I. Introduction générale:

Les fonctions usuelles sont des fonctions simples et typiques dont les propriétés géométriques dépendent de leur formes et des leurs paramètres . Dans ce cours nous allons voir quelques unes de ces fonctions , nous citons les fonctions affines , les fonctions polynômes de second degré , les fonctions homographiques, quelques fonctions irrationnellles simples et les fonctions trigonométriques de base.

Pour chacune de ces fonctions f ; on pose : $T_f = \frac{f(x) - f(y)}{x - y}$ tels que x et y deux élèments différents

du domaine de définition D, de f.

On désigne par (C_f) la coure de la fonction f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

II. La fonction Affine: Cette fonction s'écrit: f(x) = ax + b

f étant une fonction polynôme donc son domaine définition est $D_f = IR$.

Le taux d'accroissement est :

$$T_{f} = \frac{f(x) - f(y)}{x - y} = \frac{(ax + b) - (ay + b)}{x - y} = \frac{ax + b - ay - b}{x - y} = \frac{a(x - y)}{x - y} = a$$

Les variations de f dépendent de a , coefficient de la fonction de f , d'où le résumé suivant :

III. Fonction polynôme de second degré : la fonction s'écrit : $f(x) = ax^2 + bx + c$ avec $a \ne 0$

f étant une fonction polynôme donc son domaine définition est $D_f = IR$.

Le taux d'accroissement est :

$$T_{f} = \frac{f(x) - f(y)}{x - y} = \frac{(ax^{2} + bx + c) - (ay^{2} + by + c)}{x - y} = \frac{a(x^{2} - y^{2}) + b(x - y)}{x - y} = a(x + y) + b$$

$$d'où \qquad : T_{f} = a(x + y) + b = a(x + y + \frac{b}{a}) = a\left((x + \frac{b}{2a}) + (y + \frac{b}{2a})\right)$$

On en déduit que l'expression $\left((x+\frac{b}{2a})+(y+\frac{b}{2a})\right)$ est négative sur $\left]-\infty;-\frac{b}{2a}\right[$ et positive sur

$$\left[-\frac{\mathbf{b}}{2\mathbf{a}};+\infty\right]$$

Les variations de f dépendent de a, d'où le résumé suivant :

	a > 0		
$T_f < 0$	$\operatorname{sur}\left] - \frac{\mathrm{b}}{2\mathrm{a}}; +\infty \right[$		
$T_f > 0$	$\operatorname{sur}\left] -\frac{\mathrm{b}}{2\mathrm{a}}; +\infty\right[$		

Tableau de **Variations** De La fonction f D'où le tableau de variations de f sur IR

 (C_f) est une parabole de sommet $\Omega\left(-\frac{b}{2a}; f(-\frac{b}{2a})\right)$

$$f(x) = 2x^2 - 4x + 1$$

 $f(1) = -1$ et $f(0) = 1$ et $f(-1) = 7$

Exemple De Représentation graphique

D'où le tableau de variations de f sur IR

 (C_f) est une parabole de sommet $\Omega\left(-\frac{b}{2a}; f(-\frac{b}{2a})\right)$ et orientée vers le bas

$$f(x) = -2x^2 + 4x - 1$$

 $f(1) = -1$ et $f(0) = 1$ et $f(-1) = 7$

Fonction homographique : la fonction s'écrit : $f(x) = \frac{ax + b}{cx + d}$ avec $\Delta = ad - bc \neq 0$ IV.

On a
$$D_f = IR - \left\{ -\frac{d}{c} \right\} = \left[-\infty; -\frac{d}{c} \left[\ \cup \ \right] - \frac{d}{c}; +\infty \right[$$

Le taux d'accroissement est :
$$T_f = \frac{f(x) - f(y)}{x - y} = \frac{\frac{ax + b}{cx + d} - \frac{ay + b}{cy + d}}{x - y}$$

Après simplifiactions de calcul, on trouve : $T_f = \frac{ad - bc}{(cx + d)(cy + d)} = \frac{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}{(cx + d)(cy + d)} = \frac{\Delta}{(cx + d)(cy + d)}$

L'expression (cx+d)(cy+d) est positive sur chacun des intervalles $\left|-\infty; -\frac{d}{c}\right|$ et $\left|-\frac{d}{c}; +\infty\right|$

D'où les variations de f dépendent de $\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

Donc si $\Delta > 0$, alors f est croissante sur chacun des intervalles $\left| -\infty; -\frac{d}{c} \right|$ et $\left| -\frac{d}{c}; +\infty \right|$ et si $\Delta < 0$, alors f est décroissante sur chacun des intervalles $\left[-\infty; -\frac{d}{c} \right[et \right] - \frac{d}{c}; +\infty$ d'où le résumé:

$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc > 0$

 $T_f > 0$ sur les deux intervalles:

$$\left[-\infty; -\frac{d}{c}\right] et \left[-\frac{d}{c}; +\infty\right]$$

D'où le tableau de variations de f sur IR

 (C_f) est un e hyperbole de centre $\Omega\!\!\left(\!\!-\!\frac{d}{c};\frac{a}{c}\right)$

Et d'asymptôtes: $(\Delta_1): x = \frac{a}{c} \operatorname{et}(\Delta_2): y = -\frac{d}{c}$ $f(x) = \frac{2x-1}{c}$

$$f(3) = 5/2$$
 et $f(2) = 3$ et $f(0) = 1$ et $f(-1) = 3/2$

Exemple
De
Représentation
graphique

Tableau de

Variations De

La fonction f

 $T_f < 0$ sur les deux intervalles:

$$\left] -\infty; -\frac{d}{c} \left[et \right] -\frac{d}{c}; +\infty \right[$$

D'où le tableau de variations de f sur IR

 (C_f) est un e hyperbole de centre $\Omega\left(-\frac{d}{c}; \frac{a}{c}\right)$

Et d'asymptôtes: $(\Delta_1): x = \frac{a}{c} \operatorname{et}(\Delta_2): y = -\frac{d}{c}$

$$f(x) = \frac{2x - 3}{x - 1}$$

f(3) = 3/2 et f(2) = 1 et f(0) = 3 et f(-1) = 5/2

V. <u>La fonction polynôme de 3^{ème} degré</u> ax^3 : f s'écrit: $f(x) = ax^3$ a $a \ne 0$

f étant une fonction polynôme donc son domaine définition est $D_{\rm f} = IR$.

Le taux d'accroissement est :

$$T_{f} = \frac{f(x) - f(y)}{x - y} = \frac{ax^{3} - ay^{3}}{x - y} = \frac{a(x^{3} - y^{3})}{x - y} = \frac{a(x - y)(x^{2} + xy + y^{2})}{x - y}$$

$$d'où \qquad : T_{f} = a(x^{2} + xy + y^{2})$$

On en déduit que l'expression $x^2 + xy + y^2$ est positive sur chacun des intervalles $]-\infty;0[$ et $]0;+\infty[$ Les variations de f dépendent de a , d'où le résumé suivant :

La fonction f

On remarque que (C_f) est sumétrique Par rapport à l'origine du repère car f est une fonction impaire

$$f(x) = 2x^3$$

 $f(1) = 2$ et $f(0) = 0$ et $f(-1) = -2$

Exemple De Représentation graphique

On remarque que (C_f) est sumétrique Par rapport à l'origine du repère car f est une fonction impaire

$$f(x) = -2x^3$$

 $f(1) = -2$ et $f(0) = 0$ et $f(-1) = 2$

VI. Fonctions irrationnelles simples: $\pm \sqrt{x-a}$ $\pm \sqrt{a-x}$:

1) Considèrons les fonctions : $f_1(x) = \sqrt{x-a}$ et $f_2(x) = -\sqrt{x-a}$ avec $a \in IR$

On a $D_{f_1} = D_{f_2} = [a; +\infty]$

Le taux d'accroissement de f₁ est:

$$T_{f_1} = \frac{f_1(x) - f_1(y)}{x - y} = \frac{\sqrt{x - a} - \sqrt{y - a}}{x - y} = \frac{(x - y)}{(x - y)(\sqrt{x - a} + \sqrt{y - a})} = \frac{1}{\sqrt{x - a} + \sqrt{y - a}} > 0$$

d'où:

 f_1 est croissante sur $[a; +\infty[$, et puisque $f_2(x) = -f_1(x)$ alors f_2 est décroissante sur $[a; +\infty[$

2) Considèrons les fonctions : $g_1(x) = \sqrt{a-x}$ et $g_2(x) = -\sqrt{a-x}$ avec $a \in IR$

On a $D_{g_1} = D_{g_2} = -\infty$; a

Le taux d'accroissement de g₁ est:

$$T_{g_1} = \frac{g_1(x) - g_1(y)}{x - y} = \frac{\sqrt{a - x} - \sqrt{a - y}}{x - y} = \frac{-(x - y)}{(x - y)(\sqrt{a - x} + \sqrt{a - y})} = \frac{-1}{\sqrt{x - a} + \sqrt{y - a}} < 0$$

d'où:

 g_1 est décroissante sur $-\infty$; a], et puisque $g_2(x) = -g_1(x)$ alors g_2 est croissante sur $-\infty$; a] D'où le résumé suivant :

Le tableau de variations de f_1 sur $[a; +\infty[$

X	a	+∞
f ₁ (x)	1	*

Le tableau de variations de f_2 sur $[a; +\infty]$

$$g_1(x) = \sqrt{a-x}$$
 et $g_2(x) = -\sqrt{a-x}$

Le tableau de variations de g_1 sur $[a; +\infty]$

X	-∞	a
g ₁ (x)		

Le tableau de variations de g_2 sur $[a; +\infty[$

Tableau

De La fonction f

On remarque $(C_{f_1}) \cup (C_{f_2})$ est une parabolede sommet A(a; 0) D'axe (Ox) et orientée vers la droite

 $f_1(x) = \sqrt{x-a}$ et $f_2(x) = -\sqrt{x-a}$

On remarque $(C_{g_1}) \cup (C_{g_2})$ est une parabolede sommet A(a; 0)D'axe (Ox) et orientée vers la gauche

Exemple De Représentation graphique

$$g_1(x) = \sqrt{a-x}$$
 et $g_2(x) = -\sqrt{a-x}$
 $f(1) = -2$ et $f(0) = 0$ et $f(-1) = 2$

VII. Les fonctions trigonométriques :

Considérons les fonctions f; g et h tels que : $f(x) = \sin x$; $g(x) = \cos x$ et $h(x) = \tan x$ Les courbes de ces fonctions sont tracées, en se basant sur le cercle trigonométrique :

