

CH307P Process Control Laboratory

(Jan - May 2024)

Aim of the Experiment

- To study the dynamic response of a quadruple tank system for a step change in voltage to pump 1 for two different operating conditions.
- To study the dynamic response of a quadruple tank system for a step change in voltage to pump 2 for two different operating conditions.

References

[1] K.H. Johansson. The quadruple-tank process: a multivariable laboratory process with an adjustable zero. *IEEE Transactions on Control Systems Technology*, 8(3):456–465, 2000.

Fig. 1. The quadruple-tank process shown together with a controller interface running on a PC.

A schematic diagram of the process is shown in Fig. 2. The target is to control the level in the lower two tanks with two pumps. The process inputs are v_1 and v_2 (input voltages to the pumps) and the outputs are y_1 and y_2 (voltages from level measurement devices). Mass balances and Bernoulli's law yield

$$\frac{dh_1}{dt} = -\frac{a_1}{A_1} \sqrt{2gh_1} + \frac{a_3}{A_1} \sqrt{2gh_3} + \frac{\gamma_1 k_1}{A_1} v_1
\frac{dh_2}{dt} = -\frac{a_2}{A_2} \sqrt{2gh_2} + \frac{a_4}{A_2} \sqrt{2gh_4} + \frac{\gamma_2 k_2}{A_2} v_2
\frac{dh_3}{dt} = -\frac{a_3}{A_3} \sqrt{2gh_3} + \frac{(1 - \gamma_2)k_2}{A_3} v_2
\frac{dh_4}{dt} = -\frac{a_4}{A_4} \sqrt{2gh_4} + \frac{(1 - \gamma_1)k_1}{A_4} v_1$$
(1)

where

 A_i cross-section of Tank i;

 a_i cross-section of the outlet hole;

 h_i water level.

The voltage applied to Pump i is v_i and the corresponding flow is k_iv_i . The parameters $\gamma_1, \, \gamma_2 \in (0, 1)$ are determined from how the valves are set prior to an experiment. The flow to Tank 1 is $\gamma_1k_1v_1$ and the flow to Tank 4 is $(1-\gamma_1)k_1v_1$ and similarly for Tank 2 and Tank 3. The acceleration of gravity is denoted g. The measured level signals are k_ch_1 and k_ch_2 . The parameter values of the laboratory process are given in the following table:

$$\begin{array}{cccc} A_1, A_3 & [\text{cm}^2] & 28 \\ A_2, A_4 & [\text{cm}^2] & 32 \\ a_1, a_3 & [\text{cm}^2] & 0.071 \\ a_2, a_4 & [\text{cm}^2] & 0.057 \\ k_c & [\text{V/cm}] & 0.50 \\ g & [\text{cm/s}^2] & 981. \end{array}$$

The model and control of the quadruple-tank process are studied at two operating points: P_{-} at which the system will be shown to

Fig. 2. Schematic diagram of the quadruple-tank process. The water levels in Tanks 1 and 2 are controlled by two pumps. The positions of the valves determine the location of a multivariable zero for the linearized model. The zero can be put in either the left or the right half-plane.

have minimum-phase characteristics and P_+ at which it will be shown to have nonminimum-phase characteristics. The chosen operating points correspond to the following parameter values:

		P_	P_{+}
$\overline{(h_1^0, h_2^0)}$	[cm]	(12.4, 12.7)	(12.6, 13.0)
$(h_3^{\bar{0}}, h_4^{\bar{0}})$	[cm]	(1.8, 1.4)	(4.8, 4.9)
(v_1^0, v_2^0)	[V]	(3.00, 3.00)	(3.15, 3.15)
(k_1, k_2)	$[{ m cm^3/Vs}]$	(3.33, 3.35)	(3.14, 3.29)
(γ_1,γ_2)		(0.70, 0.60)	(0.43, 0.34)