Problem Shrinkage

A point raised by Ledoit and Wolf (2003, 2004) is that the covariance matrix \sum is poorly estimated by its sample counterpart and can be greatly improved by their shrinkage estimators when p (number of assets) is not small in comparison with n (number of observations), which is often the case in portfolio management.

Question

My solution

```
In [2]:
```

```
import cvxpy as cp
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
# simulate X from normal dist. with size 200*400
X = np.random.normal(0,1,(200,400))
# number of factors is 3
pca X 3 = PCA(3)
# reference for PCA: https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60
princomp_X_3 = pca_X_3.fit_transform(X)
principalDf = pd.DataFrame(data = princomp X 3,
            columns = ['PrincipalComp 1', 'PrincipalComp 2', 'PrincipalComp 3'])
# reference for projection: https://stackoverflow.com/questions/17836880/orthogonal-projection-wit
h-numpy
Proj = np.dot(np.linalg.inv(X.T.dot(X)), X.T)
Proj = np.dot(X, Proj)
\# Generate estimator with the sample variance of the residuals
# after projecting X to the space orthonormal to PCA loadings
sigma_square = np.var(X - Proj @ X)
# S
inner_term = np.eye(400) - (1/400) * np.dot(np.ones(400), np.ones(400).T)
S = (1/400) * np.dot(X, np.dot(inner_term, X.T))
# F
beta hat = principalDf.to numpy()
F = np.dot(beta hat, beta hat.T) + sigma square * np.eye(200)
# Solve optimization problem
alpha = cp.Variable()
obj fn = cp.Minimize(cp.norm(alpha * F + (1 - alpha) * S, "fro"))
problem = cp.Problem(obj fn)
problem.solve()
S eval = np.linalg.eigvals(S)
R_{eval} = np.linalg.eigvals(alpha.value * F + (1 - alpha.value) * S)
plt.plot(R_eval, label="$\lambda$'s of R", color='green', linewidth=2.0)
plt.plot(S_eval, label="$\lambda$'s of S", color='red',linewidth=3.0)
plt.axis([0,200,0,3])
plt.legend()
plt.show()
```


In []: