USAAMRDL-TR-76-28C

REXOR ROTORCRAFT SIMULATION MODEL

Volume III - User's Manual

Lockheed California Co. P.O. Box 551 Burbank, Calif. 91520

(1) O July 1976

4

00

Final Technical Report

Approved for public release; distribution unlimited.

Prepared for

U. S. Army Aviation Systems Command P.O. Box 209 St. Louis, Mo. 63166

EUSTIS DIRECTORATE

U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY Fort Eustis, Va. 23604

Best Available Copy

EUSTIS DIRECTORATE POSITION STATEMENT

The REXOR analysis and computer program reported herein is considered to be a useful tool for the analysis of the dynamics, handling qualities, failure modes, performance, and loads of a single four-bladed, gyrocontrolled, hingeless rotor helicopter. The REXOR capability to model two- or four-bladed teetering or articulated rotors is largely untried. The REXOR computer program may be used for the analysis of any of the above rotor types, while the analysis techniques should also be instructive in the development of other detailed analyses for helicopter rotors. The draft of this report was reviewed for technical content only.

The progress under this contract was monitored by a Technical Monitor Team consisting of Mr. A. W. Kerr, Headquarters, USAAMRDL; Dr. W. White, Langley Directorate, USAAMRDL; Mr. S. Hurt, Directorate for RD&E, AVSCOM; and Mr. B. I. MacDonald, Eustis Directorate, USAAMRDL. Mr. E. E. Austin, Eustis Directorate, provided additional technical review of the draft final report.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

KEPURI DOC	CUMENTATION PAGE	READ INSTRUCT	
1 TOTO WINDER	2. GOVT ACC	SSION NO. 3. RECIPIENT'S CATALOG N	
USAAMRDL TR-76- 28C			
PEYOD DOMODODARM CTM	T AMTON 1	S. TYPE OF REPORT & DEA	00-5 04
REXOR ROTORCRAFT SIM		Final Fechnical	epæt.
Volume III. User's N	fanual.	S. PERFORMING CITY NEP	T NUM
		(14) LR-27463-Vol-	3 1
7. AUTHORIS		CONTRACT OF STREET	HOERLE
W.D. Anderson, F. Con	mer, P. Kretsinger	DAAE11-66-C-3667(H	IV
J.S. Reaser		and the second s	
PERENBURG ON ANIZATION N	AME AND ADDRESS	10. PROGRAM ELEMENT, PRO	JECT, T
Lockheed California	Company	AREA & WORK UNIT NUM	BE H2
PO Box 551			
Burbank, Calif. 9152			
U.S. Army Aviation Sy		Jula 1276 12	122
P.O. Box 209	scens command	17. March of Ages	aa
St. Louis, Missouri	63166	227	i
14. MONITORING AGENCY NAME &	ADDRESS(If different from Controlls	Office) 15. SECURITY CLASS. (of this	report
Eustis Directorate		Unclassified	
U.S. Army Air Mobilit		15a. DECLASSIFICATION/DO	WUGBAD
Fort Eustis, Virginia	23604	SCHEDULE	HONAD
16. DISTRIBUTION STATEMENT (of	thie Report)		
Approved for public a	elesse distribution a	nlimitad	
Approved for public r	elease; distribution u	nlimited.	
Approved for public r	release; distribution u	nlimited.	
Approved for public r	release; distribution u	nlimited.	
Approved for public 1			
17. DISTRIBUTION STATEMENT (of			
17. DISTRIBUTION STATEMENT (of	the abetract entered in Block 20, If		
17. DISTRIBUTION STATEMENT (of	the abetract entered in Block 20, If		
17. DISTRIBUTION STATEMENT (of 18. SUPPLEMENTARY NOTES Volume III of three	the abetract entered in Block 20, if	illerent Irom Report)	
17. DISTRIBUTION STATEMENT (of 18. SUPPLEMENTARY NOTES Volume III of three 19. KEY WORDS (Continue on reverse	the abeliact entered in Block 20, if volumes	illerent (rom Report)	tation
17. DISTRIBUTION STATEMENT (of 18. SUPPLEMENTARY NOTES Volume III of three	the abetract entered in Block 20, if volumes eide if necessary and identify by bi Rotorcraft Simulat	illerent (rom Report)	tation
17. DISTRIBUTION STATEMENT (of 18. SUPPLEMENTARY NOTES Volume III of three 19. KEY WORDS (Continue on reverse Aerodynamics	the abeliact entered in Block 20, if volumes	illerent (rom Report)	tation
16. SUPPLEMENTARY NOTES Volume III of three 19. KEY WORDS (Continue on reverse Aerodynamics Airfoil Tables	volumes eide if necessary and identify by bit Rotorcraft Simulat Helicopters	illerent (rom Report)	tation

is divided into three volumes. The first volume is a development of rotorcraft mechanics and aerodynamics. The second is a development and explanation of the computer code required to implement the equations of motion. The third volume is a user's manual, and contains a description of code input/output as well as operating instructions

well as operating instructions.

D 1 JAN 73 1473 EDITION OF T NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

209970

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) The REXOR math model has been written for a single four-bladed, gyro-controlled, hingeless-rotor helicopter with additional capability for analysis of teeter or hinge-offset rotor systems with conventional controls and two or four blades. The helicopter modeled may be conventional in design, winged or compounded. Modeling emphasis is on an accurate main rotor description with additional degrees of freedom to describe the rest of the helicopter. REXOR has been implemented on IBM 360 and CDC 6000 series equipment. The operating instructions are primarily based on the 360 equipment uscage with additional instructions to show use on the 6000 series equipment.

TABLE OF CONTENTS

Section	Page
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
1	INTRODUCTION
1.1	CONTENTS OF MANUAL
1.2	DEPTH OF PRESENTATION
2	CONFIGURATION MODELED BY REXOR
2.1	MAJOR CONFIGURATION
2.2	OVERALL CONFIGURATIONS
2.3	MAIN ROTOR CONFIGURATIONS 9
2.4	CONTROL SYSTEM CONFIGURATIONS 10
3	PROGRAM INPUT
3.1	RELATIVE ADDRESS/MASTER DATA INPUT SYSTEM 11
3.1.1	Overview of Concept
3.1.2	Data Deck Construction
3.1.3	Operational Advantages
3.2	THE RA SET (COMPLETE NUMERICAL LIST)
3.3	PROGRAM OPERATION VIA INPUT
3.3.1	Case Identification
3.3.2	Trim Initialization
3.3.3	Trim ∩peration
3.3.4	FLY
3.3.5	Output Options
3.3.6	Harmonic Analysis
3.3.7	Main Rotor Blade
3.3.8	Weight and Balance
3.3.9	Airframe
3.3.10	Tail Rotor

TABLE OF CONTENTS (Continue:1)

Section	Page
3.3.11	Propeller
3.3.12	Hub
3.3.13	Engine
3.3.14	Swashplate and Feather-Flap Feedback Control Gyro 160
3.3.15	Direct-Flap Feedback Control Gyro 166
3.3.16	Shaft Bending
3.3.17	Induced Flow
4	PLANNING AND OPERATING THE PROGRAM
4.1	RUN TIME REQUIRED
4.2	TRIM SAVING PROCEDURES
4.3	TROUBLE SHOOTING
5	TABULATED OUTPUT
6	COMPUTER INSTALLATION REQUIREMENTS
6.1	IBM 360/370 SERIES HARDWARE 21.2
6.2	CDC 6000 SERIES HARDWARE
6.3	GRAPHIC HARDWARE/SOFTWARE REQUIREMENTS 215
	LIST OF SYMBOLS

LIS' OF ILLUSTRATIONS

Figure		Page
3-1	Minimum Configuration	15
3-2	Typical Configuration	16
3-3	Data Deck Card Image Example	17
3-1:	Wind-Earth-Hub Orientation	95
3-5	Pilot Command Data	110
3-6	Yaw Damper	113
3-7	Longitudinal Stick Desensitizer and Pitch-Roll Decoupler	115
3-8	Lateral Stick Desensitizer and Lift-Roll Decoupler	116
3-9	Typical Block of Time History Data	122
3-10	TRIM-FLY Damping Function	145
3-11	Feather Bearing Friction	152
3-12	Pitch Horn Geometry	165
6-1	IBM Overlay Structure	213
6-2	CDC Overlay Schematic	216

LIST OF TABLES

Table	Pa	ge
3-]	Input Data/Relative Address Table	9
3-2	Relative Address Reverse Directory 9	1
3-3	Case Identification	3
3-11	Air Data Conditions	4
3-5	Trim Input Parameter	4
3-6	Turn Inputs	6
3-7	Initial Pitch-Roll Data 9	7
3 - 8	Incremental Shaft Moments	7
3-9	Inflow Data	8
3-10	Time Lag Constants	8
3-11	Trim Options	9
3-12	Trim Integration Definition	0
3-13	Trim Gains	1
3-14	Trim Variable Schedule	2
3-15	Swashplate Trim Gains	3
3-16	Control Gyro Trim Gains	4
3-17	Fixed Shaft Trim	6
3-18	Trim Punch Cards	7
3-19	Control Inputs	1
3-20	Trim Plot Signal Table	4
3-21	FLY Plot Signal Table	7
3-22	Tape Format	2
3-23	Harmonic Analysis Variables	3
3-24	Blade Station Reference Dimensions	8
3-25	Blade Angles, Offsets, and Dimensions	9
3-26	Blade Modal Data	'n
3-27	Tension-Torsion Pack Data	3
3-28	Structural and Damping Coefficient Data 14	6
3-29	Linear Aerodynamics	6
3-30	Nonlinear Blade Aero Data	ß

LIST OF TABLES (Continued)

Table		Page
3-31	Pitch Horn Bending Inputs	147
3-32	Quasi-Static Torsion	
3-33	Dynamic Torsion Inputs	
3-34	Feather Bearing Loads	
3-35	Mass Data Table	153
3-36	Inertia and C.G. Data	154
3-37	Airframe Geometry	154
3-38	Airframe Aerodynamics	157
3-39	Tail Rotor Data	158
3-40	Propeller Inputs	159
3-41	Engine Inputs	160
3-42	Swashplate Inputs	162
3-43	Control Input for Locked Swashplate (RA(42) = HARDSP = 1)	167
3-1:4	Control Gyro Inputs	168
3-45	Shaft Bending Data	171
3-46	Wake Angle Function	172
3-47	Induced Flow Inputs	173
4-1	Machine Time Estimates	175
5-1	Sample REXOR Tab Output	180
6-1	I/O Units	214
6-2	CALCOMP Operation	215

INTRODUCTION

1.1 CONTENTS OF MANUAL

Volume III is a user's manual. It is primarily concerned with the mechanics of operating the program. The user is assumed to be familiar with the contents of Volumes I and II. Many inputs are required and a large portion of these pages are devoted to a description of the inputs. Before discussing the inputs, the configurations the program can model and what constitutes easy and difficult program modifications are reviewed. The output plots and tabulations are also described. Due to the extensive computing time required for a run, a portion of this book is devoted to describing the run time requirements and time saving procedures. In the final section, the interfacing of the program in its uncompiled FORTRAN form with the user's machine is reviewed. Included are the series, sequential processing for time history plots, and Fast Fourier Transform analysis interface.

1.2 DEPTH OF PRESENTATION

Volume III assumes the user has a limited knowledge of the program and wishes to operate same. It is assumed that he is primarily an engineer and secondarily a programmer. How to modify the program is not a subject. The intention is to let the user input-output the program without a complete knowledge of the program code. This statement does not preclude the probable prospect that at least minor program changes will be wanted for a new configuration.

2. CONFIGURATIONS MODELED BY REXOR

2.1 MAJOR CONFIGURATION

The program, as presently structured, is limited to helicopter designs featuring a single main rotor and a tail rotor. However, there is nothing in the basic mathematical approach which limits the program to one lifting rotor.

2.2 OVERALL CONFIGURATIONS

Although the program is limited to one main rotor, the fuselage configuration is readily variable under one assumption; namely, the user is satisfied that the fuselage and its attachments can be treated as one rigid body with flexible rotor mast and controls and with rotors which are geared directly to the main rotor. Using inputs alone, a pure helicopter or a compound configuration with a pusher propeller can be simulated. The size of the horizontal and vertical tail surfaces can be readily changed. Note the programming is not highly versatile in that propellers, tail rotors, and fixed surfaces can be added only at limited locations and angles. The user, however, will find that programming changes for the aerodynamic and inertial characteristics of items attached to the fuselage are relatively easy under the assumption given above. If no additional degrees of freedom such as tail rotor shaft windup or fuselage bending are needed, then the programming changes can have a "tacked-on" structure.

2.3 MAIN ROTOR CONFIGURATIONS

The program can handle a hingeless or articulated rotor of four blades quite easily. The hingeless design can be either stiff or soft inplane, but no soft inplane design has been operated in the program at this writing. The program has been run however as a "soft" inplane articulated rotor. The only difference between a hingeless design with a "virtual" hinge and a blade with a real hinge is in the shape of the blade bending mode in the blade root area and in the spring matrix describing the elastic characteristics of the blade structure itself.

The program has interim modifications to handle the two blade teetering rotor. These changes allow for an independent, fully cantilevered inplane mode; a collective, fully cantilevered flap; and a teetering rigid body flap for which a hinged-flap, cantilevered-inplane constraint is appropriate.

The programming is presently restricted to four blades with the teetering exception above. Changes to allow for any number of blades would not be a troublesome modification, but would be extensive. A large number of variables allow a maximum of four in their dimension statements and would have to be changed.

2.1. CONTROL SYSTEM CONFIGURATIONS

Two basic configurations are modeled, the normal swashplate control configuration and direct-flap feedback control system featuring a small, isolated control gyro with a mechanical feedback proportional to cyclic hub flap deflections. The program also models the external gyro system hub flap deflections. The program also models the external gyro system the same as for a normal swashplate driven directly from the cyclic stick through actuators. The difference is in the input description where soft springs and a large swashplate inertia are characteristics of the gyro configuration. For the swashplate configuration, the inertia may be so configuration. For the swashplate configuration, the inertia may be so low and the spring rates so high, that it may be appropriate to run the program with the swashplate degrees of freedom locked out. The character-program with the swashplate degrees of freedom locked out. The character-program with the swashplate degrees of freedom locked out. The character-program with the swashplate degrees of a freedom locked out. The character-program with the swashplate degrees of a freedom locked out. The character-program with the swashplate degrees of a freedom locked out. The character-program is to freedom locked out and may lead to computation or numerical instability for a reasonable azimuth step between time points.

3. PROGRAM INPUT

3.1 RELATIVE ADDRESS/MASTER DATA INPUT SYSTEM

3.1.1 Overview of Concept

REXOR provides for a comprehensive description of a rotocraft. Consequently, there are a large number of inputs. To provide a high degree of flexibility in manipulating the input data, the Relative Address (RA) input system is used. Some attributes of this form of data management are:

- the order of the data is in...aterial
- the same item may be in the deck several times, the last one encountered being used.
- only that data which is necessary need be input.

A relative address system coupled with a master/temporary data set philosophy, produces an efficient data handling method.

The master data set idea provides a mechanism for good data management practices. For example, the master data sets could be stored on a storage device such as tape or disk and retrieved by name. The section which follows will present details concerning the construction and content of the data deck.

3.1.2 Data Deck Construction

Data deck construction concepts begin with a series of definitions. The total collection of data submitted to the computer at any one time is called a run deck. A run deck is composed of data cards and control cards. These two card types will be discussed presently. The collection of data cards is caller a data unit. Three types of data units will be considered as the basic units of data deck construction. These are:

- master data
- permanent change data
- case data.

Master data is a data unit which will be the base for a series of cases. A data unit which will permanently change the master data unit currently in use is called a permanent change data unit. Values of data defined in this data unit will override corresponding RA's in the master data unit.

It should be added that permanency is only as long lived as the data deck in its current configuration. Case data is defined as a data unit which will temporarily override corresponding master data RA's. The resulting data will be executed as a case. The generalized data unit concept leave the user a great deal of freedom in data collection and management.

The data units within a data deck are identified to the program by control cards. Control card and data card format and definitions follow.

CONTROL CARD FORMAT;

card columns 1 - 4 contain control characters.

5 - 8 must be left blank.

9 - 72 a comment field.

• CONTROL CHARACTER DEFINITIONS:

9999 "END OF RUN". This card is the last card of a run deck. It is always required.

8888 "MASTER DATA DECK HEADER" card. This card signals the beginning of a master data deck; i.e., all data cards which follow, up to the next "BLANK" control card, constitute a master data deck.

"PERMANENT CHANGE DATA HEADER" card. This card signals the beginning of a permanent change data deck; i.e., all data cards which follow, up to the next "BLANK" card, constitute a permanent change data deck.

bbbb* "BLANK" card. This card signals the end of a data unit.

DATA CARD FORMAT:

One to five inputs can be entered on an input card. The card format is as follows:

^{*}b signifies a blank.

card column	field definition	quantity	
1 - 4	Il+	IRl	right adjusted
5 – 8	I]+	IR2	right adjusted
11 - 22	E12.0	$v_{\underline{l}}$	
23 - 34	E12.0	V ₂	
35 - 46	E12.0	^V 3	
47 - 58	E12.0	V ₄	
59 - 70	E12.0	V ₅	

where IRl is the RA of the first item on the card

IR2 is the RA of the last item on the card

If one and only one item is being inputted, $\mathbf{V}_{\mathbf{l}}$, then only IRl is required.

WARNING: THE INPUTS ON A GIVEN CARD ARE SEQUENTIAL, i.e., SKIPPING FIELDS, BY LEAVING BLANK, IS NOT ACCEPTABLE. BLANK FIELDS ARE INTERPRETED AS A ZERO VALUE.

Note the data field specification, El2.0. All inputs are real numbers and can be inputted in a variety of ways as described in your FORTRAN manual. But remember, an absent decimal point has an assumed position at the right of the field.

For tables of length greater than 5, i.e., more than will go on one data card, let

IRl be address of first entry

with the basis of the said of

IR2 be address of last entry of the table

Then skip the IR fields on subsequent cards.

Two RA's have been set aside to identify title information to the program, RA (1) and RA (16).

• TITLE CARD FORMAT:

COL 1 - 4

RA (1) or RA (16)

COL 11 - 70

TITLE INFORMATION

A run deck is composed of any number of data units with the following restrictions.

- The first data unit must be a master data deck.
- At least one case must be defined.

A case data unit may consist of no changes. However, the presence of a case must be indicated by a "BLANK" control card. The minimum run deck would look like that shown in Figure 3-1.

A typical data deck is given on Figure 3-2. Note that:

- A master data deck may be updated with any number of permanent change decks
- Change decks and case decks can be interspersed
- Any number of master decks may be present in a run deck. However, a master deck must be followed by at least one case deck.

Finally, an example of a data deck is presented in Figure 3-3.

3.1.3 Operational Advantages

The operation of the RA system permits categorizing data as either master data, master override data, or temporary case data. The system gives each input a unique address number. The advantage of master override is that a large block of data can be changed in the master due to a change of blade, the use of trim save cards, etc., for all the cases to follow. This block of data is easily identified and removed at the end of a series of cases. Hence the integrity of the master data is readily maintained.

The RA system also permits using the E format readin for data, flags, summation integers, etc. The internal equivalence within REXOR converts the numbers to the type actually needed. The inputs may even simultaneously be a flag and a physical constant.

Figure 3-1. Minimum Configuration

Figure 3-2. Typical Configuration

CARD COLUMNS

1 2 3 4 5 6 7 12345678901234567890123456789012345678901234567890123456789012

```
8888
          S - 58 VEHICLE DATA
  1
  31
          1000.
 32
          180.
 36
          24.
 45
     48
                                                3.
 143 144
          1.
150
151 154
                                   1.01
          0.
 171 174
                                   0.042
                                                0.042
274
          -2.4
267 289
                       . 05
          1.
                                   -1
301
          1.0
          2.00000E 00 3.00000E 00 4.00000E 00 1.00000E 01 1.10000E 01
302 316
           1. 20000E 01 5.00000E 00 8.00000E 00 9.000C0E 00 6.00000E 00
           7.90000E 01 5.30000E 01 5.50000E 01 5.60000E 01 8.00000E 01
1474
          1.0
375 377
          1.0
                       1.0
298
          1.0
                     END OF MASTER DATA
7777
                   THIS IS A BLADE DATA SET
          9-08-75 SIKORSKY H-34 BLADE REXOR SIMULATION MODEL
 82 84
            0.5494E 01
                        0.2385E 02 0.6229E 02
501 505
            0.1450E 01
                        0-2750E 01
                                    0.5500E 01
                                                  0.7500E 01
                                                               0.9500E 01
506 510
            0-1200E 02
                        0.1375E 02
                                     0.1575E 02
                                                  0. 1875E 02
                                                               0.2150E 02
511 513
                        0-2575E 02
                                     0.2800E 02
            0.2400E 02
54 545
            0.1744E 01
                         0.2928€ 00
                                     0,1009E 00
                                                  0.1622E 00
                                                               0-1644E 00
                        0-1689E 00
546 550
            0-1596E 00
                                     0-1784E 00
                                                  0.1540E 00
                                                               0.1578E 00
 551 553
            0.1856E 00
                         0.1537E 00
                                     0.2670E 00
761 765
                         0-6400E-01
                                     0.1648E 00
                                                  0. 2383E 00
            0.0
                                                               0.3120E 00
 766 770
            0.4044E 00
                        0.4692E 00
                                     0.5435E 00
                                                  0.6550E 00
                                                              0-7575E 00
            0.8507E 00 0.9160E 00 0.1000E 01
771 773
                   END OF BLADE DATA SET
 50
          5801.
372
          . 6
297
          21.0
1498
          0.0
 36
          4.0
                    END OF CASE
                                   DATA
9999
```

Figure 3-3. Data Deck Card Image Example

3.2 THE RA SET (COMPLETE NUMERICAL LIST)

The listing which follows (Table 3-1) is designed primarily as a memory aid for the experienced user. Only a brief description of each input is given. The user is advised to consult Section 3.3, which categorizes the inputs into logical groups and supplies comprehensive information as to each input's use.

The following table includes:

- the relative address (RA)
- the equivalenced FORTRAN name
- a brief description
- units, if applicable
- typical values.

For the sake of completeness, addresses which are not currently used are indicated as OPEN. Program variable dimension information is included where applicable. A row of ***** indicates the input is used by the program directly as a RA constant without being equivalenced to a FORTRAN name. Parenthesis after the FORTRAN name encloses the diminsions of that name.

A reverse directory, Table 3-2, is given to aid in finding the RA number when the FORTRAN name is known.

3.3 PROGRAM OPERATION VIA INPUT

The following is a narrative guide to the inputs listed in Section 3.2. The input data are discussed in logical groups which bring out the interrelationship of the various inputs as well as giving details as to the nature of each input.

Before proceeding some words of caution are given. The program has been used primarily for analyzing helicopters employing Lockheed's rigid rotor concept with a control gyro featuring flap bending feedback. Limited application of the program has been made to a four-bladed articulated and a two-bladed teetering rotor. The adapting of the program to other configurations may generate a complete new set of inputs. Program modifications may be required, and a debugging process expected. The logic is complex and new logic paths may be opened with unsatisfactory results. Numeric: may be a problem. In other words, the program should not be expected to be polished and readily adaptable to a variety of configurations.

TABLE 3-1. INPUT DATA/RELATIVE ADDRESS TABLE

		INPUT DATAMELATIVE ADDRESS TABL	. E	
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
1	(15)	TITLE CARD 1	5-58	
2			DATA	
4				
5				
6				
8		*		
9				
10 11				
12		·		
13				
14 15				
16	(15)	TITLE CARD 2		
17				
18 19				
20				
21				
22				
24				
25		•		
26 27				
28				
29				
30				
31	CS MA X	MAX. LONG. STICK TRAVEL	1.0000E 03	FT
37 /	AZT	NO. DF COMPUTATION POINTS/REV DURING TRIM	1.8000E 02	
	TRIMO (3)	ROTOR ROLL MOMENT (TRIM) +RT	0.0	FT-LB
34		ROTOR PITCH MOMENT (TRIM)+N.UP	0.0	FT-LB
35		ROTOR SHAFT LIFT (TRIM) +UP	0.0	LB
36	TCUT	MAX REVOLUTIONS TO TRIM	4.0000E 00	
37 (PEN		0.0	
38 (SET	SIDESLIP ANGLE +RT	0.0	RAD
	DPEN (3)		0.0	
40			0.0	

TABLE 3-1 - Continued

		INPUT DATA/RELATIVE ADDRESS TABL	E	
R/A	PROGRAM Symbol	DESCRIPTION	SAMPLE VALUE	UNITS
42	HARDSP	HARD SWASHPLATE OPTION IF =1, NO SP D.O.F.	1.0000E 00	
43	OPEN		0.0	
44	NSDÁTA	BLADE SECTION AERO FLAG O=TABLE,1=LINEAR	0.0	
45	CRSFG	CONSTANT ROTOR SPEED FLAG 1=CONST. ROTOR SPEED	1.0000E 00	
46	ICONTR	MASS MATRIX PRINT FLAG. 0=0FF, 1=0N. 1ST PT. TRIM AND FLY	0.0	
47	I PUNC H	PUNCH A TRIM RESTART DATA DECK 0=OFF 1=ON	1.0000E 00	
48	IPLOT	PLOT FLAG,0=NONE,1=TRIM,2=FLY, 3=BOTH,4=SPECIAL FLY PLOT	3.0000E 00	
49	IPRINT	PRINT EVERY COMP. POINT FOR 1ST REV OF TRIM. 0=0FF 1=0N	0.0	
50	CASE	CASE NO.	5.8020E 03	
51	NAZ	NO. OF POINTS/REV. IN FLY	2.4000E 02	
52	0	MAIN ROTOR SPEED	2.3210E 01	RAD/SEC
53	ВР	PROPELLER BLADE ANGLE, +THRUST	0.0	RAD
54	AlS	LATERAL CYCLIC +N.DN	7.83C1E-02	RAD
55	815	LONGITUDINAL CYCLIC +N.DN	6.1318E-02	RAD
56	тно	CULLECTIVE +THRUST	2.3560E-01	RAD
57	THOTR	TAIL ROTOR COLLECTIVE +THRUST	9.1368E-02	RAD
58	ALPHA	ANGLE OF ATTACK +N.UP	-5.0684E-02	RAD
59	PHI	BANK ANGLE +RT	-1 .4815E-01	RAD
60	SNGBLF	SINGLE BLADE FLY OPTION 0=OFF, 1=CN	0.0	
61	GINT	GYRO EQ. SUB-INTEGRATION INTERVAL MULT. FACTOR	0.0	
62	VT	TRAJECTURY VELOCITY	1.2300F 02	FT/SEC

TABLE 3-1 Continued

R/A	PROGR		DESCRIPTION		SAMPLE	UNITS
	SYMBO	L			VALUE	
63	GAMMA		FLIGHT PATH ANGLE	+CLIMB	0.0	RAD
64	OPEN				0.0	
65	WIMR		VERTICAL DOWNWASH	+ DN	9.4481E 00	FT/SEC
66	PIMR		ROLL DOWNWASH	≯RT	-7.4834E-03	RAD/SE
67	OIMR		PITCH DOWNWASH	+N.UP	-6.2103E-03	RAD/SE
68	OPEN				0.0	
69	GLCON		SWP ROLL CONTROL MOMENT	+RT	0.0	FT-LB
70	GMC DN		SWP PITCH CONTROL MOMEN	T N.UP	0.0	FT-LB
71	WIMRD		D/DT OF WIMR		0.0	
72	PIMRD		D/DT OF P!MR		0.0	
73	QIMRD		D/DT GF QIMR		0.0	
74	WIMRN1		BACKVALUE OF WINR		0.0	
75	PIMRN 1		BACKY LUE OF PIMR		0.0	
76	QIMRNI		BACKVALUE OF QIMR		0.0	
77	Altr		TAIL ROTOR LONG. FLAP A	NGLE	3.8492E-02	RAD
78	WITR		TAIL ROTOR DOWNWASH	+LT	1.5680E 01	FT/SEC
79	OPEN				0.0	
80	TAU		TRIM CONTROL TIME CONST	ANT	1.0000E-02	SEC
81	R		MAIN ROTOR RADIUS		2.8000E 01	FT
82	08	(3)	BLADE BENDING NAT. FREQ	•	5 • 4 940E 00	RAD/SEC
83			USED IN HARMONIC TRIM		2.3850E 01	RAD/SE
84					6.2290E 01	RAD/SE
85	THI		TOTAL BLADE TWIST +N. UP	AT TIP	-1 .3960E-01	RAD
	OPEN	(4)			0.0	
87 88					0.0	

TABLE	3-1	 C.	nti	nued

INPUT DATA/RELATIVE ADDRESS TABLE					
R/A	PROGRAM Symbol	DESCRIPTION	SAMPLE VALUE	UNITS	
90	1PITCH	STICK DESENSITIZER AND PITCH ROLL DECOUPLER.0=0FF,1=0N	0.0		
91	FMASS	FUSELAGE MASS	3.4000E 02	SEUG	
92	ENDMZZ	ENGINE TRIM TORQUE	0.0	FT-LB	
93	H,-7F	HEIGHT ABUVE GROUND	1.0000E 03	FT	
94 95	OPEN (2)		0.0		
96	HF	DISTANCE FROM FUSELAGE AXIS TO HUB +UP	8.0000E 00	FT	
97	STR	TAIL FIN-ROTOR BLOCKAGE FACTOR	8.50COE-01		
98	SLTR	DISTANCE FROM FUSELAGE AXIS TO TAIL RUTUR "AFT	3.3000E 01	FT	
99 100	OPEN (2)		0.0		
101	SLHS	DISTANCE FROM FUSELAGE AXIS TO HORISONTAL TAIL +AFT	2.8000E 01	FT	
102	SLVS	DISTANCE FROM FUSELAGE AXIS TO VERTICAL TAIL +AFT	3.0000E 01	FT	
103	HVS	DISTANCE FROM FUSFLAGE AXIS TO VERTICAL TAIL +UP	2.0000E 00	FT	
104	EDIT	NEW DATA DECK OPTION 0=UFFNE.O=ON	0.0		
105	OPEN		0.0		
106	ETAE	EQUIVALENT VELOCITY RATIO AT TAIL	9.0000E-01		
107 108	OPEN (2)		0 • 0 0 • 0		
109	RHO	AIR DENSITY	2.0500E-03	SLUG/F	
110	CORD	MAIN ROTOR BLADE CORD	1.3670E 00	FT	
111	SMALLA	LINEAR AERO COEFF. DCL/DALPHA	0.0	1/RAD	
112	DELTO	LINEAR AERO COEFF. CDO	0.0		

TABLE 3-1	_	Continued
-----------	---	-----------

A/A	PROGRAM SYMBOL	DESCRIPT TON	SAMPLE VALUE	UNITS
113	DELT2	LINEAR AERO COEFF. DCL/DALPHA2	0.0	1/RAD2
114	FCF	FEATHER FRICTION	0.0	FT-LB
115	RLF	FEATHER STICTION BREAK POINT	0.0	RAD/SEC
116	FCG	SWASHPLATE FRICTION	0.0	LB
117	RLG	SWASHPLATE STICTION BREAK POINT	0.0	RAD/SEC
118	1 Z Z G	SWASHPLATE POLAR MOMENT OF INERTIA	5.0000E 00	SLUG-FT?
119	CHI	CUNTROL TU SWP PHASE ANGLE (+) SWP LEADS CONTROL	-5.8200E-01	RAD
120	OPEN (3)		0.0	
121			0.0	
122			0.0	
123	QKXCS	SPRING CONSTANT, LONG. STICK OR GEAR RATIO	3.5900E-01	FT-LB/FT
124	QKYCS	SPRING CONSTANT, LAT. STICY OR GEAR RATIO	2.3900E-01	FT-LB/F
1.25	BETAG	PITCH HURN LEAD AZIMUTM (+) P.H. FWD OF BLADE	5.8200F-01	RAD
126	OPEN (2)		0 • 0	
127			0.0	
128	HUBL (5)	INSUARD BEARING STATION	1.5420E 00	FT
129	11002	DIST. BETWEEN FEATH. BEARINGS		
130		NOT USED	0.0	
131		NOT USED	0.0	
132		NOT USED	0.0	
133	NGURF	GROUND RUN OR FREE FLY FLAG O=FREE FLY, 1=FIXED SHAFT	0.0	
134	CYCFLG	FLY PLOT SCALE FLAG, RA(298) O=SEC/IN, 1=CYCLES/IN	0.0	
135	DEODA	DE/DIAL PART TAIL FROM WING	0.0	
136	E	PITCH HORN LENGTH	1.0000E 00	FT
		SWP VERTICAL SPRING RATE	0.0	LB/FT

TABLE 3-1 - Continued

F/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNIT
138 3	ocg7	SWP VERTICAL DAMPING COEFF	0.0	LB/FT
139 (GMASS	SWP HASS	0.0	SLUG
140	OKG Z 2	SWP VERTICAL LIMITER SPPING RATE	0.0	LB/FT
141	Z G 1	SWP VERTICAL SPRING BREAKPOINT	0.0	FT
142	CORAF	TRIM OPTION INDICATOR	4.0000E 00	
143	TURNLF	TURN LOAD FACTOR	1.0000E 00	G
144	TURNSN	FLAG FOR TURN LEFT OR RIGHT +=RIGHT	-1.0000E 00	
145	C111	INPLANE TO FEATHER COUPLING	0.0	
146	C1F1	FIRST FLAP TO FEATHER COUPLING	0.0	
147	OPEN		0.0	
148	C2F1	SECOND FLAP TO FEATHER COUPLING	0.0	
149	UPEN		0.0	
156	NMP	NG. OF PUINTS IN PILOT CONTROL TABLES	4.0000E 00	
151	PT (20)	PILLT TIME TABLE	0.0	SEC
152			1.0000E 00	
153			1.0100E 00	
154			8.0000E 00	SEC
155			0.0	SEC
156			0.0	SEC
157			0.0	SEC SEC
158			0.0	SEC
159 160			0.0	SEC
161			0.0	SEC
162			0.0	SEC
163			0.0	SEC
164			0.0	SEC
165			0.0	SEC
166			0.0	SEC
167			0.0	SEC
168			0.0	SEC
169			0.0	SEC

		INPUT DATA/RELATIVE ADDRESS TABL	E	
R/A	PROGRAM SYMBOL	DESCRIPTION .	SAMPLE VALUE	UNITS
171	PXCS (20)	PILOT LUNG. STICK DISPLACEMENT (+) AFT	0.0	FT
172		1.7.00	0.0	FT
173			4.2000E-02	FT
174			4.2000E-02	FT
175			0.0	FT
176			0.0	FT
177			0.0	FT
178			0.0	FT
179		T.	0.0	FT
180			0.0	FT
181			0.0	FT
182			0.0	FT
183			0.0	FT
184			0.0	FT
185			0.0	FT
186			0.0	FT
187			0.0	FT
188			0.0	FT
189 190			0.0	FT
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206	PYCS (20)	PILUT LAT. STICK DISPLACEMENT (+) RT	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	FT F
207			0.0	FT
208			0.0	FT
209			0.0	FT
210			0.0	FT
211	PTHO (20)	PILOT COLLECTIVE INPUT (+) THRUST	0.0	RAD
212			0.0	RAD
213			0.0	RAD
214			0.0	RAD

SYMB CL 216 217 217 218 219 219 219 219 210 210 210 211 211 210 211 211 211 212 211 211			TABLE 3-1 - Continued		
SYMB CL 216 217 217 218 219 219 219 219 210 210 210 211 211 210 211 211 211 212 211 211			INPUT DATA RELATIVE ADDRESS TABLE	. F	
217 218 219 20 0.0 RAD 220 0.0 RAD 221 0.0 RAD 222 0.0 RAD 222 0.0 RAD 223 224 0.0 RAD 224 0.0 RAD 225 0.0 RAD 226 0.0 RAD 227 0.0 RAD 228 0.0 RAD 229 0.0 RAD 231 PTHOTP(20) PILOT TAIL ROTOR COLL. INPUT 0.0 RAD 231 PTHOTP(20) PILOT TAIL ROTOR COLL. INPUT 0.0 RAD 232 RAD 233 0.0 RAD 234 0.0 RAD 235 0.0 RAD 236 0.0 RAD 237 0.0 RAD 238 0.0 RAD 239 0.0 RAD 239 0.0 RAD 240 0.0 RAD 241 0.0 RAD 244 0.0 RAD 245 0.0 RAD 246 0.0 RAD 247 0.0 RAD 248 0.0 RAD 249 0.0 RAD 240 241 0.0 RAD 244 0.0 RAD 245 0.0 RAD 246 0.0 RAD 247 0.0 RAD 248 0.0 RAD 249 0.0 RAD 240 244 0.0 RAD 245 0.0 RAD 246 0.0 RAD 247 0.0 RAD 248 0.0 RAD 249 0.0 RAD 250 0.0 RAD 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD 252 253 0.0 RAD 254 0.0 RAD 255 0.0 RAD 255 0.0 RAD 257 0.0 RAD 258 0.0 RAD 259	R/A		DESCRIPTION		UNITS
218	216			0.0	RAD
219	217			0.0	RAD
220 221 221 222 223 200 RAD 224 225 226 200 RAD 225 226 200 RAD 227 228 228 200 RAD 227 228 229 200 RAD 229 220 RAD 229 220 RAD 221 RAD 229 RAD 220 RAD 221 RAD 221 RAD 222 RAD 223 RAD 224 RAD 225 RAD 226 RAD 227 RAD 228 RAD 229 RAD 230 RAD 231 PTHOTR(20) PILOT TAIL ROTOR COLL INPUT RAD 231 RAD 232 RAD 233 RAD 234 RAD 235 RAD 236 RAD 237 RAD 238 RAD 239 RAD 239 RAD 239 RAD 239 RAD 239 RAD 240 RAD 241 RAD 241 RAD 242 RAD 244 RAD 245 RAD 246 RAD 247 RAD 248 RAD 249 RAD 249 RAD 249 RAD 240 RAD 244 RAD 245 RAD RAD 246 RAD 247 RAD 248 RAD 249 RAD 250 RAD 251 RAD 260 RAD 260 RAD 261 RAD 262 RAD 263 RAD 264 RAD 265 RAD 265 RAD 266 RAD 267 RAD 268 RAD 269 RAD 260 RAD 261 RAD 262 RAD 263 RAD 264 RAD 265 RAD 266 RAD 267 RAD 268 RAD 269 RAD 260 RAD 269 RAD 260	21A			0.0	RAD
221 222 223					
222 223 224 225 226 226 227 226 227 228 228 229 229 220 220 227 220 228 229 220 220 220 221 221 222 222 223 224 225 226 227 228 229 229 230 230 231 231 231 231 231 232 232 233 234 234 235 234 235 234 235 236 237 238 239 239 230 230 231 231 232 231 232 232 233 234 234 235 236 237 238 239 239 239 239 239 239 239 239 239 239					
223 224 225 226 226 227 228 227 229 230 230 231 231 231 231 231 231 231 231 231 231					
224 225 226 227 228 229 229 230 230 231 PTHOTR(20) 232 233 233 234 235 236 237 237 238 239 230 230 231 231 232 233 233 233 234 235 236 237 237 238 239 239 239 239 239 239 239 239 239 240 240 250 260 260 260 260 260 260 260 260 260 26					
225 226 227 228 229 229 230 230 231 PTHOTR(20) 231 PTHOTR(20) 231 PTHOTR(20) 232 233 234 235 236 237 238 237 239 239 230 239 230 230 231 231 232 233 234 235 236 237 237 238 238 239 239 239 239 239 240 240 241 240 241 241 242 241 242 242 243 244 244 245 246 247 240 241 242 242 243 244 244 245 247 249 248 249 249 250 251 252 253 251 252 253 252 253 255 256 256 257 258 257 258 257 258 257 258 260 278 278 278 278 278 278 278 278 278 278					
226 227 228 229 230 231 PTHOTR(20)					
227 228 229 230 231 PTHOTR(20) 231 PTHOTR(20) 232 233 234 234 235 236 237 237 238 237 238 239 239 230 230 230 231 231 232 231 232 232 233 234 235 236 237 237 238 237 238 239 240 240 241 240 241 241 242 242 241 242 242 244 244 245 246 247 247 248 249 259 250 251 261 271 272 273 274 274 274 275 275 276 277 277 278 278 278 278 278 278 278 278					
228 229 230 0.0 RAD 231 PTHOTR(20) PILOT TAIL ROTOR COLL. INPUT (+) THRUST 0.0 RAD 232 233 0.0 RAD 234 0.0 RAD 235 0.0 RAD 236 0.0 RAD 237 0.0 RAD 237 0.0 RAD 238 0.0 RAD 239 0.0 RAD 239 0.0 RAD 239 0.0 RAD 240 0.0 RAD 241 0.0 RAD 241 0.0 RAD 242 0.0 RAD 244 0.0 RAD 245 0.0 RAD 246 0.0 RAD 247 0.0 RAD 248 0.0 RAD 249 0.0 RAD 250 RAD 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD 252 0.0 RAD 253 0.0 RAD 254 0.0 RAD 255 0.0 RAD 255 0.0 RAD 256 0.0 RAD 257 0.0 RAD 259 0.0 RAD 259 0.0 RAD 260 0.0 RAD 260					
229 230 231 PTHOTR(20) PILOT TAIL ROTOR COLL. INPUT (+) THRUST 232 233 234 235 236 237 236 237 238 239 240 239 240 241 241 241 242 241 242 242 243 244 244 241 244 244 245 245 246 247 246 247 247 248 249 250 251 252 251 252 252 253 254 255 254 255 255 255 260 278 278 278 278 278 278 278 278 278 278					
230					
231 PTHOTR(20)					
(+) THRUST 232 233 234 234 235 236 237 237 238 237 238 239 239 240 241 241 241 242 241 242 243 244 244 244 244 245 243 244 245 244 245 246 247 248 249 250 251 251 252 253 254 255 255 256 257 258 258 259 260 270 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2 30			0.0	NAU.
233 234 0.0 RAD 235 0.0 RAD 236 0.0 RAD 237 0.0 RAD 237 0.0 RAD 238 0.0 RAD 239 0.0 RAD 240 0.0 RAD 241 0.0 RAD 241 0.0 RAD 242 0.0 RAD 242 0.0 RAD 245 243 0.0 RAD 245 246 0.0 RAD 245 246 0.0 RAD 247 0.0 RAD 248 0.0 RAD 250 RAD 251 PBP (20) PILOT PROP** BLADE ANGLE INPUT 0.0 RAD 252 253 0.0 RAD 254 0.0 RAD 255 0.0 RAD 256 0.0 RAD 257 0.0 RAD 258 0.0 RAD 259 0.0 RAD 260	231	PTHOTR(20)		0.0	RAD
233 234 0.0 RAD 235 0.0 RAD 236 0.0 RAD 237 0.0 RAD 237 0.0 RAD 238 0.0 RAD 239 0.0 RAD 240 0.0 RAD 241 0.0 RAD 241 0.0 RAD 242 0.0 RAD 242 0.0 RAD 245 243 0.0 RAD 245 246 0.0 RAD 245 246 0.0 RAD 247 0.0 RAD 248 0.0 RAD 250 RAD 251 PBP (20) PILOT PROP** BLADE ANGLE INPUT 0.0 RAD 252 253 0.0 RAD 254 0.0 RAD 255 0.0 RAD 256 0.0 RAD 257 0.0 RAD 258 0.0 RAD 259 0.0 RAD 260	232			0.0	RAD
234 235 236 236 237 237 238 239 240 240 241 241 242 243 243 244 244 244 244 245 247 246 247 246 247 248 249 250 251 269 271 280 281 281 282 283 284 284 284 285 284 285 284 285 285 286 287 288 288 288 288 288 288 288 288 288					
236 237 238 239 240 240 241 241 242 243 244 244 245 245 246 247 248 247 248 249 250 251 251 252 252 253 254 255 256 256 256 257 260 260 278 280 280 280 280 280 280 280 280 280 28	234			0.0	RAD
237 238 239 0.0 RAD 240 240 241 0.0 RAD 242 241 0.0 RAD 242 243 0.0 RAD 244 0.0 RAD 245 244 0.0 RAD 246 247 248 0.0 RAD 247 248 0.0 RAD 250 251 PBP (20) PILOT PROP BLADE ANGLE INPUT 0.0 RAD (+) THRUST 0.0 RAD 252 253 0.0 RAD 254 0.0 RAD 255 0.0 RAD 256 257 0.0 RAD 258 259 260 0.0 RAD 260	235			0.0	RAD
238 239 240 240 241 241 241 242 243 244 245 246 247 246 247 247 249 250 251 251 261 271 281 282 283 284 284 285 286 287 288 287 288 288 288 288 288 288 288	236			0.0	RAD
239 240 241 0.0 RAD 241 0.0 RAD 242 0.0 RAD 243 0.0 RAD 244 0.0 RAD 245 246 0.0 RAD 246 247 0.0 RAD 247 248 0.0 RAD 249 250 RAD 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 0.0 RAD 252 253 254 0.0 RAD 255 256 0.0 RAD 257 0.0 RAD 258 258 258 0.0 RAD 259 260	237			0.0	RAD
240 241 242 0.0 RAD 242 243 0.0 RAD 244 245 246 247 248 20.0 RAD 247 248 20.0 RAD 249 250 251 261 271 281 282 283 284 285 285 286 287 288 288 288 288 288 288 288 288 288	238			0.0	RAD
241 242 243 244 245 246 247 247 248 247 248 200 RAD 248 249 250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 0.0 RAD 255 0.0 RAD 256 257 0.0 RAD 258 259 260 RAD 260 RAD 260	239				
242 243 244 245 246 247 247 248 249 250 251 251 252 253 254 255 256 256 256 257 258 260 270 280 280 280 280 280 280 280 280 280 28					
243 244 245 246 247 247 248 249 250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 256 257 258 257 260 278 288 299 260 0.0 RAD 259 260 0.0 RAD 259 260					
244 245 246 247 247 248 249 250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 254 255 256 257 260 278 288 299 260 0.0 RAD 259 260 0.0 RAD 259 260					
245 246 247 248 247 248 249 249 250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 254 255 255 256 257 260 278 288 299 200 RAD 258 259 260 0.0 RAD 259 260 0.0 RAD 260					
246 247 248 249 249 250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 254 255 256 257 260 277 288 288 299 260 0.0 RAD 278 278 278 278 278 278 278 278 278 278					
247 248 249 249 250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 254 0.0 RAD 255 256 0.0 RAD 257 0.0 RAD 257 0.0 RAD 258 259 0.0 RAD 259 0.0 RAD 259 0.0 RAD 259 0.0 RAD 260					
24H 249 250 0.0 RAD 250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 254 255 256 257 266 277 288 299 200 RAD 257 200 RAD 258 260 0.0 RAD 259 260 0.0 RAD 260					
249 250 0.0 RAD 0.0 RAD 251 P8P (20) PILOT PROP. BLADE ANGLE INPUT 252 253 254 255 256 256 257 258 200 RAD 257 258 259 260 RAD 260					
250 251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 256 256 257 258 259 260 0.0 RAD 259 260 0.0 RAD 259 260 0.0 RAD 250 260 0.0 RAD 250 260 0.0 RAD 260					
251 PBP (20) PILOT PROP. BLADE ANGLE INPUT 0.0 RAD (+) THRUST 252 253 254 255 256 256 257 258 259 260 250 250 250 250 250 250 250 250 250 25					
252		PBP (20)			
253 0.0 RAD 254 0.0 RAD 255 0.0 RAD 256 0.0 RAD 257 0.0 RAD 258 0.0 RAD 259 0.0 RAD 260 0.0 RAD			(+) THRUST		
254 0.0 RAD 255 0.0 RAD 256 0.0 RAD 257 0.0 RAD 258 0.0 RAD 259 0.0 RAD 260 0.0 RAD	252				
255 0.0 RAD 256 0.0 RAD 257 0.0 RAD 258 0.0 RAD 259 0.0 RAD 260 0.0 RAD	253				
256 0.0 RAD 257 0.0 RAD 258 0.0 RAD 259 0.0 RAD 260 0.0 RAD	254				
257	255				
258	256				
259 0.0 RAD 260 0.0 RAD	257				
260 0.0 RAD					
	260 261			0.0	RAD

TABLE 3-1 - Continued

R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
262			0.0	RAD
263			0.0	RAD
264			0.0	RAD
265			0.0	RAD
266			0.0	RAD
267			0.0	RAD
268			0.0	RAD
269			0.0	RAD
2 70			0.0	RAD
271	DOEO	SWP TO FEATHER GEAR RATIO AT ZERO COLLECTIVE	1 - 0 000E 00	
272	DOE 1	VARIATION OF DZE-WITH COLL.	0.0	1/RAD
273	FKSPT	SHAFT BENDING FLEXIBILITY	0.0	
274	YTR	TAIL ROTOR LATERAL OFFSET +RT	-2.4000E 00	FT
275	FBL11 (2,2)	FEATHER BEARING INPL. MODE INBOARD Y DISPL +FWD	1.9810E-02	
276		INBOARD Z DISPL +DN	-3.7420E-05	
277		OUTBOARD Y DISPL +FWD	3.9620E-02	
278		OUTBOARD Z DISPL +DN	-7 •4 900E-05	
279	FBL1F (2,2)	FEATHER BEARING IST FLAP MODE	-4.1770E-05	
280			1.9610E-02	
281			-8.3580E-05	
282			3.9230E-02	
283	FBL2F (2,2)	FEATHER BEARING 2ND FLAP MODE	-1.0040E-02	
284			-3.9880E-02	
285			-2.0070E-02	
286			-7.9750E-02	
287	TC (5)	DOWNWASH TIME CONSTANT (TRIM)	1.0000E 00	SEC
288		DOWNWASH TIME CONSTANT (FLY)		SEC
289		TR FLAP TIME CONSTANT	1.0000E-01	SEC
290		SHAFT BENDING TRIM TIME CONST	0.0	SEC
291		NOT USED	0.0	
292	тсх	PILOT LONGITUDINAL ACTUATOR TIME CONSTANT	2.5000E-02	SEC
293	TCY	PILOT LATERAL ACTUATOR TIME CONSTANT	2.5000E-02	SEC
294	TXS	FEATHER SPRING	0.0	FT-LB/R
	PRI	SPECIFIED TRIM ROLL RATE +RT		RAD/SEC

TABLE 3-1 - Continued						
	INPUT DATA/RELATIVE ADDRESS TABLE					
R/A PROGRAM SYMB(IL	DESCRIPTION	SAMPLE VALUE	UNITS			
296 URI	SPECIFIED TRIM PITCH RATE +UP	0.0	RAD/SEC			
297 DSTAF	BL.STA. FOR EFFECTIVE SWEEP AND DROUP OUTPUT	2.1000E 01	FT			
298 TSCLE	PLOT SCALE FACTOR (ABSCISSA) UNITS PER INCH OF PLOT	1.0000E 00				
299 NVAR1	NO. PARAMS. TO BE PLOTTED IN TRIM	3.0000E 01				
300 NVAR2	NO. PARAMS. TO BE PLOTTED IN FLY	5.0000E 01				
301 NVEC1 (40)	CODE NO. OF PARAM. TO SE PLOTTED IN TRIM	1.0000E 00				
302	PEGITED IN INIM	2.0000E 00				
303		3,0000E 00				
304		4.0000E 00				
305		1.0000E 01				
306		1.1000E 01				
307		1.2000E 01				
308		5.0000E 00				
309		8.0000E 00				
310		9.0000E 00				
311 312		6.0000E 00 7.9000E 01				
313		5.3000E 01				
314		5.5000E 01				
315		5.6000E 01				
316		8.0000E 01				
317		1.3000E 01				
318		9.0000E 01				
319		8 - 1 000E 01				
320		4.7000E 01				
321 322		7.0000E 00 8.5000E 01				
323		8.6000E 01				
324		8.7000E 01				
325		8 . 8 OOOE 01				
326		8.9000E 01				
327		1.40COE 01				
328		1.5000E 01				
329		5.1000E 01				
330 331		5.2000E 01				
332		0.0				
333		0.0				
334		0.0				
335		0.0				

		INPUT DATA/RELATIVE ADDRESS TABL	E	
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
336			0.0	
337			0.0	
338			0.0	
339 340			0.0	
340			0.0	
341	OPEN		0.0	
342	QKXCSG	LUNG. STICK SPRING FOR CONTROL GYRD COMMAND	0.0	FT-LB/FT
343	QKYCS G	LAT. STICK SPRING FOR CONTROL GYRU COMMAND	0.0	FT-LB/FT
344	PSIPG	SWP ACTUATOR PHASE ANGLE CONTROL GYRO SIMUL.	0.0	RAD
345	CHIG	STICK-TO-GYRO PHASE ANGLE (+) GYRO LEADS STICK	0.0	RAD
346	ZOBL	Z-DISPL UF BLADE COORD SYSTEMS REL. TO ROTOR SYSTEM	0.0	FT
347	чив	GYRU UNBALANCED MASS	0.0	SLUG
348	PXPZ	X-OFFSET OF UNBALANCED GYRO MASS (+) FWD	0.0	FT
349	PYPZ	Y-OFFSET OF UNBALANCED GYRO MASS (+) RT	0.0	FT
350	I Z Z GR	GYPO POLAR INERTIA	0.0	SLUG-FT2
351	T AU AC T	SWP ACTUATOR TIME CONST FOR CONTROL GYRO SIMULATION	0.0	SEC
352	GSKL	GYRO SPRING, ROLL AXIS	0.0	FT-LB/RD
353	GSDL	GYRO SPRING, ROLL-PITCH CUUPLING	0.0	FT-LB/RD
354	GFDDL	GYRO DAMPER, ROLL-PITCH COUPLING	0.0	F-LB/R/S
355	GSKM	GYRO SPRING, PITCH-ROLL COUPLING	0 . 0	FT-LB/RD
356	GSDM	GYRO SPRING, PITCH AXIS	0.0	FT-LB/RD

TABLE	3-1	_	Continued

	INPUT DATA/RELATIVE ADURESS TABL	E	
R/A PRUGRAM Symbol	DESCRIPTION	SAMPLE VALUE	UNITS
357 GFKDM	GYRO DAMPER, PITCH-ROLL COUPLING	0.0	F-LB/R/S
358 GFDDM	GYRU DAMPER, PITCH AXIS	0.0	F-LB/R/S
359 GFKDL	GYRO DAMPER, ROLL AXIS	0.0	F-LB/R/S
360 IZZGNR	GYRO POLAR INERTIA, NON-ROTATING	0.0	SLUG-FY2
361 1XXG	SWP ROLL INERTIA	0.0	SLUG-FT2
362 GRK	GYRO ROLL-TO-SWASHPLATE GEAR RATIO	0.0	
363 GRD	GYRO PITCH-TO-SWASHPLATE GEAR RATIO	0.0	
364 XTHTF	PARTIAL (X-FUSELAGE/THETA-SHFT)	0.0	
365 YPH1F	PARTIAL (Y-FUSELAGE/PHI-SHAFT)	0.0	
366 HMASS	MASS OF THE HUB	1.0000E 01	SLUG
367 OPEN (4)		0.0	
368		0.0	
369		0.0	
370		0.0	
371 CLAG	INPLANE LAG DAMPER CONSTANT	2.5722E 04	F-LB/R/S
372 XFBAR	CG LOCATION IN XF +FWD	6 • 0 000E = 0 1	FT
373 YFBAR	FUSELAGE YF +RT	0.0	FT
374 ZFBAR	COORDINATES ZF +DN	0.0	FT
375 FKS	SHAFT BENDING SPRING	1.0000E 00	FT-LB/RD
376 KPHCON	SWASHPLATE SPRING (ROLL) IN CONTROL AXIS	1.0000E 00	FT-LB/RD
377 KTHCON	SWASHPLATE SPRING (PITCH) IN CONTROL AXIS	1.0000E 00	FT-LB/RD
378 CPHDSP	SWASHPLATE DAMPER (ROLL) IN CONTROL AXIS	0.0	F-LB/R/S
379 CTHDSP	SWASHPLATE DAMPER (PITCH) IN CONTROL AXIS	0.0	F-LB/R/S

TABLE	3-1 -	Continued

R/A PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
380 OPEN (15)			
381		0.0	
382		0.0	
383		0.0	
384		0.0	
385		0.0	
386		0.0	
387		0.0 0.0	
388		0.0	
389		0.0	
390		0.0	
391		0.0	
392		0.0	
393		0.0	
394		0.0	
395 KFPHG	GYRU STICTION	0.0	LB
396 RFBL	RADIUS AT INBOARD END OF FEEDBACK LEVER	0.0	FT
397 PSIFBL	AZIMUTH INBOARD END OF FEEDBACK LEVER. LEADS BLADE	0.0	RAD
398 CAPHIS	SHAFT TO SWP COUPLING	0.0	
399 IFLEX	SHAFT BENDING FLAG 0=OFF,1=ON	0.0	
400 OPEN (37)		0.0	
401		0.0	
402		0.0	
403		0.0	
404		0.0	
405		0.0	
406		0.0	
407		0.0	
408		0.0	
409		0.0	
410		0.0	
411		0.0	
412		0.0	
413		0.0	
414		0.0	
415 416		0.0	
417		0.0	
418		0.0	
419		0.0 0.0	

TABLE 3-1 - Continued

R/A	PROGRA	4 M	DESCRIPTION	SAMPLE	UNITS
K / A	SYMBO		DESCRIPTION	YALUE	ONTIT
421				0.0	
422				0.0	
423				0.0	
424				0.0	
425				0.0	
426				0.0	
427				0.0	
428				0.0	
429				0.0	
430				0.0	
431				0.0	
432				0.0	
433				0.0	
434				0.0	
435				0.0	
436				0.0	
437	XCPDL		MAX.LONG.STICK ACTUATOR RATE LIMIT	1.0000E 03	FT/SEC
438	YCPDL		MAX.LAT.STICK ACTUATOR RATE LIMIT	1.0000E 03	FT/SEC
434	OPEN			0.0	
440	FAST		SINGLE BLADE TRIM FLAG 0=OFF,1=ON	0.0	
441	FMN	(1,1)	BODY AIRLOADS COEFF MATRIX FX DUE TO ASYMMETRY +FWD	0.0	
442		(2,1)	FY DUE TO ASYMMETRY + RT	0.0	
443		(3,1)	FZ DUE TO ASYMMETRY + DN	0.0	
444		(4,1)	MX DUE TO ASYMMETRY + RT	0.0	
445		(5,1)	MY DUE TO ASYMMETRY + N. UP	0.0	
446		(6,1)	MZ DUE TO A SYMMETRY + N.RT	0.0	
447	FMN	(1,2)	LOADS DUE TO QUADRATIC SIDESLIP	0 . 0	
448				0 .0	
449				0.0	
450				0.0	
451				0.0	
452				0.0	
453	FMN	(1,3)	LOADS DUE TO LINEAR SIDESLIP	0.0	
454				-2.0000E-01	
455				0.0	
456				0.0	
457				0.0	

INPUT DATA RELATIVE ADDRESS TABLE								
DESCRIPT ION	SAMPLE VALUE	UNITS						
LOADS DUE TO WING ROLL DAMPING	0.0 0.0 0.0 0.0 0.0							
LOADS DUE TO HORIZONTAL TAIL	0.0 0.0 -3.6000E-02 0.0 -1.0000E 00							
LUADS DUE TO VERTICAL TAIL	0.0 -5.9000E-02 0.0 0.0 0.0 1.6700E 00							
	0.0 0.0 0.0 0.0 0.0							

0.0

0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

1.0000E 03 FT

1.3000E 01

TABLE 3-1 - Continued

R/A PROGRAM SYMBOL 459 FMN (1,4)

465 FMN (1,5)

471 FMN (1,6)

477 OPEN (13)

483 484

485

486 487

488

489

492

493

496 497

490 IAMCS

491 OPEN (3)

494 YCSMAX

498 NRAD

495 OPEN (3)

FLAG FOR AMCS (ISOLATED GYRO)

LATERAL STICK TRAVEL LIMIT

NO. OF BLADE STATIONS

1 = AMCS SIMULATION

TABLE	3-1	=	Continued

R/A	PROGRAM Symbol	DESCRIPT ION	SAMPLE VALUE	UNITS
499	NINC	STATION INTERVAL USED	1.0000E 00	
500	KSTART	STARTING STATION	2.0000E 00	
501	SX (40)	BLADE STATION	1.4500E 00	FT
502	34 (40)	DEADE STATEST	2.7500E 00	FT
503			5.5000E 00	FT
504			7.5000E 00	FT
505			9.5000E 00	FT
506			1.2000E 01	FT
507			1.3750E 01	FT
508			1.5750E 01	FT
509			1.8750E 01	FT
510			2.1500E 01	FT
511			2.4000E 01	FT
512			2.5750E 01	FT
513			2.8000E 01	FT
514			0.0	FT
515			0.0	FT
516			0.0	FT
517			0.0	FT
518			0.0	FT
519			0.0	FT
520			0.0	FT
521			0.0	FT
522			0.0	FT
523			0.0	FT
524			0.0	FT
525			0.0	FT
526			0.0	FT
527			0.0	FT
528			0.0	FT
529			0.0	FT
530			0.0	FT
531			0.0	FT
532			0.0	FT
533			0.0	FT
534			0.0	FT
535			0.0	FT
536			0.0	FT
537			0.0	FT
538			0.0	FT
539			0.0	FT FT
540			0.0	r i
		DI ADC DISTRICTORS MASS SINGIST	1.7440E 00	
541	QM (40)	BLADE DISTRIBUTED MASS SLUG/FT	2.9280E-01	
542			1.0090E-01	
543			1.6220E-01	
544 545			1.6440E-01	

ſŢ	101	TO .	2 1	 Car	a+ i	haun
	4 15 1	. н.	₹ !	 1 () [1111	riii i 😂 (i

		INPUT DATA RELATIVE ADDRESS TABL	t	
R/A	PROGRAM Symbol	DESCRIPT ION	SAMPLE VALUE	UNITS
546			1.5960E-01	
547			1.6890E-01	
548			1.7840E-01	
544			1.5400E-01	
550			1.5780E-01	
551			1.8560E-01	
552			1.5370E-01	
553			2.6700E-01	
554			0.0	
555			0.0	
556			0.0	
557			0.0	
558			0.0	
559			0.0	
560			0.0	
561			0.0	
562			0.0	
563			0.0	
564			0.0	
565			0.0	
566			0.0	
567			0.0	
568 569			0.0	
570			0.0	
571			0.0	
572			0.0	
573			0.0	
574			0.0	
575			0.0	
576			0.0	
577			0.0	
578			0.0	
579			0.0	
580			0.0	
581	VEQ1	INITIAL AIRSPEED, LONG. STICK DESENSITIZER	0.0	FT/SEC
582	DVEQ1	DEFINES THE TRANSITION FROM NO CORRECTION TO FULL CORRECT.	0.0	FT/SE(
583	VEQ2	INITIAL AIRSPEED PITCH-ROLL DE-COOPLER	0.0	FT/SE
584	DVE 02	DEFINES THE TRANSITION RANGE	0.0	FT/SE
585	KXCS	LONG.DESENSITIZER FEEDBACK	0.0	

TABLE	3-1	-	Continued
		_	

-				
		IRAT 22200ES TARIF	:	
		INPUT DATA/RELATIVE ADDRESS TABLE	-	
	R/A PROGRAM	DESCRIPTION	SAMPLE VALUE	UNITS
	SYMBOL 586 KYCS	LAT. DESENSITIZER FEEDBACK RATIO	0.0	
	587 KXPR	ROLL-TO-PITCH STICK FEEDBACK	0.0	FT/R/S
		RATIO LONG. DESENSITIZER LIMIT	0.0	FŢ
	588 XCS1			FT
	589 XCS2	LONG. DESENSITIZER PLUS PITCH- ROLL DECOUPLER LIMIT	0.0	
	540 YCS1	LAT. DESENSITIZER LIMIT	0.0	FT
		TORQUE VS GEN. SPEED RATIO	0.0	F-LB/R/S
	591 PQENG	TORQUE VS ROTOR SPEED RATIO	0.0	F-LB/R/S
	592 PQEOM	ACCEL. FEEDBACK GAIN	0.0	
	593 K1PRM	SPEED FEEDBACK GAIN	0.0	
1	594 K2PRM	COMPRESSOR TIME CONSTANT	0.0	SEC
	595 TAUG		0.0	
	596 OPEN (5)		0.0	
	597		0.0	
	598		0.0	
	599		0.0	
	600	BLADE ELEMENT C G LOCATION	0.0	FT
	601 SY (40)	RELATIVE TO 1/4 CHORD +FWD	101.00	FT
		KETALIAE IO TAL PROPERTY	0.0	FT
	602		0.0	FT
	603		0.0	FT
	604		0.0	FT
	605		0.0	FT
	606		0.0	FT
	607		0.0	FT
	608		0.0	FT
	604		0.0	FT
	610		0.0	FT
	611		0.0	FT
	612		0.0	FT
	613		0.0	FT
	614		0.0	FT
	615		0.0	FT
	616		0.0	FT
	617		0.0	FT
	618		0.0	FT
	619		0.00	
	620			
	1			

TABLE 3-1 - Conti	riuec	
-------------------	-------	--

R/A	PROGRAM	DESCRIPTION	CAMPLE	110.775
K/A	SYMB OL	DESCRIPTION	SAMPLE VALUE	UNITS
621			0.0	FT
622			0.0	FT
623			0.0	FT
624			0.0	FT
625			0.0	FT
626			0.0	FT
627			0.0	FT
628			0.0	FT
629			0.0	FT
630			0.0	FT
631			0.0	FT
632			0.0	FT
633			0.0	FT
634			0.0	FT
635			0.0	FT
636			0.0	FT
637			0.0	FT
638			0.0	FT
639			0.0	FT
64û			0.0	FT
	PSITR (20)	PILOT ENGINE SPEED	0.0	RAD/SE
642			0.0	RAD/SE
643			0.0	RAD/SE
644			0.0	RAD/SE
645			0.0	RAD/SE
646			0.0	RAD/SE
647			0.0	RAD/SE
648 649			0.0	RAD/SE
650			0.0	RAD/SE
651			0.0	RAD/SE
652			0.0	RAD/SE
653			0.0	RAD/SE
654			0.0	RAD/SE
655			0.0	RAD/SE
656			0.0	RAD/SE
657			0.0	RAD/SE
658			0.0	RAD/SE
659			0.0	RAD/SE
660			0.0	RAD/SE
661	GLCN	GYRO ROLL CONTROL MOMENT TRIM INITIALIZATION +RT	0.0	FT-LB
662	GMCN	GYRO PITCH CONTROL MOMENT TRIM INITIALIZATION +N. UP	0.0	FT-LE
663	TEETER	TEETERING ROTOR SIMULATION	0.0	

	INPUT DATA/RELATIVE ADDRESS TA	ABLF
R/A PR DG RAM SYMB C/L	DESCRIPT ION	SAMPLE UNITS VALUE
664 APHI	GAIN FACTORS IN CONTROL EQ.S A-PHI	0.0
665 BPHI	GAIN FACTORS IN CONTROL EQ.S B-PHI	0.0
666 APS I	GAIN FACTORS IN CONTROL EQ.S	0.0
667 BPSI	GAIN FACTORS IN CONTROL EQ.S B-PSI	0.0
668 ATH	GAIN FACTORS IN CONTROL EQ.S.A-THETA	0.0
669 RTH	GAIN FACTORS IN CONTROL EQ.S B-THETA	0 •0
670 ATC	GAIN FACTORS IN CONTROL EQ.S A-THETA-C	0.0
671 OPEN (9)		0.0
672		0.0
673		0.0
674		0.0
675 676		0.0
677		0.0
678		0.0
679		0 • 0
680 NMPAT	NO. OF AUTOPILOT POINTS	0.0
681 PTAUTO(20)	AUTOPILOT TIME	0.0
682		0.0
683		0.0
684		0.0 0.0
685 686		0.0
687		0.0
688		0.0
689		0.0
690		0.0
691		0.0
692 693		0.0 0.0
694		0.0
695		0.0
696		0.0

TABLE 3-1 - Continued

R/A PROGRAM SYMBUL	DESCRIPT ION	SAMPLE UNIT VALUE
698		0.0
699		0.0
700		0.0
701 PXCSAT(20)	AUTOPILOT LONG. STICK	0.0
702		0.0
703		0.0
704		0.0
705		0.0
706		0.0
707 708		0.0 0.0
709		0.0
710		0.0
711		0.0
712		0.0
713		0.0
714		0.0
715		0.0
716		0.0
717		0.0
718		0.0
719		0.0
720		0.0
	AUTOPILOT LAT. STICK	0.0
722 723		0.0
724		0.0
725		0.0
726		0.0
727		0.0
728		0.0
729		0.0
730		0.0
731		0.0
732		0.0
733		0.0
734 735		0.0
~ .		
736 737		0.0
738		0.0
739		0.0
740		0.0
741 PTHOAT(20)	AUTOPILOT COLLECTIVE	0.0
742		0.0
743 744		0.0

TABLE 3-1 - Continued

	INPUT DATA/RELATIVE ADDRE	SS TABLE
R/A PROGRAM SYMBOL	DESCRIPTION	SAMPLE UNITS Value
745		0.0
746		0.0
747		0.0
748		0.0
749		0.0
750		0.0
751		0.0
752		0.0
753		0.0
754		0.0
755		0.0
756		0.0
757		0.0
758		0.0
759		0.0
760		0.0
761 BMS11 (1,1) 4(Y, INPLANE MODE + FWD	0.0
762		6.4000E-02
763		1.64ROE-01
764		2.3830E-01
765		3.1200E-01
766		4 • 0 4 4 0 E - 0 1
767		4 • 6 920E - 0 1
768		5.4350E-01
769		6.5500E-01
770		7.5750E-01
771		8.5070E-01
772		9.1600F-01
773		1.0000E 00
774		0.0
775		0.0
776		0.0
777		0.0 0.0
7 7 8 7 7 9		0.0
779 780		0.0
781		0.0
782		0.0
783		0.0
784		0.0
785		0.0
786		0.0
787		0.0
788		0.0
789		0.0
790		0.0
791		0.0
792		0.0
793		0.0

TABLE 3-1 - Continued

R/A	PROGRAM	DESCRIPTION	SAMPLE U	NITS
17.4	SYMBOL	OLSGRAT TEM	VALUE	11113
794			0.0	
795			6.0	
796			0.0	
797			0.0	
798			0.0	
799			0.0	
800			0.0	
901	BMS1I (1,2) 4	O Z, INPLANE MODE + DN	0.0	
802	·		-1.2160E-04	
803			-2 .4 880E-04	
804			-2 •6480E-04	
805			-2 •5 100E-04	
806			-2 • 1 160E-04	
807			-1 •7 500E-04	
808			-1 .2740E-04	
809			-4.3930E-05	
810			4.5900E-05	
811			1.3410E-04	
812			1.9880E-04	
813			2 .8 340E-04	
814			0.0	
815			0.0	
816			0.0	
817 818			0.0 0.0	
819			0.0	
820			0.0	
821			0.0	
822			0.0	
B23			0.0	
824			0.0	
825			0.0	
826			0.0	
827			0.0	
828			0.0	
B29			0.0	
830			0.0	
831			0.0	
832			0.0	
833			0.0	
834			0.0	
835			0.0	
836			0.0	
B37			0.0	
338			0.0	
839			0.0	
840			0.0	

TABLE 3-1 - Continued

		INPUT DATA RELATIVE AD	DRESS TABLE
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE UNITS VALUE
842			3.6590E-02
843			3.6710E-02
844			3.6810E-02
845			3.6900E-02
846			3.7010E-02
847			3.7080E-02
848			3.7150E-02
649			3.7230E-02
850			3.7280E-02
851			3.7310E-02
852			3.7310E-02 3.7320E-02
853			0.0
854			0.0
855			.0
856 857			0.0
858			0.0
859			0.0
860			0.0
861			0.0
€62			0.0
863			0.0
864			0.0
865			0.0
866			0.0
867			0.0
868			0.0
869			0.0
870			0.0
871			0.0
872			0.0
873			0.0
874			0.0
875			0.0 0.0
876			0.0
877			0.0
878			0.0
879 880			0.0
881	BMS11 (1.4)	40 DZ/DS, INPLANE MODE	+DN 0.0
882			-7.0530E-05
883			-1 • 9 390E-05
884			2.2200E-07
885			1.02106-05
886			1.7570E-05
887			2.1000E-05
888			2.4570E-05
889			2.9270E-05 3.3500E-05

TABLE 3-1 - Continued

R/A	PROGRAM	DESCRIPT ION	SAMPLE UNIT
	SYMBOL		VALUE
891			3 .6 260E-05
892			3.7210E-05
893			3.7550E-05
894			0.0
895			0.0
896			0.0
897			0.0
898 8 99			0.0
900			0.0
901			0.0
902			0.0
903			0.0
904			0.0
905			0.0
906			0.0
907			0.0
908			0.0
909			0.0 0.0
910 911			0.0
912			0.0
913			0.0
914			0.0
915			0.0
916			0.0
917			0.0
918			0.0
919			0.0
920			0.0
	BMS1F (1,1)	40 Y, 1ST FLAP MODE + FWD	0.0
922			-1 •3550E-04
923			-2 •8 560E-04
924			-3.1840E-04 -3.1760E-04
925			-3 • 1 760E-04 -2 • 8 940E-04
926 927			-2 • 5 480E-04
928			-2 •0 230E-04
929			-9.8390E-05
930			2.2580E-05
931			1.5120E-04
932			2 • 4 840E-04
933			3.7700E-04
934			0.0
935			0.0
936 937			0.0
938			0.0

TABLE 3-1 - Continued				
		INPUT DATA/RELATIVE ADDRESS	TABLE	
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
940			0.0	
941			0.0	
942			0.0	
943 944			0.0	
945			0.0	
946			0.0	
947			0.0	
948			0.0	
949 950			0.0	
950 951			0.0	
952			0.0	
953			0.0	
954			0.0	
955			0.0	
956			0.0	
957 958			0.0	
959			0.0	
960			0.0	
	BMS1F (1,2)	40 Z+ 1ST FLAP MODE + DN	0.0	
962			6.3370E-02	
963			1.6340E-01 2.3660E-01	
964 965			3.1020E-01	
966			4.0250E-01	
967			4.6730E-01	
968			5.4160E-01	
960			6.5340E-01	
970 971			7.5620E-01 8.4990E-01	
972			9.1560E-01	
973			1.0000E 00	
974			0.0	
975			0.0	
976			0.0	
977			0.0	
978			0.0	
97 9 980			0.0	
981			0.0	
982			0 • 0	
483			0.0	
984			0.0	
985			0.0 0.0	
986 987			0.0	
988			0.0	

INPUT DATA/RELATIVE ADDRESS TABLE						
R/A	PROGRAM Symbol	DESCRIPTION	SAMPLE	UNIT		
	3 1 m0 UL		VALUE			
989			0.0			
990			0.0			
991 992			0.0			
993			0 • 0 0 • 0			
994			0.0			
995			0.0			
996			0.0			
997			0 • 0			
998			0.0			
1000			0.0			
1000			0.0			
	BMS1F (1,3) 40	DY/DS, 1ST FLAP MODE	+FWD 0.0			
1002			-7.8370E-05			
1003			-2.7680E-05			
1004			-6.9320E-06			
1005			5.7340E-06 1.6650E-05			
1007			2 • 2 910E-05			
1008			2.9700E-05			
1009			3.9660E-05			
1010			4.8210E-05			
1011			5 • 4 0 90 E - 0 5			
1012			5.6320E-05			
1013			5.7190E-05 0.0			
1015			0.0			
1016			0.0			
1017			0.0			
1018			0.0			
1019			0.0			
1020			0.0			
1021			0.0 0.0			
1023			0.0			
1024			0.0			
1025			0.0			
1026			0.0			
1027			0.0			
1028			0.0			
1029			0 • 0 0 • 0			
1030			0.0			
1032			0.0			
1033			0.0			
1034			0.0			
1035			0.0			

TABLE 3-1 - Continued

R/A	PROGRAM	DESCRIPTION	SAMPLE UNI
	SYMBOL		VALUE
1038			0.0
1039			0.0
1040			0.0
1041	BMS1F (1,4) 4	O DZ/DS, 1ST FLAP MODE	+DN 0.0
1042			3.6220E-02
1043			3 - 6530E-02
1044			3.6700E-02
1045			3.6850E-02
1046			3.7000E-02
1047			3.7100E-02
1C48			3.7200E-02
1049			3.7330E-02
1050			3.7430E-02
1051			3.7500E-02
1052			3.7520E-02
1053			3.7530E-02
1054			0.0
1055			0.0 0.0
1056			0.0
1057			0.0
1058 1059			0.0
1060			0.0
1061			0.0
1062			0.0
1063			0.0
1064			0.0
1065			0.0
1066			0.0
1067			0.0
1068			0.0
1069			0.0
1070			0.0
1671			0.0
1072			0.0
1073			0.0
1074			0.0
1075			0.0
1076			0.0
1077			0.0
1078			0.0
1079			0.0
1080			0.0
1081	BMS2F (1,1)	O Y, 2ND FLAP MODE + FWD	0.0
1082			-3 •2 390E-02
1083			-7.9960E-02
1084			-1 .0 820E-01

	TABLE 3-1 - Continued				
		INPUT DATA/RELATIVE ADDRES	S TABLE		
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE UNITS VALUE		
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119	SYMB OL		VALUE -1.3990E-01 -1.3700E-01 -1.2140E-01 -7.2740E-02 -2.6070E-03 -7.8100E-02 1.4070E-01 2.2410E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132	BMS2F (1,2) 4	O Z, 2ND FLAP MODE + DN	0.0 -1.2880E-01 -3.1990E-01 -4.3680E-01 -5.2570E-01 -5.8280E-01 -5.8060E-01 -5.2720E-01 -3.3560E-01 -3.7480E-02 3.2340E-01 6.1130E-01 1.0000E 00		

TABLE 3-1 - Continued INPUT DATA/RELATIVE ADDRESS TABLE R/A PROGRAM **DESCRIPTION** SAMPLE UNITS VALUE SYMBOL 0.0 1135 1136 0.0 1137 0.0 1138 0.0 1139 0.0 1140 0.0 1141 0.0 0.0 1142 1143 0.0 1144 0.0 1145 0.0 1146 0.0 1147 0.0 1148 0.0 0.0 1149 1150 0.0 1151 0.0 1152 0.0 1153 0.0 1154 0.0 1155 0.0 1156 0.0 1157 0.0 1158 0.0 1159 0.0 1160 0.0 1161 BMS2F (1,3) 40 DY/DS, 2ND FLAP MODE +FWD 0.0 -1 .8420F-02 1162 1163 -1.5640E-02 -1 .2 300E-02 1104 1165 -7.7510E-03 -9.1720E-04 1166 1167 4.50WE-03 1.1190F-02 1168 2.1210E-02 1169 1170 2.9390E-02 3.4550E-02 3.6380E-02 1171 1172 1173 3.7070E-02 0.0 1174 1175 0.0 0.0 1176 1177 0.0 0.0 1178 1179 0.0 0.0 1180 0.0 1181 1182 0.0 0.0 1183

TABLE 3-1 - Continued

0.44	D D D C D A M		- 0.55	75-31
R/A	PROGRAM Symbol	DESCRIPT ION	SAMPLE UN' Value	175
1184			0.0	
1185			0.0	
1186			0.0	
1187			0.0	
1188			0.0	
1189			0.0	
1190			0.0	
1191			0.0	
1192			0.0	
1193			0.0	
1194			0.0	
l 195 l 196			0.0	
1197			0.0 0.0	
1198			0.0	
199			0.0	
1200			0.0	
1201	BMS2F (1,4) 4	O DZ/DS, 2ND FLAP MODE	+DN 0.0	
202			7.3380E-02	
1203			-6.3760E-02	
204			-5 •1 970E-02	
1205			-3 -5 250E-02	
1206			-9.0460E-03	
207			1.2810E-02	
1208 1209			4 • 1 240E-02	
1210			8 • 7 1 30E-02 1 • 2 840E-01	
1211			1.5730E-01	
1212			1,6840E-01	
1213			1.7280E-01	
1214			0.0	
1215			0.0	
1216			0.0	
1217			0.0	
1218			0.0	
219			0.0	
1220			0.0	
1221 1222			0.0	
1223			0.0	
1224			0.0	
1225			0.0	
1226			0.0	
1227			0.0	
1228			0.0	
1229			0.0	
1230			0.0	
1231 1232			0.0	

TABLE 3-1 - Continued

		INPUT DATA/RELATIVE ADDRESS TAB	LE	
R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE VALUE	UNITS
1233			0.0	
1234			0.0	
1235			0.0	
1236 1237			0.0	
1238			0.0	
			0.0	
1239			0.0	
1240			0.0	
	BLADK (3,3)	BLADE STIFFNESS MATRIX	1.3910E 01	
1242			6.8610E-03	
1243			5.8230E-01	FT-LB
1244			6.8610E-03	
1245			1.3270E-02	FT-LB
1246			1.2710E 00	FT-LB
1247			5.8230E-01	FT-LB
1248			1.2710E 00	FT-LB
1249			3.2610E 02	FT-LB
1250	CTRIM	BLADE MODE DAMPING AFTER 1 SEC OF TRIM	5.7000E-04	F-LB/R/
1251	CFLY	BLADE MODE DAMPING DURING FLY	5.7000E-04	F-LB/R/
1252	CZERO	BLADE MODE DAMPING AT TRIM INITIALIZATION	5.7000E-04	F-LB/R/
1253	CONK	TAIL ROTOR (DELTA 3) FLAP- FEATHER COUPLING	0.0	
1254	OPEN (2)		0.0	
1255			0.0	
1256	DCMR	INCREMENTAL BLADE CM FOR TAR	0.0	
1257	IHAFLG	FLAG FOR HARMONIC ANALYSIS 0=OFF,1=ON	1.0000E 00	
1258	OPEN (4)		0.0	
1259			0.0	
126D			0.0	
1261			0.0	
1262	IHAPLT	HARM.ANAL.PLOT FLAG,O=NONE	0.0	
1263	DGDHG	SWP ROTARY-TO-VERT. DAMPING LB/(FT-LB-RAD)	0.0	
1244	ØELCD	BLADE ELEMENT CD ADJUSTMENT	0.0	

		TABLE 3-1 - Continued			
		TAIDLE DATA MELATIVE ADDRESS	7 4 0 4 5		
		INPUT DATA/RELATIVE ADDRESS	ABLE	•	
R/A	PROGRAM Symbol	DESCRIPT ION		SAMPLE VALUE	UNITS
1 2 6 5	OPEN			0.0	
1266	BETA	BLADE CONE ANGLE +	UP	0.0	DEG
1257	TAU	BLADE SHEEP ANGLE +	FWD	0.0	DEG
1268	GAMMA	BLADE DROOP ANGLE +	DN	0.0	DEG
1269	PHIREF	BLADE REFERENCE FEATHER ANG +N.UP	LE	1.5000E 01	DEG
1270	BFAS	BLADE BEARING CONE ANGLE +	UP	0.0	DEG
1271	OPEN (5)			0.0	
1272				0.0	
1273				0.0	
1274				0.0	
1275				0.0	
1276	GASTOP	SWP STOP CONTACT ANGLE		0.0	RAD
1277	GKSTOP	SWP STOP SPRING CONSTANT		0.0	FT-LB/RD
1278	RRK	YAW DAMPER GAIN		0.0	
1279	TWTR	TAIL ROTOR WASHOUT TIME		5.0000E 00	SEC
1280	TCTRA	TAIL ROTOR ACTUATOR TIME CO	NST	3.5000E-02	SEC
1281	OPEN (5)			0.0	
1282				0.0	
1283				0.0	
1284				0.0	
1285				0.0	
1286	*****	PH OR TORSION NAT. FREQ. HARMONIC TRIM		0.0	RAD/SEC
1287	OPEN (4)			0.0	
1288				0.0	
1289				0.0	
1290				0.0	
1291	SS	SPEED OF SOUND		1.0980E 03	FT/SEC
1292	OPEN (8)			0.0	
1293				0.0	
1294				0.0	
1295				0.0	
1296				0.0	
1					

			INPUT DATA/RELATIVE ADDRESS TA	BLE !	
R/A	PR OG SYMB		DESCRIPTION	SAMPLE VALUE	UNITS
1297				0.0	
1298				0.0	
299				0.0	
300	IBLAD	E	DELTA CM OPTION FLAG	0.0	
301	BI	(40)	BLADE DISTRIBUTED MOMENT OF INERTIA ABOUT CG, SLUG-FT	1 • % 660E-01	
1302				1.1210E-02	
1303				9.7770E-03	
1304				1.6950E-02	
1305				1.6120E-02	
1306				1.6440E-02	
1307				1.7060E-02 1.7920E-02	
1308				1.51808-02	
1310				1.5410E-02	
1311				1.8140E-02	
1312				1.5270E-02	
1313				2.7680E-02	
1314				0.0	
1315				0.0	
1316				0.0	
1317				0.0	
1318				0.0 0.0	
1319 1320				0.0	
1321				0.0	
1322				0.0	
1323				0.0	
1324				0.0	
1325				0.0	
1326				0.0	
1327				0.0	
1328				0.0	
1329				0.0 0.0	
1330					
1331 1332				0.0	
1333				0.0	
1334				0.0	
1335				0.0	
1336				0.0	
1337				0.0	
1338				0.0	
1339				0.0	
1340				0.0	

INPUT DATA/RELATIVE ADDRESS TABLE					
R/A PROGRAM SYMBUL	DESCRIPT ION	SAMPLE VALUE	UNITS		
1342		0.0			
1343		0.0			
1344		0.0			
1345 KTI	BLADE INBOARD TAB STATION NO.	0.0			
346 KTO	BLADE OUTBOARD TAB STATION NO.	0.0			
1347 DCMR1	DELTA CM. CAN BE OPTIONALLY USED. SEE RA(1300)	0.0			
348 HTR	HEIGHT OF THE TAIL ROTOR +UP	4.7500E 00	F*		
1349 YP	PROP LAT. OFFSET +RT	0.0	FT		
1350 THROON	PROP THRUST CONSTANT	0.0			
351 TORCON	PROP TORQUE CONSTANT	0.0			
1352 PARCON	PROP ADVANCE RATIO CONSTANT	0.0			
1353 OPEN (8)		0.0			
1354		0.0			
1355		0.0			
1356		0.0			
1357 1358		0.0			
1359		0.0			
1360		0.0			
1361 DSOGJ (40)	RECIPROCAL OF TORSIONAL STIFFNESS GJ	0.0			
1362		0.0			
1363		0.0			
1364		0.0			
1365		0.0			
1366		0.0			
1367		0.0			
l 368 l 369		0.0			
1370		0.0			
371		0.0			
1372		0.0			
373		0.0			
1374		v •0			
1375		0.0			
1376		0.0			
1377 1378		0.0			

TABLE 3-1 - Continued

INPUT DATA/RELATIVE ADDRESS TABLE				
R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE VALUE	UNITS
1380			0.0	
1381			0.0	
1382			0.0	
1383			0.0	
1384			0.0	
1385			0.0	
1386			0.0	
1387			0.0	
1388			0.0	
1389			0.0	
1390			0.0	
1391			0.0	
1392			0.0	
1393			0.0	
1394			0.0	
1395			0.0	
1396			0.0	
1397			0.0	
1398			0.0	
1399			0.0	
1400			0.0	
1401	TCT	QUASI-STATIC TORSION TIME CONSTANT	0.0	SEC
1402	DTH1	BL. STA 1 FOR ELASTIC TWIST OUTPUT	0.0	FT
1403	DTH2	BL. STA 2 FOR ELASTIC TWIST OUTPUT	0.0	FT
1404	TTFLAG	TENSION-TORSION PACK OPTION 0=OFF , 1=ON	0 -0	
1405	ODEN 441		0.0	
	OPEN (4)		0.0	
1406			0.0	
1408			0.0	
1409	Y1V1	INPL DISPL,TT PACK INBD END MODE 1,+FWD	0.0	
1410	AIA5	MODE 2,+FMD	0.0	
1411	Y I V 3	NODE 3,+FND	0.0	
1412	2171	OUTPL DISPLOTT PACK INBD END MODE 1. DN	0.0	
1413	2 I V 2	MODE 2,+DN	0.0	

TABLE 3-1 - Continued INPUT DATA/RELATIVE ADDRESS TABLE R/A PROGRAM DESCRIPTION SAMPLE UNITS SYMB OL VALUE 1414 ZIV3 MODE 3,+DN 0.0 1415 YOV1 INPL DISPL,TT PACK OUTBD END 0.0 MODE 1, +F HD 1416 YOV2 MODE 2, +FWD 0.0 1417 YOV3 MODE 3, +FWD 0.0 1418 ZOV1 OUTPL DISPL,TY PACK OUTBD END 0.0 MODE 1,+DN 1419 ZOV 2 MODE 2.+DN 0.0 1420 ZOV3 MODE 3, +ON 0.0 1421 YCS 1401 DISTANCE C.G. TO SHEAR CENTER 0.0 FT 1422 0.0 FT 1423 0.0 FT 1424 0.0 FT 1425 FT 0.0 1426 0.0 FT 1427 0.0 FT 1428 0.0 FT 1429 0.0 FT 1430 0.0 FT 1431 0.0 FT 0.0 1432 FT 1433 0.0 FT 1434 0.0 FT 1435 0.0 FT 1436 0.0 FT 1437 0.0 FT 1438 FT 0.0 1439 0.0 FT 1440 0.0 FT 1441 0.0 FT 1442 0.0 FT 0.0 1443 FT 1444 0.0 FT 1445 0.0 FT 1446 0.0 FT 1447 FT 0.0 1448 0.0 FT 1449 FT 0.0 1450 0.0 FT 1451 0.0 FT 1452 FT 0.0 1453 0.0 FT

TABLE 3-1 - Continued

		INPUT DATA/RELATIVE ADDRESS TABLE	E	
R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE VALUE	UNITS
1454			0.0	FT
1455			0.0	FT
1456			0.0	FT
1457			0.0	FT
1459			0.0	FT
1460			0.0	FT
1461	IXXF	FUSELAGE MOM INERTIA, ROLL	5.8950E 03	SLUG-FT2
1462	IYYF	FUSELAGE MOM INERTIA, PITCH	2.750DE 04	SLUG-FT2
1463	IZZF	FUSELAGE MON INERTIA, YAW	2.3088E 04	SLUG-FT2
1464	IXYF	FUSELAGE HOM INERTIA, R - P	0.0	SLUG-FT2
1465	IXZF	FUSELAGE MOM INERTIA, R - Y	0.0	SLUG-FT2
1466	IYZF	FUSELAGE MOM INERTIA, P - Y	0.0	SLUG-FT2
1467	OPEN		0.0	
1468	IZZH	HUB POLAR INERTIA	0.0	SLUG-FT2
1469	ZGS	HUB-TO-SWASHPLATE C.G.	0.0	FT
1470	IXXPRO, PROFLG	PROP MOM INERTIA O= NO PROP SIMULATION	0.0	SLUG-FT2
1471	IXXENG	ENGINE MOMENT OF INERTIA	0.0	SLUG-FT2
1472	IYYTR	TAIL ROTOR MOMENT OF INERTIA	0.0	SLUG-FT2
1473	GRPRO	GEAR RATIO, PROPELLER +TOP LT	0.0	
1474	GRENG	ENGINE +TOP LT	1.0000F 00	
1475	GRTR	TAIL ROTOR +TOP RT	6.0000E 00	
1476	OPEN		0.0	
1477	ZBPH	PITCH HORN PARTIAL	0.0	
1478	AKPH	DYNAMIC PITCH HORN SPRING	0.0	FT-LB/RD
1479	DELZOB	OUTBOARD BEARING OFFSET ADJUSTMENT +UP	0.0	FT
1480	IPHORN	FLAG FOR PITCH HORN 0=DFF+1=ON	0.0	

TABLE	3-1	_	Continued

		INPUT DATA/RELATIVE ADDRESS TABL	E	
		THE DESIGNATION ADDRESS THE	C	
R/A	PROGRAM SYMBOL	DESCRIPT YON	SAMPLE VALUE	UNITS
1481	YJOG	BLADE CHORDWISE OFFSET + TIP FWD	0.0	FT
1482	ZJOG	BLADE FLAPWISE OFFSET + TIP UP	0.0	FT
1483	IFFT	SIGNAL PREPARATION FOR POST REXOR PROCESSING	0.0	
1484	ENGHP X	MAXIMUM ENGINE HORSEPOWER	0.0	
1485	CFB	FEATHERING VISCOUS FRICTION	0.0	F-LB/R/S
1486	OPEN		0.0	
1487	КРН	QUASI-STATIC PITCH HORN SPRING AND FLAG, 0=NO QUASI	0.0	FT-LB/RD
1488	TPH	QUASI-STATIC PITCH HORN TIME CONSTANT	0.0	SEC
1489 1490	OPEN (2)		0.0	
1491	RTWANG(3)	REACTIONLESS INPLANE	0.0	FŢ
1492		EXCITATION	0.0	FT
1493			0.0	FT
1494	FIDDLE	SWP VERTICAL CENTERING LOAD	0.0	LB
1495 1496	OPEN (2)		0.0	
1497	TORFLG	QUASI-STATIC TORSION FLAG 0=OFF,1=ON	0.0	
1498	TSTOP	MAXIMUM TIME IN FLY SEGMENT	0.0	SEC
1499	IDECUP	LIFT-ROLL DECOUPLER FLAG 0=OFF,1=ON	0.0	
1500	OPEN		0.0	
1501	TTB (20)	THETA COMMAND - USE IN CONJUNCTION WITH RA(151)	0.0	RAD
1502		WELLER TO SECULIAR SECTION SEC	0.0	RAD
1503			0.0	RAD
1504			0.0	RAD
1505			0.0	RAD

TADDE)_T	- 00110	inueu

	PROGRAM SYMPOL	DESCRIPT ION	SAMPLE	UNITS
1507 1508 1509			VALUE	
1508 1509			0.0	RAD
1509			0.0	RAD
			0.0	RAD
1510			0.0	RAD
			0.0	RAD
1511			0.0	RAD
1512			0.0	RAD
1513			0.0	RAD
1514			0.0	RAD
1515			0.0	RAD
1516			0.0	RAD
1517			0.0	RAD
1518			0.0	RAD
1519			0.0	RAD
1520			0.0	RAD
1521 Y	NA (20)	LOCATION OF NEUTRAL AXIS RELATIVE TO 1/4 CHORD +FWD	0.0	FT
1522			0.0	FŤ
1523			0.0	FT
1524			0.0	FT
1525			0.0	FŤ
1526			0.0	FT
1527			0.0	FT
1528			0.0	FT
1529			0.0	FT
1530			0.0	FT
1531			0.0	FT
532			0.0	FT
1533			0.0	FT
1534			0.0	FT
1535			0.0	FT
1536			0.0	FT
1537			0.0	FT
1538 1539			0.0	FT FT
1540			0.0	FT
1541 0	PEN (120)		0.0	
1542			0.0	
543			0.0	
1544			0.0	
1545			0.0	
1546			0.0	
1547			0.0	
1548			0.0	
1549			0.0	
1550			0.0	
1551 1552			0.0	

		INPUT DATA/RELATIVE ADDRESS	TABLE
R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE UNIT VALUE
1553			0.0
1554			0.0
1555			0.0
1556			0.0
1557 1558			0.0 0.0
1559			0.0
1560			0.0
1561			0.0
1562			0 - 0
1563			0.0
1564 1565			0.0
1566			0.0
1567			0.0
1568			0.0
1569			0.0
1570			0.0
1571			0.0
1572 1573			0 • 0 0 • 0
1574			0.0
1575			0.0
1576			0.0
1577			0.0
1578			0.0
1579 1580			0.0 0.0
1581			0.0
1582			0.0
1583			0.0
1584			0.0
1585			0.0
1586 1587			0.0
1588			0.0 0.0
1589			0.0
1590			0.0
1591			0.0
1592			0.0
1593			0.0
1594 1595			0.0
1596			0.0
1597			0.0
1598			0.0
1599			0.0
1600			0.0
1601			0.0

	TABLE 3-1 - Continued				
		INPUT DATA RELATIVE ADDRESS TA	BLE		
R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE UNITS VALUE		
1603			0.0		
1604			0.0		
1605			0.0		
1606			0.0		
1607			0.0		
1608			0.0		
1609 1610			0.0 0.0		
1611			0.0		
1612			0.0		
1613			0.0		
1614			0.0		
1615			0.0		
1616			0.0		
1617 1618			0.0 0.0		
1619			0.0		
1620			0.0		
1621			0.0		
1622			0.0		
1623			0.0		
1624			0.0		
1625			0.0		
1626 1627			0.0		
1628			0.0		
1629			0.0		
1630			0.0		
1631			0.0		
1632			0.0		
1633			0.0		
1634			0.0		
1635 1636			0.0 0.0		
1637			0.0		
1638			0.0		
1639			0.0		
1640			0.0		
1641			0.0		
1642			0.0		
1643			0.0		
1644 1645			0.0		
1646			0.0		
1647			0.0		
1648			0.0		
1 649			0.0		
1650			0.0		
1651			0.0		
1652			0.0		
1					

TABLE 3-1 - Continued INPUT DATA RELATIVE ADDRESS TABLE				
1653			0.0	
1654			0.0	
1655			0.0	
1656			0.0	
1657 1658			0.0	
1659			0.0	
1660			0.0	
1661	Y (30)	DISPL. EACH D.D.F.	-4.1294E 00	
1662			-2.7224F 00	
1663			-2.0041E-02	
1664			0.0	
1666			-4.4438E 00 1.2488E 00	
1667			1.8730E-01	
1668			0.0	
1669			-4.4984E 00	
1670			-1.6319E 00	
1671			1.5757E-01	
1672			0.0	
1673			-4.0000E 00	
1675			-5.9798E 00 1.7137E-01	
1676			0.0	
1677			9.4265E-02	
1678			3.1704E-02	
1679			0.0	
1680			0.0	
1681 1682			1.2284E 02	
1683			0.0 -6.2315E 00	
1684			0.0	
1685			0.0	
1686			0.0	
1687			-1 .4 815E-01	
1688			-5 •0 130E-02	
1689 1690			0.0	
1691	YD (30)	VEL. EACH D.O.F.	-1.1501E 01	
1692			8.5060E 01	
1693			-1.2621E 00	
1694			0.0	
1695			3.1218E-01	
1696 1697			1.1964E 01	
1698			1.3216E 00 0.0	
1699			-1 •8055E-01	
1700			-8.3631E 01	

INPUT DATA RELATIVE ADDRESS TABLE PROGRAM R/A DESCRIPT ION SAMPLE UNITS SYMBOL VALUE 1701 -8.1126E-02 1702 0.0 1703 1.0838E 01 1704 -1.3239E 01 1705 -2 .6 460E-01 1706 0.0 1707 0.0 1708 0.0 1709 0.0 1710 2.3210E 01 1711 -4.6547E-01 1712 -2.3527E 00 1713 -5.6457E-03 1714 -3.08972-01 1715 5.9532E-02 1716 1.6666E-02 1717 0.0 1718 0.0 1719 0.0 1720 0.0 1721 YDD (30) ACC. EACH D.D.F. 2.6970E 01 1722 1.6641E 02 1723 2.2033E 02 1724 0.0 1725 1.2456E 01 1726 -1.7118E 03 1727 -1 .6 041E 02 1728 0.0 1729 1.4945E 02 1730 -5.6694E 02 1731 1.4834E 01 1732 0.0 1733 -1.5749E 02 2.1129E 03 -7.0873E 01 1734 1735 1736 0.0 1737 0.0

TABLE 3-1 - Continued

0.0

0.0

0.0

0.0

0.0

0.0

-2.0790E 00

2.3943E 00

-3 -1813E 01

-3.0897E-01

5.9532E-02

1 -6666E-02

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

TABLE 3-1 - Continued

R/A	PROGRAM	DESCRIPTION	SAMPLE	UNIT
	SYMB OL		VALUE	
1750			0.0	
1751	FX (25)	FUSELAGE DOWNWASH AS A FUNCT. OF MAIN ROTOR WAKE ANGLE, DEG	1.8000E 01	
1752			-1.8000E 02	
1753			6.2300E-01	
1754			0.0	
1755			6.2300E-01	
1756			4.0000E 01	
1757			7.4000E-01	
1758			7.0000E 01	
1759			8 .8 000E-01	
1760			8.0000E 01	
1761			8.6000E-01	
1762 1763			9.0000E 01 8.4000E-01	
1764			1.0000E 02	
1765			5.6000E-01	
1766			1.1000E 02	
1767			3.8300E-01	
1768			1.8000E 02	
1769			3 .8 300E-01	
1770			0.0	
1771			0.0	
1772			0.0	
1773			0.0	
1774			0.0	
1775			0.0	
1776	TNBODY(25)	HORZ TAIL DWNWASH AS A FUNCT. OF MAIN ROTOR WAKE ANGLE, DEG	2.2000E 01	
1777			-1.8000E 02	
1778			0.0	
1779			2.0000E 01	
1780			0.0	
1781			5.0000E 01	
1782			2.0000E 00	
1783			6.0000E 01 1.9200E 00	
1784			7.4000E 01	
1785				
1786 1787			8.0000E 01	
1788			1.3400E 00	
1789			9.0000E 01	
1790			1.1400E 00	
1791			1.0000E 02	
1792			1.0800E 00	
1793			1.1000E 02	
1794			1.0400E 00	

	TABLE 3-1 - Continued		
	INPUT DATA/RELATIVE ADDRESS	TABLE	
R/A PROGRAM Symbol	DESCRIPTION	SAMPLE VALUE	UNITS
1796 1797 1798 1799		9.6000E-01 1.8000E 02 0.0 0.0	
1 000		0.0	
1801 NVEC2 (50) 1802 1803 1804 1805 1806 1807 1808 1809	FLY PLOT CODE TABLE	3.0000E 00 7.0000E 00 2.1000E 01 1.4000E 01 5.4000E 01 4.0000E 00 1.6000E 01 1.5000E 01 1.8000E 01	
1810 1811 1812 1813 1814 1815		1.9000E 01 1.7000E 01 1.3000E 01 2.9000E 01 2.8000E 01 2.7000E 01 2.6000E 01	;
1617 1818 1819 1820 1821 1822 1823		3.0000E 01 2.5000E 01 2.4000E 01 2.3000E 01 3.6000E 01 4.8000E 01 3.8000E 01	
1824 1825 1826 1827 1828 1829 1830		4.0000F 01 4.2000E 01 5.2000E 01 5.1000E 01 4.7000E 01 7.1000E 01 6.9000E 01	
1831 1832 1833 1834 1835 1836		7.0000E 01 6.8000E 01 3.1000E 01 3.2000E 01 3.9000E 01 2.0000E 01 5.8000E 01	
1838 1839 1840 1841 1842 1843		5.7000E 01 3.4000E 01 3.3000E 01 4.5000E 01 4.4000E 01 5.0000E 01 4.9000E 01	

		INPUT DATA RELATIVE ADDRESS TA	9LE	
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE UN VALUE	17:
1845			5.6000E 01	
1846			5.5000E 01	
1847			5.3000E 01	
1848			4.1000E 01	
1849			3.7000E 01	
1850			3.5000E 01	
	SVEC (50)	TABLE OF PLOT SCALE FACTORS	0.0	
1852			0.0	
1853			0.0	
1854 1855			0.0	
1856			0.0 0.0	
1857			0.0	
1858			0.0	
1859			0.0	
1860			0.0	
1861			0.0	
1862			0.0	
1863			0.0	
1864			0.0	
1865 1866			0.0	
1867			0.0	
1868			0.0	
1869			0.0	
1870			0.0	
1871			0.0	
1872			0.0	
1873			0.0	
1874			0.0	
1875 1876			0.0	
1877			0.0	
1878			0.0	
1879			0.0	
1886			0.0	
1881			0.0	
1882			0.0	
1883			0.0	
1884			0.0	
1885			0.0	
1886 1887			0.0	
1888			0.0 0.0	
1889			0.0	
1890			0.0	
1891			0.0	
1892			0.0	

				
		INPUT DATA/RELATIVE ADDRESS	TARIF	
		INFO DATAPRECATIVE ADDRES.	, 18055	
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
1894			0.0	
1895			0.0	
1896			0.0	
1897			0.0	
1898			0.0	
1899			0.0	
1900			0.0	
1901	(35)	AUTU-PILOT SETTINGS	0.0	
1902			0.0	
1903		·	0.0	
1904			0 • 0	
1905			0.0	
1906			0.0	
1907			0.0	
1908			0.0	
1 404			0.0	
1910			0.0	
1911			0.0	
1912			0.0	
1913			0.0	
1914			0.0	
1915			0.0	
1916			0.0	
1917			0.0	
1918			0.0	
1919			0.0	
1920			0.0	
1921			0.0	
1922			0.0	
1923			0.0	
1924			0.0	
1925			0.0	
			ο ο	

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

TABLE 3-1 - Continued

1936 HPSET

1937 OPEN (2)

1939 TMAUTO

SET HORSEPOWER IN AUTOPILOT

TIME TO START AUTO-PILOT SIM.

mΛ	Dτ	17	2 1	1	Cont	4	اءمدد
.I.A	ВI	11.	≺ —	-	Cont	. 1 r	mea

INPUT DATA/RELATIVE ADDRESS TABLE						
R/A	PROGI Symbi		DESCRIPT ION	SAMPLE VALUE	UNITS	
1940	NPT		NO. OF AUTOPILOT TIME POINTS	0.0		
1941	T	(20)	AUTO-PILOT TIME TABLE	0.0	SEC	
1942				0.0	SEC	
1943				0.0	SEC	
1944				0.0	SEC	
1945				0.0	SEC	
1946				0.0	SEC	
1947				0.0	SEC	
1948				0.0	SEC	
1949				0.0	SEC	
1950				0.0	SEC	
1951				0.0	SEC	
1952				0.0	SEC	
1953				0.0	SEC	
1954				0.0	SEC	
1955				0.0	SEC	
1956				0.0	SEC	
1957				0.0	SEC	
1958				0.0	SEC	
1959				0.0	SEC	
1960				0.0	SEC	
1961	E	(20)	AUTO-PILOT VEL. TABLE	0.0	FT/SEC	
1962				0.0	FT/SEC	
1963				0.0	FT/SEC	
1964				0.0	FT/SE	
1965				0.0	FT/SE	
1966				0.0	FT/SE	
1967				0.0	FT/SE	
1968				0.0	FT/SE	
1969				0.0	FT/SE	
1970				0.0	FT/SE	
1971				0.0	FT/SE	
1972				0.0	FT/SE	
1973				0.0	FT/SE	
1974				0.0	FT/SE	
1975				0.0	FT/SE	
1976				0.0	FT/SE	
1977				0.0	FT/SE	
1978				0.0	FT/SE	
1979				0.0	FT/SE	
1980				0.0	L1/2E	
1981	GAINT	(20)	TRIM GAIN PROP BL ANG (+) OR	-1 •6 000E-03		
			ANG OF ATTACK (-) RAD/FT/S			
1982			TRIM GAIN, BANK ANG (+) RAD/F/S			
1983			TRIM GAIN, COLLECT. ANG (-) DR	-1.6000E-03		
			ANG OF ATTACK (-) RAD/FT/S			

TABLE 3-1 - Continued

		INPUT DATA/RELATIVE ADDRESS TABLE	. E	
R/A	PROGRAM Symbol	DESCRIPTION	SAMPLE VALUE	UNITS
1985		TRIM GAIN, LONG CYCLIC (815) -	-3.0000E-02	SEC
1986		TRIM GAIN, TAIL ROTOR COLL -	-7.5000E-02	SEC
1987		TRIM GAIN, SWP ROLL MOM +	0.0	F-LB/R/S
1988		TRIM GAIN, SWP VERT DISP -	0.0	SFC
1989		TRIM GAIN, ENG. TORQUE +	0.0	F-LB/R/S
1990		TRIM GAIN, FLT PATH ANG - RAD/FT/S	0.0	
1991		TRIM GAIN, COLL. AUTOROTATION +	0.0	SEC
1992		TRIM GAIN+COLL + (RAD/S)/(FT-LB)	0.0	
1993			0 • C	
1994		TRIM GAIN, SWP PITCH MOM +	0.0	F-LB/R/S
1995			0.0	F-LB/R/S
1996			0.0	F-LB/R/S
1497			0.0	F-LB/R/S
1998			0.0	F-LB/R/S
1999			0.0	F-LB/R/S
2000	TRMUPD	TRIM UPDATE FLAG O=UFF,1=ON	0.0	
2001	THT OR S (40,4)	TRIM SAVE DATA BLADE TORSION DISPLACEMENT	0.0	RAD
2002			0.0	RAD
2003			0.0	RAD
2004			0.0	RAD
2005			0.0	RAD
2006			0.0	RAD
2007			0.0	RAD
2008			0.0	RAD
2009			0.0	RAD
2010			0.0	RAD
2011			0.0	RAD
2012			0.0	RAD
2013			0.0	RAD
2014			0.0	RAD
2015			0.0	RAD
2016			0.0	RAD
2017			0.0	RAD
2018			0.0	RAD
2019			0.0	RAD
2020			0.0	RAD
2021			0.0	RAD
2022			0.0	RAD
2023			0.0	RAD
			0.0	RAD
2024			0.0	RAD
2024 2025				0.40
2024 2025 2026			0.0	RAD
2024 2025				RAD RAD RAD

TABLE 3-1 - Continued

R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE Value	UNITS
2029			0.0	RAD
2030			0.0	RAD
2031			0.0	RAD
2032			0.0	RAD
2033			0.0	RAD
2034			0.0	RAD
2035			0.0	RAD
2036			0.0	RAD
2037			0.0	RAD
2038			0.0	RAD
2039			0.0	RAD
2040			0.0	RAD
2041			0.0	RAD
2042 2043			0.0	RAD
2044			0.0	RAD RAD
2045			0.0	RAD
2046			0.0	RAD
2047			0.0	RAD
2048			0.0	RAD
2049			0.0	RAD
2050			0.0	RAD
2051			0.0	RAD
2052			0.0	RAD
2053			0.0	RAD
2054			0.0	RAD
2055			0.0	RAD
2056			0.0	RAD
2057			0.0	RAD
2058			0.0	RAD
2059			0.0	RAD
2060			0.0	RAD
2061			0.0	RAD
2062			0.0	RAD
2063			0.0	RAD
2064			0.0	RAD
2065			0.0	RAD
2066			0.0	RAD
2067			0.0	RAD
2068			0.0	RAD
2069			0.0	RAD
2070			0.0	RAD
2071			0.0	RAD
2072			0.0	RAD
2073			0.0	RAD
2074			0.0 0.0	RAD RAD
2075			0.0	RAD
2077			0.0	RAD
2078			0.0	RAD

TABLE 3-1 - Continued

		INPUT DATA/RELATIVE AD	TRESS TABLE	
R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
2079			0.0	RAD
2080			0.0	RAD
2081			0.0	RAD
2082			0.0	RAD
2083			0.0	RAD
2084			0.0	RAD
2085			0.0	RAD
2086			0.0	RAD
2087			0.0	RAD
2088			0.0	RAD
2089			0.0	RAD
2090			0.0	RAD
2091			0.0	RAD
2092			0.0	RAD
2093			0.0	RAD
2094			0.0	RAD
2095			0.0	RAD
2096			0.0	RAD
2097 2098			0.0	RAD
2098			0.0 0.0	RAD RAD
2100			0.0	RAD
2100			0.0	RAD
2101			0.0	RAD
2102			0.0	RAD
2104			0.0	RAD
2105			0.0	RAD
2106			0.0	RAD
2107			0.0	RAD
2108			0.0	RAD
2109			0.0	RAD
2110			0.0	RAD
2111			0.0	RAD
2112			0.0	RAD
2113			0.0	RAD
2114			0.0	RAD
2115			0.0	RAD
2116			0.0	RAD
2117			0.0	RAD
2118			0.0	RAD
2119			0.0	RAD
2120			0.0	RAD
2121			0.0	RAD
2122			0.0	RAD
2123			0.0	RAD
2124			0.0	RAD
2125			0.0	RAD
2126			0.0	RAD
2127			0.0	RAD
2128			0.0	RAD

TABLE 3-1 - Continued

R/A	PROGRAM	DESCRIPTION	CAMDI E	UNIT
N/ A	SYMBOL	DESCRIPTION	SAMPLE VALUE	UNIT
2129			0.0	RAD
2130			0.0	RAD
2131			0.0	RAD
2132			0.0	RAD
2133			0.0	RAD
2134			0.0	RAD
2135			0.0	RAD
2136			0.0	RAD
2137			0.0	RAD
2138			0.0	RAD
2139			0.0	RAD
2140			0.0	RAD
2141			0.0	RAD
2142			0.0	RAD
2143			0.0	RAD
2144			0.0	RAD
2145			0.0	RAD
2146			0.0	RAD
2147			0.0	RAD
2148			0.0	RAD
2149			0.0	RAD
2150			0.0	RAD
2151			0.0	RAD
2152			0.0	RAD
2153 2154			0.0	RAD
2155			0.0 0.0	RAD RAD
2156			0.0	RAD
2157			0.0	RAD
2158			0.0	RAD
2159			0.0	RAD
2160			0.0	RAD
2161	THTRD (40,4)	TRIM SAVE DATA BLADE TURSION VELOCITY	0.0	RAD/SI
2162		- I TONE I ON OR OF TREOUR !!	0.0	RAD/SI
2163			0.0	RAD/SE
2164			0.0	RAD/SI
2165			0.0	RAD/SI
2166			0.0	RAD/SI
2167			0.0	RAD/SI
2168			0.0	RAD/SI
2169			0.0	RAD/SI
2170			0.0	RAD/SI
2171			0.0	RAD/SI
2172			0.0	RAD/SI
2173			0.0	RAD/SI
2174			0.0	RAD/SI
2175			0.0	RAD/SI

TABLE 3-1 - Continued

	INPUT DATA OF ATTE		Ja-171511.51000.	
R/A PROCRAM	INPUT DATA RELATIVE	ADDRESS TABLE		
R/A PROGRAM SYMBOL	DESCRIPT ION			
J THE CAL			SAMPLE UNITS	
2177			VALUE	
2178		0 0		
2179		0.0 0.0	WVD\2F(:
2180		0.0	RAD/SEC	:
2181 2182		0.0	RAD/SEC	:
2183		0.0	RAD/SEC	•
2184		0.0	RAD/SEC	,
2185		0.0	RAD/SEC RAD/SEC	
2186		0.0	RAD/SEC	
2187		0.0	RAD/SEC	
2188		0.0	RAD/SEC	
2189		0.0	RAD/SEC	
2190		0.0	RAD/SEC	
2191		0.0	RAD/SEC	
2192		0.0	RAD/SEC	
2193		0.0	RAD/SEC	
2194		0.0	RAD/SEC	
2195		0.0	RADISEC	
2196		0.0	RAD/SEC	
2197		0.0	RAD/SEC	
2198		0.0	RAD/SEC	j
2199		0.0	RAD/SEC	
2200		0.0	RAD/SEC	
2201 2202		0.0	RAD/SEC	- 1
2202		0.0	RAD/SEC	- 1
2204		0.0	RAD/SEC	
2205		0.0	RAD/SEC RAD/SEC	
2206		0.0	RAD/SEC	
2207		0.0	RAD/SEC	
2208		0.0	RAD/SEC	
2209		0.0	RAD/SEC	1
2210		0.0	RAD/SEC	-
2211		0.0	RAD/SEC	
2212		0.0	RAD/SEC	
2213		0.0	RAD/SEC	
2214		0.0	RAD/SEC	
2215		0.0	RAD/SEC	
2216		0.0	RAD/SEC	
2217		0.0	RAD/SEC	1
2218		0.0	RAD/SEC	1
2219		0.0	RAD/SEC	
2220		0.0	RAD/SEC	
2221		0.0	RAD/SEC	
2222		0.0	RAD/SEC	
2223 2224		0.0	RAD/SEC	
? 225		0.0	RAD/SEC	
2226		0.0	RAD/SEC RAD/SEC	
		0.0	RAD/SEC	
		0.0	RAD/SEC	
			HADY SEC	

TABLE 3-1 - Continued

	1							_
			INPUT DATARELATIVE	10				
	R/A	PROGRAM		ADDRESS	TABLE			
		SYMBOL	DESCRIPTION			SAMPLE		
	2227					VALUE	UNITS	
	2228							
1	2229				0.0		: DISEC	2
1	2230				0.0		RAD/SEC	
1	2231				0.0		RAD/SEC	
	2232				0.0		RAD/SEC	;
	2233 2234				0.0		RAD/SEC	
l	2235				0.0		RAD/SEC	
l	2236				0.0		RAD/SEC RAD/SEC	
	2237				0.0		RAD/SEC	
l	2238				0.0		RAD/SEC	
l	2239				0.0		RAD/SEC	
	2240				0.0		RAD/SEC	
	2241				0.0		RAD/SEC	
	2242				0.0		RAD/SEC	
	2243 2244				0.0		RAD/SEC	
	2245				0.0		RAD/SEC RAD/SEC	
	2246				0.0		RAD/SEC	
	2247				0.0		RAD/SEC	
	2248				0.0		RAD/SEC	
	2249				0.0		RAD/SEC	
	2250				0.0		RAD/SEC	
	2251				0.0		RAD/SFC	
	2252				0.0		RAD/SEC	
	2253				0.0		RAD/SEC	
	2254 2255				0.0		RAD/SEC RAD/SEC	
	2256				0.0		RAD/SEC	
	2257				0.0		RAD/SEC	
	2258				0.0		RAD/SEC	
	2259				0.0		RAD/SEC	- [
	2260				0.0		RAD/SFC	-
	2261				0.0		RAD/SEC	
	2262				0.0	!	RAD/SEC	
	2263 2264				0.0	,	RAD/SEC	1
	2265				0.0		RAD/SEC RAD/SEC	
	2266				0.0	Ŗ	AD/SEC	
	2267				0.0	R	AD/SEC	
	2268				0.0	R	AD/SEC	1
	2269				0.0	R	AD/SEC	
	2270				0.0 0.0	R	AD/SEC	
	2271				0.0	R	AD/SEC	
	2272				0.0	R.	AD/SEC	
	2273 2274				0.0		AD/SEC AD/SEC	
	2275				0.0	R	D/SEC	
	276				0.0	R/	D/SEC	
					0.0	RA	D/SEC	
					0.0	R.	D/SEC	
_								

TABLE 3-1 - Continued

		INPU	DATA/RELATIVE	ADDRESS TABLE		
5.44	PROGRAM	5.5	SCRIPT ION		SAMPLE	UNITS
R/A	SYMBOL				VALUE	
	_				0.0	RAD/SEC
2277					0.0	RAD/SEC
2278					0.0	RAD/SEC
2279					0.0	HAD/SEC
2280					0.0	RAD/SEC
2281					0.0	RAD/SEC
2282					0.0	RAD/SEC
2283					0.0	RAD/SEC
2284					0.0	RAD/SEC
2285					0.0	RAD/SEC
2286					0.0	RAD/SEC
2287						RAD/SEC
2288					0.0	RAD/SEC
					0.0	RAD/SEC
2289					0.0	RAD/SEC
2290					0.0	RAD/SEC
2291					0.0	RAD/SEC
2292					0.0	RAD/SEC
2293					0.0	RAD/SEC
2294					0.0	
2295					0.0	RAD/SEC
2296					0.0	RAD/SEC
2297					0.0	RAD/SEC
2298					0.0	RAD/SEC
2299					0.0	RAD/SEC
2 300					0.0	RAD/SEC
2301					0.0	RAD/SEC
2302					0.0	RAD/SEC
2303	3				0.0	RAD/SEC
2304	•				0.0	RAD/SEC
2305	5				0.0	RAD/SEC
2306	5				0.0	RAD/SEC
2307	7				0.0	RAD/SEC
2308	3				0.0	RAD/SEC
2309	9				0.0	RAD/SEC
2310					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
231					0.0	RAD/SEC
232					0.0	
			RIM SAVE DATA		0.0	
232	1 THG1	(40,4) T	LADE TORSION AC	CELERATION		
		8	FADE LOWSTON NO		0.0	
232					0.0	
232					0.0	
232	24					
1						

TABLE 3-1 - Continued INPUT DATA/RELATIVE ADDRESS TABLE DESCRIPT ION SAMPLE UNITS PROGPAM VALUE SYMBOL 0.0 2325 2326 0.0 0.0 2327 0.0 2328 2329 0.0 0.0 2330 0.0 2331 2332 0.0 0.0 2333 0.0 2334 2335 0.0 0.0 2336 0.0 2337 2338 0.0 0.0 2339 0.0 2340 2341 0.0 0.0 2342 0.0 2343 2344 0.0 0.0 2345 0.0 2346 2347 0.0 0.0 2348 2349 0.0 0.0 2350 0.0 2351 0.0 2352 0.0 2353 0.0 2354 2355 $\mathbf{0.0}$ 0.02356 0.0 2357 2358 0.0 0.0 2359 0.0 2360 2361 0.0 2362 0.0 2363 2364 0.0 2365 0.0 2366 2367 0.0 2368 2369 0.0

0.0

0.0

0.0

0.0

2370

2371

2372

2373

2374

TABLE 3-1 - Continued

SYMBOL 2375 2376 0.0 2377 0.0 2378 0.0 2379 0.0 2380 0.0 2381 0.0 2382 0.0 2383 0.0 2385 0.0 2386 0.0 2386 0.0 2387 2388 0.0 2389 0.0 2390 0.0 2391 0.0 2391 0.0 2391 0.0 2397 2398 0.0 2399 0.0 2397 0.0 2397 0.0 2397 0.0 2397 0.0 2397 0.0 2398 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2400 2401 0.0 2401 0.0 2402 2403 2406 0.0 2409 2409 0.0 2411 0.0 2411 0.0 2411 0.0 2411 0.0 2411 2416 0.0 2416		ROGRAM	DESCRIPTION	SAMPLE	UNIT
2376 2377 0.0 2378 0.0 2389 0.0 2381 0.0 2382 0.0 2383 2384 0.0 2385 0.0 2386 0.0 2387 0.0 2388 0.0 2389 0.0 2389 0.0 2389 0.0 2389 0.0 2389 0.0 2389 0.0 2399 0.0 2391 0.0 2391 0.0 2392 2393 0.0 0.0 2394 0.0 2397 0.0 2398 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2399 0.0 2400 2401 0.0 2401 0.0 2402 2403 2404 0.0 2406 0.0 2407 0.0 2408 0.0 2409 2409 0.0 2411 2412 0.0 2411 2412 0.0 2411 2412 0.0 2411 2412 0.0 2411 2412 0.0 2411 2412 0.0 2411 2412 0.0 2411 2412 0.0 2411 2411	2	Y MB OL		VALUE	
2377 2378 0					
2378 0.0 2380 0.0 2381 0.0 2382 0.0 2383 0.0 2384 0.0 2385 0.0 2386 0.0 2387 0.0 2388 0.0 2389 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2411 0.0 2412 0.0					
2379 2380 2381 0.0 2382 0.0 2383 0.0 2384 0.0 2386 2386 0.0 2387 0.0 2388 0.0 2390 0.0 2391 0.0 2391 0.0 2392 0.0 2393 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2396 2397 0.0 2397 0.0 2398 0.0 2399 0.0 2399 0.0 2399 0.0 2396 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 2405 2406 0.0 2407 2408 0.0 2409 0.0 2411 0.0 2411 0.0 2411 0.0 2411 0.0 2412 2412 0.0 2415 0.0 2416 0.0 2416 0.0 2417 0.0 2417					
2380 2381 0.0 2382 0.0 2383 0.0 2384 0.0 2386 0.0 2387 0.0 2388 0.0 2389 0.0 2390 0.0 2391 0.0 2392 0.0 2392 0.0 2393 0.0 2393 0.0 2394 0.0 2395 0.0 2396 0.0 2397 0.0 2398 0.0 2399 0.0 2390 0.0 2401 0.0 2401 0.0 2401 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2406 0.0 2407 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2411 0.0 2412 2413 0.0 2416 0.0 2416 0.0 2417 0.0 2417 0.0 2418 0.0 0.0					
2381 0.0 2382 0.0 2383 0.0 2385 0.0 2386 0.0 2387 0.0 2388 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2396 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0					
2382 0.0 2383 0.0 2384 0.0 2385 0.0 2386 0.0 2387 0.0 2389 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2410 0.0 2411 0.0 2412 0.0					
2383 0.0 2384 0.0 2385 0.0 2387 0.0 2388 0.0 2389 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2396 0.0 2397 0.0 2398 0.0 2399 0.0 2397 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0					
2384 0.0 2385 0.0 2387 0.0 2388 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2396 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0					
2385 0.0 2386 0.0 2388 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2396 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0					
2386 0.0 2387 0.0 2388 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2387 0.0 2388 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2388 0.0 2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2390 0.0 2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2391 0.0 2392 0.0 2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2392 2393 2394 2396 2397 2398 2399 2400 2401 2402 2403 2403 2404 2405 2406 2407 2408 2409 2409 2410 2411 2412 2412 2413 2414 2415 2416 2417 2418 2000 2000 2419					
2393 0.0 2394 0.0 2395 0.0 2397 0.0 2398 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2394 0.0 2395 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2417 0.0 2418 0.0 2419 0.0					
2396 0.0 2397 0.0 2398 0.0 2399 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2396 0.0 2397 0.0 2398 0.0 23499 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2397 0.0 2398 0.0 2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2399 2399 0					
2399 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2400 0.0 2401 0.0 2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2402 0.0 2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2403 0.0 2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0	401			0.0	
2404 0.0 2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0	402				
2405 0.0 2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2406 0.0 2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2407 0.0 2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2408 0.0 2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2409 0.0 2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2410 0.0 2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2411 0.0 2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2412 0.0 2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2413 0.0 2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2414 0.0 2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2415 0.0 2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2416 0.0 2417 0.0 2418 0.0 2419 0.0					
2417 0.0 2418 0.0 2419 0.0				0.0	
2419 0.0				0.0	
	418				
2420					
2421 0.0					
2422 2423 0 • 0					

		TABLE 3-1 - Continued	
		INPUT DATA/RELATIVE ADDRESS	S TABLE
R/A	PROGRAM Symbol	DESCRIPTION	SAMPLE UNITS Value
2425			0.0
2426			0.0
2427 2428			0.0
2429			0.0
2430			0.0
2431			0.0
2432			0.0
2433 2434			0.0
2434			0.0
2436			0.0
2437			0.0
2438			0.0
2439 2440			0.0
2441			0.0 0.0
2442			0.0
2443			0.0
2444			0.0
2445 2446			0.0
2447			0.0
2448			0.0
2449			0.0
2450			0.0
2451 2452			0.0
2453			0.0
2454			0.0
2455			0.0
2456			0.0
2457 2458			0.0
2459			0.0
2460			0.0
2461			0.0
2462			0.0
2463 2464			0.0
2465			0.0
2466			0.0
2.467			0 •0
2468			0.0
2469 2470			0.0
2471			0.0
2472			0.0
2473			0.0
2474			0.0

Δוןי	RI	F	3-1	 Cont	inned

		INPUT DATA RELATIVE ADDRESS TAB	LE	
R/A	PROGRAM Symbol	DESCR I PT ION	SAMPLE VALUE	UNITS
2475			0.0	
2476			0.0	
2477			0.0	
2478			0.0	
2479			0.0	
2480			0.0	
2481	OPEN (11)		0.0	
2482			0.0	
2483			0.0	
2484			0.0	
2485			0.0	
2486			0.0	
2487			0.0	
2488			0.0	
2489			0.0	
2490			0.0	
2491			0.0	
2492	LFB	PRE-LOAD FEEDBACK SPRING DEFLECTION +TENSION	0.0	FT
2493	OPEN (21)		0.0	
2494			0.0	
2495			0.0	
2496			0.0	
2497			0.0	
2498			0.0	
2499			0.0	
2500			0.0	
2501			0.0	
2502			0.0	
2503 2504			0.0	
2505			0.0	
2506			0.0	
2507			0.0	
2508			0.0	
2509			0.0	
2510			0.0	
2511			0.0	
2512			0.0	
2513			0.0	
2514	XSTDIF	FEEDBACK ARM SPANNISE LENGTH	0.0	FT
2515	FLAP2	2ND FLAP MODE REMOVAL FLAG 1=REMOVE	0.0	

TABLE	3-1	 Continued

R/A	PROUE SYMB (DESCRIPT ION	SAMPLE VALUE	UNITS
2516	PSIFB		GYRO FEEDBACK PHASE ANGLE + LAGS BLADE	0.0	RAD
	OPEN	(5)		0.0	
2518				0.0	
2519 2520				0.0	
2521				0.0	
2522	ZRMI	(3)	OUTPLANE DISPL OF FOBK MOUNT BLADE MODE 1 + DN	-3 •8 620E-02	
523			BLADE MODE 2	1.8100E-02	
2524			BLADE MODE 3	-3.6810E-02	
	OPEN	(3)		0.0	
2526				0.0	
2527				0.0	
2528	ZRMPI	(3)	OUTPLANE SLOPE OF FDBK MOUNT BLADE MODE 1 + DN	-7.6960E-02	
2529			BLADE MODE 2	3.6210E-02	
2530			BLADE MODE 3	-7.3610E-02	
2531 2532	OPEN	(14)		0.0	
2533				0.0	
2534				0.0	
535				0.0	
2536				0.0	
2537				0.0	
2538				0.0	
539 2540				0.0	
2541				0.0	
542				0.6	
543				0.0	
2544				0.0	
545	KFBG		GYRO FEEDBACK SPRING	0.0	LB/FT
2546	ZJLIM		GYRO FEEDBACK ARM SLOP TRAVEL	0.0	FT
2547	RFB		GYRO FEEDBACK ARM RADIUS	0.0	FT
2548	OPEN			0.0	
549	DPHIS		SHAFT ROLL TILT DAMPING	0.0	F-LB/R

TABLE 3-1 - Continu	ıued
---------------------	------

		INPUT DATA/RELATIVE ADDRESS TABL	. E	
R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE VALUE	UNITS
2551	PSLOPL	SWP SLOP LIMIT ON PHI	0.0	RAD
2552	TSLOPL	SWP SLOP LIMIT ON THETA	0.0	RAU
2553	тсито	NO. OF ADDITIONAL CYCLES OF 4 BLADE TRIM IF RA(440)=3	0.0	
2554	TCUT3	NO. OF ADDITIONAL CYCLES OF 1 BLADE TRIM IF RA(440)=1	0.0	
2555	ISTALL	DYNAMIC STALL SIMULATION FLAG 1=STALL SIM.	0.0	
2556	OPEN (C)		0.0	
2557			0.0	
2558			0.0	
2559	FACTM	FACTOR USED IN CM CALC DURING DYNAMIC STALL SIM.	0.0	
2560	IHA	NG. OF HARMONICS+1 TO USE FOR HARMONIC TRIM OPTION	0.0	
2561	QMCON (6)	HARMONIC TRIM DATA	0.0	
2562			0.0	
2563			0.0	
2564			0.0	
2565 2566			0.0	
2567	OPEN (3)		0.0	
2568			0.0	
2569			0.0	
2570	STA70	STATION WHERE SWEEP AND DROOP BEGIN	0.0	FT
2571	GAIN1 (19)	SINGLE BLADE TRIM GAIN-BP	0.0	
2572		SINGLE BLADE TRIM GAIN-PHI	0.0	
2573		SINGLE BLADE TRIM GAIN-THO OR ALPHA	0.0	
2574		SINGLE BLADE TRIM GAIN-ALS	0.0	
2575		SINGLE BLACE TRIM GAIN-BIS	0.0	
2576		SINGLE BLADE TRIM GAIN-THOTR	0.0	
2577		SINGLE BLADE TRIM GAIN-GLOON AND GMCCN	0.0	
257B			0.0	
2579			0.0	
2580			0.0	
2581			0.0	

	T	NPUT DATA/RELATIVE ADDRESS TABL	E		
	- 3		SAMPLE		UNITS
A PROGRAM	ls .	DESCRIPTION	VALUE		
SYMBOL			2010022		
			0.0		
582			0.0		
583			0.0		
584			0.0		
585			0.0		
586			0.0		
587			0.0		
588					
589			0.0		
2590 OPEN (11)		0.0		
3 10 131 -			0.0		
2591 2592			0.0		
2593			0.0		
2594			0.0		
2595			0.0		
2596			0.0		
2597			0.0		
2598			0.0		
2599					0.000000
2600		71016	-1.8000E	02	DEG
	(20)	AIRFRAME AERO COEFF. TABLE			
2601 ALFA	1201	ANGLE OF ATTACK	1 .8 000E	02	DEG
			0.0		DEG
2602			0.0		DEG
2603			0.0		DEG
2605			0.0		DEG
2606			0.0		DEG
2607			0.0		DEG
2608			0.0		DEG
2609			0.0		DEG
2610			0.0		DEG
2611			0.0		DEG
2612			0.0		DEG
2613			0.0		DEG
2614			0.0		DEG
2615			0.0		DEG
2616 2617			0.0		DEC
2618			0.0		DEG
2619			0.0		2.0
2620			0.0		
		AIRFRAME CL. TABLE	0.0		
2621 CL	(26)	AIRCAN	0.0		
2622			0.0		
2623			0.0		
2624			0.0		
2625			0.0		
2626 2627					

		TABLE 3-1 - Continue	od
		INPUT DATA/RELATIVE ADDRE	SS TABLE
R/A	PROGRAM Symbol	DESCRIPTION	SAMPLE UNITS
2628			0.0
2629			0.0
2630 2631			0.0
2632			0.0
4533			0.0
2034			0.0
26.35			0.0
2636			0.0
2637			0.0
2638			0.0
2639			0.0
2640			0.0
2641	CM (20)	AIRFRAME CM TABLE	0.0
2642	, == .	The case of the case	0.0
2643			0.0
2644			0.0
2645			0.0
2646			0.0
2647			0.0
2648			0.0
2644			0.0
2650			0.0
2651			0.0
2652			0.0
2653			0.0
2654			0.0
2655			0.0
2656 2657			0.0
2658			0.0
2659			0.0
2660			0.0 0.0
2000			0 •0
2661	CD (20)	AIRFRAME CD TABLE	3.6500E 01
2662			3.6500E 01
2663			0.0
2664			0.0
2665			0.0
2666			0.0
2667			0.0
2668			0.0
2669			0.0
2670			0.0
2671			0.0
2672 2673			0.0
			0.0
2674 2675			0.0 0.0
2017			0.0

TABLE 3-1 - Continued

R/A	PROGRAM SYMBOL	DESCRIPTION	SAMPLE VALUE	UNITS
2676			0.0	
2677			0.0	
2678			0.0	
2679			0.0	
2680			0.0	
2681	AWING	WING AREA	1.0000E 00	FT2
2682	CWING	WING CORD	1.0000E 00	FT
2683	AUTR	TAIL ROTOR BLADE AREA	1.1400E 01	FT2
2684	RTR	TAIL ROTOR RADIUS	4.6700E 00	FT
2685	A	TAIL ROTOR DCL/DALPHA	5.7300E 00	1/RAD
2686	В	TAIL ROTOR TIP LOSS FACTOR	9.7000E-01	
2687	OPEN		0.0	
2688	CUTOUT	MAIN ROTOR BLADE AERO CUTOUT	4.5000E 00	FT
2689	ILOOK	AERO TABLE FLAG, O= FAST AERO 1 = SEVEN TABLE LOOKUP	1.0000E 00	
2690	IFOIL	CM TABLE FLAG 0=23008 TABLE 1=0012 TABLE	1.0000E 00	
2691	XNTAR (5)	NORMALIZED BLADE LOCATION	0.0	
2692			1.0000F 00	
2693			0.0	
2644			0.0	
2695			0.0	
2604	TOTAL IST	THICKNESS RATIO	1.20C0E-01	
2697		THE OTHER OF THE LEGISLAND	1.2000E-01	
2698			0.0	
2699			0.0	
2700			0.0	
	CLTAR (5)	DESIGN LIFT COEFFICIENT	0.0	
2702			0.0	
2703			0.0	
2 /04 2705			0.0 0.0	
2706	OPEN (95)		0.0	
2707			0.0	
2709			0.0	

R/A	PR OGRAM			
	SYMBOL	DESCRIPT ION	SAMPLE VALUE	UNIT
2710			0.0	
2711			0.0	
2712			0.0	
2713			0.0	
2714			0.0	
2715			0.0	
2716			0.0	
2717			0.0	
2718			0.0	
2719			0.0	
2720			0.0	
2721			0.0	
2722			0.0	
2723			0.0	
2724			0.0	
2725			0.0 0.0	
2726 2727			0.0	
2728			0.0	
2729			0.0	
2730			0.0	
2731			0.0	
2732			0.0	
2733			0.0	
2734			0.0	
2735			0.0	
2736			0.0	
2737			0.0	
2738			0.0	
2739			0.0	
2740			0.0	
2741			0.0	
2742			0.0	
2743			0.0	
2744			0.0	
2745			0.0	
2746			0.0	
2747			0.0	
2748			0.0	
2749			0.0	
2750			0.0	
2751			0.0	
2752			0.0	
2753			0.0	
2754			0.0	
2755			0.0	
2756 2757			0.0 0.0	
2758			0.0	

TABLE 3-1 - Continued

TABLE 3-1 - Continued

R/A	PROGI SYMB		DESCRIPTION	SAMPLE VALUE	UNITS
2760				0.0	
2761				0.0	
2762				0.0	
2763				0.0	
2764				0.0	
2765				0.0	
2766				0.0	
2767				0.0	
2768				0.0	
2769				0.0	
2770				0.0	
2771				0.0	
2772				0.0	
2773				0.0	
2774				0.0	
2775				0.0	
2776				0.0	
2777				0.0	
2778				0.0	
2779				0.0	
2780				0.0	
2781				0.0	
2782				0.0	
2783				0.0	
2784				0.0	
2785				0.0	
2786				0.0	
2787				0.0	
2788				0.0	
2789				0.0	
2790				0.0	
2791				0.0	
2792				0.0	
2793				0.0	
2794				0.0	
2795				0.0	
2796				0.0	
2797				0.0	
2798				0.0	
2799				0.0	
2800				0.0	
	DPF	(4)	PSEUDO PITCH HORN SAVE DATA DISPLACEMENT	0.0	
2802				0.0	
2803				0.0	
2804				0.0	
2805	DPFD	(4)	PSEUDO PITCH HORN SAVE DATA	0.0	

TABLE 3-1 - Continued

	PROGI		DESCRIPTION	•	AMPLE	UNITS
	SYMBI		2 200K1771BN		ALUE	OIV1 1.
2806				0.0		
2807				0.0		
2808				0.0		
2809	DPF1	(4)	PSEUDO PITCH HORN SAVE DATA DISPL. BACK VALUES	0.0		
2810				0.0		
2811				0.0		
2812				0.0		
	DPF2	(4)	PSEUDO PITCH HORN SAVE DATA DISPL. BACK VALUES	0.0		
2814				0.0		
2815				0.0		
2816				0.0		
2817	OPEN	(14)		0.0		
2818				0.0		
2819				0.0		
2820				0.0		
2871				0.0		
2822 2823				0.0		
2824				0.0		
2825				0.0		
2826				0.0		
2827				0.0		
2828				0.0		
2829				0.0		
2830				0.0		
2831	TPART	(6,6)	SENSITIVITY MATRIX REQUIRED FOR SINGLE BLADE TRIM	0.0		
2832				0.0		
2833				0.0		
2834				0.0		
2835				0.0		
2836				0.0		
2837				0.0		
2838				0.0		
2839 2840				0.0		
2841				0.0		
2842				0.0		
2843				0.0		
2844				0.0		
2845				0.0		
2846				0.0		
2847				0.0		

TABLE 3-1 - Continued

R/A	PR OG I	RAM	DESCRI	PT ION				SAMPLE	UNIT:
	SYMB							VALUE	0.12.1
2849							0.0)	
2850							0.0		
2851							0.0)	
2852							0.0		
2853							0.0)	
2854							0.0)	
2855							0.0)	
2856							0.0)	
2857							0.0)	
2858							0.0)	
2859							0.0		
2860							0.0		
2861							0.0		
2862							0.0		
2863							0.0		
2864							0.0		
2865							0.0		
2866							0.0)	
2867	OPEN	(3)					0.0)	
2868							0.0)	
2869							0.0)	
2870	IDYN		DYNAMIC FLAG.	TORSION 1≃ON	SIMUL	ATION	0.0)	
2871	PPTOR	(20)	DYNAMIC	TURSION	MODE	SHAPE	0.0)	
2872							0.0		
2873							0.0)	
2874							0.0)	
2875							0.0)	
2875							0.0		
2877							0.0		
2878							0.0		
2879							0.0		
2880							0.0		
2881							0.0		
2882							0.0		
2883							0.0		
2484							0.0		
2885			4				0.0		
2886 2887							0.0	,	
2888							0.0		
2889							0.0		
2890							0.0		
	OPEN	(110)					0.0		
2892 2893							0.0)	

TABLE 3-1 - Continued INPUT DATA/RELATIVE ADDRESS TABLE						
2894			0.0			
2895			0.0			
2896			0.0			
2897			0.0			
2898			0.0			
2899			0.0			
2900 2901			0.0			
2902			0.0			
2903			0.0			
2904			0.0			
2905			0.0			
2906			0.0			
2907			0.0			
2908			0.0			
2909			0.0			
2910			0.0			
2911			0.0			
2912			0.0			
2913			0.0			
2914			0.0 0.0			
2915			0.0			
2916 2917			0.0			
2918			0.0			
2919			0.0			
2920			0.0			
2921			0.0			
2922			0.0			
2923			0.0			
2924			0.0			
2925			0.0			
2926			0.0			
2927			0.0 0.0			
2928 2929			0.0			
2930			0.0			
2931			0.0			
2932			0.0			
2933			0.0			
2934			0.0			
2935			0.0			
2936			0.0			
2937			0.0			
2938			0.0			
2939			0.0			
2940 2941			0.0			
2942			0,0			
2943			0.0			

TABLE	3-1	-	Continued
-------	-----	---	-----------

INPUT DATA/RELATIVE ADDRESS TABLE SAMPLE PROGRAM **DESCRIPTION** UNITS SYMBOL VALUE 0.0 2944 2945 0.0 2946 0.0 2947 0.0 2948 0.0 2949 0.0 2950 0.0 0.0 2951 2952 0.0 0.0 2953 0.0 2954 2955 0.0 2956 0.0 0.0 2957 2958 0.0 2959 0.0 0.0 2960 2961 0.0 2962 0.0 0.0 2963 2964 0.0 0.0 2965 0.0 2966 2967 0.0 2968 0.0 0.0 2969 0.0 2970 2971 0.0 0.0 2972 0.0 2973 2974 0.0 0.0 2975 0.0 2976 2977 0.0 0.0 297R 0.0 2979 0.0 2980 0.0 2981 0.0 2982 0.0 2983 0.0 2984 0.0 2985 2986 0.0 0.0 2987 0.0 2988 2989 0.0 0.0 2990 0.0 2991 2992 0.0 0.0 2993

TABLE	· 1	1	7~ ~	+ : .	nued
LADLI	\ - 1	- (JU 11	1,11	nuea.

		INPUT DATA RELATIVE AD	DRESS TABLE	
R/A	PROGRAM SYMBOL	DESCRIPT ION	SAMPLE UN' VALUE	175
2994			2.0	
2995			0.0	
2996			0.0	
2997			0.0	
2998			0.0	
2999			0.0	
3000			0.0	

I I	A AKPH	2685 1478	I	CUTOUT CWING	2688 2682	I	GFDDL GFDDM	354 358	I	1 ZZ F 1 ZZ G	1463 118	
ì	ALFA	2601	î	CYCFLG	134	ī	GFKDL	359	I	IZZGNR	360	
ī	ALPHA	58	ī	CZERO	1252	ī	GFKDM	357	ī	IZZGR	350	
I	ADTR	2683	I	CIFI	146	Ī	GINT	61	Î	IZZH	1468	
1	APHI	664	1	C111	145	1	GKSTOP	1277	Ĩ	KFEG	2545	
1	APS1	666	1	C2F1	146	1	GLCN	661	1	KFPHG	395	
I	ATC	670	I	DCMR	1256	I	GLCON	69	I	KPH	1487	
1	ATH	668	I	DCMR1	1347	1	GMASS	139	1	KPHCON	376	
1	AWING	2681	1	DCOEF	1341	1	GMCN	662	I		500	
I	AZT	32	1	DELCD	1264	Ī	GMCON	70	I	KTHCUN	377	
I	Als Altr	54 77	1	DELTO	112	I	GRD	363	I		1345	
I I	B	2686	1 1	DELT2 DELZOB	113 1479	I	GRENG GRK	1474	1		1346	
Ì	BET	38	ì	DEUDA	135	l	GRPRD	362 1473	I	KXCS KXPR	585 587	
ì	BETA	1266	î	DEDHG	1263	i	GRTR	1475	I	KYCS	586	
Ī	BETAG	125	Ī	DOEO	271	ì	GSUL	353	1		593	
ī	BFAS	1270	Ī	DUE 1	272	Ī	GSDM	356	Î		594	
1	BI	1301	I	DPF	2801	1	GSKL	352	1	LFB	2492	
1	BLADK	1241	1	DPFD	2805	1	GSKM	355	1	MUB	347	
I	BMS1F	921	1	DPF1	2809	1	H2F	93	I	NAZ	51	
1	BMS1F	961	1	DPF2	2813	I	HARDSP	47	I	NGURF	133	
I	6MS1F	1001	I	DPHIS	2549	1	HF	96	I	HINC	449	
I	FMS1F	1041	1	DSOGJ	1361	I	HMASS	366	I	NMP	150	
I	FW211	761	1	DSTAF	297	I	HPSET	1936	I		686	
I I	BMSII	801 841	I I	DTHTS DTH1	2550 1402	I	HTK HUBL	1348	I	NPT	1940	
2	BMS11	881	1	DTH2	1403	1	HVS	128 103	I		458	
Ī	BMS 2F	1081	ì	DVEQ1	582	î	TAMES	490	1	NVAR1	299	
Ī	EMS2F	1121	i	DVEQ2	584	i	IBLADE	1300	í		300	
ī	BMS2F	1161	1	E	1961	ī	LUNTR	46	î	NVE C1	301	
I	BMS2F	1201	I	E	136	Ī	IDECUP	1499	Ī		1801	
I	BP	53	1	EDIT	104	I	IDYN	2870	I	U	52	
I	EPH1	665	1	ENDMZZ	92	I	IFFT	1483	I	06	82	
I	BPSI	667	1	ENGHPX	1484	1	1FLEX	349	1	PARCUN	1352	
1	ETH	664	1	ETAF	106	1	1FUIL	2690	1	PBP	251	
1	615	55	1	FACTM	2559	Ĭ	IHA	2560	I	PHI	54	
1	CAPHIS	398	I	FAST	440	I	THAFLG	1257	I	PHIREF	1269	
I	CASE	50	I	FBLIF	279	I	IHAPLT	1262	I	PIMR	66	
1 1	CF E	2661 1685	I		275	I	1 LUOK	2689	I		72	
1	CFLY	1485 1251	1 I	F b l 2 F F c F	283 114	I	1 PHUKN IP ITCH	1480	I	PIMRN1 PPTOK	75 2871	
i	CHI	119		FCG			121164	48 48	1		591	
Ī	CHIG	345	I	FIDDLE	1494	1	1PPINT	49	I	POFING	592	
Î	LL	2621	ì	FKS	375	1	1PUNCH	47	1	PKI	205	
Ī	CLAG	371	ī	FKSPT	273	Ī	ISTALL	2555	î	PSIFB	2516	
1	CLTAB	2761	1	FLAP2	2515	1	IXXENG	1471	ì	PSIFBL	397	
1	CM	2641	I	FMASS	41	1	IXXE	1461	1	PS1PG	344	
I	CONK	1253	1	FMN	441	1	IXXG	361	1	PSITE	641	
1	COPAF	142	1	FΧ	1751	1	IXXPRO	1470	1	PSLCPL	2551	
I	COFD	110	1	GAINT	1981	1	I X YF	1464	I	PT	151	
1	CHHUSP	378	1	GAINI	2571	I	1×2F	1465	1	PTAUTÜ	661	
3	CRSFG	45	1	GAMMA	1268	1	1YYF	1462	I	PTHUAT	741	
I	CTHUSP CTF.IM	374	1	GAMMA	63	1	1 YY 1R	1472	1	PTHO	211	

I	PXCS	171	1	THROUN	1350	I	YPHIF	365	I	I
1	PXCSAT	701	1	THTURS	2001	1	YTK	274	1	I
1	PXPZ	348	1	THTPU	2161	1	ZBPH	1477	I	1
1	PYCS	141	1	THO	56	Ţ	ZFBAR	374	I	I
I	PYCSAT	721	1	THOTE	57	I	ZGS	1469	1	1
I	PYPZ	344	l	THI	85	I	261	141	I	1
I	QC GZ	136	1	TMAUTC	1939	I	2171	1412	I	I
1	OIMR	67	1	TNBODY	1776	1	ZIVZ	1413	1	1
1	GIMPD	73	1	TURCUN	1351	I	ZIV3	1414	1	1
1	CIMRNI	76	1	TURFLG	1447	I	ZJLIM	2546	1	I
I	CKGZI	137	1	TPART	2831	1	ZJUG	1482	1	1
I	UKGZ2	140	1	TPH	1488	1	ZLVI	1418	I	I
ì	CKXCS	123	I	TRIMC	33	1	20V2	1419	I	1
1	Lr. XCSG	342	1	TRMUPD	2600	1	40V3	1420	1	1
ī	GKYCS	124	I	TSCLE	248	1	ZRMI	2522	ī	I
ì	UKYCSG	343	ì	TSLUPL	2552	Ĩ	ZPMPI	2528	ī	- 1
î	LM	541	î	TSTUP	1448	î	20bL	346	i	ī
i	CMCON	2561	i	TTB	1561	ì	0	340	î	Ī
i	(KI	296	i	TTFLAG	1404	Ī			î	Ī
I	h fv1	H1	j	TUKNLE	1404	1			i	ī
I	EE 5	2547	1	TURNSN	144	1			i	ī
									i	
1	FFFL	346	1	TWIK	1275	1			_	I
I	RHL	169	1	TXS	294	1			I	1
I	FLF	115	1	VEC1	581	I			1	1
1	KLG	117	ì	VE Q2	583	Ī			I	1
1	KKK	1276	1	VT	62	1			I	1
1	KTE.	2664	I		65	1			1	1
I	FTWANG	1441	1	MIMED	71	I			I	1
1	SERS	161	1	WIMP.NI	74	1			1	1
1	SLTE	46	1	WITK	78	1			I	1
I	SEVS	102	I	XCPDL	437	i			1	1
1	SMALLA	111	1	XCSMAX	31	1			I	I
1	SNGELF	£1G	1	XCS1	588	1			1	I
I	5.5	1251	1	XLS2	589	1			I	1
1	STATO	2576	1	XFLAR	372	1			1	1
1	STF	47	1	XNTAB	2691	1			1	1
ī	SVEC	1811	1		2514	1			1	1
ī	SX	501	1	XTHTE	364	Ī			1	1
ì	SY	601	i	Y	1661	1			ī	Ī
ì	1	1941	ì	YCPOL	438	î			î	i
1	TAU	1217	1	YCS	1421	Ī			i	Î
1	TAU	1261	1	YCSMAX	444	1			1	i
1		551	1	YCS1	590	1			Ì	i
_	TAUACT TAUC		_		1691	1			Ī]
1		545	1	YÜ					I	,
1	TC	267	1	YDD	1721	I				
1	16.7	1401	1	YFBAR	373	I			I]
1	TCTAF	2696	1	ATAJ	1409	I			ī	1
1	TCTEA	1286	1	Y 1 V 2	1410	1			I	<u>.</u>
1	TCUI	36	1	A1A3	1411	1			I]
1	16010	2555	1	YJUG	1481	1			I	1
I	TCUT3	2554	1	YNA	1521	1			I	1
1	TCX	292	1	YUV1	1415	1			1]
I	TCY	293	1	YUV2	1416	I			1]
1	TELTER	663	1	YUV3	1417	I			1	1
I	THG1	2321	1	YP	1349	1			1	j

The program has two modes of operation: TRIM and FLY. In both cases the equations of motion are solved in the time domain. In TRIM the user specifies the flight condition by giving the trajectory velocity, the air density, the load factor, and other essential data. Only the blade degrees of freedom are integrated in TRIM. TRIM directly controls the main rotor collective, the main rotor cyclic angles, the tail rotor collective, the fuselage angle of attack and the bank angle (or whatever combination of trim variables are specified by the trim option), and adjusts their value until the trim criteria are satisfied. The vehicle is usually understood to be trimmed when the mean value of the accelerations of the degrees of freedom approach zero. Vibratory components of 1P, 2P, etc., are allowed in all the degrees of freedom. One exception is a trim option which does not trim out the longitudinal acceleration before FLY. TRIM could be conducted to any nonsteady flight condition, but the need has not arisen.

In FLY all the degrees of freedom can be operative. More typically some of the degrees of freedom involving high-frequency modes are locked out, especially shaft bending and dynamic torsion or dynamic pitch horn bending. The fixed shaft option is commonly used and allows only the blade modes and the swash-plate degrees of freedom to operate.

At times a Fast Fourier Transform Analysis is used to analyze the damping and frequency of transient rotor modes from their time histories. This analysis is conducted by a separate program that is not part of the REXOR package of subroutines. Rather it is one of a number of subsidiary programs such as the blade mode generator, the feather linkage program, etc., used in "job step" with REXOR. The documentation of these subsidiary programs is outside the scope of this report.

3.3.1 Case Identification

Case identification consists of a case number, and two title cards. The case number and titles will appear on the printed output for identification. The case number will also appear on every frame, along with the date, of the graphic output. See Table 3-3.

TABLE 3-3.	CASE IDENTIFICATION
Input Quantity	Address
case number	50
60 characters 60 characters	1 16

3.3.2 Trim Initialization

A number of inputs must be initialized to start trim. Air data conditions required are given in Table 3-4.

	TABL	E 3-4. AIR DATA CONDITIONS			
	Input Quantity				
v	SS	speed of sound, ft/sec	1291		
ρ	RHO	atmosphere density, slugs/ft3	109		
h	Н	altitude, ft	93		

The altitude input is required to define a ground effect function. This function can be ignored by setting the altitude to some large value such as 1000 ft. An input of zero is not acceptable.

Trajectory and body orientation must be initialized. The required parameters are presented in Table 3-5. Each azimuth, ψ_E , is assumed zero and not included in the problem. Pitch attitude, θ_E , will be computed in the program.

		TABLE 3-5. TRIM INPUT PARAMETER	
		Input Quantity	Address
$v_{_{\mathrm{T}}}$	VT	True velocity, ft/sec	62
β _F	BET	Sideslip angle, rad, + RT	38
α_{F}	ALPHA	Angle of attack, rad, + N UP	58
$^{\gamma}_{ m F}$	GAMMA	Flight path angle, rad, + climb	63
$\phi_{ m E}$	PHI	Bank angle, rad, + RT	59
Ωο	0	Main rotor speed, rad/sec	52

Figure 3-4. Wind-Earth-Hub Orientation

Speed, V_T , and sides ip angle, β_F , will remain fixed as input but may vary during the fly computation. The other angles either remain fixed, or are initial conditions for the trim iteration procedure which is covered in Section 3.3.3.

The vehicle body races are det rmined by the following equations during trim:

$$p = -\dot{\psi}_{E} \sin \theta_{E} \tag{3-1}$$

$$q = \dot{\Psi}_E \cos \theta_E \sin \Phi_E$$
 (3-2)

$$r = \stackrel{\bullet}{\psi}_{E} \cos \theta_{E} \cos \phi_{E}$$
 (3-3)

where the yaw velocity is determined by the relation

$$\dot{\psi}_{E} = \frac{g}{V_{m}} K (n^{2} - 1)^{\frac{1}{2}}$$
 (3-4)

n and K are inputs (Table 3-6) and determine $\dot{\psi}_{\rm E}$.

	TABLE 3-6. TURN INPUTS				
	Ir	uput Quantity	Address		
n	TURNLF	TURN LOAD FACTOR	143		
К	TURNSN	TURN DIRECTION INDICATOR. +1, RIGHT; -1, LEFT.	1777		

Normal inputs for the load factor and turn sign are

n = 1

and

K = 1,

giving unaccelerated flight.

For special studies it may be desirable to specify initial roll and pitch rates. The inputs of Table 3-7 are used for this purpose.

	TAB	LE 3-7. INITIAL PITCH-ROLL DATA	
	Input	Quantity	Address
_p 0	PRI	Initial Poll Rate, rad/sec	295
q ₀	QRI	Initial Pitch Rate, rad/sec	296

If either input is non zero, then:

$$p = p_0$$

$$q = q_0$$

Incremental rotor shaft moments may be specified via inputs. These are given in Table 3-8.

	TABLE 3-8. INCREMENTAL SHAFT MOMENTS	
	Input Quantity	Address
TRIMQ(1)	Incremental Shaft Roll Mom., ft-lb, + RT.	33
TRIMQ(2)	Incremental Shaft Pitch Mom., ft-lb, +N. UP	34

Main rotor and tail rotor downwash functions are modeled in REXOR with lag equations of the form

$$w^{n+1} = e^{-dt/\tau} w^n + (1 - e^{-dt/\tau}) f(w^n)$$
 (3-5)

Control of the second s

These equations require time constants, τ . An initial set of values may be input to begin the process under favorable conditions. The downwash quantities and input addresses are given in Table 3-9. Tail rotor flapping dynamics are also modeled with a first-order lag, and the flapping angle is included in Table 3-9.

	TABLE 3-9. INFLOW DATA						
	Input Quantity						
WIMR	Vertical Downwash +DN	65					
PIMR	Roll Downwash +RT	66					
QIMR	Pitch Downwash +N UP	67					
WITR	Tail Rotor Downwash	78					
AITR	Tail Rotor Longitudinal Flap Angle	77					
NOTE:	WIMR is a divisor on the program; therefore, value must be used.	some non-zero					

Although initial values are not required, except for WIMR, good initial guesses may be helpful to the trim convergence speed.

The lag equation time constants for the above functions are required for both physical realism and program numerical stability. See Table 3-10.

	TABLE 3-10. TIME LAG CONSTANTS	
	Input Quantity	Address
TC(1)	τ for downwash functions during trim	287
TC(2)	τ for downwash functions during fly	288
TC(3)	τ for tail rotor flap angle function	289

3.3.3 Trim Operation

Three trim techniques have been programmed in REXOR. The first is characterized as a fully integrated trim in which all blades and corresponding modes are integrated. A second procedure, known as single blade trim, has been programmed. One blade, representing the rotor, is integrated around a rotor revolution. After each revolution the blades are analyzed for their collective and cyclic components and trim variables adjusted. This technique has sometimes resulted in a modest amount of savings in the time to trim. A third method known as harmonic trim is programmed but was never successfully employed. Although one blade trim has been used, the level of confidence in its adaptability to a variety of conditions is too low to warrant its documentation here. RA(44) = FAST = 0 gives the fully integrated trim technique. A number of inputs exist which are associated with the single blade and harmonic trim options. These addresses are listed in Table 3-11 for completeness.

TABLE 3-11.	TRIM OPTIONS
Input Quantity	Address
FAST TCUTO TCUT3 IHA QMCON (6) GAIN1 (19) TPART (6,6) DCOEF (4)	440 2553 2554 2560 2561 - 2566 2571 - 2589 2831 - 2866 1341 - 1344

The fully integrated trim is then characterized as follows. All main rotor blade modes are integrated and allowed to reach steady-rate values unattended except for an initial period of artificial structural damping which is designed to speed up the trimming process. Structural damping inputs are discussed in detail in Section 3.3.7.2 which covers modal data input. Trim integration is controlled by 0, the main rotor rotation speed and AZT the number of computations per rotor revolution. The integration interval is then

$$\Delta t = \frac{2 \pi}{(AZT)(O)}$$
 (3-6)

A trim operational cutoff or limit stop is provided in the form of a maximum number of revolutions to trim, TCUT. If trim has not been

achieved by the specified number of revolutions, the TRIM mode is terminated and the FLY mode is entered. Values for the inputs of Table 3-12 are required.

	TABLE	3-12. TRIM INTEGRATION DEFINITION	
		Input Quantity	Address
Ω _R	0	Rotor speed, rad/sec	52
	AZT	Number of time points per revolution of trim	32
_	TCUT	Maximum number of revolutions in trim	36

Past experience shows that a value less than 120 is marginal for AZT, and at times a value as high as 180 has been necessary. However, when the program is operated with all the high-frequency modes cut out; i.e., a "hard" swash-plate, no shaft bending, no blade torsion, no pitch horn bending, and only the first inplane and first flap mode operative, then a value of AZT=24 is possible.

Simply stated, trim is a state of system equilibrium. The function of the trim segment of the program is to reach that state. Pilot controls, vehicle attitude, and other system unknowns are determined such that starting boundary conditions are met by the equations of motion using a repeating solution. The appropriate values of the problem unknown are determined iteratively by a control algorithm of the form

$$x_{n+1} = x_n - f_n(a)Kdt$$
 (3-7)

$$f_n(a) = e^{-dt/\tau} f_{n-1}(a) + a$$
 (3-8)

where the subscript n denotes the nth computation point. Assuming a functional relationship between a and X, the above control relationship can be used to determine the value of X such that a=0. Within REXOR it has not been found necessary to consider the controls and accelerations as a system. Independent relationships are assumed. Accelerations thus can be matched one to one with a control input. For example, vertical acceleration is only controlled by main rotor collective. Before proceeding, notice that there are two parameters in the control equation, namely τ and K, which can be used to control convergence. Indeed, these

are input parameters to REXOR. Experience has shown that tau, τ , should be set such that the ratio dt/τ remains a constant and near a value of 0.3. K is considered a gain factor and particular to the variables involved. Thus, a set of gains is defined in the input address, Table 3-13.

		TABLE 3-13. TRIM GAINS	
	Input	Quantity	Address
τ	TAU	Trim control time	80
К	GAINT(1)		1981
	•	See Section 3.2 for complete definitions	•
	•		•
	•		•
	GAINT(19)	/	1999

The normal conditions for trim are

$$\dot{\mathbf{u}}_{F} = \dot{\mathbf{v}}_{F} = \dot{\mathbf{v}}_{F} = \dot{\mathbf{p}}_{F} = \dot{\mathbf{q}}_{F} = \dot{\mathbf{r}}_{F} = 0$$

The controls available to achieve these conditions are the attitude angles $\alpha_F,\ \gamma_F,\ ^\varphi_F,$ defined in Section 3.3.2, the propeller pitch, $\beta_D,$ for compound helicopters, the tail rotor collective, $\theta_{TR},$ the main rotor collective, $\theta_{TR},$ the main rotor collective, $\theta_{TR},$ and $B_{1S}.$ Since there are more unknown equations, a choice of active controls must be made. REXOR provides a number of trim options including autorotation and a so-called trim "tied to a post" where the longitudinal acceleration is left untrimmed. An input flag is used to communicate to the program the trim option desired. That flag is $\overline{\text{RA}(142)} = \text{CORAF-1}.$ Table 3-14 defines the trim options, indicates the functional relationships between the controls and the accelerations, and denotes which gains must be used. Notice that the control input addresses serve as initial guesses or constants, depending on their use.

Note that the main rotor cyclic angles, the tail rotor collective, and the roll angle trim the respective quantities \dot{p}_F , \dot{q}_F , \dot{r}_F , \dot{v}_F to zero, no matter what the trim option. The accelerations \dot{u}_F and \dot{w}_F are trimmed to

			TABLE 3-14	. TRIM VAF	RIABLE SCHEI	DULE		
			Trim Controls					
		Name	BP	THO	ALPHA	GAMMA	ENDMZZ	
	· 1 · 1 · 1 · 1	Initial Value	RA(53)	RA(56)	RA(58)	RA(63)	RA(92)	
		GAINT(I)	I = 1	I = 3	Trim Constant	Trim Constant	I = 9	
ions CORAF-1	0	Nulled Quantity	F	· w _F			$\psi_{ m R}$	
		GAINT(I)	I = 1	Trim Constant	I = 3	Trim Constant	I = 9	
	1.	Nulled Quantity	u _F		w _F		Ψ̈́R	
		GAINT(I)	'irim Constant	I = 11	I = 3	I = 10	Trim Constant	
Trim Options (142) = CORA	2	Nulled Quantity		Ψ̈́R	w _F	u _F		
Trim C RA(142)		GAINT(I)	Trim Constant	I = 12	I = 3	I = 10	N/A	
RA	2'	Nulled Quantity		Rotor Torque	w _F	u _F		
	3	GAINT(I)	Trim Constant	I = 12	I = 3	Trim Constant	Trim Constant	
		Nulled Quantity		Rotor Torque	w _F			
		GAINT(I)	Trim Constant	I = 3	I = 3	Trim Constant	I = 9	
	4	Nulled Quantity		w _F	u _F		Ψ̈́R	

Trim Options (CORAF-1)

- Compound helicopter, collective trim, hover or forward flight.
- Compound helicopter, angle of attack trim, forward flight.
- Any helicopter, flight path angle trim with engine torque specified, RA(45) = CRSFG = 0.
- 2'. Any helicopter, autorotation, RA(45) = CRSFG = 1.

 3. Any helicopter, "Tied to a Post", RA(45) = CRSFG = 0.

 4. Any helicopter, hover or forward flight.

TABLE 3-14 - Continued

Trim Considerations:

1. For all flight trim options:

RA	Trim Variable	GAINT	Trims
. 54	A _{ls}	14	p _F
55	B _{lS}	5	$\mathbf{\dot{q}}_{\mathbf{F}}$
57	THOTR	6	$\dot{\mathtt{r}}_{\mathrm{F}}$
59	PHI	2	$\overset{ullet}{v}_{\mathrm{F}}$

- 2. Trim constants must be specified except RA(53) = BP with no propeller, and RA(92) = ENDMZZ when RA(45) = CRSFG = 1.
- 3. See engine inputs for instructions to defeat engine torque output in autorotation $(RA(142) = 2, RA(92) \approx 0 \text{ and } RA(45) = 0)$.

zero by a pair of trim variables chosen from propeller blade angle, main rotor collective, the angle of attack, and the flight path angle with the exception of RA(142) = 3. Note another trim variable, the engine trim torque ENDMZZ, is included in the table to trim the rotor. The rotor azimuth degree of freedom is often called the engine degree of freedom, which is perhaps a misnomer in autorotation where the engine inputs must be zeroed to prevent the engine from supplying torque.

There is nothing in the trim procedures to limit the aircraft attitude in trim. Vertical, sideways, or inverted flight are possible but unusual. Experience with the program in other than normal flight attitudes or in autorotation is limited. If the swashplate degrees of freedom are active, then three more trim conditions are added to the active trim option, and are given in Table 3-15.

	TABLE 3-	15. SWASHPLATE	TRIM GAINS	
Trim Name	Control Address	Quantity Nulled	G Name	ain Address
GLCON	69	 ^ф sp	К.,	1987
GMCON	70	 ⁰ sp	К ₁₄	1994
ZGS	1479	z z sp	к ₈	1988

The control gyro, if active, is trimmed as shown in Table 3-16.

	TABLE 3-1	6. CONTROL GYRO	TRIM GAINS	
Trim Name	Control Address	Quantity Nulled	G: Name	ain Address
GLCN	661	÷g	к ₁₃	1993
GMCN	662	ë _g	К ₁₃	1993

Trim convergence is controlled by a set of simple convergence tests, all of which must be simultaneously satisfied. Movement of the controls (quiescence) is monitored rather than relative zero tests on the accelerations. Control parameters are first compared after four rotor revolutions, and compared every two revolutions thereafter. In the tests that follow, the prime denotes values two revolutions later.

$$\begin{vmatrix} \beta_{p} - \beta_{p} \end{vmatrix} < 0.001$$

$$\begin{vmatrix} A_{1S} - A_{1S} \end{vmatrix} < 0.001$$

$$\begin{vmatrix} B_{1S} - B_{1S} \end{vmatrix} < 0.001$$

$$\begin{vmatrix} \theta_{0}' - \theta_{0} \end{vmatrix} < 0.001$$

$$\begin{vmatrix} \theta_{TR} - \theta_{TR} \end{vmatrix} < 0.001$$

$$\begin{vmatrix} \phi_{E}' - \phi_{E} \end{vmatrix} < 0.01$$

$$\begin{vmatrix} \gamma_{\alpha}' - \gamma_{\alpha} \end{vmatrix} < 0.01$$

$$\begin{vmatrix} \alpha' - \alpha \end{vmatrix} < Q \quad \text{where } Q = 0.01 \text{ if } HPSET \neq 0$$

$$Q = 0.001 \text{ otherwise}$$

$$\begin{vmatrix} G_{L'_{CON}} & - & G_{M_{CON}} \end{vmatrix} < 20$$

$$\begin{vmatrix} G_{M'_{CON}} & - & G_{M_{CON}} \end{vmatrix} < 20$$

$$\begin{vmatrix} G_{L'_{CN}} & - & G_{L_{CN}} \end{vmatrix} < 1$$

$$\begin{vmatrix} G_{M'_{CN}} & - & G_{M_{CN}} \end{vmatrix} < 1$$

HPSET is RA(1936). The rate of trim convergence is controlled by size of the trim gains. A trim gain too high causes a convergence failure ("bomb"), a value too low westes computer time. The program does not automatically determine the trim gains. The usual procedure is to make a guesstimate of the value based on past experience and observe the trim time-history plot. The gain can be increased on slow-to-trim variables, and decreased on those that appear to be oscillating or following the vibratory component of the accelerations as well as the mean.

One specialized mode of operation which requires attention during trim is the so-called "fixed shaft" run in which only the main rotor and swash-plate are considered. A fixed shaft run is activated by setting the input NGORF = RA(133) to some non-zero value. A fixed shaft run can be trimmed to a specified rotor lift and shaft roll and pitch moments. The inputs are given in Table 3-17.

	TABLE 3-17. FIXED SHAFT TRIM	
	Input Quantity	Address
TPIMQ(1)	Desired Rotor Roll Moment + RT, ft-lb	33
TRIMQ(2)	Desired Rotor Pitch Moment + N.UP, ft-lb	34
TRIMQ(3)	Desired Rotor Lift + UP, 1b.	35

For trimming purposes, the moments and lift are transformed into accelerations.

$$\dot{\mathbf{w}}_{\mathrm{F}} = \dot{\mathbf{Y}}_{23} = \left(\mathbf{F}_{\mathrm{Z}_{\mathrm{R}}} + \mathrm{TRIMQ}(3)\right) / \mathbf{M}_{\mathrm{R}} \tag{3-9}$$

$$\dot{p}_{F} = \dot{Y}_{24} = \left(M_{XX_{R}} - TRIMQ(1)\right) / T_{XX_{R}}$$
 (3-10)

$$\dot{q}_F = \ddot{Y}_{25} = \left(M_{YY_R} - \text{TRIMQ(2)}\right)/I_{YY_R} \tag{3-11}$$

The required trim gains are determined by the trim option in effect.

Effort and computer time can be reduced for repeated or similar cases by the use of an option known as "trim save." The actuation of IPUNCH = RA(47) causes trim cards to be punched of pertinent values at the end of a successful trim. These trim cards in RA format may be used to initialize a case at similar conditions. They should be used with care to be sure the desired flight conditions are not being overridden by these trim save cards. "Trim save" data can also be saved internally in the program by activating a flap known as TRMUPD = RA(2000). It is intended to save trim computing time when the next case is similar to the preceding one.

Table 3-18 gives all of the addresses which will be punched if IPUNCH = 1.

TABLE 3-18.	TRIM PUNCH CARDS
Quantity	Addresses
CASE BP A1S B1S THO THOTR ALPHA PHI VT	50 53 54 55 56 57 58 59 62
GAMMA (OPEN) WIMR PIMR QIMR (OPEN) GLCON GMCON WIMRD	63 64 65 66 67 68 69 70 71
PIMRD QIMRD WIMRN1 PIMRN1 QIMRN1 AITR WITR	72 73 74 75 76 77 78
GLCN GMCN CZERO Y(1) -Y(30) YD(1) - YD(30) YDD(1) - YDD(30) THTORS(40,4) THTRD(40,4) THG1 (40,4) DPF(4) DPFD(4) DPF1(4) DPF1(4) DPF2(4)	661 662 1252 1661-1690 1691-1720 1721-1750 2001-2160 2161-2320 2321-2480 2801-2804 2805-2808 2809-2812 2813-2816

3.3.4 FLY

Upon the successful completion of TRIM, the FLY mode may be entered. During the FLY mode, the complete system of equations, as defined by the user, is integrated for a specified period of equivalent real time. A variety of control inputs may be exercised, and are discussed below. The user controls the FLY time history with three input parameters. The integration step size during FLY is determined by the relation

$$dt = 2\pi / (NAZ)(0)$$
 (3-12)

which is the same relation as is used for TRIM with the exception that step increment NAZ is input in RA (51) for FLY. The parameter TSTOP (RA 1498) is the duration of FLY in seconds. A special integration control, GINT (RA 61), is provided for the control gyro. The control gyro degrees of freedom are integrated separately. The integration step size is computed as

$$dt_{G} = dt/CINT$$
 (3-13)

where GINT \geq 1, and dt is the normal FLY integration interval.

WARNING: This feature is not compatible with the flexible shaft degrees of freedom.

3.3.4.1 Pilot Input

A pilot can be simulated with a time history of control displacements as inputs. The displacements can be those for a step, a pulse, etc., or the actual time history of the control displacements from flight tests. This input is only the incremental maneuvering input over and above that required for trim. The pilot controls are lateral and longitudinal stick position, main rotor collective angle, tail rotor collective angle, propeller blade angle, and rotor speed. The rotor speed input is operative only when the rotor speed degree of freedom is off. The pilot inputs for main and tail rotor collectives are equivalent to the cockpit collective handle and rudder pedals. The vertical swashplate degree of freedom changes the pilot's collective setting at the rotor, and a tail rotor damper changes the actual tail rotor collective from the pilot command. The pilot control commands are inputted to the program in tabular form as a function of time. One table or time values is used in connection with all command tables.

To illustrate the procedure consider Figure 3-5. Assume the desired data points for three functions, y_1 , y_2 , and y_3 are denoted by the circles. Each function is individually projected onto the time axis. Then the total set of time points is reprojected onto each function as Δ 's. The resultant time table will be the total set of time points and values at the Δ 's as well as the 0's. All functions are linearly interpolated. Functions are evaluated as constant for times beyond the last time point, i.e., no extrapolation. A step function must be approximated with a ramp. More specifically, the table times must adhere to the relation

$$t_n - t_{n-1} > dt \tag{3-14}$$

where dt is the integration step size. If the second time table value is zero, then the program assumes no pilot inputs. The tables are restricted to twenty (20) points. The number of points used is required as an input. The controls and addresses are given in Table 3-19.

In the equations that follow, the value of a function resulting from a pilot table lookup will be subscripted with a (P). The trimmed value of a control will be denoted with a subscript (T).

The resultant propeller pitch, $\boldsymbol{\beta}_{p},$ is then

$$\beta_{P} = \beta_{P,P} + \beta_{P,T} \tag{3-15}$$

The resultant main rotor collective is not only a function of pilot maneuvering and trim, but also swashplate motion.

$$\theta_0 = \theta_{0,T} + \theta_{0,F} - (Z_{SP} - Z_{SP,T})/e$$
 (3-16)

where e is the pitch horn arm. Note that \mathbf{Z}_{SP} and $\mathbf{Z}_{\text{SP},'\underline{\Gamma}}$ are made equal at the end of trim.

If the engine degree of freedom is not active, then a variable rotor speed can be simulated by inputting a differential speed in PSITB(20) as described above, resulting in the equation

$$\dot{\psi}_{R} = \Delta \dot{\psi}_{R,P} + \Omega \tag{3-17}$$

Figure 3-5. Pilot Command Data.

	TABLE 3-19. CONTROL INPUTS	
	Input Quantity	Address
NMP	Number of points in control tables	150
PT(20)	Pilot time table, sec	151-170
PXCS(20)	Pilot longitudinal stick displ. (+) aft, ft	171-190
PYCS(20)	Pilot lateral stick displ. (+) right, ft	191-210
PTHO(20)	<pre>Pilot collective input (+) thrust, rad</pre>	211-230
PTHOTR(20)	Pilot tail rotor coll. input (+) thrust, rad	231-250
PBP(20)	Pilot prop. blade angle input (+) thrust, rad	251-270
PSITB(20)	Pilot engine speed, rad/sec differential from nominal	641-660

where

 $\Omega = RA(52)$

The trim plus maneuvering stick travel has limits imposed by the stops RA(31) = XCSMAX and RA(494) = YCSMAX. The pilot stick actuators are represented by simple first-order lag with time constants RA(292) = TCX and RA(293) = TCY. The actuators are also rate limited. In terms of stick rates these inputs are RA(437) = XCPDL and RA(438) = YCPDL.

3.3.4.2 Control Devices

A number of control system stability augmentors, linkage compensators and sensitivity devices exist in the REXOR code. Some are of a general nature whereas some represent a problem fix for a particular application.

A tail rotor yaw damper and actuator is modeled. RA(1278) = RRK is the feedback gain between yaw rate and tail rotor collective, and RA(1279) = TWTR is the washout time for this feedback loop. The

actuator time constant is given by RA(1280) = TCTRA. See Figure 3-6 for a diagram.

The helicopter can be artifically stabilized by an artifical scick stabilizer for special studies. The formulation permits specifying a time history of the pitch attitude, RA(1501) = TTB(1) and following points. The equations are

$$\dot{X}_{CS} = A_{\theta} (\theta_{H} - \theta_{H,T} - A_{\theta,C} \theta_{H,C}) + B_{\theta} (q_{H} - q_{H,T})$$
(3-18)

and

$$\dot{Y}_{CS} = A_{\phi} (\phi_{H} - \phi_{H,T}) + B_{\phi} (p_{H} - p_{H,T})$$
 (3-19)

which indicate increments from trim of the roll angle and the pitch angle of the principal axis and their time rates being used as feedback to the stick. The feedback gains ${\bf A}_{\theta}$, etc., are not input, rather ${\bf A}_{\theta}'={\bf A}_{\theta}$ Δt , etc., such that

$$\Delta X_{CS} = A'_{\theta} (\theta_{H} - \theta_{H,T} - A_{\theta,C} \theta_{H,C}) + B'_{\theta} (q_{H} - q_{H,T})$$
 (3-20)

and

$$\Delta Y_{CS} = A_{\phi}^{*} (\phi_{H} - \phi_{H,T}) + B_{\phi}^{*} (p_{H} - p_{H,T})$$
 (3-21)

The increments $\Delta X_{\rm C},_{\rm S}$ and $\Delta Y_{\rm C},_{\rm S}$ are added to the stick positions at every time point. In a similar manner

$$\Delta\theta_{\text{OTR,S}} = A_{\psi}^{!} (\psi_{H} - \psi_{H,T}) + B_{\psi}^{!} (r_{H} - r_{H,T})$$
 (3-22)

which is an input added to the tail rotor collective over and above that added by the yaw damper. The inputs of interest are

$$RA(664) = APHI = A_{\phi}$$

$$RA(665) = BPHI = B_{\phi}'$$

LEGEND:

K _{TR,R}	YAW DAMPER GAIN
r _F	FUSELAGE YAW RATE
$ heta_{ extsf{OTR,T}}$	TRIM TAIL ROTOR COLLECTIVE
$ heta_{ extsf{OTR,P}}$	PILOT'S TAIL ROTOR COLLECTIVE INCREMENT
$ heta_{ extsf{OTR}}$	TRUE TAIL ROTOR COLLECTIVE
$ au_{TR}$	TAIL ROTOR COLLECTIVE ACTUATOR TIME CONSTANT
$ au_{WTR}$	YAW DAMPER WASHOUT TIME CONSTANT
$\Delta heta_{OTR}$	SEE SECTION 3.3.4.2

Figure 3-6. Yaw Damper.

RA(666) = APSI =
$$A_{\psi}^{t}$$

RA(667) = BPSI = B_{ψ}^{t}
RA(668) = ATH = A_{θ}^{t}
RA(669) = BTH = B_{θ}^{t}
RA(670) = ATC = A_{ψ}^{t}
RA(1501) = TTB(1) = θ_{H}^{t}

and following TTB is used in conjunction with the pilot time points elements starting with RA(151) = PT(1).

Several control devices are programmed which were flight tested on early versions of the AH-56A helicopter. The devices are a longitudinal stick desensitizer, a lateral stick desensitizer, a pitch-roll decoupler and a lift-roll decoupler. See Figures 3-7 and 3-8 for math model schematics. All but the lift-roll decoupler are flagged by RA(90) = IPITCH. The lift-roll decoupler is turned on by RA(1499) = IDECUP = 1. The inputs associated with each device are as follows:

Longitudinal stick desensitizer

$$RA(581) = VEQ1 = V_{el}$$

$$RA(582) = DVEQ1 = \Delta V_{el}$$

$$RA(585) = KXCS = K_{XC}$$

$$RA(588) = XCSl = L_{XCl}$$

$$RA(589) = XCS2 = I_{XC2}$$

Lateral stick desensitizer

$$RA(586) = KYCS = K_{YC}$$

$$RA(590) = YCS1 = L_{YC1}$$

Pitch roll decoupler

$$RA(583) = VEQ2 = V_{e2}$$

$$RA(584) = DVEQ2 = \Delta V_{e2}$$

$$RA(587) = KXPR = K_{XP}$$

$$RA(589) = XCS2 = L_{XC2}$$

Figure 3-7. Longitudinal Stick Desensitizer and Pitch-Roll Decoupler.

LEGEND:

YCP	PILOT COMMAND LATERAL STICK
YCS	ACTUATOR COMMAND LATERAL STICK
KYC, KZ, KF1	SYSTEM GAINS
K _{F2} , K _{F3}	FILTER BREAKPOINTS
	LIMITER
LY _{C1}	FUSELAGE VERTICAL INERTIAL ACCELERATION

Figure 3-8. Lateral Stick Desensitizer and Lift-Roll Decoupler.

The limit for the roll rate that is feedback for the pitch-roll decoupler and all the lift-roll decoupler feedback constants are values which are built into the program.

Flight profile following autopilots have been used in REXOR and some elements may exist in the code. However, due to the specialized nature of the code and lack of documenting information this area of the code is not considered operational. The inputs involved are RA(680) through RA(760), RA(1901) through RA(1935) and RA(1939) through RA(1980).

3.3.4.3 Lockout of Degrees of Freedom

REXOR is configured to analyze a rotorcraft represented by a basic set of generalized coordinates, together with optional additions or deletions. This basic set consists of three blade modes for each of four blades: three swashplate degrees of freedom; one rotor degree of freedom; and six hub degrees of freedom. The user, via input controls, can add or subtract to this basic set. The input flags and their meaning are discussed below.

Hub:

The six hub degrees of freedom can be removed by setting

$$NGORF (RA 133) = 1.$$

This option is further discussed in Section 3.3.3.

Rotor Rotation:

The main rotor rotation rate, $\dot{\psi}_{\text{R}}$, can be held constant, i.e.,

$$\dot{\psi}_{R} = \Omega$$

$$\dot{\psi}_{R} = 0$$

by setting

CRSFG (RA
$$45$$
) = 1.0

This degree of freedom is sometimes referred to as the engine.

Swashplate:

With a carrier

A hard swashplate (stiff support springs) is obtained by setting

HARDSP (RA 42) = 1.6

which locks out the swashplate degrees of freedom. In this mode, the swashplate is reared to the pilot cyclic stick.

Second Flap Bending:

The blade second flap mode can be removed by setting

$$FLAP2 (PA 2515) = 1.0.$$

The necessary adjustment of input data associated with the second flap is handled by the program.

Single Blade:

For special studies, the user may wish to operate just one blade. When

SNGBLF (RA
$$60$$
) = 1.0,

a maximum of four degrees of freedom for blade 1 are operative. These are the three blade bending modes plus the dynamic pitch horn or dynamic torsion mode. Experience with this option is limited.

Shaft Bending:

Two shaft bending degrees of freedom, $\boldsymbol{\phi}_S$ and $\boldsymbol{\theta}_S,$ can be activated by setting

IFLEX (RA
$$399$$
) = 1.

This option is not compatible with the fixed hub option. A complete treatment of shaft bending as an option is presented in Section 3.3.16.

Pitch Horn:

A pitch horn bending degree of freedom for each blade can be activated by setting

IPHORN (RA 1480) =
$$1.0.$$

A full discussion of pitch horn bending and its associated inputs is presented in Section 3.3.7.4.

Dynamic Torsion:

A dynamic torsion degree of freedom for each blade can be activated by setting

IDYN (RA
$$2870$$
) = 1.0.

A further discussion of dynamic torsion can be found in Section 3.3.7.5. This option is incompatible with pitch horn bending.

Control Gyro:

The activation of the control gyro degrees of freedom, ϕ_G and $\theta_G^{},$ is accomplished by setting

IAMCS (RA 490) = 1.0.

This option is completely discussed in Section 3.3.15.

Teetering Rotor:

A teetering rotor simulation is activated by setting

TEETER (RA 663) = 1.0.

When activated, the number of blades is automatically reduced to two and the blade flapping modes are redefined. See Volume I, Section 6.7 for details.

3.3.4.4 Reactionless Inplane Excitation

The three constants starting with RA(1491) = RTWANG(1) input an artificial increment to the inplane mode displacement for inplane damping studies. The increment is applied +, -, + and - to blades 1,2,3 and b to excite the reactionless mode directly. (The reactionless mode is difficult to excite by pilot stick displacement because only second-order effects are involved.) The twang is solutions in FLY.

TWANG(1) is the input at the first time point (which is usually sufficient to excite the mode); TWANG(2) at the second time point; and TWANG(3) at the third.

3.3.5 Output Options

The user can call up a number of outputs from REXOR. For discussion purposes, they will be categorized according to output media, i.e., print, punch, plot, and tape.

3.3.5.1 Print

REXOR print output is primarily for diagnostic purposes. The format of the printing is given in Section 5. The control and use of the available print data is discussed below.

The generalized mass matrix can be optimally printed by setting

ICONTR (RA 46) = 1.0

When activated, the mass matrix will be printed twice: once at the beginning of TRIM and again at the beginning of FLY. The output format is self-explanatory.

TPIM diagnostic print can be generated by setting

IPRINT (RA 49) = 1.0.

When activated, the block of print data described in Section 5 will be printed every time point for the first rotor revolution. This option generates a great deal of print and should be used sparingly.

Although Harmonic Analysis is an optional printout, it will be discussed separately in Section 3.3.6.

3.3.5.2 PLOT

Plot (graphic) output is the primary form of REXOR output, and is controlled by the user via

IPLOT (RA 48),

where:

IPLOT = 0 no plots

= 1 TRIM only

= 2 FLY only

= 3 plot TRIM and FLY

= 4 special addition to FLY plots.

All plots are time histories. The format is similar to a strip chart recorder, i.e., there is a reference signal and four 2-inch channels per frame.

Figure 3-9 shows a typical block of data. The reference signal is the sine of the azimuth of blade 1, together with a ruler-like scale with divisions every 90 degrees. Each signal is identified with an abbreviated title which usually includes the units. The positive axis is identified with some physical interpretation. Finally, a number is printed which represents the axis scale in units per inch. Scaling will be explained in detail below.

The plotting algorithm is table driven, i.e., a master list of output signals are defined. The user, via input, specifies which signals he wishes to see plotted. Each signal is identified by a signal number and is referred to by that number. TRIM plots and FLY plots are handled separately. During TRIM a maximum of forty signals may be plotted. The signal definition table is presented in Table 3-20. The abscissa scale for TRIM plots is fixed at four rotor revolutions per inch of paper. All ordinate scales are determined by the program. The plot frequency is determined automatically such that approximately 50 points per inch are plotted.

The user chooses from the TRIM signal definition table, the signals he wishes to be plotted.

The signals are entered into the input table (NVECl (RA 30l through RA 340) by number. The number of signals plotted must be entered in NVAR1 (RA 299). The reader can refer to Section 3.2 for an example. The signals are plotted in the order they appear in the input table, four signals per frame counting from bottom to top.

The effective sweep and droop calculations which are available for output can be made at a specified station location. The desired location, in feet, is input in DSTAF (EA 297). If no input is made, then calculations will be at the tip of the blade.

The user can call for the plotting of up to 50 signals during FLY. The FLY signal definition table is presented in Table 3-21. The user lists the plot signal numbers in NVEC2 (RA 1801 through RA 1850). The number of signals plotted must be input in NVAR2 (RA 300). See Section 3.2 for examples.

During FLY, the user has plot scale control. Two inputs determine the abscissa scaling. CYCFLG (RA 134) determines the type of units where

RA(134) = 0 gives seconds/inch

RA(134) = 1 gives revolutions/inch.

TCSLE (RA 298) is the scaling magnitude. The inputs of

Figure 3-9. Typical Block of Time History Data. (Sheet 1 of 2)

Figure 3-9. Typical Block of Time History Data. (Sheet 2 of 2)

		TABLE 3-20. TRIM PLOT SIGNAL T	TABLE	
Signal #		Definitions	Plot Label	Axis Label
Н	Η̈́n	Longitudinal hub velocity derivative	LONG ACCFL, G	FWD
N	, H	Lateral hub velocity derivative	LATERAL ACCEL, G	RT
æ	•*	Vertical hub velocity derivative	VERTICAL ACCEL, G	DN
4	⊕ ⊕	Hub bank angle in earth axis	BANK ANGLE, DEG	RT
5	or St	Propeller pitch angle	PROP BLADE ANGLE, DEG	N UP
9	θ	Main rotor collective	COLL PITCH, DEG	N UP
7	년 건	Fuselage angle of attack	ANG-OF-ATTACK, DEG	N UP
Ø	A_{1S}	Lateral cyclic pitch angle	LAT CYC PITCH, DEG	N DN
6	BlS	Longitudinal cyclic pitch angle	LONG CYC PITCH, DEG	N DN
10	H _d	Roll hub acceleration	ROLL ACC, DEG/SEC SQ	RT
11	$\dot{\mathbf{r}}_{\mathrm{H}}$	Pitch hub acceleration	PITCH ACC, DEG/SEC SQ	N UP
12	. H	Yaw hub acceleration	YAW ACC, DEG/SEC SQ	N RT
13	OTR	Tail rotor collective	TAIL ROT PITCH, DEG	N UP
14	×	Longitudinal stick position	LONG STICK, IN	AFT
15	¥ _C	Lateral stick position	LATERAL STICK, IN	RT
22	÷ ⊗₽	Swashplate roll acceleration	S PL RCLL ACC, DEG/S2	RT

		TABLE 3-20 - Continued		
Signal #		Definitions	Plot Label	Axis Label
33			GYRO ROLL ANGLE, DEG	RT
34		Control gyro roll and pitch angles	GYRO PITCH ANGLE, DEG	UP
43		Swashplate vertical acceleration	SW PL VERT ACC, IN/S2	DIN
94		Swashplate vertical displacement	SWASH PL VERT DIS, IN	DN
Lή		True main rotor collective	TRUE COLLECTIVE, DEG	N UP
51		True main rotor lateral cyclic	TRUE LAT CYC, DEG	N DN
52		True main rotor longitudinal cyclic	TRUE LONG CYC, DEG	N DN
53		Blade 1, mode i tip displacement	INPL MODE DISP, IN	AFT
55		Blade 1, mode 2 tip displacement	IST FIAP DISP, IN	DN
95		Blade 1, mode 3 tip displacement	2ND FLAP DISP, IN	DN
59		Swashplate roll moment	S PL ROLL MOM, IN-LB	RT
09		Swashplate pitch moment	S PL PITCH MOM, IN-LE	N UP
78		Tail rotor longitudinal flap angle	T. ROT. LONG. FLAP	PLUS
42	wiMR	Vertical downwash	VERTICAL DOWNWASH	PLUS
80		Roll downwash	ROLL DOWNWASH	PLUS
81		Pitch downwash	PITCH DOWNWASH	PLUS

		TABLE 3-20 - Continued		
Signal #		Definitions	Plot Label	Axis Label
83	: •	Gyro roll acceleration	GYRO ROLL ACC, DEG/S2	RT
84	:⊕ °	Gyro pitch acceleration	GYRO PITCH AC, DEG/S2	RT
85	>	Flight path angle	ANG OF DESCENT, DEG	RT
98	÷: ⊬:	Engire acceleration	ENGINE ACC, RAD/S2	N UP
87	MZZ	Engine torque	ENGINE TORQUE, FT-LBS	DN
88	X _{1S}	Effective sweep	EFFECTIVE SWEEP, DEG	PLUS
89	z_{1s}	Effective droop	EFFECTIVE DROOP, DEG	PLUS
06	w _{iTR}	Tail rotor downwash	TAIL ROTOR DOWNWASH	PLUS

	TABLE 3-21. FLY PLOT SIGNAL TABLE	3LE	
Signal #	Definitions	Plot Label	Axis Label
Н	Longitudinal hub velocity derivative	LONG ACCEL, G	FWD
CV	Lateral hub velocity derivative	LATERAL ACCEL, G	RT
m	Vertical acceleration of hub in inertial space	VERTICAL ACCEL, G	NG
7	Hub bank angle, earth axis	BANK ANGLE, DEG	RT
5	Propeller pitch angle	PROP LADE ANGLE, DEG	N UP
9	Main rotor collective	COLL PITCH DEG	N UP
<u></u>	Fuselage angle of attack	ANG OF ATTACK, DEG	N UP
13	Tail rotor collective	TAIL ROT PITCH, DEG	M UP
14	Longitudinal stick position	LONG STICK, IN.	AFT
15	Lateral stick position	LATERAL STICK, IN.	RT
16	Fuselage roll velocity	ROLL RATE, DEG/SEC	RT
17	Fuselage pitch velocity	YAW RATE, DEG/SEC	N RT
18	Altitude variation from ground	ALT. VARIATION, FT	PLUS
19	Fuselage angle of sideslip	ANG-OF-SIDESLIP, DEG	N LT

		TABLE 3-21 - Continued		
Signal #		Definitions	Plot Label	Axis Label
20	$^{Z}_{ ext{SP}}$	Swashplate vertical displacement	SWASH PL VERT DIS, IN	DM
21	Q Fi	Fuselage pitch velocity	PITCH RATE, DEG/SEC	N UP
23	$M_{Y_{TT}}$	Blade 1 root flap moment	BL1 RT FLP MON, IN-LB	NIC
77	MZ	Blade 1 root inplane moment	BL1 RT INP MON, IN-LB	AFT
25	בום א גיי	Blade 1 feather moment	BL1 FFATH MON, IN-LB	M DN
56	M X	Main rotor hub roll moment	SHFT ROLL MON, IN-LB	RT
27	M _Y	Main rotor hub pitch moment	SHFT PITCH MON, IN-LB	N UP
28	所 出 所	Main rotor hub horsepower	MAIN ROTOR HP	PLUS
29	F. Z.	Main rotor axial force	SHAFT AXIAL LOAD, LB	NG NG
30	MK, H	Blade 1 feather angle	BLI FRATH ANGLE, DEG	M UP
31	1	Lateral cyclic inplane moment, hub axis	LAT INPL MON, IN-LB	RT
32	ı	Longitudinal cyclic inplane moment, hub axis	LONG INPL MON, IN-LB	N UP
33	ტ ტ	Control gyro roll angle (AMCS only)	GYRO ROLL ANGLE, DEG	æ
34	ტ	Control gyro pitch angle (AMCS only)	GYRO PITCH ANGLE, DEG	UP
35	1	Lateral cyclic inplane moment, rotor axis	CYC 1 INPL MON, IN-LB	AFT

		TABLE 3-21 - Continued		
Signal #		Definitions	Plot Label	Axis Label
	1	Engine horsepower required	ENGINE HP	PLUS
	ľ	Longitudinal cyclic inplane moment, rotor axis	CYC 2 INP MON, IN-LB	AFT
38	1	Reactionless inplane moment	REACT INPL MON, IN-LB	AFT
39	1	Swashplate collective spring and damping load	COLL SERVO LOAD, LB	NO
	1	Reactionless flap moment	REACT FLAP MON, IN-LB	DN
	M(5)	Blade 1 torsion at station 5	BL TORS AT STA 131.5	UP
	BLE 9	Hub pitch attitude, earth axis	FITCH ATTITUDE, DEG	N UP
	-ż _{OHE}	Hub rate of climb	VERT. VEL, FPM	PLUS
	$^{\phi}$ BL1	Blade 1 root twist	BL1 EL TIP TWIST, DEG	N DN
	θOT	True main rotor collective	TRUE COLLECTIVE, DEG	N UP
	A _{2ST}	True main rotor reactionless feather angle	REACT. BL. ANG., DEG	PLUS
	t	Swashplate of control gyro (AMCS only) roll "feedback" moment	GYRO FB R MON, IN-LE	RT
	į	Swashplate or control gyro (AMCS only) pitch "feedback" moment	GYRO FB F MON, IN-LB	N UP

		TABLE 3-21 - Continued		
Signal #		Definitions	Plot Label	Axis Label
15	Alsī	True main rotor lateral cyclic	TRUE LAT CYC, DEG	N DN
52	BlsT	True main rotor longitudinal cyclic	TRUE LONG CYC, DEG	N DN
53	A_{11}	Blade 1, mode 1 tip displacement	INPL MODE DISP, IN	AFT
54	v e	Equivalent airspeed	AIRSPEED, KFAS	EWD.
55	$^{A}_{21}$	Blade 1, mode 2 tip displacement	IST FLAP DISP, IN	DN
95	A ₃₁	Blade 1, mode 3 tip displacement	2ND FLAP, DISP, IN	NO
57	$^{\phi}_{ m SP}$	Swashplate roll angle (AMCS only)	SWSH PL ROLL ANG, DEG	RT
58	θ_{SP}	Swashplate pitch angle (AMCS only)	SYSH PL PITCH ANG, DEG	N UP
29	au/a¢sp	Swashplate spring roll moment (AMCS only)	S PL ROLL MON, IM-LB	ř.
09	3U/38 _{SP} Swashpl (AMCS o	Swashplate spring pitch moment (AMCS only)	S PL PITCH MON, IM-LB	<u>a</u> 1
89	-M(2)	Blade 1 flap moment at station 2	BL1 FLAP MOM - STA 2	ı
69	M(2)	Blade 1 inplane moment at station 2	BL1 INPL MCM - STA 2	ı
70	-M(3)	Blade 1 flap moment at station 3	BL1 FLAP MOM - STA 3	ı
71	$M(3)_{Z_{RIF}}$	Blade l inplane moment at station 3	BL1 INPL MOM - STA 3	1
82	$\Delta \dot{\psi}_{ m R}$	Rotor speed variations	PERCENT RPM FROM NOM	SNTd

RA(298) = 1

RA(134) = 0

would produce a scale of 1 second per inch of plot. An abscissa scale of revolutions (cycles) per inch is meaningful only for constant rotor speed runs. The program automatically scales each signal to fit the two-inch channel. However, the user may specify scaling. Ordinate scales are entered in SVEC (RA 1851 through RA 1900). Entries in SVEC must parallel NVEC2. For example, if one wished to override the scaling of the third function plotted, then he would enter the desired scale in SVEC(3) = RA(1853).

The special plot option controlled by the input IPLOT = 4 will produce the TRIM and the FLY plot obtained with IPLOT = 3. In addition, a plot at an expanded time scale of 0.25 revolutions per inch is obtained at the end of FLY. The program adds an extra 0.5 sec to RA(1498) = TSTOP for the expanded plots.

3.3.5.3 Punch

The program can produce BCD (Binary Coded Decimal) punch cards. TRIM save cards are punched when IPUNCH (RA 47) = 1. This is explained in Section 3.3.3.

A data deck editing feature is also available. If EDIT (RA 104) = 1 is inserted in the data deck, an uncluttered master data deck will be produced. This flag is useful when numerous changes have been made to the master deck, or it has been subjected to numerous master overrides.

3.3.5.4 TAPE

A physical or logical tape containing all of the defined FLY plot signals can be generated. These time histories are then available for further signal analysis. This option is activated by a nonzero value for IFFT (RA 1483).

The program computes a counter which controls how often data is saved for plotting. This number is a function of the plot scaling, and computation interval. For a normal run a typical value is every 15th point. Since the data written on tape by this option is also the plotting array, the value of IFFT can be used to specify the data save frequency. If the computed plot frequency is adequate for tape use, then IFFT should be some large number such as 100. If

IFFT $< N_{PLT}$ (Plot Frequency),

then IFFT will become the counter for data saving. Near equal values will cause mixed results as to the source of timing.

The format of the data tape is shown in Table 3-22. The tape is FORTRAN UNIT 8 written unformatted.

		TABLE 3-22. TAPE F	OPMAT
RECORD	1	CASE PLT INC NPTS	RA(50) AT between points # of points
	2	SIGNAL #1	n=1,, NPTS
	3	SIGNAL #2	n=1,, NPTS
	•	· ·	•
	61	SIGNAL #60	n=1,, NPTS

3.3.6 Harmonic Analysis

Harmonic analysis is turned on by RA(1257) = IHAFLG = 1. RA(1262) = HAPLT = 1 supplies time history plots of harmonic analysis parameters at the end of trim. During FLY a subset of the parameters selected for harmonic analysis are plotted. The harmonic analysis flag needs to be on for time histories at the end of trim, but not for the fly plots. The variables that are analyzed are indicated in Table 3-23. Units, directions and axes are listed. Note that DTH1 = RA(1402), DTH2 = RA(1403) and DSTAF = RA(297) are required inputs as explained in the tables.

Harmonic analysis "beats" the signal to be analyzed with harmonics of the rotor rotation frequency. Assuming a function of the form

$$F(\psi_{R}) = F_{O} + \sum_{m=1}^{\infty} F_{C,m} \cos(m\psi_{R}) + \sum_{m=1}^{\infty} F_{S,m} \sin(m\psi_{R})$$
 (3-23)

then

$$F_{o} = \frac{1}{2\pi} \sum_{Q}^{2\pi} F(\Psi_{R}) d\Psi_{R}$$
 (3-24)

	TABLE 3-23. HARMONIC ANALYS	IS VARIAI	BLES	
Symbol FH	Measured Data	Units	Direct Positive	Axis
ı	Shaft longitudinal force	lb	Forward	Non-rot.
2	Shaft lateral force	1b	Right	Non-rot.
3	Shaft axial force	1 b	Down	Non-rot.
4	Rotor roll moment	in-lb	Right	Non-rot.
5	Rotor pitch moment	in-lb	Nose up	Non-rot.
6	Rotor torque moment	in-lb	Clock- wise	Non-rot.
7	Blade #1 feathering angle	deg	Nose up	Non-rot.
3	Elastic twist at blade tip	deg	Nose up	Shear Center
9	Elastic twist at DTH1 = RA(1402)	deg	Nose up	Shear Center
10	Elastic twist at DTH2 = RA(1403)	deg	Nose up	Shear Center
11	Blade #1 feathering moment	in-lb	Nose down	Shaft
12	Effective sweep at DSTAF = RA(297)	rad	Forward	Feather
13	Effective droop at DSTAF = RA(297)	rad	Down	Feather
14	Blad #1 tip flap displacement	in	Down	Root
15	Shaft longitudinal force, aero only	1b	Forward	Non-rot.
16	Shaft lateral force, aero only	lb	Right	Non-rot.
17	Shaft axial force, aero only	lb	Down	Non-rot.
18	Rotor roll moment, aero only	in-lb	Right	Non-rot.
19	Rotor pitch moment, aero only	in-lb	Nose up	Non-rot.
20	Rotor torque moment, aero only	in-lb	Clock- wise	Non-rot.
21	Blade root span force	lb	Inboard	Root
22	Blade root inplane shear	1b	Forward	Root
23	Blade root flap shear	lb	Downward	Root
24	Blade root roll moment	in-lb	Nose down	Root
25	Blade root flap moment	in-1b		Root
26	Blade root inplane moment	in-lb	Aft	Root
27	Blade root span force, aero only	lb	Inboard	Root
28	Blade root inplane shear, aero only	1b	Forward	Root
29	Blade root flap shear, aero only	lb	Downward	Root
30	Blade root roll moment, aero only	in-lb	Nose down	
31	Blade root flap moment, aero only	in-lb	Down	Root
32	Blade root inplane moment, aero only	in-lb	Aft	Root
33	Time component, mode 1, blade 1 * 12	in	Forward	Root
34	Time component, mode 2, blade 1 * 12	in	Down	Root
35	Time component, mode 3, blade 1 * 12	in	Down	Root
36	Generalized force, mode 1, blade 1 * 12		Forward	Root
37	Generalized force, mode 2, blade 1 * 12		Down	Root
38	Generalized force, mode 3, blade 1 * 12	2 in-lb	Down	Root

TABLE 3-23 - Continued				
Symbo ilA-	1 Measured Data -		Direct	Axis
SAVE	Blade Span Variables at Each Sta. (I)	Units	Positive	TAXIS
1	Span deflection	in	Inboard	Root
2	Inplane deflection	in	Forward	Root
3	Flap deflection	in	Down	Root
1,	Angle of attack	deg	Nose up	3/4 Chord
5	Distributed span force, aero only	lb/ft	Inboard	Root
6	Distributed inplane force, aero only	lb/ft	Forward	Root
7	Distributed flap force, aero only	lb/ft	Down	Root
8	Inplane slope	deg	Forward	Root
9	Flap slope	deg	Down	Root
10	Torsion, aero only	in-lb	Nose down	1/4 Chord
11	Span force	1b	Inward	Neutral
12	Inplane shear	lb	Forward	Neutral
13	Flap shear	1b	Down	Neutral
$1l_{\downarrow}$	Torsion	in-lb	Nose up	Shear center
15	Flap moment	in-lb	Up	Neutral
16	Inplane moment	in-lb	Forward	Neutral
NCTES	::			
s	The blade element axes listed as 1/4 chorshear center have axes normal and coincid thord line. Some blade variables have coroot axes which are normal and coincident	ent with mponents	the blade aligned w	element ith blade

axis at station zero on the rotor centerline.

FH (39)).

2. The array HASAVE (16,20) is equivalenced to FH; (HASAVE (1,1),

_ .

$$F_{c,m} = \frac{1}{\pi} \sum_{Q} F(\psi_{R}) \cos(m\psi_{R}) d\psi_{R}$$
 (3-25)

and

$$F_{s,m} = \frac{1}{\pi} \sum_{R}^{2\pi} F(\psi_R) \sin(m\psi_R) d\psi_R$$
 (3-26)

where F_{O} is the mean, $F_{\text{C,m}}$ is the cosine component and $F_{\text{S,m}}$ is the sine component. The program analyzes up to the sixth harmonic, and operates during the last revolution in TRIM. The mean, sine and cosine components, plus their respective vector representation are tabulated. The phase is the angle from zero azimuth where blade l is in aft position to the first positive maximum for the harmonic in question.

The harmonic analysis made on blade loads requires integration from the tip to the blade station in question. Thus, in preparing for harmonic analysis the program turns around the integration. Typically,

$$F(\ell)_{X_{BLE, BL1}} = F_{XO_{BL1}} - \sum_{i=1}^{\ell} F(i)_{X_{BLE, BL1}}$$
(3-27)

where $F_{\rm XOBLl}$ is the blade root span force and $F(i)_{\rm XBLE,BLl}$ is the value integrated from the root to the station in question, a value saved during the root to tip integration. The quantity on the left-hand side of the equation is then the load integrated from the tip. Next the loads are transferred from points lying on the blade root axes to points lying on the blade axes, which is the inverse process of that given in Volume I, Section 6.6.4:

$$\begin{cases}
F(\ell)_{X_{BLE}} \\
F(\ell)_{Y_{BLF}} \\
F(\ell)_{Z_{BLE}}
\end{cases} = \begin{cases}
F(\ell)_{X_{BLE}} \\
F(\ell)_{Y_{BLE}} \\
F(\ell)_{Z_{BLE}}
\end{cases} (3-28)$$

$$\begin{cases}
M(\ell)_{\chi_{BLE}} \\
M(\ell)_{\gamma_{BLE}} \\
M(\ell)_{\chi_{BLE}}
\end{cases} = \begin{cases}
M(\ell)_{\chi_{BLE}} \\
M(\ell)_{\gamma_{BLE}} \\
M(\ell)_{\chi_{BLE}}
\end{cases} = \begin{cases}
0 & Z(\ell)_{BLE} & -Y(\ell)_{BLE} \\
-Z(\ell)_{BLE} & 0 & X(\ell)_{BLE}
\end{cases} + \begin{bmatrix}
F(\ell)_{\chi_{BLE}} \\
F(\ell)_{\chi_{BLE}}
\end{cases} = \begin{cases}
F(\ell)_{\chi_{BLE}} \\
F(\ell)_{\chi_{BLE}}
\end{cases} = \begin{cases}
0 & Z(\ell)_{BLE} & -Y(\ell)_{BLE}
\end{cases} = \begin{cases}
0 & Z(\ell)_{BLE} & -Y(\ell)_{BLE}
\end{cases} = \begin{cases}
0 & Z(\ell)_{BLE}
\end{cases} =$$

The notation BLIE indicates an axis system parallel to BLI axes, but with origin on the blade line of interest; this blade line being the neutral axis, the shear center axis or whatever is appropriate for the blade variable. Finally, a rotation finds the loads in the blade element axes:

$$\begin{cases}
F(\ell)_{X_{BLE}} \\
F(\ell)_{Y_{BLE}} \\
F(\ell)_{Z_{BLE}}
\end{cases} = \begin{bmatrix} T_{BLn-BLE} \end{bmatrix} \begin{cases} F(\ell)_{X_{BLE}} \\
F(\ell)_{Y_{BLE}} \\
F(\ell)_{Z_{BLE}}
\end{cases} (3-30)$$

and

$$\begin{cases}
M(\ell)_{X_{BLE}} \\
M(\ell)_{Y_{BLE}} \\
M(\ell)_{Z_{BLE}}
\end{cases}_{BLE} = \begin{bmatrix} T_{BLn-BLE} \end{bmatrix} \begin{cases}
M(\ell)_{X_{BLE}} \\
M(\ell)_{Y_{BLE}} \\
M(\ell)_{Z_{BLE}}
\end{cases}_{BLE}$$
(3-31)

3.3.7 Main Rotor Blade

3.3.7.1 Geometry

The program takes a straight line radiating from the shaft at the hub center and builds up the blade reference line which is taken to pass through the quarter chord line. REXOR blade station locations are in the array, SX. Do not use more than 20 stations. The first blade station, SX(1), is a dummy and zero modal data can be provided. SX(2) should be at the inboard edge of the movable hub. RA(500 + NRAD) = R = RA(81). The blade station for starting the blade integration, RA(500) = KSTART, is usually set at 2, and the station interval increment, RA(499) = NINC, set at 1.

At each spanwise station the chordwise location of a number of blade element properties are specified. These are the element center of gravity, the neutral axis, and the shear center. Note again that these data are specified with respect to the quarter-chord line. The basic reference data is summarized in Table 3-24.

A number of other items are tabulated at blade stations such as mass, torsion, and modal data. These will be presented in their respective sections.

Geometric twist, θ_{TW} , and coning β_O , are additional inputs. Coning is assumed to start at the shaft center line. Additional inputs include blade droop angle relative to the precone angle, γ , blade sweep, τ_O , and offsets $Y_{\mbox{jog}}$ and $Z_{\mbox{jog}}$. All of these design parameters are measured at a specified blade location termed STA70. STA70 is an input (feet), and does not necessarily correspond to a station location. This location is often the location at which the movable hub attaches to the blade proper.

The feather bearing locations are described by two inputs. These are the location of an inboard bearing HUBL(1) and the distance between

THE RESERVE OF THE PROPERTY OF

	TABLE 3-24. BLADE STATION REFERENCE DIMENSIONS		
	Input Quantity	Address	
NRAD	No. of blade stations	498	
NINC	Station interval	499	
KSTART	Starting station	500	
SX	Blade station locations, ft	501-540	
SY	Blade element c.g. location relative to the quarter chord	601-640	
YNA	Location of neutral axis relative to quarter chord	1521-1540	
YCS	Location of shear center relative to quarter chord	1421-1460	

bearings, HUBL(2). Both locations must be specified to permit computing the feather axis slope from the bearing displacements. The program internally computes the offset of the bearings above and below the blade reference axis on the assumption the feather axis crosses the blade axis midway between bearings. The feather axis geometric coning is specified as BFAS. An additional offset, DELZOB, can be specified for the outboard bearing. Care should be exercised as the geometric coning the program uses will be increased above that specified by BFAS to account for DELZOB.

Finally, the blade radius, R, and chord, CORD, a constant over the blade, are required. All of these geometric inputs are fully discussed in Volume I in Section 5.5.5. They are summarized in Table 3-25.

The blade stations for the inboard and outboard ends of the tension-torsion pack are built in the program at 12.03 in. and 30.43 in. The ends are 0.030 in. and 0.366 in. above the blade reference line, respectively. The tension torsion pack is the blade centrifugal force restraint.

3.3.7.2 Blade Bending Modes and Related Data

Each blade bending mode has a chordwise and flapwise displacement component, but not an elastic twist component. Cases are usually run with three bending modes, but two can be used. Torsion and pitch horn bending are treated separately (see Sections 3.3.7.4 and 3.3.7.5 for a discussion of inputs).

	TABLE 3-2	5. BLADE ANGLES, OFFSETS, AND DIMENSION	S
		Input Quantity	Address
R	R	Blade radius, ft	81
θ_1	THI	Geometric twist, radians	85
С	CORD	Main rotor blade chord, ft	110
ℓ _{TB}	HUBL(1)	Inboard bearing location, ft	128
l _B	HUBL(2)	Distance between bearings, ft	129
βo	BETA	Blade cone angle, deg	1266
τ _o	TAU	Blade sweep, deg	1267
Υ	GAMMA	Blade droop, deg	1268
^β FA	BFAS	Blade bearing cone angle	1270
ΔZ _{OB}	DELSOB	Outboard bearing offset adjustment	1479
Y jog	YJOG	Blade chordwise offset, ft	1481
Z jog	ZJOG	Blade flapwise offset, ft	1482
X _{SW}	STA70	Location where sweep and droop begin	2570

By convention, mode 1 is taken to be the first inplane, mode 2 the 1st flap, and mode 3 the 2nd flap. Each mode is presented to the program in an array where the row index (first) corresponds to blade station and the column index (second) identifies which displacement or slope. For instance, the inplane mode chordwise displacement at station one is BMS1I(1,1), the flapwise displacement is BMS1I(1,2), the chordwise and flapwise slopes are BMS1I(1,3) and BMS1I(1,4). The mode shapes are defined by completing the first index for the specified blade stations. A normalization based on the tip chord or flap displacement, whichever is greater, has been frequently used. Any normalization could be used but output labels are based on unit tip values.

The chordwise and flapwise components are equal to the inplane and outplane displacements at a reference feather angle given by PHIREF. The program rotates the modes with the feather angle so that the bending components are in axes fixed to the blade. A rotor speed, Ω , is also specified when the mode shapes are computed. The rotor speed for

a given case should be reasonably close to this specified speed. The rotor speed input location, RA(52), has already been discussed.

All modes are nominally with the chordwise/displacement positive forward and the flapwise displacement positive down. The program reverses the sign on the flapwise component internally to match BLn axes convention.

Modal data is also needed at the feather bearing stations. For mode 1, FBLII(1,1) is the chordwise displacement and FBLII(2,1) is the flapwise displacement at the inboard bearing station. FBLII(1,2) and FBLII(2,2) are the corresponding values for the outboard bearing station. Mode 2 and 3 bearing deflections are similarly specified.

Additional modal data is required when the program is computing the control configuration which features direct flap feedback to an isolated control gyro. The outplane displacement is ZRMI(1) for mode 1, ZRMI(2) for mode 2, and ZRMI(3) for mode 3. In a similar manner, ZRMPI(I) describes the outplane slope components. The program does not use the inplane displacement and slope components to describe the flap feedback.

The bending modes have a feather angle component given by the coupling factors ClIl, ClFl, and C2Fl for modes 1, 2, and 3. ClIl is the radians of feather angle per radian of chordwise feather axis slope deflection. ClFl and C2Fl are per radian of flapwise feather bearing slope deflection for modes 2 and 3. The coupling factors are defined for the condition that the end of the pitch horn where it attaches to the pitch link remains fixed in space when the blade bends. The pitch horn is also assumed not to bend, the bending being handled by separate programming.

The modal inputs discussed thus far are summarized in Table 3-26.

A detailed tension torsion pack simulation is optional. If desired, it is activated by a flag TTFLAG. Note, however, that tension torsion pack station locations are currently built into the program and represent Lockheed Cheyenne data only. Modal data is required if this option is used. Inputs are summarized in Table 3-27.

The program computes the centrifugal stiffness by adding the centrifugal acceleration in with the other accelerations when the generalized mode force is found. Only the structural stiffness is required as input. This is presented as a 3 by 3 matrix, BLADK. Consult Volume I, Section 6.6.4 for a formulation for this symmetric spring matrix. The off-diagonal terms cross couple modes, as would be expected even for orthogonal modes. The units given in the input tabulation for the spring and other modal constants assume the modal displacement components are given in feet and the slope in radians. The modal degrees of freedom have units of time. Units, however, are

	TABLE 3-26. BLADE MODAL DATA	· 1
	Input Quantity	Address
BMS11(1,1)	Y displacement, inplane mode	761-800
BMS11(1,2)	Z displacement, inplane mode	801-840
BMS11(1,3)	dY/dS, inplane mode	841-880
BMSlI(1,4)	dZ/dS, inplane mode	881-920
BMS1F(1,1)	Y displacement, 1st flap mode	921-960
BMS1F(1,2)	Z displacement, 1st flap mode	961-1000
BMS1F(1,3)	dY/dS , 1st flap mode	10011040
BMS1F(1,4)	dZ/dS , lst flap mode	1041-1080
BMS2F(1,1)	Y displacement, 2nd flap	1081-1120
BMS2F(1,2)	Z displacement, 2nd flap	1121-1160
BMS2F(1,3)	dY/dS , 2nd flap	13.61-1200
BMS2F(1,4)	dZ/dS , 2nd flap	1201-1240
PHIREF	Blade reference feather angle, deg	1269
	Feather Bearing Inplane Mode:	
FBL11(1,1)	Inboard Y displacement	275
(2,1)	Z	276
(1,2)	Outboard Y	277
(2,2)	Z	278
	Feather Bearing 1st Flap Mode:	
FBL1F(1,1)	Inboard Y displacement	279
(2,1)	Z	280
(1,2)	Outboard Y	281
(2,2)	Z	282
		1

TABLE 3-26 - Continued		
	Input Quantity	Address
	Feather Bearing 2nd Flap Mode:	
FBL2F(1,1)	Inboard Y displacement	283
(2,1)	Z	284
(1,2)	Outboard Y	285
(2,2)	Z	286
	Outplane Displacement of Feedback Mount:	
ZRMI(1)	Blade mode 1	2522
(2)	2	2521
(3)	3	2524
	Outplane Slope of Feedback Mount:	
ZRMPI(1)	Blade mode 1	2528
(2)	2	2529
(3)	3	2530
ClIl	Inplane to feather coupling factor	145
ClFl	lst flap to feather coupling factor	146
C1F2	2nd flap to feather coupling factor	148

	TABLE 3-27. TENSION-TORSION PACK DATA	
	Input Quantity	Address
TTFLAG	Flag 0 = OFF 1 = ON	1404
	Inplane displacement, inboard end:	
AIA3 AIA5 AIAT	mode 1 2 3	1409 1410 1411
	Outplane displacement, inboard end:	
ZIV1 ZIV2 ZIV3	mode 1 2 3	1412 1413 1414
	Inplane displacement, outboard end:	
AOA3 AOA5 AOAJ	mode 1 2 3	1415 1416 1417
	Outplane displacement, outboard end:	
ZOV1 ZOV2 ZOV3	mode 1 2 3	1418 1419 1420

not indicated for the modal components to indicate these can be arbitrarily normalized. Space is provided in the inputs starting at RA(82) = OB(1) for the modal natural frequencies. These are not necessary to normal program operation.

The structural damping in each mode is the same. Its contribution to the generalized force is

$$\frac{\partial B}{\partial \dot{A}_{mn}} = c \sum_{j=1}^{3} K_{mj} \dot{A}_{jn}$$
 (3-32)

for mode m, blade n. The damping constant can be interpreted as

where ζ is the damping ratio at the natural frequency ω_O of interest. Three inputs control the damping level c: CTRIM, CFLY and CZERO. The program linearily interpolates between CZERO and CTRIM for the first second in TRIM. CTRIM should have a value equal to CFLY or close to it. CZERO is set high, a value of 0.0156 being typical, to quiet the inplane mode promptly. This mode typically has low damping and would otherwise take an excessive time in TRIM to reach a steady state. The damping function is shown in Figure 3-10.

If an external lead-lag damper exists, its damping constant is CLAG. The usual linear damper is modeled as a rotary equivalent damper acting about the real or virtual lead-lag hinge. Currently REXOR approximates the lead-lag hinge to be centered between the feather bearings in order to use the feather axis slope velocity, \dot{Y}_{FA}^{\bullet} , available for this location. The damper produces a moment proportional to the feather axis slope velocity.

The REXOR blade modal and external (lead-lag) damper data is summarized in Table 3-28.

3.3.7.3 Blade Aerodynamics

A number of blade aerodynamic data representations are available in REXOR, and these are discussed in the following paragraphs. All the representations use a blade root cutout (drag only, no lift or moment) identified as CUTOUT = RA(2688).

If linear aerodynamic is sufficient, then only the inputs of Table 3-29 are required.

Nonlinear aerodynamics is primarily determined by built-in tables. There are two tabular procedures available. One is known as the "seven table lookup" which provides

$$C_{L} = C_{L} (\alpha, M, t/c, C_{L_{i}})$$
 (3-33)

$$C_{D} = C_{D} (\alpha, M, t/c, C_{L_{i}})$$
 (3-34)

and a choice of $C_{\rm M}$ tables. The other, called "fast aero," provides a specialized airfoil which is determined by a highly efficient set of interpolating routines. The flag ILOOK determines whether "seven table lookup" is used or "fast aero."

Figure 3-10. TRIM-FLY Damping Function

TABL	E 3-28. STRUCTURAL AND DAMPING COEFFIC	IENT DATA
	Input Quantity	Address
BLADK(3,3)	Blade stiffness matrix	1241-1249
CZERO	Blade modal damping at trim initialization	1252
CTRIM	Blade damping after 1 sec of TRIM	1250
CFLY	Fly modal damping	1251
CLAG	Inplane lag damper constant	371

	TABLE 3-29. LINEAR AERODYNAMICS	
	Input Quantity	Address
NSDATA	BLADE AERO FLAG set = 1 for linear aerodynamics	44
SMALLA	Blade lift slope, $dC_{ m L}/d\alpha$	111
; DELTO	Minimum drag coefficient, C_{D_0} at $\alpha = 0$	112
DELT2	$d^2 c_D / d\alpha^2$	113

Once the table values are determined, an increment to the drag coefficent can be added at every station by the input DELCD. Further, an increment, DCMR, to the pitching moment coefficient resulting from a trailing-edge tab can be added between the inboard and outboard ends of that tab as specified by the inputs KTl and KTO. DCMR is added when

$$KT1 \le K \le KT0 \tag{3-35}$$

where K is the REXOR station index.

In addition to the root cutout, REXOR also computes only a drag for the outboard blade segment. Thus, a 'tip loss' factor can be

implicitly applied by proper choice of the REXOR station just inboard of the tip. The relationship is

$$SX (NRAD-1) = R*(2B-1)$$
 (3-36)

where R is the blade radius and B is the tip loss factor.

Returning to aerodynamic table lookup, if ILOOK = 1, then the "seven table lookup" option is in effect. Thickness ratio, t/c, and design lift coefficient, C_{L_1} , must be input as a function of normalized blade location, x_n , where $0 \le x_n \le 1$. The desired C_M table is determined by the input value of IFOIL where IFOIL = 0 gives the NACA 23008 airfoil and IFOIL = 1 results in the NACA type 0012 table.

If ILOOK = 0, then the fast aero tables are used. These special tables are currently fitted with the Cheyenne helicopter blade data. A Cheyenne phase 2 or phase 3 blade may be modeled. A phase 2 blade is activated by setting IBLADE = 2. Here an increment is added to the 23008 $C_{\rm M}$ table value that is a function of angle of attack and thickness ratio.

$$C_{M} = C_{M} \text{ (table)} - 0.34 \cdot t/c_{1} \cdot \alpha \tag{3-37}$$

where

$$t/c_1 = t/c - 0.08$$

and

$$\alpha_{1} = (30 - \alpha)/14 \le 1.$$

For a phase 3 blade, determined by setting IBLADE = 0, α simple increment may be added.

$$C_{M} = C_{M} \text{ (table)} + DCMRl (input)$$
 (3-38)

The user should be aware that for either a phase 2 or 3 blade the angle of attack for the pitching moment tables is modified:

$$\alpha = \alpha + K_{\alpha} * \alpha * (M - 0.7) * (t/c - 0.08)$$
 (3-39)

where K_{α} is 400 if t/c < 0.08 or is 243 otherwise. The angle of attack is unmodified for Mach = M > 0.7.

Under the special table option a further refinement may be made known as dynamic stall. Dynamic stall is triggered by setting ISTALI = 1. A reference angle factor, FACTM, is required. A description of its nature is found in Volume I, Section 7.2.3.4.2. Nonlinear aerodynamic inputs are summarized in Table 3-30.

	TABLE 3-30. NONLINEAR BLADE AERO DAY	ΓA
	Input Quantity	Address
DELCD	Plade element incremental $C_{\overline{D}}$	1264
KTI	Inbound blade tab station number	1345
KTO	Outboard blade tab station number	1346
DCMR	Incremental C_{M} for blade tab	1256
ILOOK	Aero table flag	2689
For ILOOK	= 1 only:	
IFOIL	C _M table flag	2630
XNTAB	Normalized blade location table	2691-2695
TCTAB	Thickness ratio table	2696-2700
CLTAB	Design lift coefficient table	2701-2705
For ILOOK	= 0 only:	
IBLADE	Cheyenne blade option flag = 2 phase 2 = 0 phase 3	1300
DCMR1	Incremental $C_{ ext{M}}$ for phase 3 blade	1347
ISTALL	Dynamic stall simulation flag	2555
FACTM	Reference angle factor	2559

3.3.7.4 Pitch Horn Bending

The program can be directed to simulate quasi-static or dynamic pitch horn bending. If no bending is desired, then only the pitch horn length is required, F (RA 136). If KPH is nonzero, then quasi-static bending is assumed. The input KPH also serves as the pitch horn spring in foot-pounds of feathering moment per radian of elastic feathering. A time constant, TPH, is also required. Since a first order lag is simulating the dynamics, the time constant could be roughly the reciprocal of the natural frequency of the pitch horn bending mode.

Dynamic pitch horn bending is activated by setting IPHORN = 1. The dynamic pitch horn should not be used with either quasi-static pitch horn bending or dynamic torsion. The pitch horn degrees of freedom for each blade are independent for the normal swashplate configuration. When the IAMCS flag specifies the control configuration with an isolated gyro, a reactionless pitch horn is obtained. The cyclic and collective pitch horn springs are taken to be combin d with the swashplate springs. Hence, only one of the pitch horn degrees of freedom will have non-zero value and it will indicate the reactionless component. See the subheading BMOVE of Volume II, Section 1.3. The dynamic pitch horn requires a spring, AKPH, and a partial, ZBPH. If ZBPH = 1, the amount the end of the pitch horn displaces will be feet per radian of elastic feathering. If ZBPH = E = RA(136), the pitch horn displacement is in terms of the actual feathering displacements. Therefore, no units are given for ZBPH. The units listed in the input tabulation for AKPH assumes the ZBPH is identically one. The pitch horn bending inputs are given in Table 3-31.

	TABLE 3-31. PITCH HORN BENDING INPUTS	
	Input Quantity	Address
E	Pitch horn length	136
КРН	Quasi-static pitch horn spring	1487
ТРН	Quasi-static pitch horn time constant	1488
IPHORN	Dynamic pitch horn flag	1480
ZBPH	Pitch horn partial	1477
АКРН	Pitch horn spring	1478

3.3.7.5 Torsion

Quasi-static or dynamic torsion capabilities are available. Quasi-static torsion is signaled by the input flag TORFLG. Other inputs include a time constant TCT, and DSOGJ which is the reciprocal of the torsional stiffness. The time constant, TCT, is for a first-order simulation of the torsion dynamics. To alleviate numerical difficulties, however, the elastic twist velocity is not used in the computations, only the displacements. Nevertheless, a value for the time constant roughly equal to the reciprocal of the natural frequency of the torsion mode is appropriate. The required quantities are presented in Table 3-32.

Dynamic torsion is activated by setting IDYN = 1. Dynamic torsion (an uncoupled mode) cannot be used at the same time as dynamic pitch horn bending. This option is also not compatible with the direct flap feedback gyro control system which internally specifies a reactionless pitch horn bending. For uncoupled torsion, a mode shape starting at RA(2871) = PPTOR(1) is required. As usual, any normalization will work, but for output consistency one radian nose up twist at the blade tip is suitable. The quantities needed are reviewed in Table 3-33.

	TABLE 3-32. QUASI-STATIC TORSION	
	Input Quantity	Address
TORFLG	Quasi-static torsion flag	1497
TCT	Quasi-static time constant	1401
DSOGJ	Reciprocal of torsional stiffness at every REXOR station	1361-1400

	TABLE 3-33. DYNAMIC TORSION INPUTS	
	Input Quantity	Address
IDYN	Dynamic torsion flag	2870
PPTOR	Torsion mode shape at each REXOR station	2871-2890

3.3.7.6 Feather Bearing Loads

Feather bearings are modeled in REXOR having the properties of a torsional spring rate, friction, and damping. The spring can be due to the bearings or from some other physical source such as the tension-torsion pack, if used. The spring rate is TXS.

Bearing friction can be modeled as stiction or viscous friction, or a combination thereof. Figure 3-11 illustrates the nature of friction function.

Stiction is modeled if RLF is a small number (not zero) and FCF is the stiction load. If only viscous friction is desired without a stiction limit, then RLF must be much larger than the normal range of the velocity, and the ratio FCF/RLF determines the viscous damping coefficient.

Viscous damping can also be supplied via the input CFB. The inputs are summarized below in Table 3-34.

3.3.8 Weight and Balance

The total mass of the vehicle is the sum of mass of its parts. The required inputs are specified in Table 3-35.

The program integrates the blade distributed mass and then adds up all the blades to find the rotor mass. The blade mass is defined as all the masses that can be feathered. The remainder of the rotating masses are included in the hub mass.

The center of gravity of the fuselage from the fuselage reference axis origin is specified by XFBAR, YFBAR, and ZFBAR. The hub center of gravity is assumed at the hub axis origin and no input is required. The swash-plate center of gravity, ZGS, is the height of the swashplate center of gravity above the hub axis origin when the main rotor collective is at its trimmed value. The program computes the location of the blade masses as the blade bends and feathers. It assumes the blade masses are on the blade center-of-gravity axis defined with respect to the blade quarter chord axis. The location of the c.g. line was discussed earlier.

The moments and products of inertia required are presented in Table 3-36.

Figure 3-11. Feather Bearing Friction

	TABLE 3-31. FEATHER BEARING LOADS	
	Input Quantity	Address
TXS	Feather spring	294
CFB	Feathering viscous friction	1485
FCF	Feather friction	114
RLF	Peather stiction break point	115

	TABLE 3-35. MASS DATA TABLE	
	Input Quantity	Address
FMASS	Fuselage, including wings and tail surfaces, tail rotor, propeller, and engine	91.
HMASS	Hub	366
GMASS	Swashplate	139
QM(1)-QM(40)	Blade distribution mass at each REXOR station	541-580

The control gyro inertia is described in Section 3.3.15. It is too small to affect principal axis motions.

3.3.9 Airframe

3.3.9.1 Geometry

The geometry of the airframe includes the lengths to the various configuration fixed surfaces. The inputs involved are SLHS, SLVS and HVS. See below for wing area and chord. The program assumes all the elements, both rotors as well as fixed surfaces, have reference axes parallel to the fuselage reference axes, and no Euler angles (including incidence angles) are to be described. Also the fuselage vertical axis lies along the shaft centerline (no shaft bending). Further, the wing quarter-chord line is assumed to intercept the fuselage reference vertical axis. See Table 3-37.

	TABLE 3-36. INERTIA AND C.G. DATA	
	Input Quantity	Address
XFBAR YFBAR ZFBAR	Fuselage c.g. location relative to the hub	372 373 374
IXXF IYYF IZZF IXYF IXZF IYZF	Inertia terms for the fuselage wing and tail surfaces	1461 1462 1463 1464 1465 1466
IZZH IZZG IXXG	Hub Swashplate	1468 118 361
IXXPRO IXXENG IYYTR	Propeller Engine Tail rotor	1470 1471 1472
BI	Blade moment of inertia about blade center of gravity axis. Inertia is distributed with per ft units at each REXOR station	1301-1340
ZGS	Height of swashplate c.g. above hub axis for nominal collective	1469

	TABLE 3-37. AIRFRAME GEOMETRY	
	Input Quantity	Address
SLHS	Distance from fuselage axis to horizontal tail	101
SLVS	Distance from fuselage axis to vertical tail, + aft	102
HVS	Distance from fuselage axis to vertical tail, + up	103

3.3.9.2 Aerodynamics

The fuselage here is taken to include the wings, if any, plus vertical and horizontal tail surfaces. All these surfaces are fixed and no aileron, elevator, etc., are available. The aerodynamics are described by a table of values for the drag, lift and moment at all angles of attack and a matrix of derivatives expressing the sideslip characteristics and the damping due to the wing and tail surfaces. The aerodynamic formulation is given in Volume I, Section 7.4.

The static loads are given by RA(2601) = ALFA(1), RA(2621) = CL(1), RA(2641) = CM(1), RA(2661) = CD(1) and following entries which relate the lift, drag and pitching moment coefficients to the angle of attack. A maximum of twenty angle-of-attack points are allowed which should cover the total range of values from -180 to +180 deg. These coefficients can be taken directly from wind tunnel tests of a model without the blades. The loads are sized by the wing area and the wing chord length, RA(2681) = AWING and RA(2682) = CWING. For a wingless configuration dummy values of 1.0 and 0.1 can be used. CWING should be small to reduce a wing damping term to a negligible size.

The fuselage matrix RA(441) = FNM(1,1), RA(442) = FNM(2,1) and following entries allow for loads due to asymmetry, linear and quadratic sideslip variations, wing damping in roll, plus vertical and horizontal tail damping. The matrix is a set of derivatives relating the fuselage forces and moments with the velocity terms. The first subscipt in FNM refers to the loads and the second to the velocity. The terms are developed in Volume I, Section 7.4 and repeated here.

$$\begin{cases} F_{X} \\ F_{Y} \\ F_{Z} \\ M_{X} \\ M_{Y} \\ M_{Z} \end{cases} = \begin{bmatrix} F_{NM}(1,1) & (1,2) & \dots & (1,6) \\ (2,1) & & & & \\ & \ddots & & & \\ & u_{F} & v_{F} \\ u_{F} & v_{F} \\ u_{F} & v_{F} \\ u_{F} & v_{HT} \\ u_{F} & v_{HT} \\ \end{pmatrix}$$

$$(3-40)$$

The loads are in wind axes, the velocities in fuselage reference axes. The X axis points forward, the Y rightward and the Z axis downwards. The first column represents loads due to airframe

asymmetry such as those due to different incidence on the left and right wing panels. The second and third columns describe the static sideslip characteristics with both a linear and quadratic variation allowed where:

$$u_{F} v_{F} \simeq u_{F}^{2} \beta_{F} \tag{3-41}$$

and

$$v_{F}^{2} \approx u_{F}^{2} \beta_{F}^{2} \tag{3-42}$$

Assuming the matrix elements are found for moderate angles of side-slip β_F . The fourth column is zero unless the wing roll damping derivative FNM(4,4) is significant. Up to this point the matrix columns refer to the airframe complete with wing and tail surfaces. The fifth and sixth columns relate to the lift curves slopes C_{L_α} and C_{Y_α} of the horizontal and vertical tail surfaces such that

$$FNM(3,5) = -\frac{1}{2} \rho S_{HT} C_{L_{\alpha}}$$
 (3-43)

and

$$FNM(2,6) = -\frac{1}{2} \rho_0 S_{VT} C_{Y_8}$$
 (3-44)

where ρ_0 is the sea level air density of .002378 slugs/ft³ and S is a tail surface area. The matrix elements are evaluated at sea level and the program ratios the fuselage aerodynamic load by the density ratio at altitude. The pitching and rolling moment derivatives from the tail are obtained for the force derivatives times the appropriate tail length or height:

$$FNM(5,5) = \ell_{HT} * FNM(3,5)$$
 (3-45)

$$FNM(4,6) = -h_{VT} * FNM(2,6)$$
 (3-46)

and

$$FNM(6,6) = -\frac{\ell}{V^{-1}} * FNM(2,6)$$
 (3-47)

The equation for FNM(4,6) is only a rough approximation to the tail fin dihedral effect. A variation with angle of attack is not allowed by the program.

The aerodynamic inputs required for the airframe are summarized in Table 3-38.

3.3.10 Tail Rotor

Only aerodynamic inputs are described here. Inertia, control and downwash data are described in other sections on the respective topic. The aerodynamic loads are presently formulated for use with a tail rotor whose upper blade moves aft. The required data is annotated and summarized in Table 3-39.

3.3.11 Propeller

The propeller thrust and torque is given by bivariant tables in blade angle and advance ratio as shown in Volume I, Section 7.6. IXYPRO = PROFLG turns the propeller on. The propeller thrust is parallel to the fuselage longitudinal axis and offset laterally by YP. Other inputs relate the non-dimensional table values with the dimensional quantities needed by the program:

	TABLE 3-38. AIRFRAME AERODYNAMICS				
	Address				
ALFA	Angle-of-attack table, deg	2601-2620			
$^{\mathrm{L}}$	Airframe $\mathtt{C}_{\mathtt{L}}$	2621-2640			
C _M	Airframe $C_{\overline{M}}$	2641-2660			
$c_{_{ m D}}$	Airframe $C_{\overline{D}}$	2661-2680			
AWING	Wing area, ft ²	2681			
CWING	Wing chord, ft	2682			
FMN	Body airload coefficient matrix	441-476			

	TABLE 3-39. TAIL ROTOR DATA		
	Input Quantity	Address	
SLTR	Distance from fuselage axis to tail rotor, + aft	98	
HTR	Height of tail rotor above fuselage axis, + up	1348	
YTR	Tail rotor lateral offset from fuselage axis, + RT	274	
CONK	Tail rotor pitch-flap coupling, δ_3	1253	
AOTR	Tail rotor blade area	2683	
RTR	Tail rotor radius	2684	
A	Tail rotor lift slope, $dC_{ m L}/d\alpha$	2685	
В	Tail rotor tip loss factor	2686	

$$J = Advance ratio = PARCON/(\dot{\psi}_R - r_F/G_P)$$
 (3-48)

$$T_{P} = Thrust = C_{T} \sigma THRCON \left(\dot{\psi}_{R} - r_{F}/G_{P} \right)^{2}$$
 (3-49)

$$Q_{\rm P} = \text{Torque} = C_{\rm P} \circ \text{TORCON} \left(\dot{\psi}_{\rm R} - r_{\rm F}/G_{\rm F} \right)^2 / 2\pi \qquad (3-50)$$

where

 $\mathbf{C}_{\underline{\mathbf{T}}}$ and $\mathbf{C}_{\underline{\mathbf{P}}}$ are the thrust and power coefficients from the tables.

 $R_{\rm p}$ is the propeller radius.

 $\boldsymbol{\rho}_{\text{O}}$ is the sea level density

 σ is the density ratio at altitude

 $\boldsymbol{U}_{\boldsymbol{p}}$ is the propeller forward velocity

 $\mathbf{G}_{\mathbf{p}}$ is the rotor to prop gear ratio

 $\dot{\psi}_{\text{R}}$ is the rotor speed

 $\boldsymbol{r}_{_{\mathrm{F}}}$ is the fuselage roll rate

THRCON =
$$\rho_0 (2 R_P)^5 (G_P/2\pi)^2$$

TORCON =
$$\rho_0(2 R_P)^4 (G_P/2)^2$$

PARCON =
$$4 \pi U_p R_p/G_p$$

The propeller inputs are tabulated in Table 3-40.

3.3.12 Hub

The mass properties are found in weight and balance, Section 3.3.8. The hub is located a distance RA(96) = HF above the fuselage reference. It is at the point where the blade cone line intercepts the shaft.

3.3.13 Engine

The inputs to be discussed relate to the engine torque and the fuel control. Inertial data is discussed in Section 3.3.8. The engine on flag is RA(45) = CRSFG = 1. The engine schematic is given in Volume I, Section 6.12, Figure 6-8.

	TABLE 3-40. PROPELLER INPUTS	3
	Input Quantity	Address
[IXXPRO] PROFLG]	Propeller polar inertia and operation flag	1470
YP	Propeller lateral offset	1349
THRCON	Propeller thrust coefficient	1350
TORCON	Propeller torque coefficient	1351
PARCON	Propeller advance ratio coefficient	1352

Note the schematic gives engine speed, but for convenience the rotor speed is used as reference. The constants should be calculated with this in mind. The engine torque is bounded by zero and RA(1484) = ENGHPX. Drive train dynamics are not modeled. The engine inputs are summarized in Table 3-41.

The propeller, engine, and tail rotor are assumed aligned with the fuse-lage reference axes which are parallel to the main rotor hub axes. Gear ratios are needed, GRPRO, GRENG, and GRTR. The gear ratios are positive if the rotors rotate as follows: main rotor, hub and swashplate are counterclockwise looking down, the propeller and engine are counterclockwise looking forward, and the tail rotor clockwise looking rightward.

3.3.14 Swashplate and Feather-Flap Feedback Control Gyro

The swashplate programming is suitable for modeling a number of control system types:

- 1. Locked swashplate
- 2. Normal "hard" swashplate

TABLE 3-41. ENGINE INPUTS				
	Input Quantity	Address		
PQENG	Torque to generator speed ratio, $\partial M_{ENG}/\partial \dot{\Psi}_{GEN}$	591		
PQEOM	Torque to rotor speed ratio, $\partial M_{ENG}/\partial \Psi_{R}$	592		
K1.PRM	Acceleration feedback gain, k _{Rl}	593		
K2PRM	Speed feedback gain, k _{R2}	594		
TAUG	Gas generator time constant, τ_{GEN}	595		
GRPRO	Gear ratio propeller	1473		
GRENG	Gear ratio engine	1474		
GRTR	Gear ratio tail rotor	1475		
ENGHPX	Maximum horsepower	1481		

- 3. Lockheed's original control system with feather-flap feedback control gyro (ICS system)
- 4. Lockheed's advanced control system with direct-flap feedback control gyro (AMCS system)

Flags are required for two of the four variants: RA(42) = HARDSP = 1 for a locked swashplate, and RA(490) = IAMCS = 1 for the AMCS system. Variants 2 and 3 can both be modeled with the same set of equations.

The Lockheed AMCS system featured a direct-flap feedback control gyro. In this system the pilot does not control the swashplate directly, instead he torques a small control gyro which in turn slaves the swashplate. For such a system the user must consider the inputs described in the section relating to the control gyro (3.3.15), otherwise that section can be skipped.

The original Lockheed control system featured a feather-flap feedback control gyro mounted above the main rotor. The external gyro in this system rotated and tilted in concert with the swashplate. The external gyro and swashplate is identified as equivalent to a swashplate suspended on "soft" cyclic springs which is subject to pilot control spring forces. It contrasts to the usual "hard" swashplate with stiff structural springs and low inertia.

Table 3-42 lists the inputs to be considered with an operative swashplate. Note that with the present programming, the swashplate slop is unavailable for non-AMCS swashplates and that the swashplate stop is not available for the AMCS system. Also the FORTRAN name of some of the control inputs change.

The user is cautioned on numerical problems. In the case of the hard swashplate with stiff springs, the swashplate frequencies may be driven so high that numerical instabilities may occur. The locked swashplate may be preferred especially if the user is including only the three lowest blade modes and is not interested in pitch horn or torsion dynamics.

The user should be acquainted with Volume I, especially Sections 5.5.6, 5.5.8 and 6.10. Note the two axis systems: the swashplate axis and the swashplate control axis. The swashplate axes are aligned with the principal (equal hub) axis with the X roll axis forward, the Y pitch axis rightward and the Z heave axis downward. The control axis lags the swashplate axis by an azimuth CHI or CHIG. Lag, the negative of lead, is taken positive in a direction opposite to rotor rotation where the advancing blade is on the right. With IAMCS = 0 the control loads will come from the pilot stick through the stick actuators, see Section 3.3.4.1, and act through the control springs with rates QKXCS and QKYCS. In the AMCS system the pilot actuators torques the control gyro which in turn loads the

Input Quantity		Address	
Swashplate to Feathering Geometry			
^Ф РН	BETAG	Pitch horn lead azimuth	125
e	E	Pitch horn arm	136
$(d/e)_0$	DOEO	Ratio of cyclic feathering to swashplate angle at zero collective	271
$(d/e)_1$	DOE1	Variation of (d/e) with collective	272
Control I	Input (RA(49)	O)) = IAMCS = 0	
ΨC	СНІ	Azimuth swashplate lead; control axis	119
^K xcs	QKXCS	Swashplate roll control spring rate, control axis	123
K _{YCS}	QKYCS	Swashplate pitch control spring rate, control axis	124
Control :	input (RA(49	0)) = IAMCS = 1	
ΨC	CHIG	Azimuth swashplate axis leads control axis	344
^K ØC	KPHCON	Swashplate roll control spring rate, control axis	376 ①
К _Ө С	KTHCON	Swashplate pitch control spring rate, control axis	377 ①

	TABLE 3-42. SWASHPLATE INPUTS (Continued)				
	Input Quantity				
Springs, D	Springs, Dampers, Friction and Slop				
Køsp	KPHCON	Swashplate roll spring rate in control axis	376		
K _θ _{SP}	KTHCON	Swashplate pitch spring rate in control axis	377		
C _{ØSP}	CPHCON	Swashplate roll damper rate in control axis	378		
C _θ _{SP}	CTHCON	Swashplate pitch damper rate in control axis	379		
δs,SP	GASTOP	Swashplate stop contact angle	1276 ②		
K _{S,SP}	GKSTOP	Swashplate stop spring rate	1277 ②		
^δ ØSP	PSLOPL	Swashplate roll slop limit in swashplate axis	2551 ③		
δθSP	TSLOPL	Swashplate pitch slop limit in swashplate axis	2552 ③		
øsp,bK	RLG	Swashplate friction break point	116		
M _{FR, \phi_SP}	FCG	Swashplate friction at break point	117		
Vertical M	Vertical Motions				
K _{lZ_{SP}}	QKGZ1	Swashplate vertical spring rate at low deflections	137		
Z _{lSP}	ZGl	Swashplate vertical spring breakpoint	141		
K _{2Z_{SP}}	QKG2Z2	Swashplate vertical spring rate at high deflection	140		

	Input	Quantity	Address
Vertical Mo	otions (cont	tinued)	
F _C	FIDDLE	Swashplate vertical spring centering force	1494
C _{ZSP}	QCGZ	Swashplate vertical damping rate	138
R _{ZØ} , R _{Zθ}	DGDHG	Swashplate rotary to vertical damping coupling	1263

² Available only for normal swashplate configuration when IAMCS = 0

swashplate through control springs with rates KPHCON and KTHCON. The pilot collective is modeled the same for both systems, again see Section 3.3.4.1.

BETAG and E describe the pitch horn cant angle and arm length, see Figure 3-12.

If the pitch horn is behind the blade, instead of leading like the figure, E is negative and BETAG is π radians minus the physical angle.

Springs, and if installed the dampers, are modeled with rates KPHCON, ..., CTHCON. These are established in gyro control axis. Therefore, terms which would couple pitching loads to roll deflections and vice-versa do not exist. Note the gyro springs are defined with the controls blocked, and the control springs with the gyro blocked.

Cyro stop springs are modeled. They are circular in the sense that the stop spring rate is the same in any direction. Friction is also the same in any direction. It follows the function illustrated in Volume I, Figure 6-3. Pure viscous friction is obtained by making RLG very large and the ratio FCG/RLG equal to the viscous friction coefficient in ft-lb/rad. A moderate value of RLG sets a rate beyond which the friction is limited to the stiction value FCG. A tiny RLG value (not zero) obtains pure stiction for all practical purposes.

Swashplate slop differs in the roll and pitch axis. The gyro axis is the reference axis for slop. Use a value equal to half the total slop band.

³ Available only for AMCS if made operative by setting IAMCS = 1

Figure 3-12. Pitch Horn Geometry

Most of the swashplate collective inputs are self-explanatory. FIDDLE supplies a means for "centering" the low spring rate portion of the swashplate travel. DGDHG is a cyclic to collective damper coupling factor. The swashplate cyclic dampers produce a collective force proportional to the swashplate deflection and the cyclic damper load. See Volume I, Section 6.10.4 for equations.

When the user operates the program with the swashplate locked by setting HARDSP = 1, only a kinematic relation will exist between the pilot stick and the main rotor cyclic angles. The HARDSP nomenclature can be confusing since a hard swashplate might not be modeled as a locked swashplate. Only six inputs as listed in Table 3-43 need be considered. If the actual swashplate deflections are immaterial, the user may find nominal values of DOF = 1, DOEL = 0 and BETAG = 0 convenient. Then if CHI = 0 an aft stick will gear the swashplate to roll right through the gear ratio. In turn the swashplate deflection will cause an equal amount of pure longitudinal cyclic to appear. The overall equation is

$$\begin{cases}
A_{1S} \\
B_{1S}
\end{cases} = \left(\left(\frac{d}{e} \right)_{O} + \left(\frac{d}{e} \right)_{1} \theta_{O} \right) \begin{bmatrix}
\sin \psi_{PH} \cos \psi_{PH} \\
\cos \psi_{PH} - \sin \psi_{PH}
\end{bmatrix} \begin{bmatrix}
\cos \psi_{C} - \sin \psi_{C} \\
\sin \psi_{C} \cos \psi_{C}
\end{bmatrix} \begin{cases}
-K_{XC} X_{C} \\
K_{YC} Y_{C}
\end{cases}$$
(3-51)

which can be derived from Volume I, Sections 5.5.8, 6.10.4 and 6.10.5 where $\rm K_{\rm XC}$ and $\rm K_{\rm YC}$ are interpreted as gear ratios rather than spring rates.

3.3.15 Direct-Flap Feedback Control Gyro

The user is assumed to have read the section on the swashplate inputs which will supply needed background. The control gyro operates when RA(490) = IAMCS = 1. The desired inputs are listed in Table 3-44. The description of the control gyro is found in Volume I, Sections 5.5.7 and 6.11. The math symbols in the tables are the same as used in those sections.

As discussed in Volume I, the control gyro degrees of freedom, which are roll and pitch, are considered secondary and decoupled from the primary degrees of freedom. Therefore, mass inputs are described herein instead of the weight and balance section which only refers to masses related to the primary degrees of freedom. The gyro gimbals are assumed symmetric and only IZZGNR is input. An unbalance mass can be added to the gimbals in the stationary system. This mass could, for instance, provide an input proportional to load factor.

	TABLE 3-43.	CONTROL INPUT FOR LOCKED SWASHPLAY (RA(42) = HARDSP = 1)	ΓE
		Input Quantity	Address
K _{XC}	QKXCS	Ratio swashplate control roll to longitudinal stick deflect	123
K _{YC}	QKYCS	Ratio swashplate control pitch to lateral stick deflection	124
Ψc	CHI	Azimuth swashplate axis leads control axis	119
(d/e) ₀	DOEO	Ratio cyclic feathering to swashplate angle at zero collective	271
(d/e)	DOE1	Variation of $(d/e)_0$ with collective	272
ΨРН	BETAG	Pitch horn lead azimuth	125

The pilot control input programming mimics the swashplate control programming. The gyro controls the swashplate and the no-load gear ratios GRK and GRD are required. A first order gyro to swashplate actuator is modeled with time constant TAUACT.

In contrast to the swashplate, the gyro springs and dampers are modeled in the gyro axis, not the gyro control axis. Hence, cross-coupling constants are available for input. Simple gyro stiction (no viscous friction) is allowed, input KFPHG.

The most complex series of inputs relate to the feedback from blade flap to the gyro. Volume I, Section 6.11.4 is recommended reading. A feedback lever is mounted on top of the fixed hub arm, one lever for each blade, at an azimuth PSIFBL ahead of the blade axis. The modal description of the blade modes at the mount station is given in Section 3.3.7.2. The geometry of the lever is described by its length XSTDIF, and the azimuth PSIFBL and radius RFBL coordinates of the inboard, free end of the lever. Stiction is inputted in terms of a displacement ZJLIM of the inboard end of the lever which equal the total stiction moment divided by the feedback spring rate KFBC. The total moment means the difference between the plus and minus value of stiction. The other end of the feedback mechanism attaches to the gyro with a leading azimuth PSIFB, again relative to the blade axis. The magnitude of the feedback is determined by the difference

	TABLE	3-44. CONTROL GYRO INPUTS			
	Input Quantity				
Weight and	Balance				
$\mathbf{I}_{\mathrm{ZZ}_{\mathrm{G}}}$	IZZGR	Gyro rotor polar inertia	350		
I _{ZZ} G,NR	IZZGNR	Gyro non rotating inertia	360		
^m GUB	MUB	Gyro unbalance mass	347		
$\mathbf{x}^{\mathrm{f.B}}$	PXPZ	Unbalance mass offset in gyro X axis	348		
$^{Y}_{\mathrm{UB}}$	PYPZ	Unbalance mass offset in gyro Y axis	349		
Pilot Contr	Pilot Control				
KXC	QKXCSG	Longitudinal stick spring rate	342		
$\kappa_{ m YC}$	QKYCSG	Lateral stick spring rate	343		
ΨC,G	CHIG	Azimuth gyro axis leads stick control axis	345		
Flap feedba	ack				
$x_{RM}^{-}x_{J}$	XSTDIF	Length of feedback lever	2514		
$^{\Delta_{ m Z}}_{J}$,LIMIT	ZJLIM	Gyro feedback displacement deadband total travel	2546		
$^{\Psi}\mathrm{FB}$	PSIFB	Azimuth gyro feedback attach. point leads the blade axis	2516		
${\tt x}_{{\tt FB}n}$	RFBL	Radius of inboard end of feedback lever	396		
$x_{ ext{FBG}}$	RFB	Radius of feedback attach. point to gyro	2547		

Т	ABLE 3-44.	CONTROL GYRO INPUTS (Continued)			
	Inpu	t Quantity	Address		
Flap Feedb	Flap Feedback (continued)				
Ψ FBn	PSIFBL	Azimuth inboard end of feed- back lever leads blade	397		
ℓ _{FB}	LFB	Feedback spring preload displacement	2492		
K _{FB}	KFBG	Gyro feedback spring rate	2545		
Gyro to Sw	ashplate Co	ntrol Axis			
^G ØGSP	GRK	Ration gyro roll per unit swashplate control roll	362		
^G ⊖GSP	GRD	Ratio gyro pitch per unit swashplate control pitch	363		
τGSP	TAUACT	Gyro to swashplate actuator time constant	351		
Springs, D	Springs, Dampers, and Friction				
Køøsp	GSKL	Gyro spring rate in roll	352		
Κ _{θθ} SP	GSDM	Gyro spring rate in pitch	356		
Κ _{φθSP}	GSDL	Gyro coupling spring rate for roll moment due to pitch angle	353		
^K ⊖ØSP	GSKM	Gyro coupling spring rate for pitch moment due to roll angle	355		
C ØØSP	GFKDL]				
Ceesp	GFDDM	Same function as gyro spring	358		
Cφ _θ _{SP}	GFDDL	inputs but for gyro damper rates	354		
C _θ ØSP	GFKDM		357		
M _{GFR}	KFPHG	Gyro stiction	395		

in vertical position of the inboard end of the feedback lever and the gyro feedback attachment point times the feedback spring. The description is now complete except for a minor input LFB, a preload deflection approximately equal to the depth of the control gyro below the hub.

3.3.16 Shaft Bending

Main rotor shaft bending degrees of freedom can be added to the equation set by setting IFLEX = 1. When this is done, some additional inputs are required per Table 3-45. These are explained below. The partials XTHTF and YPHIF give feet of fuselage axis motion per radian of shaft tilt. Figure 5-3, Volume I, illustrates the motions occurring for a positive shaft pitch bending. Note the longitudinal partial has a negative value. The lateral partial is normally positive. The spring rate, FKS, is footpounds of fuselage moment for a radian of shaft tilt, the same for both axes. The damping rate, however, can be different with DPHIS and DTHTS for the roll and pitch axis, respectively. The damping level would normally be small and due to structural damping only.

Swashplate tilt may occur with shaft bending. CAPHIS can be thought of as a shaft bending delta 3 effect. Imagine the fuselage to be fixed and shaft bending causing the hub to rotate nose up one radian. Then the amount of swashplate tilt would be CAPHIS for the no load condition, positive if both tilts are in the same direction. When shaft bending is active, a trim time constant is required for trimming the shaft angles. The time constant is supplied as TC(4). The input quantities are reviewed in Table 3-45.

If the direct-flap feedback control system is being used and the flexible shaft option is not active, a shaft bending delta 3 effect can be obtained by inputting FKSPT (RA 273). The program will adjust the swashplate moments according to the product of FKSFT, appropriate hub moment and spring rate.

3.3.17 Induced Flow

The steady-state induced flow pattern is determined internally by the program. The only input for main rotor downwash is a time constant, TC(1) in TRIM and TC(2) in FLY. The downwash time constants were discussed in the section on TRIM initialization. The downwash velocities are determined by first-order lag equations which require time constants.

The effect of main rotor downwash on the fuselage-wing combination and on the horizontal tail is presented to the program in the form of interference factors. These interference factors are tabular functions of wake angle.

	TABLE 3-45. SHAFT BENDING DATA	
	Input Quantity	Address
IFLEX	Shaft bending option flag 1=on	399
XTHTF	^{∂X} _F /∂θ _S	364
YPHIF	θΥ _F /θØ _S	365
FKS	Shaft bending spring	375
CAPHIS	Shaft to swashplate coupling	398
DPHIS	Shaft roll tilt damping	2549
DTHTS	Shaft pitch tilt damping	2550
TC(4)	Shaft bending trim time constant	290

The wake angle is zero in hover, 90 deg at extreme forward flight speeds, and -90 deg at extreme rearward speeds. The table should have all values from +180 to -180 deg. Values less than -90 deg or greater than 90 deg mean the induced airflow is upward through the rotor disk due to an unusually high rate of descent or negative rotor lift in severe maneuvers.

The tables are identified with a doubly dimensioned array with the main rotor to wing function beginning at FXTN(1,1) and the main rotor to horizontal tail function beginning at FXTN(1,2). The functions will be linearly interpolated. The format is demonstrated in Table 3-46.

The tail rotor acts on the vertical tail. The net load is expressed by STR which is a factor by which the unblocked tail rotor thrust is multiplied to give the blocked value.

A fixed wing is allowed. DEODA specified $\partial \epsilon_{HT}/\partial \gamma_F$, the radians of downwash at the tail due to the fixed wing per radian of freestream angle of attack.

All the above refer to the vertical component of the downwash due to lift on the main rotor and on the fixed wing. A velocity decrement on the tail surfaces and the tail rotor is allowed due to fuselage and main rotor drag. ETAE is a factor less than one by which the freestream forward velocity is multiplied to give the average wake velocity at the tail. Inputs, including FXTN, are summarized in Table 3-47.

ΨΔΒΙ.Ε	3-116	WAKT	ANGLE	FUNCTION
TADLL	3-40.	WALL	ANGLE	LONCITON

Main rotor to wing function

FXTN(1,1) = N, (number of point pairs)

 $FXTN(2,1) = \chi_u, 1$

 $FXTN(3,1) = F_{\chi}, 1$

 $FXTN(4,1) = x_u, 2$

 $FXTN(5,1) = F_{\chi}, 2$

.

 $FXTN(2N, 1) = \chi_u, N$

FXTN $(2N + 1,1) = F_X, N$

(Maximum number of data pairs is 12)

Main rotor to horizontal tail function

FXTN(1,2) = (number of point pairs)

	TABLE 3-47. INDUCED FLOW INPUTS	
	Input Quantity	Address
FXTN(1,1)	Main rotor to fuselage-wing interference factor table	1751-1775
FXTN(1,2)	Main rotor to horizontal tail interference factor table	1776-1800
STR	Tail fin blockage factor	97
DEODA	$\partial \epsilon/\partial \alpha$ at tail	135
ETAE	Equivalent velocity ratio at the tail	106

4. PLANNING AND OPERATING THE PROGRAM

4.1 RUN TIME REQUIRED

REXOR is a complex program and run time costs are considerable. The pressures to get a job done often precludes proper attention to computer time savings. Nonetheless, a portion of the user's time should be made available for carefully checking the runs already completed, checking the inputs for the runs to be made and in planning the scope of the project to begin with.

Direct control over run time is obtained with RA(36) = TCUT which limits the number of rotor revolutions in TRIM and RA(1498) = TSTOP which limits the time in FLY. Cases should be rare where TCUT exceeds 24 cycles and TSTOP exceeds 8 seconds. These values should be examined for every new series of cases to see if they can be reduced.

The program usually meets the trim criteria before the number of rotor revolutions reaches TCUT. The run should not be rejected out of hand for trim failures as the trim criteria for the controls are fairly severe. RA(48) = IPLOT should be 3 or 4 so time histories of the control motions in TRIM can be examined. Their traces have a typically exponential character and the user can readily see about how close to trim the case is. A 0.1 degree error in cyclic main rotor angles, say, is certainly not cause for rejection for a lot of cases.

Direct control is also available on the number of time points computed per rotor revolution, RA(32) = AZT in TRIM and RA(51) = NAZ in FLY. AZT is typically equal or less than NAZ. The values are dependent on whether high-frequency modes are operative or not. The following flags relate to high-frequency modes: RA(399) = IFLEX, RA(42) = HARDSP, RA(2870) = IDYN, RA(1480) = IPHORN and RA(2515) = IFLAP2. To a lesser extent the values depend on the quasi-static pitch horn and torsion, flags RA(1487) = KPH and RA(1497) = TORFLG. Serious consideration should be given to operating the program with as few degrees of freedom as is reasonable.

REXOR has been run for minimal degrees of freedom with NAZ as low as 24. Normally, though, NAZ is more like 120, 180 or 240, and sometimes even 360 to provide numerical stability. In computing the AH-56A Cheyenne inplane stability, damping resolution of the order of 1/10 of the structural damping was experienced providing the azimuth interval was small enough to preclude numerical instability.

Summarizing, run times can be computed based on REXOR input values. The run time per case, where a case is defined in Section 3.1 is computed

$$t_c = (t_{TRIM} + t_{FLY})/60$$
, units of minutes/case

where

$$t_{TRIM} = (k)(AZT)(TCUT)$$

$$t_{FLY} = (k)(NAZ)(\Omega)(TSTOP)/2\pi$$

and

$$\Omega = RA(52)$$

The other addresses are defined above. The parameter (k) has units of sec/azimuth, and can be determined by measuring a computer run. The data in Table 4-1 is offered as a reference.

TABLE 4-1. MACHINE TIME ESTIMATES					
Mashine	k				
	No dynamic stall	With dynamic stall			
IBM 360/91	0.16	0.18			
CDC 6600	0.48	0.54			
IBM 360/65	1.12	1.26			

The 360/91 values are accurate. Values for the other machines are estimates. It should be noted that the above values are based on a four-bladed rotor system. Costs for teetering configurations (two blades) would be approximately two-thirds as much.

The user is advised to proceed slowly in submitting cases. Look over the output of the last case carefully. The harmonic analysis tabulation obtained with the RA(1257) = IHAFLG may be helpful. The idea is to double check the inputs, to spot and remove errors. Having a series of runs "bomb" just because one little input was wrong or missing is expensive.

4.2 TRIM SAVING PROCEDURES

Trim save cards can be obtained by actuating the RA(4 7) = IPUNCH flag and this is highly recommended even if the next case varies considerable from the flight conditions of the trim save case. Some of the trim save inputs can be filled out by hand and will aid trim. Of first importance are the downwash of the main rotor and the tail rotor, RA(65) = WIMR and RA(77) = WITR. Other quantities which may be initialized to aid in reaching final trim values are RA(53), RA(54), RA(55), RA(56), RA(57), RA(58), RA(59) and RA(63) if they are among the set of trim variables selected by the trim option, RA(142). There are other factors discussed in detail in Section 3.3.3.

4.3 TROUBLE SHOUTING

Troubleshooting here shall be limited in discussion to the effort required to fly a new helicopter configuration in the program where only relatively simple program changes are required. The effort required to check out a major change of the program that affects the primary degrees of freedom is at least an order of magnitude greater than that required to check out new input data.

Checkout of the program should proceed by repeating a known case and is aided by correlating with any test data that is available, such as whirl tower or tie-down tests. Lacking test data, simpler analyses can sometimes be used in limited comparisons of performance and handling qualities. In areas where test data or simpler analyses are not available, the user must use great care in evaluating the inputs and in determining the "reasonableness" of the output results. All the output should be carefully examined and new output programmed if doubts can not be clarified. Sometimes special check can be devised such as fixing a roll rate on the rotor and observing the value of the required pitch processional moment, or observing the flap displacement and root blade moment obtained with an increment in the feather angle, etc.

The steps required to get a new configuration up and running can be serialized as follows:

1. Gathering of data. The user must obtain all details on the configuration especially in regard to blade sweep, blade droop, blade jogs, feather bearing cone angles, pitch horn stiffness, blade inertial and modal data, pitch-flap-lag couplings,

swashplate stiffness and shaft flexibility. The stability of the rotor modes are often highly dependent on the values of these inputs.

- 2. Write up and implement program modifications. Here only simple modifications are assumed which are almost inescapeable for a new configuration. One needs to be more careful with changes that affect the physical model being represented through the equations of motion compared to changes in say, the output-input format.
- 3. Decide what degrees of freedom can be removed. The characteristic frequency of the torsion or the swashplate may be too high to be significant. The engine degree of freedom usually can be turned off except for autorotation or extreme maneuvers. A fixed shaft study involving the blades and the swashplate degrees of freedom only may be appropriate. Another strategy that can be employed is to turn all possible degrees of freedom off to begin with to simplify the checkout, then add shaft bending, etc., and recheck the output.
- 4. Compute one pass of the program. Here the simple errors which lead to zero divide, no initialization, etc., will be apparent. This stage is complete when the tabulation for the first time point appears. The tabulation of the inputs include a card listing and then a relisting of input in like groupings. The inputs are rechecked using the like-grouping format which may make it easier to spot wrong numbers. Also at this time the statements for program changes are reviewed for correctness.
- 5. The next stage occurs when a portion of the TRIM time history is obtained. Check all quantities in the tabulation of the first time point against the inputs for reasonableness; also check for signs, zeros and the absence of huge numbers. Examine the time histories to see that all quantities have started off properly. If a rapid divergence or oscillation has occurred, numerical instabilities are to be suspected; a low rate could mean the trim gains are too low. A good value is one that causes a pure, rapid convergence without overshoot oscillations or indications the trim variable is following vibratory loads. Numerical instabilities may be cured by using a smaller increment between time points. A rapid divergence may, however, be a simple input error in the spring rate, etc.
- 6. Next, a portion of the FLY time history will run. Check the TRIM time histories to see the trim variables plots are almost horizontal near the end of TRIM indicating a true TRIM condition has been closely approached. In FLY numerical difficulties may again occur. Check the tabulation at the end of TRIM and the beginning of FLY for reasonableness of values. A point is

finally reached when the FLY plots appear reasonable, that the system is stable without any control input (or if not, should be expected) and that the system moves in the proper direction and with about the expected magnitude upon application of a control input. A good rule is to apply no input for the firs, half or full second of FLY. This procedure helps determine the quality of TRIM and provides a reference level for the control input to follow. Difficulties can be evident which may only be due to an unsatisfactory design. Careful attention would be paid to the inplane mode stability in its collective, cyclic or reactionless manifestations. Parameter sensitivity studies may be in order or perhaps more flight conditions should be investigated.

A few messages are printed, some relating to "bomb" flags. These flags are not intended to be an error detection system. Also the location from within the program where they originate is not indicated.

There are a few large number detectors which stop the case when they are exceeded. Included are excessive values for the trim variables, for root blade loads and blade deflections. The intention is to detect a divergence from within the program before a computer overflow occurs. Then, the time history plots with automatic scaling based on the largest values will be useful. Without "bomb" tests a computer overflow number like 10^{77} will cause all plot data to look like zero except for the last point.

5, TABULATED OUTPUT

An example of tabulated data is provided by the reduced copy of a computer printout, Table 5-1. The major sub-blocks of data are titled and underlined in the tabulation. The harmonic analysis tabulation is included. The only tabulation available which does not format like one or more of the pages of the figure is when RA(46) = ICONTR is on and a special printout of the mass matrix and related data is obtained. This data is for debugging program modifications.

The first portion of the tabulation prints input data; for details see section 3. The next portion prints values for the same set of variables at the beginning and end of TRIM. In addition, an extra tabulation is printed at the end of the extra revolution added to TRIM for harmonic analysis. The last two tabulations should be checked to see how close corresponding values are in order to evaluate the resolution of TRIM and hence the numerical quality of the harmonic analysis.

Section 3.3.6 should be consulted when interpreting harmonic analysis although the titles are descriptive. The user should be aware that the blade loads are being computed with a greater numerical precision than normal at the expense of calling the blade subroutine (SWEEP) twice at each time point. In normal operation the blade subroutine is entered with the old accelerations plus the new velocities and displacements found by integrating to the next time point. The blade loads plus loads from the fuselage, tail rotor, etc., are used to find the new accelerations. Now at this point, for harmonic analysis only, and before recycling the program and integrating to the next time point, the blade subroutine is entered again. The blade loads are then computed using the accelerations, velocities and displacements all at the same time point. A significant improvement in blade loads results although the azimuth step may be only 2 or 3 degrees. The acceleration is sensitive in value to high frequencies and a phase error of a few degrees at one per revolution (1P) is many times that at the frequency of the highest mode.

The tabulation finishes with printouts at the beginning and end of FLY similar to those in TRIM.

INPUT DATA	2345074	[04987]08	74525510981	INPUT CARD LISTING P901 234 56 789 01 2 34 56 7	12345678901;	3446789012345	INPUT CARD LISTING INPUT CARD LISTING INPUT CARD LISTING	
	=	RA ADDRESS!					(CARD SEQUENCE NUMBER)	
	/	MASTER	MASTER DATA DECK	BEIL AH-16	11-20-75	(DATA TITLE)	01000000	
	31	1000	180-				00000000	
	36	. 54.					000000000000000000000000000000000000000	
	77 77	• •	_				0500000	
							00000000	
	5.1	180.					00000000	
	346	375					06000000	
	, ,	٠ ٢٥					00000120	
	2,6	5.0					000000	
	7.8						000000140	
	80 61	•	22.				000000120	
	7	217.45					00000160	
			,	100			00000170	
	101 103	16-54	55.08	20016			00000	
							00000000	
			2.25				00000010	
	123 124	•	-237				000000550	
		. t.					000000300	
		1.5					000000000000000000000000000000000000000	
		. 4					09200000	
	151 154	_	. 7	2.01	eo (000001270	
	271 1/4	• -	•	40.	. 047		00200000	
	274	-1-2375					00000300	
				:			00000310	
	545 243	• •	.025				000000350	
	364 365	. •	į				000000340	
	374 377	'		9.168105 1.U	1.		05600000	
		pm ,					09000000	
	457 7 FT	5.2	:				00000370	
	12501252	.0005	.0000	4 .0156			000000000000000000000000000000000000000	
	1257						0000000	
	1200	5.75					000000	
	1270	2.15					02-0000	
	1241	300	.603				000000	
	1348	5.356					0000000	
	461146	1 55 4.	11174	. 8744.	•00•	580 .	000000	
	473147	٧	4-7	5-12			39-30300	
	14701477		.75				26770222	
	441148 c		.03	001 6	.00	03	00500000	
	1986	ا د					000000510	
	2681265	27.4	7.67	3.96	4.25	5.73	05500000	
	2086	3					04500000	
	26×6						0000000000	
							0.100000	

IMPUT DATA CARU COLUMNS 12345676901234567840123456789012345678901234567890123456789G12345678901234567890	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 173 00 173 00 175 00 176 01 176 01 180 01 181 01 184 01 184 01 184 01 184
89612345678		0.0 7.400006 1.1400006 0.0 5.400006 5.400006 2.700006 6.400006 5.400006 5.400006 5.400006 5.400006 5.400006 5.400006 5.400006 6.40006 6
78901234567	-12. -26. -26. -26. -26. -26. -27. -26. -26. -26. -26. -26. -26. -26. -26	
578901234567	885 885 886 886 886 886 886 886 886 886	1.00 2. 3. 3. 3. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
67 8901 234 56	2000 000 000 000 000 000 000 000 000 00	02 3.8300F-01 01-100000 00 02 00 02 00 02 00 02 00 02 00 02 00 02 00 02 02
6784012345	90 00 00 00 00 00 00 00 00 00 00 00 00 0	1.10000E GZ 3.83500F-0 5.00006E GI 2.00006 1.52000F GG 6.00006 1.52000F GG 1.09000E 3.00000E GZ 1.09000E 3.00000E GZ 7.0000E 3.00000E GZ 7.0000E 3.00000E GZ 7.0000E 5.50000E GI 1.30000E 5.50000E GI 1.30000E 5.50000E GI 5.30000E 6.55000C GI 5.3000C 6.55000C GI 5.3000C 6.5500C GI 5.3000C 6.5500C GI 5.3000C 6.5500C GI 5.3000C 6.000C GI 5.3000C 6.000C GI 5.3000C 6.000C GI 5.3000C 6.000C GI 5.300C 6.000C GI 5.00C 6.00C 6.
769012345		1.0.1.0.4.4.0.4.4.4.4.7.7.7.7.2.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
NS 123456	454 467 472 476 476 26012601 26082610 2618261 2618262 26382640 26382640 2648267 264827 26482	1766177 1776178 17817861796 179117951796 179111795 16001860 161011818 16111818 1621182 1621182 1631183 163118
INPUT DATA CARD COLUM		

	23456 7890	0000 0000
	012345678901	0.7500E 01 0.2132E 00 0.1706E 02 0.1787E 00 0.7048E-02 0.3105E-01 0.7048E-02 0.3142E 00 0.7748E-02 0.7548E 00 0.7548E-02 0.7548E 00 0.7548E-02 0.7548E-01
ned	890123456789	0.4500E 01 0.1475E 02 0.336.2E 00 0.4722E-02 0.4222E-02 0.45230E 00 0.4523E-01 0.453E-01 0.4545E-01 0.4545E-01 0.4545E-01 0.4545E-01 0.4545E-01 0.4545E-01 0.4545E-01 0.4545E-01 0.4545E-01
- Continued	678901234567	0.1550E 01 0.2200E 02 0.2200E 02 0.2200E 02 0.2200E 02 0.2200E 02 0.2200E 02 0.1600E 01 0.455E-01 0.1500E 01 0
TABLE 5-1	.5 678901 2345	0.225 @ 0.125
TA	IMPUT DATA CALUMNS 123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890	0.1900 6 10 10 10 10 10 10 10 10 10 10 10 10 10
	NS 1234567890	501 505 506 506 506 506 506 506 506 506 506
	IMPUT DATA	

	23 456789012345678901234567890	2.20736-01 A.12860E-02 1.05046 01 5.81150E-03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
TABLE 5-1 - Continued	NS 127456789CL23456789C123456789CL23456789QL27456789CL23456789CL23456789CL23456789C	17.0 -0.15 -0.1143E-02 3.43701F-02 -2.25512E-02 0.0 0.0 1.33067E 1.59012E-01 7.28184F-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	IMPUT DATA CARD COLUMNS 12345678961234567	331 332 16.0 36 267 287 384 384 386 386 386 386 386 386

	45678901234567890		
TABLE 5-1 - Continued	IMPUT LATA CARD CCALUMNS 12345678901234567890123456789012345678901234567890123456789012345678901234567890 FND DATA		
	TWOUT CATA CARD COLUNNS 1234567 8901 23456 FND DATA		

10-31-75 BELL CASE = 201 TP					_	LIST GROUPING LIKE INPUTS	JIKE INPUTS					
	AH-16 BLAD HETAO= 15.0	E DATA	REXOR: 3	DATA REXOR: SINULATION MODEL GAT! IEGA= 35.93 CONV. 2ND FLAP MODE	DEL G	64.7% 000E						
MASTER DATA				of.	RA ADORESS POR	PORTRAN MAME						
					•		VALUE					
	-000E	32	AZT	1.200E 32	33		0:0	K	TRING 2	0.0	35 TRIMO 3	0.0
	2.400E 01	37	**OPEN**	0.0	98		0.0		2	0.0	40 #30PEN##	
AA ICOMTR	0 0	77	TPINCH	0.000 00	4 4	TP: OF	3-000 00		T PO THIT	0.0	A D CR SPE	1.000E 00
	1.800E 02	52	0	3.393E 07	53			X		-2.011E-02	55 815	3.4376-02
	2.207E-01	57	OTR	8 -1 29E-02	8	AL PHA	-1.190E-02	65		-2.265E-02	60 SNGBLF	
	0.0	62		1.230F 32	69	GAMMA	0.0	\$	*	0.0	65 WINR	1-050F 01
20 PIN	5.8116-03	19		-1.529E-03	9 6	**OPEN*	0 0	40	ELCON V THREAT	0.0	76 64CON	0 0
76 OLMRNI	0.0	12		3.271E-02	2		1.231E 01	2	DMMFLG	0.0	80 TAU	2.000E-02
	2.200E 01	82	_	4.916E 01	83		3-522E 01	9	08(3)	3.393E 01	85 TH1	-1.745E-01
	0.0	19	*	0.0	88		0.0	68	**OPEN**	0.0	90 1P1TCH	0.0
	2-174E 02	25	ENCHAZ	0.0	6		1.000E 03	\$	* ODEN *	0.0	95 ##OPEN##	9
	7.850F 00	6	STR	8.5005-01	96	SCTR	2.6725 01	6	and don't	0.0	100 secopense	0 0
104 FTAF	10000-01	107	** OPF NAS	0-0	108		0-0	8	2 P.	2.0501-03		2-250F 00
	0.0	112	DELTO	0.0	113		0.0	114	FCF	0.0		
116 FG	0.0	117	216	0.0	118			119	CHI	0.0	120 ** OPEN##	0.0
	0.0	122	**OPEN*	0.0	123			124	OKYCS	2.370E-01		0.0
	0.0	127	**CPEN**	0.0	128		1.117E 00	129	HUBL (2)	1.267E 00	13 0 HUBL (3)	0.0
131 HUBC (4)	0.0	137	HUBC(5)	0.0	133	RGURF OCC.	000	130	GMASS	0.0	15 DE UDA	0-0
	0.0	142	CORAF	4.000E 00	143		1.000E 00	1	_	-1 -000E 00		0.0
146 CIF1	-5.000E-01	147	**05EN*	0.0	148		0.0	140	*	0.0		
271 DOE0	1.000E 00	272	00E1	0.0	273	FKSPT	0.0	274	YTR	-1.237E 00		
	3.000 5-01		TC (2)	5.000E-02	289	TC (3)	1.000F-01		TC(4)	1-000E-02	29.1 70(5)	0*0
292 1CX 297 DSTAF	2.500£-02 1.650£ ul	243	104	2 - 500E-02	762		0.0	243	- W	0.0	296 OR 1	0.0
341 **0PEN**	0.0	345	O + XCS6	0.0	343	OKYCSG	0.0	344	PSIPG	0.0	345 CH16	0.0
	3,7501-01	347	MUB	0.0	348		0.0		ZdAd	0.0	350 1226R	0.0
	1.000F 00	352	GSKL	0,0	353		0.0			0.0		0-0
356 6504	0.0	357	S T T T T T T T T T T T T T T T T T T T	0.0	358	GFDDM	0 0	356	SEXEDL Y THYE	-1.6001.00	360 1226NK	0.0
	8.900E 00	367	** CPENS*	0.0	368		0.0		*	0.0		
		372	FFEAR	0.	373		0.0	374		-1.160E 00		9-168E 05
376 KPHCON	1.000F 00	371	× 1HCON	1.000E DO	378	CPHDSP	0.0	379	CTHOSP	0.0		
395 KFPHG	0.0	38	RFBL	0.0	397	P51584	0.0	358	CAPHIS	0.0	399 IFLEX	1-000E 00
437 XCPOL	1.5001 00	4 38	YCPOL	1.000F 00	439	**0PEN*	0.0	044	FAST	0.0		
490 IAMES	0.0	164	**OpEN*	0.0	492		٥.0	493	**NJ40**	0.0	494 YCSMAX	1.000t 03
495 ##OPEN##	0.0	8	**DPEN**	0-0	164	##OPEN##	0.0					
167 A 188	0.0	582	DVEGI	0.0	583		0.0		DVE92	0.0	58 5 5.XCS	0=0
SB6 KYCS	0.0	587	00.				•					
			244	0.	290	XC S 1	5	284	xCS2	0.0	590 YCS1	0

001 ULUN 641 + 40P EN++ 673 + 40P EN++ 674 + 411 1246 K32 1251 CELY 1255 CELY 1256 CORE 1271 + 40P EN++ 1271 + 40P E	4.5 82 6 03 6 03 6 03 6 03 6 03 6 03 6 03 6 0	8 8 8	1242 1252 1253 1253 1262 1262 1273 1273 1282 1283 1283 1284 1347	BPSIL **DPEN** **UPEN** KZ1 CZERO IHAPLT SWEEP **OFEN** **OF	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	663 TETER 668 ATH 673 *** OPEN** 674 *** OPEN** 1248 K3 1 1248 K3 1 1248 K3 1 1253 CONK 1258 CONK 1258 COPEN** 1268 K3 0PEN** 1273 *** OPEN** 1273 *** OPEN** 1273 *** OPEN** 1273 *** OPEN** 1274 OFEN** 1343 OFEN** 1343 OFEN** 1343 OFEN** 1343 OFEN** 1353 *** OPEN**	1.000E 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	664 679 679 679 679 679 679 679 679 679 679	A PHI B TH ***OPEN*** ***OPEN*** ***OPEN** ***OPEN*	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	665 BPHI 670 ATC 075 ##UPE;\## 1245 CTRIM 1255 ##OPEN## 1260 0##DPEN## 1260 0##DPEN## 1270 BFAS 1270 BFAS 1270 BFAS 1270 0##DPEN## 1285 0##OPEN## 1285 0##OPEN## 1295 0##OPEN## 1295 0##OPEN## 1295 0##OPEN## 1390 181ABE 1345 KTI	0.0 0.0 0.0 1.6 60E 02 5.7 00E -04 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TCT **OPEN** YIV3 YDV2	0000		1402 1467 1412 1417	0TH1 **OPEN** 2IV1 YOV3	0000	1408 **OPEN** 1413 ZIV2 1418 ZOV1	.000	1404 1409 1414 1419	TTFLAG Y1V1 Z1V3 ZCV2	0000	1405 ## OPEN## 1510 YIV2 1415 YOV1 1420 ZOV3	0000
IXXE IYXE IXXENG IXXENG YLOG BAGDEN##	1.559E 03	61 03	1462 1467 1477 1477 1487	1 YYF **UPEN** I YYTR Z BPH Z J J G K PH K PH K PH	1.117£ 04 0.0 2.800E 00 7.500E-01 0.0		8.759£ 03 0.0 1.000F 00 0.0	141 147 147 147 148 148 148	1 XYF 2 GS GRENG DELZOR EMCHPX FTOD F	4.000E 02 0.0 2.040E 01 0.0	1465 1XZF 1470 1XXPRO 1475 GRTR 1480 1PHORN 1485 CFB	5-8 00E 02 0-0 5-1 20E 00 0-0

	99999999999	3.2. Billion of the control of the c	20 00 00 00 00 00 00 00 00 00 00 00 00 0	-2-5006-92 0-0 0-0
	00 EN	DTHTS 15 TAL 11 HA OMCON 5 5TATO 6A IN1 6A IN1 6A IN1 6A IN1 94 OPENS	A P O I L P O	GAIN(10) GAIN(10)
	*********	2255555 225555 225555 22555 22555 22555 2255 25	26.68 26.68	1995
	0000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0	3.000E-03
		DPHIS TCUT3 TCUT3 FACTM OMCON 4 CONCON 6 GAIMI GAIMI GAIMI CAINI CAINI CAINI CAINI CAINI	1 LOOK 1 LOOK 8 K4) 8 K4) 8 K4) 8 K4) 8 K4) 1 T T T T T T T T T T T T T T T T T T T	GAIN(4) GAIN(9) GAIN(14)
,	2484 2484 2484 2550 2551 2551 2552 2553 2553 2553 2553	2554 2554 2554 2554 2554 2554 2554 2558 2558	2689 2689 1904 1904 1924 1939 1939 1949 1959 1959 1959 1959	1984
			9 8	7
			4	-4.000£ 0.0
	**************************************	CODENSE TCUTO TCUTO TCUTO TCUTO TCUTO TCUTO TCUTO TCUTO GAINI GAINI GAINI GAINI GAINI GAINI GAINI	ADTR CUTOUT AA(1) AA(1) AA(1) AA(1) T T T T T T T T T T T T T T T T T T T	GAIN(3) GAIN(13)
	24483 24483 24493 2508 2513 25513 25513 25513	2553 2553 2553 2553 2553 2553 2553 2553	2683 2683 1908 1908 1913 1928 1948 1958 1958 1958 1963 1963	1983 1988 1953
	0000000000		75 F F F F F F F F F F F F F F F F F F F	1.500E-02 0.0 0.0
		**************************************	CMING ************************************	GAIN(2) GAIN(7) GAIN(12)
	2482 2482 2492 2497 2502 2503 2517 2517 2527 2527 2527	2542 2552 2553 2553 2553 2553 2543 2543	2682 2687 1902 1907 1917 1927 1937 1947 1957 1967 1967	1987
	ONT 1 NU FD)	0,3000000000000	2.786 £ 61 9.400 £ 91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-2.000£-63 -3.750£-02 0.0
	AASTER DATA (CONTINUED 2481 **OPEN*** 0.0 2464 **OPEN*** 0.0 2476 **OPEN** 0.0 2504 **OPEN** 0.0 2504 **OPEN** 0.0 2514 **OPEN** 0.0 2516 **OPEN** 0.0 2516 **OPEN** 0.0 2516 **OPEN** 0.0 2526 **OPEN** 0.0 2527 **OPEN** 0.0 2536 **OPEN** 0.0 2536 **OPEN** 0.0	##OPEN## 25L1H 25L0H # 25L0H # #OPEN## 0 OPCON 1 0 OPCON 6 6 GAIN1 GAIN1 # # # # # # # # # # # # # # # # # # #	AMING B B (1) B (1) B (6) B (6) B (6) A (14) A (14) A (14) A (17) A (17)	GAIN(1) - GAIN(6) - GAIN(11)
	MASTE 2481 2496 2496 2501 2501 2516 2516 2516 2516 2516 2516 2516 251	2541 2556 2556 2556 2556 2556 2556 2556 255		

		0.0 1.600€ 02	-1.470E-01 0.0	0.0	1.970f-01 5.000f-01	8.000E 01	7.400E 01 1.200E 02
		-2.000E 00 1.800E 01	-1.670F-01 - 2.900F-02	0.0	2.040E-01 2.980E-01	8.800E-01 3.830E-01	1.920E 00 1.040E 00
		1.600E 00	-1.860E-01 9.000E-03	0.0	2.140E-01 2.720E-01	7.000E 01 1.800E 02	6.000E 01 1.100E 02
		1.400E 00	-2.060E-01	0.0	2.280E-01 2.500E-01	7.400E-01	2.000F 00 1.080E 00
continuea		-8.000E 00	-2.260E-01 -2.800E-02	00	2.460E-01 2.320E-01	4.000E 01	5.000E 01 1.000E 02
ı		-1.000E 01	-2.460E-01	0.0	2.670E-01 2.170E-01	6.230E-01 5.600E-01 0.0	0.0 1.140E 00 0.0
TABLE 5-1		-1.200E 01 . 8.000E 00	-2.650E-01 -	0.0	2.920E-01 2.060E-01	0.0 1.000£ 02 0.0	2.0065 01 9.006E 01 0.0
	TOUPING	-1.400E J1 6.0000 00	-2.850E-01 -8.900E-02	0.0	3.200E-01 1.980E-01	6.230E-01 8.400E-01 0.0	0.0 1.346£ 00 0.0
	RA ADDRESS OF GROUPING	-1,600F 01	-3.040E-01 -	0.0	3.530E-01 1.940E-01	-1.800E 02 9.000E 01 0.0	-1.800E 02 8.000E 01 1.800F G2
	START	-1.800F 02 2.000E 00	0.0 -1.260E-01	0.0	5.000 E-01	1.800t 01 - P.600f-01 0.0	2.200F 01 1.520E 00 9.600F-01
	AERDCYNAHIC DATA	2601	2621	2641	2661	1751	1776
	AEROCYN.	ALFA	ಕ	5	9	ä	TWBODY

150 NMP								
- START RA AE 0.0 0.0	(17A(150)) - NAP - 4							
	F GROUPING : 00 2 -010E 00	8.300E 00	0.0	0.0	0.0	0.0	0.0	0.0
0.0		4.200E-02			000	000		
	0.0	0.0	000	0 0	000	0.0	0.0	000
0.0	0.0	0.0	0.0	0.0	000	0.0	000	0.0
0.0	9 9	0.0	000	0.0	00	0.0	000	000
0.0	000	0.0	0.0	0.0	000	0.0	0.0	0.0
0.0	000	0.0	0.0	0.0	0.0	0.0	000	0.0
0.0	0.0	0.0	0.0	0.0	000	0.0	00	00

		9.000E 00 4.700E 01 5.200E 03	1.900E 01 2.300E 01 6.900E 01 5.600E 01	00000
		8.000E 00 8.100E 01 5.100E 01	1.800E 01 2.400E 01 7.100E 01 4.900E 01 0.0	00000
	0.0	5.000E 00 9.000E 01 1.500E 01 0.0	1.500E 01 2.500E 01 4.700E 01 5.000E 01	00000
	34 CYCFLG	1.200E 1 1.300E 0: 1.400? 01 0.0	0000	00000
	1 10 3	1.100F 01 8.000F 01 8.900E 01	0110	00000
	4.500	1000	99999	00000
	NVARZ	1 5.600E 1 8.800E 0.0		00000
	01 300	4.000E 00 5.500E 01 8.700E 01	1.400E 01 2.80CE 01 4.000E 01 3.200E 01 5.800E 01	00000
	3.200E	16 -000E 00 -300E 01 -600E 01	22822	
	AR.1	180UPING 00 3.0 01 5.3 01 8.6		00000
	299 NVARI	2.000E 00 3.4 7.900E 01 5.7 8.500E 01 0.4		00000
	1.000E 00	1.000E 00 6.000E 00 7.000E 00		
	1.00	3.1 1.00 6.00 7.00 7.00		00000
DATA	298 TSCLE		1801	1851
PLOT DATA	298	NVEC1	NVEC2	SVEC

FUE SELAGE, WING, TAIL AER 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

	6.9166-01		-8.y14E-03	6.051E-02 0.0 U.u	1.508E-02 0.0 0.0 0.0
	5.578E-01	000	4.3866-02 0.0 0.0	5.82%-02 0.0 0.0 0.0	1.538E-02 0.0 0.0
	4.2 &F-01		-7.897E-02 0.0 0.0 0.0	5.515F-02 0.0 0.0 0.0	1.514t-02 0.0 0.0 C.C
	2.354E-01		-1.055F-01 0.0 0.0	5.193E-02 0.0 0.0 0.0	1.426E-02 0.0 0.0 0.0
	2.7206-01	0.0	-1.220£-01	4.910E-02 0.0 0.0 0.0	1.2466-02 0.0 0.0 0.0
	1.87E-01	000	-1.442E-01 c.0 0.0	4.324E-02 0.0 0.0 0.0	5.32%E-03 0.0 0.0 0.0
	1.1786-01		-1.463E-01 0.0 0.0	3.687F-02 6.0 6.0 0.0	-6.2981-03
	5.095E-02 1.000E-02		-1.236E-01 6.463E-62 0.0	2.7%61-02 6.2061-02 0.0	-2-347F-02 1-415F-02 0-0
IPE TABLES	1.5 00 f-02 8.914f-01		-6.5311-02 3.922 t-02 0.0	1.413F-02 5.19bE-02 0.0	-3.3864-02 1.4241-02 6.0 0.0
BLADE MODE SHAPE TABLES	10PLANE 761 - 8004- 6.C 8.140E-01	840	~	841 - 860 0.0 6.167E-02 0.0	881 - 920 0-0)-4-9E-02 0-0

BLADE MODE SHAPE TABLES	APE TABLES								
1ST FLAP									
921 - 960 0.3 3.559E-02 0.0	3.1%E-04 4.007E-02 0.0	1.818F-03 4.495F-02 0.0	4.2.22.E-03 0.0 0.0 1.0	7.048E-03 0.0 0.0	1.153E-02 0.0 0.0	1.456F-02 0.0 0.0 0.0	1.900E-02 0.0 0.0 0.0	2.493E-02 0.0 0.0 0.0	3.105E-02 0.0 0.0 0.0
961 - 1000 0.0 8.534E-01 0.0	7.052 E-02 9.145 E-01 0.0	1.536E-01 1.000E 00 0.0 G.0	2 302 f-01 0.0 0.0 0.0	2.989E-01 0.0 0.0	W 0 0 0	4.529E-01 0.0 0.0 0.0	5.372E-01 0.0 0.0	6.462E-01	7.558E-01 0.0 0.0 0.0
1001 - 1040 0-0 2-780E-03 0-0 0-0	4.426 E-04 2.789 E-03 0.0	1.002 E-33 2.792 E-03 0.0	1.621 E-03 0.0 0.0 0.0	2.03%E-03 0.0 0.0 0.0	2.34RE-03 0.0 0.0 0.0	2.466E-03 0.0 0.0 0.0	2.5A2E-03 0.0 0.0 0.0	2.681E-03 0.0 0.0	2.748f-03 0.0 0.0 0.0
1041 - 1080 0.0 4.885E-02 0.0	4.079t-02 4.887t-02 0.0	4.233t-02 4.888E-02 0.0	4.470£-02 0.0 0.0 0.0	4.636F-02 0.0 0.0 0.0	4.752E-02 0.0 0.0 0.0	4.793E-02 0.0 0.0 0.0	4.628F-02 0.0 0.0	4.857E-02 0.0 0.0	4.876E-02 0.0 0.0 0.0
ZND FLAP									
1001 - 1120 0-0 0-0 0-0 0-0	0000	0000	0000	0.00	0000	0200	9,000	0000	c 0 0 0
1121 - 1160 0.0 8.636E-01 0.0	1.023E-01 9.205E-01 0.0	1.932 E-01 1.000 E 00 0.0 0.0	2.7271-01 0.0 0.0 0.0	3.409E-01 0.0 0.0	4.318E-01 0.0 0.0	4.886E-01 0.0 0.0 0.0	5.682F-01 0.0 0.0 0.0	6.705E-01 0.0 0.0	7.7276-01 0.0 0.0
1161 - 1203 0.0 0.0 0.0 0.0	0000	0.00	0000	0.00	0000	0.000	0000	0.000	0000
1201 - 1240 4.550E-02 4.545E-02 0.0	4.545 F-02 4.545 F-02 0.0	4.545E-02 4.545E-02 0.0	4.545 E-02 0.0 0.0	4.545E-02 0.0 0.0	4.545E-02 0.0 0.0	4.545E-02 0.0 0.0	4.545E-62 0.0 0.0	4.545E-02 0.0 0.0	4.545E-02 0.0 0.0

TABLE 5-1 - Continued **IN		N. N. es
TABLE 5-1 - Continued Y-IN 2-IN Y-IN 2-IN Y-IN 2-IN 8.39,5-0.2 8.39,5-0.5 FLAP 0.0 5.0766-0.2		2-0UT -6.983E-0. 1.083E-0.
TABLE 5-1 - Conti		
TABLE 5-1 - Conti	nued	2-1N -2-065E-02 2-410E-02 5-070E-02
TABLE FLAP	,	Y-IN 3.7126-03 0.0
11	TABLE 5-1	FEATHERING BEARING LOCATIONS 275 - 278 INPLANE 279 - 282 IST FLAP 281 - 286 ZNU FLAP

		0-0	0.0	0.0		0.0	000	2	0.0	9	
		0	0.0	000		000	000	2	0.0		
		0-0	0.0	000		0.0	0.0	2	0.0	•	
		0.0	0.0	000		•	000		0.0	•	
		0-0	0.0	000		0.0	000	0.0	0.0	9	
		0	0.0	90		0.0	0	0.0	0.0	•	
		0	0.0	000		0.0	0	•••	0-0		
		9	9	99		0 0	9	9	9.0	•	
		0	0.0	000		0.0	0	0.0	9*0	•	
		0		00		0.0		0.0	0.0	•	
ATAO	2020000	1451			1361				2871		
TORSION DATA	000000000000000000000000000000000000000	ASC			0506				PD T04		

THTORS THTRD	THTORS 2001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
		3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				

					CMDO	0	
					GNDK	? °	
					GMSD	1.00000E GO	
Continued					GMSK	o. o	
TABLE 5-1 - (ION MMDEL GAIDE				0079	0.0	
E-1	10-31-75 BELL AH-1G BLADE DATA REXOR SIMULATION MMDEL GAIDE	CASE = 201 IMETAU= 13.0 UNEGA= 53.93 LINV. 2ND FLAY MCJF LIST OF CHANGES TO MASTER DATA			GL DK	o.	
	AH-16 BLADE DAT	CASE = 201 IMPIAU= 15.0 UMBGA LIST OF CHANGES TO MASTER DATA	2.016E 03	5.000E 00	OF SD	9-0	
	10-31-75 BELL	CASE = 201 THE LIST OF CHANGES	50 CASE	1498 TSTOP	GLSK	1.00600E 66	

		• FLT PATH ANGLE - SIDESLIP • FOLL SYAFT BEND 6 GAPM A 6ETA PHI S	0.0 0.0 0.0 D Z MOMENTS	-7.38262E 02 3.97074E 02 3.08543E-02 -7.3127F 00 6.20697E-01 -1.94181E 00 2.87760E 00	3.74.2 16E 01 -1.9096.7E 02
		VERTICAL DNWS ROLL DOWNWASH PITCH DSWNWASH LINR PINR PINR Q.NR	1.05046E 01 5.81150E-03 -1.52924E-03 Z FORCES THEN X, Y AN	5-14221E 02 4-7859E 03 2-3308BE 00 -1-33705E-02 5-82342E-02 -2-27190E 00 -9-43303E-01	
		TAIL ROTOR COLL. PROP BLADE ANGLE ENGINE TORQUE THOTR BP MZZEND	2.26512E-02 2.20736E-01 8.12860E-02 1.05046E 01 0.0 1.19007E-02 -2.01143E-02 0.0 5.61150E-03 0.0 1.19030E-02 3.43701E-02 5.5982E 03 -1.52924E-03 0.0 FUSELAGE, TAIL ROTOR AND POPE LOADS, FUSELAGE AXES, X, Y AND Z FORCES THEN X, Y AND Z MOMENTS 5.1 4.40721E 03 5.76849E 02 -7.03082E 03 6.1 1.4.6721E 03 5.76849E 0.2 2.3 AND 4 0.0 0.0 0.0 0.0	-3.19895E 03 -6.64270E U4-2,23261F-02 2,31443E 03 -3,9197E-05 -3,06648E-02 9,54427E 01	6.17154£ 03
- Continued	TRIM DATA	• COLLECTIVE AND CYCLIC ANGLES THO THO A1S	00 -2.2.6512E-02 2.20736E-01 01 -1.19007E-02 -2.01143E-02 02 -1.19030E-02 3.43701E-02 02 FUSELAGE_AIL ROTOR AND PROP LOADS, FUSEL 02 1.4.0721E 0.3 5.76849F 0.2 FEATHER ANGLES, PLUS NGSE UP, BLADES 1, 2, 3 AND 4 01 0.0 02 0.0	BLADE I ROOT INTEGRALS, SEE PROGRAM -1, 0.9605E 05 -1, 51154E 03 -2, 2, 4531E-01 -1, 6.0947E-02 2, 8.643E 00 5, 49310E 01 3, 2,4476E 01 1, 34812E-01 1, 9,433E 00 6, 6,02299E-02 4,4764BE 01 -8,64965E-03 0,0	HUBAXES -3.48484E 03 5.38710E 02
TABLE 5-1 -	TRI	• HUB EULER ANGLES IN EARTH AXES PH I THETA AL PHA	-2.26512E-02 -1.19007E-02 -1.19030E-02 FUSELAGE, TAIL RG 1.4.0721E 03 EATHER ANGLES, PLUS NG 0.00	BLADE 1 ROOT INTE -1.040-66 05 -4.3138-66 03 -2.24551E-01 2.882-35 00 3.524-75 00 1.924-35 00 4.476-46 01	### ##################################
	α	HUB ANGULAR ACCELERATIONS PR D QR D RR D RR D	-1.50310F 00 1.83067E-01 -2.33442E-02 ETC 1.20104E 02 2.06213F-01 FAT1532E 02	-1.88827E 03 -3.18722£ 02 2.204.00E 00 2.796.60E 00 -2.56503E-02 -6.65065E-01 -4.95335L-01	OTOR AERO PLUS INERTIAL LOADS IN STATI -7.04257F 03 -3.95529E 4.7829DE 02 6.8729BF FUSELAGE AERO LOADS IN PISELAGE AXES
	MO-DA-YR MING PROCESS	TIME DERIVATIVES OF HUB VELOCITIES UF D VF D VF D WF D	-1.09505F 00 3.47742F-01 1.58839F 00 LD[2] 2.62734E 02 0.0	-6.11958F 61 3.49118E 02 6.9338L 02 2.7269F 00 1.40013F-01 -4.3405E 00 6.33766E 01	0.0 -7.38845 C2 9.0.6030E U1 0.0
	CASE 2016. BEGIN THE TRIMMING	• ELAPSED TIME • SIN (^{(b} _{BLZ}) • TRUE AIRSPEED • PITCH SHAFT BEND T IME \$ SCY V T THT \$	0.0 0.0 1.23000E 02 0.0 0.0 1.011) -9.79805E 01 THF 2.46441E-01 FA	-4.004804 02 7.98496 03 0.0 -8.801276-02 -1.415606-02 -4.90765 01	0.0 FF. -3.56750E 02 -8.86691E 03 FN

	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00869E 91	:
	0.0 0.0 0.0 0.0 1.50A39E 00 0.0 0.0 0.0 0.0 0.0 3.13666E 02	
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Continued	7.281 64-62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
TABLE 5-1 -	DISPLACEMENT OF EACH DEGREE OF FREEDOM 0.0 0.0 0.0 1.22991E 02 -1.1900 TF-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
-	7.281646-02 -7.281646-02 -7.281646-02 -2.265126-02 -1.684386 01 -1.684386 01 0.0 0.0 0.0 0.1796476 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
	HO-DA-YR 2.79012F-01 2.79012F-01 -2.01143E-02 0.0 4.32080E-01 4.32080E-01 4.32080E-01 6.33442E-02 -1.35148E 02 -1.35148E 02 -1.35148E 02 -2.33442E-02 -1.35148E 02 -1.35148E 02 -1.35148E 02 -1.35148E 02 -2.33442E-02 -2.33442E-02 -2.33442E-02 -2.33442E-02 -2.33442E-02 -2.33442E-02 -2.33442E-02	
	CASE 20:6. Y(1) Y(1) 3.43701E-02 0.0 0.0 1.805.7E-01 1.805.7E-01 1.805.7E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	

	GARMS BETA PHT S	0.0 0.0 -1.17696E-03			-4.27789£ 02 4.31101E 02 2.77727E-02	-2.08791F 00 6.25801F-01	3.72897E 00	0.0	-2.11106E 02		
	P C C C C C C C C C C C C C C C C C C C	1,04813E 01 1,73913E-03 -e,26300E-04			4.98758E 03 2.33971E 00	7.29071E-02	-2.28389E 00 -9.28928E-01	0.0	4.19055E 01		
	THOTR BP M2 Zend	•	-7.13555F 03		-4.16262E U3 -6.62531E O4 -3.03212E-02	2.34005E OD	9.54480E 01	0.0	5.55397E 03	0.0	
DATA AT END OF TRIM	THO A1S B1S		5.89097E 02		-1.47965E 03 2.88707E 02 -2.35562E-02	5.50306E 01 1.40068E-01	6.R2139E-02 2.60708E-03	0.0	-3.30262E 03	5.49978E 02	
DATA AT E	PH1 THETA AL PHA	999	1.42690E 03	0.0	-1.09590E 05 -4.29754E 03 -2.1 4504E-01	2.88299€ 00 3.27062E 00	2.39824E 00 5.71676E 01	0.0	-4.04618E 02	0.0	
α.	9 0 R 0 C C C	-1-717796 30 1-62452[-01 -2-19028[-01	1.18¢33f 02 2.050¢7£—01	8.29450E 02	-1.87354E 03 -3.32003E 02 4.20399E 00	2.79751E 00 1.31923E-02	-6.70101E-01	-3.00718E 03	-7.07505E 03 3.95109E 02	1.375%6E 02	
MO-DA-YR	2 × #	யய்ய	2.66412E 02 0.0	0.0	3.8 6018E 02 7.07875E 02	2.72812E 00 1.76329E-01	-4.34055E 00 6.33794E 01	-2.94010E 03	-7.20672E 02 3.64053E 01	0.0	
CASE 2016.	TIME SCY VT TNT S	1.85173E 00 -4.46561E-05 1.23000E 02 -4.95619E-04 LD	-9.80288E 01 THF 2.48608E-01 TFA	7.82895E 02		- - - - - -	0 0 0	-7.33318E 01 0.0	-3.37063E 02 -8.77393E 03	-9.89507E 01	

	333	NAC THE RES	٥٣ ت	20
	0.0 0.0 -8.255 28E-01	0.0 9.0 1.51918E 00	0.0 0.0 -3.06731E 01	0.0 0.0 3.30644E 02
	0.0	0.0	0.0 0.0 -1.21803E 01 0.0	0.0 0.0 -0.05082E 02
ontinued	0.0 0.0 1.2297F 02	0.0 0.0 -2.48936f 00 0.6	0.0 0.0 -2.70543F 00 0.0	0.0 (0 -3.86125E 02 0.0
TABLE 5-1 - Continued	000	-6.71033E-03 0.0 0.0 3.3 9300E 01	0000	0.0 0.0 0.0 0.0 0.0
T	-1.248 90E-01 1.248 90E-01	0.0 -2.08819E-02 1.5224E 01 -1.5224E 01 0.0	0.0 1.47263E 02 -1.47263E 02 0.0	0.0 -8.2474€ 01 8.2474€ 01 6.0
	#		-2.17985t-01 -1.33745f 02 -1.33745f 02 -1.33745f 02	0.0 0.0 -9.86240E 00 -9.86240E 00
	CASE 2016.	-1.01421E-02 4.21393E-02 0.0 v0(1) 2.08876E-01 -1.74088E 00	0.0 1.62710E-01 700117 3.30462E 01 -5.23389E 01	1.62710E-01 ZD0 0.0 0.0 0.0 0.0 1.05850E 01 1.48694E 01

		GAMMA BETA PHI S	0.0 0.0 -1.17696E-03		1,29079E 03 4,64751E 02 2,18181E-02 6,25697E-01 -2,03148E 00 3,59889E 00	-2.09074£ 02
		N N N N N N N N N N N N N N N N N N N	1.05038E 01 5.39862E-03 -1.55255E-03		5,160%E 02 4,95883E 03 2,33954E 00 -1,25706E-02 7,00921E-02 -2,31340E-01 0,0	2.86329€ 01
	C AMALYSIS	THOTR BP MZ ZEND	8.24854E-C2 0.0 5.10447E 03	-7.15070E u3	-3.8945E 03 -6.61305E C4- -2.8072E 00 5.17831E 00 5.17831E 00 9.54473E 01	5.69582E 03
Continued	DATA AT END OF ADDITIONAL REVOLUTION FOR HARMONIC ANALYSIS	7H0 A1S 81S	2.2)223F-01 -2.17537E-02 4.21393F-02	5 . RMB6E 02	-1.37717F 03 2.92295E 02 2.92595E 01 5.90299E 01 1.39986F-01 5.8041E-02 2.40730E-03	-3.34045E 03
TABLE 5-1 - Continued	4D OF ADDITIONAL REV	PH I THETA AL PHA	-2.08819E-02 -6.71033E-03 -6.21604E-03	1.42995E 03 0.0	-1.0959E 05 -4.3032BE 03 -2.71516E-01 2.8828BE 00 3.7750E 00 5.32360E 00 5.32360E 00	-4.097936 02 6.94819E 03 0.0
I		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-1,72698E 00 1,44833E-01 -2,07834E-01	1.18758¢ C2 2.050531—01 6.33338¢ O2	-1,795uc 6 03 -3,30639f 02 2,204,02E 00 2,79733F 00 7,26,60E-03 -6,392 bt-01 -3,61073E 03	-7.09325E 03 5.14226F 02 1.37702F 02
	MC-DA-YR	U > Y 0 m 0	-1.10748E 00 6.43026E-01 1.43921E 00	2.66981E 02 0.0	3.6.461t 01 3.61744F 02 7.64645E 02 7.72748E 00 1.70744E-01 4.3465E 00 6.33783E 01 -2.44331F 03	-7.20214E 02 3.76896E 01 0.0
	CASE 2016.	TIME SCY VT THT S	2.03690E 00 -7.08327E-05 1.23000E 02 -4.95619E-04	-9.74629E 01 THF 2.48564E-01 TFA 7.79725E 02	5.46160E C2 6.73510E 03 0.0 -9.20125E-02 -1.9695E-02 -4.06833E 00 6.15520E 01 -7.22127E 01	-3.01621E 02 -8.70624E 63 FN -9.89533E 01

	0.0		-8.25526E-01 0.0			0.0	0000	1.43/35E 00 =1.12/0			-3.07549E 01 -1.72708E 00					0.0		3.12569E 02 -1.56239E		
	0.0	0.0	8-998658-04	0.0		0.0	0.0	0.0	0.0	0.0	-1.22437E 01	0.0				0.0		-6-05555E 02	0.0	
IIM DATA	0.0	0.0	1.22997E 02	0.0		2 · 0	0.0	0-0	0.0	0-0	-2.46131E 00	0.0				0.0	0.0	-3.50636E 02	0.0	
END OF TRIM DATA	0.0	0.0	0.0	-6-71033E-03		0 0		3.39300E UI	0.0	0.0	0.0	0.0	,	0.0		0-0	0.0	0.0	-6.39230£ 00	
	-9.29641 E-02	9.29641 E-02	0.0	-2.08819E-02		1.53962E 01	-1.534621 01	0 0	1.112796 02	-1.11279E 02	0.0	0.0		0.0		-8-31578t 01	6.31578E 01	0•0	1.555476 01	
HO-DA-YR	2.7 b701 E-01	2.78701E-01	-2.1 7537E-02	0.0		3.8 5449E-01	3.83-49E-01	-2.06608F-01	-1.33487E 02	-1.33463£ 02	0.0	-2.06808E-01	O.	0.0	0.0	-9-407365 00	-9.4 0736E 00	0.0	-1.45487E 03	
CASE 2016.	5505E-02				100	1.54545E-01	-1.59764E 00	1-45078F-01	0.1	727E 01		45078E-01	200	0.0	0.0	36F 01			-3.22009E 03	

				HARMONIC ANALYLIE (TYPICAL SAMPLE)	TAME (1	YPICAL SAMPLE)				
HARMONICS	•		-	2		e.	4	•		٠
SHAFT LONGITUDINAL LOADL	L LOAD-LBS									
SIN COMPONENT 0.0 COS COMPONENT 2-12007E 01 PHASE ANGLE, FIRST MAXIMUM FROM YBL1 AMPLITUDE	0.0 2.12007E FMAXIMUM FROM	01 # 6 _{BL1} = 0	6-28985E 00 3-16692E 00 6-32748E 01 7-04213E 00	-6.19793E -3.34460E 1.20824E 7.04277E	02 02 02 02	-1.60436E 01 -3.47363E-01 8.95865E 01 1.60474E 01	1.36041E 01 -6.61800E 00 2.89854E 01 1.51284E 01	-3.25086£ 00 -1.38631E-02 5.39511E 01 3.25089E 00	E 00	-2.63271E 00 4.82426E-01 4.67306E 01 2.67659E 00
SHAFT LATERAL LOAD-LBS	3LBS									
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0.0 -8.07045E	10	-5.04295E 00 5.32512E 00 3.16559E 02 7.33405E 00	3.29260E -6.36246E 7.63191E 7.16394E	02 02 02	3.61253E-01 -1.46081E 01 5.95278E 01 1.46126E 01	6.07613E 00 1.53713E 01 5.39212E 00 1.65286E 01	1.17388E-01 -2.0386E 00 3.53409E 01 2.04204E 00	E 001	-4.10324E-01 -1.54339E 00 3.24814E 01 1.59697E 00
SHAFT AXIAL LOAD-LBS	.BS									
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0.0 -7.45081E	S	6.89312E 00 3.81569E 01 1.02401E 01 3.87745E 04	2.51273E 3.31667E 1.85739E 4.16102E	02 01 02	9.93032E-01 -8.01497E-01 4.29692E 01 1.27613E 00	-1.08044E 00 -3.39740E 00 4.94104E 01 3.56506E 00	1.13313¢ 00 -1.7734¢£-01 1.97790€ 01 1.14692€ 00	E-01	1.40822E DO 2.66992E-01 1.32107E 01 1.43331E 00
ROTOR ROLL MOMENTIN-LBS	IM-LBS									
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0.0 -3.13565£	۴0	-5.60406E 02 -7.2664E 01 2.62612E 02 5.65097E 02	-1.60263E 3.00687E 1.40313E 1.63060E	0 2 2 0 4 0 4	6.79616E 01 -1.57238E 01 3.43423E 01 6.97568E 01	-1.62568E 03 2.80023E 02 6.99433E 01 1.64962E 03	1.41000E 8.46562E 1.18639E 1.64462E	F 01	1.30489E 02 1.32292E 00 1.49032E 01 1.30496E 02
ROTOR PITCH MOMENT-IN-LBS	T-IN-LBS									
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0.0 -2.09256E	3	-1,20675E 02 -4,08498E 02 1,96458E 02 4,25949E 02	-3.92221E -1.82969E 9.66496E 1.87125E	007	-6.16765F 01 1.11482E 02 1.10349E 02 1.274.36F 02	-3.50563E 02 -1.26724E 03 4.88700E 01 1.31494E 03	6.02276E 4.08693E 6.08320E 7.2785E	f 01 f 01 f 01	-4.91098£ 01 2.07644£ 02 5.77822E 01 2.13373£ 02
ROTOR TORWIE MOM - IN-LBS	·IN-L BS									
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0.0 6.55051:	ð	-3,43165E 02 1,86968E 03 3,49599E 02 1,90091E 03	3.26082E -1.94864E 6.04311E 3.79870E	1151	-2.08726F 02 -1.75237E 02 7.98678E 01 3.46332F 02	-1.48599E 02 9.6528BE 01 7.57519E 01 1.77199E 02	-1.23336£ -4.04719E 5.03666 1.29807E	E 02 E 01 E 02 E 02	-9.47156E 01 -4.50073E 01 4.07640E 01 1.04865E 02
BL-1 FEATHERING ANGLEDEG	46L EDEG S									
SIN COMPONENT COS CCMPONENT PHASE ANGLE AMPLITUDE	0.0 1.29610E	3	-2.41378E 00 1.25071E 00 2.97391E 02	7.52670E 3.23028E 6.55808E	# 7 8 9 9 9 8 9	2.41511E-04 -1.57706E-04 4.10481E 01	2.40929E-04 -1.92340E-04 3.21503E 01	1.59350E-04- -8.86281E-05 2.36164E 01	455	1.28360E-04 -7.90278E-05 2.02699E 01

		7Ū	IADLE 7-1 - (Concenaea			
			HARMONIC ANALYSIS	\$15			
	c	1	2	e		~	٠
TWIST AT (25.6) -	- De GS .						
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0 3	0000	0000	0.000	0000	0000	0000
0.93	-recs.						
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	00	0000	0000	0000	0006	0000	0000
THIST AT (14.5) -	CEGS.			•			
SIN COMPONENT COS CUMPONENT PHASE ANGLE AMPLITUDE	000	0000	0000	0000	0000	0000	0000
9L-1 FEATHERING M	MCM IN-LBS						
SIN COMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0.0 9.50927E C3	3.79887E 02 -3.29667E 02 1.30952E 02 5.02985E 02	-3.06705E 02 1.70345E 02 1.49524E 02 3.50835E 02	-3.89040E 01 3.21358F 01 1.03186F 02 5.04602E 01	5.227076 00 1.40228E 00 1.77440E 01 5.52906E 00	-2.74174E-01 -2.02806E 00 3.75398E 61 2.04651E 00	3.05673E 00 2.33281E 00 8.77502E 00 3.84521E 00
SWEEP AT . 75 RAD TUS-RAD	USR AD						
SIN COMPONENT COS CUMPONENT PHASE ANGLE AMPLITUDE	6.0 -1.53332E-4.3	9,489986-64 -1,311616-03 1,44113E 02 1,61893E-03	-3.16822E-04 1.05423E-04 1.44203E 02 3.33902E-04	-7.24889E-07 -4.15656E-06 6.32976E 01 4.21929E-06	2.81203E-06 -1.14006E-06 3.04372E 01 3.30686E-06	1.90%6E-06 -1.05231E-06 2.37713± 61 2.180%0E-06	1.56311E-06 -7.803C4E-07 1.94214E 01 1.74705E-06
ORDOP AT .75 RAD IUSRAD	USRAD						
SIN COMPONENT COS CUMPONENT PHASE ANGLE AMPLITUDE	6.0 5.94412t-04	-1.18357E-03 1.66563E-03 3.24604E 02 2.04330E-03	4.78493E-04 -2.56639E-04 5.91034E 01 5.42972E-04	-1.62836F-05 -1.20251E-05 7.78516E 01 2.02425E-05	-4.27365E-06 3.71463E-06 7.77493E 01 5.06238E-06	-2.64451E-06 1.52698E-06 6.00005E 01 3.05372E-06	-2.222 77 E-06 1.16144E-06 4.93942E-01 2.48026E-06
BL-1 TIP DISPLACE J'4CHES	J'4CHES						
SIN CUMPONENT COS COMPONENT PHASE ANGLE AMPLITUDE	0.C -1.94260E 26	1.00623E 21 4.17204E 20 6.74801E 01 1.08929E 21	6.55344E 19 4.51023E 20 4.13366E 00 4.55759E 20	-7.68723E 19 6.06590E 20 1.17592E 02 6.11442E 20	-9.39586E 18 6.46558E 20 8.97919E 01 6.46626E 20	5.67769E 16 6.20118E 26 1.04915E-01 6.20144E 20	7.21079E 19 6.5977BE 20 1.03953E 00 6.63707E 20
SHAFT LUMG. LOAD-AIR ONLY-LB	AIR ONLY-LB						
SIN COMPUNENT COS COMPONENT PHASE ANGLE	C.0 5.16702E 00	2.23747E 00 3.18980E 00 3.50476E 01	-1.46469€ 02 2.75329€ 01 1.40545€ 02	2.64726E 00 -5.6923E-01 3.51854E 01	-2.32544E 00 4.15319E-01 7.00316E 01	9.05392E-01 -3.48960E-01 2.22149E 01	
AMPL I TUDE		3.89630E 00		2-12511E 00	2-36224E 00	9.70291E-01	6, 04153E-01

			TABLE 5-1 -	Continued			
			ADDITIONAL END OF TRIM DATA	TRIM DATA			
		FUSELAGE AIRLOADS IN WIND AXES	WIND AXES				
FNW(1) - FNW(6) -1.09471E 02 FREE STREAM	(6) 0.0 FUS. LOCAL FLOW a AL FAR -4.5 0843E 00	1.29497E 02 ANGLE OF SIDESLIP FETA 0.0	0.0 FUS. LIFT COEFFICIENT CL -1.91093E-01	5.51304E 02	0.0		
TRIMMING PROCE	TRIMMING PROCESS IS COMPLETE						
AIST GLFIF XCSI	B1ST GMFIP YCSI	THCT TGMIP T	ANGC ANGGM SHP	L IP C YTOFL FGF Z	MIP SMTCGM TFUEC	SMIP GM/SM	ANGS H SA/CY
-1.24653E 00 4.97164E-02 -2.84485E 00 6.0	8.82997E-05 -7.01E49E 02 -1.1C145E 00	1,24653E 00 7,01649E 02 7,84763E 03	-9.00107E 01 1.84.009E 02 3.51380E 02	-4.41752E 03 6.99191E 00 1.61242E 03	-4.00853E 04 3.5302FE 02 1.25461E 01	4.03857E 04	-1.73019E 02 3.23985E 04
	A1ST THCT, ANGC LIP, MIP SMIP, ANGSM GLFIP, GMFIP TGMP, ANGCM GWSM SM/CY XCSI, VCSI T SMP SMP FGFZ TRUEC	A1ST, B1ST THCT, ANGC LIP, MIP SMIP, ANGSM GLFIP, GMFIP TGMIP, ANGRM CYTOFL SMTOGM GWISM SWICY XCS1, YCS1 TH P FGFZ TRUEC	TRUE MAIN ROTOR CYCLIC ANGLES, DEG VECTOR MAGNITUDE AND PHASE FOR ABOVE ROTOR ROLL AND PITCH SHAFT MOMENT IN STATIONARY AXES, IN-LB VECTOR MAGNITUDE AND PHASE FOR ABOVE CONTROL GYRO FEEDBACK ROLL AND PITCH MOMENT, IN-LB VECTOR MAGNITUDE AND PHASE FOR ABOVE PHASE (AZIMUTH) FLAP MAXIMUM LEADS MAXIMUM NOSE UP CYCLIC, DI PHASE CONTROL GYRO MOMENT TO ROTOR SHAFT MOMENT RATIO SHAFT MOMENT TO CYCLIC ANGLE RATIO, IN-LB/DEG LONGITUDINAL AND LATERAL TRIM, STICK POSITION. IN MAIN ROTOR SHAFT HORSEPOWER VERTICAL FORCE ON SWASHPLATE, LB TRUE MAIN ROTOR COLLECTIVE, DEG	JIC ANGLES, DEG D PHASE FOR ABOVE SHAFT MOMENT IN STA D PHASE FOR ABOVE D PHASE FOR ABOVE CK ROLL AND PITCH MO IN PHASE FOR ABOVE MAXIMUM LEADS MAXIM FEEDBACK MOMENT LEA LIC ANGLE RATIO, IN-LB SSEPOWER ASHPLATE, LB ASHPLATE, LB LECTIVE, DEG	TRUE MAIN ROTOR CYCLIC ANGLES, DEG VECTOR MAGNITUDE AND PHASE FOR ABOVE ROTOR ROLL AND PITCH SHAFF MOMENT IN STATIONARY AXES, IN-LB VECTOR MAGNITUDE AND PHASE FOR ABOVE CONTROL GYRO FEEDBACK ROLL AND PITCH MOMENT, IN-LB CONTROL GYRO FEEDBACK ROLL AND PITCH MOMENT, IN-LB VECTOR MAGNITUDE AND PHASE FOR ABOVE PHASE (AZIMUTH) FLAP MAXIMUM LADS MAXIMUM NOSE UP CYCLIC, DEG PHASE CONTROL GYRO MOMENT TO ROTOR SHAFT MOMENT RATIO SHAFT MOMENT TO CYCLIC ANGLE RATIO, IN-LB/DEG LONGITUDINAL AND LATERAL TRIM, STICK POSITION, IN MAIN ROTOR LIFT, LB MAIN ROTOR SHAFT HORSEPOWER VERTICAL FORCE ON SWASHPLATE, LB TRUE MAIN ROTOR COLLECTIVE, DEG	NY. DEG	

11 11 11 11 11 11 11 1	CASE 2016.	MO-DA-YR	ď	118	BEGINNING OF FLY DATA	4			
SCA MAS									
Fig. 1)	1.1ME	٥٠,	XCS	\$ C S	S	\$ *			₹ :
Color		XX	4 - 11 - 1			3	;	THE DOLL J	79
Colored Colo	618.11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A15	2 2	5 7 7	4 a	: .	Y 1 0 0 0	V 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Color		4	25.0	EC F ())	FGF121	5	. 9	0 2	OT ME
0.0	нопо	GMGH	GLCUM	CHCON	GLEFFD	19	FFED	. ¥9	3
0.0	0-0	0.0	10-185 745 -6-	-0-17879F-02	1, 22938 F			-7 445476-01	c
0.0	0-0	000	-6-710334-03	0.0	-2 .08819F		440.05	-2 764 70F 01	-3.0824BF 01
02	0.0	0	-2-17537E-02	4.21393E02	-7.38727E	'		0	
-5.55391L 01 -2.15736L 03 0.0 -5.55391E 0 2.66981E 02 1.18152E 02 1.42995E 03 5.77977E 0 2.6005E 02 2.60554-01 0.0 2.60554-01 0.0 2.60554-01 0.0 2.60554-01 0.0 2.60554-01 0.0 2.7774E 02 -3.30753F 03 -1.05564E 05 2.37713E 03 3.27977E 03 2.37713E 03 3.27049E 03 2.37713E 03 2.37713E 03 2.37713E 03 2.37713E 03 2.37773E 00 -2.21516E-01 2.22545E-01 7.7744E-01 7.26556E 03 2.37713E 03 3.27049E 03 1.59987E-01 7.2746E 01 1.59987E-01 7.2746E 01 7.2746E 01 7.25459E-01 7.2746E 01 7.2746E 01 7.25459E-01 7.2746E 01 7.27		X.F.	0.0	-1-10240E 00	1.35183E			1.05306E-01	-2.46431E-01
01	0.0 -4.21393E-02	91 L	-2-15736L 03 -4-213931-02	0.0 2.17537E-02				5.39862E-03	-1.55255E-03
0.1 2.66981E 02 1.18152E 02 1.42995E 0.3 5.77977E 0 0.2 0.0	9								
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		2.66981E 02	1-181521 02	.42995E	5-79927E				
02 -5.9135F 01 -1.887424 02 -1.04564E 05 -1.36136F 0 03 3.200405E 02 -3.30363F 02 -4.30568E 03 2.93713E 0 04 7.04005E 02 -3.30363F 02 -4.30568E 03 2.93713E 0 05 7.2786E 02 2.79734E 00 2.6428F 00 1.29878E 0 06 -4.34055E 00 7.2636E-01 2.3764E 01 1.3698F 00 1.3998FE-01 1.7746E-01 1.26136F 01 1.3988F 00 0.3764E-01 1.37746E-01 1.3764E-01 2.3764E 01 1.3988FE-01 0.0 0.0 1.3988FE-01 0.0 0.0 0.7765FE-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.48562E-01	0.0	2.050554-01	0.0					
02	TFA								
02	1.81240E	0.0		0.0					
3. ± 0.075E 0.2 -3.30383 0.2 -4.30588E 0.3 2.93713E 0.2 2.204.0E 0.2 2.21516E-01 -2.225452E-0 2.72768E 0.0 2.72768E 0.0 2.72768E 0.0 2.72768E 0.0 2.72768E 0.0 2.72768E 0.0 2.727768E 0.0 2.727768E 0.0 2.727768E 0.0 2.727768E 0.0 1.29098E-0 0.0 1.726301E-0.1 2.37257E 0.0 1.29098E-0 0.0 1.29059E-0 0.0 1.2905	-1.5455F 02	45.5				•			-7 36727 C
7.00 602 E 02 2.204 02 E 00 -2.21516 E -01 -2.225 5 E E -0 2. 7.7248 E 00 2.797 74 E 00 2.58 628 E 00 2.797 74 E 00 2.58 628 E 00 2.797 74 E 00 2.58 628 E 00 1.5998 F E 00 1.5988 F E 0	6-51836E 03	75E			2.93713F				
2.00 01 t = 0.2 2.7278 t	0.0	7.0 000E 02		-2.21516F-01			W075E-02	2.33953E 00	2.78210E-02
9.69 56E - 02 1.7074;E - 01 7.263 a1F - 03 3.270,9E 00 1.399 87E - 03 340 5E 0 - 4.340,5E 01 - 4.340,5E 01 - 5.390 5E 01 0.340 5E 01 - 5.390 5E 01 0.340,5E 01 0.3	-9.20091£-02	SE F	2-797 13 60	2.68289E GO			3876E GO	-1.25707E-02	-2.13681E 00
1.55.25 01 -4.35.45 5E 00 -4.35.45 5E 00 -6.37.45 7E 00 -6.71.45 6E 00 -6.33.45 6E 00 -4.35.45 6E 00 -6.33.45 6E 00 -6.33.45 6E 00 -6.33.45 6E 00 -6.33.45 6E 00 -2.44.45 6O F 03 -3.01.25 3E 03 -3.0.35 4E 01 -2.44.45 6O F 03 -3.01.25 3E 03 -3.0.35 4E 02 -2.44.45 6O F 03 -3.0.35 4E 02 -4.2.77 16E 02 -4.2.77 16E 02 -7.12.2 3e 03 -3.0.35 4E 02 -3.44.91 CE 0.79.64 E 03 -4.2.77 16E 02 -3.44.91 CE 0.79.64 E 03 -3.44.91 CE 0.79.75 E 0.	-1.969 50E-02		7.26361F-03	3.27049E UO			7446E -06	7.009 06E-02	
1.5552E 01 6.33816E 01 -6.33097E-01 5.52842E 01 -1.50585E-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			-8.56186t-01	2.323576 00			4256E-02	-2.28303E 00	-2.03167E CO
1.35(103E 31 1.25(103E 31 1.05)		165	-6.39097E-01	5.5284ZE 01				-9-31341E-01	3.59889E OC
65375E 02 -4.27316E 02 -7.12236E 03 -3.0°3554E 02 -3.4491CE 02 -3.4491CE 03 3.8375; L 61 4.95750L 02 6.94924E 03 5.39645E 02 -3.4491CE 03 0.00 1.36998E 02 0.0 5.39645E 03 5.40087E 01 0.00 1.36998E 02 0.0 5.39645E 03 5.3964		Š		•		•			2
6.63476E 02 -4.27316E 02 -7.12236E 03 -3.07354E 02 -3.4491CE 03 179644E 02 3.43751E 03 -3.07354E 02 -3.4491CE 03 1.74684E 02 0.0 1.736498E 02 0.0 5.39645E 03 5.39645E 03 1.76687E 01 0.0 1.7687E 02 0.0 5.39645E 03 5.39645E 03 1.7687E 03 1.7687									
1-36 PA & 0.3 3.4379.1 0.1 4.957501 0.2 6.94974E 0.3		16F							-2.09192£ 02
ELAPSED TIME IN FLY SING OF AXIMUTH OF BLADE 1 YCS LONGITUDINAL AND LATER STICK POSITIONS 13, F81, PH1 HUB EULER ANGLES IN EARTH AXES DD(1) FEATHERING ACCELERATION OF BLADE 1 FOR THE OWN, GIMPR 11, FGF(2) GLGH, GMGH 1 1, FP94 PROPELLER THRUST AND TORQUE GLCON, GMCON 1 GLFEED, GMFEED 1	.7y684t								
ELAPSED TIME IN FLY SINE OF AXIMUTH OF BLADE 1 SINE OF AXIMUTH OF BLADE 1 CONGITUDINAL AND LATER STICK POSITIONS SA, WS, PR, AR, RR VELOCITIES OF FUSELAGE TA, PSI, PHI HUB EULER ANGLES IN EARTH AXES DD(1) FEATHERING ACCELERATION OF BLADE 1 FUSELAGE VERTICAL INERTIAL ACCELERATION IN FUSELAGE AXES GLGH, GMGH 1, FP94 PROPELLER THRUST AND TORQUE GLCON, GMCON B1S CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFED, GMFEED GG GLF GG GLF GG		0.0		0*0					
SINE OF AXIMUTH OF BLADE 1 CYCS LONGITUDINAL AND LATER STICK POSITIONS GX, GY GX, GY FRD, GABC, BRD, RRD GA, GR FRD, GABC, RRD GA, GR	TIME	ELAPSED TIME IN FLY			F(8,1), F(9,1)	BLADE 1 ROOT	FLAP AND INPL	ANE MOMENTS	
YGS LONGITUDINAL AND LATER STICK POSITIONS GX, GY 78, WS, PR, AR, RR VELOCITIES OF FUSELAGE 10, PSI, PHI HUB EULER ANGLES IN EARTH AXES DD(1) FEATHERING ACCELERATION OF BLADE 1 FGF(1), FGF(2) FUSELAGE VERTICAL INERTIAL ACCELERATION IN FUSELAGE AXES FUSELAGE VERTICAL INSTIAL ACCELERATION IN FUSELAGE AXES GLGH, GMGH 1, FP94 PROPELLER THRUST AND TORQUE GLCON, GMCON 8815 CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFED, GMFEED	AGK.	SINE OF AXIMUTH OF BL.	ADE 1		52	SWASHPLATED	ISPLACEMENT		
YS, WS, PR, AR, RR VELOCITIES OF FUSELAGE TA, PSI, PHI HUB EULER ANGLES IN EARTH AXES GL, GM ROTOR SPEED FORTHRING ACCELERATION OF BLADE 1 FUSELAGE VERTICAL INERTIAL ACCELERATION IN FUSELAGE AXES WINR, PIMR, PIMR, GIMR 11, FP44 PROPELLER THRUST AND TORIQUE GLCON, GMCON 3, B15 CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFEED, GMFEED	XCS. YCS	LONGITUDINAL AND LAT	TER STICK POSITIONS		GX. GY	LONGITUDINAL	AND LATERAL	INERTIAL ACCELERATIO	NS IN FUSELAGE AXE
TAY, MR, MEDICAL IES OF TOSELAGE ETA, PSI, PHI HUB EULER ANGLES IN EARTH AXES EDD(1) FEATHERING ACCELERATION OF BLADE 1 FOSTING SPEELAGE VERTICAL INERTIAL ACCELERATION IN FUSELAGE AXES WIMM, PIMM, GIMR 11, FP4 PROPELLER THRUST AND TORIQUE GLCON, GMCON GLCON, GMCON GLFED, GMFEED			L.		000 000	2004 04 1110144	TO SHOULD BE		
TOOR SPEED TOOR S	US, VS, WS, PH, AH, HH	WIND CHIES OF PUSELAC	SADTU AVEC		Pho. Gho. nac	SWASHBI ATE B	CLERALIONS OF	TOSELAGE	
FOTOR SPEED FOTOR SPEED FORTHRING ACCELERATION OF BLADE 1 FUSELAGE VERTICAL INERTIAL ACCELERATION IN FUSELAGE AXES WINR, PIMR, GIMR 11, FP94 PROPELLER THRUST AND TORQUE GLCON, GMCON S, B15 CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFEED, GMFEED	INELS, PSI, PRI	HOB EULEN ANGLES IN	EARIN AAES		E5. 03	משקטור היים	OLL AND FILE	- MOMEN	
FORTIL FERTHERING ACCELERATION OF BLADE 1 FUSELAGE VERTICAL INERTIAL ACCELERATION IN FUSELAGE AXES WIMR, PIMR, OIMR II, FPA PROPELLER THRUST AND TORIQUE GLOON, GMCON 6, BIS CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFEED, GMFEED	0	ROTOR SPEED			245	VEHIICAL SWA.	SHPLATE FORC		
11, FPQ4 FUSELAGE VERTICAL INERTIAL ACCELERATION IN FUSELAGE AXES WIMR, PIMR, GIMR 11, FPQ4 PROPELLER THRUST AND TORQUE GLCON, GMCON	, FDD(1)	FEATHERING ACCELERA	TION OF BLADE 1		FGF(1), FGF(Z)	SWASHPLATE E.	XTERNAL ROLL	AND PITCH MOMENT	
GLGH, GMGH PROPELLER THRUST AND TORQUE GLCON, GMCON CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFEED, GMFEED	Z5	PUSELAGE VERTICAL IN	ERTIAL ACCELERATION IN	N FUSELAGE AXES	WIMR, PIMR, QIMR	VERTICAL ROLL	L AND PITCH DO	DWNWASH VELOCITIES AT	MAIN ROTOR
PROPELLER THRUST AND TORQUE GLCON, GMCON CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFEED, GMFEED	FP(1), FP94				GLGH, GMGH	SWASHPLATE SF	PRING ROLL AN	ID PITCH MOMENT	
CYCLIC ANGLES AS DETERMINED BY SWASHPLATE TILT GLFEED, GMFEED	FP(1), FP(4)	PROPELLER THRUST AND	D TORQUE			SWASHPLATE CO	ONTROL ROLL	AND PITCH MOMENT	
	A15, B15	CYCLIC ANGLES AS DETE	ERMINED BY SWASHPLATE	ETILT		CONTROL GYRC) FEEDBACK RC	OLL AND PITCH MOMENT	
MINISTER MAYER MINISTER AND MAXIMIM BLADE 1 SOUT EL AP MOMENT	MINER MAYER	MINIMIN AND MAXIMIN	ON AN IS TOOK 1 BON IS	1		ATA MINISTER	1		
			יייייייייייייייייייייייייייייייייייייי		dr, do	SHASHPLAIC H	OLL AND PITCH	TILT	

	0.00		0.0 0.0 4.51084E 00	0.0 0.0 51084£ 00				0.0 0.0 1.51789€ 02	
	0.0 0.0 -8.25526E-01		0.0 0.0 1.45920E 00	0.0 0.0 -3.07330£ 01				0.0 0.0 -2.65896E 01	
	0.0 0.0 8.99865E-04	0.0	0.0 0.0 -2.81217E 01	0.0 0.0 -2.7444E 01 0.0				0.0 0.0 1.16197F 02 0.0	
	0.0 0.0 1.22997E 02	0.0	0.0 0.0 -1.22279F 01	0.0 0.0 -1.24439E 01 0.0				0.0 0.0 -7.64254F 01 0.0	
	0000	-6.710335-03	0.0 0.0 3.39300E 01	0.0 0.0 0.0 1.99773E 00	0.0	0.0	-4.95619E-04	0.0 0.0 1.7 4694E 03	
	-9.29641 F-02 9.29641 F-02 0.0	-2.088 191-02	1.53962E 01 -1.53962E 01 0.0	4.82827E 01 -6.82827E 01 0.0	0.0	0.0	-1-176561-03	-6.98923E 01 8.98923E 01 0.0 -2.10842E 03	LETED. GO TO NEXT CASE
MO-DA-Y	2.78701E-01 2.78701E-01 -2.17537E-02	0.0	3.85449F-01 3.85449F-01 0.0	-1.35265E 02 -1.35265E 02 0.0	0.0	000	000	-1.57835E 01 -1.57835E 01 0.0 3.03379E 02 -1.00000E 00	EEN COMPLETED. GE
CASE 2016.	-8.76505E-02 -1.04009E-02 4.213%3E-02	Ø(1)			0°0	900	0.0	4.77510E 01 0.0 -3.93010E 03 -1.00000E 00	MANEUVER HAS REEN COMP
	2016. MO-DA-YR	2.78701E-01 -9.29641E-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	#O-DA-YR 2.78701E-01 -9.29641F-02 0.0 0.0 0.0 0.0 2.78701E-01 9.29641F-02 0.0 0.0 0.0 2.78701E-01 9.29641F-02 0.0 0.0 0.0 -2.17537E-02 0.0 1.22997E 02 8.99865E-04 -8.25526E-01 0.0	### ### ### ### ### ### ### ### ### ##	2.78701E-01	2.78701E-01	2.78701E-01	2.78701E-01 2.78701E-01 3.78701E-01 9.29441E-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	2.78701E-01 -9.29441E-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

	PP G2 MAXF9 RRD GUMR GU	-1.05249E-02 -3.80648E 01 7.3249EE 03 -1.17540E-01 -1.17540E-02	-2.86352E 02 4.32342E 02 3.56928E 02 -1.93258E 00 -1.97462E 00 4.2649E 00 0.0
	MS THFDD(1) MINF9 QRD PIMR GK	1.097266 01 -2.42274E 01 -1.32241E 03 -2.10574E-02 9.15267E-02 3.46633E-02	4.94886 03 4.94886 03 7.78868 03 -1.280636-02 7.78226-02 -7.461346 00 -8.621466-01 0.0
	VS MAXF8 MAXF8 MARC MARC GMFFED	1.42654E 01 3.39300E 01 2.90252E 03 4.2 9662E-01 1.45567; 01 -1.16974E 42	-4.80949E 03-7-83349E 04-69646E-02-2-29978E 00-7-2-2-3978E 01-05-3-9-4-19-4E 01-05-3-9-22-3E 01-05-3-9-22-3-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
END OF FLY DATA	US PHI MINF8 GY FGF (2) GLF FE	1.06391E 02 9.94631E-02 -7.38727E 02 -8.2655E-01 2.42655E 01 -1.41885E 25	-1.1431E 03 -5.4829E 02 -5.406329E 02 5.47479E 01 1.3783E-01 3.97413E 00 -4.04.61E 00 -1.66617E 03 4.26168E 02
END OF F	YCS PS I B I I G G I F G F (I I	-7.17879E-02 -1.29356E-02 3.46633E-02 5.80711E-02 1.4968E 00 2.1753FE-02 8.21213E 02 0.0	-1.05199E 05 -5.17633E 03 -2.1305E 03 -2.1305E 03 3.2545E 00 2.5754E 00 6.49621E 01 0.0
	xCS THETA A1S 26 67 64(0)	-1.94739E-01 2.55390E-01 -2.17537E-02 6.0 -2.21396F 03 -3.466371-02 7.229.0E 01 2.03949E-01 6.18108E 02	-1.85937F 03 -3.278 RE 02 2.208 RE 02 2.798 NE 00 2.798 NE 00 -1.74 NE 01 -1.528 071 U0 -3.28 071 U0 -3.48 751 F 03 -3.48 751 F 03
MO-GA-YR	SC Y RR FP (4.) GM GM GH	6.17211t-02 6.3665f-03 0.0 4.63702E 03 2.4265f 01 2.17537f-02 -7.59124f 01 0.0	-2.606.0E 01 4.95.53E 02 7.35.55E 02 2.7289.e 02 1.99.317E-01 -4.540.56E 00 -5.20.8E 01 -5.40.840E 03 -1.70982F 02 -2.76555E 02
CASE 2016.	TIME OR FP(1) F(8+1) GL	5.00016E 0C 9.41994E-02 0.0 1.49684E 02 1.49684E 00 -3.46633E-02 LD 17HF 2.43095E-01 FF 8.47360E 02	-2.63445E 02 4.83702E 03 0.0 -6.1b619t-02 -2.53765E-02 -4.06801E 00 6.14427E 01 -3.7540E 01 0.0 FF FN 00997E 01 -1.01378E 04 FN -1.01378E 04 FN -1.01378E 04

		0.0	0.0 0.0 -2.98743E 00	0.0 0.0 -2.98743£ 00			0.0 0.0 -1.05299€ 02
		0.0 0.0 1.08822E 01	0.0 0.0 -8.84415E-01	0.0 0.0 -3.79952E 01			0.0 0.0 -5.03589E 00
		0.0 0.0 1.39649E 01	0.0 0.0 -1.6 0004E 01	0.0 0.0 -1.89226E 03			0.0 0.0 1.32650E 01 0.0
TABLE 5-1 - Continuea		0.0 0.0 1.05926F 02 -1.29356E-02	0.0 0.0 -1.99084F 01 1.19208E-02	0.0 0.0 -1.13004E 01 0.0			0.0 0.0 -4.41561E 01 0.0
TABLE 5-1		0.0 0.0 1.69708E 02 2.55398E-01	0.0 0.0 3.39300E 01 5.08491E-02	0.0 0.0 0.0 1.94123E 00	1.74267E 00 -4.24549E-02	-6.80353E-04	0.0 0.0 0.0 3.54238E 0!
	ĸ	-8.81603E-02 8.81603E-02 0.0 9.94631E-02	1.635%E 01 -1.635%E 01 0.0 -4.19801E-02	1.08380E 02 -1.08380E 02 0.0 -3.39235E 00	-3.55070E 00 -3.44724E-02	-2.29161 <u>1-04</u>	-4-19197F 01 4-19197F 01 6-0 4-76142E 01
	MO-DA-YR	1.14708E-01 1.14708E-01 -2.17537E-02 6.42704E-03	1.71326E-01 1.71326E-01 0.0 -6.75133E-62	-8.54571F 01 -8.54571E 01 0.0 -6.78 33F-02	00000	0.0	-2.22524 00 -2.22534 00 -0.0 -1.15914 02 -1.00000 00
	CASE 2016.	-5.94101E-02 -1.54131E-02 3.46633E-02 5.17431E-02		7.85.52E 00 -3.675.20E 01 0.0 1.90759E 00 200	0°0 0°0 0°0 2		1.006.34E 01 6.87098E 00 0.0 -1.83268E 03 -1.00000E 00

MO-DA-YR

6. COMPUTER INSTALLATION REQUIREMENTS

REXOR is written entirely in FORTRAN IV and has been developed on an IBM 360/91 computer. Hardware dependency is restricted to only a few major software areas:

- 1. Fortran initialization of literal data is word size dependent.
- 2. Graphic output software is Calcomp dependent.

Software incompatibilities are restricted to:

- 1. Character string definition techniques.
- 2. Overlay features.

REXOR will run on any IBM 360 or 370 model which is large enough to support IBM's FORTRAN IV H-level compiler. One routine in REXOR, namely SWEEP1, requires 520 k bytes of core to compile. This is the pacing item on IBM core requirements. Besides the normal FORTRAN input, output, and punch output devices, REXOR utilizes three auxilliary storage I/O units. The I/O operations are sequential; thus, the actual device type is not important. All installation dependent software has been removed to enhance portability, except as mentioned above, in the area of graphic output.

Besides its parent installation, REXOR has been installed at two other computer installations as of this writing. One is the Midwest S&E computer at the U. S. Army Aviation Systems Command. This is an IBM 360/65. The other installation is the Langley Research Center computer complex which includes CDC 6000 series computers and software. Specifics concerning the program as installed on IBM and CDC hardware, and in particular the installations mentioned, will be presented below.

5.1 IBM 360/370 SERIES HARDWARE

REXOR requires a minimum of 520 k bytes of core for compilation. This requirement is due to subroutine SWEEP1. If SWEEP1 is compiled separately, the compilation core requirement is substantially reduced. The core requirement during execution is approximately 375 k bytes when the overlay option of the LINKAGE EDITOR program is invoked. A general schematic of the IBM overlay structure is presented in Figure 6-1. The program was somewhat arbitrarily divided into the classic INPUT-PROCESS-OUTPUT categories. The current structure is not minimal in design.

Figure 6-1. IBM Overlay Structure.

The program logical I/O unit numbers and usage are indicated in the following Table 6-1.

	TABLE 6-1. I/O UNITS
Unit #	Usage
3	Scratch Data Set
5	Normal Fortran Input Data Set
6	Normal Fortran Output Data Set
7	Punch Card Output Data Set
8	Scratch Data Set
12	Scratch Data Set

The device requirements for the scratch units 3, 8, and 12 are direct access or magnetic tape. Typical DCB parameters are:

UNIT	3	-	RECFM=FB, LRECL=80, BLKSIZE=800
	8	-	RECFM=VSB, BLKSIZE=2008
1	2	_	RECFM=VSB, BLKSIZE=2524

The space parameter of the data definition control statement is a function of the actual device used. The following normal working limits should be allocated. However, these numbers are not absolute.

UNIT 3	-	80 k bytes
8	-	124 k bytes
12	_	124 k bytes

6.2 CDC 6000 SERIES HARDWARE

REXOR has been installed on CDC hardware at LRC, Langley Research Center. Software requirements in the area of literal definitions and overlay capabilities are significantly different from IBM. Therefore, a separate CDC compatible version must be maintained.

The complete source program is stored at the LRC computer center on a data cell. CDC 6600 core requirement for compilation is approximately 102200 octal words. The field length for the execution phase is approximately 50 ccc changes are compilation in the configuration of the program auxiliary storage device requirements are the same as described in Section 6.1. Beyond the actual definition of the units, the program accepts default system definitions.

The CDC overlay structure is conceptually similar to the IBM version; however, the physical implementation is quite different. The CDC overlay program structure can be seen in Figure 6-2.

The BAERO program computes general blade aerodynamic coefficients. The FBAERO program computes blade aerodynamics and stall based on a specialized blade data set.

6.3 GRAPHIC HARDWARE/SOFTWARE REQUIREMENTS

Graphic output capability is highly installation dependent. Even though the three installations at which REXOR has been installed all use CALCOMP drum plotters, the driving software is somewhat different. The three installations are characterized in Table 6-2.

	TABLE 6-2. CALCOMP OPE	Iarion
Facility	Hardware Identification	Software
Calac	CALCOMP 765 12-inch drum	CALAC enhanced CALCOMP software
Langley	CALCOMP 765 12-inch drum	LRC Graphic Output System
St. Louis	CALCOMP 536 30-inch drum	CALCOMP supplied software

Figure 6-2. CDC Overlay Schematic

LIST OF SYMBOLS

SYMBOLS	
a	arbitrary vector
ä ₀	acceleration vector, ft/sec ²
al	longitudinal component of blade first harmonic flapping, rad
[A]	generalized mass element matrix
A _{1,2,3}	modal variables
A _{ln}	generalized displacement of nth blade, first mode
A _{2n}	generalized displacement of nth blade, second mode
A _{3n}	generalized displacement of $n\underline{th}$ blade, third mode
A _{lS}	cosine component of blade first harmonic cyclic, rad
b	number of main rotor blades; arbitrary vector
В	dissipation function
B _{lS}	sine component of blade first harmonic cyclic, rad
С	blade segment chord, ft
[c]	damping matrix
$^{\mathrm{C}}\mathrm{_{D}}$	aerodynamic drag coefficient
$^{\mathrm{L}}$	aerodynamic lift coefficient
С _М	aerodynamic pitching moment coefficient
C _P	power coefficient
$\mathtt{c}_{_{\mathbf{T}}}$	thrust coefficient

C _{X,Y,Z}	linear damping, lb/ft/sec
$^{\mathrm{C}}_{\phi,\theta,\psi}$	rotary damping, ft-lb/rad/sec
^C 1,2,3	blade bending to feathering couplings
C(k)	lift deficiency function
d	infinitesimal increment
dr	increment in rotor, radius, ft
dt	increment in time, sec
d/dt	derivative with respect to time
(d/e) _O	swashplate to feather gear ratio, zero collective
(d/e) _l	swashplate to feather gear ratio slope with collective
е	pitch horn effective crank arm, ft
EI	blade bending stiffness distribution, lb-ft2
f iMR	ground effect factor for main rotor
F	factor; force, 1b
F _{X,Y,Z}	force components along X,Y,Z directions, 1b
^F φ,θ,ψ	generalized force about ϕ , θ , ψ axis
F _{βPH}	feathering mode generalized force
g	gravity, ft/sec ²
g _{X,Y,Z}	gravity components along X,Y,Z directions
G	gear ratio
{G}	generalized force vector
Ġ	gyro Engular acceleration partial product
GJ	blade torsional stiffness, lb-ft ²
IX	= Σm _i X _i ² , slug-ft ²
I,	= Σm, Y, ² , slug-ft ²

= $\Sigma m_i Z_i^2$, slug-ft² I_{7} = $\Sigma m_i (Y_i^2 + Z_i^2)$, slug-ft² $\mathbf{I}_{\mathbf{XX}}$ = $\Sigma m_i (X_i^2 + Z_i^2)$, slug-ft² $\mathbf{I}_{\mathbf{YY}}$ = $\Sigma m_i (X_i^2 + Y_i^2)$, slug-ft² \mathbf{I}_{ZZ} = $\Sigma m_i X_i Y_i$, slug-ft² I_{XY} = $\Sigma m_i X_i Z_i$, slug-ft² I_{XZ} = $\Sigma m_i Y_i Z_i$, slug-ft² I_{YZ} unit vector unit vector J advance ratio number of blade radial stations; reduced frequency, rad/sec; unit vector [K] spring matrix K m.i blade spring matrix element $K_{X,Y,Z}$ spring constants along X,Y,Z direction, lb/ft $K_{\phi,\theta,\psi}$ spring rates about ϕ , θ , ψ axis, ft-lb/rad 1 IB location inboard feather bearing, ft location outboard feather bearing, ft 1_{OB} 1_p radial location of intersection of precone and feather axis, ft 1 TTI tension torsion pack length, ft L rolling moment, ft-lb mass of element, slugs m $\mathbf{m}_{\mathbf{F}}$ summed fuselage coordinate mass, slugs summed hub axis mass, slugs mass of ith particle or blade segment, slugs $^{\rm m}$ i

```
swashplate summed mass, slugs
m<sub>SP</sub>
               pitching moment, ft-lb; = \Sigma m_i, slugs
Μ
[M]
               generalized mass matrix
               generalized mass matrix element
Mrk
\frac{M}{X}
                   Σm, X, slug-ft
                   Σm, Y, slug-ft
M_{\overline{Y}}
M_{\overline{7}}
                   Σm; Z;, slug-ft
^{M}X,Y,Z
               moments about X,Y,Z axis, ft-lb
               blade torsional moment, ft-lb/ft
Мф
N
                number of system particles
                angular velocity about X axis, rad/sec; particle
р
               main rotor pitch moment inflow, ft/sec
P<sub>iMR</sub>
                generalized coordinate; angular velocity about Y axis,
q
                rad/sec
                main rotor roll moment inflow, ft/sec
q_{iMR}
Q.
                generalized forcing function
                aerodynamic pressure times reference wing area, lb
Q_{\Delta}
QLOADS
                total nonmain rotor aerodynamic loads matrix
                tail rotor torque, ft-lb
Q_{TR}
r
                general vector; radius of curvature, ft; angular velocity
               about Z axis, rad/sec; notation for (X,Y,Z)
                static blade shape
r_S
R
                vector displacement of particle p in X,Y,Z axis system
                vector displacement of x,y,z origin in X,Y,Z system
R_{\cap}
R_{Z\varphi,Z\theta}
                gyro damper coupling ratios
```

Laplace variable, path of motion of particle p
blade spline length along neutral axis locii, ft
time
kinetic energy, ft-lb
transformation of coordinates matrix
tension in tension - torsion pack, 1b
velocity in X direction, ft/sec
potential energy function, ft-lb; strain energy, ft-lb
air velocity on blade element, ft/sec
velocity in Y direction, ft/sec
trajectory velocity
velocity in Z direction, ft/sec
main rotor collective inflow, ft/sec
tail rotor collective inflow, ft/sec
motion in X direction, fc; blade span location
coordinate direction; axis; deflection, ft; location, ft; cross product
blade radial station of sweep and jog, ft
trajectory path, ft
tail rotor longitudinal force, lb
motion in Y direction, ft
coordinate direction; axis; deflection, ft; location, ft
tension torsion pack outboard end modal coefficients
difference between Y direction locations of cg and neutral axis points of blade element, ft

motion in Z direction
coordinate direction; axis; deflection, ft; location, ft
relative swashplate vertical displacement with respect to the hub, ft
tension-torsion pack outboard end modal coefficients
teetering rotor undersling, ft
hub set distance above fuselage set, ft
hub set distance above swashplate set, ft
blade vertical offset at outboard end of tension - torsion pack, ft
angle of attack, rad
angle of attack with hub set, rad
sideslip angle, rad
blade feathering angle, rad
feathering/pitch-horn bending or dynamic torsion generalized coordinate displacement
blade droop relative to precone angle, rad
blade sweep angle, rad; dynamic stall delay, sec
trajectory path angle with E set, rad
limit deflection, rad; freeplay, rad; small increment
tail rotor pitch - flap coupling
downwash factor of wing on horizontal tail
vector rotation of ϕ , θ , ψ
rotation about Y axis, rad
collective blade angle, rad
sideslip at blade element, rad
air density, slugs/ft ³

time constant, sec; natural period, sec feathering axis precone, rad rotation about X axis, rad feathering angle, rad feathering angle of blade element of nth blade, rad ${}^\varphi Fn$ blade root reference feather angle, rad ϕ_{REF} blade torsion, rad фт sum of blade twist and torsion, rad wake angle of main rotor, deg x_{iMR} rotation about 7 axis, rad; sideslip angle with hub set, rad control input axis rotation from swashplate, rad pitch lead angle, deg Ψ_{PH} $\boldsymbol{\psi}_{\mathrm{T}}$ trajectory path yaw with E set, rad main rotor apparent airflow angle, red rotational speed, rad/sec; angular velocity, rad/sec; ω natural frequency, rad/sec partial derivative, derivation SUBSCRIPTS arbitrary coordinate set a a due to aerodynamics Α arbitrary coordinate set b associated with blade elastic bending BEND

blade reference axis system for the nth blade

blade element coordinate system

BLE

BLn

C associated with pilot control input, chordwise

CG associated with center of gravity location

CORR corrective, correction

DW referring to downwash

DYN referring to dynamic component

E earth axis

ENG associated with power; ant - engine

EST estimated

F fuselage axis; associated with blade feathering

FA referring to blade feather axis

FB associated with feedback

Fn associated with feathering of the nth blade

FR due to friction

G referring to gyro or gyro coordinate system

GEN associated with gas generator section of powerplant

GFB associated with gyro control feedback

GSP gyro to swashplate connection

GUB relating to gyro gimbal unbalance

H referring to hub or principal reference axis system

HT associated with horizontal tail

i referring to inflow, particle

IB referring to inboard feather bearing location

j spring matrix index

jog associated with blade attachment joggle

J associated with gyro end of feedback rod linkage

Jn associated with feedback rod coming from the $n\underline{th}$ blade k generalized muss index LAG associated with lead-lag damper LIMIT signifying limiting value blade mode index, spring matrix index MR associated with main rotor blade number index; time point index NA referring to blade segment neutral axis NEW newly determined value NO normal (to airflow) component NR pertaining to nonrotating value OB referring to outboard feather bearing location OLD value from previous time step Р associated with propeller; perpendicular blade component PH referring to pitch horn generalized mass index referring to rotor axis system REF associated with blade feather reference value RM referring to control gyro feedback lever moment

SC referring to blade segment shear center

SP referring to swashplate

SPc command to swashplate

r

R

S

S, SP referring to swashplate limit stop

structural; shaft

referring to blade spanwise velocity; general mode; static;

referring to blade sweep angle location associated with trajectory path relating to E axis; Τ tangential blade component; blade torsion; blade twist TR associated with the tail rotor TRIM initial or trim value TTassociated with tension torsion pack referring to inboard end of tension torsion pack TTI referring to outboard end of tension torsion pack TTO associated with blade twist (built in) TW relating to control gyro unbalance UB UNSTEADY associated with unsteady component associated with vertical tail VTassociated with the wing WING Χ relating to component in X direction relating to component in Y direction Ϋ́ YA relating to aerodynamic component in Y direction relating to component in Z direction

steady component

root summation

STEADY

SW

ZA

0

1,2,3

1/4 c

3/4 c

18

with respect to blade modes 1, 2, or 3 first harmonic component shaft axis feathering with respect to blade 1/4 chord

relating to aerodynamic component in Y direction

(nought) associated with collective value, coordinate axis value, with respect to principal reference axis, blade

with respect to blade 3/4 chord

β _{PHn}	associated with the feathering mode of the $n\underline{th}$ blade
ф	relating to component in the $\boldsymbol{\varphi}$ direction
θ	relating to component in the $\boldsymbol{\theta}$ direction
ψ	relating to component in the ψ direction
SUPERSCRIPTS	
I	referring to inertial reference
T	matrix transpose
(-)	(bar) average quantity
(')	(prime) slope with respect to blade span
(•)	(dot) time derivative of basic quantity
(…)	(double dot) second time derivative
(-1)	matrix inverse
(+)	vector quantity
POSTSCRIPTS	
(i)	blade radial station index
(n)	hlade number index