

Graph Theory

Al Inspire

Basics

What is Graph Theory?

- → Mathematical study/theory of graphs
 - Properties
 - Applications
- → Graph is composed of
 - Vertices/Nodes/Points
 - ◆ Connected by Edges/Arcs/Lines
- → Study of relationships

Importance/Impact

- → Used in a multitude of diff. Comp. apps
 - ◆ Use algorithms to tackle diff. Problems
 - Ex.: Shortest path problem
- → Simpler to express data in graph vs. table
 - See relationships between data
 - Better understanding of data

Where is it used?

- → Social media
 - Social networks
 - Facebook
 - Instagram
 - Snapchat, etc.
 - Connect Platforms
 - Connecting students or prof. With each other
- → Shortest Route
 - ◆ GPS

History

- → Leonhard Euler 1736
 - Greatest mathematician
 - ◆ Founder of Graph Theory
 - ◆ 7 Bridges of Konigsberg Bridge Problem

- → Activity
 - https://www.mathsisfun.com/activity/seven-bridges-konigsberg.html

Vocabulary

Simple Vocab

- → Graph
 - Set of vertices/nodes connected with a set of edges
- → Loop
 - ♦ Edge with same vertex at each end
- → Degree of vertex
 - ♦ Number of edges which have that vertex as an endpoint
- → Simple Graph
 - Graph with no loops
 - ◆ No more than one edge connecting a pair of vertices

simple graph

nonsimple graph with loops

Simple Vocab (cont.)

- → Walk
 - Sequence of edges where each edge is the beginning of the consecutively next edge (except last)
- → Trail
 - No edge is repeated
- → Path
 - ◆ No vertex is repeated
- → Cycle
 - Closed path
- → Hamiltonian cycle
 - Cycle which visits every vertex
 - Each vertex is only visited once
 - Cycle is a path

Terms & Definitions

- → Connected graph
 - Path exists between every pair of vertices
- → Tree
 - Simple connected graph
 - ♦ NO CYCLES!
- → Complete graph
 - Simple graph where every pair of vertices is connected by an edge.

Types of Graphs

- → Bipartite graph
 - ◆ 2 disjoint sets (no elements in common & no vertices between 2 sets are adj.)
 - ◆ Bigraph
- → Directed graph
 - ◆ All edges are directed
 - Particular direction
- → Undirected graph
- → DAG (Directed Acyclic Graph)

Types of Graphs

Examples of Types of Graphs

Representing Graphs

- → Adjacency matrix
 - ◆ Square n * n matrix
 - Each number indicates whether vertices are adjacent or not
 - Diagonal: has 0s: vertice can't be adjacent to itself
 - ♦ 2D array in Java
- → Adjacency list
 - ◆ Represents graph with <u>list</u>
 - Represents if vertices are adjacent to each other in graph
 - Represents length if directed graph between adjacent vertices

Adjacency Matrix

$$\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

Adjacency List

Directed Graph

Adjacency List Representation

www.kodefork.com

Algorithms & Activities

Activity 1: How Many Colors?

https://www.colorado.edu/education/DMP/activities/graph/ddgact03.html

https://www.colorado.edu/education/DMP/activities/graph/ddghnd03.html

4 COLOR THEOREM

→ No more than 4 colors are needed to color regions of map

◆ No 2 adjacent regions have same color

Activity 2 : Shortest Route Problem

https://www.colorado.edu/education/DMP/activities/graph/ddgact04.html

https://www.colorado.edu/education/DMP/activities/graph/ddghnd04.html

Breadth First Search

- Algorithm traversing/searching through graph
- Broad
- Visits siblings/neighbor nodes over children nodes

Breadth-first search

· Traverse through one level of children nedes, then traverse through the level of grandchildren nodes (and so on ...).

Depth First Search

- Algorithm traversing/searching through graph
- Deep
- Visits children nodes over sibling nodes

Depth-first search

Traverse through left subtree(s) first, then traverse through the right subtree(s).

Dijkstra's Shortest Path Algorithm

- → Shortest path between nodes in a graph
 - ◆ Ex : road networks
- → Used by GPS and other systems
- → https://www.youtube.com/watch?v=McXPZz4c0FY

Bonus Activity 3: Travelling Salesman Problem

https://nrich.maths.org/2325

- → Visit all cities
- → Optimal path
 - ◆ Shortest distance
 - Min travel time

Quick Review of Concepts Learned

https://www.youtube.com/watch?v=82zlRaRUsaY

https://www.youtube.com/watch?v=2iViaEAytxw

