Embedding Words and Senses Together via Joint Knowledge-Enhanced Training

Massimiliano Mancini, Jose Camacho-Collados, Ignacio Iacobacci and Roberto Navigli

Table of Contents

- 1) Introduction and Related Work
- 2) Shallow word-sense connectivity algorithm
- 3) Training
- 4) Experimental Settings
- 5) Evaluation
- 6) Conclusion

- Popularity of approaches based on neural networks which embed words into low-dimensional vector spaces from text corpora (word embeddings)
- Word embeddings in Natural Language Processing tasks:
 - Machine Translation
 - Syntactic Parsing
 - Question Answering
 - Many more
- Limitation of embeddings: the inability to discriminate among different meanings of the same word

- Previous works have tried to address this word sense disambiguation limitation by automatically identifying word senses from monolingual corpora or bilingual parallel data
- Problems with these approaches:
 - Learn solely on the basis of statistics extracted from text corpora and do not use semantic networks
 - o Identified senses are not readily interpretable or easily mappable to lexical resources

- Recent approaches utilize semantic networks to inject knowledge into existing word representations, but cannot determine the correct senses
- Other approaches leverage lexical resources to learn sense embeddings as a result of post-processing conventional word embeddings in order to obtain a representation for each sense of the word

- SW2V: Senses and Words to Vectors
 - A neural model that exploits knowledge from both text corpora and semantic networks in order to simultaneously learn embeddings for both words and senses
 - o Both word and sense embeddings are represented in the same vector space
 - Flexible, so can be applied to different predictive models
 - Scalable for very large semantic networks and text corpora

- Embedding words from large corpora into a low-dimensional vector space has been a popular task
 - Probabilistic feed-forward neural network language model
 - Word2vec
 - GloVe
- Little research has focused on exploiting lexical resources to overcome the inherent ambiguity of word embeddings

- One approach: apply an off-the-shelf disambiguation system to a corpus and then using word2vec to learn sense embeddings over the pre-disambiguated text
- Problem with this approach: words are replaced by their intended senses, consequently producing as output sense representations only
- The representation of words and senses in the same vector space is essential for applying these knowledge based sense embeddings in downstream applications, particularly for their integration into neural architectures

- WordNet: a model for obtaining both word and sense representations based on a first training step of conventional word embeddings, a second disambiguation step based on sense definitions, and a final training phase which uses the disambiguated text as input
- Building a shared space of word and sense embeddings based on two steps: a first training step of only word embeddings and a second training step to produce sense and synset embeddings
- Above approaches require multiple steps of training and make use of a relatively small resource (WordNet), which limits their coverage and applicability

- Wikipedia: increasing the coverage of the WordNet based approaches by exploiting the complementary knowledge of WordNet and Wikipedia along with pre-trained word embeddings
- A model to align vector spaces of words and entities from knowledge bases
- Limitations: these approaches are restricted to nominal instances only (Wikipedia pages or entities)
- In contrast, the authors propose a model that learns both words and sense embeddings from a single joint training phase, producing a common vector space of words and senses as an emerging feature

Table of Contents

- 1) Introduction and Related Work
- 2) Shallow word-sense connectivity algorithm
- 3) Training
- 4) Experimental Settings
- 5) Evaluation
- 6) Conclusion

Shallow Word-Sense Connectivity Algorithm

- SW2V needs a corpus where words are connected to senses in each given context
- Options: manually annotating corpora
 - Expensive, therefore impractical in normal settings
- Data from current off-the-shelf disambiguation and entity linking systems
 - o Supervised systems need large amounts of sense-annotated data
 - Slow speed- hampers progress when applied to large corpora
- Shallow word-sense connectivity algorithm
 - Can be applied to virtually any given network
 - Exploit the connects of a semantic network by associating words with the senses that are most connected within the sentence, according to the underlying network

Shallow Word-Sense Connectivity Algorithm

- A corpus and a semantic network are taken as input and a set of connected words and sense is produced as output
- Semantic network: a graph (S, E)
 - The set S contains synsets (nodes)
 - E represents a set of semantically connected synset pairs (edges)

Shallow Word-Sense Connectivity Algorithm

Algorithm 1 Shallow word-sense connectivity

Input: Semantic network (S, E) and text T represented as a bag of words

- **Output:** Set of connected words and senses $T^* \subset T \times S$ 1: Set of synsets $S_T \leftarrow \emptyset$

 - 2: for each word $w \in T$
- $S_T \leftarrow S_T \cup S_w$ (S_w : set of candidate synsets of w)
- 4: Minimum connections threshold $\theta \leftarrow \frac{|S_T| + |T|}{2\delta}$
- 5: Output set of connections $T^* \leftarrow \emptyset$
- 6: for each $w \in T$ Relative maximum connections max = 0
- Set of senses associated with $w, C_w \leftarrow \emptyset$
- 9: for each candidate synset $s \in S_w$
- Number of edges $n = |s' \in S_T : (s, s') \in E$ & 10: $\exists w' \in T : w' \neq w \& s' \in S_{w'}$
- if $n > max \& n > \theta$ then 11:
- if n > max then 12:
- 13: $C_w \leftarrow \{(w,s)\}$
- 14: $max \leftarrow n$
- 15: else $C_w \leftarrow C_w \cup \{(w,s)\}$ 16:
 - $T^* \leftarrow T^* \cup C_w$
- 18: **return** Output set of connected words and senses T^*

Table of Contents

- 1) Introduction and Related Work
- 2) Shallow word-sense connectivity algorithm
- 3) Training
- 4) Experimental Settings
- 5) Evaluation
- 6) Conclusion

- Goal: shared vector space for words and senses
- Extended CBOW architecture

- Goal: shared vector space of words and senses
- Extended CBOW architecture
 - Other predictive frameworks would work as well
- Why does this make sense?
 - Intrinsic relationship between words and senses
 - Updating representation of one consequently produces update of the other

Formal architecture:

Training instance:
$$\begin{bmatrix} W^{t} = w_{t-n}, \dots, w_{r}, \dots, w_{t+n} \\ S^{t} = S_{t-n}, \dots, S_{r}, \dots, S_{t+n} \end{bmatrix}$$
Sequence of associated senses in context of w_{i}

Loss function:

$$E = -log(p(w_t|W^t,S^t)) - \sum_{s \in S_t} log(p(s|W^t,S^t))$$

Table of Contents

- 1) Introduction and Related Work
- 2) Shallow word-sense connectivity algorithm
- 3) Training
- 4) Experimental Settings
- 5) Evaluation
- 6) Conclusion

Determining ideal settings for evaluation

- Determining ideal settings for training / testing
 - CBOW: dimensionality = 300, window size = 8, hierarchical softmax
 - Corpus: UMBC WebBase corpus of 3B-words with English paragraphs
 - Semantic network: BabelNet 3.0, integrating Wikipedia and WordNet

- Determining ideal settings for training / testing
 - CBOW: dimensionality = 300, window size = 8, hierarchical softmax
 - Corpus: UMBC WebBase corpus of 300M-words with English paragraphs
 - Semantic network: BabelNet 3.0, integrating Wikipedia and WordNet
 - Training task: word similarity:
 - WordSim-353
 RG-65
 Contain word pairs manually annotated with similarity scores
 - Closest senses strategy for similarity scores:

$$sim(w_1,w_2) = max_{s_1 \in S_{w_1}, s_2 \in S_{w_2}} cos(\overrightarrow{s_1},\overrightarrow{s_2})$$

=> distance between two words is the maximum similarity between two of their senses

							Out	tput					
		Words					Senses Both						
		WS-Sim RG-65		WS-	S-Sim RG-65		WS-	WS-Sim		RG-65			
		r	ρ	r	ρ	r	ρ	r	ρ	r	ρ	r	ρ
n	Words	0.49	0.48	0.65	0.66	0.56	0.56	0.67	0.67	0.54	0.53	0.66	0.65
0	Senses	0.69	0.69	0.70	0.71	0.69	0.70	0.70	0.74	0.72	0.71	0.71	0.74
H	Both	0.60	0.65	0.67	0.70	0.62	0.65	0.66	0.67	0.65	0.71	0.68	0.70

Table 1: Pearson (r) and Spearman (ρ) correlation performance of the nine configurations of SW2V

	9						Out	tput					
		Words				- 100	Ser	ises		Both			
	3	WS-Sim RG-65		WS-	Sim	RG			G-65				
		r	ρ	r	ρ	r	ρ	r	ρ	r	ρ	r	ρ
=	Words	0.49	0.48	0.65	0.66	0.56	0.56	0.67	0.67	0.54	0.53	0.66	0.65
nduj	Senses	0.69	0.69	0.70	0.71	0.69	0.70	0.70	0.74	0.72	0.71	0.71	0.74
Ξ	Both	0.60	0.65	0.67	0.70	0.62	0.65	0.66	0.67	0.65	0.71	0.68	0.70

Table 1: Pearson (r) and Spearman (ρ) correlation performance of the nine configurations of SW2V

- Determining ideal settings for training / testing
- Testing the impact of the shallow word-sense connectivity algorithm
 - Comparison to already disambiguated texts
 - **Babelfy:** State-of-the-art disambiguation / entity linking system

Babelfy:

	WS-	Sim	RG-65			
	r	ρ	r	ρ		
Shallow	0.72	0.71	0.71	0.74		
Babelfy	0.65	0.63	0.69	0.70		
Babelfy*	0.63	0.61	0.65	0.64		

Babelfy = default version using *Most Common Sense* heuristic as back-off strategy

Babelfy* = includes only instances that exceed a confidence threshold

Table 2: Pearson (r) and Spearman (ρ) correlation performance of SW2V integrating our *shallow* word-sense connectivity algorithm (default), Babelfy, or Babelfy*.

	WS-	Sim	RG-65			
	r	ρ	r	ρ		
Shallow	0.72	0.71	0.71	0.74		
Babelfy	0.65	0.63	0.69	0.70		
Babelfy*	0.63	0.61	0.65	0.64		

Babelfy = default version using *Most Common Sense* heuristic as back-off strategy

Babelfy* = includes only instances that exceed a confidence threshold

Table 2: Pearson (r) and Spearman (ρ) correlation performance of SW2V integrating our *shallow* word-sense connectivity algorithm (default), Babelfy, or Babelfy*.

- Determining ideal settings for training / testing
- Testing the impact of the *shallow word-sense connectivity algorithm*
 - Comparison to already disambiguated texts
 - Babelfy: State-of-the-art disambiguation / entity linking system
 - Provides an improvement of accuracy
 - Improvement of speed: takes only tenth of the time

Table of Contents

- 1) Introduction and Related Work
- 2) Shallow word-sense connectivity algorithm
- 3) Training
- 4) Experimental Settings
- 5) Evaluation
- 6) Conclusion

Evaluation

- Three different tasks:
 - A. Word Similarity Task
 - B. Sense Clustering
 - C. Word and sense interconnectivity

Word Similarity Task

- Evaluate sense representations on the standard SimLex-999 and MEN word similarity datasets.
 - Both datasets contain 999 and 3000 word pairs, respectively
 - The two largest similarity datasets
- Closest sense strategy
- Cosine similarity
- Retrofitted version of word2vec word vectors
 - WordNet and BabelNet

Word Similarity Task

			SimL	ex-999	M	EN
	System	Corpus	r	ρ	r	ρ
Senses	$SW2V_{BN}$	UMBC	0.49	0.47	0.75	0.75
	SW2V _{WN}	UMBC	0.46	0.45	0.76	0.76
	AutoExtend	UMBC	0.47	0.45	0.74	0.75
	AutoExtend	Google-News	0.46	0.46	0.68	0.70
	$SW2V_{BN}$	Wikipedia	0.47	0.43	0.71	0.73
	SW2V _{WN}	Wikipedia	0.47	0.43	0.71	0.72
	SensEmbed	Wikipedia	0.43	0.39	0.65	0.70
	Chen et al. (2014)	Wikipedia	0.46	0.43	0.62	0.62
Words	Word2Vec	UMBC	0.39	0.39	0.75	0.75
	Retrofitting _{BN}	UMBC	0.47	0.46	0.75	0.76
	RetrofittingWN	UMBC	0.47	0.46	0.76	0.76
	Word2Vec	Wikipedia	0.39	0.38	0.71	0.72
	Retrofitting _{BN}	Wikipedia	0.35	0.32	0.66	0.66
	RetrofittingWN	Wikipedia	0.47	0.44	0.73	0.73

Sense Clustering

- High level of granularity in current lexical resources
- Idea: clustering senses to possibly improve on downstream tasks
- Wikipedia sense clustering task: 500-pair & SemEval datasets

 - Similarity between synset embeddings has to exceed given threshold tuned with 500-pair dataset
 - Evaluation on SemEval clustering test set consisting of 925 pairs of highly ambiguous words

Sense Clustering

	Accuracy	F-Measure
SW2V	87.8	63.9
SensEmbed	82.7	40.3
NASARI	87.0	62.5
Multi-SVM	85.5	-
Mono-SVM	83.5	-
Baseline	17.5	29.8

 $\frac{2 \cdot precision \cdot recall}{precision + recall}$

Baseline = every pair clustered together

Pre-trained state-of-the-art sense embeddings, also including Babelnet

Supervised Support Vector Machine classifier trained on labeled mono- or multilingual Wikipedia data

<u>Table 4</u>: Accuracy and F-Measure percentages of different systems on the SemEval Wikipedia sense clustering dataset.

→ Semantics of word senses are captured well on this task

- Previously, no research on semantic coherence of vector space obtained by jointly learning word and sense embeddings
- Word Sense Disambiguation task
- Most Common Sense (MCS) baseline obtained from our shared vector space
 - MCS of a word closer to its vector than any other sense
 - \circ Formally: $MCS(w) = argmax_{s \in S_w} cos(ec{w}, ec{s})$
 - Integrated into various NLP applications, e.g. Word Sense Disambiguation,
 Entity Linking
 - Automatic identification from non-annotated text useful for low resource languages or large datasets

	SemEval-07	SemEval-13
SW2V	39.9	54.0
AutoExtend	17.6	31.0
Baseline	24.8	34.9

Baseline = randomly assigning sense as Most Common Sense

Pre-trained state-of-the-art sense embeddings, also including Babelnet

Table 5: F-Measure percentage of different MCS strategies on the SemEval-2007 and SemEval-2013 WSD datasets.

→ SW2V seems to be a good architecture to capture Most Common Senses

Qualitative comparison to AutoExtend:

$company_n^2$ (military unit)	$school_n^i$ (group of fish)		
AutoExtend	SW2V	AutoExtend	SW2V	
company $_n^9$	battalion $_n^1$	school	$schools_n^7$	
company	battalion	$school_n^4$	$sharks_n^1$	
company $_n^8$	$\operatorname{regiment}_n^1$	$school_n^6$	sharks	
company $_n^6$	$detachment_n^4$	$school_v^1$	shoals $_n^3$	
company $_n^7$	$platoon_n^1$	$school_n^3$	fish_n^1	
company v	brigade $_n^1$	elementary	$dolphins_n^1$	
firm	regiment	schools	pods_n^3	
business $_n^1$	corps_n^1	elementary $_a^3$	eels	
firm_n^2	brigade	$school_n^5$	dolphins	
company n	platoon	elementary $_a^1$	whales $_n^2$	

Table 6: Ten closest word and sense embeddings to the senses $company_n^2$ (military unit) and $school_n^7$ (group of fish).

Qualitative comparison to AutoExtend:

AutoExtend creates clusters that include all senses of a word together, including respectively related concepts

 $company_n^2$ (military unit) $school_n^{\ell}$ (group of fish) AutoExtend AutoExtend SW2V SW2V company $_n^9$ schools⁷ battalion¹ school school_n sharks¹_n battalion company company_n⁸ regiment_n school_n sharks company $_n^6$ shoals $_n^3$ detachment⁴_n school, $fish_n^1$ $platoon_n^1$ school_n company $_n^7$ company 1 brigade¹ elementary dolphins¹ pods³ regiment schools firm elementary $_a^3$ business $_{n}^{1}$ $corps_n^1$ eels $firm_n^2$ brigade $school_n^5$ dolphins company $_n^1$ elementary¹ whales2 platoon

Table 6: Ten closest word and sense embeddings to the senses $company_n^2$ (military unit) and $school_n^7$ (group of fish).

Qualitative comparison to AutoExtend:

AutoExtend creates clusters that include **all senses** of a word together, including respectively related concepts

Semantic cluster fitting to the **specific** sense of the word

 $company_n^2$ (military unit) $school_n^7$ (group of fish) AutoExtend AutoExtend SW2V SW2V company $_n^9$ battalion¹ schools, school school_n sharks¹ battalion company company_n⁸ regiment_n school_n sharks shoals³ company $_n^6$ detachment⁴_n school, $fish_n^1$ school_n company, $platoon_n^1$ company, brigade $_n^1$ dolphins $_{n}^{1}$ elementary pods³ regiment firm schools business¹ elementary³ $corps_n^1$ eels $firm_n^2$ $school_n^5$ brigade dolphins elementary¹ company $_n^1$ whales² platoon

Table 6: Ten closest word and sense embeddings to the senses $company_n^2$ (military unit) and $school_n^7$ (group of fish).

Table of Contents

- 1) Introduction and Related Work
- 2) Shallow word-sense connectivity algorithm
- 3) Training
- 4) Experimental Settings
- 5) Evaluation
- 6) Conclusion

Conclusion

- Senses and Words to Vectors
 - a neural model which uses both text corpora and knowledge from semantic networks to learn vectors representations for words and senses via joint training
- Architecture is scalable to also use larger semantic networks, such as BabelNet
- No annotated data is needed
- Good performance on capturing similarities between both words and senses as well as their interconnectivity

Conclusion

Opinion:

- Good architecture, but they only use WordNet and BabelNet for training, and WordNet and BabelNet work really well together
- They say it is flexible, but they don't actually prove it
 - Good for resource-poor languages, but they don't show any experiments proving it
- They test it with CBOW, how about Skip-gram? Both models perform differently with different tasks
- Antonyms get very high similarity scores
- There is a way to force low similarity scores

References

- Massimiliano Mancini, Jose Camacho-Collados, Ignacio Iacobacci and Roberto Navigli. (2017). Embedding Words and Senses Together via Joint Knowledge-Enhanced Training. Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017). Pages 100–111
- https://en.wikipedia.org/wiki/F1_score (03.07.2019)
- https://babelnet.org/ (03.07.2019)
- http://babelfy.org/ (03.07.2019)