

HEXFET® Power MOSFET

V _{DS}	100	V
V _{GS Max}	± 16	V
$R_{DS(on) max}$ (@V _{GS} = 10V)	220	mΩ
R _{DS(on) max} (@V _{GS} = 4.5V)	235	$\mathbf{m}Ω$

Application(s)

• Load/ System Switch

Features and Benefits

Features

Industry-standard pinout	
Compatible with existing Surface Mount Techniques	results in
RoHS compliant containing no lead, no bromide and no halogen	\Rightarrow
MSL1	

Benefits

Multi-vendor compatibility
Easier manufacturing
Environmentally friendly
Increased reliability

Absolute Maximum Ratings

Symbol Parameter		Parameter Max.	
V _{DS}	Drain-Source Voltage	100	V
_D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	1.6	
_D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	1.3	А
I _{DM} Pulsed Drain Current		7.0	
P _D @T _A = 25°C Maximum Power Dissipation		1.3	w
P _D @T _A = 70°C Maximum Power Dissipation		0.8	VV
	Linear Derating Factor	0.01	W/°C
V _{GS} Gate-to-Source Voltage		± 16	V
T _J T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JA}$	Junction-to-Ambient ③		100	°C/W
$R_{\theta JA}$	Junction-to-Ambient (t<10s) ⊕		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

1

Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
	Breakdown Voltage Temp. Coefficient		0.10		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		190	235	mΩ	$V_{GS} = 4.5V, I_D = 1.3A$ ②
TDS(on)	Static Diam-to-Source Off-Nesistance		178	220	11122	V _{GS} = 10V, I _D = 1.6A ②
$V_{GS(th)}$	Gate Threshold Voltage	1.0	_	2.5	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 100V, V_{GS} = 0V$
	Diam-to-Source Leakage Current			250	μΑ	$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	ш	V _{GS} = -16V
R_G	Internal Gate Resistance		1.3		Ω	
gfs	Forward Transconductance	5.7			S	$V_{DS} = 50V, I_{D} = 1.6A$
Q_g	Total Gate Charge		2.5			I _D = 1.6A
Q_{gs}	Gate-to-Source Charge		0.5		nC	V _{DS} =50V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.2			V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		2.2			V _{DD} =50V②
t _r	Rise Time		2.1		ns	I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		9.0		115	$R_G = 6.8\Omega$
t _f	Fall Time		3.6			$V_{GS} = 4.5V$
C _{iss}	Input Capacitance		290			$V_{GS} = 0V$
C _{oss}	Output Capacitance		27		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		13			f = 1.0MHz

Source - Drain Ratings and Characteristics

1									
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions			
I _S	Continuous Source Current		1.1		11		MOSFET symbol		
	(Body Diode)				Α	showing the			
I _{SM}	Pulsed Source Current	l l		_	_ 70	7.0	_ 70		integral reverse
	(Body Diode) ①		7.0		p-n junction diode.				
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 1.1A$, $V_{GS} = 0V$ ②			
t _{rr}	Reverse Recovery Time		20	30	ns	$T_J = 25^{\circ}C$, $V_R = 50V$, $I_F = 1.1A$			
Q _{rr}	Reverse Recovery Charge		13	20	nC	di/dt = 100A/µs ②			

International Rectifier

IRLML0100TRPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML0100TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

270
270
270
250
Vgs = 4.5V
Vgs = 10V

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International Rectifier

IRLML0100TRPbF

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIMI	ETERS	INCH	HES	
STIVIBUL	MIN	MIN MAX		MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
Е	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M 1994
 2. DIMENSIONS ARE SHOWN IN MULIMETERS (INCHES)
 3. CONTROLLING DIMENSION. MILLIMETER

 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

 ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.

 AD MENSIONS D AND E 1 ARE MEASURED AT DATUM PLANE I DIMENSIONS DOES

 NOT INCLUDE MOLD PROTRUSIONS OR INTERLEAD FLASH. MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

LOT	
PART NUMBER CODE REFERENCE:	
A = IRLML2402	
B = IRLML2803	
C = IRLML6302	
D = IRLML5103	
E = IRLML6402	
F = IRLML6401	
G = IRLML2502	
H = IRLML5203	
L = IRI MI 0030	

N = IRLML2060 Note: A line above the work week (as shown here) indicates Lead - Free.

J = IRLML2030 K = IRI MI 0100 L = IRLML0060M = IRLML0040

W = (27-52) IF PRECEDED BY ALETTER

YEAR	Υ	WORK WEEK	W
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	E		
2006	F		
2007	G		
2008	Н	1	1
2009	J	7	7
2010	K	50	X
		51	Υ
		52	Z

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Orderable part number	Package Type	Standard Pack Note		Standard Pack		Note
		Form	Quantity			
IRLML0100TRPbF	Micro3	Tape and Reel	3000			

Qualification information[†]

Qualification level	Consumer ^{††} (per JEDEC JESD47F ^{†††} guidelines)			
Moisture Sensitivity Level	Micro3	MSL1 (per IPC/JE DE C J-ST D-020D ^{†††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

17.0 Tax. (010) 202 7000

Visit us at www.irf.com for sales contact information.11/2009