TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM KHOA TOÁN - TIN HỌC **MÔN VI TÍCH PHÂN 2B**

BÀI TẬP NHÓM Chương 1 PHƯƠNG TRÌNH VI PHÂN

LỚP: 20CTT1 **NHÓM:** 10 ĐIỂM

BẢNG PHÂN CÔNG NHÓM

STT	MSSV	Họ tên	Phân công	Kiểm tra chéo	Đánh giá		
11	20120007	Đỗ Trung Hiếu	3 (LT)	4	Đúng hạn		
12	20120009	Nguyễn Văn Hưng	1 (VD)	2	Đúng hạn		
15	20120012	Nguyễn Phạm Nhật Huy	3 (LT)	4	Đúng hạn		
17	20120014	Vương Gia Huy	4 (VD)	3	Đúng hạn		
22	20120020	Huỳnh Đức Nhâm	4 (Latex)	3	Đúng hạn		
23	20120021	Hồ Văn Sơn	4 (LT)	3	Đúng hạn		
24	20120022	Lê Quang Trí	3 (Latex)	4	Đúng hạn		
25	20120023	Bùi Quốc Trung	4 (LT)	3	Đúng hạn		
28	20120027	Lê Hải Duy	2 (Latex)	1	Đúng hạn		
99b	20120131	Nguyễn Văn Lộc	4 (VD)	3	Đúng hạn		
130	20120209	Nguyễn Nhật Tiến	2 (LT)	1	Đúng hạn		
133	20120301	Nguyễn Hoàng Khang	1 (Latex)	2	Đúng hạn		
139	20120412	Nguyễn Quang Bình	1 (LT)	2	Đúng hạn		
141	20120459	Nguyễn Văn Dũng	2 (VD)	1	Đúng hạn		
147	20120572	Nguyễn Kiều Minh Tâm	3 (VD)	4	Đúng hạn		

Mục lục

1	РН	ƯƠNG TRÌNH VI PHÂN DẠNG TÁCH BIẾN	4
	1.1	Tóm tắt lý thuyết	4
		1.1.1 Phương trình có dạng $f(y)dy = g(x)dx$	4
		1.1.2 Phương trình có dạng $y'=f(x)g(y)$ trên I	4
		1.1.3 Phương trình có dạng $f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0$ trên I	4
		1.1.4 Phương trình có dạng $\frac{dy}{dx} = f(ax + by + c)$ với $a, b \neq 0$	5
	1.2	Ví dụ	5
		1.2.1 Ví dụ 1	5
		1.2.2 Ví dụ 2	5
		1.2.3 Ví dụ 3	5
		1.2.4 Ví dụ 4	6
	1.3	Bài tập tự luyện	7
2	PH	ƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP I	8
	2.1	Tóm tắt lý thuyết	8
	2.2	Ví dụ	8
		2.2.1 Ví dụ 1	8
		2.2.2 Ví dụ 2	9
		2.2.3 Ví dụ 3	9
	2.3	Bài tập tự luyện	9
3		ƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP II HỆ SỐ HẰNG (vế phải là đa thức nhân n mũ)	10
	3.1	Tóm tắt lý thuyết	10
		3.1.1 Phương trình vi phân tuyến tính thuần nhất cấp II	10
		3.1.2 Phương trình vi phân tuyến tính cấp II có hệ số hằng với vế phải là đa thức nhân hàm mũ .	10
	3.2	Ví dụ	11
		3.2.1 Ví dụ 1	11
		3.2.2 Ví dụ 2	11
		3.2.3 Ví dụ 3	12
	3.3	Bài tập tự luyện	13
4	NG	UYÊN LÝ CHỒNG CHẤT NGHIỆM	14
	4.1	Tóm tắt lý thuyết	14
		4.1.1 Nội dung	14
		4.1.2 Chứng minh	14
	4.2	Ví du	14

	4.2.1	Ví dụ 1		 	 	 	 	 		 						 	14
	4.2.2	Ví dụ 2		 	 	 	 	 		 			 			 	15
	4.2.3	Ví dụ 3		 	 	 	 	 		 						 	17
4.3	Bài tậ	p tự luyện	ı	 	 	 	 	 		 						 	18

PHƯƠNG TRÌNH VI PHÂN DẠNG TÁCH BIẾN 1

12	20120009	Nguyễn Văn Hưng	Ví dụ
28	20120027	Lê Hải Duy	Kiểm tra chéo
130	20120209	Nguyễn Nhật Tiến	Kiểm tra chéo
133	20120301	Nguyễn Hoàng Khang	Latex
139	20120412	Nguyễn Quang Bình	Lý thuyết
141	20120459	Nguyễn Văn Dũng	Kiểm tra chéo

1.1 Tóm tắt lý thuyết

1.1.1 Phương trình có dạng f(y)dy = g(x)dx

Hay
$$f(y)\frac{dy}{dx} = g(x)$$

Hay $f(y)y' = g(x)$.

Phương pháp giải. Lấy nguyên hàm 2 vế ta được:

$$\int f(y)dy = \int g(x)dx$$

$$\Leftrightarrow F(y) = G(x) + C.$$

Trong đó, F, G lần lượt là nguyên hàm của f và g, C là hằng số.

1.1.2 Phương trình có dạng y' = f(x)g(y) trên I

Phương pháp giải.

Trường hợp $g(y) = const \Rightarrow y' = f(x)$.

Trường hợp $f(x) = const \Rightarrow y' = g(y)$.

Với điều kiện $g(y) \neq 0$ trên I, chia 2 vế cho g(y) ta được

$$\frac{1}{g(y)}dy = f(x)dx$$

$$\Rightarrow \int \frac{dy}{g(y)} = \int f(x)dx.$$

Phương trình có dạng $f_1(x)g_1(y)dx + f_2(x)g_2(y)dy = 0$ trên I

Phương pháp giải.

Nếu $f_2(x) = 0$ tại x = a thì x = a là một nghiệm riêng của phương trình.

Nếu $g_1(y) = 0$ tại y = b thì y = b là một nghiệm riêng của phương trình.

Nếu $f_2(x).g_1(y) \neq 0$ trên I: Chia hai vế cho $f_2(x).g_1(y)$, ta được phương trình

$$\frac{f_1(x)}{f_2(x)}dx + \frac{g_2(y)}{g_1(y)}dy = 0$$

$$\Leftrightarrow \frac{f_1(x)}{f_2(x)}dx = -\frac{g_2(y)}{g_1(y)}dy.$$

Phương trình trở về dạng tách biến.

1.1.4 Phương trình có dạng $\frac{dy}{dx} = f(ax + by + c)$ với $a, b \neq 0$

Phương pháp giải.

Dặt
$$u = ax + by + c$$

$$\Rightarrow \frac{du}{dx} = a + b\frac{dy}{dx}$$

$$\Rightarrow \frac{du}{dx} = a + bf(u). (1)$$

Nếu a + bf(u) = 0: Giải phương trình tìm u, y rồi kiểm tra nghiệm.

Nếu $a + bf(u) \neq 0$: Chia hai vế của phương trình (1) cho a + bf(u), ta được phương trình

$$\frac{du}{a+bf(u)} = dx.$$

Phương trình trở về dạng tách biến.

1.2 Ví du

1.2.1 Ví du 1

Giải phương trình vi phân

$$y^2 dy = (x^2 + x) dx.$$

Lời giải. Lấy nguyên hàm hai vế, ta được

$$\int y^2 dy = \int (x^2 + x) dx$$

$$\Leftrightarrow \frac{y^3}{3} = \frac{x^3}{3} + \frac{x^2}{2} + C$$

$$\Leftrightarrow y = \sqrt[3]{x^3 + \frac{3x^2}{2} + 3C}.$$

1.2.2 Ví dụ 2

Giải phương trình vi phân

$$y' = e^{x+y}.$$

Lời giải. Phương trình tương đương

$$y' = e^x e^y$$

$$\Leftrightarrow dy = e^x e^y dx$$

$$\Leftrightarrow e^{-y} dy = e^x dx (e^y > 0).$$

Lấy nguyên hàm hai vế, ta được

$$\int e^{-y} dy = \int e^x dx$$

$$\Leftrightarrow -e^{-y} = e^x + C.$$

1.2.3 Ví dụ 3

Giải phương trình vi phân trên $\left(0, \frac{\pi}{2}\right)$

$$\tan x \sin^2 y \cdot dx + \cos^2 x \cot y \cdot dy = 0. \tag{1}$$

Lời giải.

 $\sin^2 y = 0 \Rightarrow \sin y = 0 \Rightarrow y = k\pi$ là một nghiệm riêng của phương trình (1) .

 $\cos^2 x = 0 \Rightarrow \cos x = 0 \Rightarrow x = \frac{\pi}{2} + k\pi$ là một nghiệm riêng của phương trình (1) .

Chia hai vế của (1) cho $\sin^2 y \cos^2 x \neq 0$, ta được

$$\frac{\tan x}{\cos^2 x}dx + \frac{\cot y}{\sin^2 y}dy = 0.$$

Lấy nguyên hàm hai vế

$$\int \frac{\tan x}{\cos^2 x} dx + \int \frac{\cot y}{\sin^2 y} dy = 0$$

$$\Leftrightarrow \int \tan x d(\tan x) + \int \cot y d(\cot y) = 0$$

$$\Leftrightarrow \frac{\tan^2 x}{2} + \frac{\cot^2 y}{2} + C' = 0$$

$$\Leftrightarrow \tan^2 x + \cot^2 y = C.$$

1.2.4 Ví dụ 4

Giải phương trình

$$\frac{dy}{dx} = \frac{1 - 2x - 3y}{4x + 6y - 5}.$$

Lời giải.

Biến đổi phương trình

$$\frac{dy}{dx} = \frac{1 - 2x - 3y}{4x + 6y - 5}$$
$$= \frac{-2x - 3y + 1}{-2(-2x - 3y + 1) - 3}.$$

Đặt
$$u = -2x - 3y - 1 \Rightarrow \frac{du}{dx} = -2 - 3\frac{dy}{dx}$$

Thay vào phương trình đã biến đổi

$$\frac{\frac{du}{dx} + 2}{-3} = \frac{u}{-2u - 3}$$

$$\Leftrightarrow \frac{du}{dx} = -\frac{u + 6}{2u + 3}$$

$$\Leftrightarrow \frac{2u + 3}{u + 6} du = -dx.$$

Nguyên hàm hai vế, ta được

$$\int \frac{2u+3}{u+6} du = \int -dx$$

$$\Leftrightarrow 2u-9\ln|u+6| = -x+C$$

$$\Leftrightarrow -3x-6y+2-9\ln|-2x-3y+7| = C.$$

1.3 Bài tập tự luyện

Giải các phương trình vi phân sau:

- 1. $y' = y^2 \frac{2}{x^2}$.
- $2. \ 2x^4yy' + y^4 = 4x^6.$
- 3. $(x^2y^2 1)y' + 2xy^3 = 0$.
- 4. $(y^4 3x^2)dy + xydy = 0$.
- 5. $2y + (x^2y + 1)xy' = 0$.

2 PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP I

12	20120009	Nguyễn Văn Hưng	Kiểm tra chéo
28	20120027	Lê Hải Duy	Latex
130	20120209	Nguyễn Nhật Tiến	Lý thuyết
133	20120301	Nguyễn Hoàng Khang	Kiểm tra chéo
139	20120412	Nguyễn Quang Bình	Kiểm tra chéo
141	20120459	Nguyễn Văn Dũng	Ví dụ

2.1 Tóm tắt lý thuyết

Phương trình vi phân tuyến tính cấp I là phương trình có dạng:

$$y' + p(x).y = q(x).$$

Trong đó p(x), q(x) là những hàm số cho trước.

Phương pháp giải.

Bước 1: Tìm $P(x) = \int p(x)dx$.

Bước 2: Nhân hai vế của phương trình với $e^{P(x)}$, ta được

$$\begin{array}{rcl} y'.e^{P(x)} + y.p(x).e^{P(x)} & = & q(x).e^{P(x)} \\ \Leftrightarrow y'.e^{P(x)} + y.[P'(x).e^{P(x)}] & = & q(x).e^{P(x)} \\ \Leftrightarrow y'.e^{P(x)} + y.[e^{P(x)}]' & = & q(x).e^{P(x)} \\ \Leftrightarrow [y.e^{P(x)}]' & = & q(x).e^{P(x)} \end{array}$$

Bước 3: Lấy nguyên hàm hai vế, ta được

$$y.e^{P(x)} = \int q(x).e^{P(x)}dx + C.$$

Vậy nghiệm tổng quát của phương trình có dạng

$$y = e^{-P(x)} \left[\int q(x) \cdot e^{P(x)} dx + C \cdot \right]$$

2.2 Ví dụ

2.2.1 Ví dụ 1

Giải phương trình vi phân

$$y' + 6y = 1.$$

Lời giải. Phương trình tương đương

$$y'.e^{6x} + 6y.e^{6x} = e^{6x}$$

$$\Leftrightarrow [y.e^{6x}]' = e^{6x}.$$

Lấy nguyên hàm hai về theo biến x, ta được

$$y \cdot e^{6x} = \frac{e^{6x}}{6} + C$$
$$\Rightarrow y = \frac{1}{6} + C \cdot e^{-6x}.$$

2.2.2 Ví dụ 2

Giải phương trình vi phân

$$y' + 2xy = 2x.$$

Lời giải. Phương trình tương đương

$$y'.e^{x^2} + 2x.y.e^{x^2} = 2x.e^{x^2}$$

$$\Leftrightarrow [y.e^{x^2}]' = 2x.e^{x^2}.$$

Lấy nguyên hàm hai về theo biến x, ta được

$$y.e^{x^{2}} = \int 2x.e^{x^{2}} dx$$

$$\Rightarrow y.e^{x^{2}} = \int e^{x^{2}} d(x^{2})$$

$$\Rightarrow y.e^{x^{2}} = e^{x^{2}} + C$$

$$\Rightarrow y = 1 + C.e^{-x^{2}}.$$

2.2.3 Ví dụ 3

Giải phương trình vi phân

$$y' + y = \cos e^x.$$

Lời giải. Phương trình tương đương

$$y'.e^x + y.e^x = \cos e^x.e^x$$

 $\Leftrightarrow [y.e^x]' = \cos e^x.e^x$

Lấy nguyên hàm hai vế theo biến x, ta được

$$y.e^{x} = \int \cos e^{x}.e^{x}dx$$

$$\Rightarrow y.e^{x} = \int \cos e^{x}d(e^{x})$$

$$\Rightarrow y.e^{x} = \sin e^{x} + C$$

$$\Rightarrow y = (\sin e^{x} + C)e^{-x}.$$

2.3 Bài tập tự luyện

Giải các phương trình vi phân sau:

1.
$$(1+x^2)y' - 2xy = (1+x^2)^2$$
.

2.
$$y' + 2xy = xe^{-x^2}$$
.

3.
$$x(1+x^2)y' - (x^2-1)y + 2x = 0$$
.

3 PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP II HỆ SỐ HẰNG (vế phải là đa thức nhân hàm mũ)

11	20120007	Đỗ Trung Hiếu	Lý thuyết
15	20120012	Nguyễn Phạm Nhật Huy	Lý thuyết
17	20120014	Vương Gia Huy	Kiểm tra chéo
22	20120020	Huỳnh Đức Nhâm	Kiểm tra chéo
23	20120021	Hồ Văn Sơn	Kiểm tra chéo
24	20120022	Lê Quang Trí	Latex
25	20120023	Bùi Quốc Trung	Kiểm tra chéo
99b	20120131	Nguyễn Văn Lộc	Kiểm tra chéo
147	20120572	Nguyễn Kiều Minh Tâm	Ví dụ

3.1 Tóm tắt lý thuyết

3.1.1 Phương trình vi phân tuyến tính thuần nhất cấp II

$$ay'' + by' + cy = 0. (1)$$

Giải phương trình đặc trung

$$a\lambda^2 + b\lambda + c = 0.$$

$$\Delta = b^2 - 4ac.$$
(2)

• $\Delta > 0$, (2) có nghiệm x_1, x_2 . Khi đó, (1) có nghiệm tổng quát

$$y_{TQ} = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}.$$

• $\Delta = 0$, (2) có nghiệm kép x_0 . Khi đó, (1) có nghiệm tổng quát

$$y_{TQ} = C_1 e^{\lambda_0 x} + x C_2 e^{\lambda_0 x}.$$

• $\Delta < 0$, (2) có hai nghiệm phức $\lambda = \alpha \pm \beta i$. Khi đó, (1) có nghiệm tổng quát

$$y_{TQ} = C_1 \cos(\beta x) e^{\alpha x} + C_2 \sin(\beta x) e^{\alpha x}.$$

3.1.2 Phương trình vi phân tuyến tính cấp II có hệ số hằng với vế phải là đa thức nhân hàm mũ

$$ay'' + by' + cy = P_n(x)e^{\alpha x}. (3)$$

Giải phương trình vi phân tuyến tính thuần nhất

$$ay'' + by' + cy = 0. (4)$$

Phương trình đặc trưng

$$a\lambda^2 + b\lambda + c = 0. (*)$$

Tìm nghiệm riêng của (3)

$$y_r = x^k Q_n(x) e^{\alpha x}$$
.

- k = 0 nếu α không là nghiệm của (*);
- k = 1 nếu α là nghiệm đơn của (*);
- k = 2 nếu α là nghiệm kép của (*).

3.2 Ví du

3.2.1 Ví dụ 1

Giải phương trình vi phân

$$y'' + 6y' + 5y = e^{-5x}(x+2). (1)$$

Lời giải.

Xét phương trình vi phân tuyến tính thuần nhất

$$y'' + 6y' + 5y = 0. (2)$$

Phương trình đặc trưng

$$\lambda^2 + 6\lambda + 5 = 0 \Leftrightarrow \begin{bmatrix} \lambda = -1 \\ \lambda = -5 \end{bmatrix}$$
.

 \Rightarrow Nghiệm tổng quát của (2) $y_{TQ}^{TN} = C_1 e^{-x} + C_2 e^{-5x}.$

Vì $f(x) = e^{-5x}(x+2) = P_1(x)e^{\alpha x}$, với $\alpha = -5$ là nghiệm đơn của phương trình đặc trưng nên (1) có một nghiệm riêng có dạng

$$y_{r} = x(ax+b)e^{-5x}$$

$$= (ax^{2} + bx)e^{-5x}$$

$$y'_{r} = -5(ax^{2} + bx)e^{-5x} + (2ax+b)e^{-5x}$$

$$y''_{r} = 25(ax^{2} + bx)e^{-5x} + (-5)(2ax+b)e^{-5x}$$

$$+ (-5)(2ax+b)e^{-5x} + 2ae^{-5x}$$

$$\Rightarrow y''_{r} + 6y'_{r} + 5y_{r} = -4(2ax+b)e^{-5x} + 2ae^{-5x}$$

$$= e^{-5x}(-8ax - 4b + 2a)$$

$$\Leftrightarrow e^{-5x}(x+2) = e^{-5x}(-8ax - 4b + 2a)$$

$$\Leftrightarrow \begin{cases} -8a = 1 \\ -4b + 2a = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} a = \frac{1}{2} \\ b = \frac{1}{2} \end{cases}$$

 $\Rightarrow y_r = (\frac{-1}{8} x^2 - \frac{9}{10} x) e^{-5x}$ là một nghiệm riêng của (1).

Vậy nghiệm tổng quát của (1) là

$$y_{TQ} = y_{TQ}^{TN} + y_r$$

= $C_1 e^{-x} + C_2 e^{-5x} + (\frac{-1}{8}x^2 - \frac{9}{10}x)e^{-5x}$.

3.2.2 Ví dụ 2

Giải phương trình vi phân

$$y'' + 4y' + 5y = e^{-2x}. (1)$$

Lời giải.

Xét phương trình vi phân tuyến tính thuần nhất

$$y'' + 4y' + 5y = 0. (2)$$

Phương trình đặc trưng

$$\lambda^2 + 4\lambda + 5 = 0 \Leftrightarrow \begin{bmatrix} \lambda = -2 + i \\ \lambda = -2 - i \end{bmatrix}$$
.

 \Rightarrow Nghiệm tổng quát của (2) $y_{TQ}^{TN} = C_1 e^{-2x} \sin x + C_2 e^{-2x} \cos x$.

Vì $f(x) = e^{-2x} = P_0(x)e^{\alpha x}$, với $\alpha = -2$ không là nghiệm của phương trình đặc trung nên (1) có một nghiệm riêng có dạng

$$y_r = Ce^{-2x}$$

$$y'_r = -2Ce^{-2x}$$

$$y''_r = 4Ce^{-2x}$$

$$\Rightarrow y''_r + 4y'_r + 5y_r = (4C - 8C + 5C)e^{-2x} = Ce^{-2x}$$

$$\Leftrightarrow e^{-2x} = Ce^{-2x}$$

$$\Leftrightarrow C = 1.$$

 $\Rightarrow y_r = e^{-2x}$ là một nghiệm riêng của (1).

Vậy nghiệm tổng quát của (1) là

$$y_{TQ} = y_{TQ}^{TN} + y_r$$

= $C_1 e^{-2x} \sin x + C_2 e^{-2x} \cos x + e^{-2x}$.

3.2.3 Ví dụ 3

Giải phương trình vi phân

$$y'' + 4y' + 4y = e^{-2x}. (1)$$

Lời giải.

Xét phương trình vi phân tuyến tính thuần nhất

$$y'' + 4y' + 4y = 0. (2)$$

Phương trình đặc trưng

$$\lambda^2 + 4\lambda + 5 = 0$$
$$\Leftrightarrow \lambda = -2.$$

 $\Rightarrow \text{Nghiệm tổng quát của (2)} \ y_{TQ}^{TN} = C_1 e^{-2x} + x C_2 e^{-2x} \ .$ Vì $f(x) = e^{-2x} = P_0(x) e^{\alpha x}$, với $\alpha = -2$ là nghiệm kép của phương trình đặc trưng nên (1) có một nghiệm riêng có dang

$$\begin{array}{rcl} y_r & = & x^2Ce^{-2x} \\ y_r' & = & -2e^{-2x}Cx^2 + 2xCe^{-2x} \\ y_r'' & = & 4e^{-2x}Cx^2 - 4xe^{-2x}C + 2Ce^{-2x} - 4xCe^{-2x} \\ \Rightarrow y_r'' + 4y_r' + 4y_r & = & e^{-2x} \\ \Leftrightarrow x^2(4C - 8C + 4C) + 2C & = & 1 \\ \Leftrightarrow C & = & \frac{1}{2}. \end{array}$$

 $\Rightarrow y_r = \frac{1}{2}x^2e^{-2x}$ là một nghiệm riêng của (1).

Vậy nghiệm tổng quát của (1) là

$$y_{TQ} = y_{TQ}^{TN} + y_r$$

= $C_1 e^{-2x} + x C_2 e^{-2x} + \frac{1}{2} x^2 e^{-2x}$.

Bình luận: Nhận thấy các ví dụ trên đều dễ dàng giải quyết bằng phương pháp giải tổng quát về giải phương trình vi phân tuyến tính cấp II.

3.3 Bài tập tự luyện

Giải các phương trình vi phân sau:

1.
$$y'' + 7y' + 12y = e^{3x}$$
.

2.
$$y'' + 2y' = x + 1$$
.

3.
$$y'' + 6y' + 9y = e^{-3x}x$$
.

4.
$$y'' + 4y' + 4y = -2x + 1$$
.

5.
$$y'' + 2y' + 5y = e^{-x}$$
.

6.
$$y'' + 4y' + 8y = 2xe^{-2x}$$
.

4 NGUYÊN LÝ CHỒNG CHẤT NGHIỆM

11	20120007	Đỗ Trung Hiếu	Kiểm tra chéo
15	20120012	Nguyễn Phạm Nhật Huy	Kiểm tra chéo
17	20120014	Vương Gia Huy	Ví dụ
22	20120020	Huỳnh Đức Nhâm	Latex
23	20120021	Hồ Văn Sơn	Lý thuyết
24	20120022	Lê Quang Trí	Kiểm tra chéo
25	20120023	Bùi Quốc Trung	Lý thuyết
99b	20120131	Nguyễn Văn Lộc	Ví dụ
147	20120572	Nguyễn Kiều Minh Tâm	Kiểm tra chéo

4.1 Tóm tắt lý thuyết

4.1.1 Nội dung

Với:

- y_{r1} là một nghiệm riêng của phương trình vi phân $y'' + p(x)y' + q(x)y = f_1(x)$;
- y_{r2} là một nghiệm riêng của phương trình vi phân $y'' + p(x)y' + q(x)y = f_2(x)$.

Ta có $y'' + p(x)y' + q(x)y = f_1(x) + f_2(x)$ có một nghiệm riêng là $y_r = y_{r1} + y_{r2}$.

4.1.2 Chứng minh

Ta có:

- $y_r = y_{r1} + y_{r2}$;
- $y'_r = y'_{r1} + y'_{r2}$;
- $y_r'' = y_{r1}'' + y_{r2}''$.

$$y''_r + p(x)y'_r + q(x)y_r = (y''_{r1} + y''_{r2}) + p(x)(y'_{r1} + y'_{r2}) + q(x)(y_{r1} + y_{r2})$$

$$= (y''_{r1} + p(x)y'_{r1} + q(x)y_{r1}) + (y''_{r2} + p(x)y'_{r2} + q(x)y_{r2})$$

$$= f_1(x) + f_2(x).$$

4.2 Ví du

4.2.1 Ví dụ 1

Giải phương trình vi phân

$$y'' + y = e^x + x^3. (1)$$

Lời giải. Xét phương trình vi phân thuần nhất

$$y'' + y = 0. (2)$$

(2) có phương trình đặc trưng là

$$\lambda^2 + 1 = 0. (3)$$

Phương trình (3) có hai nghiệm phức liên hợp là $\lambda = \pm i$. Do đó, (2) có nghiệm tổng quát dạng

$$y = C_1 \cos x + C_2 \sin x. \tag{4}$$

Ta sẽ đi tìm nghiệm riêng của (1).

Xét hai phương trình

$$y'' + y = e^x (5)$$

$$y'' + y = x^3 \tag{6}$$

Vế phải của (5) có dạng $P_n(x) . e^{\alpha x}$ với $P_n(x)$ là đa thức bậc n=0 và $\alpha=1$.

Do $\alpha=1$ không là nghiệm của phương trình đặc trưng (3) nên phương trình (5) có nghiệm riêng dạng

$$y_{r1} = A.e^x$$

$$\Rightarrow y_{r1}'' = A.e^x$$

. Thay y_{r1} và y_{r1}'' vào phương trình (5), ta được

$$A.e^x + A.e^x = e^x$$

$$\Leftrightarrow A = \frac{1}{2}$$

. Do đó (5) có một nghiệm riêng là

$$y_{r1} = \frac{1}{2}e^x.$$

Vế phải của (6) có dạng $Q_m(x) . e^{\beta x}$ với $Q_m(x)$ là đa thức bậc m=3 và $\beta=0$.

Do $\beta = 0$ là nghiệm đơn của phương trình đặc trưng (3) nên phương trình (6) có nghiệm riêng dạng

$$y_{r2} = x(Dx^3 + Ex^2 + Fx + G)$$

$$= Dx^4 + Ex^3 + Fx^2 + Gx$$

$$\Rightarrow y'_{r2} = 4Dx^3 + 3Ex^2 + 2Fx + G$$

$$\Rightarrow y''_{r2} = 12Dx^2 + 6Ex + 2F.$$

$$\Rightarrow y_{r2}^{"} = 12Dx^2 + 6Ex + 2F.$$

Thay y_{r2} và y_{r2}'' vào (6), ta được

$$Dx^4 + Ex^3 + (12D + F)x^2 + (G + 6E)x + 2F = x^3$$

Đồng nhất hai vế

$$\begin{cases} D = 0 \\ E = 1 \\ F = 0 \\ G = -6 \end{cases}$$

Do đó (6) có một nghiệm riêng dạng

$$y_{r2} = x^3 - 6x$$
.

Vậy (1) có một nghiệm riêng là

$$y_r = y_{r1} + y_{r2} = \frac{1}{2}e^x + x^3 - 6x. (7)$$

Từ (4) và (7), ta được (1) có nghiệm tổng quát dạng

$$y = C_1 \cos x + C_2 \sin x + \frac{1}{2}e^x + x^3 - 6x.$$

4.2.2Ví du 2

Giải phương trình vi phân

$$y'' - 3y' = e^{3x} - 18x. (1)$$

Lời giải. Xét phương trình vi phân thuần nhất

$$y'' - 3y' = 0. (2)$$

(2) có phương trình đặc trung là

$$\lambda^2 - 3\lambda = 0. (3)$$

Phương trình (3) có hai nghiệm thực phân biệt là $\lambda = 0$ và $\lambda = 3$.

Do đó, (2) có nghiệm tổng quát dạng

$$y = C_1 + C_2 \cdot e^{3x}. (4)$$

Ta sẽ đi tìm nghiệm riêng của (1).

Xét hai phương trình

$$y'' - 3y' = e^{3x} \tag{5}$$

$$y'' - 3y' = -18x (6)$$

Vế phải của (5) có dạng $P_n(x) . e^{\alpha x}$ với $P_n(x)$ là đa thức bậc n=0 và $\alpha=3$.

Do $\alpha = 3$ là nghiệm của phương trình đặc trung (3) nên nên phương trình (5) có nghiệm riêng dạng

$$y_{r1} = ax \cdot e^{3x}$$

$$\Rightarrow y'_{r1} = (3ax + a) \cdot e^{3x}$$

$$\Rightarrow y''_{r1} = (9ax + 6a) \cdot e^{3x}.$$

Thay y'_{r1} và y''_{r1} vào phương trình (5), ta được

$$(9ax + 6a).e^{3x} - 3.(3ax + a).e^{3x} = e^{3x}$$
$$\Leftrightarrow a = \frac{1}{3}.$$

Do đó (5) có một nghiệm riêng là

$$y_{r1} = \frac{1}{3}xe^{3x}.$$

Vế phải của (6) có dạng $Q_m(x) \cdot e^{\beta x}$ với $Q_m(x)$ là đa thức bậc m = 1 và $\beta = 0$.

Do $\beta = 0$ là nghiệm đơn của phương trình đặc trưng (3) nên phương trình (6) có nghiệm riêng dạng

$$y_{r2} = x(bx+c)$$

$$= bx^{2} + cx$$

$$\Rightarrow y'_{r2} = 2bx + c$$

$$\Rightarrow y''_{r2} = 2b.$$

Thay y_{r2} và y_{r2}'' vào (6), ta được

$$2b - 3(2bx + c) = -18x.$$

Đồng nhất hai vế

$$\begin{cases} b = 3 \\ c = 2 \end{cases}$$

Do đó (6) có một nghiệm riêng dạng

$$y_{r2} = 3x^2 + 2x.$$

Vậy (1) có một nghiệm riêng là

$$y_r = y_{r1} + y_{r2} = \frac{1}{3}xe^{3x} + 3x^2 + 2x. (7)$$

Từ (4) và (7), phương trình (1) có nghiệm tổng quát dạng

$$y = C_1 + C_2 \cdot e^{3x} + \frac{1}{3}xe^{3x} + 3x^2 + 2x.$$

4.2.3 Ví du 3

Giải phương trình vi phân (với điều kiện)

$$\begin{cases} y'' + y = e^x + x^3 \\ y(0) = 2 \\ y'(0) = 0 \end{cases}$$
 (1)

Lời giải. Xét phương trình vi phân thuần nhất

$$y'' + y = 0. (2)$$

(2) có phương trình đặc trưng là

$$\lambda^2 + 1 = 0. (3)$$

Phương trình (3) có nghiệm phức liên họp $\lambda = \pm i$.

Do đó, (2) có nghiệm tổng quát dạng

$$y = C_1 \cos x + C_2 \sin x. \tag{4}$$

Ta sẽ đi tìm nghiệm riêng của (1).

Xét hai phương trình

$$y'' + y = e^x (5)$$

$$y'' + y = x^3 \tag{6}$$

Vế phải của (5) có dạng $P_n\left(x\right).e^{\alpha x}$ với $P_n\left(x\right)$ là đa thức bậc n=0 và $\alpha=1.$

Do $\alpha=1$ không là nghiệm của phương trình đặc trưng (3) nên phương trình (5) có nghiệm riêng dạng

$$y_{r1} = a.e^x$$

$$\Rightarrow y_{r1}^{"} = a.e^x.$$

Thay y_{r1} và y_{r1}'' vào phương trình (5), ta được

$$a.e^x + a.e^x = e^x$$

$$\Leftrightarrow a = \frac{1}{2}.$$

Do đó (5) có một nghiệm riêng là

$$y_{r1} = \frac{1}{2}e^x.$$

Vế phải của (6) có dạng $Q_m(x) \cdot e^{\beta x}$ với $Q_m(x)$ là đa thức bậc m=3 và $\beta=0$.

Do $\beta = 0$ không là nghiệm của phương trình đặc trưng (3) nên phương trình (6) có nghiệm riêng dạng

$$y_{r2} = bx^{3} + cx^{2} + dx + e$$

$$\Rightarrow y'_{r2} = 3bx^{2} + 2cx + d$$

$$\Rightarrow y''_{r2} = 6bx + 2c.$$

Thay y_{r2} và y_{r2}'' vào (6), ta được

$$bx^3 + cx^2 + dx + e + 6bx + 2c = x^3$$
.

Đồng nhất hai vế

$$\begin{cases} b = 1 \\ c = 0 \\ d = -6 \\ e = 0 \end{cases}$$

Do đó (6) có một nghiệm riêng dạng

$$y_{r2} = x^3 - 6x.$$

Vậy (1) có nghiệm riêng là

$$y_r = y_{r1} + y_{r2} = \frac{1}{2}e^x + x^3 - 6x. (7)$$

Từ (4) và (7), phương trình (1) có nghiệm tổng quát dạng

$$y = C_1 \cos x + C_2 \sin x + \frac{1}{2}e^x + x^3 - 6x$$
$$\Rightarrow y' = -C_1 \sin x + C_2 \cos x + \frac{1}{2}e^x + 3x^2 - 6$$

Mà

$$\begin{cases} y(0) = 2\\ y'(0) = 0 \end{cases}$$

Do đó

$$\begin{cases} C_1 + \frac{1}{2} = 2 \\ C_2 + \frac{1}{2} - 6 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} C_1 = \frac{3}{2} \\ C_2 = \frac{11}{2} \end{cases}$$

Vậy nghiệm của phương trình (với điều kiện) (1) là

$$y = \frac{3}{2}\cos x + \frac{11}{2}\sin x + \frac{1}{2}e^x + x^3 - 6x$$

.

4.3 Bài tập tự luyện

Giải các phương trình vi phân sau:

- 1. $y'' y' = xe^x$.
- 2. $y'' + 9y = 1 + xe^{9x}$.
- 3. $y'' + y' + y = 2e^x + 4xe^x + x^2e^x$.
- 4. $y'' + 5y' = e^{-5x} + x^3$.

[HÉT]