You can work together, but you must write up your solutions independently. Be sure to show how you derived your solutions.

For the simple linear regression model $Y_i = \alpha + \beta X_i + \epsilon_i$,

- 1. Find the method of moments estimator of β .
- 2. Find the MLE of β .
- 3. To test $H_0: \beta = 0$,
 - (a) derive a LRT test.
 - (b) derive a Wald test.
 - (c) derive a score test.

Be explicit about the assumptions you are making and include any equations you solve in addition to the final answer.

Statistical Theory Final Solution

Bohao Tang

October 10, 2017

1. Suppose α, β is parameters and ϵ_i, X_i are samples from two uncorrelated random variables, hence Y_i are also samples from a random variables. Also we suppose ϵ_i have mean 0 and $\frac{\sum X_i^2}{n} > (\frac{\sum X_i}{n})^2$.

Then we have moments:

$$\mathbb{E}[Y] = \alpha + \beta \mathbb{E}[X] + \mathbb{E}[\epsilon] = \alpha + \beta \mathbb{E}[X] \tag{1}$$

$$\mathbb{E}[XY] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[X^2] + \mathbb{E}[\epsilon X] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[X^2]$$
 (2)

Replace the expectation by the sample mean we have the MME of α , β are the solution of equation (n is the sample size):

$$\frac{\sum Y_i}{n} = \alpha + \beta \frac{\sum X_i}{n} \tag{3}$$

$$\frac{\sum X_i Y_i}{n} = \alpha \frac{\sum X_i}{n} + \beta \frac{\sum X_i^2}{n} \tag{4}$$

Then we solve that $\hat{\beta} = \frac{\overline{XY} - \overline{X} \cdot \overline{Y}}{\overline{X^2} - \overline{X}^2}$, where $\overline{X}, \overline{Y}, \overline{XY}, \overline{X^2}$ are the sample means of X, Y, XY, X^2 .

2. Suppose the sample size is n and $(\epsilon_1, \epsilon_2, \dots, \epsilon_n) \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$, where \mathbf{I} is the identity matrix of size $n \times n$. And X_i are given numbers, σ is known, α, β are parameters. Also suppose that $\frac{\sum X_i^2}{n} > (\frac{\sum X_i}{n})^2$.

Then we have the likelihood of the sample is:

$$L(\alpha, \beta) = \prod_{1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(Y_i - \alpha - \beta X_i)^2}{2\sigma^2}\right\}$$

Calculate the derivtives of $-\log L(\alpha, \beta)$, we get the regular equation for the MLE:

$$\sum_{i=1}^{n} Y_i - \alpha - \beta X_i = 0 \tag{5}$$

$$\sum_{1}^{n} X_i (Y_i - \alpha - \beta X_i) = 0 \tag{6}$$

And the unique solution is indeed the minimal point of $-\log L$. Then we get that $\hat{\beta} = \frac{\overline{XY} - \overline{X} \cdot \overline{Y}}{\overline{X^2} - \overline{X}^2}$, where $\overline{X}, \overline{Y}, \overline{XY}, \overline{X^2}$ are the sample means of X, Y, XY, X^2 .

- 3. Here, we use the same assumption and notation as in question 2.
 - (a) In this situation, the likelihood ratio is:

$$\Lambda = \frac{\sup_{\alpha} L(\alpha, 0)}{\sup_{\alpha, \beta} L(\alpha, \beta)}$$

The rejection field will be $\{\Lambda < C\}$, where C is choosen by solve:

$$\{\sup_{\alpha} \mathbf{P}(\Lambda < C | \alpha = \alpha, \beta = 0)\} = l_{\alpha}$$

Where l_{α} is the level of the test you need.

(b) In this situation, the test statistics will be $T = \frac{(\hat{\beta} - 0)^2}{var(\hat{\beta})}$. And the rejection field will be $\{T > C\}$, where C is choosen by solve:

$$\{\sup_{\alpha} \mathbf{P}(T > C | \alpha = \alpha, \beta = 0)\} = l_{\alpha}$$

Where l_{α} is the level of the test you need.

(c) In this situation, denote $\hat{\alpha}_0$ be the MLE of α when $\beta = 0$. And $U(\alpha, \beta)$ be the derivtive vector $\frac{\partial \log L(\alpha, \beta)}{\partial(\alpha, \beta)}$. And $I(\alpha, \beta)$ be the Fisher information matrix of this model.

Then the test statistics is

$$S = U^{T}(\hat{\alpha}_{0}, 0)I^{-1}(\hat{\alpha}_{0}, 0)U(\hat{\alpha}_{0}, 0)$$

The rejection field is $\{S > C\}$, where C is choosen by solve:

$$\{\sup_{\alpha} \mathbf{P}(S > C | \alpha = \alpha, \beta = 0)\} = l_{\alpha}$$

Where l_{α} is the level of the test you need.