

# MAT1320-Linear Algebra Lecture Notes

Matrices

Mehmet E. KÖROĞLU Fall 2024

YILDIZ TECHNICAL UNIVERSITY, DEPARTMENT OF MATHEMATICS  ${\it mkoroglu@yildiz.edu.tr}$ 

#### Table of contents

- 1. Matrices
- 2. Matrix Addition and Scalar Multiplication
- 3. Summation Symbol
- 4. Matrix Multiplication
- 5. Transpose of a Matrix
- 6. Square Matrices
- 7. Diagonal and Trace
- 8. Identity Matrix, Scalar Matrices
- 9. Powers of Matrices, Polynomials in Matrices
- 10. Invertible (Nonsingular) Matrices

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a rectangular array of scalars usually presented in the following form:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a rectangular array of scalars usually presented in the following form:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

The rows of such a matrix A are the m horizontal lists of scalars:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{pmatrix}, \dots, \begin{pmatrix} a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a rectangular array of scalars usually presented in the following form:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

The rows of such a matrix A are the m horizontal lists of scalars:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{pmatrix}, \dots, \begin{pmatrix} a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

and the columns of A are the n vertical lists of scalars:

$$\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

Note that the element  $a_{ij}$ , called the ij-entry or ij-element, appears in row i and column j. We frequently denote such a matrix by simply writing  $A = [a_{ij}]$ .

- Note that the element  $a_{ij}$ , called the ij-entry or ij-element, appears in row i and column j. We frequently denote such a matrix by simply writing  $A = [a_{ij}]$ .
- A matrix with m rows and n columns is called an m by n matrix, written m × n. The pair of numbers m and n is called the size of the matrix.

- Note that the element  $a_{ij}$ , called the ij-entry or ij-element, appears in row i and column j. We frequently denote such a matrix by simply writing  $A = [a_{ij}]$ .
- A matrix with m rows and n columns is called an m by n matrix, written m × n. The pair of numbers m and n is called the size of the matrix.
- Two matrices A and B are equal, written A = B, if they have the same size and if corresponding elements are equal. Thus, the equality of two  $m \times n$  matrices is equivalent to a system of mn equalities, one for each corresponding pair of elements.

 A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is called a column matrix or column vector.

- A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is called a column matrix or column vector.
- A matrix whose entries are all zero is called a zero matrix and will usually be denoted by 0.

- A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is called a column matrix or column vector.
- A matrix whose entries are all zero is called a zero matrix and will usually be denoted by 0.
- Matrices whose entries are all real numbers are called real matrices and are said to be matrices over R.

- A matrix with only one row is called a row matrix or row vector, and a matrix with only one column is called a column matrix or column vector.
- A matrix whose entries are all zero is called a zero matrix and will usually be denoted by 0.
- Matrices whose entries are all real numbers are called real matrices and are said to be matrices over R.
- Analogously, matrices whose entries are all complex numbers are called complex matrices and are said to be matrices over
   C. This text will be mainly concerned with such real matrices.

## **Example**

The rectangular array  $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$  is a  $2 \times 3$  matrix.

# **Example**

The rectangular array  $A=\begin{pmatrix}1&2&3\\3&1&2\end{pmatrix}$  is a  $2\times 3$  matrix. Its rows are  $\begin{pmatrix}1&2&3\end{pmatrix} \text{ and } \begin{pmatrix}3&1&2\end{pmatrix},$ 

# Example

The rectangular array  $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$  is a  $2 \times 3$  matrix. Its rows are

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
 and  $\begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$ ,

and its columns are

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
,  $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ ,  $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ .

# Example

The rectangular array  $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$  is a  $2 \times 3$  matrix. Its rows are

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$
 and  $\begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$ ,

and its columns are

$$\begin{pmatrix}1\\3\end{pmatrix},\begin{pmatrix}2\\1\end{pmatrix},\begin{pmatrix}3\\2\end{pmatrix}.$$

#### **Example**

The 2 × 4 zero matrix is the matrix  $0 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ .

Find 
$$x, y, z, t$$
 such that  $\begin{pmatrix} x+y & 3z+t \\ x-y & z-t \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$ .

#### **Example**

Find x, y, z, t such that  $\begin{pmatrix} x+y & 3z+t \\ x-y & z-t \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$ . By definition of equality of matrices, the four corresponding entries must be equal.

#### **Example**

Find x, y, z, t such that  $\begin{pmatrix} x+y & 3z+t \\ x-y & z-t \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$ . By definition of equality of matrices, the four corresponding entries must be equal. Thus,

$$x + y = 2$$
,  $3z + t = 1$ ,  
 $x - y = 4$ ,  $z - t = 3$ .

#### **Example**

Find x, y, z, t such that  $\begin{pmatrix} x+y & 3z+t \\ x-y & z-t \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$ . By definition of equality of matrices, the four corresponding entries must be equal. Thus,

$$x + y = 2$$
,  $3z + t = 1$ ,  
 $x - y = 4$ ,  $z - t = 3$ .

Solving the above system of equations yields

$$x = 3$$
,  $y = -1$ ,  $z = 1$  and  $t = -2$ .

Matrix Addition and Scalar

Multiplication

Let  $A = [a_{ij}]$  and  $B = [b_{ij}]$  be two matrices with the same size, say  $m \times n$  matrices.

Let  $A = [a_{ij}]$  and  $B = [b_{ij}]$  be two matrices with the same size, say  $m \times n$  matrices. The sum of A and B, written A + B, is the matrix obtained by adding corresponding elements from A and B.

Let  $A = [a_{ij}]$  and  $B = [b_{ij}]$  be two matrices with the same size, say  $m \times n$  matrices. The sum of A and B, written A + B, is the matrix obtained by adding corresponding elements from A and B. That is,

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}.$$

The product of the matrix A by a scalar k, written k.A or simply kA, is the matrix obtained by multiplying each element of A by k.

The product of the matrix A by a scalar k, written k.A or simply kA, is the matrix obtained by multiplying each element of A by k. That is,

$$kA = \begin{pmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \dots & \dots & \dots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{pmatrix}.$$

The product of the matrix A by a scalar k, written k.A or simply kA, is the matrix obtained by multiplying each element of A by k. That is,

$$kA = \begin{pmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \dots & \dots & \dots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{pmatrix}.$$

#### **Notes:**

• Observe that A + B and kA are also  $m \times n$  matrices.

The product of the matrix A by a scalar k, written k.A or simply kA, is the matrix obtained by multiplying each element of A by k. That is,

$$kA = \begin{pmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \dots & \dots & \dots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{pmatrix}.$$

#### **Notes:**

- Observe that A + B and kA are also  $m \times n$  matrices.
- We also define -A = (-1) A and A B = A + (-1) B. The matrix -A is called the negative of the matrix A, and the matrix A B is called the difference of A and B.

The product of the matrix A by a scalar k, written k.A or simply kA, is the matrix obtained by multiplying each element of A by k. That is,

$$kA = \begin{pmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \dots & \dots & \dots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{pmatrix}.$$

#### **Notes:**

- Observe that A + B and kA are also  $m \times n$  matrices.
- We also define -A = (-1)A and A B = A + (-1)B. The matrix -A is called the negative of the matrix A, and the matrix A B is called the difference of A and B.
- The sum of matrices with different sizes is not defined.

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ .

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then

$$A + B$$

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then 
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix}$$

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix} = \begin{pmatrix} 5 & 4 & 11 \\ 1 & 1 & -2 \end{pmatrix}$$

#### **Example**

3A

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix} = \begin{pmatrix} 5 & 4 & 11 \\ 1 & 1 & -2 \end{pmatrix}$$

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix} = \begin{pmatrix} 5 & 4 & 11 \\ 1 & 1 & -2 \end{pmatrix}$$

$$3A = \begin{pmatrix} 3(1) & 3(-2) & 3(3) \\ 3(0) & 3(4) & 3(5) \end{pmatrix}$$

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix} = \begin{pmatrix} 5 & 4 & 11 \\ 1 & 1 & -2 \end{pmatrix}$$

$$3A = \begin{pmatrix} 3(1) & 3(-2) & 3(3) \\ 3(0) & 3(4) & 3(5) \end{pmatrix} = \begin{pmatrix} 3 & -6 & 9 \\ 0 & 12 & 15 \end{pmatrix}$$

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix} = \begin{pmatrix} 5 & 4 & 11 \\ 1 & 1 & -2 \end{pmatrix}$$

$$3A = \begin{pmatrix} 3(1) & 3(-2) & 3(3) \\ 3(0) & 3(4) & 3(5) \end{pmatrix} = \begin{pmatrix} 3 & -6 & 9 \\ 0 & 12 & 15 \end{pmatrix}$$

$$2A - 3B$$

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix} = \begin{pmatrix} 5 & 4 & 11 \\ 1 & 1 & -2 \end{pmatrix}$$

$$3A = \begin{pmatrix} 3(1) & 3(-2) & 3(3) \\ 3(0) & 3(4) & 3(5) \end{pmatrix} = \begin{pmatrix} 3 & -6 & 9 \\ 0 & 12 & 15 \end{pmatrix}$$

$$2A - 3B = \begin{pmatrix} 2 & -4 & 6 \\ 0 & 8 & 10 \end{pmatrix} + \begin{pmatrix} -12 & -18 & -24 \\ -3 & 9 & 21 \end{pmatrix}$$

Let 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 4 & 5 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 4 & 6 & 8 \\ 1 & -3 & -7 \end{pmatrix}$ . Then
$$A + B = \begin{pmatrix} 1+4 & -2+6 & 3+8 \\ 0+1 & 4+(-3) & 5+(-7) \end{pmatrix} = \begin{pmatrix} 5 & 4 & 11 \\ 1 & 1 & -2 \end{pmatrix}$$

$$3A = \begin{pmatrix} 3(1) & 3(-2) & 3(3) \\ 3(0) & 3(4) & 3(5) \end{pmatrix} = \begin{pmatrix} 3 & -6 & 9 \\ 0 & 12 & 15 \end{pmatrix}$$

$$2A - 3B = \begin{pmatrix} 2 & -4 & 6 \\ 0 & 8 & 10 \end{pmatrix} + \begin{pmatrix} -12 & -18 & -24 \\ -3 & 9 & 21 \end{pmatrix}$$

$$= \begin{pmatrix} -10 & -22 & -18 \\ -3 & 17 & 31 \end{pmatrix}$$

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### **Theorem**

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### **Theorem**

$$(A+B)+C = A+(B+C)$$

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### **Theorem**

- (A+B)+C = A+(B+C)
- A + 0 = 0 + A = A

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### **Theorem**

- (A+B)+C = A+(B+C)
- A + 0 = 0 + A = A
- A + (-A) = (-A) + A = 0

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### Theorem

- (A+B)+C = A+(B+C)
- A + 0 = 0 + A = A
- A + (-A) = (-A) + A = 0
- A + B = B + A

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### **Theorem**

$$(A+B)+C = A+(B+C)$$

$$k(A+B) = kA + kB$$

- A + 0 = 0 + A = A
- A + (-A) = (-A) + A = 0
- A + B = B + A

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### **Theorem**

$$(A+B)+C = A+(B+C)$$

• 
$$A + 0 = 0 + A = A$$

• 
$$A + (-A) = (-A) + A = 0$$

• 
$$A + B = B + A$$

• 
$$k(A+B) = kA + kB$$

$$\bullet (k+k')A = kA + k'A$$

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### Theorem

$$(A+B)+C = A+(B+C)$$

• 
$$A + 0 = 0 + A = A$$

• 
$$A + (-A) = (-A) + A = 0$$

• 
$$A + B = B + A$$

• 
$$k(A+B) = kA + kB$$

$$\bullet (k+k')A = kA + k'A$$

$$\bullet (kk') A = k (k'A)$$

Basic properties of matrices under the operations of matrix addition and scalar multiplication follow.

#### Theorem

$$(A+B)+C = A+(B+C)$$

• 
$$A + 0 = 0 + A = A$$

• 
$$A + (-A) = (-A) + A = 0$$

• 
$$A + B = B + A$$

• 
$$k(A+B) = kA + kB$$

$$\bullet (k+k')A = kA + k'A$$

$$\bullet (kk') A = k (k'A)$$

$$\bullet \quad 1 \cdot A = A$$

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol  $\sum$  (the Greek capital letter sigma).

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol  $\sum$  (the Greek capital letter sigma).

• Suppose f(k) is an algebraic expression involving the letter k. Then

$$\sum_{k=1}^{n} f(k) = f(1) + f(2) + \ldots + f(n).$$

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol  $\sum$  (the Greek capital letter sigma).

• Suppose f(k) is an algebraic expression involving the letter k. Then

$$\sum_{k=1}^{n} f(k) = f(1) + f(2) + \ldots + f(n).$$

■ The letter *k* is called the index, and 1 and *n* are called, respectively, the lower and upper limits.

Before we define matrix multiplication, it will be instructive to first introduce the summation symbol  $\sum$  (the Greek capital letter sigma).

• Suppose f(k) is an algebraic expression involving the letter k. Then

$$\sum_{k=1}^{n} f(k) = f(1) + f(2) + \ldots + f(n).$$

- The letter *k* is called the index, and 1 and *n* are called, respectively, the lower and upper limits.
- We also generalize our definition by allowing the sum to range from any integer  $n_1$  to any integer  $n_2$ . That is, we define

$$\sum_{k=n_1}^{n_2} f(k) = f(n_1) + f(n_1+1) + f(n_1+2) + \dots + f(n_2)$$

1. 
$$\sum_{k=1}^{5} x_k = x_1 + x_2 + x_3 + x_4 + x_5$$

- 1.  $\sum_{k=1}^{5} x_k = x_1 + x_2 + x_3 + x_4 + x_5$ <br/>2.  $\sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$

1. 
$$\sum_{k=1}^{5} x_k = x_1 + x_2 + x_3 + x_4 + x_5$$

2. 
$$\sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

3. 
$$\sum_{j=2}^{5} j^2 = 2^2 + 3^2 + 4^2 + 5^2 = 54$$

1. 
$$\sum_{k=1}^{5} x_k = x_1 + x_2 + x_3 + x_4 + x_5$$

2. 
$$\sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

3. 
$$\sum_{j=2}^{5} j^2 = 2^2 + 3^2 + 4^2 + 5^2 = 54$$

4. 
$$\sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

1. 
$$\sum_{k=1}^{5} x_k = x_1 + x_2 + x_3 + x_4 + x_5$$

2. 
$$\sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

3. 
$$\sum_{j=2}^{5} j^2 = 2^2 + 3^2 + 4^2 + 5^2 = 54$$

4. 
$$\sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

5. 
$$\sum_{k=1}^{p} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + a_{i3} b_{3j} + \dots + a_{ip} b_{pj}$$

■ The product of matrices *A* and *B*, written *AB*, is somewhat complicated. For this reason, we first begin with a special case.

- The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin with a special case.
- The product AB of a row matrix  $A = [a_i]$  and a column matrix  $B = [b_i]$  with the same number of elements is defined to be the scalar (or  $1 \times 1$  matrix) obtained by multiplying corresponding entries and adding; that is,

$$AB = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

- The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin with a special case.
- The product AB of a row matrix  $A = [a_i]$  and a column matrix  $B = [b_i]$  with the same number of elements is defined to be the scalar (or  $1 \times 1$  matrix) obtained by multiplying corresponding entries and adding; that is,

$$AB = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

- The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin with a special case.
- The product AB of a row matrix  $A = [a_i]$  and a column matrix  $B = [b_i]$  with the same number of elements is defined to be the scalar (or  $1 \times 1$  matrix) obtained by multiplying corresponding entries and adding; that is,

$$AB = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n$$

- The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin with a special case.
- The product AB of a row matrix  $A = [a_i]$  and a column matrix  $B = [b_i]$  with the same number of elements is defined to be the scalar (or  $1 \times 1$  matrix) obtained by multiplying corresponding entries and adding; that is,

$$AB = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n = \sum_{k=1}^n a_kb_k$$

- The product of matrices A and B, written AB, is somewhat complicated. For this reason, we first begin with a special case.
- The product AB of a row matrix  $A = [a_i]$  and a column matrix  $B = [b_i]$  with the same number of elements is defined to be the scalar (or  $1 \times 1$  matrix) obtained by multiplying corresponding entries and adding; that is,

$$AB = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n = \sum_{k=1}^n a_kb_k$$

■ The product *AB* is not defined when *A* and *B* have different numbers of elements.

1. 
$$(7 -4 5)\begin{pmatrix} 3\\2\\-1 \end{pmatrix} = 7(3) + (-4)(2) + 5(-1) =$$
  
21 - 8 - 5 = 8.

1. 
$$(7 -4 5)$$
  $\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = 7(3) + (-4)(2) + 5(-1) = 21 - 8 - 5 = 8.$ 

2. 
$$\begin{pmatrix} 6 & -1 & 8 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -9 \\ -2 \\ 5 \end{pmatrix} = 24 + 9 - 16 + 15 = 32.$$

#### **Example**

1. 
$$(7 -4 5)$$
  $\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = 7(3) + (-4)(2) + 5(-1) = 21 - 8 - 5 = 8.$ 

2. 
$$\begin{pmatrix} 6 & -1 & 8 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -9 \\ -2 \\ 5 \end{pmatrix} = 24 + 9 - 16 + 15 = 32.$$

We are now ready to define matrix multiplication in general.

Suppose  $A = [a_{ik}]$  and  $B = [b_{kj}]$  are matrices such that the number of columns of A is equal to the number of rows of B; say, A is an  $m \times p$  matrix and B is a  $p \times n$  matrix.

Suppose  $A = [a_{ik}]$  and  $B = [b_{kj}]$  are matrices such that the number of columns of A is equal to the number of rows of B; say, A is an  $m \times p$  matrix and B is a  $p \times n$  matrix. Then the product AB is the  $m \times n$  matrix whose ij-entry is obtained by multiplying the  $i^{th}$  row of A by the  $j^{th}$  column of B.

Suppose  $A = [a_{ik}]$  and  $B = [b_{kj}]$  are matrices such that the number of columns of A is equal to the number of rows of B; say, A is an  $m \times p$  matrix and B is a  $p \times n$  matrix. Then the product AB is the  $m \times n$  matrix whose ij-entry is obtained by multiplying the  $i^{th}$  row of A by the  $j^{th}$  column of B. That is,

$$\begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ip} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mp} \end{pmatrix} \begin{pmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1n} \\ \vdots & \dots & \vdots & \dots & \vdots \\ \vdots & \dots & \vdots & \dots & \vdots \\ b_{p1} & \dots & b_{pj} & \dots & b_{pn} \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

Suppose  $A = [a_{ik}]$  and  $B = [b_{kj}]$  are matrices such that the number of columns of A is equal to the number of rows of B; say, A is an  $m \times p$  matrix and B is a  $p \times n$  matrix. Then the product AB is the  $m \times n$  matrix whose ij-entry is obtained by multiplying the  $i^{th}$  row of A by the  $j^{th}$  column of B. That is,

$$\begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ip} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mp} \end{pmatrix} \begin{pmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1n} \\ \vdots & \dots & \vdots & \dots & \vdots \\ \vdots & \dots & \vdots & \dots & \vdots \\ b_{p1} & \dots & b_{pj} & \dots & b_{pn} \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \dots & \vdots \\ c_{ij} & \vdots \\ \vdots & \dots & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

Suppose  $A = [a_{ik}]$  and  $B = [b_{kj}]$  are matrices such that the number of columns of A is equal to the number of rows of B; say, A is an  $m \times p$  matrix and B is a  $p \times n$  matrix. Then the product AB is the  $m \times n$  matrix whose ij-entry is obtained by multiplying the  $i^{th}$  row of A by the  $j^{th}$  column of B. That is,

$$\begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & \dots & \vdots \\ a_{i1} & \dots & a_{ip} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mp} \end{pmatrix} \begin{pmatrix} b_{11} & \dots & b_{1j} & \dots & b_{1n} \\ \vdots & \dots & \vdots & \dots & \vdots \\ \vdots & \dots & \vdots & \dots & \vdots \\ b_{p1} & \dots & b_{pj} & \dots & b_{pn} \end{pmatrix} = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \dots & \vdots \\ c_{ij} & \vdots \\ \vdots & \dots & \vdots \\ c_{m1} & \dots & c_{mn} \end{pmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

The product AB is not defined if A is an  $m \times p$  matrix and B is a  $q \times p$  matrix, where  $p \neq q$ .

Find 
$$AB$$
 where  $A=\begin{pmatrix}1&3\\2&-1\end{pmatrix}$  and  $B=\begin{pmatrix}2&0&-4\\5&-2&6\end{pmatrix}$ .

Find 
$$AB$$
 where  $A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{pmatrix}$ .

Because A is  $2 \times 2$  and B is  $2 \times 3$ , the product AB is defined and AB is a  $2 \times 3$  matrix.

Find 
$$AB$$
 where  $A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{pmatrix}$ .

Because A is  $2 \times 2$  and B is  $2 \times 3$ , the product AB is defined and AB is a  $2 \times 3$  matrix. To obtain the first row of the product matrix AB, multiply the first row  $\begin{pmatrix} 1 & 3 \end{pmatrix}$  of A by each column of B,

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
,  $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ ,  $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$  respectively.

Find 
$$AB$$
 where  $A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{pmatrix}$ .

Because A is  $2 \times 2$  and B is  $2 \times 3$ , the product AB is defined and AB is a  $2 \times 3$  matrix. To obtain the first row of the product matrix AB, multiply the first row  $\begin{pmatrix} 1 & 3 \end{pmatrix}$  of A by each column of B,

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
,  $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ ,  $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$  respectively. That is,

$$AB = \begin{pmatrix} 2+15 & 0-6 & -4+18 \\ . & . & . \end{pmatrix} = \begin{pmatrix} 17 & -6 & 14 \\ . & . & . \end{pmatrix}$$

Find 
$$AB$$
 where  $A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{pmatrix}$ .

Because A is  $2 \times 2$  and B is  $2 \times 3$ , the product AB is defined and AB is a  $2 \times 3$  matrix. To obtain the first row of the product matrix AB, multiply the first row  $\begin{pmatrix} 1 & 3 \end{pmatrix}$  of A by each column of B,

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
,  $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ ,  $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$  respectively. That is,

$$AB = \begin{pmatrix} 2+15 & 0-6 & -4+18 \\ . & . & . \end{pmatrix} = \begin{pmatrix} 17 & -6 & 14 \\ . & . & . \end{pmatrix}$$

To obtain the second row of AB, multiply the second row  $\begin{pmatrix} 2 & -1 \end{pmatrix}$  of A by each column of B.

Find 
$$AB$$
 where  $A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & 0 & -4 \\ 5 & -2 & 6 \end{pmatrix}$ .

Because A is  $2 \times 2$  and B is  $2 \times 3$ , the product AB is defined and AB is a  $2 \times 3$  matrix. To obtain the first row of the product matrix AB, multiply the first row  $\begin{pmatrix} 1 & 3 \end{pmatrix}$  of A by each column of B,

$$\begin{pmatrix} 2 \\ 5 \end{pmatrix}$$
,  $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ ,  $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$  respectively. That is,

$$AB = \begin{pmatrix} 2+15 & 0-6 & -4+18 \\ . & . & . \end{pmatrix} = \begin{pmatrix} 17 & -6 & 14 \\ . & . & . \end{pmatrix}$$

To obtain the second row of AB, multiply the second row  $\begin{pmatrix} 2 & -1 \end{pmatrix}$  of A by each column of B. Thus,

$$AB = \begin{pmatrix} 17 & -6 & 14 \\ 4-5 & 0+2 & -8-6 \end{pmatrix} = \begin{pmatrix} 17 & -6 & 14 \\ -1 & 2 & -14 \end{pmatrix}$$

### **Example**

Suppose 
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 5 & 6 \\ 0 & -2 \end{pmatrix}$ .

### **Example**

Suppose 
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 5 & 6 \\ 0 & -2 \end{pmatrix}$ . Then

$$AB = \begin{pmatrix} 5+0 & 6-4 \\ 15+0 & 18-8 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 15 & 10 \end{pmatrix}$$

### **Example**

Suppose 
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 5 & 6 \\ 0 & -2 \end{pmatrix}$ . Then

$$AB = \begin{pmatrix} 5+0 & 6-4 \\ 15+0 & 18-8 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 15 & 10 \end{pmatrix}$$

and

$$BA = \begin{pmatrix} 5+18 & 10+24 \\ 0-6 & 0-8 \end{pmatrix} = \begin{pmatrix} 23 & 34 \\ -6 & -8 \end{pmatrix}$$

### Example

Suppose 
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 5 & 6 \\ 0 & -2 \end{pmatrix}$ . Then

$$AB = \begin{pmatrix} 5+0 & 6-4 \\ 15+0 & 18-8 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 15 & 10 \end{pmatrix}$$

and

$$BA = \begin{pmatrix} 5+18 & 10+24 \\ 0-6 & 0-8 \end{pmatrix} = \begin{pmatrix} 23 & 34 \\ -6 & -8 \end{pmatrix}$$

**Note:** The above example shows that matrix multiplication is not commutative that is, in general,  $AB \neq BA$ . However, matrix multiplication does satisfy the following properties.

Mehmet F. KÖROĞLU

#### **Theorem**

#### **Theorem**

1. 
$$(AB)C = A(BC)$$
 (associative law),

#### **Theorem**

- 1. (AB)C = A(BC) (associative law),
- 2. A(B+C) = AB + AC (left distributive law),

#### **Theorem**

- 1. (AB)C = A(BC) (associative law),
- 2. A(B+C) = AB + AC (left distributive law),
- 3. (B+C)A = BA + CA (right distributive law),

#### **Theorem**

- 1. (AB)C = A(BC) (associative law),
- 2. A(B+C) = AB + AC (left distributive law),
- 3. (B+C)A = BA + CA (right distributive law),
- 4. k(AB) = (kA)B = A(kB), where k is a scalar.

#### **Theorem**

- 1. (AB)C = A(BC) (associative law),
- 2. A(B+C) = AB + AC (left distributive law),
- 3. (B+C)A = BA + CA (right distributive law),
- 4. k(AB) = (kA)B = A(kB), where k is a scalar.
- 5. We note that 0A = 0 and B0 = 0, where 0 is the zero matrix.

The transpose of a matrix A, written  $A^T$ , is the matrix obtained by writing the columns of A, in order, as rows.

The transpose of a matrix A, written  $A^T$ , is the matrix obtained by writing the columns of A, in order, as rows. For example,

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right)^T = \left(\begin{array}{ccc} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array}\right)$$

The transpose of a matrix A, written  $A^T$ , is the matrix obtained by writing the columns of A, in order, as rows. For example,

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & -3 & -5 \end{pmatrix}^T = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$$

The transpose of a matrix A, written  $A^T$ , is the matrix obtained by writing the columns of A, in order, as rows. For example,

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & -3 & -5 \end{pmatrix}^T = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$$

• In other words, if  $A = [a_{ij}]$  is an  $m \times n$  matrix, then  $A^T = [b_{ij}]$  is the  $n \times m$  matrix where  $b_{ij} = a_{ji}$ .

The transpose of a matrix A, written  $A^T$ , is the matrix obtained by writing the columns of A, in order, as rows. For example,

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & -3 & -5 \end{pmatrix}^T = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$$

- In other words, if  $A = [a_{ij}]$  is an  $m \times n$  matrix, then  $A^T = [b_{ij}]$  is the  $n \times m$  matrix where  $b_{ij} = a_{ji}$ .
- Observe that the transpose of a row vector is a column vector.
   Similarly, the transpose of a column vector is a row vector.

The transpose of a matrix A, written  $A^T$ , is the matrix obtained by writing the columns of A, in order, as rows. For example,

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & -3 & -5 \end{pmatrix}^{T} = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$$

- In other words, if  $A = [a_{ij}]$  is an  $m \times n$  matrix, then  $A^T = [b_{ij}]$  is the  $n \times m$  matrix where  $b_{ij} = a_{ji}$ .
- Observe that the transpose of a row vector is a column vector.
   Similarly, the transpose of a column vector is a row vector.
- The next theorem lists basic properties of the transpose operation.

#### **Theorem**

#### **Theorem**

1. 
$$(A+B)^T = A^T + B^T$$

#### **Theorem**

- 1.  $(A+B)^T = A^T + B^T$
- 2.  $(kA)^T = kA^T$

#### **Theorem**

- 1.  $(A+B)^T = A^T + B^T$
- 2.  $(kA)^T = kA^T$
- $3. \left(A^T\right)^T = A$

#### Theorem

- 1.  $(A+B)^T = A^T + B^T$
- 2.  $(kA)^T = kA^T$
- $3. \left(A^T\right)^T = A$
- 4.  $(AB)^T = B^T A^T$

#### Theorem

Let A and B be matrices and let k be a scalar. Then, whenever the sum and product are defined,

- 1.  $(A+B)^T = A^T + B^T$
- 2.  $(kA)^T = kA^T$
- $3. \left(A^T\right)^T = A$
- 4.  $(AB)^T = B^T A^T$

We emphasize that, by (4), the transpose of a product is the product of the transposes, but in the reverse order.

A square matrix is a matrix with the same number of rows as columns. An  $n \times n$  square matrix is said to be of order n and is sometimes called an n-square matrix.

A square matrix is a matrix with the same number of rows as columns. An  $n \times n$  square matrix is said to be of order n and is sometimes called an n-square matrix.

Recall that not every two matrices can be added or multiplied.
 However, if we only consider square matrices of some given order n, then this inconvenience disappears.

A square matrix is a matrix with the same number of rows as columns. An  $n \times n$  square matrix is said to be of order n and is sometimes called an n-square matrix.

- Recall that not every two matrices can be added or multiplied.
   However, if we only consider square matrices of some given order n, then this inconvenience disappears.
- Specifically, the operations of addition, multiplication, scalar multiplication, and transpose can be performed on any  $n \times n$  matrices, and the result is again an  $n \times n$  matrix.

**Example** The following are square matrices of order 3:

#### **Example**

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

#### **Example**

The following are square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

#### **Example**

The following are square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

$$A+B = \left(\begin{array}{rrr} 3 & -3 & 4 \\ -4 & -1 & -6 \\ 6 & 8 & 3 \end{array}\right),$$

#### **Example**

The following are square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

$$A+B=\left(\begin{array}{ccc} 3 & -3 & 4 \\ -4 & -1 & -6 \\ 6 & 8 & 3 \end{array}\right), \quad 2A=\left(\begin{array}{ccc} 2 & 4 & 6 \\ -8 & -8 & -8 \\ 10 & 12 & 14 \end{array}\right),$$

Example

The following are square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

$$A+B=\left(\begin{array}{ccc} 3 & -3 & 4 \\ -4 & -1 & -6 \\ 6 & 8 & 3 \end{array}\right), \quad 2A=\left(\begin{array}{ccc} 2 & 4 & 6 \\ -8 & -8 & -8 \\ 10 & 12 & 14 \end{array}\right), \quad A^T=\left(\begin{array}{ccc} 1 & -4 & 5 \\ 2 & -4 & 6 \\ 3 & -4 & 7 \end{array}\right)$$

#### **Example**

The following are square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

$$A+B = \begin{pmatrix} 3 & -3 & 4 \\ -4 & -1 & -6 \\ 6 & 8 & 3 \end{pmatrix}, \quad 2A = \begin{pmatrix} 2 & 4 & 6 \\ -8 & -8 & -8 \\ 10 & 12 & 14 \end{pmatrix}, \quad A^{T} = \begin{pmatrix} 1 & -4 & 5 \\ 2 & -4 & 6 \\ 3 & -4 & 7 \end{pmatrix}$$

$$AB = \left(\begin{array}{rrr} 5 & 7 & -15 \\ -12 & 0 & 20 \\ 17 & 7 & -35 \end{array}\right),$$

#### **Example**

The following are square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

$$A+B=\left(\begin{array}{ccc} 3 & -3 & 4 \\ -4 & -1 & -6 \\ 6 & 8 & 3 \end{array}\right), \quad 2A=\left(\begin{array}{ccc} 2 & 4 & 6 \\ -8 & -8 & -8 \\ 10 & 12 & 14 \end{array}\right), \quad A^T=\left(\begin{array}{ccc} 1 & -4 & 5 \\ 2 & -4 & 6 \\ 3 & -4 & 7 \end{array}\right)$$

$$AB = \begin{pmatrix} 5 & 7 & -15 \\ -12 & 0 & 20 \\ 17 & 7 & -35 \end{pmatrix}, \quad BA = \begin{pmatrix} 27 & 30 & 33 \\ -22 & -24 & -26 \\ -27 & -30 & -33 \end{pmatrix}$$

Let  $A = [a_{ij}]$  be an *n*-square matrix. The diagonal or main diagonal of A consists of the elements with the same subscripts - that is,

$$a_{11}$$
,  $a_{22}$ ,  $a_{33}$ , ...,  $a_{nn}$ 

Let  $A = [a_{ij}]$  be an *n*-square matrix. The diagonal or main diagonal of A consists of the elements with the same subscripts - that is,

$$a_{11}, a_{22}, a_{33}, \ldots, a_{nn}$$

The trace of A, written Tr(A), is the sum of the diagonal elements. Namely,

$$Tr(A) = a_{11} + a_{22} + a_{33} + \cdots + a_{nn}$$

Let  $A = [a_{ij}]$  be an *n*-square matrix. The diagonal or main diagonal of A consists of the elements with the same subscripts - that is,

$$a_{11}, a_{22}, a_{33}, \ldots, a_{nn}$$

The trace of A, written Tr(A), is the sum of the diagonal elements. Namely,

$$Tr(A) = a_{11} + a_{22} + a_{33} + \cdots + a_{nn}$$

The following theorem applies.

#### **Theorem**

#### **Theorem**

1. 
$$Tr(A+B) = Tr(A) + Tr(B)$$

#### **Theorem**

- 1. Tr(A+B) = Tr(A) + Tr(B)
- 2.  $Tr(A^T) = Tr(A)$

#### **Theorem**

- 1. Tr(A+B) = Tr(A) + Tr(B)
- $2. Tr\left(A^{T}\right) = Tr(A)$
- 3. Tr(kA) = kTr(A)

#### **Theorem**

- 1. Tr(A+B) = Tr(A) + Tr(B)
- 2.  $Tr(A^T) = Tr(A)$
- 3. Tr(kA) = kTr(A)
- 4. Tr(AB) = Tr(BA)

#### Example

Let A and B be square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

Then diagonal of  $A = \{1, -4, 7\}$  and Tr(A) = 1 - 4 + 7 = 4 diagonal of  $B = \{2, 3, -4\}$  and Tr(B) = 2 + 3 - 4 = 1

$$Tr(A+B) = 3-1+3=5$$
,  $Tr(2A) = 2-8+14=8$ ,  $Tr(A^T) = 4$   
 $Tr(AB) = 5+0-35=-30$ ,  $Tr(BA) = 27-24-33=-30$ 

As expected from previous Theorem,

$$Tr(A+B) = Tr(A) + Tr(B), Tr(A^T) = Tr(A), Tr(2A) = 2Tr(A)$$

Furthermore, although  $AB \neq BA$ , the traces are equal.

#### Example

Let A and B be square matrices of order 3:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -4 & -4 & -4 \\ 5 & 6 & 7 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -5 & 1 \\ 0 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}$$

Then diagonal of  $A=\{1,-4,7\}$  and Tr(A)=1-4+7=4 diagonal of  $B=\{2,3,-4\}$  and Tr(B)=2+3-4=1

$$Tr(A+B) = 3-1+3=5$$
,  $Tr(2A) = 2-8+14=8$ ,  $Tr(A^T) = 4$   
 $Tr(AB) = 5+0-35=-30$ ,  $Tr(BA) = 27-24-33=-30$ 

As expected from previous Theorem,

$$Tr(A+B) = Tr(A) + Tr(B), Tr(A^T) = Tr(A), Tr(2A) = 2Tr(A)$$

Furthermore, although  $AB \neq BA$ , the traces are equal.

The n-square identity or unit matrix, denoted by  $I_n$ , or simply I, is the n-square matrix with 1 's on the diagonal and 0's elsewhere. The identity matrix I is similar to the scalar 1 in that, for any n-square matrix A

$$AI = IA = A$$

The n-square identity or unit matrix, denoted by  $I_n$ , or simply I, is the n-square matrix with 1 's on the diagonal and 0's elsewhere. The identity matrix I is similar to the scalar 1 in that, for any n-square matrix A

$$AI = IA = A$$

More generally, if B is an  $m \times n$  matrix, then  $BI_n = I_m B = B$ .

The n-square identity or unit matrix, denoted by  $I_n$ , or simply I, is the n-square matrix with 1 's on the diagonal and 0's elsewhere. The identity matrix I is similar to the scalar 1 in that, for any n-square matrix A

$$AI = IA = A$$

More generally, if B is an  $m \times n$  matrix, then  $BI_n = I_m B = B$ .

For any scalar k, the matrix k I that contains k 's on the diagonal and 0 's elsewhere is called the scalar matrix corresponding to the scalar k.

The n-square identity or unit matrix, denoted by  $I_n$ , or simply I, is the n-square matrix with 1 's on the diagonal and 0's elsewhere. The identity matrix I is similar to the scalar 1 in that, for any n-square matrix A

$$AI = IA = A$$

More generally, if B is an  $m \times n$  matrix, then  $BI_n = I_m B = B$ .

For any scalar k, the matrix k I that contains k 's on the diagonal and 0 's elsewhere is called the scalar matrix corresponding to the scalar k. Observe that

$$(kI)A = k(IA) = kA$$

That is, multiplying a matrix A by the scalar matrix kI is equivalent to multiplying A by the scalar k

### **Example**

The following are the identity matrices of orders 3 and 4 and the corresponding scalar matrices for k=5:

$$\left(\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right), \quad \left(\begin{array}{ccccc}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right), \quad \left(\begin{array}{ccccc}
5 & & & \\
& 5 & & \\
& & 5 & \\
& & & 5
\end{array}\right)$$

## Powers of Matrices, Polynomials in

**Matrices** 

Let A be an n -square matrix over a field K. Powers of A are defined as follows:

$$A^{2} = AA$$
,  $A^{3} = A^{2}A$ , ...,  $A^{n+1} = A^{n}A$ , ..., and  $A^{0} = I$ 

Let A be an n -square matrix over a field K. Powers of A are defined as follows:

$$A^{2} = AA$$
,  $A^{3} = A^{2}A$ , ...,  $A^{n+1} = A^{n}A$ , ..., and  $A^{0} = I$ 

Polynomials in the matrix  $\boldsymbol{A}$  are also defined. Specifically, for any polynomial

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

where the  $a_i$  are scalars in K,

Let A be an n -square matrix over a field K. Powers of A are defined as follows:

$$A^{2} = AA$$
,  $A^{3} = A^{2}A$ , ...,  $A^{n+1} = A^{n}A$ , ..., and  $A^{0} = I$ 

Polynomials in the matrix A are also defined. Specifically, for any polynomial

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

where the  $a_i$  are scalars in K, f(A) is defined to be the following matrix:

$$f(A) = a_0I + a_1A + a_2A^2 + \cdots + a_nA^n$$

Let A be an n -square matrix over a field K. Powers of A are defined as follows:

$$A^{2} = AA$$
,  $A^{3} = A^{2}A$ , ...,  $A^{n+1} = A^{n}A$ , ..., and  $A^{0} = I$ 

Polynomials in the matrix  $\boldsymbol{A}$  are also defined. Specifically, for any polynomial

$$f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

where the  $a_i$  are scalars in K, f(A) is defined to be the following matrix:

$$f(A) = a_0I + a_1A + a_2A^2 + \cdots + a_nA^n$$

Note that f(A) is obtained from f(x) by substituting the matrix A for the variable x and substituting the scalar matrix  $a_0I$  for the scalar  $a_0$ .

Let A be an n -square matrix over a field K. Powers of A are defined as follows:

$$A^{2} = AA$$
,  $A^{3} = A^{2}A$ , ...,  $A^{n+1} = A^{n}A$ , ..., and  $A^{0} = I$ 

Polynomials in the matrix  $\boldsymbol{A}$  are also defined. Specifically, for any polynomial

$$f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$$

where the  $a_i$  are scalars in K, f(A) is defined to be the following matrix:

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_n A^n$$

Note that f(A) is obtained from f(x) by substituting the matrix A for the variable x and substituting the scalar matrix  $a_0I$  for the scalar  $a_0$ . If f(A) is the zero matrix, then A is called a zero or root

## **Example**

Suppose 
$$A = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$$
. Then 
$$A^2 = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} 7 & -6 \\ -9 & 22 \end{pmatrix} \text{ and }$$
 
$$A^3 = A^2 A = \begin{pmatrix} 7 & -6 \\ -9 & 22 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} = \begin{pmatrix} -11 & 38 \\ 57 & -106 \end{pmatrix}$$
 Suppose  $f(x) = 2x^2 - 3x + 5$  and  $g(x) = x^2 + 3x - 10$ . Then

$$f(A) = 2\begin{pmatrix} 7 & -6 \\ -9 & 22 \end{pmatrix} - 3\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} + 5\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 16 & -18 \\ -27 & 61 \end{pmatrix}$$
$$g(A) = \begin{pmatrix} 7 & -6 \\ -9 & 22 \end{pmatrix} + 3\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} - 10\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Thus, A is a zero of the polynomial g(x)

A square matrix A is said to be invertible or nonsingular if there exists a matrix B such that

$$AB = BA = I$$

where I is the identity matrix. Such a matrix B is unique. We will prove this fact by contradiction. Assume that the matrix A has two different inverses  $B_1$  and  $B_2$ . That is, if  $AB_1 = B_1A = I$  and  $AB_2 = B_2A = I$  then

$$B_1 = B_1 I = B_1 (AB_2) = (B_1 A) B_2 = IB_2 = B_2$$

This is a contradiction. So, the inverse of a matrix, if exists, is unique. We call such a matrix B the inverse of A and denote it by  $A^{-1}$ . Observe that the above relation is symmetric; that is, if B is the inverse of A, then A is the inverse of B.

#### **Example**

Suppose that 
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$ . Then 
$$AB = \begin{pmatrix} 6-5 & -10+10 \\ 3-3 & -5+6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$BA = \begin{pmatrix} 6-5 & 15-15 \\ -2+2 & -5+6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Thus, A and B are inverses. It is known that AB = I if and only if BA = I. Thus, it is necessary to test only one product to determine whether or not two given matrices are inverses.

Now suppose A and B are invertible. Then AB is invertible and  $(AB)^{-1}=B^{-1}A^{-1}$ . More generally, if  $A_1,A_2,\ldots,A_k$  are invertible, then their product is invertible and

$$(A_1A_2...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}$$

the product of the inverses in the reverse order.

?