

Nama : Muhammad Azhar Rasyad

NIM : 0110217029

Mata Kuliah : Pengolahan Citra

Tugas : Ujian Tengah Semester

Berikut adalah representasi citra berukuran 5x5 dengan rentang nilai Grayscale antara 0-9.

1	2	0	0	3
X_1	X_2	X_3	X_4	X_5
4	1	1	2	3
X_6	X_7	X_8	X_9	X_{10}
3	1	2	2	1

Terdapat 10 piksel yang masih kosong X 1 s.d. X 10 yang harus dilengkapi. Lengkapilah citra berukuran 5x5 tersebut dengan menggunakan NPM kalian masing-masing, dengan rule sebagai berikut:

Jika mahasiswa memiliki NPM: 0110217999 maka:

X_1	X_2	X 3	X 4	X 5	X_6	X 7	X_8	X 9	X10
0	1	1	0	2	1	7	9	9	9

Sehingga, citra lengkapnya menjadi:

1	2	0	0	3
0 4	1	1	0	2
4	1	1	2	3
1	7	9	9	9
3	1	2	2	1

NPM Muhammad Azhar Rasyad: 0110217029

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X ₁₀
0	1	1	0	2	1	7	0	2	9

Sehingga, citra lengkapnya menjadi:

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Soal

1. Lakukan proses Konvolusi dengan Filter sebagai berikut:

4	-2	3
1	-1	7
4	-3	5

2. Lakukan proses Template Matching untuk template berikut:

4	1
1	8

- 3. Lakukan proses Negative Image
- 4. Lakukan proses Contrast Stretching
- 5. Lakukan proses Histogram Equalization

Berikut citra yang akan digunakan dengan grayscale antara 0-9

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Berikut filter yang akan digunakan

4	-2	3
1	-1	7
4	-3	5

Langkah 1 : Mensejajarkan piksel tengah pada filter ke piksel citra yang dimulai dari atas kiri

4	-2	3			
1	1 -1	2 7	0	0	3
4	0 -3	1 5	1	0	2
	4	1	1	2	3
	1	7	0	2	9
	3	1	2	2	1

Langkah 2: Menghitung setiap piksel yang ada

0 <u>x</u> 4	0 <u>x</u> -2	0 x 3			
0 x 1	1 x -1	2 <u>x</u> 7	0	0	3
0 x 4	0 <u>x</u> -3	1 x 5	1	0	2
	4	1	1	2	3
	1	7	0	2	9
	3	1	2	2	1

$$(0*4)+(0*-2)+(0*3)+(0*1)+(1*-1)+(2*7)+(0*4)+(0*-3)+(1*5)=18$$

Langkah 3 : Masukkan hasil sebelumnya ke dalam matriks baru

18		

Langkah 4 : Menggeser piksel tengah pada filter kebagian piksel lain dari citra yang belum dihitung

0 <u>x</u> 4	0 <u>x</u> -2	0 <u>x</u> 3		
1 <u>x</u> 1	2 <u>x</u> -1	0 <u>x</u> 7	0	3
0 <u>x</u> 4	1 x -3	1 <u>x</u> 5	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

$$(0*4)+(0*-2)+(0*3)+(1*1)+(2*-1)+(0*7)+(0*4)+(1*-3)+(1*5)=1$$

Langkah 5 : Setelah mendapat hasilnya lagi maka masukkan kembali ke matriks baru sebelumnya

18	1		

Langkah 6 : Lakukan langkah 4 dan 5 hingga semua piksel terisi, namun hal tersebut membuang banyak waktu jika dikerjakan manual, oleh karena itu disini saya akan menggunakan rumus di excel, seperti berikut:

Citra yang ingin dikonvolusi dalam excel

	0	Р	Q	R	S	Т	U
1							
2		1	2	0	0	3	
3		0	1	1	0	2	
4		4	1	1	2	3	
5		1	7	0	2	9	
6		3	1	2	2	1	
7							

Filter yang akan digunakan pada citra dalam excel

	V	W	X
2	4	-2	3
3	1	-1	7
4	4	-3	5

Matriks baru untuk tempat setelah dikonvolusi dalam excel

	Р	Q	R	S	Т
8					
9					
10					
11					
12					

Rumusnya sebagai berikut:

=SUM((O1*\$V\$2)+(P1*-\$W\$2)+(Q1*\$X\$2)+(O2*\$V\$3)+(P2*\$W\$3)+(Q2*\$X\$3)+(O3*\$V\$4)+(P3*\$W\$4)+(Q3*\$X\$4))

Keterangan:

- =SUM : Operasi perhitungan dalam excel
- \$V\$2, \$V\$3, \$V\$4 : Cell filter pada kolom ke 1 dan baris 1, 2, dan 3
- \$W\$2, \$W\$3, \$W\$4 : Cell filter pada kolom ke 2 dan baris 1, 2, dan 3
- \$X\$2, \$X\$3, \$X\$4 : Cell filter pada kolom ke 3 dan baris 1, 2, dan 3
- O1, O2, O3, P1, P2, P3, Q1, Q2, Q3 : Cell-cell dinamis yang bergantung pada posisi filter, sehingga jika posisi filter berubah maka cell-cell tersebut akan berganti
- * : Operasi perkalian
- + : Operasi penjumlahan
- (): Tanda kurung agar mengerjakan suatu operasi terlebih dahulu
- \$: Symbol agar cell tidak berubah

Pada cara diatas saya cukup menggunakan 1 rumus untuk menentukan 1 piksel dan sisanya tinggal dilakukan copy paste pada cell-cell yang lainnya, sehingga hasilnya seperti berikut:

SUM	(► Numbe	r 1; Numbe	r 2;) : Νι	ımber 1, nu	mber 2,	are argume	nts whose t	otal is to be	calculated	X	Υ	Z	AA
1	`		, ,	,									
2		1	2	0	0	3		4	-2	3			
3		0	1	1	0	2		1	-1	7			
4		4	1	1	2	3		4	-3	5			
5		1	7	0	2	9							
6		3	1	2	2	1							
7													
8	=SUM	((<mark>O1*\$</mark>	<u>V\$2)+</u>										
9		*-\$ <u>W</u> \$2											
10		1*\$X\$2											
11		2*\$ <u>V</u> \$3											
12		2*\$ <u>W</u> \$3											
13		2*\$ <u>X</u> \$3											
4		3*\$ <u>V</u> \$4 3*\$ <u>W</u> \$4											
5		3*\$X\$4											
6	(4	<u>-</u> Ψ <u></u> ξξΨ	•))										

Setelah dimasukkan rumus tersebut ke 1 cell maka hasilnya akan didapat

P8		→ f _X	Σ = =	SUM((O1*\$	V\$2)+(P1*-	\$W\$2)+(Q1	*\$X\$2)+(O2	2*\$V\$3)+(P2	2*\$W\$3)+(0	2*\$X\$3)+(0	O3*\$V\$4)+(P3*\$W\$4)+	(Q3*\$X\$4))
	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA
1													
2		1	2	0	0	3		4	-2	3			
3		0	1	1	0	2		1	-1	7			
4		4	1	1	2	3		4	-3	5			
5		1	7	0	2	9							
6		3	1	2	2	1							
7													
8		18											
9													
10													
11													
12													

Untuk cell yang lain cukup dicopy dari rumus sebelumnya, kemudian paste pada cellnya maka hasilnya akan didapat

	0	P Cu	MA/s Niumb	os 1. Numb	os 21 \ \ \ \	lumbas 1 a	umbos 2	250 2501100	ants whose	total is to	be calculated.	Z	AA
1		50	M(► Numb	er i; Numb	er 2;) : r	iumber i, n	umber 2,	are argum	ents whose	total is to	be calculated.		
2		1	2	0	0	3		4	-2	3			
3		0	1	1	0	2		1	-1	7			
4		4	1	1	2	3		4	-3	5			
5		1	7	0	2	9							
6		3	1	2	2	1							
7													
8		18	1	3	35	-9							
9		8	32	19	37	3							
10		38	-2	58	69	-16							
11		55	34	41	85	12							
12	=	SUM((S								*\$ <u>W</u> \$3)+		
3			(U6*\$	X\$3)+(S7*\$ <u>V</u> \$	(54)+(T7)	*\$ <u>W</u> \$4))+(<mark>U7</mark> *	\$ <u>X</u> \$4))				

Sehingga matriks barunya seperti berikut:

18	1	3	35	-9
8	32	19	37	3
38	-2	58	69	-16
55	34	41	85	12
27	34	47	38	27

Langkah 7 : Karena konvolusi ini memiliki grayscale antara 0-9 maka nilai yang dibawah 0 diubah menjadi 0 dan nilai yang diatas 9 diubah menjadi 9

Matriks baru sebelum menyesuaikan dengan grayscale

18	1	3	35	-9
8	32	19	37	3
38	-2	58	69	-16
55	34	41	85	12
27	34	47	38	27

Matriks baru setelah disesuaikan dengan grayscale 0-9, hasil akhir

9	1	3	9	0
8	9	9	9	3
9	0	9	9	0
9	9	9	9	9
9	9	9	9	9

Berikut citra yang akan digunakan

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Berikut template yang akan digunakan

4	1
1	8

Langkah 1 : Sejajarkan template ke citra dimulai dari posisi atas kiri untuk mempermudah

1 4	2 1	0	0	3
0 1	18	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Langkah 2 : Setelah dijajarkan, citra tersebut tidak perlu dioperasi matematika melainkan hanya dikorelasikan citra dengan template saja

1 = 4	2 = 1	0	0	3
0 = 1	1 = 8	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Langkah 3 : Jika antara template dan citra yang disejajarkan terdapat nilai yang sama, maka setiap nilai yang sama hasil korelasi ditambah 1 dan jika tidak ditambah 0

Pada posisi berikut tidak ada nilai yang sama diantara keduanya sehingga hasil korelasinya 0

1 = 4	2 = 1	0	0	3
0 = 1	1 = 8	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Hasilnya =>

0		

Langkah 4 : Geser posisi template ke kanan 1 piksel dan korelasikan kembali

1	2 = 4	0 = 1	0	3	
0	1 = 1	1 = 8	0	2	
4	1	1	2	3	
1	7	0	2	9	
3	1	2	2	1	Hasilnya =>

0	1		

Langkah 5 : Lakukan kembali langkah 3 dan 4 hingga posisi template dengan piksel lainnya

Catatan ketika ada posisi template yang berada diluar citra asli maka hasil korelasinya x (undefined) meskipun ada nilai yang sama

1	2	0	0	3 = 4	'= 1'
0	1	1	0	2 = 1	'=8'
4	1	1	2	3	
1	7	0	2	9	
3	1	2	2	1	

Hasilnya =>

0	1	1	0	X.

Langkah 6 : Setelah melakukan korelasi dengan nilai citra dan template maka cari nilai terbesar supaya dimatchkan

0	1	1	0	X
1	2	1	0	X
3	1	0	0	X
0	1	0	0	X
X	X	X	X	X

Langkah 7 : Hasil akhir pada hasil korelasi nilai terbesar yaitu 3 pada posisi berikut

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Hasil Korelasi => L

0	1	1	0	X
1	2	1	0	X.
3	1	0	0	X.
0	1	0	0	X
X	X	X	X	X

Berikut citra yang akan digunakan dengan grayscale antara 0-9

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Mengubah nilai grey-level citra input dengan transformasi agar menjadi negative image, menggunakan rumus berikut:

$$s = (L-1) - r$$

Keterangan:

- s = Piksel citra baru
- L = Grayscale maksimal
- r = Piksel citra asli

Langkah 1 : Menentukan L, karena grayscale antara 0-9 maka, L = 9

Langkah 2 : Memasukkan L ke dalam rumus, maka s = (9-1) - r, sehingga s = 8 - r

Langkah 3: Menghitung setiap piksel dengan menggunakan rumus sebelumnya

8-1	8-2	8-0	8-0	8-3
8-0	8-1	8-1	8-0	8-2
8-4	8-1	8-1	8-2	8-3
8-1	8-7	8-0	8-2	8-9
8-3	8-1	8-2	8-2	8-1

Langkah 4 : Sehingga hasilnya dari negative image yaitu

7	6	8	8	5
8	7	7	8	6
4	7	7	6	5
7	1	8	6	-1
5	7	6	6	7

Langkah 5 : Jika terdapat nilai minus dari citra yang baru maka ubah menjadi grayscale minimum dan menjadi **hasil akhir**

7	6	8	8	5
8	7	7	8	6
4	7	7	6	5
7	1	8	6	0
5	7	6	6	7

Berikut citra yang akan digunakan dengan grayscale antara 0-9

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Langkah 1 : Menjabarkan grayscale dari 0-9

0 1	_		_	_		_			_	_
Grayscale	0	I	2	3	4	5	6	7	8	9

Langkah 2 : Menjabarkan kemunculan setiap pikselnya

Grayscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1

Langkah 3: Menggunakan rumus berikut

$$L = ((L_{max} - L_{min}) (M - M_{min}) / (M_{max} - M_{min})) + L_{min}$$

Keterangan:

- L = Grayscale
- M = Nilai piksel
- $L_{min} = Grayscale terkecil$
- L_{max} = Grayscale terbesar
- M_{min} = Nilai piksel terkecil
- M_{max} = Nilai piksel terbesar

Langkah 4 : Memasukkan nilai citra ke dalam rumus tersebut

- $L_{\min} = 0$
- $L_{\text{max}} = 9$
- $M_{min} = 0$
- $M_{\text{max}} = 9$
- L = ((9-0)(M-0)/(9-0)) + 0
- L = ((9) (M 0) / (9)) + 0
- L = 9 (M 0) / 9

Langkah 5 : Setelah mendapatkan rumus tersebut maka lanjutkan dengan memasukkan nilai M, dimana M dimasukkan dengan grayscale 0-9

•
$$\mathbf{M_0} = \mathbf{5}$$
, $\mathbf{L} = 9(5-0)/9 = 45/9 = \mathbf{5}$

•
$$\mathbf{M}_1 = \mathbf{8}$$
, $\mathbf{L} = 9(8-0)/9 = 72/9 = \mathbf{8}$

•
$$\mathbf{M}_2 = \mathbf{6}$$
, $\mathbf{L} = 9(6-0)/9 = 54/9 = \mathbf{6}$

•
$$\mathbf{M}_3 = \mathbf{3}$$
, $\mathbf{L} = 9(3-0)/9 = 27/9 = \mathbf{3}$

•
$$\mathbf{M}_4 = \mathbf{1}$$
, $\mathbf{L} = 9(1-0)/9 = 9/9 = \mathbf{1}$

•
$$\mathbf{M}_5 = \mathbf{0}$$
, $\mathbf{L} = 9(0-0)/9 = 0/9 = \mathbf{0}$

•
$$\mathbf{M}_6 = \mathbf{0}$$
, $\mathbf{L} = 9(0-0)/9 = 0/9 = \mathbf{0}$

•
$$\mathbf{M}_7 = \mathbf{1}$$
, $\mathbf{L} = 9(1-0)/9 = 9/9 = \mathbf{1}$

•
$$\mathbf{M_8} = \mathbf{0}$$
, $\mathbf{L} = 9(0-0)/9 = 0/9 = \mathbf{0}$

•
$$M_9 = 1$$
, $L = 9(1-0)/9 = 9/9 = 1$

Langkah 6 : Setelah mendapatkan nilai Lnya maka ditentukan kedalam hasil akhirnya

Grayscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1
Grayscale Baru										

Grayscale Baru atau L ditentukan berdasarkan kumulatif kemunculan nilai grayscale lama atau M yang sama, seperti berikut:

•
$$\mathbf{L_0} = \mathbf{M_5} + \mathbf{M_6} + \mathbf{M_8} = 0 + 0 + 0 = \mathbf{0}$$

•
$$L_1 = M_4 + M_7 + M_9 = 1 + 1 + 1 = 3$$

•
$$L_2 = 0$$

•
$$L_3 = M_3 = 3$$

•
$$L_4 = 0$$

•
$$L_5 = M_1 = 5$$

•
$$L_6 = M_2 = 6$$

•
$$L_7 = 0$$

•
$$L_8 = M_1 = 8$$

•
$$L_9 = 0$$

Sehingga hasil akhir grayscale baru seperti berikut:

Grayscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1
Grayscale Baru	0	3	0	3	0	5	6	0	8	0

Berikut citra yang akan digunakan dengan grayscale antara 0-9

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Langkah 1 : Menjabarkan grayscale dari 0-9

Greyscale	0	1	2	3	4	5	6	7	8	9

Langkah 2 : Menghitung jumlah kemunculan setiap piksel

Greyscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1

Langkah 3: Menghitung probabilitas (P) dari setiap kemunculan pikselnya

Greyscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1
Probabilitas	5/25	8/25	6/25	3/25	1/25	0/25	0/25	1/25	0/25	1/25
	0,2	0,32	0,24	0,12	0,04	0	0	0,04	0	0,04

Langkah 4 : Menghitung sk dari hasil probabilitas dengan cara kumulatif

Greyscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1
D., . b . b . 1144	5/25	8/25	6/25	3/25	1/25	0/25	0/25	1/25	0/25	1/25
Probabilitas	0,2	0,32	0,24	0,12	0,04	0	0	0,04	0	0,04
S _k	0,2	0,52	0,76	0,88	0,92	0,92	0,92	0,96	0,96	1

Langkah 5 : Mengkalikan s_k dengan derajat tertinggi grayscale yaitu 9

Greyscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1
Probabilitas	5/25	8/25	6/25	3/25	1/25	0/25	0/25	1/25	0/25	1/25
	0,2	0,32	0,24	0,12	0,04	0	0	0,04	0	0,04
S _k	0,2	0,52	0,76	0,88	0,92	0,92	0,92	0,96	0,96	1
<u>s_k</u> * 9	1,8	4,68	6,84	7,92	8,28	8,28	8,28	8,64	8,64	9

Langkah 6 : Membulatkan hasilnya ke bawah

Greyscale	0	1	2	3	4	5	6	7	8	9
Kemunculan	5	8	6	3	1	0	0	1	0	1
Probabilitas	5/25	8/25	6/25	3/25	1/25	0/25	0/25	1/25	0/25	1/25
	0,2	0,32	0,24	0,12	0,04	0	0	0,04	0	0,04
S _k	0,2	0,52	0,76	0,88	0,92	0,92	0,92	0,96	0,96	1
<u>s,</u> * 9	1,8	4,68	6,84	7,92	8,28	8,28	8,28	8,64	8,64	9
Greyscale Baru	1	4	6	7	8	8	8	8	8	9

Langkah 7 : Terakhir, mengganti setiap piksel dengan grayscale yang baru Citra sebelumnya,

1	2	0	0	3
0	1	1	0	2
4	1	1	2	3
1	7	0	2	9
3	1	2	2	1

Citra setelahnya, hasil akhir

4	6	1	1	7
1	4	4	1	6
8	4	4	6	7
4	8	1	6	9
7	4	6	6	4