Strengths of Brønsted acids and bases

Do you know the right answers to questions like:

- What base to use for a base-initiated reaction?
- What acid to use to remove a protecting group?
- Conditions to generate reactive carbanion intermediate?

How?

- pK_a values of common structures (all standard pK_as are referenced to water!)
- The ability to predict relative acid or base strength!

Predicting relative acidities

Guiding principles for predicting relative acidities

- When the acids being compared are neutral (HA) and create negative conjugate bases (A-), it is most convenient to predict the relative acidities by examining the relative stabilities of the anionic conjugate bases. The acid with the most stable conjugate base A-will be the strongest acid.
- When the acids being compared are cationic (HA+) and create neutral conjugate bases (A), it is most convenient to predict the relative acidities by examining the relative stabilities of the acids themselves. The acid HA+ that is the most stable will be the weakest acid.

Predicting relative acidities

Important factors related to acidity

- Electronegativity effect
- Inductive effects
- Electrostatic effects
- Resonance
- Aromaticity/antiaromaticity
- Solvation
- Hybridization effects
- Polarizability
- Bond strengths
- Steric effects

Electronegativity and Induction

Compound	pK _a	Compound	- pK _a
A. Carbonyl derivatives		F. Phenyl stabilization	
CH₃COCH₃	20.0	PhCH ₃	41.2
CH₃COCH₂Cl	16.0	Ph ₂ CH ₂	33.0
CH₃COCHCl₂	14.9	Ph₃CH	31.5
CH₃COCH₂COCH₃	8.84	G. Ylides and electrostatic effects	
CH₃CONH₂	2 5) 17540-1765C00
2-Acetylcyclopentanone	8	PH ₃ P ⁺ –CH ₃	22.4
1-Ethylcarboxy-2-		(CH ₃) ₅ P⁺CH ₂ Ph	17.4
oxocyclopentane	10.5	(CH ₃) ₃ N⁺CH ₂ Ph	31.9
CF3COCH2COCF3	5.35	(CH ₃) ₃ As⁺CH ₂ Ph	22.3
CH ₃ CH ₂ O ₂ CCH ₂ CO ₂ CH ₂ CH ₃	13.3	(CH ₃) ₂ S ⁺ -CH ₂ COPh	8.3
NCCH₂CO₂CH₂CH₃	9	Thiamin	17.6
CH₃CO₂⁻	24	H. Hybridization effects	
B. Nitro derivatives	2000	Ethane	50
CH ₃ NO ₂	10.2	Ethylene	44
NO ₂ CH ₂ NO ₂	3.63	Benzene	37
CH(NO ₂) ₃	0.14	Acetylene	24
C. Cyano derivatives		Phenylacetylene	19.9
CH₃CN	25.0	I. Aromaticity effects	
CH ₂ (CN) ₂	11.2	Cyclopentadiene	16.0
CH(CN) ₃	5.13	Cycloheptatriene	38.8
HCN	9.21	1,2,3-Triphenylcyclopropene	50
D. Sulfones and sulfoxides		J. Alkyl groups	
·····		Cyclohexane	45
CH ₃ SOCH ₃ EtSO ₂ CH(CH ₃)SO ₂ Et	28.5	(CH ₃) ₃ CH	71
	14.6	CH₂=CHCH₃	43
E. Cyclopentadienes			
Cyclopentadiene	16.0		
1-Cyanocyclopentadiene	9.78		
2,5-Dicyanocyclopentadiene	2.52		
Indene	20.2		
Fluorene	22.7		
9-Phenylfluorene	18.5		

Resonance related to acidity

Resonance structures for enolates

Other factors related to acidity

- Bond strengths
- Electrostatic effects
- Hybridization
- Aromaticity
- Solvation
- Cationic Organic Structure

pKa values of cationic heteroatom acids

Compound	pK_{a1}	pK_{a2}	pK_{a3}
A. Various effects on N acids (resonance, h	ybridization, si	terics, and ind	luction)
Guanidinium	13.5		
1,8-Bis(dimethylamino)napthalene–H ⁺	12.37		
$CH_3NH_3^+$	10.6		
Imidazole $-H^+$	7.1		
Purine-H ⁺	2.39		
Pyridine-H ⁺	5.23		
Aniline–H ⁺	4.87		
Piperidine-H	11.1		
Pyrimidine-H ⁺	0.65		
Adenine	4.17	9.75	
Cytidine	4.08	12.24	
Guanine	3.3	9.2	12.3
$\mathrm{N}H_4{}^+$	9.24		
$CH_3NH_3^+$	10.6		
$(CH_3)_2NH_2^+$	10.8		
$(CH_3)_3NH^+$	9.80		
$RC = NH^+$	-12		
B. Protonated cationic oxygen			N 2010 (1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016 - 1016
$RCO(H^+)X (X = H, R, OH, OR)$	−2 to −8		
$RCO(H^{+})NR_{2}$	0 to -4		
$PhOH_2^+$	-7		
THF-H+	-2.08		
H_3O^+	-1.74		
DMSO-H+	-1.5		
$NH_2CO(H^+)NH_2$	0.10		
PhO(H ⁺)CH ₃	-6.54		
CH ₃ CO(H ⁺)CH ₃	-7.5		
FCH₂CO(H+)CH₃	-10.8		
F ₃ CCO(H ⁺)CH ₃	-14.9		
RNO₂H¹	-12		

Kinetic Acidity

pKa(H₂O)
$$\longrightarrow$$
 H₃C \longrightarrow H₃C \longrightarrow Base rel rate: 10⁺⁶

Base rel rate: 10⁺⁶

Why???

Carbon acids are stabilized by resonance. Significant structural reorganization must accompany deprotonation.

The greater the structural reorganization during deprotonation, the lower the kinetic acidity.

is here.

Base

C-H electron density is here.

O-H electron density is still here.

electron density now resides here, and nuclei have moved to accomodate rehybridization.

Comparison on kinetic and equilibrium ratios of enolates

Lewis acids/bases & electrophiles/nucleophiles

- Lewis acid: electron pair acceptor (electrophile)
- Lewis base: electron pair donor(nucleophile)

- Lewis acid/base terms --- thermodynamic discussions
- Electrophile/nucleophile --- reactivity and kinetics

Lewis acid-base reactions

$$BF_{3} + Et-O-Et \longrightarrow F_{3}B-O_{+}$$

$$Et$$

$$C_{6}H_{6} + NO_{2}^{+} \longrightarrow +$$

$$H \quad NO_{2}$$

$$R \longrightarrow C \quad + CN^{-} \longrightarrow R \quad C^{-}$$

$$R \longrightarrow CN$$

$$I^{-} + CH_{3}CH_{2}CI \longrightarrow CH_{3}CH_{2}I + CI^{-}$$

$$H^{+} + Ph_{3}COH \longrightarrow Ph_{3}C^{+} + H_{2}O$$

$$H_{3}C \longrightarrow O \quad + OH^{-} \longrightarrow H_{3}C \longrightarrow O \quad + HOH$$

Characteristics of Hard and soft acids and bases

- Hard acids are characterized by small acceptor atoms that have outer electron not easily excited and that bear considerable positive charge.
- Soft acids have acceptor atoms of lower, positive charge, large size, and with easily excited outer electrons.
- 3. Hard bases contain highly electronegative donor atomes of lw polarizability, are typically difficult to oxidize, and have no empty low-energy orbitals available.
- 4. Soft bases are polarizable, have less electroegative donor atoms, and have empty ortitals of low energy and electron that are more easily removed by oxidizing agents.

Class (a)/Hard

Class (b)/Soft

H⁺, Li⁺, Na⁺, K⁺ Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Sn²⁺ Al^{3+} , Se^{3+} , Ga^{3+} , In^{3+} , La^{3+} Cr^{3+} , Co^{3+} , Fe^{3+} , As^{3+} , Ir^{3+} Si⁴⁺, Ti⁴⁺, Zr⁴⁺, Th⁴⁺, Pu⁴⁺, VO²⁺ UO_2^{2+} , $(CH_3)_2Sn^{2+}$ BeMe₂, BF₃, BCl₃, B(OR)₃ $Al(CH_3)_3$, $Ga(CH_3)_3$, $In(CH_3)_3$ RPO⁺,ROPO⁺ RSO_2^+ , $ROSO_2^+$, SO_3 I⁷⁺, I⁵⁺, Cl⁷⁺ R_3C^+ , RCO^+ , CO_2 , NC^+

Cu⁺, Ag⁺, Au⁺, Tl⁺, Hg⁺, Cs⁺ Pd²⁺, Cd²⁺, Pt²⁺, Hg²⁺ CH₃Hg⁺ Tl^{3+} , $Tl(CH_3)_3$, RH_3 RS⁺, RSe⁺, RTe⁺ I⁺, Br⁺, HO⁺, RO⁺ I₂, Br₂, INC, etc. Trinitrobenzene, etc. Chloranil, quinones, etc. Tetracyanoethylene, etc. O, Cl, Br, I, R₃C M⁰ (metal atoms) Bulk metals

HX (hydrogen-bonding molelcules)

Borderline
Fe²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Pb²⁺
B(CH₃)₃, SO₂, NO⁺

Classification of Bases

Hard	Soft
H ₂ O, OH ⁻ , F ⁻	R ₂ S, RSH, RS ⁻
CH ₃ CO ₂ -, PO ₄ ³⁻ , SO ₄ ²⁻	I-, SCN-, S ₂ O ₃ ²⁻
Cl ⁻ , CO ₃ ²⁻ , ClO ₄ ⁻ , NO ₃ ⁻	R_3P , R_3As , $(RO)_3P$
ROH, RO-, R2O	CN-, RNC, CO
NH ₃ , RNH ₂ , N ₂ H ₄	C_2H_4 , C_6H_6
	H-, R-

Borderline

 $C_6H_5NH_2$, C_5H_5N , N_3^- , Br^- , NO_2^- , SO_3^{2-} , N_2

Nucleophiles

• Lone-pair nucleophiles: alcohols (ROH), alkoxides (RO $^-$), amines (R $_3$ N), metal amides (R $_2$ N $^-$), halides (X $^-$), thiols (RSH), sulfides (R $_2$ S), phosphines (R $_3$ P)

$$R_3N$$
: H_3C $\stackrel{\frown}{-}I$ \longrightarrow R_3^+N $-CH_3$ + I^-

• **\delta-Bond nucleophiles:** the bond between a nonmetal and a metal: NaNH₂, KOH; RMgBr, RLi, R₂CuLi; NaBH₄, LiAlH₄

• π -Bond nucleophiles: π -Bonds directly attached to heteroatoms such as in enolates (C=C-O⁻), enols (C=C-OH), enol ethers (C=C-OR) and enamines (C=C-NR₂)

$$HO$$
 H
 Me
 $+$
 OH
 H_3C
 H
 Me
 H_3C
 H
 Me
 H_3C
 H
 Me
 H_3C
 H
 Me

Nucleophilicity and basicity

- Nucleophilicity of a compound is measured by determining how reactive it is toward CH₃Br in water at 25° C; Basicity measures reactivity toward H⁺
- **Nucleophilicity** is a kinetic property, whereas **basicity** is a thermodynamic property
- Increases in basicity generally paralel increases in nucleophilicity, except in the following ways:
- 1. Going down the periodic table, nucleophilicity increases while basicity decreases
- 2. Nucleophilicity decreases dramatically with increased crowding around the nucleophilic atom, while basicity increases slightly
- 3. Delocalization of charge decreases basicity a lot and nucleophilicity somewhat.
- 4.The absence of hydrogen-bonding in polar aprotic solvents (DMSO, HMPA, DMF, DMA, NMP, DMPU) increases both the basicity and nucleophilicity of anions, but nucleophilicity increases more.

Hard and soft acids and bases

- hard reactants --- non-polarizable
- soft reactants --- polarizable

 Principle of hard and soft acids and bases: interactions are most facile between hard acids and hard bases and between soft acids and soft bases