Assignment 4

Quinn Perfetto, 104026025 60-454 Design and Analysis of Algorithms

April 2, 2017

Question 1. Proof. First we show that $\Pi \in \mathbf{NP}$

Let $\pi \in \Pi$.

As every Π logical expression is a CNF logical expression with exactly three literals, $\pi \in 3SAT$.

Since 3SAT is \mathbf{NP} -complete, there exists a polynomial time nondeterministic algorithm N solving 3SAT.

Now,

 π is a yes-instance of Π $\iff \pi$ is a yes-instance of 3SAT \iff algorithm N outputs a yes on input π

Therefore $\Pi \in \mathbf{NP}$.

Next, we prove that $3SAT\alpha\Pi$.

Let $C = c_1 \wedge c_2 \wedge ... \wedge c_m$ be a CNF logical expression in which each c_i contains exactly three literals, i.e. C is a problem instance of 3SAT. Let $U = \{u_1, u_2, ..., u_n\}$ be the set of variables in C.

For each c_i , $1 \le i \le m$ we shall construct a Π logical expression $c'_i \in \{x_i, y_i, z_i, a_i, b_i, c_i, d_i\}$ such that the Π CNF expression $C' = c'_1 \wedge c'_2 \wedge ... \wedge c'_m$ is satisfiable with exactly 1 literal per clause being assigned a true value if and only if C is satisfiable.

Let $c_j = x_j \vee y_j \vee z_j$. The corresponding c'_j is defined as

$$(\neg x_j \lor a_j \lor b_j) \land (y_j \lor b_j \lor c_j) \land (\neg z_j \land c_j \land d_j)$$

where a_j, b_j, c_j, d_j are newly created literals. Let $U' = U \cup (\bigcup_{j=1}^m \{a_j, b_j, c_j, d_j\})$.

By construction each clause of C' contains exactly three literals.

It is also easily verifiable that $|c'_j| = 3|c_j|$ since each clause in C produces exactly 3 clauses in C'. Additionally, 4 new variables are introduced into U' for each clause in C, i.e. |U'| = 4|U|.

Thus the transformation takes a total of O(3m+4m) = O(m) = O(|C|) operations. I.e. the transformation can be done in polynomial time.

Next we shall show that,

C' is satisfiable if and only if C is is satisfiable

Let $t: U \to \{true, false\}$ be a truth assignment satisfying C. As $C = c_1 \wedge c_2 \wedge ... \wedge c_2$ is true under t, at least one literal in each c_j must evaluate to true. 7 cases arise: (note that unassigned variables are assumed to be false)

- 1. $t(x_i) = true$. In this case we assign $a_i = true$ and $b_i = true$. We thus have a single literal in each clause of c'_i evaluated to true, and the expression is satisifed.
- 2. $t(y_i) = true$.