আদর্শ গ্যাম ও গতিতত্ত্ব

সূচীপত্ৰ

Basic & Math

All Formula

যে টপিকে যেতে চান সে টপিকে Click করুন

আদর্শ গ্যাম ও গতিতত্ত্ব

Chapter Overview

- 📋 গ্যাসের গতিতত্ত্ব ব্যবহার করে আদর্শ গ্যাসের সূত্র
- 🗀 বয়েল ও চার্লস-এর সূত্র
- 📋 গ্যাসের অণুর মৌলিক স্বীকার্য
- 📋 গ্যাসের গতিতত্ত্বের আলোকে আদর্শ গ্যাসের সূত্র
- 🗀 শক্তির সমবিভাজন নীতি
- 📋 জলীয় বাষ্প ও বায়ুর চাপের মধ্যে সম্পর্ক
- 📋 শিশিরাংক, আপেক্ষিক আর্দ্রতা

গ্যাস কি?

পদার্থের তিনটি অবস্থার একটি অবস্থা হলো গ্যাসীয় অবস্থা। যার নির্দিষ্ট আকার ও আয়তন নেই, যে পাত্রে রাখা হয় তার সবটা ধারণ করে থাকে।

> সংকট তাপমাত্রার ওপরে কোনো পদার্থের বায়বীয় অবস্থার নাম গ্যাস। সংকট তাপমাত্রা = 374°C (পানি)

ভ আদর্শ গ্যাস

যে সকল গ্যাস গ্যাসের গতিতত্ত্বের মৌলিক স্বীকার্য মেনে চলে এবং সকল তাপমাত্রায় ও চাপে বয়েল ও চার্লসের সূত্র যুগাভাবে মেনে চলে তাদের আদর্শ গ্যাস (Ideal Gas) বলে।

গ্যাসের চলরাশি তিনটি। যথা-

- (i) 허প (Pressure), P
- (ii) আয়তন (Volume), V
- (iii) তাপমাত্রা (Temperature), T

মূর্চীপত্রে ফেরত

গ্যাসের আয়তন = পাত্রের আয়তন

পরমাণু/অণু সংখ্যা
$$= \frac{N}{N_A} = \frac{W}{M}$$
 পারমানবিক/আণবিক ভর

১. বয়েলের সূত্র:

1662 সালে রবার্ট বয়েল, তাপমাত্রাকে স্থির রেখে চাপ ও আয়তনের মধ্যে সম্পর্ক স্থাপন করেন।

"তাপমাত্রা স্থির থাকলে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন তার চাপের ব্যস্তানুপাতিক।"

গাণিতিক রূপ:

SINCE 2018

তাপমাত্রা (T) স্থির থাকলে নির্দিষ্ট ভরের চাপ (P) ও আয়তন (V) এর সম্পর্ক:

$$V\alpha \frac{1}{P}$$
 $\Rightarrow V =$ ধ্রুবক $\times \frac{1}{P}$
 $\Rightarrow PV =$ ধ্রুবক

$$\therefore PV = K$$

নির্দিষ্ট ভরের গ্যাসের P_1,P_2,P_3,\ldots,P_n চাপে আয়তন যথাক্রমে V_1,V_2,V_3,\ldots,V_n হলে,

$$P_1V_1 = P_2V_2 = P_3V_3 = \dots = P_nV_n =$$
 ধ্রুবক

মূচীপত্রে ফেরত

সীমাবদ্ধতা:

বয়েলের সূত্র উচ্চ তাপমাত্রায় ও নিম্ন চাপে বিশেষভাবে প্রযোজ্য, কিন্তু নিম্ন তাপমাত্রায় ও উচ্চ চাপে এই সূত্রের বিচ্যুতি দেখা যায়।

গ্রাফ

 $T_3 > T_2 > T_1$

 $\frac{1}{P}$ vs V

APAR'S

 $\frac{1}{V} \uparrow \to T \downarrow$

মূর্চীপত্রে ফেরত

২.চার্লসের সূত্র:

1787 খ্রিষ্টাব্দে বিজ্ঞানী চার্লস, চাপকে অপরিবর্তিত রেখে তাপমাত্রা ও আয়তনের মধ্যে সম্পর্ক স্থাপন করেন।

স্থির চাপে কোনো নির্দিষ্ট ভরের গ্যাসের আয়তন 0° C হতে প্রতি ডিগ্রি সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য 0° C -এর আয়তনের একটি নির্দিষ্ট ভগ্নাংশ $\frac{1}{273}$ অংশ পরিবর্তিত হয়।

গাণিতিক রূপ:

 0° C তাপমাত্রায় গ্যাসের আয়তন V_0

 1° C তাপমাত্রায় গ্যাসের আয়তন $V_0 + \frac{V_0}{273}$

2°C তাপমাত্রায় গ্যাসের আয়তন $V_0 + \frac{2V_0}{273}$

 $\therefore \theta$ °C তাপমাত্রায় গ্যাসের আয়তন $V_0 + rac{V_0 heta}{273}$

 \therefore heta°C তাপমাত্রায় গ্যাসের আয়তন, $V_0+rac{V_0 heta}{273}=V_ heta$ া 1 \otimes

যেখানে, T= পরমশূন্য তাপমাত্রা এখানে, $\frac{V_0}{273}$ constant

$$: V_{\theta} \propto T$$

 $\therefore V \propto T$ [যেখানে, P =constant]

মূর্চীপত্রে ফেরত

গাণিতিক রূপ:

নির্দিষ্ট চাপ ও ভরের কোনো গ্যাসের প্রয়াথমিক আয়তন V_1 ও প্রাথমিক তাপমাত্রা T_1 । এর চূড়ান্ত আয়তন V_2 ও তাপমাত্রা T_2 হলে চার্লসের সূত্রানুসারে,

$$V_1 = kT_1 \dots$$
 (i)

$$V_2 = kT_2 \dots$$
 (ii)

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\therefore \frac{V_1}{V_2} = \frac{T_1}{T_2}$$

নির্দিষ্ট চাপে একটি নির্দিষ্ট ভরের কোনো গ্যাসের আয়তন তার পরম তাপমাত্রার সমানুপাতিক। এটিই পরম স্কেলে চার্লসের সূত্র।

গ্রাফ

i)মমানুপাতিক হলে মূল বিন্দুগার্মী ii)ব্যাস্তানুপাতিক হলে অধিবৃত্ত

$$\Box V_{\theta} = V_0 + \frac{V_0}{273}\theta
\downarrow \downarrow \downarrow \downarrow \downarrow
y = c + mx$$

$$y = mx + c$$

মূর্চীপত্রে ফেরত

অ্যাভোগ্যাডো সূত্র

- শৰ্তৃঃ
- ≻রিদিষ্ট তাপমানায় (T=constant)
- >নিদিষ্ট চাপে (P=constant)

সকল গ্যাসের(একই পরিমান) আয়তন সমান।প্রমান তাপমাত্রা(২৭৩কেলভিন) ও চাপে(১০১৩২৫প্যাসকেল) মোলার গ্যাসের জন্য তা ২২.৪ লিটার।

অনুসিদ্ধান্তঃ

'স্থির চাপে,স্থির তাপমাত্রায় গ্যাসের আয়তন এর মোল পরিমাণের সমানুপাতিক"

 $V_i=$ আদি আয়ত্তন $V_f=$ শেষ আয়ত্তন $n_i=$ আদি মোল $n_f=$ শেষ মোল

গ্যাস এর সমন্বয় সূত্র

বয়েলের সূত্র

$$V \propto \frac{1}{P}$$

T=constant n=constant

চার্লসের সূত্র
$$V \propto T$$

P=constant n=constant

একত্র করে পাই
$$V \propto rac{T}{P}$$

যখন শৰ্ত

n=constant

 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

$$T_2=$$
শেষ তাপমাত্রা

$$P_1$$
 = আদি চাপ

$$P_2 =$$
 শেষ ঢাপ

$$V_1^{2} =$$
 আদি আয়ত্তৰ

$$V_2=$$
 শেষ আয়তন

পরম শূন্য তাপমাত্রা:

যে তাপমাত্রায় কোনো আদর্শ গ্যাসের আয়তন তাত্ত্বিকভাবে শূণ্য হয়ে যায়, তাকে পরমশূন্য তাপমাত্রা বলে।

$$V_{\theta} = V_0 + \frac{V_0 t}{273}$$

পরমশূন্য তাপমাত্রায়, $V_{ heta}=0$

চাপীয় সূত্র:

1842 খ্রিষ্টাব্দে বিজ্ঞানী রেনো, আয়তনকে স্থির রেখে চাপ ও তাপমাত্রার মধ্যে সম্পর্ক স্থাপন করেন।

স্থির আয়তনে কোনো নির্দিষ্ট ভরের গ্যাসের চাপ 0° С হতে প্রতি ডিগ্রি সেলসিয়াস তাপমাত্রা পরিবর্তনের জন্য তার 0° С -এর চাপের একটি নির্দিষ্ট ভগ্নাংশ $\frac{1}{273}$ বা, 0.00366 অংশ পরিবর্তিত হয়।

মূচীপত্রে ফেরত

গাণিতিক রূপ:

 0° C তাপমাত্রায় কোনো আদর্শ গ্যাসের চাপ P

 1° C তাপমাত্রায় কোনো আদর্শ গ্যাসের চাপ $P_0 + rac{P_0}{273}$

 2° ে তাপমাত্রায় কোনো আদর্শ গ্যাসের চাপ $P_0 + rac{P_0 imes 2}{273}$

 $\therefore \theta$ °C তাপমাত্রায় কোনো আদর্শ গ্যাসের চাপ $P_{\gamma} + rac{P_0 heta}{273}$

 $: \theta$ °C তাপমাত্রায় চাপ,

$$P_0 = P_0 + \frac{P_0 \theta}{273}$$

$$= P_0 \left(1 + \frac{\theta}{273} \right)$$

$$= P_0 \left(\frac{273 + \theta}{273} \right)$$

$$=\frac{P_0}{273} \times T$$
 [273 + θ = T]

$$\therefore P_{\theta} = \frac{P_0}{273} \times T$$

$$P_0 = \text{constant} \times T \ [\frac{P_0}{273} = \text{constant}]$$

∴ PaT [যেখানে, V = constant]

স্থির আয়তনে নির্দিষ্ট ভরের গ্যাসের চাপ তার পরম তাপমাত্রার সমানুপাতিক।

i)মমানুপাতিক হলে মূল বিন্দুগার্মী ii)ব্যাস্তানুপাতিক হলে অধিবৃত্ত

 $T \longrightarrow$

যেহেতু,
$$T_3 > T_2 > T_1$$
 তাই, $V_1 > V_2 > V_3$

$$T \uparrow \rightarrow V \uparrow$$

মূর্চীপত্রে ফেরত

আদর্শ গ্যাসের সমীকরণ:

বয়েলের সূত্র, $P \propto \frac{1}{V}$; T= constant চার্লসের সূত্র, $V \propto T$; P= constant রেনোর চাপীয় সূত্র, $P\alpha T$; V= constant

$$PV = kT$$

$$\frac{PV}{T} = k$$

$$PV = kT$$

$$PV = RT$$

[ধ্রুবক k এর বদলে মোলার গ্যাস ধ্রুবক Rবসিয়ে পাই]

যদি m ভরের গ্যাস নেওয়া হয় যার আয়তন V এবং আণবিক ভর M হয়, তবে,

$$extbf{PV} = rac{ extbf{m}}{ extbf{M}} rac{ extbf{R} extbf{I} extbf{N} extbf{C} extbf{E}}{ extbf{M}} 2018$$
 $extbf{PV} = extbf{n} extbf{R} extbf{T} \qquad [rac{m}{M} = n = extbf{C} extbf{M} = n = extbf{N} extbf{M}]$

এটিই আদর্শ গ্যাস সমীকরণ।

- । যে সকল গ্যাস সকল তাপমাত্রা ও চাপে PV=nRT সূত্র মেনে চলে তাদের আদর্শ গ্যাস বলে।
- বাস্তবে আদর্শ গ্যাসের কোনো অস্তিত্ব নেই।
- উচ্চ তাপমাত্রা ও নিম্নচাপে বাস্তব গ্যাস আদর্শ গ্যাসের ন্যায় আচরণ করে।

গ্যাসের ঘনত্বের সমীকরণ (Equation of density of a gas)

ধরা যাক T_1K পরম তাপমাত্রায় m ভরের কোনো গ্যাসের আয়তন V_1 , চাপ P_1 ও ঘনত্ব ρ_1 এবং T_2K পরম তাপমাত্রায় তার আয়তন V_2 , চাপ P_2 ও ঘনত্ব ρ_2 । গ্যাসটি তার অবস্থার সমীকরণ মেনে চললে,

$$\begin{split} \frac{P_1 V_1}{T_1} &= \frac{P_2 V_2}{T_2} \\ \text{অর্থাৎ, } \frac{P_1}{T_1} \cdot \frac{m}{\rho_1} &= \frac{P_2}{T_2} \cdot \frac{m}{\rho_2} \quad \left[\because P_1 = \frac{m}{V_1} \text{ এবং } P_2 = \frac{m}{V_2} \right] \\ \therefore \frac{P_1}{\rho_1 T_1} &= \frac{P_2}{\rho_2 T_2} = \text{ একটি ধ্রুবক} \end{split}$$

এটিও (আদর্শ) গ্যাসের অবস্থার সমীকরণ নির্দেশ করে। এ সমীকরণ অনুসারে, (ক) $P_1=P_2$ হলে, $\rho_1T_1=\rho_2T_2$

$$\therefore \frac{\rho_1}{\rho_2} = \frac{T_2}{T_1}$$

সুতরাং, স্থির চাপে একটি নির্দিষ্ট ভরের কোনো গ্যাসের ঘনত্ব তার পরম তাপমাত্রার ব্যস্তানুপাতিক।

(খ)
$$T_1 = T_2$$
 হলে, $\frac{P_1}{P_2} = \frac{\rho_1}{\rho_2}$

স্থির তাপমাত্রায় একটি নির্দিষ্ট ভরের কোনো গ্যাসের চাপ তার ঘনত্বের সমানুপাতিক।

আদর্শ গ্যাম মূত্র এর ব্যবহার

গ্যাসের ঘনত্ব নির্ণয়ে-

$$PV = nRT$$

$$\to PV = \frac{W}{M}RT$$

$$\to PM = \frac{W}{V}RT$$

$$\rightarrow PM = dRT$$

$$d = \frac{PM}{RT}$$

গ্যাসের আণবিক ভর নির্ণয়ে-

$$PV = nRT$$

$$\rightarrow PV = \frac{W}{M}RT$$

$$M = \frac{WRT}{PV}$$

SINCE 2018

সার্বজনীন গ্যাস ধ্রুবক:

এক মোল আদর্শ গ্যাসের তাপমাত্রা এক ডিগ্রি বাড়ালে তা যে পরিমাণ কাজ সম্পন্ন করে তাকে সার্বজনীন গ্যাস ধ্রুবক বলে। একে R দ্বারা প্রকাশ করা হয়।

যেহেতু,
$$PV = nRT$$

$$R = \frac{PV}{nT}$$

R এর একক $\stackrel{n_1}{\rightarrow} JK^{-1} \text{ mol}^{-1}$

S.I পদ্ধতি মান \rightarrow R = 8.314JK⁻¹ mol⁻¹

প্রমাণ তাপমাত্রা:

যে তাপমাত্রায় ও প্রমাণ চাপে বরফ গলে পানি বা পানি জমে বরফে পরিণত হয়। STP তে ightarrow 273~K~ (অথবা 0° C) প্রমাণ চাপ $ightarrow 1.013 imes 10^5~Pa~$ (45^{0} অক্ষাংশে 760~mm পারদ চাপ)

গ্যাসের গতিতত্ত্বের মৌলিক স্বীকার্যসমূহ:

- ✓ ১৮৫৭ সালে ক্লসিয়াস প্রথম এই স্বীকার্যগুলো বর্ণনা করেন। স্বীকার্যগুলো হল-
- ১. সকল গ্যাস অণুর সমন্বয়ে গঠিত। একটি গ্যাসের সকল অণু সদৃশ এবং একটি গ্যাসের অণু অন্য গ্যাসের অণু থেকে ভিন্ন।
- ২. গ্যাসের অণুগুলোর আকার অণুগুলোর মধ্যবর্তী দূরত্বের তুলনায় নগণ্য।
- ৩. গ্যাসের অণুগুলো বিন্দু ভরের কঠিন স্থিতিস্থাপক গোলক বিশেষ এবং অণুগুলোর নিজেদের মধ্যে কোন আকর্ষণ বা বিকর্ষণ বল নেই অথবা আবদ্ধ পাত্রের দেয়ালের উপর কোন বল প্রয়োগ করে না। এদের শক্তি সম্পূর্ণটাই গতিশক্তি।
- ৪. গ্যাসের অণুগুলো অক্রম বা এলোমেলো গতিতে সতত গতিশীল এবং এরা নিউটনের গতিসূত্রসমূহ মেনে চলে। অণুগুলো সকল দিকে গতিশীল এবং এদের বেগের মান বিভিন্ন এবং শূন্য থেকে অসীম পর্যন্ত হতে পারে এবং গতি সব দিকে বিস্তৃত।
- ৫. অণুগুলো একে অপরের সাথে এবং আধারের দেয়ালের সাথে সংঘর্ষে লিপ্ত হচ্ছে। দুটি
 সংঘর্ষের মধ্যবর্তী সময়ে একটি অণু সরলরেখায় চলে। দুটি সংঘর্ষের মধ্যবর্তী সময়ে
 একটি অণু যে দূরত্ব অতিক্রম করে তাকে মুক্ত পথ বলে।
- ৬. একটি সংঘর্ষে যে সময় ব্যয় হয় তা দুটি সংঘর্ষের মধ্যবর্তী সময়ের তুলনায় নগন্য অর্থাৎ ধাক্কাগুলো তাৎক্ষণিক।
- ৭. সংঘর্ষগুলো সম্পূর্ণরূপে স্থিতিস্থাপক অর্থাৎ সংঘর্ষের পূর্বে এবং পরে এদের ভরবেগ ও গতিশক্তি সংরক্ষিত থাকে।
- ৮. গ্যাসের অনুগুলো অনবরত ধাক্কায় লিপ্ত থাকলেও একক ঘন আয়তনে অণুর সংখ্যা স্থির থাকে। অর্থাৎ আদর্শ গ্যাসের আণবিক ঘনত্ব স্থির থাকে।
- ৯. গ্যাসের পরম তাপমাত্রা অণুগুলোর মোট গতিশক্তির সমানুপাতিক।
- ১০. গ্যাসের অণুগুলো আধারের সমগ্র আয়তনে মুক্তভাবে বিচরণক্ষম।

গ্যামের গতিতত্ত্বের সূত্র

PV \propto গ্যাসের মোট ভর PV \propto (গ্যাসের বেগ) $^{>}$

একত্র করে,

গ্যাসের আয়তন

PV \propto গ্যাসের মোট ভর \times (গ্যাসের বেগ) $^{>}$

আমরা জানি,
$$E_K = \frac{3}{2}nRT$$

একটি অণুর জন্য N=1 , $\therefore n=rac{N}{N_A}=rac{1}{N_A}$

$$\therefore E_K = \frac{3}{2} \frac{1}{N_A} RT \qquad E_K = \frac{3}{2} KT$$

গ্যাসের চাপ $oldsymbol{P}$ এবং আয়তন $oldsymbol{V}$ হলে ঐ গ্যাসের অণুগুলোর মোট গতিশক্তি

$$E = \frac{3}{2}PV$$

বর্গমূল গড় বর্গবেগ c_{rms}

$$c_{rms} = \sqrt{\frac{c_1^2 + c_2^2 + c_3^2 + c_4^2 + c_5^2 + c_6^2 + \dots }{N}}$$
root mean square

$$c_{rms} = \sqrt{\frac{3PV}{W}} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3KT}{m}}$$

$$PV = \frac{1}{3} \text{mN}(Crms)^{2} \qquad \Rightarrow c_{rms} = \sqrt{\frac{3PV}{mN}} \qquad \Rightarrow c_{rms} = \sqrt{\frac{3PV}{W}}$$

$$c_{rms} = \sqrt{\frac{3PV}{W}} \qquad \Rightarrow c_{rms} = \sqrt{\frac{3nRT}{W}} \qquad \Rightarrow c_{rms} = \sqrt{\frac{3nRT}{M}}$$

$$c_{rms} = \sqrt{\frac{3RT}{M}}$$

$$K=$$
 বোল্টজম্যান ধ্রুবক $=rac{R}{N_A}=1.38 imes 10^{-23} Jmolecule^{-1} K^{-1}$

P= গ্যাসের চাপ (S.I. এককে নিতে হবে)

V= গ্যাসের আয়তন (S.I. এককে নিতে হবে)

W= গ্যাসের নমুনার মোট ভর (S.I. এককে নিতে হবে)

 $M = \eta$ ্যাসের আণবিক ভর (S.I. এককে নিতে হবে)

R = মোলার গ্যাস ধ্রুবক $= 8.314 \ Imol^{-1}K^{-1}$

T= গ্যাসের তাপমাত্রা (S.I. এককে নিতে হবে)

গড় মুক্তপথ:

- ্র অণুগুলোর পরপর দুটো সংঘর্ষের মধ্যবর্তী গড় দূরত্বকে গড় মুক্তপথ বলে। $\lambda_{\mathrm{mean}} = \frac{\lambda_1 + \lambda_2 + \lambda_3 + \cdots \lambda_n}{n}$ যেখানে, $n = \mathrm{Ne}(\lambda_1)$
- $oxed{\square}$ গড় মুক্তপথ, $oldsymbol{\lambda}=rac{1}{\pi a^2 n}$ ক্লসিয়াসের সমীকরণ
- $oxedsymbol{\square}$ গড় মুক্তপথ, $oldsymbol{\lambda}=rac{1}{\sqrt{2\pi a^2 n}}$ ম্যাক্সওয়েলের সমীকরণ
- oxdot গড় মুক্তপথ, $oldsymbol{\lambda}=rac{3}{4\pi a^2 n}$ বোলজম্যানের সমীকরণ

নির্ভরশীলতা

গড় মুক্তপথ একক আয়তনের অণুর সংখ্যার ব্যাস্তানুপাতিক এবং আণবিক ব্যাসের বর্গের ব্যাস্তানুপাতিক।

গড় মুক্তপথ গ্যাসের <mark>ঘনত্বের ব্যান্তানুপাতিক।</mark>

গড় মুক্ত পথের নির্ভরশীলতা Dependence of mean free path:

গড় মুক্ত পথের সমীকরণ, $\lambda=rac{1}{\pi a^2 n}$ হতে দেখা যাচ্ছে-

- (i) $\lambda \propto \frac{1}{n}$; অর্থাৎ গড় মুক্ত পথ একক আয়তনে অণুর সংখ্যার ব্যস্তানুপাতিক।
- (ii) $\lambda \propto \frac{1}{a^2}$; অর্থাৎ গড় মুক্ত পথ অণুর ব্যাসের বর্গের ব্যস্তানুপাতিক। গ্যাস অণুগুলির ব্যাস যত ছোট হবে, গড় মুক্ত পথ তত বেশি হবে। আবার, গ্যাসের ঘনত্ব ρ একক আয়তনে অণুর সংখ্যা n -এর সমানুপাতিক। কিন্তু গ্যাসের ঘনত্ব গ্যাসের চাপের সমানুপাতিক এবং তাপমাত্রার ব্যস্তানুপাতিক। যেহেতু মুক্ত গড় পথ, $\lambda \propto \frac{1}{n}$, অতএব মুক্ত গড় পথ গ্যাসের চাপের ব্যস্তানুপাতিক এবং তাপমাত্রার সমানুপাতিক।
- (i) শূন্য মাধ্যমে ho=0। অতএব গড় মুক্ত পথ $=\infty$ ।

স্বাধীনতার মাত্রা (Degrees of freedom):

একটি বস্তুর গতিশীল অবস্থা (state) বা অবস্থান (position) সম্পূর্ণরূপে প্রকাশ করার জন্য যত সংখ্যক স্বাধীন চলরাশির প্রয়োজন হয় তাকে স্বাধীনতার মাত্রা বলে।

একটি এক পারমাণবিক গ্যাস অণুর তিনটি স্বাধীনতার মাত্রা আছে। একটি দ্বিপারমাণবিক গ্যাস অণুর স্বাধীনতার মাত্রা সংখ্যা পাঁচ- তিনটি হলো রৈখিক গতির জন্য এবং দুটি হলো ঘূর্ণন গতির জন্য।

শক্তির সমবিভাজন নীতি:

কোনো গতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বণ্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ $=\frac{1}{2}kT$ । এখন আমরা এই সূত্রটিকে গ্যাস অণুর ক্ষেত্রে প্রয়োগ করব। আমরা জানি, এক পারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 3। অতএব এই সূত্র অনুযায়ী একটি অণুর গড়শক্তি $\frac{3}{2}kT$ । দ্বিপারমাণবিক গ্যাসের একটি অণুর স্বাধীনতার মাত্রা 5, অতএব প্রতিটি অণুর গড়শক্তি $\frac{5}{2}kT$ । ত্রিপারমাণবিক গ্যাসের অণুর গড়শক্তি $\frac{6}{2}kT$ । এখানে $\mathbf{k}=$ বোল্টজম্যানের ধ্রুবক। CO_2 ত্রিপরমাণুক হলেও এর স্বাধীনতার মাত্রা 5 কারণ এর আকৃতি সরলরৈখিক।

গ্যাস	স্বাধীনতার মাত্রা	$\gamma(\pmb{C_p} \circ \pmb{C_v}$ -এর অনুপাত $)$	গড়শক্তি সমীকরণ
এক পরমাণুক গ্যাস	3	1.67	গড়শক্তি $=rac{3}{2}kT$
দ্বি-পরমাণুক গ্যাস	5	1.40	গড়শক্তি $=rac{5}{2}kT$
ত্রি-পরমাণুক গ্যাস	6	1.33	গড়শক্তি $=rac{6}{2}kT$

[ইসহাক + তপন স্যার]

বাষ্প ও গ্যাস

সকল বাষ্পই সংকট তাপমাত্রার উপরে গ্যাস আবার সকল গ্যাস সংকট তাপমাত্রার নিচে বাষ্প। বিভিন্ন পদার্থের জন্য সংকট তাপমাত্রার মান বিভিন্ন। যেমন- পানির সংকট তাপমাত্রার মান 374°C বা 647 K অর্থাৎ সর্বোচ্চ 647 K তাপমাত্রা পর্যন্ত পানি তরল অবস্থায় থাকতে পারে। আবার অ্যামোনিয়ার সংকট তাপমাত্রার মান 132°C বা 405K।

- > পানির হিমায় বা 0°C বা 273.15 K এবং অ্যামোনিয়ার হিমায় -77.73°C বা 195.27 K
- কোনো স্থানে পানির উৎসের উপস্থিতি, অক্ষাংশ, সমুদ্রপৃষ্ঠ হতে তার অবস্থান প্রভৃতির উপর বায়ুমন্ডলের জলীয় বাপ্পের পরিমাণ নির্ভর করে।
- > জলীয় বাষ্পের পরিমাণ যতবেশি হবে তার চাপ ও তত বেশি হবে।
- > সম্পৃক্ত ও অসম্পৃক্ত বাষ্পের পার্থক্য

সম্পৃক্ত বাষ্প	অসম্পৃক্ত বাষ্প	
১. কোন নির্দিষ্ট তাপমাত্রায় কোন আবদ্ধ স্থান যখন সর্বোচ্চ পরিমাণ বাষ্প ধারণ করে তখন এ বাষ্পকে সম্পৃক্ত বাষ্প বলে।	১. একটি নির্দিষ্ট তাপমাত্রায় কোন স্থানে বাষ্পের পরিমাণ যদি এমন হয় যে তা আরো অতিরিক্ত বাষ্প ধারণ করতে পারে তবে ঐ বাষ্পকে অসম্পৃক্ত বাষ্প বলে।	
২. সম্পৃক্ত বাষ্প সর্বাধিক চাপ প্রয়োগ করে।	২. অসম্পৃক্ত বাষ্প চাপ সম্পৃক্ত বাষ্প চাপের চেয়ে কম হয়।	
৩. এটি আবদ্ধ স্থানে তৈরী করা যায়।	৩. এটি আবদ্ধ বা খোলা যেকোন স্থানে তৈরী হতে পারে।	
8. যদি কোন আবদ্ধ স্থানের তরল পদার্থের সংস্পর্শে কিছু বাষ্প থাকে তবে ঐ বাষ্প সম্পৃক্ত বাষ্প। ৫. সম্পৃক্ত বাষ্প চার্লস ও বয়েলের সূত্র	8. যদি কোন আবদ্ধ স্থানে কিছু বাষ্প থাকে কিন্তু কোন তরল না থাকে তবে ঐ বাষ্প সম্পৃক্ত বা অসম্পৃক্ত হতে পারে। ঐ স্থানের আয়তন কমালে যদি কিছু বাষ্প তরলে পরিণত হয় তবে তা সদ্য সম্পৃক্ত। ৫. অসম্পৃক্ত বাষ্প চার্লস ও বয়েলের সূত্র	
মানে না।	INCE 2(মনে চলে।	
৬. সম্পৃক্ত বাষ্পের সংস্পর্শে যথেষ্ট তরল পদার্থ না থাকলে স্থির তাপমাত্রায় ঐ বাষ্পের আয়তন বৃদ্ধি করলে তরল পদার্থ বাষ্পীভূত হবার পর ঐ স্থান অসম্পৃক্ত হবে ।	৬. একটি নির্দিষ্ট বাষ্পের তাপমাত্রা স্থির রেখে তার আয়তন ক্রমাগত কমাতে থাকলে এক সময় এ স্থান সম্পৃক্ত হবে।	
৭. তাপমাত্রা বৃদ্ধি করে নির্দিষ্ট পরিমাণ সম্পৃক্ত বাষ্পকে অসম্পৃক্ত বাষ্পে পরিণত করা যায়।	৭. তাপমাত্রা কমিয়ে একটি নির্দিষ্ট পরিমাণ অসম্পৃক্ত বাষ্পকে সম্পৃক্ত বাষ্পে পরিণত করা যায় ।	
৮. সম্পৃক্ত বাষ্প তরলের সংস্পর্ণে সাম্যাবস্থায় থাকতে পারে।	৮. অসম্পৃক্ত বাষ্প তরলের সংস্পর্শে সাম্যাবস্থায় থাকতে পারে না।	

[Ref: তপন স্যার]

সম্পুক্ত বাষ্প চাপের উপর তাপমাত্রা, আয়তন ও তরলের প্রকৃতির প্রভাব

- ক. তাপমাত্রা: তাপমাত্রা বৃদ্ধি পেলে সম্পুক্ত বাষ্প চাপ বৃদ্ধি পায়।
- খ. আয়তন: সম্পৃক্ত বাষ্পচাপ গ্যাসের আয়তনের উপর নির্ভর করে না।
- গ. তরলের প্রকৃতি: বিভিন্ন তরলের সম্পৃক্ত বাষ্পচাপ বিভিন্ন হয়।
- সম্পৃক্ত বাষ্পচাপের তালিকা তৈরী করেন- বিজ্ঞানী রেনো
- বাষ্প ঘনত্বের একক গ্রাম/ঘনমিটার।

আর্দ্রতা:

বাতাসের উপস্থিতিতে জলীয়বাপ্পের পরিমাপকে আর্দ্রতা বলে।

আপেক্ষিক আর্দ্রতা:

SINCE 2018

নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট আয়তনের বায়ুতে উপস্থিত জলীয়বাষ্প এবং ঐ তাপমাত্রায় ঐ আয়তনে জলীয়বাষ্প ধারণ ক্ষমতার অনুপাতকে আপেক্ষিক আর্দ্রতা বলে।

আপেক্ষিক আর্দ্রতা = উপস্থিত জলীয়বাপ্পের পরিমাণ জলীয় বাম্পের ধারণক্ষমতা

 $R_{H} = \frac{content}{capacity} \times 100\%$

পরম আর্দ্রতা :

কোনো সময়ে কোনো স্থানের একক আয়তনের বায়ুতে যে পরিমাণ জলীয় বাষ্প থাকে তাকে ঐ বায়ুর পরম আর্দ্রতা বলে।

শিশিরাংক:

যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু তার ভিতরের জলীয় বাষ্প দ্বারা সম্পৃক্ত হয়, সেই তাপমাত্রাকে ঐ বায়ুর শিশিরাংক বলে।

আপেক্ষিক আর্দ্রতা $R=\dfrac{$ শিশিরাংকে সম্পৃক্ত জলীয় বাষ্পের চাপ $}{$ বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পের চাপ $\therefore R=\dfrac{f}{F} imes 100\%$

- 🔪 মেঘাচ্ছন্ন রাতে অপেক্ষা মেঘাচ্ছন্ন রাত্রি শিশির জমার জন্য সহায়ক।
- > বর্ষার দিন অপেক্ষা শীতকালে ভিজা কাপড় তাড়াতাড়ি শুকায়।
- > গরমের দিনে কুকুরের জিহ্বা বের করে দৌড়ায়।
- ঘর্মাক্ত দেহে পাখার বাতাস লাগলে আরাম অনুভূত হয়।

SINCE 2018

হাইগ্রোমিটার:

বায়ুর আপেক্ষিক আর্দ্রতা নির্ণয়ের জন্য যে যন্ত্র ব্যবহার করা হয় তাকে আর্দ্রতামান যন্ত্র বা হাইগ্রোমিটার বলে।

 $heta_1 - heta = G(heta_1 - heta_2)$ যেখানে, $heta_1 =$ শুষ্ক বাল্বের তাপমাত্রা $heta_2 =$ সিক্ত বাল্বের তাপমাত্রা heta = শিশিরাংক heta = গ্লেইসারের উৎপাদক

থার্মোমিটার দুইটি পার্থক্যের সাথে আবহাওয়ার পূর্বাবাস:

থার্মোমিটারে পাঠের ব্যবধান	আবহাওয়া
১. বেশি হলে	শুক্ত
২. কম হলে	আর্দ্র
৩. ধীরে ধীরে কমলে	বৃষ্টি হওয়ার সম্ভাবনা
৪. হঠাৎ কমে গেলে	ঝড় হওয়ার সম্ভাবনা

- > বিজ্ঞানী বার্নোলিকে বলা হয় গ্যাস গতিতত্ত্বের জনক।
- >গতিতত্ত্ব অনুসারে আদর্শ গ্যাসের চাপের সমীকরণ:

$$P = \frac{1}{3} \frac{M}{V} C^2$$
$$= \frac{1}{3} \rho C^2$$

- > গ্যাসের চাপ একক আয়তনের গতিশক্তির দুই-তৃতীয়াংশ। $P=rac{2}{3}rac{E}{V}$
- > ভ্যানডার ওয়ালসের সমীকরণ:

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$

ightarrow গতিশক্তি $E=rac{3}{2}kT$

[এখানে k হলো বোলজম্যান ধ্রুবক যার মান $1.38 \times 10^{-23} \, J K^{-1}$] $\therefore n$ সংখ্যক অণুর গড় গতিশক্তি $E=\frac{3}{2}nkT$

💙 ব্রাউনির গতির আবিষ্কারক আইনস্টাইন।

গাণিতিক উদাহরণ

স্বাভাবিক তাপমাত্রা ও চাপে কিছু শুষ্ক বায়ু সংনমিত প্রক্রিয়ায় সংনমিত করে এর আয়তন অর্ধেক করা হলো। চূড়ান্ত চাপ নির্ণয় কর। [য. বো. ২০০৯; কু. বো. ২০০১]

Solution

আমরা জানি,

$$P_1V_1 = P_2V_2$$

$$\exists 1, P_2V_2 = P_1V_1$$

$$\exists 1, P_2 = \frac{V_1}{V_2}P_1 = \frac{2V_2}{V_2}P_1$$

$$= 2P_1 = 2 \times 1.013 \times 10^5 \text{Nm}^{-2}$$

$$= 2.026 \times 10^5 Nm^{-2}$$

2

0.64m পারদ স্তম্ভ চাপে এবং 39° ে তাপমাত্রায় কোনো গ্যাসের আয়তন $5.7 \times 10^{-4} \ m^3$; প্রমাণ তাপমাত্রায় গ্যাসের আয়তন কত?

Solution

আমরা পাই,
$$\frac{P_1V_1}{P_1} = \frac{P_1}{P_1}$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$7, \frac{0.64 \times 5.7 \times 10^{-4}}{312} = \frac{0.76 \times V_2}{273}$$

এখানে,

$$P_1 = 0.64 \text{ m}$$

SINCE 2018

$$V_1 = 5.7 \times 10^{-1} \text{ m}^3$$

$$T_1 = 39$$
°C = $(39 + 273)$ K = 312 K প্রমাণ চাপ ও তাপমাত্রা,

$$P_2 = 0.76 \text{ m}$$

$$T_2 = 273 \text{ K}$$

$$V_{2} = ?$$

কোনো হ্রদের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের ব্যাস দ্বিগুণ হয়। হ্রদের পৃষ্ঠে বায়ুমণ্ডলের চাপ স্বাভাবিক বায়ুমণ্ডলীয় চাপের সমান এবং হ্রদের তাপমাত্রা ধ্রুবক হলে হ্রদের গভীরতা কত?

[ঢা. বো. ২০১৮, ২০০৫; রা. বো. ২০১৮, ২০১১, ২০০৭; য. বো. ২০১৮, ২০০৯; সি. বো. ২০১৮; দি. বো. ২০১৮, ২০০৯; চ. বো. ২০০৮; Admission Test: KUET 2004-05; RUET 2009-10; CUET 2013-14]

Solution

আমরা জানি.

$$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4\pi}{6}d^3 = Kd^3$$

$$\therefore V_1 = Kd_1^3$$

এবং
$$V_2 = Kd_2^3 = K(2d_1)^3 : d_2 = 2d_1$$

= $8Kd_1^3 = 8V$

সূতরাং ব্যাস দ্বিগুণ হলে আয়তন ৪ গুণ হবে।

মনে করি, হ্রদের তলদেশে চাপ $=P_1$, এবং হ্রদের পৃষ্ঠে চাপ $=P_2$ $\therefore P_1=P_2+h\rho g$

আমরা জানি,
$$P_1V_1 = P_2V_2$$

বা, $(P_2 + h\rho g)V = P_2 V_2 = P_2 \times 8V$

বা,
$$h\rho g = 8P_2 - P_2 = 7P_2$$

$$\therefore h = \frac{7P_2}{\rho g} = \frac{7 \times 1.013 \times 10^5}{1 \times 10^3 \times 9.8} = 72.36 \text{ m}$$

M.C.Q Tricks:

$$\mathbf{h} = (\mathbf{n} - \mathbf{1}) imes \mathbf{10.2}$$

যেখানে, $n =$ বুদবুদের আয়তন

একটি ট্যাঙ্কে 27° ে তাপমাত্রায় ও 2 বায়ুমণ্ডলীয় চাপে 1660 লিটার অক্সিজেন আছে। ট্যাঙ্কে অক্সিজেনের ভর নির্ণয় কর। [অক্সিজেনের আণবিক ভর $= 32~kg~K~mol^{-1}$, বায়ুমন্ডলীয় চাপ $= 1.013 \times 10^5~Pa$ ও $R=8314 Jkmol^{-1}~K^{-1}$]

Solution

ধরি, অক্সিজেনের ভর = mআমরা পাই, $m = M\left(\frac{PV}{RT}\right)$ $\therefore m = \frac{32 \times (2 \times 1.013 \times 10^5 \times 1660 \times 10^{-3})}{8314 \times 300}$ = 4.3 kg

এখানে, T = (273 + 27)K = 300 K $M = 32 \text{ kgKmol}^{-1}$ $R = 8314 \text{Jkmol}^{-1} \text{ K}^{-1}$ $P = 2 \times 1.013 \times 10^5 \text{ Pa}$ V = 1660 লিটার $= 1660 \times 10^{-3} \text{ m}^3$

একটি সিলিন্ডারে রক্ষিত অক্সিজেন গ্যাসের আয়তন $1\times 10^{-2}~m^3$ ও তাপমাত্রা 300K এবং চাপ $2.5\times 10^5~Nm^{-2}$ । তাপমাত্রা স্থির রেখে কিছু অক্সিজেন বের করে নেয়া হলো। ফলে চাপ কমে $1.3\times 10^5~Nm^{-2}$ হলো। ব্যবহৃত অক্সিজেনের ভর নির্ণয় কর।

[CUET Admission Test, 2007-08]

Solution

আমরা জানি,

$$V_2 = \frac{P_1 V_1}{P_2}$$

$$= \frac{2.5 \times 10^5 \times 1 \times 10^{-2}}{1.3 \times 10^5}$$

$$= 1.923 \times 10^{-2} m^3$$

এখানে,

$$V_1 = 1 \times 10^{-2} \text{ m}^3$$
 $P_1 = 2.5 \times 10^5 \text{Nm}^{-2}$
 $P_2 = 1.3 \times 10^5 \text{Nm}^{-2}$
অক্সিজেনের আণবিক ভর,
 $M = 32 \text{ kgKmole}^{-1}$

SINCE 2018

আবার,

$$\Delta V = V_2 - V_1 = 1.923 \times 10^{-2} - 1 \times 10^{-2}$$
$$= 0.923 \times 10^{-2} = 9.23 \times 10^{-3} \text{ m}^3$$

এবং, m =
$$\frac{\text{MP}\Delta V}{\text{RT}}$$
 = $\frac{32 \times 2.5 \times 10^5 \times 9.23 \times 10^{-3}}{8.31 \times 300}$
= 29.6 kg

কোনো হ্রদের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের আয়তন পাঁচগুণ হয়। বায়ুমণ্ডলের চাপ $10^5\ Nm^{-2}$ হলে হ্রদের গভীরতা কত?

Solution

ধরি, হ্রদের তলদেশে মোট চাপ $=P_1$ পানির ঘনত্ব $=\rho$ পানির উপরিতলে বায়ুর চাপ $=P_2$ হ্রদের তলদেশে বুদবুদের আয়তন $=V_1=V$ পানির উপরিতলে বুদবুদের আয়তন $=V_2=5V$ এখানে, $P_1=P_2+\mathrm{h}\rho g$ আমরা জানি, $P_1V_1=P_2V_2$ বা, $(P_2+h\rho g)V=P_2\times 5V$ বা, $4P_2=h\rho g$ বা, $h\rho g=4P_2$

এখানে, $P_2 = 10^5 \text{Nm}^{-2}$ $g = 9.8 \text{ ms}^{-2}$ $\rho = 1000 \text{kgm}^{-3}$

কোন হ্রদের তলদেশ থেকে পানির উপরিতলে আসায় একটি বায়ু বুদবুদের ব্যাস দিগুণ হয়। হ্রদের পৃষ্ঠে বায়ুমণ্ডলের চাপ স্বাভাবিক বায়ুমন্ডলীয় চাপের সমান হলে এবং হ্রদের পানির উষ্ণতা ধ্রুবক হলে হ্রদের গভীরতা নির্ণয় কর।

[Admission Test : CUET 2013-14; RUET 2015-16]

Solution

আমরা জানি,

বা, $P_1V_1 = P_2V_2$

বা, $(P_2 + h\rho g)V_1 = P_2 \times 8V_1$

বা, $h\rho g = 7P_2$

বা, $h = \frac{7 \times 1.013 \times 10^5}{9.8 \times 10^3} = 72.36 \text{ m}$

8

 100° তাপমাত্রায় 20~g অক্সিজেন একটি 20~cm দৈর্ঘ্যের ঘনককে পূর্ণ করে। এক মোল অক্সিজেনর ভর 32~g। ঘনকের অভ্যন্তরে অক্সিজেনের চাপ কত?

Solution

আমরা জানি,

$$PV = nRT$$

$$\therefore P = \frac{nRT}{V} = \frac{mRT}{MV}$$
$$= \frac{20 \times 8.31 \times 373}{32 \times (0.2)^3}$$

$$= 242.16 \text{ Nm}^{-2}$$

এখানে.

অক্সিজেনের ভর, m=20~g

অক্সিজেনের আণবিক ভর, $M=32\ gm$

 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$

 $V = (20 \text{ cm})^3 = (0.2 \text{ m})^3$

T = 100 + 273 = 373 K

চাপ, *P* =?

যদি $R=8.31\,JK^{-1}\,mol^{-1}\,$ হয় তবে $72\,cm$ পারদ চাপে এবং 27° ে তাপমাত্রায় $20\,g$ অক্সিজেনের আয়তন নির্ণয় কর।

Solution

আমরা জানি,
$$PV = nRT$$
বা, $PV = \frac{m}{M}RT$
বা, $V = \frac{mRT}{PM}$

$$= \frac{20 \times 10^{-3} \times 8.31 \times 300}{72 \times 10^{-2} \times 13.6 \times 10^{3} \times 9.8 \times 32 \times 10^{-3}}$$

$$= 0.0162369$$

$$= 16.24 \times 10^{-3} m^{3}$$

এখানে,

$$m = 20 \text{ g} = 20 \times 10^{-3} \text{ kg}$$

 $M = 32 \times 10^{-3} \text{ kgmol}^{-1}$
 $R = 8.31 \text{JK}^{-1} \text{mol}^{-1}$
 $T = (27 + 273) = 300 \text{ K}$
 $h = 72 \text{ cm} = 72 \times 10^{-2} \text{ m}$
 $P = h\rho g$
 $= 72 \times 10^{-2} \times 13.6 \times 10^3 \times 9.8 \text{Nm}^{-2}$
 $V = ?$

SINCE 2018

10

 $18\ g$ হিলিয়াম গ্যাসপূর্ণ একটি বেলুনের আয়তন $0.10\ m^3$ । বেলুনের ভেতরে গ্যাসের চাপ $1.2 \times 10^5\ Nm^{-2}$ । বেলুনের মধ্যবর্তী গ্যাসের তাপমাত্রা কত?

Solution

আমরা জানি,
$$PV = nRT$$

$$\therefore T = \frac{PV}{nR}$$

$$= \frac{1.2 \times 10^5 \times 0.10}{4.5 \times 8.31}$$

$$= 320.9 K$$

এখানে,

$$M = 4 g$$

 $m = 18 g$
 $= \frac{m}{M} = \frac{18}{4} = 4.5$
 $P = 1.2 \times 10^5 \text{Nm}^{-2}$
 $R = 8.31 \text{JK}^{-1} \text{mol}^{-1}$
 $T = ?$

Concept:

ি কোনো সিস্টেমে গ্যাসের পরিমাণ যদি ধ্রুবক থাকে তবে, $\frac{PV}{T}=nR$ [মোলসংখ্যা (n) ও গ্যাসে ধ্রুবক (R) Constant]

া কান হ্রদের তলদেশ থেকে বাতাসের বুদবুদ পানির উপরিতলে আসলে আয়তনে গুণ (হ্রদের আদেশে আয়তন, V_1 এবং হ্রদের উপরিতলের আয়তন, V_2) হয়। বায়ুমন্ডলের চাপ, P ও পানির ঘনত্ব, ρ এবং হ্রদের গভীরতা h হলে-

$$h=rac{({
m n}-1) imes P}{
ho imes g}=rac{{V_2\choose V_1}-1}{
ho imes g}$$
; কিন্তু শুধু বায়ুমন্ডলের চাপ $10^{-5}Nm^{-2}$ দেওয়া থাকলে, $h=(n-1) imes 10.2041$ (T ধ্রুবক)

- (i) আয়তন n গুণ হলে h=(n-1)10.2
- (ii) ব্যাস বা ব্যাসার্ধের n গুণ হলে $h = (n^3 1)10.2$

একজন ডুবুরী হ্রদের তলদেশে কাজ করার সময় $2.0cm^3$ আয়তনের বুদবুদ উপরের দিকে প্রবাহিত হচ্ছে। পানির উপরিতলে বুদবুদের আয়তন হয় $4.0cm^3$ কিন্তু তাপমাত্রা অপরিবর্তিত থাকে। যদি বায়ুমন্ডলীয় চাপ 10m পানির চাপের সমান হয়, তবে হ্রদের গভীরতা কত?

[RU. 15-16]

Solution

$$h = \frac{(n-1) \times P}{9800} = \frac{(n-1) \times h\rho g}{9800} = \frac{(2-1) \times (10 \times 10^3 \times 9.8)}{9800} = \mathbf{10 m}$$

উদাহরণ: ২

 27° ে তাপমাত্রায় 0.8m পারদ চাপে একটি গ্যাসের আয়তন $9m^3$ । তাপমাত্রা 127° েও আয়তন $3m^3$ করতে হলে কত চাপ প্রয়োগ করতে হবে?

[JU. 14-15]

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \Rightarrow \frac{0.8 \times 9}{300} = \frac{P_2 \times 3}{400} : P_2 = 3.2 \text{ mmHg}$$

10 লিটার আয়তনের বদ্ধ পাত্রে 300~K তাপমাত্রায় 16~g অক্সিজেন যে চাপ প্রদর্শন করে, একই পাত্রে একই তাপমাত্রায় কত গ্রাম নাইট্রোজেন রাখলে একই চাপ প্রদর্শন করবে? [GST. 20-21]

Solution

$$\frac{P_1 v_1}{n_1 \ T_1} = \frac{P_2 v_2}{n_2 \ T_2} \Rightarrow n_1 = n_2 \Rightarrow \frac{16}{32} = \frac{m}{28} \therefore \mathbf{m} = \mathbf{14}$$

উদাহরণ: 8

একটি অক্সিজেন সিলিন্ডারের আয়তন $5 \times 10^5 cc$ এবং এতে প্রথমে 250 বায়ুমন্ডলীয় চাপে অক্সিজেন ভর্তি ছিল। কিছুটা ব্যবহারের পর দেখা গেল, চাপ 100 বায়ুমন্ডলীয় চাপে নেমে গেছে। ব্যবহৃত অক্সিজেনের পরিমাণ কত?

$$P_1V_1 = P_2V_2 \Rightarrow V_2 = \frac{P_1V_1}{P_2} = \frac{5 \times 10^5 \times 10^{-6} \times 250}{100} = 1.25 \text{ m}^3$$

স্থির চাপে কোন তাপমাত্রায় কোনো গ্যাসের অণুর মূল গড় বর্গবেগ প্রমাণ চাপ ও তাপমাত্রার মূল গড় বেগের অর্ধেক হবে? [সি. বো. ২০১১; য. বো. ২০০৩]

Solution

আমরা জানি,

$$c = \sqrt{\frac{3RT}{M}}$$

$$\therefore c_{1 \text{ rms}} = \sqrt{\frac{3RT_1}{M}}$$

এবং
$$c_{2 \text{ rms}} = \sqrt{\frac{3RT_2}{M}}$$
 SINCE 2018

অতএব,
$$rac{c_{2 \; \mathrm{rms}}}{c_{1 \; \mathrm{rms}}} = \sqrt{rac{\mathrm{T_2}}{\mathrm{T_1}}}$$

বা,
$$\frac{1}{2} = \sqrt{\frac{T_2}{T_1}}$$

বা,
$$\frac{T_2}{T_1} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$T_2 = \frac{1}{4} \times T_1 = \frac{1}{4} \times 273 = 68.25 \text{ K}$$

 27° ে তাপমাত্রায় প্রতি গ্রাম অণু হিলিয়াম গ্যাসের গতিশক্তি নির্ণয় কর। $[R=8.3\ JK^{-1}mol^{-1}]$ [ব. বো. ২০১১; কু. বো. ২০১০; চ. বো. ২০০৭, ঢা. বো. ২০০৫]

Solution

আমরা জানি, একটি পরমাণুর গতিশক্তি $=\frac{3}{2}$ RT $=\frac{3}{2}\times 8.3\times 300$ $= 3735 \text{Jmol}^{-1}$

উদাহরণ: ৭

 27° ে তাপমাত্রায় দুটি হিলিয়াম পরমাণুর গতিশক্তি বের কর। $[K=1.38 imes 10^{-23}\,JK^{-1}]$

Solution

এখানে,

T = (273 + 27)K = 300K

27°C তাপমাত্রার গ্যাসকে কত তাপমাত্রায় নেওয়া হলে গড় বেগ দ্বিগুণ হবে?

Solution

আমরা জানি,

$$\frac{c_2}{c_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{T_2}{300}}$$

$$\overline{A}, \frac{2c_1}{c_1} = \sqrt{\frac{T_2}{300}} \, \overline{A}, 2 = \sqrt{\frac{T_2}{300}}$$

বা, $4 = \frac{T_2}{300}$

$$T_2 = 4 \times 300 = 1200 K$$

এখানে,

 $T = 27^{\circ}C = (273 + 27)K = 300K$

প্রাথমিক গড় বেগ, $=c_1$

চূড়ান্ত গড় বেগ, $c_2=2c_1$

PAR

উদাহরণ: ৯

 27° ে তাপমাত্রায় 2.8g নাইট্রোজেন গ্যাসের মোট গতিশক্তি নির্ণয় কর। [নাইট্রোজেনের গ্রাম আণবিক ভর 28g]

[RU. 12-13]

Solution

এখানে, m = 2.8g, M = 28g এবং T = (273 + 27)K = 300K,

$$K.E = ?$$

আমরা জানি, n মোল গ্যাসের গতিশক্তি, $K.E=rac{5}{2}$ $\mathrm{nRT}=rac{5}{2}\frac{\mathrm{m}}{\mathrm{M}}$ RT

$$\therefore K.E = \frac{5}{2} \times \frac{2.8}{28} \times R \times 300 \text{ J} = \mathbf{R} \times \mathbf{75} \text{ J}$$

27°C তাপমাত্রায় প্রতি গ্রাম অণু হিলিয়াম গ্যাসের গতিশক্তি নির্ণয় কর।

[DU. 11-12]

Solution

এখানে, R =
$$8.3 \text{JK}^{-1} \text{ mol}^{-1}$$
; T = $(273 + 27) \text{K} = 300 \text{ K}$ আমরা জানি, K. E = $\frac{3}{2} \text{RT} = \frac{3}{2} \times 8.3 \times 300 = 3735 \text{Jmol}^{-1}$

উদাহরণ: ১১

 27° C এ 3.8 গ্রাম F_2 অণুর গতিশক্তি হবে-

K. E =
$$\frac{5}{2} \frac{\text{m}}{\text{M}} RT = \frac{5}{2} \times \frac{3.8}{38} \times R \times 300 \text{ J} = \frac{1}{4} \times R \times 300 \text{ J} = \mathbf{R} \times \mathbf{75} \text{ J}$$

কোনো গ্যাস অণুর ব্যাস $3 \times 10^{-10} m$ প্রতি ঘন সেন্টিমিটারে অণুর সংখ্যা 6×10^{20} হলে অণুর গড় মুক্ত পথ নির্ণয় কর। [রা. বো. ২০১১, ২০০৭, ২০০৫, ঢা. বো, ২০১০ (মান ভিন্ন), চ. বো. ২০০৮ (মান ভিন্ন) ব. বো. ২০০৬ (মান ভিন্ন) সি. বো. ২০০৮. কু. বো. ২০০১]

Solution

মনে করি, গড় মুক্ত পথ $=\lambda$ আমরা পাই, $\lambda=\frac{1}{\sqrt{2}\pi a^2 n}\dots$ (i) সমীকরণ (i) হতে পাই,

এখানে, $n = 6 \times 10^{20} \text{ mol/cm}^3$ $= 6 \times 10^{26} \text{ mol/m}^3$ $a = 3 \times 10^{-10} \text{ m}$

$$\lambda = \frac{1}{\sqrt{2}\pi \times (3 \times 10^{-10})^2 \times 6 \times 10^{26}}$$
$$= 4.17 \times 10^{-9} \text{ m}$$

SINCE 2018

প্রতি cm^3 এ অণুর সংখ্যা $1.5 imes 10^{19}$ টি এবং অণুর পারমাণবিক ব্যাসার্ধ $= 2 imes 10^{-8}$ হলে, গড় মুক্ত পথ নির্ণয় কর। [BUET Admission Test. 2015-16]

Solution

আমরা জানি,

$$\lambda = \frac{1}{\sqrt{2}\pi a^2 n}$$

$$= \frac{1}{\sqrt{2}\pi \times (2 \times 10^{-8})^2 \times 1.5 \times 10^{25}}$$

$$= \frac{1}{\sqrt{2} \times 3.14 \times 4 \times 10^{-16} \times 1.5 \times 10^{25}}$$

$$= 3.75 \times 10^{-11} \text{ m}$$

এখানে,
$$n=1.5\times 10^{19}/{\rm cm}^3=15\times 10^{25}/{\rm m}^3$$
 $r=2\times 10^{-8}~{\rm m}$ $\lambda=?$

উদাহরণ: ১৪

SINCE 2018

হাইড্রোজেন গ্যাসের অণুর ব্যাসার্ধ $3.9 \times 10^{-10}~m$ এবং প্রতি ঘন সেন্টিমিটারে অণুর সংখ্যা 2.69×10^{19} হলে অণুর গড় মুক্ত পথ নির্ণয় কর।

আমরা জানি,
$$\lambda = \frac{1}{\sqrt{2}\pi a^2 n}$$

$$= \frac{1}{\sqrt{2} \times 2.69 \times 10^{19} \times 3.14 \times (7.8 \times 10^{-8})^2}$$

$$= 1.38 \times 10^{-6} \text{ cm}$$

$$s = 1.38 \times 10^{-8} \text{ m}$$

এখানে, অণুর ব্যাস,
$$\sigma=2\times 3.9\times 10^{-10}~\mathrm{m}$$
 = $7.8\times 10^{-8}~\mathrm{cm}$ একক আয়তনে অণুর সংখ্যা, $n=2.69\times 10^{19}~\mathrm{cm}$ গড় মুক্ত পথ, $\lambda=?$

কোনো একটি আবদ্ধ স্থানের বায়ুর তাপমাত্রা 15°C ও শিশিরাংক 8°C। তাপমাত্রা কমে 10° ে হলে পরিবর্তিত জলীয় বাম্পের চাপ ও শিশিরাংক কত হবে? [7° ে ও 8° ে তাপমাত্রায় জলীয় বাষ্পের চাপ যথাক্রমে $7.5 imes 10^{-3} m$ ও 8.1 imes $10^{-3}m$ পারদ।]

Solution

মনে করি 10° C ও 15° C তাপমাত্রায় ওই স্থানের অসম্পুক্ত জলীয় বাম্পের চাপ যথাক্রমে P_1 ও P_2 তা হলে শিশিরাংকের সংজ্ঞা অনুসারে, $P_2=15^{\circ}\mathrm{C}$ তাপমাত্রায় অসম্পৃক্ত জলীয় বাম্পের চাপ = 8°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ $= 8.1 \times 10^{-3} m$ পার্দ।

আবার স্থানটি আবদ্ধ বলে বায়ুর আয়তন নির্দিষ্ট। কাজেই চাপের সূত্র অনুসারে আমরা পাই, **SINCE 2018**

$$\frac{P_1}{P_2} = \frac{T_1}{T_2} = \frac{273 + 10}{273 + 15} = \frac{283}{288}$$

 \therefore পরিবর্তিত জলীয় বাম্পের চাপ, $P_1=rac{283}{288} imes 8.1 imes 10^{-3}\ m$ পারদ $= 7.96 \times 10^{-3} \, m$ পারদ।

মনে করি পরিবর্তিত শিশিরাঙ্ক $= t^{\circ}$ C

 \therefore t° C তাপমাত্রায় সম্পুক্ত বাষ্পের চাপ $=7.96 imes10^{-3}~m$ পারদ এখন প্রদত্ত রাশিগুলো হতে দেখা যাচ্ছে যে, $(8.1-7.5) imes 10^{-3} m$ পারদ $=6 imes10^{-4}m$ পারদ চাপ বৃদ্ধির জন্য পূর্ব হতে তাপমাত্রা বৃদ্ধি $=(8-7)^{\circ}\mathrm{C}=1^{\circ}\mathrm{C}$ $(796-75) \times 10^{-3} \,\mathrm{m}$ পারদ $= 0.46 \times 10^{-3} \,\mathrm{m}$ পারদ চাপ বৃদ্ধির জন্য 7°C হতে তাপমাত্রা বৃদ্ধি = $\frac{1}{0.6}$ × 0.46 = 0.766°C

∴ পরিবর্তিত শিশিরাঙ্ক = (7 + 0.766)°C = 7.766°C

কোনো একদিন বায়ুর তাপমাত্রা 26°C এবং শিশিরাক্ষ 20 4°C। আপেক্ষিক আর্দ্রতা নির্ণয় কর। 20°C, 22°C এবং 26°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পের চাপ যথাক্রমে 17.54, 19.83 এবং 25.21 mm পারদ চাপ।

্ব. বো. ২০১০, ২০০৩: য. বো. ২০০৯; চ. বো. ২০০৬, সি. বো. ২০০৪; কু. বো. ২০০০]

Solution

 $(22-20)^{\circ}$ C = 2° C -এর জন্য সম্পৃক্ত বলীয় বাষ্পের চাপের বৃদ্ধি = (19.83-17.54)mm $H_{g}=2.29$ mm H_{g}

$$\therefore (20.4-20)^{\circ}\text{C} = 0.4^{\circ}\text{C}$$
 -এর জন্য সম্পৃক্ত বলীয় বাষ্পের চাপের বৃদ্ধি $=rac{2.29 imes 0.4}{2} \, ext{mmHg} = 0.458 \, ext{mmHg}$

∴ শিশিরাক 20.4°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পের চাপ,

$$f=(17.54+0.458) {
m mmH}_g=17.998 {
m mmH}_g$$
 আবার, $26^{\circ}{
m C}$ তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ, $=25.21 {
m mmHg}$ আমরা জানি, আপেক্ষিক, আর্দ্রতা,

$$R = \frac{f}{F} \times 100\% = \frac{17908}{25.21} \times 100\% = 71.39\%$$

কোনো একদিন সিক্ত ও শুষ্ক বাল্ব আর্দ্রতামাপক যন্ত্রের শুক্ক বাল্বের পাঠ 30° C এবং সিক্ত বাল্ববের পাঠ 28° C। আপেক্ষিক আর্দ্রতা নির্ণয় কর। 30° C-এ গ্লেইসারের উৎপাদক 1.65 এবং 26° C, 28° C এবং 30° C তাপমাত্রায় সম্পৃক্ত বাষ্প চাপ যথাক্রমে $25.25 \times 10^{-3} m$, $28.45 \times 10^{-3} m$ এবং $31.85 \times 10^{-3} m$ পারদ চাপ।

Solution

আমরা জানি,

$$t_1 = t + G(t_1 - t_2)$$

 $\exists t, t = t_1 - G(t_1 - t_2)$
 $= 30 - 1.65(30 - 28) = 26.7^{\circ}C$

: আপেক্ষিক আর্দ্রতা,

 $R = rac{26.7^{\circ}C}{30^{\circ}C}$ তাপমাত্রায় সম্পৃক্ত বাষ্প চাপ imes 100% E = 2.0.1.8

$$= \frac{f}{F} \times 100\%$$

$$= \frac{26.37 \times 10^{-3}}{31.85 \times 10^{-3}} \times 100\% = 82.79\%$$

এখানে, $f=26.37 imes10^{-3}\ m$ পারদ চাপ

এখানে,

 $t_1 = 30^{\circ} \text{C}$

 $t_2 = 28^{\circ}\text{C}$

G = 1.65

কোন স্থানের বায়ুর তাপমাত্রা 26°C এবং আপেক্ষিক আদ্রতা 70%। যদি সে স্থানের তাপমাত্রা কমে 18°C হয়, তবে বায়ুস্থিত জলীয় বাষ্পের কত শতাংশ ঘনীভূত হয়ে তরল পানি হবে ? [26°C এবং 18°C-এ সম্পৃক্ত জলীয় বাষ্পের চাপ যথাক্রমে 25.21 mm এবং 15.48 mm পারদ স্তম্ভের সমান।

[BUET Admission Test. 2017-18]

Solution

R = $\frac{26^{\circ}\text{C}$ তাপমাত্রায় বায়ুতে বিদ্যমান জলীয় বাষ্পের চাপ $\frac{26^{\circ}\text{C}}{26^{\circ}\text{C}}$ তাপমাত্রায় সম্পুক্ত জলীয় বাষ্পের চাপ

 $0.7=rac{26^{\circ} ext{C}$ তাপমাত্রায় বায়ুতে বিদ্যমান জলীয় বাষ্পের চাপ 25.21

 \therefore 26° C তাপমাত্রায় বায়ুতে বিদ্যমান জলীয় বাম্পের চাপ =0.7 imes 25.21

SINCE= 17.65 mmHg

আবার জলীয় বাম্পের চাপ জলীয় বাম্পের ভরের সমানুপাতিক।

 $\therefore 26^{\circ}$ C তাপমাত্রায় উপস্থিত জলীয় বাষ্পের ভর $= 17.65 imes ext{Kgm}$ এখানে K সমানুপাতিক ধ্রুবক।

তাপমাত্রা কমে 18°C এ আসলে কিছু পরিমাণ জলীয় বাষ্প ঘনীভূত হবে এবং বায়ু অবশিষ্ট বাষ্প দিয়ে সম্পুক্ত থাকবে।

18°C তাপমাত্রায় সম্পৃক্ত জলীয় বাম্পের চাপ = 15.48 mmHg

18°C তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পের ভর = 15.48 Kgm

 \therefore ঘনীভূত জলীয় বাম্পের পরিমাণ = $(17.65-15.48) \mathrm{Kgm} = 2.17 \mathrm{Kgm}$

ঘনীভূত জলীয় বাপ্পের শতকরা পরিমাণ $\frac{2.17 \text{Kgm}}{17.15 \text{Kgm}} imes 100\% = 12.29\%$

কোন স্থানে একদিন বায়ুর তাপমাত্রা 17°C এবং শিশিরাঙ্ক 12°C, 17°C এবং 12°C তাপমাত্রায় সম্পৃক্ত বাষ্পচাপ যথাক্রমে $10 \times 10^{-3} \, m$ এবং $30 \times 10^{-3} \, m$ এবং আপেক্ষিক আর্দ্রতা কত? [JU. 14-15; RU. 07-08]

Solution

আপেক্ষিক আর্দ্রতা, $R = \frac{f}{F} \times 100\% = \frac{10 \times 10^{-3}}{30 \times 10^{-3}} \times 100\% = 33.3\%$

উদাহরণ: ২০

 $100\ m^3$ বায়ুতে 2kg জলীয় বাষ্প থাকলে পরম আর্দ্রতা কত?

Solution

SINCE 2018

প্রম আর্দ্রতা =
$$\frac{2 \text{ kg}}{100 \text{ m}^3} = \frac{1}{50} \text{kgm}^{-3} = 0.02 \text{kgm}^{-3}$$

উদাহরণ: ২১

কোনো স্থানে শুষ্ক বাল্ব হাইগ্রোমিটারের তাপমাত্রা 20°C এবং আর্দ্র বাল্বের তাপমাত্রা 18°C। শিশিরাঙ্ক নির্ণয় কর। [20°C তাপমাত্রায় গ্লেইসার ধ্রুবক, G=1.5]

শিশিরাঙ্ক,
$$\theta = \theta_1 - G(\theta_1 - \theta_2) = 20 - 1.5(20 - 18)$$

= $(20 - 1.5 \times 2)^{\circ}C = (20 - 3)^{\circ}C$
= $17^{\circ}C$

নং	শর্ত ও উদ্দেশ্য	Formula
۵	স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের চাপ P এবং আয়তন V হলে	PV= ধ্রুবক
η	স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের P_1 ও P_2 চাপে আয়তন যথাক্রমে V_1 ও V_2 হলে	$P_1V_1 = P_2V_2$
9	স্থির চাপে নির্দিষ্ট ভরের গ্যাসের আয়তন 0°C তাপমাত্রায় V_0 হলে $ heta$ তাপমাত্রায় আয়তন	$V = V_0 \left(1 + \frac{\theta}{273} \right)$
8	সেলসিয়াস ক্ষেলে তাপমাত্রা $ heta^\circ$ C হলে কেলভিন ক্ষেল বা পরম ক্ষেলে তাপমাত্রা	$T = (\theta + 273)K$
¢	স্থির চাপে নির্দিষ্ট ভরের গ্যাসের তাপমাত্রা T_1 ও T_2 হলে আয়তন যথাক্রমে V_1 ও V_2 হলে	$\frac{V_2}{V_1} = \frac{T_2}{T_1}$
છ	স্থির আয়তনে নির্দিষ্ট ভরের গ্যাসের চাপ 0°C তাপমাত্রায় P_2 হলে, θ তাপমাত্রায় চাপ	$P = P_0 \left(1 + \frac{\theta}{273} \right)$
q	স্থির আয়তনে নির্দিষ্ট ভরের গ্যাসের চাপ, T_1 ও T_2 তাপমাত্রায় যথাক্রমে P_1 ও P_2 হলে	$\frac{P_2}{P_1} = \frac{T_2}{T_1}$
p	m গ্রাম ভরের কোনো গ্যাসের মোল সংখ্যা (যেখানে, $M=$ গ্যাসের গ্রাম আণবিক ভর)	$n = \frac{m}{M}$
જ	n মোল গ্যাসের চাপ P, আয়তন V এবং তাপমাত্রা T হলে- (যেখানে, $R=$ মোলার গ্যাস ধ্রুবক)	PV = nRT
20	P_1 চাপ ও T_1 তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের আয়তন V_1 এবং P_2 চাপ ও T_2 তাপমাত্রায় V_2 হলে	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$
22	কোনো গ্যাসের ঘনত্ব P_1 চাপ ও T_1 তাপমাত্রায় $ ho_1$ এবং P_2 চাপ ও T_2 তাপমাত্রায় $ ho_2$ হলে	$\frac{P_1}{\rho_1 T_1} = \frac{P_2}{\rho_2 T_2}$
32	স্থির তাপমাত্রায় P_1 চাপে গ্যাসের ঘনত্ব $ ho_1$ এবং P_2 চাপে গ্যাসের ঘনত্ব $ ho_2$ হলে	$\frac{\rho_1}{\rho_2} = \frac{P_1}{P_2}$
১৩	স্থির চাপে T_1 তাপমাত্রায় গ্যাসের ঘনত্ব $ ho_1$ এবং T_2 তাপমাত্রায় গ্যাসের ঘনত্ব $ ho_2$ হলে	$\frac{\rho_1}{\rho_2} = \frac{T_2}{T_1}$

28	গ্যাসের ঘনত্ব $ ho$ এবং অণুগুলোর গড় বর্গ বেগ $\overline{c^2}$ হলে এর চাপ	$P = \frac{1}{3}\rho \overline{c^2}$
\$ @	P চাপে কোনো গ্যাসের ঘনত্ব ρ হলে এর অণুগুলোর মূল গড় বর্গ বেগ	$\sqrt{\overline{c^2}} = \sqrt{\frac{3P}{\rho}}$
১৬	T তাপমাত্রায় কোন গ্যাসের অণুগুলোর মূল গড় বর্গ বেগ (যেখানে, $M=$ গ্যাসের গ্রাম আণবিক ভর এবং $R=$ মোলার গ্যাস ধ্রুবক)	$\sqrt{\overline{c^2}} = \sqrt{\frac{3RT}{M}}$
۵۹	গ্যাসের চাপ P এবং আয়তন V হলে ঐ গ্যাসের অণুগুলোর মোট গতিশক্তি	$E = \frac{3}{2}PV$
3 b	T তাপমাত্রায় n মোল কোনো গ্যাসের অণুগুলোর মোট গতিশক্তি	$E_K = \frac{3}{2}nRT$
১৯	T তাপমাত্রায় কোনো গ্যাসের অণুর গড় গতিশক্তি (যেখানে, K = বোলজম্যান ধ্রুবক)	$E' = \frac{3}{2}KT$
20	কোনো গ্যাসের অণুর ব্যাস σ এবং একক আয়তনে অনুর সংখ্যা n হলে গড় মুক্ত পথ	$\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 n}$
52	তরলের ঘনত্ব $ ho$ এবং উচ্চতা বা গভীরতা h হলে তরলের চাপ	$P = h \rho g$
২২	শিশিরাঙ্ক ও বায়ুর তাপমাত্রায় সম্পৃক্ত জলীয় বাষ্পের চাপ যথাক্রমে f ও F হলে আপেক্ষিক আর্দ্রতা	$R = \frac{f}{F} \times 100\%$
<i>λ</i> 0	শুষ্ক ও আর্দ্র বাল্প থার্মোমিটারের পাঠ যথাক্রমে $ heta_1$ ও $ heta_2$ হলে শিশিরাঙ্ক	$\theta = \theta_1 - G(\theta_1 - \theta_2)$
২8	m ভরের কোনো বস্তুর তাপমাত্রা $ heta_1$ থেকে $ heta_2$ করতে গৃহীত বা বর্জিত তাপ	$Q = mS(\theta_1 \sim \theta_2)$
২৫	তাপ পরিমাপের মূলনীতি	গৃহীত তাপ = বর্জিত তাপ

