Università degli Studi di Bergamo, Scuola di Ingegneria, Dalmine Laurea Magistrale in Ingegneria Edile

Dinamica, Instabilità e Anelasticità delle Strutture a.a. 2022/2023

II ELABORATO

1) Si consideri il seguente *sistema discreto* strutturale semplicemente compresso avente aste rigide e molle elastiche lineari (molle rotazionali relative e d'estremità e molla traslazionale d'estremità):

ove n è il numero di tratti in cui è stata suddivisa la lunghezza totale l fissa (n > 0; in fig. è rappresentato il caso n = 3). Un primo parametro adimensionale positivo η , che descrive la cedevolezza della molla traslazionale d'estremità di sinistra, è fissato pari a η_a = 6 + (N - C + M) / 6 (N = numero lettera iniziale del nome, C = numero lettera iniziale del cognome, M = somma delle ultime due cifre del n. di matricola), mentre un secondo parametro adimensionale positivo μ descrive la cedevolezza della molla rotazionale d'estremità di destra.

Richieste:

- Si considerino i primi tre casi con n = 1, n = 2 e n = 3:
 - calcolare il carico critico euleriano P^E_{cr,n} di ogni caso utilizzando il metodo energetico ed il metodo statico (si parta da equazioni valide per spostamenti arbitrariamente grandi per poi giungere a relazioni valide in regime di spostamenti geometricamente piccoli);
 - rappresentare l'andamento dei carichi critici P^E_{cr,n} così determinati in funzione del parametro μ, ponendoli a confronto:
 - fornire in tabella il valore dei $P_{cr,n}^E$ per i valori $\mu \to 0$, $\mu = \mu_a$, $\mu \to \infty$, con parametro allievo $\mu_a = 5 + (N C + M)/5$;
 - ullet rappresentare le corrispondenti deformate critiche per gli stessi valori di μ .
- Facoltativo: determinare il carico critico P^E_{cr,n} per ulteriori n successivi (n > 3); rappresentarne l'andamento al variare di n, indagando l'eventuale comportamento asintotico per n crescenti ed individuando i nessi con quanto segue.
- 2) Si consideri quindi il *sistema continuo* corrispondente, costituito da un'asta semplicemente compressa di lunghezza l, deformabile solo flessionalmente (con rigidezza flessionale elastica EJ) e avente le medesime molle (traslazionale e rotazionale) d'estremità.

Richieste:

- Determinare il carico critico euleriano P_{cr}^E mediante il metodo statico per $\mu \to 0$, $\mu = \mu_a$, $\mu \to \infty$. Studiare e rappresentare la dipendenza di P_{cr}^E dal parametro μ .
- Determinare e rappresentare la deformata critica ottenuta nei vari casi, esprimendo la stima della lunghezza di libera inflessione l₀.
- Assumendo $\eta = 0$, confrontare i valori ottenibili di P_{cr}^{E} per $\mu \rightarrow 0$, $\mu = \mu_{a}$, $\mu \rightarrow \infty$ con quelli ricavabili mediante la formula di Newmark, indicando le variazioni percentuali registrate.
- Dati E=32800 MPa, 1=5.8 m, sezione trasversale rettangolare 26 cm x 32 cm, effettuare la verifica di stabilità per $\mu = \mu_a \text{ con P} = 4950 \text{ kN}$.