南京大学 2020-2021 学年第一学期期末考试试卷 A 卷

程名称:			i) 考i			
	(者试类	型: 問春)	(4 II -313 2021-1	1.9 10.30-12:3	0	
	- 华级	学号		3.数	,	
				• ×	\	
題号			, <u>E</u>	v9 .	总分	
符分						
物理常数: kg=1.38×10	G = 6.67	× 10° g ° cm 5.67 × 10° erg	t计卡格机系符用 P s² , h = 6.6 cm²K²s¹, +;==	3 × 10 47 erg	s , c = 3.0	× 1010
直接在基面作	答,不可如頁:	草褐纸由老师	提供。			14.
2題(毎空23	44				10.03	183
AL MITTER ACC			_ ,其中A 的复	t值的为多少 (结合无量倒哈。	b 常数 A
(%) †	1. 6H2	+ 2 Å			· Eh	
	IMP的探測可能		$\frac{8\pi G}{3}\rho + \frac{\Lambda}{3} = 0$ 3、在哪个月份探	19.71		fr G
		使收到的太阳中	微子的数目(含	(路拉导推革)	E. J. Topa	49
			探测器探测机制	183/	The state of the s	4-1-4
的方法很多,如	l Cepheid 变星	基利用 [3	えぎも	(64)	工 米利耳	i. Mi Tu
是利用			2		来測距。	
w the solar surfa	ce, in order of it	ncreasing depth	lie the 23th	zone, the	-१क्षेत्रीय	zone, and
· 一 · 人非題(毎』	間7分、下路	and Manager	V 18.1	ika	得分	T
			C) 量無期的引力红i	移所掛供。	1	•
			%的物质是不可		1	•
	•		展脱铜时期的辐		320	

(🗸 5 上世纪二十年代哈勃对一个近邻的椭圆星系即仙女座星系 (M31) 进行测距,改变了对于宇宙的认识。 (🗷) 6 Both rotation and magnetic fields act to accelerate the gravitational collapse of an interstellar cloud.

(1) 7 G, K, and M-type stars form more frequently than O- and B-type stars.

			10.				• ,		
	~) H			bigger in size than our g	The second second second	la distanzatan	10 4 K FR SE	
	()	, ,	Cool stars (surface	e temperature ~ 3000 =	4000 K) have very stron	ig lines of hydrogen	in their spectrs.		
	()	<i>,</i> 1	0 Galaxy collisions c	an occur, but they are e	xtremely rare, their coll	ision rate are much	lower than that	ofstars	
			in our galaxy.						
	==	M I	地關(毎週2分)		1		411.57		
	man's			A. mai. b. mm bat. a com mai. a c. sa	A Linux III Annu		02	Ma = 7x/0	2
	()	1、一个大体功量及		一个太阳质量), 能释	政多少胜量7	64701-	1000	
			A. 10** MIT	TM**0KE	C. 10 ** 州耳	D. 10** 無耳	R	MO = 2x10 R = 10km	
	()	2. Which of the follo	wing lists of spectrosco	pic types is in the prope	r order: hot to cool		K=10KK	_
	`		WODAFGKM	B. MKGFABO C	E.C.ir	BAFMK			
	()	3. For which of the	following spectral range	es is it essential that nate	onomical observati	ons be made fron	n space?	
	`	1	71	B fur UV	Cradio				
			A. visible	Jan Britain		D. near infrare			
1	()	4. The star formation	n history in our galaxy	is in its early	history and then _	·		
•			A. High ; increas	es (B. High ; decreases	C. Low; Increases	D. Low; decrea	se		
	400	`	5. Why is the sky bl	ue?	-,536				
į		· _		"Dist" N. Gullett	17.55				
	B1.		A. reflection off	the oceans	B. red light is so	rattered more than	blue		
	1		(C.)blue light is so	attered more than red	D. nir molecule	es produce blue spe	ctral lines		
			17.						
		Yel	The .						
		1	HERO.						
			Mary I .				得分	- 1	

四. 说明与论述题 (每题 10 分) (特屈啸首简意赅)

 请读读在这门课程学习过程中的收获和遗憾?就自己在课程学习中掌握得最好的某个知识点(不能与后面四题重复) 面一幅思维导图(尽量体现出最核心的科学思想和所采用的方法)。

度间的关系): 并说明(含简单公式推导和画图)为何证用到 · WD负是上限 (粗略计算) (用物理常数来表示)。

($R^{\frac{1}{2}} = \frac{h^2 \pi^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$) $d: \frac{1}{2} + \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} + \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} + \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} + \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n y^2 + n^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 + n y^2 + n y^2 + n y^2)$ $d: \frac{1}{2} = \frac{h^2}{2nL^2} (n \pi^2 + n y^2 +$ $E_{tot} = N \frac{P_{t}^{2}/m d^{3}P}{\int d^{3}P} \frac{3}{5} NE_{f}$ $= \frac{1}{5} (1 - Gm_{f}^{2} N^{3}) d^{3} = 0$ $= \frac{1}{5} \frac{1}{5}$

3. In the Sirius binary system (天猴星双星系统), which has a parallax of 0.38 as observed from Earth, the companion Sirius B has apparent visual magnitude 8.44 and its spectrum suggests an effective temperature of ~ 30, 000 K. In addition, the semimajor axis (半长種) for the primary orbit and companion orbit are observed to be 6.54 and 13.26 AU, respectively, and the period for the binary is found to be 50.13 years.) (a) What are the absolute visual magnitude M, and absolute bolometric magnitude Mad if the bolometric correction is BC = -3.3? (提示: Mad = M.+ BC) (b) What is the luminosity of Sirius B based on this bolometric magnitude? (提 示: 太阳的绝对热星等 Mone = 4.74) (c) What is the cadius of Sirius B? (d) What is the total mass of the binary and the individual mass of the companion Sirius B? (e) Assuming Sirius B to be spherical, what is its average density? (f) What kind of star is it, based on the information deduced in this question?

d=2.63 PC My: 达州里等由初星等得来(可可)(e) a11C2: M1 = 02-CL Mbi: 抓显等(主波段测得) (b) d= -1.8 pc = 2.63 pc mv= f. xx B科科AKK图 mv-Mv+5 = 10 5 pc = Mu: 11.34 7= 50.13 years Mbol = Mv + BC . 8. 04 $\frac{L}{L_0} = 10^{-\frac{2}{5}(\delta.0k-4.7k)} = 7.4.4m_2 = 6.37 \times 10^{50} \text{kg}$ $L_0:386 \times 10^{55} \text{erg s} = 10 \times 10^{50} \text{kg}$ P: 2. 76 × 10 9 kg/m3 : L= 1.85 x (0 32 erg 57

(c) $L = 0.74.4\pi r^2$ (f) WD typicle = $I_{Snl} = \sqrt{3.2(x 10^{15} m)} = 5.66 \times 10^{6} m$ (50 ~ $I_{SD} \sim I_{B}$

(4) L = OT4. 42 12

lerg = 10-7]

上世紀末 The High-Z SN Search小组和 Supernova Cosmology Project小组分别对高红移 SN Ia 进行观测,获2011 年诺贝尔德理学奖。他们主要测量了哪些可观测的量?观测的直接结果是什么?请从数学上和最真观的物理照像上对

5. 这是法国Jean-Pierre Luminet的科普书《Black Holes》中的一幅有关天体的质量和质量密度的双对数图。 中几个带 ? 区域分别表示什么? 2) 请结合已掌握的数学、物理、天文知识尽量逐步此图中的重要信息。例如。 我们在中国大学基课的课程公告中所写,天体的一生是与引力抗衡的一生,最终会引力胜?量子胜?或此套不 剩? -----

中国中南中说: 高天、游文道夜 、 1.11日 102 65 60/5 11/67 年前千江 -200 ×16 /9

南京大学 2019-2020 学年第一学期期末考试试卷 A 卷

课程名称: 大学天文学(匡院) 考试限时: 120分钟

(考试类型: 閉路) 体 11-105 2020-1-11 14:00-16:00

	年級	学サ		_姓名	
題号	-,-,	=	=	62	总分
得分			1		
2. 物理常 kn=1.38× 3. 直接在基础	10·16 crg K·1, σ, = 5 6作器, 不可加页:	c 10 ⁻¹ g ⁻¹ cm ³ 5.67×10 ⁻³ erg cn 準稿纸由老师提	s ⁻² , h = 6.63 n ⁻² K ⁻⁴ s ⁻¹ , m _p = 1 供。	× 10 ⁻²⁷ er .67 × 10 ⁻²⁴ g	g s, $c = 3.0 \times 10^{10}$ cm , $a = 4\sigma_{*}/c$.
(据其形态哈勃)	对星系进行了分类。 (相对于其 止质值	即哈勃 叉图,	具体分为		10
性氢的 21 原米	·讲线是山 <u>屯</u> 子	原子社自	起相上作	A	7*4:10.
微波背景辐射	的各向异性产生的原	烟丸 绍枝	:以凡洲番	相川出	是杨纳的正动
別山高ルニ木	以上热木星(Hot Ju	ipiters)的显著特	Ф ФЕ	144	William W
171143521			F C 4	44 1/95	Table 5 of
祖到低温,	世界光谱型的 序程 一个点 至一年内	行经的	拉阿里	南沙沙	泅者的人自
組到低級, (星的自行是指	中鱼星一年内	行经的	本拉阿里	而之刻	(7.5)
温到低温, 但显的自行是指 可斯是 两(1 在一主星	<u>中国 召一</u> 年内 每两 2 分,正确打 为政密显、作显为3	了 <u>行名页</u> 」√,错误打×) E序星的密近双数	本元章 2 E	で クランラング 何 個別近极可能	分 (才英 发生吸积物质的 Bondi 吸
温到低温, 温的自行是指 引斯是 两(1 在一主星 2 EHT 视频	好两 2 分,正确打 为政密显、作显为3 增远镜对 M87 星系	了 <u>行名页</u> 」√,错误打×) E序星的密近双数	本元章 2 E	で クランラング 何 個別近极可能	9 1 1
温到低温, (星的自行是指 可以 两(1 在一主星 2 EHT 视频 共正 进	华两 2 分,正确打 为政密显、作星为3 + 超过镜对 M87 星那	了 千 名 页) 「	及 (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	伊 国附近极可能 照片呈现为	分 发生吸积物质的 Bondi 吸 完整的圆形亮斑,说明拍质
組到低温, 但显的自行是指 到斯是 两(1 在一主星 2 EIIT 视频 共正 进 3 离星系中	华两 2 分,正确打 为政密显、作星为3 + 超过镜对 M87 星那	了 千 名 页) 「	及 (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	伊 国附近极可能 照片呈现为	分 发生吸积物质的 Bondi 吸引完整的圆形充斑,说明拍照 。因此星系内,存在生命的
温到低温, 《星的自行是指 以斯是 两(是 1 在一主是 其 其正 提 其 其 是 系统建 4 红巨显内。	好两 2 分,正确打 为数密星、伴星为3 增远镜对 M87 星系 行的。 心越近,恒星形成率	打 45 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页 页	型系统中,在主法 洞进行拍照。	中 国附近极可能 照片呈现为 形成岩石行星	发生吸积物质的 Bondi 吸引完整的圆形充斑,说明拍照 。因此星系内,存在生命的

(X) 7	褐矮星为白矮星冷却到	场景的情况并到市份	· 在中間180 四。
101	THE THE CASE IN THE CASE IT THE STOP	NR SECTO INTO TAXABLE INTO	1 . 1 . b. 1 to 1 to 2 4

- (V) II 第一个意识到银河系真实大小的天文学家为 W. Herschel 爵士。
- (×)9 按照哈勃定律,离我们就遗远的天体退行速度越大,因此紅移也就越大,宇宙學紅移劣。上就是多尊勒紅 株。
- (人) 10 一旦从观测上确定出双星系统,则总可以确定出此系统中两 恒星的质量。

≡. M	(地河 (相列 2 分)	47
()	1. The mass radius relation for White Dwarfs can be repr	esented by
	(A. Ra M413 B. Ra M1 C. Ra M45 D. Ra M	14/3
()	2. 哪一位哲学家第一次拒绝用超自然 (supernatural) 来解	释观别现象,认为只有理性分析才可以。
	A Thales B. Aristotle C. Socrates	D. Pythagoras
()	3. Interstellar grains entise distant stars to appear to be both	and
	A. bluer ; brighter B. redder ; brighter C. bluer ; dimm	rr Dredder ; dimmer.
()	4. The color index is a good indicator of a stars	——————————————————————————————————————
4000	A. Distance B. Luminosity C. Radius	D Temperature
()	5. 高我们越避远的星系,往往形状更加	<u> </u>
	A. 规则, 更小 B. 不规则, 更小 C. 规则, 更大	D. 不规则,更大 (E. 以上均不是,无规律
		<i>Y</i>
mt ak	mi Halana (At mi to the limited) and the limited of	
24.15	明与论述两(每两 10 分)(容两请音简章版)	得分
	这学期大学天文课程学习,你最深的体会是什么?最感兴	物的位形具化人? 地田物总价的总统加索统计
2)	伽利略说:"数学是上帝的语言",有人说:"物理是上帝!	门在则,孙肥省州从明风的拓销米地描述大义;

3) 是否参加了中国大学 mooc 平台的《趣谈天体物理》学习? 若有,请比较在线课程与线下课程的异同。

查黑洞辐射一

2. 光谱分析在天文研究中极为重要,有哪几种红移? 请按照费曼学习法中的"说人话"方式,结合简单的物理学思 想用自己的语言来阐述这几种红移。

绪勤

3. Hawking 计算了 洞的 体辐射温度,在自然单位制下 $(c=h=G=k_s=1)$ 公式为,

$$T = \frac{1}{16\pi^2 M}$$

其中 M 为无旋转 洞的质量。1) 请用量纲分析的方法将上 表达式恢复到基本单位制。2) 请用简单的方法导 出类似的结果(或许和欠严格): 3) 清估算 1 Mo质量的 洞的寿命 (Evaporation time scale)?

: [kbT] -[E] = [GM*/R] = [GM*/R]

"
$$T = \frac{hc^3}{(a^2 GM)^2}$$

辐射的 华鱼 以太子 乃相寺

由黑体辐射大式

7 Jant

4. 11月底 思 同学以"宜居带"为两进行了课堂翻转。其中提到由英国大气学家James Elovelock在20世纪60年 代提出的意亚假说, "The earth is more than just a home, it's a living system and we are part of it. "并以 菊世界 模型为例展现了生物为应对气候,进行自我调节的过程。人类作为地球上目前最 级的智慧生物,从天文学和 其它多学科的角度,就我们应该具有的可能的责任和担当进行探讨。

5. 1) 恒星演化的研究中有三种十分重要的时标,请问是哪三种。请写出其数学表达式。运用到太阳,具体数值 为多少? (要求数量级正确)2)日 学可用来研究太阳内部结构,其中最主要的天体表 振荡模式与上述哪个时 标有关。3) 若考虑天体的自转以及存在磁场的因素,这种振荡的周期会如何变化(变短,变长或不变)? 为什么?

南京大学 2020-2021 学年第一学期期末考试试卷 A 卷

程名称:	大学天文	学 (物院) 考记	战限时: 1	120分钟
	(考试类型:	同春) 鼓楼	≵ 105 2021-1	1-4 14:00-1	6:00
	年级	学号		姓名	
題号	-	= ;	Ξ	四	总分
得分					
$k_2 = 1.38 \times 10$) **em K*1, の。= 5 (本、不可加真: : 分)	67 × 10 ⁻⁵ erg cm	$^{2}K^{4}s^{-1}, m_{p}=1$		gs, $c = 3.0 \times 10^{1}$, $a = 4\sigma_{\rm e}/c$
(改变了人们)	讨中最子的事些认	架)			163
	写些?(任写其中				1264
	体有(任写其中)			A+ 10 16	MAN Magas E
				月月 20=40	微角秒. 则 3C273 距
(九千・青寸四)	计算过程和结果 度看,这个距离是	ひんを言う	A11	4"175	VES
				万西半科之系	一 时,虽然此时双黑洞
· 通角速度。 请	写出近角波度的发	以	China		2 -1/
0 探測到双票	洞并合过程中最大	频率为 300 Hz	· 这告诉我们代	-4? W	(300/1) Mir
具体数值计算	的结果)。		H	27	27
核心正在进行	的最主要的核反应	空的等效表达式为	4:H-	He +2	0+ + 2Ve + 8
					et.
	夏2分,正确打		****	***	49
	同与吸权查绕转刀 光速都是一样的。	河 五万,吸	(查例內边擊距)	马最初的 校界	面更近,吸积物质产能
	元这都是一样的。 进行细致分析。可	测量其元素组成	· .		
				(M31) 掛行	测距,改变了对于字值

(X) 6 The brightness of a star in the sky tells you its luminosity.

(√)7 Hydrostatic equilibrium(流体静力学平数	新) inside the Sun me	ans that radiation p	ressure and gas pressure
balances the weight of outer layers pushing	down.		
(X) 8 A pulsar changes in brightness because its	s size pulsates.		
(\checkmark) 9 In our universe, $\Omega_{matter} + \Omega_{\Lambda}$ is as close to	one as we can measure.		
(X) 10 Copernicus discovered the moons of Jup			
三. 单选题 (每题2分)	1:47	r'o T	49 92
() 1.50 亿年后,太阳将演化成红巨星,表面流	温度约降低一半,光度	增加大约 10000 倍。	那时太阳的半径约
A 增大 400 倍 B. 保持不变	C. 圳大1600 倍	世 增大 200 倍	
() 2. 一个天体野蛤为质量等于一个太阳质量的			
224	C. 10 ⁴⁰ 無耳		
() 3. Which of the following regions of the elect	tromagnetic spectrum l	as the lowest-energ	ry light?
A. visible B. gamma ray	C. ultraviolet	1 radio	
() 4. In the disk of the Milky Way, stars are	and dust and g	gas are more	than in the halo.
Syounger; diffuse B. older; diffuse	C. older; dense	D. younger, d	ense
() 5. On the main sequence (主序星), massi	ve stars		
A. conserve their hydrogen fuel by burning	helium. B. burn the	ir hydrogen fuel m	ore rapidly than the Sun.
C. burn their fuel more slowly than the Sun	D. evolve in	nto stars like the Su	n.
			得分
四. 说明与论述题 (每题 10 分) (答题请言简章联)		
1. 请读读在这门课程学习过程中自己有哪些收获	和遗憾? 若满分为5分	7,你给自己的学	习态度打几分,为什么?
请就自己在课程学习中掌握得最好的某个知识点	(不能与后面四題重复	() 画一幅思维导图	1.

2. 请画赫罗图,并做出太阳质量大小的恒星在赫罗图上的演化轨迹,标注出其演化的不同阶段。并对不同的演化 阶段内部发生<u>的主要物理过程进行简要描述。</u>

3.1) 质量为M的黑洞,其Hawking辐射温度在自然单位制下($G=c=h/2\pi=k_B=1$)的表达式为

$$T=\frac{1}{8\pi M}$$

请将其恢复到国际单位制; 2)由此来推导黑洞寿命的表达式; 3)对于1个太阳质量的黑洞。其Hawking辐射温度为多少 K,寿命为多少 yr?

2)
$$C^{2} \frac{dM}{dt} = O T^{4} 4\pi \left(\frac{2GM}{C^{2}}\right)^{2}$$

$$= \int M^{2} dM = Q \int dt \left[Q: const\right]$$

$$T = \frac{M^{3}}{3Q}$$

文 爱因斯坦引入的宇宙学常数 A 是解释暗能量最简单的一种模型。What is the physical cause of the cosmological constant? A leading candidate for this component is the vacuum energy in quantum physics. 但二者之间在数量级上差异巨大,请结合常掘的物理知识来推导、计算说明。(提示:留意普朗克能量密度)

(0.08 Mo 一緒建星

1.5mg →白緑星 8~はMg → 中子星 ->はMg → 黒河

0.08~0.YMO 红袋星比宁甘甸年龄近长

南京大学 2018-2019 学年第一学期期末考试试卷 A 卷

							(χ) 11 Dark matter is now known to be due to large numbers of black holes.
课程	名称:	大学天文	学考	试限时: 12	0分钟		The spectrum of an active galaxy is well described by a blackbody curve.
		(考试类型	: 闭卷) 仙	1-102 2019-1-10	0 14:00-16:00		(X) 13 A planetary nebula is the disk of matter around a star that will eventually form a planetary system.
	5.00	1 14					14 The Sun will get brighter as it begins to run out of fuel in its core.
院系		年级	学号		姓名	1	(X) 15 Both rotation and magnetic fields act to accelerate the gravitational collapse of an interstellar cloud.
	-			-			(V) 16 Newton's modification of Kepler's Third Law Jets us measure the mass of the Sun.
Г.						1,,	(x) 17 Copernicus discovered the moons of Jupiter.
7	題号	_	_ =	゠゠゠	129	总分	(X) 18 Kard M stars make good spiral tracers for finding the structure of the Milky Way Galaxy.
3	寻分						() 19 Hydrogen lines are weaker in both very hot and very cool stars.
7	177						(X) 20 The Sun's density is about the same as Earth's.
							等分 (
				件考场相互借用。 -2			
			_	s^{-1} , $n = 0.03$ $n^{-2}K^{-4}s^{-1}$, $m_p = 1$			0×10^{10} cm s ⁻¹ , () 1. The mass radius relation for White Dwarfs can be represented by $ A R \propto M^{-1/3} B. R \propto M^4 C. R \propto M^{4.5} D. R \propto M^{-1/2} $
		, 不可加頁:			.or x to g ,	, iii.	
					得分	- Allen	() 2. Pulsations in a Cepheid variable star are controlled by the
	(每至1分		21 1 16			18	3.26 /y A. spin. B. magnetic field. C. tonization state of helium. D. gravitational field.
1. 1 AU = 1.	50×10 ¹³ cm,	対应着 ナセ	<u>:环太阳</u> z	间的距离, 1 pc =	309x1	cm.	() 3. Which planet was used by Albert Einstein to test the difference between his theory of general relativity and
2. 请写出太	阳内部正在进	行的最主要的技	反应的等效表达	式 <u>4H →</u>	:He + 2e	+ +2Ve+	大阳的光 Newton's theory of gravity?
皮_3.8	6×10000	,请估算地球表	每秒每平方厘	长接收到的太阳中	微子的数量	6x/0/°	A.Mercury B. Venus C. Mars D. Jupiter
		要分布在	银母	中,而疏散星团	主要分布在	祖鱼	() 4. For which of the following spectral ranges is it essential that astronomical observations be made from space?
							法拉行了 A. visible Blar UV C. radio Quear infrared ()
				是「红红素			置体最端 () 5. The color index (色指数) is a good indicator of a stars
				th Ma Tan , wi		h= -d	A. Distance B. Luminosity C. Radius (D/Temperature
				比光谱		少学的	
					D -77 + m	9 nav e	A. a few dozen B. a few hundred C. a few thousand D. lens of thousands E. millions and millions
				夜空为什么	1	- 914/91/9	() 7. Stefan's Law says:
				ents heavier than		****	#14 [마라고양의의 그가지, 마루막으로 1867 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1
10. The rad	lius of a star e	an be indirectly o	determined if the	and and	ABL of	the star are kno	
				The same of	得分	3. T	C, that if the Sun's temperature were doubled, it would give off 16 × more energy
	两(每两		(104) m. (104 m tr. m		1 147	115	D. that doubling the star's temperature would also double its peak wavelength
		诉我们宇宙在影		-	7 V	Why.	() 8. Hydrostatic equilibrium in our Sun is the balance between
· 🗸				的紅矮星仍处于主		6 10	A. convection and radiation. B. pressure and radiation. Fadiation and gravitation. D gravitation and pre
				大的 桐,约为10	, .	Mo	9. What is the single most important characteristic in determining the course of a star's evolution?
• •		,	是军中,夜晚我们	门依然能够看到壮	英的带状"银	可"• · · · · · · · · · · · · · · · · · · ·	A. density B. absolute brightness C. distance D. surface temperature Emass
//		星,反之亦然。					() 10. The energy required to move an electron in a hydrogen atom from energy level 1 to energy level 2 is
		段的恒星,核心					(A)10.2 eV B. 12.1 eV C. 12.75 eV D. 13.1 eV E. 13.6 eV
/•			_	核产能释放引发的	的超新星爆发。		CONTRACT CONTRACT DE DOCT
(.) 8 高	太阳量近的恒	【是在 1 pc 之外。					

(X)9 体谱的形态完全取决于 体的温度,而与其大小、化学组成无关。

(人) 10 对极低质量的恒星因温度低,不透明度大,内部会形成整体对流。

翰

101° gr [mo) -1.3 M > Mo 1 10 yr (NO) MENO

3. Calculate the main-sequence lifetimes (主序寿命) for stars of 0.5. the hydrostatic equilibrium time scale (流体/力学平衡时标) of Sun, typical White Dwarf (M = 0.6 Mo, R = 0.02

Re) and typical Neutron Star (M=1.4 Mo, R=20 km).
$$I = \frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}$$

4. The Crab Nebula pulsar adiates at a luminosity of about 1×10^{31} W and has a period of 0.033 s. If I = 1.4 M and $R = 1.1 \times 10^{4}$ m, determine the rate at which its period is increasing (dP/dt). How many years will it take for the

W and has a period of 0.033 s. If $I = \frac{1}{2} = \frac{1}{2$ =) dP = 51 p3 6.72 x/0-14

2°相分得 JL ARZ St - 3 1 ot: 3 1 1 2 4.65 x 10 yr

有人说"可见宇宙或许是处于一个超大 洞的视界之中"。请读谈你对此理解。

(哈勃常数 Ha=h ×100 km sec 1 Mpc 1 用无量纲哈勃常数 h 表示)

南京大学 2021-2022 学年第一学期期末试卷 A 卷

课程名称: 大学天文学(物院、匡院) 考试时间:120分钟

	(考试奖	:型: 闭卷)	教 101(物) 位	川-214(匡)	2022-1-2 10	:30-12:30	
究系	年約	K	学号		8		
	题号	_	=	ž.	827	总分	
	得分	V 1 - 1		ı.			
Л:							
	物理常数: (3 = 6.67 × 1	0° g 1 cm³ s1	. h = 6.63 >	c 10 47 erg s	. c = 30 × 101	o cm
	= 1.38 × 10 ⁻¹⁶ erg				7×10⋅14g.	$a = 4\sigma_{\bullet}/c_{\bullet}$	
	接在基面价格。						
3. 4	とすが (物) 表示	物院同年高級	也。(以) 表示日	[范判平高效应,	,没有标注表示	所有同学均常做到	1.
填空额	《每空2分。	总得分不超b	t 20分)			相分	1
				少疑律关系。	进写出恒是	的质量(M)与光I	t(L)
E /0	×1125~4	白矮厚的质量)	(与坐移 p 的)	E Mal	2-3 . ***	fawking 輻射,展	M M M
1:11:15	B 1/4/4/2 1	I~MJ	. 日二级的人		**************************************	的温度 下和粒子的	es de iti
与共庆	II M 的天然	1 #	; 是云功项出) Jeans 喷升员)	m M H M M K I	的程度于和较于的	双位员
			爱因斯坦的广义	2相对论和宇宙:	学原现,宇宙中	1辐射场能量密度	p(n) M
因子a	(r) 的演化关系 _		B =	- A	3.	100	2
对近邻	的忸显可以利用。	<u> </u>	的方法来到5	,对较近的阿外	是系可通过观	测共内部的	正
#1	周先 失	系来制距: 对3	[题远的天体可]	地 Ia主义	心計画作品	建烛光来进行制距。	
	力波能作为检验		4	15.0° kg	A william	- Vi	
					Method to 4	轴子场梯度与核子	0 10 10
	自與与雖場的概				Wilder Co.	W 1 WIND - 174 1	H ACE
259.7	自尼与爱观的教	17, 这明7921	I DUALHI		H.T.	AND REST	
*4**	that the care of a			4. At 11-1-4714	20.45	得分 二	1
	足非應(每應2				20 95)		Sa.
	利用太阳光谱中的						egà.
	红星光谱型和色剂		旦的农面程度,	0 型題相对于 (G型型色指数贝	1大.	1
	快速放转的磁中引				16		
	目前观别领向于3				0.00		
•	有观别到视剧光度			(且桁着视线方向	句运动。	•	
•	行風状星云的中で				AST		
	因观测到宇宙目的						_
V) 8	(以) 宇宙微波背	景辐射可以非(常好地对应着 2.	73K的媒体辐射	,说明目前字	由微数背景器度的	2.73K
√) 9	(以)引力放探を	5中极为重要的	激光干涉仪的员	理与双克尔逊	干涉仪原理类似	ı .	
V) 10	(以) 多俏使天	文学的主要观	用手段有电磁波	引力波,中微	子和宇宙射线		
-	(粉) 中微子的						
	(46) 10 15 5/11/						

(10'	(約) 在	四颗伽利	略卫星中木工	四四四百日	古老的表面	,这因为它不	处于共振轨道	t内,地质是	动不括	跃.
≡. #	1. 光脚	(银颗 2	2分, 点	得分不超过	(10分)				49		
		显际介质的			6.						
` '	_			B. 碳和氧	120	C. #0	即條	D. 硅和	145		
, ,		,					联系起				
,		-						7.0			
	,	1. EL 95/92	1 气体原	张		Do not	一、冷灰 草				
							HI 线宽和旋转				
()	X	以)字由	微放背景	<u>屬射在</u> 原射在 原 原 原 の の の の の の の の の の	· 同同性之	中,有效小	自各同异性。 媒体辐射光谱	根据 Sunyaev	-Zel'dovích	效应。为	光子与
			and the same of					T• D. 康哲!	25.25.25		
		10.7 14					-	产生,发			##
188							是合并 · 强		# 1 × m_		2.
	C.	祖風活动	太阳是	Z		W XXII	恒星岩缩 双	双齿型针升	11 May 21 Au	l W to to	**
(3)	3	区) 爱国	新地在 19	16年来解引	刀数相夫に	可题的可采用	11月中近似	方式,使得色	N.75-51/J2	A STATE	531
1								Ħ		N.	
							rmi	GRB170817A D. LIO			
				B. GECA 探測到了 19				D. LAC			
()	47.	物)以下	强个实验	宋朝到 J 19	OVA KLETS	C di) 小说了; 四十岁的小型	D.美型	# # 4 4 4 4	-24	
	0	日本神内:	矢狐	3. ルギ人 サスマヤサ	266的用1	C.7	4人工行头和	D.90	us-) Lenno	*42	
()	×. ((神) 下回	サイヤル サイヤル	<u>重子声数复数</u>	D 252311	25.65	C SENS	音物质 I	- 医似字母	468	
	^-	例量于出	子即角的	林伦八	D. 24-01	机配量	C. 14:014	1 20 /4	. 校与于 E.	47.04	
	1							17	49	1	7
m 28	tel 6-2	ASPER (M III 10	分,总分5	m (A)	-			14%	ļ	1
									***	K-18-14	Aug
								学) 藻程内容			
_		_		以整合有医	文学精华思	想的实验教	学环节的内容	(亦可采用宣	及仍其灭验 3	5万式)。	开审系
	,,,,,,,	以何要说	列。								
7	27	秋剧									
100	-										

3. It was stated that if the more massive star in a binary system loses mass to the secondary, then the separation (同題) between them decreases. This is true if angular momentum isn't lost from the system. Using conservation of momentum, show that the separation does decrease.

C M, M2 = u w2 r M, C M, M > M. AM > C

L= M, WY, 1 M, WY, 2 MW Y2 = MGM, M,) r

L: L' = M Tr = M' Tr' M, (M, -DM) (M2+AM)

M+ M+

O(a M < \$ (MI-M2)

· rer ratio

4. 1)请写出质量为 M 的天体的引力半径(史瓦西半径) R₆ 的农达式,并确在右边 logM-logR 的双对数图上, 2) 在图中做出原子核的等质量密度线, 3) 若假定中子星的质量密度近似为核子的饱和密度。 P₂。请证明,中子星存在一个绝对的质量上限,请导出其表达式, 4) 请基于 TOV 方程来探讨均匀密度的中子星模型。 证明,当天体半径 R < 9/8 × R₆ 时,均匀密度的天体会坍缩成黑洞。

縮成顯剂。
$$\frac{dP(r)}{dr} = -\frac{Gm(r)\rho(r)}{r^2} \cdot \frac{\left[1 + \frac{P(r)}{\rho(r)c^2}\right]\left[1 + \frac{4\pi r^3 P(r)}{m(r)c^2}\right]}{1 - \frac{2Gm(r)}{r^2}}$$

 $R_{n} = \frac{4\pi R_{n}^{3} P_{0}}{4\pi P_{0}} \stackrel{\text{lin}}{=} R_{n}^{3} P_{0}$ $R_{n} = \left(\frac{5M_{n}}{4\pi P_{0}}\right)^{\frac{1}{3}} R_{g}$ $Set G: C = 1 \quad \text{sin} T \text{ ov still}$ $= \frac{3C^{\frac{1}{3}}}{32\pi G^{\frac{3}{3}}P_{0}} \stackrel{\text{lin}}{=} \frac{1}{2\pi P_{0}P_{0}} = \frac{\frac{7\pi P_{0}P_{0}}{2\pi P_{0}P_{0}}}{\frac{7\pi P_{0}P_{0}}{2\pi P_{0}P_{0}}} = \frac{1}{4\pi I - \frac{8\pi P_{0}R^{2}}{3}I}$ $\frac{4V_{0}R_{0}}{2\pi I_{0}R_{0}} = \frac{1}{4\pi I_{0}R_{0}} \frac{1 - \frac{8\pi P_{0}R^{2}}{3}I}{4\pi I_{0}R_{0}}$

PS: a. $\frac{5\pi R \cdot R^2}{3}$ set a. $\frac{5\pi R \cdot R^2}{3}$ \Rightarrow $P_0: RP\left(\frac{1-1/-\alpha}{31/-\alpha-1}\right) > 0$ $= \frac{2M}{R} = \frac{R^2}{R} \le 1$ $\Rightarrow 21/-\alpha - 1 > 0$ $\Rightarrow R < \frac{q}{8}Rq \square$

解释: 静龙宇宙接型建有问题的, 可观测宇宙人愉假好, 空间膨胀, 红衫, 我应是发出能是成小

南京大学 2019-2020 学年第一学期期末考试试卷 A 卷

大学天文学 (物院) 课程幺称·

考试限时: 120 分钟

	年级	学号		_姓名	-
題号	-	=	E	129	总分
得分					
ki=1.38×10 直接在基面付 988×10 壓(每空2 1.998×10 E模心进而来 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 每年产生 1.998×10 每年产生 每年产生 1.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 每年产生 4.998×10 4.998×	から、	x 10 ¹ g ² cm ² : 5.67 x 10 ³ erg cm	************************************	Lo= <u>4.86</u> c+2e+-	(a=40,/c. 物分 (x/0 33 (2 Ye + Y
医农国的产化				1	
生农国的并记					得分
听是非愿(每	, — , , , , , , , , , , , , , , , , , ,	打√, 错误打×)	2314	#+# * ##	
所是非愿(包 无论是主的	星,还是白矮星	打√,错误打×) 、中子星或奇异』 【否定地心学说。	。 天体的质量	越大核心的质	
所是非题(包 无论是主的 观测到行星 中子星内的	程,还是白矮星 的 <u>逆行现象</u> 可以 存在超导的原因	、中子星或奇异。 否定地心学说。 之一是中子星内部	是,天体的质量 全 显 显 3 邓温度接近绝对	零度。	量密度将越高。
所是非愿(包 无论是主所 观测到行星 中子星内部 中子星的中	·星,还是白矮星 的 <u>逆行现象</u> 可以 『存在超导的原因 『子含量很高是因	、中子星或奇异。 否定地心学说。 这一是中子星内部 为在它的形成过程	是,天体的质量 全 号 8 3 邓温度接近绝对 里中提射出了大	零度。	量密度将越高。
所是非愿(包 无论是主序 观测到行星 中子星内的 中子星的中 目前的观测	不是,还是白矮星的 <u>逆行现象</u> 可以 可存在超导的原因 可存在超导的原因 可存在量很高是因 即便向于支持以超	、中子星或奇异。 否定地心学说。 之一是中子星内部	是,天体的质量 立 已 品 了 邓温度接近绝对 坚电抛射出了大 显系形成模型。	零度。 量的质子和电	量密度将越高。

©0.01 D. 8

() 2. 哪一位哲学家第一次拒绝用超自然 (supernatural) 來解释观测现象, 认为只有理性分析才可以

() 4. 激光干涉技术是探测黑洞的有效手段之一,不同基线长度的引力波天线可以(最主要是)在不同 上观测引力波?

A. 频率 (B) 精度

5. 我国的郭宁敏天文台(IAMOST)宣布发现了 70.倍太阳质量的黑洞,是迄今为止发现的最重的恒星级黑 洞,请问 LAMOST 是采用哪种方式发现这一黑洞的?

Y3.D无限深结期

R'= nit nitans

VAJ- N: 4285. 1.2

コミニー (最高能収)

妨结合科学史、方法论等等来谈谈你对这三个学科之间关系的理解。

2) 本学期这门课程的学习对你有哪些帮助? 你是否参加了中国大学 mooc 平台的 (静谈天体物理) 课程学习? 若有, 请谈谈在线课程与线下课程的异同, 对你有哪些帮助?

Ps: 爱了秋光反的挥手 dir: 0: - + pp - FA 福斜压主号 (-j dp: K d'E dAdt) L= Sanda = Ac OM 4x re

12五巨过 核心化超過 He核水焰,克氏从燃烧 23红巨星文, REA TET KEE·新克品H燃烧RTT4对流 54 年主 Ret Tel RITT 核心Hel然院

45 渐延00 L1R1TJ 3 ~ 200.Ro

枝心He 枯竭(C,O核) 元晨 He. H.M. C. Ra J Ta 1 上热脉冲, 壳层层闪

6 行星水品及新霉星

2) 现假定星体内部组成物质满足统一的多方物态方程

 $P = K \cdot \rho^{1+\frac{1}{N}}$

("
$$\frac{d^{2}r}{dt^{2}} = \frac{dP}{dr} - \frac{Gmur}{r^{2}} = 0 \Rightarrow \frac{dP}{dr} = \frac{Gmur}{r^{2}}$$
 ",

Tide (A KINTU Mede) = - 4TG ABA

$$\int = \frac{\sigma}{r_n} = \frac{r}{\left(\frac{r_1 + ij k \lambda^{\frac{n-1}{2}}}{4 \pi G}\right)^{\frac{1}{2}}} \qquad \int = 0 \quad (r_2 \circ) \qquad \int \frac{1}{s} \frac{1}{s} \left(\frac{r_2 \circ k}{4 \pi G}\right)^{\frac{1}{2}} \frac{1}{s} \frac{1}{s} \frac{1}{s} \left(\frac{r_2 \circ k}{4 \pi G}\right)^{\frac{1}{2}} \frac{1}{s} \frac{1}{$$

$$S = O(1^{20})$$
 $S = 1/(15^{20})$ $S = 0(1^{20})$ $S = 0(1^$

Zg = (1-2GM)= -1

1 (要求數量級正确) 自由洛体目抗り的分学时在 つ まま まて : - ナ カー G mul へ 足 Iff = IR3 = Texp = R: 1 = 27 min 爆炸时标 机时机 THH = 0.5 GMYR ~ 1.6=107 yr 核反应对标 Truc = = 910 Mc ~ 1 × 1010 yr (E: 3 ACE ~ 0.7% 92 154416 ~ 10%

1)请基于狭义相对论的基本原理来推导辐射源在观测者视线方向上的运动而造成的 Doppler 谱线红移的表达式。

2) 请基于质量为 M 的球对称引力场外部线元的表达式和满足宇宙学原理的 Robertson-Walker 度规

$$ds^{2} = \left(1 - \frac{2GM}{rc^{2}}\right)c^{3}dt^{2} - \frac{dr^{2}}{\left(1 - \frac{2GM}{rc^{2}}\right)} - r^{2}(d\theta^{2} - \sin^{2}\theta d\phi^{2}) \qquad ds^{2} = c^{2}dt^{2} - a^{2}(t)\left(\frac{dr^{2}}{(1 - kr^{2})} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}\right)$$

来分别推导引力红移和宇宙学红移的表达式。

13. 11 区图+发之时间 => V= Fig V -) Z = 1+13 -1

宇宙学红衫 (光源在动?) 2) 5/8/148 随的全标表 Deax v. Deax 10能是法 考虑发生时间和坐标不变两点(颠坞) PM: 27-4:02 方子: ds=cdt-ain(--):0 レバ:次当4速= 一方。(e) =) c ft dt a(1) = fd'x2 = -P./Fg0 = hv

C Stitsti dt = 5 B d3 x2 ⇒秋分限 f Sto, Stoo

Ito+Sto dt = Sti+St, dt JR => Sto Str

 λ' = λ' = $\frac{\alpha(t)}{\alpha(t)}$ = $\frac{\alpha(t)}{\alpha(t)}$ = $\frac{\alpha(t)}{\alpha(t)}$ =