Permit Number 90163

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emissio	Emission Rates	
			lbs/hour	TPY (4)	
1	TDU Dryer (32 MMBtu/hr)	PM ₁₀	0.24	1.04	
	(32 WIWIBIU/III)	PM _{2.5}	0.24	1.04	
		SO ₂	0.02	0.08	
		NO _x	3.14	13.74	
		со	2.64	11.54	
		VOC	0.17	0.76	
		HAP	0.06	0.32	
7	TDU Steam Boiler (8 MMBtu/hr	PM ₁₀	0.06	0.26	
	Natural Gas fired)	PM _{2.5}	0.06	0.26	
		SO ₂	0.01	0.02	
		NOx	0.78	3.44	
		со	0.66	2.89	
		VOC	0.04	0.19	
		HAP	0.01	0.06	
8A	TDU Conveyor	PM ₁₀	0.02	0.03	
		PM _{2.5}	0.01	0.01	
8B	TDU Transfer Points (Desorbed Solids Bin)	PM	0.15	0.29	
		PM _{2.5}	0.02	0.04	
BH/Venturi	TDU	PM ₁₀	0.09	0.38	
	Baghouse/Venturi Scrubber	PM _{2.5}	0.09	0.38	
		VOC	0.20	0.37	
		H ₂ SO ₄	0.01	0.01	
		NH ₃	0.01	0.03	
		HNO ₃	0.01	0.01	

		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.03
		HAP	0.20	0.37 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
СТ	TDU Cooling Tower	PM	0.62	2.72
		PM ₁₀	0.62	2.72
		PM _{2.5}	0.62	2.72
BOX-1	TDU Centrifuge Cake Rolloff	voc	4.23	1.76
	Kolloli	HAP	4.23	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH ₃	0.15	0.06
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BOX-1B	TDU Centrifuge Cake Rolloff	voc	4.23	1.76
	TXOIIOII	HAP	4.23	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH ₃	0.15	0.06
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
3OX-2	TDU Gas Treatment Cake Box	VOC	0.13	0.42
	CARE DUX	HAP	0.13	0.01 (8)

		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
SHAKER	TDU Shaker Box	voc	0.17	0.14
		НАР	0.17	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
BIN-FUG	Feed Bin Fugitives (5)	VOC	10.18	18.64
		HAP	10.18	0.45 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.03	
		NH ₃	0.18	0.35
		HNO ₃	0.01	0.03
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.02
CARBFLT1	Carbon Adsorption System 1	VOC	0.01	0.01
	System 1	НАР	0.01	0.013 (8)
		H ₂ S	0.01	
		HF	0.01	

		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
CARBFLT2	Carbon Adsorption System 2	VOC	0.01	0.01
	System 2	HAP	0.01	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
CARBFLT3	Carbon Adsorption System 3	VOC	0.15	0.01
	System s	HAP	0.15	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
FUG-TDU	TDU Piping Fugitives	voc	0.16	0.18
	(5)	HAP	0.03	0.02 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.024	0.10

		HNO₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.04
PROD-LOAD	TDU Product Loading	voc	0.36	0.01
		НАР	0.36	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.05	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.02	0.01
FUG-2	Cement Kiln Dust Stock Pile	PM	0.01	0.05
	Stock File	PM ₁₀	0.01	0.05
		PM _{2.5}	0.01	0.05
FUG-1	Stabilization Building 2 Process Fugitives (5)	PM ₁₀	0.02	0.02
	1 Tocess Fugitives (3)	PM _{2.5}	0.01	0.01
		voc	15.08	(6)
		НАР	15.08	(7) (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.42	
		NH ₃	0.36	2.90
		HNO ₃	0.12	1.11
		H ₃ PO ₄	0.03	0.42
		H ₂ O ₂	0.02	0.15
3H1	Stabilization Building 2 Baghouse	PM ₁₀	2.14	3.43
	Daynouse	PM _{2.5}	2.14	3.43
		voc	135.76	(6)

		НАР	135.76	(7) (8)
		H ₂ S	0.01	
		HF	0.11	
		HCI	3.77	
		NH ₃	3.25	2.61
		HNO₃	1.09	1.00
		H ₃ PO ₄	0.24	0.38
		H ₂ O ₂	0.16	0.13
SH2	Stabilization Building 3 Baghouse	PM ₁₀	2.14	3.43
	Dagnouse	PM _{2.5}	2.14	3.43
		voc	122.74	(6)
		НАР	122.74	(7) (8)
		H ₂ S	0.01	
		HF	0.02	
		HCI	2.11	
		NH ₃	2.38	2.18
		HNO₃	0.60	0.84
		H ₃ PO ₄	0.13	0.21
		H ₂ O ₂	0.14	0.11
H7	Stabilization Building 3 Baghouse	PM ₁₀	2.14	3.43
	Dugilouse	PM _{2.5}	2.14	3.43
		voc	122.74	(6)
		НАР	122.74	(7) (8)
		H ₂ S	0.01	
		HF	0.18	
		HCI	2.11	
		NH ₃	2.38	2.18
		HNO₃	0.60	0.84
		H ₃ PO ₄	0.13	0.21

		H ₂ O ₂	0.14	0.11
FUG-3	Stabilization Building 3 Process Fugitives (5)	PM ₁₀	0.01	0.01
	1 100033 1 ugilive3 (3)	PM _{2.5}	0.01	0.01
		voc	27.28	(6)
		НАР	27.28	(7) (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.47	
		NH ₃	0.53	0.49
		HNO ₃	0.13	0.19
		H ₃ PO ₄	0.03	0.05
		H ₂ O ₂	0.03	0.02
	Stabilization Buildings Annual Emission Caps for	voc		22.23
	EPNs FUG1, BH1, BH2, BH7 and FUG-3	НАР		4.38 (8)
BH4	Catalyst Building Baghouse	PM ₁₀	1.71	5.49
	baynouse	PM _{2.5}	1.71	5.49
		НАР	0.17	0.55
CAT-FUG1	Drum Loading Fugitives 1 (from	PM ₁₀	0.01	0.01
	Catalyst Building) (5)	PM _{2.5}	0.01	0.01
		НАР	0.01	0.01
CAT-FUG2	Drum Loading Fugitives 2 (from	PM ₁₀	0.01	0.01
	outside) (5)	PM _{2.5}	0.01	0.01
		НАР	0.01	0.01
ТО	Thermal Oxidizer (15 MMBtu/hr)	PM ₁₀	0.12	0.51
	WWW.DCW/TII)	PM _{2.5}	0.12	0.51
		SO ₂	54.80	26.27
		NO _x	25.43	28.53
		СО	1.24	5.41

		voc	6.10	1.56
		НАР	120.8	9.11 (8)
		H ₂ S	0.01	
		Total As (9)	10.70	
		HF	40.40	
		HCI	107.00	
		H ₂ SO ₄	0.01	0.03
		Total Bromine	98.60	98.64
		Total Iodine	44.30	14.77
		NH ₃	0.17	0.12
		HNO ₃	17.5	8.99
		H ₃ PO ₄	2.40	4.76
		H ₂ O ₂	0.06	0.11
Maintenance, Star	tup, and Shutdown (MSS)		·	
TANK-MSS	Tank Opening MSS	voc	3.25	0.07
		НАР	0.13	0.004
EQUIP-MSS	Equipment Purging and Opening	voc	17.36	0.04
	and Opening	НАР	3.49	0.01 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01
		H ₃ PO ₄	0.01	0.01
		H ₂ O ₂	0.01	0.01
TPAINT-MSS	TDX Sitewide Painting	PM ₁₀	0.49	0.05
		PM _{2.5}	0.49	0.05
		voc	16.65	1.66
		НАР	0.40	0.04

UPAINT-MSS	USET Sitewide Painting	PM ₁₀	0.01	0.01
	Painting	PM _{2.5}	0.01	0.01
		voc	18.77	0.19
		HAP	0.80	0.01
TBLAST-MSS	TDX Sitewide Abrasive Blasting	PM ₁₀	0.17	0.01
	Diasting	PM _{2.5}	0.03	0.01
UBLAST-MSS	USET Sitewide Abrasive Blasting	PM ₁₀	0.34	0.01
	Abrasive blasting	PM _{2.5}	0.05	0.01
TO-SRTMSS	Thermal Oxidizer Startup	PM ₁₀	0.06	0.01
	Startup	PM _{2.5}	0.06	0.01
		SO ₂	0.01	0.01
		NO _x	0.45	0.01
		со	3.09	0.06
		voc	0.04	0.01
		HAP	0.01	0.01
TO-VNTMSS	Thermal Oxidizer MSS Venting	voc	8.55	0.03
	venting	HAP	8.21	0.03
		H ₂ S	0.01	
		NH₃	0.18	0.01
		HNO ₃	5.49	0.01
		H ₃ PO ₄	0.22	0.01
		H ₂ O ₂	0.01	0.01
DWELL-MSS	Deepwell Maintenance	voc	2.85	0.04
		НАР	2.85	0.04 (8)
		H ₂ S	0.01	
		HF	0.01	
		HCI	0.01	
		NH ₃	0.01	0.01
		HNO ₃	0.01	0.01

	H₃PO₄	0.01	0.01
	H_2O_2	0.01	0.01
Baghouse Filter	PM ₁₀	0.08	0.01
Changes	PM _{2.5}	0.01	0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

HAP - hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 Code of Federal Regulations Part 63, Subpart C

H₂S - hydrogen sulfide (delisted HAP)

HF - hydrogen fluoride (HAP)

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) The annual VOC emissions from this source are included in the Stabilization Buildings Annual VOC Emission Cap of 22.23 tpy.
- (7) The annual H₂S, HF, and HCl emissions from this source are included in the Stabilization Buildings Annual HAP cap of 4.38 tpy.
- (8) Emission limit applies to the sum of total HAP emissions (including but not limited to HF and HCl) and H2S emissions.
- (9) Total Arsenic includes elemental arsenic and arsenic compounds.