සියලු ම හිමිකම් ඇවිරිණි /ගුඟුට பதிப்புநிமையுடையது / $All\ Rights\ Reserved$

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය இணைந்த கணிதம் Combined Mathematics T

පැය තුනයි

மூன்று மணித்தியாலம்

Three hours

මිනිත්තු 10 යි අමතර කියවීම් කාලය மேலதிக வாசிப்பு நேரம் 10 நிமிடங்கள் Additional Reading Time 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

> (Y) சுட்டெண்

அறிவுறுத்தல்கள் :

- st இவ்வினாத்தாள் ப**குதி A** (வினாக்கள் 1 10), பகுதி B (வினாக்கள் 11 17) என்னும் இரு பகுதிகளைக் கொண்டது.
- ※ பகுதி A: எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்குமுரிய உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- **※ பகுதி B:** ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமது விடைகளைத் தரப்பட்டுள்ள தாள்களில் எழுதுக.
- st ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் ப**குதி {f A}** இன் விடைத்தாளானது ப**குதி {f B}** இன் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக, இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் **பகுதி f B ஐ மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மாத்திரம்

(10) இணைந்த கணிதம் I			
பகுதி	வினா எண்	புள்ளிகள்	
	1		
	2		
	3		
	4		
A	5		
A	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17		
	மொத்தம்		

	மொத்தம்	_
இலக்கத்தில்		
எழுத்தில்		

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
1 பரிசீலித்தவர்:	
பரசலத்தவர்.	
மேற்பார்வை செய்தவர்:	

	பகுதி ${f A}$
1.	கணிதத் தொகுத்த நிவுக் கோட்பாட்டைப் பயன்படுத்தி, எல்லா $n\in\mathbb{Z}^+$ இற்கும் 7^n-1 ஆனது 6 இனான வுகுபடுகின்றதென நிறுவுக.
	·
2.	$y = \left x - 3 \right + 1$, $y = 5 - \left x \right $ ஆகியவந்நின் வரைபுகளை ஒரே வரிப்படத்திற் பரும்படியாக வரைக.
	இ திலிருந்து, இவ்வரைபுகளினால் உள்ளடைக்கப்படும் செவ்வகப் பிரதேசத்தின் பரப்பளவைக் காண்க.

சுட்டெண்				

3.	$\left z-2i\right \leq 2$, $0\leq { m Arg}\left(z+2\sqrt{3}\right)\leq rac{\pi}{6}$ என்னும் சமனிலிகளைத் திருப்தியாக்கும் சிக்கலெண்கள்	z %
	வகைகுறிக்கும் புள்ளிகளைக் கொண்ட பிரதேசத்தை ஓர் ஆகண் வரிப்படத்தில் நிழற்றுக.	
	இந்நிழற்றப்பட்ட பிரதேசத்தில் உள்ள புள்ளிகளினால் வகைகுறிக்கப்படும் சிக்கலெண்கள் z இற்கு $\begin{vmatrix} z \end{vmatrix}$ மிகப் பெரிய பெறுமானத்தைக் காண்க.	இன்
		•••
		•••
		•••
		•••
		•••
		•••
		•••
	(1)9	
4.	$\left(1+x^3 ight)\!\!\left(x-rac{1}{\sqrt{x}} ight)^9$ இன் விரியில் உள்ள மாறா உறுப்பு 93 எனக் காட்டுக.	
4.	$\left(1+x^3 ight)\left(x-rac{1}{\sqrt{x}} ight)$ இன் விரியில் உள்ள மாறா உறுப்பு 93 எனக் காட்டுக.	•••
4.	$\left(1+x^3 ight)\left(x-rac{1}{\sqrt{x}} ight)$ இன் விரியில் உள்ள மாறா உறுப்பு 93 எனக் காட்டுக.	
4.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		
4.		

5.	$\lim_{x \to 4} \frac{\left(\sqrt{x-3}-1\right)}{\left(x-4\right)^2} \sin\left(\sqrt{x}-2\right) = \frac{1}{8}$ எனக் காட்டுக.
	$(x-4)^2$ $(x-4)^2$ 8
	······································
	· · · · · · · · · · · · · · · · · · ·
6.	$y = \frac{2}{x\sqrt[4]{4-x^2}}, \ y = 0, \ x = 1, \ x = \sqrt{2}$ என்னும் வளையிகளினால் உள்ளடைக்கப்படும் பிர ் தசம் x -அச்சைப்
6.	$y=rac{2}{x\sqrt[4]{4-x^2}},\ y=0,\ x=1,\ x=\sqrt{2}$ என்னும் வளையிகளினால் உள்ளடைக்கப்படும் பிரதேசம் x -அச்சைப் பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவ
6.	$y=rac{2}{x\sqrt[4]{4-x^2}},\ y=0,\ x=1,\ x=\sqrt{2}$ என்னும் வளையிகளினால் உள்ளடைக்கப்படும் பிரதேசம் x -அச்சைப் பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\pi\left(\sqrt{3}-1 ight)$ எனக் காட்டுக.
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு
6.	பற்றி 2π ஆரையன்களினூடாகச் சுழற்றப்படுகின்றது. இவ்வாறு பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு

7.	C என்பது $t \geq 0$ இந்கு $x = \ln t$, $y = e^t + t \ln t$ ஆகியவந்நினால் பரமானமுறையாகத் தரப்படும் வளையியெனக்
	கொள்வோம். $\frac{\mathrm{d}y}{\mathrm{d}x} = t(e^t + \ln t + 1)$ எனக் காட்டுக.
	ய c வளையி C இந்கு $t=1$ ஐ நேரொத்த புள்ளியில் வரையப்பட்ட தொடலி புள்ளி $(1,a)$ இனூடாகச் செல்லுமெனின், $a=1+2e$ எனக் காட்டுக.
8.	உந்பத்தியிலிருந்து செங்குத்துத் தூரம் 1 இல் இருப்பனவும் புள்ளி $A\equiv (-1,2)$ இனூடாகச் செல்வனவுமான இரு நேர்கோடுகளினதும் சமன்பாடுகளைக் காண்க.

9.	$A \equiv (-1, \ 1)$ எனவும் $B \equiv (3, \ 3)$ எனவும் கொள்வோம். AB ஐ ஒரு விட்டமாகக் கொண்ட வட்டம் S இன் சமன்பாட்டினை எழுதுக.
	வட்டம் $x^2+y^2-4x-5y+9=0$ ஆனது வட்டம் S ஐ B இல் உள்ளே தொடுகின்றதெனக் காட்டுக.
	······································
10.	$\frac{\cot \theta}{1+\sin \theta}+\frac{\cot \theta}{1-\sin \theta}\equiv 4\csc 2\theta$ எனக் காட்டுக.
	இதிலிருந்து, $\frac{\cot\theta}{1+\sin\theta}+\frac{\cot\theta}{1-\sin\theta}=8\cos2\theta$ ஐத் தீர்க்க.
	······································
÷	

ซิตอู ซ ดิซิลซิ ซุเฮิติซ์ /เบูเบูน บฐมินทุติตมนุดมนฐม All Dights Reserved

ලී ලංකා විභාග දෙපාරතමේත්තුව ලී ලංකා විභාග දෙපාරත**ේ ලිංකා මතාහා දෙපාරතමේන්තුව** විභාග දෙපාරතමේත්තුව ලී ලංකා විභාග දෙපාරතමේත්තුව இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பூட்கைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் இலங்கைப் பரிட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department ය**ි. බැබ්ඩ බැබ්ඩ බැබ්ඩ බැබ්ඩ කි. මේ** ලංකා විභාග දෙපාරතමේත්තුව ලී ලංකා විභාග දෙපාරතමේත්තුව ලෝක්තුව ලී ලංකා විභාග දෙපාරතමේත්තුව ලී ලංකා විභාග දෙපාරතමේත්තුව ලෝක්තුව ලේසාරතමේත්තුව ලෝක්තුව ලේසාරතමේත්තුව ලෝක්තුව ලේසාරතමේත්තුව ලෝක්තුව ලේසාරතමේත්තුව ලෝක්තුව ල

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024 සහ්ඛා් பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

10 T I

பகுதி B

🛠 **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

11. (a) $f(x) = x^2 + 2x + c$ எனக் கொள்வோம்; இங்கு $c \in \mathbb{R}$.

சமன்பாடு f(x)=0 இந்கு இரு மெய் வேறுவேறான மூலங்கள் இருக்கின்றனவெனத் தரப்பட்டுள்ளது. c<1 எனக் காட்டுக.

 α , β ஆகியன f(x)=0 இன் மூலங்களெனக் கொள்வோம்.

 $\alpha^2 + \beta^2 = 4 - 2c$ எனக் காட்டுக.

 $c \neq 0$ எனவும் $\lambda \in \mathbb{R}$ எனவும் கொள்வோம். $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $2x^2 + 12x + \lambda = 0$ ஆகும். c, λ ஆகியவற்றின் பெறுமானங்களைக் காண்க.

(b) $f(x) = x^3 + px^2 + qx + p$ எனக் கொள்வோம்; இங்கு $p, q \in \mathbb{R}$ ஆகும். f(x) ஆனது (x-2) இனால் வகுக்கப்படும்போது உள்ள மீதி, f(x) ஆனது (x-1) இனால் வகுக்கப்படும்போது உள்ள மீதியிலும் பார்க்க 36 இனாற் கூடியது. 3p+q=29 எனக் காட்டுக.

(x+1) ஆனது f(x) இன் ஒரு காரணி எனவும் தரப்பட்டுள்ளது.

p=6 எனவும் q=11 எனவும் காட்டி, f(x) ஐ முழுமையாகக் காரணிப்படுத்துக.

இதிலிருந்து, f(x) = 3(x+2) ஐத் தீர்க்க.

- 12. (a) ஒரு குடும்பத்தின் பெற்றோர் தமது கிட்டிய 15 உறவினர்களில் 6 உறவினர்களை இராப்போசனத்திற்கு அழைப்பதற்குத் தீர்மானித்துள்ளனர். தந்தைக்குக் கிட்டிய 5 பெண் உறவினர்களும் கிட்டிய 3 ஆண் உறவினர்களும் இருப்பதோடு தாய்க்குக் கிட்டிய 3 பெண் உறவினர்களும் கிட்டிய 4 ஆண் உறவினர்களும் உள்ளனர்.
 - தந்தை தனது கிட்டிய பெண் உறவினர்களில் 3 பெண் உறவினர்களையும் தாய் தனது கிட்டிய ஆண் உறவினர்களில் 3 ஆண் உறவினர்களையும் அழைக்கத்தக்க,
 - (ii) 3 ஆண்களும் 3 பெண்களும் அழைக்கப்படுமாறு தந்தை தனது கிட்டிய உறவினர்களில் 3 உறவினர்களையும் தாய் தனது கிட்டிய உறவினர்களில் 3 உறவினர்களையும் அழைக்கத்தக்க

வெவ்வேறு வழிகளின் எண்ணிக்கையைக் காண்க.

(b) $r \in \mathbb{Z}^+$ இந்கு $U_r = \frac{1}{r(r+2)(r+4)}$ எனவும் $f(r) = \frac{1}{r(r+2)}$ எனவும் கொள்வோம்.

 $r\in \mathbb{Z}^+$ இற்கு $f(r)-f(r+2)=AU_r$ ஆக இருக்குமாறு மெய்ம் மாநிலி A இன் பெறுமானத்தைத் துணிக

இதிலிருந்து,
$$n\in\mathbb{Z}^+$$
 இற்கு $\sum_{r=1}^nU_r=rac{11}{96}-rac{1}{4(n+1)(n+3)}-rac{1}{4(n+2)(n+4)}$ எனக் காட்டுக.

மேலும், முடிவில் தொடர் $\sum_{r=1}^\infty \, U_r$ ஒருங்குகின்றதெனக் காட்டி, அதன் கூட்டுத்தொகையைக் காண்க.

 $\lim_{n \to \infty} \sum_{r=1}^n (mU_r + U_{n+1-r}) = \frac{11}{32}$ ஆக இருக்குமாறு மெய்ம் மாறிலி m இன் பெறுமானத்தைக் காண்க.

13.
$$(a)$$
 $\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & a & 2 \end{pmatrix}$ எனவும் $\mathbf{B} = \begin{pmatrix} 0 & a & b \\ 3 & b & a \end{pmatrix}$ எனவும் கொள்வோம்; இங்கு $a, b \in \mathbb{R}$ ஆகும்.

$$2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 2 & 4 & 3 \\ 9 & 5 & 4 \end{pmatrix}$$
 எனத் தரப்பட்டுள்ளது.

a=0 எனவும் b=5 எனவும் காட்டுக.

 $a,\ b$ ஆகியவற்றின் இப்பெறுமானங்களுக்கு, ${f C}={f A}{f B}^{f T}$ எனக் கொள்வோம்.

 ${f C}$ ஐக் கண்டு ${f C}^{-1}$ ஐ எழுதுக.

$$\mathbf{DC} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 ஆகுமாறு தாயம் \mathbf{D} ஐக் காண்க.

(b) $z_1,z_2\in\mathbb{C}$ எனக் கொள்வோம்.

(i)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

(ii)
$$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$$

(iii)
$$z_1\overline{z}_1 = |z_1|^2$$

எனக் காட்டுக.

 $z_2
eq 0$ இற்குப் பேறு $\overline{\left(rac{z_1}{z_2}
ight)} = rac{\overline{z_1}}{\overline{z_2}}$ ஐப் பயன்படுத்தி, $\left|z_1
ight| = 1$ ஆகவும் $z_1
eq \pm 1$ ஆகவும் $\frac{z_1 + z_2}{1 + z_1 z_2}$ மெய்யாகவும் இருப்பின், $\left|z_2
ight| = 1$ எனக் காட்டுக.

(c) $\sqrt{3}+i$ ஐ வடிவம் $r(\cos\theta+i\sin\theta)$ இல் எடுத்துரைக்க; இங்கு r>0 உம் $0<\theta<\frac{\pi}{2}$ உம் ஆகும். த மோய்வரின் தேற்றத்தைப் பயன்படுத்தி, $\frac{\left(\sqrt{3}+i\right)^{24}}{2^{23}(1+i)}=1-i$ எனக் காட்டுக.

14.(a) $x \in \mathbb{R} - \{1, 2\}$ இற்கு $f(x) = \frac{px + q}{(x - 1)(x - 2)}$ எனக் கொள்வோம்; இங்கு $p, q \in \mathbb{R}$ ஆகும்.

y=f(x) இன் வரைபில் $(0,\ 1)$ இல் ஒரு நிலையான புள்ளி இருக்கின்றதெனத் தரப்பட்டுள்ளது. p=-3 எனவும் q=2 எனவும் காட்டுக.

 $p,\ q$ ஆகியவற்றின் இப்பெறுமானங்களுக்கு f(x) இன் பெறுதி f'(x) ஆனது $x \neq 1,\ 2$ இற்கு $f'(x) = \frac{x(3x-4)}{(x-1)^2(x-2)^2}$ இனால் தரப்படுகின்றதெனக் காட்டி, f(x) குறையும் ஆயிடைகளையும் f(x) அதிகரிக்கும் ஆயிடைகளையும் காண்க.

அணுகுகோடுகளையும் திரும்பற் புள்ளிகளையும் காட்டி, y=f(x) இன் வரைபைப் பரும்படியாக வரைக. இதிலிருந்து, சமன்பாடு $x^2(x-1)$ (x-2)=2-3x இன் மெய்த் தீர்வுகளின் எண்ணிக்கையைக் காண்க.

- (b) ஒரு மூடியும் ஓர் அடியும் உள்ள ஓர் உருளை $1024\pi~{
 m cm}^3$ கனவள்வைக் கொண்டிருக்குமாறு செய்யப்பட்டுள்ளது. உருளையின் ஆரை $r~{
 m cm}$ எனக் கொள்வோம். உருளையின் மொத்த மேற்பரப்பின் பரப்பளவு $S~{
 m cm}^2$ ஆனது r>0 இற்கு $S=2\piigg(rac{1024}{r}+r^2igg)$ இனால் தரப்படுகின்றதெனக் காட்டுக. r=8 ஆக இருக்கும்போது S குறைந்தபட்சமாகுமெனக் காட்டுக.
- **15.**(a) எல்லா $t \in \mathbb{R}$ இற்கும் $3t^2 + 4 = A(t^2 2t + 4) + Bt(t+1)$ ஆகுமாறு A, B ஆகிய மெய்ம் மாறிலிகளின் பெறுமானங்களைக் காண்க.

இதிலிருந்து அல்லது வேறு விதமாக, $\int \frac{3t^2+4}{(t+1)(t^2-2t+4)} \, \mathrm{d}t$ ஐக் காண்க.

- (b) பிரதியீடு $u=x+\sqrt{x^2+3}$ ஐப் பயன்படுத்தி, $\int\limits_0^1 \frac{1}{\sqrt{x^2+3}} \mathrm{d}x = \frac{1}{2}\ln 3$ எனக் காட்டுக. $J=\int\limits_0^1 \sqrt{x^2+3} \;\mathrm{d}x$ எனக் கொள்வோம். பகுதிகளாகத் தொகையிடலைப் பயன்படுத்தி, $2J=2+\int\limits_0^1 \frac{3}{\sqrt{x^2+3}} \;\mathrm{d}x$ எனக் காட்டுக. $J=1+\frac{3}{4}\ln 3$ என உய்த்தறிக.
- (c) a ஒரு மாறிலியாக இருக்கும் சூத்திரம் $\int\limits_0^a f(x)\,\mathrm{d}x = \int\limits_0^a f(a-x)\,\mathrm{d}x$ ஐப் பயன்படுத்தி, $\int\limits_0^{\frac{\pi}{4}} \ln\!\left(\frac{\cos x}{\cos x + \sin x}\right)\!\mathrm{d}x = \frac{\pi}{8}\ln\!\left(\frac{1}{2}\right)$ எனக் காட்டுக.

16. $A\equiv (1,\,2)$ எனவும் $B\equiv (a,\,b)$ எனவும் கொள்வோம்; இங்கு $a,\,b\in \mathbb{R}$ ஆகும். கோட்டுத் துண்டம் AB இன் செங்குத்து இருகூறாக்கி l இன் சமன்பாடு x+y-4=0 எனத் தரப்பட்டுள்ளது. $a,\,b$ ஆகியவற்றின் பெறுமானங்களைக் காண்க.

- 10 -

 $C\equiv (3,\ 1)$ எனக் கொள்வோம். புள்ளி C ஆனது கோடு l மீது இருக்கின்றதெனக் காட்டி, $A\hat{C}B$ ஐக் காண்க. $A,B,\ C$ ஆகிய புள்ளிகளினூடாக உள்ள வட்டம் S எனக் கொள்வோம். S இன் மையம் $\left(\frac{13}{6},\frac{11}{6}\right)$ இனால்

தரப்படுகின்றதெனக் காட்டி, S இன் சமன்பாட்டினைக் காண்க.

இதிலிருந்து, A, B ஆகிய புள்ளிகளினூடாகவும் புள்ளி $D\equiv (0,3)$ இனூடாகவும் செல்லும் வட்டத்தின் சமன்பாட்டினைக் காண்க.

17. (a) $6\cos 2x - 8\sin 2x$ ஐ வடிவம் $R\cos(2x + a)$ இல் எடுத்துரைக்க, இங்கு R > 0 உம் $0 < a < \frac{\pi}{2}$ உம் ஆகும்.

இதிலிருந்து, $6\cos 2x - 8\sin 2x = 5$ ஐத் தீர்க்க.

 $24\cos^2 x - 32\sin x\cos x$ ஐ வடிவம் $a\cos 2x + b\sin 2x + c$ இல் எடுத்துரைக்க; இங்கு $a,b,c \ (\in \mathbb{R})$ ஆகியன துணியப்பட வேண்டிய மாறிலிகளாகும்.

 $24\cos^2 x - 32\sin x\cos x$ இன் குறைந்தபட்சப் பெறுமானத்தை உய்த்தறிக.

உருவிற் காட்டப்பட்டுள்ள முக்கோணி ABC இல் $BC=p,~B\hat{A}C=\frac{\pi}{4}$, $A\hat{B}C=\alpha$ ஆகும். நீட்டப்பட்ட கோடு BC மீது புள்ளி D ஆனது, CD=2p ஆகுமாறு, உள்ளது.

 $AB = p(\cos \alpha + \sin \alpha)$ எனக் காட்டுக.

 AD^2 ஐ p, lpha ஆகியவற்றிற் காண்க.

AD = 3p எனின், $\alpha = \tan^{-1}(5)$ என உய்த்தறிக.

(c) சமன்பாடு $\tan^{-1}(x+1) + \tan^{-1}(x-1) = \sin^{-1}\left(\frac{2}{\sqrt{5}}\right)$ ஐத் தீர்க்க.

සියලු ම හිමිතම් ඇවිරිණි / மුඟුට பதிப்புநிமையுடையது / $All\ Rights\ Reserved$

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තලේන වැනි ලෙපාර්තලේන සිදුක්ර උම්ලේක නියුතු විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ඉහතිගතසට ප්රියාපූජ නියාතාස්සහාව ඉහතිගතවා ප්රියාපූජ නියාත්තන්ව ප්රියාපූජ නියාතාස්සහාව ඉහතිගත් ප්රියාපූජ නියාතාස්සහාව මුල්ක විභාග දෙපාර්තමේන්තුව Department of Examinations, Sri Lanka Department **ඉහතිගත්තන්න් Srift කොරාස්සහාව ප්රියාප්තාවේ** අයාත විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ඉහතිගතසට ප්රියාපූජ නියාතාස්සහාව ඉහතිගත්තන්ව ඉහති සිදුක් සිදුක් ප්රියාපූජ නියාතාස්සහාව ඉහතිගත්තය ප්රියාපූජ නියාතාස්සහාව ඉහතිගත්තන් සිදුක් ස

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2024 සහඛාධ ධා කුදු සහතික පතු (උසස් පෙළ) විභාගය, 2024 General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II

10 T (II)

පැය තුනයි மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි **ග**ෙහනු හි කාළුව්பபு **நே**ரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

வினாத்தாளை வாசித்து, வினாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னுரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

சுட்டெண்

උත්තර පතු පරික්ෂතවරුන්ගේ පයෝජනය සඳහා පමණි

அறிவுறுத்தல்கள் :

- * இவ்வினாத்தாள் பகுதி ${\bf A}$ (வினாக்கள் ${\bf 1}$ ${\bf 10}$), பகுதி ${\bf B}$ (வினாக்கள் ${\bf 11}$ ${\bf 17}$) என்னும் இரு பகுதிகளைக் கொண்டது.
- பகுதி A:
 எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்குமுரிய உமது விடைகளைத் தரப்பட்டுள்ள இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.

* ப**குதி B :** ஐந்து வினாக்களுக்கு மாத்திரம் விடை எழுதுக. உமது விடைகளைத் தரப்பட்டுள்ள தாள்களில் எழுதுக.

* ஒதுக்கப்பட்டுள்ள நேரம் முடிவடைந்ததும் **பகுதி A** இன் விடைத்தாளானது **பகுதி B** இன் விடைத்தாளுக்கு மேலே இருக்கத்தக்கதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.

※ வினாத்தாளின் பகுதி B ஐ மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

இவ்வினாத்தாளில் g ஆனது புவியீர்ப்பினாலான ஆர்முடுகலைக் குறிக்கின்றது.

பூடீ்சகர்களின் உபயோகத்திற்கு மாத்திரம்

(10) இணைந்த கணிதம் II				
பகுதி	வினா எண்	புள்ளிகள்		
**	1			
	2	-		
1	3			
	4			
A	5			
Λ	6			
	7			
	8			
	9			
	10			
	11			
	. 12			
	13			
В	14			
	15			
	16			
	17			
	மொத்தம்			

101	DIT.	•	4	.,
-	,,-		~,	~

இலக்கத்தில்	
எழுத்தில்	

்குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
பரிசீலித்தவர்: 2	
மேற்பார்வை செய்தவ	j

ı	பகுதி	Α
L	1(0)(0)	A

1.	திணிவு $2m$ ஐ உடைய ஒரு துணிக்கை A உம் திணிவு m ஐ உடைய ஒரு துணிக்கை B உம் ஓர் ஒப்பமான கிடை மேசை மீது ஒரே நேர்கோட்டின் வழியே முறையே u , $3u$ ஆகிய கதிகளுடன் ஒன்றையொன்று நோக்கி
	இயங்கிக்கொண்டு நேரடியாக மோதுகின்றன. மோதுகைக்குப் பின்னர் A உம் B உம் எதிர்த் திசைகளில்
	இயங்குகின்றன. A இற்கும் B இந்குமிடையே உள்ள மீளமைவுக் குணகம் e ஆகும். $e>rac{1}{8}$ எனக் காட்டுக.
	<u></u>
	<i>a</i>
,	ஒரு கிடைத் தரை மீது உள்ள ஒரு புள்ளி O இலிருந்து ஒரு தொடக்கக்
	கதி μ இல் கிடைய ன் கோணம் $\theta \left(0 < \theta < \frac{\pi}{2} \right)$ இல் வரு துணிக்கை
	கதி u இல் கிடையுடன் கோணம் $ heta\left(0<\theta<\frac{\pi}{2}\right)$ இல் ஒரு துணிக்கை
	கதி u இல் கிடையுடன் கோணம் $\theta\left(0<\theta<\frac{\pi}{2}\right)$ இல் ஒரு துணிக்கை எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல்
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h (>0)$ இல்
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).
	எறியப்படுகின்றது. துணிக்கையானது O இலிருந்து கிடைத் தூரம் l இல் உள்ள ஒரு நிலைக்குத்துச் சுவரில் தரையிலிருந்து ஓர் உயரம் $h(>0)$ இல் மோதுகின்றது (உருவைப் பார்க்க).

	திணிவு m ஐ உடைய ஒரு துணிக்கை P கிடையுடன் சாய்வு 30° இல் உள்ள ஒரு கரடான சாய்தளத்தின் மீது உள்ளது. துணிக்கை P சாய்தளத்தின் உச்சியில் உள்ள ஒரு நிலைத்த ஒப்பமான கப்பியின் மீது செல்லும் ஓர் இலேசான நீட்டமுடியாத இழையின் மூலம் திணிவு $4m$ ஐ உடையதும் நிலைக்குத்தாகச் சுயாதீனமாக இயங்கத்தக்கதுமான ஒரு துணிக்கை Q உடன் தொடுக்கப்பட்டுள்ளது (உருவைப் பார்க்க). சாய்தளத்தின் மீது உள்ள இழைப் பகுதி தளத்தின் ஓர் அதியுயர் சரிவுக் கோடு வழியே இருக்கின்றது.
	P இந்கும் தளத்திற்குமிடையே உள்ள உராய்வுக் குணகம் $\frac{1}{2}$ ஆகும். இழை இறுக்கமாக இருக்கத் தொகுதி
	ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. P ஆனது சாய்தளத்தின் வழியே மேல்நோக்கி இயங்குகின்றதெனத்
	தரப்பட்டுள்ளது. இழையின் இழுவையைத் துணிவதற்குரிய போதுமான சமன்பாடுகளைப் பெறுக.
	<u> </u>

,	
	· · · · · · · · · · · · · · · · · · ·
	\cdot
4.	திணிவு $M \log$ ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு $P \otimes \mathbb{Q}$ இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை $R \otimes \mathbb{Q}$ உள்ளது. காரின் கதி $u \otimes \mathbb{Q}$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க.
4.	திணிவு $M \log$ ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு $P \otimes \mathbb{Q}$ இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை $R \otimes \mathbb{Q}$ உள்ளது. காரின் கதி $u \otimes \mathbb{Q}$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m s ⁻¹ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $\theta\left(0<\theta<\frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின்
4.	திணிவு $M \log ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P \otimes \mathbb{Q} இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R \otimes \mathbb{Q} உள்ளது. காரின் கதி u \otimes \mathbb{Q} ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் \theta \otimes \mathbb{Q} \otimes \mathbb{Q} இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R \otimes \mathbb{Q} இற்கு உட்பட்டு அதே வலு P \otimes \mathbb{Q} இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.$
4.	திணிவு $M \log$ ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு $P \otimes M$ இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை $R \otimes M$ உள்ளது. காரின் கதி $u \otimes M \otimes M$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $H \otimes M \otimes M \otimes M$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை $H \otimes M \otimes M$ இற்கு உட்பட்டு அதே வலு $H \otimes M \otimes M$ இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாநா வலு P W இல் தொழிந்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாநாத் தடை R N உள்ளது. காரின் கதி u m s $^{-1}$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் θ $0<\theta<\frac{\pi}{2}$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாநாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாநாக் கதியைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாநா வலு P W இல் தொழிந்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாநாத் தடை R N உள்ளது. காரின் கதி u m s $^{-1}$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் θ $0<\theta<\frac{\pi}{2}$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாநாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாநாக் கதியைக் காண்க.
4.	திணிவு $M \log ஐ$ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு $P \otimes \mathbb{Q}$ ல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை $R \otimes \mathbb{Q}$ உள்ளது. காரின் கதி $u \otimes \mathbb{Q}$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $\theta \otimes \mathbb{Q} \otimes \mathbb{Q}$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை $R \otimes \mathbb{Q}$ இற்கு உட்பட்டு அதே வலு $P \otimes \mathbb{Q}$ இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
4.	திணிவு M \log ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m s^{-1} ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிந்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m s $^{-1}$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $\theta\left(0<\theta<\frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m \mathbf{s}^{-1} ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் θ $\left(0 < \theta < \frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிந்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m s $^{-1}$ ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $\theta\left(0<\theta<\frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
44.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m s^{-1} ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m \mathbf{s}^{-1} ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் θ $\left(0 < \theta < \frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.
4.	திணிவு M kg ஐ உடைய ஒரு கார் அதன் எஞ்சின் ஒரு மாறா வலு P W இல் தொழிற்பட்டுக்கொண்டு இருக்கும்போது ஒரு கிடை நேர் வீதி வழியே செல்கின்றது. காரின் இயக்கத்திற்கு ஒரு மாறாத் தடை R N உள்ளது. காரின் கதி u m s^{-1} ஆக இருக்கும்போது அதன் ஆர்முடுகலைக் காண்க. இப்போது கார் கிடையுடன் கோணம் $\theta \left(0 < \theta < \frac{\pi}{2}\right)$ இற் சாய்ந்த ஒரு நேர் வீதி வழியே மேல்நோக்கி ஒரு மாறாக் கதியிற் செல்கின்றது. கார் அதே தடை R N இற்கு உட்பட்டு அதே வலு P W இல் தொழிற்படுமெனின் இம்மாறாக் கதியைக் காண்க.

5.	திணிவு $2m$ ஐ உடைய ஒரு துணிக்கை P ஒரு நிலைக்குத்துக் கோடு A மீது உள்ள A , B என்னும் இரு நிலைத்த புள்ளிகளுடன் ஒவ்வொன்றும் நீளம் l ஐ உடைய இரு இலேசான நீட்டமுடியாத இழைகளினால் தொடுக்கப்பட்டுள்ளது. உருவிற் காட்டப்பட்டுள்ளவாறு இரு இழைகளும்
	இறுக்கமாகவும் நிலைக்குத்துடன் கோணம் $ heta\left(0 < heta < \frac{\pi}{2}\right)$ ஐ ஆக்கிக்
	கொண்டும் இருக்கத் துணிக்கை P ஒரு கிடை வட்டத்தில் மாநாக் கோண ω வேகம் ω உடன் இயங்குகின்றது.
	இழை AP இல் உள்ள இழுவை $m(l\omega^2+g\sec\theta)$ எனக் காட்டுக.
	B
	· · · · · · · · · · · · · · · · · · ·
_	
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot{f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha{f u}+{f v}$ எனவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot{f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha{f u}+{f v}$ எனவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்
6.	${f u},\ {f v}$ ஆகியன ${f u}\cdot {f v}=rac{1}{2}$ ஆகுமாறு உள்ள இரு அலகுக் காவிகளெனக் கொள்வோம். ${f a}=\alpha {f u}+{f v}$ எனவும் கொள்வோம்; இங்கு $lpha,eta\in {\Bbb R}$ ஆகும். ${f a},\ {f b}$ ஆகிய காவிகள் செங்குத்தானவையாகவும்

7.	நீளம் $4a$ ஐயும் நிறை W ஐயும் உடைய ஒரு சீரான கோல் AB அதன் மேல் முனை	
	B ஓர் ஓப்பமான நிலைக்குத்துச் சுவருக்கு எதிரேயும் கீழ் முனை A கிடையுடன்	
	30° இந் சாய்ந்துள்ள ஓர் ஒப்பமான தளத்தின் மீதும் இருக்க நாப்பத்தில், $AC=a$	
	ஆன புள்ளி C இல் ஒரு கிடை விசை P ஐக் கோலிற்குப் பிரயோகிப்பதன் மூலம்,	
	வைத்திருக்கப்படுகின்றது. உருவிற் காட்டப்பட்டுள்ளவாறு, கோல் சாய்தளத்துடன்	
	30° இந் சாய்ந்துள்ளது. P இன் பெறுமானத்தைக் காண்க.	
	A	
	30°	

		-
	*	
8.	உருவிற் காட்டப்பட்டுள்ளவாறு $m,\ 2m$ என்னும் \mathcal{L} திணிவுகளை உடைய $A,\ B$ என்னும்	
	இரு துணிக்கைகள் கிடையுடன் கோணம் $\frac{\pi}{4}$ இற் சாய்ந்த ஒரு தளத்தின் மீது A	
	வைக்கப்பட்டு ஓர் இலேசான நீட்டமுடியாத இழையினால் தொடுக்கப்பட்டு, A இற்குப்	
	பிரயோகிக்கப்படும் ஒரு விசை P இனால் நாப்பத்தில் வைத்திருக்கப்பட்டுள்ளன.	
	P இன் தாக்கக் கோடும் இழையும் தளத்தின் ஓர் அதியுயர் சரிவுக் கோடு வழியே $ extstyle extstyle$	
	கிடக்கின்றன. துணிக்கை A தளத்தின் கரடான பகுதி மீதும் துணிக்கை B தளத்தின் $\frac{\pi}{4}$	
	ஓப்பமான பகுது மதும் உள்ளன. <i>A</i> இந்கும் தளத்தந்தும்படையே உள்ள உராயவுக் <u>21</u>	
	குணகம் $\frac{1}{2}$ ஆகும். $2\left \sqrt{2}P-3mg\right \leq mg$ எனக் காட்டுக.	
	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	

9.	A,B என்பன ஒரு மாதிரி வெளி Ω இன் இரு நிகழ்வுகளெனக் கொள்வோம். $P(A)=rac{1}{5}, \ \ P(A\mid B)=rac{1}{10},$
	$P(B \mid A) = \frac{3}{10}$ எனத் தரப்பட்டுள்ளது. $P(B), P(A \cup B)$ ஆகியவற்றைக் காண்க.
	<u></u>
•	
10.	ஏறுவரிசையில் ஒழுங்குபடுத்தப்பட்ட பின்வரும் ஏழு நோக்கல்களின் இடையம், ஆகாரம், இடை ஆகியன முறையே 5, 7, 5 ஆகும்:
	1, 3, 4, p, q, r, s
	இங்கு $p,\ q,\ r,\ s$ ஆகியன மெய்பெண்களாகும்.
	$p,\ q,\ r,\ s$ ஆகியவற்றின் பெறுமானங்களைக் கண்டு, ஏழு நோக்கல்களினதும் மாறற்றிறன் $\frac{38}{7}$ எனக் காட்டுக.
	······································

තීයලු ම හිමිකම් ඇව්රිණි/ ω ලාලට பதிப்புநிமையுடையது ω ω ω ω

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, $2\overline{024}$ සබාඛ්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2024General Certificate of Education (Adv. Level) Examination, 2024

සංයුක්ත ගණිතය II இணைந்த கணிதம் II

இணைந்த கணிதம் II Combined Mathematics II

10 T II

பகுதி B

* **ஐந்து** வினாக்களுக்கு மாத்திரம் விடை எழுதுக.

(இவ்வினாத்தாளில் g ஆனது புவியீர்ப்பினாலான ஆர்முடுகலைக் குறிப்பிடுகின்றது.)

11. (a) ஒரு நேர் வீதியில் ஒரு புள்ளி O இலிருந்து நேரம் t=0 s இல் ஓய்விலிருந்து பயணத்தை ஆரம்பிக்கும் ஒரு கார் P ஒரு மாறா ஆர்முடுகல் f m s $^{-2}$ உடன் 5 செக்கன்களுக்கு இயங்குகின்றது. பின்னர் அது t=5 s இற் பெற்ற மாறாக் கதியில் மேலும் 5 செக்கன்களுக்குச் சென்று t=10 s இல் ஒரு மாறா அமர்முடுகல் f m s $^{-2}$ இல் அமர்முடுகி ஒரு புள்ளி A இல் ஓய்விற்கு வருகின்றது. அதன் பின்னர் கார் P அதன் திசையைக் கணப்பொழுதில் மாற்றிக்கொண்டு மாறா ஆர்முடுகல் f m s $^{-2}$ உடன் அவ்வீதியில் O ஐ நோக்கி மீண்டும் செல்கின்றது.

அதே வீதியில் புள்ளி O இலிருந்து $t=10~\mathrm{s}$ இல் தொடக்கக் கதி $10f~\mathrm{m~s^{-1}}$ உடன் பயணத்தை ஆரம்பிக்கும் வேறொரு கார் Q மாறா அமர்முடுகல் $f~\mathrm{m~s^{-2}}$ உடன் கார் P ஐ நோக்கிச் செல்கின்றது. புள்ளி A இல் P ஓய்வுக்கு வரும்போது P இற்கும் Q இற்குமிடையே உள்ள தூரம் $125~\mathrm{m}$ எனத் தரப்பட்டுள்ளது. ஒரே பரும்படி வரிப்படத்தில் P,~Q ஆகியவற்றின் இயக்கங்களிற்கு, $t=0~\mathrm{s}$ இலிருந்து அவை சந்திக்கும் வரைக்கும் வேக - நேர வரைபுகளைப் பரும்படியாக வரைக.

- (i) f = 10,
- (ii) கார்கள் P உம் Q உம் $t=17.5~{
 m s}$ இற் சந்திக்கும் எனக் காட்டுக.
- (b) P,Q,R என்னும் மூன்று படகுகள் நேர்கோட்டுப் பாதைகளில் சீரான கதிகளுடன் இயங்குகின்றன. ஒரு குறித்த கணத்தில் படகு Q ஆனது படகு P இற்கு $450~\mathrm{m}$ கிழக்கே இருக்கும் அதே வேளை படகு R ஆனது படகு Q இற்கு $200~\sqrt{3}~\mathrm{m}$ வடக்கே உள்ளது (உருவைப் பார்க்க). படகு P ஆனது படகு Q ஐச் சந்திக்கும் எதிர்பார்ப்புடன் செல்லும் அதே வேளை படகு Q ஆனது படகு R ஐச் சந்திக்கும் எதிர்பார்ப்புடன் செல்கின்றது.

படகு P ஆனது படகு Q ஐ 45 செக்கன்களிலும் படகு Q ஆனது படகு R ஐ 20 செக்கன்களிலும் சந்திக்கின்றனவெனத் தரப்பட்டுள்ளது.

படகு P இன் படகு Q தொடர்பான கதி $10~{
m m~s^{-1}}$ எனக் காட்டி, படகு Q ஆனது படகு R ஐச் சந்திக்கும் கணத்தில் படகு P இற்கும் படகு R இற்குமிடையே உள்ள தூரத்தைக் காண்க.

12. (a) X, Y என்னும் இரு ஒப்பமான சீரான ஆப்புகளினதும் ஒரு துணிக்கை P இனதும் திணிவு மையங்களினூடாக உள்ள நிலைக்குத்துக் குறுக்குவெட்டு உருவிற் காட்டப்பட்டுள்ளது. AC, DE, EF ஆகியன அவை அடங்கும் முகங்களின் அதியுயர் சரிவுக் கோடுகளாக இருக்கும் அதே வேளை $B\hat{A}C = \alpha$ உம் $D\hat{E}F = \beta \ (<\alpha)$ உம் ஆகும். திணிவு M_1 ஐ உடைய ஆப்பு X இன் AB ஐக் கொண்ட முகம் ஓர் ஒப்பமான கிடை மேசை மீது வைக்கப்பட்டுள்ளது. திணிவு M_2 ஐ உடைய ஆப்பு Y இன் EF ஐக் கொண்ட முகம் X இன் X இக் கொண்ட முகத்தின்

மீது வைக்கப்பட்டுள்ளது. திணிவு m ஐ உடைய துணிக்கை P ஆனது DE மீது வைக்கப்பட்டுள்ளது. தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. ஆப்பு Y அதன் EF ஐக் கொண்ட முகம் ஆப்பு X இன் AC ஐக் கொண்ட முகத்தைத் தொட்டுக்கொண்டும் துணிக்கை P ஆனது DE ஐத் தொட்டுக்கொண்டும் இயங்கும் அதே வேளை ஆப்பு X இன் ஆர்முடுகலைத் துணிவதற்குப் போதுமான சமன்பாடுகளை எழுதுக.

(b) ஓர் ஒப்பமான உள் மேற்பரப்பைக் கொண்ட ஆரை a ஐ உடைய ஒரு நிலைத்த செவ்வட்டப் பொள் உருளையின் கிடை அச்சிற்குச் செங்குத்தான நிலைக்குத்துக் குறுக்குவெட்டு அடுத்துள்ள உருவிற் காட்டப்பட்டுள்ளது. புள்ளி O அதன் மையத்திலும் A, B ஆகியன அதன் கிடை விட்டத்தின் நுனிகளாகவும் உள்ளன. திணிவு m ஐ உடைய ஒரு துணிக்கை P கதி u A உடன் உருளையின் உள் மேற்பரப்பு மீது A இலிருந்து நிலைக்குத்தாகக் கீழ்நோக்கிய ஒரு திசையில் எறியப்படுகின்றது. P ஆனது உருளையுடன் தொடுகையில் இருக்க OP ஆனது கோணம் θ இனூடாகத் திரும்பும்போது P இன் கதி v எனக் கொள்வோம்.

 $v^2 = u^2 + 2ga\sin\theta$ எனக் காட்டுக.

- $heta = rac{7\pi}{6}$ ஆக இருக்கும்போது P ஆனது உருளையின் உள் மேற்பரப்பிலிருந்து விலகிச் செல்கின்றதெனத் தரப்பட்டுள்ளது. $u = \sqrt{rac{3ga}{2}}$ எனக் காட்டுக.
- 13. இயற்கை நீளம் a ஐ உடைய ஓர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி ஒரு நிலைத்த புள்ளி O உடனும் மற்றைய நுனி திணிவு m ஐ உடைய ஒரு துணிக்கை P உடனும் இணைக்கப்பட்டு, P நிலைக்குத்து இயக்கத்தில் ஈடுபடச் செய்யப்பட்டுள்ளது. துணிக்கை நிலைக்குத்தாகக் கீழ்நோக்கிச் செல்லும்போது O இற்குக் கீழே OA = a ஆக இருக்கும் புள்ளி A ஐக் கடந்து செல்கையில் அதன் கதி $\sqrt{2ag}$ ஆகும். O இற்குக் கீழே 3a இல் உள்ள ஒரு புள்ளி B இல் துணிக்கை கணநிலை ஓய்விற்கு வருகின்றது. இழையின் மீள்தன்மை மட்டு $\frac{3}{2}mg$ எனக் காட்டுக.

மேலும், P இன் இயக்கச் சமன்பாடு $\ddot{x} + \omega^2 \left(x - \frac{5a}{3}\right) = 0$ இனால் தரப்படுகின்றதெனக் காட்டுக; இங்கு x > a இந்கு OP = x ஆக இருக்கும் அதே வேளை ω (>0) துணியப்பட வேண்டிய ஒரு மாநிலியாகும்.

மேந்குறித்த இயக்கச் சமன்பாட்டினை $X=x-\frac{5a}{3}$ எனக் கொண்டு மீண்டும் எழுதுக. துணிக்கையின் இந்த எளிய இசை இயக்கத்தின் மையம், வீச்சம், ஆவர்த்தன காலம் ஆகியவற்றைக் காண்க.

சூத்திரம் $\dot{X}^2 = \omega^2(C^2 - X^2)$ ஐப் பயன்படுத்தி P இன் உயர்ந்தபட்சக் கதியைக் காண்க; இங்கு C வீச்சமாகும். மேலே செல்லும்போது P மட்டுமட்டாக O ஐ அடைகின்றதெனக் காட்டுக.

B இலிருந்து O இற்குச் செல்வதற்கு P எடுக்கும் மொத்த நேரம் $\sqrt{\frac{2a}{27g}} \Big(2\pi + 3\sqrt{3} \Big)$ எனக் காட்டுக.

P ஐக் கீழ்நோக்கி இழுத்து விடுவிப்பதன் மூலம் மேற்குறித்த எளிய இசை இயக்கம் தொடக்கப்படுமெனின், இழை அதன் இயற்கை நீளத்திலிருந்து எவ்வளவு தூரம் இழுக்கப்பட வேண்டுமென எடுத்துரைக்க.

14.(a) OA = a, OC = 2a, $A\hat{O}C = \frac{\pi}{3}$ ஆகவுள்ள OABC ஓர் இணைகரமெனக் கொள்வோம். **u**, **v** ஆகியன முறையே \overrightarrow{OA} , \overrightarrow{OC} ஆகிய திசைகளிலான அலகுக் காவிகள் எனவும் கொள்வோம்.

 $\overrightarrow{OD} = \frac{1}{2}a\mathbf{u} + 2a\mathbf{v}$ எனக் காட்டுக; இங்கு D ஆனது BC இன் நடுப்புள்ளியாகும்.

 $\stackrel{ au}{AB}$ மீது $\stackrel{ au}{E}$ ஆனது, $\stackrel{ au}{DE}$ இற்கு OD செங்குத்தாக இருக்குமாறு, உள்ள புள்ளியெனக் கொள்வோம்;

 $\overrightarrow{DE} = \frac{a}{2}\mathbf{u} - \frac{a}{3}\mathbf{v}$ எனக் காட்டுக.

OA, DE ஆகிய நீட்டப்பட்ட கோடுகளின் வெட்டுப் புள்ளி F எனக் கொள்வோம். $\overrightarrow{OF} = \frac{7a}{2}$ **u** எனக் காட்டுக.

(b) AB ஆனது DC இற்கு ச் சமாந் தரமாகவும் $A\hat{B}C=\frac{\pi}{6}$, $B\hat{A}D=\frac{\pi}{3}$, AD=DC=a ஆகவும் உள்ள ஒரு சரிவகம் ABCD எனக் கொள்வோம். AB மீது E,F ஆகிய புள்ளிகள், $A\hat{E}D=A\hat{F}C=\frac{\pi}{2}$ ஆகுமாறு, உள்ளன (உருவைப் பார்க்க). $P,\alpha P,\beta P,\gamma P$ என்னும் பருமனுள்ள விசைகள்

முறையே AB, BC, DC, AD ஆகியவற்றின் வழியே எழுத்து ஒழுங்குமுறையினாற் காட்டப்படும் திசைகளில் தாக்குகின்றன. இவற்றின் விளையுள் விசையின் பருமன் $\sqrt{7}P$ எனவும் அது E, C ஆகிய புள்ளிகளினூடாக E இலிருந்து C இற்கான போக்கில் செல்கின்றது எனவும் தரப்பட்டுள்ளது. α , β , γ ஆகியவற்றின் பெறுமானங்களைக் காண்க.

இப்போது தொகுதியுடன் ஓர் இணையானது, புதிய தொகுதியின் விளையுளின் தாக்கக் கோடு புள்ளி Fஇனூடாகச் செல்லுமாறு, சேர்க்கப்படுகின்றது. சேர்த்த இணையின் திருப்பத்தைக் காண்க. 15.(a) சம நீளம் 4a ஐயும் சம நிறை W ஐயும் உடைய AB, BC, CD என்னும் மூன்று சீரான கோல்கள் B, C ஆகிய முனைப் புள்ளிகளில் ஒப்பமாக மூட்டப்பட்டுள்ளன. முனை A ஒரு நிலைத்த புள்ளியில் ஒப்பமாகப் பிணைக்கப்பட்டுள்ளது. உருவிற் காட்டப்பட்டுள்ளவாறு AE = CF = DG = a, ABD = 60°, CBD = 30° ஆகவும் BD நிலைக்குத்தாகவும் இருக்குமாறு மூன்று கோல்களும் ஒரு நிலைக்குத்துத் தளத்திலே நாப்பத்தில் E, F, G ஆகிய மூன்று ஒப்பமான முளைகளின் மீது வைக்கப்பட்டுள்ளன.

(i) முளை G இனால் கோல் CD மீது உஞற்றப்படும் மறுதாக்கத்தின் பருமன் $rac{W}{3}$ எனவும்

(ii) முளை F இனால் கோல் BC மீது உஞற்றப்படும் மறுதாக்கத்தின் பருமன் $\dfrac{11W}{9}$ எனவும் காட்டுக.

கோல் AB இனால் கோல் BC மீது மூட்டு B இல் உஞற்றப்படும் மறுதாக்கத்தையும் காண்க.

(b) உருவிற் காட்டப்பட்டுள்ள சட்டப்படல் முனைகளில் ஒப்பமாக மூட்டப்பட்ட AB, BC, CA, CD, DB என்னும் ஐந்து இலேசான கோல்களைக் கொண்டுள்ளது. AB = BC = CA = 2a, $C\hat{B}D = 90^\circ$, $B\hat{C}D = 60^\circ$ எனத் தரப்பட்டுள்ளது. ஒரு சுமை W ஆனது மூட்டு D இல் தொங்கவிடப்பட்டிருக்கும் அதே வேளை சட்டப்படல் A இல் ஒரு நிலைத்த புள்ளியுடன் ஒப்பமாகப் பிணைக்கப்பட்டு AB கிடையாக இருக்க ஒரு

நிலைக்குத்துத் தளத்திலே, அதற்கு மூட்டு B இல் நிலைக்குத்தாக மேல்நோக்கிப் பிரயோகிக்கப்படும் ஒரு விசை P இனால், நாப்பத்தில் வைத்திருக்கப்படுகின்றது.

- (i) P இன் பெறுமானத்தைக் காண்க.
- (ii) போவின் குறிப்பீட்டைப் பயன்படுத்தி $D,\,C,\,B$ ஆகிய மூட்டுகளுக்கு ஒரு தகைப்பு வரிப்படத்தை வரைக.

இதிலிருந்து, கோல்களின் தகைப்புகளை இழுவைகளா, உதைப்புகளா எனக் குறிப்பிட்டுக் காண்க.

16. ஆரை a ஐ உடைய ஒரு சீரான திண்ம அரைக்கோளத்தின் திணிவு மையம் அதன் மையத்திலிருந்து தூரம் $\frac{3}{8}a$ இல் இருக்கின்றது எனவும் உயரம் h ஐ உடைய ஒரு சீரான திண்மச் செவ்வட்டக் கூம்பின் திணிவு மையம் அதன் அடியின் மையத்திலிருந்து தூரம் $\frac{1}{4}h$ இல் இருக்கின்றது எனவும் காட்டுக.

ஆரை a ஐயும் மையம் O ஐயும் உடைய ஓர் அரைக்கோளப் பகுதி ஆரை 2a ஐயும் மையம் O ஐயும் அடர்த்தி ρ ஐயும் உடைய ஒரு சீரான திண்ம அரைக்கோளத்திலிருந்து வெட்டி அகற்றப்படுகிறது. இப்போது அடியின் ஆரை 2a ஐயும் உயரம் 2a ஐயும் அடர்த்தி $\lambda \rho$ ஐயும் உடைய ஒரு சீரான திண்மச் செவ்வட்டக் கூம்பு அரைக்கோளத்தின் எஞ்சிய பகுதியுடன் அருகே உள்ள உருவிற் காட்டப்பட்டுள்ளவாறு விறைப்பாகப் பொருத்தப்பட்டுள்ளது. இவ்வாறு

செய்யப்படும் பொருள் S இன் திணிவு மையம் P இலிருந்து தூரம் $\frac{(48\lambda+157)}{8(4\lambda+7)}a$ இல் இருக்கின்றதெனக் காட்டுக; இங்கு P ஆனது S இன் திண்மக் கூம்பின் உச்சி ஆகும்.

S இன் திணிவு மையம் O இல் இருக்கத்தக்கதாக λ இன் பெறுமானத்தைக் காண்க.

இப்போது λ இற்கு இப்பெறுமானம் இருக்கிறதெனக் கொள்வோம். நீட்டப்பட்ட கோடு PO ஆனது S இன் வெளி அரைக்கோன மேற்பரப்பைச் சந்திக்கும் புள்ளி Q எனக் கொள்வோம். மேலும் A என்பது S இன் வட்ட விளிம்பு மீது உள்ள ஒரு புள்ளி எனவும் கொள்வோம்.

பொருள் S ஒரு கரடான நிலைக்குத்துச் சுவருக்கு எதிரே, புள்ளி A உடனும் நிலைக்குத்துச் சுவர் மீது உள்ள ஒரு நிலைத்த புள்ளி B உடனும் இணைக்கப்பட்டுள்ள ஓர் இலேசான நீட்டமுடியாத இழையினால், நாப்பத்தில் வைத்திருக்கப்படுகின்றது. நாப்பத் தானத்தில் S இன் வெளி அரைக்கோள மேற்பரப்பு புள்ளி Q இல் சுவருடன் தொடுகையுறுகின்றது. O,A,B,P,Q ஆகிய புள்ளிகள் சுவருக்குச் செங்குத்தான ஒரு நிலைக்குத்துத் தளத்தில் உள்ளன (மேலே உள்ள உருவைப் பார்க்க). $\mu \geq 1$ எனக் காட்டுக; இங்கு μ ஆனது S இன் வெளி அரைக்கோள மேற்பரப்பிற்கும் சுவருக்குமிடையே உள்ள உராய்வுக் குணகமாகும்.

- 10 -

- 17.(a) நிறங்களைத் தவிர ஏனைய எல்லா அம்சங்களிலும் சர்வசமனான 2 வெள்ளை நிறப் பந்துகளும் 3 கறுப்பு நிறப் பந்துகளும் ஒரு பெட்டி B_1 இல் உள்ளன. 3 பந்துகள் பெட்டி B_1 இலிருந்து வெறும் பெட்டி B_2 இற்கு எழுமாறாக இடம் மாற்றப்படுகின்றன. அதன் பின்னர் பெட்டி B_2 இலிருந்து ஒரு பந்து எழுமாறாக வெளியே எடுக்கப்படுகின்றது.
 - (i) பெட்டி B_2 இலிருந்து வெளியே எடுக்கப்படும் பந்து வெள்ளை நிறமுள்ளதாக இருப்பதற்கான,
 - (ii) பெட்டி B_2 இலிருந்து வெளியே எடுக்கப்படும் பந்து வெள்ளை நிறமுள்ளதெனத் தரப்படும்போது, பெட்டி B_1 இலிருந்து பெட்டி B_2 இற்கு 2 வெள்ளை நிறப் பந்துகளும் 1 கறுப்பு நிறப் பந்தும் இடம் மாற்றப்படுவதற்கான

நிகழ்த்கவைக் காண்க.

(b) 20 மாணவர்கள் ஒரு புதிரைத் தீர்ப்பதற்கு எடுக்கும் நேரங்கள், அந்நேரங்கள் ஒவ்வொன்றிலுமிருந்து 10 ஐக் கழித்துப் பின்னர் 2 இனால் வகுத்து, குறிமுறையாக்கப்பட்டுள்ளன.
2 தவறியுள்ள மீடிறன்கள் இருக்கும் குறிமுறையாக்கப்பட்ட தரவுகளின் மீடிறன் பரம்பல் கீழே

தரப்பட்டுள்ளது.

குநிமுறையாக்கிய நேரங்கள் (நிமிடங்கள்)	மீடிநன்
0 - 2	2
2 – 4	f_1
4 – 6	9
6-8	f_2
8-10	1

குறிமுறையாக்கிய நேரங்களுக்கான மதிப்பிட்ட இடை 4.4 நிமிடங்களெனத் தரப்பட்டுள்ளது. $f_1=6$ எனவும் $f_2=2$ எனவும் காட்டுக. குறிமுறையாக்கிய நேரங்களின் நியம விலகலையும் ஆகாரத்தையும் மதிப்பிடுக. இப்போது, புதிரைத் தீர்ப்பதற்கு எடுத்த உண்மையான நேரங்களின் இடை, நியம விலகல், ஆகாரம் ஆகியவற்றை மதிப்பிடுக.