COT 3100C: INTRODUCTION TO DISCRETE STRUCTURES

SUMMER 2024

Basic Structures: Sets and Functions

Part-3

Mesut Ozdag, Ph.D. mesut.ozdag@ucf.edu

Section Summary₃

Definition of a Function.

- Domain, Codomain.
- Image, Preimage.

Injection, Surjection, Bijection.

Inverse Function.

Function Composition.

Graphing Functions.

Floor, Ceiling, Factorial.

Partial Functions.

Composition Questions

Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the composition of g and f?

Solution: The composition $f \circ g$ is defined by

$$f \circ g(a) = f(g(a)) = f(b) = 2.$$

 $f \circ g(b) = f(g(b)) = f(c) = 1.$
 $f \circ g(c) = f(g(c)) = f(a) = 3.$

Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Composition Questions₂

Example 2: Let f and g be functions from the set of integers to the set of integers defined by

$$f(x) = 2x + 3$$
 and $g(x) = 3x + 2$.

What is the composition of f and g, and also the composition of g and f?

Solution:

$$(f \circ g)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

 $(g \circ f)(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Question

Let $A, B \subseteq \mathbb{R}$, where $A = \{x \mid x^2 - 8x \le -15\}$ and $B = \{x \mid x^2 - 2x \le 3\}$. Determine the sets $A \cup B$ and $A \cap B$.

Identity Function

Definition: Let A be a set. The identity function on A is the function $I_A: A \to A$, where $I_A(x) = x$ for all $x \in A$.

- The identity function I_A is the function that assigns each element to itself.
- The function I_A is one-to-one and onto, so it is a bijection.
- When the composition of a function and its inverse is formed, in either order, an identity function is obtained.
 - $f^{-1}(b) = a \text{ when } f(a) = b$
 - $(f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a$
 - $(f \circ f^{-1})(b) = f(f^{-1}(b)) = f(a) = b$
 - Consequently, $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_B$; therefore, $(f^{-1})^{-1} = f$.

Graphs of Functions

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) | a \in A \text{ and } f(a) = b\}$.

Graph of f(x) = 2x + 1 from Z to Z

Graph of
$$f(x) = x^2$$
 from Z to Z

Some Important Functions

The **floor** function, denoted $f(x) = \lfloor x \rfloor$ is the largest integer less than or equal to x.

The *ceiling* function, denoted $f(x) = \lceil x \rceil$ is the smallest integer greater than or equal to x.

Floor and Ceiling Functions

$$f(x) = \lfloor x \rfloor$$

$$f(x) = \lceil x \rceil$$

Graph of Floor and Ceiling Functions

Floor and Ceiling Functions2

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

(3a)
$$\lfloor -x \rfloor = -\lceil x \rceil$$

(3b)
$$[-x] = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

Proof

Prove
$$\lfloor x + n \rfloor = \lfloor x \rfloor + n$$
 using a direct proof.

Solution:

Suppose that $\lfloor x \rfloor = m$, where m is a positive integer.

- 1. $m \le x < m+1$, property (1a),
- 2. m+n ≤ x+n < m+n+1, adding n to all quantities,
- 3. $\lfloor x + n \rfloor = m + n$, property (1a),
- 4. $m + n = \lfloor x \rfloor + n$, adding n to both quantities $\lfloor x \rfloor = m$
- 5. $\lfloor x + n \rfloor = \lfloor x \rfloor + n$, from 3 and 4.

Proving Properties of Functions

Example: Prove that x is a real number, then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$

Solution: Let $x = n + \varepsilon$, where n is an integer and $0 \le \varepsilon < 1$.

Case 1: $0 \le \epsilon \le \frac{1}{2}$

- $2x = 2n + 2\varepsilon$ and $\lfloor 2x \rfloor = 2n$, since $0 \le 2\varepsilon < 1$.
- |x + 1/2| = n, since $x + \frac{1}{2} = n + (\frac{1}{2} + \epsilon)$ and $0 \le \frac{1}{2} + \epsilon < 1$.
- Hence, |2x| = 2n and |x| + |x+1/2| = n+n=2n.

Case 2: $1/2 \le \epsilon \le 1$

- $2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$ and $\lfloor 2x \rfloor = 2n + 1$, since $0 \le 2\varepsilon 1 < 1$.
- $\lfloor x + 1/2 \rfloor = |n + (1/2 + \varepsilon)| = |n + 1 + (\varepsilon 1/2)| = n + 1$ since $0 \le \varepsilon 1/2 < 1$.
- Hence, $\lfloor 2x \rfloor = 2n + 1$ and $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = n + (n+1) = 2n + 1$.

Factorial Function

Definition: $f: \mathbb{N} \to \mathbb{Z}^+$, denoted by f(n) = n! is the product of the first n positive integers when n is a nonnegative integer.

$$f(n)=1\cdot 2\cdots (n-1)\cdot n,$$

 $f(0)=0!=1$

Examples:

$$f(1)=1!=1$$

 $f(2)=2!=1\cdot 2=2$
 $f(6)=6!=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6=720$
 $f(20)=2,432,902,008,176,640,000.$

