

Unit - II 2.14 AC Steady-state Analysis

Dr.Santhosh.T.K.

Syllabus

UNIT – II 14 Periods

DC Circuit Analysis: Voltage source and current sources, ideal and practical, Kirchhoff's laws and applications to network solutions using mesh analysis, - Simplifications of networks using series- parallel, Star/Delta transformation, DC circuits-Current-voltage relations of electric network by mathematical equations to analyse the network (Superposition theorem, Thevenin's theorem, Maximum Power Transfer theorem), Transient analysis of R-L, R-C and R-L-C Circuits.

AC Steady-state Analysis: AC waveform definitions - Form factor - Peak factor - study of R-L - R-C -RLC series circuit - R-L-C parallel circuit - phasor representation in polar and rectangular form - concept of impedance - admittance - active - reactive - apparent and complex power - power factor, Resonance in R-L-C circuits - 3 phase balanced AC Circuits

Instantaneous Electric Power [p(t)]

Real & Reactive Power - Time Domain

$$p(t) = \frac{V_{\text{max}} I_{\text{max}}}{2} \left[\cos(\theta_{vi}) - \cos(2\omega t - \theta_{vi}) \right]$$
$$p(t) = \underline{P} + \underline{Q(t)}$$

Example: Current Flow

Example: Power Flow

Power flow

Phasors

A sinusoidal voltage/current at a given frequency, is characterized by only two parameters: amplitude an phase

Key Words:

Complex Numbers

Rotating Vector

Phasors

Phasors

___ Time domain

Frequency domain

A sinusoidal v/i

$$v(t) = V_m \cos(\omega t + \varphi)$$

$$\downarrow$$
Complex transform
$$\downarrow$$

$$\dot{V} = V_m \angle \varphi$$
By knowing angular frequency ω rads/s.

Phasors

Rotating Vector

$$i(t) = I_m \sin(\omega t + \varphi)$$

Phasors

Rotating Vector

Phasors

Complex Numbers

$$A = a + \underline{jb}$$
 — Rectangular Coordinates

$$A = |A|(\cos\varphi + j\sin\varphi)$$

$$A = |A|e^{j\varphi}$$
—Polar Coordinates

conversion:

$$A = a + jb \to A = |A|e^{jq}$$

on:

$$A = a + jb \rightarrow A = |A|e^{j\varphi}$$

$$\begin{cases} |A| = \sqrt{a^2 + b^2} \\ \varphi = arctg \frac{b}{a} \end{cases}$$

$$|A|e^{j\varphi} \to a + jb \quad \begin{cases} a = |A|\cos\varphi \\ b = |A|\sin\varphi \end{cases}$$

$$e^{\pm j90^{\circ}} = \cos 90^{\circ} \pm j \sin 90^{\circ} = 0 \pm j = \pm j$$

Phasors

Complex Numbers

Arithmetic With Complex Numbers

Addition: $\mathbf{A} = a + jb$, $\mathbf{B} = c + jd$, $\mathbf{A} + \mathbf{B} = (a + c) + j(b + d)$

Phasors

Complex Numbers

Arithmetic With Complex Numbers

Subtraction:
$$A = a + jb$$
, $B = c + jd$, $A - B = (\underline{a - c}) + j(\underline{b - d})$

Phasors

Complex Numbers

Arithmetic With Complex Numbers

Multiplication:
$$\mathbf{A} = A_m \angle \phi_A$$
, $\mathbf{B} = B_m \angle \phi_B$
 $\mathbf{A} \times \mathbf{B} = (A_m \times B_m) \angle (\phi_A + \phi_B)$
Division: $\mathbf{A} = A_m \angle \phi_A$, $\mathbf{B} = B_m \angle \phi_B$
 $\mathbf{A} / \mathbf{B} = (A_m / B_m) \angle (\phi_A - \phi_B)$

Phasors

Phasors

A phasor is a complex number that represents the magnitude and phase of a sinusoid:

$$i_m \cos(\omega t + \varphi) \iff i = I_m \angle \varphi$$

Phasor Diagrams

- A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes).
- A phasor diagram helps to visualize the relationships between currents and voltages.

Phasors

Complex Exponentials

$$A = |A|e^{j\varphi}$$

$$Ae^{j\omega t} = |A|e^{j(\omega t + \varphi)} = |A|\cos(\omega t + \varphi) + j|A|\sin(\omega t + \varphi)$$

$$\text{Re}\{Ae^{j\omega t}\} = |A|\cos(\omega t + \varphi)$$

- A real-valued sinusoid is the real part of a complex exponential.
- Complex exponentials make solving for AC steady state an algebraic problem.

Phasor Relationships for R, L and C

Key Words:

I-V Relationship for R, L and C,

Power conversion

Phasor Relationships for R, L and C

Resistor • $v \sim i$ relationship for a resistor

Phasor Relationships for R, L and C

Resistor ● Time domain → frequency domain

$$V_{m}e^{j(wt+\theta)} = RI_{m}e^{j(wt+\phi)}$$

$$V_{m}e^{j\theta} = RI_{m}e^{j\phi}$$

$$V_{m}e^{j\theta} = RI_{m}e^{j\phi}$$

$$V_{m}\angle\theta = RI_{m}\angle\phi$$

$$\dot{V} = R\dot{I}$$

With a resistor $\theta = \varphi$, v(t) and i(t) are in phase.

Phasor Relationships for R, L and C

Resistor • Power

• Transient Power

$$\underline{p} = v\underline{i} = V_m \sin \omega t \cdot I_m \sin \omega t = I_m V_m \sin^2 \omega t$$
$$= \frac{I_m V_m}{2} (1 - \cos 2\omega t) = IV - IV \cos 2\omega t$$

Note: I and *V* are RMS values.

• Average Power

P=IV
$$P = \frac{1}{T} \int_{0}^{T} p dt = \frac{1}{T} \int_{0}^{T} V I (1 - \cos 2\omega t) dt = VI$$

$$P = IV = I^{2}R = \frac{V^{2}}{R}$$

Phasor Relationships for R, L and C

Resistor

P4.4,
$$v = 311\sin 314t$$
, $R=10\Omega$, Find \underline{i} and \underline{P}_{\circ}

$$V = \frac{V_m}{\sqrt{2}} = \frac{311}{\sqrt{2}} = 220(V)$$

$$I = \frac{V}{R} = \frac{220}{10} = 22(A)$$

$$i = 22\sqrt{2} \sin 314t$$
 $P = IV = 220 \times 22 = 4840(W)$

Phasor Relationships for R, L and C

Capacitor • $v \sim i$ relationship

i(t) leads v(t) by 90°, or v(t) lags i(t) by 90°

4.3 Phasor Relationships for R, L and C

Capacitor • $v \sim i$ relationship

Wave and Phasor diagrams:

4.3 Phasor Relationships for R, L and C

Capacitor • Power

$$p = vi = V_m \sin \omega t \cdot I_m \sin(\omega t + 90^\circ) = \frac{V_m I_m}{2} \sin 2\omega t = VI \underline{\sin 2\omega t}$$

Energy stored:

$$W = \int_0^t vidt = \int_0^v v \cdot C \cdot \frac{dv}{dt} \cdot dt = \int_0^v Cv dv = \frac{1}{2} Cv^2$$

$$W_{\text{max}} = \frac{1}{2} CV_m^2 = CV^2$$

Average Power:

Reactive Power
$$Q = IV = I^2 X_C = \frac{V^2}{X_C}$$
 (Var

Phasor Relationships for R, L and C

Capacitor

P4.7, Suppose C=20 μ F, AC source v=100sin ω t, Find X_C and I for f = 50Hz, 50kHz.

$$f = 50$$
Hz $\to X_c = \frac{1}{\omega C} = \frac{1}{2\pi f C} = 159\Omega$
 $I = \frac{V}{X_c} = \frac{V_m}{\sqrt{2}X} = 0.4443$ A

$$f = 50 \text{KHz} \rightarrow X_c = \frac{1}{\omega C} = \frac{1}{2\pi f C} = 0.159(\Omega)$$

$$I = \frac{V}{X} = \frac{V_m}{\sqrt{2}X} = 444.29 \text{ A}$$

4.3 Phasor Relationships for R, L and C

Inductor • *v*∼*i* relationship

nductor •
$$v \sim i$$
 relationship

$$v = v_{AB} = L \frac{di}{dt}$$
Suppose $i = I_m \sin \omega t$

$$v = L \frac{di}{dt} = L \frac{d(I_m \sin \omega t)}{dt} = I_m \omega L \cos \omega t$$

$$= I_m \omega L \sin(\omega t + 90^\circ)$$

$$= V \sin(\omega t + 90^\circ)$$

 $=V_m\sin\left(\omega t+90^\circ\right)$

Phasor Relationships for R, L and C

Inductor • *v~i* relationship

$$\longrightarrow X_L \propto f$$

For DC,
$$f = 0$$
, $\rightarrow X_L = 0$.

 \sim v(t) leads i(t) by 90°, or i(t) lags v(t) by 90°

4.3 Phasor Relationships for R, L and C

Inductor • $v \sim i$ relationship

Wave and Phasor diagrams:

$$\dot{V} = j\dot{I}X_L$$

Phasor Relationships for R, L and C

Inductor • **Power**

$$p = vi = V_m \sin(\omega t + 90^\circ) I_m \sin \omega t = V_m I_m \cos \omega t \cdot \sin \omega t$$

$$= \frac{V_m I_m}{2} \sin 2\omega t = VI \sin 2\omega t$$

Energy stored:
$$W = \int_0^t vi dt = \int_0^i Li di = \frac{1}{2} Li^2$$
$$W_{\text{max}} = \frac{1}{2} LI_m^2 = LI^2$$

Reactive Power
$$Q = IV = I^2 X_L = \frac{V^2}{X_L}$$
 (Var)

ωt

Phasor Relationships for R, L and C

Inductor

P4.5,
$$L = 10$$
mH, $v = 100$ sin αt , Find i_L when $f = 50$ Hz and 50 kHz.

$$X_L = 2\pi f L = 2\pi \times 5\underline{0} \times 10\underline{\times 10^{-3}} = 3.14(\Omega)$$

$$I_{50} = \frac{V}{X_L} = \frac{100/\sqrt{2}}{3.14} = 22.5(A)$$

$$i_L(t) = 22.5\sqrt{2}\sin(\omega t - 90^\circ)A$$

$$X_L = 2\pi f L = 2\pi \times 50 \times 10^3 \times 10 \times 10^{-3} = 3140(\Omega)$$

$$I_{50k} = \frac{V}{X_L} = \frac{100/\sqrt{2}}{3.14} = 22.5(mA)$$

$$i_L(t) = 22.5\sqrt{2}\sin(\omega t - 90^\circ)mA$$

Phasor Relationships for R, L and C

Review (*v-I relationship*)

Time $\mathbf{R} \quad \begin{array}{c} \mathbf{domain} \\ v = R \cdot i \end{array}$

 $\dot{V} = R \cdot \dot{I}$, v and i are in phase.

Phasor Relationships for R, L and C

Summary

• R:
$$X_R = R$$
 $\Delta \varphi = 0$

L: $X_L = \omega L = 2\pi f L \propto f$ $\Delta \varphi = \varphi_v - \varphi_i = \frac{\pi}{2}$

C $X_C = \frac{1}{\omega c} = \frac{1}{2\pi f c} \propto \frac{1}{f}$ $\Delta \varphi = \varphi_v - \varphi_i = -\frac{\pi}{2}$

: $\Delta \varphi = \varphi_v - \varphi_i = -\frac{\pi}{2}$

- \bullet V = IX
- Frequency characteristics of an Ideal Inductor and Capacitor:

A capacitor is an *open circuit* to DC currents; A Inducter is a *short circuit* to DC currents.

Impedance

Complex voltage, Complex current, Complex Impedance

• AC steady-state analysis using phasors allows us to express the relationship between current and voltage using a formula that looks likes Ohm's law:

A's law:
$$\dot{V} = \dot{I}Z$$

$$Z \text{ is called impedance.}$$

$$\dot{V} = V_m e^{j\varphi_v} = V_m \angle \varphi_v$$

$$\dot{R} = I_m e^{j\varphi_i} = I_m \angle \varphi_i$$

$$\dot{V} = V_m e^{j\varphi_i} = I_m \angle \varphi_i$$

$$Z = \frac{\dot{V}}{\dot{I}} = \frac{V_m}{I_m} e^{j(\varphi_v - \varphi_i)} = |Z| e^{j\varphi} = |Z| \angle \varphi$$

Impedance

Complex Impedance

$$Z = \frac{\dot{V}}{\dot{I}} = \frac{V_m}{I_m} e^{j(\varphi_v - \varphi_i)} = |Z| e^{j\varphi} = |Z| \angle \varphi$$

- Complex impedance describes the relationship between the voltage across an element (expressed as a phasor) and the current through the element (expressed as a phasor)
- Impedance is a complex number and is not a phasor (why?).
- Impedance depends on frequency

Impedance

Complex Impedance

Resistor—The impedance is *R*

$$Z_R = R$$
 $\Delta \varphi = 0$; or $Z_R = R \angle 0$

Capacitor—The impedance is
$$1/j\omega C$$

$$Z_{c} = \frac{1}{\omega C}e^{-j\frac{\pi}{2}} = \frac{-j}{\omega C} = -jX_{c} \qquad \mathbf{0} \qquad Z_{C} = \frac{1}{\omega C} \angle -90^{\circ}$$

$$(\Delta \varphi = \varphi_{v} - \varphi_{i} = -\frac{\pi}{2})$$

Inductor—The impedance is $j\omega L$

$$Z_{L} = \omega L e^{j\frac{\pi}{2}} = j\omega L = jX_{L} \qquad \mathbf{0} \qquad Z_{L} = \omega L \angle 90^{\circ}$$

$$(\Delta \varphi = \varphi_{v} - \varphi_{i} = \frac{\pi}{2})$$

Impedance

Complex Impedance

Impedance in series/parallel can be combined as resistors.

$$Z = Z_1 + Z_2 + ... + Z_n = \sum_{k=1}^n Z_k$$

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + ... + \frac{1}{Z_n} = \sum_{k=1}^n \frac{1}{Z_k}$$

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_n} = \sum_{k=1}^n \frac{1}{Z_k}$$

Voltage divider:

$$\dot{V_i} = \dot{V} \frac{Z_i}{\sum_{k=1}^n Z_k}$$

Current divider:

$$\dot{V_i} = \dot{V} \frac{Z_i}{\sum_{k=1}^{n} Z_k} \qquad \dot{I_1} = \dot{I} \frac{Z_2}{Z_1 + Z_2} \qquad \dot{I_2} = \dot{I} \frac{Z_1}{Z_1 + Z_2}$$

Practice Problem

Impedance

Complex Impedance

Phasors and complex impedance allow us to use <u>Ohm's law</u> with <u>complex numbers</u> to compute current from voltage and voltage from current

Summary

- Steady-state analysis
- R,L,C