MAC0338 - Análise de Algoritmos

Departamento de Ciência da Computação Segundo semestre de 2023

Lista 8

Entregar: Exercícios 3, 6 e 9.

Instruções: Leia as instruções postadas no e-disciplinas.

- 1. Defina algoritmo eficiente. Defina problema de decisão. Defina verificador polinomial para SIM. Defina verificador polinomial para NÃO. Defina as classes P, NP e coNP. Dê um exemplo de um problema em cada uma dessas classes, justificando a sua pertinência à classe.
- 2. Mostre que SAT está em NP. (Essa é a parte fácil do teorema de Cook.)
- 3. Uma fórmula booleana $\mathcal C$ sobre um conjunto X de variáveis booleanas (não necessariamente em CNF) é uma tautologia se toda atribuição a X satisfaz $\mathcal C$. O problema TAUTOLOGIA consiste em, dado X e $\mathcal C$, decidir se $\mathcal C$ é ou não uma tautologia. Prove que o problema TAUTOLOGIA está em coNP.
- 4. O problema 2-SAT consiste na restrição de SAT a instâncias X e \mathcal{C} em que toda cláusula de \mathcal{C} tem exatamente dois literais. Mostre que o 2-SAT está em P, ou seja, descreva um algoritmo polinomial que resolva o 2-SAT.
- 5. Mostre que 2-coloração está em P.
- 6. Seja G=(V,E) um grafo. Um conjunto $S\subseteq V$ é independente se quaisquer dois vértices de S não são adjacentes. Ou seja, não há nenhuma aresta do grafo com as duas pontas em S. O problema IS consiste no seguinte: dado um grafo G e um inteiro $k\geq 0$, existe um conjunto independente em G com k vértices? Mostre que o problema IS é NP-completo. Não pode usar o fato que o problema CLIQUE é NP-completo, mas pode se inspirar na prova deste teorema.
- 7. Seja G=(V,E) um grafo. Uma 3-coloração de G é uma função $c:V\to\{1,2,3\}$ tal que $c(u)\neq c(v)$, para toda aresta $uv\in E$.

Considere o seguinte problema.

Problema 3-COLORAÇÃO: Dado um grafo, determinar se ele tem ou não uma 3-coloração.

Mostre que o 3-coloração está em NP.

8. Mostre que o problema abaixo é NP-completo.

Problema PARTIÇÃO: Dada uma coleção S de números não negativos, decidir se existe uma subcoleção S' de S cuja soma é igual a soma dos números em $S \setminus S'$, ou seja,

$$\sum_{x \in S, x \in S'} x = \sum_{x \in S, x \notin S'} x.$$

9. Mostre que o problema abaixo é NP-completo.

Problema MOCHILA: Dado um número $W \geq 0$, um número $V \geq 0$, um número inteiro não negativo n, uma coleção de números não negativos w_1, \ldots, w_n , e uma coleção de números não negativos v_1, \ldots, v_n , decidir se existe um subconjunto S de $\{1, \ldots, n\}$ tal que

$$\sum_{i \in S} w_i \le W \quad e \quad \sum_{i \in S} v_i \ge V.$$

Pode assumir que o problema Partição (Exercício 8) é NP-completo.