ELEC 341: Systems and Control

Lecture 13

Root locus: Controller design

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

- **Transient**
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

What is Root Locus? (review)

- *Pole locations* of the system characterizes stability and transient properties.
- Consider a feedback system that has one parameter (gain) K > 0 to be designed.

• *Root locus* graphically shows how poles of CL system varies as *K* varies from 0 to infinity.

Today's topics

- How to use the root locus
 - Example 1: Gain design to meet design specifications
 - Example 2: Pole location design
 - Example 3: Multiple parameter design
 - In following lectures
 - Lead and lag compensator design
 - PID controller design

Example 1

- Design the gain K so that
 - Overshoot at most 4.32 %
 - 2% settling time at most 2 sec
 - Error constant $K_p > 1$
- Find minimum SS error for unit step

$$(CL TF) = \frac{K}{(s+1)(s+3)+K}$$
 2nd order!

Example 1 (cont'd)

- Allowable region
 - Overshoot at most 4.32%

$$\theta < 45^{\circ}$$

2% settling time at most 2 sec

$$T_s = \frac{4}{|\text{Re}|} \le 2 \iff |\text{Re}| \ge 2$$

• Error constant $K_p > 1$

$$K_p = KL(0) = \frac{K}{3} > 1 \iff K > 3$$

Example 1 (cont'd)

Gain value computations

$$K = -\frac{1}{L(s)} \quad (\Leftrightarrow 1 + KL(s) = 0)$$

$$(\Leftrightarrow 1 + KL(s) = 0)$$

•
$$s = -2$$

$$K = -\frac{1}{L(-2)} = 1$$

•
$$s = -2 + 2j$$

$$K = -\frac{1}{L(-2+2j)} = 5$$

Example 1 (cont'd)

Acceptable gain

$$3 < K \le 5$$

Minimum SS error for unit step

$$e_{ss} = \frac{1}{1+5/3} = \frac{3}{8} = 0.375 \implies e_{ss} = 0.375$$

- Limitations of gain controller
 - T_s cannot be less than 2 sec
 - Overshoot and SS error cannot be improved simultaneously.

Lead-lag or PID compensator design!

Example 1 (cont'd): Step responses

a place of mind

Today's topics

- How to use the root locus
 - Example 1: Gain design to meet design specifications
 - Example 2: Pole location design
 - Example 3: Multiple parameter design
 - In following lectures
 - Lead and lag compensator design
 - PID controller design

Example 2

Q: Draw root locus for a > 0

Characteristic eq.

$$1 + \frac{9}{s(s+a)} = 0$$

Term without a Term with a

L(s) Fictitious OL system

Two CL sys<mark>tems have the same charac</mark>teristic eq.

Example 2 (cont'd)

• If a tuning parameter appears in the characteristic equation at a "non-standard location", to draw root locus with respect to the tuning parameter, we transform the equation into our "standard" form:

$$1 + KL(s) = 0$$

Two examples:

$$1 + \frac{1}{s(s+p)} = 0 \Rightarrow s(s+p) + 1 = 0$$

$$\Rightarrow s^2 + 1 + ps = 0 \Rightarrow 1 + p + \frac{s}{s^2 + 1} = 0$$

$$1 + \frac{s+2}{s^2} = 0 \Rightarrow s^2 + s + z = 0 \Rightarrow 1 + z + \frac{1}{s(s+1)} = 0$$

Example 2 (cont'd)

Example 2 (cont'd)

- Design the pole "a" satisfying
 - Overshoot at most 4.32%
 - 2% settling time at most 2 sec
 - Error constant $K_v > 2$

$$K_v = \lim_{s \to 0} s \frac{9}{s(s+a)} = \frac{9}{a} > 2$$

Today's topics

- How to use the root locus
 - Example 1: Gain design to meet design specifications
 - Example 2: Pole location design
 - Example 3: Multiple parameter design
 - In following lectures
 - Lead and lag compensator design
 - PID controller design

Example 3

- Mass-spring-damper system
 - Shock absorber (car, train)
 - Seismic isolator (building)
 - Accelerometer (Lec 3)
- Design a controller so that
 - 2% settling at most 1 sec
 - No overshoot
 - e_{ss} for unit step < 0.05

$$e_{ss} = \frac{1}{1 + K_p} < 0.05$$

$$\longrightarrow$$
 $K_p > 19$ \longrightarrow $K > 38$

Example 3 (cont'd)

- Root locus
 - Poles: $s = -1 \pm j$

We cannot achieve the design specs with the position feedback gain controller!

Example 3 (cont'd): Step responses

Example 3 (cont'd)

Position & velocity (rate) feedback

- We have two design parameters to be tuned to satisfy the design specs, i.e., $K \& K_1$.
- How to use root locus technique?

Example 3 (cont'd)

$$= \frac{\frac{1}{s^2 + 2s + 2}}{1 + \frac{K_1 s}{s^2 + 2s + 2}} = \frac{1}{s^2 + (K_1 + 2)s + 2}$$

• SS error spec

$$K_p = \frac{K}{2} > 19 \implies K > 38$$

Example 3 (cont'd): Set K = 40

Characteristic eq. $1 + 40 \times \frac{1}{s^2 + (K_1 + 2)s + 2} = 0$

$$\Rightarrow s^2 + 2s + 42 + K_1 s = 0 \Rightarrow 1 + K_1 \underbrace{\frac{s}{s^2 + 2s + 42}}_{L(s)} = 0$$

Example 3 (cont'd): K = 40

Example 3 (cont'd): Step responses

Example 4

- a) Set $K_t = 0$. Draw root locus for K > 0.
- b) Set K = 10. Draw root locus for $K_t > 0$.
- c) Set K = 5. Draw root locus for $K_t > 0$.

Example 4 (cont'd) (a): $K_t = 0$

Example 4 (cont'd) (b): K = 10

Characteristic eq.

$$1 + 10\left(\frac{\frac{1}{s^2(s+5)}}{1 + \frac{K_t s}{s^2(s+5)}}\right) = 0$$

Example 4 (cont'd) (b): K = 10

Example 4 (cont'd) Finding K_t for marginal stability

Characteristic equation

$$1 + \frac{K_t s}{s^3 + 5s^2 + 10} = 0 \Leftrightarrow s^3 + 5s^2 + K_t s + 10 = 0$$

• Routh array
$$s^3$$
 1 K_t s^2 5 10 Stability condition s^1 $\frac{5K_t-10}{5}$ $K_t>2$

$$K_t > 2$$

• When $K_{t} = 2$

$$5s^2 + 10 = 0 \Rightarrow s = \pm \sqrt{2}j$$

Example 4 (cont'd)

Example 4 (cont'd) (c): K = 5

Characteristic eq.

$$1 + 5\left(\frac{\frac{1}{s^2(s+5)}}{1 + \frac{K_t s}{s^2(s+5)}}\right) = 0$$

$$\Rightarrow s^{2}(s+5) + K_{t}s + 5 = 0 \Rightarrow 1 + K_{t} \underbrace{\frac{s}{s^{3} + 5s^{2} + 5}}_{L(s)} = 0$$

Example 4 (cont'd) (c): Root locus plot

Example 5

a) Set T = 0. Draw root locus for K > 0.

$$L(s) = \frac{1}{s(s+1)(s+2)}$$

b) Vary T to see the effect of a zero on root locus.

Example 5 (a) (cont'd)

lm

Root locus for

$$L(s) = \frac{1}{s(s+1)(s+2)}$$

$$K = 6$$

Example 5 (b) (cont'd)

 When K is fixed and T is a positive parameter, the characteristic equation can be written as

$$1 + K \frac{1 + Ts}{s(s+1)(s+2)} = 0$$

$$s(s+1)(s+2) + K + TKs = 0$$
Term without T Term with T

$$1 + T \frac{Ks}{s(s+1)(s+2) + K} = 0$$

Example 5 (b) (cont'd)

Root locus for K = 1.3 & various T

 Generally,
 addition of a zero in open-loop system improves CL stability.

Summary

- How to use the root locus
 - Example 1: Gain design to meet design specifications
 - Example 2: Pole location design
 - Example 3: Multiple parameter design
 - Velocity (rate) feedback can be used to improve the transient property.
- Next
 - We will study how to use the root locus to design lead-lag compensators.