Fitting and assessing models of interspecies competitive effects on the growth of trees with the forestecology R package

Albert Y. Kim - Smith College David Allen - Middlebury College Simon P. Couch - Reed College

Ecological Society of America Annual Meeting 2021 August 4th, 2021

Step 1: Compute tree growth based on census data

Step 2: Add spatial information

Step 3: Identify all focal & competitor trees

Step 4: Fit model

$$y_{ij} = \beta_{0,j} + \beta_{\mathrm{dbh},j} \cdot \mathrm{dbh}_{ij} + \sum_{k=1}^{K} \lambda_{jk} \cdot \mathrm{BA}_{ijk} + \epsilon_{ij}$$

In this case, Bayesian linear regression model where:

- y_{ij} growth of tree i of species j
- β_0 baseline growth
- $\beta_{dbh,i}$ slope for starting dbh
- λ_{jk} coefficient of competitive effect of species k on species j
- BA_{iik} sum of basal area of all competitor species k
- ϵ_{ii} error term

More details in Allen (2020) PLOS One

"A permutation test and spatial cross-validation approach to assess models of interspecific competition between trees" https://doi.org/10.1371/journal.pone.0229930

Step 5: Inspect results

Competitor species in rows, focal species in columns

Step 6: Validate model with spatial crossvalidation

More information

- Package source code: github.com/rudeboybert/forestecology
- Preprint: bit.ly/forestecology_preprint