

EL-2207 ELEMENTOS ACTIVOS

ITCR - Elementos Activos

SEMICONDUCTORES

ELEMENTOS ACTIVOS EL-2207

Clasificación de Materiales – Modelo de Bandas (Repaso)

- Bandas de energía del material definen propiedades eléctricas, ópticas y térmicas
 - Clasificación de acuerdo con propiedades eléctricas

Conducción Valencia

Conductores

- Ancho de banda prohibida muy pequeño o traslape de bandas
- Cobre, Aluminio, Oro

- Banda prohibida= 1-3 eV
- Silicio, Germanio, compuestos como GaAs, InP

Aislantes

Conducción

Dióxido de hafnio HfO2

Valencia

- Banda prohibida= 8-9 eV
- Diamante, dióxido de silicio (SiO₂), nitruro de silicio (Si₃N₄)

Clasificación de los Elementos (Repaso)

Clasificación de Matriales

ITCR - Elementos Activos

Semiconductores

- Conductividad $\sigma = 10^{-6} ... 10^{-2}$ S/cm
- Semiconductores elementales:
 - Elementos semiconductores más importantes: silicio y germanio (grupo IV de tabla periódica)
 - Compuestos binarios:
 - Compuestos III-V: AlP, AlAs, GaN, GaP, GaAs, InAs, InP
 - Compuestos II-VI: ZnO, ZnSe, ZnTe, CdS, CdSe, CdTe
 - Compuestos ternarios: AlGaAs, GaAsP, HgCdTe, etc.
 - Compuestos cuaternarios: InGaAsP, AlGaInAs, etc.
 - Aleaciones: Al_xGa_{1-x}As, Ga_xIn_{1-x}As_{1-y}P_y
- Aplicaciones:
 - Transistores, circuitos integrados: Si, SiGe, GaAs
 - Diodos emisores de luz (LEDs): GaAs, GaN, GaP
 - Lasers (AlGaInAs, InGaAsP, GaAs, AlGaAs)
 - Detectores lumínicos (Si, InGaAsP, CdSe, InSb, HgCdTe)

Sólidos Cristalinos

Clasificación de sólidos: amorfos, policristalinos y cristalinos

Sólidos amorfos: átomos no siguen ningún orden, no forman estructura ordenada regular

Policristalinos: segmentos cristalinos, no estructura regular en todo el material

Sólidos cristalinos: átomos forman una estructura regular en todo el material

El grado de cristalinidad determina propiedades y aplicación del material

Cristal de Silicio

- Orientación del cristal afecta
 - Proceso de fabricación de circuitos integrados
 - Comportamiento de los dispositivos fabricados

ITCR - Elementos Activos

Estructura cristalina

Equilibrio térmico

Tasa de generación

$$G = G_{th}(T) + G_{op}$$

Tasa de recombinación

$$R = k \times n \times p$$

Ley de acción de masas

$$n_i^2 = \frac{G_{th}(T) + G_{op}}{k}$$

Equilibrio térmico

Función de Fermi

Electrones

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}}$$

Huecos

$$h(E) = 1 - \frac{1}{1 + e^{(E - E_F)/kT}}$$

Función de Fermi

ITCR - Elementos Activos

Dopado N

ITCR - Elementos Activos

Equilibrio de cargas

ITCR - Elementos Activos

Densidad de estados

ITCR - Elementos Activos

Dopado P

Equilibrio de cargas

ITCR - Elementos Activos

Densidad de estados

Compensación

ITCR - Elementos Activos

Generación y Recombinación

Free electron

El hueco y el electrón pueden

moverse libremente en el cristal.

Generación y Recombinación

Generación:

- Transición de un electrón de la banda de valencia a la banda de conducción
- Genera un hueco en la banda de valencia
- Creación de pares electrónhueco

Recombinación:

- Transición de un electrón de la banda de conducción a la banda de valencia
- Elimina un hueco de la banda de valencia
- Eliminación de pares electrón-hueco

Causas de Generación y Recombinación

Energía térmica

- Generación térmica directa
 - Ruptura de enlaces debido a vibración causada por temperatura
- Recombinación térmica directa
 - Liberación de calor debido a aniquilación de pares electrón-hueco

Energía lumínica

- Fotones transfieren energía a un electrón para pasar de banda de valencia a banda de conducción
- Electrones liberan fotones al pasar de banda de conducción a banda de valencia

El Concepto de Hueco

- El concepto de hueco es una representación de la banda de valencia con un estado electrónico vacío
- Estado vacío representado por una partícula de carga positiva, con igual magnitud de carga que el electrón
- Los electrones se mueven en la banda de conducción, los huecos se mueven en la banda de valencia
- Electrones y huecos interactúan en el proceso de conducción de corriente de huecos
- Masa efectiva* de hueco 2..3 veces mayor que la de electrón

^{*}Masa efectiva: toma en cuenta el efecto del potencial del cristal y permite tratar a la partícula como si fuera una partícula libre en el vacío

Corriente de Huecos

El movimiento de portadores de carga libres (electrones y huecos) causa un flujo de corriente en el semiconductor

Conforme los electrones se mueven a la izquierda para llenar un hueco, el hueco se mueve a la derecha ⇒ equivale a una corriente de huecos

La corriente de huecos tiene la misma dirección que la corriente técnica

Dopado

Dopado: Introducción de impurezas (átomos) substitucionales en un material INTRÍNSECO (puro) para modificar su conductividad eléctrica

Los materiales dopados se conocen como materiales EXTRÍNSECOS

Dopado

- → Donadores: 5 electrones de valencia (As, P, Sb) → semiconductor de tipo N
- → Aceptores: 3 electrones de valencia (B, In) → semiconductor de tipo P

El dopado NO ALTERA la neutralidad eléctrica del material

Efecto Dopado

ITCR - Elementos Activos

Portadores de Carga

- Existen dos portadores de carga en semiconductores:
 - Electrones
 - Huecos

En un material extrínseco, se distingue entre portadores mayoritarios y minoritarios con base en la concentración de portadores

- Portadores mayoritarios: portadores presentes en mayor número en el semiconductor:
 - huecos en semiconductor P
 - electrones en semiconductor N
- Portadores minoritarios: portadores presentes en menor número en el semiconductor:
 - electrones en semiconductor P
 - huecos en semiconductor N

Nivel de Fermi

- E_F : valor de energía en el que la probabilidad de ocupación del estado electrónico es 1/2
- Distribución de Fermi-Dirac: probabilidad de ocupación de un estado electrónico de energía E

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}}$$

k: constante de Boltzmann, 1.38x10⁻²³J/K

T: temperatura (K)

Influencia del Dopado en Nivel de Fermi

• Semiconductor N: nivel de Fermi está cerca de banda de conducción

Semiconductor P: nivel de Fermi está cerca de banda de valencia

Corriente de Huecos

El movimiento de portadores de carga libres (electrones y huecos) causa un flujo de corriente en el semiconductor

Conforme los electrones se mueven a la izquierda para llenar un hueco, el hueco se mueve a la derecha ⇒ equivale a una corriente de huecos

La corriente de huecos tiene la misma dirección que la corriente técnica

Concentración de Portadores de Carga

• Ley de acción de masas: en un semiconductor no degenerado en equilibrio,

 $n_i^2 = n \cdot p$ n_i : concentración intrínseca de portadores de carga [cm⁻³] n: concentración de electrones libres [cm⁻³] p: concentración de huecos [cm⁻³]

 La concentración de portadores de carga y el nivel de Fermi están relacionados como sigue:

$$n = n_i \cdot e^{\frac{(E_F - E_i)}{kT}}$$

$$p = n_i \cdot e^{\frac{(E_i - E_i)}{kT}}$$
 $n_i \approx 1.45 \times 10^{10} \text{ cm}^{-3} \text{ para Si}$

Concentración de Portadores de Carga

• Material tipo P: $n_{po} \approx \frac{n_i^2}{N_A}, p_{po} \approx N_A$

n_{po}: concentración de electrones en material p en equilibrio

p_{po}: concentración de huecos en material p en equilibrio

N_A: concentración de aceptores

$$E_i$$
- $E_F = kT \ln \frac{N_A}{n_i}$ Diferencia entre nivel de Fermi intrínseco y extrínseco del semiconductor P

• Material tipo N: $p_{no} \approx \frac{n_i^2}{N_D}$, $n_{no} \approx N_D$

p_{no}: concentración de huecos en material n en equilibrio

n_{no}: concentración de electrones en material n en equilibrio

N_D: concentración de donadores

$$E_F - E_i = kT \ln \frac{N_D}{n_i}$$

Diferencia entre nivel de Fermi intrínseco y extrínseco del semiconductor N

n_i vs Temperatura

ITCR - Elementos Activos

Efecto de Temperatura en Semiconductores Extrínsecos

- Temperatura afecta el comportamiento de semiconductores
- Bajas temperaturas: energía térmica insuficiente para ionizar todos los átomos de impurezas
 - Concentración de portadores mayoritarios es menor que concentración de dopado
- Temperaturas medias: energía térmica es suficiente para ionizar todos los átomos de impurezas
- Altas temperaturas: El nivel de Fermi se acerca al nivel de Fermi intrínseco
 - Material se comporta como semiconductor intrínseco
 - n_i en un semiconductor intrínseco aumenta con T
 - Conductividad aumenta con T

Efecto de Temperatura en Semiconductores Extrínsecos

Energías de ionización en Silicio

Fósforo 0.045eV Arsénico 0.05eV Boron 0.045eV Aluminio 0.06eV

- Semiconductor extrínseco se comporta como intrínseco a altas temperaturas
 - $E_F \rightarrow E_{Fi}$, n_i aumenta con T, σ aumenta con T

Transporte de Portadores de Carga

La corriente eléctrica consiste en el movimiento de cargas Electrones

Huecos

- Los átomos de dopado pueden ionizarse como parte del proceso de conducción eléctrica:
 - Los átomos donadores se ionizan positivamente al ceder un electrón para la conducción eléctrica (N_D⁺)
 - Los átomos aceptores se ionizan negativamente al recibir un electrón durante la conducción eléctrica (N_A-)
 - En semiconductores, los dopantes ionizados son inmóviles y no contribuyen a la conducción

Existen 2 mecanismos de transporte de portadores de carga

- 1. Corriente de difusión, debido a gradientes de concentración de portadores de carga
- 2. Corriente de arrastre, debido a la aplicación de un campo eléctrico

Resistividad vs Dopado

Movilidad

• En ausencia de un campo eléctrico, el electrón presenta un movimiento térmico aleatorio con una velocidad térmica promedio $v_{\rm t}$

 Al aplicar un campo eléctrico, el electrón adquiere una velocidad de arrastre determinada por

$$\vec{v}_d = \mu \cdot \vec{E}$$
 para $|E| < 5x10^3 V / cm$

v_d: velocidad de arrastre (cm/s)

μ: movilidad (cm²/Vs)

E: campo eléctrico (V/cm)

Para $|E| > 10^5$ V/cm la velocidad de arrastre se satura $\approx 10^7$ cm/s

- Los electrones tienen una movilidad mayor que los huecos en un factor de 2..3 →ante un campo eléctrico, los electrones son 2..3 veces más rápidos que los huecos
- La movilidad está determinada por: masa efectiva, dispersión por impurezas, dispersión por la estructura cristalina

Velocidad de arrastre vs Campo Eléctrico

Movilildad vs Dopado

ITCR - Elementos Activos

Movilidad vs Temperatura

ITCR - Elementos Activos