Question Bank in Fourier Series

5 marks Questions

- 1. Find a Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$
- 2. Obtain half range Sine Series for $f(x) = x^2$, in 0 < x < 3.
- 3. Find a Fourier series of $f(x) = x^2$ in (0, a)
- 4. Find a Fourier series of f(x) = x in (-1, 1)
- 5. Find the Fourier series of $f(x) = x \cdot \cos x$ in $(-\pi, \pi)$
- 6. Find the half range Fourier Sine series of $f(x) = x^3$, $-\pi < x < \pi$ (Ans: $b_n = 2(-1)^n(\frac{6}{n^3} \frac{\pi^2}{n})$)
- 7. Find the half range cosine series of $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ x, & 1 \le x \le 2 \end{cases}$
- 8. Find the half range sine series of $f(x) = e^{ax}$ in $(0, \pi)$
- 9. Find the half range Fourier sine series for $f(x) = x^2 + 1$ where $x \in (-\pi, \pi)$.

6 marks Questions

- 1. Determine the Half range sine series for $f(x) = \frac{x(\pi^2 x^2)}{12}$, where $0 < x < \pi$.
- 2. Find the Fourier series of $f(x) = \frac{1}{2}(\pi x) \text{ in } (0, 2\pi)$ Hence deduce that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$, given $f(x + 2\pi) = f(x)$.
- 3. Find the Fourier series of $f(x) = \sqrt{1 \cos x}$ in $(0, 2\pi)$. Hence deduce that $\frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{4n^2 1}$
- 4. Find the Fourier series of $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$ Hence deduce that $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
- 5. Find the Fourier series of f(x)=|x| in the interval $[-\pi,\pi]$ and hence deduce that $\frac{\pi^2}{8}=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\cdots-$

- 6. Find the Fourier series of function $f(x) = |\cos x|$ in $(-\pi, \pi)$
- 7. Find the Fourier series of $f(x) = \begin{cases} 0 & -5 < x < 0 \\ 3 & 0 < x < 5 \end{cases}$
- 8. Obtain the Fourier series of $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$ (Ans: f(x) is even, therefore $b_n = 0$ Then, $a_0 = 0$, $a_n = \frac{4}{n^2 \pi^2} (1 (-1)^n)$
- 9. Find Half range sine series of function $f(x) = lx x^2$ in (0, l) Hence, deduce that, $\frac{\pi^3}{32} = \frac{1}{1^3} \frac{1}{3^3} + \frac{1}{5^3} \frac{1}{7^3} + \dots$
- 10. Obtain the Fourier series to represent $f(x) = 9 x^2$ in (-3,3)
- 11. Find the Fourier series of f(x) in $(0, 2\pi)$ where $f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi x, & \pi < x \le 2\pi \end{cases}$ Hence deduce that $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$

8 marks Questions

- 1. Find the Fourier series of $f(x) = x^2$ in (0,4). Hence deduce that $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + ...$
- 2. Find a Fourier series in $(-\pi, \pi)$ of $f(x) = \begin{cases} x + \frac{\pi}{2} & -\pi \le x \le 0 \\ \frac{\pi}{2} x & 0 \le x \le -\pi \end{cases}$ and hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$ and $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96}$
- 3. Find the Fourier series of f(x) in $(0,2\pi)$ where $f(x)=\begin{cases} x, & 0< x\leq \pi\\ 2\pi-x, & \pi< x\leq 2\pi \end{cases}$ Hence deduce that $\frac{\pi^4}{96}=\frac{1}{1^4}+\frac{1}{3^4}+\frac{1}{5^4}+\dots$
- 4. Find the Fourier series of $f(x) = x \cdot \sin x$ in the interval $(0, 2\pi)$
- 5. Find the Half Range Cosine Series for f(x) = x, 0 < x < 2. Using Parseval's identity deduce that
 - Using Parseval's identity deduce that

 (i) $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$ (ii) $\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} + \cdots$
- 6. Obtain the expansion of $f(x) = x(\pi x)$, $0 < x < \pi$ as a Half Range Cosine Series. Hence show that

(i)
$$\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 (ii) $\sum_{1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$ (iii) $\sum_{1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{96}$

- 7. Determine the Fourier series of $f(x) = \left(\frac{\pi x}{2}\right)^2$ over $(0, 2\pi)$. Hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$
- 8. Obtain the Fourier expansion for $f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$ and hence deduce that $\frac{\pi^2}{8} = \frac{1}{12} + \frac{1}{32} + \frac{1}{52} + - - -$

9. Find a Fourier series of
$$f(x) = x^2$$
 in $(-\pi, \pi)$ and hence prove that
(i) $\frac{\pi^2}{6} = \sum_{1}^{\infty} \frac{1}{n^2}$ (ii) $\frac{\pi^2}{12} = \sum_{1}^{\infty} \frac{(-1)^{n+1}}{n^2}$

(iii)
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$
 (iv) $\frac{\pi^4}{90} = \sum_{n=1}^{\infty} \frac{1}{n^4}$

- 10. Find a Fourier series in $(-\pi, \pi)$ of $f(x) = \begin{cases} x + \pi/2, & -\pi < x < 0 \\ \pi/2 x, & 0 < x < \pi \end{cases}$. and hence deduce that $\sum_{1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$ and $\sum_{1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96}$

11. Find a Cosine Series of period
$$2\pi$$
 to represent $\sin x$ in $0 \le x \le \pi$. Hence deduce that (i) $\frac{\pi^2 - 8}{16} = \frac{1}{1^2 \cdot 3^2} + \frac{1}{3^2 \cdot 5^2} + \frac{1}{5^2 \cdot 7^2} + \cdots$ (ii) $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ (iii) $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots = \frac{1}{2}$

(ii)
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$

(iii)
$$\frac{1}{1 \cdot 3} + \frac{3}{3 \cdot 5} + \frac{3}{5 \cdot 7} + \dots = \frac{1}{2}$$