ECS 170 Homework 5

Hardy Jones 999397426 Professor Davidson Winter 2014

1. Give one advantage of using a belief network versus modeling the full joint distribution of a set of random variables.

Bayesian networks have the distinct advantage of less computationally expensive to calculate than the full joint distribution.

- 2. Describe the four types of relationships that can occur in belief networks.
 - Direct cause

Given two nodes A and B with an arrow from A to B, we say that A has a direct cause on B.

Indirect cause

Given three nodes A, B, and C with arrows from A to B and B to C, we say that A has an indirect cause on C.

• Common cause

Given three nodes A, B, and C with arrows from A to B and A to C, we say that A is a common cause of B and C.

• Common effect

Given three nodes A, B, and C with arrows from A to C and B to C, we say that A and B have a common effect of C.

- 3. Consider the following.
 - (a) Which of the bayesian networks are correct? Explain.

The correct networks are (ii) and (iii).

- (i) suggests that N is conditionally independent of F_1 given M_1 . This is clearly not the case since if we count n stars, there could be at least n+3 actual stars if the focus were off.
- (ii) is a direct implementation of the given problem.
- (iii) is a reordering of the problem, so it is clearly correct. The measurement along with the number of stars can show if the focus is out. M_1 has a direct cause on M_2 because M_2 can never be more than 4 different from M_1 . The two measurements provide a lower bound on the number of stars.
- (b) Which is the most efficient network of the accurate network(s) and why?
 - (ii) is the more efficient because it has less edges. The full joint distribution of (iii) will be much higher than (ii).

(c) Assuming $N \in \{1, 2, 3\}$ and $M_1 \in \{0, 1, 2, 3, 4\}$, write out the conditional distribution for $P(M_1|N)$ in terms of e and f.

Using graph (ii):

M_1	N	$P(M_1 N)$
0	1	e+f
0	2	f
0	3	f
1	1	$(\neg e) \cdot (\neg f)$
1	2	$e \cdot (\neg f)$
1	3	0
2	1	e
2	2	$(\neg e) \cdot (\neg f)$
2	3	e
3	1	0
3	2	e
3	3	$(\neg e) \cdot (\neg f)$
4	1	0
4	2	0
4	3	e