MATH 601 (DUE 12/6)

HIDENORI SHINOHARA

Contents

1

1. Cauchy's Theorem, Finite p-groups, The Sylow theorems

1. Cauchy's Theorem, Finite p-groups, The Sylow theorems

Exercise. (Problem 2) Let a prime number p be given. We will show that any group G of order p^n for some n is solvable by induction on n. When n=1, $G\cong \mathbb{Z}_p$, which is abelian, so it is solvable. Suppose we have shown the proposition for some $n\in\mathbb{N}$, and let G be a group of order p^{n+1} . By Corollary 1 right above this problem statement in the handout, the center H of G is a nontrivial subgroup. Moreover, H is clearly a normal subgroup of G. Thus it makes sense to consider G/H. The order of G/H must be p^m for some $1 \le m \le n-1$. By the inductive hypothesis, G/H is solvable. Since every subgroup of G/H can be realized as the quotient of a subgroup of G by G by

Exercise. (Problem 3) Let m = 3, p = 7. Then |G| = 21 = pm with $p \nmid m$. Let t be the number of Sylow p-subgroups. By the third Sylow theorem, $t \mid m$ and $t \equiv 1 \pmod{p}$. The only number that satisfies this is 1, so every group of order 21 has a unique Sylow 7-subgroup.

Exercise. (Problem 4)