1. Affine Space

1.1. Overview

Defines affine space A(n; S) over a scheme S and morphisms into it.

1.2. Main Definitions

1.2.1. Affine Space

AffineSpace (n : Type v) (S : Scheme): The affine n-space over S

- Defined as pullback of terminal morphisms from S and Spec $\mathbb{Z}[n]$
- Notation: A(n; S)
- Note: n is an arbitrary index type (e.g., Fin m)

1.2.2. Canonical Structure

AffineSpace.over: Instance making $\mathbb{A}(n;S)$ canonically over S

• hom := pullback.fst

AffineSpace.toSpecMvPoly: Map $\mathbb{A}(n;S) \to \operatorname{Spec} \mathbb{Z}[n]$

• Given by pullback.snd

1.3. Coordinate Functions

1.3.1. Standard Coordinates

AffineSpace.coord: The standard coordinate functions on affine space

- coord i: The *i*-th coordinate function
- · Global sections of the structure sheaf

1.4. Morphisms into Affine Space

1.4.1. Vector of Functions

AffineSpace.homOfVector: Constructs morphism $X \to \mathbb{A}(n; S)$

- Input: Morphism $X \to S$ and n coordinate functions on X
- Output: The corresponding morphism to affine space

1.4.2. Equivalence for Morphisms

AffineSpace.toSpecMvPolyIntEquiv:

- Morphisms $X \to \operatorname{Spec} \mathbb{Z}[n] \simeq n$ -tuples of global sections
- toFun: Extracts coordinates via Γ -Spec adjunction
- invFun: Constructs morphism via evaluation

AffineSpace.homOverEquiv: For X over S

- S-morphisms $X \to \mathbb{A}(n; S) \simeq n$ -tuples of global sections
- Combines pullback structure with toSpecMvPolyIntEquiv

1.5. Isomorphisms

1.5.1. Affine Space over Spec

AffineSpace.SpecIso: $A(n; \operatorname{Spec} R) \cong \operatorname{Spec} R[n]$

- · Natural isomorphism
- Identifies affine space over affine base with polynomial ring spectrum

1.6. Properties

1.6.1. Finiteness

AffineSpace.finite: The projection $\mathbb{A}(n;S) \to S$ is finite when n is finite

AffineSpace.finitePresentation: The projection is of finite presentation when n is finite

1.6.2. Universal Property

The affine space satisfies the universal property:

- Morphisms into $\mathbb{A}(n;S)$ over S correspond to n-tuples of functions
- This makes it the scheme-theoretic product $\mathbb{A}^1 \times ... \times \mathbb{A}^1$ (n times)

1.7. Implementation Notes

- Uses MvPolynomial n (ULift $\ensuremath{\mathbb{Z}}$) for universe polymorphism
- Local notation: $\mathbb{Z}[n]$ for the polynomial ring
- Universe parameters carefully managed for pullback construction
- Equivalences use Equiv for computational content