VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

ESP32: Měření srdečního tepu analogový senzor

${\bf Contents}$

1	Uvo	od .
2	Pou	nžité HW komponenty
	2.1	WeMos D1 R32 UNO ESP32
	2.2	Pulse Sensor
	2.3	OLED displej s SSD1306 ovladačem
3	Pou	nžité SW komponenty
	3.1	ESP-IDF Framework
	3.2	SSD1306 ovladač
		3.2.1 Nastavení I2C komunikace
		3.2.2 Verze ovladače
4	Imp	plementace
	4.1	Práce s analog-digitálním převodníkem
		4.1.1 Práce s A-D převodníkem
	4.2	Spracování dat z Pulse Sensoru
	4.3	Kalkulace tepové frekvence
5	Výs	sledná aplikace
		Videoukázka aplikace
6	Hoo	dnocení
	6.1	Dokumentace
	6.2	Přístup
	6.3	Funkčnost
	6.4	Kvalita
	6.5	Prezentace

1 Úvod

Tento dokument popisuje návrh a implementaci systému pro měření srdečního tepu. Projekt byl realizován na platformě ESP32 od společnosti Espressif s dvěmi jádry o frekvenci 240 MHz, 520 KB integrované SRAM a 4 MB flash paměti. Systém využívá senzor srdečního tepu PulseSensor, jehož analogový výstup je zpracován mikrokontrolerem a výsledné hodnoty jsou zobrazeny na grafickém OLED displeji typu SSD1306.

2 Použité HW komponenty

Tato kapitola obsahuje popis použitých HW komponent, které byly využity při realizaci projektu.

2.1 WeMos D1 R32 UNO ESP32

Pro realizaci projektu byla využita vývojová deska Wemos D1 R32, která je postavena na čipu ESP32-WROOM-32 od společnosti Espressif, jež patří mezi velmi dostupné vývojové platformy, typu SoC (System-On-Chip). ESP32 se vyznačuje nízkou spotřebou a integrovanými technologiemi Wi-Fi, Bluetooth a integruje výkonový zesilovač, anténní přepínač, RF balun, nízkošumový přijímací zesilovač, filtry a moduly pro správu napájení. [1, 2]

2.2 Pulse Sensor

Pro měření srdečního tepu (tj. rychlosti srdečního tepu) byl použit snímač Pulse Sensor, který využívá technologii fotopletysmografie. Tato technologie je založena na detekci změn objemu krve v tkáni prostřednictvím měření změn intenzity světla procházejícího touto tkání.

Hemoglobin obsažený v krvi pohlcuje světlo vysílané světelnou diodou. Senzor následně detekuje změny v množství světla, které projde tkání, což umožňuje sledovat různé fáze krevního oběhu. [3]

2.3 OLED displej s SSD1306 ovladačem

Pro vizualizaci dat byl použit displej založený na technologii OLED (Organic Light Emitting Diode), která zajišťuje vysoký kontrast, nízkou spotřebu energie a široký pozorovací úhel. Konkrétně se jedná o displej s rozlišením 128x64 pixelů o velikosti 0,96 palce, využívající komunikační rozhraní I2C. Displej je ovládán pomocí driveru SSD1306, podporující základní operace pro kreslení grafiky a zobrazování textu. [4]

3 Použité SW komponenty

3.1 ESP-IDF Framework

Pro implementaci softwarového řešení byl použit framework ESP-IDF (Espressif IoT Development Framework). Tento oficiální framework od společnosti Espressif postaveny na základě FreeRTOS poskytuje nástroje, knihovny a API pro vývoj aplikací na platformě ESP32. ESP-IDF umožňuje efektivní programování vestavěných systémů s podporou mnoha funkcí, jako jsou vícevláknový provoz a síťová komunikace. Framework zároveň podporuje přímou a jednoduchou práci s periferiemi, jako jsou ADC, I2C, SPI a UART.[5, 6]

3.2 SSD1306 ovladač

Pro řízení OLED displeje (SSD1306) byl použit open-source ovladač z GitHub projektu esp-idf-ssd1306 [7], postaven na projektu ssd1306-esp-idf-i2c [8]. Tento ovladač je kompatibilní s frameworkem ESP-IDF (verze 5.0 a vyšší) a podporuje nový I2C driver dostupný od verze ESP-IDF 5.2. Ovladač je přizpůsoben pro práci s OLED displeji různých konfigurací, přičemž v tomto projektu je využívána varianta s rozlišením 128x64 pixelů a komunikací přes I2C.

3.2.1 Nastavení I2C komunikace

Pro I2C komunikaci byly v projektu použity následující piny ESP32:

- SCL (I2C hodinový signál): GPIO22
- SDA (I2C datový signál): GPIO23

Tyto hodnoty lze změnit v souboru sdkconfig pomocí nástroje menuconfig, jež je součástí ESP-IDF frameworku.

3.2.2 Verze ovladače

SSD1306 open-source ovladač poskytuje dvě verze (ssd1306_i2c_new a ssd1306_i2c_legacy) využívající komunikační rozhraní I2C, v projektu je použit nový I2C driver dostupný od ESP-IDF verze 5.2. Maximální frekvence I2C hodinového signálu je nastavena na 400 kHz, což odpovídá specifikacím v datasheetu SSD1306.

4 Implementace

4.1 Práce s analog-digitálním převodníkem

Pulse Sensor je analogový senzor, jehož signál musí být převeden na digitální hodnotu, aby mohl být dále zpracován mikrokontrolerem. K tomu je využíván analog-digitální převodník (ADC) integrovaný v ESP32. Implementace práce s ADC zahrnuje inicializaci převodníku, získávání hodnot z konkrétního kanálu a jeho uvolnění po použití.

4.1.1 Práce s A-D převodníkem

Funkce ADC_Init inicializuje ADC pomocí ESP-IDF API. ADC jednotka 1 je zvolena jako výchozí a konfigurace zahrnuje:

- Rozlišení 12 bitů (ADC_BITWIDTH_12), tedy rozsah 0-4095.
- Tlumení signálu o 11 dB (ADC_ATTEN_DB_11), což umožňuje číst napětí v rozsahu 0-3,3 V.
- Použití kanálu 7 (ADC_CHANNEL_7), který je přiřazen k pinu připojenému k Pulse Sensoru.

Inicializace probíhá pomocí funkcí:

- adc_oneshot_new_unit() pro vytvoření nové ADC jednotky.
- adc_oneshot_config_channel() pro konfiguraci konkrétního ADC kanálu.

Funkce ADC_GetValue je určena k získání aktuální hodnoty z ADC kanálu. Používá se metoda adc_oneshot_read, vracející syrovou (RAW) 12-bitovou hodnotu odpovídající měřenému napětí.

Celková konfigurace A-D převodníku je v této implementaci nakonfigurován pro použití s kanálem 7 na pinu IO35 (GPIO35).

4.2 Spracování dat z Pulse Sensoru

V během běhu aplikace jsou vzorky, získané z A-D převodníku ukládány do pole !aSampleBuff, velikost tohoto pole je možné upravit pomocí makra !SAMPLE_BUFF_SIZE v základní konfiguraci je toto pole nastaveno na velikost 3, která poskytuje slušnou citlivost, jelikož s růstem !aSampleBuff se projevují změny detekovaného cévního systému.

Výsledek klouzavého průměru je následně zpracován Kalmanovým filtrem. Kalmanův filtr byl v řešení použit z důvodu přesnější odhadu reálných hodnot v přítomnosti šumu v datech měřených z ADC (analogově-digitálního převodníku), filtr pomáhá minimalizovat tento šum tím, že kombinuje měření a předchozí odhad k výpočtu "lepší" hodnoty než surové (raw) měření. Dále predikuje chybu měření a predikce dynamicky tak přizpůsob svou citlivost, která vede ke stabilnějším výsledkům, i když se podmínky měření mění. Algoritmus pracuje ve dvou krocích prvním je predikce stavu a chybové hodnoty, následuje výpočet tzv. kalmanova zisku. Pomocí kalmanova zisku se aktualizuje nový odhad stavu systému a na základě odchylky očekávaného a nového stavu se stanoví nový chybový odhad.

4.3 Kalkulace tepové frekvence

text.

5 Výsledná aplikace

Zde bude popis jak s programem zacházet a pracovat.

5.1 Videoukázka aplikace

6 Hodnocení

6.1 Dokumentace

Hodnocení své dokumentace.

6.2 Přístup

Hodnocení přístupu k projektu.

6.3 Funkčnost

Funkčnost výsledného programu.

6.4 Kvalita

Jak hodnotíš svůj kod?

6.5 Prezentace

Video poskytuje demostraci funkčnosti projektu a poskytuje základní informace o projektu a nastavení aplikace.

References

- [1] laskakit. Wemos d1 r32 uno esp32. [online], 2024. [cit. 2024-11-16].
- [2] Espressif Systems. Esp32-wroom-32 datasheet. [online], 2024. [cit. 2024-11-16].
- [3] TechnoLab Creation. Heartbeat sensor using arduino (heart rate monitor). [online], 2024. [cit. 2024-11-16].
- [4] Adafruit. Ssd1306 datasheet. [online], 2024. [cit. 2024-11-16].
- [5] Espressif Systems. Espressif iot development framework. [online], 2024. [cit. 2024-11-16].
- [6] Espressif Systems. Esp-idf programming guide. [online], 2024. [cit. 2024-11-16].
- [7] nopnop2002. esp-idf-ssd1306 driver from github. [online], 2024. [cit. 2024-11-16].
- [8] yanbe. ssd1306-esp-idf-i2c driver from github. [online], 2024. [cit. 2024-11-16].