STEADY OPEN-CHANNEL FLOW 3

RIVER MECHANICS (OPEN-CHANNEL HYDRAULICS)

Dr. Yuan Jing,

Department of Civil and Environmental Engineering

Office: E2-05-20

Phone: 65162160

Email: ceeyuan@nus.edu.sg

Gradually varied flow

Water depth varies slowly in the streamwise direction

Governing equation

$$S_{f} = \frac{\tau_{b}}{\rho g R_{h}} = \begin{cases} \frac{f}{8g} \frac{P}{A^{3}} Q^{2} \left(Darcy - Weisbach \right) \\ \frac{1}{C^{2}} \frac{P}{A^{3}} Q^{2} \left(Chezy?s \ Equation \right) \\ n^{2} \frac{P^{4/3}}{A^{10/3}} Q^{2} \left(Manning's \ Equation \right) \end{cases} = F(h)$$

$$Fr^2 = \frac{Q^2 b_s}{gA^3} = f(h)$$

Mild and steep slope

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2}$$

$$S_o - S_f \begin{cases} > 0, & \text{if } h > h_n \\ \le 0, & \text{if } h \le h_n \end{cases}$$

$$1 - Fr^2 \begin{cases} > 0, \text{ if } Fr < 1 \Leftrightarrow h > h_c \Leftrightarrow \text{subcritical} \\ \le 0, \text{ if } Fr \ge 1 \Leftrightarrow h \le h_c \Leftrightarrow \text{supercritical} \end{cases}$$

$$\begin{cases} h_n > h_c, \text{ mild slope} \\ h_n < h_c \text{ steep slope} \end{cases}$$

"If normal flow is
$$\begin{cases} \text{subcritical} \\ \text{supercritical} \end{cases}$$
 then $Fr_n \begin{cases} < \\ > \end{cases} 1$ and the slope, S_o is referred to as $\begin{cases} \text{mild} \\ \text{steep} \end{cases}$ "

Surface profile for mild slope

$$h > h_n > h_c$$

$$h_n > h > h_c$$

$$h_n > h > h_c$$

$$h_n > h_c > h$$

M1 profile: backwater profile $h > h_n > h_c$

$$h > h_n > h_c$$

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2} = \frac{+}{+} > 0$$

$$M_1$$

Limiting behavior:

- Becomes horizontal in the downstream direction
- Asymptotically converge to normal depth in the upstream direction

$$h_n > h > h_c$$

$$\frac{h_n > h > h_c}{dx} = \frac{S_o - S_f}{1 - Fr^2} = \frac{-}{+} < 0$$

$$M_2$$
 h_c Not valid

Limiting behavior:

- Abruptly change to critical depth in the downstream direction
- Asymptotically converge to normal depth in the upstream direction

M3 profile:
$$h_n > h_c > h$$

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2} = \frac{-}{-} > 0$$

 h_n

Limiting behavior:

- Abruptly change to critical depth in the downstream direction
- Depth linearly decrease in the upstream direction

Surface profile for steep slope

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2} = \frac{+}{+} > 0$$

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2} = \frac{+}{-} < 0$$

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2} = \frac{-}{-} > 0$$

$$S_2$$

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2} = \frac{-}{-} > 0$$

$$S_3$$

Summary of surface profile:

Estimate of channel length affected by gradually varied flow

$$x_{2} = x_{1} + \frac{\left(1 - \overline{Fr^{2}}\right)}{\left(S_{o} - \overline{S}_{f}\right)} (h_{2} - h_{1})$$

Control points

$$\frac{dh}{dx} = \frac{S_o - S_f}{1 - Fr^2}$$

To solve a 1st-order ordinary differential equation, you need boundary conditions, i.e. a given water depth and flow condition at a given point. These points are control points.

Entrance condition for mild slope

In the absence of a downstream control a subcritical flow entering a mildly sloping channel must do so at normal depth. We call this <u>Normal Depth Control</u>

Transition from mild slope to steep slope

If the slope of a channel changes from mild to steep, the flow must pass through critical flow at the location of the change in slope. We call this Critical Depth Control

Entrance from a lake: very long channel

Steep slope: Critical flow at entrance Then a S2 profile to normal depth

$$E_{in} = h_c + \frac{Q^2}{2gA_c^2} \& Fr_{in}^2 = \frac{Q^2b_{sc}}{gA_c^3} = 1$$

Mild slope: Normal flow at entrance

$$E_{in} = h_n + \frac{Q^2}{2gA_n^2} \& Q = \frac{1}{n} \frac{A_n^{5/3}}{P_n^{2/3}} \sqrt{S_o}$$

Two lake problem

Don't know Q, so cannot get h_c and h_n!

Strategy: assume steep channel and see if calculation confirms this!

Entrance control: critical flow for steep channel:

Check normal flow

$$h_n = \left(\frac{nq}{\sqrt{S_o}}\right)^{3/5} \begin{cases} < h_c & \text{slope is steep (assumption is correct, done)} \\ > h_c & \text{slope is mild (assumption is wrong, re-do calculation with mild slope)} \end{cases}$$

Entrance control: normal flow for mild channel:

$$h_c = \left(\frac{q_n^2}{g}\right)^{1/3}$$

$$H_L < h_n$$

- Free outflow at the exit to lower lake
- No downstream effect over the entire channel (make sense because supercritical flow all the way)

$$h_n < H_L < h_{n,conj}$$

- A partial hydraulic jump at the exit to lower lake
- No downstream effect over the entire channel

$$H_L = h_{n,conj}$$

- A full unassisted hydraulic jump at the exit to lower lake
- No downstream effect over the entire channel

- An S1 brings water depth from that of lower lake entrance to h_{n,conj}
- An Unassisted hydraulic jump from h_n to h_{n,conj} within the channel
- Downstream controls the flow since hydraulic jump (where flow becomes subcritical)
- Jump location moves upstream as lower lake water level rises

Two lake problem: downstream of H_L further increases (> $h_{n,conj}$) steep slope S_1 $H_L > h_{n,conj}$ H_{u} h_n upper lake lower lake

- Due to high lower lake level, the S1 profile extend beyond the region with uniform flow
- An Unassisted hydraulic jump occurs in the region with S2 profile
- Downstream controls the flow since hydraulic jump (where flow becomes subcritical)
- Jump location moves upstream as lower lake water level rises

$$H_L = H_{L, \text{lim}}$$

• The entire channel is controlled by downstream!

$$H_L > H_{\rm lim}$$

Channel is drown, no critical flow at entrance

$$H_L = H_u + \Delta z$$

- Water level in the two lakes are the same
- there is no flow in the channel

$$H_L < h_c$$

$$h_c < H_L < h_n$$

$$h_n < H_L$$

$$H_L = H_{L, \text{lim}}$$

$$H_L > H_{L, \text{lim}}$$

$$H_L = H_u + \Delta z$$

- Water level in the two lakes are the same
- there is no flow in the channel

General comments for determining surface profile

Rule 1: subcritical flow, Fr < 1 or $h > h_c$, is always controlled from downstream location

Rule 2: supercritical flow, Fr > 1 or $h < h_c$, is always having upstream control

Rule 3: in the absence of any control the only possible flow is normal, $h=h_n$.

Rule 4: gradually varied flow must follow surface profiles given by M1-3 or S1-3

Rule 5: transition from a supercritical to a subcritical flow possible only through a hydraulic jump.