

AGENDA

GPU Architecture & Programming Model

Are there opportunities to improve performance?

A high-level device architecture

Parallel programming model for architecture with that design

Software platform that extends highlevel languages like C to add that programming model

WE NEED BOTH

Applications contain both sequential and parallel sections

GPU: throughput-Oriented design

- Focus: Process massive numbers of parallel tasks efficiently (high throughput across thousands of threads)
- Transistor Allocation: majority dedicated to data processing rather than data caching and flow control
- Execution:
 - Many simple cores: No complex out-of-order execution or branch prediction, reducing per-core overhead
 - Optimized for parallel processing
 - Can hide memory access latencies with computation

CPU: latency-oriented design

- Focus: Complete single tasks as quickly as possible
- Transistor Allocation: majority dedicated to flow control and large caches
- Execution:
 - Small number of high-quality, powerful, and efficient cores
 - Optimized for sequential processing (low latency per thread)
 - Relying on large data caches and complex flow control

CPU vs GPU

GPU OVERVIEW

NVIDIA H200 SXM

STREAMING MULTIPROCESSOR (SM)

HOPPER ARCHITECTURE

- 128 FP32 cores
- 64 FP64 cores
- 64 INT32 cores
- 4 mixed-precision Tensor Cores
- 16 special function units (transcendentals)
- 4 warp schedulers
- 32 LD/ST units
- 64K 32-bit registers
- 256 KiB unified L1 data cache and shared memory
- Tensor Memory Accelerator (TMA)

HARDWARE EXECUTION UNITS

- SMs are the fundamental compute units of NVIDIA GPUs, analogous to CPU cores but optimized for massive parallelism
- Key components:
 - CUDA cores: execute scalar arithmetic instructions
 - Tensor cores: operate on entire matrices. These cores are much larger and less numerous than CUDA cores
 - Warp schedulers: Manage thread execution by deciding which group of 32 threads (warps) to run
 - Context switching between warps occurs in one clock cycle

CUDA PROGRAMMING MODEL

SINGLE-PROGRAM MULTIPLE-DATA

- SIMT instructions specify the execution of a single thread.
- A SIMT kernel is launched on many threads that execute in parallel.
- Threads use their thread index to work on disjoint data or to enable different execution paths.
- Three key software abstractions enable efficient programming through the CUDA programming model:
 - a hierarchy of thread groups,
 - memory spaces, and
 - synchronization.

Single-threaded CPU vector addition

```
for (int i = 0; i <
   N; i++) { c[i] =
   a[i] + b[i];
}</pre>
```

GPU vector addition

```
int i =
my_global_thread_id();
if (i < N) c[i] = a[i]
+ b[i];</pre>
```


THREAD HIERARCHY

CUDA/Software

Hardware

Device

 A CUDA kernel is launched on a grid of thread blocks, which are completely independent.

SM

- Thread blocks are executed on SMs.
 - Several concurrent thread blocks can reside on an SM.
 - Thread blocks do not migrate.
 - Each block can be scheduled on any of the available SMs, in any order, concurrently or in series.
- Individual threads execute on scalar CUDA cores.

HOW IS THIS EXECUTED?

ROOFLINE EXAMPLE WALKTHROUGH

• Step through the CuPy code:

https://github.com/marcelo-alvarez/datasci211/blob/main/week-2/roofline.py

NUMERICAL COMPUTING IN PYTHON

- Mathematical focus
- Operates on arrays of data
 - ndarray, holds data of same type
- Many years of development
- Highly tuned for CPUs

- NumPy like interface
- Trivially port code to GPU
- Copy data to GPU
 - CuPy ndarray
- Data interoperability with DL frameworks, RAPIDS, and Numba
- Uses high tuned NVIDIA libraries
- Can write custom CUDA functions

CUPY

BEFORE

AFTER

```
import numpy as np
size = 4096
A = np.random.randn(size, size)
Q, R = np.lingalg.qr(A)
```

```
import cupy as cp
size = 4096
A = cp.random.randn(size, size)
Q, R = cp.lingalg.qr(A)
```


KERNEL OVERHEAD

- What is the size of A?
- What is the datatype?
- Which GPU-accelerated libraries are available?
- Compiler optimizations for custom kernels

25

SETTING UP CUPY SCRIPT

```
import numpy as np
       import cupy as cp
10
       # KERNEL LOADING: Use CuPy RawModule to JIT-compile CUDA kernel
11
12
      # RawModule workflow:
13
      # 1. Read CUDA source code (roofline kernel.cuh)
14
      # 2. JIT-compile using NVRTC (NVIDIA Runtime Compiler)
15
16
      # 3. Load compiled PTX/CUBIN into current GPU context
17
      # 4. Extract kernel function by name
18
      #
19
       # This ensures the CUDA (roofline.cu) and CuPy implementations use
20
       # IDENTICAL device code, enabling fair performance comparison.
      with open('roofline_kernel.cuh', 'r') as f:
21
22
          kernel_code = f.read()
      module = cp.RawModule(code= kernel code)
23
      COMPUTE K KERNEL = module.get function('compute k terms')
24
```

- Loads CUDA kernel code from a file
- Just-in-time compiles it
- Picks the GPU kernel we want in our script

SOURCE CUDA CODE

```
/*
        * Roofline Analysis Polynomial Kernel
        * Computes b[i] = a[i] + a[i]^2 + ... + a[i]^k for roofline model demonstration.
        * Varies K to sweep arithmetic intensity from memory-bound to compute-bound.
        * See README.md for detailed explanation.
        */
 9
      #pragma once
10
11
       /*
12
        * compute k terms: Polynomial evaluation kernel
13
        * Parameters:
14
15
            a: Input array (const __restrict__ enables compiler optimizations)
16
            b: Output array (__restrict__ guarantees no aliasing)
17
            n: Number of elements
            k: Polynomial degree (controls arithmetic intensity: AI = k/4)
18
19
        * extern "C" linkage: Required for CuPy RawModule interoperability
20
21
        */
```

 Setup to do our roofline model computation

CUDA CODE IMPLEMENTATION

```
extern "C" __global__ void compute_k_terms(const float* __restrict__ a,
22
                                                  float* restrict b,
23
24
                                                  int n,
25
                                                  int k) {
          // Calculate global thread ID
          int i = blockIdx.x * blockDim.x + threadIdx.x;
27
          // Boundary check: ensure we don't access beyond array bounds
29
          if (i < n) {
30
              // Load input value from global memory (4-byte read)
31
              float x = a[i];
32
33
              // Initialize accumulator and running power of x
34
              float result = 0.0f;
35
              float power = x; // Start with x^1
37
              // Compute polynomial sum: x + x^2 + ... + x^k
              // Loop performs K iterations:
              // - Each iteration: 1 addition (result += power) + 1 multiplication (power *= x)
              // - Total: 2K FLOPs
              // All operations use registers only - no memory traffic
              for (int j = 0; j < k; ++j) {
                  result += power; // Accumulate current power term
                                      // Advance to next power
                  power *= x;
              // Write result to global memory (4-byte write)
              // Total memory traffic: 4 bytes (read) + 4 bytes (write) = 8 bytes
              b[i] = result;
          }
52
```

- Identify unique thread running in a kernel
- Each thread computes a polynomial sum for one element
- Write results to global memory

CUDA SIDE STEP

```
__global__ void helloWorld()
                                                    Kernel function
    printf("hello world from device\n");
                        Threads per
int main( Blocks per grid
                          block
                                                 Kernel invocation
    helloWorld<<<1,1>>>();
    cudaDeviceSynchronize();
                                                   Host -device
                                                 synchronization
    return 0;
```


KERNEL

- Kernels are C++ functions prefixed with __global__ declaration specifier
- -_global__ prefix defines a function that is called by the host (CPU) and executed by the device (GPU)
- Kernels are executed N times in parallel across N CUDA threads
- Kernels never return a value. Host and device cannot communicate directly. Instead, data needs to be copied back and forth between them

```
__global__ void helloWorld()
{
    printf("hello world from device \n");
}
```


SETUP PYTHON TIMING CODE

```
def run_sweep(n: int, k: int, a: cp.ndarray, b: cp.ndarray):
           """Measure kernel performance for a specific K value.
28
           This function implements GPU benchmarking best practices:
30
31
32
           1. WARMUP RUNS: Execute kernel 3 times before timing to eliminate:

    JIT compilation overhead (NVRTC on first launch)

33
              - GPU frequency scaling effects

    Cache cold-start effects

36
37
           2. MULTIPLE TIMED RUNS: Collect 10 timing measurements to:
              - Compute reliable mean performance
38

    Detect timing variance (system interference)

           3. EVENT-BASED TIMING: Use CUDA events for GPU-side timing:
              - Eliminates CPU-GPU synchronization overhead
              - Provides microsecond precision
              - Correctly measures asynchronous kernel execution
           Parameters:
               n: Number of array elements
               k: Polynomial degree (controls arithmetic intensity)
               a: Input CuPy array (device memory)
               b: Output CuPy array (device memory)
           Returns:
               Tuple of (arithmetic_intensity, gflops, bandwidth, percent_peak)
53
           1111111
```

- Drop first couple of runs to account for compilation
- Calculate only the GPU compute timing with events

BENCHMARKING PYTHON CODE

```
# KERNEL LAUNCH CONFIGURATION:
56
57
           # Block size: 256 threads (typical for good occupancy on modern GPUs)
58
           # Grid size: Ceiling division to cover all elements
59
           block = 256
           grid = (n + block - 1) // block
60
61
62
           # ARITHMETIC INTENSITY CALCULATION:
           # Per element: k additions + k multiplications = 2k FLOPs
63
           # Memory access: 1 read (4 bytes) + 1 write (4 bytes) = 8 bytes
64
           \# AI = FLOPs / Bytes = 2k / 8 = k/4 FLOPs/byte
65
66
           flops_per_element = 2.0 * k  # k additions + k multiplications
           bytes_per_element = 8.0
                                        # 1 read (4B) + 1 write (4B)
67
           ai = flops per element / bytes per element
68
69
70
           print(f"\nK={k} (AI={ai:.3f} flops/byte):")
71
           # WARMUP PHASE: Run kernel 3 times to stabilize GPU state
72
           # First few launches may be slower due to:
73
           # - NVRTC JIT compilation (CuPy compiles kernels on first use)
74
           # - GPU power state transitions (boost clocks)
75
           # - Cache warming
76
           for w in range(3):
77
               # Launch kernel with grid/block dimensions and arguments
78
               # Arguments: (a, b, n, k) - must match kernel signature
79
               # Note: Python int must be converted to np.int32 for correct type
80
               _COMPUTE_K_KERNEL((grid,), (block,), (a, b, np.int32(n), np.int32(k)))
81
               cp.cuda.Stream.null.synchronize() # Wait for completion
82
```

- Set thread block/grid sizes for full GPU use
- Calculate FLOPS/byte
- Launches and syncs the benchmark kernel with CuPy for accurate results

RUNNING OUR KERNEL

```
# TIMED RUNS PHASE: Measure performance over 10 iterations
 84
            nruns = 10
            times = []
            # Create CUDA events for precise GPU timing
            start = cp.cuda.Event()
 90
            stop = cp.cuda.Event()
 91
            for i in range(nruns):
 92
                # Record start event in default stream
                start.record()
 95
                # Launch kernel
 97
                _COMPUTE_K_KERNEL((grid,), (block,), (a, b, np.int32(n), np.int32(k)))
 98
                # Record stop event
100
                stop_record()
                stop.synchronize() # Wait for stop event to complete
101
102
103
                # Compute elapsed time in milliseconds
                times.append(cp.cuda.get_elapsed_time(start, stop))
104
105
```

- Tell the kernel how many threads to use, and how to arrange them
- Run our kernel 10 times
- Capture timing for each iteration

GATHER PERFORMANCE METRICS

```
106
            # STATISTICS: Calculate mean and RMS deviation
            mean ms = sum(times) / nruns
107
108
           # RMS (Root Mean Square) deviation measures timing stability
109
110
            # High RMS (>5%) indicates:
            # - System interference (other GPU workloads)
111
112
            # - Thermal throttling
113
            # - GPU frequency variations
            sum_sq_diff = sum((t - mean_ms)**2 for t in times)
114
115
            rms = np.sqrt(sum_sq_diff / nruns)
            rms_percent = (rms / mean_ms) * 100.0
116
117
118
            # PERFORMANCE METRICS:
119
            # GFLOPS = (Total FLOPs / 10^9) / (Time in seconds)
            mean_gflops = (n * flops_per_element / 1e9) / (mean_ms / 1e3)
120
121
           # Effective bandwidth = (Total bytes / 10^9) / (Time in seconds)
122
            mean_bw = (n * bytes_per_element / 1e9) / (mean_ms / 1e3)
123
124
125
           # Percentage of H100's theoretical peak FP32 performance (67 TFLOPS)
126
            percent_peak = 100.0 * mean_gflops / 67000.0
127
            print(f" Mean: {mean_ms:.3f} ms ({mean_gflops:.2f} GFLOPS, {mean_bw:.2f} GB/s, {percent_peak:.2f}% peak)", end="")
128
129
            # Warn if timing variance exceeds 5% threshold
130
            RMS_TOLERANCE = 5.0 # 5% tolerance
131
132
            if rms_percent > RMS_TOLERANCE:
                print(f" [WARNING: RMS={rms percent:.2f}% > {RMS TOLERANCE:.1f}%]")
133
134
            else:
135
                print()
136
137
            return ai, mean_gflops, mean_bw, percent_peak
```

138

 Calculate and summarize GPU metrics for our kernel

FINALLY, TIME FOR THE MAIN!

```
if __name__ == "__main__":
140
           # MAIN EXECUTION: Run roofline analysis sweep
141
142
143
           # Problem size: 2^26 elements = 67M elements
           # Array size: 67M * 4 bytes/float = 268 MB per array
144
           # - Large enough to avoid L2 cache effects (~40 MB on H100)
145
           # - Small enough for guick iteration
146
           n = 1 \ll 26 # 67M elements
147
148
           # Allocate and initialize GPU arrays
149
           # Input: Fill with 1.01 (avoids overflow for K<1000)
150
151
           # Output: Zero-initialized (will be overwritten by kernel)
           a = cp.full(n, 1.01, dtype=cp.float32)
152
           b = cp.zeros(n, dtype=cp.float32)
153
154
155
           # K values sweep: Chosen to span memory-bound to compute-bound regions
           # - K=1: AI=0.25 FLOPs/byte (deeply memory-bound)
156
           # - K=50: AI=12.5 FLOPs/byte (near ridge point ~19.7)
157
           # - K=1000: AI=250 FLOPs/byte (deeply compute-bound)
158
           k_values = [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000]
159
160
           # Write results to CSV for plotting
161
           with open("roofline cupy.csv", "w") as f:
162
               # CSV header
163
               f.write("k,ai,gflops,bandwidth,percent_peak\n")
164
165
166
               # Run performance sweep across K values
                for k in k values:
167
                   ai, gflops, bw, pct_peak = run_sweep(n, k, a, b)
168
169
                   # Write results: k, arithmetic_intensity, GFLOPS, bandwidth, percent_peak
170
                   f.write(f"{k},{ai:.6f},{gflops:.2f},{bw:.2f},{pct_peak:.2f}\n")
171
```

- Setup problem size
- Increasing k means more floating-point operations per memory access.
- Low k: memory-bound, limited by memory speed.
- High k: compute-bound, limited by GPU processing speed.

LITTLE'S LAW FOR ESCALATORS

Our escalator parameters:

- •1 person per step
- A step arrives every 2 seconds
 - Bandwidth: 0.5 person/s

- 20 steps tall
 - Latency = 40 seconds

One person in flight?

Throughput = 0.025 person/s

LITTLE'S LAW

FOR ESCALATORS

Our escalator parameters:

- 1 person per step
- A step arrives every 2 seconds
 - Bandwidth: 0.5 person/s

- 20 steps tall
 - Latency = 40 seconds

How many persons do we need in-flight to saturate bandwidth?

Concurrency = Bandwidth x Latency = 0.5 persons/s x 40 s

= 20 persons

LITTLE'S LAW

FOR GPUS

- How to maximize performance?
 - 1. Saturate compute units.
 - 2. Saturate memory bandwidth.

 Need to hide the corresponding latencies to achieve this.

- Compute latencies.
- Memory access latencies.
- Latencies can be hidden by having more instructions in flight.

FP32 Latency = 24 cycles 8 FP32 ops per cycle

Concurrency = Bandwidth x

Latency = 8 x 24 operations inflight

WHAT OCCUPANCY DO I NEED?

GENERAL GUIDELINES

Rule of thumb: Try to maximize occupancy.

But some algorithms will run better at low occupancy.

More registers and shared memory can allow higher data reuse, higher ILP, higher performance.

Fewer threads per SM. More resources per thread. Enough instruction-level parallelism or GPU will starve! Complex algorithms + Registers per thread and shared memory - More threads per SM. Fewer registers per thread. Rely on thread parallelism to hide latencies!

FINDING PERFORMANCE OPPORTUNITIES

Models can be data bound by the data pipeline, compute or memory

- GPU utilization as it relates to model code
 - Time being spent on ops in every iteration
 - Time spent on GPU/CPU
 - Data types used for operations
- Bottlenecks could be attributed to
 - Input data pipeline: data loading, preprocessing etc
 - Compute (math) limited operations
 - Memory limited operations
 - Other aspects such as overall system tuning
- Categories of operations in DNNs based on bottleneck
 - Element wise: ReLU, memory bound
 - Reduction: Batch norm, memory bound
 - Dot product: Convolution, math bound

Compute heavy ops see speed-ups from GPUs

DEEP LEARNING OPTIMIZATION

Performance Analysis at System and DNN Level & Visualization

System Level Tuning

- System Tuning
 - Thread Synchronization, Multi-GPU and node communication
 - Memory management & Kernel profiling
- Leveraging/Optimizing Hardware
- Input Pipeline Optimization
- Many others....

DNN Level Tuning

- Algorithm Techniques & Data Representations
- Pruning
- Calibration
- Quantization
- Many others....

LIMITS OF PERFORMANCE OPTIMIZATION

End-to-end perf depends on training composition

Amdahl's Law:

If you speed up part of your training session (GPU work), then the remaining parts (CPU work) limit your overall performance

DL PROFILING NEEDS OF DIFFERENT PERSONAS

Researchers

Fast development of best performant models for research, challenge and domains

Data Scientists & Applied Researchers

Reduce Training time, focus on data, develop and apply the best models for the applications

Sysadmins & DevOps

Optimized utilization and uptime, monitor GPU workloads, leverage hardware

WHICH OPTIMIZATIONS TO FOCUS ON?

SOLVING THE BOTTLENECKS

Compute bound

- Reduce instruction count.
 - E.g., use vector loads/stores.
- Use tensor cores.
- Use lower precision arithmetic, fast math intrinsics.

Bandwidth bound

- Reduce the amount of data transferred.
 - Optimize memory access patterns.
 - Lower precision datatypes.
 - Kernel fusion.

Latency bound

- Increase number of instructions and memory accesses in-flight.
- Increase parallelism, occupancy.

WHAT ARE COMMON PROBLEMS IN PYTORCH

I/O and Data:

- GPU starvation
- GPU sits idle waiting for the CPU to load and preprocess data.
- This is common with large data sets that cannot be fully loaded into RAM.
- GPU utilization:
- Fully saturated with a heavy model
- Underutilized due to a lack of data

Memory:

- RuntimeError: CUDA out of memory
- Forces a reduction in batch size.

WHAT ARE COMMON PROBLEMS IN PYTORCH?

WHAT CAN WE DO ABOUT IT?

I/O and Data:

- Use the fundamental abstractions called <u>Dataset and Dataloader</u>
- <u>Dataset:</u> This is the base class that represents a set of samples and their labels.
- Dataloader: Wraps the dataset and makes it efficiently iterable.

GPU utilization:

- PyTorch Profiler to see Detailed analysis of CUDA operators and kernels.
- Export results in .jsoninteractive format or visualization with TensorBoard.

Memory:

- Fuse operations to reduce memory access and kernel launch times
- Only one kernel is launched for multiple pointwise operations

•

```
@torch.compile
def gelu(x):
    return x * 0.5 * (1.0 + torch.erf(x / 1.41421))
```


WHAT CAN WE DO ABOUT IT?

GPU utilization:

- Automatic Mixed Precision
- Reduced precision can mean faster computations

GPU utilization:

- Increase batch size during training
- Number of training examples utilized in one iteration.
- Better utilization of GPU parallelism and faster convergence.

Memory:

- Memory Pinning for optimizing data transfer between the CPU and GPU

WHAT CAN WE DO ABOUT IT

Symptom detected by Recommended Diagnosis (Bottleneck) the Profiler solution Slow pre-processing High Self CPU total and/or data loading Increase num_workers % for DataLoader on the CPU side Slow data transfer Enable High execution time between CPU and for cudaMemcpyAsync pin_memory=True GPU memory

WHERE CAN WE LEARN MORE?

- PyTorch Performance Tuning Guide
- PyTorch Optimization Guide
- NVIDIA Deep Learning Performance Guide
- <u>Ultimate guide to PyTorch library in Python</u>
- LLM Training on Grace Hopper

