Mathematical specifications of programming languages

Ambroise Lafont¹

¹University of New South Wales Sydney, Australia

October 23, 2020

That is the question

What is a programming language, mathematically?

• In the literature, no well-established consensus.

Differential λ-calculus [Ehrhard-Regnier 2003]

- \sim 10 pages (section 2 \rightarrow beginning of section 3) describing the programming language and proving some properties.
 - In this talk:
 - a tentative notion of programming language, transition monads (FSCD 2020, with Tom and Andre Hirschowitz), and
 - a discipline for automatically generating well-behaved transition monads.
 - in the untyped case for ease of presentation (simply-typed case works as well)

What is a programming language?

2 components:

- Syntax: formal language for writing programs;
- **Operational semantics**: how do programs *execute*.

$$(2+2) \times 3 \xrightarrow{\qquad \qquad 1 \text{ execution step} \qquad \qquad 4 \times 3 \xrightarrow{\qquad \qquad \qquad 12}$$

What is a programming language?

A graph whose vertices are programs.

Variables = placeholders for expressions

- Substitution: (x + (5 + 4))[x := 12] = 12 + (5 + 4)
- Reductions are stable under substitution

$$\frac{x + (5 + 4) \to x + 9}{12 + (5 + 4) \to 12 + 9}$$

→ Transition monads!

A difficulty

Bound variables and α -equivalence

α -equivalence:

 $\lambda x.x$ should be identified with $\lambda y.y$

"x is bound by λ in $\lambda x.x$ "

Specifying programming languages: initial semantics

- Constructing syntax and reductions may be complex (cf. differential λ -calculus).
- Often easier to describe the models.

Model \approx graph with interpretation of the operations and reductions

a model of arithmetic expressions: \mathbb{Z} (or rather $\mathbb{Z}[x,y,\dots]$)

- Syntactic "+" \sim actual "+",
- Syntactic "x" \rightarrow actual "x", ...
- Programming language = initial model.
- Initiality ⇒ recursion principle.

Notion of signature

- Associated notion (category) of models.
- Effective iff the initial model (specified object) exists.

Related work: syntax

Two main notions of syntax:

- Substitution monoids (\approx finitary monads) [Fiore-Plotkin-Turi, 1999].
- Nominal sets [Gabbay-Pitts, 1999].

wider recursion principle more structured models

 $[\mathbb{N},\mathsf{Set}]$ nominal sets monads

This approach: monads

Related work: specifying syntax

Main notions of signature for monads:

- Pointed strong endofunctors [Fiore-Plotkin-Turi, 1999].
- Equational systems [Fiore-Hur, 2010].
- Modules [Hirschowitz-Maggesi, 2007].

This approach: modules

Related work: semantics

Semantic notions of programming language:

- Distributive laws [Plotkin-Turi, 1997].
- double categories [Meseguer, the Montanari school].

Do not cover higher-order languages.

- 2-categories [Power, Seely,...].
- relative monads [Ahrens, 2016].

Only covers congruent semantics.

In this talk

- Mathematical definition of programming languages as transition monads.
- Signatures for specifying them
- Systematic use of monads and modules for taking care of substitution.

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- Generating transition monads (Initial Semantics)
 - Three-level specification
 - Examples
- Compilation and initiality

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- Quantities Qua
 - Three-level specification
 - Examples
- Compilation and initiality

Ingredients

- Programming languages (PLs) as graphs
 - (Syntax) vertices = terms
 - (Semantics) arrows = reductions between terms
- Simultaneous substitution: variables → terms
 - monads and modules over them

Example

 λ -calculus with β -reduction:

Syntax:

$$S, T ::= x \mid S T \mid \lambda x.S$$

• Modulo α -equivalence, e.g.

$$\lambda x.x = \lambda y.y$$

Reductions:

$$(\lambda x.t) u \xrightarrow{\beta} t[x := u] +$$

congruences

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- Quantities Qua
 - Three-level specification
 - Examples
- 3 Compilation and initiality

PLs as graphs

Example: λ -calculus with β -reduction

- (Syntax) vertices = terms e.g. $\Omega = (\lambda x.xx)(\lambda x.xx)$
- (Semantics) arrows = reductions

Graph = a quadruple
$$(A, V, \sigma, \tau)$$
 where
$$A = \{\text{arrows}\} \qquad \sigma = \text{source of an arrow}$$

$$V = \{\text{vertices}\} \qquad \tau = \text{target of an arrow}$$

$$A \xrightarrow{\sigma} V$$

$$\sigma : \qquad A \rightarrow V \qquad \tau : \qquad A \rightarrow V$$

$$t \xrightarrow{r} u \mapsto t \qquad t \xrightarrow{r} u \mapsto u$$

$$\sigma(r) \xrightarrow{r} \tau(r)$$

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- Quantities Qua
 - Three-level specification
 - Examples
- 3 Compilation and initiality

Simultaneous substitution

Syntax comes with substitution

terms (e.g. λ -terms) = trees with free variables as (distinguished) leaves.

Simultaneous substitution made formal

Free variables indexing

 $X \mapsto \{\text{terms taking free variables in } X\}$

Example: λ -calculus

Simultaneous substitution (bind)

$$\forall f: X \to L(Y),$$

$$\begin{array}{ccc} L(X) & \to L(Y) \\ t & \mapsto t[x \mapsto f(x)] & \text{(or } t[f]) \end{array}$$

19/4/

Simultaneous substitution

Monads model simultaneous substitution

 λ -calculus as a monad $(L, \underline{\ }[\underline{\ }], \eta)$

- Simultaneous substitution (L, _[_])
- Variables are terms

$$\eta_X: X \to L(X) \\
x \mapsto \frac{x}{x}$$

Substitution laws:

$$x[f] = f(x)$$
 $t[x \mapsto x] = t$

+ associativity:

$$t[f][g] = t[x \mapsto f(x)[g]]$$

Substitution for semantics

Syntax supports substitution. This is also true of semantics.

Our notion of PL:

- **Syntax**: a monad (*L*,_[_], η)
- Semantics:
 - graphs $R(X) \xrightarrow{\sigma_X} L(X)$ for each X

$$R(X) =$$
total set of reductions between terms taking free variables in X

• substitution of reduction: variables \mapsto *L*-terms.

$$\frac{t \xrightarrow{r} u}{t[f] \xrightarrow{r[f]} u[f]}$$

• \Rightarrow R is a L-module, and σ , τ are module morphisms (see next slide)

Substitution for semantics made formal

R as a **module** over L

R supports L-monadic substitution:

$$\forall f: X \to \mathbf{L}(Y),$$

$$R(X) \rightarrow R(Y)$$

 $r \mapsto r[x \mapsto f(x)]$ (or $r[f]$)

+ substitution laws

Other examples of L-modules: $L, L \times L, 1, \ldots$

σ and τ as *L*-module morphisms

$$t \xrightarrow{r} u \ \, \leadsto \ \, t' \xrightarrow{r[f]} u' \quad \text{with} \quad \begin{cases} t' = t[f] \\ u' = u[f] \end{cases} \text{ i.e., } \begin{cases} \sigma(r[f]) = \sigma(r)[f] \\ \tau(r[f]) = \tau(r)[f] \end{cases}$$

Commutation with substitution \Leftrightarrow Module morphisms $\sigma, \tau : R \to L$.

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- Quantities Qua
 - Three-level specification
 - Examples
- 3 Compilation and initiality

Transition monads (first attempt)

Summary: graphs + substitution.

Definition

A transition monad $R \xrightarrow{\sigma} T$ consists of

- T = monad (= module over itself)
- R = module over T
- $\sigma, \tau : R \to T$ are T-module morphisms.

Example

 λ -calculus with β -reduction.

- Untyped case: base category = Set
- Simply-typed case: base category = Set^{Types}

What about big-step cbv λ -calculus? Terms reduce to values, not terms!

25/4/

Transition monads

Generalising cbv λ -calculus, and reduction monads

cbv λ-calculus (big-step)	Values (monad)	Transitions Lource Values
transition monads	a monad T	T -module morphisms $M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2$
reduction monads ¹	a monad T	$T \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} T$

Examples: $\overline{\lambda}\mu$ -calculus π -calculus GSOS specs cbv λ -calculus differential λ -calculus

¹POPL'20 with B.Ahrens, A. Hirschowitz, M. Maggesi.

Morphisms of transition monads

Simple case $M_i = T$

Morphism
$$(T \leftarrow Trans \rightarrow T) \rightarrow (T' \leftarrow Trans' \rightarrow T') =$$
(Syntax) A monad morphism¹ $T \stackrel{c}{\rightarrow} T'$
(Semantics) Forward simulation²: if $t_1 \stackrel{r}{\rightarrow} t_2$, then $c(t_1) \stackrel{\llbracket r \rrbracket}{\longrightarrow} c(t_2)$

Examples (POPL'20, detailed later)

- λ -calculus + fixpoint op. $\longrightarrow \lambda$ -calculus
- λ -calculus + explicit substitution $t[x/u] \longrightarrow \lambda$ -calculus

¹mapping preserving substitution and variables

²backward simulations are often considered as a correctness criteria

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- 2 Generating transition monads (Initial Semantics)
 - Three-level specification
 - Examples
- 3 Compilation and initiality

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- Generating transition monads (Initial Semantics)
 - Three-level specification
 - Examples
- 3 Compilation and initiality

Constructing transition monads

We have a definition of programming languages as transition monads.

Can we construct them from simple specifications?

We provide:

- a notion of simple specification = signature for transition monads
- a theorem ensuring the existence (unique up to iso) of a transition monad matching a spec

Three-level specification

Transition monad =
$$(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$$

Three spec steps:

Step	Component	Nature	Specification
1	T	monad	${\sf Operations} + {\sf Equations}$
2	M_1, M_2	<i>T</i> -modules	${\sf Operations} + {\sf Equations}$
	Trans,	,, ,,	Transition rules as
3	source,	"transition structure"	$\underline{t_1 \rightarrow u_1 \dots t_n \rightarrow u_n}$
	target		$t \rightarrow u$

⇒ Three notions of signatures.

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- 2 Generating transition monads (Initial Semantics)
 - Three-level specification
 - Examples
- 3 Compilation and initiality

Examples

Transition monad = $(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$

Upcoming examples

1.	cbn λ -calculus	full signature (sketched)
2.	cbn λ-calculus	signature for <i>T</i>
3.	cbn λ-calculus	left congruence rule for application
4.	cbn λ -calculus	congruence rule for abstraction (involves a binding variable)
5.	cbv λ-calculus	signature for M_i
6.	differential λ -calculus	signature for M_i
7.	differential λ -calculus	signature for <i>T</i>

Example 1/7: small-step cbn λ -calculus

Transition monad = $(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$

Signature for cbn λ -calculus

Step	Component	Nature	Specification
1	T	monad	Operations = app, abs
2	M_1, M_2	T-modules	$M_1 = M_2 = T$
3	Trans, source, target	"transition structure"	eta-rule $+$ congruences

Example 2/7: Specify the monad of λ -terms

(untyped) cbn λ -calculus: $(T, T \xleftarrow{source} Trans \xrightarrow{target} T)$

Syntax "generated" by

application	$T \times T \to T$	
λ -abstraction	$T' \rightarrow T$	T' = module of terms depending
λx.t	$I \rightarrow I$	on an extra variable
(variables)	Var o T	

Signature for T

2 operations (application/abstraction)

- Monads always have variables: no need to specify them
- "operation" = module morphism: compatible with substitution:

$$(t_1 t_2)[y \mapsto u_y] = t_1[y \mapsto u_y] t_2[y \mapsto u_y]$$

References "Second-order equational logic" Fiore-Hur '10, "Modular specification of monads" Ahrens et al. '19

Disgression on T'

• M' = derivative of a module M:

$$X$$
 extended with a fresh variable \diamond
 $M'(X) = M(X \coprod \{\diamond\})$

used to model an operation binding a variable.

$$\mathsf{abs}: \ L' \to L \qquad \left\{ \begin{array}{c} \mathsf{abs}_X : L(X \amalg \{\diamond\}) \to L(X) \\ t \mapsto \lambda \diamond .t \end{array} \right.$$

Example 3/7: Left congruence for application

cbn
$$\lambda$$
-calculus: $(T, T \xleftarrow{source} Trans \xrightarrow{target} T)$

Left congruence rule for application

$$\frac{t_1 \to t_2}{app(t_1, u) \to app(t_2, u)}$$

Easy interpretation of transition rules:

Components of the rule	Interpreted as
3 "metavariables":	a "metavariable" T -module
t_1, t_2, u	$V = T \times T \times T$
1 "premise":	$V \rightarrow M_1 \times M_2$ (<i>T</i> -module
$t_1 \rightarrow t_2$	$(t_1,t_2,u)\mapsto (t_1,t_2)$ morphism)
"conclusion":	$V \rightarrow M_1 \times M_2$
$app(t_1, u) \rightarrow app(t_2, u)$	$(t_1, t_2, u) \mapsto (app(t_1, u), app(t_2, u))$

Example 4/7: Binding variables in rules

cbn λ -calculus: $(T, T \xleftarrow{source} Trans \xrightarrow{target} T)$

Congruence rule for abstraction

$$\frac{t_1 \to t_2}{\lambda x. t_1 \to \lambda x. t_2}$$

- "metavariables" t_1 and t_2 : terms that may depend on x.
- T' = T-module of terms depending on an additional variable

Components of the rule	Interpreted as
2 "metavariables": t_1, t_2	a "metavariable" T -module $V = T' \times T'$
1 "premise":	$V \to T' \times T'$ (<i>T</i> -module
$t_1 \rightarrow t_2$	$(t_1, t_2) \mapsto (t_1, t_2)$ morphism)
"conclusion":	$V \to T \times T$
$\lambda x.t_1 \rightarrow \lambda x.t_2$	$(t_1, t_2) \mapsto (\lambda x.t_1, \lambda x.t_2)$

Example 5/7: Specify M_i for cbv

Transition monad =
$$(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$$

cbv λ -calculus = $(Vals, Tms \xleftarrow{source} Trans \xrightarrow{target} Vals)$

Syntax of values and terms

$$Vals: v, w ::= x | \lambda x.t$$

$$Tms: t, u ::= \underbrace{x | \lambda x.t}_{v} | t u \qquad \Rightarrow \qquad terms = binary trees \textit{ of } values$$

$$\vdots = \underbrace{v | t u}_{v} | t u \qquad \Rightarrow \qquad Tms = BinTree \quad \circ \quad Vals$$

In fact, by definition of a transition monad,

• M_i is always of the shape $S_i \circ T$. Here,

$$T = Vals$$
 $M_1 = BinTree \circ T$ $M_2 = Id \circ T (= T)$

• Signature for M_i = Signature for S_i

Signature for BinTree

variables + 1 binary operation (accounts for t u in Tms)

Example 6/7: Specify M_i for DLC

Transition monad = $(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$

Differential λ -calculus (DLC)

Syntax monad
$$T$$
 of terms (a variant of λ -calculus)
Semantics a term t reduces to a multiterm $t_1 + \cdots + t_n$
 $M_1 = Id \circ T \ (=T)$ multiterms = formal sum of terms
 $M_2 = Formal Sum \circ T$

Signature for FormalSum

Operations	a constant 0 , a binary operation $+$, variables
Equations	commutativity, associativity, unitality

Example 7/7: the monad of DLC

differential λ -calculus: $(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$

• Syntax of DLC = variant of λ -calculus

Application of DLC

$$app:(t,U)\mapsto tU$$

input of app = a term t and a multi-term $U = u_1 + \cdots + u_n$ = a term and a formal sum of terms

input module of app = $T \times (FormalSum \circ T)$

Signature for T

3 operations (no equation):

application t U	$T \times (FormalSum \circ T) \rightarrow T$
differential application $Dt \cdot u$	$T \times T \to T$
λ -abstraction	(as before)

Outline

- Transition monads
 - Graphs
 - Substitution
 - Definition
- Quantities Qua
 - Three-level specification
 - Examples
- Compilation and initiality

Generating compilations by initiality

Initiality ≈ recursion principle

Data generating a compilation: a Σ_1 -model structure for L_2 \Rightarrow By recursion/**initiality**, get a model morphism $L_1 \rightarrow L_2$

Examples

$$L_1 \longrightarrow L_2$$

specified by a signature Σ_1 :

Recipe:

- provide a Σ_1 -model structure for L_2
- as a model morphism, the induced compilation satisfies recursive equations.

Upcoming examples (POPL'20)

- λ -calculus + formal fixpoint op. $\longrightarrow \lambda$ -calculus
 - **1** construct a fixpoint operator in λ -calculus
 - ② formal fixpoint operator → constructed fixpoint operator
- λ -calculus + explicit substitution $t[x/u] \longrightarrow \lambda$ -calculus
 - **①** consider λ -calculus with its unary substitution operation
 - ② explicit substitution → real substitution

¹A Theory of Explicit Substitutions with Safe and Full Composition, [Kesner 2009]

Example 1/2: compiling λ -calculus + formal fixpoint op.

$$\underbrace{L_{\text{fix}}}_{\text{specified by "}\Sigma_L + \Sigma_{\text{fix}"}} \longrightarrow \underbrace{L}_{\text{specified by }\Sigma_L} \left(\lambda\text{-calculus}\right)$$

Signature Σ_{fix} specifying a fixpoint operator

- an operation $T' \xrightarrow{\text{fix}} T$
- reductions $fix(t) \rightarrow t[x \mapsto fix(t)]$ $(t \in T'(X) = T(X \coprod \{x\}))$

Needed: a model structure on L for Σ_{fix} (already has the Σ_L -part)

- choose a fixpoint combinator: a term Y s.t. $Yu \rightarrow_{\mathcal{B}}^* u(Yu)$
- define fix(t) := $Y(\lambda x.t)$

$$\underbrace{Y(\lambda x.t)}_{\mathsf{fix}(t)} \to_{\beta}^{*} (\lambda x.t)(Y(\lambda x.t)) \to_{\beta} \underbrace{t[x \mapsto Y(\lambda x.t)]}_{t[x \mapsto \mathsf{fix}(t)]}$$

45/47

Example 2/2: compiling λ -calculus + explicit substitution

$$\underbrace{L_{\text{ex}}}_{\text{specified by "}\Sigma_L \setminus \{\beta\} + \Sigma_{\text{ex}"}} \longrightarrow \underbrace{L}_{\text{specified by }\Sigma_L} (\lambda\text{-calculus})$$

Signature Σ_{ex} for the explicit substitution

• an operation $T' \times T \xrightarrow{(t,u) \mapsto t[x/u]} T$ s.t.

$$\boxed{t[x/u][y/v] = t[y/v][x/u]} \quad \text{if } x \notin fv(v), y \notin fv(u)$$

• β -reduction $(\lambda x.t)u \to t[x/u] + \text{congruences} +$

$$t[x/u][y/v] \rightarrow t[y/v][x/u[y/v]]$$
 if $x \notin f_V(u)$, $y \in f_V(u)$

Needed: a model structure on L for Σ_{ex}

- use the real susbtitution $T' \times T \xrightarrow{(t,u) \mapsto t[x \mapsto u]} T$
- ullet eta-reduction + congruences + reflexive reduction

$$t[x \mapsto u][y \mapsto v] \xrightarrow{=} t[y \mapsto v][x \mapsto u[y \mapsto v]]$$

46/47

Perspectives

- Generalise well-known theorems, e.g. Howe's method:
 - "A cellular Howe's theorem", LICS'20 with T. Hirschowitz and P. Borthelle, in a simpler setting.
- Morphisms of transition monads = compilations
 - explore different variants (different correctness criteria).

 - "effective" Coq formalization (theory already formalized using UniMath for the syntax)
- Effectful transitions?