

Overview of Reinforcement Learning-Part II

Prof. Jae Young Choi

Pattern Recognition and Machine Intelligence Lab. (PMI)

Division of Computer Engineering

Hankuk University of Foreign Studies

Major Components of an RL Agent

- An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - Value function: how good is each state and/or action
 - Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour
- It is a map from state to action, e.g.
- Deterministic policy: $a = \pi(s)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

Value Function (1)

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions, e.g.

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

Value Function (2)

- A value function is a prediction of future reward
 - "How much reward will I get from action a in state s?"
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor γ

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

Value functions decompose into a Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}_{s',a'}\left[r + \gamma Q^{\pi}(s',a') \mid s,a\right]$$

Value Function (3)

An optimal value function is the maximum achievable value

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

ightharpoonup Once we have Q^* we can act optimally,

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

▶ Optimal value maximises over all decisions. Informally:

$$Q^*(s,a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$
$$= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

Formally, optimal values decompose into a Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a\right]$$

Example of Value Function

- Each square represents a state
- The return value is -1 everywhere on each transition
- 4 actions for each state: north, south, east, west
- Goal states are the upper left corner and lower right corner

0	-14	-20	-22
-14	-18	-22	-20
-20	-22	-18	-14
-22	-20	-14	0

Value function for randomly policy

Optimal Value function

Optimal Policy

- A model predicts what the environment will do next
- \blacksquare \mathcal{P} predicts the next state
- \blacksquare R predicts the next (immediate) reward, e.g.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' \mid S_{t} = s, A_{t} = a]$$

 $\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} \mid S_{t} = s, A_{t} = a]$

Maze(미로) Example

- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze(미로) Example : Policy

Arrows represent policy $\pi(s)$ for each state s

Maze(미로) Example : Value Function

Numbers represent value $v_{\pi}(s)$ of each state s

Maze(미로) Example: Model

- Agent may have an internal model of the environment
- Dynamics: how actions change the state
- Rewards: how much reward from each state
- The model may be imperfect
- Grid layout represents transition model $\mathcal{P}_{ss'}^{a} = P(S' \mid S, a)$
- Numbers represent immediate reward \mathcal{R}_s^a from each state s (same for all a)

Approaches to Reinforcement Learning

Value-based RL

- ▶ Estimate the optimal value function $Q^*(s,a)$
- This is the maximum value achievable under any policy

Policy-based RL

- ▶ Search directly for the optimal policy π^*
- This is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model

Categorizing RL agents (1)

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

Categorizing RL agents (2)

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

RL Agent Taxonomy

Learning and Planning

Two fundamental problems in sequential decision making

- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy
- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
 - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

Atari Example: Reinforcement Learning

- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

Atari Example: Planning

- Rules of the game are known
- Can query emulator
 - perfect model inside agent's brain
- If I take action a from state s:
 - what would the next state be?
 - what would the score be?
- Plan ahead to find optimal policy
 - e.g. tree search

Exploration and Exploitation (1)

- Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- Without losing too much reward along the way

Exploration and Exploitation (2)

- Exploration finds more information about the environment
- Exploitation exploits known information to maximise reward
- It is usually important to explore as well as exploit

Examples

Restaurant Selection

Exploitation Go to your favourite restaurant Exploration Try a new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location Exploration Drill at a new location

Game Playing

Exploitation Play the move you believe is best Exploration Play an experimental move

Gridworld Example: Prediction

What is the value function for the uniform random policy?

- At each grid cell, **four actions** are possible: north, south, east and west
- Actions taking agent off grid leaves its location unchanged but reward of '-1', other actions produces a reward of '0' except for state **A** and **B**
- From state A, all four actions yield a reward '+10' and take agent to A'
- From state B, all four actions yield a reward '+5' and take agent to B'
- Random policy: agent selects all four actions with equal probability in all states

Gridworld Example: Control

a) gridworld

c) π_*

What is the optimal value function over all possible policies? What is the optimal policy?