Package 'REffectivePred'

November 12, 2024

Type Package

Title Pandemic Prediction Model in an SIRS Framework

Version 1.0.1

Description A suite of methods to fit and predict case count data using a compartmental SIRS (Susceptible – Infectious – Recovered – Susceptible) model, based on an assumed specification of the effective reproduction number. The significance of this approach is that it relates epidemic progression to the average number of contacts of infected individuals, which decays as a function of the total susceptible fraction remaining in the population. The main functions are pred.curve(), which computes the epidemic curve for a set of parameters, and estimate.mle(), which finds the best fitting curve to observed data. The easiest way to pass arguments to the functions is via a config file, which contains input settings required for prediction, and the package offers two methods, navigate_to_config() which points the user to the configuration file, and re_predict() for starting the fit-predict process. The main model was published in Razvan G. Romanescu et al. <doi:10.1016/j.epidem.2023.100708>.

Imports yaml, config, zoo, grDevices, utils

License GPL (>= 2)

Encoding UTF-8

RoxygenNote 7.3.2

Collate 'prediction_model.v16.R' 'executions.v16.R'

NeedsCompilation no

Author Razvan Romanescu [aut, cre],

Songdi Hu [aut], Md Ashiqul Haque [aut],

Olivier Tremblay-Savard [aut]

Maintainer Razvan Romanescu <razvan_romanescu@hotmail.com>

Repository CRAN

Date/Publication 2024-11-12 09:50:05 UTC

2 ci.curve

Contents

ci.c	urve <i>C</i>	Confidence bands	
Index			23
	waves_1d_list		21
	serial.helper		21
	rt_empirical		20
	re_predict		20
	ranges_to_waves		19
	pred.curve		16
	plot_outputs		13
	navigate_to_config .		13
	log_lklh		11
	load_config		11
	find_starts		10
	estimate.mle		6
	c_helper		5
	ci.curve		2

Description

Computes the pointwise confidence interval of the epidemic curve.

```
ci.curve(
  fit = NULL,
  H.E = NULL
  H.W = NULL
  scenario = NULL,
  cases = NULL,
  cfg = NULL,
  restrictions = NULL,
  restriction.starts = NULL,
  ranges = NULL,
  rt_func = 1,
  fit.t.pred = NULL,
  predict.beyond = 0,
  1t = NULL,
  adj.period = NULL,
  population = NULL,
  rho = NULL,
  serial_mean = NULL,
  serial_var = NULL,
```

ci.curve 3

```
window_size = NULL,
eps = .Machine$double.eps^(1/2)
)
```

Arguments

fit	Output from function estimate.mle.
H.E	Mobility metrics for category Retail & Entertainment. Currently unsupported.
H.W	Mobility metrics for category Workplaces. Currently unsupported.
scenario	A character string describing options to deal with restrictions. Currently unsupported.
cases	vector of case counts.
cfg	The object that contains all variables from the configuration file. fit, H.E, H.W, scenario, and cases are also required for the method to execute. All other parameters will not be used if cfg is passed to the method.
restrictions	A numeric integer vector giving the severity of restrictions. Zero means no restriction, and higher numbers means greater severity/disruption. The ordered unique values should be consecutive integers starting from zero. Each number (other than 0) adds a new parameter to the fit.
restriction.st	
	A vector of same length as restrictions, of times when restrictions came into effect. Note: the first index time should be 1.
ranges	A vector of time ranges for the different waves. The wave ranges should be contiguous, with at least one unit of time between consecutive waves.
rt_func	The parametric form of function c(). Options are listed under function c_helper.
fit.t.pred	Time from which prediction is done. If use actual not predicted is TRUE, values of S_t before this time will be computed using actual counts.
predict.beyond	Number of days to predict beyond the end of cases. See Details for usage notes.
lt	The length of cases.
adj.period	Adjustment period following a change in severity level. Restriction level (psi) is linearly interpolated from the old to the new value over this period.
population	Total population size.
rho	A vector of under-reporting rates of the same length as cases. If a scalar is supplied, the vector will be constant with this value.
serial_mean	Mean of the serial interval on the log scale.
serial_var	Variance of the serial interval on the log scale.
window_size	The maximum value for the serial interval.
eps	The epsilon value for computing finite differences.

Value

Returns a matrix with two rows containing Wald-style confidence bounds:

- ci_lower lower bound of a 95% pointwise CI of the best fit curve.
- ci_upper upper bound of a 95% pointwise CI of the best fit curve.

4 ci.curve

Examples

```
library(REffectivePred)
## Read in the data
path_to_data <- system.file("extdata/NY_OCT_4_2022.csv", package = "REffectivePred")</pre>
data <- read.csv(path_to_data)</pre>
head(data)
cases <- diff(c(0, datascase)) # Convert cumulative cases into daily cases
lt <- length(cases)</pre>
                                 # Length of cases
Time <- as.Date(datadate, tryFormats = c("%d-%m-%Y", "%d/%m/%Y"))
navigate_to_config() # Open the config file, make any necessary changes here.
path_to_config <- system.file("config.yml", package = "REffectivePred") # Read config file</pre>
cfg <- load_config()</pre>
                       # Build the cfg object
# Estimate parameters
est <- estimate.mle(</pre>
    cases = cases,
    cfg = cfg,
    hessian = TRUE
a1 <- est$a1
a2 <- est$a2
a3 <- est$a3
a4 <- est$a4
nu <- est$nu
vt <- c(1, est$vt_params_est)</pre>
psi <- est$Psi
betas <- est$betas
# Predict curve
r1 <- pred.curve(
a1 = a1,
a2 = a2,
a3 = a3,
a4 = a4,
nu = nu,
variant.transm = vt,
Psi = psi,
betas = betas,
cases = cases,
cfg = cfg
)
plot_outputs(Time = Time,
cases = cases,
cfg = cfg,
curve = r1,
option = 2
bounds <- ci.curve(fit = est,</pre>
                    cases = cases,
```

c_helper 5

```
cfg = cfg)

# Adding CI bands
# lines(c(Time, Time[length(Time)]+(1:predict.beyond)), bounds[2,], lty = 2)
# lines(c(Time, Time[length(Time)]+(1:predict.beyond)), bounds[1,], lty = 2)
```

c_helper

Contact rate function.

Description

Computes the c() function.

Usage

```
c_helper(
  rt_func = 1,
  st.inner = NULL,
  a1 = NULL,
  a2 = NULL,
  a3 = NULL,
  a4 = NULL,
  psi = NULL
)
```

Arguments

rt_func

Options are:

- 1 Two piece exponential.
- 2 Exponential power model adapted from Granich et al. (2009)
- 3 Mass action.
- 4 Shifted inverse.
- 5 Power.
- 6 Poisson.
- 7 Geometric.

st.inner

The susceptible fraction S_t .

a1, a2, a3, a4

Parameters of the contact rate curve specified by rt_func;

psi

A vector of same length as st.inner containing the corresponding psi restriction factor, or a scalar.

Details

See Romanescu et al. (2023) for the exact forms of the functions.

6 estimate.mle

Value

The value of the contact rate, used to compute R_t .

estimate.mle

Fit the Model

Description

Estimate the parameters of the model by maximizing the likelihood function (or, rather, by minimizing the negative log likelihood).

Usage

```
estimate.mle(
 hessian = FALSE,
 H.E = NULL,
 H.W = NULL
  cases = NULL,
  cfg = NULL,
  ini_params = NULL,
  params_limits = NULL,
  restrictions = NULL,
  restriction.starts = NULL,
  ranges = NULL,
  rt_func = 1,
  silence.errors = FALSE,
  fit.t.pred = NULL,
  param_scale = NULL,
  num.iter = NULL,
  scenario = NULL,
  adj.period = NULL,
  population = NULL,
  rho = NULL,
  serial_mean = serial_mean,
  serial_var = serial_var,
  lt = NULL,
 window_size = NULL,
  verbose = FALSE
)
```

Arguments

hessian	Logical. If TRUE, computes the variance-covariance matrix at the MLE.
H.E	Mobility metrics for category Retail & Entertainment. Currently unsupported.
H.W	Mobility metrics for category Workplaces. Currently unsupported.
cases	Vector of case counts.

estimate.mle 7

cfg The object that contains all variables from the configuration file. This includes

all function arguments except for cases, hessian, H.E, and H.W. All other ar-

guments are overridden if cfg is passed to the method.

ini_params Initial parameter values to be used in optimization. Includes the following sets of parameters in a vector, in this order:

• (a1,a2,a3,a4) = parameters for curve c() specified by rt_func;

- nu = loss of immunity rate;
- (v2,v3,v4,v5) = transmissibility of variants in waves 2+, as relative multiplication factors compared to transmissibility in wave 1;
- (psi1,psi2,psi3,psi4) = psi parameters for severity levels 1,2,3 and 4.
- (u,v) = variance parameters. Only u is currently in use.

• (beta0,beta.R,beta.E,beta.W), when restrictions = NULL. Currently unsupported.

params_limits Boundaries/limits of the ini_params.

restrictions A numeric integer vector giving the severity of restrictions. Zero means no restriction, and higher numbers means greater severity/disruption. The ordered

unique values should be consecutive integers starting from zero. Each number (other than 0) adds a new parameter to the fit. restrictions = NULL causes the function to use mobility data instead of the psi values (currently unsupported).

restriction.starts

A vector of same length as restrictions, of times when restrictions came into

effect. Note: the first index time should be 1.

ranges An vector of time ranges for the different waves. The waves ranges should be

contiguous, with at least one unit of time between consecutive waves.

rt_func The parametric form of function c(). Options are listed under function c_helper.

silence.errors Logical. If TRUE, ignores certain errors to allow optimization to proceed. Not

all errors can be ignored.

fit.t.pred Time from which prediction is done. If use.actual.not.predicted is TRUE, values

of S_t before this time will be computed using actual counts.

param_scale Parameter scale. Passed as argument parscale to optim.

num.iter Maximum number of iterations. Passed as argument maxit to optim.

scenario A character string describing options to deal with restrictions. Currently unsup-

ported.

adj.period Delays in society adjusting.

population total population size.

rho A vector of under-reporting rates of the same length as cases. If a scalar is

supplied, the vector will be constant with this value.

serial_mean Mean of the serial interval on the log scale.

serial_var Variance of the serial interval on the log scale.

1t The length of cases.

window_size The maximum value for the serial interval.

verbose Logical. If TRUE, provides additional details while running the function.

8 estimate.mle

Value

A list of maximum likelihood estimates of the parameters. Includes:

- a1
- a2
- a3
- a4
- nu
- · vt_params_est
- Psi
- betas
- negative_log_lik
- mle
- hessian
- SE

Examples

```
library(REffectivePred)
## Read in the data
path_to_data <- system.file("extdata/NY_OCT_4_2022.csv", package = "REffectivePred")</pre>
data <- read.csv(path_to_data)</pre>
head(data)
cases <- diff(c(0, data\$cases)) # Convert cumulative cases into daily cases
lt <- length(cases)</pre>
                                  # Length of cases
Time <- as.Date(data$date, tryFormats = c("%d-%m-%Y", "%d/%m/%Y"))
navigate_to_config() # Open the config file, make any necessary changes here.
path_to_config <- system.file("config.yml", package = "REffectivePred") # Read config file</pre>
cfg <- load_config()</pre>
                       # Build the cfg object
##### Option 1: populate the global environment with args to pass to function.
population <- cfg$population # Population size</pre>
window_size <- cfg$window.size</pre>
adj.period <- cfg$adj.period</pre>
fit.t.pred <- cfg$fit.t.pred # Time of prediction</pre>
not.predict <- cfg$not.predict</pre>
rt.func.num <- cfg$rt.func.num # choose which Rt function you want to use
num.iter <- cfg$num.iter</pre>
silence.errors <- cfg$silence.errors</pre>
predict.beyond <- cfg$predict.beyond</pre>
curve_params <- as.double(unlist(cfg$curve_params))</pre>
vt_params <- as.double(unlist(cfg$vt_params)) # The vt initial values, starting at wave 2
restriction_levels <- as.double(unlist(cfg$restriction_levels)) # Psi, u, and v parameters
betas <- as.double(unlist(cfg$betas)) # betas</pre>
ini_params <- c(curve_params, vt_params, restriction_levels, betas)</pre>
restrictions_params <- cfg$restrictions_params</pre>
restriction_st_params <- cfg$restriction_st_params</pre>
```

find_ends 9

```
param_scale <- abs(ini_params) / 10</pre>
waves_list <- ranges_to_waves(cfg$waves_list)</pre>
params_limits <- cfg$params_limits</pre>
num_waves <- cfg$num_waves</pre>
waves <- waves_1d_list(num_waves, waves_list)</pre>
rho <- eval(parse(text = cfg$rho))</pre>
serial_mean <- cfg$serial_mean</pre>
serial_var <- cfg$serial_var</pre>
est <- estimate.mle(</pre>
  ini_params = ini_params,
  params_limits = params_limits,
  restrictions = restrictions_params,
  restriction.starts = restriction_st_params,
  ranges = waves,
  rt_func = rt.func.num,
  silence.errors = silence.errors,
  fit.t.pred = fit.t.pred,
  param_scale = param_scale,
  num.iter = num.iter,
  cases = cases,
  scenario = NULL,
  H.E = NULL,
  H.W = NULL,
  adj.period = adj.period,
  population = population,
  rho = rho,
  serial_mean = serial_mean,
  serial_var = serial_var,
  1t = 1t,
  window_size = window_size,
  hessian = FALSE
)
print(est)
##### Option 2: pass the cfg object instead.
est <- estimate.mle(</pre>
    cases = cases,
    cfg = cfg,
    hessian = FALSE
print(est)
```

find_ends

Detect end of waves

Description

Find the approximate end times of waves given times of peaks. This is based on local minima of R_t .

10 find_starts

Usage

```
find_ends(rt_values, peaks_x, search_range)
```

Arguments

rt_values A vector containing rt values for each time point.

peaks_x Time points of peaks based on daily cases (one for each wave).

search_range The range of data points to go through for filtering invalid ends (a vector).

Details

Note: This is provided for convenience only, and is not meant to replace an analyst's determination of wave bounds.

Value

A list containing the detected end times of waves, as scalars.

find_starts	Detect start of waves	
-------------	-----------------------	--

Description

Find the approximate beginning times of waves given times of peaks. This is based on local maxima of R_t .

Usage

```
find_starts(rt_values, peaks_x, search_range)
```

Arguments

rt_values A vector containing rt values for each time point.

peaks_x Time points of peaks based on daily cases (one for each wave).

search_range The range of data points to go through for filtering invalid beginnings (a vector).

Details

Note: This is provided for convenience only, and is not meant to replace an analyst's determination of wave bounds.

Value

A list containing the detected start times of waves, as scalars.

load_config 11

load_config

Load configuration file

Description

Load the configuration file as an object in the global environment. This can be passed to the main functions instead of the individual arguments within, for user convenience.

Usage

```
load_config()
```

Value

A 'config' object, which is a list that stores input parameters and settings from config.yml. Variable names are imported exactly. See the configuration file for details.

log_lklh

The likelihood function

Description

The negative log likelihood function of the model.

```
log_lklh(
 param,
 params_limits,
 restrictions = NULL,
  restriction.starts = NULL,
 ranges = NULL,
  rt_func = 1,
  silence.errors = FALSE,
  fit.t.pred,
  lt,
  cases,
  scenario = NULL,
 H.E,
 H.W,
  adj.period,
  population,
  rho,
  serial_mean,
  serial_var,
  window_size
)
```

log_lklh

Arguments

param Includes the following sets of parameters in a vector, in this order:

- a1,a2,a3,a4 Parameters for curve c() specified by rt_func.
- nu Loss of Immunity rate.
- v2,v3,v4,v5 Transmissibility of variants in waves 2+, as relative multiplication factors compared to transmissibility in wave 1.
- psi1,psi2,psi3,psi4 Psi parameters for severity levels 1,2,3 and 4.
- u,v Variance parameters. Only u is currently in use.
- beta0,beta.R,beta.E,beta.W When restrictions = NULL. Currently unsupported.

params_limits Boundaries/limits of the ini_params.

restrictions A numeric integer vector giving the severity of restrictions. Zero means no

restriction, and higher numbers means greater severity/disruption. The ordered unique values should be consecutive integers starting from zero. Each number (other than 0) adds a new parameter to the fit. restrictions = NULL causes the function to use mobility data instead of the psi values (currently unsupported).

restriction.starts

A vector of same length as restrictions, of times when restrictions came into

effect. Note: the first index time should be 1.

ranges An vector of time ranges for the different waves. The wave ranges should be

contiguous, with at least one unit of time between consecutive waves.

 rt _func The parametric form of function c(). Options are listed under function c_helper.

silence.errors Ignores (skips) NA or NaN values when summing up likelihood contributions

over time.

fit.t.pred Time of prediction.

1t Length of cases.

cases A vector containing cases for each time-point.

scenario A character string describing options to deal with restrictions. Currently unsup-

ported.

H.E Mobility metrics for category Retail & Entertainment. Currently unsupported.

H.W Mobility metrics for category Workplaces. Currently unsupported.

adj.period Delays in society adjusting.

population total population size.
rho Under-reporting fraction.

serial_mean Mean of the serial interval on the log scale.

serial_var Variance of the serial interval on the log scale.

window size The maximum value for the serial interval.

Details

The predicted curve is computed based on parameters supplied, by first calling the prediction function pred.curve. The probability model used to compute the likelihood assumes that observed infection at time t are $\sim N(mean=I_t, sd=\sqrt{u*I_t})$, where I_t are predicted infections, and sums the log-likelihood contributions for each time t during waves, and up to fit.t.pred.

navigate_to_config

Value

The negative log likelihood value of the data.

Description

Prints the path to the config file and opens the config file.

Usage

```
navigate_to_config()
```

Value

The path to the configuration file.

plot_outputs

Plotting function

Description

Various plots related to an epidemic curve.

```
plot_outputs(
  curve = NULL,
 Time = NULL,
  cases = NULL,
  cfg = NULL,
 window_size = NULL,
  serial_mean,
  serial_var,
  predict.beyond = 0,
  waves_list = NULL,
  num_waves = NULL,
  rt_func = NULL,
  restrictions = NULL,
  restriction.starts = NULL,
  a1 = NULL,
  a2 = NULL,
  a3 = NULL,
  a4 = NULL,
```

14 plot_outputs

```
rt.max = NULL,
option = "all",
verbose = FALSE
)
```

Arguments

curve	The output list from the prediction function, see pred. curve.

Time A vector of dates corresponding to cases.

cases A vector containing cases for each time point.

cfg The object that contains all variables from the configuration file. curve, Time,

and cases are also required for the method to execute. All other parameters will

not be used if cfg is passed to the method.

window_size The maximum value for the serial interval.

serial_mean Mean of the serial interval on the log scale.

serial_var Variance of the serial interval on the log scale.

predict.beyond How many days to predict beyond the end of cases.

num_waves Total number of waves.

rt_func A flag that indicates which rt function to use. Should match the shape of curve.

A two-dimensional list containing the waves' time data.

restrictions A numeric integer vector giving the severity of restrictions.

restriction.starts

waves_list

A vector of same length as restrictions, of times when restrictions came into

effect. Note: the first index time should be 1.

a1, a2, a3, a4 Parameters of the contact rate curve specified by rt_func. These override the

values given in curve for the last plot only. If not specified, will use the values

from curve.

rt.max An optional upper limit for the y-axis when plotting R_t .

option A choice of which plot to return (1,2, or 3 - see Value for options). If set to "all"

(the default) plots all three figures.

verbose Logical. If TRUE, provides additional details while running the function.

Value

NULL. Generates a few plots: a plot of R_t over time, with waves shaded (for option = 1); the epidemic curve overlaid on top of observed cases (option = 2), where the shading reflects restriction measures; and a plot of the theoretical R_t versus S_t , in a fully susceptible population with no restrictions (option = 3).

Examples

```
library(REffectivePred)
## Read in the data
path_to_data <- system.file("extdata/NY_OCT_4_2022.csv", package = "REffectivePred")
data <- read.csv(path_to_data)</pre>
```

plot_outputs 15

```
head(data)
cases <- diff(c(0, data\$cases)) # Convert cumulative cases into daily cases
lt <- length(cases)</pre>
                                 # Length of cases
Time <- as.Date(data$date, tryFormats = c("%d-%m-%Y", "%d/%m/%Y"))
navigate_to_config() # Open the config file, make any necessary changes here.
path_to_config <- system.file("config.yml", package = "REffectivePred") # Read config file</pre>
cfg <- load_config()</pre>
                      # Build the cfg object
# Estimate parameters
est <- estimate.mle(</pre>
    cases = cases,
    cfg = cfg
a1 <- est$a1
a2 <- est$a2
a3 <- est$a3
a4 <- est$a4
nu <- est$nu
vt <- c(1, est$vt_params_est)</pre>
psi <- est$Psi
betas <- est$betas
# Predict curve
r1 <- pred.curve(
a1 = a1,
a2 = a2,
a3 = a3,
a4 = a4,
nu = nu,
variant.transm = vt,
Psi = psi,
betas = betas,
cases = cases,
cfg = cfg
)
plot_outputs(Time = Time,
cases = cases,
window_size = cfg$window.size,
serial_mean = cfg$serial_mean,
serial_var = cfg$serial_var,
predict.beyond = cfg$predict.beyond,
waves_list = cfg$waves_list,
num_waves = cfg$num_waves,
rt_func = cfg$rt.func.num,
curve = r1,
restrictions = cfg$restrictions_params,
restriction.starts = cfg$restriction_st_params,
rt.max = 10
)
```

pred.curve

pred.curve

Epidemic Curve Model

Description

Computes the epidemic curve and associated quantities for a given parameter set.

Usage

```
pred.curve(
  a1 = 0,
  a2 = 0,
  a3 = 0,
  a4 = 0,
  nu = 0,
  variant.transm = NULL,
  Psi = NULL,
  betas = NULL,
  cases = NULL,
  cfg = NULL,
  use.actual.not.predicted = FALSE,
  restrictions = NULL,
  restriction.starts = NULL,
  ranges = NULL,
  rt_func = 1,
  fit.t.pred = NULL,
  predict.beyond = 0,
  scenario = NULL,
 H.E = NULL
 H.W = NULL
  adj.period = NULL,
  population = NULL,
  rho = NULL,
  serial_mean = NULL,
  serial_var = NULL,
  lt = NULL,
 window_size = NULL,
  verbose = FALSE
)
```

Arguments

a1, a2, a3, a4 Parameters of the contact rate curve specified by rt_func.

nu Loss of immunity rate beyond the first wave.

variant.transm Vector of transmissibility of variants in each wave, as relative multiplication factors compared to transmissibility in wave 1. Should always be 1 for the first wave.

pred.curve 17

Psi Vector of restriction parameters for severity levels 1 - 4.

betas Vector containing (beta0,beta.R,beta.E,beta.W), when restrictions = NULL. Not

currently implemented.

cases vector of case counts.

cfg The object that contains all variables from the configuration file. a1, a2, a3, a4,

nu, variant.transm, Psi, betas, and cases are also required for the method to execute. All other parameters will not be used if cfg is passed to the method.

use.actual.not.predicted

Logical; if FALSE (default), the susceptible fraction is updated using predicted

cases. Otherwise updated using actual cases.

restrictions A numeric integer vector giving the severity of restrictions. Zero means no

restriction, and higher numbers means greater severity/disruption. The ordered unique values should be consecutive integers starting from zero. Each number

(other than 0) adds a new parameter to the fit.

restriction.starts

A vector of same length as restrictions, of times when restrictions came into

effect. Note: the first index time should be 1.

ranges A vector of time ranges for the different waves. The wave ranges should be

contiguous, with at least one unit of time between consecutive waves.

 rt_func The parametric form of function c(). Options are listed under function c_helper .

fit.t.pred Time from which prediction is done. If use.actual.not.predicted is TRUE, values

of S_t before this time will be computed using actual counts.

predict.beyond Number of days to predict beyond the end of cases. See Details for usage notes.

scenario A character string describing options to deal with restrictions. Currently unsup-

ported.

H.E Mobility metrics for category Retail & Entertainment. Currently unsupported.

H.W Mobility metrics for category Workplaces. Currently unsupported.

adj.period Adjustment period following a change in severity level. Restriction level (psi) is

linearly interpolated from the old to the new value over this period.

population Total population size.

rho A vector of under-reporting rates of the same length as cases. If a scalar is

supplied, the vector will be constant with this value.

serial_mean Mean of the serial interval on the log scale.

serial_var Variance of the serial interval on the log scale.

1t The length of cases.

window_size The maximum value for the serial interval.

verbose Logical. If TRUE, provides additional details while running the function.

18 pred.curve

Details

At each time step, R_t is computed using the contact rate function $c(S_t)$ implemented via c_helper. Then the number of cases is estimated using formula:

$$y_{t+1} = R_t \sum_{s=1}^{M} w_s y_{t+1-s}$$

Finally, the fraction S_{t+1} is updated. This creates a curve over the entire range of ranges. See Romanescu R, Hu S, Nanton D, Torabi M, Tremblay-Savard O, Haque MA. The effective reproductive number: modeling and prediction with application to the multi-wave Covid-19 pandemic. Epidemics. 2023 Jul 20:100708 doi:10.1016/j.epidem.2023.100708 for more details.

For predicting an ongoing wave beyond the end of cases, the end of ranges (or waves_list, if using cfg) should be specified to match the predict.beyond argument. As well, argument use.actual.not.predicted should be set to FALSE when predicting beyond the end of cases.

Value

Returns list:

- Predicted Infections Vector of estimated infections, computed as predicted cases divided by rho
- Predicted Cases Vector of predicted cases.
- Predicted R_t Vector of predicted susceptible fractions
- Predicted R_t Vector of (model) predicted R_t .
- Predicted Lambda t Vector of predicted Lambda_t, which is the numerator used in computing the empirical R_t .
- Psi.vec Vector of psi values, which pastes together parameters psi over the period they apply, or 1 when there are no restrictions.
- Contact rate params Vector of the curve parameters (a1, a2, a3, a4).

Examples

```
library(REffectivePred)
## Read in the data
path_to_data <- system.file("extdata/NY_OCT_4_2022.csv", package = "REffectivePred")
data <- read.csv(path_to_data)
head(data)
cases <- diff(c(0, data$cases)) # Convert cumulative cases into daily cases
lt <- length(cases) # Length of cases
Time <- as.Date(data$date, tryFormats = c("%d-%m-%Y", "%d/%m/%Y"))

navigate_to_config() # Open the config file, make any necessary changes here.
path_to_config <- system.file("config.yml", package = "REffectivePred") # Read config file
cfg <- load_config() # Build the cfg object

# Example 1. Using fits from Romanescu et al. (2023)

r1 <- pred.curve(</pre>
```

ranges_to_waves 19

```
a1 = 0.58,
a2 = 1.12,
nu = 0.56,
variant.transm = c(1,1.22,0.36,0.56),
Psi = c(0.58, 0.52, 0.49),
cases = cases,
cfg = cfg
plot(cases, xlab="Day", ylab="Predicted cases")
lines(r1$'Predicted Cases', col='red')
# Example 2. Best fit curve
est <- estimate.mle(</pre>
    cases = cases,
    cfg = cfg
    )
a1 <- est$a1
a2 <- est$a2
a3 <- est$a3
a4 <- est$a4
nu <- est$nu
vt <- c(1, est$vt_params_est)</pre>
psi <- est$Psi
betas <- est$betas
r1 <- pred.curve(
a1 = a1,
a2 = a2,
a3 = a3,
a4 = a4,
nu = nu,
variant.transm = vt,
Psi = psi,
betas = betas,
cases = cases,
cfg = cfg
)
plot(r1$'Predicted Infections', xlab="Day", ylab="Predicted infections")
```

ranges_to_waves

Utility function for range manipulation

Description

Converts a list of waves to a two-dimensional list.

```
ranges_to_waves(waves_list)
```

20 rt_empirical

Arguments

waves_list A list containing ranges (start, end) of each wave.

Value

A two-dimensional list with individual waves as sub-lists.

re_predict Demo of main functions

Description

Fits the model to an example case data and predicts the epidemic curves and plots the outputs.

Arguments

path_to_data Absolute path to the dataset in csv format.

Details

Please modify the config file before invoking this method. The config file contains all the settings and initial parameter values necessary for the algorithm to run. Path to the dataset (in csv format) is also set in the config file. This file should be updated to the desired specifications before running this demo. To open it, execute REffectivePred::navigate_to_config().

Value

No return value.

 ${\sf rt_empirical}$ Empirical estimate of R_t

Description

Compute empirical R_t , via Cori et al. (2013) method.

Usage

```
rt_empirical(cases, window_size, serial_mean, serial_var)
```

Arguments

cases	Vector of (confirmed) cases.
window_size	The maximum value for the serial interval.
serial_mean	Mean of the serial interval on the log scale.
serial_var	Variance of the serial interval on the log scale.

serial.helper 21

Value

A vector of same length as cases, giving the empirical estimate of the effective reproductive number over time.

serial.helper

Serial interval

Description

Helper function for computing weights w based on the serial interval.

Usage

```
serial.helper(window_size, serial_mean = log(4), serial_var = log(1.380715))
```

Arguments

window_size The maximum value for the serial interval.

serial_mean Mean of the serial interval on the log scale. See Details.

Serial_var Variance of the serial interval on the log scale. See Details.

Details

Computed based on a log normal density function, as in Nishiura et al. (2020). Parameters serial_mean and serial_var are arguments meanlog and sdlog of function dlnorm. Default values are taken from the same reference.

Value

A vector that stores the serial interval in reverse order. This is meant to be multiplied to infections in chronological order.

waves_1d_list

Utility function for range manipulation

Description

Combines multiple waves into one vector.

```
waves_1d_list(num_waves, waves_list)
```

22 waves_1d_list

Arguments

num_waves Total number of waves.

waves_list A list containing individual waves as sub-lists.

Value

A vector with the first num_waves waves combined.

Index

```
c_helper, 5, 18
ci.curve, 2
estimate.mle, 6
find_ends, 9
find_starts, 10
load_config, 11
log_lklh, 11
navigate_to_config, 13
plot_outputs, 13
pred.curve, 16
ranges_to_waves, 19
re_predict, 20
rt_empirical, 20
serial.helper, 21
waves_1d_list, 21
```