Exercises: Artificial Intelligence

The farmer, fox, goose and grain

Representation

• States of the form $[\mathcal{L}|\mathcal{R}]$, where:

 $-\mathcal{L}$: Items on left bank

 $-\mathcal{R}$: Items on right bank

• \mathcal{L} and \mathcal{R} contain:

- Fa: Farmer

− Fo: *Fox*

- Go: Goose

- Gr: Grain

Representation

- Start: [Fa Fo Go Gr|]
- Goal: [|Fa Fo Go Gr]
- Rules:
 - $-R_1$: [Fa $\mathcal{X}|\mathcal{Y}] \longrightarrow [\mathcal{X}|Fa \mathcal{Y}]$
 - $-R_2: [X | Fa \mathcal{Y}] \longrightarrow [Fa X | \mathcal{Y}]$
 - $-R_3$: [Fa $z X | \mathcal{Y}] \longrightarrow [X | Fa z \mathcal{Y}]$
 - $-R_4: [X | Fa z \mathcal{Y}] \longrightarrow [Fa z X | \mathcal{Y}]$
 - No combination (Fo,Go) or (Go,Gr) on either bank, without the farmer.

Depth-first search (queues)

- S = (<[Fa Fo Go Gr|]>)
- Q₁ = (<[Fa Fo Go Gr]][Fo Gr | Fa Go]>)
- $Q_2 = (\langle [Fa Fo Go Gr] [Fo Gr | Fa Go] [Fa Fo Gr | Go] \rangle)$
- $Q_3 = (<[Fa Fo Go Gr])[Fo Gr]Fa Fo Gr]Go][Gr]Fa Fo Go]>,<[Fa Fo Go Gr]][Fo Gr]Fa Go][Fa Fo Gr]Go][Fo]Fa Go]Fa Fo Gr]So]$
- $Q_4 = (<[Fa Fo Go Gr]][Fo Gr]Fa Go][Fa Fo Gr]Go][Gr]Fa Fo Go][Fa Go Gr]Fo]>,<[Fa Fo Go Gr]][Fo Gr]Fa Go][Fa Fo Gr]Go][Fo Fa Go Gr]>)$
- $Q_5 = (<[Fa Fo Go Gr])[Fo Gr]Fa Go][Fa Fo Gr]Go][Gr]Fa Fo Go][Fa Go Gr]Fo][Go Fa Fo Gr]>,<[Fa Fo Go Gr]][Fo Gr]Fa Go][Fa Fo Gr]Go][Fo Fa Go Gr]>)$
- $Q_6 = (<[Fa\ Fo\ Go\ Gr|][Fo\ Gr|Fa\ Go][Fa\ Fo\ Gr|Go][Gr|Fa\ Fo\ Go][Fa\ Go\ Gr|Fo][Go|Fa\ Fo\ Gr][Fa\ Go\ Gr|Fa]Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go][Fa\ Fo\ Go\ Gr|Go\ Gr|Go][Fa\ Fo\ Go\ Gr][Fa\ Fo\ Go\ Gr][Fa\$
- G = (<[Fa Fo Go Gr]][Fo Gr][Fa Fo Gr][Go][Gr][Fa Fo Go][Fa Go Gr][Fa Go Gr][Fa Go][Fa Go][Fa Fo Gr][Fa Go][Fa Fo Gr][Fa Fo Fo

Depth-first search (search tree)

Breadth-first search (search tree)

Exercises: Artificial Intelligence

Bidiretional Search

Bidirectional Search

PROBLEM 1: BREADTH-FIRST?

Other methods than 2 x breadth-first

- Bidirectional search is complete for each combination with at least one complete search-strategy.
 - 2 x Breadth-first
 - 2 x Depth-first
 - Breadth-first and Depth-first
- Not each combination benefits from searching at both ends.

2 x Depth-first

Forward:

$$-$$
 (~~) →(,) →(,)
→(,) →(,)~~

Backward:

$$-(\langle G \rangle)$$
 → $(\langle G K \rangle, \langle G L \rangle)$ → $(\langle G K J \rangle, \langle G L \rangle)$ → $(\langle G K J H \rangle, \langle G L \rangle)$

2 x Breadth-first

- Forward:
 - $(\langle S \rangle) \rightarrow (\langle SA \rangle, \langle SE \rangle) \rightarrow (\langle SE \rangle, \langle SAB \rangle) \rightarrow (\langle SAB \rangle, \langle SEF \rangle)$
- Backward:
 - $-(\langle G \rangle) \rightarrow (\langle G K \rangle, \langle G L \rangle) \rightarrow (\langle G K J \rangle, \langle G K J \rangle) \rightarrow (\langle G K J \rangle, \langle G L F \rangle)$

Breadth-first and Depth-first

- Forward (Breadth-first):
 - (<S>)→(<SA>,<SE>)→(<SE>,<SAB>)→(<SAB>,<SEF>)
 →(<SE<u>F</u>>,<SABC>)
- Backward (Depth-first):
 - $-(\langle G \rangle)$ → $(\langle G J \rangle, \langle G D \rangle)$ → $(\langle G J I H \rangle, \langle G D \rangle)$ → $(\langle G J I H \rangle, \langle G D \rangle)$

Bidirectional Search

PROBLEM 2: SHARED-STATE CHECK?

Replace shared-state check

- When only checking identical end-states, paths can cross each other unnoticed.
- Forward:

$$-(\langle S \rangle) \rightarrow (\langle SA \rangle) \rightarrow (\langle SAB \rangle) \rightarrow (\langle SABG \rangle)$$

Backward:

$$-(\langle G \rangle) \rightarrow (\langle GB \rangle) \rightarrow (\langle GBA \rangle) \rightarrow (\langle GBAS \rangle)$$

Exercises: Artificial Intelligence

Beam Search

Beam Search

• Input:

- QUEUE: Path only containing root
- WIDTH: Number
- Algorithm:
 - WHILE (QUEUE not empty && goal not reached) DO
 - Remove <u>all paths</u> from <u>QUEUE</u>
 - Create paths to all children (of all paths)
 - Reject paths with loops
 - Sort new paths (according to heuristic)
 - (Optimization: Remove paths without successor)
 - Add <u>WIDTH</u> <u>best paths</u> to <u>QUEUE</u>
 - IF goal reached
 - THEN success
 - **ELSE** failure

Exercises: Artificial Intelligence

Path Search

Depth-first Search

17	16	15	14	13	12	11	10
18	19	20					9
		G					8
							7
		2	1	3	4	5	6
			S				

Heuristic: Manhattan Distance

4	3	2	3	4	5	6	7
3	2	1	2	3	4	5	6
2	1	0	1	2	3	4	5
3	2						6
4		2	3	4	5	6	7
5	4		4	5	6		8
6	5	4	5	6	7	8	9
7	6	5	6	7	8	9	10

Hill-climbing I Search

4	3	2	3	4	5	6	7
3	2	1	7	*	#	⊼	Á
2	1	G C	1	2	3	4	-5
3	2						6
4		2	3	4	7	6	7
5	4		5	*	R		¥
6	5	4	3	6	7	8	9
7	6	5	6	7	8	9	10

	G	12	11	10	9	8
						7
	2	1	3	4	5	6
		S				

Greedy Search

18	19	G				
17						
16		2/9	1/8	3/7	4/10	
15	14		S	5/6		
	13	12	11			

Exercises: Artificial Intelligence

Water Jugs

Representation

States of the form [x,y], where:

```
- x: contents of 4 liter jug
```

– y: contents of 3 liter jug

• Start: [0,0]

• Goal: [2,0]

Representation

• Rules:

```
- Fill x:
                        [x,y] \land x < 4 \longrightarrow [4,y]
- Fill y:
                        [x,y] \land y < 3 \longrightarrow [x,3]
                        [x,y] \land x > 0 \longrightarrow [0,y]
– Empty x:
                        [x,y] \land y > 0 \longrightarrow [x,0]
- Empty y:
— Fill x with y:
                      [x,y] \land x+y > 4 \land y > 0 \longrightarrow [4,(x+y-4)]
                       [x,y] \land x+y \le 4 \land y > 0 \longrightarrow [(x+y),0]
— Fill x with y:
- Fill y with x: [x,y] \land x+y > 3 \land x > 0 \longrightarrow [(x+y-3),3]
- Fill y with x: [x,y] \land x+y \le 3 \land x > 0 \longrightarrow [0,(x+y)]
```

Heuristic

- H([x,y]) = f(x) + f(y)
- f(x) is defined as follows:

x	0	1	2	3	4
f(x)	2	1	0	1	3

- We need a jug filled with 2 liter.
- To obtain a jug filled with 2 liter we need a jug filled with either 1 or 3 liter.
- We consider an empty jug better than a jug filled with 4 liter.

Hill-climbing II Search

Exercises: Artificial Intelligence

A*

QUEUE:

SC

SA

SB

SA

SCD

SB

SB

QUEUE:

SAEF

SCD

SB

SAEB

QUEUE:

SCD

SB

SAEFG

SAEFD

Exercises: Artificial Intelligence

Iterated Deepening A*

f-bound = 0 f-new = 10

Children are explored depth-first!

f-bound = 10 f-new = 11

f-bound = 11 f-new = 12

f-bound = 12 f-new = 13

f-bound = 13 f-new = 19

Exercises: Artificial Intelligence

Simplified Memory-bounded A*

Exercises: Artificial Intelligence

Monotonicity 1

- Prove that:
 - IF a heuristic function h satisfies the monotonicity restriction
 - $h(x) \leq cost(x...y) + h(y)$
 - **THEN** *f* is monotonously non-decreasing
 - $f(s...x) \leq f(s...x...y)$

Monotonicity 1

- Given:
 - <u>h</u> satisfies the <u>monotonicity restriction</u>
- Proof:

```
f(S...A) = cost(S...A) + h(A)
\leq cost(S...A) + cost(A...B) + h(B)
\leq cost(S...A...B) + h(B)
\leq f(S...A...B)
```

Exercises: Artificial Intelligence

Monotonicity 2

- Prove or refute:
 - IF f is monotonously non-decreasing
 - $f(s...x) \le f(s...xy)$
 - THEN h is an admissable heuristic
 - h is an underestimate of the remaining path to the goal with the smallest cost
- Can an extra constraint on h change this?

Monotonicity 2

- Given:
 - f is mononously non-decreasing
- Proof (Counter-example):

f is monotonously non-decreasing, yet h is not an admissable heuristic.

Monotonicity 2

- Given:
 - f is mononously non-decreasing
 - Extra constraint: h(G) = 0
- Proof:

```
f(S...A) \le f(S...AB) \le ... \le f(S...AB...G) 

f(S...A) \le f(S...G) 

cost(S...A) + h(A) \le cost(S...G) + h(G) 

cost(S...A) + h(A) \le cost(S...A) + cost(A...G) + h(G) 

h(A) \le cost(A...G) + h(G) 

h(A) \le cost(A...G)
```

Exercises: Artificial Intelligence

Version Spaces: Colors

Version-Spaces Algorithm

Version-Spaces Algorithm

Exercises: Artificial Intelligence

Version Spaces: Playing Cards

[?,?]

Redundant Hypotheses

Exercises: Artificial Intelligence

Version Spaces: Ex-exam

[?,?,?,?]

19 out of 23 do not cover last positive example

Using the result

- [MO,HR,32,Ha]: **Maybe**
 - More Specific than [SC,Us,?,?]
 - Not more Specific than [SC,Us,Yo,?]
- [SD,HH,18,Ne]: **NO**
 - Not More Specific than [SC,Us,?,?]
 - Not More Specific than [?,Us,Yo,?]
- [Da,NW,22,Ug]: Maybe
 - More Specific than [?,Us,Yo,?]
 - Not more Specific than [SC,Us,Yo,?]

Exercises: Artificial Intelligence

Version Spaces: Computer Screen

```
S = \{\bot\}
```

G = {[((0,0),5),white]}

```
G = {[((0,0),5),white]}
```

```
S = \{\bot\}
```



```
G = \{ \\ [((0,2),3),white],\\ [((1,0),4),white],\\ [((1,1),4),white],\\ [((0,0),5),cyan] \\ \} \\ Redundant:\\ [((0,0),5),green]\\ [((0,0),5),blue] \\ S = \{\bot\}
```

 $G = \{[((0,2),3),white],[((1,0),4),white],[((1,1),4),white],[((0,0),5),cyan]\}$

```
S = \{\bot\}
```



```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white]
Removed:
           [((0,0),5),cyan]
S = {
           [((2,1),1),red],
           [((2,2),1),red],
           [((3,1),1),red],
           [((3,2),1),red]
```

G = {[((0,2),3),white],[((1,0),4),white],[((1,1),4),white]}

 $S = \{[((2,1),1),red],[((2,2),1),red],[((3,1),1),red],[((3,2),1),red]\}$


```
G = {
           [((0,2),3), white],
           [((1,0),4),white],
           [((1,1),4),white]
S = {
           [((1,2),2),yellow]
Redundant:
           [((0,2),3),yellow]
           [((1,2),3),yellow]
           [((1,1),3),yellow]
           [((1,1),4),yellow]
           [((1,0),4),yellow]
```

```
G = {[((0,2),3),white],[((1,0),4),white],[((1,1),4),white]}
```

```
S = \{[((1,2),2),yellow]\}
```



```
G = {
          [((0,2),3), white],
          [((1,0),4),white]
Redundant:
          [((1,1),3),white]
Others don't generalize S
S = {
          [((1,2),2),yellow]
```

```
G = {[((0,2),3),white],[((1,0),4),white]}
```

```
S = \{[((1,2),2),yellow]\}
```



```
G = {
           [((0,2),3),white],
           [((1,1),3),white]
}
Others don't generalize S
S = {
           [((1,2),2),yellow]
}
```

```
G = {[((0,2),3),white],[((1,1),3),white]}
S = {[((1,2),2),yellow]}
```


Using the Result

```
G = {[((0,2),3),white],[((1,1),3),white]}
S = {[((1,2),2),yellow]}
```


Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm

MiniMax without $\alpha\beta$ -pruning

MiniMax with $\alpha\beta$ -pruning

Reordering, MiniMax with $\alpha\beta$ -Pruning

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: MiniMax Algorithm for 3 Players

MiniMax For 3 Players

Exercises: Artificial Intelligence

MiniMax & Constraint Processing: The 4 Houses problem

Constraint Processing

Problem representation:

Constraint Processing: Backtracking

Constraint Processing: Backjumping

Constraint Processing: Backmarking

	1	2	3	4	Backup
Α	0	1	1	1	1
В	0	1	1	1	1
С	1	2	0	2	2
D	1	1	1	1	2

Constraint Processing: Backmarking

Constraint Processing: Backmarking

Constraint Processing: No-goods

- {A=1}: No-good
 - No value for D such that A = D + 1
- {A=2,B=2}: No-good
 - A and B should have different houses
- {A=2,B=3}: Not a no-good: {A=2,B=3,C=4,D=1}
- {A=2,B=3,C=1}: No-good
 - A = D + 1, thus D = 1, but C = 1
- {A=2,B=4}: No-good
 - -A = D + 1, thus D = 1, thus C = 3, but C cannot be 3

Constraint Processing: Intelligent Backtracking

Efficiency

All (One solution)	Opened Nodes	Checks
Standard Backtracking	28 (13)	142 (56)
Backjumping	21 (8)	93 (30)
Backmarking	28 (13)	79 (34)
Intelligent Backtracking	6 (4)	16 (9) + NG

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: The 4 Teachers problem

Problem Optimization

Problem optimization:

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: FORWARD CHECKING

B∈{1,3,4,5} **A=2** $C \in \{1, 2, 3, 4\} \rightarrow D \in \{3, 4, 5\}$ |C-B|>1 |C-B|>1 |C-B|>1 A=2 B=3 A=2 B=1 A=2 B=4 A=2 B=5 D<BV D<BV D<B^V D∈{3,4,5} C∈{1,3,4} D∈{3,4,5} $C \in \{1,3,4\} \quad D \in \{3,4,5\}$ C∈{1,3,4} D∈{3,4,5} C∈{1,3,4} **Fail Fail A**≠1 **B**≠2 A≠B A=2 B=4 A=2 B=5 A=2 B=5 C-B >1 D<B **A**≠C D∈{3} C=1 D∈{3,4} C=3 $D \in \{3,4\}$ C=1 **A**≠**D** C≠D **C**≠5 A=2 B=5 **D≥3** A=2 B=5 A=2 B=5 A=2 B=4 C=1 D=3 C=1 D=3 C=1 D=4C=3 D=4

MiniMax & Constraint Processing: The 4 Houses problem

CONSTRAINT PROCESSING: DYNAMIC SEARCH REARRANGEMENT FC

Dynamic Search Rearrangement FC

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz I

Line Drawing NOT allowed: 3-faced vertices!!

Drawing is locally correct, but is globally impossible. Waltz procedure is local, thus, cannot detect this!

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz II

• Solution 1: Floating cube

• Solution 2: Sitting cube

Exercises: Artificial Intelligence

Constraint Processing II & Waltz: Waltz III

Constraint Processing II & Waltz: Waltz IV

Solution

Solution

We can determine all nodes except for D:

• D can still take 6 interpretations:

Solution

Constraint Processing II & Waltz: Waltz V

Termination Waltz

- Waltz's procedure terminates if
 - No possibilities for some vertex
 OR
 - No reduction of junction piles
- Waltz's procedure does not terminate if
 - Only non-empty piles

AND

Reduction of piles possible

BUT

- Piles are finite ⇒ Number of iterations finite
- ⇒ Waltz's procedure terminates

Planning & Logic: Blocks world

Establishes

Threatens

Before constraint: B(x,y)

Threatens

Before constraint: B(x,y)

Establishes

Threatens

Before constraint: B(x,y)

Are the before constraints satisfiable?

$$\begin{array}{c} \text{YES:} \\ \longrightarrow \text{O31} \longrightarrow \text{O32} \longrightarrow \text{O33} \longrightarrow \end{array}$$

Planning & Logic: Buying milk

STRIPS

Are the before constraints satisfiable?

$$\longrightarrow 01 \longrightarrow 02 \longrightarrow 03 \longrightarrow 05 \longrightarrow 04 \longrightarrow$$

Planning & Logic: English to Logic

 Not all students take both history and biology $\neg \forall x [student(x) \Rightarrow takes(x,hist) \land takes(x,bio)]$ \Leftrightarrow [A \Rightarrow B \Leftrightarrow \neg A \vee B] $\neg \forall x [\neg [student(x)] \lor [takes(x,hist) \land takes(x,bio)]]$ $\Leftrightarrow [\neg \forall x (F) \Leftrightarrow \exists x (\neg F)]$ $\exists x \neg [\neg [student(x)] \lor [takes(x,hist) \land takes(x,bio)]]$ \Leftrightarrow $[\neg(A \lor B) \Leftrightarrow \neg A \land \neg B], [\neg(A \land B) \Leftrightarrow \neg A \lor \neg B]$ $\exists x [student(x) \land [\neg takes(x,hist) \lor \neg takes(x,bio)]]$

No person likes a smart vegetarian

$$\forall x \ \forall y \ [person(x) \land vegetarian(y) \land smart(y) \Rightarrow \neg likes(x,y)] \\ \Leftrightarrow [A \Rightarrow B \Leftrightarrow \neg A \lor B] \\ \forall x \ \forall y \ [\neg [person(x) \land vegetarian(y) \land smart(y)] \lor \neg likes(x,y)] \\ \Leftrightarrow [\neg A \lor \neg B \Leftrightarrow \neg (A \land B)] \\ \forall x \ \forall y \ \neg [person(x) \land vegetarian(y) \land smart(y) \land likes(x,y)] \\ \Leftrightarrow [\forall x \ \neg (F) \Leftrightarrow \neg \exists x \ (F)] \\ \neg \ \exists x \ \exists y \ [person(x) \land vegetarian(y) \land smart(y) \land likes(x,y)]$$

• There is a woman who likes all men who are not vegetarians.

 $\exists x[woman(x) \land [\forall y [man(y) \land \neg vegetarian(y) \Rightarrow likes(x,y)]]]$

 The best score in history was better than the best score in biology.

 $\forall x \ \forall y \ [bestscore(hist,x) \land bestscore(bio,y) \Rightarrow better(x,y)]$

Every person who dislikes all vegetarians is smart.

```
\forall x [person(x) \land [\forall y [vegetarian(y) \Rightarrow \neg likes(x,y)]] \Rightarrow smart(x)]
```

 There is a barber who shaves all men in town who do not shave themselves.

```
\exists x \, [barber(x) \land [\forall y \, [townsman(y) \land \neg shaves \, (y,y) \Rightarrow shaves(x,y)]]] \\ \Leftrightarrow \\ \exists x \, [barber(x) \land [\forall y \, [\neg [townsman(y) \land \neg shaves \, (y,y)] \lor shaves(x,y)]]] \\ \Leftrightarrow \\ \exists x \, [barber(x) \land [\forall y \, \neg [townsman(y) \land \neg shaves \, (y,y) \land \neg shaves(x,y)]]] \\ \Leftrightarrow \\ \exists x \, [barber(x) \land [\neg \, \exists y \, [townsman(y) \land \neg shaves \, (y,y) \land \neg shaves(x,y)]]]
```

 No person likes a professor unless the professor is smart.

```
\forall x \ \forall y \ [person(x) \land professor(y) \Rightarrow [likes(x,y) \Rightarrow smart(y)]] \Leftrightarrow \forall x \ \forall y \ [person(x) \land professor(y)] \Rightarrow [\neg likes(x,y) \lor smart(y)]] \Leftrightarrow \forall x \ \forall y \ [\neg [person(x) \land professor(y)] \lor [\neg likes(x,y) \land \neg smart(y)]] \Leftrightarrow \forall x \ \forall y \ [\neg [person(x) \land professor(y)] \lor \neg [likes(x,y) \land \neg smart(y)]] \Leftrightarrow \forall x \ \forall y \ \neg [person(x) \land professor(y) \land likes(x,y) \land \neg smart(y)] \Leftrightarrow \neg \ \exists x \ \exists y \ [person(x) \land professor(y) \land likes(x,y) \land \neg smart(y)]
```

Only one person failed both history and biology.

 $\exists !x \ student(x) \land failed(x,hist) \land failed(x,bio)$

Note that: $\exists !x \ p(x) \Leftrightarrow \exists x \ p(x) \land [\forall y \ [p(y) \Rightarrow x=y]]$

 Politicians can fool some of the people all the time, and they can fool all of the people some of the time, but they can't fool all the people all of the time.

```
\forall x \text{ [politician(x)} \Rightarrow [\exists y \text{ people(y)} \land [\forall t \text{ time(t)} \Rightarrow \text{fool(x,y,t)}]]
 \forall x \text{ [politician(x)} \Rightarrow [\exists t \text{ time(t)} \land [\forall y \text{ people(y)} \Rightarrow \text{fool(x,y,t)}]]
 \forall x \text{ [politician(x)} \Rightarrow \neg [\forall y \forall t \text{ [people(y)} \land \text{ time(t)}] \Rightarrow \text{fool(x,y,t)}]]
```

Planning & Logic: And-Or-If

 One more outburst like that and you are in contempt of court.

outburst \Rightarrow court

NOT: outburst \land court

Either the Red Sox win or I'm out ten dollars.

 $redSoxWin \Leftrightarrow \neg outTenDollars$

NOT: redSoxWin \vee outTenDollars

Maybe I'll come to the party and maybe I won't.

maybeComeToParty ∨ ¬maybeComeToParty

NOT: maybeComeToParty $\land \neg$ maybeComeToParty

Planning & Logic: Weird Logic

- I don't jump off the Empire State Building implies if
 I jump off the Empire State Building, then I float
 safely to the ground.
 - Translating the meaning of the sentence is not possible

```
¬jumpESB ⇒ [jumpESB ⇒ floatTTGround] ⇔
¬jumpESB ⇒ [¬jumpESB ∨ floatTTGround] ⇔
jumpESB ∨ ¬jumpESB ∨ floatTTGround
```

Problem & Solution

- It is not the case that if you attempt this exercise you will get an F. Therefore, you will attempt this exercise.
 - Translating the meaning of the sentence is not possible

```
\neg[attempt \Rightarrow getF] \Rightarrow attempt \Leftrightarrow
\neg[\neg attempt \lor getF] \Rightarrow attempt \Leftrightarrow
\neg attempt \lor getF \lor attempt
```

Exercises: Artificial Intelligence

Automated Reasoning: Good to walk

- We assume that it is not good to walk:
 - false ← walk
- Given:
 - raining ∨ snowing ∨ dry (← true)
 - warm (← true)
 - false ← raining
 - false ← snowing
 - walk ← nice
 - nice ← dry ∧ warm

Exercises: Artificial Intelligence

Automated Reasoning: MGU

MGU: {x/f(A), w/f(A) , y/A}

Result: p(f(A), f(A), g(z, A))

- What is the m.g.u. of: p(f(y), w, g(z, y)) = p(x, x, g(z, A))
 - Init: p(f(y), w, g(z, y)) = p(x, x, g(z, A))
 - Case 5: f(y) = x, w = x, g(z,y) = g(z,A)
 - Case 1: x = f(y), w = x, g(z,y) = g(z,A)
 - Case 4: x = f(y), w = f(y), g(z,y) = g(z,A)
 - Case 5: x = f(y), w = f(y), z = z, y = A
 - Case 2: x = f(y), w = f(y), y = A
 - Case 4: x = f(A), w = f(A), y = A

- What is the m.g.u. of: p(A,x,f(g(y))) = p(z,f(z),f(A))
 - Init: p(A,x,f(g(y))) = p(z,f(z),f(A))
 - Case 5: A = z, x = f(z), f(g(y)) = f(A)
 - Case 1: z = A, x = f(z), f(g(y)) = f(A)
 - Case 4: z = A, x = f(A), f(g(y)) = f(A)
 - Case 5: z = A, x = f(A), g(y) = A
 - Case 5: stop := true

- What is the m.g.u. of: q(x,x) = q(y,f(y))
 - Init: q(x,x) = q(y,f(y))
 - Case 5: x = y, x = f(y)
 - Case 4: x = y, y = f(y)
 - Case 3: stop := true

MGU: {x/g(f(a),f(a)), u/f(a), v/f(a)}

Result: f(g(f(a),f(a)),g(f(a),f(a)))

- What is the m.g.u. of: f(x,g(f(a),u)) = f(g(u,v),x)
 - Init: f(x,g(f(a),u)) = f(g(u,v),x)
 - Case 5: x = g(u,v), g(f(a),u) = x
 - Case 4: x = g(u,v), g(f(a),u) = g(u,v)
 - Case 5: x = g(u,v), f(a) = u, u = v
 - Case 1: x = g(u,v), u = f(a), u = v
 - Case 4: x = g(f(a), v), u = f(a), f(a) = v
 - Case 1: x = g(f(a), v), u = f(a), v = f(a)
 - Case 4: x = g(f(a), f(a)), u = f(a), v = f(a)

Exercises: Artificial Intelligence

Automated Reasoning: Resolution

- Assumption: Peter has no mother-in-law
 - false ← mother-in-law(x,Peter)
- Given:
 - mother-in-law(x,y) ← mother(x,z) \land married(z,y)
 - mother(x,y) ← female(x) \land parent(x,y)
 - female(An) (← true)
 - parent(An, Maria) (← true)
 - married(Maria,Peter) (← true)

- false ← mother-in-law(x,Peter)
 - mother-in-law(x',y') ← mother(x',z') \land married(z',y')
 - $-\{x'/x, y'/Peter\}$
- false ← mother(x,z') ∧ married(z',Peter)

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
 - mother(x',y') ← female(x') \land parent(x',y')
 - $-\{x'/x, y'/z'\}$
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)
 - female(An)
 - $-\{x/An\}$
- false ← parent(An,z') ∧ married(z',Peter)

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)
- false ← parent(An,z') ∧ married(z',Peter)
 - parent(An, Maria)
 - {z'/Maria}
- false ← married(Maria,Peter)

 $\{x/An\}$

- false ← mother-in-law(x,Peter)
- false ← mother(x,z') ∧ married(z',Peter)
- false ← female(x) ∧ parent(x,z') ∧ married(z',Peter)
- false ← parent(An,z') ∧ married(z',Peter)
- false ← married(Maria,Peter)
 - married(Maria,Peter)
- false ← true (□)

- Assumption: "There is no valid colouring"
 - $-false \leftarrow nb(b,g),nb(g,n),nb(n,b)$
- Given:
 - $-c(R) (\leftarrow true)$
 - $-c(G) (\leftarrow true)$
 - $-c(B) (\leftarrow true)$
 - $nb(x,y) \leftarrow c(x), c(y), diff(x,y)$
 - diff/2 succeeds when arguments cannot be unified

- false ← nb(b,g) ∧ nb(g,n) ∧ nb(n,b)
 nb(x',y') ← c(x'), c(y'), diff(x',y')
 - $-\{x'/b,y'/g\}$
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
 - $-\operatorname{nb}(x',y') \leftarrow c(x'), c(y'), \operatorname{diff}(x',y')$
 - $-\{x'/g,y'/n\}$
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
 - $-\operatorname{nb}(x',y') \leftarrow c(x'), c(y'), \operatorname{diff}(x',y')$
 - $-\{x'/n,y'/b\}$
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
 - -c(R)
 - $-\{b/R\}$
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)
 - -c(G)
 - $-\{g/G\}$
- false ← diff(R,G) ∧ c(n) ∧ diff(G,n) ∧ diff(n,R)

- false ← nb(b,g) ∧ nb(g,n) ∧ nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)
- false \leftarrow diff(R,G) \land c(n) \land diff(G,n) \land diff(n,R)
 - -c(B)
 - $-\{n/B\}$
- false ← diff(R,G) ∧ diff(G,B) ∧ diff(B,R)

{b/R,g/G,n/B}

- false ← nb(b,g) ∧ nb(g,n) ∧ nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)
- false ← diff(R,G) ∧ c(n) ∧ diff(G,n) ∧ diff(n,R)
- false ← diff(R,G) ∧ diff(G,B) ∧ diff(B,R)
 - Built-in diff/2: succeeds for different arguments
- false ← true (□)

Alternative solution

{**b/B**,g/G,**n/R**}

- false \leftarrow nb(b,g) \land nb(g,n) \land nb(n,b)
- false ← c(b) ∧ c(g) ∧ diff(b,g) ∧ nb(g,n) ∧ nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff($\underline{\mathbf{B}}$,g) \land c(n) \land diff(g,n) \land diff(n, $\underline{\mathbf{B}}$)
- false ← diff(<u>B</u>,G) ∧ c(n) ∧ diff(G,n) ∧ diff(n,<u>B</u>)
- false \leftarrow diff($\underline{\mathbf{B}}$,G) \wedge diff(G, $\underline{\mathbf{R}}$) \wedge diff($\underline{\mathbf{R}}$, $\underline{\mathbf{B}}$)
 - Built-in diff/2: succeeds for different arguments
- false ← true (□)

Or consistency = Continue search

- false ← nb(b,g) ∧ nb(g,n) ∧ nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land nb(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land nb(n,b)
- false \leftarrow c(b) \land c(g) \land diff(b,g) \land c(n) \land diff(g,n) \land diff(n,b)
- false \leftarrow c(g) \land diff(R,g) \land c(n) \land diff(g,n) \land diff(n,R)
- false \leftarrow diff(R, \mathbb{R}) \wedge c(n) \wedge diff(\mathbb{R} ,n) \wedge diff(n,R)
- false ← diff(R,<u>R</u>) ∧ diff(<u>R</u>,B) ∧ diff(B,R)
 - diff(R,R) is false
- false ← false

Exercises: Artificial Intelligence

Automated Reasoning: Predicate Resolution

- Formula in implicative normal form:
 - $\forall x p(x) \vee \neg r(f(x))$
 - $p(x) \leftarrow r(f(x))$
 - $\forall x \forall y r(f(x)) \vee r(f(f(y)))$
 - r(f(x)) ∨ r(f(f(y))) (← true)
- Assumption
 - $\neg [\forall x \exists y p(f(x)) \land r(y)] \Leftrightarrow \exists x \forall y \neg [p(f(x)) \land r(y)] \Leftrightarrow$
 - $\forall y \neg [p(f(A)) \land r(y)] \Leftrightarrow false \leftarrow p(f(A)) \land r(y)$

- false ← p(f(A)) ∧ r(y)
 p(x') ← r(f(x'))
 {x'/f(A)}
- false ← r(f(f(A))) ∧ r(y)

- false $\leftarrow p(f(A)) \land r(y)$
- false ← r(f(f(A))) ∧ r(y)
 - Factoring: $mgu(r(f(f(A))) = r(y)) = {y/f(f(A))}$
- false ← r(f(f(A))) ∧ r(f(f(A)))

 ${y/f(f(A))}$

- false $\leftarrow p(f(A)) \land r(y)$
- false ← r(f(f(A))) ∧ r(y)
- false ← r(f(f(A))) ∧ r(f(f(A)))
 - $r(f(x')) \vee r(f(f(y'))) (\leftarrow true)$
 - Factoring: $mgu(r(f(x')) = r(f(f(y')))) = \{x'/f(y')\}$
 - $r(f(f(y'))) (\leftarrow true)$
 - $-\{y'/A\}$
- false ← true (□)

Exercises: Artificial Intelligence

Automated Reasoning: Movable Objects

Solution: Movable Objects

- English to logic
- Logic to implicative normal form
 - Model
 - Assumption to prove
- Apply resolution
 - Derive inconsistency:
 - Model + negated assumption

Solution: Model to logic

- If all movable objects are blue, then all non-movable objects are green.
 - $-(∀x mov(x) \rightarrow blue(x)) \rightarrow (∀y \neg mov(y) \rightarrow green(y))$
- If there exists a non-movable object, then all movable objects are blue.
 - $-(\exists x \neg mov(x)) \rightarrow (\forall y mov(y) \rightarrow blue(y))$
- D is a non-movable object.
 - $-\neg mov(D)$

Solution: Implicative normal form

- $(\forall x \text{ mov}(x) \rightarrow \text{blue}(x)) \rightarrow (\forall y \neg \text{mov}(y) \rightarrow \text{green}(y))$
 - mov(A) ∨ mov(y) ∨ green(y) (← true) mov(y) ∨ green(y) ← blue(A)
- $(\exists x \neg mov(x)) \rightarrow (\forall y mov(y) \rightarrow blue(y))$
 - mov (x) \vee blue(y) \leftarrow mov(y)
- ¬mov(D)
 - false \leftarrow mov(D)
- Negated assumption: $\neg \exists x \ green(x) \leftrightarrow \forall x \ \neg green(x)$
 - false \leftarrow green(x)

Solution: Implicative normal form

- Prove using resolution:
 - Assumption: false \leftarrow green(x)
- Model:
 - $\text{mov}(A) \vee \text{mov}(y) \vee \text{green}(y) (\leftarrow \text{true})$
 - $mov(y) \lor green(y) \leftarrow blue(A)$
 - $-\operatorname{mov}(x) \vee \operatorname{blue}(y) \leftarrow \operatorname{mov}(y)$
 - false \leftarrow mov(D)

Solution: Resolution

```
mov(x) \lor blue(y) \leftarrow mov(y)
                                                                           false \leftarrow mov(D)
                        blue(y) \leftarrow mov(y)
                                                                           mov(y1) \vee green(y1) \leftarrow blue(A)
               mov(y1) \vee green(y1) \leftarrow mov(A)
                                                                          mov(A) \vee mov(y2) \vee green(y2)
mov(y1) \vee green(y1) \vee mov(y2) \vee green(y2) \leftarrow true
                mov(y1) \vee green(y1) \leftarrow true
                                                                           false \leftarrow mov(D)
                                                                           false \leftarrow green(x)
                        green(D) \leftarrow true
                           false ← true
```

Exercises: Artificial Intelligence

Automated Reasoning: Politicians

Problem: Politicians

Given:

- If a poor politician exists, then all politicians are male.
- If people are friends with a politician, then this politician is poor and female.
- Lazy people have no friends.
- People are either male or female, but not both.
- If Joel is not lazy, then he is a politician.

Proof by resolution:

- There exists no person who is a friend of Joel.

Solution: English to logic

- $(\exists x \text{ pol}(x) \land \text{poor}(x)) \rightarrow (\forall y \text{ pol}(y) \rightarrow \text{male}(y)).$
- $\forall x (pol(x) \land (\exists y fr(y,x))) \rightarrow poor(x) \land fem(x).$
- $\forall x | \text{lazy}(x) \rightarrow (\neg(\exists y | \text{fr}(y,x))).$
- $\forall x (male(x) \lor fem(x)) \land (\neg(male(x) \land fem(x))).$
- \neg lazy(Joel) \rightarrow pol(Joel).

Solution: Implicative normal form

- male(y) \leftarrow pol(x) \land poor(x) \land pol(y)
- $poor(x) \leftarrow pol(x) \land fr(y,x)$
- $fem(x) \leftarrow pol(x) \land fr(y,x)$
- false \leftarrow lazy(x) \wedge fr(y,x)
- male(x) \vee fem(x)
- false \leftarrow male(x) \land fem(x)
- lazy(Joel) v pol(Joel)

Solution: Implicative normal form

• Prove:

- There exists no person who is a friend of Joel
 - $\neg \exists x \ fr(x,Joel) \leftrightarrow \forall x \ \neg fr(x,Joel)$
- Negate assumption:
 - There exists a person who is a friend of Joel
 - ∃x fr(x,Joel)
 - Call the friend S
 - fr(S,Joel)

Solution: Implicative normal form

- male(y) \leftarrow pol(x) \land poor(x) \land pol(y)
- $poor(x) \leftarrow pol(x) \land fr(y,x)$
- $fem(x) \leftarrow pol(x) \wedge fr(y,x)$
- false \leftarrow lazy(x) \land fr(y,x)
- male(x) \vee fem(x)
- false ← male(x) ∧ fem(x)
- lazy(Joel) v pol(Joel)
- fr(S,Joel)

- male(y1) ← pol(x1) ∧ poor(x1) ∧ pol(y1)
 - poor(x2) \leftarrow pol(x2) \land fr(y2,x2)
 - RESOLUTION: {x2/x1}
- male(y1) ← pol(x1) ∧ pol(y1) ∧ fr(y2,x1)
 - FACTORING: {y1/x1}
- male(x1) ← pol(x1) ∧ fr(y2,x1)
 - Politicians who have friends must be male'

- male(x1) ← pol(x1) ∧ fr(y2,x1)
 - false \leftarrow male(x3) \land fem(x3)
 - RESOLUTION: {x3/x1}
- false ← pol(x1) ∧ fr(y2,x1) ∧ fem(x1)
 - Politicians who have friends cannot be female'

- false ← pol(x1) ∧ fr(y2,x1) ∧ fem(x1)
 - <u>fem(x4)</u> ← pol(x4) \wedge fr(y4,x4)
 - RESOLUTION: {x4/x1}
- false ← pol(x1) ∧ fr(y2,x1) ∧ pol(x1) ∧ fr(y4,x1)
 - FACTORING: {}
- false ← pol(x1) ∧ <u>fr(y2,x1)</u> ∧ <u>fr(y4,x1)</u>
 - FACTORING: {y4/y2}
- false ← pol(x1) ∧ fr(y2,x1)
 - 'Politicians do not have friends'

- false ← pol(x1) ∧ fr(y2,x1)
 - lazy(Joel) v pol(Joel)
 - RESOLUTION: {x1/Joel}
- lazy(Joel) ← fr(y2,Joel)
 - If Joel has friend, then he must be lazy'

- <u>lazy(Joel)</u> ← fr(y2,Joel)
 - false ← lazy(x5) ∧ fr(y5,x5)
 - RESOLUTION: {x5/Joel}
- false ← <u>fr(y2,Joel)</u> ∧ <u>fr(y5,Joel)</u>
 - FACTORING: {y5/y2}
- false ← fr(y2,Joel)
 - 'Joel does not have any friends'

- false ← <u>fr(y2,Joel)</u>
 - fr(S,Joel)
 - RESOLUTION: {y2/\$}
- false ← true