兰州大学 接口与通讯实验报告

接口与通讯实验 报告3

Hollow Man

一、实验环境

一台带有装有 Windows XP 系统的实验室计算机,一台实验箱。

二、实验目的

- (1) 掌握 8259A 中断控制器工作原理, 熟悉实验中涉及 8259A 中的中断屏蔽寄存器 IMR 和中断服务寄存器 ISR 等的用法。
 - (2) 掌握外部中断源的引入,学会中断处理程序的编写。
 - (3) 掌握可屏蔽中断和不可屏蔽中断两种中断。
- (4) 了解中断过程: 进入中断、保存现场信息、判断中断源、中断处理、恢复现场退出中断及 PS 程序状态, PC 程序计数器的新旧交换, 如下图所示。

说明:

- (1) 进入中断时, 保存当前的 PS 和 PC 值, 即保护现场。
- (2) 判断中断源、中断处理。
- (3) 恢复现场退出中断及 PS 程序状态, PC 程序计数器的新旧交换。

三、芯片介绍

1. 中断

首先,中断分硬件中断和软件中断两种。中断为计算机的硬件设备和软件部件提供了一种相互交流的途径,这就是它的作用。那么,都有哪些中断呢?它们又是怎样实现这种交流的呢?

PC 中的 CPU 通常都是 Intel 80x86 处理器,它由多条引脚用来中断 CPU 的当前工作,并使它转去进行其他工作。每条中断引脚上都连接着一些硬件设备(如定时器),其作用是为这条引脚提供一个特定的电压。当中断事件发生时,处理器会停止执行当前正在执行的软件,保存当前的操作状态,然后去"处理"中断。处理器中事先已经装有一张中断向量表(如表 6.3 所示),其中列出了每个中断号以及当某个特定中断发生时所应执行的程序。

常见的中断:

	中断(十六进制)	描述
	5	屏幕打印服务
	10	视频显示服务(MDA、CGA、EGA、VGA)
	11	获得设备清单
W - W - 14	12	获得内存大小
	13	磁盘服务
	14	ata data and mind the
	15	杂项功能服务
	16	键 盆 服 务
	17	打印机服务
	1A	时钟服务
	21	DOS 函数
	2F	DOS 多路共享服务
	33	鼠标器服务
	67	EMS 服务

2.8259 芯片

8259A 有两类编程命令:初始化命令字(ICW)和操作命令字(OCW)。8259A 初始化编程与中断向量的装入一样,在 PC 中是由系统软件来做的,并且开机上电就已经做好了,

不需要也不允许用户去做;否则,将对微机的中断系统产生很大的影响甚至是破坏。所以,8259A初始化,一般在没有配置完善的操作系统的单板机微机上进行.

这里只是为了学习 8259A 初始化编程如何进行。如果是在 PC 上开发中断程序,则不要使用 ICW1-ICW4 去初始化,因为系统已经做好了。只需要使用 8259A 的两个操作命令字 OCW1 和 OCW2 进行中断的屏蔽和开放及发中断结束命令。在实际中,OCW3 用得很少。

初始化命令字 ICW 的方法。在中断系统运行之前,系统中的每一个 8259A 必须按先后次序接收 CPU 的 2~4 个 ICW 初始化命令字进行初始化。初始化顺序放在 8259A 之前,作为主程序的一部分。初始化命令一定要按规定的顺序写入。

对于 16 位微机 ICW1 JCW2 和 ICW4 是必须有的, 而 ICW3 则需看是否多片使用, 若是,则写 ICW3,而且主从片的 ICW3 要分别写出。286 以上 PC 的中断系统有 15 级中断,使用两片 8259A,因此命令字 ICW1-ICW4 都要写出。操作命令字 OCW 的写法。当处理器对中断控制器完成初始化编程后,8259A 就处于准备就绪状态,等待接收外界的中断请求,进行完全嵌套的中断管理。如果用户改变初始化设定的操作方式,可以通过 CPU 发操作命令 OCW对中断控制器进行动态控制。8259A 的 OCW 与 ICW 不同,不需要按照顺序发送,一般也不要求安排在程序开头,而是根据需要在程序中任意安排。

8259A 初始化流程如下图所示:

ICW1

ICW2

第 2 个初始化命令字 ICW2 在 80c86 微处理机系饶中执行单一的功能,如下图所示,它的最左 5 位 (D7~D3) 定义了一个固定的二进制码 T7~T3,它是中断类型号的前 5 位。当82c59A2 将相应有效输入中断类型号 (3 位)送到总线上时,它自动与 T3~T7 结合形成 1个 8 位中断类修号, ICW2 的最右 3 位未用。当该命令字送到总线上时 A0 输入必须为 I.

ICW3

如果把 82CS9A.2 配置成级联方式,就需要初始化命令字 ICW3。可用于不同的功能,这取决于该芯片是主控芯片还是从属芯片。在主控芯片,位 D0~D7 标上 S0-S7。这些位分别对应于 IRO-IR7 的,入。它们标识了相应的 IR 是由从属芯片的 INT 输出提供,还是直接由外部电路提供。为 1,则表示相应的 IR 输入是由从属芯片提供。

另一方面,从属芯片的 1CW3 用来装入该芯片的 3 位标识码 ID2、ID1、ID0,必须与从属芯片的 INT 输出相连的主控芯片的 1R 输入相对应。从属芯片需要比较主控芯片在 CASO - CAS2 上的级联码输出。

ICW4

OCW

三、实验内容

实验一

通过开关控制触发中断

四、实验原理

实验一

实验控制字

实验代码

7 1 QH J							
DATA	SEGN	1ENT					
18259_1	EQU	2B0H	;8259	的 ICW:	1端	コ地	址
18259_2	EQU	2B1H	;8259	的 ICW2	2 端[コ地	址
18259_3	EQU	2B1H	;8259	的 ICW	3 端[コ地	址
18259_4	EQU	2B1H	;8259	的ICW	4端[コ地	址
O8259_1	EQU	2B1H	;825	9的OC	لا W1	端口	地址
O8259_2	EQU 2B0H ;8259的 OCW2 端口地址						
O8259_3	EQU	2B0H	;825	9的OC	لا 3W	端口	地址
MES1	DB 'Y	OU CAN PL	ay a key	ON TH	E KE	YBC	DARD!',0DH,0AH,24H
MES2	DD	MES1					
MESS1	DB 'H	ELLO! THIS	IS INTER	RUPT	*	0	*!',0DH,0AH,'\$'
MESS2	DB 'H	ELLO! THIS	IS INTER	RUPT	*	1	*!',0DH,0AH,'\$'
MESS3	DB 'H	ELLO! THIS	IS INTER	RUPT	*	2	*!',0DH,0AH,'\$'
MESS4	DB 'H	ELLO! THIS	IS INTER	RUPT	*	3	*!',0DH,0AH,'\$'
MESS5	DB 'H	ELLO! THIS	IS INTER	RUPT	*	4	*!',0DH,0AH,'\$'
MESS6	DB 'H	ELLO! THIS	IS INTER	RUPT	*	5	*!',0DH,0AH,'\$'
MESS7	DB 'H	ELLO! THIS	IS INTER	RUPT	*	6	*!',0DH,0AH,'\$'
MESS8	DB 'H	ELLO! THIS	IS INTER	RUPT	*	7	*!',0DH,0AH,'\$'
DATA	ENDS	j					
STACKS	SEGM	IENT					
	DB 100) DUP(?)					
STACKS	ENDS						
STACK1	SEGM	IENT STACK					

DW 256 DUP(?)

STACK1 **ENDS**

SEGMENT CODE

ASSUME CS:CODE,DS:DATA,SS:STACKS,ES:DATA

.386

START: MOV AX,DATA

> MOV DS,AX MOV ES,AX

MOV AX,STACKS

MOV SS,AX

MOV DX,I8259_1 ;初始化 8259 的 ICW1

MOV AL,13H ;边沿触发、单片 8259、需要 ICW4

OUT DX,AL

MOV ;初始化 8259 的 ICW4 DX,18259_2

MOV AL,0B0H ;非自动结束 EOI

OUT DX,AL

MOV AL,03H

OUT DX,AL

MOV DX,O8259_1 ;初始化 8259 的 OCW1 MOV AL,00H ;打开 IRO 和 IR1 的屏蔽位

OUT DX,AL

QUERY: MOV AH,1 ;判断是否有按键按下

> INT 16H

JNZ QUIT ;有按键则退出

MOV ;向 8259 的 OCW3 发送查询命令 DX,O8259_3

MOV AL,0CH

OUT DX,AL

IN AL,DX ;读出查询字

MOV AH,AL

AND AL,80H

TEST AL,80H ;判断中断是否已响应

JΖ QUERY ;没有响应则继续查询

MOV AL,AH

AND AL,07H

CMP AL,00H

JΕ **IROISR** ;若为 IRO 请求, 跳到 IRO 处理程序

CMP AL,01H

JΕ IR1ISR ;若为 IR1 请求, 跳到 IR1 处理程序

CMP AL,02H JΕ IR2ISR

 CMP AL,03H

IR3ISR JΕ

CMP

JΕ

IR4ISR

AL,04H

CMP AL,05H JΕ **IR5ISR** CMP AL,06H JΕ IR6ISR CMP AL,07H JΕ IR7ISR JMP **QUERY** IROISR: MOV AX,DATA MOV DS,AX MOV DX,OFFSET MESS1 ;显示提示信息 MOV AH,09 INT 21H JMP EOI IR1ISR: MOV AX,DATA MOV DS,AX MOV DX,OFFSET MESS2 ;显示提示信息 MOV AH,09 INT 21H JMP EOI IR2ISR: MOV AX,DATA MOV DS,AX MOV DX,OFFSET MESS3 ;显示提示信息 MOV AH,09 INT 21H JMP EOI IR3ISR: MOV AX,DATA MOV DS,AX MOV DX,OFFSET MESS4 ;显示提示信息 AH,09 MOV INT 21H JMP EOI MOV IR4ISR: AX,DATA MOV DS,AX MOV DX,OFFSET MESS5 ;显示提示信息 MOV AH,09 INT 21H JMP EOI IR5ISR: MOV AX,DATA MOV DS,AX MOV DX,OFFSET MESS6 ;显示提示信息 MOV AH,09 INT 21H JMP EOI IR6ISR: MOV AX,DATA

MOV DS,AX

MOV DX,OFFSET MESS7 ;显示提示信息

MOV AH,09

INT 21H

JMP EOI

IR7ISR: MOV AX,DATA

MOV DS,AX

MOV DX,OFFSET MESS8 ;显示提示信息

MOV AH,09

INT 21H

EOI: MOV DX,O8259_2 ;向 8259 发送中断结束命令

MOV AL,20H

OUT DX,AL

JMP QUERY

QUIT: MOV AX,4C00H ;结束程序退出

INT 21H

CODE ENDS

END START