Feuille_4 Math_103

Rappel de cours:

•

Exercice 4.1

4.1.1

$$A = \begin{vmatrix} 1 & -1 & 2 & 0 \\ 2 & 1 & 1 & 3 \\ 1 & 2 & -1 & 3 \end{vmatrix}$$

4.1.2

On a

$$C_1 = \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix}, C_2 = \begin{vmatrix} -1 \\ 1 \\ 2 \end{vmatrix}, C_3 = \begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix}, C_4 = \begin{vmatrix} 0 \\ 3 \\ 3 \end{vmatrix},$$

La première ligne peut être formée en soustrayant la ligne l_2 et la ligne l_3 . Donc, le rang de (l_1, l_2, l_3) est égal au rang de (l_2, l_3) . Les lignes l_2, l_3 sont indépendante (non proportionnelle). Donc, le rang de (S) est 2.

Trouver une relation de dépendance entre C_1, C_2 et C_3 :

$$aC_1 + bC_2 + cC_3 = 0$$

$$\begin{cases}
a - b + 2c &= 0 \quad l_1 \\
2a + b + c &= 0 \quad l_2 \\
a + 2b - c &= 0 \quad l_3
\end{cases}$$

$$\begin{cases}
a - b + 2c &= 0 \quad l_1 \\
-3b + 3c &= 0 \quad 2l_1 - l_2 \\
-3b + 3c &= 0 \quad l_1 - l_3
\end{cases}$$

$$\begin{cases}
a &= -c \\
b &= c
\end{cases}$$

Une relation de dépendance entre C_1, C_2 et C_3 est: $-C_1 + C_2 + C_3 = 0$.

Trouver une relation de dépendance entre C_1, C_2 et C_4 :

$$aC_1 + bC_2 + dC_4 = 0$$

$$\begin{cases}
a - b &= 0 \quad l_1 \\
2a + b + 3d &= 0 \quad l_2 \\
a + 2b + 3d &= 0 \quad l_3
\end{cases}$$

$$\begin{cases}
a - b &= 0 \quad l_1 \\
-3b - 3d &= 0 \quad 2l_1 - l_2 \\
-3b - 3d &= 0 \quad l_1 - l_3
\end{cases}$$

$$\begin{cases}
a &= -d \\
b &= -d
\end{cases}$$

Une relation de dépendance entre C_1, C_2 et C_4 est: $-C_1 - C_2 + C_4 = 0$.

Feuille_4 Math_103

Trouver une base (v_3, v_4) de E.

On a
$$C_3 = C_2 - C_1$$
 et $C_4 = C_1 + C_2$. Donc, $(x, y, z, t) = (x, y, y - x, x + y) = (0, y, y, y) + (x, 0, -x, x) = x(1, 0, -1, 1) + y(0, 1, 1, 1)$. En prenant $v_3 = (1, 0, -1, 1)$ et $v_4 = (0, 1, 1, 1)$ on a bien $E = Vect(v_3, v_4)$ et

$$av_3 + bv_4 = a(1, 0, -1, 1) + b(0, 1, 1, 1) = (a, 0, -a, a) + (0, b, b, b) = (a, b, b - a, a + b) = (0, 0, 0, 0)$$

Donc a = b = 0, $Vect(v_3, v_4)$ est libre.

Par conséquent $Vect(v_3, v_4)$ est une base de E.

 QED