Miscellaneous Exercise on Chapter 3

- 1. If A and B are symmetric matrices, prove that AB BA is a skew symmetric matrix.
- 2. Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
- 3. Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$ satisfy the equation A'A = I.
- A A = I. 4. For what values of $x : \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = O?$
- 5. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 5A + 7I = 0$.
- 6. Find x, if $\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = O$
- 7. A manufacturer produces three products x, y, z which he sells in two markets. Annual sales are indicated below:

Market I	Products		
	10,000	2,000	18,000
II	6,000	20,000	8,000

- (a) If unit sale prices of x, y and z are ≥ 2.50 , ≥ 1.50 and ≥ 1.00 , respectively, find the total revenue in each market with the help of matrix algebra.
- (b) If the unit costs of the above three commodities are ₹2.00, ₹1.00 and 50 paise respectively. Find the gross profit.
- 8. Find the matrix X so that $X\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$

Choose the correct answer in the following questions:

9. If $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is such that $A^2 = I$, then

(A)
$$1 + \alpha^2 + \beta \gamma = 0$$

(B)
$$1 - \alpha^2 + \beta \gamma = 0$$

(C)
$$1 - \alpha^2 - \beta \gamma = 0$$

(B)
$$1 - \alpha^2 + \beta \gamma = 0$$

(D) $1 + \alpha^2 - \beta \gamma = 0$

10. If the matrix A is both symmetric and skew symmetric, then

- (A) A is a diagonal matrix
- (B) A is a zero matrix
- (C) A is a square matrix
- (D) None of these

11. If A is square matrix such that $A^2 = A$, then $(I + A)^3 - 7$ A is equal to

- (A) A
- (B) I A (C) I
- (D) 3A