CPSC 420 Lecture 19: Today's announcements:

- ▶ HW3 is on Gradescope, due Mar 9, 23:59
- Examlet 3 on Mar 17 in class. Closed book & no notes
- Reading: NP-hardness [Erickson]NP-completeness proofs [Cormen, Leiserson, Rivest, Stein]

Today's Plan

- NP-hardness
 - ▶ CircuitSat √
 - SAT (and SAT) √
 - Independent Set
 - Vertex Cover
 - Clique
 - Hamiltonian cycle (and TSP)

Independent Set

An **independent set** is a set of vertices in a graph G that share no common edge.

IndependentSet takes graph G and integer k and outputs "Yes" if G has an independent set of size k and "No" otherwise.

Claim: IndependentSet is NP-hard.

Transform a CNF formula Φ into a graph G and integer k so that Φ is satisfied if and only if G has an independent set of size k.

Transform a CNF formula Φ into a graph G and integer k so that Φ is satisfied if and only if G has an independent set of size k.

- 1. Create a vertex for every occurrence of a literal in a clause.
- 2. Create edges between every literal occurrence and its negation.
- 3. For each clause, create edges between all literals in the clause.
- 4. Let the size of the desired independent set k=# clauses

Claim: G contains an independent set of size k if and only if Φ is satisfiable.

- \Rightarrow Let S be an independent set of size k in G. S cannot contain two literal nodes from the same clause, so every one of the k clauses contains one literal in S. S cannot contain a literal node and its negation. Set all literals in S to true. This satisfies Φ .
- \Leftarrow Let A be a truth assignment satisfying Φ . Every clause contains at least one True literal. Pick one for each of the k clauses and let S be the set of corresponding vertices. Since A doesn't assign True to a literal and its negation, S is an independent set of size k.

Clique and Vertex Cover are NP-complete

Independent Set: A set of vertices that share no common edge.

Clique: A set of vertices that form a complete subgraph of G.

Vertex Cover: A set of vertices that "cover" (contain at least one endpoint of) every edge of G.

Clique and Vertex Cover are NP-complete

Independent Set: A set of vertices that share no common edge.

Clique: A set of vertices that form a complete subgraph of G.

Vertex Cover: A set of vertices that "cover" (contain at least one endpoint of) every edge of G.

Clique is NP-complete

Vertex Cover is NP-complete

Hamiltonian Cycle: A cycle that contains every vertex exactly once (and returns to the start).

Hamiltonian Cycle: A cycle that contains every vertex exactly once (and returns to the start).

Any Hamiltonian cycle must traverse the gadget in one of these three ways.

