Beyond Sparsity: Tree Regularization of Deep Models for Interpretability

Mike Wu¹, Michael C. Hughes², Sonali Parbhoo³, Maurizio Zazzi⁴, Volker Ross³, Finale Doshi-Velez²

¹ Stanford University, ² Harvard University, ³ University of Basel, ⁴ University of Siena

NIPS TIML Workshop, Long Beach December 9, 2017

Motivation: Deep Learning is not interpretable.

What is Interpretability?

Def: A model is **simulatable** if a human can "take in input data together with the parameters of the model and in *reasonable* time step through every calculation required to make a prediction." (Lipton 2016)

Advantages of simulation

- Check each step against expert knowledge
- Apply counterfactual reasoning i.e. what if blood pressure was lower?
- Identify systemic bias

Decision Trees are Simulatable

Trees are pretty powerful but definitely inferior to modern deep models.

How to interpret a trained deep model?

Selvaraju et. al. 2017

A group of people flying kites on a beach

A man is sitting at a table with a pizza

(a) Image captioning explanations

A house with a green roof Sheep grazing in field

A house with a roof

(b) Comparison to DenseCap

Olah et. al. 2017

Dataset Examples show us what neurons respond to in practice

Optimization isolates the causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.

Animal faces-or snouts? mixed4a, Unit 240

Can we directly **optimize** a deep model to be interpretable?

Model: Recurrent Neural Nets

$$\min_{W} \lambda \Psi(W) + \sum_{n=1}^{N} \sum_{n=1}^{T_n} loss(y_{nt}, \hat{y}_{nt}(x_n, W))$$

Simulability Objective Function

1) Train Decision Tree with similar predictions as deep model.

2) Count tree's average path length = cost of simulating the average example.

But Trees aren't Differentiable.

Given fixed Surrogate MLP, optimize **W** via gradient descent.

Given fixed **W**, we can find the best Surrogate MLP

Tree-like Decision Boundaries for Deep

Models. Dataset

Red: Positive

Yellow: Negative

Tree-reg finds sweet-spot that L2 and L1 can't.

(a) Sepsis: Mechanical Ventilation

(b) HIV: Therapy Adherence

Tree-reg produces Trees that are interpretable

(a) Sepsis: Mechanical Ventilation

(b) HIV: Therapy Adherence

Future Work

- Current trees only use static features. What about temporal features?
- Can trees capture local interpretability?
- What if features are not *prima facie* interpretable (i.e. pixels)?

Come see our poster!

