Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 122.6 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen \ 1B/Oppgave 1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E 656.72 656.71 Bølgelengde (nm) 656.70 656.69 656.68 0 10 20 30 40 50 60 70 80

Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 5.26, tilsynelatende blå størrelseklass $m_B = 7.51$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 5.26, tilsynelatende blå størrelseklass $m_B = 6.51$

Stjerna C: Tilsynelatende visuell størrelseklasse m₋V = 10.46, tilsynelatende

blå størrelseklass m_B = 12.71

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 10.46, tilsynelatende blå størrelseklass $m_B = 11.71$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.79 og store halvakse a=30.74 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.79 og store halvakse a=99.38 AU.

Filen 1F.txt

Ved bølgelengden 458.36 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

5.80 - 5.60 - 5.20 - 5.00 - 5.00 - 6.

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

ò

10

Gass-sky A har masse på 8.00 solmasser, temperatur på 35.40 Kelvin og tetthet 5.23e-21 kg per kubikkmeter

30

40

Observasjonstid (dager)

50

60

70

20

Gass-sky B har masse på 22.40 solmasser, temperatur på 52.90 Kelvin og tetthet 5.08e-21 kg per kubikkmeter

Gass-sky C har masse på 22.80 solmasser, temperatur på 49.40 Kelvin og

tetthet 6.16e-21 kg per kubikkmeter

Gass-sky D har masse på 23.50 solmasser, temperatur på 15.10 Kelvin og tetthet 1.59e-20 kg per kubikkmeter

Gass-sky E har masse på 19.00 solmasser, temperatur på 55.70 Kelvin og tetthet 2.25e-22 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE B) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE C) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

STJERNE D) stjernas overflate består hovedsaklig av helium

STJERNE E) kjernen består av karbon og oksygen og er degenerert

Filen 1L.txt

Stjerne A har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 9.01

Stjerne B har spektralklasse B6 og visuell tilsynelatende størrelseklasse m_V = 6.54

Stjerne C har spektralklasse F5 og visuell tilsynelatende størrelseklasse m_V = 4.70

Stjerne D har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = 6.54

Stjerne E har spektralklasse K2 og visuell tilsynelatende størrelseklasse m_V = 2.96

Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning)

$Filen~2A/Oppgave 2A_Figur 1.png$

Figur 1 10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

3

2 ·

1 -

i

ź

3

Figur 2 10 9 8 y-posisjon (buesekunder) 7 6 5

5

x-posisjon (buesekunder)

9

10

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 1.078999999999999591438 AU.

Tangensiell hastighet er 33427.951839207104058005 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=3.394 AU.

Kometens avstand fra jorda i punkt 2 er r2=5.515 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=17.190.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9652 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00081 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=930.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9893 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 673.80 nm.

Filen 4A.txt

Stjernas masse er 6.36 solmasser.

Stjernas radius er 0.86 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 200 -400 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: $13.44~\mathrm{millioner}~\mathrm{K}$

Filen 4G.txt

Massen til det sorte hullet er 4.09 solmasser.

r-koordinaten til det innerste romskipet er
r $=12.25~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=23.42~\mathrm{km}.$