ZEROS DE FUNÇÃO COMPARAÇÃO ENTRE OS MÉTODOS NUMÉRICOS

Esta comparação leva em conta vários critérios entre os quais: garantia de convergência, rapidez de convergência e esforço computacional.

Os métodos da Bissecção e da Posição Falsa **têm convergência garantida** desde que a função seja contínua no intervalo [a, b] e que f (a) f (b) < 0.

Os métodos de Ponto Fixo, Newton e da Secante tem condições mais restritivas à convergência. Se as condições de convergência forem satisfeitas, os métodos de Newton e da Secante convergem mais rápido.

Com relação a rapidez de convergência, o número de iterações, medida usualmente adotada para a determinação da **rapidez de convergência** de um método. Não deve ser uma medida conclusiva sobre o tempo de execução do programa. Pois o tempo gasto na execução de uma iteração varia de método para método.

O **esforço computacional** é medido, pelo número de operações efetuadas a cada iteração, da complexidade destas operações, do número de deduções lógicas e do número de iterações.

Com relação à eficiência computacional de um método, por exemplo, o método da bissecção efetua cálculos mais simples que o método de Newton, que possui cálculos mais elaborados. No entanto, o número de iterações do método da bissecção geralmente é maior que o do método de Newton.

Caso a convergência esteja assegurada, a ordem de convergência fosse alta e os cálculos de iterações fossem simples, o método de Newton é o mais indicado, sempre que ficarem claro as condições de convergência e que o cálculo de f'(x) não seja muito trabalhoso. É um dos métodos numéricos mais eficientes e conhecidos para a solução de um problema de determinação de raiz. Nos casos em que é muito elaborado obter ou avaliar f'(x), é aconselhável usar o método da secante, uma vez que esse é o método que converge mais rapidamente, entre os outros dois métodos.

Outro detalhe é o critério de parada, pois se o objetivo for reduzir o intervalo que contém a raiz, não se deve utilizar o método da posição falsa ou falsa posição ou regula falsi, que é um método numérico usado para resolver equações lineares definidas em um intervalo [a, b], partindo do pressuposto de que haja uma solução em um subintervalo contido em [a, b], pois este pode não atingir a precisão estipulada, nem secante ou Newton, que trabalha exclusivamente com aproximações para a raiz.

Após estas considerações, concluímos que a escolha do método está diretamente relacionada com o comportamento da função no intervalo que contém a raiz, as dificuldades em calcular f' (x), critério de parada, dentre outras.

COMPARAÇÃO DOS MÉTODOS

 $Exemplo: f(x) = x \log(x) - 1, \quad \xi \in [0,1]; \quad \varepsilon = 10^{-7}$

		Dados Iniciais	\overline{X}	$f(\overline{x})$	Erro em x	k
(Bissecção	[2, 3]	2,50618441	1,2573 × 10 ⁻⁸	5,9605× 10 ⁻⁸	24
	Falsa Posição	[2, 3]	2,50618403	-9,9419 × 10 ⁻⁸	0,49381442	5
	Ponto Fixo	$x_0 = 2.5$	2,50618417	2,0489 × 10 ⁻⁸	3,8426 × 10 ⁻⁶	5
	Newton	$x_0 = 2.5$	2,50618415	4,6566 × 10 ⁻¹⁰	3,9879 × 10 ⁻⁶	2
	Secante	$x_0 = 2,3$ $x_1 = 2,7$	2,50618418	2,9337 × 10 ⁻⁸	8,0561×10 ⁻⁵	3

$$\Rightarrow g(x) = x - 1, 3(x \log x - 1)$$

a) $f(x)=x^2-x-1$,com[1,3] e $\epsilon=10^{-6}$

Métodos	Intervalo/Dados Iniciais	X	f(x)	Erro = ε	Iterações
Bisseção	[1;2.5]	2	2,38418600E-06	7,152561000E-07	20
Falsa Posição	[1;2.5]	2	-2,47900100E-06	8,548295000E-08	42
Newton	X ₀ =1	2	5,820766000E-09	5,820766000E-10	4
Secante	X ₀ =1 e X ₁ =1.2	2	-4,23024600E-08	9,798250000E-06	5

b)
$$f(x) = x^3 - x - 1$$
, com [1,2] $e \epsilon = 10^{-6}$

Métodos	Intervalo/Dados Iniciais	х	f(x)	Erro = ε	Iterações
Bisseção	[1;2]	1,324718	2,209495E-6	2,879637E-6	21
Falsa Posição	[1;2]	1,324715	-1,087390E-5	2,614434E-6	17
Newton	X ₀ =1	1,324718	1,8233E-7	1,092171E-6	7
Secante	[0;1/2]	1,324718	1,417347E-9	1,221868E-6	8