Recall: Estimation

Goal: - Estimate O

· Point Estimator: g: B^ → R

(Suitable) g(X, Xz, ..., Xn) as point

Estimator for O.

Unbiased: - E(g(x1,x2,..., x2)] = 0

Consistent: - Var [g(x1,...,xn)] → o

Two methods: - an n-700.

(i) Melhod of monents.

calculate: 1 E Xile K=1,...,d

Equate with from moments: E[xk], kz], and

Solve the d-equations with d-unknowns to find O.

(ii) Maximun likelihool Estimate

 $l_n(o|X_1,X_2,...,X_n) = \prod_{i=1}^n f(X_i|o)$

Kece (X1,..., X2) fixed and maximix las a function of O.

Internal Estimation: Used the central limit

theorem to provide an interval estimate

with some contidence for the mean.

Central Limit Theorem

Recall: - [SLIN]
$$P(\lim_{n \to \infty} \int_{-\infty}^{\infty} x_i = \mu) = 1$$

1.8 $x_n \longrightarrow \mu$ or $n \to \infty$ u.p. Δ

Second order Result: "fluctuations of $x_n = \mu$."

Let X_1, X_2, \ldots be i.i.d. random variables with finite mean μ , finite variance σ^2 . Then

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \stackrel{d}{\to} Z, \tag{1}$$

where $\bar{X} = \frac{X_1 + X_2 + ... + X_n}{n}$ and $Z \sim \text{Normal } (0, 1)$.

A:
$$(\overline{X}_{n} - X_{n}) := \overline{C}_{n}$$
 where $C_{n} \xrightarrow{d} Z - 2^{nd} \cdot dn$

Central Limit Theorem

$$\frac{Significance}{Significance} : - \frac{Significance}{Significance} : - \frac{Si$$

We could rephrase the result as:

Let X_1, X_2, \ldots be i.i.d. random variables with finite mean μ , finite variance σ^2 . Then

$$\frac{(S_n - n\mu)}{\sqrt{n}\sigma} \stackrel{d}{\to} Z, \tag{2}$$

where $S_n = X_1 + X_2 + \ldots + X_n$ and $Z \sim \text{Normal } (0,1)$.

Central Limit Theorem - Special case.

Suppose each X_i was distributed as Bernoulli (p) random variable. Then S_n is a Binomial(n,p) random variable. Let us

check for what p does

$$\frac{S_n - np}{\sqrt{np(1-p)}}$$

is close to a Normal distribution.

Central Limit Theorem

We may simulate Binomial samples either directly by rbinom command or using the replicate and rbinom command.

```
> binomialsim1 = rbinom(100,10,0.1)
> # generates 100 Binomial (10,0.1) samples
>
> binomialsim2 = replicate(100, rbinom(1,10,0.25))
> # generates 100 Binomial (10,0.25) samples
>
> binomialsim3 = replicate(100, rbinom(1,10,0.5))
> # generates 100 Binomial (10,0.5) samples
```

Histogram of all three simulations

From the above it seems that at n=10 the symmetry is achieved when p=0.5 and not at p=0.1 and p=0.25

Standardised Histograms: Binomial n=10 and p=0.1, 0.25, 0.5

Perhaps n = 10 is not large enough to see the Central Limit Theorem occurring.

Standardised Histograms: Binomial n=20 and p=0.1, 0.25, 0.5

n = 20 is better.

Standardised Histograms: Binomial n=50 and p=0.1, 0.25, 0.5

n = 50 we get closer to Normal distribution

Role of n versus p

Binomial Random variable is close to Normal when the distribution is symmetric. That is when p is close to 0.5. Otherwise the general rule that we can apply is that when

$$np \geq 5$$
 and $n(1-p) \geq 5$.

then Binomial(n,p) is close to Normal distribution.

Confidence Intervals — Recall

Using the Central Limit Theorem for large n we have

$$P(\mid \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\mid \leq 1.96) \approx 0.95$$

which is the same as saying

$$P(\mu \in \left(-\frac{1.96\sigma}{\sqrt{n}} + \bar{X}, \frac{1.96\sigma}{\sqrt{n}} + \bar{X}\right)) \approx 0.95$$

The interval $\left(-\frac{1.96\sigma}{\sqrt{n}} + \bar{X}, \frac{1.96\sigma}{\sqrt{n}} + \bar{X}\right)$ is called the 95% confidence interval for μ .

Confidence Intervals

95% confidence interval for
$$\mu$$
 is $\left(-\frac{1.96\sigma}{\sqrt{n}} + \bar{X}, \frac{1.96\sigma}{\sqrt{n}} + \bar{X}\right)$

Meaning: for n large if we did m (large) repeated trials and computed the above interval for each trial then true mean would belong to approximately 95% of m intervals calculated.

Confidence Intervals

The below is code for finding the confidence interval for a data

The below is code for finding the confidence interval for a data
$$x$$
. — $(x_1, \dots x_n)$ > cifn = function(x, alpha=0.95){ + z = qnorm($(1-alpha)/2$, lower.tail=FALSE) + sdx = sqrt($1/length(x)$) \leftarrow $sdx = 1/\sqrt{2}$ + c(mean(x) - z*sdx, mean(x) + z*sdx) + }

Three Confidence Intervals for Normal(0,1)

```
> x1 = rnorm(100,0,1); y = cifn(x1) X'_1, X'_2, ..., X'_{loo}
> y
[1] -0.1624472 0.2295456
> x2 = rnorm(100,0,1); z = cifn(x2) x_1^2, x_2^2, ..., x_{loo}^2
> z
[1] -0.2167657 0.1752271 samples from Novad (0,1)
> x3 = rnorm(100,0,1); w = cifn(x3) x_1^2, x_2^3, \dots, x_{100}^3
> w
[1] -0.30436422 0.08762858
```

Does 0 belong to all the three confidence intervals?

Confidence Intervals Plots

The below is a plot of the three confidence intervals computed in the previous slide.

Confidence Intervals: 10 Trials

We generate 10 trials of 100 samples from Normal(0,1) and compute the confidence intervals using the function defined earlier.

```
earlier.

> normaldata = replicate(10, rnorm(100,0,1),
+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidata[1,]*cidata[2,]<0

> table(TRUEIN)
```

TRUEIN

```
FALSE TRUE
```

1 !

Confidence Intervals: 10 Trials

Confidence Intervals: 40 Trials

FALSE

3

TR.UF.

37

We generate 10 trials of 100 samples from Normal(0,1) and compute the confidence intervals using the function defined earlier.

```
> normaldata = replicate(40, rnorm(100,0,1),
+ simplify=FALSE)
> cidata = sapply(normaldata, cifn)
It is easy to check how many of them contain 0.
> TRUEIN = cidata[1,]*cidata[2,]<0
> table(TRUEIN)
TRUEIN
```

Confidence Intervals: 40 trials Plot

Confidence Intervals: 100 Trials

3

97

We generate 100 trials of 100 samples from Normal(0,1) and compute the confidence intervals using the function defined earlier.

```
> normaldata = replicate(100, rnorm(100,0,1),
+ simplify=FALSE)
> cidata = sapply(normaldata, cifn)
It is easy to check how many of them contain 0.
> TRUEIN = cidata[1,]*cidata[2,]<0</pre>
> table(TRUEIN)
TRUEIN
FALSE
       TR.UF.
```

Confidence Intervals: 100 Trials

Confidence Intervals

95% confidence interval for
$$\mu$$
 is $\left(-\frac{1.96\sigma}{\sqrt{n}} + \bar{X}, \frac{1.96\sigma}{\sqrt{n}} + \bar{X}\right)$

Meaning: for n large if we did m (large) repeated trials and computed the above interval for each trial then true mean would belong to approximately 95% of m intervals calculated.

Thus numerically the above meaning seems to hold for a Normal population.