МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ И ПРОГРАММНОЙ ИНЖЕНЕРИИ

КУРСОВАЯ РАБОТА (ПРОЕКТ) ЗАЩИЩЕНА С ОЦЕНКОЙ		
РУКОВОДИТЕЛЬ		
доцент, к.фм.н.		Н.А. Волкова
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
	НИТЕЛЬНАЯ ЗАПИС	
K	СУРСОВОЙ РАБОТЕ	
ПОНЯТИЕ ТРАНСПОРТНОЇ	Й ЗАДАЧИ (ТЗ). СЕТ	ЕВАЯ ПОСТАНОВКА ТЗ
по дисциплине: ПРИ	ІКЛАДНЫЕ МОДЕЛИ О	ПТИМИЗАЦИИ
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. № Z1431		М.Д. Быстров
	подпись, дата	инициалы, фамилия

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 Транспортная задача
1.1 Транспортная задача в классической форме
1.2 Транспортная задача в сетевой форме
2 Нахождение оптимального решения транспортной задачи в сетевой форме
2.1 Постановка задачи и структура исходной информации
2.2 Обоснование выбора метода решения транспортной задачи в сетевой
форме
2.3 Поиск решения с применением метода потенциалов
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ПРИЛОЖЕНИЕ А Исходный код программы

ВВЕДЕНИЕ

Для обеспечения наибольшей эффективности в производственной деятельности в современной производственной среде активно применяются алгоритмы оптимизации, расчеты по которым производятся с использованием вычислительных систем.

Одной из важнейших задач планирования производства является планирование доставки ресурсов в соответствии с потребностями потребителей и наличием ресурсов у поставщиков, а также транспортных расходов (расстояний от каждого поставщика к каждому потребителю). Эта задача может быть формализована как транспортная задача, которая является одной из задач линейного программирования.

Условия транспортной задачи могут быть заданы в различной форме. На практике оценка параметров транспортной работы производится в том числе с использованием картографических данных, которые позволяют определить расходы по транспортировке груза от каждого поставщика к каждому потребителю. Сетевая постановка транспортной задачи позволяет в более наглядной форме представить начальные условия, т.к. является сравнительно более удобной для восприятия формой определения условий транспортной задачи.

Целью данной курсовой работы является рассмотрение понятия транспортной задачи и постановки транспортной задачи в сетевой форме.

Рассмотрение понятия транспортной задачи будет произведено с помощью общих содержательной и формализованной постановок транспортной задачи.

Рассмотрение сетевой постановки транспортной задачи будет дано как описание особенностей постановки задачи в сетевой форме, а также обусловленных этими особенностями модификаций метода потенциалов для решения ТЗ.

Объектом исследования является транспортная задача с постановкой в сетевой форме.

Предметом исследования является применение метода потенциалов для решения транспортной задачи в сетевой постановке.

Транспортная задача является задачей линейного программирования. Основы линейного программирования заложил советский математик Л.В. Канторович в работе 1939 г. «Математические методы организации и планирования производства». Американский математик Джордж Бернард Данциг в 1949 году разработал эффективный метод решения задач линейного программирования — симплекс-метод.

Применительно к транспортной задаче существует модификация симплекс-метода — метод потенциалов, который позволяет за конечное число итераций получить оптимальный план, основываясь на опорном решении. В свою очередь, для нахождения опорного решения существуют такие методы, как метод северо-западного угла, метод наименьшей стоимости.

Для сетевой постановки транспортной задачи также применим метод потенциалов. Будут рассмотрены различия алгоритма при классической и сетевой постановке задачи.

1 Транспортная задача

1.1 Транспортная задача в классической форме

Пусть имеются m пунктов отправления и n пунктов назначения груза. Обозначим через c_{ij} , стоимость перевозки груза из пункта отправления с номером i к пункту назначения с номером j, а через x_{ij} обозначим объём перевозки груза в пунктах отправления. Запасы груза в пунктах обозначим через a_1 , a_2 , ... a_m , потребности пунктов назначений обозначим через b_1 , b_2 , ... b_n . Общую стоимость перевозки груза обозначим через формулы:

$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

Необходимо уменьшить стоимость перевозки груза. Задача состоит в минимизации функции z:

$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow min$$

Задача может быть представлена с помощью таблицы:

Таблица 1 Постановка ТЗ в классической форме

	1	2		n	Запасы
1	C11	$C_{12} X_{12}$		C1n	a_1
	χ_{11}			X_{1n}	
2	C21	C22		C2n	a_2
	X_{21}	X ₂₂		X2n	
	•••		•••	•••	
m	<i>Cm</i> 1	Cm2		C_{mn}	a_m
	χ_{m1}	Xm2		χ_{mn}	
Потребности	b_1	b_2	•••	b_n	

Груз необходимо распределить между пунктами потребления, все грузы из пунктов отправления должны быть вывезены, все потребности пунктов назначения удовлетворены:

$$\begin{cases} x_{11} + x_{12} + \dots + x_{1n} = a_1 \\ x_{21} + x_{22} + \dots + x_{2n} = a_2 \\ \dots \\ x_{m1} + x_{m2} + \dots + x_{mn} = a_m \end{cases}$$
 (2)

$$\begin{cases} x_{11} + x_{21} + \dots + x_{m1} = b_1 \\ x_{12} + x_{22} + \dots + x_{m2} = b_2 \\ \dots \\ x_{1n} + x_{2n} + \dots + x_{mn} = b_n \end{cases}$$
(3)

При выполнении условия $\sum_{i=1}^{n} b_i = \sum_{j=1}^{m} a_j$ транспортная задача называется закрытой, и можно приступить к решению задачи.

Если истинно выражение $\sum_{i=1}^{n} b_i \neq \sum_{j=1}^{m} a_j$, то задача является открытой. В этом случае задача приводится к закрытой с помощью ввода дополнительных пунктов.

 $\sum_{i=1}^{n} b_{i} > \sum_{j=1}^{m} a_{j}$ Добавляется пункт отправления с номером

 $a_{m+1} = \sum_{i=1}^{n} b_i - \sum_{j=1}^{m} a_j$ и со стоимостью перевозки

груза, равной 0: $c_{_{1,n+1}} = c_{_{2,n+1}} = \ldots = c_{_{m,n+1}} = 0$. Задача принимает вид:

Таблица 2 Пример приведения к закрытой ТЗ

Пункты назначений Пункты отправлений	1	2	 n	n+1	Запасы груза
1	x_{11}	$egin{array}{c} c_{12} \ x_{12} \end{array}$	 C_{1n} X_{1n}	x_{1n+1}	$a_{_1}$
2	$egin{array}{c} c_{21} \\ x_{21} \end{array}$	x ₂₂	 C_{2n} X_{2n}	0 x _{2n+1}	a_2
m	C_{m1} X_{m1}	C_{m2} X_{m2}	 C _{nut}	x_{mn+1}	$a_{\scriptscriptstyle m}$
Потребность в грузах	$b_{\scriptscriptstyle 1}$	b_2	 <i>b</i> _n	$b_{{\scriptscriptstyle n+1}}$	

Если $\sum_{i=1}^{m} a_i < \sum_{j=1}^{n} b_j$, аналогично добавляются дополнительные пункты отправлений с запасами груза, вследствие чего задача становится закрытой.

Для решения транспортной задачи может быть использован метод потенциалов.

Клетки с перевозками x_{ij} != 0 называются отмеченными, а клетки с перевозками x_{ij} = 0 называются не отмеченными. Для отмеченных клеток с помощью формулы v_j - u_i = c_{ij} определяем значения потенциалов v_j , j =1,2,...n и u_i , i =1,2,...m.

Задача решается в два этапа:

В первом этапе находится первоначальное решение x_{ij} , i=1,2,...,m; j=1,2,...,n, удовлетворяющее условиям (2)-(3). Имеются несколько способов

для нахождения первоначального решения, например, метод северо-западного угла, метод минимального элемента и другие.

Метод северо-западного угла заключается в выборе клетки (1,1) и выборка объема поставки $x_{11} = min(a_1,b_1)$. Если $min(a_1,b_1) = a_1$, то это означает, что все грузы из 1-го пункта отправления направлены к 1-пункту назначений, другим пунктам назначений из 1- пункта отправления груз не отправляется. Поэтому, к остальным клеткам в строке, где находится a_1 вставляется знак «-». В 1- пункте назначения потребность в грузах будет $b_1^1 = b_1 - a_1$.

Таблица 3 Метод северо-западного угла

Пункты назначений					
Пункты	1	2	 n	Запасы груза	
отправлений					
1	$egin{array}{c} c_{11} \\ x_{11} \end{array}$	$ c_{12}$	 - C _{1n}	$a_{\scriptscriptstyle 1}$	0
2	C ₂₁	C ₂₂	 $c_{_{2n}}$	a_2	
			 	•••	
m	C_{m1}	C_{m2}	 C non	$a_{_m}$	
Потребность в грузах	b_1	<i>b</i> ₂	 b_n		
	b_1^1				

В ином случае, если $min(a_1,b_1)=b_1$, то в 1- пункте назначения потребность в грузах будет удовлетворена, в 1-пункте отправления остаётся груз $a_1^1=a_1-b_1$.

К первому пункту назначения из остальных пунктов отправлений груз не привозится.

Таблица 4 Метод северо-западного угла

Пункты назначений Пункты отправлений	1	2	 n	Запасы груза	
1	x_{11}	c_{12}	 $c_{_{\mathrm{l}n}}$	$a_{\scriptscriptstyle 1}$	a_1^1
2	- C ₂₁	C ₂₂	 C _{2n}	<i>a</i> ₂	
m	- C _{m1}	C _{m2}	 C _{mn}	$a_{\scriptscriptstyle m}$	
Потребность в грузах	b_1	b_2	 b_n		
	0				•

Продолжая вычисления по 1-таблице, переходим к клетке (2,1). Пусть будет $x_{21} = min(a_1,b_1^{-1})=b_1^{-1}$. Заполняя клетку вышеуказанным способом, получаем следующее:

Таблица 5 Метод северо-западного угла

Пункты назначений Пункты отправлений	1	2		n	Запасы груза	
1	x_{11}	- C ₁₂	•••	- C _{1n}	a_1	0
2	x_{12}	c_{22}		C_{2n}	a_2	a_2^1
m	$ c_{m1}$	C _{m2}		C _{mm}	$a_{_m}$	
Потребность в грузах	b_1	b_2		b_n		
	<i>b</i> ₁ ¹					-

Продолжая вычисления таким образом до правого нижнего угла, определяем все значения x_{ij} , i=1,...,m; j=1,...,n. При этом должны выполняться условия (2)-(3).

На втором этапе находится оптимальное решение(план), удовлетворяющее условиям (1). Для нахождения оптимального плана имеется несколько способов, например метод потенциалов, метод распределений и т.д. Рассмотрим метод потенциалов. Для этого сначала ознакомимся с некоторыми понятиями. Произвольное множество точек в таблице называется набором. Например,

Рисунок 1 Метод потенциалов

Если в наборе число точек в каждой строке не превышает двух, то такой набор называется цепью. Например,

Рисунок 2 Метод потенциалов

Замкнутая цепь называется циклом. Например,

Рисунок 3 Метод потенциалов

Если в таблице набор из n количество точек не образуют цикл, при добавлении определенной точки набор n+1 точек образуют цикл, то первоначальный набор n точек называется ациклическим планом.

Если в транспортной задаче $x_{ij} > 0$, то клетка (i,j) называется отмеченной.

Если в транспортной задаче для всех клеток находится план x_{ij} , i=1,...,m; j=1,...,n, для которой удовлетворяется условие v_j - u_i <= c_{ij} (4), а для отмеченных клеток удовлетворяется условие v_j - u_i = c_{ij} , то полученный план называется оптимальным. Множество чисел v_j , j=1,2,...,n; u_i , i=1,2,...,m называются потенциалами.

Метод потенциалов в транспортной задаче выполняется в следующем порядке:

- 1. Составляется система уравнений для отмеченных клеток удовлетворяющая следующим условиям v_j - u_i = c_{ij} , v_j , j=1,2,...,n; u_i , i=1,2,...,m. При этом число уравнений на одно меньше, чем число неизвестных. Поэтому система имеет бесконечное число решений. Найдя одно частное решение системы (приняв одно из неизвестных равным нулю), определим значение потенциалов;
- 2. Для неотмеченных клеток проверим условие v_j - u_i = c_{ij} . Если это условие выполняется для всех клеток, то этот план будет оптимальным, и $z = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$ вычисляется значение функции $z = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$;
- 3. Если условие v_j - u_i <= c_{ij} не выполняется для некоторых клеток, то для этих клеток вычисляем

$$\delta_{ij} = V_j - u_i - c_{ij}$$

и находим

$$\mathcal{S}_{i_0 j_0} = \max_{i,j} \mathcal{S}_{ij}$$

- 4. клетка (i_0,j_0) добавляется в набор отмеченных клеток, и для этого набора составляется цикл;
- 5. начиная с клетки (i_0, j_0) , по очереди вставляем знаки «+» и «-» к клеткам цикла. Вставка происходит, начиная со знака «+»;
- 6. для клеток со знаком «-» определяем $\theta = min(x_{_{ij}})_{_{\vdots}}$
- 7. Из чисел x_{ij} в клетках со знаком «-» вычитываем θ , к числам x_{ij} в клетках со знаком «+» прибавляем θ ;
- 8. Клетка с θ удаляется из числа отмеченных клеток.

В результате получаем новый план. Для нового плана повторяем операции (1)-(7). Вышеуказанные операции повторяются до тех пор, пока не выполняется условие v_j - u_i <= c_{ij} для всех клеток.

1.2 Транспортная задача в сетевой форме

Очень часто особенности исходной информации таковы, что возможно рассматривать их в сетевой постановке, и это позволяет иногда использовать более простые алгоритмы их решения. К числу таких задач относится и транспортная задача в сетевой постановке.

Пусть имеется N пунктов (производства, потребления, транзитной транспортировки грузов), связанных между собой некоторой транспортной сетью. В каждом пункте сети заданы числа

 a_i $(i = \overline{1, N})$. Если $a_i < 0$, то в этом пункте продукция производится, если а, > 0, то продукция потребляется, а если $a_i = 0$, то данный пункт является транзитным, т.е. все, что в него привезено, должно быть вывезено.

Пусть транспортная сеть содержит s участков пути. Под участком пути понимается часть сети, соединяющая любые два ее пункта. Рассмотрим q-ый участок пути, на котором осуществляется перевозка:

где:

 i_q - пункт, из которого груз вывозится;

 j_q - пункт, в который груз завозится;

 c_q - стоимость перевозки единицы груза на этом участке пути:

 x_q - объем перевозки из пункта i_q в пункт j_q .

Стрелка → показывает направление перевозки груза.

Требуется найти такой план перевозки груза, при котором из пунктов производства вывозится вся продукция, в пунктах потребления удовлетворяются их потребности, а суммарные затраты на перевозку грузов были бы минимальных, т.е. необходимо найти такой вектор $X = (x_1, x_2, ... x_s)$, для которого:

$$\sum_{q=1}^{s} C_q \cdot \chi_q \to \min$$
 (4)

при условии

$$\sum_{j_q=1}^N \chi_q - \sum_{i_q=1}^N \chi_q = \alpha_i , \quad i, j = \overline{1, N}; \quad \chi_q \ge 0, \quad q = \overline{1, s};$$

 $\sum_{j_q} \chi_q$ - объем груза, ввозимого в пункт i,

 $\sum_{i_q} \chi_q$ - объем груза, вывозимого из i .

Необходимым и достаточным условием разрешимости данной задачи является

$$\sum_{i=1}^{N} a_{i} = 0; (5)$$

т.е. все, что произведено, должно быть потреблено.

Решение задачи осуществляется методом потенциалов. Опорный невырожденный план транспортной задачи должен содержать ровно (N-1) положительную перевозку, не иметь замкнутых маршрутов и «висячих» пунктов.

Первоначальный опорный план строится по любому из существующих методов. Затем для каждого пункта сети находятся потенциалы по формуле

$$V_{jq} - V_{jq} = C_q, \quad X_q > 0,$$
 (6)

где V_{jq} и V_{jq} - потенциалы пунктов, ограничивающих один и тот же q-ьм участок пути, а C_q - стоимость единицы перевозимого по этому участку груза.

Для оптимального плана транспортной задачи в сетевой постановке для всех участков пути должно выполняться условие:

$$|V_{jq} - V_{iq}| \le C_q, \qquad \forall_q = \overline{1, s}.$$
 (7)

Если условие (7) не выполняется, то для тех участков пути, где оно не выполняется, рассчитывается невязка по формуле:

$$\eta = |V_{jq} - V_{iq}| - C_q;$$

и на участке сети с наибольшей невязкой вводится ε -перевозка, определяется ε -маршрут, величина ε -перевозки, рассчитывается новый опорный план, который проверяется на оптимальность. Процедура повторяется до тех пор, пока не будет выполняться условие (7).

Преимущество сетевой постановки ТЗ относительно классической постановки заключается в том, что возможно простое расширение постановки до двухэтапной транспортной задачи, а также организации перевозок от поставщика к поставщику, когда это оказывается эффективнее, чем перевозки исключительно от поставщиков к потребителям. Эти улучшения достигаются всего лишь добавлением необходимых узлов и ребер в граф, представляющий собой постановку задачи. При этом изменений в методе поиска решения не требуется.

Также в сетевой форме при визуализации решения ТЗ является намного более простым для восприятия.

2 Нахождение оптимального решения транспортной задачи в сетевой форме

2.1 Постановка задачи и структура исходной информации

У поставщиков A1, A2, A3 есть некоторое количество груза, которое необходимо доставить в пункты потребления B1, B2, B3, B4. Затраты на перевозку одной единицы товара, запасы поставщиков и потребности потребителей отображены в графе на рисунке 4.

Рисунок 4 Постановка транспортной задачи в сетевой форме

Необходимо найти такой план перевозок, при котором общие затраты на перевозку товара будут минимальны, а все потребности потребителей будут удовлетворены.

Поставщики изображены как узлы овальной формы, потребители – как узлы прямоугольной формы. Ребра между узлами показывают допустимость перевозки между поставщиками и потребителями. Числа, указанные в узлах – запасы и потребности каждого из пунктов. Если число отрицательное – оно отражает необходимость доставки товара в пункт потребления, если положительное – отражает наличие товара на складе поставщика.

2.2 Обоснование выбора метода решения транспортной задачи в сетевой форме

В ходе рассмотрения алгоритмов поиска решения транспортной задачи в сетевой форме было дано описание метода потенциалов для решения ТЗ в сетевой форме.

Для решения транспортной задачи в сетевой форме также может быть применен метод МОДИ (метод модифицированных распределений). Эти методы аналогичны, отличия в вычислениях отображены на рисунке 5.

Метод потенциалов		Метод МОДИ
$u_i = v_j - \overline{c}_{ij};$	(8.10)	$u_i = \overline{c}_{ij} - v_j;$
$v_j = \overline{c}_{ij} + u_i;$	(8.11)	$v_j = \overline{c}_{ij} - u_i;$
$\overline{C}_{ij} = v_j - u_i;$	(8.12)	$\overline{C}_{ij} = v_j + u_i;$
$E_{ij} = c_{ij} - (v_j - u_i);$	(8.13)	$E_{ij} = c_{ij} - (v_j + u_i).$

Рисунок 5 Различия в методах потенциалов и МОДИ

В ходе выполнения курсовой работы был сделан выбор в пользу метода потенциалов как более задокументированному при одинаковых временных и вычислительных затратах.

2.3 Поиск решения с применением метода потенциалов

Метод потенциалов позволяет перейти к оптимальному решению путем улучшения допустимого опорного плана. Для поиска этого опорного плана будет использоваться метод северо-западного угла. В соответствии с рассмотренным в гл. 1.1 алгоритмом найден опорный план, показанный на рисунке 6.

Рисунок 6 Начальное условие с опорным планом

Для отображения перевозок между пунктами на графе используются стрелки зеленого цвета. Для отображения объема перевозок рядом со стрелками указан объем перевозок (красный шрифт).

В соответствии с описанным в гл. 1.2 алгоритмом для поиска оптимального решения необходимо выполнить следующие действия:

- 1. Проверить текущий план на оптимальность путем расчета показателей незадействованных ребер, используя потенциалы узлов;
- 2. Если план не оптимален, ввести новую поставку для ребра без поставки с минимальным показателем, определив величину поставки как минимальную из противоположных поставок в замкнутом цикле поставок, при этом минимальное ребро удаляется;
- 3. Модифицировать ребра замкнутого цикла поставок путем прибавления величины нового ребра к попутным ребрам и вычитания той же величины из противоположных.
- 4. Повторить пункты 1-4, пока план не станет оптимальным.

Приведем пошаговое решение ТЗ созданной программой. Обозначения поставщиков и потребителей выполнены в виде их порядковых номеров. Порядковые номера начинаются с 0. Обозначения связей между поставщиками и потребителями представляют из себя пару порядковых номеров в круглых скобках, разделенных запятой. На рисунках изображены состояния перевозок после выполнения каждого шага. Второе число в каждом узле есть рассчитанный на пройденном шаге потенциал узла.

1. Шаг 1

Потенциалы поставщиков

{0: 100, 1: 101.0, 2: 99.0}

Потенциалы потребителей

{0: 111.0, 1: 105.0, 2: 106.0, 3: 109.0}

Оценки ребер без перемещений

 $\{(0, 2): -2.0, (0, 3): -7.0, (1, 0): -9.0, (1, 3): 1.0, (2, 0): -3.0, (2, 1): 2.0\}$

Найдена отрицательная хар-ка -9.0 у ребра (1, 0)

Найденный цикл, начиная с поставщика:

[0, 0, 1, 1]

Минимальная противоположная поставка 50.0 для ребра (1, 1)

Добавлено ребро A2-B1, удалено ребро A2-B2.

Рисунок 7 Решение после шага 1

2. Шаг 2

Потенциалы поставщиков

{0: 100, 1: 110.0, 2: 108.0}

Потенциалы потребителей

{0: 111.0, 1: 105.0, 2: 115.0, 3: 118.0}

Оценки ребер без перемещений

 $\{(0, 2): -11.0, (0, 3): -16.0, (1, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (1, 3): 1.0, (2, 0): 6.0, (2, 1): -1.0, (2, 0): 6.0, (2, 1): -1.0, (2, 0): 6.0, (2, 1): -1.0, (2, 0): 6.0, (2, 1): -1.0, (2, 0): 6.0, (2, 1): -1.0, (2, 0): 6.$

1): 5.0}

Найдена отрицательная хар-ка -16.0 у ребра (0, 3)

Найденный цикл, начиная с поставщика:

[3, 2, 2, 1, 0, 0]

Минимальная противоположная поставка 20.0 для ребра (0, 0)

Добавлено ребро А1-В4, удалено ребро А1-В1.

Рисунок 8 Решение после шага 2

3. Шаг 3

Потенциалы поставщиков

{0: 100, 1: 94.0, 2: 92.0}

Потенциалы потребителей

{0: 95.0, 1: 105.0, 2: 99.0, 3: 102.0}

Оценки ребер без перемещений

 $\{(0,0): 6.0, (0,2): 3.0, (1,1): -7.0, (1,3): 1.0, (2,0): 6.0, (2,1): -5.0\}$

Найдена отрицательная хар-ка -7.0 у ребра (1, 1)

Найденный цикл, начиная с поставщика:

[1, 0, 3, 2, 2, 1]

Минимальная противоположная поставка 60.0 для ребра (0, 1) Добавлено ребро A2-B2, удалено ребро A1-B2.

Рисунок 9 Решение после шага 3

4. Шаг 4

Потенциалы поставщиков

{0: 100, 1: 94.0, 2: 92.0}

Потенциалы потребителей

{0: 95.0, 1: 98.0, 2: 99.0, 3: 102.0}

Оценки ребер без перемещений

 $\{(0,0): 6.0, (0,1): 3.0, (0,2): 3.0, (1,3): 1.0, (2,0): 6.0, (2,1): 2.0\}$

Найдено оптимальное решение z=1750.0

Рисунок 10 Итоговое решение ТЗ

На рисунке 10 показано оптимальное решение транспортной задачи в сетевой форме. Минимизированное значение функции трудозатрат z=1750.

ЗАКЛЮЧЕНИЕ

Результатом курсовой работы является программа для решения транспортной задачи в сетевой форме. Она предназначена для уменьшения затрат на доставку груза от пунктов производства до пунктов потребления.

Написанная программа позволяет визуализировать пошаговое решение транспортной задачи с помощью построения графов. Были определены и использованы при проектировании и реализации программы преимущества постановки транспортной задачи в сетевой форме, такие как двухэтапная транспортная задача или задача с перевозками между пунктами производства.

Программа написана на языке Python3, использует программное обеспечения для визуализации Graphviz, предназначена для запуска в ОС Windows.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Рудик И.Д., Величко В.В. ПОНЯТИЕ, ВИДЫ И МЕТОДЫ РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ // Международный студенческий научный вестник. 2017. № 4-4.
- Лозгачёв И.А., Корепанов М.Ю. КЛАССИЧЕСКАЯ ТРАНСПОРТНАЯ ЗАДАЧА, РЕШЕННАЯ МЕТОДОМ ПОТЕНЦИАЛОВ // Международный студенческий научный вестник. – 2016. – № 3-1.
- 3. Бережная Е. В. Математические методы моделирования экономических систем: учеб. пособие. 2-е изд., перераб. и доп. / Е. В. Бережная, В. И. Бережной. М.: Финансы и статистика, 2006. 432 с.
- 4. Большакова И.В. Линейное программирование: учебно-метод. пособие к контрольной работе для студ. эконом. факультета / И.В. Большакова, М.В. Кураленко. Мн.: БНТУ. 2004. 148 с.
- 5. Тюхтина А.А. Математические модели логистики. Транспортная задача: Учебно-методическое пособие. Нижний Новгород: Нижегородский госуниверситет, 2016. 66 с.

ПРИЛОЖЕНИЕ А

Исходный код программы

Программа написана на языке python3 с использованием программного решения визуализации графов Graphviz и python-библиотеки graphviz, которая предоставляет интерфейс для работы с ПО, установленным в системе.

Для запуска необходимо, чтобы Graphviz был установлен в системе, а все зависимости из import-директив были доступны интерпретатору.

Выполняться программа должна в ОС Windows.

```
import numpy as np;
import graphviz as gv;
import subprocess;
# метод северо-западного угла
def north west(paths, stocks, needs):
    moves=np.zeros(paths.shape);
    s = stocks.copy();
    n = needs.copy();
    excluded rows = set();
    excluded columns = set();
    while 1:
        rows = set(range(paths.shape[0])) - excluded_rows;
        columns = set(range(paths.shape[1])) - excluded_columns;
        if (len(rows) == 0 or len(columns) == 0): break;
        for i in rows:
            for j in columns:
                move = min(s[i], n[j]);
                moves[i][j] = move;
                if (move == s[i]):
                    excluded_rows.add(i);
                    n[j] = n[j] - move;
                else:
                    excluded_columns.add(j);
                    s[i] = s[i] - move;
                break;
```

```
break;
    return moves;
# расчет потенциалов
# получить потенциалы
def get_potentials(paths, moves):
    u = dict(); # потенциалы поставщика
    v = dict(); # потенциалы потребителя
    # кол-во и и у
    u_num = paths.shape[0];
    v_num = paths.shape[1];
    # для первого производителя (вершины)
    # берем потенциал = 100
    u[0] = 100;
    # расчет потенциалов перебором
    while (u.__len__() != u_num
           or v.__len__() != v_num):
        for prod in range(paths.shape[0]):
            for cons in range(paths.shape[1]):
                path = paths[prod][cons];
                move = moves[prod][cons];
                if (move != 0):
                    if prod in u and not(cons in v):
                        v[cons] = float(u[prod] + path);
                    elif cons in v and not(prod in u):
                        u[prod] = float(v[cons] - path);
    u = dict(sorted(u.items()));
    v = dict(sorted(v.items()));
    return [u,v];
def find_edges_scores(paths, moves, potentials):
    [u,v] = potentials;
    edges_scores = {};
    # для ребер у которых нет стрелок считаем характеристику
    for prod in range(paths.shape[0]):
        for cons in range(paths.shape[1]):
```

```
path = paths[prod][cons];
            move = moves[prod][cons];
            if (move > 0): continue;
            diff = u[prod] - v[cons];
            if diff < 0: diff = -1 * diff;</pre>
            score = path - diff;
            edges scores[(prod, cons)] = float(score);
    min score = (min(edges scores.values())
        if len(edges_scores.values()) > 0
        else 0);
    min_edge = (-1, -1);
    for key, value in edges_scores.items():
        if value == min_score:
            min edge = key;
            break;
    return [edges_scores, min_edge, min_score];
# поиск пути в графе
def find_path(
    moves,
    source,
    dest = -1,
    source_is_cons = False,
    dest_is_cons = False,
    path = [],
    visited = set()):
    if (dest == -1): dest = source;
    localpath = path.copy();
    localpath.append(source);
    if (source_is_cons):
        for i in range(moves.shape[0]):
            if (moves[i][source] > 0
                and (i, source) not in visited):
                prod = i;
                # конец рекурсии - нашли конечную
                if (prod == dest
                    and dest_is_cons == False):
                    localpath.append(prod);
                    return localpath;
```

```
localvisited = visited.copy();
                localvisited.add((prod, source));
                retpath = find_path(
                    moves,
                    prod,
                    dest,
                    False,
                    dest is cons,
                    localpath,
                    localvisited);
                if (len(retpath)):
                    return retpath;
    else:
        for j in range(moves.shape[1]):
            if (moves[source][j] > 0
                and (source, j) not in visited):
                cons = j;
                # конец рекурсии - нашли конечную
                if (cons == dest
                    and dest_is_cons == True):
                    localpath.append(cons);
                    return localpath;
                localvisited = visited.copy();
                localvisited.add((source, j));
                retpath = find_path(
                    moves,
                    cons,
                    dest,
                    True,
                    dest_is_cons,
                    localpath,
                    localvisited);
                if (len(retpath)):
                    return retpath;
    # пустой список - через эту вершину цикл найти не удалось
    return [];
# переместить ребро
def move_edge(paths, moves, min_edge):
```

```
m = moves.copy();
    (min_edge_prod, min_edge_cons) = min_edge;
   # поиск замкнутого цикла для добавляемого ребра
   cycle = find path(
        moves,
       min edge cons,
       min_edge_prod,
        True);
   print("Найденный цикл, начиная с поставщика:");
   print(cycle);
   min value = float("inf");
   new_min_edge = (-1, -1);
   # определяем минимальное противоположное ребро
   for i in range(len(cycle) - 1):
        # интересуют только стрелки из потребителей,
        # по направлению противоположные
        if (i % 2 == 0):
            (cons, prod) = (cycle[i], cycle[i+1]);
            if moves[prod][cons] < min_value:</pre>
                new_min_edge = (prod, cons);
                min_value = moves[prod][cons];
   if (new_min_edge == (-1,-1)): raise Exception("Can't found min move");
   print(f"Минимальная противоположная поставка {min_value} для ребра
{new_min_edge}");
   # определяем новое распределение поставок
   for i in range(len(cycle) - 1):
        # вычитаем из противоположных ребер
        # добавляем к попутным
        if (i % 2 == 0):
            (cons, prod) = (cycle[i], cycle[i+1]);
            m[prod][cons] = m[prod][cons] - min_value;
        else:
            (prod, cons) = (cycle[i], cycle[i+1]);
            m[prod][cons] = m[prod][cons] + min_value;
   # новое ребро - перемещение
   m[min_edge_prod][min_edge_cons] = min_value;
```

новая матрица перемещений

```
# решение транспортной задачи
def solve(paths, stocks, needs):
    stage = 1;
    # начальный граф
    draw graph(
        paths,
        stocks.
        needs,
        name = f"Начальный_граф");
    # начальное допустимое опорное решение
    # методом северо-западного угла
    moves = north_west(
        paths,
        stocks,
        needs);
    # начальный граф
    draw_graph(
        paths,
        stocks,
        needs,
        moves,
        name = f"Начальный_граф_с_опорным");
    while (1):
        # поиск потенциалов узлов
        [u, v] = get_potentials(paths, moves);
        print("Потенциалы поставщиков");
        print(u);
        print("Потенциалы потребителей");
        print(v);
        # поиск оценок ребер без перемещений
        [edges_scores,
        min_edge,
        min_score] = find_edges_scores(paths, moves, [u, v]);
        print("Оценки ребер без перемещений");
        print(edges_scores);
```

return m;

```
# если среди ребер без перемещений
        # есть отрицательные характеристики,
        # надо сдвинуть план
        if (min score < 0):</pre>
            print(f"Найдена отрицательная хар-ка {min_score} у ребра
{min_edge}");
            moves = move edge(paths, moves, min edge);
        # отрисовка графа на текущем шаге
        draw graph(
            paths,
            stocks,
            needs,
            moves,
            [u, v],
            f"War {stage}");
        # не нашлось отрицательных характеристик
        # план оптимален, выход
        if (min score >= 0):
            break;
        stage = stage + 1;
    # найдено оптимальное решение,
    # считаем минимизированное значение
    sum = 0;
    for i in range(paths.shape[0]):
        for j in range(paths.shape[1]):
            if (moves[i][j]):
                sum += moves[i][j] * paths[i][j];
    print(f"Найдено оптимальное решение z={sum}");
# отрисовка графа
def draw_graph(
    paths, # пути от поставщиков к потребителям
    stocks = np.array([]), # запасы
    needs = np.array([]), # потребности
    moves = np.array([]), # движения ресурсов
    potentials = [\{\},\{\}], # расчитанные потенциалы
    name = "graph"
    ):
    dot = gv.Digraph(engine="circo");
    nodes = set();
```

```
[u,v] = potentials;
for i in range(paths.shape[0]):
    for j in range(paths.shape[1]):
        from node = f"A{i+1}";
        to node = f"B{j+1}";
        if from node not in nodes:
            node = f"{from node}|{stocks[i]}";
            if i in u: node = f"{node}|{u[i]}";
            dot.node(from_node, node);
            nodes.add(from_node);
        if to_node not in nodes:
            node = f"{to node}|{-needs[j]}";
            if j in v: node = f"{node}|{v[j]}";
            dot.node(to node, node, shape="rect");
            nodes.add(to node);
        dot.edge(
            from_node,
            to_node,
            label=f"{int(paths[i][j])}",
            dir="none");
for i in range(moves.shape[0]):
    for j in range(moves.shape[1]):
        if (moves[i][j] != 0):
            from_node = f"A{i+1}";
            to_node = f"B{j+1}";
            dot.edge(
                from_node,
                to_node,
                label=f"{int(moves[i][j])}",
                color="green",
                fontcolor="red");
# dot.graph_attr['ratio'] = "compress";
dot.graph_attr['size'] = "1920,1080";
# print(dot.source);
```

```
file = dot.render(f'output/{name}').replace('\\', '/');
subprocess.run(["cmd", f"/c start {file}"]);

stocks = [80, 170, 150]; # запасы
needs = [70, 60, 180, 90]; # потребности

paths = np.array(
    #B1 B2 B3 B4
    [
    [11, 5, 4, 2], #A1
    [ 1, 4, 5, 9], #A2
    [ 9, 8, 7, 10], #A3
    ],
    dtype = float);

solve(paths, stocks, needs);
```