

### Metodi matematici per l'Informatica Modulo 11 – Algebra e modelli

Docente: Pietro Cenciarelli





$$(A, \vee, \wedge, -, \perp, \top)$$

 $\bot$ ,  $\top \in \mathcal{A}$ 

 $V: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $\Lambda: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

 $-: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ 

















(omomorfismi)

$$(A, \vee, \wedge, -, \perp, \top)$$

$$(\mathcal{B}, \vee, \wedge, -, \perp, \top)$$





$$f: \mathcal{A} \to \mathcal{B}$$

$$f(a \lor b) = f(a) \lor f(b)$$

$$f(a \wedge b) = f(a) \wedge f(b)$$

$$f(\bot) = \bot f(\top) = \top$$





(omomorfismi)



Un omomorfismo di reticoli è un omomorfismo di algebre di Boole

































(omomorfismi)







(omomorfismi)







# Connettivi logici

Se un numero è primo, allora è minore di 10 o è dispari



P = essere un numero primo

Q = essere minore di 10

R = essere dispari













 $\overline{P} = non$  essere un numero primo (not)







Q = essere minore di 10

 $P \cap Q = essere un numero primo (e) minore di 10 (and)$ 





Q = essere minore di 10

 $P \cup Q = essere un numero primo o minore di 10 (or)$ 





Logica Insiemi Algebre di Boole teorema di rappresentazione Stone (1936)

proposizioni sottoinsiemi elementi modelli elementi omomorfismi in 2 and  $(\Lambda)$  intersezione  $(\cap)$  meet  $(\Lambda)$  or  $(\vee)$  unione  $(\cup)$  join  $(\vee)$  not  $(\neg)$  complemento  $(\neg)$  complemento  $(\neg)$ 





Logica Insiemi Algebre di Boole teorema di rappresentazione Stone (1936)

proposizioni sottoinsiemi elementi omomorfismi in 2





P = essere un numero primo

Q = essere minore di 10





Logica Insiemi Algebre di Boole teorema di rappresentazione

Stone (1936)

proposizioni sottoinsiemi

elementi

modelli

elementi

omomorfismi in 2





P = essere un numero primo

Q = essere minore di 10









teorema di rappresentazione

Stone (1936)

proposizioni sottoinsiemi

elementi

modelli

elementi

omomorfismi in 2



P V Q

P A Q

L

P = essere un numero primo

Q = essere minore di 10





# Algebre di Boole

#### proposizioni

#### modelli

# $P \mapsto \bot$ $Q \mapsto T$ ... $= m (P) \land m (Q)$ $P \land Q \mapsto ?$ $\neq m (P \land Q) = T$

#### elementi







# Algebre di Boole

#### proposizioni

#### modelli

$$P \mapsto \bot$$
 $Q \mapsto \top$ 
...

 $P \land Q \mapsto m (P) \land m (Q)$ 
 $P \lor Q \mapsto m (P) \lor m (Q)$ 
 $\neg P \mapsto \overline{m (P)}$ 

#### elementi







# Algebre di Boole

proposizioni

modelli

elementi

| РΛ | Q        | $\longrightarrow$ | m  | (P) | ٨ | m | (Q) |
|----|----------|-------------------|----|-----|---|---|-----|
| Pv | Q        | $\mapsto$         | m  | (P) | V | m | (Q) |
| ¬Р | <b>⊢</b> | _<br>m            | (P |     |   |   |     |







# Algebre di Boole

proposizioni

modelli

elementi

| $P \wedge Q \mapsto m (P) \wedge m (Q)$ |
|-----------------------------------------|
| $P \vee Q \mapsto m (P) \vee m (Q)$     |
| $\neg P \mapsto \overline{m(P)}$        |





## Algebre di Boole

proposizioni

modelli

 $P \wedge Q \mapsto m (P) \wedge m (Q)$   $P \vee Q \mapsto m (P) \vee m (Q)$   $\neg P \mapsto \overline{m (P)}$ 

elementi







# Logica proposizionale

simboli proposizionali

proposizioni A B ... D I O I I A V I

proposizioni A, B, ... ::=  $P \mid Q \mid ... \mid A \lor B \mid A \land B \mid \neg A \mid ...$ 

 $m : proposizioni → \{T, F\} (nota: era \{T, \bot\})$ 

...tale che:

 $A \wedge B \mapsto m(A) \wedge m(B)$ 

 $A \lor B \mapsto m (A) \lor m (B)$ 

 $\neg A \mapsto m (B)$ 

oppure...





# Logica proposizionale

simboli proposizionali

proposizioni A, B, ... ::=  $P \mid Q \mid ... \mid A \lor B \mid A \land B \mid \neg A \mid ...$ 

*modelli*  $m: simboli proposizionali \rightarrow \{T, F\}$ 

...e m (A) è calcolata attraverso le *tavole di verità*:

| Α | В       | $A \wedge B$ | Α       | В       | $A \lor B$ | Α | ¬Α |
|---|---------|--------------|---------|---------|------------|---|----|
| Т | Т       | Т            | <br>T   | Т       | Т          | T |    |
| Т | $\perp$ | Т            | Т       | $\perp$ | Т          | Τ | Т  |
| Τ | T       | Т            | Τ       | Т       | Т          |   |    |
| Τ | Τ       | Т            | $\perp$ | $\perp$ | 1          |   |    |