Discussion - July 1

1. For each of the following subsets of IR2, determine whether the subset is closed under addition, scalar mult., both, or neither. 7. Determine the same for the following sets:

(a) V = { even integers} (b) V = { odd integers}

(c) V = { 2x2 A with A invertible} (d) $V = \{ 2x \} A$ with A Invertible (d) $V = \{ 2x \} A$ with $f(z) = 0 \}$ (e) $V = \{ 2x \} A$ with all entries negative $\}$ (f) $V = \{ 2x \} A$ with all entries negative $\}$ (g) $V = \{ 2x \} A$ with all entries negative $\}$ (a) $V = \{ 2x \} A$ with all entries negative $\}$ (a) $V = \{ 2x \} A$ with all entries negative $\}$ (b) $V = \{ 2x \} A$ with all entries negative $\}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (i) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (ii) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iii) $V = \{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \} A$ with $\{ 2x \} = 0 \}$ (iv) $\{ 2x \} A$ with $\{ 2x \}$