Indian Institute of Technology Patna

Department of Physics

Mid-semester Examination
Optics & Lasers (PH 201)

Date: Feb. 25, 2019

Full Marks: 30 Answer all questions.

1.	Explain how <i>Poisson spot</i> is formed. [2]
2.	What are the benefits optical processing offers in comparison to digital
	processing? [1]
3.	In Young's double-hole experiment, calculate I/I_{max} , where I represents the
	intensity at a point where the path difference is $\lambda/5$. [2]
4.	Sketch the diffraction pattern of a Gaussian field. [2]
5.	Prove the following formula for phase transformation due to a thin lens. [5] $t_l(x,y) = \exp\left[-j\frac{k}{2f}(x^2+y^2)\right]$
6.	Derive the expressions for reflectivity of the Fabry-Perot etalon. Explain why the
	etalon provides better resolution as compared to the two-beam interference
	method. [2+2+2]
7.	Define holography and explain the difference between photography and
	holography. Also, mention some of the applications of holography. [4]
8.	Consider a circular aperture of diameter 2 mm illuminated by a plane wave. The
	most intense point on the axis is at a distance of 200 cm from the aperture.
	Calculate the wavelength. [4]
9.	Consider a straight edge being illuminated by a parallel beam of light of
	wavelength 600 nm. Calculate the positions of first two maxima and minima on a
	screen at a distance of 50 cm from the edge. [4]