Année 2017-2018 **Durée : 2h**

Examen

Les documents et les calculatrices ne sont pas autorisés pour l'épreuve.

Exercice 1 - Parties paires et impaires (4pt). Soient E un ensemble fini non vide et a un élément fixé de E. On note $\mathcal{P}(E)$ l'ensemble des parties de E et on considère l'application

$$\begin{array}{cccc} f: & \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ & A & \longmapsto & \begin{cases} A \cup \{a\} & \text{si } a \notin A \\ A \setminus \{a\} & \text{si } a \in A \end{cases} \end{array}$$

- 1. Montrer que pour tout $A \in \mathcal{P}(E)$ on a $f \circ f(A) = A$.
- 2. Montrer que *f* est bijective.
- 3. Soit $A \in \mathcal{P}(E)$. Montrer que si $\operatorname{Card}(A)$ est pair alors $\operatorname{Card}(f(A))$ est impair. Montrer que si $\operatorname{Card}(A)$ est impair alors $\operatorname{Card}(f(A))$ est pair.
- 4. En déduire que l'ensemble *E* a autant de parties de cardinal pair que de parties de cardinal impair.
- 5. On suppose que Card(E) = n. Quel est le cardinal de $\mathcal{P}(E)$, l'ensemble des parties de E? En déduire le cardinal de l'ensemble suivant :

$$P = \{A \in \mathcal{P}(E) \text{ tel que Card}(A) \text{ est pair}\}$$
 et $I = \{A \in \mathcal{P}(E) \text{ tel que Card}(A) \text{ est impair}\}$.

Exercice 2 - Groupe d'étudiants (3pt). Un groupe de TD contient 8 étudiants.

- 1. On décide de partager ce groupe de TD en deux groupes de TP de 4 étudiants. Combien y a-t-il de possibilités?
- 2. On décide de partager ce groupe de TD en deux groupes de TP pas forcément avec le même nombre d'étudiants. Combien y a-t-il de possibilités ?
- 3. Dans ce groupe de TD, on décide de choisir un étudiant pour ouvrir la salle et un autre différent pour fermer la salle. Combien y a-t-il de possibilités ?
- 4. Dans ce groupe de 8 étudiants, est-il possible que 4 d'entre eux aient chacun exactement trois amis, 2 d'entre eux en aient exactement quatre, et 3 d'entre eux exactement cinq ? Pour cette question, on pourra modéliser la situation avec un graphe non orienté et on déterminera le nombre de sommets et d'arêtes.

Exercice 3 - Relation d'équivalence (4pt). Soient E et F deux ensembles et $f: E \to F$ une application. On définit sur E la relation \mathcal{R} par

$$x\mathcal{R}y$$
 si et seulement si $f(x) = f(y)$.

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Pour la suite, on considère que la fonction f est définie sur $E = \{0,1,2,3,4,5,6,7,8\}$ et $F = \{a,b,c,d\}$ par :

- (a) Est-ce que *f* est injective? Est-ce que *f* est surjective?
- (b) Donner les classes d'équivalences de \mathcal{R} . En déduire le cardinal de E/\mathcal{R} , l'ensemble des classes d'équivalences de \mathcal{R} .
- (c) On définit la fonction

$$\widetilde{f}: E/\mathcal{R} \longrightarrow F$$
 $Cl(x) \longmapsto f(x)$

Montrer que si $y \in Cl(x)$ alors Cl(x) et Cl(y) ont bien la même image par \widetilde{f} .

(d) Montrer que \widetilde{f} est une bijection.

Exercice 4 - Relation d'ordre sur les mots (5pt). Soit $A = \{a, b\}$. Sur l'ensemble des mots A^* , on définit la relation suivante pour $u, v \in A^*$ par :

uSv si et seulement si le nombre de a dans le mot u est plus petit ou égal au nombre de a dans v.

Par exemple on a ababbSabaa.

1. Tracer le diagramme sagittal de ${\mathcal S}$ lorsqu'on se restreint à l'ensemble

$$E = \{a, b, ab, aa, aab, aba, aaa\}.$$

- 2. Montrer que la relation binaire S sur A^* est réflexive et transitive.
- 3. Est-ce que S est une relation d'ordre sur A^* ?
- 4. On définit sur \mathcal{A}^* la relation suivante :

$$u \sim v$$
 si et seulement si uSv et vSu .

Montrer que \sim est une relation d'equivalence sur \mathcal{A}^* .

- 5. Tracer le diagramme sagittal de \sim lorsqu'on se restreint à l'ensemble E.
- 6. Donner les classes d'équivalence de \sim lorsqu'on se restreint à E que l'on notera Cl_0 , Cl_1 , Cl_2 et Cl_3 .
- 7. Sur l'ensemble $E' = E / \sim = \{Cl_0, Cl_1, Cl_2, Cl_3\}$ on définit la relation suivante :

$$Cl_iS'Cl_i$$
 si et seulement s'il existe $x \in Cl_i$ et $y \in Cl_i$ tel que xSy .

Montrer que S' est une relation d'ordre sur E'.

8. Tracer le diagramme de Hasse de la relation d'ordre S' sur E'.

Exercice 5 - Déplacement d'un pion (4pt). On considère un pion qui se déplace sur des coordonnées entières $(x \ge 0)$ et $y \ge 0$. Au départ, le pion se trouve à la position (0,0) et il y a deux mouvements possibles :

- soit *x* augmente de 2 et *y* de 1;
- soit y augmente de 1 et x de 2.

On note $M \subset \mathbb{N} \times \mathbb{N} = \mathbb{N}^2$, l'ensemble des coordonnées accessibles par le pion.

1. Montrer que *M* peut être défini inductivement par :

Base :
$$B = \{(0,0)\}$$

Induction les opérations
$$\varphi_1:(x,y)\longmapsto (x+1,y+2)$$
 et $\varphi_2:(x,y)\longmapsto (x+2,y+1)$.

2. Parmi les couples suivants, dire (en justifiant) quels couples appartiennent à *M* :

(4,2)

- 3. Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a $(n, 2n) \in M$.
- 4. Considérons l'ensemble

$$M' = \{(2n + p, n + 2p) \in \mathbb{N}^2 \text{ tel que } n \in \mathbb{N} \text{ et } p \in \mathbb{N}\}.$$

Montrer par induction en utilisant la structure inductive de M que $M \subset M'$.

- 5. Montrer que tout élément de M' peut s'écrire à l'aide de φ_1 , φ_2 et (0,0). En déduire que M=M'.
- 6. Déterminer les points de la diagonale qui sont accessibles par le pion, c'est à dire $M \cap \Delta$ où

$$\Delta = \{(n, n) \in \mathbb{N}^2 \text{ tel que } n \in \mathbb{N}\}.$$

Année 2017-2018 **Durée : 2h**

Examen (Solutions)

Correction 1 1. **(1 point)** Soit $A \in \mathcal{P}(E)$ on a deux cas :

- si $a \in A$, on a $f(A) = A \setminus \{a\}$ donc $f \circ f(A) = (A \setminus \{a\}) \cup \{a\} = A$; — si $a \notin A$, on a $f(A) = A \cup \{a\}$ donc $f \circ f(A) = (A \cup \{a\}) \setminus \{a\} = A$. Dans tout les cas, on a $f \circ f(A) = A$.
- 2. (1 point) Soit $A, B \in \mathcal{P}(E)$ tels que f(A) = f(B), on a $A = f \circ f(A) = f \circ f(B) = B$ donc f est injective. Soit $A \in \mathcal{P}(E)$, on a $A = f \circ f(A) = f(f(A))$. Donc f(A) est un antécédent de A par f. On en déduit que f est surjective. Ainsi f est bijective car injective et surjective. Remarque : On peut aussi dire directement que comme $f \circ f = \operatorname{Id}$, la fonction f est bijective et admet f comme fonction réciproque.
- 3. **(1 point)** Pour construire f(A) on ajoute ou on enlève un élément à A. On en déduit que $\operatorname{Card}(f(A)) = \operatorname{Card}(A) 1$ ou $\operatorname{Card}(f(A)) = \operatorname{Card}(A) + 1$. Ainsi, si $\operatorname{Card}(A)$ est pair alors $\operatorname{Card}(f(A))$ est impair et si $\operatorname{Card}(A)$ est impair alors $\operatorname{Card}(f(A))$ est pair.
- 4. **(0,5 point)** Le fonction f réalise une bijection entre les parties paires et les parties impaires. On en déduit qu'il y a autant de parties de cardinal pair que de parties de cardinal impair.
- 5. **(1 point)** Si Card(E) = n alors Card(P(E)) = 2^n . Comme il y a autant de partie paire que de partie impaire, on en déduit que Card(P) = Card(I) = 2^{n-1} .

Correction **2** Attention, il y a différentes interprétations possibles pour la question. Mettre les points si c'est cohérent.

1. **(1 point)** Pour faire deux groupes de TP de 4 étudiants, il suffit de choisir 4 étudiants parmi 8 sans remise et dans ordre le nombre de possibilité est donc :

$$C_8^4 = \frac{8*7*6*5}{4*3*2} = 7*2*5 = 70.$$

- 2. **(1 point)** Pour construire un groupe de TP, pour chaque étudiant on a le choix de le prendre ou pas. Il y a 2⁸ possibilités.
- 3. **(1 point)** On 8 possibilité pour choisir celui qui ouvre la porte et 7 pour celui qui la ferme. Il y a donc 8*7=56 possibilités.
- 4. (1 point) On modélise le problème par un graphe ou les sommets sont les étudiants et il y a une arête entre deux sommets si les deux étudiants sont amis. Le nombre d'arête a vérifie donc 2a = 4 * 3 + 2 * 4 + 3 * 5 = 35 ce qui est impossible.

Correction 3 1. (1 point) \mathcal{R} est une relation d'équivalence car :

- Réflexivité : Pour tout $x \in E$ on a $f(x) = \bar{f}(x)$ donc $x \mathcal{R} x$.
- Symétrie : Soient $x, y \in E$ tels que xRy. On a f(x) = f(y), donc f(y) = f(x) et donc yRx.
- Transitivité : Soient $x, y, z \in E$ tels que xRy et yRz. On a f(x) = f(y) et f(y) = f(z) donc f(x) = f(z) et donc xRz.
- 2. (a) **(0,75 point)** *f* est surjectif car tout élément de *F* admet un antécédent. *f* n'est pas injectif car *a* admet plusieurs pré-image : 0,4 et 7.
 - (b) **(1 point)** Les classes d'équivalences de \mathcal{R} sont : $Cl(0) = \{0,4,7\}$, $Cl(1) = \{1,5\}$, $Cl(2) = \{2,6\}$ et $Cl(3) = \{3,8\}$. On a donc $Card(E/\mathcal{R}) = 4$.
 - (c) (0,75 point) Soit $y \in Cl(x)$ on a xRy donc f(x) = f(y). Ainsi $\widetilde{f}(Cl(x)) = \widetilde{f}(Cl(y))$.
 - (d) **(1 point)** Comme f est surjective, tout élément de $y \in F$ admet un antécédent x, c'est à dire f(x) = y, donc $\widetilde{f}(\operatorname{Cl}(x)) = y$. On en déduit que f est surjective.

Soit Cl(x), $Cl(y) \in E/\mathcal{R}$ tels que $\widetilde{f}(Cl(x)) = \widetilde{f}(Cl(y))$. On a donc f(x) = f(y) donc $x\mathcal{R}y$ d'ou Cl(x)) = Cl(y). On en déduit que \widetilde{f} est injective.

Comme \tilde{f} est injective et surjective, elle est bijective.

Correction 4 1. **(0,75 point)** On a:

2. **(0,75 point)** Réflexivité : Soit $u \in A^*$, u a le même nombre de a que u donc uSu.

<u>Transitivité</u>: Soient $u, v, w \in A^*$, u a moins de a que v qui a moins de a que w. Donc u a moins de a que w. Ainsi uSv.

- 3. **(0,5 point)** S n'est pas une relation d'ordre car elle n'est pas antisymétrique. En effet aSab et abSa mais $a \neq ab$.
- 4. (1 point) \sim est une relation d'équivalence car :

<u>Réflexivité</u> : Soit $u \in A^*$, on a uSu donc $u \sim u$

<u>Transitivité</u>: Soient $u, v, w \in \mathcal{A}^*$ tel que $u \sim v$ et $v \sim u$. On a $u\mathcal{S}v$ et $v\mathcal{S}w$ donc par transitivité de \mathcal{S} on a $u\mathcal{S}w$. De même on a $v\mathcal{S}u$ et $w\mathcal{S}v$ donc par transitivité de \mathcal{S} on a $w\mathcal{S}u$. Ainsi $u \sim w$.

Symétrie : Soient $u, v \in A^*$ tel que $u \sim v$. On a uSv et vSu donc $v \sim u$.

5. **(0,5 point)** On a

- 6. **(0,5 point)** On a $Cl_0 = \{b\}$, $Cl_1 = \{a, ab\}$, $Cl_2 = \{aa, aab, aba\}$ et $Cl_3 = \{aaa\}$.
- 7. **(1 point)** S' est une relation d'ordre sur E' car :

Réflexivité : Pour tout classe Cl_i , il existe $x \in Cl_i$ et on a xSx par réflexivité. Donc $Cl_iS'Cl_i$.

<u>Transitivité</u>: Soient Cl_i , Cl_j , $Cl_k \in E'$ tels que $Cl_i \mathcal{S}' Cl_j$ et $Cl_j \mathcal{S}' Cl_k$. Il existe donc $x \in Cl_i$ et $y \in Cl_j$ tels que $x\mathcal{S}y$. Et il existe donc $y' \in Cl_j$ et $z \in Cl_k$ tels que $y'\mathcal{S}z$. Comme $y, y' \in Cl_j$, on a $y\mathcal{S}y'$. Par transitivité de \mathcal{S} on en déduit que $Cl_i \mathcal{S}' Cl_k$.

Antisymétrie : Soient Cl_i , $Cl_j \in E'$ tels que $Cl_i \mathcal{S}' Cl_j$ et $Cl_j \mathcal{S}' Cl_i$. Ainsi il existe $x, x' \in Cl_i$ et $y, y' \in Cl_j$ tels que $x\mathcal{S}y$ et $y'\mathcal{S}x'$. Comme $y, y' \in Cl_j$, on a $y\mathcal{S}y'$ donc par transitivité $y\mathcal{S}x'$. Comme $x, x' \in Cl_i$, on a $x'\mathcal{S}x$ donc par transitivité $y\mathcal{S}x$. On a donc $x\mathcal{S}y$ et $y\mathcal{S}x$ donc $x \sim y$. Ainxi x et y sont dans la même classe d'équivalence donc $Cl_i = Cl_j$.

8. **(0,5 point)** On a

Correction 5 1. **(0,5 point)** Au départ le pion se trouve au point de coordonné (0,0) qui correspond à la base de M. Il peut se déplacer suivant le vecteur (2,1), ce qui correspond à l'opération φ_1 , ou suivant le vecteur (1,2), ce qui correspond à l'opération φ_2 .

2. **(1 point)** Les points (1,2), (2,4), (3,3) et (4,2) sont des éléments de M car : $(1,2) = \varphi_1(0,0)$, $(2,4) = \varphi_1 \circ \varphi_1(0,0)$, $(3,3) = \varphi_1 \circ \varphi_2(0,0)$, $(4,2) = \varphi_2 \circ \varphi_2(0,0)$.

Le point (1,1) n'est pas dans M car dès qu'on applique φ_1 ou φ_2 , une des deux coordonnées est plus grande que 2.

3. **(0,75 point)** Montrons par récurrence sur $n \in \mathbb{N}$ que $(n,2n) \in M$.

Initialisation: pour n = 0, on a $(0,0) \in M$

Héridité : Supposons que $(n, 2n) \in M$. On a $\varphi_1(n, 2n) = (n + 1, 2(n + 1)) \in M$.

Par récurrence, on en déduit que $(n, 2n) \in M$ pour tout $n \in \mathbb{N}$.

4. (1 point) Montrons par induction que $M \subset M'$:

Base: On a $(0,0) \in M'$.

Héridité : Soit $(2n + p, n + 2p) \in M'$. On a

$$\varphi_1(2n+p,n+2p) = (2n+p+1,n+2p+2) = (2n+(p+1),n+2(p+1)) \in M'$$
 et $\varphi_2(2n+p,n+2p) = (2n+p+2,n+2p+1) = (2(n+1)+p,(n+1)+2p) \in M'$.

Par induction, on en déduit que $M \subset M'$.

- 5. **(0,75 point)** Pour $n, p \in \mathbb{N}$, on a $(2n + p, n + 2p) = \varphi_1^p \circ \varphi_2^n(0, 0) \in M$. Donc $M' \subset M$
- 6. **(0,5 point)** Soient $n, p \in \mathbb{N}$ tels que $(2n + p, n + 2p) \in M \cap \Delta$. On a donc 2n + p = n + 2p autrement dit n = p. Ainsi

$$M \cap \Delta = \{(3n, 3n) \text{ tel que } n \in \mathbb{N}\}.$$