

青年AI自强项目一情况更新

学堂在线 xuetangx.com

直播平台改变 录播发布机制改变 作业发布及回收机制改变

所有作业的截止时间改为: 最后一次讲座之后两周,固定周期评分

为了满足大家单纯的学习愿望

序号-形式	讲座/活动主题
1-讲座	AI 鸟瞰与升级指南
2-讲座	机器学期入门
3-讲座	经典神经网路
4-讲座	深度神经网络
5-讲座	张和 神经网络
6-讲座	分类任务
7-讲座	探测任务
8-	实例与调参
9-任务	转化挑战

希望大家能够坚持下去

ML是一座能令你学会 "召唤技能"的神奇乐园

游玩项目→"知识景点" 游玩目标→到达"里程碑点"

→学会召唤技能→召鳴

 $\underset{\theta}{\operatorname{arg\,min}} F\left(\mathcal{D};\theta\right) = \mathcal{L}\left(\left\{x_{i}, y_{i}\right\}_{i=1}^{n};\theta\right) + \Omega\left(\theta\right)$

2018/10/8 14:25	PY 文件	5 KB
2018/10/6 9:52	PY 文件	4 KB
2018/10/9 16:11	PY 文件	4 KB
2018/10/9 17:54	PY 文件	3 KB
2018/10/8 16:42	PY 文件	2 KB
2018/10/8 16:23	PY 文件	1 KB
2018/10/8 17:55	PY 文件	2 KB
2018/10/5 1:43	Microsoft Excel	25 KB
2018/10/5 1:43	Microsoft Excel	25 KB
	2018/10/6 9:52 2018/10/9 16:11 2018/10/9 17:54 2018/10/8 16:42 2018/10/8 16:23 2018/10/6 17:55 2018/10/5 1:43	2018/10/6 9:52 PY 文件 2018/10/9 16:11 PY 文件 2018/10/9 17:54 PY 文件 2018/10/8 16:42 PY 文件 2018/10/8 16:23 PY 文件 2018/10/8 17:55 PY 文件 2018/10/8 17:55 PY 文件

计算机小弟

数学公式+代码

召唤一个"女朋友"当小弟?

我们可以想办法让知识变得更有趣

美女机器人"佳佳"

美女机器人 "Android 'U'"

要有当小弟的觉悟

以游览清华为例 原则一不让细节牵绊你

目标: 绝不"呆荫"的成为懵逼触发者

描述挂表的位置

数学的魅力

自然语言→定型描述:黑板上边

数学语言→定量描述: (1.5,2.5)

数学语言: 简洁、准确、完备

数学之美一啥是机器学习?

自然语言:

机器学习算法的本质是找到一些特征,来描述一些数据/问题,并做出一些预测。具体的办法是将找到的特征输入到一个模型中,通过对准备好的数据集进行学习,来更新模型中的参数。为了评价模型现有参数的好坏并确定更新后的参数是否更优,我们需要借助一把"尺子"来度量目前模型参数与"最优解"之间的差距,更新模型中参数的目标就是使这种差距减到最小。另一方面,我们还需要引入正则手段来防止模型中的参数"过分"追求现有数据集上的"最优解","过犹不及"这个道理同样适用于机器学习。

数学语言: $\operatorname{arg\,min} F(\mathcal{D}; \theta) = \mathcal{L}\left(\left\{x_i, y_i\right\}_{i=1}^n; \theta\right) + \Omega\left(\theta\right)$

本次课程的目标

利用简单的机器学习算法回答: 什么样的男生会受到小姐姐的青睐

选取特征 收集数据

进行标注

拟合数据

做出预测

数据的 矩阵描述 可视化 及归一化

决策边界 矩阵化表 示

Sigmiod 概率转换

损失函数 评价模型

梯度下降 优化模型

过拟合 与泛化

正则化解决过拟合

沿着一个个由机器学习的关键"知识景点"标识出来的最有效路径一路走到首个"里程碑点"

序号	身高	月薪(是否有兴趣尝试交往
1	1.71	4704	0
2	1.64	10139	0
3	1.58	5490	0
4	1.75	1236	0
5	1.95	8963	1
6	1.47	2573	0
7	1.64	10195	0
8	1.7	3565	0
9	1.82	3867	0
10	1.74	11527	1
11	1.75	6875	1
12	1.6	4690	0
13	1.9	1541	0
14	1.83	6842	1
15	1.83	3166	0
16	1.67	1400	0
17	1.73	6002	0

结构化数据 样本集和标签集

$Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(50)} \end{bmatrix}$

数学语言描述

x表示小哥哥 最熟悉的未知数

x⁽¹⁾代表1号小哥哥 为样本(小哥哥)编号

-

 $x_1^{(3)}$ 代表啥? *引用所有元素*

 x_1 代表1号特征"身高" 为特征(身高/收入)编号

计算机科学家强迫症

如果有人问: 你的样本集是啥?

整齐的摞起来写

*x*₁: 横轴 *x*₂: 纵轴

• **→**不受欢迎

不考虑单位影响

同例尺画出图像

数据可视化 (Data Visualization)

看不清? →在黑板上画

原因:

 x_1 的取值范围: [1.59, 1.87]

x2的取值范围: [1794, 12128]

者分布范围相差了4个数量级

所以代表样本的小点必定分布在一个极为窄高的区域内 左边的图像也是示例,在保证人眼能分辨的情况下真实 的图像恐怕要画到一张0.002米宽, 1.3米高的白纸上。

归一化 (Normalization)

归一化公式

解决办法

很土的读法

往士1里凑一

 $x_{norm}^i = \frac{x^i - \mu}{\sigma} \, \varphi$

1号"法宝"

归一化处理后的数据

归一化公式

def normalization(X):

mu = np.mean(X, axis=0)
sigma = np.std(X, axis=0)
X_norm = (X - mu) / sigma

return X_norm

0.9 - I like you Ldon't like you Ldon't like you - -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 1.1

画一条线来分界

决策边界

(Decision Boundary)

"模型"="参数的结构"+"变量的输入方法"

神马也不想做。。。。

CS很"懒"

公式太长

$$0 = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

要写短点

$$0 = \theta X$$

矩阵运算

$$0 = \theta X \qquad \longrightarrow \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} \quad X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix} \qquad \longrightarrow \qquad \theta^T X = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 \end{bmatrix} \times \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

真的能这么写吗?

 θ 与X都是矩阵

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} \qquad \underline{\text{vs}} \qquad \theta^T = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 \end{bmatrix}.$$

矩阵的转置

- 1、将原矩阵沿对角线做镜面反转
- 2、i行、j列的元素,转移到j行、i列处
- 3、转置仅改变矩阵的尺寸, 元素取值不变

写起来需要多一个角标T

矩阵的乘法

- 1、用 c_{ij} 代表矩阵C中第i行j列的元素
- 2、 c_{ij} 等于矩阵A第i行与矩阵B第j列的元素,依次相乘并相加
- 3、矩阵乘法没有交换律,尺寸对不上就没办法"依次相乘"

这是什么独特的"犯懒"姿势?

决策边界 (Decision Boundary)

 $\rightarrow \theta_0 + \theta_1 x_1 + \theta_2 x_2 = \theta^T X \rightarrow$

为了写短一小点

要发明这么复杂的规则吗②

实际问题: 如果有人问: 如果有人问: 你的模型是啥?

 $\theta^T X$

2号法宝:矩阵化表示

不会矩阵化表示的小菜鸟 念到世界的尽头......

如何做预测

$$\theta^T X = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = -5.6 + 4.2 x_1 + 6 x_2$$

具体参数如上

验证:

- 1、坐标系中任意一点带入直线的表达式 $\theta^T X$;
- 2、如果得到负值则表示这一点在直线下方,反之则表示其在直线上
- 3、且绝对值越大表示该点距离直线越远
- 4、如果得到0,则说明这一点恰好落到了直线上。

结论:

- 1、新的样本,只需要将其输入表示决策边界的模型 $\theta^T X$ 中
- 2、并通过输出数值的正负来判断这位小哥哥是否受欢迎

while(1){

Sigmiod函数

如果一个小哥哥来做预测 我们告诉他"你受欢迎的数字是2"

}

死循环懵逼

急需新法宝要求:

- 1、输出的取值范围是(0,1)
- 2、输入可以是(-∞,+∞)中的任意数字;
- 3、输入0时输出时0.5,输入负值时输出小于0.5,且输入负值的绝对值越大,输出的数值约接近于0,反之亦然;

$$g(z) = \frac{1}{1 + e^{-z}}$$

3号法宝: sigmoid函数

来历: 最大熵 拉格朗日乘数法

有兴趣的同学可以自行寻求懵逼

"逻辑回归" (Logistic regression)

$$h_{\theta}(\mathbf{x}) = \mathbf{g}(\theta^T X) = \frac{1}{1 + e^{-\theta^T X}}$$
 逻辑回归模型

今天的主角: "逻辑回归"又作"对率回归"

如何评价参数的好坏

凭感觉画的线再来一条 如何评价好坏?

$$Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(50)} \end{bmatrix}$$

可以与正确答案做对比

求新法宝要求:

- 1、将现有的模型输入,能够得到一个分布在(0,+∞)范围内的数值,来表示该模型误差的大小;
- 2、模型的预测值约接近正确答案,这个表示误差的数值应该越小;
- 3、模型的预测值离正确答案越远,这个表示误差的数值应该越大。

4号法宝: 损失函数

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

"损失函数" (Loss function)

符号看不懂?公式好长好吓人?

换个马甲

求和符号

也有很土的读法

估计是用来偷懒的

可以简写成∑⁵⁰ x⁽ⁱ⁾ ↔

1个符号胜过 千言万语

 $-\log z$

$$(1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))$$

$$(y^{(i)})\log(h_{\theta}(x^{(i)}))$$

如果**y=1**

 $\frac{1}{m}\sum_{i=1}^{m}\left[\log(h_{\theta}(x^{(i)}))\right] +$

只看关键部分

 $-\log(h_{\theta}(x^{(i)})) \leftarrow$

 $\Leftrightarrow h_{\theta}(x^{(i)})=z$

公式拆成两半

都加起来

"损失函数" (Loss function)

画出图像并验证:

- 1、它的输出是一个可以表示损失大小的数值;
- 2、此时的正确答案是1,模型的预测值接近1,此函数的输出越接近于0;
- 3、反之亦然。

如仍懵逼 请记住:

- 1、损失函数的本质是:以训练集为依据,度量目前模型与"最优解"之间的差距(即"损失")。
- 3、机器学习的直接目标,就是通过尝试改变输入参数 θ 的取值组合来使损失函数的输出最小,用公式可以表示为: $\min_{\theta} J(\theta)$

$$\mathbf{J}(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

如果模型是胖子损失函数就是秤

如何更新参数

$$\theta^T X = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$h_{\theta}(\mathbf{x}) = \mathbf{g}(\theta^T X) = \frac{1}{1 + e^{-\theta^T X}}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

想要减少损失 不如可视化看看

为了能画三维图像,舍弃一个参数 θ_0

"梯度下降法" (Gradient Descent)

新的问题:

损失看起来像山 那计算机怎么下山?

$$\theta_{j} = \theta_{j} - \alpha \frac{\partial J(\theta)}{\partial \theta_{i}}$$

5号法宝:梯度下降法

 $\partial J(\theta)$

公式好短好高兴

还是不大懂

只看关键部分

小白眼里

一个提前选定的常数: α

一个偏导数: $\frac{\partial J(\theta)}{\partial \theta_j}$

"梯度下降法" (Gradient Descent)

 $\frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$

求导的集合意义:找到下降方向

一件小事:求偏导公式

 $\theta_{\rm j} = \theta_{\rm j} - \alpha \frac{\partial J(\theta)}{\partial \theta_{\rm j}}$

梯度下降法小结

- 1、算法给了模型一个"水平仪"来指出向下的方向;
- 2、同时给了我们一个遥控器α,来控制模型每走一步(更新一次参数)的大小。
- 3、 α 有一个好听的名字"学习率"(learning rate),它在一定程度上决定了模型"学习"最优解的快慢
- 4、不能让计算机无限次的走下去,所以还需要指定一个"迭代次数"(iterations),即指定"走多少步"(更新多少次参数)后停下来。;

"梯度下降法" (Gradient Descent)

将下山法宝交给计算机 并选择完美的"学习率"和"迭代次数"

损失函数随着迭代次数的增加而趋于收敛

新的问题:

如果Ir选择不完美怎么办? 做一个小实验来验证

不同Ir选择下的loss图像

"梯度下降法" (Gradient Descent)

loss "等高线"的另一个发现 归一化的意义在于使loss更快的收敛

"内容延展" (saddle point)

编号	论文	被引用量	发表年 份	作者
1	Minimizing Nonconvex Population Risk from Rough Empirical Risk 链接: http://cn.arxiv.org/abs/1803.09357	0	2018	MI Jordan
2	No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis 链接: http://cn.arxiv.org/abs/1704.00708	42	2017	Rong Ge
3	Stochastic Cubic Regularization for Fast Nonconvex Optimization 链接: http://cn.arxiv.org/abs/1711.02838	10	2017	MI Jordan
4	How to Escape Saddle Points Efficiently 链接: http://cn.arxiv.org/abs/1703.00887	68	2017	MI Jordan
5	Gradient Descent Can Take Exponential Time to Escape Saddle Point 链接: http://cn.arxiv.org/abs/1705.10412	13	2017	MI Jordan
6	First-order Methods Almost Always Avoid Saddle Points 链接: http://cn.arxiv.org/abs/1710.07406	13	2017	MI Jordan
7	Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent 链接: http://cn.arxiv.org/abs/1711.10456	17	2017	MI Jordan
8	Gradient Descent Converges to Minimizers 链接: https://lanl.arxiv.org/abs/1602.04915	51	2016	MI Jordan
9	Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences 链接: http://cn.arxiv.org/abs/1609.00978	15	2016	Chi Jin
10	Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomposition 链接: http://cn.arxiv.org/abs/1503.02101	157	2016	Rong Ge
11	Efficient approaches for escaping higher order saddle points in non-convex optimization 链接: http://cn.arxiv.org/abs/1602.05908	20	2016	Rong Ge
12	Structured Prediction, Dual Extragradient and Bregman Projections 链接: http://jmlr.csail.mit.edu/papers/volume7/taskar06a/taskar06a.pdf	104	2006	MI Jordan
13	Structured Prediction via the Extragradient Method 链接: http://papers.nips.cc/paper/2794-structured-prediction-via-the-extragradient-method.pdf	61	2005	MI Jordan
14	Deep Learning without Poor Local Minima 链接: http://cn.arxiv.org/abs/1605.07110	117	2016	Kenji Kawaguchi

欠拟合 (underfitting)

拟合能力更强的模型

 $\theta^T X = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1 x_2 + \theta_5 x_2^2 + \theta_5 x_2^2 + \theta_5 x_3^2 + \theta_5$

更多的特征(引入2次项)

红圈处"身高残疾""收入坚挺"的两位小哥哥未能被正确拟合

过拟合(overfitting)&泛化(generalization)

泛化能力变差

- 1、模型被训练出来就是为了做泛化预测,所以过拟合将伤害模型精度;
- 2、在一定范围内,过拟合越严重,泛化能力越差;
- 3、解决过拟合有很多办法,将在后续课程介绍。

引入2次项后的决策边界。

新的问题:

过拟合怎么解决?

6号法宝:正则化公式

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$\frac{\partial J(\theta)}{\partial \theta_{i}} = \left(\frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) \cdot y^{(i)}\right) x_{j}^{(i)}\right) + \frac{\lambda}{m} \theta_{j} + \frac{\lambda}{m} \theta_{j}$$

正则化 Regularization

 λ 的本质是惩罚 θ 即 λ 的取值越大, θ 的取值越小

决策边界 数据的 可视化 Sigmiod 过拟合 损失函数 梯度下降 正则化 矩阵化表 矩阵描述 与泛化 及归一化 概率转换 寻找最合 解决 令运算 令数据 令计算机 任意常数 评价模型 优化模型 适的拟合 到概率 能够接受 更易处理 过拟合 程度

不迷路,不走丢

扫码加好友进群

关注直播间公告