TYPES OF ERRORS

UNDERFITTING

OVERFITTING

UNDERFITTING

Does not do well in the training set.

Error due to bias.

OVERFITTING

Does well in the training set, but it tends to memorize it instead of learning the characteristics of it.

Error due to variance.

UNDERFITTING Error due to bias This model will not do well in the training set

OVERFITTING

Error due to variance
This model performs poorly in the testing set

UNDERFITTING

Error due to bias

OVERFITTING

Error due to variance

TRADEOFF

High bias (underfitting)

Not animals

Animals

Oversimplify the problem

Bad on training set

Bad on testing set

Good Model

No dogs

Dogs

Good model
Good on training set
Good on testing set

High variance (overfitting)

No dogs who wag their tails

Dogs who wag their tails

Overcomplicate the problem
Great on training set
Bad on testing set

MODEL COMPLEXITY GRAPH

MODEL COMPLEXITY GRAPH

Degree = 1

QUADRATIC MODEL

Degree = 2

LINEAR MODEL

Degree = 1

TRAINING ERRORS

TESTING ERRORS

QUADRATIC MODEL

Degree = 2

POLYNOMIAL MODEL

Degree = 6

MODEL COMPLEXITY GRAPH

MODEL COMPLEXITY GRAPH

THOU SHALT NEVER USE YOUR TESTING DATA FOR TRAINING

SOLUTION: CROSS VALIDATION

MODEL COMPLEXITY GRAPH

K-FOLD CROSS VALIDATION

K-FOLD CROSS VALIDATION

K-FOLD CROSS VALIDATION

TESTING

CROSS VALIDATION IN SKLEARN

from sklearn.model_selection import KFold kf = KFold(12, 3)

for train_indices, test_indices in kf: print train_indices, test_indices

[34467891011] [012] [01267891011] [345] [01234591011] [678] [012345648] [91011]

CROSS VALIDATION IN SKLEARN

from sklearn.model_selection import KFold
kf = KFold(12, 3, shuffle = True)

for train_indices, test_indices in kf: print train_indices, test_indices

[0 1 2 3 4 5 6 8 11] [7 9 10] [0 1 2 4 6 7 8 9 10] [3 5 11] [1 3 5 6 7 8 9 10 11] [0 2 4] [0 2 3 4 5 7 9 10 11] [1 6 8]

HIGH BIAS DEGREE = 1

With 4 Training Points

Training Error: Tiny
CV Error: Large

With 8 Training Points

Training Error: Small
CV Error: Medium

With 12 Training Points

Training Error: Small
CV Error: Medium

With 4 Training Points

Training Error: Tiny
CV Error: Large

With 8 Training Points

Training Error: Small
CV Error: Medium

With 12 Training Points

Training Error: Small

CV Error: Small

With 4 Training Points

Training Error: Tiny

CV Error: Large

With 8 Training Points

Training Error: Small

CV Error: Large

With 12 Training Points

Training Error: Tiny

CV Error: Large

TRAINING A LOGISTIC REGRESSION MODEL

TRAINING A LOGISTIC REGRESSION MODEL

Training

Cross Validation

Testing

TRAINING A LOGISTIC REGRESSION MODEL

TRAINING A DECISION TREE

Hyper-parameters

Parameters

Depth = 3

Training

Cross Validation

Testing

TRAINING A DECISION TREE

Parameters Hyper-parameters F, Score Training Depth =1 0.4 **Cross Validation** Depth = 20.5 Depth = 30.9 **Testing** Depth = 40.2

TRAINING A SUPPORT VECTOR MACHINE

GRID SEARCH CROSS VALIDATION

