CHARACTER SHEAVES ON DISCONNECTED GROUPS, VII

G. Lusztig

Introduction

Throughout this paper, G denotes a fixed, not necessarily connected, reductive algebraic group over an algebraically closed field \mathbf{k} . This paper is a part of a series [L9] which attempts to develop a theory of character sheaves on G.

The usual convolution of class functions on a connected reductive group over a finite field makes sense also for complexes in $\mathcal{D}(G^0)$ and then it preserves (see [Gi]) in the derived sense the class of character sheaves on G^0 . In §32 we define, more generally, a natural convolution operation for parabolic character sheaves (see 32.21(a)). A key role in our study of convolution is played by Theorem 32.6 which describes explicitly the convolution of two basic complexes of the form $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}}$ in terms of multiplication in some Hecke algebra. Using this we define a map which to each parabolic character sheaf associates an orbit of a subgroup of the Weyl group on the set of isomorphism classes of "tame" local systems of rank 1 on the torus T, see 32.25(b); in fact we define a refinement of this map in 32.25(a). The main result of §33 is Proposition 33.3 (a generalization of [L3, III, 14.2(b)]). It asserts that (under a cleanness assumption), the cohomology sheaves of a character sheaf restricted to an open subset of the support of a different character sheaf are disjoint from the local system given by the second character sheaf on that open subset. (This plays a key role in the argument in 35.22.) In §34 we study the algebra H_n of 31.2 (or rather an extension H_n^D of it) in the spirit of our earlier study [L12] of a usual Iwahori-Hecke algebra by means of the asymptotic Hecke algebra. This allows us to construct representations of H_n^D starting from representations of $H_n^{D,1}$, the specialization of H_n^D at v=1. In 34.19 we define some invariants $b_{A,u}^{v}$ of a character sheaf A which depend also on an irreducible representation E_u of $H_n^{D,1}$. These generalize the invariants $c_{A,E}$ of [L3, III,12.10]. From the definition, $b_{A,u}^v$ is a rational function in the indeterminate v and one of our goals is to show that $b_{A,u}^v$ is in fact a constant. This goal is achieved in §35 under a cleanness assumption and a quasi-rationality assumption on E_u . (See Theorem 35.23 which is a generalization of [L3, III, 14.9].) In §35 we prove an orthogonality

¹⁹⁹¹ Mathematics Subject Classification. Primary 20G99.

Supported in part by the National Science Foundation.

formula (35.15) for the characteristic functions of complexes of the form $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}}$ (over a finite field) in the spirit of [L3, III, 13.5]. A variant of this formula (see 32.23) can be obtained in an entirely different way as an application of the results on convolution in §32. As an application we associate a sign ± 1 to any character sheaf on a connected component of G (see 35.17), under a cleanness assumption. This generalizes [L3, III, 13.10].

Erratum to Part V. In 25.6 replace $R_1^* = R^* \cap R$ by $R_1^* = R^* \cap R_1$. Erratum to Part VI. In 28.19 replace $\mathcal{L}' = (\underline{D}^{-1})^* \mathcal{L}$ by $\mathcal{L}' = (\underline{D}^{-1})^* \check{\mathcal{L}}$. In 31.4 replace ι_D by \underline{D} .

Contents

- 32. Convolution.
- 33. Disjointness.
- 34. The structure of H_n^D .
- 35. Functions on G^{0F}/U .

32. Convolution

- **32.1.** In this section we define and study the convolution of parabolic character sheaves.
- **32.2.** Let Δ be a connected component of G. Let $J \subset \mathbf{I}$. Let $\mathbf{s} = (s_1, s_2, \dots, s_r)$, $\mathbf{s}' = (s'_1, s'_2, \dots, s'_{r'})$ be two sequences in \mathbf{I} . Let $a, a' \in \mathbf{W}$. Let

$$\mathbf{w} = (s_1, s_2, \dots, s_r, a, s'_1, s'_2, \dots, s'_{r'}, a'), \quad [\mathbf{w}] = s_1 s_2 \dots s_r a s'_1 s'_2 \dots s'_{r'} a'.$$

Let $\mathcal{L} \in \mathfrak{s}(\mathbf{T})$ be such that $[\mathbf{w}]\underline{\Delta} \in \mathbf{W}_{\mathcal{L}}^{\bullet}$. Let

$$\mathcal{T} = \{ i \in [1, r]; s_1 \dots s_{i-1} s_i s_{i-1} \dots s_1 \in \mathbf{W}_{\mathcal{L}} \},$$

$$\mathcal{T}' = \{ j \in [1, r']; a'^{-1} s'_r \dots s'_{j+1} s'_j s'_{j+1} \dots s'_{r'} a' \in \epsilon_{\Delta}(\mathbf{W}_{\mathcal{L}}) \},$$

$$\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w}} = \{ (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, B, xU_{J,B_0}); B_i \in \mathcal{B}(i \in [0, r]), \\
B'_j \in \mathcal{B}(j \in [0, r']), B \in \mathcal{B}, x \in \Delta, \operatorname{pos}(B_{i-1}, B_i) \in \{s_i, 1\}(i \in \mathcal{T}), \\
\operatorname{pos}(B_{i-1}, B_i) = s_i (i \in [1, r] - \mathcal{T}), \operatorname{pos}(B'_{j-1}, B'_j) \in \{s'_j, 1\}(j \in \mathcal{T}'), \\
\operatorname{pos}(B'_{j-1}, B'_j) = s'_j (j \in [1, r'] - \mathcal{T}'), \operatorname{pos}(B_r, B'_0) = a, \operatorname{pos}(B'_{r'}, B) = a', \\
xB_0x^{-1} = B \}.$$

Then $Z_{\emptyset,J,\Delta}^{\mathbf{w}}$ (see 28.8) is naturally an open subset of $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w}}$. By 28.8, \mathcal{L} gives rise to a local system $\tilde{\mathcal{L}}$ on $Z_{\emptyset,J,\Delta}^{\mathbf{w}}$.

(a) $\tilde{\mathcal{L}}$ extends uniquely to a local system $\bar{\mathcal{L}}$ on $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w}}$. Indeed, let $a=t_1t_2\ldots t_m, a'=t'_1t'_2\ldots t'_{m'}$ be reduced expressions for a,a' in \mathbf{W} and let

 $\mathbf{t} = (s_1, s_2, \dots, s_r, t_1, t_2, \dots, t_m, s_1', s_2', \dots, s_{r'}', t_1', t_2', \dots, t_{m'}').$ We identify in an obvious way $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w}}$ with an open subset of $\bar{Z}_{\emptyset,J,\Delta}^{\mathbf{t}}$ (see 28.9) contained in $\cup_{\mathcal{J}\subset\mathcal{J}_{\mathbf{t}}} Z_{\emptyset,J,\Delta}^{\mathbf{t}_{\mathcal{J}}}$ (notation of 28.9) and we use the fact that $\tilde{\mathcal{L}}$, regarded as a local system on $Z_{\emptyset,J,\Delta}^{\mathbf{w}} = Z_{\emptyset,J,\Delta}^{\mathbf{t}_{\mathcal{J}}}$ extends to a local system on $\cup_{\mathcal{J}\subset\mathcal{J}_{\mathbf{t}}} Z_{\emptyset,J,\Delta}^{\mathbf{t}_{\mathcal{J}}}$, see 28.10. This extension is unique up to isomorphism since $Z_{\emptyset,J,\Delta}^{\mathbf{w}}$ is open dense in the smooth irreducible variety $Z_{\emptyset,J,\Delta}^{\mathbf{v}}$ (which is itself open dense in the smooth irreducible variety $Z_{\emptyset,J,\Delta}^{\mathbf{t}}$).

32.3. For any $\mathbf{a} = (a_0, a_1, \dots, a_{r+r'}) \in \mathbf{W}^{r+r'+1}$ let

$$\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}} = \{ (B_0, B_1, \dots, B_r, B_0', B_1', \dots, B_{r'}', B, xU_{J,B_0}) \in \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w}};$$

$$pos(B_k, B_{r'}') = a_k(k \in [0, r]), pos(B_r, B_{r+r'-k}') = a_k(k \in [r, r+r']) \}.$$

Define $\pi_{\mathbf{w},\mathbf{a}}: \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}} \to Z_{J,\Delta}$ by

$$(B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'r', B, xU_{J,B_0}) \mapsto (Q_{J,B_0}, Q_{\epsilon_{\Delta}(J),B}, xU_{J,B_0})$$

(notation of 28.7). Now $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$ is empty unless

- (i) $a_{r+r'} = a$,
- (ii) $a_k \in \{a_{k-1}, s_k a_{k-1}\}$ for $k \in [1, r]$,
- (iii) $a_k \in \{a_{k-1}, a_{k-1}s'_{r+r'+1-k}\}$ for $k \in [r+1, r+r']$. Indeed, let $(B_0, B_1, \ldots, B_r, B'_0, B'_1, \ldots, B'_{r'}, B, xU_{J,B_0}) \in \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$. Clearly, (i) holds. Let $k \in [1, r]$. From $pos(B_k, B_{k-1}) \in \{1, s_k\}$, $pos(B_{k-1}, B'_{r'}) = a_{k-1}$, we deduce $pos(B_k, B'_{r'}) \in \{a_{k-1}, s_k a_{k-1}\}$ and (ii) holds. Let $k \in [r+1, r+r']$. From

$$pos(B_r, B'_{r+r'+1-k}) = a_{k-1}, pos(B'_{r+r'+1-k}, B'_{r+r'-k}) \in \{1, s'_{r+r'+1-k}\},$$
 we deduce
$$pos(B_r, B'_{r+r'-k}) \in \{a_{k-1}, a_{k-1}s'_{r+r'+1-k}\} \text{ and (iii) holds.}$$

Let $\bar{\mathcal{L}}_{\mathbf{a}}$ be the restriction of the local system $\bar{\mathcal{L}}$ from $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w}}$ to $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$. We have a partition $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w}} = \sqcup_{\mathbf{a}} \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$ with $\mathbf{a} \in \mathbf{W}^{r+r'+1}$ subject to (i),(ii),(iii). We set

$$N_{\mathbf{a}} = |\{k \in [1, r], a_k > s_k a_k\}| + |\{k \in [r+1, r+r'], a_k > a_k s'_{r+r'+1-k}\}|,$$

$$\mathcal{T}_{\mathbf{a}} = \{ i \in \mathcal{T}; a_{i-1} = a_i < s_i a_i \},$$

$$\mathcal{T}'_{\mathbf{a}} = \{ j \in \mathcal{T}'; a_{r+r'-j} = a_{r+r'-j+1} < a_{r+r'-j+1} s'_j \}.$$

Lemma 32.4. Assume that a satisfies 32.3(i),(ii),(iii).

(a) $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$ is non-empty if and only if $i \in [1,r], a_{i-1} = a_i < s_i a_i \implies i \in \mathcal{T}$, and $j \in [1,r'], a_{-j+r+r'} = a_{-j+1+r+r'} < a_{-j+1+r+r'} s_i' \implies j \in \mathcal{T}'$.

- (b) If $(B_0, B_1, \ldots, B_r, B'_0, B'_1, \ldots, B'_{r'}, B, xU_{J,B_0}) \in \underline{Z}_{\emptyset, J, \Lambda}^{\mathbf{w}, \mathbf{a}}$ then $B_{i-1} = B_i$ for
- any $i \in \mathcal{T}_{\mathbf{a}}$ and $B'_{j-1} = B'_{j}$ for any $j \in \mathcal{T}'_{\mathbf{a}}$.

 (c) Let ${}^{0}\underline{Z}^{\mathbf{w},\mathbf{a}}_{\emptyset,J,\Delta}$ be the subset of $\underline{Z}^{\mathbf{w},\mathbf{a}}_{\emptyset,J,\Delta}$ defined by the following conditions: for $i \in [1, r]$ we have $B_{i-1} = B_i$ if and only if $i \in \mathcal{T}_{\mathbf{a}}$; for $j \in [1, r']$ we have $B'_{j-1} = B'_j$ if and only if $j \in \mathcal{T}'_{\mathbf{a}}$. If $\underline{Z}^{\mathbf{w},\mathbf{a}}_{\emptyset,J,\Delta} \neq \emptyset$ then it is smooth, irreducible and ${}^{0}\underline{Z}^{\mathbf{w},\mathbf{a}}_{\emptyset,J,\Delta}$ is open dense in $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$.
- (d) If $a_k = a_{k-1}$ for some $k \in [1, r]$ with $k \notin \mathcal{T}$ or for some $k \in [r+1, r+r']$ with $r + r' + 1 - k \notin \mathcal{T}'$, then $\pi_{\mathbf{w}, \mathbf{a}!} \bar{\mathcal{L}}_{\mathbf{a}} = 0$.
- (e) If $a_k \neq a_{k-1}$ for any $k \in [1,r]$ with $k \notin \mathcal{T}$ and for any $k \in [r+1,r+r']$ with $r+r'+1-k \notin \mathcal{T}'$, then $a_0a'\underline{\Delta} \in \mathbf{W}^{\bullet}_{\mathcal{L}}$; moreover, $\underline{Z}^{\mathbf{w},\mathbf{a}}_{\emptyset,J,\Delta}$ is an iterated affine space bundle over $Z_{\emptyset,J,\Delta}^{(a_0,b)}$ with fibres of dimension $N_{\mathbf{a}}$ and $\pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = K_{J,\Delta}^{(a_0,a'),\mathcal{L}}[[-N_{\mathbf{a}}]]$.

We prove (d),(e) by induction on r+r'. If r+r'=0 then $\mathbf{w}=(a_0,a'), \mathbf{a}=\{a_0\}$ and

$$\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}} = Z_{\emptyset,J,\Delta}^{\mathbf{w}} = \{ (B_0, B_0', B, xU_{J,B_0}); B_0 \in \mathcal{B}, B_0' \in \mathcal{B}, B \in \mathcal{B}, x \in \Delta, \\ pos(B_0, B_0') = a_0, pos(B_0', B) = a', xB_0x^{-1} = B \}.$$

Hence $\pi_{\mathbf{w},\mathbf{a}} \bar{\mathcal{L}}_{\mathbf{a}} = K_{L\Delta}^{\mathbf{w},\mathcal{L}}$. Now assume that $r + r' \geq 1$. Assume first that $r' \geq 1$. Let

$$\mathbf{w}' = (s_1, s_2, \dots, s_r, a_{r+r'-1}, s'_{r'-1}, s'_{r'-2}, \dots, s'_1, a'),$$

$$[\mathbf{w}'] = s_1 s_2 \dots s_r a_{r+r'-1} s'_{r'-1} s'_{r'-2} \dots s'_1 a',$$

$$\mathbf{a}' = (a_0, a_1, \dots, a_r, a_{r+1}, \dots, a_{r+r'-1}),$$

$$Y = \{(B_0, B_1, \dots, B_r, B'_1, B'_2, \dots, B'_{r'}, B, xU_{J,B_0}); B_i \in \mathcal{B}(i \in [0, r]),$$

$$B'_j \in \mathcal{B}(j \in [1, r']), B \in \mathcal{B}, x \in \Delta, \operatorname{pos}(B_{i-1}, B_i) \in \{s_i, 1\}(i \in \mathcal{T}),$$

$$\operatorname{pos}(B_{i-1}, B_i) = s_i (i \in [1, r] - \mathcal{T}), \operatorname{pos}(B'_{j-1}, B'_j) \in \{s'_j, 1\}(j \in \mathcal{T}' \cap [2, r']),$$

$$\operatorname{pos}(B'_{j-1}, B'_j) = s'_j (j \in [2, r'] - \mathcal{T}'), \operatorname{pos}(B_k, B'_{r'}) = a_k (k \in [0, r]),$$

$$\operatorname{pos}(B_r, B'_{r+r'-k}) = a_k (k \in [r, r+r'-1]), \operatorname{pos}(B'_{r'}, B) = a', xB_0 x^{-1} = B'\}.$$

Define $\pi^Y: Y \to Z_{J,\Delta}, f: \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}} \to Y$ by

$$\pi^Y: (B_0, B_1, \dots, B_r, B'_1, B'_2, \dots, B'_{r'}, B, xU_{J,B_0}) \mapsto (Q_{J,B_0}, Q_{\epsilon_{\Delta}(J),B}, xU_{J,B_0}),$$

$$f: (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, B, xU_{J,B_0})$$

$$\mapsto (B_0, B_1, \dots, B_r, B'_1, B'_2, \dots, B'_{r'}, xU_{J,B_0}).$$

The fibre of f at $(B_0, B_1, \ldots, B_r, B'_1, B'_2, \ldots, B'_{r'}, xU_{J,B_0}) \in Y$ may be identified with

$$\{B'_0 \in \mathcal{B}; pos(B'_0, B'_1) \in \{s'_1, 1\} \text{ if } 1 \in \mathcal{T}', pos(B'_0, B'_1) = s'_1 \text{ if } 1 \notin \mathcal{T}', pos(B_r, B'_0) = a_{r+r'}\}.$$

If $a_{r+r'}s'_1 = a_{r+r'-1}$ then $[\mathbf{w}']\underline{\Delta} = [\mathbf{w}]\underline{\Delta} \in \mathbf{W}^{\bullet}_{\mathcal{L}}$ and the sets analogous to $\mathcal{T}, \mathcal{T}'$ (for \mathbf{w}' instead of \mathbf{w}) are $\mathcal{T}, \mathcal{T}' \cap [2, r']$. Moreover, $\underline{Z}^{\mathbf{w}', \mathbf{a}'}_{\emptyset, J, \Delta} = Y$ and f is an isomorphism if $a_{r+r'} < a_{r+r'}s'_1$ and an affine line bundle if $a_{r+r'} > a_{r+r'}s'_1$. In both cases, $\bar{\mathcal{L}}_{\mathbf{a}} = f^*(\bar{\mathcal{L}}_{\mathbf{a}'})$. Hence

$$f_!\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}'}, \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}f_!\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}\bar{\mathcal{L}}_{\mathbf{a}'} \text{ if } a_{r+r'} < a_{r+r'}s'_1,$$

$$f_!\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}'}[[-1]], \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}f_!\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}\bar{\mathcal{L}}_{\mathbf{a}'}[[-1]] \text{ if } a_{r+r'} > a_{r+r'}s_1';$$

the desired result follows from the induction hypothesis.

If $a_{r+r'-1} = a_{r+r'} < a_{r+r'}s'_1$ and $1 \notin \mathcal{T}'$ then $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}} = \emptyset$. If $a_{r+r'-1} = a_{r+r'} > a_{r+r'}s'_1$ and $1 \notin \mathcal{T}'$ then f is a \mathbf{k}^* -bundle and $f_!\bar{\mathcal{L}}_{\mathbf{a}} = 0$ (this can be deduced from 28.11) hence $\pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_!^Y f_!\bar{\mathcal{L}}_{\mathbf{a}} = 0$.

Assume now that $a_{r+r'-1} = a_{r+r'}$ and $1 \in \mathcal{T}'$. Then $[\mathbf{w}']\underline{\Delta} \in \mathbf{W}^{\bullet}_{\mathcal{L}}$ and the sets analogous to $\mathcal{T}, \mathcal{T}'$ (for \mathbf{w}' instead of \mathbf{w}) are $\mathcal{T}, \mathcal{T}' \cap [2, r']$. Moreover, $\underline{Z}^{\mathbf{w}', \mathbf{a}'}_{\emptyset, J, \Delta} = Y$; also, f is an isomorphism if $a_{r+r'} < a_{r+r'}s'_1$ and an affine line bundle if $a_{r+r'} > a_{r+r'}s'_1$. In both cases, $\bar{\mathcal{L}}_{\mathbf{a}} = f^*(\bar{\mathcal{L}}_{\mathbf{a}'})$. Hence

$$f_!\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}'}, \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}f_!\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}\bar{\mathcal{L}}_{\mathbf{a}'}$$
 if $a_{r+r'} < a_{r+r'}s'_1$,

$$f_!\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}'}[[-1]], \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}f_!\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}',\mathbf{a}'!}\bar{\mathcal{L}}_{\mathbf{a}'}[[-1]] \text{ if } a_{r+r'} > a_{r+r'}s'_1;$$

the desired result follows from the induction hypothesis.

Assume next that r' = 0. Then $r \ge 1$. Let

$$\mathbf{w}'' = (s_1, s_2, \dots, s_{r-1}, a_{r-1}, a'), [\mathbf{w}''] = s_1 s_2 \dots s_{r-1} a_{r-1} a',$$

 $\mathbf{a}'' = (a_0, a_1, \dots, a_{r-1}),$

$$Y_{1} = \{(B_{0}, B_{1}, \dots, B_{r-1}, B'_{0}, B, xU_{J,B_{0}}); B_{i} \in \mathcal{B}(i \in [0, r-1]), B'_{0} \in \mathcal{B}, B \in \mathcal{B}, x \in \Delta, \operatorname{pos}(B_{i-1}, B_{i}) \in \{s_{i}, 1\}(i \in \mathcal{T} \cap [1, r-1]), \operatorname{pos}(B_{i-1}, B_{i}) = s_{i}(i \in [1, r-1] - \mathcal{T}), \operatorname{pos}(B_{k}, B'_{0}) = a_{k}(k \in [0, r-1]), \operatorname{pos}(B'_{0}, B) = a', xB_{0}x^{-1} = B\}.$$

Define $\pi^{Y_1}: Y_1 \to Z_{J,\Delta}, f_1: \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}} \to Y_1$ by

$$\pi^{Y_1}: (B_0, B_1, \dots, B_{r-1}, B'_0, B, xU_{J,B_0}) \mapsto (Q_{J,B_0}, Q_{\epsilon_{\Delta}(J),B}, xU_{J,B_0}),$$

$$f_1: (B_0, B_1, \dots, B_r, B'_0, B, xU_{J,B_0}) \mapsto (B_0, B_1, \dots, B_{r-1}, B'_0, B, xU_{J,B_0}).$$

The fibre of f_1 at $(B_0, B_1, \ldots, B_{r-1}, B'_0, B, xU_{J,B_0}) \in Y_1$ may be identified with

$$\{B_r \in \mathcal{B}; pos(B_{r-1}, B_r) \in \{s_r, 1\} \text{ if } r \in \mathcal{T}, pos(B_{r-1}, B_r) = s_r \text{ if } r \notin \mathcal{T}, pos(B_r, B_0') = a_r\}.$$

If $s_r a_r = a_{r-1}$ then $[\mathbf{w}'']\underline{\Delta} = [\mathbf{w}]\underline{\Delta} \in \mathbf{W}_{\mathcal{L}}^{\bullet}$ and the set analogous to \mathcal{T} (for \mathbf{w}'' instead of \mathbf{w}) is $\mathcal{T} \cap [1, r-1]$. Moreover, $\underline{Z}_{\emptyset, J, \Delta}^{\mathbf{w}'', \mathbf{a}''} = Y_1$ and f_1 is an isomorphism if $a_r < s_r a_r$ and an affine line bundle if $a_r > s_r a_r$. In both cases, $\bar{\mathcal{L}}_{\mathbf{a}} = f_1^*(\bar{\mathcal{L}}_{\mathbf{a}''})$. Hence

$$f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}''}, \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}\bar{\mathcal{L}}_{\mathbf{a}''} \text{ if } a_r < s_r a_r,$$

$$f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}''}[[-1]], \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}\bar{\mathcal{L}}_{\mathbf{a}''}[[-1]] \text{ if } a_r > s_r a_r;$$

the desired result follows from the induction hypothesis.

If $a_{r-1} = a_r < s_r a_r$ and $r \notin \mathcal{T}$ then $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\check{\mathbf{a}}} = \emptyset$. If $a_{r-1} = a_r > s_r a_r$ and $r \notin \mathcal{T}$ then f_1 is a \mathbf{k}^* -bundle and $f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = 0$ (this can be deduced from 28.11) hence $\pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_!^{Y_1}f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = 0$.

Assume now that $a_{r-1} = a_r$ and $r \in \mathcal{T}$. Then $[\mathbf{w}'']\underline{\Delta} \in \mathbf{W}_{\mathcal{L}}^{\bullet}$ and the set analogous to \mathcal{T} (for \mathbf{w}'' instead of \mathbf{w}) is $\mathcal{T} \cap [1, r-1]$. Moreover, $\underline{Z}_{\emptyset, J, \Delta}^{\mathbf{w}'', \mathbf{a}''} = Y_1$; also, f_1 is an isomorphism if $a_r < s_r a_r$ and an affine line bundle if $a_r > s_r a_r$. In both cases, $\bar{\mathcal{L}}_{\mathbf{a}} = f_1^*(\bar{\mathcal{L}}_{\mathbf{a}''})$. Hence

$$f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}''}, \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}\bar{\mathcal{L}}_{\mathbf{a}''}$$
 if $a_r < s_r a_r$,

$$f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}''}[[-1]], \pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}f_{1!}\bar{\mathcal{L}}_{\mathbf{a}} = \pi_{\mathbf{w}'',\mathbf{a}''!}\bar{\mathcal{L}}_{\mathbf{a}''}[[-1]] \text{ if } a_r > s_r a_r;$$

the desired result follows from the induction hypothesis. This completes the proof of (d),(e). The previous inductive proof also yields (a),(b),(c). The lemma is proved.

32.5. Let $J \subset \mathbf{I}$. Let D, D', Δ be three connected components of G with $\Delta = D'D$. We write ϵ, ϵ' instead of $\epsilon_D, \epsilon_{D'} : \mathbf{W} \to \mathbf{W}$. We have a diagram

$$Z_{J,D} \times Z_{\epsilon(J),D'} \stackrel{b_1}{\longleftarrow} Z_0 \stackrel{b_2}{\longrightarrow} Z_{J,\Delta}$$

where

$$Z_0 = \{ (Q, Q', Q'', gU_Q, g'U_{Q'}); Q \in \mathcal{P}_J, Q' \in \mathcal{P}_{\epsilon(J)}, Q'' \in \mathcal{P}_{\epsilon'\epsilon(J)}, g \in D, g' \in D', gQg^{-1} = Q', g'Q'g'^{-1} = Q'' \},$$

$$b_1(Q, Q', Q'', gU_Q, g'U_{Q'}) = ((Q, Q', gU_Q), (Q', Q'', g'U_{Q'})),$$

$$b_2(Q, Q', Q'', gU_Q, g'U_{Q'}) = (Q, Q'', g'gU_Q).$$

Define a functor (convolution) $\mathcal{D}(Z_{J,D}) \times \mathcal{D}(Z_{\epsilon(J),D'}) \to \mathcal{D}(Z_{J,\Delta})$ by

$$K, K' \mapsto K * K' = b_{2!}b_1^*(K \boxtimes K').$$

Let $\mathbf{s} = (s_1, s_2, \dots, s_r), \mathbf{s}' = (s'_1, s'_2, \dots, s'_{r'})$ be two sequences in \mathbf{I} and let $\mathcal{L}, \mathcal{L}' \in \mathfrak{s}(\mathbf{T})$ be such that $s_1 s_2 \dots s_r \underline{D} \in \mathbf{W}^{\bullet}_{\mathcal{L}}, \ s'_1 s'_2 \dots s'_{r'} \underline{D}' \in \mathbf{W}^{\bullet}_{\mathcal{L}'}$. Then $\bar{K}^{\mathbf{s}, \mathcal{L}}_{J,D} \in \mathcal{D}(Z_{J,D}), \ \bar{K}^{\mathbf{s}', \mathcal{L}'}_{\epsilon(J),D'} \in \mathcal{D}(Z_{\epsilon(J),D'})$ are defined (see 28.12) hence $\bar{K}^{\mathbf{s}, \mathcal{L}}_{J,D} * \bar{K}^{\mathbf{s}', \mathcal{L}'}_{\epsilon(J),D'} \in \mathcal{D}(Z_{J,\Delta})$ is defined.

Let $n \in \mathbf{N}_{\mathbf{k}}^*$ be such that $\mathcal{L} \in \mathfrak{s}_n$, $\mathcal{L}' \in \mathfrak{s}_n$. Let $\lambda \in \underline{\mathfrak{s}}_n$ (resp. $\lambda' \in \underline{\mathfrak{s}}_n$) be the isomorphism class of \mathcal{L} (resp. \mathcal{L}').

Theorem 32.6. (a) If $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} * \bar{K}_{\epsilon(J),D'}^{\mathbf{s'},\mathcal{L'}} \neq 0$ then $y\lambda' = \underline{D}\lambda$ for some $y \in \mathbf{W}_{\epsilon(J)}$.

- (b) Let A be a simple perverse sheaf on $Z_{J,\Delta}$. If $A \dashv \bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} * \bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'}$, then $A \in \hat{Z}_{J,\Delta}^{\mathcal{L}}$.
- (c) Assume that $\mathbf{k}, \mathbf{F}_q, G, F$ are as in 31.7(b), that $A \in \hat{Z}_{J,\Delta}$ and that $\zeta^A : H_n[\Delta] \to \mathcal{A}$ is as in 31.7. Then

$$\chi_{v}^{A}(\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} * \bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'}) = (v^{2} - 1)^{\dim \mathbf{T}} v^{\dim G - l(w_{\mathbf{I}}^{0} w_{J}^{0})} \times \zeta^{A}(\sum_{\substack{y' \in \mathbf{W}_{J} \\ y' \underline{D}^{-1} \lambda' = \lambda}} v^{2l(w_{J}^{0} y')} C_{\underline{D}\lambda}^{\mathbf{s}}[D] T_{y'}[D^{-1}] C_{\underline{D}'\lambda'}^{\mathbf{s}'}[D'][D] T_{y'^{-1}}).$$

(Notation of 31.5, 31.6. We regard $\mathcal{L}, \mathcal{L}'$ as pure of weight 0 and then $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}}$, $\bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'}$ and their convolution naturally as mixed complexes.)

The proof is given in 32.7-32.19.

32.7. With notation of 28.7, let

$$V = \{(B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0}); B_i \in \mathcal{B}(i \in [0, r]), B'_j \in \mathcal{B}(j \in [0, r']), g \in D, g' \in D', gB_0g^{-1} = B_r, g'B'_0g'^{-1} = B'_{r'}, pos(B_{i-1}, B_i) \in \{1, s_i\}(i \in [1, r]), pos(B'_{j-1}, B'_j) \in \{1, s'_j\}(j \in [1, r']), pos(B_r, B'_0) \in \mathbf{W}_{\epsilon(J)}\}.$$

Let $\bar{\mathcal{L}}$ be the constructible sheaf on $\bar{Z}^{\mathbf{s}}_{\emptyset,J,D}$ in 28.10 and let $\bar{\mathcal{L}}'$ be the analogous constructible sheaf on $\bar{Z}^{\mathbf{s}'}_{\emptyset,\epsilon(J),D'}$. The inverse image of $\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}'$ under the imbedding $f:V\to \bar{Z}^{\mathbf{s}}_{\emptyset,J,D}\times\bar{Z}^{\mathbf{s}'}_{\emptyset,\epsilon(J),D'}$,

$$(B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0})$$

$$\mapsto ((B_0, B_1, \dots, B_r, gU_{J,B_0}), (B'_0, B'_1, \dots, B'_{r'}, g'U_{\epsilon(J),B'_0}))$$

is a constructible sheaf on V denoted again by $\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}'$. Define $\rho: V \to Z_{J,\Delta}$ by

$$(B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0}) \mapsto (Q_{J,B_0}, Q_{\epsilon'\epsilon(J),B'_{s'}}, xU_{J,B_0})$$

where $x = g'g \in \Delta$; this is meaningful since $g'U_{\epsilon(J),B'_0}g = g'U_{\epsilon(J),B_r}g = g'gU_{J,B_0}$. We have a commutative diagram in which the left square is cartesian

$$\bar{Z}_{\emptyset,J,D}^{\mathbf{s}} \times \bar{Z}_{\emptyset,\epsilon(J),D'}^{\mathbf{s'}} \xleftarrow{f} V \xrightarrow{\rho} Z_{J,\Delta}$$

$$\downarrow h \qquad \qquad \downarrow \qquad \qquad \downarrow \downarrow \qquad$$

where

$$h: ((B_0, B_1, \dots, B_r, gU_{J,B_0}), (B'_0, B'_1, \dots, B'_{r'}, g'U_{\epsilon(J),B'_0}))$$

$$\mapsto ((Q_{J,B_0}, Q_{\epsilon(J),B_r}, gU_{J,B_0}), (Q_{\epsilon(J),B'_0}, Q_{\epsilon'\epsilon(J),B'_{r'}}, g'U_{\epsilon(J),B'_0})),$$

$$h_0: (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0})$$

$$\mapsto ((Q_{J,B_0}, Q_{\epsilon(J),B_r}, Q_{\epsilon'\epsilon(J),B'_1}, gU_{J,B_0})), g'U_{\epsilon(J),B_r})).$$

Using this commutative diagram and the definitions we have

$$\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} * \bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'} = \rho_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}').$$

Let

$$\mathcal{T} = \{ i \in [1, r]; s_1 s_2 \dots s_i \dots s_2 s_1 \in \mathbf{W}_{\mathcal{L}} \},$$

$$\mathcal{T}' = \{ j \in [1, r']; s'_{r'} \dots s'_{j+1} s'_j s'_{j+1} \dots s'_{r'} \in \epsilon'(\mathbf{W}_{\mathcal{L}'}) \}.$$

(Thus, $\mathcal{T} = \mathcal{J}_{\mathbf{s}}$, $\mathcal{T}' = \mathcal{J}_{\mathbf{s}'}$ with the notation of 28.9.) Let

$$V' = \{(B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0}); B_i \in \mathcal{B}(i \in [0, r]), B'_j \in \mathcal{B}(j \in [0, r']), g \in D, g' \in D', gB_0g^{-1} = B_r, g'B'_0g'^{-1} = B'_{r'}, pos(B_{i-1}, B_i) \in \{1, s_i\}(i \in \mathcal{T}), pos(B_{i-1}, B_i) = s_i(i \in [1, r] - \mathcal{T}), pos(B'_{j-1}, B'_j) \in \{1, s'_j\}(j \in \mathcal{T}'), pos(B'_{j-1}, B'_j) = s'_j(j \in [1, r'] - \mathcal{T}'), pos(B_r, B'_0) \in \mathbf{W}_{\epsilon(J)}\},$$

an open subset of V. Let $\rho': V' \to Z_{J,\Delta}$ be the restriction of $\rho: V \to Z_{J,\Delta}$. From 28.10 we see that $(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')|_{V'}$ is a local system and $(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')|_{V-V'} = 0$. Hence

$$\rho_!(V, \bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') = \rho_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}').$$

For any

(a)
$$\mathbf{a} = (a_0, a_1, \dots, a_{r+r'}) \in \mathbf{W}^{r+r'} \times \mathbf{W}_{\epsilon(J)},$$

let

$$V'_{\mathbf{a}} = \{ (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0}) \in V';$$

$$pos(B_k, B'_{r'}) = a_k(k \in [0, r]), pos(B_r, B'_{r+r'-k}) = a_k(k \in [r, r+r']) \}.$$

Let $\rho'_{\mathbf{a}}: V'_{\mathbf{a}} \to Z_{J,\Delta}$ be the restriction of $\rho': V' \to Z_{J,\Delta}$. Then $V' = \cup_{\mathbf{a}} V'_{\mathbf{a}}$ is a partition of V' with $V'_{\mathbf{a}}$ locally closed in V' for all \mathbf{a} .

Lemma 32.8. Let **a** as in 32.7(a) be such that $(\underline{D}^{-1})^*\mathcal{L} \ncong (a_{r+r'}^{-1})^*\mathcal{L}'$. Then $\rho'_{\mathbf{a}}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') = 0$.

Define
$$R, \ \tilde{\rho}: R \to Z_{J,\Delta}, \ \pi: V'_{\mathbf{a}} \to R \text{ by}$$

$$R = \{(B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, xU_{J,B_0}); B_i \in \mathcal{B}(i \in [0, r]), \\ B'_j \in \mathcal{B}(j \in [0, r']), x \in \Delta, \operatorname{pos}(B_r, B'_0) = a_{r+r'}, \operatorname{pos}(B'_{r'}, xB_0x^{-1}) = \epsilon'(a_{r+r'}^{-1})\}, \\ \tilde{\rho}: (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, xU_{J,B_0}) \mapsto (Q_{J,B_0}, xQ_{J,B_0}, xU_{J,B_0}), \\ \pi: (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0}) \\ \mapsto (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, g'gU_{J,B_0});$$

this is meaningful since $g'U_{\epsilon(J),B'_0}g = g'U_{\epsilon(J),B_r}g = g'gU_{J,B_0}$ and

$$pos(B'_{r'}, g'gB_0g^{-1}g'^{-1}) = \epsilon'(pos(g'^{-1}B'_{r'}g', gB_0g^{-1})) = \epsilon'(pos(B'_0, B_r))$$
$$= \epsilon'(a_{r+r'}^{-1}).$$

Since $\rho'_{\mathbf{a}} = \tilde{\rho}\pi$, it suffices to show that $\pi_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') = 0$. Hence it suffices to show that, for any $\xi = (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, xU_{J,B_0}) \in R$, we have $H_c^e(\pi^{-1}(\xi), \bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') = 0$ for all e. We may assume that $\pi^{-1}(\xi) \neq \emptyset$. We may identify

$$\pi^{-1}(\xi) = \{gU_{J,B_0}; g \in D, gB_0g^{-1} = B_r, xg^{-1}B_0'gx^{-1} = B_{r'}'\}$$

in an obvious way. We may assume that $B_r = B^*, B'_0 = \dot{a}_{r+r'}B^*\dot{a}_{r+r'}^{-1}$ (notation of 28.5). Write $B_i = h_i B^* h_i^{-1}, B'_j = h'_j B^* h'_j^{-1}$ with $h_i, h'_j \in G^0, h_r = 1, h'_0 = \dot{a}_{r+r'}$. Let

$$w = pos(B_0, B_1)pos(B_1, B_2) \dots pos(B_{r-1}, B_r) \in \mathbf{W},$$

 $w' = pos(B'_0, B'_1)pos(B'_1, B'_2) \dots pos(B'_{r'-1}, B'_{r'}) \in \mathbf{W}.$

Let T, U^* be as in 28.5. Let $d \in N_D B^* \cap N_D T$, $d' \in N_{D'} B^* \cap N_{D'} T$. Then T (a maximal torus of $B_r \cap B'_0$) acts freely on $\pi_{\mathbf{a}}^{-1}(\xi)$ by left multiplication and it suffices to show that for any T-orbit θ in $\pi_{\mathbf{a}}^{-1}(\xi)$, we have $H_c^e(\theta, \overline{\mathcal{L}} \boxtimes \overline{\mathcal{L}}') = 0$ for all e. Let $g_0 U_{J,B_0} \in \theta$. It suffices to show that the inverse image of $\overline{\mathcal{L}} \boxtimes \overline{\mathcal{L}}'$ under $t \mapsto tg_0 U_{J,B_0}$ (a local system in $\mathfrak{s}(T)$) is $\not\cong \overline{\mathbf{Q}}_l$. Using 28.10 and the definitions in 28.5, 28.8, we see that this inverse image is just $b^*(\mathcal{L}) \otimes c^*(\mathcal{L}')$ where $\mathcal{L}, \mathcal{L}'$ are regarded as local systems on T and $b: T \to T, c: T \to T$ are given by

$$b(t) = d^{-1}\dot{w}^{-1}n_1n_2\dots n_r n_0(n_0^{-1}tn_0),$$

$$c(t) = d'^{-1}\dot{w}'n_1'n_2'\dots n_{r'}'n_0'\dot{a}_{r+r'}^{-1}t^{-1}\dot{a}_{r+r'}$$

where $n_i \in N_{G^0}T(i \in [1, r])$, $n'_j \in N_{G^0}T(j \in [1, r'])$ are given by $h_{i-1}^{-1}h_i \in U^*n_iU^*$, $h'_{j-1}^{-1}h'_j \in U^*n'_jU^*$, and $n_0 \in N_DB^* \cap N_DT$, $n'_0 \in N_{D'}B^* \cap N_{D'}T$ are given by $g_0h_0 \in U^*n_0$, $h'_{r'}^{-1}g_0^{-1}x\dot{a}_{r+r'} \in U^*n'_0$. Since $d^{-1}\dot{w}^{-1}n_1n_2\dots n_rn_0 \in T$, $d'^{-1}\dot{w}'^{-1}n'_1n'_2\dots n'_{r'}n'_0 \in T$, $n_0 \in dT$, we see using 28.1(a) that $b^*\mathcal{L} = \operatorname{Ad}(d^{-1})^*\mathcal{L}$, $c^*\mathcal{L}' = \operatorname{Ad}(\dot{a}_{r+r'}^{-1})^*\check{\mathcal{L}}'$. It then suffices to show that $\operatorname{Ad}(d^{-1})^*\mathcal{L} \otimes \operatorname{Ad}(\dot{a}_{r+r'}^{-1})^*\check{\mathcal{L}}' \not\cong \bar{\mathbf{Q}}_l$. This follows from our assumption. The lemma is proved.

32.9. Until the end of 32.12 we assume that a (as in 32.7(a)) is such that

(a)
$$(\underline{D}^{-1})^* \mathcal{L} \cong (a_{r+r'}^{-1})^* \mathcal{L}'.$$

We set $\underline{a} = a_{r+r'}, \underline{a'} = \epsilon'(a_{r+r'}^{-1})$. We show that

$$s_1 s_2 \dots s_r \underline{a} s_1' s_2' \dots s_{r'}' \underline{a}' \underline{\Delta} \in \mathbf{W}_{\mathcal{L}}^{\bullet}.$$

Since $s_1 s_2 \dots s_r \underline{D} \in \mathbf{W}_{\mathcal{L}}^{\bullet}$, it suffices to show that $\underline{D}^{-1} \underline{a} s_1' s_2' \dots s_{r'}' \underline{D}' \underline{a}^{-1} \underline{D} \in \mathbf{W}_{\mathcal{L}}^{\bullet}$. Since $s_1' s_2' \dots s_{r'}' \underline{D}' \in \mathbf{W}_{\mathcal{L}'}^{\bullet} = \mathbf{W}_{\tilde{\mathcal{L}}'}^{\bullet}$, it suffices to show that $\underline{a}^* (\underline{D}^{-1})^* \mathcal{L} \cong \check{\mathcal{L}}'$. This holds by our assumption. Let

$$\mathbf{w} = (s_1, s_2, \dots, s_r, \underline{a}, s_1', s_2', \dots, s_{r'}', \underline{a}').$$

Then $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$ (see 32.3) is well defined in terms of \mathcal{T},\mathcal{T}' as in 32.7 (or equivalently as in 32.2). As in 32.3, \mathcal{L} gives rise to a local system $\bar{\mathcal{L}}_{\mathbf{a}}$ on $\underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$.

32.10. We preserve the setup of 32.9. Let $V''_{\mathbf{a}}$ be the set of all

$$(B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, (U_{B_r} \cap U'_{B'_0})g, xU_{J,B_0})$$

where $(B_0, B_1, \ldots, B_r, B'_0, B'_1, \ldots, B'_{r'}, xB_0x^{-1}, xU_{J,B_0}) \in \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$ and $g \in D$ satisfies $g^{-1}B_rg = B_0, g^{-1}B'_0g = x^{-1}B'_{r'}x$. (The last equation is meaningful. It suffices to show that if $u \in U_{J,B_0}$ then $ug^{-1}B'_0gu^{-1} = g^{-1}B'_0g$ that is, $gug^{-1} \in N_GB'_0$.) We have $gug^{-1} \in U_{\epsilon_D(J),gB_0g^{-1}} = U_{\epsilon_D(J),B_r} = U_{\epsilon_D(J),B'_0} \subset U_{B'_0} \subset N_GB'_0$.) Define $\eta: V''_{\mathbf{a}} \to \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}, \kappa: V'_{\mathbf{a}} \to V''_{\mathbf{a}}$ by

$$\eta: (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, (U_{B_r} \cap U_{B'_0})g, xU_{J,B_0})$$

$$\mapsto (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, xB_0x^{-1}, xU_{J,B_0}),$$

$$\kappa: (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, gU_{J,B_0}, g'U_{\epsilon(J),B'_0})$$

$$\mapsto (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, (U_{B_r} \cap U_{B'_0})g, g'gU_{J,B_0});$$

 κ is well defined, by the argument following 32.8(a). Let $f_{\mathbf{a}} = \eta \kappa : V'_{\mathbf{a}} \to \underline{Z}^{\mathbf{w}, \mathbf{a}}_{\emptyset, J, \Delta}$. Clearly,

(a) κ is an affine space bundle with fibres of dimension $l(w_{\epsilon(J)}^0\underline{a})$. Now **T** acts on $V_{\mathbf{a}}''$ by

$$t: (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, (U_{B_r} \cap U_{B'_0})g, xU_{J,B_0}) \mapsto (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, (U_{B_r} \cap U_{B'_0})y_tg, xU_{J,B_0})$$

where $y_t \in (B_r \cap B_0')/(U_{B_r} \cap U_{B_0'})$ is defined by the condition that its image in B_r/U_{B_r} is the image of t under $\mathbf{T} \xrightarrow{\sim} B_r/U_{B_r}$. Then

(b) η is a principal **T**-bundle.

Let $\xi = (B_0, B_1, \dots, B_r, B'_0, B'_1, \dots, B'_{r'}, B, xU_{J,B_0}) \in \underline{Z}_{\emptyset,J,\Delta}^{\mathbf{w},\mathbf{a}}$. Then $\eta^{-1}(\xi)$ may be identified with

$$\{(U_{B_r} \cap U_{B_0'})g; g \in D; g^{-1}B_rg = B_0, g^{-1}B_0'g = x^{-1}B_{r'}'x\}.$$

We show only that $\eta^{-1}(\xi) \cong \mathbf{T}$. It suffices to show that $\eta^{-1}(\xi) \neq \emptyset$. For this it suffices to show that $pos(B'_0, B_r) = \epsilon(pos(x^{-1}B'_rx, B_0))$ or that $pos(B'_0, B_r) = \epsilon \epsilon^{-1}(pos(B'_r, B))$ or that $\underline{a}^{-1} = \epsilon'^{-1}(\underline{a}')$ which is clear.

32.11. We preserve the setup of 32.9. Let w be the product of the sequence s_1, s_2, \ldots, s_r in which the factors s_i with $i \in \mathcal{T}_{\mathbf{a}}$ are replaced by 1. Let w' be the product of the sequence $s'_1, s'_2, \ldots, s'_{r'}$ in which the factors s'_j with $j \in \mathcal{T}'_{\mathbf{a}}$ are replaced by 1, $(\mathcal{T}_{\mathbf{a}}, \mathcal{T}'_{\mathbf{a}} \text{ as in 32.3})$. Let B^*, U^*, T be as in 28.5. Let $d \in N_D B^* \cap N_D T$, $d' \in N_{D'} B^* \cap N_{D'} T$. We have a commutative diagram

Here

$${}^{0}V'_{\mathbf{a}} = \{ (B_{0}, B_{1}, \dots, B_{r}, B'_{0}, B'_{1}, \dots, B'_{r'}, gU_{J,B_{0}}, g'U_{\epsilon(J),B'_{0}}) \in V'_{\mathbf{a}}; B_{i-1} = B_{i}(i \in \mathcal{T}_{\mathbf{a}}), pos(B_{i-1}, B_{i}) = s_{i}(i \in [1, r] - \mathcal{T}_{\mathbf{a}}), B'_{j-1} = B'_{j}(j \in \mathcal{T}'_{\mathbf{a}}), pos(B'_{i-1}, B'_{j}) = s'_{j}(i \in [1, r'] - \mathcal{T}'_{\mathbf{a}}) \},$$

$$\tilde{V}' = \{(h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, g, g') \in (G^0)^{r+r'+2} \times D \times D';
h_{i-1}^{-1} h_i \in B^* (i \in \mathcal{T}_{\mathbf{a}}), h_{i-1}^{-1} h_i \in B^* \dot{s}_i B^* (i \in [1, r] - \mathcal{T}_{\mathbf{a}}), h'_{j-1}^{-1} h'_j \in B^* (j \in \mathcal{T}'_{\mathbf{a}}),
h'_{j-1}^{-1} h'_j \in B^* \dot{s}'_j B^* (j \in [1, r'] - \mathcal{T}'_{\mathbf{a}}), h_r^{-1} g h_0 = d, h'_{r'}^{-1} g' h'_0 = d',
h_k^{-1} h'_{r'} \in B^* \dot{a}_k B^* (k \in [0, r-1]), h_r^{-1} h'_{r+r'-k} \in B^* \dot{a}_k B^* (k \in [r, r+r'-1]),
h_r^{-1} h'_0 = \underline{\dot{a}} \},$$

$$\tilde{Z} = \{ (h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, x) \in (G^0)^{r+r'+2} \times D'D;
h_{i-1}^{-1} h_i \in B^* (i \in \mathcal{T}_{\mathbf{a}}), h_{i-1}^{-1} h_i \in B^* \dot{s}_i B^* (i \in [1, r] - \mathcal{T}_{\mathbf{a}}), h'_{j-1}^{-1} h'_j \in B^* (j \in \mathcal{T}'_{\mathbf{a}}),
h'_{j-1}^{-1} h'_j \in B^* \dot{s}'_j B^* (j \in [1, r'] - \mathcal{T}'_{\mathbf{a}}), h_k^{-1} h'_{r'} \in B^* \dot{a}_k B^* (k \in [0, r-1]),
h_r^{-1} h'_{r+r'-k} \in B^* \dot{a}_k B^* (k \in [r, r+r'-1]), h_r^{-1} h'_0 = \underline{\dot{a}},
h'_{r'}^{-1} x h_0 \in B^* d' \underline{\dot{a}}^{-1} d'^{-1} B^* \},$$

$$f_1(h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, g, g') = (h_0 B^* h_0^{-1}, \dots, h_r B^* h_r^{-1}, h'_0 B^* h'_0^{-1}, \dots, h'_{r'} B^* h'_{r'}^{-1}, g U_{J, h_0 B^* h_0^{-1}}, g' U_{\epsilon_D(J), h'_0 B^* h'_0^{-1}}),$$

$$f_2(h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, g, g')$$

$$= (d^{-1}\dot{w}^{-1}n_1n_2 \dots n_rd, d'^{-1}\dot{w}'^{-1}n'_1n'_2 \dots n'_{r'}d')$$

with $n_i, n'_j \in N_{G^0}T$ given by $h_{i-1}^{-1}h_i \in U^*n_iU^*(i \in [1, r]), h'_{j-1}^{-1}h'_j \in U^*n'_jU^*(j \in [1, r']),$

 f_3 is the restriction of $f_{\mathbf{a}}: V'_{\mathbf{a}} \to \underline{Z}^{\mathbf{w}, \mathbf{a}}_{\emptyset, J, \Delta}$, see 32.10,

$$f_4(h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, g, g') = (h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, g'g),$$

$$f_5(t,\tilde{t}) = d^{-1}\underline{\dot{a}}d'^{-1}\dot{w}'^{-1}\underline{\dot{a}}^{-1}dtd^{-1}\underline{\dot{a}}\dot{w}'d'\tilde{t}\underline{\dot{a}}^{-1}d = \operatorname{Ad}(d^{-1}\underline{\dot{a}})(\operatorname{Ad}(d'^{-1}\dot{w}'^{-1}\underline{\dot{a}}^{-1}d)(t)\tilde{t}),$$

$$f_6(h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, x)$$

$$= (h_0 B^* h_0^{-1}, \dots, h_r B^* h_r^{-1}, h'_0 B^* h'_0^{-1}, \dots, h'_{r'} B^* h'_{r'}^{-1}, x U_{J, h_0 B^* h_0^{-1}}),$$

$$f_7(h_0, h_1, \dots, h_r, h'_0, h'_1, \dots, h'_{r'}, x)$$

$$= (d'd)^{-1} d' \underline{\dot{a}} d'^{-1} \dot{w}'^{-1} \underline{\dot{a}}^{-1} \dot{w}^{-1} n_1 n_2 \dots n_r \underline{\dot{a}} n'_1 n'_2 \dots n'_{r'} m d' d,$$

where n_i, n'_j are as in the definition of $f_2, m \in N_{G^0}T$ is given by $h'_{r'}^{-1}xh_0d^{-1}d'^{-1} \in U^*mU^*$.

Lemma 32.12. We preserve the setup of 32.11. Let ${}^{0}\bar{\mathcal{L}}_{\mathbf{a}} = \bar{\mathcal{L}}_{\mathbf{a}}|_{0}\underline{Z}_{0,1,\Delta}^{\mathbf{w},\mathbf{a}}$.

- (a) We have $f_3^*({}^0\bar{\mathcal{L}}_{\mathbf{a}}) = (\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')|_{{}^0V_{\mathbf{a}}'}$.
- (b) We have $f_{\mathbf{a}}^* \bar{\mathcal{L}}_{\mathbf{a}} = (\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')|_{V_{\mathbf{a}}'}$.

From the definitions we have $f_6^*({}^0\bar{\mathcal{L}}_{\mathbf{a}}) = f_7^*\mathcal{L}$,

$$f_1^*((\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}')|_{{}^0V_{\mathbf{a}}'})=f_2^*(\mathcal{L}\boxtimes\mathrm{Ad}(\underline{\dot{a}})^*\mathrm{Ad}(d^{-1})^*\check{\mathcal{L}}).$$

Since f_1^* is a smooth morphism with connected fibres, it suffices to show that $f_1^* f_3^*({}^0\bar{\mathcal{L}}_{\mathbf{a}}) = f_1^*((\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}')|_{{}^0V_{\mathbf{a}}'})$, or that $f_4^* f_6^*({}^0\bar{\mathcal{L}}_{\mathbf{a}}) = f_2^*(\mathcal{L}\boxtimes\mathcal{L}')$, or that $f_4^* f_7^*\mathcal{L} = f_2^*(\mathcal{L}\boxtimes\mathcal{L}')$, or that $f_5^*\mathcal{L} = f_2^*(\mathcal{L}\boxtimes\mathcal{L}')$. It suffices to show that $f_5^*\mathcal{L} = \mathcal{L}\boxtimes\mathcal{L}'$.

Define $f_5': T \times T \to T$ by $f_5'(t, \tilde{t}) = t\tilde{t}$. Setting $E = \operatorname{Ad}(d^{-1}\underline{\dot{a}}): T \to T$, $E' = \operatorname{Ad}(d'^{-1}\dot{w}'^{-1}\underline{\dot{a}}^{-1}d): T \to T$, we have $f_5 = Ef_5'(E' \times 1)$ hence

$$f_5^*\mathcal{L} = (E'\times 1)^*f_5'^*E^*\mathcal{L} = (E'\times 1)^*(E^*\mathcal{L}\boxtimes E^*\mathcal{L}) = (EE')^*\mathcal{L}\boxtimes E^*\mathcal{L}.$$

From our assumption we have $\mathcal{L}' \cong E^*\mathcal{L}$. Moreover, $\mathcal{L}' \cong \operatorname{Ad}(d'^{-1}\dot{w}'^{-1})^*\mathcal{L}' = (E'E)^*\mathcal{L}'$. Hence $E^*\mathcal{L} \cong (E'E)^*E^*\mathcal{L} = (EE'E)^*\mathcal{L} = E^*(EE')^*\mathcal{L}$. Since E^* is faithful, it follows that $(EE')^*\mathcal{L} \cong \mathcal{L}$. Thus, $f_5^*\mathcal{L} \cong \mathcal{L} \boxtimes \mathcal{L}'$. This proves (a).

We prove (b). We may assume that $V'_{\bf a} \neq \emptyset$. From (a) we see that $f^*_{\bf a}\bar{\mathcal{L}}_{\bf a}$, $(\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}')|_{V'_{\bf a}}$ are two local systems on $V'_{\bf a}$ with the same restriction to the subset ${}^0V'_{\bf a}$. It then suffices to show that $V'_{\bf a}$ is smooth, irreducible and ${}^0V'_{\bf a}$ is open dense in $V'_{\bf a}$. By 32.10(a),(b), $f_{\bf a}$ is a fibration with connected smooth fibres and ${}^0V'_{\bf a}$ is the inverse image under $f_{\bf a}$ of ${}^0Z^{{\bf w},{\bf a}}_{\emptyset,J,\Delta}$. Hence it suffices to show that $Z^{{\bf w},{\bf a}}_{\emptyset,J,\Delta}$ is smooth, irreducible and ${}^0Z^{{\bf w},{\bf a}}_{\emptyset,J,\Delta}$ is open dense in $Z^{{\bf w},{\bf a}}_{\emptyset,J,\Delta}$. This follows from 32.4(c). The lemma is proved.

- **32.13.** Let **S** be the set of all $\mathbf{a} = (a_0, a_1, \dots, a_{r+r'}) \in \mathbf{W}^{r+r'} \times \mathbf{W}_{\epsilon(J)}$ such that
 - (a) $a_k \in \{a_{k-1}, s_k a_{k-1}\}$ for $k \in [1, r]$,
 - (b) $a_k \in \{a_{k-1}, a_{k-1}s'_{r+r'+1-k}\}\$ for $k \in [r+1, r+r'],$ (c) $(\underline{D}^{-1})^*\mathcal{L} \cong (a_{r+r'}^{-1})^*\mathcal{L}',$

 - (d) $i \in [1, r], a_{i-1} = a_i \implies i \in \mathcal{T},$
 - (e) $j \in [1, r'], a_{-j+r+r'} = a_{-j+1+r+r'} \implies j \in \mathcal{T}'.$

Lemma 32.14. If $\mathbf{a} \in (\mathbf{W}^{r+r'} \times \mathbf{W}_{\epsilon(J)}) - \mathbf{S}$ then $\rho'_{\mathbf{a}!}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') = 0$.

If a does not satisfy 32.13(a) or 32.13(b), then $V'_{\mathbf{a}} = \emptyset$ and the result is trivial. If a does not satisfy 32.13(c), the desired result follows from Lemma 32.8. Assume now that a satisfies 32.13(a)-(c) but it does not satisfy 32.13(d) or (e). Using $\rho_{\mathbf{a}}' = \pi_{\mathbf{w},\mathbf{a}} f_{\mathbf{a}}$ and 32.12(b), we see that it suffices to show that $\pi_{\mathbf{w},\mathbf{a}!} f_{\mathbf{a}!} (f_{\mathbf{a}}^* \bar{\mathcal{L}}_{\mathbf{a}}) = 0$, or that $\pi_{\mathbf{w},\mathbf{a}!}(\bar{\mathcal{L}}_{\mathbf{a}}\otimes f_{\mathbf{a}!}\bar{\mathbf{Q}}_l)=0$. It suffices to show that $\pi_{\mathbf{w},\mathbf{a}!}(\bar{\mathcal{L}}_{\mathbf{a}}\otimes \mathcal{H}^e(f_{\mathbf{a}!}\bar{\mathbf{Q}}_l))=0$ for any e. By 32.10 we have $f_{\mathbf{a}} = \eta \kappa$ and $\kappa_{!} \bar{\mathbf{Q}}_{l} = \bar{\mathbf{Q}}_{l}[[-c]]$ where $c = l(w_{\epsilon(J)}^{0} a_{r+r'})$. Hence $f_{\mathbf{a}!}\bar{\mathbf{Q}}_l = \eta_!\bar{\mathbf{Q}}_l[[-c]]$. Let $\mathbf{r} = \dim \mathbf{T}$. Since η is a principal \mathbf{T} -bundle (see 32.10), the local system $\mathcal{H}^e(\eta_!\bar{\mathbf{Q}}_l)$ admits a filtration whose associated graded is a direct sum of $\binom{\mathbf{r}}{2\mathbf{r}-e}$ copies of $\bar{\mathbf{Q}}_l(\mathbf{r}-e)$. Since $\pi_{\mathbf{w},\mathbf{a}!}\bar{\mathcal{L}}_{\mathbf{a}}=0$ (see 32.4(d)), we see that $\pi_{\mathbf{w},\mathbf{a}!}(\bar{\mathcal{L}}_{\mathbf{a}} \otimes \mathcal{H}^e(f_{\mathbf{a}!}\bar{\mathbf{Q}}_l)) = 0$ for any e. The lemma is proved.

32.15. We now make a short digression. Let X be an algebraic variety over \mathbf{k} . Let $C \in \mathcal{D}(X)$ and let $\{C_n; n \in \mathbf{Z}\}$ be a sequence of objects in $\mathcal{D}(X)$ such that $C_n = 0$ for all but finitely many n. We shall write

$$C \Leftrightarrow \{C_n; n \in \mathbf{Z}\}$$

if the following condition is satisfied: there exists a sequence $\{C'_n; n \in \mathbf{Z}\}$ of objects in $\mathcal{D}(X)$ such that $C_n'=0$ for $n\ll 0,$ $C_n'=C$ for $n\gg 0$ and distinguished triangles (C'_{n-1}, C'_n, C_n) for $n \in \mathbf{Z}$.

If X, C, C_n are as above, $C = \{C_n; n \in \mathbf{Z}\}$ and $X_2 \xrightarrow{f_2} X \xrightarrow{f_1} X_1$ are morphisms of algebraic varieties, we see from definitions that:

$$f_{1!}C \approx \{f_{1!}C_n; n \in \mathbf{Z}\},\$$

$$f_2^*C \Leftrightarrow \{f_2^*C_n; n \in \mathbf{Z}\}.$$

Assume now that $C \in \mathcal{D}(X)$ and that $\{C^u; u \in \mathcal{U}\}$ are objects of $\mathcal{D}(X)$ indexed by a finite set \mathcal{U} . We shall write

$$C \Leftrightarrow \{C_u; u \in \mathcal{U}\}$$

if the following condition is satisfied: there exists a bijection $\mathcal{U} \leftrightarrow [0,m]$ such that, setting $C_n = C^u$ if $u \leftrightarrow n \in [0, m]$ and $C_n = 0$ for $n \notin [0, m]$, we have $C \Leftrightarrow \{C_n; n \in \mathbf{Z}\}.$

For example, if $C \in \mathcal{D}(X)$, we have $C = \{ {}^{p}H^{n}C[-n]; n \in \mathbb{Z} \}$; in this case we can take $C'_n = {}^p \tau_{\leq n}(C)$ (truncation, as in [BBD]).

Similarly, if $C \in \mathcal{D}(X)$, we have $C = \{\mathcal{H}^n(C)[-n]; n \in \mathbf{Z}\}$.

As another example, assume that we are given a partition $X = \sqcup_{u \in \mathcal{U}} X^u$ with \mathcal{U} finite, where X^u are locally closed subvarieties of X such that for some bijection $\mathcal{U} \leftrightarrow [0, m]$, the union $X'_n = X_n \cup X_{n-1} \cup \cdots \cup X_0$ is open in X for any $n \in [0, m]$ (we set $X_n = X^u$ for $u \leftrightarrow n \in [0, m]$). For any $u \in \mathcal{U}$ let $j_u : X^u \to X$ be the inclusion and let $C_u = j_{u!}j_u^*C$. We have $C \approx \{C_u; u \in \mathcal{U}\}$. Indeed, setting $C_n = C_u$ if $u \leftrightarrow n \in [0, m]$ and $C_n = 0$ for $n \notin [0, m]$, we have $C \approx \{C_n; n \in \mathbf{Z}\}$. (We can take $C'_n = 0$ for n < 0, $C'_n = C$ for n > m, $C'_n = j'_{n!}j'_n^*C$ for $n \in [0, m]$, where $j'_n = X'_n \to X$ is the inclusion.)

32.16. Assume that $\mathbf{a} \in \mathbf{S}$. As in the proof of 32.14 we have $\rho'_{\mathbf{a}!}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') = \pi_{\mathbf{w},\mathbf{a}!}(\bar{\mathcal{L}}_{\mathbf{a}} \otimes f_{\mathbf{a}!}\bar{\mathbf{Q}}_{l})$ and $f_{\mathbf{a}!}\bar{\mathbf{Q}}_{l} = \eta_{!}\bar{\mathbf{Q}}_{l}[[-c]]$. Moreover, $\eta_{!}\bar{\mathbf{Q}}_{l} \approx \{\mathcal{H}^{e}(\eta_{!}\bar{\mathbf{Q}}_{l})[-e]; e \in \mathbf{Z}\}$ and for any e we have $\mathcal{H}^{e}(\eta_{!}\bar{\mathbf{Q}}_{l}) \approx \{C^{e}_{e'}; 1 \leq e' \leq \binom{\mathbf{r}}{2\mathbf{r}-e}\}$ where $C^{e}_{e'} = \bar{\mathbf{Q}}_{l}(\mathbf{r}-e)$. It follows that

(a)
$$\rho'_{\mathbf{a}!}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') \Rightarrow \{\pi_{\mathbf{w},\mathbf{a}!}(\bar{\mathcal{L}}_{\mathbf{a}} \otimes \mathcal{H}^e(\eta_! \bar{\mathbf{Q}}_l))[-e][[-c]]; e \in \mathbf{Z}\},$$

(b)
$$\pi_{\mathbf{w},\mathbf{a}!}(\bar{\mathcal{L}}_{\mathbf{a}} \otimes \mathcal{H}^{e}(\eta_{!}\bar{\mathbf{Q}}_{l})[-e][[-c]] \approx \{C'_{e'}^{e}; 1 \leq e' \leq {\mathbf{r} \choose 2\mathbf{r} - e}\}$$

where

$$C'^{e}_{\ e'} = \pi_{\mathbf{w}, \mathbf{a}!}(\bar{\mathcal{L}}_{\mathbf{a}})(\mathbf{r} - e)[-e][[-c]] = K^{(a_{0}, \epsilon'(a^{-1}_{r+r'})), \mathcal{L}}_{J, \Delta}(\mathbf{r} - e)[-e][[-c]][[-N_{\mathbf{a}}]]$$

(see 32.4(e)). By 32.4(e) we have

(c)
$$a_0 \epsilon'(a_{r+r'}^{-1}) \underline{\Delta} \in \mathbf{W}_{\mathcal{L}}^{\bullet}.$$

From (a),(b) we see that, if A is a simple perverse sheaf on $Z_{J,\Delta}$ such that $A \dashv \rho'_{\mathbf{a}!}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')$ then $A \dashv K_{J,\Delta}^{(a_0,\epsilon'(a_{r+r'}^{-1})),\mathcal{L}}$.

32.17. From the partition $V' = \sqcup_{\mathbf{a}} V'_{\mathbf{a}}$ we get as in 32.15

(a)
$$\rho_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') = \rho_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') \Leftrightarrow \{\rho_{\mathbf{a}}'(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}'); \mathbf{a} \in \mathbf{S}\}$$

(by 32.14 we can omit the $\mathbf{a} \notin \mathbf{S}$). Thus, if A is a simple perverse sheaf on $Z_{J,D}$ such that $A \dashv \rho_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')$, then for some $\mathbf{a} \in \mathbf{S}$ we have $A \dashv \rho'_{\mathbf{a}!}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')$ hence, by 32.16, $A \dashv K_{J,\Delta}^{(a_0,\epsilon'(a_{r+r'}^{-1})),\mathcal{L}}$, so that $A \in \hat{Z}_{J,\Delta}^{\mathcal{L}}$. We also see that $\mathbf{S} \neq \emptyset$; in particular, $(\underline{D}^{-1})^*\mathcal{L} \cong y^*\mathcal{L}'$ for some $\underline{a} \in \mathbf{W}_{\epsilon(J)}$ (see 32.13(c)). Since $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} * \bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'} = \rho_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')$ (see 32.7) we see that 32.6(b) holds. We also see that 32.6(a) holds since, under the assumption of 32.6(a), we can find an A as above.

32.18. In this and the next subsection we place ourselves in the setup of 32.6(c). Then $V, V', V'_{\mathbf{a}}$ are defined over \mathbf{F}_q and we can regard $\rho'_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')$ and $\rho'_{\mathbf{a}!}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')$ (for any \mathbf{a}) as mixed complexes on $Z_{J,\Delta}$. Using 32.17(a), 32.16(a),(b) (or rather their variant in the mixed category) and 31.7(c),(e) we see that, with the notation of 31.6, we have

$$\chi_{v}^{A}(\rho_{!}(\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}')) = \sum_{\mathbf{a}\in\mathbf{S}}\chi_{v}^{A}(\rho_{\mathbf{a}}'(\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}'))$$

$$= \sum_{\mathbf{a}\in\mathbf{S}}\sum_{e\in\mathbf{Z}}(-1)^{e}v^{2N_{\mathbf{a}}+2l(w_{\epsilon(J)}^{0}a_{r+r'})-2\mathbf{r}+2e}\binom{\mathbf{r}}{2\mathbf{r}-e}\chi_{v}^{A}(K_{J,\Delta}^{(a_{0},\epsilon'(a_{r+r'}^{-1})),\mathcal{L}})$$

$$= (v^{2}-1)^{\mathbf{r}}\sum_{\mathbf{a}\in\mathbf{S}}v^{2N_{\mathbf{a}}-2l(w_{\epsilon(J)}^{0}a_{r+r'})}\chi_{v}^{A}(K_{J,\Delta}^{(a_{0},\epsilon'(a_{r+r'}^{-1})),\mathcal{L}})$$
(a)
$$= (v^{2}-1)^{\mathbf{r}}\sum_{\mathbf{a}\in\mathbf{S}}v^{2N_{\mathbf{a}}-2l(w_{\epsilon(J)}^{0}a_{r+r'})}v^{\dim G-l(w_{\mathbf{I}}^{0}w_{J}^{0})}\zeta^{A}(T_{a_{0}}T_{\epsilon'(a_{r+r'}^{-1}}1_{\underline{\Delta}\lambda}[\Delta]).$$

32.19. Let $h \mapsto h^{\flat}$ be the antiautomorphism of the algebra H_n defined by $T_u \mapsto T_{u^{-1}}$ for $u \in \mathbf{W}$, $1_{\lambda} \mapsto 1_{\lambda}$ for $\lambda \in \underline{\mathfrak{s}}_n$. We have $(C_{\lambda}^{\tilde{\mathbf{s}}})^{\flat} = C_{s_r...s_2s_1\lambda}^{\tilde{\mathbf{s}}}$ where $\tilde{\mathbf{s}} = (s_r, s_{r-1}, \ldots, s_1)$. The following identity in the algebra H_n (see 31.2) is a special case of one in 31.11:

(a)
$$T_y C_{\lambda_1}^{\mathbf{s}'} = \sum_{\mathbf{y}'} v^{2\delta'(\mathbf{y}')} T_{y'_{r'}} 1_{\lambda_1};$$

here $y \in \mathbf{W}, \lambda_1 \in \underline{\mathfrak{s}}_n$, the sum is taken over all sequences $\mathbf{y}' = (y_0', y_1', \dots, y_{r'}')$ in \mathbf{W} such that

$$\begin{array}{l} y = y_0', \\ y_i' \in \{y_{i-1}', y_{i-1}'s_i'\} \text{ for } i \in [1, r'], \\ i \in [1, r'], y_{i-1}' = y_i' \implies s_i' \in \mathbf{W}_{s_{i+1}'', s_{i'}', \lambda_1}; \\ \text{moreover, } \delta'(\mathbf{y}') = |\{i \in [1, r']; y_{i-1}'s_i' < y_{i-1}'\}|. \text{ Similarly, we have} \end{array}$$

(b)
$$C_{s_r...s_2s_1\lambda_2}^{\mathbf{s}} T_y = \sum_{\mathbf{y}} v^{2\delta(\mathbf{y})} 1_{\lambda_2} T_{y_0};$$

here $\lambda_2 \in \underline{\mathfrak{s}}_n$, the sum is taken over all sequences $\mathbf{y} = (y_0, y_1, \dots, y_r)$ in \mathbf{W} such that

$$y = y_r,$$

 $y_i \in \{y_{i-1}, s_i y_{i-1}\} \text{ for } i \in [1, r],$
 $i \in [1, r], y_{i-1} = y_i \implies s_i \in \mathbf{W}_{s_{i-1} \dots s_1 \lambda_2};$

moreover, $\delta(\mathbf{y}) = |\{i \in [1, r]; s_i y_i < y_i\}|$. This can be deduced from (a) using the involution $h \mapsto h^{\flat}$.

Combining (a),(b) we obtain (for $\lambda_1, \lambda_2 \in \underline{\mathfrak{s}}_n$) the identity

$$C_{s_r...s_2s_1\lambda_2}^{\mathbf{s}} T_y C_{\lambda_1}^{\mathbf{s}'} = \sum_{\mathbf{y},\mathbf{y}'} v^{2\delta(\mathbf{y}) + 2\mathbf{d}(\mathbf{y}')} 1_{\lambda_2} T_{y_0} 1_{\lambda_1};$$

the sum is taken over the pairs $\mathbf{y} = (y_0, y_1, \dots, y_r), \mathbf{y}' = (y_0', y_1', \dots, y_{r'}')$ of sequences in \mathbf{W} such that

$$y = y'_{0}, y'_{r'} = y_{r},$$

$$y_{i} \in \{y_{i-1}, s_{i}y_{i-1}\} \text{ for } i \in [1, r],$$

$$y'_{i} \in \{y'_{i-1}, y'_{i-1}s'_{i}\} \text{ for } i \in [1, r'],$$

$$i \in [1, r], y_{i-1} = y_{i} \implies s_{i} \in \mathbf{W}_{s_{i-1}...s_{1}\lambda_{2}},$$

$$i \in [1, r'], y'_{i-1} = y'_{i} \implies s'_{i} \in \mathbf{W}_{s'_{i+1}...s'_{r'}\lambda_{1}}.$$

We have $s_r ldots s_2 s_1 \lambda = \underline{D} \lambda$. Take $\lambda_1 = \underline{D}' \lambda', \lambda_2 = \lambda$. Take $y \in \mathbf{W}_{\epsilon(J)}$ such that $y\lambda' = \underline{D}\lambda$. We replace $(\mathbf{y}, \mathbf{y}')$ by $\mathbf{a} = (a_0, a_1, \ldots, a_{r+r'})$ where $a_k = y_k$ for $k \in [0, r], a_k = y'_{r+r'-k}$ for $k \in [r, r+r']$. Then $\delta(\mathbf{y}) + \delta'(\mathbf{y}') = N_{\mathbf{a}}$. We obtain

$$C_{\underline{D}\lambda}^{\mathbf{s}} T_y C_{\underline{D}'\lambda'}^{\mathbf{s}'} = \sum_{\mathbf{a}} v^{2N_{\mathbf{a}}} 1_{\lambda} T_{a_0} 1_{\underline{D}'\lambda'};$$

the sum is over all $\mathbf{a} = (a_0, a_1, \dots, a_{r+r'}) \in \mathbf{W}^{r+r'} \times \mathbf{W}_{\epsilon(J)}$ such that

$$y = a_{r+r'}, a_i \in \{a_{i-1}, s_i a_{i-1}\} \text{ for } i \in [1, r], a_{r+r'-i} \in \{a_{r+r'-i+1}, a_{r+r'-i+1} s_i'\} \text{ for } i \in [1, r'], i \in [1, r], a_{i-1} = a_i \implies s_i \in \mathbf{W}_{s_{i-1} \dots s_1 \lambda}, i \in [1, r'], a_{r+r'-i+1} = a_{r+r'-i} \implies s_i' \in \mathbf{W}_{s_{i+1}' \dots s_{r'}' \underline{D}' \lambda'}.$$
 Equivalently,

(c)
$$C_{\underline{D}\lambda}^{\mathbf{s}} T_y C_{\underline{D}'\lambda'}^{\mathbf{s}'} = \sum_{\mathbf{a} \in \mathbf{S}; a_{r+r'} = y} v^{2N_{\mathbf{a}}} 1_{\lambda} T_{a_0} 1_{\underline{D}'\lambda'}.$$

For each **a** in the sum we have $a_0\epsilon'(y^{-1})\underline{\Delta}\lambda = \lambda$ (see 32.16(a)); combining this with $y\lambda' = \underline{D}\lambda$ we see that $a_0\underline{D}'\lambda' = \lambda$, hence $1_{\lambda}T_{a_0}1_{\underline{D}'\lambda'} = T_{a_0}1_{\underline{D}'\lambda'}$. We introduce this in (c), then multiply both sides of (c) on the right by

$$(v^2 - 1)^{\mathbf{r}} v^{\dim G - l(w_{\mathbf{I}}^0 w_J^0)} v^{-2l(y)} T_{\epsilon'(y^{-1})} 1_{\underline{\Delta}\lambda} [\Delta]$$

and sum over y. We obtain

$$\begin{split} &(v^2-1)^{\mathbf{r}}v^{\dim G-l(w_{\mathbf{I}}^0w_J^0)}\sum_{y\in\mathbf{W}_{\epsilon(J)};y\lambda'=\underline{D}\lambda}v^{-2l(y)}C_{\underline{D}\lambda}^{\mathbf{s}}T_yC_{\underline{D}'\lambda'}^{\mathbf{s}'}T_{\epsilon'(y^{-1})}[\Delta]\\ &=(v^2-1)^{\mathbf{r}}v^{\dim G-l(w_{\mathbf{I}}^0w_J^0)}\sum_{\mathbf{a}\in\mathbf{S}}v^{2N_{\mathbf{a}}-2l(a_{r+r'}}T_{a_0}T_{\epsilon'(a_{r+r'}^{-1})}1_{\underline{\Delta}\lambda}[\Delta]. \end{split}$$

We apply ζ_v^A (see 31.7) to both sides and use 32.18(a). We obtain

$$\chi_{v}^{A}(\rho_{!}(\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}')) = (v^{2}-1)^{\mathbf{r}}v^{\dim G-l(w_{\mathbf{I}}^{0}w_{J}^{0})}\zeta^{A}(\sum_{\substack{y\in\mathbf{W}_{\epsilon(J)}\\y\lambda'=\underline{D}\lambda}}v^{2l(w_{\epsilon(J)}^{0}y)}C_{\underline{D}\lambda}^{\mathbf{s}}T_{y}C_{\underline{D}'\lambda'}^{\mathbf{s}'}T_{\epsilon'(y^{-1})}[\Delta]).$$

We substitute $y = \epsilon(y'), y' \in \mathbf{W}_J$ that is, $T_y = [D]T_{y'}[D]^{-1}$. Since $\chi_v^A(\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} * \bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'}) = \chi_v^A(\rho_!(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}'))$, 32.6(c) follows. This completes the proof of Theorem 32.6.

32.20. Let $\mathcal{D}^{cs}(Z_{J,D})$ (resp. $\mathcal{D}^{\mathcal{L}}(Z_{J,D})$ with $\mathcal{L} \in \mathfrak{s}(\mathbf{T})$) be the subcategory of $\mathcal{D}(Z_{J,D})$ whose objects are those $K \in \mathcal{D}(Z_{J,D})$ such that for any j, any simple subquotient of ${}^{p}H^{j}K$ is in $\hat{Z}_{J,D}$ (resp. in $\hat{Z}_{J,D}^{\mathcal{L}}$). We have the following result.

Corollary 32.21. (a) If $K \in \mathcal{D}^{cs}(Z_{J,D}), K' \in \mathcal{D}^{cs}(Z_{\epsilon(J),D'}), \text{ then } K * K' \in \mathcal{D}^{cs}(Z_{J,\Delta}).$

(b) If
$$\mathcal{L} \in \mathfrak{s}(\mathbf{T})$$
, $K \in \mathcal{D}^{\mathcal{L}}(Z_{J,D})$, $K' \in \mathcal{D}^{cs}(Z_{\epsilon(J),D'})$, then $K * K' \in \mathcal{D}^{\mathcal{L}}(Z_{J,\Delta})$.

We prove (a). We may assume that $K \in \hat{Z}_{J,D}, K' \in \hat{Z}_{\epsilon(J),D'}$. We can find $\mathbf{s}, \mathbf{s}', \mathcal{L}, \mathcal{L}'$ as in 32.5 and $u, u' \in \mathbf{Z}$ such that K[u] is a direct summand of $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}}$ and K'[u'] is a direct summand of $\bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'}$. Then K*K'[u+u'] is a direct summand of $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} * \bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'}$ which, by 32.6(b), is in $\mathcal{D}^{\mathcal{L}}(Z_{J,\Delta})$. Hence K*K'[u+u'] is in $\mathcal{D}^{\mathcal{L}}(Z_{J,\Delta})$. This proves (a). The same argument proves (b).

32.22. If E is a mixed \mathbf{Q}_l -vector space (that is, a \mathbf{Q}_l -vector space which, when regarded as a complex over a point, is a mixed complex) we set

$$\chi_v(E) = \sum_j \dim(E_j) v^j \in \mathcal{A}$$

where E_j is the pure subquotient of weight j of E. We preserve the setup in 32.5. Assume that $D' = D^{-1}$ hence $\Delta = G^0$. Let **S** be as in 32.13.

Define an \mathcal{A} -linear map $\Phi: H_n \to H_n$ by $\xi \mapsto \mathfrak{a}_D(C_{\underline{D}\lambda}^{\mathbf{s}} \xi C_{\underline{D}'\lambda'}^{\mathbf{s}'})$ with \mathfrak{a}_D as in 31.4. For any $y \in \mathbf{W}_{\epsilon(J)}$ such that $y\lambda' = \underline{D}\lambda$ we have

$$\Phi(T_y 1_{\lambda'}) = \sum_{\mathbf{a} \in \mathbf{S}; a_{r+r'} = y} v^{2N_{\mathbf{a}}} 1_{\underline{D}\lambda} T_{\epsilon(a_0)} 1_{\lambda'}.$$

(See 32.19(c).) Define an \mathcal{A} -linear map $\Theta^J: H_n \to H_n$ by $\Theta^J(T_w 1_{\lambda_1}) = T_w 1_{\lambda_1}$ if $w \in \mathbf{W}_J, \lambda_1 \in \underline{\mathfrak{s}}_n$, $\Theta^J(T_w 1_{\lambda_1}) = 0$ if $w \in \mathbf{W} - \mathbf{W}_J, \lambda_1 \in \underline{\mathfrak{s}}_n$. Replacing J by $\epsilon(J)$ we obtain an \mathcal{A} -linear map $\Theta^{\epsilon(J)}: H_n \to H_n$. Define $\Phi': H_n \to H_n$ by $\Phi'(\xi') = \Theta^{\epsilon(J)}\Phi(\xi')$. Since H_n is a free \mathcal{A} -module and Φ' is \mathcal{A} -linear, $\operatorname{tr}(\Phi', H_n) \in \mathcal{A}$ is well defined. From the definitions we have

(a)
$$\operatorname{tr}(\Phi', H_n) = \sum_{\mathbf{a} \in \mathbf{S}; a_{r+r'} = \epsilon(a_0)} v^{2N_{\mathbf{a}}} = \sum_{\mathbf{a} \in \mathbf{S}_0} v^{2N_{\mathbf{a}}},$$

where $\mathbf{S}_0 = \{\mathbf{a} \in \mathbf{S}; a_0 = \epsilon'(a_{r+r'})\}.$

Define an \mathcal{A} -linear map $\Phi'': H_n \to H_n$ by $\xi \mapsto \Theta^J(C_{\lambda'-1}^{\tilde{\mathbf{s}}'}\mathfrak{a}_D(\xi)C_{\lambda^{-1}}^{\tilde{\mathbf{s}}})$ where $\tilde{\mathbf{s}} = (s_r, \ldots, s_2, s_1), \ \tilde{\mathbf{s}}' = (s'_{r'}, \ldots, s'_2, s'_1).$ Let $\partial: Z_{J,D} \to Z_{\epsilon(J),D'}$ be as in 28.19. Then $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} \otimes \partial^* \bar{K}_{\epsilon(J),D'}^{\tilde{\mathbf{s}}',\mathcal{L}'} \in \mathcal{D}(Z_{J,D})$ is well defined. Let

$$\mu(G^0) = (v^2 - 1)^{\mathbf{r}} \sum_{w \in \mathbf{W}} v^{2l(w)} \in \mathcal{A}.$$

The following result is an application of (the proof of) Theorem 32.6.

Corollary 32.23. Assume that $\mathbf{k}, \mathbf{F}_q, G, F$ are as in 31.7(b). Then

$$\sum_{z} (-1)^{z} \chi_{v}(H_{c}^{z}(Z_{J,D}, \bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} \otimes \partial^{*} \bar{K}_{\epsilon(J),D^{-1}}^{\mathbf{s}',\mathcal{L}'}) = v^{2l(w_{J}^{0})} \mu(G^{0}) \operatorname{tr}(\Phi', H_{n})$$

(a)
$$= v^{2l(w_J^0)} \mu(G^0) \operatorname{tr}(\Phi'', H_n).$$

Let $\mathfrak{Z} = \{(Q, Q', xU_Q) \in Z_{J,\Delta}; Q = Q', x \in U_Q\}$, let $\iota : \mathfrak{Z} \to Z_{J,\Delta}$ be the inclusion and let $p : \mathfrak{Z} \to \text{point}$ be the obvious map. From the definitions, for any $A \in \mathcal{D}(\hat{Z}_{J,D}), A' \in \mathcal{D}(Z_{\epsilon(J),D'})$ we have

(b)
$$H_c^z(\text{point}, p_!\iota^*(A * A')) = H_c^z(Z_{J,D}, A \otimes \partial^*(A'))$$

for any $z \in \mathbf{Z}$. In particular,

$$H_c^z(Z_{J,D}, \bar{K}_{J,D}^{\mathbf{s},\mathcal{L}} \otimes \partial^* \bar{K}_{\epsilon(J),D'}^{\mathbf{s}',\mathcal{L}'}) = H_c^z(\text{point}, p_! \iota^* \rho_! (\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')).$$

Applying $p_1\iota^*$ to 32.17(a) gives

(c)
$$p_! \iota^* \rho_! (\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') \Leftrightarrow \{ p_! \iota^* \rho'_{\mathbf{a}!} (\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}'); \mathbf{a} \in \mathbf{S} \}.$$

Let $\mathbf{a} \in \mathbf{S}$. Applying $p_! \iota^*$ to 32.16(a), 32.16(b) gives

(d)
$$p_! \iota^* \rho'_{\mathbf{a}!} (\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}') \Leftrightarrow \{K_e; e \in \mathbf{Z}\},$$

(e)
$$K_e \approx \{K'^e_{e'}; 1 \le e' \le {\mathbf{r} \choose 2\mathbf{r} - e}\}$$

where $K_e, K'^e_{e'} \in \mathcal{D}(\text{point})$ and $K'^e_{e'} = p_! \iota^* K^{(a_0, \epsilon'(a^{-1}_{r+r'})), \mathcal{L}}_{J,\Delta}(\mathbf{r} - e)[-e][[-c - N_{\mathbf{a}}]]$ (notation of 32.16). Let

$$X_{\mathbf{a}} = \{(B_0, B_0') \in \mathcal{B} \times \mathcal{B}; pos(B_0, B_0') = a_0, pos(B_0', B_0) = \epsilon'(a_{r+r'}^{-1})\}$$

and let $\omega: X_{\mathbf{a}} \to \text{point}$ be the obvious map. From the definitions we see that $p_! \iota^* K_{J,\Delta}^{(a_0,\epsilon'(a_{r+r'}^{-1})),\mathcal{L}} = \omega_! \bar{\mathbf{Q}}_l$. If $a_0 \neq \epsilon'(a_{r+r'})$ then $X_{\mathbf{a}} = \emptyset$ hence $\omega_! \bar{\mathbf{Q}}_l = 0$; if $a_0 = \epsilon'(a_{r+r'})$ that is, $\mathbf{a} \in \mathbf{S}_0$, then

(f)
$$H^z(\text{point}, \omega_! \bar{\mathbf{Q}}_l) = \bigoplus_{w \in \mathbf{W}: 2l(w) = z} \bar{\mathbf{Q}}_l(-z - l(a_0)).$$

Using (c),(d),(e),(f) (or rather their variant in the mixed category) we see that

$$\sum_{z} (-1)^{z} \chi_{v}(H^{z}(\text{point}, p_{!}\iota^{*}\rho_{!}(\bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}')))$$

$$= \sum_{\mathbf{a} \in \mathbf{S}_{0}, e \in \mathbf{Z}} (-1)^{e} v^{2N_{\mathbf{a}} + 2l(w_{\epsilon(J)}^{0}a_{r+r'}) - 2\mathbf{r} + 2e} \binom{\mathbf{r}}{2\mathbf{r} - e} \sum_{w \in \mathbf{W}} v^{2l(w) + 2l(a_{0})}$$

$$= v^{2l(w_{J}^{0})} (v^{2} - 1)^{\mathbf{r}} \sum_{w \in \mathbf{W}} v^{2l(w)} \sum_{\mathbf{a} \in \mathbf{S}_{0}} v^{2N_{\mathbf{a}}} = v^{2l(w_{J}^{0})} \mu(G^{0}) \operatorname{tr}(\Phi', H_{n}).$$

It remains to show that $\operatorname{tr}(\Phi', H_n) = \operatorname{tr}(\Phi'', H_n)$. Define \mathcal{A} -linear maps $\Psi', \Psi'', \Omega : H_n \to H_n$ by

$$\Psi'(\xi) = C_{D\lambda}^{\mathbf{s}} \xi C_{D'\lambda'}^{\mathbf{s}'}, \Psi''(\xi) = C_{\lambda'^{-1}}^{\tilde{\mathbf{s}}'} \xi C_{\lambda^{-1}}^{\tilde{\mathbf{s}}}, \Omega(T_w 1_{\lambda_1}) = 1_{\lambda_1^{-1}} T_{w^{-1}}.$$

One checks that

$$\begin{array}{l} \Omega \Psi' = \Psi'' \Omega, \mathfrak{a}_D \Theta^J = \Theta^{\epsilon(J)} \mathfrak{a}_D, \mathfrak{a}_D \Theta^J \Omega = \Omega \mathfrak{a}_D \Theta^J, \ \Phi' = \Theta^{\epsilon(J)} \mathfrak{a}_D \Psi', \\ \Phi'' = \Theta^J \Psi'' \mathfrak{a}_D. \end{array}$$

Hence $\Phi' = \mathfrak{a}_D \tilde{\Theta^J} \Omega^{-1} \Psi'' \Omega = \Omega^{-1} \mathfrak{a}_D \Theta^J \Psi'' \Omega$ and

$$\operatorname{tr}(\Phi', H_n) = \operatorname{tr}(\Omega^{-1}\mathfrak{a}_D\Theta^J\Psi''\Omega, H_n) = \operatorname{tr}(\mathfrak{a}_D\Theta^J\Psi'', H_n)$$
$$= \operatorname{tr}(\Theta^J\Psi''\mathfrak{a}_D, H_n) = \operatorname{tr}(\Phi'', H_n),$$

as required. The corollary is proved.

For $\lambda \in \underline{\mathfrak{s}}(\mathbf{T})$ we set $\mathbf{W}_{\lambda} = \mathbf{W}_{\mathcal{L}}$ where $\mathcal{L} \in \mathfrak{s}(\mathbf{T})$ is in the isomorphism class λ ; this agrees with the definition in 31.2 when $\lambda \in \mathfrak{s}_n$.

Corollary 32.24. Let $A \in \hat{Z}_{J,D}, \mathcal{L}, \mathcal{L}'' \in \mathfrak{s}(\mathbf{T})$. Let λ (resp. λ'') be the isomorphism class of \mathcal{L} (resp. \mathcal{L}''). Let $\mathbf{s} = (s_1, s_2, \ldots, s_r), \ \mathbf{s}'' = (s_1'', s_2'', \ldots, s_{r'}'')$ be sequences in \mathbf{I} such that $s_1 s_2 \ldots s_r \underline{D} \lambda = \lambda, \ s_1'' s_2'' \ldots s_{r'}'' \underline{D} \lambda' = \lambda'', \ A \dashv \overline{K}_{J,D}^{\mathbf{s},\mathcal{L}}$ and $A \dashv \overline{K}_{J,D}^{\mathbf{s}''}, \lambda''$. Then there exist $b \in \mathbf{W}_{\lambda''}, \ a_0 \in \mathbf{W}_J$ such that

(a)
$$a_0(\lambda'') = \lambda, \quad s_1 s_2 \dots s_r \underline{D} = a_0 s_1'' s_2'' \dots s_{r'}'' \underline{D} b a_0^{-1}$$

Let $A' = \partial_!(\mathfrak{D}(A))$ with ∂ as in 28.19. Then $A' \dashv \bar{K}^{\mathbf{s}',\mathcal{L}'}_{\epsilon_D(J),D'}$ where $\mathbf{s}' = (s_1', s_2', \dots, s_{r'}')$ is given by $s_k' = s_{r'+1-k}''$ and $D' = D^{-1}$, $\mathcal{L}' = (\underline{D}')^*(\mathcal{L}'')$, see

28.17, 28.19; hence $A * A' \in \mathcal{D}(Z_{J,\Delta})$ is well defined with $\Delta = D'D = G^0$. By 32.23(b) we have

$$H_c^0(\text{point}, p_!\iota^*(A*A')) = H_c^0(Z_{J,D}, A \otimes \partial^*(A')) = H_c^0(Z_{J,D}, A \otimes \mathfrak{D}(A)).$$

The last vector space is one dimensional, see [L3, II,7.4]. It follows that $H_c^0(\text{point}, p!\iota^*(A*A')) \neq 0$.

Now some shift of A*A' is a direct summand of $\bar{K}_{J,D}^{\mathbf{s},\mathcal{L}}*\bar{K}_{\epsilon_D(J),D'}^{\mathbf{s}',\mathcal{L}'}=\rho_!(\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}')$ (see 32.6). Hence $H_c^z(\text{point},p_!\iota^*(\rho_!(\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}'))\neq 0$ for some $z\in\mathbf{Z}$. Using this and 32.23(c) we see that there exists $\mathbf{a}\in\mathbf{S}$ such that $H_c^z(\text{point},p_!\iota^*\rho'_{\mathbf{a}!}(\bar{\mathcal{L}}\boxtimes\bar{\mathcal{L}}'))\neq 0$ for some $z\in\mathbf{Z}$. Using this and 32.23(d) we see that there exists $e\in\mathbf{Z}$ such that $H_c^z(\text{point},K_e)\neq 0$ for some $z,e\in\mathbf{Z}$. Using this and 32.23(e) we see that there exists $e'\in\mathbf{Z}$ such that $H_c^z(\text{point},K'_{e'}{}^e)\neq 0$ for some $z,e'\in\mathbf{Z}$. As in 32.23 we see that we must have $\mathbf{a}\in\mathbf{S}_0$. Thus, there exists a sequence $a_0,a_1,\ldots,a_{r+r'}$ in $\mathbf{W}^{r+r'}$ such that

```
a_{k} \in \{a_{k-1}, s_{k}a_{k-1}\} \text{ for } k \in [1, r],
a_{k} \in \{a_{k-1}, a_{k-1}(s_{k-r}'') \text{ for } k \in [r+1, r+r'],
a_{0} \in \mathbf{W}_{J}, a_{0}(\lambda'') = \lambda, a_{r+r'} = \epsilon(a_{0}),
i \in [1, r], a_{i-1} = a_{i} \implies s_{1}s_{2} \dots s_{i} \dots s_{2}s_{1} \in \mathbf{W}_{\lambda}
j \in [1, r'], a_{j+r-1} = a_{j+r} \implies s_{1}'' \dots s_{j-1}'' s_{j}'' s_{j-1}'' \dots s_{1}'' \in \mathbf{W}_{\lambda''}.
For i \in [1, r] we set t_{i} = s_{1}s_{2} \dots s_{i} \dots s_{2}s_{1} if a_{i-1} = a_{i} and t_{i} = 1 if a_{i-1} \notin a_{i}.
Then t_{i} \in \mathbf{W}_{\lambda} and
```

 $s_1 s_2 \dots s_i = t_i s_1 s_2 \dots s_{i-1} a_{i-1} a_i^{-1}.$

It follows that $s_1 s_2 ... s_r = t_r t_{r-1} ... t_1 a_0 a_r^{-1}$. Similarly for $j \in [1, r']$ we set $t''_j = s''_1 s''_2 ... s''_j ... s''_2 s''_1$ if $a_{j+r-1} = a_{j+r}$ and $t''_j = 1$ if $a_{j+r-1} \neq a_{j+r}$. Then $t''_j \in \mathbf{W}_{\lambda''}$ and $s''_1 s''_2 ... s''_j = t''_j s''_1 s''_2 ... s''_{j-1} a_{j+r-1}^{-1} a_{j+r}$. It follows that $s''_1 s''_2 ... s''_{r'} = t''_{r'} ... t''_2 t''_1 a_r^{-1} a_{r+r'}$. Setting

 $\tau = t_r t_{r-1} \dots t_1, \tau'' = t''_{r'} \dots t''_2 t''_1,$

we have $\tau \in \mathbf{W}_{\lambda}$, $\tau'' \in \mathbf{W}_{\lambda''}$, $s_1 s_2 \dots s_r = \tau a_0 a_r^{-1}$, $s_1'' s_2'' \dots s_{r'}'' = \tau'' a_r^{-1} \epsilon(a_0)$. Let $b' = (a_0^{-1} \tau a_0) \tau''^{-1}$. Then $b' \in \mathbf{W}_{\lambda''}$ and $s_1 s_2 \dots s_r \underline{D} = a_0 b' s_1'' s_2'' \dots s_{r'}'' \underline{D} a_0^{-1}$. We set $b = (s_1'' s_2'' \dots s_{r'}'' \underline{D})^{-1} b' s_1'' s_2'' \dots s_{r'}'' \underline{D}$. Since $s_1'' s_2'' \dots s_{r'}'' \underline{D} \lambda'' = \lambda''$ we have $b \in \mathbf{W}_{\lambda''}$. Moreover, $s_1 s_2 \dots s_r \underline{D} = a_0 s_1'' s_2'' \dots s_{r'}'' \underline{D} b a_0^{-1}$. The lemma is proved.

32.25. Given $(w, \lambda), (w', \lambda')$ in $\mathbf{W}^{\bullet} \times \underline{\mathfrak{s}}(\mathbf{T})$ we say that $(w, \lambda) \asymp_J (w', \lambda')$ if there exist $a \in \mathbf{W}_J, b \in \mathbf{W}_{\lambda'}$ such that $w = aw'ba^{-1}, \lambda = a(\lambda')$. We then have $w' = a^{-1}w(ab^{-1}a^{-1})a$ where $a^{-1} \in \mathbf{W}_J, a^{-1}(\lambda) = \lambda', ab^{-1}a^{-1} \in \mathbf{W}_{a\lambda'} = \mathbf{W}_{\lambda}$ hence $(w', \lambda') \asymp_J (w, \lambda)$. If, in addition, we have $(w', \lambda') \asymp_J (w'', \lambda'')$ that is, $w' = \tilde{a}w''\tilde{b}\tilde{a}^{-1}, \lambda' = \tilde{a}(\lambda'')$ with $\tilde{a} \in \mathbf{W}_J, \lambda' = \tilde{a}(\lambda''), \tilde{b} \in \mathbf{W}_{\lambda''},$ then $w = a\tilde{a}w''(\tilde{b}\tilde{a}^{-1}b\tilde{a})\tilde{a}^{-1}a^{-1}$ where $a\tilde{a} \in \mathbf{W}_J, \lambda = a\tilde{a}(\lambda''), \tilde{b}\tilde{a}^{-1}b\tilde{a} \in \mathbf{W}_{\lambda''}\mathbf{W}_{\tilde{a}^{-1}(\lambda')} = \mathbf{W}_{\lambda''},$ hence $(w, \lambda) \asymp_J (w'', \lambda'')$. We see that \asymp_J is an equivalence relation on $\mathbf{W}^{\bullet} \times \mathfrak{s}(\mathbf{T})$.

We can now reformulate 32.24 as follows.

(a) To $A \in \hat{Z}_{J,D}$ we can associate an equivalence class \mathfrak{E}_A under \asymp_J so that the following holds. If $\mathcal{L} \in \mathfrak{s}(\mathbf{T})$, λ is the isomorphism class of \mathcal{L} and $\mathbf{s} =$

 (s_1, s_2, \ldots, s_r) is a sequence in \mathbf{I} such that $s_1 s_2 \ldots s_r \underline{D} \lambda = \lambda$ and $A \dashv \bar{K}_{J,D}^{\mathbf{s},\mathcal{L}}$ then $(s_1 s_2 \ldots s_r \underline{D}, \lambda) \in \mathfrak{E}_A$.

In particular:

- (b) To $A \in Z_{J,D}$ we can associate a \mathbf{W}_{J} -orbit \mathcal{O}_{A} on $\underline{\mathfrak{s}}(\mathbf{T})$ so that the following holds. If $\mathcal{L} \in \mathfrak{s}(\mathbf{T})$, λ is the isomorphism class of \mathcal{L} and $\mathbf{s} = (s_1, s_2, \ldots, s_r)$ is a sequence in \mathbf{I} such that $s_1 s_2 \ldots s_r \underline{D} \lambda = \lambda$ and $A \dashv \bar{K}_{J,D}^{\mathbf{s},\mathcal{L}}$ then $\lambda \in \mathcal{O}_{A}$.
- **32.26.** Assume now that $J = \mathbf{I}$. We write \simeq instead of $\simeq_{\mathbf{I}}$. Thus, $(w, \lambda) \simeq (w', \lambda')$ if there exist $a \in \mathbf{W}, b \in \mathbf{W}_{\lambda'}$ such that $w = aw'ba^{-1}, \lambda = a(\lambda')$. Let $n \in \mathbf{N}_{\mathbf{k}}^*$.

Let A be a character sheaf on D. Let \mathfrak{E}_A be the equivalence class in $\mathbf{W}^{\bullet} \times \underline{\mathfrak{s}}(\mathbf{T})$ under \simeq defined by A (see 32.25(a)). Let $\zeta^A : H_n[D] \to \mathcal{A}$ be as in 31.7. We show:

(a) If $\mathbf{s} = (s_1, s_2, \dots, s_r)$ is a sequence in \mathbf{I} , $\lambda \in \underline{\mathfrak{s}}_n$ and $\zeta^A(C^{\mathbf{s}}_{\underline{D}\lambda}[D]) \neq 0$ then $(s_1 s_2 \dots s_r \underline{D}, \lambda) \in \mathfrak{E}_A$.

Indeed, choose $\mathcal{L} \in \mathfrak{s}(\mathbf{T})$ in the isomorphism class λ . Our assumption implies that $s_1 s_2 \dots s_r \underline{D} \lambda = \lambda$ hence $\bar{K}_D^{\mathbf{s},\mathcal{L}}$ is defined. Moreover our assumption implies $\sum_j (-v)^j v^{-\dim G}(A: {}^pH^j(\bar{K}_D^{\mathbf{s},\mathcal{L}})) \neq 0$. In particular, $A \dashv \bar{K}_D^{\mathbf{s},\mathcal{L}}$. Hence (a) follows from 32.25(a).

We show:

(b) Let $(x, \lambda) \in \mathbf{W} \times \underline{\mathfrak{s}}_n$ be such that $\zeta^A(\tilde{T}_x 1_{\underline{D}\lambda}[D]) \neq 0$. Then $(x\underline{D}, \lambda) \in \mathfrak{E}_A$. We argue by induction on l(x). If x = 1 we have $\tilde{T}_x 1_{\underline{D}\lambda} = C_{\underline{D}\lambda}^{\mathbf{s}}$ where \mathbf{s} is the empty sequence and the result follows from (a). Assume now that $l(x) \geq 1$. From our assumption we have $x\underline{D}\lambda = \lambda$. We can find a sequence $\mathbf{s} = (s_1, s_2, \ldots, s_r)$ in \mathbf{I} with $x = s_1 s_2 \ldots s_r$, r = l(x). From the definitions we have $C_{\underline{D}\lambda}^{\mathbf{s}} = \sum_{y \in \mathbf{W}_{\underline{D}\lambda}, xy \leq x} c_y \tilde{T}_{xy} 1_{\underline{D}\lambda}$ with $c_y \in \mathcal{A}, c_1 = v^r$. Hence

$$\zeta^A(C_{\underline{D}\lambda}^{\mathbf{s}}[D]) = \sum_{y \in \mathbf{W}_{D\lambda}, xy \leq x} c_y \zeta^A(\tilde{T}_{xy} 1_{\underline{D}\lambda}[D]).$$

If $\zeta^A(\tilde{T}_{xy}1_{\underline{D}\lambda}[D]) \neq 0$ for some $y \in \mathbf{W}_{\underline{D}\lambda}, xy < x$ then, by the induction hypothesis, we have $(xy\underline{D},\lambda) \in \mathfrak{E}_A$; we have $(xy\underline{D},\lambda) \approx (x\underline{D},\lambda)$ so that $(x\underline{D},\lambda) \in \mathfrak{E}_A$, as required.

We may therefore assume that $\zeta^A(\tilde{T}_{xy}1_{\underline{D}\lambda}[D]) = 0$ for all $y \in \mathbf{W}_{\underline{D}\lambda}$ such that xy < x. Then we have $\zeta^A(C^{\mathbf{s}}_{\underline{D}\lambda}[D]) = v^r \zeta^A(\tilde{T}_x1_{\underline{D}\lambda}[D])$. Hence $\zeta^A(C^{\mathbf{s}}_{\underline{D}\lambda}[D]) \neq 0$. Using (a) we see that $(x\underline{D},\lambda) \in \mathfrak{E}_A$, as required. This proves (b).

33. Disjointness

- **33.1.** We fix an irreducible component D of G. For $(L,S) \in \mathbf{A}$ with $S \subset D$ and $\mathcal{E} \in \mathcal{S}(S)$ we define \mathfrak{K} as in 5.6; we regard \mathfrak{K} as a complex on D, zero outside $Y_{L,S}$ and we write $(L,S,\mathcal{E}) \triangleright_G \mathfrak{K}$.
- **Lemma 33.2.** Let $(L,S) \in \mathbf{A}, (L',S') \in \mathbf{A}$ with $S \subset D, S' \subset D$. Let $\mathcal{E} \in \mathcal{S}(S), \mathcal{E}' \in \mathcal{S}(S')$. Let $(L,S,\mathcal{E}) \blacktriangleright_G \mathfrak{K}, (L',S',\mathcal{E}') \blacktriangleright_G \mathfrak{K}'$. Assume that \mathcal{E} (resp. \mathcal{E}') is strongly cuspidal and clean (see 23.3) relative to N_GL (resp. N_GL'), that $L = G^0$ hence $Y_{L,S} = S$ and that $Y_{L',S'} \neq S$. Then for any i, the local systems $\check{\mathcal{E}}, \mathcal{H}^i \mathfrak{K}'|_S$ have no common irreducible direct summand.

If $L' = G^0$ then, since \mathcal{E}' is clean, we have $\mathcal{H}^i \mathfrak{K}'|_S = 0$. Assume now that $L' \neq G^0$. By 23.7 we have $H_c^j(G, \mathfrak{K} \otimes \mathfrak{K}') = 0$ for all j. Since $\mathfrak{K} = IC(\bar{S}, \mathcal{E})$ and \mathcal{E} is clean, we have $H_c^j(S, \mathfrak{K} \otimes \mathfrak{K}') = 0$ for all j hence $H_c^i(S, \mathcal{E} \otimes \mathfrak{K}') = 0$ for all j. We must show that the local system $\mathcal{H}^i(\mathcal{E} \otimes (\mathfrak{K}'|_S))$ on S has no direct summand $\bar{\mathbf{Q}}_l$. Assume that $\mathcal{H}^{i_0}(\mathcal{E} \otimes (\mathfrak{K}'|_S))$ has a direct summand $\bar{\mathbf{Q}}_l$ and that i_0 is maximum possible with this property. If $a = \dim S'$, we have $H_c^{2a}(S, \mathcal{H}^{i_0}(\mathcal{E} \otimes (\mathfrak{K}'|_S))) \neq 0$. Hence $E_2^{2a,i_0} \neq 0$ in the standard spectral sequence

$$E_2^{p,q} = H_c^p(S, \mathcal{H}^q(\mathcal{E} \otimes (\mathfrak{K}'|_S))) \implies H_c^{p+q}(S, \mathcal{E} \otimes (\mathfrak{K}'|_S)).$$

By the proof of 23.5 we have $H_c^p(S, \mathcal{E}_1) = 0$ for any $\mathcal{E}_1 \in \mathcal{S}(S)$ which has no direct summand $\bar{\mathbf{Q}}_l$; in particular, taking $\mathcal{E}_1 = \mathcal{H}^i(\mathcal{E} \otimes (\mathcal{R}'|_S))$ with $i > i_0$ we see that $E_2^{p,q} = 0$ if $q > i_0$. Clearly, $E_2^{p,q} = 0$ if p > 2a, hence $E_2^{2a,i_0} = E_3^{2a,i_0} = \cdots = E_{\infty}^{2a,i_0}$. Since $E_2^{2a,i_0} \neq 0$, it follows that $H_c^{2a+i_0}(S, \mathcal{E} \otimes (\mathcal{R}'|_S)) \neq 0$, a contradiction. The lemma is proved.

Proposition 33.3. Let $(L,S) \in \mathbf{A}, (L',S') \in \mathbf{A}$ with $S \subset D, S' \subset D$. Let $\mathcal{E} \in \mathcal{S}(S), \mathcal{E}' \in \mathcal{S}(S')$. Let $(L,S,\mathcal{E}) \blacktriangleright_G \mathfrak{K}, (L',S',\mathcal{E}') \blacktriangleright_G \mathfrak{K}'$. Assume that \mathcal{E} and $\check{\mathcal{E}}$ (resp. \mathcal{E}') are strongly cuspidal and clean relative to N_GL (resp. N_GL'). Let A (resp. A') be an admissible complex on D (see 6.7) which is a direct summand of \mathfrak{K} (resp. of \mathfrak{K}'). Assume that $A \not\cong A'$. Let $Y = Y_{L,S}$. Let \mathcal{F} be the local system $A|_Y$. Then for any i, \mathcal{F} is not a direct summand of $\mathcal{H}^i(A')|_Y$ (which is a local system by 25.2).

Since $\bar{Y}_{L',S'}$ is a union of strata of D, we have either $Y \cap \bar{Y}_{L',S'} = 0$ or $Y = Y_{L',S'}$ or $Y \subset \overline{Y}_{L',S'} - Y_{L',S'}$. In the first case we have $\mathcal{H}^i(A')|_Y = 0$ and the result is obvious. In the second case we have $\mathcal{H}^i(A')|_Y=0$ unless i=0 and since $A\not\cong A'$, the local system $\mathcal{H}^0(A)|_Y$ is irreducible, non-isomorphic to \mathcal{F} . Thus, we may assume that $Y \subset \bar{Y}_{L',S'} - Y_{L',S'}$. It is enough to show that for any i, \mathcal{F} is not a direct summand of $\mathcal{H}^i(\mathfrak{K}')|_Y$ (a local system, by 25.2). Let δ be the connected component of N_GL such that $S \subset \delta$. Let $su = us \in S^*$ with s semisimple, u unipotent. Let $\tilde{\delta}$ be the connected component of $Z_G(s)$ such that $u \in \tilde{\delta}$. Since su is isolated in N_GL , we have ${}^{\delta}\mathcal{Z}_L^0 = {}^{\tilde{\delta}}\mathcal{Z}_{Z_L(s)^0}$; we denote this torus by \mathcal{T} . Let R_1 be the subvariety of S consisting of all elements of the form $yzsuy^{-1}$ with $y \in Z_L(s)^0, z \in \mathcal{T}$. Since R_1 is an orbit of a connected group, it is smooth, irreducible. Let $R_1^* = R_1 \cap S^*$, an open dense subset of R_1 (see 25.4, 25.6). Let $\pi_1:\pi^{-1}(R_1^*)\to R_1^*$ be the restriction of $\pi:\tilde{Y}_{L,S}\to Y$ (as in 3.13). Let $\tilde{\mathcal{E}}$ be the local system on $\tilde{Y}_{L,S}$ defined in 5.6; its restriction to $\pi^{-1}(R_1^*)$ is denoted again by $\tilde{\mathcal{E}}$. From the definitions, we have $\mathfrak{K}|_{R_1^*} = \pi_{1!}\tilde{\mathcal{E}}$. By the proof of 3.13(a) we have $\pi^{-1}(R_1^*) = \sqcup_{xL \in N(L,S)/L} \{ (g, xL); g \in R_1^* \}$

where $N(L,S) = \{x \in N_{G^0}L, xSx^{-1} = S\}$. Define $\epsilon : s^{-1}R_1 \to R_1$ by $g \mapsto sg$. We see that $\epsilon^* \mathfrak{K}|_{R_1^*} = \bigoplus_{xL \in N(L,S)/L} \mathcal{E}^x|_{s^{-1}R_1^*}$ where \mathcal{E}^x is the local system on $s^{-1}R_1$ obtained by taking inverse image of \mathcal{E} under $s^{-1}R_1 \to S, g \mapsto xsgx^{-1}$. Now $s^{-1}R_1$ is an isolated stratum of $Z_G(s)$ contained in the connected component $\tilde{\delta}$ (it is the

stratum containing u). From 23.4 we see that \mathcal{E}^x and $\check{\mathcal{E}}^x$ are strongly cuspidal and clean with respect to $Z_G(s)$. By 16.12 we can find complexes $\mathfrak{K}'_j(j \in [1, m])$ on $\tilde{\delta}$ of the same type as \mathfrak{K}' and an open subset \mathcal{U} of $\tilde{\delta}$ containing all unipotents in $\tilde{\delta}$ such that

- (a) $\epsilon'^*(\mathfrak{K}'|_{s\mathcal{U}}) \cong \bigoplus_j \mathfrak{K}'_j|_{\mathcal{U}},$
- where $\epsilon': \mathcal{U} \to s\mathcal{U}$ is $g \mapsto sg$. Note that $R_1^* \cap s\mathcal{U}$ contains su hence is non-empty. Since $s\mathcal{U}$ is open in $s\tilde{\delta}$, and R_1 is an irreducible subset of $s\tilde{\delta}$, we see that $R_1 \cap s\mathcal{U}$ is an open dense subset of R_1 . Since R_1^* is another open dense subset of R_1 we see that
- (b) $R_1^* \cap s\mathcal{U} = (R_1 \cap s\mathcal{U}) \cap R_1^*$ is open dense in R_1 . It suffices to show that the local systems $\mathcal{H}^i(\mathfrak{K}')|_{R_1^* \cap s\mathcal{U}}$, $\mathfrak{K}|_{R_1^* \cap s\mathcal{U}}$ have no common irreducible direct summand. Using (a) we see that it suffices to show that for any $j \in [1, m], x \in N(L, S)$,
- (c) the local systems $\mathcal{H}^i(\mathfrak{K}'_j)|_{s^{-1}R_1^*\cap\mathcal{U}}$, $\mathcal{E}^x_{s^{-1}R_1^*\cap\mathcal{U}}$ have no common irreducible direct summand.
- Since $s^{-1}R_1$ is an isolated stratum of $Z_G(s)$, $\mathcal{H}^i(\mathfrak{K}'_j)|_{s^{-1}R_1}$ is a local system. Using (b) we see that (c) would follow from the following statement:
- (d) the local systems $\mathcal{H}^i(\mathfrak{K}'_j)|_{s^{-1}R_1}$, \mathcal{E}^x have no common irreducible direct summand.
- By 16.12(b) we may assume that there exists $x' \in G^0$ such that $x'^{-1}sx' \in S'_s$ and the following holds. Let $L'' = x'L'x'^{-1}$, $S'' = x'S'x'^{-1}$, $L'_0 = L'' \cap Z_G(s)^0$,
- S_0' is a stratum of $N_G L_0'$ contained in $\tilde{\delta}$, containing unipotent elements and such that $S_0' \subset s^{-1}S''$,
- \mathcal{E}'_0 is the local system on S'_0 , inverse image of \mathcal{E}' under $S'_0 \to S'$, $g \mapsto x'^{-1}sgx'$, $(L'_0, S'_0, \mathcal{E}'_0) \blacktriangleright_{Z_G(s)} \mathfrak{K}'_j$.
- From 23.4 we see that \mathcal{E}'_0 is strongly cuspidal and clean with respect to $N_{Z_G(s)}(L'_0)$. We see that (d) follows from 33.2 (applied to $Z_G(s), \mathcal{R}'_j, \check{\mathcal{E}}^x$ instead of $G, \mathcal{R}', \mathcal{E}$) provided we can show that
 - (e) $Y_{L'_0,S'_0}$ (defined in terms of $Z_G(s)$) is not equal to $s^{-1}R_1$.

Assume that $Y_{L'_0,S'_0} = s^{-1}R_1$. Since $s^{-1}R_1$ is an isolated stratum of $Z_G(s)$, it follows that $L'_0 = Z_G(s)^0$ and $S'_0 = s^{-1}R_1$ hence $Z_G(s)^0 \subset L''$ and $u \in S'_0$. Since $sS'_0 \subset S''$, we have $su \in S''$. We can find a parabolic P' of G^0 with Levi L' such that $S' \subset N_G P' \cap N_G L'$ hence $S'' \subset N_G (x'P'x'^{-1}) \cap N_G (x'L'x'^{-1})$. We see that $su \in N_G(x'P'x'^{-1}) \cap N_G(x'L'x'^{-1})$. Using 2.1(c) with $g = su, Q = x'P'x'^{-1}$, we see that $L(su) \subset x'L'x'^{-1} = L''$ where L(su) is defined as in 2.1. We can find a parabolic P of G^0 with Levi L such that $S \subset N_G P \cap N_G L$ hence $su \in N_G P \cap N_G L$. Moreover, su is isolated in $N_G P \cap N_G L$. From 3.8(a) we see that $L \subset L(su)$. Combining with $L(su) \subset L''$, we see that $L \subset L''$. Since $Y \subset \bar{Y}_{L',S'} - Y_{L',S'}$, we have $\bar{Y} \subset \bar{Y}_{L',S'}$. Taking images under the map $\sigma : D \to D//G^0$ (see 7.1) we obtain $\dim \sigma(\bar{Y}) \leq \dim \sigma(\bar{Y}_{L',S'})$. Using 7.3(b) we can rewrite the last inequality in the form $\dim({}^{\delta}Z_L^0) \leq \dim({}^{\delta'}Z_{L'}^0)$ where δ' is the connected component of $N_G L'$ that contains S'. Equivalently,

(f) $\dim({}^{\delta}\mathcal{Z}_{L}^{0}) \leq \dim({}^{\delta''}\mathcal{Z}_{L''}^{0})$

where δ'' is the connected component of N_GL'' that contains S''. From $L \subset L''$ we deduce $\mathcal{Z}_{L''} \subset \mathcal{Z}_L$. Intersecting both sides with $Z_G(su)$ and noting that $su \in \delta, su \in \delta''$ we see that $\delta''\mathcal{Z}_{L''} \subset \delta\mathcal{Z}_L$. Taking identity components we have $\delta''\mathcal{Z}_{L''}^0 \subset \delta\mathcal{Z}_L^0$. Using (f) we deduce $\delta''\mathcal{Z}_{L''}^0 = \delta\mathcal{Z}_L^0$. Taking the centralizer of both sides in G^0 and using 1.10(a) we obtain L = L''. Now S and S'' are strata of $N_GL = N_GL''$ which contain a common point, su. Hence S = S''. Since (L, S) = (L'', S'') we have $Y_{L,S} = Y_{L'',S''}$ hence $Y = Y_{L',S'}$. This contradicts $Y \subset \bar{Y}_{L',S'} - Y_{L',S'}$ and proves (e). The proposition is proved.

33.4. Let \mathcal{I} be a finite collection of mutually non-isomorphic character sheaves on D and let $A \in \mathcal{I}$. Let $Y = Y_{L,S}$ be the stratum of D such that $\operatorname{supp}(A) = \bar{Y}$. Let $\tilde{Y} = \{(g, xL) \in D \times G^0/L; x^{-1}gx \in S^*\}$ (see 3.13). Define $\pi_1 : \tilde{Y} \to Y$ by $\pi_1(g, xL) = g$. By 25.2, for any $A' \in \mathcal{I}$ and any $i \in \mathbf{Z}$ there exists a local system $\mathcal{E} \in \mathcal{S}(S)$ such that $\mathcal{H}^i(A')|_Y$ is a local system isomorphic to a direct summand of $\pi_{1!}\tilde{\mathcal{E}}$ with $\tilde{\mathcal{E}}$ as in 5.6. Replacing \mathcal{E} by the direct sum of the local systems \mathcal{E} (for various j, i as above) we see that we may assume that \mathcal{E} is the same for all A', i. We can find $n' \in \mathbf{N}_k^*$ such that $\mathcal{E} \in \mathcal{S}_{n'}(S)$. Let δ be the connected component of $N_G L$ that contains S. Let $g_1 \in S$. Let $H = \{(z_1, l_1) \in {}^{\delta}\mathcal{Z}_L^0 \times L; l_1 z_1^{n'} g_1 l_1^{-1} = g_1\}$. Let

$$V=\{(g,x,z,l)\in D\times G^0\times {}^{\delta}\mathcal{Z}_L^0\times L; x^{-1}gx=lz^{n'}g_1l^{-1}\in S^*\}.$$

Now V is irreducible; it is isomorphic to the product of G^0 with an open dense subset of ${}^{\delta}\mathcal{Z}_L^0 \times L$. We have a commutative diagram with cartesian squares

$$\tilde{Y}' \xleftarrow{a'} Z' \xrightarrow{b'} S'$$

$$\pi_2 \downarrow \qquad \qquad \pi_3 \downarrow \qquad \qquad \pi_4 \downarrow$$

$$Y \xleftarrow{\pi_1} \tilde{Y} \xleftarrow{a} Z \xrightarrow{b} S$$

where

S' is the space of H^0 -orbits on ${}^{\delta}\mathcal{Z}_L^0 \times L$ for the free H^0 -action by right translation,

$$Z = \{(g, x) \in D \times G^0; x^{-1}gx \in S^*\},\$$

 \tilde{Y}' is the space of $(L \times H^0)$ -orbits on V for the free $L \times H^0$ -action $(l_0, (z_1, l_1))$: $(g, x, z, l) \mapsto (g, x l_0^{-1}, z z_1^{-1}, l_0 l l_1^{-1}),$

Z' is the space of H^0 -orbits on V for the free H^0 -action (z_1, l_1) : $(g, x, z, l) \mapsto (g, x, zz_1^{-1}, ll_1^{-1}),$

 $a(g,x) = (g,xL), b(g,x) = x^{-1}gx, a'$ is the obvious map, $b'(g,x,z,l) \mapsto (z,l), \pi_2(g,x,z,l) = (g,xL), \pi_3(g,x,z,l) = (g,x), \pi_4(z_1,l_1) = l_1^{-1} z_1^{n'} g_1 l_1.$

Now \tilde{Y}' is irreducible since V is irreducible; \tilde{Y} is irreducible since it equals $\pi_2(\tilde{Y}')$. Since $\mathcal{E} \in \mathcal{S}_{n'}(S)$, the local system $\pi_4^*\mathcal{E}$ on S' is $({}^{\delta}\mathcal{Z}_L^0 \times L)$ -equivariant (for the action by left translation). Since this action is transitive with connected isotropy groups, we see that $\pi_4^*\mathcal{E} \cong \bar{\mathbf{Q}}_l^e$ for some integer $e \geq 1$. Hence $\pi_3^*b^*\mathcal{E} = b'^*\pi_4^*\mathcal{E} \cong \bar{\mathbf{Q}}_l^e$. By definition, $a^*\tilde{\mathcal{E}} = b^*\mathcal{E}$. Hence $a'^*\pi_2^*\tilde{\mathcal{E}} = \pi_3^*a^*\tilde{\mathcal{E}} = \pi_3^*b^*\mathcal{E} \cong \bar{\mathbf{Q}}_l^e$. Since a' is a principal L-bundle, it follows that $\pi_2^* \tilde{\mathcal{E}} \cong \bar{\mathbf{Q}}_l^e$. Now $\pi_0 := \pi_1 \pi_2 : \tilde{Y}' \to Y$ is a composition of two (finite) principal coverings (π_1 is a principal H/H^0 -covering since π_4 is a principal H/H^0 -covering; π_1 is a principal covering by 3.13(a)) hence it is a not necessarily principal, finite unramified covering. Let $N = |\pi_0^{-1}(y)|$ for some/any $y \in Y$. Let Y'' be the set of all pairs (y, f) where $y \in Y$ and $f:\{1,2,\ldots,N\}\to\pi_0^{-1}(y)$ is a bijection. Then Y'' is an algebraic variety and $\pi'_0:Y''\to Y,(y,f)\mapsto y$ is a principal covering whose group is the symmetric group \mathfrak{S}_N . Moreover, π'_0 factors as $Y'' \xrightarrow{\tau} \tilde{Y}' \xrightarrow{\pi_0} Y$ where $\tau(y, f) = f(1)$. Let \hat{Y} be a connected component of Y''. Then $\tau_0: \hat{Y} \to \tilde{Y}'$ (restriction of τ) is a finite unramified covering. Let $\pi: \hat{Y} \to Y$ be the restriction of π'_0 . Then π is a (finite) principal bundle whose group is the group Γ consisting of all elements of \mathfrak{S}_N which map \hat{Y} into itself. Moreover, π factors as $\hat{Y} \xrightarrow{\tau_1} \tilde{Y} \xrightarrow{\pi_1} Y$ where $\tau_1 = \pi_1 \tau_0$ is a finite unramified covering. Since $\pi_2^* \tilde{\mathcal{E}} \cong \bar{\mathbf{Q}}_l^e$, we have $\tau_1^* \tilde{\mathcal{E}} \cong \bar{\mathbf{Q}}_l^e$. Hence any irreducible direct summand of the local system $\tilde{\mathcal{E}}$ is a direct summand of $\tau_{1!}\bar{\mathbf{Q}}_{l}$. Now let \mathcal{E}_{1} be an irreducible local system on Y which is a direct summand of $\pi_{1!}\tilde{\mathcal{E}}$. We can find an irreducible direct summand \mathcal{E}_2 of $\tilde{\mathcal{E}}$ such that \mathcal{E}_1 is a direct summand of $\pi_{1!}\mathcal{E}_2$. Then \mathcal{E}_2 is a direct summand of $\tau_{1!}\bar{\mathbf{Q}}_l$, hence $\pi_{1!}\mathcal{E}_2$ is a direct summand of $\pi_{1!}\tau_{1!}\bar{\mathbf{Q}}_l=\pi_!\bar{\mathbf{Q}}_l$. Since \mathcal{E}_1 is a direct summand of $\pi_{1!}\mathcal{E}_2$ it follows that

(a) \mathcal{E}_1 is a direct summand of $\pi_! \bar{\mathbf{Q}}_l$.

Let \mathcal{C} be the category whose objects are local systems on Y which are direct sums of irreducible direct summands of $\pi_!\bar{\mathbf{Q}}_l$. Let \mathcal{C}_{Γ} be the category of $\bar{\mathbf{Q}}_l[\Gamma]$ -modules of finite dimension over $\bar{\mathbf{Q}}_l$. We have an equivalence of categories $\mathcal{C}_{\Gamma} \to \mathcal{C}$: it attaches to an object M of \mathcal{C}_{Γ} the local system $[M] = (M^* \otimes \pi_!\bar{\mathbf{Q}}_l)^{\Gamma}$ in \mathcal{C} ; here $\pi_!\bar{\mathbf{Q}}_l$ is regarded naturally as a local system with Γ -action, M^* is the dual of M and the superscript denotes Γ -invariants. Using (a) and the definition of \mathcal{E} , we see that, for any $A' \in \mathcal{I}, i \in \mathbf{Z}$, we have $\mathcal{H}^i(A')|_Y \in \mathcal{C}$. Hence $\mathcal{H}^i(A')|_Y \cong [M_{A',i}]$ for some $M_{A',i} \in \mathcal{C}_{\Gamma}$, well defined up to isomorphism. Let $e = \dim Y$. Then $M_{A,-e}$ is an irreducible object of \mathcal{C}_{Γ} .

In the remainder of this section we assume that:

(b) D is clean in the sense that, for any parabolic subgroup P of G^0 such that $N_DP \neq \emptyset$, any cuspidal character sheaf of N_DP/U_P is 0 on the complement of some isolated stratum of N_DP/U_P . We show:

(c) if $A' \in \mathcal{I}$, $i \in \mathbf{Z}$ and $A' \neq A$ then $M_{A',i}$ contains no direct summand isomorphic to $M_{A,-e}$.

This follows from 33.3 which is applicable in view of (b), the admissibility of character sheaves (30.6), the strong cuspidality of cuspidal character sheaves (31.15) and the fact that $\mathfrak{D}(A)$ is a character sheaf (28.18).

In the remainder of this section we assume that \mathbf{k} is an algebraic closure of a finite field \mathbf{F}_q and that G has a fixed \mathbf{F}_q -rational structure whose Frobenius map F induces the identity map on G/G^0 . Replacing \mathbf{F}_q by a finite extension, we may

assume that F(Y) = Y, that \hat{Y} and $\pi: \hat{Y} \to Y$ are defined over \mathbf{F}_q , that the Frobenius map $F: \hat{Y} \to \hat{Y}$ satisfies $F(\gamma \hat{y}) = \gamma F(\hat{y})$ for all $\gamma \in \Gamma, \hat{y} \in \hat{Y}$, that $F^*A' \cong A'$ for all $A' \in \mathcal{I}$ and that for any $\gamma \in \Gamma$ and any integer $m \geq 1$ there exists $\hat{y}_{\gamma,m} \in \hat{Y}$ such that $F^m(\hat{y}_{\gamma,m}) = \gamma \hat{y}_{\gamma,m}$. (We then set $y_{\gamma,m} = \pi(\hat{y}_{\gamma,m})$.)

Let $M \in \mathcal{C}_{\Gamma}$. The stalk of [M] at $y \in Y$ is the vector space

$$[M]_y = \{f: \pi^{-1}(y) \to M^*; f(\hat{y}) = \gamma(f(\gamma^{-1}\hat{y})) \text{ for all } \gamma \in \Gamma, \hat{y} \in \hat{Y}\}.$$

Let $m \geq 1$. For any $R \in \operatorname{Aut}_{\mathcal{C}_{\Gamma}}(M^*)$ there is a unique isomorphism of local systems $\tilde{R}: F^{m*}[M] \xrightarrow{\sim} [M]$ such that for any $y \in Y$, \tilde{R} induces on stalks the linear map $\tilde{R}_y: [M]_{F^m(y)} \to [M]_y$ which to a function $f: \pi^{-1}(F^m(y)) \to M^*$ associates the function $f': \pi^{-1}(y) \to M^*$ given by $f'(\hat{y}) = R(f(F^{-m}(\hat{y})))$. Clearly, any isomorphism $F^{m*}[M] \xrightarrow{\sim} [M]$ is of the form \tilde{R} for a unique R as above.

For $\gamma \in \Gamma$ we have an isomorphism

(d)
$$[M]_{y_{\gamma,m}} \xrightarrow{\sim} M^*, f \mapsto f(\hat{y}_{\gamma,m}).$$

If R is as above then $\tilde{R}_{y_{\gamma,m}}$ maps $[M]_{y_{\gamma,m}}$ into itself (since $F^m(y_{\gamma,m}) = y_{\gamma,m}$) and it corresponds under (d) to the automorphism $\gamma^{-1}R = R\gamma^{-1}: M^* \to M^*$. Hence

(e)
$$\operatorname{tr}(\tilde{R}_{y_{\gamma,m}}, [M]_{y_{\gamma,m}}) = \operatorname{tr}(\gamma^{-1}R, M^*) = \operatorname{tr}({}^tR\gamma, M).$$

33.5. Let V be an algebraic variety defined over \mathbf{F}_q with Frobenius map $F:V\to V$. Let $K\in\mathcal{D}(V)$ and let $\phi:F^*K\overset{\sim}{\longrightarrow}K$ be an isomorphism. For any integer $m\geq 1$ we denote by $\phi^{(m)}:F^{m*}K\overset{\sim}{\longrightarrow}K$ the composition

$$(F^m)^*K \xrightarrow{(F^{m-1})^*\phi} (F^{m-1})^*K \xrightarrow{(F^{m-2})^*} \dots \xrightarrow{F^*\phi} F^*K \xrightarrow{\phi} K.$$

33.6. For each $A' \in \mathcal{I}$ we choose an isomorphism $\kappa_{A'} : F^*A' \xrightarrow{\sim} A'$. Let $\kappa'_A : F^*\mathfrak{D}(A) \xrightarrow{\sim} \mathfrak{D}(A)$ be the isomorphism such that for any $y \in Y$ the isomorphism $\mathcal{H}^{-e}\mathfrak{D}(A)_{F(y)} \xrightarrow{\sim} \mathcal{H}^{-e}\mathfrak{D}(A)_y$ (that is, $\mathcal{H}^{-e}(A)_{F(y)} \xrightarrow{\sim} \mathcal{H}^{-e}(A)_y$) induced by κ'_A is $q^{\dim D-e}$ times the transpose inverse of the isomorphism $\mathcal{H}^{-e}(A)_{F(y)} \xrightarrow{\sim} \mathcal{H}^{-e}(A)_y$ induced by κ_A .

Proposition 33.7. Let $A' \in \mathcal{I}$. For any integer $m \geq 1$ we have

(a)
$$q^{-(\dim D - e)m} |\Gamma|^{-1} \sum_{\gamma \in \Gamma} \chi_{A', \kappa_{A'}^{(m)}}(y_{\gamma, m}) \chi_{\mathfrak{D}(A), \kappa_{A}'^{(m)}}(y_{\gamma, m}) = \delta_{A, A'}.$$

Under an isomorphism $\mathcal{H}^i(A')|_Y\cong [M_{A',i}]$, the isomorphism $F^{*m}\mathcal{H}^i(A')\stackrel{\sim}{\longrightarrow} \mathcal{H}^i(A')$ induced by $\kappa_{A'}^{(m)}:F^{*m}A'\stackrel{\sim}{\longrightarrow} A'$ corresponds to an isomorphism $F^{*m}[M_{A',i}]\stackrel{\sim}{\longrightarrow} [M_{A',i}]$ which must be of the form \tilde{R} for some $R=R_{m,A',i}\in \operatorname{Aut}_{\mathcal{C}_{\Gamma}}(M_{A',i}^*)$ hence

$$\operatorname{tr}(\kappa_{A'}^{(m)}, \mathcal{H}^{i}(A')_{y_{\gamma,m}}) = \operatorname{tr}({}^{t}R_{m,A',i}\gamma, M_{A',i}).$$

Next we have

$$\operatorname{tr}(\kappa_A'^{(m)}, \mathcal{H}^{-e}(\mathfrak{D}(A))_{y_{\gamma,m}}) = q^{(\dim D - e)m} \operatorname{tr}((\kappa_A^{(m)})^{-1}, \mathcal{H}^{-e}(A)_{y_{\gamma,m}})$$
$$= q^{(\dim D - e)m} \operatorname{tr}({}^t R_{m,A,-e}^{-1} \gamma^{-1}, M_{A,-e}).$$

Hence the left hand side of (a) equals

(b)
$$\sum_{i} (-1)^{i+e} |\Gamma|^{-1} \sum_{\gamma \in \Gamma} \operatorname{tr}({}^{t}R_{m,A',i}\gamma, M_{A',i}) \operatorname{tr}({}^{t}R_{m,A,-e}^{-1}\gamma^{-1}, M_{A,-e})$$

that is,

$$\sum_{i} (-1)^{i+e} |\Gamma|^{-1} \operatorname{tr}(({}^{t}R_{m,A',i} \otimes {}^{t}R_{m,A,-e}) \sum_{\gamma \in \Gamma} (\gamma \otimes \gamma^{-1}), M_{A',i} \otimes M_{A,-e}).$$

Assume first that $A' \neq A$. To show that (b) is zero it is enough to show that for any $i, \sum_{\gamma \in \Gamma} (\gamma \otimes \gamma^{-1})$ acts as 0 on $M_{A',i} \otimes M_{A,-e}$. This follows from the fact that the Γ -invariant part of the Γ -module $M_{A',i} \otimes M_{A,-e}^*$ is zero (see 33.4(c)).

Assume next that A' = A. Then we have $M_{A',i} = 0$ unless i = -e. We must show that

$$|\Gamma|^{-1} \sum_{\gamma \in \Gamma} \operatorname{tr}({}^{t}R_{m,A,-e}\gamma, M_{A,-e}) \operatorname{tr}({}^{t}R_{m,A,-e}^{-1}\gamma^{-1}, M_{A,-e}) = 1.$$

Since $M_{A,-e}$ is an irreducible Γ -module, ${}^tR_{m,A,-e}$ acts as on it as a scalar, hence the desired equality follows from the Schur orthogonality relations for irreducible characters of Γ .

34. The structure of H_n^D

34.1. We give (a variant of) some definitions in [L13, 1]. Let \mathcal{R} be a commutative ring with 1. Let \mathfrak{A} be an associative \mathcal{R} -algebra with 1 with a given finite basis B as an \mathcal{R} -module. We assume that 1 is compatible with B in the following sense: $1 = \sum_{\lambda} 1_{\lambda}$ where $1_{\lambda} \in B$ are distinct, $1_{\lambda} 1_{\lambda'} = \delta_{\lambda,\lambda'} 1_{\lambda}$ and any $b \in B$ satisfies $1_{\lambda} b 1_{\lambda'} = b$ for some (uniquely determined) λ, λ' . For $b, b' \in B$ we have $bb' = \sum_{b'' \in B} r_{b,b'}^{b''} b''$ where $r_{b,b'}^{b''} \in \mathcal{R}$. We say that $b' \leq b$ if $b' \in \cap_{K \in \mathcal{F}; b \in K} K$ where \mathcal{F} is the collection of all subsets K of B such that $\sum_{b_1 \in K} \mathcal{R} b_1$ is a two-sided ideal of \mathfrak{A} ; we say that $b \sim b'$ if $b' \leq b$ and $b \leq b'$. This is an equivalence relation on B and the equivalence classes are the *two-sided cells*. (Replacing two-sided ideals by left ideals in the definition of \leq and of two-sided cells we obtain the notion of left cells. The left cells form a partition of B finer than that given by two-sided cells.) We say that $b' \prec b$ if $b' \leq b$ and $b' \not\sim b$. For any $b \in B$ let $\mathfrak{A}_{\prec b} = \oplus_{b' \in B: b' \prec b} \mathcal{R} b$.

Assume now that $\mathcal{R} = \mathcal{A} = \mathbf{Z}[v, v^{-1}]$. Let $b \in B$. We can find an integer $m \geq 0$ such that $v^{-m}r_{b,b'}^{b''} \in \mathbf{Z}[v^{-1}]$ for any b', b'' in the two-sided cell of b. The smallest

such m is denoted by a(b). We say that B satisfies P_1 if a(b) = a(b') whenever b, b' are in the same two-sided cell. Assume that B satisfies P_1 . For $b \in B$ we set $\hat{b} = v^{-a(b)}b \in \mathfrak{A}$. Let $\mathfrak{A}^- = \sum_{b \in B} \mathbf{Z}[v^{-1}]\hat{b} \subset \mathfrak{A}$. Then \mathfrak{A}^- is an associative $\mathbf{Z}[v^{-1}]$ -algebra for the multiplication $\hat{b} * \hat{b}' = \sum_{b'' \in B; b'' \sim b} v^{-a(b)} r_{b,b'}^{b''} \hat{b}''$ if $b \sim b'$, $\hat{b} * \hat{b}' = 0$ if $b \not\sim b'$. Let $\mathfrak{A}^{\infty} = \mathfrak{A}^-/v^{-1}\mathfrak{A}^-$ and let $t_b = \hat{b} + v^{-1}\mathfrak{A}^- \in \mathfrak{A}^{\infty}$. Then \mathfrak{A}^{∞} is a ring with \mathbf{Z} -basis $\{t_b; b \in B\}$ and with multiplication defined by $t_b t_{b'} = \sum_{b'' \in B} \gamma_{b,b'}^{b''} t_{b''}$ where $\gamma_{b,b'}^{b''} \in \mathbf{Z}$ is given by $v^{-a(b)} r_{b,b'}^{b''} = \gamma_{b,b'}^{b''} \mod v^{-1} \mathbf{Z}[v^{-1}]$ if b, b', b'' are in the same two-sided cell and $\gamma_{b,b'}^{b''} = 0$, otherwise. We say that B satisfies P_2 if \mathfrak{A}^{∞} has a unit element compatible with the basis $\{t_b; b \in B\}$. We say that B satisfies P_3 if for any $b_1, b_2, b_3, b_4 \in B$ such that $b_2 \sim b_4$ we have

$$\sum_{\beta \in B; \beta \sim b_2} r_{b_1, b_2}^{\beta}(v) r_{\beta, b_3}^{b_4}(v') = \sum_{\beta \in B; \beta \sim b_2} r_{b_1, \beta}^{\beta_4}(v) r_{\beta_2, b_3}^{\beta}(v')$$

where v' is an indeterminate independent of v. In this case, assuming also that $b_2 \sim b_3 \sim b_4$, we pick the coefficient of $v'^{a(b_2)} = v'^{a(b_4)}$ in both sides and we obtain

(a)
$$\sum_{\beta \in B; \beta \sim b_2} r_{b_1, b_2}^{\beta} \gamma_{\beta, b_3}^{b_4} = \sum_{\beta \in B; \beta \sim b_2} r_{b_1, \beta}^{\beta_4} \gamma_{\beta_2, b_3}^{\beta}.$$

Assume that B satisfies P_1, P_2, P_3 . The unit element of \mathfrak{A}^{∞} is of the form $\sum_{b \in \mathcal{D}} t_b$ where $\mathcal{D} \subset B$. We say that \mathcal{D} is the set of distinguished elements of B.

Let $\mathfrak{A}_{\mathcal{A}}^{\infty} = \mathcal{A} \otimes \mathfrak{A}^{\infty}$. We define an \mathcal{A} -linear map $\Phi : \mathfrak{A} \to \mathfrak{A}_{\mathcal{A}}^{\infty}$ by

$$\Phi(b) = \sum_{b_1 \in \mathcal{D}, b_2 \in B: b_1 \sim b_2} r_{b, b_1}^{b_2} t_{b_2}$$

for $b \in B$. Then Φ is an \mathcal{A} -algebra homomorphism taking 1 to 1. If we identify $\mathfrak{A}, \mathfrak{A}_{\mathcal{A}}^{\infty}$ as \mathcal{A} -modules via $b \leftrightarrow t_b$, the obvious left $\mathfrak{A}_{\mathcal{A}}^{\infty}$ -module structure on $\mathfrak{A}_{\mathcal{A}}^{\infty}$ becomes the left $\mathfrak{A}_{\mathcal{A}}^{\infty}$ -module structure on \mathfrak{A} given by $t_b * b' = \sum_{b'' \in B} \gamma_{b,b'}^{b''} b''$. For $x \in \mathfrak{A}, b \in B$ we have

(b) $xb = \Phi(x) * b \mod \mathfrak{A}_{\prec b}$.

Indeed, we may assume that $x \in B$. Using (a), we have

$$\begin{split} &\Phi(x)*b = \sum_{b_1 \in \mathcal{D}, b_2 \in B; b_1 \sim b_2} r_{x,b_1}^{b_2} t_{b_2} * b = \sum_{b_1 \in \mathcal{D}, b_2, b'' \in B; b_1 \sim b_2} r_{x,b_1}^{b_2} \gamma_{b_2,b}^{b''} b'' \\ &= \sum_{b_1 \in \mathcal{D}, b_2, b'' \in B; b_1 \sim b \sim b''} r_{x,b_1}^{b_2} \gamma_{b_2,b}^{b''} b'' = \sum_{b_1 \in \mathcal{D}, b'_1, b'' \in B; b_1 \sim b \sim b''} r_{x,b'_1}^{b''} \gamma_{b_1,b}^{b'_1} b'' \\ &= \sum_{b_1 \in \mathcal{D}, b'' \in B; b_1 \sim b \sim b''} r_{x,b}^{b''} \gamma_{b_1,b}^{b} b'' = \sum_{b'' \in B; b \sim b''} r_{x,b}^{b''} b'' = xb \mod \mathfrak{A}_{\prec b}, \end{split}$$

as required.

Let K be a field and let $A \to K$ be a homomorphism of rings with 1. Let $\mathfrak{A}_K = K \otimes_{\mathcal{A}} \mathfrak{A}, \mathfrak{A}_K^{\infty} = K \otimes_{\mathbf{Z}} \mathfrak{A}^{\infty}, \mathfrak{A}_{K, \prec b} = K \otimes_{\mathcal{A}} \mathfrak{A}_{\prec b} \ (b \in B)$. Then Φ induces a K-algebra homomorphism $\Phi_K : \mathfrak{A}_K \to \mathfrak{A}_K^{\infty}$. We show:

(c) If \mathfrak{A}_K is a semisimple algebra then Φ_K is an (algebra) isomorphism. Since $\mathfrak{A}_K, \mathfrak{A}_K^{\infty}$ have the same (finite) dimension, it suffices to show that Φ_K is injective. The \mathfrak{A}_K^{∞} -module structure on \mathfrak{A} extends to an \mathfrak{A}_K^{∞} -module structure on \mathfrak{A}_K denoted again by *. From (b) we deduce that $xb = \Phi_K(x) * b \mod \mathfrak{A}_{K, \prec b}$ for any $x \in \mathfrak{A}_K, b \in B$. In particular, if $x \in \text{Ker}\Phi_K, b \in B$ then $xb \in \mathfrak{A}_{K, \prec b}$. Applying this repeatedly, we see that for any $m \geq 1$, any x_1, x_2, \ldots, x_m in $\text{Ker}\Phi_K$ and any $b \in B$, $x_1x_2 \ldots x_mb$ is a K-linear combination of elements $b' \in B$ such that $b' = b_m \prec b_{m-1} \prec \cdots \prec b_0 = b$ (with $b_i \in B$). If m is large enough, no such b' exists. Thus for large enough m we have $x_1x_2 \ldots x_mb = 0$ for all $b \in B$ hence $x_1x_2 \ldots x_m = 0$. We see that $\text{Ker}\Phi_K$ is a nilpotent two-sided ideal of \mathfrak{A}_K . Hence it is 0. Thus Φ_K is injective and (c) is proved.

34.2. Let D be a connected component of G^0 . Let \mathbf{W}^D be the subgroup of $\mathbf{W}^{\bullet} \subset \operatorname{Aut}(\mathbf{T})$ generated by \mathbf{W} and by \underline{D} . Now \mathbf{W} is a normal subgroup of \mathbf{W}^D and \mathbf{W}^D/\mathbf{W} is a finite cyclic group.

We fix $n \in \mathbf{N}_{\mathbf{k}}^*$. Let $\lambda \in \underline{\mathfrak{s}}_n$. We write R_{λ} instead of $R_{\mathcal{L}}$ (see 28.3) where λ is the isomorphism class of $\mathcal{L} \in \mathfrak{s}_n$. Then R_{λ} is a root system and $R_{\lambda}^+ = R_{\lambda} \cap R^+$ is a set of positive roots for R_{λ} . Let Π_{λ} be the unique set of simple roots for R_{λ} such that $\Pi_{\lambda} \subset R_{\lambda}^+$. Recall that \mathbf{W}_{λ} , the subgroup of \mathbf{W} generated by $\{s_{\alpha}; \alpha \in R_{\lambda}\}$ is the Weyl group of the root system R_{λ} . Let $\mathbf{I}_{\lambda} = \{s_{\alpha}; \alpha \in \Pi_{\lambda}\} \subset \mathbf{W}_{\lambda}$. Then $(\mathbf{W}_{\lambda}, \mathbf{I}_{\lambda})$ is a Coxeter group. Let $\mathbf{W}_{\lambda}^D = \{w \in \mathbf{W}^D; w\lambda = \lambda\}$. Let $\Omega_{\lambda}^D = \{w \in \mathbf{W}_{\lambda}^D; w(R_{\lambda}^+) = R_{\lambda}^+\}$. (Here \mathbf{W}^D acts on R by $w : \alpha \mapsto w\alpha, (w\alpha)(t) = \alpha(w^{-1}t)$ for $t \in \mathbf{T}$.) Then \mathbf{W}_{λ} is a normal subgroup of \mathbf{W}_{λ}^D , Ω_{λ}^D is a subgroup of \mathbf{W}_{λ}^D and \mathbf{W}_{λ}^D is the semidirect product of \mathbf{W}_{λ} and Ω_{λ}^D . Define $l : \mathbf{W}^D \to \mathbf{N}$ by $l(w) = |\{\alpha \in R^+; w(\alpha) \in R^-\}|$. This extends the length function $\mathbf{W} \to \mathbf{N}$. Define $l_{\lambda} : \mathbf{W}^D \to \mathbf{N}$ by $l_{\lambda}(w) = |\{\alpha \in R_{\lambda}^+; w(\alpha) \in R^-\}|$. Then $\Omega_{\lambda}^D = \{w \in \mathbf{W}_{\lambda}^D; l_{\lambda}(w) = 0\}$, $\mathbf{I}_{\lambda} = \{w \in \mathbf{W}_{\lambda}; l_{\lambda}(w) = 1\}$. The standard partial order \leq_{λ} of the Coxeter group \mathbf{W}_{λ} is extended to a partial order \leq_{λ} on \mathbf{W}_{λ}^D as follows: if $w_1, w_1' \in \Omega_{\lambda}^D$, $w_2, w_2' \in \mathbf{W}_{\lambda}$, we say that $w_1w_2 \leq_{\lambda} w_1'w_2'$ if $w_1 = w_1'$ and $w_2 \leq_{\lambda} w_2'$.

Let H_{λ}^{D} be the \mathcal{A} -algebra defined by the generators $\tilde{T}_{w}^{\lambda}(w \in \mathbf{W}_{\lambda}^{D})$ and relations

(a) $\tilde{T}_{w}^{\lambda} \tilde{T}_{w'}^{\lambda} = \tilde{T}_{ww'}^{\lambda}$ if $w, w' \in \mathbf{W}_{\lambda}^{D}$, $l_{\lambda}(ww') = l_{\lambda}(w) + l_{\lambda}(w')$,

(b) $(\tilde{T}_{\sigma}^{\lambda})^2 = \tilde{T}_1^{\lambda} + (v - v^{-1})\tilde{T}_{\sigma}^{\lambda}$ for $\sigma \in \mathbf{I}_{\lambda}$.

Then $\{\tilde{T}_w^\lambda; w \in \mathbf{W}_\lambda^D\}$ is an \mathcal{A} -basis of H_λ^D . Let H_λ be the \mathcal{A} -submodule of H_λ^D with \mathcal{A} -basis $\{\tilde{T}_w^\lambda; w \in \mathbf{W}_\lambda\}$. This is an \mathcal{A} -subalgebra of H_λ^D . Let $\bar{T}: H_\lambda^D \to H_\lambda^D$ be the unique ring homomorphism such that $v^m \tilde{T}_w^\lambda = v^{-m} (\tilde{T}_{w^{-1}}^\lambda)^{-1}$ for all $w \in \mathbf{W}_\lambda^D$, $m \in \mathbf{Z}$. From the definitions, for any $w \in \mathbf{W}_\lambda^D$ we have $\bar{T}_w^\lambda - \tilde{T}_w^\lambda \in \sum_{y \in \mathbf{W}_\lambda^D; y \leq \lambda} w, y \neq w} \mathcal{A} \tilde{T}_y^\lambda$. By an argument similar to one in [L12, 5.2] we see that for any $w \in \mathbf{W}_\lambda^D$ there is a unique element $c_w^\lambda \in H_\lambda^D$ such that $\bar{c}_w^\lambda = c_w^\lambda$ and $c_w^\lambda - \tilde{T}_w^\lambda \in \sum_{y \in \mathbf{W}_\lambda^D; y \neq w} v^{-1} \mathbf{Z} [v^{-1}] \tilde{T}_y^\lambda$. Also, $\{c_w^\lambda; w \in \mathbf{W}_\lambda^D\}$ is an \mathcal{A} -basis of H_λ^D

and $\{c_w^{\lambda}; w \in \mathbf{W}_{\lambda}\}$ is an \mathcal{A} -basis of H_{λ} (as in [KL]).

Lemma 34.3. The A-algebra H_{λ}^D with its basis $(c_w^{\lambda})_{w \in \mathbf{W}_{\lambda}^D}$ satisfies P_1, P_2, P_3 in *34.1.*

The analogous statement where $H_{\lambda}^{D}, \mathbf{W}_{\lambda}^{D}$ are replaced by $H_{\lambda}, \mathbf{W}_{\lambda}$ holds by [L12, §15]. The proof of the lemma is entirely similar; alternatively, it can be reduced to the case of H_{λ} using the identities

(a)
$$c_{w_1w_2}^{\lambda} = \tilde{T}_{w_1}^{\lambda} c_{w_2}^{\lambda}, \ c_{w_2w_1}^{\lambda} = c_{w_2}^{\lambda} \tilde{T}_{w_1}^{\lambda} \text{ for } w_1 \in \Omega_{\lambda}^{D}, w_2 \in \mathbf{W}_{\lambda},$$

(b) $\tilde{T}_{w_1}^{\lambda} \tilde{T}_{w_1'}^{\lambda} = \tilde{T}_{w_1w_1'}^{\lambda} \text{ for } w_1 \in \Omega_{\lambda}^{D}, w_1' \in \Omega_{\lambda}^{D}.$

(b)
$$\tilde{T}_{w_1}^{\lambda} \tilde{T}_{w_1'}^{\lambda} = \tilde{T}_{w_1 w_1'}^{\lambda}$$
 for $w_1 \in \Omega_{\lambda}^D, w_1' \in \Omega_{\lambda}^D$

The function $a:\{c_w^{\lambda}; w \in \mathbf{W}_{\lambda}^D\} \to \mathbf{N}$ (see 34.1) is determined by the analogous function $a:\{c_w^{\lambda}; w \in \mathbf{W}_{\lambda}\} \to \mathbf{N}$ (defined in terms of H_{λ}) by $a(c_{w_1w_2}^{\lambda}) =$ $a(c_{w_2w_1}^{\lambda}) = a(c_{w_2}^{\lambda})$ for $w_1 \in \Omega_{\lambda}^D, w_2 \in \mathbf{W}_{\lambda}$. The two-sided cells of $\{c_w^{\lambda}; w \in \mathbf{W}_{\lambda}^D\}$ are the sets of the form $\tilde{T}_{w_1}^{\lambda} \mathbf{c} \tilde{T}_{w_1'}^{\lambda}$ where w_1, w_1' run through Ω_{λ}^D and \mathbf{c} is a two-sided cell of $\{c_w^{\lambda}; w \in \mathbf{W}_{\lambda}\}$. We show:

(c) If $c_w^{\lambda}(w \in \mathbf{W}_{\lambda}^D)$ is a distinguished basis element of H_{λ}^D (see 34.1) then $w \in \mathbf{W}_{\lambda} \text{ and } w^2 = 1.$

By [L12] any left cell of \mathbf{W}_{λ} contains a unique distinguished basis element. By the same argument, any left cell of \mathbf{W}_{λ}^{D} contains a unique distinguished basis element. Let Γ be the left cell of \mathbf{W}_{λ}^{D} that contains c_{w}^{λ} . (See 3.1.) Write $w=w_{1}w_{2}$ with $w_{1} \in \Omega_{\lambda}^{D}, w_{2} \in \mathbf{W}_{\lambda}$. From (a) we have $c_{w}^{\lambda} = \tilde{T}_{w_{1}}^{\lambda} c_{w_{2}}^{\lambda}, c_{w_{2}}^{\lambda} = \tilde{T}_{w_{1}}^{\lambda} c_{w^{\lambda}}$. Hence $c_{w_2}^{\lambda} \in \Gamma$. We see that, if Γ' is the left cell of \mathbf{W}_{λ} that contains $c_{w_2}^{\lambda}$, then $\Gamma' \subset \Gamma$. Let $c_{w_3}^{\lambda}$ be the unique distinguished basis element of \mathbf{W}_{λ} that is contained in Γ' . Then $c_{w_3}^{\lambda}$ is also a distinguished basis element of \mathbf{W}_{λ}^{D} contained in Γ hence, by uniqueness, we have $c_{w_3}^{\lambda} = c_w^{\lambda}$. We see that $w = w_3 \in \mathbf{W}_{\lambda}$. The fact that $w^2 = 1$ also follows from [L12].

34.4. Let H_n^D be the \mathcal{A} -algebra with 1 defined by the generators $\tilde{T}_w(w \in \mathbf{W}^D)$, $1_{\lambda}(\lambda \in \underline{\mathfrak{s}}_n)$ and the relations

$$1_{\lambda}1_{\lambda} = 1_{\lambda} \text{ for } \lambda \in \underline{\mathfrak{s}}_{n}, \ 1_{\lambda}1_{\lambda'} = 0 \text{ for } \lambda \neq \lambda' \text{ in } \underline{\mathfrak{s}}_{n}, \\
\tilde{T}_{w}\tilde{T}_{w'} = \tilde{T}_{ww'} \text{ for } w, w' \in \mathbf{W}^{D} \text{ with } l(ww') = l(w) + l(w'), \\
\tilde{T}_{w}1_{\lambda} = 1_{w\lambda}\tilde{T}_{w} \text{ for } w \in \mathbf{W}^{D}, \lambda \in \underline{\mathfrak{s}}_{n}, \\
\tilde{T}_{s}^{2} = \tilde{T}_{1} + (v - v^{-1}) \sum_{\lambda; s \in \mathbf{W}_{\lambda}} \tilde{T}_{s}1_{\lambda} \text{ for } s \in \mathbf{I}, \\
\tilde{T}_{1} = \sum_{\lambda} 1_{\lambda}.$$

We identify H_n (see 31.2) with the subalgebra of H_n^D generated by $\tilde{T}_w(w \in$ \mathbf{W}), $1_{\lambda}(\lambda \in \underline{\mathfrak{s}}_n)$ by $T_w \mapsto v^{l(w)} \tilde{T}_w(w \in \mathbf{W})$, $1_{\lambda} \mapsto 1_{\lambda}(\lambda \in \underline{\mathfrak{s}}_n)$. There is a unique ring homomorphism⁻: $H_n^D \to H_n^D$ such that $\tilde{T}_w = \tilde{T}_{w-1}^{-1}$ for all $w \in \mathbf{W}^D$, $\overline{v^m 1_\lambda} = v^{-m} 1_\lambda$ for all λ and all $m \in \mathbf{Z}$. It has square 1. Its restriction to H_n is the involution $\bar{}: H_n \to H_n$ described in 31.3. From the definitions, for any $w \in \mathbf{W}^D$, $\lambda \in \underline{\mathfrak{s}}_n$ we have $\overline{\tilde{T}_w 1_\lambda} - \tilde{T}_w 1_\lambda \in \sum_{y \in \mathbf{W}^D; y \leq w, y \neq w} \mathcal{A} \tilde{T}_y 1_\lambda$. By an argument similar to one in [L12, 5.2] we see that for any $w \in \mathbf{W}^D$, $\lambda \in \underline{\mathfrak{s}}_n$, there is a unique element $c_{w,\lambda} \in H_n^D$ such that $\overline{c_{w,\lambda}} = c_{w,\lambda}$ and $c_{w,\lambda} - \tilde{T}_w 1_{\lambda} \in \sum_{y \in \mathbf{W}^D; y \neq w} v^{-1} \mathbf{Z}[v^{-1}] \tilde{T}_y 1_{\lambda}$. We have $c_{w,\lambda} \in 1_{w\lambda} H_n^D 1_{\lambda}$. Also, $\{c_{w,\lambda}; w \in \mathbf{W}^D, \lambda \in \underline{\mathfrak{s}}_n\}$ is an \mathcal{A} -basis of H_n^D .

Proposition 34.5. The A-algebra H_n^D with its basis $(c_{w,\lambda})_{(w,\lambda)\in \mathbf{W}^D\times\underline{\mathfrak{s}}_n}$ satisfies P_1, P_2, P_3 in 34.1.

The proof is given in 34.10.

34.6. In the setup of 34.2, the \mathcal{A} -algebra $1_{\lambda}H_n^D1_{\lambda}$ (a subalgebra of H_n^D) has a unit element 1_{λ} , an \mathcal{A} -basis $\{\tilde{T}_w1_{\lambda}; w \in \mathbf{W}_{\lambda}^D\}$ and an \mathcal{A} -basis $\{c_{w,\lambda}; w \in \mathbf{W}_{\lambda}^D\}$.

Lemma 34.7. The A-algebra $1_{\lambda}H_n^D 1_{\lambda}$ with its basis $\{c_{w,\lambda}; w \in \mathbf{W}_{\lambda}^D\}$ satisfies P_1, P_2, P_3 in 34.1.

Define $\vartheta_{\lambda}: H_{\lambda}^{D} \to 1_{\lambda} H_{n}^{D} 1_{\lambda}$ by $\tilde{T}_{w}^{\lambda} \mapsto \tilde{T}_{w} 1_{\lambda}$ (an isomorphism of \mathcal{A} -modules). Using 34.3, we see that it suffices to show that ϑ_{λ} is an isomorphism of \mathcal{A} -algebras carrying c_{w}^{λ} to $c_{w,\lambda}$ for any $w \in \mathbf{W}_{\lambda}^{D}$. We use the notation in 34.2. We show:

(a) Let $w \in \mathbf{W}^D$, $\alpha \in \Pi_{\lambda}$, $\sigma = s_{\alpha} \in \mathbf{I}_{\lambda}$. Then $\tilde{T}_w \tilde{T}_{\sigma} 1_{\lambda} = \tilde{T}_{w\sigma} 1_{\lambda} + \delta(v - v^{-1}) \tilde{T}_w 1_{\lambda}$ (in H_n^D) with $\delta \in \{0, 1\}$. If in addition $w \in \mathbf{W}_{\lambda}^D$ then $\delta = 0$ if $l_{\lambda}(w\sigma) > l_{\lambda}(w)$ and $\delta = 1$, otherwise.

The proof has some common features with one in [MS, 3.3.5]. We have $\sigma = s_1 s_2 \dots s_r$ with $s_i \in \mathbf{I}, r = l(\sigma)$. By [L3, I, 5.3], there exists $j \in [1, r]$ such that $s_r \dots s_{j+1} s_j s_{j+1} \dots s_r \in \mathbf{W}_{\lambda}$ and $s_r \dots s_{i+1} s_i s_{i+1} \dots s_r \notin \mathbf{W}_{\lambda}$ for $i \in [1, r] - \{j\}$; by [L3, I, 5.6], we have $\sigma = s_r \dots s_{j+1} s_j s_{j+1} \dots s_r$. Hence $s_1 s_2 \dots s_{j-1} s_{j+1} \dots s_r = 1$. From the relations of H_n^D we have:

$$\tilde{T}_{ws_1s_2...s_{j-1}}\tilde{T}_{s_j}1_{s_{j+1}...s_r\lambda} = \tilde{T}_{ws_1s_2...s_j}1_{s_{j+1}...s_r\lambda} + \delta'(v-v^{-1})\tilde{T}_{ws_1s_2...s_{j-1}}1_{s_{j+1}...s_r\lambda}$$

where $\delta' = 0$ if $l(ws_1s_2...s_j) > l(ws_1s_2...s_{j-1})$ and $\delta' = 1$ otherwise,

$$\tilde{T}_{ws_1s_2...s_{i-1}}\tilde{T}_{s_i}1_{s_{i+1}...s_r\lambda} = \tilde{T}_{ws_1s_2...s_i}1_{s_{i+1}...s_r\lambda}$$

for $i \in [1, r] - \{j\},\$

$$\tilde{T}_{ws_1s_2...s_{j-1}s_{j+1}...s_{i-1}}\tilde{T}_{s_i}1_{s_{i+1}...s_r\lambda} = \tilde{T}_{ws_1s_2...s_{j-1}s_{j+1}...s_i}1_{s_{i+1}...s_r\lambda}$$

for $i \in [j+1,r]$. From these identities we see that

$$\begin{split} \tilde{T}_{w}\tilde{T}_{\sigma}1_{\lambda} &= \tilde{T}_{w}\tilde{T}_{s_{1}}\tilde{T}_{s_{2}}\dots\tilde{T}_{s_{r}}1_{\lambda} = \tilde{T}_{ws_{1}s_{2}\dots s_{j-1}}\tilde{T}_{s_{j}}\tilde{T}_{s_{j+1}}\dots\tilde{T}_{s_{r}}1_{\lambda} \\ &= \tilde{T}_{ws_{1}s_{2}\dots s_{j}}\tilde{T}_{s_{j+1}}\dots\tilde{T}_{s_{r}}1_{\lambda} + \delta'(v-v^{-1})\tilde{T}_{ws_{1}s_{2}\dots s_{j-1}}\tilde{T}_{s_{j+1}}\dots\tilde{T}_{s_{r}}1_{\lambda} \\ &= \tilde{T}_{ws_{1}s_{2}\dots s_{j}s_{j+1}\dots s_{r}}1_{\lambda} + \delta'(v-v^{-1})\tilde{T}_{ws_{1}s_{2}\dots s_{j-1}s_{j+1}\dots s_{r}}1_{\lambda} \\ &= \tilde{T}_{w\sigma}1_{\lambda} + \delta'(v-v^{-1})\tilde{T}_{w}1_{\lambda}. \end{split}$$

Assume now that $w \in \mathbf{W}_{\lambda}^{D}$. We show that $\delta = \delta'$. The condition that $\delta = 0$ is equivalent to the condition that $w(\alpha) \in \mathbf{R}_{\lambda}^{+}$. The condition that $\delta' = 0$ is

equivalent to the condition that $ws_1s_2...s_{j-1}(\alpha_j) \in R^+$ where $\alpha_j \in R^+$ is defined by $s_j = s_{\alpha_j}$. Since $\alpha = s_1s_2...s_{j-1}(\alpha_j)$, this completes the proof of (a).

We show:

(b) Let $w \in \mathbf{W}_{\lambda}^{D}$, $w' \in \Omega_{\lambda}^{D}$. Then $\tilde{T}_{w}\tilde{T}_{w'}1_{\lambda} = \tilde{T}_{ww'}1_{\lambda} \in H_{n}^{D}$. We write $w' = s_{1}s_{2}...s_{r}$ with $s_{i} \in \mathbf{I}$, r = l(w'). Using [L3, I, 5.3] we see that $s_{r}...s_{i+1}s_{i}s_{i+1}...s_{r} \notin \mathbf{W}_{\lambda}$ for all $i \in [1, r]$. From the relations of H_{n}^{D} we have

$$\tilde{T}_{ws_{1}s_{2}...s_{i-1}}\tilde{T}_{s_{i}}1_{s_{i+1}...s_{r}\lambda} = \tilde{T}_{ws_{1}s_{2}...s_{i}}1_{s_{i+1}...s_{r}\lambda}$$

for $i \in [1, r]$. Using these identities we see that $\tilde{T}_w \tilde{T}_{w'} 1_\lambda = \tilde{T}_w \tilde{T}_{s_1} \tilde{T}_{s_2} \dots \tilde{T}_{s_r} 1_\lambda = \tilde{T}_{ws_1s_2...s_r} 1_\lambda$ and (b) follows.

We show that ϑ^{λ} is an algebra homomorphism. We must check that $(\tilde{T}_{\sigma}1_{\lambda})^2 = 1_{\lambda} + (v - v^{-1})\tilde{T}_{\sigma}1_{\lambda}$ for $s \in \mathbf{I}_{\lambda}$. This is a special case of (a) (take $w = \sigma$). We must also check that $(\tilde{T}_{w}1_{\lambda})(\tilde{T}_{w'}1_{\lambda}) = \tilde{T}_{ww'}1_{\lambda}$ if $w, w' \in \mathbf{W}_{\lambda}^{D}$, $l_{\lambda}(ww') = l_{\lambda}(w) + l_{\lambda}(w')$. If $w, w' \in \mathbf{W}_{\lambda}$, this is proved by induction on $l_{\lambda}(w')$, the induction step being provided by (a). The general case can be reduced to this special case using (b). We see that ϑ_{λ} is an \mathcal{A} -algebra isomorphism. We show that

$$\overline{\vartheta_{\lambda}(h)} = \vartheta_{\lambda}(\overline{h}) \text{ for } h \in H_{\lambda}^{D}.$$

Assume first that $h = \tilde{T}_w^{\lambda}$ where $w \in \Omega_{\lambda}^D$. Then $\overline{h} = (\tilde{T}_{w^{-1}}^{\lambda})^{-1} = \tilde{T}_w^{\lambda}$. Hence

$$\overline{\vartheta_{\lambda}(h)} = \overline{\tilde{T}_w 1_{\lambda}} = \tilde{T}_{w^{-1}}^{-1} 1_{\lambda} = \tilde{T}_w^{-1} 1_{\lambda} = \vartheta_{\lambda}(\tilde{T}_w^l) = \vartheta_{\lambda}(\overline{h}),$$

as required. Assume next that $h = \tilde{T}_{\sigma}^{\lambda}$ where $\sigma \in \mathbf{I}_{\lambda}$. Then

$$\begin{split} \vartheta_{\lambda}(\overline{h}) &= \vartheta_{\lambda}((\tilde{T}_{\sigma}^{\lambda})^{-1}) = \vartheta_{\lambda}(\tilde{T}_{\sigma}^{\lambda} + (v^{-1} - v)\tilde{T}_{1}^{\lambda}) = \tilde{T}_{\sigma}1_{\lambda} + (v^{-1} - v)\tilde{T}_{1}1_{\lambda} = \tilde{T}_{\sigma}^{-1}1_{\lambda} \\ &= \overline{\tilde{T}_{\sigma}1_{\lambda}} = \overline{\vartheta_{\lambda}(h)}, \end{split}$$

as required.

We see that for $w \in \mathbf{W}_{\lambda}^{D}$ we have $\overline{\vartheta_{\lambda}(c_{w}^{\lambda})} = \vartheta_{\lambda}(c_{w}^{\lambda})$. Hence $\vartheta_{\lambda}(c_{w}^{\lambda})$ satisfies the defining properties of $c_{w,\lambda}$ so that $\vartheta_{\lambda}(c_{w}^{\lambda}) = c_{w,\lambda}$. The lemma is proved.

Using now 34.3(c) we see that

(c) If $c_{w,\lambda}(w \in \mathbf{W}_{\lambda}^{D})$ is a distinguished basis element of $1_{\lambda}H_{n}^{D}1_{\lambda}$ (see 34.1) then $w \in \mathbf{W}_{\lambda}$ and $w^{2} = 1$.

34.8. Let $\underline{\mathfrak{s}}'_n$ be a set of representatives for the \mathbf{W}^D -orbits in $\underline{\mathfrak{s}}_n$. For $\lambda \in \underline{\mathfrak{s}}_n$ define $\lambda^0 \in \underline{\mathfrak{s}}'_n$ by $\lambda^0 \in \mathbf{W}^D \lambda$ (the \mathbf{W}^D -orbit of λ). Let

 $\Gamma = \{(\lambda_1, \lambda_2) \in \underline{\mathfrak{s}}_n \times \underline{\mathfrak{s}}_n; \mathbf{W}^D \lambda_1 = \mathbf{W}^D \lambda_2^{\prime} \}.$

Let E_n^D be the set of all formal sums $x = \sum_{(\lambda_1, \lambda_2) \in \Gamma} x_{\lambda_1, \lambda_2}$ where $x_{\lambda_1, \lambda_2} \in 1_{\lambda_1^0} H_n^D 1_{\lambda_2^0}$. Then E_n^D is naturally an \mathcal{A} -module and an associative \mathcal{A} -algebra where the product xy of $x, y \in E_n^D$ is given by $(xy)_{\lambda_1, \lambda_2} = \sum_{\tilde{\lambda} \in \mathbf{W}^D \lambda_1} x_{\lambda_1, \tilde{\lambda}} y_{\tilde{\lambda}, \lambda_2}$. This algebra has a unit element, namely the element 1 such that $1_{\lambda_1, \lambda_2} = \delta_{\lambda_1, \lambda_2} 1_{\lambda_1}$

for $(\lambda_1, \lambda_2) \in \Gamma$. Define a ring involution $\bar{x}_{\lambda_1, \lambda_2} : E_n^D \to E_n^D$ by $x \mapsto \bar{x}$ where $\bar{x}_{\lambda_1, \lambda_2} = \bar{x}_{\lambda_1, \lambda_2}$. (Note that $\bar{x}_{\lambda_1, \lambda_2} : H_n^D \to H_n^D$ maps $1_{\lambda_1^0} H_n^D 1_{\lambda_2^0}$ onto itself.)

Let $C = \{(\lambda_1, \lambda_2, w) \in \underline{\mathfrak{s}}_n \times \underline{\mathfrak{s}}_n \times \mathbf{W}^D; w\lambda_1^0 = \lambda_1^0 = \lambda_2^0\}$. For $(\lambda_1, \lambda_2, w) \in C$ define $x^{\lambda_1, \lambda_2, w} \in E_n^D$ by

$$x_{\lambda_1',\lambda_2'}^{\lambda_1,\lambda_2,w} = \delta_{(\lambda_1',\lambda_2'),(\lambda_1,\lambda_2)} \tilde{T}_w 1_{\lambda_1^0}.$$

Then $\{x^{\lambda_1,\lambda_2,w}; (\lambda_1,\lambda_2,w) \in C\}$ is an \mathcal{A} -basis of H''_n . From the definitions, for $(\lambda_1,\lambda_2,w) \in C$ we have

$$\overline{x^{\lambda_1,\lambda_2,w}} - x^{\lambda_1,\lambda_2,w} \in \sum_{y \in \mathbf{W}^D; y \le w, y \ne w, y \lambda_1^0 = \lambda_1^0} \mathcal{A}x^{\lambda_1,\lambda_2,y}$$

By an argument similar to one in [L12, 5.2] we see that for any $(\lambda_1, \lambda_2, w) \in C$ there is a unique element $c^{\lambda_1, \lambda_2, w} \in E_n^D$ such that $\overline{c^{\lambda_1, \lambda_2, w}} = c^{\lambda_1, \lambda_2, w}$ and

$$c^{\lambda_1, \lambda_2, w} - x^{\lambda_1, \lambda_2, w} \in \sum_{y \in \mathbf{W}^D, y \lambda_1^0 = \lambda_1^0, y \neq w} v^{-1} \mathbf{Z}[v^{-1}] x^{\lambda_1, \lambda_2, y}.$$

Also, $\{c^{\lambda_1,\lambda_2,w}; (\lambda_1,\lambda_2,w) \in C\}$ is an \mathcal{A} -basis of E_n^D .

Lemma 34.9. The A-algebra E_n^D with its basis $\{c^{\lambda_1,\lambda_2,w}; (\lambda_1,\lambda_2,w) \in C\}$ satisfies P_1, P_2, P_3 in 34.1.

For $\lambda \in \underline{\mathfrak{s}}'_n$ let $N_{\lambda} = |\mathbf{W}^D \lambda|$ and let $M_{N_{\lambda}}(1_{\lambda}H_n^D 1_{\lambda})$ be the algebra of $N_{\lambda} \times N_{\lambda}$ matrices with entries in $1_{\lambda}H_n^D 1_{\lambda}$. From the definitions we have a decomposition $E_n^D = \bigoplus_{\lambda \in \mathfrak{s}'_n} M_{N_{\lambda}}(1_{\lambda}H_n^D 1_{\lambda})$

compatible with the algebra structures and with the natural bases. Using this, the lemma is reduced to the similar statement for $1_{\lambda}H_{n}^{D}1_{\lambda}$ where it is known by 34.7.

The function $a:\{c^{\lambda_1,\lambda_2,w};(\lambda_1,\lambda_2,w)\in C\}$ (see 34.1) is given by $a(c^{\lambda_1,\lambda_2,w})=a(c_{w,\lambda_1^0})$ where $a(c_{w,\lambda_1^0})$ is defined as in 34.1 in terms of $1_{\lambda_1^0}H_n^D1_{\lambda_1^0}$. The two-sided cells of $\{c^{\lambda_1,\lambda_2,w};(\lambda_1,\lambda_2,w)\in C\}$ are the sets of the form $\{c^{\lambda_1,\lambda_2,w}\}$ where λ_1,λ_2 run through $\mathbf{W}^D\lambda$ (with $\lambda\in\underline{\mathfrak{s}}'_n$ fixed) and w running through a subset X of \mathbf{W}^D_λ such that $\{c_{w,\lambda};w\in X\}$ is a two-sided cell of $\{c_{w,\lambda};w\in \mathbf{W}^D_\lambda\}$ (see 34.7).

Using 34.7(c) we obtain:

(a) If $c^{\lambda_1,\lambda_2,w}$, $(\lambda_1,\lambda_2,w) \in C$ is a distinguished basis element of E_n^D then $\lambda_1 = \lambda_2, w \in \mathbf{W}_{\lambda_1^0}, w^2 = 1$.

34.10. We prove Proposition 34.5. It is enough to construct an algebra isomorphism $H_n^D \xrightarrow{\sim} E_n^D$ which carries the basis $(c_{w,\lambda})$ onto the basis $(c^{\lambda_1,\lambda_2,w})$.

For each $\lambda \in \underline{\mathfrak{s}}_n$ we choose a sequence $\mathbf{s}_{\lambda} = (s_1, s_2, \ldots, s_r)$ where, for $i \in [1, r]$, s_i is either in \mathbf{I} or is a power of \underline{D} and $\lambda^0 = s_1 s_2 \ldots s_r \lambda \neq s_2 \ldots s_r \lambda \neq \cdots \neq s_r \lambda \neq \lambda$ or, equivalently, $\lambda = s_r^{-1} \ldots s_2^{-1} s_1^{-1} \lambda^0 \neq s_{r-1}^{-1} \ldots s_1^{-1} \lambda^0 \neq \cdots \neq s_1^{-1} \lambda^0 \neq \lambda^0$. Let $[\mathbf{s}_{\lambda}] = s_1 s_2 \ldots s_r$. We set

$$\tau_{\lambda} = \tilde{T}_{s_1} \tilde{T}_{s_2} \dots \tilde{T}_{s_r} \in H_n^D, \ \tau_{\lambda}' = \tilde{T}_{s_r^{-1}} \dots \tilde{T}_{s_2^{-1}} \tilde{T}_{s_1^{-1}} \in H_n^D.$$

We show:

(a)
$$1_{\lambda^0} \tau_{\lambda} \tau_{\lambda}' = 1_{\lambda^0}, 1_{\lambda} \tau_{\lambda}' \tau_{\lambda} = 1_{\lambda}.$$

We have

$$1_{\lambda^0}\tau_{\lambda}\tau_{\lambda}'=1_{\lambda^0}\tilde{T}_{s_1}\tilde{T}_{s_2}\dots\tilde{T}_{s_r}\tilde{T}_{s_r^{-1}}\dots\tilde{T}_{s_2^{-1}}\tilde{T}_{s_1^{-1}}=\tilde{T}_{s_1}\tilde{T}_{s_2}\dots\tilde{T}_{s_r}1_{\lambda}\tilde{T}_{s_r^{-1}}\dots\tilde{T}_{s_2^{-1}}\tilde{T}_{s_1^{-1}}.$$

Since $s_r \lambda \neq \lambda$, we can replace $\tilde{T}_{s_r} 1_{\lambda} \tilde{T}_{s_r^{-1}}$ by $1_{s_r \lambda}$ and we obtain

$$\tilde{T}_{s_1}\tilde{T}_{s_2}\dots\tilde{T}_{s_{r-1}}1_{s_r\lambda}\tilde{T}_{s_{r-1}}^{-1}\dots\tilde{T}_{s_2^{-1}}\tilde{T}_{s_1^{-1}}^{s_r}$$

Since $s_{r-1}s_r\lambda \neq s_r\lambda$, we can replace $\tilde{T}_{s_{r-1}}1_{s_r\lambda}\tilde{T}_{s_{r-1}}$ by $1_{s_{r-1}s_r\lambda}$ and we obtain

$$\tilde{T}_{s_1}\tilde{T}_{s_2}\dots\tilde{T}_{s_{r-2}}1_{s_{r-1}s_r\lambda}\tilde{T}_{s_{r-2}}^{-1}\dots\tilde{T}_{s_2^{-1}}\tilde{T}_{s_1^{-1}}.$$

Continuing in this way we find $1_{s_1...s_{r-1}s_r\lambda}=1_{\lambda^0}$. This proves the first identity in (a). The second identity is proved in a similar way.

We have

(b)
$$\overline{\tau_{\lambda} 1_{\lambda}} = \tau_{\lambda} 1_{\lambda}, \overline{1_{\lambda} \tau_{\lambda}'} = 1_{\lambda} \tau_{\lambda}'.$$

The first identity in (b) is equivalent to $\tilde{T}_{s_1^{-1}}^{-1}\tilde{T}_{s_2^{-1}}^{-1}\dots\tilde{T}_{s_r^{-1}}^{-1}1_{\lambda}=\tau_{\lambda}1_{\lambda}$ or to $\tau_{\lambda}^{\prime-1}1_{\lambda}=\tau_{\lambda}1_{\lambda}$ $\tau_{\lambda}1_{\lambda}$, which follows from (a). Similarly, the second identity in (b) follows from (a).

We define an
$$\mathcal{A}$$
-linear map $\Psi: H_n^D \to E_n^D$ by $\Psi(h)_{\lambda_1,\lambda_2} = \tau_{\lambda_1} 1_{\lambda_1} h 1_{\lambda_2} \tau'_{\lambda_2} \in 1_{\lambda_1^0} H_n^D 1_{\lambda_2^0}$.

We show that Ψ is a ring homomorphism. Let $h, h' \in H_n^D$, $x = \Psi(h), y = \Psi(h')$, $z = \Psi(hh'), z' = \Psi(h)\Psi(h').$ We have

$$\begin{split} &(\Psi(h)\Psi(h'))_{\lambda_{1},\lambda_{2}} = \sum_{\tilde{\lambda} \in \mathbf{W}^{D}\lambda_{1}} \Psi(h)_{\lambda_{1},\tilde{\lambda}} \Psi(h')_{\tilde{\lambda},\lambda_{2}} \\ &= \sum_{\tilde{\lambda} \in \mathbf{W}^{D}\lambda_{1}} \tau_{\lambda_{1}} 1_{\lambda_{1}} h 1_{\tilde{\lambda}} \tau_{\tilde{\lambda}}' \tau_{\tilde{\lambda}} 1_{\tilde{\lambda}} h' 1_{\lambda_{2}} \tau_{\lambda_{2}}' = \sum_{\tilde{\lambda} \in \mathbf{W}^{D}\lambda_{1}} \tau_{\lambda_{1}} 1_{\lambda_{1}} h 1_{\tilde{\lambda}} h' 1_{\lambda_{2}} \tau_{\lambda_{2}}' \end{split}$$

where the last equality comes from (a). Since $1_{\lambda_1}h1_{\tilde{\lambda}}=0$ if $\tilde{\lambda}\in\underline{\mathfrak{s}}_n-\mathbf{W}^D\lambda_1$, we see that

$$(\Psi(h)\Psi(h'))_{\lambda_1,\lambda_2} = \tau_{\lambda_1} 1_{\lambda_1} h \sum_{\tilde{\lambda} \in \underline{\mathfrak{s}}_n} 1_{\tilde{\lambda}} h' 1_{\lambda_2} \tau'_{\lambda_2} = \tau_{\lambda_1} 1_{\lambda_1} h h' 1_{\lambda_2} \tau'_{\lambda_2} = \Psi(hh')_{\lambda_1,\lambda_2}.$$

Thus $\Psi(h)\Psi(h') = \Psi(hh')$, as required.

We show that

(c)
$$\overline{\Psi(h)} = \Psi(\overline{h})$$
 for $h \in H_n^D$.

We have

$$(\overline{\Psi(h)})_{\lambda_1,\lambda_2} = \overline{\tau_{\lambda_1}} 1_{\lambda_1} h 1_{\lambda_2} \tau'_{\lambda_2}, \ (\Psi(\overline{h}))_{\lambda_1,\lambda_2} = \underline{\tau_{\lambda_1}} 1_{\lambda_1} \overline{h} 1_{\lambda_2} \tau'_{\lambda_2}.$$

 $(\overline{\Psi(h)})_{\lambda_1,\lambda_2} = \overline{\tau_{\lambda_1} 1_{\lambda_1} h 1_{\lambda_2} \tau_{\lambda_2}'}, \ (\Psi(\overline{h}))_{\lambda_1,\lambda_2} = \tau_{\lambda_1} 1_{\lambda_1} \overline{h} 1_{\lambda_2} \tau_{\lambda_2}'.$ It suffices to show that $\overline{\tau_{\lambda_1} 1_{\lambda_1}} = \tau_{\lambda_1} 1_{\lambda_1}, \ \overline{1_{\lambda_2} \tau_{\lambda_2}'} = 1_{\lambda_2} \tau_{\lambda_2}'.$ This follows from (b). We show that

(d)
$$\Psi(\tilde{T}_w 1_\lambda) = x^{w\lambda, \lambda, [\mathbf{s}_{w\lambda}]w[\mathbf{s}_\lambda]^{-1}}$$
 for $w \in \mathbf{W}^D, \lambda \in \underline{\mathfrak{s}}_n$.

Indeed, $(\Psi(\tilde{T}_w 1_\lambda))_{\lambda_1,\lambda_2} = \tau_{\lambda_1} 1_{\lambda_1} \tilde{T}_w 1_\lambda 1_{\lambda_2} \tau'_{\lambda_2}$. This is 0 unless $\lambda_2 = \lambda, \lambda_1 = w\lambda$. If $\lambda_2 = \lambda, \lambda_1 = w\lambda$ we see as in the proof of (a) that

$$\tau_{\lambda_1} 1_{\lambda_1} \tilde{T}_w 1_{\lambda} 1_{\lambda_2} \tau'_{\lambda_2} = \tau_{w\lambda} \tilde{T}_w 1_{\lambda} \tau'_{\lambda} = \tilde{T}_{[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}} 1_{\lambda^0}.$$
 This proves (d).

(d) shows that Ψ is induced by a map

$$\Psi_0: \mathbf{W}^D \times \mathfrak{s}_n \to C, (w, \lambda) \mapsto (w\lambda, \lambda, [\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}).$$

 $\Psi_0: \mathbf{W}^D \times \underline{\mathfrak{s}}_n \to C, \ (w, \lambda) \mapsto (w\lambda, \lambda, [\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}).$ This is a bijection with inverse $(\lambda_1, \lambda_2, w) \mapsto ([\mathbf{s}_{\lambda_1}]^{-1}w[\mathbf{s}_{\lambda_2}], \lambda_2)).$ It follows that Ψ is an isomorphism.

Let
$$w \in \mathbf{W}^D, \lambda \in \underline{\mathfrak{s}}_n$$
. Since Ψ^{-1} is compatible with, we have

$$\overline{\Psi^{-1}(c^{w\lambda,\lambda,[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}})} = \Psi^{-1}(c^{w\lambda,\lambda,[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}}).$$

From (d) we see that

$$\Psi^{-1}(c^{w\lambda,\lambda,[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}}) - \tilde{T}_w 1_{\lambda} \in \sum_{y \in \mathbf{W}^D, y\lambda = w\lambda; y \neq w} v^{-1} \mathbf{Z}[v^{-1}] \tilde{T}_y 1_{\lambda}.$$

Since these properties characterize $c_{w,\lambda}$, we see that $\Psi^{-1}(c^{w\lambda,\lambda,[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}}) = c_{w,\lambda}$ that is, $\Psi(c_{w,\lambda}) = c^{w\lambda,\lambda,[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}}$. Thus, Ψ restricts to a bijection between the basis $(c_{w,\lambda})$ of H_n^D and the basis $(c^{\lambda_1,\lambda_2,w})$ of E_n^D , induced by the bijection $\Psi_0: \mathbf{W}^D \times \underline{\mathfrak{s}}_n \xrightarrow{\sim} C$. Proposition 34.5 is proved.

We show:

(e) If $c_{w,\lambda}(w \in \mathbf{W}^D, \lambda \in \underline{\mathfrak{s}}_n)$ is a distinguished basis element of H_n^D then $w \in \mathbf{W}_{\lambda}, w^2 = 1.$

Note that, with the notation above, $c^{w\lambda,\lambda,[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1}}$ is a distinguished basis element of E_n^D hence, by 34.9(a), we have $w\lambda = \lambda$ and $[\mathbf{s}_{w\lambda}]w[\mathbf{s}_{\lambda}]^{-1} \in \mathbf{W}_{\lambda^0}$ has square 1. Thus, $[\mathbf{s}_{\lambda}]w[\mathbf{s}_{\lambda}]^{-1} \in \mathbf{W}_{\lambda^0}$ has square 1. It follows that $w \in \mathbf{W}_{[\mathbf{s}_{\lambda}]^{-1}\lambda^0} = \mathbf{W}_{\lambda}$ has square 1. This proves (e).

- **34.11.** The algebra $H_n^{G^0}$ defined as in 34.4 with D replaced by G^0 is the same as H_n ; we identify it in an obvious way with a subalgebra of H_n^D (see 34.4). The \mathcal{A} -basis of $H_n = H_n^{G^0}$ analogous to the \mathcal{A} -basis $\{c_{w,\lambda}; w \in \mathbf{W}^D, \lambda \in \underline{\mathfrak{s}}_n\}$ of H_n^D is the subset of the last basis given by $\{c_{w,\lambda}; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n\}$. The analogue of Proposition 34.5 holds: the \mathcal{A} -algebra H_n with its basis $(c_{w,\lambda})_{(w,\lambda)\in\mathbf{W}\times\underline{\mathfrak{s}}_n}$ satisfies P_1, P_2, P_3 in 34.1.
- **34.12.** Let K be a field of characteristic 0 and let $\mathcal{A} \to K$ be a homomorphism of rings with 1 which carries $v \in \mathcal{A}$ to $v_0 \in K^*$. We show:
- (a) If $\lambda \in \underline{\mathfrak{s}}_n$ and $\sum_{w \in \mathbf{W}_{\lambda}} v_0^{2l_{\lambda}(w)} \neq 0$, then the K-algebra $H_{\lambda,K}^D = K \otimes_{\mathcal{A}} H_{\lambda}^D$ is semisimple.

Let M be an $H_{\lambda,K}^D$ -module of finite dimension over K and let M' be an $H_{\lambda,K}^D$ submodule of M. It is enough to show that there exists an $H_{\lambda K}^{D}$ -submodule of M complementary to M'. It is well known that under our assumption, the Kalgebra $H_{\lambda,K} = K \otimes_{\mathcal{A}} H_{\lambda}$ is semisimple. Hence there exists an $H_{\lambda,K}$ -submodule of M complementary to M' that is, there exists an $H_{\lambda,K}$ -linear map $f: M \to$ M' such that f(x) = x for all $x \in M'$. Define $\tilde{f}: M \to M'$ by $\tilde{f}(x) =$

 $|\Omega_{\lambda}^{D}|^{-1} \sum_{z \in \Omega_{\lambda}^{D}} \tilde{T}_{z^{-1}} f(\tilde{T}_{z}x)$. For $w \in \mathbf{W}_{\lambda}, x \in M$ we have

$$\begin{aligned} &|\Omega_{\lambda}^{D}|\tilde{f}(\tilde{T}_{w}x) = \sum_{z \in \Omega_{\lambda}^{D}} \tilde{T}_{z^{-1}} f(\tilde{T}_{z}\tilde{T}_{w}x) = \sum_{z \in \Omega_{\lambda}^{D}} \tilde{T}_{z^{-1}} f(\tilde{T}_{zwz^{-1}}\tilde{T}_{z}x) \\ &= \sum_{z \in \Omega_{\lambda}^{D}} \tilde{T}_{z^{-1}} \tilde{T}_{zwz^{-1}} f(\tilde{T}_{z}x) = \sum_{z \in \Omega_{\lambda}^{D}} \tilde{T}_{w} \tilde{T}_{z^{-1}} f(\tilde{T}_{z}x) = |\Omega_{\lambda}^{D}| \tilde{T}_{w} \tilde{f}(x). \end{aligned}$$

(The third equality holds since f is $H_{\lambda,K}$ -linear.) We see that \tilde{f} is $H_{\lambda,K}$ -linear. Since $\tilde{f}(\tilde{T}_y x) = \tilde{T}_y \tilde{f}(x)$ for $x \in M$, $y \in \Omega^D_{\lambda}$, we see that \tilde{f} is $H^D_{\lambda,K}$ -linear. If $x \in M'$ we have $\tilde{T}_z x \in M'$ for $z \in \Omega^D_{\lambda}$ hence $\tilde{f}(x) = |\Omega^D_{\lambda}|^{-1} \sum_{z \in \Omega^D_{\lambda}} \tilde{T}_{z^{-1}} \tilde{T}_z x = x$. It follows that the $\ker(\tilde{f})$ is an $H^D_{\lambda,K}$ -submodule of M complementary to M'. This proves (a).

Let \mathfrak{U} be the subfield of $\bar{\mathbf{Q}}_l$ generated by the roots of 1. For any $\kappa \in \mathfrak{U}^*$, $\lambda \in \underline{\mathfrak{s}}_n$, let

 $H_n^{D,\kappa} = \mathfrak{U} \otimes_{\mathcal{A}} H_n^D, H_n^{\kappa} = \mathfrak{U} \otimes_{\mathcal{A}} H_n, H_{\lambda}^{D,\kappa} = \mathfrak{U} \otimes_{\mathcal{A}} H_{\lambda}^D,$ where \mathfrak{U} is regarded as an \mathcal{A} -algebra via the ring homomorphism $\mathcal{A} \to \mathfrak{U}, v \mapsto \kappa$.

 $H_n^{D,v}=\mathfrak{U}(v)\otimes_{\mathcal{A}}H_n^D,\ H_n^v=\mathfrak{U}(v)\otimes_{\mathcal{A}}H_n$ where $\mathfrak{U}(v)$ (field of rational functions in v with coefficients in \mathfrak{U}) is regarded as an \mathcal{A} -algebra via the ring homomorphism $\mathcal{A}\to\mathfrak{U}(v),v\mapsto v$. Now $\Phi:H_n^D\to\mathcal{A}\otimes_{\mathbf{Z}}H_n^{D,\infty}$ (where $H_n^{D,\infty}=(H_n^D)^\infty$ is defined as in 34.1 in terms of the basis $(c_{w,\lambda})$ in 34.4) induces algebra homomorphisms $\Phi^\kappa:H_n^{D,\kappa}\to\mathfrak{U}\otimes_{\mathbf{Z}}H_n^{D,\infty}$ for $\kappa\in\mathfrak{U}^*$ and $\Phi^v:H_n^{D,v}\to\mathfrak{U}(v)\otimes_{\mathbf{Z}}H_n^{D,\infty}$.

Similarly, $\Phi: H_n \to \mathcal{A} \otimes_{\mathbf{Z}} H_n^{\infty}$ (defined as in 34.1 in terms of the basis $(c_{w,\lambda})$ in 34.11) induces algebra homomorphisms $H_n^{\kappa} \to \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{\infty}$ for $\kappa \in \mathfrak{U}^*$ and $H_n^v \to \mathfrak{U}(v) \otimes_{\mathbf{Z}} H_n^{\infty}$, denoted again by Φ^{κ}, Φ^v . From the definitions we see that H_n^{∞} may be identified with the subgroup of $(H_n^D)^{\infty}$ spanned by the basis elements of $(H_n^D)^{\infty}$ indexed by $\{(w,\lambda); w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n\}$ and $\Phi: H_n \to \mathcal{A} \otimes_{\mathbf{Z}} H_n^{\infty}$ becomes the restriction of $\Phi: H_n^D \to \mathcal{A} \otimes_{\mathbf{Z}} H_n^{D,\infty}$. We show:

(b) If $\kappa \in \mathfrak{U}^*, \sum_{w \in \mathbf{W}} \kappa^{2l(w)} \neq 0$ then $H_n^{D,\kappa}$ is a semisimple \mathfrak{U} -algebra and Φ^{κ} :

- (b) If $\kappa \in \mathfrak{U}^*$, $\sum_{w \in \mathbf{W}} \kappa^{2l(w)} \neq 0$ then $H_n^{D,\kappa}$ is a semisimple \mathfrak{U} -algebra and Φ^{κ} : $H_n^{D,\kappa} \to \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ is an algebra isomorphism. Moreover, H_n^{κ} is a semisimple \mathfrak{U} -algebra and $\Phi^{\kappa}: H_n^{\kappa} \to \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{\infty}$ is an algebra isomorphism.
- (c) $H_n^{D,v}$ is a split semisimple $\mathfrak{U}(v)$ -algebra and $\Phi^v: H_n^{D,v} \to \mathfrak{U}(v) \otimes_{\mathbf{Z}} H_n^{D,\infty}$ is an algebra isomorphism. Moreover, H_n^v is a split semisimple $\mathfrak{U}(v)$ -algebra and $\Phi^v: H_n^v \to \mathfrak{U}(v) \otimes_{\mathbf{Z}} H_n^\infty$ is an algebra isomorphism.

We prove (b). The following statement is easily verified:

If $\lambda \in \underline{\mathfrak{s}}_n$ then $\sum_{w \in \mathbf{W}} v^{2l(w)} = Q \sum_{w \in \mathbf{W}_{\lambda}} v^{2l_{\lambda}(w)}$ for some $Q \in \mathbf{Z}[v^2]$. We see that, if κ is as in (b) and $\lambda \in \underline{\mathfrak{s}}_n$ then $\sum_{w \in \mathbf{W}_{\lambda}} \kappa^{2l_{\lambda}(w)} \neq 0$; hence, by (a), $H_{\lambda}^{D,\kappa}$ is a semisimple algebra. By the arguments in 34.7-34.10, $H_n^{D,\kappa}$ is a direct sum of matrix rings over rings of the form $H_{\lambda}^{D,\kappa}$. Hence $H_n^{D,\kappa}$ is a semisimple algebra. Using 34.1(c) we see that $\Phi^{\kappa}: H_n^{D,\kappa} \to \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ is an algebra isomorphism. It remains to show that $H_n^{D,\kappa}$ is split over $\mathfrak U$. Since Φ^{κ} is an isomorphism it is enough to show that $\mathfrak U\otimes_{\mathbf Z} H_n^{D,\infty}$ is split over $\mathfrak U$. Since Φ^1 is an isomorphism it is enough to show that $H_n^{D,1}$ is split over $\mathfrak U$. As above, $H_n^{D,1}$ is a direct sum of matrix rings over rings of the form $H_{\lambda}^{D,1}$. Since $H_{\lambda}^{D,1}$ is the group algebra of a finite group with coefficients in $\mathfrak U$, it is split over $\mathfrak U$ by Brauer's theorem. This proves the first sentence in (b). The second sentence in (b) is obtained from the first by replacing D by G^0 .

Now the proof of (c) is just like that of (b) except for the splitness assertion. By (b), $\mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ is a split semisimple \mathfrak{U} -algebra hence $\mathfrak{U}(v) \otimes_{\mathbf{Z}} H_n^{D,\infty}$ is a split semisimple $\mathfrak{U}(v)$ -algebra. Since Φ^v is an isomorphism, it follows that $H_n^{D,v}$ is split over $\mathfrak{U}(v)$. Similarly, H_n^v is split over $\mathfrak{U}(v)$. This proves (c).

34.13. Define an \mathcal{A} -linear map $\tau: H_n \to \mathcal{A}$ by $\tau(\tilde{T}_w 1_\lambda) = \delta_{w,1}$ for all $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$. Define a bilinear form $(,): H_n \times H_n \to \mathcal{A}$ by $(x, x') = \tau(xx')$. We show that (a) $(\tilde{T}_w 1_\lambda, \tilde{T}_{w'} 1_{\lambda'}) = \delta_{w^{-1}, w'} \delta_{\lambda, w'\lambda'}$

for $w, w' \in \mathbf{W}, \lambda, \lambda' \in \underline{\mathfrak{s}}_n$. (This shows that (,) is symmetric; indeed, we have $\delta_{w^{-1},w'}\delta_{\lambda,w'\lambda'} = \delta_{w'^{-1},w}\delta_{\lambda',w\lambda}$.) To prove (a) it suffices to show that, for $w,w' \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$, we have $\tau(\tilde{T}_w\tilde{T}_{w'}1_\lambda) = \delta_{ww',1}$. We argue by induction on l(w). If l(w) = 0 then $\tilde{T}_w\tilde{T}_{w'} = \tilde{T}_{ww'}$ and the result is clear. Assume now that $l(w) \geq 1$. We can find $s \in \mathbf{I}$ such that l(w) = l(ws) + 1. Then $\tau(\tilde{T}_w\tilde{T}_{w'}1_\lambda) = \tau(\tilde{T}_{ws}\tilde{T}_s\tilde{T}_{w'}1_\lambda)$. If l(sw') = l(w') + 1 then, by the induction hypothesis,

 $\tau(\tilde{T}_{ws}\tilde{T}_s\tilde{T}_{w'}1_{\lambda}) = \tau(\tilde{T}_{ws}\tilde{T}_{sw'}1_{\lambda}) = \delta_{wssw',1} = \delta_{ww',1},$ as required. Assume now that l(sw') = l(w') - 1. We have

$$\begin{split} \tau(\tilde{T}_{ws}\tilde{T}_s\tilde{T}_{w'}1_{\lambda}) &= \tau(\tilde{T}_{ws}\tilde{T}_s\tilde{T}_s\tilde{T}_{sw'}1_{\lambda}) \\ &= \tau(\tilde{T}_{ws}\tilde{T}_{sw'}1_{\lambda}) + (v-v^{-1})\sum_{\lambda';s\in\mathbf{W}_{\lambda'}} \tau(\tilde{T}_{ws}\tilde{T}_s1_{\lambda'}\tilde{T}_{sw'}1_{\lambda}). \end{split}$$

If $s \notin \mathbf{W}_{sw'\lambda}$ this equals (by the induction hypothesis) $\delta_{wssw',1} = \delta_{ww',1}$, as required; if $s \in \mathbf{W}_{sw'\lambda}$ this equals (by the induction hypothesis)

 $\delta_{wssw',1} + (v-v^{-1})\tau(\tilde{T}_{ws}\tilde{T}_{w'}1_{\lambda}) = \delta_{ww',1} + (v-v^{-1})\delta_{wsw',1}.$ It remains to note that $wsw' \neq 1$ whenever l(w) = l(ws) + 1, l(sw') = l(w') - 1. This proves (a).

- **34.14.** Let \mathfrak{C} be a finite dimensional semisimple split (associative) algebra with 1 over a field K. Let $\{E_u; u \in \mathcal{U}\}$ be a set or representatives for the isomorphism classes of simple \mathfrak{C} -modules. Let $\mathfrak{a}: \mathfrak{C} \to \mathfrak{C}$ be an algebra automorphism. For $u \in \mathcal{U}, c: e \mapsto \mathfrak{a}(c)e$ defines a \mathfrak{C} -module structure on the K-vector space E_u which is isomorphic to $E_{\bar{u}}$ for a unique $\bar{u} \in \mathcal{U}$. Then $u \mapsto \bar{u}$ is a permutation of \mathcal{U} . Let $\mathcal{U}^{\mathfrak{a}} = \{u \in \mathcal{U}; u = \bar{u}\}$. For $u \in \mathcal{U}^{\mathfrak{a}}$ we can find a K-linear isomorphism $\mathfrak{a}_u: E_u \to E_u$ such that $\mathfrak{a}_u(ce) = \mathfrak{a}(c)\mathfrak{a}_u e$ for all $c \in \mathfrak{C}, e \in E_u$. Note that \mathfrak{a}_u is uniquely determined up to multiplication by an element in K^* . We show:
- (a) If $c, c' \in \mathfrak{C}$, then the trace of the K-linear map $\mathfrak{C} \to \mathfrak{C}$, $c_1 \mapsto c\mathfrak{a}(c_1)c'$ equals $\sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(c\mathfrak{a}_u, E_u) \operatorname{tr}(\mathfrak{a}_u^{-1}c', E_u)$. Under the algebra isomorphism

(b) $\mathfrak{C} \xrightarrow{\sim} \bigoplus_{u \in \mathcal{U}} \operatorname{End}_K(E_u), c \mapsto [e \mapsto ce, e \in E_u],$ the linear map $\mathfrak{C} \to \mathfrak{C}$ in (a) corresponds to an endomorphism of $\bigoplus_{u \in \mathcal{U}} \operatorname{End}_K(E_u)$ which permutes the summands according to $u \mapsto \bar{u}$ and whose restriction to a summand with $u = \bar{u}$ is $\operatorname{End}_K(E_u) \mapsto \operatorname{End}_K(E_u), f \mapsto c\mathfrak{a}_u f\mathfrak{a}_u^{-1}c'$. From this (a) follows easily. (Compare 20.3(b).)

We show:

(c) If $y: \mathfrak{C} \to K$ is K-linear and $y(cc') = y(c'\mathfrak{a}(c))$ for all $c, c' \in \mathfrak{C}$ then there exist $b_u \in K(u \in \mathcal{U}^{\mathfrak{a}})$ such that $y(c) = \sum_{u \in \mathcal{U}^{\mathfrak{a}}} b_u \operatorname{tr}(c\mathfrak{a}_u, E_u)$ for all $c \in \mathfrak{C}$. Let \mathfrak{C}_u be the inverse image of the summand $\operatorname{End}_K(E_u)$ under (b). Then $\mathfrak{C} = \bigoplus_u \mathfrak{C}_u$ and $\mathfrak{a}(\mathfrak{C}_u) = \mathfrak{C}_{\bar{u}}$ for $u \in \mathcal{U}$. Let $y_u : \mathfrak{C}_u \to K$ be the restriction of y to \mathfrak{C}_u . Let $c \in \mathfrak{C}_u$ where $u \neq \bar{u}$. Let $c' \in \mathfrak{C}_u$ be the projection of $1 \in \mathfrak{C}$ onto \mathfrak{C}_u . We have $\mathfrak{a}(c) \in \mathfrak{C}_{\bar{u}}$ hence $c'\mathfrak{a}(c) = 0$. Also, $cc' = c \in \mathfrak{C}_u$. Thus, $y_u(c) = y_u(cc') = y(cc') = y(c'\mathfrak{a}(c)) = 0$. We see that $y_u = 0$. We are reduced to the case where $\mathcal{U} = \mathcal{U}^{\mathfrak{a}}$ consists of a single element u and $\mathfrak{C} = \operatorname{End}_K(E_u)$. We can find $h \in \mathfrak{C}$, invertible, such that $\mathfrak{a}(c) = hch^{-1}$ for all $c \in \mathfrak{C}$. We can assume that $\mathfrak{a}_u e = he$ for all $e \in E_u$. We have $y(cc') = y(c'hch^{-1})$ for all $c \in \mathfrak{C}$. Define $\tilde{y} : \mathfrak{C} \to K$ by $\tilde{y}(c) = y(ch^{-1})$. We have $y(cc'h^{-1}) = y(c'h^{-1}hch^{-1}) = y(c'ch^{-1})$ hence $\tilde{y}(cc') = \tilde{y}(c'c)$ for all $y, y' \in \mathfrak{C}$. Thus there exists $b \in K$ such that $\tilde{y}(c) = b \operatorname{tr}(c, E_u)$. Then $y(c) = b \operatorname{tr}(ch : E_u \to E_u) = b \operatorname{tr}(c\mathfrak{a}_u : E_u \to E_u)$. This proves (c).

Assume now that we are given a K-linear map $z: \mathfrak{C} \to K$ such that (c, c') = z(cc') = z(c'c) is a nondegenerate (symmetric) K-bilinear form $\mathfrak{C} \times \mathfrak{C} \to K$. Let $(c_i)_{i \in I}$ be a K-basis of \mathfrak{C} . Define a K-basis $(c'_i)_{i \in I}$ of \mathfrak{C} by $(c_i, c'_i) = \delta_{ij}$.

For $u \in \mathcal{U}$ and $c \in \mathfrak{C}$ invertible, $\sum_{i \in I} \operatorname{tr}(c_i c, E_u) c^{-1} c_i'$ is in the centre of \mathfrak{C} ; if $u' \in \mathcal{U}, u' \neq u$, this sum acts on $E_{u'}$ as 0 and on E_u as f_u times the identity, where $f_u \in K^*$ is independent of $(c_i), (c_i'), c$. (We apply [L12, 19.2] to the dual bases $(c_i c), (c^{-1} c_i')$: we have $(c_i c, c^{-1} c_j') = (c_i, cc^{-1} c_j') = (c_i, c_j') = \delta_{ij}$.) We see that for $u, u' \in \mathcal{U}$ we have

(d)
$$\sum_{i \in I} \operatorname{tr}(c_i c, E_u) \operatorname{tr}(c^{-1} c'_i, E_{u'}) = \delta_{u, u'} f_u \operatorname{dim} E_u.$$

Now assume that $u, u' \in \mathcal{U}^{\mathfrak{a}}$. We can pick $c \in \mathfrak{C}$ invertible such that c acts on E_u as \mathfrak{a}_u and on $E_{u'}$ as $\mathfrak{a}_{u'}$. From (d) we deduce

(e)
$$\sum_{i \in I} \operatorname{tr}(c_i \mathfrak{a}_u, E_u) \operatorname{tr}(\mathfrak{a}_{u'}^{-1} c_i', E_{u'}) = \delta_{u, u'} f_u \operatorname{dim} E_u.$$

34.15. We write $\mathfrak{a}: H_n \to H_n$ instead of $\mathfrak{a}_D: H_n \to H_n$ (see 31.4); this is the algebra automorphism given by $h \mapsto \tilde{T}_D h \tilde{T}_{D^{-1}}$ (product in H_n^D) for $h \in H_n$. The same formula defines an algebra automorphism of H_n^{κ} or H_n^v denoted again by \mathfrak{a} . From the definitions we see that $\mathfrak{a}: H_n \to H_n$ takes $c_{w,\lambda}$ to $c_{\epsilon_D(w),\underline{D}\lambda}$ for $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$. Hence it induces a ring automorphism $H_n^\infty \to H_n^\infty$ denoted again by \mathfrak{a} . It also induces algebra automorphisms $H_n^{\kappa} \to H_n^{\kappa}, \kappa \in \mathfrak{U}^*$ and $H_n^v \to H_n^v$ denoted

again by \mathfrak{a} . Now $\Phi^{\kappa}: H_n^{\kappa} \to \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{\infty}$ for $\kappa \in \mathfrak{U}^*$ and $\Phi^v: H_n^v \to \mathfrak{U}(v) \otimes_{\mathbf{Z}} H_n^{\infty}$ (see 34.11) are compatible with \mathfrak{a} .

Let $\{E_u; u \in \mathcal{U}\}$ be a set of representatives for the isomorphism classes of simple modules for H_n^1 (a split semisimple \mathfrak{U} -algebra, by 31.12(b).) Define $\mathcal{U} \to \mathcal{U}, u \mapsto \bar{u}$ as in 34.14, replacing $(\mathfrak{C}, \mathfrak{a})$ by (H_n^1, \mathfrak{a}) . Let $\mathcal{U}^{\mathfrak{a}} = \{u \in \mathcal{U}; u = \bar{u}\}$.

Let $u \in \mathcal{U}$. Clearly, if E_u extends to an $H_n^{D,1}$ -module then $u \in \mathcal{U}^{\mathfrak{a}}$. Conversely, we show that, if $u \in \mathcal{U}^{\mathfrak{a}}$, then E_u extends to an $H_n^{D,1}$ -module. Since $H_n^1, H_n^{D,1}$ are split over \mathfrak{U} it is enough to prove the analogous statement in which $E_u, H_n^1, H_n^{D,1}$ are replaced by $\mathfrak{U}' \otimes_{\mathfrak{U}} E_u, \mathfrak{U}' \otimes_{\mathfrak{U}} H_n^1, \mathfrak{U}' \otimes_{\mathfrak{U}} H_n^{D,1}$ and \mathfrak{U}' is an algebraic closure of \mathfrak{U} . Since $u \in \mathcal{U}^{\mathfrak{a}}$ we can find a \mathfrak{U}' -linear isomorphism $X : \mathfrak{U}' \otimes_{\mathfrak{U}} E_u \to \mathfrak{U}' \otimes_{\mathfrak{U}} E_u$ such that $X(ce) = \mathfrak{a}(c)X(e)$ for all $c \in \mathfrak{U}' \otimes_{\mathfrak{U}} H_n^1, e \in \mathfrak{U}' \otimes_{\mathfrak{U}} E_u$. Let k be the order of $\underline{D} : \mathbf{T} \to \mathbf{T}$. By Schur's lemma, X^k is a scalar times identity. Now \mathfrak{U}' contains a k-th root of this scalar. Dividing X by this root we see that we may assume that $X^k = 1$. We can now define a $\mathfrak{U}' \otimes_{\mathfrak{U}} H_n^{D,1}$ -module structure on the vector space $\mathfrak{U}' \otimes_{\mathfrak{U}} E_u$ which extends the $\mathfrak{U}' \otimes_{\mathfrak{U}} H_n^1$ -module structure and in which $T_{\underline{D}}$ acts as X.

For any $u \in \mathcal{U}^{\mathfrak{a}}$ we choose an $H_n^{D,1}$ -module structure on E_u extending the H_n^1 -module structure.

Let $u \in \mathcal{U}$. We regard E_u as a (simple) $\mathfrak{U} \otimes_{\mathbf{Z}} H_n^{\infty}$ -module E_u^{∞} via $\Phi^1 : H_n^1 \xrightarrow{\sim} \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{\infty}$. (If $u \in \mathcal{U}^{\mathfrak{a}}$ we also regard E_u as a $\mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ -module E_u^{∞} via $\Phi^1 : H_n^{D,1} \xrightarrow{\sim} \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$. This extends the $\mathfrak{U} \otimes_{\mathbf{Z}} H_n^{\infty}$ -module structure.)

Now $\mathfrak{U}[v,v^{-1}]\otimes_{\mathfrak{U}}E_{u}^{\infty}$ is naturally a $\mathfrak{U}[v,v^{-1}]\otimes_{\mathbf{Z}}H_{n}^{\infty}$ -module and also an H_{n} -module via the homomorphism $H_{n}\stackrel{\Phi}{\longrightarrow}\mathcal{A}\otimes_{\mathbf{Z}}H_{n}^{\infty}\subset\mathfrak{U}[v,v^{-1}]\otimes_{\mathbf{Z}}H_{n}^{\infty}$. This H_{n} -module is denoted by $E_{u}(v)$. (If $u\in\mathcal{U}^{\mathfrak{a}}$ then $\mathfrak{U}[v,v^{-1}]\otimes_{\mathfrak{U}}E_{u}^{\infty}$ is naturally a $\mathfrak{U}[v,v^{-1}]\otimes_{\mathbf{Z}}H_{n}^{D,\infty}$ -module and also an H_{n}^{D} -module via the homomorphism $H_{n}^{D}\stackrel{\Phi}{\longrightarrow}\mathcal{A}\otimes_{\mathbf{Z}}H_{n}^{D,\infty}\subset\mathfrak{U}[v,v^{-1}]\otimes_{\mathbf{Z}}H_{n}^{D,\infty}$. This extends the H_{n} -module structure on $E_{u}(v)$.)

Let $E_u^v = \mathfrak{U}(v) \otimes_{\mathfrak{U}} E_u(v)$. From 34.12(c) we see that $\{E_u^v; u \in \mathcal{U}\}$ is a set of representatives for the isomorphism classes of simple H_n^v -modules. (If $u \in \mathcal{U}^{\mathfrak{a}}$ then the $H_n^{D,v}$ -module structure on E_u^v coming from the H_n^D -module structure on $E_u(v)$ extends the H_n^v -module structure.)

For κ as in 34.12(b) let E_u^{κ} be the vector space E_u^{∞} regarded as an H_u^{κ} -module via $\Phi^{\kappa}: H_n^{\kappa} \xrightarrow{\sim} \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{\infty}$. From 34.12(b) we see that $\{E_u^{\kappa}; u \in \mathcal{U}\}$ is a set of representatives for the isomorphism classes of simple H_n^{κ} -modules. Now E_u^{κ} can also be obtained from the H_n -module $E_u(v)$ under the specialization $\mathfrak{U}[v,v^{-1}] \to \mathfrak{U}, v \mapsto \kappa$. Moreover, we have $E_u^1 = E_u$ as H_n^1 -modules. (If $u \in \mathcal{U}^{\mathfrak{a}}$ we also regard E_u^{∞} as an $H_u^{D,\kappa}$ -module via $\Phi^{\kappa}: H_n^{D,\kappa} \xrightarrow{\sim} \mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$. This extends the H_u^{κ} -module structure. This can be also obtained from the H_n^D -module $E_u(v)$ under the specialization $\mathfrak{U}[v,v^{-1}] \to \mathfrak{U}, v \mapsto \kappa$. Moreover, $E_u^1 = E_u$ as $H_u^{D,1}$ -modules.)

From the definitions we see that the map $\mathcal{U} \to \mathcal{U}, u \mapsto \bar{u}$ defined as in 34.14, replacing $(\mathfrak{C}, \mathfrak{a})$ by $(H_n^{\kappa}, \mathfrak{a})$ (κ as in 34.12(b)) or by (H_n^{v}, \mathfrak{a}) is the same as the map $u \mapsto \bar{u}$ defined in terms of (H_n^1, \mathfrak{a}) . We show:

(a) Let $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n, u \in \mathcal{U}$. Then $\operatorname{tr}(\tilde{T}_w 1_\lambda, E_u^v) \in \mathfrak{U}[v, v^{-1}]$ and, for κ as in 34.12(b), $\operatorname{tr}(\tilde{T}_w 1_\lambda, E_u^\kappa) \in \mathfrak{U}$ is obtained from this element of $\mathfrak{U}[v, v^{-1}]$ by the specialization $\mathfrak{U}[v, v^{-1}] \to \mathfrak{U}, v \mapsto \kappa$. If, in addition, $u \in \mathcal{U}^{\mathfrak{a}}$ and $j \in \mathbf{Z}$ then $\operatorname{tr}(\tilde{T}_w 1_\lambda \tilde{T}_{\underline{D}}^j, E_u^v) \in \mathfrak{U}[v, v^{-1}]$ and, for κ as in 34.12(b), $\operatorname{tr}(\tilde{T}_w 1_\lambda \tilde{T}_{\underline{D}}^j, E_u^\kappa) \in \mathfrak{U}$ is obtained from this element of $\mathfrak{U}[v, v^{-1}]$ by the specialization $\mathfrak{U}[v, v^{-1}] \to \mathfrak{U}, v \mapsto \kappa$. This follows immediately from the fact that $\Phi(\tilde{T}_w 1_\lambda)$ (resp. $\Phi(\tilde{T}_w 1_\lambda \tilde{T}_{\underline{D}}^j)$) is an \mathcal{A} -linear combination of the standard basis elements of H_n^∞ (resp. $H_n^{D,\infty}$.)

Combining 34.13(a), 34.14(d) we see that, for $u, u' \in \mathcal{U}$ and for κ as in 34.12(b) we have

$$\sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_{n}} \operatorname{tr}(\tilde{T}_{w} 1_{\lambda}, E_{u}^{v}) \operatorname{tr}(1_{\lambda} \tilde{T}_{w^{-1}}, E_{u'}^{v}) = \delta_{u, u'} f_{u}^{v} \operatorname{dim} E_{u},$$
(b)
$$\sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_{n}} \operatorname{tr}(\tilde{T}_{w} 1_{\lambda}, E_{u}^{\kappa}) \operatorname{tr}(1_{\lambda} \tilde{T}_{w^{-1}}, E_{u'}^{\kappa}) = \delta_{u, u'} f_{u}^{\kappa} \operatorname{dim} E_{u},$$

where $f_u^v \in \mathfrak{U}(v) - \{0\}$, $f_u^{\kappa} \in \mathfrak{U} - \{0\}$. Using (a) we see that $f_u^v \in \mathfrak{U}[v, v^{-1}]$ and f_u^{κ} is obtained from f_u^v by the specialization $\mathfrak{U}[v, v^{-1}] \to \mathfrak{U}, v \mapsto \kappa$. Combining 34.13(a), 34.14(e) we see that, for $u, u' \in \mathcal{U}^{\mathfrak{a}}$, we have

(c)
$$\sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n} \operatorname{tr}(\tilde{T}_w 1_{\lambda} \tilde{T}_{\underline{D}}, E_u^v) \operatorname{tr}(\tilde{T}_{\underline{D}}^{-1} 1_{\lambda} \tilde{T}_{w^{-1}}, E_{u'}^v) = \delta_{u, u'} f_u^v \dim E_u.$$

34.16. Let $x \mapsto x^{\spadesuit}$ be the automorphism of the field \mathfrak{U} which sends any root of 1 to its inverse. We extend this to an automorphism of the field $\mathfrak{U}(v)$ (denoted by $\xi \mapsto \xi^{\spadesuit}$) which carries v to itself. For $x' \in \mathfrak{U}$ we say that x' > 0 if the image of x' under any imbedding of \mathfrak{U} into the complex numbers is a real number > 0. For example, for $x \in \mathfrak{U} - \{0\}$ we have $xx^{\spadesuit} > 0$. For $\xi' \in \mathfrak{U}(v)$ we say that $\xi' > 0$ if ξ' can be expanded in a power series $\xi' = a_0v^n + a_1v^{n+1} + \ldots$ where $a_0, a_1, a_2, \cdots \in \mathfrak{U}$ and $a_0 > 0$.

Lemma 34.17. Let $u \in \mathcal{U}^{\mathfrak{a}}, w \in \mathbf{W}^{D}, \lambda \in \underline{\mathfrak{s}}_{n}$. We have

(a)
$$\operatorname{tr}(1_{\lambda}\tilde{T}_{w^{-1}}, E_{u}^{v}) = \operatorname{tr}(\tilde{T}_{w}1_{\lambda}, E_{u}^{v})^{\spadesuit}.$$

The antiautomorphism $h \to h^{\flat}$ of H_n (see 32.19) extends to an antiautomorphism $h \to h^{\flat}$ of H_n^D given by $\tilde{T}_{w'} \mapsto \tilde{T}_{w'^{-1}}$ for $w' \in \mathbf{W}^D$, $1_{\lambda'} \mapsto 1_{\lambda'}$ for $\lambda' \in \underline{\mathfrak{s}}_n$. Define a ring involution $h \mapsto h^{\diamond}$ of $H_n^{D,v}$ by $\sum_{w,\lambda} a_{w,\lambda} \tilde{T}_w 1_{\lambda} \mapsto \sum_{w,\lambda} a_{w,\lambda}^{\spadesuit} (\tilde{T}_w 1_{\lambda})^{\flat}$ where $a_{w,\lambda} \in \mathfrak{U}(v)$. Assume that there exists a pairing $\langle , \rangle : E_u^v \times E_u^v \to \mathfrak{U}(v)$ such that \langle , \rangle is linear in the second variable, semi-linear (with respect to $\xi \mapsto \xi^{\spadesuit}$) in the first variable, is non-degenerate, satisfies $\langle e, e' \rangle = \langle e', e \rangle^{\spadesuit}$ for $e, e' \in E_u^v$ and

(b)
$$\langle he, e' \rangle = \langle e, h^{\diamond}e' \rangle \text{ for } e, e' \in E_u^v, h \in H_n^{D,v}.$$

If $(e_i), (e'_i)$ are bases of E_u^v such that $\langle e_i, e'_i \rangle = \delta_{ij}$ then $\operatorname{tr}(h, E_u^v) = \sum_j \langle e_j, h e_j' \rangle = \sum_j \langle h^{\diamond} e_j, e_j' \rangle = \operatorname{tr}(h^{\diamond}, E_u^v)^{\spadesuit}.$

Taking here $h = 1_{\lambda} \tilde{T}_{w^{-1}}$ we see that (a) would follow. It remains to prove the existence of \langle , \rangle as above.

We can find a pairing $\langle , \rangle' : E_u^v \times E_u^v \to \mathfrak{U}(v)$ which is linear in the second variable, semi-linear (with respect to $\xi \mapsto \xi^{\spadesuit}$) in the first variable, satisfies $\langle e, e' \rangle' = \langle e', e \rangle'^{\spadesuit}$ for $e, e' \in E_u^v$ and $\langle e, e \rangle > 0$ for $e \in E_u^v - \{0\}$. (For example, we choose a basis (e_j) of E_u^v and we set $\langle \sum_j a_j e_j, \sum_j a_j' e_j \rangle' = \sum_j a_j^{\spadesuit} a_j'$ where $a_j, a_j' \in \mathfrak{U}(v)$.) We define a new pairing $\langle , \rangle : E_u^v \times E_u^v \to \mathfrak{U}(v)$ by

$$\langle e, e' \rangle = \sum_{w' \in \mathbf{W}^D, \lambda' \in \underline{\mathfrak{s}}_n} \langle \tilde{T}_{w'} 1_{\lambda'} e, \tilde{T}_{w'} 1_{\lambda'} e' \rangle'.$$

Note that \langle , \rangle' is linear in the second variable, semi-linear (with respect to $\xi \mapsto \xi^{\spadesuit}$) in the first variable, satisfies $\langle e,e'\rangle=\langle e',e\rangle'^{\spadesuit}$ for $e,e'\in E_u^v$ and $\langle e,e\rangle>0$ for $e \in E_u^v - \{0\}$. In particular, \langle , \rangle is non-degenerate. We show that (b) holds. It is enough to show this when h runs through a set of generators of the algebra $H_n^{D,v}$ that is, for $h = 1_{\lambda}$ or $h = \tilde{T}_D$ or $h = \tilde{T}_s(s \in \mathbf{I})$. Assume first that $h = 1_{\lambda}, \lambda \in \underline{\mathfrak{s}}_n$. We must show that

 $\sum_{w' \in \mathbf{W}^D, \lambda' \in \underline{\mathfrak{s}}_n} \langle \tilde{T}_{w'} 1_{\lambda'} 1_{\lambda} e, \tilde{T}_{w'} 1_{\lambda'} e' \rangle' = \sum_{w' \in \mathbf{W}^D, \lambda' \in \underline{\mathfrak{s}}_n} \langle \tilde{T}_{w'} 1_{\lambda'} e, \tilde{T}_{w'} 1_{\lambda'} 1_{\lambda} e' \rangle'.$ Both sides are equal to $\sum_{w' \in \mathbf{W}^D} \langle \tilde{T}_{w'} 1_{\lambda} e, \tilde{T}_{w'} 1_{\lambda} e' \rangle'$. Assume next that $h = \tilde{T}_{\underline{D}}$. We must show that

$$\sum_{\substack{w' \in \mathbf{W}^D \\ \lambda' \in \underline{\mathbf{s}}_n}} \langle \tilde{T}_{w'} 1_{\lambda'} \tilde{T}_{\underline{D}} e, \tilde{T}_{w'} 1_{\lambda'} e' \rangle' = \sum_{\substack{w' \in \mathbf{W}^D \\ \lambda' \in \underline{\mathbf{s}}_n}} \langle \tilde{T}_{w'} 1_{\lambda'} \tilde{T}_{\underline{D}^{-1}} e' \rangle'$$

that is, $\sum_{\substack{w' \in \mathbf{W}^D \\ \lambda' \in \mathfrak{s}_-}} \langle \tilde{T}_{w'}\underline{D} 1_{\underline{D}^{-1}\lambda'}e, \tilde{T}_{w'}1_{\lambda'}e' \rangle' = \sum_{\substack{y \in \mathbf{W}^D \\ \lambda'' \in \mathfrak{s}_-}} \langle \tilde{T}_y 1_{\lambda''}e, \tilde{T}_{y\underline{D}^{-1}}1_{\underline{D}\lambda''}e' \rangle',$

which is clear. Finally, assume that $h = \tilde{T}_s, s \in \mathbf{I}$. We must show that

 $\textstyle \sum_{w' \in \mathbf{W}^D, \lambda' \in \underline{\mathfrak{s}}_n} \langle \tilde{T}_{w'} 1_{\lambda'} \tilde{T}_s e, \tilde{T}_{w'} 1_{\lambda'} e' \rangle' = \sum_{w' \in \mathbf{W}^D, \lambda' \in \underline{\mathfrak{s}}_n} \langle \tilde{T}_{w'} 1_{\lambda'} e, \tilde{T}_{w'} 1_{\lambda'} \tilde{T}_s e' \rangle'.$ Both sides are equal to

$$\sum_{\substack{w' \in \mathbf{W}^D \\ \lambda' \in \underline{\mathfrak{s}}_n}} \langle \tilde{T}_{w's} 1_{s\lambda'} e, \tilde{T}_{w'} 1_{\lambda'} e' \rangle' + (v - v^{-1}) \sum_{\substack{w' \in \mathbf{W}^D \\ l(w's) = l(w') - 1 \\ \lambda' \in \underline{\mathfrak{s}}_n, s \in \mathbf{W}_{\lambda'}}} \langle \tilde{T}_{w'} 1_{\lambda'} e, \tilde{T}_{w'} 1_{\lambda'} e' \rangle'.$$

This proves (b). The lemma is proved.

34.18. Using 34.17(a) we can rewrite 34.15(c) for $u, u' \in \mathcal{U}^{\mathfrak{a}}$ as follows:

(a)
$$\sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n} \operatorname{tr}(\tilde{T}_w 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_u^v) \operatorname{tr}(\tilde{T}_w 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_{u'}^v)^{\spadesuit} = \delta_{u, u'} f_u^v \dim E_u.$$

Specializing this under $\mathfrak{U}[v,v^{-1}] \to \mathfrak{U}, v \mapsto \kappa$, we obtain

(b)
$$\sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n} \operatorname{tr}(\tilde{T}_w 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_u^{\kappa}) \operatorname{tr}(\tilde{T}_w 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_{u'}^{\kappa \spadesuit})^{\spadesuit} = \delta_{u,u'} f_u^{\kappa} \dim E_u.$$

34.19. Let A be a character sheaf on D. Define an \mathcal{A} -linear map $\hat{\zeta}: H_n \to \mathcal{A}$ by $h \mapsto \zeta^A(h[D])$ where $\zeta^A: H_n[D] \to \mathcal{A}$ is as in 31.7. From 31.8 we see that $\hat{\zeta}(hh') = \hat{\zeta}(h'\mathfrak{a}(h))$ for $h, h' \in H_n$. Applying 34.14(c) to the linear map $\mathfrak{U}(v) \otimes_{\mathcal{A}} H_n \to \mathfrak{U}(v)$ obtained from $\hat{\zeta}$ by extension of scalars, we see that there exist elements $b_{A,u}^v \in \mathfrak{U}(v)(u \in \mathcal{U}^{\mathfrak{a}})$ such that

(a)
$$\zeta^{A}(\tilde{T}_{w}1_{\underline{D}\lambda}[D]) = \sum_{u' \in \mathcal{U}^{a}} b_{A,u'}^{v} \operatorname{tr}(\tilde{T}_{w}1_{\underline{D}\lambda}\tilde{T}_{\underline{D}}, E_{u'}^{v}),$$

for $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$. We multiply both sides of (a) by $\operatorname{tr}(\tilde{T}_w 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_u^v)^{\spadesuit}$ (with $u \in \mathcal{U}^{\mathfrak{a}}$) and sum over all w, λ . Using 34.18(a), we obtain

(b)
$$b_{A,u}^{v} = \frac{1}{f_{u}^{v} \dim E_{u}} \sum_{w \in \mathbf{W}, \lambda \in \mathfrak{s}_{n}} \zeta^{A}(\tilde{T}_{w} 1_{\underline{D}\lambda}[D]) \operatorname{tr}(\tilde{T}_{w} 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit}.$$

Using 28.17(a),(b) and the notation there, we see that $\mathfrak{D}({}^{p}H^{j}(\bar{K}_{D}^{\mathbf{s},\mathcal{L}})) = {}^{p}H^{j}(\bar{K}_{D}^{\mathbf{s},\mathcal{L}})$ hence

$$\sum_{u \in \mathcal{U}^{\mathfrak{a}}} b^{v}_{\mathfrak{D}(A),u} \operatorname{tr}(C^{\mathbf{s}}_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E^{v}_{u}) = \zeta^{\mathfrak{D}(A)}(C^{\mathbf{s}}_{\underline{D}\lambda}[D])$$

$$= \sum_{j} (-v)^{j} v^{-\dim G}(\mathfrak{D}(A) : {}^{p}H^{j}(\bar{K}^{\mathbf{s},\mathcal{L}}_{D})) = \sum_{j} (-v)^{j} v^{-\dim G}(A : \mathfrak{D}({}^{p}H^{j}(\bar{K}^{\mathbf{s},\mathcal{L}}_{D})))$$

$$= \sum_{j} (-v)^{j} v^{-\dim G}(A : {}^{p}H^{j}(\bar{K}^{\mathbf{s},\tilde{\mathcal{L}}}_{D})) = \zeta^{A}(C^{\mathbf{s}}_{\underline{D}\lambda^{-1}}[D])$$

$$c)$$

$$= \sum_{u \in \mathcal{U}^{\mathfrak{a}}} b^{v}_{A,u} \operatorname{tr}(C^{\mathbf{s}}_{\underline{D}\lambda^{-1}} \tilde{T}_{\underline{D}}, E^{v}_{u}).$$

Lemma 34.20. Let $u \in \mathcal{U}^{\mathfrak{a}}$. Assume that E_u is quasi-rational in the following sense: there exists a function $\eta : \mathbf{W}^D \times \underline{\mathfrak{s}}_n \to \{\text{roots of 1 in }\mathfrak{U}\}, (w, \lambda) \mapsto \eta_{w,\lambda}$ such that η is constant on any equivalence class for \times in $\mathbf{W}^D \times \underline{\mathfrak{s}}_n$ (see 32.26) and $\operatorname{tr}(\tilde{T}_w 1_{\lambda}, E_u) \in \eta_{w,\lambda} \mathbf{Z}$ for all $(w, \lambda) \in \mathbf{W}^D \times \underline{\mathfrak{s}}_n$. Then $\operatorname{tr}(\tilde{T}_w 1_{\lambda}, E_u^v) \in \eta_{w,\lambda} \mathcal{A}$ for all $(w, \lambda) \in \mathbf{W}^D \times \underline{\mathfrak{s}}_n$.

From the definitions and 34.7-34.10 we see that, for $w \in \mathbf{W}^D$, $\lambda \in \underline{\mathfrak{s}}_n$, the basis elements $c_{w,\lambda}$ of H_n^D (see 34.5) satisfy

(a) $c_{w,\lambda} \in \tilde{T}_{wy} 1_{\lambda} + \sum_{y \in \mathbf{W}_{\lambda}; wy < w} \tilde{\mathcal{A}} \tilde{T}_{wy} 1_{\lambda}$.

For $w \in \mathbf{W}^D$, $\lambda \in \underline{\mathfrak{s}}_n$, $x \in \mathbf{W}_{\lambda}$ we have $\tilde{T}_w 1_{\lambda} \tilde{T}_x \in \sum_{x' \in \mathbf{W}_{\lambda}} \mathcal{A} \tilde{T}_{wx'} 1_{\lambda}$ (in H_n^D). This follows by writing x as product $x = \sigma_1 \sigma_2 \dots \sigma_m, \sigma_m \in \mathbf{I}_{\lambda}, m = l_{\lambda}(x)$ and using repeatedly 34.7(a). Using this and (a) we see that

(b) $c_{w,\lambda}\tilde{T}_x \in \sum_{x' \in \mathbf{W}_{\lambda}} \mathcal{A}\tilde{T}_{wx'} 1_{\lambda}$.

Now let $c_{w',\lambda}$ be a distinguished basis element of H_n^D (see 34.1). By 34.10(e) we have $w' \in \mathbf{W}_{\lambda}$ hence $c_{w',\lambda} \in \sum_{x \in \mathbf{W}_{\lambda}} 1_{\lambda} \tilde{T}_x$. Hence from (b) we deduce

(c)
$$c_{w,\lambda}c_{w',\lambda} \in \sum_{x' \in \mathbf{W}_{\lambda}} \mathcal{A}\tilde{T}_{wx'}1_{\lambda}$$
.

From (a) we deduce by inversion:

(d)
$$\tilde{T}_w 1_{\lambda} \in \sum_{y \in \mathbf{W}_{\lambda} : wy \le w} \mathcal{A}c_{wy,\lambda}$$
.

(d) $T_w 1_{\lambda} \in \sum_{y \in \mathbf{W}_{\lambda}; wy \leq w} Ac_{wy,\lambda}$. Using this for wx' instead of x and using also (c) we deduce

$$c_{w,\lambda}c_{w',\lambda} \in \sum_{x'' \in \mathbf{W}_{\lambda}} \mathcal{A}c_{wx'',\lambda}.$$

Hence, if $\Phi: H_n^D \to \mathcal{A} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ is as in 34.12, then

(e)
$$\Phi(c_{w,\lambda}) \in \sum_{x'' \in \mathbf{W}_{\lambda}} \mathcal{A}t_{wx'',\lambda}$$

where $t_{y,\lambda}$ be the basis element of $H_n^{D,\infty}$ corresponding to $c_{y,\lambda} \in H_n^D$ (see 34.1).

Let $c_{w,\lambda;1}$ be the image of $c_{w,\lambda}$ in $H_n^{D,1}$. Let $\Phi': \mathbf{Q} \otimes_{\mathcal{A}} H_n^D \to \mathbf{Q} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ be the homomorphism obtained from Φ under the specialization $\mathcal{A} \to \mathbf{Q}, v \mapsto 1$. This is an isomorphism of algebras since Φ^1 (see 34.12) is an isomorphism. From (e) we see that for any $(y, \lambda) \in \mathbf{W}^D \times \underline{\mathfrak{s}}_n$, Φ' restricts to a **Q**-linear map

(f) $\sum_{x \in \mathbf{W}_{\lambda}} \mathbf{Q} c_{yx,\lambda;1} \to \sum_{x \in \mathbf{W}_{\lambda}} \mathbf{Q} t_{yx,\lambda}$.

The vector spaces in (f) form direct sum decompositions of $\mathbf{Q} \otimes_{\mathcal{A}} H_n^D$, $\mathbf{Q} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ hence (f) must be an isomorphism. We deduce that Φ'^{-1} carries $\sum_{x \in \mathbf{W}_{\lambda}} \mathbf{Q} t_{yx,\lambda}$ onto $\sum_{x\in\mathbf{W}_{\lambda}}\mathbf{Q}c_{yx,\lambda;1}$. We see that $t_{y,\lambda}$ acts on the $\mathfrak{U}\otimes_{\mathbf{Z}}H_n^{D,\infty}$ -module E_u^{∞} as a \mathbf{Q} linear combination of the operators $c_{yx,\lambda;1}: E_u \to E_u$ where $x \in \mathbf{W}_{\lambda}$ hence also as a Q-linear combination of the operators $\tilde{T}_{yx}1_{\lambda}: E_u \to E_u$. (From (a) specialized for v=1 we see that $c_{y,\lambda} \in \sum_{x \in \mathbf{W}_{\lambda}} \mathbf{Z} \tilde{T}_{yx} 1_{\lambda}$.) It follows that $\operatorname{tr}(t_{y,\lambda}, E_u^{\infty}) \in \eta_{y,\lambda} \mathbf{Q}$. Using (e) we see that $c_{y,\lambda}$ acts on \hat{E}_u^v as an \mathcal{A} -linear combination of the operators $1 \otimes t_{yx,\lambda}$ on $\mathfrak{U}(v) \otimes_{\mathfrak{U}} E_u^{\infty}$ where $x \in \mathbf{W}_{\lambda}$. The same holds for $T_{y,\lambda}$ (instead of $c_{y,\lambda}$), by (d). It follows that $\operatorname{tr}(T_{\nu}1_{\lambda}, E_{\nu}^{\nu}) \in \eta_{\nu,\lambda} \mathbf{Q}[\nu, \nu^{-1}].$

Since the algebra $\mathfrak{U} \otimes_{\mathbf{Z}} H_n^{D,\infty}$ is of finite dimension (say m), with 1, and its structure constants with respect to the basis $(t_{y,\lambda})$ are integers, we see that any basis element $t_{y,\lambda}$ satisfies an equation of the form $t_{y,\lambda}^m + c_1 t_{y,\lambda}^{m-1} + \cdots + c_m = 0$ where c_1, c_2, \ldots, c_m are integers. It follows that $\operatorname{tr}(t_{y,\lambda}, E_u^{\infty})$ is an algebraic integer (necessarily in \mathfrak{U}). Since the definition of Φ involves only coefficients in \mathcal{A} it follows that the coefficients of $\operatorname{tr}(c_{y,w}, E_u^v) \in \mathfrak{U}[v, v^{-1}]$ are algebraic integers in \mathfrak{U} . The same holds then for the coefficients of $\operatorname{tr}(\tilde{T}_y 1_{\lambda}, E_u^v)$. An element of $\eta_{y,\lambda} \mathbf{Q}[v, v^{-1}]$ whose coefficients are algebraic integers in \mathfrak{U} is necessarily in $\eta_{y,\lambda}\mathcal{A}$. We see that $\operatorname{tr}(T_y 1_{\lambda}, E_u^v) \in \eta_{y,\lambda} \mathcal{A}$, as required.

Lemma 34.21. Let u, E_u, η be as in 34.20. Let A be a character sheaf on D. Let $\mathfrak{E}_A \subset \mathbf{W}^D \times \underline{\mathfrak{s}}_n$ be the equivalence class under \approx attached to A in 32.25(a) (with $J = \mathbf{I}$). Let η_0 , a root of 1, be the (constant) value of η on \mathfrak{E}_A . We have $b_{A.u}^v \in \eta_0^{-1} \mathbf{Q}(v).$

From 34.18(a) we have

$$f_u^v = (\dim E_u)^{-1} \sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n} \operatorname{tr}(\tilde{T}_{w\underline{D}} 1_{\lambda}, E_u^v) \operatorname{tr}(\tilde{T}_{w\underline{D}} 1_{\lambda}, E_u^v)^{\spadesuit}.$$

By 34.20, for any $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n$ we have $\operatorname{tr}(\tilde{T}_{w\underline{D}}1_{\lambda}, E_u^v) = \eta_{w\underline{D},\lambda}Q_{w,\lambda}$ where

 $Q_{w,\lambda} \in \mathcal{A}$; hence $\operatorname{tr}(\tilde{T}_{w\underline{D}}1_{\lambda}, E_u^v)\operatorname{tr}(\tilde{T}_{w\underline{D}}1_{\lambda}, E_u^v)^{\spadesuit} = \eta_{w\underline{D},\lambda}Q_{w,\lambda}\eta_{w\underline{D},\lambda}^{-1}Q_{w,\lambda}$. Thus,

(a)
$$f_u^v = (\dim E_u)^{-1} \sum_{w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_n} Q_{w,\lambda}^2 \in \mathbf{Q}[v, v^{-1}].$$

Using 32.26(b) we rewrite 34.19 as follows

$$b_{A,u}^{v} = \frac{1}{f_{u}^{v} \dim E_{u}} \sum_{\substack{x \in \mathbf{W}, \lambda \in \underline{s}_{n} \\ (x\underline{D}, \lambda) \in \mathfrak{E}_{A}}} \zeta^{A}(\tilde{T}_{x} 1_{\underline{D}\lambda}[D]) \operatorname{tr}(\tilde{T}_{x\underline{D}} 1_{\lambda}, E_{u}^{v})^{\spadesuit}.$$

For each x, λ in the sum, we have $\zeta^A(\tilde{T}_x 1_{\underline{D}\lambda}[D]) \in \mathcal{A}$ (by definition) and $\operatorname{tr}(\tilde{T}_{x\underline{D}} 1_{\lambda}, E_u^v)^{\spadesuit} \in \eta_0^{-1} \mathcal{A}$

(by 34.20). Using this and (a), we see that $b_{A,u}^v \in \eta_0^{-1} \mathbf{Q}(v)$.

35. Functions on G^{0F}/U

- **35.1.** In this section we assume that \mathbf{k} is an algebraic closure of a finite field \mathbf{F}_q of characteristic p and that G has a fixed \mathbf{F}_q -rational structure whose Frobenius map induces the identity map on \mathbf{W} and on G/G^0 and the map $t \mapsto t^q$ on \mathbf{T} . For any algebraic variety V over \mathbf{k} with a given \mathbf{F}_q -structure we denote by $F: V \to V$ the corresponding Frobenius map. We fix an integer $n \geq 1$ that divides q-1.
- **35.2.** In this section we fix an épinglage of G^0 compatible with the \mathbf{F}_q -structure. Thus, we fix B^*, T, U^* as in 28.5 such that $F(B^*) = B^*, F(T) = T$ and we fix for each $s \in \mathbf{I}$ an isomorphism $a \mapsto \xi_s(a)$ of \mathbf{k} onto a subgroup of U^* such that $t\xi_s(a)t^{-1} = \xi_s(\alpha_s(t)a)$ for all $t \in T, a \in \mathbf{k}$ and $F(\xi_s(a)) = \xi_s(a^q)$ for all $a \in \mathbf{k}$; here $\alpha_s \in R^+$ and the corresponding coroot $\check{\alpha}_s$ satisfy $t = s(t)\check{\alpha}_s(\alpha_s(t))$ for all $t \in T$. (Clearly, such an épinglage exists and any two such épinglages are conjugate under the action of $(G^0/\mathcal{Z}_{G^0})^F$.) We identify $T = \mathbf{T}$ as in 28.5. For $s \in \mathbf{I}$ let U_s^* be the root subgroup of U_s^* corresponding to the root U_s^* . Define $U_s^* \in U_s^* \{1\}$, $U_s^* \in V_s^* \cap U_s^* \in V_s^* \cap U_s^* \cap U_s^*$

Following Tits, we can define uniquely for each $w \in \mathbf{W}$ a representative \dot{w} in $N_{G^0}T$ by the requirements:

- (i) if $s \in \mathbf{I}$ then \dot{s} is as above;
- (ii) if $w, w' \in \mathbf{W}$ and l(ww') = l(w) + l(w') then $(ww') = \dot{w}\dot{w}'$;
- (iii) 1 = 1.

We have $F(\dot{w}) = \dot{w}$ for any $w \in \mathbf{W}$. Let $\check{T}^F = \mathrm{Hom}(T^F, \bar{\mathbf{Q}}_l^*)$. If $\mathcal{L} \in \mathfrak{s}_{q-1}$ (see 31.2) then $\mathcal{L}^{\otimes (q-1)} \cong \mathcal{L}$ hence $F^*\mathcal{L} \cong \mathcal{L}$ and there is a unique isomorphism $\tau_0 : F^*\mathcal{L} \xrightarrow{\sim} \mathcal{L}$ that induces the identity on the stalk at 1. Hence we can form the characteristic function $\chi_{\mathcal{L},\tau_0} : T^F \to \bar{\mathbf{Q}}_l^*$ (a group homomorphism). Let $\lambda \in \underline{\mathfrak{s}}_{q-1}$ be the isomorphism class of \mathcal{L} . We set $\theta_F^{\lambda} = \chi_{\mathcal{L},\tau_0} \in \check{T}^F$. Now $\lambda \mapsto \theta_F^{\lambda}$ is a bijection $\underline{\mathfrak{s}}_{q-1} \xrightarrow{\sim} \check{T}^F$.

If $\theta \in \check{T}^F$, $\alpha \in R$ we write $\theta \check{\alpha}$ for the composition $\mathbf{F}_q^* \xrightarrow{\check{\alpha}|_{\mathbf{F}_q^*}} T^F \xrightarrow{\theta} \bar{\mathbf{Q}}_l^*$. For $\alpha \in R, b \in \mathbf{W}^{\bullet}$ we write $b\check{\alpha}$ for the coroot $a \mapsto b(\check{\alpha}(a))$.

35.3. In this section we write U instead of U^{*F} . Let \mathfrak{U} be as in 34.12. Let \mathfrak{T} be the vector space of all functions $G^{0F} \to \mathfrak{U}$ that are constant on U, U double cosets. Now \mathfrak{T} has a basis $\{k_{\nu}; \nu \in (N_{G^0}T)^F\}$ where k_{ν} is 1 on $U\nu U$ and is 0 on $G^{0F} - U\nu U$. We regard \mathfrak{T} as an associative \mathfrak{U} -algebra in which the product of h_1, h_2 is given by

$$(h_1h_2)(g) = |U|^{-1} \sum_{g_1, g_2 \in G^{0F}; g_1g_2 = g} h_1(g_1)h_2(g_2).$$

This algebra has $1 = k_1$. As in [Y], we have

$$k_{\dot{s}}k_{\dot{s}} = qk_{\check{\alpha}_s(-1)} + \sum_{a \in \mathbf{F}_q^*} k_{\dot{s}}k_{\check{\alpha}_s(a)},$$
$$k_{\nu}k_{\nu'} = k_{\nu\nu'},$$

where $s \in \mathbf{I}$ and ν, ν' represent w, w' in \mathbf{W} such that l(ww') = l(w) + l(w'). For any $\lambda \in \underline{\mathfrak{s}}_{q-1}$ we set

$$1_{\lambda} = |T^F|^{-1} \sum_{t \in T^F} \theta_F^{\lambda}(t) k_t \in \mathfrak{T}.$$

Then $1_{\lambda}1_{\lambda'} = \delta_{\lambda,\lambda'}1_{\lambda}$ for $\lambda,\lambda' \in \underline{\mathfrak{s}}_{q-1}$. Let $\sqrt{-1}$ be a fixed element of \mathfrak{U}^* whose square is -1; we set $\sqrt{1} = 1$. For $s \in \mathbf{I}$ we set

$$T_s = k_{\dot{s}} \sum_{\lambda \in \underline{\mathfrak{s}}_{g-1}} \sqrt{\theta_F^{\lambda}(\check{\alpha}_s(-1))} 1_{\lambda} \in \mathfrak{T}.$$

More generally, for $w \in \mathbf{W}$ we set

$$T_w = \sum_{\lambda \in \underline{\mathfrak{s}}_{q-1}} \prod_{\alpha \in R^+, w^{-1}\alpha \in R^-} \sqrt{\theta_F^{\lambda}(\check{\alpha}(-1))} k_{\dot{w}} 1_{\lambda} \in \mathfrak{T}.$$

From the definitions we see that $T_w T_{w'} = T_{ww'}$ for $w, w' \in \mathbf{W}$ with l(ww') = l(w) + l(w') and $T_w 1_{\lambda} = 1_{w\lambda} T_w$. We have

$$\begin{split} T_s T_s &= \sum_{\lambda} \theta_F^{\lambda}(\check{\alpha}_s(-1)) k_{\dot{s}} k_{\dot{s}} 1_{\lambda} \\ &= q \sum_{\lambda} \theta_F^{\lambda}(\check{\alpha}_s(-1)) k_{\check{\alpha}_s(-1)} 1_{\lambda} + \sum_{\lambda} \theta_F^{\lambda}(\check{\alpha}_s(-1)) \sum_{a \in \mathbf{F}_q^*} k_{\dot{s}} k_{\check{\alpha}_s(a)} 1_{\lambda} \\ &= q + \sum_{\lambda} \theta_F^{\lambda}(\check{\alpha}_s(-1)) \sum_{a \in \mathbf{F}_q^*} \theta_F^{\lambda}(\check{\alpha}_s(a)) k_{\dot{s}} 1_{\lambda} \\ &= q + (q-1) \sum_{\substack{\lambda \\ \theta_F^{\lambda} \check{\alpha}_s = 1}} \theta_F^{\lambda}(\check{\alpha}_s(-1)) k_{\dot{s}} 1_{\lambda} = q + (q-1) \sum_{\substack{\lambda \\ \theta_F^{\lambda} \check{\alpha}_s = 1}} \sqrt{\theta_F^{\lambda}(\check{\alpha}_s(-1))} k_{\dot{s}} 1_{\lambda}. \end{split}$$

Thus,

$$T_s T_s = q + (q - 1) \sum_{\lambda \in \underline{\mathfrak{s}}_{q-1}; \theta_F^{\lambda} \check{\alpha}_s = 1} T_s 1_{\lambda}.$$

- **35.4.** We fix a square root \sqrt{p} of p in \mathfrak{U} . For any $e \in \mathbf{Z}$ we set $\sqrt{p^e} = (\sqrt{p})^e$. In particular, $\sqrt{q} \in \mathfrak{U}$ is defined. Then $H_{q-1}^{\sqrt{q}}$ is defined as in 34.12. From 35.3 we see that the elements $T_w, 1_\lambda$ of \mathfrak{T} define a \mathfrak{U} -algebra homomorphism $H_{q-1}^{\sqrt{q}} \to \mathfrak{T}$. (We use the fact that if $\lambda \in \underline{\mathfrak{s}}_{q-1}$ and $s \in \mathbf{I}$ then $\theta_F^{\lambda} \check{\alpha}_s = 1$ if and only if $s \in \mathbf{W}_{\lambda}$.) This is an isomorphism: from the definitions we see that $\{T_w 1_\lambda; w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_{q-1}\}$ is a \mathfrak{U} -basis of \mathfrak{T} ; we then use 31.2(a).
- **35.5.** Let \mathfrak{P} be the vector space of all functions $f: G^{0F} \to \mathfrak{U}$ such that f(xu) = f(x) for all $x \in G^{0F}$, $u \in U$. For $g \in G^F$, $g' \in (N_G B^* \cap N_G T)^F$ such that $gG^0 = g'G^0$ we define a linear map $\rho_{g,g'}: \mathfrak{P} \to \mathfrak{P}$ by $(\rho_{g,g'}f)(x) = f(g^{-1}xg')$. Then $g_0: f \mapsto \rho_{g_0,1}f$ makes \mathfrak{P} into a G^0F -module.

Any element $c \in \mathfrak{T}$ defines a linear map $\mathfrak{P} \to \mathfrak{P}$:

$$f \mapsto cf, (cf)(x) = |U|^{-1} \sum_{x' \in G^{0F}} c(x')f(xx').$$

Clearly, $c \mapsto [f \mapsto cf]$ is an isomorphism $\mathfrak{T} \xrightarrow{\sim} \operatorname{End}_{G^{0F}}(\mathfrak{P})$ and a left \mathfrak{T} -module structure on \mathfrak{P} . For $\nu \in (N_{G^0}T)^F$, $\lambda \in \underline{\mathfrak{s}}_{q-1}$, $f \in \mathfrak{P}$ we have

$$(k_{\nu}f)(x) = |U|^{-1} \sum_{x' \in U_{\nu}U} f(xx'),$$

$$(1_{\lambda}f)(x) = |T^{F}|^{-1} \sum_{t \in T^{F}} \theta_{F}^{\lambda}(t) f(xt).$$

In the remainder of this section we fix a connected component D of G and an element $d \in (N_D B^* \cap N_D T)^F$. Let $s \in \mathbf{I} \cup \{1\}, \lambda \in \underline{\mathfrak{s}}_{q-1}, f \in \mathfrak{P}$. For $x \in G^{0F}$ we have:

(a)
$$(T_s 1_{\underline{D}\lambda} f)(x) = \sqrt{\theta_F^{\underline{D}\lambda}(\check{\alpha}_s(-1))} |B^{*F}|^{-1} \sum_{x' \in U \dot{s}U, t \in T^F} \theta_F^{\underline{D}\lambda}(t) f(xx't).$$

Now let $\mathbf{s} = (s_1, s_2, \dots, s_r)$ be a sequence in $\mathbf{I} \cup \{1\}, \lambda \in \underline{\mathfrak{s}}_{q-1}$,

$$T_{\mathbf{s}} 1_{\underline{D}\lambda} = T_{s_1} T_{s_2} \dots T_{s_r} 1_{\underline{D}\lambda} = T_{s_1} 1_{s_2 \dots s_r \underline{D}\lambda} T_{s_2} 1_{s_3 \dots s_r \underline{D}\lambda} \dots T_{s_r} 1_{\underline{D}\lambda}.$$

Applying (a) r times gives (for $f \in \mathfrak{P}, x \in G^{0F}, g \in D^F$):

$$(T_{\mathbf{s}}1_{\underline{D}\lambda}\rho_{g,d}f)(x) = a_{\underline{D}\lambda,F,\mathbf{s}}|B^{*F}|^{-r}$$

$$\times \sum_{\substack{g_1,g_2,\dots,g_r\\t_1,t_2,\dots t_r\\g_i\in U\dot{s}_iU\\t_i\in T^F}} \theta_F^{s_2\dots s_r\underline{D}\lambda}(t_1)\theta_F^{s_3\dots s_r\underline{D}\lambda}(t_2)\dots\theta_F^{\underline{D}\lambda}(t_r)f(g^{-1}xg_1t_1g_2t_2\dots g_rt_rd)$$

$$=a_{\underline{D}\lambda,F,\mathbf{s}}|B^{*F}|^{-r}$$

(a')
$$\times \sum_{\substack{g_1, g_2, \dots, g_r \\ t_1, t_2, \dots t_r \\ g_i \in U \dot{s}_i U \\ t_i \in T^F}} \theta_F^{\underline{D}\lambda}((s_r \dots s_2 t_1)(s_r \dots s_3 t_2) \dots (t_r)) f(g^{-1} x g_1 t_1 g_2 t_2 \dots g_r t_r d)$$

where

$$a_{\underline{D}\lambda,F,\mathbf{s}} = \sqrt{\theta_F^{\underline{D}\lambda}(s_r \dots s_2(\check{\alpha}_{s_1}(-1)))} \sqrt{\theta_F^{\underline{D}\lambda}(s_r \dots s_3(\check{\alpha}_{s_2}(-1)))} \dots \sqrt{\theta_F^{\underline{D}\lambda}(\check{\alpha}_{s_r}(-1))}.$$

Let $J \subset \mathbf{I}$ and let $Q \in \mathcal{P}_J$ be such that F(Q) = Q. Define a linear map $\operatorname{pr}_Q : \mathfrak{P} \to \mathfrak{P}$ by $(\operatorname{pr}_Q f)(x) = f(x)$ if $x \in G^{0F}, xQ_{J,B^*}x^{-1} = Q$ and $(\operatorname{pr}_Q f)(x) = f(x)$ if $x \in G^{0F}, xQ_{J,B^*}x^{-1} \neq Q$. We compute the trace of the linear map

(b)
$$T_{\mathbf{s}} 1_{\underline{D}\lambda} \rho_{g,d} \operatorname{pr}_{Q} : \mathfrak{P} \to \mathfrak{P}$$

using the \mathfrak{U} -basis of \mathfrak{P} consisting of the characteristic functions of the various right U-cosets in G^{0F} . Using (a') and the definitions we see that this trace equals

(c)
$$\frac{a_{\underline{D}\lambda,F,\mathbf{s}}}{|B^{*F}|^r|U|} \sum_{\substack{g_1,g_2,\dots,g_r,\\t_1,t_2,\dots t_r;\\g_i\in U\dot{s}_iU,t_i\in T^F,x\in D^F;\\g^{-1}xg_1t_1g_2t_2\dots g_rt_rd\in xU;\\xQ_{J,B^*}x^{-1}=Q}} \theta_F^{\lambda}(d^{-1}(s_r\dots s_2t_1)(s_r\dots s_3t_2)\dots(t_r)d).$$

35.6. Let $\mathcal{L}, \lambda, \tau_0 : F^*\mathcal{L} \xrightarrow{\sim} \mathcal{L}$ be as in 35.2. Let $\mathbf{s} = (s_1, s_2, \dots, s_r)$ be a sequence in $\mathbf{I} \cup \{1\}$ such that $s_1 s_2 \dots s_r \underline{D}\lambda = \lambda$. In 28.7 we have defined a local system $\tilde{\mathcal{L}}$ on $Z_{\emptyset,J,D}^{\mathbf{s}}$ in terms of d and a representative for $s_1 s_2 \dots s_r$ in $N_{G^0}T$. We now take as a representative for $s_1 s_2 \dots s_r$ the element $\dot{s}_1 \dot{s}_2 \dots \dot{s}_r$ with \dot{s}_i as in 35.2. We reformulate the definition of $\tilde{\mathcal{L}}$ as follows (see also the proof of 28.10). Define $\gamma : Z'^{\mathbf{s}} \to Z_{\emptyset,J,D}^{\mathbf{s}}$ by the formula 28.10(a). Define $\psi : Z'^{\mathbf{s}} \to T$ by

$$(h_0, h_1, \dots, h_r, q) \mapsto d^{-1}(\dot{s}_1 \dot{s}_2 \dots \dot{s}_r)^{-1} n_1 n_2 \dots n_r n_0$$

with $n_i \in N_{G^0}T$ given by $h_{i-1}^{-1}h_i \in U^*n_iU^*$ and $n_0 \in N_GB^* \cap N_GT$ given by $h_r^{-1}gh_0 \in U^*n_0$. Then $\tilde{\mathcal{L}}$ is the local system on $Z_{\emptyset,J,D}^{\mathbf{s}}$ such that $\gamma^*\tilde{\mathcal{L}} = \psi^*\mathcal{L}$. Note that γ, ψ are naturally defined over \mathbf{F}_q . Let $\tilde{\tau} : F^*\psi^*\mathcal{L} \xrightarrow{\sim} \psi^*\mathcal{L}$ be the isomorphism induced by τ_0 . There is a well defined isomorphism $\tau : F^*\tilde{\mathcal{L}} \xrightarrow{\sim} \tilde{\mathcal{L}}$ such that τ induces via γ the isomorphism $\tilde{\tau}$.

Let $\pi_{\mathbf{s}}: Z_{\emptyset,J,D}^{\mathbf{s}} \to Z_{J,D}$ be as in 28.12(a) and let $K = K_{J,D}^{\mathbf{s},\mathcal{L}} = \pi_{\mathbf{s}!}\tilde{\mathcal{L}} \in \mathcal{D}(Z_{J,D})$. Now $\pi_{\mathbf{s}}$ is naturally defined over \mathbf{F}_q . Hence $\tau: F^*\tilde{\mathcal{L}} \xrightarrow{\sim} \tilde{\mathcal{L}}$ induces an isomorphism $\omega: F^*K \xrightarrow{\sim} K$ and $\chi_{K,\omega}: Z_{J,D}^F \to \bar{\mathbf{Q}}_l$ is defined. Let $\xi = (Q, Q', gU_Q) \in Z_{J,D}^F$ (we can take $g \in D^F$). Using the definitions and the Grothendieck trace formula we have

$$\chi_{K,\omega}(\xi) = \sum_{i} (-1)^{i} \operatorname{tr}(\tau^{*}, H_{c}^{i}(\pi_{\mathbf{s}}^{-1}(\xi), \tilde{\mathcal{L}})) = \sum_{\eta \in \pi_{\mathbf{s}}^{-1}(\xi)^{F}} \operatorname{tr}(\tau, \tilde{\mathcal{L}}_{\eta})$$

where $\tilde{\mathcal{L}}_{\eta}$ is the stalk of $\tilde{\mathcal{L}}$ at η . Now γ induces a map $Z'^{\mathbf{s}F} \to Z^{\mathbf{s}}_{\emptyset,J,D}{}^F$ all of whose fibres have cardinal $|B^{*F}|^{r+1}|U^F_{J,B^*}|$. It follows that

$$|B^{*F}|^{r+1}|U_{J,B^*}^F|\chi_{K,\omega}(\xi) = \sum_{\substack{\tilde{\eta} \in Z'^{*F} \\ \pi_{s}\gamma(\tilde{\eta}) = \xi}} \operatorname{tr}(\tilde{\tau}, (\psi^* \mathcal{L})_{\tilde{\eta}}) = \sum_{\substack{\tilde{\eta} \in Z'^{*F} \\ \pi_{s}\gamma(\tilde{\eta}) = \xi}} \operatorname{tr}(\tau_{0}, \mathcal{L}_{\psi(\tilde{\eta})}).$$

Let

$$\Xi = \{ (h_0, h_1, \dots, h_r) \in (G^{0F})^{r+1}; h_{i-1}^{-1} h_i \in B^* \dot{s}_i B^* (i \in [1, r]), h_r^{-1} g h_0 \in N_G B^*, h_0 Q_{J, B^*} h_0^{-1} = Q \}.$$

Then $\{\tilde{\eta} \in Z'^{\mathbf{s}F}; \pi_{\mathbf{s}}\gamma(\tilde{\eta}) = \xi\}$ may be identified with $\Xi \times (gU_Q^F)$. Hence

$$\chi_{K,\omega}(\xi) = |B^{*F}|^{-r-1} \sum_{(h_0, h_1, \dots, h_r) \in \Xi} \chi_{\mathcal{L}, \tau_0}(\delta(h_0, h_1, \dots, h_r))$$

with $\delta: \Xi \to T$ given by $(h_0, h_1, \dots, h_r) \mapsto d^{-1}(\dot{s}_1 \dot{s}_2 \dots \dot{s}_r)^{-1} n_1 n_2 \dots n_r n_0$ $(n_i, n_0 \text{ as above})$. For any $(h_0, h_1, \dots, h_r) \in \Xi$ we define $g_i \in U \dot{s}_i U$, $t_i \in T^F(i \in [1, r])$ by $h_{i-1}^{-1} h_i = g_i t_i$. We also set $h_0 = x$. Then Ξ becomes

$$\{(x, g_1, g_2, \dots, g_r, t_1, t_2, \dots, t_r); x \in G^{0F}, g_i \in U \dot{s}_i U, t_i \in T^F; g_i = x g_1 t_1 g_2 t_2 \dots g_r t_r t du \text{ for some } t \in T^F, u \in U; x Q_{J,B^*} x^{-1} = Q\}$$

and $\delta:\Xi\to T$ becomes

$$(x, g_1, g_2, \dots, g_r, t_1, t_2, \dots, t_r) \mapsto d^{-1}(\dot{s}_1 \dot{s}_2 \dots \dot{s}_r)^{-1} ds_1 t_1 \dot{s}_2 t_2 \dots \dot{s}_r t_r t d$$

= $d^{-1}(s_r \dots s_2 t_1)(s_r \dots s_3 t_2) \dots (s_r t_{r-1})(t_r t) d$.

We make the change of variable $t_r t \mapsto t_r, t \mapsto t$. Then t no longer appears explicitly; it only introduces a factor $|T^F|$. We see that

$$\chi_{K,\omega}(\xi) = \frac{|T^F|}{|B^{*F}|^{r+1}} \sum_{\substack{g_1, g_2, \dots, g_r, \\ t_1, t_2, \dots t_r, \\ g_i \in U \dot{s}_i U, t_i \in T^F, x \in D^F, \\ g^{-1} x g_1 t_1 g_2 t_2 \dots g_r t_r d \in x U \\ x Q_{J,B^*} x^{-1} = Q} \theta_F^{\lambda}(d^{-1}(s_r \dots s_2 t_1)(s_r \dots s_3 t_2) \dots (t_r) d).$$

This is the same (up to the factor $a_{\underline{D}\lambda,F,s}$) as the expression 35.5(c). Using the equality between 35.5(c) and the trace of 35.5(b), we see that

(a)
$$\chi_{K,\omega}(Q, gQg^{-1}, gU_Q) = a_{D\lambda,F,\mathbf{s}}^{-1} \operatorname{tr}(T_{\mathbf{s}} 1_{\underline{D}\lambda} \rho_{g,d} \operatorname{pr}_Q, \mathfrak{P}).$$

35.7. In the setup of 35.6, let $\mathcal{J}_{\mathbf{s}} \subset \mathcal{J}^0 \subset [1,r]$ be as in 28.9. For any $\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}$ let $\mathbf{s}_{\mathcal{J}}$ be as in 28.9. We have $\mathbf{s}_{\emptyset} = \mathbf{s}$. Define $\gamma_{\mathcal{J}} : Z'^{\mathbf{s}_{\mathcal{J}}} \to Z^{\mathbf{s}_{\mathcal{J}}}_{\emptyset,J,D}$ by the formula 28.10(a). Define $\psi_{\mathcal{J}} : Z'^{\mathbf{s}_{\mathcal{J}}} \to T$ as in 28.10 (with $\dot{\mathbf{s}}$ as in 35.2). Let $\tilde{\mathcal{L}}_{\mathcal{J}}$ be the local system on $Z^{\mathbf{s}_{\mathcal{J}}}_{\emptyset,J,D}$ such that $\gamma^*_{\mathcal{J}}\tilde{\mathcal{L}}_{\mathcal{J}} = \psi^*_{\mathcal{J}}\mathcal{L}$. Let $\tilde{\tau}^{\mathcal{J}} : F^*\psi^*_{\mathcal{J}}\mathcal{L} \xrightarrow{\sim} \psi^*_{\mathcal{J}}\mathcal{L}$ be the isomorphism induced by τ_0 . There is a well defined isomorphism $\tau^{\mathcal{J}} : F^*\tilde{\mathcal{L}}_{\mathcal{J}} \xrightarrow{\sim} \tilde{\mathcal{L}}_{\mathcal{J}}$ such that $\tau^{\mathcal{J}}$ induces via $\gamma_{\mathcal{J}}$ the isomorphism $\tilde{\tau}^{\mathcal{J}}$. Note that for $\mathcal{J} = \emptyset$, $\tilde{\mathcal{L}}_{\mathcal{J}}, \tilde{\tau}^{\mathcal{J}}, \tau^{\mathcal{J}}$ reduce to $\tilde{\mathcal{L}}, \tilde{\tau}, \tau$ of 35.6.

Let $\bar{Z}_{\emptyset,J,D}^{\mathbf{s}}$ be as in 28.9. This is a smooth irreducible variety, naturally defined over \mathbf{F}_q and $Z_{\emptyset,J,D}^{\mathbf{s}_{\emptyset}}$ is open dense in $\bar{Z}_{\emptyset,J,D}^{\mathbf{s}}$. Hence $\bar{\mathcal{L}} = IC(\bar{Z}_{\emptyset,J,D}^{\mathbf{s}}, \tilde{\mathcal{L}}_{\emptyset})$ is defined and the isomorphism $\tau^{\emptyset}: F^*\tilde{\mathcal{L}}_{\emptyset} \xrightarrow{\sim} \tilde{\mathcal{L}}_{\emptyset}$ of local systems on $Z_{\emptyset,J,D}^{\mathbf{s}_{\emptyset}}$ extends canonically to an isomorphism $\tau^{\sharp}: F^*\bar{\mathcal{L}} \xrightarrow{\sim} \bar{\mathcal{L}}$ (of constructible sheaves, see 28.10). Restricting this isomorphism to the subset $Z_{\emptyset,J,D}^{\mathbf{s}_{\mathcal{J}}}$ of $\bar{Z}_{\emptyset,J,D}^{\mathbf{s}}$ (with $\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}$) we obtain an isomorphism $\tau^{\sharp\mathcal{J}}: F^*\mathcal{E}^{\mathcal{J}} \xrightarrow{\sim} \mathcal{E}^{\mathcal{J}}$ where $\mathcal{E}^{\mathcal{J}} = \bar{\mathcal{L}}|_{Z_{\emptyset,J,D}^{\mathbf{s}_{\mathcal{J}}}}$. From 28.10 we see that $\mathcal{E}^{\mathcal{J}}$ is a local system isomorphic to $\tilde{\mathcal{L}}_{\mathcal{J}}$.

Lemma 35.8. The isomorphisms $\tau^{\sharp \mathcal{J}}, \tau^{\mathcal{J}}$ correspond to each other under some/any isomorphism of local systems $\mathcal{E}^{\mathcal{J}} \xrightarrow{\sim} \tilde{\mathcal{L}}_{\mathcal{J}}$ on $Z_{\emptyset..I.D}^{\mathbf{s}_{\mathcal{J}}}$.

The proof is a refinement of that of Lemma 28.10. Note that $Z'^{\mathbf{s}_{\emptyset}}$ is an open dense subvariety of the smooth irreducible variety $\tilde{Z}^{\mathbf{s}}$ (as in 28.10). Hence $IC(\tilde{Z}^{\mathbf{s}}, \psi_{\emptyset}^* \mathcal{L})$ is defined and the isomorphism $\tilde{\tau}^{\emptyset} : F^* \psi_{\emptyset}^* \mathcal{L} \xrightarrow{\sim} \psi_{\emptyset}^* \mathcal{L}$ of local systems on $Z'^{\mathbf{s}_{\emptyset}}$ extends canonically to an isomorphism

$$\tilde{\tau}^{\sharp}: F^*IC(\tilde{Z}^{\mathbf{s}}, \psi_{\emptyset}^*\mathcal{L}) \xrightarrow{\sim} IC(\tilde{Z}^{\mathbf{s}}, \psi_{\emptyset}^*\mathcal{L})$$

which may be identified with the isomorphism induced by τ^{\sharp} through the fibration $\tilde{Z}^{\mathbf{s}} \to \bar{Z}^{\mathbf{s}}_{\emptyset,J,D}$ (see 28.10(a)) whose fibres are smooth and connected. Let $\tilde{\mathcal{E}}^{\mathcal{J}} = IC(\tilde{Z}^{\mathbf{s}}, \psi_{\emptyset}^{*}\mathcal{L})|_{Z'^{\mathbf{s}}\mathcal{J}}$ and let $\tilde{\tau}^{\sharp\mathcal{J}} : F^{*}\tilde{\mathcal{E}}^{\mathcal{J}} \xrightarrow{\sim} \tilde{\mathcal{E}}^{\mathcal{J}}$ be the isomorphism induced by $\tilde{\tau}^{\sharp}$ by restriction. It suffices to prove the following statement:

The isomorphisms $\tilde{\tau}^{\sharp \mathcal{J}}$, $\tilde{\tau}^{\mathcal{J}}$ correspond to each other under some/any isomorphism of local systems $\tilde{\mathcal{E}}^{\mathcal{J}} \xrightarrow{\sim} \psi_{\mathcal{J}}^* \mathcal{L}$.

Let $\mathcal{L}' = (\underline{D}^{-1})^* \mathcal{L} \in \mathfrak{s}(\mathbf{T}) = \mathfrak{s}(T)$. Let $\tau_0' : F^* \mathcal{L}' \xrightarrow{\sim} \mathcal{L}'$ be the unique isomorphism which induces the identity map on the stalk of \mathcal{L}' at 1. Let $'\bar{Z}^{\mathbf{s}},'Z^{\mathbf{s}_{\mathcal{I}}}$ be as in 28.10. Define $'\psi_{\mathcal{J}} : 'Z^{\mathbf{s}_{\mathcal{I}}} \to T$ as in 28.10 (with \dot{s} as in 35.2). Then $'\psi_{\mathcal{J}}$ is compatible with the natural \mathbf{F}_q -structures on $'Z^{\mathbf{s}_{\mathcal{I}}}, T$; hence $\tau_0' : F^* \mathcal{L}' \xrightarrow{\sim} \mathcal{L}'$ induces an isomorphism of local systems $'\tau^{\mathcal{J}} : F^{*'}\psi_{\mathcal{I}}^*\mathcal{L}' \xrightarrow{\sim} '\psi_{\mathcal{I}}^*\mathcal{L}'$. Let

$$'\tau^{\sharp}: F^*IC('\bar{Z}^{\mathbf{s}}, '\psi_{\emptyset}^*\mathcal{L}') \xrightarrow{\sim} IC('\bar{Z}^{\mathbf{s}}, '\psi_{\emptyset}^*\mathcal{L}')$$

be the isomorphism induced by $'\tau^{\emptyset}: F^{*'}\psi_{\emptyset}^*\mathcal{L}' \xrightarrow{\sim} '\psi_{\emptyset}^*\mathcal{L}'$. Let

$$'\mathcal{E}^{\mathcal{J}} = IC('\bar{Z}^{\mathbf{s}}, '\psi_{\emptyset}^{*}\mathcal{L}')|_{'Z^{\mathbf{s}}\mathcal{J}}$$

and let ${}'\tau^{\sharp \mathcal{J}}: F^{*}{}'\mathcal{E}^{\mathcal{J}} \xrightarrow{\sim} {}'\mathcal{E}^{\mathcal{J}}$ be the isomorphism induced by ${}'\tau^{\sharp}$ by restriction. As in the proof of 28.10, it suffices to prove the following statement:

(a) The isomorphisms $\tau^{\sharp \mathcal{J}}$, $\tau^{\mathcal{J}}$ correspond to each other under some/any isomorphism of local systems $\mathcal{E}^{\mathcal{J}} \xrightarrow{\sim} {}' \psi_{\mathcal{J}}^* \mathcal{L}'$.

Assume that (a) is known in the case where $|\mathcal{J}| = 1$. We now consider a general $\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}$. We prove (a) by induction on $|\mathcal{J}|$. If $\mathcal{J} = \emptyset$, (a) is obvious. Assume that $\mathcal{J} \neq \emptyset$. Let $j \in \mathcal{J}$ be the largest number in \mathcal{J} . Let $\mathcal{J}' = \mathcal{J} - \{j\}$. Let $'\bar{Z}^{\mathbf{s}}_{\mathcal{J}'}$ be the variety analogous to $'\bar{Z}^{\mathbf{s}}$ when \mathbf{s} is replaced by $\mathbf{s}_{\mathcal{J}'}$ (this is the same as the closure of $'Z^{\mathbf{s}}_{\mathcal{J}'}$ in $'\bar{Z}^{\mathbf{s}}$). Let

$$"\tau^{\sharp}: F^{*}IC('\bar{Z}^{\mathbf{s}_{\mathcal{I}'}}, '\psi_{\mathcal{J}'}^{*}\mathcal{L}') \xrightarrow{\sim} IC('\bar{Z}^{\mathbf{s}_{\mathcal{I}'}}, '\psi_{\mathcal{J}'}^{*}\mathcal{L}')$$

be the isomorphism induced by ${}'\tau^{\mathcal{J}'}: F^{*'}\psi_{\mathcal{J}'}^*\mathcal{L}' \xrightarrow{\sim} {}'\psi_{\mathcal{J}'}^*\mathcal{L}'$ and let ${}''\tau^{\sharp\mathcal{J}}$ be its restriction to ${}'Z^{\mathbf{s}_{\mathcal{J}}}$. By the induction hypothesis, the isomorphisms ${}'\tau^{\sharp\mathcal{J}'}, {}'\tau^{\mathcal{J}'}$ correspond to each other under some/any isomorphism of local systems ${}'\mathcal{E}^{\mathcal{J}'} \xrightarrow{\sim} {}'\psi_{\mathcal{J}'}^*\mathcal{L}'$. It follows that the isomorphisms ${}''\tau^{\sharp\mathcal{J}}, {}'\tau^{\sharp\mathcal{J}}$ correspond to each other under some/any isomorphism of local systems

$$IC('\bar{Z}^{\mathbf{s}_{\mathcal{I}'}}, '\psi_{\mathcal{I}'}^*\mathcal{L}')|_{'Z^{\mathbf{s}_{\mathcal{I}}}} \xrightarrow{\sim} '\mathcal{E}^{\mathcal{I}}.$$

By our assumption (applied to $\mathbf{s}_{\mathcal{J}'}$ instead of \mathbf{s}), the isomorphisms " $\tau^{\sharp \mathcal{J}}$, ' $\tau^{\mathcal{J}}$ correspond to each other under some/any isomorphism of local systems

$$IC('\bar{Z}^{\mathbf{s}_{\mathcal{J}'}}, '\psi_{\mathcal{J}'}^*\mathcal{L}')|_{'Z^{\mathbf{s}_{\mathcal{J}}}} \xrightarrow{\sim} '\psi_{\mathcal{J}}^*\mathcal{L}'.$$

It follows that the isomorphisms $\tau^{\sharp \mathcal{J}}, \tau^{\mathcal{J}}$ correspond to each other under some/any isomorphism of local systems $\mathcal{E}^{\mathcal{J}} \xrightarrow{\sim} \psi^*_{\mathcal{T}} \mathcal{L}'$. Thus, (a) holds for \mathcal{J} .

We now consider the remaining case, where \mathcal{J} consists of a single element j. Note that $j \in \mathcal{J}_{\mathbf{s}}$ where $\mathcal{J}_{\mathbf{s}}$ is defined in terms of D, \mathcal{L} or equivalently, in terms of G^0, \mathcal{L}' . The statement (a) involves only G^0 . Hence to prove it, we may assume that $G = G^0$. We write Z', Z'' instead of $Z^{\mathbf{s}_{\emptyset}}, Z^{\mathbf{s}_{\{j\}}}$ and we set $Z = Z' \cup Z''$, a subvariety of $Z^{\mathbf{s}_{\emptyset}}$. We write Z', Z'' instead of $Z^{\mathbf{s}_{\emptyset}}$ and $Z^{\mathbf{s}_{\emptyset}}$. Let $Z^{\mathbf{s}_{\emptyset}}$ be $Z^{\mathbf{s}_{\emptyset}}$.

We have $\mathcal{L}' = \kappa^* \mathcal{L}_1$ where $\kappa \in \text{Hom}(T, \mathbf{k}^*)$ and $\mathcal{L}_1 \in \mathfrak{s}(\mathbf{k}^*)$. Since $\mathcal{L}'^{\otimes (q-1)} \cong \bar{\mathbf{Q}}_l$, we may assume that $\mathcal{L}_1^{\otimes (q-1)} \cong \bar{\mathbf{Q}}_l$. Hence there is a unique isomorphism $\tau_1 : F^* \mathcal{L}_1 \xrightarrow{\sim} \mathcal{L}_1$ which induces the identity on the stalk of \mathcal{L}_1 at 1. Then $\tau_0' : F^* \mathcal{L}' \xrightarrow{\sim} \mathcal{L}'$ is induced by τ_1 , via κ^* .

We continue the proof assuming that G has simply connected derived subgroup. Let $\check{\beta}$ be as in the proof of 28.10. As in that proof, we may assume that $\langle \check{\beta}, \kappa \rangle = 0$. Hence there exists a homomorphism of algebraic groups $\chi: B^*\dot{s}_jB^* \cup B^* \to \mathbf{k}^*$ such that $\chi(t) = \kappa(b^{-1}tb)$ for all $t \in T$. Let $\tilde{f}: Z \to \mathbf{k}^*$ be as in 28.10. If $y_j \in B^*\dot{s}_jB^*$, we have $\tilde{f}(y_1, \ldots, y_r) = \kappa(f'(y_1, \ldots, y_r))$; if $y_j \in B^*$ we have $\tilde{f}(y_1, \ldots, y_r) = \kappa(f''(y_1, \ldots, y_r))$. (See 28.10.) We show that

$$\chi(F(g)) = \chi(g)^q \text{ for all } g \in B^* \dot{s}_j B^* \cup B^*.$$

We may assume that $g \in T$. Then

$$\chi(F(g)) = \kappa(b^{-1}F(g)b) = \kappa(F(b^{-1}gb)) = \kappa((b^{-1}gb)^q) = \kappa(b^{-1}gb)^q = \chi(g)^q,$$

as required. It follows that for any $(y_1, \ldots, y_r) \in Z$ we have

(b)
$$\tilde{f}(F(y_1), \dots, F(y_r)) = (\tilde{f}(y_1, \dots, y_r))^q$$
.

Let $\mathcal{F} = \tilde{f}^*(\mathcal{L}_1)$. We have canonically $\mathcal{F}_{Z'} = f'^*\mathcal{L}', \mathcal{F}|_{Z''} = f''^*\mathcal{L}'$. From (b) we see that the isomorphism $\tau_1 : F^*\mathcal{L}_1 \xrightarrow{\sim} \mathcal{L}_1$ induces via \tilde{f}^* an isomorphism $F^*\mathcal{F} \xrightarrow{\sim} \mathcal{F}$ and this gives rise upon restriction to Z', Z'' to the isomorphisms $\tau_1' = \tau_2' = \tau_3' = \tau$

We now drop the assumption that G has simply connected derived subgroup. Let $\pi:\hat{G}\to G$ be a surjective homomorphism of connected reductive groups whose kernel is a central torus in \hat{G} and such that \hat{G} has simply connected derived subgroup. We may assume that \hat{G} and π are defined over \mathbf{F}_q . Then π restricts to a surjective homomorphism $\hat{G}^F\to G^F$. Since the set of épinglages of G,\hat{G} are in natural bijection, the épinglage of G fixed in 35.2 gives rise to an épinglage of G (the associated Borel subgroup and maximal torus are $\hat{B}^*=\pi^{-1}(B^*), \hat{T}=\pi^{-1}(T)$ and the analogue of $\xi_s:\mathbf{k}\to U^*$ is the obvious one). For $s\in\mathbf{I}$ let $\tilde{s}\in(N_{\hat{G}}\hat{T})^F$ be associate to this épinglage of \hat{G} in the same way as \hat{s} was associated to the épinglage of G. We set $\tilde{\mathbf{I}}=\mathbf{1}\in\tilde{G}$. Define $\hat{Z},\hat{Z}',\hat{Z}'',\hat{f}':\hat{Z}'\to\hat{T},\hat{f}'':\hat{Z}''\to\hat{T}$ in terms of $\hat{G},\hat{B}^*,\hat{T},\tilde{s}_i$ in the same way as $Z,Z',Z'',f':Z'\to T,f'':Z''\to T$ are defined in terms of G,B^*,T,\hat{s}_i . Let $\hat{\mathcal{L}}'\in\mathfrak{s}(\hat{T})$ be the inverse image of \mathcal{L}' under $\pi:\hat{T}\to T$. There is a unique isomorphism $F^*\hat{\mathcal{L}}'\cong\hat{\mathcal{L}}'$ which induces the identity map on the stalk of $\hat{\mathcal{L}}'$ at 1. This induces isomorphisms

$$'\hat{\tau}^{\emptyset}: F^*\hat{f}'^*\hat{\mathcal{L}}' \to \hat{f}'^*\hat{\mathcal{L}}', '\hat{\tau}^{\{j\}}: F^*\hat{f}''^*\hat{\mathcal{L}}' \to \hat{f}''^*\hat{\mathcal{L}}'.$$

Now $'\hat{\tau}^{\emptyset}$ induces an isomorphism $F^*IC(\hat{Z},\hat{f}'^*\hat{\mathcal{L}}') \xrightarrow{\sim} IC(\hat{Z},\hat{f}'^*\hat{\mathcal{L}}')$ and this restricts to an isomorphism of local systems

$$\hat{\tau}^{\sharp\{j\}}: F^*IC(\hat{Z}, \hat{f}'^*\hat{\mathcal{L}}')|_{\hat{Z}''} \xrightarrow{\sim} IC(\hat{Z}, \hat{f}'^*\hat{\mathcal{L}}')|_{\hat{Z}''}.$$

By an earlier part of the proof, the isomorphisms $\hat{\tau}^{\sharp\{j\}}, \hat{\tau}^{\{j\}}$ correspond to each other under some/any isomorphism of local systems $IC(\hat{Z}, \hat{f}'^*\hat{\mathcal{L}}')|_{\hat{Z}''} \xrightarrow{\sim} \hat{f}''^*\hat{\mathcal{L}}'$. Now the map $\hat{Z} \to Z$ induced by π is a fibration with smooth connected fibres and $IC(\hat{Z}, \hat{f}'^*\hat{\mathcal{L}}')$ is canonically the inverse image under this map of $IC(Z, f'^*\mathcal{L}')$. Hence $IC(\hat{Z}, \hat{f}'^*\hat{\mathcal{L}}')|_{\hat{Z}''}$ is the inverse image under $\hat{Z}'' \to Z''$ of $IC(Z, f'^*\mathcal{L}')|_{Z''}$. Similarly, $\hat{f}''^*\hat{\mathcal{L}}'$ is the inverse image under $\hat{Z}'' \to Z''$ of $f''^*\mathcal{L}'$. Also, $\hat{\tau}^{\sharp\{j\}}, \hat{\tau}^{\{j\}}$ are obtained from $\hat{\tau}^{\sharp\{j\}}, \hat{\tau}^{\{j\}}$ by inverse image under $\hat{Z}'' \to Z''$. Therefore the required statement about $\hat{\tau}^{\sharp\{j\}}, \hat{\tau}^{\{j\}}$ is a consequence of the analogous, already known statement about $\hat{\tau}^{\sharp\{j\}}, \hat{\tau}^{\{j\}}$ (we use the faithfulness of the inverse image functor under the fibration $\hat{Z}'' \to Z''$ with smooth connected fibres). The lemma is proved.

35.9. We preserve the setup of 35.7. Let $\bar{\pi}_{\mathbf{s}}: \bar{Z}^{\mathbf{s}}_{\emptyset,J,D} \to Z_{J,D}$ be as in 28.12 and let $\bar{K} = \bar{K}^{\mathbf{s},\mathcal{L}}_{J,D} = \bar{\pi}_{\mathbf{s}!}\bar{\mathcal{L}} \in \mathcal{D}(Z_{J,D})$ (see 28.12, 35.7). Now $\bar{\pi}_{\mathbf{s}}$ is naturally defined over \mathbf{F}_q . Hence the isomorphism $\tau^{\sharp}: F^*\bar{\mathcal{L}} \xrightarrow{\sim} \bar{\mathcal{L}}$ in 35.7 induces an isomorphism $\bar{\omega}: F^*\bar{K} \to \bar{K}$ and $\chi_{\bar{K},\bar{\omega}}: Z^F_{J,D} \to \bar{\mathbf{Q}}_l$ is defined.

Proposition 35.10. Let $(Q, Q', gU_Q) \in Z_{J,D}^F$ (we take $g \in D^F$). Let $C_{\underline{D}\lambda}^{\mathbf{s}} \in H_{q-1}$ be as in 31.5. We have

$$\chi_{\bar{K},\bar{\omega}}(Q,Q',gU_Q) = a_{\underline{D}\lambda,F,\mathbf{s}}^{-1} \mathrm{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \rho_{g,d} \mathrm{pr}_Q, \mathfrak{P}).$$

Consider the partition $\bar{Z}_{\emptyset,J,D}^{\mathbf{s}} = \sqcup_{\mathcal{J}\subset\mathcal{J}^0} Z_{\emptyset,J,D}^{\mathbf{s}_{\mathcal{J}}}$ (see 28.9). For each $\mathcal{J}\subset\mathcal{J}^0$ let $\pi_{\mathcal{J}}: Z_{\emptyset,J,D}^{\mathbf{s}_{\mathcal{J}}} \to Z_{J,D}$ be the restriction of $\bar{p}_{\mathbf{s}}$, let $K_{\mathcal{J}} = \pi_{\mathcal{J}!}(\bar{\mathcal{L}}|_{Z_{\emptyset,J,D}^{\mathbf{s}_{\mathcal{J}}}})$ and let $\omega_{\mathcal{J}}: F^*K_{\mathcal{J}} \to K_{\mathcal{J}}$ be the isomorphism induced by τ^{\sharp} . Using the additivity property of characteristic functions, we see that $\chi_{\bar{K},\bar{\omega}} = \sum_{\mathcal{J}\subset\mathcal{J}^0} \chi_{K_{\mathcal{J}},\omega_{\mathcal{J}}}$. By 28.10, we have $K_{\mathcal{J}} = 0$ unless $\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}$. By Lemma 35.8, if $\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}$, $\chi_{K_{\mathcal{J}},\omega_{\mathcal{J}}}$ is just like $\chi_{K,\omega}$ in 35.6, with \mathbf{s} replaced by $\mathbf{s}_{\mathcal{J}}$. Hence 35.6(a) can be applied and it yields

$$\chi_{K_{\mathcal{J}},\omega_{\mathcal{J}}}(Q,Q',gU_Q) = a_{\underline{D}\lambda,F,\mathbf{s}_{\mathcal{J}}}^{-1} \operatorname{tr}(T_{\mathbf{s}_{\mathcal{J}}} 1_{\underline{D}\lambda} \rho_{g,d} \operatorname{pr}_Q, \mathfrak{P}).$$

We will verify below that

(a)
$$a_{D\lambda,F,\mathbf{s}} = a_{D\lambda,F,\mathbf{s},\mathcal{I}}$$
 for any $\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}$.

We see that

$$\chi_{\bar{K},\bar{\omega}}(Q,gQg^{-1},gU_Q) = a_{\underline{D}\lambda,F,\mathbf{s}}^{-1} \sum_{\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}} \operatorname{tr}(T_{\mathbf{s}_{\mathcal{J}}} 1_{\underline{D}\lambda} \rho_{g,d} \operatorname{pr}_{Q}, \mathfrak{P})$$

is as desired. (We have used the identity $C_{\underline{D}\lambda}^{\mathbf{s}} = \sum_{\mathcal{J} \subset \mathcal{J}_{\mathbf{s}}} T_{\mathbf{s}_{\mathcal{J}}} 1_{\underline{D}\lambda}$ which follows easily from the definitions.)

We now verify (a). We may assume that \mathcal{J} has a single element $j \in \mathcal{J}_{\mathbf{s}}$ (the general case can then be obtained by iteration). We have $\mathbf{s}_{\mathcal{J}} = (s'_1, s'_2, \dots, s'_r)$ where $s'_i = s_i$ for $i \neq j$ and $s'_j = 1$. It suffices to show that, for any $k \in [1, r]$ we have

(b)
$$\sqrt{\theta_F^{\underline{D}\lambda}(s_r \dots s_{k+1}\check{\alpha}_{s_k}(-1))} = \sqrt{\theta_F^{\underline{D}\lambda}(s_r' \dots s_{k+1}'\check{\alpha}_{s_k'}(-1))}.$$

If $s_k = 1$, then $s'_k = 1$ and both sides are 1. If $s_k \in \mathbf{I}$ and k > j then $s_{k'} = s'_{k'}$ for $k' \ge k$ and (b) is obvious. If k = j then (b) states that

$$\sqrt{\theta_F^{D\lambda}(s_r \dots s_{j+1} \check{\alpha}_{s_j}(-1))} = 1;$$

this follows from

(c)
$$\theta_F^{\underline{D}\lambda}(s_r \dots s_{j+1}\check{\alpha}_{s_j}(a)) = 1 \text{ for all } a \in \mathbf{F}_q^*$$

which comes from $j \in \mathcal{J}_s$. Assume now that $s_k \in \mathbf{I}$ and k < j. Then for some $m \in \mathbf{Z}$ we have

$$s_j s_{j-1} \dots s_{k+1} \check{\alpha}_{s_k} = (s_{j-1} \dots s_{k+1} \check{\alpha}_{s_k}) \check{\alpha}_{s_j}^m.$$

Applying $s_r s_{r-1} \dots s_{j+1}$ to both sides gives

$$s_r s_{r-1} \dots s_{k+1} \check{\alpha}_{s_k} = (s_r s_{r-1} \dots s_{j+1} s_{j-1} \dots s_{k+1} \check{\alpha}_{s_k}) (s_r s_{r-1} \dots s_{j+1} \check{\alpha}_{s_i})^m$$
.

Applying $\theta_F^{D\lambda}$ to both sides and using (c) gives

$$\theta_{\overline{F}}^{\underline{D}\lambda}(s_r s_{r-1} \dots s_{k+1} \check{\alpha}_{s_k}(a)) = \theta_{\overline{F}}^{\underline{D}\lambda}(s_r s_{r-1} \dots s_{j+1} s_{j-1} \dots s_{k+1} \check{\alpha}_{s_k}(a))$$

for all $a \in \mathbf{F}_q^*$. We set a = -1 and we see that (b) holds for this k. This proves (a). The proposition is proved.

35.11. Let $\mathcal{L}, \mathcal{L}' \in \mathfrak{s}_n$. Then $\mathcal{L}, \mathcal{L}' \in \mathfrak{s}_{q-1}$. Let $\tau_0 : F^*\mathcal{L} \xrightarrow{\sim} \mathcal{L}$ be as in 35.2; let $\tau_0' : F^*\mathcal{L}' \xrightarrow{\sim} \mathcal{L}'$ be the analogous isomorphism. Let $\lambda \in \underline{\mathfrak{s}}_n$ (resp. $\lambda' \in \underline{\mathfrak{s}}_n$) be the isomorphism class of \mathcal{L} (resp. \mathcal{L}'). We have $\lambda \in \underline{\mathfrak{s}}_{q-1}, \ \lambda' \in \underline{\mathfrak{s}}_{q-1}$. Let $\mathbf{s} = (s_1, s_2, \ldots, s_r), \ \mathbf{s}' = (s_1', s_2', \ldots, s_{r'}')$ be sequences in \mathbf{I} such that $s_1 s_2 \ldots s_r \underline{D} \lambda = \lambda$, $s_1' s_2' \ldots s_{r'}' \underline{D} \lambda' = \lambda'$. Let $\overline{K} = \overline{K}_{J,D}^{\mathbf{s},\mathcal{L}}, \overline{\omega} : F^*\overline{K} \xrightarrow{\sim} \overline{K}$ be as in 35.9. Let $\overline{K}' = \overline{K}_{J,D}^{\mathbf{s}',\mathcal{L}'}$ and let $\overline{\omega}' : F^*\overline{K}' \xrightarrow{\sim} \overline{K}'$ be the analogue of $\overline{\omega}$ (defined in terms of τ_0'). Then $\chi_{\overline{K},\overline{\omega}} : Z_{J,D}^F \to \overline{\mathbf{Q}}_l, \chi_{\overline{K}',\overline{\omega}'} : Z_{J,D}^F \to \overline{\mathbf{Q}}_l$ are defined. Let

$$E = \sum_{(Q,Q',gU_Q)\in Z_{I,D}^F} \chi_{\bar{K},\bar{\omega}}(Q,Q',gU_Q)\chi_{\bar{K}',\bar{\omega}'}(Q,Q',gU_Q).$$

Using 35.10 for \bar{K} and for \bar{K}' , we see that

$$E = |U_{J,B^*}^F|^{-1} a_{\underline{D}\lambda,F,\mathbf{s}}^{-1} a_{\underline{D}\lambda',F,\mathbf{s}'}^{-1} \sum_{Q \in \mathcal{P}_I^F} \sum_{g \in D^F} \operatorname{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \rho_{g,d} \operatorname{pr}_Q, \mathfrak{P}) \operatorname{tr}(C_{\underline{D}\lambda'}^{\mathbf{s}'} \rho_{g,d} \operatorname{pr}_Q, \mathfrak{P}).$$

Setting $g = dg_0$ where $g_0 \in G^{0F}$ we have $\rho_{g,d} = \rho_{d,d}\rho_{g_0,1}$. Hence

$$E = |U_{J,B^*}^F|^{-1} a_{\underline{D}\lambda,F,\mathbf{s}}^{-1} a_{\underline{D}\lambda',F,\mathbf{s}'}^{-1} \sum_{\substack{Q \in \mathcal{P}_J^F \\ g_0 \in G^{0F}}} \operatorname{tr}(\operatorname{pr}_Q C_{\underline{D}\lambda}^{\mathbf{s}} \rho_{d,d} \rho_{g_0,1}, \mathfrak{P})$$

$$\times \operatorname{tr}(\operatorname{pr}_{Q}C^{\mathbf{s}'}_{\underline{D}\lambda'}\rho_{d,d}\rho_{g_{0},1},\mathfrak{P}) = |G^{0F}||U^{F}_{J,B^{*}}|^{-1}a^{-1}_{D\lambda,F,\mathbf{s}}a^{-1}_{D\lambda',F,\mathbf{s}'}\operatorname{tr}(XY,\mathfrak{P}\otimes\mathfrak{P})$$

where

$$X = \sum_{Q \in \mathcal{P}_J^F} (\operatorname{pr}_Q \otimes \operatorname{pr}_Q)((C_{\underline{D}\lambda}^{\mathbf{s}} \rho_{d,d}) \otimes (C_{\underline{D}\lambda'}^{\mathbf{s}'} \rho_{d,d})) : \mathfrak{P} \otimes \mathfrak{P} \to \mathfrak{P} \otimes \mathfrak{P},$$

$$Y = |G^{0F}|^{-1} \sum_{g_0 \in G^{0F}} (\rho_{g_0,1} \otimes \rho_{g_0,1}) : \mathfrak{P} \otimes \mathfrak{P} \to \mathfrak{P} \otimes \mathfrak{P}.$$

We have XY = YX and Y is a projection of $\mathfrak{P} \otimes \mathfrak{P}$ onto the subspace $(\mathfrak{P} \otimes \mathfrak{P})^{G^{0F}}$ of G^{0F} -invariants for the G^{0F} -action in which g_0 acts as $\rho_{g_0,1} \otimes \rho_{g_0,1}$. Hence X maps $(\mathfrak{P} \otimes \mathfrak{P})^{G^{0F}}$ into itself and

$$E = |G^{0F}||U_{J,B^*}^F|^{-1}a_{D\lambda,F,\mathbf{s}}^{-1}a_{D\lambda',F,\mathbf{s'}}^{-1}\operatorname{tr}(X,(\mathfrak{P}\otimes\mathfrak{P})^{G^{0F}}).$$

The non-singular symmetric bilinear form

54

$$(,): \mathfrak{P} \times \mathfrak{P} \to \mathfrak{U}, (f, f') = \sum_{x \in G^{0F}} f(x)f'(x)$$

gives rise to an isomorphism $\mathfrak{P} \otimes \mathfrak{P} \xrightarrow{\sim} \operatorname{End}(\mathfrak{P}), f' \otimes f'' \mapsto [f \mapsto (f, f')f'']$. Under this isomorphism, X corresponds to a linear map $X' : \operatorname{End}(\mathfrak{P}) \to \operatorname{End}(\mathfrak{P})$,

$$\phi \mapsto \sum_{Q \in \mathcal{P}_J^F} (\operatorname{pr}_Q C_{\underline{D}\lambda'}^{\mathbf{s}'} \rho_{d,d}) \phi({}^t(\operatorname{pr}_Q C_{\underline{D}\lambda}^{\mathbf{s}} \rho_{d,d}))$$

where t denotes taking transpose with respect to (,). We have $(\rho_{g_0,1}f,\rho_{g_0,1}f') = (f,f')$ for all $f,f' \in \mathfrak{P}, g_0 \in G^{0F}$. Hence $\mathfrak{P} \otimes \mathfrak{P} \xrightarrow{\sim} \operatorname{End}(\mathfrak{P})$ restricts to an isomorphism $(\mathfrak{P} \otimes \mathfrak{P})^{G^{0F}} \xrightarrow{\sim} \operatorname{End}_{G^{0F}}(\mathfrak{P})$ under which

 $X: (\mathfrak{P} \otimes \mathfrak{P})^{G^{0F}} \to (\mathfrak{P} \otimes \mathfrak{P})^{G^{0F}}$ corresponds to the restriction of X' to $\operatorname{End}_{G^{0F}}(\mathfrak{P})$. It follows that

$$E = |G^{0F}||U_{J,B^*}^F|^{-1}a_{D\lambda,F,s}^{-1}a_{D\lambda',F,s'}^{-1}\operatorname{tr}(X',\operatorname{End}_{G^{0F}}(\mathfrak{P})).$$

From the definitions we have

$${}^t
ho_{d,d} =
ho_{d^{-1},d^{-1}} : \mathfrak{P} \to \mathfrak{P},$$
 ${}^t(\operatorname{pr}_Q) = \operatorname{pr}_Q \text{ for all } Q \in \mathcal{P}_J,$
 ${}^t(k_{\nu}) = k_{\nu^{-1}} : \mathfrak{P} \to \mathfrak{P} \text{ for all } \nu \in N_{G^0}T.$

In particular,

$${}^{t}k_{\dot{s}} = k_{\dot{s}^{-1}} = k_{\dot{s}}k_{\check{\alpha}_{s}(-1)}: \mathfrak{P} \to \mathfrak{P} \text{ for all } s \in \mathbf{I}.$$

We also see that

$$^{t}(1_{\lambda_{1}})=1_{\lambda_{1}^{-1}}:\mathfrak{P}\rightarrow\mathfrak{P} ext{ for all }\lambda_{1}\in\underline{\mathfrak{s}}_{q-1}.$$

For $s \in \mathbf{I}, \lambda_1 \in \underline{\mathfrak{s}}_{q-1}$ we have

$${}^{t}(T_{s}1_{\lambda_{1}}) = \sqrt{\theta_{F}^{\lambda_{1}}(\check{\alpha}_{s}(-1))}1_{\lambda_{1}^{-1}}k_{\dot{s}}k_{\check{\alpha}_{s}(-1)} = \sqrt{\theta_{F}^{\lambda_{1}}(\check{\alpha}_{s}(-1))}\theta_{F}^{\lambda_{1}}(\check{\alpha}_{s}(-1))1_{\lambda_{1}^{-1}}k_{\dot{s}}$$
$$= \theta_{F}^{\lambda_{1}}(\check{\alpha}_{s}(-1))T_{s}1_{s\lambda_{1}^{-1}}: \mathfrak{P} \to \mathfrak{P},$$

hence ${}^t(C^s_{\lambda_1}) = \theta_F^{\lambda_1}(\check{\alpha}_s(-1))C^s_{s\lambda_1^{-1}}: \mathfrak{P} \to \mathfrak{P}$. It follows that

$${}^{t}(C_{D\lambda}^{\mathbf{s}}) = \delta_{0} C_{s_{1}s_{2}...s_{r}(D\lambda)^{-1}}^{\tilde{\mathbf{s}}} = \delta_{0} C_{\lambda^{-1}}^{\tilde{\mathbf{s}}}$$

where $\tilde{\mathbf{s}} = (s_r, \dots, s_2, s_1)$ and

$$\delta_0 = (\theta_F^{\underline{D}\lambda}(\check{\alpha}_{s_r}(-1)))(\theta_F^{\underline{D}\lambda}(s_r\check{\alpha}_{s_{r-1}}(-1)))\dots(\theta_F^{\underline{D}\lambda}(s_r\dots s_2\check{\alpha}_{s_1}(-1))) = a_{\underline{D}\lambda,F,\mathbf{s}}^2.$$

We see that $X'(\phi) = \delta_0 \sum_{Q \in \mathcal{P}_{I}^F} \operatorname{pr}_{Q} C_{D\lambda'}^{\mathbf{s}'} \rho_{d,d} \phi \rho_{d^{-1},d^{-1}} C_{\lambda^{-1}}^{\tilde{\mathbf{s}}} \operatorname{pr}_{Q} \text{ for } \phi \in \operatorname{End}(\mathfrak{P}).$

35.12. For $w \in \mathbf{W}$ we set

$$t_{d.w} = ((\epsilon_D(w)))^{-1} d\dot{w} d^{-1} \in T^F.$$

We show that, for $\lambda_1 \in \underline{\mathfrak{s}}_{q-1}$, we have

(a)
$$\rho_{d,d}T_w 1_{\lambda_1} \rho_{d^{-1},d^{-1}} = \theta_F^{\lambda_1} (d^{-1}t_{d,w}d)^{-1} T_{\epsilon_D(w)} 1_{\underline{D}\lambda_1} : \mathfrak{P} \to \mathfrak{P}.$$

(We regard $T_w 1_{\lambda_1}$ as an element of $\operatorname{End}_{G^{0F}} \mathfrak{P} = \mathfrak{T} = H_{q-1}^{\sqrt{q}}$, see 35.4, 35.5.) We first show that for $\nu \in (N_{G^0}T)^F$ we have

$$\rho_{d,d}k_{\nu}\rho_{d^{-1},d^{-1}} = k_{d\nu d^{-1}} : \mathfrak{P} \to \mathfrak{P}.$$

Indeed, for $f \in \mathfrak{P}, x \in G^{0F}$, we have

$$(\rho_{d,d}k_{\nu}\rho_{d^{-1},d^{-1}}f)(x) = (k_{\nu}\rho_{d^{-1},d^{-1}}f)(d^{-1}xd)$$

$$= |U|^{-1} \sum_{x' \in U\nu U} (\rho_{d^{-1},d^{-1}}f)(d^{-1}xdx') = |U|^{-1} \sum_{x' \in U\nu U} f(dd^{-1}xdx'd^{-1})$$

$$= |U|^{-1} \sum_{x'' \in Ud\nu d^{-1}U} f(xx'') = (k_{d\nu d^{-1}}f)(x),$$

as required. Using the equality

$$\begin{split} T_w \mathbf{1}_{\lambda_1} &= \prod_{\alpha \in R^+, w^{-1}\alpha \in R^-} \sqrt{\theta_F^{\lambda_1}(\check{\alpha}(-1))} k_{\dot{w}} \mathbf{1}_{\lambda_1} \\ &= |T^F|^{-1} \prod_{\alpha \in R^+, w^{-1}\alpha \in R^-} \sqrt{\theta_F^{\lambda_1}(\check{\alpha}(-1))} \sum_{t \in T^F} \theta_F^{\lambda_1}(t) k_{\dot{w}t}, \end{split}$$

we have

$$\begin{split} &\rho_{d,d}T_w1_{\lambda_1}\rho_{d^{-1},d^{-1}}\\ &=|T^F|^{-1}\prod_{\alpha\in R^+,w^{-1}\alpha\in R^-}\sqrt{\theta_F^{\lambda_1}(\check{\alpha}(-1))}\sum_{t\in T^F}\theta_F^{\lambda_1}(t)\rho_{d,d}k_{\dot{w}t}\rho_{d^{-1},d^{-1}}\\ &=|T^F|^{-1}\prod_{\alpha\in R^+,w^{-1}\alpha\in R^-}\sqrt{\theta_F^{\lambda_1}(\check{\alpha}(-1))}\sum_{t\in T^F}\theta_F^{\lambda_1}(t)k_{d\dot{w}td^{-1}}\\ &=|T^F|^{-1}\prod_{\alpha\in R^+,w^{-1}\alpha\in R^-}\sqrt{\theta_F^{\lambda_1}(\check{\alpha}(-1))}\sum_{t\in T^F}\theta_F^{\lambda_1}(t)k_{d\dot{w}d^{-1}}k_{dtd^{-1}}\\ &=\prod_{\alpha\in R^+,w^{-1}\alpha\in R^-}\sqrt{\theta_F^{D\lambda_1}(\underline{D}\check{\alpha}(-1))}k_{(\epsilon_D(w))}k_{t_{d,w}}1_{\underline{D}\lambda_1}\\ &=\theta_F^{D\lambda_1}(t_{d,w}^{-1})\prod_{\alpha'\in R^+,\epsilon_D(w)^{-1}\alpha'\in R^-}\sqrt{\theta_F^{D\lambda_1}(\check{\alpha}'(-1))}k_{(\epsilon_D(w))}1_{\underline{D}\lambda_1}\\ &=\theta_F^{\lambda_1}(d^{-1}t_{d,w}d)^{-1}T_{\epsilon_D(w)}1_{\underline{D}\lambda_1} \end{split}$$

and (a) is proved.

35.13. We write $\Theta_n^J: H_n \to H_n$ instead of $\Theta^J: H_n \to H_n$, see 32.22. Let $\Theta_{n,q}^J: H_n^{\sqrt{q}} \to H_n^{\sqrt{q}}$ be the linear map defined by Θ_n^J by extension of scalars. Replacing n by q-1 we obtain a linear map $\Theta_{q-1,q}^J: H_{q-1}^{\sqrt{q}} \to H_{q-1}^{\sqrt{q}}$. We identify $\operatorname{End}_{G^{0F}}\mathfrak{P} = \mathfrak{T} = H_{q-1}^{\sqrt{q}}$, see 35.4, 35.5. We show:

(a)
$$\Theta_{q-1,q}^{J}(\phi) = \sum_{Q \in \mathcal{P}_{I}^{F}} \operatorname{pr}_{Q} \phi \operatorname{pr}_{Q} : \mathfrak{P} \to \mathfrak{P}$$

for any $\phi \in \operatorname{End}_{G^{0F}}\mathfrak{P}$. First we show that for $\nu \in (N_{G^0}T)^F$ we have

(b)
$$\sum_{Q \in \mathcal{P}_J^F} \operatorname{pr}_Q k_{\nu} \operatorname{pr}_Q = k_{\nu} \text{ if } \nu \in Q_{J,B^*}; \sum_{Q \in \mathcal{P}_J^F} \operatorname{pr}_Q k_{\nu} \operatorname{pr}_Q = 0 \text{ if } \nu \notin Q_{J,B^*}.$$

Let $f \in \mathfrak{P}, x \in G^{0F}$. We have

$$(\sum_{Q \in \mathcal{P}_{J}^{F}} \operatorname{pr}_{Q} k_{\nu} \operatorname{pr}_{Q} f)(x) = \sum_{\substack{Q \in \mathcal{P}^{J}; \\ xQ_{J,B}*x^{-1} = Q}} (k_{\nu} \operatorname{pr}_{Q} f)(x)
= |U|^{-1} \sum_{\substack{Q \in \mathcal{P}^{J}; \\ xQ_{J,B}*x^{-1} = Q; \\ x' \in U\nu U}} (\operatorname{pr}_{Q} f)(xx') = |U|^{-1} \sum_{\substack{Q \in \mathcal{P}^{J}; \\ xQ_{J,B}*x^{-1} = Q; \\ x' \in U\nu U; xx'Q_{J,B}*x'^{-1}x^{-1} = Q}} f(xx')
= |U|^{-1} \sum_{\substack{x' \in U\nu U; \\ x'Q_{J,B}*x'^{-1} = Q_{J,B}*}} f(xx') = |U|^{-1} \sum_{x' \in U\nu U \cap Q_{J,B}*} f(xx'),$$

and (b) follows.

It suffices to prove (a) for $\phi = T_w 1_\lambda$ where $w \in \mathbf{W}, \lambda \in \underline{\mathfrak{s}}_{q-1}$. We have

$$\sum_{Q \in \mathcal{P}_J^F} \operatorname{pr}_Q T_w 1_{\lambda} \operatorname{pr}_Q = |T^F|^{-1} \prod_{\substack{\alpha \in R^+ \\ w^{-1} \alpha \in R^-}} \sqrt{\theta_F^{\lambda}(\check{\alpha}(-1))} \sum_{t \in T^F} \theta_F^{\lambda}(t) \sum_{Q \in \mathcal{P}_J^F} \operatorname{pr}_Q k_{\dot{w}t} \operatorname{pr}_Q.$$

By (b) this is zero, unless $\dot{w} \in Q_{J,B^*}$ that is, $w \in W_J$; assuming that $w \in W_J$ this equals

$$|T^F|^{-1} \prod_{\alpha \in R^+, w^{-1}\alpha \in R^-} \sqrt{\theta_F^{\lambda}(\check{\alpha}(-1))} \sum_{t \in T^F} \theta_F^{\lambda}(t) k_{\dot{w}t} = T_w 1_{\lambda};$$

(a) is proved.

35.14. Let m be an integer ≥ 1 . Let \mathbf{F}_{q^m} be the subfield of \mathbf{k} consisting of q^m elements. Then $F^m: G \to G$ is the Frobenius map for an \mathbf{F}_{q^m} -rational structure on G. The épinglage in 35.2 relative to \mathbf{F}_q can be also regarded as an épinglage relative to \mathbf{F}_{q^m} . In the setup of 35.11, define $\tau_0^{(m)}: F^{m*}\mathcal{L} \xrightarrow{\sim} \mathcal{L}$, $\tau_0'^{(m)}: F^{m*}\mathcal{L}' \xrightarrow{\sim} \mathcal{L}'$ in terms of τ_0, τ_0' as in 33.5. We have $\chi_{\mathcal{L}, \tau_0^{(m)}} = \theta_{F^m}^{\lambda}$, $\chi_{\mathcal{L}', \tau_0'^{(m)}} = \theta_{F^m}^{\lambda'}$ where

 $\theta_{F^m}^{\lambda}(t) = \theta_F^{\lambda}(t^{1+q+\cdots+q^{m-1}}), \ \theta_{F^m}^{\lambda'}(t) = \theta_F^{\lambda'}(t^{1+q+\cdots+q^{m-1}})$ for all $t \in T^{F^m}$. Now $\bar{\omega}^{(m)} : F^{m*}\bar{K} \xrightarrow{\sim} \bar{K}$ (see 33.5) has the same relation to $\tau_0^{(m)}$ as $\bar{\omega} : F^*\bar{K} \xrightarrow{\sim} \bar{K}$ (see 35.9) to τ_0 . Let $\bar{\omega}'^{(m)} : F^{m*}\bar{K}' \xrightarrow{\sim} \bar{K}'$ be the analogous isomorphism defined in terms of $\tau_0'^{(m)}$. Then $\chi_{\bar{K},\bar{\omega}^{(m)}} : Z_{J,D}^{F^m} \to \bar{\mathbf{Q}}_l$, $\chi_{\bar{K}',\bar{\omega}'^{(m)}} : Z_{J,D}^{F^m} \to \bar{\mathbf{Q}}_l$ are well defined.

We choose (as we may) $m_0 \in \mathbf{N}_{\mathbf{k}}^*$ such that $(-1)^{m_0} = 1$ (in \mathbf{k}^*) and $t_{d,w}^{m_0} = 1$ (in T) for all $w \in \mathbf{W}$.

We show that if $m \in m_0 \mathbf{Z}, m \geq 1$, then $a_{\underline{D}\lambda, F^m, \mathbf{s}} = 1$. It suffices to show that $\theta_{F^m}^{\underline{D}\lambda}\check{\alpha}(-1) = 1$ for any $\alpha \in R$. Since $\underline{D}\lambda \in \underline{\mathfrak{s}}_{q-1}$ we have $\theta_{F^m}^{\underline{D}\lambda}(t) = \theta_F^{\lambda}(t^{1+q+\cdots+q^{m-1}})$. Hence it suffices to show that $\check{\alpha}((-1)^{1+q+\cdots+q^{m-1}}) = 1$ for any $\alpha \in R$ or that $(-1)^{1+q+\cdots+q^{m-1}} = 1$ (in \mathbf{k}^*). Since $(-1)^q = -1$ (in \mathbf{k}^*), it suffices to show that $(-1)^m = 1$. This follows from our assumption on m and m_0 .

Similarly, we see that if $m \in m_0 \mathbf{Z}, m \geq 1$ then $a_{D\lambda', F^m, \mathbf{S}'} = 1$.

We show that, if $\tilde{\lambda} \in \underline{\mathfrak{s}}_n$, $w \in \mathbf{W}$ and $m \in m_0 \mathbf{Z}$, $m \geq 1$, then $\theta_{F^m}^{\tilde{\lambda}}(d^{-1}t_{d,w}d) = 1$. Since $\tilde{\lambda} \in \underline{\mathfrak{s}}_{q-1}$, we have $\theta_{F^m}^{\tilde{\lambda}}(d^{-1}t_{d,w}d) = \theta_F^{\tilde{\lambda}}(d^{-1}t_{d,w}d)^{1+q+\cdots+q^{m-1}}$. Hence it suffices to show that $t_{d,w}^{1+q+\cdots+q^{m-1}} = 1$. Since $t_{d,w}^q = t_{d,w}$, it suffices to show that $t_{d,w}^m = 1$. This follows from our assumption on m_0, m .

We replace \mathbf{F}_q in 35.1 by $\mathbf{F}_{q^{m_0}}$ which we rename as \mathbf{F}_q . The results above can be reformulated as follows.

- (a) If $m \in \mathbb{Z}$, $m \ge 1$, then $a_{D\lambda, F^m, s} = 1$, $a_{D\lambda', F^m, s'} = 1$.
- (b) If $\tilde{\lambda} \in \underline{\mathfrak{s}}_n, w \in \mathbf{W}$ and $m \in \mathbf{Z}, m \geq 1$ then $\theta_{F^m}^{\tilde{\lambda}}(d^{-1}t_{d,w}d) = 1$.

Proposition 35.15. Let $\mathfrak{a} = \mathfrak{a}_D : H_n \to H_n$ be as in 34.15. Define $\Phi'' : H_n \to H_n$ H_n by $h \mapsto \Theta_n^J(C_{\underline{D}\lambda'}^{\mathbf{s}'}\mathfrak{a}(h)C_{\lambda^{-1}}^{\tilde{\mathbf{s}}})$ (an \mathcal{A} -linear map) and let $\mu(G^0)$ be as in 32.22. If $m \in \mathbf{Z}, m \geq 1$, then

$$E_{m} = \sum_{(Q,Q',gU_{Q}) \in Z_{LD}^{F^{m}}} \chi_{\bar{K},\bar{\omega}^{(m)}}(Q,Q',gU_{Q}) \chi_{\bar{K}',\bar{\omega}'^{(m)}}(Q,Q',gU_{Q})$$

is obtained by substituting $v^2 = q^m$ in $v^{2l(w_J^0)}\mu(G^0)\operatorname{tr}(\Phi'', H_n)$, which is a polynomial in $N[v^2]$.

By the arguments in 35.11-35.13 applied with F^m instead of F we see that

$$E_m = |G^{0F^m}||U_{J,B^*}^{F^m}|^{-1}a_{\underline{D}\lambda,F^m,\mathbf{s}}a_{D\lambda',F^m,\mathbf{s'}}^{-1}\operatorname{tr}(X_m',H_{q^m-1}^{\sqrt{q^m}})$$

where $X_m'(h) = \Theta_{q^m-1,q^m}^J(C_{\underline{D}\lambda'}^{\mathbf{s}'}\xi_m'(h)C_{\lambda^{-1}}^{\tilde{\mathbf{s}}})$ for $h \in H_{q^m-1}^{\sqrt{q^m}}$ $\xi_m': H_{q^m-1}^{\sqrt{q^m}} \to H_{q^m-1}^{\sqrt{q^m}}$ is the linear map given by

$$T_w 1_{\tilde{\lambda}} \mapsto \theta_{F^m}^{\tilde{\lambda}} (d^{-1} t_{d,w} d)^{-1} T_{\epsilon_D(w)} 1_{D\tilde{\lambda}}$$

for $w \in \mathbf{W}$, $\tilde{\lambda} \in \underline{\mathfrak{s}}_{a^m-1}$. Clearly, $X'_m(T_w 1_{\tilde{\lambda}}) = 0$ unless $\tilde{\lambda} \in \underline{\mathfrak{s}}_n$ and, if this condition is satisfied, then $X'_m(T_w1_{\tilde{\lambda}})$ is a linear combination of elements of the form $T_{w'}1_{\tilde{\lambda}'}$ with $\tilde{\lambda}' \in \mathfrak{s}_n$. It follows that

$$\operatorname{tr}(X_m',H_{q^m-1}^{\sqrt{q^m}})=\operatorname{tr}(\Phi_m'',H_n^{\sqrt{q^m}})$$

where $\Phi''_m(h) = \Theta^J_{n,q^m}(C^{\mathbf{s}'}_{\underline{D}\lambda'}\xi''_m(h)C^{\tilde{\mathbf{s}}}_{\lambda^{-1}})$ and $\xi''_m: H_n^{\sqrt{q^m}} \to H_n^{\sqrt{q^m}}$ is the restriction of ξ_m' . We now use $35.1\overline{4(a)}$, (b). The proposition follows, except for the assertion "which is a polynomial in $N[v^2]$ ". That assertion follows from 32.22(a) and the second equality in 32.23(a).

- **35.16.** We now assume that $J = \mathbf{I}$. Let \mathcal{I}_n be a set of representatives for the isomorphism classes of character sheaves contained in $\hat{D}^{\mathcal{L}}$ for some $\mathcal{L} \in \mathfrak{s}_n$. Then \mathcal{I}_n is finite and we can find an integer $m_1 \geq 1$ such that $F^{m_1*}A \cong A$ for any $A \in \mathcal{I}_n$. We replace \mathbf{F}_q in 35.14 by $\mathbf{F}_{q^{m_1}}$ which we rename as \mathbf{F}_q . We now have $F^*A \cong A$ for any $A \in \mathcal{I}_n$. For $A \in \mathcal{I}_n$, the Verdier dual $\mathfrak{D}(A)$ is isomorphic to an object in \mathcal{I}_n . (See 28.18(a).) For each $A \in \mathcal{I}_n$ we choose isomorphisms $\kappa_A : F^*A \xrightarrow{\sim} A$, $\kappa_A': F^*\mathfrak{D}(A) \xrightarrow{\sim} \mathfrak{D}(A)$ so that the following holds: if \mathcal{O} is an open dense F-stable subset of supp $(A) = \text{supp}(\mathfrak{D}(A))$ on which $\mathcal{H}^{-e}(A), \mathcal{H}^{-e}(\mathfrak{D}(A))$ are local systems $(e = \dim \mathcal{O})$ then for any $y \in \mathcal{O}$ and any $m \ge 1$ such that $F^m(y) = y$,

 - (i) $\sqrt{q}^{m(e-\dim D)} \kappa_A^{(m)} : \mathcal{H}^{-e}(A)_y \to \mathcal{H}^{-e}(A)_y$ is of finite order; (ii) $\sqrt{q}^{m(e-\dim D)} \kappa_A^{\prime}(m) : \mathcal{H}^{-e}(\mathfrak{D}(A))_y \to \mathcal{H}^{-e}(\mathfrak{D}(A))_y$ is of finite order;

(iii) the isomorphism $\mathcal{H}^{-e}\mathfrak{D}(A)_{F(y)} \xrightarrow{\sim} \mathcal{H}^{-e}\mathfrak{D}(A)_y$ (that is, $\mathcal{H}^{-e}(A)_{F(y)} \xrightarrow{\sim} \mathcal{H}^{-e}(A)_y$) induced by κ'_A is $q^{\dim D-e}$ times the transpose inverse of the isomorphism $\mathcal{H}^{-e}(A)_{F(y)} \xrightarrow{\sim} \mathcal{H}^{-e}(A)_y$ induced by κ_A .

Note that κ'_A is uniquely determined by κ_A and that (ii) follows from (i) and (iii).

Let $\mathcal{L}, \mathcal{L}', \mathbf{s}, \mathbf{s}', \bar{K}, \bar{K}', \bar{\omega}, \bar{\omega}'$ be as in 35.11. Since \bar{K}, \bar{K}' are semisimple, we have canonically (for $i, i' \in \mathbf{Z}$):

(a)
$${}^{p}H^{i}(\bar{K}) = \bigoplus_{A \in \mathcal{I}_{n}} (A \otimes V_{A,i,\mathbf{s},\mathcal{L}}),$$

(b)
$${}^{p}H^{i'}(\bar{K}') = \bigoplus_{A' \in \mathcal{I}_n} (\mathfrak{D}(A') \otimes V'_{A',i',\mathbf{s}',\mathcal{L}'})$$

where $V_{A,i,\mathbf{s},\mathcal{L}}, V'_{A',i',\mathbf{s}',\mathcal{L}'}$ are finite dimensional $\bar{\mathbf{Q}}_l$ -vector spaces endowed with endomorphisms

 $\psi_A: V_{A,i,\mathbf{s},\mathcal{L}} \to V_{A,i,\mathbf{s},\mathcal{L}}, \ \psi'_{A'}: V'_{A',i',\mathbf{s}',\mathcal{L}'} \to V'_{A',i',\mathbf{s}',\mathcal{L}'}$ such that under (a) (resp. (b)) the map $\bigoplus_A (\kappa_A \otimes \psi_A)$ (resp. $\bigoplus_{A'} (\kappa'_{A'} \otimes \psi'_{A'})$) corresponds to the isomorphism $F^*({}^pH^i(\bar{K})) \xrightarrow{\sim} {}^pH^i(\bar{K})$ (resp. $F^*({}^pH^{i'}(\bar{K}')) \xrightarrow{\sim} {}^pH^{i'}(\bar{K}')$) induced by $\bar{\omega}$ (resp. $\bar{\omega}'$).

In the remainder of this section we assume that D is clean (see 33.4(b)).

Proposition 35.18. (a) With each $A \in \mathcal{I}_n$ one can associate $\operatorname{sgn}_A \in \{1, -1\}$ with the following property: if A is a direct summand of ${}^pH^i(\bar{K}_D^{\mathbf{s},\mathcal{L}})$ where \mathbf{s},\mathcal{L} are as in 35.11, then $(-1)^{i+\dim G} = \operatorname{sgn}_A$.

(b) With each $A \in \mathcal{I}_n$ one can attach an element $\xi_A \in \overline{\mathbf{Q}}_l^*$ such that the following hold: ξ_A is an algebraic number all of whose complex conjugates have absolute value 1; for any \mathbf{s}, \mathcal{L} as in 35.11 and any $i \in \mathbf{Z}$, ψ_A is equal to $\xi_A \sqrt{q^{i-\dim G}}$ times a unipotent automorphism of $V_{A,i,\mathbf{s},\mathcal{L}}$; for any $\mathbf{s}', \mathcal{L}'$ as in 35.11 and any $i \in \mathbf{Z}$, ψ_A' is equal to $\xi_A^{-1} \sqrt{q^{i-\dim G}}$ times a unipotent automorphism of $V_{A,i,\mathbf{s}',\mathcal{L}'}$.

From the definitions we we see that, in the setup of 35.16, we have

$$\operatorname{tr}(\bar{\omega}, \mathcal{H}_g^j({}^pH^i(\bar{K}))) = \sum_{A \in \mathcal{I}_n} \operatorname{tr}(\kappa_A, \mathcal{H}_g^j A) \operatorname{tr}(\psi_A, V_{A,i,\mathbf{s},\mathcal{L}}),$$

$$\operatorname{tr}(\bar{\omega}', \mathcal{H}_g^{j'}({}^pH^{i'}(\bar{K}'))) = \sum_{A' \in \mathcal{I}_n} \operatorname{tr}(\kappa'_{A'}, \mathcal{H}_g^{j'}\mathfrak{D}(A')) \operatorname{tr}(\psi'_{A'}, V'_{A',i',\mathbf{s}',\mathcal{L}'}),$$

for all $g \in D^F$ and all i, j, i', j'. Taking alternating sums over i, j or i', j' and using

$$\chi_{\bar{K},\bar{\omega}}(g) = \sum_{i,j} (-1)^{i+j} \operatorname{tr}(\bar{\omega}, \mathcal{H}_g^j({}^p H^i(\bar{K}))),$$

$$\chi_{\bar{K}',\bar{\omega}'}(g) = \sum_{i',j'} (-1)^{i'+j'} \operatorname{tr}(\bar{\omega}', \mathcal{H}_g^{j'}({}^p H^{i'}(\bar{K}'))),$$

we obtain

$$\chi_{\bar{K},\bar{\omega}}(g) = \sum_{A \in \mathcal{I}_n} \chi_{A,\kappa_A}(g) \sum_i (-1)^i \operatorname{tr}(\psi_A, V_{A,i,\mathbf{s},\mathcal{L}}),$$
(c)
$$\chi_{\bar{K}',\bar{\omega}'}(g) = \sum_{A' \in \mathcal{I}_n} \chi_{\mathfrak{D}(A'),\kappa'_{A'}}(g) \sum_{i'} (-1)^{i'} \operatorname{tr}(\psi'_{A'}, V'_{A',i',\mathbf{s}',\mathcal{L}'}).$$

Since \bar{K} (resp. \bar{K}') is pure of weight 0, we see that ${}^pH^i(\bar{K})$ (resp. ${}^pH^{i'}(\bar{K}')$) is pure of weight i (resp. i'). By our choice of κ_A (resp. κ'_A) we see that (A, κ_A) and $(\mathfrak{D}(A), \kappa'_A)$ are pure of weight dim G for $A \in \mathcal{I}_n$. Using 35.16(a),(b), we deduce that

(d) $(V_{A,i,\mathbf{s},\mathcal{L}}, \psi_A)$ is pure of weight i-dim G and $(V'_{A,i',\mathbf{s}',\mathcal{L}'}, \psi'_A)$ is pure of weight i'-dim G.

Using (c) we have

$$|G^{0F}|^{-1} \sum_{g \in D^{F}} \chi_{\bar{K}, \bar{\omega}}(g) \chi_{\bar{K}', \bar{\omega}'}(g) = \sum_{A, A' \in \mathcal{I}_{n}} |G^{0F}|^{-1} \sum_{g \in D^{F}} \chi_{A, \kappa_{A}}(g) \chi_{\mathfrak{D}(A'), \kappa'_{A'}}(g)$$
(e)
$$\times \sum_{i, i'} (-1)^{i+i'} \operatorname{tr}(\psi_{A}, V_{A, i, \mathbf{s}, \mathcal{L}}) \operatorname{tr}(\psi'_{A'}, V'_{A', i', \mathbf{s}', \mathcal{L}'}).$$

Using 24.18 (which is applicable by our cleanness assumption and by Corollary 31.15) we see that for any $A, A' \in \mathcal{I}_n$ we have

$$|G^{0F}|^{-1} \sum_{g \in D^F} \chi_{A,\kappa_A}(g) \chi_{\mathfrak{D}(A'),\kappa'_{A'}}(g) = \delta_{A,A'}.$$

Hence (e) becomes

$$|G^{0F}|^{-1} \sum_{g \in D^F} \chi_{\bar{K}, \bar{\omega}}(g) \chi_{\bar{K}', \bar{\omega}'}(g) = \sum_{\substack{A \in \mathcal{I}_n \\ i, i'}} (-1)^{i+i'} \operatorname{tr}(\psi_A, V_{A, i, \mathbf{s}, \mathcal{L}}) \operatorname{tr}(\psi'_A, V'_{A, i', \mathbf{s}', \mathcal{L}'}).$$

This remains true if F is replaced by F^m , where $m \ge 1$. Thus we have

$$|G^{0F^m}|^{-1} \sum_{g \in D^{F^m}} \chi_{\bar{K}, \bar{\omega}^{(m)}}(g) \chi_{\bar{K}', \bar{\omega}'^{(m)}}(g)$$

$$= \sum_{j} (-1)^j \sum_{A \in \mathcal{I}_n} \sum_{i, i'; i+i'=j} \operatorname{tr}(\psi_A^m, V_{A,i,\mathbf{s},\mathcal{L}}) \operatorname{tr}(\psi_A'^m, V'_{A,i',\mathbf{s}',\mathcal{L}'})$$

with $\bar{\omega}^{(m)}, \bar{\omega}'^{(m)}$ as in 35.14. Using 35.15, we may rewrite the previous equality as follows:

$$\sum_{j} (-1)^{j} \sum_{f} a_{j,f}^{m} = \Pi(q^{m})$$

where $a_{j,f}$ are the eigenvalues of $\psi_A \otimes \psi_A'$ on $\bigoplus_{i,i';i+i'=j} V_{A,i,\mathbf{s},\mathcal{L}} \otimes V_{A,i',\mathbf{s}',\mathcal{L}'}'$ and Π is a polynomial with coefficients in \mathbf{N} . By (d), each $a_{j,f}$ is an algebraic number all of whose complex conjugates have absolute value squared equal to $q^{j-2\dim G}$. It follows that, for fixed j, the set $\{a_{j,f}\}$ is empty if j is odd and that each $a_{j,f}$ is equal to $q^{j/2-\dim G}$ if j is even. This implies that, for any $A \in \mathcal{I}_n$, $V_{A,i,\mathbf{s},\mathcal{L}} \otimes V_{A,i',\mathbf{s}',\mathcal{L}'}'$ is 0 if i+i' is odd and, if i+i' is even, any eigenvalue of ψ_A on $V_{A,i,\mathbf{s},\mathcal{L}}$ multiplied by any eigenvalue of ψ_A' on $V_{A,i',\mathbf{s}',\mathcal{L}'}'$ gives $q^{(i+i')/2-\dim G}$. Since for $A \in \mathcal{I}_n$ we have $V_{A,i',\mathbf{s}',\mathcal{L}'}' \neq 0$ for some \mathbf{s}',\mathcal{L}' as in 35.11, we see that the parity of i such that $V_{A,i,\mathbf{s},\mathcal{L}} \neq 0$ for some \mathbf{s},\mathcal{L} as in 35.11 is an invariant of A and that, for any eigenvalue ξ of ψ_A on $V_{A,i,\mathbf{s},\mathcal{L}}$, the product $\xi \sqrt{q}^{\dim G-i}$ is also an invariant of A. The proposition follows.

35.19. As in 34.15, let $\{E_u; u \in \mathcal{U}\}$ be a set of representatives for the isomorphism classes of simple modules for H_n^1 . Let $m \geq 1$. Using 35.18, we can rewrite 35.18(f) as follows:

$$|G^{0F^m}|^{-1} \sum_{g \in D^{F^m}} \chi_{\bar{K}, \bar{\omega}^{(m)}}(g) \chi_{\bar{K}', \bar{\omega}'^{(m)}}(g)$$

(a)
$$= \sum_{A \in \mathcal{I}_n} \sum_{i,i'} (-1)^{i+i'} \dim V_{A,i,\mathbf{s},\mathcal{L}} \dim V'_{A,i',\mathbf{s}',\mathcal{L}'} q^{m(i-\dim G)/2} q^{m(i'-\dim G)/2}.$$

By 35.15 (with $J=\mathbf{I}$), the left hand side of (a) is $\operatorname{tr}(\Phi'', H_n)|_{v=\sqrt{q^m}}$. We have

$$\sum_{A \in \mathcal{I}_{n}} (\sum_{i} (-v)^{i} v^{-\dim G} \dim V_{A,i,\mathbf{s},\mathcal{L}}) (\sum_{i'} (-v)^{i'} v^{-\dim G} \dim V'_{A,i',\mathbf{s}',\mathcal{L}'})$$

$$= \operatorname{tr}(\Phi'', H_{n}) = \sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(C_{\underline{D}\lambda'}^{\mathbf{s}'} \tilde{T}_{\underline{D}}, E_{u}^{v}) \operatorname{tr}(\tilde{T}_{\underline{D}}^{-1} C_{\lambda^{-1}}^{\tilde{\mathbf{s}}}, E_{u}^{v})$$

$$= \sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(C_{\underline{D}\lambda'}^{\mathbf{s}'} \tilde{T}_{\underline{D}}, E_{u}^{v}) \operatorname{tr}((C_{\lambda^{-1}}^{\tilde{\mathbf{s}}})^{\flat} \tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit}$$

(b)
$$= \sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(C_{\underline{D}\lambda'}^{\mathbf{s}'} \tilde{T}_{\underline{D}}, E_{u}^{v}) \operatorname{tr}(C_{\underline{D}\lambda^{-1}}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit}.$$

(The first equality in (b) comes from the fact that (a) holds for any integer $m \geq 1$. Here $\operatorname{tr}(\Phi'', H_n)$, as in 35.15 with $J = \mathbf{I}$, can be replaced by a sum of products of traces, see 34.14(a). This gives the second equality in (b) where the notation of 34.15 is used. The third equality in (b) comes from 34.17 since $\tilde{T}_{\underline{D}}^{-1}C_{\lambda^{-1}}^{\tilde{s}}$ is an \mathcal{A} -linear combination of elements of the form $\tilde{T}_w 1_{\lambda^{-1}}, w \in \mathbf{W}^D$. The fourth equality in (b) follows from the definitions using $s_r \dots s_2 s_1 \lambda^{-1} = \underline{D} \lambda^{-1}$.) Using the definitions and 34.19(a),(c), we obtain for $A \in \mathcal{I}_n$:

$$\sum_{i} (-v)^{i} v^{-\dim G} \dim V_{A,i,\mathbf{s},\mathcal{L}} = \left(\sum_{i} (-v)^{i} v^{-\dim G} \dim V_{A,i,\mathbf{s},\mathcal{L}}\right)^{\spadesuit}$$
(b)
$$= \left(\zeta^{A}(C_{\underline{D}\lambda}^{\mathbf{s}}[D])\right)^{\spadesuit} = \sum_{u \in \mathcal{U}^{\mathfrak{a}}} (b_{A,u}^{v})^{\spadesuit} \operatorname{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit},$$

$$\sum_{i'} (-v)^{i'} v^{-\dim G} \dim V'_{A,i',\mathbf{s}',\mathcal{L}'} = \zeta^{\mathfrak{D}(A)} (C^{\mathbf{s}'}_{\underline{D}\lambda'}[D])$$
(c)
$$= \sum_{u' \in \mathcal{U}^{\mathfrak{a}}} b^{v}_{\mathfrak{D}(A),u'} \operatorname{tr}(C^{\mathbf{s}'}_{\underline{D}\lambda'} \tilde{T}_{\underline{D}}, E^{v}_{u'}) = \sum_{u' \in \mathcal{U}^{\mathfrak{a}}} b^{v}_{A,u'} \operatorname{tr}(C^{\mathbf{s}'}_{\underline{D}\lambda'^{-1}} \tilde{T}_{\underline{D}}, E^{v}_{u'}).$$

Introducing (b),(c) in (a) we obtain

$$\begin{split} & \sum_{A \in \mathcal{I}_n} (\sum_{u' \in \mathcal{U}^{\mathfrak{a}}} b_{A,u'}^{v} \mathrm{tr}(C_{\underline{D}\lambda'^{-1}}^{\mathbf{s}'} \tilde{T}_{\underline{D}}, E_{u'}^{v})) (\sum_{u \in \mathcal{U}^{\mathfrak{a}}} (b_{A,u}^{v})^{\spadesuit} \mathrm{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit}) \\ & = \sum_{u \in \mathcal{U}^{\mathfrak{a}}} \mathrm{tr}(C_{\underline{D}\lambda'}^{\mathbf{s}'} \tilde{T}_{\underline{D}}, E_{u}^{v}) \mathrm{tr}(C_{\underline{D}\lambda^{-1}}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit}, \end{split}$$

that is,

(d)
$$\sum_{u,u'\in\mathcal{U}^{\mathfrak{a}}} (\sum_{A\in\mathcal{I}_n} b_{A,u'}^{v}(b_{A,u}^{v})^{\spadesuit} - \delta_{u,u'}) \operatorname{tr}(C_{\underline{D}\lambda'^{-1}}^{\mathbf{s}'} \tilde{T}_{\underline{D}}, E_{u'}^{v}) \operatorname{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit} = 0.$$

Recall that here **s** is assumed to satisfy $s_1 s_2 \dots s_r \underline{D}\lambda = \lambda$. The \mathcal{A} -submodule of H_n^D spanned by the elements $C_{D\lambda}^{\mathbf{s}} \tilde{T}_{\underline{D}}$ with \mathbf{s} as above (and λ fixed) is just $1_{\lambda}H_{n}T_{uD}1_{\lambda}$ hence in (d) we may replace $C_{D\lambda}^{\mathbf{s}}T_{\underline{D}}$ by any element in $1_{\lambda}H_{n}T_{uD}1_{\lambda}$ and the equality remains true. Similarly, we may replace $C_{\underline{D}\lambda'^{-1}}^{\mathbf{s}'}\tilde{T}_{\underline{D}}$ by any element in $1_{\lambda'^{-1}}H_n\tilde{T}_D1_{\lambda'^{-1}}$ and the equality remains true. Thus we have

$$\sum_{u,u'\in\mathcal{U}^{\mathfrak{a}}} \left(\sum_{A\in\mathcal{I}_{n}} b_{A,u'}^{v}(b_{A,u}^{v})^{\spadesuit} - \delta_{u,u'}\right) \operatorname{tr}(\tilde{T}_{x'}1_{\underline{D}\lambda'^{-1}}\tilde{T}_{\underline{D}}, E_{u'}^{v}) \operatorname{tr}(\tilde{T}_{x}1_{\underline{D}\lambda}\tilde{T}_{\underline{D}}, E_{u}^{v})^{\spadesuit}) = 0$$

for any $x, x' \in \mathbf{W}$ such that

(f)
$$x\underline{D}\lambda = \lambda, x'\underline{D}\lambda'^{-1} = \lambda'^{-1}.$$

Now (e) remains true even if (f) does not hold. (If for example, $x\underline{D}\lambda = \lambda_1 \neq \lambda$ then for any $u \in \mathcal{U}^{\mathfrak{a}}$ we have

$$\operatorname{tr}(\tilde{T}_x 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_u^v) = \operatorname{tr}(1_{\lambda_1} \tilde{T}_x 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_u^v) = \operatorname{tr}(\tilde{T}_x \tilde{T}_{\underline{D}} 1_{\lambda} 1_{\lambda_1}, E_u^v) = 0,$$

hence the left hand side of (e) is zero.) We now multiply both sides of (e) by $\operatorname{tr}(\tilde{T}_{x'}1_{\underline{D}\lambda'^{-1}}\tilde{T}_{\underline{D}},E^v_{u'_1})^{\spadesuit}\operatorname{tr}(\tilde{T}_x1_{\underline{D}\lambda}\tilde{T}_{\underline{D}},E^v_{u_1})$ where $u_1,u'_1\in\mathcal{U}^{\mathfrak{a}}$ and sum the resulting equalities over all $x,x'\in\mathbf{W}$ and $\lambda,\lambda'\in\mathbf{W}$

 $\underline{\mathfrak{s}}_n$. We obtain

$$\begin{split} &\sum_{u,u'\in\mathcal{U}^{\mathfrak{a}}}(\sum_{A\in\mathcal{I}_{n}}b_{A,u'}^{v}(b_{A,u}^{v})^{\spadesuit}-\delta_{u,u'})(\sum_{x,\lambda}\operatorname{tr}(\tilde{T}_{x}1_{\underline{D}\lambda}\tilde{T}_{\underline{D}},E_{u_{1}}^{v})\operatorname{tr}(\tilde{T}_{x}1_{\underline{D}\lambda}\tilde{T}_{\underline{D}},E_{u}^{v})^{\spadesuit}))\\ &\times(\sum_{x',\lambda'}\operatorname{tr}(\tilde{T}_{x'}1_{\underline{D}\lambda'^{-1}}\tilde{T}_{\underline{D}},E_{u'}^{v})\operatorname{tr}(\tilde{T}_{x'}1_{\underline{D}\lambda'^{-1}}\tilde{T}_{\underline{D}},E_{u_{1}'}^{v})^{\spadesuit})=0. \end{split}$$

Using 34.18(a) we deduce

$$\sum_{u,u'\in\mathcal{U}^{\mathfrak{a}}} (\sum_{A\in\mathcal{I}_{n}} b_{A,u'}^{v} (b_{A,u}^{v})^{\spadesuit} - \delta_{u,u'}) \delta_{u',u'_{1}} f_{u'_{1}}^{v} \dim E_{u'_{1}} \delta_{u,u_{1}} f_{u_{1}}^{v} \dim E_{u_{1}} = 0,$$

that is,

$$(\sum_{A \in \mathcal{I}_n} b^v_{A, u_1'}(b^v_{A, u_1})^{\spadesuit} - \delta_{u_1, u_1'}) f^v_{u_1'} \dim E_{u_1'} f^v_{u_1} \dim E_{u_1} = 0.$$

Since $f_{u_1'}^v \dim E_{u_1'} f_{u_1}^v \dim E_{u_1} \neq 0$, we deduce

(g)
$$\sum_{A \in \mathcal{I}_n} b_{A, u_1'}^v(b_{A, u_1}^v)^{\spadesuit} = \delta_{u_1, u_1'}$$

for any $u_1, u_1' \in \mathcal{U}^{\mathfrak{a}}$.

35.20. Let $A_0 \in \mathcal{I}_n$. Then $\operatorname{supp}(A_0)$ is the closure of a stratum $Y = Y_{L,S}$ of D. Let $e = \dim Y$. Replacing \mathbf{F}_q by a finite extension, we may assume that the following holds:

(a) there exists a finite group Γ and a sequence of maps $\Gamma \to Y^{F^m}$, $\gamma \mapsto y_{\gamma,m}$ $(m=1,2,3,\ldots)$ such that for any $m \geq 1$ and any $A \in \mathcal{I}_n$ we have

$$q^{-(\dim D - e)m} |\Gamma|^{-1} \sum_{\gamma \in \Gamma} \chi_{A, \kappa_A^{(m)}}(y_{\gamma, m}) \chi_{\mathfrak{D}(A_0), \kappa'_{A_0}^{(m)}}(y_{\gamma, m}) = \delta_{A_0, A'}.$$

(We apply 33.7 with $\mathcal{I} = \mathcal{I}_n$.)

35.21. We identify H_n with a subalgebra of H_{q-1} by $\tilde{T}_w 1_{\lambda} \mapsto \tilde{T}_w 1_{\lambda}$ for $w \in \mathbf{W}$, $\lambda \in \underline{\mathfrak{s}}_n$. (We have $\underline{\mathfrak{s}}_n \subset \underline{\mathfrak{s}}_{q-1}$ since n divides q-1.) Similarly, for any $\kappa \in \mathfrak{U}$ we identify H_n^{κ} with a subalgebra of H_{q-1}^{κ} .

Let $\{\tilde{E}_u; u \in \tilde{\mathcal{U}}\}$ be a set of representatives for the isomorphism classes of simple modules for H_{q-1}^1 . We may assume that $\mathcal{U} \subset \tilde{\mathcal{U}}$, that for $u \in \mathcal{U}$ we have $\tilde{E}_u = E_u$ as an H_n^1 -module with 1_{λ} acting as 0 for $\lambda \in \underline{\mathfrak{s}}_{q-1} - \underline{\mathfrak{s}}_n$ and for $u \in \tilde{\mathcal{U}} - \mathcal{U}$, H_n^1 acts on \tilde{E}_u as zero. For $u \in \tilde{\mathcal{U}}$, the $H_{q-1}^{\sqrt{q}}$ -module $\tilde{E}_u^{\sqrt{q}}$ is defined as in 34.15. If $u \in \mathcal{U}$ we have again $\tilde{E}_u^{\sqrt{q}} = E_u^{\sqrt{q}}$ as an $H_n^{\sqrt{q}}$ -module with 1_{λ} acting as 0 for $\lambda \in \underline{\mathfrak{s}}_{q-1} - \underline{\mathfrak{s}}_n$. For $u \in \tilde{\mathcal{U}}$ we set $V_u = \operatorname{Hom}_{H_{q-1}^{\sqrt{q}}}(\tilde{E}_u^{\sqrt{q}}, \mathfrak{P})$ where \mathfrak{P} is regarded as an $H_{q-1}^{\sqrt{q}} = \mathfrak{T}$ -module as in 35.4, 35.5. Since $\mathfrak{T} = \operatorname{End}_{G^{0F}}(\mathfrak{P})$ (see 35.5), the G^{0F} -module structure on \mathfrak{P} makes V_u into an irreducible G^{0F} -module and we have an isomorphism

$$\vartheta: \oplus_{u \in \tilde{\mathcal{U}}} (\tilde{E}_u^{\sqrt{q}} \otimes V_u) \xrightarrow{\sim} \mathfrak{P}, e \otimes x \mapsto x(e), e \in \tilde{E}_u^{\sqrt{q}}, x \in V_u.$$

Hence $\mathfrak{P} = \bigoplus_{u \in \tilde{\mathcal{U}}} \mathfrak{P}_u$ where $\mathfrak{P}_u = \vartheta(\tilde{E}_u^{\sqrt{q}} \otimes V_u)$. For $u \in \mathcal{U}^{\mathfrak{a}}$ and $x \in V_u$ we define $R_{u,x} : \tilde{E}_u^{\sqrt{q}} \to \mathfrak{P}$ by $R_{u,x}(e) = \rho_{d,d}(x(\tilde{T}_{\underline{D}}^{-1}e))$. We show that

(a)
$$R_{u,x}(he) = hR_{u,x}(e)$$
 for $h \in H_{q-1}^{\sqrt{q}}, e \in \tilde{E}_u^{\sqrt{q}}$.

If $h \in H_{q-1}^{\sqrt{q}} 1_{\lambda}$ with $\lambda \in \underline{\mathfrak{s}}_{q-1} - \underline{\mathfrak{s}}_n, w \in \mathbf{W}$ then both sides of (a) are zero (we use 35.12(a)). Hence we may assume that $h \in H_n^{\sqrt{q}}$. Recall that $\rho_{d,d}(\mathfrak{a}^{-1}(h)) = h\rho_{d,d}: \mathfrak{P} \to \mathfrak{P}$ (see 35.12(a) and 35.14(b)). Hence

$$R_{u,x}(he) = \rho_{d,d}(x(\tilde{T}_{\underline{D}}^{-1}(he))) = \rho_{d,d}(x((\mathfrak{a}^{-1}(h))(\tilde{T}_{\underline{D}}^{-1}e))) = \rho_{d,d}(\mathfrak{a}^{-1}(h))(x(\tilde{T}_{\underline{D}}^{-1}e))$$

= $h\rho_{d,d}(x(\tilde{T}_{D}^{-1}e)) = hR_{u}(x)(e),$

as required. We see that $R_{u,x} \in V_u$. Thus, we have a map $R_u : V_u \to V_u$, $x \mapsto R_{u,x}$. From the definitions we have

$$\vartheta(\tilde{T}_{\underline{D}}e \otimes R_{u,x}) = \rho_{d,d}\vartheta(e \otimes x) \text{ for } e \in E_u^{\sqrt{q}}, x \in V_u.$$

In particular, $\rho_{d,d}: \mathfrak{P} \to \mathfrak{P}$ maps \mathfrak{P}_u into itself. On the other hand it maps \mathfrak{P}_u for $u \in \mathcal{U} - \mathcal{U}^{\mathfrak{a}}$ into $\mathfrak{P}_{u'}$ for some $u' \in \mathcal{U}, u' \neq u$. It also maps $\bigoplus_{u \in \tilde{\mathcal{U}} - \mathcal{U}} \mathfrak{P}_u$ into itself. Hence if $h \in H_n^{\sqrt{q}}$ and $g_0 \in G^{0F}$ then $h\rho_{d,d}\rho_{g_0,1}$ acts as zero on $\bigoplus_{u \in \tilde{\mathcal{U}} - \mathcal{U}} \vartheta(E_u^{\sqrt{q}} \otimes V_u)$ and we have

$$\operatorname{tr}(h\rho_{d,d}\rho_{g_0,1},\mathfrak{P}) = \sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(h\tilde{T}_{\underline{D}}, E_u^{\sqrt{q}}) \operatorname{tr}(R_u g_0, V_u).$$

Now, from Lemma 35.10 (with $J = \mathbf{I}$) we have $\chi_{\bar{K},\bar{\omega}}(g) = \operatorname{tr}(C_{\underline{D}\lambda}^{\mathbf{s}}\rho_{g,d},\mathfrak{P})$ for any $g \in D^F$. (Recall that $a_{\underline{D}\lambda,F,\mathbf{s}} = 1$, see 35.14(a).) Hence

(b)
$$\chi_{\bar{K},\bar{\omega}}(g) = \sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_{u}^{\sqrt{q}}) \operatorname{tr}(R_{u} d^{-1} g, V_{u}).$$

We have

(c)

$$\chi_{\bar{K},\bar{\omega}}(g) = \sum_{A \in \mathcal{I}_n} \chi_{A,\kappa_A}(g) \sum_i (-\sqrt{q})^i \sqrt{q}^{-\dim G} \xi_A \dim V_{A,i,\mathbf{s},\mathcal{L}}$$
$$= \sum_{A \in \mathcal{I}_n} \chi_{A,\kappa_A}(g) \xi_A \sum_{u \in \mathcal{U}^a} b_{A,u}^{\sqrt{q}} \operatorname{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_u^{\sqrt{q}}).$$

(The first equality follows from 35.18(b),(c). The second equality is obtained from the identity

 $\sum_{i}(-v)^{i}v^{-\dim G}\dim V_{A,i,\mathbf{s},\mathcal{L}} = \sum_{u\in\mathcal{U}^{a}}b_{A,u}^{v}\mathrm{tr}(C_{\underline{D}\lambda}^{\mathbf{s}}\tilde{T}_{\underline{D}},E_{u}^{v}),$ see 34.19, under the specialization $v\mapsto\sqrt{q}$. Note that the rational function $b_{A,u}^{v}$ does not have a pole at $v=\sqrt{q}$; indeed, in 34.19(b), we have $\zeta^{A}(\tilde{T}_{w}1_{\underline{D}\lambda}[D])\in\mathcal{A},$ $\mathrm{tr}(\tilde{T}_{w}1_{\underline{D}\lambda}\tilde{T}_{\underline{D}},E_{u}^{v})^{\spadesuit}\in\mathfrak{U}[v,v^{-1}]$ by 34.15(a), while $f_{u}^{v}|_{v=\sqrt{q}}=f_{u}^{\sqrt{q}}\neq0$ by 34.15(b). Hence $b_{A,u}^{v}$ can be specialized for $v=\sqrt{q}$ and yields a value $b_{A,u}^{\sqrt{q}}\in\mathfrak{U}$.) From (b),(c) we deduce

$$\sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(C_{\underline{D}\lambda}^{\mathbf{s}} \tilde{T}_{\underline{D}}, E_{u}^{\sqrt{q}}) (\operatorname{tr}(R_{u}d^{-1}g, V_{u}) - \sum_{A \in \mathcal{I}_{n}} \chi_{A,\kappa_{A}}(g) \xi_{A} b_{A,u}^{\sqrt{q}}) = 0.$$

As in the paragraph preceding 35.19(e) we see that here we may replace $C_{\underline{D}\lambda}^{\mathbf{s}}\tilde{T}_{\underline{D}}$ by any element in $1_{\lambda}H_{n}\tilde{T}_{D}1_{\lambda}$. Thus we have

(d)
$$\sum_{u \in \mathcal{U}^{\mathfrak{a}}} \operatorname{tr}(\tilde{T}_{x} 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_{u}^{\sqrt{q}}) (\operatorname{tr}(R_{u} d^{-1} g, V_{u}) - \sum_{A \in \mathcal{I}_{n}} \chi_{A, \kappa_{A}}(g) \xi_{A} b_{A, u}^{\sqrt{q}}) = 0$$

for any $x \in \mathbf{W}$ such that $x\underline{D}\lambda = \lambda$; moreover, if $x\underline{D}\lambda \neq \lambda$ then $\operatorname{tr}(\tilde{T}_x 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_u^{\sqrt{q}}) = 0$ so that (d) holds again. We see that (d) holds for any $x \in \mathbf{W}$ and any $\lambda \in \underline{\mathfrak{s}}_n$. We now multiply both sides of (d) by $\operatorname{tr}(\tilde{T}_x 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_{u_1}^{\sqrt{q}})^{\spadesuit} = 0$ where $u_1 \in \mathcal{U}^{\mathfrak{a}}$ and sum the resulting equalities over all $x \in \mathbf{W}$ and $\lambda \in \underline{\mathfrak{s}}_n$. We obtain

$$\sum_{u \in \mathcal{U}^{\mathfrak{a}}} \left(\sum_{x,\lambda} \operatorname{tr}(\tilde{T}_{x} 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_{u}^{\sqrt{q}}) \operatorname{tr}(\tilde{T}_{x} 1_{\underline{D}\lambda} \tilde{T}_{\underline{D}}, E_{u_{1}}^{\sqrt{q}})^{\spadesuit} \right) \times \left(\operatorname{tr}(R_{u} d^{-1} g, V_{u}) - \sum_{A \in \mathcal{I}_{x}} \chi_{A,\kappa_{A}}(g) \xi_{A} b_{A,u}^{\sqrt{q}} \right) = 0.$$

Using 34.18(b) with $\kappa = \sqrt{q} = \sqrt{q}^{\spadesuit}$ we deduce that

$$\sum_{u \in \mathcal{U}^{\mathfrak{a}}} \delta_{u,u_1} f_u^{\sqrt{q}} \dim E_u(\operatorname{tr}(R_u d^{-1}g, V_u) - \sum_{A \in \mathcal{I}_n} \chi_{A,\kappa_A}(g) \xi_A b_{A,u}^{\sqrt{q}}) = 0$$

that is,

$$f_{u_1}^{\sqrt{q}} \dim E_{u_1}(\operatorname{tr}(R_{u_1}d^{-1}g, V_{u_1}) - \sum_{A \in \mathcal{T}_-} \chi_{A, \kappa_A}(g)\xi_A b_{A, u_1}^{\sqrt{q}}) = 0.$$

Since $f_{u_1}^{\sqrt{q}} \dim E_{u_1} \neq 0$, we deduce

(e)
$$\operatorname{tr}(R_{u_1}d^{-1}g, V_{u_1}) = \sum_{A \in \mathcal{I}_n} \chi_{A, \kappa_A}(g)\xi_A b_{A, u_1}^{\sqrt{q}} = 0.$$

We show:

(f) $R_u d^{-1}g: V_u \to V_u$ has finite order.

For any $t \ge 1$ we have $R_u^t(x) = \rho_{d,d}^t(x(\tilde{T}_{\underline{D}}^{-t}e))$, hence $R_u^c = 1$ for some $c \ge 1$. For $g_0 \in G^{0F}$ we have

$$R_u g_0(x)(e) = \rho_{d,d} \rho_{g_0,1} x(\tilde{T}_{\underline{D}}^{-1} e) = \rho_{dg_0 d^{-1},1} \rho_{d,d} x \tilde{T}_{\underline{D}}^{-1} e$$

hence $R_u g_0 = (dg_0 d^{-1}) R_u$. From this we deduce

$$(R_u g_0)^t = (dg_0 d^{-1})(d^2 g_0 d^{-2}) \dots (d^t g_0 d^{-t}) R_u^t$$

for $t \ge 1$. We have $d^a = 1$ for some $a \ge 1$. Let

$$g_1 = (dg_0d^{-1})(d^2g_0d^{-2})\dots(d^ag_0d^{-a}).$$

We have $g_1^b = 1$ for some $b \ge 1$. We have $(R_u g_0)^{ab} = g_1^b R_u^{ab} = R_u^{ab}$. Thus $(R_u g_0)^{abc} = R_u^{abc} = 1$. Taking $g_0 = d^{-1}g$ we see that (f) holds.

From (f) we see that $\operatorname{tr}(R_u d^{-1}g, V_u)$ is a cyclotomic integer. Introducing this in (e) we see that

(g) $\sum_{A \in \mathcal{I}_n} \chi_{A,\kappa_A}(g) \xi_A b_{A,u}^{\sqrt{q}}$ is a cyclotomic integer for any $u \in \mathcal{U}^{\mathfrak{a}}, g \in D^F$.

Lemma 35.22. In the setup of 35.20, let $u \in \mathcal{U}^{\mathfrak{a}}$. Assume that E_u is quasirational (see 34.20). Then $b_{A_0,u}^v \in \eta \mathbf{Q}[v,v^{-1}]$ where η is a root of 1.

Note that 35.21(g) remains true if \mathbf{F}_q is replaced by \mathbf{F}_{q^m} where $m \geq 1$. Thus:

(a)
$$\sum_{A \in \mathcal{I}_n} \chi_{A, \kappa_A^{(m)}}(g) \xi_A^m b_{A, u}^{\sqrt{q^m}}$$

is a cyclotomic integer for any $m \geq 1, g \in D^{F^m}$. We use notation of 35.20. Assume that $g \in Y^{F_m}$. We multiply (a) by $\sqrt{q}^{m(e-\dim D)}\chi_{\mathfrak{D}(A_0),\kappa'_{A_0}}(g)$ which is a cyclotomic integer by 35.16(ii). We obtain again a cyclotomic integer. Now take $g = y_{\gamma,m}$ (see 35.20) and sum over all $\gamma \in \Gamma$ (see 35.20). We see that

(b)
$$\sqrt{q}^{m(e-\dim D)} \sum_{\gamma \in \Gamma} \sum_{A \in \mathcal{I}_n} \chi_{A,\kappa_A^{(m)}}(y_{\gamma,m}) \chi_{\mathfrak{D}(A_0),\kappa_{A_0}'^{(m)}}(y_{\gamma,m}) \xi_A^m b_{A,u}^{\sqrt{q^m}}$$

is a cyclotomic integer for any $m \ge 1$. Using 35.20(a) we see that (b) equals

(c)
$$\sqrt{q}^{m(\dim D-e)} |\Gamma| \xi_{A_0}^m b_{A_0,u}^{\sqrt{q^m}}$$

which is therefore a cyclotomic integer for any $m \geq 1$. By 35.22 we have $b_{A_0,u}^v = \eta Q(v)$ where $\eta \in \mathfrak{U}$ is a root of 1 and $Q(v) \in \mathbf{Q}(v)$. Let K be a subfield of $\bar{\mathbf{Q}}_l$ such that K is a finite Galois extension of \mathbf{Q} of degree a which contains η and ξ_{A_0} . Let $N: K \to \mathbf{Q}$ be the norm map. Since all complex conjugates of ξ_{A_0} have absolute value 1 we see that $N(\xi_{A_0}) = \pm 1$. We have also $N(\eta) = \pm 1$. Hence applying N to (c) (with m = 2m') we see that $|\Gamma|^a q^{am'(\dim D - e)} Q(q^{m'})^a$ is a cyclotomic integer. This being also a rational number, is an ordinary integer. Let

$$R(v) = |\Gamma|^a v^{a(\dim D - e)} Q(v)^a \in \mathbf{Q}(v).$$

We see that $R(q^{m'}) \in \mathbf{Z}$ for any integer $m' \geq 1$. This forces $R(v) \in \mathbf{Q}[v]$. Thus, $(v^{\dim D - e}Q(v))^a \in \mathbf{Q}[v]$. It follows that $v^{\dim D - e}Q(v) \in \mathbf{Q}[v]$ hence $Q(v) \in \mathbf{Q}[v, v^{-1}]$. The lemma is proved.

Theorem 35.23. Assume that D is clean (see 33.4(b)). Let $A \in \mathcal{I}_n$. Let $u \in \mathcal{U}^{\mathfrak{a}}$ be such that E_u is quasi-rational (see 34.20). Then $b_{A,u}^v \in \eta \mathbf{Q}$ for some η , a root of 1.

Using 35.19(g) with $u_1 = u_1' = u$ we see that $\sum_{A \in \mathcal{I}_n} b_{A,u}^v(b_{A,u}^v)^{\spadesuit} = 1$. Using 35.22 we write $b_{A,u}^v = \eta_A Q_A$ for $A \in \mathcal{I}_n$ where η_A is a root of 1 and $Q_A \in \mathbf{Q}[v,v^{-1}]$. Then $(b_{A,u}^v)^{\spadesuit} = \eta_A^{-1} Q_A$ so that $\sum_{A \in \mathcal{I}_n} Q_A^2 = 1$. Since $Q_A \in \mathbf{Q}[v,v^{-1}]$, this forces each Q_A to be a constant. The theorem is proved.

References

[BBD] A.Beilinson, J.Bernstein and P.Deligne, Faisceaux pervers, Astérisque 100 (1982).

- [Gi] V.Ginzburg, Admissible modules on a symmetric space, in: "Orbites unipotentes et représentations, III", Astérisque 173-174 (1989), 199-255.
- [KL] D.Kazhdan and G.Lusztig, Representations of Coxeter groups and Hecke algebras, Inv. Math. 53 (1979), 165-184.
- [L3] G.Lusztig, Character sheaves, I, Adv. Math. 56 (1985), 193-237; II 57 (1985), 226-265; III
 57 (1985), 266-315; IV 59 (1986), 1-63; V 61 (1986), 103-155.
- [L9] G.Lusztig, Character sheaves on disconnected groups, I, Represent. Th. (electronic) 7 (2003), 374-403; II 8 (2004), 72-124; III 8 (2004), 125-144; IV 8 (2004), 145-178; Errata 8 (2004), 179-179; V 8 (2004), 346-376; VI 8 (2004), 377-413.
- [L13] G.Lusztig, Quantum groups at v = infinity, Functional analysis on the eve of the 21st century: in honor of I.M.Gelfand, vol.I, Progr.in Math. 131, Birkhäuser, 1995, pp. 199-221.
- [L12] G.Lusztig, Hecke algebras with unequal parameters, CRM Monographs Ser. 18 (2003), Amer.Math.Soc..
- [MS] J.G.M.Mars and T.A.Springer, Character sheaves, Astérisque 173-174 (1989), 111-198.
- [Y] T.Yokonuma, Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini, C.R. Acad. Sci. Paris Ser.A-B **264** (1967), A344-A347.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139