Explicit CN Soundness Proof

Dhruv Makwana

June 24, 2021

1 Weakening

If $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ then $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$. 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$.

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash J$.

2 Substitution

2.1 Weakening for Substitution

Weakening for substitution: as above, but with $J = (\sigma) : (\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROOF SKETCH: Induction over the substitution.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$. 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROVE: $C': L': \Phi': R' \vdash (\sigma): (C'': L'': \Phi'': R'')$.

2.2 Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. C; \mathcal{L} ; Φ ; $\mathcal{R} \vdash (\sigma)$:(C'; \mathcal{L}' ; Φ' ; \mathcal{R}'). 2. C'; \mathcal{L}' ; Φ' ; $\mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$. $\langle 1 \rangle 1$. Case: Ty_PVal_Var. $C'; \mathcal{L}'; \Phi' \vdash x \Rightarrow \beta$

- $\langle 2 \rangle 1$. Have $x:\beta \in \mathcal{C}'$ (or $x:\beta \in \mathcal{L}'$).
- $\langle 2 \rangle 2$. So $\exists pval. \ \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta$ by Ty_Subs_Cons_{Comp,Log}.
- $\langle 2 \rangle 3$. Since $pval = \sigma(x)$, we are done.

 $\langle 1 \rangle 2$. Case: Ty_TPE_Let.

 $\mathcal{C}'; \mathcal{L}'; \Phi' \vdash \mathtt{let} ident_or_pattern = pexpr \mathtt{in} tpexpr \Leftarrow y_2:\beta_2. term_2.$

- $\langle 2 \rangle 1$. By induction,
 - 1. C; L; $\Phi \vdash \sigma(pexpr) \Rightarrow y_1 : \beta. \sigma(term_1)$
 - 2. $\mathcal{C}, \mathcal{C}_1; \mathcal{L}, y_1 : \beta; \Phi, term_1, \Phi' \vdash \sigma(tpexpr) \Leftarrow y_2 : \beta. \sigma(term_2).$
- $\langle 2 \rangle 2$. C; L; $\Phi \vdash \sigma(\text{let } ident_or_pattern = pexpr in tpexpr) \Leftarrow y_2: \beta_2. \sigma(term_2)$ as required.
- $\langle 1 \rangle 3$. Case: Ty_TVal_Log.

 $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \text{done } pval, \overline{spine_elem}_i^i \Leftarrow \exists y:\beta. ret.$

- $\langle 2 \rangle 1$. By inversion and then induction,
 - 1. $C; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$
 - 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done} \ \overline{spine_elem_i}^i) \Leftarrow \sigma(pval/y, \cdot (ret)).$
- $\langle 2 \rangle 2$. Therefore $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done}\,\mathit{pval},\,\overline{\mathit{spine_elem}_i}^i) \Leftarrow \exists\, y : \beta.\,\sigma(\mathit{ret}).$
- $\langle 1 \rangle 4$. Case: Ty_Spine_Res.

 $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'_1, \mathcal{R}_2 \vdash x = res_term, \ \overline{x_i = spine_elem_i}^i :: res \multimap arg \gg res_term/x, \psi; ret$

- $\langle 2 \rangle 1$. By inversion and then induction,
 - 1. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \sigma(res_term) \Leftarrow \sigma(res)$.
 - 2. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R}_2 \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi); \sigma(ret)$.
- $\langle 2 \rangle 2$. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = \sigma(res_term), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res \multimap arg) \gg \sigma(res_term/x, \psi); \sigma(ret)$ as required.

2.3 Identity Extension

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id): (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$.

PROOF SKETCH: Induction over the substitution.

Assume: $C: \mathcal{L}: \Phi: \mathcal{R} \vdash (\sigma): (C': \mathcal{L}': \Phi': \mathcal{R}')$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}').$

 $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash (id): (C; \mathcal{L}; \Phi; \mathcal{R}_1)$.

PROOF: By induction on each of C; L; Φ ; R_1 .

 $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$

PROOF: By induction on σ with base case as above.

2.4 Usable Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Apply identity extension then substitution lemma.

Assume: 1. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R} \vdash (\sigma)$: $(\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

2. $\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

- $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$. PROOF: Apply identity extension to 1.
- $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, \mathrm{id})(J)$. PROOF: Apply substitution lemma to $\langle 1 \rangle 1$.
- $\langle 1 \rangle 3. \ C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J).$ PROOF: id(J) = J.

3 Progress

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ then either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROOF SKETCH: Induction over the typing rules.

Assume: $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$.

PROVE: either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

4 Framing

If $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$ and h_1, h_2 disjoint then $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

PROOF SKETCH: Induction over the operational rules.

ASSUME: 1. $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$. 2. h_1, h_2 disjoint.

PROVE: $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

5 Type Preservation

5.1 Ty_Spine_* and Decons_Arg_* construct same substitution and return type

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ and } \overline{x_i = spine_elem_i}^i :: arg \gg \sigma'; ret' \text{ then } \sigma = \sigma' \text{ and } ret = ret'.$

PROOF SKETCH: Induction over arg.

5.2 Pointed-to values have type β_{τ}

For $pt = \overrightarrow{\rightarrow}_{\tau} pval$, if $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash pt \Leftarrow pt$ then $\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta_{\tau}$.

PROOF SKETCH: Induction over the typing judgements. Only TY_ACTION_STORE create such permissions, and its premise $C; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \beta_{\tau}$ ensures the desired property. TY_ACTION_LOAD simply preserves the property.

5.3 Type Preservation Statement and Proof

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ then $\forall h : \mathcal{R}, e', h' : \mathcal{R}'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle \implies \cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

PROOF SKETCH: Induction over the typing rules.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$

2. arbitrary $h: \mathcal{R}, e', h': \mathcal{R}'$

3. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

 $\langle 1 \rangle 1$. Case: Ty_Memop_PtrValidForDeref.

Let: $pt = mem_ptr \stackrel{\checkmark}{\mapsto}_{\tau}$.

 $ret = \sum y$:bool. $y = \texttt{aligned}\left(\tau, mem_ptr\right) \land pt \otimes \texttt{I}$.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \mathsf{ptrValidForDeref}(\tau, mem_ptr, pt) \Rightarrow ret$.

 $2. \ \langle \cdot + \{pt\}; \mathtt{ptrValidForDeref} \ (\tau, mem_ptr, pt) \rangle \longrightarrow \langle \cdot + \{pt\}; \mathtt{done} \ bool_value, pt \rangle.$

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{done } bool_value, pt \Leftarrow ret.$

- $\langle 2 \rangle 1. : : : : : \mathcal{R} \vdash pt \Leftarrow pt$, by inversion on 1.
- $\langle 2 \rangle 2$. $R = \cdot, ::pt$, by Ty_Res_PointsTo.
- $\langle 2 \rangle 3.$ bool_value = aligned (τ, mem_ptr) by construction of bool_value (inversion on 2).
- $\langle 2 \rangle 4. : : : \vdash bool_value \Rightarrow bool by TY_PVAL_{TRUE,FALSE}.$
- $\langle 2 \rangle 5.$ By Ty_TVAL_I, and then $\langle 2 \rangle 2 \langle 2 \rangle 4$ with Ty_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 2$. Case: Ty_PE_Array_Shift.

Let: $term = mem_ptr +_{ptr} (mem_int \times size_of(\tau)).$

Assume: 1. $\cdot; \cdot; \cdot \vdash \text{array_shift} (mem_ptr, \tau, mem_int) \Rightarrow y:\text{loc.} y = term.$

2. $\langle array_shift(mem_ptr, \tau, mem_int) \rangle \longrightarrow \langle mem_ptr' \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_ptr' \Rightarrow y: loc. y = term.$

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_ptr' (inversion on 2).

 $\langle 1 \rangle 3$. Case: Ty_PE_Member_Shift.

PROOF SKETCH: Similar to Ty_Array_Shift.

 $\langle 1 \rangle 4$. Case: Ty_PE_Not.

Assume: 1. $\cdot; \cdot; \cdot \vdash \text{not}(bool_value) \Rightarrow y:bool. \ y = \neg bool_value.$

2. $\langle \mathtt{not}\,(\mathtt{True})\rangle \longrightarrow \langle \mathtt{False}\rangle \text{ or } \langle \mathtt{not}\,(\mathtt{False})\rangle \longrightarrow \langle \mathtt{True}\rangle.$

PROVE: $\cdot; \cdot; \cdot \vdash bool_value' \Rightarrow y:bool. y = \neg bool_value.$

PROOF: By Ty_PVal_{True,False}, Ty_PE_Val and 2.

 $\langle 1 \rangle$ 5. Case: Ty_PE_Arith_Binop.

Let: $term = mem_int_1 binop_{arith} mem_int_2$.

Assume: 1. $: : : : \mapsto mem_int_1 \ binop_{arith} \ mem_int_2 \Rightarrow y : integer. \ y = term.$

2. $\langle mem_int_1 \ binop_{arith} \ mem_int_2 \rangle \longrightarrow \langle mem_int \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term.

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_int (inversion on 2).

 $\langle 1 \rangle 6$. Case: Ty_PE_{Rel,Bool}_Binop.

PROOF SKETCH: Similar to TY_PE_ARITH_BINOP.

- $\langle 1 \rangle 7$. Case: Ty_PE_Call.
 - Assume: $1. : : : : \vdash name(\overline{pval_i}^i) \Rightarrow y : \beta. \sigma(term).$
 - $2. \ \langle name(\ \overline{pval_i}^{\ i})\rangle \longrightarrow \langle \sigma'(tpexpr){:}(y{:}\beta'.\ \sigma'(term'))\rangle.$

PROVE: $\cdot; \cdot; \cdot \vdash \sigma(tpexpr) \Leftarrow y:\beta. \ \sigma(term).$

- $\langle 2 \rangle 1$. $name:pure_arg \equiv \overline{x_i}^i \mapsto tpexpr \in Globals$ by inversion (on either assumption).
- $\langle 2 \rangle 2. : ; : ; : \vdash \overline{x_i = pval_i}^i :: pure_arg \gg \sigma; \Sigma y : \beta. term \land I by inversion on 1.$
- $\langle 2 \rangle 3$. $\beta = \beta'$, term = term' and $\sigma = \sigma'$ by induction on $pure_arg$. Follows from lemma 5.1.
- $\langle 2 \rangle 4. \ \cdot; \cdot; \cdot; \cdot \vdash (\sigma) : (\mathcal{C}; \cdot; \Phi; \cdot).$

PROOF: Constructing such a substitution requires $\overline{\cdot;\cdot;\cdot\vdash pval_i\Rightarrow\beta_i}^i$ for each $x_i:\beta_i\in\mathcal{C}$ which can be deduced from $\langle 2\rangle 2$.

- $\langle 2 \rangle$ 5. \mathcal{C}'' ; \cdot ; $\Phi'' \vdash tpexpr \Leftarrow y:\beta''.term''$ where $\overline{x_i}^i :: pure_arg \leadsto \mathcal{C}''$; \cdot ; Φ'' ; $\cdot \mid \Sigma y:\beta''.term'' \land I$ formalises the assumption that all global functions and labels are well-typed.
- $\langle 2 \rangle$ 6. C = C'', $\Phi = \Phi''$, $\beta = \beta''$ and term = term''. PROOF: By induction on $pure_arg$.
- $\langle 2 \rangle 7$. Apply usable substitution lemma to $\langle 2 \rangle 4$ and $\langle 2 \rangle 5$ to finish proof.
- $\langle 1 \rangle 8$. Case: Ty_Fill_In.

Assume: 1. $\cdot; \cdot; \cdot \vdash assert_undef(True, UB_name) \Rightarrow y:unit. y = unit.$

2. $\langle assert_undef(True, UB_name) \rangle \longrightarrow \langle Unit \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash \text{Unit} \Rightarrow y : \text{unit}. \ y = \text{unit}.$

PROOF: By TY_PVAL_UNIT and TY_PE_VAL.

 $\langle 1 \rangle 9$. Case: Ty_PE_Bool_To_Integer.

Let: $term = if bool_value then 1 else 0$.

Assume: $1. : : : : \vdash bool_to_integer(bool_value) \Rightarrow y:integer. y = term.$

2. $\langle bool_to_integer(True) \rangle \longrightarrow \langle 1 \rangle$ or $\langle bool_to_integer(False) \rangle \longrightarrow \langle 0 \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term

PROOF: By cases on bool_value, then applying TY_PVAL_{TRUE,FALSE} and TY_PE_VAL.

 $\langle 1 \rangle 10$. Case: Ty_PE_WrapI.

PROOF SKETCH: Similar to TY_PE_BOOL_TO_INTEGER, except by cases on $abbrev_2 \leq \max_{i=1}^{n} t_i$, then applying TY_PVAL_OBJ_INT, TY_PVAL_OBJ and TY_PE_VAL.

 $\langle 1 \rangle 11$. Case: Ty_TPE_IF.

PROOF: See Ty_Seq_TE_IF for a more general case and proof.

 $\langle 1 \rangle 12$. Case: Ty_TPE_Let.

PROOF: See Ty_Seq_TE_Let for a more general case and proof.

 $\langle 1 \rangle 13$. Case: Ty_TPE_LETT.

PROOF: See Ty_Seq_TE_LETT for a more general case and proof.

 $\langle 1 \rangle 14$. Case: Ty_TPE_Case.

PROOF: See Ty_Seq_TE_Case for a more general case and proof.

 $\langle 1 \rangle 15$. Case: Ty_Action_Create.

Let: $pt = mem_{-}ptr \stackrel{\times}{\mapsto}_{\tau} pval$.

 $term = \mathtt{representable} \ (\tau *, y_p) \land \mathtt{alignedI} \ (mem_int, y_p).$

$$ret = \sum y_p: loc. \ term \land \exists \ y: \beta_\tau. \ y_p \stackrel{\times}{\mapsto}_\tau \ y \otimes I.$$

ASSUME: 1. $\cdot; \cdot; \cdot; \cdot \vdash \text{create}(mem_int, \tau) \Rightarrow ret$.

2. $\langle \cdot; \mathtt{create}\,(mem_int,\tau) \rangle \longrightarrow \langle \cdot + \{pt\}; \mathtt{done}\,mem_ptr,pval,pt \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot, \exists pt \vdash done mem_ptr, pval, pt \Leftarrow ret.$

- $\langle 2 \rangle 1. : : : : \vdash mem_ptr \Rightarrow loc$ by TY_PVAL_OBJ_INT and TY_PVAL_OBJ.
- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow term)$ by construction of mem_ptr .
- $\langle 2 \rangle 3. \ \ ; \cdot ; \cdot \vdash pval \Rightarrow \beta_{\tau}$ by construction of pval.
- $\langle 2 \rangle 4. \ \ ; ; ; ; ; , ::pt \vdash pt \Leftarrow pt \text{ by TY_Res_PointsTo}.$
- $\langle 2 \rangle$ 5. By TY_TVAL_I and then $\langle 2 \rangle$ 4 $\langle 2 \rangle$ 1 with TY_TVAL_{RES,LOG,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 16$. Case: Ty_Action_Load.

Let: $pt = mem_ptr \xrightarrow{\checkmark} pval$.

$$ret = \sum y : \beta_{\tau}. \ y = pval \land pt \otimes I.$$

ASSUME: 1. $\cdot; \cdot; \cdot; \cdot; \cdot, ::pt \vdash load(\tau, mem_ptr, _, pt) \Rightarrow ret$.

2.
$$\langle \cdot + \{pt\}; \texttt{load}(\tau, mem_ptr, \neg, pt) \rangle \longrightarrow \langle \cdot + \{pt\}; \texttt{done}(pval, pt) \rangle$$
.

PROVE: $\cdot; \cdot; \cdot; \cdot, \cdot : pt \vdash \text{done } pval, pt \Leftarrow ret$

- $\langle 2 \rangle 1. : ; : ; : \mathcal{R} \vdash pt \Leftarrow pt$, by inversion on 1.
- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow pval = pval)$ trivially.
- $\langle 2 \rangle 3. \ \ ; \ ; \cdot \vdash pval \Rightarrow \beta_{\tau} \ \text{by} \ \langle 2 \rangle 1 \ \text{and lemma 5.2.}$
- $\langle 2 \rangle 4.$ By TY_TVAL_I and then $\langle 2 \rangle 1 \langle 2 \rangle 3$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 17$. Case: Ty_Action_Store.

Let: $pt = mem_ptr \stackrel{\checkmark}{\mapsto}_{\tau}$.

$$pt' = mem_ptr \xrightarrow{\checkmark} pval.$$

$$ret = \Sigma$$
_:unit. $pt' \otimes I$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot, \bot: pt \vdash \mathtt{store}(_, \tau, pval_0, pval_1, _, pt) \Rightarrow ret.$

2.
$$\langle \cdot + \{pt\}; \mathtt{store}(_, \tau, mem_ptr, pval, _, pt) \rangle \longrightarrow \langle \cdot + \{pt'\}; \mathtt{done}\,\mathtt{Unit}, pt' \rangle$$
.

PROVE: $:: :: pt' \vdash \text{done Unit}, pt' \Leftarrow ret$

 $\langle 2 \rangle 1. \ \cdot; \cdot; \cdot \vdash \mathtt{Unit} \Rightarrow \mathtt{unit} \ \mathrm{by} \ \mathrm{TY_PVal_UNIT}.$

 $\langle 2 \rangle 2. \ \cdot; \cdot; \cdot; \cdot, :: pt' \vdash pt' \Leftarrow pt' \text{ by Ty_Res_PointsTo}.$

- $\langle 2 \rangle 3.$ By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{RES,COMP} respectively, we are done.
- $\langle 1 \rangle 18$. Case: Ty_Action_Kill_Static.

Let: $pt = mem_ptr \mapsto_{\tau}$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot, .:pt \vdash kill (static \tau, pval_0, pt) \Rightarrow \Sigma$:unit. I.

```
PROVE: \cdot; \cdot; \cdot; \cdot \vdash \text{done Unit} \Leftarrow \Sigma_:unit. I
        PROOF: By TY_TVAL_I, TY_PVAL_UNIT and then TY_TVAL_COMP.
\langle 1 \rangle 19. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
                   2. .
        Prove:
\langle 1 \rangle 20. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
                   2. .
        Prove:
\langle 1 \rangle 21. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
                   2. .
        Prove:
\langle 1 \rangle 22. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
                   2. .
        Prove:
\langle 1 \rangle 23. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
                   2. .
        Prove:
\langle 1 \rangle 24. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
                   2. .
        Prove:
\langle 1 \rangle 25. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
                   2. .
        Prove:
\langle 1 \rangle 26. Case: Ty_Fill_In.
        Let:
        Assume: 1. .
```

2. $\langle \cdot + \{pt\}; \texttt{kill} (\texttt{static} \, \tau, mem_ptr, pt) \rangle \longrightarrow \langle h; \texttt{done} \, \texttt{Unit} \rangle$.

2. .

PROVE:

6 Typing Judgements

7 Opsem Judgements