Bilgisayar Programcılığı Uzaktan Eğitim Programı

e-BİLG 121 AĞ TEKNOLOJİLERİNİN TEMELLERİ

Öğr. Gör. Bekir Güler

E-mail: bguler@fatih.edu.tr

1. Hafta: Bilgisayar ağlarına giriş

- □ 1.1 İnternet nedir?
- □ 1.2 Ağ altyapısına yakın bakış
- □ 1.3 Ağın temeli, omurgası
- □ 1.4 Kayıp ve gecikme nasıl oluşur?
- □ 1.5 Protokol katmanları
- □ 1.6 Ağ güvenliği
- □ 1.7 İnternetin geçmişi

1.1 Internet nedir?

PC (Kişisel

server (sunucu)

Kablosuz dizüstü

Erişim noktaları

Kablolu bağlantılar Milyonlarca birbirine

bağlı bilgisayar aygıtları: Ana bilgisayarlar (server) ve kişisel

bilgisayarları

Çalışan ağ uygulamaları

- fiber, bakır, radyo sinyali, uydu(satellite)
- İletim hızı = bandwidth (bant genişliği)

□ Routers (yönlendiriciler): paketleri yönlendirir (veri parçaları)

(Internet Service Providers-İnternet Servis Sağlayıcılar)

Küresel ISP'ler

(yönlendirici)

İnternet Uygulamaları

Sosyal paylaşım siteleri

Video paylaşımı

Internet telefonları

Protokol, internet ve standartları

- Protokoller(iletişim kuralları)
 iletilerin gönderilmesini ve
 alınmasını kontrol eder
 - Örnek: TCP, IP, HTTP, Skype ve Ethernet
- İnternet: "ağlardan oluşan büyük bir ağ"
 - Genel olarak hiyerarşik bir yapısı var
 - Genel internet ve özel intranet'lerden oluşur
- ☐ İnternet standartları
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

<u>İletişim altyapısı ve taşıma hizmeti</u>

- □ İletişim altyapısı dağıtılmış uygulamaların çalışmasını sağlar:
 - Web, VoIP, e-posta, oyunlar, e-ticaret, dosya paylaşımı
- Uygulamalar için sağlanan taşıma hizmeti:
 - Kaynaktan hedefe güvenilir veri teslimi
 - Hızlı fakat güvensiz veri teslimi

Protokol nedir?

İnsan iletişim kuralları:

- □ "saat kaç?"
- "bir sorum var"
- Kişilerin tanıtımları

Ağ iletişim kuralları:

- İnsanlar yerine makineler
- □ İnternette tüm iletişim protokol tarafından yönetilir

<u>İnsan ve bilgisayar iletişimi</u> nasıl?

İnsan protokolü ve bilgisayar ağ protolkolü

1.2 Ağ altyapısına yakın bakış:

- Ağın uç noktaları: uygulamalar ve bilgisayarlar
- □ Ağa giriş, fiziksel ortam: kablolu ve kablosuz iletişim bağlantıları
- □ Ağın temeli omurgası (backbone):
 - Birbirine bağlı yönlendiriciler

Ağın uç noktaları:

- Son kullanıcı sistemleri (bilgisayarlarhosts):
 - Uygulama programları çalıştırır
 - Örnek: Web, email
- Ağın uç noktasıdırClient(istemci)/server(sunucu) modeli
 - client istekte bulunur, isteklere server cevap verir
 - Örnek: Web browser/server: email client/server
 - Peer(eş)-peer modeli:
 - en az veya hiç server kullanılmaz
 - * Örnek: Skype, BitTorrent

Ağlara erişim ve fiziksel ortam (media)

- 5: Son kullanıcı sistemler uç yönlendiricilere nasıl bağlanır?
- Ağlara yerleşik erişim
- Ağlara kurumsal erişim (okul, şirket)
- Ağlara mobil erişim

Not:

 Bant genişliği (bits per second-bps) saniyede iletilen bit sayısı

Dial-up Modem

- Var olan telefon altyapısı kullanılırdı
 - * Evdeki PC Telekom'a bağlanırdı
- Bağlantı en fazla 56Kbps (genellikle daha az) hızında olurdu
- İnternet ve telefon aynı anda çalışmazdı

<u>Dijital abone hattı</u> (<u>Digital Subscriber Line-DSL</u>)

- Var olan telefon alt yapısını kullanır
- 1 Mbps'a kadar yükleme
- * 8 Mbps'a kadar indirme
- Telefon ağ merkezine yerleşik bağlantı

Kesintisiz erişim: kablolu modemler(ADSL)

- □ Telefon altyapısını kullanmaz
 - * Kablolu TV altyapısını kullanır
- Kablo ve fiber karışımı ağ
 - Asimetrik: 30Mbps'a kadar indirme, 2 Mbps'a kadar yükleme
- Kablo ve fiberden oluşan ağ, evi ISP'ye bağlar
 - * Evler router'a erişim paylaşırlar
 - DSL aksine kesintisiz erişimleri vardır

Kesintisiz erişim: kablolu modemler

Kablolu ağ altyapısına genel bakış

Genellikle 500-5000 arası ev

Kablolu ağ altyapısına genel bakış: ISP tarafı

Kablolu ağ altyapısına genel bakış: ev tarafı

Evlere optik fiber bağlantı

- Merkez ofisten binalara optik bağlantılar vardır. Dairelere bakır kablolarla (Cat 6) bağlantı yapılır
- □ İnternet hızı ve fiyatları yüksek; fiber aynı zamanda tv görüntü ve telefon hizmetini de sağlar

<u>Kurumsal internet erişimi (Ethernet)</u>

- Genellikle şirketler, üniversiteler, vb. yerlerde kullanılır
- □ 10 Mbs, 100 Mbps, 1 Gbps, 10 Gbps Ethernet
- Günümüzde son kullanıcı sistemleri ağ kartı ile
 Ethernet switch'e bağlanır

Ağlara kablosuz erişim

- Paylaşılan kablosuz erişim
 - Uç sistemler baz istasyonu vasıtasıyla yönlendiriciye bağlanırlar
- Kablosuz LAN'ler:
 - 802.11b/g (WiFi): 11 veya 54 Mbps
- Geniş alanlı kablosuz erişim
 - Şu anda cep telefonlarında yaklaşık
 1 Mbps üzerinde (EVDO, HSDPA)
 - Gelecekte (?)WiMAX (10's Mbps)

Taşınabilir bilgisayarl ar

Ev ağları

Normal ev ağ bileşenleri:

- DSL veya kablolu modem
- Router(yönlendirici) / firewall(güvenlik duvarı) / NAT
- Ethernet

Telekom

dizüstü bilgisayar

Fiziksel ortam

- Bit: verici ve alıcı arasında iletilirler. O ve 1'ler
- □ Fiziksel bağlantı: verici ve alıcı arasındaki bağlantı
 - Kılavuzlu ortam:
 - Sinyaller fiziksel bir ortamda iletilir: bakır (copper), fiber, koaksiyel (coax)
 - Kılavuzsuz ortam:
 - Sinyaller serbestçe iletilir, örnek: radyo sinyali

Bakır kablolar

- Bükülü tel çiftleri şeklindedir. Yalıtımlı bakır tellerden Category 5 içinde 4 çift vardır.
 - Category 3: geleneksel telefon telleri, 10 Mbps Ethernet
 - Category 5:100Mbps Ethernet
 - Category 6: 1 GbpsEthernet
 - Category 7: 10 GbpsEthernet

Fiziksel ortam: koaksiyel (coax), fiber

Koaksiyel kablo:

- ☐ İki tane eş merkezli bakır iletkenlerden oluşur
- Çift yönlüdür
- Ana bant (baseband):
 - Kabloda tek kanal
- □ Geniş bant (broadband):
 - kabloda birden çok kanal

Fiber optik kablo:

- Cam fiber ışık sinyallerini (pulse) taşır, her sinyal bir bit taşır
- Yüksek hızda iletim:
 - Noktadan noktaya yüksek hızda iletim (örnek: 10's-100's Gbps)
- □ Düşük hata oranı: tekrarlayıcılar (repeaters) seyrek; elektromanyetik parazitlere dayanıklıdır

Fiziksel ortam: radyo (radio)

- Sinyal elektromanyetik spektrumda taşınır
- Fiziksel kablo yoktur
- □ Çift yönlü taşınabilir
- Yayınının çevreye etkileri:
 - Yansıma
 - Nesneler tikanıklığa sebep olabilir
 - Girişim (interference) olabilir

Radyo bağlantı türleri:

- Karasal mikrodalga
 - Hızı 45 Mbps'a kadar kanallar
- LAN (örneğin, Wifi)
 - 11Mbps, 54 Mbps
- Geniş alan (wide-area)(örneğin, cep telefonu)
 - ❖ 3G cep: ~ 1 Mbps
- Uydu (satellite)
 - 1 Kbps- 45Mbps'a kadar kanal (veya birden çok küçük kanallar)
 - 270 mili saniye gecikme

1.3 Ağın temeli, omurgası

- Birbirine bağlı router'lardan oluşan ağ
- Temel soru: veriler ağda nasıl aktarılır?
 - circuit switching (devre anahtarlama): her arama için özel devre kullanılır: telefon ağı
 - packet-switching (paket anahtarlama): veri ağa ayrık parçalar halinde gönderilir

Ağın temeli: Devre Anahtarlama

- İki uç noktadaki kaynaklar aramalar için tahsis edilir
- Bant genişliği, switch kapasitesi
- Ayrılmış kaynaklar: paylaşım yok
- Garantili performans
- Aramanın kurulması gerekir

Ağın temeli: Devre anahtarlama

- Ağ kaynakları (öreğin, bant genişliği) parçalara bölünür
- Her bir parça aramaya tahsis edilir
- Arama sahibi kendi parçasını kullanmazsa parça boşta kalır (paylaşım yok)

- Bant genişliği parçalara bölünür
 - * Frekans bölme
 - * Zaman bölme

Devre anahtarlama: FDM veTDM

Ağ temeli: Paket anahtarlama

Uç noktalar arasındaki veri akışı paketlere bölünür

- □ Kullanıcı A, B paketleri ağ kaynaklarını paylaşır
- Her bir paket bant genişliğini tam kullanır
- Kaynaklar boşta kalmaz

Bant genişliğini parçalara bölünmesi Parçaların ayrılması Kaynakların rezerve edilmesi

Kaynak çekişmesi:

- Toplam kaynak talebi kullanılanı aşabilir
- Trafik sıkışıklığı: paket kuyruğu, bağlantıyı kullanmak için bekler
- Depola ve ilet: paketler aynı anda bir yönlendiriciye iletilir
 - Bir yönlendirici bir paketi iletmeden önce tamamını alır

Paket anahtarlama

A ve B paketlerinin sabit bir sırası yoktur, bant genişliği isteğe bağlı olarak paylaşılır

Her bilgisayar paketleri iletmek için aynı yolu kullanır.

Paket anahtarlama: depola ve ilet

- □ L bitin R bps router üzerinden iletilmesi L/R saniye zaman alır
- Depola ve ilet: paket bir sonraki router'a iletilmeden önce tamamen alınması gerekir
- gecikme= 3L/R (iletim sırasında sıfır gecikme varsayılıyor)

<u>Örnek:</u>

- □ L = 7.5 Mbits
- □ R = 1.5 Mbps
- Aktarım gecikmesi=15 saniye

Paket anahtarlama ve devre anahtarlama

- Basit, aramanın kurulmasına gerek yok
- Kaynakların paylaşımı
- Paket anahtarlama ağı daha fazla kullanıcının kullanmasına izin verir
- Güvenilir veri transferi ve sıkışıklık için protokollere ihtiyaç var

İnternet altyapısı: Katman 1

- □ Genel hatlarıyla hiyerarşik bir yapısı var
- Merkezinde: "tier (katman)-1" ISP (örneğin,
 Superonline, TTNet) ulusal/uluslararası kapsama alanı
 - Birbirlerine eşit davranırlar

İnternet altyapısı: Katman 1, 2

- □ "Katman-2" ISPs: daha küçük (çoğunlukla bölgesel) ISPs
 - Katman-2'ye bağlanma yerine daha çok bir veya daha fazla Katman-1 ISP'ye bağlanır

<u>İnternet altyapısı: Katman 1, 2 ve 3</u>

□ "Katman-3" ISPs ve yerel ISPs

Son kullanıcı sistemlerine en yakın noktalardır

Bir paketin iletimi

□ Bir paket iletimi sırasında bir çok ağdan geçer!

1.4 Kayıp ve gecikme nasıl oluşur?

Paketler router'ın arabelleğinde (buffer) kuyrukta bekler

- □ Gelen paketlerin oranı çıkış kapasitesini aşarsa
- □ Paketler kuyrukta sırasını beklerler

Paket gecikmesinin 4 kaynağı

- □ 1. Aygıt içi işleme:
 - Bit kontrol hataları

- □ 2. Kuyruk
 - İletim için çıkış bağlantısında bekler
 - Yönlendiricinin trafik sıkışıklığına bağlıdır

Paket anahtarlama ağda gecikme

- 3. İletim (Transmission) gecikmesi:
- R=bağlantını bant genişliği (bps)
- □ L=paketin uzunluğu (bits)
- Bir bağlantıdan paketi iletilmesi için geçen zaman = L/R

- 4. Yayılması (Propagation) gecikmesi:
- d = fiziksel bağlantının uzunluğu
- Arr s = ortamdaki yayma hızı (~2×108 m/sec)
- □ Yayma gecikmesi = d/s

Konvoy benzetmesi

- ödeme noktası
- Arabaların hızı 100 km/saat
- Bir arabanın geçişi 12 saniye alıyor (iletim zamanı)
- □ araba~bit; konvoy~ paket
- □ 5: konvoyun 2. otoyol ödeme noktası önüne dizilmesi ne kadar zaman alır?

- 2. Otoyol ödeme noktası
- □ Tüm konvoyun 1. otoyol ödeme noktasından geçmesi toplam = 12*10 = 120 saniye alır
- □ Son arabanın 2. otoyol ödeme noktasına varması: 100km/(100km/saat)= 1 saat
- C: 62 dakika

Konvoy benzetmesi (devamı)

- □ Şimdi arabalar 1000 km/saat hızla gidiyorlar
- Ödeme noktasında bir araba için 1 dakika zaman harcanıyor
- Q: bütün arabaların ödemeleri bitmeden 2. ödeme noktasına araba ulaşır mı?

- □ Evet! 7 dakika sonra, 1. araba 2. ödeme noktasında ve 3 araba hala 1. ödeme
- □ Paket 1. router'dan tam iletilmeden paketin 1. biti 2. router'a ulaşabilir!

noktasındadır.

İnternet gecikmeleri

- □ İnternet gecikme ve kaybı nasıl tespit edilir?
- Traceroute programı: kaynaktan hedefe yol üzerinde bulunan router'lardaki gecikmenin ölçümünü sağlar:
 - * Hedef yolunda bulunan router i ulaşacak 3 paket gönderir
 - router i paketleri gönderene döndürür
- Windows komutu tracert

İnternet gecikmeleri

```
C:\Documents and Settings\btilki>tracert www.fatih.edu.tr www.istanbul.edu.tr
Tracing route to www.istanbul.edu.tr [194.27.128.98]
over a maximum of 30 hops:
                <1 ms
                         <1 ms
                                 10.0.1.252
       <1 ms
  1234
       <1 ms
                <1 ms
                         <1 ms
                                10.0.1.2
       <1 ms
                         <1 ms
                                 kamelya.fatih.edu.tr [193.255.106.1]
                <1 ms
                 1 ms
                         <1 ms
        6 ms
                                 212.175.18.225
                                 gayrettepe-t2-1-gayrettepe-t3-3.turktelekom.com.
        2 ms
                   ms
                             ms
tr [81.212.28.117]
                                 buyukcekmece-t3-1-avcilar-t3-x.turktelekom.com.t
       12 ms
                12 ms
                         12 ms
 [212.156.107.58]
       54 ms
                54 ms
                         59 ms
                                 81.212.214.113
       15 ms
                15 ms
                         15 ms
                                 212.174.232.198
       15 ms
                15 ms
                         15 ms
                                 82.222.35.73
 10
       16 ms
                24 ms
                         16 ms
                                 asy10.asy25.tellcom.com.tr [85.29.25.10]
 11
       22 ms
                22 ms
                         22 ms
                                 193.140.0.150
 12
       23 ms
                23
                         23 ms
                                 193.255.0.246
                   ms
 13
       23 ms
                                 www.istanbul.edu.tr [194.27.128.98]
                23 ms
                          23 ms
Trace complete.
```

Paket kaybı

- Kuyrukta bekleyen paketleri depolayan arabelleğin belli bir kapasitesi vardır
- Dolu bir kuyruğa gelen paketler atılır
- Kayıp paketler önceki düğümden tekrar istenir

Aktarılan veri miktarı

- Aktarılan veri miktarı: gönderici/alıcı arasındaki bit aktarım miktarı (bits/zaman)
 - * anlık: belli bir zamandaki oran
 - ortalama: belli bir zaman aralığındaki oran

Aktarılan veri miktarı(devamı)

 $\square R_s < R_c$ ortalama aktarılan veri miktarı nedir?

 $\square R_s > R_c$ ortalama aktarılan veri miktarı nedir?

Dar boğaz bağlantı(bottleneck link)

Yol üzerindeki dar boğazlar aktarılan veri miktarını kısıtlar

İnternet hattında aktarılan veri miktarı

Bağlantı başına aktarılan veri miktarı: R/6

6 bağlantı, omurga (backbone) dar boğazını (R bits/sn) paylaşır

1.5 Protokol katmanları

<u>Ağlar karmaşıktır!</u>

- Çeşitli bileşenleri:
 - bilgisayarlar
 - routers(yönlendiriciler)
 - çeşitli bağlantı ortamları
 - uygulamalar
 - protokoller
 - donanım, yazılım

Soru:

Ağları karmaşık yapısını düzenleyen bir yapı var mı?

Katman yapısı

Katman yapısında, her katman bir hizmet verir

- katman içi işlemleri
- Bir katman, aşağıdaki katman tarafından sağlanan hizmete güvenir

Neden katman?

Karmaşık ağ sistemlerini yönetmek için:

- Açık yapısı, karmaşık sistem parçalarının ilişkilerini tanımlamaya olanak sağlar
- Modüler olması sistemin bakımını ve güncelleştirilmesini kolaylaştırır
 - Bir katmandaki servis uygulamasını değiştirmek sistemi etkilemez.

İnternet protokol yığını (TCP/IP)

- Uygulama (application):
 ağ uygulamalarını destekler
 - * FTP, SMTP, HTTP
- □ Ulaşım (transport): veri aktarımı
 - * TCP, UDP
- □ Ağ (network): kaynaktan hedefe datagram'ları yönlendirir
 - * IP, yönlendirme protokolleri
- Bağlantı (link): komşu ağ elemanları arasında veri transferi
 - PPP, Ethernet
- □ Fiziksel (physical): hattaki bitler

application

transport

network

link

physical

ISO/OSI başvuru modeli

- Sunum (presentation): uygulamaların verilerin anlamlarını yorumlamasını sağlar, örneğin, şifreleme (encryption), sıkıştırma (compression)
- Oturum (session): senkronizasyon (synchronization), denetim, veri değişimi
- Internet yiğininda bu katmanlar yoktur!
 - Bu servisler gerekirse program ile uygulanır

application presentation session transport network link physical

Katman bilgilerinin pakete eklenmesi

1.6 Ağ güvenliği

- Ağ güvenliği konuları:
 - Kötü niyetli kişiler bilgisayar ağlarına nasıl saldırır?
 - Biz saldırılara karşı nasıl savunma yapabiliriz?
 - Saldırılara karşı nasıl bir sistem kurabiliriz?
- ☐ İnternet güvenlik düşünülerek tasarlanmamıştır
 - Birbirine güvenen kullanıcı grubu sanal bir ağa bağlanıyor
 - Güvenlik bütün katmanlarda dikkat edilmelidir!

<u>İnternet ile kötü amaçlı yazılımlar</u> bilgisayarınıza bulaşır

- □ Kötü amaçlı yazılımlar virus (virüs), worm (solucan) veya trojan horse (truva atı) ile bilgisayarınıza bulaşır.
- □ Spyware malware (Casus yazılım) klavye tuş vuruşlarını ve ziyaret edilen web siteleri kayıt eder
- □ Etkilenen bilgisayar istenmeyen posta (spam) ve DDoS atakları için kullanılabilir.
- □ Kötü amaçlı yazılım (malware) çoğu zaman kendini çoğaltır: etkilenen bilgisayardan diğerlerine giriş arar

İnternet ile kötü amaçlı yazılımlar bilgisayarınıza bulaşır

- □ Truva atı (Trojan horse) □ Solucan (Worm):
 - Faydalı yazılımların gizli bir parçasıdır
 - Genellikle bir web sayfasında bulunur (Active-X, plugin)
- □ Virüs (Virus)
 - Alınan nesne ile bulaşır (örneğin, e-posta eklentisi)
 Eklenti açıldığında virüs bulaşır
 - Kendini çoğaltır: kendini diğer bilgisayar ve kullanıcılara yayar

- Pasif olarak alınan bir nesnenin kendini çalıştırması ile bulaşır
- Kendini çoğaltır: kendini diğer bilgisayar ve kullanıcılara yayar

Kötü niyetli kişiler sunucu ve ağ altyapısına saldırırlar

- □ Denial of service (DoS): saldırganlar, kaynaklara (sunucu, bant genişliği) sahte trafik oluşturarak normal kullanıcıların kullanmasını engeller
- 1. Hedefi seç
- Çevredeki
 bilgisayarlardan
 sunucuya çok fazla
 sayıda paket gönderilir.
 Dolayısıyla sunucu gelen
 diğer isteklere cevap
 veremez

Kötü niyetli kişiler, ağda paketleri yakalar

Paket yakalama (Packet sniffing):

- Paketlerin iletildiği ortam (Ethernet, wireless)
- Yerel ağa bağlı bir ağ kartından iletilen paketler okunur

 Wireshark programı paket yakalamak için kullanılan bir programdır

Kötü niyetli kişiler, önemli bilgiyi daha sonra kullanmak için kayıt eder

□ Kayıt ve sonra kullanma: yakalanan önemli bilgiler (örneğin, şifre) kayıt edilir ve daha sonra kullanılır

Kötü niyetli kişi, yanlış kaynak adresi kullanabilir

□ *IP aldatmacası*: paketleri yanlış *IP adresi ile gönderir*

1961-1972: paket anahtarlama ilkeleri

- 1961: Kleinrock kuyruk teorisi paket anahtarlamanın etkinliğini gösterdi
- 1964: Baran paket anahtarlama askeri ağda kullanıldır
- □ 1967: ARPAnet, Advanced Research Projects Agency tarafından tasarlandı
- □ 1969: ilk ARPAnet node (düğüm) çalıştırıldı

1972:

- ARPAnet'in genel tanıtımı
- NCP (Network Control Protocol) ilk protokol
- İlk e-mail programı
- ARPAnet 15 düğümü vardr

1972-1980: ağlar arası iletişim, yeni ve özel ağlar

- □ 1970: ALOHAnet uydu ağı (Hawaii)
- □ 1974: Ağlar arası iletişim için Cerf ve Kahn - mimarisi
- □ 1976: Ethernet, Xerox PARC
- □ ate70's: Özel mimariler: DECnet, SNA, XNA
- □ late 70's: sabit uzulukta paket anahtarlama (ATM habercisi)
- 1979: ARPAnet 200 node' ulaştı

Cerf ve Kahn ağlar arası iletişim ilkeleri :

- özerklik- ağlar arası bağlantı kurmak için iç değişikliğe gerek yok
- En iyi servis modeli
- Durum bilgisi olmayan yönlendiriciler
- Merkezi olmayan kontrol

Bugün kullanılan internet mimarisini tanımlar

1980-1990: yeni protokoller, ağların yayılması

- 1983: TCP/IP'nin dağıtımı
- □ 1982: smtp e-mail protokolü tanımlandı
- □ 1983: isim-IP çözümleme yapan DNS tanımlandı
- □ 1985: ftp protokolü tanımlandır
- 1988: TCP tıkanıklık denetimi

- Yeni ulusal ağlar: Csnet, BITnet, NSFnet, Minitel
- □ 100,000 bilgisayar ağlara bağlandı

1990-2000: Web ve programların ticari kullanımı

- □ 1990: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- □ 1990: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - * HTML, HTTP: Berners-Lee
 - 1994: Mosaic, sonra Netscape
 - 1990 sonları: Web'in ticari kullanımı

1990 - 2000:

- Daha fazla uygulama: anlık mesajlaşma, P2P dosya paylaşımı
- Ağ güvenliği ön plana çıktı
- tahmini 50 milyon bilgisayar,100 milyon kullanıcı
- Omurga (backbone)
 bağlantıları Gbps hızında
 çalışıyordu

2007:

- Yaklaşık 500 milyon bilgisayar
- ses, IP üzerinden video
- □ P2P uygulamalar: BitTorrent (dosya paylaşımı) Skype (VoIP), PPLive (video)
- Daha fazla uygulamalar: YouTube, oyunlar
- Kablosuz ve taşınabilirlik