

From Statistics to Data Mining

Master 1
COlour in Science and Industry (COSI)
Cyber-Physical Social System (CPS2)
Saint-Étienne, France

Fabrice MUHLENBACH

https://perso.univ-st-etienne.fr/muhlfabr/

e-mail: fabrice.muhlenbach@univ-st-etienne.fr

- Linear Algebra → Matrix Multiplication
- > compute the matrix product AB with $A = \begin{pmatrix} 3 & -6 \\ -2 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$
- \triangleright then compute the matrix product BA
- what can you conclude?

- Linear Algebra → Matrix Multiplication
- results:

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

> but

$$BA = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix}$$

 \triangleright we can observe that $AB \neq BA$ which is a result that is most often encountered

- Linear Algebra → Matrix Determinant
- \triangleright compute the matrix determinant of the (3 × 3) square matrix

$$C = \begin{pmatrix} 3 & 2 & -1 \\ -1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

- Linear Algebra → Matrix Determinant
- > Solution 1: we extend the matrix with the 2 first columns:

$$C = \begin{pmatrix} 3 & 2 & -1 & 3 & 2 \\ -1 & 2 & 3 & -1 & 2 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- we compute the positive sum of the products in NW-SE diag. and the negative sum of the products in SW-NE diag.
- the result gives:

$$3 \times 2 \times 1 + 2 \times 3 \times 1 + (-1) \times (-1) \times 1$$

$$-((-1) \times 2 \times 1) - (3 \times 3 \times 1) - (2 \times (-1) \times 1)$$

$$= 6 + 6 + 1 + 2 - 9 + 2$$

$$= 8$$

From Statistics 2 DM –Tutorial

- Linear Algebra → Matrix Determinant
- Solution 2: we make the sum or subtraction (alternatively) of the terms of the 1st row of the (3×3) -matrix C with the determinants of the (2×2) -square matrices extracted from C

$$C = \begin{pmatrix} 3 & 2 & -1 \\ -1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

$$> 3 \times det \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} - 2 \times det \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} + (-1) \times det \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$$

$$= 3 \times (2 \times 1 - 3 \times 1) - 2 \times ((-1) \times 1 - 3 \times 1) - 1 \times ((-1) \times 1 - 2 \times 1)$$

$$> = 3 \times (-1) - 2 \times (-4) - 1 \times (-3)$$

$$> = -3 + 8 + 3 = 8$$

Linear Algebra → Reduced row echelon form

> the matrix
$$R = \begin{bmatrix} 1 & -2 & 5 & 0 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 is in row-echelon form

The vectors $\begin{cases} r_1 = [1 - 2 \ 5 \ 0 \ 3] \\ r_2 = [0 \ 1 \ 3 \ 0 \ 0] \text{ form a basis for the row space of } R, \\ r_3 = [0 \ 0 \ 1 \ 0] \end{cases}$

and the vectors
$$c_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $c_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $c_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

form a basis for the column space of R

- **exercise:** reduce the matrix A to row-echelon form (first step for finding the bases for the row and column spaces) $A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$

$$A = \begin{bmatrix} 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$

solution: reduction *A* to row-echelon form

$$R = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- Linear Algebra
 Reduced row echelon form
- **exercise:** find a basis for the space spanned by the vectors $v_1 = (1, -2, 0, 0, 3), v_2 = (2, -5, -3, -2, 6), v_3 = (0, 5, 15, 10, 0), v_4 = (2, 6, 18, 8, 6).$
- > solution: write down the vectors as row vectors first

$$\begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

the nonzero row vectors in this matrix are $w_1 = (1, -2, 0, 0, 3), w_2 = (0, 1, 3, 2, 0), w_3 = (0, 0, 1, 1, 0)$

- Linear Algebra → Reduced row echelon form
- ▶ keeping in mind that A and R may have different column spaces, we cannot find a basis for the column space of A directly from the column vectors of R
- however, if we can find a set of column vectors of *R* that forms a basis for the column space of *R*, then the corresponding column vectors of *A* will form a basis for the column space of *A*
- in the previous example, the basis vectors obtained for the column space of A consisted of column vectors of A, but the basis vectors obtained for the row space of A were not all vectors of $A \rightarrow$ transposition of the matrix

From Statistics 2 DM –Tutorial

- find a basis for the row space of

$$A = \begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{bmatrix}$$
 consisting entirely of row vectors from A

> solution:
$$A^{T} = \begin{bmatrix} 1 & 2 & 0 & 2 \\ -2 & -5 & 5 & 6 \\ 0 & -3 & 15 & 18 \\ 0 & -2 & 10 & 8 \\ 3 & 6 & 0 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 5 & -10 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 5 & -10 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

the nonzero vectors in this matrix are $w_1 = (1, 2, 0, 2), w_2 = (0, 1, 5, -10) \text{ and } w_3 = (0, 0, 0, 1)$

From Statistics 2 DM –Tutorial F. Muhlenbach

- Convex Optimization
- > Exercise 1: we want to solve:

$$\begin{cases} \max x. y \\ \text{s. t. } x + 3y = 24 \end{cases}$$

- Questions:
- o what are the objective and constraint functions?
- solve this system by using the method of Lagrange multipliers

Convex Optimization

> Solution:

$$\begin{cases} \max x. y \\ \text{s. t. } x + 3y = 24 \end{cases}$$

- o objective function: max x. y
- o constraint function: $x + 3y = 24 \Leftrightarrow x + 3y 24 = 0$
- method of Lagrange multipliers:

$$\rightarrow \mathcal{L}(x, y, \lambda)$$
 = objective function to optimize $-\lambda$ (constraint)

Lagrange function to optimize:

$$\mathcal{L}(x, y, \lambda) = x \cdot y - \lambda(x + 3y - 24) = x \cdot y - \lambda x - 3\lambda y + 24\lambda$$

Convex Optimization

- optimizing a function → finding the critical points
 - → finding when the derivative of the function is equal to zero
- o we have 3 variables: x, y, λ , therefore the function need to be derived 3 times
- o there are 3 first order conditions:

$$0 \quad \frac{\partial \mathcal{L}}{\partial x} = 0 \Leftrightarrow y - \lambda = 0 \Leftrightarrow \lambda = y \quad (1)$$

$$0 \quad \frac{\partial \mathcal{L}}{\partial y} = 0 \Leftrightarrow x - 3\lambda = 0 \Leftrightarrow \lambda = \frac{x}{3} \quad (2)$$

$$0 \quad \frac{\partial \mathcal{L}}{\partial x} = 0 \Leftrightarrow x + 3y - 24 = 0 \tag{3}$$

Convex Optimization

o (1) and (2):
$$y = \frac{x}{3}$$
 (4)

o (3) and (4):
$$x + 3 \times \frac{x}{3} - 24 = 0$$

$$\circ \Leftrightarrow x + x - 24 = 0$$

$$\circ \Leftrightarrow 2x = 24$$

$$\circ \Leftrightarrow x = 12$$

o with (4):
$$y = \frac{x}{3} = \frac{12}{3} = 4$$

$$\circ \quad \text{with (1): } \lambda = y = 4$$

o with (4):
$$y = \frac{x}{3} = \frac{12}{3} = 4$$

o with (1): $\lambda = y = 4$ therefore $\begin{cases} x = 12 \\ y = 4 \\ \lambda = 4 \end{cases}$

Convex Optimization

> Exercise 2: we want to solve:

$$\begin{cases} \min(2x + 2y) \\ \text{s.t.} \quad x. y = 4 \end{cases}$$

- > Solution: \rightarrow constraint: $x \cdot y = 4 \Leftrightarrow x \cdot y 4 = 0$
- $0 \mathcal{L}(x,y,\lambda) = 2x + 2y \lambda(x,y-4). \text{ FOC:}$
- $0 \quad \frac{\partial \mathcal{L}}{\partial x} = 0 \Leftrightarrow 2 \lambda y = 0 \Leftrightarrow 2 = \lambda y \Leftrightarrow \lambda = \frac{2}{y} \quad (1)$
- $0 \quad \frac{\partial \mathcal{L}}{\partial y} = 0 \Leftrightarrow 2 \lambda x = 0 \Leftrightarrow 2 = \lambda x \Leftrightarrow \lambda = \frac{2}{x} \quad (2)$
- $\circ \quad \frac{\partial \mathcal{L}}{\partial \lambda} = 0 \Leftrightarrow x. y 4 = 0 \tag{3}$

Convex Optimization

$$0 \quad \mathcal{L}(x,y,\lambda) = 2x + 2y - \lambda(x,y-4)$$

o (1) and (2):
$$\frac{2}{y} = \frac{2}{x} \Leftrightarrow x = y$$
 (4)

o (3) and (4):
$$x^2 - 4 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = 2$$
 (5)

o (4) and (5):
$$y = 2$$
 and $\lambda = 1$

$$\begin{array}{l}
\text{therefore } \begin{cases} x = 2 \\ y = 2 \\ \lambda = 1 \end{cases}$$

- Convex Optimization
- > Exercise 3: we want to solve:

$$\begin{cases} f(x,y) = \max(x^2y) \\ \text{s.t. } x^2 + y^2 = 1 \end{cases}$$

- o what is the graphical interpretation of $x^2 + y^2 = 1$?
- \circ what is the graphical interpretation of x^2y ?
- therefore, what is the graphical interpretation of $\begin{cases} f(x,y) = \max(x^2y) \\ \text{s.t. } x^2 + y^2 = 1 \end{cases}$?

- Convex Optimization
- > Solution: we want to solve:

$$\begin{cases} f(x,y) = \max(x^2y) \\ \text{s. t. } x^2 + y^2 = 1 \end{cases}$$

- o graphical interpretation of $x^2 + y^2 = 1$:
- \Box value for $x: x_A$
- \square value for y: y_A
- $\square [x_A, y_A] = [O, A]$

 \rightarrow circle with x radius with

the size of 1

From Statistics 2 DM –Tutorial

F. Muhlenbach

 χ_{Δ}

Convex Optimization

- o graphical interpretation of $x^2 + y^2 = 1$: circle with radius =1
- $x^2 + y^2 = 1 \iff y^2 = 1 x^2$

$$\circ \iff y = \sqrt{1 - x^2}$$

or
$$y = -\sqrt{1 - x^2}$$

From Statistics 2 DM –Tutorial

Convex Optimization

o graphical interpretation of x^2y : $y = z \times \frac{1}{x^2}$

Convex Optimization

graphical interpretation of
$$\begin{cases} f(x,y) = \max(x^2y) \Rightarrow y = z \times \frac{1}{x^2} \\ \text{s. t. } x^2 + y^2 = 1 \Rightarrow y = \pm \sqrt{1 - x^2} \end{cases}$$

- when $f(x, y) = z \le 0.3$, the constraint intersects with the circle, some solutions for the 2 conditions exists
- when $f(x, y) = z \ge 0.4$, no intersection → no solution
- maxima → tangency points
- z? graphically, $z \in [0.3; 0.4]$

From Statistics 2 DM –Tutorial

Convex Optimization

> Solution: we want to solve:

$$\begin{cases} f(x,y) = \max(x^2y) \\ \text{s.t. } x^2 + y^2 = 1 \end{cases}$$

- ightharpoonup constraint: $x^2 + y^2 = 1 \Leftrightarrow x^2 + y^2 1 = 0$
- o $\mathcal{L}(x, y, \lambda) = x^2y \lambda(x^2 + y^2 1)$. FOC:
- $0 \quad \frac{\partial \mathcal{L}}{\partial x} = 0 \Leftrightarrow 2x \cdot y \lambda 2x = 0 \Leftrightarrow 2x \cdot y = \lambda 2x \Leftrightarrow x \neq 0, \lambda = y \quad (1)$
- $0 \quad \frac{\partial \mathcal{L}}{\partial y} = 0 \Leftrightarrow x^2 \lambda 2y = 0 \Leftrightarrow x^2 = \lambda 2y \Leftrightarrow (1) \Rightarrow x^2 = 2y^2$ (2)
- $0 \quad \frac{\partial \mathcal{L}}{\partial \lambda} = 0 \Leftrightarrow x^2 + y^2 1 = 0 \quad (3)$

From Statistics 2 DM –Tutorial

Convex Optimization

o (3) and (2):
$$2y^2 + y^2 - 1 = 0 \Leftrightarrow 3y^2 = 1$$

$$\circ \Leftrightarrow y^2 = \frac{1}{3} \Rightarrow y = \pm \sqrt{\frac{1}{3}} (4)$$

o (2) and (4):
$$x^2 = 2y^2 = 2 \times \frac{1}{3} \Leftrightarrow x^2 = \frac{2}{3} \Rightarrow x = \pm \sqrt{\frac{2}{3}}$$
 (5)

$$\circ \quad (1) \text{ and } (4): y = \lambda \Rightarrow \lambda = \pm \sqrt{\frac{1}{3}}$$

o solutions:
$$\left(\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right), \left(\sqrt{\frac{2}{3}}, -\sqrt{\frac{1}{3}}\right), \left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right) \text{ and } \left(-\sqrt{\frac{2}{3}}, -\sqrt{\frac{1}{3}}\right)$$

Convex Optimization

- o solutions: $\left(\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right), \left(\sqrt{\frac{2}{3}}, -\sqrt{\frac{1}{3}}\right), \left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right) \text{ and } \left(-\sqrt{\frac{2}{3}}, -\sqrt{\frac{1}{3}}\right)$
- o which one maximize the function $f(x,y) = \max(x^2y)$
- o but y cannot be negative because x^2y will be negative

$$z = x^2y = \frac{1}{3}\sqrt{\frac{2}{3}} \cong 0.3849$$
 (reminder: $z \in [0.3; 0.4]$)

From Statistics 2 DM -Tutorial

Convex Optimization

function to maximize:

$$z = \frac{1}{3} \sqrt{\frac{2}{3}}$$

$$\Rightarrow y = z \times \frac{1}{x^2}$$

constraint:

$$y = \pm \sqrt{1 - x^2}$$

o solutions:

$$\left(\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right), \left(-\sqrt{\frac{2}{3}}, \sqrt{\frac{1}{3}}\right)$$

From Statistics 2 DM -Tutorial