STK1110 Høsten 2021

Innledning til hypotesetesting

Tilsvarer Avsnitt 9.1

Ingrid Hobæk Haff Matematisk institutt Universitetet i Oslo

Eksempel

- Et farmasøytisk firma vil undersøke om en ny salve mot eksem er bedre enn den gamle.
- 100 pasienter med eksem på begge hendene blir med på et forsøk.
- Hver pasient får ved loddtrekning den nye salven på en hånd og den gamle salven på den andre hånden.
- Etter 3 uker avgjør legen hvilken av de to hendene som er best, og en teller opp antall pasienter for hvem den nye salven ga best resultat.

Eksempel (forts.)

- La oss si at den nye salven ga best resultat for 60 av pasientene.
- Kan det farmasøytiske firmaet med rimelig grad av sikkerhet konkludere med at den nye salven er bedre enn den gamle?
- For å kunne avgjøre det, må vi:
 - anta en statistisk modell
 - formulere problemet som utsagn/hypoteser om en parameter i modellen
- Vi gjør det da til et hypotesetestingsproblem.

Hypotesetesting

- I en statistisk hypotesetest tester en én hypotese mot en annen.
- Nullhypotesen H₀ er det utsagnet som i utgangspunktet antas å være sant, mens den alternative hypotesen H_a motsier H₀.
- Dersom dataene gir sterke indikasjoner om at H_0 ikke er sann, forkaster en denne til fordel for alternativet H_a .
- En kan da med rimelig grad av sikkerhet konkludere med at H_a er sann.

Hypotesetesting

- En **statistisk test** er en regel for når vi skal forkaste H_0 .
- Den består i å spesifisere:
 - en testobservator, som er en stokastisk variabel en baserer testen på.
 - 2 et **forkastningsområde**, som er verdiene av testobservatoren en skal forkaste H_0 for.

Eksempel (forts.)

- La X være antall pasienter som den nye salven har fungert best for.
- I det konkrete forsøket fikk X verdien 60, men hvis en hadde gjentatt forsøket ville nok X ha fått en annen verdi.
- Det er rimelig å anta at $X \sim Binomisk(n, p)$, der n = 100 og p er sannsynligheten for at den nye salven er best for en tilfeldig valgt pasient.
- Problemstillingen til det farmasøytiske firmaet kan nå formuleres som hypoteser om parameteren p:
 - hvis den nye salven er bedre enn den gamle, er p > 0.50
 - hvis den nye salven ikke er bedre enn den gamle er $p \leq 0.5$.

Eksempel (forts.)

- I dette eksempelet blir hypotesene som følger:
 - Nullhypotese H_0 : $p \le 0.50$, altså den nye salven **er ikke** bedre enn den gamle.
 - Alternativ hypotese H_a : p > 0.50, altså den nye salven **er** bedre enn den gamle.
- Da E(X) = np = 100p, er det naturlig å forkaste H_0 dersom X er tilstrekkelig stor, altså $X \ge k$ for en passende k.
- Hva bør k være?

Type I- og type II-feil

I en hypotesetest har vi følgende mulige utfall:

```
H_0 er sann H_a er sann Ikke forkaste H_0 Riktig Feil Forkaste H_0 Feil Riktig
```

- En kan altså gjøre to typer feil:
 - **type I-feil**: forkaste H_0 når H_0 er sann.
 - **type II-feiI**: ikke forkaste H_0 når H_a er sann.
- I hypotesetesting formulerer en problemet slik at feil av type I er verre enn feil av type II.

Type I- og type II-feil (forts.)

- Valget av forkastningsområde styres av hensynet til type I- og type II-feil.
- For en gitt testobservator og en gitt størrelse n på utvalget en bruker i testen vil en reduksjon av forkastningsområdet gi lavere sannsynlighet for type I-feil, men samtidig øke sannsynligheten for type II-feil.
- Valget av forkatningsområde må altså være en avveining mellom de to typene feil, men med størst hensyn til type I-feil.
- Signifikansnivået α til en test er (den maksimale) sannsynligheten for feil av type I.
- Vanlige verdier for α er 5% og 1%.

Styrkefunksjonen og type II-feil

- Anta at en har en test vedrørende verdien av parameteren θ, f.eks H₀: θ ≤ θ₀ mot H_a: θ > θ₀.
- Da er $\beta(\theta) = P(TypeII feil|\theta)$, altså sannsynligheten for ikke å forkaste H_0 for en gitt verdi av θ i samsvar med H_a .
- Styrkefunksjonen til testen er definert som

$$\begin{split} \gamma(\theta) = & \mathsf{P}(\mathsf{Forkaste}\ H_0|\theta) \\ = & \begin{cases} \mathsf{P}(\mathsf{Type}\ \mathsf{I-feil}|\theta), & \theta \ \mathsf{i}\ \mathsf{samsvar}\ \mathsf{med}\ H_0 \\ 1 - \mathsf{P}(\mathsf{Type}\ \mathsf{II-feil}|\theta) = 1 - \beta(\theta), & \theta \ \mathsf{i}\ \mathsf{samsvar}\ \mathsf{med}\ H_a \end{cases} \end{split}$$

Styrkefunksjonen oppsummerer egenskapene til testen.

Eksempler

Eksempel

Forsøk med salve. Vil vil utføre testen og beregne styrkefunksjonen.

Eksempel

Eks. 9.2 fra boka. La X_i være tørketida på flate i, i = 1, ..., 25.

Det antas at $X_1, \ldots, X_{25} \stackrel{\textit{uif}}{\sim} \textit{N}(\mu, 9^2)$. Vi vil teste

$$H_0: \mu \ge 75 \text{ mot } H_a: \mu < 75.$$