PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 92/06043 (51) International Patent Classification 5: (11) International Publication Number: A1 C02F 3/10, C08G 18/48 16 April 1992 (16.04.92) (43) International Publication Date: (74) Agent: ROONEY, Gerard, P.; Allied-Signal Inc., Law Department (C.A. McNally), P.O. Box 2245R, Morristown, PCT/US91/07436 (21) International Application Number: NJ 07962 (US). 8 October 1991 (08.10.91) (22) International Filing Date: (81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent) (30) Priority data: US 9 October 1990 (09.10.90) 594,503 (71) Applicant: ALLIED-SIGNAL INC. [US/US]; Law Department (C.A. McNally), P.O. Box 2245R, Morristown, NJ 07962-2245 (US). (72) Inventors: LUPTON, F., Stephen; 1211 Monroe Street, Evanston, IL 60202 (US). SURGI, Marion, Rene; 1808 Greenleaf Street, Evanston, IL 60202 (US). SHERIDAN, William, G.; 22 West 530 Birchwood Drive, Glen **Published** With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of Ellen, IL 60137-7306 (US). amendments.

(54) Title: PROCESS FOR REMOVAL OF ORGANIC POLLUTANTS FROM WASTE WATER

(57) Abstract

A porous biomass support system in a bioreactor affords biodegradation of phenolic materials to a level under 20 parts per billion at a hydraulic residence time of about 15 hours with significantly less sludge formation currently possible by available methods. The porous biomass support system comprises a hydrophilic polymer, preferably polyurethane foam, small particles of activated carbon and suitable microorganisms, which are entrapped with the polymer material. The carbon is self-regenerative and does not have to be periodically replaced or replenished. The entire porous biomass support system can operate for extended periods of time without replacement.

BEST AVAILABLE COPY

BNSDOCID: <WO_____9206043A1_I_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML.	Mali
88	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	ltaly	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
œ	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	su+	Soviet Union
CM	Cameroon ·	u	Liechtenstein	TD	Chad
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE.	Germany	ш	Luxembourg	us	United States of America
-					

⁺ Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

WO 92/06043 PCT/US91/07436

- 1 -

PROCESS FOR REMOVAL OF ORGANIC POLLUTANTS FROM WASTE WATER

5

RELATED APPLICATIONS

This application is a continuation-in-part application of United States Patent Application Serial No. 335,610, filed April 10, 1989.

10

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a process for the

removal of organic pollutants from waste water. More particularly, this invention relates to a process for removal of such pollutants especially substituted and unsubstituted phenols by aerobic biodegration using a porous biomass support system in a bioreactor,

20 specifically a fixed bed bioreactor

2. Prior Art

One of the hallmarks of contemporary civilization
is that each increment of technological progress
almost invariably is accompanied by a similar
increment of environmental regress. As the pace of
technological advances quickens, so does the march of
environmental deterioration. The realization of
onvironmental damage has occurred only relatively
recently, so that present society sometimes finds
itself burdened with the accumulated sins of the
not-too-distant past. But another hallmark of current
society is its acceptance of the undesirability of
servironmental degradation coupled with a determination
to minimize and even reverse it wherever possible.
Although the return of ground waters to their pristine
condition of an earlier era is not a realistic goal,

there is a genuine determination to make our waters as pure as possible. Environmental agencies have set limits for many common industrial pollutants, and as methods of pollution reduction have become more successful in reducing or removing pollutants from waste water, environmental regulations have become more stringent, resulting in an ever tightening spiral whose goal is to reduce pollutants in waste water to that minimum which is technologically feasible.

Among the methods employed to reduce or remove pollutants, bioremediation constitutes an effective and highly desirable approach. Quite broadly in bioremediation pollutants serve as a good source, generally as a source of carbon and/or nitrogen, for microorganisms. Bacterial metabolism converts the pollutants to metabolites generally with a simple chemical structure, sometimes degrading the pollutants completely to carbon dioxide and water in an aerobic process, or to methane in an anaerobic process. But in any event, the metabolites usually have no adverse environmental effects.

Various bioremediation processes are known. For example, U.S. Patent No. 4,634,672 describes biologically active compositions for purifying waste 25 water and air which comprises a polyurethane hydrogel containing (i) surface active coal having a specific surface according to BET of above 50 m²/g, a polymer having cationic groups and cells having enzymatic activity and being capable of growth. U.S. Patent No. 30 4,681,852 describes a process for biological purification of waste water and/or air by contacting the water or air with the biologically active composition of U.S. Patent No. 4,634,672. experimental examples of these patents indicate that 35 the process is not effective for reducing contaminant concentrations in the effluent strain to less than 44 parts per million (ppm). This is not acceptable since the Environmental Protection Agency (EPA) in some instances has mandated that concentration for some contaminants (such as phenol) in the effluent stream must be as low as 20 parts-per-billion (ppb). (See Environmental Protection Agency 40 CFR Parts 414 and 416. Organic Chemicals and Plastics and Synthetic Fibers Category Effluent Limitations Guidelines, Pretreatment Standards, and New Source Performance Standards. Federal Register, Vol. 52, No. 214, 10 Thursday, Nov. 5, 1989. Rules & Regulations, 42522.

Both U.S. Patent Nos. 3,904,518 and 4,069,148 describe the addition of activated carbon or Fuller's earth to a suspension of biologically active solids (activated sludge) in waste water as an aid in phenol removal. The absorbents presumably act by preventing pollutants toxic to the bacteria from interfering with bacterial metabolic activity. The patentees' approach has matured into the so-called PACT process which has gained commercial acceptance despite its requisites of a long residence time, compious sludge formation with attendant sludge disposal problems, and the need to regenerate and replace spent carbon.

Rehm and coworkers have further refined the use of activated carbon in the aerobic oxidation of phenolic materials by using microorganisms immobilized on granular carbon as a porous biomass support system. Utilizing the propensity of microorganisms to grow on and remain attached to a surface, Rehm used a granular activated carbon support of high surface area 30 (1300 m²/g) to which cells attached within its macropores and on its surface, as a porous biomass support system in a loop reactor for phenol removal. H.M. Ehrhardt and H.J. Rehm, Appl. Microbiol. Biotechnol., 21, 32-6 (1985). The resulting 35 "immobilized" cells exhibited phenol tolerance up to a level in the feed of about 15 g/L, whereas free cells showed a tolerance not more than 1.5 g/L. It was

postulated that the activiated carbon operated like a "buffer and depot" in protecting the immobilized microorganisms by absorbing toxic phenol concentrations and setting low guantities of the 5 absorbed phenol free for gradual biodegradation. This work was somewhat refined using a mixed culture immobilized on activiated carbon [A. Morsen and H.J. Rehm, Appl. Microbiol. Biotechnol., 26, 283-8 (1987) where the investigators noted that a considerable 10 amount of microorganisms had "grown out" into the aquenous medium, i.e., there was substantial sludge formation in their system.

Suidan and coworkers have done considerable research on the analogous anaerobic degradation of 15 phenol using a packed bed of micoorganisms attached to granular carbon [Y.T. Wang, M.T. Suidan and B.E. Rittman, Journal Water Pollut. Control Fed., 58 227-33 (1986)]. For example, using granular activated carbon of 16 x 20 mesh as a support medium for microorganisms 20 in an expanded bed configuration, and with feed containing from 358-1432 mg phenol/L, effluent phenol levels of about 0 06 mg/L (60 ppb) were obtained at a hydraulic residence time (HRT) of about 24 hours. Somewhat later, a beri-saddle-packed bed and expanded 25 bed granular activated carbon anaerobic reactor in series were used to show a high conversion of COD to methane, virtually all of which occurred in the expanded bed reactor; P.FOx, M.T. Suidan, and J.T. Pfeffer, ibid., 60, 86-92 (1988. The refractory 30 nature of ortho- and meta-cresols toward degradation also was noted.

Givens and Sack, 42nd Purdue University
Industrial Waste Conference Proceedings, pp. 93-102
(1987), performed an extensive evaluation of a carbon

35 impregnated open-celled polyurethane foam as a
microbial support system for the aerobic removal of
pollutants, including phenol. Porous polyurethane

foam internally impregnated with activated carbon and having microorganisms attached externally was used in an activated sludge reactor, analogous to the Captor and Linpor processes which differ only in the absence of foam-entrapped carbon. The process was attended by substantial sludge formation and without any beneficial effect of carbon.

The Captor process itself utilizes porous polyurethane foam pads to provide a large external 10 surface for microbial growth in an aeration tank for biological waste water treatment. The work described above is the Captor process modified by the presence of carbon entrapped within the foam. A two-year pilot plant evaluation of the Captor process itself showed 15 substantial sludge formation with significantly lower microbial density than had been claimed. Heidman, R.C. Brenner and H.J. Shah, J. of Environmental Engineering, 114, 1077-96 (1988). point to be noted, as will be revisited below, is that 20 the Captor process is essentially an aerated sludge reactor where the pads are retained in an aeration tank by screens in the effluent line. Excess sludge needs to be continually removed by removing a portion of the pads via a conveyor and passing the pads 25 through pressure rollers to squeeze out the solids.

H. Bettmann and H.J. Rehm, Appl. Microbial.
Biotechnol., 22, 389-393 (1985) have employed a
fluidized bed bioreactor for the successful continuous
aerobic degradation of phenol at a hydraulic residence
time of about 15 hours using Pseudomonas putida
entrapped in a polyacrylamide-hydrazide gel. The use
of microorganisms entrapped within polyurethane foams
in aerobic oxidation of phenol in shake flasks also
has been reported; A.M. Anselmo et al., Biotechnoology

35 B.L., 7, 889-894 (1985).

Known bioremediation processes suffer from a number or inherent advantages. For example, a major

result of increased use of such processes is an ever increasing quantity of sludge, which presents a serious disposal problem of increasingly restrictive policies on dumping or spreading untreated sludge on 1 and and at sea. G. Michael Alsop and Richard A. Conroy, "Improved Thermal Sludge Conditioning by Treatment With Acids and Bases", Journal WPCF, Vol. 54, No. 2 (1982), T. Calcutt and R. Frost, "Sludge Processing - Chances for Tomorrow", Journal of the

- 10 Institute of Water Pollution Control, Vol 86, No. 2
 (1987) and "The Municipal Waste Landfill Crisis and A
 Response of New Technology", Prepared by United States
 Building Corporation, P.O. Box 49704, Los Angles, CA
 90049 (November 22, 1988). The cost of sludge
- 15 disposal today may be several fold greater than the sum of other operating costs of waste water treatment.

Use of anaerobic sewage treatment systems has been offered as a solution to the sludge problem. William J. Jewwll "Anaerobic Sewage Treatment",

- Environ. Sci. Technol. Vol 21, No. 1 (1987). The largest difference between aerobic and anaerobic systems is in cellular yield. More than half of the substrate removal by aerobic systems can yield new microbial mass or sludge, the yield under anaerobic
- 25 conditions is usually less that 15% of the organic substances removed. However, anaerobic systems are limited in the number of substrate that they can degrade or metabolize such as non-substituted aromatics (See N.S. Battersby & V. Wilson. "Survey of
- 30 the anaerobic bidegradation Potential of Organic Chemicals in Digesting Sludge." Applied & Environmental Microbiology, 55(2): p. 433-439, Feb. 1989. This is a significant disadvantage in that most industrial processes such as coke production and coal
- 35 tar processing normally produce non-substituted aromatics as by-products (See J.M. Thomas, M.D. Lee, M.J. Scott and C.H. Ward, "Microbial Ecology of the

Subsurface at an Abandoned Creosote Waste Site."

Journal of Industrial Microbiology, Vol. 4, p.

109-120, 1989.

Another disadvantage inherent in some known

5 bioremediation processes is that these processes do
not reduce the levels of organic pollutants to
reasonable levels [preferable less than about 0.1
parts permillion (ppm)] at reasonable residence times
(preferably less than about 24 hours). For example,
in the process of U.S. Patent Nos. 5,681,851 and
4,634,672 (See the specific examples), the
concentration of phenol contaminants was not reduced
below about 44 ppm.

An industrially desirable method of removing 15 phenolic materials from waste waters have the following characteristics. The method would be 1) an aerobic oxidation achieving 2) effluent phenol levels less than 0.1 parts per million (ppm) at 3) hydraulic residence times under 24 hours requiring 4) no 20 activated carbon regeneration or replacement and with 5) substantially less sludge formation than obtained from currently available technology. None of the aforementioned art achieved all of the above, nor does the art give any indication how such a goal can be 25 achieved. We have found that if a specific powdered activated carbon and phenol-degrading aerobic microorganisms are employed in a open-celled hydrophilic polyurethane foam, which is then used as a porous biomass support system in a fixed bed reactor, 30 each of the foregoing goals are readily attained. Levels of effluent phenol down to at least 20 parts per billion can be attained at an HRT of under about 16 hours. Carbon is not physically lost from the reactor, thus avoiding the need for replacement, and 35 is self-regenerative within the reactor. Sludge formation is minimal; comparative tests with other fixed bed reactors show that our immobilized cell

WO 92/06043 PCT/US91/07436

- 8 - .

bioreactor (ICB) produces less than 25 percent the amount of sludge formed by presently commercially viable systems. In short, as measured by its performance characteristics, our invention is a a 5 marked improvement over the prior art; relative to the prior art, our invention represents a difference in kind rather than a difference in degree.

Reduced sludge formation attending our process is neither an incidental nor a minor benefit. A major 10 result of increased wastewater treatment is a never increasing restrictive policies on dumping or spreading untreated sludge on land and at sea. The cost of sludge disposal today may be several fold greater than the sum of other operating costs of 15 wastewater treatment. Accordingly, the reduction in sludge levels characteristic of our invention has immediate, substantial economic benefit and alleviates the pressures of sludge dumping.

20 THE SUMMARY OF INVENTION

This invention relates to materials for porous biomass support system (PBSS) and processes for biological treatment of waste streams, specifically biodegration of organic and waste streams.

25

DESCRIPTION OF THE DRAWINGS

Figure 1 is an adsoption curve measuring phenol adsorbed for hydrophilic and hydropholic foams and the foams impregnated with carbon.

Figure 2 is an adsorption curve measuring phenol adsorbed for a hydrophilic foam and a carbon impreganted hydrophilic foam.

Figure 3 is an adsorption curve for hydrophobic foam and carbon impregnated hydrophobic foam.

Figure 4a is a 1-pulse C-13 (labelled) phenol NMR 1-pulse and cross polarization/magic angle spinning of carbon impregnated hydrophilic foam after adsorption

of phenol.

Figure 4b depicts a C-13 NMR of carbon impregnated hydrophilic foam after exposure to phenol using cross-polarization of magic angle spinning 5 (CPMAS).

Figure 5a is a CPMAS C^{-13} NMR of a hydrophilic foam.

Figure 5b is a CPMAS C^{-13} NMR if a hydrophobic foam.

Figure 6 is a 1-pulse MAS C-13 NMR of carbon impreganted hydrophilic foam and carbon impregnated hydrophobic foam after exposure phenol.

Figure 7 is a schematic drawing summarizing the NMR results on phenol adsorption of a carbon impreganted hydrophilic foam.

Figure 8 depicts the response of bioreactors containing polyurethane foam (PUF) supports to schock loads of phenol.

Figure 9 depicts the total phenolic removal by 20 reactors having varied polyurethane foam supports.

Figure 10 depicts the removal of aromatic pollutants by two bioreactors; one having a carbon impreganted hydrophilic foam support and an unimpregnated hydrophilic polyurethane support.

25 Figure 11 is a scanning electron micrograph of carbon impregnated foam (Hypol) when activated carbon is introduced during polymerization.

Figure 12 is a scanning electron micrograph of a foam (Hypol) when the carbon is surface impregnated by 30 solvent swelling the foam using ethyl acetate.

DETAILED DESCRIPTION OF THE INVENTION

Much of the work to date in biomediation relates to the use of polyurethane foams in treatment

35 process. This invention focuses on improved biomass support materials, which include polyurethanes, as well as their use as biomass support systems in

bioreactors.

One aspect of this invention relates to discovery that certain polymers can adsorb phenolic pullutants; however, the adsorption of these compounds to polymers can depend greatly upon the composition of the various polymers. In addition, we have discovered that the absorption characteristics of a polymer can be very varied by the presence of absence of activated carbon.

- One embodiment of the present invention relates to a biomass support comprising a hydrophilic polymer and activated carbon. In general, these polymers provide a porous biomass support for microorganisms. In preferred embodiments, the polymer is hydrophilic
- polyurethane foam. Polyurethane foams of the preferred embodiments of this invention can be formed directly from the reaction of di-and/or polyfunctional isocyanate compounds in the polymer along with appropriate catalyst or by a partial reaction of the di-and/or polyfunctional isocyanate compounds with the
- polyol to form a NCO polyurethane prepolymer.

 Preferably, the NCO polyurethane prepolymer possesses
 3 to 10% of the isocyanate compounds as free NCO
 groups. Therein, water can be used to catalyze the
- cross reaction of the remaining groups to form the urethane foam. The adsorption and/or absorption of organic polutents, e.g. phenol, onto and into the polyurethane foam can be affected by both the type of polyol used as well as the portion of cross-linked
- 30 isocyanate compounds present in the foam. It is preferred to limit the amount of aromatic groups, specifically aromatic isocyanate compounds, in the hydrophilic polyurethane foam in order to maintain the hydrophilic characteristic of the polymer.
- 35 Preferably, the hydrophilic polymer contains less than about 30% by weight of aromatic isocyanate. In further preferred embodiments of the invention, the

hydrophilic polymer has at least 90% by weight of polyethylene oxide and at least less than about 25% by weight of aromatic isocyanate. In particular preferred embodiments, the polyol content of 5 hydrophilic polymer is at least 95% by weight polyethylene oxide and less than about 20% of aromatic isocyanate. In the more particularly preferred embodiments of invention, the polyol content is greater then about 99% by weight polyethylene oxide 10 and less than about 15% by weight of aromatic isocyanate. The hydrophilic polymers described above are combined with activated carbon. The activated carbon used is generally in powder form. Preferably, the carbon is added either to the polyol prior to the 15 cross linking reaction with isocyanate or with the NCO prepolymer prior to reaction with water. may also be applied to the foam by mixing carbon in the foam in the presence of a binder which adheres the carbon to the foam. Such a binder would be selected 20 so as to not inactivate the carbon once the carbon is applied.

The hydrophilic polymer supports for use in the bioremediation are combined with activated carbon since the activated carbon can enhance the adsorptive capacity of a polymer, e.g. polyurethane foam, for organic polutents, which include aromatic pollutants, such as phenol. Carbon concentrates the pollutants. Although carbon can be added to hydrophilic polymers and hydrophilic polymers, only when carbon is combined with the hydrophilic polymers is phenol absorbed and in a mobile state. Once absorbed in a mobile state, the phenol is able to interact with carbon. It is discovered that carbon is not in a "mobile state" when combined with a hydrophilic polymer, for example polyurethane hydropholic polyurethane foam.

As shown in Table A, hydrophobic foam and hydrophilic foam each with 20% powdered activated

carbon have a high adsorption coefficient (i.e. large capacity to adsorb phenol); however, the Langmuir adsorption curves and carbon C^{-13} phenol/NMR binding studies summarized at Table 2 and Figures 1 through 7 5 show that the carbon present in the hydrophilic foam is able to interact with and in fact absorb and adsorb phenol while embedded in the foam matrix. On the contrary, this is not a case with conventional hydrophobic foams. When carbon is embedded in the 10 hydrophibic foam it has a high capacity to absorb the phenol without the presence of activated carbon. hydrophilic foams, on the other hand, do not have a high capacity to adsorb phenol without the addition of an appropriate carbon. The adsorption of C^{-13} phenol 15 to carbon impregnated carbon impregnated hydrophilic and hydrophobic foams was followed using Magic Angle Spinning/Cross Polarization NMR Spectroscopy. results are shown in Figure 4. Peak A at Fig. 4A represents the phenol that is absorbed into 20 hydrophilic foam. Phenol shows a "fluid" NMR signal indicating that it is, in fact, mobile within the polyurethane, which appears to the phenol molecules as a viscous liquid. Peak B represents the phenol which adsorbed to the PAC. This phenol appears as a solid 25 in the NMR and is held tightly by the carbon. represents phenol that is adsorbed onto the hydrophibic phenol. This phenol has a solid signal in the NMR rather then the liquid signal that was associated with the phenol in the hydrophilic phenol. 30 There is no phenol signal associated with the activated carbon that is present in the hydrophobic foam although the amount of phenol that adsorbs to the hydrophobic foam is relatively high compared to that absorbed into the hydrophilic foam. A summary of the 35 results obtained by these studies is depicted at Figure 7.

The above results indicate that the hydrophilic

foam behaves as a viscous liquid permitting phenol to diffuse through the foam to the carbon support. It is believed that the "viscous" characteristic is provided by the long chain polymers unit of the hydrophilic foam having limited amounts of rigid aromatic (crystalline) region, but large amounts of sp3 carbon oxygen units due to the polyols. The motions of the long chains (of polyols) are sufficiently rigid to permit the existance of free volume and promote the migration of phenol from one free volume unit to the other (See Figure 4A). Because of the mobile phenol and viscous polyurethane foam, the phenol is adsorbed by the polymer and diffuses to the carbon throughout the foam, wherein the phenol is exposed to

In order to maximize the benefit of activated carbon in a porous biomass support system, the carbon employed should have an effective affinity for aromatics, specifically phenols. The affinity of the carbon is measured by adsorption of phenol and whether it follows the Langmuir absorption curve. An effective carbon follows the Langmuir adsorption curve. The Langmuir curve describes the adsorption of adsorbents as a monolayer into the absorbent.

25 This can be described mathematically as;

30

where:

- Q is the amount of phenol per unit of adsorbent.
- 5 C is the phenol concentration in solution at equilibrium conditions.
 - N is the maximum adsorbable amount of phenol at saturation conditions.

10

20

 K_{d} is the equilibrium phenol concentration when Q = N/2.

The values of N and $K_{\tilde{d}}$ can be determined from a plot 15 of C/Q versus C thus:

 $C/Q = C/N + K_d/N$

where:

the X intercept + $-K_d$ the Y intercept + K_d/N

the K_d value reflects the carbon infinity for phenol. The carbon selected should exhibit a K_d value of at least about 0.001 mg/L. Preferably the K_d value ranges from about .001 to 300 about mg/L. More preferably the K_d value ranges from about 10 to about 150 mg/L. In particularly preferred embodiments, the K_d ranges from about 10 to about 100 mg/L. It is important to optimize the K_d value since the infinity of microorganism phenol, generally indicates as K_s, will generally be less then about 300 gm/L.

In order to optimize interaction between the activated carbon and the biodegradative microorganisms, the K_d of the carbon need to be

35 slightly higher than the K_s of the micro-organism. If the K_d of the carbon is well below that of the micro-organism the carbon will act to tightly bind the

organic substrates from the liquid phase but will not release them at a concentration at which the bacteria will have a high substrate utilization rate. the other hand the $K_{\mbox{\scriptsize d}}$ of the carbon is very large 5 compared to the K_S of the micro-organisms there will be a poor buffering effect on highshock loads of phenol and when the phenol concentration is lower and approaches the $K_{\rm S}$ of the micro-organisms, the carbon will have a poor ability to concentrate phenol at its 10 surface and thus stimulate microbial growth. An effective range of K_s/K_d ratios is between 1:1 and 1:50. The more preferred range is between 1:1 and 1:20. The most preferred range is between 1:1 and 1:10. Ks values and other biomass parameters are 15 discussed in the following publications which are incorporated herein by references (i) D. Orhon et al., "The Effect of Reactor Hydranlics and the Performance of Activated Sludge Systems - I. The Traditional Modelling Approach" Wat. Res Vol 23, No. 20 12 pp. 1511 and 1512 (1989), (ii) Ren Der Yan et al., "Dynamic and Steady State Studies of Phenol biodegradation in Pure and Mixed Cultures", Biotechnology and Bioergineering, vol XVII, see pp. 1211-12 (1975) and (iii) Spectra, Jr., "Sensitivity 25 Analysis of Biodegration/Adsorption Models" Journal of Environmental Engineering, Vol. 116, No. 1 see pp. 32-39 (February 1990).

In particular preferred embodiments of the invention, the activated carbon is selected from wood, 30 charcoal and anthracite coal. Wood charcoal is more preferred since it may have an affinity for phenol which approaches the affinity of phenol-degrading microorganisms currently available, allowing maximization of interaction between the phenol and 35 microorganism.

The porous biomass support system (PBSS) is at least about 5% by weight of activated carbon (based on

the total weight of the carbon and polymer support).

Preferably, the PBSS is from about 5 to about 85% by weight of activated carbon. More preferably, the PBSS is at least about 10% by of activated carbon. Most 5 preferably, the PBSS is about 20 to about 40% by weight of activated carbon. In addition to activated carbin, inert fillers can be employed in the biomass support; however, our biomass system is operable in the absence or substantially absence of fillers. When 10 employed, the filler material is added prior to forming the open-celled foam support.

The microorganisms which are used in the practice of this invention are aerobic microorganisms selected to degrade the pollutants of interest in ways well 15 known to those in the art. Thus, cultures isolated from the pollutant-containing waste streams themselves usually are enriched and subsequently incorporated into the PBSS. Conventional microorganisms used for degration and methods for their selection are broadly 20 known. The PBSS preferably, is prepared by forming the foam in the presence of a suspension of powdered activated carbon and suitable microorganisms. for example, a suitable polyurethane foam precursor can be mixed with an aqueous suspension of powdered 25 activated carbon and aerobic pollutant-degraded microorganisms, often in the presence of blowing or foaming agents such as carbon dioxide or surfactants, generally with vigorous mixing at the beginning of polymerization followed by quiescence of permit good 30 void formation. The foam as produced is then cut into an appropriate particle size and loaded into a bioreactor. The pollutant-containing aqueous feed is pumped through the reactor, generally in an up flow configuration. It is important for a reactor to be 35 aerated to provide the necessary oxygen-rich environment for proper microbial metabolism and pollutant degradation. Oxygen generally is

incorporated along with the feed at the bottom of the reactor, when the reactor is run in an up flow configuration, so as to afford an aqueous stream saturated, or nearly saturated, in oxygen. A minimum 5 dissolved oxygen level of at least 2 mg/L is desirable, and an oxygen level of 5 mg/L or higher is preferably.

The porous biomass supported systems of this invention can be used in any bioreactor: a continuous stirred-tank bioreactor (CSTBR), fixed-bed or pinked-bed bioreactor (PBBR) or fluidized-bed reactor (FBBR).

In a preferred embodiment, the porous biomass support system (PBSS) is employed in a fixed bed 15 bioreactor. In such a reactor, the PBSS is an open-celled hydrophilic foam, e.g. polyurethane foam having entrapped within its pores powdered activated carbon and aerobic pollutant-degrading microorganisms. The microorganisms can be added prior 20 to the polymerization or cross-linking of the foam or thereafter. When added after preparation of the foam, the PBSS is treated or "loaded" with microorganism. The PBSS is loaded by adding microorganisms to the reactors packed with the PBSS, optionally along with 25 organic pollutant, and the reactor contianing supports, microorganisms and pollutant are incubated in a batch mode so that a large population of microorganisms develops within the reactor. A small proportion of these microorganisms will attach to the 30 surface of the PBSS. Fresh medium containing organic pollutant then pumped through the reactor. majority of the unattached microorganisms are removed by the flow of medium through the reactor but the attached microorganisms grow and multiply and in doing 35 so form a firmly attached "bioflim" of microbes and extracellular polymer which entraps more microorganisms within the pores and on the surface of

the PBSS.

The carbon concentrates (as shown by NMR) pollutants on its surface. If the carbon were macroporous with pores of a size to accommodate the 5 microorganisms, and if carbon were of a small particle size with a high surface area, we reasoned that the proximity of microorganisms to the locally high. concentration of adsorbed pollutant would result in their faster ad more complete degradation. 10 afford lower effluent pollutant levels while "protecting" microorganisms from the toxic effects of pollutants. The "immobilization" of bacteria and carbon within the pores of the foam prevents the physical loss of carbon and tends to minimize sludge 15 formation, that is, growth of the microorganisms into the aqueous feed. The PBSS in a fixed bed reactor then provides the high concentration of biomass permitting a relatively low hydraulic retention time.

Stated somewhat differently, at levels above 1-5
20 pmm microorganisms utilize phenol rapidly because of
the high binding constants between the microorganisms
and phenol, but at levels under 1 ppm utilization is
slow and phenol utilization is a lengthy process. The
carbon in our PBSS concentrates phenol in the vicinity
of microorganisms; the local concentration of phenol
as seen by the microorganisms is very high, leading to
higher rates of phenol utilization.

The porous biomass support system of our invention is unique in the way it combines foam,

30 carbon, and microorganisms. The invention as described more fully within combines the aforementioned porous biomass support system in a fixed bed operation to afford low phenol effluent levels at a low hydraulic residence time and with

35 significantly less sludge formation than previously attainable. The invention thus affords advantages of considerable industrial merit not previously

attainable by currently available systems.

The organic pollutants which may be degraded by the use of our invention include phenolic material as a major class. Members of this class include phenol 5 itself, the cresols, resorcinol, catechol, halogenated phenols such as 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 2.4-dichlorophenol, pentachlorophenol, nitrophenols as 2-nitrophenol and 4-nitrophenol and 2, 4 dimethylphenol. Another important class or organic 10 pollutants consists of aromatic hydrocarbons, such as benzene, toluene, the xylenes, ethylbenzene, and so Polynuclear aromatic hydrocarbons are an important subclass as represented by naphthalene, anthracene, chrysene, acenaphthylene, acenaphthene, 15 phenanthrene, fluorene, fluoranthene, naphthacene, and pyrene. More generally, the method within can be applied to streams containing organic pollutants without limitations, so long as they are capable of being degraded by aerobic microorganisms.

The pollutants which are to be biodegraded in the 20 practice of this invention typically are found in aqueous waste streams at industrial manufacturing facilities. For example, phenol is found in waste streams of phenol manufactures, of phenol users as 25 phenol resin producers, of coal tar processing facilities, of wood pulping plants and other facilities practicing delignification. This is not to say that the process can or must be practiced only on such streams. The process which is the invention 30 herein may be practiced on any aqueous feed containing levels of organic pollutants which are to be reduced and which may be greater than that permitted by the environmental protection agency.

The key to our process is the passage of an ³⁵ aqueous feedstock under oxygen rich conditions through a fixed bed reactor of porous biomass support system.

The PBSS which is the core of our invention has three

elements; an open-celled hydrophilic foam, powdered activated carbon having an effective affinity for organics entrapped within the foam, and viable, aerobic, pollutant-degrading microorganisms also 5 entrapped within the interior of the foam. Incorporation of powdered activated carbon within the foam prevents its physical loss in fixed bed reactor operation, obviating the need for periodic replacement or replenishment of carbon, and also facilitates its 10 bioregeneration. It is postulated that the entrapment of microorganisms within the foam, especially in close proximity to the powdered activated carbon, is responsible in part for the low sludge formation accompanying the practice of this invention, and also 15 is responsible in part for the low residual levels of pollutants in the effluent, reasons for which have been stated above in the discussion of our working hypothesis of this invention.

The foam used in the practice of this invention 20 is a particulate open-celled foam to accommodate feed flow in the fixed bed configuration. That is, it is important for the pollutant-containing aqueous feed to flow through the interior of the foam. For the same reasons it is desired that the foam has high 25 macroporosity; foam desirably are at least 2 millimeters, and preferably are on the order of 5-6 millimeters in size. The foam also needs to be resistant to the shear forces and abrasion present in a fixed bed reactor, and should have good crush 30 strength. The foam is desirably semiflexible, with a density of under about 2 pounds per cubic foot for optimum economic feasibility. However, higher density foams, of 4-5 pounds per cubic foot or even higher, are usable. It needs to be realized that foam density 35 is related to the economics of the invention and not to its performance; the invention may be practiced

with a large range of foam density, even if certain

ranges may present distinct economic advantages.

As noted the foam can be prepared in the presence of a suspension of powdered activated carbon and aerobic, pollutant-degrading microorganisms so as to 5 entrap both of the latter within the interior of the When prepared the PBSS contains at least 5 weight percent, and up to about 85 weight percent, preferably not greater than 50 weight percent, of activated carbon on a dry basis. When activated 10 carbon is present at a level under about 5% its effectiveness is reduced to a point where the resulting PBSS is only marginally advantageous. levels above about 50 weight percent incoporation of activated carbon the foam becomes fragile, losing its 15 structural integrity and becoming easily physically damaged. Most often the PBSS when prepared contains: at least about 10 weight percent activated carbon, and usually contains from about 20 up to about 40 weight: percent porous activated carbon. The

The powdered activated carbon has a surface areas 20 at least about 500 m²/g, preferably at least about 700 square meters per gram, and is of a size such that at least 70% of the carbon particles are smaller than about 44 microns, that is, a minimum of 70% pass 25 through a 325 mesh sieve. The powdered activated carbon has as high a pore volume as is practical, at least 0.5 cc/g, typically at least 0.7 cc/g, with as great a porosity as possible contributed maximized the concentration of microorganisms in the immediate 30 proximity of the activated carbon surface. Typical powdered activated carbons used in the practice of this invention have a surface area 700-1000 m²/g, pore volume 0.7-lo cc/g, with 70-100% of the particles under 44 microns in size. Although these correspond 35 to characteristics of commercially available material, our invention per se imposes no such limitations. particular, high surface area carbons, even up to

WO 92/06043 PCT/US91/07436

- 22 -

1500-2000 m^2/g , with as high a pore volume as possible are quite desirable for us in our process.

The pollutant-containing aqueous feed with dissolved oxygen then be passed through the fixed bed 5 of the PBSS. An hydraulic residence time of under about 30 hours, generally less than about 24 hours, and usually no more than about 15 hours, suffices to attain an effluent phenol level of under 0.1 parts per million, usually under 20 parts per billion. 10 particular hydraulic residence time depends upon the amount of phenolic materials in the feedstock, operating temperature, the presence of other materials in the feedstock, operating temperature, the presence of other materials in the feedstock, the density of 15 microorganisms in the fixed bed, and so forth. The low hydraulic residence time is a consequence of both the particular PBSS used and the fixed bed configuration. The low level in the effluent is a consequence of the presence of activated carbon in the 20 particular configuration of the PBSS used. sludge level is a consequence of the particular PBSS in a fixed bed configuration.

The pH of the pollutant-containing feed may need to be adjusted for optimum biodegradation. Nutrients, and especially phosphate and ammonium salts, any need to be provided, but sufficient amounts often are present in the aqueous feed to satisfy minimum requirements of the microorganism.

PBSS of our invention can be used over extended 30 periods of time without replacement or maintenance of any type. It is anticipated that in most cases the initial charge may be used for at least one year and up to perhaps five years before replacement becomes necessary. Throughout this time the reactor should 35 operate with significantly less sludge formation than that from currently available systems, affording important advantages in sludge disposal costs. A

20

comparison of representative levels of sludge production in several biological treatment systems is summarized in the following table, where sludge production is measured per unit reduction of COD 5 (chemical oxygen demand).

SLUDGE PRODUCTION IN BIOLOGICAL TREATMENT SYSTEMS

	System	Sludge Production					
10	(kg dry wt slu	dge/metric ton COD consumed)					
	Aerobic activated sludge	400 - 600 (a)					
	Anaerobic digester	20 - 150 (a)					
	Sybron biotower	200 - 300 (b)					
15	This invention	30 - 100 (b)					

- (a) R.E. Speece, "Anaerobic Biotechnology for Industrial Wastewater Treatment", Environmental Science and Technology, Vol. 17, p416A - 427A, 1987
- (b) Experimental results; cf. Example 8

In practice, the method of our invention can reduce phenol levels to under 0.1 ppm, and generally to under 20 ppb, with sludge formation of no more than 100 kg dry weight sludge, often only 30 kg dry weight sludge, per metric ton total chemical oxygen demand consumed.

30 The following examples are merely illustrations and representative of our invention which is of considerably larger scope. These examples should not be considered limiting in any way.

In the examples and Figures generated therefrom, 35 the materials used for the hydropholic foam is a polyurethane prepolymer (Hypol) having a polyol content greater than 90% (approx. 100%) polyethylene

oxide and an aromatic iso-cyanate contact of less than 15% by weight.

The hydrophobic polyurethane foam (General Foam) has a polyol content of less than 80% by weight 5 (polyol is approximately 50% polyethylene oxide/50% polypropylene oxide and the aromatic isocyanate (toluene disocyanate) content of approximately 25 to 35% Powdered activated carbon is Calgun PAC type WPX.

Example 1: Effective Impregnation of

10 Polyurethane Foams using

Powdered Activated Carbon (PAC)

The effectivness of impregnating polyurethane foams with Powdered activated carbon to enhance the adsorptive capacity of the foam for phenolic

15 pollutants was determined for a hydrophilic polyurethane (hypol) with a low degree of TDI cross-linking, a Polyether diol with ethylene oxide content of greater than 90% and a TDI content of less than 15% by weight and a hydrophobic polyurethane

20 (General Foam) with high degree of cross-linking, a polyether diol with ethylene oxide of less than 80% and a TDI content of approx. 25% to 35% by weight.

The powdered activated carbon was blended with the polyol precursor or prepolymer prior to foaming at a concentration of 20%.

The absorption co-efficient of the polyurethane itself and the polyurethane impregnated with PAC for phenol was determined by the addition of foam block of approx. 3/8 inch cube into a solution of phenol in 30 distilled water. The adsorption co-efficient can then be calculated thus:

adsorption coefficient (A) = gm phenol remaining/ gm water

gm phenol absorbed gm adsorbent

The adsorption coefficients of the umimpregnated and impregnated polyurethanes were determined to be:

- 25 -

Table A

	Foam Type	á constant
5	Hydrophilic Foam	9.0
	Hydrophilic Foam with 20% PAC	74.5
10	Hydrophobic Foam	62.6
	Hydrophobic Foam with 20% PAC	84.4

15

It was unexpectedly found that the hydrophobic foam had a high capacity to adsorb phenol even without the impregnation with PAC. Furthermore the PAC impregnation did not lead to a significantly greater adsorptive capacity for phenol over the non impregnated hydrophobic foam. The Langmuir adsorption curves for the umpregnated and impregnated polyurethane foams were determined to by ploting C/Q versus C to determine N and K_d values for the Langmuir adsorption.

30

- 26 -

Table B

Hydro	lydrophilic		Hydrophilic 20% PAC		Hydrophobic		Hydrophobic 20% PAC	
C	Q	С	Q	C	Q	Ċ	Q	
55	0.0006	3	0.0221	62	0.0040	47	0.005	
103	0.0015	16	0.0496	121	0.0080	87	0.01	
288	0.0029	94	0.0885	291	0.0210	200	0.03	
548	0.0058	490	0.1169	615	0.0390	489	0.05	
2192	0.0254	1484	0.1614	1426	0.0570	959	0.14	
3174	0.0411	2526	0.1939	2770	0.1230	1724	0.22	
3884	0.0488	3374	0.2596	3984	0.2020	2967	0.30	

Plots of Q versus C and semi-reciprocal plots of C/Q
versus C indicate that only the PAC impregnated
hydrophilic polyurethane follows the Langmuir
adsorption curve. A number of different carbons were
evaluated for Langmuir adsorption of phenol. The
following results were obtained:

25

- 27 -

Table C

	Carbon Type	N	K_{d}
5		(gm phenol / gm carbon)	(mg / L)
	Germantown Lampblack	weak, non-langmuir adsorption	-
	Bone Char	Weak, non-Langmuir	••
10	Wood Charcoal	0.2281	90
	Anthracite Coal	0.3305	120

Of the four carbons tested only the wood charcoal and the anthracite coal PACs showed Langmuir type adsorption curves for phenol. The adsorption parameters of the hydrophilic polyurethane impregnated with these carbons were determined to be:

Table D

25	Foam/PAC	H	K	
25		(gm phenol / gm foam/PAC)	(mg / L)	
30	Hydrophilic Foam + 20% Wood Charcoal PAC	0.0266	52	
	Hydrophilic Foam + 20% Anthracite Coal PAC	0.0383	107	
35				

Example: 4 Response of Bioreactors Containing Polyurethane

Foam Supports to Shock Loads of Phenol

The following example shows the unexpected

5 superior performance of hydrophilic polyurethane foam impregnated with activated carbon over conventional hydrophobic polyurethane foam and same foam impregnated with activated carbon with regards to shock loading of bioreactors with phenol. The

10 comparison of the foams is shown in the following Table E

	Time	Phenol Concentration (ppm)					
15	(days)	Inlet Wastewater	Eydrophobic FUF	Hydrophobic PUF + PAC	Hydrophilic PUF + PAC		
	1	105	0.005	0.003	0.013		
20	4	130	0.003	0.002	0.004		
	5	1100	228	278	113		
25	6	1330	4	18	0.021		
25	7	1210	0.009	0.008	0.005		
	8	1300	0.008	0.008	0.005		
30	14	1160	0.121	19	0.189		

The supports were evaluated in glass columns of dimensions 64 cm height x 3.4 cm diameter. The columns were packed with foam blocks of approximately 1 cm³ in size. Phenol containing water was pumped 5 into the bottom of the column and exited from the top. Air was sparged from the bottom of the column using a ceramic sparging stone and exited the reactor from the top also. The flow rate of water through the reactors was such that the hydraulic residence time 10 was 12 hours. Phenol levvels in the effluent from the reactors was determined by colorimetric assay.

The results from this study (Fig. 8) showed that the carbon impregnated hydrophilic foam supports enabled the bioreactor to produce an effluent of significantly lower phenol concentration when compared to the bioreactors employing hydrophobic foam or hydrophobic foam impregnated with activated carbon. There was in fact little difference between the reactor with hydrophobic foam only and the reactor containing carbon-impregnated foam.

Example 5: Total Phenolics Removal from Coal Tar ProcessingWastewater using bioreactors with Polyurethane Foam Supports

The following example unexpectedly shows the superior performance of carbon impregnated hydrophilic foam used as a support in bioreactors for the removal of total phenolics foam without carbon. Twenty gallon glass tanks were used as bioreactors. The tanks were 30 filled with foam blocks of approximately 1 cubic inch in size. The packed bed reactor was sparged with air by means of perforated tubing that ran across the bottom of the tanks. Wastewater from a coal tar processing plant, containing a multitude of phenolic 35 and other aromatic pollutants, was fed to the bioreactor as such a rate that the hydraulic residence time was approximately 24 hours. The following results were obtained:

WO 92/06043 PCT/US91/07436

- 30 -

TABLE F

		•				
5	Time	Total Phenolics Concentration (ppm)				
	(days)	Inlet Wastewater	Hydrophilic PUF	Hydrophilic PUF + PAC		
	1	750	4.8	1.5		
10	4	600	25.0	5.0		
	11	700	6.0	2.4		
	22	475	5.0	1.2		
15	27	550	6.0	1.6		

The results (Fig. 9) show that the bioreactor that employed the carbon impregnated hydrophilic polyurethane supports produced an effluent with a significantly lower level of total phenolics compared to the bioreactor that used hydrophilic foam that was not impregnated with carbon.

The removal of specific aromatic pollutants by the bioreactors was determined using solid phase extraction and GC/MS. The following results were obtained:

WO 92/06043 PCT/US91/07436

- 31 -

TABLE G

Time (days)		Concentration (ppb)				
		Eydroph	ilic PUF	Hydr	ophilic 1	PUF + PAC
	Phenol	2,4- Dimethyl Phenol	Naphthalene	Phenol	2,4- Dimethyl Phenol	Naphthalene L
1	14	171	59	20	18	13
4	7,711	590	660	19	98	12
11	43	257	438	13	32	64
22	12	140	81.	47	3	2
27	32	165	134	20	3	4

20

The results (Fig. 10) show that the bioreactor 25 that employs the hydrophilic polyurethane foam impregnated with carbon produces an effluent that is lower in substituted phenol and napthalene as well as phenol compared to the foam without carbon addition.

30

EXAMPLE 6

Preparation of the Porous Blomass Support System.

A. Preparation of bacterial cluture. To prepare bacterial inoculum adapted to the waste stream that is 35 to be treated, enrichment cultures were set up by adding to samples of the waste stream 100 mg/L ammonium sulfate and 25 mg/L of sodium phosphate

followed by adjustment of pH to 7.0. One hundred mL portions of the foregoing sample were dispensed into 250 mL flasks and inoculated with soil or sludge, then incubated at 25°C on a rotary shaker (250 rpm) for 7 days. At this time 1 mL subcultures were dispensed into new wastewater samples and incubated for another 7 days. Cultures were then maintained under these conditions prior to foam manufacutre.

B. Foam Preparation. The polyurethane used to manufacture the biofoam was a toluene diisocyanate polyether prepolymer supplied by W.R. Grace under the trade name Hypol. Foaming occurs upon reaction with water, and the pore structure of foam can be altered by the addition of surfactants as well as auxiliary blowing agents such as chlorofluorocarbons or exogenuous carbon dioxide to afford interconnected pores of at least 2 millimeter size. The following procedure is typical.

Five gallons (50 lbs) of polyurethane prepolymer 20 (HYPOL 2000) was added to a mixing vessel of approximately 100 gallons capacity. Twenty-five pounds of activated carbon (Calgon PAC type WPX), 2 mL of tween 80 surfactant, and 20 grams of sodium bicarbonate were mixed with the HYPOL 2000 to make a 25 homogenuous prepolymer/carbon/additive mixture using a high torque mechanical mixer. A homogenuous mixture is indicated when the material has a wet "sheen" appearance. Two mL of Tween 80 and 10 mL of glacial acetic acid were added to 5 gals. of bacterial cluture 30 (optical density at 600 nm approx. 0.2). bacterial culture then was added to the polyurethane prepolymer/carbon mixture in the mixing vessel and mixed rapidly with the high torque mechanical mixer. At first, the mixture was very viscous but rapidly 35 lost its viscosity and was easily mixed. degree of crosslinking increased, the material once

again began to become viscous. At this stage it is

very important to stop mechanically mixing the solution and allow the foaming to proceed. The sodium bicarbonate and the glacial acetic acid neutralize each other and in the process generate exogenuous 5 carbon dioxide. This extra gas formation added with that generated from the HYPOL crosslinking reactions leads to large and interconnected pores in the The presence of the Tween 80 amplifies this effect by decreasing interfacial surface tension and 10 promoting foam formation. The foam was usually alllowed to cure for 10 to 20 minutes before it was cut up into blocks or shredded in a fitzmill comminuting machine to produce biofoam blocks of the The total volume of biofoam produced desired size. 15 from this quantity of prepolymer and bacterial cluture and produced under the above conditions was between 80 and 100 gallons.

EXAMPLE 7

Preparation, Operation, and Performance 20 Characteristics of Fixed Bed Reactors. Four glass reactors were used as fixed bed reactors with different packing material as described in table 1. Fixed bed reactirs using a bed of biofoam of this 25 invention is referred to as an immobilized cell bioreactor (ICB). Each bench scale fixed bed reactor consisted of a glass column of approximately 580 ml total capacity 64 cm high and 3.4 cm internal The reactor volume occupied by water and 30 foam was approximately 480 ml. The biofoam in the reactors consisted of irregular 3/8" cubic blocks with the bed held in the reactor by means of 1/14" wire mesh screens 53 cm apart. Biofoam volume in the reactor was approximately 350 ml with an internal void 35 volume of 260 ml. The interstitial water volume between the biofoam blocks was approximately 130 ml. Reactors were operated in a cocurrent upflow mode,

35

i.e., both air and water flowing from the bottom to the top of the reactor, unless otherwise indicated. Compressed air (40 psig) was used to aerate the column throug a sintered glass sparger located at the bottom of the column. A gas regulator was used to regulate the aeration rate through the sparger at a level between 4 and 12 L/hr. Wastewater was pumped from a 4 liter feed reservoir to the bottom of the reactor with a Masterflex peristaltic pump. Typical wastewater flows through the reactor ranged from 0.25 to 0.8 ml/min. The effluent from the columns was collected in another 4 liter reservoir. Both the feed and effluent reservoirs were placed in ice baths. The ambient temperature of the columns was approximately 25°C.

TABLE 1

_	Reactor	Packing/Catalyst	Flowpath
20	#1	Polypropylene discs, cells allowed to colonize surface (natural biofilm developed).	Upflow
25	#2	P-1 cells ^a entrapped in polyurethane foam (5g of HYPOL 3000 with 100 mL of P-1 culture	Upflow
30	#3	P-1 in foam with activated carbon (5g of HYPOL 3000, 25g of ATOCHEM 830 DC ^b and 100 mL of P-1 culture).	Upflow
	#4	P-1 in foam with activated carbon as for #3.	Downflow

a. Yeast cells enriched as described in Example 1 from hydrocarbon contaminated soil sample from Des Plaines, IL.

b. Powdered activated carbon from Atochem Co.

- 35 -

In each case the feed consisted of an aqueous solution containing 0.1 g/L dibasic potassium phosphate, 0.5 g/L ammonium sulfate, 0.1 g/L magnesium sulfate, 0.05 g/L calcium chloride, 0.01 g/L yeast 5 extract, and 500 mg/L phenol. The phenol present in the effluent from the columns was analyzed by solid phase extraction with cyclohexyl columns supplied by Analytichem Co. by the 4-aminoantipyrine assay (R.D. Yang and A.E. Humphrey, Biotech. and Bioeng., 17, 10 1211-35 (1975)). Suspended solids in the reactor effluents were determined by measuring the optical density at 600 nm. The columns were operated at a liquid hourly space velocity between 0.03 and 0.12 hrs-1 for a total period of 116 days at an aeration 15 rate (air introduced at bottom of reactor of 12 liters per hour and an average temperature of 25°C. Results are tabulated in the following tables.

The results in Tables 2-4 will be better a]]recoated of it is understtod that both the 20 particular microbial species present in the reactors and their population are varying through the course of experimentation. With time the microorgansims adapt to the waste stream via natural selection, and the adaptation itself may depend, iter alia, on flow rate 25 (LHSV). The p pulation mix and number means that a steady state may not have been achieved at all flow rates during the courses of experimentation. since low flow rates were chronologically the earliest experiments it is unlikely that a steady state was 30 achieved at an LHSV of 0.03 hr -1 during the period of sampling. The chief consequence is that comparisons, even within the same reactor, of results at different LHSV are ambiguous.

TABLE 2

TABLE 2.	Effluent Phenol Concentrations in
	Immobilized Whole Cell Reactors

5	LHSV, ^a hr ⁻¹	Effluent Phenoi Concentration (µg/L)			
		Reactor #1	Reactor #2	Reactor #3	Reactor #4
10	0.03	73 ± 31	72 ± 40	31 ± 21	31 ± 11
	0.08	44±9	45±8	24 ± 12	29± 13
	0.09	40± 16	33±4	18± 6	b
15	0.12	23 ± 8	24±3	12±5	b

a. LHSV = liquid hourly space velocity. Hydraulic retention time (HRT) and LHSV are reciprocals, i.e., HRT = (1/LHSV)

TABLE 3

TABLE 3.	Effuent Suspended Solids in Immobilized
	Whole Cell Reactors

25	hr ⁻¹				
	· · · ·	Reactor #1	Reactor #2	Reactor #3	Reactor #4
	0.03	0.190 ± 0.080	0.030 ± 0.015	0.046± 0.020	0.021 ± 0.010
3.0	0.0B	0.102± 0.064	0.062± 0.012	0.029 ± 0.020	0.022 ± 0.020
	0.09	0.064± 0.041	0.052± 0.041	0.040 ± 0.012	b
	0.12	0.106 ± 0.091	0.048± 0.018	0.073 ± 0.034	<u> </u>
35		•		,	

a. LHSV = liquid hourly space velocity. Hydraulic retention time (HRT) and LHSV are reciprocals, i.e., HRT = (1/LHSV)

b. Reactor #4 plugged

b. Reactor #4 plugged

Table 2 shows that at all HRT's the combination of foam having entrapped carbon andmicrooganisms afforded significantly lower phenol effluent levels than the other fixed bed reactors (#1 and #2), especially in 5 achieving phenol effluent levels of 20 ppb and under. The data in Table 3 show that sludge formation, as measured by suspended soluids from our PBSS-packed reactors, was substantially less than that from prior art reactor #1, with reductions ranging from 32 to 76 percent. This comparison becomes even more favorable when it is realized that reactor #3 simultaneuously produces lower sludge formation and lower phenol effluent levels than does reactor #1.

15

20

25

30

- 38 -

TABLE 4

Effluent Phenoi Levels from immobilized
Cell Reactors

5	DAYS	LHSV, hr ⁻¹	EFFLUENT PHENOL CONCENTRATION (# g/L)			
			Reactor #1	Reactor #2	Reactor #3	Reactor #4
	6	0.03	101	110	82	
10	7	•	137	171	44	-
	11		77 .	73	30	45
	12	•	70	58	22	27
	13	• .	47	47	25	24
	14	•	59	68	25	29
15	22	•	32	41	15	32
	25	•	. 61	44	20	16
	29	0.06	43	36	13	27
	33	•	47	47	24	19
	50	•	58	58	26	22
20	55	•	48	50	22	23
	58 ·	•	40	46	21	22
	62	•	30	38	15	23
	65	•	47	49	29	18
	68	•	32	36	12 ·	28
25	75	0.09	35	30		**
	79	•	21	28	13	**
	83	•	64	34	12	** .
	85	•	33	38	17	**
	88	•	45	34	24	**
30	99	0.12	27		23	••
	103	•	27	26	16	**
	106	•	27 27	24	17	**
	116	•		25	5	**
-			12	19	11	**

^{3 ** -} Reactor #4 plugged

- 39 -

The foregoing data show that tere is no significant difference between performance of the naturally immobilized cell reactor (i.e., where the cell are attached on the polypropylene surface) and 5 cells immobilized in polypropylene surface) and cells immpbilized in polyurethane foam as regards effluent phenol levels, nevertheless there is lower sludge formation, as measured by lower suspended solids in the effluent, from the foam immobilized reactor compared to the biofilm reactor. However, the presence of activated carbon appears to have a significant and dramatic effect upon the level of phenol present in the reactor effluent, permitting phenol levels at or below 20 ppb.

15

EXAMPLE 8

Pilot Plant Operation. A scaled up version of reactors 3 and 4 of the foregoing example was used to process a slip stream of industrail wastewater at a 20 coal tar processing plant. The reactor was 14 feet high with an inside diameter of 12.4 inches. Foam prepared as above but contianing approximately 33 weight percent powdered activated carbon was cut into cubes approximately 1 inch per side ans was used to 25 pack the reactor along with air passed through a sparging tube. After an extensive shakedown period during which the effect of various independent variable supon system orperating performance was evaluated, the unit was operated at what was 30 determined to be its optimum point forphenol removeal from the feedstock. This corresponded to a feed flow rate of 0.1 gallon per minute, or HRT of 15 hours, and an air flow of 1.15 SFCM.

The pilot plant was operated concurrently with a 35 Leopold Upflow BioTower from Sybron Inc. which profcessed the industrial waste water from which the slip stream to the pilort plant was drawn. The

- 40 -

Bio-Tower was operated under conditions determined to be its optimum for phenol removal, which included an HRT of about 15 hours. The concurrent operation permitted a comparison of operational characteristics between the two units, some of which are summarized in the following tables.

The standard analytical test method for phenols using 4-aminoantipyrine (4-AAP) does not discriminate among individual phenolic components and also has been 10 found to be subject to interference by many non-phenolic materials, such as aromatic hydrocarbons. In contrast, gas chromatographic analysis using a mass selective detector is both more sentsitive and discriminatory than the 4-AAP method, affording more reliable data.

20

25

5

- 41 -

TABLE 5

GC/MSD Analysis of Phenolics in Wastewater Feed and in Bio-Tower and Pilot Plant Effluents^a

-	Sample No.	Component	Concentration (µg/L)		
10			Wastewater	ICB Pilot <u>Plan</u> t	Sybron Bio-Tower
	1	phenol	393,000	14	11
		o-cresol	40,000	31	8
		m,p-cresol	62,000	7	28
		2,4-dimethyl phenol	6,000	9	36
15		Phenolics by 4-AAPb	800,000	1,100	1,500
	2	phenol	541,000	28	O.E.
		o-cresol	42,000	25 31	25
20		m,p-cresol	70,000		201
		2,4-dimethyl phenol	5,800	10 11	996 241
		Phenolics by 4-AAP	950,000	900	4,400
25					
	3	phenol	1,408,333	12	3,907
		2,4 dimethyl phenol	17,545	96	37
3.0		TSS (mg/L)	59	208	1113
30					
	4	phenol	339,024	6	801
		2,4-dimethyl phenol	2,665	9	208
		TSS (mg/L)	55	189	760

³⁵

- a. GC/MSD stands for gas chromatographic analysis with mass selective detector.
- b. 4-Aminoantipyrine analysis.

TABLE 6

Table 6 summarizes analytical results from a commercial environmental laboratory.

5

TABLE 6. Analytical Results from Independent Laboratory^a

10	Pollutants	<u>Feed</u> b	Pilot Plant ^b <u>Effluent</u>	Bio-Tower ^b <u>Effluent</u>
15	2,4-DIMETHYLPHENOL PHENOL ACENAPHTHENE ACENAPHTHLENE FLUORANTHENE NAPHTHALENE PHENANTHRENE	880 240000 620 122 130 5000 350	<100 <100 <100 420 <100 <100	130 <100 340 <100 <100 260 <100
20		<400	<100	<100

a. Kemron Environmental Services, (109 Starlite Park, Marietta, Ohio 45715)

25

The foregoing data show that the method which is 30 our invnetion is at least as efficient as a current commercial process, and is in fact even more efficient in removeal of some non-regulated phenolic materials such as the cresols and, especially,

2,4-dimethylphenol. In particular, it appears to more 35 consistently reduce them to a level under the achieved by the comparison process. In addition, the ICB produced less than 25% of the sludge produced by the

b. All units are micrograms per liter (μ g/L). Detection Limits are: feed = 400; effluent = 100.

comparison process.

The waste water also contained aromatic hydrocarbons as pollutants, and Table 7 shows that our method is as efficient as the commercial comparison 5 process in the removal of these materials as well.

TABLE 7
Purge and Trap GC/FID Analysis of Benzene and Toluene.^a

10 _	Run			Concentratio	n (mass-pp	b)	
		Influent Wastewater		Pilot Plan	nt Effluent	Bio-Tower Effluent	
		Benzene	<u>Toluene</u>	Benzene	<u>Toluene</u>	Benzene	Toluene
15	1	3,800	2,400	25	10	35	10
	2	6,200	4,100	35	14	26	8
	3	4,800	1,600	12	6		_

a. GC/FID stands for gas chromatograph with flame ionization detector.

EXAMPLE 9

Laboratory Performance with Industrial Waste
Water. A glass reactor as described in Example 7 used
25 as a fixed bed the porous biomass system of Example 1
containing 33 weight percent powdered activated
carbon. The microorganisms entrapped in the biofoam
were enrichement cultures drom the wastewater and soil
at the site prepared as described in Example 6. The
30 reactors (ICB) were operated at a hydraulic retention
time of 24 hours using a sample of industrial waste
water from a phenol production plant. For comparison,
effluent of the same waste water treated with
activated sludege for 120 hours is also shown. Table
35 8 shows that both benzene and pheol are degreaded
almost completely immediately upon operation of the
unit. A second trial afforded similar results. Table

- 44 -

9 shows the effect of hydraulic retention time on phenol breakthrough, and shows similar phenol degradation at hydraulic retention times as low as about 8 hours. As previously noted the penolic assay 5 by 4-aminoantipyrine is subject to interfacence by a nyriad of substances, including aromatic hydrocarbons, which are likely to be found in the waste waters. Therefore the results of they analysis in this table are to be used solely to indicate a ttrend rather than 10 for absolute purposes. In contrast, Table 10 affords an analytical result as obtained via GC/MSD analysis in which the effect of interfering substances has been removed and which gives much more reliable analysis then the 4-AAP method. Among other things, Tab;e 10 15 shows the normous reduction in sludge production by the methood of this invention relative to that of a typical retention basin Finally, Table 11 shows more complete analytical data for effluent, from which it can be concluded that our reactor affords more 20 complete degradation of most organic pollutants in 24 hours than does activated sludge in a retentikon basin in 120 hours.

25

5

TABLE 8

Immobilized Whole Cell Reactor Treatment of an Industrial Waste VT-633. Additional Phenol and Benzene Added.

				
Time (hours) ^d		23.8	30.3	47.3
10				
Influent Benzene Conc. (ppb)	2	644.0	3200.0	920.0
incremental Total Benzene Li	paded (µg)	621.3	294.4	220.8
Incremental Total Effluent Be	nzene (μg) ^b	< 0.5	< 0.2	< 0.5
5 Total Trapped Benzene in air	(4 g)	3.0	0.8	. 1.7
% Benzene Degraded	>	99.4	> 99.7	> 99.0
Influent Phenolics Conc. (ppr	n) ^a	141.6	144.8	135.3
Effluent Phenol Conc. (ppm)	·	omdi ^C	bmdl ^C	bmdi ^C
0 % Phenol Degraded	>	99.5	> 99.5	> 99.5

- a. Total phenolics by 4-AAP assay.
- b. Minimum detection limits: phenol .2 ppm by 4-AAP assay; benzene, 2 parts per billion by purge and trap gas chromatography with flame ionization detector.
 - c. bmdl = below minimum detection limit.

d. Time from startup.

				TABLE	9	
5	% Phenol Degraded:	Effluent Phenol Conc.(ppm):	Influent Total Phonolics Conc.(ppm):	um7 (hr/col):	Lapard Time (hrs):	Accumulative Time (hrs):
15	97.0	2.0	64.7	7.15	% .25	% .25
·	91.9	35	43.0	ä	26.00	52.25
20	9.9	3.7	45.9	23.3	25.00	71.8
25	72.1	.	45.7	11.	79.00	195.25
	2.	\$	5.2	11.0	10.50	123.73
30	2	.	6 5.5	10.4	26.33	150.08
	2.1		45.7		23.88	173.08
35	2.7	3.7	50.6	0.6	3.8	198.08
	3	5	7.7	7.2	% .8	224.00

Immobilized Whole Cell Reactor Treatment of an Industrial Waste VT-633.

بمسين

- 47 -

TABLE 10

5

 Analysis of Untreated, ICB Treated and Activated Sludge Treated Wastewater

-	Component Concentration (ppb)			
10.	Component	Untreated	ICB	Activated Sludge
	Acetone	1,350,000	100,000	850,000
	Phenol	35,000	10	10
15	Benzene	350	20	20
•	ICB	- 24 hr retenti	on time	
		- 0.58 mg. slu	idge/liter effluent	1
20				
	Activated Sludge	- 120 hr. retention time		
		- 1.75 mg slu	dge/liter effluent	
25				
<i></i>				

30

35

BNSDOCID: <WO_____9206043A1_I_>

- 48 -

TABLE 11. Water Analyses Results, ppb

	Compound	ICB Reactor	Active Sludge
5	Acetone	100,000	850,000
	Benzene	20	20
	Butanone	<10	200
10	Pentanone	<10	300
10	Chloroform	300	200
	Epoxy ketone	600	. 3000
	Diacetone alcohol	350	1700
15	Cg ketone?	2000	4000
	Methyl cyclohexenone	700	3500
	Dimethyl phenyl carbinol	60,000	200,000
	Acetophenone	<10	10,000
20	Acetyl cyclohexanone	300	3500
	Unknown M. W. 126	100	75
	Phenol	10	10

25

Section 2 For the section of

y = 5.5

- 49 -

EXAMPLE 10

Comparison of Reactor Configuratikon on Sludge Production. A model wastewater feed (described in 5 Example 7) was treated in three bench scale reactors. Two were 500 ml New Brunswich glass fermenters that were continuously mixed with a mechanical stirrer. One of these fermentors were continuously mixed with a mechanical stirrer. One of these fermentros were 10 operated as a chemostat in which the wastewater was pumped through with ahydraulic retentikon time of 33 In this reactor in the effluent. A second mixed reactor was filled with approximately 200 ml of biofoam and operated similarly. The third reactor 15 consisted of a 500 mil ICB bench scale reactor, as described in Example 1, using as a fixed bed the same biofoam as used in the foregoing second mixed reactor. This reactor was operated with a hydraulic retention time of 12.5 hours. The ICB reactor 20 produced both lower sludge and better phenol removal efficiency then either of the mixed reactors, as shown in Table 12.

25

30

35

BNSDOCID: <WO_____9206043A1_i_>

- 50 -

Table 12. Sludge Formation in Various Reactors

	Reactor	HAT (hrs)	Effluent Phenol ^C (4 g/L)	Sludge ^C	
5				OD 600 nm ⁸	TSS (mg/L) ^D
5	Continuous Stirred Tank Reactor (CSTR)	33	820	0.45	680
	CSTR + Biofoam	33	62	0.36	606
.0	ICB	13	19	0.07	96

- a. Siudge as measured by turbidity; optional density at 600 nm.
- b. Total suspended solids.
- c. Measurements taken after 1 void volume for the CSTR reactors, and after 33 hours for the ICB. None represent steady state conditions.

15

These data clearly and unambiguously show a substantial, quite significant reduction in sludge production using our biofoam in a fixed bed reactor.

20

25

WHAT IS CLAIMED IS

- 1. A biomass support system comprising a hydrophilic polyurethane foam and activated carbon.
- 2. The support system of claim 1 wherein hydrophilic 5 polyurethane foam is prepared from a polyisocyanate compound and a polyol wherein at least 80% by weight of the polyol content is polyethylene oxide.
 - 3. The support system of claim 2 wherein the polyol is at least 90% by weight polyethylene oxide.
- 10 4. The support system of claim 3 wherein the polyol content is greater than about 99% by weight polyethylene axide.
- 5. The support system of claim 2 wherein the polyisocyanate component contains from about 1 to less than about 25% by weight aromatic isocyanate.
 - 6. The support system of claim 3 wherein the aromatic isocyanate content ranges from about 1 to less 20% by weight.
- 7. The support system of claim 4 wherein the aromatic 15% by weight.
 - 8. The support system of claim 1 wherein said activated carbon is selected from wood charcoal and anthracite coal.
- 9. The support system of claim 8 wherein the activated carbon is wood charcoal.
 - 10. The support system of claim 1 wherein said activated charcoal has a K_d value ranging from about 0.001 mg/L to about 300 mg/L.
- 11. A porous biomass support comprising (i) a hydrophilic polyurethane foam, (ii) activated carbon and (iii) a phenolic degrading microorganisms; said activated carbon and microorganisms having K_d and K_s values in order that the K_s/K_d ratio is between about 1:1 and about 1:50.

12. A method for the aerobic biodegration of phenolic materials in aqueous streams to a level under 0.1 parts per million in a period of no more than 30 hours comprising flowing an aqueous materials in the presence of 5 oxygen through a fixed mass of the porous biomass support system of claim 1.

10

15

20

25

30

Figure 1. Adsorption Curves for Foams and Carbon Impregnated Foams

20% PAC In Foam

Figure 2. Adsorption Curves for Hydrophilic Foam & Carbon Impregnated Foam

20% PAC In Foam

Figure 3. Adsorption Curves for Hydrophobic Foam and Carbon Impregnated Foam

3/12

-*- Hydrophobic Foam

20% PAC In Foam

ف

Figure 5

FIGURE 5a. CPMAS C-13 NMR OF HYPOL FOAM.
FIGURE 5b. CPMAS C-13 NMR OF CENERAL FOAM.

CPMAS OF HYPOL FOAM

Figure 7
Summary From C-13 NMR Results

Figure 8. Response of Bioreactors Containing PUF Supports to Shock Loads of Phenol

Figure 9. Total Phenolics Removal by Bioreactors using Polyurethane Foam Supports

Coal Tar Proceeding Plant Wastewater

Figure 10. Aromatic Pollutant Removal by Reactors Using Polyurethane Foam Supports

Coal Tar Processing Plant Wastewater

11/12

12/12

PCT/US 91/07436

International Application No

I. CLASSI	FICATION OF SUBJ	ECT MATTER (if several classification s	ymbols apply, indicate all)6		
According	to International Patent	t Classification (IPC) or to both National C	lassification and IPC		
Int.Cl	. 5 CO2F3/10	; C08G18/48			
1					
II. FIELDS	SEARCHED				
		Minimum Docume	entation Searched?		
Classificat	tion System		Classification Symbols		
Int.Cl	. 5	C02F; C08G			
Ì				•	
	·	Documentation Searched other	than Minimum Documentation		
		to the Extent that such Documents a	are Included in the Fields Searched*		
1		•			
III. DOCU		ED TO BE RELEVANT ⁹			
Category a	Citation of Do	ocument, ¹¹ with indication, where appropria	ate, of the relevant passages 12	Relevant to Claim No.13	
		(DAVED) 7 to	. 1005	1 5 6 9	
Х		150 747 (BAYER) 7 Augus e 79; claim 1	t 1985	1,5,6,8	
	see page	e 23, line 12 - line 26			
	see page	e 24, line 23 - page 25	, line 7		
	see page	e 33, line 11 - line 25	•	·	
		e 43 - page 46, line 3			
	see page	e 64; example 7		2-4, 11,	
Α				12	
P,X		011 970 (ALLIED-SIGNAL	INC.) 18 October	1,8,12	
	1990				
		n the application e 56; claims 1,6			
	see page	20, line 13 - page 21	. line 17		
	see page	e 25, line 28 — page 26	, line 31		
_	see page	e 28, line 35 — page 29	, line 21	0 7 11	
Α				2-7,11	
-			-/		
•	•		,		
° Special	categories of cited doc	uments:10	T later document published after th		
"A" document defining the general state of the art which is not cited to understand the principle or theory underlying the					
E" ear	lier document but publi	shed on or after the international	invention X document of particular relevances	the claimed invention	
	ng date oment which may throw	v doubts on priority claim(s) or	cannot be considered novel or cal involve an inventive step	anot be considered to	
whi		the publication date of another	"Y" document of particular relevance; cannot be considered to involve a		
"O" doc	sument referring to an o	oral disclosure, use, exhibition or	document is combined with one o	r more other such docu-	
"P" doc	other means ments, such combination being obvious to a person skilled in the art.				
late	er than the priority date	: dzined	"&" document member of the same pa	itent family	
IV. CERTIFICATION					
Date of the	te of the Actual Completion of the International Search Date of Mailing of this International Search Report				
	03 MA	ARCH 1992	1 1, 03, 52		
Y-A	I Sanakin - Amstania		Signature of Authorized Office		
anternationa	Searching Authority	N DATENT OFFICE	Signature of Authorized Officer TEPLY J.	TO 01	
	EURUPEA	IN PATENT OFFICE	iller o.	WY	
			<u> </u>		

Form PCT/ISA/210 (second sheet) (Jazzary 1985)

III. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
Category o	Citation of Document, with Indication, where appropriate, of the relevant passages	Relevant to Claim No.
A	US,A,3 781 231 (MINNESOTA MINING AND MANUFACTURING COMPANY) 25 December 1973 see column 8; claims 1,2 see column 6, line 10 - line 20	1-4
	see column 6, line 10 - line 20	
	···································	·
	·	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US 9107436 SA 53794

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 03/03/92

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP-A-0150747	07-08-85	DE-A- CA-A- JP-A- US-A-	3402697 1249674 60172399 4576718	01-08-85 31-01-89 05-09-85 18-03-86
WO-A-9011970	18-10-90	US-A- CA-A- EP-A-	4983299 2014030 0467969	08-01-91 10-10-90 29-01-92
US-A-3781231	25 - 12-73	None		

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

BNSDOCID: <WO_____9206043A1_I_>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

M BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.