Gareth Baxter Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

Capítulo 1 Física: Medição e Modelação

Sumário:

- Informações gerais.
- Introdução.
- Cap. 1. Física: Medição e Modelação

Bibliografia:

- Guião
- Serway, cap. 1 e app. B.8
- Sørenssen, cap. 3

Informações Gerais

Organização da Aulas

Aulas Teórico-Práticas (TP, 2 horas por semana, 2 turmas),

São apresentados e trabalhados os **conteúdos teóricos** e **resolvidos exercícios** tipo

Aulas Práticas (P, 2 horas por semana, 6 turmas),

Resolução de problemas usando quer cálculo analítico quer cálculo computacional-numérico.

Soluções escritos durante as aulas práticas podem ser usadas nos testes/exame

Programação em python

bibliotecas necessárias: numpy, matplotlib, sympy

Jupyter Notebook https://jupyter.org/ ou outro IDE

Atenção: Nos testes e exame, é necessário poder trabalhar offline

Equipa Docente

Prof. Gareth Baxter Coordenador gabinete 13.3.33.3, gjbaxter@ua.pt

TP1 e TP2, P1

Prof. Fernão Abreu P3 e P4

Dr. Carlos Couto P6

Dr. José Coutinho P5

Dr. Carlos Amorim P2

Avaliação

- 90% Componente Téorica e Computacional (Testes ou Exame)
- 10% Componente Prática (todos)

Componente Téorica e Computacional

• Avaliação Discreta, por testes

3 testes, cada teste vale 30% do total.

Cada teste terá aproximadamente 1/3 da matéria lecionada.

OU

Exame Final

Para quem não realizou o 1º teste, fará o exame, sobre toda a matéria.

Avaliação - Componente Téorica e Computacional

Testes (avaliação discreta):

1º Teste **26 de Março**, 15h00 2º Teste **16 de Maio**, 16h30

3º Teste Dia do exame, a confirmar

Cada teste tem duas partes:

Cálculo analítico50%duração½ horaCálculo computacional-numérico50 %1 hora

Exame final:

Época dos exames, data a confirmar

Cálculo analítico50%duração1 horaCálculo computacional-numérico50 %2 hora

Avaliação - Componente Prática

Obrigatório assistir pelo menos 80% das aulas práticas

Vale 10% da nota final

Avaliação em cada aula prática:

mostrar e explicar o teu código ao professor durante a aula 12 valores responder às perguntas escritas (resposta curta) durante a aula 8 valores

Nota prática = média das melhores 9 notas obtidas ao longo do semestre.

Inquéritos Pedagógicos

- para a **melhoria da qualidade do ensino**, com impacto nas competências adquiridas pelos alunos, prestígio do curso e consequente **empregabilidade**
- para a **autoavaliação do curso** e consequente **creditação** pela Agência de Avaliação e Acreditação do Ensino Superior (A3ES)

Introdução

Modelação de Sistemas Físicos

- 1. Física: Medição e modelação.
- 2. Movimento a uma dimensão.
- 3. Movimento no plano e no espaço: Forças e vetores.
- 4. Leis de Conservação.
- 5. Oscilações Mecânicas e Elétricas, Ressonância e Caos.
- 6. Osciladores acoplados, Modos Normais e Ondas

Objetivos

Porque Modelação de Sistemas Físicos?

- É obrigatório ??
- Entender alguma coisa dos fenómenos físicos
- Descrever fenómenos de forma matemática
- Saber fazer **simulações**
- Analisar um **problema** e desenhar a **solução**
- Reconhecer se a solução faz sentido

• 555

Bibliografia recomendada

- R.A. Serway, Physics for Scientists and Engineers with Modern Physics, 2008, 9a edição, Saunders College Publishing.
 Contém quase todos o conteúdo de física que vamos cobrir
 Apresenta exemplos resolvidos
- Anders Malthe-Sørenssen, Elementary Mechanics Using Python, 2016, Springer.
 Apresenta exemplos desenvolvidos e propõe problemas e projetos
 Exemplos de resolução de problemas com Python

Bibliografia suplementar

- Jaime E. Villate, Dinâmica e Sistemas Dinâmicos, (2019), 5a edição, do autor.
 Disponibilizado pelo autor em https://def.fe.up.pt/dinamica/index.html
 Alguns problemas resolvidos estão em https://def.fe.up.pt/dinamica/problemas.html
- Jeffrey Elkner, Allen B. Downey, e Chris Meyers, *How to Think Like a Computer Scientist: Interactive Edition*.

 Disponível em https://runestone.academy/runestone/books/published/thinkcspy/index.html
- Allen Downey. *Think Python: How to Think Like a Computer Scientist*, Green Tea Press (2015), 2a edição. Disponível em https://greenteapress.com/wp/think-python-2e/

Cap. 1

Física: Medição e Modelação

Física

- Procura identificar leis fundamentais que governam os fenómenos naturais
- Está baseada em observações experimentais e medições quantitativas
- A análise dos dados medidos fornecem relações matemáticas entre as quantidades medidas (ou não)

Medição

Medição

Medidas requerem:

- Instrumentos de medição
- Medidas Padrão
- Sistema de unidades (e conversão entre unidades)

Uma medida sem unidade não tem significado

Sistema Internacional de Unidades (1960)

Quantidades básicas

Todas as outras quantidades estão relacionadas com estas

Ex. velocidade, aceleração, força, energia, ...

Quantidade	unidade	símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Temperatura	kelvin	K
Corrente elétrica	ampere	А

Medição e incerteza

O valor da medição de uma quantidade está sempre afetado de uma incerteza.

$$c = \bar{c} \pm \Delta c$$

Fontes de incerteza:

Erros de leitura – limitações do instrumento

- Instrumentos de escala digital: erro é uma divisão da escala
- Instrumentos de escala contínua: erro é metade da menor divisão

Erros de observação – associado ao processo de medição

- Limitações na possibilidade de observar o fenómeno
- Variação aleatório no processo em si
- Erro humano

Como reportar um resultado

À quantidade que se mede, na figura o comprimento do lápis, c, associamos

- o valor que melhor se estima, \bar{c} ,
- erro ou incerteza, Δc ,

Tal que se tem a certeza que o comprimento está entre $\bar{c} - \Delta c = \bar{c} + \Delta c$

Pela figura tem-se a certeza que 4.0 cm < c < 4.5 cm

Então pode-se considerar $\bar{c} = 4,25 \text{ cm}$ e $\Delta c = 0,25 \text{ cm}$

O comprimento do lápis indica-se c=4,3 \pm 0,3 cm

$$c = 4.3 \pm 0.3$$
 cm

arredondado ao mesmo casa decimal

Melhor estimativa

1 algarismo significativo

unidade!

Precisão e Exatidão

erro absoluto = Δc

erro relativo =
$$\left| \frac{\Delta c}{\bar{c}} \right|$$

Precisão mede o grau de variação da medição obtido na experiência.

A precisão é tanto maior quanto o erro relativo for menor.

Exatidão mede a proximidade do valor medido do valor correto.

Precisão e Exatidão são dois conceitos diferentes.

É possível ter precisão alto mas exatidão baixo – se temos um **erro sistemático**: os valores medidas não refletem corretamente o valor real

Erros podem ser introduzidos quando fazemos cálculos numéricos:

- As operações podem ter precisão limitado
- O algoritmo pode ser apenas aproximado, introduzindo erros
- Pode haver erros de implementação (bugs)

Estes erros podem acumular-se ao longo do cálculo, resultando num erro elevado no resultado final

Combinação de erros

Adição de duas parcelas

Ex. largura, L, e profundidade, P,

$$S = L + P$$

Em que
$$L = 3.0 \pm 0.1 \text{ cm}$$

 $P = 2.0 + 0.1 \text{ cm}$

S = 5.0 cm mas o que deve ser ΔS ?

O valor mínimo de

$$S = 5.0 - (\Delta L + \Delta P)$$

O valor máximo de

$$S = 5.0 + (\Delta L + \Delta P)$$

$$\Delta S = \Delta L + \Delta P$$

O mesmo de a <u>subtração de duas parcelas</u>, D=L-P

$$\Delta D = \Delta L + \Delta P$$

com adição ou subtração, somar os erros absolutos

Observação e medição

Produto de 2 quantidades

Ex. a área do rectângulo

$$A = L \times P$$

$$\frac{\Delta A}{A} = \left| \frac{\Delta L}{L} \right| + \left| \frac{\Delta P}{P} \right|$$

Igual expressão para a divisão de duas quantidades

Geral:
$$F = F(x, y, \dots)$$
 $\Delta F = \left| \frac{\partial F}{\partial x} \right| \Delta x + \left| \frac{\partial F}{\partial y} \right| \Delta y + \dots$

com multiplicação ou divisão, somar os erros relativos

Medição e incerteza Sumário

Medição c

Erro absoluto Δc (mesmas unidades)

Erro relativo $\left| \frac{\Delta c}{c} \right|$ (sem unidades)

Combinação de medições

Adição ou subtração: S = L + P $\Delta S = \Delta L + \Delta P$ somar erros absolutos

Multiplicação ou divisão: $A = L \times P$ $\frac{\Delta A}{A} = \left| \frac{\Delta L}{L} \right| + \left| \frac{\Delta P}{P} \right|$ somar erros relativos

Medições repetidas

Em geral o erro em cada medição é aleatório (não é sempre o caso!)

Podemos melhorar a precisão (reduzir o erro) se repetimos a medição.

A melhor estimativa do valor é o médio das medições

$$\bar{T} = \frac{1}{N} \sum_{i=1}^{N} T_i$$

O desvio padrão indica a variação em cada medição:

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (T_i - \bar{T})^2}$$

O **erro na media diminuia** com o número de medições: $S = \frac{\sigma}{\sqrt{N}}$

4.45 4.35 10² 104 105 10^{3} número de medições

Então o valor indica-se por $T = \overline{T} + S$

$$T = \bar{T} \pm s$$

Vemos isto melhor na aula prática

Conversão de unidades

Muitas vezes é necessário converter unidades de sistemas diferentes ou no mesmo sistema

Exemplos:

km/h em m/s: $1 \text{ km/h} = 0.27777... \text{ m/s} \leftarrow \text{um dos mais comuns}$

ou m/s = m/h: 1m/s = 3.6 km/h

kg em g: 1 kg = 1000 g cm em m: 1 cm = 0.01 m

Como se converte:

v = 60 km/h em m/s?

$$v = 60 \frac{\text{km}}{\text{h}} = 60 \frac{1000 \text{ m}}{3600 \text{ s}} = 60 \times 0,27777 \frac{\text{m}}{\text{s}} = 16,6666 \text{ m/s}$$

Modelação

Modelação

significa construir modelo: um conjunto de **equações** matemáticas que sejam capazes de **representarem** com exatidão os **fenómenos** naturais em estudo.

- Codificar as leis observadas
- Prever comportamento em condições não observadas
- simular fenómenos que não sejam observados

33

Análise de Dados experimentais

resultado de uma série de medições

Ex: Numa experiência de difração por uma fenda única de um feixe de luz, em que L é a distância da dupla fenda ao alvo e X a distância entre máximos luminosos consecutivos da figura de difração, registaram-se estas valores:

L (cm)	X (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

Que relação existe entre L e X?

Análise de Dados experimentais

Que relação existe entre L e X?

E se os dados forem apresentados num gráfico:

<i>L</i> (cm)	<i>X</i> (cm)
222.0	2.3
207.5	2.2
194.0	2.0
171.5	1.8
153.0	1.6
133.0	1.4
113.0	1.2
92.0	1.0

Parece haver uma relação linear.

Como se extrai as caraterísticas de uma reta deste gráfico?

Regressão linear pelo método dos mínimos quadráticos

Dados experimentais: (x_i, y_i)

Pontos da reta: (x_i, p_i) dados pela reta $p_i = mx_i + b$

não se conhece m e b

Mínimizar

$$S(m,b) = \sum_{i=1}^{N} (y_i - p_i)^2$$

soma das diferenças (ao quadrado, para ser sempre positivas) entre o valor expeimental e o valor da reta do modelo teórico

Condições:

$$\frac{\partial S(m,b)}{\partial m} = 0$$
 e $\frac{\partial S(m,b)}{\partial b} = 0$

$$\begin{cases} \frac{\partial S(m,b)}{\partial m} = 0 \\ \frac{\partial S(m,b)}{\partial b} = 0 \end{cases} \implies \begin{cases} m = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \\ b = \frac{\sum_{i=1}^{N} x_i^2 \sum_{i=1}^{N} y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} x_i y_i}{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \end{cases}$$

O coeficiente de determinação r^2 nos diz quão bom é o ajuste

$$r^{2} = \frac{\left(N\sum_{i=1}^{N} x_{i}y_{i} - \sum_{i=1}^{N} x_{i}\sum_{i=1}^{N} y_{i}\right)^{2}}{\left[N\sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}\right] \left[N\sum_{i=1}^{N} y_{i}^{2} - \left(\sum_{i=1}^{N} y_{i}\right)^{2}\right]}$$

Quando r^2 ~1 indica um ótimo ajuste, enquanto r^2 ~ 0 indica que não o modelo não é linear

Os erros associados são:

$$\begin{cases} \Delta m = |m| \sqrt{\frac{\frac{1}{r^2} - 1}{N - 2}} \\ \Delta b = \Delta m \sqrt{\frac{\sum_{i=1}^{N} x_i^2}{N}} \end{cases}$$

m = 0.010155051683894637 + -0.00016296903598678832

b=<u>0.055</u>07544181393875 +- <u>0.027</u>13076554383449

 r^2 =0.9984571397353084

 $m = 0.0102 \pm 0.0002$

 $b = 0.06 \pm 0.03$ cm

$$\begin{cases} m = 0.0102 \pm 0.0002 \\ b = 0.06 \pm 0.03 \text{ cm} \end{cases}$$

$$r^2 = 0.889$$
 Pior ajuste

$$\begin{cases} m = 0.0101 \pm 0.0004 \\ b = 0.08 \pm 0.06 \text{ cm} \end{cases}$$

Os erros são maiores

Leis de potência $y = cx^n$

700 - 600 - 500 - 600 - 700 -

logaritmo base *b*:

$$\log_b y = \log_b c + \underbrace{n}_{\smile} \cdot \log_b x$$
declive

Reta!

declive = potência

Propriedades dos logaritmos:

$$\log_b b^x = x$$

$$\log_b x^y = y \cdot \log_b x$$

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x = \frac{\log_c x}{\log_c b}$$

Lei exponencial $y = y_0 e^{\lambda t}$

 λ pode ser positivo ou negativo

logaritmo base *b*:

$$\log_b y = \log_b y_0 + \lambda t$$

declive

 $y e y_0$ expressos nas mesmas unidades

Propriedades dos logaritmos:

$$\log_b b^x = x$$

$$\log_b x^y = y \cdot \log_b x$$

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

$$\log_b x = \frac{\log_c x}{\log_c b}$$

Se nenhum destes casos se aplica, e se conhecemos a forma da relação

Linearização de uma expressão: Ex. $y^m = cx^n + b$

Se se fizer:
$$\begin{cases} y^m = Y \\ x^n = X \end{cases} \longrightarrow Y = c X + b \longrightarrow \text{Reta!}$$

m e n podem ser negativos

Valores experimentais

Modelo Linear

O modelo linear entre as quantidades L e X permite realizar **previsões**:

- Interpolação: para $L_{minimo} < L < L_{máximo}$, por exemplo para L=165.0 cm, obtêm-se o valor $X_{previsto}=1.7$ cm.
- Extrapolação: para $L < L_{minimo}$ ou $L > L_{maximo}$ por exemplo L=25.0 cm, obtêm-se o valor de $X_{previsto}=0.3$ cm.

Podemos ter mais confiança no valor interpolado. O modelo linear é fiável para os valores entre os extremos das quantidades.

Contudo não temos confiança no resultado extrapolado, pois não temos medições perto do valor considerado. Na realidade o modelo linear não está validado para valores de L pequenos.

Funções mais complexas

Existem casos de dados experimentais que não se podem modelar por uma reta, lei de potência ou exponencial

Polinómios

np.polyfit(x,y,n)

A amarelo:

ajuste linear
$$y = m x + b r^2 = 0.990$$

E se fizermos com um polinómio do 7º grau?

A verde:

$$y = c_7 x^7 + c_6 x^6 + c_5 x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + m x + b$$

Qual a curva que reproduz melhor os dados experimentais?

Qual se aceita como modelo? A reta ou o polinómio de 7º grau?

Um polinómio de grau n ajusta-se perfeitamente ao mesmos número n de dados experimentais.

É por isso que é um bom modelo?

- Se a relação for mesmo linear, o afastamento dos dados experimentais da reta é devido a erros associados à medição.
- Interpolação 'parece' pior do que se usar o modelo linear. No gráfico pode ver a diferença de valores que para L=100 cm os dois modelos preveem.
- Extrapolação: os resultados são muito diferentes do modelo linear e dos pontos experimentais mais próximos.

Polinómios

A função np.polyfit(x,y,n) faz o ajuste a um polinómio de grau n.

Pode também ser usado para ajuste linear (n=1)

Desvantagem: não calcule r^2 ou erros nos coeficientes

Use sempre o grau mínimo necessário

46

Outros casos

Existem casos de dados experimentais que não se podem modelar por uma reta, lei de potência ou exponencial

Ex: dados a modelar por funções periódicas (a fazer mais tarde)

MSF 2025 Cap. 1

Dados a modelar por funções 'estranhas'

Ex: Radiação do corpo negro

Expressão de Planck

$$\rho(f) = \frac{8\pi f^2}{c^3} \frac{hf}{e^{hf/kT} - 1}$$
$$h = 6.62607015 \times 10^{-34} \text{ J} \cdot \text{\%}$$