STANISLAS Exercices

Variables aléatoires discrètes Chapitre VII

PSI 2021-2022

- - -

I. Lois de variables aléatoires

Exercice 1. [CCP] Dans un casino, une machine renvoie un entier naturel N non nul selon la loi de probabilité : $\forall n \in \mathbb{N}^*$, $\mathbb{P}(N=n) = \frac{1}{2^n}$. Le joueur gagne N jetons si N est pair ; il perd N jetons si N est impair.

- 1. Quelle est la probabilité de gagner une partie?
- **2.** Déterminer la loi et l'espérance de la variable aléatoire G égale au gain algébrique du joueur.

Exercice 2. [Mines] On tire sans remise 2n boules numérotées de 1 à 2n.

- **1.** Calculer la probabilité d'obtenir $1, 3, \ldots, 2n 1$ dans cet ordre et consécutivement.
- **2.** Déterminer la probabilité de tirer $1, 3, \ldots, 2n-1$ dans cet ordre mais pas forcément consécutivement.
- **3.** On note X la variable aléatoire associée au rang de la dernière boule impaire tirée. Calculer $\mathbb{E}[X]$.

Exercice 3. [CCP] Soient X_1, \ldots, X_n des variables aléatoires indépendantes suivant une loi de Bernoulli de paramètres respectifs $1, \frac{1}{2}, \ldots, \frac{1}{n}$. On note N la variable aléatoire qui vaut 0 si $X_1 = \cdots = X_n = 1$ et $\min\{k \in [1, n] \mid X_k = 0\}$ sinon. Déterminer la loi de N?

Exercice 4. (\mathscr{P} , \heartsuit) [X] Lors d'une élection, 700 électeurs votent pour A et 300 pour B. Quelle est la probabilité que, pendant le dépouillement, A soit toujours strictement en tête?

II. Inégalités

Exercice 5. Soient a < b et X une variable aléatoire discrète réelle à valeurs dans [a,b]. Montrer que X admet une variance puis que $\mathbb{V}(X) \leqslant \frac{(b-a)^2}{4}$ en discutant les cas d'égalité.

Exercice 6. Soit X une variable aléatoire à valeurs dans \mathbb{N} .

- **1.** Montrer que, pour tout $u \in [-1, 1]$, le réel $\mathbb{E}[u^X]$ est bien défini.
- **2.** Montrer que pour tout u tel que |u| < 1,

$$\frac{1 - \mathbb{E}\left[u^X\right]}{1 - u} = \sum_{k=0}^{+\infty} \mathbb{P}\left(X > k\right) u^k.$$

Exercice 7. Dans tout l'exercice, X est une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$ et suivant la loi de Poisson de paramètre $\lambda > 0$.

- **1. a)** Montrer que $\mathbb{P}(|X \lambda| \ge \lambda) \le \frac{1}{\lambda}$.
 - **b)** En déduire l'inégalité $\mathbb{P}(X \geqslant 2\lambda) \leqslant \frac{1}{\lambda}$.
- **2.** On considère dans toute cette question une variable aléatoire discrète Z définie sur (Ω, \mathcal{A}, P) , d'espérance nulle et de variance σ^2 .
- a) Montrer que pour tout a > 0 et pour tout $x \ge 0$, $\mathbb{P}(Z \ge a) \le \mathbb{P}((Z + x)^2) \ge (a + x)^2$.
 - **b)** Montrer que : $\forall a > 0, \forall x \ge 0, \mathbb{P}(Z \ge a) \le \frac{\sigma^2 + x^2}{(a+x)^2}$.
 - c) Montrer que : $\forall a > 0, \mathbb{P}(Z \ge a) \le \frac{\sigma^2}{\sigma^2 + a^2}$.
 - **d)** En déduire que $\mathbb{P}(X \geqslant 2\lambda) \leqslant \frac{1}{\lambda+1}$.
- **3.** Pour tout réel t, on pose $G_X(t) = \sum_{k=0}^{+\infty} P(X=k)t^k$.
 - a) Pour tout réel t, justifier l'existence de $G_X(t)$ et calculer sa valeur.
 - **b)** Montrer que : $\forall t \ge 1, \forall a > 0, \mathbb{P}(X \ge a) \le \frac{G_X(t)}{t^a}$.
 - c) En déduire que $\mathbb{P}(X \geqslant 2\lambda) \leqslant (\frac{e}{4})^{\lambda}$.

Exercice 8. (Distance en variation totale, \heartsuit) [Centrale] Soit \mathscr{E} l'espace des suites réelles $(p_n)_{n\in\mathbb{N}}$ telles que la série $\sum |p_n|$ converge, muni de la norme $||p|| = \sum_{n=0}^{+\infty} |p_n|$. Soit \mathscr{P} le sous-ensemble de \mathscr{E} formé des suites réelles positives (p_n) telles que ||p|| = 1.

1. Montrer que \mathscr{P} est borné et convexe. On montrera que pour tout $(p,q) \in \mathscr{P}^2$ et $\lambda \in [0,1]$, $\lambda p + (1-\lambda)q \in \mathscr{P}$.

PSI Exercices VII

2. Pour $P,Q \in \mathscr{P}$, on pose $d(P,Q) = \sup_{A \subset \mathbb{N}} \left| \sum_{n \in A} p_n - \sum_{n \in A} q_n \right|$. Montrer que $d(P,Q) \in [0,1]$.

- **3.** Soit $(p,q) \in [0,1]^2$, $P = (1-p,p,0,0,\ldots)$ et $Q = (1-q,q,0,0,\ldots)$. Déterminer d(P,Q)
- **4.** Soient $n \in \mathbb{N}$ et $\lambda \in \mathbb{R}_+$. Montrer l'inégalité $\sum_{k=n+1}^{+\infty} \frac{\lambda^k}{k!} \leqslant e^{\lambda} \frac{\lambda^{n+1}}{(n+1)!}$. **5.** Soient X_{λ} et X_{μ} deux variables aléatoires suivant une loi de Poisson
- de paramètres respectifs λ et μ . Soit $P_{\lambda}=(\mathbb{P}(X_{\lambda}=n))_{n\in\mathbb{N}}$ et $P_{\mu}=$ $(\mathbb{P}(X_{\mu}=n))_{n\in\mathbb{N}}$. Soit $n\in\mathbb{N}^*$. Montrer l'inégalité

$$d(P_{\lambda}, P_{\mu}) \leqslant \max_{A \subset \llbracket 0, n \rrbracket} \left| \sum_{k \in A} \mathbb{P}\left(X_{\lambda} = k\right) - \sum_{k \in A} \mathbb{P}\left(X_{\mu} = k\right) \right| + \frac{\lambda^{n+1}}{(n+1)!} + \frac{\mu^{n+1}}{(n+1)!}.$$

Exercice 9. Soit F la fonction de répartition d'une variable aléatoire discrète réelle. On suppose qu'il existe $\lambda \in \mathbb{R}_{+}^{*} \setminus \{1\}$ tel que pour tout x réel, $F(\lambda x) = F(x)$. Déterminer la loi de X?

III. Convergences

Exercice 10. Pour tout $n \in \mathbb{N}$, on note D_n le diamètre d'un tronc d'arbre à la fin de l'année numéro n. On considère une suite $(X_i)_{i\geq 1}$ de variables aléatoires discrètes indépendantes et de même loi, à valeurs dans [0, 1]. On suppose que sa croissance suit le modèle décrit ci-dessous :

- * le diamètre initial D_0 est tel que $D_0 > 0$:
- * pour tout $n \in \mathbb{N}$, $D_{n+1} = (1 + X_{n+1})D_n$.

Pour tout $n \in \mathbb{N}^*$, on pose $Q_n = \left(\frac{D_n}{D_0}\right)^{\frac{1}{n}}$ et $m = \mathbb{E}\left[\ln(1+X_1)\right]$.

- 1. Soit $n \in \mathbb{N}^*$.
 - a) Calculer $\mathbb{E}[Q_n]$ en fonction de $\mathbb{E}[(1+X_1)^{1/n}]$.
- **b)** Montrer qu'il existe C > 0 telle que pour tout $y \in [0,1], 0 \le$ $e^{y} - 1 - y \leq Cy^{2}$.
 - c) En déduire que $\lim_{n\to +\infty} \mathbb{E}[Q_n] = e^m$.

- **2. a)** Montrer qu'il existe L > 0 tel que pour tout $(x,y) \in [0,1]^2$, $|e^x - e^y| \le L|x - y|$.
- **b)** Soit $\varepsilon > 0$. Montrer qu'il existe M > 0 tel que pour tout $n \in \mathbb{N}^*$, $\mathbb{P}(|Q_n - e^m| \geqslant \varepsilon) \leqslant \frac{M}{n}$.
 - **c**) En déduire que, pour tout $\varepsilon > 0$, $\lim_{n \to +\infty} \mathbb{P}(|Q_n e^m| \ge \varepsilon) = 0$.

Exercice 11. [CCP] Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes. On suppose que X_i suit une loi de Bernoulli de paramètre p_i , et que $\frac{1}{n}\sum_{i=1}^{n}p_i \rightarrow p$. Montrer que, pour tout $\varepsilon > 0$, $\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right|\geqslant\varepsilon\right)\to0.$

IV. Lois conjointes

Exercice 12. [CCP] Soient X et Y deux variables aléatoires indépendantes qui suivent une même loi géométrique de paramètre $p \in]0,1[$. On définit Z = X/Y.

- **1.** Justifier que $Z(\Omega) = \mathbb{O}^*$.
- **2.** Soit $r \in \mathbb{Q}_+^*$ d'écriture irréductible r = a/b. Montrer que

$$\begin{split} \mathbb{P}\left(Z=r\right) &= \sum_{k=1}^{+\infty} \mathbb{P}\left(X=ka, Y=kb\right). \\ \textbf{3. Calculer l'espérance de } Z. \end{split}$$

- **4.** Montrer que $\mathbb{E}[Z] > 1$.

Exercice 13. [Centrale] Soit $(X_{i,j})_{(1,j)\in [\![1,n]\!]^2}$ une suite de variables aléatoires mutuellement indépendantes de même loi de Bernoulli de paramètre p.

- **1.** Soit $Z = (X_{i,j}) \in \mathcal{M}_n(\mathbb{R})$. Quelle loi suit $\mathrm{Tr}(Z)$. Quelle sont son espérance et sa variance?
- **2.** Cas n=2. Déterminer $\mathbb{P}(Z\in \mathcal{G}\ell_2(\mathbb{R}))$.
- **3.** Soit $P = \begin{pmatrix} 0 & 1 & 0_{2,n-2} \\ 1 & 0 & \\ 0_{n-2,2} & I_{n-2} \end{pmatrix}$ et $A \in \mathcal{M}_n(\mathbb{R})$. Calculer AP et PA.

Exercices VII PSI

4. Soit $\Phi: B \mapsto BP$ et f sa restriction à E, où E est l'ensemble des valeurs possibles de Z. Montrer que f est bijective et en déduire l'espérance $\det(Z)$.

Exercice 14. (Identité de WALD) [ENSAM] Soit T une variable aléatoire telle que $T(\Omega) = [1, k]$. On considère k+1 variables aléatoires $(X_i)_{0 \le i \le k}$ suivant une même loi à valeurs dans N. On suppose que toutes ces variables aléatoires sont mutuellement indépendantes. On définit enfin une variable aléatoire Y par $Y(\omega) = \sum_{i=0}^{\infty} X_i(\omega)$. **1.** Montrer que si les X_i admettent une espérance, alors Y aussi.

- 2. Donner sous ces hypothèses une expression de $\mathbb{E}[Y]$ en fonction de $\mathbb{E}[X_i]$ et de $\mathbb{E}[T]$.

Exercice 15. Soient n un entier naturel supérieur ou égal à 2 et $(U_p)_{p\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes et de même loi uniforme sur [1,n]. Pour tout $m \in \mathbb{N}^*$ et tout $i \in [1,n]$, on pose $X_{i,m} = |\{k \in [1,m] ; U_k = i\}|.$

- 1. Déterminer la loi de $X_{i,m}$.
- 2. Soit N une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$ indépendante de la famille $(U_p)_{p \in \mathbb{N}^*}$. Pour tout $i \in [1, n]$, on pose $Y_i = X_{i,N}$. Déterminer la loi de Y_i .

Exercice 16. [CCP] Soient $a, n \in \mathbb{N}^*$. On considère N = an clients qui s'approvisionnent chez n fournisseurs. Chaque client choisit un fournisseur au hasard. Pour $i \in [1, n]$, on note X_i le nombre de clients du fournisseur i et Y le nombre de fournisseurs n'avant aucun client.

- **1.** Donner la loi, l'espérance et la variance de X_i .
- **2.** Que vaut $X_1 + \cdots + X_n$? En déduire $\mathbb{E}[X_i X_i]$ et $\mathscr{C}ov(X_i, X_i)$ pour $i \neq j$. Donner l'expression du coefficient de corrélation linéaire de X_i et X_i
- 3. Soit β_i la variable aléatoire indicatrice de l'événement : le fournisseur i n'a pas de client. Exprimer Y en fonction des β_i et déterminer $\mathbb{E}[Y]$.
- **4.** Calculer, pour tout $i \neq j$, le réel $\mathscr{C}ov(\beta_i, \beta_j)$.
- 5. Déterminer la variance de Y.

Exercice 17. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de même loi de Bernoulli de paramètre $p \in]0,1[$. Pour tout $n \ge 2$, on note $\mathscr{P}_n(2)$ l'ensemble des parties à deux éléments de $[\![1,n]\!]$ et si $I = \{i, j\}$, on pose $Y_I = X_i X_j$. Pour tout $n \ge 2$, on pose $S_n = \sum_{k=1}^n X_k$ et $V_n = \sum Y_I$.

- **1. a)** Quelle est la loi de S_n ?
 - **b)** Déterminer la limite de la suite de terme général $\mathbb{P}\left(\left|\frac{S_n}{n}-p\right|\geqslant\varepsilon\right)$.
 - c) Calculer l'espérance de la variable aléatoire S_nV_n .
 - **d)** Montrer que $S_n^2 = S_n + 2V_n$ et en déduire l'espérance de S_n^3 .
- **2. a)** Soit $I \in \mathscr{P}_n(2)$. Déterminer la loi de Y_I .
 - **b)** Soit $(I,J) \in \mathscr{P}_n(2)^2$. Déterminer, la covariance de Y_I et Y_J .
- c) On pose $W_n = n^{-2}V_n$. Déterminer la limite de la suite de terme général $\mathbb{P}\left(\left|\frac{V_n}{n^2} - \frac{p^2}{2}\right| \geqslant \varepsilon\right)$.

V. Avec Python

Exercice 18. [Centrale 2] Soient $p \in]0,1[$ et $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes et de même loi telle que

$$\forall i \in [1, n], \mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = 2) = p$$

Pour tout *n* entier naturel, on pose $S_n = \sum_{i=1}^n X_i$ et $Y_k = \inf \{ n \in \mathbb{N}^* : S_n \geqslant k \}.$

- 1. Justifier l'existence de Y_k . Écrire une fonction Y(p,k) prenant en argument p et k et permettant de simuler la variable aléatoire Y_k .
- 2. En utilisant le programme précédent, écrire une fonction m(p,k) permettant de calculer une valeur approchée m_k de $\mathbb{E}[Y_k]$. Tracer la courbe (k, m_k) pour $1 \le k \le 100$ et $p \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$.
- **3.** Montrer que pour tout $n \ge 2$ et $k \ge 3$,

$$\mathbb{P}(Y_k = n) = p\mathbb{P}(Y_{k-1} = n - 1) + (1 - p)\mathbb{P}(Y_{k-1} = n - 1)$$

Exercices VII PSI

4. En déduire que

$$\mathbb{E}[Y_k] = p\mathbb{E}[Y_{k-1}] + (1-p)\mathbb{E}[Y_{k-2}] + 1$$

5. Prouver l'existence d'une constante C_p telle que

$$\mathbb{E}\left[Y_k\right] \sim_{p \to +\infty} C_p k$$

Mathématiciens

Wald Abraham (31 oct. 1902 à Kolozsvàr-13 déc. 1950 à Travancore).