csm_6_2_lagrange.v

6.2.4 ラグランジュの定理 myLagrange : |G|=|H| (G:H)

6.2.2 部分群の性質 R (~)の定義 equiv_rel_R

6.2.3 剰余類の性質の形式化 coset_equiv_class : Hx={y∈G | x~y}

rcosets_equiv_part:

 $H \setminus G = G / \sim$.

H\G は、Gの~についての商と等しい。

partition_rcosets : partition (H \ G) G. H、G は、Gの~についての分割である。

補題

· card_partition : partition P D -> |D|=ΣA∈P |A|

· sum_nat_const : Σi∈A c=|A| c

csm 6 2 from mathcomp intro.v

Gは G/Hの元の代表元の集合である。 \mathcal{H} は H/Kの元の代表元の集合である。

剰余群はもとの群の元の分割であるという性質から、元の代表元と元は一対一で対応する。 すなわち、以下の関数 α 、 β 、 ϕ は全単射である。また、

$$|G \times \mathcal{H}| = |G| \cdot |\mathcal{H}|$$

は、単なる直積×の性質として成り立つから、式※が成り立つ。

$$\alpha: \mathcal{G} \to G/H$$

$$\beta: \mathcal{H} \rightarrow H/K$$

$$\beta: \mathcal{H} \rightarrow H/K$$

$$\phi: \mathcal{G} \times \mathcal{H} \rightarrow G/K$$

$$\alpha$$
 (g) = g H

$$\beta$$
 (h) = h K

$$\phi$$
 ((g, h)) = g · h K