Introduction to Statistics and Data Science using eStat

**Chapter 12 Correlation and Regression Analysis** 

# 12.3 Multiple Linear Regression Analysis

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

#### 12.1 Correlation Analysis

- 12.2 Simple Linear Regression Analysis
- 12.3 Multiple Linear Regression Analysis
  - 12.3.1 Multiple Linear Regression Model
  - 12.3.2 Estimation of Regression Coefficient
  - 12.3.3 Goodness of Fit for Regression and Analysis of Variance
  - 12.3.4 Inference for Multiple Linear Regression

[Example 12.3.1] When logging trees in forest areas, it is necessary to investigate the amount of timber in those areas. Since it is difficult to measure the volume of a tree directly, we can think of ways to estimate the volume using the diameter and height of a tree that is relatively easy to measure. Draw a scatter plot matrix of this data and consider a regression model for this problem.

| Diameter(cm) | Height( | m) Volume |
|--------------|---------|-----------|
| 21.0         | 21.33   | 0.291     |
| 21.8         | 19.81   | 0.291     |
| 22.3         | 19.20   | 0.288     |
| 26.6         | 21.94   | 0.464     |
| 27.1         | 24.68   | 0.532     |
| 27.4         | 25.29   | 0.557     |
| 27.9         | 20.11   | 0.441     |
| 27.9         | 22.86   | 0.515     |
| 29.7         | 21.03   | 0.603     |
| 32.7         | 22.55   | 0.628     |
| 32.7         | 25.90   | 0.956     |
| 33.7         | 26.21   | 0.775     |
| 34.7         | 21.64   | 0.727     |
| 35.0         | 19.50   | 0.704     |
| 40.6         | 21.94   | 1.084     |

#### Population Regression Model

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k + \varepsilon_i$$
,  $i = 1, 2, ..., n$ 

$$Y = X \beta + \epsilon$$

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & X_{1k} \\ 1 & X_{21} & X_{22} & X_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} & X_{nk} \end{bmatrix} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix} \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Method of Least Squares Method

A method of estimating regression coefficients so that total sum of the squared errors occurring in each observation is minimized.

Find  $\alpha$  and  $\beta$  which minimize

$$\sum_{i=1}^{n} \epsilon_i^2 = \varepsilon' \varepsilon = (Y - X \beta)' (Y - X \beta)$$

• Least Square Estimator of  $\alpha$  and  $\beta$ 

$$b = (X'X)^{-1}(X'Y)$$

■ Residuals  $e_i = Y_i - \hat{Y}_i = Y_i - b_0 + b_1 X_{i1} + b_2 X_{i2} + \cdots + b_k X_{ik}$ 

Residual standard error s

$$s = \sqrt{\frac{1}{n-k-1}\sum_{i=1}^{n}(Y_i - \widehat{Y}_i)^2}$$

Analysis of Variance for Multiple Linear Regression

| Source              | Sum of<br>Squares | Degrees of Freedom | Mean Squares                        | F value                 |
|---------------------|-------------------|--------------------|-------------------------------------|-------------------------|
| Regression<br>Error | SSR<br>SSE        | k $n-k-1$          | MSR=SSR / $k$<br>MSE=SSE/ $(n-k-1)$ | $F_0 = \frac{MSR}{MSE}$ |
| Total               | SST               | n-1                |                                     |                         |

•  $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$ 

 $H_1$ : At least one of k number of  $\beta_i's$  is not equal to 0

• Reject  $H_0$  if  $F_0 > F_{k,n-k-1;\alpha}$ 

- $\Box$  Inference for the parameter  $\beta_i$
- Point estimate:  $b_i$
- Standard error of estimate  $b_i$ :  $SE(b_i) = \sqrt{c_{ii}} \ s$
- Confidence interval of  $b_i$ :  $b_i \pm t_{n-k-1; \alpha/2} \times SE(b_i)$
- Testing hypothesis:

Null hypothesis: 
$$H_0: \beta_i = \beta_{i0}$$

Test statistic: 
$$t = \frac{b_i - \beta_{i0}}{SE(b_i)}$$

- 1)  $H_1: \beta_i < \beta_{i0}$  Reject  $H_0$  if  $t < -t_{n-k-1; \alpha}$
- 2)  $H_1: \beta_i > \beta_{i0}$  Reject  $H_0$  if  $t > t_{n-k-1; \alpha}$
- 3)  $H_1: \beta_i \neq \beta_{i0}$  Reject  $H_0$  if  $|t| > t_{n-k-1; \alpha/2}$

#### [Example 12.3.2]

| Regression Analysis        |                 |                                 |                          |                |                         |
|----------------------------|-----------------|---------------------------------|--------------------------|----------------|-------------------------|
| Regression y =             | (-1.024)        | + (0.037) X <sub>1</sub>        | + (0.024) X <sub>2</sub> |                |                         |
| Multiple Correlation Coeff | 0.961           | Coefficient of<br>Determination | 0.924                    | Standard Error | 0.069                   |
| Parameter                  | Estimated Value | std err                         | t value                  | p value        | 95% Confidence Interval |
| βο                         | -1.024          | 0.188                           | -5.458                   | 0.0001         | (-1.358 ,-0.689)        |
| β <sub>1</sub> Diameter    | 0.037           | 0.003                           | 10.590                   | < 0.0001       | (0.031 ,0.043)          |
| β <sub>2</sub> Height      | 0.024           | 0.008                           | 2.844                    | 0.0148         | (0.009 ,0.038)          |
| [ANOVA]                    |                 |                                 |                          |                |                         |
| Factor                     | Sum of Squares  | deg of freedom                  | Mean Squares             | F value        | p value                 |
| Regression                 | 0.7058          | 2                               | 0.3529                   | 73.1191        | < 0.0001                |
| Error                      | 0.0579          | 12                              | 0.0048                   |                |                         |
| Total                      | 0.7638          | 14                              |                          |                |                         |

#### [Example 12.3.2]







## Thank you