

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

1 1. (Currently Amended) A computer-implemented method for ~~context-aware computer~~
2 management comprising:

3 assigning database information stored on a computer a plurality of clearance levels;

4 assigning each smart badge within a set of smart badges one of the clearance levels;

5 using a wireless beacon to detect which smart badges are located within a predefined

6 physical boundary;

7 identifying a lowest clearance level assigned to the smart badges within the boundary;

8 and

9 providing access to that sub-set of the ~~database~~ information having a clearance level no

10 higher than the lowest identified clearance level ~~on a computer located with the predefined~~

11 ~~physical boundary.~~

1 2. (Previously Presented) The method of claim 1 further comprising:

2 defining those smart badges within the boundary as a set of visible smart badges; and

3 updating the set of visible smart badges in response to a change in smart badge visibility

4 status.

1 3. (Previously Presented) The method of claim 2 further comprising:

2 recalculating the lowest clearance level in response to the change in smart badge

3 visibility status.

1 4. (Previously Presented) The method of claim 2 further comprising:

2 recording the smart badge visibility status of each smart badge within an activity log.

1 5. (Previously Presented) The method of claim 1 wherein providing includes:

2 providing access to smart badge wearers assigned to the smart badges.

- 1 6. (Currently Amended) The method of claim 2 further comprising:
 - 2 preventing access to the database information when the smart badge visibility status is set
 - 3 to invisible for a predetermined timeout.

- 1 7. (Previously Presented) The method of claim 1 further comprising:
 - 2 writing data items to the smart badges.

- 1 8. (Currently Amended) The method of claim 7 further comprising:
 - 2 pre-reading the data ~~item~~ items from the smart ~~badge~~ badges during idle periods.

- 1 9. (Previously Presented) The method of claim 1 further comprising:
 - 2 defining a badge removal confidence level indicating whether each smart badge has been
 - 3 continuously worn by corresponding assigned smart badge wearers.

- 1 10. (Previously Presented) The method of claim 1 further comprising:
 - 2 assigning an expiration period to each of the smart badges; and
 - 3 de-authenticating and erasing all data stored on a smart badge whose expiration period
 - 4 has been exceeded.

- 1 11. (Currently Amended) The method of claim 1 wherein the using element includes:
 - 2 configuring the ~~predetermined physical predefined~~ boundary by varying a sensitivity
 - 3 level of the wireless beacon.

1 12. (Currently Amended) A method for context-aware computer management comprising:
2 assigning database information a plurality of clearance levels;
3 assigning each smart badge within a set of smart badges one of the clearance levels;
4 using a wireless beacon to detect which smart badges are located within a predefined
5 physical boundary;
6 identifying a lowest clearance level assigned to the smart badges within the boundary;
7 providing access to that sub-set of the database information having a clearance level no
8 higher than the lowest identified clearance level on a computer located with within the
9 predefined physical boundary;
10 defining those smart badges within the boundary as a set of visible smart badges;
11 updating the set of visible smart badges in response to a change in smart badge visibility
12 status; and
13 recalculating the lowest clearance level in response to the change in smart badge
14 visibility status.

1 13. (Currently Amended) A computer-readable medium embodying computer program code
2 for context-aware computer management, comprising:
3 assigning database information a plurality of clearance levels;
4 assigning each smart badge within a set of smart badges one of the clearance levels;
5 using a wireless beacon to detect which smart badges are located within a predefined
6 physical boundary;
7 identifying a lowest clearance level assigned to the smart badges within the boundary;
8 and
9 providing access to that sub-set of the database information having a clearance level no
10 higher than the lowest identified clearance level on a computer located with within the
11 predefined physical boundary.

1 14. (Previously Presented) The computer-readable medium of claim 13 further comprising:
2 defining those smart badges within the boundary as a set of visible smart badges; and
3 updating the set of visible smart badges in response to a change in smart badge visibility
4 status.

1 15. (Previously Presented) The computer-readable medium of claim 14 further comprising:
2 recalculating the lowest clearance level in response to the change in smart badge
3 visibility status.

1 16. (Previously Presented) The computer-readable medium of claim 13 wherein providing
2 includes:
3 providing access to the database information to smart badge wearers assigned to the
4 smart badges.

1 17. (Previously Presented) The computer-readable medium of claim 14 further comprising:
2 preventing access to the database when the smart badge visibility status is set to invisible
3 for a predetermined timeout.

1 18. (Previously Presented) The computer-readable medium of claim 13 further comprising
2 defining a badge removal confidence level indicating whether each smart badge has been
3 continuously worn by corresponding assigned smart badge wearers.

1 19. (Previously Presented) The computer-readable medium of claim 13 further comprising:
2 assigning an expiration period to each of the smart badges; and
3 de-authenticating and erasing all data stored on a smart badge whose expiration period
4 has been exceeded.

1 20. (Currently Amended) A system for context-aware computer management comprising:
2 means for assigning database information a plurality of clearance levels;
3 means for assigning each smart badge within a set of smart badges one of the clearance
4 levels;
5 means for using a wireless beacon to detect which smart badges are located within a
6 predefined physical boundary;
7 means for identifying a lowest clearance level assigned to the smart badges within the
8 boundary;
9 means for providing access to that sub-set of the database information having a clearance
10 level no higher than the lowest identified clearance level on a computer located ~~with~~ within the
11 predefined physical boundary;
12 means for defining those smart badges within the boundary as a set of visible smart
13 badges;
14 means for updating the set of visible smart badges in response to a change in smart badge
15 visibility status; and
16 means for recalculating the lowest clearance level in response to the change in smart
17 badge visibility status.

1 21. (Currently Amended) A system for context-aware computer management comprising:
2 a database, including information differentiated by a plurality of clearance levels;
3 a first wireless beacon;
4 a set of smart badges, detected by the first beacon to be within a predefined ~~physical~~
5 boundary, each badge assigned one of the clearance levels;
6 a computer located within the boundary;
7 a system service module, coupled to the beacon, for identifying a lowest clearance level
8 assigned to the smart badges within the boundary; and
9 a software application, coupled to the service module and the database, for providing
10 access to that sub-set of the information within the database having a clearance levels no higher
11 than the lowest identified clearance level on the computer.

1 22. (Original) The system of claim 21, wherein the first beacon includes:
2 a wide angle RF beacon.

1 23. (Currently Amended) The system of claim 21, further comprising:
2 a second diffuse IR beacon, coupled to the service module, limited to detecting smart
3 badges within ~~a workroom~~ the predefined boundary.

1 24. (Original) The system of claim 21, wherein the smart badges include:
2 biometric sensors for detecting when a smart badge has been removed from an assigned
3 smart badge wearer.

1 25. (Previously Presented) The system of claim 21, wherein the service module
2 defines those smart badges within the boundary as a set of visible smart badges, and
3 recalculates the lowest clearance level in response to a change in a visibility status.

1 26. (Currently Amended) The system of claim 21, wherein the application logs smart badge
2 wearers assigned to visible smart badges onto [[a]] the computer.

1 27. (New) The method of claim 1, wherein providing access to the sub-set of information
2 comprises providing access to the sub-set of information stored on the computer located within
3 the predefined boundary.

1 28. (New) The method of claim 1, wherein the wireless beacon comprises a first wireless
2 beacon to communicate with the smart badges, the method further comprising:
3 using a second wireless beacon to communicate with the smart badges,
4 wherein detecting which smart badges are located within the predefined boundary is
5 based on the first and second wireless beacons.

1 29. (New) The method of claim 28, wherein using the second wireless beacon comprises
2 using the second wireless beacon to communicate with smart badges within the predefined
3 boundary and to communicate with smart badges outside the predefined boundary through one or
4 more blocking objects defining the predefined boundary, and

5 using the first wireless beacon comprises using the first wireless beacon to communicate
6 with smart badges within the predefined boundary, wherein the first wireless beacon is blocked
7 from communicating with smart badges outside the predefined boundary by the one or more
8 blocking objects.

1 30. (New) The method of claim 29, wherein using the first wireless beacon comprises using
2 an infrared beacon, and wherein using the second wireless beacon comprises using a radio
3 frequency beacon.

1 31. (New) An article comprising a computer-usuable medium containing program code that
2 when executed cause a computer to:

3 store plural sub-sets of information, each sub-set of information associated with one of
4 plural clearance levels;

5 use at least a first wireless beacon to communicate with plural badges within a predefined
6 region, each of the plural badges associated with one of the plural clearance levels;

7 determine a lowest clearance level from among the clearance levels associated with the
8 badges in the predefined region; and

9 provide access to one or more sub-sets of the information having one or more respective
10 clearance levels no higher than the determined lowest clearance level.

1 32. (New) The article of claim 31, wherein providing access to the one or more sub-sets of
2 the information comprises displaying the one or more sub-sets of the information having the one
3 or more respective clearance levels no higher than the determined lowest clearance level.

1 33. (New) The article of claim 31, wherein the program code when executed cause the
2 computer to further:

3 use a second wireless beacon to communicate with the plural badges in the predefined
4 region and to communicate with one or more badges outside the predefined region,

5 wherein the first wireless beacon is able to communicate with the plural badges within
6 the predefined region but is unable to communicate with the one or more badges outside the
7 predefined region; and

8 determining the badges that are within the predefined region based on the first and second
9 wireless beacons.

1 34. (New) The article of claim 31, wherein the program code when executed cause the
2 computer to further:

3 receive a parameter from each of the badges, the parameter indicating a confidence level
4 that the respective badge has been worn continuously by a user.

1 35. (New) The article of claim 31, wherein the program code when executed cause the
2 computer to further:

3 re-determine the lowest clearance level as badges enter or leave the predefined region.

1 36. (New) A system comprising:

2 storage to store sub-sets of information associated with corresponding plural clearance
3 levels;

4 a first wireless beacon to communicate wirelessly with badges within a predefined
5 region, each of the badges associated with one of the plural clearance levels;

6 a module to identify a lowest clearance level from among the clearance levels of the
7 badges within the predefined region; and

8 software to provide access to one or more sub-sets of information in the storage having
9 one or more clearance levels no higher than the identified lowest clearance level.

- 1 37. (New) The system of claim 36, further comprising:
- 2 a second wireless beacon to communicate wirelessly with badges within the predefined
- 3 region and at least one badge outside the predefined region,
- 4 wherein the first wireless beacon is unable to communicate with the at least one badge
- 5 outside the predefined region,
- 6 the module to detect the badges that are within the predefined region based on the first
- 7 and second wireless beacons.
- 1 38. (New) The system of claim 37, wherein the second wireless beacon comprises a radio
- 2 frequency beacon, and the first wireless beacon comprises an infrared beacon.