1. The population of a town is as follows:

Year x: 1941 1951 1961 1971 1981 1991 Popu (lakhs) y: 20 24 29 36 46 51

Estimate the population increase during the period 1946 to 1976

Sol: Here the values of x are equally spaced. x = 1946 is nearer to the beginning value of the table. So first form the forward difference table

X	y	Δy	Δ^2 y	Δ^3 y	Δ^4 y	Δ^5 y
1941	20					
1951	24	4 5	1	1		
1961	29	3	2	1	0	
		7		1		-9
1971	36		3		-9	-9
		10	_	-8		
1981	46	_	-5			
1991	51	5				

Here $x_0 = 1941$; x = 1946 and h = 10

$$\mathbf{u} = (\mathbf{x} - \mathbf{x}_0)/\mathbf{h}$$

u = (1946 - 1941) / 10 = 0.5

Newton's forward difference formula for interpolation is

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots$$

In the table, the uppermost diagonal values are the forward differences of y_0 .

$$y(1946) = 20 + (0.5 * 4) / 1! + (0.5 * (0.5 - 1) * 1) / 2! + (0.5 * (0.5 - 1) * (0.5 - 2) * 1)/3! + 0 + (0.5 * (0.5 - 1) * (0.5 - 2) * (0.5 - 3) * -9)/4! = 20 + 2 - 0.125 + 0.0625 - 0.24609 = 21.69$$

Next, x= 1976 is nearer to the end value of the table. So use Newton's backward difference formula for interpolation

$$y(x) = y_n + \frac{v}{1!} \nabla y_n + \frac{v(v+1)}{2!} \nabla^2 y_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 y_n + \dots$$

 $v = \left(x - x_n\right) / \, h$. Here $x_n = 1991$; x = 1976 and hence $v = \left(1976 - 1991\right) / \, 10 =$ - 1.5

In the table, the lowermost diagonal values are the backward differences of y_n.

$$y(1976) = 51 + (-1.5 * 5) / 1! + (-1.5 * (-1.5 + 1) * -5) / 2! + (-1.5 * (-1.5 + 1) * (-1.5 + 2) * -8) / 3! + (-1.5 * (-1.5 + 1) * (-1.5 + 2) * (-1.5 + 3) * -9) / 4! + (-1.5 * (-1.5 + 1) * (-1.5 + 2) * (-1.5 + 3) * (-1.5 + 4) * -9) / 5! = 51 - 7.5 - 1.875 - 0.5 - 0.2109375 - 0.10546875 = 40.8085938$$

Therefore, increase in population during the period = 40.809 - 21.69 = 19.119 lakhs

2. From the following data, find θ at x = 43 and x = 94

X θ

40 50

184

60 226

70 250 80

90 276 304

Also express θ in terms of x.

204

Sol: Here the values of x are equally spaced. x = 43 is nearer to the beginning value of the table. So first form the forward difference table

X	θ	Δθ	$\Delta^2 \Theta$	$\Delta^3 \Theta$	$\Delta^4 \theta$	$\Delta^5\theta$
40	184					
		20				
50	204		2	_		
		22		0		
60	226	•	2		0	
70	250	24	2	0	0	0
70	250	26	2	0	0	
90	276	26	2	0		
80	270	28	2			
90	304	20				
	30 4					

Here $x_0 = 40$; x = 43

$$\mathbf{u} = (\mathbf{x} - \mathbf{x}_0)/\mathbf{h}$$

$$u = (43 - 40) / 10 = 0.3$$

Newton's forward difference formula for interpolation is

and h = 10

$$\theta(x) = \theta_0 + \frac{u}{1!} \Delta \theta_0 + \frac{u(u-1)}{2!} \Delta^2 \theta_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 \theta_0 + \dots$$

In the table, the uppermost diagonal values are the forward differences of θ_0 .

$$\theta(x = 43) = 184 + (0.3 * 20) / 1! + (0.3 * (0.3 - 1) * 2) / 2! + 0 + 0 + 0$$

= 184 + 6.0 - 0.21 = 189.79

Next, to find the value of θ when x = 94

x = 94 is nearer to the end value of the table. x = 94 is outside the given interval. But here we use Newton's backward difference formula for interpolation

$$\theta(x) = \theta_n + \frac{v}{1!} \nabla \theta_n + \frac{v(v+1)}{2!} \nabla^2 \theta_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 \theta_n + \dots$$

$$v = \left(x - x_n\right) \, / \, h$$
 . Here $x_n = 90; \ \ x = 94$ and hence $v = \left(94 - 90\right) \, / \, \, 10 = 0.4$

In the table, the lowermost diagonal values are the backward differences of θ_n .

$$\theta(x = 94) = 304 + (0.4 * 28) / 1! + (0.4 * (0.4 + 1) * 2) / 2! + 0 + 0 + 0$$

= 304 + 11.2 + 0.56 = 315.76

Now to find θ in terms of x. Here we use either Newton's forward or backward difference formula for interpolation. Suppose, if Newton's forward difference formula for interpolation is used, then u can be taken as (x - 40) / 10

$$\theta(x) = \theta_0 + \frac{u}{1!} \Delta \theta_0 + \frac{u(u-1)}{2!} \Delta^2 \theta_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 \theta_0 + \dots$$

$$= 184 + ((x-40)*20) / 10 + ((x-40)*(x-50)*2) / (2*100) + 0 + 0$$

$$= 184 + 2x - 80 + (1/100) * (x^2 - 90x + 2000) = 0.01x^2 + 1.1x + 124$$

3. From the data given below, find the number of students whose weight is between 60 and

Weight in lbs No. of students 0 - 40250

40 - 60120

60 - 80100

80 - 10070

100 - 12050

Sol

S	ol:					
	Weight x	No of students	Δy	$\Delta^2 y$	Δ^3 y	$\Delta^4 y$
	Below 40	250	120			
	Below 60	370		-20	10	
	Below 80	470	100	-30	-10	20
	Below 100	540	70	-20	10	
	Below 120	590	50			

Let us calculate the number of students whose weight is less than 70. We will use forward difference formula

$$u = (x - x_0) / h = (70 - 40) / 20 = 1.5$$

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots$$

$$y(70) = 250 + (1.5 * 120) / 1! + (1.5 * 0.5 * - 20) / 2! + (1.5 * 0.5 * -0.5 * -10) / 3! + (1.5 * 0.5 * -0.5 * -1.5 * 20) / 4!$$

$$= 250 + 180 - 7.5 + 0.625 + 0.46875 = 423.59 = 424 \text{(approximately)}$$
Jumber of students whose weight is between 60 and 70 is $y(70) - y(60)$

Number of students whose weight is between 60 and 70 is y(70) - y(60)

$$=424-370=54$$

4. From the following table, find the value of tan45°15'

 \mathbf{x}° 45 50 tan x° 1.00000 1.19175 46

47

1.07237

48

1.11061

1.15037

49

Sol: We use forward interpolation formula; also $h = 1^{\circ}$

$$u = (x - x_0) / h = (45^{\circ}15' - 45^{\circ}) / 1^{\circ} = 0.25$$
 (u is dimensionless)

1.03553

G (11 110) / 11 ((.5 15), 1	-5 (a 15 aiii	embronness)	
X	$y = \tan x^{\circ}$	Δy	Δ^2 y	Δ^3 y	$\Delta^4 y$	Δ^5 y
45°	1.00000	0.03553	0.00131	0.00009	0.00003	-0.00005

46°	1.03553	0.03684	0.00140	0.00012	-0.00002	
47°	1.07237	0.03824	0.00152	0.00010		
48°	1.11061	0.03976	0.00162			
49°	1.15037	0.04138				
50°	1.19175					

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \dots$$

$$= 1.00000 + (0.03553) * (.25) + (1/4) * (-3/4) * 0.00131 * (1/2!) + (1/4) * (-3/4) * (-7/4) * 0.00009 * (1/3!) + (1/4) * (-3/4) * (-7/4) * (-11/4) * 0.00003 * (1/4!) + (1/4) * (-3/4) * (-7/4) * (-11/4) * (-15/4) * -0.00005 * (1/5!)$$

$$= 1.0000 + 0.0088825 - 0.0001228 + 0.0000049 + \dots = 1.00876$$

5. The following table gives the values of the probability integral

$$f(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-x^{2}} dx$$
 for certain values of x. Find the value of the integral when

$$x = 0.5437$$

Sol: Here x = 0.5437 is nearer to the middle value of the table . We take the origin $x_0 = 0.54$ and x = 0.5437, h = 0.01.

Hence,
$$u = (x - x_0) / h = (0.5437 - 0.54) / 0.01 = 0.37$$

X	u	у	Δy	$\Delta^2 y$	$\Delta^4 y$	$\Delta^5 y$
0.51	-3	0.5292437	0.0086550	-0.0000896		
					-0.0000007	
0.52	-2	0.5378987	0.0085654	-0.0000903		0.0
					-0.0000007	
0.53	-1	0.5464641	0.0084751	-0.0000910		0.0
					-0.0000007	
0.54	0	0.5549392	0.0083841	-0.0000917		0.0000001
					-0.0000006	
0.55	1	0.5633232	0.0082924	-0.0000923		

	0.56	2	0.5716157	0.0082001				
	0.57	3	0.5798158					
у	$(x) = y_0 +$	$\frac{u}{1!} \left[\frac{\Delta y_0}{} \right]$	$\frac{+\Delta y_{-1}}{2} + \frac{u^2}{2!}$	$-\Delta^2 y_{-1} + \frac{u(u^2)}{u(u^2)}$	$\frac{(2^2-1^2)}{3!} \left[\frac{\Delta^3 y_{-1}}{2} \right]$	$\frac{+\Delta^3 y_{-2}}{2} + \frac{u^2 (u^2 + \Delta^3 y_{-2})}{2}$	$\frac{u^2 - 1^2}{4!} \Delta^4 y_{-2}$	2+
y((0.5437) =	0.55493	392 + 0.37 * ((0.0083841 +	- 0.0084751) /	2) + (0.37 ² * -	0.0000910) /2	2
	+ ((0.37 * (0.37 ² – 1) / 6)) * (- 0.0000007)							
	=	0.55493	92 + 0.00311	8952 - 0.000	00623 + 0.000	000004 = 0.558	05196	