⑲ 日本国特許庁(JP)

⑪特許出願公開

[®] 公 開 特 許 公 報 (A) 平4-97964

⑤Int. Cl. 5

識別記号

庁内整理番号

49公開 平成4年(1992)3月30日

C 04 B 37/02 B 23 K 20/00 Z 7202-4 G A 8823-4 E

審査請求 未請求 請求項の数 6 (全6頁)

❷発明の名称

金属とセラミツクスの結合体及びその製造方法

②特 願 平2-211690

②出 願 平2(1990)8月13日

@発 明 者 北

英 紀

神奈川県藤沢市土棚8番地 株式会社いすゞセラミツクス

研究所内

⑪出 願 人

いすぶ自動車株式会社

東京都品川区南大井6丁目26番1号

個代 理 人 弁理士 尾仲 一宗

明細書

1. 発明の名称

金属とセラミックスの結合体及びその製造方法 2. 特許請求の範囲

- (1) セラミックスの緻密質構造から成るループ状の第1部分、該第1部分の周囲に位置して前記第1部分と一体構造であるセラミックスの多孔質構造から成るループ状の第2部分、該第2部分の多孔質構造の空隙中に充填されている金属、及び該金属と結合する金属から成り且つ前記第2部分と一体構造である第3部分から成る金属とセラミックスの結合体。
- (2)前記セラミックスが窒化ケイ素、炭化ケイ素又はその複合材である請求項1に記載の金属とセラミックスの結合体。
- (3) 前記金属はアルミニウム系の合金である 請求項1に記載の金属とセラミックスの結合体。
- (4) リエントラントピストンに形成した燃焼 室に適用し、前記第1部分が前記燃焼室のリップ 部を構成し、前記第3部分はキャピティを形成し

た金属製ビストンヘッド部を構成し、前記第2部 分は前記リップ部を前記ピストンヘッド部に結合 する部分を構成する請求項1に記載の金属とセラ ミックスの結合体。

- (5)型内キャビティを仕切板で仕切って前記 キャビティに複数の区分室を形成する工程、前記 各区分室に配合比の異なるセラミック造粒粉と粒 状金属又は有機物から成る混合物を充塡する工程、 前配仕切板を前記キャビティから抜き取る工程、 前配キャビティかの各種の前記混合物を同時に成形 住して加圧成形体を成形する工程、前記加圧成形体を成形する工程、前記を してカス成形体をである工程、前記を してカス成形体をできまっクス成結体の空 を が、及び前記を で、ないまする工程がら成る金 に金属を充塡しつつ鋳造成形する工程から成る金 属とセラミックスの結合体の製造方法。
- (6) 前記粒状金属がアルミニウム又はアルミニウム合金である請求項5に記載の金属とセラミックスの結合体の製造方法。

3. 発明の詳細な説明

[産業上の利用分野]

この発明は、金属とセラミックスの結合体及び その製造方法に関する。

(従来の技術)

従来、セラミック部品の製造方法として、特開 昭61-259865号公報に開示されたものが ある。該セラミック部品の製造方法は、他金属と の接合を目的とする構造用セラミック部品の成形 時に接合面に粒状のワックス、樹脂等有機物を埋 め込み、成形後これを熱処理によって除去するこ とにより、他金属との混合が容易、堅固に行える 形状を得るものである。

(発明が解決しようとする課題)。

しかしながら、前掲特開昭 6 1 - 2 5 9 8 6 5 号公報に開示されたセラミック部品の製造方法は、粒状有機物を分散させた面に対し垂直方向に加圧して成形体を作製し、焼成後、多孔とした部分に金属を鋳込んで一体化させるものであるが、この方法では、リング状セラミック部品の外周部とそ

合金等の金属材料を半径方向に配合を変化させた ループ状即ちリング状の構造に簡単に且つ低コス トで強力に結合することであり、特に、燃焼室を 備えたピストンヘッドを製造するのに好ましい金 属とセラミックスの結合体を提供することである。

(課題を解決するための手段)

この発明は、上記の目的を達成するために、次 のように構成されている。即ち、この発明は、セ ラミックスの級密質構造から成るループ状の第1 部分、該第1部分の周囲に位置して前記第1部分 と一体構造であるセラミックスの多孔質構造から 成るループ状の第2部分、該第2部分の多孔質構 造の空隙中に充塡されている金属、及び該金属と 結合する金属から成り且つ前記第2部分と一体構 造である第3部分から成る金属とセラミックスの 結合体に関する。

また、この金属とセラミックスの結合体において、前記セラミックスが窒化ケイ素、炭化ケイ素 又はその複合材である。

また、この金属とセラミックスの結合体におい

の周囲に配した金属部品とを結合させることは困難なことである。例えば、セラミック部分として窒化ケイ素(Si: Na) 又は炭化ケイ素(SiC) を用いた場合、このセラミック材料とアルミニウム合金とのぬれ性が良くなく、また、セラミックスとアルミニウム合金との互いの熱膨張係数の差が大きいことにより、両者の界面に割れが生じ易いという問題がある。

ところで、リエントラント型の燃焼室を有する アルミニウム等の金属製のピストンを構成する場合、燃焼室の開口部のリップ部をセラミックスで 製作し、該エッジ部の耐熱性、耐変形性を確保する場合に、アルミニウムとセラミックスとのぬれ 性が良くないことにより、両者が強固に結合できず、また、熱膨張係数の差により繰り返しの熱応力を受けた場合に両者間の境界部に割れ、クラック等が発生するという現象が発生する。

この発明の目的は、上配の課題を解決すること であり、窒化ケイ素(Si₂N₄)、炭化ケイ素(SIC) 等のセラミック材とアルミニウム、アルミニウム

て、前記金属はアルミニウム系の合金である。

また、この金属とセラミックスの結合体において、リエントラントピストンに形成した燃焼室に適用し、前記第1部分が前記燃焼室のリップ部を構成し、前記第3部分はキャピティを形成した金属製ピストンヘッド部を構成し、前記第2部分は前記リップ部を前記ピストンヘッド部に結合する部分を構成するものである。

戦いは、この発明は、型内キャビティを仕切板で仕切って前記キャビティに複数の区分室を形成する工程、前記各区分室に配合比の異なるセラミック造粒粉と粒状金属又は有機物から成る混合物を充塡する工程、前記セキャビティ内の各種のお記して加圧成形体を成形する工程、前記加圧成形体を加熱して前記粒状金属又は前記有機物を除去してセラミックス成形体を関でする工程、及び前記セラミックス焼結体の空隙に金属を充塡しつつ鋳造成形する

る工程から成る金属とセラミックスの結合体の製造方法に関する。

また、この金属とセラミックスの結合体の製造 方法において、前記粒状金属がアルミニウム又は アルミニウム合金である。

(作用)

この発明による金属とセラミックスの結合体は、 以上のように構成されており、次のように作用す る。

この金属とセラミックスの結合体は、セラミックスの緻密質構造から成るループ状の第1部分の周囲にセラミックスの多孔質構造から成る第2部分を位置させて第1部分と第2部分とを一体構造にし、前記第2部分の多孔質構造の空隙中に充塡した金属と及び該金属と結合した金属から成るので、前記第1部分と前記第2部分とは同一のセラミック材料で強固に結合される第3部分とは、前記第2部分とは、前記第2部分と前記第3部分とは、前記第2部分とは、前記第2部分と前記第3部分とは、前記第2部分とは高される。従って、結合体は全

体として金属とセラミックスとが強固に結合されることになる。

また、この金属とセラミックスの結合体の製造 方法は、型内キャピティを仕切板で仕切った複数 の区分室に配合比の異なるセラミック造粒粉と粒 状金属又は有機物から成る混合物を充塡し、前記 仕切板を前記キャビティから抜き取り、各種の前 記混合物を同時に加圧して成形する。次いで、混 合物の加圧成形体を加熱して前記粒状金属及び前 配有機物を溶出除去し、前記粒状金属及び前記有 機物を溶出除去したセラミックス成形体を焼成し てセラミックス焼結体を製作し、該セラミックス 焼結体の空隙に金属を充塡しつつ鋳造成形するの で、多孔質のセラミック部分に形成された空隙に 金属を容易に充塡させることができ、該空隙に充 塡された金属が該多孔質のセラミック部分の周囲 に配置される金属と強固に結合され、従って、半 径方向に配合の異なる材料を配置した状態でセラ ミックス部分と金属部分とを強固に結合した状態 の結合体に製造することができる。

(実施例)

以下、図面を参照して、この発明による金属と セラミックスの結合体の実施例を説明する。

第1図はこの発明による金属とセラミックスの 結合体の一実施例を示す概略断面図、及び第2図 は第1図の金属とセラミックスの結合体をピスト ンに適用した例を示す概略断面図である。

主として、セラミックスの総密質構造から成る管 まとして、セラミックスの総密質構造から成る管 状即ちループ状の第1部分である内側部分2、体構 内側部分の周囲に配置されて内側部分2と一体構 造の空隊5中に充壌された金属とから成る第2部 分である中間部分3、4、及び該空隊5中の金属 分である中間部分3、4、及び該空隊5中の金属 分である中間部分3、4、及び該第2部分と はである中間部分3、4、との前記第2部分は はななが、4、との一下の を関連である。この特遣になり、相になるには ないる。この先端部分においる。 ないる。この先端部分はなるになるに ないる。この先端部分はなるになるに ないる。この先端部分はなるになるに ないる。この先端部分はになるになるに ないる。この先端部分はになるに ないる。この先端部分はになるに ないる。この先端部分はになるに ないる。この先端部分は、 をできるに ないる。この先端部分は ないる。になた はないた ないる。になるに ないる。になり、 、知便になり、 、知度になり、 、知度にない、 、 、知度にない、 、 造の空隊部 5 に金属が充填され、外側部分 1 は金属から成る構造を有している。

この金属とセラミックスの結合体において、セラミックスは窒化ケイ素(SiaN4)、炭化

に適用した場合に、燃焼室7内の温度が過熱し過ぎることがなく、吸入効率を低下させることもない。

次に、この発明による金属とセラミックスの結合体の製造方法を、第3図及び第4図を参照して説明する。第3図はこの金属とセラミックスの結合体の製造方法を達成するための製造工程を示す 断面図、及び第4図は第3図に引き続く工程を示す す説明図である。

この発明による金属とセラミックスの結合体の製造方法は、主として、第3図に示すように、型10内キャビティ11を径の異なる筒状の仕切の区12、13で仕切ってキャビティ11に複数の区分室2C、3C、4Cに配合比の異なるセラミック造物2Pと粒状金属又は有機物から成る混合物3P、4Pを売填する工程、次いで、第4図に示すように、キャビティ11内のセラミック造粒粉2Pと各種の混合物3P、4Pを同時に

加圧して成形する工程、セラミック造粒粉 2 Pと 混合物 3 P、4 Pの加圧成形体を加熱して粒状金 属 5 P及び有機物を溶出除去する工程、粒状金属 及び前記有機物を溶出除去したセラミックス成形 体を焼成する工程、及び粒状金属又は有機物 5 P を溶出除去によって形成されたセラミックス焼結 体の空隙 5 に金属を充塡しつつ鋳造成形する工程、 から成るものである。

キャピティ11を形成する型10は、円形孔を有する筒状外型15、底面を構成する底型14及びリング状即ちループ状のキャピティ11を形成するように中央部位に配置された柱状内型16によって構成されている。キャピティ11を形成した型10内に設けたガイド(図示せず)に従って外側の筒状の仕切板12と内側の筒状の仕切板13を設置する。勿論、仕切板は、図では2個が示されているが、所望に応じて増加又は減少させることができる。内側の筒状の仕切板13と柱状内型16との間に形成される筒状区分室2Cには、セラミックス造粒粉を密に充塡する。内側の筒状

の仕切板13と外側の筒状の仕切板12との間に 形成される筒状区分室3Cには、セラミックス造 粒粉に少量のアルミニウム粉末又は有機物を混合 させた混合物を充填する。更に、外側の筒状の仕 切板12と筒状外型15との間に形成される筒状 区分室4Cには、少量のセラミックス造粒粉に多 量のアルミニウム粉末又は有機物を混合させた混 合物を充填する。このアルミニウム粉末は、アル ミニウム又はアルミニウム合金から成る。

各区分室 2 C、 3 C、 4 Cにセラミックス、アルミニウム粉末又は有機物を充塡した後、仕切板 1 2、 1 3を型 1 0 から引き抜いて除去する。次いで、下面を所定の形状に構成された筒状の上パンチ 1 7 で混合物を加圧し、該混合物を所定の形状に成形する。図では、混合物はリング状の形体に形成されている。このリング状成形体を、加熱し、アルミニウム粉末又は有機物を溶融除去し、セラミックス加熱成形体を形成する。このセラミックス加熱成形体は、内間部がセラミックスの多孔で質に且つ中間から外間部がセラミックスの多孔

質に形成される。更に、セラミックス加熱成形体 を焼成してセラミックス焼結体を形成する。この セラミックス焼結体の多孔質の空隙に、アルミニ ウム合金等の金属が充填されるように鋳造し、ア ルミニウム合金等の金属とセラミックスの結合体 を形成する。

次に、この発明による金属とセラミックスの結 合体の製造方法について、具体的に説明する。

- 実施例1 -

まず、セラミックスと有機物の混合物の原料として、平均粒径 5 0 μ m程度の窒化ケイ素(Si₂N 4) 造粒粉に、1 0 重量部、平均粒径 5 0 0 μ m程度のポリエチレンワックスを1, 3, 5 重量部配合した各種の配合の混合粉末を製造する。

次いで、第3図に示すように、各区分室2C. 3C、4Cにセラミックス粉末及び上記混合粉末 を、所定量充塡した。この場合に、内間側の区分 室2Cには窒化ケイ素(Si₁N₄) のみから成る粉末 2Pを充塡し、外周になるに従って有機物5Pで あるポリエチレンワックスの量が多くなる組成に して区分室3C, 4Cに充塡した。

次に、第4図に示すように、型10から仕切板 12, 13を抜き取り、上パンチ17をガイド (図示せず)に嵌め、プレス機により、1 ton/cm 2 の圧力をかけることによって成形体を形成した。 この成形体を、最高500℃まで加熱することに よって、ポリエチレンワックスを揮発除去し、こ の部分に空隙を形成した。更に、有機物を揮発除 去したセラミックス成形体を、最高1700でま で加熱焼成し、セラミックス焼結体を製造した、 このセラミックス焼結体は、内周が緻密な窒化ケ イ素(SiaNa)となめ、外周になるに従って多孔質 の窒化ケイ素(Si_zN_a) に形成されたリング状焼結 体を得た。このリング状焼結体を、鋳造機内に配 置し、アルミニウム合金溶湯を鋳込んで、セラミ ックス焼結体の空隙に充填し、これを炉冷後鋳造 機内から取り出し、金属とセラミックスの結合体 を製造した。次いで、この金属とセラミックスの 結合体に対して所定の加工を施し、、例えば、第 2 図に示すように、リエントラントピストンを製

ら取り出し、金属とセラミックスの結合体を製造 した。次いで、この金属とセラミックスの結合体 に対して所定の加工を施し、、例えば、第2図に

示すように、リエントラントピストンを製作した。

このアルミニウム粉末を用いた場合の金属とセラミックスの結合体の製造方法では、アルミニウム分を溶出させた後、セラミックス粒子の表面に残留アルミニウム成分との反応層が形成され、これがアルミニウム合金溶湯とのぬれ性を助長するため、空隊部への付き回りが良好になり、好ましい金属とセラミックスの結合体が製造できた。

(発明の効果)

この発明による金属とセラミックスの結合体及びその製造方法は、以上のように構成したので、 次のような効果を有する。

まず、この金属とセラミックスの結合体は、セラミックスの緻密質構造から成るループ状の第1部分、該第1部分の周囲に配置されて前記第1部分と一体構造であるセラミックスの多孔質構造の空隙ら成る第2部分、該第2部分の多孔質構造の空隙

作した。

- 実施例 2 -

セラミックスと金属粉末の混合物の原料として、 平均粒径 5 0 μm程度の窒化ケイ素(Si₁N₄) 造粒 粉に、1 0 重量部、平均粒径 1 0 0 μm程度のア ルミニウム粉末を1.3.5 重量部配合した各種 の配合の混合粉末を製造する。

次いで、上記実施例と同様の方法で、成形体を 形成した。この成形体を、不活性雰囲気内で最高 1000でまで加熱することによって、アルミニ ウム分を溶出させ、この部分に空隙を形成した。 更に、アルミニウム分を溶出させたセラミック 成形体を、上記実施例と同様の方法で、加熱焼き し、セラミックス焼結体を製造した、このを分類 のクス焼結体は、内周が緻密な窒化ケイ素(SizN 4)となり、外周になるに従って多孔質の途化ケイ素(SizN イ素(SizN4)に形成されたリング状焼結体を得た。 次いで、リング状焼結体を、鋳造機内に配置し、フルミニウム合金溶湯を鋳込んで、セラミッ機内 原結体の空隙に充塡し、これを炉冷後鋳造機内か

中に充填されている金属、及び該金属に結合した金属から成り且つ前記第2部分と一体構造である第3部分から成るので、径方向となるリング状のセラミック部品と金属との強固な結合体を簡単に製作することができる。即ち、第1部分と第2部分とは同一のセラミック材料で強固に結合され、また、第2部分と第3部分とは、第2部分に存在する金属と第3部分との金属とが強固に結合される。それをもして、金属とセラミックスとが強固に結合されることになる。

また、この金属とセラミックスの結合体の製造方法は、型内キャビティを仕切板で仕切って前記キャビティに複数の区分室を形成する工程、前記各区分室に配合比の異なるセラミック造粒粉と粒状金属又は有機物から成る混合物を充塡する工程、前記仕切板を前記型内キャビティから抜き取同時程、前記キャビティ内の各種の前記混合物を制記加圧成形体を成形する工程、前記性を加熱して前記粒状金属又は前記有機物を溶出除去してセラミックス成形体を作る工程、前

記セラミックス成形体を焼成してセラミックス焼結体の ななに金属を充塡しつつ鋳造成形する工程から成るので、多孔質のセラミック部分に形成された空 陳に金属を容易に充塡させることができ、該空隙 に充塡された金属が該多孔質のセラミック部分の 周囲に配置される金属と強固に結合され、従って、 半径方向に配合の異なる材料を配置した状態でセ ラミックス部分と金属部分とを強固に結合した状態の結合体を得ることができる。

しかも、前記加圧成形体を製作するのに、アルミニウム粉末等の粒状金属を用いると、アルミニウム等の金属分を溶出させた後、セラミックス粒子の表面に残留金属成分との反応層が形成され、これが金属溶湯とのぬれ性を助長するため、空隙部への付き回りが良好になり、好ましい金属とセラミックスの結合体が製造できる。

上記のように、この金属とセラミックスの結合 体の製造方法によって、断熱ピストン等のリエン トラントピストンを製作すれば、極めて強度に富 み、耐久性、断熱性、耐熱性に富んだ金属とセラミックスの結合体から成るピストンを製作することができる。

4. 図面の簡単な説明

第1図はこの発明による金属とセラミックスの結合体の一実施例を示す断面図、第2図はこの金属とセラミックスの結合体の製造方法で製作した金属とセラミックスの結合体をピストンに適用した例を示す断面図、第3図はこの金属とセラミックスの結合体の製造方法を達成するための製造工程を示す断面図、及び第4図は第3図に引き続く工程を示す説明図である。

1 ……外側部分、2 ……内側部分、2 C, 3 C 4 C……区分室、2 P……セラミック造粒粉、3, 4 ……中間部分、3 P, 4 P……混合物、5 …… 空除、5 P……粒状金属又は有機物、6 ……先端 部分、7 ……燃焼室、1 0 ……型、1 1 ……キャ ピティ、1 2, 1 3 ……仕切板。

> 出願人 いすゞ自動車株式会社 代理人 弁理士 尾仲 一宗

467 2 **阿**

