(54) ELECTRONIC SUNGLASS

(11) 4-134320 (A)

(43) 8.5.

(21) Appl. No. 2-256371 (22) 26.9.1990

(71) SEIKO EPSON CORP (72) AKIRA ITO

(51) Int. Cl⁵. G02F1/133,G02F1/13,G09G3/18

PURPOSE: To determine the transmitivity of the sunglasses taking the adaptation speed of the human eyes into consideration and to decrease the eye's burden for adaptation by setting a fuzzy rule and membership function by corresponding

(19) JP

the same to the adaptation speed of the human eye.

CONSTITUTION: The sunglasses are constituted of a measuring section 1, external information, a time series forming section 3, time series external information 4, a fuzzy argument section 5 which has the membership function 6 and the fuzzy rule 7 and makes fuzzy argument in accordance with the time series external information 4 from the time series forming section 3, a transmissivity control section 9 which controls the transmitivity of the sunglasses by the controlled variable 8 from the fuzzy argument section 5, and the sunglasses 11 which change the transmitivity by receiving the transmissivity control signal 10 from the transmissivity control section 9. The transmissivity control of the sunglasses 11 meeting the eye' adaptation (dark adaptation and bright adaptation) speed is executed in this way and the eyes' burden is decreased as far as possible.

(54) LIQUID CRYSTAL DISPLAY DEVICE

(11) 4-134321 (A) (43) 8.5.1992 (19) JP

(21) Appl. No. 2-257694 (22) 26.9.1990

(71) SANYO ELECTRIC CO LTD (72) YUJI OKITA

(51) Int. CI⁵. G02F1/1335,G03B21/00

PURPOSE: To increase the utilization efficiency of light and to improve the brightness of a display image by converging the light from a light source through convex lenses in picture element units and guiding the light to the

respective picture elements of a liquid crystal panel.

CONSTITUTION: On at least one surface of each picture element of the liquid crystal panel P, a convex lens 5 which is larger than the area of each picture element is provided, and the light from the light source L is converted by the lens 5 and guided to each picture element of the liquid crystal panel P. further, the convex lens 5 uses a convex lens in an aspherical and asymmetrical sectional shape so as to have focus in a direction along the high-contrast axis direction of the liquid crystal panel. Consequently; the high-contrast axis direction is set apparently perpendicular to the liquid crystal panel P and the utilization efficiency of the light is greatly improved.

(54) LIQUID CRYSTAL DISPLAY ELEMENT

(11) 4-134322 (A) (43) 8.5.1992

(21) Appl. No. 2-256573 (22) 26.9.1990

(71) RICOH CO LTD (72) HARUO IIMURA(2)

(51) Int. CI⁵. G02F1/1335,G02F1/133,G02F1/1337

PURPOSE: To obtain the liquid crystal display element of a multicolor display having excellent display quality even at the time of high time-divided driving by installing a double refractive layer having ≥2 values of retardation varying within the plane between polarizers to a liquid crystal layer.

CONSTITUTION: The liquid crystal layer 30 is crimped between upper and lower substrates 13 and 23 formed with transparent electrodes 12, 22 and oriented films 11, 21 and is isolated from the outside world by a sealing material 31, by which a liquid crystal cell is formed, the polarizers 14, 24 are disposed on the outermost side thereof. The double refractive layer 32 varying in the retardation according to the intra-surface position is disposed between the upper polarizer 24 and the upper substrate 32. The degradation in transmitivity is prevented in this way and the need for largely changing the impressed voltage according to displayed colors is eliminated. The liquid crystal display element of the multicolor display having the excellent display quality in spite of the high time divided driving is obtd.

Publication of Patent Application H4 (1992) 134321

[Section 2]

The difference between the liquid crystal display device of the present invention in the same drawing and that of the prior art device shown in Fig. 4 is in the point that it provides on both sides of the liquid crystal panel a convex lens 5 and 5... of a greater surface area than the area of each picture element, and the light from the light source is collected by such convex lens 5 and 5... and supplied to each picture element.

However, since this convex lens 5 and 5... is formed in an aspheric non-symmetrical cross-sectional shape intended to provide focusing in a direction along an axis of high contrast in the direction of the liquid crystal panel, the light that arrives by entering perpendicularly to the panel P is refracted in the high contrast axis direction while being collect ed, and additionally, the outgoing light from the panel P is refracted in a direction perpendicular to the panel P while being collected once again by the convex lens 5 and 5....

Accordingly, when adopting this type of liquid crystal panel P in a projector, it becomes possible to match the transmission optical axis and the apparent high contrast axis direction by simply making the perpendicular arrangement to the transmission optical axis in relation to the panel P to be as shown in the composition drawing of Fig. 2. In other words, the parallel light beam from the lens R1 for use with the light source for changing the light from the light source L to a parallel light beam is transmitted with good efficiency along the apparent high contrast axis direction of the perpendicularly arranged panel P, and the transmitted light is projected onto the screen S through the magnification projection lens R2.

19日本国特許庁(IP)

① 特許出顧公開

⑫ 公 開 特 許 公 報 (A) 平4-134321

®Int. Cl. 5

識別記号

庁内整理番号

❷公開 平成4年(1992)5月8日

G 02 F 1/1335 G 03 B 21/00

7724-2K 7316-2K Z

> 審査請求 未請求 請求項の数 3 (全4頁)

64発明の名称

液晶表示装置

②特 願 平2-257694

②出 頤 平2(1990)9月26日

@発 明 者 雄

大阪府守口市京阪本通2丁目18番地 三洋電機株式会社内

创出 頭 人 三洋電機株式会社

大阪府守口市京阪本通2丁目18番地

個代 理 人 弁理士 西野 卓嗣 外2名

1. 発明の名称

液晶表示装置

- 2. 特許請求の範囲
- (1)行列配置された多数の画素毎に透過光量調 整を行う光透過型液晶パネルを光源と組み合わせ てなる液晶表示装置に於て、

液晶パネルの各囲素の少なくとも片面に各画素 の面積より大きい面積の凸レンズを備え、該凸レ ンズにより光源からの光を集光して液晶パネルの 各画素に供給する事を特徴とした液晶表示装置。

- (2) 請求項1記載の液晶表示装置に於て、上記 凸レンズは、液晶パネルの高コントラスト方向韓 に沿った方向に焦点を備えるべく非球面非対称版 面形状に形成されてなる液晶表示装置。
- (3) 請求項1、又は2記載の液晶表示装置に於 て、上記液晶パネルは画業以外の領域からの光端 れを遮光するための遮光マスクを備えており、上 記凸レンズは、波晶パネルの全面に塗布された光 硬化樹脂に対して液晶パネル自身を透過した光で

露光パターニングしてなる液晶表示装置。

- 3. 発明の詳細な説明
- (イ)産業上の利用分野

本発明は液晶表示装置、特に液晶パネルを原因 とした液晶プロジェクタに関する。

(ロ)従来の技術

近年、手軽に大型の映像表示が得られる装置と して、液晶パネルを用いた液晶プロジェクタが普 及し始めている。このような液晶プロジェクタに 用いられている液晶パネルとしては、現在、コン トラストや応答などの表示特性の良好なアクティ ブマトリク型のものが殆どである。

しかしながら、アクティブマトリク型液晶表示 パネルの場合、1画素に対応して1つのアクティ プ素子、たとえばTFT(毎膜トランジスタ)や MIM構造の非線形素子を作り込んでいるため、 有効画案開口率が小さくなりがちである。

従って、このような彼品パネルを用いて彼品ブ ロジェクタを構成すると、その有効画素開口率が 小さい為、光の利用効率が低くなり、スクリーン

上で得られる表示画像に十分な輝度が得られない といった欠点があった。

この欠点は、液晶プロジェクタの光線として大 健度のものを用いることである程度解消できると 考えられるが、この場合には、装置全体の消費電 力の増大、あるいは、大輝度光深の使用による高 熱発生がアクティブマトリク製液晶表示パネルの アクティブ裏子の動作特性に支障を来す危惧があった。

るものである。

また、本発明は、高コントラスト軸方向を見かけ上、液晶パネルに対して垂直方向とすることができる液晶表示装置を提供するものである。

(二) 課題を解決するための手段

本発明の液晶表示装置は、行列配置された多数の画素毎に透過光量調整を行う光透過型液晶パネルを光源と組み合わせたものであって、液晶パネルの各画素の回根より大きい面積の凸レンズを備え、放凸レンズにより光流からの光を裏光して液晶パネルの各画素に供給する情境を備える。

又、本発明の液晶表示装置は、上記凸レンズと して、液晶パネルの高コントラスト軸方向に沿っ た方向に焦点を備えるべく非球面非対称断面形状 凸レンズを用いる。

更に、本発明の液晶表示装置は、上記液晶パネルに画素以外の領域からの光陽れを遮光するための選光マスクを確えており、上記凸レンズは、液晶パネルの全面に塗布された光硬化樹脂に対して

このような高コントラスト始方向を持つ液晶パネルを用いてプロジェクタを構成する場合には、第5回の模式構成図に示す如く、このパネルPに対する透過光粒に垂直配置するのではなく、その優先視角方向を合わせるので、このパネルが斜めに装備されることになる。即ち、光変しからの予行光線に変える光源用レンズR1からの平行光線に変える光源用レンズR1からの平行光線に変けられたパネルPの優先視が大力に沿って効率良く透過され、この透過光が拡大力に沿って効率良く透過され、この透過光が拡大力をある。

このようなプロジェクタに於ては、液晶パネル Pを傾斜配置しなければならず、この為装置構造 を複雑にする欠点があるばかりか、このパネルア の傾斜角度調節が複雑になる危惧があった。

(ハ)発明が解決しようとする課題

本発明は、上述の欠点に鑑みてなされたものであって、表示価値に十分な輝度が得られないといった欠点を解消するべく光の利用効率を高めて、より明るい両面が得られる液晶表示装置を提供す

液晶パネル自身を透過した光での露光パターニン グによって形成されている。

(ホ)作用

本発明の液晶表示装置によれば、凸レンズにより 光源からの光を集光して液晶パネルの各画業に供給する構造であるので、光の利用効率が大幅に高まる。

また、本発明の液晶表示装置によれば、液晶パネルの前後に1番素毎に対応して一対の非球面非対称の集光凸レンズを配置することができる。このレンズ形状によって、人射光が液晶パネルの高コントラスト軸方向に沿って屈折し、このパネルからの出射光が再度屈折して入射光と同じ方向の光、即ち平行光となって透過することになる。

更に、本発明の液晶表示装度によれば、表示コントラスト向上にの為に液晶パネルに元々装備されている画素関連光マスクを上記のレンズ形成に利用できる。即ち、液晶パネルに塗布された光硬化樹脂をこの画素関準光マスク付き液晶パネルを表過してきた光で露光パターニングすることで、

,非球面非対称断面形状凸レンズが得られる。 (へ)実施例

第1図に本発明の彼品表示芸術の液品パネルの断面図を示す。同図に於て、1は透明な画業電極基板、2は透明な対向電極基板、3はこれら両基板の周囲をシールしたシール剤、4は液晶、40は上記対向電極基板2に設けられた遮光マスクによって遮光された部分(図のハッチング位置)を示しており、これらは集4図の従来装置と同じものであってよい。

同図の本是明の液晶表示装置に於て、第4図の 従来装置と異なる処は、液晶パネルPの両面に、 各画家の面積より大きい面積の凸レンズ5、5… を備え、該凸レンズ5、5…により光潔からの光 を集光して各画素に供給する点にある。

しかも、この凸レンズ5、5…は、液晶パネルの高コントラスト方向帕に沿った方向に焦点を備えるべく非球面非対称断面形状に形成されているので、パネルPに対して垂直に入射して来る光は集光しながら高コントラスト軸方向に屈折され、

より集光して液晶の高コントラスト軸方向に沿って画案開口部内を通過させ、パネル通過後はさらにレンズ 5、5…により平行光とすることができるので、光の利用効率が大幅に向上される。

次に、上述したレンズ 5 、 5 …の製法の一例に ついて第 3 図(イ)(ロ)に基すいて概説する。

まず、第3図(イ)に示す如く、液晶パネルPの一面に個光板(図示せず)を被著した状態で、この偏光板上に紫外線硬化型の樹脂を塗布し、この偏光板上に紫外線硬化型の樹脂を塗布し、こうに照射された光は、顕雲以外の領域からの光漏れを選光するための歴光マスクによって、画素では図中の矢印で示すがして、上記の紫外線硬化型の樹脂層に入射され、これを硬化せしめる。

尚、この時の光照射は、パネルPの反対面から パネルPに対して主に型直な角度で行われるが、 貫素面積より大きく、しかも非球菌非対称型断面 形状を得るために、パネルPに対して垂直方向か さらにパネルPからの出射光は再度凸レンズ 5、5…によって集光しながらパネルPに対して垂直な方向に屈折されることになる。

従って、このような液晶パネルPをプロジェクタに採用すると、第2図の模式構成図に示すると、第2図の模式構成図に示するだけない。この透過光軸と見かけ上の高コントラスト軸方向が一致させることができる。即ち、光潔しからの光を平行光線に変える光敵用レンズR1からの平行光線が重直配置されたパネルPの見かけ上の高コントラスト軸方向に沿って効率良く透され、この透過光が拡大投影レンズR2を介してスクリーンS上に投影されるのである。

面して、TFTやMIMなどのアクティブスイッチング素子を用いた液晶パネルでは、素子の大きさや配線により画素の関口率が小さくなりそのため光透過率も小さくなるが、本発明の液晶表示装置に於ては、この画素の関口部即ち、有効表示部以外の部分に照射された光を無駄にすることなく、これを磁素表面に配置したレンズ5、5…に

ら若干ずらした角度から補足して光照射される。 斯して同図(ロ)に示す如く、嵌晶パネルPの 一面にレンズ5、5…のアレーが製造できる。

更に、液晶パネルPの他方にもレンズアレーを 形成する場合には、同図(ロ)の第1のレンズア レーをこのパネルPの表面に被着されている偏光 板(図示せず)ごと科雕し、枝いて他方の面に第 2の個光板を被着した状態で、この偏光板上に第 外線硬化型の歯脂を整布し、上述と同様の露光パ ターニングを行って第2のレンズアレーを形成す あ。そして、前記第1のレンズアレーを再度パネ ルPの一面に被害すればよい。

(1)発明の効果

本発明の液晶表示装置は、 画業ごとに凸レンズにより光速からの光を集光して液晶パネルの各画素に供給する構造であるので、光の利用効率が高まって、表示画像の輝度を増すことができる。

また、本発明の筬品表示装置によれば、液晶パネルの前後に1 國業毎に対応して一対の非球面非対称の集光凸レンズを配置できるので、入射光が

液晶パネルの高コントラスト始方向に沿って屈折し、このパネルからの出射光が再度屈折して入射 光と同じ方向の光、即ち平行光となって透過する ことになり、これを用いたプロジェクタの構成の 簡略化が小型化が図れる。

更に、表示コントラスト向上にの為に液晶パネルに元々装備されている画業間遮光マスクを上記のレンズ形成に利用できるので、簡単な製法で本発明の液晶表示装置を実現できる。

4. 図面の簡単な説明

第1回は本発明の液晶表示装置に用いる液晶パネルの断面図、第2回は本発明の液晶表示装置を搭載したプロジェクタの概念構成図、第3回は本発明装置の製造工程を示した断面図、第4回は従来の液晶パネルの断面図、第5回は従来のプロジェクタの概念構成図である。

4 …液晶、5 …レンズ、5 0 …紫外線硬化樹脂 層、P …液晶パネル。

> 出颗人 三洋電機株式会社 代理人 弁理士 西野卓嗣 (外2名)

