Design and Analysis of Algorithms

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid CONTENTS 2

Contents

1	Elementary Graph Algorithms	3								
	1.1 Basic Concepts on Graphs	3								
	1.2 Minimum Distances on Graphs	5								
	1.3 All Pairs Shortest Paths	10								
2	Minimum Spanning Trees	13								
	2.1 The Algorithms of Prim and Kruskal	13								
	2.2 The Disjoint Set Abstract Data Type	16								
	2.3 Correctness of Prim and Kruskal	23								
3	Eulerian and Hamiltonian Circuits	27								
	3.1 Eulerian Circuits	27								
	3.2 Hamiltonian Circuits and an Excursion on Complexity Theory	33								
	3.3 The Traveling Salesman Problem	36								
4	An Excursion on DNA Sequencing	40								
	4.1 Hamilton, Euler and DNA Sequencing	40								
	4.2 From Reads to the Genome	45								
5	Depth First Search and Connectivity	46								
	5.1 Depth First Search	46								
	5.2 Biconnected Graphs	49								
	5.3 DAGs and Topological Sort	54								
6	Maximum Flows on Graphs									
	6.1 Basic Definitions and Facts	55								
	6.2 Maximal Flows and Minimal Cuts									

Before We Start

On reading and studying these notes:

From Brad DeLong's, UC Berkeley, A note on reading big, difficult books:

- It is certainly true that there are many who can parrot verbal formulas yet lack knowledge of facts, terms, and concepts.
- It is certainly true that there are many who have knowledge of facts, terms, and concepts and yet lack deep understanding.
- But I am not aware of anyone who has deep understanding of a discipline and yet lacks knowledge of facts, terms, and concepts.
- And those who know the facts, terms, and concepts cold are the absolute best at parroting verbal formulas.

1 Elementary Graph Algorithms

1.1 Basic Concepts on Graphs

Definitions

- Graph: Pair G = (V, E) of a set V of vertices (nodes) and a set E of edges (u, v) with $u, v \in V$
- Edges imply direction: in (u, v) we go from u to v
- In general, graphs are directed
- Undirected graphs: $(u, v) \in E$ iff $(v, u) \in E$
- Unweighted graphs: we only consider edge structure
- Weighted graphs: edges (u, v) have weights w_{uv}
- Multigraphs: there might several edges between two vertices and also between a vertex and itself

Storing an Unweighted Graph

- Adjacency matrix: Assume $V = \{1, \dots, N\}$. Then if $(i, j) \in E$, $m_{ij} = 1$; else, $m_{ij} = 0$
 - Not for multigraphs
 - By convention $m_{ii} = 1$ (although sometimes we may consider $m_{ii} = 0$)
 - Cost: $\Theta(|V|^2) = \Theta(N^2)$
- Adjacency list: We can consider a pointer table $T[\]$ where T[i] points to a linked list
 - If $(i, j) \in E$, then j is in one of nodes pointed by T[i]
 - Cost: $\Theta(|V|) + \Theta(|E|)$
 - No problem for multigraphs

• For standard graphs the cost is always $O(|V|^2)$ for both methods, since we then have

$$|E| \le |V|(|V| - 1) = O(|V|^2)$$

An Example

• A directed graph:

The Adjacency Matrix

• The first rows of the adjacency matrix are

$$M = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ & & & \dots & & \end{pmatrix}$$

The Adjacency List

· Partial adjacency list: we use a lexicographic order

The Size of a Graph

- While |V| and |E| are in general independent, we may expect |V| = O(|E|) for interesting graphs
 - |E| will usually give G's size
- G is dense if $|E| = \Theta(|V|^2)$
- G is sparse if $|E| \ll |V|^2$
- ullet If G s dense, the adjacency matrix storage is more efficient; if G is sparse, adjacency lists are better
- We will usually work with adjacency lists, using adjacency matrices for special algorithms

1.2 Minimum Distances on Graphs

Minimum Distance Problems

- Path from u to v: a subset $\pi = \{u = u_0, \dots, u_K = v\} \subset V$ with $(u_i, u_{i+1}) \in E$
- Length of π : $|\pi| = K = \#$ (number of) edges
- First problem: given u, find a **shortest path** (i.e., a path with the smallest number of edges) π from u to any other v
- First question: how to obtain such paths?
- First idea: get a tree like "descending representation" of G starting from u and avoiding lower duplicate vertices

Minimum Distance Example

- \bullet Think of each vertex as a ball and of edges as equal lenght strings, and make G "hang" from u discarding "'repeated" edges
- On the previous graph,

Breadth First Traversal

• We find the minimum distances by breadth first traversal (BFS) on this hanging representations

Some Observations on Minimum Distance Problems

- If d[v] is the depth of v in T, it is reasonable to expect d[v] to be the minimum distance from u to v
 - But we have to prove it
- If p[v] is the father of v in T, we can obtain a minimum length path from u to v with edges $(w=p[v],v),(p[w],w),\ldots$, and so on
- Notice that this way we have found the minimum distances from u to all $v \in V$
 - They are unique, but the minimum paths are not
- Q: how can we derive an algorithm for this?
- We can use a standard FIFO queue Q to process the different vertices and the tables p[v] and d[v]

• In fact, this fits in the general framework of Breadth First Search

First Algorithm for Minimum Distances

- We need tables p[v] for the vertex "previous" to v, d[v] for the minimum distance from u to v and v[v] to mark v as seen
- First, queue-based, pseudocode:

```
def dist_min(u, G):
    s[] = F; p[] = None; d[] = inf
    Q = q()
    d[u] = 0; Q.put(u); s[u] = T
    while not Q.empty():
        v = Q.get()
        for all z adjacent to v:
            if not s[z]: #first time z is seen
            d[z] = d[v] + c(v,z)
            p[z] = v; s[z] = T
            Q.put(z)
    return d, p
```

Some Observations on dist_min

- The table $s[\]$ is redundant: s[v] == T if and only if $d[v] < \infty$ (exercise: update the psc)
- We can use $p[\]$ to reconstruct the minimum paths from u to all v (exercise)
- We can use $p[\]$ to reconstruct the minimum distance table $d[\]$ (exercise)
 - So p[] would be the table to return in, say, a C function
- A vertex enters Q only once \Rightarrow the linked lists are traversed only once \Rightarrow the cost of distmin is O(|E|), i.e., linear on G's size

• dist_min is a particular instance of the general Breadth First Search algorithm

Breadth First Search (BFS) v 1.0

• The pseudocode of the first, queue-based version of BFS is

- Since we enter each list only once, if the cost of doSomething is O(1), the cost of BFS is O(|E|), i.e., linear,
- If needed, we add a driver to restart BFS at unseen nodes

Minimum Distances on Weighted Graphs

- G = (V, E) is a **weighted** graph if there is a function $c : E \to \mathbb{R}$
 - We think of c(i, j) as the cost of going from i to j
 - Although sometimes c(i, j) can be negative
- Cost of path π : $c(\pi) = c(\{u_0, \dots, u_K\}) = \sum_1^K c(u_{j-1}, u_j)$
- Working with adjacency matrices we can store c as $m_{ij} = c_{ij}$ if $(i, j) \in E$ and $m_{ij} = \infty$ if not.
 - Now the convention is $m_{ii} = 0$
- Working with adjacency lists we can store c_{ij} in a second field of the same node of T[i] that stores i

Problems . . .

• Applying our first algorithm to the graph

ullet Working here with the tree like representation of G is now trickier which is obviously wrong

	d	p	v	d	p	v	d	p	v
1	0	-	T	0	-	T	0	-	T
2	∞	-	F	10	1	T	10	1	T
3	∞	-	F	1	1	T	1	1	T
4	∞	-	F	∞	-	-	2	3	T
Q	1			2,3			3,4		

Fixing The First Algorithm

- The node 2 gets out of Q too soon \Rightarrow we have to change the ordering in Q
- We use a **priority queue** Q that orders vertices using the current value of d[v]
- Now v is seen when it **leaves** Q (and not when it enters Q)
- We also need (again) a table s[v] to check whether v has left Q and, hence, we do not consider it any longer
- This leads to Dijkstra's algorithm for positive costs

Dijkstra's Algorithm

• Dijkstra's pseudocode is:

Dijkstra's Algorithm II

• Example: First steps of Dijkstra's algorithm on the previous graph

	d	p	v	d	p	v	d	p	v
1	0	-	F	0	-	T	0	-	T
2	∞	-	F	10	1	F	10	1	F
3	∞	-	F	1	1	F	1	1	T
4	∞	-	F	∞	-	-	2	3	F
PQ	10			$3_1, 2_{10}$			$4_2, 2_{10}$		

Dijkstra's Cost

• The five commented numbers in the psc determine its cost

- The cost of (1) is clearly O(|V|)
- Using a PQ over a binary heap the cost of Q.put, Q.get is $O(\log |Q|)$
 - Q will contain at most an item for every edge, so |Q| = O(|E|)
 - Thus, the cost of (3) over all iterations in (2) is $O(|E| \log |E|)$
- We enter (4) **once** per node; thus the total number of joint iterations in (2) and (4) is |E|
- Hence, the cost of (5) over all iterations is $O(|E| \log |E|)$
- Since usually $|E| = O(|V|^2)$, the overall cost is

$$O(|V|) + O(|E|\log |E|) = O(|V|) + O(|E|\log |V|^2)$$

= $O(|V|) + O(|E|\log |V|)$

• This will be $O(|E| \log |V|)$ for most graphs, i.e., log linear in a graph's size

Observations on Dijkstra's Algorithm

- We allow that several instances of the same v be in Q
- We can stop the algorithm earlier using a counter of seen vertices (exercise)
 - But have to clear Q, so ...
- Dijkstra works for positive weights: at its end
 - d[v] contains the minimum distance from u to any other v
 - And we can get the minimum paths using p[v]
- · But all this has to be proved
- Dijkstra is an example of the general breadth first search graph algorithm
 - And also of a **greedy** algorithm

Breadth First Search (BFS) v 2.0

• The pseudocode for general, PQ based BFS, is

- If needed, we add a driver to restart BFS at unseen nodes
- If the cost of dosomething is O(1) and we work with a PQ over min heaps, the cost of BFS is $O(|E|\log |V|)$

1.3 All Pairs Shortest Paths

All Pairs Shortest Paths

- If (G, c) is a weighted directed graph, we can consider in principle three minimum distance problems:
 - For u, v fixed, find **only** the minimum distance between u and v
 - For u fixed, find the minimum distance between u and all other $v \in V$
 - For all $u, v \in V$, find the minimum distance between u and v
- While the first problem seems easier, no algorithm for general graphs is better than the best one for the second problem
 - Notice that a minimal path from u to v is also minimal for all vertices in between
- We can solve the third problem iterating an algorithm for the second one over all $u \in V$
 - For instance, iterating Dijkstra over all $u \in V$ has a cost $|V| \times O(|E| \log |V|) = O(|V||E| \log |V|)$
 - If G is dense, the cost is then $O(|V|^3 \log |V|)$

Improving on Dijkstra I

- Assume $V = \{1, ..., N\}$ and the cost c is nonnegative
- ullet Denote by d_{ij} the minimum distance between i and j
- We define d^k_{ij} be the minimum distance between i,j but where the intermediate nodes are taken only from $\{1,\ldots,k\}$

• It is clear that

$$d_{ij}^0 = c(i,j), \quad d_{ij}^N = d_{ij}$$

• It is clear that no vertex is repeated on the optimal path that gives d_{ij}^k

Improving on Dijkstra II

1 ELEMENTARY GRAPH ALGORITHMS

11

- Obviously, an optimal path between i and j with $\{1,\ldots,k\}$ as intermediate nodes may or may not contain k
- If it doesn't, we have

$$d_{ij}^k = d_{ij}^{k-1}$$

• If it does, we have

$$d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1}$$

for we have:

A path from i to j is optimal iff the partial subpaths between i and k and j are optimal, i.e.,

$$d_{ij}^k = d_{ik}^k + d_{kj}^k$$

- But a path having another k between i and k or between k and j cannot be optimal:
 - * We can simply remove the subpath from k to k to get a better path
- Thus, it is then obvious that

$$d_{ik}^k = d_{ik}^{k-1}, d_{kj}^k = d_{kj}^{k-1}$$

Dynamic Programming Solution

• We can conclude

$$d_{ij}^k = \min\{d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}\}$$

and
$$d_{ij} = d_{ij}^N$$

Floyd-Warshall Algorithm

• Working with adjacency matrices, this suggest the following (quite bad) pseudocode

- The algorithm is \pm obviously correct
 - In fact, it also works for negative c provided there are **no negative cycles**

Floyd-Warshall Cost

- The time cost is $O(N^3)$, better than iterated Dijkstra for dense graphs
- The space cost is a first sight also $O(N^3)$ as we use N matrices $N \times N$; but in fact a single matrix D is enough, for
 - We first "retain" d_{ik}, d_{kj}
 - Then for i or $j \neq k$ we set $c = d_{ik} + d_{kj}$, and we can overwrite d_{ij} as $d_{ij} = \min\{d_{ij}, c\}$
- Exercise (easy): rewrite FW taking advantage of this
 - Is it now a good **Python** algorithm?
- Exercise (more difficult): how can we recover the optimal paths?
- Observation: FW is our first example of a problem solvable by a **Dynamic Programming (DP)** algorithm, which exploits
 - An optimization problem with an optimal substructure (obvious: any optimization problem has it) that we are able to make explicit
 - The explicit substructure formula also ensures FW to be correct

Applying Floyd-Warshall

• Example:

• We iteratively compute the intermediate matrices

$$D^k = (d^l_{ij}), k = 0, 1, \dots, N$$

• Observe that going from D^{k-1} to D^k we just copy $d^k_{ik}=d^{k-1}_{ik}$, $d^k_{kj}=d^{k-1}_{kj}$

From D^0 to D^1

• We have

$$\begin{array}{lcl} d^1_{23} & = & \min\{d^0_{23}, d^0_{21} + d^0_{13}\} = \min\{\infty, \infty + \ldots\} = \infty \\ d^1_{24} & = & \min\{d^0_{24}, d^0_{21} + d^0_{14}\} = \min\{3, \infty + \ldots\} = 3 \end{array}$$

and so on, to get

$$D^{0} = \begin{pmatrix} 0 & 2 & \infty & 2 \\ \infty & 0 & \infty & 3 \\ 4 & \infty & 0 & \infty \\ \infty & \infty & 2 & 0 \end{pmatrix} \rightarrow D^{1} = \begin{pmatrix} \mathbf{0} & \mathbf{2} & \infty & \mathbf{2} \\ \infty & \mathbf{0} & \infty & 3 \\ \mathbf{4} & 6 & \mathbf{0} & 6 \\ \infty & \infty & 2 & \mathbf{0} \end{pmatrix}$$

• And similarly we get D^2 , D^3 and D^4

2 Minimum Spanning Trees

2.1 The Algorithms of Prim and Kruskal

Trees

- An undirected graph G=(V,E) is **connected** if for every pair $u,v\in V$ there is a path π in G from u to v
- A cycle π in a graph G = (V, E) is a path that starts and ends at the same point
- A tree is an undirected connected graph that is also acyclic, i.e., there are no cycles in E
- A tree T is a spanning tree (ST) for G = (V, E) if $T = (V, E_T)$ with $E_T \subset E$
- If G is weighted, the **cost** of an ST T is

$$c(T) = \sum_{(u,v) \in E_T} c(u,v)$$

• $T=(V,E_T)$ is a **minimum spanning tree** (MST) for the undirected graph G=(V,E) if for any other ST $T'=(V,E_T')$ we have $c(T)\leq c(T')$

MST Examples

· On the graph

a first MST with cost 17 is

Prim's Algorithm

• Changing slightly Dijktsra's gives **Prim's** algorithm for finding MSTs

• The second if not s[z] didn't appear in Dijkstra; do we need it here?

Observations on MSTs

- There may be several minimum spanning trees in a graph but the minimum cost is unique
- We recover the MST with the table pp and have $c(T) = \sum_{v \neq u} c(p[v],v)$
- The cost of Prim is $O(|E| \log |V|)$ if the PQ is built over a min heap
- **Prim works**: at the end, the edges (p[v], v) of a MST E_T are given by p[v] and the c[v] give their costs
 - But again this has to be proved
 - And, since it is correct, we do not need to check s[v] == T for if z already seen, c_t[z] <= c(v, z)
 (although it saves time)
- Prim and Dijkstra are examples of a greedy algorithms

Greedy Algorithms

- A greedy algorithm tries to solve a **global optimization problem** by making **locally optimal choices** at each of its steps
 - Simple example: the Nearest Neighbor algorithm for the Traveling Salesman Problem (TSP)
 - In Dijkstra: we maintain a table d[v] of **partially minimum distances** from u to v computed over a subset of all paths from u to v
 - In Prim we maintain a table $c_t[v]$ of **locally minimum edge costs** of a partial spanning subtree that is progressively grown from a starting node u
- Greedy strategies are often quite natural
 - But a too simple greedy approach often results on wrong algorithms, with greedy TSP an example
 - Also the greedy ideas behind Dijkstra and Prim are not that obvious
 - And less so that they result in correct algorithms
- Kruskal's is another, much clearer example of a greedy algorithm to obtain a MST

A First Look at Kruskal's Algorithm

- Main idea: sort the edges of E in a PQ by increasing costs and build a graph (forest?) of partial STs
 - Starting from single node trees $T_u = (\{u\}, \emptyset)$ and
 - Adding edges from the PQ that do not produce cycles
- Example:

How to Apply Kruskal?

• Solving ties lexicographically, the sorted edges are (1,4), (6,7), (1,2), (2,4), (3,6), (1,3), (4,7), (5,7), (4,6), ...

• We add edges to the partial ST as

- But trying to add (2, 4) we get a **cycle**, so we drop it and add next (3, 6)
- We keep going until we get an MST

Elements of Kruskal's Algorithm

- To implement Kruskal we need a PQ, a way of storing the selected edges and a way to maintain the forest of partial subtrees and to detect cycles
- No problem with the PQ and we can simply gradually build the final MST graph over the Kruskal forest of the partial subtrees
- · At first sight maintaining trees and detecting cycles in them looks complicated and costly
- However, observe that (u, v) gives a cycle iff u and v are in the same subset V_{T^c} of the vertices of a tree T' in the Kruskal forest
 - 2 and 4 are in the set $\{1, 2, 4\}$
 - Thus we do not need to work with trees but with subsets
- We do this with a new abstract data type, the **Disjoint Set**

2.2 The Disjoint Set Abstract Data Type

Disjoint Set

- A **Disjoint Set** (DS) over a universal set U is a dynamic family S of disjoint subsets of U (i.e., a **partition** of U), each of which is **represented** by a certain element x and that has the following primitives:
 - init_Ds (U, s): receives the universal set U and returns the initial S as the famility of atomic subsets $\{\{u\}:u\in U\}$
 - find(x, s): receives an element $x \in U$ and returns the representative of the subset S_x of S that contains x
 - union(x, y): receives two representatives x,y, computes their union $S_x \cup S_y$ and returns a representative of the subset $S_x \cup S_y$

Observations on the Disjoint Set

• The subsets of a Disjoint Set are never split

- They can only change to bigger subsets
- The Disjoint Set is never empty
- After $init_Ds$ we start with a partition with |U| subsets;
 - Thus, the maximum number of unions is |U|-1
- Even if we don't have yet a data structure for DS, its primitives allow us to write a first pseudocode for Kruskal

Kruskal's Algorithm

```
def kruskal(G):
    T = (V, E={})  #empty graph for the MST
    init_DS(V, S)  # 1

Q = pq()
    for all (u, v) in E:
        Q.put((c(u, v), (u, v)))  # 2

while not Q.empty:  # 3
        _, (u, v) = Q.get()  # 4
        x = find(u, S)
        y = find(v, S)  # 5
        if x != y:
            add((u, v), E)  # 6
        union(x, y, S)  # 7

return T
```

Observations on Kruskal's Algorithm

- Here we build the MST T on a graph initially without edges (when writing a program this may change)
- The algorithm may not return a ST, for instance if G is not connected
 - We can control this introducing a counter c and increasing it when a new edge is added to L
 - c should have the value |V| 1 when the PQ is empty
 - Exercise: add code to control this situation
- The maximum number of unions is |V|-1
- Even if we achieve a efficient implementation of union and find, the cost of Kruskal will be at least $O(|E| \log |V|)$ because of building the PQ in (1)
 - So it won't improve on Prim

A First Data Structure for DS

- We assume $V = \{1, \dots, N\}$
- A simple idea is keep each subset in a list with the representative in the first node
- We also construct a pointer (dict?) table T[] where T[i] points to the list that contains i
- The cost of find is clearly O(1)

- To implement union(x, y, s) we can concatenate the list T[y] after the list T[x] and then make sure that for each j in T[y] we have T[j] = T[x]
- However this is not satisfactory as the cost of the union is then
 - |T[x] | (to find the end point) plus
 - |T[y]| (to reset the pointers of $V_{T(y)}$)
- This can be improved upon but we will do something different

Our Data Structure for DS

- Our data structure stores DS as trees (**not to be confused** with those of the Kruskal forest)
- The representative x of a subset S is at the **root** of the subset tree T_S
- The cost of union (x, y, s) is then just O(1), as we simply make, say, T_{S_y} a child subtree of the x root
- To implement find(u, s) first we need a fast way to locate the tree of u and, then, to go from the u node to the root
- This can be easily done if we place the subsets on a table p[]:
 - p[u] is the index of the father of u
 - p[x]=-1 for a root x, i.e., a representative

An Example of the DS for the DS

• For a subset partition over the universal set [1, 2, 3, 4, 5, 6, 7, 8, 9]

the associated table would be

$$[-1, 1, 6, 2, 1, 5, -1, 7, 8]$$

Union and Find over Trees

- To initialize the DS we simply need p[i]=-1 for all i
- ullet The simplest pseudocode for find is

```
def find(u, p):
    while p[u] != -1:
        u = p[u]
    return u
```

• The pseudocode for a naive union is

```
\begin{array}{lll} \text{def union}(x,\ y,\ p): \\ & p[y] = x & \text{\#join second tree to first} \\ & \text{return } x \end{array}
```

Improving Union

- Since the cost of find is $O(\text{ height }(T_x))$ it is clear that we should join the shorter tree into the taller one
- For this we need to keep a tree's height h
 - We simply can change p[x] at the root x from -1 to -h
- We then change the pseudocode for union as

• We also change the while condition on find to

```
while p[u] >= 0:
```

The Cost of Find

- **Proposition.** If prof(T) denotes the depth of a DS tree T, we have $prof(T) \leq \lg |T|$
- · Proof Sketch:
 - Use induction on |T|, with an obvious base case |T| = 1
 - Assume $\operatorname{prof}(T') \leq \operatorname{lg}|T'|$ for |T'| < |T| = k and that we join T_y into T_x with $|T_x \cup T_y| = k$
 - If $\operatorname{prof}(T_y) < \operatorname{prof}(T_x)$,

$$\operatorname{prof}(T_x \cup T_y) = \operatorname{prof}(T_x) \le \lg |T_x| \le \lg |T_x \cup T_y|$$

and the same argument works when $prof(T_x) < prof(T_u)$,

- If $\operatorname{prof}(T_y) = \operatorname{prof}(T_x)$ and, say, $|T_y| \leq |T_x|$,

$$\begin{array}{lcl} \operatorname{prof}(T_x \cup T_y) & = & 1 + \operatorname{prof}(T_y) \leq 1 + \lg |T_y| = \lg |2|T_y| \\ & \leq & \lg |T_x \cup T_y| \end{array}$$

Improving Find

- Thus, the cost of find (x, p) is also $O(\log |S_x|) = O(\log N)$
- Moreover, we can further improve on this
- Observe that when finding the representative of u we also find the **representative of all the** v between u and the root of its tree

- We can thus change find to update p[v] for all v between u and the root
- In other words, we can **compress the path** from u to the root

The Effect of Path Compression

• Left: tree state after find(3); right: state after find_cc(3)

Find with Path Compression

- Recall that after finding the representative of u, we also know it for all the other nodes between u and the root of the tree
- We thus improve find as follows:

```
def find_cc(u, p):
    # find the representative
    z = u
    while p[z] >= 0:
        z = p[z]

# compress the path from u to the root
    while p[u] >= 0:
        y = p[u]
        p[u] = z
        u = y
    return z
```

Path Compression and Union by Rank

- The problem is now that, after find, we no longer have in -p[x] the tree's height
- We do nothing about this other than calling -p[x] the tree's **rank**
- We change nothing on union although it is no longer a union by height but a union by rank
- · However the joint cost of unions and finds considerably improves
- **Proposition:** If on a DS with N elements we do L unions by rank and $M = \Omega(N)$ path compression finds, the overall cost is

$$O(L + M \lg^* N)$$

• We define $\lg^* H = K$ if K is the smallest integer such that after K binary logs we have

$$\lg(\ldots \lg(\lg H)\ldots) \le 1$$

• For instance $\lg^* 65536 = \lg^* 2^{16} = 4$, but then

$$\lg^* 2^{65536} = 1 + \lg^* 2^{16} = 5$$

- Now 2^{65536} is a huge number:
 - Find out how many digits its decimal expression has (easy)
 - Then try to write it using millions, billions, googols and so on! ;-)
- For practical purposes $\lg^* H = O(1)$

Back to Kruskal's Algorithm

· Assume we work with union by rank and path compression and go back to Kruskal's pseudocode

```
def kruskal(G):
    T = (V, E={})  #empty graph for the MST
    p = init_DS(V)  # 1
    Q = pq()

    for all (u, v) in E:
        Q.put( (c(u, v), (u, v)))  # 2

while not Q.empty:  # 3
        _, (u, v) = Q.get()  # 4

        x = find_cc(u, p)  # 5
        y = find_cc(v, p)

    if x != y:
        add((u, v), E)  # 6
        union(x, y, p)  # 7

return T
```

The Cost of Kruskal's Algorithm

- Clearly the cost of (1) is O(|V|) and that of (2) is $O(|E|\log |V|)$
- The cost of (4) accumulated over (3) is again $O(|E| \log |V|)$
- Since the single cost of (6) and (7) is O(1) and only happens when x!=y, their accumulated costs are O(|V|)
- Finally, since we must do at least one find_oc for each node, the total number is $\Omega(N)$ and, therefore, the cost of (5) accumulated over (3) is $O(|E|\lg^*|V|)$, that is, essentially O(|E|)
- Summing things up, the cost of Kruskal is $O(|E| \lg |V|)$, dominated by the PQ operations
- In particular the DS operations do not penalize the algorithm

Applying Kruskal's Algorithm

• Example:

• The PQ is (1,4), (6,7), (1,2), (2,4), (3,6), (1,3), (4,7), (5,7), (4,6), (2,5), (3,4), (4,5)

Applying Kruskal's Algorithm (II)

• We maintain separately the Kruskal forest and the DS forest

Applying Kruskal's Algorithm (III)

• We process the remaining edges from the PQ

Applying Kruskal's Algorithm (IV)

• We process the remaining edges from the PQ

Applying Kruskal's Algorithm (V)

- We process the remaining edges from the PQW until it is empty
- The MST may not change but the DS forest may

2.3 Correctness of Prim and Kruskal

- Assume we have an undirected weighted graph G(V, E) with cost c
- A cut P of G is a partition of V into two disjoint subsets P = (S, V S)
- An edge (u, v) crosses P if either $u \in S$ and $v \in V S$ or viceversa
- A subset $A \subset E$ **preserves** P if no edge in A crosses P
- An edge (u,v) that crosses P is **minimal** w.r. to P if $c(u,v) \le c(w,z)$ for any other edge (w,z) that crosses P

A Meta MST Algorithm

• Consider the following meta-algorithm to find MSTs

```
def metaMST(G, c):
    T = (V, E={})  #empty graph for the MST

while |E| < |V|:
    find a cut P preserved by E
    select (u, v) minimal w.r. to P
    add((u, v), E)

return T</pre>
```

- Notice that metaMST is also a kind of greedy meta-algorithm
 - At each step a minimal edge is added to the partial MST

Prim as an Example of metaMST

- Recall that Prim works with a table $v[\]$ of seen nodes and that the nodes still in Q are ordered by their cost at insertion
- Assume that a node v has been extracted from Q just before is marked as seen, and take

```
- P = (\{seen \ nodes\}, \{others\})
- E = \{(p[w], w) : w \in \{seen \ nodes\}\}
```

- · Then we have
 - 1. E preserves P for if $(p[w], w) \in E$, both w and p[w] are seen
 - 2. (p[v], v) crosses P, for v is still unseen but p[v] was processed when v entered Q, i.e., it is seen by now
 - 3. If other (w, z) crosses P we have v[w] = T, v[z] = F and, hence, $z \in Q$ since it is adjacent to the already seen node w
 - 4. Since we extract v but not z, $c(p[v], v) \le c(w, z)$ and, thus, (p[v], v) is minimal
- Hence, Prim is a particular case of metaMST

Kruskal as an Example of metaMST

• Assume that we are about to add the edge (u, v) and let

- E be the edges already selected
- $P = (S_u, V S_u)$ where S_u is the subset of the tree T_u that contains u
- · Then we have
 - 1. E preserves P, for if $(w, z) \in E$, w and z are in the same subtree T, which cannot happen if $w \in S_u$ and $z \in V S_u$
 - 2. (u, v) crosses P by our choice of P
 - 3. Any other (w, z) crossing P must connect different subtrees and cannot make a cycle
 - 4. But then (w, z) must still be in Q: if it has left Q but is not in E, it would have made a cycle, which it cannot
 - 5. Thus, $c(u, v) \le c(w, z)$ and (u, v) is minimal w.r. P
- Hence, Kruskal is a particular case of metaMST

A Kruskal metaMST step

- In the previous example, assume we are going to add (1,3)
- The partition, the preserving edges and the crossing ones are

Correctness of metaMST I

- Thus, if metaMST is correct, Prim and Kruskal will also be correct
- Proposition. Let G = (V, E) be a undirected, connected, weighted graph and assume $A \subset E$ verifies $A \subset E_T$ for some MST T. Then, if A preserves some P and (u, v) is minimal w.r. to P, we have $A \cup \{(u, v)\} \subset E_{T'}$ for some MST T'
- Proof sketch I:
 - Assume $T = (V, E_T)$ is a MST
 - Then $\pi = E_T \cup \{(u,v)\}$ is a cycle with an edge (w,z) that crosses P

- Define $T' = (V, E_{T'})$ with $E_{T'} = (E_T \{(w, z)\}) \cup \{(u, v)\}$
- Clearly $c(T') \leq c(T)$ and have to prove that T' is a spanning tree
- Since $V_{T'} = V$, we just have to check T' is connected

Correctness of metaMST II

• **Proof sketch II:** Building T' and going from x to y by T'

Correctness of metaMST III

- **Proof sketch III:** let x, y be two nodes; we show they can be connected by T'
 - If x, y are in the same subset of P they can clearly be joined by T and, hence, by T', as they coincide there
 - Assume x, y at different subsets of $P = (S_1, S_2)$ with x, u and y, v in the same sides
 - There are paths π_1 from x to u in S_1 and π_2 from v to y in S_2 ; hence they are in T and also in T'
 - Then $\pi=\pi_1\cup\{(u,v)\}\cup\pi_2$ is a path in T' from x to y
 - Thus T' is connected, $c(T') \le c(T)$ and $V_{T'} = V$
 - Thus T' is an MST

Loop Invariants

- The proposition says that after each iteration the selected edges are part of a MST
- This is an example of a **loop invariant**:
 - A condition that remains true after each loop and that "leads" the algorithm towards a correct solution
- The standard way to prove the correctness of an iterative algorithm is to find an adequate loop invariant for its iterations

- Example: loop invariants for InsertSort or BubbleSort
 - InsertSort: after iteration $i, i = p + 1, \dots, u$, the subtable $T[p], \dots, T[i]$ is sorted
 - BubbleSort: after iteration $i, i = u, \dots, p+1$, the subtable $T[i], \dots, T[u]$ is sorted

Correctness of metaMST II

- Corollary. metamst returns a MST
- · Proof sketch:
 - We just exploit the loop invariant provided by the previous proposition
 - Let $L_0=\emptyset\subset L_1\subset\ldots\subset L_{N-1}$ be the successive subsets metaMST produces
 - If L_j is a subset of some MST, the proposition shows that so is L_{j+1}
 - But obviously L_0 is a subset of some MST and, thus, so is L_{N-1} and since it has N-1 edges, (V, L_{N-1}) is a MST
- Corollary Prim and Kruskal return MSTs

3 Eulerian and Hamiltonian Circuits

3.1 Eulerian Circuits

The Bridges of Königsberg

• The bridges of Königsberg (East Prussia) over the Pregel river circa 1700:

- The problem: find a promenade that crosses all bridges but only once
- Exercise: google pregel graph

The Bridges of Königsberg as a Graph Problem

• We can depict the bridges of Königsberg as a multigraph (i.e., we allow for multiple edges between two nodes)

- The problem: find a circuit that passes through all edges but only once
- Such a circuit in a multigraph is called an **Eulerian circuit** (EC)

Euler's Insight

- Leonhard Euler showed in 1736 (*Solutio problematis ad geometriam situs pertinentis*) that such a circuit is not possible
- If G is an undirected graph, we define the **degree** deg(w) of a node w as the number of edges that leave w (or that enter w)
- Assume that $\pi = \{(u = u_0, u_1), \dots, (u_{K-1}, u_K = u)\}$ is an EC for G
- If $w \neq u$ is a node in π , we substract 1 from deg(w) each time we enter w or leave it
 - Since at the end we have passed by all the edges of w, we must have at the beginning deg(w) even
- Similarly each time we enter u inside π we substract 1 from deg(u) and also when we leave u; moreover, when we start and end π we also substract 1 from deg(u)
 - Thus, we must also have deg(u) even

There Are No ECs in Königsberg

- It follows from the previous analysis that a necessary condition to have an EC is that deg(v) is even for all $v \in V$
- Since all the nodes in the previous multigraph have odd degrees, Euler concluded that no Eulerian circuit is possible in Königsberg
- As we shall see later, Euler also proved that the condition is sufficient: If deg(v) is even for all nodes v of an undirected graph G, then there is an Eulerian circuit in G

Drawing Houses Without Lifting the Pen

• A child's game is to try to draw the house below without lifting the pen from the sheet

• It is very easy if we start at nodes 1 or 2 but impossible if we start from 3, 4 or 5

Euler's Insight Again

- Assume that $\pi = \{(u = u_0, u_1), \dots, (u_{K-1}, u_K = v \neq u)\}, u \neq v$, is such an **Eulerian path** (EP)
- If $w \neq u, v$ is a node in π , each time we enter w we substract 1 from deg(w) and also when we leave w;
 - Since at the end we have passed through all the edges of w, we must have at the beginning deg(w) even
- Similarly each time we enter u inside π we substract 1 from deg(u) and also when we leave u; moreover, since we start π at u, we also substract 1 from deg(u)
 - Thus, we must also have deg(u) odd
- Similarly each time we enter v inside π we substract 1 from deg(v) and also when we leave v; moreover, since we end π at v, we also substract 1 from deg(v)
 - Thus, we must also have deg(v) odd
- Thus, a necessary condition to have an EP is that deg(w) is even for all w except the first node u and the final one v of π

Back to Drawing Houses

• Since deg(1) = deg(2) = 3 we can find an EP for the house drawing if we start at either 1 or 2

- But since deg(3) = deg(4) = deg(5) even, it is impossible to draw an EP for the house starting at them
- And there is no EP in Königsberg either.

Euler's Theorem for Circuits

• Theorem. If G=(V,E) is a connected undirected multigraph, there is an EC in G iff deg(u) is even for all $u \in V$

Proof sketch: We argue by induction on |V|

- The theorem is obviously true if |V|=2 and assume it also to be true for any G'=(V`,E') such that |V'|<|V|
- Start walking from a node u and substract from deg[w] when passing by a node w until we arrive at v such that deg(v) = 0 after we enter v and, thus, cannot leave it
- It is easy to see that v = u for if not, deg[v] is odd
- Thus, we have found a cycle π
- Set G' = (V', E') with $V' = V \{w : deg_G[w] = deg_{\pi}[w]\}$ and $E' = E E_{\pi}$

Euler's Theorem for Circuits II

Proof sketch (cont.):

- Since $|V'| \le |V| 1$ and $deg_{G'}(w) = deg_{G}(w) deg_{\pi}(w)$ is even, we can apply induction on the connected components G_1, \ldots, G_K of G'
- Consider the nodes in π such that $deg_{\pi}[w] < deg_{G}[w]$ and let's enumerate these components by their first appearances w_1, \ldots, w_K in π
- Each w_i is in the connected component $G_i = (V_i, E_i)$, which has an EC π_i
- Let $\widetilde{\pi}$ the circuit we get "collating" these π_i with π
- Then we have

edges in
$$\widetilde{\pi}=$$
 # edges in $\pi+\sum_i |E_i|=|E|$

Euler's Theorem for Paths

- Corollary. If G is a connected undirected graph, there is an EP π in G iff deg(w) is even for all w ∈ V except for two vertices u and v. Moreover, then π starts at u and ends at v or viceversa
 Proof sketch: We just show the condition to be sufficient:
 - Consider $G' = (V, E' = E \cup \{(u, v)\})$, i.e., we add an extra edge (u, v) to E
 - Since $deg_{G'}(u) = deg_G(u) + 1$, $deg_{G'}(v) = deg_G(v) + 1$ and $deg_{G'}(w) = deg_G(w)$ for all other w, all the G' degrees are even and there is an EC π' in G'
 - Let's write π' as $\pi' = \{(v, z), \dots, (w, u), (u, v)\}$, with the last edge the one we added to get G'.
 - Then removing this edge we get the EP $\pi = \{(v, z), \dots, (w, u)\}.$

How to Find an EC

- We simply to follow the proof's argument
- We start at any u_1 and build $\pi_1 = \{(u_1, v_2), \dots, (v_{K-1}, v_K)\}$ substacting 1 from deg(w) each time we enter or leave w and where we stop because after entering v_K we have $deg(v_K) = 0$
 - It is then clear that $u_1 = v_K$
- Let $G_1 = (V_1, E_1)$ the graph obtained after removing π_1 from E and all the $w \in V$ for which deg(w) = 0 after π , i.e., for which $deg_{\pi}(w) = deg_{G}(w)$
 - Clearly u_1 at least will be removed, i.e., $|V_1| < |V|$
 - If $|V_1| = 0$, clearly π_1 is an EC in G
 - If however $|V_1| > 0$, there is a first u_2 in π_1 such that $deg_{G_1}(u_2) > 0$
 - We can thus **restart the above process on** G_1 obtaining a new circuit π_2 and a "remaining" graph G_2
- If we repeat the preceding and find circuits π_1, \ldots, π_M until $V_M = \emptyset$, then we can "collate" the π_j circuits to get an EC π for G

How to Find an EC II

- This is essentially Hierholzer's algorithm
- We do not write a pseudocode (good exercise!) but it is clear that its cost will be O(|E|)
- Example:

EC Steps I

• The first steps to find an EC are

EC Steps II

• The next steps to find an EC are

EC Steps III

• The final steps to find an EC are

L2

ady

2 34 + 55 + 6

ar unito final:

2 56 + 47 + 5

$$4 - 3 - 5$$
 $4 - 3 - 5$

3.2 Hamiltonian Circuits and an Excursion on Complexity Theory

Hamiltonian Circuits

- If G is an undirected connected graph, a **Hamiltonian circuit** (HC) is a circuit on G that visits **only once each node** other than the initial
- Finding HCs may be trivial in some cases, such as complete graphs
- There are also sufficient conditions for special graphs
- But for general graphs, while finding ECs has an O(|E|) cost, finding HCs is much costlier
- In fact, essentially the only general algorithm is an exhaustive search with backtracking

Hamiltonian Circuits II

• Example:

- Since the number of node orderings is N!, the search's cost can be very high
- Actually, finding HCs in general graphs is an example of an NP-complete problem

Backtracking Search

• An example of a HC search

P and NP I

- We will make a brief (and light) excursion on Complexity Theory
- We consider decision problems P: there is a set of solution inputs S_P, for which the decision on an input I is 1 iff I ∈ S_P
 - To decide whether a graph has an EC or HC is a decision problem but notice that an algorithm does not have to actually find an EC or HC to solve them
 - Optimization problems can be partially reduced to decision problems using a bound C: change find the optimum by find a solution with cost < C
- For an input I we can consider its size |I| to be the number of bits needed to store it
- We say that \mathcal{P} is in the class P if there is an algorithm A with cost polynomial on |I| that solves \mathcal{P} , i.e., A(I) = 1 iff $I \in S_{\mathcal{P}}$
 - Note that to be in class P does not mean that A is efficient: if its cost is $O(|I|^{1000})$, $\mathcal P$ is in P

P and NP II

- Decision–EC is in P: we check in linear time whether or not there are ECs in G by counting degrees and checking that they are even
- An algorithm C(I, S) is a **certifier** for \mathcal{P} if
 - For every input $I \in S_{\mathcal{P}}$ there is at least another input S to C such that C(I,S) = 1
 - If $I \notin S_{\mathcal{P}}$, then C(I, S) = 0 no matter which S is used
- We can see S as a kind of certificate (solution?) for I that the C validates
 - For the EC or HC problems, S can just be a possible EC or HC
- We say that $\mathcal P$ is in the class NP if there is a certifier C that runs in polynomial time on the sizes |I| and |S|

- 35
- For instance, if I = G and S is a possible CH, we can check it in polynomial time
- Thus HC belongs to NP

P and NP III

- Clearly $P \subset NP$: if $P \in P$ and A solves it, set C(I, S) = A(I); then
 - If $I \in S_{\mathcal{P}}$, then C(I, S) = A(I) = 1 for any S
 - If $I \notin S_{\mathcal{P}}$, we will have C(I, S) = A(I) = 0 no matter the S presented
- Big question: P = NP?
- If yes, there would be a polynomial time algorithm for HC
- It is one of the Millenium Problems of the Clay Mathematics Institute with a 1M \$ prize
 - For more details see Clay Institute's P vs NP page
- General opinion: $P \neq NP$
- Reason: NP-complete problems

NP-complete Problems

• We say that \mathcal{P}_1 is **reducible** to \mathcal{P}_2 if there is a map

$$T: \{ \text{ inputs of } \mathcal{P}_1 \} \to \{ \text{ inputs of } \mathcal{P}_2 \}$$

such that I_1 has a solution for \mathcal{P}_1 iff $T(I_1)$ has a solution for \mathcal{P}_2

- Or: $I \in S_{\mathcal{P}_1}$ iff $T(I) \in S_{\mathcal{P}_2}$
- Thus, if A is an algorithm that solves \mathcal{P}_2 , then $A \circ T$ solves \mathcal{P}_1 :

$$I \in S_{\mathcal{P}_1}$$
 iff $T(I) \in S_{\mathcal{P}_2}$ iff $A(T(I)) \equiv A \circ T(I) \equiv 1$

- If T has polynomial cost, we say that \mathcal{P}_1 is **polynomially reducible** to \mathcal{P}_2
- We say that problem \mathcal{P} is NP-complete if any other $\mathcal{P}' \in NP$ is polynomially reducible to \mathcal{P}
- Notice that we can **prove that** P=NP if we just find one NP-complete problem $\mathcal P$ such that $\mathcal P\in P$

Is There Any NP-complete Problem?

- ullet At first sight the NP-complete definition seems very strict so a natural question is whether there any such problem
- Answer: yes, and in fact many!!
 - HC is such a problem
 - TSP will be another

- The first (basically) NP-complete problem found is 3-SAT
- Given a Boolean expression B written using only AND, OR, NOT operators, and parentheses, the satisfiability problem (SAT) is to decide whether there is some assignment of T and F to the variables that will make B true
- The k-SAT problem deals with expressions in **conjunctive normal form** (i.e., as a sequence of OR clauses joined by AND) with k variables or their negation per clause

Cook's Theorem

• Example: 3-SAT deals with expressions like

```
(x11 OR !x12 OR x13)AND (!x21 OR x22 OR !x23)AND (x31 OR !x32 OR x33)AND ...
```

- Cook's Theorem (1971): 3–SAT is NP–complete
 - **–** However, 2-SAT ∈ P
- More to read: Chapter 5 of H. Wilff's book Algorithms and Complexity
- Much more to read: M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.
- But are P, NP and NP-complete problems just academic curiosities?

3.3 The Traveling Salesman Problem

The Traveling Salesman Problem

- TSP: Given a weighted complete graph G, find a HC (trivial) with minimum cost
- It is an optimization problem with obvious practical interest: many persons have to solve it every morning
 - Decision version: given a weighted complete graph G and a bound C, is there a HC π such that $c(\pi) \leq C$?
- TSP is NP-hard: every problem in NP can be polynomically reduced to TSP
 - Or P is NP-hard problem if 3-SAT or HC reduce polynomically to P
 - A NP-hard problem may not have to be NP-complete (e.g., the halting problem) or to be a decision problem (e.g., TSP)
 - Also, TSP-decision for general graphs is NP-complete
 - But TSP-decision is also NP-complete for "real world" problem versions, such as for cities in the plane with Euclidean distances
- Many related problems of great practical interest in planning, logistics or DNA sequencing are also NP-complete

- Fact: HC is polynomially reducible to TSP
- Assume tsp(V, c) is a routine that returns the TSP solution for G with cost c and consider the following routine for HC:

```
def tsp_2_hc(V, E):
    for any u, v in V:
        if (u, v) in E:
            c(u, v) = 1
        else:
            c(u, v) = 2

p = tsp(V, c)
    if cost(p) == |V|:
        return p
```

- tsp_2_hc solves HC for π is a HC on G iff c(u,v)=1 for any $(u,v)\in\pi$ iff $c(\pi)=|V|$
- Thus TSP has not only practical but also theoretical interest

A TSP Example

• Simple example:

```
["madrid", "barcelona", "sevilla", "valencia"]
```

• The (complete) graph is

· More examples in Traveling Salesman Algorithms

A Greedy TSP Solution

• Simple greedy approach: Nearest–Neighborhood (NN) TSP, that simply visits the nearest unseen city

```
def nn_tsp_circuit(distance_matrix, node_ini=0):
    num_cities = distance_matrix.shape[0]
    circuit = [node_ini]

while len(circuit) < num_cities:
        current_city = circuit[-1]

# sort cities in ascending distance from current
    options = list(np.argsort(distance_matrix[ current_city ]))

# add first city in sorted list not visited yet
    for city in options:
        if city not in circuit:
            circuit.append(city)
            break

return circuit + [node_ini]</pre>
```

What Can We Do About TSP?

- The greedy solution of the previous problem is M, V, B, S, M
- On average, NN gives a path that is about 25% longer than the optimum
 - But one can set up special instances of TSP where NN gives the worst route
- If c satisfies the triangle inequality $c(u, v) \le c(u, z) + c(z, v)$ for any z, we have

$$c(\pi_{NN}) = O(\log|V|) \times c^*,$$

with π_{NN} the NN solution and c^* the optimal cost

- TSP has great practical importance, but there is no cost effective **exact** algorithm for general graphs
 - So, it may be very hard to find the best route to, say, deliver mail (at least in big cities)
- Q: What can we do?

Approximation Algorithms

- Alternative: approximate algorithms
- **Definition:** Given an optimization problem \mathcal{P} , an **approximate algorithm** for \mathcal{P} with bound $\lambda \geq 1$ is an algorithm A that for every input I returns a solution $s_A(I)$ such that

$$c^*(I) \le c(s_A(I)) \le \lambda c^*(I)$$

with $c^*(I)$ the optimal cost for $\mathcal P$ on I

• NN is not exactly an approximate algorithm for TSP, since its bound is $O(\log |V|)$ and depends on |V|

Approximation Algorithms for TSP

• **Proposition:** If the cost function is Euclidean, i.e., it verifies

$$c(u,v) \le c(u,w) + c(w,v)$$
 for all $u,v,w \in V$,

then there is an approximate algorithm for TSP with $\lambda=2$

• Algorithm:

```
def euclideanTSP(g, c):
    find a MST t on g
    duplicate its edges to obtain a graph g_1

#now each node in g_1 has degree 2 and there is an EC
    find a EC p_1 in g_1

shortcut seen edges in p_1 to get HC p
    return p
```

Approximation Algorithms for TSP

- · Proof sketch:
 - Let T_1, π_1 and π be the MST, the EC and the HC returned by the algorithm
 - Let π^* be an optimal HC and remove an edge on π^* to get a spanning tree T^*
 - Since T_1 is an MST, we have $c(T_1) \le c(T^*) \le c(\pi^*)$
 - By the Euclidean distance property, if we shortcut the segment $u \to w \ldots \to z \to v$ to $u \to v$, we have

$$\underbrace{c(u,v)}_{\pi} \le \underbrace{c(u,w) + c(w,x) + \ldots + c(z,v)}_{\pi_1}$$

- We then we conclude that

$$c(\pi) \le c(\pi_1) = 2c(T_1) \le 2c(\pi^*)$$

• The **Christofides** algorithm improves this to $\lambda=1.5$ (see this article in Wired for more about the algorithm)

Approximation Algorithms for TSP II

- To learn more: Johnson, McGeoch, The Traveling Salesman Problem: A Case Study in Local Optimization
 - Or the movie The Travelling Salesman
- Example

$$\begin{array}{c|c}
1 & 1 & 2 \\
 & 2 & 1 \\
3 & 1 & 4
\end{array}$$

Applying The Algorithm

• The steps to find an approximate TSP solution

① AAM ② Duplicar ③ circ. Eulerians

1-2
1-3-1-2-4-2-1
3 4 3 4

② Atajar
$$\pi: 1=3$$
 2=4

 $c(\pi)=1+2+1+2=6 < 2c^*=8$

4 An Excursion on DNA Sequencing

4.1 Hamilton, Euler and DNA Sequencing

DNA Sequencing

- Note: this is a very, very light description of DNA Sequencing
- Goal: decompose a gene into a sequence of four letters $\{A,C,G,T\}$ that correspond to DNA bases
- Shotgun sequencing follows a four step process:
 - Blast the gene into random short fragments ("reads") of 100-500 bases
 - Identify read subsequences by hybridizing them on a DNA microarray
 - Reconstruct each read from these subsequences
 - Reconstruct the entire gene from the reads
- First two steps: biochemistry
- Third step: Hamiltonian or (better) Eulerian circuits
- Fourth step: compute the Shortest Superstring Problem solving TSP (plus more algorithms and a lot of biochemistry)

Shotgun Sequencing

· Idealized hierarchical shotgun sequencing strategy

From Nature

• Scheme of the process:

From bitesizebio.com/7206/introduction-to-dna-microarrays

Microarray Hybridization II

- The process steps are:
 - Put all the posible length ℓ probes, i.e., DNA subsequences of a fixed length ℓ , into the spots of a microarray
 - Put a drop of fluorescently labeled DNA into each microspot of the array
- The DNA fragment hybridizes with those microspots that are complementary to a certain substring of length ℓ of the fragment
 - Thus, the DNA subsequences in those microspots are also part of the DNA fragment to identify
- ullet This way we get all possible length ℓ subsequences that make the fragment but they are **unordered**

ℓ -mers and the Spectrum

- We call the sequence on each one of the probes an ℓ -mer
- The ℓ -spectrum $sp(S,\ell)$ of a sequence S is the set of all the ℓ -mers from S
- For instance, s = [TATGGTGC] we have sp(s, 3) = {TAT, ATG, TGG, GGT, GTG, TGC}
- We have $|sp(S, \ell)| \le |S| \ell + 1$
- After hybridization, the hybridized probes in the microarray give us an unordered version of $sp(S, \ell)$ that we have to correct to recover S
- The **overlap** $\omega(s_1, s_2)$ between two ℓ -mers s_1, s_2 is the longest leght of a suffix of s_1 that is also a prefix of s_2
- We clearly have $\omega(s_1, s_2) \le \ell 1$ and if s_2 follows s_1 in S, we must have $\omega(s_1, s_2) = \ell 1$

Sequencing by Hamiltonian Paths

- We can reconstruct the sequence S by finding an ordering s_{i_1},\ldots,s_{i_K} of $sp(S,\ell)$ such that $\omega(s_{i_j},s_{i_{j+1}})=\ell-1$
- This suggests to define the graph $G_{\ell}(S) = (V_{\ell}, E_{\ell})$ where
 - $V_{\ell} = sp(S, \ell)$ and
 - $(s,s') \in E_{\ell}$ iff $\omega(s,s') = \ell 1$
- Notice that reconstructing S is equivalent to pass once through all the nodes of $G_{\ell}(S)$
- In other words, we can reconstruct S by finding a Hamiltonian path in $G_{\ell}(S)$

Sequencing by Hamiltonian Paths II

- Example: consider s = [TATGGTGC] and the unordered 3-spectrum sp(S, 3) = {GGT, TAT, TGG, TGC, ATG, GTG}
- By inspection, the adjacency list and graph, the HC and the recovered sequence are

Sequencing by Eulerian Paths

- The obvious problem of HP sequencing is the lack of efficient algorithms to solve the HP problem
- Alternative: try to have ℓ-mers on the edges instead of on nodes:
 - If $s \in sp(S, \ell)$ and s_1 is its $\ell 1$ prefix and s_2 its $\ell 1$ suffix, we can consider s as the edge connecting nodes s_1 and s_2
 - Now we have $\omega(s_1, s_2) = \ell 2$
- We define now the graph $G_{\ell-1}=(V_{\ell-1},E_{\ell-1})$ where
 - $-V_{\ell-1} = sp(S, \ell-1)$ and
 - $(s,s') \in E_{\ell-1}$ iff they are respectively prefix and suffix of an $s \in sp(S,\ell)$
 - Equivalently, $(s, s') \in E_{\ell-1}$ iff $\omega(s, s') = \ell 2$

- Notice that now reconstructing S is equivalent to pass once over all the edges of $G_{\ell-1}$
- In other words, we can reconstruct S by finding a EP in $G_{\ell-1}$

Eulerian Circuits on Directed Graphs

- However, $G_{\ell-1}$ is a **directed** graph: we have to adapt the Eulerian circuit/path theory to these graphs
- In an directed graph G(V, E) we have to distinguish between **incident and adjacent edges**
- For any $u \in V$, we say that (u, v) is an **adjacent** (outgoing) edge and (w, u) an **incident** (incoming) edge
- The **indegree** in(u) of u is the number of incoming edges to u
- The **outdegree** out(u) is the number of outgoing edges from u

Eulerian Circuits on Directed Graphs II

- Assume that $\pi = \{(u = u_0, u_1), \dots, (u_{K-1}, u_K = u)\}$ is an Eulerian circuit on G
- If $w \neq u$ is a node in π ,
 - Each time we enter w we substract 1 from in(w) and also from out(w) when we leave w
 - Since at the end we have passed through all the edges of w, in(w) = out(w) = 0
 - Thus, we must have at the beginning in(w) = out(w)
- Similarly, for u
 - Each time we enter u inside π we substract 1 from in(u) and also from out(u) when we leave it
 - Moreover, when we start we substract 1 from out(u) and also substract 1 we substract 1 from in(u) when we finish
 - Thus, we must also have in(u) = out(u)

Euler's Theorem for Directed Graphs

- Euler's Theorem. Assume G is a weakly connected directed graph. A neccesary and sufficient condition to have an EC in a directed G is that in(v) = out(v) for all $v \in V$
- Corollary. A neccesary and sufficient condition to have an Eulerian path $\pi = \{(u = u_0, u_1), \dots, (u_{K-1}, u_K = v)\}$ in a directed graph G is that we have in(w) = out(w) for all $w \in V$ different from u and v and also in(v) = out(v) + 1, in(u) = out(u) 1
- ullet Essentially the same O(|E|) algorithm we saw for undirected graphs can be applied to directed ones
- · Thus we can efficiently sequence genomic reads

Applying Euler on Directed Graphs

· Consider the graph

• The adjacency list and the first exploration give

Applying Euler on Directed Graphs II

• The second and third steps and the final EC are

```
a i may circuity enteriant

1 1 2 + 6)

1 1 3 - Cl

1 1 2 - 6 - 7 - 2

1 1 6 + 7

1 2 7 + 2 - 3

a i hay circ. 5. T3; 1-3-4-7

1 1 3 + 45

1 - 2

1 1 4 + 37

1 1 4 + 37

1 1 4 + 37

1 1 4 + 37
```

Eulerian Sequencing

- Example: consider again s = [TATGGTGC] and sp(S, 2) = {TA, AT, TG, GG, GT, GC}
- Applying the Euler algorithm we obtain

4.2 From Reads to the Genome

The Shortest Superstring Problem (SSP)

- Given a string set $\{s_1, \ldots, s_M\}$, find the shortest superstring S that contains the M substrings s_j
- Recall that the **overlap** $\omega_{i,j}$ between strings s_i, s_j is the length of the longest suffix of s_i that is also a prefix of s_j
- Notice that the length of the shortest string containing first s_i and then s_j is $|s_i| + |s_j| \omega_{i,j}$ where |s| denotes the length of s
- If we add another string s_k after s_j , the extra added length is $|s_k| \omega_{j,k}$
- Thus, if we get S' collating the ordering $\{s_{i_1}, \ldots, s_{i_M}\}$ then

$$|S'| = |s_{i_1}| + |s_{i_2}| - \omega_{i_1, i_2} + |s_{i_3}| - \omega_{i_2, i_3} + \dots$$
$$= \sum_{1}^{M} |s_j| - \sum_{1}^{M-1} \omega_{i_j, i_{j+1}}$$

The Longest Path Problem (LPP)

- As an example, if we collate this way the strings 'ATGGTAG', 'GTAGACTA', 'CTAGGTATT' we get the sequence 'ATGGTAGACTAGGTATT' of length 17=7+8+9-4-3
- Clearly |S'| will be minimal iff $\sum_{1}^{M-1} \omega_{i_j,i_{j+1}}$ is maximal
- Consider the complete graph G over $V = \{s_1, \dots, s_M\}$ and with cost $\omega_{i,j}$
- Solving the Shortest Superstring Problem is thus equivalent to solving the **Longest Path Prob**lem(LPP) in (G, ω) : to find a cycle–free path of maximal length

LPP and Hamiltonian Paths

- A Hamiltonian path (HP) is a path that passes over all the |V| vertices once
- It can be shown that HC reduces polynomially to HP (the argument is easy but not totally obvious)
- Consider LPP-d, the decision version of LPP: given a graph G and c, to decide whether there is an acyclic path in G with length $\geq c$
- It is easy to see that LPP-d is in NP
- It is also easy to see that HP reduces to LPP-d: there is a HP in G iff LPP-d over (G, |V|-1) returns 1
- As a consequence, if HC is NP-complete, so is HP and so is LPP-d
- In general, if P_1 is NP-complete and it reduces polinomially to P_2 , P_2 is also NP-complete

How to Create New NP-complete Problems

- Assume T is the reduction operator from P₁ to P₂ with cost O(|I|^p) when applied to an input I
 of P₁
- If P' is another problem that reduces polinomially to P_1 via T', $T \circ T'$ reduces P' to P_2 with polynomial cost
- In fact, if I = T'(I') with I' an input of P' with size n and T' has cost $O(n^q)$, we have $|I| = O(n^q)$, for the size of the ouputs of T' cannot be larger than the cost of computing them
- But the cost of applying $T \circ T'$ to I' is $O(n^q + (n^q)^p) = O(n^{pq})$
- Thus, if a NP problem reduces polynomically to P_1 , so it does to P_2
- Thus, if P_1 is NP-complete, so is P_2
- Thus, if we manage to prove HC to be NP-complete, so is HP and so is LPP-d. And so is TSP-d

5 Depth First Search and Connectivity

5.1 Depth First Search

Breadth First Search (BFS)

• Recall the general pseudocode for BFS

- If the cost of do_something is O(1) and we work with a PQ, the cost of BFS is $O(|E|\log |V|)$ (which can be improved using more sophisticated PQ implementations)
- If we only need simple queue, we get a linear cost O(|E|)
- If needed, we add a driver to restart BFS at unseen nodes

Depth First Search (DFS)

• The alternative to BFS is recursive DFS from a starting node u

```
def DFS(u, G):
    s[u] = True
    do_something_before_DFS(u)
    for all w adjacent to u:
        if s[w] == False:
            p[w] = u
        DFS(w, G)
    do_something_after_DFS(u)
```

• The table p[] defines the DFS tree (or forest)

Depth First Search II

 We may have to restart DFS if not all nodes have been processed, for which we need a driver for DFS

```
def driver_DFS(G):
    s[] = False; p[] = NULL
    for all u in V:
        if s[u] == False:
        DFS(u,G)
```

- If doing something has cost O(1), the joint cost of driver_DFS and DFS is clearly O(|E|)
- An example:

Applying DFS

• The DFS evolution is

Edge Classification by DFS

- DFS induces a classification on the edges of a directed graph G
 - Tree edges: (u, v) where u = p[v]
 - Back (ascending) edges: (u, v) where $v = p[\dots p[u] \dots]$ (one or more p)
 - Forward (descending) edges: (u, v) where $u = p[\dots p[v] \dots]$ (with at least 2 $p[\]$)
 - Cross edges: any other $(u, v) \in E$
- If G is undirected and (u, v) is a forward edge, then (v, u) is a back edge
 - Thus, we will not distinguish then between forward and back edges
 - Also we require at least 2 p[] for back edges
- We prove next that if G is undirected there are no cross edges

Parenthesis Theorem

- Assume we have a counter c in DFS and consider 2 time–stamps:
 - Discovery: d[u] = c; c++, updated when DFS starts on u
 - Finish: f[u] = c; c++, updated when DFS ends on u
- Obviously $d_u < f_u$
- Parenthesis Theorem. For a graph G and $u, v \in V$, consider the intevals $I_u = (d_u, f_u)$, $I_v = (d_v, f_v)$. Assuming $d_u < d_v$ we either have $I_v \subset I_u$, or $I_u \cap I_v = \emptyset$
- **Proof sketch:** Assume $d_u < d_v$;
 - If $f_u < d_v$, obviously $I_u \cap I_v = \emptyset$
 - And if $f_u > d_v$, DFS started recursively on v before finishing with u; thus the recursion on v must finish before that of u and $f_v < f_u$
 - Thus, $I_v \subset I_u$

No Cross Edges in Undirected Graphs

- Corollary. If G is undirected there are no cross edges
- **Proof sketch:** Take $(u, v) \in E$:
 - Assume $d_u < d_v$; then we have $f_v < f_u$ for v is adjacent to u
 - If s[v] = F when we arrive at v, then (u, v) is a tree edge
 - And if s[v] = T when we arrive at v, we have processed $L[v] \Rightarrow$ we have processed $(v, u) \Rightarrow (v, u)$ must be either a tree or a back edge
 - Thus, (u, v) is either a tree or a forward edge
- Thus, in no case is (u, v) a cross edge

No Cross Edges in Undirected Graphs II

• We sketch the previous arguments.

①
$$u \sim \dots \rightarrow v^{\dagger} \Rightarrow \dots \Rightarrow (u, v) + vee$$
② $u \sim \dots \vee \dots \rightarrow v^{\dagger} \Rightarrow \dots \Rightarrow (v, v) \text{ ascend},$
 $(v, v) \text{ ascend},$

5.2 Biconnected Graphs

Undirected Graph Connectivity

- Recall that an undirected graph G=(V,E) is connected if for every pair $u,v\in V$ there is a path π in E from u to v
- Connected component: a maximal connected subgraph of G
- If $G_i = (V_i, E_i)$ are the connected components of G, the V_i are a **partition** of V and the E_i of E
- If we order the vertices of G as $V = V_1 \cup ... \cup V_K$, then the adjacency matrix M is **block diagonal** with the blocks M_k being the adjacency matrices of the G_k
- DFS can be used to give the connected components of G through the table $p[\,]$ and restarting DFS as needed
 - BFS and its driver can also be used to give the connected components of G through the table $p[\]$

An Aside: Directed Graph Connectivity

- A directed graph G=(V,E) is **weakly connected** if its extension to an undirected graph is connected
- A directed graph G=(V,E) is **strongly connected** if for every pair $u,v\in V$ there is a path π in E from u to v
- DFS is also used in Tarjan's Algorithm to obtain the strong components of a graph
- Tarjan's algorithm basically obtains the strong components by
 - Computing DFS's ending times on G and

- Applying again DFS to the transpose graph G^{τ} in the order inverse to the ending times

Articulation Points

• If G is undirected and connected, a cut vertex or articulation point (AP) is a vertex u such that

$$G' = (V - \{u\}, E - \{(u, z) \in E\})$$

is no longer connected

- An undirected and connected graph G is **biconnected** if it has no articulation points
- Biconnected graphs are desirable in computer networks, as they are more robust against router failures
- Q: how we detect APs?

How to Detect APs?

• An example: the graph below has two APs, B and E

· We next apply DFS.

DFS To Detect APs

• We show DFS evolution of the adjacency list and the edges on the DFS tree:

DFS To Detect APs II

- From this "top-down" view of the graph we can more easily detect APs:
 - A is not AP: it does not unhook any vertex as it has just one child
 - B is AP: it unhooks C
 - C is not AP: it has no children
 - E is AP: it unhooks F and G (but not D)
 - D is not AP: it has no children
 - F is not AP: G can reach E without F
 - G is not AP: it has no children it does not unhook any vertex
- The example shows that the DFS tree gives a "top-bottom" view of a graph in which
 - APs other than the root disconnect lower parts of the graph
 - An AP at the root disconnects subtrees

DFS and Articulation Points

- We can use two auxiliary tables that can be computed by DFS to detect articulation points
 - The **order** table o[] that contains the order in which DFS arrives at a node u.
 - The **ascent** table $a[\]$ which is defined as $a[u]=\min\{o[v]\}$ where v is any node that can be accessed from u by
 - * Going "down" through 0, 1 o more tree edges, and then
 - * Going"up" through a single back edge
- The o, a tables for the previous example are

Detecting Articulation Points

- Clearly if we remove a non root node u from the DFS tree, it will disconnect one of its children v unless v can go "above" o[u] using back edges,
- In other words, u will be an AP if for some child v we have $o[u] \le a[v]$
 - Notice that a larger number means a "lower" node
- Since there are no cross edges on the DFS tree, the root node will be an AP if it has two or more children
- It is also clear that these sufficient conditions are also neccessary

- A single root node cannot be an AP
- If the ascents of all children of u bypass it, u cannot be an AP

Computing $o[\]$ and $a[\]$

- We compute o[u] before DFS explores u's adjacency list
- We can use two auxiliary tables to compute the table $a[\]$
- The **direct ascent** table o'[u] that contains the order of highest node accessible from u by an ascending edge

$$o'[u] = \min\{o[v] : (v, u) \text{ is a back edge}\}$$

- o'[u] can be computed **before** DFS looking at the w adjacent to u s.t. s[w] == True
- The **ascent by children** table a'[u] that contains the order of highest node accessible from any of the children of u

$$a'[u] = \min\{a[v] : u = p[v]\}$$

- a'[u] can be computed **after** the recursive call to DFS returns
- We then have $a[u] = \min\{o[u], o'[u], a'[u]\}$

The DFS Auxiliary Tables

• The o, o', a', a tables for the previous example are

Computing $o[\], o'[\], a'[\]$ and $a[\]$

- Assume the DFS driver has initialized o[] and a[] to ∞ and a counter c to 0
- We compute $o[\]$ and $a[\]$ recursively as follows

```
def ap_tables(u, G):
    s[u] = True; o[u] = c; a[u] = o[u]; c += 1
    for all w adjacent to u: # direct ascent
        if s[w] == True and w != p[u] and o[w] < a[u]:
        a[u] = o[w]
    for all w adjacent to u:
        if s[w] == False:
            p[w] = u; ap_tables(w, G)
    for all w adjacent to u: # ascent by children
        if p[w] == u and a[u] > a[w]:
            a[u] = a[w]
```

• The cost of ap_tables is clearly O(|E|)

Algorithm Application

• A second example:

Algorithm Application II

• We compute o, o' before DFS and a', a after DFS

Analyzing the Tables

• A is not AP: it has no children

• B is not AP: it has no children

• C is AP: root with 2 children

• D is AP: $a[B]4 \ge 3 = o[D]$

• E is not AP: it has no children

5.3 DAGs and Topological Sort

Directed Acyclic Graphs

- A directed acyclic graph (DAG) is a directed graph without cycles
- **Proposition:** G is a DAG iff there are no ascending edges in G
 - If (v, u) is ascending, there is a path from u to v in the DFS forest, and adding (v, u) results in a cycle
 - Conversely, assume π is a cycle, $u \in V_{\pi}$ is the first node processed in DFS and $\pi = (u, \dots, v, u)$
 - Then v descends from u in the DFS forest and, thus, (v, u) is ascending
- · DFS can be used to detect cycles in a graph by slightly modifying our previous AP algorithm
- · DAGs can be used to model many other problems of interest, such as topological node ordering

Topological Sort

- Recall: \leq is a **total order** if either $u \leq v$ or $v \leq u$ or both
- A topological sort in a DAG G=(V,E) is any total ordering of its vertices s.t. if $(u,v)\in E$, then $u\leq v$
- If G is a DAG, a topological sort can be obtained
 - Applying DFS starting at u with inc[u] = 0 (there is always one) and
 - Adding a vertex u at the beginning of a linked list after DFS ends its process
- We end up with a topological sort of G:
 - Since DFS ended at v after all the vertices w adjacent to v have been processed, then these w are in the list after v
- The cost of TS on DAGs is thus O(|E|)

Applying Topological Sort

• An example:

• We apply DFS computing the discovery and finish times

• TS can also be obtained by reversed finish times

Applying Topological Sort II

• TS can also be obtained by reversed finish times

6 Maximum Flows on Graphs

6.1 Basic Definitions and Facts

Flow Networks

• A **network flow** is a directed graph G = (V, E) such that

- There is a **source**, a single node F such that in[F] = 0
- There is a **sink**, a single node S such that out[S] = 0
- There is a nonnegative **capacity** function $c: E \to \mathbb{R}$
- We extend c to $V \times V$ as an augmented capacity with c(w,z) = 0 if $(w,z) \notin E$
- Example:

Flows in Networks

- A **flow** in the flow network G is a real function on $V \times V$ such that
 - For all $w, z, f(w, z) \le c(w, z)$ (boundedness)
 - For all w, z, f(w, z) = -f(z, w) (antisymmetry)
 - For all w other than $F,S,\sum_z f(w,z)=0$ (conservation)
- Example:
- If $(u, v) \notin E$ and $(v, u) \notin E$, then f(u, v) = f(v, u) = 0, for

$$0 = -c(u, v) \le -f(u, v) = f(v, u) \le c(v, u) = 0;$$

thus, we can ignore these edges

Maximum Flow Problem

• For $u \neq F, S$ set $V_u^+ = \{v: f(u,v) > 0\}, V_u^- = \{v: f(u,v) < 0\}$; then, by conservation and antisymmetry

$$0 = \sum_{V_u^+} f(u, v) + \sum_{V_v^-} f(u, v) = \sum_{V_u^+} f(u, v) - \sum_{V_v^-} f(v, u);$$

- Thus, for any node the incoming flow equals the outgoing flow, i.e., no flow is "lost" in u
- The value of a flow f is $|f| = \sum_{u \neq F} f(F, u)$
- By conservation $|f| = \sum_{v \neq S} f(v,S)$
- In the **maximum flow** problem we want to find a flow in G with |f| maximum

Residual Capacity

- If f is a flow in the flow network G, c, we define f's **residual capacity** on $V \times V$ as $c_f(u, v) = c(u, v) f(u, v)$
- The **residual network** of f is the flow network $G_f = (V, E_f)$ where $(u, v) \in E_f$ iff $c_f(u, v) > 0$
- We can see ${\cal G}_f$ as the manoeuvres we can do on ${\cal G}$ to augment |f|
- Example:

Augmenting Path

- A path π from F to S on G_f is an **augmenting path** (AP)
- Notice that if $(u, v) \in \pi$, then $c_f(u, v) > 0$
- The augment a_{π} of π is $a_{\pi} = \min\{c_f(u, v) : (u, v) \in \pi\}$
- We can exploit such a π to augment |f|
- Example:

Augmented Flow

• If π is augmenting for f, we define the **augmented** flow f' as

$$f'(u,v) = f(u,v) + a_{\pi} \text{ if } (u,v) \in \pi$$

= $f(u,v) - a_{\pi} \text{ if } (v,u) \in \pi$
= $f(u,v) \text{ if } (u,v) \text{ and } (v,u) \notin \pi$

• Assuming f' is also a flow, we have then $|f'| = |f| + a_{\pi}$ for if (F, u) is the first edge of π ,

$$|f'| = \sum_{v} f'(F, v) = f'(F, u) + \sum_{v \neq u} f'(F, v)$$

= $f(F, u) + a_{\pi} + \sum_{v \neq u} f(F, v)$
= $|f| + a_{\pi}$

Finding Augmented Flows

• Example:

The Augmented Flow is a Flow

- Notice that f' does not change f for $(u, v), (v, u) \notin \pi$
- Thus, to prove f' is a flow, we only check boundedness and antisymmetry on $(u,v) \in \pi$ and conservation on u, leaving (v,u) as an exercise
- Boundedness: by definition of c_f we have

$$f'(u,v) = f(u,v) + a_{\pi} \le f(u,v) + c_f(u,v) = c(u,v)$$

• Antisymmetry: we have

$$f'(u,v) = f(u,v) + a_{\pi} = -(-f(u,v) - a_{\pi})$$

= $-(f(v,u) - a_{\pi}) = -f'(v,u)$

by antisymmetry of f

The Augmented Flow is a Flow II

• Conservation: assume we have $\pi = \{\dots, (w, u), (u, v), \dots\}$; then

$$\sum_{z \neq u} f'(u, z) = f'(u, w) + f'(u, v) + \sum_{other} f'(u, z)$$

$$= f(u, w) - a_{\pi} + f(u, v) + a_{\pi} + \sum_{other} f(u, z)$$

$$= \sum_{z \neq u} f(u, z) = 0$$

$$= 0$$

by definition of f' and conservation on f

Ford-Fulkerson Meta-Algorithm

- If there is augmenting path for f, |f| can be augmented, but if there is no augmenting path?
- Theorem: The flow f is maximal iff there is no augmenting path in G_f We prove it later
- This leads to the Ford-Fulkerson meta-algorithm

```
flow FF(graph G, capacity c) 

// we assume G and c extended to V \times V 

f = 0; c_f = c; G_f = G; while there is an AP \pi in G_f: 

compute a_{\pi}; 

f = update (f, \pi, a_{\pi}); 

compute new G_f; 

return f;
```

• Notice that FF does not yet give us an algorithm

Edmonds-Karp Algorithm

- We have to define how we obtain an augmenting path
- Simplest way: solve an unweighted minimum distance problem in G_F starting from F;

```
- If p[S]! = NULL, we get an AP
```

• This leads to the Edmonds-Karp algorithm

```
flow EK(graph G, capacity c)  
// we assume G and c extended to V \times V  
f = 0; c_f = c; G_f = G;  
p[\ ] = minDist(G_f, F);  
while p[S]! = NULL:  
a = augment(f, p[\ ]); (1)  
f = update(f, p[\ ], a); (1)  
compute\ new\ G_f; (1)  
p[\ ] = minDist(G_f, F); (2)  
return f;
```

The Cost of Edmonds-Karp

- Computing a and updating f has a cost O(|V|) as π has at most |V| edges
- Applying the function minDist has a cost O(|E|) as we solve a minimum distance problem in an unweighted graph

- Thus, the cost of each loop iteration is O(|V|) in the (1) steps and O(|E|) in the (2) step
- It can be shown that the number of EK iterations is O(|E||V|);
- Thus, we have $cost_{EK} = O(|E|^2 |V|)$
- Hence, it is $O(|V|^5)$ for dense graphs

6.2 Maximal Flows and Minimal Cuts

Cuts

- A cut on G=(V,E) is any partition $(V_1,V_2=V-V_1)$ of V such that $F\in V_1,S\in V_2$
- The capacity $c(V_1, V_2)$ of a cut (V_1, V_2) is

$$c(V_1, V_2) = \sum_{u \in V_1, v \in V_2} c(u, v)$$

• The flow $f(V_1, V_2)$ across a cut (V_1, V_2) is

$$f(V_1, V_2) = \sum_{u \in V_1, v \in V_2} f(u, v)$$

Cut Properties

- **Property 1:** For any cut and any flow, we clearly have $f(V_1, V_2) \leq c(V_1, V_2)$
- **Property 2:** We have $|f| = f(\{F\}, V \{F\})$ by the definition of |f|, i.e., |f| is the flow across the cut $(\{F\}, V \{F\})$
- **Property 3:** For any flow f, any cut (V_1, V_2) and any $v \in V_2$, we have

$$f(V_1, V_2) = f(V_1 \cup \{v\}, V_2 - \{v\})$$

by conservation at v

• **Property 4:** For any flow f and any cut (V_1, V_2) , $|f| = f(V_1, V_2)$, for we simply start at Property 2 and keep on adding nodes until we go from $\{F\}$ to V_1

Maximal Flows and Minimal Cuts

- Assume that for a flow f and a cut (V_1, V_2) we have $f(V_1, V_2) = c(V_1, V_2)$; then
 - The flow is **maximal**, for if f' is another flow,

$$f'(V_1, V_2) < c(V_1, V_2) = f(V_1, V_2) = |f|$$

- The cut is **minimal**, for if (V'_1, V'_2) is another cut

$$c(V_1, V_2) = f(V_1, V_2) = f(V_1', V_2') \le c(V_1', V_2')$$

In fact more can be said

- Max Flow/Min Cut Theorem: If f is a flow in the flow network (G, c), the following are equivalent:
 - 1. The flow is maximal
 - 2. There is no augmenting path in G_f
 - 3. There is a (minimal) cut (V_1, V_2) such that $f(V_1, V_2) = c(V_1, V_2)$

Proof of the Max Flow/Min Cut Theorem

- We prove it by showing $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$
- $1 \Rightarrow 2$ is clear for if there would be an augmenting path, we could augment f
- We have seen that $3 \Rightarrow 1$ in Property 1
- For $2 \Rightarrow 3$, set $V_1 = \{v : v \ reachable \ from \ F \ in \ G_f\}$; then
 - Since $S \notin V_1$, we have a partition
 - If $f(V_1,V_2)< c(V_1,V_2)$, there must be an edge (u,v) with $u\in V_1,v\in V_2$ and f(u,v)< c(u,v), i.e., $c_f(u,v)>0$
 - But since we can reach u from F in G_f , we could also reach v, which is a contradiction with $v \in V_2$
 - Thus, we must have $f(V_1, V_2) = c(V_1, V_2)$

Consequences

- Clearly for any flow f we have $|f| \le \phi^* = \sum c(F, u)$
- If c(u, v) are integers, FF or EK iterations give flows f_i such that $|f_i| < |f_i| + 1 \le |f_{i+1}|$
- Therefore, FF and EK cannot make more than ϕ^* iterations
- Thus, they are correct for they arrive to a maximal flow in a finite number of steps
- However, one can build network flows for non integer c for which EK do not end in a finite number of steps, approaching instead the maximum flow value $|f^*|$ asymptotically