Linear Circuits Op-Amp/ Comparator/Regulator Data Book

anasonio

Linear Circuits Op-Amp/ Comparator/Regulator Data Book

e specifications and performance data provided herein by Panasonic Industrial Company are believed to be reliable. However, no sponsibility is assumed for any consequence of use, nor for patent liability with respect to the use of the information. Specifications are spect to change without notice. Panasonic Industrial Company makes no warranty of any kind with regard to these products, including the blied warranties of merchantability and suitability for a particular purpose. Panasonic Industrial Company assumes no responsibility for y errors that may appear in this catalog. In addition, it makes no commitment to keep current the information contained herein.

Table of Contents

	Page	· Νι	umber
Index of Parts			3
Cross-Reference			4
Quick Selection Guide			6
Product Block Diagrams			10
General Information			12
Reliability Information			16
Glossary of Terms and Symbols			20
Product Details			
Operational Amplifiers			22
Comparators			
Regulators			
Package Details			
Panasonic Office Locations			

Index of Parts

Product Number	Page
Operational Amplifier	
AN1324/AN1324S (AN6564)	22
AN1358/AN1358S (AN6562)	
AN1458/AN1458S (AN6572)	
AN1741/AN1741S (AN6570)	
AN4136/AN4136S (AN6554)	
AN4250/AN4250S	52
AN4558/AN4558S (AN6552)	54
AN6550	59
AN6551	65
AN6552 (see AN4558)	54
AN6553	70
AN6554 (See AN4136)	46
AN6555	75
AN6556	80
AN6557	
AN6558	
AN6561	
AN6562 (See AN1358)	
AN6564 (See AN1324)	
AN6570 (See AN1741)	
AN6571	
AN6572 (See AN1458)	
AN6573	
AN6593	114
Comparators	
AN1339/AN1339S (AN6912)	116
AN1393/AN1393S (AN6914)	122
AN6913	127
AN6915	
AN6916/AN6916S	
AN6918	140
Voltage Regulators	
AN7800 SERIES	146
AN78M00 SERIES	163
AN78L00 SERIES	178
AN7900 SERIES	194

CROSS REFERENCE

	Industry Part Number	PANASONIC Part Number
Old Panasonic Part Numbers	AN6914 AN6552 AN6554 AN6564 AN6562 AN6570 AN6572 AN6912	AN1393 AN4558 AN4136 AN1324 AN1358 AN1741 AN1458 AN1339
RCA	CA1458E CA1458G CA324E CA324G CA339E CA339AE CA358E CA358G CA741E	AN1458 AN1458 AN1324 AN1324 AN1339 AN1339 AN1358 AN1358 AN1741
National Semiconductor	LM1458N LM2902N LM2901D LM2904N LM2903N LM324N LM3302N LM339N LM358N LM358N LM393N LM741CN LM78XXT LM78LXXZ LM78MXXP LM79XXT LM320TXX LM340TXX LM4250C	AN1458 *AN4136 *AN1339 *AN1358 *AN1393 AN1324 *AN1339 AN1339 AN1339 AN1358 AN1358 AN1393 AN1741 AN78XX AN78LXX *AN78MXX AN79XX *AN79XX *AN79XX *AN79XX *AN78XX AN4250

	industry Part Number	PANASONIC Part Number
Hitachi	HA17458PS HA17741PS HA17902PS HA17901P HA17904PS HA17904PS	AN1458 AN1741 AN1324 *AN1339 *AN1338 *AN1358
Fairchild	µА1458HC µА258C µА324C µА3302C µА339C µА393C µА4136N µА4558N µА741N µА776	AN1458 AN4558 AN1324 *AN1339 AN1339 AN1393 AN4136 AN4558 AN1741 AN4250
Motorola	MC1458P MC1741CP1 MC2902P MC2901P MC4558P MC78XXP MC78LXXP MC78MXXP MC79XXP MLM324P MLM324PC MLM339P MLM339AP MLM358P1	AN1458 AN1741 *AN4136 *AN1339 AN4558 AN78XX AN78LXX AN78MXX AN79XX AN1324 AN1324 AN1324 AN1339 AN1339 AN1358

^{*}Panasonic Functional Equivalent

	Industry Part Number	PANASONIC Part Number
JRC	MJM2902D MJM2902M MJM2901D MJM2904D MJM2904M MJM2904D MJM2903 MJM4558D NJM4558D NJM4559D	AN1324 AN1324NS *AN1339 *AN1358 *AN1358S *AN1358 *AN1358S *AN1358S *AN1393 AN4558 AN4558
NEC	μРСС177С μРС1251С μРС1458С μРС151 μРС151G μРС251С μРС251G μРС258С μРС277С μРС324С μРС339С μРС339С μРС358L μРС358G μРС358G μРС358C μРС358C μРС358C μРС358C μРС358C μРС451С μРС458С μРС458С μРС458С μРС458С μРС4558С μРС4558С μРС4558С μРС4558С μРС4558С μРС4559С μРС4741С μРС741С	AN1339 AN1358 AN1458 AN1741 AN1741S AN1458 AN14588 AN14588 AN1393 AN1324 AN1324NS AN1324NS AN1358 AN1366 AN4136 AN6556 AN4136 AN4558 AN6556 AN4136 AN1741

	Industry Part Number	PANASONIC Part Number
Others	HA2720 MA78XXU MA78XXU MA78MXXU MA79XXU MA79XXU MAC78XX RC4136 RC4558P RC4559N SG4250 SN72558P SN72741N TA17590P TA75339P TA75339P TA7538P1 TA7538P1 TA75458P TA7559P 1458N 2901N 2904N 324N 3302P 339N 358N 393N 4136N 4558N 4559N 741N	AN4250 AN78XX AN78LXX AN78MXX AN79XX AN79XX AN4136 AN4558 AN5556 AN4250 AN1458 AN1741 AN1324 AN1741 AN1324 AN1741 AN1339 AN1358 AN1458 AN1458 AN1458 AN1458 AN1358 AN1358 AN1358 AN1358 AN1358 AN1358 AN1358 AN1358 AN1358 AN1358 AN1358 AN1358 AN136 AN136 AN1378

^{*}Panasonic Functional Equivalent

Quick Selection Guide BY FUNCTION

Operational Amplifiers

				Package	Supply \	·	Power Consump- tion	Input Offset Voltage MAX	Input Offset Current MAX	Input Bias Current MAX	Output Voltage MIN	Siew Rate TYP	Equiv. Va (Input) TYP
					(V)		(mw)	(mV)	(nA)	(nA)	(V)	(V/μs)	(μVrms
			AN6550		±2 to ±12	4 to 24	15	6	200	500	±1	0.8	2.5
			AN6551	9 – SIP	±4 to ±15	8 to 30	170	6	200	500	±10	1.0	2.5
			AN6555		±4 to ±15	8 to 30	170	6	200	500	±10	2.0	1.5
			AN6557	9-SIP(LP)	±4 to ±15	8 to 30	240	3	200	_	±10	6.0	0.9
			AN4558										
	Low		(AN6552)		±4 to ±15	8 to 30	170	6	200	500	±10	1.0	2.5
	Noise	Dual	AN6553		±4 to ±15	8 to 30	170	6	200	500	±10	2.0	2.5
Dual	Types		AN6556	8 – DIP	±4 to ±15	8 to 30	170	6	200	500	±10	2.0	1.5
Power			AN6558		±4 to ±15	8 to 30	240	3	200	_	±10	6.0	0.9
Supply			AN4558S	S0 - 8D	±4 to ±15	8 to 30	170	6	200	500	±10	1.0	2.5
			AN6556S		±4 to ±15	8 to 30	170	6	200	500	±10	2.0	.5
		Quad	AN4136 (AN6554)	14 – DIP	±2 to ±15	4 to 30	240	5	50	300	±10	1.6	2.5
			AN4136S	S0 - 14D	±2 to ±15	4 to 30	240	5	50	300	±10	1.6	2.5
			AN6573	7 – SIP	±2 to ±15	4 to 30	85	4	100	250	±10	0.7	4.0
			AN6593	9-SIP(LP)	±1 to ±18	2 to 36	3	6	20	75	±12	_	_
			AN1741										
		Single	(AN6570)	8 – DIP	±2 to ±15	4 to 30	85	4	100	250	±10	0.7	4.0
			AN4250		±1 to ±18	2 to 36	3	6	20	75	±12		-
	General		AN1741S	S0 - 8D	±2 to ±15	4 to 30	85	4	100	250	±10	0.7	4.0
	Purpose		AN4250S	SO - 8D	±1 to ±18	2 to 36	3	6	20	75	±12		_
			AN6571	9-SIP(LP)	±2 to ±15	4 to 30	170	4	100	250	±10	0.7	4.0
		Dual	AN1458 (AN6572)	8 – DIP	±2 to ±15	4 to 30	170	4	100	250	±10	0.7	4.0
			AN1458S	SO-8D	±2 to ±15	4 to 30	170	4	100	250	±10	0.7	4.0
			AN6561	9 – SIP	±1.5 to ±15	3 to 30	6	7	50	250	Vcc - 1.5	0.3	6.0
Single	General	Dual	AN1358 (AN6562)	8 – DIP	±1.5 to ± 15	3 to 30	6	7	50	250	Vcc – 1.5	0.3	6.0
Power	Purpose		AN1358S	S0 - 8D	±1.5 to ±15	3 to 30	6	7	50	250	Vcc - 1.5	0.3	6.0
Supply	·	Quad	AN1324 (AN6564)	14 – DIP	±1.5 to ±15	3 to 30	10	7	50	250	Vcc – 1.5	0.3	6.0
			AN1324NS	S0 - 14 D	±1.5 to ±15	3 to 30	10	7	50	250	Vcc - 1.5	0.3	6.0

Comparators

		Package	Supply	Voltage	Supply Current	Input Offset Voltage	Input Offset Current	Input Bias Current	Output Current	Response Time
			(V)	(V)		M AX (mV)	MAX (nA)	MAX (nA)	MIN (mA)	TYP (ms)
	AN6913	9 – SIP	±1 to ±18	2 to 36	1.5	5	50	250	10	1.3
1	AN6915		±1 to ±18	2 to 36	5.3	5	50	200	70	2.0
Dual	AN1393 (AN6914)		±1 to ±18	2 to 36	1.5	5	50	250	10	1.3
ł	AN6916	8 – DIP	±1 to ±18	2 to 36	5.3	5	50	200	70	2.0
	AN13938	SO - 8D	±1 to ±18	2 to 36	1.5	5	50	250	10	1.3
1	AN6916S		±1 to ±18	2 to 36	5.8	5	50	200	70	2.0
Quad-	AN1339		±1 to ±18	2 to 36	1.5	5	50	250	6	1.3
ruple	(AN6912)	14 – DIP	±1 to ±18	2 to 36	1.5	5	50	250	6	1.3
	AN6918		±1 to ±18	2 to 36	10.0	5	50	200	70	2
	AN1339S	SO – 14D	±1 to ±18	2 to 36	1.5	5	50	250	6	1.3

Voltage Regulators

Positive Output 3 Terminals (AN7800/AN78M00/AN78L00 Series)

10	Output Voltage (V)											
	4	5	6	7	8	9	10	12	15	18	20	24
1A	_	AN7805	AN7806	AN7807	AN7808	AN7809	AN7810	AN7812	AN7815	AN7818	AN7820	AN7824
0.5A		AN78M05	AN78M06	AN78M07	AN78M08	AN78M09	AN78M10	AN78M12	AN78M15	AN78M18	AN78M20	AN78M24
0.1 A	AN78L04	AN78L05	AN78L06	AN78L07	AN78L08	AN78L09	AN78L10	AN78L12	AN78L15	AN78L18	AN78L20	AN78L24

^{&#}x27;ackage: AN7800/AN78M00 Series = T0-220, AN78L00 Series = T0-92

Negative Output 3 Terminals (AN7900 Series)

10	Output Voltage (V)										
·	-5	-6	-7	8	-9	-10	-12	-15	-18	-20	-24
1A	AN7905	AN7906	AN7907	AN7908	AN7909	AN7910	AN7912	AN7915	AN7918	AN7920	AN7924

ackage: T0-220

Quick Selection Guide BY PACKAGE

Operational Amplifiers

^{*}Low Profile

Comparators

Voltage Regulators

Product Block Diagrams

Operational Amplifiers

AN6550

V_{O1} V_{EXT} V_{IN 1} V_{NI 1} V_{EE} V_{IN 2} V_{IN 2} V_{O2} V_{CC}

V_{EXT} IS TERMINAL FOR BIAS

AN6551, AN6555, AN6561, AN6571, AN6557

AN6573

AN6593

AN4558 (AN6552), AN6553, AN6556, AN6556S, AN6558, AN1358S, AN1358 (AN6552), AN4558S, AN1458S, AN1458 (AN6572),

AN1741 (AN6570), AN1741S

AN4136 (AN6554), AN4136S AN1324 (AN6564), AN1324NS,

AN4250, AN4250S

Comparators

Voltage Regulators

General Information

Panasonic Panaflat™ Package

Fig. 1 External view of Panaflat package

In addition to the space-saving single-in-line package, Panasonic uses both the standard DIL plastic package and the compact Panaflat package and distinguishes between the two as follows:

- (1) Standard DIL package products: AN1741
- (2) Panaflat package products: AN1741S "S" indicates Panaflat package.

The Panasonic Panaflat package is a new ultracompact package for ICs and LSI developed for devices requiring hybrid ICs or that have to be ultra-thin. Recently, the advancement of electronics in all fields and the miniaturization and reduction in weight of electronic devices for both consumer and industrial use has drawn attention to the miniaturization of electronic parts beginning with transistors and ICs due to the demands of high-density mounting. Panaflat package ICs are a family of ultra-compact ICs which satisfy those demands because thay are ideal for mounting on a circuit board or assembly into hybrid ICs.

Fig. 1 is an external view of some Panaflat packages. Recent tendencies have been to assemble monolithic IC chips into hybrid ICs; however the assembly of plain chips is difficult when various factors such as handling, mass production, their electrical performance, and gua antee of quality are considered.

Panaflat package ICs compensate for these drawbacks.

1. Features of Panaflat package ICs

Panaflat package ICs have the following advantages when compared with conventional IC chips used in hybrid ICs and beam leads.

- High mounting density making possible the extensive miniaturization and increased density of hybrid ICs and circuit boards
- Easier to handle than IC chips and soldering is done by reflow
- Sufficient electrical characteristics can be guaranteed
- Encased in a special magazine for automatic insertion

2. Production of Panaflat package ICs

Production of Panaflat ICs is based on the technology of conventional plastic molded ICs and the mini-type molded transistors and incorporates a completely automatic sealing system developed by Panasonic and an automated production line which makes use of precise processing technologies.

3. Electrical characteristics

The absolute maximum ratings and electrical characteristics of Panaflat package ICs are basically the same as that of conventional plastic DIL package products.

By mounting a Panaflat IC on the circuit board of a hybrid IC and then coating it further with resin, the thermal resistance is improved over that of a single unit because of the increased conduction of heat from the single unit from the leads and resin surface.

Table 1 shows a comparison of the thermal resistance of different types of mountings. For example, by mounting on a ceramic circuit board and coating with resin, an allowance equivalent to or better than that of conventional 14-pin plastic DIL packages (DIL-14) may be achieved.

Please evaluate the actual mounting conditions concerning heat dissipation during actual use.

4. Reliability

To insure the reliability of Panaflat package ICs, testing is performed periodically according to the evaluation method in Table 2, "Reliability tests", as is done with conventional plastic packages. The level of reliability is the same as that of conventional plastic package products.

Table 1

Comparison of the thermal resistance for the mounting of Panaflat packages (SO-14D)

Values represent the improvement in thermal resistance using the thermal resistance of a single IC placed at 1 as a reference.

	Epoxy circuit board (55 x 10 x 0.7mm)	General use ceramic circuit board (37 x 12 x 0.6mm)
Mounted on the circuit board	0.68 (1.45)	0.57 (1.75)
Coated with resin after mounting on the circuit board	0.52 (1.81)	0.40 (2.47)

(Values in parenthesis indicate ratio of allowable loss P_D.)

Table 2. Reliability tests

Test	Condition
External dimensions	According to individual package
Vibration test	100 to 2000 Hz 20 G, 4 min/1 time (X, Y, Z each 4 times)
Drop test	Maple board, 1 m, 3 times
Terminal pull	0.5kg in direction of lead axis for 10 sec
Terminal bending	0.25kg to 45° back and forth 2 times
Saltwater spray	35°C at 5% for 24 hours
Temperature cycle (gaseous phase)	Tstg. max ↔ Tstg. min, 10 cycles (30 min) (30min)
Thermal shock (liquid phase)	100°C ↔ 0°C, 10 cycles (5min) (5min)
Boiling test	Pure water at 100°C for 100 hours
Pressure cooker	Steam saturation at 2atm for 60 hours
Solderability	230°C, 1 time for 5 sec with flux
Solder-heat resistance	260°C, 5 sec
High-temperature storage	Ta = Tstg. max 1000 hours
Low-temperature storage	Ta = Tstg. min 1000 hours
High-temperature, high-humidity storage	Ta = 85°C, RH = 85% for 500 hours
Operating life	$Ta = Topr max 1000 hours,$ maximum loss and T_j (max)
High-temperature, high-humidity bias	Ta = 85°C and RH = 85% for 500 hours, steady bias

General Information

5. Mounting precautions

Compared with conventional packages, the structure of the Panaflat package is much smaller and thinner, and so particular attention should be given to the mounting procedures. These products are susceptible to the thermal and mechanical stress applied during mounting. Attention must be given to the following points.

(1) Soldering

Because of their small size, SO ICs are susceptible to the influence of heat applied from outside and respond rapidly as shown in Fig. 2. For this reason, the influence of thermal stress should be minimized. Thermal stress causes expansion and contraction of the resin which causes stress inside the package. Therefore, when exposing to high temperatures of soldering, keep the operation as short as possible.

Fig. 2 Comparison of junction temperatures according to the external conditions of the Panaflat package (SO-14D) and the conventional package (DIL-14)

Requirements for soldering

- (1) Use a reflow method such as that in Fig. 3 to keep the temperature as low (below 260°C), and the time as short (less than 10 seconds) as possible.
 - Please use a soldering paste conforming to these requirements.
- (2) For fluxing after soldering, momentarily wash with Tri-Ethane or a similar solution.

Fig. 3 Diagram showing reflow-system soldering

(2) Mechanical stress

- Because of the small, thin structure of the SO IC, the strength of the lead wires, incomparison with conventional plastic packages is as shown in Fig. 4. Thus, particular attentior must be paid to their handling.
- Furthermore, because of their thin shape, they
 are susceptible to stress applied during
 mounting or through the resin surface after
 mounting, and this may change their characteristics. Be careful that no stress is applied
 to the resin surface.

Fig. 4 Results of lead terminal pulling test

(3) Heat discharge after mounting

The heat discharge of SO ICs is greatly influenced by mounting to the circuit board and coating with resin, and so please determine the heat discharge with the IC in its mounting condition. The following is a simple estimation method for the chip temperature in the mounted condition.

Estimation of the chip temperature by measuring the package surface temperature.

By putting the Panaflat package IC in an operating condition, the chip temperature (T_j) rises. After sufficient time (approx. 10 min) the package surface temperature (T_S) becomes saturated and the T_S is measured and used to estimate T_j .

 $T_S < T_j(max) - (Rthj-c x Ptot) - (Topr - Ta)$

Ts: Package surface temperature
Ta: Measured ambient temperature

Tj(max): Storage temperature noted in the pro-

duct's ratings

Topr: Operating temperature noted in the pro-

ducts's rating

Rthj-c: Thermal resistance between the chip

and package = 40°C/W

Ptot: Power consumption of IC during opera-

tion (under most unfavorable conditions)

When the estimated value of T_S is smaller than the calculated value on the right, even at Topr (max) T_i will be below T_i(max).

(4) Moisture considerations

Because SO ICs are ultra-compact and the resin thickness is very thin, the leakage path is short, and so it is necessary to pay particular attention to moisture. Generally accepted air-tight sealing or damp-proof resin coating may be used as measures to prevent moisture from entering, but when coating with a resin, particular care should be given to selecting a resin that will satisfy the requirements of reliability.

Reliability Information

Panasonic is dedicated to maintain and improve high standards of product quality. Table 1, "Quality Control and Guarantee System", shows the many steps taken to control our IC product quality. Ideally, quality could be built in and forgotten. However well this may be done, the quality levels must be constantly monitored as shown at each step of Table 1. In addition, the tests marked "*sample", are accelerated life tests designed to yield potential problems prior to product release, ("Real-Time" life indicators), so that life defective IC's are not shipped and problems can be promptly addressed and corrected.

At the "Reliability Tests" stage of Table 1, we use two types of tests used to check both new and existing products to confirm their reliability, consistent high quality, and long life under severe environmental conditions: life tests and environmental tests. In order to design tests with conditions which can be repeated, Panasonic uses MIL and other standards such as EIAJ. For the conditions of these reliability tests, refer to Table 2, "Reliability test parameters and standards".

For these reliability tests, products are separated intro matrices, classified as diffusion process (wafer family) and assembly process (package). These are then divided into sub-groups and representative products of each sub-group are then selected to undergo tests. The testing frequency varies from one to six months, depending on the type and the history of that product.

Even though Panasonic linear products are in plastic packages, these products are capable of being used in severe industrial environments through the development of high-purity resin, the introduction of a new sealing method and the development of a new technology for chip protective films. We at Panasonic are not going to stop at the present high level of reliability our products have achieved, and we are constantly working to attain even greater improvement. To accompany the high reliability of our products we have made advancements in the developmen of a system of tests to confirm reliability in as short a time as possible and to quickly relay the information to the factory. This system includes the accumulation of test data, analysis of statistical and physical information on the quality of products on the market, and feedback of all this to the pertinent sections. This is done to assure our users of consistently improved quality levels of Panasonic products.

Table 1. Quality Control and Guarantee System Product Plan ₹₿ 1. Design and layout circuit 2. Develop as needed: Product Design New process, package, automated machinery. Quality Approval of Design Quality Tests: Production Frequency Sheet Resistance of Tests Diffusion Profile Wafer Fabrication Oxide quality 100% and *Sample Metalization Mask Alignment D.C. tests Wafer Probe 100% Visual Inspection Die Bond Bond Strength Packaging Pre-Seal Visual Solderability 100% and *Sample Lead Pull Lead Forming ن Branding Integrity Branding Quality Screen Thermal Stress tests *Sample Final Test • All D.C. and Parametric tests 100% Table 2 tests All New Parts as well Reliability Tests *Sample as periodic tests as indicated in table Warehouse Visual inspection Special customer tests • D.C. and parametric tests *Sample Periodic inventory tests to Package To Ship above items Field data Failure analysis of Customer Use returns → Product Customer tests improvement

^{*}Accelerated Life Test to show results prior to product shipment ("Real-Time" Life indicator)

Reliability Information

Table 2. Reliability Evaluation Test Parameters and Passing Standards

			11	Testing Standards		
Group	Parameter	Test Conditions	Judging standards LPTD(r/N)	New products test	Periodic reliability test	
	Initial characteristics	All parameters of inspection ratings specified for each product type.	5%(0/45)	•		
1	Temperature characteristics	Characteristics test of product's rated operating ambient temperature range.	50% (0/5)	•		
'	Voltage characteristics	Characteristics test of product's rated power supply voltage range.	50% (0/5)	•		
	Heat resistance		50% (0/5)	•	1	
2	Soldering	Immersed for 5 ± 0.5 seconds in $230 \pm 5^{\circ}\text{C}$ solder bath up to 1.5mm from the main part of the unit. Flux used is 35% pine oil solution.	15% (0/15)	•	•	
	External dimensions	According to the product's rated external dimensions.	15%(0/15)	•		
	Thermal shock	T(min.) (150°C, 1 min or more) Both testing baths are liquid baths.				
3	Thermal fatigue	Conditions at T _j (max) or P _D max determined according to configuration type.	15% (0/15)	•		
	Soldering thermal stability	Immersed for 10 \pm 1 seconds in 300 $_{-10}^{+0}$ °C solder bath up to 1 \pm 0.1 mm from the main part of the unit.	15% (0/15)	•		
	Drop Test	Dropped 3 times from a height of 1 m onto a maple board.	50%(0/5)	•		
4	Lead Bend	Bent 90°C with an applied force of 230g and then returned.	50% (0/5)	•		
	Lead Pull	2kg of force applied for 30 \pm 1 seconds in lead axial direction.	50% (0/5)	•		

Note: The testing conditions listed above are "official" values; the actual tests are carried out under even stricter conditions according to our own internal standards.

Table 2. Reliability Evaluation Test Parameters (continued)

			14-1	Testing Standards		
Group	Parameter	Test Conditions	Judging standards LPTD(r/N)	New products test	Periodic reliability test	
5	Salt water spraying	Sprayed continuously for 24 hours at concentration of 5%, temperature 35°C.	50% (0/5)	•	•	
	High temperature and humidity	Kept for 1000 hours at Ta = 85° C, RH $\leq 85^{\circ}$ C. RH $\geq 85^{\circ}$.	15% (0/15)	•		
	T.H.B.	Kept for 1000 hours at Ta = 85°C, Testing circuits normal actual use, ON/OFF = 1h/3h.	15%(0/15)	•	•	
6	Pressure cooker	Kept for 60 hours at 2 atmospheres of pressure and then allowed to cool naturally for 16 hours.	15% (0/15)	•	•	
	Boiling	Kept at boiling for 50 hours.	15% (0/15)	•		
	Hermeticity	He leakage < 1 x 10 ⁻⁷ cc/s Used only on ceramic or metal packages.	15% (0/15)	•		
7	Low Temperature	Kept at $Ta = -55^{\circ}C$ for 1000 hours.	15% (0/15)	•		
	High Temperature	Kept at Ta = 150°C for 1000 hours.	15% (0/15)	•		
8	Operating life	1000 hours at V_{CC} (max) of T_j (max) conditions at maximum ambient temperature; $ON/OFF = 2.5h/0.5h$.	15% (0/15)	•	•	
9	Fireproofing	Because plastic material used passed UL94 and V-0, test on completed products omitted.	50% (0/5)	•		

Note: The testing conditions listed above are "official" values; the actual tests are carried out under even stricter conditions according to our own internal standards.

Glossary of Terms and Symbols

Symbol	Description of Terms	Typical Units
AOL	Output Voltage Gain, Open Loop	dB
BW	Bandwidth	Hz
C	Capacitance, Capacitor	μ f
Ci	Input Capacitance	μ f
Со	Output Capacitance	μ f
CMRR	Common-mode Rejection Ratio	dB
CS	Channel Separation	dB
f	Frequency	Hz
fı	Input Frequency	Hz
l l	Current (D.C.)	mA, μ A, nA
lв	Bias Current	mA, μ A, nA
Icc	Positive Supply Current	mA
IEE	Negative Supply Current	mA
li l	Input Current (D.C.)	μΑ
liH	Input Current, Input High	mA
lı∟	Input Current, Input Low	mA
lio	Input Offset Current	μA
IL.	Load Current	mA
ILEAK	Output Leakage Current	mA
lo	Output Current	mA
Юн	Output Current, Output High	mA
loL	Output Current, Output Low	mA
los	Output Current, Output Shorted	mA
IQ	Quiescent Current	μΑ
NF	Noise Figure	μV/√Hz
Pc	Power Consumption	W, mW
PD	Power Dissipation	W, mW
Ртот	Total Power	W, mW
ΔΙ	Current Change	mA, μ A, nA
PSRR	Power Supply Rejection Ratio	dB
R	Resistance, Resistor	Ohms, Ω
Ri	Input Resistance	Ohms, Ω
RL	Load Resistance	Ohms, Ω

Symbol	Description of Terms	Typical Units
Ro	Output Resistance	Ohms, Ω
RR	Rejection Ratio	dB
SR	Slew Rate	V/μS
T	Temperature	°C
Ta, TA	Ambient Temperature	°C
T _j	Junction Temperature	°C
ΔΤ	Temperature Change	°C
t	Time (signal)	Sec, μ Sec, n Sec
tf	Fall Time	μSec, n Sec
tr	Rise Time	μ Sec, n Sec
tR	Response Time	μSec, n Sec
ts	Set-up Time	μSec, n Sec
tstg	Storage Time	μSec, n Sec
V	Voltage	Volts, μ V, nV
Vcc	Positive Supply Voltage	V
Vсм	Common-mode Voltage	V
VEE	Negative Supply Voltage	V
VEXT	External Bias Voltage	V
Vı	Input Voltage, (D.C.)	V
Vi	Input Voltage, (A.C.)	V
VICM	Input Common-mode Voltage	V
VID	Differential Input Voltage	V
ViH	Input Voltage, Input High	V
VIL	Input Voltage, Input Low	V
Vio	Input Offset Voltage	mV
Vn	Noise Voltage (see also N.F.)	μV /√ Hz
Vo	Output Voltage	V
Vон	Output Voltage, Output High	V
Vol	Output Voltage, Output Low	V
Vом	Maximum Output Voltage	V
Vor	Output Voltage Range	V
Vz	Zener Voltage	V
Δ٧	Change in Voltage	mV

AN1324/AN1324S (AN6564) OPERATIONAL AN1324/AN1324S (AN6564) OPERATIONAL

General Description

The AN1324 consists of four independent, high gain, internally frequency compensated operational amplifiers designed to operate from a single or dual power supply over a wide range of voltages. It is available in 14 – pin small outline (S.O.) package for high-density design and replaces any standard "324" circuit.

Features

Internally frequency compensated

Large output voltage swing: 0 to V+ - 1.5V

 Wide power supply range – Single supply: 3 to 30V Dual supplies: ± 1.5V to ± 15V

Absolute Maximum Ratings (T_a = 25°C)

ltem		Symbol	Ratings	Unit
Supply Voltage		Vcc	32 or ± 16	V
Power Dissipation	(14 DIP)	Po	570	mW
1 Ower Dissipation	(14 SO)	Po	370	mW
Input Differential \	Input Differential Voltage		32	V
Input Common –N	Input Common - Mode Voltage		- 0.3 to 32	V
Operating Tempera	Operating Temperature		- 20 to + 75	°C
Storage Temperature		Tstg	- 55 to + 150	°C
Output Voltage		Vo	24	V

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

			Test		Limit			
item		Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage		V 10	1	$Rs = 50\Omega$		2	7	mV
Input Offset Current		lio	1				50	nA
Input Bias Current			1				500	nA
Voltage Gain	Voltage Gain		1	$RL = 2k\Omega$		100		dB
Output Corrent	(Sink)	lo (SINK)	7	Vin = 0V, $Vin = 1V$	10	20		mA
Output Current	(Source)	IO (SOURCE)	6	Vin = 1V, $Vin = 0V$	20	40		mA
Supply Current		Icc	3	RL + ∞		0.8	2	mA
Maximum Output Volt	•	Vом	4	$RL = 2k\Omega$	Vcc - 1.5			V
Common-Mode Reject	tion Ratio	CMRR	1			85		dB
Supply Voltage Rejection Ratio		PSRR	1			100		dB
Common-Mode Input Voltage		VICM	2		0		±15	V
Channel Separation		CS	5	f = 1kHz to 20kHz		120		dB

Connection Diagram

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Typical Electrical Performance Curves (continued)

Test Circuit 1 (1/4 circuit)

Test Circuit 2 (1/4 circuit)

Test Circuit 3

Test Circuit 4 (1/4 circuit)

Test Circuit 6 (1/4 circuit)

Test Circuit 7 (1/4 circuit)

Test Circuit 5 (1/2 circuit)

ltem	Test Conditions For Circuit 1
Input Offset Voltage	Turn on SW1, SW2, and measure VFI (Ec =0), where VIO = VFI/500 (V)
Input Offset Current	Turn off SW1, SW2, and measure VF2 (Ec = 0), where $IIO = \frac{ V_{F2} - V_{F1} }{10^7}$ (A)
Input Bias Current	SW1 on, SW2 off, and measure VF3,SW1, off SW2 on measure VF4. $I_B = \frac{ V_{F4} - V_{F3} }{2 \times 10^7}$ (A)
Voltage Gain	SW1, SW2 on, Ek = 1.4V, and measure VF5.Ek = 3.4V, measure VF5 SW3 on AoL = $20 \log \left(\frac{1000}{V_{F1} - V_{F5}} \right)$
Common-Mode Rejection Ratio	SW1, SW2 on,and measure VF6 (EK = EC1), measure VF7 (EC = EC2) CMRR = 20 log (500 x $\left \frac{E_{C1} - E_{C2}}{V_{F6} - V_{F7}} \right $)
Supply Voltage (–) Rejection Ratio (+)	SW1, SW2 on, Ec = 0, and measure VF8 (Vcc = Vc2), PSRR = $20 \log \left(500 \times \left \begin{array}{c} V_{C1} - V_{C2} \\ V_{F8} - V_{F9} \end{array} \right \right)$

AN1358/AN1358S (AN6562) DUAL OPERATIONAL AMPLIFIER

General Description

The AN1358 consists of two independent, high gain internally frequency compensated operational amplifiers which were designed to operate from a single power supply over a wide range of voltage

Features

- Internally frequency compensated for unity gain
- Large output voltage swing: OV to V_{CC} 1.5V
- Wide power supply range:
 Single supply: 3 to 30V or
 Dual supplies: ± 1.5V to ± 15V

Item	Symbol	Ratings	Unit
Supply Voltage	Vcc	32	V
Power Dissipation	Po	350	mW
Input Differential Voltage	V ID	32	٧
Input Common - Mode Voltage	Vicм	- 0.3 to 32	٧
Operating Temperature	Topr	- 20 to 75	°C
Storage Temperature	Tstg	-55 to ± 150	°C
Output Voltage	V 0	24	٧

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

			Test		Limit			
Item	Item		Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage		Vio	1	$Rs = 50\Omega$		2	7	mV
Input Offset Current		110	1				50	nΑ
Input Bias Current		lв	1				250	nA
Voltage Gain		Aol	1	$RL = 2k\Omega$	88	100		dB
Output Current	(Sink)	lo (sink)	7	Vin = 0V, $Vin = 1V$	10	20		mA
Output Current	(Source)	lo (Source)	6	Vin = 1V, $Vin = 0V$	20	40		mΑ
Maximum Output Volt	age	Vом	4	$RL = 2k\Omega$	V+ - 1.5			٧
Common-Mode Reject	ion Ratio	CMRR	1		65	85		dB
Supply Voltage Reject	Supply Voltage Rejection Ratio		1		65	100		dB
Supply Current		lcc	3	RL+∞		0.6	1.2	mA
Common-Mode Input Voltage		Vicm	2				V + – 15V	٧
Channel Separation		CS	5	f = 1kHz to 20kHz		120		dB

Connection Diagram

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Typical Electrical Performance Curves (continued)

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3

Test Circuit 4 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

Test Circuit 5

Test Circuit 7 (1/2 circuit)

AN1358/AN1358S (AN6562) DUAL OPERATIONAL AMPLIFIERS

Item	Test conditions for Circuit 1
Input Offset Voltage	Turn on SW1, SW2, and measure VFI (Ec =0), where VIO = VF1/500 (V)
Input Offset Current	Turn off SW1, SW2, and measure VF2 (Ec = 0), where $lio = \frac{ V_{F2} - V_{F1} }{10^7}$ (A)
Input Bias Current	SW1 on, SW2 off, and measure VF3,SW1, off SW2 on measure VF4. $I_B = \frac{ V_{F4} - V_{F3} }{2 \times 10^7}$ (A)
Voltage Gain	SW1, SW2 on, Ek = 1.4V, and measure VF5.Ek = 3.4V, measure VF5 SW3 on AoL = 20 log $(\frac{1000}{V_{F1} - V_{F5}})$
Common-Mode Rejection Ratio	SW1, SW2 on,and measure VF6 (EK = EC1), measure VF7 (EC = EC2) CMRR = 20 log $(500 \text{ x} \mid \frac{E_{C1} - E_{C2}}{V_{F6} - V_{F7}} \mid)$
Supply Voltage (-) Rejection Ratio (+)	SW1, SW2 on, Ec = 0, and measure VF8 (Vcc = Vc1), measure VF9 (Vcc = Vc2), PSRR = 20 log $(500 \text{ x} \mid \frac{V_{C1} - V_{C2}}{V_{F8} - V_{F9}} \mid)$

AN1458/AN1458S (AN6572) DUAL OPERATIONAL AMPLIFIER

General Description

The AN1458 is an internally compensated dual operational amplifier. It is equivalent to most industry standard "1458" applications and has the added feature of "S.O." package availability.

Features

- No compensation required
- Short-circuit protection
- Low power consumption
- •8 pin DIP and S.O. plastic packages

Item			Symbol	Ratings	Unit
Supply Voltage			Vcc	± 18	V
Dower Dissipation	(8 DIP)		P D	500	mW
Power Dissipation	(8 SO)		PD	360	mW
Input Differential V	oltage/		VID	± 30	V
Input Common –M	ode Voltaç	ge	VICM	± 15	V
Operating Tempera	iture		Topr	- 20 to + 75	°C
Storage Temperatu	(8 D	IP)	Tstg	- 55 to + 150	°C
Otorago remperate	(8 S	0)	Tstg	-55 to + 125	°C

Electrical Characteristics (Vcc = - VEE = 15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V IO	1	$Rs \leq 10k\Omega$		1	5	mV
Input Offset Current	lio	1			20	200	nA
Input Bias Current	lв	1			80	500	nA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	106		dB
Output Voltage (max)	V 01	2	$RL \ge 10k\Omega$	±12	±14		٧
Coulput voltage (max)	V 02	2	RL ≥2kΩ	±10	±13		٧
Common-Mode Input Voltage	Vсм	3		±12	±13		٧
Common-Mode Rejection Ratio	CMRR	1	$Rs \le 10k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	PSRR	1	$Rs \le 10k\Omega$		30	150	μV/V
Power Consumption	Pc	4			96	170	mW
Slew Rate	SR	5			0.8		V/μs
Supply Current	lcc	4			3.2	5.6	mA
Output Short-Circuit Current	lo (\$HORT)	2			20		mA
Input Resistance	Ri			0.3	1		mΩ

Connection Diagram

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4

Test Circuit 5 (1/2 circuit)

item	Test conditions for Circuit 1
Input Offset Voltage	With SW1, SW2, and SW3 off, VFI is measured on the basis of Ec = Ek = 0, where VIO = VF1/400 (V).
Input Offset Current	With SW1, SW2 on and SW3 off, VF2 is measured on the basis of Ec = Ek = 0, where $I_{10} = V_{F2} - V_{F1} $ /4 x 10^6 (A).
Input Bias Current	With SW3 off while $Ec = E\kappa = 0$ and SW1, on, SW2, off, VF3 is measured. VF4 is measured with SW1 and SW2 inverse. Where $IB = VF3 - VF4 /8 \times 10^6$ (A).
Voltage Gain	With SW1, SW2 and SW3 on and Ec = 0, Ek = 10V, VF5 is measured and VF5 is measured again with Ek = $-10V$. Where AoL = $20 \log \left(\frac{8000}{V_{F5} - V_{F5}} \right)$
Common-Mode Rejection Ratio	With SW1 and SW2 on, SW3 off, and E κ = 0, Ec = 5V, VFe is measured. With Ec = -5V, VFe is measured again. Where: CMRR = ($\frac{4000}{V_{F6} - V_{F6}}$)
Supply Voltage (-)	With SW1, SW2 on, SW3 off, Ek = Ec = 0, Vcc = 10V, VF7 is measured.
Rejection Ratio (+)	Where: PSRR (+) = $ V_{F7} - V_{F2} /2 \times 10^3$
Supply Voltage (-)	With SW1, SW2 on SW3, off and $E_K = E_C = 0$ VEE = - 10V, VF8 is measured,
Rejection Ratio (+)	Where: PSRR (-) = $ V_{F8} - V_{F2} 2 \times 10^3$

Schematic Diagram

AN1741/AN1741S (AN6570) OPERATIONAL AN1741/AN1741S

General Description

The AN1741 is a high performance general purpose operational amplifier. It has internal phase compensation and high gain making it a suitable replacement for most standard "741" applications

Features

- No frequency compensation required
- Short circuit protection
- Low power consumption
- Both 8 pin DIP and 8 pin S.O. packages available

Absolute Maximum Ratings (T_a = 25°C)

Item		Symbol	Ratings	Unit
Supply Voltage		Vcc	±18	V
Power Dissipation	(8 DIP)	PD	500	mW
	(8 S0)	PD	370	mW
Input Differential V	'oltage	V ID	±30	V
Input Common –M	ode Voltage	VICM	±15	٧
Operating Tempera	ture	Topr	– 20 to.+ 75	°C
Storage Temperatu	(8 DIP)	Tstg	- 55 to + 150	°C
Storage Temperatu	(8 SO)	Tstg	-55 to + 125	°C

Electrical Characteristics (Vcc = - VEE = 15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V I0	1	$Rs \leq 10k\Omega$		0.5	4	mV
Input Offset Current	lio	1			10	100	nA
Input Bias Current	lв	1			50	250	nA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	106		dB
Output Voltage (max)	V 01	2	$RL \ge 10k\Omega$	±12	±14		V
Catput Voltago (max)	V 02	2	RL≥2kΩ	±10	±13		V
Common-Mode Input Voltage	Vсм	3		±12	±13		٧
Common-Mode Rejection Ratio	CMRR	1	$Rs \leq 10k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	PSRR	1	$Rs \leq 10k\Omega$		30	150	μ٧/٧
Power Consumption	Pc	4				85	mW
Slew Rate	SR	5			0.7		V/μs
Supply Current	lcc	4				2.8	mA
Output Short-Circuit Current	lo(short)	2			±20		mA

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1

Test Circuit 2

Test Circuit 3

Test Circuit 4

Test Circuit 5

Item	Test conditions for Circuit 1
Input Offset Voltage	With SW1, SW2, and SW3 off, VFI is measured on the basis of Ec = $E\kappa = 0$, where $V_{10} = V_{F1}/400$ (V).
Input Offset Current	With SW1, SW2 on and SW3 off, VF2 is measured on the basis of Ec = Ex = 0, where $I_{10} = V_{F2} - V_{F1} $ /4 x 10 ⁶ (A).
Input Bias Current	With SW3 off while $Ec = EK = 0$ and SW1, on, SW2, off, VF3 is measured. VF4 is measured with SW1 and SW2 inverse. Where $IB = VF3 - VF4 /8 \times 10^6$ (A).
Voltage Gain	With SW1, SW2 and SW3 on and Ec = 0, E κ = 10V, VF5 is measured and VF5 is measured again with E κ = -10V. Where AoL = 20 log ($\frac{8000}{V_{F5} - V_{F5}}$)
Common-Mode Rejection Ratio	With SW1 and SW2 on, SW3 off, and E κ = 0, Ec = 5V, VF6 is measured. With Ec = -5V, VF6 is measured again. Where: CMRR = ($\frac{4000}{V_{F6} - V_{F6}}$)
Supply Voltage (-)	With SW1, SW2 on, SW3 off, $EK = EC = 0$, $VCC = 10V$, $VF7$ is measured.
Rejection Ratio (+)	Where: PSRR (+) = $ V_{F7} - V_{F2} /2 \times 10^3$
Supply Voltage (-)	With SW1, SW2 on SW3, off and $EK = EC = 0$ VEE = $-10V$, VF8 is measured,
Rejection Ratio (+)	Where: PSRR (-) = $ V_{F8} - V_{F2} 2 \times 10^3$

Schematic Diagram

AN4136/AN41365 (AN6554) OPERATIONAL ANALISE (AN6554) OPERATIONAL ANALISE (AN6554) OPERATIONAL

General Description

AN4136 is a quadruple operational amplifier that includes internal phase compensation. Its high gain and low noise characteristics make it suitable for many applications.

Features

- Internal phase compensation
- High gain, low noise
- Output short protection circuit
- Available in 14 pin DIP or 14 lead S.O. packages

Absolute Maximum Ratings $(T_a = 25^{\circ}C)$

Item		Symbol	Ratings	Unit
Supply Voltage		VCC, VEE	36	V
Power Dissipation	(14 DIP)	PD	570	mW
	(14 S0)	P D	380	mW
Input Differential \	/oltage	V ID	±30	V
Input Common –M	ode Voltage	Vicм	±15	V
Operating Tempera	iture	Topr	- 20 to + 75	°C
Ctorogo Tomporati	(14 DIP)	Tstg	−55 ~ + 150	°C
Storage Temperatu	(14 SO)	Tstg	- 55 to + 125	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

1		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V 10	1	$Rs \leq 10k\Omega$		0.5	5	mV
Input Offset Current	lio	2			5	50	nA
Input Bias Current	lΒ	2			100	300	nA
Voltage Gain	Aol	3	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	88	100		dB
Output Voltage (max)	V 01	4	$RL \ge 10k\Omega$	±12	±14		V
Output Voltage (max)	V 02	4	$RL \geq 2k\Omega$	±10	±13		٧
Common-Mode Input Voltage	Vсм	5		±12	±14		٧
Common-Mode Rejection Ratio	CMRR	6		70	90		dB
Supply Voltage Rejection Ratio	PSRR	7			30	100	μV/V
Power Consumption	Pc	8				240	mW
Slew Rate	SR	9			1.6		V/µs
Equivalent Input Noise Voltage	Vn	10	Rs = $1k\Omega$, B: $10Hz$ to $30kHz$		2.5		μVrms
Channel Separation	CS	11	f = 10kHz		110		dB

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/4 circuit)

Test Circuit 2 (1/4 circuit)

Fest Circuit 3 (1/4 circuit)

Test Circuit 4 (1/4 circuit)

Test Circuit 5 (1/4 circuit)

Test Circuit 6 (1/4 circuit)

Test Circuit 7 (1/4 circuit)

Test Circuit 8

Test Circuit 9 (1/4 circuit)

Test Circuit 10 (1/4 circuit)

Test Circuit 11 (1/2 circuit)

Schematic Diagram

AN4250/AN4250S OPERATIONAL AMPLIFIER

General Description

The AN4250 is a versatile, programmable, operational amplifier. A single external bias current, setting resistor programs: the bias current, offset current, quiescent power consumption, slew rate, input noise and the gain-bandwidth product.

Features

- Operates from ± 1V to ± 18V
- Electric characteristics can be programmed by changing set current
- Phase compensation circuit is built-in
- Output short circuit protection circuit is built-in
- Off-set is externally adjustable

Absolute Maximum Ratings (Ta = 25°C)

ltem		Symbol	Ratings	Unit
Supply Voltage		Vcc	± 18	٧
Power Dissipation	(8 DIP)	Po	500	mW
	(8 SO)	PD	360	mW
Input Differential \		V ID	± 30	٧
Input Common –N	lode Voltage	Vicм	± 15	٧
Operating Tempera	ature	Topr	- 20 to + 75	°C
Storage Temperature (8 DIP)		Tstg	-50 to + 150	°C
	(8 SO)	Tstg	-50 to + 125	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

			ISET =	$ SET = 1\mu A$ $ SET =$: 10μΑ	
ltem	Symbol	Condition	min.	max.	min.	max.	Unit
Input Offset Voltage	Vio	Rs ≤ 100kΩ		5		6	m۷
	1	$V \pm = \pm 1.5 \text{V}, \text{Rs} \leq 100 \text{k}\Omega$		5		6	
Input Offset Current	lio			6		20	nA
Input Bias Current	lв			10		75	nA
		$V \pm = \pm 1.5$		10		75	
Large Signal Voltage Gain	Aol	$V_0 = \pm 10V$, $R_L = 100k\Omega$	96				dB
		$V_0 = \pm 10V$, $R_L = 10k\Omega$			96		
Supply Current	Icc			11		100	μΑ
		$V \pm = \pm 1.5V$		8		90	<u></u>
Power Consumption	Pc			330		3000	μ٧
		$V \pm = \pm 1.5V$		24		270	
Input Common-Mode Voltage	Vсм		± 13.5		± 13.5		V
		$V \pm = \pm 1.5V$	± 0.6		± 0.6		
Output Voltage (max)	Vом	$RL = 100k\Omega$	± 12				V
	1	$V \pm = \pm 1.5V$, $R_L = 100k\Omega$	± 0.6				
Common-Mode Rejection Ratio	CMRR	$RL = 10k\Omega$			± 12		٧
		$V \pm = \pm 1.5 \text{V}, \text{RL} = 10 \text{k}\Omega$			± 0.6		
Supply Voltage Rejection Ratio	PSRR	$Rs \leq 10k\Omega$	70		70		dl
		Rs ≤ 10kΩ	74		74		

Connection Diagram

Connections for ISET

Typical Characteristics for ISET

AN4558/AN4558S (AN6552) DUAL OPERATION AMPLIFIER

General Description

The AN4558 is a dual operational amplifier which has internal phase compensation. It is designed to be a general purpose circuit.

Features

- Internal phase compensation
- High gain, low noise
- Output short protection circuit
- Slew rate: $1.0V/\mu$ typ.
- Available in an 8 pin DIP or 8 pin S.O. plastic packages

Absolute Maximum Ratings (Ta = 25°C)

ltem		Symbol	Ratings	Unit
Supply Voltage		Vcc	± 18	V
Dower Dissipation	(8 DIP)	PD	500	mW
Power Dissipation		PD	360	mW
Input Differential \	/oltage	VID	± 30	V
Input Common –M	ode Voltage	Vicm	± 15	V
Operating Tempera	ture	Topr	– 20 to + 75	°C
Storage Temperatu	(8 DIP)	Tstg	- 55 to + 150	°C
Storage remperati	(8 SO)	Tstg	-55 to + 125	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	1	$Rs \leq 10k\Omega$		0.5	6	mV
Input Offset Current	110	1			5	200	nA
Input Bias Current	lв	1				500	nA
Voltage Gain	Gv	1	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	86	100		dB
Output Voltage (max)	V 01	2	$RL \ge 10k\Omega$	±12	±14		٧
Output Voltage (max)	V 02	2	$R_L \ge 2k\Omega$	±10	±13		V
Common-Mode Input Voltage	Vсм	3		±12	±14		V ;
Common-Mode Rejection Ratio	CMRR	1		70	90		dB
Supply Voltage Rejection Ratio	PSRR	1			30	150	μ\/\
Power Consumption	Pc	4	RL = ∞		90	170	mW
Slew Rate	SR	5	$RL = \geq 2k\Omega$		1.0		V/µs
Equivalent Input Noise Voltage	Vni	60	$R_S = 1 k\Omega$, B: $10 Hz \sim 30 kHz$		2.5		μVrm

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4 (1/2 circuit)

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

Schematic Diagram

AN6550 DUAL OPERATIONAL AMPLIFIER

General Description

The AN6550 is a dual internally compensated high performance amplifier specifically designed for low-voltage applications. Its gain and noise characteristics are useful in active filter and low-level audio designs. Also, the SIL package is ideal for compact layouts.

Features

- No frequency compensation required
- High Gain and low noise operation
- Output short-circuit protected
- ●Low voltage operation (±2V to ±12V)
- Single-in-line package

Absolute Maximum Ratings (Ta = 25°C)

ltem	Symbol	Ratings	Unit
Supply Voltage	VCC, VEE	± 12	٧
Power Dissipation	Po	500	mW
Input Differential Voltage	V ID	± 24	٧
Input Common – Mode Voltage	VICM	± 12	٧
Operating Temperature	Topr	- 20 to + 75	°C
Storage Temperature	Tstg	- 55 to + 150	°C
External Bias Voltage	V EXT	VEE to VCC	٧

Electrical Characteristics (VCC = 2.5V, VEE = -2.5V, VEXT = 2.0V, Ta = 25°C)

		Test		Limit			
ltem	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V 10	1	$Rs \leq 10k\Omega$		1.5	6	mV
Input Offset Current	110	1			5	200	nA
Input Bias Current	lв	1			150	500	nA
Voltage Gain	Aol	1	$RL \geq 2k\Omega$	65	100		dB
Equivalent Input Noise Voltage	V n	5	Rs = $1 k\Omega$, BW: $10 Hz \sim 30 kHz$		2.5		μVrms
Max. Output Voltage	Vом	2	$RL \ge 2k\Omega$	±10	±15		٧
Common-Mode Rejection Ratio	CMRR	1		70	80		dB
Supply Voltage Rejection Ratio	PSRR	1			100	300	μV/V
Power Consumption	Pc	3	RL= ∞		8	15	mW
Slew Rate	SR	4	$RL = \geq 2k\Omega$		0.8		V/μs

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4 (1/2 circuit)

Test Circuit 5 (1/2 circuit)

Applications

RIAA audio pre-amplifier (single-supply operation)

R1/R2 are used to adjust bias of amplifier. Typical range of VEXT should be from +2 to +6 Volts with 4.5 Volts recommended.

 BIAS ADJUSTMENT: Altering VEXT will change current consumption and operating Bandwidth. Some suggested methods are shown below:

Derive V_{EXT} by diodes (V_{EE} = - V_{CC})

Connect V_{EXT} to GND ($V_{EE} = -V_{CC}$)

Derive V_{EXT} voltage by resistor divider

Derive V_{EXT} voltage from zener diode

Schematic Diagram

AN6551 DUAL OPERATIONAL AMPLIFIER

General Description

The AN6551 is a dual internally compensated high performance operational amplifier. Its high gain and low noise characteristics over a wide supply voltage range make the AN6551 ideal for many commercial and industrial uses.

Features

- No frequency compensation required
- High gain, low noise operation
- Output short circuit protection
- •Symmetrical dual circuit pin-out in 9-pin SIL package

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Ratings	Unit
Supply Voltage	VCC, VEE	± 18	٧
Power Dissipation	PD	500	mW
Input Differential Voltage	V ID	± 30	٧
Input Common – Mode Voltage	Vicм	± 15	٧
Operating Temperature	Topr	- 20 to + 75	°C
Storage Temperature	Tstg	-55 to + 150	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V 10	1	$Rs \leq 10k\Omega$		0.5	6	mV
Input Offset Current	lıo	1			5	200	nA
Input Bias Current	lв	1				500	nA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	100		dB
Equivalent Input Noise Voltage	Vn	5	Rs = $1k\Omega$, BW: 10Hz to 30kHz		2.5		μVrms
Max. Output Voltage	Vом	2	$RL \ge 2k\Omega$	±10	±13		V
Common-Mode Rejection Ratio	CMRR	1		70	90		dB
Supply Voltage Rejection Ratio	PSRR	1			30	150	μV/V
Power Consumption	Pc	3	RL = ∞		90	70	mW
Slew Rate	SR	4	$RL = \geq 2k\Omega$		1.0		V/μs

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4 (1/2 circuit)

Test Circuit 5 (1/2 circuit)

Schematic Diagram

AN6553/AN6553S DUAL OPERATIONAL AN6553/AN6553S AMPLIFIERS

General Description

The AN6553 is a dual operational amplifier which has internal phase compensation. It is designed to be a general purpose circuit.

Features

- Internal phase compensation
- High gain, low noise
- Output short protection circuit
- Slew rate: 1.0V/μ typ.
- Available in an 8 pin DIP or 8 pin S.O. plastic packages

ltem		Symbol	Ratings	Unit
Supply Voltage		V cc	± 18	٧
Power Dissipation	(8 DIP)	Po	500	mW
		Po	360	mW
Input Differential Voltage		V ID	± 30	٧
Input Common – Mode Voltage		VICM	± 15	٧
Operating Temperature		Topr	- 20 to + 75	°C
Storage Temperature	(8 DIP)	Tstg	Tstg - 55 to + 150	
Storage remperati	(8 SO)	Tstg	-55 to + 125	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

		Test		Limit			
1 tem	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	1	$Rs \leq 10k\Omega$		0.5	6	mV
Input Offset Current	110	1			5	200	nA
Input Bias Current	ΙΒ	1				500	nA
Voltage Gain	Gv	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	100		dB
Output Voltage (max)	V 01	2	$RL \ge 10k\Omega$	±12	±14		٧
Output Voltage (max)	V 02	2	$RL \geq 2k\Omega$	±10	±13		٧
Common-Mode Input Voltage	Vсм	3		±12	±14		V
Common-Mode Rejection Ratio	CMRR	1		70	90		dB
Supply Voltage Rejection Ratio	PSRR	1			30	150	μV/V
Power Consumption	Pc	4	RL = ∞		90	170	mW
Slew Rate	SR	5	$RL = \geq 2k\Omega$		2.0		V/μs
Equivalent Input Noise Voltage	Vn	60	Rs = $1k\Omega$, B: $10Hz$ to $30kHz$		2.5		μVrms

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4 (1/2 circuit)

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

Schematic Diagram

AN6555 DUAL OPERATIONAL AMPLIFIER

General Description

The AN6555 is a dual operational amplifier in a spacesaving single-in-line package. It requires no external phase compensation and its low noise and high gain make the AN6555 suitable for many applications.

Features

- No frequency compensation required
- High gain, low noise
- Short circuit protection
- Dual operational amplifiers in a symmetrical 9 pin SIP package

Absolute Maximum Ratings (T_a = 25°C)

ltem	Symbol	Ratings	Unit
Supply Voltage	Vcc	± 18	٧
Power Dissipation	PD	500	mW
Input Differential Voltage	V ID	± 30	٧
Input Common – Mode Voltage	Vicm	± 15	٧
Operating Temperature	Topr	– 20 to 75	°C
Storage Temperature	Tstg	- 55 to 150	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V IO	1	$Rs \leq 10k\Omega$		0.5	6	mV
Input Offset Current	lio	1			5	200	nA
Input Bias Current	lв	1				500	nA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	100		dB
Output Voltage (may)	V 01	2	$RL \ge 10k\Omega$	±12	±14		V
Output Voltage (max)	V 02	2	$RL \ge 2k\Omega$	±10	±13		V
Common-Mode Input Voltage	Vсм	3		±12	±13		V
Common-Mode Rejection Ratio	CMRR	1		70	90		dB
Supply Voltage Rejection Ratio	PSRR	1			30	150	μ٧/٧
Power Consumption	Pc	4			90	170	mW
Slew Rate	SR	5		1	1.8	1	V/µs
Equivalent Input Noise Voltage	Vn	6	$Rs = 1k\Omega$, DIN/AUDIO		1.5		μVrms

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

? Item	Test conditions for Circuit 1
Input Offset Voltage	With SW1, SW2, and SW3 off, VFI is measured on the basis of $EC = EK = 0$, where $VIO = VFI/400$ (V).
Input Offset Current	With SW1, SW2 on and SW3 off, VF2 is measured on the basis of Ec = Ek = 0, where $lio = VF2 - VF1 $ /4 x 10^6 (A).
Input Bias Current	With SW3 off while $Ec = E\kappa = 0$ and SW1, on, SW2, off, VF3 is measured. VF4 is measured with SW1 and SW2 inverse. Where $B = VF3 - VF4 /8 \times 10^6$ (A).
Voltage Gain	With SW1, SW2 and SW3 on and Ec = 0, Ek = 10V, VF5 is measured and VF5 is measured again with Ek = $-10V$. Where AoL = 20 log ($\frac{8000}{V_{F5} - V_{F5}}$)
Common-Mode	With SW1 and SW2 on, SW3 off, and $E_K = 0$, $E_C = 5V$, VF6 is measured. With $E_C = -5V$, VF6 is measured
Rejection Ratio	again. Where: CMRR = $(\phantom{00000000000000000000000000000000000$
Supply Voltage (-)	With SW1, SW2 on, SW3 off, $EK = EC = 0$, $VCC = 10V$, $VF7$ is measured.
Rejection Ratio (+)	Where: $PSRR(+) = VF7 - VF2 /2 \times 10^3$
Supply Voltage (-)	With SW1, SW2 on SW3, off and $EK = EC = 0$ VEE = - 10V, VF8 is measured,
Rejection Ratio (+)	Where: $PSRR(-) = V_{58} - V_{F2} 2 \times 10^3$

AN6556/AN6556S DUAL OPERATIONAL AMPLIFIER

General Description

The AN6556 is a dual operational amplifier. It requires no external phase compensation and its low noise and high gain make the AN6556 suitable for many applications.

Features

- No frequency compensation required
- High gain, low noise
- Short circuit protection
- Dual operationsl amplifiers in a 8 pin DIP or S.O. package

Absolute Maximum Ratings (T_a = 25°C)

ltem		Symbol	Ratings	Unit
Supply Voltage		Vcc	± 18	٧
Dower Dissipation	(8 DIP)	PD	500	mW
Power Dissipation	(8 SO)	Po	360	mW
Input Differential Voltage		VID	± 30	V
Input Common - Mode Voltage		VICM	± 15	V
Operating Temperature		Topr	- 20 to + 75	°C
a. + .	(8 DIP)	Tstg	- 55 to + 150	°C
Storage Temperatu	(8 SO)	Tstg	- 55 to + 125	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V 10	1	$Rs \leq 10k\Omega$	i	0.5	6	mV
Input Offset Current	110	1			5	200	nA
Input Bias Current	lв	1				500	nA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	100		dB
Output Voltage (may)	V 01	2	$RL \ge 10k\Omega$	±12	±14		V
Output Voltage (max)	V 02	2	$RL \ge 2k\Omega$	±10	±13		V
Common-Mode Input Voltage	VcM	3		±12	±13		V
Common-Mode Rejection Ratio	CMRR	1		70	90		dB
Supply Voltage Rejection Ratio	PSRR	1			30	150	μ۷/۷
Power Consumption	Pc	4			90	170	mW
Slew Rate	SR	5			2.0		V/µs
Equivalent Input Noise Voltage	Vn	6	$Rs = 1k\Omega$, DIN/AUDIO		1.5		μVrms

Connection Diagram

Typical Electrical Performance Curves

Max Output Voltage vs Frequency

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

AN6556/AN6556S DUAL OPERATIONAL AMPLIFIERS

Item	Test conditions for Circuit 1
Input Offset Voltage	With SW1, SW2, and SW3 off, VFI is measured on the basis of $Ec = Ek = 0$, where $VI0 = VF1/400$ (V).
Input Offset Current	With SW1, SW2 on and SW3 off, VF2 is measured on the basis of Ec = Ek = 0, where $I_{10} = V_{F2} - V_{F1} / 4 \times 10^6$ (A).
Input Bias Current	With SW3 off while $Ec = E\kappa = 0$ and SW1, on, SW2, off, VF3 is measured. VF4 is measured with SW1 and SW2 inverse. Where $B = VF3 - VF4 /8 \times 10^6$ (A).
Voltage Gain	With SW1, SW2 and SW3 on and Ec = 0, Ek = 10V, VF5 is measured and VF5 is measured again with Ek = $-10V$. Where AoL = 20 log ($\frac{8000}{V_{F5} - V_{F5}}$)
Common-Mode Rejection Ratio	With SW1 and SW2 on, SW3 off, and $E_K = 0$, $E_C = 5V$, VF6 is measured. With $E_C = -5V$, VF6 is measured again. Where: CMRR = $(\frac{4000}{V_{F6} - V_{F6}})$
Supply Voltage (-)	With SW1, SW2 on, SW3 off, $E_K = E_C = 0$, $V_{CC} = 10V$, V_{F7} is measured.
Rejection Ratio (+)	Where: $PSRR(+) = VF7 - VF2 /2 \times 10^3$
Supply Voltage (-)	With SW1, SW2 on SW3, off and $E_K = E_C = 0$ VEE = $-10V$, VF8 is measured,
Rejection Ratio (+)	Where: $PSRR(-) = VF8 - VF2 2 \times 10^3$

General Description

The AN6557 is a dual operational amplifier with high gain, high slew rate and low noise characteristics.

Features

- Low noise
- High slew rate: 6.0V V/μ typ.
- Low profile, single-in-line package for compact layouts
- Low offset voltage

Absolute Maximum Ratings (Ta = 25°C)

ltem	Symbol	Ratings	Unit
Supply Voltage	Vcc	± 18	V
Power Dissipation	Po	500	mW
Input Differential Voltage	V ID	± 30	٧
Input Common - Mode Voltage	VICM	± 15	٧
Operating Temperature	Topr	- 20 to 75	°C
Storage Temperature	Tstg	- 55 to 150	°C

Electrical Characteristics (Vcc = - VEE = 15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V IO	1	$Rs \leq 10k\Omega$		0.3	3	mV
Input Offset Current	lio	1			10	200	nA
Input Bias Current	lв	1			1300	2000	nA
Voltage Gain	A0L	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	100		dB
Output Voltage (max)	V 01	2	$RL \ge 10k\Omega$	±12	±14		٧
Cutput Voltago (max)	V 02	2	Io = 25mA	±10	±12		V
Common-Mode Input Voltage	Vсм	3		±12	±14		V
Common-Mode Rejection Ratio	CMRR	1		70	100		dB
Supply Voltage Rejection Ratio	PSRR	1			10	150	μ۷/۷
Power Consumption	Pc	4	RL = ∞		150	240	mW
Slew Rate	SR	5	$RL \ge 1k\Omega$		6		V/µs
Equivalent Input Noise Voltage	Vn	6	Rs = $1k\Omega$, DIN/AUDIO		0.9		μVrms

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

AN6557 DUAL OPERATIONAL AMPLIFIER

item	Test conditions for Circuit 1
Input Offset Voltage	With SW1, SW2, and SW3 off, VFI is measured on the basis of $Ec = Ek = 0$, where $VI0 = VF1/400$ (V).
Input Offset Current	With SW1, SW2 on and SW3 off, VF2 is measured on the basis of Ec = Ek = 0, where $110 = VF2 - VF1 / 4 \times 10^6$ (A).
Input Bias Current	With SW3 off while $Ec = E\kappa = 0$ and SW1, on, SW2, off, VF3 is measured. VF4 is measured with SW1 and SW2 inverse. Where $B = VF3 - VF4 /8 \times 10^6$ (A).
Voltage Gain	With SW1, SW2 and SW3 on and Ec = 0, Ek = 10V, VF5 is measured and VF5 is measured again with Ek = $-10V$. Where AoL = 20 log ($\frac{8000}{V_{F5} - V_{F5}}$)
Common-Mode Rejection Ratio	With SW1 and SW2 on, SW3 off, and E κ = 0, Ec = 5V, VF6 is measured. With Ec = -5V, VF6 is measured again. Where: CMRR = ($\frac{4000}{V_{F6} - V_{F6}}$)
Supply Voltage (-)	With SW1, SW2 on, SW3 off, $E_K = E_C = 0$, $V_{CC} = 10V$, V_{F7} is measured.
Rejection Ratio (+)	Where: $PSRR(+) = VF7 - VF2 /2 \times 10^3$
Supply Voltage (-)	With SW1, SW2 on SW3, off and $E_K = E_C = 0$ VEE = -10V, VF8 is measured,
Rejection Ratio (+)	Where: $PSRR(-) = VF8 - VF2 2 \times 10^3$

AN6558 DUAL OPERATIONAL AMPLIFIER

General Description

The AN6558 is a dual operational amplifier with high gain, high slew rate and low noise characteristics.

Features

- No frequency compensation required
- High gain, low noise
- •8 pin DIP plastic package
- High slew rate: 6.0V V/μ typ.

Absolute Maximum Ratings(Ta = 25°C)

ltem	Symbol	Ratings	Unit
Supply Voltage	Vcc	± 18	٧
Power Dissipation	PD	500	mW
Input Differential Voltage	V ID	± 30	٧
Input Common - Mode Voltage	VICM	± 15	٧
Operating Temperature	Topr	- 20 to 75	°C
Storage Temperature	Tstg	- 55 to 150	°C

Electrical Characteristics (Vcc = 15V, VEF = -15V, Ta = 25°C)

		Test		Limit			1
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	1	$Rs \leq 10k\Omega$		0.3	3	mV
Input Offset Current	lio	1			10	200	nA
Input Bias Current	lв	1			1300	2000	nA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	100		dB
Output Voltage (max)	V 01	2	$RL \ge 10k\Omega$	±12	±14		٧
Output Voltage (max)	V 02	2	Io = 25mA	±10	±12		٧
Common-Mode Input Voltage	Vсм	3		±12	±14		٧
Common-Mode Rejection Ratio	CMRR	1		70	100		dB
Supply Voltage Rejection Ratio	PSRR	1			10	150	μ\/\
Power Consumption	Pc	4	RL= ∞		150	240	mW
Slew Rate	SR	5	$RL \ge 2k\Omega$		6		V/µs
Equivalent Input Noise Voltage	Vn	6	$Rs = 1k\Omega$, DIN/AUDIO		0.9		μVrms

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4 (1/2 circuit)

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

ltem	Test conditions for Circuit 1
Input Offset Voltage	With SW1, SW2, and SW3 off, VFI is measured on the basis of $Ec = Ek = 0$, where $VIO = VF1/400$ (V).
Input Offset Current	With SW1, SW2 on and SW3 off, VF2 is measured on the basis of Ec = EK = 0, where $II0 = VF2 - VF1 $ /4 x 10^6 (A).
Input Bias Current	With SW3 off while Ec = Ek = 0 and SW1, on, SW2, off, VF3 is measured. VF4 is measured with SW1 and SW2 inverse. Where $B = VF3 - VF4 /8 \times 10^6$ (A).
Voltage Gain	With SW1, SW2 and SW3 on and Ec = 0, E κ = 10V, VF5 is measured and VF5 is measured again with E κ = - 10V. Where AoL = 20 log ($\frac{8000}{V_{F5} - V_{F5}}$)
Common-Mode Rejection Ratio	With SW1 and SW2 on, SW3 off, and E κ = 0, Ec = 5V, VF6 is measured. With Ec = -5V, VF6 is measured again. Where: CMRR = ($\frac{4000}{V_{F6} - V_{F6}}$)
Supply Voltage (-)	With SW1, SW2 on, SW3 off, $EK = EC = 0$, $VCC = 10V$, $VF7$ is measured.
Rejection Ratio (+)	Where: PSRR (+) = $ V_{F7} - V_{F2} /2 \times 10^3$
Supply Voltage (-)	With SW1, SW2 on SW3, off and $E_K = E_C = 0$ VEE = - 10V, VF8 is measured,
Rejection Ratio (+)	Where: PSRR (–) = $ V_{F8} - V_{F2} 2 \times 10^3$

Schematic Diagram

AN6561 DUAL OPERATIONAL AMPLIFIER

General Description

The AN6561 consists of two independent, high gain internally frequency compensated operational amplifiers which were designed to operate from a single power supply over a wide range of voltage

Features

- •Internally frequency compensated for unity gain
- ■Large output voltage swing: OV to V_{CC} 1.5V
- ◆Wide power supply range:
 Single supply: 3 to 30V or
 Dual supplies: ± 1.5 to ± 15V

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Ratings	Unit
Supply Voltage	V cc	32	V
Power Dissipation	PD	350	mW
Input Differential Voltage	V ID	32	٧
Input Common -Mode Voltage	Vicm	- 0.3 to 32	٧
Operating Temperature	Topr	- 20 to 75	°C
Storage Temperature	Tstg	-55 to ± 150	°C
Output Voltage	V 0	24	V

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

			Test			Limit		
item		Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage		V IO	1	$Rs = 50\Omega$		2	7	mV
Input Offset Current		110	1				50	nΑ
Input Bias Current		lв	1				250	nA
Voltage Gain		Aol	1	$RL = 2k\Omega$	88	100		dB
Output Current	(Sink)	lo (SINK)	7	Vin = 0V, $Vin = 1V$	10	20		mA
Output Gurrent	(Source)	lo (Source)	6	Vin = 1V, $Vin = 0V$	20	40		mA
Maximum Output Volt		Vом	4	$RL = 2k\Omega$	Vcc - 1.5			V
Common-Mode Reject	tion Ratio	CMRR	1		65	85		dB
Supply Voltage Reject	ion Ratio	PSRR	1		65	100		dB
Supply Current (Source	ce)	lcc	3	RL + ∞		0.6	1.2	mΑ
Common-Mode Input	Voltage	Vicm	2				Vcc - 1.5	٧
Channel Separation		CS	5	f = 1kHz to 20kHz		120		dB

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3

Item	Test Conditions For Circuit 1
Input Offset Voltage	Turn on SW1, SW2, and measure VFI (Ec =0), where VIO = VFI/500 (V)
Input Offset Current	Turn off SW1, SW2, and measure VF2 (Ec = 0), where $I_{10} = \frac{ V_{F2} - V_{F1} }{10^7}$ (A)
Input Bias Current	SW1 on, SW2 off, and measure VF3,SW1, off SW2 on measure VF4. $I_B = \frac{ V_{F4} - V_{F3} }{2 \times 10^7}$ (A)
Voltage Gain	SW1, SW2 on, Ex = 1.4V, and measure VF5.Ex = 3.4V, measure VF5 SW3 on AoL = 20 log $(\frac{1000}{V_{F1} - V_{F5}})$
Common-Mode Rejection Ratio	SW1, SW2 on,and measure VF6 (EK = EC1), measure VF7 (EC = EC2) CMRR = 20 log (500 x $\left \begin{array}{c} \cdot E_{C1} - E_{C2} \\ \hline V_{F6} - V_{F7} \end{array} \right $
Supply Voltage (-) Rejection Ratio (+)	SW1, SW2 on, Ec = 0, and measure VF8 (Vcc = Vc1), measure VF9 (Vcc = Vc2), PSRR = $20 \log \left(\frac{V_{C1} - V_{C2}}{V_{F8} - V_{F9}} \right)$

Test Circuit 4 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

Test Circuit 7 (1/2 circuit)

General Description

The AN6571 is a dual operational amplifier with general purpose characteristics in a low profile SIL package.

Features

- General purpose
- Slew rate: 0.7 V/ μ typ.
- Low offset voltage
- Low-profile SIL-9 package for compact layouts

Absolute Maximum Ratings (Ta = 25°C)

!tem	Symbol	Ratings	Unit
Supply Voltage	Vcc	± 18	V
Power Dissipation	Po	500	mW
Input Differential Voltage	V ID	± 30	٧
Input Common – Mode Voltage	VICM	± 15	V
Operating Temperature	Topr	- 20 to 75	°C
Storage Temperature	Tstg	- 55 to 150	°C

Electrical Characteristics (Vcc = - VEE = 15V, Ta = 25°C)

		Test	}	Limit		j	
ltem	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	1	$Rs \leq 10k\Omega$		0.5	4	mV
Input Offset Current	110	1			10	100	nA
Input Bias Current	lв	1			50	250	mA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	106		dB
Output Voltage (max)	V 01	2	$RL \ge 10k\Omega$	±12	±14		V
	V 02	2	$RL \ge 2k\Omega$	±10	±13		V
Common-Mode Input Voltage	Vсм	3		±12	±13		V
Common-Mode Rejection Ratio	CMRR	1	$Rs \leq 10k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	PSRR	1	$Rs \leq 10k\Omega$		30	150	μ٧/٧
Power Consumption	Pc	4				170	mW
Slew Rate	SR	5			0.7		V/µs
Supply Current	Icc	4				5.6	mA
Output Short-Circuit Current	IO (SHORT)	2			±20		mA

Connection Diagram

Typical Electrical Performance Curves

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3 (1/2 circuit)

Test Circuit 4

Test Circuit 5 (1/2 circuit)

Schematic Diagram

AN6573 OPERATIONAL AMPLIFIER

General Description

The AN6573 is a single general purpose operational amplifier in a 7 – pin single-in-line package electrically identical to "741" (AN1741) circuits.

Features

- Slew rate: 0.7 V/μ typ.
- Dual power supply operation
- •7 pin SIL package
- Low offset voltage

Absolute Maximum Ratings (T_a = 25°C)

Item	Symbol	Ratings	Unit
Supply Voltage	Vcc	± 18	V
Power Dissipation	Po	500	mW
Input Differential Voltage	V ID	± 30	٧
Input Common Mode Voltage	Vicm	± 15	٧
Operating Temperature	Topr	- 20 to 75	°C
Storage Temperature	Tstg	- 55 to 150	°C

Electrical Characteristics (Vcc = 15V, Ta = 25°C)

		Test		Limit			
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	V IO	1	$Rs \leq 10k\Omega$		0.5	4	mV
Input Offset Current	lio	1			10	100	nA
Input Bias Current	lв	1			50	250	nA
Voltage Gain	Aol	1	$RL \ge 2k\Omega$, $V_0 = \pm 10V$	86	106		dB
Output Voltage (max)	V01	2	$RL \ge 10k\Omega$	±12	±14		٧
Cutput Voltage (max)	V 02	2	R∟≥2kΩ	±10	±13		٧
Common-Mode Input Voltage	Vсм	3		±12	±13		٧
Common-Mode Rejection Ratio	CMRR	1	Rs ≤ $10k\Omega$	70	90		dB
Supply Voltage Rejection Ratio	PSRR	1	$Rs \leq 10k\Omega$		30	150	μV/V
Power Consumption	Pc	4				85	mW
Slew Rate	SR	5			0.7		V/µs
Supply Current	lcc	4				2.8	mA
Output Short-Circuit Current	lo(short)	2			±20		mA

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Typical Electrical Performance Curves (continued)

Test Circuit 1

Item	Test Conditions For Circuit 1
Input Offset Voltage	With SW1, SW2, and SW3 off, VFI is measured on the basis of $Ec = Ek = 0$, where $VI0 = VF1/400$ (V).
Input Offset Current	With SW1, SW2 on and SW3 off, VF2 is measured on the basis of Ec = Ek = 0, where Ii0 = $ VF2 - VF1 $ /4 x 10 ⁶ (A).
Input Bias Current	With SW3 off while Ec = Ek = 0 and SW1, on, SW2, off, VF3 is measured. VF4 is measured with SW1 and SW2 inverse. Where $IB = VF3 - VF4 /8 \times 10^6$ (A).
Voltage Gain	With SW1, SW2 and SW3 on and Ec = 0, E κ = 10V, VF5 is measured and VF5 is measured again with E κ = -10V. Where AoL = 20 log ($\frac{8000}{V_{F5} - V_{F5}}$)
Common-Mode	With SW1 and SW2 on, SW3 off, and $E\kappa = 0$, $Ec = 5V$, $VF6$ is measured. With $Ec = -5V$, $VF6$ is measured
Rejection Ratio	again. Where: CMRR = $\left(\frac{4000}{V_{F6} - V_{F6}}\right)$
Supply Voltage (-)	With SW1, SW2 on, SW3 off, $E_K = E_C = 0$, $V_{CC} = 10V$, V_{F7} is measured.
Rejection Ratio (+)	Where: PSRR (+) = $ V_{F7} - V_{F2} /2 \times 10^3$
Supply Voltage (-)	With SW1, SW2 on SW3, off and $EK = EC = 0$ VEE = - 10V, VF8 is measured,
Rejection Ratio (+)	Where: PSRR (-) = $ V_{F8} - V_{F2} 2 \times 10^3$

Test Circuit 2

Test Circuit 3

Test Circuit 4

Test Circuit 5

Schematic Diagram

AN6593 OPERATIONAL AMPLIFIER

General Description

The AN6593 is a versatile, programmable, operational amplifier. A single external bias current, setting resistor programs: the bias current, offset current, quiescent power consumption, slew rate, input noise and the gain-bandwidth product.

Features

- Operates from ± 1V to ± 18V
- Electric characteristics can be programmed by changing set current
- Phase compensation circuit is built-in
- Output short circuit protection circuit is built-in
- Off-set is externally adjustable

Item	Symbol	Ratings	Unit
Supply Voltage	Vcc	± 18	V
Power Dissipation	PD	500	mW
Input Differential Voltage	VID	± 30	V
Input Common - Mode Voltage	VICM	± 15	٧
Operating Temperature	Topr	-20 to +75	°C
Storage Temperature	Tstg	-50 to + 150	°C

Electrical Characteristics (Vcc = 15V, VEE = -15V, Ta = 25°C)

			ISET =	1μΑ	ISET =	: 10μA	
item	Symbol	Condition	min.	max.	min.	max.	Unit
Input Offset Voltage	Vio	$Rs \leq 100k\Omega$		5		6	mV
		$V \pm = \pm 1.5 \text{V}, \text{Rs} \leq 100 \text{k}\Omega$		5		6	
Input Offset Current	110			6		20	nA
Input Bias Current	lв			10		75	nA
		$V \pm = \pm 1.5$		10		75	
Large Signal Voltage Gain	Aol	$V_0 = \pm 10V$, $R_L = 100k\Omega$	96				dB
		$V_0 = \pm 10V$, $R_L = 10k\Omega$			96		1
Supply Current	Icc			11		100	μΑ
		$V \pm = \pm 1.5V$		8		90	1
Power Consumption	Pc			330		3000	μW
		$V \pm = \pm 1.5V$		24		270	
Input Common-Mode Voltage	Vсм		± 13.5		± 13.5		V
		$V \pm = \pm 1.5V$	± 0.6		± 0.6		1
Output Voltage (max)	Vом	$RL = 100k\Omega$	± 12				V
		$V \pm = \pm 1.5 \text{V}, \text{RL} = 100 \text{k}\Omega$	± 0.6				1
Common-Mode Rejection Ratio	CMRR	$RL = 10k\Omega$			± 12		V
		$V \pm = \pm 1.5V$, $RL = 10k\Omega$			± 0.6		1
Supply Voltage Rejection Ratio	PSRR	Rs ≤ 10kΩ	70		70		dB
		$Rs \leq 10k\Omega$	74		74		1

Connections for ISET

Typical Characteristics for ISET

AN1339/AN1339S (AN6912) QUADRUPLE COMPARATOR

General Description

AN1339 is a quadruple comparator which has a wide range of supply voltage, dual and single supply. It is equivalent to most "339" circuits

Features

- A wide range of supply voltage Single supply: 2 to 36V Dual supply: ± 1 to ± 18V
- Low circuit current: 0.8 mA typ.
- A wide range of common-mode input voltage:
 OV to V_{CC} 1.5V (single supply)
- Open collector output

Absolute Maximum Ratings (T_a = 25°C)

ltem		Symbol	Ratings	Unit
Supply Voltage		VCC, VEE	36	٧
Power Dissipation	(14 DIP)	Po	570	mW
	(14 S0)	P D	360	mW
Input Differential \	/oltage	_VID*2	36	٧
Input Common – M		Vicm*1	-0.3 to $+36$	٧
Operating Tempera	ature	Topr	-20 to +75	°C
Storage Temperati	ıre	Tstg	- 55 to + 150	°C

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

		Test			L	imit	
ltem	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	1			2	5	mV
Input Offset Current	lio	1				50	nA
Input Bias Current	lВ	1				250	nA
Voltage Gain	Aol	1	$R_L = 15k\Omega$		200		V/mV
Common-Mode Input Voltage	Vсм	2		0		V – 1.5	٧
Response Time	tr	4	$RL = 5.1k\Omega$ $VRL = 5V$		1.3		μS
Output Current (Sink)	lo (SINK)	5	$V_{REF} = 0V$ $V_{IN} = 1V$ $V_0 \le 1.5V$	6			mA
Output Saturation Voltage	VoL	6	$V_{REF} = 0V$ $V_{IN} = 1V$ $I_{SINK} = 3mA$		0.2	0.4	V
Output Leakage Current	ILEAK	7	Vin = 0V VREF = 1V V0 = 5V		0.1		nA
Supply Current	lcc	3	RL = ∞		0.8	2	mA

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1 (1/4 circuit)

Test Circuit 2 (1/4 circuit)

Test Circuit 3 (1/4 circuit)

Test Circuit 4 (1/4 circuit)

Test Circuit 5 (1/4 circuit)

Test Circuit 6 (1/4 circuit)

Test Circuit 7 (1/4 circuit)

Application Circuit (1/4 circuit)

Definition of the Response Time

Item	Test Conditions For Circuit 1
Input Offset Voltage	With SW1, and SW2 on, VF1 is measured. Where VI0 = VF1/500 (V).
Input Offset Current	With SW1, and SW2 off, VF2 is measured. Where $IM = (\frac{V_{F2} - V_{F1}}{10^7})$
Input Bias Current	With SW1 on, and SW2, off, SW2, off, VF3 is measured. With SW1 off, and SW2 on, VF4 is measured. Where $B = VF4 - VF3 /2 \times 10$ (A)
Voltage Gain	With SW1, and SW2 on, and E = Ex = 3 VF5 is measured. Where AoL = $(\frac{1000}{V_{F1} - V_{F5}})$

Schematic Diagram

AN1393/AN1393S (AN6914) COMPARATOR

General Description

The AN1393 consists of two independent precision voltage comparators with low offset voltages. It is available in both DIL low S.O. packages. The AN1393 is equivalent to most "393" circuits.

Features

- Wide supply voltage range Single supply: 2 to 36V Dual supplies: ± 1 to ± 18V
- Low supply current: 0.6 mA (typ.)
- Wide common-mode voltage range:
 OV to V_{CC} 1.5V (single supply)
- Open collector output
- ●8 pin DIP or 8 pin S.O. plastic package

Absolute Maximum Ratings(Ta = 25°C)

ltem	Symbol	Ratings	Unit
Supply Voltage	VCC, VEE	36	٧
Power Dissipation	PD	500	mW
Input Differential Voltage	Vid	36	٧
Input Common – Mode Voltage	Vicm	- 0.3 to 36	٧
Operating Temperature	Topr	- 30 to 85	°C
Storage Temperature	Tstg	- 55 to 150	°C
Output Voltage	V 0	24	٧

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

		Test				imit	
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	1			(1)	5	mV
Input Offset Current	lio	1				50	nΑ
Input Bias Current	lв	1				250	nA
Voltage Gain	Aol	1	$R_L = 15k\Omega$		200		V/mV
Common-Mode Input Voltage	Vсм	2		0		Vcc - 1.5V	V
Response Time	tR	4	$RL = 5.1k\Omega$ $V_{RL} = 5V$		1.3		μs
Output Current (Sink)	lo(sink)	5	VREF = 0V VIN = 1V V0 = 1.5V	10			mA
Output Saturation Voltage	VoL	6	VREF = 0.V VIN = 1 V ISINK = 3 mA		0.2	0.4	V
Output Leakage Current	ILEAK	7	VIN = 0V VREF = 1V V0 = 5V		0.1		nA
Supply Current	lcc	3	RL = ∞		0.6	1.5	mA

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3

Test Circuit 4 (1/2 circuit)

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

Test Circuit 7 (1/2 circuit)

Definition of the Response Time

Schematic Diagram

item	Test Conditions For Circuit 1
Input Offset Voltage	With SW1, and SW2 on, VF1 is measured. Where Vio = VF1/500 (V).
Input Offset Current	With SW1, and SW2 off, VF2 is measured. Where IM = $(\frac{V_{F2} - V_{F1}}{10^7})$
Input Bias Current	With SW1 on, and SW2, off, SW2, off, VF3 is measured. With SW1 off, and SW2 on, VF4 is measured. Where $B = VF4 - VF3 /2 \times 10$ (A)
Voltage Gain	With SW1, and SW2 on, and E = Ek = 3 VF5 is measured. Where AoL = $(\frac{1000}{V_{F1} - V_{F5}})$

AN6913 DUAL COMPARATOR

General Description

The AN6913 consists of two independent precision voltage comparators with low offset voltages in a 9 pin SIL package

Features

- Wide supply voltage range -Single supply: 2 to 36V Dual supplies: ± 1 to $\pm 18V$
- Low supply current: 0.6 mA (TYP)
- Wide common-mode voltage range: OV to V_{CC} − 1.5V (single supply)

 Open collector output
- •9 pin SIL package

Absolute Maximum Ratings (Ta = 25°C)

ltem	Symbol	Ratings	Unit
Supply Voltage	Vcc	36	٧
Power Dissipation	PD	500	mW
Input Differential Voltage	VID	36	V
Input Common – Mode Voltage	Vicm	-0.3 to 36	٧
Operating Temperature	Topr	- 30 to 85	°C
Storage Temperature	Tstg	- 55 to 150	°C
Output Voltage	V 0	24	٧

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

		Test				Limit	
ltem	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	1			1	5	mV
Input Offset Current	lio	1				50	nΑ
Input Bias Current	lв	1				250	nA
Voltage Gain	Aol	1	$R_L = 15k\Omega$		200		V/mV
Common-Mode Input Voltage	Vсм	2		0		Vcc - 1.5	V
Response Time	tr	4	$R_L = 5.1 k\Omega$ $V_{RL} = 5V$		1.3		μs
Output Current (Sink)	lo(sink)	5	$V_{REF} = 0V$ $V_{IN} = 1V$ $V_0 \le 1.5V$	10			mA
Output Saturation Voltage	Vol	6	VREF = 0V VIN = 1V ISINK = 3mA		0.2	0.4	V
Output Leakage Current	İLEAK	7	VIN = 0V VREF = 0V V0 = 5V		0.1		nA
Supply Current	lcc	3	RL = ∞		0.6	1.5	mA

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1 (1/2 circuit)

Test Circuit 2 (1/2 circuit)

Test Circuit 3

Test Circuit 4 (1/2 circuit)

Test Circuit 5 (1/2 circuit)

Test Circuit 6 (1/2 circuit)

Test Circuit 7 (1/2 circuit)

ltem	Test Conditions For Circuit 1
Input Offset Voltage	With SW1, and SW2 on, VF1 is measured. Where VIO = VF1/500 (V).
Input Offset Current	With SW1, and SW2 off, VF2 is measured. Where IM = $(\frac{V_{F2} - V_{F1}}{10^7})$
Input Bias Current	With SW1 on, and SW2, off, SW2, off, VF3 is measured. With SW1 off, and SW2 on, VF4 is measured. Where $B = VF4 - VF3 /2 \times 10$ (A)
Voltage Gain	With SW1, and SW2 on, and E = E κ = 3 VF5 is measured. Where AoL = ($\frac{1000}{V_{F1} - V_{F5}}$)

Schematic Diagram

AN6915 DUAL COMPARATOR (High Current)

General Description

AN6915 is a dual comparator with high current capability.

Features

- High output sink current (70mA), direct drive of relays or lamps is possible
- Wide supply voltage range: 2 to 36V
- Wide common-mode input voltage range:
 0 to Voc = 1.5V
- 0 to V_{CC} − 1.5V • Open collector output

Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Ratings	Unit
Supply Voltage	Vcc	36	٧
Power Dissipation	Po	500	mW
Input Differential Voltage	V ID	36	٧
Input Common – Mode Voltage	Vісм	-0.3 to + 36	٧
Operating Temperature	Topr	- 30 to + 85	°C
Storage Temperature	Tstg	- 55 to +150	°C

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

			Limit			
ltem	Symbol	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio			1	5	mV
Input Offset Current	lio			1	50	nA
Input Bias Current	lв			50	250	nA
Voltage Gain	Aol	$R_L = 15 K\Omega$		200		V/mV
Common-Mode Input Voltage	Vсм		0		V±1.5	V
Response Time	tR	$RL + 1K\Omega$		2		μS
Output Current (Sink)	lo (sink)	$V_{REF} = 0V$, $V_{IN} = 1V$, $V_{0} = 0.4V$	70			mA
Output Saturation Voltage	Vol	$V_{REF} = 0V$, $V_{IN} = 1V$, $I_{SINK} = 70$ mA		0.2	0.4	V
Output Leakage Current	ILEAK	$V_{REF} = 1V$, $V_{IN} = 0V$, $V_0 = 5V$		0.1		nA
Supply Current	Icc	RL = ∞		3.8	5.3	mA

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Schematic Diagram

AN6916/AN6916S DUAL COMPARATOR (High Current)

General Description

AN6916 and AN6916S are dual comparators of high current which have wide range of supply voltage.

Features

- High output sink current (70mA), direct drive of relays or lamps is possible
- Wide supply voltage range: 2 to 36V
- •Wide common-mode input voltage range: 0 to V_{CC} - 1.5V ●Open collector output
- ●8 pin DIP or SO package

Absolute Maximum Ratings (Ta = 25°C)

ltem		Symbol	Ratings	Unit
Supply Voltage		VCC, VEE	36	V
Power Dissipation	(8 DIP)	P D	500	mW
	(8 SO)	PD	350	mW
Input Differential Voltage		V ID	36	٧
Input Common – Mode Voltage		VICM	-0.3 to +36	٧
Operating Temperature		Topr	-30 to +85	°C
Storage Temperature		Tstg	- 55 to + 150	°C

Electrical Characteristics (Vcc = 5V, Ta = 25°C ± 2°C)

			Limit			
Item	Symbol	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio			1	5	mV
Input Offset Current	lio			1	50	nA
Input Bias Current	lв			50	250	nA
Voltage Gain	Aol	$R_L = 15 K\Omega$		200		V/mV
Common-Mode Input Voltage	Vсм		0		V±1.5	٧
Response Time	tr	$RL + 5.1 K\Omega$		2		μS
Output Current (Sink)	lo(sink)	$V_{REF} = 0V$, $V_{IN} = 1V$, $V_{0} = 0.4V$	70			mA
Output Saturation Voltage	V 0L	$V_{REF} = OV$, $V_{IN} = 1V$, $I_{SINK} = 70 \text{mA}$		0.2	0.4	V
Output Leakage Current	ILEAK	$V_{REF} = 1V$, $V_{IN} = 0V$, $V_0 = 5V$		0.1		nA
Supply Current	lcc	RL = ∞		3.8	5.3	mA

Typical Electrical Performance Curves

Time tplH (µsec)

(Negative Transition)

Typical Electrical Performance Curves (continued)

Supply Voltage V_{CC} (V)

Schematic Diagram

AN6918 QUADRUPLE COMPARATOR (High Current)

General Description

The AN6918 is a quadruple comparator with high current (70mA) capability. It is also pin-compatible with the AN1339.

Features

- A wide range of supply voltage Single supply: 2 to 36V Dual supply: ± 1 to ± 18V
- Supply current: 11 mA typ.
- Common-mode input voltage: V_{CC} 1.5V max.

Absolute Maximum Ratings (Ta = 25°C)

ltem	Symbol	Ratings	Unit
Supply Voltage	Vcc	36	٧
Power Dissipation	PD	570	mW
Input Differential Voltage	VID	36	٧
Input Common – Mode Voltage	Vicм	- 0.3 to 36	V
Operating Temperature	Topr	- 30 to 85	°C
Storage Temperature	Tstg	- 55 to 150	°C
Supply Current	Icc	11	mA
Output Voltage (max)	V 0	24	٧
Output Sink Current	lol	150	mA

Electrical Characteristics (Vcc = 5V, Ta = 25°C)

		Test		Limit			1
Item	Symbol	Circuit	Condition	min.	typ.	max.	Unit
Input Offset Voltage	Vio	3			1	5	mV
Input Offset Current	lio	3			1	50	nA
Input Bias Current	ĺВ	3			50	200	nA
Voltage Gain	Aol	3	$RL = 15k\Omega$		200		V/mV
Common-Mode Input Voltage	Vсм	2		0		Vcc - 1.5V	V
Output Current (Sink)	lo(sink)	5	$V_{REF} = 0V$ $V_{IN} = 1V$ $V_0 \le 0.4V$	70			mA
Output Saturation Voltage	Vol	4	$V_{REF} = 0V$ $V_{IN} = 1V$ $I_{SINK} = 70$ mA		0.15	0.4	V
Output Leakage Current	LEAK	7	$V_{REF} = 1V$ $V_{IN} = 0V$ $V_0 = 5V$			0.1	nA
Supply Current	lcc	1	RL = ∞ Vcc = 5V		6.8	10	mA
L, H Propagation Delay Time	tPLH	6	$R_L = 1k\Omega$		2		μS
H, L Propagation Delay Time	tPHL	6	$RL = 1k\Omega$		1		μS
Zener Voltage	Vz	8		36		43	

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1

Test Circuit 2 (1/4 circuit)

Test Circuit 3 (1/4 circuit)

Test Circuit 4 (1/4 circuit)

Test Circuit 5 (1/4 circuit)

Test Circuit 6 (1/4 circuit)

Test Circuit 7 (1/4 circuit)

Test Circuit 8 (1/4 circuit)

Definition of Response Time (See Test Circuit 6)

Item	Test Condition For Circuit 3
Input Offset Voltage	With SW1, and SW2 on, VF1 is measured. Where Vio = VF1/500 (V).
Input Offset Current	With SW1, and SW2 off, VF2 is measured. Where IM = $(V_{F2} - V_{F1})$ 10 ⁷
Input Bias Current	With SW1 on, and SW2, off, SW2, off, VF3 is measured. With SW1 off, and SW2 on, VF4 is measured. Where $B = VF4 - VF3 /2 \times 10$ (A)
Voltage Gain	With SW1, and SW2 on, and E = Ek = 3 VF5 is measured. Where AoL = $(\frac{1000}{V_{F1} - V_{F5}})$

Schematic Diagram

AN7800 SERIES TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

General Description

Made for long-life reliability, the Panasonic AN7800 Series of 3-terminal Voltage Regulators features internal current limiting, safe area compensation and thermal shutdown for thorough overload and overheating protection. Ideal for use as fixed voltage regulators in a wide variety of applications, the AN7800 Series can also be used with external components when adjustable output voltages and currents are desired. Available in the TO-220 package configuration, the Panasonic series is equivalent to all industry-standard 7800 series voltage regulators.

Features

- Output current 1A max.
- No external components necessary
- Internal thermal overload protection and short circuit current limiting
- Safe area compensation (output transistor)
- TO-220 package
- Output voltages: 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V

Absolute Maximum Ratings (T_a = 25°C)

Item	Symbol	Ratings	Unit	Note
Supply Voltage	Vcc,	35	V	2
Power Dissipation	Po	15	W	1
Operating Temperature	Topr	- 20 to 80	°C	
Storage Temperature	Tstg	- 55 to 150	°C	
Supply Current	lo	2000	mA	1

Note 1. At Tj > 150°C, internal circuit shuts off output.

Note 2. Vcc can be 40V for AN7820 and AN7824.

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1

Test Circuit 2

Notes

- 1. Test time should be short (within 10ms) so that the change of characteristics by junction temperature increase can be neglected.
- 2. Filter is a combination of fc: 100HZ Secondary Low Pass.
- 3. RR = 20 log ($|e_{IN}|/|e_{OUT}|$)
- 4. Depending on supply block or input voltage, input block may oscillate. In such case, 0.33μ can be eliminated.
- 5. V_{DIF} is a value when V_{OUT} is 5% lower than specific value by reducing V_{IN} .
- 6. $Z_{OUT}^{SI} = |e_{OUT}| \bullet R/|e_{IN}|$ 7. From R_L, E_{IN}, D.C. load level should be determined.

AN7800 SERIES

Test Circuit 3

Test Circuit 4

Test Circuit 5

Test Circuit 6

Test Circuit 7

Schematic Diagram

^{*}Refer to table below

	R 19 (Ω)	R 20 (Ω)
AM7805	5K	0
AN7806	5K	1K
AN7807	5K	2K
AN7808	5K	3K
AN7809	5K	4K
AN7810	5K	5K
AN7812	5K	7K
AN7815	5K	10K
AN7818	5K	13K
AN7820	5K	15K
AN7824	5K	19K

Typical Regulator Applications

Fixed Output Regulator

CI: Required if regulator is located an appreciable distance from power supply filter
CO: Although no output capacitor is needed for stability, it does improve transient response

High Current Voltage Regulator

Circuit for Increasing Output Voltage

AN7805 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

Item	Symbol	Test Cir-	Condition		Limit		
i teni	Gymbol	cuit		min	typ	max	Unit
Output Voltage	V o	1	T _J = 25°C	4.8	5.0	5.2	V
Line Regulation	REG(LINE)	1	7.5V ≤ Vi ≤ 25V T _J = 25°C		3	100	mV
			8V ≤ Vı ≤ 12V TJ = 25°C		1	50	mV
Load Regulation	REG(LOAD)	1	5mA ≤ Io ≤ 1.5A TJ = 25°C		15	100	mV
			$250\text{mA} \le 10 \le 750\text{mA}$ T _J = 25°C		5	50	mV
Output Voltage Tolerance		1	$8V \le V_I \le 20V$ $T_J = 25^{\circ}C$ $5mA \le lo \le 1A$, $PD \le 15W$	4.75	5.0	5.25	٧
Quiescent Current	la	2	$T_J = 25^{\circ}C$		3.9	8.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	7.5V ≤ Vi ≤ 25V T _J = 25°C			1.3	mA
(Output)	Δ IQ (LOAD)		5mA ≤ Io ≤ 1.0mA TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		40		μV
Ripple Rejection	RR	4	f = 120 Hz 8V = VI \le 18V	62			dB
Dropout Voltage	Vı — V0	5	louт = 1.0A ТJ = 25°C		2.0		V
Output Impedance	Zout	6	f = 1kHz		17		mΩ
Output Short Current	los	1	$V_I = 35V$ $T_J = 25^{\circ}C$		700		mA
Output Peak Current	lop	1	T _J = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	$ \begin{array}{l} IO = 5\text{mA} \\ O^{\circ}C \le TJ \le 125^{\circ}C \end{array} $		-0.3		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_\text{J} \leq + 125^{\circ}$.

AN7806 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

	Symbol	Test			Limit		
Item		Cir- cuit		min	typ	max	Unit
Output Voltage	V o	1	$T_J = 25^{\circ}C$	5.75	6.0	6.25	V
Input Stability	REG (LINE)	1	$8.5V \le V_1 \le 25V$ T _J = 25° C		5	120	mV
			9V ≤ Vi ≤ 13V TJ = 25°C		1.5	60	mV
Load Stability	REG (LOAD)	1	5mA ≤ 10 ≤ 1.5A TJ = 25°C		14	120	mV
			$250\text{mA} \le \text{lo} \le 750\text{mA}$ T _J = 25°C		4	60	mV
Output Voltage Tolerance		1	$9V \le V_1 \le 25V$, $T_J = 25^{\circ}C$ $5mA \le 10 \le 1.0A$, $PD \le 15W$	5.7	6.0	6.3	٧
Bias Current	Iq	2	$T_J = 25^{\circ}C$		3.9	8.0	mA
Change of Bias Current (Input)	Δ IQ (LINE)	2	$8.5V \le V_1 \le 25V$ T _J = $25^{\circ}C$			1.3	mA
,, ,, (Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 1.0\text{A}$ T _J = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		40		μV
Ripple Rejection	RR	4	f = 120 Hz, Io = 100 mA $9V \le V_I \le 19V$	59			dB
Min. Difference of Input and Output Voltage	Vı — Vo	5	Io = 1A TJ = 25°C		2.0		V
Output Impedance	Zout	6	f = 1.0kHz		17		mΩ
Output Short Current	los	1	V _I = 35V T _J = 25°C		700		mA
Output Peak Current	ЮР	1	T _J = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.4		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, CI = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_\text{J} \leq + 125^{\circ}$.

AN7807 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics ($T_a = 25^{\circ}C$)

Item	Cumbal	Test			Limit			
rtem	Symbol	Cir- cuit	Condition	min	typ	max	Unit	
Output Voltage	V 0	1	T _J = 25°C	6.7	7.0	7.3	٧	
Line Regulation	REG(LINE)	*1	9.5V ≤ Vi ≤ 25V TJ = 25°C		5	140	mV	
			10V ≤ V _I ≤ 15V T _J = 25°C		1.5	70	mV	
Load Regulation	REG(LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ TJ = 25°C		14	140	mV	
			250mA ≤ Io≤ 750mA TJ = 25°C		4	70	mV	
Output Voltage Tolerance		1	$10V \le V_1 \le 23V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 1.0A$, $PD \le 15W$	6.6	7.0	7.4.	V	
Quiescent Current	la	2	$T_J = 25^{\circ}C$		3.9	8.0	mA	
Quiescent Current Change (Input)	ΔIQ (LINE)	2	9.5V ≤ Vi ≤ 25V TJ = 25°C			1.0	mA	
(Output)	Δ IQ (LOAD)		5mA ≤ Io ≤ 1.0A TJ = 25°C			0.5	mA	
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		46		μ۷	
Ripple Rejection	RR	4	f = 120Hz, $I0 = 100$ mA $10V \le VIN \le 20V$	57			dB	
Dropout Voltage	Vı — Vo	5	10 = 1.0A $T_J = 25$ °C		2.0		V	
Output Impedance	Zouт	6	f = 1.0kHz		16		mΩ	
Output Short Current	los	1	$V_I = 35V$ $T_J = 25$ °C		700		mA	
Output Peak Current	ЮР	1	$T_J = 25^{\circ}C$		2.0		Α	
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	10 = 5mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.5		mV/°C	

Unless specific note is attached, Vn = 10V, Io = 500mA, $Ci = 0.33\mu F$, $Co = 0.1\mu F$, $0^{\circ}C \le TJ \le + 125^{\circ}$.

AN7808 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

14	0bal	Test	Odistant		Limit		
Item	Symbol	Cir- cuit		min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	7.7	8.0	8.3	V
Line Regulation	REG(LINE)	1	10.5V ≤ Vı ≤ 25V TJ = 25°C		6.0	160	mV
			11V ≤ Vı ≤ 17V TJ = 25°C		2.0	80	mV
Load Regulation	REG(LOAD)	1	5mA ≤ Io ≤ 1.5A TJ = 25°C		12	160	mV
			250mA ≤ Io ≤ 750mA TJ = 25°C		4.0	80	mV
Output Voltage Tolerance		1	$11V \le V_1 \le 23V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 1.0A$, $P_D \le 15W$	7.6	8.0	8.4	V
Quiescent Current	la	2	T _J = 25°C		3.9	8.0	mA
Quiescent Current Change (Input)	Δ la (LINE)	2	10.5V ≤ Vı ≤ 25V TJ = 25°C			1.0	mA
(Output)	ΔIQ (LOAD)		5mA ≤ Io ≤ 1.0A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		52		μ۷
Ripple Rejection	RR	4	$f = 120$ Hz, $I_0 = 100$ mA 11.5V $\leq V_1 \leq 21.5$	56			dB
Dropout Voltage	Vı — V0	5	Io = 1.0A T _J = 25°C		2.0		V
Output Impedance	Zout	6	f = 1.0kHz		16		mΩ
Output Short Current	los	1	Vi = 35V T _J = 25°C		700		mA
Output Peak Current	ЮР	1	T _J = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	$\begin{array}{l} IO = 5 \text{mA} \\ O^{\circ} C \leq TJ \leq 125^{\circ} C \end{array}$		-0.5		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_\text{J} \leq + 125^{\circ}$.

AN7809 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
l tem	Symbol	Cir- cuit	iit	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	8.65	9.0	9.35	٧
Line Regulation	REG(LINE)	1	11.5V ≤ Vi ≤ 26V TJ = 25°C		7	180	mV
			12V ≤ V _I ≤ 18V T _J = 25°C		2	90	mV
Load Regulation	REG(LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ T _J = 25°C		12	180	mV
			250 mA $\leq 10 \leq 750$ mA TJ = 25 °C		4	90	mV
Output Voltage Tolerance		1	$12V \le V_1 \le 24V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 1.0A$, $PD \le 15W$	8.55	9.0	9.45	٧
Quiescent Current	la	2	T _J = 25°C		3.9	8.0	mΑ
Quiescent Current Change (Input)	Δ IQ (LINE)	2	11.5V ≤ Vi ≤ 26V TJ = 25°C			1.0	mA
(Output)	ΔIQ (LOAD)		5mA ≤ Io≤ 1.0A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		57		V
Ripple Rejection	RR	4	$f = 120$ Hz, $I_0 = 100$ mA $12V \le V_1 \le 22$	56			dB
Dropout Voltage	Vı — Vo	5	lo = 1.0A TJ = 25°C		2.0		V
Output Impedance	Z оит	6	f = 1.0kHz		16		mΩ
Output Short Current	los	1	V _I = .35V T _J = 25°C		700		mA
Output Peak Current	lop	1	T _J = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.5		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_\text{J} \leq + 125^{\circ}$.

AN7810 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

item	Cumbal	Symbol Test Conditions Cuit		Limit			
item	әуший		min	typ	max	Unit	
Output Voltage	V 0	1	T _J = 25°C	9.6	10.0	10.4	V
Line Regulation	REG (LINE)	1	12.5V ≤ Vi ≤ 27V TJ = 25°C		8	200	mV
81-1			13V ≤ V _I ≤ 19V T _J = 25°C		2.5	100	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ T _J = 25°C		12	200	mV
			$250\text{mA} \le \text{Io} \le 750\text{mA}$ TJ = 25°C		4	100	mV
Output Voltage Tolerance		1	$13V \le V_1 \le 25V$, $T_J = 25^{\circ}C$ $5mA \le I_0 \le 1.0A$, $P_D \le 15W$	9.5	10.0	10.5	V
Quiescent Current	la	2	T _J = 25°C		3.9	8.0	mA
Quiescent Current Change (Input)	ΔlQ (LINE)	2	12.5V ≤ Vi ≤ 27V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		5mA ≤ Io ≤ 1.0A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		63		μ۷
Ripple Rejection	RR	4	$f = 120 \text{Hz}, I_0 = 100 \text{mA}$ $13V \le V_1 \le 23V$	56			dB
Dropout Voltage	Vı — Vo	5	lo = 1A T _J = 25°C		2.0		V
Output Impedance	Zout	6	f = 1.0kHz		16		mΩ
Output Short Current	los	1	V _I = 35V T _J = 25°C		700		mA
Output Peak Current	ЮР	1	T _J = 25°C		20		Α
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	7	$\begin{array}{l} \text{Io} = 5\text{mA} \\ \text{0°C} \le \text{TJ} \le 125\text{°C} \end{array}$		-0.6		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, $Ci = 0.33\mu F$, $Co = 0.1\mu F$, $0^{\circ}C \le TJ \le + 125^{\circ}$.

AN7812 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit		min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	11.5	12.0	12.5	٧
Line Regulation	REG(LINE)	1	14.5V ≤ Vi ≤ 30V TJ = 25°C		10	240	mV
			16V ≤ Vi ≤ 22V TJ = 25°C		3	120	mV
Load Regulation	REG(LOAD)	1	5mA ≤ 10 ≤ 1.5A TJ = 25°C		12	240	mV
			250 mA $\leq 10 \leq 750$ mA TJ = 25 °C		4.0	120	mV
Output Voltage Tolerance		1	$15V \le V_1 \le 27V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 1A$, $P_D \le 15W$	11.4	12.0	12.6	v V
Quiescent Current	la	2	T _J = 25°C		4.0	8.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	14.5V ≤ V _I ≤ 30V T _J = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		5mA ≤ Io ≤ 1.0A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		75		μ۷
Ripple Rejection	RR	4	f = 120Hz, lo = 100mA 15V ≤ Vı ≤ 25V	55			dB
Dropout Voltage	VI – VO	5	lo = 1.0A TJ = 25°C		2.0		V
Output Impedance	Zout	6	f = 1kHz		18		mΩ
Output Short Current	los	1	V _I = 35V T _J = 25°C		700		mA
Output Peak Current	lop	1	TJ = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ ΔΤ	7	$ lo = 5mA 0°C \le TJ \le 125°C $		-0.8		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, $CI = 0.33\mu F$, $CO = 0.1\mu F$, $0^{\circ}C \le T_{J} \le + 125^{\circ}$.

AN7815 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

•	0hal	Test		Limit			
Item	Symbol	Cir- cuit	Condition	min	typ	max	Unit
Output Voltage	Vo	1	T _J = 25°C	14.4	15.0	15.6	V
Line Regulation	REG(LINE)	1	17.5V ≤ VI ≤ 30V TJ = 25°C		11	300	mV
			20V ≤ VI ≤ 26V TJ = 25°C		3	150	mV
Load Regulation	REG(LOAD)	1	5mA ≤ Io ≤ 1.5A TJ = 25°C		12	300	mV
			250mA ≤ Io ≤ 750mA TJ = 25°C		4	150	mV
Output Voltage Tolerance		1	$18V \le V_1 \le 30V$ $T_J = 25^{\circ}C$ $5mA \le I_0 \le 1A$, $P_D \le 15W$	14.25	15.0	15.75	V
Quiescent Current	la	2	T _J = 25°C		4.0	8.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	17.5V ≤ VI ≤ 30V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		$5mA \le Io \le 1.0A$ $T_J = 25^{\circ}C$			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		90		μV
Ripple Rejection	RR	4	f = 120Hz 18.5V ≤ Vı ≤ 28.5V	54			dB
Dropout Voltage	Vı — V0	5	Io = 1.0A T _J = 25°C		2.0		V
Output Impedance	Zout	6	f = 1kHz		19		mΩ
Output Short Current	los	1	Vi = 35V T _J = 25°C		700		mA
Output Peak Current	lop	1	T _J = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	$\begin{array}{l} I_0 = 5\text{mA} \\ 0^{\circ}\text{C} \leq T_\text{J} \leq 125^{\circ}\text{C} \end{array}$		-1.0		mV/°C

Unless specific note is attached, Vn = 10V, $I_0 = 500 \text{mA}$, $C_1 = 0.33 \mu\text{F}$, $C_0 = 0.1 \mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_\text{J} \leq + 125^{\circ}$.

AN7818 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics $(T_a = 25^{\circ}C)$

		Test			Limit		
item	Symbol	Cir- cuit	Condition	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	17.3	18.0	18.7	٧
Line Regulation	REG(LINE)	1	21V ≤ V _I ≤ 33V T _J = 25°C			360	mV
			24V ≤ V _I ≤ 30V T _J = 25°C			180	mV
Load Regulation	REG(LOAD)	1	5mA ≤ I0 ≤ 1.5A TJ = 25°C			360	mV
			250 mA $\leq 10 \leq 750$ mA TJ = 25 °C			180	mV
Output Voltage Tolerance		1	$21V \le V_1 \le 33V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 1.0A$, $PD \le 15W$	17.1	18.0	18.9	V
Quiescent Current	la	2	T _J = 25°C			8.0	mA
Quiescent Current Change (Input)	Δ lQ (LINE)	2	21V ≤ V _I ≤ 33V T _J = 25°C			1.0	mA
(Outport)	ΔIQ (LOAD)		5mA ≤ 10 ≤ 1.0A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		110		μ۷
Ripple Rejection	RR	4	f = 120Hz, lo = 100mA 22V ≤ VI ≤ 32V	53			dB
Dropout Voltage	Vı — Vo	5	lo = 1.0A T _J = 25°C		2.0		V
Output Impedance	Z оит	6	f = 1.0kHz		16		mΩ
Output Short Current	los	1	V _I = 35V T _J = 25°C		700		mA
Output Peak Current	Іор	1	TJ = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	$I_0 = 5\text{mA}$ $0^{\circ}\text{C} \le T_J \le 125^{\circ}\text{C}$		-1.1		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_\text{J} \leq + 125^{\circ}$.

AN7820 TO:220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

	Symbol	Test	Condition		Limit		
Item		Cir- cuit		min	typ	max	Unit
Output Voltage	Vo	1	$T_J = 25^{\circ}C$	19.2	20.0	20.8	٧
Line Regulation	REG(LINE)	1	23V ≤ V _I ≤ 35V ⁻ T _J = 25°C		15	400	mV
riogalation			26V ≤ VI ≤ 32V TJ = 25°C		5	200	mV
Load Regulation	REG(LOAD)	1	$5mA \le 10 \le 1.5A$ T _J = 25°C		12	400	mV
J	iogration		250mA ≤ Io ≤ 750mA T _J = 25°C		4	200	mV
Output Voltage Tolerance		1	$24V \le V_I \le 35V$ $T_J = 25^{\circ}C$ $5mA \le I_0 \le 1.0A$, $P_D \le 15W$	19.0	20.0	21.0	٧
Quiescent Current	IQ	2	$T_J = 25^{\circ}C$		4.1	8.0	mA
Quiescent Current Change (Input)	ΔIQ (LINE)	2	23V ≤ V _I ≤ 35V T _J = 25°C			1.0	mA
(Output)	ΔIQ (LOAD)		5mA ≤ I ₀ ≤ 1.0A T _J = 25°C			0.5	mA
Output Noise Voltage	Vn	3	10Hz ≤ f ≤ 100kHz		110		μV
Ripple Rejection	RR	4	$f = 120$ Hz, $I_0 = 100$ mA 24V $\leq V_1 \leq 34$ V	53			dB
Dropout Voltage	Vı — Vo	5	Iουτ = 1.0A T _J = 25°C		2.0		V
Output Impedance	Zоит	6	f = 1.0kHz		22		mΩ
Output Short Current	los	1	V _I = 35V T _J = 25°C		700		mA
Output Peak Current	lop	1	T _J = 25°C		2.0		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	7	$I_0 = 5 \text{mA}$ $0^{\circ}\text{C} \leq T_\text{J} \leq 125^{\circ}\text{C}$		-1.2		mV/°C

Unless specific note is attached, Vn = 10V, Io = 500mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_\text{J} \leq + 125^{\circ}$.

AN7824 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

Item	Oumbal	Test	Opendikling		Limit		
i tem	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	23.0	24.0	25.0	V
Line Regulation	REG (LINE)	1	27V ≤ Vı ≤ 38V TJ = 25°C		18	480	mV
			30V ≤ Vi ≤ 36V TJ = 25°C		6	240	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ $T_J = 25^{\circ}\text{C}$		12	480	mV
			$250\text{mA} \le \text{Io} \le 750\text{mA}$ T _J = 25°C		4	240	mV
Output Voltage Tolerance		1	$28V \le V_1 \le 38V$, $T_J = 25^{\circ}C$ $5mA \le I_0 \le 1.0A$, $P_0 \le 15W$	22.8		25.2	V
Quiescent Current	la	2	$T_J = 25^{\circ}C$		4.1	8.0	mA
Quiescent Current Change (Input)	∆ la (LINE)	2	27V ≤ V _I ≤ 38V T _J = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le \text{lo} \le 1.0\text{A}$ $T_J = 25^{\circ}\text{C}$			0.5	mA
Output Noise Voltage	V n	3	10Hz ≤ f ≤ 100kHz		170		μ۷
Ripple Rejection	RR	4	$f = 120 \text{ Hz}, I_0 = 100 \text{ mA}$ 28V \leq VI \leq 38V	50			dB
Dropout Voltage	Vı — Vo	5	Io = 1.0A TJ = 25°C		2.0		V
Output Impedance	Zout	6	f = 1.0kHz		28		mΩ
Output Short Current	los	1	VI = 35V T _J = 25°C		700		mA
Output Peak Current	ЮР	1	T _J = 25°C		2.0		Α
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	7	$\begin{array}{l} lo = 5 \text{mA} \\ 0^{\circ} \text{C} \leq \text{TJ} \leq 125^{\circ} \text{C} \end{array}$		-1.4		mV/°C

Unless specific note is attached, Vı = 33V, Io = 500mA, Cı = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125 $^{\circ}$.

AN78MOO SERIES TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

General Description

Made for long-life reliability, the Panasonic AN78M00 Series of 3-terminal Voltage Regulators features internal current limiting, safe area compensation and thermal shutdown for thorough overload and overheating protection. Ideal for use as fixed voltage regulators in a wide variety of applications, the AN78M00 Series can also be used with external components when adjustable output voltages and currents are desired. Available in the TO -220 package configuration, the Panasonic series is equivalent to all industry-standard 78M00 series voltage regulators.

Features

- Output current in excess of 0.5A
- No external components necessary
- Internal thermal overload protection and short circuit current limitina
- Safe area compensation (output transistor)
- TO-220 package
- Output voltages: 5V. 6V. 7V. 8V. 9V. 10V. 12V. 15V. 18V. 20V. 24V

Absolute Maximum Ratings (T_a = 25°C)

he''!	Symbol	Ratings	Unit	Note
Supply Voltage	Vcc	35* 40**	V	2
Power Dissipation	PD	15	W	1
Operating Temperature	Topr	- 20 to 80	°C	
Storage Temperature	Tstg	- 55 to 150	°C	

Note 1. The internal circuit cuts off the output at $T_i > 150$ °C. Note 2. * Applicable to 5, 6, 7, 8, 9, 10, 12, 15, 18V. ** Applicable to 20, 24V.

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1

Test Circuit 2

Notes

- 1. Test period should be short (less than 10ms) so that the change of characteristics by junction temperature increase can be neglected.
- 2. RR = 20 log ($| e_{in} / e_{out} |)$
- 3. V_{DIE} is at the time when V_{OUT} becomes 5% lower than the specified value by decreasing V_{IN} .

Test Circuit 3

Test Circuit 4

Schematic Diagram

	R 19 (Ω)	R 20 (Ω)
AM78M05	5K	0
AN78M06	5K	1K
AN78M07	5K	2K
AN78M08	5K	3K
AN78M09	5K	4K
AN78M10	5K	5K

	R 19 (Ω)	R 20 (Ω)
AN78M12	5K	7K
AN78M15	5K	10K
AN78M18	5K	13K
AN78M20	5K	15K
AN78M24	5K	19K

AN78M05 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		T
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	Vo	1	T _J = 25°C	4.8	5.0	5.2	V
Line Regulation	REG (LINE)	1	7.5V ≤ VI ≤ 25V TJ = 25°C		3	100	mV
			8V ≤ V _I ≤ 25V T _J = 25°C		1	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 500\text{mA}$ TJ = 25°C		20	100	mV
			$5\text{mA} \le 10 \le 200\text{mA}$ TJ = 25°C		10	50	mV
Output Voltage Tolerance		1	$7.5V \le V_1 \le 20V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 350mA$	4.75	5.0	5.25	V
Quiescent Current	la	2	$T_J = 25^{\circ}C$		4	6	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	8V ≤ Vı ≤ 25V Tı = 25°C			0.8	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 350\text{mA}$ $T_J = 25^{\circ}\text{C}$			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		40		μ۷
Ripple Rejection	RR	3	$f = 120 \text{Hz}, I_0 = 100 \text{mA}$ $8V \le V_1 \le 18V$	62			dB
Dropout Voltage	VI - V0	4	10 = 500 mA $T_J = 25^{\circ}\text{C}$		2		V
Output Short Current	los	1	V _I = 25V T _J = 25°C		300		mA
Output Peak Current	Іор	1	$T_J = 25^{\circ}C$		0.7		А
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.5		mV/°C

Unless specific note is attached, Vi = 10V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}\text{J} \leq +125^{\circ}\text{C}$

AN78M06 10-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	5.75	6.0	6.25	V
Line Regulation	REG (LINE)	1	$8.5V \le VI \le 25V$ $TJ = 25^{\circ}C$		5	100	mV
			$9V \le V_1 \le 25V$ $T_J = 25^{\circ}C$		1.5	50	mV
Load Regulation	REG (LOAD)	1	$5mA \le 10 \le 500mA$ TJ = $25^{\circ}C$		20	120	mV
			$5\text{mA} \le \text{lo} \le 200\text{mA}$ $\text{TJ} = 25^{\circ}\text{C}$		10	60	mV
Output Voltage Tolerance		1	$8.5V \le V_1 \le 21V$ $T_J = 25^{\circ}C$ $5mA = I_0 = 350mA$	5.7	6.0	6.3	V
Quiescent Current	la	2	T _J = 25°C		4	6	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	$9V \le V_1 \le 25V$ $T_J = 25^{\circ}C$			0.8	mA
(Output)	Δ IQ (LOAD)		$5mA \le lo \le 350mA$ TJ = $25^{\circ}C$			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		45		μV
Ripple Rejection	RR	3	f = 120 Hz, 10 = 100 mA $9V \le V_1 \le 19V$	59			dB
Dropout Voltage	Vı — V0	4	10 = 500 mA $T_J = 25^{\circ}\text{C}$		2		V
Output Short Current	los	1	V _I = 25V T _J = 25°C		300		mA
Output Peak Current	lop	1	T _J = 25°C		0.7		А
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq 125^{\circ}\text{C}$		-0.5		mV/°C

Unless specific note is attached, Vi = 11V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{TJ} \leq +125^{\circ}\text{C}$

AN78M07 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	6.7	7.0	7.3	V
Line Regulation	REG (LINE)	1	9.5V ≤ V _I ≤ 25V T _J = 25°C		6	100	mV
			10V ≤ V _I ≤ 25V T _J = 25°C		2	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 500\text{mA}$ TJ = 25°C		20	140	mV
			$5mA \le 10 \le 200mA$ T _J = 25 °C		10	70	mV
Output Voltage Tolerance		1	$9.5V \le V_1 \le 22V$ $T_J = 25^{\circ}C$ $5mA \le lo \le 350mA$	6.65	7.0	7.35	V
Quiescent Current	la	2	$T_J = 25^{\circ}C$		4	6	mA
Quiescent Current Change (Input)	Δ la (Line)	2	10V ≤ V _I ≤ 25V T _J = 25°C			0.8	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 350\text{mA}$ T _J = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		48		μ۷
Ripple Rejection	RR	3	$f = 120 \text{Hz}, I_0 = 100 \text{mA}$ $10V \le V_1 \le 20V$	57			dB
Dropout Voltage	Vı — Vo	4	lo = 500 mA TJ = 25°C		2		V
Output Short Current	los	1	V _I = 25V T _J = 25°C		300		mA
Output Peak Current	lop	1	TJ = 25°C		0.7		Α
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.5		mV/°C

Unless specific note is attached, Vi = 12V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125^{\circ}\text{C}$

AN78M08 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

14	0	Test	O-malista ma		Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	7.7	8.0	8.3	V
Line Regulation	REG (LINE)	1	10.5V ≤ VI ≤ 25V TJ = 25°C		6	100	mV [.]
			11V ≤ VI ≤ 25V TJ = 25°C		2	50	mV
Load Regulation	REG (LOAD)	1	$5mA \le 10 \le 500mA$ T _J = 25 °C		25	160	mV
			$5mA \le 10 \le 200mA$ T _J = 25 °C		10	80	mV
Output Voltage Tolerance		1	$10.5V \le V_1 \le 23V$ $T_J = 25^{\circ}C$ 5mA = 10 = 350mA	7.6	8.0	8.4	V
Quiescent Current	la	2	$T_J = 25^{\circ}C$		4.1	6.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	10.5V ≤ Vi ≤ 25V TJ = 25°C			0.8	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 350\text{mA}$ TJ = 25°C			0.5	mA
Output Noise Voltage	V n	1	10Hz ≤ f ≤ 100kHz		52		μV
Ripple Rejection	RR	3	f = 120 Hz, 10 = 100 mA $11.5 \text{V} \le \text{V}_1 \le 21.5 \text{V}$	56			dB
Dropout Voltage	Vı — Vo	4	lo = 500 mA $T_J = 25^{\circ}\text{C}$		2		V
Output Short Current	los	1	Vi = 25V TJ = 25°C		300		mA
Output Peak Current	ЮР	1	TJ = 25°C		0.7		А
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	$ \begin{array}{l} 0 = 5\text{mA} \\ 0^{\circ}\text{C} \le \text{T}\text{J} \le 125^{\circ}\text{C} \end{array} $		-0.5		mV/°C

Unless specific note is attached, Vi = 14V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125^{\circ}\text{C}$

AN78M09 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
ltem	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	T _J = 25°C	8.65	9.0	9.35	V
Line Regulation	REG (LINE)	1	11.5V ≤ Vı ≤ 25V Tı = 25°C		7	100	mV
			12V ≤ VI ≤ 25V TJ = 25°C		2	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 500\text{mA}$ TJ = 25°C		25	180	mV
			$5\text{mA} \le 10 \le 200\text{mA}$ T _J = 25°C		10	90	mV
Output Voltage Tolerance		1	$11.5V \le V_1 \le 24V$ $T_J = 25^{\circ}C$ $5mA = 10 = 350mA$	8.55	9.0	9.45	V
Quiescent Current	'la	2	$T_J = 25^{\circ}C$		4.1	6.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	$12V \le V_I \le 25V$ $T_J = 25^{\circ}C$			0.8	mA
(Output)	Δ IQ (LOAD)		$5mA \le 10 \le 350mA$ T _J = 25 °C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		60		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 100$ mA $12V \le V_1 \le 22V$	56			dB
Dropout Voltage	VI — V0	4	lo = 500 mA $T_J = 25^{\circ}\text{C}$		2		V
Output Short Current	los	1	$V_I = 26V$ $T_J = 25$ °C		300		mA
Output Peak Current	lop	1	$T_J = 25^{\circ}C$		0.7		Α
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.5		mV/°C

Unless specific note is attached, Vi = 15V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}\text{J} \leq +125^{\circ}\text{C}$

AN78M10 10-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics $(T_a = 25^{\circ}C)$

		Test			Limit		
ltem	Symbol	Cir- cuit	ılt	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	9.6	10.0	10.4	V
Line Regulation	REG (LINE)	1	12.5V ≤ Vı ≤ 30V TJ = 25°C		7	100	mV
			13V ≤ Vi ≤ 25V TJ = 25°C		2	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 500\text{mA}$ T _J = 25°C		25	200	mV
			$5\text{mA} \le 10 \le 200\text{mA}$ TJ = 25°C		10	100	mV
Output Voltage Tolerance		1	$12.5V \le V_1 \le 25V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 350mA$	9.5	10.0	10.5	V
Quiescent Current	la	2	T _J = 25°C		4.1	6.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	13V ≤ Vi ≤ 25V TJ = 25°C			0.8	mA
(Output)	Δ IQ (LOAD)		$5mA \le Io \le 350mA$ T _J = $25^{\circ}C$			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		65		μV
Ripple Rejection	RR	3	$f = 120 \text{ Hz}, I_0 = 100 \text{mA}$ $13V \le V_1 \le 23V$	56			dB
Dropout Voltage	Vı — Vo	4	lo = 500 mA $T_J = 25^{\circ}\text{C}$		2		٧
Output Short Current	los	1	V _I = 27V T _J = 25°C		300		mA
Output Peak Current	Іор	1	T _J = 25°C		0.7		А
Output Voltage Temperature Coefficient	ΔV/ ΔΤ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.5		mV/°C

Unless specific note is attached, Vi = 15V, Io = 350mA, Ci = 0.33μ F, Co = 0.1μ F, 0° C \leq TJ \leq +125 $^{\circ}$ C

AN78M12 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test					
l tem	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	T _J = 25°C	11.5	12.0	12.5	٧
Line Regulation	REG (LINE)	1	14.5V ≤ V _I ≤ 30V T _J = 25°C		8	100	mV
			16V ≤ V _I ≤ 30V T _J = 25°C		2	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 500\text{mA}$ TJ = 25°C		25	240	mV
			$5\text{mA} \le 10 \le 200\text{mA}$ TJ = 25°C		10	120	mV
Output Voltage Tolerance		1	$14.5V \le V_1 \le 27V$ $T_J = 25^{\circ}C$ $5mA \le 10 \le 350mA$	11.4	12.0	12.6	V
Quiescent Current	la	2	T _J = 25°C		4.3	6.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	14.5V ≤ VI ≤ 30V TJ = 25°C			0.8	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 350\text{mA}$ TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		75		μ۷
Ripple Rejection	RR	3	f = 120 Hz, 10 = 100 mA $15V \le V_1 \le 25V$	55			dB
Dropout Voltage	VI – V0	4	lo = 500 mA TJ = 25°C		2		V
Output Short Current	los	1	V _I = 30V T _J = 25°C		300		mA
Output Peak Current	ЮР	1	TJ = 25°C		0.7		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	$\begin{array}{l} I0 = 5\text{mA} \\ 0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C} \end{array}$		-0.8		mV/°C

Unless specific note is attached, VI = 19V, Io = 350mA, CI = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{TJ} \leq +125^{\circ}\text{C}$

AN78M15 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

	Symbol	Test		Limit			
item		Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	T _J = 25°C	14.4	15.0	15.6	٧
Line Regulation	REG (LINE)	1	17.5V ≤ Vi ≤ 30V TJ = 25°C		10	100	mV
			20V ≤ VI ≤ 30V TJ = 25°C		3	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le \text{lo} \le 500\text{mA}$ TJ = 25°C		25	300	mV
•			$5mA \le lo \le 200mA$ TJ = $25^{\circ}C$		10	150	mV
Output Voltage Tolerance		1	$17.5V \le V_1 \le 30V$ T _J = 25° C 5mA = $10 = 350$ mA	14.25	15.0	15.75	٧
Quiescent Current	la	2	T _J = 25°C		4.3	6.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	17.5V ≤ Vı ≤ 30V TJ = 25°C			0.8	mA
(Output)	Δ lQ (LŎAD)		$5\text{mA} \le \text{lo} \le 350\text{mA}$ TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		90		μ۷
Ripple Rejection	RR	3	f = 120 Hz, Io = 100 mA $18.5 \text{V} \le \text{V}_1 \le 28 \text{V}$	54			dB
Dropout Voltage	Vı — Vo	4	lo = 500 mA $T_J = 25^{\circ}\text{C}$		2		٧
Output Short Current	los	1	V _I = 30V T _J = 25°C		300		mA
Output Peak Current	ЮР	1	TJ = 25°C		0.7		Α
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	$\begin{array}{l} \text{Io} = 5\text{mA} \\ \text{0°C} \le \text{TJ} \le 125^{\circ}\text{C} \end{array}$		-1.0		mV/°C

Unless specific note is attached, Vi = 23V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}\text{J} \leq +125^{\circ}\text{C}$

AN78M18 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

·	Symbol	Test Cir- cuit		Limit			
Item			Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	17.3	18.0	18.7	V
Line Regulation	REG (LINE)	1	21V ≤ V _I ≤ 33V T _J = 25°C		10	100	mV
			22V ≤ V _I ≤ 33V T _J = 25°C		5	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 500\text{mA}$ TJ = 25°C		30	360	mV
			$5\text{mA} \le 10 \le 200\text{mA}$ TJ = 25°C		10	180	mV
Output Voltage Tolerance		1	$21V \le V_1 \le 33V$ $T_J = 25^{\circ}C$ 5mA = 10 = 350mA	17.1	18.0	18.9	V
Quiescerit Current	la	2	T _J = 25°C		4.4	6.0	mA
Quiescent Current Change (Input)	ΔIQ (LINE)	2	21V ≤ V _I ≤ 33V T _J = 25°C			0.8	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 350\text{mA}$ TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		100		μV
Ripple Rejection	RR	3	$f = 120 \text{ Hz}, I_0 = 100 \text{mA}$ 22V \leq VI \leq 32V	53			dB
Dropout Voltage	V ı — V 0	4	lo = 500 mA $T_J = 25^{\circ}\text{C}$		2		V
Output Short Current	los	1	$V_{I} = 35V$ $T_{J} = 25^{\circ}C$ 300			mA	
Output Peak Current	ЮР	1	T _J = 25°C		0.7		А
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	Io = 5mA 0°C ≤ TJ ≤ 125°C		-1.0		mV/°C

Unless specific note is attached, Vi = 27V, Io = 350mA, Ci = $0.33\mu F$, Co = $0.1\mu F$, $0^{\circ}C \le TJ \le +125^{\circ}C$

AN78M20 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

14	Symbol	Test		Limit			
ltem		Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	19.2	20.0	20.8	V
Line Regulation	REG (LINE)	1	23V ≤ V _I ≤ 35V T _J = 25°C		10	100	mV
			24V ≤ V _I ≤ 35V T _J = 25°C		5	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le \text{lo} \le 500\text{mA}$ TJ = 25°C		30	400	mV
			$5\text{mA} \le 10 \le 200\text{mA}$ TJ = 25°C		10	200	mV
Output Voltage Tolerance		1	$23V \le V_1 \le 35V$ $T_J = 25^{\circ}C$ $5mA = 10 \le 350mA$	19	20.0	21	V
Quiescent Current	la	2	$T_J = 25^{\circ}C$		4.4	6.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	23V ≤ V _I ≤ 35V T _J = 25°C			0.8	mA
(Output)	ΔIQ (LOAD)		$5\text{mA} \le \text{lo} \le 350\text{mA}$ TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		110		μV
Ripple Rejection	RR	3	$f = 120 \text{Hz}, I_0 = 100 \text{mA}$ 24V \leq VI \leq 34V	53			dB
Dropout Voltage	Vı — Vo	4	lo = 500 mA $T_J = 25^{\circ}\text{C}$		2		V
Output Short Current	los	1	V _I = 35V T _J = 25°C		300		mA
Output Peak Current	ЮР	1	TJ = 25°C		0.7		А
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-1.0		mV/°C

Unless specific note is attached, Vi = 29V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125^{\circ}\text{C}$

AN78M24 TO-220 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	T _J = 25°C	23	24	25	٧
Line Regulation	REG (LINE)	1	27V ≤ Vi ≤ 38V TJ = 25°C		10	100	mV
			28V ≤ V _I ≤ 38V T _J = 25°C		5	50	mV
Load Regulatio.	REG (LOAD)	1	$5\text{mA} \le 10 \le 500\text{mA}$ TJ = 25°C		30	480	mV
			$5\text{mA} \le 10 \le 200\text{mA}$ TJ = 25°C		10	240	mV
Output Voltage Tolerance		1	$27V \le V_1 \le 38V$ $T_J = 25^{\circ}C$ 5mA = 10 = 350mA	22.8	24.0	25.2	V
Quiescent Current	la	2	T _J = 25°C		4.5	6.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	27V ≤ Vi ≤ 38V TJ = 25°C			0.8	mA
(Output)	Δ IQ (LOAD)		$\begin{array}{l} 5\text{mA} \leq \text{Io} \leq 350\text{mA} \\ \text{TJ} = 25^{\circ}\text{C} \end{array}$			0.5	mA
Output Noise Voltage	Vn	1	$10 \text{Hz} \le f \le 100 \text{kHz} $		170		μV
Ripple Rejection	RR	3	$f = 120 \text{Hz}, \text{ Io} = 100 \text{mA}$ 50 $28 \text{V} \le \text{Vi} \le 38 \text{V}$			dB	
Dropout Voltage	Vı – Vo	4	I0 = 500mA T _J = 25°C			V	
Output Short Current	los	1	V _I = 38V T _J = 25°C			mA	
Output Peak Current	ЮР	1	$T_{J} = 25^{\circ}C$ 0.7			Α	
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	$\begin{array}{l} \text{Io} = 5\text{mA} \\ \text{0°C} \le \text{TJ} \le 125\text{°C} \end{array}$		-1.2		mV/°C

Unless specific note is attached, Vi = 33V, Io = 350mA, Ci = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{T}\text{J} \leq +125^{\circ}\text{C}$

AN78LOO SERIES TO-92 PACKAGE REGULATOR

General Description

Made for long-life reliability, the Panasonic AN78L00 Series of 3-terminal Voltage Regulators features internal current limiting, safe area compensation and thermal shutdown for thorough overload and overheating protection. Ideal for use as fixed voltage regulators in a wide variety of applications, the AN78L00 Series can also be used with external components when adjustable output voltages and currents are desired. Available in the TO-92 package configuration, the Panasonic series is equivalent to all industry-standard 78L00 series voltage regulators.

Features

- Output current 100mA max.
- No external components necessary
- Internal thermal overload protection and short circuit current limiting
- TO-92 package
- Output voltages: 4V, 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V

Absolute Maximum Ratings (Ta = 25°C)

ltem	Symbol	Ratings	Unit	Note
Supply Voltage	V cc	35	٧	
Power Dissipation	Po	650	mW	1
Operating Temperature	Topr	-30 to +80	°C	
Storage Temperature	Tstg	- 55 to + 150	°C	

Note 1. At $T_i > 150$ °C, internal circuit shuts off input.

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1

Test Circuit 2

Notes

- 1. Test time should be short (within 10ms) so that the change of characteristics by junction temperature increase can be neglected.
- 2. RR = 20 log ([e_{in} [/] e_{out} $])
 3. V_1 V_0$ is a value when V_0 is 5% lower than specific value by reducing V_I

Test Circuit 3

Test Circuit 4

Schematic Diagram

	R 19 (Ω)	R 20 (Ω)
AN78L04	4K	0
AN78L05	4K	1K
AN78L06	4K	2K
AN78L07	4K	3K
AN78L08	4K	4K
AN78L09	4K	5K
AN78L10	4K	6K
AN78L12	4K	8K
AN78L15	4K	11 K
AN78L18	4K	14 K
AN78I20	3K	12K
AN78L24	3K	15K

AN78L04 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	Vo	1	T _J = 25°C	3.84	4.0	4.16	V
			$6.5V \le V_1 \le 19V$ $1 \text{ mA} \le I_0 \le 70 \text{ mA}$	3.8	4.0	4.2	V
Line Regulation	REG (LINE)	1	6.5V ≤ VI ≤ 19V TJ = 25°C		50	145	m∀
			7V ≤ V _I ≤ 19V T _J = 25°C		40	95	mV
Load Regulation	REG (LOAD)	1	1mA ≤ Io ≤ 100mA TJ = 25°C		10	55	mV
			$1 \text{mA} \le 10 \le 40 \text{mA}$ TJ = 25°C		4.5	30	mV
Quiescent Current	10	2	TJ = 25°C		2.0	3.0	mA
Quiescent Current Change (Input)	ΔIQ (LINE)	2	7V ≤ VI ≤ 19V TJ = 25°C			1.0	mA
(Output)	ΔIQ (LOAD)		$1 \text{mA} \le 10 \le 40 \text{mA}$ $T_J = 25^{\circ}\text{C}$,		0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		40		μ۷
Ripple - Rejection	RR	3	f = 120Hz, Io = 40mA 7V ≤ Vı ≤ 17V	48	58		dB
Dropout Voltage	Vı — V0	4	TJ = 25°C		1.7		٧
Output Short Current	los	1	TJ = 25°C		140		mA
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	1	$lo = 5mA$ $0^{\circ}C \le TJ \le 125^{\circ}C$		-0.6		mV/°C

Unless specific note is attached, Vi = 9V, Io = 40mA, Ci = 0.33μ F, Co = 0.1μ F, 0° C \leq TJ \leq +125 $^{\circ}$ C

AN78L05 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

14	0	Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	T _J = 25°C	4.8	5.0	5.2	V
		-	$7.5V \le V_1 \le 20V$ $1 \text{ mA} \le I_0 \le 70 \text{ mA}$	4.75	5.0	5.25	V
Line Regulation	REG (LINE)	1	$7.5V \le V_1 \le 20V$ T _J = 25° C		55	150	mV
			8V ≤ VI ≤ 20V TJ = 25°C		45	100	mV
Load Regulation	REG (LOAD)	1	$1 \text{ mA} \le 10 \le 100 \text{ mA}$ T _J = 25°C		11	60	mV
			$1 \text{mA} \le 10 \le 40 \text{mA}$ T _J = 25°C		5.0	30	mV
Quiescent Current	Iq	2	T _J = 25°C		2.0	3.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	8V ≤ V _I ≤ 20V T _J = 25°C			1.0	mA
(Output)	ΔIQ (LOAD)		$1 \text{mA} \le 10 \le 40 \text{mA}$ T _J = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		40		μ۷
Ripple Rejection	RR	3	f = 120 Hz, Io = 40 mA $8V \le VI \le 18V$	47	57		dB
Dropout Voltage	Vı — Vo	4	TJ = 25°C		1.7		٧
Output Short Current	los	1	T _J = 25°C		140		mA
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.65		mV/°C

Unless specific note is attached, VI = 10V, I0 = 40mA, CI = $0.33\mu F$, C0 = $0.1\mu F$, $0^{\circ}C \le TJ \le +125^{\circ}C$

AN78L06 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	5.76	6.0	6.24	V
			$8.5V \le V_1 \le 21V$ $1mA \le I0 \le 70mA$	5.7	6.0	6.3	V
Line Regulation	REG (LINE)	1	8.5V ≤ Vı ≤ 21V TJ = 25°C		60	155	mV
			9V ≤ Vı ≤ 21V TJ = 25°C		50	105	mV
Load Regulation	REG (LOAD)	1	$1 \text{mA} \le 10 \le 100 \text{mA}$ $T_J = 25 ^{\circ}\text{C}$		12	65	mV
			$1 \text{mA} \leq 10 \leq 40 \text{mA}$ T _J = 25°C		5.5	35	mV
Quiescent Current	la	2	T _J = 25°C		2.0	3.0	mA ·
Quiescent Current Change (Input)	Δ IQ (LINE)	2	9V ≤ VI ≤ 21V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		1mA ≤ Io ≤ 40mA TJ = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		50		μ۷
Ripple Rejection	RR	3	f = 120 Hz, 10 = 40 mA $9V \le VI \le 19V$	46	56		dB
Dropout Voltage	VI – V0	4	T _J = 25°C		1.7		V
Output Short Current	los	1	T _J = 25°C		140		mA
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	$\begin{array}{l} I_0 = 5\text{mA} \\ 0^{\circ}\text{C} \le T_{\text{J}} \le 125^{\circ}\text{C} \end{array}$		-0.7		mV/°C

Unless specific note is attached, VI = 11V, I0 = 40mA, CI = $0.33\mu\text{F}$, C0 = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{TJ} \leq +125^{\circ}\text{C}$

AN78L07 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test	0 1111		Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	6.72	7.0	7.28	٧
			$9.5V \le V_1 \le 22V$ $1 \text{mA} \le 10 \le 70 \text{mA}$	6.65	7.0	7.35	٧
Line Regulation	REG (LINE)	1	9.5V ≤ VI ≤ 22V TJ = 25°C		70	165	mV
-			$10V \le V_I \le 22V$ $T_J = 25^{\circ}C$		60	115	mV
Load Regulation	REG (LOAD)	1	$1 \text{ mA} \le 10 \le 100 \text{ mA}$ $T_J = 25^{\circ}\text{C}$		13	75	mV
· ·			$1 \text{mA} \le 10 \le 40 \text{mA}$ TJ = 25°C		6.0	35	mV
Quiescent Current	Ια	2	T _J = 25°C		2.0	3.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	10V ≤ VI ≤ 22V TJ = 25°C			1.0	mA
(Output)	ΔIQ (LOAD)		$1 \text{ mA} \le 10 \le 40 \text{ mA}$ $T_J = 25^{\circ}\text{C}$			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		50		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 40$ mA $10V \le V_1 \le 20V$	45	55		dB
Dropout Voltage	Vı — V0	4	TJ = 25°C		1.7		٧
Output Short Current	los	1	T _J = 25°C		140		mA
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.75		mV/°C

Unless specific note is attached, VI = 12V, Io = 40mA, CI = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{TJ} \leq +125^{\circ}\text{C}$

AN78L08 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

14	Symbol C	Test	Oca distance		Limit		
Item		Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	$T_J = 25^{\circ}C$	7.7	8.0	8.3	٧
			$10.5V \le V_1 \le 23V$ $1mA \le I0 \le 70mA$	7.6	8.0	8.4	V
Line Regulation	REG (LINE)	1	10.5V ≤ Vi ≤ 23V TJ = 25°C		80	175	mV
			11V ≤ V _I ≤ 23V T _J = 25°C		70	125	mV
Load Regulation	REG (LOAD)	1	1mA ≤ Io ≤ 100mA TJ = 25°C		15	80	mV
			1mA ≤ Io ≤ 40mA TJ = 25°C		7.0	40	mV
Quiescent Current	IQ	2	T _J = 25°C		2.0	3.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	11V ≤ Vı ≤ 23V Tı = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		1mA ≤ Io ≤ 40mA TJ = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		60		μ٧
Ripple Rejection	RR	3	f = 120 Hz, Io = 40 mA $11 \text{ V} \le \text{ V}_1 \le 21 \text{ V}$	44	54		dB
Dropout Voltage	Vı — V0	4	T _J = 25°C		1.7		V
Output Short Current	los	1	$T_J = 25^{\circ}C$		140		mA
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.8		mV/°C

Unless specific note is attached, Vi = 14V, Io = 40mA, Ci = 0.33μ F, Co = 0.1μ F, 0° C \leq TJ \leq +125 $^{\circ}$ C

AN78L09 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

14	0	Test			Limit			
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit	
Output Voltage	V o	1	T _J = 25°C	8.64	9.0	9.36	٧	
			$11.5V \le V_1 \le 24V$ $1 \text{mA} \le 10 \le 70 \text{mA}$	8.55	9.0	9.45	V	
Line Regulation	REG (LINE)	1	11.5V ≤ VI ≤ 24V TJ = 25°C		90	190	mV	
-			12V ≤ Vi ≤ 24V TJ = 25°C		80	140	mV	
Load Regulation	REG (LOAD)	1	1mA ≤ Io ≤ 100mA TJ = 25°C		16	85	mV	
_			$1 \text{mA} \le 10 \le 40 \text{mA}$ T _J = 25°C		8.0	45	mV	
Quiescent Current	la	2	T _J = 25°C		2.0	3.0	mA	
Quiescent Current Change (Input)	Δ IQ (LINE)	2	12V ≤ Vi ≤ 24V TJ = 25°C			1.0	mA	
(Output)	ΔIQ (LOAD)		$1 \text{mA} \le 10 \le 40 \text{mA}$ T _J = 25°C			0.1	mA	
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		65		μ۷	
Ripple Rejection	RR	3	f = 120Hz, Io = 40mA 12V ≤ Vı ≤ 22V	43	53		dB	
Dropout Voltage	VI – V0	4	T _J = 25°C		1.7		V	
Output Short Current	los	1	T _J = 25°C		140		mA	
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	Io = 5mA 0°C ≤ TJ ≤ 125°C		-0.85		mV/°C	

Unless specific note is attached, Vi = 15V, Io = 40mA, Ci = 0.33μ F, Co = 0.1μ F, 0° C \leq TJ \leq +125 $^{\circ}$ C

AN78L10 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

			Test		Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25$ °C	9.6	10.0	10.4	٧
			12.5V ≤ Vi ≤ 25V 1mA ≤ Io ≤ 70mA	9.5	10.0	10.5	V
Line Regulation	REG (LINE)	1	12.5V ≤ Vi ≤ 25V TJ = 25°C		100	210	mV
•			13V ≤ Vı ≤ 25V TJ = 25°C		90	160	mV
Load Regulation	REG (LOAD)	1	$1 \text{ mA} \le 10 \le 100 \text{ mA}$ $T_J = 25 ^{\circ}\text{C}$		17	90	mV
			$1 \text{ mA} \leq 10 \leq 40 \text{ mA}$ $T_J = 25 ^{\circ}\text{C}$		9.0	45	mV
Quiescent Current	IQ	2	$T_J = 25^{\circ}C$		2.0	3.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	13V ≤ Vı ≤ 25V TJ = 25°C			1.0	mA
(Output)	∆IQ (LOAD)		1mA ≤ Io ≤ 40mA TJ = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		70		μ۷
Ripple Rejection	RR	3	$f = 120 \text{Hz}, I_0 = 40 \text{mA}$ $13V \le V_1 \le 23V$	42	52		dB
Dropout Voltage	Vı — V0	4	T _J = 25°C		1.7		٧
Output Short Current	los	1	$TJ = 25^{\circ}C$		140		mA
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	$ lo = 5mA 0°C \le TJ \le 125°C $		-0.9		mV/°C

Unless specific note is attached, $V_I=16V$, $I_0=40$ mA, $C_I=0.33\mu$ F, $C_0=0.1\mu$ F, $0^{\circ}C\leq T_J\leq +125^{\circ}C$

AN78L12 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

14	Ownhal	Test	O Jidi		Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	11.5	12.0	12.5	٧
			$14.5V \le V_1 \le 27V$ $1mA \le I_0 \le 70mA$	11.4	12.0	12.6	V
Line Regulation	REG (LINE)	1	14.5V ≤ VI ≤ 27V TJ = 25°C		120	250	mV
			15V ≤ V _I ≤ 27V T _J = 25°C		100	200	mV
Load Regulation	REG (LOAD)	1	1mA ≤ Io ≤ 100mA TJ = 25°C		20	100	mV
			1mA ≤ Io ≤ 40mA TJ = 25°C		10	50	mV
Quiescent Current	la	2	T _J = 25°C		2.0	3.5	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	15V ≤ V _I ≤ 27V T _J = 25°C			1.0	mA
(Output)	ΔIQ (LOAD)		1mA ≤ Io ≤ 40mA TJ = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		80		μ۷
Ripple Rejection	RR	3	f = 120 Hz, 10 = 40 mA $15V \le V_1 \le 25V$	40	50		dB
Dropout Voltage	Vı — V0	4	T _J = 25°C		1.7		V
Output Short Current	los	1	TJ = 25°C		140		mA
Output Voltage Temperature Coefficient	Δ٧/ΔΤ	1	$ \begin{array}{l} IO = 5\text{mA} \\ O^{\circ}C \le TJ \le 125^{\circ}C \end{array} $		-1.0		mV/°C

Unless specific note is attached, V_I = 19V, I_O = 40mA, C_I = 0.33μ F, C_O = 0.1μ F, 0° C \leq T_J \leq +125 $^{\circ}$ C

AN78L15 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	14.4	15.0	15.6	٧
			$17.5V \le V_1 \le 30V$ $1mA \le 10 \le 70mA$	14.3	15.0	15.8	٧
Line Regulation	REG (LINE)	1	17.5V ≤ VI ≤ 30V TJ = 25°C		130	300	mV
			18V ≤ V _I ≤ 30V T _J = 25°C		110	250	mV
Load Regulation	REG (LOAD)	1	$1 \text{mA} \leq 10 \leq 100 \text{mA}$ $T_J = 25^{\circ}\text{C}$		25	150	mV
			1mA ≤ Io ≤ 40mA TJ = 25°C		12	75	mV
Quiescent Current	la	2	T _J = 25°C		2.0	3.5	mA
Quiescent Current Change (Input)	Δ la (Line)	2	18V ≤ V _I ≤ 30V T _J = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		1mA ≤ Io ≤ 40mA TJ = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		90		μ۷
Ripple Rejection	RR	3	f = 120Hz, Io = 40mA 18V ≤ VI ≤ 28V	38	48		dB
Dropout Voltage	VI — V0	4	TJ = 25°C		1.7		V
Output Short Current	los	1	T _J = 25°C		140		mA
Output Voltage Temperature Coefficient	Δ V/ Δ T	1	$\begin{array}{l} \text{Io} = 5\text{mA} \\ \text{0°C} \leq \text{TJ} \leq 125^{\circ}\text{C} \end{array}$		-1.3		mV/°C

Unless specific note is attached, VI = 23V, I0 = 40mA, CI = $0.33\mu\text{F}$, C0 = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{TJ} \leq +125^{\circ}\text{C}$.

AN78L18 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	17.3	18.0	18.7	V
			$20.5V \le V_1 \le 33V$ $1mA \le I0 \le 70mA$	17.1	18.0	18.9	V
Line Regulation	REG (LINE)	1	20.5V ≤ Vi ≤ 33V TJ = 25°C		45	300	mV
-			21V ≤ V _I ≤ 33V T _J = 25°C		35	250	mV
Load Regulation	REG (LOAD)	1	1 mA ≤ lo ≤ 100 mA TJ = 25°C		30	170	mV
-			$1 \text{mA} \le 10 \le 40 \text{mA}$ TJ = 25°C		15	85	mV
Quiescent Current	la	2	T _J = 25°C		2.0	3.5	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	21 V ≤ V _I ≤ 33 V T _J = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		1mA ≤ Io ≤ 40mA TJ = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		150		μ۷
Ripple Rejection	RR	3	f = 120 Hz, 10 = 40 mA 21 $V \le V_1 \le 31 \text{ V}$	36	46		dB
Dropout Voltage	VI — V0	4	T _J = 25°C		1.7		V
Output Short Current	los	1	T _J = 25°C		140		mA
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	$\begin{array}{l} I_0 = 5\text{mA} \\ 0^{\circ}\text{C} \leq T_\text{J} \leq 125^{\circ}\text{C} \end{array}$		-1.5		mV/°C

Unless specific note is attached, VI = 27V, Io = 40mA, CI = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{TJ} \leq +125^{\circ}\text{C}$.

AN78L20 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

		Test	0 1111		Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	19.2	20.0	20.8	V
			$22.5V \le V_1 \le 35V$ $1mA \le I_0 \le 70mA$	19.0	20.0	21.0	V
Line Regulation	REG (LINE)	1	22.5V ≤ VI ≤ 35V TJ = 25°C		50	300	mV
Ç			23V ≤ Vı ≤ 35V Tı = 25°C		40	250	mV
Load Regulation	REG (LOAD)	1	1mA ≤ Io ≤ 100mA TJ = 25°C		35	180	mV
Ĭ			1mA ≤ Io ≤ 40mA TJ = 25°C		17	90	mV
Quiescent Current	la	2	T _J = 25°C		2.0	3.5	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	23V ≤ VI ≤ 35V TJ = 25°C			1.0	mA
(Output)	∆ l Q (LOAD)		1mA ≤ Io ≤ 40mA TJ = 25°C			0.1	mA
Output Noise Voltage	V n	1	10Hz ≤ f ≤ 100kHz		170		μ٧
Ripple Rejection	RR	3	$f = 120 \text{ Hz}, I_0 = 40 \text{ mA}$ 23V \leq VI \leq 33V	34	44		dB
Dropout Voltage	VI — V0	4	TJ = 25°C		1.7		V
Output Short Current	los	1	TJ = 25°C		140		mA
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	Io = 5mA 0°C ≤ TJ ≤ 125°C		-1.7		mV/°C

Unless specific note is attrached, Vi = 29V, Io = 40mA, Ci = 0.33μ F, Co = 0.1μ F, 0°C \leq TJ \leq +125°C.

AN78L24 TO-92 PACKAGE 3-TERMINAL VOLTAGE REGULATOR

Electrical Characteristics $(T_a = 25^{\circ}C)$

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	23.0	24.0	25.0	V
			$26.5V \le V_1 \le 39V$ $1 \text{ mA} \le 10 \le 70 \text{ mA}$	22.8	24.0	25.2	V
Line Regulation	REG (LINE)	1	26.5V ≤ Vi ≤ 39V TJ = 25°C		60	300	mV
			27V ≤ V _I ≤ 39V T _J = 25°C		50	250	mV
Load Regulation	REG (LOAD)	1	$1 \text{mA} \le 10 \le 100 \text{mA}$ T _J = 25°C		40	200	mV
			1mA ≤ Io ≤ 40mA TJ = 25°C		20	100	mV
Quiescent Current	la	2	T _J = 25°C		2.0	3.5	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	27V ≤ V _I ≤ 39V T _J = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		$1 \text{mA} \le 10 \le 40 \text{mA}$ TJ = 25°C			0.1	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		200		μ۷
Ripple Rejection	RR	3	f = 120 Hz, 10 = 40 mA 27V \leq VI \leq 37V	34	44		dB
Dropout Voltage	VI – V0	4	TJ = 25°C		1.7		V
Output Short Current	los	1	T _J = 25°C		140		mA
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	1	Io = 5mA $0^{\circ}C \le T_{J} \le 125^{\circ}C$		-2.0		mV/°C

Unless specific note is attrached, VI = 33V, Io = 40mA, CI = $0.33\mu\text{F}$, Co = $0.1\mu\text{F}$, $0^{\circ}\text{C} \leq \text{TJ} \leq +125^{\circ}\text{C}$.

AN7900 SERIES TO-220 3-TERMINAL NO SERIES TO-220 TERMINAL NO SERIES TO

General Description

Made for long-life reliability, the Panasonic AN7900 Series of 3-terminal Voltage Regulators features internal current limiting, safe area compensation and thermal shutdown for thorough overload and overheating protection. Ideal for use as fixed voltage regulators in a wide variety of applications, the AN7900 Series can also be used with external components when adjustable output voltages and currents are desired. Available in the TO-220 package configuration, the Panasonic series is equivalent to all industry-standard 7900 series voltage regulators.

Features

- Output current 1A max.
- No external components necessary
- Internal thermal overload protection and short circuit current limiting
- Safe area compensation (output transistor)
- TO-220 package
- Output voltages: 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V

Absolute Maximum Ratings (T_a = 25°C)

ltem	Symbol	Ratings	Unit	Note
Supply Voltage	Vcc	- 35	٧	2
Power Dissipation	Po	15	W	1
Operating Temperature	Topr	- 30 to + 80	°C	
Storage Temperature	Tstg	-55 to + 150	°C	

Note 1. At $Tj > 150^{\circ}$, internal shuts off output.

Note 2. Vcc can be -40V for AN7920 and AN7924.

Typical Electrical Performance Curves

Typical Electrical Performance Curves (continued)

Test Circuit 1

Test Circuit 2

Notes

- 1. Test time should be short (within 10ms) so that the change of characteristics by junction temperature increase can be neglected.
- 2. RR = 20 log ($\mid e_{in} \mid$ / $\mid e_{out} \mid$) 3. $V_1 V_0$ is a value when V_0 is 5% lower than specific value by reducing V_I

Test Circuit 3

Test Circuit 4

Schematic Diagram

	R 1 (Ω)	R 2 (Ω)
AN7905	3K	2K
AN7906	3K	3K
AN7907	3K	4K
AN7908	3K	5K
AN7909	3K	6K
AN7910	3K	7K
AN7912	3K	9K
AN7915	3K	12K
AN7918	3K	15K
AN7920	3K	17K
AN7924	3K	21 K

AN7905 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

Item	Cumbal	Test Cir-	Conditions		Limit		
rtem	Symbol	cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	T _J = 25°C	-4.8	- 5.0	-5.2	٧
			$-7V \le V_1 \le -20V$ 5mA \le 10 \le 1A, PD \le 15W	-4 .75	-5.0	-5.25	٧
Line Regulation	REG (LINE)	1	$-7V \le V_I \le -25V$ T _J = 25°C		3.0	100	mV
			$-8V \le V_I \le -12V$ T _J = 25°C		1.0	50	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ $T_J = 25^{\circ}\text{C}$		10	100	mV
			250 mA \leq lo \leq 750 mA TJ = 25 °C		3	50	mV
Quiescent Current	la	2	$T_J = 25^{\circ}C$		2.0	4.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	-7V ≤ V _I ≤ -25V T _J = 25°C			1.3	mA
(Output)	Δ IQ (LOAD)		$5mA \le I0 \le 1A$ T _J = 25 °C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		40		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 100$ mA $-8V \le V_1 \le -18V$	62	74		dB
Dropout Voltage	Vı — V0	4	Io = 1A TJ = 25°C		1.1		V
Output Peak Current	ЮР	1	$T_J = 25^{\circ}C$		2.1		Α
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-1.4		mV/°C

Unless specific note is attached, Vi = 10V, Io = 500mA, Ci = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125 $^{\circ}$.

AN7906 TO-220 3-TERMINAL REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	-5.75	-6.0	-6.25	٧
			$-8V \le V_1 \le -21V$ 5mA $\le I_0 \le 1A$, PD $\le 15W$	− 5.7	-6.0	-6.3	٧
Line Regulation	REG (LINE)	1	$-8V \le V_I \le -25V$ T _J = 25°C		4.0	120	mV
			$-9V \le V_I \le -13V$ T _J = 25°C		1.5	60	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ T _J = 25°C		10	120	mV
			250 mA \leq Io \leq 750 mA T _J = 25 °C		3	60	mV
Quiescent Current	la	2	$T_J = 25^{\circ}C$		2.0	4.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	-8V ≤ V _I ≤ -25V T _J = 25°C			1.3	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 1\text{A}$ T _J = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		44		μ۷
Ripple Rejection	RR	3	$f = 120 \text{ Hz}, I_0 = 100 \text{ mA}$ -9V \le V_1 \le -19V	60	73		dB
Dropout Voltage	Vı – Vo	4	$ \begin{array}{l} IO = 1A \\ TJ = 25^{\circ}C \end{array} $		1.1		٧
Output Peak Current	lop	1	TJ = 25°C		2.1		Α
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	$I_0 = 5mA$ $0^{\circ}C \le T_J \le 125^{\circ}C$		-0.5		mV/°C

Unless specific note is attached, Vi = 11V, Io = 500mA, Ci = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125 $^{\circ}$.

AN7907 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

		Test			Limit		
ltem	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	-6.7	-7.0	-7.3	V
			$-9V \le V_1 \le -22V$ $5mA \le I_0 \le 1A$, $P_D \le 15W$	-6.65	-7.0	-7.35	٧
Line Regulation	REG (LINE)	1	-9V ≤ V _I ≤ -25V T _J = 25°C		5.0	140	mV
•			-10V ≤ V _I ≤ -14V T _J = 25°C		1.5	70	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ T _J = 25°C		12	140	mV
			$250\text{mA} \le \text{lo} \le 750\text{mA}$ T _J = 25°C		4	70	mV
Quiescent Current	la	2	T _J = 25°C		2.0	4.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	$-9V \le V_I \le -25V$ TJ = 25°C			1.3	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le 10 \le 1\text{A}$ T _J = 25°C			0.5	mA
Output Noise Voltage	V n	1	10Hz ≤ f ≤ 100kHz		48		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 100$ mA -10 V $\leq V_1 \leq -20$ V	58	72		dB
Dropout Voltage	Vı – Vo	4	Io = 1A T _J = 25°C		1.1		V
Output Peak Current	ЮР	1	T _J = 25°C		2.1		А
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	lo = 5mA $0^{\circ}C \le T_{J} \le 125^{\circ}C$		-0.5		mV/°C

Unless specific note is attached, Vi = 12V, Io = 500mA, Ci = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125 $^{\circ}$.

AN7908 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

	0	Test			Limit		
ltem	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	<i>−</i> 7.7	-8.0	-8.3	٧
			$-10.5V \le V_1 \le -23V$ 5mA \le 10 \le 1A, PD \le 15W	-7 <u>.</u> 6	-8.0	-8.4	٧
Line Regulation	REG (LINE)	1	-10.5V ≤ Vı ≤ -25V TJ = 25°C		6.0	160	mV
			$-11V \le V_I \le -17V$ T _J = 25°C		2.0	80	mV
Load Regulation	REG (LOAD)	1	$5mA \le Io \le 1.5A$ $T_J = 25^{\circ}C$		12	160	mV
			250 mA $\leq 10 \leq 750$ mA TJ = 25 °C		4	80	mV.
Quiescent Current	la	2	$T_J = 25^{\circ}C$		2.2	4.5	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	$-10.5V \le V_1 \le -25V$ T _J = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		$5mA \le lo \le 1A$ TJ = 25 °C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		52		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 100$ mA -11 V \leq VI \leq -21 V	56	71		dB
Dropout Voltage	VI — V0	4	Io = 1A TJ = 25°C		1.1		V
Output Peak Current	lop	1	$T_J = 25^{\circ}C$		2.1		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	$lo = 5mA$ $0^{\circ}C \le TJ \le 125^{\circ}C$		-0.6		mV/°C

Unless specific note is attached, $V_I = -14V$, $I_0 = 500$ mA, $C_I = 2\mu$ F, $C_0 = 1\mu$ F, 0° C $\leq T_J \leq +125^{\circ}$.

AN7909 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

		Test			Limit		
ltem	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	-8.65	-9.0	-9.35	٧
			$-11.5V \le V_1 \le -24V$ 5mA \le 10 \le 1A, PD \le 15W	-8.55	-9.0	-9.45	٧
Input Stability	REG (LINE)	1	-11.5V ≤ Vi ≤ -26V T _J = 25°C		7.0	180	mV
			-12V ≤ Vi ≤ -18V TJ = 25°C		2.0	90	mV
Load Stability	REG (LOAD)	1	5mA ≤ Io ≤ 1.5A T _J = 25°C		12	180	mV
	1		$250\text{mA} \le 10 \le 750\text{mA}$ T _J = 25°C		4	90	mV
Bias Current	IQ	2	T _J = 25°C		2.2	4.5	mA
Change of Bias Current (Input)	Δ IQ (LINE)	2	-11.5V ≤ VI ≤ -26V T _J = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		5mA ≤ Io ≤ 1A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		58		μ۷
Ripple Rejection	RR	3	f = 120Hz, Io = 100mA -12V ≤ VI ≤ -22V	56	71		dB
Min. Difference of Input and Output Voltage	V ı — V o	4	Io = 1A TJ = 25°C		1.1		V
Output Peak Current	Іор	1	T _J = 25°C		2.1		Α
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	10 = 5 mA $0^{\circ}\text{C} \leq \text{TJ} \leq 125^{\circ}\text{C}$		-0.6		mV/°C

Unless specific note is attached, Vi = -15V, Io = 500mA, Ci = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125 $^{\circ}$.

AN7910 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

	0	Test	0		Limit		
item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	-9.6	-10.0	-10.4	V
			$-12.5V \le V_1 \le -25V$ 5mA \le 10 \le 1A, PD \le 15W	-9.5	-10.0	-10.5	V
Line Regulation	REG (LINE)	1	-12.5V ≤ Vı ≤ -27V TJ = 25°C		8.0	200	mV
			-13V ≤ Vı ≤ -19V TJ = 25°C		2.5	100	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ T _J = 25°C		12	200	mV
_			250mA ≤ Io ≤ 750mA TJ = 25°C		4	100	mV
Quiescent Current	Ia	2	T _J = 25°C		2.5	5.0	mA
Quiescent Current Change (Input)	Δ (LINE)	2	-12.5V ≤ Vi ≤ -27V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		5mA ≤ Io ≤ 1A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		64		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 100$ mA -13V $\leq V_1 \leq -23$ V	56	71		dB
Dropout Voltage	Vı — V0	4	Io = 1A TJ = 25°C		1.1		V
Output Peak Current	ЮР	1	T _J = 25°C		2.1		Α
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	10 = 5mA 0°C ≤ TJ ≤ 125°C		-0.7		mV/°C

Unless specific note is attached, Vi = -16V, Io = 500mA, Ci = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125 $^{\circ}$.

AN7912 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

		Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	-11.5	⊣12 .0	-12.5	٧
			$-14.5V \le V_1 \le -27V$ 5mA \le 10 \le 1A, PD \le 15W	-11.4	-12.0	-12.6	٧
Line Regulation	REG (LINE)	1	-14.5V ≤ Vı ≤ -30V TJ = 25°C		10	240	mV
:			-16V ≤ VI ≤ -22V TJ = 25°C		3.0	120	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le 10 \le 1.5\text{A}$ TJ = 25°C		12	240	mV
			$250\text{mA} \le 10 \le 750\text{mA}$ TJ = 25°C		4	120	mV
Quiescent Current	la	2	$T_J = 25^{\circ}C$		2.5	5.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	-14.5V ≤ V _I ≤ -30V T _J = 25°C			1.0	mA
(Output)	Δ lQ (LOAD)		5mA ≤ lo ≤ 1A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		75		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 100$ mA -15V $\leq V_1 \leq -25$ V	55	70		dB
Dropout Voltage	Vı — V0	4	I0 = 1A TJ = 25°C		1.1		٧
Output Peak Current	IOP	1	TJ = 25°C		2.1		Α
Output Voltage Temperature Coefficient	ΔV/ΔΤ	1	$\begin{array}{l} \text{Io} = 5\text{mA} \\ \text{0°C} \le \text{TJ} \le 125\text{°C} \end{array}$		-0.8		mV/°C

Unless specific note is attached, Vi = –19V, Io = 500mA, Ci = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125°.

AN7915 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (T_a = 25°C)

••		Test			Limit		
item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	-14.4	-15.0	-15.6	٧
			$-17.5V \le VI \le -30V$ 5mA \le I0 \le 1A, PD \le 15W	-14.25	-15.0	-15.75	٧
Line Regulation	REG (LINE)	1	-17.5V ≤ VI ≤ -30V TJ = 25°C		11	300	mV
-			-20V ≤ VI ≤ -26V TJ = 25°C		3.0	150	mV
Load Regulation	REG (LOAD)	1	5mA ≤ Io ≤ 1.5A TJ = 25°C		12	300	mV
Ü			$250\text{mA} \le 10 \le 750\text{mA}$ T _J = 25°C		4	150	mV
Quiescent Current	la	2	T _J = 25°C		2.5	5.0	mΑ
Quiescent Current Change (Input)	Δ IQ (LINE)	2	-17.5V ≤ Vi ≤ -30V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		$5mA \le I0 \le 1A$ TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		90		μ۷
Ripple Rejection	RR	3	$f = 120$ Hz, $I_0 = 100$ mA -18.5V \leq VI \leq -28.5V	54	69		dB
Dropout Voltage	Vı — Vo	4	lo = 1A T _J = 25°C		1.1		V
Output Peak Current	ЮР	1	T _J = 25°C		2.1		Α
Output Voltage Temperature Coefficient	Δ V/ ΔΤ	1	$ \begin{array}{l} lo = 5mA \\ 0^{\circ}C \le TJ \le 125^{\circ}C \end{array} $		-0.9		mV/°C

Unless specific note is attached, $V_I = -23V$, $I_0 = 500$ mA, $C_I = 2\mu$ F, $C_0 = 1\mu$ F, 0° C $\leq T_J \leq +125^{\circ}$.

AN7918 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

	0 1	Test			Limit		
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V 0	1	T _J = 25°C	-17.3	-18.0	-18.7	V
			$-21V \le V_1 \le -33V$ 5mA \le 10 \le 1A, PD \le 15W	-17.1	-18.0	-18.9	٧
Line Regulation	REG (LINE)	1	-21V ≤ Vi ≤ -33V TJ = 25°C		15	360	mV
			-24V ≤ Vi ≤ -30V TJ = 25°C		5.0	180	mV
Load Regulation	REG (LOAD)	1	$5mA \le Io \le 1.5A$ T _J = 25 °C		12	360	m y
<u> </u>			250 mA \leq Io \leq 750 mA T _J = 25 °C		4	180	mV
Quiescent Current	la	2	$T_J = 25^{\circ}C$		2.5	5.0	mΑ
Quiescent Current Change (Input)	Δ IQ (LINE)	2	-21V ≤ VI ≤ -33V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		$5mA \le 10 \le 1A$ T _J = $25^{\circ}C$			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		110		μ۷
Ripple Rejection	RR	3	$f = 120 \text{Hz}, I_0 = 100 \text{mA}$ -22V \le V_1 \le -32V	53	68		dB
Dropout Voltage	Vı – Vo	4	Io = 1A T _J = 25°C		1.1		V
Output Peak Current	lop	1	T _J = 25°C		2.1		Α
Output Voltage Temperature Coefficient	ΔV/ΤΔ	1	$ \begin{array}{l} lo = 5\text{mA} \\ 0^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C} \end{array} $		-1.0		mV/°C

Unless specific note is attached, $V_1 = -27V$, $I_2 = 500$ mA, $C_1 = 2\mu$ F, $C_2 = 1\mu$ F, $C_3

AN7920 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

ltem	Symbol	Test Cir- cuit	Conditions	Limit			
				min	typ	max	Unit
Output Voltage	V 0	1	$T_J = 25^{\circ}C$	-19.2	-20.0	-20.8	V
			$-23V \le VI \le -35V$ 5mA $\le IO \le 1A$, PD $\le 15W$	-19.0	-20.0	-21.0	٧
Line Regulation	REG (LINE)	1	-23V ≤ Vi ≤ -35V TJ = 25°C		16	400	mV
			-26V ≤ Vi ≤ -32V TJ = 25°C		5.5	200	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le \text{lo} \le 1.5\text{A}$ TJ = 25°C		12	400	mV
			250 mA $\leq 10 \leq 750$ mA TJ = 25 °C		4	200	mV
Quiescent Current	la	2	$T_J = 25^{\circ}C$		3.0	5.0	mΑ
Quiescent Current Change (Input)	Δ la (Line)	2	-23V ≤ Vi ≤ -35V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		$5\text{mA} \le \text{lo} \le 1\text{A}$ TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		135		μ۷
Ripple Rejection	RR	3	f = 120Hz, $Io = 100$ mA -24V $\leq V_1 \leq -34$ V	52	67		dB
Dropout Voltage	Vı — Vo	4	lo = 1A T _J = 25°C		1.1		V
Output Peak Current	ЮР	1	TJ = 25°C		2.1		Α
Output Voltage Temperature Coefficient	ΔV/ΤΔ	1	$\begin{array}{l} lo = 5mA \\ 0^{\circ}C \leq T_{J} \leq 125^{\circ}C \end{array}$		-1.0		mV/°C

Unless specific note is attached, $V_1 = -29V$, $I_0 = 500$ mA, $C_1 = 2\mu$ F, $C_0 = 1\mu$ F, 0° C $\leq T_J \leq +125^{\circ}$.

AN7924 TO-220 3-TERMINAL NEGATIVE VOLTAGE REGULATOR

Electrical Characteristics (Ta = 25°C)

14	0	Test		Limit			
Item	Symbol	Cir- cuit	Conditions	min	typ	max	Unit
Output Voltage	V o	1	$T_J = 25^{\circ}C$	-23.0	-24.0	-25.0	٧
_			$-27V \le V_1 \le -38V$ 5mA \le lo \le 1A, PD \le 15W	-22.8	-24.0	-25.2	٧
Line Regulation	REG (LINE)	1	$-27V \le VI \le -38V$ T _J = 25° C		18	480	mV
			$-30V \le V_1 \le -36V$ T _J = 25°C		6.0	240	mV
Load Regulation	REG (LOAD)	1	$5\text{mA} \le \text{lo} \le 1.5\text{A}$ TJ = 25°C		12	480	mV
			$250\text{mA} \le 10 \le 750\text{mA}$ $T_J = 25^{\circ}\text{C}$		4	240	mV
Quiescent Current	la	2	T _J = 25°C		3.0	5.0	mA
Quiescent Current Change (Input)	Δ IQ (LINE)	2	-27V ≤ Vi ≤ -38V TJ = 25°C			1.0	mA
(Output)	Δ IQ (LOAD)		5mA ≤ lo ≤ 1A TJ = 25°C			0.5	mA
Output Noise Voltage	Vn	1	10Hz ≤ f ≤ 100kHz		170		μ۷
Ripple Rejection	RR	3	f = 120Hz, $Io = 100$ mA -28V $\leq V_1 \leq -38V$	50	65		dB
Dropout Voltage	Vi – Vo	4	I0 = 1A TJ = 25°C		1.1	c	V
Output Peak Current	lop	1	T _J = 25°C		2.1		Α
Output Voltage Temperature Coefficient	Δ V/ Δ Τ	1	$\begin{array}{l} \text{Io} = 5\text{mA} \\ \text{0°C} \le \text{TJ} \le 125\text{°C} \end{array}$		-1.0		mV/°C

Unless specific note is attached, Vi = 33V, Io = 500mA, Ci = 2μ F, Co = 1μ F, 0° C \leq TJ \leq +125 $^{\circ}$.

Package Details

8 - DIP Package

SO-8D Package

14 - DIP Package

SO-14D Package

Package Details

7 - SIP Package

9-SIP Package

TO - 220 Package

TO-92 Package

Panasonic Office Locations

Head Office

Panasonic Industrial Company
Div. of Matsushita Electric Corp. of America
Electronic Components Division
P.O. Box 1503
Secaucus, New Jersey 07094
Tel: (201) 348-5273
TLX: 127856 (domestic)
TWX: 7109928920
Panafax: 201-348-7849

Regional Offices

Eastern Regional Office One Panasonic Way Secaucus, N.J. 07094 Tel: (201) 348-5232 TWX: 7109928925

Southern Regional Office 3 Meca Way Norcross, GA 30093 Tel: (404) 925-6830 TWX: 707396 Panafax: 404-925-6705

Central Regional Office 425 East Algonquin Road Arlington Heights, IL 60005 Tel: (312) 981-4837 TWX: 910222-4693 Panafax: 312-364-7664

Western Regional Office 6550 Katella Avenue Cypress, CA 90630 Tel: (714) 895-7332 TWX: 9105962375 Panafax: 714-895-7323

District Offices

Boston P.O. Box 346 Peabody, MA 01960 Tel: (617) 741-1722

Indianapolis 6100 North Keystone Ave. Suite 451 Indianapolis, IN 46220 Tel: (317) 257-4417 TWX: 8103413174

Sales Offices

Detroit 23975 Research Drive Farmington, MI 48024 Tel: (313) 477-5049

Florida P.O. Box 6022, St. 1 Pompano Beach, FL 33060 Tel: (305) 782-6009

Panasonic Industrial Company