

Elementos Armazenadores de Energia

JOÃO PAULO ASSUNÇÃO DE SOUZA

Introdução

Até agora estudamos circuitos resistivos.

A partir de agora estudaremos dois novos elementos passivos: indutores e capacitores.

Deferentemente dos resistores, indutores e capacitores não dissipam energia, mas armazenam a mesma.

Capacitores

O capacitor é um elemento passivo projetado para armazenar energia em seu campo elétrico.

São largamente utilizados na engenharia elétrica, de sistemas microeletrônicos a sistemas de potência.

Consistem em duas placas condutoras separadas por um material dielétrico.

Capacitância

Capacitância é a relação entre a carga depositada em uma placa de um capacitor e a diferença de potencial entre as duas placas, medidas em *farads* (F).

A capacitância não depende da tensão ou da carga no capacitor, mas sim, de suas dimensões físicas.

Para um capacitor de placas paralelas:

Relações Matemáticas

$$i = C \frac{dv}{dt}$$

$$v(t) = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$$

$$w = \frac{1}{2}Cv^2$$

1. Um capacitor se comporta como um circuito aberto em corrente contínua quando está carregado.

- 1. Um capacitor se comporta como um circuito aberto em corrente contínua quando está carregado.
- 2. A tensão do capacitor não pode mudar abruptamente.

- 1. Um capacitor se comporta como um circuito aberto em corrente contínua quando está carregado.
- 2. A tensão do capacitor não pode mudar abruptamente.

- 1. Um capacitor se comporta como um circuito aberto em corrente contínua quando está carregado.
- 2. A tensão do capacitor não pode mudar abruptamente.
- 3. O capacitor ideal não dissipa energia, mas absorve a potência do circuito e a armazena em forma de energia.

- Um capacitor se comporta como um circuito aberto em corrente contínua quando está carregado.
- A tensão do capacitor não pode mudar abruptamente.
- 3. O capacitor ideal não dissipa energia, mas absorve a potência do circuito e a armazena em forma de energia.
- 4. Um capacitor real possui uma resistência de fuga em paralelo. Esta resistência tem valores bastante elevados, podendo chegar a 100 MΩ. Na maioria das aplicações práticas, pode ser desprezada.
 Resistência

A tensão em um capacitor de 5 μ F é $v(t)=10\cos(6000t)$. Determine a corrente que passa por ele.

Determine a tensão através de um capacitor de 2 μ F se a corrente através dele for $i(t)=6e^{-3000t}$ mA. A tensão inicial no capacitor é zero.

Determine a corrente através de um capacitor de 200 µF cuja tensão é mostrada abaixo:

Obtenha a energia armazenada nos capacitores do circuito abaixo. Suponha que os mesmos estão carregados.

Capacitores em série e em paralelo.

Associação em série:

Associação em paralelo:

Capacitores em série e em paralelo.

Associação em série:

$$v \stackrel{\pm}{=} C_{eq} \stackrel{+}{=} \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

Associação em paralelo:

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \dots + C_N$$

Determine a capacitância equivalente do circuito abaixo:

Determine a tensão em cada capacitor no circuito abaixo.

Indutores

São elementos passivos projetados para armazenar energia em seu campo magnético.

Qualquer condutor de corrente elétrica possui propriedades indutivas, mas, para maximizar estas propriedades, um indutor geralmente é formado por uma bobina de várias espiras.

Indutância

Indutância é a propriedade segundo o qual o indutor se opõe à mudança do fluxo de corrente através do mesmo, medida em *henrys* (H).

A indutância porém não depende da corrente que passa pelo indutor, mas das dimensões físicas do mesmo.

Relações matemáticas

$$v = L \frac{di}{dt}$$

$$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$$

$$w = \frac{1}{2}Li^2$$

1. Um indutor quando está carregado atua como um curto-circuito em corrente contínua.

- 1. Um indutor quando está carregado atua como um curto-circuito em corrente contínua.
- 2. A corrente em um indutor não pode mudar instantaneamente.

- 1. Um indutor quando está carregado atua como um curto-circuito em corrente contínua.
- 2. A corrente em um indutor não pode mudar instantaneamente.

- 1. Um indutor quando está carregado atua como um curto-circuito em corrente contínua.
- 2. A corrente em um indutor não pode mudar instantaneamente.
- 3. Um indutor ideal não dissipa energia, apenas a armazena, sendo que esta energia pode ser utilizada posteriormente.

- 1. Um indutor quando está carregado atua como um curto-circuito em corrente contínua.
- 2. A corrente em um indutor não pode mudar instantaneamente.
- 3. Um indutor ideal não dissipa energia, apenas a armazena, sendo que esta energia pode ser utilizada posteriormente.
- 4. O indutor real possui uma resistência e um capacitância associada, porém, como seus efeitos são mínimos, na maioria dos casos podemos ignorar a existência destes efeitos. Em altas frequência, o efeito capacitivo necessita ser considerado.

A corrente que passa por um indutor de 0,1 H é $i(t)=10te^{-5t}$. Calcule a tensão no indutor e a energia armazenada nele.

Determine a corrente através de um indutor de 5 H se a tensão nele for:

$$v(t) = \begin{cases} 30t^2, & t > 0 \\ 0, & t < 0 \end{cases}$$

Em seguida determine a energia armazenada em t=5 segundos.

Considere o circuito abaixo e determine a corrente *i*, a tensão no capacitor, a corrente no indutor e a energia armazenada em ambos os elementos. Tanto o capacitor quando o indutor estão completamente carregados.

Indutores em série e em paralelo

Associação em série:

Associação em paralelo:

Indutores em série e em paralelo

Associação em série:

$$L_{\rm eq} = L_1 + L_2 + L_3 + \dots + L_N$$

Associação em paralelo:

$$\frac{1}{L_{\text{eq}}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_N}$$

Determine a indutância equivalente do circuito abaixo:

Resumo:

Relação	Resistor (R)	Capacitador (C)	Indutor (L)
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$	$v = L \frac{di}{dt}$
i-v:	i = v/R	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$
<i>p</i> ou <i>w</i> :	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Série:	$R_{\rm eq} = R_1 + R_2$	$C_{\text{eq}} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
Paralelo:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$
Em CC:	Idem	Circuito aberto	Curto-circuito
Variável do cicuito que não pode mudar			
abruptamente:	Não se aplica	v	i

Circuito integrador

Circuito integrador é um circuito com amplificador operacional cuja a saída é proporcional à integral do sinal de entrada.

$$v_o = -\frac{1}{RC} \int_0^t v_i(\tau) d\tau$$

Circuito diferenciador

Se trata de um circuito com amplificador operacional cuja saída é proporcional à taxa de variação do sinal de entrada.

$$v_o = -RC \frac{dv_i}{dt}$$

Tarefas

Fazer os exemplos 6.14; 6.13; 6.12; 6.7 da referência [1].

Lista de exercícios

Problemas 6.5; 6.6; 6.8; 6.11; 6.13; 6.15; 6.16; 6.17; 6.25; 6.31; 6.35; 6.38; 6.48; 6.51; 6.53; 6.57; 6.67; 6.72

Bibliografia

• [1] SADIKU, M.N.O; ALEXANDER, A, K. Fundamentos de Circuitos Elétricos. 5ª edição, AMGH Editora LTDA, 2013. 840 p.