#### **ESTRUCTURAS DE DATOS**

#### TIPOS ABSTRACTOS DE DATOS ARBORESCENTES

# El TAD Árbol Binario

Manuel Montenegro Montes

Departamento de Sistemas Informáticos y Computación
Facultad de Informática – Universidad Complutense de Madrid

## **Árboles binarios**

Máximo grado es 2

Un árbol binario es un árbol de aridad 2.

Máximo grado de nuestro árbol es 2

Cada nodo tiene 2 hijos, algunos de los cuales pueden ser vacíos.



#### Definición inductiva de un árbol binario

Caso base: Un grafo sin nodos es un árbol vacío.

tree.empty()== true;

• Caso recursivo: Si  $t_1$  y  $t_2$  son árboles binarios, y x es un elemento, entonces lo siguiente es un árbol binario:



#### Definición inductiva de un árbol binario

- Un árbol binario T es un conjunto finito tal que:
  - $T = \emptyset$ , o bien
  - $T = \{x\} \ \uplus \ T_1 \ \uplus \ T_2$ , donde  $T_1 \ y \ T_2$  son árboles.

x es la raíz,

 $T_{i}$  es el subárbol izquierdo, y

 $T_2$  es el subárbol derecho.

Definición matemática. No es necesario sabérsela.

# Operaciones en el TAD Árbol Binario

- Constructoras:
  - Crear un árbol vacío: create\_empty.
  - Crear una hoja: *create\_leaf*. es redundante, podría obtenerse a partir de CREATE\_TREE PERO PASANDO 2 ÁRBOLES VACÍOS.
  - Crear un árbol a partir de una raíz y dos hijos: create\_tree.
- Observadoras:
  - Determinar si el árbol es vacío: empty.
  - Obtener la raíz si el árbol no es vacío: root.
  - Obtener el hijo izquierdo, si existe: left.
  - Obtener el hijo derecho, si existe: right.

Para los árboles binarios funcionan muy bien la recursión, en concreto el divide y vencerás.

COMO PODEMOS VER, EN ESTE TAD NO HAY OPERACIONES MUTADORAS.

### **Operaciones constructoras**



## **Operaciones observadoras**



**left**(T: ArBin)  $\rightarrow$  (T': ArBin)

$$\left\{ T' = t_1 \right\}$$

Devuelve el hijo izquierdo



**right**(T: ArBin) → (T': ArBin)

$$T' = t_2$$
 Devuelve el hijo derecho.

# **Operaciones observadoras**



root(T: ArBin)  $\rightarrow$  (e: elem)

$$\{e = \mathbf{X}\}$$

{ true

empty(T: ArBin)  $\rightarrow$  (b: bool)

$$\{b \Leftrightarrow T = -\}$$

Es decir, que el árbol sea vacío.

LA ECUACIÓN QUE DETERMINA EL NÚMERO DE NODOS DE UN ÁRBOL BINARIO ES:

2<sup>nivel</sup> -1