Factorial Designs

BIOE 498/598 PJ

Spring 2021

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

- ► Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

What is a factorial design?

Factorial designs find better optima

The problem with OFAT: Interactions

Using interaction plots for diagnosis

Table 3.1 Mooney Viscosity of Silica B at 100° C						
Naphthene Oil (phr)			Filler	(phr)		
	0	12	24	36	48	60
0	25	30	35	40	50	60
10	18	21	24	28	33	41
20	13	15	17	20	24	29
30	11	14	15	17	18	25

- Factorial designs find better optima.
- ► Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

Factorial designs seem less efficient...

Imagine an experiment with four factors, each with two levels (-, +). We want three replicates for each level.

One Factor at a Time Design

- ▶ 3 runs at level (-)
- ▶ 4 factors \times 3 runs at (+) = 12 runs
- ▶ 15 total runs

Factorial Design

 $ightharpoonup 2^4 = 16$ total runs

... until you look at the designs

OFAT J. .: ---

O	FAI	desig	n
x_1	x_2	<i>X</i> ₃	<i>X</i> ₄
_	_	_	_
_	_	_	_
_	_	_	_
+	_	_	_
+	_	_	_
+	_	_	_
_	+	_	_
_	+	_	_
_	+	_	_
_	_	+	_
_	_	+	_
_	_	+	_
_	_	_	+
_	_	_	+
_	_	_	+

Fa	ctoria	ıl des	ign
x_1	x_2	<i>X</i> ₃	<i>X</i> ₄
_	_	_	_
+	_	_	_
_	+	_	_
+	+	_	_
_	_	+	_
+	_	+	_
_	+	+	_
+	+	+	_
_	_	_	+
+	_	_	+
_	+	_	+
+	+	_	+
_	_	+	+
+	_	+	+
_	+	+	+
+	+	+	+

Factorial designs give more replicates per run

A factorial design in n variables has 2^n runs, but 2^{n-1} replicates at each level (-, +).

Factorial designs give more replicates per run

A factorial design in n variables has 2^n runs, but 2^{n-1} replicates at each level (-, +).

Imagine a design with n variables at k levels.

- After the initial design, adding another replicate requires
 - nk runs for a OFAT design
 - $ightharpoonup \sim k$ runs for a factorial design

- Factorial designs find better optima.
- Factorial designs are more efficient.
- ► Factorial designs make better estimates of effect sizes.

What are the other factors doing when x_3 is high?

C	FAT	desig	n	Fa	ctoria	ıl des	ign
x_1	x_2	<i>X</i> 3	<i>X</i> ₄	x_1	x_2	<i>X</i> 3	<i>X</i> ₄
_	_	_	_	_	_	_	_
_	_	_	_	+	_	_	_
_	_	_	_	_	+	_	_
+	_	_	_	+	+	_	_
+	_	_	_	_	_	+	_
+	_	_	_	+	_	+	_
_	+	_	_	_	+	+	_
_	+	_	_	+	+	+	_
_	+	_	_	_	_	_	+
_	_	+	_	+	_	_	+
_	_	+	_	_	+	_	+
_	_	+	_	+	+	_	+
_	_	_	+	_	_	+	+
_	_	_	+	+	_	+	+
_	_	_	+	_	+	+	+

What do the effect sizes estimate?

For OFAT designs:

 β_i is the effect of moving x_i from — to + while all other factors stay at —.

What do the effect sizes estimate?

For OFAT designs:

 β_i is the effect of moving x_i from — to + while all other factors stay at —.

For factorial designs:

 β_i is the effect of moving x_i from — to + averaged over all other factors at all levels.

Factorial designs are nested

Factorial design

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	
	_	_	_	
+	_	_	_	
_	+	_	_	
+	+	_	_	
_	_	+	_	
+	_	+	_	
_	+	+	_	
+	+	+	_	
_	_	_	+	
+	_	_	+	
_	+	_	+	
+	+	_	+	
_	_	+	+	
+	_	+	+	
_	+	+	+	
+	+	+	+	

When $x_3 = -$					
x_1	x_2	<i>X</i> ₄			
_	_	_			
+	_	_			
_	+	_			
+	+	_			
_	_	+			
+	_	+			
_	+	+			
+	+	+			

When
$$x_3 = +$$
 x_1 x_2 x_4
 $+$ $+$ $+$ $+$ $+$ $+$ $+$
 $+$ $+$ $+$