Analisi I

 ${\it angeloperotti7}$

January 2025

0.1 Introduction

0.2 Nozioni Preliminari

0.2.1 Insiemi

insieme matematico

Insieme matematico.

Un *insieme matematico* è una collezione di oggetti (o elementi) ben definiti, considerati nel loro insieme come un'entità unica.

es

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 $\{a, b, c, d, e, f, g, h\}$

classificazione:

- per elencazione
 - L'ordine degli elementi non e' importante
 - $\in =$ appartiene, $\notin =$ non appartiene
 - ":=" = e' definito, "{}" = definiscono un insieme
- per proprieta' che li accomuna

operazioni fondamentali tra insiemi

• unione

$$A \cup B := \{x : x \in A \ o \ x \in B\}$$

"A unito B" e i suoi elementi sono dati dagli elementi di A con gli elementi di B

• intersezione

$$A \cap B := \{x : x \in A \ e \ x \in B\}$$

"A intersecato B" e i suoi elementi sono dati dagli elementi comuni di A e B

• differenza insiemistica

$$A/B := \{x : x \in A \ e \ x \notin B\}$$

"A meno B" e i suoi elementi sono gli elementi di A che non sono in B

 \hookrightarrow affinche' le ultime due operazioni abbiano senso introduciamo l'insieme vuoto: \emptyset

0.2.2 I numeri reali

insiemi numerici.

insieme:

- dei numeri naturali $\mathbb{N} = \{0, 1, 2, 3, 4...\}$
- dei numeri interi $\mathbb{Z} = \{0, 1, -1, 2, -2...\}$
 - insieme simmetrico
 - $-\,$ e' chiuso rispetto la sottrazione

0.2. NOZIONI PRELIMINARI

- dei numeri naturali $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z} \mid q \neq 0 \right\}$
 - chiuso rispetto le operazioni elementari

Teorema $\sqrt{2}$.

non esiste alcun numero razionale $x \in \mathbb{Q}$ t.c. $x^2 = 2$

Dimostrazione:

non ho voglia di farla ora :D Osservazione:

Dal teeorema deduciamo che per esempio $\sqrt{2} \in \mathbb{Q}$ quindi i numeri razionali NON bastano a contenere tutte le espressioni numeriche

Rappresentazione decimale.

ogni numero razionale $x \in \mathbb{Q}$ si puo' scrivere con un allineamento decimale limitato o periodico

$$x = \pm p \ \alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4 \dots \ \alpha_n \dots \ con \ p \in \mathbb{N} \ e \ \alpha_i \in [0, 1, 2, 3, 4 \dots]$$

i numeri reali.

Definiamo l'insieme R dei numeri reali come l'insieme di tutti i possibili allineamenti decimali

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}$$

intervalli.

dati due numeri reali a,b \in R con a<b, si pone: $intervalli\ limitati$

• (a,b)	ntervallo	aperto
---------	-----------	--------

 $intervalli\ illimitati$

•
$$(-\infty,a)$$
 $\{x \in \mathbf{R}, x < a\}$

•
$$(-\infty,a]$$
 $\{x \in \mathbf{R}, x \leq a\}$

•
$$(a,+\infty)$$
 $\{x \in \mathbf{R}, x > a\}$

•
$$[a,+\infty)$$
 $\{x \in \mathbf{R}, x \ge a\}$

Maggioranti/Minoranti.

Sia $A \subseteq \mathbb{R}, A \neq \emptyset$

Def:

• Maggiorante: un elemento $M \in \mathbb{R}$ si dice maggiorante di A se

$$x \le M \quad \forall x \in A$$

 \bullet Minorante: un elemento m $\in \mathbb{R}$ si dice minorante di A se

$$x \ge m \quad \forall x \in A$$

Esistono insiemi privi di maggioranti e/o minoranti

- $\bullet\,$ A si dice $limitato\,\, superiormente$ se ammette almeno un maggiorante
- $\bullet\,$ A si dice $limitato\,\,inferiormente$ se ammette almeno un minorante
- A si dice *limitato* se e' limitato sia superiormente che inferiormente

Es:

$$A = [1, \infty)$$

- A non ha maggioranti; infatti se esistesse un maggiorante chiamato $M \in \mathbb{R}$, allora dalla definizione di maggiorante deduciamo che $\forall x \in [1, +\infty)$ si ha che $x \leq M$. Ma questo e' assurdo perche' per esempio $M+1 \in [1, +\infty)$, questo pero' non verifica $x \leq M$!
- A ammmette minoranti, per esempio m=1 oppure ogni reale minore di 1

A quindi:

- non e' superiormente limitato
- e' inferiormente limitato
- non e' limitato

NB

- M \in **R** e' maggiorante di A se x \leq M $\forall x \in A$
- Nella definizione di maggiorante/minorante di un insieme A NON e' richiesto che il maggiorante/minorante appartenga ad A

Massimo/minimo.

Sia $A \subseteq \mathbb{R}$, $A \neq \emptyset$

Def:

- $\bullet\,$ Un elemento M $\in \mathbf{R}$ si dice massimo di A se:
 - M e' maggiorante di A
 - $-M \in A$
- Un elemento $m \in \mathbf{R}$ si dice minimo di A se:
 - m e' minorante di A
 - $-m \in A$

NB:

- Se un insieme e' limitato superiormente/inferiormente, il massimo/minimo puo' non esistere
- Massimo e minimo se esistono sono unici

Es:

Dato
$$A \subseteq \mathbf{R}, A \neq 0$$
,