008786763

WPI Acc No: 1991-290778/199140

XRAM Acc No: C91-125734 XRPX Acc No: N91-222642

Serodiagnosis of mammary cancer - by immunoassay of prod. of c-erbB-2 cancer gene, by binding gene with specific purified antibody and solid

phase carrier

Patent Assignee: NICHIREI KK (NCHK)

Number of Countries: 001 Number of Patents: 002

Patent Family:

Kind Date Week Applicat No Date Patent No Kind 199140 B JP 89236945 Α 19890914 19910821 JP 3191865 Α 19890914 B2 19990524 JP 89236945 Α JP 2895105

Priority Applications (No Type Date): JP 89236945 A 19890914

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 3191865 A 5

JP 2895105 B2 6 G01N-033/574 Previous Publ. patent JP 3191865

Abstract (Basic): JP 3191865 A

Determining prod. of c-erbB-2 cancer gene by enzyme immunoassay comprises binding a purified antibody specific to prod. of c-erbB-2 cancer gene with a solid phase carrier, selectively binding prod. of c-erbB-2 cancer gene in a sample such as blood serum with the antibody to catch the prod., and colouring by using biotin-labelled 2nd monoclonal antibody, avidin biotin complex method and its substrate in the enzyme immunoassay of the prod.

Also claimed is a kit for the serodiagnosis which contains antibody necessary for the determn. of the prod. of c-erbB-2 cancer gene, reference sample, colouring reagent, etc.

Monoclonal antibody is pref. used for the solid phase is 9G6, and enzyme-labelled monoclonal antibody is SV2-61gamma. In the method, SV2-61 gamma is labelled with an enzyme such as peroxidase or alkaline phosphatase and coloured. Positive control for reference is supernatant of cell strain EX-5 or purified prod. of c-erbB-2 cancer gene.

USE/ADVANTAGE - The method and the kit are useful for detecting or determining prod. of c-erbB-2 cancer gene in human blood serum. The kit is used for the diagnosis of glandular cell cancer, esp. mammary cancer, stomach cancer, etc. Glandular cell cancer such as mammary cancer can be simply and rapidly diagnosed by the examination of blood serum based on that prod. of c-erB-2 gene is present in blood serum of human mammary cancer patient but is not detected in that of healthy normal person. The diagnosis of the prognosis of the cancer can be carried out by the determn. of the prod. of c-erbB-2 gene.

Dwq.0/0

Title Terms: SEROLOGICAL; MAMMARY; CANCER; IMMUNOASSAY; PRODUCT; CANCER; GENE; BIND; GENE; SPECIFIC; PURIFICATION; ANTIBODY; SOLID; PHASE; CARRY

Derwent Class: B04; D16; J04

International Patent Class (Main): G01N-033/574

International Patent Class (Additional): G01N-033/57; G01N-033/577

File Segment: CPI

Manual Codes (CPI/A-N): B04-B02C2; B04-B02C3; B04-B04A1; B04-B04A6;

B04-B04C4; B04-B04C5; B04-B04D4; B11-C07A2; B11-C07A4; B12-K04A1; D05-H09

; D05-H12; J04-B01B

Chemical Fragment Codes (M1):

01 D011 D012 E720 J011 J171 J521 L921 M280 M314 M321 M332 M342 M372 M391 M423 M511 M520 M530 M540 M781 M903 N102 P831 Q233 Q435 V600 V611 V645 V753 V802 V811 V815 00945

00 M423 M760 M903 N102 Q233 Q435 V600 V614 00945

Chemical Fragment Codes (M6):

03 M903 P831 Q233 Q435 R514 R520 R521 R533 R611 R621 R624 00945

Ring Index Numbers: 00945

Derwent Registry Numbers: 0172-S

Granted Claims of Japanese Patent No. 2,895,105 B2

1. An enzyme immunoassay for measuring a soluble form of c-erbB-2 oncogene product, characterized in that it comprises:

using two monoclonal antibodies against the extracellular domain of c-erbB-2 oncogene product, one of which is immobilized to a solid phase and the other is labeled with an enzyme; and

using, as a positive control, a culture supernatant from *E. coli* strain EX-5, which extracellulary secretes the extracellular domain of c-erbB-2 oncogene product, and/or a purified preparation of said c-erbB-2 oncogene product.

- 2. The assay of claim 1, characterized in that SV2-61y is used as one of the monoclonal antibody against said extracellar domain.
- 3. A kit for diagnosis of a serum sample, which is used for the assay of claims 1 and 2, comprising an antibody required for measuring a soluble form of c-erbB-2 oncogene product and a chromogenic agent.

(19)日本国特許庁(JP)

(12)特許公報 (B2)

(11)特許番号

第2895105号

(45) 発行日 平成11年(1999) 5月24日

(24) 登録日 平成11年(1999) 3月5日

(51) Int. C1. 6

識別記号

G01N 33/574 33/577

FΙ

G01N 33/574

33/577

Α

 \mathbf{B}

請求項の数3

(全6頁)

(21)出願番号

特願平1-236945

(22) 出願日

平成1年(1989)9月14日

(65)公開番号

特開平3-191865

(43) 公開日

平成3年(1991)8月21日

審査請求日

平成7年(1995)9月29日

微生物の受託番号 FERM P-16562

(73)特許権者 999999999

株式会社ニチレイ

東京都中央区築地6丁目19番20号

(72) 発明者 森 茂郎

東京都千代田区湯島4-11-16 秀和湯島

レジデンス504

(72) 発明者 山本 雅

東京都港区白金台5-19, 2-401

(72) 発明者 白石 真人

東京都板橋区小茂根4-24-9

(72) 発明者 森 康益

東京都杉並区阿佐ケ谷北3-13-9

(74)代理人 弁理士 戸田 親男

亀田 宏之 審査官

最終頁に続く

(54)【発明の名称】c‐erbB‐2癌遺伝子産物をイムノアッセイする乳癌の血清診断法とそのキット

(57) 【特許請求の範囲】

【請求項1】可溶性の c -erbB-2 癌遺伝子産物を測定 する方法であって、以下の事項からなる方法:

c-erbB-2癌遺伝子産物の細胞外部分に対するモノク ローナル抗体2種の内、一方を固相支持とし、また他方 を酵素標識抗体とし;対照とする陽性コントロールとし て、c-erbB-2癌遺伝子産物の細胞外部分を細胞外に 分泌するEX-5株の培養上清及び/又はそのc-erbB-2癌遺伝子産物の精製物を使用すること;

を特徴とする酵素免疫測定方法。

【請求項2】 該細胞外部分に対するモノクローナル抗体 のひとつとしてSV2-61 y を使用すること、を特徴とす る請求項1に記載の測定方法。

【請求項3】可溶性の c -erbB-2 癌遺伝子産物の測定 に必要な抗体、発色試薬が組み込まれた請求項1又は2

に記載の方法による血清診断用キット。

【発明の詳細な説明】

<産業上の利用分野>

本発明は、ヒト血清中の c -erbB-2 癌遺伝子産物の 存在またはその量を検定あるいは測定する方法及びそう した検定に有用なキットに関する。

この発明のキットは、ヒト腺癌特に乳癌、胃癌等の診 断のために用いることができる。

<従来の技術>

癌はDNAの異常による細胞増殖の病気であり、なんら 10 かの異常によって細胞の癌化に寄与する遺伝子が発見さ れ、癌遺伝子と呼ばれている。

現在約50種類の癌遺伝子が知られているが、約10年前 までは、癌細胞の中で、どのような遺伝子が細胞の癌化 に作用しているのかほとんど知識がなかったが、近年の 20

この分野の目覚ましい研究成果は、癌遺伝子の癌診断・ 治療薬への応用を促進している。今日癌遺伝子は(1) 増殖因子群(2)受容体群(3)非受容体型チロシンキ ナーゼ群(4)情報モジュレーター群(ras)(5)核 内タンパク群などに分類されている。今日これらの遺伝 子が細胞表面から核内への増殖シグナル伝達系として大 きなネットワークを形成していること、そしてこれらの 伝達系の狂いが細胞の癌化に関与する重要な過程である と考えられている。

このような癌遺伝子と細胞の癌化のかかわりが明らか 10 になり、特定の癌遺伝子がある種の癌で効率に発現していることから、癌マーカーとして癌遺伝子あるいは、その癌遺伝子産物の検出が、癌の診断に応用できるのではないかという研究が注目されている。

本発明者らはヒト癌原遺伝子erbB-2 (以下 c - erbB-2 と略記する)を発見し (仙波憲太郎ら, PNAS 82649 7, 1985, 山本雅ら, Nature 319 230, 1986), その遺伝子の機能について分子生物学的あるいは免疫学的方法を用いて鋭意研究を進めてきている。ヒト c - erbB-2 は、ヒトの第17染色体長腕q21領域に位置し、その遺伝子が発現しているタンパク質は分子量185KDでチロシンキナーゼ活性を有する受容体型膜タンパク質である (秋山徹ら, Science 232, 1644, 1986)。 c - erbB-2 は核酸ハイブリダイゼーションと遺伝子クローニングの方法でマーerbBときわめて相同性の高い遺伝子として発現された(仙波憲太郎ら、前出、山本雅ら、前出)。 v - erbBはトリ赤芽球症ウイルスAEV (avian erythroblastosis vi

rus) のもつ癌遺伝子であり、この遺伝子に対応する細

胞性遺伝子は上皮増殖因子受容体(EGFレセプターと略 記) である。ヒトEGFレセプターは第7染色体短腕q11- 30 13に位置している。 c -erbB-2はEGFレセプターの遺 伝子とは明らかに異なっているが、EGFレセプターmRNA が10.0Kbと5.6Kbであり、一方c-erbB-2のmRNAは4.6 KbでcDNAのクローンの解析から1255アミノ酸残基からな り、EGFレセプター類似のタンパク質をコードしている (山本雅ら、Nature前出)。 c -erbB-2遺伝子産物は EGFレセプターとの構造上の類似性からなんらかの増殖 因子に対するレセプターであると考えられている。 c erbB-2はWeinbergらの報告したラットのneu(Shih,C ら, Nature 290 261, 1981,) , UllrichらのHER2 (Slamon D. J. ら, Science 235 177, 1987) などと同一の遺伝子で ある。このようなチロシンキナーゼ活性を有する増殖因 子受容体の過剰発現が癌の診断の有力なマーカーである 可能性が十分に考えられる。この見地から本発明者ら は、手術時の摘出癌組織からDNAを調製し、cーerbB-2 遺伝子に特異的なDNAとのハイブリッド形成法によ り、この予測の確認実験を行った。その結果、ヒトcerbB-2遺伝子は乳癌、胃癌等の腺上皮癌の2割程に増 幅が見られた。このことは、ヒトc-erbB-2が腺癌の

提供することを意味している。 c -erbB-2の腫瘍組織 での異常発現はDNA検出法でもコピー数増大の診断法を 得ることが出来るが、この方法は癌診断法としては一般 的でなく、得られる情報もDNAレベルのものに限定され ている。癌遺伝子の増幅はコピー数の増加が大きい場合 は、インサイツ ハイブリダイゼーション (in situ hy bridization) でも検出可能応であるが、用途が限定さ れている。そこで、本発明者らは、既にヒトcーerbBー 2の遺伝子産物に対するモノクローナル抗体、ポリクロ ーナル抗体を作製し、乳癌や胃癌等の診断、治療への応 用研究を行ってきた。 c -erbB-2遺伝子産物に対する モノクローナル抗体SV2-61, SV2-61γは平成1年7月1 0日に特許出願しており、これら抗体を産出するハイブ リドーマは、工業技術院微生物工業技術研究所に寄託さ れている (SV2-61, 微工研菌寄第10162号, SV2-61γ同1 0776号) これら抗体は、免疫組織染色、ウエスタンプロ ット法、ドットプロット法、フローサイトメトリー法、 等な免疫学的手法で c -erbB-2 遺伝子産物の検出を可 能にし、診断に有力な手段として実用化されている。し かし、これらの免疫学的手法では、腫瘍組織、癌細胞レ ベルでの診断であり、得られる情報は正確ではあるが、 簡便性に欠けている。一般に受容体型のタンパク質は、 その全体もしくはその一部が可溶性受容体として血清中 もしくは体液中に遊離して存在していることがILー2受 容体などで知られており、 c -erbB-2遺伝子産物が受 容体全体あるいは可溶性レセプターとして血清中に存在 していれば血清診断の形で簡便で、迅速な癌の新規な診 断法とすることができる。

<発明が解決しようとしている問題点>

従ってこの発明の目的は、ヒトcーerbB-2の遺伝子産物を血清あるいはその他の体液から簡便な酵素免疫測定法 (EIAと以下略記する)を用いて検出する方法とそのキットを提供することである。

<問題点を解決するための手段>

血清中の微量の特定のタンパク質を高感度に定量する 方法としてBersonとYalonが開発した放射免疫測定法(R IA法)とEIA法があるが、RIA法は放射性同位元素を使用 するので、種々の不都合があり、実際的な使用は、EIA 法が主流になっている。EIA法は、「酵素活性を標識と して抗原抗体反応を追跡し、これから抗原または抗体の 量を定量する方法」と広く定義される。EIA法に用いら れる測定システムについては、遠藤雄一・官井潔、蛋白 質・核酸・酵素31 13~26,1987に詳述されている。

可能性が十分に考えられる。この見地から本発明者ら 本発明者らは、これらシステム構成要素の中でサンドは、手術時の摘出癌組織からDNAを調製し、cーerbBー 2遺伝子に特異的なDNAとのハイブリッド形成法によ 血清中のcーerbBー 2遺伝子産物の検出を可能にする抗 体システムの構築に成功した。測定対照となるcーerbB erbBー 2遺伝子は乳癌、胃癌等の腺上皮癌の2割程に増 にが見られた。このことは、ヒトcーerbBー 2が腺癌の 発症、進展に寄与しており、腺癌の診断に重要な情報を 50 Bー 2 受容体は、653アミノ酸基が細胞外にあり、580ア

ミノ酸残基が細胞内に存在している。細胞外領域のEGF レセプターとの相同性は44%である。 c ーerbBー 2 遺伝 子産物の測定システムを構築するためには、 c ーerbBー 2 遺伝子産物が必要であり、主に次に挙げる方法で種々 の検討を試みた。まず、c-erbB-2タンパク質を発現 している癌細胞MKN-7 (文献:S. Fukushigeら, Molecula r and Cell Biology, Mar. 955, 1986, 東京大学医科学研究 所制癌部より入手)を可溶化して単離する方法、c-er bB-2遺伝子をマウス由来の線維芽細胞NIH3T3 (ATCC株 番号CRL-1658) に導入したSV-11株 (微工研菌寄10197 10 号),A415株 (東京大学医科学研究所制癌部から入手) を可溶化して単離する方法、 c -erbB-2 遺伝子の細胞 外ドメイン部分をNIH3T3に導入したEX-5株(東京大学 医科学研究所制癌部から入手) の細胞培養液を利用する 方法等を検討し、EX-5株が可溶性のc-erbB-2遺伝 子産物を培養上清中に産生していることを見出し、この 発明を完成した。すなわち、この発明はヒトc-erbB-2 遺伝子産物を対応抗原とし、固相化した抗体と酵素標 識した抗体とでサンドイッチ型に検出する測定システム とそのキットを提供する。

<作用>

測定システム及びキットの構成要素は、cーerbB-2 遺伝子産物をそれぞれ別のエピトープで認識するモノクローナル抗体を一方は固相に吸着させたものと、他方は 酵素標識したものとその酵素基質による発色のための試 薬類と対照の標準抗原として、細胞株EX-5が産生する可溶性のcーerbB-2遺伝子産物から成る。

<発明の効果>

この発明により、ヒト乳癌患者血清中に c - erbB - 2 遺伝子産物が存在すること、および健常人には検出され 30 ないことが見出された。この発明により、 c - erbB - 2 遺伝子を発現している腺癌特に乳癌、胃癌などは簡便に 血清を検査するだけで、迅速に診断することを可能にす

る。乳癌では予後不良とcーerbB-2のコピー数の増加 に関係があることが知られているので、血清中のcーer bB-2遺伝子産物の量の測定により予後の診断が可能に なるものと思われる。

<実施例>

以下、この発明を実施例にもとづき、より具体的に説明する。なお、この発明は下記実施例に限定されるものではない。

実施例1

c-erbB-2遺伝子産物のEIA測定法とそのキット。E IA測定用96穴マイクロタイタープレート(ヌンク社イム ノプレートMaxiSorp) に 1 μg/mlの濃度の精製モノクロ ーナル抗体9G6 (オンコジーンサイエンス社カタログナ ンバーOP14,文献Van de Vijver M. J.ら,New England Jo unal of Medicine 319 1239, 1988) を10 μ l ずつ各ウェ ルに加え、4℃で一夜放置し、抗体をマイクロプレート に固定する。0.05%トウィーン20を含むPBS (以下洗浄 液と略記する)で3回洗浄した後、5%BSA牛血清(ア ルブミン)を含むPBSを200μℓずつ各ウェルに加え室温 で2時間ブロッキングを行う。3回洗浄液で洗浄後、測 定用の試料を100 µ ℓ ずつ各ウェルに加え、4℃で一晩 放置する。3回洗浄液で洗浄後、ビオチン化した10μg/ mlモノクローナル抗体SV2-61γを100μℓずつ各ウェル に加え、室温で2時間放置する。その後洗浄液で3回洗 浄し、ペルオキシンダーゼ標識アビジン (ストレプトア ビジン ビオチン化ホースラディシュ ペルオキシダー ゼ複合体,アマーシャム社)を1000倍に希釈したものを 100μℓずつ各ウェルに加え、洗浄液で5回洗浄後基質 $\mathcal{O}ABTS$ (2, 2' -Azino-di-3-ethylbenzthiazoline sulphonate) と過酸化水素水 (H₂O₂) を加え、30分から 1時間後にEIA用マイクロプレートリーダーで吸光度 (O.D.) を測定する。本発明のキットは次のものから構 成される。

表 1

100検体用

試薬	濃度	容量	備考
精製モノクローナル抗体	1 μ g/mQ	10m2	オンコジーン
9 G 6	}		サイエンス社
			OP14
ビオチン標識モノクロー	10 μ g/m@	10m2	ニチレイ
ナル抗体SV2-61γ			
ストレプトアビジン			アマーシャム
ビオチン化ホースラディシュ	1000倍	10m2	社
ベルオキシダーゼ複合体	希釈		RPN.1051
ブロッキング試薬	5 %	20m2	シグマ
BSA			
ABTS	1 mM	10m2	和光純薬
H 2 O 2	0.02%	10mQ	和光純薬
陽性コントロール	1~100	200μQ	EX-5培養上清
	ng/ml		

洗浄液は測定時に0.05%トウィーン20を含むPBSを調 製して用いる。本発明の測定法により、細胞株EX-5 (FERM P-16562) の培養上清を2段階ずつ希釈して 測定した時の標準曲線を図1に示す。EX-5の希釈段階 でほぼ直線的に吸光度が、減少している。

実施例2

各種の乳癌細胞株YMB-1,YMB-1-E,ZR-75-1,MDA *

*-MB-453, MDA-175-1, (いずれも東京大学医科学研究 所制癌部から入手)胃癌細胞株MKN-7(前出)、マウ ス線維芽細胞株NHI3T3 (前出) 、陰唇癌細胞株A431 (東 京大学医科学研究所制癌部から入手:文献Sorkin A.D. ら,Experimental Cell Research 175 192,1988) の培養 30 上清を試料に測定した。その結果は表2のようになっ た。

2		
	c-erbB-2	遺伝子産物の検出
細胞株	EIA法	ウエスタンブロット
	△0.D.値	による判定
YMB-1	0.102	+
YMB-1-E	0.062	+
ZR-75-1	0.009	<u>±</u>
MDA-MB-453	0.232	++
MDA-175-7	0.083	<u>+</u>
MKN-7	0.584	++
NIH3T3	0.035	_
A431	0.113	±

明らかにウエスタンブロット法で c-erbB-2 が検出 50 される細胞株YMB-1, YMB-1-E, MDA-MB-453, MKN-7

9

で本発明のEIAキットで、高値が得られた。

実施例3

乳癌患者血清のEIA測定

本発明の測定法により乳癌患者血清を試料に c -erB *

*-2遺伝子産物が血清中に検出されるかどうか測定した。結果は表3に示すように12検体中で5例にはっきりした陽性反応を検出した。

10

表 3

	c-erbB-2 遺伝	子産物の検出
検体番号	Δ0.D.	判定
1	0.703	+
2	0.133	-
3	0.132	-
4	0.810	+
5	0.142	-
6 .	0.279	+
7	0.199	_
8	0.804	+
9	0.159	-
1 0	0.424	+
11	0.140	- ,
1 2	0.156	_
健常人(10人)	0.133~0.165	

これに対し、健常人血清では陽性反応は検出されなかった。

【図面の簡単な説明】

第1図は、EX5細胞の培養上清を二段階希釈した検体を 30 この発明の測定方法を用いて測定した吸光度曲線を示 す。縦軸は吸光度(△0.D.)、横軸は希釈率である。

【第1図】

フロントページの続き

(56)参考文献 特開 昭62-108157 (JP, A)

特開 昭58-30667 (JP, A)

特表 平4-503012 (JP, A)

(58)調査した分野(Int. Cl. ⁶, DB名) G01N 33/574,33/577