Notes for Algebraic Structures

Spring 2016

Transcribed by Jacob Van Buren (jvanbure@andrew.cmu.edu)

Notes for Algebraic Structures, taught Spring 2016 at Carnegie Mellon University, by Professor Clinton Conley.

Administrativia

Instructor. Clinton Conley (clintonc@andrew.cmu.edu), WEH 7121
http://www.math.cmu.edu/~clintonc/

Grading. 20% HW, $20\% \times 2$ midterms, 40% Final

Homework. Wednesday-Wednesday. Graded for completeness, one starred problem for which no collaboration of any type is allowed. Most homework out of textbook ("D&F").

Contents

Administrativia	
The Integers Lecture 1 (2016–01–11)	
Index	

The Integers

Lecture 1 (2016–01–11)

NOTATION. $\mathbb{N} := \{1, 2, 3, \ldots\}$ in this class.

Properties: Order, other things. Least element in a set S: $x \in S$ s.t. $\forall y \in S, x \leq y$ Addition $(\mathbb{Z}, +)$:

- Associativity (x + y) + z = x + (y + z)
- $\overline{\text{Identity } x + 0} = 0 + x = 0$
- $\overline{\text{Inversion}} \ x + (-x) = (-x) + x = 0$
- Commutativity x + y = y + x

Multiplication $(\mathbb{Z}, +, \cdot)$:

- Associative
- Distributive
- Identity ("1")

Integer division: Assume x an integer and $y \in \mathbb{Z}^+$ then $\exists ! d \in \mathbb{Z}, \exists ! r \in \mathbb{Z} : 0 \leq r < y, x = d \cdot y + r$

Definition 1. y|x "y divides x" iff $\exists d \in \mathbb{Z} : x = d \cdot y$.

E.g. 3|9,4/7.

DEFINITION 2. d is a gcd of x and y if

- $\bullet d|x,d|y$
- If c|x and c|y then c|d

\mathbf{Index}

Associative, 1 Associativity, 1 Commutativity, 1 Distributive, 1 Identity, 1 Integer Division, 1 Inversion, 1 Gcd, 1