		a	
Guía l	ETS Compiladores		
1-Defina compilador 2-Cuales son las dos partes de la comp 3-Describa las 6 fases de un compilac 4-Cuales son los 8 modulos de un con			
1Para que sirve el Análisis Léxico a) Para generar el código en lenguaje objeto c) Para dividir una cadena en tokens	b) Nos dice si una cadena pertenece al lenguaje generado por una gramática d) Los compiladores no lo necesitan nunca	()	
2Es la fase final de un compilador a) análisis semantico optimizacion de código	b) manejo de errores d) generacion de código	()	
3Es uno de los 8 modulo s de un con a) análisis semantico	d) generacion de código	()	
izalierdo de la producción, una	el que cada producción consta de un no terminal, lla ha y una secuencia de componentes léxicos y no term	imado lado ninales, o	
a) Gramática Asociativa por la izquie		()
c) Gramática libre de contexto			
5 -Indica gráficamente cómo del sí	mbolo inicial de una gramática deriva u	ına cader	ia del
lenguaje. a) árbol de análisis sintáctico con anotaciones	b) árbol sintáctico	()
c) árbol de análisis sintáctico	d) Ninguno de los anteriores		
6 Es una gramática donde existe u	ina cadena (de componentes léxicos) que	puede te	ner
más de un árbol de analisis since	b) Gramática regular	()
a) Gramática libre de contexto	d) Gramática Asociativa por la izqui	ierda	
c) Gramática ambigua			
Falso o Verdadero (F/V) 1Componente léxico es sinónir	no de no terminal		()
a Tokon os sinónimo de no termi	nal		(
obtenerse mediante arboies de ana	i si existe alguna cadena de terminales qu álisis sintáctico distintos (dos árboles disti	ntos dan	(
la misma cadena) 4Dos gramáticas son equivaler	ntes si generan el mismo lenguaje		(
4.1Dos bloques básicos son equexpresiones	uivalentes si calculan el mismo conjunto	de	

		(2)
4.2-La eliminacion de subexpresiones comunes es una transformacion que	()
and a octructura on bloques basicos	()
5En el Análisis sintáctico ascendente el árbol de análisis sintáctico la construcción se inicia en la raíz y avanza hacia las hojas	1)
6En el Análisis sintáctico descendente se construye el árbol de análisis sintáctico de la cadena de desde las hojas y avanza hacia las raíz		
7el arbol sintactico no es una versión condensada del arbol de allamata	(,
sintactico 8Un Esquema de traducción asocia a cada símbolo de una GLC un conjunto de atributos y a cada producción, un conjunto de reglas semánticas para calcular los valores de los atributos asociados con los símbolos que aparecen en esa	()
producción. 9 Definición dirigida por la sintaxis es una GLC en la que se encuentran intercalados, en los lados derechos de las producciones, fragmentos de programa	()
llamados acciones semánticas. 10Los valores de los atributos sintetizados se calculan a partir de los valores de	()
atributos de su nodo padre o sus nodos hermanos. 11Un atributo es heredado si su valor depende de los valores de los atributos de	()
su padre y/o de sus hermanos. 12El código de tres direcciones consiste en una secuencia de instrucciones, cada una de las cuales tiene como máximo tres operandosEn lenguaje C los parámetros formales no tienen nombre	()
13En lenguaje C los parámetros formales son como variables locales que ya	()
fueron inicializadas en el momento de la llamada a la función o procedimiento 14En lenguaje C las variables locales (no estáticas) se crean cuando se entra a	()
una función y se destruyen cuando se sale de la función 15En hoc los parámetros usados dentro de la definicion de las funciones no	()
tienen nombre	_ ()
17En hoc no hay variables locales	_ (()
18En hoc cuando una función termina su ejecución se saca su marco de la pila de	9	()
Ilamadas. 19En hoc los parámetros reales son listas de expresiones		()
20En hoc el código que ejecuta la maquina virtual de pila esta en prefijo		()
21En hoc el tipo de las variables es entero		()
22En hoc el tipo de las variables es doble		
23En hoc los parámetros reales se meten a la pila		()
24Es imposible que la pila de llamadas de hoc se desborde (Stack Overflow)		()

Expresiones Regulares

- Expresiones Regulares

 1.-Describa el lenguaje correspondiente a la expresión regular (0 | 1) * 0

 Escriba expresiones regulares para cada uno de lo siguientes.

 2.-Las cadenas sobre el alfabeto { a, b, c } , donde la primera a precede a la primera b.

 3.-Las cadenas sobre el alfabeto { a, b, c } con un número par de a's.

 4.-Los números binarios que son múltiplos de cuatro.

 5.-Los números binarios que son mayores que 101.001 .

 6.-Las cadenas sobre el alfabeto {a, b, c} que no contienen la sub-cadena contigua baa.

(3)

Para cada una de las siguientes expresiones regulares , use la construcción de Thompson para derivar un autómata finito no determinista (NFA) que reconoce el mismo lenguaje.

1.- aaa 2.- b*a | bb 3.- (ab)*ab 4.- a*bc*d 5.- (a|bc*)a* 6.- (a|b)* 7.- a*|b* 8.- (a*|b*)* 9.- ((aa)*(ab)*(ba)*(bb)*)* 10.- ((b|a*c)x)*|x*a

Para cada una de la **NFA** de en el ejercicio anterior , utilizar la construcción de conjuntos para derivar un autómata finito determinista equivalente (DFA)

Para cada uno de los **DFA** en el ejercicio anterior, utilice el método de partición para derivar un mínimo DFA equivalente.

Arboles de análisis sintáctico y derivaciones

1.-Considere la siguiente gramática

5-> 051/01

a) Mostrar una derivación de 00001111

b) Dibuje el árbol de análisis sintáctico para la entrada 00001111

2.-Considere la siguiente gramática

C -E B → bC A → **b**B S → bA

a) Mostrar una derivación de **bbb**

b) Dibuje el árbol de análisis sintáctico para la entrada bbb

3.-Considere la siguiente gramática

S - A

 $A \rightarrow A+A \mid B++$

B - V

a) Mostrar una derivación de y + + + y + +

b) Dibuje el árbol de análisis sintáctico para la entrada \mathbf{y} + + + \mathbf{y} + +

4.-Considere la siguiente gramática

1-1, d/d

d - 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

a) Mostrar una derivación de 9,8,7,6,5,4,3,2,1,0

b) Dibuje el árbol de análisis sintáctico para la entrada 9,8,7,6,5,4,3,2,1,0

5.-Dada la gramática T={**a**, **b**, +, -, */, (,)}, N={E, T, F} S={E} P={ E->T | E+T | E-T T->F | T*F | T/F F-> **a** | **b** | (E) } y la cadena (a+b)/b a) Obtenga una derivación de dicha cadena b) Dibuje el árbol de análisis sintáctico que corresponde a la cadena mencionada Análisis sintáctico predictivo descendente recursivo Considere la siguiente gramática $S \rightarrow \mathbf{a} \mid (S)$ Escriba el analizador sintáctico predictivo descendente recursivo

1.-Demostrar que la siguiente gramática es ambigua

$$A \rightarrow A \times B \mid x$$

 $B \rightarrow X B \mid X$

usando la cadena xxxxx

2.-Demostrar que la siguiente gramática es ambigua

usando la cadena abab

3.-Verificar si las siguientes gramáticas son ambiguas

$$S \to S + S | S - S | a$$

 $S \to S S + | S S - | a$

Recursividad por la izquierda Para eliminar la recursividad por la izquierda

$$A \rightarrow Aa \mid b$$

se transforma en

$$A \rightarrow b \mid bR$$

 $R \rightarrow aR \mid \epsilon$

Ahora considere la siguiente gramática

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

Elimine la recursividad por la izquierda de dicha gramática. Escriba el analizador sintáctico predictivo descendente recursivo Escriba la sección de reglas de la especificación de YACC para dicha gramática

Definiciones dirigidas por la sintaxis

PRODUCCIÓN	REGLA SEMÁNTICA
sec → comienza	sec.x = 0
$sec \rightarrow sec_1 instr$	$\begin{array}{l} sec. v = 0 \\ sec. x = sec_1.x + instr.dx \\ sec. y = sec_1.y + instr.dy \end{array}$
instr → este	instr.dx = 1 instr.dy = 0
instr → norte	instr.dx = 0 instr.dy = 1
instr → oeste	instr.dx = -1 instr.dy = 0
instr → sur	instr.dx = 0 $instr.dy = -1$

Dibuje el árbol de análisis sintáctico con anotaciones para la siguiente cadena

c n e ss oo nnn eee ssss oooo

1.-Escribir la sección de reglas de la especificación de YACC para calcular la posición final del robot.

(5)

2.-Escriba una definición dirigida por la sintaxis para evaluar expresiones booleanas.

Esquemas de traducción

1.-Escriba un esquema de traducción para convertir una expresión en:

infijo a postfijo	postfijo a infijo
infijo a prefijo	prefijo a infijo

- 2.-Escriba un esquema de traducción para evaluar expresiones booleanas
- 3.-Para cada esquema de traducción de arriba escriba la sección de reglas de la especificación de $\bf YACC$

Escritura de Gramaticas

1.-Escribir una gramática que genere todas las cadenas de longitud 4 formadas con los símbolos del alfabeto {a,b,c}

2.-Escribir una gramática que sirva para generar las siguientes cadenas

Especie perro Especie gato Especie gato Especie perro Edad 2 Edad 2 Edad 2 Edad 1 Sexo hembra Sexo macho Sexo macho Sexo macho Tamaño grande Tamaño pequeño Tamaño mediano Tamaño grande Colores negro, blanco Colores negro, blanco, Colores canela, gris Colores blanco Soy fuerte, alegre, Soy listo, obediente café Soy rápido, activo, Aficiones jugar, Soy tranquilo, sociable activo. alegre Aficiones correr, comer Aficiones dormir, Aficiones aullar haraganear parrandear, comer

				(6	5)
Etiquetado Nerd Nivel Junior Sexo Hombre Lenguajes Java , C ,	Etiquetado Geek Nivel Senior Sexo Mujer Lenguajes Pascal , Prolog , SQL Aficiones chatear,	enerar las siguientes cad Etiquetado Nerd Nivel Junior Sexo Mujer Lenguajes PHP, Perl, Java Aficiones hackear, googlear, gotcha, dormir	Nivel Senior Sexo Hombre		
YACC 1Que seccion de un a) la de declaracione	a especificacion de es	YACC se parece a un es b) la de codigo de sopo	squema de tradu orte	()
c) la de reglas		d) ninguna			
2Los %% se usan pa a)inicio de la sección c)precedencia de los	de declaraciones operadores	b)inicio de la sección d)fin del código de so	de reglas ()	
3%token sirve para a)inicio de la sección	de declaraciones	d)los no terminales d gramática)	
c)precedencia de los 4Como le indica el a	analizador lexico (y	d)los terminales de l ylex) al analizador sintá	a gramatica ctico (yyparse) qu	e ya no	hay
a) retornando cero	n vylval	b) retornando -1 d) almacenando 0 e	()	
5 -Una acción gram	natical debe if entire	e corchetes d) llaves	()	
		on de reglas de una esp	ecificacion de YAC	CC)	
	Idecion (en la sessi				
S: S'a' S'b'	THE RESERVED TO	to do la producción se	refiere?		
a)la 'a' c)la segunda S		echo de la producción se b)la 1er S d)la 'b'	()	
6Si el codigo de yy int yylex() de cuantos caracter	lex es el siguiente { return getchar(); es son los tokens?	}			
a) 0 b) 1	c) 2	d) la cantidad de caracti varia)	
Problemas 1Escriba la sección	n de reglas de la es	specificación de yacc pa	ara la gramática de	abajo	
L-> L, D D D-> 0 1					
a Fraiba la sossión	n de reglas de la e	specificación de yacc p	ara la gramática d	e abajo	

S - U | V

```
\begin{array}{c} U \rightarrow \mathsf{Ta}U \mid \mathsf{Ta}\mathsf{T} \\ V \rightarrow \mathsf{Tb}V \mid \mathsf{Tb}\mathsf{T} \end{array}
    T → aTbT | bTaT | ε
  3.-Escriba las acciones gramaticales para que imprima el numero de b's en la cadena de entrada
  /* escriba el tipo de los elementos en la pila de yacc */
  #define YYSTYPE
  %}
 S: '(' B')' {}
 B: '('B')' { }
| D { $$=$1; }
 D: { }
  |'b'D{}
 %%
4.-Considere la siguiente gramática (los terminales se indican en negritas)
lista → lista , figura | figura
figura → triangulo | cuadrilatero
triangulo → lado lado lado
cuadrilatero → lado lado lado lado
Escriba la sección de reglas de la especificación de YACC para dicha gramática y las
acciones semánticas respectivas para que se imprima si un triangulo es equilátero y si un
cuadrilátero es un cuadrado
Análisis Sintáctico Predictivo no Recursivo
-Para las siguientes GLC construya la tabla Análisis Sintáctico Predictivo no Recursivo
-Use dicho análisis para analizar las cadenas propuestas:
-Muestre el contenido de la pila, la entrada y la acción a realizar
```

0

Problema 1.-Considere la gramática para generar paréntesis anidados

```
1) A \rightarrow (A) 2) A \rightarrow a
```

Cadenas propuestas:

(a) ((a)) (((a))) ((((a))))

Problema 2.-Considere la siguiente gramática :

```
1) S \rightarrow a 2) S \rightarrow (SR 3) R \rightarrow , SR
```

Cadenas propuestas:

(a) (a, a) (a, a, a) (a, a, a, a)

	Problema 3	Considere la si	quiente gran	nática :	6
	1) S → A a A b	2) S → B b Ba	3) A → E	4) B → ε	a (a)
1	Cadenas prop	llestas.		1,72	
	ab y ba	acstas:			
	Problems 4	Constitution			
	S → A	Considere la sig	uiente gran	nática :	
			$A \rightarrow \epsilon$		A → bbA
	Cadena propu	esta: bbbb			
	Problema 1 1) S → X 2)	Considere la si	quiente arar	mática .	
	1) S → X 2) Calcule	$X \rightarrow a \times c$ (3)	X → X X	4) X → b	
	Cerradurativ				
	- Alliand (IV =	X · X}), cerra	$dura({X \rightarrow X}$	X · }) e ir_a ({ X	$\rightarrow a \cdot X c \} . X $
	-Para el Anális	is LR las gram	láticas so m	llook	oducciones numeradas
	-Calcula las -	nática:	acicas se III	uestran con sus pr	oducciones numeradas
	-Calcule los cor -Construva la ta	IJUNTOS PRIMER	O y SIGUIEN	ITE	
	-Construya la c	olección de co	ntactico Pre	ITE dictivo no Recursiv	/O (LL(1))
	-Construya la ta	abla SLR	njantos de e	iementos LR (0)	
	Problema 2				
	1) A → x A	2) A → y A	3) A → y	7	
	-Explicar porque	esta grammatic	a no es LL(1)).	
	I1=ir a(I0 v) I'	2-ir 2(10) 1	[]_:_ (TO A		
	I1=ir_a(I0, x), I	2-11_a(10, y),	13=1r_a(10, A), I4=ir_a(I1, A),	I5=ir_a(I2, A)
	Problema 3			Transfer of the latest	
	$1) S \rightarrow a \qquad 2) S$	→ (SR 3)	R →,SR	4) R →)	
	74 . (70)				
	11=ir_a(10, a), 12	=ir_a(10, (), I	3=ir_a(I0, S), I4=ir_a(I2, S),	I5=ir_a(I4,,), I6=ir_a(I4,)),
-	I7=ir_a(I4, R), I8	$B=Ir_a(15, S)$,	19=ir_a(18, F	()	==(x, y),
1	Jse ambos anális	is para analiz	ar las siguie	entes cadenas:	
	(a)	(a, a)	ar ras siguit	(a, a, a)	1/2
				(4, 4, 4)	(a, a, a, a)
	roblema 4				
1	$) S \rightarrow A$ $2) A -$	ε (3) A -	→ bbA		
11	=ir_a(I0, b), I2=	ir_a(IO, S), I3	B=ir_a(I0, A	.), I4=ir_a(I1, b)	, I5=ir_a(I4, A)
	se ambos análisis			te cadena : bbb l	0
A	nálisis LR Para	cada gramá	tica:		
		The second secon			

(10)

Problema 9 1) $S \rightarrow (S)$ 2) $S \rightarrow e$ (e) cadenas

 $I1 = ir_a(I0,\ (\)\ ,\ I2 = ir_a(I0,\ e\)\ ,\ I3 = ir_a(I0,\ S\),\ I4 = ir_a(I1,\ S\)\ ,\ I5 = ir_a(I4,\)\)$

((((e)))) (((e))) ((e))

Problema 10 Donde n es un entero $2) E \rightarrow (E, E)$ 1) E → n

 $\rm I6=ir_a(I5,\ E),\ I7=ir_a(I6,\)\)$ cadenas ((21,18),17) y (21,(18,17))

Problema 11 3) $L \rightarrow L$, S 4) $L \rightarrow S$ 1) $S \rightarrow [L]$ 2) $S \rightarrow a$

I7=ir_a(I5,,), I8=ir_a(I7,S)

Problema 12 4) A → C $3) S \rightarrow A a$ 2) $S \rightarrow dAb$ 1) $S \rightarrow dca$

I6=ir_a(I1, A), I7=ir_a(I4, a), I8=ir_a(I5, a), I9=ir_a(I6, b)

2) $S \rightarrow \mathbf{b} A \mathbf{c}$ 3) $S \rightarrow \mathbf{d} \mathbf{c}$ 4) $S \rightarrow \mathbf{b} \mathbf{d} \mathbf{a}$ $|5) A \rightarrow d$ Problema 13

 $I1 = ir_a(I0,\, \mathbf{b}\,)\;,\; I2 = ir_a(I0,\, \mathbf{d}\,)\;,\; I3 = ir_a(I0,\, S),\;\; I4 = ir_a(I0,\, A\,)\;,\; I5 = ir_a(I1,\, \mathbf{d}\,)\;,\; I6 = ir_a(I1,\, \mathbf{d}\,)\;,\; I$ I7=ir_a(I2, c), I8=ir_a(I4, a), I9=ir_a(I5, a), I10=ir_a(I6, c)

6) B → b (5) B → a 3) $A \rightarrow a B$ 4) $A \rightarrow a$ Problema 14 1) $S \rightarrow \mathbf{c} S A \mathbf{d}$ 2) $S \rightarrow \mathbf{d}$

 $I1 = ir_a(I0 \;,\; c \;) \;,\; I2 = ir_a(I0,\; d \;) \;,\; I3 = ir_a(I0,\; S), \;\; I4 = ir_a(I1,\; S) \;,\; I5 = ir_a(I4,\; a \;) \;,$ I6=ir_a(I4, A), I7=ir_a(I5, a), I8=ir_a(I5, b), I9=ir_a(I5, B), I10=ir_a(I6, d)

cadena: cdad

Problema 15

1) $R \rightarrow R \mid R$ 2) $R \rightarrow RR$ 3) $R \rightarrow R*$ 4) $R \rightarrow (R)$ 5) $R \rightarrow a$ 6) $R \rightarrow b$

 $\begin{array}{l} I1 = ir_a(I0, (\)\ ,\ I2 = ir_a(I0, \ a\)\ ,\ I3 = ir_a(I0, \ b\)\ ,\ I4 = ir_a(I0, \ R\)\ ,\ I5 = ir_a(I1, \ R\)\ ,\ I6 = ir_a(I5, \ |\)\ ,\ I7 = ir_a(I5, \ *\)\ ,\ I8 = ir_a(I5, \ R\)\ ,\ I9 = ir_a(I5, \)\)\ ,\ I10 = ir_a(I6, \ R\)$

cadena: aa*ba | b

Problema 16

(1) $S \rightarrow L = R$ (2) $S \rightarrow R$ (3) $L \rightarrow R$ (4) $L \rightarrow id$ (5) $R \rightarrow L$

 $I1=ir_a(I0,\,\mathbf{id}\,)\;,\;I2=ir_a(I0,\,\,^*\,)\;,\;I3=ir_a(I0,\,\,^S),\;\;I4=ir_a(I0,\,\,^L\,)\;,\;I5=ir_a(I0,\,\,^R\,)\;,\;\\I6=ir_a(I0,\,\,^L\,)\;,\;I7=ir_a(I2,\,\,^R\,)\;,\;I8=ir_a(I4,\,\,^=\,)\;,\;I9=ir_a(I8,\,\,^R\,)\;$ cadena $\mathbf{id}=*\mathbf{id}$

Problema 17

1) $S \rightarrow A$ 2) $A \rightarrow \epsilon$ 3) $A \rightarrow Abb$

 $I1=ir_a(I0, S)$, $I2=ir_a(I0, A)$, $I3=ir_a(I2, b)$, $I4=ir_a(I3, b)$

Problema 18.-Considere la siguiente gramática :

1) $S \rightarrow AaAb$ 2) $S \rightarrow BbBa$ 3) $A \rightarrow \epsilon$ 4) $B \rightarrow \epsilon$

 $I1=ir_a(I0,\ S)\ ,\ I2=ir_a(I0,\ A)\ ,\ I3=ir_a(I0,\ B)\ ,\ I4=ir_a(I2,\ a)\ ,\ I5=ir_a(I3,\ b)\ ,\ I6=ir_a(I4,\ A)\ ,\ I7=ir_a(I5,\ B)\ ,\ I8=ir_a(I6,\ b)\ ,\ I9=ir_a(I7,\ a)$

cadenas: ab y ba

Problema 19.-Considere la siguiente gramática:

 $S \rightarrow a S b S$ $S \rightarrow a$

cadenas:

Problema 20.-Considere la siguiente gramática:

1) $C \rightarrow AB$ 2) $A \rightarrow a$ 3) $B \rightarrow a$

 $I1 = ir_a(I0, \ a) \ , \ I2 = ir_a(I0, \ C \) \ , \ I3 = ir_a(I0, \ A \), \ I4 = ir_a(I3, \ a \) \ , \ I5 = ir_a(I3, \ B \) \ .$

cadena: aa

			(3)
OC En hoc 1 hay u	na pila cual es?		
A partir de hoc4	se usan dos etapas en hoc. Cuales son	y que hacen ?	
11			
iEn hoc 6 hay 3 I II III	pilas cuales son?		
El código de tr	es direcciones se usa en	xico	()
a) El análisis sintá	CLICO		ainal o \$
c) Generación de (2Un	$\alpha \rightarrow \alpha \beta$ aldonde $A \rightarrow \alpha \beta$	Bes una producción y a co di	()
a) mango	b) prefijo viable c) elemento LR (1)	d) elemento LR (0)	
	an cierta posiciór	n del lado derecho.	()
a) mango	b) prefijo viable () elemento Ext()		()
r: d	e las formas de frase derecha que pueder	n aparecer en la pila	()
a) mango	h) elemento LR (1) C) Prenjo		
	de una forma de frase dere	echa γ es una producción S →	forma de
5Un			
frase derecha a) prefijo viabl	previa en una dell'alla (0)	d) elemento LR (1))
Traducción di	cigida por la sintaxis plicita o implicitamente el grafo de de plicita de applicies sintactico para la gr	ependencias.	
1Construir el	plicita o implicitamente el grafo de de arbol de analisis sintactico para la gr	amatica y la elittada dadas.	
2Construit et	reglas semanticas de acuerdo con el o	orden topologico.	un orden
3Evaluar las	reglas semanticas de acuerdo con el c e el grafo de dependencias determina	un orden parciai constiun	un orden
4Supuesto qu	apatible con el orden parcial.	. 1 1	
topologico COI		la Sintaxis el orden seria	(
Para la realizad	b) 2,3,4,1 c) 2,1,4,3	d) 4, 3, 2, 1	
a) 1, 2, 3, 4			
a) 1, 2, 3, 4	ra el momento de la ejecucion	monte en un marco (o re	egistro de
a) 1, 2, 3, 4	ra el momento de la ejecucion tos importantes que se almacenan us ofuncion.	sualmente en un marco (o re	egistro de

1-Ejecutar la funcion (poner el contador de programa igual a la direccion de su primera instrucción y ejecutar la instrucción a la que apunta el contador de programa) y meter el valor de retorno de la funcion en la pila.

2-Meter los parametros en la pila y meter el marco de la funcion en la pila de llamadas. 3-Poner el contador de programa igual a la direccion de retorno y ejecutar la instrucción a la que apunta el contador de programa. 4-Sacar parametros de la pila y sacar marco de la pila de llamadas.

Dos.-De acuerdo al mecanismo de llamada a funcion cual es el orden correcto?

a) 1, 2, 3, 4

b) 1, 3, 4, 2

c) 2, 1, 4, 3 d) 4, 3, 2, 1

PROBLEMAS

Comprobacion de de tipos

Esciba las **expresiones de tipo** para : a) char *function(double, double);

b) struct agregado { char x; double y; };

Generacion de Codigo Intermedio

Dada la gramatica

LISTA -> LISTA + DIGITO | LISTA - DIGITO | DIGITO DIGITO -> 0 | 1 |2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1.-Dibuje el arbol de analisis sintactico, el arbol sintactico y el grafo de dependencias para las siguientes cadenas: 1+2+3+4 y 2+4-6+8-10

2.-Dibuje el arbol sintactico para las siguientes cadenas: (2+3) * (10 - 5) y a/(b+c/(d+e))

3.-Escriba el codigo de 3 direcciones de: a * - (b+c) y a := (b+c) * (e+f)

4.-Escriba el codigo de 3 direcciones de: (a * b + h) - j * k + 1

5.-Hacer el codigo 3 direcciones de la expresion : a > b + h or b == d

6.- Traduzca a flujo de control (obtenga el codigo de tres direcciones) las siguientes expresiones booleanas

I) a < b or c < d

II) a < b or c < d or e < f

III) a < b or c < d or e < f or g < h

IV) a < b and c < d

V) a < b and c < d and e < f

VI) a < b and c < d and e < f and g < h

VIII) a < b or c < d and e < f

IX) a < b and c < d or e < f

Generacion de Codigo Objeto	Como se traducen
9Si una instrucción de asignación de la forma x=y+z . Se traduce a:	Como se traducer
mov y, R0 add z, R0 mov R0 , x	a = b + c; d = a + c; a = a + 1;

10Si una instrucción de asignación de la forma a=a+1 . Se traduce a:	Como se traducen
Mov a , R0 add #1, R0 mov R0, a	a = c + 2 d = a + 3

11.-Para el siguiente codigo genere el codigo de 3 direcciones y divida el codigo generado en bloques basicos

```
w = 0;

x = x + y;

y=0;

if(x > z) {

y = x;

x++;

} else {

y = z;

z++;

}

w = x + z;
```