L7 – 6.3 Transformations of Exponential and Logarithmic Functions MHF4U

Part 1: Properties of Exponential Functions

General Equation: $y = a(b)^{k(x-d)} + c$ where the base function is $y = b^x$

There are 4 possible shapes for an exponential function

1)
$$a > 0$$
 and $b > 1$ (ex. $y = 2^x$)

2)
$$a > 0$$
 and $0 < b < 1$ (ex. $y = \left(\frac{1}{2}\right)^x$)

3)
$$a < 0$$
 and $b > 1$ (ex. $y = -1(2)^x$)

4)
$$a < 0$$
 and $0 < b < 1$ (ex. $y = -1\left(\frac{1}{2}\right)^x$)

To graph the base function $y = b^x$, Find the following key features:

- Horizontal asymptote
 - Starts at y = 0 and can be shifted by c
- y intercept
 - o set x = 0 and solve
- At least one other point to be sure of shape
 - Common to choose x = 1 and solve for y

You can then use transformational properties of a, k, d, and c to graph a transformed function

Part 2: Transformations of Exponential Functions

Example 1: Sketch the graph of $f(x) = 2(3)^{x+4} - 5$ and $g(x) = -3^{\frac{1}{2}x} + 4$ using transformations

$y = 3^{x}$	
x	у
-1	0.33
0	1
1	3
НА	y = 0

$f(x) = 2(3)^{x+4} - 5$	
x-4	2y - 5
-5	-4.33
-4	-3
-3	1
НА	y = -5

$g(x) = -3^{\frac{1}{2}x} + 4$	
2 <i>x</i>	-1y + 4
-2	3.67
0	3
2	1
НА	y = 4

Part 3: Properties of Logarithmic Functions

General Equation: $y = a \log_b [k(x-d)] + c$ where the base function is $y = \log_b x$

Remember that $y = \log_b x$ is the inverse of the exponential function $y = b^x$

There are 4 possible shapes for a logarithmic function

- 1) k > 0 and b > 1 (ex. $y = \log_2(x)$)
- **2)** k > 0 and 0 < b < 1 (ex. $y = \log_{0.5}(x)$)
- 3) k < 0 and b > 1 (ex. $y = \log_2(-x)$)
- **4)** k < 0 and 0 < b < 1 (ex. $y = \log_{0.5}(-x)$)

To graph the base function $y = \log_b x$, Find the following key features:

- Vertical asymptote
 - Starts at x = 0 and can be shifted by d
- x intercept
 - o set y = 0 and solve
- At least one other point to be sure of shape
 - Common to choose y = 1 and solve for x

Part 4: Transformations of Logarithmic Functions

Example 2: Sketch the graph of $f(x) = -4\log_3(x) + 2$ and $g(x) = \log_3[-(x+2)] - 4$ using transformations

$y = \log_3(x)$		
x	у	
0.33	-1	
1	0	
3	1	
VA	x = 0	

$f(x) = -4\log_3(x) + 2$	
x	-4y + 2
0.33	6
1	2
3	-2
VA	x = 0

$g(x) = \log_3[-(x+2)] - 4$	
-x-2	y – 4
-2.33	-5
-3	-4
-5	-3
VA	x = -2

