Networks and large scale optimization

Open Data Science Conference Boston, May 2018

> Sam Safavi On behalf of José Bento

Outline

- Why is optimization important?
- Large scale optimization
- Message-passing solver
- Benefits
- Application examples

Why is optimization important?

Machine learning examples:

Lasso regression shrinkage and selection

$$a, b = \text{data}$$

 $\theta = \text{parameters}$

$$\min_{\theta} \ \frac{1}{N} \sum_{i=1}^{N} (\theta^{T} a_{i} - b_{i})^{2} + \lambda \|\theta\|_{1}$$

Sparse inverse covariance estimation with the graphical lasso

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \operatorname{trace}(\theta a_i a_i^T) - \log \det \theta + \lambda \|\theta\|_1$$

Support-vector networks

$$\min_{\theta \ \theta'} \ \frac{1}{N} \sum_{i=1}^{N} \max\{0, 1 - b_i(\theta^T a_i + \theta')\}$$

The Alternating Direction Method of Multipliers (ADMM)

minimize
$$f_1 + f_2 + f_3 + \dots$$

The Alternating Direction Method of Multipliers (ADMM)

minimize
$$f_1 + f_2 + f_3 + \dots$$

The Alternating Direction Method of Multipliers (ADMM)

minimize
$$f_1 + f_2 + f_3 + \dots$$

Large scale optimization

A simple example:

minimize
$$f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

 $z_1, z_2, z_3 \in \mathbb{R}$

minimize
$$f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

 $z_1, z_2, z_3 \in \mathbb{R}$

$$\underset{z_1, z_2, z_3 \in \mathbb{R}}{\text{minimize}} f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

 f_1

 f_2

minimize
$$f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

 $z_1, z_2, z_3 \in \mathbb{R}$

 f_1

 \bigcirc

 f_2

(2)

 f_3

(3)

minimize
$$f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

 $z_1, z_2, z_3 \in \mathbb{R}$

$$\underset{z_1, z_2, z_3 \in \mathbb{R}}{\text{minimize}} f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

$$\underset{z_1, z_2, z_3 \in \mathbb{R}}{\text{minimize}} \ f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

minimize
$$f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

 $z_1, z_2, z_3 \in \mathbb{R}$

$$\underset{z_1, z_2, z_3 \in \mathbb{R}}{\text{minimize}} f_1(z_1, z_2) + f_2(z_1, z_3) + f_3(z_1, z_2, z_3)$$

$$(x_a, x_b) \leftarrow \mathcal{P}_{f_1}(z_a - u_a, z_b - u_b)$$

$$(x_a, x_b) \leftarrow \mathcal{P}_{f_1}(z_a - u_a, z_b - u_b)$$

$$(u_a, u_b) \leftarrow (u_a + x_a - z_a, u_b + x_b - z_b)$$

$$(x_a, x_b) \leftarrow \mathcal{P}_{f_1}(z_a - u_a, z_b - u_b)$$

$$(u_a, u_b) \leftarrow (u_a + x_a - z_a, u_b + x_b - z_b)$$

$$(m_a, m_b) \leftarrow (u_a + x_a, u_b + x_b)$$

$$(x_a, x_b) \leftarrow \mathcal{P}_{f_1}(z_a - u_a, z_b - u_b)$$

$$(u_a, u_b) \leftarrow (u_a + x_a - z_a, u_b + x_b - z_b)$$

$$(m_a, m_b) \leftarrow (u_a + x_a, u_b + x_b)$$

Computations

The "hard" part is to compute the following (all other computations are linear):

$$(x_a, x_b) \leftarrow \mathcal{P}_{f_1}(z_a - u_a, z_b - u_b)$$

Computations

The "hard" part is to compute the following (all other computations are linear):

$$(x_a, x_b) \leftarrow \mathcal{P}_{f_1}(z_a - u_a, z_b - u_b)$$

$$(x_a, x_b) \leftarrow \underset{s_a, s_b}{\operatorname{arg min}} f_1(s_a, s_b) + \frac{\rho}{2}(s_a - z_a + u_a)^2 + \frac{\rho}{2}(s_b - z_b + u_b)^2$$

Computations

The "hard" part is to compute the following (all other computations are linear):

$$(x_a, x_b) \leftarrow \mathcal{P}_{f_1}(z_a - u_a, z_b - u_b)$$

$$(x_a, x_b) \leftarrow \underset{s_a, s_b}{\operatorname{arg min}} f_1(s_a, s_b) + \frac{\rho}{2}(s_a - z_a + u_a)^2 + \frac{\rho}{2}(s_b - z_b + u_b)^2$$

 ${\mathcal P}$ is called the "proximal map" or the "proximal function"

Step 3: Run until convergence

The updates in each side of the graph can be done in parallel

The final solution is read at variable nodes

$$U = U + X - Z$$

$$X = \mathcal{P}(Z - U)$$

$$U = U + X - Z$$

$$M = X + U$$

$$X = \mathcal{P}(Z - U)$$

$$U = U + X - Z$$

$$M = X + U$$

$$X = \mathcal{P}(Z-U)$$
 $U = U+X-Z$
 $Message Network$
 $M = X+U$

Define function \mathcal{P}_{f_i} that for each f_i computes the following:

$$(x_a, x_b, \dots) = \underset{s_a, s_b, \dots}{\min} \ f_i(s_a, s_b, \dots) + \frac{\rho}{2} (s_a - (z_a - u_a))^2 + \frac{\rho}{2} (s_a - (z_a - u_a))^2 + \dots$$

$$= \mathcal{P}_{f_i}(z_a - u_a, z_b - u_b, \ldots)$$

$$U = U + X - Z$$
 does the following:

$$u_a = u_a + x_a - z_a, \ u_b = u_b + x_b - z_b, \dots$$

$$M = X + U$$
 does the following:

$$m_a = x_a + u_a, \ m_b = x_b + u_b, \dots$$

$$Z=< M>$$
 does the following:

$$z_a = \frac{1}{k_i}(m_a + m_b + \ldots)$$
 # of edges

Benefits

- Computations are done in parallel over a distributed network
- Problem \mathcal{P}_i is nice even when f_i is not
- ADMM is the fastest among all first-order methods*
- Converges under convexity*
- Empirically good even for non-convex problems**

^{*}França, Guilherme, and José Bento. "An explicit rate bound for over-relaxed ADMM." IEEE International Symposium on Information Theory (ISIT), 2016.

^{**}Derbinsky, Nate, et al. "An improved three-weight message-passing algorithm." arXiv preprint arXiv:1305.1961 (2013).

Application examples

- Circle Packing
- Non-smooth Filtering
- Sudoku Puzzle
- Support Vector Machine

- Can we pack 3 circles of radius 0.253 in a box of size 1.0?
- Non-convex problem

- Can we pack 3 circles of radius 0.253 in a box of size 1.0?
- Non-convex problem

Can we pack 3 circles of radius 0.253 in a box of size 1.0?

$$\min_{\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3} \operatorname{Box}(\mathbf{z}_1) + \operatorname{Box}(\mathbf{z}_2) + \operatorname{Box}(\mathbf{z}_3) + \operatorname{Coll}(\mathbf{z}_1, \mathbf{z}_2) + \operatorname{Coll}(\mathbf{z}_1, \mathbf{z}_3) + \operatorname{Coll}(\mathbf{z}_2, \mathbf{z}_3)$$

 $Box(\mathbf{z}) = 0$

 $Collision(\mathbf{z}, \mathbf{z}') = 0$

 $Box(\mathbf{z}) = \infty$

Collision $(\mathbf{z}, \mathbf{z}') = \infty$

Can we pack 3 circles of radius 0.253 in a box of size 1.0?

$$\min_{\mathbf{z}_1,\mathbf{z}_2,\mathbf{z}_3} \operatorname{Box}(\mathbf{z}_1) + \operatorname{Box}(\mathbf{z}_2) + \operatorname{Box}(\mathbf{z}_3) + \operatorname{Coll}(\mathbf{z}_1,\mathbf{z}_2) + \operatorname{Coll}(\mathbf{z}_1,\mathbf{z}_3) + \operatorname{Coll}(\mathbf{z}_2,\mathbf{z}_3)$$

Circle Packing - Box

$$(x_1, x_2) = \underset{s_1, s_2, \dots}{\arg \min} f(s_1, s_2) + \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2$$

$$f(s_1, s_2) = \begin{cases} 0 & \text{if } (s_1, s_2) \in \text{box} \\ \infty & \text{if } (s_1, s_2) \notin \text{box} \end{cases}$$

$$x_i = \min(1 - r, \max(r, n_i))$$
 $i = 1, 2$

$$i = 1, 2$$

Circle Packing - Box

$$f(s_1, s_2) = \underset{s_1, s_2, \dots}{\arg \min} f(s_1, s_2) + \frac{\rho}{2} (s_1 - v_1)^2 + \frac{\rho}{2} (s_2 - v_2)^2$$

$$f(s_1, s_2) = \begin{cases} 0 & \text{if } (s_1, s_2) \in \text{box} \\ \infty & \text{if } (s_1, s_2) \notin \text{box} \end{cases}$$

$$x_i = \min(1 - r, \max(r, n_i))$$
 $i = 1, 2$

$$i = 1, 2$$

$$(x_1, x_2, x_3, x_4) = \underset{s_1, s_2, s_3, s_4}{\operatorname{arg min}} f(s_1, s_2, s_3, s_4) + \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \frac{\rho}{2} (s_3 - n_3)^2 + \frac{\rho}{2} (s_4 - n_4)^2$$

$$f(\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4) = \begin{cases} 0 & \text{if } d(\mathbf{s}_1, \mathbf{s}_2) \ge 2r \\ \infty & \text{if } d(\mathbf{s}_1, \mathbf{s}_2) < 2r \end{cases}$$

$$x_{1} = \frac{n_{1} + n_{3}}{2} - r \frac{n_{3} - n_{1}}{\|n_{3} - n_{1}\|}, \qquad x_{2} = \frac{n_{2} + n_{4}}{2} - r \frac{n_{2} - n_{4}}{\|n_{2} - n_{4}\|}$$

$$x_{3} = \frac{n_{1} + n_{3}}{2} + r \frac{n_{3} - n_{1}}{\|n_{3} - n_{1}\|}, \qquad x_{4} = \frac{n_{2} + n_{4}}{2} + r \frac{n_{2} - n_{4}}{\|n_{2} - n_{4}\|}$$

$$(\mathbf{x}_1, \mathbf{x}_2) = \underset{\mathbf{s}_1, \mathbf{s}_2}{\operatorname{arg min}} \|\mathbf{s}_1 - \mathbf{n}_1\|^2 + \|\mathbf{s}_2 - \mathbf{n}_2\|^2$$
subject to $\|\mathbf{s}_1 - \mathbf{s}_2\| > 2r$

Mechanical analogy: minimize the energy of a system of balls and springs

Circle Packing - Box


```
function [x_1 , x_2] = P_box(z_minus_u_1, z_minus_u_2)

global r;

x_1 = min([1-r, max([r, z_minus_u_1])]);
 x_2 = min([1-r, max([r, z_minus_u_2])]);
end
```

Circle Packing - Box


```
function [m_1, m_2, new_u_1, new_u_2] = F_box(z_1, z_2, u_1, u_2)
% compute internal updates
[x_1 , x_2] = P_box(z_1 - u_1, z_2 - u_2);
new_u_1 = u_1 - (z_1 - x_1);
new_u_2 = u_2 - (z_2 - x_2);
% compute outgoing messages
m_1 = new_u_1 + x_1;
m_2 = new_u_2 + x_2;
```



```
function [x_1, x_2, x_3, x_4] = P_coll(z_minus_u_1, z_minus_u_2, z_minus_u_3, z_minus_u_4)
    global r;
    d = sqrt((z_minus_u_1 - z_minus_u_3)^2 + (z_minus_u_2 - z_minus_u_4)^2);
    if (d > 2*r)
        x_1 = z_minus_u_1; x_2 = z_minus_u_2;
        x_3 = z_minus_u_3; x_4 = z_minus_u_4;
        return;
end
    x_1 = 0.5*(z_minus_u_1 + z_minus_u_3) + r*(z_minus_u_1 - z_minus_u_3)/d;
    x_2 = 0.5*(z_minus_u_2 + z_minus_u_4) + r*(z_minus_u_2 - z_minus_u_4)/d;
    x_3 = 0.5*(z_minus_u_1 + z_minus_u_3) - r*(z_minus_u_1 - z_minus_u_3)/d;
    x_4 = 0.5*(z_minus_u_2 + z_minus_u_4) - r*(z_minus_u_2 - z_minus_u_4)/d;
end
```



```
function [m 1, m 2, m 3, m 4, new u 1, new u 2, new u 3, new u 4] =
         F coll(z 1, z 2, z 3, z 4, u 1, u 2, u 3, u 4)
    % Compute internal updates
    [x 1, x 2, x 3, x 4] = P coll(z 1-u 1, z 2-u 2, z 3-u 3, z 4-u 4);
   new u 1 = u 1-(z 1-x 1); new u 2 = u 2-(z 2-x 2);
   new u 3 = u 3-(z 3-x 3); new u 4 = u 4-(z 4-x 4);
   % Compute outgoing messages
   m 1 = new u 1 + x 1; m 2 = new u 2 + x 2;
   m 3 = new u 3 + x 3; m 4 = new u 4 + x 4;
end
```

```
% Initialization
rho = 1; num balls = 10; global r; r = 0.15; u box = randn(num balls, 2); u coll = randn(num balls, 2)
num_balls,4); m_box = randn(num_balls,2); m_coll = randn(num_balls, num_balls,4); z = randn(num_balls,2);
for i = 1:1000
% Process left nodes
    for j = 1:num balls % First process box nodes
        [m box(j,1), m box(j,2), u box(j,1)u box(j,2)] = F_box(z(j,1), z(j,2), u box(j,1), u box(j,2));
    end
    for j = 1:num balls-1 % Second process coll nodes
        for k = j+1:num balls
      [m \ coll(j,k,1),m \ coll(j,k,2),m \ coll(j,k,3),m \ coll(j,k,4),u \ coll(j,k,1),u \ coll(j,k,2),u \ coll(j,k,3),u
        u coll(j,k,4)]=
    \mathbf{F}_{coll}(z(j,1),z(j,2),z(k,1),z(k,2),u \text{ coll}(j,k,1),u \text{ coll}(j,k,2),u \text{ coll}(j,k,3),u \text{ coll}(j,k,4));
         end
    end
% Process right nodes
    z = 0 * z;
                                                                                            Box
for i = 1:num balls
                                                                                            Box
         z(i,1) = z(i,1) + m box(i,1); z(i,2) = z(i,2) + m box(i,2);
    end
                                                                                            Box
    for j = 1:num balls-1
        for k = j+1:num balls
                                                                                            Coll
             z(j,1) = z(j,1) + m \text{ coll}(j,k,1); z(j,2) = z(j,2) + m \text{ coll}(j,k,2);
                                                                                            Coll
             z(k,1) = z(k,1) + m coll(j,k,3); z(k,2) = z(k,2) + m coll(j,k,4);
        end
                                                                                            Coll
    end
    z = z / num balls;
end
```


Fused Lasso*:
$$\min_{z \in \mathbb{R}^p} \frac{1}{2} \sum_{i=1}^p (z_i - y_i)^2 + \lambda \sum_{i=1}^{p-1} |z_{i+1} - z_i|$$

^{*}For a different algorithm to solve a more general version of this problem see: J. Bento, R. Furmaniak, S. Ray, "On the complexity of the weighted fused Lasso", 2018

Fused Lasso*:
$$\min_{z \in \mathbb{R}^p} \frac{1}{2} \sum_{i=1}^p (z_i - y_i)^2 + \lambda \sum_{i=1}^{p-1} |z_{i+1} - z_i|$$

^{*}For a different algorithm to solve a more general version of this problem see: J. Bento, R. Furmaniak, S. Ray, "On the complexity of the weighted fused Lasso", 2018

Fused Lasso*:
$$\min_{z \in \mathbb{R}^p} \frac{1}{2} \sum_{i=1}^p \underbrace{(z_i - y_i)^2}_{\text{quad}} + \lambda \sum_{i=1}^{p-1} \underbrace{|z_{i+1} - z_i|}_{\text{diff}}$$

^{*}For a different algorithm to solve a more general version of this problem see: J. Bento, R. Furmaniak, S. Ray, "On the complexity of the weighted fused Lasso", 2018

Fused Lasso*: $\min_{z \in \mathbb{R}^p} \frac{1}{2} \sum_{i=1}^p \underbrace{(z_i - y_i)^2}_{\text{quad}} + \lambda \sum_{i=1}^{p-1} \underbrace{|z_{i+1} - z_i|}_{\text{diff}}$

^{*}For a different algorithm to solve a more general version of this problem see: J. Bento, R. Furmaniak, S. Ray, "On the complexity of the weighted fused Lasso", 2018

Fused Lasso*: $\min_{z \in \mathbb{R}^p} \frac{1}{2} \sum_{i=1}^p (z_i - y_i)^2 + \lambda \sum_{i=1}^{p-1} |z_{i+1} - z_i|$

^{*}For a different algorithm to solve a more general version of this problem see: J. Bento, R. Furmaniak, S. Ray, "On the complexity of the weighted fused Lasso", 2018

Fused Lasso*: $\min_{z \in \mathbb{R}^p} \frac{1}{2} \sum_{i=1}^p (z_i - y_i)^2 + \lambda \sum_{i=1}^{p-1} |z_{i+1} - z_i|$

^{*}For a different algorithm to solve a more general version of this problem see: J. Bento, R. Furmaniak, S. Ray, "On the complexity of the weighted fused Lasso", 2018

Non-smooth Filtering - quad

$$n = z - u \longrightarrow \mathcal{P}_{quad} \longrightarrow x$$

$$x = \underset{s}{\arg \min} \frac{1}{2} (s - y_i)^2 + \frac{\rho}{2} (s - n)^2 \longrightarrow x = \frac{n\rho + y_i}{1 + \rho}$$

Non-smooth Filtering - diff

$$n_1 = z_1 - u_1 \longrightarrow x_1$$
 $n_2 = z_2 - u_2 \longrightarrow \mathcal{P}_{\text{diff}} \longrightarrow x_2$

$$(x_1, x_2) = \underset{s_1, s_2}{\arg \min} \lambda |s_2 - s_1| + \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2$$

Non-smooth Filtering - diff

$$(x_1, x_2) = \underset{s_1, s_2}{\operatorname{arg min}} \ \lambda |s_2 - s_1| + \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2$$

The solution must be along this line, thus:

$$(s_1, s_2) = (n_1, n_2) + \beta(1, -1)$$

$$\min_{\beta} \lambda \left| \frac{n_1 - n_2}{2} + \beta \right| + \frac{\rho}{2} \beta^2$$

$$\beta = \text{thres}\left(\frac{n_1 - n_2}{2}, \frac{\lambda}{\rho}\right)$$

Non-smooth Filtering - quad


```
function [ x ] = P_quad( z_minus_u, i )
    global y;
    global rho;

x = (z_minus_u*rho + y(i))/(1+rho);
end
```

Non-smooth Filtering - quad


```
function [ m, new_u] = F_quad(z, u, i)
% Compute internal updates
x = P_quad(z - u, i);

new_u = u + (x - z);
% Compute outgoing messages
m = new_u + x;
```

end

Non-smooth Filtering - diff

$$n_1 = z_1 - u_1 \longrightarrow x_1$$
 $n_2 = z_2 - u_2 \longrightarrow x_2$

```
function [ x_1, x_2 ] = P_diff(z_minus_u_1, z_minus_u_2)

global rho; global lambda;

beta = max(-lambda/rho, min(lambda/rho,(z_minus_u_2 - z_minus_u_1)/2));

x_1 = z_minus_u_1 + beta;

x_2 = z_minus_u_2 - beta;
```

end

Non-smooth Filtering - diff


```
function [ m_1, m_2, new_u_1, new_u_2 ] = F_diff( z_1, z_2, u_1, u_2 )
% Compute internal updates
[x_1, x_2] = P_diff( z_1 - u_1, z_2 - u_2);
new_u_1 = u_1 + (x_1 - z_1);
new_u_2 = u_2 + (x_2 - z_2);
% Compute outgoing messages
m_1 = new_u_1 + x_1;
m_2 = new_u_2 + x_2;
```

```
global y; global rho; global lambda;
n = 100; lambda = 0.7; rho = 1;
\mathbf{v} = \text{sign}(\sin(0:10*2*\text{pi}/(\text{n-1}):10*2*\text{pi}))' + 0.1*\text{randn}(\text{n,1});
% Initialization
\mathbf{u} quad = randn(n,1); \mathbf{u} diff = randn(n-1,2); \mathbf{m} quad = randn(n,1); \mathbf{m} diff = randn(n-1,2);
z = randn(n, 1);
for i=1:1000
    % Process left nodes
          % First process quad nodes
          for i = 1:n
               [m \text{ quad}(i), u \text{ quad}(i)] = F \text{ quad}(z(i), u \text{ quad}(i), i);
          end
          % Second process diff nodes
          for j = 1:n-1
           [m diff(j,1),m diff(j,2),u diff(j,1),u diff(j,2)]
           = \mathbf{F} diff(z(j),z(j+1),u diff(j,1), u diff(j,2));
          end
     % Process right nodes
    z = 0*z;
     for i = 2:n-1
         z(i) = (m \text{ quad}(i) + m \text{ diff}(i-1,2) + m \text{ diff}(i,1))/3;
     end
     z(1) = (m \text{ quad}(1) + m \text{ diff}(1,1))/2;
     z(n) = (m \text{ quad}(n) + m \text{ diff}(n-1,2))/2;
end
```


Non-smooth Filtering

Non-smooth Filtering

	4
3	
	2
1	

- Each number should be included once in each:
 - Row
 - Column
 - Block

- Each number should be included once in each:
 - Row
 - Column
 - Block
- Bit representations

- Each number should be included once in each:
 - Row
 - Column
 - Block
- Bit representations

- Each number should be included once in each:
 - Row
 - Column
 - Block
- Bit representations

- Each number should be included once in each:
 - Row
 - Column
 - Block
- Bit representations

- Each number should be included once in each:
 - Row
 - Column
 - Block
- Bit representations

- Each number should be included once in each:
 - Row
 - Column
 - Block
- Bit representations

 Each number should be included once in each:

- Row
- Column
- Block

Bit representations

 Each number should be included once in each:

- Row
- Column
- Block

Bit representations

Only one digit should be one in a given cell

n onlyOne nodes for each cell

$$(x_1, x_1, \ldots) = \underset{s_1, s_2, \ldots}{\operatorname{arg \, min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \ldots$$
subject to
only one s_i is 1 and all others are 0

Find the minimum via direct inspection of the different solutions values

$$(1 - n_1)^2 + (0 - n_2)^2 + (0 - n_3)^2 + \dots$$
$$(0 - n_1)^2 + (1 - n_2)^2 + (0 - n_3)^2 + \dots$$
$$(0 - n_1)^2 + (0 - n_2)^2 + (1 - n_3)^2 + \dots$$

Compare each of the following values

$$(1 - n_1)^2 + (0 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (1 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (0 - n_2)^2 + (1 - n_3)^2 + \dots$$

against the reference

$$n_1^2 + n_2^2 + n_3^2 + \dots$$

Compare each of the following values

$$(1 - n_1)^2 + (0 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (1 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (0 - n_2)^2 + (1 - n_3)^2 + \dots$$

against the reference

$$n_1^2 + n_2^2 + n_3^2 + \dots$$

notice that

$$((1-n_1)^2 + (0-n_2)^2 + \ldots) - (n_1^2 + n_2^2 + \ldots) = -2n_1$$

Compare each of the following values

$$(1 - n_1)^2 + (0 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (1 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (0 - n_2)^2 + (1 - n_3)^2 + \dots$$

against the reference

$$n_1^2 + n_2^2 + n_3^2 + \dots$$

notice that

$$((1-n_1)^2 + (0-n_2)^2 + \ldots) - (n_1^2 + n_2^2 + \ldots) = -2n_1$$

therefore $(x_1, x_2, \ldots) = (0, \ldots, 0, 1, 0, \ldots, 0)$

Compare each of the following values

$$(1 - n_1)^2 + (0 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (1 - n_2)^2 + (0 - n_3)^2 + \dots$$

$$(0 - n_1)^2 + (0 - n_2)^2 + (1 - n_3)^2 + \dots$$

against the reference

$$n_1^2 + n_2^2 + n_3^2 + \dots$$

notice that

$$((1-n_1)^2 + (0-n_2)^2 + \ldots) - (n_1^2 + n_2^2 + \ldots) = -2n_1$$

therefore

$$(x_1, x_2, \ldots) = (0, \ldots, 0, 1, 0, \ldots, 0)$$

Some cell values are known from the beginning

knowThat functions constantly produce those values for the

corresponding cells

	4
3	
	2
1	

Some cell values are known from the beginning

knowThat functions constantly produce those values for the

corresponding cells

Some cell values are known from the beginning

• knowThat functions constantly produce those values for the

corresponding cells

Sudoku Puzzle – Factor graph


```
function [ X ] = P_onlyOne( Z_minus_U )
%X and Z_minus U are n by one vectors

X = 0*Z_minus_U;
[~,b] = max(Z_minus_U);
X(b) = 1;
```

end


```
function [ M, new_U ] = F_onlyOne( Z, U )
%M, Z and U are n by one vectors

% Compute internal updates
X = P_onlyOne( Z - U );

new_U = U + (X - Z);

% Compute outgoing messages
M = new_U + X;
```



```
function [ X ] = P_knowThat( k, Z_minus_U )
%Z_minus_U is an n by 1 vector

X = 0*Z_minus_U;
X(k) = 1;
```

end


```
function [ M, new_U ] = F_knowThat(k, Z, U )
% Compute internal updates
X = P_knowThat(k, Z - U );
new_U = U + (X - Z);
% Compute outgoing messages
M = new_U + X;
```

```
n = 9; known data = [1,4,6;1,7,4;2,1,7;2,6,3;2,7,6;3,5,9;3,6,1;3,8,8;5,2,5;5,4,1;5,5,8;5,9,3;6,4,3;6,6,6;6,8,4;6,9,5;7,2,4;7,4,2;7,8,6;8,1,9;8,3,3;9,2,2;9,7,1;];
box indices = 1:n;box indices = reshape(box indices, sqrt(n), sqrt(n));box indices = kron(box indices, ones(sqrt(n)));% box indexing
u onlyOne rows = randn(n,n,n);u onlyOne cols = randn(n,n,n);u onlyOne boxes = randn(n,n,n);u onlyOne cells = randn(n,n,n); % Initialization (number , row, col)
m onlyOne rows = randn(n,n,n);m onlyOne cols = randn(n,n,n);m onlyOne boxes = randn(n,n,n);m onlyOne cells = randn(n,n,n);
u knowThat = randn(n,n,n);m knowThat = randn(n,n,n);z = randn(n,n,n);
for t = 1:1000
    % Process left nodes
    % First process knowThat nodes
    for i = 1:size(known data, 1)
        number = known data(i,3);pos row = known data(i,1);pos col = known data(i,2);
        [m knowThat(:,pos row,pos col),u knowThat(:,pos row,pos col)] = F knowThat(number,z(:,pos row,pos col),u knowThat(:,pos row,pos col));
    end
    % Second process onlyOne nodes
    for number = 1:n % rows
        for pos row = 1:n
            [m onlyOne rows(number,pos row,:), u onlyOne rows(number,pos row,:)] = F_onlyOne(z(number,pos row,:),u onlyOne rows(number,pos row,:));
        end
    end
    for number = 1:n %columns
        for pos col = 1:n
            [m onlyOne cols(number,:,pos col),u onlyOne cols(number,:,pos col)] = F onlyOne(z(number,:,pos col),u onlyOne cols(number,:,pos col));
        end
    end
    for number = 1:n %boxes
        for pos box = 1:n
            [pos row,pos col] = find(box indices==pos box); linear indices for box ele = sub2ind([n,n,n],number*ones(n,1),pos row,pos col);
            [m onlyOne boxes(linear indices for box ele), u onlyOne boxes(linear indices for box ele)] =
             F onlyOne (z(linear indices for box ele), u onlyOne boxes(linear indices for box ele));
        end
    end
    for pos col = 1:n %cells
        for pos row = 1:n
            [m onlyOne cells(:,pos col,pos row),u onlyOne cells(:,pos col,pos row)] = F onlyOne(z(:,pos col,pos row),u onlyOne cells(:,pos col,pos row));
        end
    end
    % Process right nodes
    z = 0*z; z = (m \text{ onlyOne rows} + m \text{ onlyOne cols} + m \text{ onlyOne boxes} + m \text{ onlyOne cells})/4;
    for i = 1:size(known data,1)
        number = known data(i,3); pos row = known data(i,1); pos col = known data(i,2);
        z(number,pos_row,pos_col) = (4*z(number,pos_row,pos_col) + m knowThat(number,pos_row,pos_col))/5;
    end
    final = zeros(n);
    for i = 1:n
        final = final + i*reshape(z(i,:,:),n,n);
    end
    disp(final);
end
```

Sudoku Puzzle – A (difficult) 9 by 9 example

			6			4		
7					3	6		
				9	1		8	
	5		1	8				3
			3		6		4	5
	4		2				6	
9		3						
	2					1		

Sudoku Puzzle – A (difficult) 9 by 9 example

Sudoku Puzzle – A (difficult) 9 by 9 example

7.0000	6.0000	-2.7500	4.0000	4.5000	3.0000	4.8000	2.5000	8.5000
7.3500	4.7500	7.5000	5.7500	4.2500	1.8000	6.6500	1.5000	12.2500
8.0000	4.5000	6.5000	5.7500	13.0000	-4.2000	-4.0000	11.6000	11.5000
4.2500	0.7500	-3.7500	18.0000	6.2500	2.7500	-1.2500	2.7500	-1.2500
4.5000	4.0000	9.7500	2.1500	14.3500	-1.0000	4.7500	6.7500	3.1000
4.2500	0.7500	5.7500	4.1000	13.0000	4.3000	4.5000	3.4500	12.5000
5.0000	-0.9500	10.7500	-0.1000	3.0000	8.0000	-3.7500	12.3500	2.5000
10.5000	0.7500	8.9000	0.2500	2.5000	8.5000	5.5000	5.0000	5.5000
1.5000	5.9000	7.7500	1.0000	6.0000	4.0000	3.9000	8.2500	1.7500

Sudoku Puzzle – A (difficult) 9 by 9 example

5.0000	8.0000	1.0000	6.0000	7.0000	2.0000	4.0000	3.0000	9.0000
7.0000	9.0000	2.0000	8.0000	4.0000	3.0000	6.0000	5.0000	1.0000
3.0000	6.0000	4.0000	5.0000	9.0000	1.0000	7.0000	8.0000	2.0000
4.0000	3.0000	8.0000	9.0000	5.0000	7.0000	2.0000	1.0000	6.0000
2.0000	5.0000	6.0000	1.0000	8.0000	4.0000	9.0000	7.0000	3.0000
1.0000	7.0000	9.0000	3.0000	2.0000	6.0000	8.0000	4.0000	5.0000
8.0000	4.0000	5.0000	2.0000	1.0000	9.0000	3.0000	6.0000	7.0000
9.0000	1.0000	3.0000	7.0000	6.0000	8.0000	5.0000	2.0000	4.0000
6.0000	2.0000	7.0000	4.0000	3.0000	5.0000	1.0000	9.0000	8.0000

subject to $y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$

$$\xi_i \ge 0$$

 \mathbf{x}_i : p-dimensional data

 y_i : i-th label $i \in \{1, \dots, k\}$

Support Vector Machine - Positive

$$\xi_i \ge 0$$

$$(x_1, \dots, x_k) = \underset{s_1, \dots, s_k}{\arg \min} \frac{\rho}{2} (s_1 - n_1)^2 + \dots + \frac{\rho}{2} (s_k - n_k)^2$$

subject to $s_i \ge 0$

$$\rho(s_i - n_i) = 0$$
subject to $s_i \ge 0$

$$x_i = \max(0, n_i)$$

Support Vector Machine - Sum

$$\sum_{i=1}^{k} \xi_i$$

$$(x_1, \dots, x_k) = \underset{s_1, \dots, s_k}{\operatorname{arg min}} (s_1 + \dots + s_k) + \frac{\rho}{2} (s_1 - n_1)^2 + \dots + \frac{\rho}{2} (s_k - n_k)^2$$

$$1 + \rho(s_i - n_i) = 0$$
 \longrightarrow $x_i = n_i - \frac{1}{\rho}$

Support Vector Machine - Norm

$$\frac{\lambda}{2}\|\mathbf{w}\|^2$$

$$(x_1, \dots, x_p) = \underset{s_1, \dots, s_p}{\arg \min} \frac{\lambda}{2} (s_1^2 + \dots + s_p^2) + \frac{\rho}{2} (s_1 - n_1)^2 + \dots + \frac{\rho}{2} (s_p - n_p)^2$$

$$\lambda s_i + \rho(s_i - n_i) = 0$$
 \longrightarrow $x_i = \frac{\rho n_i}{\lambda + \rho}$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$
subject to $y_i [s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$
subject to $y_i [s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$S = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{p+2} \end{bmatrix}$$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$

subject to $y_i[s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$
subject to $y_i [s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$S = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{p+2} \end{bmatrix}$$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$
subject to $y_i [s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$
subject to $y_i [s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$S = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{p+2} \end{bmatrix} \quad N = \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_{p+2} \end{bmatrix}$$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$
subject to $y_i [s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$S = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{p+2} \end{bmatrix} \quad N = \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_{p+2} \end{bmatrix} \quad Y = \begin{bmatrix} 1 \\ y_i \mathbf{x}_i \end{bmatrix}$$

$$y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$$

$$(x_1, \dots, x_{p+2}) = \underset{s_1, \dots, s_{p+2}}{\operatorname{arg min}} \frac{\rho}{2} (s_1 - n_1)^2 + \frac{\rho}{2} (s_2 - n_2)^2 + \dots + \frac{\rho}{2} (s_{p+2} - n_{p+2})^2$$
subject to $y_i [s_{2:p+2}]^T \mathbf{x}_i \ge 1 - s_1$

$$S = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{p+2} \end{bmatrix} \quad N = \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_{p+2} \end{bmatrix} \quad Y = \begin{bmatrix} 1 \\ y_i \mathbf{x}_i \end{bmatrix} \quad X = \underset{S}{\operatorname{arg min}} \|S - N\|^2$$
subject to $Y^T S \ge 1$

$$X = \underset{S}{\arg\min} \|S - N\|^2$$
 subject to $Y^T S \ge 1$

 $X = \underset{S}{\arg\min} \|S - N\|^2$ subject to $Y^T S \ge 1$

 $X = \underset{S}{\arg\min} \|S - N\|^2$ subject to $Y^T S \ge 1$

 $X = \underset{S}{\arg\min} \|S - N\|^2$ subject to $Y^T S \ge 1$

Support Vector Machine - pos


```
function [X] = P_pos(Z_minus_U)

X = max(Z_minus_U,0);
end
```

Support Vector Machine - pos


```
function [M, new_U] = F_pos(Z , U)
% Compute internal updates
X = P_pos(Z - U);

new_U = U + (X - Z);
% Compute outgoing messages
M = new_U + X;
```

end

Support Vector Machine - sum


```
function [X] = P_sum(Z_minus_U)

global rho

X = Z_minus_U - (1 / rho);
end
```

Support Vector Machine - pos


```
function [M, new_U] = F_pos(Z , U)
% Compute internal updates
X = P_pos(Z - U);

new_U = U + (X - Z);
% Compute outgoing messages
M = new_U + X;
```

end

Support Vector Machine - separation


```
function [X] = P_separation(Z_minus_U)

    global rho
    global lambda

X = (rho/(lambda + rho)) * Z_minus_U;
end
```

Support Vector Machine - separation


```
function [M, new_U] = F_separation(Z, U)
% Compute internal updates
X = P_separation(Z - U);
new_U = U + (X - Z);
% Compute outgoing messages
M = new_U + X;
```

end


```
function [X_data, X_plane] = P_data(Z_slack_minus_U_data_slack,Z_plane_minus_U_data_plane,x_i,y_i)

if (y_i*Z_plane_minus_U_data_plane'*x_i >= 1 - Z_slack_minus_U_data_slack)

    X_data = Z_slack_minus_U_data_slack; X_plane = Z_plane_minus_U_data_plane;

else
    beta = ((1-[1;y_i*x_i]'*[Z_slack_minus_U_data_slack;Z_plane_minus_U_data_plane])/([1;y_i.*x_i]'*[1;y_i*x_i]));

    X_data = Z_slack_minus_U_data_slack + beta;
    X_plane = Z_plane_minus_U_data_plane + beta*y_i*x_i;
```

end


```
function [M_data,M_plane, new_U_data,new_U_plane] = F_data(Z_slack, Z_plane,U_data_slack,U_data_plane,
x_i, y_i)

% Compute internal updates
[X_data, X_plane] = P_data( Z_slack - U_data_slack , Z_plane - U_data_plane , x_i, y_i);

new_U_data = U_data_slack + (X_data - Z_slack);
new_U_plane = U_data_plane + (X_plane - Z_plane);

% Compute outgoing messages
M_plane = new_U_plane + X_plane;
M_data = new_U_data + X_data;
```

```
n = 10; p = 4000; y = sign(randn(n,1)); x = randn(p,n); x = [x;ones(1,n)]; create random data
global rho; rho = 1; global lambda; lambda = 0.1; %Initialization
\mathbf{U} pos = randn(n,1); \mathbf{U} sum = randn(n,1); \mathbf{U} norm = randn(p,1); \mathbf{U} data = randn(p+2,n);
M pos = randn(n,1); M sum = randn(n,1); M norm = randn(p,1); M data = randn(p+2,n);
Z slack = randn(n,1); Z plane = randn(p+1,1);
%ADMM iterations
for t = 1:1000
    [M pos, U pos] = F pos(Z slack , U pos); % POSITIVE SLACK
    [M sum, U sum] = F sum(Z slack , U sum); % SLACK SUM COST
    [M norm, U norm] = F separation(Z plane(1:p), U norm); % SEPARATION COST
    for i = 1:n % DATA CONSTRAINT
        [M data(1,i), M data(2:end,i), U data(1,i), U data(2:end,i)] = \mathbf{F} data( Z slack(i), Z plane,
         U data(1,i), U data(2:end,i), x(:,i), y(i);
    end
    % Z updates
    Z slack = M pos + M sum;
    for i = 1:n
        Z \operatorname{slack}(i) = Z \operatorname{slack}(i) + M \operatorname{data}(1,i);
    end
    Z slack = Z slack / 3; Z plane(1:p) = M norm;
    for i = 1:p
        for j = 1:n
             Z \text{ plane(i)} = Z \text{ plane(i)} + M \text{ data(i+1,j);}
        end
    end
    Z_plane(1:p) = Z plane(1:p) / (n+1);
    for i = 1:n
        Z plane(p+1) = Z plane(p+1) + M data(p+2,i);
    end
    Z plane(p+1) = Z plane(p+1)/n;
end
```


Please cite this tutorial by citing:

```
@article{safavi2018admmtutorial,
 title={Networks and large scale optimization: a short, hands-on, tutorial on ADMM},
 note={Open Data Science Conference},
 author={Safavi, Sam and Bento, Jos{\'e}},
 year = \{2018\}
@inproceedings{hao2016testing,
 title={Testing fine-grained parallelism for the ADMM on a factor-graph},
 author={Hao, Ning and Oghbaee, AmirReza and Rostami, Mohammad and Derbinsky, Nate and Bento, Jos{\'e}},
 booktitle={Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International},
 pages=\{835--844\},
 year = \{2016\},\
 organization={IEEE}
@inproceedings{francca2016explicit,
 title={An explicit rate bound for over-relaxed ADMM},
 author=\{Fran\{\c{c}\}a, Guilherme and Bento, Jos\{\ensuremath{\case2}\c{e}\},
 booktitle={Information Theory (ISIT), 2016 IEEE International Symposium on},
 pages = \{2104 - 2108\},\
 year={2016},
 organization={IEEE}
@article{derbinskv2013improved,
 title={An improved three-weight message-passing algorithm},
 author={Derbinsky, Nate and Bento, Jos{\'e} and Elser, Veit and Yedidia, Jonathan S},
 journal={arXiv preprint arXiv:1305.1961},
 year = \{2013\}
@article{bento2018complexity,
 title={On the Complexity of the Weighted Fussed Lasso},
 author={Bento, Jos{\'e} and Furmaniak, Ralph and Ray, Surjyendu},
 journal={arXiv preprint arXiv:1801.04987},
 year = \{2018\}
```

Code, link to slides and video available at

https://github.com/bentoayr/ADMM-tutorial

or

http://jbento.info