Numerical solutions for Lorenz equations

Shreyes Madgaonkar

October 19, 2020

For a point near P_1

Following are the plots when initial point is $I_0 \equiv (0.5, 0.5, 0.5)$ and $\sigma = 10, \beta = 2.667$. Here, $P_1 \equiv (0, 0, 0)$ And,

- $\rho = 0.7 < 1$
- $\rho = 1.5 > 1$
- $\bullet \ \rho = 1$

For a point near P_2

Following are the plots when initial point is $I_0 \equiv (13, 13, 42)$ and $\sigma = 10, \beta = 5$. Here $P_2 \equiv (14.83, 14.83, 44)$ and $\rho_0 = 45$ And,

- $\rho = 35 < \rho_0$
- $\rho = 49 > \rho_0$
- $\rho = 45 = \rho_0$

For a point near P_3

Following are the plots when initial point is $I_0 \equiv (-15, -15, 45)$ and $\sigma = 10, \beta = 5$. Here $P_2 \equiv (-14.83, -14.83, 44)$ and $\rho_0 = 45$ And,

- $\rho = 32 < \rho_0$
- $\rho = 47 > \rho_0$
- $\rho = 45 = \rho_0$

For
$$\sigma = 10, \beta = 8/3, \rho = 28$$

Following are the plots when initial point is $I_0 \equiv (2, 2, 5)$ and $\sigma = 10, \beta = 8/3, \rho = 28$.

