Отчет о выполнении лабораторной работы 1.4.8

Измерение модуля Юнга методом акустического резонанса

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

1 Аннотация

Цель работы: исследовать явление акустического резонанса в тонком стержне; измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга различных материалов.

В работе используются: генератор звуковых частот, частотомер, осциллограф, электромагнитные излучатель и приёмник колебаний, набор стержней из различных материалов.

2 Теоретические сведения

Основной характеристикой упругих свойств твёрдого тела является его модуль Юнга E. Согласно закону Гука, если к элементу среды приложено некоторое механическое напряжение σ , действующее вдоль некоторой оси x (напряжения по другим осям при этом отсутствуют), то в этом эле- менте возникнет относительная деформация вдоль этой же оси $\varepsilon = \Delta x/x_0$, определяемая соотношением

$$\sigma = \varepsilon E \tag{1}$$

Если с помощью кратковременного воздействия в некотором элементе твёрдого тела создать малую деформацию, она будет далее распространяться в среде в форме волны, которую называют акустической или звуковой. Скорость u распространения продольной акустической волны в простейшем случае длинного тонкого стержня определяется соотношением

$$u = \sqrt{\frac{E}{\rho}},\tag{2}$$

где ρ - плотность среды, при условии, что длина волны гораздо больше радиуса стержня $\lambda \gg R$ и $\varepsilon \ll 1$.

Стоячие волны

В случае гармонического возбуждения колебаний с частотой f продольная волна в тонком стержне может быть представлена в виде суперпозиции двух бегущих навстречу гармонических волн:

$$\xi(x,t) = A_1 \sin(\omega t - kx + \varphi_1) + A_2 \sin(\omega t - kx + \varphi_2), \tag{3}$$

где $\omega = 2\pi f$ – циклическая частота, $k = 2\pi/\lambda$ – волновое число, λ – длина волны.

Если концы стержня с координатами x=0, x=L не закреплены, то напряжение в них

$$\sigma(0) = 0 \to \frac{\partial \xi}{\partial x} = 0, \quad \sigma(L) = 0 \to \frac{\partial \xi}{\partial x} = 0$$
 (4)

Тогда соотношение (3) верно при любом t, если амплитуды и фазы падающей и отражённой волны одинаковы.

$$\xi(x,t) = 2A\cos(kx)\sin(\omega t + \varphi). \tag{5}$$

Колебания вида (5) называютя гармоническими стоячими волнами.

Воспользуемя условием (4) и получим уравнение $\sin(kL)=0$. Решения которого

$$k_n L = \pi n, \quad n \in \mathbb{N},$$
 (6)

$$\lambda_n = \frac{2L}{n}, \quad n \in \mathbb{N}. \tag{7}$$

Таким образом, для возбуждения стоячей волны на длине стержня должно укладываться целое число полуволн.

Допустимые значения частот

$$f_n = \frac{u}{\lambda_n} = n \frac{u}{2L}, \quad n \in \mathbb{N}.$$
 (8)

называют собственными частотами колебаний стержня длиной L. Именно при совпадении внешней частоты с одной из частот f_n в стержне возникает акустический резонанс.

Экспериментальная установка

Рис. 1: Схема установки: 1 – генератор звуковой частоты, 2 – частотомер, 3 – осциллограф, 4 – электромагнит-возбудитель, 5 – образец, 6 – электромагнит-приёмник, 7 – усилитель звуковой частоты, 8 – блок питания усилителя, 9, 11 – стойки крепления электромагнитов, 10 – стойка крепления образца, 12 – направляющая

Схема экспериментальной установки приведена на рис. 3. Исследуемый стержень 5 размещается на стойке 10. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями 4 и 6, расположенными рядом с торцами стержня. Крепления 9, 11 электромагнитов дают возможность егулировать их расположение по высоте, а также перемещать вправо-влево по столу 12.

Электромагнит 4 служит для возбуждения упругих механических продольных колебаний в стержне. На него с генератора звуковой частоты 1 подаётся сигнал синусоидальной формы: протекающий в катушке электромагнита

ток создаёт ропорциональное ему магнитное поле, вызывающе епериодическое воздействие заданной частоты на торец стержня (к торцам стержней из немагнитных материалов прикреплены тонкие стальные шайбы). Рядом с другим торцом стержня находится аналогичный электро магнитный датчик 6, который служит для преобразования механических колебаний в электрические.

Сигнал с выхода генератора поступает на частотомер 2 и на вход канала X осциллографа 3. ЭДС, возбуждаемая в регистрирующем электромагните 6, пропорциональная амплитуде колебаний торца стержня, усиливается усилителем 7 и подаётся на вход канала Y осциллографа.

Методика измерений

Для определения скорости u в данной работе используется метод акустического резонанса. Зная номер гармоники n и соответствующую резонансную частоту ν_n , на которой наблюдается усиление амплитуды колебаний, можно вычислить скорость распространения продольных волн в стержне:

$$u = 2L\frac{f_n}{n}. (9)$$

3 Ход работы

- 1. Поместим стержень длиной $L=600\pm0.5$ мм на подставку 10 и разместим электромагниты напротив торцов стрежня, не допуская их соприкосновения.
- 2. Оценим частоту первого резонанса по формуле $f_1 = u/2L$, воспользовавшись табличным значение скорости и медленно меняя частоту звукового генератора вблизи расчётной найдём первый резонанс.
- 3. Найдём резонансы на следующих гармониках. Результаты занесём в таблицу 1.

n	f_n , к Γ ц, медь	f_n , к Γ ц,	f_n , к Γ ц, сталь	
		алюминий		
1	3.160	4.261	4.125	
2	6.300	8.540	8.275	
3	9.486	12.78	12.38	
4	12.66	17.04	16.51	
5	15.81	21.30	20.63	
6	18.98	25.55	24.75	
7	22.12	29.79	28.86	
8	25.27	34.03	32.99	
9	28.51	38.26	37.08	

Таблица 1: Резонансные частоты

Рис. 2: Зависимость резоннансной частоты от гармоники

Мы видим, что зависимость линейна и проходит через начало координат.

4. Определим плотности исследуемых материалов.

Измерим массу и размеры нескольких разных образцов каждого материала и усредним рассичтанные плотности. Получим

Материал	Плотность ρ , $\kappa \Gamma/M^3$	$\sigma_{ ho}$, κγ/ ${ m M}^3$	
Медь	8.765	0.02	
Алюминий	2.784	0.01	
Сталь	7.842	0.02	

Таблица 2: Плотности материалов

5. По коэффициенту наклона прямой определим скорость звука u и модуль Юнга E.

$$u = 2L\frac{f_n}{n}, \quad E = u^2 \rho$$

Материал	Скорость	σ_u ,	Модуль	σ_E ,	$E_{\text{табл}},$
	звука u ,	км/с	Юнга E ,	ГПа	ГПа
	км/с		ГПа		
Медь	3.798	0.02	124.4	0.97	110-
					129
Алюминий	5.100	0.02	72.41	0.48	68-74
Сталь	4.943	0.02	191.6	1.2	190-
					210

Таблица 3: Скорость звука и модуль Юнга

6. Окончательные результаты

$$E_{\text{меди}} = (124.4 \pm 0.97)$$
 ГПа

$$E_{\text{алюминия}} = (72.41 \pm 0.48)$$
 ГПа

$$E_{\text{стали}} = (191.6 \pm 1.2)$$
 ГПа

4 Вывод

В ходе работы были получены значения модулей Юнга для меди, алюминия и стали, лежащие в пределах табличных значения для сплавов. Погрешность вычисления составила около 1%. Основной вклад в пошрешность вносит погрешность измерения плотности материала. Также зависимость резонансной частоты не проходит точно через начало координат, поэтому погрешность полученного коэффициента f_n/n достаточно велика.