CaDiCaL 2.0

International Conference on Computer Aided Verification
July 25, 2024

Armin Biere^{1,2} Tobias Faller¹ <u>Katalin Fazekas</u>³ Mathias Fleury^{1,2} Nils Froleyks² Florian Pollitt¹

¹University Freiburg, Freiburg, Germany ²Johannes Kepler University Linz, Austria ³TU Wien, Vienna, Austria

SAT Solving and CaDiCaL 2.0

- Open source incremental SAT solver in C++ since 2017
- CaDiCaL: Conflict-Driven-Clause-Learning
- 2.0: Very wide range of new features
- Competitive performance
 - □ BVA + CaDiCaL 1.5.3: Winner of SAT Competition Main track in 2023
 - □ Competitive incremental performance as well

INTERNAL

Main Components: Internal Module

- The core class of the solver
- Implements several search improving techniques
 - Chronological backtracking, rephasing, shrinking, . . .
- Implements several formula simplification techniques
 - BVE, ELS, CCE, BCE, vivify, instantiate, probing, subsume, lucky phases, random walk, gate elimination, transitive reduction, ternary resolution, globally blocked clauses, . . .
- Supports inprocessing during incremental SAT solving without the need of freezing variables
 - □ Helpful in Bounded Model Checking (see CaMiCaL)

Main Components: External Module

Hides internals of the solver

- Maps between the inernal and external problem representations
 - Compacting: Map active variables into a consecutive sequence of integers
 - Solution reconstruction
 - □ Proof generation (natively supported proof formats: DRAT, FRAT, LRAT, VeriPB)

Main Components: Static API

Provides access to standard solver functionalities between SAT solving calls:

- Parsing DIMACS or iCNF files
- IPASIR functions
- Freezing and melting *Don't Touch*-variables
- . . .

Many interesting features:

- Flipping solution literals
 - □ Backbone extraction (see CADIBACK)
- Constrain: clausal assumption
 - Bounded Model Checking (see CAMICAL)
- Incremental Lazy Backtracking between SAT calls
- . . .

Main Components: Dynamic API

Provides an interface to interact with the solver **during** solving calls:

- Proof Tracer
 - In-memory interpolation through online in-memory LRAT-Proof tracing
 - → CaDiCraig
- Learner & Iterators
 - Real-time tracing of learned clauses of the solver
 - Allows to iterate current (simplified) clauses of problem
- Terminator
 - Allows to interrupt the search of the solver
- External Propagator
 - □ IPASIR-UP functions: Fine-grained external control
 - Many possibilities: collect implied literals on-the-fly, force specific decision order, guide search externally, add clauses during solving, . . .
 - → Integrates CADICAL in CVC5 SMT solver

Main Components: Testing & Monitoring Infrastructure

- Comprehensive logging
- Several internal assertions
- Built-in proof and solution checkers
- MOBICAL: built-in API fuzzer
 - Generates random (incremental) API calls
 - Minimizes failing runs

```
m start seed 13117766510884613014
m count seed/buggy/reducing/reduced calls vars clauses
m 100470 16906432094431841057 1715 85 293 37
m generated 100470 traces: 100469 ok 100%, 0 failed 0%, 100470 executed
m solved 250598: 33237 sat 13%, 136193 unsat 54%, 150128 incremental 60%
```


Experiments – Stand-Alone

Cumulative distribution function (CDF), time out 5000 seconds, Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz

Experiments – Stand-Alone

Cumulative distribution function (CDF), time out 5000 seconds, Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz

Experiments – Incremental

		CaDiBack	CaMiCaL	Bones	LSP	Max	ljtihad	Total
CADICAL	2.0	3297 ₁₁	2606 ₁₈	494 ₄₅	1898 ₂₇	1976 ₂₆	2980 ₁₃	2209 ₁₄₀
	2020	3409 <u>⊫</u>	2677 ₁₇	622 ₄₃	1955 ₂₆	2015 ₂₅	2986 ₁₃	2277 ₁₃₃
	1.0	3495 ₁₇	$2627_{\mid \underline{18}}$	595 ₄₄	$2011_{\mid \underline{26}}$	$2028_{\mid \underline{25}}$	$2989_{\mid \underline{13}}$	2291 ₁₃₃
	CMS	3491 ₁₈	2701 ₁₇	397 ₄₆	1773 ₂₉	2021 ₂₅	3057 ₁₂	2240 ₁₃₇
	MINISAT	3678 <u>ı₅</u>	2807 ₁₆	687 ₄₃	1993 ₂₆	$2094_{\mid \underline{24}}$	3123 ₁₁	2397 ₁₂₅
	Riss	3665 <u>⊫</u>	2836 ₁₅	892 ₄₀	$1835_{ 28}$	$2017_{ \underline{25}}$	3140 ₁₁	2398 ₁₂₅
	ABCDSAT	3582 <u> 7</u>	2966 ₁₃	535 ₄₆	2493 ₂₁	$2037_{ \underline{26}}$	$3207_{\mid\underline{10}}$	2470 ₁₂₃
	GLUCOSE	3778 ₁₄	2981 ₁₃	948 ₄₀	$2078_{\mid \underline{25}}$	$2117_{\mid \underline{24}}$	$3206_{\mid\underline{10}}$	2518 <u> 116</u>
	VBS	3127 ₁₄	2546 ₁₉	257 ₄₈	1765 ₂₉	1856 ₂₈	2896 ₁₄	2075 ₁₅₂

PAR2 score over 50 benchmarks per application, time out 5000 seconds, Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz

Summary

https://github.com/arminbiere/cadical

- Open source (MIT License)
- Very wide feature set
- Good performance both in stand-alone and incremental use cases
- Thorough testing infrastructure
- Extensible codebase

Thank you!

Hardware Model Checking Competition HWMCC'24 Call for Benchmarks and Solvers

https://hwmcc.github.io/2024

affiliated to FMCAD'24, Oct. 14–18, 2024 Prague, Czech Republic

Three Single Safety Property Tracks

- 1.World-Level Track without Arrays (BTOR2)
- 2. Word-Level Track with Arrays (BTOR2)
- 3.Bit-Level with mandatory Certificates (AIGER)

Bit-Level Certificates checked by *Certifaiger* https://github.com/Froleyks/certifaiger

Important Dates

Benchmark Submission Solver Submission

August 18 September 1

Organizers

Armin Biere *University of Freiburg* Germany Nils Froleyks *Johannes Kepler University Linz* Austria Mathias Preiner *Stanford University* USA