:. (2)

Since v is a nomogeneous function of degree n = 0 in x, y $\frac{x^2}{\partial x^2} + 2xy \frac{\partial^2 v}{\partial x \partial y} + y^2 \frac{\partial^2 v}{\partial y^2} = n(n-1)v = 0$

Adding (2) and (3), we have

$$x^{2} \frac{\partial^{2}}{\partial x^{2}} (u + v) + 2xy \frac{\partial^{2}}{\partial x \partial y} (u + v) + y^{2} \frac{\partial^{2}}{\partial y^{2}} (u + v) = 0$$
$$x^{2} \frac{\partial^{2}z}{\partial x^{2}} + 2xy \frac{\partial^{2}z}{\partial x \partial y} + y^{2} \frac{\partial^{2}z}{\partial y^{2}} = 0.$$

 $\left[\text{Using } (1) \right]$

:. (3)

TEST YOUR KNOWLEDGE

Verify Euler's theorem for the functions

(ii)
$$f(x, y) = ax^2 + 2hxy + by^2$$

(iii) $f(x, y) = \frac{x^2(x^2 - y^2)^3}{(x^2 + y^2)^3}$
(iii) $f(x, y) = \frac{x^2(x^2 - y^2)^3}{(x^2 + y^2)^3}$
(iv) $f(x, y, z) = 3x^2yz$

(ii)
$$u = \frac{x}{x^{1/5} + y^{1/5}}$$

(v)
$$u = \log\left(\frac{x^2 + y^2}{xy}\right)$$

(iv)
$$f(x, y, z) = 3x^2yz + 5xy^2z + 4z^4$$

 $(x^2 + y^2)^3$

2. (i) If
$$u = f\left(\frac{y}{x}\right)$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ (ii) If $u = xf\left(\frac{y}{x}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$.

(iii) If
$$z = xyf\left(\frac{x}{y}\right)$$
, prove that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2z$

3. If
$$V = \frac{x^3y^3}{x^3 + y^3}$$
, show that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} = 3V$.

4. If
$$u = \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$$
 then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.

5. If
$$f(x, y) = \sqrt{x^2 - y^2} \sin^{-1} \frac{y}{x}$$
, prove that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = f(x, y)$.

6. If
$$f(x, y) = \sqrt{y^2 - x^2} \sin^{-1} \frac{x}{y} + \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$
, show that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} - f(x, y) = 0$.

7. If
$$f(x, y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log x - \log y}{x^2 + y^2}$$
, show that $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + 2f(x, y) = 0$.

8. If
$$u = \cos\left(\frac{xy + yz + zx}{x^2 + y^2 + z^2}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.

9. If
$$u = \cos^{-1} \frac{x+y}{\sqrt{x} + \sqrt{y}}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{1}{2} \cot u = 0$.

10. If
$$u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \tan u$.

11. (i) If
$$u = \sin^{-1} \frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$$
, show that $\frac{\partial u}{\partial x} = -\frac{y}{x} \cdot \frac{\partial u}{\partial y}$

(ii) If
$$\sin u = \frac{x^2y^2}{x+y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3 \tan u$.

(iii) Show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$$
 where $\log u = \frac{x^3 + y^3}{3x + 4u}$

12. (i) If
$$u = \log \left(\frac{x^5 + y^5 + z^5}{x^2 + y^2 + z^2} \right)$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 3$.

(ii) Show that
$$xu_x + yu_y + zu_z = 2 \tan u$$
, where $u = \sin^{-1} \left(\frac{x^3 + y^3 + z^3}{ax + by + cz} \right)$.

(iii) If
$$u = \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

13. If
$$u = \frac{x^2y^2}{x+y}$$
, show that

(i)
$$x \frac{\partial^2 u}{\partial x^2} + y \frac{\partial^2 u}{\partial x \partial y} = 2 \frac{\partial u}{\partial x}$$
 (ii) $x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = 2 \frac{\partial u}{\partial y}$

14. Given
$$z = x^n f_1\left(\frac{y}{x}\right) + y^{-n} f_2\left(\frac{x}{y}\right)$$
, prove that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n^2 z$.

15. If
$$u = (x^2 + y^2)^{1/3}$$
, show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{2u}{9}$.

If $u = \tan^{-1} \frac{x^3 + y^3}{}$ -, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \sin 4u - \sin 2u = 2 \cos 3u$

17. If
$$u = \tan^{-1}\left(\frac{y^2}{x}\right)$$
, show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\sin 2u \sin^2 u$.

18. If
$$u = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right)$$
, then evaluate $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

9. If
$$u = \csc^{-1}\left(\frac{x^{1/2} + y^{1/2}}{x^{1/3} + y^{1/3}}\right)^{1/2}$$
, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{144}$ (13 + tan² u).

Answers

4. 0

5. 2u

2.6 COMPOSITE FUNCTIONS

(i) If u = f(x, y) where $x = \phi(t)$, $y = \psi(t)$

then u is called a composite function of (the single variable) t and we can find $\frac{du}{dt}$

(ii) If z = f(x, y) where $x = \phi(u, v)$, $y = \psi(u, v)$

then z is called a composite function of (two variables) u and v so that we can find

$$\frac{\partial z}{\partial u}$$
 and $\frac{\partial z}{\partial v}$.

DIFFERENTIATION OF COMPOSITE FUNCTIONS