

HCC/HCF4031B

64-STAGE STATIC SHIFT REGISTER

- FULLY STATIC OPERATION : DC to 16MHz (TYP.) @ V_{DD} V_{SS} = 15V
- STANDARD TTL DRIVE CAPABILITY ON Q OUTPUT
- RECIRCULATION CAPABILITY
- THREE CASCADING MODES:
 DIRECT CLOCKING FOR HIGH-SPEED
 OPERATION
 DELAYED CLOCKING FOR REDUCED CLOCK
 DRIVE REQUIREMENTS
 ADDITIONAL 1/2 STAGE FOR SLOW CLOCKS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED, SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA at 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTENTATIVE STANDARD NO. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4031B** (extended temperature range) and **HCF4031B** (intermediate temperature range) are monolithic integrated circuits, available in 16-lead dual in-line plastic or ceramic package.

The HCC/HCF4031B is a static shift register that contains 64 D-type, master-slave flip-flop stages and one stage which is a D-type master flip-flop only (referred to as a 1/2 stage). The logic level present at the DATA input is transferred into the first stage and shifted one stage at each positive-going clock transition. Maximum clock frequencies up to 16 Megahertz (typical) can be obtained. Because fully static operation is allowed, information can be permanently stored with the clock line in either the low or high state. The HCC/HCF4031B has a MODE CONTROL input that, when in the high state, allows operation in the recirculating mode. The MODE CONTROL input can also be used to select between two separate data sources. Register packages can be cascaded and the clock lines driven directly for high-speed operation. Alternatively, a delayed clock output (CLD) is provided that enables cascading reg-

June 1989 1/12

ister packages while allowing reduced clock drive fan-out and transition-time requirements. A third cascading option makes use of the Q' output from the 1/2 stage, which is available on the next negative-going transition of the clock after the Q output occurs. This delayed output, like the delayed clock CL_D , is used with clocks having slow rise and fall times.

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types	- 0.5 to + 20	V
	HCF Types	- 0.5 to + 18	V
V_{I}	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P_{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for T _{op} = Full Package-temperature Range	100	mW
Top	Operating Temperature : HCC Types	- 55 to + 125	°C
	HCF Types	- 40 to + 85	°C
T_{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to + 18	V
	HCF Types	3 to + 15	V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature: HCC Types	- 55 to + 125	∘C
	HCF Types	- 40 to + 85	°C

^{*} All voltage values are referred to V_{SS} pin voltage.

LOGIC DIAGRAM AND TRUTH TABLES

INPUT CONTROL CIRCUIT

Data	Recirc.	Mode	Bit Into Stage 1
1	X	0	1
0	Х	0	0
Х	1	1	1
Х	0	1	0

TYPICAL STAGE

Data	CL	Data + 1
0		0
1		1
Х	7_	NC

1 = HIGHLEVEL

0 = LOW LEVEL X = DON'T CARE

OUTPUT FROM Q' (pin 5)

Data + 64	CL	Data + 64.5
0		0
1		1
Х		NC

NC = NO CHANGE

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s	Value							
Symbol	Parameter		٧ı	۷o	I ₀	V_{DD}	ΤL	o w*		25°C		T _{Hi}	gh*	Unit
			(V) (V)	(V)	(V) (μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	
			0/20			20		100		0.08	100		3000	μΑ
			0/ 5			5		20		0.04	20		150	
		HCF	0/10			10		40		0.04	40		300	
		Types	0/15			15		80		0.04	80		600	
V _{OH}	Output High	n	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V_{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
.,				1.5/13.5	< 1	15	11		11			11		
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	.,
	Voltage			9/1	< 1	10		3			3 4			3 V
1	O coton cot	1	0/5	13.5/1.5	< 1	15		4	4.0	2.0	4	4 4 5	4	
I _{OH}	Output	Source HCC Types	0/5	2.5		5	- 2		- 1.6 - 0.51	- 3.2		- 1.15		
			0/ 5	4.6		5	- 0.64					- 0.36		
	(Source)			9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
	Q, \overline{Q}, Q		0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
	CLD		0/ 5	2.5		5	- 1.53		- 1.36			- 1.1		
		HCF	0/5	4.6		5	- 0.52		- 0.44			- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		-
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output	HCC	0/ 5	0.4		5	2.56		2.04	4		1.44		
	Sink Current Q	Types	0/10	0.5		10	6.4		5.2	10.4		3.6		
	Current Q		0/15	1.5		15	16.8		13.6	27.2		9.6		mA
		HCF	0/ 5	0.4		5	2.08		1.74	4		1.43		
		Types	0/10	0.5		10	5.01		4.42	10.4		3.74		
			0/15	1.5		15	13.6		11.56	27.2		9.52		
I _{OL}	Output	нсс	0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink	Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	<u>C</u> urrent Q, Q'		0/15	1.5		15	4.2		3.4	6.8		2.4		mA
	CL _D	HCF	0/ 5	0.4		5	0.52		0.44	1		0.36		
	OLD	Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
			0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	put	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	^
	Current	HCF Types	0/15	, ary iii	P. 01.	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ
Cı	Input Capa			Any In	put					5	7.5			pF

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5\text{V}$, 2V min. with $V_{DD} = 10\text{V}$, 2.5 V min. with $V_{DD} = 15\text{V}$.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%^{\circ}C$, all input rise and fall times = 20ns)

Comple ed	Dougue et au	Test Conditions	Value			l lmi4
Symbol	Parameter	V _{DD} (V	Min.	Тур.	Max.	Unit
t _{PHL} ,	Propagat <u>io</u> n Delay Time :	5		250	500	
t _{PLH} , t _{PLH}	Clock to Q, Clock to Q	10		110	220	ns
	Clock to Q	15		90	180	
t _{PHL} ,	Propagation Delay Time:	5		190	380	
t _{PLH} , t _{PHL}	Clock to Q' Clock to Q	10		80	160	ns
	Clock to Q	15		65	130	
	Clock to CL _D	5		100	200	
		10		50	100	ns
		15		40	80	
t _{THL'} , t _{TLH}	Transition Time :	5		100	200	
	(any output, except Qt _{THL})	10		50	100	ns
		15		40	80	
t _{THL}	Q,	5		50	100	
		10		25	50	ns
		15		20	40	
t _{setup}	Data Setup Time	5		30	60	
		10		15	30	ns
		15		10	20	
t _{hold}	Data Hold Time	5		30	60	
		10		15	30	ns
		15		10	20	
t _W	Clock Pulse Width	5		120	240	
		10		50	100	ns
		15		40	80	
f _{max}	Maximum Clock Input	5	2	4		
	Frequency**	10	5	10		MHz
		15	6	12		
t _r , t _f	Clock Input Rise or Fall Time*	5			1000	
		10			1000	μs
		15			200	

^{*} If more than one unit is cascaded in the parallel clocked application, trCL should be made less than or equal to the sum of the propagation delay at 50pF and the transmition time of the output driving stage.

* * Maximum Clock Frequency for Cascaded Units;

a) Using Delayed Clock Feature in Recirculation Mode:

 $fmax = \frac{1}{(n-1) CLD \text{ prop. delay + Q prop. delay + set-up time}} where n = nimber of packages$

b) Not Usng Delaye Clock:

$$fmax = \frac{1}{propagation \ delay + set-up \ time}$$

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

TYPICAL APPLICATIONS

CASCADING USING DIRECT CLOCKING FOR HIGH SPEED OPERATION (SEE CLOCK RISE AND FALL TIME REQUIREMENT).

CASCADING USING DELAYED CLOCKING FOR REDUCED CLOCK DRIVE REQUIREMENTS.

TYPICAL APPLICATIONS (continued)

CASCADING USING HALF- CLOCK-PULSE DELAYED DATA OUTPUT (Q') TO PERMIT USE OF SLOW RISE AND FALL TIME CLOCK INPUTS.

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			20			0.787
В			7			0.276
D		3.3			0.130	
Е	0.38			0.015		
e3		17.78			0.700	
F	2.29		2.79	0.090		0.110
G	0.4		0.55	0.016		0.022
Н	1.17		1.52	0.046		0.060
L	0.22		0.31	0.009		0.012
М	0.51		1.27	0.020		0.050
N			10.3			0.406
Р	7.8		8.05	0.307		0.317
Q			5.08			0.200

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.