Tree-based Methode (regression)

Bachir El Khadir

<2016-02-23 Tue>

Contents

1	Tree	1
	1.1 Prune The tree	2
	1.2 Pros and Cons of Tree	2
2	Bagging (Bootstrap Aggregation) 2.1 Bagging vs Tree	2
3	Random Forest	3

1 Tree

Definition 1. $\mathcal{F} := \{f(x) = \sum_{j=1}^{M} \beta_j 1_{x \in R_j}\}$ Where R_1, \dots, R_M for a tree partition

Definition 2. A parititon of the input space X that can be formed by recursively applying the following 2 rules

- Choose a cell of the current partition
- Split the chosen cell into two daughters by binary splitting along one dimension (one variable)

Definition 3. $\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{M} (Y_i - f(X_i))^2$ minimizing this quantity leads to overfitting, so we need to regularize. For example we can restrict the search space to $\mathcal{F}_{K_{min}} = \{f(x) = \sum_{j=1}^{M} \beta_j 1_{x \in R_j}\}$ and R_j contains at least K_m in data points (e.g $K_{min} = 5$)

Computation: Conbinatoric! (NP-Hard) In practice we use a Greedy Algorithm.

Definition 4. Grow a tree recursively by repeating the following steps: for each terminal node of the tree, until the minimal node size K_{\min} is achieved

- 1. Pick a variable / split point which decreases $\hat{R}(f)$ the most
- 2. Split the node into two daughters

Still overfits.

1.1 Prune The tree

- 1. Given full grown tree T_0 , find an internal node which after collapsing the subtree into iteself, will increase $\hat{R}(f)$ the least.
- 2. Collapse the subtree into this internal node. We get a new tree T, reoeat tihs process we get a sequence of new trees T_0, T_1, \ldots
- 3. Pick one tree by minimizing $\hat{R}(\hat{f}_T) + \lambda |T|$, where λ is obtained by CV tuning, |T| the number of nodes in T.

1.2 Pros and Cons of Tree

- Pro: Simple a interpretable
- Cond: Fitten functions are non smooth: theoritically extremely challenging (no persistensy result)

2 Bagging (Bootstrap Aggregation)

For $b=1,\ldots,B$ a. Draw a boostrap $Z_{1:n}^{*}{}^{(b)}$ of size n from $Z_{1:n}$ b. Fit a regression tree on the bootstrapped data (with minimum node size K_{\min} , no pruning) Output: $\hat{f}^{\text{bagging}} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{b}(x)$

2.1 Bagging vs Tree

- 1. \hat{f}^{bagging} has the same bias as $\hat{f}^b(x)$, but potentially smaller variance.
- 2. The larger B is, the better (but diminishing return)
- 3. Works well only if $\hat{f}^1(X), \dots, \hat{f}^B(x)$ are decorrelated.

3 Random Forest

For $b = 1, \dots, B$

- 1. a. Draw a boostrap $Z_{1:n}^{*}{}^{(b)}$ of size n from $Z_{1:n}$
- b. Fit a regression tree on the bootstrapped data by recursively repeating the following steps for each termainl node of the tree until the minimum node of size $K_m in$ is achieved
- i) Select m variables at random ii) Picj the best variable / split point aming these m variables iii) Split the node into 2 daughters
 - 1. Output: \$ Output the ensemble of fitted tree functions $\hat{f}^1,\dots,\hat{f}^B$. $\hat{f}^{\rm RT}=\frac{1}{B}\sum_{b=1}^B\hat{f}^b(x)$