Bioinformatika Filogenetska stabla

Prof. G. Pavlović-Lažetić, Matematički fakultet, Beogradski univerzitet, šk.2013/2014. g.

gordana@matf.bg.ac.rs

Stablo života

- Sličnost molekularnih mehanizama u organizmima sugeriše postojanje zajedničkog pretka svih živih bića na Zemlji
- Povezanost bilo kog skupa organizama naziva se filogenijom
- Ova povezanost se prikazuje filogenetskim stablom
- Zadatak filogenetike je da izvede to stablo iz opažanja nad postojećim organizmima
- Morfološke karakteristike tradicionalno se koriste za izvođenje filogenije
- Ako imamo skup sekvenci iz različitih vrsta, možemo da ih iskoristimo za izvođenje verovatne filogenije tih vrsta
- Pretpostavka je da su sekvence proistekle iz zajedničkog predačkog gena zajedničke predačke vrste

Filogenetsko izvođenje: zadatak

 Kada su dati podaci koji karakterišu vrste / gene

 Izvesti filogenetsko stablo koje ispravno karakteriše evoluciono poreklo među tim vrstama / genima

Stablo u kontekstu filogenetike

U teoriji grafova:

- Neusmeren slučaj: graf bez ciklusa
- Usmeren slučaj: pripadni neusmereni graf je stablo
- Ulazni red čvora ≤ 1
- Stablo može da bude sa korenom ("koreno") ili bez njega ("nekoreno")

Osnovi filogenetskog stabla

- Listovi predstavljaju objekte (gene, vrste, individue / sojeve)
 - Termin takson (taxon / taxa) označava vrstu i šire klasifikacije organizama
- Unutrašnji čvorovi su hipotetički preci
- U stablu sa korenom, putanja od korena do čvora predstavlja evolucionu putanju
 - Koren predstavlja zajedničkog pretka
- Stablo bez korena predstavlja odnose među objektima, ali ne i usmerene evolucione putanje

Motivacija

- Zašto konstruisati stabla
 - Da bi se razumeli evolucioni odnosi vrsta
 - Da bi se razumelo kako su različite funkcije evoluirale
 - Da bi se identifikovalo šta je najočuvanije / najvažnije u nekoj klasi sekvenci

Primer stabla gena: globini (vrsta proteina)

Primer stabla vrsta: babuni

Image from Southwest National Primate Research Center

Broj mogućih stabala

- Razmatraju se samo binarna stabla, tj. u svakom čvoru grananja susreću se tri grane
- Pravo filogenetsko stablo ima koren, ili zajednički predak svih sekvenci
- U korenom stablu sa n listova ima 2n-1 čvorova (n listova + n-1 unutrašnjih čvorova) i 2n-2 grane (bez grane iz korena)
- Oznaka 2n-1 rezervisana je za koreni čvor
- Nekoreno stablo sa n listova ima 2n-2 čvora i 2n-3 grane; dodavanjem korena na bilo koju granu jednog nekorenog stabla dobije se koreno stablo; zato za jedno nekoreno stablo postoji 2n-3 korenih stabala
- Korenih stabala sa n listova ima 2n-3 puta više nego nekorenih
- Koliko ima nekorenih stabala sa n listova?
- Umesto korena grana: ima 3*5*...*(2n-5)=(2n-5)!! nekorenih stabala sa n listova (sekvenci) (i (2n-3)!! korenih stabala)

Broj mogućih stabala

# taxa (n)	# unrooted trees	# rooted trees
4	3	15
5	15	105
6	105	945
8	10,395	135,135
10	2,027,025	34,459,425

Koreno vs. nekoreno stablo

Podaci za izgradnju stabla

- Stabla mogu da se konstruišu iz raznih tipova podataka
 - Zasnovani-na-rastojanju: mere udaljenosti između vrsta / gena
 - Zasnovani na svojstvima: morfološka svojstva (npr. broj nogu)
 - Redosled-gena: linearni redosled ortologih (specijacija) gena u datim genomima

Pristupi filogenetskom stablu

- Tri opšta tipa metoda
 - Rastojanje: naći stablo koje opravdava ocenjena evoluciona udaljenja
 - Parsimonija: naći stablo koje zahteva najmanji broj promena da bi objasnilo podatke
 - Najveća verovatnoća: naći stablo koje maksimizuje verovatnoću podataka

Pristupi zasnovani na rastojanju

- Neka je data matrica M_{nxn} gde je M_{ij} rastojanje između taksona i i j
- Izgraditi težinsko stablo tako da rastojanja između listova i i j odgovaraju M_{ij}

Rastojanja

- Obično se dobiju iz poravnanja sekvenci
- f_{ij} = #neslaganja/(#slaganja + #neslaganja)
 u poravnanju sekvenci i i j
- $dist(i,j) = f_{ij}$
- Svojstva metrike rastojanja

```
\begin{aligned} \operatorname{dist}(x_i, x_j) &\geq 0 \\ \operatorname{dist}(x_i, x_i) &= 0 \\ \operatorname{dist}(x_i, x_j) &= \operatorname{dist}(x_j, x_i) \\ \operatorname{dist}(x_i, x_j) &\leq \operatorname{dist}(x_i, x_k) + \operatorname{dist}(x_k, x_j) \end{aligned}
```

Ultrametrični podaci ("ultrametric data")

 Pretpostavka o molekulskom satu: divergencija sekvenci se događa po istoj stopi u svim tačkama stabla

Pretpostavka nije sasvim tačna (drugi faktori utiču)

 Ali ako je tačna, za podatke se kaže da su ultrametrični

Ultrametrični podaci

 Za ultrametrične podatke važi: za svaku trojku sekvenci i,j,k, rastojanja su ili sva jednaka ili su dva jednaka a treće manje

UPGMA metod ("Unweighted Pair Group Method using Arithmetic Averages")

- Procedura klasterovanja (Sokal & Michener 1958)
- Ako su dati ultrametrični podaci, UPGMA će rekonstruisati stablo T koje je konzistentno sa podacima
- Osnovna ideja:
 - Iterativno odabirati dva taksona / klastera i spajati ih
 - Kreirati novi čvor u stablu za spojene klastere
 - Rastojanje d_{ij} između klastera C_i i C_j taksona definiše se kao

$$d_{ij} = \frac{1}{|C_i| |C_j|} \sum_{p \in C_i, q \in C_j} d_{pq}$$

(prosečno rastojanje između para taksona iz svakog klastera)

UPGMA algoritam

- Dodeliti svaki takson sopstvenom klasteru
- Definisati jedan list za svaki takson; postaviti ga na visinu 0
- Sve dok ima više od dva klastera
 - Odrediti dva klastera i,j sa najmanjim d_{ij}
 - − Definisati novi klaster $C_k = C_i \cup C_j$
 - Definisati čvor k sa potomcima i i j; postaviti ga na visinu $d_{ij}/2$
 - Zameniti klastere i i j klasterom k
 - Izračunati rastojanje između k i drugih klastera
- Spojiti poslednja dva klastera, i i j, korenom na visini $d_{ij}/2$

UPGMA

• Ako je dat novi klaster C_k , dobijen spajanjem C_i i C_j $(C_k\!=\!C_i\cup C_j),$

možemo da izračunamo rastojanje između C_k i bilo kog drugog klastera C_l prema sledećoj formuli (proveriti za vežbu – koristiti definiciju d_{ii}):

$$d_{kl} = \frac{d_{il} |C_i| + d_{jl} |C_j|}{|C_i| + |C_j|}$$

UPGMA primer

UPGMA primer (nast.)

after three merges

final state

Spajanje suseda (Neighbor Joining)

- Za razliku od UPGMA
 - Ne polazi od pretpostavke molekulskog sata
 - Proizvodi nekorena stabla
- Podrazumeva aditivnost: rastojanje između para listova je zbir dužina grana koje ih povezuju
- Kao i UPGMA, konstruiše stablo iterativnim spajanjem podstabala
- Dve ključne razlike
 - Kako se bira par podstabala koja će se spajati u svakoj iteraciji
 - Kako se ažuriraju rastojanja posle svakog spajanja

Odabir parova čvorova za spajanje u NJ

- Na svakom koraku, odabiramo par čvorova za spajanje; da li da odaberemo par sa minimalnim d_{ii}?
- Ako stablo izgleda kao na slici i mi odaberemo prvi par čvorova za spajanje:

 Pogrešna odluka da se spoje A i B, zbog dugačke grane lista C: treba razmotriti rastojanje parova drugih listova

Odabir parova čvorova za spajanje u NJ

 Da bi se "kompenzovale" dugačke grane, bira se par za spajanje na bazi D_{ij}

[Saitou & Nei '87; Studier & Keppler '88]

$$D_{ij} = d_{ij} - (r_i + r_j)$$

$$r_i = \frac{1}{|L|-2} \sum_{k \in L} d_{ik}$$

 L je skup listova; r_i je srednje udaljenje lista r_i od svih listova stabla različitih od *i, j*; slično r_i

Ažuriranje rastojanja u NJ

 Kada je dat novi unutrašnji čvor k, roditelj listova - suseda i i j, rastojanje čvora k od nekog drugog lista m dato je sa (zbog aditivnosti; v. sliku dole):

Ažuriranje rastojanja u NJ

 Može da se sračuna rastojanje lista i od roditeljskog čvora k na isti način (preko nekog lista m):

Ažuriranje rastojanja u NJ

 Uopštenje: razmatrajmo rastojanja lista i od roditeljskog čvora k preko svih drugih listova

$$d_{ik} = \frac{1}{2}(d_{ij} + r_i - r_j)$$

• gde je $r_i = \frac{1}{|L|-2} \sum_{m \in L} d_{im}$

a L je skup listova

Neighbor Joining algoritam

- Definisati stablo T kao skup listova
- L=T
- Sve dok ima više od dva podstabla u T
 - Odabrati par i,j u L sa najmanjim D_{ii}
 - Dodati u T novi čvor k koji spaja i i j
 - Odrediti nova rastojanja

$$d_{ik} = \frac{1}{2} \left(d_{ij} + r_i - r_j \right)$$

$$d_{jk} = d_{ij} - d_{ik}$$

$$d_{km} = \frac{1}{2} \left(d_{im} + d_{jm} - d_{ij} \right) \text{ for all other } m \text{ in } L$$

- Ukloniti i i j iz L i uneti k (tretirati ga kao list)
- Spojiti dva preostala podstabla, i i j granom dužine d_{ii}

Provera aditivnosti

 Za svaki skup od četiri lista, i,j,k i l, dva od rastojanja d_{ij}+d_{kl}, d_{ik}+d_{jl} i d_{il}+d_{jk} moraju da budu jednaka i ne manja od trećeg

Dodavanje korena stablu

- Nalaženje korena u nekorenom stablu nekad se izvodi korišćenjem outgroup ("stranca")
- Outgroup: vrsta za koju se zna da je udaljenija od preostalih vrsta nego što su one među sobom
- Grana koja spaja outgroup sa ostatkom stabla je najbolji kandidat za poziciju korena

Zaključak o metodama zasnovanim na rastojanju

- Ako su dati podaci o rastojanjima ultrametrični, UPGMA će identifikovati korektno, koreno stablo
- Ako su podaci aditivni, NJ će identifikovati korektno, nekoreno stablo
- Inače, metode mogu da ne rekonstruišu korektno stablo, ali mogu još uvek da se koriste kao razumne heuristike

Pristupi zasnovani na parsimoniji

- Ulaz: podaci zasnovani na svojstvima
- Pronaći stablo koje objašnjava podatke minimalnim brojem promena (supstitucija)
- Fokus je na nalaženju korektne topologije stabla, ne na proceni dužine grana

Primer parsimonije

 Razna stabla mogu da objasne filogeniju sekvenci AAG, AAA, GGA, AGA, na primer:

 Parsimonija preferira prvo stablo zato što ono zahteva manje supstitucija

Pristupi bazirani na parsimoniji

- Obično uključuju dve zasebne komponente
 - 1. proceduru za nalaženje minimalnog broja promena potrebnih da se objasne podaci (za datu topologiju stabla)
 - 2. pretragu kroz prostor stabala

Nalaženje minimalnog broja promena za *dato* stablo

- Osnovne pretpostavke
 - Svako stanje (npr. nukleotid, amino kiselina) može da pređe u bilo koje drugo stanje
 - "cene" ovih promena su uniformne
 - Pretpostavka je da su pozicije sekvence nezavisne
 - Može da se računa minimalni broj promena za svaku poziciju sekvence nezavisno

Nalaženje minimalnog broja promena za dato stablo

- Metod grube sile
 - Za svaku moguću dodelu stanja unutrašnjim čvorovima
 - Izračunati broj promena za tu dodelu
 - Saopštiti nađeni minimalni broj promena
 - Vreme izvršavanja: O(Nk^N)
 - K = broj mogućih stanja svojstva (npr. 4 za DNK)
 - N = broj listova

Fičov algoritam

• Fitch, 1971:

- 1. obići stablo od listova do korena i odrediti skup mogućih stanja (npr. nukleotida) za svaki unutrašnji čvor
- 2. obići stablo od korena do listova i izabrati jedinstvena stanja za unutrašnje čvorove

Fičov algoritam: korak 1 Moguća stanja za unutrašnje čvorove

- Obići stablo u postfiksnom poretku (post-order) od listova ka korenu
- Odrediti moguća stanja R_i unutrašnjeg čvora *i* sa potomcima *j* i *k*:

$$R_i = \begin{cases} R_j \cup R_k, & \text{if } R_j \cap R_k = \emptyset \\ R_j \cap R_k, & \text{otherwise} \end{cases}$$

- Ovaj korak izračunava broj potrebnih promena
- # promena = # operacija unije

Fičov algoritam: korak 1 Primer

Fičov algoritam: korak 2 Izabrati stanja za unutrašnje čvorove

- Obići stablo u prefiksnom poretku (pre-order) od korena do listova
- Izabrati stanje r_j unutrašnjeg čvora j sa prethodnikom i

$$r_{j} = \begin{cases} r_{i}, & \text{if } r_{i} \in \mathbb{R}_{j} \\ \text{arbitrary state} \in R_{j}, & \text{otherwise} \end{cases}$$

Fičov algoritam: korak 2 Primer

Posebna tehnika: težinska parsimonija

- Stankoff & Cedergren, 1983
- Umesto pretpostavke da su sve promene stanja podjednako verovatne, koristiti različite cene S(a,b) za različite promene
- Svodi se na tradicionalnu (ne-težinsku)
 parsimoniju za S(a,a)=0 za svako a, i S(a,b)=1
 za a≠b.

Istraživanje prostora stabala

- Razmatrali smo kako da nađemo minimalni broj promena za datu topologiju stabla
- Potrebna je i procedura pretraživanja prostora topologija stabala
 - Kako se krećemo od jednog stabla do drugog?
 - Kako obezbeđujemo puno istraživanje prostora stabala?

Tačna metoda: grananje i odsecanje

- Dovoljno je razmatrati nekorena stabla (bar jedna grana pod korenom nema supstituciju u optimalnom stablu)
- Svako parcijalno stablo predstavlja skup kompletnih stabala
- Skor parsimonije parcijalnog stabla obezbeđuje donju granicu najboljeg skora u skupu

 Obustavlja se dalja nadgradnja parcijalnog stabla čiji je skor veći od trenutno najmanjeg skora kompletno izgrađenog stabla

Implementiranje grananja i odsecanja - ilustracija

Implementiranje grananja i odsecanja

- Za n sekvenci, održavati niz brojača [i₃][i₅][i₇]...[i_{2n-5}], gde i_k uzima vrednosti 0..k
- Kompletno stablo je predstavljeno dodelom ne/nula vrednosti svim i_k
- i_k pokazuje, za parcijalno stablo sa k grana, na koju granu dodati grananje za sledeću sekvencu
- i_k=0 indikuje parcijalno stablo

Implementiranje grananja i odsecanja

- Vrteti brojače kroz njihove dopuštene brojeve kao odometre
 - Krajnji desni brojač se kreće najbrže
 - Kadgod je jedan brojač 0, svi brojači desno od njega moraju da budu 0
 - Proveriti cenu (parcijalnog) stabla na svakom otkucaju odometra
 - Odometar treba da preskoči kadgod se dogodi odsecanje

$$[i_3][i_5][i_7]...[i_{2n-5}]$$

Implementiranje grananja i odsecanja

Komentar o grananju i odsecanju

- To je kompletan metod pretraživanja
 - Garantuje se nalaženje optimalnog rešenja
 - Može da bude mnogo efikasnije od iscrpne pretrage
 - U najgorem slučaju, nije ni bolji

Komentar o izvođenju stabla

- Prostor pretraživanja može da bude veliki, ali
 - Optimalno stablo u nekim slučajevima može da se nađe efikasno
 - Heurističke metode mogu da se primene
 - Teško je oceniti izvedeno stablo: puna istina obično nije poznata
 - Neke novije metode koriste podatke zasnovane na linearnom uređenju ortologih gena duž hromozoma
 - Filogeneza za bakterije i viruse nije tako pravolinijska zbog bočnog transfera genetskog materijala