Devoir surveillé n° 08 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Indice d'un endomorphisme.

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \neq 0$, soit f un endomorphisme de E. On cherche à démontrer le résultat suivant :

$$\exists p \in [1, n], E = \operatorname{Ker} f^p \oplus \operatorname{Im} f^p.$$

- 1) Cas général:
 - a) Montrer que Ker $f^k \subset \text{Ker } f^{k+1}$ pour tout $k \in \mathbb{N}$.
 - b) En déduire que la suite $(\dim \operatorname{Ker} f^p)_{p \in \mathbb{N}}$ est convergente.
 - c) Montrer qu'il existe un plus petit entier naturel non nul k tel que Ker $f^k = \text{Ker } f^{k+1}$. On le notera p. Cet entier p est appelé l'indice de f.
 - **d)** Montrer qu'il existe une famille (x_1, \ldots, x_p) telle que pour tout $i \in [1, p]$, $x_i \in \text{Ker } f^i \setminus \text{Ker } f^{i-1}$.
 - e) Montrer que cette famille est libre.
 - f) En déduire que $p \leq n$.
 - g) Montrer par récurrence que Ker $f^k = \text{Ker } f^p$ pour tout $k \in \mathbb{N}$ tel que $k \geqslant p$.
 - **h)** En déduire que $E = \text{Ker } f^p \oplus \text{Im } f^p$.
- 2) Quelques exemples:
 - a) Calculer l'indice de f si f = 0 ou si f est un automorphisme de E.
 - b) Soit f_a l'endomorphisme de \mathbb{R}^4 défini par : $\forall (x, y, z, t) \in \mathbb{R}^4$, $f_a(x, y, z, t) = (ax+y+az, y+az+t, x+y+az, y)$, pour tout $a \in \mathbb{R}$. Déterminer pour quelles valeurs de a fa est bijective, et déterminer l'indice de f_a pour les valeurs de a pour lesquelles f_a n'est pas un automorphisme.
- 3) Contre-exemples. On ne suppose maintenant plus E de dimension finie.
 - a) Existe t-il nécessairement k tel que Im $f^{k+1} = \text{Im } f^k$?
 - b) Existe t-il nécessairement k tel que Ker $f^{k+1} = \text{Ker } f^k$?
 - c) On pose $F=\bigcap_{k\in\mathbb{N}}\operatorname{Im} f^k$ et $G=\bigcup_{k\in\mathbb{N}}\operatorname{Ker} f^k$. Montrer que F et G sont des sous-espaces vectoriels de E.
 - d) A t-on nécessairement $E = F \oplus G$ dans le cas où E est de dimension finie?
 - e) Et dans le cas où E n'est pas de dimension finie?

II. Étude d'une équation fonctionnelle.

L'objet de ce problème est de s'intéresser à résoudre dans certains cas l'équation fonctionnelle suivante:

 $f(x)-\int_0^x (x-t)f(t)\,\mathrm{d}t=g(x) \qquad (1)$ où f est une fonction inconnue supposée continue sur $\mathbb R$ et g une fonction donnée définie sur \mathbb{R} .

A- Dans cette partie on suppose que la fonction g est deux fois dérivable sur \mathbb{R} .

1) Montrer que les fonctions f solutions de (1) sont elles aussi deux fois dérivables et qu'elles vérifient :

f''(x) - f(x) = g''(x). (2)

- 2) En déduire la solution de l'équation (1) quand q est la fonction nulle, quand q est une constante, et quand g est un polynôme de degré 1.
- 3) Déduire aussi que l'équation (1) (que g soit dérivable ou non) a au plus une solution.
- 4) Montrer qu'il existe une solution f de (2) de la forme :

 $f(x) = \frac{e^x}{2} \left[\int_0^x e^{-t} g''(t) dt + k_A \right] - \frac{e^{-x}}{2} \left[\int_0^x e^t g''(t) dt + k_B \right].$

5) Montrer que si la fonction f écrite ci-dessus vérifie les relations :

f(0) = g(0) et f'(0) = g'(0),

alors f est solution de (1).

6) Expliciter la solution f de (1) quand g est la fonction exponentielle $(g(x) = e^x)$.

B- Dans cette partie on suppose que la fonction q est seulement continue. On note E l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} .

1) On définit l'application A qui à une fonction f de E associe la fonction (notée A(f)) par la relation :

 $A(f)(x) = \int_0^x (x - t)f(t) dt.$

Montrer que l'application A est une application de E dans E injective.

- 2) Montrer que A(f) est deux fois dérivable et donner l'expression de (A(f))''. Montrer également que A(f) et (A(f))' s'annulent en 0.
- 3) On désigne par A_n la n^e itérée de l'application $A:A_2(f)=A(A(f)),\ldots,A_n(f)=$ $A(A_{n-1}(f)).$

Montrer que $A_2(f): x \mapsto \int_0^x \frac{1}{3!} (x-t)^3 f(t) dt$.

- 4) Généraliser ce résultat à $A_n(f)$. Justifier votre réponse.
- 5) On pose $U_n = A + A_2 + \cdots + A_n$.

Soit $U: f \mapsto U(f)$ l'application de E dans E définie par $: U(f)(x) = \int_0^x \operatorname{sh}(x-t)f(t) dt$.

Montrer que pour tout u on a : $\left| \operatorname{sh}(u) - \sum_{k=1}^{n} \frac{u^{2k-1}}{(2k-1)!} \right| \leq \frac{\operatorname{ch}(u)|u|^{2n+1}}{(2n+1)!}$

- **6)** En déduire que pour tout réel $x : |U(f)(x) U_n(f)(x)| \le \frac{\operatorname{ch}(x)|x|^{2n+1}}{(2n+1)!} \Big| \int_0^x |f(t)| \, \mathrm{d}t \Big|.$
- 7) Montrer les égalités $U \circ A = A \circ U = U A$.
- 8) Soit $I: f \mapsto f$ l'application identité de E dans E. Montrer que les application I-A et I+U sont (pour la composition des applications) des bijections de E dans E réciproques l'une de l'autre.

En déduire la fonction de E solution de l'équation (1).

9) Expliciter f pour la fonction g paire et telle que g est définie par :

$$g(x) = \begin{cases} x \text{ pour } x \in [0, 1[\\ 2 - x \text{ pour } x \in [1, 2[\\ 0 \text{ pour } x \geqslant 2 \end{cases}.$$

— FIN —