阿布都赛米·阿布都外力 学号: 2020182631 考试号: 180150129

实验名称: 分子重对接

实验目的:

- 1. 学会使用 Discover studio 进行半柔性和柔性重对接。
- 2.学会使用 CDOCKER, LIBDOCK, Flexible Docking 程序重对接并比较。

实验原理:

本实验使用 Discovery Studio 软件通过 CDOCKER, LIBDOCK 和 Flexible Docking 程序进行 3GEN 蛋白与自带的配体的重对接。

半柔性对接: 受体保持刚性, 配体则完全当作柔性分子进行处理, 当前的大多数分子对接软件都采取这种模式。

柔性对接:对接过程既考虑小分子柔性,又可考虑受体部分区域(如结合口袋中的 残基)的柔性。

基于 CHARMm 力场的 CDOCKER 半柔性对接程序使用确定性搜索算法。确定性搜索是通过初始状态确定下一状态的改变趋势,即向能量减小的方向进行。如果体系初始状态完全相同,当使用相同的参数进行构象搜索,就会到达相同的终态。这种方法在进行构象搜索时一般很难越过势垒,因此容易陷入局部最小值。CDOCKER 模拟退火的方法将各个构象在受体活性位点进行优化,从而使对接结果更加精确。

LIBDOCK 程序根据小分子构象与受体相互作用的热区(Hotspot)匹配的原理将这些构象刚性对接到受体的结合口袋中,其最大的优势在于速度快,可以并行运算,适合于对大规模数据库进行快速精确的虚拟筛选。

Flexible Docking 可以实现受体-配体的双柔性对接,模拟受体与配体的诱导契合效应,可以精细地研究受体-配体相互作用信息,适用于作用机理的研究。

Flexible Docking 计算过程:

本实验所用软件环境:

DS Version: 19.1.0.18287

PP Version: 19.1.0.1963

DS Client Version: 19.1.0.18287

OS Distribution: Windows

OS Version: 10.0.19044

一般流程:

大分子结构的准备:通过实验方法所测得的生物大分子三维结构或多或少存在一些缺陷,比如分辨率低导致模型质量不佳、晶体结构无 H 原子和电荷信息、在模型构建步骤中相对粗糙的力场带来的结构误差等,这就需要在做 SBDD 前对生物大分子(如蛋白)的三维结构进行准备和能量最小化。

实验步骤:

◆ 靶点结构的获取及准备

1. 查找靶点结构:本实验中搜索 3GEN 蛋白作为靶点。进入 PDB 网站 (https://www.rcsb.org/) ,搜索靶蛋白。本实验中搜索 3GEN,选择 3GEN,点击 Download

Files,再点击 PDB Format,下载靶蛋白结构文件。(如图所示)

2. 靶蛋白的准备:

去除晶胞:点击 Discovery Studio 软件上菜单栏上的 Structure→ Crystal Cell→ Remove Cell 进行晶胞的去除。

定义小分子配体: Discovery Studio 软件上,选上小分子配体,也就是单击 Ligand Groups, 再点击 Receptor-Ligand Interactions → View Interactions → Define Ligand: <undefined>来进行小分子配体的定义。

蛋白结构准备: Discovery Studio 软件上,点击 Macromolecules → Prepare Protein,设置参数如下,来进行蛋白结构的准备得到新窗口 3GEN_prep。接下来的操作都是在新的窗口当中进行。

定义结合位点: Discovery Studio 软件上,选上小分子配体,也就是单击 Ligand Groups, 再点击 Receptor-Ligand Interactions → Define and Edit Binding Site → From Current Selection 来进行结合位点的定义。

◆ 小分子配体的获取及准备

- 1. 配体小分子的获取:本实验中使用 3GEN 自带的配体。Discovery Studio 软件上,点击菜单栏上的 File→ New→ Molecule Window 创建新窗口,剪切 3GEN 自带的配体粘贴。
- 2. 小分子的准备和能量优化:点击 Discovery Studio 软件上的 Small Molecules→Prepare or Filter Ligands→Prepare Ligands 进行小分子的准备,设置参数如下。点击Discovery Studio 软件上的 Simulation → Change Forcefield → Apply Forcefield; 再点击

Discovery Studio 软件上的 Simulation→ Run Simulations→ Minimization 进行能量优化。设置参数如下:

◆ 半柔性分子对接

1. LIBDOCK 分子对接:确保当前窗口为准备好的大分子,即 3GEN_prep,删除配体,点击 Discovery Studio 软件上的 Receptor-Ligand Interactions → Dock Ligands → Dock Ligands (LIBDOCK) 进行 LIBDOCK 半柔性分子对接。设置参数如下:

2. CDOCKER 分子对接:确保当前窗口为准备好的大分子,即 3GEN_prep,删除配体,点击 Discovery Studio 软件上的 Receptor-Ligand Interactions → Dock Ligands → Dock Ligands (CDOCKER) 进行 CDOCKER 半柔性分子对接。设置参数如下:

◆ 柔性分子对接

确保当前窗口为准备好的大分子,即 3GEN_prep,删除配体,双击 Discovery Studio 软件上的 Protocols →Discovery Studio → Receptor-Ligand Interactions → Docking → Flexible Docking 进行 Flexible Docking 柔性分子对接。设置参数如下:

◆ 结果分析

- 1. RMSD 值计算:新建窗口,即点击 File→New→Molecule Window,将对接结果中的对接 pose 和原晶体结构中的小分子配体复制粘贴到新窗口中,把原晶体结构中的小分子配体设为参考分子。选中参考分子,依次选择菜单栏上的 Structure → RMSD → Set Reference 来设定参考分子。在需要计算的 pose 边上打勾(这里假设计算全部),并确保呈选中状态,依次选择菜单栏上的 Structure → RMSD → Heavy Atoms 进行 RMSD 值计算。
- 2. 对对接结果进行重打分:在 Discovery Studio 中打开对接结果窗口(应该是 3GEN窗口),点击 Receptor-Ligand Interactions → Dock Ligands → Score Ligand Poses 进行对配体poses 打分,设置如下图,会生成新窗口。在新窗口中,点击选上 Discovery Studio 软件菜单栏上的 View → Explorers → Protocols。再然后从 Protocols 窗口中双击 Discovery Studio → Receptor-Ligand Interactions → Scoring and Analysis → Analyze Ligand Poses 进行配体poses 分析,设置参数如下图。

实验结果:

1. 小分子的准备和能量优化的结果:

Status: Success Elapsed Time: 00:00:08

Summary: Spherical Cutoff method is used for electrostatics.

Name		Potential	(kcal/mol)	Waals	(kcal/mol)	RMS Gradient (kcal/(mol	RMS	Minimization Criteria
3GEN	3GEN-CHARMm	36.25290	-0.78927	4.95987	-41.06843	24.83471		CONJUG> Minimization exiting with gradient tolerance (0.0100000) satisfied.

2. LIBDOCK 分子对接的结果:

Status: Success Elapsed Time: 00:02:21

Summary: Input ligands: 1 Conformers generated: 52 Poses docked: 100 Poses

filtered: 69 Poses minimized: 31

3. LIBDOCK 分子对接的 RMSD 值计算的结果:

Heavy Atom RMSD to 3GEN 32

Name I	Reference	RMSD (A)	Name F	Reference	RMSD (A)	Name	Reference	RMSD (A)
3GEN 1	3GEN 32	0.1735	3GEN 59	3GEN 32	11.3117	3GEN 80	3GEN 32	3.3874
3GEN 7	3GEN 32	0.6876	3GEN 60	3GEN 32	3.5681	3GEN 85	3GEN 32	3.3914
3GEN 38	3GEN 32	7.3890	3GEN 63	3GEN 32	3.2734	3GEN 91	3GEN 32	9.0667
3GEN 39	3GEN 32	0.9175	3GEN 64	3GEN 32	3.3751	3GEN 93	3GEN 32	3.3918
3GEN 40	3GEN 32	3.4741	3GEN 65	3GEN 32	4.4569	3GEN 95	3GEN 32	11.0424
3GEN 41	3GEN 32	8.9469	3GEN 68	3GEN 32	3.3365	3GEN 97	3GEN 32	9.5115
3GEN 42	3GEN 32	3.2732	3GEN 69	3GEN 32	0.6875	3GEN 98	3GEN 32	10.3211
3GEN 43	3GEN 32	3.2962	3GEN 74	3GEN 32	8.1215	3GEN 99	3GEN 32	3.4550
3GEN 50	3GEN 32	8.4331	3GEN 76	3GEN 32	8.9682	3GEN 10	3GEN 32	8.2923
3GEN 52	3GEN 32	3.4042	3GEN 77	3GEN 32	11.0938			
3GEN 53	3GEN 32	9.6773	3GEN 79	3GEN 32	11.0721			

4. 对 LIBDOCK 分子对接结果进行重打分的结果:

Status: Success Elapsed Time: 00:00:14 Summary: Number of input ligands: 32

(2) 相互作用图: Residue Interaction Histograms

5. CDOCKER 分子对接的结果:

Status: Success Elapsed Time: 00:02:19

Summary: Input ligands: 1 Refined poses: 10

6. CDOCKER 分子对接的 RMSD 值计算的结果:

Heavy Atom RMSD to 3GEN Reference 11

Name	Reference	RMSD (A)	Name	Reference	RMSD (A)
3GEN 1	3GEN Reference 11	0.3078	3GEN 5	3GEN Reference 11	0.4968
3GEN 2	3GEN Reference 11	0.5395	3GEN 6	3GEN Reference 11	0.6081
3GEN 3	3GEN Reference 11	0.4952	3GEN 7	3GEN Reference 11	0.4474
3GEN 4	3GEN Reference 11	0.4802	3GEN 8	3GEN Reference 11	0.4644

 Name
 Reference
 RMSD (A)

 3GEN 9
 3GEN Reference 11
 0.5206

 3GEN 10
 3GEN Reference 11
 0.4332

7. 对 CDOCKER 分子对接结果进行重打分的结果:

Status: Success Elapsed Time: 00:00:12

Summary: Number of input ligands: 10

(2) 相互作用图: Residue Interaction Histograms

Residue Interaction Histograms

8. Flexible Docking 柔性分子对接的结果:

Status: Success Elapsed Time: 00:02:48

Summary: Side-Chain Conformations: 3GEN Forcefield: CHARMm Poses docked: 6

9. Flexible Docking 柔性分子对接的 RMSD 值计算的结果:

Heavy Atom RMSD to 3GEN-original 7

Name	Reference	RMSD (A)
3GEN-minim 1	3GEN-original 7	0.5484

3GEN-minim 2	3GEN-original 7	9.8311
3GEN-minim 3	3GEN-original 7	11.6764
3GEN-minim 4	3GEN-original 7	7.3178
3GEN-minim 5	3GEN-original 7	6.2607
3GEN-minim 6	3GEN-original 7	11.0410

讨论:

可以从各程序的重对接结果 RMSD 值看出, LIBDOCK 重对接结果中名为 3GEN 1 的 pose 最接近晶体构象。整体来看 CDOCKER 重对接结果中 poses 最接近晶体构象。