Ejercicio Introducción a Series de Tiempo

I took the datasets from yahoo finance:

- https://finance.yahoo.com/quote/ECOPETROL.CL/history? period1=1523145600&period2=1680912000&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true
- https://finance.yahoo.com/quote/TERPEL.CL/history? period1=1523145600&period2=1680912000&interval=1d&filter=history&frequency=1d&includeAdjustedClose=true
- Ecopetrol y Terpel son las más grandes empresas Colombianas

```
In [ ]: # Librerias de Base
    import warnings
    warnings.filterwarnings('ignore')

In [ ]: import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    import os
```

Importación de datos ()

```
In [ ]: os.chdir('E:\WORK IN PROGRESS\Data Analytics course\parte 2 python\week 30')
# Uso de La funcion read_csv
df_ecopetrolcl = pd.read_csv('ECOPETROL.CL.csv')
```

Ejercicios de limpieza de datos y visualización básica, inclusión de timestamps

```
In [ ]: df_ecopetrolcl.sample(10)
```

Out[]:

	Date	Open	High	Low	Close	Adj Close	Volume
1025	2022-03-14	3207.00	3370.00	3185.00	3207.00	2944.12	19354640.00
633	2020-09-10	2015.00	2075.00	2015.00	2015.00	1836.27	12231527.00
99	2018-08-24	3240.00	3240.00	3190.00	3240.00	2477.56	7774766.00
170	2018-12-03	3290.00	3300.00	3160.00	3290.00	2549.06	10101567.00
700	2020-12-14	2287.00	2335.00	2264.00	2287.00	2084.14	12270306.00
737	2021-02-03	2090.00	2150.00	2090.00	2090.00	1904.62	11235339.00
185	2018-12-24	2550.00	2640.00	2550.00	2550.00	1975.72	870803.00
575	2020-06-22	2140.00	2140.00	2140.00	2140.00	1950.18	0.00
1150	2022-09-05	2334.00	2360.00	2306.00	2334.00	2334.00	1089796.00
300	2019-06-03	2810.00	2810.00	2810.00	2810.00	2215.57	0.00

Insights:

- Dado que la columna "Adj Close" difiere tanto con la de "close" la elimino del dataset.
- Un aspecto que se repite es el volumen = 0

```
In []: df_ecopetrolcl.shape
Out[]: (1305, 7)
In []: df_ecopetrolcl.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1305 entries, 0 to 1304
Data columns (total 7 columns):
    Column
               Non-Null Count Dtype
               -----
               1305 non-null object
    Date
 1
    0pen
               1294 non-null float64
              1294 non-null float64
 2
    High
              1294 non-null float64
 3
    Low
    Close
               1294 non-null float64
    Adj Close 1294 non-null
                             float64
    Volume
               1294 non-null
                              float64
dtypes: float64(6), object(1)
memory usage: 71.5+ KB
```

Insights:

• El total de registros del dataset es de 1305 pero el comando anterior me dice que hay 1294 por cada columna, por lo cual hay 11 valores inconsistentes.

```
df_ecopetrolcl.isnull().sum()
                       0
         Date
Out[]:
        0pen
                      11
        High
                      11
         Low
                      11
         Close
                      11
        Adj Close
                      11
         Volume
                      11
        dtype: int64
        df ecopetrolcl[df ecopetrolcl.isna().any(axis=1)]
In [ ]:
```

Out[

]:		Date	Open	High	Low	Close	Adj Close	Volume
	130	2018-10-08	NaN	NaN	NaN	NaN	NaN	NaN
	131	2018-10-09	NaN	NaN	NaN	NaN	NaN	NaN
	305	2019-06-10	NaN	NaN	NaN	NaN	NaN	NaN
	980	2022-01-10	NaN	NaN	NaN	NaN	NaN	NaN
	1030	2022-03-21	NaN	NaN	NaN	NaN	NaN	NaN
	1095	2022-06-20	NaN	NaN	NaN	NaN	NaN	NaN
	1135	2022-08-15	NaN	NaN	NaN	NaN	NaN	NaN
	1195	2022-11-07	NaN	NaN	NaN	NaN	NaN	NaN
	1200	2022-11-14	NaN	NaN	NaN	NaN	NaN	NaN
	1284	2023-03-10	NaN	NaN	NaN	NaN	NaN	NaN
	1290	2023-03-20	NaN	NaN	NaN	NaN	NaN	NaN

Insights:

• El dataset requiere imputación valores nulos

```
In []: cols_num=[col for col in df_ecopetrolcl.columns if df_ecopetrolcl[col].dtype !='object']
cols_num

Out[]: ['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']

In []: fig, axes = plt.subplots(nrows=3,ncols=3, figsize=(18,16))
    for i, column in enumerate(cols_num):
        sns.histplot(df_ecopetrolcl[column],ax=axes[i//3,i%3],kde=False)
```



```
In [ ]: df_ecopetrolcl.boxplot(column=['Volume'])
```

Out[]: <AxesSubplot: >

Insights:

• Hay un problema con el rango de la variable "Volume"

Feature Engineering

• Eliminación de columnas

```
In [ ]: df_ecopetrol.drop(['Adj Close'],axis=1,inplace=True)

Out[ ]: Date Open High Low Close Volume

0 2018-04-09 2745.00 2790.00 2790.00 2795.00 14311863.00

1 2018-04-10 2790.00 2810.00 2775.00 2790.00 16216677.00

2 2018-04-11 2980.00 2990.00 2780.00 2985.00 28627360.00

3 2018-04-12 2955.00 3050.00 2885.00 2955.00 20202015.00

4 2018-04-13 2955.00 3050.00 2885.00 2955.00 20202015.00
```

• Imputación de valores nulos

```
df date=df ecopetrolcl['Date']
        df ecopetrolcl.drop(['Date'],axis=1,inplace=True)
In [ ]: from sklearn.experimental import enable_iterative_imputer
        from sklearn.impute import IterativeImputer
        impute it = IterativeImputer()
        df helper=pd.DataFrame(impute it.fit transform(df ecopetrolcl),columns=df ecopetrolcl.columns)
        df helper.isnull().sum()
                  0
        0pen
Out[ ]:
        High
                  0
                   0
        Low
        Close
                   0
        Volume
        dtype: int64
        df= pd.concat([df date,df helper],axis=1)
        df.shape
In [
```

```
Out[]: (1305, 6)
```

Eliminando los outliers de la columna "Volume"

```
In []: df=df[df['Volume']<100000000]

In []: df.shape
Out[]: (1302, 6)

In []: # Se eliminaron 3 registros (los outliers de la columna "Volumne")

In []: df.to_csv('E:\WORK IN PROGRESS\Data Analytics course\parte 2 python\week 30\ecopetrol.csv')</pre>
```

Importación de datos

```
df ecopetrol = pd.read csv('ecopetrol.csv',index col='Date', parse dates=['Date'])
         df ecopetrol.drop(['Unnamed: 0'],axis=1,inplace=True)
         df ecopetrol.sample(5)
In [ ]:
Out[ ]:
                      Open
                              High
                                             Close
                                                       Volume
                                      Low
              Date
         2020-10-07 1911.00 1915.00 1866.00 1911.00
                                                    7623991.00
         2020-09-16 2050.00 2075.00 2035.00 2050.00
                                                    7633052.00
         2021-06-24 2750.00 2780.00 2545.00 2750.00 22177460.00
         2020-08-07 2170.00 2170.00 2170.00
                                                          0.00
         2022-02-17 3015.00 3037.00 2991.00 3015.00
                                                    6267680.00
         # Visualizacion Basica a traves de rangos
         # Usando matplotlib
         df_ecopetrol['2018':'2023'].plot(subplots=True, figsize=(10,12))
```

plt.title('Ecopetrol 2018-2023')
plt.show()


```
In [ ]: # Informacion de columnas
        df ecopetrol.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 1302 entries, 2018-04-09 to 2023-04-07
        Data columns (total 5 columns):
             Column Non-Null Count Dtype
                    1302 non-null float64
             0pen
             High 1302 non-null float64
                    1302 non-null float64
         2
             Low
             Close 1302 non-null float64
             Volume 1302 non-null float64
        dtypes: float64(5)
        memory usage: 93.3 KB
In [ ]: # Cambia el formato de pandas para visualizar los datos de una forma mas amigable
        pd.set option('display.float format', lambda x:'%.2f' %x)
In [ ]: #Estadisticas
        df ecopetrol.describe().T
```

Out[]:		count	mean	std	min	25%	50%	75%	max
	Open	1302.00	2711.64	482.98	1380.00	2297.00	2720.00	3048.75	4160.00
	High	1302.00	2746.25	484.08	1485.00	2330.25	2749.12	3090.00	4190.00
	Low	1302.00	2676.19	480.94	1300.00	2260.00	2686.50	3015.00	4075.00
	Close	1302.00	2711.58	483.01	1380.00	2297.00	2720.00	3048.75	4160.00
	Volume	1302.00	9065604.04	7083188.11	0.00	4637076.75	7624578.00	11446216.00	46273560.00

Visualización de % Cambios y retornos

```
In []: # Lag = 3(meses)
    df_ecopetrol['Close'].asfreq('M').plot(legend=True)
    lag=3
    shifted = df_ecopetrol['Close'].asfreq('M').shift(lag).plot(legend=True)
    shifted.legend(['Ecopetrol Close','Ecopetrol Lagged'])
    plt.grid()
    plt.show()
```


Insights:

- Este gráfico nos ayuda a identificar cambios de tendencias o rupturas de la misma.
- En la primera parte del 2020 se evidencia una fuerte ruptura de la tendencia que tenia la serie
- Además, se destaca el hecho de que es una serie muy inestable.
- Tiene varios periodos con una tendencia positiva y después una abrupta caida.

```
In []: # Grafico de cambio porcentual basado en el Close
    df_ecopetrol['change'] = df_ecopetrol.Close.div(df_ecopetrol.Close.shift())
In []: pd.set_option('display.float_format', lambda x:'%.4f' % x)
    df_ecopetrol.head(5)
```

Out[]:

Date						
2018-04-09	2745.0000	2790.0000	2725.0000	2745.0000	14311863.0000	NaN
2018-04-10	2790.0000	2810.0000	2775.0000	2790.0000	16216677.0000	1.0164
2018-04-11	2980.0000	2990.0000	2780.0000	2980.0000	28627360.0000	1.0681
2018-04-12	2955.0000	3050.0000	2885.0000	2955.0000	20202015.0000	0.9916
2018-04-13	2955.0000	3050.0000	2885.0000	2955.0000	20202015.0000	1.0000

Low

Close

High

```
In [ ]: df_ecopetrol['change'].plot(figsize=(20,8)).grid()
    plt.title('Cambio variable close')
```

Volume change

Out[]: Text(0.5, 1.0, 'Cambio variable close')

Open


```
In [ ]: # Calcula el Retorno
         df_ecopetrol['Return']=df_ecopetrol.change.sub(1).mul(100)
         df_ecopetrol.head(5)
Out[ ]:
                                                                 Volume change Return
                        Open
                                  High
                                                      Close
                                             Low
               Date
         2018-04-09 2745.0000 2790.0000 2725.0000 2745.0000 14311863.0000
                                                                            NaN
                                                                                   NaN
         2018-04-10 2790.0000 2810.0000 2775.0000 2790.0000 16216677.0000
                                                                          1.0164
                                                                                  1.6393
         2018-04-11 2980.0000 2990.0000 2780.0000 2980.0000 28627360.0000
                                                                          1.0681
                                                                                  6.8100
         2018-04-12 2955.0000 3050.0000 2885.0000 2955.0000 20202015.0000
                                                                          0.9916 -0.8389
         2018-04-13 2955.0000 3050.0000 2885.0000 2955.0000
                                                           20202015.0000
                                                                          1.0000
                                                                                 0.0000
In [ ]: df_ecopetrol['Return'].plot(figsize=(20,8)).grid()
         plt.title('Retorno basado en la variable close')
         Text(0.5, 1.0, 'Retorno basado en la variable close')
Out[]:
```


Insights:

- Antes del 2019 hay una gran desbalance del retorno.
- El año 2022 es el que tiene mayor inestabilidad. varios picos positivos y negativos

Comparación de dos Series

• Para que el index de las dos series coincida se debe eliminar un registro del dataset de Terpel

```
In []: # Se usa la funcion read_csv para leer el archivo .csv
# Se usa index_col con Date para usar la fecha como indice
df_terpel = pd.read_csv(' terpel.csv',index_col='Date',parse_dates=['Date'])
In []: df_terpel.sample(5)
```

Out[]:		Unnamed: 0	Open	High	Low	Close	Volume
	Date						
	2020-01-01	452	10000.0000	10000.0000	10000.0000	10000.0000	0.0000
	2019-10-25	404	10700.0000	10700.0000	10700.0000	10700.0000	477.0000
	2020-05-14	548	7480.0000	7480.0000	7480.0000	7480.0000	1353.0000
	2021-11-01	720	8280.0000	8280.0000	8280.0000	8280.0000	0.0000
	2021-02-12	953	8500.0000	8500.0000	8500.0000	8500.0000	10211.0000


```
In []: # Se normalizan Las vistas con base 100 para tener una base de comparacion similar
# La normalizacion toma como base el primer registro historico (iloc[0])
# Ambos precios empiezan en 100
normal_terpel = df_terpel.Close.div(df_terpel.Close.iloc[0]).mul(100)
normal_ecopetrol = df_ecopetrol.Close.div(df_ecopetrol.Close.iloc[0]).mul(100)
normal_terpel.plot()
normal_ecopetrol.plot()
plt.legend(['Terpel','Ecopetrol'])
plt.title('Comparacion Terpel vs Ecopetrol - Normalizados')
plt.show()
```


Date

Gráficos OHLC y candlestick

```
In []: # Se importan Las Librerias de base
%matplotlib inline
from pylab import rcParams

# Instala chart_studio

from chart_studio import plotly
from chart_studio import grid_objs
import chart_studio.plotly as py
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True)
```

```
import chart_studio.plotly as py
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.figure_factory as ff
import statsmodels.api as sm
from numpy.random import normal, seed
from scipy.stats import norm
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import math
from sklearn.metrics import mean_squared_error
```


Descomposición de la Serie de Tiempo

```
In [ ]: # Se toma el precio close de ecopetrol nuevamente
    df_ecopetrol['Close'].plot(figsize=(16,8)).grid()
```



```
In []: # Para La descomposicion
    rcParams['figure.figsize']=11,9

# Se usa La frecuencia anual
    decomposed_ecopetrol_volume = sm.tsa.seasonal_decompose(df_ecopetrol['Close'], period=360)

figure= decomposed_ecopetrol_volume.plot()
    plt.grid()
    plt.show()
```


