Remote Work On Mental Health

By Robert Solomon

Supervised By Dr. Vinayak Deshpande

Introduction

Research Topic: Investigating the Impact of Remote Work on Mental Health using Data Science Approaches.

The shift to remote work has been accelerated due to global events like COVID-19.

This project aims to explore both qualitative and quantitative data to understand the mental health implications.

Research Questions

1. How does remote work influence mental health indicators such as stress, isolation, and burnout?

2. Is there a statistically significant correlation between remote work and reported anxiety levels?

3. Can a predictive model be built to assess risk factors of poor mental health outcomes in remote settings?

Methodology

Primary data collection using online surveys distributed to remote/hybrid and onsite workers.

Secondary dataset sourced from publicly available mental health research databases. (Kaggle) Statistical tools and techniques used: correlation analysis, regression modeling, and ANOVA testing.

Data Preprocessing & Analysis

Data Cleaning:
Removed
missing/null
entries,
standardized
responses.

Used Python libraries (Pandas, NumPy) for preprocessing.

Correlation,
Heatmaps,
Histograms
and Boxplots
were used for
EDA.

Linear
Regression &
ANOVA applied
to test
hypothesis.

Data Preprocessing & Analysis for Primary Data

Snapshot of Primary Dataset (Survey)
 highlighting incomplete survey responses
 (missing data shown in green).

Data Preprocessing & Analysis for Secondary Data

- Secondary dataset sourced from publicly available mental health records
- Outlier detection applied across numeric variables
 - Notable outliers in:
 - Age
 - · Years of experience
 - Virtual meetings per week
 - · Hours worked per week
- Preprocessed for ANOVA & regression modeling

Primary & Secondary Analysis & Findings

Key findings from primary data

Key findings from secondary data

Secondary Analysis & Findings

Key findings showed a moderate negative correlation between number of hours worked remotely and social connectedness.

Regression indicated that age and workload were significant predictors of mental health score.

Key Findings - Secondary Data

Strong positive link between work stress and weekly hours ($r \approx 0.92$)

→ Long hours likely drive higher stress levels

Negative correlation between stress and mental health service access

→Better access = lower stress

Weak/no clear correlation between stress and age, gender, or experience

Key Findings - Primary Data

Work-Life Balance vs. Stress Level

→ Moderate negative correlation (r = -0.55)→ Better balance = lower stress

Social Isolation also negatively linked to stress

→ Frequent isolation = higher stress

Employer Support showed weak to moderate negative correlation with stress

→ Support may help reduce stress

Stress Score strongly correlated with Stress Level (r = 0.88)

→ Confirms stress score as a valid measure

Model Comparisons for Secondary Dataset

	Model	Score_Type	Score_Value
0	OLS Regression	R-squared	0.0060
1	Binary Logistic Regression	Pseudo R-squared	0.0001
2	Decision Tree	Accuracy	0.5860
3	Random Forest	Accuracy	0.6250

Figure 6 - Bar chart of Model Comparisons (Secondary Data)

Model Comparisons for Secondary Dataset

Interpretation of results

Discussion

Comparison with existing literature

Implications

Discussion -- Conclusion & Recommendations

Conclusion: Remote work presents both risks and benefits, flexibility vs. isolation.

Recommendations: Employers should foster community and encourage regular check-ins.

Self-Reflection & Challenges

Challenge: Planning and executing primary data collection required persistence and adaptability.

Data preprocessing for secondary data was timeintensive due to inconsistencies and noise.

Lessons learned: Importance of version control (used GitHub privately), and documenting all preprocessing steps clearly.

My Github: Robert-Solomon12

Future Work

 Recommendations for future research Improvements and extensions

Thank You!

CONTACT INFORMATION

Linkedin: https://www.linkedin.com/in/robertosolomon/

GITHUB: https://github.com/robert-solomon12