Поиск шипов по КТ снимкам глазной орбиты

Епрев А.Е., 442 гр

Научный руководитель:

Старший преподаватель кафедры системного программирования Сартасов Станислав Юрьевич

Введение

Для восстановительной и пластической хирургии актуальна задача автоматической сегментации глазной орбиты

Одна из подзадач - поиск шипов (костные образования в некоторых орбитах)

Шипы на снимках КТ

Постановка задачи

Разработка метода полностью автоматизированного выделения шипов

- Сделать обзор предметной области и существующих решений
- Разработать классификатор наличия шипов в глазных орбитах
- Разработать способ сегментации шипов на снимках КТ
- Произвести апробацию разработанных методов

Обзор технологий

- Нет полностью автоматизированных решений
- Не выделяют шипы

Существующие программы:

- 3D Slicer (<u>https://www.slicer.org</u>)
- iPlan

(https://www.brainlab.com/en/surgery-products/overview-ent-cmf-products/iplan-cmf-straightforward-planning-and-navigation/)

Обзор технологий

Полуавтоматическая сегментация в iPlan 3.0.5 (требует выделения точек на входе в орбиту)

Подход

- Классификация
 - определить, присутствует ли шип на данном снимке
- Сегментация
 - выделить шип

Классификация

- Генераторы для увеличения количества данных и борьбы с переобучением
- Свёрточные нейронные сети с полносвязными слоями в конце

Результаты классификации

48

48

48

48

512 x 512

512 x 512

256 x 256

256 x 256

182

500

182

500

•		•	-			
размер изображений	количество снимков (обучение)	количество снимков (валидация)	генерация дополнительных изображений	accuracy	precision	recall

Нет

Да

Нет

Да

0.542

0.833

0.875

0.958

0.542

0.75

0.667

0.833

0.708

0.611

0.708

0.75

Результаты классификации

Сегментация

- Более сложная чем классификация задача
- Мало данных (35 размеченных изображений)
- Просто нейронная сеть выдает не отличимые от шума результаты

Низкоуровневая сегментация

- Предварительный этап
- Разбиваем изображение на суперпиксели
- Делаем каждый суперпиксель одного цвета (берём среднее)
- 4 основных алгоритма

Низкоуровневая сегментация

Felzenszwalb's method SLIC

Низкоуровневая сегментация

U-net

- Архитектура свёрточной нейронной сети для сегментации медицинских изображений
- Используем веса модели для сегментации легких обученных на большом объеме данных (https://github.com/imlab-uiip/lung-segmentation-2d)
- Fine-tuning: заново обучаем часть слоёв на наших данных

U-net

Постобработка изображений

- Удаление шума (fastNIMeansDenoising)
- Кластеризация (k-means)

Результаты сегментации

Dice coefficient

	Felzenszwalb's method	SLIC	Quickshift	Watershed
5 эпох, переобучены веса на 12 слоях	0.97	0.98	0.97	0.95
5 эпох, переобучены веса на 6 слоях	0.97	0.97	0.97	0.96
10 эпох, переобучены веса на 12 слоях	0.97	0.97	0.97	0.97
10 эпох, переобучены веса на 6 слоях	0.96	0.96	0.97	0.95

Результаты

- Произведен обзор предметной области и существующих решений
- Разработан классификатор наличия шипов в глазных орбитах
- Разработан способ сегментации шипов на снимках КТ
- Произведена апробация разработанных методов