## 清華物理 及 應用物理所 簡介

### 沈宗正

#### 一、概 況

這兩個所課程相似。除了量力Ⅰ、Ⅱ(6學分) 、電力I(3學分)共同必修外,物理所另必修統計 力學(3學分)。主要差別在於入學考試的科目,應 用物理所也爲非物理系畢業生著想。至於將來論文題 材並沒有什麼限制,完全依個人與趣而定。

#### 二、老 師

**清華物理系主要有三個方向:原子核、高能及固** 

(-)原子核實驗有劉遠中、徐竹村先生,其中劉先 生是許雲基老師的學生,因此同學若對這方面有興趣 可以向許老師打聽。理論方面有謝世哲、蔣亨進、李 曾通、王明建等先生。謝世哲先生是謝世明先生的哥 哥,經常在淸華,同學可以與他連絡。

台高能理論有李怡嚴、林克瀛、顏晃徹、閻愛德 、許貞雄、陳蔡鏡堂等幾位先生。也許在國內算是最 大的高能物理集團了,每週有定期討論會,似有相當 的活力。此地沒有高能實驗。同學們有與趣可與閻愛 德先生一談, 閻先生每週末均在閻校長公舘, 相信他 會樂意指導各位的。

白固懸理論有黃孝先、郞棣、陳信雄、單越等先 生。陳先生目前爲系主任,對系內的詳情最熟悉,這 方面的問題可以請教他。固態實驗人數較多,有王守 益、楊毓東、江銘添、呂助增、陳通、黃大民、楊銀 圳等幾位先生。他們的題目年年均有變動,因而我不 在此介紹。有志於此的同學可以問問江銘添、或陳通 先生。

四另外還有幾位先生是不屬於前三者的,如天文



物理、X光晶析、離子體物理、生物物理等。倪維斗 先生是很願意與同學談談這方面的。因爲清華與台大 只有兩個半小時的車程,所以我希望把清華列入考慮 的同學們能自己跑跑,用自己的判斷來決定自己的前 途。唸研究所最重要的是看看有沒有自己欣賞的老師 ,學校、設備都不是太重要的。因此,恕我不多表示 白己的意見。

#### 三、墨 風.

研究所的功課逼得很緊,我所接觸的幾位老師也 都相當穩健務實。同學同在一棟宿舍,討論的收益頗 多。全校的期刊都集中在開架式的總圖書館,可以用 程多爲一學期,因此很有彈性,在許多制度上也是一 再改進,這一點是最令人感到有希望的。清華大學部 的宿舍是十分活潑熱鬧的,公布欄上總有一些令人發 笑的新聞,研究生的宿舍則冷淸多了。(我連隔壁兄 弟的大名、系所都不知道)。研究生的生活是很平淡 的,趣味要自己去發掘。因此有人覺得此地太單調, 可是也有人覺得清華很有家庭味道,看起來這是「見 仁見智」的了。無論如何我想良好的人際關係和一些 單純的趣味總是令人愉快的。如果有人間我,清華物 理所最缺乏的是什麼?我想我會說:「更多優秀的同 學」。同學的切磋,和對老師的友饋,它的效果是互 大的。

### 四、後 語

離開台大之後,自是難兒回想從前種種。僅願以 兩句最平凡的話贈與在校諸學弟:

「多多鍛鍊自己,凡事精益求精」。





# 1975年

### 諾貝爾物理獎得主事略

郭貽琪

建立的原子核理論」。

三人提出的論文,描述了集合模型---這是綜合老 波爾的液滴模型和梅耶等人的殼層模型而得到的。由於 老波爾在原子結構及原子幅射的研究上有卓越貢獻,他 曾在一九二二年得到諾貝爾物理獎;一九〇五年,當他 還是一名年輕的研究生時,寫了一篇得過獎的有關振動 水滴的論文;七十年後他的兒子又因爲同樣的一個構想 而得獎。這筆十四萬三千圓的獎金,由此三人均分;於 十二月十日在斯德哥爾摩頒發給他們。

小波爾是尼爾斯·波爾學院的主任;麥特爾森是 NORDITA的教授;藍瓦特是哥倫比亞大學教授。

根據老波爾的構想而產生的液滴模型,在一九〇〇 年代,曾大爲風行;但一九四九年瑪莉亞・葛普特・梅 耶與丁・漢斯口・詹森(連同〇・哈京西與H・E・蘇 斯 ) 分别提出了殼層模型,二人並因此在—九六三年同 得諾貝爾獎。這個模型中,假設所有核子在一個共同位 能影響下,幾乎是互不相干的獨立運動。

殼層模型假設核是對稱球形,因此無法解釋核(尤

一九七五年諾貝爾物理獎由瑞典皇家學院頒給了阿 其是鑭系元素)的電四麼矩。一九四九年,查理,湯尼 吉・波爾・賓・麥特爾森和詹米・藍瓦特。他們的研究 土在一次談話中描述了理論和實驗間的差別,藍瓦特也 專題是「核子獨立運動和整體運動間的關係與由此關係 是聽衆,當時,他就想:到底該如何消除這種模型和實 驗的綜合性差異。

> 些瓦特說,如果穀層模型的分式中不特別强調球形 對稱,就暗含了核是扁球形的意思,在液滴模型的半經 驗結合能公式中,有一個近似於表面張力的項,假如體 **積一定,能量會隨物體外形和對稱球形表面積差的平方** 增加;同時,減少的庫倫力正好和增加的表面積相抵消

> 其次,他發現了「力效應」,也就是核能量隨核的 變形作線性減少,因此扁球形核能量最小。此外,核子 在軌道的赤道上的動能,隨軌道半經平方成反比。根據 波爾和惠勒的理論,體積固定,球的赤道澎脹的%,最 外層奇數核子動能就減少21-%,這就代表了一種線性 關係。當核成爲扁球形,就生一個負四極矩,而且這個 四極矩會被奇數核子放大。

一九五〇年,藍瓦特發表論文,說明高角動量量子 數ℓ殼層中的核軌道和赤道有很大夾角。同一夾角有正 ,負值,所以平均爲零。從閉殼層高角動量量子數軌域 的赤道中取出一個核子,核就會向下下方變成雪茄煙似

的形狀。如果次第取出赤道上其他核子,正四極矩會 穩定的增加,直到殼層變爲半滿,它又開始減少,核 的形狀也開始再度變成扁球形。

一九四五到一九五〇學年,小波爾訪美,藍瓦特和波爾在哥大共用一間辦公室;二人經常討論對靜核的理論,波爾對凸球形核的轉動和振動特別感興趣。 一九五〇年開始,一直到回哥本哈根以後,波爾發表一連串有關的論文,討論上述現象。

一九五〇年,殼層模型面臨另一難題,它對核所 釋放的伽瑪射線半衰期估計過長。波爾與麥特爾森一 同試著用四極矩解釋伽瑪射線,把核的受激態看成量 子化的古典振盪運動。一九五三年,他們開始發表有 關集合模型的論文,在這模型裡,整體和獨立的粒子 運動都扮了一角;他們在論文的開頭寫道:「吾人開 始很自然地把核描述成一層層能振盪和變形的殼層 如他們力圖調和殼層模型和液滴模型,在殼層模型裡 ,粒子被限制在一個大小和形狀固定的位能阱裡作獨 立運動;在新模型中,位能阱像一個彈性袋,粒子的 運動隨位能阱的變化變變化。

波爾等人最初假想核子運動就像裝在一個施轉足球裡的液體,他們把變形的液滴量子化,並計算因轉動而生的光譜。一九五四年,大衞·英格利建立了「曲柄模型」,他說,我們可以把穩定轉動的足球形邊界,想像成有一個柄在邊界上,柄上有外加的穩定轉短。計算系統對轉矩的反應,可求得轉動慣量,假設系統是剛體,轉動慣量就高;若是流體,轉動慣量就低。實際上應介於二者之間。

波爾和麥特爾森擴展此法,不算有閉殼層的核, 而計算有多餘核子的核,並加入核子間的相互作用。 同一時間,麻省理工學院的非力·威拉也做這種計算 。史芬·格斯特·尼爾森(哥本哈根的一位博士班研究生)算出了非球形位能阱內核子的能階,也算得核 會怎樣變形。 一九五七年,巴定,庫柏,史瑞夫建立了超導體的微觀理論(三人在一九七二年共得諾貝爾獎)。在這理論中,介紹了配對的觀念。波爾、麥特和賓尼利用配對觀念,解釋核的不連續光譜中能階的間隔。貝萊也贊成這理論,使得後來的學者能繼續他的工作,計算出與實驗相符的核轉矩。一九六四年,波爾等人建立了「配對振動」的觀念,指出單一核內和核族間都有外加規則;在光譜內,它們差了兩質量單位。因此,一九五〇年代初期的哥本哈根學院對核物理有著深遠的影響。

許多人願做實驗家,他們堅持理論需藉實驗證, 藍瓦特就是其中之一。過去三十年中,他一直認為自 己是實驗工作者,他對自己因理論而得獎眞是詑異非 常。事實上,八月十七日當他接到傳統的早晨電話時 ,他認為自己大約是因為一九五三年和范飛契同作的 X光實驗而得獎。

小傳:藍瓦特一九三九年從加州技術學院畢業後 ,就到哥倫比亞大學念研究所。在大戰期間,他會參 與曼哈坦計劃,在達寧手下工作。一九四六得哥大博 士學位,一九五二年成爲哥大教授。一九五一~一九 五四和一九五七~一九六一年間,他是納維斯加速器 實驗室主任,在那兒,他花了絕大部分的時間,監督 把同步加速器改建爲介子工廠的工作。

波爾在哥本哈根念書,一九五四年得博士學位, 一九四六年他已是理論物理學院的研究員。一九五六 年任哥本哈根大學教授。一九六三年老波爾去世時, 他升任學院院長。一九四四~四五年間,波爾參加曼 哈坦計劃,在洛桑拉摩斯科學實驗室工作。

麥特爾森,一九四七年普渡大學畢業,一九五〇年得哈佛博士學位。一九五三年他到了CERN,停留四年,成爲NORDITA的教授,一九五九年曾訪問加州大學柏克萊分校。一九七三年成爲丹麥公民。