

VFM Step-Up DC/DC Converter

General Description

The RT9261 Series are VFM Step-up DC/DC ICs with ultra low supply current by CMOS process and suitable for use with battery-powered instruments.

The RT9261 IC consists of an oscillator, a VFM control circuit, a driver transistor (LX switch), a reference voltage unit, an error amplifier, resistors for voltage detection, and a LX switch protection circuit. A low ripple and high efficiency step-up DC/DC converter can be constructed of this RT9261 IC with only three external components.

The RT9261A IC provides with a drive pin (EXT) for an external transistor, so that a power transistor can be externally applied. Therefore, the RT9261A IC is recommended for applications where large currents are required. EN pin enables circuit to set the standby supply current at a maximum of $0.5\mu A$.

Ordering Information

NOLE.

Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features

- Minimal Number of External Components (Only an Inductor, a Diode, and a Capacitor)
- Ultra Low Input Current (5μA at Switch Off)
- ±2% High Output Voltage Accuracy
- Low Ripple and Low Noise
- Low Start-up Voltage, 0.85V at 1mA
- 75% Efficiency with Low Cost Inductor
- +50 ppm/ °C Low Temperature-Drift
- SOT-89 and SOT-23-5 Small Packages
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Power source for battery-powered equipment
- Power source for cameras, camcorders, VCRs, PDAs, pagers, electronic data banks, and hand-held communication equipment
- Power source for applications, which require higher voltage than that of batteries used in the appliances

Pin Configurations

SOT-23-5

DS9261/A-16 April 2011

www.richtek.com

Typical Application Circuit

Figure 1

Figure 2

1N5819

Figure 3

Figure 4

Figure 5

Functional Pin Description

	Pin	Din Nome	Die Franties		
RT9261-□□□X	RT9261A-□□□X	RT9261-□□□B	R T9261 A-□□□B	Pin Name	Pin Function
1	1	4	4	GND	Ground.
2	2	2	2	VOUT	Output Voltage.
3	1	5	1	LX	Pin for Switching.
	3		5	EXT	Drive External Device.
		1	1	EN	Chip Enable (Active High).
		3	3	NC	No Internal Connected.

Function Block Diagram

Notes:

(1) LX Pin..... only for 9261-□□xX and 9261-□□xB
(2) EXT Pin.... only for 9261A-□□xX and 9261A-□□xB
(3) EN Pin..... only for 9261-□□xB and 9261A-□□xB

Absolute Maximum Ratings

Output Voltage	
• LX Pin Voltage (1)	· 8V
• EXT Pin Voltage (2)	-0.3 to V_{OUT} +0.3 V
• EN Pin Voltage (3)	-0.3 to V_{OUT} +0.3 V
• LX Pin Output Current (1)	250mA
• EXT Pin Current (2)	±50mA
• Power Dissipation, P _D @ T _A = 25°C	
SOT-89	0.5W
SOT-23-5	0.25W
Package Thermal Resistance	
SOT-89, 0 _{JC}	100°C/W
SOT-89, θ _{JA}	300°C/W
SOT-23-5, θ_{JA}	250°C/W
Operating Temperature Range	−20 to +85°C
Storage Temperature Range	165°C
• Lead Temperature (Soldering, 10 sec.)	260°C
Notes:	
(1) Applicable to RT9261- □□xX and RT9261- □□xB	
(2) Applicable to RT9261A-□□xX and RT9261A-□□xB	
(3) Applicable to RT9261-□□xB and RT9261A-□□xB	

Electrical Characteristics (Refer to Figure 1)

Parameter	Symbol	Test Conditions			Тур	Max	Unit
Output Voltage Accuracy	ΔV_{OUT}			-2		2	%
Input Voltage	VIN					7	V
Start-up Voltage	V _{ST}	I _{OUT} = 1mA, V _{IN} : 0	→ 2V		0.85	1	V
Hold-on Voltage	Vно	I _{OUT} = 1mA, V _{IN} : 2	→ 0V	0.7			V
Input Current 1		V _n , at no load	$V_{OUT} \le 3.5V^{(1)}$		15	18	
Input Current 1		V _{IN} at no load	$3.5V < V_{OUT} \le 5V^{(2)}$		18	24	μА
Input Current 2		V _{OUT} in switch off condition			5	8	μА
LV Conitabile a Comment	Iswitching	\/ O 4\/	$V_{OUT} \le 3.5V^{(1)}$	60			A
LX Switching Current		$V_{LX} = 0.4V$	$3.5V < V_{OUT} \le 5V^{(2)}$	80			mA
LX Leakage Current	I _{LEAKAGE}	V _L X = 6V				0.5	μΑ
Maximum Oscillator	F _{MAX}				120	160	kHz
Oppillator Duty Cyala			$V_{OUT} = 2.5V$ to 5V	65	75	85	%
Oscillator Duty Cycle	Dosc	On (V _{LX} "L") side	V _{OUT} = 1.5V to 2.4V	60	70	80	%
Efficiency			75		%		
V _{LX} Voltage Limit L _X switch on		0.65	0.8	1	V		

Notes:

(1)Unless otherwise provided, V_{IN} = 1.8V, V_{SS} = 0V, I_{OUT} = 10mA, T_{OPT} = 25°C, and External Circuit of Typical Application (2)Unless otherwise provided, V_{IN} = 3V, V_{SS} = 0V, I_{OUT} = 10mA, T_{OPT} = 25°C, and External Circuit of Typical Application

Electrical Characteristics (Refer to Figure 2)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage Accuracy	ΔVουτ			-2		+2	%
Input Voltage	V _{IN}					7	V
Start-up Voltage	V _{ST}	$I_{OUT} = 1 \text{ mA}, V_{IN} : 0$	→ 2V		0.85	1.0	V
Input Current 1		V	$V_{OUT} \le 3.5V^{(1)}$		30	50	
Input Current 1		V _{IN} at no load	$3.5V < V_{OUT} \le 5V^{~(2)}$		60	90	μΑ
la nut Current 2		V _{OUT} in switch off	$V_{OUT} \le 3.5V^{(1)}$		6	10	
Input Current 2		condition	$3.5V < V_{OUT} \le 5V^{~(2)}$				μΑ
EVT "II" Output Ourrant			$V_{OUT} \le 3.5V^{(1)}$	-1.5			Л
EXT "H" Output Current			$3.5V < V_{OUT} \le 5V^{(2)}$	-2			mA
EVT "I " Output Current		V 0 4V	$V_{OUT} \le 3.5V^{(1)}$	1.5	-	-	Λ
EXT "L" Output Current		$V_{EXT} = 0.4V$	$3.5V < V_{OUT} \le 5V^{~(2)}$	2		-	mA
Maximum Oscillator Frequency	F _{MAX}			80	120	160	kHz
Cocillator Duty Cycle)/ " " - - -	$V_{OUT} = 2.5V \text{ to } 5V$	65	75	85	%
Oscillator Duty Cycle	Dosc	V _{EXT} " H " side	$V_{OUT} = 1.5V \text{ to } 2.4V$	60	70	80	%

Notes:

(1)Unless otherwise provided, V_{IN} = 1.8V, V_{SS} = 0V, I_{OUT} = 10mA, T_{OPT} = 25°C, and use External Circuit of Typical Application

(2)Unless otherwise provided, V_{IN} = 3V, V_{SS} = 0V, I_{OUT} = 10mA, T_{OPT} = 25°C, and External Circuit of Typical Application

Electrical Characteristics (Refer to Figure 3)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage Accuracy	ΔV_{OUT}			-2		+2	%
Input Voltage	V _{IN}					7	V
Start-up Voltage	V _{ST}	I _{OUT} = 1mA, \	$V_{\text{IN}}: 0 \rightarrow 2V$		0.85	1.0	V
Hold-on Voltage	V _{HO}	I _{OUT} = 1mA, \	$I_{\text{IN}}: 2 \rightarrow 0 \text{V}$	0.7			V
Efficiency		$V_{OUT} \le 3.5 V^{()}$	1)		75		%
Efficiency		3.5V < V _{OUT} ≤	≤ 5V ⁽²⁾		85	-	/0
Input Current 1		V _{IN} at no load	$V_{0,1,T} < 3.5 V_{0}^{(1)}$		15	18	μА
Imput Current 1		VIN at 110 10au	$3.5V < V_{OUT} \le 5V^{(2)}$		18	24	
Input Current 2		V _{OUT} in switch	$V_{OUT} \le 3.5V^{(1)}$		5	8	μА
Input Current 2		off condition	$3.5V < V_{OUT} \le 5V^{(2)}$		6	10	
LV Conitabilia a Commant	Iswitching	V _L X= 0.4V	$V_{OUT} \le 3.5V^{(1)}$	60			mA
LX Switching Current			$3.5V < V_{OUT} \le 5V^{(2)}$	80	1	-	IIIA
LX Leakage Current	I _{LEAKAGE}	$V_{LX} = 6V$				0.5	μА
EN "H" Level		$V_{IN} = V_{OUT} \times 0.9$		0.4 x V _{OUT}	1	ı	V
EN " L" Level		$V_{IN} = V_{OUT} \times C$).9			0.2	V
EN " H" Input Current		EN = V _{OUT}				0.5	μΑ
EN " L" Input Current		EN = 0V		-0.5			μΑ
Maximum Oscillator Frequency	F _{MAX}			80	120	160	kHz
Oscillator Duty Cycle	D _{OSC}	On (V _I x " L")	V _{OUT} = 2.5V to 5V	65	75	85	%
Oscillator Duty Cycle		1 ' -	V _{OUT} = 1.5V to 2.4V	60	70	80	%
V _{LX} Voltage Limit		LX switch on		0.65	0.8	1.0	V

Notes:

⁽¹⁾Unless otherwise provided, V_{IN} = 1.8V, V_{SS} = 0V, I_{OUT} = 10mA, T_{OPT} = 25 °C, and use External Circuit of Typical Application

⁽²⁾Unless otherwise provided, V_{IN} = 3V, V_{SS} = 0V, I_{OUT} = 10mA, T_{OPT} = 25°C, and External Circuit of Typical Application

Electrical Characteristics (Refer to Figure 4)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage Accuracy	ΔV_{OUT}			-2		+2	%
Input Voltage	V _{IN}				-	7	V
Start-up Voltage	V _{ST}	I _{OUT} = 1mA, V _I	N: 0 → 2V		0.85	1.0	V
Efficiency		$V_{OUT} \le 3.5V^{(1)}$			75		%
Efficiency		$3.5V < V_{OUT} \le 5V^{(2)}$			85		%
Innuit Commant 4		V strolood	$V_{OUT} \le 3.5V^{(1)}$		30	50	۸
Input Current 1		V _{IN} at no load	$3.5V < V_{OUT} \le 5V^{(2)}$		60 90	μΑ	
L		V _{OUT} in switch	$V_{OUT} \le 3.5V^{(1)}$		6	10	
Input Current 2		off condition	$3.5V < V_{OUT} \le 5V^{(2)}$				μΑ
EVT # 111 O 1 o 1 O 0 o 0 o 1			$V_{OUT} \le 3.5V^{(1)}$	-1.5	-	m/	
EXT "H" Output Current			$3.5V < V_{OUT} \le 5V^{(2)}$	-2			m A
EVT "I " Outrout Compart		V 0.4V	$V_{OUT} \le 3.5V^{(1)}$	1.5			A
EXT "L" Output Current		$V_{EXT} = 0.4V$	$3.5V < V_{OUT} \le 5V^{(2)}$	2			mA
EN "H" Level		$V_{IN} = V_{OUT} \times 0$.9	0.4× V _{OUT}			V
EN "L" Level		$V_{IN} = V_{OUT} \times 0$.9		1	0.2	V
EN "H" Input Current		EN = V _{OUT}			1	0.5	μΑ
EN "L" Input Current		EN = 0V		-0.5			μΑ
Maximum Oscillator Frequency	F _{MAX}			80	120	160	kHz
Oscillator Duty Cycle	Dooo	On (V _{LX} " L")	$V_{OUT} = 2.5V$ to 5V	65	75	85	%
Oscillator Duty Cycle	Dosc	side	$V_{OUT} = 1.5V \text{ to } 2.4V$	60	70	80	%
V _{LX} Voltage Limit		LX switch on		0.65	0.8	1.0	V

Notes:

(1)Unless otherwise provided, V_{IN} = 1.8V, V_{SS} = 0V, I_{OUT} = 10mA, T_{OPT} = 25°C, and use External Circuit of Typical Application

(2)Unless otherwise provided, V_{IN} = 3V, V_{SS}= 0V, I_{OUT} = 10mA, T_{OPT} = 25°C, and External Circuit of Typical Application

Typical Operating Characteristics

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
А	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.356	0.559	0.014	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-5 Surface Mount Package

Complete	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min Max		Min	Max	
А	1.397	1.600	0.055	0.063	
b	0.356	0.483	0.014	0.019	
В	2.388	2.591	0.094	0.102	
b1	0.406	0.533	0.016	0.021	
С	3.937	4.242	0.155	0.167	
C1	0.787	1.194	0.031	0.047	
D	4.394	4.597	0.173	0.181	
D1	1.397	1.753	0.055	0.069	
е	1.448	1.549	0.057	0.061	
Н	0.356	0.432	0.014	0.017	

3-Lead SOT-89 Surface Mount

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

5F, No. 95, Minchiuan Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)86672399 Fax: (8862)86672377

Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.