Wyszukiwanie maksimum funkcji w zadanym przedziale <0,31>

Szymon Dopieralski 6548

Zadany problem:

Podstawowy algorytm genetyczny – wyszukiwanie maksimum funkcji w zadanym przedziale <0,31>

Mój przedostatni numer indeksu to 4, a ostatni to 8, dlatego wzór mojej funkcji liniowej to:

$$f(x) = 4x + 8$$

Fenotypy losowane zapisywane na 5 bitach, w systemie dwójkowym.

Fenotypy - system dwójkowy

1. $Ch_1 = 00010$

 $Ch_2 = 10110$

 $Ch_3 = 10101$

 $Ch_4 = 01100$

Ch₅ = 10111

 $Ch_6 = 11110$

Fenotypy - system dziesiętny

2. $Ch_1 = 2$

 $Ch_2 = 22$

 $Ch_3 = 21$

 $Ch_4 = 12$

 $Ch_5 = 23$

 $Ch_6 = 30$

3. Funkcja przystosowania

$f(Ch_1) = 16$	16 / 488 = 3.3%
$f(Ch_1) = 96$	96 / 488 = 19.7%
$f(Ch_1) = 92$	92 / 488 = 18.9%
$f(Ch_1) = 56$	56/ 488 = 11.5%
$f(Ch_1) = 100$	100/ 488 = 20.5%
$f(Ch_1) = 128$	128/ 488 = 26.2%

4. Koło ruletki

5. Krzyżowanie

Losujemy parę chromosomów za pomocą koła ruletki i bit, za którym zamieniamy miejscami bity w tej parze, jeśli współczynnik Pk jest większy od 0.8.

L = 1 Pk = 0.6
$$Ch_6 = 11110$$
 $Ch_1 = 00010$

Krzyżowanie

$$Ch_6 = 10010$$
 $Ch_1 = 01110$

$$Ch_3 = 10101$$
 $Ch_5 = 10111$

Krzyżowanie

$$Ch_3 = 10111$$
 $Ch_5 = 10101$

$$L = 4$$
 $Pk = 0.9$

Brak krzyżowania, ponieważ Pk > 0.8

$$Ch_4 = 01100$$
 $Ch_2 = 10110$

6. Mutacja

Losujemy bit, dla którego wykonamy negację, jeśli współczynnik Pm jest większy od 0.2.

$$Ch_1 = 00010$$
 -> $Ch_1 = 10010$

$$Ch_2 = 10110$$
 Pm > 0.2 - brak mutacji

$$Ch_3 = 10101$$
 -> $Ch_3 = 11101$

$$Ch_4 = 01100$$
 -> $Ch_4 = 11100$

$$Pm = 0.65$$
 L = 3

$$Ch_5 = 10111$$
 Pm > 0.2 - brak mutacji

$$Pm = 0.8$$
 L = 2

$$Ch_6 = 11110$$
 Pm > 0.2 - brak mutacji