

TD 8 : GRAPHES - DÉNOMBREMENTS CORRIGÉ DE QUELQUES EXERCICES

Exercice 1. Appliquer l'algorithme de Prim aux données du tableau ci-après pour trouver le coût minimal.

Exercice 2. Appliquer l'algorithme de Kruskal au graphe pondéré ci-après.

Exercice 3. Une compagnie désire installer au moindre coût un réseau de transmission de données entre son siège et 7 de ces succursales numérotées S_1 , S_2 , ..., S_7 . Le coût d'une ligne entre deux agences est donnée par le tableau suivant :

- 1. Appliquer Prim pour trouver le coût minimal du projet.
- 2. Appliquer Kruskal pour trouver le coût minimal du projet.
- 3. Comparer les deux solutions.

 Comme Kruskal nécessite de dresser une liste qui ici ne change pas le résultat en termes de coût,

 Prim sera plus rapide à appliquer. Le coût minimal du projet est de 73.

Siège S_1 S_2 S_3 S_4 S_5 S_6 5 18 17 S_2 $\overline{S_3}$ 9 11 27 $\overline{S_4}$ 7 13 23 20 S_5 7 12 15 15 15 S_6 38 38 20 40 40 3522 25 25 10 45 15 30

Table 1. Coût d'installation d'un réseau de transmission

Exercice 4. Parcours d'arbres

- 1. Calculer la valeur des expressions suivantes, avec A = 2, B = 2, C = 3, D = 4 et E=1.

 - 1.2. Prefixées : -*+ABC/DB ; *A+D-B*CD 10; -12
- 2. Dessiner l'arbre binaire représentant l'expression suivante et donnez-en une forme préfixe et une forme postfixe : (A*B-C/D+E) + (A-B-C-D*D)/(A+B+C)

Prefixe : ++-*AB/CDE/---ABC*DD+A+BCPostfixe: AB*CD/-E+AB-C-DD*-ABC++/+

Exercice 5. Résoudre les relations de récurrence suivantes :

- 1. $a_n = 5a_{n-1} 6a_{n-2}$; $a_0 = 1$ et $a_1 = 0$ Réponse : $a_n = 3 \times 2^n - 2 \times 3^n$
- 2. $a_n = a_{n-1} + a_{n-2}$; $a_0 = 0$ et $a_1 = 1$ Réponse : $a_n = (\frac{-1+\sqrt{5}}{2})^n + \frac{\sqrt{5}}{5}(\frac{1+\sqrt{5}}{2})^n$
- 3. $a_n = 2a_{n-1} 2a_{n-2}$; $a_0 = 1$ et $a_1 = 3$
- 4. $a_n = 2a_{n-1} + a_{n-2} + 6a_{n-3}$; $a_0 = 1$, $a_1 = -4$ et $a_2 = -4$
- 5. $a_n = 7a_{n-1} 16a_{n-2} + 12a_{n-3}; a_0 = 0, a_1 = 1$ et $a_2 = 2$ Réponse : $a_n = \left(2 + \frac{3n}{2}\right) \times 2^n 2 \times 3^n$

Exercice 6. Donner un ordre de grandeur asymptotique pour T(n).

1. $T(n) = 4T(n/2) + n^3$. Réponse : $O(n^3)$

- 2. $T(n) = 8T(n/2) + n^2$. Réponse : $O(n^3)$ 3. $T(n) = 2T(n/4) + n^2$.