Лабораторная работа №2

«Обнаружение аномалий»

Цель работы:

Получить практические навыки создания, обучения и применения искусственных нейронных сетей типа автокодировщик. Научиться загружать данные и проводить их предварительную обработку. Исследовать влияние архитектуры автокодировщика и количества эпох обучения на области в пространстве признаков, распознаваемые автокодировщиком после обучения. Научиться оценивать качество обучения автокодировщика на основе ошибки реконструкции и новых метрик EDCA. Научиться решать актуальную задачу обнаружения аномалий в данных с помощью автокодировщика как одноклассового классификатора.

Подготовка к работе:

1) Определить свой набор данных по таблице исходя из номера по журналу М:

Вариант (N)	0	1	2
Название набора	Cardio	Letter	WBC
данных (пате)			

$N = M \mod 3$

- 2) Подготовить программную среду Google Colaboratory для выполнения лабораторной работы:
 - Разрешить доступ к своим файлам на Google Диск (Содержание > Файлы > Подключить Google Диск);
 - Перенести библиотеку функций 'lab02_lib.py', необходимую для реализации лабораторной работы, в папку drive/MyDrive/Colab Notebooks/Lab2;
 - Создать в *Lab2* папку для результатов с именем *out*;
 - Перенести в *Lab2* файлы обучающей и тестовой выборки: *name_train.txt*, *name_test.txt*, где *name* название набора данных.

Задание 1:

- 1) В среде Google Colab создать новый блокнот (notebook). Импортировать необходимые для работы библиотеки и модули.
- 2) Сгенерировать индивидуальный набор двумерных данных в пространстве признаков с координатами центра (M, M), где M номер по журналу. Вывести полученные данные на рисунок и в консоль.

- 3) Создать и обучить автокодировщик AE1 простой архитектуры, выбрав небольшое количество эпох обучения. Зафиксировать в таблице вида табл.1 количество скрытых слоёв и нейронов в них.
- 4) Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки. Зафиксировать порог ошибки реконструкции порог обнаружения аномалий.
- 5) Создать и обучить второй автокодировщик AE2 с усложненной архитектурой, задав большее количество эпох обучения.
- 6) Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки. Зафиксировать второй порог ошибки реконструкции порог обнаружения аномалий.
- 7) Рассчитать характеристики качества обучения EDCA для AE1 и AE2. Визуализировать и сравнить области пространства признаков, распознаваемые автокодировщиками AE1 и AE2. Сделать вывод о пригодности AE1 и AE2 для качественного обнаружения аномалий.
- 8) Если автокодировщик AE2 недостаточно точно аппроксимирует область обучающих данных, то подобрать подходящие параметры автокодировщика и повторить шаги (6) (8).
- 9) Изучить сохраненный набор данных и пространство признаков. Создать тестовую выборку, состоящую, как минимум, из 4ёх элементов, не входящих в обучающую выборку. Элементы должны быть такими, чтобы AE1 распознавал их как норму, а AE2 детектировал как аномалии.
- 10) Применить обученные автокодировщики AE1 и AE2 к тестовым данным и вывести значения ошибки реконструкции для каждого элемента тестовой выборки относительно порога на график и в консоль.
- 11) Визуализировать элементы обучающей и тестовой выборки в областях пространства признаков, распознаваемых автокодировщиками AE1 и AE2.
- 12) Результаты исследования занести в таблицу:

Табл. 1 Результаты задания №1

$\mathbf{M} =$	Количество	Количество	Количество	Ошибка	Порог	Значение	Значение	Количество
	скрытых	нейронов в	эпох	MSE_stop	ошибки	показателя	показателя	обнаруженн
	слоев	скрытых	обучения		реконструк	Excess	Approx	ых
		слоях			ции			аномалий
AE1								
AE2								

- 13) Сделать выводы о требованиях к:
 - данным для обучения,
 - архитектуре автокодировщика,

- количеству эпох обучения,
- ошибке MSE_stop, приемлемой для останова обучения,
- ошибке реконструкции обучающей выборки (порогу обнаружения аномалий),
- характеристикам качества обучения EDCA одноклассового классификатора,

для качественного обнаружения аномалий в данных.

Задание 2:

- 1) Изучить описание своего набора реальных данных, что он из себя представляет;
- 2) Загрузить многомерную обучающую выборку реальных данных *name_train.txt*.
- 3) Вывести полученные данные и их размерность в консоли.
- 4) Создать и обучить автокодировщик с подходящей для данных архитектурой. Выбрать необходимое количество эпох обучения.
- 5) Зафиксировать ошибку MSE, на которой обучение завершилось. Построить график ошибки реконструкции обучающей выборки. Зафиксировать порог ошибки реконструкции порог обнаружения аномалий.
- 6) Сделать вывод о пригодности обученного автокодировщика для качественного обнаружения аномалий. Если порог ошибки реконструкции слишком велик, то подобрать подходящие параметры автокодировщика и повторить шаги (4) (6).
- 7) Изучить и загрузить тестовую выборку *name_test.txt*.
- 8) Подать тестовую выборку на вход обученного автокодировщика для обнаружения аномалий. Вывести график ошибки реконструкции элементов тестовой выборки относительно порога.
- 9) Если результаты обнаружения аномалий не удовлетворительные (обнаружено менее 70% аномалий), то подобрать подходящие параметры автокодировщика и повторить шаги (4) (9).
- 10) Параметры наилучшего автокодировщика и результаты обнаружения аномалий занести в таблицу:

Dataset	Количество	Количество	Количество	Ошибка	Порог ошибки	%
name	скрытых слоев	нейронов в	эпох	MSE_stop	реконструкции	обнаруженных
		скрытых слоях	обучения			аномалий

- 11) Сделать выводы о требованиях к:
 - данным для обучения,
 - архитектуре автокодировщика,
 - количеству эпох обучения,
 - ошибке MSE_stop, приемлемой для останова обучения,
 - ошибке реконструкции обучающей выборки (порогу обнаружения аномалий),

для качественного обнаружения аномалий в случае, когда размерность пространства признаков высока.

Контрольные вопросы

- 1) Что такое автокодировщик и какова особенность его архитектуры?
- 2) Для каких задач используется автокодировщик?
- 3) Что такое ошибка обучения MSE?
- 4) Что такое ошибка реконструкции и порог ошибки реконструкции?
- 5) Какой вывод об области, распознаваемой автокодировщиком, можно сделать на основе значений характеристик качества обучения EDCA (например, по Excess и Approx)?
- 6) Для каких прикладных областей задача обнаружения аномалий наиболее актуальна?
- 7) Как влияет архитектура автокодировщика на качество обнаружений аномалий?
- 8) Как влияет количество эпох обучения автокодировщика на качество обнаружений аномалий?
- 9) Как влияет порог ошибки реконструкции на качество обнаружений аномалий?