Lista de Exercícios - Inferência Estatística

Curso de Inferência Estatística

Outubro 2025

1 Convergência Estocástica

Exercício 1. Seja X_n uma sequência de variáveis aleatórias tal que $X_n \sim Uniforme(0, 1/n)$. Mostre que $X_n \stackrel{P}{\longrightarrow} 0$.

Exercício 2. Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias independentes com $X_i \sim Exp(i)$. Mostre que $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} 1$.

Exercício 3. Seja $X_n \sim Binomial(n, 1/n)$. Encontre a distribuição limite de X_n quando $n \to \infty$.

Exercício 4. Seja X_1, X_2, \ldots uma sequência de variáveis aleatórias i.i.d. com $E[X_i] = 0$ e $Var(X_i) = 1$. Mostre que $\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i \xrightarrow{d} N(0,1)$.

2 Teorema Central do Limite e Aproximações

Exercício 5. Uma empresa produz parafusos com diâmetro médio de 5mm e desvio padrão de 0.1mm. Qual é a probabilidade de que em uma amostra de 100 parafusos, a média dos diâmetros esteja entre 4.98mm e 5.02mm?

Exercício 6. Um teste tem 50 questões de múltipla escolha com 4 alternativas cada. Um aluno responde aleatoriamente. Use o TCL para aproximar a probabilidade de que ele acerte entre 10 e 15 questões.

Exercício 7. Seja $X \sim Poisson(100)$. Use a aproximação normal para calcular $P(95 \le X \le 105)$.

Exercício 8. Aplicando o método delta, encontre a distribuição limite de $\sqrt{n}(\log \bar{X}_n - \log \mu)$ quando $\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$.

3 Estimação Pontual

Exercício 9. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Uniforme(\theta, \theta + 1)$. Encontre o estimador de máxima verossimilhança de θ .

Exercício 10. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim N(\mu, \sigma^2)$. Encontre os estimadores de máxima verossimilhança de μ e σ^2 .

Exercício 11. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Beta(\alpha, \beta)$ com α conhecido. Encontre o estimador de máxima verossimilhança de β .

Exercício 12. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim Gamma(\alpha, \beta)$ com α conhecido. Encontre o estimador de máxima verossimilhança de β .

4 Intervalos de Confiança

Exercício 13. Uma amostra de 30 observações de uma população normal forneceu $\bar{x} = 15.3$ e s = 2.8. Construa um intervalo de confiança de 90% para a média populacional.

Exercício 14. Em uma pesquisa com 500 pessoas, 180 disseram preferir o produto A. Construa um intervalo de confiança de 95% para a proporção populacional que prefere o produto A.

Exercício 15. Uma amostra de 20 observações de uma população normal forneceu $s^2 = 4.5$. Construa um intervalo de confiança de 99% para a variância populacional.

Exercício 16. Duas amostras independentes de tamanhos $n_1 = 25$ e $n_2 = 30$ forneceram $\bar{x}_1 = 12.5$, $s_1 = 2.1$, $\bar{x}_2 = 14.2$, $s_2 = 2.8$. Construa um IC de 95% para $\mu_1 - \mu_2$.

5 Testes de Hipóteses

Exercício 17. Uma máquina deve produzir parafusos com diâmetro médio de 10mm. Uma amostra de 16 parafusos forneceu $\bar{x}=9.8mm$ e s=0.3mm. Teste $H_0: \mu=10$ vs $H_1: \mu \neq 10$ com $\alpha=0.05$.

Exercício 18. Um fabricante afirma que pelo menos 80% de seus produtos são aprovados no controle de qualidade. Em uma amostra de 200 produtos, 150 foram aprovados. Teste a afirmação do fabricante com $\alpha = 0.01$.

Exercício 19. Duas máquinas produzem o mesmo tipo de peça. Amostras de tamanhos $n_1 = 20$ e $n_2 = 25$ forneceram $\bar{x}_1 = 12.5$, $s_1 = 1.2$, $\bar{x}_2 = 13.1$, $s_2 = 1.5$. Teste se há diferença entre as máquinas com $\alpha = 0.05$.

Exercício 20. Um dado é lançado 120 vezes. As frequências observadas foram: 18, 22, 19, 21, 20, 20. Teste se o dado é honesto com $\alpha = 0.05$.

6 Análise de Variância

Exercício 21. Três métodos de produção foram testados em grupos de 8 operários cada. Os resultados (tempo em minutos) foram:

Método A	$M\'etodo~B$	Método C		
45, 48, 50, 52	38, 40, 42, 44	55, 58, 60, 62		

Teste se há diferença entre os métodos com $\alpha = 0.05$.

Exercício 22. Quatro tipos de fertilizante foram testados em parcelas de mesmo tamanho. Os rendimentos (kg) foram:

	Fertilizante 1	Fertilizante 2	Fertilizante 3	Fertilizante 4
ĺ	25, 28, 30	22, 24, 26	32, 35, 37	20, 23, 25

Teste se há diferença entre os fertilizantes com $\alpha = 0.01$.

7 Regressão Linear

Exercício 23. Dados os pares (x_i, y_i) : (2,5), (4,9), (6,13), (8,17), (10,21). Encontre a reta de regressão, calcule R^2 e teste a significância da regressão com $\alpha = 0.05$.

Exercício 24. Em um estudo sobre horas de estudo e notas, foram coletados os dados:

	Horas	2	3	4	5	6	7	8	9
ĺ	Nota	6.5	7.2	7.8	8.1	8.5	8.9	9.2	9.5

Encontre a reta de regressão e construa um IC de 95% para o coeficiente angular.

Exercício 25. Em uma regressão múltipla com 3 variáveis independentes e 20 observações, obtivemos $R^2 = 0.75$. Teste a significância global da regressão com $\alpha = 0.05$.

8 Testes Não-Paramétricos

Exercício 26. Compare dois grupos usando o teste de Wilcoxon: Grupo A: 15, 18, 20, 22, 25 Grupo B: 12, 14, 16, 19, 21 Teste com $\alpha = 0.05$.

Exercício 27. Três grupos foram comparados usando o teste de Kruskal-Wallis: Grupo 1: 10, 12, 14, 16 Grupo 2: 8, 9, 11, 13 Grupo 3: 15, 17, 19, 21 Teste com $\alpha = 0.05$.

Exercício 28. Calcule o coeficiente de correlação de Spearman para os dados:

X	1	2	3	4	5	6	7	8
Y	2	4	1	3	6	5	8	7

9 Análise de Séries Temporais

Exercício 29. Para o modelo AR(1) $X_t = 0.7X_{t-1} + \varepsilon_t$ com $\varepsilon_t \sim N(0,1)$, calcule a função de autocorrelação ρ_k para k = 1, 2, 3.

Exercício 30. Para o modelo MA(1) $X_t = \varepsilon_t + 0.5\varepsilon_{t-1}$ com $\varepsilon_t \sim N(0,1)$, calcule a função de autocorrelação ρ_k para k = 1, 2, 3.

10 Análise de Sobrevivência

Exercício 31. Em um estudo de sobrevivência, os tempos observados foram: 2, 3, 5, 7, 8, 10, 12, 15. Calcule a função de sobrevivência de Kaplan-Meier.

Exercício 32. Em um estudo com 20 pacientes, 12 faleceram nos tempos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Os outros 8 foram censurados no tempo 15. Calcule $\hat{S}(10)$.

11 Análise Multivariada

Exercício 33. Para os dados bivariados:

X	1	2	3	4	5
Y	2	4	6	8	10

Calcule a primeira componente principal.

Exercício 34. Em uma análise discriminante com duas classes, temos: $\boldsymbol{\mu}_1 = (2,3)^T$, $\boldsymbol{\mu}_2 = (4,5)^T$, $\boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$. Classifique o ponto $\mathbf{x} = (3,4)^T$.

12 Métodos de Bootstrap

Exercício 35. Uma amostra de tamanho 10 forneceu: 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9. Use bootstrap para estimar a variância da média amostral com B = 1000 replicações.

Exercício 36. Para a mesma amostra do exercício anterior, construa um intervalo de confiança bootstrap de 95% para a média populacional usando o método percentil.

13 Validação Cruzada e Seleção de Modelos

Exercício 37. Para um modelo de regressão com 5 variáveis independentes e 50 observações, calcule o AIC e BIC sabendo que SSE = 100.

Exercício 38. Em uma regressão Ridge com $\lambda = 1$, os coeficientes estimados foram $\hat{\beta} = (2, -1, 0.5, 3, -0.8)^T$. Calcule a penalização Ridge.