1.Import and statistic

• Create Diagram

• Create Data Source

• Statistic

• Find Missing Values

Variable	Role	Mean	Standard Deviation	Non Missing	Missing 1	Minimum	Median	Maximum	Skewness	Kurtosis
Aging	INPUT	38. 53486	2.880295	5121	0	33	39	43	-0.00816	-1.21873
DaySinceLastOrder	IMPUT	4.497429	3.669057	4861	260	0	3	46	1.226157	4.353751
Location_CityTier	INPUT	1.652802	0.914796	5121	0	1	1	3	0. 739961	-1.39487
MembershipLevel	INPUT	1.983792	0. 738407	5121	0	1	2	3	0.025605	-1.16533
OrderCount	IMPUT	2.970323	2.964018	4886	235	1	2	16	2.200312	4. 714572
Sales	IMPUT	145.5681	65.83512	5121	0	54	118	250	0.320067	-1.26299
SatisfactionScore	IMPUT	3.06776	1.376809	5121	0	1	3	5	-0.13532	-1.12023
_CustomerID	IMPUT	52678.38	1549, 776	5121	0	50001	52669	55369	0.008121	-1.19694
Data			Number of				Mode			Mode2
Role Variabl	e Name	Role	Levels	Missing	Mode		Percentage	Mode2		Percentage
TRAIN Complain TRAIN Gender TRAIN Marital TRAIN Prefere TRAIN Churn		INPUT INPUT INPUT INPUT TARGET	2 3 3 6 2	0 1 0 0	O Male Married Laptop & Acce	essory	71. 78 60. 40 51. 92 37. 90 82. 56	1 Female Single Mobile 1	Phone	28, 22 39, 58 32, 45 22, 93 17, 44
IRAIN Churn		IANGEL	2	U	U		ō2.56	1		17.44

2. Handing missing values

There are three missing values, which will be processed separately:

• "Gender"

The missing value itself does not have distribution characteristics and has a relatively small relationship with other columns. The value itself does not have sensitive meaning. It can be judged as missing MCAR and the mode of the column is used to supplement it

		Number					
	Target	of			Mode		Mode2
Target	Level	Levels	Missing	Mode	Percentage	Mode2	Percentage
Churn	0	3	1	Male	59.91	Female	40.07
Churn	1	2	0	Male	62.71	Female	37. 29
OVERALL		3	1	Male	60.40	Female	39.58

• "OrderCount" & "DaySinceLastOrder"

(1) Because there is a lot of missing data, we first find out the pattern from the distribution of the missing data: they are all randomly distributed, so it maybe MCAR. (2) By exploring their relationship with other columns, especially the relationship with the target column, it was found that the missing values are closely related to the target column. So it is MAR. Considering that this data set is large enough, slight differences will not affect the results, so "churn=0" is used. The average of "churn=0" replaces their values.

	Target			Non					Standar	d				
Target	Level	Medi an	Missing	Missing	Minimum	Maximu	ן שנ	lean	Deviati	on Sl	kewness	Kurtosis	Role	Label
Churn	0	2	193	4035	1	1	16 2.984	1387	2.96576	1 2.	182136	4.616616	INPUT	OrderCount
Churn	1	2	42	851	1	1	16 2.903	643	2.95656	8 2.	292968	5, 236085	INPUT	OrderCount
OVERALL		2	235	4886	1	1	16 2.970	323	2.96401	8 2.	200312	4. 714572	INPUT	OrderCount
Data Role=	TRAIN Variab Target	le=DaySinceLa	astOrder	Non				Stand	lard					
Data Role=		le=DaySinceLa Median	astOrder Missing	Non Missing	Minimum	Maximum	Mean	Stand Devis		kewness	Kurtos	is Role	:	Label
	Target				Minimum O		Mean 4.531671		ition S	. 276938	Kurtos 5.044			Label ceLastOrder
Target	Target Level	Medi an	Missing	Missing		46		Devis	ition 5			28 IMPUT	DaySin	

• Replacement

Gender="male"

When "churn=0" the mean of "OrderCount" value is 2.984387, it is close to the mean of the overall dataset and different from the mean "2.903643" so we use "OrderCount=mean" to replace the missing values.

When "churn=0" the mean of "DaySinceLastOrder" value is 4.531671, I should use "DaySinceLastOrder=5" to replace the missing values, but because the value "5" is very different from "4.531671" and may cause changes in the whole dataset. So I use "DaySinceLastOrder=3", the median, to replace the missing values.

Because the missing values involved in this data set are MCAR and MAR, simple methods can be used to supplement them. If MNAR is involved, more complex methods may be needed to deal with missing values to avoid introducing bias.

Workflow

3. Decision Tree

• Data Partition 55: 45 vs 70: 30

Fit Statistics
Model Selection based on Valid: Misclassification Rate (_VMISC_)

Selected Model	Model Node	Model Description	Valid: Misclassification Rate	Train: Average Squared Error	Train: Misclassification Rate	Valid: Average Squared Error
Ч	Tree3	Decision Tree (3)	0. 14831	0. 11751	0. 15169	0. 11978
	Tree4	Decision Tree (4)	0. 15085	0. 11733	0. 15211	0. 12134

55: 45 have a better performance.

• Attribute selection

Input	Chi-Square	Df	Prob
LastPurchaseDate	363. 7344	364	0. 4941
Complain	336.0560	1	<. 0001
PreferedOrderCat	268.4360	5	<. 0001
MaritalStatus	175.8140	2	<. 0001
SatisfactionScore	66.0248	4	<. 0001
Location_CityTier	30.5106	2	<. 0001
Gender	2.6037	2	0.2720
OrderCount	2.4534	5	0. 7835
_CustomerID	1.4002	4	0.8442
DaySinceLastOrder	1.3279	4	0.8566
Aging	1.2324	4	0.8727
Sales	0.6420	3	0.8868
MembershipLevel	0.1174	2	0.9430

				Train:		Valid:
Selected	Model		Valid: Misclassification	Average Squared	Train: Misclassification	Average Squared
Model	Node	Model Description	Rate	Error	Rate	Error
¥	Tree	Decision Tree	0.14961	0.11920	0.15382	0.12078
	Tree2	Decision Tree (2)	0.15568	0.12851	0.16448	0.12732

- (1)Input or Drop "LastPurchaseDate": According to the comparison of performance, I decide to input. So I choose "LastPurchaseDate", "Complain", "PreferedOrderCat", "MaritalStatus", "SatisfactionScore", and "Location CityTier" as input.
- (2)Compare the variables I selected with the model default variables **Result:** model default variables have better performance.

				Valid:		
			Valid:	Average	Train:	Average
Selected			Misclassification	Squared	Misclassification	Squared
Model	Model Node	Model Description	Rate	Error	Rate	Error
ч	Tree2	Decision Tree (2)	0.14831	0.11751	0. 15169	0. 11978
	Tree	Decision Tree	0.14961	0.11920	0.15382	0.12078

Performance

There is the final performance of Decision Tree.

4. Gradient Boosting

• Data Partition 55:45 vs 70:30

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

					Valid:	
			Valid:	Average	Train:	Average
Selected	Model		Misclassification	Squared	Misclassification	Squared
Model	Node	Model Description	Rate	Error	Rate	Error
У	Boost	Gradient Boosting	0. 15632	0.09763	0. 13666	0. 12023
	Boost2	Gradient Boosting (2)	0.16173	0.10268	0.14218	0.12847

55: 45 have a better performance.

• Attribute selection

Fit Statistics Model Selection based on Valid: Misclassification Rate (_VMISC_) Valid: Train: Valid: Average Train: Average Selected Model Misclassification Squared Misclassification Squared Model Node Model Description Boost Gradient Boosting 0.16782 0.11120 0.15488 0.13314 0.15488 0.13314 Gradient Boosting (2) 0.16782 0.11120 Boost2

Result: using the attributes I choose will give me better model performance.

Input: "LastPurchaseDate", "Complain", "PreferedOrderCat", "MaritalStatus", "SatisfactionScore", and "Location CityTier"

• Performance

There is the final performance of Gradient Boosting.

Data Role=TRAIN Target=Churn Target Label=Churn

False	True	False	True
Negative	Negative	Positive	Positive
428	2317	8	62

Data Role=VALIDATE Target=Churn Target Label=Churn

False	True	False	True
Negative	Negative	Positive	Positive
376	1892	11	27

5. HP Forest

• Data Partition 55:45 vs 70:30

Fit Statistics
Model Selection based on Valid: Misclassification Rate (_WMISC_)

				Valid:		
			Valid:	Average	Train:	Average
Selected		Model	Misclassification	Squared	Misclassification	Squared
Model	Model Node	Description	Rate	Error	Rate	Error
¥	HPDMForest2	HP Forest (2)	0. 15241	0.11380	0. 15560	0.11327
1	ALDML OF est2	nr rorest (2)	0.15241	0.11380	0.15560	0.11321
	HPDMForest	HP Forest	0.16817	0.11796	0.16713	0.11912

55: 45 have a better performance.

• Attribute selection

Fit Statistics
Model Selection based on Valid: Misclassification Rate (_VMISC_)

					Valid:	
			Valid:	Average	Train:	Average
Selected		Model	Misclassification	Squared	Misclassification	Squared
Model	Model Node	Description	Rate	Error	Rate	Error
У	HPIMForest2	HP Forest (2)	0.16175	0.11524	0.15950	0.11790
	HPDMForest	HP Forest	0.17086	0.11847	0.16696	0.12054

Result: model default variables have better performance.

Input Variables					
Name	Length	Role	Туре	RawType	Format Name
Aging	8	Input	Interval	Num	
IMP_DaySinceLastOrder	8	Input	Interval	Num	
IMP_OrderCount	8	Input	Interval	Num	
Location_CityTier	8	Input	Interval	Num	
MembershipLevel	8	Input	Interval	Num	
Sales	8	Input	Interval	Num	
SatisfactionScore	8	Input	Interval	Num	
_CustomerID	8	Input	Interval	Num	
Complain	8	Input	Classification	Num	
REP_Gender	6	Input	Classification	Character	
MaritalStatus	8	Input	Classification	Character	
PreferedOrderCat	18	Input	Classification	Character	

• Performance

There is the final performance of HP Forest.

Event Classification Table

Data Role=TRAIN Target=Churn Target Label=Churn

False	True	False	True
Negative	Negative	Positive	Positive
429	2305	20	61

Data Role=VALIDATE Target=Churn Target Label=Churn

False	True	False	True
Negative	Negative	Positive	Positive
362	1892	11	41

Workflow

6. Model Comparison

Fit Statistics

Model Selection based on Valid: Misclassification Rate (_VMISC_)

					Valid:	
			Valid:	Average	Train:	Average
Selected			Misclassification	Squared	Misclassification	Squared
Model	Model Node	Model Description	Rate	Error	Rate	Error
У	Tree2	Decision Tree (2)	0. 14831	0. 11751	0. 15169	0.11978
	HPDMForest2	HP Forest (2)	0.16175	0.11524	0.15950	0.11790
	Boost	Gradient Boosting	0.16782	0.11120	0.15488	0.13314

The best model is Decision Tree.

Motrics	Decision Tree 55:45		
Metrics	Train	Validate	
Precision	0.670	0.740	
Recall	0.253	0.233	
F1-Score	0.367	0.355	
Accuracy	0.848	0.852	
Specificity	0.974	0.983	

Precision measures the model's ability to correctly predict the positive class. The higher precision in my model's validation dataset compared to the training dataset indicates that the model has good generalization ability.

Recall reflects the model's ability to correctly identify all positive class instances. The recall rates for both datasets are relatively low, which means my model has missed many actual positive class predictions.

The F1 score is the harmonic mean of precision and recall, providing a more comprehensive performance metric. My model's F1 scores are not high on both datasets, indicating that there needs to be a better balance between precision and recall.

Accuracy represents the proportion of correct predictions (both positive and negative classes) made by the model. My model has a relatively high accuracy on both the training and validation sets, which could be because the number of negative classes (non-churn customers) far exceeds the positive classes (churn customers). **Specificity** measures the model's ability to correctly identify negative classes. Here, the model performs very well, indicating that my model is very accurate in predicting non-churn customers.

• Performance discussion

My model's ability to predict non-churning customers far exceeds its ability to predict churning customers, indicating that non-churning customers likely exhibit some consistent characteristics, while predicting churn may involve a broader spectrum of factors. To improve predictions, a more complex analysis incorporating additional attributes is needed.

In terms of ensemble methods, both Gradient Boosting and HP Forest models utilize collections of weak prediction models to enhance accuracy. These models usually excel in handling complex datasets and uncovering non-linear relationships. However, in my case, a single decision tree model outperformed these more complex ensemble models in predicting customer churn. This finding emphasizes that model complexity does not always lead to better outcomes, and sometimes the intuitiveness and interpretability of simpler models better meet business needs.

The decision tree model, with its principle of finding the most significant split points within data features, identified 'LastPurchaseDate', 'Complain', 'PreferedOrderCat', 'MaritalStatus', and others as significant predictors of customer churn. Relying on the efficiency of the decision tree in choosing branch points and the interpretability of the results, it is more suitable for providing clear action directions for businesses to reduce customer churn rates.

• Business insights

Based on the decision tree model visual, here are some specific business recommendations:

- Address Complaints Promptly: The root node of the tree is 'Complain', indicating that customer complaints are a primary factor in predicting churn. The business should implement a robust system to handle complaints quickly and effectively. This could include training customer service staff, creating a streamlined process for resolving issues, and follow-up with customers to ensure they are satisfied with the solutions provided.
- Review Ordering Preferences: 'PreferedOrderCat' suggests that the type of products customers are ordering affects churn. The company should analyze order patterns and possibly adjust inventory, offer promotions on popular items, or personalize marketing based on customers' buying preferences.
- Consider Demographics in Marketing: 'MaritalStatus' and 'Location_CityTier'
 are used as split points, showing the importance of demographic factors.
 Tailored marketing campaigns that consider these demographic details could be
 more effective. For instance, married or divorced customers might respond to
 different types of outreach or offers than single customers.
- Enhance Loyalty Programs: The presence of 'CustomerID' in the model could imply that individual customer engagement levels play a role. Businesses could develop or improve loyalty programs to increase engagement and reduce churn.
- Focus on Customer Experience: The inclusion of 'SatisfactionScore' points to the importance of customer satisfaction in retention. Regular surveys and feedback mechanisms to gauge satisfaction, and initiatives to improve the customer experience, would likely have a positive impact on reducing churn.
- Adjust Sales Strategies: For the 'Location_CityTier' variable, it would be beneficial to tailor sales and marketing strategies to different city tiers, acknowledging that customers in different locations may have different needs or preferences.
- Price Sensitivity: The tree splits on 'PreferedOrderCat' with categories like 'MOBILE_MOBILE PHONE' and 'LAPTOP & ACCESSORY', and on 'CustomerID' with a threshold value, indicating technology preference and potential price sensitivity. This suggests revising pricing strategies and offering targeted technology deals to retain customers.