ROB 501 - Oct 10, 2019
Today: Ax = b (evisited - range / null spaces - range / null spaces - range / null spaces - over / under determine - a critical solutions
Why do we core about $Ax = b$? - Fitting a fin (HWOSI) - Linear model: $y = Cx$ robot sensor model sensor model
(if not linear = linearize!) - Linear sys. of eq'n (circuits, statics, dynamics
Problem: Given $A \in \mathbb{R}^{m \times n}$ be \mathbb{R}^m , we seek solution(s) $x \in \mathbb{R}^n$ s.t. $Ax = b$.
More generally, Given (X, \overline{Y}) , (Y, \overline{Y}) , $X \in X$, $1 \otimes X \to Y$
Looking at $L(x) = Ax$, $L(x) = R^{m}$, when $L(x) = b \in R^{m}$
when \$ (x) = b \(\int \) [Rm there might be one so I'n, many or none! How do we find them?
none! How do we find them?

Have we seen this before?
Back to eigen: Av= 1v (A-1I)v=0
Since $V \neq 0$, $V \in N(A-\lambda I) = 0$ $det(A-\lambda I) = 0$
$det (A - \lambda I) = 0$ $choracteristic equation!$
Back to Ax = b: (ank(A) = min(mm)
Back to $Ax = b$: Given $A \in \mathbb{R}^{m \times n}$, A is full (ank be \mathbb{R}^{m} , we seek $x \in \mathbb{R}^{n}$ s.t. $Ax = b$. Case \mathbb{O} : $m = n$. Then $R(A) = \mathbb{R}^{n}$, $b \in R(A)$
and $x \in R(A)$
Lis we have one solution
$x = A^{-1}b$
this is the "critical" case.

