Grafos

Ricardo Dutra da Silva

Universidade Tecnológica Federal do Paraná

Definição

Um grafo direcionado é fortemente conexo se para todo par de vértices u e v existe um caminho de u para v e um caminho de v para u.

Entrada

Grafo direcionado G = (V, E).

Saída

Componentes fortemente conexas do grafo (subgrafo maximal fortemente conexo).

Um grafo ${\it G}$ com quatro componentes fortemente conexas.

Grafo colapsado G_C de componentes de G.

 G_C é um DAG.

Busca em profundidade em C_2 só alcança vértices de C_2 (sorvedouro).

Remove C_2 e encontra outro sorvedouro.

Uma ordenação topológica ajudaria, mas como fazer?

Busca em profundidade no grafo transposto.

Algoritmo: BPB1(G, v)

Algoritmo: BP1(G, v)

- 1 v.visitado \leftarrow verdadeiro 2 **para** $(v, w) \in E$ **faça**
- se w.visitado = falso então BP1(G, w)
- 5 $v.r \leftarrow rotulo$
- 6 rotulo ← rotulo+1

O grafo transposto de G, G^T , possui exatamente as mesmas componentes fortemente conexas.

Seguindo a busca na ordem dos vértices.

Para toda aresta (C_i, C_j) no grafo G, $\max_{v \in C_i} \{v.r\} < \max_{v \in C_j} \{v.r\}$. Prova análoga à prova da ordenação topológica.

Busca em profundidade seguindo a ordem computada.

Algoritmo: BPB2(G, v)

1 rotulo $\leftarrow 1$

```
para v ∈ V faça
    v.visitado ← verdadeiro

/* Loop percorre os vértices
    na ordem do maior para o
    menor valor computado em
    BPB1. */

para v ∈ V faça
    se v.visitado = falso então
    BP2(G, v)
    rotulo ← rotulo+1
```

Algoritmo: BP2(G, v)

Seguindo a ordem computada.

Algoritmo: Kosaraju(G)

- 1 computa G^T
- 2 BPB1(G^T)
- 3 BPB2(*G*)