

Enrolment No:	
Name of Student:	
Department/ School:	

END TERM EXAMINATION EVEN SEMESTER 2021-22

COURSE CODE

CSET105

MAX. DURATION

2 HRS

COURSE TITLE
COURSE CREDIT

Digital Design

3-0-2

TOTAL MARKS

35

GENERAL INSTRUCTIONS: -

- 1. Do not write anything on the question paper except name, enrolment number and department/school.
- 2. Carrying mobile phone, smart watch and any other non-permissible materials in the examination hall is an act of UFM.
- Q1. (a). Construct truth table of the given logic diagram. Where (D- Input, C- Clock, Q and Q'- Outputs). [3]

- (b). Explain in one sentence.
- 1. Drawback with S-R Flipflop.
- 2. Drawback with J-K Flipflop.
- Q2. The Following serial data are applied to FF shown in Figure. Determine the resulting serial data that appears at Q output. There is one clock pulse for each bit time. Assume initially Q=0. [4]

CLOCK	J1	J2	13 KI	14 K2	Q	$ar{Q}$
1st	1	1	1	1	?	?
2nd	0	1	0	1	?	?
3rd	1	0	0	0	?	?

Q3. A new Flip Flop (XY) is designed with the following Truth table. The previous state of XY Flip Flop is Q_n and the Next State Denoted by Q_{n+1} . For the New Flip Flop create the Characteristic Table and Excitation Table also Find the Characteristic Equation for Given Flip Flop. [4]

	Input	Input	Output
Clock	Х	Υ	Q_{n+1}
0	Don't care	Don't care	Q_n
1	0	0	1
1	0	1	Q_n
1	1	0	$\overline{Q_n}$
1	1	1	0

Truth Table of XY Flip Flop

Q4. Design a 2-bit Synchronous Down Counter with detailed diagram. (Use T Flip Flop).

[4]

Q5. In SIPO Register (Given in the Diagram), Find the output (A, B, C, D) after 1st clock, 2nd clock, 3rd clock, and 4th clock. [4]

Q6. Design an asynchronous counter using T flipflop for the following sequence.

[4]

- Q7. Convert the S R Flip Flop to T Flip Flop with suitable tables and Logic expression and Logic Diagram. [4]
- Q8. Design a counter which has no. of states double of no. of Flip Flop used in that counter circuit with the suitable diagram. [4]
- Q9. Draw the Output wave form (Q) of the given JK Flip Flop for given Input waveform. Assume previous state is '1'

CLOCK Q Q

Input Waveform

Logic Symbol

