CS 6501 Natural Language Processing

Logistic Regression

Yangfeng Ji

September 5, 2018

Department of Computer Science University of Virginia

First Independent Project

- Will be released this weekend
- Topic: text classification using Perceptron and logistic regression
- Requirement: implement these two models and compare the performance with existing implementations
- ► Time: about two weeks
- No late submission

About Machine Learning Background

Overview

- 1. Logistic Regression
- 2. Example
- 3. Better LR Models
- 4. Connections to Neural Networks

Classification

- ► Input: a text *x*
- ▶ Output: $y \in \mathcal{Y}$, where \mathcal{Y} is the predefined category set

Mathematical Formulation

- ightharpoonup Input: a numeric representation x
- ▶ Output: scores $\Psi(x, y; \theta) \in \mathbb{R}$, $\forall y \in \mathcal{Y}$

Classification

$$\hat{y} = \arg\max_{y' \in \mathcal{Y}} \Psi(x, y'; \theta) \tag{1}$$

Questions

Linear score function
$$\Psi(x, y; \theta) = \theta^{T} f(x, y)$$

- 1. How to build f(x, y)?
 - ► Bag-of-words representation
- 2. How to learn θ ?
 - Perceptron algorithm

Questions

Linear score function $\Psi(x, y; \theta) = \theta^{T} f(x, y)$

- 1. How to build f(x, y)?
 - Bag-of-words representation
 - ► *n*-gram feature representation
- 2. How to learn θ ?
 - ► Perceptron algorithm
 - Logistic regression

Logistic Regression

Logistic Regression

On $|\mathcal{Y}|$ -category classification

$$P(y|x; \theta) = \frac{\exp(\theta^{\top} f(x, y))}{\sum_{y' \in \mathcal{Y}} \exp(\theta^{\top} f(x, y'))}$$

- ▶ $P(y|x;\theta)$: probability of y given x
- \blacktriangleright f(x, y): feature function
- \triangleright θ : classification parameters
- \triangleright |\mathcal{Y}|: number of elements in set \mathcal{Y}

Classification

Perceptron algorithm:

$$\hat{y} \leftarrow \arg\max_{y'} \boldsymbol{\theta}^{\top} f(x, y') \tag{2}$$

Logistic regression:

$$\hat{y} \leftarrow \arg\max_{y'} P(y'|x;\theta) \tag{3}$$

Likelihood

Given a training set $\{(x^{(i)}, y^{(i)})\}$

$$L(\theta) = \prod_{i=1}^{N} P(y^{(i)}|x^{(i)};\theta)$$
 (4)

 $L(\boldsymbol{\theta})$

- likelihood: measure how good the model fits the training data
- \triangleright a function of θ

Training: Maximum likelihood estimation

Learning θ by optimizing $L(\theta)$

$$\max_{\boldsymbol{\theta}} \prod_{i=1}^{N} P(y^{(i)}|x^{(i)}; \boldsymbol{\theta})$$
 (5)

Training: Maximum likelihood estimation

Due to numeric issues, usually maximize $\log L(\theta)$ instead

$$\log L(\boldsymbol{\theta}) = \log \prod_{i=1}^{N} P(y^{(i)}|\boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$
$$= \sum_{i=1}^{N} \log P(y^{(i)}|\boldsymbol{x}^{(i)}; \boldsymbol{\theta}),$$

or minimize the negative log likelihood function

$$\ell(\boldsymbol{\theta}) = -\log L(\boldsymbol{\theta}) \tag{6}$$

Log-linear Models

$$\begin{split} \log P(y|x;\theta) &= \log \frac{\exp(\theta^\top f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(\theta^\top f(x,y'))} \\ &= \theta^\top f(x,y) - \log \sum_{y' \in \mathcal{Y}} \exp(\theta^\top f(x,y')) \end{split}$$

Log-linear Models

$$\begin{split} \log P(y|x;\theta) &= \log \frac{\exp(\theta^{\top}f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(\theta^{\top}f(x,y'))} \\ &= \theta^{\top}f(x,y) - \log \sum_{y' \in \mathcal{Y}} \exp(\theta^{\top}f(x,y')) \end{split}$$

Two comments

- ▶ $\log \sum \exp(\cdot)$ function, e.g., torch.log_sum_exp
- prediction only relies on the first part

Gradient

$$\begin{split} \frac{\partial \log P(y|x;\theta)}{\partial \theta} &= \frac{\partial}{\partial \theta} \left\{ \theta^\top f(x,y) - \log \sum_{y' \in \mathcal{Y}} \exp(\theta^\top f(x,y')) \right\} \\ &= f\left(x,y\right) - \frac{\partial}{\partial \theta} \log \sum_{y' \in \mathcal{Y}} \exp(\theta^\top f(x,y')) \\ &= f\left(x,y\right) - \mathbb{E}_{Y|X}[f\left(x,y\right)] \end{split}$$

Expectation of f

$$\mathbb{E}_{Y|X}[f(x,y)] = \sum_{y' \in \mathcal{Y}} \left\{ P(y'|x)f(x,y') \right\} \tag{7}$$

[Eisenstein, 2018, Sec. 2.4.2]

Optimization with Gradient

Two elements

- which direction?
- how far it goes?

Updating Rules

► Logistic regression

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \eta \cdot (f(x, y) - \mathbb{E}_{Y|X}[f(x, y)])$$

 γ is step size (hyper-parameter).

Updating Rules

Logistic regression

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \eta \cdot (f(x, y) - \mathbb{E}_{Y|X}[f(x, y)])$$

 γ is step size (hyper-parameter).

Perceptron

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + f(x, y) - f(x, \hat{y})$$

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \eta \cdot (f(x, y) - \mathbb{E}_{Y|X}[f(x, y)])$$

Why LR is better?

$$\mathbb{E}_{Y|X}[f(x,y)] = \sum_{y} P(y'|x)f(x,y') \tag{8}$$

Not just based on the current mistake

Training Objective

	Perceptron	Logistic Regression
Objective	Accuracy Non-differentiable	Likelihood Differentiable
Updating	$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + f(x, y) - f(x, \hat{y})$	$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \eta \cdot (f(x, y) - \mathbb{E}_{Y X}[f(x, y)])$
Prediction	$\hat{y} \leftarrow \arg\max_{y'} \boldsymbol{\theta}^{\top} f(x, y'; \boldsymbol{\theta})$	

Online vs. Batch Learning

Likelihood:

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log P(y^{(i)}|\boldsymbol{x}^{(i)};\boldsymbol{\theta})$$
 (9)

Online vs. Batch Learning

Likelihood:

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \log P(y^{(i)}|\boldsymbol{x}^{(i)};\boldsymbol{\theta})$$
 (9)

Gradient:

$$\frac{\partial \log L(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \sum_{i=1}^{N} \left\{ f\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}\right) - \mathbb{E}_{Y|X}[f\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}\right)] \right\} \quad (10)$$

Online vs. Batch Learning

Likelihood:

$$\log L(\theta) = \sum_{i=1}^{N} \log P(y^{(i)}|x^{(i)};\theta)$$
 (9)

Gradient:

$$\frac{\partial \log L(\theta)}{\partial \theta} = \sum_{i=1}^{N} \left\{ f\left(x^{(i)}, y^{(i)}\right) - \mathbb{E}_{Y|X}[f\left(x^{(i)}, y\right)] \right\} \quad (10)$$

Update:

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \eta \frac{\partial \log L(\theta)}{\partial \theta}$$
 (11)

Online vs. Batch Learning (II)

Notation Change

Objective

$$\ell(\theta) = -\log L(\theta) = -\sum_{i=1}^{N} \log P(y^{(i)}|x^{(i)};\theta)$$
 (12)

Update

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} - \eta \frac{\partial \ell(\theta)}{\partial \theta}$$
 (13)

[Eisenstein, 2018, Sec. 2.4.2]

Example

Example Dataset

A subset of the Yelp Dataset https://www.yelp.com/dataset/challenge

	Training	Development	Test
Documents	40K	5K	5K
Words	4.7M	0.5M	0.6M

- 5 classes (user rating from 1 to 5)
- Code available on https://github.com/jiyfeng/textclassification

Building BoW Representations

Sklearn function

sklearn.feature_extraction.text.CountVectorizer

- Given a collection of texts, it will build a vocab and also convert all texts into numeric vectors
- With Logistic Regression, the classification performance

Logistic Regression

Sklearn function

sklearn.linear_model.LogisticRegression

Classification accuracy on the development data is 61.4%

How Far We Can Go with BoW?

Tricks to reduce vocab size

- remove punctuation (default)
- ▶ lowercase (/)
- ► remove low-frequency words (/)
- replace numbers with a special token

How Far We Can Go with BoW?

Tricks to reduce vocab size

- remove punctuation (default)
- ▶ lowercase (/)
- ► remove low-frequency words (/)
- ► remove high-frequency words (_)
- replace numbers with a special token

Comments

- Not always helpful (these are empirical tricks)
- ► Not always the case (it depends on the data/domain)

Interpretability

Weights learned from training data

Vocab	$w_{ m rating=1}$	$w_{ m rating=5}$
SUPER	[0.33]	[-0.09]
QUICK	-1.26	-0.01
FOOD	0.08	-0.09
FRIENDLY	-2.57	0.16
EAT	-0.47	0.00
DELICIOUS)	[-3.60]	[0.64]

Interpretability (II)

Top features

rating = 5	rating = 1	
exceptional	worst	
incredible	joke	
phenomenal	disgusted	
body	unprofessional	
regret	garbage	
worried	disgusting	
skeptical	luck	
hesitate	pathetic	
happier	apologies	
mike	horrible	

Better LR Models

Ways to Improve LR Models

- Richer feature set
- Regularization
- Better optimization methods

Richer Features: bi-grams

Combine words together to form high-order features

► Uni-grams:

{FAST, SLOW, SUPER}

Richer Features: bi-grams

Combine words together to form high-order features

► Uni-grams:

{FAST, SLOW, SUPER}

► Bi-grams:

{SUPER FAST, SUPER SLOW}

Extended feature set

{fast, slow, super, super fast, super slow}

Performance

Sklearn function

sklearn.feature_extraction.text.CountVectorizer
with ngram_range=(1, 2)

- Even larger vocab size: from 6oK to 1M
- ▶ Performance change: from 61.4% to 62.4% on the dev data

Problems with Large Feature Set

Overlap among features

Example

{FAST, SLOW, SUPER, SUPER FAST, SUPER SLOW}

Problems with Large Feature Set

Overlap among features

Example

{FAST, SLOW, SUPER, SUPER FAST, SUPER SLOW}

Learning in high dimensional space — overfitting

Example

62.4% on dev data

~ 100% on training data

Overfitting

[Abu-Mostafa et al., 2012]

Ways to Improve LR Models

- ✓ Richer feature set
- Regularization
- Better optimization methods

L₂ Regularization

Add an additional constraint on θ

$$\ell_{L_2}(\theta) = -\sum_{i=1}^{N} \log P(y^{(i)}|x^{(i)};\theta) + \frac{\lambda}{2} \|\theta\|_2^2$$
 (14)

[Eisenstein, 2018, Sec. 2.4.1]

L₂ Regularization (Cont.)

Ways to Improve LR Models

- ✓ Richer feature set
- ✓ Regularization
- Better optimization methods

Optimization with Gradient Descent

At time step t

$$\boldsymbol{\theta}^{(t+1)|} \leftarrow \boldsymbol{\theta}^{(t)} - \eta^{(t)} \frac{\partial \ell(\boldsymbol{\theta}^{(t)})}{\partial \boldsymbol{\theta}^{(t)}}$$
 (15)

- Direction
- Step size

Adaptive Gradient Methods

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \eta \cdot \frac{1}{\sqrt{\sum_{k=1}^{t} \left(\frac{\partial \ell(\boldsymbol{\theta}^{(k)})}{\partial \boldsymbol{\theta}^{(k)}}\right)^2}} \cdot \frac{\partial \ell(\boldsymbol{\theta}^{(t)})}{\partial \boldsymbol{\theta}^{(t)}}$$
(16)

[Duchi et al., 2011, AdaGrad]

Adaptive Gradient Methods (Cont.)

Ways to Improve LR Models

- ✓ Richer feature set
- ✓ Regularization
- ✓ Better optimization methods

Connections to Neural Networks

About Feature Function f(x, y)

- ► LR
 - feature engineering
 - feature selection
- Neural networks
 - ightharpoonup representation learning: learning f directly

About Optimization Methods

Having a better optimization method

- ► LR
 - helpful
- Neural networks
 - crucial
 - sophisticated methods (e.g., AdaGrad) is not always better than SGD

About Overfitting

- ► LR
 - happens if two many features
 - $ightharpoonup L_2$ regularization helps
 - ightharpoonup Other options: L_1 regularization
- Neural networks
 - happens if too many neurons
 - $ightharpoonup L_2$ regularization (weight decay) helps
 - Other options: dropout

Summary

- Logistic regression
- ▶ Better LR models
 - Rich feature set
 - Regularization
 - Optimization methods

Reference

Abu-Mostafa, Y. S., Magdon-Ismail, M., and Lin, H.-T. (2012).

Learning from data, volume 4.
AMLBook New York, NY, USA:.

Duchi, J., Hazan, E., and Singer, Y. (2011).

Adaptive subgradient methods for online learning and stochastic optimization.

Journal of Machine Learning Research, 12(Jul):2121–2159.

Eisenstein, J. (2018). Natural Language Processing.

MIT Press.