

Prove
$$\cos^{-1}\frac{12}{13} + \sin^{-1}\frac{3}{5} = \sin^{-1}\frac{56}{65}$$

Let
$$\sin^{-1} \frac{3}{5} = x$$
. Then, $\sin x = \frac{3}{5} \Rightarrow \cos x = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

$$\therefore \tan x = \frac{3}{4} \Rightarrow x = \tan^{-1} \frac{3}{4}$$

$$\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{3}{4}$$
 ...

∴
$$\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$$
 ...(1)
Now, let $\cos^{-1} \frac{12}{13} = y$. Then, $\cos y = \frac{12}{13} \Rightarrow \sin y = \frac{5}{13}$.

$$\therefore \tan y = \frac{5}{12} \Rightarrow y = \tan^{-1} \frac{5}{12}$$

$$\therefore \cos^{-1} \frac{12}{13} = \tan^{-1} \frac{5}{12} \qquad \dots (2)$$

Let
$$\sin^{-1} \frac{56}{65} = z$$
. Then, $\sin z = \frac{56}{65} \Rightarrow \cos z = \frac{33}{65}$.
 $\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$

$$\therefore \tan z = \frac{56}{33} \Rightarrow z = \tan^{-1} \frac{56}{33}$$

$$\therefore \sin^{-1} \frac{56}{65} = \tan^{-1} \frac{56}{33} \qquad ...(3)$$

Now, we have:
L.H.S. =
$$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{3}{4}$ [Using (1) and (2)]
= $\tan^{-1} \frac{\frac{5}{12} + \frac{3}{4}}{1 - \frac{5}{5} \cdot \frac{3}{4}}$ [$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$]
= $\tan^{-1} \frac{20 + 36}{48 - 15}$
= $\tan^{-1} \frac{56}{33}$
= $\sin^{-1} \frac{56}{65}$ = R.H.S. [Using (3)]

Prove
$$\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$$

Let
$$\sin^{-1} \frac{5}{13} = x$$
. Then, $\sin x = \frac{5}{13} \Rightarrow \cos x = \frac{12}{13}$

$$\therefore \tan x = \frac{5}{12} \Rightarrow x = \tan^{-1} \frac{5}{12}$$

$$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12} \qquad ...($$

$$\therefore \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12} \qquad ...(1)$$
Let $\cos^{-1} \frac{3}{5} = y$. Then, $\cos y = \frac{3}{5} \Rightarrow \sin y = \frac{4}{5}$.

$$\therefore \tan y = \frac{4}{3} \Rightarrow y = \tan^{-1} \frac{4}{3}$$

$$\therefore \cos^{-1} \frac{3}{5} = \tan^{-1} \frac{4}{3} \qquad ...(2)$$

Using (1) and (2), we have

R.H.S. =
$$\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$$

= $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$
= $\tan^{-1} \left(\frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} \right)$
= $\tan^{-1} \left(\frac{15 + 48}{36 - 20} \right)$
 $\left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy} \right]$

$$= \tan^{-1} \frac{63}{16}$$
= L.H.S.

Question 8:

$$\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$$
Prove

$$\begin{split} \text{L.H.S.} &= \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8} \\ &= \tan^{-1}\left(\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} \times \frac{1}{7}}\right) + \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} \times \frac{1}{8}}\right) \\ &= \tan^{-1}\left(\frac{7 + 5}{35 - 1}\right) + \tan^{-1}\left(\frac{8 + 3}{24 - 1}\right) \\ &= \tan^{-1}\left(\frac{12}{34} + \tan^{-1}\frac{12}{23}\right) \\ &= \tan^{-1}\left(\frac{6}{17} + \tan^{-1}\frac{11}{23}\right) \\ &= \tan^{-1}\left(\frac{\frac{6}{17} + 11}{23}\right) \\ &= \tan^{-1}\left(\frac{138 + 187}{391 - 66}\right) \\ &= \tan^{-1}\left(\frac{325}{325}\right) = \tan^{-1}1 \\ &= \frac{\pi}{4} = \text{R.H.S.} \end{split}$$

Prove
$$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left(\frac{1-x}{1+x} \right), x \in [0, 1]$$

Let $x = \tan^2 \theta$. Then, $\sqrt{x} = \tan \theta \Rightarrow \theta = \tan^{-1} \sqrt{x}$

$$\therefore \frac{1-x}{1+x} = \frac{1-\tan^2 \theta}{1+\tan^2 \theta} = \cos 2\theta$$

R.H.S. =
$$\frac{1}{2}\cos^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\cos^{-1}\left(\cos 2\theta\right) = \frac{1}{2} \times 2\theta = \theta = \tan^{-1}\sqrt{x} = \text{L.H.S.}$$

$$\cot^{-1}\!\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)\!=\frac{x}{2},\ x\in\!\left(0,\ \frac{\pi}{4}\right)$$

Answer

Consider
$$\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}$$

$$= \frac{\left(\sqrt{1+\sin x} + \sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}\right)^2 - \left(\sqrt{1-\sin x}\right)^2}$$
 (by rationalizing)

$$= \frac{(1+\sin x) + (1-\sin x) + 2\sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x - 1+\sin x}$$

$$= \frac{2(1 + \sqrt{1 - \sin^2 x})}{2\sin x} = \frac{1 + \cos x}{\sin x} = \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$$

$$=\cot\frac{x}{2}$$

$$\therefore \text{L.H.S.} = \cot^{-1} \left(\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right) = \cot^{-1} \left(\cot \frac{x}{2} \right) = \frac{x}{2} = \text{R.H.S.}$$

Question 11:

$$\tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x, -\frac{1}{\sqrt{2}} \le x \le 1$$
[**Hint:** putx = cos 2 θ]

Put $x = \cos 2\theta$ so that $\theta = \frac{1}{2}\cos^{-1}x$. Then, we have:

L.H.S. =
$$\tan^{-1} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$$

= $\tan^{-1} \left(\frac{\sqrt{1+\cos 2\theta} - \sqrt{1-\cos 2\theta}}{\sqrt{1+\cos 2\theta} + \sqrt{1-\cos 2\theta}} \right)$

$$= \tan^{-1} \left[\frac{\sqrt{2} \cos^2 \theta - \sqrt{2} \sin^2 \theta}{\sqrt{2} \cos^2 \theta + \sqrt{2} \sin^2 \theta} \right]$$

$$= \tan^{-1} \left(\frac{\sqrt{2} \cos \theta - \sqrt{2} \sin \theta}{\sqrt{2} \cos \theta + \sqrt{2} \sin \theta} \right)$$

$$= \tan^{-1} \left(\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} \right) = \tan^{-1} \left(\frac{1 - \tan \theta}{1 + \tan \theta} \right)$$

$$= \tan^{-1} 1 - \tan^{-1} (\tan \theta)$$

$$= \frac{\pi}{4} - \theta = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x = \text{R.H.S.}$$

Question 12

$$Prove \frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$$

Answer

L.H.S. =
$$\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3}$$

= $\frac{9}{4}\left(\frac{\pi}{2} - \sin^{-1}\frac{1}{3}\right)$
= $\frac{9}{4}\left(\cos^{-1}\frac{1}{3}\right)$ (1) $\left[\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right]$
Now, let $\cos^{-1}\frac{1}{3} = x$. Then, $\cos x = \frac{1}{3} \Rightarrow \sin x = \sqrt{1 - \left(\frac{1}{3}\right)^2} = \frac{2\sqrt{2}}{3}$.
 $\therefore x = \sin^{-1}\frac{2\sqrt{2}}{3} \Rightarrow \cos^{-1}\frac{1}{3} = \sin^{-1}\frac{2\sqrt{2}}{3}$
 \therefore L.H.S. = $\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3} = \text{R.H.S.}$

Question 13:

Solve
$$2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$$

Answer

$$2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)$$

$$\Rightarrow \tan^{-1}\left(\frac{2\cos x}{1-\cos^2 x}\right) = \tan^{-1}\left(2\csc x\right) \qquad \left[2\tan^{-1} x = \tan^{-1}\frac{2x}{1-x^2}\right]$$
$$\Rightarrow \frac{2\cos x}{1-\cos^2 x} = 2\csc x$$
$$\Rightarrow \frac{2\cos x}{\sin^2 x} = \frac{2}{\sin x}$$

$$\Rightarrow \cos x = \sin x$$

 $\Rightarrow \tan x = 1$

$$\therefore x = \frac{\pi}{4}$$

Question 14:

Solve
$$\tan^{-1} \frac{1-x}{1+x} = \frac{1}{2} \tan^{-1} x, (x > 0)$$

Answer

$$\tan^{-1}\frac{1-x}{1+x} = \frac{1}{2}\tan^{-1}x$$

$$\Rightarrow \tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x \qquad \left[\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy} \right]$$

$$\Rightarrow \frac{\pi}{4} = \frac{3}{2} \tan^{-1} x$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{6}$$

$$\Rightarrow x = \tan \frac{\pi}{6}$$

$$\therefore x = \frac{1}{\sqrt{3}}$$

********* END *******