

جامعة النجاح الوطنية قسم هندسة الحاسوب مختبر تصميم دوائر الكترونية 2 - 10636391-الفصل الثاني 2021/2020

Instructor: Anas Toma

NAME	ID NUM	SEC
أحمد عبد الله جبر القرم -1	11819195	3/8:00-11:00
-	-	-

Experiment 6: IP cores (Multiplier)

Introduction:

In this lab I will learn how to use and integrate IP cores in my design.

Objectives:

• Lern how to integrate IP cores (a Multiplier).

Tools used in Lap:

- 1- Computer lap.
- 2- Vivado software.
- 3- Zboard from Xilinx.
- 4- VHDL

Procedure:

I had followed the Lab Procedure in manual and Instantiated IP into my main Design as shown:


```
Project Summary × Main.vhd *
E:/projects/IP_coresMultiplier/IP_coresMultiplier.srcs/sources_1/new/Main.vhd
     ■ ★ * % ■ ■ X // ■ 0
    library IEEE;
    use IEEE.STD LOGIC 1164.ALL;
 3 entity Main is
         Port (
 5
             CLK : in STD LOGIC;
             A : in STD LOGIC VECTOR (3 downto 0);
 7
            B : in STD LOGIC VECTOR (3 downto 0);
 8
             P : out STD LOGIC VECTOR (7 downto 0)
 9
         ) :
10 \(\hat{\text{\text{o}}}\) end Main;
11 - architecture Behavioral of Main is
12 © COMPONENT mult gen
      PORT (
13
14
        CLK : IN STD LOGIC;
15
        A : IN STD LOGIC VECTOR (3 DOWNTO 0);
16
        B : IN STD LOGIC VECTOR (3 DOWNTO 0);
17
         P : OUT STD LOGIC VECTOR (7 DOWNTO 0)
18
     );
19 \(\hat{\text{D}}\) END COMPONENT;
20 begin
21 © MULTIPLIER1 : mult_gen
     PORT MAP (
23
         CLK => CLK,
         A => A,
25
         B => B,
26
         p => p
27 🖨
      );
28 end Behavioral;
```

Simulation Code TestBench:

```
Main.vhd × Untitled 1 × mul_TB.vhd * ×
E:/projects/IP_coresMultiplier/IP_coresMultiplier.srcs/sim_1/new/mul_TB.vhd
Q 🕍 ← → 🐰 🖺 🛍 🗙 // 🖩 🗘
 8 🖨
         architecture Behavioral of mul_TB is
9 🕀
         component Main ...
         signal CLK:std logic :='0';
18
         signal A,B:std_logic_vector (3 downto 0):="0000";
19
         signal P:std_logic_vector (7 downto 0);
20
         begin
         UUT: Main port map (
            CLK => CLK ,
23
            A \Rightarrow A
            B => B ,
2.4
25
            p => p
26 🖨
             );
27 🖯
         CLK_G:process
28
         begin
29
           CLK<=not CLK:
            wait for 5 ns;
31 🖯
         end process;
32 🖯 🔘 process
33
     Obegin
34
            wait for 1 ms;
35
             A<=A+1;
36 🖨
            if (A="1111") then
                A<="0000";
37 !
38 ¦ O
                B<=B+1;
39 🖨
            end if;
40 🖯 🔘
            if (B="1111" and A="1111") then
     0
41
                 wait;
42 🖒 🔘
             end if;
43
44 🖨
         end process;
45 O end Behavioral;
     \circ
```

Simulation:

Synthesis, Implementation, and Bitstream Generation:

I had connected Pins in the board as shown in the Table

Inputs	Package Pin	I/O Std
SW0	F22	LVCMOS18
SW1	G22	LVCMOS18
SW2	H22	LVCMOS18
SW3	F21	LVCMOS18
SW4	H19	LVCMOS18
SW5	H18	LVCMOS18
SW6	H17	LVCMOS18
SW7	M15	LVCMOS18
Outputs	Package Pin	I/O Std
Outputs LD0	Package Pin T22	I/O Std LVCMOS33
LD0	T22	LVCMOS33
LD0 LD1	T22 T21	LVCMOS33 LVCMOS33
LD0 LD1 LD2	T22 T21 U22	LVCMOS33 LVCMOS33 LVCMOS33
LD0 LD1 LD2 LD3	T22 T21 U22 U21	LVCMOS33 LVCMOS33 LVCMOS33 LVCMOS33
LD0 LD1 LD2 LD3 LD4	T22 T21 U22 U21 V22	LVCMOS33 LVCMOS33 LVCMOS33 LVCMOS33

```
set property IOSTANDARD LVCMOS18 [get ports {A[3]}]
  set property IOSTANDARD LVCMOS18 [get ports {A[2]}]
   set property IOSTANDARD LVCMOS18 [get ports {A[1]}]
  set property IOSTANDARD LVCMOS18 [get ports {A[0]}]
   set property IOSTANDARD LVCMOS18 [get ports {B[3]}]
   set property IOSTANDARD LVCMOS18 [get ports {B[2]}]
   set property IOSTANDARD LVCMOS18 [get ports {B[1]}]
   set property IOSTANDARD LVCMOS18 [get ports {B[0]}]
    set property IOSTANDARD LVCMOS33 [get ports CLK]
   set property PACKAGE PIN Y9 [get ports CLK]
   set property IOSTANDARD LVCMOS33 [get_ports {P[7]}]
11
12 | set_property IOSTANDARD LVCMOS33 [get_ports {P[6]}]
13 set property IOSTANDARD LVCMOS33 [get ports {P[5]}]
14 | set property IOSTANDARD LVCMOS33 [get ports {P[4]}]
15 | set property IOSTANDARD LVCMOS33 [get ports {P[3]}]
16 set property IOSTANDARD LVCMOS33 [get ports {P[2]}]
17 set property IOSTANDARD LVCMOS33 [get_ports {P[1]}]
18 | set property IOSTANDARD LVCMOS33 [get_ports {P[0]}]
   set property PACKAGE_PIN U14 [get ports {P[7]}]
    set property PACKAGE PIN U19 [get ports {P[6]}]
    set property PACKAGE_PIN W22 [get ports {P[5]}]
    set property PACKAGE PIN V22 [get ports {P[4]}]
    set property PACKAGE PIN U21 [get ports {P[3]}]
   set property PACKAGE_PIN U22 [get ports {P[2]}]
   set_property PACKAGE_PIN T21 [get_ports {P[1]}]
  set property PACKAGE_PIN T22 [get ports {P[0]}]
   set property PACKAGE_PIN F21 [get ports {A[3]}]
  set property PACKAGE_PIN H22 [get ports {A[2]}]
29 | set property PACKAGE_PIN G22 [get ports {A[1]}]
30 set property PACKAGE_PIN F22 [get_ports {A[0]}]
31 set_property PACKAGE_PIN M15 [get_ports {B[0]}]
    set property PACKAGE_PIN H17 [get ports {B[1]}]
    set property PACKAGE PIN H18 [get ports {B[2]}]
```

set property PACKAGE PIN H19 [get ports {B[3]}]

Conclusion:

In this experiment, I learned how to deal with IP cores .And how to integrate IP cores in my design .Also I'm now aware how much is IP core subject important in reduce cost ,time ,and efforts .