Mestrado Integrado em Engenharia Informática e Computação EIC0004 ANÁLISE MATEMÁTICA – $2017/2018-1^{\circ}$ Semestre

3º Mini-Teste – 9 Janeiro 2018

Duração da prova: 1h30m

FEUP

Teste sem consulta. Faça cada GRUPO em folhas separadas.

Não é permitida a utilização de máquina de calcular com capacidade gráfica.

Apresente e justifique convenientemente todos os cálculos que efetuar.

Durante a realização da prova não é permitida a saída da sala.

A desistência só é possível 30 minutos após o início do teste.

GRUPO I

1. Seja f(t) uma função contínua com transformada de Laplace dada por F(s). Aplicando a definição de transformada de Laplace, mostre que a transformada de Laplace da função

$$f(t-a)u(t-a) = \begin{cases} 0 & , 0 < t < a \\ f(t-a) & , t > a \end{cases}$$

é dada por

$$\mathcal{L}\{f(t-a)\,u(t-a)\}=e^{-as}\,F(s).$$

2. Utilizando as técnicas das transformadas de Laplace, resolva os seguintes problemas de valores iniciais:

a)
$$y'' - 2y' - 8y = 8$$
, $y(0) = 3$ e $y'(0) = -6$.

b)
$$y'' + y = \begin{cases} 0, & 0 < t < 1, \\ e^t, & t > 1, \end{cases}$$
 $y(0) = 0$ e $y'(0) = 0$.

GRUPO II

3. a) Determine o polinómio de Taylor de grau n que aproxima a função

 $f(x) = \ln(x+1)$ na vizinhança do ponto a=0.

- b) Usando o resultado da alínea anterior, determine o desenvolvimento em série de Taylor da função $f(x) = x \ln(x+1)$ na vizinhança do ponto a=0. Analise a convergência absoluta da série e indique o intervalo de valores de x para o qual a série se diz absolutamente convergente. Enuncie o critério de convergência considerado.
- **4.** Analise a convergência ou divergência das seguintes séries, justificando de forma conveniente:

a)
$$\sum_{n=2}^{\infty} [e^n(1-e)]$$

b)
$$\sum_{n=1}^{\infty} \left[\frac{3}{n^2+n} + sen\left(\frac{1}{n}\right) \right]$$

GRUPO III

5. Considere a função f(x) de período π ,

$$f(x) = |x|, \quad -\pi/2 < x < \pi/2$$

- a) Esboce o gráfico da função no intervalo $-\frac{3\pi}{2} < x < +\frac{3\pi}{2}$.
- **b**) Determine os coeficientes da série de Fourier de f(x): a_0 , a_n e b_n .
- c) Escreva a fórmula geral da série de Fourier de f(x).

Tabela de Transformadas de Laplace

	f(t)	$\mathcal{L}\left\{f\right\}$	Domínio		/ 10	s	0
1	1	$\frac{1}{s}$	s > 0	7	$\cos\left(wt\right)$	$\overline{s^2 + w^2}$	s > 0
_				8	$\sin(wt)$	$\frac{w}{s^2 + w^2}$	s > 0
2	t	$\frac{1}{s^2}$	s > 0			$\frac{s^2+w^2}{s}$	
				9	$\cosh\left(at\right)$	$\frac{s}{s^2-a^2}$	s > a
3	t^2	$\frac{2}{s^3}$	s > 0	10	$\sinh\left(at\right)$	\underline{a}	s > a
4	+n N	n!	. > 0			$\overline{s^2 - a^2}$	9 7 191
4	$t^n, n \in \mathbf{N}_0$	s^{n+1}	s > 0	11	$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$	s > a
5	$e^{at}f(t)$	F(s-a)	$s > \gamma + a$	12	$e^{at}\cos(wt)$	$\frac{s-a}{(s-a)^2+w^2}$	s > a
6	e^{at}	$\frac{1}{s-a}$	s > a	13	$e^{at}\sin(wt)$	$\frac{w}{(s-a)^2 + w^2}$	s > a

$$\mathcal{L}[t^n f(t)] = (-1)^n [F(s)]^{(n)}$$

$$\mathcal{L}[f'(t)] = s\mathcal{L}[f(t)] - f(0) \qquad \qquad \mathcal{L}[f''(t)] = s^2\mathcal{L}[f(t)] - sf(0) - f'(0)$$

Docentes: Catarina Castro, Luisa Sousa, Mariana Seabra, Carolina Furtado