IST智能实验室

硬件考核培训

IST智能实验室硬件考核培训

MCU介绍

基本外围电路

工业板定制

考核内容

MCU介绍 IST智能实验室硬件考核培训

MCU框架图 STC89C5xRC系列

- STC89C5xRC/RD+单片机中包含中央处理器 (CPU)、程序存储器(Flash)、数据存储器 (SRAM)、定时/计数器、UART串口、I/O接口、EEPROM、看门狗等模块。
- STC89C5xRC/RD+系列单片机几乎包含了数据采集和控制中所需的所有单元模块,可称得上一个片上系统。

MOS管 金属-氧化物半导体场效应晶体管^①

MOS管的三个极分别是: G(栅极),D(漏极),S(源极),要求栅极和源极之间电压大于某一特定值,漏极和源极才能导通。

P0.X 用作通用I/O口^①

- 此时,对应的"控制"信号为0,MUX打向下面,接通锁存器的Q端,从而"与门"输出为0,上方的场效应管截止,形成的PO口输出电路为漏极开路输出。(PO口的地址字节是80H)
- P0口用作通用I/O输出口时,来自CPU的"写" 脉冲加在D锁存器的CP端,内部总线上的数据 写入D锁存器,并由引脚P0.x输出。当D锁存器 为1时,Q端为0,下方场效应管截止,输出为漏极 开路,此时,必须外接上拉电阻才能有高电平输 出;当D锁存器为0时,下方场效应管导通,PO口 输出为低电平。

P0 口的位电路结构

P1.x / P2.x 为通用I/O口

• P1口的地址字节是90H, P2口为A0H, 他们的工作原理只能作为通用IO口使用。P1/P2口作为输出口时,若CPU输出1,则Q=1,Q=0,场效应管截止,P1/P2口引脚的输出为1:若CPU输出0,则Q=0,Q=1,场效应管导通,P1/P2口引脚的输出为0

P1 口的位电路结构

ISTLAB ISTLAB ISTLAB

基本外围电路。 「學能实验室硬件考核培训

MCU引脚图 STC89C5xRC系列

- STC89C5x2RC编程应用基本典型电路与引脚。
- 该MCU本身片内有4KB Flash 程序存储器, 128B 的RAM单元,4个I/O口,再加上外接 时钟晶振电路和复位电路即构成了单片机最 小应用系统。

晶振频率X1为4MHz时, C2、C3应为100pF; 晶振频率X1为6MHz时, C2、C3应为47pF~100pF; 晶振频率X1为12M~25MHz时, C2、C3应为47pF

时钟电路

STC89C5xRC系列

单片机内部有一个用于构成振荡器的高增益反相放大器,它的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚外部跨接石英晶体振荡器和微调电容,构成一个稳定的自激振荡器,内部时钟方式的电路,如图所示。电路中的电容C1和C2的典型值通常选择为30pF。品体振荡频率通常选择6MHz、12MHz(可得到准确的定时)或11.0592MHz(可得到准确的串行通信波特率)的石英晶体。

AT89S51 内部时钟方式的电路

复位电路 STC89C5xRC系列

单片机上电时的自动复位,是通过Vcc(+5V)电源给电容C充电,然后加给RST引脚一个短暂的高电平信号,此信号随着Vcc对电容C的充电过程而逐渐回落,即RST引脚上的高电平持续时间取决于电容C的充电时间。因此为保证系统能可靠复位,RST引脚上的高电平必须大于复位所要求的高电平的时间。

典型的复位电路

电源电路 STC89C5xRC系列

串行下载电路

STC89C5xRC系列

①单片机原理与接口技术.

(2)STC

3 工业板定制 IST智能实验室硬件考核培训 Designer

设计流程

原理图 Schematics

由原理图库构成

原理图库可以解释成多种电路符 号组成的图库。

电路原理图 (Schematics) 就是 一种电路符号彼此连接, 以反映 各元器件的电气连接情况的图纸。

由PCB库构成

一个原理图对应一块电路板。

PCB库是由元器件封装构成,同 时封装也可以包含3D模型。

PCB Printed Circuit Board

PCB由原理图生成与实际大小相 匹配元器件和电气连接,在PCB 上画出电路板的实际走线。

包含 PRJ、BOM、CAM、ASM

简单线路PCB可以用手工制版板, 也可以直接将PCB文件交给制板 商印刷。

PCB转印→腐蚀→加工

手工制板常见有两种方法,一种 是热转印, 另外一种是感光法印 制,原理都是保留覆铜板上我们 需要的线路。

ISTLAB ISTLAB ISTLAB ISTLAB ISTLAB ISTLAB

考核内容与要求

请收集查找相关资料,在AD或立创EDA上设计出51单片机最小系统。题目提供基本常见元器件MCU提供DIP-40 封装的STC89C52RC芯片,不提供图例。

电路必须包含51最小系统基本外围电路(内含一颗可以 用程序点亮的LED灯),但不限于其他功能板块,例如 显示等。

- 根据题目画出原理图(保留文件以备验收)、 生成PCB 提交打样(也可以手工制板)。
- 收到电路板后,测试单片机基本功能,完成点灯操作。
- 加分项:通过该电路板实现自定义的功能。
- 布线整齐,焊接布局美观。

附页 参考资料

[1]郭放.单片机原理及应用课程的教学模式分析[J].集成电路应用,2021,38(07).

[2]刘丹.单片机技术及应用课程的教育实践[J].集成电路应用,2021,38(09):264-265::118-119.

STC89C51RC-RD.pdf

STC:(stcmcudata.com)

