Unit 3: Discrete random variables

Adapted from Blitzstein-Hwang Chapter 3.

FOR PROBLEM 1

Let X be the number of purchases that a customer will make on the online site for a certain company (in some specified time period). Suppose that the PMF of X is

$$P(X = k) = e^{-\lambda} \lambda^k / k!$$

for $k=0,1,2,\ldots$ This distribution is called the *Poisson distribution* with parameter λ .

Problem 1a

1/1 point (graded)

(a) Find $P(X \ge 1)$ and $P(X \ge 2)$ without summing infinite series.

$$P(X \ge 1) = 1 - \lambda e^{-\lambda}, \ P(X \ge 2) = 1 - 2e^{-\lambda}$$

$$P(X \ge 1) = 1 - e^{-\lambda}, \ P(X \ge 2) = 1 - \lambda e^{-\lambda}$$

$$\bigcirc P(X \ge 1) = e^{-\lambda}, \ P(X \ge 2) = e^{-\lambda} \lambda^2 / 2$$

$$P(X \ge 1) = 1 - e^{-\lambda}, \ P(X \ge 2) = 1 - e^{-\lambda} - \lambda e^{-\lambda}$$

Solution:

Taking complements,

$$P(X \ge 1) = 1 - P(X = 0) = 1 - e^{-\lambda},$$

$$P(X \ge 2) = 1 - P(X < 1) = 1 - e^{-\lambda} - \lambda e^{-\lambda}.$$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

1/1 point (graded)

(b) Suppose that the company only knows about people who have made at least one purchase on their site (a user sets up an account to make a purchase, but someone who has never made a purchase there doesn't appear in the customer database). If the company computes the number of purchases for everyone in their database, then these data are draws from the *conditional* distribution of the number of purchases, given that at least one purchase is made. Which of the following is the conditional PMF of X given $X \geq 1$? (This conditional distribution is called a *truncated Poisson distribution*.)

$$P(X = k | X \ge 1) = \frac{e^{-\lambda} \lambda^k}{k! (1 - e^{-\lambda})}$$

$$P(X = k | X \ge 1) = \frac{\lambda^k}{k! (1 - \lambda e^{-\lambda})}$$

$$P(X = k | X \ge 1) = \frac{e^{-\lambda} \lambda^k}{k! (1 - \lambda e^{-\lambda})}$$

 $\overline{}$

$$P(X = k | X \ge 1) = \frac{e^{-\lambda}}{k! (1 - e^{-\lambda})}$$

Solution:

The conditional PMF of X given $X \ge 1$ is

$$P(X = k | X \ge 1) = \frac{P(X = k)}{P(X \ge 1)} = \frac{e^{-\lambda} \lambda^k}{k! (1 - e^{-\lambda})},$$

for k = 1, 2,

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

A book has n typos. Two proofreaders, Prue and Frida, independently read the book. Prue catches each typo with probability p_1 and misses it with probability $q_1=1-p_1$, independently, and likewise for Frida, who has probabilities p_2 of catching and $q_2=1-p_2$ of missing each typo. Let X_1 be the number of typos caught by Prue, X_2 be the number caught by Frida, and X be the number caught by at least one of the two proofreaders.

Prob	lem	2a
------	-----	----

1/1 point (graded)

(a) Find the distribution of λ	(a)	Find t	he c	distril	bution	of	X
--	-----	--------	------	---------	--------	----	---

Bin	(n,	1	_	a_1	a

	HGeom	$(p_1n,$	p_2n ,	p_1	p_2n)
--	-------	----------	----------	-------	--------	---

$$\bigcirc$$
 Bin $(n, p_1 \cdot p_2)$

$$\bigcirc$$
 HGeom $(n, n, n-1)$

Solution

By the story of the Binomial, $X \sim \text{Bin}(n, 1 - q_1 q_2)$.

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

Problem 2b

1/1 point (graded)

(b) For this part only, assume that $p_1=p_2$. Find the conditional distribution of X_1 given that $X_1+X_2=t$.

 \bigcirc Bin (n, t/n)

 \bigcirc HGeom (n, t, t)

 \bigcirc Bin (t, p_1p_2)

 \bigcirc HGeom (n, n, t)

Solution

Let $p = p_1 = p_2$ and $T = X_1 + X_2 \sim \text{Bin}(2n, p)$. Then

$$P(X_1 = k | T = t) = \frac{P(T = t | X_1 = k) P(X_1 = k)}{P(T = t)} = \frac{\binom{n}{t-k} p^{t-k} q^{n-t+k} \binom{n}{k} p^k q^{n-k}}{\binom{2n}{t} p^t q^{2n-t}} = \frac{\binom{n}{t-k} \binom{n}{k}}{\binom{2n}{t}}$$

for $k \in \{0, 1, ..., t\}$, so the conditional distribution is HGeom (n, n, t).

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Problem 3

1/1 point (graded)

People are arriving at a party one at a time. While waiting for more people to arrive they entertain themselves by comparing their birthdays. Let X be the number of people needed to obtain a birthday match, i.e., before person X arrives there are no two people with the same birthday, but when person X arrives there is a match. For example, X=10 would mean that the first nine people to arrive all have different birthdays, but the tenth person to arrive matches one of the first nine. Find P(X=3 or X=4).

0.0136

✓ Answer: 0.0136

0.0136

Solution

We will make the usual assumptions as in the birthday problem (e.g., exclude February 29). The support of X is $\{2,3,\ldots,366\}$ since if there are 365 people there and no match, then every day of the year is accounted for and the 366th person will create a match. Let's start with a couple simple cases and then generalize:

$$P(X=2) = \frac{1}{365},$$

since the second person has a 1/365 chance of having the same birthday as the first,

$$P(X=3) = \frac{364}{365} \cdot \frac{2}{365},$$

since X=3 means that the second person didn't match the first but the third person matched one of the first two. In general, for $2 \le k \le 366$ we have

$$P(X = k) = P(X > k - 1 \text{ and } X = k)$$

$$= \frac{365 \cdot 364 \cdots (365 - k + 2)}{365^{k-1}} \cdot \frac{k - 1}{365}$$

$$= \frac{(k - 1) \cdot 364 \cdot 363 \cdots (365 - k + 2)}{365^{k-1}}.$$

Therefore,

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

For Problem 4

Let X be the number of Heads in 10 fair coin tosses.

Problem 4a

1/1 point (graded)

- (a) Find the conditional PMF of X, given that the first two tosses both land Heads.
- $\bigcirc \frac{1}{1024} \binom{10}{k-2}$, for $k = 2, 3, \dots, 10$
- $\frac{1}{256} {8 \choose k-2}, \text{ for } k = 2, 3, \dots, 10$
- $\bigcirc \frac{1}{128} {8 \choose k}$, for k = 2, 3, ..., 10
- $\bigcirc \frac{1}{1013} \binom{10}{k}$, for k = 2, 3, ..., 10

Solution

Let X_2 and X_8 be the number of Heads in the first 2 and last 8 tosses, respectively. Then the conditional PMF of X given $X_2=2$ is

$$P(X = k | X_2 = 2) = P(X_2 + X_8 = k | X_2 = 2)$$

$$= P(X_8 = k - 2 | X_2 = 2)$$

$$= P(X_8 = k - 2)$$

$$= {8 \choose k - 2} {(\frac{1}{2})}^{k-2} {(\frac{1}{2})}^{8-(k-2)}$$

$$= {\frac{1}{256}} {\binom{8}{k-2}},$$

for k = 2, 3, ..., 10.

1 Answers are displayed within the problem

Problem 4b

1/1 point (graded)

(b) Find the conditional PMF of X, given that at least two tosses land Heads.

$$\bigcirc \frac{1}{1024} \binom{10}{k-2}$$
, for $k = 2, 3, \dots, 10$

$$\bigcirc \frac{1}{256} {8 \choose k-2}$$
, for $k = 2, 3, ..., 10$

$$\bigcirc \frac{1}{128} {8 \choose k}$$
, for $k = 2, 3, ..., 10$

$$\bigcirc$$
 $\frac{1}{1013} \binom{10}{k}$, for $k = 2, 3, ..., 10$

Solution

The conditional PMF of X given $X \ge 2$ is

$$P(X = k | X \ge 2) = \frac{P(X = k, X \ge 2)}{P(X \ge 2)}$$

$$= \frac{P(X = k)}{1 - P(X = 0) - P(X = 1)}$$

$$= \frac{\binom{10}{k} \left(\frac{1}{2}\right)^{10}}{1 - \left(\frac{1}{2}\right)^{10} - 10\left(\frac{1}{2}\right)^{10}}$$

$$= \frac{1}{1013} \binom{10}{k},$$

for k = 2, 3, ..., 10.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem