Scilab Textbook Companion for Elements Of Chemical Reaction Engineering(copy) by H. S. Fogler¹

Created by
Santosh Kumar
B.Tech. + M.Tech
Chemical Engineering
IIT Bombay
College Teacher
Prof. Arun Sadashio Moharir
Cross-Checked by
Prof. Arun Sadashio Moharir

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements Of Chemical Reaction Engineering(copy)

Author: H. S. Fogler

Publisher: Prentice Hall International Inc., New Jersey

Edition: 3

Year: 2009

ISBN: 0-13-973785-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Mole Balances	5
2	Conversion and Reactor Sizing	6
3	Rate Laws and Stoichiometry	12
4	Isothermal Reactor Design	14
5	Collection and Analysis of Rate Data	24
6	Multiple Reactions	27
7	Nonelementary Reaction Kinetics	30
8	Steady State Nonisothermal Reactor Design	33
9	Unsteady State Nonisothermal Reactor Design	42
10	Catalysis and Catalytic Reactors	49
11	External Diffusion Effects on Hetrogeneous Reactions	54
13	Distributions of Residence Times for Chemical Reactions	57
14	Models for Nonideal Reactors	60

List of Scilab Codes

Exa 1.3	clear	5
Exa 2.1	clear	6
Exa 2.2	clear	7
Exa 2.3	clear	7
Exa 2.4	clear	8
Exa 2.5	clear	8
Exa 2.6	clear	9
Exa 2.7	clear	10
Exa 3.5	clear	12
Exa 4.1	clear	14
Exa 4.2	clear	15
Exa 4.4	clear	16
Exa 4.5	clear	16
Exa 4.6	clear	17
Exa 4.7	clear	18
Exa 4.8	clear	19
Exa 4.9	clear	20
Exa 4.10	clear	21
Exa 4.11	clear	22
Exa 5.1	clear	24
Exa 5.2	clear	24
Exa 5.3	clear	25
Exa 5.4	clear	26
Exa 6.6	clear	27
Exa 6.8	clear	28
Exa 7.7	clear	30
Exa 7.8	clear	31
Eva 7 9	clear	31

Exa 8.3	clear	33
Exa 8.4	clear	34
Exa 8.6	clear	35
Exa 8.7	clear	36
Exa 8.9	clear	36
Exa 8.10	clear	38
Exa 8.11	clear	39
Exa 8.12	clear	41
Exa 9.1	clear	42
Exa 9.2	clear	43
Exa 9.3	clear	44
Exa 9.4	clear	45
Exa 9.8	clear	47
Exa 10.3	clear	49
Exa 10.5	clear	51
Exa 10.7	clear	52
Exa 13.8	clear	53
Exa 11.1	clear	54
Exa 11.3	clear	55
Exa 11.4	clear	55
Exa 11.5	clear	56
Exa 13.8	clear	57
Exa 13.9	clear	58
Exa 14.3	clear	60
AP 1	data	62
AP 2	data	62
AP 3	data	62
AP 4	data	62
AP 5	data	62
AP 6	data	63
AP 7	data	63
AP 8	data	63
AP 9	data	64
AP 10	data	64
AP 11	data	64
AP 12	data	64
AP 13	data	65
AP 14	data	65

AP 15	data	65
AP 16	${ m data}$	65
AP 17	data	65
AP 18	${ m data}$	66
AP 19	data	66
AP 20	data	67
AP 21	data	67
AP 22	data	67
AP 23	data	67
AP 24	data	67
AP 25	data	68
AP 26	data	68
AP 27	data	68
AP 28	data	68
AP 29	data	68
AP 30	data	68
AP 31	data	69
AP 32	data	69
AP 33	data	69
AP 34	data	70
AP 35	data	70
AP 36	data	70
AP 37	${ m data}$	70
AP 38	data	71
AP 39	${ m data}$	71
AP 40	data	71
AP 41	${ m data}$	71
AP 42	data	72
AP 43	${ m data}$	72
AP 44	data	72
AP 45	data	73
AP 46	${ m data}$	73
AP 47	data	73

Mole Balances

```
check Appendix AP 9 for dependency: 10_3.sci
```

Scilab code Exa 1.3 clear

```
1 // clear //
2 clc
3 clear
4 exec("1.3 data.sci");
5
6 //CA = 0.1*CA0;
7 V = (v0/k)*log(1/0.1);
8 disp("V =")
9 disp(V)
10 disp ("dm^3")
```

Conversion and Reactor Sizing

```
check Appendix AP 47 for dependency: 2_1.sci
```

Scilab code Exa 2.1 clear

```
1 // clear //
2 clc
3 clear
4 exec("2.1 data.sci");
5 CA0=(yA0*P0)/(R*T0);
6 FA0 = CA0*v0;
7 disp("CA0 =")
8 disp(CA0)
9 disp ("mol/dm^3")
10 disp(FA0)
11 disp(FA0)
12 disp("mol/s")
```

check Appendix AP 46 for dependency:

2_2.sci

Scilab code Exa 2.2 clear

```
1 //clear//
2 clc
3 clear
4 exec("2.2data.sci");
5 CA0=(yA0*P0)/(R*T0);
6 FA0 = CA0*v0;
7 V = FA0*X*(1/-rA)
8
9 disp("FA0 =")
10 disp(FA0)
11 disp("mol/s")
12 disp("V =")
13 disp(V)
14 disp ("dm^3")
```

check Appendix AP 45 for dependency:

 $2_3.sci$

Scilab code Exa 2.3 clear

```
1 // clear //
2 clc
3 clear
4 exec("2.3 data.sci");
5 CA0=(yA0*P0)/(R*T0);
6 FA0 = CA0*v0;
7 //V = FA0*X*(1/-rA)
8
9 V = FA0*inttrap(X,p)
10 disp("FA0 =")
11 disp(FA0)
12 disp("mol/s")
13 disp("V =")
```

```
14 disp(V)
15 disp ("dm^3")
16 disp("Answer is slightly different from the book
        because intrap command of SCILAB uses
        trapezoidal integration, while in book it has
        been calculated using five point formulae.")
```

check Appendix AP 44 for dependency:

2_4.sci

Scilab code Exa 2.4 clear

```
1 //clear//
2 clc
3 clear
4 exec("2.4data.sci");
5
6
7 VCSTR = FAO*X(7)*(1/-rAat);
8 VPFR = FAO*inttrap(X,p)
9 disp("VCSTR =")
10 disp(VCSTR)
11 disp("dm^3")
12 disp("VPFR =")
13 disp(VPFR)
14 disp ("dm^3")
```

check Appendix AP 43 for dependency:

2_5.sci

Scilab code Exa 2.5 clear

```
1 // clear //
2 clc
3 clear
4 exec("2.5 data.sci");
7 V1 = FA0*X1*(1/-rA);
8 V2 = FA0*(X2-X1)*(1/-rA2);
9 V = FA0*X*(1/-rA2);
10 disp("V1 =")
11 disp(V1)
12 disp("dm^3")
13 disp("V2 =")
14 disp(V2)
15 disp ("dm<sup>3</sup>")
16 disp("V =")
17 disp(V)
18 disp ("dm<sup>3</sup>")
```

check Appendix AP 42 for dependency:

 $2_6.sce$

Scilab code Exa 2.6 clear

```
1 // clear //
2 clc
3 clear all
4 exec("2.6 data.sci");
5
6
7 X1 = X(1:5);
8 p1 = p(1:5);
9 V1 = FAO*inttrap(X1,p1)
10 X2 = X(5:9);
11 p2 = p(5:9);
```

```
12  V2 = FA0*inttrap(X2,p2)
13  V=V1+V2;
14  disp("V1 =")
15  disp(V1)
16  disp("dm^3")
17  disp("V2 =")
18  disp(V2)
19  disp("dm^3")
20  disp("V =")
21  disp(V)
22  disp("dm^3")
```

check Appendix AP 41 for dependency:

2_7.sci

Scilab code Exa 2.7 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 exec("2.7 data.sci");
 6
 7 X = X(1:6);
8 p = p(1:6);
9 V1 = FA0*inttrap(X,p);
10 V2 = FA0*(X2-X1)*(1/-rA2);
11 V = V1 + V2;
12 disp("V1 =")
13 disp(V1)
14 disp("dm<sup>3</sup>")
15 \text{ disp}("V2 =")
16 disp(V2)
17 disp ("dm^3")
18 disp("V =")
```

```
19 disp(V)
20 disp ("dm^3")
```

Rate Laws and Stoichiometry

check Appendix AP 40 for dependency:

```
3_5.sci
```

Scilab code Exa 3.5 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 exec("3.5 data.sci");
5 CD = CAO * (X/3);
6 CB = CA0 * ((CB0/CA0) - (X/3));
7 CD1 = CA0 * (X1/3);
8 CB1 = CA0 * ((CB0/CA0) - (X1/3));
9 disp("For 20% conversion")
10 disp("CD =")
11 disp(CD)
12 \text{ disp } ("mol/dm^3")
13 disp("CB =")
14 disp(CB)
15 disp("mol/dm^3")
16 disp("For 90% conversion")
17 disp("CD =")
```

```
18 disp(CD1)
19 disp ("mol/dm^3")
20 disp("CB =")
21 disp(CB1)
22 disp("mol/dm^3")
```

Isothermal Reactor Design

check Appendix AP 39 for dependency:

```
4_1.sci
```

Scilab code Exa 4.1 clear

```
1 //clear//
2 clc
3 clear
4 exec("4.1data.sci");
5
6 x=t;
7 y =((CAO-CC)/CAO);
8
9 yi=interpln([x;y],x);
10 plot2d(x,y,logflag='nl');
11
12 k = log(y(9)/y(2))/(t(9)-t(2));
13
14
15 disp("k =")
16 disp(k)
17 disp ("min^-1")
```

check Appendix AP 36 for dependency:

4_2.sci

Scilab code Exa 4.2 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 exec("4.2 data.sci");
6
    FAO = FC/X;
    vAO = FAO/CAO1;
    vBO = vAO;
8
9
    v0 = vA0 + vB0;
    V = v0*X/(k*(1-X));
10
11
12
    // CSTR in parallel
    V1 = 800/7.48;
13
14
15
    Tau = V1/(v0/2);
16
    Da= Tau*k;
17
    Xparallel = Da/(1+Da)
18
19
    // CSTR in series
20
    Tau =V1/v0;
21
    n=2;
    Xseries = 1-(1/(1+Tau*k)^n);
22
23
24 disp("Reactor volume")
25 disp(V)
26 \text{ disp } ("ft^3")
27 disp("CSTR in parallel X =")
28 disp(Xparallel)
29 disp("CSTR in series X =")
```

```
30 disp(Xseries)
```

```
check Appendix AP 35 for dependency:
```

```
4_4.sci
```

Scilab code Exa 4.4 clear

```
1 //clear//
2 clc
3 clear
4 exec("4.4data.sci");
5
6 FAO = FB/X;
7 CAO = yAO*PO/(R*TO);
8 R = 1.987;
9 k2 = k1*exp((E/R)*((1/T1)-(1/T2)));
10 V = (FAO/(k2*CAO))*((1+e)*log(1/(1-X))-e*X);
11
12 disp("Reactor volume")
13 disp(V)
14 disp("ft^3")
```

check Appendix AP 34 for dependency:

```
4_5.sci
```

Scilab code Exa 4.5 clear

```
1 // clear //
2 clc
3 clear
4 exec("4.5 data.sci");
```

check Appendix AP 33 for dependency:

4_6.sci

Scilab code Exa 4.6 clear

```
1 //clear//
2 clc
3 clear
4 exec("4.6 data.sci");
6 \text{ FTO} = \text{FAO} + \text{FBO} + \text{FI};
7 \text{ yAO} = \text{FAO/FTO};
8 e = yA0*(1-.5-1);
9 \text{ PAO} = yA0*P0;
10 kdes = k*PA0*(1/2)^(2/3);
11 alpha = 2*bita0/(Ac*(1-phi)*rhoc*P0);
12 W = (1 - (1-(3*alpha*FAO/(2*kdes))*((1+e)*log(1/(1-X)))
      ))-e*X))^(2/3))/alpha;
13
14
15 disp("W")
16 disp(W)
17 disp("lb of catalyst per tube")
```

check Appendix AP 32 for dependency:

```
4_7.sci
```

Scilab code Exa 4.7 clear

```
1 // clear //
2 clc
3 clear
4 exec("4.7 data.sci");
5 \quad W = 0:1:60;
6 function w=f(W,Y)
7
8 \text{ w=zeros}(2,1);
9 w(1) = (kprime/FA0)*((1-Y(1))/(1+e*Y(1)))*Y(2);
10 w(2) = -alpha*(1+e*Y(1))/(2*Y(2));
11 endfunction
12
13
14 x = ode([0;1], W0, W, f);
15 for i= 1:61
     F(i) = (1+e*x(1,i))/x(2,i);
16
17 end
18 F= F';
19 for i= 1:61
     rate(i) = (kprime)*((1-x(1,i))/(1+e*x(1,i)))*x(2,i)
20
        );
21 end
22 rate =rate';
23
24 scf(1)
25 plot2d(W,rate);
26 xtitle ('Figure E4-7.1 Reaction rate porfile down
      the PBR', 'w', 'rate');
27 scf(2)
28
```

check Appendix AP 31 for dependency:

4_8.sci

Scilab code Exa 4.8 clear

```
1 // clear //
2 clc
3 clear
4 exec("4.8 data.sci");
5 Z = 0:1:12;
6 function w=f(Z,Y)
7
8
   w=zeros(2,1);
   Ac = 3.14*((R^2)-(Z-L)^2);
10
   Ca = Ca0*(1-Y(1))*Y(2)/(1+Y(1));
11
   ra =kprime*Ca*rhocat*(1-phi);
12
   G = m/Ac;
   V = 3.14*(Z*(R^2) - (1.3*(Z-L)^3) - (1/3)*L^3)
   bita = (98.87*G+25630*G^2)*0.01;
14
15 W=rhocat*(1-phi)*V
16 \text{ w(1)} = -\text{ra*Ac/FAO}
17 w(2) = -bita/P0/(Y(2)*(1+Y(1)));
18 endfunction
19
20
21 x = ode([0;1],Z0,Z,f);
22 for i = 1:length(Z)
```

```
23  V(1,i) =3.14*Z(1,i)*((R^2)-(Z(1,i)-L)^2)
24  W1(1,i)=rhocat*(1-phi)*V(1,i)
25  end
26
27  l1=x(1,: )'
28  l2=x(2,: )'
29
30  plot2d(W1',[l1 l2]);
31
32  xtitle( 'Figure E4-8.2', 'w', 'x,y');
33  legend(['x';'y']);
```

check Appendix AP 30 for dependency:

4_9.sci

Scilab code Exa 4.9 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 exec("4.9 data.sci");
   V = 0:1:100;
6 function w=f(V,fa)
7
   w=zeros(1,1);
   ft = 2*(fa0-fa(1))
10 Ca = Ct0*fa(1)/ft;
    fb = 2*(fa0-fa(1));
11
12
    Cb = Ct0*fb/ft;
13 w(1) = -ka*(Ca-(Cb^2)/kc)
14
15 endfunction
16
17
18 x = ode([9.99], V0, V, f);
```

Scilab code Exa 4.10 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 \text{ exec}("4_{-1}10.\text{sci}");
   V = 0:1:500;
6 function w=f(V,F)
7
8
    w=zeros(3,1);
9
    Ft=F(1)+F(2)+F(3);
10
    ra = -k*Ct0*((F(1)/Ft)-(Ct0/kc)*(F(2)/Ft)*(F(3)/Ft)
11
       );
    w(1) = ra;
12
    w(2) = -ra-kc*Ct0*(F(2)/Ft)
13
    w(3) = -ra;
14
15
16 endfunction
```

check Appendix AP 37 for dependency:

4__11.sci

Scilab code Exa 4.11 clear

```
1 // clear //
2 clc
3 clear
4 \text{ exec}("4_{--}11.\text{sci}");
   t = 0:1:500;
6 function w=f(t,C)
7
    w = zeros(4,1);
8
9
   v = v0+v00*t;
10
    w(1) = -k*C(1)*C(2)-v00*C(1)/v;
11
    w(2) = -k*C(1)*C(2)+v00*(Cb0-C(2))/v;
12
13
    w(3) = k*C(1)*C(2)-v00*C(3)/v;
    w(4) = k*C(1)*C(2)-v00*C(4)/v;
14
15
16 endfunction
17
18
```

```
19 x = ode([.049;0;0;0],t0,t,f);
20 \ 11=x(1,:)
21 \quad 12=x(2,:)
22 \quad 13 = x(3, :)
23 for i = 1:length(t)
24
     rate(1,i)=k*x(1,i)*x(2,i)
25
     end
26 scf(1)
27 plot2d(t',[11 12 13]);
28
29 xtitle('Figure E4-11.1 Concentration-time
      trajectories', 't', 'Ca,Cb,Cc');
30 legend(['Ca'; 'Cb'; 'Cc']);
31 scf(2)
32 plot2d(t,rate)
33 xtitle('Figure E4-11.2 Reaction rate-time
      trajectories', 't', 'Reaction Rate(mols dm^3)')
34
35
36
37
  ^{,}V
38
```

Collection and Analysis of Rate Data

Scilab code Exa 5.1 clear

```
1 // clear //
2 p = [ 1.44 .95 .74]';
3 dt = 2.5
4 t = [0 2.5 5]';
5 dp(1) = ( 3*p(1)+4p(2)-p(3))/(2*dt);
6 for i=2:n1
7 dp p(i+3
```

check Appendix AP 29 for dependency:

5_2.sci

Scilab code Exa 5.2 clear

```
1 //clear//
2 clc
3 clear
```

```
4 exec("5.2 data.sci");
    for i =1:length(t)
6 g(i) = log(2*P0/(3*P0-P(i)));
7 end
8 plot2d(t,g);
10 xtitle ('Figure E4-11.2 Plot of processed data', 't
      (\min)', ^{\prime}2PTo/3PTo-PT');
     check Appendix AP 28 for dependency:
      5_3.sci
   Scilab code Exa 5.3 clear
1 // Clear //
2 clc
3 clear
4 exec("5.3 data.sci");
6 x = log(CHC1);
7 y = log(-rHCl);
8 \text{ plot2d}(x,y);
10 xtitle( 'Figure E5-3.2 ', 'CHCl (g mol/ liter)', '
      rHCl0 (g mol / cm^2.s);
     check Appendix AP 26 for dependency:
     4\_4.sci
     check Appendix AP 27 for dependency:
      5_4.sci
```

Scilab code Exa 5.4 clear

```
1 //Clear//
2 clc
3 clear
4 exec("5.4data.sci");
5
6 rCH4 = (v0/W)*CCH4;x
7 x=log(PCO);
8 y = log(rCH4)
9 alpha= (y(3)-y(2))/(x(3)-x(2));
10 //plot2d(x,y)
11 disp("alpha")
12 disp(alpha)
```

Multiple Reactions

check Appendix AP 25 for dependency:

6_6.sci

Scilab code Exa 6.6 clear

```
1 // Clear //
2 clc
3 clear
4 exec("6.6 data.sci");
5 \quad t = 0:.01:.5;
6 function w=f(t,c)
8
   w = zeros(3,1);
10 r1 = -k1*c(2)*c(1)^{.5};
11 r2 = -k2*c(3)*c(1)^.5;
12
  w(1) = r1 + r2;
13
   w(2) = r1;
   w(3) = -r1+r2;
14
15
16 endfunction
17
```

check Appendix AP 24 for dependency:

6_8.sci

Scilab code Exa 6.8 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 exec("6.8 data.sci");
   v = 0:.1:10;
6 function w =FF(v,f)
7
8
    w = zeros(6,1);
    ft = f(1)+f(2)+f(2)+f(4)+f(5)+f(6);
10
   r1a = -5*8*(f(1)/ft)*(f(2)/ft)^2;
11
    r2a = -2*4*(f(1)/ft)*(f(2)/ft);
12
   r4c = -5*3.175*(f(3)/ft)*(f(1)/ft)^(2/3);
13
    r3b = -10*8*((f(3)/ft)^2)*(f(2)/ft);
14
   Ca = 2*f(1)/ft;
   Cb = 2*f(2)/ft;
15
   Cc = 2*f(3)/ft;
16
17
   Cd = 2*f(4)/ft;
   Ce = 2*f(5)/ft;
18
```

```
19
    Cf = 2*f(6)/ft;
20 \text{ w(1)} = 1.25*r1a+.75*r2a+r3b;
    w(2) = r1a+r2a+2*r4c/3;
22
    w(3) = -r1a + 2 * r3b + r4c;
23
    w(4) = -1.5*r1a-1.5*r2a-r4c;
24
    w(5) = .5*r2a-5*r4c/6;
25
    w(6) = -2*r3b;
26
27 endfunction
28
29 x = ode([9;9;0;0;0], v0, v, FF);
30
31 plot2d(v,x(1,:)/10,rect=[1,0,10,1.5]); //B
32 plot2d(v,x(2,:)/10,rect=[1,0,10,1.5]); //A
33 plot2d(v,x(3,:)/10,rect=[1,0,10,1.5]); //C
34 \text{ plot2d}(v,x(4,:)/10,rect=[1,0,10,1.5]);
35 plot2d(v, x(5,:)/10, rect = [1,0,10,1.5]);
36 \text{ plot2d}(v,x(6,:)/10,rect=[1,0,10,1.5]);
37 xtitle('FigureE');
38 legend (['B'; 'A'; 'C'; 'D'; 'E'; 'F']);
```

Nonelementary Reaction Kinetics

check Appendix AP 23 for dependency:

7_7.sci

Scilab code Exa 7.7 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 exec("7.7data.sci");
5 for i=1:length(Curea)
6 x(i) = 1/Curea(i);
7 y(i) = 1/(-rurea(i));
    slope = (y(5)-y(1))/(x(5)-x(1));
   plot2d(x,y)
10
11
   xtitle('Figure E7-7.1', '1/Curea', '1/-rurea');
12
13
    disp("(Km/Vma = slope")
14
15
    disp(slope)
```

```
check Appendix AP 22 for dependency:
```

```
7_8.sci
```

Scilab code Exa 7.8 clear

```
1 //clear//
2 clc
3 clear
4 exec("7.8data.sci");
5 Vmax = (Et2/Et1)*Vmax1
6 t = (Km/Vmax)*log(1/(1-X))+Curea0*X/Vmax;
7 disp("t")
8 disp(t)
9 disp("s")
```

check Appendix AP 21 for dependency:

```
7_9.sci
```

Scilab code Exa 7.9 clear

```
1 // clear //
2 clc
3 clear
4 exec("7.9 data.sci");
5 t = 0:.1:12;
6 function w=f(t,c)
7
8 w = zeros(3,1);
9
10 rd = c(1)*.01;
11 rsm = m/c(1);
```

```
12 kobs = (umax*(1-c(3)/93)^.52);
13 rg= kobs*c(1)*c(2)/(ks+c(2));
14 // r2 = -k2 * c(3) * c(1) ^.5;
15 w(1) = rg - rd;
16
   w(2) = ysc*(-rg)-rsm;
17
   w(3) = rg*ypc;
18
19 endfunction
20
21 x = ode([1;250;0],t0,t,f);
22
23 \quad 11 = x(1, :)
24 \ 12=x(2,:)
25 \quad 13=x(3,:)
26
27 plot2d(t',[11 12 13]);
28
29 xtitle ('Figure E7-9.1 concentrations as a function
      of time', 't (hr)', 'C (g/dm^3)');
30 legend(['Cc'; 'Cs'; 'Cp']);
```

Steady State Nonisothermal Reactor Design

check Appendix AP 18 for dependency:

8_3.sci

Scilab code Exa 8.3 clear

```
1 //clear//
2 clc
3 clear
4 exec("8.3data.sci");
5 deltaHRx0 = 2*HONH3-3*HOH2-HN2;
6 deltaCp = 2*CpNH3-3*CpH2-CpN2;
7 deltaHRx = deltaHRx0+deltaCp*(T-TR);
8 disp("The heat of reaction on the basis on the moles of H2 reacted is =")
9 disp((1/3)*deltaHRx*4.184)
10 disp("J at 423 K")
```

check Appendix AP 17 for dependency:

8_4.sci

Scilab code Exa 8.4 clear

```
1 //clear//
2 clc
3 clear
4 exec("8.4 data.sci");
5 \text{ HRxO} = \text{HOC-HOB-HOA};
6 deltaCp = CpC-CpB-CpA;
7 deltaHRx0 = HRx0+deltaCp*(TR-TR);
8 \quad vO = vAO + vBO + VMO;
9 tau = V/v0;
10 \text{ CAO} = \text{FAO/vO};
11 \text{ phiMO} = \text{FMO/FAO};
12 \text{ phiBO} = FBO/FAO;
13 Cpi = CpA+phiB0*CpB+phiM0*CpM;
14
15 for i =1:length(T)
16 XEB(i) = -Cpi*(T(i)-Ti0)/(deltaHRx0+deltaCp*(T(i)-TR)
      ));
17 XMB(i) = tau*A*exp(-E/(R*T(i)))/(1+tau*A*exp(-E/(R*T(i))))
       (i))));
18 end
19
20
21
22 plot2d(T',[XEB XMB]);
23
24 xtitle ('Figure E8-4.2', 'T(\circR)', 'Conversion, X')
25 legend(['XEB'; 'XMB']);
      check Appendix AP 16 for dependency:
      8_6.sci
```

Scilab code Exa 8.6 clear

```
1 // clear //
2 clc
3 clear
4 exec("8.6 data.sci");
   V = 0:.1:3.6;
6 function w=f(V,X)
  w = zeros(1,1);
9 T = 330 + 43.3 * X;
10 k=31.1*exp(7906*(T-360)/(T*360));
11 Kc = 3.03*exp(-830.3*((T-360)/(T*360)));
12 Xe = Kc/(1+Kc);
13 ra = -k*Ca0*(1-(1+(1/Kc))*X);
14 w(1) = -ra/Fa0;
15
   rate = -ra;
16 endfunction
17
18 x = ode([0], V0, V, f);
19
20 for i =1:length(x)
21
     T(1,i) = 330+43.3*x(1,i)
22
     k(1,i)=31.1*exp(7906*(T(1,i)-360)/(T(1,i)*360));
23
     Kc(1,i) = 3.03*exp(-830.3*((T(1,i)-360)/(T(1,i)
24
        *360)));
25
26
     ra(1,i) = k(1,i)*Ca0*(1-(1+(1/Kc(1,i)))*x(1,i));
27 end
28 scf(1)
29 plot2d(V,x(1,:));
30
31 xtitle('Figure E8-6.1a', V(m^3)', X');
```

```
32 scf(2)
33 plot2d(V,T(1,:));
34
35 xtitle('Figure E8-6.1b', V(m^3)', T(K)');
36
37 scf(3)
38 plot2d(V,ra);
39
40 xtitle ( 'Figure E8-6.1c', 'V(m^3)', '-ra (kmol/m^3hr
     ) ') ;
     check Appendix AP 15 for dependency:
     8_8.sci
   Scilab code Exa 8.7 clear
1 // clear //
2 clc
3 clear
4 exec("8.8 data.sci");
5 for i = 1:length(T)
     Xe(i) = 100000*exp(-33.78*(T(i)-298)/(T(i)))/(1+
        100000*\exp(-33.78*(T(i)-298)/T(i)));
7
     XEB(i) = (2.5e-3)*(T(i)-300);
8 end
9 plot2d(T,[Xe XEB])
10
11 xtitle('Figure E8-8.1', 'T', 'X');
```

Scilab code Exa 8.9 clear

12 legend(['Xe'; 'XEB']);

```
1 // clear //
2 clc
3 clear
4 //eY(2) ec ("8.6 data. sci");
5 W = 0:1:28.58;
6 \text{ WO=0};
7 function w=f(W,Y)
     w = zeros(3,1);
9
10
11 \text{ fao} = .188
12 \text{ visc} = .090
13 \text{ Ta} = 1264.67
14 deltah = -42471 - 1.563*(Y(3) - 1260) + .00136*(Y(3)
      **2-1260**2) - (2.459*10**(-7))*(Y(3)**3-1260**3);
15 summ = 57.23 + .014 * Y(3) - 1.94 * 10**(-6.)*Y(3)**2
16 dcp=-1.5625+2.72*10**(-3)*Y(3)-7.38*10**(-7)*Y(3)**2
17 k=360D*exp(-176008/Y(3)-(110.1*log(Y(3)))+912.8)
18 thetaso=0;
19 \text{ Po} = 2
20 \text{ Pao} = .22
21 thetao=.91
22 \text{ eps} = -.055
23 R=1.987;
24 Kp = exp(42311/R/Y(3)-11.24);
25 \text{ if}(Y(2) < =.05)
26
27
     ra=(-k*(.848-.012/(Kp**2)));
28 else
     ra=(-k*(1-Y(2))/(thetaso+Y(2)))**.5*(Y(1)/Po*Pao
29
         *((thetao - .5*Y(2))/((1+eps*Y(2)))-((thetaso+Y))
         (2))/(1-Y(2)))**2/(Kp**2));
30 end
31
32 \text{ w}(1) = (-1.12*10**(-8)*(1-.055*Y(2))*Y(3))*(5500*visc
      +2288)/Y(1);
33 \text{ w}(2) = -(\text{ra})/\text{fao};
34 \text{ w}(3) = (5.11*(Ta-Y(3))+(-ra)*(-deltah))/(fao*(summ+Y))
```

```
(2)*dcp))
35 endfunction
36
37 X=ode([2;0;1400],W0,W,f);
38
39 plot2d(W,X(1,:));
40 plot2d(W,X(3,:));
```

Scilab code Exa 8.10 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 //eY(2) ec ("8.6 data.sci");
5 W = 0:1:28.58;
6 \text{ WO=0};
7 function w=f(W,Y)
      w = zeros(3,1);
8
9
10
11 \text{ fao} = .188
12 \text{ visc} = .090
13 \text{ Ta} = 1264.67
14 deltah = -42471 - 1.563*(Y(3) - 1260) + .00136*(Y(3)
       **2-1260**2) - (2.459*10**(-7))*(Y(3)**3-1260**3);
15 summ = 57.23 + .014 * Y(3) - 1.94 * 10**(-6.)*Y(3)**2
16 \text{ dcp} = -1.5625 + 2.72 * 10 * * (-3) * Y (3) - 7.38 * 10 * * (-7) * Y (3) * * 2
17 k=360D*exp(-176008/Y(3)-(110.1*log(Y(3)))+912.8)
18 thetaso=0;
19 Po = 2
20 \text{ Pao} = .22
21 thetao=.91
22 \text{ eps} = -.055
23 R = 1.987;
24 Kp = exp(42311/R/Y(3)-11.24);
```

```
25 \text{ if}(Y(2) < = .05)
26
27
      ra=(-k*(.848-.012/(Kp**2)));
28 else
29
     ra=(-k*(1-Y(2))/(thetaso+Y(2)))**.5*(Y(1)/Po*Pao
         *((thetao - .5*Y(2))/((1+eps*Y(2)))-((thetaso+Y))
         (2))/(1-Y(2)))**2/(Kp**2));
30 \, \text{end}
31
32 \text{ w}(1) = (-1.12*10**(-8)*(1-.055*Y(2))*Y(3))*(5500*visc
      +2288)/Y(1);
33 \text{ w}(2) = -(\text{ra})/\text{fao};
34 \text{ w}(3) = (5.11*(Ta-Y(3))+(-ra)*(-deltah))/(fao*(summ+Y))
       (2)*dcp))
35 endfunction
36
37 \text{ X} = \text{ode}([2;0;1400],W0,W,f);
38
39 plot2d(W,X(1,:));
40 plot2d(W,X(3,:));
```

check Appendix AP 20 for dependency:

```
8__11.sci
```

Scilab code Exa 8.11 clear

```
1 // clear //
2 clc
3 clear
4 exec("8_11.sci");
5 V = 0:.01:1;
6
7 function w=f(V,Y)
8
9 w =zeros(4,1);
```

```
10
11 k1a=10*exp(4000*((1/300)-(1/Y(4))));
12 k2a = .09 * exp(9000 * ((1/300) - (1/Y(4))))
13
14 Ft=Y(1)+Y(2)+Y(3);
15
16 Ca=Cto*(Y(1)/Ft)*(To/Y(4))
17 Cb=Cto*(Y(2)/Ft)*(To/Y(4))
18 Cc=Cto*(Y(3)/Ft)*(To/Y(4))
19 r1a=-k1a*Ca;
20 \text{ r2a=-k2a*Ca^2};
21
22 w(1) = r1a + r2a;
23 w(2) = -r1a;
24
25 \text{ w}(3) = -r2a/2;
26 \text{ w}(4) = (4000*(373-Y(4))+(-r1a)*20000+(-r2a)*60000)
      /(90*Y(1)+90*Y(2)+180*Y(3));
27 endfunction
28
x = ode([100;0;0;423], V0, V, f);
30
31 scf(1)
32 plot2d(V,x(4,:));
33
34 xtitle('Figure E8-11.1', 'V', 'T');
35
36 scf(2)
37
38 \ 11=x(1,:)
39 12=x(2,:)
40 \ 13=x(3,:)
41 plot2d(V',[11 12 13]);
42
43 xtitle('Figure E8-11.2', 'V', 'Fa,Fb,Fc');
44 legend(['Fa'; 'Fb'; 'Fc']);
```

check Appendix AP 19 for dependency:

Scilab code Exa 8.12 clear

```
1 // clear //
2 clc
3 clear
4 exec("8.12 data.sci");
5 t=1:10:250;
6 for i=1:length(t)
7 T(i)=2*t(i)+283;
9 k2(i)=4.58*exp((E2/1.987)*((1/500)-(1/T(i))))
10 k1(i)=3.3*exp((E1/1.987)*((1/300)-(1/T(i))))
11 Ca(i)=Cao/(1+tau*k1(i))
12 kappa=UA/(vo*Cao)/Cp
13 G(i) = -(tau*k1(i)/(1+k1(i)*tau))*DH1-(k1(i)*tau*k2(i)
      *tau*DH2/((1+tau*k1(i)) *(1+tau*k2(i))));
14 Tc = (To + kappa * Ta) / (1 + kappa);
15 Cb(i)=tau*k1(i)*Ca(i)/(1+k2(i)*tau);
16 R(i) = Cp*(1+kappa)*(T(i)-Tc);
17 Cc=Cao-Ca(i)-Cb(i);
18 F(i) = G(i) - R(i);
19 end
20 plot(T',[G R])
21
22 xtitle('Figure E8-12.1', 'T (K)', 'G(T), R(T)');
23 legend(['G(T)'; 'R(T)']);
```

Chapter 9

Unsteady State Nonisothermal Reactor Design

check Appendix AP 14 for dependency:

```
9_1.sci
```

Scilab code Exa 9.1 clear

```
1 //clear//
2 clc
3 clear
4 exec("9.1data.sci");
5 t = 0:10:1500;
6 function w=f(t,x)
7
8 w =zeros(1,1);
9
10 t1=535+90.45*x
11 k= .000273*exp(16306*((1/535)-(1/t1)));
12 w(1)=k*(1-x)
13 endfunction
14
15 X=ode([0],t0,t,f);
```

Scilab code Exa 9.2 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 //this code is only for Part C
5 exec("9.2 data.sci");
   t = 55:1:121;
7 function w=f(t,Y)
8
9
    w = zeros(2,1);
10
11
12
13 k = .00017 * exp(11273/(1.987) * (1/461-1/Y(1)))
14 Qr = UA * (Y(1) -298)
15 Theata=Nbo/Nao
16 ra=-k*(Nao**2)*(1-Y(2))*(Theata-2*Y(2))/(U**2)
17 rate=-ra
18 Qg=ra*U*(dH)
19 w(1) = (Qg - Qr) / NCp
```

Scilab code Exa 9.3 clear

```
1 // \operatorname{clear} //
2 clc
3 clear
4 exec("9.3 data.sci");
5 t = 0:1:360;
7 function w=f(t,Y)
9
   w = zeros(5,1);
10
11 k = .39175 * exp(5472.7 * ((1/273) - (1/Y(4))));
12 Cd=Y(3);
13
14 Kc=10^{(3885.44/Y(4))}
15 V = Vi + v0 *t;
16 Fb0=Cb0*v0;
17 ra=-k*((Y(1)*Y(2))-((Y(3)*Cd)/Kc));
18 Na=V*Y(1)
19 Nb = V * Y (2)
20 Nc = V * Y (3)
```

```
21 \text{ rb=ra}
22 \text{ rc=-ra}
23 Nd=V*Cd
24 rate=-ra
NCp = cp*(Nb+Nc+Nd+Y(5))+cpa*Na;
26 \text{ w(1)} = \text{ra} - (\text{v0} * \text{Y(1)}) / \text{V};
27 \text{ w}(2) = \text{rb} + (\text{v0} * (\text{Cb0} - \text{Y}(2)) / \text{V});
28 \text{ w}(3) = \text{rc} - (Y(3)*v0)/V;
29 w(4) = (UA*(Ta-Y(4))-Fb0*cp*(1+55)*(Y(4)-T0)+ra*V*dh)
       /NCp
30 \text{ w (5)} = \text{v0} * \text{Cw0}
31 endfunction
32
33 x = ode([5; 0.0001; 00.0001; 300; 6.14], t0, t, f);
34 scf(1)
35 plot2d(t,x(4,:));
36
37 xtitle('Figure E9-3.1', 't', 'T');
38
39 scf(2)
40 \quad 11=x(1,:)
41 12=x(2,:)
42 \quad 13 = x(3, :)
43 plot2d(t',[11 12 13]);
44
45 xtitle ('Figure E9-3.2', 't', 'Ca,Cb,Cc');
46 legend(['Ca'; 'Cb'; 'Cc']);
       check Appendix AP 11 for dependency:
       9_4.sci
```

Scilab code Exa 9.4 clear

```
1 //clear//
2 clc
```

```
3 clear
4 //exec("9.3 data.sci");
5 t = 0:.0001:4;
6 t0=0;
7 function w=f(t,Y)
9
   w = zeros(5,1);
10
11 Fa0=80;
12 \quad T0 = 75;
13 V = (1/7.484) *500;
14 UA = 16000;
15 \text{ Ta1=60};
16 k=16.96e12*exp(-32400/1.987/(Y(5)+460));
17 Fb0=1000;
18 Fm0 = 100;
19 mc = 1000;
20 \text{ ra}=-k*Y(1);
21 \text{ rb=-k*Y(1)};
22 \text{ rc=k*Y(1)};
23 Nm = Y(4) * V;
24 Na=Y(1)*V;
25 \text{ Nb=Y}(2)*V;
26 \text{ Nc} = Y(3) * V;
27 ThetaCp=35+(Fb0/Fa0)*18+(Fm0/Fa0)*19.5;
v0 = (Fa0/0.923) + (Fb0/3.45) + (Fm0/1.54);
29 Ta2=Y(5)-(Y(5)-Ta1)*exp(-UA/(18*mc));
30 Ca0=Fa0/v0
31 Cb0=Fb0/v0
32 \quad CmO = FmO / vO
33 Q=mc*18*(Ta1-Ta2);
34 \text{ tau=V/v0};
35 NCp = Na*35 + Nb*18 + Nc*46 + Nm*13.5;
36 \text{ w}(1) = (1/\tan) * (Ca0 - Y(1)) + ra;
37 \text{ w}(2) = (1/\text{tau}) * (\text{Cb0} - \text{Y}(2)) + \text{rb};
38 \text{ w}(3) = (1/\text{tau})*(-Y(3))+\text{rc};
39 w(4) = (1/tau)*(Cm0-Y(4));
40 \text{ w}(5) = (Q-Fa0*ThetaCp*(Y(5)-T0)+(-36000)*ra*V)/NCp};
```

```
41 endfunction
42
43 x = ode([0;3.45;0;0;75],t0,t,f);
44 scf(1)
45 plot2d(t,x(1,:));
46
47 xtitle ('Figure E9-4.1', 't', 'Ca');
48
49 scf(2)
50 plot2d(t,x(5,:));
51
52 xtitle( 'Figure E9-4.2', 't', 'T');
53 \operatorname{scf}(3)
54 \text{ plot2d}(x(5,:),x(1,:));
55
56 xtitle('Figure E9-4.3', 'T', 'Ca');
```

check Appendix AP 10 for dependency:

9_8.sci

Scilab code Exa 9.8 clear

```
1 //clear//
2 clc
3 clear
4 exec("9.8 data.sci");
5 t = 0:.01:1.5;
6
7 function w=f(t,Y)
8
9 w =zeros(4,1);
10
11 k1a=1.25*exp((9500/1.987)*((1/320)-(1/Y(4))));
12 k2b=0.08*exp((7000/1.987)*((1/290)-(1/Y(4))));
13 ra=-k1a*Y(1);
```

```
14 V = 100 + vo*t;
15 rc=3*k2b*Y(2);
16 rb=k1a*(Y(1)/2)-k2b*Y(2);
17 w(1) = ra + (Cao - Y(1)) * vo / V;
18 w(2) = rb - Y(2) * vo / V;
19 w(3) = rc - Y(3) * vo / V; w(4) = (35000 * (298 - Y(4)) - Cao * vo
       *30*(Y(4)-305)+((-6500)*(-k1a*Y(1))+(8000)*(-k2b*)
      Y(2)) \times V / ((Y(1) * 30 + Y(2) * 60 + Y(3) * 20) * V + 100 * 35);
20 endfunction
21
22 \text{ x=ode}([1;0;0;290],t0,t,f);
23
24
25 scf(1)
26 \quad 11 = x(1, :)
27 \quad 12=x(2,:)
28 \ 13=x(3,:)
29 plot2d(t',[11 12 13]);
30
31 xtitle('Figure E9-8.1', 't', 'Ca,Cb,Cc');
32 legend(['Ca'; 'Cb'; 'Cc']);
33
34 scf(2)
35 plot2d(t,x(4,:));
36
37 xtitle('Figure E9-8.2', 't', 'T');
```

Chapter 10

Catalysis and Catalytic Reactors

check Appendix AP 9 for dependency:

```
10_3.sci
```

Scilab code Exa 10.3 clear

```
1 //clear//
2 clc
3 clear
4 exec("10.3data.sci");
5 w = 0:10:10000;
6
7 function W=f(w,x)
8
9 W =zeros(1,1);
10
11 pt0=.3*Po;
12 y=(1-alpha*w)^.5;
13 ph=pt0*(1.5-x)*y;
14 pt=pt0*(1-x)*y;
15 pb=2*pt0*x*y;
```

```
16 \text{ rt=-k*kt*ph*pt/(1+kb*pb+kt*pt)};
17 rate=-rt;
18 W(1) = -rt/ft0;
19 endfunction
20 \text{ pt0} = .3 * Po;
21 X = ode([0], w0, w, f);
22
23
24 for i =1:length(X)
     y(1,i)=(1-alpha*w(1,i))^{.5};
26 ph(1,i)=pt0*(1.5-X(1,i))*y(1,i);
27 \text{ pt}(1,i) = \text{pt}0*(1-X(1,i))*y(1,i);
28 pb(1,i)=2*pt0*X(1,i)*y(1,i)
29 \text{ end}
30
31 \text{ m1} = X';
32 \text{ m} 2 = y;
33 scf(1)
34 plot2d(w',[m1 m2]);
35
36 xtitle ('Figure E10-3.1', 'w', 'x,y');
37 legend(['x';'y']);
38
39 scf(2)
40 \ 11 = ph'
41 12=pt'
42 13=pb,
43 plot2d(w',[11 12 13]);
45 xtitle ('Figure E10-3.2', 'w', 'ph,pt,pb');
46 legend(['ph';'pt';'pb']);
      check Appendix AP 8 for dependency:
```

10_5.sci

Scilab code Exa 10.5 clear

```
1 // clear //
2 clc
3 clear
4 exec("10.5 data.sci");
5 t = 0:.01:.5;
 7 function w=f(t,Y)
9
   w = zeros(2,1);
10
11
12 \text{ ya0}=\text{Ca0/Ct0};
13 X=1-(1+ya0)/(1+Y(2)/Ct0)*Y(2)/Ca0;
14 w(1) = -kd*Y(1)*Y(2);
15 \text{ w}(2) = (\text{CaO/tau}) - ((1+\text{yaO})/(1+(Y(2)/\text{CtO})) + \text{tau} * Y(1) * k)
       *Y(2)/tau;
16 endfunction
17
18 x = ode([1;.8],t0,t,f);
19 Ca0 = .8;
20 \text{ Ct0} = 1
21 \text{ ya0=Ca0/Ct0};
22 for i=1:length(t)
      X1(i)=1-(1+ya0)/(1+x(2,i)/Ct0)*x(2,i)/Ca0;
23
24
      end
25
26
27 \quad 11 = x(1, :)
28 \ 12=x(2,:)
29 \quad 13 = X1;
30 plot2d(t',[11 12 13]);
31
32 xtitle('Figure E10-5.1', 't', 'a,Ca,X');
33 legend(['a'; 'Ca'; 'X']);
```

check Appendix AP 7 for dependency:

Scilab code Exa 10.7 clear

```
1 // clear //
2 clc
3 clear
4 exec("10.7 data.sci");
5 z = 0:.1:10;
6 z0=0;
7 function w=f(z,X)
9
   w = zeros(1,1);
10
11
12 \ U=Uo*(1+eps*X)
13 Pa=Pao*(1-X)/(1+eps*X)
14 Pb=Pao*X/(1+eps*X)
15 vo=Uo*3.1416*D*D/4
16 Ca0=Pao/R/T
17 \text{ Kca=Ka*R*T}
18 \text{ Pc=Pb}
19 a=1/(1+A*(z/U)**0.5)
20 raprime=a*(-kprime*Pa/(1+ Ka*Pa+Kb*Pb+Kc*Pc))
21 ra=rho*raprime;
22 w(1) = -ra/U/Ca0
23 endfunction
24
25 x = ode([0], z0, z, f);
26 for i=1:length(z)
27 U(1,i) = Uo*(1+eps*x(1,i))
28 a(1,i)=1/(1+A*(z(1,i)/U(1,i))**0.5)
29 end
30
31
```

```
32 l1=x(1,:)'
33 l2=a(1,:)'
34
35 plot2d(z',[l1 l2]);
36
37 xtitle('Figure E10-7.1', 'z', 'X,a');
38 legend(['X'; 'a']);
```

Scilab code Exa 13.8 clear

```
1 k=0.1
2 cao=8;
3 z0=0;
```

Chapter 11

External Diffusion Effects on Hetrogeneous Reactions

```
check Appendix AP 6 for dependency:
```

```
11_1.sci
```

Scilab code Exa 11.1 clear

```
1 // clear //
2 clc
3 clear
4 exec("11.1 data.sci");
5 WAZ1=DAB*CTO*(yAb-yAs)/s;
6 WAZ2=c*DAB*CTO*log((1-yAs)/(1-yAb))/s;
7 disp(WAZ1)
8 disp(WAZ2)
```

check Appendix AP 5 for dependency:

11_3.sci

Scilab code Exa 11.3 clear

```
1 // clear //
2 clc
3 clear
4 exec("11.3 data.sci");
5 //this is only Part A of the problem.
6 dp = (6*(D^2)*L/4)^(1/3);
7 disp("Particle diameter dp =")
8 disp(dp)
9 disp("m")
10 ac=6*(1-phi)*(1/dp);
11 disp("Surface area pervolume of bed =")
12 disp(ac)
13 disp("m^2/m^3")
14 Re =dp*U/v;
15 Y=(2*r*Lp+2*r^2)/dp^2;
16 Reprime=Re/((1-phi)*Y);
17 DAB=DAB0*(T/T0)^(1.75);
18 Sc=v/DAB;
19 Shprime=((Reprime)^.5)*Sc^(1/3);
20 kc=DAB*(1-phi)*Y*(Shprime)/(dp*phi);
21 X=1-exp(-kc*ac*z/U);
22 \text{ disp}("X =")
23 disp(X)
     check Appendix AP 4 for dependency:
```

11_4.sci

Scilab code Exa 11.4 clear

```
1 // clear //
2 clc
3 clear
4 exec("11.4 data.sci")
```

Scilab code Exa 11.5 clear

```
1 // clear //
2 clc
3 clear
4 exec("11.5 data.sci")
5 X2=1-(1/exp((log(1/(1-X1)))*((T2/T1)^(5/12))));
6 disp("X2 =")
7 disp(X2)
```

Chapter 13

Distributions of Residence Times for Chemical Reactions

check Appendix AP 2 for dependency:

```
13_8.sci
```

Scilab code Exa 13.8 clear

```
15 E2=-2.64e-9*(lam^3)+1.3618e-6*(lam^2)-.00024069*lam
      +.015011
16 F1=4.44658e-10/5*(lam^5)-1.1802e-7/4*lam^4+1.35358e
      -5/3*1am^3-.000865652/2*1am^2+.028004*1am;
17 F2 = -(-9.3076e - 8*lam^3 + 5.02846e - 5*lam^2 - .00941*lam
      +.61823-1
18 ra=-k*ca^2;
19 \text{ if } lam < =70
20
     E = E1
21 else
22
     E=(E2)
23
     end
24
     if(lam < =70)
25
       F = F1
26
     else
27
       F = F2
28
       end
29
       EF=E/(1-F)
30
        w(1) = -(ra/cao + E/(1-F) *x)
31 endfunction
32
33 X = ode([0], z0, z, f);
34
35 plot2d(z,X);
      check Appendix AP 1 for dependency:
```

13_9.sci

Scilab code Exa 13.9 clear

```
1 // clear //
2 clc
3 clear
4 exec("13.9 data.sci");
5 t = 0:.1:2.52;
```

```
7 function w=f(t,Y)
9 \quad w = zeros(10,1);
10
11 E1 = -2.104*t^4+4.167*t^3-1.596*t^2+0.353*t-.004
12 E2=-2.104*t^4+17.037*t^3-50.247*t^2+62.964*t-27.402
13 rc=k1*Y(1)*Y(2)
14 \text{ re=k3*Y(2)*Y(4)}
15 ra=-k1*Y(1)*Y(2)-k2*Y(1)
16 rb=-k1*Y(1)*Y(2)-k3*Y(2)*Y(4)
17 if t < = 1.26
18
     E = E1
19 else
20
     E=E2
21
     end
22 rd=k2*Y(1)-k3*Y(2)*Y(4)
23
24
     w(1) = ra
25 \text{ w(2)} = \text{rb}
26 \text{ w(3)} = \text{rc}
27 \text{ w (6)} = \text{Y (1)} *\text{E}
28 \text{ w } (7) = \text{Y } (2) * \text{E}
29 \text{ w (8) = Y (3) *E}
30 \text{ w}(4) = \text{rd}
31 \text{ w(5)} = \text{re}
32 \text{ w (9)} = \text{Y (4)} * \text{E}
33 w(10) = Y(5) *E
34 endfunction
35
36 \text{ X=ode}([1;1;0;0;0;0;0;0;0;0],t0,t,f);
37
38 plot2d(t,X(1,:));
```

Chapter 14

Models for Nonideal Reactors

Scilab code Exa 14.3 clear

```
1 // clear //
2 clc
3 clear
5 t = 0:10:200;
7 function w=f(t,Y)
9 \quad w = zeros(2,1);
10
11 CTe1 = 2000 - 59.6 * t + .64 * t^2 - 0.00146 * t^3 - 1.047 * 10^(-5) * t
      ^4
12 Beta=.1
13 CTe2=921-17.3*t+.129*t^2-0.000438*t^3+5.6*10^(-7)*t
14 \text{ alpha=.8}
15 \text{ tau}=40
16 if (t<80)
17 CTe=CTe1
18 else
19 CTe=CTe2
```

```
20 \, \text{end}
21
22 w(1) = (Beta*Y(2) - (1+Beta)*Y(1))/alpha/tau
23 w(2) = (Beta*Y(1) - Beta*Y(2))/(1-alpha)/tau
24 endfunction
25
26 \text{ X} = \text{ode}([2000; 0], t0, t, f);
27
28 t=t;
29 for i =1:length(t)
30 CTe1(i) = 2000 - 59.6 * t(i) + .64 * (t(i)^2) - 0.00146 * (t(i)^3)
       -1.047*(10^{(-5)})*t(i)^4;
31 CTe2(i) = 921-17.3*t(i) + .129*t(i)^2-0.000438*t(i)
       ^3+5.6*10^(-7)*t(i)^4
32 if(t(i)<80)
     CTe(i) = CTe1(i)
33
34 else
35 CTe(i)=CTe2(i)
36 \text{ end}
37 end
38
39
40 \quad 11 = X(1, :);
41 12 = CTe;
42
43 plot2d(t,[11 12]);
44
45 xtitle ( 'Figure E14-3.1', 't', 'CT1, CTe');
46 legend(['CT1'; 'CTe']);
```

Appendix

```
Scilab code AP 1 data
1 k1=1;
2 k2=1;
3 k3=1;
4 t0=0;
  Scilab code AP 2 data
1 k = 0.1
2 \text{ cao}=8;
3 z0=0;
  Scilab code AP 3 data
1 X1 = .865;
2 T1 = 673;
3 T2 = 773;
  Scilab code AP 4 data
1 X1 = .865;
  Scilab code AP 5 data
1 D=.0025; //m
2 L=.005; //m
3 phi=.3;
```

```
4 U=15; //m/s;
5 \text{ v=} 4.5 \text{ e-} 4; //\text{m}^2/\text{s}
6 r = .0025/2;
7 Lp = .005;
8 DAB0=.69e-4;
9 T = 750;
10 \text{ T0} = 298;
11 z = .05; //m
    Scilab code AP 6 data
1 DAB = 1e-6;
2 CT0=.1; //\text{kmol/m}^3
3 \text{ yAb} = .9;
4 yAs = .2;
5 s = 1e - 6;
6 c = .1;
    Scilab code AP 7 data
1 Ka=0.05;
2 \text{ Kb} = .15;
3 \text{ Pao} = 12;
4 \text{ eps=1};
5 \quad A = 7.6;
6 R = 0.082;
7 T=400+273;
8 \text{ Kc} = .1;
9 \text{ rho} = 80;
10 \text{ kprime} = 0.0014;
11 D=1.5;
12 Uo=2.5;
    Scilab code AP 8 data
1 kd=9;
 2 \text{ CaO} = .8;
```

```
3 \text{ tau}=.02
4 k=45;
5 Ct0=1;
6 t0=0
  Scilab code AP 9 data
1 ft0=50
2 k = .0000000145*1000*60;
3 \text{ kt}=1.038;
4 \text{ kb=1.39};
5 alpha=0.000098;
6 Po=40;
7 \text{ w0=0};
  Scilab code AP 10 data
1 Cao=4;
2 \text{ vo} = 240;
3 t0=0;
  Scilab code AP 11 data
1 Fa0=80;
2 \text{ T0=75};
3 V = (1/7.484) *500;
4 UA = 16000;
5 Ta1=60;
6 Fb0=1000;
7 Fm0=100;
8 \text{ mc} = 1000;
9 t0=0;
  Scilab code AP 12 data
1 v0 = .004;
2 \text{ Cb0=1};
```

```
3 UA=3000;
4 Ta = 290;
5 \text{ cp} = 75240;
6 \text{ T0} = 300;
7 dh = -7.9076e7;
8 \text{ Cw0} = 55;
9 cpa=170700;
10 Vi = .2;
11 t0=0;
   Scilab code AP 13 data
1 NCp=2504;
2 U=3.265+1.854;
3 \text{ Nao} = 9.0448;
4 UA = 35.83;
5 \text{ dH} = -590000;
6 Nbo=33;
7 t0=55;
   Scilab code AP 14 data
1 t0=0;
   Scilab code AP 15 data
1 T = [300:10:600]';
   Scilab code AP 16 data
1 Fa0 = .9*163;
2 \text{ CaO} = 9.3;
3 \text{ VO} = 0;
   Scilab code AP 17 data
1 T = [535 550 565 575 585 595 605 615 625];
```

```
2 \text{ HOC} = -226000;
3 \text{ HOB} = -123000;
4 \text{ HOA} = -66600;
5 \text{ CpC} = 46;
6 \text{ CpB} = 18;
7 \text{ CpA} = 35;
8 \text{ CpM} = 19.5;
9 \text{ TR} = 528;
10 \text{ TiO} = 535;
11 \text{ vAO} = 46.62;
12 \text{ vBO} = 46.62;
13 \text{ VMO} = 233.1;
14 \ V = 40.1;
15 \text{ FAO} = 43.04;
16 \text{ FMO} = 71.87;
17 \text{ FBO} = 802.8;
18 A = 16.96e12;
19 E = 32400;
20 R = 1.987;
    Scilab code AP 18 data
1 HONH3 = -11020; // cal/moleN2
2 \text{ HOH2} = 0;
 3 \text{ HN2} = 0;
4 CpNH3 = 8.92; // cal/moleH2.K
5 \text{ CpH2} = 6.992; // \text{ cal/moleN2.K}
 6 CpN2 = 6.984; // cal/moleNH3.K
 7 T = 423; //K
 8 \text{ TR} = 298; //K
```

Scilab code AP 19 data

```
1 Cp=200
2 Cao=0.3
3 To=283
4 tau=.01;
5 DH1=-55000;
```

```
6 DH2=-71500;
7 \text{ vo} = 1000;
8 E2 = 27000;
9 E1 = 9900;
10 UA = 40000;
11 Ta = 330;
   Scilab code AP 20 data
1 V0=0;
2 \text{ Cto} = 0.1;
3 \text{ To} = 423;
   Scilab code AP 21 data
1 ysc=1/.08;
2 \text{ ypc} = 5.6;
3 \text{ ks} = 1.7;
4 m = 0.03;
5 \text{ umax} = .33;
6 t0 = 0;
   Scilab code AP 22 data
1 \text{ Km} = 0.0266;
2 \text{ Vmax1} = 1.33;
3 \text{ Et2} = 0.001;
4 \text{ Et1} = 5;
5 X = .8;
6 \text{ Curea0} = .1;
   Scilab code AP 23 data
1 Curea = [.2 .02 .01 .005 .002];
2 rurea = -[1.08 .55 .38 .2 .09];
```

Scilab code AP 24 data

```
1 v0 = 0;
  Scilab code AP 25 data
1 k1 = 55.2;
2 k2=30.2;
3 t0=0;
  Scilab code AP 26 data
1 CCH4 = [2.44 \ 4.44 \ 10 \ 1.65 \ 2.47 \ 1.75] '*1e-4;
2 PCO= [1 1.8 4.08 1 1 1];
3 \text{ v0} = 300;
4 W = 10;
  Scilab code AP 27 data
1 \text{ CCH4} = [2.44 \ 4.44 \ 10 \ 1.65 \ 2.47 \ 1.75] '*1e-4;
2 PCO= [1 1.8 4.08 1 1 1];
3 \text{ v0} = 300;
4 W = 10;
  Scilab code AP 28 data
1 CHCl= [1 4 2 .1 .5];
2 \text{ rHCl} = [1.2 \ 2 \ 1.36 \ .36 \ .74]*1e7;
  Scilab code AP 29 data
1 t = [0 2.5 5 10 15 20]';
2 P = [7.5 10.5 12.5 15.8 17.9 19.4];
3 \text{ PO} = 7.5;
  Scilab code AP 30 data
1 \text{ ka} = 2.7;
```

2 kc = 1.2;

```
3 \text{ Ct0} = .1;
4 \text{ fa0 = 10};
5 \ VO = 0;
   Scilab code AP 31 data
1 \text{ FAO} = 440;
2 \text{ PO} = 2000;
3 \text{ CaO} = .32;
4 R = 30;
5 \text{ phi} = .4;
6 kprime = 0.02; //lb.mol/atm.lb.cat.h
7 L = 27;
8 rhocat = 2.6;
9 m = 44;
10
11 \text{ alpha} = 0.0166;
12 e = -0.15;
13 \ Z0 = 0;
   Scilab code AP 32 data
1 kprime = 0.0266; //lb.mol/atm.lb.cat.h
2 \text{ alpha} = 0.0166;
3 e = -0.15;
4 \text{ WO} = 0;
5 \text{ FAO} = 1;
   Scilab code AP 33 data
1 k = 0.0141; //lb.mol/atm.lb.cat.h
2 \text{ FAO} = 1.08; //lb.mol/h
3 \text{ FBO} = 0.54; // lb.mol/h
4 FI = 2.03; // lb.mol/h
5 bita0 = 0.0775; // atm/ft
6 \text{ Ac} = 0.01414; // ft^2
7 \text{ phi} = 0.45;
```

```
8 rhoc = 120; // lb cat/ft<sup>3</sup>
9 \text{ PO} = 10; // \text{ atm}
10 X = 0.6;
   Scilab code AP 34 data
1 Ac = 0.01414; // ft^2
2 m = 104.4; // lbm/h
3 \text{ mu} = 0.0673; // \text{ lbm/ft.h}
4 Dp = 0.0208; //ft
5 gc = 4.17e8; // lbm.ft/lbf.h^2
6 \text{ phi} = 0.45;
7 rho = 0.413; // lbm/ft^3
8 \text{ PO} = 10; // \text{atm}
9 L = 60; // ft
   Scilab code AP 35 data
1 k1 = 0.072; // s^-1;
2 yA0 = 1;
3 \text{ PO} = 6; //\text{atm}
4 R = 0.73; // atm/lb.mol.oR
5 \text{ TO} = 1980; //oR
6 \text{ T1} = 1000; //K
7 T2 = 1100; // K
8 e = 1;
9 E = 82000; // cal/g.mol
10 FB= 0.34; //lb.mol/s
11 X = 0.8;
   Scilab code AP 36 data
1 k = 0.311; // \min^{-1};
2 FC= 6.137; //lb.mol/min
3 X = 0.8;
4 CA01= 1; // \text{mol/dm}^3
```

Scilab code AP 37 data

```
1 k = 2.2;
2 v00 = .05;
3 \text{ CbO} = .025;
4 v0 = 5;
5 \text{ CaO} = .05;
6 t0 = 0;
  Scilab code AP 38 data
1 \text{ kc} = 0.2;
2 \text{ CtO} = .2;
3 k = .7;
4 \text{ VO= 0};
  Scilab code AP 39 data
1 t = [0 0.5 1 1.5 2 3 4 6 10];
2 \text{ CC} = [0 \ 0.145 \ .27 \ .376 \ .467 \ .61 \ .715 \ .848 \ .957];
3 \text{ CAO} = 1;
  Scilab code AP 40 data
1 CAO = 10;
2 CB0 = 2;
3 X = 0.2;
4 X1=0.9
  Scilab code AP 41 data
1 FAO = 0.867; // \text{ mol/s}
2 X1 = 0.5;
3 X2 = 0.8;
4 \text{ rA2} = -(1/800);
5 X = [0 \ 0.1 \ 0.2 \ 0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8];
6 p = [189 192 200 222 250 303 400 556 800]; //1/-rA =
      800/dm^3.s/mols
```

Scilab code AP 42 data

```
1
2 clc
3 clear
4 exec("2.6 data.sci");
7 X1 = X(1:5);
8 p1 = p(1:5);
9 V1 = FA0*inttrap(X1,p1)
10 X2 = X(5:9);
11 p2 = p(5:9);
12 \text{ V2} = \text{FAO}*inttrap(X2,p2)
13 V = V1 + V2;
14 disp("V1 =")
15 disp(V1)
16 disp("dm^3")
17 disp("V2 =")
18 disp(V2)
19 disp ("dm^3")
20 \text{ disp}("V =")
21 disp(V)
22 disp ("dm^3")
   Scilab code AP 43 data
```

```
1 FAO = 0.867; // mol/s

2 rA = -(1/250);

3 rA2 = -(1/800);

4 X = 0.8;

5 X1 = 0.4;

6 X2 = 0.8
```

Scilab code AP 44 data

```
1 FA0 = 5; // \text{ mol/s}
2 rAat=-(1/400);
```

Scilab code AP 45 data

```
1 P0 = 10; //atm
2 yA0 = 0.5;
3 T0 = 422.2; //K
4 R = 0.082; // dm^3.atm/mol.K
5 v0 = 6; //dm^3/s
6 X = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8]';
7 p = [189 192 200 222 250 303 400 556 800]; //1/-rA = 800//dm^3.s/mols
```

Scilab code AP 46 data

```
1 P0 = 10; //atm
2 yA0 = 0.5;
3 T0 = 422.2; //K
4 R = 0.082; // dm^3.atm/mol.K
5 v0 = 6; //dm^3/s
6 X = 0.8;
7 rA = -1/800; //1/-rA = 800//dm^3.s/mol
```

Scilab code AP 47 data

```
1 P0 = 10; //atm
2 yA0 = 0.5;
3 T0 = 422.2; //K
4 R = 0.082; // dm^3.atm/mol.K
5 v0 = 6; //dm^3/s
```