Chemistry 123: Exam 3B

The 76 pts exam consists of 6 questions and students have the whole class period to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table is provided at the end. Fill in your name along with your student ID number.

Problem 1 : Photoelectric Effect When light shines on a metal, electrons can be ejected from the surface of the metal in a phenomenon known as the photoelectric effect. You perform an experiment to eject electrons from iron (Fe) metal. It is known that a wavelength of 200 nm is the minimum energy to eject an electron from Fe. (16 pts)

(a) Determine the work function (Φ) , or the minimum energy in J to eject an electron, of the Fe metal.

(b) How much energy in kJ is required to eject a mole of electrons from Fe metal? (Hint : One photon with enough energy ejects 1 electron.)

(c) Suppose a laser emits photons with an energy of 4.05 eV. Is this energy sufficient to eject an electron from Al metal? (Hint : 1 eV = 1.602×10^{-19} J)

(d) What is the velocity of the electron if a photon with a frequency 1.91×10^{15} Hz hits the surface

of Al metal and ejects an electron? The mass of an electron is 9.109×10^{-31} kg.

Problem 2 : Electron Configurations Write the electron configuration of the following atoms or ions. Your answer may be in the long or short forms. (12 pts)

(a)	W
(b)	Ca
(c)	P ³ -
(d)	Cu
(e)	Al^{3+}
(f)	Se
Prob	blem 3 : Periodic Trends Rank the following periodic trends. (12 pts)
(a)	Electronegativity (Strongest to Weakest) : Ra, P, N, F, I
(b)	Atomic Radius (Largest to Smallest) : O, Na, Ca, Cl, Cs
(c)	First ionization energy (Highest to Lowest) : Li, Cl, Ar, He, Be
(d)	Electron affinity (Highest to Lowest) : F, Cl, Br, I, At
	L

Problem 4 : Bohr's Model The Bohr's model was first developed to explain the emission and absorption of the hydrogen atom. (6 pts)

(a) What is the initial energy level of the electron if it absorbs a wavelength of 1,093 nm to a final energy state of 6?

(b) True/False. The Bohr model can accurately predict the emission and absorption of multi-electron atoms.

Problem 5 : Classical and Quantum Pictures of Energy Describe the difference between the classical and quantum pictures of energy. Which theory describes that energy is quantized or discrete steps? You may include illustrations to support your answer. (6 pts)

Page 4

Problem 6 : Lewis Structures and VSEPR Model For the following compounds, draw the Lewis structure and include resonance structures if they exist. Determine the electronic arrangement and molecular geometry for the underlined atom. Determine whether the molecule is polar or nonpolar. (24 pts)

(a)	$\underline{\mathrm{Xe}}\mathrm{F}_{4}$
(h)	CH_CH_COOH
(b)	CH ₃ CH ₂ COOH
(b)	CH ₃ CH ₂ COOH
(b)	$\mathrm{CH_{3}CH_{2}\underline{C}OOH}$
(b)	$\mathrm{CH_{3}CH_{2}\underline{C}OOH}$
(b)	$\mathrm{CH_3CH_2}$ COOH
(b)	CH ₃ CH ₂ COOH
(b)	CH ₃ CH ₂ COOH
(b)	CH ₃ CH ₂ COOH
(b)	$\mathrm{CH_{3}CH_{2}\underline{C}OOH}$
(b)	$\mathrm{CH_3CH_2COOH}$
(b)	$\mathrm{CH_3CH_2COOH}$
(b)	$\mathrm{CH_{3}CH_{2}COOH}$
(b)	CH ₃ CH ₂ COOH
(b)	CH ₃ CH ₂ COOH
(b)	CH ₃ CH ₂ COOH

Class									
Id	number								

(c)	$\underline{\mathrm{O}}_{3}$					
(d)	$\underline{\mathrm{SO}_4^{2-}}$					
()	— 4 [

Chemistry 123 : Apppendix 2 - Formulas and Constants

$$c = \lambda \nu$$

$$E = h\nu = \frac{hc}{\lambda}$$

$$h = 6.626 \times 10^{-34} \text{ J s}$$

$$c = 3.00 \times 10^8 \text{ m/s}$$

$$KE = h\nu - \Phi$$

$$KE = \frac{1}{2}mv^2$$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

$$R_H = 1.097 \times 10^7 \text{ m}^{-1}$$

$$m_{\text{electron}} = 9.109 \times 10^{-31} \text{ kg}$$

$$N_A = 6.022 \times 10^{23} \text{particles/mol}$$

2 Helium 4.003	10 Neon 20.180	18 Ar Argon 39.948	36 Kypton 83.798	54 Kenon 131.293	86 Radon [222]	0ganesson [294]		
	9 F Fluorine 18.998	Chlorine 35.45	35 Br Bromine 79.904	53 	85 At Actatine [210]	117 E Fennessine [293]		
	8 Oxygen 15.999	16 Suffur 32.06	Selenium 78.97	53 Tellurium 127.60	84 Polonium [209]	$\frac{116}{\text{LW}}$ Livermorium [293]		
	7 Nitrogen 14.007	15 P Phos phorus 30.974	33 AS Avsenic 74.922	51 Sb Antimony 121.760	83 Bi smuth 208.980	115 MC Mos covium [289]	70 Yb vtterbium 173.045	
	6 Carbon 12.011	Sicon 28.085	32 Ge Germanium 72.630	50 The 118,710	82 Pb Lead 207.2	114 F Ferovium [289]	_	
	5 Boron 10.81	13 Al Aluminum 26.982	31 Ga Gallium 69.723	49	81 Thallum 204.38	113 Nh Nhonium [286]		
				48 Cadmium 112.414			_1	
			29 Copper 63.546	47 Ag silver 107.868	80 AU 604 196.997	Roentgenium [281]	66 Dys prosium 162.500	Of Californium [251]
			28 Nickel 58.693	Pd Palladium 106.42	79 Pt Platinum 195.084	110 DS Darmstackium [281]	65 Tb Perhium 158.925	97 Berkelium [247]
			27 Cobalt 58.933	45 Rhodium 102.906	78	109 Mt Meitnerium [278]	64 Gadolinim 157.25	Cm curium [247]
			26 Fe lion 55.845	Ruthenium 101.07	76 OSmium 190.23	108 Hassium [270]	63 Europium 151.964	Americium [243]
			25 Mn Manganese 54.938	43 C Technetium [97]	75 Renium 186.207	Bohrium [270]	Sm Samarium 150.36	Plutonium [244]
			24 Chromium 51.996	MO Molybdenum 95.95			Pm Promethium [145]	
			23 Vanadium 50.942	41 Niobium 92.906	73 5 Tantalum 180.948	105 Db Dubnium [270]		92 Uranium 238.029
			22 Tritanium 47.867	40 Z r zirconium 91.224	72 H4fnium 178.49	104 Rutherfordium [267]	Prass	Protactinium 231.036
			SC Scandium 44.956	39 Yttrium 88.906	71 LU Lutetium 174.967	103 C r Lawrencium [262]	58 Cerium 140.116	90 Thorium 232.038
					* 57 - 70	** 89 - 102	57 Lanthanum 138.905	89 Actinium [227]
	Beryllium	12 Mg Magnesium 24.305	Cacium Cacium 40.078	Strontium 87.62	56 Ba rium 137.327	88 Radi um [226]	de series	series
1 Hydrogen 1:008	3 Lithium 6.94	11 Na Sodium 22.990	19 K	Rubidium 85.468	55 Cesium 132.905	87 F r Fancium [223]	*Lanthanide series	**Actinide series