MATEMÁTICA DISCRETA

Ano Letivo 2021/22 (Versão: 6 de Abril de 2022)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

CAPÍTULO 3

Combinatórias

AGRUPAMENTOS E IDENTIDADES

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta:

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta: Depende ... (do que consideramos diferente) ...

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta: Depende ... (do que consideramos diferente) ...

Podemos repetir elementos?

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta: Depende ... (do que consideramos diferente) ...

- Podemos repetir elementos?
- A ordem das escolhas interessa?

Questões

Quantas maneiras existem de escolher *k* elementos numa coleção de *n* elementos?

Resposta: Depende ... (do que consideramos diferente) ...

- · Podemos repetir elementos?
- · A ordem das escolhas interessa?

Nomenclatura

Falamos de

· arranjos quando a ordem das escolhas interessa,

«Marcaram Otávio e Jota» é diferente de «Marcaram Jota e Otávio».

Questões

Quantas maneiras existem de escolher *k* elementos numa coleção de *n* elementos?

Resposta: Depende ... (do que consideramos diferente) ...

- · Podemos repetir elementos?
- · A ordem das escolhas interessa?

Nomenclatura

Falamos de

- · arranjos quando a ordem das escolhas interessa,
- e de combinações quando a ordem das escolhas não interessa.

«Marcaram Otávio e Jota» é igual à «Marcaram Jota e Otávio».

Questões

Quantas maneiras existem de escolher *k* elementos numa coleção de *n* elementos?

Resposta: Depende ... (do que consideramos diferente) ...

- · Podemos repetir elementos?
- · A ordem das escolhas interessa?

Nomenclatura

Falamos de

- · arranjos quando a ordem das escolhas interessa,
- e de combinações quando a ordem das escolhas não interessa.
- Utilizamos o adjetivo simples para indicar que não permitimos repetições.

ÍNDICE

1. Arranjos

2. Combinações

3. Permutações com repetição

4. Identidades Combinatórias

Definição

Um arranjo com repetição de n elementos k a k é uma «maneira» de escolher k elementos entre n com repetição e dependente da ordem; ou seja, é uma função do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_n^{(k)}$ denota o número de de arranjos com repetição de n elementos k a k.

Aqui

- f(1) = a primeira escolha,
- f(2) = a segunda escolha,
- ...
- f(k) = a k-essima escolha.

Intuição: Escolher 3 elementos em $\{1, 2, 3, 4\}$:

$$(124)$$
 \neq (112) e (112) \neq (121) .

Arranjos com repetição

Definição

Um arranjo com repetição de n elementos k a k é uma «maneira» de escolher k elementos entre n com repetição e dependente da ordem; ou seja, é uma função do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_n^{(k)}$ denota o número de de arranjos com repetição de n elementos k a k.

Como calcular?

 $A_n^{(k)} = n^k$ (pelo princípio da multiplicação).

Arranjos com repetição

Definição

Um arranjo com repetição de n elementos k a k é uma «maneira» de escolher k elementos entre n com repetição e dependente da ordem; ou seja, é uma função do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_n^{(k)}$ denota o número de de arranjos com repetição de n elementos k a k.

Como calcular?

 $A_n^{(k)} = n^k$ (pelo princípio da multiplicação).

Nota (o caso de k = 0)

Para cada $n \in \mathbb{N}$: $A_n^{(0)} = n^0 = 1$. Em particular, $A_0^{(0)} = 0^0 = 1$.

Exemplo

Supondo que temos 6 pessoas, e fazemos a cada uma a pergunta «Qual é o dia da semana do seu aniversário?». Qual é o número de possíveis respostas?

Exemplo

Supondo que temos 6 pessoas, e fazemos a cada uma a pergunta «Qual é o dia da semana do seu aniversário?». Qual é o número de possíveis respostas?

Resposta: $A_7^{(6)} = 7^6 = 117649$.

Exemplo

Supondo que temos 6 pessoas, e fazemos a cada uma a pergunta «Qual é o dia da semana do seu aniversário?». Qual é o número de possíveis respostas?

Resposta: $A_7^{(6)} = 7^6 = 117649$.

Exemplo

Supondo que se encontra disponível um número não limitado de bolas vermelhas, azuis e verdes e sabendo que as bolas da mesma cor são indistinguíveis, determine o número de sequências de 5 bolas que é possível formar?

Exemplo

Supondo que temos 6 pessoas, e fazemos a cada uma a pergunta «Qual é o dia da semana do seu aniversário?». Qual é o número de possíveis respostas?

Resposta: $A_7^{(6)} = 7^6 = 117649$.

Exemplo

Supondo que se encontra disponível um número não limitado de bolas vermelhas, azuis e verdes e sabendo que as bolas da mesma cor são indistinguíveis, determine o número de sequências de 5 bolas que é possível formar?

Ou seja, fazer uma sequência de k = 5 escolhas em $\{\bullet, \bullet, \bullet\}$.

Exemplo

Supondo que temos 6 pessoas, e fazemos a cada uma a pergunta «Qual é o dia da semana do seu aniversário?». Qual é o número de possíveis respostas?

Resposta: $A_7^{(6)} = 7^6 = 117649$.

Exemplo

Supondo que se encontra disponível um número não limitado de bolas vermelhas, azuis e verdes e sabendo que as bolas da mesma cor são indistinguíveis, determine o número de sequências de 5 bolas que é possível formar?

Ou seja, fazer uma sequência de k = 5 escolhas em $\{\bullet, \bullet, \bullet\}$.

Resposta: $A_3^{(5)} = 3^5 = 243$.

Definição

Um arranjo sem repetição a de n elementos k a k \acute{e} uma «maneira» de escolher k elementos entre n sem repetição e dependente da ordem; ou seja, \acute{e} uma função injetiva do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_{n,k}$ denota o número de de arranjos sem repetição de n elementos k a k.

Exemplo

Escolher 3 elementos em $\{1, 2, 3, 4\}$:

Intuição: $\ll 124$ » $\neq \ll 142$ » ($\ll 112$ » não é permitido).

^aOutra designação: arranjo simples.

Definição

Um arranjo sem repetição de n elementos k a k é uma «maneira» de escolher k elementos entre n sem repetição e dependente da ordem; ou seja, é uma função injetiva do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_{n,k}$ denota o número de de arranjos sem repetição de n elementos k a k.

Como calcular?

$$A_{n,k} = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-k+1)}_{k \text{ fatores}} = \frac{n!}{(n-k)!}.$$

(pelo princípio da multiplicação generalizada).

^aOutra designação: arranjo simples.

Definição

Um arranjo sem repetição a de n elementos k a k \acute{e} uma «maneira» de escolher k elementos entre n sem repetição e dependente da ordem; ou seja, \acute{e} uma função injetiva do tipo

$$f \colon \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_{n,k}$ denota o número de de arranjos sem repetição de n elementos k a k.

Como calcular?

$$A_{n,k} = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-k+1)}_{k \text{ fatores}} = \frac{n!}{(n-k)!}.$$

(pelo princípio da multiplicação generalizada).

Nota (o caso de k = 0)

Para cada $n \in \mathbb{N}$: $A_{n,o} = 1$.

 $^{^{\}it a}$ Outra designação: arranjo simples.

Definição

Um arranjo sem repetição a de n elementos k a k \acute{e} uma «maneira» de escolher k elementos entre n sem repetição e dependente da ordem; ou seja, \acute{e} uma função injetiva do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_{n,k}$ denota o número de de arranjos sem repetição de n elementos k a k.

Como calcular?

$$A_{n,k} = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-k+1)}_{k \text{ fatores}} = \frac{n!}{(n-k)!}.$$

(pelo princípio da multiplicação generalizada).

Nota (o caso de n = k)

 $A_{n,n} = o$ número de permutações de n elementos = n!.

^aOutra designação: arranjo simples.

Definição

Um arranjo sem repetição a de n elementos k a k \acute{e} uma «maneira» de escolher k elementos entre n sem repetição e dependente da ordem; ou seja, \acute{e} uma função injetiva do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

 $A_{n,k}$ denota o número de de arranjos sem repetição de n elementos k a k.

Como calcular?

$$A_{n,k} = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-k+1)}_{k \text{ fatores}} = \frac{n!}{(n-k)!}.$$

(pelo princípio da multiplicação generalizada).

Nota (o caso de n < k)

$$A_{n,k} = 0.$$

 $[^]a$ Outra designação: arranjo simples.

Exemplo

Determinamos o número de formas distintas^a de sentar k pessoas retiradas de um grupo de n pessoas

· num banco corrido.

^aduas «formas» são iguais se envolve as mesmas pessoas e cada pessoa tem os memos vizinhos nos mesmos lados.

Exemplo

Determinamos o número de formas distintas^a de sentar k pessoas retiradas de um grupo de n pessoas

num banco corrido.

Resposta: $A_{n,k}$.

^aduas «formas» são iguais se envolve as mesmas pessoas e cada pessoa tem os memos vizinhos nos mesmos lados.

Exemplo

Determinamos o número de formas distintas^a de sentar k pessoas retiradas de um grupo de n pessoas

num banco corrido.

Resposta: $A_{n,k}$.

numa mesa redonda.

 $^{^{}a}$ duas «formas» são iguais se envolve as mesmas pessoas e cada pessoa tem os memos vizinhos nos mesmos lados.

Exemplo

Determinamos o número de formas distintas^a de sentar k pessoas retiradas de um grupo de n pessoas

- num banco corrido.
- Resposta: $A_{n,k}$.
- · numa mesa redonda.

Aqui identificamos as maneiras que se obtém (uma a partir da outra) por *rotação*. Portanto, a resposta é

$$\frac{A_{n,k}}{k}$$
.

 $[^]a$ duas «formas» são iguais se envolve as mesmas pessoas e cada pessoa tem os memos vizinhos nos mesmos lados.

Exemplo

Qual o número de alinhamentos possíveis de 12 escuteiros de tal modo que dois deles (fixos) sejam sempre vizinhos um do outro?

Exemplo

Qual o número de alinhamentos possíveis de 12 escuteiros de tal modo que dois deles (fixos) sejam sempre vizinhos um do outro?

Sejam A e B estes dois escuteiros, e tiramos A do grupo. O número de todos os alinhamentos dos restantes 11 é

Exemplo

Qual o número de alinhamentos possíveis de 12 escuteiros de tal modo que dois deles (fixos) sejam sempre vizinhos um do outro?

Sejam A e B estes dois escuteiros, e tiramos A do grupo. O número de todos os alinhamentos dos restantes 11 é

11! = 39916800.

Exemplo

Qual o número de alinhamentos possíveis de 12 escuteiros de tal modo que dois deles (fixos) sejam sempre vizinhos um do outro?

Sejam A e B estes dois escuteiros, e tiramos A do grupo. O número de todos os alinhamentos dos restantes 11 é

11! = 39916800.

Em cada destes alinhamentos, podemos inserir A ou à esquerda ou à direita de B; portanto, o número de alinhamentos onde A e B são vizinhos é

Exemplo

Qual o número de alinhamentos possíveis de 12 escuteiros de tal modo que dois deles (fixos) sejam sempre vizinhos um do outro?

Sejam A e B estes dois escuteiros, e tiramos A do grupo. O número de todos os alinhamentos dos restantes 11 é

$$11! = 39916800.$$

Em cada destes alinhamentos, podemos inserir A ou à esquerda ou à direita de B; portanto, o número de alinhamentos onde A e B são vizinhos é

$$2 \cdot 11! = 79833600.$$

COMBINAÇÕES SEM REPETIÇÃO

Definição

Uma combinação sem repetição a de n elementos k a k é um subconjunto de k elementos de um conjunto de n elementos.

 $\binom{n}{k}$ denota o número de combinações simples de n elementos k a k.

^aOutra designação: combinação simples.

Exemplo

Escolher 3 elementos em $\{1, 2, 3, 4\}$:

Intuição: «124» = «142» \neq «143» («112» não é permitido).

Definição

Uma combinação sem repetição a de n elementos k a k é um subconjunto de k elementos de um conjunto de n elementos.

 $\binom{n}{k}$ denota o número de combinações simples de n elementos k a k.

Como calcular?

$$\binom{n}{k} = \frac{A_{n,k}}{n}$$

$$\binom{4}{3} = \frac{4 \cdot 3 \cdot 2}{132}$$

$$213$$

$$321$$

$$214$$

$$421$$

$$324$$

$$423$$

$$314$$

$$413$$

$$132$$

$$312$$

$$142$$

$$412$$

$$243$$

$$243$$

$$432$$

$$143$$

$$431$$

$$123$$

$$231$$

$$124$$

$$241$$

$$234$$

$$342$$

$$134$$

$$341$$

^aOutra designação: combinação simples.

Definição

Uma combinação sem repetição de n elementos k a k é um subconjunto de k elementos de um conjunto de n elementos.

 $\binom{n}{b}$ denota o número de combinações simples de n elementos k a k.

^aOutra designação: combinação simples.

Como calcular?

$$\binom{n}{k} = \frac{A_{n,k}}{n}$$

Ideia

$$\binom{4}{3} = \frac{4 \cdot 3 \cdot 2}{3!}$$

413

Definição

Uma combinação sem repetição de n elementos k a k é um subconjunto de k elementos de um conjunto de n elementos.

 $\binom{n}{b}$ denota o número de combinações simples de n elementos k a k.

Como calcular?

$$\binom{n}{k} = \frac{A_{n,k}}{k!}$$

$$\binom{4}{3} = \frac{4 \cdot 3 \cdot 2}{3!}$$

^aOutra designação: combinação simples.

Definição

Uma combinação sem repetição a de n elementos k a k é um subconjunto de k elementos de um conjunto de n elementos.

 $\binom{n}{k}$ denota o número de combinações simples de n elementos k a k.

^aOutra designação: combinação simples.

Como calcular?

$$\binom{n}{k} = \frac{A_{n,k}}{k!} = \underbrace{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}_{k!} = \frac{n!}{(n-k)! \cdot k!}.$$

Exemplo (Recordamos de «Enumeração Combinatória»)

O número de sequências binárias com ${\it k}$ uns e ${\it m}$ zeros coincide com o número de subconjuntos de ${\it k}$ elementos de um conjunto de ${\it k}+{\it m}$ elementos.

Exemplo (Recordamos de «Enumeração Combinatória»)

O número de sequências binárias com k uns e m zeros coincide com o número de subconjuntos de k elementos de um conjunto de k+m elementos.

De facto, com $X = \{1, \dots, k+m\}$, a função

$$\{A \subseteq X \mid |A| = k\} \longrightarrow \{\text{sequências binárias com } k \text{ uns e } m \text{ zero}\}$$

$$A \longmapsto a_1 a_2 \dots a_n$$
 onde $a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$

tem a função inversa

{sequências binárias com
$$k$$
 uns e m zero} \longrightarrow { $A \subseteq X \mid |A| = k$ } $a_1 a_2 \dots a_n \longmapsto \{i \in X \mid a_i = 1\}.$

Exemplo (Recordamos de «Enumeração Combinatória»)

O número de sequências binárias com k uns e m zeros coincide com o número de subconjuntos de k elementos de um conjunto de k+m elementos. Logo, há $\binom{k+m}{b}$ tais sequências binárias.

De facto, com $X = \{1, \dots, k+m\}$, a função

$$\{A \subseteq X \mid |A| = k\} \longrightarrow \{\text{sequências binárias com } k \text{ uns e } m \text{ zero}\}$$

$$A \longmapsto a_1 a_2 \dots a_n$$
 onde $a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$

tem a função inversa

{sequências binárias com
$$k$$
 uns e m zero} $\longrightarrow \{A \subseteq X \mid |A| = k\}$
 $a_1 a_2 \dots a_n \longmapsto \{i \in X \mid a_i = 1\}.$

Exemplo

Há 6 tipos de bilhetes da lotaria. Quantas maneiras existem de comprar 3 bilhetes de tipos diferentes?

Exemplo

Há 6 tipos de bilhetes da lotaria. Quantas maneiras existem de comprar 3 bilhetes de tipos diferentes?

Resposta:
$$\binom{6}{3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$$
.

Exemplo

Há 6 tipos de bilhetes da lotaria. Quantas maneiras existem de comprar 3 bilhetes de tipos diferentes?

Resposta:
$$\binom{6}{3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$$
.

Exemplo

Num grupo de 16 raparigas e 15 rapazes, quantos grupos de 5 pessoas com pelo menos 3 rapazes se pode formar?

Exemplo

Há 6 tipos de bilhetes da lotaria. Quantas maneiras existem de comprar 3 bilhetes de tipos diferentes?

Resposta: $\binom{6}{3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$.

Exemplo

Num grupo de 16 raparigas e 15 rapazes, quantos grupos de 5 pessoas com pelo menos 3 rapazes se pode formar?

Resposta:

ALGUMAS PROPRIEDADES

Teorema

Sejam $n,k\in\mathbb{N}$ com $k\leq n$. Então:

1.
$$\binom{n}{k} = \binom{n}{n-k}$$
.

Ideia

Seja
$$X = \{1, 2, ..., n\}$$

Sobre 1: A função

$$f \colon \{A \subseteq X \mid |A| = k\} \longrightarrow \{B \subseteq X \mid |B| = n - k\}$$
$$\Delta \longmapsto \Delta^{\complement}$$

é invertível e por isso bijetiva.

ALGUMAS PROPRIEDADES

Teorema

Sejam $n, k \in \mathbb{N}$ com $k \leq n$. Então:

- 1. $\binom{n}{k} = \binom{n}{n-k}$.
- 2. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ (suponhamos n > 0 e k > 0).

Ideia

Sejam
$$X = \{1, 2, ..., n\}$$
 e $Y = \{1, 2, ..., n - 1\}$.

Sobre 2: Temos:

$$\{A \subseteq X \mid |A| = k\} = \{A \subseteq X \mid |A| = k, n \notin A\} \cup \{A \subseteq X \mid |A| = k, n \in A\}$$
$$= \{A \subseteq Y \mid |A| = k\} \cup \{B \cup \{n\} \mid B \subseteq Y, |B| = k - 1\}$$

ALGUMAS PROPRIEDADES

Teorema

Sejam $n, k \in \mathbb{N}$ com $k \le n$. Então:

- 1. $\binom{n}{b} = \binom{n}{n-b}$.
 - 2. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ (suponhamos n > 0 e k > 0).
 - $3. \sum_{i=0}^{n} \binom{n}{i} = 2^{n}.$

Ideia

Seja $X = \{1, 2, ..., n\}$

Sobre 3: Temos:

$$P(X) = \bigcup_{i=0}^{n} \{A \subseteq X \mid |A| = i\}$$
$$= \{\emptyset\} \cup \{\{1\}, \dots, \{n\}\} \cup \dots \cup \{X\}$$

(dois a dois disjunta).

Recordamos:

$$\binom{n}{0}=\binom{n}{n}=1\quad \text{e}\quad \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$$

Recordamos:

$$\binom{n}{0} = \binom{n}{n} = 1$$
 e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Recordamos: $\binom{n}{0} = \binom{n}{n} = 1$ e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ A recorrência

Recordamos: A recorrência

$$\binom{n}{0} = \binom{n}{n} = 1$$
 e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Recordamos: A recorrência

$$\binom{n}{0} = \binom{n}{n} = 1$$
 e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Recordamos:

$$\binom{n}{0} = \binom{n}{n} = 1$$
 e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Recordamos:

$$\binom{n}{0} = \binom{n}{n} = 1 \quad e \quad \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Recordamos:

$$\binom{n}{0} = \binom{n}{n} = 1$$
 e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Recordamos:

$$\binom{n}{0} = \binom{n}{n} = 1 \quad e \quad \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Recordamos:

$$\binom{n}{0} = \binom{n}{n} = 1$$
 e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Teorema

1. Sejam $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

$$(1+x)^n = \underbrace{(1+x)(1+x)\dots(1+x)}_{n \text{ factores}}$$

$$= 1 \cdot 1 \dots 1$$

$$+$$

Teorema

1. Sejam $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

Teorema

1. Sejam $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

$$(1+x)^n = \overbrace{(1+x)(1+x)\dots(1+x)}^{n \text{ factores}}$$

$$= 1 \cdot 1 \dots 1$$

$$+ \underbrace{x \cdot 1 \dots 1}_{x \text{ do primeiro factor}} + \underbrace{1 \cdot x \cdot 1 \dots 1}_{x \text{ do segundo factor}} + \dots + \underbrace{1 \cdot x \cdot 1 \dots 1}_{x \text{ do primeiro factor}} + \dots + \dots + \dots$$

Teorema

1. Sejam $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

$$(1+x)^n = \overbrace{(1+x)(1+x)\dots(1+x)}^{n \text{ factores}}$$

$$= 1 \cdot 1 \dots 1$$

$$+ \underbrace{x \cdot 1 \dots 1}_{x \text{ do primeiro factor}} + \underbrace{x \cdot 1 \dots 1}_{x \text{ do segundo factor}} + \underbrace{x \cdot x \cdot 1 \dots 1}_{x \text{ vol}} + \underbrace{x \cdot 1 \dots 1}_{x \text{ vol}} + \underbrace{$$

Teorema

1. Sejam $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

2. Em particular, com
$$x = 1$$
: $\sum_{k=0}^{n} {n \choose k} = 2^{n}$.

Teorema

1. Sejam $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

- 2. Em particular, com x = 1: $\sum_{i=1}^{n} {n \choose k} = 2^{n}$.
- 3. Em geral, para todos os $a,b \in \mathbb{R}$ e $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

(a fórmula binomial de Newton).

O número $\binom{n}{k}$ diz-se também coeficiente binomial.

Definição

Uma combinação com repetição de n elementos k a k é uma «maneira» de escolher k elementos em $\{1, \ldots, n\}$ com repetição mas sem considerar a ordem; ou seja, é uma sequência (s_1, \ldots, s_n) de números naturais s_i com $s_1 + \cdots + s_n = k$.

Ideia: s_i = «o número de vezes que i é escolhido».

Exemplo

Escolher 3 elementos em $\{1,2,3,4\}$: Intuição: $\ll 114$ » = $\ll 141$ » $\neq \ll 143$ ».

Por exemplo, «114» corresponde a (2,0,0,1) (tal como «141»).

Definição

Uma combinação com repetição de n elementos k a k é uma «maneira» de escolher k elementos em $\{1, \ldots, n\}$ com repetição mas sem considerar a ordem; ou seja, é uma sequência (s_1, \ldots, s_n) de números naturais s_i com $s_1 + \cdots + s_n = k$.

Ideia: s_i = «o número de vezes que i é escolhido».

Exemplo (Recordamos de «Enumeração Combinatória»)

O número das soluções da equação $x_1 + \cdots + x_n = k$ (com $x_i \in \mathbb{N}$) coincide com o número de sequências binárias com k uns e n-1 zeros.

Ideia

A uma tal solução (s_1, \ldots, s_n) corresponde à sequência

$$\underbrace{1\dots 1}_{S_1 \text{ vezes}} \circ \underbrace{1\dots 1}_{S_2 \text{ vezes}} \circ \dots \circ \underbrace{1\dots 1}_{S_n \text{ vezes}}.$$

Exemplos: $(2,3,0) \mapsto 1101110$, $(2,2,1) \mapsto 1101101$.

Definição

Uma combinação com repetição de n elementos k a k é uma «maneira» de escolher k elementos em $\{1,\ldots,n\}$ com repetição mas sem considerar a ordem; ou seja, é uma sequência (s_1,\ldots,s_n) de números naturais s_i com $s_1+\cdots+s_n=k$.

Ideia: s_i = «o número de vezes que i é escolhido».

Teorema

O número de combinações com repetição de n elementos k a k é igual ao

- número de sequências binárias com n-1 zeros e k uns, e coincide com
- o número de subconjuntos de k elementos de um conjunto de k+n-1 elementos:

$$\binom{k+n-1}{k}$$
.

UM EXEMPLO

Exemplo

Vamos determinar o número de possibilidades de colocação de 20 bolas indistinguíveis em 5 caixas numeradas, com pelo menos duas bolas em cada caixa.

UM EXEMPLO

Exemplo

Vamos determinar o número de possibilidades de colocação de 20 bolas indistinguíveis em 5 caixas numeradas, com pelo menos duas bolas em cada caixa.

Começamos por pôr duas bolas em cada caixa.

UM EXEMPLO

Exemplo

Vamos determinar o número de possibilidades de colocação de 20 bolas indistinguíveis em 5 caixas numeradas, com pelo menos duas bolas em cada caixa.

Começamos por pôr duas bolas em cada caixa. Depois, para cada uma das restantes bolas, escolhemos uma das 5 caixa; ou seja, fazemos uma sequência de 10 escolhas entre 5 elementos

(por exemplo: 13353...2)

UM EXEMPLO

Exemplo

Vamos determinar o número de possibilidades de colocação de 20 bolas indistinguíveis em 5 caixas numeradas, com pelo menos duas bolas em cada caixa.

Começamos por pôr duas bolas em cada caixa. Depois, para cada uma das restantes bolas, escolhemos uma das 5 caixa; ou seja, fazemos uma sequência de 10 escolhas entre 5 elementos

(por exemplo: 13353...2)

mas o resultado final é independente da ordem das escolhas (no fim, apenas podemos observar quantas bolas estão em cada caixa).

UM EXEMPLO

Exemplo

Vamos determinar o número de possibilidades de colocação de 20 bolas indistinguíveis em 5 caixas numeradas, com pelo menos duas bolas em cada caixa.

Começamos por pôr duas bolas em cada caixa. Depois, para cada uma das restantes bolas, escolhemos uma das 5 caixa; ou seja, fazemos uma sequência de 10 escolhas entre 5 elementos

mas o resultado final é independente da ordem das escolhas (no fim, apenas podemos observar quantas bolas estão em cada caixa).

Portanto, temos uma combinação com repetição de 5 elementos 10 a 10:

$$\binom{10+5-1}{10} = \binom{14}{10} = \binom{14}{4} = \frac{14\cdot 13\cdot 12\cdot 11}{4\cdot 3\cdot 2\cdot 1} = 7\cdot 13\cdot 11 = 1001.$$

RESUMO

scolhar	b alama	ntac ant	ra n al	ementos:

Escolher k elementos entre n elementos:				
	com repetição	sem repetição (simples)		
dependente da ordem (arranjos)	$A_n^{(k)} = n^k$	$A_{n,k} = \underbrace{n \cdot (n-1) \cdot \cdots \cdot (n-k+1)}_{k \text{ fatores}}$		
independente da ordem (combinações)	$\binom{n+k-1}{k}$	$\binom{n}{k} = \underbrace{\frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!}}_{k \cdot l} = \frac{n!}{(n-k)! \cdot k!}$ (coeficiente binomial)		

Algumas igualdades:

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \qquad \binom{n}{m} = \binom{n}{n-m},$$

•
$$\binom{n}{0} = \binom{n}{n} = 1$$
, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — — ; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

• Entre os 8 lugares, escolhemos o lugar do 2; depois,

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — —; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8-1=7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — —; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7-4=3 lugares, escolhemos 2 lugares onde deve estar o 6; depois

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — —; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8-1=7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — — ; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8-1=7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — — ; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7-4=3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1}$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — — ; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4}$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7-4=3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7-4=3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot \binom{1}{1} =$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot \binom{1}{1} = \frac{8}{1!}$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot \binom{1}{1} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{1! \cdot 4!}$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot \binom{1}{1} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{1! \cdot 4! \cdot 2!}$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot \binom{1}{1} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1! \cdot 4! \cdot 2! \cdot 1!}$$

Exemplo

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 - - - - -; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot \binom{1}{1} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1! \cdot 4! \cdot 2! \cdot 1!} = \frac{8!}{1! \cdot 4! \cdot 2! \cdot 1!} = 840.$$

Teorema

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$.

Teorema

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$. Então, o número de sequências (A_1, A_2, \ldots, A_k) de k subconjuntos de X dois a dois disjuntos e com $|A_i| = n_i$ $(i = 1, \ldots, k)$ é

$$\frac{n!}{n_1!\cdots n_k!}.$$

Ideia

$$\underbrace{\binom{n}{n_1}}_{\text{(escolher }A_1)} \cdot \underbrace{\binom{n-n_1}{n_2}}_{\text{(escolher }A_2)} \cdot \cdots \cdot \underbrace{\binom{n-n_1-n_2-\cdots-n_{k-1}=n_k}{n_k}}_{\text{(escolher }A_k)} = \frac{n(n-1)\cdots(n-n_1+1)\cdots 1}{n_1!\ldots n_k!}.$$

Teorema

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$. Então, o número de sequências (A_1, A_2, \ldots, A_k) de k subconjuntos de X dois a dois disjuntos e com $|A_i| = n_i$ $(i = 1, \ldots, k)$ é

$$\frac{n!}{n_1!\cdots n_k!}.$$

Definição

Este número designa-se por coeficiente multinomial (ou número de permutações com repetição) e denota-se por

$$\binom{n}{n_1 n_2 \dots n_k}$$
.

Ideia

$$\underbrace{\binom{n}{n_1}}_{\text{(escolher }A_1)} \cdot \underbrace{\binom{n-n_1}{n_2}}_{\text{(escolher }A_2)} \cdot \cdots \cdot \underbrace{\binom{n-n_1-n_2-\cdots-n_{k-1}=n_k}{n_k}}_{\text{(escolher }A_k)} = \frac{n(n-1)\cdots(n-n_1+1)\cdots 1}{n_1!\ldots n_k!}.$$

Teorema

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$. Então, o número de sequências (A_1, A_2, \ldots, A_k) de k subconjuntos de X dois a dois disjuntos e com $|A_i| = n_i \ (i = 1, \ldots, k)$ é

$$\frac{n!}{n_1!\cdots n_k!}.$$

Definição

Este número designa-se por coeficiente multinomial (ou número de permutações com repetição) e denota-se por

$$\binom{n}{n_1 n_2 \dots n_k}$$
.

Nota

• Se
$$n_1 = \cdots = n_k = 1$$
 (e por isso $k = n$): $\binom{n}{n_1 \, n_2 \, \dots \, n_k} = n$

Teorema

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$. Então, o número de sequências (A_1, A_2, \ldots, A_k) de k subconjuntos de X dois a dois disjuntos e com $|A_i| = n_i$ $(i = 1, \ldots, k)$ é

$$\frac{n!}{n_1!\cdots n_k!}.$$

Definição

Este número designa-se por coeficiente multinomial (ou número de permutações com repetição) e denota-se por

$$\binom{n}{n_1 n_2 \dots n_k}$$
.

Nota

• Se $n_1 = \cdots = n_k = 1$ (e por isso k = n): $\binom{n}{n_1 \, n_2 \, \dots \, n_k} = n!$.

Teorema

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$. Então, o número de sequências (A_1, A_2, \ldots, A_k) de k subconjuntos de X dois a dois disjuntos e com $|A_i| = n_i$ $(i = 1, \ldots, k)$ é

$$\frac{n!}{n_1!\cdots n_k!}.$$

Definição

Este número designa-se por coeficiente multinomial (ou número de permutações com repetição) e denota-se por

$$\binom{n}{n_1 n_2 \dots n_k}$$
.

Nota

- Se $n_1 = \cdots = n_k = 1$ (e por isso k = n): $\binom{n}{n_1 n_2 \dots n_k} = n!$.
 - Se k=2, obtemos o coeficiente binomial: $\binom{n}{m \ (n-m)} = \binom{n}{m}$.

Teorema

Sejam $a_1,a_2,\ldots,a_k\in\mathbb{R}$ e $n\in\mathbb{N}$, então

$$(a_1 + a_2 + ... + a_k)^n = \sum_{n_1 + n_2 + \dots + n_k = n} \binom{n}{n_1 \ n_2 \ \dots \ n_k} a_1^{n_1} \dots a_k^{n_k}.$$

Recordamos

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Teorema

Sejam $a_1, a_2, \ldots, a_k \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + ... + a_k)^n = \sum_{n_1 + n_2 + \dots + n_k = n} \binom{n}{n_1 \ n_2 \ \dots \ n_k} a_1^{n_1} \dots a_k^{n_k}.$$

Recordamos

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{n_1+n_2=n} \binom{n}{n_1 n_2} a^{n_1} b^{n_2}.$$

Teorema

Sejam $a_1, a_2, \ldots, a_k \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + ... + a_k)^n = \sum_{\substack{n_1 + n_2 + ... + n_k = n \\ n_1 \ n_2 \ ... \ n_k}} {n \choose n_1 \ n_2 \ ... \ n_k} a_1^{n_1} ... a_k^{n_k}.$$

Recordamos

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{n_1+n_2=n} \binom{n}{n_1 \, n_2} a^{n_1} b^{n_2}.$$

Exemplo

$$(a+b+c)(a+b+c)(a+b+c) = {3 \choose 3 \ 0 \ 0}a^3 + {3 \choose 0 \ 3 \ 0}b^3 +$$
$${3 \choose 0 \ 0 \ 3}c^3 + {3 \choose 2 \ 1 \ 0}a^2b + {3 \choose 2 \ 0 \ 1}a^2c + {3 \choose 1 \ 1 \ 1}abc + \dots$$

Teorema

Sejam $a_1, a_2, \ldots, a_k \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + \dots + a_k)^n = \sum_{\substack{n_1 + n_2 + \dots + n_k = n \\ n_1 \ n_2 \ \dots \ n_k}} \binom{n}{n_1 \ n_2 \ \dots \ n_k} a_1^{n_1} \dots a_k^{n_k}.$$

Ideia

• Desenvolvendo o produto de *n* fatores

$$(a_1 + a_2 + \cdots + a_k)(a_1 + a_2 + \cdots + a_k) \cdots (a_1 + a_2 + \cdots + a_k)$$

Teorema

Sejam $a_1, a_2, \ldots, a_k \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + \dots + a_k)^n = \sum_{\substack{n_1 + n_2 + \dots + n_k = n \\ n_1 \ n_2 \ \dots \ n_k}} \binom{n}{n_1 \ n_2 \ \dots \ n_k} a_1^{n_1} \dots a_k^{n_k}.$$

Ideia

• Desenvolvendo o produto de *n* fatores

$$(a_1 + a_2 + \cdots + a_k)(a_1 + a_2 + \cdots + a_k) \cdots (a_1 + a_2 + \cdots + a_k)$$

· obtêm-se os termos da forma

$$a_1^{n_1}\cdots a_k^{n_k}$$
,

com $n_1 + \cdots + n_k = n$, que correspondem à escolha de a_1 em n_1 dos fatores, a_2 em n_2 dos restantes fatores,

Teorema

Sejam $a_1, a_2, \ldots, a_k \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + \dots + a_k)^n = \sum_{\substack{n_1 + n_2 + \dots + n_k = n \\ n_1 + n_2 + \dots + n_k = n}} \binom{n}{n_1 n_2 \dots n_k} a_1^{n_1} \dots a_k^{n_k}.$$

Ideia

• Desenvolvendo o produto de *n* fatores

$$(a_1 + a_2 + \cdots + a_k)(a_1 + a_2 + \cdots + a_k) \cdots (a_1 + a_2 + \cdots + a_k)$$

· obtêm-se os termos da forma

$$a_1^{n_1}\cdots a_k^{n_k}$$

com $n_1 + \cdots + n_k = n$, que correspondem à escolha de a_1 em n_1 dos fatores, a_2 em n_2 dos restantes fatores,

• Logo, existem $\binom{n}{n_1 \, n_2 \, \dots \, n_k}$ termos da forma $a_1^{n_1} \cdots a_k^{n_k}$.

4. IDENTIDADES COMBINATÓRIAS

RECORDAMOS

Já aprendemos:

- $\binom{n}{0} = \binom{n}{n} = 1$.
- $\binom{n}{k} = \binom{n}{n-k}$.
- $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.
- $\binom{n}{0}$ + $\binom{n}{1}$ + $\binom{n}{2}$ + \cdots + $\binom{n}{n}$ = 2^n .

No caso das últimas duas identidades, na prova conta-se os elementos do mesmo conjunto de duas maneiras diferentes.

SUBCONJUNTOS DE UMA SOMA

Exemplo

Para todos os $n, m, l \in \mathbb{N}$,

$$\sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{n+m}{l}.$$

SUBCONJUNTOS DE UMA SOMA

Exemplo

Para todos os $n, m, l \in \mathbb{N}$,

$$\sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{n+m}{l}.$$

Justificação: Consideremos X e Y com |X| = n, |Y| = m e $X \cap Y = \emptyset$.

SUBCONJUNTOS DE UMA SOMA

Exemplo

Para todos os $n, m, l \in \mathbb{N}$,

$$\sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{n+m}{l}.$$

Justificação: Consideremos X e Y com |X| = n, |Y| = m e $X \cap Y = \emptyset$.

• Assim, há $\binom{n+m}{l}$ subconjuntos de $X \cup Y$ com l elementos.

SUBCONJUNTOS DE UMA SOMA

Exemplo

Para todos os $n, m, l \in \mathbb{N}$,

$$\sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{n+m}{l}.$$

Justificação: Consideremos X e Y com |X| = n, |Y| = m e $X \cap Y = \emptyset$.

- Assim, há $\binom{n+m}{l}$ subconjuntos de $X \cup Y$ com l elementos.
- Por outro lado, podemos obter estes subconjuntos escolhendo k elementos em X e l – k elementos em Y, para cada número k entre o e l.

SUBCONJUNTOS DE UMA SOMA

Exemplo

Para todos os $n, m, l \in \mathbb{N}$,

$$\sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{n+m}{l}.$$

Justificação: Consideremos X e Y com |X| = n, |Y| = m e $X \cap Y = \emptyset$.

- Assim, há $\binom{n+m}{l}$ subconjuntos de $X \cup Y$ com l elementos.
- Por outro lado, podemos obter estes subconjuntos escolhendo k elementos em X e l – k elementos em Y, para cada número k entre o e l.

Exemplo

Em particular, para m = n = k,

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=0}^{n} \binom{n}{k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k}^{2}.$$

Exemplo

Para cada $n \ge 1$ e $n_1, \dots, n_k \ge 1$ com $n_1 + \dots + n_k = n$,

$$\binom{n}{n_1 \ldots n_k} = \sum_{i=1}^k \binom{n-1}{n_1 \ldots (n_i-1) \ldots n_k}.$$

Exemplo

Para cada $n \ge 1$ e $n_1, \ldots, n_k \ge 1$ com $n_1 + \cdots + n_k = n$,

$$\binom{n}{n_1 \ldots n_k} = \sum_{i=1}^k \binom{n-1}{n_1 \ldots (n_i-1) \ldots n_k}.$$

Justificação: No que se segue, uma sequência (A_1, \ldots, A_k) de subconjuntos de um conjunto finito $X = \{1, 2, \ldots, n\}$ dois a dois disjuntos, com $|A_i| = n_i$ ($i \in \{1, \ldots, k\}$), é designada por partição de X do tipo (n_1, \ldots, n_k) .

Exemplo

Para cada $n \ge 1$ e $n_1, \ldots, n_k \ge 1$ com $n_1 + \cdots + n_k = n$,

$$\binom{n}{n_1 \ldots n_k} = \sum_{i=1}^k \binom{n-1}{n_1 \ldots (n_i-1) \ldots n_k}.$$

Justificação: No que se segue, uma sequência (A_1, \ldots, A_k) de subconjuntos de um conjunto finito $X = \{1, 2, \ldots, n\}$ dois a dois disjuntos, com $|A_i| = n_i$ ($i \in \{1, \ldots, k\}$), é designada por partição de X do tipo (n_1, \ldots, n_k) .

Por definição, $\binom{n}{n_1 \dots n_k}$ é o número de elementos do conjunto

{as partições (A_1, \ldots, A_k) de X do tipo (n_1, \ldots, n_k) }.

Exemplo

Para cada $n \ge 1$ e $n_1, \ldots, n_k \ge 1$ com $n_1 + \cdots + n_k = n_k$

$$\binom{n}{n_1 \ldots n_k} = \sum_{i=1}^k \binom{n-1}{n_1 \ldots (n_i-1) \ldots n_k}.$$

Justificação: No que se segue, uma sequência (A_1, \ldots, A_k) de subconjuntos de um conjunto finito $X = \{1, 2, \ldots, n\}$ dois a dois disjuntos, com $|A_i| = n_i$ ($i \in \{1, \ldots, k\}$), é designada por partição de X do tipo (n_1, \ldots, n_k) .

Por definição, $\binom{n_1 \dots n_k}{n_k}$ é o número de elementos do conjunto

{as partições
$$(A_1, \ldots, A_k)$$
 de X do tipo (n_1, \ldots, n_k) }.

Podemos representar este conjunto como a união dos seguintes conjuntos (dois a dois disjuntos).

Exemplo (continuação)

• o conjunto das sequências $(B_1 \cup \{n\}, B_2 \dots, B_k)$ onde $(B_1, B_2 \dots, B_k)$ é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1 - 1, n_2, \dots, n_k)$;

$$= \binom{n}{n_1 \ldots n_k}.$$

Exemplo (continuação)

• o conjunto das sequências $(B_1 \cup \{n\}, B_2 \dots, B_k)$ onde $(B_1, B_2 \dots, B_k)$ é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1 - 1, n_2, \dots, n_k)$;

$$\binom{n-1}{(n_1-1) n_2 \dots n_k}$$

$$= \binom{n}{n_1 \ldots n_k}.$$

Exemplo (continuação)

- o conjunto das sequências $(B_1 \cup \{n\}, B_2 \dots, B_k)$ onde $(B_1, B_2 \dots, B_k)$ é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1 1, n_2, \dots, n_k)$;
- o conjunto das sequências $(B_1, B_2 \cup \{n\} \dots, B_k)$ onde $(B_1, B_2 \dots, B_k)$ é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1, n_2 1, \dots, n_k)$;

$$\binom{n-1}{(n_1-1) n_2 \dots n_k} + \binom{n-1}{n_1 (n_2-1) \dots n_k} = \binom{n}{n_1 \dots n_k}.$$

Exemplo (continuação)

- o conjunto das sequências $(B_1 \cup \{n\}, B_2 \dots, B_k)$ onde $(B_1, B_2 \dots, B_k)$ é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1 1, n_2, \dots, n_k)$;
- o conjunto das sequências $(B_1, B_2 \cup \{n\} \dots, B_k)$ onde $(B_1, B_2 \dots, B_k)$ é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1, n_2 1, \dots, n_k)$;
- ...
- o conjunto das sequências $(B_1,B_2\ldots,B_k\cup\{n\})$ onde $(B_1,B_2\ldots,B_k)$ é uma partição de $\{1,\ldots,n-1\}$ do tipo (n_1,n_2,\ldots,n_k-1) .

$$\binom{n-1}{(n_1-1) n_2 \dots n_k} + \binom{n-1}{n_1 (n_2-1) \dots n_k} + \dots + \binom{n-1}{n_1 n_2 \dots (n_k-1)} = \binom{n}{n_1 \dots n_k}.$$

Exemplo

Para todos os $n, m \in \mathbb{N}$ ($n \leq m$),

$$\binom{m+1}{n+1} = \sum_{k=n}^{m} \binom{k}{n}.$$

Exemplo

Para todos os $n, m \in \mathbb{N}$ ($n \leq m$),

$$\binom{m+1}{n+1} = \sum_{k=n}^{m} \binom{k}{n}.$$

O número binomial $\binom{m+1}{n+1}$ é igual ao tamanho do conjunto

$$Y=\{A\subseteq\{1,\dots,m+1\}\mid\quad |A|=n+1\}.$$

Exemplo

Para todos os $n, m \in \mathbb{N}$ ($n \leq m$),

$$\binom{m+1}{n+1} = \sum_{k=n}^{m} \binom{k}{n}.$$

O número binomial $\binom{m+1}{n+1}$ é igual ao tamanho do conjunto

$$Y=\{A\subseteq\{1,\dots,m+1\}\mid\quad |A|=n+1\}.$$

Para cada $k \in \{n, ..., m\}$, consideremos

$$Y_k = \{A \subseteq \{1, \dots, m+1\} \mid \max A = k+1, |A| = n+1\};$$

assim, $Y = Y_n \cup Y_{n+1} \cup \cdots \cup Y_m$ (dois a dois disjuntos).

Exemplo

Para todos os $n, m \in \mathbb{N}$ ($n \leq m$),

$$\binom{m+1}{n+1} = \sum_{k=n}^{m} \binom{k}{n}.$$

O número binomial $\binom{m+1}{n+1}$ é igual ao tamanho do conjunto

$$Y = \{A \subseteq \{1, ..., m+1\} \mid |A| = n+1\}.$$

Para cada $k \in \{n, ..., m\}$, consideremos

$$Y_k = \{A \subseteq \{1, \dots, m+1\} \mid \max A = k+1, |A| = n+1\};$$

assim, $Y = Y_n \cup Y_{n+1} \cup \cdots \cup Y_m$ (dois a dois disjuntos). Portanto,

$$|Y| = \binom{n}{n} + \binom{n+1}{n} + \cdots + \binom{m}{n}.$$