A CONJUGATE DIRECTIONS METHOD OF WOLFE (1975)

 $F(x): \mathbb{R}^n \to \mathbb{R}$ convex and nondifferentiable

At iteration k:

Let
$$G^{(k)} = \{ z^{(k)}, z^{(k-1)}, \dots \}; a_k = \sum_{l \le k} \| x^{(l)} - x^{(l-1)} \|_2$$

• Approximate Demjanov's gradient using columns in $G^{(k)}$:

Solve
$$\min \boldsymbol{\alpha}^{T} \boldsymbol{G}^{T} \boldsymbol{G} \boldsymbol{\alpha}$$

s.t. $\sum_{i} \boldsymbol{\alpha}_{i} = 1$, $\boldsymbol{\alpha}_{i} \ge 0 \rightarrow \boldsymbol{\alpha}^{*}$

$$d^{(k)} = -\sum_{z_{i} \in G^{(k)}} \boldsymbol{\alpha}_{i}^{*} z_{i}$$

• If $\|d^{(k)}\|_{2} < \varepsilon$ then

If $a_{k} \le \delta$ then STOP: $x^{(k)} \approx x^{*}$ If $a_{k} > \delta$ then RESET: $x^{(k+1)} = x^{(k)}$; $a_{k+1} = 0$; $G^{(k)} = \{ g_{k} \}$

- If $\|d^{(k)}\|_2 \ge \varepsilon$ then
- Line search: $x^{(k+1)} = x^{(k)} + \beta d^{(k)}$; $a_{k+1} = a_k + \|x^{(k+1)} x^{(k)}\|_2$
- Evaluate $g_{k+1} \in \partial F(x^{(k+1)})$
- Update $G^{(k)}$: Add $\{-d^{(k)}, g_{k+1}\}$ and drop the oldest columns.
- $k \leftarrow k+1$