Today

- Algorithms:
- Derived quantities
- Bootstrapped confidence bands
- Bootstrapped prediction bands
- Bootstrapped p-value

General principles

- Illustrated with linear model
- But generalizes to any model

Derived quantities

- Any quantity that is a function of the parameters
- e.g. y|x=10 in the linear model Value of y given x = 10: $y = fn(\beta_0, \beta_1, x=10) = \beta_0 + 10\beta_1$
- Very common that interesting scientific questions are addressed by a derived quantity

Derived quantities

- To do inference:
- Derived quantity is the sample statistic
- Bootstrap its sampling distribution
 - already have bootstrapped samples of parameter values. Reuse them!
 - derived quantity sampling distribution = fn(parameter bootstrap samples)

Example: uncertainty of line

- A set of derived quantities
- e.g. y|x for x in (0, 25)

"y bar" is mean(y) or expected value of y

Prediction interval

- Uncertainty of a predicted new data point
- Need to propagate uncertainty, 2 components:
- 1) Estimation uncertainty
- 2) Uncertainty from data generating process

Confidence vs prediction intervals

CI: uncertainty in mean response (estimation uncertainty)

Bootstrap prediction interval

- Prediction uncertainty for new y
- bootstrap_prediction_interval.md
- Powerful idea: estimate uncertainty by
 - repeatedly
 - simulate training the model on a sample (parameter uncertainty)
 - simulate generating data from the trained model (data generating process)

Bootstrap prediction interval

e.g. prediction band for y = fn(x)

Algorithm

repeat very many times

sample from the error distribution of DGP
simulate new y-values from original estimated parameters of model
train the model (estimate parameters: beta_0, beta_1, sigma_e)
keep: simulate new data y|x using estimated parameters

calculate quantiles of the generated data distributions plot quantiles

simulate generating data from the fitted model

simulate training the model on a sample

define a grid of new x values to predict y

Classical prediction intervals

Special case: linear model

Bootstrapped p-value

Learning goals

- Understand p-values by understanding the underlying sampling algorithm
- Further understand how the sampling distribution is the basis for frequentist inference
- Understand how bootstrap algorithms mimic the sampling distribution algorithm
- Formulate a bootstrap algorithm and translate it to code

Parametric bootstrap for H_0 : $\beta_1 = 0$

Combine these concepts (pseudocode first):

Definition of a p-value

The probability of a sample statistic as large or larger than the one observed given that some hypothesis is true

Basic parametric bootstrap algorithm

repeat very many times

sample from the error distribution create new y-values from the estimated parameters and errors train the linear model to estimate the parameters plot sampling distribution (histogram) of the parameter estimates

plug in: create simulated data from model