A Second Course in Linear Algebra

Raymond Bian

January 30, 2024

5

Contents

- 1 Vectors and Matrices
- 2 Vector Spaces

Lecture 1: Review

1 Vectors and Matrices

For the time being, everything indicated in this course is in $\ensuremath{\mathbb{R}}.$

Definition 1. A **vector** will be defined as a column vector, e.g.

$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$$

Notation. Sometimes, they will be written as a column vector lying down, e.g. $(x_1, x_2, x_3) \in \mathbb{R}^3$

Definition 2. Let *a* be a scalar. Then multiplication between vector and scalar is defined as

$$au = \begin{bmatrix} a \cdot x_1 \\ a \cdot x_2 \\ a \cdot x_3 \end{bmatrix}.$$

Definition 3. Let
$$u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$.

Then addition between vectors is defined as

$$u + v = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}.$$

Definition 4. If u, v are vectors and a, b are scalars, then any au + bv is a **linear combination** of u and v.

Remark. A **vector space** V is a set of objects u, v such that $au + bv \in V$.

Example. Polynomials of degree ≤ 2 in one variable can form a vector space.

Explanation. Let $p(x) = a_0 + a_1x + a_2x^2$, and $q(x) = b_0 + b_1x + b_2x^2$. Multiplying by scalars and adding are defined. Note that $p(x) \rightarrow \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}$.

Example. Let $f(x):[0,1]\to\mathbb{R}$ be a continuous function. We can multiply such functions by scalars and add together such functions, so they form a vector space as well.

Suppose we have two vectors $u, v \in \mathbb{R}^3$. Looking at the set of all linear combinations of u, v,

- if both u and v are the zero vectoor, then $W = \{0\}$.
- if $u = \lambda v$, $v \neq 0$, then W is the line of all multiples of v.
- if u and v are **linearly independent**, then W is a plane in \mathbb{R}^3 .

Definition 5. Vectors u_1 , u_2 , u_3 are **linearly independent** if and only if

$$a_1u_1 + a_2u_2 + a_3u_3 = 0 \Rightarrow a_1 = a_2 = a_3 = 0.$$

Definition 6. Let V, W be a vector spaces such that $W \subseteq V$. Then, W is called a **subspace** of V.

Example. Let
$$W=\{\begin{bmatrix} x_1\\x_2\\0 \end{bmatrix}: x_1,x_2\in \mathbb{R}\}.$$
 Then, W is a subspace of \mathbb{R}^3 .

Theorem 1. If $u, v \in V$, then the set of linear combinations of u and v is a subspace.

Proof. Let $W = \text{span}\{u, v\}$. We must show that $w_1, w_2 \in W \Rightarrow c_1w_1 + c_2w_2 \in W$. By assumption, $w_1 = a_1u + b_1v$, and $w_2 = a_2u + b_2v$, such that $w = (c_1a_1 + c_2a_2)u + (c_1b_1 + c_2b_2)v$. Therefore, w is a linear combination of u, v.

Example. Let
$$u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, and $v = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$. Then, span $\{u, v\}$ is a proper subspace of \mathbb{R}^3 .

Definition 7.
$$u \cdot v = x_1 y_1 + x_2 y_2 + x_3 y_3$$
 is the dot product of the vectors $u = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $v = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$

Definition 8. We say that $u \perp v$ if $u \cdot v = 0$.

Definition 9. The length or **norm** of a vector u is $\sqrt{u \cdot u} = ||u||$

Theorem 2. The Cauchy–Schwarz inequality states that $|u \cdot v| \le ||u|| ||v||$.

Proof.

$$(u + \lambda v) \cdot (u + \lambda v) \ge 0$$

$$u \cdot u + \lambda^2 v \cdot v + 2\lambda u \cdot v \ge 0.$$

The minimum lambda is $\frac{-b}{2a} = \frac{-u \cdot v}{v \cdot v}$, which results in this inequality being true. Therefore, all greater values for lambda will result in this inequality being true.

Theorem 3. The triangle inequality theorem states that $||u+v|| \le ||u|| + ||v||$.

Definition 10. The **unit vector** of a vector u, \hat{u} is given by $\frac{u}{\|u\|}$.

Theorem 4. If u and v are vectors such that ||u|| = ||v|| = 1, then $u \cdot v = \cos(\theta)$ where θ is the angle between u and v.

Corollary. If u and v are vectors, then $u \cdot v =$

 $||u|||v||\cos(\theta)$. Note that $u \cdot v = 0$ when $\theta = \frac{\pi}{2}$ or $\frac{3\pi}{2}$.

Lecture 2: Matrices

Example.

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

is a matrix. We can also write $A = \{a_{ij}\}$ such that $i = 1 \dots n$ and $j = 1 \dots m$.

What does it mean to take a product between a matrix and a vector?

Definition 11. This product is defined as

$$\begin{pmatrix} a_{11}X_1 + a_{12}X_2 + a_{13}X_3 \\ a_{21}X_1 + a_{22}X_2 + a_{13}X_3 \\ a_{31}X_1 + a_{32}X_2 + a_{33}X_3 \end{pmatrix}.$$

i.e. a collection of dot products between the rows and \boldsymbol{x} .

We can also see the product as a linear combination of the columns of the matrix A.

Definition 12. Let the columns of A be A_1 , A_2 , A_3 . Then, $Ax = x_1A_1 + x_2A_2 + x_3A_3$.

Notation. A's columns are denoted A_1 , A_2 , A_3 , while A's rows are denoted A^1 , A^2 , A^3 .

If we look at the linear equation Ax = b, we can say that b is a linear combination of the columns of A. Instead, looking at it like an equation, "can b be written as a linear combination of the columns of A"?

Looking at $A^1x = b_1$, there are two free variables, such as this is a plane in \mathbb{R}^3 . The only time this is not a plane is if a_{11} , a_{12} , a_{13} are all zero, and b_1 is nonzero.

If we have x, y, $A^1x = 0$ and $A^1y = 0$ implies ax + by = z, which solves $A^1z = 0$. The set of solutions is a subspace.

Now, suppose we have all solutions of $A^1x=0$. Call this V. How do we then write the solutions to $A^1x=b$? We find any such c such that $A^1c=b_1$. Then, we claim that the set of solutions of $A^1x=b_1$ is $V+c=\{x+c|x\in V\}$. Checking our solution, $A^1\cdot (x+c)=\underbrace{A^1\cdot x}_0+\underbrace{A^1\cdot c}_{b_1}=b_1$.

Let W=V+c. We want to show if $x \in W \Rightarrow A^1 \cdot x = 0$. Assume $A^1z=b_1$. If we set x=z-c, then $A^1x=A^1z-A^1c=0$. Therefore, $z=x+c\in W$.

All in all, solving all three equations $A^1x = b_1$, $A^2x = b_2$, $A^3x = b_3$ is now just finding the in-

tersection of three translated planes. This is what solving Ax = b means.

Another viewpoint is this. Consider the equation $A_1x_1 + A_2x_2 + A_3x_3 = b$. Consider the span of A_1, A_2, A_3 . Does this span contain b?

Example. Let's say that

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Solving Ax = b, we have $x_3 = b_3$, $x_2 = b_2 + b_3$, and $x_1 = b_1 + b_2 + b_3$ such that

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Let C denote this matrix. Then, $Ax = b \Leftrightarrow Cb = x$, such that $C = A^{-1}$. Then, C is the **inverse** of A.

Definition 13. We want to say that every $n \times n$ matrix can be written as the product as an upper triangular and lower triangular matrix, called **LU** factorization.

Definition 14. Matrix multiplication is defined as $(AB)_{ij} = \sum_k a_{ik} + b_{kl}$ where $A = \{a_{ij}\}$ and $B = \{b_{kl}\}$

The other way to see AB is if $B = (B_1 \ B_2 \ \dots \ B_n)$, then $AB = (AB_1 \ AB_2 \ \dots \ AB_n)$. In other words, $(AB)_{ij} = A^i \cdot B_j$.

Lecture 3: Matrix Algebra

Example. Solve

$$\underbrace{\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & 4 \\ -2 & -3 & 7 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{b} = \underbrace{\begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}}_{b}.$$

Explanation.

$$x = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}.$$

Let

$$E_{12} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then, we have

$$E_{12} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 10 \end{bmatrix}.$$

Note that this is also $E_{12}(Ax) = E_{12}b = (E_{12}A)x$

Definition 15. AB is such that

$$A(Bx) = (AB)x$$
.

for every vector x. It is defined as

$$AB = [AB^1, AB^2, \dots, AB^n].$$

where B^i is the *i*-th column of B.

Theorem 5. $Ax = b \Rightarrow (CA)x = Cb$

Theorem 6. Let \mathbb{R}^n be a vector space and $A, B : \mathbb{R}^n \to \mathbb{R}^n$ linear mappings. Then,

$$A \circ B : \mathbb{R}^n \to \mathbb{R}^n$$
.

is also a linear transformation. Also

$$A \circ B(x) = ABx$$
.

Theorem 7. If \hat{A} is a linear map from $\mathbb{R}^n \to \mathbb{R}^n$ then $\hat{A}(x) = Ax$ for a matrix A.

Proof. For a linear map, we have $\hat{A}(x+y) = \hat{A}(x) + \hat{A}(y)$ and $\hat{A}(\alpha x) = \alpha \hat{A}(x)$. We want to show that any linear mapping is a matrix multiplication. Let

$$e_i = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

where the 1 is in the *i*th place. Let $A^i = \hat{A}(e_i)$. Let $A = \begin{bmatrix} A^1 & A^2 & \dots & A^n \end{bmatrix}$. Then, by construction

$$\hat{A}(x) = \hat{A}(x_1e_1 + x_2e_2) + \dots + x_ne_n)$$

$$= x_1\hat{A}(e_1) + x_2\hat{A}(e_2) + \dots + x_n\hat{A}e_n)$$

$$= x_1A^1 + x_2A^2 + \dots + x_nA^n$$

$$= Ax.$$

We can also calculate matrix multiplication as $(AB)_{i,j} = \sum_k A_{i,k} \cdot B_{k,j}$.

Theorem 8. Suppose we take a third matrix *C*. Then.

$$A(BC) = (AB)C.$$

This is the associative property.

Proof. We saw that

$$A(Bx) = (AB)x$$
.

Applying this, we have:

$$(AB)C = [(AB)C^{1} \dots (AB)C^{n}]$$

$$= [A(BC^{1}) \dots A(BC^{n})]$$

$$= A[BC^{1} \dots BC^{n}]$$

$$= A(BC).$$

With this information, row reduction is just a series of matrix multiplications. Note that in row reduction, we can also have permutation matrices that switches the rows.

Theorem 9. $AB \neq BA$.

Proof.

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

but not the other way around.

To summarize matrix operations, we have

$$A + B = B + A$$
$$\alpha(A + B) = \alpha A + \alpha B$$

$$(AB)C = A(BC)$$
$$(A+B)C = AC + BC$$
$$C(A+B) = CA + CB.$$

By these properties, space of matrices is a vector space, and an algebra. However, we are missing division (the inverse)!

Note that a mapping $A: \mathbb{R}^n \to \mathbb{R}^m$ such that m < n cannot be invertible, as there are many solutions to Ax = b and therefore cannot be a bijection. The same can be said when n > m, because Ax = b will have no solutions. Therefore, A is an invertible if n = m.

Definition 16. The **inverse** A^{-1} of A is defined

such that

$$A^{-1}Ax = x \quad \forall x.$$

as well as $AA^{-1} = I$ and A^{-1} must be unique.

Theorem 10.

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

Proof.

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$

= $B^{-1}IB$
= $B^{-1}B$
= I .

This is the only inverse.

Example. The inverse of

$$E_{12} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

is just

$$E_{12}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(you add back the two first rows you subtracted from the second).

From the elimination example earlier, we have

$$E_{23}E_{13}E_{12}A = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 7 \\ 0 & 0 & -2 \end{bmatrix} = U.$$

which is now upper triangular. Flipping this around, $A = \underbrace{E_{12}^{-1}E_{13}^{-1}E_{23}^{-1}}_{L}U$. Note that all $E_{i,j}$ are lower

triangular, such that L is also lower triangular. This is **LU Factorization**.

We can use this to solve Ax = b by first writing $A = LU \Rightarrow Ux = L^{-1}B$, from which you do backwards substitution to solve the problem, reducing the number of operations from a magnitude of n^3 to n^2 . However, getting A^{-1} is still n^3 , so it should only be precomputed if we solve equations Ax = b n times.

Lecture 4: Transpose, Permutations, Spaces

Definition 17. If *A* is an $n \times m$ matrix, then the **transpose** A^T is

$$(A^T)_{ij} = A_{ji}$$
.

If A is $n \times m$, then A^T is $m \times n$.

Example. If
$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, then $x^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$

Proposition 1. $(AB)^T = B^T A^T$

Proof. How do we compute $(AB)^T$? Assume that B is just a vector x. This means that Ax is just a vector

$$Ax = x_1A^1 + x_2A^2 + \ldots + x_nA^n$$
.

Subsequently,

$$(Ax)^T = x_1(A^1)^T + \ldots + x_n(A^n)^T.$$

where $(A^3)^T$ is the transpose of the 3rd column, which is just the 3rd row. In other words,

$$(Ax)^T = x_1(A^T)_1 + ... + x_n(A^T)_n$$

= $x^T A^T$.

With this definition, then $(AB)^T = [AB^1 \ AB^2 \ \dots \ AB^n]^T$ which equals

$$\begin{bmatrix} (AB^1)^T \\ (AB^2)^T \\ \vdots \\ (AB^n)^T \end{bmatrix} = \begin{bmatrix} (B^1)^T A^T \\ (B^2)^T A^T \\ \vdots \\ (B^n)^T A^T \end{bmatrix} = B^T A^T.$$

There is another way to prove this, by looking at the value at $(AB)_{ii}^T$.

Note that this fact can be expanded, such that $(ABC)^T = C^T B^T A^T$.

Proposition 2. Let x and y be vectors. Then, $x^Ty = (x \cdot y)$.

Proof. Let
$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $y = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}$. Then, we have $x^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ such that

$$x^T y = 1 \cdot 2 + 2 \cdot 4 + 3 \cdot 6$$

which is the dot product.

What about the other way? Note that xy^T is 3×3 and is a rank 1 matrix. To elaborate, let $A = xy^T$ and z be any vector. Then, we have that

$$Az = x(y^Tz) = (y \cdot z)x.$$

which is a multiple of x.

Definition 18. A is **rank** 1 because the image of A contains a line (x, dimension 1).

Proposition 3.
$$(A^{-1})^T = (A^T)^{-1}$$

Proof. Proof with the identity.

Proposition 4. $x^T(Ay) = (x \cdot Ay) = (Ay)^T x = (A^T y \cdot x)$ for every vector x, y. Note that this can be taken as the definition of the transpose.

Definition 19. An $n \times n$ matrix S is **symmetric** if $S^T = S$.

In row reduction, we saw that exchanging two rows is represented by the matrix P_{ij} .

Example.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = P_{34}.$$

Definition 20. In a **permutation matrix**, all entries are 1 or 0, and there is exactly one 1 on every row. More formally, for every i, the exists j such that $P_{ij} = 1$ and $P_{ij'} = 0$ for all $j' \neq j$.

For a permutation σ , the permutation matrix is defined as $P_{i\sigma(i)}=1$ and otherwise $P_{ij}=0$. Also note that if P,Q are permutation matrices, then PQ is also a permutation matrix.

Note that elimination and row exchange can be done in reverse order. Simply permute the rows, then eliminate, rather than eliminate the rows, then permute.

Proposition 5. If *S* is symmetric, we have

$$S = LDU$$
.

and

$$S^T = IJ^TDJ^T = S$$

which means we can write S as

$$S = IDI^T$$

2 Vector Spaces

Example. Let f(x) be a continuous function from $[0,1] \rightarrow R$. This is a vector space.

Example. Let p(x) be a polynomial of degree $\leq n$. This is also a vector space.

In theory, we can have a vector space much more generally than \mathbb{R}^n .

Definition 21. Let $x_1, ..., x_m$ be vectors. Then, $V = \text{span}\{x_1, ..., x_m\}$ is a **subspace**.

Definition 22. Let V be a vector space such that $x_1, \ldots, x_m \in V$. Suppose that $\text{span}\{x_1, \ldots, x_m\} = V$. Then, V has **finite dimension**.

Definition 23. The vectors $x_1, ..., x_m$ are a **generating set**.

Example. V, the vector space of all continuous functions, is not finite.

Example. V, the vector space of all polynomials with degree $\leq n$, is finite. Consider the span of $1, x, x^2, \ldots, x^n$.

Lecture 5: Vector, Sub, Column and Null Spaces

Theorem 11. If *AB* is invertible, *A*, *B* is invertible.

Proof. if AB is invertible, there exists $C = (AB)^{-1}$ such that (AB)C = I. Then, A(BC) = I, and $BC = A^{-1}$.

Proposition 6. For a permutation matrix,

$$P^{-1} = P^T.$$

which is also a permutation matrix.

Proposition 7. If *A* can be row reduced without row permutations, then

$$A = LU$$
.

Proposition 8. If A is invertible, one can write

$$A = LDU_1$$
.

Note. The product of two symmetric matrices are not necessarily symmetric.

Definition 24. V is a **vector space** if there is a function $V \times V \to V$ denoted +, which is commutative, associative, and has negation and null element and if there is another function $\mathbb{R} \times V \to V$ which is distributive and has a null element.

Note that \mathbb{R}^n is a vector space. A subspace of \mathbb{R}^n is also a vector space. Polynomials of degree $\leq n$ also form a vector space.

Definition 25. Let $B = \{x_1, x_2, \dots x_n\}$. Then, the **span** of B is the set of linear combinations of all x_i . B is **generating** if span B = V.

Note. span B is the smallest subspace of V that contains B.

Definition 26. We say that *B* is **linearly independent** if $\sum_{i} \alpha_{i} x_{i} = 0 \Rightarrow \text{all } \alpha_{i} = 0$.

Proposition 9. Let B be generating. If B is not linearly independent, we can eliminate one element from B, and get smaller B' that is still generating.

Proof. Then some α_i is nonzero. Assuming α_1 is non-zero, $x_1 = \sum_{i \neq 1}^n \frac{\alpha_i}{\alpha_1} x_i$. Then, we have

$$y = \sum_{i=1}^{n} \gamma_{i} x_{i}$$
 (B generating)
$$= \sum_{i \neq 1}^{n} \gamma_{1} \frac{\alpha_{i}}{\alpha_{1}} x_{i} + \sum_{i=2}^{n} \gamma_{i} x_{i}$$

$$\beta_{i} = \gamma_{1} \frac{\alpha_{i}}{\alpha_{1}} + \gamma_{i}.$$

Repeating this elimination process yields a set $D = \{x_1, \dots, x_d\}$ that is minimal. This object D is called a **basis**. In other words, every vector x can be written as

$$x = \sum_{i=1}^{d} \alpha_i x_i \quad \alpha_i \in \mathbb{R}.$$

in a unique way.

In other words, a basis is a mapping from $V \to \mathbb{R}^d$. The basis for polynomials is $B = \{1, x, x^2, \dots, x^n\}$. The basis for vectors in \mathbb{R}^3 can be $\{\hat{i}, \hat{j}, \hat{k}\}$, etc.

Note. All bases for the same vector space have the same dimension.

Note that if $V \subset \mathbb{R}^n$, then dimV < n. Therefore,

$$\dim V = n - 1$$
.

Lecture 6: More on Spaces

If the dimension of V = n and you have linearly independent vectors, then you have a basis for V.

Most of the time, we will look at subspaces of \mathbb{R}^n .

Note. If we have a subset V of \mathbb{R}^n , to show that V is a subspace all we must do is show that if $x, y \in V$, $\alpha, \beta \in \mathbb{R}$, then $\alpha x + \beta y \in V$.

Example. Some example with string/sine wave, insert from lecture notes later. The N vectors f_i for i = 1 ... N for a basis for \mathbb{R}^N , of which the proof is left as an exercise. This is also known as the Fourier basis.

The definition of vector spaces can be given with $\mathbb C$ instead of $\mathbb R$. This allows us to talk about vector spaces over $\mathbb C$.

Example. The typical example is \mathbb{C}^n . A vector $x \in \mathbb{C}^n$ is given by

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad x_i \in \mathbb{C}.$$

Consider a subspace of \mathbb{R}^n . The simplest example is a plane, or a hyperplane (if n>3). Let A be a $1\times n$ matrix such that $A\neq 0$, and V the set of solutions to Ax=0. Then, V is a subspace of \mathbb{R}^n . What is the dimension of V?

The dimension of V should be n-1. Let $x_2=1$, and $x_3, \ldots, x_n=0$. Let $x_1=-\frac{\partial 2}{\partial 1}$. Then,

$$\sum_{i=1}^{n} a_i x_i = a_1 \left(-\frac{a_2}{a_1} \right) + a_2 = 0.$$

such that this is a solution. We can apply the same thing, instead setting $x_i=1$ to find solutions f_i such that $Af_i=0$ for $i=1\dots n-1$. These vectors are linearly independent as the only values for α such that

$$\alpha_2 f_2 + \alpha_3 f_3 + \ldots + \alpha_n f_n = 0.$$

is that

$$\alpha_2 = \alpha_3 = \ldots = \alpha_n = 0.$$

This tells us that

$$\dim V \ge n - 1$$
.

Note. Also note that the column vector A^T is not in V. This process also might not work for complex numbers, as AA^T is not necessarily non-negative.

Definition 27. The thing we constructed, V, is called the **nullspace** of A, denoted N(A). Similarly, $\dim N(A) = n - 1$.

Now, let us consider A^T .

Definition 28. $W = \operatorname{span} A^T$. $\dim A^T = 1$.

Definition 29. If A is an $n \times m$ matrix (m columns and n rows) in \mathbb{R}^n . Then, C(A) is the **column space** of A, and is defined as

$$span\{A_1, A_2, ..., A_n\}.$$

Proposition 10. If we have two subspaces of \mathbb{R}^n , V, W, then

$$span\{V, W\} = \{x + y : x \in V, y \in W\}.$$

We then say that $\mathbb{R}^n = V \bigoplus W$ (called the direct sum).

Proof. Assume that $V \cup W = \{0\}$. Then, we can show that every vector in span $\{V, W\}$ can be written in a unique way as x+y where $x \in V$, $y \in W$.

Back to our equation, let A be a $1 \times n$ matrix and $V = \{x : Ax = 0\}$. Let $W = \operatorname{span} A^T = C(A^T)$. Then, we have

$$V \cap W = \{0\} \Rightarrow V \bigoplus W = \mathbb{R}^n.$$

In other words,

Proposition 11. We have shown so far that for a row matrix,

$$N(A) \bigoplus C(A^T) = \mathbb{R}^n$$
.

Proposition 12. If $V \bigoplus W = \mathbb{R}^n$, then

$$\dim V + \dim W = n$$
.

Lecture 7: Four Fundamental Spaces of a Matrix

Note that if A=0 is a $1\times n$ matrix, then $N(A)=\{x:Ax=0\}=\mathbb{R}^n$ with dimension n. Similarly, the row space of this matrix A will have dimension 0, as the dim $N(A)+\dim C(A^T)=n$.

Definition 30. We say that N(A) and $C(A^T)$ are **orthogonal**.

In other words, given a matrix, we have 4 subspaces

$$N(A)$$
 $C(A^T)$ $N(A^T)$ $C(A)$.

Definition 31. $N(A^T)$ is also known as the **left** null space, because you put x on the left.

If we have an $n \times n$ matrix, $A = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$ and its

eliminated variant $U = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$, then we have that $N(A) = \{0\}$, $R(A) = C(A^T)$, R(A) = R(U). If we have a solution Ax = b, then we have a solution Ux = c. The set of c for which Ux = c can be solved are the C(U). Similarly, the set of b for which Ax = b can be solved are the C(A). Therefore,

Proposition 13. If A is a matrix and U is its eliminated variant, then

$$\dim C(A) = \dim C(U)$$
.

Proposition 14. Dimension of row space is number of pivot variables, and the dimension of the null space is the number of free variables. Therefore.

$$\dim R(A) + \dim N(A) = n.$$

Proposition 15. If V is a subspace of \mathbb{R}^n , and E is an invertible matrix,

$$W = \{Ex : x \in V\}.$$

is a subspace as well. If E is invertible then

$$\dim W = \dim V$$
.

Putting all of these things together, we have the following properties for any matrix (go back and review these):

Proposition 16.

$$\dim N(A) + \dim R(A) = n$$
$$\dim N(A^{T}) + \dim C(A) = m$$
$$\dim R(A) = \dim C(A).$$

If we have solutions to $A\overline{x} = b$, then

$$\overline{x} + N(A)$$
.

is the set of all possible solutions of Ax = b.

If there is a 0 row in $\begin{bmatrix} A & b \end{bmatrix}$, then there has to be a 0 also in the corresponding place in b.