BT2101 Tutorial 2 Logistic Regression

Agenda

• Understand Logistic Regression

- Discussion about Programming Assignment 2
 - Logistic Regression
 - Gradient Ascent

• Python Implementation

Logistic Regression

- Think about

• General specification:
$$Logodds(\Pr(y_i = 1)) = \log(\frac{\Pr(y_i = 1)}{1 - \Pr(y_i = 1)}) = \beta_0 + \sum_{j=1}^p x_j \beta_j$$

$$\Pr(y_i = 1) = \frac{\exp(\beta_0 + \sum_{j=1}^p x_j \beta_j)}{1 + \exp(\beta_0 + \sum_{j=1}^p x_j \beta_j)}$$

• Sigmoid function: (Very Important Function)

Estimation

- Gradient Ascent
 - Maximizing (Log-)Likelihood:

$$l(\beta) = \prod_{i=1}^{N} \left[\frac{e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}}{1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}} \right]^{y_i} \left[\frac{1}{1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}} \right]^{(1-y_i)}$$

$$ll(\beta) = \sum_{i=1}^{N} \left[-\log(1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}) + y_i (\beta_0 + \sum_{j=1}^{p} x_j \beta_j) \right]$$

- Question: How to maximize this complex objective function?
 - Let first-order derivatives = 0?
 - Maybe you can take steps by steps (iteratively) to approach the (local) optimal value

Remember BT1101

Gradient Descent

(For Minimizing)

Gradient Ascent

(For Maximizing)

Correct: Simultaneous update temp0 := $\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ $\theta_0 := \text{temp0}$ $\theta_0 := \text{temp0}$ $\theta_1 := \text{temp1}$

- gradient descent aims at minimizing some objective function: $\theta_j \leftarrow \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta)$
- gradient ascent aims at maximizing some objective function: $\theta_j \leftarrow \theta_j + \alpha \frac{\partial}{\partial \theta_j} J(\theta)$

Overview of Gradient Ascent

Estimation

- Gradient Ascent
 - Maximizing (Log-)Likelihood:

$$ll(\beta) = \sum_{i=1}^{N} \left[-\log(1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}) + y_i (\beta_0 + \sum_{j=1}^{p} x_j \beta_j) \right]$$

- Gradient Ascent:
 - Remember Taylor Expansion
 - Newton-Raphson Method
 - Hard to get –H_t⁻¹
 - Steepest Ascent Method:
 - Let: $-H_t^{-1} = \lambda I$
 - I: Identity Matrix

8.3.1. Newton-Raphson

To determine the best value of β_{t+1} , take a second-order Taylor's approximation of $LL(\beta_{t+1})$ around $LL(\beta_t)$:

(8.1)
$$LL(\beta_{t+1}) = LL(\beta_t) + (\beta_{t+1} - \beta_t)'g_t + \frac{1}{2}(\beta_{t+1} - \beta_t)'H_t(\beta_{t+1} - \beta_t).$$

Now find the value of β_{t+1} that maximizes this approximation to $LL(\beta_{t+1})$:

$$\frac{\partial \text{LL}(\beta_{t+1})}{\partial \beta_{t+1}} = g_t + H_t(\beta_{t+1} - \beta_t) = 0,$$

$$H_t(\beta_{t+1} - \beta_t) = -g_t,$$

$$\beta_{t+1} - \beta_t = -H_t^{-1} g_t,$$

$$\beta_{t+1} = \beta_t + (-H_t^{-1}) g_t$$

Gradient Ascent

$$\beta_{t+1} \leftarrow \beta_t + \lambda \times g_t$$

Gradient Ascent

- Gradient Ascent
 - Objective Function: $ll(\beta) = \sum_{i=1}^{N} [-\log(1 + e^{\beta_0 + \sum_{j=1}^{p} x_j \beta_j}) + y_i(\beta_0 + \sum_{j=1}^{p} x_j \beta_j)]$
 - Gradient Ascent:
 - (1) Initialize $\beta^{(0)} = (\beta_0^{(0)}, \beta_1^{(0)}, ..., \beta_j^{(0)}) = (0, 0, ..., 0), t = 1$
 - (2) In step t, update coefficients:

$$\frac{\partial ll}{\partial \beta_{j}} \leftarrow \sum_{i=1}^{N} (y_{i} - \frac{e^{\beta_{0}^{(i-1)} + \sum_{j=1}^{p} x_{j} \beta_{j}^{(i-1)}}}{1 + e^{\beta_{0}^{(i-1)} + \sum_{j=1}^{p} x_{j} \beta_{j}^{(i-1)}}}) x_{ij}$$
Calculate gradients or first-order derivatives of coefficients
$$\beta_{j}^{(t)} \leftarrow \beta_{j}^{(t-1)} + stepsize \times \frac{\partial ll}{\partial \beta_{j}}$$
Update coefficients with Steepest Ascent Method

 $t \leftarrow t + 1$

• (3) Check convergence condition $\|\nabla ll(\beta^{(t)})\| < tolerance$. If not, go back to (2) until (3) is satisfied

Binary Classifier Performance

Performance of Binary Classifier

• Confusion Matrix

Correct classification	Classified as		
	+	_	
+	true positives	false negatives	
_	false positives	true negatives	

True Positive	TP/P	The proportion of
Rate		positive instances that
or Hit Rate		are correctly classified as
or Recall		positive
or Sensitivity or		
TP Rate		
False Positive	FP/N	The proportion of
Rate		negative instances that
or False Alarm		are erroneously classified
Rate		as positive
or FP Rate		
False Negative	FN/P	The proportion of
Rate		positive instances that
or FN Rate		are erroneously classified
		as negative $= 1 - \text{True}$
		Positive Rate

	1	1 0010110 10000	
True Negative	TN/N	The proportion of	
Rate		negative instances that	
or Specificity		are correctly classified as	
or TN Rate		negative	
Precision	TP/(TP+FP)	Proportion of instances	
or Positive		classified as positive that	
Predictive Value		are really positive	
F1 Score	$(2 \times \text{Precision} \times \text{Recall})$	A measure that combines	
	/(Precision + Recall)	Precision and Recall	
Accuracy or	(TP + TN)/(P + N)	The proportion of	
Predictive		instances that are	
Accuracy		correctly classified	
Error Rate	(FP + FN)/(P + N)	The proportion of	
		instances that are	
		incorrectly classified	

Performance of Binary Classifier

• ROC and AUC

• The **upper left-hand triangle** corresponds to classifiers that are better than random guessing. The **lower right-hand triangle** corresponds to classifiers that are worse than random guessing

The closer the curve follows the left-hand border and the top border of the ROC space (i.e., closer to the upper left-hand circle), the more accurate the test.

• The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test.

Performance of Binary Classifier

ROC and AUC

Quiz. Which model is better?

A. Yellow Curve

B. Pink Curve

C. Reference Line

Multi-Class Classifier Performance

Confusion Matrix

		Predicted				
		Class1	Class2	Class3	Class4	Class5
	Class1	92	3	2	2	1
Ground Truth	Class2	2	92	2	2	2
	Class3	1	1	92	6	0
	Class4	0	1	1	92	6
	Class5	1	4	2	1	92

- Accuracy
- Misclassification Rate = 1 Accuracy

Cross Validation

• Cross Validation (e.g., K-Fold Cross Validation)

In practice...

- The cross-validation procedure is repeated K times
- K random partitions of the original sample
- The K results are again averaged (or otherwise combined) to produce a single estimation.
- You can use cross validation for both binary classification and multi-class classification problems

Cross Validation

• K-Fold Cross Validation (e.g., K=10)

- Model Evaluation
- Model Comparison
- Model Tuning

All observations are used for both training and validation, and each observation is used for validation exactly once.

Cross Validation

• Scikit-learn: KFold

Examples

```
>>> from sklearn.model_selection import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(n_splits=2)
>>> kf.get_n_splits(X)
2
>>> print(kf)
KFold(n_splits=2, random_state=None, shuffle=False)
>>> for train_index, test_index in kf.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
```

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

Implementation in Python

BT2101 Introduction to Logistic Regression

Version: Python 3

1 Goal:

In this notebook, we will explore logistic regression using:

- Gradient ascent method (because you cannot get closed-form solutions)
- Open-source package: scikit-learn

For the gradient descent method, you will:

- Use numpy to write functions
- · Write a likelihood function
- · Write a derivative function
- Write an output function
- · Write a gradient ascent function
- · Add a constant column of 1's as intercept term
- · Use the gradient ascent function to get regression estimators

```
In []: # -*- coding:utf-8 -*-
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from math import sqrt
    from __future__ import division
    %matplotlib inline
```

1.1 Summary of Logistic Regression

Programming Assignment 2

Using the BT2101 Tutorial 2 Programming code (Logistic Regression.ipynb), please answer the questions in the jupyter notebook

Answer all in the jupyter notebook.

Instructions

Submit Python Notebook to IVLE folder, and Naming the file: AXXXX_T2_program.ipynb

Include your answers in the jupyter notebook

- You need to show outputs, instead of just showing functions.

Submit a FINAL program by Sep-11 Tuesday (by lunchtime)

- Based on Logistic Regression.ipynb

Thank you!

Appendix

Threshold p:

If Score>=p, Predict 1; If Score<p, Predict 0

ID	True Output	Score: $P(y=1 Data, \beta)$	Predicted Output (Threshold 90%)	Predicted Output (Threshold 80%)	•••	Predicted Output (Threshold 3%)
1	1	0.9	1	1	•••	1
2	1	0.8	О	1	•••	1
3	0	0.7	О	0	•••	1
4	1	0.6	О	0	•••	1
5	1	0.55	О	0	•••	1
6	1	0.47	О	0	•••	1
7	0	0.39	О	0	•••	1
8	0	0.21	О	0	•••	1
9	1	0.19	О	0	•••	1
10	0	0.03	0	0	•••	1

Appendix

L1 Regularization: Lasso Regression

$$RSS(\beta) = \varepsilon^{T} \varepsilon = \sum_{i=1}^{N} (y_{i} - f(X_{i}))^{2} = \sum_{i=1}^{N} (y_{i} - \beta_{0} - \sum_{j=1}^{p} x_{ij} \beta_{j})^{2}$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le threshold$$

L2 Regularization: Ridge Regression

Shrink the size of coefficients; Do variable selection (Guess why?)

$$RSS(\beta) = \varepsilon^{T} \varepsilon = \sum_{i=1}^{N} (y_{i} - f(X_{i}))^{2} = \sum_{i=1}^{N} (y_{i} - \beta_{0} - \sum_{j=1}^{p} x_{ij} \beta_{j})^{2}$$

$$subject to \sum_{j=1}^{p} \beta_j^2 \le threshold$$

Shrink the size of coefficients; No variable selection (Guess why?)

Note the difference between Lasso and Ridge Regression