#uni/semester3/TI/vorlesung9

Schaue deutsche wiki Seite von Chromsky Normalform

Chomsky-Normalform - Wikipedia

→ Chromsky-Normalform kommt in der Klausur form

Aufgabe 4.3 SS17

→ B) ist richtig, aber sie unterschied unten!

Arbeitsweise eines PDA II

Beispiel: PDA $P_1 = (Q, \Sigma, \Gamma, \delta, q_0)$

•
$$Q := \{q_0, q_1\}$$

•
$$\Sigma := \{a, b\}$$

•
$$\Gamma := \{A, \#\}$$

•
$$\delta(q_0, a, \#) := \{(q_0, A\#)\}$$

•
$$\delta(q_0, a, A) := \{(q_0, AA)\}$$
 7

•
$$\delta(q_0, b, A) := \{(q_1, \varepsilon)\}$$
 7

•
$$\delta(q_1,b,A):=\{(q_1,\varepsilon)\}$$

$$\delta(q_0, b, A) := \{(q_1, \varepsilon)\}$$

$$\delta(q_1, b, A) := \{(q_1, \varepsilon)\}$$

$$\delta(q_1, \varepsilon, \#) := \{(q_1, \varepsilon)\}$$

Frage: Akzeptiert P_1 das Wort

 $\omega = aabb$?

Lösung: Bestimme schrittweise angenommene Zustände und geschriebene Kellersymbole.

Beispiel 1: $\omega = aabb$

Schritt	Zustand	ω	Keller
0	q_0	aabb	#
1	q_0	abb	A#
2	q_0	z bb	AA# A#
3	q_1	4 b	A#
4	q_1	7 ε	#
5	q_1	ε	ε

Prof. Dr. Barbara Staehle | WS 2020/2021

Arbeitsweise eines PDA III

Grafische Darstellung eines PDA als erweitertes Zustandsübergangsdiagramm möglich, aber aufwändig:

- Erweitere von DEA / NEA bekanntes Zustandsübergangsdiagramm durch Berücksichtigung des Kellers
- Beschrifte jeden Pfeil mit (gelesenes Eingabezeichen , oberstes Kellersymbol ; auf den Keller zu schreibende Symbole)
- Berücksichtige bei der Simulation der Verarbeitung eines Wortes auch den Keller

Keller: A#

Eingabe 1: aabb ✓ 💋 💆 📉

Eingabe 2: aaabb 🍃

aaabbb/

Bild: Erweitertes Zustandsübergangsdiagramm für P_1

aaaabbb x

Prof. Dr. Barbara Staehle | WS 2020/2021

Theoretische Informatik | IV Typ 2 Sprachen und PDA

1 58

Kontextfreie Sprachen

Kellerautomaten und kontextfreie Sprachen Deterministische Kellerautomaten

Ich bin eine Tafel

 $(q_{0}, 0abb, #) \vdash (q_{0}, abb, A#)$ $\vdash (q_{0}, bb, AA#) \vdash (q_{1}, b, A#)$ $\vdash (q_{1}, \epsilon, \#) \vdash (q_{1}, \epsilon, \epsilon) \lor$

→ Erstes wird nicht akzeptiert. Wort wird ganz akzeptiert. Befindet sich aber nicht mit einem leeren Keller.

→ Ich glaub A# steht für was auf dem Stack ist.

→ vierte geht nicht, weil Regel (c , # , €) nicht dabei ist!

→ geht weil man über den Umweg ein A mehr hat am Ende.

→ Sprache, links Mitte

→ Grammatik rechts oben

→ a, A; e → a wird gelesen, A wird vom Stack genommen, e heisst nichts passiert mit dem Stack

