Deep Summarizer

Piji Li pjli@se.cuhk.edu.hk

Outline

- Introduction
- Related Work
- Inspiration

Outline

- Introduction
- Related Work
- Inspiration

Introduction

Automatic Summarization

- The process of reducing a text document with a computer program in order to create a summary that retains the most important points of the original document.
- Summaries pervade internet search results, restaurant and consumer product review sites and the front pages of news outlets.
- Single/Multi Document Summarization

Methods

Extraction, Compression, Abstraction

Deep Summarizer

Summarization using Deep Learning

Introduction

Two Standard MDS Data Sets

- DUC 2004 ~ 2007
- TAC 2008 ~ 2011
- 50 topics, 10 news, 4 model summaries
- DUC<=250 words, TAC<=100 words

Metrics

- ROUGE (R-1, R-2, R-SU4)
 - http://www.berouge.com/
- Pyramid
 - <u>Evaluating Content Selection in Summarization: the Pyramid</u>
 <u>Method NAACL-HLT 2004</u>

Outline

- Introduction
- Related Work
- Inspiration

MDS – Deep Belief Network

• Liu, Yan, Sheng-hua Zhong, and Wenjie Li. "Query-Oriented Multi-Document Summarization via Unsupervised Deep Learning." In AAAI. 2012.

- DBN
- Query related weight

$$A_{ij}^{1} = \max(A^{1})$$
 if $v_{i} \in \mathbf{q}$
 $\Delta A_{ij}^{1} = \gamma \Delta A_{ij}^{1}$ if $v_{i} \in \mathbf{q}$

- Important words extraction

$$AF = \left[\underbrace{(\mathbf{f}^D)^T, (\mathbf{f}^D)^T, \cdots, (\mathbf{f}^D)^T, \cdots, \mathbf{f}^D)^T}_{K_3} \right] (A^*A^2A^3)$$

- Diverse Sentence Selection
Intersection with important words

DBN

Hinton, Geoffrey, Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18, no. 7 (2006): 1527-1554.

DBN structure

$$P(\mathbf{v}, \mathbf{h}^1, \mathbf{h}^2, ..., \mathbf{h}^l) = P(\mathbf{v} | \mathbf{h}^1) P(\mathbf{h}^1 | \mathbf{h}^2) ... P(\mathbf{h}^{l-2} | \mathbf{h}^{l-1}) P(\mathbf{h}^{l-1}, \mathbf{h}^l)$$

MDS – Deep Belief Network

• Liu, Yan, Sheng-hua Zhong, and Wenjie Li. "Query-Oriented Multi-Document Summarization via Unsupervised Deep Learning." In AAAI. 2012.

Results

Table 3. Comparison to representative algorithms on the DUC 2006

System	ROUGE-1	ROUGE-2	ROUGE-SU4
QODE	0.4015	0.0928*	0.1479
Manifold-ranking	0.4101*	0.0886	0.1420
Multiple-modality	0.4031	0.0851	0.1400
Document-sensitive		0.0899	0.1427
SVM Classification		0.0834	0.1387
Ranking SVM		0.0890	0.1443
Regression		0.0926	0.1485*
NIST Baseline		0.0491	0.0962

Table 4. Comparison to representative algorithms on the DUC 2007

System	ROUGE-1	ROUGE-2	ROUGE-SU4
QODE	0.4295	0.1163	0.1685*
Manifold-ranking	0.4204	0.1030	0.1460
Multiple-modality		0.1123	0.1682
Document-sensitive	0.4211	0.1103	0.1628
SVM Classification		0.1075	0.1616
Ranking SVM	0.4301*	0.1175*	0.1682
NIST Baseline	0.3091	0.0599	0.1036

MDS – Deep Belief Network

• Liu, Yan, Sheng-hua Zhong, and Wenjie Li. "Query-Oriented Multi-Document Summarization via Unsupervised Deep Learning." In AAAI. 2012.

• Strengthens

- DBN can extract the abstract concept layer by layer
- Significant ROUGE results

Weakness

- Only focus on word level
- Need more works on sentences

Salience Sentences Detection using CNN

 Denil, Misha, Alban Demiraj, and Nando de Freitas. "Extraction of Salient Sentences from Labelled Documents." ICLR (2014).

Layer4

Layer5

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." ECCV 2014

Salience Detection using CNN

Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom. "A convolutional neural network for modelling sentences." arXiv:1404.2188 (2014)

Salience Detection using CNN

 Denil, Misha, Alban Demiraj, and Nando de Freitas. "Extraction of Salient Sentences from Labelled Documents." ICLR (2014).

Data set

IMDB movie review sentiment data set

Evaluation

- Train a model an the full document data set
- Test each sample only using the summaries.

Proportion	$\operatorname{ConvNet}$	${\rm Word2Vec}$	Rand.	Fixed	$\operatorname{ConvNet}$	${\rm Word2Vec}$	Rand.
50%	82.74	81.98	79.79	Pick 5	83.12	82.26	80.02
33%	82.72	80.39	76.72	Pick 4	82.91	81.92	79.05
25%	82.94	80.18	74.87	Pick 3	82.59	81.48	77.15
20%	82.84	79.70	73.20	Pick 2	81.71	80.39	74.48
Full	83.04			•			
First+Last	68.62						

Salience Detection using CNN

 Denil, Misha, Alban Demiraj, and Nando de Freitas. "Extraction of Salient Sentences from Labelled Documents." ICLR (2014).

• Strengthens

Salience detection using supervised CNN is effective

Weakness

- Supervised
- Need fine-grained processing for short-text

Sentences Modelling + Submodular

- Kågebäck, Mikael, et al. "Extractive summarization using continuous vector space models." EACL 2014.
- Submodular Optimization

$$\mathcal{F}(S) = \mathcal{L}(S) + \lambda \mathcal{R}(S)$$
 $\operatorname{Sim}(i, j)$

Distributed Sentence Representation

Word2Vec

Recursive Auto-Encoder

Sentences Modelling + Submodular

• Kågebäck, Mikael, et al. "Extractive summarization using continuous vector space models." EACL 2014.

Data set

The Opinosis dataset consists of short user reviews in 51 different topics.
 http://kavita-ganesan.com/opinosis-opinion-dataset

Results

ROUGE-1				
	R	P	F	
OPT_R	57.86	21.96	30.28	
OPT_F	45.93	48.84	46.57	
CW_RAE_{Cos}	27.37	19.89	22.00	
CW_RAE_{Euc}	29.25	19.77	22.62	
CW_Add_{Cos}	34.72	11.75	17.16	
CW_Add_{Euc}	29.12	22.75	24.88	
$W2V_Add_{Cos}$	30.86	16.81	20.93	
$W2V_Add_{\mathit{Euc}}$	28.71	16.67	20.75	
Original	25.82	19.58	20.57	

ROUGE-2

	R	P	F
OPT_R	22.96	12.31	15.33
OPT_F	20.42	19.94	19.49
CW_RAE_{Cos}	4.68	3.18	3.58
CW_RAE_{Euc}	4.82	3.24	3.67
CW_Add_{Cos}	5.89	1.81	2.71
CW_Add_{Euc}	5.12	3.60	4.10
$W2V_Add_{Cos}$	5.71	3.08	3.82
$W2V_Add_{\mathit{Euc}}$	3.86	1.95	2.54
Original	3.92	2.50	2.87

Sentences Modelling + Submodular

 Kågebäck, Mikael, et al. "Extractive summarization using continuous vector space models." EACL 2014.

Strengthens

 Experiments using different sentence modelling methods show the performance of the different distributed representation methods

Weakness

Lack of novelty

Sentence Modelling + Pagerank

 Wenpeng Yin, Yulong Pei. "Optimizing Sentence Modeling and Selection for Document Summarization." IJCAI 2015

Method

- CNN+Word2Vec to generate distributed representations for sentences
- Greedy Sentence Selection

Strength

Unsupervised CNN via Word2Vec

Weakness

- The basic MDS framework is still PageRank.
- Just replace the sentence representation part using a distributed representation method.
- The novelty and contribution are limit for MDS research

Outline

- Introduction
- Related Work
- Inspiration

Inspiration

 CNN or Tree-LSTM to learn the hierarchical summarizing relation between sentences

Fine-grained: word, phrase

Sparse Latent Semantic Reconstruction

 Besides extraction, generate compressive or abstractive summaries to cover more important information

Thanks a lot!

