n.

koji ima najviše:

a) rekurzivno prebrojiv jezik

zadovoljava uvjete zadatka):

a) n **b)** n^4 **c)** n^8 **d)** n^2 **e)** $n^2 \cdot \log n$

e) nije moguće utvrditi u općem slučaju

Trajanje: 120 minuta. Rješenja zadataka 1–15 potrebno je označiti na obrascu, zadaci 16–20 rješavaju se na košuljici i po potrebi na zasebnim papirima. Studenti koji na košuljici ne zaokruže brojeve zadataka koje su rješavali dobit će –1 bod.

(a) $(p \in F \land q \in F) \lor (p \notin F \land q \notin F)$ b) $(p \notin F \land q \in F) \lor (p \in F \land q \notin F)$ c) $(p \in F \land q \notin F) \lor (p \notin F \land q \in F)$

3. (1 bod) Za NKA koji ima p stanja, n ulaznih znakova, m prihvatljivih stanja (m < p) gradi se istovjetan DKA

an mrtvih znakova pa nedohvatljivih znakova b) nedohvatljivih znakova pa mrtvih znakova c) ε - produkcija

b) kontekstno ovisan jezik c) regularan jezik d) kontekstno neovisan jezik

e) unija i presjek

1. (1 bod) Označite koja od navedenih produkcija je u Chomskyjevom normalnom obliku:

d) $\delta(p,a)$ i $\delta(q,a)$ su istovjetna stanja e) $\delta(p,a)$ i $\delta(q,a)$ su prihvatljiva stanja

a) p! stanja b) $p \cdot m$ stanja c) 2^p stanja d) $p \cdot m \cdot n$ stanja e) p^n stanja

pa jediničnih produkcija d) jediničnih produkcija pa ε - produkcija e) ništa od navedenog

6. (1 bod) Funkcija prijelaza osnovnog modela Turingovog stroja definira se na sljedeći način:

7. (1 bod) Kontekstno ovisni jezici zatvoreni su s obzirom na (odabrati najveći točan skup):

a) unija, nadovezivanje, Kleenov operator L^+ , presjek

b) unija, nadovezivanje, presjek

5. (1 bod) Najuža klasa jezika u kojoj se uvijek nalazi presjek kontekstno neovisnog i regularnog jezika jest:

a) $\delta: Q \times \Sigma \times \Gamma \to Q \times \Gamma \times \{L, R\}$ b) $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$ c) $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, N, R\}$

a) regularnih jezika b) nedeterminističkih kontekstno neovisnih jezika c) determinističkih kontekstno neovis-

4. (1 bod) Postupak odbacivanja beskorisnih znakova provodi se odbacivanjem:

d) $\delta: Q \times \Sigma \to Q \times \Gamma \times \{L, R\}$ e) $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$

c) Kleenov operator L^+ , unija, nadovezivanje d) unija, nadovezivanje

8. (1 bod) Prema Chomskyjevoj hijerarhiji jezika kontekstno ovisni jezici su podskup:

a) $A \rightarrow aB$ b) $A \rightarrow a$ c) $A \rightarrow aBCD$ d) $A \rightarrow \varepsilon$ e) $A \rightarrow aaB$

2. (1 bod) Uvjet podudarnosti za stanja p i q jest::

	nih jezika de) rekurzivno prebrojivih jezika e) niti jedan odgovor nije točan						
9.	(1 bod) Odredite koji niz pripada jeziku opisanom regularnim izrazom: $((a+b)^*)^+c^*d^+(e^++a^*)^+$ a) $babcae$ b) $cbbddaea$ c) $babbdeea$ d) $abbcaa$ e) $babbdccaa$						
10.	0. (1 bod) Odrediti razred najjednostavnijeg oblika formalnog automata kojim je moguće prihvatiti jez ww^R , ako je $w = (0+1+2)^*3$.						
	 a) deterministički potisni automat b) nedeterministički potisni automat c) Turingov stroj d) LOA e) konačni automat 						
11.	1. (1 bod) Odrediti razred najjednostavnijeg oblika formalnog automata kojim je moguće prihvatiti jezik $a^ib^{2(i+k)}c^k$, $0 \le i \le N$, $0 \le k \le M$, pri čemu su N i M cjelobrojne konstante.						
	 a) deterministički potisni automat b) nedeterministički potisni automat c) Turingov stroj d) LOA e) konačni automat 						
12.	(1 bod) Odrediti razred najjednostavnijeg oblika formalnog automata kojim je moguće prihvatiti jezik: ww , ako je $w = (0 + 1 + 2)^+$.						
	 a) deterministički potisni automat b) nedeterministički potisni automat c) Turingov stroj d) LOA e) konačni automat 						
13.	(1 bod) Kolika je vremenska složenost prihvaćanja jezika $L = \{wcw^R w \in (a+b)^*\}$ u ovisnosti o duljini niza a) $n+1$ b) n c) n^2 d) $2n+1$ e) $n \cdot (n+1)/2$						

14. (1 bod) Zadan je TS sa 16 radnih traka koji s prostornom složenošću n^2 prihvaća neki jezik L. Tada postoji TS s 8 radnih traka koji prihvaći isti jezik L s prostornom složenošću (odabrati najsporije rastuću funkciju koja

- 15. (1 bod) Neka je zadan NP-potpun jezik L_1 i neki jezik L_2 . Ako je jezik L_1 moguće u polinomnom vremenu svesti na jezik L_2 , za jezik L_2 možemo zaključiti:
 - a)
postoji deterministički TS koji L_2 prihvaća u polinomnom vremenu b) postoji nedeterministički TS koji L_2 prihvaća u polinomnom vremenu c)
jezik L_2 je NP-potpun d) jezik L_2 je NP-težak e) ništa od navedenog
- 16. (3 boda) Zadani DKA pretvoriti u DKA s minimalnim brojem stanja. Minimizaciju DKA provesti primjenom algoritma pronalaženja neistovjetnih stanja (algoritam 3 u udžbeniku).

δ	a	b	С	F
p0	p1	p2	p2	1
p1	p0	p2	р3	1
p2	p0	p1	p4	0
р3	р3	p5	p4	1
p4	p5	p4	р3	0
p5	р3	p0	p4	0
p6	p7	p5	р6	1
p7	p7	p6	p5	0

17. (3 boda) Iz zadanog Mealyevog automata konstruirati istovjetni Mooreov automat.

δ	a	b	c
p0	p1	p2	p0
p1	p0	p1	p1
р2	р1	р1	0g

λ	a	b	С
p0	X	X	Y
p1	Y	Y	Z
p2	Z	Y	X

- 18. (3 boda) Konstruirati potisni automat koji praznim stogom prihvaća nizove oblika wuw^R , pri čemu vrijedi: $w=(a+b)^+,\,u=c+cd+cde$.
- 19. (3 boda) Konstruirati gramatiku koja generira for petlje sljedećeg oblika:

for(int
$$w=0; w$$

pri čemu vrijedi $w, x = (a + b)^+$.

(Napomena: u nizu se nalazi samo jedan razmak nakon ključne riječi int.)

20. (3 boda) Konstruirati linearno ograničeni automat (LOA) koji provjerava ispravnost niza koji je na traci zapisan u obliku $cw_1\#w_2\#w_3\$$, gdje su c i \$ graničnici trake, a w_1 , w_2 i w_3 su nizovi nula. Niz se prihvaća ako vrijedi: $|w_2|=|w_1|+2|w_3|$, pri čemu oznake $|w_1|$, $|w_2|$ i $|w_3|$ predstavljaju broj nula u pojedinim nizovima i dodatno vrijedi: $|w_1|$, $|w_2|$ i $|w_3| \ge 0$. Na početku rada LOA, položaj glave nije poznat. Ako je niz ispravan, LOA se zaustavlja u prihvatljivom stanju.

(Napomena: objasniti ideju i značenje pojedinih stanja i prijelaza koje LOA koristi.)