Příklad

Nechť \mathbf{V} je vektorový prostor nad komutativním tělesem \mathbb{T} , \mathbf{V} má spočetnou (nekonečnou) bázi $B = \{B_i | i \in \mathbb{N}\}$. Popište ideály (oboustranné) okruhu $R = \operatorname{End}_{\mathbb{T}}(\mathbf{V})$.

Řešení

Předpokládejme, že I je ideál, který obsahuje endomorfismus f zobrazující na podprostor s bází $C = (C_i)_{i=1}^N$, kde $N \in \mathbb{N}_0 \cup \{\infty\}$. Je-li $N = \infty$, pak vezměme $D = (D_i)_{i=1}^\infty = (f^{-1}(C_i))_{i=1}^\infty$ posloupnost nějakých vzorů C. Nyní vezmeme endomorfismy g, h, že $\forall i \in \mathbb{N} : g(B_i) = D_i \wedge h(C_i) = B_i$. Složení všech našich endomorfismů: $h \circ f \circ g$, musí být též v I a zároveň se na bázi B chová jako identita, tj. je identita na celém \mathbf{V} . A cokoliv složeno s identitou je ono samo, tedy I = R, at bylo f jakékoliv s nekonečněrozměrným obrazem.

Nyní tedy $N \in \mathbb{N}$ (pro všechny prvky I). Potom můžeme pro každý vektor $\mathbf{v} \in \mathbf{V}$ a pro každý endomorfismus $f_2 : \mathbf{V} \to \mathrm{LO}\,\mathbf{v}$ najít endomorfismus $g_{\mathbf{v}}$ zobrazující \mathbf{v} na D_1 a zbytek (kromě lineárního obalu \mathbf{v}) na \mathbf{o} a endomorfismus $h_{\mathbf{v}}$ zobrazující C_i na \mathbf{v} . Potom $f_2 \circ g_{\mathbf{v}} \circ f \circ h_{\mathbf{v}} = f_2$. Tedy $f_2 \in I$. Tudíž I obsahuje všechny endomorfismy zobrazující na libovolný 1D podprostor. A (konečným) součtem (na něž musí být I také uzavřený) takových endomorfismů dostaneme libovolný endomorfismus, který má konečněrozměrný obraz.

Zbývá ještě ukázat, že zobrazení s konečněrozměrnými obrazy tvoří ideál (tj. že jsou uzavřené na \circ s libovolným endomorfismem na \mathbf{V} a že tvoří vzhledem ke sčítání podgrupu \mathbf{V}). "Složení": z jedné strany je to jasné, protože endomorfismus zobrazí \mathbf{V} na \mathbf{V} nebo jeho podmnožinu, tedy složené zobrazení bude mít Im, který je podmnožinou Im zobrazení z našeho ideálu, tedy konečně dimenzionální; u složení z druhé strany pak můžeme vidět, že endomorfismus "nezvětší dimenzi", neboť bázi zobrazí na generátor, tedy dimenze Im složeného zobrazení bude menší rovna dimenzi našeho zobrazení z ideálu, tedy konečná). "Sčítání": $\mathrm{Im}(f+g)$ je podmnožina $\mathrm{Im}(f)+\mathrm{Im}(g)$, neboť pro každý vzor jen sečteme obrazy, z nichž jeden je v $\mathrm{Im}(f)$ a druhý v $\mathrm{Im}(g)$, což má dimenzi rovnou součtu dimenzí, tedy, pro f a g z našeho ideálu, dimenzi konečnou. "

Nakonec N=0 (pro všechny prvky I) je ten nezajímavý případ na závěr, kdy $I=\{\mathbf{o}\}$, jelikož endomorfismus vracející počátek tvoří sám o sobě grupu vůči sčítání a zároveň je invariantní vůči složení (pravému i levému) s jiným endomorfismem.

Tedy ideály jsou 3: $\operatorname{End}_{\mathbb{T}}(\mathbf{V})$, {konečné obrazy}, { \mathbf{o} }.

 $[^]a$ Ještě by se mělo ukázat, že obsahuje "jednotku" vzhledem ke sčítání, ale to je zřejmě konstantní \mathbf{o} , která má dimenzi obrazu $0<\infty$.