Exercices

Alexandre Guillemot

7 octobre 2022

Exercice 10, feuille 2

Avant de résoudre les questions, il faut prouver que C est bien une variété algébrique, i.e. $Y^2 - X(X-1)(X-a)$ est irréductible. Pour cela, utilisons le résultat suivant :

Lemme 0.1. Soit A un anneau commutatif, et $a \in A$. Alors le polynôme $X^2 - a \in A[X]$ est irréductible si et seulement si a est un carré dans A.

Démonstration.

Si a est un carré, disons $a = b^2$ avec $b \in A$, alors $X^2 - a = (X - b)(X + b)$ et donc $X^2 - a$ est réductible.

Supposons maintenant que $X^2 - a$ est réductible, écrivons $X^2 - a = PQ$ avec $P, Q \in A[X]$ qui ne sont pas des unités dans A. Alors 3 cas se présentent :

- 1. deg P = 0, deg Q = 2, écrivons $P = \lambda_1 X^2 + \lambda_2 X + \lambda_3$, et $Q = \lambda$. Alors $\lambda \lambda_1 = 1$ donc λ est inversible dans A, absurde.
- 2. deg P=2, deg Q=0, c'est le même cas que dans le point précédent.
- 3. deg $P = \deg Q = 1$: écrivons $P = \lambda_1 X + \lambda_2$, $Q = \lambda_3 X + \lambda_4$. Comme $\lambda_1 \lambda_2 = 1$, on peut se ramener au cas où $\lambda_1 = \lambda_2 = 1$. Mais alors on dispose des équations $\lambda_2 + \lambda_4 = 0$ et $\lambda_2 \lambda_4 = -a$, d'où $a = \lambda_2^2$ est bien un carré dans A.

Maintenant considérons f comme un élément de k[X][Y], alors par analyse de degré en X on remarque que X(X-1)(X-a) n'est pas un carré dans k[X], et ainsi par le lemme précédent f est irréductible dans k[X][Y] = k[X,Y].

1. Comme k est algébriquement clos et f est irréductible,

$$K[V] = k[X,Y]/I(C) = k[X,Y]/I(V(f)) = k[X,Y]/\sqrt{(f)} = k[X,Y]/(f) =: k[x,y]$$
 où $x = [X], y = [Y] \in k[X,Y]/(f)$ (et donc $y^2 = x(x-1)(x-a)$).

Exercice 6, feuille 3

Exercice 7, feuille 3