Math 243

$$(0, 0, 1)$$
 $(2, 3, 0)$ $(0, 0, 1)$ $(3, 2, 5)$
 $(2, 3, 0)$
 $(2, 3, 0)$
 $(2, 3, 0)$
 $(3, 2, 5)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$
 $(3, 0, 1)$

7 2 | R x V2 |=

 $\int \cos x \, dx = \sinh x + C$ (tanx dx = 6 SJoshitchich with $\int_{X} \left[f(g(x)) \right] = f'(g(x)) \cdot g'(x)$) f(g(x)) g(x) dx = f(g(x)) + C let a= g(x) (>) (f(w) du du= 3(x)dx = f (a) +C $\int \{an x dx = \int \frac{\cos x}{\cos x} dx = \int -\frac{1}{u} du$ Int w= cosx = - In/u/+C du=-shrdr - In/ cosx1 +C Secx + C

$$\int \frac{1}{x^2} dx = \frac{1}{4} \int \frac{1}{x^2} dx = \frac{$$

Gel Roduet Role Dx [f(x).g(x)] = f(x) g(x) + f(x).g'(x) (() 3 + f. 3) Dx = f. 5 + C (1/3 dx + (1.9)dx = 1.8 St. 3 dx = f.s - St. g dx 160; 5'(x) x = f(x) 5(x) - (g(x). f(x) dx Jule great lut u = f(x) dx 90=2(x)gx Integral 12= 2(x) Sudo = no - Sodu

bshitchich: Stays (a) dx let u= g(x)

x=a-) u= g(x)

x=b-) u= g(b)

u=g(x)) \$ (w) & u x=4 6, (PI # 1,0) let u= 100 200 -> du= -2 5h70 dv = e-0 do -> v = -e-0)=- e 008 St - S (e-& SILV St 96 u= sh 20 -> du= 20020 dv= e-060 -> v= -e-0 COS ZU 2) - e-+ sinzer + 2 (e-+ cos 26 de (

) (x2+92) gx = (x2+a2) (x2+ (x2+a2) dx (wdv= (vv) - Svdv let n= (x2 + a2) -> du = n (x7 + a2) . 2x dx $dv = dx - \sqrt{v = x}$ (x2+2)dx = x (x2+2) - 20 x2 (x2+02) dy Screen $\begin{cases} \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 + 2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) d\chi = 5 \chi^2 \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) \chi^2 \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) \chi^2 \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right) \chi^2 \\ \chi^2 \left(\chi^2 + \alpha^3 \right$

 $\int (x^2 + a^2)^N dx = \int (x^2 + a^2)(x^2 + a^2)^N dx$ J(x2+a2) dx =) x (x +a) dx + a (x +a) dx four 2000e / they are ogus $\int (x^2 + a^2)^n dx = \chi (x^2 + a^2)^n - z_n \int \chi^2 (x^2 + a^2)^n dy$ $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x} \right) dx = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x} \right) - \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x} \right) dx$ $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x} \right) dx = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x} \right) dx$ $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x} \right) dx = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial x} \right) dx$ Finisho G.2 Triegpls (7) Substitution. 12 hrow tris identifies.

Sin'x cox dx = Sundu = filish. let a = sinx du = cosxdx Sh(cos probs ex sh x cos x (D) (O) X (3 000) -> PM OA OR CO) X -) OSR COSX = 1-31/5X -) let u = silvx (Px) (Sh'x cos}x dx =)Sh'x (cos) cosxdx = \ SIL'X ((- SIL'X) COSXXX let w = shx dw= cosx dx (2) SIN X 15 000 $\frac{1}{2} \int \frac{\partial u}{\partial x} dx = \frac{1}{2} \int \frac{\partial u}{\partial x} dx = \frac{1}{2} \int \frac{\partial u}{\partial x} dx$

16 (tan & (2 seco) sec & de 32) tant sec o de 32 Start Sect (Sections do) lit u= sect cose
du= sect fano do 32 Sold (Sector) sector (Sectore do) 32) (12-1) 12 du = Fruish 6