Introducción a la cátedra

Ing. Juan M. Rodríguez

Slack como canal de comunicación

Docentes

- Juan M. Rodríguez
- Azul Villanueva
- Marcelo Benítez

Colaboradores

- Matías González
- Luis Paredes
- Adrian Romero
- Darius Maitia
- Ignacio Velasco
- Francisco Pereira
- Axel Perez Machado

Modalidad de cursada

- Teórica: Martes 19:00 22:00 hs virtual
- Práctica: Jueves 19:00 22:00 hs virtual

¿Cómo aprobar?

- 2 trabajos prácticos durante la cursada (una reentrega por TP)
- Parcial (2 recuperatorios)
- Exámen Integrador (Coloquio)

Grupos

- N alumnos máximo por grupo (a definir N)
- Un colaborador asignado

Calendario

emana	Fecha	Teórica (Martes)	Fecha	Práctica (Jueves)
1	23/08/2022	Presentación de la materia. Visualización de datos.	25/08/2022	Introducción a Colab y maquinas Jupyter Pandas Librerías de visualización.
2	30/08/2022	Introducción a la ciencia de datos. Métodos de regresión Métricas	01/09/2022	Introducción a la ciencia de datos. Métodos de regresión Métricas
3	06/09/2022	Métodos de clasificación Métodos de agrupamiento (clustering) Metricas	08/09/2022	Métodos de clasificación Métodos de agrupamiento (clustering) Metricas
4	13/09/2022	Ingeniería de características	15/09/2022	Ingeniería de características
5	20/09/2022	Árboles de decisión	22/09/2022	Árboles de decisión con scikit-learn Presentación TP1
6	27/09/2022	Reducción de la dimensionalidad	29/09/2022	Reducción de la dimensionalidad
7	04/10/2022	k-nearest neighbors algorithm Support Vector Machines (SVM)	06/10/2022	k-nearest neighbors algorithm Support Vector Machines (SVM)
8	11/10/2022	Ensamble de modelos	13/10/2022	Ensamble de modelos con scikit-learn y dmlc XGBoost

Herramientas y tecnologías a utilizar

- Python 3:
 - Tensorflow,
 - Keras,
 - Numpy,
 - Pandas

Herramientas y tecnologías a utilizar

- Python 3:
 - PyTorch (a través de Yolo),
 - Yolo,
 - o TPOT,
 - scikit-learn
- Weka

Herramientas y tecnologías a utilizar

- Máquinas Júpiter
- Google Colab
- Kaggle

Introducción a la materia

Qué es un Data Scientist?

Es capaz de:

- Obtener, Interpretar, procesar y filtrar los datos.
- Llegar a conclusiones a partir de lo anterior.
- Construir soluciones para los problemas que se quiere solucionar.

Data Scientist!= Data Engineer

- Considerable solapamiento entre las habilidades y responsabilidades.
- Hay una importante diferencia en el enfoque.
- El ingeniero de datos se enfoca en la creación de la infraestructura y arquitectura para la generación, soporte y extracción de los datos. (Big Data)
- El <u>científico de datos</u> se enfoca en la interpretación y análisis de los datos mediante el análisis estadístico y matemático.

Dominios de conocimiento

Habilidades técnicas

Data mining

Visualización de datos

- Matemática y Estadística
- Machine Learning
- Plataformas: Linux, AWS, Google Cloud, etc.

¿Qué es machine learning?

El aprendizaje automático es la ciencia (y el arte) de programar computadoras para que aprendan a partir de datos.

(Aurélien Géron, 2019)

Se dice que un programa de computadoras aprende de la experiencia E, respecto de una tarea T y una medida de rendimiento R, si su rendimiento en T, medido por R, mejora la experiencia E.

(Tom Mitchell, 1997)

El aprendizaje automático es el campo de estudio que da a las computadoras la capacidad de aprender sin ser programadas de manera explícita.

(Arthur Samuel, 1959)

Filtro de SPAM

Enfoque tradicional

Filtro de SPAM

Enfoque ML

Filtro de SPAM - enfoque ML

Adaptación al cambio de forma automática

Pueden ayudarnos a aprender

¿Para qué se usa?

Áreas de aplicación: Salud

- Pre-diagnosticos en base a historial clínico
- Detección temprana de tumores
- Generación de nuevas drogas
- Test de <u>coronavirus a través de la voz</u>?
- Psiquiatría (depresión "pura" y psicosis "pura")
- Epidemiología

Áreas de aplicación: Gaming y Videos

- Aumentar la conexión emocional (engagement) de los jugadores
- Monetización del juego
- Mejorar la calidad visual de los juegos
- Hacer jugadores virtuales de distintas dificultades
- Elegir el <u>mejor thumbnail</u> para un video

Áreas de aplicación: Energía

- Proporcionar costos e inversiones óptimos
- Minimizar riesgos
- Descubrir nuevas fuentes de energía
- Optimizar y eficientizar el abastecimiento
- Maximizar extracción/generación

Áreas de aplicación: Turismo

- Crear perfiles de viajantes en base a redes sociales y otras fuentes
- Optimización de rutas aéreas
- Búsqueda de hospedajes, actividades, destinos
- Optimización de costos

Áreas de aplicación: Seguridad

- Detección de objetos en imagen.
 - Personas
 - Fallas en tuberías
 - Deteccion de humo o incendios

Más y más aplicaciones

¿Por qué ahora?

Uso de Internet

Used International Bandwidth, 2002-2020

Metodología

Bibliografía

Aurélien Géron

También en español

