Laboratoria Podstawy Elektroniki							
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.				
Informatyka	_	I	I1				
Temat Laboratorium	Numer lab.						
Wzn	6						
Skład grupy ćwiczeniowej oraz numery indeksów							
Stanisław Jasiewicz(116753), Krzysztof Michalak(132281), Wojciech Regulski(132312), Ewa Rudol(132314), Bartosz Sobkowiak (125342)							
Uwagi			Ocena				

1 Cel

Zbadanie prostych układów analogowego przetwarzania sygnałów, opartych o zastosowania wzmacniaczy operacyjnych, oraz zapoznanie się ich zasadą działania

2 Pomiary

Rysunek 1: Schemat ideowy płyty ćwiczeniowej

Rysunek 2: Konfiguracje stopni wzmacniających:a) nieodwracająca, b) odwracająca

1. Konfiguracja nieodwracająca

• Wartości elementów rezystancyjnych odpowiedzialnych za wyznaczanie stopnia wzmocnienia:

$$R_1 = R_2 = 1000\Omega$$

- Częstotliwość przebiegu: 4 kHz
- Amplitudy przebiegów wejściowych i wyjściowych:

$$V_{wej} = 11,9V$$

$$V_{wyj} = 23,4V$$

Rysunek 3: Przebieg wejściowy (żółty) i wyjściowy (niebieski) dla wzmacniacza napięciowego w konfiguracji nieodwracającej.

• Wzmocnienie wzmacniacza: ($k = \frac{U_{out}}{U_{in}}$)

$$k = \frac{23,4}{11,9} = 1,97[-]$$

$$k = 20 * \log 1,97 = 5,88[dB]$$

Wzmocnienie wzmacniacza teoretycznie $(k=1+\frac{Z_f}{Z_{in}}\)$

$$k = 1 + \frac{1000\Omega}{1000\Omega} = 2[-]$$

• Impedancja Z_f w układzie wtórnika wynosi 0 Ω , a impedancja Z_{in} zależy od napięcia wejściowego. Korzystając ze wzoru na wzmocnienie dla konfiguracji nieodwracającej (jest to ten sam układ tylko bez impedancji Z_f) łatwo zauważyć, że wzmocnienie wyniesie 1 ($Z_f/Z_{in}=0$). Wtórnik napięciowy cechuje się bardzo dużą rezystancją, dzięki czemu pobiera bardzo niewielki prąd, umożliwiając jednocześnie pobranie prądu o dużym natężeniu ze swojego wyjścia.

2. Konfiguracja odwracająca

• Wartości elementów rezystancyjnych i pojemnościowych możliwych do załączenia w roli impedancji:

 Z_f :

-Rezystancja: 1
k, 2k, 1k $[\Omega]$

-Pojemność: 100 nF

 Z_{in} :

-Rezystancja: 5k, 1k, 2k $[\Omega]$

-Pojemność: 10 nF

• Częstotliwość przebiegu: 4 kHz

 \bullet Tablica 1: Zestawienie danych pomiarowych i obliczeniowych stopnia wzmacniającego (k_u teoretyczne = $-\frac{Z_f}{Z_{in}},\,k_u=-\frac{U_{out}}{U_{in}}$)

Z_{in}	nr prze- łącz- nika	Z_f	nr prze- łącz- nika	k_u teoretyczne	u_{we} [V]	u_{wyj} [V]	k_u [V/V]	k_u [dB]
$1 \text{ k } \Omega$	1	$2 \text{ k } \Omega$	1	-2,0	11,3	22,2	-1,96	5,84
$1 \text{ k } \Omega$	1	1 k Ω	2	-1,0	11,4	11,2	-0,98	-1,74
$1 \text{ k } \Omega$	1	$5 \text{ k } \Omega$	3	-5,0	11,5	28,4	-2,47	7,86
$2 \text{ k } \Omega$	2	1 k Ω	2	-0,5	11,6	6,2	-0,53	-5,52

Rysunek 4: Przebieg wejściowy (żółty) i wyjściowy (niebieski) dla wzmacniacza napięciowego w konfiguracji odwracającej.

- Możemy więc zauważyć, że współczynniki wzmocnienia (teoretyczne i pomiarowe) wyliczone z dwóch podanych wcześniej wzorów są bardzo podobne. Zaobserwowana różnica może być spowodowana niedoskonałością rezystorów.
- Przesunięcie fazowe między przebiegami wynosi 180 stopni i jest spowodowane działaniem wzmacniacza odwracającego.

3. Blok integratora

• Częstotliwość przebiegu: 4 kHz

 \bullet Tablica 2: Zestawienie danych pomiarowych i obliczeniowych stopnia wzmacniającego (stała całkowania $T_i=RC)$

R	nr przełącz-	C	nr przełącz-	$\frac{1}{T_i}$ pomie-	$\frac{1}{T_i}$ teore-
	nika		nika	rzone	tyczne
1 kΩ	1	10 nF	4	$\frac{1}{9\mu s}$	$\frac{1}{10\mu s}$
2 k Ω	2	10 nF	4	$\frac{1}{18\mu s}$	$\frac{1}{20\mu s}$

Rysunek 5: Przebieg wejściowy (żółty) i wyjściowy (niebieski) dla wzmacniacza napięciowego w roli integratora. (R=1k)

Rysunek 6: Przebieg wejściowy (żółty) i wyjściowy (niebieski) dla wzmacniacza napięciowego w roli integratora. (R=2k)

4. Blok różniczkujący

- Częstotliwość przebiegu na wyjściu: 1 kHz
- Zniekształcenia przebiegu wyjściowego w pobliżu przełączeń poziomów wejściowego przebiegu prostokątnego należy tłumaczyć ograniczoną szybkością narastania sygnału przebiegu, które wynika z maksymalnej prędkości narastania napięcia wyjściowego wzmacniacza operacyjnego. Ponadto należy wziąć pod uwagę, iż napięcia maksymalne podczas pracy wzmacniacza w nasyceniu są równe napięciu zasilania wzmacniacza operacyjnego, co przyczynia się do powstania dalszych zniekształceń.

Rysunek 7: Przebieg wejściowy (żółty) i jego pochodna (niebieski). (gorzej)

Rysunek 8: Przebieg wejściowy (żółty) i jego pochodna (niebieski). (lepiej - przełącznik 1 : 1 i 4)

3 Wnioski

Wartości napięciowe wzmocnionych sygnałów w większości przypadków odpowiadały wartościom teoretycznym otrzymanym na drodze obliczeniowej. Znacząca różnica miała miejsce w przypadku trzeciego pomiaru wzmocnienia w konfiguracji odwracającej. Wartość wzmocnienia powinna wynosić -5, zaś wartość zmierzona wynosiła -2,47 . Różnica ta może wynikać z błędnie wykonanego pomiaru. Można zwrócić uwagę na fakt, że wartości wzmocnienia dla konfiguracji odwracającej są ujemne. Jest to spowodowane odwracaniem sygnału, co oznacza, że gdy w danym momencie napięcie było dodatnie, wzmocniony sygnał będzie cechować się napięciem ujemnym i odwrotnie. Oznacza to również, że przebieg wyjściowy jest przesunięty w fazie o 180 stopni.

4 Literatura

- 1. P. Horowitz, W. Hill Sztuka elektroniki, WKiŁ, Warszawa 2003
- 2. Materiały ze strony prowadzącego: http://etacar.put.poznan.pl/mariusz.naumowicz/materialy.html