

UNDERSTANDING HOW TWEET VOLUMES AND SENTIMENT AFFECT THE PRICE OF BITCOIN

A STUDY ON PRICES FROM JANUARY 2021 - MARCH 2021

FINE460: FINANCIAL ANALYTICS April 1st, 2022

David Perez, Youcef Sahnoune. Jonathan Steinberg

AGENDA

- 1. The Context & Question
- 2. Our Process
 - a. Data Collection & Analysis
 - b. Variable Selection
 - c. Multiple Regression
 - d. Classification
- 3. Main Results
- 4. Potential Caveats
- 5. Appendix

How we reached our ultimate research question

What factors generally impact cryptocurrency? What impact could social media "hype" have? How do investigate this?

How do Tweet volumes and sentiment impact the price movement of Bitcoin?

We took an iterative approach to understanding our most relevant variables

DATA ANALYSIS PREDICTIVE ANALYSIS Explaining Bitcoin's price using Tweets Predicting Bitcoin's price using Tweets **PCA MULTIPLE LINEAR REGRESSION** LASSO/RIDGE **REGRESSION TREES & RANDOM FOREST CLUSTERING**

DATA COLLECTION

Data Collection Process

TWEETS DATA

SENTIMENT DATA

BTC PRICING DATA

snScrape

Vader

FTX

Python package which gathers an array of attributes on all tweets that contain a specific text search query (in this case, "BTC" or "Bitcoin") between specified start and end dates

Collected 6,915,458 tweets between for the first three months of 2021

Sentiment analysis package for social media texts. Vader compute a positive, negative, and neutral polarity score for each tweet, as well as a compound score that normalizes the aforementioned three scores

Compound score ranges from -1 to 1, -1 being entirely negative and 1 being entirely positive

Bitcoin price can be gathered through FTX's REST API, which allows us to gather candlestick data on the BTC/USD market for different levels of granularity between specified start and end dates

We then merged all data into hourly intervals to generate the following variables...

The starting set of variables we used in our analysis

Variable Name	Description
DateTime	The date and hour of any given number of tweets
Price	The price of Bitcoin (BTC) at the end of the next hour
Log_price	The logarithmically transformed price of BTC for stationarity purposes, and our dependent variable
Tweets	# of BTC-related tweets in any given hour
Likes	# of BTC-related tweet likes in any given hour
Replies	# of replies to BTC-related tweets in any given hour
Retweets	# of retweets of BTC-related tweets in any given hour
Quotes	# of retweets of BTC-related tweets in any given hour that also have additional commentary
CompoundMean	The average sentiment "score" of the tweets across the hour (a positive and higher value indicates a more positive sentiment while a negative and lower value indicates more negative sentiment)
VerifiedX	X being tweets, replies, retweets, quotes, and likes, verified dictates whether or not the activity is done by a "verified" user on Twitter
PositiveX	X being tweets, replies, retweets, quotes, and likes, Positive dictates whether or not the activity has been attributed a positive sentiment (compound score > 0.05)
NeutralX	X being tweets, replies, retweets, quotes, and likes, Positive dictates whether or not the activity has been attributed a neither negative nor positive sentiment $(-0.05 < compound\ score < 0.05)$
NegativeX	X being tweets, replies, retweets, quotes, and likes, Negative dictates whether or not the activity has been attributed a negative sentiment (compound score $<$ -0.05)
Overall Activity	# of BTC-related replies, likes, retweets, and quotes combined for any given hour
X lag1	A variable created for all the above variables (excluding DateTime) that was lagged by one hour

In total, we ended up looking at 76 independent variables, and 2,160 price observations of Bitcoin

Vader is pretty accurate....

Compound Score: 0.9969

Fuck this scam. Fuck fuck fuck fuck fuck scam Bitcoin ponzi scam fuck this fuck scam scam fuck this scam fuck fuck fuck dog.

Compound Score: -0.9970

DATA ANALYSIS

Price of BTC Jan-April 2021

From January-April 2021, the price of bitcoin more than doubled

The relationship between Price and Sentiment

In our analysis, we noticed two return outliers

Return Outliers

January 29th (3:00am)

Bitcoin spikes 20% after Elon Musk adds #bitcoin to his Twitter bio

PUBLISHED FRI, JAN 29 2021-5:20 AM EST | UPDATED FRI, JAN 29 2021-8:03 AM EST

In retrospect, it was inevitable

3:22 AM · Jan 29, 2021 · Twitter for iPhone

53.6K Retweets 7,480 Quote Tweets 578.1K Likes

February 8th (8:00am)

Tesla buys \$1.5 billion in bitcoin, plans to accept it as payment

KEY POINTS

- Tesla announced in an SEC filing Monday that it has bought \$1.5 billion worth of bitcoin.
- The company also said it would start accepting bitcoin as a payment method for its products.
- CEO Elon Musk has been credited for raising the prices of cryptocurrencies, including bitcoin, through his messages on Twitter.

Key finding: There is evidence that tweets about Bitcoin affect its price

VARIABLE SELECTION

PCA Plot of PC1 and PC2

Running LASSO and Ridge on all variables gave us an initial starting point

76 variables, many of which are highly correlated or insignificant

RIDGE

Illustrative example of optimal Ridge model output (non-exhaustive)

LASSO

Illustrative example of optimal LASSO model output (non-exhaustive)

VerifiedNotLikes
VerifiedCompoundMean
PositiveTweets
PositiveReplies
PositiveRetweets
PositiveQuotes
PositiveVerifiedTweets
PositiveCompoundMean

VerifiedNotLikes
PositiveVerifiedTweets
PositiveCompoundMean

VerifiedCompoundMean

VerifiedComp

17 variables related mostly to sentiment, activity, and engagement

PREDICTIVE ANALYSIS

We then used the variables that we selected to run a multiple regression

STEP 1: FOCUSING ON PREDICTIVE POWER

Adjusting for linear regression

PROBLEMS

WHAT WE DID

LACK OF STATIONARITY

Took the log transformation of price, and examined historical data of BTC to understand the mean-reversion of BTC

HIGHLY CORRELATED VARIABLES

Examined the overall correlation matrix, and only selected variables with higher individual predictive powers (in relation to log_price)

TOO MANY VARIABLES

Ran another series of LASSO and Ridge analyses on the initial multiple regression to ensure we were only pulling out significant and important variables, and consolidated variables where we could

Understanding the Multiple Regression Results

```
Call:
lm(formula = lead(log_price, n = 1) ~ CompoundMean + NeutralTweets +
   NeutralCompoundMean + PositiveCompoundMean + NegativeVerifiedTweets +
   Compoundmeanlag1 + Overall_activity, data = train)
Residuals:
    Min
             10 Median
-0.53019 -0.15294 0.02446 0.14146 0.46638
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                     9.673e+00 7.228e-02 133.826 < 2e-16
CompoundMe an
                9.965e-01 2.124e-01 4.691 2.97e-06
NeutralTweets
                    5.957e-05 1.164e-05 5.117 3.51e-07
NeutralCompoundMean 4.708e+01 1.896e+01 2.484 0.01311
PositiveCompoundMean 1.119e+00 1.521e-01 7.355 3.13e-13 ***
NegativeVerifiedTweets -3.275e-03 9.959e-04 -3.288 0.00103
Compoundmeanlag1 1.168e+00 1.988e-01 5.875 5.20e-09 ***
Overall_activity 1.519e-07 7.985e-08 1.902 0.05733 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.182 on 1502 degrees of freedom
 (2 observations deleted due to missingness)
Multiple R-squared: 0.3007, Adjusted R-squared: 0.2974
F-statistic: 92.26 on 7 and 1502 DF. p-value: < 2.2e-16
```

ADJUSTED R²

29.74%

(not horrible for tweets)

MSE

0.035

(+/- **\$7,500** deviation)

While our out-of-sample predictions weren't necessarily accurate, we still came to interesting findings on the relationship between BTC and Tweets

GENERAL SENTIMENT

Represented by the high coefficients and the high number of significant variables related to the "core" Compound Score variable

Interestingly, PositiveCompoundMean seemed to have the highest impact coefficient-wise, indicating that hours where tweets were overwhelmingly positive strongly contribute to price increase of Bitcoin

This supports our initial "hype" hypothesis, in spite of the out-of-sample inaccuracy of the model

POPULARITY

The importance of the variables tied to activity and whether or not a tweet is verified was also apparent in our regression, representing how famous tweeters/trending tweets can have a measurable impact on price

NegativeVerifiedTweets here had a strong negative impact on price (as the number of tweets increases), indicating that more famous people (or verified people) will have a higher impact on the price of Bitcoin

This also supports our initial "hype" hypothesis, as more popular players can have a higher magnitude impact

That said, there was more analysis to be done...

REGRESSION TREES & RANDOM FOREST

Continuous Regression Tree: Finding the Optimal CP

OPTIMAL CP

0.005218272

Continuous Regression Tree: Optimal Regression Tree

OPTIMAL REGRESSION TREE MSE

58,391,173

(+/- **\$7,641.41** deviation)

Continuous Random Forest

Random forest constructs many regression trees and combines them for a more accurate prediction

For each tree, a random bootstrapped sample of sqrt(n) predictors is taken, which eliminates biases due to possible multicollinearity

MSE was found to be 4,908,6974 (+/- \$7,006.21 deviation)

Classification Random Forest

We wanted to make our model more intuitive for investors by creating three classes...

Decrease: Return < -0.005

Constant: -0.005 < Return < 0.005

Increase: Return > 0.005

Accuracy was found to be 40.28%

Classification Random Forest (Cont'd)

	Constant	Decrease	Increase
Constant	534	64	104
Decrease	261	40	85
Increase	270	57	95

Sensitivity: 0.8056

Specificity: 0.2753

Sensitivity: 0.1585

Specificity: 0.9011

Sensitivity: 0.1362

Specificity: 0.8759

Our approach to data analysis did contain a number of caveats

FINAL TAKEAWAY

As seen with Elon Musk, there is evidence that tweets about bitcoin affected its price...

However, our models only did an adequate job at best at encapsulating this relationship/predicting price based off twitter data. Clearly, there is more than effects that price of bitcoin than tweets alone.

CAVEATS

Only pulling 3 months of data might be limiting and may result in a biased result

We assumed Bitcoin had a historical mean reverting property, thus allowing us to use log(price) for the purposes of regression and stationarity

Tweets about Bitcoin vs.
Tweets that mentioned Bitcoin

APPENDIX

Across the last decade, Bitcoin has quickly risen in popularity among retail, institutional, and enthusiast investors, dictating cryptocurrency financial markets

Summary Statistics

	COUNT	MIN	MEAN	MAX	
PRICE	2,160	29,057	45,053	61,611	
TWEETS	2,160	1,107	3,202	23,811	
COMPOUND SCORE MEAN	2,160	0.06845	0.17165	0.41310	
ACTIVITY	2,160	5,255	positive toward sense	1,503,654 ates generally ive sentiment rds BTC. This makes e given Bitcoins double from Jan 1 -	

More in-depth Summary Statistics

Price	Tweets	Likes	Replies	Retweets	Quotes	NotLikes	Activity	CompoundMean
Min. :29057	Min. : 1107	Min. : 3793	Min. : 504	Min. : 544	Min. : 56.0	Min. : 1222	Min. : 5255	Min. :0.06845
1st Qu.:35705	1st Qu.: 2209	1st Qu.: 13071	1st Qu.: 1621	1st Qu.: 1966	1st Qu.: 242.0	1st Qu.: 3974	1st Qu.: 17301	1st Qu.:0.14680
Median :47088	Median : 2799	Median : 21110	Median : 2452	Median : 3156	Median : 394.0	Median : 6160	Median : 27478	Median :0.16569
Mean :45053	Mean : 3202	Mean : 28845	Mean : 3270	Mean : 4778	Mean : 694.3	Mean : 8742	Mean : 37587	Mean :0.17165
3rd Qu.:54227	3rd Qu.: 3690	3rd Qu.: 33899	3rd Qu.: 3674	3rd Qu.: 5093	3rd Qu.: 656.0	3rd Qu.: 9574	3rd Qu.: 43832	3rd Qu.:0.18793
Max. :61611	Max. :23811	Max. :1277685	Max. :88761	Max. :781699	Max. :77568.0	Max. :860265	Max. :1503654	Max. :0.41310

Correlation Heat Map

The matrix here suggests some significant multicollinearity among regressors

We used this as a tool to verify the results of the multiple linear regression

Some key mentions:

- Very high correlation between Tweets and Neutral Tweets
- Very high correlation between Replies and Verified Activity

Histogram of Compound Mean

In this histogram we can see that more tweets were positive as opposed to negative, consistent with our previous findings. However, the vast majority of tweets were found to be neutral in our dataset.

K-MEANS CLUSTERING

K-Means: We used the silhouette method to choose the optimal number of clusters

$$Silhouette_i = \frac{b_i - a_i}{max(b_i, a_i)}$$

The Silhouette Method is used to gauge **quality of cluster assignment** for each observation

Attempts to minimize cohesion and maximize separation

COHESION

How similar observations are within the same cluster

 ai: average distance between observation i and all other observations in same cluster

SEPARATION

How different clusters are from each other

- bi: average distance between observation i and all other

POSITIVE VALUE

A positive silhouette score indicates that a particular object is well matched to its own cluster, and not well to another

HIGHER VALUE

When using silhouette, higher values are better in validating clusters

K-Means: We used the silhouette method to choose the optimal number of clusters

Silhoutte Scores for each Number of Clusters

K-means clustering was performed for all variables in our dataset for each value of K between 2 - 10

The optimal amount of clusters was found to be 2

Cluster #1: Tweets on 2021-02-20 05 & 2021-03-24 08 (UTC)

Cluster #2: Remaining observations

Observations in cluster #1 significantly more activity than any other hour

Tweet with most activity: February 20th (12:00am)

Tweets with 2nd, 3rd, 7th most activity: March 24th (3:00am)

Our cluster found the most popular tweets about bitcoin, but did these tweets affect its price?

Tweets were more positive after Elon Musk and more negative after Mr. Beast

Observations in cluster #1 do not exhibit any effect on BTC Price or Return in the next hour

STATIONARITY

Log Price of BTC Jan-March 2021

Argument for Stationarity for Bitcoin Prices

If the trend reverts to a common mean, we can argue that bitcoin prices are stationary

Stationarity Among Predictor Variables

Reversion to the mean. Omission of any transformation to preserve interpretation of regressors. Superimposed image of all regressors as a time series. Volatility clusters that revert to the mean.

PCA

Explained Variance by Principal Component

Principal components significantly reduce our initial regressor count

Factor loadings were not used as regressors because we favoured interpretability of our model rather than performance

Loadings on different PC's have less economic significance by construction

LASSO/RIDGE

Ridge& LASSO Plots

Plotting the ridge analysis, which outlines the minimum MSE at around 0.035

Plotting the LASSO analysis, which outlines the minimum MSE at around 0.035

Lasting Ridge and LASSO tables in developing the final models

RIDGE

<pre>> coef(best_model_ridge) 8 x 1 sparse Matrix of class</pre>	s "dgCMatrix"	<pre>> coef(best_lambda_lass 8 x 1 sparse Matrix of compared to the compared t</pre>	class "dgCMatrix"
CompoundMean 1.93 NeutralTweets 6.39 NeutralCompoundMean 4.39 PositiveCompoundMean 1.13	14379e+00 97695e-05 99023e+01 28919e+00	(Intercept) CompoundMean NeutralTweets NeutralCompoundMean PositiveCompoundMean	s0 9.735573e+00 1.917278e+00 5.364101e-05 3.477853e+01 1.087085e+00
NegativeVerifiedTweets -3.68 Compoundmeanlag1 . Overall_activity 1.33	82043e-03	NegativeVerifiedTweets Compoundmeanlag1 Overall_activity	

LASSO

While RIDGE and LASSO both suggested removing Compoundmeanlag1, we found that including this variable actually contributed to both a higher R², and a lower MSE

SIMPLE LINEAR REGRESSIONS

Illustrative example of the simple linear regression process

Running a regression on each column

```
for (i in 1:76)#length(colnames(df_lag1)))
{
    x<-(df_lag1[,i])
    y<-(lead(df_lag1$log_price,n=1))

    Reg_results[[i]] <- lm(y~x)
    w = lm(y~x)
    R_results <- c(R_results, summary(w)$r.squared)
}</pre>
```

Looking at the coefficients, intercepts, p_values, and R² of each individual relationship

unlist.var	unlist.Coe	unlist.inte	unlist.p_va	unlist.R_results.
Tweets	1.22E-05	10.65359	4.11E-05	0.00777
Likes	4.50E-07	10.67957	0.000122	0.006821
Replies	4.62E-06	10.67744	9.74E-05	0.007017
Retweets	7.30E-07	10.68908	0.006125	0.003478
Quotes	6.25E-06	10.68823	0.003254	0.004007
NotLikes	7.50E-07	10.68601	0.000807	0.005192

VARIABLE IMPORTANCE

Continuous Variable Importance: Without Lags

Continuous Variable Importance: With Lags

Classification Random Forest: Variable Importance

binaryforest

Interestingly enough, neutral tweets played a massive part in the analysis here, alongside variables that represent the general sentiment of the tweets

Multi-Classification Random Forest: Variable Importance

classificationforest

Common take away from all variable importance plots; compound mean and compound mean of lag 1 were found to be the most important variables, suggesting we should be included them in our models.

20

CLASSIFICATION REGRESSION TREE

Classification Regression Tree: Finding the Optimal CP

OPTIMAL CP

0.00536193

Classification Regression Tree: Optimal Regression Tree

Regression tree is easy to read and intuitive for people trading on this strategy in real time

MULTICLASSIFICATION MODEL

Multi-Classification Regression Tree: Finding the Optimal CP

OPTIMAL CP

0.004950495

Multi-Classification Regression Tree: Optimal Regression Tree

Interestingly, 70% of the observations were classified as constant, recommending a hold position most of the time

Multi-Classification Random Forest

What if we increase the classes...

Big Decrease: Return < -0.0075

Decrease: -0.0075 < Return < 0.0025

Constant: -0.0025 < Return < 0.0025

Increase: 0.0025 < Return < 0.0075

Big Increase: Return > 0.0075

Accuracy was found to be **24.85**%

Multi-Classification Random Forest (Cont'd)

Confusion Matrix

	Big Decrease	Big Increase	Constant	Decrease	Increase	
Big Decrease	46	82	83	31	28	Sensitivity: 0.18852
						Specificity: 0.9006
Big Increase	52	98	116	32	20	Sensitivity: 0.2933
						Specificity: 0.7871
Constant	39	85	169	54	44	Sensitivity: 0.4453
						Specificity: 0.5832
Decrease	33	48	130	34	26	Sensitivity: 0.1702
						Specificity: 0.8628
Increase	27	46	124	39	24	Sensitivity: 0.1136
						Specificity: 0.9205