SÖZDİZİM ÇÖZÜMLEME (3)

İLK VE İZLE KÜMELERİ

- İLK(β):(β: herhangi terminal/non-terminal simgeleri katarı)
 - β' nın her farklı açılımında ilk simge olarak yer alabilecek olan tüm terminal simgeler kümesi
- İZLE(X): (X: bir non-terminal)
 - X'in türetimini izleyebilecek olan tüm giriş simgeleri kümesi

İLK Kümesinin Belirlenmesi

İLK (X) kümesinin oluşturulması:

- 1. X bir terminal ise, $ILK(X) = \{X\}$
- 2. X bir <u>non-terminal</u> ve $X \rightarrow a\alpha$ ise, a terminalini $\dot{I}LK(X)$ kümesine ekle.
- 3. $X \rightarrow \varepsilon$ ise, ε İLK(X) kümesine ekle
- X bir <u>non-terminal</u> ve X → Y1Y2...Yk ise, eğer a ∈ İLK(Yi) ve ε ∈ İLK(Yj), j = 1...i-1 ise, a terminalini İLK(X) kümesine ekle (Y1...Yi-1 katarının ε indirgenebilme durumu)
- 5. $\epsilon \in \text{İLK}(Y1Y2...Yk)$ ise $\epsilon \text{ İLK}(X)$ kümesine ekle

İLK Kümesi İçin Örnek

İZLE Kümesinin Belirlenmesi

İZLE (X) kümesinin oluşturulması:

- 1. S başlangıç simgesi ise, \$ simgesini İZLE(S) kümesine
- A \rightarrow αBβ ise, İLK(β)kümesinin ε dışındaki tüm elemanlarını İZLE(B) kümesine ekle
- $A \rightarrow \alpha B$ veya $A \rightarrow \alpha B\beta$ ve $\epsilon \in ILK(\beta)$ ise, IZLE(A)kümesinde yer alan tüm elemanları İZLE(B) kümesine

İZLE Kümesi İçin Örnek

```
\begin{split} &\text{İLK(S)} = \{sayı, (\ \} \\ &\text{İLK(S')} = \{\epsilon, + \} \\ &\text{İLK(E)} = \{\ sayı, (\ \} \end{split}
S \rightarrow ES'
S' \rightarrow \epsilon \mid +S
E \rightarrow sayi \mid (S)
```

- 1. Kural uygula: $\dot{I}ZLE(S) = \{\$\}$ 2. Kural uygula: $S \rightarrow ES' \quad \dot{I}ZLE(E) += \{\dot{I}LK(S') \epsilon\} = \{+\}$ $S' \rightarrow \varepsilon \mid +S$
- $E \rightarrow \text{say} \mid (S) \quad \text{iZLE}(S) += \{\text{iLK}(`)`) \varepsilon\} = \{\$, \}$: $S \rightarrow ES$ $\quad \text{iZLE}(E) += \text{iZLE}(S) = \{+, \$, \}\}$ 3. Kural uygula: S → ES' (çünkü S' ε indirgenebilir) İZLE(S') += İZLE(S) = {\$,)}

Ayrıştırma Tablosunun Oluşturulması

$$\begin{split} & \text{İLK(S)} = \{ \text{sayı, ()} \\ & \text{İLK(S')} = \{ \epsilon, + \} \\ & \text{İLK(E)} = \{ \text{ sayı, ()} \} \end{split}$$
 $IZLE(S) = \{ \$,) \}$ İZLE(S') = { \$,) } İZLE(E) = { +,), \$ }

- Her X → β türetim kuralı için şu adımları yürüt
 - 1. İLK(β) kümesinde yer alan her simge için tablonun X satırına " $\rightarrow \beta$ " ekle
 - 2. Eğer $\epsilon \in ILK(\beta)$ ise, IZLE(X) kümesinde yer alan her simge için tablonun X satırına " $\rightarrow \beta$ " ekle

$S \rightarrow ES$
$S' \rightarrow \varepsilon \mid +S$
$E \rightarrow savi \mid (S)$

	sayı	+	()	\$
S	ES'		ÈS'		
S'		+S		8	3
Е	sayı		(S)		

Belirsiz Gramerler

Sol rekürsif ve belirsiz gramerler için oluşturulan ayrıştırma tablolarında çelişkili girişlere rastlanabilir (aynı girişe karşı 2 veya daha fazla türetim kuralı)

$$S \rightarrow S + S \mid S * S \mid sayı$$

 $ILK(S+S) = ILK(S*S) = ILK(sayı) = { sayı }$

Tablonun "S" satırını "sayı" sütünuna her üç türetim kuralı da yerleştirilmek istenecektir!

LL(1) Gramer

- LL(1) gramer: Ayrıştırma tablosunda tüm girişler için tek tanım oluşan gramer. Bir gramerin aşağıdaki özelliklere sahip ise, LL(1)'dir.
- $X \rightarrow \alpha \mid \beta$ iki ayrı türetim kuralı ise:
 - 1. α ve β'nın türetebildiği katarlar aynı "a" terminali ile başlamazlar.
 - α veya β'dan yalnızca biri ε türetebilir
 - β→ε ise, α İZLE(X) kümesinde yer alan terminaller ile başlayan katarlar türetemez.

Sol-Rekürsif Gramerler

- Sol-rekürsif gramerlerle yukarıdan-aşağıya avrıştırıcılar geliştirilemez cünkü rekürsif çağrıların ne zaman durdurulacağı bilinemez
- Sol-rekürsif gramerler LL(1) değildir!
 - $S \rightarrow S\alpha$
 - $S \rightarrow \beta$
- Ayrıştırma tablosunun S satırının İLK(β)'ya karsı düşen tüm sütunlarında, her iki türetim kuralına da yer verilmek istenecektir

Sol-rekürsif Özelliğin Giderilmesi

• $X \rightarrow X\alpha \mid \beta$ (β X nonterminali ile başlamaz) ise, bu türetim kuralını aşağıdaki kural çiftiyle değiştir

$$X \rightarrow X\alpha \mid \beta \longrightarrow X \rightarrow \beta X'$$

 $X \rightarrow \alpha X' \mid \epsilon$

Genel olarak:

```
A \rightarrow X\alpha 1 \mid ... \mid X\alpha m
                                                                           X \rightarrow \beta 1X' | ... | \beta nX'
X \rightarrow \beta 1 \mid ... \mid \beta n
                                                                            X' \rightarrow \alpha 1 X' \mid ... \mid \alpha m X' \mid \epsilon
```

Örnek Sol-rekürsif gramer

Verilen grameri sol-rekürsif özelliğini giderecek şekilde dönüştürün

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid sayı$

1. Yeni E' nonterminalini tanımlayarak ilk türetim kuralından sol-rekürsif yapıyı kaldır

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \varepsilon$

2. Aynı adımları ikinci türetim kuralına da uygula $T \rightarrow FT$

3. Son türetim kuralı rekürsif değildir, işleme gerek yok

LL(1) Gramer Yaratmak İçin Sol-rekürsif gramer ile başla S → S + E S → E Ve sol-rekürsif özelliği giderecek algoritmayı uygula S → ES' S' → +ES' | ε Sağ-rekürsif gramer ile başla S → E + S S → E Ve seçeneklerin ortak bölümlerini kaldıracak algoritmayı uygula S → ES' S' → +S | ε

Rekürsif İniş Ayrıştırıcısı Bir yığın kullanarak gerçekleme Ayrıştırma Programı

Ayrıştırma Programı

- Ayrıştırma programı yığında yer alan X simgesi ve a giriş simgesi (terminal) ile ayrıştırma tablosuna yönelerek ayrıştırma hareketlerini denetler
- Ayrıştırma Algoritması:
- 1. X=a=\$ ise, başarı durumu ilan et ve sonlan
- 2. X=a<>\$ ise, X'i yığından çek ve giriş katarı üzerinde bir sonraki simgeye ilerle
- X bir nonterminal ve AT[X,a] girişinde X→UVW gibi bir türetim yer alıyor ise, yığından X'i çek ve yığına W V U (U en üstte) simgelerini ekle. Eğer söz konusu giriş boş ise bir hata mesajı üret

Aşağıdan-Yukarıya Ayrıştırma

- LR gramerleri için geçerli
- En-sağdan türetimler → geriye doğru
 - Girişte yer alan sözcüklerle başlar
 - Ayrıştırma gramerin başlangıç simgesiyle sonlanır
 - Bir türetim kuralının tanım bölümünü oluştur ve daha sonra bu bölümü tanımladığı nonterminal ile değiştir

```
 \begin{array}{lll} (1+2+(3+4))+5 & \leftarrow (E+2+(3+4))+5 & S \to S+E \mid E \\ \leftarrow (S+2+(3+4))+5 & \leftarrow (S+E+(3+4))+5 & E \to say1 \mid (S) \\ \leftarrow (S+(3+4))+5 & \leftarrow (S+(E+4))+5 & \leftarrow (S+(S+4))+5 \\ \leftarrow (S+(S+E))+5 & \leftarrow (S+(S))+5 & \leftarrow (S+E)+5 & \leftarrow (S)+5 \\ \leftarrow E+5 & \leftarrow S+E & \leftarrow S \\ \end{array}
```

18

Aşağıdan-Yukarıya Ayrıştırma (2) $S \Rightarrow S + E \mid E$ $E \Rightarrow sayı \mid (S)$ (1+2+(3+4))+5 $\leftarrow (E+2+(3+4))+5$ $\leftarrow (S+2+(3+4))+5$ $\leftarrow (S+E+(3+4))+5$ Yararı: Türetim kurallarının seçimi girişten daha fazla sözcük taranana kadar ertelenebilir

LL ve LR gramerler

- LL(k) gramer
 - Giriş soldan sağa doğru taranır
 - En-soldan türetimler
 - k tane sonraki sözcük
 - Yukarıdan-aşağıya ayrıştırıcı
 - Ayrıştırma ağacı pre-order düzeninde taranır
 - LR(k) gramer
 - Giriş soldan sağa doğru taranır
 - En-sağdan türetimler
 - k tane sonraki sözcük
 - · Aşağıdan-yukarıya ayrıştırıcı
 - Ayrıştırma ağacı post-order düzeninde taranır

Ötele-İndirge Ayrıştırması (shift-reduce)

- Ayrıştırma işlemi bir dizi "öteleme" ve "indirgeme" adımlarından oluşur
- Ayrıştırıcı durumu: Terminal ve non-terminaller içeren bir yığınla gösterilir
- Yığın ve giriş bir sonraki türetim adımını belirler

türetim adımı	<u>yığın</u>	taranmamış giriş
(1+2+(3+4))+5 ←		(1+2+(3+4))+5
(E+2+(3+4))+5 ←	(E	+2+(3+4))+5
(S+2+(3+4))+5 ←	(S	+2+(3+4))+5
(S+E+(3+4))+5 ←	(S+E	+(3+4))+5
•••		

Ötele ve İndirge İşlemleri

Ötele: sonraki sözcüğü yığına yerleştir

```
        yığın
        giris
        işlem

        (
        1+2+(3+4))+5
        ötele 1

        (1
        +2+(3+4))+5
```

 İndirge: X→ β türetim kuralı için, yığında yer alan β simgelerini X ile yer değiştir (pop β, push X)

yığın giriş (<u>S+E</u> +(3+4))+5 (<u>S</u> +(3+4))+5	<u>işlem</u> indirge S → S+ E
---	----------------------------------

Ötele-İndirge Ayrıştırması

```
S \rightarrow S + E \mid E
                                   E \rightarrow say1 \mid (S)
türetim adımı
(1+2+(3+4))+5
                                                            giriş katarı
(1+2+(3+4))+5
                                    yığın
(1+2+(3+4))+5
                                                            1+2+(3+4))+5
+2+(3+4))+5
(1+2+(3+4))+5
                                   (E
(S
(S+
(S+2
(E+2+(3+4))+5
(S+2+(3+4))+5
                                                            +2+(3+4))+5
+2+(3+4))+5
                                                                                    indirge S→ E
(S+2+(3+4))+5
(S+2+(3+4))+5
                                                            2+(3+4))+5
+(3+4))+5
                                                                                     indirge E→ sayı
(S+E+(3+4))+5
(S+(3+4))+5
                                                             +(3+4))+5
+(3+4))+5
                                                                                    indirge S \rightarrow S+E
(S+(3+4))+5
                                    (S+
                                                            (3+4))+5
3+4))+5
                                                                                    ötele
(S+(3+4))+5
(S+(3+4))+5
                                                             +4))+5
                                                                                     indirge E→ sayı
```

Çözülmesi Gereken Sorunlar

- Hangi işlemin uygulanacağına (ötele veya indirge) nasıl karar verilecek ve indirgeme hangi türetim kuralına uygulanacak
- Sorun:
 - Bazı durumlarda indirgeme işlemi yapılabilir fakat yapılmamalıdır
 - Bazı durumlarda ise, indirgeme işlemi farklı şekillerde yapılabilir, nasıl karar verilmeli

LR Ayrıştırıcısı

- Kullanılan yöntem
 - Bir ayrıştırma durumları kümesinden yararlanır
 - Simgeler ve durumlar içeren bir yığın kullanır
 Örnek yığın: "1 (6 S 10 + 5" (mavi renk => durum numarası)
 (siyah renk => simge)
 - Ayrıstırma Tablosu kullanarak
 - o Uygulanacak bir sonraki işlemi (ötele/indirge) belirler
 - o Bir sonraki durumu belirler
- Sonuç: Ayrıştırıcı adımları tablodan tam olarak belirlenir

LR Ayrıştırma Tablosu

Terminaller (C) non-terminaller

Sonraki işlem
Ve durum

işlem tablosu durum tablosu

■ Algoritma: O anda geçerli olan S durumu ve C giriş terminaline karşı düşen tablo girişine bak

■ Eğer Tablo[S,C] = ötele(S') ise öteleme işlemi:

o push(C), push(S')

■ Eğer Tablo[S,C] = X → α ise indirgeme işlemi:

o pop(2*|α|), S'= top(), push(X), push(Tablo[S',X])

##