

Надовезивање програма

12

Нека су дати програми P и Q.

Може се појавити потреба за надовезивањем (композицијом) програма, тј. да направимо програм који ће након израчунавања по програму P наставити са израчунавањем по програму Q. Приликом надовезивања програма Q на програм P могу се јавити

следећа два техничка проблема:

Први проблем:

- Нека је $P = (I_1, \dots, I_p)$.
- ▶ Израчунавање по програму P се завршава када се у бројачу појави број s>p.
- ▶ Да би се наставило израчунавање по програму Q (од његове прве инструкције) мора бити s=p+1.

Надовезивање програма

- ▶ Дакле, да бисмо могли надовезати програм Q на програм P, програм P мора бити тако написан да се зауставља само ако се у бројачу појави p+1.
- ▶ Другим речима, у свим инструкцијама прелаза J(m,n,k) програма P мора бити $k \leq p+1$. За такве програме кажемо да су у стандардној форми.

Дефиниција. За програм $P=(I_1,\ldots,I_p)$ кажемо да је у стандардној форми ако за сваку његову инструкцију прелаза J(m,n,k) важи $k\leq p+1$.

Лема. Сваком програму P можемо придружити програм P^* у стандардној форми такав да

$$P(a_1,\ldots,a_n)\downarrow a$$
 akko $P^*(a_1,\ldots,a_n)\downarrow a$

за све природне бројеве a_1, \dots, a_n, a_n

Стандардна форма програма

Доказ. Нека је $P=(I_1,\ldots,I_p)$. Да бисмо добили P^* довољно је изменити инструкције на следећи начин:

lacktriangle ако I_s није инструкција прелаза, тада $I_s^*=I_s$

▶ ако је
$$I_s = J(m,n,k)$$
, тада

$$I_s^* = \begin{cases} I_s, & k \le p+1 \\ J(m, n, p+1), & k > p+1 \end{cases}$$
.

Тада, програм
$$P^*=(I_1^*,\ldots,I_p^*)$$
 је у стандардној форми и важи $P(a_1,\ldots,a_n)\downarrow a$ акко $P^*(a_1,\ldots,a_n)\downarrow a.$

Дакле, овај проблем се лако превазилази писањем сваког програма у стандардној форми.

Пример.

▶ Програм $P = (I_1, I_2, I_3, I_4)$,

$$I_1: J(3,2,5)$$

$$I_2: S(1)$$

$$I_3: S(3)$$

$$I_4: J(1,1,1)$$

је у стандардној форми.

Пример.

Програм

$$I_1$$
 $J(1,2,10)$

$$I_2$$
 $S(3)$

$$I_3$$
 $J(1,3,7)$

$$I_4 S(2)$$

$$I_5 S(3)$$

$$I_6 \quad J(1,1,3)$$

$$I_7$$
 $T(2,1)$

, ,

који израчунава вредност функције x-1, није у стандардној форми. Да би био у стандардној форми треба I_1 преправити у J(1,2,8).

Композиција програма

23

Други проблем који се може појавити приликом надовезивања (композиције) програма Q на програм $P=(I_1,\ldots,I_p)$: Инструкција J(m,n,k) програма Q упућује на скок на k-ту инструкцију програма Q, уколико је $r_m=r_n$. Међутим, k-та инструкција програма Q ће постати p+k-та инструкција композиције програма PQ. Зато сваку инструкцију прелаза J(m,n,k) програма Q треба преправити у J(m,n,p+k).

Композиција програма

Дефиниција. Нека су $P=(I_1,\ldots,I_p)$ и $Q=(I_1',\ldots,I_q')$ програми у сандардној форми. Програм $PQ=(I_1,\ldots,I_p,I_{p+1},\ldots,I_{p+q})$ је композиција програма P и Q ако

$$I_{p+i}=\left\{egin{array}{ll} I_i', & ext{ ако } I_i' ext{ није инструкција прелаза} \ J(m,n,p+k), & ext{ ако } I_i'=J(m,n,k) \end{array}
ight.$$
 за $i=1,2,$

Програми P и Q су онда потпрограми програма PQ.

Дубина програма

Претпоставимо да желимо да напишемо програм Q који садржи као потпрограм дати програм P. Често је ради чувања неких података потребно наћи регистре на које неће утицати израчунавање по програму P. Зато уводимо појам дубине програма.

- Програм P је коначан низ инструкција, па се током његовог извршавања мења садржај у коначно много регистара. Тај број регистара који се користе и чији се садржај мења приликом извршавања програма P се зове дубина програма P и обележава са $\delta(P)$.
- За све $n > \delta(P)$ регистри R_n остају непромењени током израчунавања по програму P, па их можемо користити као меморијски простор .

Дубина програма

Дефиниција. Најмањи природни број $\delta(P)\in\mathbb{N}$ такав да за све $n>\delta(P)$ регистри R_n остају непромењени током израчунавања по програму P зове се дубина програма P.

Нека је P програм у стандардној форми који израчунава вредности $f(x_1,x_2,\ldots,x_n)$. Када користимо програм P као потпрограм неког ширег програма често се дешава следеће:

- бројеви x_1, x_2, \ldots, x_n могу бити записани у регистрима R_{i_1}, \ldots, R_{i_n} , а не у регистрима R_1, \ldots, R_n како захтева програм P, па ове податке треба пребацити у R_1, \ldots, R_n ,
- излаз $f(x_1, x_2, \dots, x_n)$ који је потребан за даље израчунавање можемо сместити у R_s , а не у R_1 ,
- регистри $R_{n+1}, \ldots, R_{\delta(P)}$ могу садржавати неке податке, па их претходно треба испразнити, како би се омогућило израчунавање по програму P.

K 23

Овај програм означавамо са $P[i_1,\dots,i_n o s]$. Он израчунава $f(r_{i_1},\dots,r_{i_n})$ и добијени резултат памти у R_s .

Уобичајен начин за изградњу нових функција од постојећих је замена једних функција у другим.

Нека

$$g_1:D_1 o\mathbb{N},\quad g_2:D_2 o\mathbb{N},\ldots,g_k:D_k o\mathbb{N}$$
, где $D_1,D_2,\ldots,D_k\subseteq\mathbb{N}^n,$ $h:D' o\mathbb{N},D'\subseteq\mathbb{N}^k$ и

$$D = D_1 \cap \cdots \cap D_k \cap$$

$$\{(x_1,\ldots,x_n)|(g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n))\in D'\}.$$

Дефиниција. За функција $f:D o\mathbb{N}$ дефинисану са

$$f(x_1, x_2, \dots, x_n) \stackrel{\text{def}}{=} h(g_1(x_1, x_2, \dots, x_n), \dots, g_k(x_1, x_2, \dots, x_n)),$$

за $(x_1,x_2,\ldots,x_n)\in D$, кажемо да је супституција функција g_1,g_2,\ldots,g_k у функцији h и пишемо $f=Sub(h;q_1,\ldots,q_k)$. g_k

Напомена. Ако су све функције g_1,\dots,g_k,h тоталне, онда је и $f=Sub(h;g_1,\dots,g_k)$ тотална функција.

Пример. Ако је

$$g_1: \mathbb{N} \to \mathbb{N}, \quad g_1(x) = x + 3,$$

$$g_2: \mathbb{N} \to \mathbb{N}, \quad g_2(x) = 2x,$$

$$h: \mathbb{N}^2 \to \mathbb{N}, \quad h(x,y) = \min\{x,y\}$$

онда је

$$f: \mathbb{N} \to \mathbb{N}, \ f(x) = h(g_1(x), g_2(x)) = \min\{x + 3, 2x\}$$

(супституција
$$g_1$$
 и g_2 у h , тј. $f = Sub(h; g_1, g_2)$)

$$f_1: \mathbb{N}^2 o \mathbb{N}, \; f_1(x,y) = g_1(h(x,y)) = \min\{x,y\} + 3$$
 (супституција

$$h y g_1$$

$$f_2: \mathbb{N}^2 \to \mathbb{N}, \ f_2(x,y) = g_2(h(x,y)) = 2 \min\{x,y\}$$
(супституција h

$$y g_2)$$

Теорема. Ако су g_1,g_2,\ldots,g_k и h израчунљиве функције, онда је израчунљива и супституција f функција g_1,g_2,\ldots,g_k у функцији h. **Доказ.**

- ▶ По претпоставци, функције g_1,g_2,\ldots,g_k и h су израчунљиве, па постоје програми G_1,G_2,\ldots,G_k и H у стандардној форми који израчунавају вредности, редом, функција g_1,g_2,\ldots,g_k и h. Да бисмо доказали да је и функција f израчунљива, треба одредити програм F за израчунавање њених вредности.
- За задату почетну конфигурацију (x_1,\ldots,x_n) најпре се извршавају програми G_1,G_2,\ldots,G_k који израчунавају редом вредности

$$g_1(x_1,x_2,\ldots,x_n),\ g_2(x_1,x_2,\ldots,x_n),\ldots,g_k(x_1,x_2,\ldots,x_n).$$
 Те вредности су улаз за програм H који израчунава вредност $f(x_1,x_2,\ldots,x_n)=h(g_1(x_1,x_2,\ldots,x_n),\ldots,g_k(x_1,x_2,\ldots,x_n)).$

наставак доказа. При томе је потребно обезбедити довољно простора за израчунавања по програмима G_1, G_2, \ldots, G_k и H и сачувати све потребне податке.

Нека је

$$m = \max\{n, k, \delta(G_1), \dots, \delta(G_k), \delta(H)\}.$$

Вројеве x_1,x_2,\dots,x_n који су потребни при извршавању сваког од програма G_1,G_2,\dots,G_k , чуваћемо у регистрима R_{m+1},\dots,R_{m+n} .

Садржај ових регистара неће се мењати ни при једном од извршавања програма G_1,\ldots,G_k,H .

Резултате израчунавања по програмима G_1,G_2,\dots,G_k за улаз (x_1,x_2,\dots,x_n) , чуваћемо, редом, у регистрима $R_{m+n+1},\dots,R_{m+n+k}.$

R_1		R_m	R_{m+1}		R_{m+n}	R_{m+n+1}		R_m
			$ x_1 $		$ x_n $	$ g_1(x_1,\ldots,x_n) $		$ g_k($

