Notes on Quantum Metrology

The general paradigm of single parameter Quantum Metorlogy is as follows.

For a quantum system with parameter λ of interest, an initial probe is prepared in a state ρ_0 (density matrix).

This probe interacts with the quantum system and undergoes an evolution U_{λ} . The evolution is described as $\rho_{\lambda}=U_{\lambda}\rho_{0}U_{\lambda}^{\dagger}$. We are effectively transcribing the information in the wanted system to the probe.

The probe is then measured by a POVM E_x , which can be optimized using a method of which I am not familiar...

The measurement outcome x is then used to estimate the parameter λ . It can be modeled as a conditional probability $p(x|\lambda)$. We use various methods to construct the best estimator, two of which are Beyesian estimation and Maximum Likelihood estimation.