Chapter 6 Registers & Counters

ITI1100

Introduction

- Have analysis and design tools to develop combination and sequential circuits
- Shall explore devices in this Chapter
- Registers
 - Parallel Registers versus Shift Registers
 - The Serial Adder
- Counters
 - Asynchronous (Ripple) Counters versus
 Synchronous Counters
 - Binary and BCD Counters
 - Johnson and Ring Counters

Registers

Fig. 1-1 Transfer of information with registers ITI1100

Registers

- Multiple flip flops can be combined to form a data register
- Shift registers allow data to be transported one bit at a time
- Registers also allow for parallel transfer
 - → Many bits transferred at the same time
- Shift registers can be used with adders to build arithmetic units
- Remember: most digital hardware can be built from combinational logic (and, or, invert) and flip flops
 - →Basic components of most computers

Parallel versus Serial

- →Serial communications, transfers a binary number as a sequence of binary digits, one after another, through one data line.
- One Circuit is necessary to represent any binary number

Parallel versus Serial

→ Parallel communications

-Transfers a binary number through multiple data lines at the same time.

Parallel Data Transfer

- In this example Flip flops D store outputs from combinational logic that has 3 outputs. 3 flip flops are required
- Multiple flops can store a collection of binary data

Register with Parallel Load

- Register: Group of Flip-Flops
- Ex: D Flip-Flops
- Holds 4 bits of Data
- Loads in Parallel on Clock Transition
- Asynchronous Clear (Reset)

Register with Parallel Load

- Register: Group of Flip-Flops
- Ex: D Flip-Flops
- Holds 4 bits of Data
- Loads in Parallel on Clock Transition
- Asynchronous Clear (Reset)

Parallel Data Transfer

- All data is transferred on one positive edge
- Data stored into register Y

Register with Load Control

- Want to control the loading of the register
 - Do not control clock signal – delays!!
 - Load Control = 1
 - New data loaded on next. clock edge
 - Load Control = 0
 - Old data reloaded on next clock edge

Four-bit register with parallel load

11 ITI1100

Serial Transfer

Shift Registers

- Cascade chain of Flip-Flops
- Bits travel on positive edges (in this example)
- Serial in (SI) Serial out (SO)
- Data is transferred one bit at a time

Fig. 6-3 4-Bit Shift Register

Serial Transfer

- Data is transferred one bit at a time
- Note the data loop back for register A

Serial Transfer

- Data is transferred one bit at a time
- Note the data loop back for register A

Serial transfer of Data

• Transfer from register X to register Y (Negative clock edges in this example)

Serial transfer of Data

• Transfer from register X to register Y (Negative clock edges in this example)

Universal Shift Register

• Allows for shift operations in both directions and parallel load.

Universal Shift Register (continued)

Truth Table					
x	У	Z		С	S
0	0	0		0	0
0	0	1		0	1
0	1	0		0	1
0	1	1		1	0
1	0	0		0	1
1	0	1		1	0
1	1	0		1	0
1	1	1		1	1

→ The Full-adder is combinational circuit

Fig. 4-6 Maps for Full Adder

Fig. 4-7 Implementation of Full Adder in Sum of Products

Full Adder (same as in Chap. 2)

Fig. 4-8 Implementation of Full Adder with Two Half Adders and an OR Gate

Truth Table					
x	У	Cin	Cout	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

→ The Full-adder is combinational circuit

Serial Addition (D Flip-Flop)

- Slower than parallel
- Low cost
- Share fast hardware on slow data
- Good for multiplexed data

Fig. 6-5 Serial Adder

ITI1100

Serial Addition (D Flip-Flop)

- Only one full adder
- Reused for each bit
- Start with loworder bit addition
- Note that carry(Q) is saved
- Add multiple values.
 - New values placed in shift register B

Fig. 6-5 Serial Adder

ITI1100

Serial Addition (D Flip-Flop)

- Shift control used to stop addition
- Generally not a good idea to gate the clock
- Shift register can be arbitrary length
- FA can be built from combin. logic

Fig. 6-5 Serial Adder

Serial Adder Operation

Initialisation

- -Clear registers A and B and carry D FF
- —Shift first number into register B
- —When #1 number in B is shifted through FA,
 - 0's + #1 number = #1 number \longrightarrow A
 - #2 number > B

Addition

- —When #2 number in B is shifted through FA,
 - #2 number + #1 number \longrightarrow A
 - #3 number \longrightarrow B
- —Can repeat for adding 3, 4, 5 … numbers

Design Serial Adder with JK FF

- Assumptions
 - Shift registers A and B are available
 - Replace FA and D FF with a JK FF and combinational circuit
 - Want to design synchronous circuit with:
 - 2 inputs: x and y which are the outputs of shift registers A and B respectively
 - Output: S the sum bit
 - Use JK FF output Q to store the carry C
 - Note that the carry in the original design is the output of the D
 FF

Designing a JK Serial Adder – State Table

This is the Carry Out

Present		Next			
State	Input	State	Output	JK FF	Inputs
Q	xy	Q(t+1)	S	J	K
/0	00	0	0	0	X
0	01	0	1	0	X
0	10	0	1	0	X
0	11	1	0	1	X
1	00	0	1	X	1
1	01	1	0	X	0
1	10	1	0	X	0
1	11	1	1	X	0

This is the Carry In

JK FF Input Equations

$$J = xy$$

xy				
Q	00	01	11	10
0	m_0	<i>m1</i>	m ₃	m_2
0			1	
1	m4	m5	<i>m</i> 7	<i>m</i> ₆
1	X	X	X	X

$$K = x'y' = (x+y)'$$

xy				
q	00	01	11	10
0	m_0	m_I	m3	m_2
0	X	X	X	X
1	m4	m5	<i>m</i> 7	<i>m</i> 6
1	l 1 J			

$$S = x'y'Q + xyQ + x'yQ' + xy'Q'$$

$$= (x'y' + xy)Q + (x'y + xy')Q'$$

$$= (x \oplus y)'Q + (x \oplus y)Q' = (x \oplus y) \oplus Q$$

xy				
Q	00	01	11	10
0	m_0	m_I	m_3	m_2
0		1		1
1	m_4	m_5	m_7	m_{δ}
1	1		1	

New Serial Adder

Fig. 6-6 Second form of Serial Adder

Counters

- → Counter: A register that goes through a prescribed series of states
- →Two main types of counters
 - 1- asynchronous counters: also known as Ripple counters
 - Flip flop output serves as a clock for triggering connected flip flops
 - 2- Synchronous counters
 - All flip flops are triggered by a clock signal at the same time
- → Synchronous counters are more widely used

Asynchronous Counters

- Each Flip flop output controls the CLK input of the next Flip flop.
- Flip flop do not change states in exact synchronism with the applied clock pulses.
- Ripple counter due to the way the flip flops respond one after another in a kind of rippling effect.

 A₃

 A₂

 A₁

 A₀

$\mathbf{A_3}$	$\mathbf{A_2}$	$\mathbf{A_1}$	$\mathbf{A_0}$	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
	ITI1100			

Binary Ripple Counter

- Reset signal sets all outputs to 0
- Count signal toggles output of low-order flip flop
- Low-order flip flop provides trigger for adjacent flip flop
- Not all flops change value simultaneously
 - Lower-order flops change first
- Flip flop is configured to toggle
 - Next state becomes inverse of current state, i.e.
 Q(t+1)=Q(t)'

Fig. 6-8 4-Bit Binary Ripple Counter

Another Asynchronous Ripple Counter

• Similar to T flop example on previous slide

Another Ripple Counter

- Starting at 0000 for DCBA, how does the counter change for each clock pulse?
- Have a down counter!!!
- Can also achieve with negative transition FFs by connecting Q' outputs to clocks why?

Asynchronous, BCD Counter

State Diagram

Fig. 6-9 State Diagram of a Decimal BCD-Counter

State Table

Present State	Next State
Q ₈ Q ₄ Q ₂ Q ₁	Q ₈ Q ₄ Q ₂ Q ₁
0000	0001
0001	0010
0010	0011
0011	0100
0100	0101
0101	0110
0110	0111
0111	1000
1000	1001
1001	0000

Asynchronous, BCD Counter

- Q₁ toggled by count (clock)
- Q_2 toggled by Q_1 except when Q_8 is 1
 - Q_8 ' tied to J , Q_2 remains at 0 when Q_8 is 1
- Q₄ toggled by Q₂
- Q₈ clocked by Q₁
 - When Q_4Q_2 equals 11, Q_8 complements at negative transition on Q_1
 - On the next negative transition on Q₁,
 Q₈ is cleared to 0.

39

Decimal (BCD) Counter, 3 digits (up to 999)

Fig. 6-11 Block Diagram of a Three-Decade Decimal BCD Counter

• Examine state table and explain how Q_8 can be used as count signal for next digit?

Binary Counters

Counters produce a fixed sequence of binary digits, or states. Counters are normally designed to recycle or restart the sequence.

Example:

Binary Counters: Modulus

- The number of output states is called the MODULUS, or MOD.
 - For example, a mod-6 counter has 6 unique output states

42

Counter Sequences

→ Full Sequence Count

refers to a natural count that includes all possible binary numbers. It's modulus is the same as its maximum modulus. Max MOD with a n-bit binary counter is 2ⁿ.

→ A Truncated Sequence Count

when the modulus is less than its maximum, or where less than all possible binary numbers are used.

Binary Counters: Up/Down

A sequential count refers to a natural numerical count. The sequence can be Up or Down:

Counter State Diagram

- Counter states are sequential, where an output state of flip-flops will follow another in a sequence.
- <u>State Diagrams</u> are used to present the sequence of these states.

Counter State Table

- A <u>State Table</u> is another means of presenting state sequences.
- As with the state diagram, the state table will help determine the next output of flip-flops based on the present output state of flip-flops.

State Table

	urren	t		Next	
Q _C	Qb	Qa	Q _C	$Q_{\mathbf{b}}$	Qa
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	0

Design Procedure

- 1. Obtain from a (given) state table,
 - i. The state diagram and
 - ii. Excitation (transition) table
- 2. Provide the required input to each of the flip-flops by utilizing the outputs of any of the other flip-flops.
- 3. Use external gates, to detect specific, usable sequences of flip-flop outputs to create the necessary next input levels. (How to create inputs of flip-flops from outputs of flip-flops)
- 4. Use K-Maps to record and simplify the available outputs to create the inputs.
- 5. Implement the Circuit (i.e. Diagram)

Excitation (Transition) Tables

• Presented in Chapter 5

• By using K-Maps, we no longer need to utilize the toggling mode of a flip-flop (as in asynchronous). This allows us to use any edge triggered flip-flop to create the non-sequential counter.

• We need to know how the different flip-flops respond to various input states, based on their current state.

Building an Excitation (Transition) Table

• Building an Excitation Table is done using the Characteristic Function Tables of the Flip-Flops.

• Where the Characteristic Function Table indicates "Q", "Q" or "No Change", we indicate the binary value.

D Flip flop

Output changes only on the clock transition

D	CLK	Q	Q'
0	†	0	1
1	†	1	0
X	0	Q_0	Q_0

D Flip flop can be implemented using SR S = D R = D'

Excitation (Transition) Table: D Flip Flop

D-FLIP-FLOP		
Present Next Input		
0 -> 0	0	
0 → 1	1	
1 → 0	0	
1 -> 1	1	

• We indicate the present and the next states of the outputs.

• The input states indicates the required D input to produce the next state.

JK Flip flop Characteristic Table

Symbol

Same as SR except for K=J=1 the JK flip flop will Output the opposite state of Q_{n} .

J	-	K	Q_{n+1}	Function		
	0	0	Qn	No change		
(0	1	0	RESET		
]	1	0	1	SET		
]	1	1	Q'n	complemen	t (also Toggl	e)

- • Q_n = state *before* positive edge
- • Q_{n+1} = state *after* positive edge

$$\label{eq:continuous_problem} \begin{split} &\text{If} \ \ Q_{n.} = 1 \ then \ Q_{n+1} = 0 \\ &\text{If} \ \ Q_{n.} = 0 \ then \ Q_{n+1} = 1 \end{split}$$

JK Excitation (Transition) Table

J-K Flip-Flop Transition Table

- we indicate the present and next Q-output. If the flip-flop toggles or holds, we indicate that binary value.
- Also note that we need to determine both the J and K inputs.
- The "X" indicates "Don't Care" states (can be '1' or '0' input).

J-K FLIP-FLOP		
Present Next	Input J K	
$0 \longrightarrow 0$	0 X	
0 → 1	1 X	
1 → 0	X 1	
1 -> 1	X 0	

J-K Flip Flop Excitation (Transition) Table

J-K FLIP-FLOP		
Present Next	Input J K	
$0 \rightarrow 0$	0 X	
0 → 1	1 X	
1 -> 0	X 1	
1 -> 1	X 0	

States

Hold or Reset

Toggle or Set

Toggle or Reset

Hold or Set

→ each output of the J-K Flip-Flop is the result of 2 possible states.

Building a K-Map with D Flip Flop

- To build a K-Map, we first need:
 - 1- State Diagram of the output sequence
 - 2- State/Table of the output sequence
 - 3- Excitation (Transition) Table for the Flip-Flop we intend to use (here D ff)
 - Present and Next outputs
 - Necessary inputs to create Next outputs

Present	Next
୍ରପ $_{\!$	$\mathcal{O}^{\mathcal{O}}$
000	0 1 0
0 1 0	110
110	001
0 0 1	000

D-FLIP-FLOP		
Present Next Input		
0 -> 0	0	
0 → 1	1	
1 → 0	0	
1 -> 1	1	

Building a K-Map for D Flip Flop: Step 1

• Draw the State Table and State Diagram of the output sequence.

Present	Next
ପ୍ରକୃପ୍ଧ	ପ $_{\mathcal{Q}}$ ପ $_{\!\!\scriptscriptstyleeta}$ ପ
000	010
010	110
110	001
001	000

State Table

Building the K-Map: Step 2

• Determine the type of Flip-Flop and its Transition Table. For our example, we use the D Flip-Flop:

D-FLIP-FLOP		
Present Next Input		
0 -> 0	0	
0 → 1	1	
1 → 0	0	
1 -> 1	1	

Transition Table

Building the K-Map: Step 3

•Build the State Table with the FF inputs indicated:

D-FLIP-FLOP		
Present Next Input		
0 → 0	0	
0 → 1	1	
1 → 0	0	
1 -> 1	1	

Present	Next	FF Inputs
$Q_C Q_B Q_A$	$Q_C Q_B Q_A$	$D_C D_B D_A$
0 0 0	0 1 0	0 1 0
0 1 0	1 1 0	1 1 0
1 1 0	0 0 1	0 0 1
0 0 1	0 0 0	0 0 0

Present	Next	FF Input
$Q_{\mathbb{C}}Q_{\mathbb{B}}Q_{\mathbb{A}}$	Q _C Q _B Q _A	$D_{C}D_{B}D_{A}$
0 0 0	0 1 0	0 1 0
0 1 0	1 1 0	1 1 0
1 1 0	0 0 1	0 0 1
0 0 1	0 0 0	0 0 0

Animated

Building the K-Map: Step 4

Build a K-Map for each FF Input:

Present	Next	FF Input			
$Q_C Q_B Q_A$	$Q_C Q_B Q_A$	$D_C D_B D_A$			
0 0 0	0 1 0	0 1 0			
0 1 0	1 1 0	1 1 0			
1 1 0	0 0 1	0 0 1			
0 0 1	0 0 0	0 0 0			

Q_A $Q_C Q_B$	0	1
00	0	0
01	1	X
11	0	X
10	X	X

Q_A $Q_C Q_R$	0	1
00	1	0
01	1	X
11	0	X
10	X	X

Q_A $Q_C Q_B$	0	1
00	0	0
01	0	X
11	1	X
10	X	X

 $\mathbf{D}_{\mathbf{B}}$

 $\mathbf{D}_{\mathbf{A}}$

A N I M A T E

61

Building the K-Map: Step 5

determine the simplified SOP for the FF inputs.

Implementation Diagram

- Draw the Circuit Diagram
- Verify its operations.

Synchronous Binary Counter Examples

• Examples of binary counter with JK flip Flop

- 1- Without missing States (full sequence)
- 2- With missing States (truncated sequence)

Binary Counter with JK Flip-Flops

Excitation (Transition) Table for JK FF

(a) JK flip-flop truth table

(b) Excitation (Transition) table for JK flip-flops

	J	K	Q_n	Q_{n+1}
	0	0	0	0
	0	0	1	1
•	0	1	0	0
	0	1	1	0
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	0

Q_n	Q_{n+1}	J	K
0	0	0	\mathbf{X}
0	1	1	X
1	0	X	1
1	1	X	0

- Build state diagram
- Build the state table that consists of
 - * Current state output
 - * Next state output
 - * JK inputs for each flip-flop
- Use K-maps to simplify expressions to get JK FF input equations
- Build the circuit for the counter

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$$

- 3-bit binary counter
- 3 JK flip-flops are needed
- Current state and next state outputs are 3 bits each
- 3 pairs of JK inputs

State Table for The Binary Counter Example

Present	Next									
State	State	JK FF Inputs								
ABC	ABC	J_A	J_A K_A J_B K_B J_C K_C							
0 0 0	0 0 1	0	X	0	X	1	X			
0 0 1	0 1 0	0	X	1	X	X	1			
0 1 0	0 1 1	0	X	X	0	1	X			
0 1 1	1 0 0	1	X	X	1	X	1			
100	1 0 1	X	0	0	X	1	X			
101	1 1 0	X	0	1	X	X	1			
110	111	X	0	X	0	1	X			
111	0 0 0	X	1	X	1	X	1			

Use K-maps to simplify expressions for JK

			•		•		•					
Ì	BC						BC					
	A	00	01	11	10	A		00	01	11	10	
	0	m_0	m_I	m_3	m_2		0	m_0	m_I	m_3	m_2	
I - RC	· ·			1			V	X	X	X	X	V = Rt
$J_A = BC$	1	m_4	m_5	m_7	m_{6}			m_4	m_5	m_7	m_6	$K_A = BC$
	1	X	X	X	X		1			1		
						-						ļ. 1
	BC						BC					
	A	00	01	11	10	Α		00	01	11	10	
	0	m_0	m_1	m_3	m_2		0	m_0	m_1	m_3	m_2	
$J_B = C$	U		1	X	X		U	X	X	1		$K_B = C$
\mathbf{J}_{B}	1	m_4	m_5	m_7	m_{δ}		1	m_4	m_5	m_7	m_6	$R_B - C$
	1		1	X	X		1	X	Х	1		
						_						<u>t</u>
	BC						BC					
	A	00	01	11	10	A		00	01	11	10	
	0	m_0	m_1	m_3	m_2		0	m_0	m_I	m_3	m_2	\
$J_C = 1$		1	X	X	1		U	X	1	1	X	$K_C = 1$
$\sigma_C = 1$	1	m_4	m_5	m_7	m_6		1	m_4	m_5	m_7	m_{6}	$\int_{C} C - 1$
	1	1	X	X	1		1	X	1	1	X	
								-				- -

Binary counter with JK Flip-Flops

• Final circuit for the binary counter

Does it matter if +ve or -ve transition clock used?

4- bit Synchronous Binary Counter with Enable Input

- Pattern for count UP binary counter: The LSB flip-flop is complemented with every pulse. Any other flip-flop is complemented when all bits in lower significant positions are 1
 - rightharpoonup present state $A_3A_2A_1A_0 = 0011$, the next state is 0100
- Note the use of Count_enable input
 - Count_enable = 0, all JK inputs =0, and counter state unchanged
 - ➤ Count_enable = 1, all JK flip-flops are enabled, and counter is enabled
- Cascading consists of attaching FF output of MSB to count_enable of next stage.

Count enable

Up-Down Binary Counter

- Countdown binary counter counts in reverse order, 1111 to 0000, back to 1111.
- Pattern for DOWN binary counter: The LSB flip-flop is complemented with every pulse. Any other flip-flop is complemented when all bits in lower significant positions are 0
 - rightharpoonup present state $A_3A_2A_1A_0 = 0100$, the next state is 0011
- Note the use of up and down control inputs
 - ➤ When up=1, counter counts up
 - ➤ When up=0, down=1, counter counts down

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Binary Counter with JK FF's (missing states)

→ Example with missing states

$$0\rightarrow3\rightarrow5\rightarrow7\rightarrow6\rightarrow0$$

- Same design process as before
- One significant change
 - * Missing states
 - » 1, 2, and 4
 - » Use don't cares for these states

Binary counter with JK flip flop (missing states)

State Table For The Binary Counter Example

Present	Next						
State	State	JK FF Inputs					
ABC	ABC	J_A	K_A	J_{B}	K _B	J_{C}	Kc
0 0 0	0 1 1	0	X	1	X	1	X
0 0 1	X <u>X</u> <u>X</u>	X	X	X	X	X	X
0 1 0	X X X	X	X	X	X	X	X
0 1 1	1 0 1	1	X	X	1	X	0
100	X X X	X	X	X	X	X	X
1 0 1	111	X	0	1	X	X	0
110	0 0 0	X	1	X	1	0	X
1 1 1	1 1 0	X	0	X	0	X	1

Binary counter with JK flip flop (missing states)

Use K-maps to simplify expressions for JK inputs

											_
	BC					BC					
	A	00	01	11	10	A	00	01	11	10	
	0	m_0	m_I	m_3	m_2	0	m_0	m_{I}	m_3	m_2	
$J_{A} = B$	U		X	1	X		X	X	X	X	$K_A = C'$
$J_A - D$	1 1	m_4	m_5	m_7	m_6	1	m_4	m_5	m_7	m_6	$\Lambda_A - C$
	1	X	X	X	X	1_	X			1	
	BC					BC					-
	A	00	01	11	10	A	00	01	11	10	
	0	m_0	m_I	m_3	m_2		m_0	m_I	m_3	m_2	•
$J_B = 1$	U	1	X	X	X	0	Х	X	1	х	$K_{B} = A' + C'$
$J_B - 1$	1	m_4	m_5	m_7	m_6	1	m_4	m_5	m_7	m_6	$R_B - A + C$
	1	X	1	X	X	1	X	X		1	
			ı	1			_				-
	BC	0.0				BC	0.0	0.1		1.0	
	A	00	01	11	10	A	00	01	11	10	
	0	m_0	m_I	m_3	m_2	0	m_0	m_I	m_3	m_2	
$J_C = A'$			X	X	X		X	X		X	$K_C = AB$
26 11	1	m_4	m_5	m_7	m_{6}	1	m_4	m_5	m_7	m_{6}	C
		X	X	X			X			Х	

Binary counter with JK flip flop (missing states)

Final circuit

Example: - Design a 3 - bit binary counter using T flip - flops

Example: - Design a 3 - bit binary counter using T flip - flops.

Present State	Next State	Flip - Flop Inputs				
ABC	ABC	TA	T B	T C		
000	001	0	0	1		
001	010	0	1	1		
010	011	0	0	1		
011	$1\ 0\ 0$	1	1	1		
100	101	0	0	1		
101	110	0	1	1		
110	111	0	0	1		
111	$0\ 0\ 0$	1	1	1		

Example: - Design a 3 - bit binary counter using T flip - flops.

Kmap

Example: - Design a 3 - bit binary counter using T flip - flops.

Design: Synchronous BCD

• Design a BCD counter using T Flip Flop

Design: Synchronous BCD

• We can use the sequential logic model to design a synchronous <u>BCD</u> counter with T FF's. Below is the State Table.

Don't care states have been left out (from 1010 to 1111).

Current State	Next State	T-FF inputs
$Q_8 Q_4 Q_2 Q_1$	$\mathbf{Q_8} \ \mathbf{Q_4} \ \mathbf{Q_2} \ \mathbf{Q_1}$	$T_8 T_4 T_2 T_1$
0 0 0 0	$0 \ 0 \ 0 \ 1$	0 0 0 1
0 0 0 1	0 0 1 0	0 0 1 1
0 0 1 0	0 0 1 1	0 0 0 1
0 0 1 1	0 1 0 0	0 1 1 1
0 1 0 0	0 1 0 1	0 0 0 1
0 1 0 1	0 1 1 0	0 0 1 1
0 1 1 0	0 1 1 1	0 0 0 1
0 1 1 1	1 0 0 0	1 1 1 1
1 0 0 0	1 0 0 1	0 0 0 1
1 0 0 1	0 0 0 0	1 0 0 1

Synchronous BCD (Continued)

Use K-Maps to minimize the FF input functions

Note: Don't Care states are included.

Synchronous BCD (Continued)

• The minimized circuit:

Designing a Synchronous BCD Counter

Present State	Next State	Output	Next State
$Q_8 Q_4 Q_2 Q_1$	$Q_8 Q_4 Q_2 Q_1$	У	$TQ_8 TQ_4 TQ_2 TQ_1$
$0 \ 0 \ 0 \ 0$	0 0 0 1	0	0 0 0 1
0 0 0 1	0 0 1 0	0	0 0 1 1
0 0 1 0	0 0 1 1	0	0 0 0 1
0 0 1 1	0 1 0 0	0	0 1 1 1
0 1 0 0	0 1 0 1	0	0 0 0 1
0 1 1 0	0 1 1 0	0	0 0 1 1
0 1 0 1	0 1 1 1	0	0 0 0 1
0 1 1 1	1 0 0 0	0	1 1. 1 1
1 0 0 0	1 0. 0 1	0	0 0 0 1
1 0. 0 1	0 0 0 0	1	1 0 0 1

Can serve as the count enable of next stage.

$$TQ_1 = 1$$
, $TQ_2 = Q_8'Q_1$, $TQ_4 = Q_2Q_1$, $TQ_8 = Q_8Q_1 + Q_4Q_2Q_1$ $y = Q_8Q_1$

Counter with Parallel load

Table 6.6 Function Table for the Counter of Fig. 6.14

Clear	CLK	Load	Count	Function
0	X	X	X	Clear to 0
1	↑	1	X	Load inputs
1	↑	0	1	Count next binary state
1	1	0	0	No change

Counter with Parallel load: FF Input Equations

• With L = 1, C = X, parallel load

$$egin{aligned} J_0 &= I_0 & J_1 &= I_1 & J_2 &= I_2 & J_3 &= I_3 \ K_0 &= I_0' & K_1 &= I_1' & K_2 &= I_2' & K_3 &= I_3' \end{aligned} \qquad C_{out} = 0 \end{aligned}$$

• With L = 0, C = 1, count

$$egin{aligned} J_0 &= 1 & J_1 &= A_0 & J_2 &= A_0 A_1 & J_3 &= A_0 A_1 A_2 \ K_0 &= 1 & K_1 &= A_0 & K_2 &= A_0 A_1 & K_3 &= A_0 A_1 A_2 \end{aligned} \qquad C_{out} = A_0 A_1 A_2 A_3$$

• With L = 0, C = 0, no change, disabled

$$J_0 = 0$$
 $J_1 = 0$ $J_2 = 0$ $J_3 = 0$ $C_{out} = 0$ $K_0 = 0$ $K_1 = 0$ $K_2 = 0$ $K_3 = 0$

• Note: L = Load, C = Count

More BCD Counters (with Parallel Load)

Fig. 6-15 Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

When $A_3A_0=1$ (i.e. at value 1001), then load in 0000 at next clock transition

When $A_3A_1=1$ (i.e. at value 1010), Clear becomes low and counter clear to 0000 immediately

Not recommended, why?

Johnson Counter

• A Johnson Counter re-circulates the last flip-flop Q' (inverted) output back to the input of the first Flip-Flop.

```
000, 100, 110,111,011,001, 000, 100, 110, ....

Initial state
```


Johnson Counter

- of the counter is the number of FF output states
- The modulus of a k-bit Johnson counter is 2k

Ring Counter

• A ring counter takes the serial output of the last Flip-Flop of a shift register and provides it to the serial input of the first Flip-Flop.

• This is also known as a re-circulating shift register.

Ring Counter

Up Down Counter U

- U = 0, D = 0: $T_0 = 0$ $T_1 = 0$ $T_2 = 0$ $T_3 = 0$
- U = 1, D = 0: $T_0 = 1$ $T_1 = A_0$ $T_2 = A_0 A_1$ $T_3 = A_0 A_1 A_2$
- $\mathbf{U} = \mathbf{0}, \ \mathbf{D} = \mathbf{1} \colon T_0 = \mathbf{1}$ $T_1 = A_0'$ $T_2 = A_0' A_1'$ $T_3 = A_0' A_1' A_2'$

Debouncer

- Recall that mechanical switch bounces when its position is changed (or push button pushed/released
- Debouncing consists of removing the bounces from the noisy signal as shown

Debouncer

- Since button when bouncing, FF1 and FF2 become different
 - Exclusive OR gate produces 1 and clears the counter
- When the bouncing has settled: FF1 = FF2 = button
 - Counter increases until $C_{out} = 1$, enables FF3 to capture button input
 - Select number of bits (N) such that count takes 10 ms (18 bits for a clock of 40 ns/25 MHz)

Figure 1. Debounce Circuit

Application of BCD counters

Two counters are decade counters (Mod-10) while the other two have a modulus of 6. Why?

Sequential Logic Circuits: Examples

Note:

In addition to the examples presented here other examples were discussed in the class:

- -Asynchronous counters (4 examples are discussed in the class)
- -Synchronous counters (3 examples are discussed in the class)
- Steps for building synchronous counters (comprehensive examples with animation is used here to show the steps with the D flip Flops)