Assignment 5: Water Quality in Lakes

Keith Bollt

OVERVIEW

This exercise accompanies the lessons in Hydrologic Data Analysis on water quality in lakes

Directions

- 1. Change "Student Name" on line 3 (above) with your name.
- 2. Work through the steps, creating code and output that fulfill each instruction.
- 3. Be sure to **answer the questions** in this assignment document.
- 4. When you have completed the assignment, **Knit** the text and code into a single HTML file.
- 5. After Knitting, submit the completed exercise (HTML file) to the dropbox in Sakai. Add your last name into the file name (e.g., "A05_Salk.html") prior to submission.

The completed exercise is due on 2 October 2019 at 9:00 am.

Setup

- 1. Verify your working directory is set to the R project file,
- 2. Load the tidyverse, lubridate, and LAGOSNE packages.
- 3. Set your ggplot theme (can be theme_classic or something else)
- 4. Load the LAGOSdata database and the trophic state index csv file we created on 2019/09/27.

```
getwd()
```

options(scipen = 100)

```
## [1] "Z:/Hydrologic_Data_Analysis2/Assignments"
library(tidyverse)
## -- Attaching packages -----
## v ggplot2 3.2.1
                    v purrr
                             0.3.2
## v tibble 2.1.3
                    v dplyr
                             0.8.3
         1.0.0 v stringr 1.4.0
## v tidyr
          1.3.1
## v readr
                    v forcats 0.4.0
## -- Conflicts ------
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
##
      date
library (LAGOSNE)
theme_set(theme_classic())
```

```
#lagosne_get(dest_folder = LAGOSNE:::lagos_path(), overwrite = TRUE)
LAGOSdata <- lagosne_load()</pre>
```

Trophic State Index

5. Similar to the trophic.class column we created in class (determined from TSI.chl values), create two additional columns in the data frame that determine trophic class from TSI.secchi and TSI.tp (call these trophic.class.secchi and trophic.class.tp).

```
LAGOSlocus <- LAGOSdata$locus
LAGOSstate <- LAGOSdata$state
LAGOSnutrient <- LAGOSdata$epi_nutr
LAGOSlocus$lagoslakeid <- as.factor(LAGOSlocus$lagoslakeid)
LAGOSnutrient$lagoslakeid <- as.factor(LAGOSnutrient$lagoslakeid)
LAGOSlocations <- left_join(LAGOSlocus, LAGOSstate, by = "state_zoneid")
LAGOSlocations <-
  within(LAGOSlocations,
         state <- factor(state, levels = names(sort(table(state), decreasing=TRUE))))</pre>
LAGOStrophic <-
  left_join(LAGOSnutrient, LAGOSlocations, by = "lagoslakeid") %>%
  select(lagoslakeid, sampledate, chla, tp, secchi,
         gnis_name, lake_area_ha, state, state_name) %>%
  mutate(sampleyear = year(sampledate),
         samplemonth = month(sampledate),
         season = as.factor(quarter(sampledate, fiscal_start = 12))) %>%
  drop_na(chla:secchi)
levels(LAGOStrophic$season) <- c("Winter", "Spring", "Summer", "Fall")</pre>
LAGOStrophic <-
  mutate(LAGOStrophic,
         TSI.chl = round(10*(6 - (2.04 - 0.68*log(chla)/log(2)))),
         TSI.secchi = round(10*(6 - (log(secchi)/log(2)))), #In R, log is the natural log.
         TSI.tp = round(10*(6 - (\log(48/tp)/\log(2)))),
         trophic.class =
            ifelse(TSI.chl < 40, "Oligotrophic",</pre>
                    ifelse(TSI.chl < 50, "Mesotrophic",</pre>
                           ifelse(TSI.chl < 70, "Eutrophic", "Hypereutrophic"))),</pre>
         trophic.class.secchi =
            ifelse(TSI.secchi < 40, "Oligotrophic",</pre>
                    ifelse(TSI.secchi < 50, "Mesotrophic",</pre>
                           ifelse(TSI.secchi < 70, "Eutrophic", "Hypereutrophic"))),</pre>
         trophic.class.tp =
            ifelse(TSI.tp < 40, "Oligotrophic",</pre>
                    ifelse(TSI.tp < 50, "Mesotrophic",</pre>
                           ifelse(TSI.tp < 70, "Eutrophic", "Hypereutrophic"))))</pre>
```

6. How many observations fall into the four trophic state categories for the three metrics (trophic.class, trophic.class.secchi, trophic.class.tp)? Hint: count function.

```
chlcount <-
  LAGOStrophic %>%
  count(trophic.class, sort = TRUE)
print(chlcount)
## # A tibble: 4 x 2
##
     trophic.class
                        n
##
     <chr>
                     <int>
## 1 Eutrophic
                    41861
## 2 Mesotrophic
                    15413
## 3 Hypereutrophic 14379
## 4 Oligotrophic
                      3298
secchicount <-
  LAGOStrophic %>%
  count(trophic.class.secchi, sort = TRUE)
print(secchicount)
## # A tibble: 4 x 2
     trophic.class.secchi
##
                               n
##
     <chr>>
                           <int>
## 1 Eutrophic
                           28659
## 2 Mesotrophic
                           25083
## 3 Oligotrophic
                           16110
## 4 Hypereutrophic
                            5099
tpcount <-
  LAGOStrophic %>%
  count(trophic.class.tp, sort = TRUE)
print(tpcount)
## # A tibble: 4 x 2
     trophic.class.tp
                           n
     <chr>
##
                      <int>
## 1 Eutrophic
                      24839
## 2 Mesotrophic
                      23023
## 3 Oligotrophic
                       19861
## 4 Hypereutrophic
                       7228
```

7. What proportion of total observations are considered eutrohic or hypereutrophic according to the three different metrics (trophic.class, trophic.class.secchi, trophic.class.tp)?

Which of these metrics is most conservative in its designation of eutrophic conditions? Why might this be?

Note: To take this further, a researcher might determine which trophic classes are susceptible to being differently categorized by the different metrics and whether certain metrics are prone to categorizing trophic class as more or less eutrophic. This would entail more complex code.

Nutrient Concentrations

- 8. Create a data frame that includes the columns lagoslakeid, sampledate, tn, tp, state, and state_name. Mutate this data frame to include sampleyear and samplementh columns as well. Call this data frame LAGOSNandP.
- 9. Create two violin plots comparing TN and TP concentrations across states. Include a 50th percentile line inside the violins.

Which	n states have the highest and lowest median concentrations?
	TN:
	TP:
Which	a states have the highest and lowest concentration ranges?
	TN:
	TP:
	Create two jitter plots comparing TN and TP concentrations across states, with samplementh as the color. Choose a color palette other than the ggplot default.
Which	a states have the most samples? How might this have impacted total ranges from $#9$?
	TN:
	TP:
Which months are sampled most extensively? Does this differ among states?	
	TN:
	TP:
	Create two jitter plots comparing TN and TP concentrations across states, with sampleyear as the color. Choose a color palette other than the ggplot default.
Which years are sampled most extensively? Does this differ among states?	
	TN:
	TP:
Reflection	
12.	What are 2-3 conclusions or summary points about lake water quality you learned through your analysis?
13.	What data, visualizations, and/or models supported your conclusions from 12?
	Did hands-on data analysis impact your learning about water quality relative to a theory-based lesson? If so, how?
15.	How did the real-world data compare with your expectations from theory?
15.	How did the real-world data compare with your expectations from theory?