loop-carried dependences
- Eliminate by assigning in local context

```
FOR i = 1 to n
  integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
```

Eliminate by expanding into an array

```
FOR i = 1 to n
    Xtmp[i] = A[i] * 3;
    B[i] = Xtmp[i];
```

Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
  integer Xtmp;
  Xtmp = A[i] * 3;
  B[i] = Xtmp;
  if(i == n) X = Xtmp
```

Eliminate by expanding into an array

```
FOR i = 1 to n
    Xtmp[i] = A[i] * 3;
    B[i] = Xtmp[i];
X = Xtmp[n];
```

Another Example

- How about loop-carried true dependences?
- Example

```
FOR i = 1 to n

X = X + A[i];
```

Is this loop parallelizable?

Reduction Recognition

- Reduction Analysis:
 - Only associative operations
 - The result is never used within the loop

Transformation

Induction Variables

Example

```
FOR i = 0 to N
A[i] = 2^i;
```

After strength reduction

```
t = 1

FOR i = 0 to N

A[i] = t;

t = t*2;
```

- What happened to loop carried dependences?
- Need to do opposite of this!
 - Perform induction variable analysis
 - Rewrite IVs as a function of the loop variable

Array Privatization

- Similar to scalar privatization
- However, analysis is more complex
 - Array Data Dependence Analysis:
 Checks if two iterations access the same location
 - Array Data Flow Analysis:
 Checks if two iterations access the same value
- Transformations
 - Similar to scalar privatization
 - Private copy for each processor or expand with an additional dimension

Interprocedural Parallelization

- Function calls will make a loop unparallelizatble
 - Reduction of available parallelism
 - A lot of inner-loop parallelism
- Solutions
 - Interprocedural Analysis
 - Inlining

Interprocedural Parallelization

Issues

- Same function reused many times
- Analyze a function on each trace → Possibly exponential
- Analyze a function once → unrealizable path problem

Interprocedural Analysis

- Need to update all the analysis
- Complex analysis
- Can be expensive

Inlining

- Works with existing analysis
- Large code bloat → can be very expensive

Loop Transformations

- A loop may not be parallel as is
- Example

```
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];
```


Loop Transformations

- A loop may not be parallel as is
- Example

```
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];
```

After loop Skewing

```
FOR i = 1 to 2*N-3
FORPAR j = max(1,i-N+2) to min(i, N-1)
A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];
```


Granularity of Parallelism

Example

```
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];
```

Gets transformed into

```
FOR i = 1 to N-1
    Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
    A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```


- Inner loop parallelism can be expensive
 - Startup and teardown overhead of parallel regions
 - Lot of synchronization
 - Can even lead to slowdowns

Granularity of Parallelism

Inner loop parallelism can be expensive

Solutions

 Don't parallelize if the amount of work within the loop is too small

or

Transform into outer-loop parallelism

Outer Loop Parallelism

Example

```
FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];
```

After Loop Transpose

```
FOR j = 1 to N-1
FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];
```

Get mapped into

```
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
    FOR i = 1 to N-1
        A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```


Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Generating Transformed Loop Bounds

```
for i = 1 to n do
    X[i] =...
    for j = 1 to i - 1 do
    ... = X[j]
```

- Assume we want to parallelize the i loop
- What are the loop bounds?
- Use Projections of the Iteration Space
 - Fourier-Motzkin Elimination Algorithm

$$\left\{ \begin{array}{c|c} (p, i, j) & 1 \le i \le n \\ 1 \le j \le i-1 \\ i = p \end{array} \right\}$$

Space of Iterations

Projections

for p = 2 to n do

$$i = p$$

for j = 1 **to** i - 1 **do**

Projections

for p = 2 to n do

$$i = p$$

for
$$j = 1$$
 to $i - 1$ **do**

Fourier Motzkin Elimination

$$1 \le i \le n$$
$$1 \le j \le i-1$$
$$i = p$$

- Project $i \rightarrow j \rightarrow p$
- Find the bounds of i

$$1 \le i$$

 $j+1 \le i$
 $p \le i$
 $i \le n$
 $i \le p$
i: max(1, j+1, p) to min(n, p)
i: p

Eliminate i

$$\begin{array}{c}
1 \le n \\
j+1 \le n \\
p \le n \\
\hline
1 \le p \\
j+1 \le p \\
p \le p \\
\hline
1 \le j
\end{array}$$

Eliminate redundant

$$p \le n$$

$$1 \le p$$

$$j+1 \le p$$

$$1 \le j$$

Continue onto finding bounds of j

Fourier Motzkin Elimination

$$p \le n$$
 $1 \le p$
 $j+1 \le p$
 $1 \le j$

Find the bounds of j

Eliminate j

$$\frac{1 \le p - 1}{p \le n}$$

$$1 \le p$$

Eliminate redundant

$$2 \le p$$
 $p \le n$

Find the bounds of p

p: 2 to n

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Communication Code Generation

- Cache Coherent Shared Memory Machine
 - Generate code for the parallel loop nest
- No Cache Coherent Shared Memory or Distributed Memory Machines
 - Generate code for the parallel loop nest
 - Identify communication
 - Generate communication code

Identify Communication

Location Centric

- Which locations written by processor 1 is used by processor 2?
- Multiple writes to the same location, which one is used?
- Data Dependence Analysis

Value Centric

- Who did the last write on the location read?
 - Same processor → just read the local copy
 - Different processor → get the value from the writer
 - No one → Get the value from the original array

Last Write Trees (LWT)

 Input: Read access and write access(es)

 Output: a function mapping each read iteration to a write creating that value Location Centric Dependences

The Combined Space

 p_{recv} i_{recv} j_{recv} p_{send} i_{send}

```
1 \le i_{recv} \le n
the receive iterations.....
                             0 \leq j_{recv} \leq i_{recv} - 1
computation decomposition for:
    receive iterations...... P_{recv} = i_{recv}
    send iterations...... P_{send} = i_{send}
Non-local communication...... P_{recv} \neq P_{send}
```

Communication Space

$$\begin{cases} 1 \leq i_{recv} \leq n \\ 0 \leq j_{recv} \leq i_{recv} - 1 \\ i_{send} = i_{recv} \\ P_{recv} = i_{recv} \\ P_{send} = i_{send} \\ P_{recv} \neq P_{send} \end{cases}$$

Communication Loop Nests

Send Loop Nest

```
for p_{send} = 1 to n - 1 do

i_{send} = p_{send}

for p_{recv} = i_{send} + 1 to n do

i_{recv} = p_{recv}

j_{recv} = i_{send}

send X[i_{send}] to

iteration (i_{recv}, j_{recv}) in

processor p_{recv}
```

Prof. Saman Amarasinghe, MIT.

Receive Loop Nest

```
for p_{recv} = 2 to n do

i_{recv} = p_{recv}

for j_{recv} = 1 to i_{recv} - 1 do

p_{send} = j_{recv}

i_{send} = p_{send}

receive X[j_{recv}] from

iteration i_{send} in

processor p_{send}
```

6.189 IAP 2007 MIT

Merging Loops

Merging Loop Nests

```
if p == 1 then
  \ldots = [q]X
  for pr = p + 1 to n do
       send X[p] to iteration (pr, p) in processor pr
if p \ge 2 and p \le n - 1 then
  X[p] = \dots
  for pr = p + 1 to n do
       send X[p] to iteration (pr, p) in processor pr
  for j = 1 to p - 1 do
       receive X[j] from iteration (j) in processor j
       \dots = X[i]
if p == n then
  X[p] = \dots
  for j = 1 to p - 1 do
       receive X[j] from iteration (j) in processor j
       \dots = X[i]
```

Communication Optimizations

- Eliminating redundant communication
- Communication aggregation
- Multi-cast identification
- Local memory management

Summary

- Automatic parallelization of loops with arrays
 - Requires Data Dependence Analysis
 - Iteration space & data space abstraction
 - An integer programming problem
- Many optimizations that'll increase parallelism
- Transforming loop nests and communication code generation
 - Fourier-Motzkin Elimination provides a nice framework