

Departamento de Matemática da Universidade de Aveiro

Álgebra Linear e Geometria Analítica

Exame Final

19 de Janeiro de 2009	Duração: 2 horas 30 minutos
-----------------------	-----------------------------

Nome:		Nº mec.:
Curso:	Melhoria de Nota:	Nº folhas suplementares:

Caso pretenda desistir assine a seguinte declaração.

Declaro que desisto.

Questão	1a	1b	1c(i)	1c(ii)	2a	2b	3a	3b	total
Cotação	20	10	15	10	10	10	15	10	100
Classificação									

Questão	4a	4b	4c	5a	5b	5c	5d	6a	6b	total
Cotação	5	10	15	10	10	15	10	10	15	100
Classificação										

Classificação
total
valores

IMPORTANTE: Justifique resumidamente todas as suas afirmações e indique os cálculos que efectuou.

- 1. Considere o parâmetro $k\in\mathbb{R}$ e a matriz $A=\begin{bmatrix}1&0&1\\1&k&2\\1&1&k+1\end{bmatrix}$.
 - (a) Usando o método de eliminação de Gauss, indique os valores de k para os quais o sistema Γ_{1}

$$AX = \begin{bmatrix} 1 \\ k \\ 1 \end{bmatrix}, \text{ com } X \in \mathbb{R}^3, \text{ \'e}$$

- i. possível e determinado,
- ii. possível e indeterminado,
- iii. impossível.
- (b) Considere k=2 e verifique se o vector (1,2,1) se pode escrever como combinação linear das colunas de A. Em caso afirmativo indique essa combinação linear.
- (c) Considere k = 1.
 - i. Indique uma base para o espaço das colunas de A, C(A), outra para o espaço das linhas de A, L(A), e indique a característica de A, car(A).
 - ii. Determine o espaço nulo de A, $\mathcal{N}(A)$, e indique a nulidade de A.
- 2. Seja A uma matriz quadrada de ordem 3 tal que $\det(A) = \frac{1}{2}k k^2$.
 - (a) Indique para que valores de $k \in \mathbb{R}$ a matriz A é invertível.
 - (b) Sendo k = 1, calcule $det(2A^{-1})$.
- 3. Seja $U = \{(x, y, z) \in \mathbb{R}^3 : x y 2z = 0\}.$
 - (a) Verifique que U é um subespaço vectorial de \mathbb{R}^3 .
 - (b) Indique uma base de U e a sua dimensão.

- 4. Considere os vectores de \mathbb{R}^3 , u=(a,1,-2) e v=(-2,2,1), com $a\in\mathbb{R}$, tais que $u\cdot v=4$. Calcule
 - (a) o valor de a,
 - (b) o produto vectorial $u \times v$,
 - (c) a projecção ortogonal de u sobre o plano XOY.
- 5. Seja $L: \mathbb{R}^2 \to \mathbb{R}^3$ a transformação linear definida por L(x,y) = (x,x-y,-y).
 - (a) Indique o núcleo de L.
 - (b) L é injectiva? E sobrejectiva? Justifique.
 - (c) Determine a matrix de L nas bases S = ((1,1),(0,1)) e T = ((1,0,1),(0,1,0),(0,0,1)).
 - (d) Obtenha L(2,3) usando a matriz da alínea anterior.
- 6. Seja A uma matriz, de ordem 3, com valores próprios 0 e 2 cuja equação característica é $\lambda(\lambda-2)^2=0$. Sabe-se que (1,1,1) é um vector próprio de A associado ao valor próprio 0 e que A admite a seguinte matriz diagonalizante $P=\begin{bmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Indique o conjunto de todos os vectores próprios de A associados ao valor próprio 2.
 - (b) Determine a matriz A.