ЯНДЕКС

Yandex Translate

Statistical Machine Translation

David Talbot

> Noisy channel model

- > Noisy channel model
- > Word alignments

- > Noisy channel model
- > Word alignments
- > Phrasal models

- > Noisy channel model
- > Word alignments
- > Phrasal models
- > Log linear model

- > Noisy channel model
- > Word alignments
- > Phrasal models
- > Log linear model
- > Decoding

Noisy Channel Model of Sentence Translation

$$e^* = argmax_e \Pr(e) \Pr(f|e)$$

- Yhy not model Pr(e|f) directly?
- Why are approximations in Pr(f|e) less important than approximations in Pr(e|f)?

Noisy Channel Model of Sentence Translation

$$e^* = argmax_e \Pr(e) \Pr(f|e)$$

- \rightarrow How can we factorize Pr(f|e)?
- \rightarrow How about Pr(f|e)?

Word Alignments

- > Latent variables not observed in training data
- > Assume words are generated independently given alignments

$$\Pr(f|e,a) \approx \prod_{j=1}^{J} \Pr(f_j|e_{a_j})$$

Word Alignments

bofetada

From Words to Phrases

- > Estimate word alignments using EM
- > Use word alignments as constraints to align phrases
- Build phrasal model of Pr(f|e)

Phrasal Translation Model

- > Score phrase pairs based on counts of aligned phrase pairs
- > Add word level scores to smooth these
- Add arbitrary features to phrase, e.g. Pr(e|f) in addition to Pr(f|e)

Phrase-based Translation Model

 He
 →
 Он

 stood
 →
 стоял, стояла, поставил, ...

 bank
 →
 берега, берегу, банк, банка ...

 He stood
 →
 Он стоял

 by the bank
 →
 на берегу, рядом с банком ...

$$e^* = argmax_e \Sigma_k \lambda_k \phi(e, f)$$

Arbitrary features: phrase-table, language model, length penalty, reordering costs, word-sense disambiguation, etc.

$$e^* = argmax_e \Sigma_k \lambda_k \phi(e, f)$$

- Arbitrary features: phrase-table, language model, length penalty, reordering costs, word-sense disambiguation, etc.
- Move from generative model to discriminative model with generative models as features

$$e^* = argmax_e \Sigma_k \lambda_k \phi(e, f)$$

- Arbitrary features: phrase-table, language model, length penalty, reordering costs, word-sense disambiguation, etc.
- Move from generative model to discriminative model with generative models as features
- > Optimize evaluation metric (BLEU) directly with beam search on dev (MERT)

$$e^* = argmax_e \Sigma_k \lambda_k \phi(e, f)$$

English

He stood on the bank

Phrase Table

English — Pieces of Russian

He stood on the bank

{Он | стояла | на | берегу ... }
Он | стоял | у | банка, ... }
Он | поставил | у берега, }

```
Phrase Table Language Model

English Pieces of Russian Russian

He stood on the bank Он стоял на

{Он | стояла | на | берегу ... }
Он | стоял | у | банка, ... }
Он | поставил | у берега, .... }
```

```
Phrase Table
                                                  Language Model
                         Pieces of Russian
  English
                                                          Russian
He stood on the bank
                                                  Он стоял на ...
                {Он | стояла | на | берегу ... }
                       Он | стоял | у | банка, ... }
                              Он | поставил | у берега, .... }
                                      Pr(Oн|he) Pr(стояла|stood)...
                                                                                YES
 Pr(Oh cтояла|He stood) \cong
                                      Pr(Он) Pr(стояла|Он)...
                                                                                NO
 Pr(Он стояла)
```

Problem: Find the highest scoring translation that translated all the input

Solution: Stack based decoding

- > Start with an empty hypothesis
- > Extend hypotheses by translating some (still) untranslated source words
- > Backtrack from highest scoring hypothesis that translates all words

Problem: Naïve search is exponential

Solution (1): Recombination

- > Recombine hypotheses that are the same or equivalent under the model
- 1. Consist of the same words, e.g. 'ab' --> 'AB' vs 'a' --> 'A'+ 'b' --> 'B'
- 2. Would be indistinguishable from this point (e.g. end with the same n-1 words)

Problem: Naïve search is exponential

Solution (2): Beam search

- > Store hypotheses on a stack
- > Prune stack when its size goes beyond some threshold

Problem: How to organize stacks

Solution (3): ?

- (A) In a single stack
- (B) By the number of words translated so far
- (C) By the exact words translated so far

Problem: How to organize stacks

Solution (3): ?

- (A) In a single stack
- (B) By the number of words translated so far
- (C) By the exact words translated so far

Problem: How to 'fairly' compare hypotheses that translated different words

Solution (4): ?

Problem: How to 'fairly' compare hypotheses that translated different words

Solution (4): Assigning an estimate of the future cost

Problem: How to 'fairly' compare hypotheses that translated different words

Solution (4): Assigning an estimate of the future cost

- > Translation costs known (usually independent)
- > Language model costs approximated (without context)
- > Reordering costs ignored

Phrase Based Machine Translation

- > Developed mostly in 2000s
- > Resulted in a huge advance in MT quality
- > Allowed launch of online MT services

What do you think its problems are?

Phrase Based Machine Translation

- Adequacy was okay
- > Fluency was often horrible
- > Reordering was a huge problem

Phrase Based Machine Translation

- > Worked relatively well for close language pairs
- > Worked relatively well if the target language is not rich in morphology
- > Worked with surprisingly little data (compared to Neural MT)

Phrase Based Machine Translation++

- > Significant improvements from introducing syntax
- > Reordering based on syntactic parse trees
- > Disambiguation based on syntactic analysis

But generally required quite language specific annotations

Компьютер, который понимает вас так же, как ваша мама.

Компьютер, который понимает, что вам нравится ваша мама.

NLP components in Phrase-based MT++

- > Word alignment
- > Syntactic parser
- Reordering module
- > Morphological analyzer/predictor

But impossible to optimize end-to-end