

We claim:

1 1. A method of evaluating tolerances of computer assisted designs for
2 the manufacture of objects comprising:
3 representing each tolerance zone for each geometric feature of said object by a
4 model with an algebraic form and a geometric form as a tolerance map stored in a
5 computer;
6 computing in said computer interdependencies between said stored maps and
7 interdependencies between submaps of said stored maps to determine how different
8 tolerance zones for said geometric feature affect each other and to determine how
9 different tolerance zones for different geometric features of said object affect each other;
10 and
11 selecting tolerance conditions for said object to optimize allocation of tolerances to
12 each of said geometric features of said object.

1 2. The method of claim 1 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map representing a plane.
3 3. The method of claim 1 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map representing a axis or
3 edge.

1 4. The method of claim 1 where representing each tolerance zone for
2 ~~each geometric feature of said object comprises a tolerance map representing a~~
3 cylindrical surface.

1 5. The method of claim 1 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map representing a position.

1 6. The method of claim 1 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map representing composite
3 tolerances constructed as a Minkowski sum.

1 7. The method of claim 1 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map in a space of points of
3 variational possibilities of features of said object.

1 8. The method of claim 1 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map in a space of points of
3 variational possibilities of features of said object.

1 9. The method of claim 2 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map in a space of points of
3 variational possibilities of features of said object expressed in Barycentric coordinates.

1 10. The method of claim 1 where computing in said computer
2 interdependencies between said stored maps and interdependencies between submaps
3 of said stored maps comprises superimposing on a tolerance zone of said geometric
4 feature a tolerance zone specifying parallelism of variations of said geometric feature.

1 11. The method of claim 1 where computing in said computer
2 interdependencies between said stored maps and interdependencies between submaps
3 of said stored maps comprises superimposing on a tolerance zone of said geometric
4 feature a tolerance zone specifying flatness of said geometric feature.

1 12. The method of claim 1 where computing in said computer
2 interdependencies between said stored maps and interdependencies between submaps
3 of said stored maps comprises generating a tolerance zone of an assembled geometric
4 feature for a assembly of at least two objects, each of which objects has a corresponding
5 tolerance zone for corresponding geometric features which are being assembled to
6 comprise said assembled geometric feature.

1 13. The method of claim 4 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map in a space of points of
3 said object expressed in Pluecker coordinates.

1 14. The method of claim 3 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map in a space of points of
3 said object expressed in terms of line-solids.

1 15. The method of claim 4 where representing each tolerance zone for
2 each geometric feature of said object comprises a tolerance map in a space of points of
3 said object for size of cylindrical surfaces is expressed in terms of screw coordinates.

1 16. The method of claim 1 further comprising establishing a global model
2 by mapping surfaces used as datum or targets in a dimensioning scheme to equivalent
3 control frames in which datum reference frames are rigid sets and validated using degree
4 of freedom algebraic operations, and by representing dimensions and tolerances by the
5 union of corresponding control frames involving the datum and target rigid sets and
6 corresponding tolerance classes.

1 17. The method of claim 16 wherein mapping surfaces used as datum or
2 targets in a dimensioning scheme to equivalent control frames comprises forming datum
3 reference frames as rigid sets for target features and feature patterns.

1 18. The method of claim 17 wherein mapping surfaces used as datum or
2 targets in a dimensioning scheme to equivalent control frames in which datum reference
3 frames are formed as rigid sets for a circular pattern of bolt holes.

1 19. The method of claim 16 further comprising identifying redundant or
2 conflicting restraints by using a degree of freedom algebra on control frames by
3 determining whether the corresponding datum reference frame is a rigid set and the
4 maximum degrees of freedom which said datum reference frame controls.

1 20. An apparatus for geometric variations to integrate parametric CAD
2 with tolerance analysis and optimization of a manufactured object comprising a computer
3 wherein is stored:
4 a geometry engine module E1 to generate a B-rep solid model of said object;
5 a constraint solver E2 to generate a D&T graph of said object;
6 a geometry engine system M1 communicated to said geometry engine module E1
7 and constraint solver E2;
8 a dimensioning module M2 for receiving said B-rep solid model and said D&T
9 graph as input data;
10 a tolerancing module M4 communicating with said dimensioning module M2;
11 a global visualization module M3 communicating with said tolerancing module M4;
12 a D&T Schema Advisor module M5 communicating with said tolerancing module
13 M4;
14 a tolerance allocation module M6 communicating with said tolerancing module M4;
15 a local model visualization module M7 communicating with said tolerance allocation
16 module M6 for providing a geometric visualization of tolerancing of said object; and
17 a statistical tolerance analysis package E3 communicating with said tolerance
18 allocation module M6 for providing an algebraic visualization of tolerancing of said object.