A Sample Document for the Usages of lstEventB Package

Thai Son Hoang
ECS, University of Southampton
<T dot S dot Hoang at ecs dot soton dot ac dot uk>

May 13, 2018

For convenient, we define macro \EventB for Event-B.

We start first with some inline Event-B code by embedding them using a pair of \$, for example \$@grd1 "SNSR = FALSE"\$ gives @grd1 "SNSR = FALSE". Any Event-B formulae including Unicode symbols will be typeset using the bsymb package accordingly.

ASCII	Symbols	Explanation
false	上	False
true	Τ	True
&	^	Conjunction
or	V	Disjunction
=>	\Rightarrow	Implication
<=>	\Leftrightarrow	Equivalence
not	_	Negation
!	\forall	Universal quantification
#	3	Existential quantification
		Quantification dot
/=	\neq	Inequality

Table 1: Predicates

More complete piece of code (including the Unicode symbols) can be typeset using the EventBcode environment. Below is the typesetting of an Event-B machine.

```
1 machine SensV_m0_SNSR
2 variables
3 SNSR
4 invariants
5 @thm0_1∈ "SNSR ∈BOOL" theVem
6 events
7
8 INITIALISATION
```

ASCII	Symbols	Explanation
{}	Ø	Empty set
		Vertical bar, e.g., in set comprehension
\/	U	Union
/\	\cap	Intersection
\	\	Set difference
**	×	Cartesian product
POW	\mathbb{P}	Powerset
POW1	\mathbb{P}_1	Non-empty subsets
card	card	Cardinality
union	union	Generalised union
inter	inter	Generalised intersection
UNION	U	Quantified union
INTER	\cap	Quantified intersection

Table 2: Sets

ASCII	Symbols	Explanation
:	\in	Set membership
/ :	⊭	Set non-membership
<:	\subseteq	Subset
/<: <<:	⊈	Not a subset
	\subset	Proper subset
/<<:	⊄	Not a proper subset
finite	finite	Finite
partition	partition	Partition

Table 3: Set predicates

ASCII	Symbols	Explanation
BOOL	BOOL	BOOL set
TRUE	TRUE	TRUE
FALSE	FALSE	FALSE
bool	bool	bool predicate

Table 4: BOOL and bool

ASCII	Symbols	Explanation
INT	\mathbb{Z}	Set of integer numbers
NAT	N	Set of natural numbers
NAT1	\mathbb{N}_1	Set of positive natural numbers
min	min	Mininum
max	max	Maximum
_	_	Difference
*	*	Product
/	÷	Quotient
mod	mod	Remainder
		Interval

Table 5: Numbers

ASCII	Symbols	Explanation
>	>	Greater
<	<	Less
>=	<u>></u>	Greater or equal
<=	\leq	Less or equal

Table 6: Number predicates

ASCII	Symbols	Explanation
<->	\leftrightarrow	Relations
dom	dom	Domain
ran	ran	Range
<<->	≪→	Total relations
<->>	≪→	Surjective relations
<<->>	«»	Total surjective relations
circ	0	Backward composition
id	id	Identity
<	⊲	Domain restriction
<<	\triangleleft	Domain subtraction
>	\triangleright	Range restriction
>>	⊳	Range subtraction
~	-1	Inverse
<+	\Leftrightarrow	Overriding
><	\otimes	Direct product
11		Parallel product
prj1	prj_1	First projection
prj2	prj_2	Second projection

Table 7: Relations

ASCII	Symbols	Explanation
+->	+>	Partial functions
>	\rightarrow	Total functions
>+>	→→	Partial injections
>->	\longrightarrow	Total injections
+>>		Partial surjections
->>	<i>→</i> >	Total surjections
>->>	→→	Bijections
%	λ	Lambda abstraction

Table 8: Functions

ASCII	Symbols	Explanation
:=	:=	Becomes equal to
::	:∈	Choice from a set
:	:	Choice by predicate

Table 9: Functions

```
9
    begin
      Oact1∈ "SNSR :=FALSE"
10
11
    end
12
    SNSR_on
13
14
      @grd1 \in "SNSR = FALSE"
15
16
      @act1∈ "SNSR :=TRUE"
17
18
19
    SNSR_off
20
21
      @grd1∈ "SNSR = TRUE"
22
      @act1∈ "SNSR :=FALSE"
24
25
26
27 end
```

One can change the different colour options. For example, \EventBSetKeywordColour{blue!50!black} will change the keyword colour to dark blue. (This has effects only when

```
1 machine SensV_m0_SNSR
2 variables
3 SNSR
4 invariants
5 @thm0_1∈ "SNSR ∈BOOL" theVem
```

One can includes external file containing Event-B code using the \EventBinputlisting command. For example the following is the result of including the code in the file Sensor_m1_DEP.bumx using \EventBinputlisting{Sensor_m1_DEP.bumx}.

```
1 machine SensV_m1_DEP
2 refines SensV_m0_SNSR
3 variables
    SNSR
    DEP
6 invariants
     @inv0\_1 \in "DEP \in \mathbb{N}"
     INITIALISATION extended
10
11
      @act2∈ "DEP :=0"
^{12}
13
14
     SNSR_on extended
15
     refines SNSR_on
16
^{17}
18
     SNSR_off extended
19
     refines SNSR_off
20
     begin
       @act2∈ "DEP :=DEP + 1"
22
23
24
25 end
```

More specifically, one can specify more details on the inclusion, e.g., the ranges, as the following example

\EventBinputlisting[firstline=16,lastline=20]{Sensor_m2_snsr.bumx} gives

```
machine SensV_m3_Ctrl
refines
SensV_m2_Snsr
variables
SNSR
DEP
SNSR_
Snsr_01
Snsr_01
```

```
Snsr_10
15
16
      ctrl_snsr
17
18
     ctrl_dep
19
20
      ctrl_snsr_01
21
22
      ctrl_snsr_10
23
24
25 invariants
26
27
      @inv2_1∈
      "Snsr\_01 = \mathrm{FALSE} \land Snsr\_10 = \mathrm{FALSE} \land \mathsf{ctrl\_snsr\_01} = \mathrm{FALSE} \land \mathsf{ctrl\_snsr\_10} =
            FALSE \Rightarrow ctrl\_snsr = SNSR"
29
      @inv2\_2 \in "ctrl\_dep \in \mathbb{N}"
30
31
      @inv2\_3 \in "Snsr\_10 = \mathrm{FALSE} \land ctrl\_snsr\_10 = \mathrm{FALSE} \Rightarrow ctrl\_dep = \mathsf{DEP}"
32
33
      @inv2\_4 \in "Snsr\_10 = \mathrm{TRUE} \lor ctrl\_snsr\_10 = \mathrm{TRUE} \Rightarrow ctrl\_dep = \mathsf{DEP} - 1"
34
35
      @inv2\_5 \in "ctrl\_snsr\_01 = TRUE \Rightarrow SNSR = TRUE"
36
37
      @inv2\_6 \in "ctrl\_snsr\_10 = TRUE \Rightarrow SNSR = FALSE"
38
39
      @inv2_7 \in "ctrl\_snsr\_01 = TRUE \Rightarrow Snsr\_01 = FALSE"
40
41
      @inv2_8 \in "ctrl\_snsr\_10 = TRUE \Rightarrow Snsr\_10 = FALSE"
42
43
44 events
45
      INITIALISATION extended
46
      refines INITIALISATION
47
      begin
48
        @act5∈ "ctrl_snsr :=FALSE"
@act6∈ "ctrl_dep :=0"
49
50
        \circ ctrl_snsr_01 := FALSE"
51
        @act8∈ "ctrl_snsr_10 :=FALSE"
52
53
54
55
      SNSR_on extended
      refines SNSR_on
56
      when
57
58
        Ogrd3∈ "ctrl_snsr_10 = FALSE"
      end
59
60
      SNSR_off extended
61
      refines SNSR_off
62
63
      when
        64
65
66
      ctrl_Senses_Snsr_01 extended
67
      refines ctrl_Senses_Snsr_01
68
      begin
69
```

```
@act2∈ "ctrl_snsr_01 :=TRUE"
70
71
      end
72
73
      ctrl\_Senses\_Snsr\_10 \ \textbf{extended}
      refines ctrl_Senses_Snsr_10
74
75
      begin
       @act2€ "ctrl_snsr_10 :=TRUE"
76
77
78
      \mathsf{ctrl}\_\mathsf{on}
79
80
        @grd1 \in "ctrl\_snsr\_01 = TRUE"
81
82
        @act1 ∈ "ctrl_snsr_01 :=FALSE"
83
        @act2∈ "ctrl_snsr :=TRUE"
84
85
86
87
      ctrl\_off
      when
        Qgrd1 \in "ctrl\_snsr\_10 = TRUE"
89
90
        \textcolor{red}{\texttt{@act1}} \in \texttt{"ctrl\_snsr\_10} := \texttt{FALSE"}
91
        @act2∈ "ctrl_snsr :=FALSE"
92
        @act3 = "ctrl_dep :=ctrl_dep + 1"
93
94
95
96 end
```