

# Mechanical Engineering Department ME7194D Project (Part 1)

# Demand Forecasting and Inventory Management of Medicines in a Healthcare Centre

UNDER THE GUIDENCE OF PROFESOR R. SRIDHARAN

NAME – SOURABH GHAGHRE ROLL NO.- M220550ME



#### **Outlines**

- > Self Evaluation
- Data Collection Information
- Information Regarding Dataset
- Data Preprocessing
- Model Building
  - Theoretical Concept of Each Model
  - Mathematical Concept Behind The Model
  - Pseudo Code For Each Model
  - Python Code For Each Model
  - Output of Each Model
- Conclusion
- > Future Plans
- Recent Literature Review

#### **Self Evaluation**

#### What did I do in last one month?

- 1. Collected data from NITC healthcare centre (collected 2 months of data).
- 2. Have done some literature review
- 3. Developed machine learning models using Python on Jupyter Notebook.
- 4. Analyzed the results obtained.

# **Data Collection Information**

| Symptoms/dignosised         | DATE       | SEX | AGE        | MP1             | QUANTITY | MP2             | QUANTITY MP2 | . MP3         | QUANTITY MP3 | MP4         |
|-----------------------------|------------|-----|------------|-----------------|----------|-----------------|--------------|---------------|--------------|-------------|
| LEG PAIN                    | 10-08-2022 | F   | 20-01-1900 | ZERODL          | 3        | PANTOP DSR      | 3            |               |              |             |
| WOUND DRESSING              | 05-08-2022 | М   | 20-01-1900 | ZERODOL         | 3        | PANTOP DSR      | 3            |               |              |             |
| VIRAL FEVER                 | 11-08-2022 | М   | 19-01-1900 | ASCORYL SYRUP   | 1        | DOLO 600        | 9            | LEVOCET       | 3            |             |
| FEVER/COUGH                 | 10-08-2022 | F   | 19-01-1900 | DOLO 650        | 9        | MOX 500         | 3            | ASCORYL SYRUP | 1            |             |
| FEVER                       | 11-08-2022 |     |            |                 |          |                 |              |               |              |             |
| FEVER/LOOSE MOTION          | 23-08-2022 | M   | 21-01-1900 | CEFIXIME 200    | 6        | DOLO 600        | 9            | ENUFF 100     | 6            | ORS         |
| LEG PAIN                    | 19-08-2022 | F   | 21-01-1900 | ZERODOL         | 2        | PANTOP DSR      | 2            |               |              |             |
| ACUTE GASTIRIST/LOOSE STOOL | 17-08-2022 | M   | 20-01-1900 | PANTOP DSR      | 3        | ORS             | 2            |               |              |             |
| URI                         | 17-08-2022 | M   | 19-01-1900 | MOX 500         | 6        | CPM             | 6            |               |              |             |
| COUGH                       | 12-08-2022 | F   | 19-01-1900 | TUSQ            | 1        |                 |              |               |              |             |
| SKIN INFECTION              | 02-08-2022 | M   | 20-01-1900 | CANDID CREAM    | 1        | LEVOCET         | 3            |               |              |             |
| URI                         | 16-08-2022 | M   | 19-01-1900 | ASCORYL SYRUP   | 1        | DOLO 600        | 6            | MOX 500       | 6            |             |
| URI                         | 23-08-2022 | M   | 20-01-1900 | PARACETAMOL 500 | 6        | MONTEE LC       | 2            | SYRUP ASCORYL | 1            | MOXCLAV     |
| VIRAL FEVER                 | 01-08-2022 | М   |            | DOLO 650        | 6        | LEVOCET         | 2            |               |              |             |
| COUGH                       | 03-08-2022 | M   |            | ASCORYL SYRUP   | 1        | LEVOCET         | 2            |               |              |             |
| SHOULDER PAIN               | 15-08-2022 | М   | 20-01-1900 | ZERODOL         | 6        | OME Z           | 3            | B COMPLEX     | 5            |             |
| FEVER/COLD                  | 05-08-2022 | M   | 19-01-1900 | PARACETAMOL 500 | 6        | LEVOCET         | 2            |               |              |             |
| URI                         | 07-08-2022 |     |            |                 |          |                 |              |               |              |             |
| WOUND DRESSING              | 03-08-2022 | F   |            | BETADIN         | 1        | PANTOP DSR      | 3            |               |              |             |
| URI                         | 10-08-2022 | M   | 19-01-1900 | ASCORYL SYRUP   | 1        | MOX CLAVE       | 3            | LEVOCET       | 2            | PERACETOMOL |
| R/W                         | 12-08-2022 |     |            |                 |          |                 |              |               |              |             |
| VIRAL FEVER                 | 03-08-2022 | M   |            | PARACETAMOL 500 | 6        | MOTEE LC        | 2            |               |              |             |
| SINUS                       | 01-08-2022 | M   | 19-01-1900 |                 | 3        |                 |              |               |              |             |
| ABDOMINAL PAIN              | 06-08-2022 | М   | 20-01-1900 | CIPLOX TZ       | 3        | OME             | 3            |               |              |             |
| VIRAL FEVER                 | 19-08-2022 |     | 20-01-1900 |                 |          | MOX 500         | 9            | MONTEE LC     | 3            |             |
| URI                         | 17-08-2022 | F   | 20-01-1900 | AZEE 500        | 2        | PARACETOMOL 500 | 6            |               |              |             |
| FOOT PAIN                   | 16-08-2022 | F   | 20-01-1900 | MOX CLAV        | 6        |                 |              |               |              |             |
| REFER KMCT                  | 19-08-2022 | М   | 20-01-1900 | NA              |          |                 |              |               |              |             |

2-months
of Data
Collection
(Sample)

All features are the same

3-years of
Data
Generation
(Population)

### **DATA PREPROCESSING**

### Cleaning

Removing irrelevant or incorrect data

## **Transforming**

Converting data into a suitable format

#### **Organizing Data**

Organizing data into a structured format

# **Data Preprocessing By Python Codes**

```
In [310]: df.shape
Out[310]: (42520, 14)
In [311]: df.nunique()
Out[311]: ROLL NO.
                             42520
          DATE
                              1127
          GENDER
                                 2
          AGE
                                10
          DIGNOSIS
                                10
          MEDICINE 1
          QUANTITY 1
          MEDICINE 2
          QUANTITY 2
          MEDICINE_3
          QUANTITY 3
          MEDICINE 4
          QUANTITY 4
          TOTAL_QUANTITY
                                10
          dtype: int64
In [312]: df = df.drop(['ROLL NO.'], axis = 1)
In [313]: df.columns = [col.lower().replace(' ', '') for col in df.columns]
In [314]: df.columns
Out[314]: Index(['date', 'gender', 'age', 'dignosis', 'medicine_1', 'quantity_1',
                  'medicine_2', 'quantity_2', 'medicine_3', 'quantity 3', 'medicine 4',
                  'quantity_4', 'total_quantity'],
                dtype='object')
```

Contd..

# **Each Features Specific Information**

```
In [315]: df.gender.value counts()
Out[315]: F 21289
               21231
          Name: gender, dtype: int64
In [316]: df.date.min(), df.date.max()
Out[316]: (Timestamp('2021-08-01 00:00:00'), Timestamp('2024-08-31 00:00:00'))
In [317]: df.dignosis.unique()
Out[317]: array(['COLD', 'URTI', 'SKIN_INFECTION', 'ABDOMINAL_PAIN', 'LEG_PAIN',
                 'ROUTINE_CHEKUP', 'LOOSE_MOTION', 'ACIDITY', 'VIRAL FEVER',
                 'COUGH'l, dtvpe=object)
In [318]: df.medicine 1.unique()
Out[318]: array(['Mox 500', 'Dolo 650', 'CANDID_CREAM', 'CIFIXIM', 'Zerodol', nan,
                 'ENUFF', 'Pantop 40', 'Paracetamol', 'Ascoryl_Syrup'], dtype=object)
In [319]: df.medicine 2.unique()
Out[319]: array(['PARACETOMOL', 'ASCORYL_SYRUP', 'LEVOCET', 'PANTOP_40', nan, 'ORS',
                 'AZEE', 'DOLO 650'], dtype=object)
```

# **Groupby** -It is used for grouping data based on some criterion, typically a column or a set of columns in a DataFrame.

#### CODE

```
import pandas as pd
# Example DataFrame
data = {'Category': ['A', 'B', 'A', 'B', 'C'],
    'Value': [10, 20, 30, 40, 50]}
df = pd.DataFrame(data)
# Group by the 'Category' column
grouped_df = df.groupby('Category')
# Calculate the mean of each group
mean values = grouped df.mean()
# Print the result
print(mean values)
```

#### **EXAMPLE**

```
Original DataFrame:
 Category Value
    Α
       10
  B 20
2 A 30
   B 40
       50
Grouped and Summed DataFrame:
Category Value
          40
Α
          60
          50
```

# weekly observation in the below table

In [515]: df\_clean

Out[515]:

|     | year_week | age       | female | male | abdominal_pain | acidity | cold | cough | leg_pain | loose_motion |
|-----|-----------|-----------|--------|------|----------------|---------|------|-------|----------|--------------|
| 0   | 2021-30   | 22.370370 | 13     | 14   | 3              | 2       | 3    | 2     | 3        | 3            |
| 1   | 2021-31   | 22.219512 | 51     | 72   | 12             | 13      | 12   | 13    | 12       | 12           |
| 2   | 2021-32   | 22.297872 | 64     | 77   | 14             | 14      | 15   | 14    | 14       | 14           |
| 3   | 2021-33   | 22.594828 | 56     | 60   | 12             | 11      | 11   | 11    | 12       | 12           |
| 4   | 2021-34   | 22.451613 | 91     | 95   | 18             | 19      | 19   | 19    | 18       | 18           |
|     |           |           |        |      |                |         |      |       |          |              |
| 157 | 2024-31   | 22.415020 | 134    | 119  | 25             | 26      | 25   | 26    | 25       | 25           |
| 158 | 2024-32   | 22.700389 | 129    | 128  | 26             | 25      | 26   | 25    | 26       | 26           |
| 159 | 2024-33   | 22.472492 | 153    | 156  | 31             | 31      | 31   | 31    | 31       | 30           |
| 160 | 2024-34   | 22.200000 | 116    | 134  | 25             | 25      | 25   | 25    | 25       | 25           |
| 161 | 2024-35   | 22.808824 | 97     | 107  | 20             | 21      | 20   | 21    | 20       | 21           |

### **Correlation Matrix**



## **Pattern Visualization of My Dataset**



# **MODEL BUILDING**

# MACHINE LEARNING

# UNIVARIATE MODEL

Prediction Is Based On Single Features

# MULTIVARIATE MODEL

Prediction Is
Based On Multiple
Features



Prediction Is Based on Single Features

# UNIVARIATE MODEL

SINGLE FEATURE AS INPUT VARIABLE (total\_quantity)

TIME SERIES MODEL

- Auto Regressive Integrated Moving Average(ARIMA)
- Moving Average(MA)
- > Simple Exponential Smoothing(SES)
- **→** Holt Linear (HL)
- **→** Holt Winter (HW)

# Before implementing a model, the question arises: why time series models?

#### Time series models are used for several reasons:

- 1. primarily to analyze, interpret, and make predictions based on temporal data.
- 2. Time series models help in identifying and understanding patterns, trends, and seasonality in data that change over time.
- 3. One of the main objectives of time series modeling is to forecast future values based on historical data.

**Note:** Temporal data refers to data that is collected and recorded over time, typically in a sequential or chronological order

# ARIMA MODEL

# Why ARIMA MODEL?

#### **Because:**

- 1. Dataset is time dependent.
- 2. Dataset is stationary.
- 3. Input variable (total\_quantity) is showing Auto-correlation.



# **ARIMA Model (AutoRegressive Integrated Moving Average)**

# **Model Components**:

- **1.AutoRegressive (AR) Component**: This captures the **linear relationship** between an observation and its lagged values. The order of the AR component is denoted by p.
- **2.Integrated (I) Component**: This represents the differencing of the time series to make it **stationary**. The order of differencing is denoted by *d*.
- **3.Moving Average (MA) Component**: This models the **dependency between an observation and a residual error** from a moving average model. The order of the MA component is denoted by q.

**NOTES**: lag refers to the time difference between observations in a time series.

# Applying an ARIMA model involves a systematic procedure that includes the following steps:



#### **Understand the Data**

- •Explore the time series data to understand its patterns, trends, and seasonality.
- •Plot the data to inspect any evident patterns visually.



**INFERENCE:** Fully time-dependent, zig-zag pattern

### **Stationarity Check**

- •Stationary tends to -1. Mean constant
  - 2. Standard deviation constant
- •Check if the time series is stationary using visual inspection and statistical tests like the **Augmented Dickey-Fuller (ADF) test**.
- •If the series is not stationary, apply differencing until stationarity is achieved.

#### Augmented Dickey-Fuller (ADF) test

Test is a statistical test used to determine whether a unit root is present in a time series dataset.

A **unit root** is an indication that a time series is non-stationary. The presence of a unit root implies that the time series exhibits a **random walk and has a non-constant mean**, which makes it challenging to predict future values

**NOTES**: The ADF statistic is the primary test statistic. It measures how strongly the time series is influenced by a unit root. The more negative the ADF statistic, the stronger the evidence against the presence of a unit root, means data is stationary.

#### Contd...

## **Hypothesis Testing For Finding A Stationarity**

#### The null hypothesis is

Ho: Non-stationary ( $\phi = 1$ )

#### The alternative hypothesis is

H<sub>1</sub>: Stationary  $(\phi < 1)$ 

Φ= unit root

#### p-value:

p-value  $< \alpha$  reject H<sub>0</sub>,

p-value  $\geq \alpha$  do not reject H<sub>0</sub>

Significance Level ( $\alpha$ ): 0.05

### **Contd..** I performed the code in my data set, codes are

```
from statsmodels.tsa.stattools import adfuller
# Perform Augmented Dickey-Fuller test
adf result = adfuller(df clean['total quantity'], autolag='AIC')
# Print the results
print("ADF Statistic:", adf_result[0])
print("p-value:", adf result[1])
print("Critical Values:", adf result[4])
# Interpret the results
if adf_result[1] <= 0.05:</pre>
    print("The time series is likely stationary.")
else:
    print("The time series is likely non-stationary.")
ADF Statistic: -7.673963682440713
p-value: 1.5666522937096034e-11
Critical Values: {'1%': -3.4750180242954167, '5%': -2.8811408028842043, '10%': -2.577221358046935}
The time series is likely stationary.
```

**INFERENCE:** p-value<  $\alpha$ , means reject the null hypothesis, means alternative hypothesis is acceptable, means unit root less than 1, data is stationary



## **Identify Model Parameters (p, d, q):**

- •p: Order of the autoregressive (AR) component (lag order for autocorrelation).
- •d: Order of differencing needed to achieve stationarity.
- •q: Order of the moving average (MA) component (lag order for moving average).
- •Plot autocorrelation function (ACF) and partial autocorrelation function (PACF) to identify potential values for p and q.





#### **Train ARIMA Model**

- •Split the data into training and testing sets.
- •Use the training set to fit the ARIMA model.

#### **Pseudo-Code for ARIMA MODEL**

```
function fit_arima_model(data, order=(p, d, q)):
    model = ARIMA(data, order=order)
    fitted_model = model.fit(disp=0)
    return fitted_model
function forecast_arima_model(fitted_model, steps):
    forecast, stderr, conf_int = fitted_model.forecast(steps=steps)
    return forecast
```

## Python code for ARIMA model

```
def run fcast(ser,model,h,period):
                  if model == "arima":
                                    print("Running Arima....")
                                              stepwise\_model\_arima = auto\_arima(ser, start\_p=0, start\_q=0, max\_p=2, max\_q=2, m=period, seasonal=False, max\_d=1, max_d=1, max_
                                                                                                                                      trace=False,
                                                                                                                                      error_action='ignore',
                                                                                                                                      suppress_warnings=True,
                                                                                                                                      stepwise=True)
                                            fcast = np.round(stepwise_model_arima.predict(n_periods=h)).astype(int)
                                    fcast = []
                                    history = ser.tolist()
                                    for i in range(0,h):
                                                       model = ARIMA(history, order = (5,0,4))
                                                       model fit = model.fit()
                                                       out = model_fit.forecast()
                                                       yhat = out[0]
                                                       fcast.append(yhat)
                                                       history.append(yhat)
                                     return fcast;
```

### **ARIMA Output**



arima\_fcast=univariate\_forecast(train, 'arima', test)
arima\_fcast

Running Arima.....

|     | year_week | total_quantity | Predicted   |
|-----|-----------|----------------|-------------|
| 149 | 2024-23   | 2886           | 2515.160967 |
| 150 | 2024-24   | 3006           | 2928.539606 |
| 151 | 2024-25   | 2500           | 2639.545482 |
| 152 | 2024-26   | 2344           | 2229.638764 |
| 153 | 2024-27   | 2556           | 2503.625467 |
| 154 | 2024-28   | 2985           | 2930.529543 |
| 155 | 2024-29   | 3100           | 2945.116324 |
| 156 | 2024-30   | 2023           | 2317.640260 |
| 157 | 2024-31   | 2536           | 2394.437882 |
| 158 | 2024-32   | 2564           | 2927.037659 |
| 159 | 2024-33   | 3092           | 3107.455161 |
| 160 | 2024-34   | 2500           | 2550.499655 |
| 161 | 2024-35   | 2044           | 2271.640619 |

#### Performance metrics

```
arima_fcast_mse = mean_squared_error(arima_fcast['total_quantity'], arima_fcast['Predicted'])
arima_fcast_mape = mean_absolute_percentage_error(arima_fcast['total_quantity'], arima_fcast['Predicted'])*100
arima_fcast_rmse = sqrt(arima_fcast_mse)
metrics_table = pd.DataFrame({
    'Metric': ['Mean Squared Error (MSE)', 'Root Mean Squared Error (RMSE)', 'Mean Absolute Percentage Error (MAPE)'],
    'Value': [arima_fcast_mse,arima_fcast_rmse,arima_fcast_mape]
})
# Display the table
print(metrics_table)
```

```
Metric Value
Mean Squared Error (MSE) 38386.969018
Root Mean Squared Error (RMSE) 195.925927
Mean Absolute Percentage Error (MAPE) 6.363061
```

Studied forecasting techniques in Manufacturing and Planning Control (MPC) last year. Now, these techniques are implemented using Python.



- Moving Average (MA)
- ➤ Simple Exponential smoothing (SES)
- **→** Holt Linear (HL)
- **≻** Holt Winter (HW)

The mathematical concepts behind traditional forecasting methods using-

"Supply Chain Engineering Models and Applications" by A. Ravi Ravindran and Donald Paul Warsing as my reference book.

## **Moving Average**

Here the entire historical data is used by computing the average of all the past demand for the forecast.

$$F_{n+1} = \sum_{t=1}^{n} \frac{D_t}{n}$$

#### where

Fn+1 is the forecast of demand for period (n + 1)

D=Demand

n= number of periods

## Simple exponential smoothing(SES)

The Simple Exponential Smoothing (SES) method is a popular technique in time series analysis for forecasting based on the exponentially weighted moving average of past observations. It assigns exponentially decreasing weights to historical data, giving more importance to recent observations.

$$F_{n+1} = \alpha D_n + (1 - \alpha) F_n$$

 $\alpha$  is the smoothing parameter (0<  $\alpha$ <1)

#### **Pseudo-Code SES**

```
function simple exponential smoothing(historical DATA, alpha):
  forecasts = []
  forecasts.append(historical_DATA[0]) # Initial forecast is set equal
to the first observation
  for t in range(1, len(historical_DATA)):
    forecast t = alpha * historical DATA[t-1] + (1 - alpha) *
forecasts[t-1]
    forecasts.append(forecast t)
  return forecasts
```

### Machine Learning Codes For Exponential Moving Average

```
elif model == "simexp":
    print("Running Simple Exp.....")
    fcast = np.round(SimpleExpSmoothing(np.asarray(ser)).fit(smoothing_level=0.2,optimized=False).forecast(h)).astype(int)
    fcast[fcast<0] = 0
    return fcast;</pre>
```

#### Performance metrics

```
simexp_fcast_mse = mean_squared_error(simexp_fcast['total_quantity'], ma_fcast['Predicted'])
simexp_fcast_rmse = sqrt(simexp_fcast_mse)
simexp_fcast_mape = mean_absolute_percentage_error(simexp_fcast['total_quantity'], simexp_fcast['Predicted'])*100
# Create a DataFrame to store the metrics
metrics_table = pd.DataFrame({
    'Metric': ['Mean Squared Error (MSE)', 'Root Mean Squared Error (RMSE)', 'Mean Absolute Percentage Error (MAPE)'],
    'Value': [ma_fcast_mse, ma_fcast_mse, ma_fcast_mape]
})
# Display the table
print(metrics_table)
```

```
Metric Value
Mean Squared Error (MSE) 143927.307692
Root Mean Squared Error (RMSE) 379.377527
Mean Absolute Percentage Error (MAPE) 11.303470
```

#### Simple exponential Moving Average Output



In [821]: ma\_fcast = univariate\_forecast(train, 'ma', test)
 ma\_fcast

Running Moving Average.....

#### Out[821]:

|     | year_week | total_quantity | Predicted |
|-----|-----------|----------------|-----------|
| 149 | 2024-23   | 2886           | 2485      |
| 150 | 2024-24   | 3006           | 2485      |
| 151 | 2024-25   | 2500           | 2485      |
| 152 | 2024-26   | 2344           | 2485      |
| 153 | 2024-27   | 2556           | 2485      |
| 154 | 2024-28   | 2985           | 2485      |
| 155 | 2024-29   | 3100           | 2485      |
| 156 | 2024-30   | 2023           | 2485      |
| 157 | 2024-31   | 2536           | 2485      |
| 158 | 2024-32   | 2564           | 2485      |
| 159 | 2024-33   | 3092           | 2485      |
| 160 | 2024-34   | 2500           | 2485      |
| 161 | 2024-35   | 2044           | 2485      |

### **Holt Linear(HL)**

Holt's Linear Exponential Smoothing (or simply Holt's Linear) is a method for time series forecasting that extends the Simple Exponential Smoothing (SES) method to handle data with a trend component. It's particularly useful when there is a linear trend in the time series.

Holt's method is also known as double exponential smoothing or trend adjusted exponential smoothing method.

# **Key Concepts of Holt's Linear Exponential Smoothing:** Components:

- •Holt's Linear considers two main components of a time series: level (Lt) and trend (Tt).
- •Level (Lt) represents the smoothed value of the series.
- •Trend (Tt ) represents the rate of change in the series.

### Smoothing Parameters ( $\alpha$ and $\beta$ ):

• $\alpha$  and  $\beta$  are smoothing parameters that control the weights assigned to the observed value and the previous level/trend.

### **Forecast Calculation**

The forecast (Ft) is a combination of the level and trend components:

$$F_{t+1} = L_{t+1} + T_{t+1}$$

Under the exponential smoothing method, the estimate of the level for (t+1) is given by

$$L_{t+1} = \alpha D_t + (1 - \alpha) F_t$$

The same approach is used to estimate the trend factor for (t+1) using another smoothing constant  $\beta$  as follows

$$T_{t+1} = \beta [L_{t+1} - L_t] + (1 - \beta)T_t$$

### **Pseudo-Code Holt Linear**

```
function holt_linear_exponential_smoothing(data, alpha, beta):
  # Initialize level and trend
  level = data[0]
  trend = data[1] - data[0]
  # Initialize forecasts list
  forecasts = [data[0]]
  # Iterate through the data
  for i in range(1, len(data)):
    # Calculate forecast
    forecast = level + trend
    forecasts.append(forecast)
    # Update level and trend
    level = alpha * data[i] + (1 - alpha) * (level + trend)
    trend = beta * (level - forecasts[i-1]) + (1 - beta) * trend
    return forecasts
```

### Machine Learning Codes for Holt linear

```
elif model == "holtlinear":
    print("Running Holt Linear.....")
    fcast = np.round(Holt(ser).fit(smoothing_level = 0.2,smoothing_slope = 0.1).forecast(h)).astype(int)
    fcast[fcast<0] = 0
    return fcast;</pre>
```

#### Performance metrics

```
hl_fcast_mse = mean_squared_error(hl_fcast['total_quantity'], hl_fcast['Predicted'])
hl_fcast_rmse = sqrt(hl_fcast_mse)
hl_fcast_mape = mean_absolute_percentage_error(hl_fcast['total_quantity'], hl_fcast['Predicted'])*100
# Create a DataFrame to store the metrics
metrics_table = pd.DataFrame({
    'Metric': ['Mean Squared Error (MSE)', 'Root Mean Squared Error (RMSE)', 'Mean Absolute Percentage Error (MAPE)'],
    'Value': [hl_fcast_mse, hl_fcast_rmse, hl_fcast_mape]
})
# Display the table
print(metrics_table)
```

Value

364.850971

Metric

Mean Squared Error (MSE) 133116.230769

Root Mean Squared Error (RMSE)

Mean Absolute Percentage Error (MAPE) 11.018878

### **Holt Linear Output**



hl\_fcast = univariate\_forecast(train, 'holtlinear', test)
hl\_fcast

Running Holt Linear.....

|     | year_week | total_quantity | Predicted |
|-----|-----------|----------------|-----------|
| 149 | 2024-23   | 2886           | 2554      |
| 150 | 2024-24   | 3006           | 2545      |
| 151 | 2024-25   | 2500           | 2537      |
| 152 | 2024-26   | 2344           | 2528      |
| 153 | 2024-27   | 2556           | 2519      |
| 154 | 2024-28   | 2985           | 2511      |
| 155 | 2024-29   | 3100           | 2502      |
| 156 | 2024-30   | 2023           | 2494      |
| 157 | 2024-31   | 2536           | 2485      |
| 158 | 2024-32   | 2564           | 2476      |
| 159 | 2024-33   | 3092           | 2468      |
| 160 | 2024-34   | 2500           | 2459      |
|     |           |                |           |

### **Holt-Winters Method(HW) (Triple Exponential Smoothing)**

The Holt-Winters method is an extension of the Holt method that introduces seasonality into the forecasting model. It's suitable for time series data with a trend and seasonality.

### **Model Components:**

- •Level (I): Represents the average value in the time series.
- •Trend (b): Represents the average rate of change in the time series.
- •Seasonality (s): Represents the repeating patterns or cycles in the time series.

### **Equations**

$$F_{t+1} = (L_{t+1} + T_{t+1})SI_{t+1}$$
 .....(1)

$$L_{t+1} = \alpha \left( \frac{D_t}{SI_t} \right) + (1 - \alpha)(L_t + T_t)$$
 .....(2)

$$T_{t+1} = \beta(L_{t+1} - L_t) + (1 - \beta)T_t$$
 .....(3)

$$SI_{t+p} = \gamma \left(\frac{D_t}{L_t}\right) + (1 - \gamma)SI_t \qquad \dots (4)$$

where  $\alpha$ ,  $\beta$ , and  $\gamma$  are smoothing constants between 0 and 1 for level, trend and seasonality respectively

#### **Pseudo-Code Holt Winter**

```
def holt_winters_exponential_smoothing(data, alpha, beta, seasonality_index):
  # Initialize level, trend, and seasonality
  level = data[0]
  trend = data[1] - data[0]
  seasonality = [data[i] / level for i in range(len(data))] # Initialize seasonality index
  # Initialize forecasts list
  forecasts = [data[0]]
  # Iterate through the data
  for i in range(1, len(data)):
    # Calculate forecast
    forecast = (level + trend) * seasonality[i]
    forecasts.append(forecast)
    # Update level, trend, and seasonality
    level = alpha * data[i] / seasonality[i] + (1 - alpha) * (level + trend)
    trend = beta * (level - forecasts[i-1]) + (1 - beta) * trend
    seasonality[i] = gamma * data[i] / level + (1 - gamma) * seasonality[i]
  return forecasts
```

### Machine Learning Codes For Holt Winter

Metric

Mean Squared Error (MSE) 216608.384615

Root Mean Squared Error (RMSE)

Mean Absolute Percentage Error (MAPE) 14.516564

#### Performance metrics

0

```
hw_fcast_mse = mean_squared_error(hw_fcast['total_quantity'], hw_fcast['Predicted'])
hw_fcast_rmse = sqrt(hw_fcast_mse)
hw_fcast_mape = mean_absolute_percentage_error(hw_fcast['total_quantity'], hw_fcast['Predicted'])*100
# Create a DataFrame to store the metrics
metrics_table = pd.DataFrame({
    'Metric': ['Mean Squared Error (MSE)', 'Root Mean Squared Error (RMSE)', 'Mean Absolute Percentage Error (MAPE)'],
    'Value': [hw_fcast_mse, hw_fcast_rmse, hw_fcast_mape]
})
# Display the table
print(metrics_table)
```

Value

465.412059

### **Output of Holt Winter**



```
hw_fcast = univariate_forecast(train, 'holtwinter', test)
hw_fcast
```

Running Holt Winters.....

|     | year_week | total_quantity | Predicted |
|-----|-----------|----------------|-----------|
| 149 | 2024-23   | 2886           | 2415      |
| 150 | 2024-24   | 3006           | 3013      |
| 151 | 2024-25   | 2500           | 2306      |
| 152 | 2024-26   | 2344           | 1990      |
| 153 | 2024-27   | 2556           | 2467      |
| 154 | 2024-28   | 2985           | 2771      |
| 155 | 2024-29   | 3100           | 2174      |
| 156 | 2024-30   | 2023           | 1721      |
| 157 | 2024-31   | 2536           | 2168      |
| 158 | 2024-32   | 2564           | 2357      |
| 159 | 2024-33   | 3092           | 2366      |
| 160 | 2024-34   | 2500           | 1720      |
| 161 | 2024-35   | 2044           | 2383      |
|     |           |                |           |

## **Results**

| S.NO | MODEL                              | RMSE       | МАРЕ      | ACCURACY |
|------|------------------------------------|------------|-----------|----------|
| 1.   | ARIMA                              | 195.925927 | 6.36      | 93.64    |
| 2.   | HOLT LINEAR                        | 364.850971 | 11.018878 | 88.99    |
| 3.   | SIMPLE<br>EXPONENTIAL<br>SMOOTHING | 379.377527 | 11.30     | 88.70    |
| 4.   | HOLT WINTER                        | 465.412059 | 14.516564 | 85.49    |
|      |                                    |            |           |          |

#### **CONCLUSION**

- 1. In this research, four methods (ARIMA, SES, HL, HW) were used on the stationary dataset.
- 2. The results show that the ARIMA model gives the best accuracy in predicting the total quantity of medicine.
- 3. As the dataset does not have any trend, no significant change in accuracy was observed in the Holt linear and simple exponential smoothing method.
- 4. Also, due to no seasonality impact on the dataset, the Holt winter results are quite similar to the other two methods.

### Future Plan

- 1. Continue data collection.
- 2. Work on multivariate forecasting models.
- 3. Develop codes for inventory management.

### **Recent Literature Review**

### **Author Name(year)**

AlRuthia et al (2023)

#### Title of the work/Journal Name

Local causes of essential medicines shortages from the perspective of supply chain professionals in Saudi Arabia/Saudi Pharmaceutical Journal

### **Objective of work**

To survey interruptions in the supply of essential drugs in the pharmaceutical supply chain

### Findings from the work

- The public centralized pharmaceutical procurement must reform its procurement and purchasing practices.
- Reform healthcare institutions' inventory management and demand forecasting to avoid frequent and unfortunate shortages of essential medicines.

### Gaps identified/Scope for future work

This research used descriptive questionnaires instead of quantitative study.

### **Recent Literature Review**

### **Author Name(year)**

Merkuryeva et al (2018)

#### Title of the work/Journal Name

Demand forecasting in pharmaceutical supply chains: A case study / ICTE in Transportation and Logistics

### **Objective of work**

To study an integrated procedure for in-market product demand forecasting and purchase order generation in the pharmaceutical supply chain

### Findings from the work

- The public centralized pharmaceutical procurement must reform its procurement and purchasing practices.
- Reform healthcare institutions' inventory management and demand forecasting to avoid frequent and unfortunate shortages of essential medicines.

#### **REFERENCES**

- AlRuthia, Y., Almutiri, N.M., Almutairi, R.M., Almohammed, O., Alhamdan, H., El-Haddad, S.A. and Asiri, Y.A., 2023. Local causes of essential medicines shortages from the perspective of supply chain professionals in Saudi Arabia. Saudi Pharmaceutical Journal, 31(6), pp.948-954.
- Merkuryeva, G., Valberga, A. and Smirnov, A., 2019. Demand forecasting in pharmaceutical supply chains: A case study. *Procedia Computer Science*, 149, pp.3-10.
- Dey, B., Roy, B., Datta, S. and Ustun, T.S., 2023. Forecasting ethanol demand in India to meet future blending targets: A comparison of ARIMA and various regression models. *Energy Reports*, 9, pp.411-418.
- Ravindran, A. R., & Warsing, D. P. (2013). Supply Chain Engineering Models and Applications. Taylor & Francis Group, an Informa business.

## THANK YOU