Министр науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

Лабораторная работа № 1

По дисциплине «Прикладная математика» Минимизация одномерной функции без производной

4 семестр

4 вариант

Выполнили: Шуляк Геогрий Владимирович

M32031

Климачёва Екатерина Николаевна М32041

Проверила: Москаленко Мария Александровна

Исходная функция:

$$y = \ln(x)^2 + 1 - \sin(x)$$

Описание методов:

1. Метод дихотомии

На каждом шаге процесса поиска делим отрезок [a;b] пополам, $x=\frac{a+b}{2}$ - координата середины отрезка [a;b]. Вычисляем значение функции F(x) в окрестности $\pm \xi$ вычисленной точки x, т.е. $F_1=F(x-\xi)$, $F_2=F(x+\xi)$. Сравниваем F_2 и F_2 и отбрасываем одну из половинок отрезка [a;b]. Если $F_1 < F_2$, то отбрасываем отрезок [x;b], тогда b=x. Иначе отбрасываем отрезок [a;x], тогда a=x. Деление отрезка [a;b] продолжается, пока его длина не станет меньше заданной точности ξ , т.е. $|b-a| \le \xi$.

Интервал неопределенности на каждой итерации сокращается примерно в два раза. На каждой итерации функция вызывается дважды.

2. Метод золотого сечения

Точка x осуществляет золотое сечение отрезка [a;b], если $\frac{b-a}{b-x} = \frac{b-x}{x-a} = \varphi = \frac{1+\sqrt{5}}{2}$. x_1 - точка золотого сечения отрезка, x_2 - симметричная ей точка. За одну итерацию интервал неопределенности уменьшается в $\varphi = \frac{1+\sqrt{5}}{2} = 1.618$ раз. На каждом шаге,

кроме первого, необходимо вычислять значение только в одной точке, вторая берется из предыдущего шага.

3. Метод Фибоначчи

Это улучшение реализации поиска с помощью метода золотого сечения. Подобно методу золотого сечения, он требует двух вычислений функции на первой итерации, а на каждой последующей только по одному. Однако этот метод отличается от метода золотого сечения тем, что коэффициент сокращения интервала неопределенности меняется от итерации к итерации. При этом количество вызовов функций определяется заранее. На k-ой итерации точки рассчитываются по формуле

$$x_k^1 = a_k + \frac{F_{n-k-1}}{F_{n-k+1}}(b_k - a_k), x_k^2 = a_k + \frac{F_{n-k}}{F_{n-k+1}}(b_k - a_k),$$
 где $k = 1, 2, ..., n-1; n-3$ заданное общее число вычислений функции.

4. Метод парабол

В методе парабол предлагается аппроксимировать оптимизируемую функцию f(x) с помощью квадратичной функции $p(x) = ax^2 + bx + c$. Пусть имеются три точки $x_1 < x_2 < x_3$ такие, что интервал $[x_1, x_3]$ содержит точку минимума функции f. Тогда коэффициенты аппроксимирующей параболы a, b, c могут быть найдены путем решения системы линейных уравнений:

$$ax_i^2 + bx_i + c = f_i = f(x_i), i = 1, 2, 3$$

Минимум такой параболы равен

$$u = -\frac{b}{2a} = x_2 - \frac{(x_2 - x_1)^2 (f_2 - f_3) - (x_2 - x_3)^2 (f_2 - f_1)}{2[(x_2 - x_1)(f_2 - f_3) - (x_2 - x_3)(f_2 - f_1)]}$$

Если $f_2 < f_1$ и $f_2 < f_3$, то точка u гарантированно попадает в интервал $[x_1, x_3]$. Таким образом, внутри интервала $[x_1, x_3]$ определены две точки x_2 и u, с помощью сравнения значений функции f в которых можно сократить интервал поиска.

5. Метод Брента

В данном методе на каждой итерации отслеживаются значения в шести точках (не обязательно различных): a, c, x, w, v, u. Точки a, c задают текущий интервал поиска решения, x – точка, соответствующая наименьшему значению функции, a – точка, соответствующая второму снизу значению функции, v – предыдущее значение w. В отличие от метода парабол, в методе Брента аппроксимирующая парабола строится с помощью трех наилучших точек x, w, v (в случае, если эти три точки различны и значения в них также различны). При этом минимум аппроксимирующей параболы u принимается в качестве следующей точки оптимизационного процесса, если:

- u попадает внутрь интервала [a, c] и отстоит от границ интервала не менее, чем на ε ;
- u отстоит от точки x не более, чем на половину от длины предпредыдущего шага.

Если точка u отвергается, то следующая точка находится с помощью золотого сечения большего из интервалов [a, x] и [x, c].

Сравнение методов:

Для отрезка [6; 9], значения ε = 1e-3 и n = 19 (для метода Фибоначчи).

1. Метод дихотомии

i	a-b	$\frac{\Delta i}{\Delta i - 1}$
1	3.0	3.0
2	1.500333333333333	0.5001111111111113
3	0.75050000000000006	0.500222172850478
4	0.37558333333333405	0.500444148345548
5	0.1881250000000012	0.5008875083203927
6	0.094395833333333434	0.5017718715393156
7	0.04753125000000136	0.5035312293092122
8	0.0240989583333333975	0.5070129300898522
9	0.012382812500001172	0.5138318564945238
10	0.006524739583333883	0.5269190325972605
11	0.003595703125000682	0.5510876072640772
12	0.0021311848958340818	0.5927032409923101
13	0.0013989257812507816	0.6564075148924533
14	0.0010327962239591315	0.7382780686447189

Количество вызовов функции: 28

2. Золотое сечение

i	a-b	$\frac{\Delta i}{\Delta i - 1}$
1	3.0	3.0
2	1.8541019662496847	0.6180339887498949
3	1.1458980337503153	0.6180339887498947
4	0.7082039324993694	0.6180339887498952
5	0.43769410125094677	0.6180339887498951
6	0.27050983124842265	0.6180339887498941
7	0.16718427000252323	0.6180339887498935
8	0.10332556124589853	0.6180339887498931
9	0.0638587087566238	0.6180339887498908
10	0.03946685248927384	0.6180339887498916
11	0.024391856267349965	0.6180339887499033
12	0.015074996221924764	0.6180339887499089
13	0.00931686004542609	0.618033988749917
14	0.005758136176499562	0.6180339887499323
15	0.003558723868927416	0.618033988749951
16	0.0021994123075730343	0.6180339887499976
17	0.0013593115613552698	0.6180339887500298

Количество вызовов функции: 19

3. Метод Фибоначчи:

i	a-b	$\frac{\Delta i}{\Delta i - 1}$
1	3.0	3.0
2	1.8541018895001198	0.6180339631667066
3	1.1458981104998802	0.618034055727554
4	0.7082037790002396	0.6180338134001256

5	0.4376943314996406	0.6180344478216807
6	0.2705094475005989	0.6180327868852489
7	0.16718488399904174	0.6180371352785067
8	0.10332456350155717	0.6180257510729821
9	0.06386032049748458	0.6180555555555012
10	0.039464243004072586	0.6179775280900298
11	0.024396077493411994	0.6181818181814458
12	0.015068165510660592	0.6176470588245038
13	0.009327911982751402	0.6190476190450648
14	0.005740253527909189	0.6153846153912806
15	0.003587658454842213	0.6249999999823996
16	0.0021525950730669763	0.6000000000450568
17	0.0014350633817752367	0.6666666665415089
18	0.0014350633817752367	1.0
19	8.869186047446576E-4	0.6180344478217402

Количество вызовов функции: 22

4. Метод парабол

Количество итераций: 7

Количество вызовов функции: 10

5. Метод Брента

Количество итераций: 11

Количество вызовов функции: 12

Результаты вычислений:

Метод дихотомии: 7.587230367024739

Метод золотого сечения: 7.58705169842816

Метод Фибоначчи: 7.587284785929425

Метод парабол: 7.587505745902618

Метод Брента: 7.58722817871571

Проверка для других точностей:

 $\xi = 0,01$

[a;b] = [6;9]

Название метода	Значение минимума	Количество итераций	Количество вызовов функции
Дихотомия	7.586233723958333	10	20
Золотое сечение	7.588250565023975	12	14
Фибоначчи	7.588471969719599	14	17
Парабола	7.587505745902618	7	10
Брент	7.585239356036071	8	9

$$\xi = 0,0001$$

$$[a;b] = [6;9]$$

Название метода	Значение минимума	Количество итераций	Количество вызовов функции
Дихотомия	7.587236373138428	17	34
Золотое сечение	7.587235551998698	22	24
Фибоначчи	7.587240894232956	23	26
Парабола	7.587227145902841	9	12
Брент	7.587201954414182	8	9

Многомодальная функция:

Для проверки работоспособности алгоритмов на многомодальной функции была взята функция $y = ln(x)^2 + 1 - sin(x)$. И значения на отрезке [43; 250]. На данном отрезке только один минимум x = 45.509, функция не является унимодальной, так как

отрезок [43; 45.509] убывает монотонно, то отрезок [45.509; 250] не возрастает монотонно. После запуска всех методов выяснилось, что методы дихотомии, золотого сечения и Фибоначчи смогли найти минимум на данном промежутке, но все три значения были разные, и ни один из них не совпадал с истинным минимумом. А методы парабол и Брента не отработали.