no respuesta

Muestreo II

Licenciatura en Estadística

2023

dos enfoques:

- deterministico: la elección de una unidad no es aleatoria, i.e, podemos separar previamente a las unidades en dos estratos: respondentes (R) y no respondentes (NR).
- estocástico: cada unidad i tiene una probabilidad mayor que cero. La unidad realiza una elección aleatoria de responder o no.

bajo el enfoque deterministico, el sesgo de la media de una variable y cualquiera es:

sesgo.NR
$$(\hat{\bar{Y}}_R) = \frac{M}{N}(\bar{Y}_R - \bar{Y}_{NR})$$

donde

- $ightharpoonup
 ho_R$ es la media estimada utilizando a los respondentes de la muestra
- ullet $ar{Y}_R$ es la verdadera media de los respondentes en la población
- $ar{Y}_{NR}$ es la media de los no respondentes en la población
- ► M es el tamaño de los NR en la población

respuesta estocástica

enfoque + utilizado en la práctica

$$I_i = \left\{ egin{array}{ll} 1 & ext{si la unidad i es seleccionada en la muestra} \\ 0 & ext{si la unidad i no es seleccionada en la muestra} \end{array}
ight.$$

$$R_i = \left\{ egin{array}{ll} 1 & ext{si responde dado que salió en la muestra} \ 0 & ext{si no responde dado que salió en la muestra} \end{array}
ight.$$

respuesta estocástica

- ▶ $Prob[I_i] = \pi_i$
- ▶ Prob[$R_i = 1 | I_i = 1$] = ϕ_i , en donde ϕ_i se le denomina propensity-score.
- las unidades que tienen $\phi_i = 0$ se les denomina **hard-core**, i.e, no importa los intentos que se hagan las mismas nunca van a responder.

bajo este enfoque el sesgo por NR se puede describir como:

sesgo.NR(
$$\hat{\vec{Y}}_R$$
) = $\frac{1}{N\bar{\phi}}\sum (y_i - \bar{Y}_U)(\phi_i - \bar{\phi})$

- ightharpoonup el sesgo depende de la covarianza entre y y ϕ_i
- ightharpoonup si ϕ no esta relacionada con la variable y entonces no habría sesgo (difícil!)

si **conocemos** las **verdaderas** probabilidades de responder ϕ_i podemos utilizar la "doble expansión" para obtener estimaciones insesgadas:

$$\hat{Y} = \sum_{i \in R} w_i^{nr} y_i$$

donde

$$w_i^{nr} = \frac{1}{\pi_i \times \phi_i}$$

obviamente $\phi_i > 0$ siempre

en la práctica las probabilidades o propensiones de responder ϕ_i son **desconocidas**

- ightharpoonup nos vamos a centrar en intentar estimar (aproximar) las propensiones desconocidas ϕ_i
- vamos a tener que (lamentablemente) asumir cosas (i.e. un modelo).
- debemos abandonar el parádigma de la inferencias basadas en el diseño

inferencias en la realidad

inferencia provenientes de muestras aleatorias en la teoría

inferencia provenientes de muestras aleatorias en la práctica

- Missing Completely at Random (MCAR): ocurre cuando la probabilidad de responder ϕ_i no depende ni de y_i ni de x_i , i.e., todos tienen la misma probabilidad de responder.
- Missing at Random (MAR): ocurre cuando la probabilidad de responder ϕ_i no depende de la variable de interés y_i pero si depende de las variables auxiliares x_i .
- NonIgnorable Nonresponse(NINR): ocurre cuando la probabilidad de responder ϕ_i depende de las variables de interés y_i . Debido a que no conocemos datos de y_i para los NR el sesgo es imposible de detectar y obviamente, imposible de eliminar.

ajuste creando clases de NR

- ▶ la idea es crear clases/grupos en donde todos tienen la misma probabilidad de responder o los mismos valores de la variable y
- ▶ si lo anterior se cumple y bajo el enfoque deterministico, eliminaríamos el sesgo ocasionado por la NR

problemas

- o no tenemos los valores de la y para los NR
- las clases generalmente se basan en la probabilidad de responder
- \odot si usamos covariables \mathbf{x} que sean buenas predictoras de la y es un plus!

creamos G clases y **asumimos** que todas las unidades dentro de la misma clase, tienen la misma probabilidad de responder.

▶ la probabilidad estimada para una clase g queda definida como:

$$\hat{\phi}_{i,g} = \mathsf{TR}_{\mathsf{w}} = \frac{\sum\limits_{i \in R} w_i}{\sum\limits_{i \in s} w_i}$$

cómo se hace en la práctica?

- vamos probando distintas formas crear las clases en busca de aquellas que presenten distintas TR
- para crear las calases debemos tener información para toda la muestra (i.e. R y NR)
- generalmente esa información proviene del marco muestral F (e.g. estratos, UPM, etc.)

ajuste propensity score

- ▶ asumimos que la NR es MAR, i.e. $\phi_i = \phi_i(\mathbf{x}_i)$
- ▶ si $\phi_i = \phi_i(y_i)$ estamos en problemas! ya que no tenemos datos de y para los NR
- ▶ otra situación es cuando $\phi_i = \phi_i(\mathbf{U}_i)$, es decir, la NR depende de información auxiliar \mathbf{U}_i omitida o que no tenemos para construir el modelo.

intentamos estimar las propensiones $\hat{\phi}_i$ por medio de un modelo/algoritmo (e.g. logit/probit) usando covariables x conocidas tanto para R y NR

una vez hecho esto, i.e. computados los $\hat{\phi}_i$ hay dos opciones:

ajuste por propensiones simples

$$w_i^{nr} = \frac{1}{\pi_i \times \hat{\phi}_i}$$

2 propensiones estratificadas: se utilizan $\hat{\phi}_i$ para crear clases de NR y luego se aplica un factor de ajuste común, el cual, es computado utilizando alguna métrica de resumen (e.g. la media o mediana).