IPRJ - Laboratório de Física 1 Experimento 2 – Grupo 10

Queda livre e Lançamento

Nome do aluno: Gustavo Dias de Oliveira

Matrícula: 2020-1-00785-11

Nome do aluno: Thiago Bastos da Silva

Matrícula: 2020-1-00760-11

Nova Friburgo – 2021

Objetivos do Experimento

Esta tarefa é dividida em duas partes, o objetivo da primeira é demonstrar experimentalmente como achamos a equação de queda livre e calcular através dos dados experimentais o valor da gravidade da terra. A segunda parte consiste em achar o valor da gravidade pela equação do lançamento oblíquo e comparar ambas os experimentos com o valor conhecido da gravidade, $g\cong 9.81$

Introdução e Desenvolvimento Teórico

A queda livre, consiste em um movimento uniformemente variável, no qual temos o movimento do objeto, ou partícula, na direção do eixo y (tratando como movimento unidimensional), podemos observar a ação da gravidade se soltarmos um objeto de uma determinada altura, o valor dessa aceleração não depende da massa do objeto, de sua densidade ou sua forma, ou seja, ela é igual para todos os corpos [1].

Sabemos que a fórmula usada para o movimento em queda livre é:

$$h = h_0 + vt + \frac{1}{2}gt^2$$

Cujo gráfico pode ser expresso por:

Gráfico da queda livre com S = h

A fórmula usada e a mesma para o movimento acelerado, no qual podemos comparar com uma equação do segundo grau, pois apresenta um comportamento similar, a forma da equação de segundo grau é:

$$y = a + bx + cx^2$$

No qual teremos: $h_0 \to a$, $v \to b$, $\frac{c}{2} \to g$, por isso, usaremos a equação de segundo grau para fazer os ajustes necessários e encontrar os valores esperados.

Na segunda parte do experimento, iremos tratar do lançamento oblíquo, no qual teremos o movimento em x e em y (bidimensional), logo, teremos o movimento uniforme em x

e o movimento uniformemente variável em y [1], ou seja, usaremos a seguinte equação para o eixo x:

$$x(t) = x_0 + vt$$

3

Podemos comparar essa equação com uma equação de primeiro grau pois apresenta um comportamento similar, a equação de primeiro grau é dada por:

$$y = ax + b 4$$

Que pode ser expressa pelo gráfico:

Gráfico do movimento em x

No qual, temos: $x_0 \to b$, $v \to a$, por isso usaremos essa equação para fazer os ajustes e encontrar os dados.

Para esse caso, no eixo y, temos a reescrita da equação 1 como a equação presente no movimento, pois temos nesse caso a presença da aceleração da gravidade, então teremos:

$$y(t) = y_0 + vt + \frac{1}{2}gt^2$$

Temos também no gráfico do lançamento oblíquo uma forma de descobrir o valor da aceleração gravitacional quando o ângulo de lançamento do objeto é 0, então usaremos a seguinte fórmula:

$$y(x) = \frac{g}{2v_{0x}^2} x^2 \tag{6}$$

O gráfico que expressa esse lançamento é o seguinte:

Gráfico da formula

1. Materiais Utilizados e Roteiro Experimental

Os matérias usados para o experimento foram:

Uma régua para podermos ter noção do espaço em y, um transferidor para podermos ter noção do espaço em x, a bola de golfe e o celular, para gravar o vídeo de seu movimento e nos dizer o tempo da trajetória em questão.

Matérias usados para primeira parte do experimento.

Matérias usados para segunda parte do experimento.

Após isso, usamos o software Tracker para, pelo vídeo, encontrarmos os pontos do espaço (eixo y) e do tempo (eixo x) de cada experimento, depois usando o software SciDAVIs pegamos esses pontos encontrados no Tracker para plotar um gráfico e realizar o MMQ para encontrar a melhor reta e curva, que se encaixam nas equações.

2. Apresentação e Análise dos Dados Experimentais

Os dados retirados do Tracker para a primeira parte do experimento foram os seguintes:

Tabela 1 - Dados experimentais.

t(s)	h(m)
0,000	0,000
0,017	-0,003
0,033	-0,009
0,050	-0,018
0,067	-0,030
0,083	-0,041
0,100	-0,061
0,117	-0,085
0,133	-0,107
0,150	-0,135
0,167	-0,167
0,184	-0,197
0,200	-0,234
0,217	-0,273
0,234	-0,298

Dados experimentais e ajuste linear

Tabela 2 - Dados experimentais.

t(s)	x(m)	y(m)
0,000	0,000	0,000
0,033	0,016	-0,001
0,067	0,031	-0,010
0,100	0,047	-0,030
0,133	0,061	-0,062
0,167	0,076	-0,107
0,200	0,089	-0,164
0,233	0,102	-0,231
0,267	0,113	-0,279

Movimento em x

Dados experimentais em x e ajuste linear

Movimento em y e ajuste polinomial

Gráfico do lançamento oblíquo

Agora calcularemos a precisão dos dados encontrados com a fórmula:

$$100\% - \left(\left| \frac{\sigma x}{\bar{x}} \right| * 100 \right)$$

Logo, para o primeiro caso temos: A precisão de $g \cong 95,6\%$ de precisão

Para o segundo caso temos:

No movimento em x:

Precisão de v ≅ 98,4% de precisão

No movimento em y:

Precisão de $g \cong 90,9\%$ de precisão

3. Resultados e Conclusões

O resultado encontrado pela análise no SciDAVIs para a gravidade na primeira equação foi:

$$g \cong 4.97 * 2 \cong 9.94 \, ms^{-2}$$

Podemos calcular a acurácia com:

$$100\% - \left| \frac{\bar{x} - x_{ref}}{x_{ref}} * 100 \right|$$

Sabendo que o valor da gravidade na terra é aproximadamente 9,81, temos que a medida é 98,7% exta

Para o segundo caso, encontramos o seguinte resultado para a gravidade usando a equação 6 e o valor da velocidade em x encontrado no movimento em x do lançamento oblíquo:

$$g = 28 * 2 * (0,426)^2 = 10,16$$

E calculando a acurácia temos que a medida é 96,4% exata, concluindo então que o ângulo de lançamento é muito próximo de zero, como o esperado.

Logo, conseguimos, por meio dos softwares utilizados, encontrar o valor da gravidade para os movimentos de queda livre e em duas dimensões (lançamento oblíquo) que se aproximaram do valor conhecido da aceleração gravitacional terrestre.

4. Bibliografia

[1] Fundamentos de Física – Volume 1; D. Halliday, R, Resnick, J. Walker; LTC Editora (2006).