FURTHER MATHS INTEGRATION SET 2 (Finding Arc Length and Surface Area)

The curve defined parametrically by the equations.

$$x = a \cos t$$
, $y = a \sin t$, $t = 0$, $t = 2\pi$

is rotated about the x-axis to form a solid. Find the area of the surface generated.

$$Ans = 4\pi a^2$$

[5]

2. The curve C is defined parametrically by

$$x = 3t^2 + 1$$
, $y = t^3 - 3t$,

where t > 0.

- (i) Show that $\frac{d^2y}{dx^2}$ is positive at every point of C. [5]
- (ii) The arc of C joining the point where t = 1 to the point where t = 2 is rotated through one complete revolution about the y-axis.
 Find the area of the surface generated.

Ans = (ii) 173 3/5
$$\pi$$

The curve C is defined parametrically by the equations 7

$$y = \frac{t^{6}}{6} + \frac{1}{12} \cdot \frac{1}{2} = \frac{6t^{2}}{7} + \frac{3}{t^{2}} , \quad \chi = 3t^{2}$$

Find the area of the surface generated by rotating C about the x-axis from t = 4 2 to t = 1.

Ans =
$$357 \ 1095/3136 \ \pi$$

4. Find the arc length of the curve given by the equations $x = t^2 \cos t$, $y = t^2 \sin t$ from t = 0 to t = 2. [10]

Ans =
$$16\sqrt{2} / 3 - 8/3$$

- 5. Given the curve $y = ax^2 + c$, where a and c are constants such that a > 0 and c > 0. The arc of the curve from x = 0 to $x = \frac{\sqrt{3}}{2a}$ is denoted C.
 - (i) Show that the length, S_1 , of C is given by

$$S_1 = \int_0^{\frac{\sqrt{3}}{2a}} \sqrt{1 + 4a^2 x^2} \, \mathrm{d}x.$$

Hence using the substitution $x = \frac{1}{2a} \tan \theta$, find S_1 in exact terms. [9]

- (ii) Find in exact terms the area, S₂, of the curved surface generated when C is rotated through one revolution about the y-axis.
 [4]
- (iii) Given $S_1 \le S_2$, show that $a \le \pi$. [1]

Ans = (i)
$$\frac{\sqrt{3}}{201} + \frac{1}{40} \ln (2 + \sqrt{3})$$

$$\frac{71}{6q^2}$$

- 6. Using integration prove that the curved surface area of a cylinder of radius r and height h is $2\pi rh$. [3]
- (i) Find $\int e^{ax} \cos bx \, dx$. $\frac{e^{ax} \left(a \cos bx + b \sin bx \right)}{a^2 + b^2}$ [3]
 - (ii) If C: $x = e^t \cos t$ and $y = e^t \sin t$, t = 0, 1 find the arc length of C from t = 0 to t = 1. [4]
 - (iii) Find the surface area of revolution of C from t = 0 to t = 1 about the y-axis. [3]
 - (iv) If $y = e^{2x} \sin 3x$, x = 4, 5 and the y coordinate of the centroid of the region bounded by the x-axis, the curve $y = e^{2x} \sin 3x$ and the lines x = 4 and x = 5 with area A is denoted c, find Ac. [4]