

Element Ireland, Unit D8 North City Business Park, North Road, Finglas, Dublin 11 Your Element Ireland Contact: Dónal Ó Faogáin (+353 861 746 367) E: donal.ofaogain@element.com

Stack Emissions Testing Report Commissioned by

Intel Ireland Ltd

Installation Name & Address

Intel Ireland Ltd
Collinstown Industrial Park
Leixlip
County Kildare
Ireland

Industrial Emissions Licence: P0207-04

Stack Reference

FAB 14 A159 Ammonia Exhaust No 23

Dates of the Monitoring Campaign

January

Job Reference Number

EMT04905

Report	Written	by
--------	---------	----

Neil Kelly Team Leader MCERTS Level 2 MM 16 1390 TE1 TE2 TE3 TE4

Report Approved by

Donal O Faogain Senior Team Leader MCERTS Level 2 MM 13 1259 TE1 TE2 TE3 TE4

Report Date	
4th June 2024	

Version

Version 2 - Lab Analysis Report CAT-AP-01

Signature of Report Approver

CONTENTS

TITLE PAGE

CONTENTS

EXECUTIVE SUMMARY

Monitoring Objectives	3
Monitoring Results	4
Monitoring Dates & Times	5
Process Details	6
Monitoring & Analytical Methods	7
Summary of Sampling Deviations	7
Sampling Location	8
Plant Photos / Sample Points	9

APPENDIX 1 - Monitoring Personnel & List of Equipment

APPENDIX 2 - Raw Data, Sampling Equations & Charts

Opinions and interpretations expressed herein are outside the scope of Element Ireland's ISO 17025 accreditation.

This test report shall not be reproduced, except in full, without the written approval of Element Ireland.

The testing performed fully meets the technical requirements in Irish EPA Guidance Note, AG2.

(Page 1 of 7)

MONITORING OBJECTIVES

Intel Ireland Ltd, Leixlip
FAB 14 A159 Ammonia Exhaust No 23
January

Overall Aim of the Monitoring Campaign

Element Ireland were commissioned by Intel Ireland Ltd to carry out stack emissions testing on the FAB 14 A159 Ammonia Exhaust No 23 at Leixlip.

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values (ELVs) as specified in the Site's Permit.

Special Requirements

There were no special requirements.

Target Parameters

Ammonia

(Page 2 of 7)

MONITORING RESULTS

Intel Ireland Ltd, Leixlip
FAB 14 A159 Ammonia Exhaust No 23
January

where MU = Measurement Uncertainty associated with the Result

		Concentration				Mass Emission			
Parameter	Units	Units Result MU Limit]	Units	Result	ми	Limit
			+/-					+/-	
Ammonia	1 mg/m³	### #VALUE!	######	10		g/hr			-
Water Vapour	% v/v	0.86	0.05						
Stack Gas Temperature	°C	12.00		•					
Stack Gas Velocity	m/s	9.00	0.14						
Volumetric Flow Rate (ACTUAL)	m³/hr	20613.6	984.9						
Volumetric Flow Rate (REF)	1 m³/hr	19508.3	932.0	41000					

NOTE: VOLUMETRIC FLOW RATE & VELOCITY DATA TAKEN FROM THE PRELIMINARY VELOCITY TRAVERSE.

 $^{^{\}rm 1}$ Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content.

(Page 3 of 7)

MONITORING DATE(S) & TIMES

Intel Ireland Ltd, Leixlip
FAB 14 A159 Ammonia Exhaust No 23
January

Parameter		Units	Concentration	Units	Mass Emission	Sampling Date(s)	Sampling Times	Duration mins
Ammonia	R1	mg/m³	### #VALUE!	g/hr		10/01/2023	12:25 - 13:42	92
Velocity Traverse	R1					10/01/2023	11:40 - 11:50	

All results are expressed at the respective reference conditions.

Intel Ireland Ltd Leixlip FAB 14 A159 Ammonia Exhaust No 23 Job Number: EMT04905, Version 1 Sample Date/s: 1st - 16th December 2022 Industrial Emissions Licence: P0207-04

(Page 4 of 7)

PROCESS DETAILS

Intel Ireland Ltd, Leixlip
FAB 14 A159 Ammonia Exhaust No 23
January

Standard Operating Conditions

Parameter	Value
Process Status	Ammonia Scrubber
Capacity (of 100%) and Tonnes / Hour	100%
Continuous or Batch Process	Continuous
Feedstock (if applicable)	Integrated Circuits
Abatement System	Wet Scrubber
Abatement System Running Status	On
Fuel	N/A
Plume Appearance	No Plume Visible

(Page 5 of 7)

MONITORING & ANALYTICAL METHODS

Intel Ireland Ltd, Leixlip
FAB 14 A159 Ammonia Exhaust No 23
January

		Monitoring			Analysis]		
Parameter	Standard	Technical Procedure	Sampling Status	Testing Lab	Analytical Procedure	Analytical Technique	Analysis Status	Analysis Lab	Overall Status	LOD (Average)
Ammonia	ISO 21877	CAT-TP-14	MCERTS	EET	A6	IC	Yes	RPS	Yes	0.025 mg/m ³
Water Vapour	EN 14790	CAT-TP-05	MCERTS	EET	CAT-TP-05	Gravimetric	MCERTS	EET	MCERTS	0.10 % v/v
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	MCERTS	EET	Pitot Tube and Thermocouple				MCERTS	1.2 m/s

ANALYSIS LABORATORIES

(with short name reference as appears in the table above)

		<u> </u>
Element (Stockport Lab - EET)	ISO 17025 Accreditation Number: 4279	
RPS Laboratories Ltd (RPS)	ISO 17025 Accreditation Number: 0605	

SUMMARY OF SAMPLING DEVIATIONS

Parameter	Run	Deviation
All	All	There are no deviations associated with the sampling employed.

Intel Ireland Ltd Leixlip FAB 14 A159 Ammonia Exhaust No 23 Job Number: EMT04905, Version 1 Sample Date/s: 1st - 16th December 2022 Industrial Emissions Licence: P0207-04

EET-RT-I (Version CS) Page 7 of 21

(Page 6 of 7)

SUITABILITY OF SAMPLING LOCATION

Duct Characteristics

Parameter	Units	Value
T	T	6' 1
Туре	-	Circular
Depth	m	0.90
Width	m	-
Area	m²	0.64
Port Depth	cm	28
Orientation of Duct	-	Vertical
Number of Ports	-	2
Sample Port Size	-	3" BSP

Location of Sampling Platform

General Platform Information	Value
Permanent / Temporary Platform	Permanent
Inside / Outside	Outside

Platform Details

Irish EPA Technical Guidance Note AG1 / EN 15259 Platform Requirements					
Sufficient working area to manipulate probe and operate the measuring instruments	Yes				
Platform has 2 levels of handrails (approx. 0.5m & 1.0m high)	Yes				
Platform has vertical base boards (approx. 0.25m high)	Yes				
Platform has chains / self closing gates at top of ladders	Yes				
There are no obstructions present which hamper insertion of sampling equipment	Yes				
Safe Access Available	Yes				
Easy Access Available	Yes				

Sampling Location / Platform Improvement Recommendations

The sampling location meets all the requirements specified in Irish EPA Guidance Note AG1 and EN 15259, and therefore there are no improvement recommendations.

EN 15259 Homogeneity Test Requirements

There is no requirement to perform a EN 15259 Homogeneity Test on this Stack.

Sampling Plane Validation Criteria (from EN 15259)

Criteria in EN 15259	Units	Traverse 1
Lowest Differential Pressure	Pa	69.0
Mean Velocity	m/s	9.00
Lowest Gas Velocity	m/s	8.87
Highest Gas Velocity	m/s	9.13
Ratio of Above	:1	1.03
Maximum Angle of Swirl	۰	2.00
No Local Negative Flow	-	Yes

(Page 7 of 7)

SAMPLE POINTS

APPENDIX CONTENTS

APPENDIX 1 - Stack Emissions Monitoring Personnel, List of Equipment & Methods and Technical Procedures Used

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK EMISSIONS MONITORING PERSONNEL

Position	Name	MCERTS Accreditation	MCERTS Number	Technical Endorsements	
Team Leader	Neil Kelly	MCERTS Level 2	MM 16 1390	TE1 TE2 TE3 TE4	
Trainee	Keith Mannion	MCERTS Trainee	MM 22 1719	None	

LIST OF EQUIPMENT

Extractive Sampling				
Equipment Type	Equipment I.D.			
Control Box DGM (1)	CAT 7.74			
Control Box DGM (2)	-			
Box Thermocouples (1)	CAT 3.103			
Box Thermocouples (2)	-			
Umbilical (1)	CAT 3.103			
Umbilical (2)	-			
Oven Box (1)	CAT 12.101			
Oven Box (2)	-			
Heated Probe (1)	CAT 5.54			
Heated Probe (2)	-			
Heated Probe (3)	-			
S-Pitot (1)	CAT 21S.73			
S-Pitot (2)	-			
L-Pitot	-			
Site Balance	CAT 17.68			
500g / 1Kg Check Weights	CAT 17.68			
Last Impinger Arm	-			
Callipers	CAT 23.30			
Tubes Kit Thermocouple	-			

Instrumental Analysers				
Equipment Type	Equipment I.D.			
SELECT Horiba Model (1)	-			
SELECT Horiba Model (2)	-			
SELECT Servomex Model	-			
SELECT NOX Analyser/Convertor	-			
ABB AO2020-URAS26	-			
Testo 350 XL	-			
SELECT Gas Conditioning	-			
SELECT FTIR	-			
Gasmet Sampling System	-			
SELECT FID Model	-			
SELECT Heated Head	-			
Mass Flow Controller (1)	-			
Mass Flow Controller (2)	-			
Mass View (1)	-			
Mass View (2)	-			
SELECT Logger 1	-			
SELECT Logger 2	-			
Bioaerosols Temperature Logger	-			
Electronic Refrigerator	-			

Miscellaneous Items				
Equipment Type	Equipment I.D.			
Digital Manometer (1)	CAT 3.275			
Digital Manometer (2)	-			
Digital Temperature Meter	CAT 3.275			
Stopwatch	CAT 14.97			
Barometer	CAT 13.39			
Stack Thermocouple (1)	CAT 4.0045			
Stack Thermocouple (2)	CAT 4.1118			
Stack Thermocouple (3)	-			
1m Heated Line (1)	-			
1m Heated Line (2)	-			
1m Heated Line (3)	-			
5m Heated Line (1)	-			
15m Heated Line (1)	-			
20m Heated Line (1)	-			
20m Heated Line (2)	-			
Dual Channel Heater Controller	-			
Single Channel Heater Controller	-			
Laboratory Balance				
Tape Measure	CAT 16.94			

METHODS & TECHNICAL PROCEDURES USED

Parameter	Standard	Technical Procedure	
Ammonia	ISO 21877	CAT-TP-14	
Water Vapour	EN 14790	CAT-TP-05	
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	

PRELIMINARY STACK SURVEY: CALCULATIONS

General Stack Details

Stack Details (from Traverse)	Units	Value
Stack Diameter / Depth, D	m	0.90
Stack Width, W	m	-
Stack Area, A	m²	0.64
Average Stack Gas Temperature, T _a	°C	12.0
Average Stack Gas Pressure	Pa	71.0
Average Stack Static Pressure, P _{static}	kPa	-0.018
Average Barometric Pressure, P _b	kPa	100.1
Average Pitot Tube Calibration Coefficient, Cp	-	0.83

Stack Gas Composition & Molecular Weights

Component		Conc	Conc	Conc	Volume	Molar	Density	Conc
		ppm	Dry	Wet	Fraction	Mass	kg/m³	kg/m³
			% v/v	% v/v	r	М	р	p _i
CO ₂	(Estimated)	-	0.06	0.06	0.0006	44.01	1.9635	0.00118
O ₂	(Estimated)	-	20.90	20.72	0.2090	32.00	1.4277	0.29838
N ₂		-	79.04	78.36	0.7904	28.01	1.2498	0.98788
Moisture (H₂O)		-	-	0.86	0.0086	18.02	0.8037	0.00690

Where: p = M / 22.41

 $p_i = r x p$

Calculation of Stack Gas Densities

Determinand	Units	Result
Dry Density (STP), P _{STD}	kg/m³	1.287
Wet Density (STP), P _{STW}	kg/m³	1.283
Dry Density (Actual), P Actual	kg/m³	1.218
Average Wet Density (Actual), P ActualW	kg/m³	1.214

Where: P_{STD} = sum of component concentrations, kg/m³ (not including water vapour)

 $P_{\rm STW}$ = sum of all wet concentrations / 100 x density, kg/m³ (including water vapour)

 $P_{Actual} = P_{STD} x (T_{STP} / (P_{STP})) x ((P_{static} + P_b) / T_a)$

 $P_{ActualW}$ (at each sampling point) = P_{STW} x (T_s / P_s) x (P_a / T_a)

Calculation of Stack Gas Volumetric Flowrate, Q

Duct gas flow conditions	Units	Actual	REF ¹
Temperature	°C	12.0	0.0
Total Pressure	kPa	100.1	101.3
Moisture	%	0.86	0.86

Gas Volumetric Flowrate (from Traverse)	Units	Result
Gas Volumetric Flowrate (Actual)	m³/hr	20613.6
Gas Volumetric Flowrate (STP, Wet)	m³/hr	19508.3
Gas Volumetric Flowrate (STP, Dry)	m³/hr	19340.7
Gas Volumetric Flowrate REF ¹	m³/hr	19508.3

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID)

(1 of 1)

Parameter		Units	Value
Date of Survey		-	10/01/2023
Time of Survey		-	11:40 - 11:50
Atmospheric Press	sure	kPa	100.1
Average Stack Sta	tic Pressure	Pa	-18
Result of Pitot Sta	gnation Test	-	Pass
Are Water Drople	ts Present?	-	Yes
Device Used	S-Type Pite	ot with KI	MO MP 210 (500Pa)

Parameter	Units	Value
Initial Pitot Leak Check	-	Pass
Final Pitot Leak Check	-	Pass
Orientation of Duct	-	Vertical
Pitot Tube, C _p	-	0.834
Number of Lines Available	-	2
Number of Lines Used	-	2

			!	Sampling Line A	١			:	Sampling Line B	}	
Traverse	Depth	ΔΡ	Temp	Wet Density	Velocity	Swirl	ΔΡ	Temp	Wet Density	Velocity	Swirl
Point	m	Pa	°C	kg/m³	m/s	•	Pa	°C	kg/m³	m/s	•
STATIC (Ur	nits: Pa)	-17.0					-18.0				
Mean		69.5	12.0	1.214	8.90		72.5	12.0	1.214	9.09	
1	0.13	70.0	12.0	1.214	8.94	2.0	73.0	12.0	1.214	9.13	1.0
2	0.77	69.0	12.0	1.214	8.87	1.0	72.0	12.0	1.214	9.06	2.0

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID) - MEASUREMENT UNCERTAINTY

(1 of 1)

Performance characteristics (Uncertainty Components)	Uncertainty	Value	Units
Standard Uncertainty on the coefficient of the Pitot Tube	u(k)	0.005	-
Standard Uncertainty associated with the mean local dynamic pressures	u(<u>∆pi</u>)	1.315	Pa
- Resolution	u(res)	0.00087	
- Calibration	u(cal)	0.525	
- Drift	u(drift)	0.083	
- Lack of Fit	u(fit)	0.119	
- Overall corrections to dynamic measurements	u(Cf)	0.728	
Standard uncertainty associated with the molar mass of the gas	u(M)	0.00003	-
- φO ₂ ,w	-	20.720	
- φCO ₂ ,w	-	0.059	
- Oxygen, dry	u(φO₂,d)	0.640	
- Carbon Dioxide, dry	u(φCO₂,d)	0.002	
- Water Vapour	u(φH₂O)	0.044	
- Oxygen, wet	u(φO ₂ ,w)	0.634	
- Carbon Dioxide, wet	u(φCO₂,w)	0.002	
Standard uncertainty associated with the stack temperature	u(Tc)	1.454	К
Standard uncertainty associated with the absolute pressure in the duct	u(pc)	175.695	Pa
- Atmospheric Pressure	u(patm)	175.692	
- Static Pressure	u(<u>pstat</u>)	0.930	
Standard uncertainty associated with the density in the duct	u(ρ)	0.00655	-
Standard uncertainty associated with the local velocities	u(vi)	0.101	Pa
Standard uncertainty associated with the mean velocity	u(<u>v</u>)	0.070	m/s
Standard uncertainty associated with the mean velocity (95% Confidence)	Uc(v)	0.138	m/s
Standard uncertainty associated with the mean velocity (95% Confidence), relative	Uc,rel(v)	1.53	%
Standard uncertainty associated with the volume flow rate (95% Confidence)	Uc(qV,w)	984.9	m³/hr
- u²(a)/a²	-	0.00053	
- u²(qV,w)/q²V,w	-	0.00059	
- u²(qV,w)	-	252481	
- u(qV,w)	-	502.5	
Standard uncertainty associated with the volume flow rate (95% Confidence), relative	Uc,rel(qV,w)	4.78	%

AMMONIA: RESULTS SUMMARY

Intel Ireland Ltd, Leixlip
FAB 14 A159 Ammonia Exhaust No 23

Sample Runs

arameter	Units	Run 1	
oncentration	mg/m³	#VALUE!	
ncertainty	±mg/m³	#VALUE!	
Mass Emission	g/hr	#VALUE!	
Uncertainty	±g/hr	#VALUE!	

#VALUE!

Parameter	Units Run 1
Water Vapour	% v/v 0.86
Jncertainty	±% v/v 0.05

Blank Runs

General Sampling Information

Parameter	Value
Standard	ISO 21877
Technical Procedure	CAT-TP-14
Name of Analytical Laboratory	RPS
Analytical Laboratory's Procedure	A6
ISO 17025 Accredited Analysis?	Yes
Date of Sample Analysis	INPUT
Probe Material	Titanium
Filter Housing Material	Borosilicate Glass
Impinger Material	Polyethylene
Absorption Solution	0.05 mol/l Sulphuric Acid
Positioning of Filter	Out Stack
Filter Size and Material	47mm Quartz Fibre
Number of Sampling Lines Used	2/2
Number of Sampling Points Used	4 / 4
Sample Point I.D.'s	A1, A2, B1, B2

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, without correction for water vapour content.

AMMONIA: ISOKINETIC SAMPLING CALCULATIONS

Test	Units	Run 1	
Absolute pressure of stack gas, P _s			
Barometric pressure, P _h	mmHg	750.8	
Stack static pressure, P _{static}	mmH₂O	-1.7	
$P_{s} = (P_{b} + (P_{static} / 13.6))$	mmHg	750.7	
Volume of water vapour collected, V _{wstd}	IIIIIIII	730.7	
Total mass collected in impingers (liquid trap)	σ σ	6.6	
Total mass collected in impingers (silica trap)	g	3.3	
Total mass of liquid collected, V _{Ic}	g	9.9	
$V_{wstd} = (0.001246)(V_{lc})$	g m³	0.0123	
Volume of gas metered dry, V _{mstd}	- ""	0.0123	
	3	1 5000	
Volume of gas sample through gas meter, $V_{\rm m}$ Gas meter correction factor, $Y_{\rm d}$	m³	1.5680	
	°c	0.9620	
Average dry gas meter temperature, T _m		13.6 29.7	
Average pressure drop across orifice, ΔH	mmH₂O		
$V_{mstd} = ((0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)) / (T_m + 273)$	m³	1.4236	
Moisture content, B _{wo} & R _{wv}	3	0.0006	
$B_{wo} = V_{wstd} / (V_{mstd} + V_{wstd})$	m³	0.0086	
B _{wo} as a percentage	% v/v	0.86	
Reported Water Vapour, checked with Tables in EN 14790, Rwv	% v/v	0.86	
Volume of gas metered wet, V _{mstw}	,	4	
$V_{mstw} = (V_{mstd})(100/(100 - R_{wv}))$	m³	1.4359	
Volume of gas metered at Oxygen Reference Conditions, V _{mstd@X%O2} & V _{mst}	:w@X%O ₂		
IED & Incinerates Hazardous Material? (Yes = no positive O ₂ correction)		No .	
% wet oxygen measured in gas stream, ACT%O _{2w}	% v/v	N/A	
% dry oxygen measured in gas stream, ACT%O _{2d}	% v/v	N/A	
% oxygen reference condition, REF%O₂	% v/v	N/A	
O_2 Reference Factor wet $(O_{2REFw}) = (21 - REF\%O_2) / (21 - ACT\%O_{2w})$	-	N/A	
O_2 Reference Factor dry $(O_{2REFd}) = (21 - REF\%O_2) / (21 - ACT\%O_{2d})$	-	N/A	
$V_{\text{mstw}@X\%\text{oxygen}} = (V_{\text{mstw}}) / (O_{2\text{REFw}})$	m³	N/A	
$V_{\text{mstd@X\%oxygen}} = (V_{\text{mstd}}) / (O_{2\text{REFd}})$	m³	N/A	
Molecular weight of dry gas stream, M _d			
CO ₂ (Estimate	ed) % v/v	0.06	
O ₂ (Estimate	ed) % v/v	20.80	
Total	% v/v	20.86	
N ₂	% v/v	79.14	
$M_d = 0.44(\%CO_2)+0.32(\%O_2)+0.28(\%N_2)$	g/gmol	28.84	
Molecular weight of stack gas (wet), M _s			
$M_s = M_d(1 - (R_{wv}/100)) + 18(R_{wv}/100)$	g/gmol	28.75	
Velocity of stack gas, V _s			
Pitot tube velocity constant, K _p	-	34.97	
Velocity pressure coefficient, C _p	-	0.88	
Average of velocity heads, ΔP _{avg}	mmH₂O	7.00	
Average square root of velocity heads, VΔP	√mmH₂O	2.65	
Average stack gas temperature, T _s	°C	14.0	
$V_s = ((K_p)(C_p)(V\Delta P)(VT_s + 273)) / (V(M_s)(P_s))$	m/s	9.34	
Total flow of stack gas: Actual (Q _a), Wet (Q _{stw}), Dry (Q _{std}), Wet@O _{2REF} (Q _{stv}	, _{O2}), Dry@O _{2RFF} (Q _{stdO} ,)	
Area of stack, A _s	m ²	0.64	
$Q_a = (60)(A_s)(V_s)$	m³/min	356.4	
Conversion factor (K/mm.Hg), C _f	-	0.3592	
$Q_{\text{stw}} = ((Q_a)(P_s)(C_f)) / ((T_s) + 273)$	m³/min	334.9	
$Q_{std} = ((Q_a)(P_s)(C_f)(1 - (R_{wv}/100))) / ((T_s) + 273)$	m³/min	332.0	
$Q_{\text{stwO}_2} = ((Q_a)(P_s)(C_f)) / ((T_s) + 273) / (O_{2REFw})$	m³/min	N/A	
$Q_{\text{stdQ}_2} = ((Q_a)(P_s)(C_f)(1 - (R_{ww}/100))) / ((T_s) + 273) / (O_{2REFd})$	m³/min	N/A	
Percent isokinetic, %I	,	, ,	
Nozzle diameter, D _n	mm	6.10	
Nozzle area, A _n	mm²	29.27	
Total sampling time, q	min	92	
$\%I = (4.6398E^6)(T_s+273)(V_{mstd}) / (P_s)(V_s)(A_n)(q)(1 - (R_{ww}/100))$	%	101.3	
	,,,		

AMMONIA: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1
Complianting		12.25 12.42
Sampling Times	-	12:25 - 13:42
Sampling Dates	-	10/01/2023
Sampling Device	-	ISO
Volume Sampled (REF)	m³	1.4359
Laboratory Result for Front Impingers	μg/ml	< INPUT
Laboratory Result for Back Impinger	μg/ml	INPUT
Volume in Front Impingers	ml	228.6
Volume in Back Impinger	ml	124.3
Mass in Front Impingers	μg	< #VALUE!
Mass in Back Impinger	μg	< #VALUE!
Total Mass Collected	μg	< #VALUE!
Calculated Concentration	mg/m³	< #VALUE!

Where: ISO stands for Manual Isokinetic Sampling Train

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	10/01/2023
Average Volume Sampled (REF)	m³	1.4359
Laboratory Result for Impingers	μg/ml	< INPUT
Volume in Impingers	ml	303.0
Total Mass Collected	μg	< #VALUE!
Calculated Concentration	mg/m³	< #VALUE!

AMMONIA: QUALITY ASSURANCE

(PAGE 1 OF 2)

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	16.4
Pre-Sampling Leak Rate	l/min	0.20
Post-Sampling Leak Rate	l/min	0.20
Allowable Leak Rate	l/min	0.33
Leak Test Acceptable	-	Yes
Absorption Efficiency	Units	Run 1
Absorption Efficiency	%	100.0
Allowable Absorption Efficiency	%	#VALUE!
Absorption Efficiency Acceptable	-	#VALUE!
### Water Droplets	l laita	Dum 1
water Dropiets	Units	Run 1
Are Water Droplets Present	-	No
MU (Concurrent Water Vapour)	Units	Run 1
Measurement Uncertainty (MU)	%	5.8
Allowable MU	%	20.0
MU Acceptable	%	Yes
o / noceptus/c		
Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes
Isokinetic Criterion Compliance	Units	Run 1
Isokinetic Variation	%	101.3
Allowable Isokinetic Range	%	95 - 115
Isokineticity Acceptable	-	Yes
Filter Temperatures	Units	Run 1
Maximum Filter Temperature	°C	160
Test Conditions	Units	Run 1
Ambient Temperature Recorded?	-	Yes

AMMONIA: QUALITY ASSURANCE

(PAGE 2 OF 2)

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	20.0
Pre-Sampling Leak Rate	l/min	0.20
Post-Sampling Leak Rate	l/min	0.20
Allowable Leak Rate	l/min	0.40
Leak Test Acceptable	-	Yes

Validity of Blank vs ELV	Units	Blank 1
Allowable Blank	mg/m³	1.0
Blank Acceptable	-	#VALUE!

Method Deviations

Nature of Deviation		Run Number		
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1			
There are no deviations associated with the sampling employed.	х			

AMMONIA: MEASUREMENT UNCERTAINTY CALCULATIONS

		Value			Standa		
Measured Quantities	Symbol	Run 1		Symbol	Units	Run 1	
Sampled Volume (Actual)	V _m	1.5680		uV _m	m³	0.0314	
Sampled Gas Temperature	T _m	286.6		uT _m	К	2.00	
Sampled Gas Pressure	ρ_{m}	100.1		uρ _m	kPa	0.50	
Sampled Gas Humidity	H _m	0.00		uH _m	% v/v	1.00	
Leak	L	1.22		uL	%	-	
Laboratory Result	L _r	8.90		uL _r	%	-	

Measured Quantities	Units	Run 1		Requirement of Sta
Sampled Volume (Actual)	%	2.00		≤2%
Sampled Gas Temperature	%	0.70		≤1%
Sampled Gas Pressure	%	0.50		≤1%
Sampled Gas Humidity	%	1.00		≤1%
Leak	%	1.22		≤2%
Laboratory Result	%	8.90		No Requiremer

		Und	ertainty i	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	1.4236		######	
Leak	L	mg/m³	######		1.00	
Laboratory Result	L _r	mg/m³	######		1.00	

		ι
Measured Quantities	Units	Run 1
Sampled Volume (STP)	mg/m³	######
Leak	mg/m³	######
Laboratory Result	mg/m³	######

	Oxygen Correction Part of MU Budget					
Measured Quantities	Units	Run 1				
O₂ Correction Factor	-	N/A				
Stack Gas O₂ Content	% v/v	N/A				
MU for O₂ Correction	-	N/A				
Overall MU For O ₂ Measurement	%	N/A				

Parameter	Units	Run 1
	/ 3	
Combined uncertainty	mg/m³	######
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	######
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	######
Reported Uncertainty	mg/m³	######
		_
Expanded uncertainty (95% confidence), without Oxygen Correction	%	######
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	######
Reported Uncertainty	%	######

VERSION HISTORY

Version Number	Record of changes made within this version of the document
V1	The original document issued to the client