Problem B. Cows and Primitive Roots

Time limit 2000 ms **Mem limit** 262144 kB

The cows have just learned what a primitive root is! Given a prime p, a primitive root $\operatorname{mod} p$ is an integer x ($1 \le x < p$) such that none of integers x - 1, $x^2 - 1$, ..., $x^{p-2} - 1$ are divisible by p, but $x^{p-1} - 1$ is.

Unfortunately, computing primitive roots can be time consuming, so the cows need your help. Given a prime p, help the cows find the number of primitive roots mod p.

Input

The input contains a single line containing an integer p ($2 \le p \le 2000$). It is guaranteed that p is a prime.

Output

Output on a single line the number of primitive roots mod p.

Sample 1

Input	Output
3	1

Sample 2

Input	Output
5	2

Note

The only primitive root mod 3 is 2.

The primitive roots $\mod 5$ are 2 and 3.