Tema 2: Organización de un sistema operativo tipo GNU/Linux

Programación y Administración de Sistemas (2023-2024)

Javier Sánchez Monedero

1 de marzo de 2024

Tabla de contenidos

1	Objetivos y evaluación	1
2	Sistema de ficheros	2
3	Procesos	13
4	Dispositivos	14
5	Estructura genérica del sistema de ficheros	16
6	Proyecto asignatura	20
7	Referencias	20

1 Objetivos y evaluación

Objetivos

- \bullet Describir los elementos fundamentales de ${\bf organizaci\'{o}n}$ del sistema operativo ${\rm GNU/Linux}.$
- Identificar la importancia de los **ficheros en GNU/Linux** ("si algo no es un fichero, entonces es un proceso").
- Describir en líneas generales cómo se organiza el **sistema de ficheros** y qué son los nodos-i.

- Definir qué papel tienen el **usuario** y el **grupo** propietario de un fichero y cómo pueden modificarse.
- Interpretar una cadena de permisos de GNU/Linux.
- Cambiar los permisos de un fichero, tanto en modo simbólico como en modo absoluto.
- Explicar el objetivo de los **permisos especiales** (*sticky bit*, suid y sgid).
- Utilizar la máscara umask para cambiar los permisos por defecto con los que se crean los archivos y directorios.
- Explicar cómo se aplican los *bits* de permisos a la hora de decidir si un usuario puede realizar una determinada acción sobre un fichero.
- Distinguir todos los **tipos de ficheros** que se pueden utilizar en GNU/Linux y diferenciar claramente entre **enlaces** simbólicos y enlace físicos.
- Definir el rol de los **procesos** en GNU/Linux, cuáles son sus atributos y qué tipos de procesos existen.
- Explicar cómo se represan los dispositivos en GNU/Linux.
- Enumerar las carpetas fundamentales de la estructura genérica del sistema de ficheros en GNU/Linux.
- Diferenciar entre contenidos estáticos y dinámicos y contenidos compartibles y no compartibles.

Evaluación

- Cuestionarios objetivos.
- Pruebas de respuesta libre.

2 Sistema de ficheros

Ficheros

- En GNU/Linux, todo son ficheros ("si algo no es un fichero, entonces es un proceso"):
 - Los programas u órdenes son ficheros: /bin/ls, /usr/bin/find...
 - Los dispositivos I/O son ficheros: /dev/sda, /dev/fd0, /dev/tty0...
 - Comunicación entre procesos: **sockets** o tuberías (**pipes**).

- Directorios, ficheros de datos, ficheros de configuración...
- El propio núcleo del sistema operativo (kernel).
- GNU/Linux tiene una estructura jerárquica de directorios, conocida como sistema de archivos:
 - $-/\rightarrow$ directorio raíz.
 - Puede estar compuesto por varias particiones pertenecientes a varios dispositivos (discos duros, CDs, DVDs...).
 - Todos disponibles desde la jerarquía de directorios.

Sistema de ficheros

- Guarda los ficheros del sistema.
- Se organiza de manera jerárquica, en directorios.
- No hay unidades.

Sistema de ficheros: nodos-i

- Aunque a nivel lógico, el sistema de ficheros parece un árbol, en realidad los ficheros se almacenan desorganizados por el disco duro.
- Un fichero puede tener sectores a lo largo de toda la superficie.
- Los **nodos-i** son **metadatos** sobre los ficheros que nos proporcionan información sobre aspectos como su tamaño, sus permisos, la posición de sus sectores, número de enlaces... ¿nombre? ls -i

- Cada fichero tiene un nodo-i.
- Todos están localizados en un área del disco duro, que está limitada (nº máximo de nodos-i).

¿Por qué enseñar el concepto de i-nodo en administración de sistemas?

Gestión del acceso: propietarios y permisos

Cada fichero tiene dos propietarios: usuario y grupo.

```
ls -l images | head -n 3 # esto filtra las 3 primeas líneas
```

 $chown \rightarrow cambia el usuario propietario (se necesitan privilegios de root):$

```
sudo chown javi fichero
sudo chown javi:profesores fichero
sudo chown -R javi directorio
```

 $chgrp \rightarrow cambia el grupo propietario (puede hacerlo el propietario del fichero, el que pertenezca al grupo, o root).$

```
sudo chgrp profesores fichero
sudo chgrp -R profesores directorio
```

Gestión del acceso: propietarios y permisos

Listado con detalles y ficheros ocultos:

ls -la /boot/|head -n 8

Gestión del acceso: propietarios y permisos

Permisos simbólicos y absolutos (Estos ejemplos son diferentes):

Gestión del acceso: propietarios y permisos

• El acceso a los ficheros se gestiona de la siguiente forma:

Acceso	Fichero	Directorio
r	Ver el contenido	Listar el contenido
W	Modificar el contenido	Crear/eliminar ficheros
x	Ejecutar el fichero	Entrar en el directorio

• Se establecen independientemente para: el usuario propietario (u), usuarios del grupo propietario (g) y resto de usuarios (o).

```
chmod u+r fichero # Modo simbólico
chmod -R u+rwx,go-rwx directorio # Modo simbólico
chmod 740 fichero # Modo absoluto u+rwx,g+r,g-wx,o-rwx
```

• Otros comandos: adduser, addgroup...

Ejercicio permisos

- Ejercicio (probar en modo simbólico y absoluto):
 - Establezca permisos de escritura para el fichero ejemplo sólo para el usuario propietario, de lectura para todos y de ejecución para el usuario y grupo propietarios.
 - Establezca permisos de escritura para el fichero ejemplo sólo para el usuario propietario, y de ejecución para el usuario y grupo propietarios y ninguno para el resto.

Gestión del acceso: propietarios y permisos

Actual	chmod	Resultado	Descripción
rw	a+x	'rwx-x-	-xAgregar a todos (all') permiso de ejecución.
rwxxx	go-x	'rwx	'Se elimina permiso de ejecución para grupo y otros.
rwxr-xr-x	u-x,go-r	rwxx	Al usuario se le quita ejecución, al grupo y a otros se les quita lectu
rwxrwxrwx	u-x,go-rwx	rw	Al usuario se le elimina ejecución, al grupo y a otros se les eliminar
r	a+r,u+w	m `rw-r-	r-' A todos se les agrega lectura, al usuario se le agrega escritura.
rw-r	u-rw,g+w,o+x	'—rw—	x' Al usuario se le eliminan lectura y escritura, al grupo se le agreg

Permisos especiales: sticky bit

Tres tipos de permisos especiales: sticky bit, suid y sgid. Más sobre sticky bit.

t: sticky bit, chmod o+t fichero.

- El comando 1s lo representa como una t en el noveno bit (según mayúscula/minúscula, $t \rightarrow o+x$, $T \rightarrow o-x$).
- Para ejecutables → mantener la imagen del fichero en la memoria de intercambio después de finalizar la ejecución del mismo (en desuso).
- Para directorios → solo root o el propietario de un fichero (o de la carpeta) pueden borrar o renombrar el fichero, aunque tengan permiso de escritura en la carpeta.

Permisos especiales: sticky bit

```
mkdir -p carpeta && cd carpeta
touch fichero
ls -la fichero
chmod o+w+t fichero
ls -la fichero
```

¿Qué sentido tiene el sticky bit en este ejemplo?

```
ls -ld /tmp/
```

Permisos especiales: suid

s: para usuarios, suid, chmod u+s fichero.

- El comando la lo representa como una s en el tercer bit (según mayúscula/minúscula, $s \rightarrow u+x$, $S \rightarrow u-x$ (estado inconsistente)).
- Para **ejecutables** → cambio de dominio a nivel de usuario. Durante la ejecución, el usuario efectivo del proceso es el propietario del fichero y no el usuario que lo ejecutó.
- Para directorios \rightarrow Ignorado.

```
# El ejecutable "gestorbd" lee el fichero "basedatos":
-rwxr--r-x root root /opt/bin/gestorbd
-rwx----- root root /opt/datos/basedatos
# El usuario pagutierrez puede ejecutar "gestorbd", pero ese programa
# NO podrá leer "basedatos"
# El programa si podrá leer "basedatos" si "gestorbd" tiene los permisos:
-rwsr--r-x root root /opt/bin/gestorbd
```

Permisos especiales: suid

¿Cómo es posible que cambiemos la contraseña desde un usuario corriente? Ejecuta en tu máquina:

```
ls -l /etc/passwd /etc/shadow /usr/bin/passwd
```

. . .

```
$ ls -l /etc/passwd /etc/shadow /usr/bin/passwd
-rw-r--r- 1 root root 2941 feb 13 10:21 /etc/passwd
-rw-r--- 1 root shadow 1827 feb 13 10:21 /etc/shadow
-rwsr-xr-x 1 root root 59640 nov 29 13:25 /usr/bin/passwd
```

Veamos el código de passwd

Permisos especiales: sgid,

s: para grupos, sgid, chmod g+s fichero.

- El comando 1s lo representa como una s en el sexto bit (según mayúscula/minúscula, s→ g+x, S→ g-x (estado inconsistente)).
- Para ejecutables → cambio de dominio a nivel de grupo. Durante la ejecución, el grupo
 efectivo del proceso es el grupo propietario del fichero y no el del usuario que lo ejecutó.
- Para directorios → al crear un fichero en su interior, el grupo propietario del nuevo fichero es el grupo del directorio y no del usuario que ejecuta la orden.

Ejemplo sgid

El ejecutable "gestorbd" lee el fichero "basedatos":

```
-rwxr-xr-x root root /opt/bin/gestorbd
-rwxr---- root root /opt/datos/basedatos
```

Grupo "alumnos": pueden ejecutar "gestorbd" pero NO leer "basedatos" El programa si podrá leer "basedatos" si "gestorbd" tiene los permisos:

```
-rwxr-Sr-x root root /opt/bin/gestorbd
```

El usuario "pagutierrez" sólo pertenece al grupo "profesores"

Se tiene el directorio

```
drwxr-sr-x pagutierrez alumnos /practicas
```

Si "pagutierrez" ejecuta cp tema2.pdf /practicas entonces el fichero copiado pertenecerá al grupo "alumnos":

```
-rw-r--r-- pagutierrez alumnos /practicas/tema2.pdf
```

CODA: Máscara de permisos (umask)

- Cuando un fichero nuevo se crea, se le asignan permisos.
- Los permisos se deciden aplicando una máscara de permisos a los permisos base (que se puede consultar/modificar utilizando el comando umask):

```
$ umask
0002
```

- La máscara de bits indica con un 1 aquellos bits que deberán ser 0 en la cadena de permisos, es decir, indica qué permisos están restringidos.
- Los permisos base para directorios son 777; para ficheros, 666.

CODA: Máscara de permisos (umask)

- ¿Podremos especificar una máscara que permita crear ficheros con permisos de ejecución?
- Intenta deducir qué pasará con los siguientes pasos:

```
umask
mkdir -p /tmp/prueba1
ls -ld /tmp/prueba1
touch /tmp/prueba1/a
ls -l /tmp/prueba1/
$ umask
$ mkdir -p /tmp/prueba1
$ ls -ld /tmp/prueba1
drwxr-x--- 2 clase javi 4096 May 16 09:43 /tmp/prueba1
$ touch /tmp/prueba1/a
$ ls -l /tmp/prueba1/
total 0
-rw-r---- 1 clase javi 0 May 16 09:47 a
umask 027
mkdir -p /tmp/prueba2
ls -ld /tmp/prueba2
touch /tmp/prueba2/a
ls -l /tmp/prueba2/
```

Tipos de ficheros (1s -1)

- Normal.
- **Directorio** (d): son ficheros que contienen enlaces a otros ficheros (ya sean directorios o archivos normales).
- Especial de bloque (b): fichero especial para interactuar con un dispositivo basado en bloques.
- Especial de carácter (c): fichero especial para interactuar con un dispositivo basado en caracteres.
- Named Pipes (p): tubería FIFO con nombre (comunicación de procesos de diferentes usuarios con tuberías).
- **Socket** (s): como los *pipes* pero con comunicación *duplex* (ambos sentidos, ej. /tmp/.X11-unix/X0).
- · Enlace físico.
- Enlace simbólico (1).

Tipos de ficheros: enlaces

- Enlaces: Archivos especiales que permiten que varios nombres (enlaces) se asocien a un único e idéntico archivo.
- Varias instancias de un mismo archivo en diversos lugares de la estructura jerárquica sin necesidad de copiarlos.
- Ayuda a asegurar la coherencia y ahorrar espacio en el disco.
- Grupo de personas trabajando sobre un mismo fichero (modificaciones centralizadas).

Tipos de ficheros: enlaces

- Enlaces físicos (ln archivo-real enlace-físico):
 - Representan un nombre alternativo para un archivo (dos nombres de fichero apuntando al mismo nodo-i).
 - Si eliminamos un enlace físico, no eliminamos el archivo original. Mientras quede al menos un enlace físico, el archivo no se elimina.
 - Sólo es posible entre ficheros que estén en la misma partición.
 - No se pueden realizar a directorios.

Tipos de ficheros: enlaces

- Enlaces simbólicos (ln -s archivo-real enlace-simb):
 - Es un puntero virtual al archivo real (acceso directo).
 - Fichero de texto (con su nodo-i independiente) que contiene la ruta del archivo al que apunta.
 - Si se elimina el enlace simbólico, no se elimina el fichero original.

Ejemplo enlaces físicos y simbólicos

```
# Observad conteo de referencias (tercera columna, después de permisos).
cd /tmp/
touch prueba
ln prueba enlace_fisico
ls -li prueba enlace_fisico
ln -s prueba enlace_simbolico
ls -li prueba enlace_simbolico
```

Resultado ejecución:

```
$ touch prueba
$ ln prueba enlace_fisico
$ ls -li prueba enlace_fisico
12481313 -rw-rw-r-- 2 javi javi 0 feb 23 23:00 enlace_fisico
12481313 -rw-rw-r-- 2 javi javi 0 feb 23 23:00 prueba
$ ln -s prueba enlace_simbolico
$ ls -li prueba enlace_simbolico enlace_fisico
12481313 -rw-rw-r-- 2 javi javi 0 feb 23 23:00 enlace_fisico
12481314 lrwxrwxrwx 1 javi javi 6 feb 23 23:00 enlace_simbolico -> prueba
12481313 -rw-rw-r-- 2 javi javi 0 feb 23 23:00 prueba
```

3 Procesos

Procesos

Procesos

- Procesos: son programas en ejecución.
- Los atributos de un proceso son:
 - **PID** \Rightarrow identificador del proceso.
 - **PPID** \Rightarrow identificador del proceso padre.
 - Nice number \Rightarrow prioridad asignada al ejecutarlo.
 - **TTY** \Rightarrow terminal en el que se está ejecutando.
 - **RUID** \Rightarrow identificador del usuario real, el que lo ejecutó.
 - **EUID** \Rightarrow identificador del usuario efectivo, si hay cambio de dominio se refleja aquí (permiso **suid**).
 - RGID ⇒ identificador del grupo real, el grupo del usuario que lo ejecutó.

- **EGID** \Rightarrow identificador del grupo efectivo, si hay cambio de dominio se refleja aquí (permiso **sgid**).

Procesos

- Atributos de un proceso: ps -Fl PID
- Tipos de procesos:
 - Interactivos: hay alguien conectado al sistema que los inicia (primer o segundo plano &).
 - Encolados: procesos que se mandan a un buffer para ser ejecutados (en una fecha concreta o cuando la carga del sistema sea baja).
 - Demonios: programas ejecutados en segundo plano durante el arranque, que esperan de forma continua un determinado evento.

Prueba a añadir -a:

ps -Fla

4 Dispositivos

Dispositivos

Los dispositivos se representan/manejan como ficheros:

- Ficheros especiales de caracteres: representan a dispositivos de caracteres (cinta magnética, puerto paralelo, puerto serie...)
- Ficheros especiales de bloques: representan a dispositivos de bloques (disquete, partición de un disco duro o un pendrive...)
- Escribir/leer en un dispositivo se convierte en escribir/leer en el fichero correspondiente.

How to List Your Computer's Devices From the Linux Terminal

Dispositivos: ejemplos

- Esos ficheros se almacenan en el directorio /dev:
 - /dev/sda \Rightarrow primer disco duro (sin considerar particiones).
 - /dev/sda1 ⇒ primera partición del primer disco.
 - /dev/sdb \Rightarrow segundo disco duro.
 - /dev/sdc \Rightarrow disco USB (primer nombre de dipositivo libre).
 - /dev/tty1 \Rightarrow primera terminal de consola (tty2 segunda).
 - /dev/lp0 \Rightarrow primer puerto paralelo.
 - /dev/fd0 \Rightarrow disquete de la primera disquetera.

Dispositivos de bloques: Isblk

Depende de tu distribución quizás necesites instalar:

```
sudo apt-get install util-linux
lsblk |grep -v loop
```

```
$ lsblk |grep -v loop
NAME
          MAJ:MIN RM
                      SIZE RO TYPE MOUNTPOINT
nvme0n1
          259:0 0
                      477G 0 disk
nvmeOn1p1 259:1
                 0
                     780M 0 part /boot/efi
nvmeOn1p2 259:2 0
                       5G 0 part
nvmeOn1p3 259:3 0 78,1G 0 part
                                 /
nvmeOn1p4 259:4 0 393,1G 0 part
  home 253:0 0 393,1G 0 crypt /home
```

¿Qué esperas que haya en un sistema de ficheros?

Fuente *Unix and Linux system administration handbook*. Chapter 5. The Filesystem. Addison-Wesley. 5th Edition. 2018.

Rápido: ¿cuál de los siguientes elementos esperarías encontrar en un "sistema de archivos"?

- Procesos
- Dispositivos de audio
- Estructuras de datos y parámetros de ajuste del núcleo
- Canales de comunicación entre procesos

- Filesystem Hierarchy Standard: Jerarquía Estándar del Sistema de Ficheros.
- Especificación estándar para sistemas tipo Unix.

- Fruto del consenso entre la comunidad (desarrolladores, administradores...).
- Versión 3.0 (2015), especificación disponible en la URL: https://refspecs.linuxfoundation.org/fhs.shtml
- En Linux, disponible como página de manual: man hier

- Existen dos tipos de distinciones cuando hablamos del tipo de contenido de un directorio: estáticos/dinámicos y compartibles/no compartibles.
 - Estáticos: Contiene binarios, bibliotecas, documentación y otros ficheros que no cambian sin intervención del administrador. Pueden estar en dispositivos de solo lectura (read-only) y no necesitan que se hagan copias de seguridad tan a menudo como los ficheros dinámicos.
 - Dinámicos: Contiene ficheros que no son estáticos. Deben de encontrase en dispositivos de lectura-escritura (read-write). Necesitan que se hagan copias de seguridad a menudo.
 - Compartibles: Contiene ficheros que se pueden encontrar en un ordenador y utilizarse en otro.
 - No compartibles: Contiene ficheros que no podemos utilizar en distintas máquinas.

Fuente https://linuxconfig.org/filesystem-basics

- /bin ⇒ ficheros ejecutables básicos compartidos (mv, cp).
- /dev ⇒ ficheros especiales de dispositivos.
- /etc ⇒ la mayoría de los ficheros de configuración locales del sistema (solo archivos de texto).
- /root ⇒ directorio HOME del administrador.
- ✓sbin ⇒ ficheros ejecutables que, normalmente, sólo el administrador puede ejecutar.

- /home \Rightarrow los directorios de trabajo de los usuarios.
- /lost+found ⇒ contiene "referencias" a los ficheros marcados como erróneos al chequear el sistema de ficheros.
- /lib ⇒ librerías necesarias para ejecutar los archivos.

- /proc y /sys ⇒ sistemas de ficheros virtuales, contienen información sobre procesos, núcleo, módulos cargados, dispositivos, sucesos...
- /tmp ⇒ ficheros temporales. Tiene el permiso t activo.
- /var ⇒ ficheros variables: colas de datos (spool) de impresión, e-mail..., ficheros del cron, atd, ficheros de log...
- /boot ⇒ núcleo y ficheros necesarios para cargar el núcleo y ficheros de configuración del gestor de arranque.
- /mnt, /mount ó /media ⇒ montaje de otros sistemas de ficheros: disquetes, cdroms...
 - /mnt/floppy ó /media/floppy
 - /mnt/cdrom ó /media/cdrom
- /opt: paquetes de aplicaciones estáticas (no actualizables).

- /usr ⇒ contiene subdirectorios de solo lectura, que no deben ser específicos de la máquina que los usa (*Unix system resources*):
 - /usr/bin \Rightarrow ficheros ejecutables por todos los usuarios.
 - /usr/sbin ⇒ ficheros ejecutables de administración.
 - /usr/include ⇒ ficheros cabecera de cabecera estándar para compilación.
 - /usr/lib ⇒ librerías binarias.
 - /usr/local \Rightarrow software local específico.
 - /usr/share ⇒ datos compartidos (independientes de la arquitectura: imágenes, ficheros de texto...).
 - * /usr/share/man.
 - * /usr/share/doc.

- /usr/src \Rightarrow código fuente, como el del kernel...

Estructura genérica del sistema de ficheros

- Estáticos: /bin, /sbin, /opt, /boot, /usr/bin...
- Dinámicos: /var/mail, /var/spool, /var/run, /var/lock, /home
- Compartibles: /usr/bin, /opt...
- No compartibles: /etc, /boot, /var/run, /var/lock...

6 Proyecto asignatura

Proyecto asignatura

Herramientas y conceptos que hemos visto (además de los de los apuntes):

- Reenvío de puertos (port forwarding) en VirtualBox
- Conexiones ssh: ssh usuario@host [-p puerto]
- Autenticación ssh con clave gpg (ssh-copy-id). Importante leer sobre cifrado asimétrico custodia y distribución de tus claves. ssh-copy-id usuario@host [-p puerto]
- Herramienta apt y conceptos y configuración de repositorios

7 Referencias

Referencias

Unix and Linux system administration handbook. Chapter 4. Process control. Chapter 5. The Filesystem. Addison-Wesley. 5th Edition. 2018.