# Bundesministerium Bildung, Wissenschaft und Forschung

|                       | UFO       |              |   |
|-----------------------|-----------|--------------|---|
| Aufgabennummer: A_188 |           |              | · |
| Technologieeinsatz:   | möglich ⊠ | erforderlich |   |

Für ein Computerspiel wurde ein einfaches UFO gezeichnet. Die Kuppel und der Unterbau werden durch die quadratischen Funktionen  $f_1$  und  $f_2$  modelliert (siehe nachstehende Abbildung).



$$f_2(x) = \frac{x^2}{20} - 3$$

x,  $f_2(x)$  ... Koordinaten in mm

- a) Stellen Sie mithilfe der obigen Abbildung eine Funktionsgleichung von  $f_1$  auf.
  - Berechnen Sie den Inhalt der in der obigen Abbildung schraffierten Fläche.
- b) Ermitteln Sie die beiden Nullstellen  $x_1$  und  $x_2$  der Funktion  $f_2$ .
  - Interpretieren Sie, was durch das Integral  $\int_{x_i}^{x_2} f_2(x) dx$  berechnet wird.

UFO 2

c) Die Steigung der dargestellten Flugbahn b des UFOs erhält man durch folgende Ableitungsfunktion:

$$b'(x) = \frac{x^2}{80} - \frac{x}{5} + 1$$

- Ermitteln Sie eine Funktionsgleichung der Funktion b.

Folgende Gleichung wurde aufgestellt:

$$\frac{x}{40} - \frac{1}{5} = 0$$

 Interpretieren Sie, was durch die Lösung dieser Gleichung in Bezug auf den Graphen von b bestimmt wird.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

**UFO** 

# Möglicher Lösungsweg

a) 
$$f_1(x) = a \cdot x^2 + 3$$
  
 $f_1(4) = 1 \implies a \cdot 4^2 + 3 = 1 \implies a = -\frac{1}{8}$   
 $f_1(x) = -\frac{1}{8} \cdot x^2 + 3$   
 $2 \cdot \left( \int_0^4 f_1(x) dx - 4 \right) = 10,66...$ 

Der Inhalt der schraffierten Fläche beträgt rund 10,7 mm<sup>2</sup>.

b) 
$$0 = \frac{x^2}{20} - 3 \implies x_{1,2} = \pm \sqrt{60} = \pm 7,74...$$

Das Integral entspricht dem orientierten Flächeninhalt (in diesem Fall negativ) zwischen x-Achse und dem Funktionsgraphen von  $f_2$ .

c)  $b(x) = \int \left(\frac{x^2}{80} - \frac{x}{5} + 1\right) dx = \frac{x^3}{240} - \frac{x^2}{10} + x + C$ , wobei die Konstante C null ist, da der Graph durch den Koordinatenursprung verläuft.  $b(x) = \frac{x^3}{240} - \frac{x^2}{10} + x$ 

$$b(x) = \frac{x}{240} - \frac{x}{10} + x$$

Die gegebene Gleichung entspricht b''(x) = 0. Die Lösung ist die Wendestelle der Funktion b.

UFO 4

# Klassifikation

☑ Teil A ☐ Teil B

### Wesentlicher Bereich der Inhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) 3 Funktionale Zusammenhänge
- c) 4 Analysis

#### Nebeninhaltsdimension:

- a) 4 Analysis
- b) 4 Analysis
- c) -

# Wesentlicher Bereich der Handlungsdimension:

- a) A Modellieren und Transferieren
- b) C Interpretieren und Dokumentieren
- c) B Operieren und Technologieeinsatz

## Nebenhandlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) B Operieren und Technologieeinsatz
- c) C Interpretieren und Dokumentieren

### Schwierigkeitsgrad:

#### Punkteanzahl:

a) mittelb) leichtc) mittela) 2b) 2c) 2

Thema: Sonstiges

Quellen: -