

ANÁLISIS SINTÁCTICO DESCENDENTE SIN RETROCESO (GRAMÁTICAS LL)

Descendente

- Construye el árbol desde la raíz (axioma de la GCL) hacia las hojas
- Funciona por derivaciones a la izquierda

1.
$$A \rightarrow X y Z$$

- 2. $X \rightarrow p B q$
- 3. B \rightarrow C p
- $4. C \rightarrow m$
- $5. Z \rightarrow q$

La GCL no puede ser recursiva por la izquierda → bucle infinito!!

parse: 12345

Descendente sin retroceso

En cada instante solo hay una regla válida. ¿Qué propiedad de la GCL garantiza esto? -> Gramáticas LL

Derivaciones a la izquierda y Forma Sentencial

- 1. $A \rightarrow X y Z$
- 2. $X \rightarrow p B q$
- 3. $Z \rightarrow q$
- 4. B \rightarrow C p
- $5. C \rightarrow m$

$$\omega = p m p q y q$$

Problema con las GCL recursivas por la izquierda

- 1. $A \rightarrow X y Z$
- 2. $X \rightarrow p B q$
- $3. Z \rightarrow q$
- $4. B \rightarrow B p$
- 5. B \rightarrow m

$$\omega = p m p q y q$$

No se puede construir un analizador sintáctico descendente con una GCL recursiva por la izquierda

13

G:

$$A \rightarrow A \alpha$$

 $A \rightarrow \beta$

¿Qué lenguaje genera esta gramática?

$$A \rightarrow A \alpha$$
$$A \rightarrow \beta$$

$$L(G) = \{\beta, \beta \alpha, \beta \alpha \alpha, \beta \alpha \alpha \alpha, \beta \alpha \alpha \alpha \alpha, \dots\} = \{\beta \alpha^*\}$$

G

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A'$$

$$A' \rightarrow \lambda$$

G:
$$A \rightarrow A \alpha$$

 $A \rightarrow \beta$

$$L(G) = \{\beta, \beta \alpha, \beta \alpha \alpha, \beta \alpha \alpha \alpha, \beta \alpha \alpha \alpha \alpha, \dots \} = \{\beta \alpha^*\}$$

G':
$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A'$
 $A' \rightarrow \lambda$

• Ejemplo
$$G_1$$
: $E \rightarrow E + T$
 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow id$

G:
$$A \rightarrow A \alpha$$

 $A \rightarrow \beta$

$$L(G) = \{\beta, \beta \alpha, \beta \alpha \alpha, \beta \alpha \alpha \alpha, \beta \alpha \alpha \alpha \alpha, \dots \} = \{\beta \alpha^*\}$$

G':
$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A'$
 $A' \rightarrow \lambda$

• Ejemplo G_1 :

 α

G: $A \rightarrow A \alpha$

G': $A \rightarrow \beta A'$ $A' \rightarrow \alpha A'$ $A' \rightarrow \lambda$

 $A \rightarrow \beta$

 $L(G) = \{\beta, \beta \alpha, \beta \alpha \alpha, \beta \alpha \alpha \alpha, \dots\} = \{\beta \alpha^*\}$

Ejemplo G_1 :

G′₁:

Descendente sin retroceso

Cuando hay que aplicar una derivación, solo hay una regla posible

- No terminal a expandir? → derivaciones a la izquierda
- Regla a aplicar? → siguiente token (→ gramática LL(1))

1. $A \rightarrow X y Z$
2. $X \rightarrow p B q$
3. $Z \rightarrow q$
4. B → C p
5. C → m

Descendente sin retroceso

Cuando hay que aplicar una derivación, solo hay una regla posible

- No terminal a expandir? \rightarrow derivaciones a la izquierda

EL SIGUIENTE TOKEN DETERMINA CUÁL ES LA REGLA A APLICAR

→ Gramáticas LL(1)

Descendente sin retroceso

Cuando hay que aplicar una derivación, solo hay una regla posible

- Gramáticas LL(k). Permiten saber qué regla hay que aplicar conociendo, como máximo, los k siguientes tokens de la entrada
- Gramáticas LL(1). Sólo se necesita conocer un token.

Construcción del árbol. Se mira el símbolo del nodo activo:

- > Si es un terminal, y coincide con el token actual, se equiparan (se pide al A. Léx. el siguiente token y se avanza al siguiente nodo del árbol). Si no hubieran coincidido, se habría detectado un error sintáctico.
- > Si es un No terminal, se aplica la única regla de derivación que nos llevará a obtener el token actual.
 - ✓ a lo sumo, una regla permitirá obtener, desde ese No terminal, el token actual como "primer símbolo terminal más a la izquierda". → FIRST
 - ✓ Y ¿qué pasaría si para ese No terminal existe una regla lambda? ¿Con quién se equipara el token actual de la cadena de entrada? Con el símbolo terminal que vaya a continuación en la forma sentencial".

 → FOLLOW

FIRST

FIRST(X), donde $(X \in \{T \cup N\})$, o FIRST(α), donde $(\alpha \in \{T \cup N\}^*)$

Conjunto formado por los Terminales que pueden aparecer como **primer símbolo terminal** en las cadenas derivadas a partir de X (o a partir de α).

FOLLOW

FOLLOW(A), donde $(A \in N)$

Conjunto formado por los Terminales que pueden aparecer **inmediatamente a continuación** de *A* en alguna forma sentencial.