

MAESTRIA EN CIENCIAS DE LA COMPUTACION

Área: Sistemas Distribuidos

Programa de Asignatura: Reconocimiento de Patrones

Código: MCOM 22221

Tipo: Optativa

Créditos: 9

Fecha: Noviembre 2012

1. DATOS GENERALES

Nombre del Programa Educativo:	Maestría en Ciencias de la Computación
Modalidad Académica:	Escolarizada
Nombre de la Asignatura:	Reconocimiento de Patrones
Ubicación:	Segundo o tercer semestre (Optativa)

2. REVISIONES Y ACTUALIZACIONES

2			
Autores:	Dr. Ivo H. Pineda Torres Dr. Manuel Martín Ortiz Dr. Arturo Olvera López Dr. Iván Olmos Pineda		
Fecha de diseño:	Noviembre 2012		
Fecha de la última actualización:	Marzo 2017		
Revisores:	Dr. Arturo Olvera López		
Sinopsis de la revisión y/o actualización:	Actualización de referencias y criterios de evaluación		

3. OBJETIVOS:

General:

El estudiante conocerá y será capaz de aplicar los conceptos y técnicas principales del Reconocimiento de Patrones (RP).

Específicos:

- 1. Comprender las ideas centrales del RP.
- 2.- Conocer y ser capaz de aplicar los métodos principales del RP
- 3.- Distinguir y manejar los sistemas supervisados y no supervisados
- 4.- Entender y aplicar los modelos de discriminación estadística, paramétrica y lineal.
- 5.- Comprender y poder utilizarlos métodos principales de clasificación
- 6.- Entender y manejar métodos de estimación del error en RP

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

4. CONTENIDO

Unidad	Contenido Temático/Actividades de aprendizaje
1. Introducción	1.1 Sistemas de Reconocimiento de Patrones Problemas de Reconocimiento de Patrones - Clasificación - Selección de variables - Selección de instancias - Enfoques de RP (Estadístico, Sintáctico, Neuronal, Lógico-Combinatorio) 1.2 Diseño 1.3 Aprendizaje y adaptación 1.4 Elementos de estadística y álgebra lineal
2. Teoría Bayesiana de Decisiones	2.1 Teoría Bayesiana de decisiones 2.2 Tratamiento del error 2.3 Clasificadores por medio de funciones y superficies de decisión. Caso dos categorías y multicategoría 2.3 Discriminante basado en la función de Densidad Normal 2.4 Redes Bayesianas de creencia Naive Bayes
3. Funciones Discriminantes Lineales	 3.1 Funciones de decisión lineales 3.2 Clasificación por medio de Funciones de Distancia. 3.3 Algoritmos de Programación Lineal: Perceptrón simple. 3.4 Procedimientos de Relajación 3.5 SVM de dos clases y multiclase
4. Técnicas paramétricas máxima Verosimilitud	 4.1 Estimación de Máxima Verosimilitud. 4.2 Problemas asociados con la dimensionalidad. 4.3 PCA (PCA, LDA-Fisher, MDA) 4.4 Modelos Ocultos de Markov
5. Técnicas no paramétricas	 5.1 Ventana de Parzen 5.2 k-NN 5.3 Regla k-NN - Algoritmos aproximados k-NN - LAESA,TLAESA - Selección de instancias basada en k-NN - ENN,ICF,DROP,GCNN - LWR

Unidad	Contenido Temático/Actividades de
Omada	aprendizaje
	5.4 Clasificación difusa
6. Estimación de Error	6.1 Conjuntos de prueba
	6.2 Validación cruzada simple y estratificada
	6.3 Error I y Error II
	6.4 Pruebas de significancia estadística
	6.5 k-fold paired t test, Wilcoxon Rank, Mc
	Nemar's test

BENÉMERITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

FACULTAD DE CIENCIAS DE LA COMPUTACION

Bibliografía		
Básica	Complementaria	
1. Pattern Classification, Richard O. Duda,	A modification of the LAESA algorithm for	
Peter E. Hart, David G. Stork Second Edition,	approximated k-NN classification. Francisco	
Willey Interscience 2000	Moreno-Seco, Luisa Micó, Jose Oncina.	
Introduction to Statistical Patten	Pattern Recognition Letters vol. 24, pp. 47-57,	
Recognition. Keinosuke Fukunaga Elsevier.	2003	
Morgan K. Aufmann, 1990	Advanced nonparametric tests for multiple	
3. An Introduction to Support Vector Machines	comparisons in the design of experiments in	
and Other Kemel-based Learning Methods.	computational intelligence and data mining:	
N.Christianini J. Shawe-Taylor Cambridge	Experimental analysis of power. Salvador	
University Press, 2000	García, Alberto Fernández, Julián Luengo,	
4. Machine Learning. T. Mitchell Mc Graw Hill.	Francisco Herrera. Information Sciences Vol.	
1997	180, pp. 2044-2064, 2010	
5. Pattern Recognition: An Algorithmic	Reduction Techniques for Instance-Based	
Approach. M.Narasimha Murty, V.Susheela	Learning Algorithms. Wilson D. R. and	
Devi. Springer-Verlag, 2011	Martínez T. R. Machine Learning Vol. 38, pp.	
6. Pattern Recognition. S Theodoridis,	257-286, 2000	
K.Koutroumbas. Academic Press. 2008		
7. Pattern Recognition and Machine Learning.		
Christopher M. Bishop. Springer-Verlag 2007		
8. Pattern Recognition and Big Data. Amita		
Pal and Sankar K. Pal. World Scientific. 2017		

5. CRITERIOS DE EVALUACIÓN

Criterios	Porcentaje
Exámenes	60%
Participación en clase	
Tareas	
 Exposiciones 	
Simulaciones	20%
 Trabajo de investigación y/o de intervención 	
 Prácticas de laboratorio 	20%
Visitas guiadas	
 Reporte de actividades académicas y culturales 	
Proyecto final	
Total	100%