Equações Diferenciais Ordinárias, Resumo A2

jãopredo e artu 24/06/2025

Contents

1.	Transformada de Laplace	2
	1.1. Definição	2
	1.2. Propriedades Com derivada	
	1.3. Função degrau	2
	1.4. Propriedades com Função degrau	
	1.5. Função Impulso	
	1.6. Propriedades com Função Impulso	
	1.7. Convolução	
2.	Sistemas de EDO's de Primeira Ordem	3
	2.1. Sistemas Lineares	3
	2.1.1. Autovalores Reais e Distintos	3
	2.1.2. Autovalores Reais Repetidos	
	2.1.3. Autovalores Complexos	4
	2.1.4. Classificação de Pontos Críticos (2 × 2)	4

1. Transformada de Laplace

1.1. Definição

Definição 1.1.1: (Transformada de Laplace)

Dada $f: \mathbb{R} \to \mathbb{R}$ contínua por partes e $f \in O(e^{st})$, definimos a Transformada de Laplace como

$$L\{f(t)\} = \int_0^\infty e^{-st} f(t)dt \tag{1}$$

1.2. Propriedades Com derivada

Propriedade 1.2.1.: Se $f: \mathbb{R} \to \mathbb{R}$ é derivável, então:

$$L\{f'(t)\} = sL\{f(t)\} - f(0) \tag{2}$$

Analogamente:

$$L\{f''(t)\} = s^2 L\{f(t)\} - sf(0) - f'(0)$$
(3)

E assim por diante.

Resolver EDO's com a transformada de Laplace se restringe a algebricamente buscar a inversa de $L\{f(t)\}$, justamente a função procurada.

1.3. Função degrau

A função degrau \boldsymbol{u}_c é definida como:

$$u_{c(t)} = \begin{cases} 0 \text{ se } t < c \\ 1 \text{ se } t \ge c \end{cases} \tag{4}$$

1.4. Propriedades com Função degrau

Propriedade 1.4.1.: Se $F(s) = L\{f(t)\}$ existe, dada $f: \mathbb{R} \to \mathbb{R}$, então:

$$L\{u_c(t)f(t-c)\} = e^{-sc} \cdot F(s) \tag{5}$$

Propriedade 1.4.2.: Se $F(s) = L\{f(t)\}$ existe, dada $f: \mathbb{R} \to \mathbb{R}$, então:

$$L\{e^{ct}f(t)\} = F(s-c) \tag{6}$$

Ou equivalentemente:

$$e^{ct}f(t) = L^{-1}\{F(s-c)\}\tag{7}$$

1.5. Função Impulso

A função impulso δ satifaz:

$$\delta(t) = 0, t \neq 0$$

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$
(8)

1.6. Propriedades com Função Impulso

A transformada de Laplace da função impulso é:

$$L\{\delta(t-c)\} = e^{-sc} \tag{9}$$

E também vale:

$$L\{\delta(t-c)f(t)\} = f(c)e^{-sc}$$
(10)

1.7. Convolução

Dadas $F(s) = L\{f(t)\}\$ e $G(s) = L\{g(t)\}\$, a transformada do produto pode ser calculada como:

$$H(s) = F(s)G(t) = L\{h(t)\}$$
 (11)

Onde:

$$h(t) = \int_0^t f(t-\tau)g(\tau)d\tau = \int_0^t f(\tau)g(t-\tau)d\tau \tag{12}$$

A função h é chamada de convolução de f e g, denotada por f * g.

2. Sistemas de EDO's de Primeira Ordem

2.1. Sistemas Lineares

Sistemas da forma:

$$Ax = x', A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n \tag{13}$$

Têm solução constante em x'=0.

Fazendo uma analogia em \mathbb{R} , temos $x'=ax\Rightarrow x=e^{at}x_0$. O mesmo vale para exponenciais de matrizes. Buscamos então soluções da <u>eq. (13)</u> da forma:

$$x(t) = ve^{\lambda t}, v \in \mathbb{R}^n, \lambda \in \mathbb{R}$$
(14)

Ou seja:

$$Ax = x' \Leftrightarrow Ave^{\lambda t} = \lambda ve^{\lambda t} \tag{15}$$

Como $e^{\lambda t} \neq 0, \forall t \in \mathbb{R}$:

$$Av = \lambda v \tag{16}$$

É exatamente o problema de autovalores da matriz de coeficientes A.

2.1.1. Autovalores Reais e Distintos

Então seja $A \in \mathbb{R}^{2 \times 2}$, e v_i , λ_i o i-ésimo autovetor e autovalor de A, respectivamente. A solução geral da eq. (13) é:

$$x(t) = c_1 v_1 e^{\lambda_1 t} + c_2 v_2 e^{\lambda_2 t} \tag{17}$$

Onde c_i é determinado pela condição inicial $x(0) = x_0$.

A Bebel não gosta da notação proposta na eq. (17), então vamos escrever a solução do jeito da patroa:

$$x(t) = X\Lambda X^{-1} \cdot x_0 \tag{18}$$

Onde $X\Lambda X^{-1}$ é a decomposição espectral de A e:

$$\Lambda = \begin{pmatrix} e^{\lambda_1 t} & 0\\ 0 & e^{\lambda_2 t} \end{pmatrix} \tag{19}$$

2.1.2. Autovalores Reais Repetidos

Seja $A \in \mathbb{R}^{2 \times 2}$ com autovalor λ de multiplicidade 2. Seja v_1 um autovetor associado. Para montar a solução da forma eq. (18), precisamos de 2 autovetores. Vamos usar a matriz:

$$B = \begin{pmatrix} \lambda & t \\ 0 & \lambda \end{pmatrix} \tag{20}$$

Propriedade 2.1.2.1.: Se A possui autovalor λ de multiplicidade 2 e apenas um autovetor v_1 , escolha um vetor qualquer v_2 tal que $(A - \lambda I)v_2 = v_1$.

A solução geral é

$$x(t) = e^{\lambda t} \cdot (c_1 v_1 + c_2 \cdot (v_2 + t v_1)) \tag{21}$$

.

2.1.3. Autovalores Complexos

Propriedade 2.1.3.1.: Para autovalores $\lambda_{\{1,2\}}=\alpha\pm i\beta$ ($\beta\neq 0$) com autovetor complexo v=u+iw, obtémse a solução real

$$x(t) = e^{\alpha t} [c_1 \cdot (u \cdot \cos(\beta t) - w \cdot \sin(\beta t)) + c_2 \cdot (u \cdot \sin(\beta t) + w \cdot \cos(\beta t))]. \tag{22}$$

Classificação rápida:

• Espiral estável: $\alpha < 0$

• Espiral instável: $\alpha > 0$

• Centro: $\alpha = 0$

2.1.4. Classificação de Pontos Críticos (2 × 2)

Propriedade 2.1.4.1.: Seja $A \in \mathbb{R}^{2 \times 2}$ com autovalores λ_1 e λ_2 .

- Nó estável: $\lambda_1 < 0, \, \lambda_2 < 0 \; ({\rm com} \; t \to \infty$ a porra toda vai pra 0)
- Nó instável: $\lambda_1>0,\,\lambda_2>0$ (com algum autovalor positivo, $t\to\infty\Rightarrow$ a porra toda diverge)
- Ponto de sela: $\lambda_1 \cdot \lambda_2 < 0$ (se tiver um negativo e outro positivo, converge de ladinho e diverge de ladinho também)
- Espiral estável: $\alpha < 0$ e $\beta \neq 0$ (com $t \rightarrow \infty$ a porra toda vai pra 0)
- Espiral instável: $\alpha > 0$ e $\beta \neq 0$ (com algum autovalor positivo, $t \to \infty \Rightarrow$ a porra toda diverge)
- Centro: $\alpha = 0$ e $\beta \neq 0$ (mó paz)