Übungen zu Einführung in die Algebra

Jendrik Stelzner

10. Oktober 2016

Inhaltsverzeichnis

1	Gruppentheorie	2
2	Ringtheorie	3
3	Lösungen	4

1 Gruppentheorie

Übung 1. Ein Kriterium für maximale Untergruppen

Es sei G ein Gruppe und $H\subseteq G$ eine Untergruppe, so dass [G:H] endlich und prim ist. Zeigen Sie, dass H eine maximale echte Untergruppe von G ist. Entscheiden Sie, ob H notwendigerweise normal in G ist.

Übung 2.

Es sei G eine Gruppe mit $\operatorname{Aut}(G)=1$.

- 1. Zeigen Sie, dass G abelsch ist.
- 2. Zeigen Sie, dass g=-g für alle $g\in G$.
- 3. Folgern Sie, dass es eine eindeutige \mathbb{F}_2 -Vektorraumstruktur auf G gibt.
- 4. Folgern Sie, dass G=0 oder $G\cong \mathbb{Z}/2\mathbb{Z}$.

2 Ringtheorie

Übung 3. Urbilder von Idealen

Es seien R und S zwei kommutative Ringe und $\phi\colon R\to S$ ein Ringhomomorphismus.

- 1. Zeigen Sie, dass für jedes Ideal $\mathfrak{a}\subseteq S$ das Urbild $\phi^{-1}(\mathfrak{a})$ ein Ideal in R ist.
- 2. Entscheiden Sie, ob $\phi^{-1}(\mathfrak{p})$ ein Primideal ist, wenn $\mathfrak{p}\subseteq S$ ein Primideal ist.
- 3. Entscheiden Sie, ob $\phi^{-1}(\mathfrak{m})$ ein maximales Ideal ist, wenn $\mathfrak{m}\subseteq S$ ein maximales Ideal ist.

3 Lösungen

Lösung 1.

Es sei $p\coloneqq [G:H]$. Da p eine Primzahl ist gilt inbesondere $p\ne 1$, weshalb H eine echte Untergruppe von G ist. Ist $K\subsetneq G$ eine echte Untergruppe von G mit $H\subseteq K$, so gilt wegen der Multiplikativität des Index', dass

$$p = [G:H] = [G:K][K:H].$$

Da p eine Primzahl ist, gilt entweder [G:K]=p und [K:H]=1, oder [G:K]=1 und [K:H]=p. Es gilt [G:K]>1, da K eine echte Untergruppe von G ist, und somit [K:H]=1. Also ist K=H, und somit H eine maximale echte Untergruppe.

H ist nicht notwendigerweise normal in G: Für $G = S_3$ und $H = \langle (1\,2) \rangle = \{ \mathrm{id}, (1\,2) \}$ ist H zwar nicht normal in G, aber [G:H] = |G|/|H| = 6/2 = 3 ist prim.

Lösung 2.

- 1. Für $g \in G$ sei $c_g \colon G \to G$ die Konjugation mit g. Dies ist ein Automorphismus von G, weshalb $c_g = \operatorname{id}_G$. Somit ist $g \in \operatorname{Z}(G)$.
- 2. Wegen der Kommutativität von G ist die Abbildung $n\colon G\to G,\,g\mapsto -g$ ein Automorphismus von G. Somit ist $n=\mathrm{id}_G$, also -g=g für alle $g\in G$.
- 3. Nach dem vorherigen Aufgabenteil ist 2g=0 für alle $g\in G$. Deshalb gibt es eine eindeutige \mathbb{F}_2 -Vektorraumstruktur auf G via

$$\overline{n} \cdot g = n \cdot g$$
 für alle $n \in \mathbb{Z}, g \in G$,

wie sich durch direktes Nachrechnen ergibt.

4. Es sei $(b_i)_{i\in I}$ eine Basis von G als \mathbb{F}_2 -Vektorraum. Ist $G\neq 0$ und $G\ncong \mathbb{Z}/2$, so ist $\dim_{\mathbb{F}_2}G\geq 2$. Es gibt daher $i_1,i_2\in I$ with $i_1\neq i_2$. Die Permutation

$$\sigma \colon \{b_i\}_{i \in I} \to \{b_i\}_{i \in I}, \quad b_j \mapsto \begin{cases} b_{i_2} & \text{falls } j = i_1, \\ b_{i_1} & \text{falls } j = i_2, \\ b_j & \text{sonst}, \end{cases}$$

induziert einen nicht-trivialen \mathbb{F}_2 -Vektorraumautomorphismus $\alpha\colon G\to G$ mit

$$\alpha\left(\sum_{i\in I}\lambda_i b_i\right) = \sum_{i\in I}\lambda_i b_{\sigma(i)}.$$

Dann ist α aber insbesondere ein nicht-trivialer Gruppenautomorphismus, im Widerspruch zu ${\rm Aut}(G)=1.$

Lösung 3.

- 1. Es sei $\pi\colon S\to S/\mathfrak{a},\, s\mapsto \overline{s}$ die kanonische Projektion. Dann ist $\pi\phi$ ein Ringhomomorphismus und somit $\ker(\pi\phi)=\phi^{-1}(\ker\pi)=\phi^{-1}(\mathfrak{a})$ ein Ideal in R.
- 2. Die Aussage gilt: Es sei $\pi\colon S\to S/\mathfrak{p},\, s\mapsto \overline{s}$ die kanonische Projektion und $\mathfrak{q}\coloneqq \phi^{-1}(\mathfrak{p}).$ Der Quotient S/\mathfrak{p} ist ein Integritätsbereich, da \mathfrak{p} ein Primideal ist. Nach dem vorherigen Aufgabenteil ist \mathfrak{q} ein Ideal in R, und da $\ker(\pi\phi)=\phi^{-1}(\ker\pi)=\phi^{-1}(\mathfrak{p})=\mathfrak{q}$ induziert $\pi\phi$ einen injektiven Ringhomomorphismus

$$\psi \colon R/\mathfrak{q} \to S/\mathfrak{p} \quad \overline{r} \mapsto \overline{\phi(r)}.$$

Der Ring im $(\pi\phi)\subseteq S/\mathfrak{p}$ ist als Unterring eines Integritätsbereichs ebenfalls ein Integritätsbereich. Somit ist $R/\mathfrak{q}\cong \operatorname{im}(\pi\phi)$ ein Integritätsbereich, also \mathfrak{q} ein Primideal.

3. Die Aussage gilt nicht: Es sei etwa $\phi \colon \mathbb{Z} \to \mathbb{Q}$ die kanonische Inklusion. Dann ist $\mathfrak{m} \coloneqq 0$ ein maximales Ideal in \mathbb{Q} , aber $\phi^{-1}(0) = 0$ ist kein maximales Ideal in \mathbb{Z} .