Package 'mand'

September 13, 2023

Type Package

Title Multivariate Analysis for Neuroimaging Data

Version 2.0									
Date 2023-09-14									
Maintainer Atsushi Kawaguchi <kawa_a24@yahoo.co.jp></kawa_a24@yahoo.co.jp>									
Depends R ($>= 3.5$), msma									
Imports oro.nifti, oro.dicom, imager, caret									
Description Several functions can be used to analyze neuroimaging data using multivariate methods based on the 'msma' package. The functions used in the book entitled ``Multivariate Analysis for Neuroimaging Data" (2021, ISBN-13: 978-0367255329) are contained.									
License GPL (>= 2)									
Suggests knitr, rmarkdown									
VignetteBuilder knitr									
RoxygenNote 7.2.3									
NeedsCompilation no									
Author Atsushi Kawaguchi [aut, cre]									
Repository CRAN									
Date/Publication 2023-09-12 22:10:06 UTC									
R topics documented:									
mand-package									
atlas									
atlastable									
baseing									
basisprod									
diffing									
exbrain									
imgdatamat									

2 atlas

	mask														 				9
	multicoat														 				9
	multicompplot														 				10
	multirec														 				11
	ptest														 				12
	rbfunc														 				13
	rec																		
	sdevimg														 				15
	simbrain																		
	sizechange														 				17
	template																		17
Index																			18

mand-package

Multivariate Analysis for Neuroimaging Data Package

Description

A Package for implementation of multivariate data analysis for neuroimaging data.

Author(s)

Atsushi Kawaguchi. <kawa_a24@yahoo.co.jp>

References

Kawaguchi, A. (2021). Multivariate Analysis for Neuroimaging Data. CRC Press.

atlas

Atlas set

Description

The data is the atlas image data. An image whose element is "ROIid" is stored for each atlas.

Usage

data(atlas)

Format

A list of array

atlasdatasets 3

|--|--|--|

Description

The data is the atlas data. Various atlases are stored. Each matrix has "ROIid" and "ROIname" as column names.

Usage

```
data(atlasdatasets)
```

Format

A list of matrix

atlastable

Result report with atlas data

Description

This function refers to the results obtained by the analysis in an atlas image, and reports a summary of the results for each anatomical region.

Usage

```
atlastable(x, y, atlasdataset = NULL, ROIids = NULL, ...)
## S3 method for class 'atlastable'
print(x, ...)
```

Arguments

```
x an array for the atlas image.
y an array for the result image.
atlasdataset a matrix or data.frame. The colnames should include "ROIid" and "ROIname".
ROIids a vector indicating ROI id shown in the result.
... further arguments passed to or from other methods.
```

Details

atlastable requires the atlas image and data frame including the ROI id and the name.

4 basisprod

Examples

```
data(diffimg)
data(atlasdatasets)
data(atlas)
atlasname = "aal3"
atlasdataset = atlasdatasets[[atlasname]]
tmpatlas = atlas[[atlasname]]
atlastable(tmpatlas, diffimg, atlasdataset=atlasdataset, ROIids = c(1:2, 41:44))
```

baseimg

Base Brain Data

Description

The data is the base brain data. This is an average image of a healthy person, and is used when generating artificial data.

Usage

data(baseimg)

Format

A array

basisprod

Product Radial Basis Function

Description

This is a function to product the output for the rbfunc function with data matrix for a dimension reduction.

Usage

```
basisprod(A, B)
```

Arguments

A a list or a matrix correponding to the output for the rbfunc function with the argument hispec=FALSE or data matrix, respectivey.

B a list or a matrix.

Details

basisprod requires one list and one matrix.

coat 5

Examples

```
imagedim1=c(10,10,10)

B1 = rbfunc(imagedim=imagedim1, seppix=4, hispec=TRUE)
B2 = rbfunc(imagedim=imagedim1, seppix=4, hispec=FALSE)

n = 50
S = matrix(rnorm(n*prod(imagedim1)), nrow = n, ncol = prod(imagedim1))

SB1 = S %*% B1
SB12 = tcrossprod(S, t(B1))
all(SB1-SB12 == 0)

SB2 = basisprod(S, B2)
all(SB1-SB2 == 0)

BS1 = t(B1) %*% t(S)
BS2 = basisprod(B2, S)
all(BS1-t(BS2) == 0)
```

coat

Coat Function

Description

This is a function for plotting an image. The analysis result can be overcoated on the template.

Usage

```
coat(
 y = NULL,
 pseq = NULL,
 xyz = NULL,
  col.x = gray(0:64/64),
  col.y = NULL,
  breaks.y = NULL,
  zlim.x = NULL,
  zlim.y = NULL,
  rownum = 5,
  colnum = NULL,
  plane = c("axial", "coronal", "sagittal", "all")[1],
  xlab = "",
 ylab = "",
  axes = FALSE,
  oma = rep(0, 4),
```

6 coat

```
mar = rep(0, 4),
bg = "black",
paron = TRUE,
cross.hair = FALSE,
chxy = NULL,
color.bar = TRUE,
regionplot = FALSE,
atlasdataset = NULL,
regionname = c("atlas", "stat")[1],
regionlegend = FALSE,
atlasname = "",
ROIids = 1:9,
...
)
```

Arguments

```
Х
                   image1. Base image.
                   image2 to be overcoated.
У
                   a vector plot sequence.
pseq
                   a vector position to be plotted.
xyz
col.x
                   a color vector for image1.
                   a color vector for image2.
col.y
breaks.y
                   a vector breaks value for y.
zlim.x
                   a vector plot limitation values for z of x.
                   a vector plot limitation values for z of y.
zlim.y
rownum
                   a numeric, the number of row for the plot.
colnum
                   a numeric, the number of colnum for the plot.
plane
                   a vector plot sequence.
xlab
                   a character for a label in the x axis.
ylab
                   a character for a label in the y axis.
axes
                   a logical. TRUE presents the axes.
                   a vector for outer margin area.
oma
                   a vector for margin.
mar
bg
                   a character for color of background.
                   a logical. TRUE means par is used.
paron
cross.hair
                   a logical.
                   a vector cross hair position to be plotted.
chxy
color.bar
                   a logical.
regionplot
                   a logical.
atlasdataset
                   a matrix or data.frame. colnames shold include "ROIid" and "ROIname".
```

diffing 7

```
regionname a character.
regionlegend a logical.
atlasname a character.
ROIids a vector
```

... further arguments passed to or from other methods.

Details

coat requires a image array.

Examples

```
data(exbrain)
coat(exbrain)
```

diffimg

Difference Brain Data

Description

The data is the difference brain data. This represents the difference between the average images of healthy subjects and patients with Alzheimer's disease, and is used when generating artificial data.

Usage

```
data(diffimg)
```

Format

A array

exbrain

Example Brain Data

Description

The data are from a MRI gray matter brain data for one subject.

Usage

data(exbrain)

Format

A array

8 imgdatamat

imgdatamat

Creat Data Matrix Function

Description

This is a function that creates a data matrix for analysis from a file saved in image format.

Usage

```
imgdatamat(
  imgfnames,
  mask = NULL,
  ROI = FALSE,
  atlas = NULL,
  atlasdataset = NULL,
  ROIids = NULL,
  zeromask = FALSE,
  schange = FALSE,
  ...
)
```

Arguments

imgfnames a vector for (nifti) file names to be used.

mask a vector for brain mask data.

ROI a logical for roi data set.

atlas an array for the atlas.

atlasdataset a matrix or data.frame. colnames shold include "ROIid" and "ROIname".

ROIids a vector

zeromask a logical for masking voxel with all zeros.

schange a logical for change dimension.

further arguments passed to or from other methods.

Details

imgdatamat requires image file names.

Value

S data matrix

brainpos binary brain position.

imagedim three dimensional vector for image dimension

mask 9

Examples

```
# imgfnames1 = c("img1.nii", "img2.nii")
# imgdata = imgdatamat(imgfnames1)
```

mask

Brain Mask

Description

The data is the brain mask. This is used to exclude extra-brain regions from the analysis.

Usage

```
data(mask)
```

Format

A array

multicoat

Multi Coat Function

Description

This is a function for plotting an image. The analysis result can be overcoated on the template.

Usage

```
multicoat(imgs, y = NULL, row4imp = 6, col4imp = 1, trm = NULL, ...)
```

Arguments

imgs	list of images. Base images.
У	image2 to be overcoated.
row4imp	the number of rows per a image
col4imp	the number of columns per a image
trm	the index to trim the top and bottom of the slice
	further arguments passed to or from other methods.

Details

multicoat requires a image array.

10 multicompplot

Examples

```
data(exbrain)
```

multicompplot

Multi components plot

Description

This is a function that plots the vectorized image returned to its original dimensions by the multirec function.

Usage

```
multicompplot(
  object,
  x,
  comps = NULL,
  row4comp = 6,
  col4comp = 1,
  pseq4comp = NULL,
  ...
)
```

Arguments

```
an object of class "multirec." Usually, a result of a call to multirec

x template image

comps a component sequence to be plotted.

row4comp the number of rows per a component

col4comp the number of columns per a component

pseq4comp the number of images per a component

further arguments passed to or from other methods.
```

Details

multicompplot requires the output result of msma function.

multirec 11

Examples

```
data(baseimg)
data(diffimg)
data(mask)
data(template)
img1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbfunc(imagedim=img1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
ws = multirec(fit111, imagedim=img1$imagedim, B=B1, mask=img1$brainpos)
multicompplot(ws, template)
```

multirec

Multi components reconstruction

Description

This is a function that returns the weight vector of multiple components obtained by the msma function applied after dimension reduction by the radial basis function to the same dimension as the original image.

Usage

```
multirec(
  object,
  imagedim,
  B = NULL,
  mask = NULL,
  midx = 1,
  comps = NULL,
  XY = c("X", "Y", "XY")[1],
  signflip = FALSE
)
```

Arguments

```
object
                   an object of class msma. Usually, a result of a call to msma
imagedim
                   a vector for original dimension.
                   a list or a matrix.
                   a list or a matrix.
mask
midx
                   a block number.
                   a component sequence to be plotted.
comps
                   a character, indicating "X" or "Y". "XY" for the scatter plots using X and Y
XΥ
                   scores from msma.
signflip
                   a logical if the sign in the block is flipped to pose the super as possitive.
```

12 ptest

Details

multirec requires the output result of msma function.

Examples

```
data(baseimg)
data(diffimg)
data(mask)
img1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbfunc(imagedim=img1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
ws = multirec(fit111, imagedim=img1$imagedim, B=B1, mask=img1$brainpos)
```

ptest

Prediction Model Function

Description

This is the function that creates and evaluates the predictive model.

Usage

```
ptest(
  object,
Z = Z,
newdata = NULL,
testZ = NULL,
regmethod = "glm",
methods1 = c("boot", "boot632", "cv", "repeatedcv", "LOOCV", "LGOCV")[4],
metric = "ROC",
number1 = 10,
repeats1 = 5,
params = NULL
)
```

Arguments

object a matrix indicating the explanatory variable(s), or an object of class msma, which is a result of a call to msma.

Z a vector, response variable(s) for the construction of the prediction model. The length of Z is the number of subjects for the training.

newdata a matrix for the prediction.

testZ a vector, response variable(s) for the prediction evaluation. The length of testZ is the number of subjects for the validation.

rbfunc 13

regmethod a character for the name of the prediction model. This corresponds to the method argument of the train function in the caret package.

a character for the name of the evaluation method.

metric a character for the name of summary metric to select the optimal model.

number1 a number of folds or number of resampling iterations repeats1 a number of repeats for the repeated cross-validation

params a data frame with possible tuning values.

Details

methods1

ptest requires the output result of msma function.

Value

object an object of class "msma", usually, a result of a call to msma

trainout a predictive model output from the train function in the caret package with scores

computed by the msma function as predictors

scorecvroc the training evaluation measure and values of the tuning parameters evalmeasure evaluation measures and information criterion for the msma model

traincnfmat a confusion matrix in training data predcnfmat a confusion matrix in test data

Examples

```
data(baseimg)
data(diffimg)
data(mask)
data(template)
img1 = simbrain(baseimg = baseimg, diffimg = diffimg, mask=mask)
B1 = rbfunc(imagedim=img1$imagedim, seppix=2, hispec=FALSE, mask=img1$brainpos)
SB1 = basisprod(img1$S, B1)
fit111 = msma(SB1, comp=2)
predmodel = ptest(fit111, Z=img1$Z)
```

rbfunc Radial Basis Function

Description

This makes a radial basis function.

14 rec

Usage

```
rbfunc(imagedim, seppix, hispec = FALSE, mask = NULL, brainpos = NULL)
```

Arguments

imagedim a vector indicating image three dimension.

seppix a numeric. distance between knots.

hispec a logical. TRUE produces a matrix output. FALSE produces a list output to

reduce the data memorry.

mask a vector.

brainpos a logical vector.

Details

rbfunc requires the dimensions of the original image to be applied and the knot interval. The output is obtained as a matrix, with the number of rows corresponding to the number of voxels in the original image and the number of columns determined by the knot spacing. By setting hispec = TRUE, you can get the output in list format with a smaller memory.

Examples

```
imagedim1=c(10,10,10)
B1 = rbfunc(imagedim=imagedim1, seppix=4, hispec=TRUE)
B2 = rbfunc(imagedim=imagedim1, seppix=4, hispec=FALSE)
```

rec Reconstruction

Description

This is a function that restores the vectorized image to its original dimensions, reduced in dimension by the radial basis function.

Usage

```
rec(Q, imagedim, B = NULL, mask = NULL)
```

Arguments

Q a vector for reduced data.

imagedim a vector for original dimension.

B a list or a matrix indicating the basis function used in the dimension reduction.

mask a list or a matrix indicating the mask image used in the dimension reduction.

sdevimg 15

Details

rec requires a vector to be converted to a array.

Examples

```
imagedim1=c(10,10,10)
recvec = rec(rnorm(prod(imagedim1)), imagedim1)
```

sdevimg

Standard Deviation Brain Data

Description

The data is the standard deviation brain data. This represents the common standard deviation between the average images of healthy subjects and patients with Alzheimer's disease, and is used when generating artificial data.

Usage

```
data(sdevimg)
```

Format

A array

simbrain

Generate simulation data Function

Description

This is a function for simulation data based on the real base brain image data and difference in brain between healty and disease groups.

Usage

```
simbrain(
  baseimg,
  diffimg,
  sdevimg = NULL,
  mask = NULL,
  n0 = 10,
  c1 = 0.5,
  sd1 = 0.01,
  rho = NULL,
```

16 simbrain

```
zeromask = FALSE,
  reduce = c("no", "rd1", "rd2")[1],
  output = c("rdata", "nifti")[1],
  seed = 1
)
```

Arguments

baseimg

diffing an array for the difference image.

sdeving an array for the standard deviation image.

mask an array for the mask image.

n0 a numeric, which is a sample size per group.

c1 a numeric, the strength of the difference

sd1 a numeric, standard deviation for the individual variation.

rho a numeric, correlation coefficient in the noize

an array for the basis image.

zeromask a logical, whether mask the position with zero values for all subjects.

reduce a vector.
output a vector.

seed a numeric for seed for random variables.

Details

simbrain requires a base brain image data and mean difference image data.

Value

S data matrix

Z binary group variable brainpos binary brain position.

imagedim three dimensional vector for image dimension

Examples

```
data(baseimg)
data(diffimg)
sim1 = simbrain(baseimg = baseimg, diffimg = diffimg)
```

sizechange 17

sizechange

Size change Function

Description

TThis is a function that changes the resolution of the image.

Usage

```
sizechange(img1, simscale = NULL, refsize = NULL, ...)
```

Arguments

img1 a array or nifti class, which is a image data to be changed the size.

simscale a numeric.

refsize a vector with length 3, which is a size to be changed.
... further arguments passed to or from other methods.

Details

sizechange requires the array data.

Examples

```
data(exbrain)
exbrain2 = sizechange(exbrain, simscale=1/2)
```

template

Brain Template

Description

The data is the brain tempalte. This is an average brain image, and is mainly used for overlaying analysis results.

Usage

```
data(template)
```

Format

A array

Index

```
* datasets
                                                    simbrain, 15
    atlas, 2
                                                    sizechange, 17
    template, 17
    baseimg, 4
    diffimg, 7
    exbrain, 7
    mask, 9
    sdevimg, 15
    template, 17
* documentation
    mand-package, 2
* print
    atlastable, 3
atlas, 2
atlastable, 3
baseimg, 4
basisprod, 4
coat, 5
diffimg, 7
exbrain, 7
imgdatamat, 8
{\sf mand-package}, \textcolor{red}{2}
mask, 9
\quad \text{multicoat}, \textcolor{red}{9}
multicompplot, 10
multirec, 11
\verb|print.atlastable| (atlastable), 3
ptest, 12
rbfunc, 13
rec, 14
sdevimg, 15
```