

Project Phase 2: OO Analysis and Design

ITCS431 Software Design and Development

Present to

Asst. Prof. Dr. Morakot Choetkiertikul Dr. Chaiyong Ragkhitwetsagul

Compose by

6488003	Kasidis	Aiamsamarng
6488040	Alongkorn	Janpensri
6488083	Kanyanut	Sompong
6488091	Tulagarn	Sornprasit
6488103	Panyaporn	Wattanapong
6488148	Pattanun	Worakitsitthisatorn

Semester 2 of the academic year 2023
Faculty of Information and Communication Technology
Mahidol University

Table of Contents

Use Case Description	1
Activity Diagram	4
Class Diagram	7
Sequence Diagram	8

Use Case Description

Use Case Name: Create a Science Plan	I D: U001	Importance Level: High
Primary Actor: Astronomer	Use Case Type: Essential	

Stakeholders and Interests: Astronomers-interested

Brief Description: This use case details the process by which an astronomer creates a plan for scientific observation.

Trigger: The astronomer decides to commence a new observation project.

Type: Functional

Relationships:

Association: Astronomer, Observatory Scheduler

- UserInclude: Access Telescope Schedule, Access Star Catalogues

Extend: -

- Generalization: Submit a Science Plan

Normal Flow of Events:

- 1. The astronomer selects the "Create Science Plan" option in the GTCS interface.
- 2. The astronomer inputs the science plan details, including the plan ID, objectives, target celestial objects, and necessary instruments into the form presented by the GTCS.
- 3. The astronomer chooses the targets and instruments from the available list within the GTCS.
- 4. The astronomer reviews all the details of the science plan for accuracy.

Subflows:

Invalid Input

- S-1 The system validates inputs and flags any errors or conflicts.
- S-2 Astronomer corrects the details and resubmits the plan.

Alternate/Exceptional Flow: -

Use Case Name: Validate an	ID: U002	Importance Level: High
Observing Program		
Primary Actor: Science Observer		Use Case Type: Detail, Essential

Stakeholders and Interests: Science Observer-wants

Brief Description: This use case details the process by which a Science Observer validates the observing program prepared by an Astronomer to ensure it is correctly set up and can be executed by the telescope system.

Trigger: This use case is the completion of an observing program by an Astronomer, which then needs validation.

Type: External

Relationships:

- Association: Science Observer is associated with the system
- **UserInclude:** Creating and submitting an observing program.
- Extend: -
- Generalization: -

Normal Flow of Events:

- 1. The Science Observer conducts initial checks for completeness and adherence to submission guidelines.
- 2. The Science Observer uses simulation tools to validate the observed program's expected outcomes.
- 3. The Science Observer marks and approves the program for execution or returns it to the astronomer with feedback for refinement.

Subflows:

In case of any discrepancies or issues, the Science Observer may:

- S-1: Request modifications to the observing program.
- S-2: Provide feedback to the Astronomer.

Alternate/Exceptional Flow:

- 1. The observing program does not meet the validation criteria.
- 2. The necessary data for validation is incomplete or unavailable.
- 3. System errors prevent the validation from completing.

Use Case Name: Manage Astronomical Data	ID : U003	Importance Level: High
Primary Actor: Science Observer	Use Case Type: Detail, Essential	

Stakeholders and Interests: Science Observer-Require, Astronomer-Need

Brief Description: This use case details the process of managing astronomical data collected through observations made by the GTCS. It encompasses the storage, organization, retrieval, and maintenance of data integrity.

Trigger: The need to store new observational data, update existing data, or retrieve data for analysis.

Type: External

Relationships:

- Association: Science Observer who performs the data management.
- UserInclude: Validate Collected Astronomical Data Integrity
- Extend: -
- Generalization: -

Normal Flow of Events:

- 1. The science observer performs a preliminary check to ensure data quality.
- 2. The science observer manages permissions for data access.
- 3. The science observer collects the data from the observation system.
- 4. The science observer reviews the data storage for accuracy and security.
- 5. The science observer ensures that the data is accessible for authorized personnel.

Subflows:

If there is a need to update existing data, the system provides an editing interface to modify the selected datasets.

Alternate/Exceptional Flow:

If the system detects inconsistencies or errors during data processing, it alerts the Science Observer, who must then resolve the issues or escalate them as needed.

Activity Diagram

U001: Create a science plan

U003: Manage Astronomical Data

Class Diagram

Sequence Diagram

U001: Create a science plan

U002: Validate an Observing Program

U003: Manage Astronomical Data

