Dynamische Netzwerke in R

Eine Einführung

Björn Siepe

AE Psychologische Methodenlehre, Philipps-Universität Marburg

2023-06-23

Allgemeine Informationen

Materialien

https://bit.ly/netz-work-material

Ziele

- 1. Refresher zu Netzwerken
- 2. Überblick über relevante Packages
- 3. Datenvorverarbeitung
- 4. Einführung in graphicalVAR
- 5. FAQ zu graphicalVAR
- 6. Einführung in GIMME
- 7. FAQ zu GIMME
- 8. GIMME Beispiel
- 9. Ausblick

Was wir auslassen

- 1. graphicalVAR im Detail
- 2. Coden mit anderen Packages
- 3. Viele statistische Details
- 4. Einführung in R
- 5. Latente Variablen (LV-GIMME, DSEM)
- 6. Confirmatory GIMME

Refresher: Netzwerke

Netzwerktheorie:

- kausale Interaktion von Symptomen anstatt Syndrome
- keine monokausale Erklärung
- verschiedene Zustände des komplexen Systems (gesund vs. krank)
- stark verbundene Symptome verstärken sich gegenseitig

Refresher: Netzwerke

- Netzwerke bestehen aus Knoten (nodes) und Kanten (edges)
- Knoten:
 - Personen, Städte, Maschinenteile, Symptome
- Kanten:
 - gewichtet/ungewichtet
 - direktional/undirektional

Refresher: Längsschnittliche Netzwerke

Beltz et al. (2016)

Refresher: Längsschnittliche Netzwerke

- Ziel: Dynamische Zusammenhänge von Variablen auf individueller Ebene betrachten
- Oftmals Analyse von zwei Ebenen:
 - temporal: Über Zeitpunkte hinweg
 - contemporaneous: Während eines Zeitpunktes

Relevante Packages

- graphicalVAR: idiographische Netzwerke
- mlvar: Multilevel, ermöglicht Visualisierung von Heterogenität
- GIMME: idionomisch
- mgm: Mixed models & zeitlich variierend
- DSEM (MPlus): komplexe Messmodelle, sehr flexibel
- BGGM. Bayesianische Methoden
- psychonetrics: übergreifende Architektur
- dynr: Dynamische Systeme

• ...

Vorbereitung

- generell: gerade bei der Datenvorbereitung gibt es teilweise etwas komplexeren Code
- kein Problem, wenn dieser nicht verstanden wird! Bei Nachfragen: E-Mail an mich
- gibt zusätzliches R-File, in dem alles enthalten ist
- R Notation: ::: fragment

```
1 data |>
2    t.test()
3  # äquivalent zu
4   t.test(data)

1 dplyr::select()
2 packagename::funktionsname()
```

•••

Materialien für heute

Datensatz: Aus Wright et al. (2019)

Hintergrund:

- 100 Tage Tagebuchdaten zu Affekt, zwischenmenschlichem Verhalten, Stress, und Functioning
- Alle PB: Diagnose mindestens einer Persönlichkeitsstörung
- 94 Personen

für Modellfitting: erste 30 IDs

Vorverarbeitung von Daten

(i) Sehr wichtiger Schritt

Einfluss von Datenvorverarbeitung auf Ergebnisse wird oftmals unterschätzt!

- 1. Datenformat
- 2. Fehlende Daten
- 3. Zeittrends
- 4. Verteilungen & Variabilität

Datenformat

Abhängig vom Package

- graphicalVAR: Dataframe im Long-Format (jede Beobachtung eine Zeile)
- GIMME: Listenformat oder individuelle Datenfiles in einem Ordner
- wichtig: Beobachtungen in die richtige zeitliche Reihenfolge bringen!
- unterschiedliche Zahl von Beobachtungen möglich

Fehlende Daten

Abhängig vom Package:

 graphicalVAR: Akzeptiert keine fehlenden Daten.
 Imputation vorab, etwa univariat über Kalman-Filter aus (na_kalman aus tsImpute)

```
1 data$var1_imp <- imputeTS::na_kalman(data$var1)</pre>
```

- GIMME: Geht selbst mit fehlenden Daten um (Full Information Maximum Likelihood)
- Nicht nur absoluten Wert an fehlenden Daten betrachten, sondern auch Länge des Intervalls, in dem Daten fehlen (fehlt etwa eine ganze Woche vs. fehlt immer mal wieder ein einzelner Wert)

Detrending

- Verletzung der Stationaritätsannahme (s. Workshop 1) führt zu verzerrten Ergebnissen
- Detrending bereinigt Zeittrends
- Trend entfernen bedeutet Information entfernen!
- Oftmals: entfernen eines linearen Zeittrends
- Funktion dafür im Code-Appendix

```
1 data$var1_detrend <- fn_detrend(data$var1)</pre>
```

 heißt nicht, dass damit alle Probleme gelöst sind! (kann komplexere Trends geben)

Detrending

Zeitintervalle

Hoch relevant für die Interpretation!

Mehrere Möglichkeiten:

- 1. Explizite Modellierung über continuous-time Modellierung (ctsem)
- 2. Auslassen von Effekten über die Nacht in graphicalVAR oder GIMME
- 3. Cubic Spline Interpolation (s. Fisher et al., 2017)
- 4. Ignorieren 😓

Verteilungsannahmen

- graphicalVARund GIMME: Normalverteilte Variablen
- sehr oft(!) verletzt: Floor effects,
 Schiefe, Multimodalität
- Was passiert? Wir wissen es nicht genau
- Effekte werden verschätzt

v. Klipstein et al. (2023), Haqiqatkhah et al. (2023)

Allgemeine Tips

- nicht zu schnell mit der Modellierung beginnen
- viele deskriptive Statistiken
 - auf Individualebene!
- Plotten, plotten!
 - etwa: Histogramme von allen Variablen für alle Teilnehmenden
 - oder: alle Zeitreihen einmal plotten lassen
- Mehr Infos: Siepe et al. (in prep, s. Kursmaterialien)

graphicalVAR

Einführung in graphicalVAR

- graphicalVAR (Espkamp, 2018) ermöglicht idiographische Netzwerkanalysen
- Theorie: Erklärt im 1. Workshop (Slides)
- Schätzt temporales und contemporaneous Netzwerk
- rein idiographisch, aber: gibt Clustering-Ansatz (Park et al., 2022)

Einführung in graphicalVAR

- nimmt gleiche Zeitabstände an
- LASSO-Regularisierung führt zu sparsamen Netzwerken
- in kurzen Zeitreihen: geringe Power führt zu unsicheren Ergebnissen & geringer Konnektivität

<u>^!\</u>

Interpretation von Heterogenität

Netzwerke sehen durch Schätzunsicherheit oft heterogener aus, als sie tatsächlich sind (Hoekstra et al., 2022; Siepe et al., in prep.)

graphicalVAR in Code

```
fit <- graphicalVAR(
    data = NULL,  # Datensatz
    nLambda = 50,  # Anzahl von LASSO Parametern, die getestet wird
    gamma = 0.5,  # EBIC Hyperparameter
    scale = TRUE,  # z-standardisieren (wichtig für LASSO!)
    vars = NULL,  # Vektor mit Variablennamen
    beepvar = "beep",  # Beepvariable
    dayvar = "day",  # Tagesvariable
    idvar = "id"  # ID der Person
</pre>
```

grahpicalVAR Ergebnisse

Epskamp et al. (2018)

graphicalVAR Unsicherheit

- Wichtig: Nicht nur Punktschätzer betrachten!
- Bootstrapping, um Stabilität der Ergebnisse zu beachten
- etwa mit boot oder dem bootnet-Package

graphicalVAR-FAQ

Vorab gestellte Fragen:

- 1. Wichtigkeit von nLambda?
- 2. Umgang mit EBIC Hyperparameter γ
- 3. Einfluss von Detrending
- 4. Lags bei graphicalVAR

graphicalVAR-FAQ

1. Wichtigkeit von nLambda?

A: Anzahl unterschiedlicher LASSO Regularisierungsparameter. Typischerweise wird default von 50 verwendet

2. EBIC Hyperparameter γ

A: Wird gerade bei wenigen Daten oftmals auf 0 gesetzt (s. Mansueto et al, 2022). Dann wird EBIC zum normalen BIC. Abhängig vom Ziel der Untersuchung (Spezifizität vs. Sensitivität).

graphicalVAR-FAQ

3. Was passiert ohne Detrending?

A: Scheinzusammenhänge zwischen Variablen, die eigentlich nicht miteinander zusammenhängen

4. Umgang mit Nachteffekten in graphicalVAR

A: Bei Spezifikation von Beep-Variable wird der Effekt vom letzten Beep eines Tages auf den nächsten nicht geschätzt

GIMME: Theorie

Einführung in GIMME

- Group Iterative Multiple Model Estimation
- ursprünglich für fMRT-Daten entwickelt
- personen-spezifische Netzwerke mit dynamischen Zusammenhängen
- Nutzt Informationen auf Individual-, Subgruppen- & Gruppenebene

Einführung in GIMME

Einführung in GIMME: Technische Infos

- alternativ auch "structural VAR"
- lag-1 (Beltz et al., 2016) Zusammenhänge
- im Prinzip sehr datengetriebene Strukturgleichungsmodellierung

Vergleich mit graphicalVAR

- graphicalVAR: rein idiographisch (kann aber auf Multilevel erweitert werden)
- graphicalVAR: Schätzt erst temporal, dann contemporaneous
- Contemporaneous Effekte:
 - GIMME: gerichtet zwischen beobachteten Variablen
 - graphicalVAR: ungerichtet zwischen Residuen
- hybrid-GIMME (Luo et al., 2023): Verbindet beides! Braucht aber auch mehr Daten

Zusatzinformation

Die zugrundeliegenden Modelle können mathematisch ineinander transformiert werden (Luo et al., 2023)

GIMME: Algorithmus

Gates et al. (2017)

35 / 88

GIMME: Modellschätzung theoretisch

Takeaway-Zusammenfassung:

- 1. Ein "leeres" Modell für temporal und contemporaneous Zusammenhänge wird auf die Daten angepasst
- 2. Gruppe: Iterative Suche nach Verbindungen (anhand von Modifikationsindizes), die Modellfit für bestimmten Teil (etwa 75%) des Samples signifikant (nach Korrektur $\alpha=0.05/n$) verbessern
- 3. Pruning von nicht länger signifikanten Pfaden
- 4. Subgruppe: Ähnlichkeiten zwischen Individuen werden gesucht anhand Größe der geschätzten Effekte, daraus wird eine sog. Adjacency Matrix kreiert
- 5. Walktrap-Algorithmus, um "communities" zu identifizieren
- 6. In den entstandenen Subgruppen: Suche nach verbessernden Pfaden für bestimmten Teil (etwa 51%) der Subgruppe (nach Korrektur lpha=0.05/n)
- 7. Pruning von nicht länger signifikanten Pfaden
- 8. Individuell: Suche nach verbessernden Pfaden ($\alpha=0.01$), bis "exzellenter Fit" erreicht ist (RMSEA < .05, SRMR < .05, CFI > .95, NNFI > .95).

GIMME: Modellschätzung formell

$$\eta_{i,t} = (A_i + A_{i,k}^S + A_i^g)\eta_{i,t} + (\phi_i + \phi_{i,k}^s + \phi_i^g)\eta_{i,t-1} + \zeta_{i,t}$$

 $\eta_{i,t}$: Daten von Individuum i zum Zeitpunkt t

A: Contemporaneous Effekte

 ϕ : Temporale Effekte (VAR-1 Modell)

Orange: Gruppeneffekte

Blau: Subgruppeneffekte

Rot: Individuelle Effekte

 $\zeta_{i,t}$: Residuum von Individuum i zum Zeitpunkt t

Verschnaufpause

GIMME: Modellfunktion in R

```
fit <- gimmeSEM(
  data = NULL,  # Datenfile
  out = NULL,  # Outputordner
  ar = TRUE,  # Autoregressive Effekt schätzen (default)
  plot = TRUE,  # Plotten?
  subgroup = TRUE,  # Subgruppen schätzen?
  hybrid = FALSE,  # directed & undirected contemporaneous
  groupcutoff = .75,  # Gruppencutoff
  subcutoff = .51,  # Subgruppencutoff
  ...
  11 )</pre>
```

GIMME: Simulationsergebnisse

- insgesamt eher konservativ, gerade auf individueller Ebene (Lane et al., 2019)
 - Absenz von Pfaden vorsichtig interpretieren
- Anzahl Zeitpunkte & Variablen: Hängt von gewünschter Betrachtungsebene ab
 - gerade für individuelle Effekte: $t>100\,\mathrm{empfohlen}$ (nur ein sehr grober Richtwert)
- stärkere temporale Effekte machen Modellschätzung & Subgruppenfindung leichter
 - vorsichtig bei Vergleich mit fMRT-Studien: dort deutlich andere Datenlage
- gerichtete contemporaneous Effekte: sehr schwer bei t < 100
- vermutlich zwischen 5-10 Variablen am besten

GIMME: FAQ

Vorab gestellte Fragen:

- 1. Stationarität bei GIMME
- 2. Wie werden gerichtete Effekte im contemporaneous Netzwerk geschätzt? Wie reliabel sind diese?

GIMME FAQ: Stationarität

- Typischerweise: Detrending von linearem Zeittrend
- Außerdem: Einfügen von NA für die Nacht, damit der Nachteffekt nicht geschätzt wird

Effektive Stichprobengröße

Bei Weglassen von Nachteffekten verringert sich die effektive Stichprobengröße!

GIMME FAQ: contemporaneous Effekte

- Kontrolle von Autokorrelation in Variablen ermöglicht gerichtete Effekte
- Wie gut werden diese geschätzt? Hängt sehr von Stärke des Effekts ab
- ullet Korrekte Richtung des Effekts erst ab t>200 zufriedenstellend
- Persönliche Meinung: Würde diese nicht zu stark interpretieren

GIMME: Praxis

GIMME: Anwendung 1

Wir treffen die notwendigen Vorbereitungen und laden die relevanten Daten. Diese wurden bereits vorab in das notwendige Listenformat umgewandelt und etwas vorverarbeitet, Code dafür ist vorhanden.

Code für Listenstruktur

Jedes Individuum hat einen eigenen Eintrag in einer Liste.

```
1 library(gimme)  # Modellierung
2 library(here)  # replizierbare Datenstruktur
3
4 # Einladen der Datenliste
5 data_list <- readRDS(here::here("Anwendungs_Workshop/data/data_list.RDS"))
6
7 # Erstellen der relevanten Ordner
8 dir.create(here::here("Anwendungs_Workshop/output"))</pre>
```

Datenvorverarbeitung

- Listenformat der Daten macht Vorverarbeitung komplizierter
- gibt mehrere Lösungen, etwa mittels for-loop:

```
# Liste für Output erstellen
mean_dom <- list()

## Iteriere durch die Liste, gebe Mittelwert aus
## Für Person p in 1 bis Länge der Liste
for(p in 1:length(data_list)){
## Berechne Mittelwert von Dominance, speichere im Element "p"
## mean_dom[[p]] <- mean(data_list[[p]]$Dominance, na.rm = TRUE)

## True
## Tru
```

Datenvisualisierung

Histogramm für alle Variablen einer Person:

1 Hmisc::hist.data.frame(data_list[[2]])

Datendeskription

Für bessere Übersicht: Deskriptive Statistiken aller Variablen:

```
skimr::skim()dplyr::glimpse()Hmisc::describe()
```

Datendeskription

Beispiel für Individuum 2:

skim_type	skim_variable	n_missing	complete_rate	numeric.mean	numeric.sd	numeric.p0	numeric.p25	numeric.p50	numeric.p75	numeric.p1(
numeric	Dominance	3	0.9651163	2.9781928	6.2290361	-9.95	-1.44	2.71	7.95	16.9
numeric	Affiliation	2	0.9767442	-1.3853571	6.2989306	-13.90	-5.00	-0.82	2.83	12.6
numeric	PosAff	0	1.0000000	3.8459302	1.2070434	1.00	3.40	4.20	5.00	5.(
numeric	NegAff	0	1.0000000	1.9906977	0.8584018	1.00	1.40	1.80	2.60	5.(
numeric	Stress	0	1.0000000	0.5581395	1.8188856	0.00	0.00	0.00	0.00	9.(
numeric	Functioning	0	1.0000000	0.4534884	0.6800861	0.00	0.00	0.00	1.00	2.0
numeric	time	0	1.0000000	43.5000000	24.9699820	1.00	22.25	43.50	64.75	86.0

Datenvorverarbeitung: Variabilität

- betrachten der Standardabweichung
- Variabilität sollte nicht zu unterschiedlich sein!
- ggf. standardisieren/durch Konstante teilen
- in der Praxis: Auch noch floor effects betrachten, um ggf. einzelne Personen auszuschließen

Datenvorverarbeitung: Variabilität

Über alle Personen hinweg:

► Code

Dominance_mean	Dominance_sd	Affiliation_mean	Affiliation_sd	PosAff_mean	PosAff_sd	NegAff_mean	NegAff_sd	Stress_mean	Stress_sd Fu	unc
0.491	2.711	1.912	3.333	2.666	0.61	1.786	0.516	2.425	2.391	

Für einzelne Individuen:

► Code

id	Dominance_mean	Dominance_sd	Affiliation_mean	Affiliation_sd	PosAff_mean	PosAff_sd	NegAff_mean	NegAff_sd	Stress_mean	Stress_sd
1	-6.352	1.928	-5.662	2.896	1.533	0.266	2.355	0.448	2.783	2.417
10	2.306	2.367	2.259	2.520	3.006	0.350	1.411	0.379	2.959	2.685
11	3.610	1.532	7.122	2.515	3.188	0.390	1.152	0.283	0.337	1.627
12	0.625	3.478	0.374	2.907	1.942	0.898	1.625	0.781	1.141	2.832
13	0.410	1.270	0.682	1.617	1.557	0.453	1.035	0.116	0.542	1.187
14	1.680	3.853	9.364	3.599	3.655	0.848	1.317	0.476	3.065	4.219

Datenvorverarbeitung

Visualisierung von fehlenden Daten: etwa mit naniar-Package

1 visdat::vis_dat(data_list[[6]])

Datenvorverarbeitung

Wir detrenden einen linearen Effekt von Zeit:

```
1 # relevante Variablen
 2 rel_vars <- c("Dominance", "Affiliation", "PosAff",</pre>
                  "NegAff", "Stress", "Functioning")
   # Loopen über alle p Participants
 6 for(p in 1:length(data_list)){
        data_list[[p]] <- fn_detrend(data_list[[p]],</pre>
                   vars = rel_vars,
                   time_var = "time",
                   sig only = FALSE)
10
11 }
12
13 # Zeitvariable wieder löschn
14 for(p in 1:length(data list)){
      data_list[[p]] <- subset(data_list[[p]], select = -c(time))</pre>
16 }
```

• Alternative: Zeit als exogene Variable aufnehmen (s. Woods et al., 2020)

Datenvorverarbeitung: Alternativen

- lapply für die Arbeit mit Listen
- in Dataframe arbeiten, dann am Ende in Liste aufsplitten

```
1 # lapply statt for loop
 2 mean_list <- lapply(data_list, function(x){</pre>
   # x: einzelnes Element von data list
   mean(x$Dominance, na.rm = TRUE)
   # oder als Datensatz verwenden
   df data <- data list |>
   # mit ID abspeichern
tibble::enframe(name = "ID") |>
# in dataframe verwandeln
13 tidyr::unnest()
14
   # zurück in Liste verwandeln
   data list new <- split(df data, df data$ID)</pre>
```

GIMME: Modellschätzung

https://giphy.com/gifs/fun-begins-NsIwMIIOrhfgpdQlzn

GIMME: Modellschätzung

```
1 example data <- gimme::simData</pre>
2 data list short <- data list[1:30]</pre>
4 fit <- gimmeSEM(</pre>
5 data = data_list_short,
  out = "Anwendungs_Workshop/output",
7 ar = TRUE, # Autoregressive Effekt schätzen (oftmals empfohlen)
8 plot = TRUE, # Plotten?
9 subgroup = TRUE, # Subgruppen schätzen?
10  hybrid = FALSE,  # directed & undirected contemporaneous
groupcutoff = .75, # Gruppencutoff
subcutoff = .51,  # Subgruppencutoff,
paths = NULL # vorgegebene Gruppenpfade
14 )
15
   saveRDS(fit, "Anwendungs Workshop/output/fit.RDS")
```

Alternativ: Fertiges Modell laden (s. Codefile)

GIMME: Outputstruktur

- Hauptordner:
- Zusammenfassung aller einzelnen Pfade, Fit-Indizes aller Modelle, Counmatrizen, Gruppenplots
- Subgruppenordner:
- Countmatrizen, Subgruppenplots
- Individuelle Ordner:
- individuelle Pfade, Standardfehler, Individualplots

GIMME: Gruppenergebnis

<u>^!\</u>

Datenstruktur anders

Achtung: Datenstruktur ist anders als z.B. in qgraph (Reihe: Outcome, Spalte: Prädiktor)

Hauptoutput: summaryFit.csv

Detaillierte Infos auf GIMME Homepage

GIMME: Gruppenergebnis

Please specify a file id for individual plots. Otherwise, summary plot is presented.

GIMME: Gruppenergebnis

numerische Zusammenfassung

```
summary matrix <- read.csv(here("Anwendungs Workshop/output/summaryPathCountsMatri</pre>
  summary_matrix
Dominancelag Affiliationlag PosAfflag NegAfflag Stresslag Functioninglag
                                                         30
Dominance Affiliation PosAff NegAff Stress Functioning
                           13
                           11
                                  30
```

GIMME: Subgruppenergebnis

GIMME: Subgruppenergebnis

GIMME: Subgruppenergebnis

- eventuell besser bei mehr Variablen (Lane et al., 2019)
- relevant: Stabilität der Subgruppen

Interpretation von Subgruppen

Es kann Subgruppen ohne gemeinsames Edge geben! Ähnlichkeit der Pfade allgemein.

- möglicherweise interessant: Subgruppen auf verschiedenen Maßen (Mittelwert, Variabilität, Diagnosen...) vergleichen
- Limitation: keine probabilistiche Zuordnung zu Subgruppen

GIMME: perturbR

- untersucht Stabilität von Subgruppenlösungen (Gates et al., 2019)
- Benötigt similarity matrix aus GIMME als Input

```
1 library(perturbR)
2
3 perturb_gimme <- perturbR(
4    sym.matrix = fit$sim_matrix,
5    plot = TRUE,
6    reps = 100,
7    errbars = TRUE
8 )
9
10 saveRDS(perturb_gimme, "Anwendungs_Workshop/output/perturb_gimme.RDS")</pre>
```

- ARI: Adjusted Rand Index. Soll langsam fallen
- VI: Variation of Information. Soll langsam steigen.

GIMME: perturbR

Comparison of original result against perturbed graphs: ARI

GIMME: perturbR

Comparison of original result against perturbed graphs: VI

GIMME: Subgruppen weiter untersuchen

Mittelwerte und Standardabweichungen von Pfadkoeffizienten betrachten (vgl. Wright et al., 2022):

▶ Code

lhs	rhs	b_mean_g1	b_mean_g2	b_mean_g3
Affiliation	Affiliationlag	0.18437918	0.13801514	0.2105064
Affiliation	PosAff	0.24446483	0.50241587	0.3807818
Affiliation	PosAfflag	0.27701531	NA	NA
Affiliation	Stresslag	-0.30219626	NA	NA
Dominance	Affiliation	0.33175084	-0.01683552	NA
Dominance	Dominancelag	0.07185154	0.07779693	0.0398697

GIMME: Individuelles Ergebnis

Beispiel Person 2:

```
1 plot(fit, file = 2)
                                   Dominance
                                                                    Affiliation
  Functioning
  Stress
```

GIMME: Individuelles Ergebnis analysieren

- Hauptoutput: indivPathEstimates.csv
- Punktschätzer & Standardfehler für alle Edges

► Code

file	lhs	ор	rhs	beta	se	Z	pval	level	sub_membership
subj1	Dominance	~	Dominancelag	0.16874072	0.10939830	1.5424438	1.229658e-01	group	2
subj1	Affiliation	~	Affiliationlag	0.04503635	0.10034637	0.4488089	6.535695e-01	group	2
subj1	PosAff	~	PosAfflag	0.08918632	0.09241244	0.9650900	3.344997e-01	group	2
subj1	NegAff	~	NegAfflag	0.39274410	0.08865892	4.4298318	9.430659e-06	group	2
subj1	Stress	~	Stresslag	-0.16197321	0.08382896	-1.9321869	5.333644e-02	group	2
subj1	Functioning	~	Functioninglag	0.14957882	0.10248307	1.4595466	1.444147e-01	group	2

GIMME: Individuelles Ergebnis

- Check: Residuen auf zeitliche Korreliertheit überprüfen (Beltz et al., 2016)
 - wenn notwendig: ggf. Lag-2 etc. hinzufügen
- viele existierende Effekte werden potentiell nicht mit aufgenommen (Lane et al., 2019)
- eher konservativ

Ausblick

GIMME: Erweiterungen

- Latente Variablen
- GIMME mit exogenen Variablen (Beltz & Gates, 2017)
- etwa: Zeit, Intervention
- CS-GIMME: Confirmatory Subgroups
- etwa: wie unterscheiden sich Diagnosegruppen in ihren Dynamiken

GIMME: Multiple Solutions

- mehrere äquivalente Lösungen
- Lösung: ms-GIMME, Auswahl mit AIC
- Kann gerade bei schwachen autoregressiven Effekten sinnvoller sein, als AR-Effekte per Default zu schätzen

```
1 fit <- gimme(...,  # rest identisch
2  ms_allow = TRUE,  # multiple Lösungen zulassen
3  ar = FALSE,  # AR-Effekte nicht sofort schätzen
4  ms_tol = 1e-5)  # Default Toleranz für multiple Lösungen</pre>
```

GIMME: Multiple Solutions

Beispieldaten aus dem Package:

```
1 ms_fit <- gimme::ms.fit
2 solution.tree(ms_fit, level = "group", plot.tree = TRUE)</pre>
```


GIMME: Limitationen

- gerichtete contemporaneous Effekte mit Vorsicht zu genießen
- schwer zu treffende/arbiträre Entscheidungen beim Modellieren
- Fit Indizes, Gruppencutoffs
- Annahme von gleichen Zeitintervallen
- autoregressive Effekte freisetzen vs. multiple solutions noch unklar
- ersteres könnte Homogenität künstlich erhöhen (Beltz & Gates, 2017)
- primär evaluiert für Präsenz von Edges, weniger für deren Stärke

Zentralitätsmaße

- noch nicht stark untersucht für Längsschnittnetzwerke
- eventuell zu trennen f
 ür temporal vs. contemporaneous
- Beispiel etwa Beck & Jackson (2020)

Interessante Anwendungen

- Zusammenhang von Netzwerkparametern mit transdiagnostischen Fragebögen (Woods et al., 2020)
- Vorhersage von Therapieverläufen mit Netzwerkparametern:
 - Hehlmann et al. (in prep., siehe Kursmaterialien)
 - Lutz et al. (2018)
- Centrality etc.
- Klinische Fallstudien TODO ADD ONG Paper

PREMISE: Klinisches Wissen integrieren

Case formulation network

PREMISE network, week 2

Implementiert in praktischer Online-App

Burger et al. (2022)

Übung & Literatur

Praktische Aufgaben

- 1. Fehlende Daten von Personen 2, 7 und 21 imputieren.
- 2. RMSSD berechnen für alle Variablen von Person 2 (TIPP: psych::rmssd).
- 3. Für Person 2 ein Netzwerk in graphicalVAR schätzen und mit dem GIMME-Ergebnis vergleichen.
- 4. Gruppencutoff für GIMME ändern und Ergebnisse neu inspizieren.

Literatur allgemein

- Burger, J., Epskamp, S., van der Veen, D. C., Dablander, F., Schoevers, R. A., Fried, E. I., & Riese, H. (2022). A clinical PREMISE for personalized models: Toward a formal integration of case formulations and statistical networks. Journal of psychopathology and clinical science, 131(8), 906–916.
 https://doi.org/10.1037/abn0000779
- Fisher, A. J., Reeves, J. W., Lawyer, G., Medaglia, J. D., & Rubel, J. A. (2017). Exploring the idiographic dynamics of mood and anxiety via network analysis. Journal of Abnormal Psychology, 126(8), 1044–1056. https://doi.org/10.1037/abn0000311
- Haqiqatkhah, M. M., Ryan, O., & Hamaker, E. L. (2022, November 26). Skewness and staging: Does the floor effect induce bias in multilevel AR (1) models?. https://doi.org/10.31234/osf.io/myuvr
- Lutz, W., Schwartz, B., Hofmann, S.G. et al. Using network analysis for the prediction of treatment dropout in patients with mood and anxiety disorders: A methodological proof-of-concept study. Sci Rep 8, 7819 (2018). https://doi.org/10.1038/s41598-018-25953-0

Literatur allgemein

- Park, J. J., Chow, S. M., Fisher, Z. F., & Molenaar, P. C. M. (2020). Affect and Personality: Ramifications of Modeling (Non-)Directionality in Dynamic Network Models. European journal of psychological assessment: official organ of the European Association of Psychological Assessment, 36(6), 1009–1023. https://doi.org/10.1027/1015-5759/a000612
- von Klipstein, L., Servaas, M. N., Lamers, F., Schoevers, R. A., Wardenaar, K. J., & Riese, H. (2023). Increased affective reactivity among depressed individuals can be explained by floor effects: An experience sampling study. Journal of affective disorders, 334, 370–381. https://doi.org/10.1016/j.jad.2023.04.118

Literatur graphicalVAR

- Hoekstra, R. H. A., Epskamp, S., & Borsboom, D. (2022). Heterogeneity in Individual Network Analysis: Reality or Illusion?. Multivariate behavioral research, 1–25. Advance online publication. https://doi.org/10.1080/00273171.2022.2128020
- Sacha Epskamp, Lourens J. Waldorp, René Mõttus & Denny Borsboom (2018) The Gaussian Graphical Model in Cross-Sectional and Time-Series Data, Multivariate Behavioral Research, 53:4, 453-480, DOI: 10.1080/00273171.2018.1454823
- Park, J. J., Chow, S., Epskamp, S., & Molenaar, P. (2022, October 15). Subgrouping with Chain Graphical VAR Models. https://doi.org/10.31234/osf.io/u3ve8
- Mansueto, A. C., Wiers, R. W., van Weert, J., Schouten, B. C., & Epskamp, S. (2022). Investigating the feasibility of idiographic network models. Psychological methods.

Literatur GIMME

- Adriene M. Beltz & Peter C. M. Molenaar (2016) Dealing with Multiple Solutions in Structural Vector Autoregressive Models, Multivariate Behavioral Research, 51:2-3, 357-373, DOI: 10.1080/00273171.2016.1151333
- Beltz, A. M., Wright, A. G., Sprague, B. N., & Molenaar, P. C. (2016). Bridging the nomothetic and idiographic approaches to the analysis of clinical data. Assessment, 23(4), 447-458.
- Kathleen M. Gates, Stephanie T. Lane, E. Varangis, K. Giovanello & K. Guiskewicz (2017) Unsupervised Classification During Time-Series Model Building, Multivariate Behavioral Research, 52:2, 129-148, DOI: 10.1080/00273171.2016.1256187
- Gates, K. M., Fisher, Z. F., Arizmendi, C., Henry, T. R., Duffy, K. A., & Mucha, P. J. (2019). Assessing the robustness of cluster solutions obtained from sparse count matrices. Psychological methods, 24(6), 675–689. https://doi.org/10.1037/met0000204

Literatur GIMME

- Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. (2019). Uncovering general, shared, and unique temporal patterns in ambulatory assessment data. Psychological methods, 24(1), 54.
- Nestler, S., & Humberg, S. (2021). GIMME's ability to recover group-level path coefficients and individual-level path coefficients. Methodology, 17(1), 58-91.
- Wright, A. G. C., Gates, K. M., Arizmendi, C., Lane, S. T., Woods, W. C., & Edershile, E. A. (2019). Focusing personality assessment on the person: Modeling general, shared, and person specific processes in personality and psychopathology. Psychological Assessment, 31(4), 502–515. https://doi.org/10.1037/pas0000617

Anwendungen

- Beck, E. D., & Jackson, J. J. (2020). Consistency and change in idiographic personality: A longitudinal ESM network study. Journal of personality and social psychology, 118(5), 1080–1100. https://doi.org/10.1037/pspp0000249
- Woods, W. C., Arizmendi, C., Gates, K. M., Stepp, S. D., Pilkonis, P. A., & Wright, A. G. C. (2020). Personalized models of psychopathology as contextualized dynamic processes: An example from individuals with borderline personality disorder. Journal of consulting and clinical psychology, 88(3), 240–254. https://doi.org/10.1037/ccp0000472

Weitere Ressourcen

- Open Handbook of ESM (KU Leuven, 2022)
- Intensive Longitudinal Analysis of Human Processes (Gates & Molenaar, 2023)
- GIMME Homepage, die teilweise dieses Tutorial inspiriert hat
- GIMME Workshop, ebenfalls Inspiration f
 ür diesen Workshop

Kontakt

- **f** Feel
- **F** free
- **@** to
- @ contact
- **O** me

bjoern.siepe@unimarburg.de

