CiberSegurança Módulo 1 - 02 ARITMÉTICA MODULAR

MEET, MEIC, MEIM

2021-2022

A aritmética do relógio

Congruências módulo n

Seja n um número inteiro positivo. Dizemos que a é **congruente** com b módulo n, e escrevemos $a \equiv b \pmod{n}$, se n divide a - b. O inteiro n diz-se **módulo da congruência**.

Exemplos:

- 1 Todos os números pares são congruentes com 0 módulo 2. Todos os números ímpares são congruentes com 1 módulo 2.
- Na relação de congruência módulo 5 tem-se, por exemplo, que:

$$-1 \equiv 4 \pmod{5}$$
, $0 \equiv 10 \pmod{5}$, $3 \equiv -2 \pmod{5}$...

3 Em geral, na relação de congruência módulo n, tem-se que

$$n \equiv 0 \pmod{n}$$
 e $n-1 \equiv -1 \pmod{n}$

Caracterização de congruência

Seja n um número inteiro positivo. Tem-se que a e b são congruentes se e só se o seu resto da divisão inteira por n coincide, isto é, se

$$a = p \cdot n + r$$
 e $b = q \cdot n + r$

Em particular, todo o número inteiro é congruente módulo n com um e um só elemento do conjunto:

$$\{0, 1, \cdots, n-1\}$$

Exemplos:

Todo o número inteiro é congruente módulo 5 com um e um só elemento do conjunto:

$$\{0, 1, 2, 3, 4\}$$

2 Todo o número inteiro é congruente módulo 8 com um e um só elemento do conjunto:

$$\{0, 1, 2, 3, 4, 5, 6, 7\}$$

A relação de congruência

Seja n um inteiro positivo. A relação de congruência módulo n é uma relação de equivalência, isto é, para todos os $a,b,c\in \mathbf{Z}$, tem-se que:

- $a \equiv a \pmod{n}$; (reflexividade)
- Se $a \equiv b \pmod{n}$ então $b \equiv a \mod(n)$; (simetria)
- Se $a \equiv b \pmod{n}$ e $b \equiv c \pmod{n}$ então $a \equiv c \pmod{n}$ (transitividade)

Classes de congruência módulo n

A classe de congruência de a módulo n, que denotamos por

$$a(\bmod n)$$

é o conjunto de todos os números inteiros congruentes com *a* módulo *n*.

Exemplos:

- 1(mod2) é o conjunto dos números ímpares, 0(mod2) é o conjunto dos números pares;
- $2(\bmod 5) = \{\cdots -13, -8, -3, 2, 7, 12, 17 \dots\};$

→ Sim, a notação é confusa ...

 $b \equiv a \pmod{n}$ é equivalente a $b \in a \pmod{n}$

O conjunto \mathbf{Z}_n

O conjunto cujos elementos são as classes de congruência módulo n denota-se por \mathbf{Z}_n .

Notação dos elementos de \mathbf{Z}_n

Cada classe de congruência contém infinitos números inteiros, pelo que há infinitas possibilidades de descrever o conjunto \mathbf{Z}_n .

- ② $\mathbf{Z}_5 = \{0 \pmod{5}, 1 \pmod{5}, 2 \pmod{5}, 3 \pmod{5}, 4 \pmod{5}\}$ = $\{10 \pmod{5}, -4 \pmod{5}, 7 \pmod{5}, 8 \pmod{5}, -1 \pmod{5}\} = ...$

Uma escolha natural para as classes de congruência são os restos da divisão inteira por *n*:

$$\mathbf{Z}_n = \{0 \pmod{n}, 1 \pmod{n}, \cdots, (n-1) \pmod{n}\}$$

ou, simplificando ainda mais, **quando não há ambigüidade no módulo** *n* **da congruência**:

$$Z_n = \{0, 1, \dots, n-1\}$$

Exemplos e notações

- **2** $\mathbf{Z}_4 = \{0 \pmod{4}, 1 \pmod{4}, 2 \pmod{4}, 3 \pmod{4}\} = \{0, 1, 2, 3\}$
- No caso de Z₁₆ é frequente também usar a notação hexadecimal:

$$\mathbf{Z}_{16} = \{0(\bmod{16}), 1(\bmod{16}), 2(\bmod{16}), 3(\bmod{16}), \dots, 15(\bmod{16})\}$$

$$= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f\}$$

→ Outra notação frequente é aquela que usa o elemento da classe de congruência com valor absoluto mais pequeno:

$$\mathbf{Z}_3 = \{0, 1, -1\}, \quad \mathbf{Z}_4 = \{0, 1, 2, -1\}, \quad \mathbf{Z}_5 = \{0, 1, 2, -2, -1\}\dots$$

Operações aritméticas em **Z**_n

A relação de congruência é **compatível** com as operações de adição e multiplicação de número inteiros, isto é, se n é um número inteiro positivo, e

$$a \equiv (a' \operatorname{mod} n) \in b \equiv (b' \operatorname{mod} n)$$

então:

- $a \cdot b \equiv a' \cdot b' \pmod{n}.$

 \rightsquigarrow Em particular para cada inteiro positivo n, é possível definir corretamente em \mathbf{Z}_n operações de adição e multiplicação.

Arimética módulo 4

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Adição e multiplicação em $\mathbf{Z}_2 = \{0,1\}$

+	0	1		
0	0	1		
1	1	0		

Observe-se que se trata, de facto, das operações lógicas XOR e AND:

XOR	0	1
0	0	1
1	1	0

AND	0	1
0	0	0
1	0	1

Adição e multiplicação em $\mathbf{Z}_3 = \{0, 1, 2\}$

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

 \leadsto Em criptografia é usada com muita frequência (p.e. RSA, ECC) aritmética modular com o módulo um número primo n=p ou um produto de dois números primos $n=p\cdot q$, com primos muito grandes e também aritmética módulo 2^n (usada em blocos de n bits)

Propriedades das operações em \mathbf{Z}_n

 \mathbf{Z}_n hereda as "boas" propriedades das operações em \mathbf{Z} :

A adição + é comutativa, associativa e com elemento neutro, que é a classe de congruência do 0:

$$0(\bmod n) = n(\bmod n) = 2n(\bmod n)...$$

② Cada classe de congruência $a \pmod{n}$ tem um elemento simétrico para a adição:

$$(-a)(\bmod n) = (n-a)(\bmod n) = \dots$$

A multiplicação · é comutativa, associativa, distributiva relativamente à adição, e com elemento neutro, que é a classe de congruência do 1:

$$1(\bmod n) = n + 1(\bmod n) = \dots$$

Exemplos módulo 7

Em
$$\mathbf{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$$
:

o simétrico de 4 para adição é 3:

$$3+4=7\equiv 0(\bmod 7)$$

o simétrico de 6 para adição é 1:

$$6+1=7\equiv 0(\bmod 7)$$

• tem-se que $5 \cdot 4 = 6$,

$$5 \cdot 4 = 20 \equiv 6 \pmod{7}$$

• o quadrado de 4 é 4, isto é $4^2 = 2$,

$$4^2=16\equiv 2(\,\text{mod}\,7)$$

• tem-se que $3 \cdot 5 = 1$ em \mathbb{Z}_7 ,

$$3 \cdot 5 = 15 \equiv 1 \pmod{7}$$

Z₂₆ e a Cifra de César

Identificando o alfabeto standard com os inteiros módulo 26

a	b	С	d	е	f	g	h	i	j	k		m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	0	р	q	r	S	t	u	٧	w	X	у	z
13	14	15	16	17	18	19	20	21	22	23	24	25

a cifra de César é simplesmente a adição 3 mod 26:

Texto	limpo	а	z	а	n	g	а	d	е	С	е	s	а	r
		0	25	0	13	6	0	3	4	2	4	18	0	17
	cifrado	3	2	3	16	9	3	6	7	5	7	21	3	20
Texto	cifrado	D	C	D	Q	J	D	G	Н	F	Н	V	D	U

Z₂₆ e os alfabetos da *Tabula Recta*

Cada alfabeto de deslocação da *Tabula Reta* de Trithemius consiste simplesmente em adicionar o valor, módulo 26, da **letra chave**. Por exemplo, o alfabeto da substituição definida pelo alfabeto **M**:

М	a	b	с	d	e	f	g	h	i	j	k	I	m
	M	N	О	P	Q	R	S	T	U	V	W	X	Y
М	n Z	o A	p B	q C	r D	s E	t F	u G	v H	w I	×	y K	z L

corresponde a adicionar 12, módulo 26:

а	b	С	d	е	f	g	h	i	j	k	ı	m
0	1	2	3	4	5	6	7	8	9	10	11	12
12	13	14	15	16	17	18	19	20	21	22	23	24
М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ
n	0	р	q	r	S	t	u	٧	w	X	у	z
13	14	15	16	17	18	19	20	21	22	23	24	25
25	0	1	2	3	4	5	6	7	8	9	10	11
Z	A	В	C	D	Е	F	G	Н	1	J	K	L

\mathbf{Z}_{2^n} e arrays de n-bits

Outros módulos que aparecem frequentemente em criptografia (AES, funções hash) são as potências de 2 porque os conjuntos \mathbf{Z}_{2^n} podem identificar-se com as sequências (arrays) de n bits.

Para cada $0 \le k < 2^n$, identificamos a classe $k \pmod{2^n}$ com a representação binária de k usando um *array* de n-bits.

Exemplos:

- **Q** $\mathbf{Z}_2 = \{0, 1\};$
- **2** $\mathbf{Z}_4 = \mathbf{Z}_{2^2} = \{0, 1, 2, 3\} = \{00, 01, 10, 11\}$
- **3** $\mathbf{Z}_8 = \mathbf{Z}_{2^3} = \{0, 1, 2, 3, 4, 5, 6, 7\} = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- **4** $\mathbf{Z}_{16} = \mathbf{Z}_{2^4} = \{0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15\}$
 - $=\{0000,0001,0010,0011,0100,0101,0110,0111,1000,1001,1010,1011,1100,1101,1110,1111\}$

\boxplus_n : a adição módulo 2^n

A adição módulo 2^n , quando realizada entre *arrays* de *n bits*, será denotada por \boxplus_n .

Exemplos:

- $101 \boxplus_3 101 = 010$, (adição módulo $2^3 = 8$); $(5+5=2 \mod 2^3)$
- $1011 \boxplus_4 0101 = 0000$, (adição módulo $2^4 = 16$); $(11 + 5 = 0 \mod 2^4)$
- $10 \boxplus_2 11 = 01$ (adição módulo $2^2 = 4$). $(2+3=1 \mod 2^2)$

Combinações de operações do tipo \boxplus_n

Os arrays de bits podem subdivir-se em blocos de diferentes tamanhos e combinar operações módulo 2^n , para n diferentes, sendo que, (abusando ligeiramente da notação), a subdivisão em blocos mais pequenos é subentendida.

Por exemplo:

- $1011 \boxplus_4 0101 = 0000$ é a operação módulo $2^4 = 16 (11+5=0)$
- $1011 \boxplus_2 0101$ consiste em subdivir em blocos de 2-*bits* e operar módulo 2^2 , bloco a bloco:

• $1011 \boxplus_1 0101$ consiste em sub-dividir em blocos de 1 *bit*, ou seja, trata-se do *bitwise* XOR,

$$1011 \boxplus_1 0101 = 1011 \oplus 0101 = 1110$$

Adições módulo 2ⁿ e *arrays* de *bits*

Sejam N, M os números naturais representados, respetivamente, pelos arrays de n-bits $b_n b_{n-1} \cdots b_1 b_0$ e $c_n c_{n-1} \cdots c_1 c_0$ (com $b_k, c_k \in \{0, 1\}$). Tem-se que:

$$N = b_{n-1}2^{n-1} \cdots + b_2 2^2 + b_1 2 + b_0$$

$$M = c_{n-1}2^{n-1} \cdots + c_2 2^2 + c_1 2 + c_0$$

Para calcular M+N, observamos que se $b_k=c_k=1$, então $2 \cdot 2^k=2^{k+1}$ (vai um, exceto no caso $b_{n-1}=c_{n-1}=1$, porque $2^n=0 \mod (2^n)$).

Exemplo: $1110 \boxplus_4 0101 = 0011$

Outras operações em *arrays* de *n-bits*

Para além da adição \coprod_n , são usadas frequentemente em criptografia as seguintes operações em *arrays* de *n-bits*:

- o bitwise XOR, designado por ⊕;
- o bitwise OR, designado por ∨;
- o bitwise AND, designado por ∧;
- o complemento bitwise, designado por ¬;
- os *shift* e as rotações de *n* bits, à esquerda e à direita.

- $0011 \oplus 0101 = 0110$:
- \bullet 0011 \vee 0101 = 0111
- $0011 \land 0101 = 0001$
- $\neg 0011 = 1100$:
- $0011 \boxplus_4 0101 = 1000$, (adição mod 2^4);
- $0011 \boxplus_2 0101 = 0100$, (adição mód 2^2 , sub-blocos de 2 *bits*);
- shift à esquerda de dois bits: 1011 → 1100;
- rotação à esquerda de dois bits:1011 → 1110.

Seja n um inteiro positivo. Um elemento $a \in \mathbf{Z}_n$ diz-se **invertível** (módulo n), se existe $b \in \mathbf{Z}_n$ tal que:

$$a \cdot b \equiv 1 \pmod{n}$$

Se $a \in \mathbf{Z}_n$ é invertível, então o elemento $b \in \mathbf{Z}_n$ tal que $a \cdot b \equiv 1 \pmod{n}$ é único, designa-se por a^{-1} e diz-se **inverso módulo** n de a.

O conjunto dos elementos invertíveis em \mathbf{Z}_n denota-se por \mathbf{Z}_n^* .

Exemplo: Tem-se que

$$3 \cdot 2 = 1 \mod 5$$

por tanto, 3 é invertível módulo 5 e o seu inverso, módulo 5, é 2.

Exemplos: inversos módulo 2 e 3

Em \mathbb{Z}_2 e \mathbb{Z}_3 , todos os elementos não nulos possuem inverso, isto é, são invertíveis.

Multiplicação em **Z**₂

•	0	1
0	0	0
1	0	1

Multiplicação em Z₃

٠	artipiica çao ciri								
		0	1	2					
	0	0	0	0					
	1	0	1	2					
	2	0	2	1					

Em particular,

$$\textbf{Z}_2^* = \{1\}, \quad \textbf{Z}_3^* = \{1,2\}$$

Exemplos: inversos módulo 4

Recorde-se a tabela da multiplicação em Z₄:

	0	1	2	3	
0	0	0	0	0	
1	0	1	2	3	
2	0	2	0	2	
3	0	3	2	1	

Em Z_4 , como mostra a tabela da multiplicação, não existe b tal que

$$2 \cdot b \equiv 1 \pmod{4}$$

Por outras palavras 2 não é invertível módulo 4. Em particular,

$$\mathbf{Z}_{4}^{*} = \{1, 3\}$$

Observe-se também que, por exemplo, 3 é invertível módulo 4 e é o seu próprio inverso ...

Exemplos: inversos módulo *n*

Todos os elementos de \mathbf{Z}_n possuem um elemento simétrico para a adição, no entanto, a existência de inversos multiplicativos em \mathbf{Z}_n depende muito do módulo n considerado:

→ Esta falta de regularidade é o motivo principal das muitas aplicações da aritmética modular em criptografia.

Caracterização de elementos invertíveis módulo n

Seja n um inteiro positivo. Dado $a \in \mathbf{Z}_n$, tem-se que a é invertível (módulo n) se e só se a e n são **primos entre si**, isto é, se e só se

$$\gcd(a, n) = 1$$

 \sim Em particular, se p é um número primo, então todos os elementos não nulos de Z_p são invertíveis.

Nota: gcd(a, b) significa "greatest common divisor", isto é, o máximo divisor comum entre os dois números inteiros a e n.

Recorde-se que ...

- Dados dois números inteiros a e b existe um inteiro positivo d, chamado máximo divisor comum que divide a a e a b e tal que todo outro divisor de a e b divide também a d:
- Um número inteiro p > 1 diz-se primo se os únicos divisores positivos são 1 e p, caso contrário diz-se composto.
- Dois números inteiros positivos dizem-se primos entre sim quando o seu máximo divisor comum é 1.
- (Teorema Fundamental da Aritmética) Todo número inteiro positivo se escreve de modo único (exceto a ordem dos fatores) como um produto de números primos;

$$n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$$

Exemplos

■ Em Z₁₄, os elementos invertíveis são 1, 3, 5, 9, 11, 13, ou seja,

$$\mathbf{Z}_{14}^* = \{1, 3, 5, 9, 11, 13\}$$

Por exemplo, $3 \cdot 5 = 15 \equiv 1 \pmod{14}$, ou seja, módulo 14 tem-se que $3^{-1} = 5$.

- Os elementos invertíveis em Z₁₂₈ são as classes de congruência dos números ímpares.
- **③** Todos os elementos não nulos de \mathbb{Z}_{43} são invertíveis, porque para todo $x \in \{2, 3, \dots, 42\}$, como 43 é um número primo, verifica-se que g.c.d.(x,43) = 1.

Cálculo do inverso módulo n

O Lema de Bézout

Dados inteiros não nulos, a e b, existem inteiros n e m tais que

$$an + bm = \gcd(a, b)$$

Verificando-se ainda:

- os inteiros da forma ax + by são precisamente os múltiplos do gcd(a, b);
- existem x, y tais que ax + by = 1 se e só se a e b são primos entre si.

Pelo Lema de Bezout, a e n são primos entre si se e só se existem inteiros x, y tais que

$$ax + ny = 1$$

Os inteiros x, y são por vezes chamados coeficientes de Bezout.

Qual a relação do Lema de Bezout com o cálculo de inversos módulo n?

$$\gcd(a, n) = 1 \Longrightarrow \exists x, y \in \mathbf{Z} : ax + yn = 1 \Longrightarrow ax = 1 - yn$$

$$\Longrightarrow ax \equiv 1 \pmod{n}$$

Por outras palavras, x é o inverso de a módulo n.

Como se calculam então os coeficientes de Bezout?

O Algoritmo de Euclides

Dados inteiros positivos, a, b, com a > b, o algoritmo de Euclides consiste em realizar divisões sucessivas até obter resto nulo, mais precisamente :

$$\begin{array}{rcl}
a & = & q_0b + r_0 & (r_0 < b) \\
b & = & q_1r_0 + r_1 & (r_1 < r_0) \\
r_0 & = & q_2r_1 + r_2 & (r_2 < r_1) \\
\vdots & \vdots & \vdots & \\
r_{k-2} & = & q_kr_{k-1} + r_k \\
r_{k-1} & = & q_{k+1}r_k + 0
\end{array}$$

$$(r_0 < b)$$

$$(r_1 < r_0)$$

$$(r_2 < r_1)$$

$$(r_{k+1} < r_k)$$

Observe-se que, a partir do último resto não nulo, e substituindo nas divisões anteriores de modo ascendente, obtém-se uma expressão do tipo

$$r_k = ax + by$$

→ O Algoritmo de Euclides permite calcular os coeficientes de Bezout

O Algoritmo estendido de Euclides

A apresentação dos cálculos do algoritmo de Euclides de modo a obter facilmente os coeficientes de Bezout costuma designar-se por **Algoritmo Estendido de Euclides**.

O algoritmo estendido de Euclides consiste na construção indutiva de quatro sucessões (q_n) , (r_n) , (x_n) e (y_n) , onde

$$r_0 = a,$$
 $r_1 = b,$ $r_{n+1} = r_{n-1} - q_n r_n,$ e $0 \le r_{n+1} < |r_n|$
 $x_0 = 1,$ $x_1 = 0,$ $x_{n+1} = x_{n-1} - q_n x_n$
 $y_0 = 0,$ $y_1 = 1,$ $y_{n+1} = y_{n-1} - q_n y_n$
 $q_1 = a//b$ $q_{n+1} = r_n//r_{n+1}$

O algoritmo termina quando $r_{n+1} = 0$, sendo r_n o máximo comun divisor de a e b e x_n , y_n os coeficientes de Bezout.

 \rightsquigarrow O cálculo do inverso de *a* módulo *b* precisa só de r_n , q_n e x_n .

Exemplo : a e b co-primos

Sejam a = 12 e b = 7. As sucessões do algoritmo estendido de Fuclides são:

n	q_n	r _n	Xn	Уn
0	_	12	1	0
1	1	7	0	1
2	1	5	1	-1
3	2	2	-1	2
4	0	1	3	-5

Como $r_4 = 1$, não é preciso continuar o algoritmo ($r_5 = 0$), verificándose:

$$gcd(7,12) = r_4 = 1, \quad r_4 = ax_4 + by_4,$$

ou seja

$$1 = 12 \times (3) + 7 \times (-5) +$$

Em particular: $7^{-1} = (-5) \mod 12 = 7 \mod 12$ e $12^{-1} = 3 \mod 7$.

Exemplo : a e b não co-primos

Sejam a = 28 e b = 16. As sucessões do algoritmo estendido de Euclides são:

n	q _n	r _n	Xn	Уn
0	0	28	1	0
1	0	16	0	1
2	1	12	1	-1
3	1	4	-1	2
4	_	0	_	_

Como $r_4 = 0$, não é preciso continuar o algoritmo, verificándose:

$$gcd(28, 16) = r_3 = 4, \quad r_3 = ax_3 + by_3,$$

$$4 = 28 \times (-1) + 16 \times (2)$$

Em particular, como 28 e 16 não são coprimos, 28 não é invertível módulo 16 e 16 não é invertível módulo 28.

A cifra Afim

O sistema de cifra Afim consiste em :

- o alfabeto é Z₂₆ (identificado com o alfabeto minúsculo em texto limpo e com o alfabeto maiúsculo no texto cifrado);
- o espaço de chaves \mathcal{K} consiste em todos os pares (a, b), com $a, b \in \mathbf{Z}_{26}$ e a invertível módulo 26:

$$\mathcal{K} = \mathbf{Z}_{26}^* \times \mathbf{Z}_{26}$$
 (12 · 26 = 312 chaves);

ullet a transformação de cifragem e_k para k=(a,b) está definida por

$$c_k(x) = ax + b$$

ullet a transformação de decifragem d_k para k=(a,b) está definida por

$$d_k(y) = a^{-1}y - a^{-1}b$$

A cifra Afim

Exemplos:

1 A cifra Afim com parámetros (a, b) = (3, 2) verifica

Texto limpo			<i>f</i> 5						
Texto cifrado	8	0	17	1	2	2	17	0	12
	<i>J</i>	<i>B</i>	<i>S</i>	<i>C</i>	D	<i>D</i>	<i>S</i>	<i>B</i>	<i>N</i>

- ② A cifra de César, e todas as cifras da *Tabula Reta* são cifras afins do tipo (a, b) = (1, b) (com b = 3 no caso da cifra de César);
- 3 A cifra Atbash, é um caso particular da cifra afim, com (a,b)=(-1,25):

$$e(x) = (-x + 25) \mod 26$$

Cripto-análise da cifra Afim

 \leadsto É um cifra de substituição mono-alfabética, pode ser cripto-analisada usando análise de frequências

Por exemplo, identificar os blocos de 4 letras

$$AAAA, AAAB, AAAC, \dots, AAAZ, AABA, AABB, \dots, ZZZY, ZZZZ$$

com os elementos $0, 1, \dots, 26^4$ e realizar uma cifra afim módulo $26^4 = 456976$.

Estruturas algébricas

Em matemática são usadas diferentes terminologias para descrever os conjuntos munidos de operações, em função das propriedades que as operações verificam.

Estruturas que aparecem frequentemente em criptografia:

- grupo: conjunto munido de uma operação associativa, com elemento neutro e tal que todo o elemento possui simétrico diz-se um grupo.
 Se a operação é também comutativa, o grupo diz-se comutativo ou abeliano.
- anel: conjunto munidos de duas operações, denotadas em geral por + e ·, verificando que:
 - a operação + é comutativa, associativa, com elemento neutro, denotado por 0, e tal que existe simétrico para todo o elemento;
 - 2 a operação · é associativa, com elemento neutro 1;
 - a operação · é distributiva relativamente à primeira;

Se a operação · é também comutativa, então dizemos que é um **anel comutativo**.

 corpo: um anel munido de duas operações + e ·, e tal que todo o elemento diferente do 0 admite um elemento inverso para a segunda operação ·.

Exemplos de estruturas algébricas

- **3** São grupos (abelianos): $(\mathbf{Z},+)$, $(\mathbf{Q},+)$, (\mathbf{Q}^*,\cdot) , $(\mathbf{R},+)$, (\mathbf{R}^+,\cdot) , $(\mathbf{R}_n[x],+)$...
- 2 Não são grupos: (N, +), (Z^*, \cdot) , (R, \cdot) , $(R_n[x], \cdot)$
- **3** São anéis (comutativos): $(\mathbf{Z}, +, \cdot)$, $(\mathbf{Q}, +, \cdot)$, $(\mathbf{R}_n[x], +, \cdot)$...
- Os conjuntos de matrizes quadradas (com coeficientes inteiros, racionais, reais, complexos ...) munidos das operações usuais de adição e multiplicação de matrizes são anéis não comutativos.
- § São corpos: $(\mathbf{Q},+,\cdot)$, $(\mathbf{R},+,\cdot)$, $(\mathbf{C},+,\cdot)$. Um exemplo de corpo não comutativo é o corpo dos quaterniões \mathbf{H} .
- **1** Não são corpos: $(\mathbf{Z}, +, \cdot)$, $(\mathbf{R}_n[x], +, \cdot)$

 \rightsquigarrow A notação $\mathbf{K}_n[x]$ representa o conjunto dos polinómios na variável x, de grau inferior ou igual a n, e coeficientes no anel \mathbf{K} .

