ONE-PAGE REVIEW

§7.9 (Hyperbolic Trig), §8.1 (Integration by Parts)

MATH 1910 Recitation October 18, 2016

$(1) \ \sinh(x) =$	$\cosh(x) =$	$\tanh(x) =$	- (3)
coth(x) =	$\operatorname{sech}(x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	$\operatorname{csch}(x) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	(6)

(2) Derivatives of hyperbolic trigonometric functions

$$\frac{d}{dx}\sinh(x) = \begin{bmatrix} & & & \\ & &$$

(3) Integrals of hyperbolic trigonometric functions

$$\int \sinh(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{sech}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix} \operatorname{csch}^{2}(x) dx$$

(4) Inverse Hyperbolic Functions

Function	Domain	Derivative
$\sinh^{-1}(x)$	(19)	(20)
$\cosh^{-1}(x)$	(21)	(22)
$tanh^{-1}(x)$	(23)	(24)
$ coth^{-1}(x) $	(25)	(26)
$\operatorname{sech}^{-1}(x)$	(27)	(28)
$\operatorname{csch}^{-1}(x)$	(29)	

(5) Integration by parts

$$\int u \, dv = \boxed{ (31)}$$

PRACTICE PROBLEMS

§7.9 (Hyperbolic Trig), §8.1 (Integration by Parts)

MATH 1910 Recitation October 18, 2016

- (1) Simplify sinh(ln x) and $tanh(\frac{1}{2}ln(x))$.
- (2) Find the derivative.

(a)
$$y = \ln(\cosh(x))$$
.

(b)
$$y = \operatorname{sech}(x) \coth(x)$$
.

(3) Calculate the integral.

(a)
$$\int \cosh(2x) \, dx$$

(b)
$$\int \tanh(3t) \operatorname{sech}(3t) dt$$

(c)
$$\int \frac{\cosh(x)}{3\sinh(x) + 4}$$

(d)
$$\int \frac{dx}{\sqrt{x^2 - 4}}$$

(e)
$$\int \frac{-1}{x\sqrt{x^2+16}} \, dx$$

(f)
$$\int xe^{-x} dx$$

(g)
$$\int x^3 e^{x^2} dx.$$

(h)
$$\int_{1}^{3} \ln x \, dx.$$

(4) Find the volume of the solid obtained by revolving $y = \cos x$ for $0 \le x \le \pi/2$ around the *y*-axis.