Ensemble methods

Tasks (Lab 9): (all tasks are scored)

- 1. Implementation of bagging and boosting (AdaBoost)
 - (a) Implement your own version of AdaBoost algorithm. You can use available implementations of decision trees (or other base learners). Below is a description of AdaBoost algorithm:

Training:

- i. Define initial weights: $w_i = \frac{1}{n}, i = 1, \dots, n$.
- ii. For k = 1, ..., B:
 - A. Build classifier f_k with weights: w_i .
 - B. Compute weighted classification error for k-th classifier:

$$\epsilon_k := \sum_{i=1}^n I[f_k(x) \neq y_i] w_i.$$

- C. Compute scaling factor: $\beta_k := \frac{\epsilon_k}{1-\epsilon_k}$.
- D. Add a pair (f_k, β_k) to the ensemble.
- E. For i = 1, ..., n:

If $f_k(x_i) = y_i$ (example is correctly classified) then $w_i := w_i \beta_k$ (decrease weights).

F. Normalize weights: $w_i = w_i / \sum (w_i)$.

Prediction for new observation x:

$$\hat{y}(x) = \arg\max_{y} \sum_{k=1}^{B} I[f_k(x) = y] \log(\frac{1}{\beta_k})$$

- Weighted voting.
- Classifier with small errors (small value of β_k) have larger weights in majority voting.
- (a) Compare the following ensemble methods:
 - Bagging
 - Boosting (AdaBoost), your implementation.
 - Random Forest
 - Single tree (without pruning)
 - Decision stump (tree of depth 1)
 - Gradient Boosting
 - XGboost
 - (b) Consider one real dataset (you can choose it from e.g. UCI repository) and one artificial dataset generated as follows:
 - Generate $X_1, X_2, \dots, X_{10} \sim N(0, 1)$.
 - Denote by $\chi^2_{10}(0.5)$ median of chi squared distribution with 10 degrees of freedom. Set Y=1 if $\sum_{j=1}^{10} X_j^2 > \chi^2_{10}(0.5)$ and Y=-1 otherwise.

 - Generate training data of size 2000 and testing data of size 10000.
 - (c) Make a plot showing how the error changes with the number of iterations (for boosting and bagging).