C^{∞} Manifold: Grassmannian G(k, n)

Yuheng Shi

Dec 3rd, 2021

Outline

• Topological Space G(k, n)

 \bigcirc C^{∞} Manifold G(k, n)

• Intuition of G(k, n)

k-dimensional subspaces of \mathbb{R}^n , which can be described by k linearly independent vectors in \mathbb{R}^n .

Yuheng Shi

• Intuition of G(k, n)

k-dimensional subspaces of \mathbb{R}^n , which can be described by k linearly independent vectors in \mathbb{R}^n .

F(k, n)

n by *k* matrices with rank *k*. Topologized as a subspace of $\mathbb{R}^{n \times k}$, it is open in $\mathbb{R}^{n \times k}$ by some linear algebra.

3/9

• Intuition of G(k, n)

k-dimensional subspaces of \mathbb{R}^n , which can be described by k linearly independent vectors in \mathbb{R}^n .

F(k, n)

n by *k* matrices with rank *k*. Topologized as a subspace of $\mathbb{R}^{n \times k}$, it is open in $\mathbb{R}^{n \times k}$ by some linear algebra.

• $F(k, n)/\sim$

Different matrices in F(k,n) may represent the same subspace, up to a change of basis. So for $A,B\in F(k,n)$, let $A\sim B$ if $\exists g\in GL(k,\mathbb{R})$ such that A=Bg. g is the change of basis matrix.

• Intuition of G(k, n)

k-dimensional subspaces of \mathbb{R}^n , which can be described by k linearly independent vectors in \mathbb{R}^n .

F(k, n)

n by *k* matrices with rank *k*. Topologized as a subspace of $\mathbb{R}^{n \times k}$, it is open in $\mathbb{R}^{n \times k}$ by some linear algebra.

• $F(k, n)/\sim$

Different matrices in F(k,n) may represent the same subspace, up to a change of basis. So for $A,B\in F(k,n)$, let $A\sim B$ if $\exists g\in GL(k,\mathbb{R})$ such that A=Bg. g is the change of basis matrix.

• Definition of G(k, n)

Let $G(k, n) = F(k, n) / \sim$, with the quotient topology.

Smooth (C^{∞}) Manifold

Let's recall definition of smooth manifold:

- Topological Space which is
 - Hausdorff
 - Second Countable
- Existence of C^{∞} atlas

We will prove that G(k, n) (topologized as before) is smooth manifold.

G(k, n) Second Countable

ullet \sim is open equivalence relation

 $\forall U$ open in F(k,n), $\pi^{-1}(\pi(U)) = \bigcup_{g \in GL(k,\mathbb{R})} Ug$. Right multiplication by g is homeomorphism on F(k,n) since coordinate-wise, it is just multiplication and addition. So each Ug is open, so the union is open.

G(k, n) Second Countable

ullet \sim is open equivalence relation

 $\forall U$ open in F(k,n), $\pi^{-1}(\pi(U)) = \bigcup_{g \in GL(k,\mathbb{R})} Ug$. Right multiplication by g is homeomorphism on F(k,n) since coordinate-wise, it is just multiplication and addition. So each Ug is open, so the union is open.

• Countable basis in F(k, n) gives countable basis in G(k, n)

G(k, n) Hausdorff

Yuheng Shi

Theorem

Let S be a topological space, let \sim an open equivalence relation on S, then S/\sim Hausdorff if and only if the graph R of the equivalence relation \sim is closed in $S\times S$. $(R:=\{(x,y)\in S\times S|x\sim y\})$

G(k, n) Hausdorff

Theorem

Let S be a topological space, let \sim an open equivalence relation on S, then S/\sim Hausdorff if and only if the graph R of the equivalence relation \sim is closed in $S\times S$. $(R:=\{(x,y)\in S\times S|x\sim y\})$

Let's show graph R of \sim for F(k,n) is closed: $R = \{(a,b) \in F(n,k) \times F(n,k) | \exists g \in GL(k,\mathbb{R}), a = bg\}$ $= (F(n,k) \times F(n,k)) \cap \{A \in M(n,2k) | rk \ A \leq k\}$. $\{A \in M(n,2k) | rk \ A \leq k\}$ is closed in $\mathbb{R}^{n \times 2k}$ since $rk \ A \leq k$ if and only if all $(k+1) \times (k+1)$ minors of A vanish.

Open Covering of G(k, n)

First let's find an open covering of F(k, n). Let $I = \{1 \le i_1 < i_2 < ... < i_k \le n\}$ be a multi-index. For $A \in F(k, n)$, let A_I denote the submatrix of A consisting of $i_1th, ..., i_kth$ rows of A. Let $V_I = \{A \in F(k, n) | det(A_I) \ne 0\}$, then $\{V_I\}$ forms an open cover of F(k, n). Let $U_I = \pi(V_I)$, then $\{U_I\}$ is an open cover of G(k, n).

C^{∞} atlas on G(k, n)

First define $\tilde{\phi}_I: V_I \to \mathbb{R}^{(n-k)\times k}$ by $\tilde{\phi}_I(A) = (AA_I^{-1})_{I'}$ where I' is complement of I. Obviously $\tilde{\phi}_I$ is surjective. $\forall A, B \in V_I$, if A = Bg for some $g \in GL(k, \mathbb{R})$, $\tilde{\phi}_I(A) = (AA_I^{-1})_{I'} = ((Bg)(Bg)_I^{-1})_{I'} = ((Bg)(B_Ig)^{-1})_{I'} = (Bgg^{-1}B_I^{-1})_{I'} = (BB_I^{-1})_{I'} = \tilde{\phi}_I(B)$, so $\tilde{\phi}_I$ induces $\phi_I: U_I \to \mathbb{R}^{(n-k)\times k}$, which is injective: $(AA_I^{-1})_{I'} = (BB_I^{-1})_{I'}$ implies $A \sim B$.

We get an atlas $\{(\phi_I, U_I)\}$, and conclude that G(k, n) is a k(n - k) dimensional C^{∞} manifold.

Thank you!