

# Poznan University of Technology Faculty of Computing and Telecommunications Institute of Multimedia Telecommunications

# **COMPUTER AIDED DESIGN**

LABORATORY

Instruction for the laboratory exercise

Multisim: Use of virtual instruments

dr inż. Michał Maćkowski (Ph.D.) dr inż. SławomirMichalak (Ph.D.)



#### 1. The aim of exercise

- Using virtual instruments in Multisim,
- Analysis and synthesis signals,
- Filtering and a Fourier analysis of selected signals.

## 2. Analysis and synthesis square-wave signal



Fig.1. Measuring system connection

- a) Square-wave signal analysis
- insert object Agilent Function Generator,
- set the parameters of the square wave signal  $1V_{pp}$ , 1kHz (the teacher can give other signal parameters),
- draw line (connection) from the output of the generator and call it OUT,
- insert object Tektronix Oscilloscope and connect OUT signal to Channel 1,
- using the oscilloscope make a Fourier analysis, read the harmonic frequencies,
- make the Fourier analysis of the signal using Simulate > Analyses > Fourier analysis,
- read the amplitude and phase of the signal for the first 10 harmonics.
- compare results with your readings from oscilloscope in FFT mode.



Fig. 2. Fourier Analysis settings



- b) Synthesis of square-wave signal from harmonics
- design inverting adder circuit for the first five odd harmonics (a sample configuration is shown in Fig.3),
- enter the parameters of harmonics previously read in point a),
- observe the signal on the oscilloscope,
- make a Fourier analysis to validate the parameters of the components,
- to improve the signal shape it can be added the next harmonics even and odd (ask the teacher for details).



Fig.3. Example of an adder with attached sources and oscilloscope

#### 3. Filtering out selected harmonics of the square-wave signal

- a) Cutting off the higher harmonics
- design a low-pass filter to cut-off higher harmonics from created signal, it should remain only the basic one,
- decide **yourself** what type of filter, the filter slope and its configuration,
- to design filter you use the online filter design page: https://tools.analog.com/en/filterwizard/
- perform the AC and Time analysis to show the performance of the filters,
- calculate the *Total Harmonic Distortion (THD)* from equation (use Calc or Excel):

$$THD = \frac{\sqrt{H_2^2 + H_3^2 + H_4^2 + \dots H_k^2}}{\sqrt{H_1^2 + H_2^2 + H_3^2 + H_4^2 + \dots H_k^2}} \cdot 100\%$$

- insert object *Distortion Analyser* and measure THD,
- make a Fourier analysis, read calculated THD and compare results.



## 4. Tasks for students to do homework (obligatory)

- Perform analysis and synthesis of triangular signal (f = 1kHz), use 5 harmonics,
- Use low-pas filter to get main harmonic,
- Calculate and measure the total nonlinear harmonic distortion nonlinear *THD* for created signal.

#### 5. Additional tasks

• Based on signal from circuit in Fig.3. design and use a band-pass filter to extract the 3-th harmonic.

#### 6. Report

It should contain:

- all schemes of simulated circuits,
- simulation results,
- answers to the questions contained in the manual,
- conclusions.