中山大学本科生期末考试

考试科目:《编译原理》(A卷答案)

学年学期:	2016 学年第一学期	姓	名:	
学 院/系:	数据科学与计算机学院/软件工程	学	号:	
考试方式:	闭卷	年级专	业:	
考试时长:	120 分钟	班	别:	
	(中山大学授予学士学位工作细则》			
	以下为试题区域,共九道大题,总统	分 100 分	`, 考生	_请在答题纸上作答
1. Write r	regular expressions for the following	g langu	ages	(8 points).
a) All	l strings over {0, 1} that do not con	tain co	nsecu	tive zeros (4 points).
(03	?1)*0?			
	l strings representing a nonnegative ich is a multiple of 8 (4 points).	e binary	y nu n	nber (without leading zeros)

	1(1 0)*000			

a) Based on the Thompson Algorithm, construct the NFA from the above regular expression (8 points).

(a|b)*a(a|b)

b) Convert the NFA into a DFA with minimum number of states (9 points).

$$\varepsilon$$
-closure($\{0\}$) = $\{0, 1, 2, 4, 7\}$

$$\varepsilon$$
-closure(move({0, 1, 2, 4, 7}, 'a')) = ε -closure({3, 8}) = {1, 2, 3, 4, 6, 7, 8, 9, 11}

$$\varepsilon$$
-closure(move({0, 1, 2, 4, 7}, 'b')) = ε -closure({5}) = {1, 2, 4, 5, 6, 7}

$$\epsilon$$
-closure(move($\{1, 2, 3, 4, 6, 7, 8, 9, 11\}$, 'a')) = ϵ -closure($\{3, 8, 10\}$) = $\{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13\}$

$$\epsilon$$
-closure(move({1, 2, 3, 4, 6, 7, 8, 9, 11}, 'b')) = ϵ -closure({5, 12}) = {1, 2, 4, 5, 6, 7, 12, 13}

$$\varepsilon$$
-closure(move({1, 2, 4, 5, 6, 7}, 'a')) = ε -closure({3, 8}) = {1, 2, 3, 4, 6, 7, 8, 9, 11}

$$\varepsilon$$
-closure(move({1, 2, 4, 5, 6, 7}, 'b')) = ε -closure({5}) = {1, 2, 4, 5, 6, 7}

$$\epsilon$$
-closure(move($\{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13\}$, 'a')) = ϵ -closure($\{3, 8, 10\}$) = $\{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13\}$

$$\epsilon$$
-closure(move($\{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13\}$, 'b')) = ϵ -closure($\{5, 12\}$) = $\{1, 2, 4, 5, 6, 7, 12, 13\}$

$$\epsilon\text{-closure}(move(\{1,2,4,5,6,7,12,13\},\ `a')) = \epsilon\text{-closure}(\{3,8\}) = \{1,2,3,4,6,7,8,9,11\}$$

$$\varepsilon$$
-closure(move({1, 2, 4, 5, 6, 7, 12, 13}, 'b')) = ε -closure({5}) = {1, 2, 4, 5, 6, 7}

NFA states	DFA state	a	В
{0, 1, 2, 4, 7}	A	В	C

{1, 2, 3, 4, 6, 7, 8, 9, 11}	В	D	E
{1, 2, 4, 5, 6, 7}	C	В	C
{1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13}	D	D	E
{1, 2, 4, 5, 6, 7, 12, 13}	E	В	C

Minimized DFA:

3. Consider the following CFG (9 points):

$$S \rightarrow +SS \mid -SS \mid a$$

and the string +a-aa.

a) Give a leftmost derivation for the string (3 points).

$$S => +SS => +aS => +a-aS => +a-aS => +a-aa$$

b) Give a rightmost derivation for the string (3 points).

c) Give a parse tree for the string (3 points).

- 4. Write CFGs for the following languages (8 points):
 - a) L= $\{a^nb^mc^n | m \ge 0, n \ge 1\}$ (4 points).

$$S \rightarrow aSc \mid aAc$$

$$A \rightarrow bA \mid \epsilon$$

b) All strings over {a, b} that begin and end with the same letter (4 points).

$$S \rightarrow aAa \mid bAb \mid a \mid b$$

$$A \rightarrow aA \mid bA \mid \epsilon$$

5. Consider the following CFGs (18 points):

$$S \rightarrow i(E)t(E)X \mid E$$

$$X \rightarrow e(E) \mid \varepsilon$$

$$E \rightarrow aY \mid bY$$

$$Y \rightarrow c(E) \mid \epsilon$$

where i, t, e, a, b, c, (and) are terminals.

a) Compute the FIRST and FOLLOW sets for all non-terminals (8 points).

Non-terminal	FIRST	FOLLOW
S	i, a, b	\$
X	e, ε	\$
E	a, b),\$
Y	с, ε), \$

b) Construct an LL(1) parsing table for the grammar (8 points).

	i	t	e	a	b	c	()	\$
S	$S \rightarrow i(E)t(E)X$			S→E	S→E				
X			$X \rightarrow e(E)$						X →ε
E				E→aY	E→bY				
Y						$Y \rightarrow c(E)$		Y → ε	Υ> ε

c) Is this grammar LL(1)? Why? (2 points)

Yes, because no conflicts can be found in the LL(1) parsing table.

6. Consider the following CFG (12 points):

$S \rightarrow aAD \mid aBe \mid bBS \mid bAe$

A→g

 $\mathbf{B} \rightarrow \mathbf{g}$

 $D \rightarrow d \mid \epsilon$

augment the grammar and construct the LR(1) sets of items for the augmented grammar.

首先拓广 G[S]为 G[Z]:

 $0: Z \rightarrow S$

1: $S \rightarrow aAD$

2: S → aBe

 $3: S \rightarrow bBS$

4: S → bAe

 $5: A \rightarrow g$

6: B → g

7: D → d

8: D \rightarrow ϵ

构造G[Z]的LR(1)项目族为:

7. The following grammar generates binary strings and their complements (10 points).

$$F \to B$$
$$|\neg B$$

$$B \rightarrow B0$$

$$|B1$$

$$|0$$

$$|1$$

The value of a (non-negated) string is just the decimal value of the binary number the string represents; the value of a negated string is the decimal value of the string with 1's replaced by 0's and 0's replaced by 1's. For example, the value of 010 is 2 and $\neg 010$ is 5. Design a syntax-directed definition (SDD) for the above grammar such that the non-terminal F has an attribute F.val which keeps the value of an input string generated by F. Please do NOT modify the grammar.

产生式	语义规则
$F \rightarrow B$	B.c = false, F.val = B.val
$F \rightarrow \neg B$	B.c = true, F.val = B.val
$B \rightarrow B_1 0$	$B_1.c = B.c, B.val = B_1.val * 2 + (B.c ? 1 : 0)$
$B \rightarrow B_1 1$	$B_1.c = B.c, B.val = B_1.val * 2 + (B.c ? 0 : 1)$
$B \rightarrow 0$	$B_{1}.c = B.c, B.val = (B.c ? 1 : 0)$
$B \rightarrow 1$	$B_1.c = B.c, B.val = (B.c ? 0 : 1)$

8. Consider the following basic block (10 points):

1)	$t_1 = 3$
2)	$\mathbf{t_2} = \mathbf{A} * \mathbf{C}$
3)	$\mathbf{t_3} = \mathbf{A} + \mathbf{C}$
4)	$\mathbf{t}_4 = \mathbf{t}_2 - \mathbf{t}_3$
5)	$G = t_1 * t_4$
6)	$\mathbf{t}_5 = \mathbf{A} + \mathbf{C}$
7)	$\mathbf{t_6} = \mathbf{A} * \mathbf{C}$
8)	$\mathbf{t}_7 = \mathbf{t}_6 - \mathbf{t}_5$
9)	$t_8 = t_1 * 5$
10)	$\mathbf{L} = \mathbf{t}_8 + \mathbf{t}_7$
11)	M = L

a) Construct the DAG of the above basic block (5 points).

b) Assume that only G, L and M will be used after the basic block. Give the optimized three-address statement sequence (5 points).

1)	$\mathbf{t_2} = \mathbf{A} * \mathbf{C}$
2)	$\mathbf{t}_3 = \mathbf{A} + \mathbf{C}$
3)	$\mathbf{t_4} = \mathbf{t_2} - \mathbf{t_3}$
4)	$G = 3 * t_4$
5)	$L = 15 + t_4$
6)	$\mathbf{M} = \mathbf{L}$

- 9. Consider the following fragment of three-address instructions (8 points):
 - (1) b := 1
 - (2) b := 2
 - $if w \le x goto B$
 - $\mathbf{e} := \mathbf{b}$
 - (5) goto B
 - (6) A: goto D
 - (7) B: c := 3
 - (8) b := 4
 - $\mathbf{c} := \mathbf{6}$
 - (10) D: if $y \le z$ goto E
 - (11) goto End
 - (12) E: g := g + 1
 - (13) h: = 8
 - (14) goto A
 - (15) End: h := 9

Please partition these three-address instructions into basic blocks, and draw the control flow graph. You may draw the resulting graph directly, but you must mark

each node by number n-m indicating that the corresponding basic block consists of instructions n through m, inclusive.

