1.7. Isomorphic Graphs

Example:

Consider the following graphs, are they the isomorphic, i.e. the "same"?

No. The left-hand graph has 5 edges; the right hand graph has 6 edges.

Firstly, label the graphs. It "looks" true, so check all the things we know:

Number of vertices: both 5.

Number of edges: both 5.

Degrees of corresponding vertices: all degree 2.

Connectedness: Each is fully connected.

Number of connected components: Both 1.

Pairs of connected vertices: All correspond.

Number of loops: 0.

Number of parallel edges: 0.

Everything is equal and so the graphs are isomorphic.

More formally:

$$G = \{V, E\} \text{ where } V = \{v_1, v_2, v_3, v_4, v_5\} \text{ and}$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5), (v_5, v_1)\}$$

$$= \{e_1, e_2, e_3, e_4, e_5\}$$

$$G' = \{V', E'\} \text{ where } V' = \{v_1', v_2', v_3', v_4', v_5'\} \text{ and}$$

$$E' = \{(v_1', v_2'), (v_2', v_3'), (v_3', v_4'), (v_4', v_5'), (v_5', v_1')\}$$

$$= \{e_1', e_2', e_3', e_4', e_5'\}$$

Construct 2 functions: $f: V \to V'$ and $g: E \to E'$

$f:V\to V'$		$g: E \to E'$	
V	V'	E	E'
v_1	v_1'	e_1	e_1'
v_2	v_2'	e_2	e_2'
v_3	<i>v</i> ' ₃	e_3	e_3'
v_4	v ₄ '	e_4	e_4'
v_5	v ₅ '	e_5	e' ₅

1.7.1. Definition

Let $G = \{V, E\}$ and $G' = \{V', E'\}$ be graphs. G and G' are said to be isomorphic if there exist a pair of functions $f: V \to V'$ and $g: E \to E'$ such that f associates each element in V with exactly one element in V' and vice versa; g associates each element in E with exactly one element in E' and vice versa, and for each $v \in V$, and each $e \in E$, if e0 is an endpoint of the edge e1, then e2 is an endpoint of the edge e3.

Notes:

- * To prove two graphs are isomorphic you must give a formula (picture) for the functions *f* and *g*.
- * If two graphs are isomorphic, they must have:
 - the same number of vertices
 - the same number of edges
 - the same degrees for corresponding vertices
 - the same number of connected components
 - the same number of loops

- the same number of parallel edges.
- * Further,
 - both graphs are connected or both graphs are not connected, and
 - pairs of connected vertices must have the corresponding pair of vertices connected.
- * In general, it is easier to prove two graphs are not isomorphic by proving that one of the above properties fails.