A Segue from Segways PID controllers

Nathaniel Budijono

SASE Labs UMN

June 18, 2020

Motivation

- Control theory is relevant for all engineering majors
 - Process control for ChemE
 - Robotics for everything else
- PID controllers are ubiquitous in control theory
- Self-balancing stuff are cool

Introduction

• What is control theory?

What is a PID?

A history lesson

An algorithm

$$u(t) = K_p e(t) + K_i \int_0^t e(t')dt' + K_d \frac{de(t)}{dt}$$

(that's actually not that scary)

Let's get tuning!

Go to: https://SASE-Labs-2021.github.io/inverted-pendulum

Cheat Sheet

See this gif

What happens when we increase ...?

Parameter	Rise time	Overshoot	Settling	Steady-	Stability
			time	state	
				error	
K_p	Decrease	Increase	Little	Decrease	Decrease
			change		
Ki	Decrease	Increase	Increase	Eliminate	Decrease
K _d	Little	Decrease	Decrease	Little	Increase
	change			change	

Next steps

- Build something self-balancing with Arduino or MicroPython
- An excuse to learn reinforcement learning or genetic algorithms
 Can you teach a computer to do this?
- Appreciate steering wheels and thermostats a little more
- Share your very own PID!