FEATURE DETECTION

Question: How TO MEASURE IF A PIXEL TO IS A GOOD CORNER?

intensity at pixel x+5

min $\mathbb{Z} \| \mathbb{T}(x+5) - \mathbb{T}(x) \|^2$ $\|\delta\| = \epsilon + \mathcal{T}(x)$ box centered on π

We have a good corner when

hac high value.
Closed formula for *:
$\mathcal{I}(x+5) \approx \mathcal{I}(x) + [\nabla I(x)]^{T}5$
$=D \mathcal{I}(n+\delta) - \mathcal{I}(n) \approx [\nabla \mathcal{I}(n)]^{T} \delta(n)$
Civen (, fives:
min I 11[[7](n)[751] ² 11511=E acW(a)
$\frac{ 2 ^2=2^{T}2}{min}$ min 5 $5^{T}\nabla T.(a)\nabla T(a)^{T}S$
$=$ $ \text{W}_{1}$ \sim

win
$$\Sigma$$
 $\nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) = \min_{|\nabla U| = s} \sum_{n \in W(\bar{n})} \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) = \sum_{|\nabla U| = s} \sum_{n \in W(\bar{n})} \sum_{n \in W(\bar{n})} \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) = \sum_{n \in W(\bar{n})} \sum_{n \in W(\bar{n})} \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) = \sum_{n \in W(\bar{n})} \sum_{n \in W(\bar{n})} \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) = \sum_{n \in W(\bar{n})} \sum_{n \in W(\bar{n})} \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) \nabla \Sigma(a) = \sum_{n \in W(\bar{n})} \sum_{n \in W(\bar{n})} \nabla \Sigma(a) \nabla \Sigma(a)$

$$=\lambda \min(G)$$

$$= \varepsilon^2 \lambda_{min}(G)$$
 Shi-Tomasi score

is a function of the candidate corner of

An alternatile scae is the Hamil comer