חישוביות וסיבוכיות

תוכן העניינים

2	מכונות טיורינג	1
2	הגדרה היוריסטית של מכונת טיורינג	
6	הגדרה פורמלית של מכונת טיורינג	
19	טבלת המעברים	
23	חישוב פונקציות	
26	מכונות טיורינג מרובת סרטים	2
26	מכונת טיורינג מרובת סרטים (מטמ"ס)	
26		
26	תיאור פורמלי של מטמ"ס	
27		

שיעור 1 מכונות טיורינג

1.1 הגדרה היוריסטית של מכונת טיורינג

הגדרה 1.1 מכונת טיורינג (הגדרה היוריסטית)

הקלט והסרט

מכונת טיורינג (מ"ט) קורא קלט.

הקלט נמצא על סרט אינסופי.

התווים של הקלט נמצאים במשבצות של הסרט.

במכונת טיורינג אנחנו מניחים שהסרט אינסופי לשני הכיוונים.

משמאל לתחילת הקלט לא כתוב כלום, ומימין לסוף הקלט לא כתוב כלום.

אנחנו מניחים שיש תו הרווח _ שנמצא בכל משבצות שאינן משבצות קלט, משמאל לקלט ומימין לקלט.

הראש

במצב ההתחלתי הראש בקצה השמאלי של הקלט.

הראש יכול לזוז ימינה על הסרט וגם שמאלה על הסרט.

הראש יכול לקרוא את התוכן שנמצא במשבצת הסרט שבה הוא נמצא.

הראש יכול לכתוב על המשבצת הסרט שבה הוא נמצא. הכתיבה נעשית תמיד במיקום הראש.

המצבים

 q_0 בהתחלה הראש בקצה השמאלי של הקלט והמ"ט במצב התחלתי

הראש קורא את התו במשבצת הראשונה וכותב עליה לפי הפונקציית המעברים (שנגדיר בהגדרה 1.2). כעת המ"ט במצב חדש q_1

 q_2 הראש קורא את התו במשבצת השניה וכותב עליה לפי הפונקציית המעברים ואז המ"ט במצב חדש q_2 . התהליך ממשיך עד שהראש מגיע לקצה הימיני של הקלט, ואז הוא ממשיך לקרוא ולכתוב על כל משבצת בכיוון שמאלה, עד שהוא מגיע לקצה השמאלי.

במ"ט ניתן לטייל על הקלט שוב ושוב לשני הכיוונים.

 $q_{
m rej}$ או מצב דוחה מגיע מגיע מגיע מקבל מסתיים כאשר המ"ט מגיע מגיע מקבל

דוגמה 1.1

נבנה מכונת טיורינג אשר מקבלת מילה אם היא בשפה

$$L = \{w \in \{a, b\}^* | \#a_w = \#b_w\}$$
.

b ו a אותיות שווה אותיות מספר עם מכל מכל מכל המורכבת מכל המילים אותיות וו

תיאור מילולי

- . נחשפ b נחשפ a נסרוק את הקלט משמאל לימין ולכל
 - .√ נניח שראינו במשבצת הראשונה a, נסמן עליה •
- שכבר ראינו. a שכבר מתאימה ל a שכבר ראינו.
 - אם לא מצאנו המילה לא בשפה.
 - $\sqrt{\ }$ אם מצאנו ,נסמן את ה- b אם מצאנו –
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
- במשבצת הראשונה יש √ מסיבוב הראשון. הראש פשוט כותב עליה √, כלומר משבצת ראשונה נשארת ללא שינוי.
 - . \checkmark נסמן במשבצת הבאה. נניח שמצאנו b. נסמן במשבצת . \checkmark
 - שכבר ראינו. a מתאימה ל שכבר ראינו. נסרוק את יתרת הקלט ונחפש אות
 - אם לא מצאנו ,המילה לא בשפה. –
 - .√ אם מצאנו (נסמן את ה- a התואם ב- -
 - בכל משבצת שיש \checkmark כותבים עליה \checkmark וממשיכים למשבצת הבאה הימני.
 - נחזור לתחילת הקלט ונעשה סריקה נוספת משמאל לימין.
 - חוזרים על התהליך שוב ושוב.
 - אם היה מעבר שבו לא מצאנו אות תואמת, המילה לא בשפה. -
- אם כולן היו תואמות ועשינו מעבר שבו הגכנו מקצה לקצה, מרווח לרווח, בלי לראות שום אות,אז המילה בשפה.

כעת נתאר את המ"ט באמצעות המצבי המכונה והפונקציית המעברים.

מצבי המכונה

q_0	המצב ההתחלתי. אליו נחזור אחרי כל סבב התאמה של זוג אותיות.
q_a	מצב שבו ראינו a ומחפשים b תואם.
q_b	מצב שבו ראינו b מחפשים a תואם.
back	מצב שנשתמש בו כדי לחזור לקצה השמאלי של הקלט ולהתחיל את הסריקה הבאה (סבב ההתאמה הבא).
acc	מצב מקבל.
rej	מצב דוחה.

. מציעה ממכונה מגיעה למצב acc איא עוצרת.

עצירה במצב acc משמעותה קבלה.

- כאשר המכונה מגיעה למצב rej היא עוצרת.עצירה במצב rej משמעותה דחייה.
 - רק בשני מצבים אלו המכונה מפסיקה.
 בכל מצב אחר המכונה בהכרח ממשיכה.

תרשים מצבים

- בכל צעד המכונה מבצעת שתי פעולות:
 - 1. כותבת אות במיקום הראש
- 2. זזה צעד אחד שמאלה או צעד אחד ימינה.
- בכל צעד המכונה יכולה לעבור למצב אחר או להישאר באותו מצב.

דוגמה 1.2

abbbaa בדקו אם המכונת טיורינג של הדוגמה 1.1 מקבלת את המילה

```
b
                                                                                                   b
                                                                                                                    а
                                                                                                                                 а
                                         q_0
                      \checkmark
                                          \checkmark
                                                                                b
                                                                                                   b
                                                            q_0
                                                                                                                    а
                                                                                                                                 а
                                                                                q_b
                                                                                                   b
                                                                                                                    а
                                                                                                                                 а
                                                                                b
                                                                                                   q_b
                                                                                                                    а
                                                                                                                                  а
                                          \checkmark
                                                             \checkmark
                                                                            back
                                                                                                   b
                                                                                                                                 а
                      \checkmark
                                                         back
                                                                                \checkmark
                                                                                                   b
                                                                                                                   \checkmark
                                                                                                                                 а
                      \checkmark
                                      back
                                                             \checkmark
                                                                                \checkmark
                                                                                                   b
                                                            \checkmark
                                                                               \checkmark
                   back
                                          \checkmark
                                                                                                   b
                                                                                                                   \checkmark
                                                                                                                                  а
                                          \checkmark
                                                             \checkmark
                                                                                \checkmark
                                                                                                   b
back
                                                                                                                                 а
                                         \checkmark
                                                             \checkmark
                                                                                \checkmark
                                                                                                   b
                                                                                                                   \checkmark
                                                                                                                                 а
                      q_0
                                                             \checkmark
                                                                                \checkmark
                                                                                                   b
                                                                                                                   \checkmark
                       \checkmark
                                         q_0
                                                                                                                                 а
                                          \checkmark
                                                                                                   b
                                                                                                                                 а
                                                             q_0
                                          \checkmark
                                                             \checkmark
                                                                                                   b
                                                                                                                   \checkmark
                                                                                                                                 а
                                                                                q_0
                      \checkmark
                                                                                \checkmark
                                                                                                   q_b
                                                                                                                                 а
                                                             \checkmark
                                                                                \checkmark
                                                                                                   \checkmark
                                          \checkmark
                                                                                                                   q_b
                                                                                                                                 а
                                                             \checkmark
                                                                                \checkmark
                                          \checkmark
                                                                                               back
                                                            \checkmark
                      \checkmark
                                          \checkmark
                                                                            back
                                                                                                   \checkmark
                                          \checkmark
                                                         back
                                                                                \checkmark
                      \checkmark
                                      back
                                                             \checkmark
                                                                                \checkmark
                                                                                                   \checkmark
                                          \checkmark
                   back
back
                                          \checkmark
                                                                                \checkmark
                                                                                                   \checkmark
                                                                                                                   \checkmark
                                          \checkmark
                                                                                \checkmark
                                                                                                   \checkmark
                      q_0
                                                                                                   \checkmark
                                                                                \checkmark
                                                             \checkmark
                      \checkmark
                                         q_0
                                                                                \checkmark
                                                             q_0
                      \checkmark
                                                                                q_0
                                                                                                   q_0
                                                                                \checkmark
                      \checkmark
                                                                                                   \checkmark
                                                                                                                   q_0
                                                                                                                                \checkmark
                                          \checkmark
                                                                                \checkmark
                                                                                                   \checkmark
                                                                                                                   \checkmark
                                                                                                                                q_0
                                                                                                                                             acc
```

דוגמה 1.3

בדקו אם המכונת טיורינג של הדוגמה 1.1 מקבלת את המילה aab.

```
b
                 q_0
                                 а
                                              а
                 \checkmark
                                q_a
                                             а
                                                        b
                 \checkmark
                                 а
                                                       b
                                             q_a
                 \checkmark
                             back
                                             а
               back
                                             а
                                                       \checkmark
                                \checkmark
back
                                              а
                                                       \checkmark
                                                       \checkmark
                                              а
                 q_0
                                                        \checkmark
                                              а
                                q_0
                                \checkmark
                                                       \checkmark
                                             q_a
                 \checkmark
                                \checkmark
                                             \checkmark
                                                       q_a
                                             rej
```

1.2 הגדרה פורמלית של מכונת טיורינג

הגדרה 1.2 מכונת טיורינג מכונת טיורינג (מ"ט) היא שביעיה $M = (Q, \Sigma, \Gamma, \delta, q_0, \text{acc}, \text{rej})$:כאשר קבוצת מצבים סופיות Q $\bot \notin \Sigma$ א"ב קלט סופי \sum $\Sigma \subset \Gamma$, $\subseteq \Gamma$ ref Γ א"ב סרט סופי $\delta: (Q \backslash \{\mathrm{rej},\mathrm{acc}\} \times \Gamma \to Q \times \Gamma \times \{L,R\}$ פונקציית המעברים δ מצב התחלתי q_0 מצב מקבל acc מצב דוחה rej

דוגמה 1.4 (המשך דוגמה 1.1)

$$\begin{split} M &= (Q, \Sigma, \Gamma, \delta, q_0, \mathrm{acc}, \mathrm{rej}) \\ Q &= \{q_0, q_a, q_b, \mathrm{back}, \mathrm{rej}, \mathrm{acc}\} \;. \\ \Sigma &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \Gamma = \{\mathtt{a}, \mathtt{b}, \ldots, \checkmark\} \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \Gamma = \{\mathtt{a}, \mathtt{b}, \ldots, \checkmark\} \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \Gamma = \{\mathtt{a}, \mathtt{b}, \ldots, \checkmark\} \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}, \ldots, \mathtt{c}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta \;, \qquad \delta \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta \;, \qquad \delta \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta \;, \qquad \delta \;, \qquad \delta \;, \qquad \delta \;, \\ \delta &= \{\mathtt{a}, \mathtt{b}\} \;, \qquad \delta \;,$$

כטבלה: δ כטבלה את פונקציית המעבירים

Q Γ	a	b	J	√
q_0	(q_a, \checkmark, R)	(q_b, \checkmark, R)	$(\mathrm{acc}, _, R)$	(q_0, \checkmark, R)
q_a	(q_a, a, R)	$(\text{back}, \checkmark, L)$	$(\mathrm{rej}, _, L)$	(q_a, \checkmark, R)
q_b	$(\text{back}, \checkmark, L)$	(q_b, b, R)	$(\mathrm{rej}, _, L)$	(q_b, \checkmark, R)
back	(back,a,L)	(back, b, L)	$(q_0,, R)$	$(\text{back}, \checkmark, L)$

הגדרה 1.3 קונפיגורציה

תהי מכונת טיורינג. $M=(Q,q_0,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$

קונפיגורציה של M הינה מחרוזת

 $\mu q \sigma \nu$

:כאשר משמעות

$$\mu, \nu \in \Gamma^*$$
, $\sigma \in \Gamma$, $q \in Q$.

- מצב המכונה, q
- הסימון במיקום הראש σ
- תוכן הסרט משמאל לראש, μ
 - תוכן הסרט מימין לראש. u

דוגמה 1.5 (המשך של דוגמה 1.3)

μ	q	σ	ν
_	q_0	a	a b _
_√	q_a	a	b _
_ √ a	q_a	b	
_ ✓	back	a	√ _
	back	✓	a √ _
	back		√ a √ _
	q_0	✓	a √ _
_ ✓	q_0	a	√ _
_ ✓ ✓	q_a	✓	_
_ ✓ ✓ ✓	q_a		_
_ ✓ ✓	rej	√	

דוגמה 1.6

בנו מכונת טיורינג אשר מקבלת כל מילה בשפה

$$L = \{a^n \mid n = 2^k , k \in \mathbb{N}\}\$$

2 אשר חזקה של a אותיות מספר בעלי מספר אותיות

פתרון:

ראשית נשים לב:

 $rac{n}{2^k}=1$ אם ורק אם אנחנו מקבלים 1 אחרי חילוק של $n=2^k$

לאור המשפט הזה נבנה אלגוריתם אשר מחלק את מספר האותיות במילה ב- 2 בצורה איטרטיבית. אם אחרי סבב מסויים נקבל מספר אי-זוגי גדול מ- 1 אז מספר האותיות a במילה לא יכול להיות חזקה של 2. אם אחרי כל הסבבים לא קיבלנו מספר אי-זוגי גדול מ-1 אז מובטח לנו שיש מספר אותיות a אשר חזקה של 2.

• נתון הקלט

נעבר על סרט הקלט. משמאל לימין.

• מבצעים מחקיה לסירוגין של האות a כלומר אות אחת נמחק ואות אחת נשאיר וכן הלאה.

אם אחרי סבב הראשון

- . ונמשיך לסבב הבא 2 אחרי חילוק ב- 2 ונמשיך מספר * אוגי של אותיות a אותיות *
 - הראש חוזר לתו הראשון של הקלט

שות אחת נמחק ואות אחת נשאיר) a בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות (אות אחת נמחק ואות אחת נשאיר) •

אם אחרי סבב השני

- - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a אותיות אותיות מספר * ונמשיך לסבב הבא *
 - הראש חוזר לתו הראשון של הקלט

(אות אחת נמחק ואות אחת נשאיר) a בסבב הבא חוזרים על התהליך של מחיקה לסירוגין של האות •

אם אחרי סבב השלישי

- 2 אין חזקה ב- בתו האחרון אין חזקה של אותיות מספר אי-זוגי של אותיות אחרי חילוק ב- \neq אין אין אין אין אין אותיות אותיות ביילה.
 - . אחרי חילוק ב- 2 ונמשיך לסבב הבא a אותיות אותיות מספר * ונמשיך לסבב הבא *
 - הראש חוזר לתו הראשון של הקלט.

בסבב האחרון נשאר רק אות a בסבב

לכן לפי המשפט למעלה מובטח לנו כי המילה מורכבת ממספר אותיות a אשר חזקה של 2.

המכונת טיורינכ אשר מקבלת מילים בשפה שעובדת לפי האלגוריתם המתואר למעלה מתואר בתרשים למטה.

המצבים:

מצב none: מצב התחלתי. עדיין לא קראנו a בסבב סריקה זה.

מצב one: קראנו a בודד.

. a קראנו מספר זוגי של even מצב

. a קראנו מספר אי-זוגי של odd:

מצב back: חזרה שלמאלה.

דוגמה 1.7

בדקו אם המילה

aaaa

מתקבלת על ידי המכונת טיורינג בדוגמה 1.6.

	none	а	а	а	а	
_	\checkmark	one	а	а	а	_
_	\checkmark	а	even	а	а	_
_	\checkmark	а	\checkmark	odd	а	
_	\checkmark	а	\checkmark	а	even]
_	\checkmark	а	\checkmark	back	а	_
_	\checkmark	а	back	\checkmark	a	_
_	\checkmark	back	а	\checkmark	а	_
_	back	\checkmark	а	\checkmark	а	_
back	_	\checkmark	а	\checkmark	a]
_	none	\checkmark	а	\checkmark	а]
	\checkmark	none	а	\checkmark	а]

	\checkmark	\checkmark	one	\checkmark	a	
	\checkmark	\checkmark	\checkmark	one	а	
	\checkmark	\checkmark	\checkmark	а	even	_
	\checkmark	\checkmark	\checkmark	back	а	_
	\checkmark	\checkmark	back	\checkmark	а	_
	\checkmark	back	\checkmark	\checkmark	а	
	back	\checkmark	\checkmark	\checkmark	а	_
back	_	\checkmark	\checkmark	\checkmark	а	_
	none	\checkmark	\checkmark	\checkmark	а	_
	\checkmark	none	\checkmark	\checkmark	а]
	\checkmark	\checkmark	none	\checkmark	а	_
	\checkmark	\checkmark	\checkmark	none	а	
	\checkmark	\checkmark	\checkmark	\checkmark	one	
	✓	✓	✓	acc	✓	

μ	q	σ	ν
	none	a	aaa 🗀
_ ✓	one	a	aa 🗆
_ √ a	even	a	а 🗅
_ √ a √	odd	a	_
_√a√a	even		_
_ √ a √	back	a	_
_ √ a	back	✓	а _
_ ✓	back	a	√ a _
	back	✓	а√а∟
_	back	_	√a√a∟
	none	✓	а√а∟
	none	a	√ a _
_ ✓ ✓	one	✓	а 🗆
_	one	a	_
_ √ √ √ a	even	_	
_	back	a	
	back	√ a	
	back	✓	√ a ∟
	back	\checkmark	√√ a ∟
	back	_	√√√ a _
	none	<u> </u>	√√ a _
	none	\checkmark	√ a _
	none	\checkmark	а 🗀
_	none	a	
_	one		
✓ ✓ ✓	acc	✓	

דוגמה 1.8

בדקו אם המילה

מתקבלת על ידי המכונת טיורינג בדוגמה 1.6.

פתרון:

μ	q	σ	ν
	none	a	аа 🗀
_ ✓	one	a	а 🗀
_ √ a	even	a	_
_ √ a √	odd	_	
_ √ a √ _	rej		

דוגמה 1.9

מהי שפת המכונה:

פתרון:

תיאור מילולי:

 $:q_0$ במצב התחלתי \bullet

- .עוברים למשבצת הבאה לימין הראש. *
- . עוברים למשבצת הבהאה לשמאל הראש. *
- ממשיכים כך עד שנגיע לתו רווח, כלומר לסוף המילה, ואז עוברים למשבצת לשמאל הראש, כלומר לתו האחרון של המילה.
 - (.a ז"א התו האחרון הינו a, המילה מתקבלת. (ז"א התו האחרון הינו *
 - אם אנחנו רואים b, המילה נדחית. (ז"א התו האחרון הינו *
 - * אם אנחנו רואים תו-רווח המילה נדחית. (ז"א המילה הינה ריקה.)

תשובה סופית: המכונה מקבלת שפת המילים המסתיימות באות a.

דוגמה 1.10

מהי שפת המכונה:

פתרון:

תיאור מילולי:

- $:q_0$ במצב התחלתי \bullet
- * אם אנחנו רואים b, המילה נדחית.
- $_{-}$ אם אנחנו רואים $_{-}$, המילה מתקבלת.
- q_1 אם אנחנו רואים ,a כותבים עליה q_1 ועוברים למשבצת הבאה לימין הראש, והמ"ט עוברת q_1
 - $oldsymbol{.}$ $oldsymbol{.}$ אנחנו ראינו a וכתבנו עליה q_1
- אם אנחנו רואים תו רווח (כלומר הגענו לסוף המילה) הראש זז למשבצת השמאלי, כלומר לאות * האחרונה של המילה והמ"ט עוברת למצב q_2
 - . בתו האחרון, כתבנו עליה $_{-}$ והראש קורא התו $_{0}$ בתו הראשון, כתבנו עליה $_{2}$
 - a אם אנחנו רואים a *
 - $_{-}$ אם אנחנו רואים $_{-}$, המילה נדחית.
 - $.q_3$ כותבים עליה $_$ והמ"ט עוברת למצב *
 - ומחקנו אותה, קראנו b במצב q_3 בתו הראשון ומחקנו בתו a בתו במצב \bullet
 - q_0 הראש η ז משבצת אחת שמאלה עד שיגיע לתו הרשאון ומ"ט חוזרת למצב התחלת ullet

- המ"ט באופן איטרטיבי, עוברת על הקלט ובכל מעבר:
- , אחרת המילה המילה אותה שם אותה ומחליפה מורידה מורידה מורידה ${\tt a}$ יש ${\tt *}$
- . אחרת המילה של המילה מורידה אותה ומחליפה אותה של בסופה של המילה \star
- אם לאחר מספר מעברים כאלו הסרט ריק, המ"ט מקבלת, וזה יתקיים לכל מילה ורק למילים בשפה

$$\left\{a^n b^n \middle| n \ge 0\right\} .$$

תשובה סופית: המכונה מקבלת שפת המילים

$$\left\{a^n b^n \middle| n \ge 0\right\} .$$

דוגמה 1.11

μ	q	σ	ν
	q_0	a	aaabbbb
	q_1	a	aabbbb
a	q_1	a	abbbb
aa	q_1	a	bbbb
aaa	q_1	b	bbb
aaab	q_1	b	bb
aaabb	q_1	b	b
aaabbb	q_1	b	
aaabbbb	q_1	_	_
aaabbb	q_2	b	
aaabb	q_3	Ъ	
aaab	q_3	b	Ъ
aaa	q_3	Ъ	bb
aa	q_3	a	bbb
a	q_3	a	abbb
	q_3	a	aabbb
	q_3	_	aaabbb
	q_0	a	aabbb
	q_1	a	abbb
a	q_1	a	bbb
aa	q_1	Ъ	bb
aab	q_1	b	Ъ
aabb	q_1	Ъ	
aabbb	q_1		
aabb	q_2	Ъ	
aab	q_3	Ъ	
aa	q_3	Ъ	Ъ
a	q_3	a	bb
	q_3	a	abb

I		l	aabb
	q_3		aabb
	q_0	a	abb
	q_1	a	bb
a	q_1	Ъ	b
ab	q_1	Ъ	
abb	q_1	_	
ab	q_2	Ъ	
a	q_3	Ъ	
	q_3	a	b
	q_3		ab
	q_0	a	b
	q_1	Ъ	
b	q_1		
	q_2	Ъ	
	q_3		
	q_0		

הגדרה 1.4 גרירה בצעד אחד

M מכונת טיורינג, ותהיינה c_1 ו- מכונת של מכונת של $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ נסמן

$$c_1 \vdash_M c_2$$

. בצעד בודד. c_2 לורר את c_2 אם כשנמצאים ב- c_1 עוברים ל- בצעד בודד.

דוגמה 1.12 (המשך של דוגמה 1.6)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.6 רק עם סימנוים שונים למצבים) מתקיים

$$\checkmark q_0 a \checkmark a \vdash_M \checkmark \checkmark q_1 \checkmark a$$

הגדרה 1.5 גרירה בכללי

M של קונפיגורציות ותהיינה c_2 ו- היינה מכונת טיורינג, מכונת $M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc},\mathrm{rej})$ נסמן

$$c_1 \vdash_M^* c_2$$

. אם יותר אעדים בית היותר מ- בי c_1 ל- בית אם ניתן אם ניתן אם (c_2 או אם גורר געדים)

דוגמה 1.13 (המשך של דוגמה 1.6)

במכונת טיורינג שמתואר בתרשים דמטה (אשר שווה למ"ט בדוגמה 1.6 רק עם סימנוים שונים למצבים) מתקיים

 $\vdash_M \checkmark \checkmark \checkmark q_4 a$.

$$\sqrt{q_0}a\sqrt{a}$$
 \vdash_M^* $\sqrt{\sqrt{q_4}a}$
$$\sqrt{q_0}a\sqrt{a} \vdash_M\sqrt{\sqrt{q_1}a}$$

$$\vdash_M\sqrt{\sqrt{\sqrt{q_1}a}}$$

$$\vdash_M\sqrt{\sqrt{\sqrt{q_2}a}}$$

הגדרה 1.6 קבלה ודחייה של מחרוזת

תהי

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \operatorname{acc}, \operatorname{rej})$$

מכונת טיורינג, ו-

$$w \in \Sigma^*$$

מחרוזת. אומרים כי

מקבלת את w אם M

 $q_0w \vdash_M^* u \ \mathrm{acc}\,\sigma\,\mathrm{v}$

עבור $\sigma \in \Gamma^*, \sigma \in \Gamma$ כלשהם,

דוחה את w אם M

 $q_0w\vdash_M^* u$ rej σ v

. כלשהם $\mathbf{v},u\in\Gamma^*,\sigma\in\Gamma$ עבור

הגדרה 1.7 הכרעה של שפה

תהי

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \operatorname{acc}, \operatorname{rej})$$

מכונת טיורינג, ו-

$$L\subseteq \Sigma^*$$

שפה. אומרים כי M מכריעה את אם לכל $w \in \Sigma^*$ מתקיים

- w את מקבלת את $M \Leftarrow w \in L$
 - w דוחה את $M \Leftarrow w \not\in L$

הגדרה 1.8 קבלה של שפה

תהי

$$M=(Q,\Sigma,\Gamma,\delta,q_0,\mathrm{acc}\,,\,\mathrm{rej})$$

מכונת טיורינג, ו-

$$L\subseteq \Sigma^*$$

שפה. אומרים כי M מקבלת את אם לכל $w \in \Sigma^*$ מתקיים

- w אז M מקבלת את $w \in L$ אם •
- w אז M לא מקבלת את $w \not\in L$ אם •

במקרה כזה נכתוב ש-

$$L(M) = L$$
.

1.3 טבלת המעברים

דוגמה 1.14

בנו מכונת טיורינג שמכריעה את השפה

$$L = \{w = \{a, b, c\}^* | \#a_w = \#b_w = \#c_w\}$$

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
q.S	σ	$q.(S \cup \{\sigma\})$	✓	R	$\sigma \notin S$
q.S	σ	q.S		R	$\sigma \in S$
$q/\{a,b,c\}$	a,b,c,\checkmark	back		L	
$q.\emptyset$		acc		R	
back	a,b,c,\checkmark	back		L	
back		$q.\emptyset$		R	

דוגמה 1.15

בנו מכונת טיורינג שמכריעה את השפה

$$\{x_1 \dots x_k \# y_1 \dots y_k \# z_1 \dots z_k \mid x_i, y_i, z_i \in \{0, \dots, 3\}, \forall i, x_i \ge z_i \ge y_i\}$$

L={X, X, # Y, Y # = = | X, 1/2, = , e {0,1,2,3} Vi X2=, 2 X;}

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
X * *	σ	$X\sigma*$	✓	R	
X * *	√	X * *	✓	R	
$X\sigma*$	$0,1,\ldots,9,\checkmark$	$X\sigma*$		R	
$X\tau *$	#	$Y\tau *$		R	
$Y\tau *$	σ	$Y\tau\sigma$		R	
$Y\tau *$	✓	$Y\tau *$		R	
$Y\tau\sigma$	$0,1,\ldots,9,\checkmark$	$Y\tau\sigma$		R	
$Y\tau_1\tau_2$	#	$Z\tau_1\tau_2$		R	
$Z\tau_1\tau_2$	✓	$Z\tau_1\tau_2$		R	
$Z\tau_1\tau_2$	σ	back	✓	L	
Z * *		acc		R	
back	$0,1,\ldots,9,\checkmark$	back		L	
back	J	X * *		R	

1.4 חישוב פונקציות

דוגמה 1.16 חיבור אונרי

בנו מכונת טיורינג אשר מקבלת את הקלט

 $1^{i}#1^{j}$

ומחזירה את פלט

 1^{i+j} .

פתרון:

דוגמה 1.17 כפל אונרי

בנו מכונת טיורינג אשר מקבלת את הקלט

 $1^{i}#1^{j}$

ומחזירה את פלט

- ullet לדוגמה, נניח שהקלט הוא 2 כפול ullet הקלט הוא 11#11.
- נרצה להבדיל בין הקלט לבין הפלט. לכן בתחילת הריצה, נתקדם ימינה עד סוף הקלט ונוסיף שם את התו \$. לאחר מכן נחזור לתחילת הקלט.
- .\$ על כל אות במילה השמאלית נעתיק את המילה הימינית לאחר סימן ה-
- לאחר מכן נשאיר רק את התווים שלאחר סימן ה \$. כלומר, נמחק את כל מה שאינו פלט.

μ	q	σ	ν
	q_0	1	1#11_
_11 # 11	q_1		_
_11 # 11	q_1	\$	_
]	q_1	_	11#11\$
J	q_2	1	1#11\$
	q_3	1	#11\$
1#	q_4	1	1\$
1 #√	q_5	1	\$

1 #√ 1\$	q_5		
1#√1\$1	q_6	_]
1#	q_6	✓	$1\$1$ $_$
1#√	q_4	1	\$1 _
1#√✓	q_5	\$	1 _
1 #√√ \$1	q_5	_]
1 #√ √\$11	q_6	_	_
1 #√	q_6	✓	\$11_
1#√√	q_4	\$	11_
1 #√	back	✓	\$11_
_	back		$1#11\$11$ _
	q_2	1	#11\$11_
	q_3	#	$11\$11$ _
#	q_4	1	$1\$11$ _
#√	q_5	1	\$11_
_# √1\$11	q_5	_	_
#√1\$111	q_6	_	_
#	q_6	\checkmark	$1\$111$ _
#√	q_4	1	\$111_
#√√	q_5	\$	111_
_# \ \ \ \$111	q_5	_]
_# \ \ \ \$1111	q_6	_	
#√	q_4	√	\$1111
#√√	q_4	\$	1111
#√	back	√\$	1111
	back	_	#11\$1111
	q_2	#	11\$1111
	q_7	1	1\$1111
	q_7	\$	1111
	acc	1	111

שיעור 2 מכונות טיורינג מרובת סרטים

(מטמ"ס) מכונת טיורינג מרובת סרטים (מטמ"ס)

מכונת טיורינג מרובת סרטים (מטמ"ס) היא הכללה של מ"ט עם סרט יחיד. ההבדל הוא שלמטמ"ס ישנו מספר סופי של סרטים, נניח

2.2 אופן העבודה של מטמ"ס

- בתחילת העבודה הקלט w כתוב בתחילת הסרט הראשון וכל שאר הסרטים ריקים. הראשים בכל סרט מצביעים על התא הראשון בסרט, והמכונה נמצאת במצב התחלתי q_0
- בכל צעד חישוב, לפי המצב הנוכחי ול- k התווים שמתחת ל- k הראשים, מחליטה המכונה לאיזה מצב בכל צעד חישוב, לפי המצב הנוכחי ול- k הראשים ולאן להזיז את הראש בכל אחד מ-k סרטים.

2.3 תיאור פורמלי של מטמ"ס

הגדרה 2.1 מכונט טיורינג מרובת סרטים

מכונת טיורינג מרובת סרטים היא שביעייה:

$$M = (Q, \Sigma, \Gamma, \delta_k, q_0, q_{\mathrm{acc}}, q_{\mathrm{rej}})$$

,(1.2 מוגדרים (ראו הגדרה עם מ"ט מי"ט מוגדרים מוגדרים $q_{
m rej},q_{
m acc}$, q_0 , Γ , Σ ,Q

$$\delta_k: (Q \backslash \{q_{\mathrm{acc}}, q_{\mathrm{rej}}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

דוגמה 2.1

$$\delta_k(q,(1,1,0)) = (p,(0,1,1),(R,R,L))$$
.

2.4 קונפיגורציה של מטמ"ס

:הכללה של קונפיגורציה של מ"ט עם סרט יחיד

$$(u_1q v_1, u_2q v_2, \ldots, u_kq v_k)$$

דוגמה 2.2

בנו מטמ"ס שמכריעה את השפה:

$$L_{w^R} = \{ w = \{a, b\}^* \mid w = w^R . \}$$

כלומר שפת הפלינדרומים.

פתרון:

נבנה מ"ט עם שני סרטים:

תאור המכונה:

 L_{w^R} נסמן M_L המכונה שמכריעה את השפה

$$:w$$
 על הקלט $=M_L$

2 מעתיקה את w לסרט (1)

- w -בסרט w לתו האחרון ב- עו ואת הראש בסרט w לתו האחרון ב- עו מזיזה את הראש בסרט w
 - (3) משווה בין התווים שמתחת לראשים:
 - .acc $\leftarrow M_L$ אם התו שמתחת לראש בסרט 1 הוא •

- .rej $\leftarrow M_L$ אם התווים שמתחת לראשים שונים אז ullet
- .(3) אחרת מזיזה את הראש בסרט 1 ימינה ואת הראש בסרט 2 שמאלה, וחוזרת לשלב \bullet

היא: M_L המעברים של

$$\delta(q_0, (a, _)) = (q_0, (a, a), (R, R)) ,$$

$$\delta(q_0, (b, _)) = (q_0, (b, b), (R, R)) ,$$

$$\delta(q_0, (_, _)) = (q_{\text{back}}, (_, _), (L, L)) .$$

. נשים לב כי הסיבוכיות זמן של המכונה דו-סרטי היא O(|w|), כאשר w האורך של המילה.

 $.L_{W^R}$ כעת נבנה מ"ט עם סרט יחיד שמכריעה את כעת כעת נבנה

תאור המכונה:

 L_{w^R} המכונה עם סרט יחיד שמכריעה את נסמן מסמן M_L^\prime

:w על הקלט $=M_L'$

- $\mathrm{acc} \leftarrow M_L'$ אם התו שמתחת לראש הוא (1)
- X זוכרת את התו שמתחת לראש ומוחקת אותו ע"י (2)
- $_{-}$ מזיזה את הראש ימינה עד התו הראשון משמאול ל-
 - .acc $\leftarrow M_L'$ אז אז התו שמתחת לראש הוא
 - .rej $\leftarrow M_L'$ אם התו שונה מהתו שזכרנו אי •
- חוזרת את התו שמתחת לראש ע"י $_-$, מזיזה את הראש שמאולה עד התו הראשון מימין ל- $_-$ וחוזרת לשלב (1).