Homework 14: Minimizing Geodesics

This set of problems is adapted from [53].

Let (M,g) be a riemannian manifold. From the riemannian metric, we get a function $F:TM\to\mathbb{R}$, whose restriction to each tangent space T_pM is the quadratic form defined by the metric.

Let p and q be points on M, and let $\gamma:[a,b]\to M$ be a smooth curve joining p to q. Let $\tilde{\gamma}:[a,b]\to TM$, $\tilde{\gamma}(t)=(\gamma(t),\frac{d\gamma}{dt}(t))$ be the lift of γ to TM. The **action** of γ is

$$\mathcal{A}(\gamma) = \int_a^b (\tilde{\gamma}^* F) \ dt = \int_a^b \left| \frac{d\gamma}{dt} \right|^2 dt \ .$$

- 1. Let $\gamma:[a,b] \to M$ be a smooth curve joining p to q. Show that the arclength of γ is independent of the parametrization of γ , i.e., show that if we reparametrize γ by $\tau:[a',b'] \to [a,b]$, the new curve $\gamma'=\gamma \circ \tau:[a',b'] \to M$ has the same arc-length.
- 2. Show that, given any curve $\gamma:[a,b]\to M$ (with $\frac{d\gamma}{dt}$ never vanishing), there is a reparametrization $\tau:[a,b]\to[a,b]$ such that $\gamma\circ\tau:[a,b]\to M$ is of constant velocity, that is, $|\frac{d\gamma}{dt}|$ is independent of t.
- 3. Let $\tau:[a,b]\to [a,b]$ be a smooth monotone map taking the endpoints of [a,b] to the endpoints of [a,b]. Prove that

$$\int_{a}^{b} \left(\frac{d\tau}{dt}\right)^{2} dt \ge b - a ,$$

with equality holding if and only if $\frac{d\tau}{dt} = 1$.

4. Let $\gamma:[a,b] \to M$ be a smooth curve joining p to q. Suppose that, as s goes from a to b, its image $\gamma(s)$ moves at constant velocity, i.e., suppose that $|\frac{d\gamma}{ds}|$ is constant as a function of s. Let $\gamma'=\gamma\circ\tau:[a,b]\to M$ be a reparametrization of γ . Show that $\mathcal{A}(\gamma')\geq \mathcal{A}(\gamma)$, with equality holding if and only if $\tau(t)\equiv t$.

120 HOMEWORK 14

5. Let $\gamma_0:[a,b]\to M$ be a curve joining p to q. Suppose that γ_0 is **action-minimizing**, i.e., suppose that

$$\mathcal{A}(\gamma_0) \leq \mathcal{A}(\gamma)$$

for any other curve $\gamma:[a,b]\to M$ joining p to q. Prove that γ_0 is also **arc-length-minimizing**, i.e., show that γ_0 is the shortest geodesic joining p to q.

- 6. Show that, among all curves joining p to q, γ_0 minimizes the action if and only if γ_0 is of constant velocity and γ_0 minimizes arc-length.
- 7. On a coordinate chart $(\mathcal{U}, x^1, \dots, x^n)$ on M, we have

$$F(x,v) = \sum g_{ij}(x)v^iv^j .$$

Show that the Euler-Lagrange equations associated to the action reduce to the **Christoffel equations** for a geodesic

$$\frac{d^2\gamma^k}{dt^2} + \sum (\Gamma^k_{ij} \circ \gamma) \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} = 0 ,$$

where the Γ^k_{ij} 's (called the **Christoffel symbols**) are defined in terms of the coefficients of the riemannian metric by

$$\Gamma^k_{ij} = \frac{1}{2} \sum_\ell g^{\ell k} \left(\frac{\partial g_{\ell i}}{\partial x_j} + \frac{\partial g_{\ell j}}{\partial x_i} - \frac{\partial g_{ij}}{\partial x_\ell} \right) \; ,$$

 (g^{ij}) being the matrix inverse to (g_{ij}) .

8. Let p and q be two non-antipodal points on S^n . Show that the geodesic joining p to q is an arc of a great circle, the great circle in question being the intersection of S^n with the two-dimensional subspace of \mathbb{R}^{n+1} spanned by p and q.

Hint: No calculations are needed: Show that an isometry of a riemannian manifold has to carry geodesics into geodesics, and show that there is an isometry of \mathbb{R}^{n+1} whose fixed point set is the plane spanned by p and q, and show that this isometry induces on S^n an isometry whose fixed point set is the great circle containing p and q.