南京审计大学《高等数学》2019-2020学年 第二学期考试试卷 A 卷

得 分	
评分人	

一.填空题(共24分,每小题3分)

1.
$$\mathcal{U}_{z=e^{x}}$$
, $\mathcal{U}_{dz}=$

2. 函数 在点 的最大方向导数为 ______.
$$f(x,y) = x^2 - xy + y^2$$
 $A(1,1)$

3. 曲面
$$e^z - z + xy = 3$$
 在点 $(2,1,0)$ 处的法线方程为_____.

4. 方程
$$e^z$$
 - $xyz = e^3$ 确定 $z = z(x, y)$, 则 $\frac{\partial z}{\partial x} = \frac{1}{2}$

5. 交换二次积分 的积分次序,得
$$I = \int dy \int_{\sqrt{y}}^{\sqrt{y}} f(x,y) dx$$

$$I = \underline{\qquad \qquad } I = \underline{\qquad$$

$$\int_{L} (3-x-y) ds = \underline{\hspace{1cm}}.$$

7. 设 为锥面
$$z = \sqrt{x^2 + y^2}$$
 含在 与 之间的部分,则 $\iint_{\Sigma} z dS = \frac{1}{\sqrt{x^2 + y^2}}$.

得 分	
评分人	

二、单项选择题(共12分,每小题3分)

1. 从点 $_{P(2,-1,-1)}$ 到平面 $_{\pi}$ 引垂线,垂足为 $_{M(0,2,5)}$,则平面 $_{\pi}$ 的方程为(

(A)
$$2x - 3y - 6z + 36 = 0$$
 (B) $2x - 3y - 6z - 36 = 0$

(B)
$$2x - 3y - 6z - 36 = 0$$

(C)
$$x+9y-6z+36=0$$
 (D) $x+9y-6z-36=0$

(D)
$$x + 9y - 6z - 36 = 0$$

2. 二元函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 在点(0,0)处().

- (A) 连续、偏导存在 (B) 连续、偏导不存在 (C) 不连续、偏导存在 (D) 不连续、偏导不存在 3. 下列正项级数中收敛的是 ().

(A)
$$\sum_{n=1}^{\infty} \sqrt{\frac{n}{2n+1}}$$

(A)
$$\sum_{n=1}^{\infty} \sqrt{\frac{n}{2n+1}}$$
 (B) $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$ (C) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ (D) $\sum_{n=1}^{\infty} \sin \frac{\pi}{2n}$

(C)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(D)
$$\sum_{n=1}^{\infty} \sin \frac{\pi}{2n}$$

4. 下列四个交错级数中绝对收敛的是().

$$(A) \sum_{n=1}^{\infty} \frac{(-)^{n-1}n^{n-1}}{n+1}$$

(B)
$$\sum_{n=1}^{\infty} \frac{\sin \frac{n\pi}{2}}{n+1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!}$$

(A)
$$\sum_{n=1}^{\infty} \frac{(-)^{n-1}n}{n+1}$$
 (B) $\sum_{n=1}^{\infty} \frac{\sin\frac{n\pi}{2}}{n+1}$ (C) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!}$ (D) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)}$

三、解答题: (共58分)

得 分	
评分人	

1. 函数
$$f(x,y) = e^{2x}(x + y^2 + 2y)$$
 的极值,并说明是极大值还是极小值. (7分)

得分 评分人

2. 设函数 $z = f(x, y, \frac{x}{y})$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$. (7分)

得 分	
评分人	

3. 计算二重积分 $\int_D \oint v d\sigma$, 其中 D 是由曲线 $y = \sqrt{2x - x^2}$ 及 x 轴围成的闭区域. (7分)

得 分	
评分人	

4. 计算曲线积分 $I = \int (e^x \sin y - x - y) dx + (e^x \cos y + x) dy$, 其中 L 为 上半圆周 $y = \sqrt{1 - x^2}$ 上从点 (1,0) 到点 (-1,0) 的弧段. (7 分)

得分	
评分人	

5 . 计算曲面积分 $I = \int\limits_{\Sigma} \int dy dz + y dz dx + (z^2 - 2z) dx dy$, 其中 \sum 为锥面

 $z = \sqrt{x^2 + y^2}$ 介于平面 z = 1 和 z = 0 之间的部分的下侧. (8分)

得分	
评分人	

6. 将函数 $f(x) = \frac{1}{x^2 - 5x + 6}$ 展开成 x 的幂级数,并写出可展区间. (7 分)

得分	
评分人	

得 分	
评分人	

8. 求微分方程 y"+5y'+4y=(3-2x) e^{-x} 的通解. (8分)

得 分	
评分人	

四、设 $\varphi(u,v)$ 具有连续偏导数,证明由方程 $\varphi(cx-az,cy-bz)=0$ 所确定的隐函数z=f(x,y)满足 $a\frac{\partial z}{\partial x}+b\frac{\partial z}{\partial y}=c$. (6分)