Лабораторная 5. Численное интегрирование

Численное интегрирование функции целесообразно использовать в тех случаях, когда: 1) первообразная F(x) не может быть найдена с помощью элементарных функций; 2) F(x) является слишком сложной; 3) подынтегральная функция f(x) задана таблично или неявно. Будем рассматривать формулы приближенного вычисления интегралов

$$\int_{a}^{b} p(x)f(x)dx = \sum_{k=0}^{n} c_k f(x_k),$$

где p(x) > 0 - заданная интегрируемая функция (весовая) и f(x) - достаточно гладкая функция, $x \in [a,b]$ и c_k - числа, k=0,1,...,n..

Для составления квадратурных формул данную функцию f(x) заменяют интерполирующей функцией $\varphi(x)$ и приближенно полагают

$$\int_{a}^{b} p(x)f(x)dx \approx \int_{a}^{b} p(x)\varphi(x)dx$$

и затем вычисляют интеграл непосредственно, а оценку погрешности формулы определяют исходя из вида функции f(x).

Квадратурные формулы

Пусть для функции y=f(x) требуется вычислить интеграл $J(f)=\int_a^b p(x)f(x)dx$. Вы-

брав шаг $h = \frac{b-a}{n}$, разобьем отрезок [a, b] на n равных частей: $x_0 = a$, $x_i = x_0 + ih$ (i = 1, 2, ..., n-1),

 $x_n = b$ и пусть $y_i = f(x_i)$ (i = 0, 1, 2, ..., n), p(x) = 1. Построим, например, полином Лагранжа:

$$f(x) \approx L_n(x) = \sum_{i=0}^n y_i \prod_{\substack{j=0 \ j \neq i}}^n \frac{(x - x_j)}{(x_i - x_j)} + R_n(x).$$

Рис. 1.

Рис. 2.

Заменяя функцию f(x) соответствующим интерполяционным полиномом, получим квадратурную формулу

$$\int_{x_n}^{x_n} p(x) f(x) dx = \sum_{i=0}^n A_i y_i,$$

где A_i - некоторые постоянные коэффициенты, не зависящие от функции f(x), а зависящие лишь от расположения узлов сетки x_i .

Для формулы трапеции (n=1) p(x)=1, $A_0=A_1=1/2$.

$$\int_{x_0}^{x_1} y dx = \frac{h}{2} (y_0 + y_1).$$

Остаточный член формулы трапеции равен:

$$R = \int_{x_0}^{x_1} y dx - \frac{h}{2} (y_0 - y_1) = -\frac{h^3}{12} y''(\xi),$$

где $\xi \in (x_0, x_0+h)$.

Обобщенная формула трапеции для вычисления определенного интеграла на равномерной сетке, запишется так:

$$\int_{a}^{b} y dx = h(\frac{y_0 + y_n}{2} + y_1 + y_2 + \dots + y_{n-1}) + R(h),$$

где
$$R(h) = -\frac{(b-a)}{12} M_2 h^2$$
, $M_2 = \max_{[a,b]} |f''(x)|$.

Формула Симпсона при n=2 и p(x)=1. Интерполирование функции выполняется по трем ее значениям. $A_0=1/6$, $A_1=2/3$, $A_2=1/6$ или, так как x_2 - $x_0=2h$,

$$\int_{x_0}^{x_2} y dx = \frac{x_2 - x_0}{6} (y_0 + 4y_1 + y_2).$$

Остаточный член формулы Симпсона равен

$$R = \int_{x_0}^{x_2} y dx - \frac{h}{3} (y_0 + 4y_1 + y_2) = -\frac{h^5}{90} y^{(IV)}(\xi),$$

где $\xi \in (x_0, x_2)$.

Обобщенная формула Симпсона для вычисления определенного интеграла на равномерной сетке и четного числа шагов, имеет вид:

$$\int_{a}^{b} y dx = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + y_n) + R(h),$$

где
$$\mathit{R}(h) = -\frac{(b-a)}{180} M_4 h^4$$
, $\boldsymbol{M}_4 = \max_{[a,b]} \left| f^{IV}(x) \right|$.

Приведем формулу «трех восьмых» для вычисления определенного интеграла на равномерной сетке и числа шагов, кратного трем:

$$\int_{a}^{b} y dx = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + y_7 + ...) + 2(y_3 + y_6 + y_9 + ...)] + R(h),$$
 где $R(h) = -\frac{(b-a)}{80} M_4 h^4$, $\mathcal{M}_4 = \max_{[a,b]} \left| \mathcal{F}^{IV} (x) \right| ...$

Выбор шага интегрирования

Для вычисления интеграла по выбранной формуле численного интегрирования с заданной точностью ε можно выбрать шаг h, обеспечивающий эту точность вычисления интеграла, используя формулу остаточного члена:

$$|R(h)| \leq \frac{\varepsilon}{2}$$
,

при этом вычисления следует производить с таким числом знаков, чтобы погрешность округления не превышала $\epsilon/2$.

Другой способ заключается в последовательном удвоении количества шагов. Сначала вычисляется интеграл по выбранной квадратурной формуле при числе шага n, а затем при 2n. Погрешность приближенного значения интеграла определяется по правилу Рунге:

$$\Delta_n = \theta |I_n - I_{2n}|,$$

где $\theta = \frac{1}{3}$ для формулы трапеции и $\theta = \frac{1}{16}$ для формулы Симпсона.

Процесс вычислений заканчивается, если для очередного значения n будет получена погрешность $\Delta_{\rm n}=\epsilon$.

Следует учесть, что при удвоении числа шагов нет необходимости вычислять значения подынтегральной функции заново во всех узлах сетки, т. к. все они являются узлами сетки и при числе шагов 2n. Данный алгоритм может быть полезен при вычислении интеграла с разрывом.

Замечание: Может оказаться, что производная неограничена

Задания

- 1. Вычислить приближенное значение интеграла $\int_{a}^{b} f(x)dx$, используя формулы трапеции, Симпсона, прямоугольников (n=4, 5 или 7). Оценить остаточный член формул.
- 2. Вычислить значение интеграла $\int_{a}^{b} f(x)dx$ с заданной точностью ε , используя формулу трапеции или Симпсона, двумя способами:
- 2.1. выбрать шаг интегрирования из оценки остаточного члена,
- 2.2. использовать метод последовательного удвоения числа шагов.

Варианты Іля заданий:

1.
$$f(x)=x^3e^{2x}$$
; $a=0$; $b=1$.

2.
$$f(x) = \frac{1}{1+\sqrt{x}}$$
; $a = 0$; $b = 4$.

3.
$$f(x) = \frac{2^x}{1-4^x}$$
; $a = -2$; $b = -1$.

4.
$$f(x) = \frac{\lg(1+x^2)}{2x-1}$$
; $a = 0$; $b = 1$.

5.
$$f(x) = \frac{tg(x^2)}{x+1}$$
; $a = 0$; $b = 1$.

6.
$$f(x) = \frac{x}{2} \lg \frac{x^2}{2}$$
; $a = 1$; $b=3$.

7.
$$f(x) = \left(\frac{x}{2} + 1\right) \sin \frac{x}{2}$$
; $a = 1$; $b = 2$.

8.
$$f(x) = \sin \frac{2x}{x^2}$$
; $a = 0.5$; $b = 2.5$.

9.
$$f(x) = \cos(x^2 \cos x)$$
; $a = 5$; $b = 7$.

10.
$$f(x) = f(x) = \cos(5x^2)$$
; $a = 0$; $b = 5$.

11.
$$f(x) = \cos(x)/(x+2)$$
; $a = 0.4$; $b = 1.2$.

12.
$$f(x) = \cos(x^2) \cdot \sqrt{x}$$
; $a = 0.4$; $b = 1.2$.

13.
$$f(x) = (x + 1)\sin(x)$$
; $a = 1.6$; $b = 2.4$.

14.
$$f(x) = (x + 1)\cos(x^2)$$
; $a = 0,2$; $b = 1$.

15.
$$f(x) = \sin(x^2 - 0.4)/(x + 2)$$
; $a = 0.8$; $b = 1.2$.

16.
$$f(x) = \ln(1 + x^2)/(1 + x^2)$$
; $a = 0$; $b = 1$.

17.
$$f(x) = \ln(5 + 4\cos(x)); a = 0; b = 3,1416.$$

18.
$$f(x) = x \cdot \ln(1 + x)$$
; $a = 0$; $b = 1$.