

Matemáticas III

Grau em Robótica

Exemplos 7

Integração no plano complexo

[Revisado: janeiro de 2021]

1 Caminhos e integrais curvilíneas

- 1.1. Avalia as seguintes integrais ao longo dos caminhos indicados.
 - a) $\int_C (z+3)dz$, onde $C \notin x = 2t$, y = 4t 1, $1 \le t \le 3$.
 - b) $\int_C z^2 dz$, onde $C \in z(t) = 3t + 2it$, $-2 \le t \le 2$.
 - c) $\int_C \frac{1+z}{z} dz$, onde C é a semicircunferência |z| = 1 desde z = -i a z = i.
 - $d) \oint_C \operatorname{Re}(z) dz$, onde C é a circunferência |z| = 1.
 - e) $\int_C (x^2 + iy^3) dz$, onde C é a linha reta de z = 1 a z = i.
 - f) $\int_C e^z dz$, onde C é o caminho poligonal formado pelos segmentos de linha de z=0 a z=2 e de z=2 a $z=1+\pi i$.

- 1.2. Avalia as seguintes integrais ao longo do caminho C dado na Figura 1.
 - $a) \oint_C x dz.$
 - b) $\oint_C z^2 dz$.

Figura 1: Caminho no exemplo 1.2

1.3. Avalia $\int_C (z^2-z+2)dz$ de i a 1 ao longo do caminho indicado na Figura 2.

Figura 2: Caminho no exemplo 1.3

- 1.4. Determina um limite superior para o valor absoluto das seguintes integrais ao longo dos caminho indicados.
 - $a)\oint_C \frac{e^z}{z^2+1}dz,$ onde C é a circunferência |z|=5.
 - b) $\int_C (z^2 + 4)dz$, onde C é o segmento de linha de z = 0 a z = 1 + i.

O teorema de Cauchy-Goursat

2.1. Demonstra que $\oint_C f(z)dz = 0$, onde f é a função dada e C é a circunferência unidade |z| = 1.

a)
$$f(z) = z^3 - 1 + 3i$$
.

a)
$$f(z) = z^3 - 1 + 3i$$
.
b) $f(z) = \frac{z}{2z+3}$.
c) $f(z) = \frac{\sec z}{(z^2 - 25)(z^2 + 9)}$.
d) $f(z) = \operatorname{tg} z$.

$$b) f(z) = \frac{z}{2z+3}.$$

$$d) \ f(z) = \operatorname{tg} z.$$

2.2. Avalia $\oint_C \frac{1}{z} dz$, onde C é o caminho da Figura 3.

Figura 3: Caminho no exemplo 2.2

2.3. Avalia as seguintes integrais ao longo dos caminhos indicados.

a)
$$\oint_C \left(z + \frac{1}{z}\right) dz; |z| = 2.$$

b)
$$\oint_C \frac{z}{z^2 - \pi^2} dz; |z| = 3.$$

2.4. Avalia $\oint_C \left(\frac{e^z}{z+3} - 3\bar{z}\right) dz$, onde C é a circunferência unidade |z| = 1.

3

3 Homotopia de caminhos

- 3.1. Avalia $\int_C (4z-1)dz$, onde C é o caminho mostrado na Figura 4, usando
 - a) um caminho de integração alternativo,
 - b) o teorema fundamental do cálculo para integrais curvilíneas.

Figura 4: Caminho no exemplo 3.1

- 3.2. Avalia $\int_C 2z dz$, onde $C \notin z(t) = 2t^3 + i(t^4 4t^3 + 2), -1 \le t \le 1$.
- 3.3. Usa o teorema fundamental do cálculo para integrais curvilíneas para avaliar as seguintes integrais. Escreve o resultado na forma a + ib.
 - a) $\int_0^{3+i} z^2 dz.$ b) $\int_1^{1+i} z^3 dz.$
 - c) $\int_{-i/2}^{1-i} (2z+1)^2 dz$.
 - $d) \int_{i/2}^{i} e^{\pi z} dz.$
 - $e) \int_{\pi i}^{2\pi i} \cosh z dz.$

- $f) \ \int_C \frac{1}{z} dz, \ C \ \text{\'e o arco da circunferência} \ z = 4e^{it}, \ -\frac{\pi}{2} \le t \le \frac{\pi}{2}.$
- g) $\int_{-4i}^{4i} \frac{1}{z^2} dz$, C é qualquer caminho que não passe pela origem.
- $h) \int_{i}^{1+i} z e^{z} dz.$

A fórmula integral de Cauchy

4.1. Usa as fórmulas integrais de Cauchy para avaliar as seguintes integrais ao longo dos caminhos indicados.

a)
$$\oint_C \frac{4}{z-3i} dz$$
; $|z| = 5$.

b)
$$\oint_C \frac{e^z}{z - \pi i} dz; |z| = 4.$$

c)
$$\oint_C \frac{z^2 - 3z + 4i}{z + 2i} dz; |z| = 3.$$

d)
$$\oint_C \frac{z^2}{z^2 + 4} dz$$
; a) $|z - i| = 2$, b) $|z + 2i| = 1$.

e)
$$\oint_C \frac{z^2 + 4}{z^2 - 5iz - 4} dz$$
; $|z - 3i| = 1.3$.

f)
$$\oint_C \frac{e^{z^2}}{(z-i)^3} dz; |z-i| = 1.$$

$$g) \oint_C \frac{\cos 2z}{z^5} dz; |z| = 1.$$

b)
$$\oint_C \frac{e^z}{z - \pi i} dz$$
; $|z| = 4$.
c) $\oint_C \frac{z^2 - 3z + 4i}{z + 2i} dz$; $|z| = 3$.
d) $\oint_C \frac{z^2}{z^2 + 4} dz$; a) $|z - i| = 2$, b) $|z + 2i| = 1$.
e) $\oint_C \frac{z^2 + 4}{z^2 - 5iz - 4} dz$; $|z - 3i| = 1$.
f) $\oint_C \frac{e^{z^2}}{(z - i)^3} dz$; $|z - i| = 1$.
h) $\oint_C \frac{2z + 5}{z^2 - 2z} dz$; a) $|z| = \frac{1}{2}$, b) $|z + 1| = 2$, c) $|z - 3| = 2$, d) $|z + 2i| = 1$.
i) $\oint_C \frac{z + 2}{z^2(z - 1 - i)} dz$; a) $|z| = 1$.
j) $\oint_C \left(\frac{e^{2iz}}{z^4} - \frac{z^4}{(z - i)^3}\right) dz$; $|z| = 6$.

i)
$$\oint_C \frac{z+2}{z^2(z-1-i)} dz$$
; a) $|z| = 1$, b) $|z-1-i| = 1$.

$$j) \oint_C \left(\frac{e^{2iz}}{z^4} - \frac{z^4}{(z-i)^3} \right) dz$$
$$|z| = 6.$$

Soluções

1.1 a)
$$-28 + 84i$$
.

d) $i\pi$.

b)
$$-48 + \frac{736}{3}i$$
.

e) $-\frac{7}{12} + \frac{1}{12}i$.

c)
$$(2 + \pi)i$$
.

f) -1 - e.

1.2 a)
$$\frac{1}{2}i$$
.

b) 0.

1.3
$$\frac{4}{3} - \frac{5}{3}i$$
.

1.4 a) $\frac{5\pi}{12}e^5$.

b) $6\sqrt{2}$.

2.1 a)
$$f(z)$$
 é inteira. Teorema Cauchy–Goursat $\Rightarrow \oint_C f(z)dz = 0$.

b)
$$f(z)$$
 é holomorfa em $|z|=1$. Teorema C-G $\Rightarrow \oint_C f(z)dz=0$.

b)
$$f(z)$$
é holomorfa em $|z|=1.$ Teorema C–G $\Rightarrow \oint_C f(z)dz=0.$

$$2.2 2\pi i.$$

2.3 a)
$$2\pi i$$
.

b) 0.

$$2.4 -6\pi i$$
.

3.1 a)
$$-2i$$
.

b) -2i.

$$3.2 48 + 24i$$

3.3 a)
$$6 + \frac{26}{3}i$$
.

e) 0.

f) πi .

c)
$$-\frac{7}{6} - \frac{22}{3}i$$
.

g)
$$\frac{1}{2}i$$
.

d)
$$-\frac{1}{\pi} - \frac{1}{\pi}i$$
.

h) $(\text{sen } 1 + \cos 1 - e \text{ sen } 1) + i(\text{sen } 1 - \cos 1 + e \cos 1).$

4.1 a) $8\pi i$.

b) $-2\pi i$.

c) $-\pi(20+8i)$.

d) A) -2π . B) 2π .

e) -8π .

f) $-2\pi e^{-1}i$.

g) $\frac{4\pi}{3}i$.

h) A) $-5\pi i$, B) $-5\pi i$, C) $9\pi i$.

D) 0

i) A) $-\pi(3+i)$. B) $\pi(3+i)$.

 $j) \ \pi \left(\frac{8}{3} + 12i\right).$

Figura 5: Exemplo 4.1