Graphs and Networks (I)

Discrete Mathematics and Optimization Bioinformatics

Outline

- Basic definitions
- Degrees, distance, connectivity
- Trees
 - Characterization of trees
 - ► Counting trees: Prüfer code

Graphs

Graph G = (V, E)

- V set of nodes or vertices
- E set of edges (pairs of nodes) (can be directed, multiple, loops,...)

They can model biological, communication, internet,... networks.

Specifying a Graph

• Adjacency matrix: A, $n \times n$ (0,1)-matrix $A_{i,j} = \begin{cases} 1 & ij \in E(G) \\ 0 & ij \notin E(G). \end{cases}$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

• Adjacency lists:

1 | 2,4 2 | 1,3,5 3 | 2,4,5 4 | 1,3,5

4 D > 4 A > 4 B > 4 B > B 9 Q C

(ESCI)

E 331

4 / 11

Examples of graphs

• complete graph K_n : all pairs of edges are present.

• Path P_n

• Cycle C_n

• Complete bipartite graph $K_{n,m}$

Subgraphs

Let G = (V, E) be a graph

- A subgraph of G is H = (V', E') with $V' \subset V$ and $E' \subset E$.
- A induced subgraph of G is a subgraph H = (V', E') which contains all edges of G joining vertices in V'
- A spanning subgraph of G is a subgraph H = (V', E') with V' = V and $E' \subset E$.
- A Hamiltonian cycle is a spanning subgraph which is a cycle

Degrees

- The neighborhood N(x) of a vertex $x \in V(G)$ is the set of vertices adjacent to x
- The degree d(x) of a vertex $x \in V(G)$ is the number of vertices adjacent to x (the number of edges incident to x).
- The maximum degree of G is $\Delta(G) = \max\{d(x) : x \in V\}$.
- The minimum degree of G is $\delta(G) = \min\{d(x) : x \in V\}$.
- The average degree of G is $d(G) = \frac{1}{|V|} \sum_{x \in V} d(x)$
- A graf is d-regular if all vertices have degree d.
 - ▶ 1-regular: collection of edges (matching)
 - 2-regular: collection of cycles
 - ► 3-regular: cubic graph.

Lemma (Handshaking Lemma)

$$\sum_{x \in V(G)} d(x) = 2|E(G)|.$$

- Every cubic graph has an even number of vertices.
- The average degree is $d(G) = \frac{2|E|}{|V|}$

(ESCI

Distance and diameter

- The distance between two vertices $u, v \in V(G)$ of a connected G is the length of the shortest path connecting them.
 - \rightarrow d(u, v) = 0 if and only if u = v.
 - d(u,v) = d(v,u)
 - \rightarrow $d(u,v) \leq d(u,w) + d(w,v)$.
- The diameter of a graph is the maximum distance between pairs of vertices.
 - ▶ D(G) = 1 if and only if G is a complete graph.
 - D(G) = 2 if and only if every pair of nonadjacent nodes have a common neighbour.
 - ▶ D(G) = |V| 1 if and only if G is a path

Connectivity

- A graph G is connected if every pair of vertices is connected by a path in G.
- A connected component of a graph is a maximum subgraph which is connected

Lemma

A graph G is connected if and only if, for every $X \subsetneq V$, there is an edge of G with an end vertex in X and one in $V \setminus X$.

A tree T = (V, E) is a connected and acyclic graph.

A tree T = (V, E) is a connected and acyclic graph.

A leaf in a tree is a vertex of degree 1.

Lemma

Every tree has at least two leaves.

By removing a leaf from a tree T we obtain a subtree of T

A tree T = (V, E) is a connected and acyclic graph.

Proposition

The following are equivalent:

- T is a tree.
- T is edge-minimal connected graph.
- T is edge-maximal acyclic graph.
- T is connected with n vertices and n-1 edges.
- T is acyclic with n vertices and n-1 edges.

A tree T = (V, E) is a connected and acyclic graph.

A spanning tree of a graph G is a subgraph T which is a tree and V(T) = V(G).

Proposition

A graph is connected if and only if it has a spanning tree.

A tree T = (V, E) is a connected and acyclic graph.

Theorem (Cayley)

There are n^{n-2} labeled trees on n vertices.

Prüfer Code

- Input: A labelled tree *T* with *n* vertices
- Output: A sequence of length n-2 on n letters
 - ▶ $T_1 = T$, b = []
 - for i from 1 to n-2
 - ★ Choose the leaf with smallest label in T_i
 - ★ Append b_i , the label of the vertex adjacent to that leaf, to b.
 - \star Remove the leave to obtain T_{i+1}

A tree T = (V, E) is a connected and acyclic graph.

Theorem (Cayley)

There are n^{n-2} labeled trees on n vertices.

Prüfer Code

A tree T = (V, E) is a connected and acyclic graph.

Theorem (Cayley)

There are n^{n-2} labeled trees on n vertices.

Prüfer Code

A Prüfer code uniquely determines a labeled tree.

A tree T = (V, E) is a connected and acyclic graph.

Theorem (Cayley)

There are n^{n-2} labeled trees on n vertices.

Prüfer Code

The reverse algorithm for recovering the tree from its Prüfer code:

- Input: A word $b = (b_1, \dots, b_{n-2})$ of length n-2 on an alphabet of n letters.
- Output: A labeled tree with *n* vertices.
 - ► $F_1 = ([n], \emptyset), w = b$
 - for i from 1 to n-2
 - ***** Find the smallest label x_i not in w
 - * Add an edge joining x_i with b_i to F_{i-1} to get F_i
 - ★ Update w by removing b_i and appending x_i
 - ▶ Add to F_{n-2} an edge among the two labels not appearing in w