

王石嵘

January 23, 2020

${\bf Contents}$

3	The Hartree-Fock Approximation		
	3.1	The E	IF Equations
		3.1.1	The Coulomb and Exchange Operators
		3.1.2	The Fock Operator
			Ex 3.1
	3.2	Deriva	ation of the HF Equations
		3.2.1	Functional Variation
		3.2.2	Minimization of the Energy of a Single Determinant
			Ex 3.2
			Ex 3.3
		3.2.3	The Canonical HF Equations
	3.3	Interp	pretation of Solutions to the HF Equations
		3.3.1	Orbital Energies and Koopmans' Theorem
			Ex 3.4
			Ex 3.5
			Ex 3.6
		3.3.2	Brillouin's Theorem
		3.3.3	The HF Hamiltonian
			Ex 3.7
			Ex 3.8
	3.4	Restri	cted Closed-shell HF: The Roothaan Equations
		3.4.1	Closed-shell HF: Restricted Spin Orbitals
			Ex 3.9

3 The Hartree-Fock Approximation

3.1 The HF Equations

3.1.1 The Coulomb and Exchange Operators

3.1.2 The Fock Operator

Ex 3.1

$$\left\langle \chi_{i} \left| \hat{f} \left| \chi_{j} \right\rangle = \left\langle \chi_{i}(1) \left| h(1) + \sum_{b} \left[\mathscr{J}_{b}(1) - \mathscr{K}_{b}(1) \right] \right| \chi_{j}(1) \right\rangle$$

$$= \left[i |h| j \right] + \sum_{b \neq j} \left[\left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(2) \chi_{j}(1) \right\rangle - \left\langle \chi_{i}(1) \chi_{b}(2) \left| \frac{1}{r_{12}} \left| \chi_{b}(1) \chi_{j}(2) \right\rangle \right] \right]$$

$$= \left[i |h| j \right] + \sum_{b \neq j} \left(\left[i j |bb \right] - \left[i b |bj \right] \right)$$

$$(3.1.1)$$

Since

$$[ij|jj] - [ij|jj] = 0 (3.1.2)$$

we have

$$\left\langle \chi_{i} \middle| \hat{f} \middle| \chi_{j} \right\rangle = \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left(\left\langle ib \middle| jb \right\rangle - \left\langle ib \middle| bj \right\rangle \right)$$
$$= \left\langle i \middle| h \middle| j \right\rangle + \sum_{b} \left\langle ib \middle\| jb \right\rangle \tag{3.1.3}$$

3.2 Derivation of the HF Equations

3.2.1 Functional Variation

3.2.2 Minimization of the Energy of a Single Determinant

Ex 3.2 Take the complex conjugate of

$$\mathscr{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab})$$
(3.2.1)

we have

$$\mathscr{L}[\{\chi_{\alpha}\}]^* = E_0[\{\chi_{\alpha}\}]^* - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([a|b]^* - \delta_{ab}^*)$$
(3.2.2)

i.e.

$$\mathcal{L}[\{\chi_{\alpha}\}] = E_0[\{\chi_{\alpha}\}] - \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^*([b|a] - \delta_{ab})$$
(3.2.3)

thus

$$\sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}([a|b] - \delta_{ab}) = \sum_{a}^{N} \sum_{b}^{N} \varepsilon_{ba}^{*}([b|a] - \delta_{ab}) = \sum_{b}^{N} \sum_{a}^{N} \varepsilon_{ab}^{*}([a|b] - \delta_{ba})$$
(3.2.4)

٠.

$$\varepsilon_{ba} = \varepsilon_{ab}^* \tag{3.2.5}$$

Ex 3.3 :

$$[\delta \chi_a | h | \chi_a] = [\chi_a | h | \delta \chi_a]^* \tag{3.2.6}$$

$$[\chi_a \delta \chi_a | \chi_b \chi_b] = [\delta \chi_a \chi_a | \chi_b \chi_b]^*$$
(3.2.7)

$$[\chi_a \chi_a | \chi_b \delta \chi_b] = [\chi_a \chi_a | \delta \chi_b \chi_b]^*$$
(3.2.8)

$$[\chi_a \chi_b | \chi_b \delta \chi_a] = [\chi_b \delta \chi_a | \chi_a \chi_b] = [\delta \chi_a \chi_b | \chi_b \chi_a]^*$$
(3.2.9)

$$[\chi_a \chi_b | \delta \chi_b \chi_a] = [\delta \chi_b \chi_a | \chi_a \chi_b] = [\chi_a \delta \chi_b | \chi_b \chi_a]^*$$
(3.2.10)

٠.

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] + [\chi_a \chi_a | \delta \chi_b \chi_b])$$

$$- \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_b | \chi_b \chi_a] + [\chi_a \chi_b | \delta \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.11)

while

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_a | \delta \chi_b \chi_b] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_b | \delta \chi_a \chi_a] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_a | \chi_b \chi_b]$$
(3.2.12)

$$\sum_{a}^{N} \sum_{b}^{N} [\chi_a \chi_b | \delta \chi_b \chi_a] = \sum_{b}^{N} \sum_{a}^{N} [\chi_b \chi_a | \delta \chi_a \chi_b] = \sum_{a}^{N} \sum_{b}^{N} [\delta \chi_a \chi_b | \chi_b \chi_a]$$
(3.2.13)

thus

$$\delta E_0 = \sum_{a}^{N} [\delta \chi_a | h | \chi_a] + \sum_{a}^{N} \sum_{b}^{N} ([\delta \chi_a \chi_a | \chi_b \chi_b] - [\delta \chi_a \chi_b | \chi_b \chi_a]) + \text{complex conjugates}$$
(3.2.14)

3.2.3 The Canonical HF Equations

3.3 Interpretation of Solutions to the HF Equations

3.3.1 Orbital Energies and Koopmans' Theorem

Ex 3.4

$$f_{ij} = \langle \chi_i \mid f \mid \chi_j \rangle = \langle i \mid h \mid j \rangle + \sum_b \langle ib \parallel jb \rangle$$
 (3.3.1)

$$f_{ji}^* = \langle \chi_j | f | \chi_i \rangle^* = \langle j | h | i \rangle^* + \sum_b \langle jb \| ib \rangle^*$$

$$= \langle i | h | j \rangle + \sum_b \langle ib \| jb \rangle$$

$$= f_{ij}$$
(3.3.2)

thus the Fock operator is Hermitian.

Ex 3.5

$$\begin{split} & \operatorname{IP} = ^{N-2} E - E_{0} \\ & = \sum_{a \neq c,d} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a \neq c,d} \sum_{b \neq c,d} \langle ab \parallel ab \rangle - \left[\sum_{a} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle \right] \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \frac{1}{2} \sum_{a \neq c,d} \langle ac \parallel ac \rangle - \frac{1}{2} \sum_{a \neq c,d} \langle ad \parallel ad \rangle - \frac{1}{2} \sum_{b \neq c,d} \langle cb \parallel cb \rangle - \frac{1}{2} \sum_{b \neq c,d} \langle db \parallel db \rangle - \langle cd \parallel cd \rangle \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \sum_{a \neq c,d} \langle ac \parallel ac \rangle - \sum_{a \neq c,d} \langle ad \parallel ad \rangle - \langle cd \parallel cd \rangle \\ & = - \langle c \mid h \mid c \rangle - \langle d \mid h \mid d \rangle - \left(\sum_{a \neq c} \langle ac \parallel ac \rangle - \langle dc \parallel dc \rangle \right) - \left(\sum_{a \neq d} \langle ad \parallel ad \rangle - \langle cd \parallel cd \rangle \right) - \langle cd \parallel cd \rangle \\ & = - \varepsilon_{c} - \varepsilon_{d} + \langle cd \mid cd \rangle - \langle cd \mid dc \rangle \end{split}$$

Ex 3.6

$${}^{N}E_{0} - {}^{N+1}E^{r} = \sum_{a} \langle a \mid h \mid a \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle$$

$$- \left[\sum_{a} \langle a \mid h \mid a \rangle + \langle r \mid h \mid r \rangle + \frac{1}{2} \sum_{a} \sum_{b} \langle ab \parallel ab \rangle + \frac{1}{2} \sum_{b} \langle rb \parallel rb \rangle + \frac{1}{2} \sum_{a} \langle ar \parallel ar \rangle \right]$$

$$= - \langle r \mid h \mid r \rangle - \frac{1}{2} \sum_{b} \langle rb \parallel rb \rangle - \frac{1}{2} \sum_{b} \langle br \parallel br \rangle$$

$$= - \langle r \mid h \mid r \rangle - \sum_{b} \langle rb \parallel rb \rangle$$

$$(3.3.4)$$

3.3.2 Brillouin's Theorem

3.3.3 The HF Hamiltonian

Ex 3.7 Suppose \mathcal{H}_0 commutes with \mathcal{P}_n ,

$$\mathcal{H}_{0} |\Psi_{0}\rangle = \mathcal{H}_{0} \frac{1}{\sqrt{N!}} \sum_{n}^{N!} (-1)^{p_{n}} \mathcal{P}_{n} \left\{ \sum_{i}^{N} f(i) \chi_{j}(1) \cdots \chi_{k}(N) \right\}$$

$$= \frac{1}{\sqrt{N!}} \sum_{n}^{N!} (-1)^{p_{n}} \mathcal{P}_{n} \left\{ (\varepsilon_{j} + \cdots + \varepsilon_{k}) \chi_{j}(1) \cdots \chi_{k}(N) \right\}$$

$$= \sum_{n} \varepsilon_{n}$$
(3.3.5)

Now we show \mathcal{H}_0 commutes with \mathcal{P}_n , for example, \mathcal{P}_{ab}

$$\mathscr{P}_{ab}\mathscr{H}_0 = \mathscr{P}_{ab}(\dots + f(a) + \dots + f(b) + \dots) = (\dots + f(b) + \dots + f(a) + \dots) \mathscr{P}_{ab} = \mathscr{H}_0\mathscr{P}_{ab} \quad (3.3.6)$$

Ex 3.8

$$\mathcal{V} = \sum_{i}^{N} \sum_{j>i}^{N} \mathcal{O}_2 - \sum_{i}^{N} \sum_{b}^{N} [\mathcal{G}_b(i) - \mathcal{K}_b(i)]$$
(3.3.7)

thus

$$\langle \Psi_{0} | \mathcal{V} | \Psi_{0} \rangle = \sum_{i}^{N} \sum_{j>i}^{N} \langle \Psi_{0} | \mathscr{O}_{2} | \Psi_{0} \rangle - \sum_{i}^{N} \sum_{b}^{N} [\langle \Psi_{0} | \mathscr{G}_{b}(i) - \mathscr{K}_{b}(i) | \Psi_{0} \rangle]$$

$$= \frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} \langle ab \parallel ab \rangle - \sum_{i}^{N} \sum_{b}^{N} [\langle ib \mid ib \rangle - \langle ib \mid bi \rangle]$$

$$= -\frac{1}{2} \sum_{a}^{N} \sum_{b}^{N} \langle ab \parallel ab \rangle$$
(3.3.8)

3.4 Restricted Closed-shell HF: The Roothaan Equations

3.4.1 Closed-shell HF: Restricted Spin Orbitals

Ex 3.9

$$\varepsilon_{i} = (i|h|i) + \sum_{b}^{N} (\langle ib | ib \rangle - \langle ib | bi \rangle)
= (i|h|i) + \sum_{c}^{N/2} (\langle ic | ic \rangle - \langle ic | ci \rangle) + \sum_{\bar{c}}^{N/2} (\langle i\bar{c} | i\bar{c} \rangle - \langle i\bar{c} | \bar{c}i \rangle)$$
(3.4.1)

Assume χ_j has α spin, since assuming α or β is identical

$$\varepsilon_{i} = (i|h|i) + \sum_{c}^{N/2} \left[(ic|ic) \langle \alpha | \alpha \rangle \langle \alpha | \alpha \rangle - (ic|ci) \langle \alpha | \alpha \rangle \langle \alpha | \alpha \rangle \right] + \sum_{c}^{N/2} \left[(ic|ic) \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle - (ic|ci) \langle \alpha | \beta \rangle \langle \beta | \alpha \rangle \right] \\
= (i|h|i) + \sum_{c}^{N/2} \left[2(ic|ic) - (ic|ci) \right] \\
= (i|h|i) + \sum_{c}^{N/2} (2J_{ib} - K_{ib}) \tag{3.4.2}$$

3.4.2 Introduction of a Basis: The Roothaan Equations