So far, information is a function of probabilities.

Today:

• QM is about more than probabilities

Wave-Particle duality

• True for any quantum 'particle'

We shall stick to light

Light is a wave

- moving periodic disturbance
- obeys the principle of superposition

If Φ_1 is a light wave of amplitude I_1

and Φ_2 is also a wave with amplitute I_2

Then $\Phi_1+\Phi_2$ is also a light wave.

 Φ_1 and Φ_2 can be complex numbers

$$\Phi_1 = |\Phi_1| e^{i\cdot arphi_1}$$

Energy in the light field $E \varpropto |\Phi|^2$

Light is (also) a particle

- energy of light is carried in discrete packets/quanta
 - 1 quanta of light is called a photon
 - \circ 1 photon of light frequency f has energy E=h imes f
 - ullet plank's constant $pprox 6.6 imes 10^{-34} J \cdot s$

Aside: 1 laser pointer ~ 1mW power

- ullet = $1 imes 10^{-3} J$ of energy per second
- Optical freq $\sim 10^{14}~\text{Hz}$
- ullet => 1 optical photon has energy $h imes 10^{14}pprox 10^{-20}J$
- ullet => laser pointer pprox stream of 10^{17} photons
- => a wave description is sufficient

For 2 waves of amplitutdes

•
$$\Phi_1 = \sqrt{I_1}e^{i\cdot\varphi_1}$$

$$ullet$$
 $\Phi_2=\sqrt{I_2}e^{i\cdotarphi_2}$

Total intensity

$$ullet I = |\Phi_1 + \Phi_2|^2 = |\Phi_1|^2 + |\Phi_2|^2 + \Phi_1^* \Phi_2 + \Phi_1 \Phi_2^*$$

Review:

•
$$\Phi_1 = a + i \cdot b$$

•
$$\Phi_1^* = a - i \cdot b$$

$$ullet$$
 Also, $\Phi_1=\sqrt{I_1}e^{i\cdotarphi_1}$, then $\Phi_1^*=\sqrt{I_1}e^{-i\cdotarphi_1}$

•
$$e^{i\cdot\theta} = cos\theta + i\cdot sin\theta$$

ullet energy of a wave of amplitutde Φ is $E arpropto |\Phi|^2$

$$ullet \ \Phi_1 = a + i \cdot b = \sqrt{I_1} e^{i \cdot arphi_1} = \sqrt{I_1} (cos heta + i \cdot sin heta)$$

• Real part
$$\Rightarrow a = \sqrt{I_1} cos \theta$$

$$ullet$$
 imaginary part $\Rightarrow b = \sqrt{I_1} sin heta$

$$ullet \ I=I_1+I_2+2\sqrt{I_1I_2}cos(arphi_2-arphi_1)$$

How to explain interferences of light photon by photon?

For a single photon,

ullet $\Phi \equiv$ probability amplitude

 a mathematical construct which cannot be compared to anything measurable

But, the probability of finding a photon at x, $prob(x) = |\Phi|^2$

Recall, for waves, $Energy \varpropto |\Phi|^2$

- ullet for photons, $Energy=h\cdot f imes$ (Prob. you have a photon in that place)
- : $Energy \propto |\Phi|^2$

With just 1 slit open,

ullet Prob. for finding a photon at ${\sf x}=P_1(x)=|\Phi|^2$

With the 2nd slit open,

- ullet Prob. for finding a photon at $x=P_2(x)=|\Phi_2|^2$
- ullet with both slits open, $P=|\Phi_1+\Phi_2|^2=P1+P2+()\cdot cos(arphi_1-arphi_2)
 eq P1+P2$

Very different from classical prob theory scenarios

Eg. coin toss

Flip 2 coins

- Prob. of both heads = P1,
- tails = P2
- ullet Prob. that both coins landed on same side =P1+P2

observation: Only tiny things behave quantum mechanically (photons, atoms, electrons, , ...) Big things don't

NOT TRUE!

Which way' experiment

(double slit exp with photon detectors on the slits figure) shows no interference

Suppose you put tiny detectors at both slits,

⇒ you know which slit each photon went through

Then the prob. to see photon at point x=P1+P2 no interference term!

The essential difference between 2 coins (adding prob.) and 2 slits (adding prob. amplitudes) is all about information

Quantum rules for adding probability and amplitudes (vs. classical world's adding probabilites)

- ONLY apply when the system is informationally isolated.
- if scramble again then the interference come back

informationally isolated \Rightarrow produces no record anywhere in the universe

Weirdness of Quantum theory is bacause this probabilistic behavior is inherent/fundamental

It allows for mutually exclusive situations to exist simutaneously in a "quantum superposition"