Aufgabenblatt 10

Operations Research – Wirtschaftsinformatik – Online

Sommersemester 2023

Prof. Dr. Tim Downie

Sensitivitätsanalyse II: Änderung zu einem Zielfunktionskoeffizienten *mit Lösungen*

Aufgabe 1

Die Simplex-Algorithmus-Tableaus der LP von 1. Aufgabe 9. Blatt sind unten gegeben.

Maximiere
$$z=c_1x_1+c_2x_2+c_3x_3\\ =2x_1-3x_2+4x_3\\ \text{unter} \qquad 4x_1-3x_2+x_3\leqslant 3=b_1\\ x_1+x_2+x_3\leqslant 10=b_2\\ 2x_2+x_2-x_3\leqslant 10=b_3\\ x_1,x_2,x_3\geqslant 0.$$

Tab). 1	x_1	x_2	y_1
z	12	14	-9	4
x_3	3	4	-3	1
y_2	7	-3	4	-1
y_3	13	6	-2	1

T	ab. 2	x_1	y_2	y_1
z	27.75	7.25	2.25	1.75
x_3	8.25	1.75	0.75	0.25
x_2	1.75	-0.75	0.25	-0.25
y_3	16.5	4.5	0.5	0.5

(a) Wiederholen Sie den Simplex-Algorithmus mit der neuen Zielfunktion $z^{(\text{neu})}=2x_1-3x_2+4.1x_3.$

Hinweis, nur die Z-Zeile umfasst änderungen wegen des neuen Koeffizienten.

- (b) x_3 ist eine Basis-Variable der optimale Lösung. Verwenden Sie das Verfahren auf Skriptseiten 67–68, um $z_{\text{(neu)}}$ zu bestimmen. Vergleichen Sie Ihre Lösung mit der aus Teil (a).
- (c) Bestimmen Sie den Wertbereich für c_3 , damit die gleiche optimale Basislösung erreicht wird. Geben Sie die entsprechende optimale Lösung $x_{1(\text{neu})}^*$, $x_{2(\text{neu})}^*$, $x_{3(\text{neu})}^*$ und $z_{(\text{neu})}^*$, wenn die Zielfunktion $z_{(\text{neu})}^* = 2x_1 3x_2 + 5x_3$ wäre.
- (d) Bestimmen Sie den Wertbereich für c_2 , damit die gleiche optimale Basislösung erreicht wird. Geben Sie die optimale Lösung, wenn die Zielfunktion $z_{\text{(neu)}}^* = 2x_1 2x_2 + 4x_3$ wäre.
- (e) Bestimmen Sie den Wertbereich für c_1 , damit die gleiche optimale Basislösung erreicht wird. Geben Sie die optimale Lösung, wenn die Zielfunktion $z_{\text{(new)}}^* = 3x_1 3x_2 + 4x_3$ wäre.

(a) Die Z-Zeilen nach der Änderung sind:

Ta	b. 0	x_1	x_2	x_3	Ta	ab. 1	x_1	x_2	y_1		Tab. 2	x_1	y_2	y_1
z	0	-2	3	-4.1	z	12.3	14.4	-9.3	4.1	z	28.575	7.425	2.325	1.775

(b)

	<i>Tab.</i> 2	x_1	y_2	y_1
x_3	8.25	1.75	0.75	0.25
δx_3	8.25δ	1.75δ	0.75δ	0.25δ
z	27.75	7.25	2.25	1.75
$z_{(neu)}$	27.75+8.25δ	7.25+1.75δ	$2.25 + 0.75\delta$	<i>1.75</i> + <i>0.25</i> δ

Stelle $\delta = 0.1$ und die neue Z-Zeile wird 28.575, 7.425, 2.325, 1.775, wie in Teil (a).

(c) Wir brauchen $\delta \geqslant -4.143$ (3 Dez.), $\delta \geqslant -3$ und $\delta \geqslant -7$. Alle sind gültig, wenn $\Rightarrow \delta \geqslant -3$. Wertbereich für $c_3^{(neu)}$: $c_3 + \delta \geqslant 4 - 3 = 1 \Rightarrow c_3^{(neu)} \geqslant 1$.

Wenn $c_3^{(neu)}=5$, $\delta=1$, und die gleiche Basislösung ist optimal. Die optimalen Werte der Strukturvariablen ändern sich nicht: $x_{1(neu)}^*=0$, $x_{2(neu)}^*=1.75$, und $x_{3(neu)}^*=8.25$. Der neue Z-wert liest man vom $z_{(neu)}$ Zeile aus der obigen Tabelle ab. $z_{(neu)}^*=27.75+8.25\delta=36$.

d) x_2 ist eine BV in der optimalen Lösung.

	<i>Tab.</i> 2	x_1	y_2	y_1	
x_2	1.75	-0.75	0.25	-0.25	
δx_2	1.75δ	-0.75δ	0.25δ	-0.25δ	
z	27.75	7.25	2.25	1.75	
$z_{(neu)}$	27.75+1.75δ	7.25-0.75δ	$2.25 + 0.25\delta$	1.75 - 0.25δ	

Die gleiche Basislösung ist optimal, wenn $7.25 - 0.75\delta \geqslant 0$, $2.25 + 0.25\delta \geqslant 0$ und $1.75 - 0.25\delta \geqslant 0 \Rightarrow -9 \leqslant \delta \leqslant 7$.

Wertbereich für $c_2^{(neu)}$: $-3-9 \leqslant c_2+\delta \leqslant -3+7 \Rightarrow -12 \leqslant c_2^{(neu)} \leqslant 4$.

Wenn $c_2^{(neu)} = -2$, $\delta = 1$. Die gleiche optimale Basislösung wird erreicht mit $x_{1(neu)}^* = 0$, $x_{2(neu)}^* = 1.75$, $x_{3(neu)}^* = 8.25$ und $z_{(neu)}^* = 29.5$.

e) x_1 ist eine NBV.

Der Koeffizient in z-Zeile/ x_1 -Spalte ist 7.25. Stelle $7.25 - \delta \geqslant 0$, $\Rightarrow \delta \leqslant 7.25$ Wertbereich für $c_1^{(neu)}$: $c_1 + \delta \leqslant 2 + 7.25 = 9.25 \Rightarrow c_1^{(neu)} \leqslant 9.25$.

Wenn $c_1^{(neu)}=3$, dann $\delta=1$, d.h. die gleiche optimale Basislösung und die gleiche optimale Lösung wird erreicht, weil die 1. Restriktion unverbindlich ist. $x_{1(neu)}^*=0$, $x_{2(neu)}^*=1.75$, $x_{3(neu)}^*=8.25$ und $z_{(neu)}^*=27.75$.