Nonlinear Rootfinding (Introduction)

Introduction

Problem Statement

If f is linear,
$$f(x) = mx$$
. (trivial)
If f is affine, $f(x) = mx + b$. (trivial)

Rootfinding Problem

Given a continuous scalar function of a scalar variable, find a real number r such that f(r)=0.

- *r* is a **root** of the function *f*.
- The formulation f(x) = 0 is general enough; e.g., to solve g(x) = h(x), set f = g h and find a root of f.

- Iterative Methods square overtetermined linear problems.
 - Unlike the earlier linear problems, the root cannot be produced in a finite number of operations.
 - Rather, a sequence of approximations that formally converge to the root is pursued.

Iteration Strategy for Rootfinding. To find the root of f:

- **1** Start with an initial iterate, say x_0 .
- **2** Generate a sequence of iterates x_1, x_2, \ldots using an iteration algorithm of the form

$$x_{k+1} = g(x_k), \quad k = 0, 1, \dots$$

3 Continue the iteration process until you find an x_i such that $f(x_i) = 0$. (In practice, continue until some member of the sequence seems to be "good enough".)

MATLAB's FZERO

fzero is MATLAB's general purpose rootfinding tool.

Syntax:

$$\chi^{2} \frac{d^{2}y}{dx^{2}} + \chi \frac{dy}{dx} + (\chi^{2} - m^{2}) y = 0$$

The roots of J_m , a Bessel function of the first kind, is found by

- Plot the function.
- Find approximate locations of roots.

```
J3 = @(x) besselj(3,x);
fplot(J3,[0 20])
grid on
guess = [6,10,13,16,19];
```


Example (cont')

• Then use fzero to locate the roots:

```
omega = zeros(size(quess));
  for j = 1:length(guess)
    omega(j) = fzero(J3, guess(j));
  end
  hold on
  plot (omega, J3 (omega), 'ro')
(1- coordinates)
roots of In
in (0,20)
```


Conditioning

 Sensitivity of the rootfinding problem can be measured in terms of the condition number:

(absolute condition number) =
$$\frac{|abs. error in output|}{|abs. error in input|}$$
,

where, in the context of finding roots of f,

• input: f (function)

• output: r (root)

- Denote the changes by:
- enote the changes by: Some function error/change in input: ϵg , where $\epsilon > 0$ is small
- error/change in output: Δr

original perturbed
$$(f \mapsto f + \epsilon g)$$

$$(r \mapsto r + \Delta r)$$

$$\mathcal{L} = \left[\frac{\Delta r}{\epsilon g}\right]^n$$

Conditioning (cont')

because 1+21 is a root

of f+eg.

The perturbed equation

$$f(r) + f'(r) \Delta r + O((2r)^2) f(r + \Delta r) + \epsilon g(r + \Delta r) = 0$$
is linearized to (Taylor expansion)
$$g(r) + g'(r) \Delta r + O((2r)^2)$$

$$f(r) + f'(r) \Delta r + g(r) \epsilon + g'(r) \epsilon \Delta r \approx 0,$$
ignoring $O((\Delta r)^2)$ terms¹.
$$(f'(r) + \epsilon g'(r)) \Delta r \approx -\epsilon g(r)$$

• Since f(r) = 0, we solve for Δr to get

ignoring $O((\Delta r)^2)$ terms¹.

$$\Delta r \approx -\epsilon \frac{g(r)}{f'(r) + \epsilon g'(r)} \approx -\epsilon \frac{g(r)}{f'(r)},$$

for small ϵ compared with f'(r).

¹That is, terms involving $(\Delta r)^2$ and higher powers of Δr

Recall Taylor verses / expansion:
$$\frac{f^{(\circ)}(x)}{0!}h^{\circ}$$

$$\int (\lambda + h) = f(x) + \frac{f'(x)}{1!}h + \frac{f''(x)}{2!}h^{2} + \cdots$$
Center perturbation
$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(x)}{k!}h^{k}$$

Conditioning (cont')

• Therefore, the absolute condition number of the rootfinding problem is

$$\kappa_{f \mapsto r} = \frac{1}{|f'(r)|},$$

which implies that the problem is highly sensitive whenever $f'(r) \approx 0$.

• In other words, if |f'| is small at the root, a computed *root estimate* may involve large errors.

$$\left|\frac{\Delta r}{\epsilon gm}\right| \approx \left|\frac{gm}{f'm}\right| = \frac{c}{|fm|}$$

Residual and Backward Error

- cf. Least Squre
- Without knowing the exact root, we cannot compute the error.
- But the **residual** of a root estimate \tilde{r} can be computed:

i.e., computed poot (residual) =
$$f(\tilde{r})$$
.

- Small residual might be associated with a small error.
- The residual $f(\tilde{r})$ is the backward error of the estimate.

 $A\vec{x}$ "=" \vec{b} residual = $A\vec{x} - \vec{b}$

Rootfinding f(r) = 0 $f(\hat{r}) \approx 0$

vesidual =
$$f(\hat{r}) - 0$$

= $f(\hat{r})$

$$\tilde{f}(\tilde{r}) = f(\tilde{r}) - f(\tilde{r}) = 0.$$

But then

$$f(x) - \hat{f}(x) = f(x) - (f(x) - f(\hat{r})) = f(\hat{r})$$
back. error residual.

Multiple Roots

Definition 1 (Multiplicity of Roots)

Assume that r is a root of the differentiable function f. Then if

$$0 = f(r) = f'(r) = \dots = f^{(m-1)}(r)$$
 but $f^{(m)}(r) \neq 0$,

we say that f has a root of **multiplicity** m at r.

- We say that f has a **multiple root** at r if the multiplicity is greater than 1.
- A root is called **simple** if its multiplicity is 1.
- If r is a multiple root, the condition number is infinite. \nearrow because f'(r) = D.
- Even if r is a simple root, we expect difficulty in numerical computation if $f'(r) \approx 0$.

$$f(x) = (x-1)^2 (x-2)$$

$$f'(x) = (x-1)^{2} + 2(x-1)(x-2)$$

$$= (x-1) (x-1) + 2(x-2)$$

