

ROHM Switching Regulator Solutions

Evaluation Board: Synchronous Boost DC/DC Converter

Introduction

This application note will provide the steps necessary to operate and evaluate ROHM's synchronous buck DC/DC converter using the BU33UV7NUX-EVK-101 evaluation board. Component selection, operating procedures, and application data are included.

Description

The BU33UV7NUX converter provides a power supply solution for products powered by two-cell alkaline, NiCd, NiMH, one-cell Li-ion, or Li-polymer batteries. Output currents can go as high as 500mA while using two alkaline, with discharge going down to 1.8V. The BU33UV7NUX includes a reset circuit. (Reset-Detect Voltage: 1.5V, Reset-Release Voltage: 1.9V) The output voltage is fixed by an internal resistor divider. When the VIN voltage is higher than 3.3V, Vout matches Vin.

Applications

Single-/Two-Cell Alkaline, NiCd/NiMH or Single-Cell Li Battery-Powered Products

IC Recorders

Wireless Mice

Portable Audio Players, PDAs

Cellular Phones

Personal Medical Products

Remote Control

Evaluation Board Operating Limits and Absolute Maximum Ratings

Parameter		Symbol	Limit			11:4	Conditions	
			MIN	TYP	MAX	Unit	Conditions	
Supply Voltage								
	BU33UV7NUX	Vcc	0.35	-	5.5	V		
Output Voltage / Current								
	BU33UV7NUX	Vout	-	3.3	-	V		
		I _{OUT}	-	-	0.1/0.5	Α	Mode=L, Mode=H	

Evaluation Board

Fig 1: BU33UV7NUX Evaluation Board

Evaluation Board Schematic

Fig 2: BU33UV7NUX Evaluation Board Schematic

Evaluation Board I/O

Below is a reference application circuit.

Evaluation Board Operating Procedure

- 1. Set the operating mode of the IC by the position of SW0. When the switch is moved to the bottom position (MODE -> VCC) the IC will be in PFM Only Mode and the output will be able to supply a maximum 100mA. When the switch is moved to the upper position (MODE -> GND) the IC will be in Auto PFM/PWM Mode and the output will supply a maximum of 500mA.
- 2. Disable the IC by setting SW1 to the upper position. When the switch is moved to the bottom position (EN -> VCC) the IC is enabled, while moving the switch to the upper position (EN -> GND) disables the IC.
- 3. Connect the power supply's GND terminal to the AGND test point on the evaluation board.
- **4.** Connect the power supply's V_{CC} terminal to the V_{IN} test point on the evaluation board. This will provide V_{IN} to the IC. Please note that V_{CC} should be in range of 0.35V to 5.5V.
- 5. Connect the electronic load or voltmeter to P_{GND} and V_{OUT} . Do not connect when the load turned on.
- 6. Turn on the power supply and enable the IC by setting the position of SW1 to the lower position. The output voltage V_{OUT} (+3.3V) can be measured at the test point V_{OUT}. Now turn on the load. The load can be increased up to 0.1A/0.5A (max.) depending on the MODE setting used.

Reference Application Data

The following are graphs of the hot plugging test, quiescent current, efficiency, load response, output voltage ripple response.

Fig 4: Circuit Current vs. Supply Voltage (Ta=25°C, MODE=L)

Fig 5: Electric Power Conversion Rate (Ta=25°C, MODE=L)

Fig 6: Load Response Characteristics
Yellow=VOUT, Purple=IOUT
(VIN=1.8V, VOUT=3.3V, IOUT=0 → 100mA, MODE=L)

Fig 7: Load Response Characteristics
Yellow=VOUT, Purple=IOUT
(VIN=1.8V, VOUT=3.3V, IOUT=100mA → 0, MODE=L)

Fig 8: Output Voltage Ripple Response Characteristics Yellow=VOUT, Blue=SW Node (VIN=1.8V, VOUT=3.3V, IOUT=0, MODE=L)

Fig 9: Output Voltage Ripple Response Characteristics Yellow=VOUT, Blue=SW Node (VIN=1.8V, VOUT=3.3V, IOUT=100mA, MODE=L)

Fig 10: Circuit Current vs. Supply Voltage (Ta=25°C, MODE=H)

Fig 11: Electric Power Conversion Rate (Ta=25°C, MODE=H)

Fig 12: Load Response Characteristics
Yellow=VOUT, Purple=IOUT
(VIN=1.8V, VOUT=3.3V, IOUT=0 → 500mA, MODE=H)

Fig 13: Load Response Characteristics
Yellow=VOUT, Purple=IOUT
(VIN=1.8V, VOUT=3.3V, IOUT=500mA → 0, MODE=H)

Fig 14: Output Voltage Ripple Response Characteristics Yellow=VOUT, Blue=SW Node (VIN=1.8V, VOUT=3.3V, IOUT=0, MODE=H)

Fig 15: Output Voltage Ripple Response Characteristics Yellow=VOUT, Blue=SW Node (VIN=1.8V, VOUT=3.3V, IOUT=500mA, MODE=H)

Evaluation Board BOM

Below is a table showing the Bill of Materials. Part numbers and suppliers are included.

No.	Qty.	Reference	Description	Manufacturer	Part Number
1	1	U1	Boost Converter	ROHM	BU33UV7NUX
2	1	C2	1uF, 16V, X5R, 0603	TDK	C1608X5R1C105K
3	1	C3	0.1uF, 16V, X5R, 0402	TAIYO YUDEN	EMK105BJ104KV-F
4	1	CO	10uF, 16V, X5R, 0805	TAIYO YUDEN	EMK212ABJ106KD-T
5	2	C1_1, C1_2	22uF, 25V, X5R, 0805	Murata	GRM21BR61E226ME44L
6	3	C1_3, C1_4, C1_5	22uF, 25V, X5R, 0805	Murata	GRM21BR61E226ME44L
7	1	LO	4.7uH, 2.43A, 5mm*4mm*1.5mm	TDK	VLF504015MT-4R7M
8	2	J0, J2	N/A	N/A	Short
9	3	J3, J4, J5	N/A	N/A	Open
10	1	J7	N/A	N/A	Open
11	2	SW0, SW1	Switch	NKK	G13AP
12	13	INTLDO, AGND, EN, RSTB, MODE, VOUT, VOUT_S, VOUT_S2, PGND, VIN, VIN_S	TP	N/A	ТР