

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu Academic Year: 2021-22 (Even)

SET- A

Test: CLAT-1

Date: 08-04-2022

Course Code & Title: 18ECE322T Optoelectronics

Duration: 12:30 -1:30PM

Year & SEM: II year/ 4th SEM

Max. Marks: 25

Answer Key

	Instructions: Answer all					
Q.	Question	Marks	BL	CO	PO	PI
No						Code
1	Angular separation of wavevectors on a given wavefront is	1	1	1	1	1.4.
	called					
	A. Optical diffraction					
	B. Optical divergence					
	C. Dispersion					
	D. Coherence					
2	Calculate the rarer medium refractive index for a given 65	1	2	1	1	1.4.
	degree critical angel where the denser medium refractive index					
	is 1.5					
	A. 1.90					
	B. 1.78					
	C. <u>1.35</u>					
	D. 1.52			_		
3	Group refractive index of pure silica is always	1	1	1	1	1.4.
	to the normal refractive index of the medium A. Greater					
	A. Greater B. Lower					
	C. Equal					
	D. Inversely proportional					
4	For an intrinsic silica (Si) calculate carrier concentration (ni)	1	2	1	1	1.4.
	when number of conduction band electrons are 1.61×10^{16} m ⁻³	_	_		_	
	A. 1.68 ×10 ²⁴ m ⁻³					
	B. $3.21 \times 10^{16} \mathrm{m}^{-3}$					
	C. $1.61 \times 10^{16} \mathrm{m}^{-3}$					
	D. $1.50 \times 10^9 \text{ m}^{-3}$					
5	In case of energy bandgaps comparison which of the following	1	2	1	1	1.4.
	is true					
	A. $\underline{AlSb} > \underline{GaSb}$					
	B. AlSb < GaSb					
	$C. \qquad AlSb = GaSb$					
	D. AlSb \cong GaSb					ĺ

	Part – B (2 x 10 = 20 Marks) Instructions: Answer any two Questions					
6	(a).Discuss in detail the Huygens-Fresnel diffraction phenomenon and (b). Rayleigh criteria (c). Calculate the resolvable angle of two 600 nm light sources where the aperture size of a microscope is 1.5 mm. (3+3+4)	10	3	1	1	1.4.1
7	(a).Determine three factors influence the band to band transactions in semiconductors. (b). Illustrate and explain the effect of electric field on band structure of semiconductor and absorption process (5+5) a. Occupancy probabilities, Transition probabilities, Density of states Density of states De	10	3	1	1	1.4.1
8	(a).Elaborate spontaneous recombination process in semiconductors (b).Find the electron /hole recombination lifetime "t" and radiative recombination coefficient "B _r " when an optical beam irradiate an intrinsic semiconductor (GaAs) produces 0.8×10^{23} cm ⁻³ /s electron-hole pairs. where steady state concentration of photoelectrons is $\Delta n = 1.6\times10^{14}$ cm ⁻³ and intrinsic concentration of GaAs ~ 10^5 cm ⁻³ (4+6)	10	3	1	1	1.4.1

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu Academic Year: 2021-22 (Even)

SET-B

Test: CLAT-1 Date: 08-04-2022

Course Code & Title: 18ECE322T Optoelectronics Duration: 12:30 -1:30PM

Year & SEM: II year/ 4th SEM Max. Marks: 25

Answer Key

		Part – A (5 x 1 = 5 Marks) Instructions: Answer all					
Q. No		Question	Marks	BL	СО	РО	PI Code
1	Divergence of A. 0 I	f Planewaves Degree	1	1	1	1	1.4.1
		Degree					
	C. 45	Degree					
		Degree					
2		wavelength of light entering to a medium of	1	2	1	1	1.4.1
		ex 1.5 while its wavelength is 600nm in air					
		0nm					
		0nm					
		Onm					
		<u>0nm</u>			1		1.4.1
3		gle is also known as	1	1	1	1	1.4.1
		Refracted angle					
		Snell's angle Diffracted angle					
		Polarisation angle					
4		wavelength emission for GaP (Eg= 2.2 eV)	1	2	1	1	1.4.1
-		50nm	1	_	1	1	1.4.1
		63nm					
		550nm					
	D. 13	310nm					
5	In case of ene	rgy bandgaps comparison which of the following	1	2	1	1	1.4.1
	is true						
	A. <u>Al</u>	As > GaAs					
	B. Al	As < GaAs					
	C. Al	As = GaAs					
	D. Al	As ≅ GaAs					
	•						•

	Part – B $(2 \times 10 = 20 \text{ Marks})$ Instructions: Answer any two Question					
6	(a). Define refractive index and its relation with relative permittivity, (b). Give an expression for sellmeier empherical equation and (c). Find out the refractive index of SiO ₂ at 530nm using sellmeier equation. Given SiO ₂ (fused silica) A1:0.696749; A2: 0.408218; A3:0.890815 λ 1: 0.0690660um; λ 2: 0.115662; λ 3:9.900559 (3+2+5) $n = \frac{C}{V} = \sqrt{\mathcal{E}}$ a. $n^2 = 1 + \frac{A_1 \lambda^2}{\lambda^2 - \lambda_1^2} + \frac{A_2 \lambda^2}{\lambda^2 - \lambda_2^2} + \frac{A_3 \lambda^2}{\lambda^2 - \lambda_3^2}$ b. c. 1.461	10	3	1	1	1.4.1
7	(a). Discuss in detail about the various types of electromagnetic wave polarization, (b). Explain the selective absorption method. Find out the tilt angle if the detector intensity is 1 μW through a polaroid and the source intensity is 4 μW. (5+5) a. Linear, circular, elliptical	10	3	1	1	1.4.1
8	(a). List the Mechanisms leading to absorption and emission of photons in a semiconductor, (b). Illustrate Heterojunction and discuss the importance of quantum well in semiconductor devices (5+5) a. Band-to-Band (Inter-band) Transitions. Impurity-to-Band Transitions. Free-Carrier (Intraband) Transitions, Phonon Transitions, Excitonic Transitions	10	3	1	1	1.4.1