Долганёв Антон ПМИ-22 Вариант: 9

Цель: Сформировать практические навыки применения правила Рунге для оценки ошибки численного интегрирования и уточнения по Ричардсону для повышения точности решения прикладных задач.

№	a	b	$\varphi(x)$	Квадратуры		
		1			· •	
9	0	1	$1/(x^2-4)$	Параболы	Гаусс-2	
			_			

Результаты

Parabola Results: h = 0.10000000000 : -0.2746538762 Error: 0.00000008040 h = 0.05000000000 : -0.2746531233 Error: 0.00000000511h = 0.02500000000 : -0.2746530754 Error: 0.00000000032 Parabola Error Analysis (Runge and Richardson): h Runge RichardsonError Richardson -0.2746531735 0.0000001013 0.0500000000 -0.0000000502 0.0250000000 -0.0000000032 -0.2746530786 0.00000000064 Gauss-2 Results: h = 0.10000000000 : -0.2746530381 Error: 0.00000000341 h = 0.05000000000 : -0.2746530700 Error: 0.00000000021 h = 0.0250000000 : -0.2746530720 Error: 0.00000000001 Gauss-2 Error Analysis (Runge and Richardson): RichardsonError Richardson Runge 0.0500000000 0.00000000021 -0.2746530679 0.0000000043 0.0250000000 0.0000000001 -0.2746530719 0.0000000003

Результаты численного интегрирования, представленные в таблицах:

h	$I^* - I^h$	$\frac{I^{h/2}-I^h}{2^k-1}$	I^{R}	$I^* - I^R$
0,05	0.000000511	0.000000502	-0.2746531735	0.000001013
0.025	0.000000032	0.000000032	-0.2746530786	0.000000064

h	I^*-I^h	$\frac{I^{h/2} - I^h}{2^k - 1}$	I^R	$I^* - I^R$
0,05	0.000000021	0.0000000021	-0.2746530679	0.000000043
0.025	0.000000001	0.000000001	-0.2746530719	0.000000003

Выводы:

Метод парабол: При уменьшении шага h, результаты интегрирования с каждым разом становятся более точными, что подтверждается уменьшением ошибки. Оценка ошибки методом Рунге и уточнение по Ричардсону показывают, что с уменьшением h, ошибка значительно сокращается, что является характерным признаком сходимости метода.

Гаусс2: Результаты аналогичны: снижение h ведет к улучшению точности (ошибка также уменьшается). Ошибка по Ричардсону для Гаусса-2 также уменьшается при меньших шагах, и её значения значительно близки к нулю. Оба метода демонстрируют хорошую сходимость с уменьшением шага.

В целом, оба метода (парабола и Гаусс-2) дают схожие результаты с малой ошибкой. Снижение шага приводит к улучшению точности, что подтверждает правильность реализации алгоритмов и правильный выбор шагов интегрирования.