i	Xi	Уi	$(x_i - \overline{x})$	$(x_1-\overline{x})^2$	$(y_i - \overline{y})$	(y _i - y) ²	$(x_i-\overline{x}) (y_i-\overline{y})$	$\widehat{\mathbf{y}_{i}} = \widehat{\beta_{0}} + \widehat{\beta_{1}} \mathbf{x}_{i}$	$\widehat{\mathbf{u}_{i}} = (\mathbf{y}_{i} - \widehat{\mathbf{y}_{i}})$	$\widehat{\mathbf{u}_{i}}^{2} = (\mathbf{y}_{i} - \widehat{\mathbf{y}_{i}})^{2}$
1	1	1	-1	1	-1	1	1	1+(½)×1= 1½	$1-1\frac{1}{2} = -\frac{1}{2}$	1/4
2	2	3	0	0	1	1	0	1+(½)×2= 2	3-2 = 1	1
3	3	2	1	1	0	0	0	1+(½)×3= 2½	$2-2\frac{1}{2} = -\frac{1}{2}$	1/4
Σ	6	6	SST _x =	2	SST _y =	2		$\Sigma \widehat{y_i} = 6$	$\Sigma \widehat{u_i} = 0$	SSR = 1½
Σ/n	$\overline{x} = 2$	<u>y</u> = 2								
Σ /(n-1)				var(x)=1		var(y)=1	cov(x,y)= ½			

Intercept:
$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1}\overline{x} = 2 - \frac{1}{2} \cdot 2 = 1$$

Slope:
$$\widehat{\beta_1} = \frac{cov(x,y)}{var(x)} = \frac{1/2}{1} = \frac{1}{2}$$

- > cartesian <- c("(1,1)", "(2,3)", "(3,2)")
- > lim < c(0,4)
- > plot(x,y, pch=16, xlim = lim, ylim = lim)
- > text(x,y, labels=cartesian, pos=1, xpd=TRUE)
- > abline(a=model\$coefficients[1],b=model\$coefficients[2])

Coefficient of determination:
$$R^2 = \frac{SST_y - SSR}{SST_y} = (2-1\frac{1}{2})/2 = .25$$

Root Mean-Squared Error:
$$sigma = \sqrt{\widehat{\sigma^2}} = \sqrt{\frac{SSR}{n-2}} = \sqrt{(1\frac{1}{2})/1} \cong 1.225$$

```
> x <- c(1,2,3)
> y <- c(1,3,2)
> model <- lm(y~x)
> summary(model)
```

Call:

 $lm(formula = y \sim x)$

Residuals:

1 2 3 -0.5 1.0 -0.5

Coefficients:

	Estimate	Std.	Error	t	value	Pr(> t)
(Intercept)	1.000		1.871		0.535	0.687
x	0.500		0.866		0.577	0.667

Multiple R-squared: 0.25 Adjusted R-squared: -0.5

```
> sum(model$residuals)
[1] -5.551115e-17
> cor(model$residuals, x)
[1] 9.614813e-17
```

> model\$fitted
 1 2 3

1.5 2.0 2.5

To add the regression line, could use lines(x,fitted(model)) but this line will only extend to limits of domain of x

To be totally complete, this page should also include computations of $se(\widehat{\beta_1}) = \frac{\widehat{\sigma}}{\sqrt{SST_\chi}}$ and $se(\widehat{\beta_0}) = \frac{\widehat{\sigma}}{\sqrt{SST_\chi}} \cdot \sqrt{\frac{\sum x_i^2}{n}}$