# Miért digitalizálunk?



|                           | Analóg jel                                          | Digitális jel                                       |
|---------------------------|-----------------------------------------------------|-----------------------------------------------------|
| □ Átvitel                 | erősítés                                            | erősítés,<br>regenerálás,<br>hibajavító kódolás     |
| <ul><li>Tárolás</li></ul> | mágneses, mechanikus                                | mágneses, optikai, félvezető<br>hibajavító kódolás  |
| □ Jelfel-<br>dolgozás     | szűrés<br>(egyedileg tervezett<br>analóg áramkörök) | programozható algoritmusok: szűrés , FFT, tömörítés |

# Digitális lánc és a zaj







zajos digitális jel







gyenge digitális jel





## Analóg digitális átalakítás





analog-digital (A/D) átalakító







Kvantált mintasorozat  $\hat{x}_k$ 



## Digitális jelek visszaállítása





Dekódolt kvantált impulzussorozat  $\hat{x}_{k}$ 



Visszaállított analóg jel  $\widetilde{x}(t)$ 

# Mintavett jel időtartománybeli tulajdonságai



6



Az S(t) jel periodikus, így Fourier-sorba fejthető:

$$s(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T_{\rm s}} e^{j2\pi k f_{\rm s} t} = \frac{1}{T_{\rm s}} + \frac{1}{T_{\rm s}} \sum_{k=1}^{\infty} \underbrace{\left(e^{j2\pi k f_{\rm s} t} + e^{-j2\pi k f_{\rm s} t}\right)}_{2\cos(2\pi k f_{\rm s} t)} = f_{\rm s} \left[1 + 2\sum_{k=1}^{\infty} \cos(2\pi k f_{\rm s} t)\right] \text{ ahol } f_{\rm s} = \frac{1}{T_{\rm s}}$$

$$x_{s}(t) = x(t) s(t) = f_{s} \left[ x(t) + 2 \sum_{k=1}^{\infty} x(t) \cos(2\pi k f_{s} t) \right]$$

A mintavett jel tehát olyan, mintha az eredeti folytonos jellel  $k\!f_{\rm s}$  frekvenciájú vivőket modulálnánk AM-DSB/SC szerint.

## Mintavett jel spektruma



A mintavett jel spektrumát úgy kapjuk, hogy az eredeti jel spektrumát  $kf_{\rm s}$  frekvenciákkal eltoljuk. Így a mintavételi frekvenciára periodikus spektrumhoz jutunk:

$$X_{s}(f) = f_{s} \sum_{k=-\infty}^{\infty} X(f - kf_{s})$$



Ha az eredet jel sávhatárolt és  $f_{\rm s} > 2B$ , az eltolt spektrumok nem lapolódnak egymásra és így az eredeti jel aluláteresztő szűrővel visszaállítható:



$$B \le B_{\rm rec} \le f_{\rm s}/2$$

# Mintavett és periodikus jelek összehasonlítása



jelidő tartományfrekvencia tartományperiodikusfésűs<br/>(diszkrét spektrumvonalak)mintavettfésűs<br/>(impulzus sorozat)periodikusDirac impulzus sorozatfésűs és periodikusfésűs és periodikus



# Spektrum átlapolódás (aliasing)



9

Ha a bemenő jel sávszélessége nagyobb mint  $f_s/2$ , spektrum átlapolódás (aliasing) lép fel és az eredeti jel NEM lesz visszaállítható:



$$B > f_{\rm s}/2$$

A spektrum átlapolódás megakadályozására a mintavételi rendszerek bementén aluláteresztő szűrőt alkalmaznak:



## Szivárgás (leaking)



Ha a visszaállító szűrő zárótartománybeli ( $f > f_{\rm s}/2$ ) csillapítása kicsi, vagy az átmeneti tartomány túl széles, magasabb frekvenciás tagokból jelkomponensek maradhatnak a visszaállított jelben. Ezt a jelenséget szivárgásnak nevezzük.



## Kvantálás és kódolás



Mivel a digitálisan csak diszkrét jelszintek ábrázolhatók, ezért az egyes mintákat a legközelebbi ábrázolható jelszintre kerekítjük. A kerekítési (kvantálási) hibák a visszaállításkor a jelhez adódó zajként jelentkeznek.



Ha a jel szintje túllépi a maximális vagy minimális kvantálási szintet csúcslevágás lép fel.

A kvantálási lépcső méretét a csúcslevágási szint  $(U_p)$  és a kvantáló felbontása (n) határozza meg:

$$\Delta = \frac{2U_p}{2^n}$$

(az n-bites kvantáló  $M=2^n$  szinttel rendelkezik)

## Digitális jelek előállítása Kvantálás és kódolás



□ Lineáris kvantálás

Ekkor az ábrázolási tartományt lineárisan osztjuk 2<sup>n</sup> részre

Nemlineáris kvantálás
 Általában logaritmikus,
 vagy logaritmikus görbe
 töréspontos közelítése



## Lineáris kvantálás



### 13

### Lineáris kvantáló



Lineáris kvantáló karakterisztikája

- Jellemzők:
- Azonos kvantálási lépcsők
- Kvantálási hiba a bemenő jel szintjétől független, a  $\left[-\frac{\Delta}{2}, \frac{\Delta}{2}\right]$  intervallumon egyenletes eloszlású
- Állandó, a benő jelszinttől független kvantálási zaj az egész kivezérlési tartományon
- Előnyök:
- Egyszerű megvalósíthatóság
- A kódolt mintasorozat számítások végzésére, jelfeldolgozásra átkódolás nélkül alkalmas
- Hátrány:
- A kvantálási jel/zaj viszony kis szinteknél kicsi, nagy szinteknél nagy, ezért nagy bemenő jelszintnél a kvantáló felbontása fölöslegesen nagy, hogy kis szinteknél is biztosítható legyen az előírt jel/zaj viszony.

## Lineáris kvantálás



14

### Példa lineáris kvantálásra:

csúcslevágási szint: 40 mV, kódoló felbontása n=3 bit (M=8 szint)

| bemenő minta<br>szintje | kódolt<br>üzenet | visszaállítási<br>szint |
|-------------------------|------------------|-------------------------|
| -4030 mV                | 000              | -35 mV                  |
| -3020 mV                | 001              | -25 mV                  |
| -2010 mV                | 010              | -15 mV                  |
| -10 0 mV                | 011              | -5 mV                   |
| 0 10 mV                 | 100              | 5 mV                    |
| 10 20 mV                | 101              | 15 mV                   |
| 20 30 mV                | 110              | 25 mV                   |
| 30 40 mV                | 111              | 35 mV                   |

 $U_{
m be}$ : 33 mV

 $U_{
m ki}$ : 35 mV

Kvantálási hiba: 2 mV

## Logaritmikus kvantálás



Logaritmikus kvantáló



Logaritmikus kvantási karakterisztika törtvonalas közelítése

### Jellemzők:

- A kvantálási lépcsőméret a bemenő jelszinttel arányosan nő
- A kvantálási jel/zaj viszony a bemenő jelszinttől független, közel állandó

### □ Előny:

 Ugyanakkora jel/zaj viszony eléréséhez kevesebb bit szükséges egy minta ábrázolásához mint lineáris kvantáló esetében

### Hátrány:

DSP műveletek végzésére csak átkódolás után alkalmas a jel

## Logaritmikus kvantálás



## Példa logaritmikus kvantálásra:

PCM A-karakterisztika megvalósítása kódolással

| Seg. | 12 bit code  | 8 bit code | 13 bit code    |
|------|--------------|------------|----------------|
| 0    | s0000000wxyz | s000wxyz   | s0000000wxyz.1 |
| 1    | s0000001wxyz | s001wxyz   | s0000001wxyz.1 |
| 2    | s000001wxyz* | s010wxyz   | s000001wxyz1.0 |
| 3    | s00001wxyz** | s011wxyz   | s00001wxyz10.0 |
| 4    | s0001wxyz*** | s100wxyz   | s0001wxyz100.0 |
| 5    | s001wxyz**** | s101wxyz   | s001wxyz1000.0 |
| 6    | s01wxyz****  | s110wxyz   | s01wxyz10000.0 |
| 7    | slwxyz****   | slllwxyz   | s1wxyz100000.0 |

$$s_{+} = 1$$
  
 $s_{-} = 0$ 

## Visszaállítás tipikus hibái



Szivárgás (leaking) és áljel (aliasing)

Egy 8 kHz-es mintavételi frekvenciával működő digitális átviteli rendszer bemeneti és visszaállító szűrője azonos karakterisztikájú:

$$H_{\mathrm{in}}(f) = H_{\mathrm{out}}(f) = \begin{cases} 1, & \text{ha} \quad |f| \leq 3 \, \mathrm{kHz}; \\ 2.5 - |f/2|, & \text{ha} \quad 3 \, \mathrm{kHz} < |f| < 5 \, \mathrm{kHz}; \\ 0.01, & \text{ha} \quad 5 \, \mathrm{kHz} \leq |f| \leq 10 \, \mathrm{kHz}; \\ 0, & \text{ha} \quad |f| > 10 \, \mathrm{kHz}, \end{cases}$$

- a) Milyen frekvenciájú és amplitúdójú komponensek vannak a kimenő jelben, ha a bemenetre 1kHz-es, 2V amplitúdójú szinuszos jelet adunk?
- b) Milyen lesz a kimenet, ha a bemenő jel frekvenciáját 4.5kHz-re növeljük?

## Visszaállítás tipikus hibái



18





## Digitális jelek előállítása Kvantálás és kódolás



- A vezetékes telefóniában 8 kHz frekvenciájú mintavétel esetén (ez 8000 db mérési eredményt jelent másodpercenként), ha minden PAM mintát
   8 bittel adunk, akkor ez 64 kbit adatmennyiséget jelent minden másodpercben, ha 16 bitet választunk akkor az adatmennyiség 128 kbit másodpercenként.
- A bitszámot úgy kell megválasztani, hogy az adott rendszerben a kvantálási hiba elfogadható mértékű legyen, és az eszköz, illetve a rendszer gazdaságosan gyártható legyen.

## Teljes digitális lánc





## Hibák, torzítások helyei:

- Sávkorlátozó szűrő (analóg)
- Kvantálási hiba [additív zaj]
- □ Helyreállító szűrő (analóg)