Title Subtitle

Rebecca Wei

Northwestern University

Date/Event

Fix an algebra, A. Define a dg category, Hoch(A):

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$ Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_fA_g), {}_f\delta_g)$

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_fA_g), {}_f\delta_g)$

$$\begin{split} {}_{f}\delta_{g}(\phi)(a_{1}\otimes\ldots\otimes a_{n})=&\epsilon_{\phi}\bigg(f(a_{1})\cdot\phi(a_{2},\ldots,a_{n})+\\ &+\sum_{1\leq i\leq n-1}(-1)^{i}\phi(a_{1},\ldots,a_{i}a_{i+1},\ldots,a_{n})+\\ &+(-1)^{n}\phi(a_{1},\ldots,a_{n-1})\cdot g(a_{n})\bigg)\\ &\epsilon_{\phi}=&(-1)^{|\phi|+1} \end{split}$$

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

A morphism from f_0 to f_n in Bar(Hoch(A))

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A. Define a dg category, Hoch(A):

In this context, braces give multilinear maps:

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats.

Fix an algebra, A. Define a dg category, Hoch(A):

In this context, braces give multilinear maps:

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats. But we have more...

More structure

More structure

Fix algebras, $A_0, A_1, ..., A_n$. We will define a dg cocategory $B(A_0 \to A_1 \to ... \to A_n \to A_0)$ where $B(A_0 \to A_0) := Bar(Hoch(A_0))$ for n=0.

More structure

Fix algebras, $A_0, A_1, ..., A_n$. We will define a dg cocategory $B(A_0 \to A_1 \to ... \to A_n \to A_0)$ where $B(A_0 \to A_0) := Bar(Hoch(A_0))$ for n=0.

Objects: $\{A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} \dots \xrightarrow{f_{n-1}} A_n \xrightarrow{f_n} A_0\}$ A morphism from $(A_0 \xrightarrow{f_{0,0}} \dots \xrightarrow{f_{n,0}} A_0)$ to $(A_0 \xrightarrow{f_{0,k_0}} \dots \xrightarrow{f_{n,k_n}} A_0)$:

Structure among the $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$'s

Example

We have a dg functor

Structure among the $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$'s

Example

For $n \ge 1, 0 \le j < n$, we have a dg functor

$$\hat{\delta}_{j,n}: B(A_0 \to \dots \to A_n \to A_0) \to B(A_0 \to \dots \to A_j \to A_{j+2} \to \dots \to A_0)$$

$$Obj: \qquad (f_0, \dots, f_n) \mapsto (f_0, \dots, f_{j+1}f_j, \dots, f_n)$$

$$f_{0,0} \to f_{0,0} \to f_{0$$

Structure among the $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$'s

Example

For $n \ge 0, 0 \le i \le n$, we have a dg functor

$$\hat{\sigma}_{i,n}: B(A_0 \to \dots \to A_n \to A_0) \to B(A_0 \to \dots \to A_i \to A_i \to \dots \to A_0)$$

$$Obj: \qquad (f_0, \dots, f_n) \mapsto (f_0, \dots, f_{i-1}, id_{A_i}, f_i, \dots, f_n)$$

$$Mor: A_0 : A_1 : \vdots : A_n : A_0 \mapsto A_0 : \vdots : A_i : \vdots : A_0$$

$$\downarrow \downarrow \phi_{0,k_0} \downarrow \downarrow \phi_{n,k_n} \downarrow \phi_{n,k_n} \downarrow \downarrow \phi_{n,k_n} \downarrow \phi_{$$

A sheafy-cyclic object in DGCocat

Definition

Let χ be the category with objects $\{A_0 \to A_1 \to ... \to A_n \to A_0\}$ and morphisms compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (A_n \to A_0 \to ... \to A_n)$$

coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_j \to A_{j+2 \, (mod \, n+1)} \to ... \to A_0)$
codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_i \to A_i \to ... \to A_0)$

where $\mathcal{A}:=(A_0\to\ldots\to A_n\to A_0)$, subject to the cyclic relations.

A sheafy-cyclic object in DGCocat

Definition

Let χ be the category with objects $\{A_0 \to A_1 \to ... \to A_n \to A_0\}$ and morphisms compositions of

rotations
$$\tau_n: \mathcal{A} \mapsto (A_n \to A_0 \to ... \to A_n)$$

coboundaries $\delta_{j,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_j \to A_{j+2 \, (mod \, n+1)} \to ... \to A_0)$
codegeneracies $\sigma_{i,n}: \mathcal{A} \mapsto (A_0 \to ... \to A_i \to A_i \to ... \to A_0)$

where $\mathcal{A}:=(A_0\to\ldots\to A_n\to A_0)$, subject to the cyclic relations.

Proposition

We have a functor $\chi \to DGCocat$

Objects:
$$(A_0 \to ... \to A_n \to A_0) \mapsto B(A_0 \to ... \to A_n \to A_0)$$

Generating morphisms: $\lambda \mapsto \hat{\lambda}$

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(dg \ cocat, \ dg \ comod)\}$$
?

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(\textit{dg cocat}, \textit{dg comod})\}?$$

No.

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give a functor

$$\chi \to \mathcal{D} := \{(\textit{dg cocat}, \textit{dg comod})\}?$$

$$\chi_{\infty} \to \mathcal{D}_{\infty} \quad \textit{dg categories}$$

Each dg cocategory $B(A_0 \to ... \to A_n \to A_0)$ has a dg comodule $C(A_0 \to ... \to A_n \to A_0)$ (which is a categorified version of the bar complex of Hochschild chains as a module over Hochschild cochains via contraction).

Motivating Question: Can we extend the sheafy-cyclic structure to the comodules? In other words, can we give A_{∞} -functor

$$\chi \to \mathcal{D} := \{(\textit{dg cocat}, \textit{dg comod})\}?$$

$$\chi_{\infty} \to \mathcal{D}_{\infty} \quad \textit{dg categories}$$

Rest of this talk: Describe our A_{∞} -functor $\mathcal{F}: \chi_{\infty} \to \mathcal{D}_{\infty}$.

Rest of this talk: Describe our A_{∞} -functor $\mathcal{F}: \chi_{\infty} \to \mathcal{D}_{\infty}$.

- ullet Define dg categories χ_{∞} and \mathcal{D}_{∞}
- Define dg comodules $C(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$
- ullet Define the A_{∞} -functor ${\mathcal F}$

 χ_{∞} :

Objects: same objects as $\chi = \{A_0 \to ... \to A_n \to A_0\}$ $\chi^{\bullet}_{\infty}(X, Y) := \{\sum a_i v_i : a_i \in k, v_i \in \chi(X, Y)\}$

 χ_{∞} :

Objects: same objects as
$$\chi = \{A_0 \to ... \to A_n \to A_0\}$$

 $\chi^{\bullet}_{\infty}(X, Y) := \{\sum a_i v_i : a_i \in k, v_i \in \chi(X, Y)\}$

 \mathcal{D}_{∞} :

Objects: same objects as $\mathcal{D} = \{(\mathsf{dg} \; \mathsf{cocategory}, \; \mathsf{dg} \; \mathsf{comodule})\}$

$$\mathcal{D}^p_\infty\big((B_1,\mathit{C}_1),(B_0,\mathit{C}_0)\big) := \left\{ \begin{matrix} F:B_1 \to B_0 \ \textit{dg functor} \\ F_!:\mathit{C}_1 \to F^*\mathit{C}_0 \ \textit{degree-p linear map} \end{matrix} \right\}$$

 χ_{∞} :

Objects: same objects as
$$\chi = \{A_0 \to ... \to A_n \to A_0\}$$

 $\chi^{\bullet}_{\infty}(X, Y) := \{\sum a_i v_i : a_i \in k, v_i \in \chi(X, Y)\}$

 \mathcal{D}_{∞} :

Objects: same objects as $\mathcal{D} = \{(\mathsf{dg} \; \mathsf{cocategory}, \; \mathsf{dg} \; \mathsf{comodule})\}$

$$\mathcal{D}^p_\infty\big((B_1,C_1),(B_0,C_0)\big) := \left\{\begin{matrix} F:B_1 \to B_0 \ \textit{dg functor} \\ F_!:C_1 \to F^*C_0 \ \textit{degree-p linear map} \end{matrix}\right\}$$

 F^*C_0 is the categorified version of co-extension of scalars:

$$F^*C_0 = ker(B_1 \otimes C_0
ightharpoonup B_1 \otimes B_0 \otimes C_0)$$

Definition

A **dg comodule** *C* over a dg cocategory *B* consists of the following data:

- for each object $f \in B$, a complex $C^{\bullet}(f)$, and
- maps of complexes

$$\Delta_{\mathcal{C}}(f): \mathcal{C}^{\bullet}(f) \to \prod_{g \in Obj(B)} \mathcal{B}^{\bullet}(f,g) \otimes \mathcal{C}^{\bullet}(g).$$

such that the following diagrams for coassociativity and counitality commute:

Fix algebras $A_0, ..., A_n$.

Define a dg comodule over $B(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$:

$$C(A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)^{\bullet}(f_{0,0}, ..., f_{n,0}) :=$$

 id_{A_0}

$$:= \{ A_0 \underbrace{\vdots}_{f_{0,k_0}}^{f_{0,0}} A_1 \underbrace{\vdots}_{f_{n,k_n}}^{f_{n,0}} A_0 = \underbrace{(\phi_{0,1}|...|\phi_{0,k_0}) \otimes ... \otimes (\phi_{n,1}|...|\phi_{n,k_n}) \otimes \alpha:}_{\alpha \in C_{-\bullet}(A_0, f_{n,k_n}...f_{0,k_0}A_0)}$$

$$d_{C(A_0 \to \ldots \to A_0)} = d_B \otimes id_{C_{-\bullet}} + id_B \otimes b + \tilde{\iota}$$

where $\tilde{\iota}$ is given as follows:

where $\tilde{\iota}$ is given as follows:

$$C(A_0 \to \dots \to A_0)^{\bullet}(f_{0,0}, \dots, f_{n,0}) \xrightarrow{\tilde{\iota}} C_{-\bullet}(A_0, f_{n,0} \dots f_{0,0}, A_0)$$

$$C(A_0 \to \dots \to A_0)^{\bullet}(f_{0,0}, \dots, f_{n,0})$$

$$\tilde{\iota}\big((\phi_{0,1}|\ldots|\phi_{0,k_0})\otimes\ldots\otimes(\phi_{n,1}|\ldots|\phi_{n,k_n})\otimes\alpha\big)=\iota_{(\phi_{0,1}|\ldots|\phi_{0,k_0})\bullet\ldots\bullet(\phi_{n,1}|\ldots|\phi_{n,k_n})}\alpha$$

An A_{∞} -functor $\mathcal{F}: \chi_{\infty} \to \mathcal{D}_{\infty}$

$$\mathcal{A}:=(A_0\to ...\to A_n\to A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$

$$\mathcal{A}:=\left(A_0\to ...\to A_n\to A_0\right)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$
 $\mathcal{A} \mapsto (\mathcal{B}(\mathcal{A}), \mathcal{C}(\mathcal{A}))$

$$\mathcal{A}:=(A_0\to ...\to A_n\to A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$
 $A \mapsto (B(A), C(A))$

Generating Morphisms:

$$\mathcal{A}:=(A_0\to ...\to A_n\to A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$

$$\mathcal{A} \mapsto (\mathcal{B}(\mathcal{A}), \mathcal{C}(\mathcal{A}))$$
Generating Morphisms: $\sigma_{i,n} \mapsto \begin{pmatrix} \mathcal{B}(\mathcal{A}) & \frac{\hat{\sigma}_{i,n}}{\longrightarrow} \mathcal{B}(\sigma_{i,n}\mathcal{A}) \\ \mathcal{C}(\mathcal{A}) & \stackrel{id}{\longrightarrow} \hat{\sigma}_{i,n}^* \mathcal{C}(\sigma_{i,n}\mathcal{A}) \end{pmatrix}$

$$A := (A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$

$$\mathcal{A} \mapsto (B(\mathcal{A}), C(\mathcal{A}))$$
Generating Morphisms: $\sigma_{i,n} \mapsto \begin{pmatrix} B(\mathcal{A}) & \frac{\hat{\sigma}_{i,n}}{\longrightarrow} B(\sigma_{i,n}\mathcal{A}) \\ C(\mathcal{A}) & \stackrel{id}{\longrightarrow} \hat{\sigma}_{i,n}^* C(\sigma_{i,n}\mathcal{A}) \end{pmatrix}$

$$\delta_{j,n} \mapsto \begin{pmatrix} B(\mathcal{A}) & \frac{\hat{\delta}_{j,n}}{\longrightarrow} B(\delta_{j,n}\mathcal{A}) \\ C(\mathcal{A}) & \stackrel{id}{\longrightarrow} \hat{\delta}_{j,n}^* C(\delta_{j,n}\mathcal{A}) \end{pmatrix}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

$$\mathcal{A}:=(A_0\to\ldots\to A_n\to A_0)$$

$$\mathcal{A} \mapsto (B(\mathcal{A}), C(\mathcal{A}))$$
Generating Morphisms: $\sigma_{i,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\sigma}_{i,n}} B(\sigma_{i,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\sigma_{i,n}\mathcal{A}) \end{pmatrix}$

$$\delta_{j,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\delta}_{j,n}} B(\delta_{j,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\delta}_{i,n}^* C(\delta_{i,n}\mathcal{A}) \end{pmatrix} \quad \tau_n \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\tau}_{n}} B(\tau_n \mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\tau_n \mathcal{A}) \end{pmatrix}$$

 $\chi_{\infty} \to \mathcal{D}_{\infty}$

$$\hat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \dots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \dots, f_{n-1}) \text{ as complexes.}$$

$$\hat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \ldots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \ldots, f_{n-1}) \text{ as complexes.}$$

$$\widehat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \ldots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \ldots, f_{n-1}) \text{ as complexes.}$$

$$n=1: \quad \textit{C}(\textit{A}_{0} \rightarrow \textit{A}_{1} \rightarrow \textit{A}_{0})^{\bullet}(\textit{f},\textit{g}) \xrightarrow{\tau_{1!}} \textit{C}(\textit{A}_{1} \rightarrow \textit{A}_{0} \rightarrow \textit{A}_{1})^{\bullet}(\textit{g},\textit{f})$$

$$\widehat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \dots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \dots, f_{n-1}) \text{ as complexes.}$$

$$n = 1: \quad C(A_0 \to A_1 \to A_0)^{\bullet}(f,g) \xrightarrow{\tau_{11}} C(A_1 \to A_0 \to A_1)^{\bullet}(g,f)$$

$$\downarrow^{f_{0,0}} \qquad \downarrow^{f_{1,0}} \qquad \downarrow^{f_{1,0}} \qquad \downarrow^{f_{0,0}} \qquad \downarrow^{f_{0,1}} \qquad \downarrow^{f_{0$$

$$\widehat{\tau}_n^* C(\tau_n \mathcal{A})^{\bullet}(\underbrace{f_0, \dots, f_n}_{\in Obj(B(\mathcal{A}))}) \cong C(\tau_n \mathcal{A})^{\bullet}(f_n, f_0, \dots, f_{n-1}) \text{ as complexes.}$$

Solution: Give these maps to cogenerators to define $\tau_{1!}$, then let

$$\tau_{n!}: C(\mathcal{A}) \cong \hat{\delta}_{0}^{*n-1}C(A_{0} \to A_{n} \to A_{0}) \xrightarrow{\hat{\delta}_{0}^{*n-1}\tau_{1!}} \hat{\delta}_{0}^{*n-1}\hat{\tau}_{1}^{*}C(A_{n} \to A_{0} \to A_{n}) \cong$$

$$\cong (\widehat{\tau_{1}}\widehat{\delta_{0}^{n-1}})^{*}C(A_{n} \to A_{0} \to A_{n}) \cong (\widehat{\delta_{0}^{n-1}\tau_{n}})^{*}C(A_{n} \to A_{0} \to A_{n}) \cong$$

$$\cong \hat{\tau}_{n}^{*}\hat{\delta}_{0}^{*n-1}C(A_{n} \to A_{0} \to A_{n}) \cong \hat{\tau}_{n}^{*}C(\tau_{n}\mathcal{A}).$$

 id_{A_0}

$$[b,\bar{\tau}_{1!}](\phi\otimes\alpha)\pm\bar{\tau}_{1!}(\delta\phi\otimes\alpha)=[\bar{\tau}_{1!},\iota_{\phi}](\alpha)$$

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$L_{\phi}(\alpha) = \sum_{k \geq 1} \pm a_0 \otimes ... \otimes \phi(a_k, ...) \otimes a_r \otimes ... \otimes a_n +$$

$$\sum_{k \geq 1} \pm \phi(a_k, ..., a_n, a_0, ...) \otimes a_s \otimes ... \otimes a_{k-1}$$

$$[b, L_{\phi}] \pm L_{\delta \phi} = 0$$

$$[b, \bar{\tau}_{1!}](\phi \otimes \alpha) \pm \bar{\tau}_{1!}(\delta \phi \otimes \alpha) = [\bar{\tau}_{1!}, \iota_{\phi}](\alpha)$$

$$\begin{split} \bar{\tau}_{1!}(\phi \otimes \alpha) &= \sum_{k \geq 1} \pm f_{0,0} a_0 \otimes \ldots \otimes \phi(a_k, \ldots) \otimes f_{0,1} a_r \ldots \otimes f_{0,1} a_n + \\ &\qquad \qquad \sum \pm \phi(f_{1,0} f_{0,1} a_k, \ldots, f_{1,0} f_{0,1} a_n, a_0, \ldots) \otimes f_{0,1} a_s \otimes \ldots \otimes f_{0,1} a_{k-1} \\ [b, \bar{\tau}_{1!}(\phi, -)] &\pm \bar{\tau}_{1!}(\delta \phi, -) = [\bar{\tau}_{1!}, \iota_{\phi}] \end{split}$$

$$A := (A_0 \rightarrow ... \rightarrow A_n \rightarrow A_0)$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}
A \mapsto (B(\mathcal{A}), C(\mathcal{A}))$$
Generating Morphisms: $\sigma_{i,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\sigma}_{i,n}} B(\sigma_{i,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\sigma_{i,n}\mathcal{A}) \end{pmatrix}$

$$\delta_{j,n} \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\delta}_{j,n}} B(\delta_{j,n}\mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\delta}_{i,n}^* C(\delta_{j,n}\mathcal{A}) \end{pmatrix} \quad \tau_n \mapsto \begin{pmatrix} B(\mathcal{A}) \xrightarrow{\hat{\tau}_n} B(\tau_n \mathcal{A}) \\ C(\mathcal{A}) \xrightarrow{id} \hat{\sigma}_{i,n}^* C(\tau_n \mathcal{A}) \end{pmatrix}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

$$C(A_0 \to A_1 \to \underbrace{A_0)} \xrightarrow{\overset{\tau_{11}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \to A_1 \to A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{11}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \to A_1 \to A_0))$$

$$id$$

$$C(A_0 \to A_1 \to \underbrace{A_0)} \xrightarrow{\overset{\tau_{11}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \to A_1 \to A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{11}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \to A_1 \to A_0))$$

$$id$$

$$\alpha = \mathsf{a}_0 \otimes \ldots \otimes \mathsf{a}_n \overset{\tau_{1!}}{\mapsto} \mathsf{f}_{0,0} \mathsf{a}_0 \otimes \ldots \otimes \mathsf{f}_{0,0} \mathsf{a}_n \overset{\hat{\tau}_{1!}^* \tau_{1!}}{\mapsto} \mathsf{f}_{1,0} \mathsf{f}_{0,0} \mathsf{a}_0 \otimes \ldots \otimes \mathsf{f}_{1,0} \mathsf{f}_{0,0} \mathsf{a}_n$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\overset{\tau_{1!}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{1!}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$id$$

$$A_0 \xrightarrow{f_{0,0}} A_1 \xrightarrow{f_{1,0}} A_0$$

$$\alpha \xrightarrow{id_{A_0}} A_0$$

$$\alpha = a_0 \otimes \ldots \otimes a_n \stackrel{\tau_{1,1}}{\mapsto} f_{0,0} a_0 \otimes \ldots \otimes f_{0,0} a_n \stackrel{\widehat{\tau}_{1,1}^* \tau_{1,1}}{\mapsto} f_{1,0} f_{0,0} a_0 \otimes \ldots \otimes f_{1,0} f_{0,0} a_n$$
$$f_{1,0} f_{0,0} \alpha - \alpha = [b, B](\alpha)$$

$$B(a_0 \otimes \ldots \otimes a_n) = \sum_{0 \leq i \leq n} \pm 1 \otimes f_{1,0} f_{0,0} a_i \otimes \ldots \otimes f_{1,0} f_{0,0} a_n \otimes a_0 \otimes \ldots \otimes a_{i-1}$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\tau_1} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{1!}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$id$$

$$A_0 \xrightarrow[f_{0,1}]{f_{0,1}} A_1 \xrightarrow{f_{1,0}} A_0 = \phi \otimes \alpha$$

$$(\widehat{\tau}^*\tau_{1!}\circ\tau_{1!}-id)(\phi\otimes\alpha)=\text{``}f_{1,0}\circ L_{\phi}(\alpha)\text{''}$$

$$C(A_0 \to A_1 \to \underbrace{A_0)} \xrightarrow{\overset{\tau_{11}}{\longrightarrow}} \hat{\tau}_1^* C(\tau_1(A_0 \to A_1 \to A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{11}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \to A_1 \to A_0))$$

$$id$$

$$(\overline{\tau}^*\tau_{1!} \circ \tau_{1!} - id)(\phi \otimes \alpha) = "f_{1,0} \circ L_{\phi}(\alpha)"$$

$$= \sum_{k \geq 1} \pm f_{1,0}f_{0,0}a_{0} \otimes \ldots \otimes f_{1,0}\phi(a_{k},\ldots) \otimes f_{1,0}f_{0,1}a_{r} \ldots \otimes f_{1,0}f_{0,1}a_{n} +$$

$$\sum \pm f_{1,0}\phi(f_{1,0}f_{0,1}a_{k},\ldots,f_{1,0}f_{0,1}a_{n},a_{0},\ldots) \otimes f_{1,0}f_{0,1}a_{s} \otimes \ldots \otimes f_{1,0}f_{0,1}a_{k-1}$$

$$\stackrel{?}{=} [\iota_{\phi},B](\alpha) \pm [b,B](\phi \otimes \alpha) \pm B(\delta \phi \otimes \alpha)$$

$$C(A_0 \rightarrow A_1 \rightarrow \underbrace{A_0)} \xrightarrow{\tau_1} \hat{\tau}_1^* C(\tau_1(A_0 \rightarrow A_1 \rightarrow A_0)) \xrightarrow{\hat{\tau}_1^* \tau_{1!}} \hat{\tau}_1^{*2} C(\tau_1^2(A_0 \rightarrow A_1 \rightarrow A_0))$$

$$(\widehat{\tau}^*\tau_{1!}\circ\tau_{1!}-id)(\phi\otimes\alpha)="f_{1,0}\circ L_{\phi}(\alpha)"$$

$$=\sum_{k\geq 1}\pm f_{1,0}f_{0,0}a_0\otimes\ldots\otimes f_{1,0}\phi(a_k,\ldots)\otimes f_{1,0}f_{0,1}a_r\ldots\otimes f_{1,0}f_{0,1}a_n+$$

$$\sum\pm f_{1,0}\phi(f_{1,0}f_{0,1}a_k,\ldots,f_{1,0}f_{0,1}a_n,a_0,\ldots)\otimes f_{1,0}f_{0,1}a_s\otimes\ldots\otimes f_{1,0}f_{0,1}a_{k-1}$$

$$\stackrel{?}{=}[\iota_{\phi},B](\alpha)\pm[b,B](\phi\otimes\alpha)\pm B(\delta\phi\otimes\alpha)$$

$$B(\phi \otimes \alpha) = \sum_{0 \le i \le n} \pm 1 \otimes f_{1,0} f_{0,0} a_i \otimes \ldots \otimes f_{1,0} \phi(a_*,\ldots) \otimes f_{1,0} f_{0,1} a_* \otimes \ldots \otimes f_{1,0} f_{0,1} a_n \otimes a_0 \otimes \ldots \otimes a_{i-1}$$

$$B((\phi_{0,1}|...|\phi_{0,k_0}) \otimes (\phi_{1,1}|...|\phi_{1,k_1}) \otimes \alpha) =$$

$$= \sum_{\substack{0 \leq j_1 \leq ... \leq j_{2k_1} \leq k_0 \\ p}} \pm 1 \otimes f_{1,0}f_{0,0}a_p \otimes ... \otimes f_{1,0}\phi_{0,1}(a_*,...) \otimes$$

$$\otimes f_{1,0}f_{0,1}a_* \otimes ... \otimes f_{1,0}\phi_{0,j_1}(a_*,...) \otimes$$

$$\otimes f_{1,0}f_{0,j_1}a_* \otimes ... \otimes \phi_{1,1}(f_{0,j_1}a_*,...,\phi_{0,j_1+1}(a_*,...),...) \otimes$$

$$\otimes ... \otimes \phi_{1,k_1}(f_{0,j_{2k_1-1}}a_*,...,\phi_{0,j_{2k_1-1}+1}(a_*,...),...) \otimes ... \otimes$$

$$\otimes a_0 \otimes ... \otimes a_{p-1}$$

$$\chi_{\infty} \to \mathcal{D}_{\infty}$$

$$\mathcal{A} \mapsto (B(\mathcal{A}), C(\mathcal{A}))$$

$$\tau_{1} \mapsto \begin{pmatrix} \hat{\tau}_{1} : B(\mathcal{A}) \to B(\tau_{1}\mathcal{A}) \\ \tau_{1!} : C(\mathcal{A}) \to \hat{\tau}_{1}^{*}C(\tau_{1}\mathcal{A}) \end{pmatrix}$$

$$(\tau_{1}, \tau_{1}) \mapsto \begin{pmatrix} id : B(\mathcal{A}) \to B(\mathcal{A}) \\ B : C(\mathcal{A}) \to C(\mathcal{A}) \end{pmatrix}$$

$$(\tau_{1}, \tau_{1}, \tau_{1}) \mapsto \begin{pmatrix} \hat{\tau}_{1} : B(\mathcal{A}) \to B(\tau_{1}\mathcal{A}) \\ 0 : C(\mathcal{A}) \to \hat{\tau}_{1}^{*}C(\tau_{1}\mathcal{A}) \end{pmatrix}$$

$$\vdots$$

The A_{∞} relations mean:

- $\tau_{1!}$ is a map of complexes
- $B^2 = 0$
- The following diagram commutes:

$$C(\mathcal{A}) \xrightarrow{\tau_{1!}} \hat{\tau}_{1}^{*} C(\tau_{1}\mathcal{A})$$

$$\downarrow^{B} \qquad \qquad \downarrow^{\hat{\tau}_{1}^{*}B}$$

$$C(\mathcal{A}) \xrightarrow{\tau_{1!}} \hat{\tau}_{1}^{*} C(\tau_{1}\mathcal{A})$$

For higher n > 1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id.

For higher n>1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id. However, it is sufficient to find a homotopy between $\hat{\tau}_n^{*2}\delta_{0,n!}\circ\hat{\tau}_n^*\tau_{n!}\circ\tau_{n!}$ and $\hat{\delta}_{n-1,n}^*\tau_{n-1!}\circ\delta_{n-1,n!}$.

For higher n>1, we want to find a homotopy between " $\tau_{n!}^{n+1}$ " and id. However, it is sufficient to find a homotopy between $\hat{\tau}_n^{*2}\delta_{0,n!}\circ\hat{\tau}_n^*\tau_{n!}\circ\tau_{n!}$ and $\hat{\delta}_{n-1,n}^*\tau_{n-1!}\circ\delta_{n-1,n!}$.

Solution: Find such a homotopy, \mathcal{B} , for n=2, and use $\hat{\delta}_0^{*n-2}\mathcal{B}$ for n>2.

For higher n, the A_{∞} relations mean:

- $\tau_{n!}$ is a map of complexes
- $\mathcal{B}^2 = 0$
- We have a pair of homotopic maps:

For higher n, the A_{∞} relations mean:

- $\tau_{n!}$ is a map of complexes
- $\mathcal{B}^2 = 0$
- They are homotopic via two different homotopies:

Summary:

We have a given a "homotopically sheafy-cyclic object in dg cocategories with a dg comodule", i.e., an A_{∞} -functor from χ_{∞} to \mathcal{D}_{∞} .

Time and interest permitting

- ullet Rectify ${\cal F}$ to a dg functor
- ullet Give a dg functor $\mathcal{D}_{\infty} o \mathcal{E} = \{(\mathsf{dg} \; \mathsf{cat}, \; \mathsf{dg} \; \mathsf{mod})\}$

$$U(\chi_{\infty}) \xrightarrow{rectified} \mathcal{D}_{\infty} \to \mathcal{E}$$

"A homotopically sheafy-cyclic object in dg categories with a dg module"