

# FOUNDATION FOR ORGANISATIONAL RESEARCH AND EDUCATION NEW DELHI

Academic Session 2023-2025
Project-1
Vehicle/Car Sales Trends and Pricing Insights
Machine Learning for Managers

# FMG 32 Section A

**Submitted to:** 

**Submitted by:** 

**Prof. Amarnath Mitra** 

321032 – Nisha Arora

# 1. Project Objectives

- 1.1 Segmentation of Consumer Data using Unsupervised Machine Learning Clustering Algorithms like K-Means clustering
- 1.2 Number of appropriate clusters using performance matrix Silhouette score
- 1.3 To determine the segment and Characteristics of each cluster (to sell the product/service)

#### 2. Description of Data

#### 2.1. Data Source, Size, Shape

2.1.1. Data Source -

https://www.kaggle.com/datasets/syedanwarafridi/vehicle-sales-data

- 2.1.2. Data Size (in KB | MB | GB ...) **88 MB**
- 2.1.3. Data Shape | Dimension:

Number of Variables - 16

Number of Records – 558837

#### 2.2. Description of Variables

2.2.1. Index Variable(s): Car Id

- 2.2.2. Variables or Features having Categories | Categorical Variables or Features (CV)
  - 2.2.2.1. Variables or Features having Nominal Categories | Categorical Variables or Features **Nominal Type**:

make, model, trim, body, transmission, state, colour, interior, seller

- 2.2.2.2. Variables or Features having Ordinal Categories | Categorical Variables or Features **Ordinal Type:** Condition
- 2.2.3. Non-Categorical Variables or Features: vin, odometer, mmr, selling price, sale date

Car ID: Unique identifier for each car

Year: Numeric representation of manufacturing year

Make: Brand or manufacturer of the car Model: Specific model name of the car Trim: Variant or version of the model

Body: Type of body style (e.g., sedan, SUV)

Transmission: Type of transmission system (e.g., automatic, manual)

VIN: Vehicle Identification Number, unique to each car

State: State where the car is located

Condition: Condition of the car, possibly ordinal categorical data

Odometer: Numeric representation of mileage

Color: Color of the car

Interior: Color or material of the interior

Seller: Entity selling the car

MMR: Market value of the car, likely non-categorical data

Selling Price: Price at which the car is sold

Sale Date: Date and time of sale

#### 2.3. Descriptive Statistics

2.3.1. Descriptive Statistics: Categorical Variables or Features

2.3.1.1. Count | Frequency Statistics

Color

| <b> </b> ▼ count |
|------------------|
| 22203            |
| 21649            |
| 16729            |
| 16352            |
| 10163            |
| ֡                |

# Model

| Row ID | ▼ count |
|--------|---------|
| Altima | 6063    |
| F-150  | 2992    |
| Fusion | 2604    |
| Camry  | 2460    |
| Escape | 2247    |

# Make

| Row ID    | <b>I</b> ▼ count |  |  |  |  |  |  |
|-----------|------------------|--|--|--|--|--|--|
| Ford      | 20837            |  |  |  |  |  |  |
| Chevrolet | 12069            |  |  |  |  |  |  |
| Nissan    | 10809            |  |  |  |  |  |  |
| Toyota    | 8033             |  |  |  |  |  |  |
| Dodge     | 6191             |  |  |  |  |  |  |

#### Body

|         | Spec Column. |
|---------|--------------|
| Row ID  | <b> </b>     |
| Sedan   | 42596        |
| SUV     | 23537        |
| sedan   | 8328         |
| suv     | 4968         |
| Minivan | 4348         |
|         |              |

# Transmission

| Row ID    | count  |
|-----------|--------|
| Sedan     | 2      |
| automatic | 108246 |
| manual    | 3514   |
| sedan     | 5      |

# ${\bf 2.3.2.\ Descriptive\ Statistics:\ Non-Categorical\ Variables\ or\ Features}$

# 2.3.2.1. Measures of Central Tendency

| Row ID       | S Column     | D Min | D Max   | D Mean     | D Std. devi | D Variance     | D Skewness | D Kurtosis | D Overall s   | No. missi | No. NaNs | No. +∞s | No00s | D Median | Row count | t<br>Hand |
|--------------|--------------|-------|---------|------------|-------------|----------------|------------|------------|---------------|-----------|----------|---------|-------|----------|-----------|-----------|
| condition    | condition    | 1     | 49      | 30.574     | 13.314      | 177.254        | -0.83      | -0.197     | 3,417,183.716 | 0         | 0        | 0       | 0     | ?        | 111767    | 1         |
| odometer     | odometer     | 1     | 999,999 | 68,363.626 | 53,249.21   | 2,835,478,413  | 1.802      | 12.954     | 7,640,797,387 | 0         | 0        | 0       | 0     | 7        | 111767    |           |
| mmr          | mmr          | 25    | 178,000 | 13,782.935 | 9,718.146   | 94,442,361.104 | 2.026      | 11.693     | 1,540,477,346 | 0         | 0        | 0       | 0     | 7        | 111767    | 25        |
| sellingprice | sellingprice | 1     | 171,500 | 13,626.721 | 9,787.374   | 95,792,682.357 | 1.959      | 10.783     | 1,523,017,736 | 0         | 0        | 0       | 0     | ?        | 111767    | 1         |

#### 2.3.2.2. Measures of Dispersion

#### **Statistics** Q Rows: 4 | Columns: 12 50% Quantile... 75% Quantile Standard 7 # Missing val... # Unique val... Minimum Maximum 25% Quantile Name Type condition Number (dou... 0 42 49 24 34 41 13.314 53,249.21 odometer Number (dou... 0 78138 999,999 28,408 52,407 99.088 Number (dou... 0 178,000 7,100 18,350 9,718.146 sellingprice Number (dou... 0 1222 171,500 6,900 12,100 18,250 9,787.374

# Source of data-

https://www.kaggle.com/datasets/syedanwarafridi/vehicle-sales-data

- 3. Analysis of Data
- 3.1. Data Pre-Processing
  - 3.1.1. Missing Data Statistics and Treatment
    - 3.1.1.1. Missing Data Statistics: 16
    - 3.1.1.2. Missing Data Treatment: make, model, trim, body, transmission, state, colour, interior, seller, condition, vin, odometer, mmr, selling price, sale date
      - 3.1.1.1.2.1. Removal of Records with More Than 50% Missing Data
    - 3.1.1.2.1. Missing Data Statistics: Categorical Variables or Features

| Name         | # Missing values |
|--------------|------------------|
| year         | 0                |
| make         | 2141             |
| model        | 2170             |
| trim         | 2203             |
| body         | 2688             |
| transmission | 13241            |
| state        | 0                |
| color        | 163              |
| interior     | 163              |
| seller       | 0                |
|              |                  |

- 3.1.1.2.2. Missing Data Treatment: Categorical Variables or Features 10 3.1.1.2.2.1. Removal of Variables or Features with More Than 50% Missing Data: make, model, trim, body, transmission, state, colour, interior, seller, condition
  - 3.1.1.2.2.2. Imputation of Missing Data using Descriptive Statistics: Mode

#### 3.1.1.3.1. Missing Data Statistics: Non-Categorical Variables or Features

| Name         | # Missing values |
|--------------|------------------|
| vin          | 2                |
| condition    | 2342             |
| odometer     | 21               |
| mmr          | 9                |
| sellingprice | 2                |
| saledate     | 2                |

- 3.1.1.3.2. Missing Data Treatment: Non-Categorical Variables or Features 6
- 3.1.1.3.2.1. Removal of Variables or Features with More Than 50% Missing Data: vin, odometer, mmr, selling price, sale date
  - 3.1.1.3.2.2. Imputation of Missing Data using Descriptive Statistics: Mean

# **3.1.2. Numerical Encoding of Categorical Variables or Features** (Encoding Schema - Alphanumeric Order)

- In this case, category to number node will be used to encode the categorical variables.

#### Color-

- 8 black
- 9 blue
- 14 gray
- 22 silver
- 24 white

#### Model

- 30-Altima
- 91- F-150
- 90- Fusion
- 62- Camry
- 75- Escape

#### Make

- 19-Ford
- 0-Chevrolet
- 5-Nissan
- 17-Toyota
- 22-Dodge

#### **Body**

- 0- Sedan
- 1-SUV
- 28-sedan
- 44-suv
- 9-Minivan

#### **Transmission**

- 0 Sedan
- 1- Automatic
- 2 Manual
- 3 sedan

#### **3.1.3. Outlier Statistics and Treatment** (Scaling | Transformation)

#### 3.1.3.1.1. Outlier Statistics: Non-Categorical Variables or Features

| Row ID | S Outlier    | Membe  | Outlier | D Lower | D Upper |
|--------|--------------|--------|---------|---------|---------|
| Row0   | condition    | 111767 | 0       | -1.5    | 66.5    |
| Row1   | odometer     | 111767 | 2066    | -77,611 | 205,105 |
| Row2   | mmr          | 111767 | 3244    | -9,775  | 35,225  |
| Row3   | sellingprice | 111767 | 3222    | -10,125 | 35,275  |

#### 3.1.3.1.2. Outlier Treatment: Non-Categorical Variables or Features

- 3.1.3.1.2.1. Standardization
- 3.1.3.1.2.2. Normalization using Min-Max Scaler:

Min-max normalization, also known as feature scaling, is a technique used in data preprocessing to scale numerical features to a specific range, typically between 0 and 1.

The formula for min-max normalization is:

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

#### 3.1.3.1.2.3. Log Transformation

#### 3.1.4. Data Bifurcation: Training & Testing Sets

The training and testing data have been bifurcated into 70% and 30% respectively.

#### 3.2 Data Analysis

#### 3.2.1 Unsupervised Machine Learning Algorithm

K-means clustering is a popular unsupervised machine learning algorithm used for partitioning a dataset into a predefined number of non-overlapping clusters. The algorithm aims to group data points into clusters in such a way that the similarity (or distance) between data points within the same cluster is maximized, while the similarity between data points in different clusters is minimized. In this project, K-means will be the clustering algorithm used for unsupervised learning. The metrics used in k-means is Euclidean distance.

#### **K=2** (This represents the total number of clusters that will be formed are 2)

| Row ID    | D year    | D Car id ( | D make (t | D model ( | D trim (to | D body (t | D transmi | D state (t | D color (t | D interior | D seller (t | D condition | D odometer | D mmr  | D sellingp |
|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|------------|------------|-------------|-------------|------------|--------|------------|
| cluster_0 | 2,009.797 | 27,931.815 | 14.638    | 137.198   | 127.906    | 2.74      | 0.031     | 11.869     | 3.649      | 1.402      | 948.234     | -0.029      | 0.037      | -0.051 | -0.057     |
| duster_1  | 2,010.32  | 83,818.236 | 14.212    | 134.301   | 132.128    | 15.118    | 0.032     | 12.436     | 3.582      | 1.303      | 1,361.663   | 0.034       | -0.046     | 0.059  | 0.064      |

### K=3(This represents the total number of clusters that will be formed are 3)

| Row ID    | D year    | D Car id ( | D make (t | D model ( | D trim (to | D body (t | D transmi | D state (t | D color (t | D interior | D seller (t | D condition | D odometer | D mmr  | D sellingp |
|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|------------|------------|-------------|-------------|------------|--------|------------|
| cluster_0 | 2,009.555 | 18,610.21  | 14.912    | 141.186   | 130.099    | 2.7       | 0.033     | 11.769     | 3.653      | 1.433      | 926.687     | -0.055      | 0.083      | -0.086 | -0.096     |
| cluster_1 | 2,010.104 | 55,871.868 | 14.289    | 132.26    | 127.484    | 2.935     | 0.03      | 11.878     | 3.618      | 1.349      | 1,125.701   | 0.018       | -0.017     | 0.005  | 0.018      |
| cluster_2 | 2,010.517 | 93,093.027 | 14.074    | 133.79    | 132.453    | 21.12     | 0.031     | 12.809     | 3.575      | 1.275      | 1,411.948   | 0.044       | -0.079     | 0.093  | 0.088      |

#### K=4 (This represents the total number of clusters that will be formed are 4)

| Row ID    | D year    | D Car id ( | D make (t | D model ( | D trim (to | D body (t | D transmi | D state (t | D color (t | D interior | D seller (t | D condition | D odometer | D mmr  | D sellingp |
|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|------------|------------|-------------|-------------|------------|--------|------------|
| cluster_0 | 2,009.458 | 14,069.339 | 15.088    | 142.801   | 131.521    | 2.691     | 0.032     | 11.613     | 3.638      | 1.451      | 856.947     | -0.067      | 0.1        | -0.104 | -0.117     |
| cluster_1 | 2,010.097 | 42,135.444 | 14.19     | 131.809   | 124.457    | 2.791     | 0.03      | 12.122     | 3.66       | 1.357      | 1,046.45    | 0.004       | -0.019     | -0.004 | -0.002     |
| cluster_2 | 2,010.135 | 70,014.327 | 14.307    | 134.287   | 130.679    | 3.032     | 0.033     | 11.972     | 3.6        | 1.33       | 1,257.999   | 0.019       | -0.018     | 0.024  | 0.038      |
| cluster_3 | 2,010.55  | 97,796.725 | 14.107    | 134.024   | 133.402    | 27.266    | 0.03      | 12.908     | 3.563      | 1.27       | 1,462.085   | 0.053       | -0.083     | 0.101  | 0.096      |

# K=5 (This represents the total number of clusters that will be formed are 5)

| Row ID    | D year    | D Car id (  | D make (t | D model ( | D trim (to | D body (t | D transmi | D state (t | D color (t | D interior | D seller (t | D condition | D odometer | D mmr | D sellingp |
|-----------|-----------|-------------|-----------|-----------|------------|-----------|-----------|------------|------------|------------|-------------|-------------|------------|-------|------------|
| duster_0  | 2,009.393 | 11,216.451  | 15.092    | 142.808   | 130.496    | 2.678     | 0.032     | 11.601     | 3.619      | 1.467      | 807.013     | -0.075      | 0.11       | -0.12 | -0.136     |
| cluster_1 | 2,010.059 | 33,528.515  | 14.324    | 134.162   | 126.374    | 2.709     | 0.032     | 11.974     | 3.704      | 1.352      | 1,054.256   | -0.001      | -0.02      | 0.005 | 0.003      |
| duster_2  | 2,009.961 | 55,943.041  | 14.494    | 134.536   | 128.512    | 3.011     | 0.03      | 11.879     | 3.596      | 1.368      | 1,153.602   | 0.003       | 0.025      | -0.03 | -0.016     |
| cluster_3 | 2,010.507 | 78,397.787  | 14.015    | 131.271   | 130.314    | 3.13      | 0.031     | 12.243     | 3.602      | 1.283      | 1,204.597   | 0.04        | -0.094     | 0.098 | 0.097      |
| cluster_4 | 2,010.377 | 100,637.457 | 14.196    | 135.956   | 134.408    | 33.356    | 0.032     | 13.075     | 3.555      | 1.29       | 1,559.081   | 0.045       | -0.044     | 0.068 | 0.07       |

# 3.2.2 Clustering Model Performance Evaluation

The silhouette score is a metric used to evaluate the quality of clustering in unsupervised learning. It measures how similar an object is to its own cluster (cohesion) compared to other clusters (separation). A silhouette score ranges from -1 to 1, where a higher score indicates better clustering:

- Silhouette Score of 1 indicates that clusters are well-separated.
- Silhouette Score of 0 indicates overlapping clusters.
- Silhouette Score close to -1 indicates that samples have been assigned to the wrong clusters.

#### K=2

|           | •         |
|-----------|-----------|
| Row ID    | D Mean Si |
| cluster_0 | 0.23      |
| cluster_1 | -0.208    |
| Overall   | 0.011     |
|           |           |

#### K=3

| Row ID    | D Mean Si |
|-----------|-----------|
| cluster_0 | 0.622     |
| cluster_1 | 0.509     |
| cluster_2 | 0.614     |
| Overall   | 0.582     |
|           |           |

#### K=4

| Row ID    | D Mean Si |
|-----------|-----------|
| cluster_0 | 0.62      |
| cluster_1 | 0.502     |
| cluster_2 | 0.498     |
| cluster_3 | 0.604     |
| Overall   | 0.556     |
|           |           |

K=5

|           | _         |
|-----------|-----------|
| Row ID    | D Mean Si |
| cluster_0 | 0.617     |
| cluster_1 | 0.497     |
| cluster_2 | 0.495     |
| cluster_3 | 0.491     |
| cluster_4 | 0.595     |
| Overall   | 0.539     |
|           |           |

Since the overall value of Mean Silhouette Coefficient of K=3 is maximum and closest to 1, so this will be choice for us. We will go with total of three number of clusters.

Now for K=3, Clusters 0,1 and 2 have various different characteristics.

# Cluster 0

| Name of<br>Variable | Characteristics           |  |  |  |  |
|---------------------|---------------------------|--|--|--|--|
| year                | 2012                      |  |  |  |  |
| make                | Ford                      |  |  |  |  |
| model               | Altima                    |  |  |  |  |
| trim                | Base                      |  |  |  |  |
| body                | Sedan                     |  |  |  |  |
| transmission        | automatic                 |  |  |  |  |
| state               | fl                        |  |  |  |  |
| condition           | 19                        |  |  |  |  |
| color               | black                     |  |  |  |  |
| interior            | black                     |  |  |  |  |
| seller              | ford motor credit company |  |  |  |  |

#### **Cluster 1**

| Name of<br>Variable | Characteristics           |
|---------------------|---------------------------|
| year                | 2012                      |
| make                | Honda                     |
| model               | Camry                     |
| trim                | LE                        |
| body                | SUV                       |
| transmission        | automatic                 |
| state               | ca                        |
| condition           | 19                        |
| color               | black                     |
| interior            | black                     |
| seller              | ford motor credit company |

# **Cluster 2**

| Name of  |                 |
|----------|-----------------|
| Variable | Characteristics |

| year         | 2013                  |  |  |  |  |
|--------------|-----------------------|--|--|--|--|
| make         | Chevrolet             |  |  |  |  |
| model        | F-150                 |  |  |  |  |
| trim         | Base                  |  |  |  |  |
| body         | Sedan                 |  |  |  |  |
| transmission | automatic             |  |  |  |  |
| state        | fl                    |  |  |  |  |
| condition    | 21                    |  |  |  |  |
| color        | gray                  |  |  |  |  |
| interior     | black                 |  |  |  |  |
| seller       | the hertz corporation |  |  |  |  |

# 3.2.3 Cluster Analysis using Base Model as K-Means

#### 3.2.3.1 Cluster Analysis with Categorical Variables

The Kruskal-Wallis test is a non-parametric statistical test used to determine whether there are statistically significant differences between the medians of two or more independent groups. The test is appropriate when the data do not meet the assumptions required for parametric tests like ANOVA. In KNIME, Kruskal-Wallis Test is used to analyse the categorical variable. The variables that have p < 0.05, those variables will be significant in the analysis of clusters.

#### Year

| Row ID | D H-Value | D p-value | D Mean R   | D Median | D Mean R   | D Median | D Mean R   | D Median |
|--------|-----------|-----------|------------|----------|------------|----------|------------|----------|
| Row0   | 874.871   | 0.0       | 36,150.457 | 34,066.5 | 39,263.779 | 44,661   | 41,944.894 | 44,661   |

#### Make

| Row ID | D H-Value | D p-value             | D Mean R   | D Median | D Mean R   | D Median | D Mean R   | D Median |
|--------|-----------|-----------------------|------------|----------|------------|----------|------------|----------|
| Row0   | 40.171    | 1.8924198874614717E-9 | 39,779.732 | 40,859   | 39,033.123 | 40,859   | 38,541.674 | 40,859   |

#### Model

| Table deladit - Not | able details from a pec - Columns; o Properties Flow Variables |           |            |          |            |          |            |          |  |  |
|---------------------|----------------------------------------------------------------|-----------|------------|----------|------------|----------|------------|----------|--|--|
| Row ID              | D H-Value                                                      | D p-value | D Mean R   | D Median | D Mean R   | D Median | D Mean R   | D Median |  |  |
| Row0                | 122.94                                                         | 0.0       | 40,379.249 | 40,659   | 38,404.096 | 36,763   | 38,568.612 | 38,373.5 |  |  |

#### **Transmission**

| Row ID   | H-Value | D p-value        | D Mean R  | D Median | D Mean R   | D Median | D Mean R   | D Median |
|----------|---------|------------------|-----------|----------|------------|----------|------------|----------|
| Row0 6.1 | 191     | 0.04525202659744 | 39,203.13 | 37,897.5 | 39,065.718 | 37,897.5 | 39,086.399 | 37,897.5 |

#### Colour

| Row ID | D H-Value | D p-value        | D Mean R   | D Median | D Mean R   | D Median | D Mean R   | D Median |
|--------|-----------|------------------|------------|----------|------------|----------|------------|----------|
| Row0   | 5.763     | 0.05605650587541 | 39,365.064 | 43,728.5 | 39,091.768 | 43,728.5 | 38,898.322 | 43,728.5 |

#### State



#### **Interior**

|        |           |           | •          |          |            |          |            |          |
|--------|-----------|-----------|------------|----------|------------|----------|------------|----------|
| Row ID | D H-Value | D p-value | D Mean R   | D Median | D Mean R   | D Median | D Mean R   | D Median |
| Row0   | 133.82    | 0.0       | 40,208.479 | 46,853   | 39,082.565 | 46,853   | 38,063.177 | 46,853   |

#### Seller



The p-value associated with the Kruskal-Wallis test is less than the significance level of 0.05. Therefore, we reject the null hypothesis and conclude that there are statistically significant differences between the medians of cluster 0 and cluster 1.

The mean and median ranks of each cluster indicate the average and middle positions of the observations within each group. The differences in these values between the two clusters suggest variations in the distribution of data points, contributing to the rejection of the null hypothesis.

We see that all the categorical variables have p-value less than 0.05 indicating that there are significant differences in the distributions of the data between cluster 0 and cluster 1 as indicated by the Kruskal-Wallis test results.

Year, Make, Model, Transmission, State, Interior, Seller are significant. Colour is not significant.

#### 3.2.3.2 Cluster analysis with Non-Categorical Variables

In KNIME, ANOVA is used to analyse the non-categorical variables. The variables that have p < 0.05, those variables are significant in the analysis of clusters.

For K = 3

#### ANOVA

|              | Source         | Sum of Squares | df    | Mean Square | F        | p-value |
|--------------|----------------|----------------|-------|-------------|----------|---------|
| odometer     | Between Groups | 349.2027       | 2     | 174.6014    | 176.3981 | 0.0     |
| odometer     | Within Groups  | 77,436.1284    | 78233 | 0.9898      |          |         |
| odometer     | Total          | 77,785.3311    | 78235 |             |          |         |
| mmr          | Between Groups | 418.9728       | 2     | 209.4864    | 210.489  | 0.0     |
| mmr          | Within Groups  | 77,860.3601    | 78233 | 0.9952      |          |         |
| mmr          | Total          | 78,279.3329    | 78235 |             |          |         |
| sellingprice | Between Groups | 449.663        | 2     | 224.8315    | 226.0394 | 0.0     |
| sellingprice | Within Groups  | 77,814.9481    | 78233 | 0.9947      |          |         |
| sellingprice | Total          | 78,264.6111    | 78235 |             |          |         |

# **Descriptive Statistics:**

| Row ID | S Test Co    | S Group   | I N   | Missing | Missing | D Mean | D Standa | D Standa | D Confide | D Confide | D Confide | D Minimum | D Maximum |
|--------|--------------|-----------|-------|---------|---------|--------|----------|----------|-----------|-----------|-----------|-----------|-----------|
| Row0   | odometer     | cluster_0 | 26124 | 0       | 0       | 0.083  | 1.038    | 0.006    | 0.95      | 0.07      | 0.095     | -1.349    | 2.743     |
| Row1   | odometer     | cluster_1 | 26016 | 0       | 0       | -0.017 | 0.991    | 0.006    | 0.95      | -0.029    | -0.005    | -1.349    | 2.743     |
| Row2   | odometer     | duster_2  | 26096 | 0       | 0       | -0.079 | 0.953    | 0.006    | 0.95      | -0.091    | -0.068    | -1.349    | 2.743     |
| Row3   | odometer     | Total     | 78236 | 0       | 0       | -0.005 | 0.997    | 0.004    | 0.95      | -0.012    | 0.002     | -1.349    | 2.743     |
| Row4   | mmr          | cluster_0 | 26124 | 0       | 0       | -0.086 | 0.991    | 0.006    | 0.95      | -0.098    | -0.074    | -1.586    | 2.567     |
| Row5   | mmr          | cluster_1 | 26016 | 0       | 0       | 0.005  | 0.989    | 0.006    | 0.95      | -0.007    | 0.017     | -1.586    | 2.567     |
| Row6   | mmr          | duster_2  | 26096 | 0       | 0       | 0.093  | 1.013    | 0.006    | 0.95      | 0.08      | 0.105     | -1.586    | 2.567     |
| Row7   | mmr          | Total     | 78236 | 0       | 0       | 0.004  | 1        | 0.004    | 0.95      | -0.003    | 0.011     | -1.586    | 2.567     |
| Row8   | sellingprice | cluster_0 | 26124 | 0       | 0       | -0.096 | 0.99     | 0.006    | 0.95      | -0.108    | -0.084    | -1.537    | 2.562     |
| Row9   | sellingprice | cluster_1 | 26016 | 0       | 0       | 0.018  | 0.989    | 0.006    | 0.95      | 0.006     | 0.03      | -1.554    | 2.562     |
| Row10  | sellingprice | cluster_2 | 26096 | 0       | 0       | 0.088  | 1.013    | 0.006    | 0.95      | 0.076     | 0.1       | -1.542    | 2.562     |
| Row11  | sellingprice | Total     | 78236 | 0       | 0       | 0.003  | 1        | 0.004    | 0.95      | -0.004    | 0.01      | -1.554    | 2.562     |

The null hypothesis is rejected in all of the variables since the p-value is less than 0.05, indicating that there are significant differences in odometer, mmr, selling price between the groups.

# Odometer, mmr and Selling Price are Significant.

# 4. Results and observation

# 4.1 Appropriate Number of Segments or Clusters

|             |           | Silhouette |       |
|-------------|-----------|------------|-------|
| Cluster No. | Clusters  | Score      | Mean  |
|             | Cluster 0 | 0.23       |       |
| 2           | Cluster 1 | -0.208     | 0.011 |
|             | Cluster 0 | 0.622      |       |
|             | Cluster 1 | 0.509      |       |
| 3           | Cluster 2 | 0.614      | 0.582 |
|             | Cluster 0 | 0.62       |       |
|             | Cluster 1 | 0.502      |       |
|             | Cluster 2 | 0.498      |       |
| 4           | Cluster 3 | 0.604      | 0.556 |
|             | Cluster 0 | 0.617      |       |
|             | Cluster 1 | 0.497      |       |
| 5           | Cluster 2 | 0.495      | 0.539 |

| Cluster 3 | 0.491 |  |
|-----------|-------|--|
| Cluster 4 | 0.595 |  |

The silhouette score for all the clusters is present. The analysis of the table will be done on 2 factors: -

- 1) Higher the silhouette score i.e. close to 1 more are the clusters separated and close to 0 indicates the clusters are overlapping
- 2) Sometimes having a smaller number of clusters can be very simplistic and the service provider may take simple decisions according it which will eventually hamper their market penetration and having simplified services/products may forgone the people who are the potential customers. Having more services will give the service provider a unique value proposition to attract customers.

#### 4.2 Cluster analysis

#### 4.2.1 Categorical Variables

It has been observed that all the variables except color are contributing to the cluster for making the service or product. This is because the p-value is less than 0.05 (confidence level at 95% for the model) which in turn tells that all other categorical variables are significant for the process of making the clusters.

#### 4.2.2 Non-Categorical Variables

It has been observed that half the variables are contributing to the cluster for making the service or product. This is because the p-value is less than 0.05 (confidence level at 95% for the model) which in turn tells that odometer, mmr and selling price are significant

are significant for the process of making the clusters.

#### 5. Managerial Insights

5.1 The managerial insights that can concluded by doing the k-means clustering as well as selecting the appropriate number of clusters as 3 are: -

# $\rightarrow$ Insights for cluster 0 which represent car with maker Ford, model Altima and sedan body

- 1. Tailored Marketing: Direct marketing towards Ford enthusiasts, highlighting the unique advantages and features of Ford automobiles.
- 2. Personalized Deals: Customize promotions and offers to showcase Ford's key attributes, like its resilience and performance.
- 3. Sedan-Centric Approaches: Craft marketing strategies around sedan models, such as the Altima, to engage consumers attracted to this specific body type.
- 4. Loyalty Initiatives: Introduce loyalty programs or rewards structures to encourage repeat purchases and cultivate brand allegiance within the Ford community.
- 5. Upselling Possibilities: Recognize chances to propose supplementary Ford products or services that complement sedan ownership, like service packages or extended warranties.

# $\rightarrow$ Insights for cluster 1 which represent car with maker Honda, model Camry and SUV body

- 1. Honda SUV Emphasis: Highlight the reliability, safety features, and versatility of Honda SUVs to appeal to customers in this cluster.
- 2. Family-Oriented Marketing: Create marketing campaigns that emphasize the spaciousness and family-friendly aspects of Honda SUVs like the Camry.
- 3. Adventure and Lifestyle: Emphasize the outdoor and adventure capabilities of Honda SUVs to resonate with customers seeking an active lifestyle.
- 4. Convenience Services: Offer convenience services such as home delivery for test drives or vehicle maintenance to cater to busy SUV owners.
- 5. Community Engagement: Engage with local communities and events to showcase Honda SUVs and build rapport with potential customers.

# → Insights for cluster 2 which represent customers who prefer Chevrolet's car, F-150 model and sedan body

- 1. Chevrolet Sedan Focus: Highlight the comfort, fuel efficiency, and affordability of Chevrolet sedan models like the F-150 to attract customers in this cluster.
- 2. Urban Lifestyle Appeal: Position Chevrolet sedans as ideal vehicles for city living, emphasizing features like compact size and easy manoeuvrability.
- 3. Value Proposition: Emphasize the value proposition of Chevrolet sedans, offering competitive pricing and cost-effective ownership experiences.
- 4. Technology Integration: Showcase the latest technology and infotainment features available in Chevrolet sedans to appeal to tech-savvy customers.
- 5. After-Sales Services: Provide excellent after-sales services such as maintenance packages and roadside assistance to enhance customer satisfaction and loyalty.

#### 5.2 Cluster (Heterogenous) Identity

Identity of cluster 1: Customers who value reliability, affordability, comfort, fuel efficiency, and practicality.

Identity of cluster 2: Customers who are family-oriented, seeking vehicles that offer ample space and versatility for various activities and lifestyles, also have interest in features that enhance convenience and comfort.

Identity of cluster 3: Customers who may prioritize a balance of performance, affordability, and style for everyday purpose. May have potential interest in advanced technology features.