112 Capítulo 4 Lógica combinacional

y el destino son registros de almacenamiento. Si los registros se incluyen con las puertas combinacionales, el circuito total se considera como un circuito secuencial.

Con n variables de entrada, hay 2^n posibles combinaciones de entradas binarias. Para cada una de esas combinaciones, hay un posible valor de salida. Por tanto, es posible especificar un circuito combinacional con una tabla de verdad que presenta los valores de salida para cada combinación de variables de entrada. También es factible describir un circuito combinacional con m funciones booleanas, una para cada variable de salida. Cada función de salida se expresa en términos de las n variables de entrada.

En el capítulo 1 se estudiaron los números binarios y los códigos binarios que representan cantidades discretas de información. Las variables binarias se representan físicamente con voltajes eléctricos o algún otro tipo de señal. Las señales se pueden manipular en compuertas lógicas digitales para efectuar las funciones requeridas. En el capítulo 2 se definió el álgebra booleana como una forma de expresar las funciones lógicas algebraicamente. En el capítulo 3 se explicó la manera de simplificar las funciones booleanas para lograr implementaciones económicas con compuertas. El propósito del presente capítulo es utilizar los conocimientos adquiridos en capítulos anteriores y formular procedimientos sistemáticos para el análisis y diseño de circuitos combinacionales. La resolución de algunos ejemplos representativos proporcionará un catálogo útil de funciones elementales importantes para entender los sistemas digitales.

Hay varios circuitos combinacionales que se usan ampliamente en el diseño de sistemas digitales. Esos circuitos pueden conseguirse en circuitos integrados y se clasifican como componentes estándar. Efectúan funciones digitales específicas que se necesitan a menudo en el diseño de sistemas digitales. En este capítulo presentaremos los circuitos combinacionales estándar más importantes, como los sumadores, restadores, comparadores, decodificadores, codificadores y multiplexores. Estos componentes se fabrican como circuitos MSI (de integración a mediana escala), y también se usan como *celdas estándar* en circuitos VLSI complejos como los circuitos integrados para aplicaciones específicas (ASIC). Las funciones de la celda estándar se interconectan dentro del circuito VLSI del mismo modo que se usan en el diseño MSI de múltiples CI.

4-2 PROCEDIMIENTO DE ANÁLISIS

El análisis de un circuito combinacional requiere deducir la función que realiza el circuito. Este proceso parte de un diagrama lógico dado y culmina en un conjunto de funciones booleanas, una tabla de verdad o una posible explicación del funcionamiento del circuito. Si el diagrama lógico a analizar va acompañado de un nombre de función o de una explicación de lo que se supone que hace, el problema de análisis se reducirá a una verificación de la función planteada. El análisis se efectúa manualmente encontrando las funciones booleanas o la tabla de verdad, o bien, utilizando un programa de simulación en computadora.

El primer paso del análisis consiste en asegurarse de que el circuito dado sea combinacional y no secuencial. El diagrama de un circuito combinacional tiene compuertas lógicas sin trayectorias de retroalimentación ni elementos de memoria. Una trayectoria de retroalimentación es una conexión de la salida de una compuerta a la entrada de una segunda compuerta que forma parte de la entrada a la primera compuerta. Las trayectorias de retroalimentación en un circuito digital definen a un circuito secuencial y deben analizarse según los procedimientos delineados en el capítulo 9.

Una vez que se verifica que el diagrama lógico representa un circuito combinacional, se procede a obtener las funciones booleanas de salida o la tabla de verdad. Si se está investigan-

do la función del circuito, será necesario interpretar la operación de éste a partir de las funciones booleanas o la tabla de verdad obtenidas. El éxito de tal investigación será más asequible si tenemos experiencia previa con una amplia variedad de circuitos digitales.

Para obtener las funciones booleanas de salida a partir de un diagrama lógico, el procedimiento es el siguiente:

- 1. Rotule con símbolos arbitrarios todas las salidas de compuerta que son función de variables de entrada. Determine las funciones booleanas para cada salida de compuerta.
- 2. Rotule con otros símbolos arbitrarios las compuertas que son función de variables de entrada y de compuertas previamente rotuladas. Obtenga las funciones booleanas de estas compuertas.
- 3. Repita el proceso bosquejado en el paso 2 hasta obtener las salidas del circuito.
- **4.** Por sustitución repetida de funciones previamente definidas, obtenga las funciones booleanas de salida en términos de variables de entrada.

El análisis del circuito combinacional de la figura 4-2 ilustra el procedimiento propuesto. Observe que el circuito tiene tres entradas binarias —A, B y C— y dos salidas binarias — F_1 y F_2 . Las salidas de diversas compuertas están rotuladas con símbolos intermedios. Las salidas de compuertas que son función únicamente de variables de entrada son T_1 y T_2 . La salida F_2 se deduce fácilmente de las variables de entrada. Las funciones booleanas de estas tres salidas son:

$$F_2 = AB + AC + BC$$

$$T_1 = A + B + C$$

$$T_2 = ABC$$

FIGURA 4-2 Diagrama lógico para el ejemplo de análisis

114 Capítulo 4 Lógica combinacional

A continuación, consideramos las salidas de compuertas que son función de símbolos ya definidos:

$$T_3 = F_2' T_1$$

 $F_1 = T_3 + T_2$

Para obtener F_1 en función de A, B y C, se realiza la siguiente serie de sustituciones:

$$F_{1} = T_{3} + T_{2} = F'_{2}T_{1} + ABC = (AB + AC + BC)'(A + B + C) + ABC$$

$$= (A' + B')(A' + C')(B' + C')(A + B + C) + ABC$$

$$= (A' + B'C')(AB' + AC' + BC' + B'C) + ABC$$

$$= A'BC' + A'B'C + AB'C' + ABC$$

Si se quiere investigar más a fondo y deducir la tarea de transformación de información que este circuito efectúa, habrá que dibujar el circuito a partir de las expresiones booleanas obtenidas y tratar de reconocer una operación conocida. Las funciones booleanas para F_1 y F_2 implementan el circuito que se muestra en la figura 4-7 (sección 4-4) y equivalen a un circuito sumador completo.

La deducción de la tabla de verdad del circuito es un proceso sencillo una vez que se conocen las funciones booleanas de salida. Para obtener la tabla de verdad directamente del diagrama lógico sin tener que deducir las funciones booleanas, se procede así:

- 1. Determine el número de variables de entrada del circuito. Para n entradas, forme las 2^n posibles combinaciones y haga una lista de los números binarios de 0 a $2^n 1$ en una tabla.
- 2. Rotule las salidas de compuertas selectas con símbolos arbitrarios.
- **3.** Obtenga la tabla de verdad para las salidas de aquellas compuertas que son función únicamente de las variables de entrada.
- **4.** Obtenga la tabla de verdad para las salidas de aquellas compuertas que son función de valores previamente definidos, hasta llenar las columnas de todas las salidas.

Este proceso se ilustra empleando el circuito de la figura 4-2. En la tabla 4-1, formamos las ocho posibles combinaciones de las tres variables de entrada. La tabla de verdad para F_2 se de-

Tabla 4-1 *Tabla de verdad para el diagrama lógico de la figura 4-2*

Α	В	С	F ₂	F ₂	T ₁	T ₂	T ₃	F ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

termina directamente de los valores de A, B y C, siendo F_2 igual a 1 para cualquier combinación que tiene dos o tres entradas iguales a 1. La tabla de verdad para F_2' es el complemento de F_2 . Las tablas de verdad para T_1 y T_2 son las funciones OR y AND de las variables de entrada, respectivamente. Los valores para T_3 se deducen de T_1 y F_2' : T_3 es igual a 1 cuando tanto T_1 como F_2' son 1, e igual a 0 en los demás casos. Por último, F_1 es igual a 1 para aquellas combinaciones en las que T_2 o T_3 , o ambas, son 1. Una inspección de las combinaciones de A, B, C, F_1 y F_2 en la tabla de verdad revela que es idéntica a la tabla de verdad del sumador completo que se da en la sección 4-4 para x, y, z, S y C, respectivamente.

Otra forma de analizar un circuito combinacional es efectuando simulación lógica. En la sección 4-11 ilustraremos la simulación lógica y verificación del circuito de la figura 4-2 empleando Verilog HDL. (Véase el ejemplo HDL 4-10.)

4-3 PROCEDIMIENTO DE DISEÑO

El diseño de circuitos combinacionales parte de la especificación del problema y culmina en un diagrama lógico de circuitos o un conjunto de funciones booleanas a partir de las cuales se puede obtener el diagrama lógico. El procedimiento implica los pasos siguientes:

- 1. De las especificaciones del circuito, deduzca el número requerido de entradas y salidas; asigne un símbolo a cada una.
- Deduzca la tabla de verdad que define la relación requerida entre las entradas y las salidas.
- Obtenga las funciones booleanas simplificadas para cada salida en función de las variables de entrada.
- 4. Dibuje el diagrama lógico y verifique que el diseño sea correcto.

La tabla de verdad de un circuito combinacional consta de columnas de entrada y columnas de salida. Las columnas de entrada se obtienen de los 2^n números binarios para las n variables de entrada. Los valores binarios de las salidas se deducen de las especificaciones planteadas. Las funciones de salida especificadas en la tabla de verdad dan la definición exacta del circuito combinacional. Es importante interpretar correctamente las especificaciones verbales en la tabla de verdad. Tales especificaciones suelen ser incompletas, y cualquier interpretación errónea podría dar pie a una tabla de verdad incorrecta.

Las funciones binarias de salida enumeradas en la tabla de verdad se simplifican con cualquier método disponible, como manipulación algebraica, el método de mapa o un programa de
simplificación para computadora. En muchos casos habrá diversas expresiones simplificadas
para escoger. En cada aplicación dada, ciertos criterios servirán como guía para escoger una
implementación. Un diseño práctico debe tomar en cuenta restricciones como el número de compuertas, el número de entradas de una compuerta, el tiempo de propagación de la señal a través de las compuertas, el número de interconexiones, las limitaciones de la corriente que
proporciona cada compuerta y diversos criterios adicionales que es preciso considerar al diseñar con circuitos integrados. Puesto que la importancia de cada restricción depende de la aplicación específica, es difícil hacer recomendaciones generales acerca de lo que constituye una
implementación aceptable. En la mayoría de los casos, la simplificación comienza por satisfacer un objetivo elemental, como producir las funciones booleanas simplificadas en una forma
estándar, y luego efectúa otros pasos para cumplir con otros criterios de desempeño.