Exercice 1:

1. Résoudre l'inéquation
$$x + \frac{1}{x} - 2 \ge 0$$

$$x + \frac{1}{x} - 2 \ge 0$$

$$\Leftrightarrow \frac{x^2 + 1 - 2x}{x} \ge 0$$

$$\Leftrightarrow \frac{(x - 1)^2}{x} \ge 0$$

x	$-\infty$	(0		1		$+\infty$
$(x-1)^2$		+		+	:	+	
x		_		+	:	+	
$\begin{bmatrix} x-1^2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$		_		+	:	+	

$$S=]0;+\infty[$$

2. En déduire que pour tout réel
$$a > 0$$
, $a + \frac{1}{a} \ge 2$

Donc, d'après la question précédente, pour tout a>0, $a+\frac{1}{a}-2\ge 0 \Leftrightarrow a+\frac{1}{a}\ge 2$

•
$$\frac{a}{b} + \frac{b}{a} \ge 2$$

Soient a et b deux réels positifs, notons $A = \frac{a}{b}$.

A est strictement positif, donc d'après la question précédente : $A + \frac{1}{A} \ge 2 \iff \frac{a}{b} + \frac{b}{a} \ge 2$

•
$$(a+b)\left(\frac{1}{a} + \frac{1}{b}\right) \ge 4$$

 $(a+b)\left(\frac{1}{a} + \frac{1}{b}\right) = 1 + \frac{a}{b} + \frac{b}{a} + 1 = 2 + \frac{a}{b} + \frac{b}{a}$.

En utilisant le point précédent, on obtient $(a+b)\left(\frac{1}{a}+\frac{1}{b}\right) \ge 4$

Exercice 2:

Le gazon d'un champ de 5000 m² est envahi par des pissenlits qui détruisent 20% de la surface en un an.

Chaque automne, Catherine arrache 250 m² de pissenlits afin de semer de la pelouse.

On pose p_0 =5000 la surface initiale en m² de pelouse et p_n la surface à la fin de n années où n $\in \mathbb{N}$

1. Calculer la surface de la pelouse au bout d'une et deux années.

$$p_1 = 5000 \times 0.8 + 250 = 4250$$

$$p_2 = 4250 \times 0.8 + 250 = 3650$$

2. Exprimer, pour tout $n \in \mathbb{N}$, p_{n+1} en fonction de p_n .

Les pissenlits détruisant 20% de la pelouse, il ne reste plus, d'une année sur l'autre, que 80% de la pelouse. De plus, Catherine replante 250m^2 de pelouse, donc, on obtient, pour tout n, $p_{n+1} = p_n \times 0.8 + 250$

- 3. On définit, pour tout entier nature n, la suite (v_n) par $v_n = p_n 1250$
 - a. Montrer que la suite (v_n) est géométrique de raison 0,8.

$$v_{n+1} = p_{n+1} - 1250 = p_n \times 0.8 + 250 - 1250 = p_n \times 0.8 - 1000 = 0.8 \left(p_n - \frac{1000}{0.8} \right) = 0.8 \left(p_n - 1250 \right) = 0.8 v_n$$

Donc la suite (v_n) est géométrique de raison 0,8.

b. Déterminer v_0

$$v_0 = p_0 - 1250 = 5000 - 1250 = 3750$$

c. Exprimer v_n en fonction de n

$$v_n = 3750 \times 0.8^n$$

d. En déduire une expression de p_n en fonction de n.

$$p_n = v_n + 1250 = 3750 \times 0.8^n + 1250$$

4. Quelle sera l'aire du gazon sans pissenlit au bout de 10 ans ?

$$\hat{P}_{10} = 1652,7$$

L'aire du gazon sans pissenlit au bout de 10 ans sera d'environ 1653m².

5. Dans combien d'années la surface du gazon sera-t-elle inférieure à 1000 m²? Justifier.

Pour tout n, $0.8^n > 0$

Donc $3750 \times 0.8^{n} > 0$

Par suite, $p_n > 1250$.

La surface du gazon ne sera donc jamais inférieure à 1000 m².