

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof^a. Karla Lima

Análise I

11 de Junho de 2018

(1) Teste cada uma das séries seguintes, verificando se converge ou não.

(a)
$$\sum_{n=1}^{\infty} n^b a^n$$
, $0 < a < 1$.

(b)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$$
(c)
$$\sum_{n=1}^{\infty} \frac{n!}{100^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n!}{100^n}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 4}$$

(e)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$

(f)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n$$
(g)
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$

(g)
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$$

(h)
$$\sum_{n=1}^{\infty} \frac{a^n}{2^{n^2}}$$
, $4 < a$.

(i)
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2 + 1}$$

(2) Verifique se as séries do item anterior convergem condicionalmente ou absolutamente.

(3) Use o teste da integral para estabelecer as seguintes desigualdades:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} < 2$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^3} < \frac{3}{2}$$

(4) Estabeleça a convergência da série $\sum_{n=1}^{\infty} \left(\frac{e}{n}\right)^n$ e prove a convergência da integral $\int_1^{\infty} \left(\frac{e}{x}\right)^x dx$.

(5) Mostre que se
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$
 a série $\sum_{n=1}^{\infty} a_n$:

(a) Converge, se L < 1;

(b) Diverge, se L > 1.

- (c) Exiba uma série em que $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1$ e que converge e uma outra que diverge.
- $\left(6\right)$ Encontre o domínio da função de Bessel de ordem0 definida por

$$\mathcal{J}_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}.$$

(7) Encontre o raio de convergência e o intervalo de convergência da série

$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}.$$

Gabarito

- (1) (a) Converge
 - (b) Converge
 - (c) Diverge
 - (d) Converge
 - (e) Converge
 - (f) Converge
 - (g) Converge
 - (h) Diverge
 - (i) Converge
- (2) (a) Converge absolutamente
 - (b) Converge absolutamente
 - (c) Diverge
 - (d) Converge condicionalmente
 - (e) Converge absolutamente
 - (f) Converge absolutamente
 - (g) Converge absolutamente
 - (h) Diverge
 - (i) Converge absolutamente
- (3)
- (4)
- (5)

- (6) $(-\infty, \infty)$
- (7) Raio de convergência = 3; Intervalo de convergência: (-5,1).