Practical Machine Learning Project

Marijus B

Libraries

```
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(rattle)
## Rattle: A free graphical interface for data science with R.
## Version 5.3.0 Copyright (c) 2006-2018 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(rpart)
library(rpart.plot)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:rattle':
##
##
       importance
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(corrplot)
## corrplot 0.84 loaded
library(gbm)
## Loaded gbm 2.1.5
library(data.table)
library(kernlab)
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
##
##
       alpha
```

```
library(ggplot2)
library(MASS)
library(tidyverse)
## -- Attaching packages
## v tibble
           2.1.3
                       v dplyr
                                 0.8.5
             1.0.2
## v tidyr
                       v stringr 1.4.0
## v readr
             1.3.1
                       v forcats 0.5.0
## v purrr
             0.3.3
## -- Conflicts -----
## x kernlab::alpha()
                            masks ggplot2::alpha()
## x dplyr::between()
                            masks data.table::between()
## x dplyr::combine()
                            masks randomForest::combine()
## x purrr::cross()
                            masks kernlab::cross()
## x dplyr::filter()
                            masks stats::filter()
## x dplyr::first()
                            masks data.table::first()
## x dplyr::lag()
                            masks stats::lag()
## x dplyr::last()
                            masks data.table::last()
## x purrr::lift()
                            masks caret::lift()
## x randomForest::margin() masks ggplot2::margin()
## x dplyr::select()
                            masks MASS::select()
## x purrr::transpose()
                            masks data.table::transpose()
library(data.table)
```

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways.

Project

The main goal of the project is predict the manner in which exercises were performed by six participants and it is labeled as "classe" in the training data set.

Data for the analysis consists of training and test data sets.

Data will be tested with 4 different models: Classification Tree, Random Forest, Gradient Boosting Method and Linear Discriminant Analysis.

WLE dataset for this project is a courtesy of: Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human '13). Stuttgart, Germany: ACM SIGCHI, 2013.

Getting Data

Data is obtained from:

 $https://d396 qusza 40 orc. cloud front.net/pred machlearn/pml-training.csv \\ https://d396 qusza 40 orc. cloud front.net/pred machlearn/pml-testing.csv$

Training Data

```
table(trainingData$classe)

##
## A B C D E
## 5580 3797 3422 3216 3607

#str(trainingData)
dim(trainingData)

## [1] 19622 160

#summary(trainingData)
```

trainingData <- read.csv(url("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"),he

Testing Data

```
testingData <- read.csv(url("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"),head
table(testingData$classe)

## < table of extent 0 >
#str(testingData)
dim(testingData)

## [1] 20 160
#summary(testingData)
```

Cleaning Data Sets

Removing variables from the data sets that are close to zero:

```
NSV <- nearZeroVar(trainingData,saveMetrics=TRUE)
NSV</pre>
```

```
##
                             freqRatio percentUnique zeroVar
## X
                              1.000000 100.00000000 FALSE FALSE
## user_name
                              1.100679
                                         0.03057792 FALSE FALSE
                              1.000000
                                         4.26562022 FALSE FALSE
## raw_timestamp_part_1
## raw_timestamp_part_2
                              1.000000
                                        85.53154622
                                                     FALSE FALSE
                             1.000668
                                         0.10192641
                                                      FALSE FALSE
## cvtd_timestamp
## new_window
                             47.330049
                                         0.01019264
                                                     FALSE TRUE
                                                     FALSE FALSE
## num_window
                              1.000000
                                         4.37264295
## roll_belt
                             1.101904
                                         6.77810621
                                                      FALSE FALSE
## pitch_belt
                                         9.37722964
                                                     FALSE FALSE
                             1.036082
## yaw_belt
                             1.058480
                                         9.97349913
                                                     FALSE FALSE
                                         0.14779329 FALSE FALSE
## total_accel_belt
                             1.063160
## kurtosis_roll_belt
                          1921.600000
                                         2.02323922
                                                      FALSE TRUE
## kurtosis_picth_belt
                          600.500000
                                         1.61553358 FALSE TRUE
                            47.330049
                                         0.01019264 FALSE TRUE
## kurtosis_yaw_belt
                                         2.01304658 FALSE TRUE
## skewness_roll_belt
                           2135.111111
```

	skewness_roll_belt.1	600.500000	1.72255631	FALSE	TRUE
##	skewness_yaw_belt	47.330049	0.01019264	FALSE	TRUE
##	max_roll_belt	1.000000	0.99378249		
##	max_picth_belt	1.538462	0.11211905	FALSE	FALSE
##	max_yaw_belt	640.533333	0.34654979	FALSE	TRUE
##	min_roll_belt	1.000000	0.93772296	FALSE	FALSE
##	min_pitch_belt	2.192308	0.08154113	FALSE	FALSE
##	min_yaw_belt	640.533333	0.34654979	FALSE	TRUE
##	amplitude_roll_belt	1.290323	0.75425543	FALSE	FALSE
##	amplitude_pitch_belt	3.042254	0.06625217	FALSE	FALSE
##	amplitude_yaw_belt	50.041667	0.02038528	FALSE	TRUE
##	var_total_accel_belt	1.426829	0.33126083	FALSE	FALSE
##	avg_roll_belt	1.066667	0.97339721	FALSE	FALSE
##	stddev_roll_belt	1.039216	0.35164611	FALSE	FALSE
##	var_roll_belt	1.615385	0.48924676	FALSE	FALSE
##	avg_pitch_belt	1.375000	1.09061258	FALSE	FALSE
##	stddev_pitch_belt	1.161290	0.21914178	FALSE	
##	var_pitch_belt	1.307692	0.32106819	FALSE	
##	avg_yaw_belt	1.200000	1.22311691	FALSE	
##	stddev_yaw_belt	1.693878	0.29558659	FALSE	
##	var_yaw_belt	1.500000	0.73896647	FALSE	
##	gyros_belt_x	1.058651	0.71348486	FALSE	
##	gyros_belt_y	1.144000	0.35164611	FALSE	
##	gyros_belt_z	1.066214	0.86127816	FALSE	
	accel_belt_x	1.055412	0.83579655	FALSE	
		1.113725	0.72877383	FALSE	
##	accel_belt_y	1.113725	1.52379982	FALSE	
##	accel_belt_z				
##	magnet_belt_x	1.090141	1.66649679	FALSE	
##	magnet_belt_y	1.099688	1.51870350	FALSE	
##	magnet_belt_z	1.006369	2.32901845	FALSE	
##	roll_arm	52.338462	13.52563449	FALSE	
##	pitch_arm	87.256410	15.73234125	FALSE	
##	yaw_arm	33.029126	14.65701763	FALSE	
##	total_accel_arm	1.024526	0.33635715	FALSE	
##	var_accel_arm	5.500000	2.01304658	FALSE	
##	avg_roll_arm	77.000000	1.68178575	FALSE	TRUE
##	stddev_roll_arm	77.000000	1.68178575	FALSE	TRUE
##	var_roll_arm	77.000000	1.68178575	FALSE	TRUE
##	avg_pitch_arm	77.000000	1.68178575	FALSE	TRUE
##	stddev_pitch_arm	77.000000	1.68178575	FALSE	TRUE
##	var_pitch_arm	77.000000	1.68178575	FALSE	TRUE
##	avg_yaw_arm	77.000000	1.68178575	FALSE	TRUE
##	stddev_yaw_arm	80.000000	1.66649679	FALSE	TRUE
##	var_yaw_arm	80.000000	1.66649679	FALSE	TRUE
##	gyros_arm_x	1.015504	3.27693405	FALSE	FALSE
##	gyros_arm_y	1.454369	1.91621649		FALSE
##	gyros_arm_z	1.110687	1.26388747		FALSE
##	accel_arm_x	1.017341	3.95984099		FALSE
##	accel_arm_y	1.140187	2.73672409		FALSE
##	accel_arm_z	1.128000	4.03628580		FALSE
##	magnet_arm_x	1.000000	6.82397309		FALSE
##	magnet_arm_y	1.056818	4.44399144		FALSE
##	_	1.036364	6.44684538		FALSE
	magnet_arm_z				
##	kurtosis_roll_arm	246.358974	1.68178575	FALSE	TRUE

	kurtosis_picth_arm	240.200000	1.67159311	FALSE	TRUE
	kurtosis_yaw_arm	1746.909091	2.01304658	FALSE	TRUE
	skewness_roll_arm	249.558442	1.68688207	FALSE	TRUE
	skewness_pitch_arm	240.200000	1.67159311	FALSE	TRUE
	skewness_yaw_arm	1746.909091	2.01304658	FALSE	TRUE
	max_roll_arm	25.666667	1.47793293	FALSE	TRUE
	max_picth_arm	12.833333	1.34033228	FALSE	
	max_yaw_arm	1.227273	0.25991234	FALSE	
##	min_roll_arm	19.250000	1.41677709	FALSE	TRUE
##	min_pitch_arm	19.250000	1.47793293	FALSE	TRUE
##	min_yaw_arm	1.000000	0.19366018	FALSE	
##	amplitude_roll_arm	25.666667	1.55947406	FALSE	TRUE
##	amplitude_pitch_arm	20.000000	1.49831821	FALSE	TRUE
	amplitude_yaw_arm	1.037037	0.25991234	FALSE	
	roll_dumbbell	1.022388	84.20650290	FALSE	
	pitch_dumbbell	2.277372	81.74498012	FALSE	
	yaw_dumbbell	1.132231	83.48282540	FALSE	
##	kurtosis_roll_dumbbell	3843.200000	2.02833554	FALSE	TRUE
	kurtosis_picth_dumbbell	9608.000000	2.04362450	FALSE	TRUE
	kurtosis_yaw_dumbbell	47.330049	0.01019264	FALSE	TRUE
##	skewness_roll_dumbbell	4804.000000	2.04362450	FALSE	TRUE
##	skewness_pitch_dumbbell	9608.000000	2.04872082	FALSE	TRUE
##	skewness_yaw_dumbbell	47.330049	0.01019264	FALSE	TRUE
##	max_roll_dumbbell	1.000000	1.72255631	FALSE	
##	max_picth_dumbbell	1.333333	1.72765263	FALSE	
##	max_yaw_dumbbell	960.800000	0.37203139	FALSE	TRUE
##	min_roll_dumbbell	1.000000	1.69197839	FALSE	
##	min_pitch_dumbbell	1.666667	1.81429008	FALSE	
##	min_yaw_dumbbell	960.800000	0.37203139	FALSE	TRUE
##	amplitude_roll_dumbbell	8.000000	1.97227602	FALSE	
##	amplitude_pitch_dumbbell	8.000000	1.95189073	FALSE	
##	amplitude_yaw_dumbbell	47.920200	0.01528896	FALSE	TRUE
##	total_accel_dumbbell	1.072634	0.21914178	FALSE	
##	var_accel_dumbbell	6.000000	1.95698706	FALSE	
##	avg_roll_dumbbell	1.000000	2.02323922	FALSE	
##	stddev_roll_dumbbell	16.000000	1.99266130		FALSE
##	var_roll_dumbbell	16.000000	1.99266130		FALSE
##	O=1 =	1.000000	2.02323922		FALSE
##	stddev_pitch_dumbbell	16.000000	1.99266130		FALSE
##	var_pitch_dumbbell	16.000000	1.99266130		FALSE
##	avg_yaw_dumbbell	1.000000	2.02323922		FALSE
##	stddev_yaw_dumbbell	16.000000	1.99266130		FALSE
##	var_yaw_dumbbell	16.000000	1.99266130		FALSE
##	gyros_dumbbell_x	1.003268	1.22821323		FALSE
##	<pre>gyros_dumbbell_y</pre>	1.264957	1.41677709		FALSE
##	gyros_dumbbell_z	1.060100	1.04984201		FALSE
##	accel_dumbbell_x	1.018018	2.16593619		FALSE
##	accel_dumbbell_y	1.053061	2.37488533		FALSE
##	accel_dumbbell_z	1.133333	2.08949139	FALSE	FALSE
	magnet_dumbbell_x	1.098266	5.74864948		FALSE
	magnet_dumbbell_y	1.197740	4.30129447		FALSE
	magnet_dumbbell_z	1.020833	3.44511263		FALSE
	roll_forearm	11.589286	11.08959331		FALSE
##	pitch_forearm	65.983051	14.85577413	FALSE	FALSE

```
## yaw forearm
                               15.322835
                                           10.14677403
                                                          FALSE FALSE
## kurtosis_roll_forearm
                                                          FALSE TRUE
                              228.761905
                                            1.64101519
## kurtosis_picth_forearm
                              226.070588
                                            1.64611151
                                                          FALSE TRUE
## kurtosis_yaw_forearm
                               47.330049
                                                         FALSE TRUE
                                            0.01019264
## skewness_roll_forearm
                              231.518072
                                            1.64611151
                                                          FALSE
                                                                 TRUE
                                                         FALSE TRUE
## skewness_pitch_forearm
                              226.070588
                                            1.62572623
## skewness_yaw_forearm
                               47.330049
                                            0.01019264
                                                          FALSE TRUE
## max_roll_forearm
                               27.666667
                                            1.38110284
                                                          FALSE TRUE
## max_picth_forearm
                                2.964286
                                            0.78992967
                                                          FALSE FALSE
## max_yaw_forearm
                              228.761905
                                            0.22933442
                                                          FALSE TRUE
## min_roll_forearm
                               27.666667
                                            1.37091020
                                                          FALSE TRUE
## min_pitch_forearm
                                2.862069
                                            0.87147080
                                                          FALSE FALSE
## min_yaw_forearm
                              228.761905
                                            0.22933442
                                                          FALSE TRUE
                                                          FALSE TRUE
## amplitude_roll_forearm
                               20.750000
                                            1.49322189
## amplitude_pitch_forearm
                                                          FALSE FALSE
                                3.269231
                                            0.93262664
## amplitude_yaw_forearm
                               59.677019
                                            0.01528896
                                                          FALSE TRUE
## total_accel_forearm
                                            0.35674243
                                                          FALSE FALSE
                                1.128928
## var accel forearm
                                3.500000
                                            2.03343186
                                                          FALSE FALSE
## avg_roll_forearm
                                                          FALSE TRUE
                               27.666667
                                            1.64101519
## stddev_roll_forearm
                               87.000000
                                            1.63082255
                                                          FALSE
                                                                 TRUE
## var_roll_forearm
                               87.000000
                                            1.63082255
                                                          FALSE TRUE
## avg_pitch_forearm
                                                          FALSE TRUE
                               83.000000
                                            1.65120783
## stddev_pitch_forearm
                                                          FALSE TRUE
                               41.500000
                                            1.64611151
## var_pitch_forearm
                                                          FALSE
                                                                 TRUE
                               83.000000
                                            1.65120783
## avg_yaw_forearm
                               83.000000
                                            1.65120783
                                                          FALSE TRUE
## stddev_yaw_forearm
                               85.000000
                                            1.64101519
                                                          FALSE TRUE
## var_yaw_forearm
                                                          FALSE TRUE
                               85.000000
                                            1.64101519
## gyros_forearm_x
                                1.059273
                                            1.51870350
                                                          FALSE FALSE
                                                          FALSE FALSE
## gyros_forearm_y
                                1.036554
                                            3.77637346
## gyros_forearm_z
                                            1.56457038
                                                          FALSE FALSE
                                1.122917
## accel_forearm_x
                                1.126437
                                            4.04647844
                                                          FALSE FALSE
## accel_forearm_y
                                1.059406
                                            5.11160942
                                                          FALSE FALSE
## accel_forearm_z
                                1.006250
                                            2.95586586
                                                          FALSE FALSE
## magnet_forearm_x
                                1.012346
                                            7.76679238
                                                          FALSE FALSE
## magnet_forearm_y
                                            9.54031189
                                                          FALSE FALSE
                                1.246914
                                                          FALSE FALSE
## magnet_forearm_z
                                1.000000
                                            8.57710733
## classe
                                1.469581
                                            0.02548160
                                                          FALSE FALSE
nsv <- nearZeroVar(trainingData)</pre>
##
   Г17
          6
             12
                13
                     14
                         15
                             16
                                 17
                                      20
                                          23
                                              26
                                                  51
                                                      52
                                                          53
                                                               54
                                                                   55
                                                                       56
                                                                           57
                                                                               58
## [20]
                 71
                     72
                         73
                             74
                                 75
                                      78
                                          79
                                              81
                                                  82
                                                      87
                                                           88
                                                               89
                                                                   90
## [39] 101 125 126 127 128 129 130 131 133 134 136 137 139 142 143 144 145 146 147
## [58] 148 149 150
training <- trainingData[, -nsv]</pre>
testing <- testingData[, -nsv]</pre>
dim(training)
## [1] 19622
               100
dim(testing)
```

6

[1] 20 100

Removing missing values, NAs from data sets:

\$ roll_forearm

\$ pitch_forearm

```
indColToRemove <- which(colSums(is.na(trainingData) | trainingData=="")>0.8*dim(trainingData)[1])
training <- trainingData[,-indColToRemove]</pre>
str(training)
## 'data.frame':
                  19622 obs. of 60 variables:
##
   $ X
                        : int 1 2 3 4 5 6 7 8 9 10 ...
## $ user name
                        : Factor w/ 6 levels "adelmo", "carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ raw_timestamp_part_1: int 1323084231 1323084231 1323084231 1323084232 1323084232 1323084232 13230
## $ raw_timestamp_part_2: int 788290 808298 820366 120339 196328 304277 368296 440390 484323 484434
## $ cvtd_timestamp
                        : Factor w/ 20 levels "02/12/2011 13:32",..: 9 9 9 9 9 9 9 9 9 ...
## $ new window
                        : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ num_window
                        : int 11 11 11 12 12 12 12 12 12 12 ...
##
   $ roll_belt
                              1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
                        : num
## $ pitch_belt
                        : num
                              8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
## $ yaw_belt
                        : num
                              -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total_accel_belt
                              3 3 3 3 3 3 3 3 3 . . .
                        : int
                              ## $ gyros_belt_x
                        : num
## $ gyros_belt_y
                              0 0 0 0 0.02 0 0 0 0 0 ...
                        : num
## $ gyros_belt_z
                               -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
                        : num
##
   $ accel_belt_x
                        : int
                               -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y
                        : int
                              4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z
                              22 22 23 21 24 21 21 21 24 22 ...
                        : int
## $ magnet_belt_x
                              -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
                        : int
## $ magnet_belt_y
                        : int
                              599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z
                              -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
                        : int
## $ roll arm
                              : num
                              22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ pitch_arm
                        : num
## $ yaw arm
                              : num
## $ total_accel_arm
                        : int
                              34 34 34 34 34 34 34 34 34 ...
## $ gyros_arm_x
                              : num
## $ gyros_arm_y
                        : num
                              0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
##
                              -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
   $ gyros_arm_z
                        : num
## $ accel_arm_x
                              -288 -290 -289 -289 -289 -289 -289 -288 -288 ...
                        : int
## $ accel_arm_y
                        : int
                              109 110 110 111 111 111 111 111 109 110 ...
##
                        : int
                              -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
   $ accel_arm_z
                        : int
##
   $ magnet_arm_x
                              -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
## $ magnet_arm_y
                        : int
                              337 337 344 344 337 342 336 338 341 334 ...
## $ magnet_arm_z
                              516 513 513 512 506 513 509 510 518 516 ...
                        : int
## $ roll_dumbbell
                        : num
                              13.1 13.1 12.9 13.4 13.4 ...
## $ pitch_dumbbell
                        : num
                              -70.5 -70.6 -70.3 -70.4 -70.4 ...
## $ yaw_dumbbell
                        : num
                              -84.9 -84.7 -85.1 -84.9 -84.9 ...
## $ total_accel_dumbbell: int
                              37 37 37 37 37 37 37 37 37 ...
##
   $ gyros dumbbell x
                        : num
                              0 0 0 0 0 0 0 0 0 0 ...
## $ gyros_dumbbell_y
                              -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 ...
                        : num
## $ gyros dumbbell z
                              0 0 0 -0.02 0 0 0 0 0 0 ...
                        : num
                              -234 -233 -232 -232 -233 -234 -232 -234 -232 -235 ...
## $ accel_dumbbell_x
                        : int
## $ accel_dumbbell_y
                        : int
                              47 47 46 48 48 48 47 46 47 48 ...
## $ accel_dumbbell_z
                              -271 -269 -270 -269 -270 -269 -270 -272 -269 -270 ...
                        : int
## $ magnet_dumbbell_x
                              -559 -555 -561 -552 -554 -558 -551 -555 -549 -558 ...
                        : int
## $ magnet_dumbbell_y
                              293 296 298 303 292 294 295 300 292 291 ...
                        : int
## $ magnet_dumbbell_z
                               -65 -64 -63 -60 -68 -66 -70 -74 -65 -69 ...
                        : num
```

28.4 28.3 28.3 28.1 28 27.9 27.9 27.8 27.7 27.7 ...

-63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.8 -63.8 -63.8 ...

: num

: num

```
## $ yaw forearm
                               : num
## $ total_accel_forearm : int
                               36 36 36 36 36 36 36 36 36 ...
                               ## $ gyros forearm x
                         : num
## $ gyros_forearm_y
                               0 0 -0.02 -0.02 0 -0.02 0 -0.02 0 0 ...
                         : num
## $ gyros_forearm_z
                         : num
                               -0.02 -0.02 0 0 -0.02 -0.03 -0.02 0 -0.02 -0.02 ...
## $ accel_forearm_x
                               192 192 196 189 189 193 195 193 193 190 ...
                         : int
## $ accel forearm y
                         : int
                               203 203 204 206 206 203 205 205 204 205 ...
## $ accel forearm z
                         : int
                               -215 -216 -213 -214 -214 -215 -215 -213 -214 -215 ...
## $ magnet_forearm_x
                         : int
                               -17 -18 -18 -16 -17 -9 -18 -9 -16 -22 ...
## $ magnet_forearm_y
                         : num
                               654 661 658 658 655 660 659 660 653 656 ...
## $ magnet_forearm_z
                         : num 476 473 469 469 473 478 470 474 476 473 ...
                         : Factor w/ 5 levels "A", "B", "C", "D", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ classe
dim(training)
## [1] 19622
indColToRemove <- which(colSums(is.na(testingData) | testingData=="")>0.8*dim(testingData)[1])
testing <- testingData[,-indColToRemove]</pre>
str(testing)
## 'data.frame':
                   20 obs. of 60 variables:
## $ X
                         : int 1 2 3 4 5 6 7 8 9 10 ...
                         : Factor w/ 6 levels "adelmo", "carlitos", ...: 6 5 5 1 4 5 5 5 2 3 ....
## $ user_name
## $ raw_timestamp_part_1: int 1323095002 1322673067 1322673075 1322832789 1322489635 1322673149 1322
## $ raw_timestamp_part_2: int 868349 778725 342967 560311 814776 510661 766645 54671 916313 384285 .
## $ cvtd_timestamp
                         : Factor w/ 11 levels "02/12/2011 13:33",...: 5 10 10 1 6 11 11 10 3 2 ...
## $ new_window
                         : Factor w/ 1 level "no": 1 1 1 1 1 1 1 1 1 1 ...
## $ num_window
                         : int 74 431 439 194 235 504 485 440 323 664 ...
## $ roll_belt
                         : num 123 1.02 0.87 125 1.35 -5.92 1.2 0.43 0.93 114 ...
                               27 4.87 1.82 -41.6 3.33 1.59 4.44 4.15 6.72 22.4 ...
## $ pitch belt
                         : num
                               -4.75 -88.9 -88.5 162 -88.6 -87.7 -87.3 -88.5 -93.7 -13.1 ...
## $ yaw belt
                         : num
## $ total_accel_belt
                         : int
                               20 4 5 17 3 4 4 4 4 18 ...
                               -0.5 -0.06 0.05 0.11 0.03 0.1 -0.06 -0.18 0.1 0.14 ...
## $ gyros_belt_x
                         : num
## $ gyros_belt_y
                         : num
                               -0.02 -0.02 0.02 0.11 0.02 0.05 0 -0.02 0 0.11 ...
## $ gyros_belt_z
                               -0.46 -0.07 0.03 -0.16 0 -0.13 0 -0.03 -0.02 -0.16 ...
                         : num
                         : int
## $ accel_belt_x
                               -38 -13 1 46 -8 -11 -14 -10 -15 -25 ...
## $ accel_belt_y
                         : int
                               69 11 -1 45 4 -16 2 -2 1 63 ...
## $ accel_belt_z
                         : int
                               -179 39 49 -156 27 38 35 42 32 -158 ...
## $ magnet_belt_x
                         : int
                               -13 43 29 169 33 31 50 39 -6 10 ...
## $ magnet_belt_y
                               581 636 631 608 566 638 622 635 600 601 ...
                         : int
## $ magnet_belt_z
                               -382 -309 -312 -304 -418 -291 -315 -305 -302 -330 ...
                         : int
## $ roll_arm
                               40.7 0 0 -109 76.1 0 0 0 -137 -82.4 ...
                         : num
## $ pitch arm
                         : num
                               -27.8 0 0 55 2.76 0 0 0 11.2 -63.8 ...
## $ yaw_arm
                         : num 178 0 0 -142 102 0 0 0 -167 -75.3 ...
## $ total_accel_arm
                         : int
                               10 38 44 25 29 14 15 22 34 32 ...
                               -1.65 -1.17 2.1 0.22 -1.96 0.02 2.36 -3.71 0.03 0.26 ...
## $ gyros_arm_x
                         : num
                         : num
                               0.48 0.85 -1.36 -0.51 0.79 0.05 -1.01 1.85 -0.02 -0.5 ...
## $ gyros_arm_y
## $ gyros_arm_z
                               -0.18 -0.43 1.13 0.92 -0.54 -0.07 0.89 -0.69 -0.02 0.79 ...
                         : num
                         : int 16 -290 -341 -238 -197 -26 99 -98 -287 -301 ...
## $ accel_arm_x
                               38 215 245 -57 200 130 79 175 111 -42 ...
## $ accel_arm_y
                         : int
## $ accel_arm_z
                               93 -90 -87 6 -30 -19 -67 -78 -122 -80 ...
                         : int
## $ magnet_arm_x
                               -326 -325 -264 -173 -170 396 702 535 -367 -420 ...
                         : int
## $ magnet_arm_y
                               385 447 474 257 275 176 15 215 335 294 ...
                         : int
                               481 434 413 633 617 516 217 385 520 493 ...
## $ magnet_arm_z
                         : int
```

```
$ roll dumbbell
                                 -17.7 54.5 57.1 43.1 -101.4 ...
                          : num
## $ pitch_dumbbell
                                 25 -53.7 -51.4 -30 -53.4 ...
                          : num
## $ yaw dumbbell
                                 126.2 -75.5 -75.2 -103.3 -14.2 ...
                          : num
## $ total_accel_dumbbell: int
                                 9 31 29 18 4 29 29 29 3 2 ...
##
   $ gyros_dumbbell_x
                          : num
                                 0.64 0.34 0.39 0.1 0.29 -0.59 0.34 0.37 0.03 0.42 ...
                                 0.06 0.05 0.14 -0.02 -0.47 0.8 0.16 0.14 -0.21 0.51 ...
## $ gyros dumbbell y
                          : num
                                 -0.61 -0.71 -0.34 0.05 -0.46 1.1 -0.23 -0.39 -0.21 -0.03 ...
## $ gyros dumbbell z
                          : num
## $ accel_dumbbell_x
                          : int
                                 21 -153 -141 -51 -18 -138 -145 -140 0 -7 ...
##
   $ accel_dumbbell_y
                          : int
                                 -15 155 155 72 -30 166 150 159 25 -20 ...
## $ accel_dumbbell_z
                          : int
                                 81 -205 -196 -148 -5 -186 -190 -191 9 7 ...
## $ magnet_dumbbell_x
                                 523 -502 -506 -576 -424 -543 -484 -515 -519 -531 ...
                          : int
   $ magnet_dumbbell_y
##
                                 -528 388 349 238 252 262 354 350 348 321 ...
                          : int
## $ magnet_dumbbell_z
                                 -56 -36 41 53 312 96 97 53 -32 -164 ...
                          : int
## $ roll_forearm
                          : num
                                 141 109 131 0 -176 150 155 -161 15.5 13.2 ...
## $ pitch_forearm
                                 49.3 -17.6 -32.6 0 -2.16 1.46 34.5 43.6 -63.5 19.4 ...
                          : num
## $ yaw_forearm
                                 156 106 93 0 -47.9 89.7 152 -89.5 -139 -105 ...
                          : num
## $ total_accel_forearm : int
                                 33 39 34 43 24 43 32 47 36 24 ...
## $ gyros forearm x
                                 0.74 1.12 0.18 1.38 -0.75 -0.88 -0.53 0.63 0.03 0.02 ...
                          : num
                                 \hbox{-3.34 --2.78 -0.79 0.69 3.1 4.26 1.8 -0.74 0.02 0.13 } \ldots
## $ gyros_forearm_y
                          : num
## $ gyros_forearm_z
                          : num
                                 -0.59 -0.18 0.28 1.8 0.8 1.35 0.75 0.49 -0.02 -0.07 ...
## $ accel_forearm_x
                                 -110 212 154 -92 131 230 -192 -151 195 -212 ...
                          : int
## $ accel forearm y
                                 267 297 271 406 -93 322 170 -331 204 98 ...
                          : int
                                 -149 -118 -129 -39 172 -144 -175 -282 -217 -7 ...
## $ accel_forearm_z
                          : int
                                -714 -237 -51 -233 375 -300 -678 -109 0 -403 ...
## $ magnet forearm x
                          : int
## $ magnet_forearm_y
                          : int
                                 419 791 698 783 -787 800 284 -619 652 723 ...
## $ magnet_forearm_z
                          : int
                                 617 873 783 521 91 884 585 -32 469 512 ...
## $ problem_id
                                 1 2 3 4 5 6 7 8 9 10 ...
                          : int
dim(testing)
## [1] 20 60
```

Removing variables from data sets with no significance:

```
training <- training[,-c(1:7)]
testing <- testing[,-c(1:7)]

dim(training)

## [1] 19622 53
dim(testing)

## [1] 20 53</pre>
```

After removing variables that has no significant role in modeling and NAs split training data set (partition) into 75% and 25% as Training and Testing data sets respectively:

```
set.seed(1234)
inTrain <- createDataPartition(y=training$classe,p=0.75, list=FALSE)
Training <- training[inTrain,]
Testing <- training[-inTrain,]</pre>
```

New dimensions of data sets:

```
dim(Training)
## [1] 14718 53
dim(Testing)
## [1] 4904 53
```

Correlation matrix of columns to map correlated predictors:

Testing Models

This data analysis will test four models: Classification Tree , Random Forest, Gradient Boosting Method, Linear Discriminant Analysis.

Random Forest model:

```
set.seed(4567)
```

```
trControl <- trainControl(method="cv", number=10)
mod_rf <- train(classe ~ ., data = Training, method = "rf", trControl=trControl, verbose=FALSE, ntree =
print(mod_rf)
plot(mod_rf,col="red", main="Random Forest Model vs Number of Predictors")</pre>
```

Random Forest Model vs Number of Predictors

Validating Random Forest model:

Accuracy : 0.9949

95% CI : (0.9925, 0.9967)

```
pred_rf <- predict(mod_rf, Testing)</pre>
ConfMatRF <- confusionMatrix(pred_rf, Testing$classe)</pre>
ConfMatRF
## Confusion Matrix and Statistics
##
##
              Reference
## Prediction
                   Α
                        В
                              С
                                   D
                                         Ε
             A 1393
##
                       10
##
             В
                   1
                      938
                              5
             С
##
                            848
##
             D
                   0
                        0
                              2
                                 800
                                         1
             Ε
                                       900
##
##
## Overall Statistics
##
```

```
##
       No Information Rate: 0.2845
       P-Value [Acc > NIR] : < 2.2e-16
##
##
##
                     Kappa: 0.9936
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9986
                                    0.9884
                                             0.9918
                                                      0.9950
                                                                0.9989
                                             0.9985
                                                                1.0000
## Specificity
                           0.9972
                                    0.9985
                                                      0.9993
## Pos Pred Value
                                                      0.9963
                                                                1.0000
                          0.9929
                                   0.9936
                                             0.9930
## Neg Pred Value
                          0.9994
                                   0.9972
                                             0.9983
                                                      0.9990
                                                                0.9998
## Prevalence
                          0.2845
                                    0.1935
                                             0.1743
                                                      0.1639
                                                                0.1837
## Detection Rate
                          0.2841
                                    0.1913
                                             0.1729
                                                      0.1631
                                                                0.1835
## Detection Prevalence
                          0.2861
                                                                0.1835
                                    0.1925
                                             0.1741
                                                      0.1637
## Balanced Accuracy
                          0.9979
                                    0.9934
                                             0.9952
                                                      0.9971
                                                                0.9994
```

Confusion matrix and model accuracy

ConfMatRF\$table

##	Reference					
##	${\tt Prediction}$	Α	В	C	D	Ε
##	A	1393	10	0	0	0
##	В	1	938	5	0	0
##	C	1	1	848	4	0
##	D	0	0	2	800	1
##	E	0	0	0	0	900

Accuracy of the Random Forest model:

```
ConfMatRF$overall[1]
```

```
## Accuracy
## 0.9949021
```

Accuracy of the Random Forest model is high, 99.4% which is most likely due to overfitting.

Linear Discriminant Analysis Model

```
mod_lda <- lda(classe~., data = Training)
plot(mod_lda)</pre>
```


Validating model:

```
pred_lda <- predict(mod_lda, Testing)</pre>
```

Accuracy of Linear Discriminant Analysis model:

```
mean(pred_lda$class==Testing$classe)
## [1] 0.6969821
```

Accuracy of model is around 70%.

Misclasification rate:

```
lda.pred = (pred_lda$class)
lda.error = mean(Testing$classe != lda.pred)
lda.error
## [1] 0.3030179
```

Gradient Boosting Method

```
Model_GBM <- train(classe~., data=Training, method="gbm", trControl=trControl, verbose=FALSE)
print(Model_GBM)
## Stochastic Gradient Boosting
## 14718 samples
      52 predictor
##
       5 classes: 'A', 'B', 'C', 'D', 'E'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 13247, 13246, 13245, 13245, 13245, 13247, ...
## Resampling results across tuning parameters:
##
##
     interaction.depth n.trees Accuracy
                                             Kappa
##
     1
                         50
                                 0.7511889 0.6844740
##
     1
                        100
                                 0.8209689 0.7733998
##
     1
                        150
                                 0.8535819 0.8147349
##
     2
                         50
                                 0.8533781 0.8142125
##
     2
                        100
                                 0.9056248 0.8805588
                                 0.9292031 0.9103939
##
     2
                        150
##
     3
                         50
                                 0.8955038 0.8677166
     3
                                 0.9420436 0.9266591
##
                        100
##
     3
                        150
                                 0.9621551 0.9521181
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
\#\# Tuning parameter 'n.minobsinnode' was held constant at a value of 10
```

Accuracy was used to select the optimal model using the largest value.
The final values used for the model were n.trees = 150, interaction.depth =

```
## 3, shrinkage = 0.1 and n.minobsinnode = 10.
plot(Model_GBM)
```


Validating the boosting method model:

```
Model_GBMpred <- predict(Model_GBM,newdata=Testing)
ConfMatGBM <- confusionMatrix(Model_GBMpred, Testing$classe)
ConfMatGBM$table</pre>
```

##	Reference					
##	Prediction	Α	В	C	D	Ε
##	A	1379	36	0	1	0
##	В	11	896	34	0	10
##	C	4	16	810	26	5
##	D	1	1	10	769	13
##	E	0	0	1	8	873

Accuracy of the model:

```
ConfMatGBM$overall[1]
```

Accuracy ## 0.963907

Accuracy of the Gradient Boosting Method is high, around 96.4%.

Classification Tree Model

```
trControl <- trainControl(method="cv", number=10)</pre>
Model_ClassTree <- train(classe~., data=Training, method="rpart", trControl=trControl)
Model ClassTree$finalModel
## n= 14718
##
## node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
   1) root 14718 10533 A (0.28 0.19 0.17 0.16 0.18)
##
     2) roll_belt< 130.5 13465 9291 A (0.31 0.21 0.19 0.18 0.11)
##
##
       4) pitch_forearm< -34 1189
                                    3 A (1 0.0025 0 0 0) *
##
       5) pitch_forearm>=-34 12276 9288 A (0.24 0.23 0.21 0.2 0.12)
##
        10) magnet_dumbbell_y< 439.5 10403 7478 A (0.28 0.18 0.24 0.19 0.11)
##
          20) roll_forearm< 124.5 6467  3844 A (0.41 0.19 0.18 0.17 0.059) *
##
          ##
        11) magnet_dumbbell_y>=439.5 1873 931 B (0.034 0.5 0.038 0.23 0.19) *
##
     3) roll_belt>=130.5 1253
                               11 E (0.0088 0 0 0 0.99) *
plot(Model_ClassTree$finalModel, uniform=TRUE,
     main="Classification Tree")
text(Model_ClassTree$finalModel, use.n=TRUE, all=TRUE, cex=.7)
```

Classification Tree


```
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 13245, 13247, 13246, 13247, 13247, 13247, ...
## Resampling results across tuning parameters:
##
##
                 Accuracy
                            Kappa
     ср
##
     0.03569733
                0.5040773
                            0.35163107
##
     0.05949555
                 0.4054068
                            0.19051168
     0.11687079
                0.3257347 0.06298508
##
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.03569733.
```

fancyRpartPlot(Model_ClassTree\$finalModel)

Rattle 2020-May-16 12:45:21 marijusbrazickas

Validating Classification Tree model using Testing data set:

```
Model_ClassTreePred <- predict(Model_ClassTree,newdata=Testing)
plot(Model_ClassTreePred, main="Classification Tree Model Prediction", col="yellow")</pre>
```

Classification Tree Model Prediction


```
## Prevalence 0.2845 0.19352 0.17435 0.1639 0.18373 
## Detection Rate 0.2598 0.07015 0.08524 0.0000 0.07932 
## Detection Prevalence 0.5285 0.13377 0.25775 0.0000 0.07993 
## Balanced Accuracy 0.7688 0.64180 0.63997 0.5000 0.71550
```

confMatClassTree\$table

##	F	Refere	ence			
##	${\tt Prediction}$	Α	В	C	D	E
##	A	1274	390	401	386	141
##	В	18	344	36	131	127
##	C	100	215	418	287	244
##	D	0	0	0	0	0
##	Е	3	0	0	0	389

Accuracy of the Classification Tree model:

```
confMatClassTree$overall[1]
```

```
## Accuracy
## 0.4944943
```

Accuracy of Classification Tree model is around 50% which is very low so this model will not predict well

Conclusions

The most accurate results were using Random Forests model.

Validating Random Forests model with test dataset:

```
FinalPred <- predict(mod_rf,newdata=testing)
table(FinalPred)

## FinalPred
## A B C D E
## 7 8 1 1 3
print(FinalPred)</pre>
```

```
## [1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```