b-n Junction Diode

Un baised p-n Junction at T= 300K. Junction (depleted with "FREE" change-cerrier) Dopants: *n*-type (Donor atoms (a): Acceptor atoms $\downarrow qV_{bi}$ Free charge-carriers: = Electrons from the donor atoms ? Majority carriers = Holes from the acceptor atoms = Electrons due to excitation 3 Minority carries 0 = Holes due to excitation of electrons \ "Intrinsic" carrier Vi = Built-in voltage is simply the difference of the Fermi-levels in b- and n-type semiconductors before they are joined. eVbi = EFN-EF,p E_{F,n} = E_{F:} + k_BT In (N_D) 1 towards E_C EFP = EFi - KBT In

Subtract the two, we get $V = \frac{k_B T}{e} \left[n \left(\frac{N_A \cdot N_D}{n_i^2} \right) \right]$ In steedy-state, Diffussion current = Drift current Effect of Biasing the p-n junction: (Biased p-n junction) b-type = tre terminal of the source

-> forward bias p-n junction = -ve terminal of the source -> Reverse him p-n junction. Forward bias Reverse bias

- p-n junction under illumination: Solan Cells, photo- detector.
D-n'junction is useful in fabricating "Opto-electronic devices"