Spring Midterm

Directions: This is a closed book exam. Detailed works must be shown legibly to receive credits. Answers alone are worth very little. Calculators are allowed.

Notations: \mathbb{R} denotes the set of all real numbers.

1. (8 marks) Prove that $\lim_{x\to 1}\frac{3x}{x^2+2}=1$ by checking the ε - δ definition of limit of function.

(Do not use any computation formula, sandwich theorem or l'Hopital's rule, otherwise, you will get zero mark.)

2. (8 marks) Let a_1, a_2, a_3, \ldots be a Cauchy sequence of real numbers. Let $b_n \in \mathbb{R}$ satisfy

$$a_n \le b_n \le a_n + \frac{1}{n}$$
 for $n = 1, 2, 3, ...$

Prove that b_1, b_2, b_3, \ldots is a Cauchy sequence by checking the definition of Cauchy sequence.

(Do not use Cauchy theorem that said a sequence converges if and only if it is a Cauchy sequence, otherwise you will get zero mark.)

- 3. (8 marks) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous such that $f(x + 2\pi) = f(x)$ for all $x \in \mathbb{R}$. Prove that there exists at least one $x_0 \in \mathbb{R}$ such that $f(x_0) = x_0$.
- 4. (9 marks) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable. There are $a, b \geq 0$ such that for all $x \in [0, 1]$, we have $|f(x)| \leq a$ and $|f''(x)| \leq b$. Prove that for every $c \in (0, 1)$ such that

$$|f'(c)| \le 2a + \frac{1}{2}b.$$

Solutions to Math 202 Spring Midterm (2008)

```
(1) (Scratch |\frac{3x}{x^2+z}-1| = \frac{|x^2-3x+2|}{x^2+z} \le \frac{|x-2||x-1|}{2} < \frac{2|x-1|}{2} = (x-1) < \varepsilon

\forall \varepsilon > 0, let S = \min(1, \varepsilon). then
|x-2e(-2,0)| = |x-2| < \varepsilon > 0

0 < |x-1| < S \Rightarrow |x-1| < 1 \Rightarrow xe(0,2) \Rightarrow |\frac{3x}{x^2+z}-1| = \frac{|x^2-3x+2|}{x^2+z} < \frac{|x-2||x-1|}{2} < \frac{2|x-1|}{2} < \frac{|x-2||x-1|}{2} < \frac{|x-2||x-1|}
```

(2) (Scratch | bm-bn| \leq | bn-an|+|an-am|+|am-bm| \leq $\frac{1}{n}$ + |an-am|+ $\frac{1}{n}$.) $\forall \varepsilon > 0$, Since $\{a_n\}$ is Cauchy, $\exists K_i \in \mathbb{N}$ such that $m, n \geq K_i \Rightarrow |a_n-a_m| < \frac{\varepsilon}{3}$.

Next let $K_z > \frac{3}{\varepsilon}$, then $m, n \geq K_z \Rightarrow \frac{1}{m}$, $\frac{1}{n} \leq \frac{1}{k_z} < \frac{\varepsilon}{3}$.

Let $K = \max(K_i, K_z)$, then $m, n \geq K \Rightarrow m, n \geq K_i$ and $m, n \geq K_z$ $\Rightarrow |b_m-b_n| \leq |b_m-a_n|+|a_m-a_m|+|a_m-b_m| \leq \frac{1}{n}+|a_m-a_m|+\frac{1}{m} < \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$.

By the extreme value theorem, $\sup \{f(x): x \in [0,2\pi]\} = M$, $\inf \{f(x): x \in [0,2\pi]\} = M$. Exist in \mathbb{R} . Since $f(x+2\pi) = f(x)$, so $\forall x \in \mathbb{R}$, $m \leq f(x) \leq M$. Now g(t) = f(t) - t is Continuous on \mathbb{R} . We have $g(M) = f(M) - M \leq 0$ and $g(m) = f(m) - m \geq 0$. By the intermediate value theorem, $\exists x \in [m, M]$ such that $g(x \circ) = 0$. Then $f(x \circ) = x \circ$.

4 $\forall c \in (0,1)$, by Taylor's theorem, there are $\theta_0 \in (0,c)$ and $\theta_1 \in (c,1)$ Such that $f(1) = f(c) + f'(c)(1-c) + \frac{f''(\theta_1)}{2}(1-c)^2$ and $f(0) = f(c) + f'(c)(0-c) + \frac{f''(\theta_0)}{2}(0-c)^2$. Subtracting these, we get

 $f(1)-f(0) = f'(c) + \frac{1}{2}(f''(0_1)(1-c)^2 - f''(0_0)c^2).$

Solving for f'(c), we get

 $f'(c) = f(1) - f(0) + \frac{1}{2} (f'(\theta_0) c^2 - f''(\theta_1) (1-c)^2).$

Then $|f'(c)| \leq |f(t)| + |f(0)| + \frac{1}{2} (|f''(0)||c^2 + |f''(0)||(1-c)^2|)$

 $\leq 2a + \frac{1}{2}b(c^{2}+(i-c)^{2}).$ Now $0 < c < l \Rightarrow c^{2} < c \text{ and } (l-c)^{2} < (l-c) \Rightarrow c^{2}+(l-c)^{2} < c+(l-c)=($