Lecture 28: Variational Inference

Professor Ilias Bilionis

Overview of variational inference

Automatic Differentiation Variational Inference

Alp Kucukelbir Alp@cs.columbia.edu

Data Science Institute, Department of Computer Science Columbia University New York, NY 10027, USA

Dustin Tran

Dustin@cs.columbia.edu

Department of Computer Science Columbia University New York, NY 10027, USA

Rajesh Ranganath RAJESHR@CS.PRINCETON.EDU

Department of Computer Science Princeton University Princeton, NJ 08540, USA

Andrew Gelman Gelman@stat.columbia.edu

Data Science Institute, Departments of Political Science and Statistics Columbia University New York, NY 10027, USA

David M. Blei David.Blei@columbia.edu

Data Science Institute, Departments of Computer Science and Statistics

Variational Inference

parm. (x)
$$\frac{p_{\text{rist}}}{x} = \frac{x - p(x)}{y + x}$$

Likelihand: $y + x - p(y | x)$
 $\frac{p(y | x)}{2} = \frac{p(y | x)}{p(x)} = \frac{p(y | x)}{p(y)}$
 $\frac{p(y | x)}{2} = \frac{p(y | x)}{p(y | x)} = \frac{p(y | x)}{p(y | x)}$
 $\frac{p(y | x)}{2} = \frac{p(y | x)}{p(y | x)} = \frac{p(y | x)}{p(y | x)}$
 $\frac{p(y | x)}{2} = \frac{p(y | x)}{p(y | x)} = \frac{p(y | x)}{p(x | y)}$

PREDICTIVE

SOLING LABORATORY

PREDICTIVE

SOLING LABORATORY

Are replaced, $\frac{p(x | y)}{q(x | y)} = \frac{p(y | x)}{p(y | x)}$

when replaced $\frac{p(x | y)}{q(x | y)} = \frac{p(y | x)}{p(y | x)}$

when replaced $\frac{p(x | y)}{q(x | y)} = \frac{p(y | x)}{p(y | x)}$

when replaced $\frac{p(x | y)}{q(x | y)} = \frac{p(y | x)}{p(y | x)}$

What is the Kullback-Leibler divergence

divergence
$$KL(q(x;y)||p(x|y)) \equiv \int q(x;y) \ln \frac{q(x;y)}{p(x|y)} dx$$

$$= E_{q(x;y)} \left[\ln \frac{q(x;y)}{p(x|y)} \right]$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|y) \right]$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|y) \right]$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) - \ln p(x) + \ln p(y) \right]$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) - \ln p(x|x) \right] + \ln p(y)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(y)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(y)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(y)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(y)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(y)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x;y) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right] + \ln p(x|x)$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right]$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right]$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right]$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right]$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x|x) \right]$$

$$= E_{q(x;y)} \left[\ln q(x|x) - \ln p(x$$

Properties of the KL-distance

2)
$$KL(q(x;\varphi)||p(x|y))=0=0$$
 $q(x;\varphi)=p(x|y)$

3)
$$KL(p(x|y)||q(x|y)) \neq KL(q(x|y)||p(x|y))$$

The evidence lower bound

