PCT

世界知的所有権機関 国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

A61K 31/40, 31/422, 31/4439, 31/404, 31/4545, 31/4525, 31/4535, 31/454, 31/427, 31/433, 31/4245, 31/4155, 31/5377, 31/4709, 31/506, 31/4184, 31/4178, 31/423, 31/4192, 31/445, 31/429, 31/55, A61P 43/00, 29/00, 9700, 37/00, 25/00, 11/00 // CO7D 207/14, 207/33, 207/34, 405/06, 405/12, 405/14, 401/06, 401/12, 401/14, 405/06, 409/12, 409/14, 403/06, 401/12, 401/14, 405/06, 511/34, 21/169, 21/167, 21/

A1

(11) 国際公開番号

WO00/69432

(43) 国際公開日

2000年11月23日(23.11.00)

(21) 国際出願番号

PCT/JP00/03203

(22) 国際出願日

2000年5月18日(18.05.00)

(30) 優先権データ

特願平11/175856 特願平11/251464 1999年5月18日(18.05.99)

1999年9月6日(06.09.99)

(71) 出願人 (米国を除くすべての指定国について) 帝人株式会社(TEIJIN LIMITED)[JP/JP]

〒541-0054 大阪府大阪市中央区南本町1丁目6番7号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

塩田辰樹(SHIOTA, Tatsuki)[JP/JP]

宮城文敬(MIYAGI, Fuminori)[JP/JP]

上村 孝(KAMIMURA, Takashi)[JP/JP]

太田知裕(OHTA, Tomohiro)[JP/JP]

高野泰宏(TAKANO, Yasuhiro)[JP/JP]

堀内秀樹(HORIUCHI, Hideki)[JP/JP]

〒191-0065 東京都日野市旭が丘4丁目3番2号

帝人株式会社 東京研究センター内 Tokyo, (JP)

(74) 代理人

前田純博(MAEDA, Sumihiro)

〒100-0011 東京都千代田区内幸町2丁目1番1号

帝人株式会社 知的財産センター内 Tokyo, (JP)

(81) 指定国 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許(GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: REMEDIES OR PREVENTIVES FOR DISEASES IN ASSOCIATION WITH CHEMOKINES

(54)発明の名称 ケモカインの関与する疾患の治療薬もしくは予防薬

(57) Abstract

Remedies or preventives for diseases in association with chemokines such as MIP-1 α and/or MCP-1. Namely, remedies or preventives for diseases in association with chemokines (rheumatoid arthritis, nephritis, etc.) which contain as the active ingredient cyclic amine derivatives represented by general formula (1), pharmaceutically acceptable acid-adducts thereof, or pharmaceutically acceptable C_{1-6} alkyl-adducts thereof.

本発明は、MIP-1 α および/またはMCP-1などのケモカインが関与する疾患の治療薬もしくは予防薬を提供する。すなわち、下記式(I)で表される環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C₁-C₆アルキル付加体を有効成分として含有する、慢性関節リウマチ、腎炎などのケモカインが関与する疾患の治療薬もしくは予防薬。

WO 00/69432 PCT/JP00/03203

1

明細書

ケモカインの関与する疾患の治療薬もしくは予防薬

5 技術分野

10

本発明は環状アミン誘導体に関する。さらに詳しくは、単球、リンパ球などの血液白血球成分の組織への浸潤が病気の進行、維持に主要な役割を演じている動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋症、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うっ血性心不全、ウィルス性髄膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎などの疾患に対する治療薬および/または予防薬として効果が期待できるケモカイン受容体拮抗剤に関する。

背景技術

15 ケモカインは、6-15kDの分子量をもち、各種の細胞、例えば、マクロファ ージ、単球、好酸球、好中球、線維芽細胞、血管内皮細胞、平滑筋細胞、および肥 満細胞によって炎症部位で産生される一群の炎症/免疫制御ポリペプチドの総称で ある。ケモカインは、4個の保存されたシステイン残基の位置の共通性、およびケ モカインをコードする遺伝子の染色体位置における相違によって、CXCケモカイ 20 λ (または α ケモカイン) とCCケモカイン(または β ケモカイン) の二つの大き なサブグループに分類される。CXCケモカインの最初の2個のシステインは、1 個のアミノ酸で隔てられているが、CCケモカインの同じシステインは隣接する。 例えば、 I L-8 (インターロイキン-8の略称) などはCXCケモカインである 一方、CCケモカインとしてはMIP-1 α/β (macrophage inflammatory prote 25 in-1 α/βの略称)、MCP-1 (monocyte chemoattractant protein-1の略 称)、および、RANTES (regulated upon activation normal T-cell express ed and secretedの略称)があげられる。

さらに、いずれのケモカイン・サブグループにも属しないケモカインもある。そのようなものとしては、2個のシステインしか持たず、Cケモカインに分類される 30 リンフォタクチン(lymphotactin)や、最初の2個のシステインが3個のアミノ酸によって隔てられていることからCX3Cケモカインに分類され、ムチン構造の中 にケモカイン様ドメインを持つフラクタルカイン(fractalkine)があげられる。これらのケモカインは細胞遊走を促進し、インテグリンなどの細胞接着分子の発現増強作用、さらには細胞接着増強作用を有しているので、炎症組織などの病変部位に対する白血球などの接着・浸潤に密接な関連を持つ蛋白性因子と考えられている。

- 参考文献としては、例えば、Vaddi、K. ら著、The Chemokine Facts Book, Academic Press, 1997; Horuk, R. 編、Chemoattractant Ligand and Their Receptors, CRC Press, 1996; Ward, G. W. ら、Biochem. J., 1998, 333, 457; Luster, A. D.、New E ngl. J. Med., 1998, 338, 436; Bagglioni, M.、Nature, 1998, 392, 565; Rollin s, B. J.、Blood, 1997, 90, 909; Alam, R.、J. Allergy Clin. Immunol., 1997, 9 9, 273; Hancock, W. W.、Am. J. Pathol., 1996, 148, 681; Taub, D. D. 著、Cyotki ne & Growth Factor Rev., 1996, 7, 335; Strieter, R. M. ら、J. Immunol., 1996, 156, 3583; Furie, M. B. ら、Am. J. Pathol., 1995, 146, 1287; Schall, T. J. ら 著、Current Opinion in Immunology, 1994, 6, 865; Edginton, S. M.、Biotechnol
- ogy, 1993, 11, 676などを参照されたい。 例えば、M I P-1 α は、細胞内カルシウムイオン濃度の一過性の上昇を惹起し 15 、Tリンパ球やBリンパ球の細胞遊走(例えば、Taub, D.D.ら、Science, 1993, 26 0, 355; Shall, T. J. ら、J. Exp. Med., 1993, 177, 1821を参照)、好酸球の細胞 遊走(例えば、Rot, A.ら、J. Exp. Med., 1992, 176, 1489参照)、NK細胞の細 胞遊走(例えば、Magazachi, A.A.ら、J. Immunol., 1994, 153, 4969参照)、イン 20 テグリンの発現(例えば、Vaddi, K.ら、J. Immunol., 1994, 153, 4721参照)、お よび破骨細胞の分化 (例えば、Kukita, T.ら、Lab. Invest., 1997, 76, 399参照) を誘導する。M I P - 1 α はさらに、B 細胞における I g E および I g G 4 産生を 増加させ(例えば、Kimata, H.ら、J. Exp. Med., 1996, 183, 2397参照)、また、 造血幹細胞の増殖を抑制する(例えば、Mayani, H. ら、Exp. Hematol., 1995, 23, 422; Keller, J. R. S. Blood, 1994, 84, 2175; Eaves, C. J. S. Proc. Natl. Acad 25 . Sci. USA, 1993, 90, 12015; Bodine, D.M.ら、Blood, 1991, 78, 914; Broxmeye r, H.E.ら、Blood, 1990, 76, 1110など参照)。

MIP-1 αの生体内における作用、あるいは疾病の病因との関連性に関しては、ウサギにおいて発熱物質であること(例えば、Davatelis, G. ら、Science, 1989, 243, 1066参照)、マウスの足蹠にMIP-1 αを投与すると好中球、単核球浸潤などの炎症反応を惹起すること(例えば、Alam, R. ら、J. Immunol., 1994, 152, 1

298参照)が報告されている。

また、MIP-1αに対する中和抗体は、肉芽腫(例えば、Lukacs, N.W.ら、J. Exp. Med., 1993, 177, 1551参照)、喘息(例えば、Lukacs, N.W.ら、Eur. J. Imm unol., 1995, 25, 245; Lukacs, N.W.ら、J. Immunol., 1997, 158, 4398参照)、 多発性硬化症(例えば、Karpus, W. J. ら、J. Immunol., 1995, 155, 5003; Karpus, W. J. ら、J. Leukoc. Biol., 1997, 62, 681参照)、突発性肺線維症(例えば、Smi th, R.E.ら、J. Immunol., 1994, 153, 4704; Smith, R.E.、Biol. Signals, 1996. 5, 223参照)、急性肺傷害(例えば、Shanley, T.P.ら、J. Immunol., 1995, 154, 4793; Standiford,T.J.ら、J. Immunol.,1995,155,1515参照)、および慢性関 節リウマチ (例えば、Kasama, T.ら、J. Clin. Invest., 1995, 95, 2868参照) な 10 どの動物モデルにおいて、抑制効果あるいは治療効果を持つことが報告されており 、 $MIP-1\alpha$ 遺伝子欠損マウスにおいては、コクサッキーウィルス感染惹起心筋 炎やヘルペス間質性角膜炎が抑制されることが報告されている(例えば、Cook,D.N . ら、Science,1995,269,1583;Tumpey,T. M. ら、J. Virology,1998,72,3705参 15 照)。

さらに、慢性肺炎症疾患(例えば、Standiford、T. J. ら、J. Immunol., 1993, 15 1, 2852参照)、過敏性肺炎(例えば、Denis, M. 、Am. J. Respir. Crit. Care Med., 1995, 151, 164参照)、慢性関節リウマチ(例えば、Koch, A. E. ら、J. Clin. I nvest., 1994, 93, 921参照)、感染性髄膜炎(例えば、Lahrtz, F. ら、J. Neuroim munol., 1998, 85, 33参照)、および筋の慢性炎症(例えば、Adams, E. M. ら、Proc. Assoc. Am. Physicians, 1997, 109, 275参照)などの患者においてMIP-1 α の有意な発現が認められている。これらの研究は、MIP-1 αが種々の白血球サプタイプの局所への集積、またそれに伴う炎症性疾患の発症、進展、および維持に深く関与していることを示している。

MCP-1 (別称MCAF (macrophage chemotactic and activating factorの略称)またはJE)は、単球/マクロファージ、平滑筋細胞、線維芽細胞、および、血管内皮細胞によって生産されるCCケモカインであり、単球(モノサイト)(例えば、Valente、A.J.ら、Biochemistry、1988、27、4162; Matsushima、K.ら、J. Exp. Med., 1989, 169, 1485; Yoshimura, T.ら、J. Immunol., 1989, 142, 1956 ; Rollins, B.J.ら、Proc. Natl. Acad. Sci., USA, 1988, 85, 3738; Rollins, B. J.ら、Blood, 1991, 78, 1112; Jiang, Y.ら、J. Immunol., 1992, 148, 2423; Vad

Exp. Med., 1992, 175, 489参照)。

di, K.ら、J. Immunol., 1994, 153, 4721など参照)、メモリーTリンパ球(例えば、Carr, M.W.ら、Proc. Natl. Acad. Sci. USA, 1994, 91, 3652参照)、Tリンパ球(例えば、Loetscher, P.ら、FASEB J., 1994, 8, 1055参照)、およびナチュラルキラー細胞(NK細胞)(例えば、Loetscher, P.ら、J. Immunol., 1996, 156, 322; Allavena, P.ら、Eur. J. Immunol., 1994, 24, 3233参照)などに対し細胞遊走活性および細胞接着増強作用を有する。さらに、MCP-1は好塩基球からのヒスタミン放出因子としての作用を有している(Alam R.ら、J. Clin. Invest., 1992, 89, 723; Bischoff, S.C.ら、J. Exp. Med., 1992, 175, 1271; Kuna, P.ら、J.

さらに、単球/マクロファージ、および/またはT細胞の蓄積が病変の発症、進 10 展、維持に深く関与していると考えられる粥状動脈硬化症(例えば、Hayes, I.M.ら 、Arterioscler. Thromb. Vasc. Biol., 1998, 18, 397; Takeya, M.ら、Hum. Path ol., 1993, 24, 534; Yla-Herttuala, S. 5, Proc. Natl. Acad. Sci., USA, 1991, 88, 5252; Nelken, N. A. 、J. Clin. Invest., 1991, 88, 1121参照)、慢性関節リ ウマチ(例えば、Koch, A.E.ら、J. Clin. Invest., 1992, 90, 772; Akahoshi, T. 15 ら、Arthritis Rheum., 1993, 36, 762; Robinson, E. ら、Clin. Exp. Immunol., 1 01, 398参照)、腎炎(例えば、Noris, M.ら、Lab. Invest., 1995, 73, 804; Wada , T.ら、Kidney Int., 1996, 49, 761; Gesualdo, L.ら、Kidney Int., 1997, 51, 155参照)、腎症(例えば、Saitoh, A.ら、J. Clin. Lab. Anal., 1998, 12, 1; Yo koyama, H. ら、J. Leukoc. Biol., 1998, 63, 493参照)、肺線維症、肺サルコイド 20 ーシス(例えば、Sugiyama, Y.ら、Internal Medicine, 1997, 36, 856参照)、喘 息(例えば、Karina, M.ら、J. Invest. Allergol. Clin. Immunol., 1997, 7, 254 ; Stephene, T. H. 、 Am. J. Respir. Crit. Care Med., 1997, 156, 1377; Sousa, A .R.ら、Am. J. Respir. Cell Mol. Biol., 1994, 10, 142参照)、多発性硬化症(例えば、McManus, C. ら、J. Neuroimmunol., 1998, 86, 20参照)、乾癬(例えば、 25 Gillitzer, R.ら、J. Invest. Dermatol., 1993, 101, 127参照)、炎症性腸疾患(例えば、Grimm,M.C.ら、J. Leukoc. Biol., 1996,59,804;Reinecker,H.C.ら、 Gastroenterology,1995,106,40参照)、心筋症(例えば、Seino,Y.ら、Cytokin e, 1995, 7, 301参照)、子宮内膜症(例えば、Jolicoeur, C.ら、Am. J. Pathol., 1998, 152, 125参照)、腹腔内癒着(例えば、Zeyneloglu, H.B.ら、Human Reprod 30

uction, 1998, 13, 1194参照)、うっ血性心不全(例えば、Aurust, P.ら、Circula

tion, 1998, 97, 1136参照)、慢性肝疾患(例えば、Marra, F.ら、Am. J. Pathol., 1998, 152, 423参照)、ウイルス性髄膜炎(例えば、Lahrtz, F.ら、Eur. J. Imm unol., 1997, 27, 2484参照)、川崎病(例えば、Wong, M.ら、J. Rheumatol., 1997, 24, 1179参照)、および敗血症(例えば、Salkowski, C.A.ら、Infect. Immun., 1998, 66, 3569参照)においてMCP-1の顕著な発現が報告されている。

また、抗MCP-1抗体による抑制効果または治療効果が、慢性関節リウマチ(例えば、Schimmer, R.C.ら、J. Immunol., 1998, 160, 1466; Schrier, D.J.、J. Leukoc. Biol., 1998, 63, 359; Ogata, H.ら、J. Pathol., 1997, 182, 106参照)、多発性硬化症(例えば、Karpus, W.J.、J. Leukoc. Biol., 1997, 62, 681参照)、腎炎(例えば、Lloyd, C.M.ら、J. Exp. Med., 1997, 185, 1371; Wada, T.ら、FASEB J., 1996, 10, 1418参照)、喘息(例えば、Gonzalo, J.-A.ら、J. Exp. Med., 1998, 188, 157; Lukacs, N.W., J. Immunol., 1997, 158, 4398参照)、粥状動脈硬化症(例えば、Guzman, L.A.ら、Circulation, 1993, 88 (suppl.), 1-371)、遅延型過敏症(例えば、Rand, M.L.ら、Am. J. Pathol., 1996, 148, 855参照)、15 肺高血圧症(例えば、Kimura, H.ら、Lab. Invest., 1998, 78, 571参照)、および

、腹腔内癒着(例えば、Zeyneloglu, H. B. ら、Am. J. Obstet. Gynecol., 1998, 17
 9, 438参照)などの動物モデルにおいて報告されている。
 さらには、MCP-1のペプチド性拮抗剤であるMCP-1 (9-76) もマウ

スモデルにおいて関節炎を抑制することが報告されており(例えば、Gong. J.-H.、

20 J. Exp. Med., 1997, 186, 131参照)、同様に、MCP-1遺伝子欠損マウスにおける研究でも、生体内においてMCP-1が、単球動員に必須であることが示されている(例えば、Lu, B.ら、J. Exp. Med., 1998, 187, 601; Gu, L.ら、Moll. Cell, 1998, 2, 275参照)。

これらのデータから、MIP-1 αやMCP-1などのケモカインは、単球、リンパ球などを病変部位に集積させ、それらの細胞を活性化することにより、単球、リンパ球などが病変の進展に深く関わっていると想定され得る疾患、例えば、粥状動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋炎、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うっ血性心不全、ウィルス性髄膜炎、脳梗塞、ニューロパシー、川崎病30 、および敗血症などの発症、進展、維持に深く関与していることが強く示唆されている(例えば、Rovin, B.H.ら、Am. J. Kidney. Dis., 1998, 31, 1065; Lloyd, C.

ら、Curr. Opin. Nephrol. Hypertens., 1998, 7, 281; Conti, P. ら、Allergy and Asthma Proc., 1998, 19, 121; Ransohoff, R. M. ら、Trends Neuroscience., 1998, 21, 154; MacDermott, R. P. ら、Inflammatory Bowel Diseases, 1998, 4, 54参照)。したがって、標的細胞に対するケモカインの作用を阻害する薬剤は、これらの疾病の治療薬および/または予防薬として有用であることが期待できる。

一方、ケモカインに対する特異的受容体をコードする遺伝子のクローニングがす すみ、種々の白血球上に存在するG蛋白共役型の7回膜貫通型受容体であることが 明らかになった。これまでに、少なくとも5個のCXCケモカイン受容体(CXC R1-CXCR5)と8個のCCケモカイン受容体(CCR1-CCR8)が特定 されている。例えば、IL-8はCXCR1とCXCR2のリガンドであり、MI 10 P-1 αはCCR1とCCR5のリガンドであり、MCP-1はCCR2AとCC R2Bのリガンドである(例えば、Holmes、W.E.ら、Science 1991, 253, 1278-128 0; Murphy, P. M. S. Science, 253, 1280-1283; Neote, K. S. Cell, 1993, 72, 41 5-425; Charo, I.F. 5, Proc. Natl. Acad. Sci. USA, 1994, 91, 2752-2756; Yama gami, S. S. Biochem. Biophys. Res. Commun., 1994, 202, 1156-1162; Combadier 15 , C.ら、The Journal of Biological Chemistry, 1995, 270, 16491-16494; Power, C. A. ら、J. Biol. Chem., 1995, 270, 19495-19500; Samson, M. ら、Biochemistry , 1996, 35, 3362-3367; Murphy, P.M. ら、Annual Review of Immunology, 1994, 1 2, 592-633参照)。

20 さらに、CCR1遺伝子欠損マウスにおいて肺炎症と肉芽形成が抑制されること (例えば、Gao, J.-L.ら、J. Exp. Med., 1997, 185, 1959; Gerard, C.ら、J. Cli n. Invest., 1997, 100, 2022参照)、およびCCR2遺伝子欠損マウスマにおいてマクロファージの集積と動脈硬化病変の形成が減少すること (例えば、Boring, L.ら、Nature, 1998, 394, 894; Kuziel, W.A.ら、Proc. Natl. Acad. Sci., USA, 19 97, 94, 12053; Kurihara, T.ら、J. Exp. Med., 1997, 186, 1757; Boring, L.ら、J. Clin. Invest., 1997, 100, 2552参照)が報告されている。したがって、MI P-1 αおよび/またはMCP-1などのケモカインのこれら受容体に対する結合を阻害する化合物、すなわちケモカイン受容体拮抗剤は、標的細胞に対するMIP-1 αおよび/またはMCP-1などのケモカインの作用を阻害する薬剤として有 用であることが期待できるが、そのような作用を有する薬剤は知られてない。

最近、種々のピペリジン、ピペラジンなどの環状アミン誘導体がケモカイン受

容体拮抗作用を有することが報告されている(例えば、WO9724325; Hesse Igesser, J. ら、J. Biol. Chem., 1998, 273, 15687; Howard, O. M. Z. ら、J. Med. Chem., 1998, 41, 2184; WO9744329; WO9802151; WO980454; WO9825605; WO9825617; WO9825604; WO9831364; WO9856771; WO99909984; WO9904794; WO9917773; WO9937617; WO99937619; WO99737651; WO9938514; WO200014086; WO200014089; EP903349; JP9-249566; JP9-25572; JP11-71350など参照)。しかしながら、これらの化合物は本発明で用いられる化合物とは異なる。

発明の開示

10

15

20

 $MIP-1\alpha$ および/またはMCP-1などのケモカインの標的細胞上の受容体に対する結合を阻害する活性を有する低分子化合物を用いて、 $MIP-1\alpha$ および/またはMCP-1などのケモカインが標的細胞上の受容体に結合することが病因の一つであるような疾患の治療法を提供することが本発明の目的である。

本発明者らは、鋭意研究を重ねた結果、アリールアルキル基を有する環状アミン誘導体、その薬学的に許容し得る C_1-C_6 アルキル付加体、または薬学的に許容され得る酸付加体が、MIP-1 α および/またはMCP-1 などのケモカインの標的細胞に対する結合を阻害する活性を有することを発見し、さらにはそれらの化合物が、MIP-1 α および/またはMCP-1 などのケモカインが関与すると考えられる疾患の治療薬もしくは予防薬となり得ることを知見して、本発明を完成するに至った。

すなわち、本発明は、下記式(1)

25

30 [式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、または、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基

を表す。かかる R^1 におけるフェニル基または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_3-C_6 アルキレン基、 C_2-C_4 アルキレンオキシ基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルチオ基、ベンジル基、ベンゾイルアミノ基

- 10 、 C_2-C_7 アルカノイル基、 C_2-C_7 カルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_4-C_9 N-シクロアルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、 C_3-C_8 (アルコキシカルボニル)メチル基、N-フェニルカルバモイル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル
- 4. 式:-NH(C=O)O-で表される2価基、式:-NH(C=S)O-で表される2価基、アミノ基、モノ(C $_1-C_6$ アルキル)アミノ基、またはジ(C $_1-C_6$ アルキル)アミノ基で置換されていてもよく、これらのフェニル基、C $_3-C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、C $_1-C_6$ アルキル基、または C_1-C_6 アルコキシ基によってさらに置換されていてもよい。

 R^2 は水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表す。かかる R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個ののハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

25

jは0-2の整数を表す。

kは0-2の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

 R^3 は水素原子または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換されて

WO 00/69432 PCT/JP00/03203

いてもよい1または2個のフェニル基)によって置換されていてもよい $C_1 - C_6$ アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 または $C_1 - C_6$ アルキル基を表す。かかる R^4 および R^5 における $C_1 - C_6$ アルキル 基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル 基、カルバモイル基、メルカプト基、グアニジノ基、C3-C8シクロアルキル基、 C1-C6アルコキシ基、C1-C6アルキルチオ基、(任意個のハロゲン原子、ヒド ロキシ基、C₁-C₆アルキル基、C₁-C₆アルコキシ基、もしくはベンジルオキシ 基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基 、ベンジルオキシカルボニル基、C。-C,アルカノイル基、C。-C,アルコキシカ 10 ルボニル基、C₂-C₁アルカノイルオキシ基、C₂-C₁アルカノイルアミノ基、C 2-C7 N-アルキルカルバモイル基、C1-C6アルキルスルホニル基、アミノ基、 モノ $(C_1 - C_6$ アルキル) アミノ基、ジ $(C_1 - C_6$ アルキル) アミノ基、または (ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有す る芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により 15 置換されていてもよく、あるいはR⁴およびR⁵は両者一緒になって3-6員環状炭 化水素を形成してもよい。

pは0または1を表す。

qは0または1を表す。

Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-CO-$ 、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-SO_2-$ 、 $-SO_2-N$ R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は水素原子または C_1-C_6 アルキル基を表すか、あるいは R^7 は R^5 と一緒になって C_2-C_5 アルキレン基を形成してもよい。

25 R^6 はフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を表す。かかる R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_6$ シクロアルケニル基、ベンジル基、芳香族複素環基、ま

たは縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、 ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチ ル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 $C_1 - C_6$ アルキルチオ 基、 $C_1 - C_3$ アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ 基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基 、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルコキシカルボ ニル基、 $C_2 - C_7$ アルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 C_7N$ -アルキルカルバモイル基、 C_1 - C_6 アルキルスルホニル基、フェニルカルバ モイル基、N, N-ジ (C_1-C_6 アルキル) スルファモイル基、アミノ基、モノ ($C_1 - C_6$ アルキル)アミノ基、ジ($C_1 - C_6$ アルキル)アミノ基、ベンジルアミノ 基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル) アミノ基、またはピス(C_1-C_6 アルキルスルホニル)アミノ基により置換され ていてもよく、これらのフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロ アルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個の 15 ハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、C₁- C_6 アルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、モノ(C_1 - C_6

20 で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される $C_1 - C_6$ アルキル付加体を有効成分とする、ケモカインもしくはケモカインレセプターが関与する疾患の治療薬もしくは予防薬である。

 $_6$ アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によってさらに置換

ここに上記式 (I) で表される化合物は、MIP-1αおよび/またはMCP-1などのケモカインの標的細胞に対する結合を阻害する活性、およびMIP-1α および/またはMCP-1などのケモカインの標的細胞への生理的作用を阻害する活性を有する。

図面の簡単な説明

されていてもよい。]

図1は、化合物番号1583を12週間経口投与した場合の関節炎に対する効果 30 を示す図である。

図2は、化合物番号1583の滑膜の増殖に対する効果を示す図である。

図3は、化合物番号1583の関節軟骨の破壊に対する効果を示す図である。

図4は、化合物番号1583の軟骨下骨の骨破壊に対する効果を示す図である。

図5は、化合物番号1245を3週間経口投与した場合の後肢足蹠腫脹に対する効果を示す図である。

5 図6は、化合物番号1583の尿蛋白抑制効果を示す図である。

図7は、化合物番号1245の尿蛋白抑制効果を示す図である。

図8は、化合物番号1583の慢性再発性実験的アレルギー性脳脊髄炎動物モデルにおける効果を示す図である。

図9は、化合物番号1245の慢性再発性実験的アレルギー性脳脊髄炎動物モデ 10 ルにおける効果を示す図である。

発明を実施するための最良の形態

上記式(I)において、R¹はフェニル基、C₃-C₈シクロアルキル基、またはへ テロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する 芳香族複素環基を表し、上記R¹におけるフェニル基または芳香族複素環基は、ベン 15 ゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子 を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、上記R1 におけるフェニル基、C3-C8シクロアルキル基、芳香族複素環基、または縮合環 は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基 20 、カルバモイル基、C, - С, アルキル基、С, - С, シクロアルキル基、С, - С, ア ルケニル基、C₁-C₆アルコキシ基、C₁-C₆アルキルチオ基、C₃-C₅アルキレ ン基、C2-C4アルキレンオキシ基、C1-C3アルキレンジオキシ基、フェニル基 、フェノキシ基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルア ミノ基、C2-C2アルカノイル基、C2-C2カルコキシカルボニル基、C2-C2ア 25 ルカノイルオキシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N - アルキルカル バモイル基、 $C_4 - C_6$ N - シクロアルキルカルバモイル基、 $C_1 - C_6$ アルキルスル ホニル基、C3-C8(アルコキシカルボニル)メチル基、N-フェニルカルバモイ ル基、ピペリジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカル ボニル基、式:-NH(C=O)O-で表される2価基、式:-NH(C=S)O 30 ーで表される2価基、アミノ基、モノ(C,-C。アルキル)アミノ基、またはジ(C,-C。アルキル) アミノ基でさらに置換されていてもよい。

 R^1 における「 C_3 - C_8 シクロアルキル基」とは、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロペキシル、シクロペプチル、シクロオクチル基などの環状のアルキル基を意味し、その好適な具体例としては、シクロプロピル基、シクロペンチル基、およびシクロペキシル基などが挙げられる。

5 R¹における「ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基」とは、例えばチエニル、フリル、ピロリル、イミダゾリル、ピラゾリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、ピリジル、ピリミジニル、トリアジニル、トリアゾリル、オキサジアゾリル(フラザニル)、チアジアゾリル基などの芳香族複素環基を意味し、その好適な具体例としては、チエニル、フリル、ピロリル、イソオキサゾリル、およびピリジル基などが挙げられる。

R¹における「縮合環」とは、上記フェニル基または芳香族複素環基がベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と可能な任意の位置で縮合して形成される2環式芳香族複素環基を意味し、その好適な具体例としてはナフチル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾトリアゾリル、ベンゾオキサジアゾリル(ベンゾフラザニル)、およびベンゾチアジアゾリル基などが挙げられる。

なかでもR¹は、フェニル基、イソオキサゾリル基、またはインドリル基である場 20 合が特に好ましい。

 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基としての「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを意味し、その好適な具体例としてはフッ素原子、塩素原子、臭素原子が挙げられる。

 R^1 の置換基としての「 C_1 - C_6 アルキル基」とは、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-インチル、n-インプロピル、イソプロピル、イソプチル、n-ペンチル、n-ベンチル、n-

 R^1 の置換基としての「 $C_3 - C_8$ シクロアルキル基」は、前記 R^1 における「 C_3 - C_8 シクロアルキル基」の定義と同様であり、その好適な具体例も同じ基を挙げることができる。

 R^1 の置換基としての「 C_2-C_6 アルケニル基」とは、例えばビニル、アリル、1-プロペニル、2-ブテニル、3-ブテニル、2-メチル-1-プロペニル、4-ペンテニル、5-ヘキセニル、4-メチル-3-ペンテニル基などの C_2 - C_6 の直鎖または分枝状のアルケニル基を意味し、その好適な具体例としてはビニル基および2-メチル-1-プロペニル基などが挙げられる。

 R^1 の置換基としての「 C_1 - C_6 アルコキシ基」とは、前記 C_1 - C_6 アルキル基 とオキシ基とからなる基を意味し、その好適な具体例としてはメトキシ基、エトキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_6 アルキルチオ基」とは、前記 C_1-C_6 アルキル基とチオ基とからなる基を意味し、その好適な具体例としてはメチルチオ基、エチルチオ基などが挙げられる。

 R^1 の置換基としての「 C_3-C_5 アルキレン基」とは、例えばトリメチレン、テトラメチレン、ペンタメチレン、1-メチルトリメチレン基などの C_3-C_5 の2価のアルキレン基を意味し、その好適な具体例としては、トリメチレン基、テトラメチレン基などが挙げられる。

 R^1 の置換基としての「 C_2 - C_4 アルキレノキシ基」とは、例えばエチレンオキシ $(-CH_2CH_2O-)$ 、トリメチレンオキシ($-CH_2CH_2CH_2CH_2O-)$ 、テトラ メチレンオキシ($-CH_2CH_2CH_2CH_2CH_2O-)$ 、1、1-ジメチルエチレンオキ シ($-CH_2C$ (CH_3) $_2O-$)基などの、 C_2-C_4 の2価アルキレン基とオキシ 基とからなる基を意味し、その好適な具体例としてはエチレンオキシ基、トリメチレンオキシ基などが挙げられる。

 R^1 の置換基としての「 C_1-C_3 アルキレンジオキシ基」とは、例えばメチレンジオキシ($-OCH_2O-$)、エチレンジオキシ($-OCH_2CH_2O-$)、トリメチレンジオキシ($-OCH_2CH_2CH_2O-$)、プロピレンジオキシ($-OCH_2CH$ (CH_3)O-)基などの C_1-C_3 の2価アルキレン基と2個のオキシ基とからなる基を意味し、その好適な具体例としてはメチレンジオキシ基、エチレンジオキシ基な 20 どが挙げられる。

R¹の置換基としての「C₂-C₂アルカノイル基」とは、例えばアセチル、プロパ

20

ノイル、ブタノイル、ペンタノイル、ヘキサノイル、ヘプタノイル、イソブチリル、3-メチルブタノイル、2-メチルプタノイル、ピバロイル、4-メチルペンタノイル、3, 3-ジメチルプタノイル、5-メチルヘキサノイル基などの C_2-C_7 の直鎖または分枝状のアルカノイル基を意味し、その好適な具体例としてはアセチル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルコキシカルボニル基」とは、前記 C_1-C_6 アルコキシ基とカルボニル基とからなる基を意味し、その好適な具体例としてはメトキシカルボニル基、エトキシカルボニル基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルオキシ基」とは、前記 C_2-C_7 ア ルカノイル基とオキシ基とからなる基を意味し、その好適な具体例としてはアセチルオキシキ基などが挙げられる。

 R^1 の置換基としての「 C_2-C_7 アルカノイルアミノ基」とは、前記 C_2-C_7 アルカノイル基とアミノ基とから成る基を意味し、その好適な具体例としては、アセチルアミノ基などが挙げられる。

15 R^1 の置換基としての「 C_2-C_7 アルキルカルバモイル基」とは、前記 C_1-C_6 アルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-メチルカルバモイル基、N-エチルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_4 - C_9 N-シクロアルキルカルバモイル基」とは、前記 C_3 - C_8 シクロアルキル基とカルバモイル基とからなる基を意味し、その好適な具体例としては、N-シクロペンチルカルバモイル基、N-シクロヘキシルカルバモイル基などが挙げられる。

 R^1 の置換基としての「 C_1-C_6 アルキルスルホニル基」とは、前記 C_1-C_6 アルキル基とスルホニル基とからなる基を意味し、その好適な具体例としては、メチルスルホニル基などが挙げられる。

25 R^1 の置換基としての「 C_3-C_8 (アルコキシカルボニル)メチル基」とは、前記 C_2-C_7 アルコキシカルボニル基とメチル基とからなる基を意味し、その好適な具 体例としては、(メトキシカルボニル)メチル基、(エトキシカルボニル)メチル 基などが挙げられる。

 R^1 の置換基としての「モノ(C_1-C_6 アルキル)アミノ基」とは、前記 C_1-C_6 30 $_6$ アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、メチルアミノ基、エチルアミノ基などが挙げられる。

20

R の置換基としての「ジ(C_1-C_6 アルキル)アミノ基」とは、同一または異なった2つの前記 C_1-C_6 アルキル基によって置換されたアミノ基を意味し、その好適な具体例としては、ジメチルアミノ基、ジエチルアミノ基、N-エチル- N-メチルアミノ基などが挙げられる。

上記の中でも、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素 環基、または縮合環の置換基としては、Nロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ 基、 C_2-C_4 アルキレンオキシ基、メチレンジオキシ基、 $N-フェニルカルバモイル基、アミノ基、モノ(<math>C_1-C_6$ アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基を特に好ましい具体例として挙げることができる。

さらに、 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によってさらに置換されていてもよい。ここで、ハロゲン原子、 C_1-C_6 アルキル基、および、 C_1-C_6 アルコキシ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ基を好適な具体例として挙げることができる。

上記式(I)において、 R^2 は水素原子、 C_1-C_6 アルキル基、 C_2-C_7 アルコキシカルボニル基、ヒドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個ののハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは、 R^2 はヒドロキシ基ではない。

 R^2 における $C_1 - C_6$ アルキル基および $C_2 - C_7$ アルコキシカルボニル基は、R1におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基についてそれぞれ定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^2 における C_1 $-C_6$ アルキル基またはフェニル基の置換基としてのハロゲン原子、 C_1 $-C_6$ アルキル基、および C_1 $-C_6$ アルコキシ基は、前記 R^1 におけるフェニル基、 C_3 $-C_8$ シクロアルキル基、芳香族複素環基または縮合環の置換基について定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

30

なかでもR²は、水素原子を表す場合が特に好ましい。

上記式(I) において、jは0-2の整数を表す。jは0である場合が特に好ましい。

上記式 (I) において、kは0-2の整数を表し、mは2-4の整数を表す。なかでもkが0であり、mが3である場合の2-置換ピロリジン、kが1であり、mが2である場合の3-置換ピロリジン、kが1であり、mが3である場合の3-置換ピペリジン、kが2である場合の4-置換ピペリジン、またはkが1であり、mが4である場合の3-置換ヘキサヒドロアゼピンが特に好ましい。上記式 (I) において、nは0または1を表す。

10 特に、kが1でmが2であり、nが0である場合の3-アミドピロリジン、および、kが2であり、mが2であり、nが1である場合の4-(アミドメチル)ピペリジンを特に好ましい例として挙げることができる。

上記式(I)において、 R^3 は水素原子または(それぞれ同一または異なった任意個のハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、もしくは C_1-C_6 アルコキシ基によって置換されていてもよい1または2個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

 R^3 における C_1-C_6 アルキル基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、その好適な具体例としては、メチル基、エチル基、およびプロピル基20 が挙げあげられる。

 R^3 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、それぞれ、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

なかでも、R³は水素原子である場合が特に好ましい。

上記式(I)において、 R^4 および R^5 は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、または C_1-C_6 アルキル基を表し、 R^4 および R^5 における C_1-C_6 アルキル基は、任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイル基、メルカプト基、グアニジノ基、 C_3-C_8 シクロアルキル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、(任意個のハ

20

25

ロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、もしくはベンジルオキシ基によって置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジルオキシカルボニル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、または(ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基またはそのベンゼン環との縮合により形成される縮合環)により置換されていてもよく、あるいは R^4 および R^5 は両者一緒になって3-6員環状炭化水素を形成してもよい。

 R^4 および R^5 における C_1 $-C_6$ アルキル基は、前記 R^1 におけるフェニル基、 C_3 $-C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのハロゲン原子、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基、および、ジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としての C_3-C_8 シクロアルキル基、および、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基は、前記 R^1 において定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^4 および R^5 における C_1-C_6 アルキル基の置換基としてのフェニル基の置換基としてのハロゲン原子、 C_1-C_6 アルキル基、および C_1-C_6 アルコキシ基は、前記 R^1 においてフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体 Mとして挙げることができる。

R⁴、R⁵およびその隣接炭素原子とからなる「3-6員環状炭化水素」の好適な

具体例としては、シクロプロパン、シクロブタン、シクロペンタン、およびシクロ ヘキサンなどが挙げられる。

なかでも、水素原子と $C_1 - C_6$ アルキル基を、 R^4 と R^5 の特に好ましい例として挙げることができる。

5 上記式(I)において、pは0または1を表し、qは0または1を表す。pとqがともに0であることが特に好ましい。

上記式 (I) において、Gは、-CO-、 $-SO_2-$ 、-CO-O-、 $-NR^7-$ CO-、 $-CO-NR^7-$ 、-NH-CO-NH-、-NH-CS-NH-、 $-NR^7-$ 、 $-SO_2-$ 、 $-SO_2-NR^7-$ 、-NH-CO-O-、または-O-CO-NH-

10 で表される基を表す。ここで、 R^7 は水素原子または $C_1 - C_6$ アルキル基を表すか、あるいは R^7 は R^5 と一緒になって $C_2 - C_5$ アルキレン基を形成してもよい。

ここで、-CO-はカルポニル基を、 $-SO_2-$ はスルホニル基を、-CS-はチオカルボニル基をそれぞれ意味する。Gの特に好ましい例としては、例えば $-NR^7$ -CO-および-NH-CO-NH-で表される基などが挙げられる。

 R^7 における $C_1 - C_6$ アルキル基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

 R^5 と R^7 とからなる「 C_2 - C_5 Pルキレン基」とは、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、1 - メチルトリメチレン、ペン

20 タメチレンなどの C_2-C_5 の直鎖または分枝状アルキレン基を意味し、その好適な具体例としてはエチレン、トリメチレン、テトラメチレン基などが挙げられる。

なかでも R^7 としては、水素原子を特に好ましい例として挙げることができる。

上記式(I)において、R⁶はフェニル基、C₃-C₈シクロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子 、および/もしくは窒素原子を1-3個有する芳香族複素環基を表し、上記R⁶におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R⁶におけるフェニル基、C₃-C₈シクロアルキル基、C₃-C₆シクロアルケニル基、ベンジル基、

30 芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカ プト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基 ミノ基により置換されていてもよい。

挙げることができる。

15

20

WO 00/69432 PCT/JP00/03203

19

、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 C_2 $- C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_3 - C_8$ シクロアルキルオキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_1 - C_3$ アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、

5 フェニルスルホニル基、 $3-フェニルウレイド基、C_2-C_7$ アルカノイル基、 C_2-C_7 アルコキシカルボニル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカルバモイル基、N, N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、 C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6

 R^6 における C_3-C_8 シクロアルキル基、ヘテロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基、および縮合環は、前記 R^1 に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として

(アルキルスルホニル) アミノ基、またはビス(C₁-C₆アルキルスルホニル) ア

 R^6 における「 C_3 - C_8 シクロアルケニル基」とは、例えばシクロプテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロオクテニル基など環状アルケニル基を意味し、その好適な具体例としては1-シクロペンテニル基、1-シクロヘキセニル基などが挙げられる。

なかでも、R⁶としてはフェニル基、フリル基、およびチエニル基を特に好ましい 例として挙げることができる。

 R^6 におけるフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としてのハロゲン原子 C_1-C_6 アルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、 C_1-C_6 アルキレンジオキシ基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、モノ(C_1-C_6 アルキル)アミノ基、およびジ(C_1-C_6 アルキル)アミノ基は、前記 R^1 におけるフェニル基、 C_3-C_8 シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を

好適な具体例として挙げることができる。

 R^6 の置換基としての C_3-C_8 シクロアルキル基は、前記 R^1 における C_3-C_8 シクロアルキル基に関して定義されたものと同様であり、同じ例を好適な具体例として挙げることができる。

 R^6 の置換基としての「 C_3-C_8 シクロアルキルオキシ基」とは、前記 C_3-C_8 シクロアルキル基とオキシ基とからなる基を意味し、その好適な具体例としては、シクロプロピルオキシ基、シクロペンチルオキシ基、シクロペキシルオキシ基などを挙げることができる。

 R^6 の置換基としての「N, N-ジ(C_1-C_6 アルキル)スルファモイル基」とは、同一または異なった 2 つの前記 C_1-C_6 アルキル基によって置換されたスルファモイル基を意味し、その好適な具体例としては、例えばN, N-ジメチルスルファモイル基、N, N-ジエチルスルファモイル基、N-エチル-N-メチルスルファモイル基などが挙げられる。

 R^6 の置換基としての「 C_2-C_7 (アルコキシカルボニル)アミノ基」とは、前記・ C_2-C_7 アルコキシカルボニル基とアミノ基とからなる基を意味し、その好適な具体例としては、例えば(メトキシカルボニル)アミノ基、(エトキシカルボニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「 $C_1 - C_6$ (アルキルスルホニル)アミノ基」とは、前記 $C_1 - C_6$ アルキルスルホニル基とアミノ基とからなる基を意味し、その好適な具体例としては(メチルスルホニル)アミノ基などを挙げることができる。

 R^6 の置換基としての「ビス(C_1-C_6 アルキルスルホニル)アミノ基」とは、同一または異なった 2 つの前記 C_1-C_6 アルキルスルホニル基によって置換されたアミノ基を意味し、その好適な具体例としては、ビス(メチルスルホニル)アミノ基などを挙げることができる。

25 なかでも、 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基としては、ハロゲン原子、メルカプト基、ニトロ基、チオシアナト基、トリフルオロメチル基、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルコキシ基、フェニル基、フェニルスルホニル基、 $C_2 - C_7$ アルカノイルアミノ基、アミノ基などを特に好ましい例として挙げる30 ことができる。

かかる R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロア

20

WO 00/69432 PCT/JP00/03203

2 1

ルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_1-C_6 アルキルチオ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アルキル)アミノ基によってさらに置換されていてもよい。

 R^6 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、 $C_3 - C_8$ シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基の置換基としてのハロゲン原子、 $C_1 - C_6$ アルキル基、 $C_1 - C_6$ アルキルチオ基、モノ($C_1 - C_6$ アルキル)アミノ基、およびジ($C_1 - C_6$ アルキル)アミノ基は、前記 R^1 におけるフェニル基、 $C_3 - C_8$ シクロアルキル基、芳香族複素環基、または縮合環の置換基に関して定義されたものと同様であり、それぞれ同じ例を好適な具体例として挙げることができる。

上記式(I)で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体は、その治療有効量を製薬学的に許容される担体および/または希釈剤とともに医薬組成物とすることによって、本発明のケモカインの標的細胞上の受容体への結合を阻害する医薬、あるいはケモカインの標的細胞上への結合を阻害する作用をもつ医薬、さらにはケモカインもしくはケモカインレセプターが関与すると考えられる疾患の治療薬もしくは予防薬とすることができる。すなわち上記式(I)で表される環状アミン誘導体、その薬学的に許容される C_1-C_6 アルキル付加体は、経口的に、あるいは、静脈内、皮下、筋肉内、経皮、または直腸内など非経口的に投与することができる。

経口投与の剤形としては、例えば錠剤、丸剤、顆粒剤、散剤、液剤、懸濁剤、カプセル剤などが挙げられる。

25 錠剤の形態にするには、例えば乳糖、デンプン、結晶セルロースなどの賦形剤; カルボキシメチルセルロース、メチルセルロース、ポリビニルピロリドンなどの結 合剤;アルギン酸ナトリウム、炭酸水素ナトリウム、ラウリル硫酸ナトリウムなど の崩壊剤などを用いて通常の方法により成形することができる。

丸剤、散剤、顆粒剤も同様に前記の賦形剤などを用いて通常の方法によって成形 30 することができる。液剤、懸濁剤は、例えばトリカプリリン、トリアセチンなどの グリセリンエステル類、エタノールなどのアルコール類などを用いて通常の方法に よって成形される。カプセル剤は、顆粒剤、散剤、あるいは液剤などをゼラチンなどのカプセルに充填することによって成形される。

皮下、筋肉内、静脈内投与の剤型としては、水性あるいは非水性溶液剤などの形態にある注射剤がある。水性溶液剤は、例えば生理食塩水などが用いられる。非水性溶液剤は、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油、オレイン酸エチルなどが用いられ、これらに必要に応じて防腐剤、安定剤などが添加される。注射剤は、バクテリア保留フィルターを通す濾過、殺菌剤の配合の処置を適宜行うことによって無菌化される。

経皮投与の剤型としては、例えば軟膏剤、クリーム剤などが挙げられ、軟膏剤は 10 、ヒマシ油、オリーブ油などの油脂類、またはワセリンなどを用いて、クリーム剤 は、脂肪油、またはジエチレングリコールやソルビタンモノ脂肪酸エステルなどの 乳化剤を用いて通常の方法によって成形される。

直腸内投与のためには、ゼラチンソフトカプセルなどの通常の座剤が用いられる

15 本発明で用いられる環状アミン誘導体、その薬学的に許容される酸付加体、またはその薬学的に許容される C_1-C_6 アルキル付加体の投与量は、疾患の種類、投与経路、患者の年齢と性別、および、疾患の程度などによって異なるが、通常成人一人当たり1-500mg/日である。

上記式(I)の環状アミン誘導体の好適な具体例として、以下のTable1. 1-1. 206に示される各置換基を含有する化合物を挙げることができる。.

20

Table1.1-1.206において、「Table」は「表」を意味し、「Compd. No.」は「化合物番号」を意味し、「chirality」は「絶対配置」、すなわち環状アミンの環上の不斉炭素の絶対配置を意味する。「R」は、環状アミンの環上の不斉炭素原子がRの絶対配置をもつこと、「S」は、不 斉炭素原子がSの絶対配置をもつこと、「-」はラセミ体であるか、あるいはその 化合物が環状アミン上において不斉炭素原子をもたないことを意味する。

T	а	b	l	e	1	_	1

lable	•••						
Compd.	R ¹ (CH ₂) _i -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1	CH√CH₂-	1	2	0	-	H	-CH2-N-C-
2	C	1	2	0	-	н	- CH ₂ -N-C-CH ₃
3	C├ - CH₂-	1	2	.0	•	Н	- CH2- N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
4	СН-СН2-	1	2	. 0	. .	, Н	- CH ₂ - N- C- CF ₃
5	CHCH2-	1	2	O	\$	н	-CH ₂ -N-CF ₃
6	CH-CH2-	1	2	0	S	н	-CH ₂ -N-C
7	CH-CH₂-	1	2	0	S	Н	-CH ₂ -N-C
8	C⊢CH₂-	1	2	0	S	н	-CH ₂ -N-C
9	C├ - CH ₂ -	1	2	0	S	н	- CH ₂ - N C
10	С⊢—СН₂-	1	2	.0	S	н	- CH ₂ - N- C- OCH ₃
11	С⊢—СН₂-	1	2	0	S .	н	- CH ₂ -N-C

Table	1	.2
-------	---	----

	1.4					
Compd. No.	R ¹ (CH ₂)	k	m n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
12	сн-{-}-сн ₂ -	- 1	2 0	S	н	-CH ₂ -N-C
13	CH-{CH ₂ -	1	2 0	S.	н	- CH ₂ -N-C
14	C⊢—CH₂-	1 2	2 0	S	н .	-CH ₂ -N-C-CH ₃
15	C⊢(CH₂-	. 1 2	? 0	S	Н	-CH2-N-C- O O CI
16	CH-CH2-	1 2	0	s	н	-CH ₂ -N-C-OCH ₃
17	С⊢{_}-СН₂-	1 2	0	S	н	-CH ₂ -N-C-CI
18	СН-СН2-	1 2	0	S	н·	- CH ₂ -N-C-CN
19	C⊢√_CH ₂ -	1 2	0	S	н	-CH ₂ -N C
20	С⊢-{}СН₂-	1 2	0	S	н	- CH ₂ -N-C
21 (CH ₂ -	1 2	0	S	Н	- CH ₂ -N-CF ₃
22 c	:⊢-{CH₂-	1 2	0	S	н	$-CH_{2}-NCG_{3}$ $-CH_{2}-NCG_{4}$ $-CH_{2}-NCG_{5}$ $-CH_{2}-NCG_{5}$ $-CH_{2}-NCG_{5}$

Table 1.3

:

- able	1.5						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality .	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
23	CH-2-	1	2	0	S	Н	-CH ₂ -N-C
. 24	CH- \ CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
25	CH-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C
26	CHCH ₂ -	1	2	0	S	Н	-CH ₂ -N-C
27	CHCH2-	1 .	. 2	0	S .	н	-CH ₂ -N-C
28	CH-CH ₂ -	1	2	O	\$	н	- CH ₂ - N- C
29	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
30	C	1	2	0	R	н	-CH ₂ -N-C-
31	C	1	2	O .	R	Н	- CH ₂ -N-C-
32	C├ - CH ₂ -	1	2	0	R	н	- CH ₂ -N-C
33	C⊢√CH₂-	1	2	0	R	Н	- CH ₂ - N-C
							* H \=

Ta	b	le	1.	4

rabie	1.4					
Compd. No.	R ¹ (CH ₂) _j -	k m	n	chirality	· R³	-(CH ₂) p (CH ₂) _q G−R
34	С⊢СУ-СН₂-	1 2	0	R	н	-CH2-N C-
35	CH-{	1 2	0	R	н	- CH ⁵ - И С — ОСН ³
36	С⊢√СН₂-	1 2	0	R	н .	-CH ₂ -N-C-OCH ₃
37	CHCH2-	1 2	0	R	н	-CH ₂ -N-C-CF ₃
38	CH—CH₂-	1 2	. 0	R	H	-CH ₂ -N-C
39	CH-€ CH ₂ -	1 2	0	R	н 	- CH ₂ -N C-CI
40.	CH ₂ -	1 2	0	R	н	-CH2-N-C
41	C├ - CH₂-	1 2	0	R	Н	- CH ₂ -N-C-
42	СҢСН₂-	1 2	0	R	н	- CH2- N C-CN
43 .	CH2−	1 2	0			· -CH ₂ -N-C
44 c	CH-CH₂-	1 2 ()	R	н	-CH ₂ -N C-CF ₃

Table 1.5

:

rable	1.5						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
45	СН2-	1	2	0	R	Н	- CH ₂ -N-C
46	C├ - CH ₂ -	1	2	0	R	Н	- CH ₂ -N-C-CF ₃
47	C⊢√CH₂-	1	2	0	R	. н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
48	C├ - CH ₂ -	1	2	0	R	H ·	-CH ₂ -N-C-F
49	CH-2-	1	2	0	R	н	$-CH_2-NC$ O_2N
50	CH-CH ₂ -	1	2	0	R ·	н	- CH ₂ -N-C-CF ₃
51	C├	1	2	0	R _.	. н	-CH ₂ -N-C
52	С⊢—СН₂-	1	2	0	R .	н	-CH ₂ -N-C-
53	С⊢СН₂-	1	2	0	R	н	- CH ₂ - N- CI
54	С├─(СН₂-	1	2	0	R	· н	- CH ₂ -N-C
55	CH-√CH ₂ -	1	2	0	R	н	- CH ₂ -N-CI

Ta	b	le	1.	6

rable	1.6						·
Compd.	R ¹ (CH ₂),	. k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
56	C ├── CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
57	СН-СН2-	1	2	0	R	н	-CH ₂ -H ₂ C
58	СН-СН2-	1	2	0	R	Н	-CH2-N-C-
59	C ├ CH ₂ -	1 .	2	0	R	. н	-CH ₂ -N-C
60	CHCH ₂ -	1	2	0	R.	н	-CH ₂ -N-C-
61	CH-CH ₂ -	1	2	0	R	н	. O - CH ₂ -N C-CF ₃
62 -	C	1	2	0	R	н	-CH ₂ -N-C-CH ₃
63	C	1	2	0	R	H	-CH ₂ -N-C- H C- CH ₂ CH ₃
64	CH2-	1	2	0	R	н	-CH ₂ -N-C-CN
65	С⊢ СН₂-	1	2	0	R	н	- CH ₂ -N-C-
66	СҢ СН₂-	1.	2	0	R	Н	- CH ₂ -N-C-

. .

2 9

Table 1.7

lable	1.7						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	·R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
67	CHCH ₂ -	1	2	0	R	Н .	- CH ₂ -N-C
68	CH_2-	1	2	0	R	н	-CH ₂ -N-C
69	СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
70	С⊢С Н₂-	1	2	0	R .	н	-CH ₂ -N-C
71	CHCH_2-	1	2	0	R	. н	$-CH_2-N$ $-CH_3$ $-CH_3$ $-CH_3$
72	CHCH_2-	1	. 2	0	R	н	-CH ₂ -N-C
73	C⊢-€	1	2	0	R	н	- CH ₂ - N C - F ₃ CO
74	CI—€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H C- CO ₂ CH ₃
75	CH ₂ -	1	2	· 0	R	н	-CH ₂ -N-C
76	C ← C H ₂ -	1	2	0	R·	н	- CH ₂ -N-C
							- CH ₂ -N-C-F

Т	а	b	ł	e	1	.8	3

Compd.	· R ¹ (CH ₂) _j	k	m n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
78	С├-{}-СН₂-	1	2 0	R	H	-CH ₂ -N-C-F-F
79	C├────────────────────────────	1	2 0	R.	н :	-CH ₂ -N-CF ₃
80	С⊢-{СН₂-	1 2	2 0	R	н	-CH ₂ -N-C- H F ₃ C
81	CH-CH2-	1 2	2 0	R	н	-CH ₂ -N-C
82 .	CH-CH2-	1 2	0	-	−сн _з	-CH ₂ -N-C-CF ₃
83	С⊢—СН₂-	1 2	0	R	Н	-CH ₂ -N-C
84	CH2-	1 2	0	R	н	-CH ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
85	CH2-	1 2	0	-	н	-(CH ₂) ₂ -N-C-
86	с⊢Ст-сн₂-	1 2	0	· -	Н	-(CH ₂) ₂ -N-C-NO ₂
87 (CH2-	1 2	0	S	н .	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-C-CF ₃
88 (CH_CH₂-	1 2	0	S	н	-(CH ₂) ₂ -N-C

Table 1.9

Table 1							
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(СН ₂) _р Н ⁴ (СН ₂) _q G-R ⁶
89	CH2-	1	2	0	S	н	-(CH ₂) ₂ -N-C
90	CI—CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C-
91	CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI
92	CHCH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C
93	. CH-CH ₂ -	1	2	0	S	н.	-(CH ₂) ₂ -N-C-OCH ₃
94	CHCH2-	1	2	0	S	H	-(CH ₂) ₂ -N-C-OCH ₃
95	CH ₂ -	1	2	0	S	н .	-(CH ₂) ₂ -N-C-CF ₃
96	C├ - CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C-CH ₃
						н	-(CH ₂) ₂ -N-C-
98	CI—CH₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C
99	CH-2-	1	2	0	S	н	-(CH ₂) ₂ -N-C-CI

Table 1.10

	0							
Compo	I. R ²	-(CH ₂),		k ı	m n	chirality	R³	-(CH ₂) _p
100	сн		1	1 2	2 0	S	н	-(CH ₂) ₂ -N-CN
101	сҢ		1	2	2 0	S	н	-(CH ₂) ₂ -N-C-O
102	cr-{		1	2	0	S	н	-(CH ₂) ₂ - N- C
103	c-{		1	2	. 0	S	н	-(CH ₂) ₂ -N-C- H F CF ₃
104	c⊢{	_}−сн ₂ -	. 1	2	0	S	Н	-(CH ₂) ₂ -N-C
105	c-{	}-СH₂-	1	2	0	S	н́ ·	-(CH ₂) ₂ -N-C-CF ₃
106	сн) —СН₂-	1	. 2	0	S	н	-(CH ₂) ₂ -N-C-
107	с⊢С)—сн ₂ -	1 .	2	0	S	H [.]	-(CH₂)₂-N-C
108	СН	≻ [.] СН₂-	1	2	0	S	н	-(CH ₂) ₂ -N-C- H O ₂ N
109	с⊢С	CH₂-	1	2	0	S .	н	-(CH ₂) ₂ -N+C
110	сн	-CH ₂ -	1	2	0	S	н	-(CH ₂) ₂ -N-C

Table 1.11

Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	ー(CH ₂) p 1 (CH ₂) q G-R ⁽
. 111	CH _Z -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-CF ₃
112	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
113	С├-{Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-
114	C├ ~ CH ₂ -	1	2	0	R .	н	-(CH ₂) ₂ -N-C-
115	C├ - CH ₂ -	1.	2	0.	R	Н	-(CH ₂) ₂ -N-C-CI
116	C	1	2	0	R .	н	(CH ₂) ₂ -N-C-OCH ₃
117	CH-2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-OCH ₃
118	СН ₂ -	1	2	0	R	н	$-(CH_2)_2$ - H - C - O - O C H_3
119	C ├── CH ₂ -	1	2	0	R	. н	-(CH ₂) ₂ -N-C-CF ₃
120	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
121	С⊢—СН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI

Table 1.12

Table	1.12						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ CH ₂) _q G-R ⁶
122	с⊢(Сн₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
123	с⊢—СН₂-	1	2		R	н	-(CH ₂) ₂ -N-C-CI
124	CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CN
125	C├ - CH ₂ -	1	2	0	R	H .	-(CH ₂) ₂ -N-C
126	CH-CH ₂ -		2	0 .	R	н	-(CH ₂) ₂ -N-C-
127	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C- H
128	C├─ੑि}CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C-CF ₃
129	С⊢—СН₂-	1	2 ()	R .	н	-(CH ₂) ₂ -N-C-CF ₃
130	C⊢-{	1 :	2 ()	R	н	-(CH ₂) ₂ -N-C-
131	с⊢— сн₂-	1 2	2 0	•	R	Н	-(CH ₂) ₂ -N-C
132 (С├-{СН₂-	1 2	2 0		R	н	-(CH ₂) ₂ -N-C

Table 1.13

lable 1	.13						
Compd. No.	R (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p
133	с⊢С СН₂-	1	2	0	R	Н	-(CH ₂) ₂ -N-C-NO ₂
134	СНСН2-	1	2	0	R	• н	-(CH ₂) ₂ -N-CNO ₂
135	CH-CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C
136	CH2-	1	2	0	R .	н	-(CH ₂) ₂ -N-C-
137	CH ₂ -	1	2	0	R.	н	-(CH ₂) ₂ -N-C-
138	C⊢√CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-
139	C⊢(CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-CI
140	C├ - CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C
141	CH-2-	1	2	0	R	н	H ₃ CO O O H ₂ C-NC- H ₃ CO
142	CI	1	2	0	R	н	-(CH ₂) ₂ -N-C-
143	СЊСН₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C

Т	a	h	le	1	1	1
	а	u	ıe	ı		-4

	1.1 7					•
Compd. No.	R ¹ (CH ₂)j-	k	m n	chirality	. Ĥ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
144	CI—CH₂-	1 ;	2 0	R	ĹН	-(CH ₂) ₂ -N-C-
145	С├─(СН₂-	1 2	2 0	R	н	-(CH ₂) ₂ -N-C-CF ₃
146	CH-{CH ₂ -	1 2	2 0	R	Н	-(CH ₂) ₂ -N-C-⟨
147	° C├─ ─ CH₂-	1 2	0	.R	н	-(CH ₂) ₂ -N C-CH ₂ CH ₃
148	CH-{	1 2	0	R	. н	-(CH ₂) ₂ -N-C-CN
149	CHCH ₂ -	1 2	. 0	R	н	-(CH ₂) ₂ -N-C-
150	С⊢С СН₂-	1 2	0	R	Н	-(CH ₂) ₂ -N-C
151	CH2−	1 2	0	R	н	-(CH ₂) ₂ -N-C
152	C⊢CH₂-	1 2	0	R	н	-(CH ₂) ₂ -N-C
153	CHCH ₂ -	1. 2	0	R	н	-(CH ₂) ₂ -N C F
54 0	CH-{}-CH₂-	1 2	0	R	н	-(CH ₂) ₂ -N-C

Т	a T h	Пe	1	4	5

rable	1.15						•
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	—(CH ₂) _p
155	C├ - CH ₂ -	1	2	0	R	Н	-(CH ₂) ₂ -N-C-OCH ₃
156	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
157	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- H F ₃ CO
158	CH-CH ₂ -	. 1	. 2	0	R ·	н	-(CH ₂) ₂ -N-C-\(\bigcup_H\) \(\infty\) \(\infty\) \(\infty\) \(\infty\) \(\infty\) \(\infty\)
159	CH-CH ₂ -	1	2	0	, R	н	-(CH ₂) ₂ -NC
160	С⊢СН2-	1	2	. 0	R	Н	-(CH ₂) ₂ -N-C
161	С├-СН₂-	1	2	0	R	·н	-(CH ₂) ₂ -N-C-F
	СНСН2-					н	-(CH ₂) ₂ -N-C-F-F
163	СН-СН2-	1	2	0	R	Н	F $-(CH2)2-N-C$ $+$ $F3C$ $F3$
164	CH-2-	1	2.	0	R	н	F ₃ C CF ₃ CF ₃ F ₃ C
							-(CH ₂) ₂ -N-C-CH ₃

Table 1.16

:

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
166	CI-CH2-	1	2	0	R	н	(S) Q CF ₃ -CH _N -C-CF ₃
167	C├ - CH₂-	1	2	0	R	н	(S) P -CH-N-C- Br CH ₃
168	CI—CH₂-	1	2	0	R	H .	(S)
169	C⊢√ CH₂-	1	2	0	R ·	н	(S) CI -CHN-C-CI CH ₃
170	CH ₂ -	1	2	0	R	н .	(S) Q CF ₃ -CH-N-C- F
171	CH-CH₂-	1	2	0 .	R	Н	(S) P -C+N-C-C>-CI CH ₃
172	C	1	2	0	·R	н	CH3 (S) (S) (P) (CH3
173	CH ₂ -	1	2	0	R	Н	(S) P NO ₂ -CH-N-C- NO ₂
174	C⊢CH₂-	1	2	0	R	Н	(F) O CF ₃ -CH-N-C CF3
175	C⊢√ CH₂-	1	2	0	R	н	(F) Processing CI
176	СНСН ₂ -	1	2	0	R	н	(F) P CI -CH-N-C- CI EH H CH ₃

Table 1.17

1 0016	1.17						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p 1 (CH ₂) _q G-R ⁶
177	CICH ₂ -	. 1	2	0	R	н	(H) O CI -CHN-C- CI H H CH ₃
178	CH-CH2-	1	2	0	R	н	(R) O CF ₃ -CH-N-C-CF ₃ CH ₃ F
179	CH_CH ₂ -	1	2	0	R	н	(A) O CI -CHN-C-C-CI CH3
180	CH-CH ₂ -	1	2	0	Ŕ	н	(A) P -CH-N-C- H CH ₃
181	CH-CH ₂ -	1	2	0	R	н	, -CH-N-C
182	CHCH ₂ -	1	2	0	R	н .	CH ₃ O CF ₃
183	CH-2-	1	2	0	R	н	СН3 О Вr СН3 Н СН3 Н
184 .	C├─ \ CH ₂ -	1	2	0	R	н	CH³ O C! - CH³ H C − C!
185	C├ ─ CH ₂ -	1	2	0	R	Н	СН3 О СІ СН4 С СІ СН3
186	С⊢С СН₂-	1	2	0	R	Н	CH ₃ O CF ₃ -CH ₂ CH ₃ CF ₃ -CH ₃ CH ₃ F
187	С⊢СН₂-	1	2	O	R	H	CH3 O -CHNC

Table 1.18

Compd. R^{1} $(CH_{2})_{i}$ k m n chiralite No. R^{2} $(CH_{2})_{i}$ k m n chiralite 188 CH_{2} 1 2 0 R	lity R^3 $-(CH_2) \frac{R^4}{D_5} (CH_2) - G - R$
	(CH ₂) _p T (CH ₂) _q G-R
189 CH₂- 1 2 0 R	H CH ₃ P CH ₃ C
	H −CH3 PNO2
190 CH2- 1 2 0 R	H -CHNC-CF3
191 CH ₂ - 1 2 0 R	H (P) P B' CH2 CH2 S
192 CH₂- 1 2 0 R	H -CHNC-CH2C
193 CH₂- 1 2 0 R	H -CH N C
194 C⊢√ CH₂- 1 2 0 R	H (F) (CF) CH2 F
195 C⊢√ CH₂- 1 2 0 R	H CH2 CI
196 C⊢ CH₂- 1 2 0 R	H (F) P (CHN-C-)
197 CH₂- 1 2 0 R	H (F) H H (C) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F
98 CH-√-CH₂- 1 2 0 R	H (5) P (CF3)

4 1

Table 1.19

rable	1.13						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	—(CH ₂) _p + (CH ₂) _q G−R ⁶ R ⁵
199	CH-2-	1	2	0	R	Н	CH NC - B
200	С⊢-{}-СН₂-	1	2	0	R	н	(S) -CH-N-C-
201	C⊢√_CH₂-	1	.2	0	R	н	(S) + N C - CI
202	CHCH ₂ -	1	2	0	R	н	(S) P -CH-NC-CF3 CH ₂ F
203	CH_CH ₂ -	. 1	2	. 0	R	н	(S) P -CHH-C-CI CH ₂ -CI
204	CH-CH ₂ -	1	2	0	R .	Н	-CHN-C-C
205	CHCH ₂ -	1	2	0	R	Н	(5) P NO 2 -CH-N-C
206	CHCH ₂ -	1	2	0	R	н	(CH ₂) ₂ - G-CH ₃
207	Ċ	1	2	0	R	н	(O1 ₂₎₂ -G-CH ₃
208	CHCH ₂ -	1	2	0	R	н	(3) P -CH-N-C- (04 ₂) ₂ -\$-04 ₃
209	CH-CH ₂ -					н	(S) CI -CH-N-C-CI H C CI (OH ₂) ₂ -S-CH ₃

Table	1.20
-------	------

Table	1.20		4 2		
Compd. No.	R ² (CH ₂) _j	k m n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
210	CH2-	1 2 0	R	Н	(S) P -CH-N-C- H O (CH ₂) ₂ -\$-CH ₃ F
211	C├───────────────────────────────────	1 2 0.	R	н	(CH ₂) ₂ -3-CH ₃
212	CH2-	1 2 0	R	. н	(S) P CH ₂) ₂ -S-CH ₃
213	С⊢{}СН₂-	1 2 0	R	Н	(O ₁ 2) ₂ -5-CH ₃
214	CH ₂ -	1 . 2 0	-	Н	-(CH ₂) ₃ -C-
215 (CH-CH ₂ -	1 2 0	-	н	-(CH ₂) ₃ -C
216 c	CH ₂ -	1 2 0	-	н	O -(CH ₂) ₃ -C-S
17 c	⊢CH₂-	1 2 0	-	н	$OOCH_3$ OCH_3 $OOCH_3$
18 Ci	-CH ₂ - 1	2 0	-	Н	O -(CH ₂) ₂ -C-CH ₃ H ₃ C
	-CH₂- 1				-(CH ₂) ₂ -C−C−QCH ₃
0 cı-	СН₂- 1	2 0 -		н	-(CH ₂) ₂ -C-√_>-CH ₃

Table 1.21

Table	1.4			-			
Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	—(CH ₂) _p
221	CH-CH2-	1 .	2	0	-	н	-(CH ₂) ₂ -C-
222	CH-CH2-	1	2	0	-	н	-(CH ₂) ₂ -C-CI
223	CH-CH ₂ -	1	2	0	-	н	-(CH ₂) ₂ -C-C-C(CH ₂) ₃ CH ₃
224	CHCH_2-	1	2	0	-	н	- СН ₂ - \$
225	CHCH ₂ -	1	2	. 0	-	Н	-(CH₂)₃-C-N
226	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-NHOCH ₃
227	CH√_CH2-	1	2 .	0		Н	-(CH ₂) ₃ -C-N-CI
228	CHCH ₂ -	1	2	0	-	н	O -(CH ₂) ₃ -C·N
229	C├ ~ CH ₂ -	1	2	0	-	н	- CH ₃ ° CH ₃ C
230	C ├── CH ₂ -	1	2	0	-	н	-CH ₂ -CH ₂ -C·N-F
							-(CH ₂) ₃ -C-N

4 4

T	а	h	ł	0	1		2	2
•	ш	v		_	- 1	_	_	~

lable .	1.22				·		
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R [€]
232	CH-CH ₂ -	1	2	0		Н	-(CH ₂) ₃ - C-N-
233	CH ₂ -	1	2	0	-	Ĥ	-(CH ₂) ₃ -C-N-CH ₂ -
234	C├ - CH ₂ -	1	2	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
235	· CH ₂ -	1	2	0	-	н	- CH ₂ - CH CH ₂ - C- N- CH ₂ - CI
236	C├ - CH ₂ -	1	2	0		Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
237	CH-2-	1	2	0	<u>.</u>	н	-CH ₂ -N-C-O-CH ₂ -
238	CH2-	1.	2	0	<u>-</u>	H	-¢H 0 C N C C C C C N C C C C C C N C C C N C
239	CH₂-	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
240		1	2	0	S .	н	-CH ₂ -N-C-CF ₃
241	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
242	CH_CH ₂ -	1.	2	0	S	н	-CH2-N-C-C-CF3

_					_	_
т	~ I	ole	^	1.	~	2
11 1	a	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		1	• 7

lable	1.23				_		
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}}^{\overline{R}^4}(CH_2)_{\overline{q}}G-R^6$
243	C1 C1 C1	1	2	0	S	Н.	-CH ₂ -N-C-CF ₃
244	CH ₃	1	2	0	Ş	H	-CH ₂ -N-C-CF ₃
245	FCH ₂ -	1	2	0	S	. н	-CH ₂ -N-C-CF ₃
246	CI CH₂−	1	2	0	S	н	-CH ₂ -N-C-CF ₃
247	CLCH ₂ -	1	2	0.	s	н	-CH ₂ -N-C-CF ₃
248	H₃CQ CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
249	F ₃ C CH ₂ -	1	2	0	S	Н.	-сн ₂ -№-сСF ₃
250	H ₃ C —CH ₂ -	1	2	0	S	н	-сн ₂ -N-с-СF ₃
251	F—CH₂-	1 .	2	0	S	н	-сн ₂ -N-с-СF ₃
	H ₃ CO-CH ₂ -						-CH ₂ -N-C-⟨CF ₃
253	H ₃ C-_CH ₂ -	1	2	0	S	н	-CH2-N-CCF3

Table 1.24

. 45.5	•				•		
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
254	CH2-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
255	O ₂ N — CH ₂ —	1	2	0	S	Н	-CH ₂ -N-C-⟨CF ₃
256	O ₂ N-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
257	CF ₃	1	2	0	S .	Н	-CH ₂ -N-C-CF ₃
258	CO₂CH₂CH₃	1	2	0	s	н	-CH ₂ -N-C-CF ₃
259	€. → CH- CH₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
260	CI CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
261	F ₃ C—CH ₂ -	1	2	0	S	н	-сн ₂ -N-С-С-С-
262	Br CH ₂ -	1.	2	0	S	н	-CH ₂ -N-C-CF ₃
	Br_CH ₂ -					н	-CH ₂ -N-C-C-CF ₃
264	-0H2-	1	2	0	s S	н.	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃

Table 1.25

Table 1	1.25						
Compd.	R ¹ /(CH ₂)j-	k	m	n	chirality	[.] R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
265	Br—CH₂-	1	2	0	S	н .	-CH ₂ -N-C-CF ₃
266	O	1.	2	0	S	н	-CH ₂ -N-C-CF ₃
267	OCH ₃	1	2	0	S	. н	-CH ₂ -N-C-CF ₃
268	4c-c-h-Q→01≥	1	2	0	s	Н	-CH ₂ -N-C-CF ₃
269	H ₃ C-\$	1	2	0	S	. н	-CH ₂ -N-C-CF ₃
270	H ₃ CO ₂ C	1	2	0	S	Н	-CH ₂ -N-C-CF ₃
271 -	CH ₂ -	1	2	0	S	. Н	-CH ₂ -N-C-CF ₃
	HO-CH ₂ -					н	-CH ₂ -N-C-CF ₃
273	CN CH₂-	· 1	2	0	S	н	-CH ₂ -N-C-
274	NC CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
275	NC-⟨¯}-CH₂-	1	2	0	S	н	-CH ₂ -N-C-CF ₃

Table 1.26

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{{\rho}} + (CH_2)_{{q}} - G - R^6$
276	F-CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
277	(C)-(C)-(C)-(C)-(C)-(C)-(C)-(C)-(C)-(C)-	1	2	0	S	н	-CH ₂ -N-C-CF ₃
278	H ₃ ∞ ₂ C-√CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
279	F ₃ CO—CH ₂ -	1	2	0	S	н	-CH ₂ -N-C-CF ₃
280 .	F ₃ CQ —CH ₂ -	1	2	0	S	н.	- CH ₂ -N-C-СF ₃
281	HO ₂ C-CH ₂ -	1	2	0	S	н	-СH ₂ -N-С-С-С-С-С-
282	(H ₃ C) ₃ C-(-)-OH ₂ -	1	2	0 .	S	н	-CH ₂ -N-C-C-CF ₃
283	CH₃ CH₂- CH₃	1	2	0	S	н	-CH ₂ -N-C-CF ₃
284	CH-CH-	1	2	0 .	S	н	-CH ₂ -N-C-CF ₃
285	(CH₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
286	F	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1	١.	2	1
---------	----	---	---

I dolc		•		_			
Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
287	CI CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
288	CH2−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
289	CI CI	1	2	0	R [·]	Н	-CH ₂ -N-C-CF ₃
290	CH ₃	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
291	-CH ₂ -	1	2	0	R	Н	· -CH ₂ -N-C-CF ₃
292	CL ————————————————————————————————————	1	2 .	0	R	н	-CH ₂ -N-C-CF ₃
293	CI—CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H ₃ CO CH ₂ -					н	-CH ₂ -N-C-CF ₃
295	F₃C CH₂-	1 .	2	0	R	Н	-CH ₂ -N-C-CF ₃
296	F_3C $-CH_2$ $-CH_2$ $-CH_2$	1	2	0	R	н	-CH ₂ -N-C-CF ₃
297	F—CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

_			_			
т	_	h	le	-4	.2	\sim
	-	11	164		,	ж

lable	1.28						
Compd No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}^{4}$ $+(CH_2)_{q}^{4}$ $-(CH_2)_{p}^{4}$ $+(CH_2)_{q}^{4}$ $+(CH_2)_{q$
298	н₃со-{_}-сн₂-	- 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
299	H₃C-⟨CH₂-	· 1	2	0	R	.Н	-CH₂-N-C-CF₃
300	C⊢√NO₂ CH₂−	1	2	0	R	н	-CH ₂ -N-C
301	O ₂ N —CH ₂ -	1	2	0	R.	H	-CH ₂ -N-C
302	O ₂ N-()-CH ₂ -	1	. 2	0	R	н	
303	CF ₃ —CH ₂ -	1	2	0	, R	н.	-CH ₂ -N-C-CF ₃
304		1	2	0	R	н	-CH ₂ -N-C-CF ₃
305	. Сн- сн ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
306	CI CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
307	F ₃ C-CH ₂ -	1	2	0	R	н	
308	Br CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

Table 1.29

14510							•
Compd. No.	R ¹ (CH ₂);-	k	· m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p}}_{\frac{1}{R^5}}(CH_2)^{\frac{1}{q}}_{\frac{1}{q}}G-R^6$
309	Br_CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-CF ₃
310	Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-Q-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
311	BrCH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
312	O-CH ₂ -	ï	2	0	R	н .	-CH ₂ -N-C-CF ₃
313	OCH₃ CH₂-	. 1	2	0	R	Н	-CH ₂ -N-G-CF ₃
314	ньс-с-ү - Сн-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
315	H ₂ C-9 OH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
316	H ₃ CO ₂ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
317	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
318	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
319	CN CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

T	a	b	le	1	.3	n
•	-	~				u

1 0 0 16	1.30						
Comp No.	d. R ¹ /(CH ₂) _i —	k m	n n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
320	ИС — СН	'2 ⁻	1 2	0	R	Н	-CH ₂ -N-C-CF ₃
321	NC-{	H₂− . 1	2	0	R	Н _.	-СH ₂ -N-С-С-С-
322	F—CH	₂ 1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
323		H ₂ − 1	2	0	R	н	-CH ₂ -N-C-CF ₃
324	н₃∞₂с-{_}-с	CH₂- 1	.2	0	R .	н	-CH ₂ -N-C-CF ₃
325	F₃CO-{	H ₂ - 1	2	0	R	H	-CH ₂ -N-C-CF ₃
326	F ₃ CQ CH ₂	_ 1	2	0	R	н	-CH ₂ -N-C-CF ₃
327	но₂с-{сн	l ₂ - 1	2	0	R	н .	-CH ₂ -N-C-CF ₃
	(H ₃ C) ₃ C-CH					н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-C-CF ₃
330	CH-CH ₂ -	0	3	1		н	-CH ₂ -N-C-CF ₃

Ta	h	le	1	.3	1
14	~				

Table 1	1.31						
Compd. No.	R ² (CH ₂) _j -	, k	m	n	chirality	H3	$-(CH_2)_p + (CH_2)_q - G - R^6$
331	CI-CH ₂ -	0	3	1	<u>-</u>	н	- CH ₂ -N-C-CH ₃
332	CH-()-CH ₂ -	0	3	1	-	Н	-CH₂-N-C- OCH₃ OCH₃
333	С⊢-{СН₂-	0	3	1	-	. H	- CH ₂ - N- C-N
334	C├ - CH ₂ -	0	3	1	-	Н	-CH ₂ -N-C-CH ₃
335	C├ ~ CH₂⁻	0	3	.1		Н	-CH ₂ -N-C-\(\sigma\) NO ₂
336	CH-CH ₂ -	0	3	1	-	н	- CH ₂ -N-C-CF ₃
337	CH-2-	0	3	1	-	н	-CH ₂ -N-C
338	CHCH ₂ -	0	3	1	-	н	-CH ₂ -N-C-
339	СН ₂ -	0	3	1	R	н	- CH ₂ - N- C- CF ₃
340	CHCH ₂ -	0	3	1	S	Н	- CH ₂ - N- C-
341	C├ - CH ₂ -	.0	3	1	-	н	-(CH ₂) ₂ -N-C-

5 4

Table 1.32

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
342	CH ₂ -	0	3	1	-	Н	ÇH₃ 0 - CH N- C-
343	C├ - CH₂-	0	3	1	-	Н	- CH N- C- H CH(CH₃)₂
344	CH2-	0	3	1	-	. Н	- CH N- C-
345	C├──CH ₂ -	0	3	1	-	н	-(CH ₂) ₃ -C-
346	CHCH2-	0	3	1		н	-(CH ₂) ₂ -C
347	C⊢CH₂-	0 ·	3	1	-	Н	$-(CH2)2-C \longrightarrow CH3$ $H3C$
348	CH2-	0	3	1	-	. н	-(CH ₂) ₂ -C-CH ₃
349	C⊢—CH _z -	0	3	1	-	н Н	-CH ₂ -\$
350	CH₂-	0	3	1	-	н	-CH ₂ -N-S-CH ₃
351	CH2-	0	3	1	-	Н	-CH2-NC-O-CH2-
352	с⊢{_}сн₂-	0	3	1'	-	Н	- CH O C H

_				_	_
Ta	ы	le	- 1	.3	3

Table I							
Compd.	R ¹ (CH ₂),—	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}(CH_2)_{q}G-R^6$
353	С⊢—СH ₂ -	1	2	. 1	-	н	-CH ₂ -N-C-
354	CHCH ₂ -	1	3	0	-	Н	-CH ₂ -N-C-
355	CH-CH ₂ -	1	3	0		н	- CH ₂ -N-C
356	CH2-	1	3	o .	-	H .	-CH ₂ -N-C-(
357	CH-2-	1	3 .	0		н .	-сн ₂ -№ с — — — — — — — — — — — — — — — — — —
358	C├ - CH ₂ -	1	. 3	0	-	H	- CH ₂ -N-C
359	CH-CH ₂ -	1	3	0	-	Н .	-(CH ₂) ₂ -N-C-
360	CH2~	1	3	0	-	Н	-(CH ₂) ₂ -N-C-NO ₂
361	CH-CH ₂ -	1	3	0		н	-(CH ₂) ₃ - C-
362	CH-€	1	3	0	-	н	-(CH ₂) ₃ -C
363	С⊢—СН₂-	1	3	0	-	н	-(СH ₂) ₃ - С

T	ab	le	1	.3	4

	1.04						•
Compd. No.	R ¹ (CH ₂)j-	k	: m	n	chirality	⁻ R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
364	С├	1	3	0	•	н	-(CH ₂) ₂ -C-OCH ₃
365	CH-CH ₂ -	. 1	3	0	-	Н .	-(CH2)2-C - CH3 $H3C$
366	C	1	3	0	-	Н .	-(CH ₂) ₂ -C
367	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C-CH ₃
368	СН ₂ -	1	3	0	<u>.</u> .	. н	-(CH ₂) ₂ -C-
369	CH-CH ₂ -	1	3	0	•	н	-(CH ₂) ₂ -C-CI
370	CHCH_2-	1	3	0	. -	н	O -(CH ₂) ₂ -C-(CH ₂) ₃ CH ₃
371	C├ - CH ₂ -	1	3	0	-	н	-(CH ₂) ₂ -C
372 ·	C├ \ CH ₂ -	1	3	0	-	н .	- CH ₂ -S
373	СН-{СН₂-	1	3	0	-	н	-(CH ₂) ₃ -C·N-
374	C⊢—CH₂-	1	3	0	-	н	OCH ₃

5 7

Ta	h	۹۱	1	.3	5
1 a	_			. •	•

Table 1	.35						
Compd.	R^1 (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
375	с⊢ СН₂-	1	3	0	-	н	-(CH ₂) ₃ - C- N- CI
376	C├ - CH₂-	1	3	0		н	-(CH ₂) ₃ -C-N
377	CH-CH ₂ -	1	3	0		н	- CH ₂ -C-CH ₂ -C-N-CI - CH ₃
378	CH-CH2-	1	3	0	-	н	-CH ₂ -CH ₂ -C-N-F
379.	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ - С- N- С- СН ₃
380	CH-CH ₂ -	1	3	0	-	н	-(CH ₂) ₃ -C-N-CH ₂
381	C├ - CH ₂ -	1	3	0	-	н	-CH ₂ -N-S-CH ₃
382	C⊢————————————————————————————————————	1	3	0	-	н	- CH ₂ -N-C-O-CH ₂ -
383	с⊢—СН ₂ -	1	3	0	-	Ĥ	- CH O C - N CI
	CH-CH ₂ -		•				-CH ₂ -N-C-NO ₂
385	CH2-	2	2	0	-	Н	-CH ₂ -N-C-NO ₂

Table 1.3.6

iable i	1.9-6						
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{G}G-R^6$
386	CH₂-	2	2	0	-	Н .	-сн ₂ -м-с-
387	CH ₂ -	2	2	0	~	н	-CH ₂ -N-C
388	-CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-NO ₂
389	-CH ₂ -	2	2	0	~	. н	-CH ₂ -N-C CO₂CH₃
.390	· CH ₂ -	2	2	0	-	н.	-CH ₂ -N-C-CF ₃
391	€ CH ₂ -	2	2 .	0	-	. н	-CH ₂ -N-C
392	—CH ₂ −	2	2	0	-	н	-CH ₂ -N-C
393	CH₂-	2	2	0	-	н	-CH ₂ -N-C-
394	CH ₂ -	2	2	0	-	Н	-CH ₂ -N-C-CI
395	CH₂-	. 2	2	0	•	н	-CH ₂ -N-C
396	CH 2−	2	2	0	-	н	-CH ₂ -N-C

Table 1.37	1 9	D!	е		.ა	1
------------	-----	----	---	--	----	---

·abic	1.0 /						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
397	CH ₂ -	2	2	0	-	н	-CH2-N-C-CI
398	CH₂⁻	2	2	0	-	н	-(CH ₂) ₂ -N-C-
399	CH₂-	2	2	0	<u>.</u>	Н	-(CH ₂) ₂ -N-C-
400	-CH ₂ -	2	- 2	0	:-	н	-(CH ₂) ₂ -N-C-
401	CH ₂ -	2	2	0	. -	H	-(CH ₂) ₂ -N-C
402	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C-C-CF ₃
403	CH₂-	2	2	0	-	Н	-(CH ₂) ₂ -N-C-CF ₃
404	CH₂-	2	2	0	-	н	-(CH ₂) ₂ -N-C
	CH₂-						-(CH ₂) ₂ -N-C
406		2	2	0	-	н	-(CH ₂) ₂ -N-C
407	CH ₂ -	2	2	0	-	H	-(CH ₂) ₂ -N-C

Table 1.38

:

rable	1.38					
Compd. No.	R ¹ / _{R²} (CH ₂) _j	k	m n	chirality	·R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
408	-CH ₂ -	2	2 0	-	Н	-(CH ₂) ₂ -N-C
. 409	CH₂-	2	2 0	-	н	-(CH ₂) ₂ -N-C-CI
410	СН₂-	2 :	2 0	-	н	(S) -CH-N-C- CH ₂ CH(CH ₃) ₂
411	CH₂-	2 . 2	2 0	-	н	(S) O (CH-N-CH-N-CH ₃)2
412	Сӊ ₂ -	2 2	2 0	-	н	(S) P NO ₂ -CH-N-C- C CH ₂ CH(CH ₃) ₂
413	— CH₂-	2 2	2 0	-	Н	(S) O -CH-N-C
414	CH₂-	2 2	0	-	н	(S) P CF ₃ -CH-N-C- CF ₃ -CH ₂ CH(CH ₃) ₂
415	CH₂-	2 2	0	-	н	(S) -CH-N-C- H CH ₂ CH(CH ₃) ₂ F
416	CH ₂ -	2 2	0	-	Н	(S) Q QCF ₃ -CH-N-C- I H CH ₂ CH(CH ₃) ₂
417	CH ₂ -	2 2	0	-	H	(S) P Br -CH-N-C- Br CH ₂ CH(CH ₃) ₂ .
418	CH₂-	2 2	0	-	Н	(S) P CI -CH-N-C- CH ₂ CH(CH ₃) ₂

Ta	h	le	1	.3	q
10					- 3

lable 1	.39						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	'R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} + G - R^6$
419.	€ CH ₂ -	2	2	0	-	н	(S) P -CH-N-C
420		2	2	0	-	н .	(S) O F C C F C C C C C C
421	CH ₂ -	2	2	0	-	н	(S) CI -CH-N-C
422	-CH ₂ -	2	2	0	-	H	(<i>F</i> l) → CH+-N-C
423		. 2	2	0	-	Н	(F) O O O O O O O O O O O O O O O O O O O
424	CH₂-	2	2	0	-	н	(F) -CH-N-C- H CH ₂ CH(CH ₃) ₂
425	CH ₂ -	, 2	2	0	-	н	$(H) \qquad \qquad P$ $-CH-N-C- \qquad -CO_2CH_3$ $-CH_2CH(CH_3)_2$
426		2	2	0	-	н	(<i>F</i>) CF ₃ CF ₃ CF ₃ CH ₂ CH(CH ₃) ₂
427	CH2-	2	2	0	-	Н .	(<i>F</i>) CF ₃ -CH-N-C-
428	CH₂-	2	2	0.	-	н	(F) 0 -CH-N-C- H CH ₂ CH(CH ₃) ₂ .
429	€ CH2-	2	2	0	•	н	(F) P -CH-N-C- CH ₂ CH(CH ₃) ₂

Table 1.40

430 \begin{array}{c c c c c c c c c c c c c c c c c c c	· ubie	1.40						
430 \begin{array}{c c c c c c c c c c c c c c c c c c c	Compd. No.	R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	430	CH2-	2	2	0	-	н	(A) P C CI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	431	CH₂-	2	2	0	-	н	(A) -CH-N-C-Br CH ₂ CH(CH ₃) ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	432	CH₂-	2	2	0	-	H	(A) 0 -CH-N-C- F
435 $CH - CH_2 - 1 \ 3 \ 1 \ - H - CH_2 - N - CH_2 - N$	433	—CH₂-	2	2	0	-	н	(H) -CH-N-C-CI
436 CH_{2} 1 3 1 - H_{2} CH_{2} CH_{2} CH_{2} 1 3 1 - H_{2} CH_{2} $CH_$	434	CH-2-	1 .	3	1	-	н	-CH ₂ -N-C-
437 CH_{2} 1 3 1 - H_{2} CH_{2} CH_{2} CH_{2} CH_{2} 1 3 1 - H_{2} CH_{2} CH	435	с⊢СН₂-	1	3	1	-	Н	-CH ₂ -N-C
438 $CH \longrightarrow CH_2 - 1$ 3 1 - H $-CH_2 - N - C - CH_3 - 1$ 3 1 - H $-CH_2 - N - C - CH_3 - 1$ 3 1 - H $-CH_2 - N - C - CH_3 - 1$	436	CH-2-	1	3	1	- .	н	-CH ₂ -N-C-\(\sigma\)
439 CH ₂ - 1 3 1 - H -CH ₂ -N-C-	437	CH2-	1	3	1	-	н	-CH ₂ -N-C
439 CH_2-1 3 1 - H $-CH_2-N-C-1$ CF_3	438	.с⊢Ст₂-	1	3	1	-	н	-CH ₂ -N-C-CF ₃
	439	С├────────────	1	3	1	-	Н	-CH ₂ -N-C-CF ₃
440 CH ₂ - 1 3 1 - H -CH ₂ -N-C-	440	С⊢√_СН₂-	1	3	1	-	н	-CH ₂ -N-C-C

Table 1.41

lable i	1.4 1						
Compd.	R ¹ (CH ₂) _j -	ķ.	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
441	CH-{	1	3	1	-	н	-CH ₂ -N-C-Br
442	С — СН ₂ -	1	3	1	-	н	-CH ₂ -N-C-
443	CH-CH ₂ -	1	3	. 1	-	Н	-CH ₂ -N-C-⟨Br
444	CH_CH ₂ -	1	3	1	-	н	-CH ₂ -N-C
445	C	1	3.	1	-	н	-CH ₂ -N-C-CI
446	СН-{	1	3	1	-	н	-(CH ₂) ₂ -N-C-
447	CH-CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-
448	CH-CH ₂ -	1	3	1	- .	н	-(CH ₂) ₂ -N-C-\(\int\).
449	CH-CH ₂ -	. 1	3	1		н	-(CH ₂) ₂ -N-C
450	C├ - CH₂-	1	3	1	-	Н	-(CH ₂) ₂ -N-C-CF ₃
451	CH-{	1	3	1		. н	-(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-CF ₃ -(CH ₂) ₂ -N-C-CF ₃

Table 1.42

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - R^6$
452	C	1	3	1	•	н .	-(CH ₂) ₂ -N-C-
453 ·	C├ - CH₂-	1	3	1		Н	-(CH ₂) ₂ -N-C-
454	. С⊢—СН₂-	1	3	1	-	н _.	-(CH ₂) ₂ -N-C-C
455	C├ - CH ₂ -	1	3	1	-	н	-(CH ₂) ₂ -N-C-Br
[′] 456	CH-CH2-	1	3	1.	-	н	-(CH ₂) ₂ -N-C
457	CHCH2-	1	3	1	. -	н	-(CH ₂) ₂ -N-C-CI
458	CH-2-	2	2	1.	-	н	- CH ₂ -N-C-
459	С⊢—СН₂-	2	2	1	-	Н	- CH ₂ - N- C-
460	CH-2-	2	2	1	<u>.</u>	н	-CH ₂ -N-C-CH ₃
461	CH2-	2	2	1	-	н .	- CH ₂ -N- C-
462	C├─ () CH ₂ -	2 .	2	1	-	н	- CH ₂ - N- C-

T:	ah	ما	1	1	3

lable 1	1.43						
Compd.	R (CH ₂);-	k	m	n	chirality	⁻ R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
463	С├-{_}-СН₂-	2	2	1	-	Н ,	- CH ₂ - N- C-
464	CH-2-	2	2	1	-	н	- CH ₂ -N-C- OCH ₃ OCH ₃
465	C├ - CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C-
466	CI── CH ₂ -	2	2	1	-	н	O NO2
467	CH-CH2-	2	2	1		н	- CH ₂ -N-C
468	CH-CH ₂ -	2	2	1		н	- CH ₂ -N-C-\(\sigma\)
469	С⊢ СН₂-	2	2	1	-	н	-CH ₂ -N-C
470	C├ - CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CN
471	CH-2-	2	2	1	-	Н	- CH ₂ - N C - CO ₂ CH ₃
472	CH-2-	2	2	1	-	н	- CH2-N C
473	CH-CH₂-	2	2	1	-	н .	- CH₂-N C- C- CH₃

T	a	b	le	1	.4	4

14576	1.77					
Compd.	R ² (CH ₂),-	k m	n n	chirality	, Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
	с⊢{сн₂-				н	
475	СН-{	2 2	1	-	Н	-CH ₂ -N-C-CH(CH ₃) ₂
476	CH_CH ₂ -	2 2	1	-	н	-CH ₂ -N-C-NO ₂
477	CHCH ₂ -	2 2	1	<u>.</u> .	н	- сн ₂ - ^Н с — Осн(сн ₃ ½
478	СН-СН2-	2 2	1 .		н	-CH ₂ -N-C-() H ₃ C
479	CH-CH2-	2 2	1	•	н	-CH2-HC-0
480	C├ - CH ₂ -	2 2	1	-	н	- CH ₂ -N-C-O Br
481	С⊢—СН₂-	2 2	1	-	н	-CH ₂ -N-C-S
482	С⊢√Д-СН₂-	2 2	1	-	н	-CH ₂ -N-C-(S)
483	С-СН2-	2 . 2	1	-	н .	-CH₂-N-C- S. CH₃
484	CH-2-	2 2	1	-	н	- CH ₂ - N- C- N- H

Table 1.45

lable	1.45						•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_p + (CH_2)_q G - R^6$
485	с⊢(Сн₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
486	CH-⟨CH₂-	2	2	1	-	н	- CH ₂ -N-C-CN
487	CH-CH ₂ -	2	2	1	. -	н.	- CH ₂ -N-C
488	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-NH ₂
489	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C
490	CHCH2-	2	2	1.	•	н	-CH ₂ -N-C-CH ₃
491	CH-2-	ż	2	1	-	н	- CH ₂ -N-C-CF ₃
492	С├ - СН ₂ -	2	.2	1	-	н	- CH ₂ -N-C-C-C-3
493	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
494	с⊢ СН₂-	2	2	1	-	н	- CH ₂ -N-C
							- CH ₂ -N-C-CF ₃

Table 1.46

	1.40	•				
Compd No.	. R ¹ (CH ₂)j-	k m	n c	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- R^6$
496	с⊢()—сн₂-	2 2	1	-	Н	-CH ₂ -N-C
497	CH-CH2-	2 2	1	÷	н	OHO CH(CH ₃)₂ -CH₂-N-C-
498	CHCH2-	2 2	1	-	н	-CH ₂ -N-C-\\ O NH ₂ CF ₃
499	CH-CH ₂ -	2 2	1	-	н	-CH ₂ -N-C- H C- N(CH ₃) ₂
500	· CH-CH ₂ -	2 2	1	-	н.	-CH ₂ -N-C
501	С├-{Сн₂-	2 2	1	-	, н .	-CH ₂ -N-C-NO ₂
502	CH-CH2-	2 2	1	-	н	-CH ₂ -N-C
503	C├─ ()- CH ₂ -	2 2	1		: Н	- CH ₂ -N-C- NO ₂
504	C⊢-€CH ₂ -	2 2	1	· -	Н	$-CH_2-N-C$ OCH ₃ OCH ₃
505	С⊢{	2 2	1	-	н	-CH ₂ -N-C
506	С├─{}СН₂-	2 2	1 .		н	-CH ₂ -N-C-ONO ₂

Table 1.47

	Table 1.47								
Compd.	R ² (CH ₂);-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$		
507	CI—⟨CH ₂ -	2	2	1	-	н	- CH ₂ - N-C		
508	CI—CH₂-	.2	2	1	-	н	-CH2-N-C-S		
509	CH2−	2	2	1	-	н	-CH ₂ -N-C-S		
510.	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃		
511	CH₂-	2	2	1	-	Н	CH ₂ -N-C-O C(CH ₃) ₃		
512	C├ - CH₂-	2	2	1	-	н	CHCH ₃ - CH ₂ -N-C-		
513	CH-2-	2.	2	1	-	н	-CH ₂ -N-C		
514	CH2-	2	2	1	-	Н	- CH ₂ -N-C-C(CH ₃) ₃		
515	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ OH		
516	H ₂ N-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃		
517	H ₂ N CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-CF ₃		

Τa	ıbl	le	1.	4	8

· ubic	1.40							
Compd.	R ²	(CH ₂) _j	k	m	n	chirality	Ŕ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
518		NH₂ ≻CH₂-	·. 2	2	1	-	н	-CH ₂ -N-C-CF ₃
· 519	c-H	-{_}-CH ₂ -	. 2	2	. 1	- ,	н	-CH ₂ -N-C- CF ₃
520	c-{	}_сн₂-	2	2	1		CH ₃	-сн ₂ -N-с-СF ₃
521	c:—) −СН₂−	2	2	1		-(CH ₂) ₂ CH-	-CH ₂ -N-C-CF ₃
522	с⊢) СН₂-	. 2	2	1	- ,-	-CH ₂ CH-	-CH ₂ -N-C-CF ₃
523	c-{	}–сн ₂ -	2	2	1		(CH ₂) ₂ CH-	-CH ₂ -N-C-
524	c⊢{	}—СН ₂ –	2	2	1	· -	-CH ₂ CH-	-CH ₂ -N-C-
525	с⊢С	}– СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-
526	с⊢С	≻-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-
527	с⊢	⊢CH ₂ -	2	2	1	•	. н	-CH2-N-C-(S
528	с⊢()	—СН ₂ −	2	2	1	-	н	-CH ₂ -N-C-S -CH ₂ -N-C-S -CH ₃ -N-C-S

7 1

Table 1.49

Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
529	CI-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-\(\sigma\) NO ₂
530	CHCH ₂ -	2	2	1	-	. н	-CH ₂ -N-C
531	CI—CH ₂ -	2	2	1	<u>-</u>	Н	-CH ₂ -N-C-\S
532	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃ H ₃ C
533	CH-CH ₂	2	. 2	1	· -	Н	-CH ₂ -N-C
534	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-NO ₂
535	CHCH2-	2	2	1	- '	н _	-CH ₂ -N-C
536	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H H ₃ C CH ₃
537	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-C(CH ₃) ₃
538	C├ - CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C
539	C	2	2	1	-	н	-CH ₂ -N-C-CH ₃ -CH ₂ -N-C-CH ₃ F ₃ C

.

Ta	h	10	1	.5	n
···					u

lable	1.50					•	•
Compd. No.	R ¹ (CH ₂)j-	. k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
540	CI—CH2-	2	. 2	1		Н	-CH ₂ -N-C-N-C-N-CH ₃
541	CH-2-	2	2	1	-	H	-CH ₂ -N-C
542	с⊢С сн₂-	2	2	1	-	н	-CH ₂ -N-C-CH ₂ CH ₃
543	с⊢{сн₂-	2	, 2	1	-	н	-CH ₂ -N-C
544	C	?	2	1	-	H	CH ₂ -N-C
545	CHCH2-	2	2	1		н	-CH ₂ -N-C-CI
546	CH-CH2-	2	2	1	· _	H .	-CH2-N-C-CI
547	CH-2-	2	2	1	-	Н	-CH ₂ -N-C-CI
548	C├─ (CH ₂ -	2	2	1	- ·	н	-CH ₂ -N-C-CI
549	C ⊢ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
550	С⊢СТ—СН₂-	2	2	1	-	н	-CH ₂ -N-C-

:.

_	6. 1		-	_	-
Ta	ח	le.	- 1.	.5	- 1

Compd. No.	R (CH ₂) _j	k	m	n	chirality	. R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
551	CHCH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CH ₃
552	CH-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CH ₂ -CF ₃
553	CH-CH ₂ -	·2	2	1	-	н	-CH ₂ -N-C-CH ₂ -CF ₃
554	CH-2-	2	2	1		н	-CH ₂ -N-C-N-H
555	CH-CH ₂ -	2	2	1	- .	н	-CH ₂ -N-C-N-H
556	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C-N-N-H-CH ₃
557	с⊢ Сн₂-	. 2	2	1	-	н	-(CH ₂) ₂ -N-C-
558	CHCH ₂ -	2	2	1	~	н	- CH N- C-
559	C├ - CH₂-	2	2	1	-	н	-CHNC-CF3
560	C├ \ CH ₂ -	2	2	1	-	н	- CH H CN CN CN
561	CH-2-	2	2	1	-	н	-CH-N-C
							•

Table 1.52

Table							
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	₽³	$-(CH_2)_{\overline{P}}^{4}$ $+(CH_2)_{\overline{q}}^{4}$ $+(CH_2)_{\overline{q}}^{4}$ $+(CH_2)_{\overline{q}}^{4}$ $+(CH_2)_{\overline{q}}^{4}$
562	C├─ \ -CH ₂ -	2	2	1	_	Н	- CH N C- CI
563	CH-2-	2	2	1	-	H	-CHNC-CF3 -CHNC-CF3 -CH3 F3C
564	CH-2-	2	2	1	-	н	OCH ₂ CH ₃ -CH N C-CH ₃ CH ₃
565	C⊢—CH₂-	2	2 1	t	-	Н	-CH-N-C
566	CI—CH₂-	2 ;	2 1	i ·	-	н	-CHNC
567	CI-CH ₂ -	2 2	2 1	•••	- -	н [.]	-CH N C-CF3
568	CHCH ₂	2 2	? 1			н	-CH N C-CF3
569	CH2-	2 2	: 1			Н	-CHNC-CF3
570	C⊢√CH₂-	2 2	1		-	н	-CHNC-F HHC-F CH3
571	CH₂-	2 2	1		-	Н	-CHN C- CH(CH ₃) ₂
572	CH-{CH₂-	2 2	1		•	н	-CHN C-CF3

Ta	b	le	1	.5	3

Table							
Compd.	R ¹ (CH ₂)	k	m	n.	chirality	R³	· R ⁵
573	C⊢-() CH ₂ -	2	. 2	1	· -	н	-CHNC-S
574	CH-CH ₂ -	2	2	1	-	н	-CHNC-S Br.
575	CH-CH ₂ -	2	2.	1	-	н	-CHNC-(CH ₃) ₃
576	CHCH ₂ -	2	2	1	-	н	-CHNC-OSCH3
577	С{СН ₂ -	2	2	1		н	-CHNC-O
578	CI—CH ₂ -	2	ż	1	-	н	-CHNC-SI
579	CI—CH ₂ -	2	2	1	-	н	-CHNC-NH
580	CHCH ₂ -	2	2	1	-	Н	-CHNC-SCH3
581	CH-CH ₂ -	2	2	1	-	Н	-C++ K-C-S
582	CH-{CH₂-	2	2	1	, -	н	-CHNC-S
583	C├ - CH ₂ -	2	2	1	-	н	CH3 CH3

	Та	b	le	1.	.5	4
--	----	---	----	----	----	---

· abic	1.54						
Compd No.	· R ² (CH ₂)	k	. m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
584	CH-2-	2	2	1	~	н	- CH N C C C-
585	CH_CH₂-	2	2	1	-	н	-CH N C - CN CH3
586	CH-CH ₂ -	2	2	1	-	н	-CHNC-CI I H CH3
587	CH ₂ -	2	2	1		н	-CHNC-CF3 IH CH3
588	CH-CH ₂ -	2	2	1	- ,	н	-CH-N-C-NH ₂ -CH ₃
589	C⊢—CH₂-	2	2	1	-	н	-CHNC-C(CH3)3
590	CH-CH ₂ -	2	2	1		Н	- СН- N- СН(СН ₃) ₂ СН ₃
591	CH-CH ₂ -	2	2	1	-	н	-CHN C-N(CH ₃) ₂
592	CH2-	2	2	1	-	н	-сн и с н снз
593	С⊢-{СН₂-	2	2	1	-	н	-СН-И-С- СН³ СН³ СН³ОН
594	C⊢(2	2	1.	-	н	-СН И С-С-ОН

. 77

~	_	1.		- 4	_	
	2	n	le		.5	~

lable	1.55						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	'R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
595	С⊢(Сн₂-	2	2	1	-	Н	-CH N C CO2CH3 CH3
596	C├ - CH₂-	2	2	1	-	н	-сн у с- Сн ³ Сн ³
597	CH-CH ₂ -	2	2	1		н	- CH N C - CH3
598	CHCH_2-	2	2	1	· •	н	-CHNC-
599	CHCH ₂ -	2	2	1	· •	. н	-CH N C- CH3 CH3
600	СН-СН2-	2.	2	1	-	н	-CHNC-OBr
601	CH-CH2-	2	2	1	-	. Й .	-CHNC-CH3
· 602	CH-CH2-	2	2	1	-	н	O N(CH ₃) ₂ -CH N C (CH ₃) CH ₃
603	CH-CH ₂ -	2	2	1	-	Н	- CH N C NH2
	C⊢-{						-CHNC-NH
605	CHCH ₂ -	2	2	1	-	н	-CH-V-C-

т	a	h	le	1	.5	6
	a	IJ	ıe	- 1.	. Э	O

Compd No.	R ²	⊢(CH ₂) _j −	,	c m	n	chirality	.H3	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
606	с⊷(СН₂-	2	2	1	•	н .	-CHN-C-S
607	CI—(2	2	1	-	н	CH3 CH3
608	с⊷{		2	2	1	-	. н	-CH-N-C
609	c-{	CH ₂ -	2	2	1	-	н	-CH-N-C
610 .	cı—{		2	2	1	•	н.	-CH-N-C-S CH ₃ OF C _{CH₃}
611	c -	CH ₂ -	2·	2	1	~	н	-CHNC-C(CH ₃) ₃ -CH ₃ H ₃ C
612	c-{	_Сн₂-	2	2	1	-	н	CH3 Hc
613	c-(}-сн ₂ -	2	2	1	-	·H	-CH-N-C-O CH ₃ F ₃ C
614	с⊢	∕—СН ₂ -	2	2	1	-	н	-CHN-C-NCH ₃ -CH ₃ F ₃ C CH ₃
						-		-CH-N-C-NH
616	с{	}– CH₂−	2	2	1	•	Н	-CHWC-N
							_	

7 9

Table 1.57

	,				•		
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	'R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
617	CH-{	2	2	1	-	н	-CHNC-CF3
618	C├ ─ CH ₂ -	2	2	1	-	Н	- C++ N- C- - C+ N- C- - C+(C+3)2
619	С⊢С СН₂-	2	2	1	-	н	- CH N C - CN CH(CH ₃) ₂
620	C├ ─ CH ₂ -	2	2	1	- ·	н	- CH N C - Br CH(CH ₃) ₂
621	CH-CH ₂ -	2	2	1		н	- CH N C - CI - CH(CH ₃) ₂
622	Ć⊢√ CH₂-	2	2	1		. н	- CH-N C- (CH ₃) ₂ - CH(CH ₃) ₂
623	CH-CH2-	2	2	1	-	Н	-CH N C - OCH3
624	CH-€ CH₂-	2	2	1	-	н	- CH N C NO ₂ - CH (CH ₃) ₂
625	C├ \ CH ₂ -	2	2	1	-	Н	- CH N C − NH ₂ - CH (CH ₃) ₂
626	CH ₂ -	2	2	1		н	-CHNC
627	CHCH ₂ -	2	. 2	1		н	- CH N C CH ₂ CH ₃ - CH(CH ₃) ₂

Table 1.58

, abic	1.50						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	˳	-(CH ₂) p G (CH ₂) q G-R ⁶
628	CI—CH₂-	2	2	1	-	Н	O CO₂CH₃ - CH N C C
629	С⊢СН₂-	2	2	1	-	н	O F CF ₃ -CH N C CF ₃ CH(CH ₃) ₂
630	С├-{СН₂-	2	2	1	-	н	- CH-N-C
631	CHCH2-	2	2	1	-	н	- CH-N-C- H CH(CH ₃) ₂ CF ₃
632	СН ₂ -	2	2	1	-	н	-CH N C- H CH(CH ₃) ₂ CF ₃
633	C├ - CH₂-	2	2	1	-	н	- CH N C - CF ₃ - CH N C - CF ₃ - CH(CH ₃) ₂ F
634	С⊢(СН₂-	2	2	1	-	Н	- CH N C - F
635	CH2⁻	2	2	1	-	н	OHO CH(CH ₃) ₂ - CH N C- CH H CH(CH ₃) ₂
636	CH-€-CH₂-	2	2	1	-	н	- CH N C CH ₃ - CH(CH ₃) ₂
637	CH2-	2 2	2	1	-	н	-CH-N-C
638	С⊢√СН₂-	2 2	2	1	•	н	- CH-N-C- - H - H - CH(CH ₃) ₂

Table 1.59

R (CH ₂)-						D4 .
H"	k	m	n	chirality	Ŕ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
CHCH ₂ -	2	2	1	-	н	- CH N C - N(CH ₃) ₂ CH(CH ₃) ₂
CHCH ₂ -	2	2	1 .	-	н	$-CH N C - OCH_3$ $CH(CH_3)_2$
CHCH ₂ -	2	2	1	-	н	- CH N C - CO ₂ CH ₃ - CH(CH ₃) ₂
C├ - CH ₂ -	2	2	1	-	н	- CH N C- C- C- C- CH (CH ₃) ₂
с 	2	2	1	-	Н .	- CH-N-C
С├-СН₂-	2	2	1	. -	Н	-CHNC-C(CH3)3 $-CH(CH3)2$
C├───── CH ₂ -	2	2	1	-	Н	$-CH \stackrel{O}{\rightarrow} -CH $
CH-2-	2	2	1	-	н	- СН № С Н СН2ОН СН(СН3)2
CH-CH ₂ -	2	2	1	-	Н	- СН N- С- - СН С- - СН(СН ₃) ₂
CH-2-	2	2	1	-	н	- CH N C - CH(CH ₃) ₂ H CH(CH ₃) ₂
C├ - CH₂-	. 2	2	1	-	Н	- СН- И С- СН(СН ³) ²
	$C \vdash - CH_2 - C$	$C \mapsto CH_2 - 2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1.60

Compd No.	R (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
650	CI─CH₂-	2	2	1		Н	-CH-N-C
651	СН ₂ -	2	2	1	-	н	-CH-N-C-CHCH3
652	CI—CH₂-					н .	-CH-N-C
653	CH2-	2	2	1	-	н	-сн- N-с- - 0(СН ₂) ₄ СН ₃ СН (СН ₃) ₂
654	С⊢СН₂-	. 2	2	1	į	н	-CH-N-C-(CH3)5 -CH(CH3)5
655	CHCH ₂ -	. 2	2	1	-	н	-CH-N-C- H-N-CF ₃ -CH(CH ₃) ₂
656	CH₂-	2	2	1		H	-CH-N-C- H H CH(CH ₃) ₂
657	CH-CH₂-	2	2	1	•	н	-СH-N-С-СS СН(СН ₃) ₂
658	C├ - CH ₂	2	2	1	÷ .	н.	-CH-N-C-NH
659	С├─{	2	2	1	-	Н	-CH-N-C
660	CH ₂ -	2	2	1	•	н	-CH-N-CN-CH(CH ₃) ₂

Ta	h	۱۵	1.	2	1
10	U	ıe	٠.	0	ı

Table 1	1.61						·
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	'H3	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
661	C├ \ CH ₂ -	2	2	1	-	Н	-сн-и-с- -сн-и-с- -сн-осн ₃) ₂ осн ₃
662	С⊢—СН₂-	2	2	1	-	н	-CH'N-C-CH3 CH(CH3)2 CH3
663	C├ - CH₂-	2	2	1	-	н	-CHN-C
664	CH-2-	2	2	1	-	н	-CHNC-O -CH(CH ₃) ₂
665	CH-2-	2	. 2	1	-	Н	-CH-NCS -CH(CH ₃) ₂
666	CH-CH ₂ -	2	2	1	-	н	CH(CH ₃) ₂ CH ₃ CH ₃ CH ₃
667	С├-{}СН₂-	2	2	1	-	н	-CH-N-C
668	CH-2	2	2	1	-	Н.	-CH-N-C
669	CI—CH ₂ -	2	2	1	-	н	-CH-N-C-N-CH(CH ₃) ₂ CH ₃
670	C	2	2	1	-	Н	-CH-N-C- CH(CH ₃) ₂ Br
671	C	· 2	2	1		н	-CH-N-C-(NO ₂

Table 1.62

Table	1.62						
Compd.	R (CH ₂)	- k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
672	с⊢СН₂	- 2	2	1	-	н	-¢H-N-¢-√] ch(ch3)≥ H
673	CH_CH ₂ -	- 2	2	1	-	н	-C++ N-C- H S C(CH ₃) ₂
674	CH-CH ₂ -	- 2	2	1	•	,H	-CH-N-C-S -CH(CH ₃) ₂
675	CH2-	2	2	1	-	. н	-CH-N-C- S CH ₃
676	C⊢—CH₂-	2	2 .	1	-	н	-CH-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
677	C├ - CH ₂ -	2	2	1	-	Н .	-CH-N-C-N-CH(CH ₃) ₂ CH ₃
678	CHCH2-	2	2	1	-	Н	-CH-N-C- H CH(CH ₃) ₂
679	CH_CH ₂ -	2	2	1	-	н	-CH-N-C-S-CH(CH ₃) ₂
680	CH-2-	2	2	1	-	н	-CHNC-S H CH(CH ₃) ₂
681	СНСН2-	2 2	2	i	•	Н	-CH-N-C-CH ₃ -CH(CH ₃) ₂ -CH ₃
682	С⊢(2 2	2 .	i	-	н .	-CHN-C- H C(CH ₃) ₂

Table 1.63

Compd.	R^1 R^2 $-(CH_2)_j$	k	m	n	chirality	Ŕ³	$-(CH_2)^{\frac{R^4}{p+5}}(CH_2)^{\frac{-}{q}}G^-R^6$
683	C├ - CH ₂ -	2	2	1	-	н	-CHN-C- H S SCH ₃
684	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- H S S-CH(CH ₃) ₂ CH(CH ₃) ₂ O
685	C ├── CH₂-	2	. 2	1	-	Н	-CH-N-C
686	CH-CH ₂ -	2	2	1	-	Н	- CH N- C- - H H - CH ₂ CH(CH ₃) ₂
687	CI-CH ₂ -	2	2	1	· •	н	-CHN-C-
688	CHCH ₂ -	2	2	1	-	Н	-CHNC
689	CH-CH ₂ -	2	2	1	-	. н	-CHNC
690	CH-CH ₂ -	2	2	1	<u>-</u>	н	-CHNC-B
691	C	2	2	1	-	н	-CH NC
692	CH-CH ₂ -	2	2	1	-	н	-CHNC
	C├ - CH ₂ -						-CHN-C

Ta	h	le	1	.6	4
, a	·	10			-

Compd.	R^{2} (CH ₂) _j	· k	c m	n	chirality	Ŕ³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
694	CH-CH ₂ -	2	2	1	-	Н.	-CH N C- OCH2CH3
695	CI—CH₂-	. 2	2	1	-	н	-CHN-C- 0 0 2CH3
696	C{CH₂-	2	2	1	-	н	- CH N-C- OCF3
697	CH-CH2-	2	2	1	-	н	-CH-N-C
698	C├ - CH ₂ -	2	2	1 .	÷.	н	-CH N-C
699	CH-CH ₂ -	2	2	1	-	Н	-CH N-COCH3
700	CHCH ₂ -	2 .	2	1	-	Н	-CHN-C
701	CH2-	2	2	1	-	н	-CH N-C- C-CH3
702	CH ₂ -		2			н	-CHNC-CF3
703	CH-CH ₂ -	2	2	1	-	н	-CH N C- CH(CH3)2
704	CH	2	2	1	-	н	-CHN-C-NO2

-				_	_
Ta	h	0	- 1	.6	5
					_1

Table	1.00						
Compd. No.	R (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
705	CH	·2	2	1	-	н .	-CHN-C-S
706	С⊢—СН₂-	2	2	1	-	Н	-CHNC-STCH3
707	С⊢—СН₂-	2	2	1	-	н	-CHN-CCF3
708	CHCH ₂ -	. 2	2	1		Н	-CHN-C-S Br
709	С├-СН₂-	2	2	1	<u>.</u> .	. н	-CHNC-SSCH₃
710	CHCH2-	2	2	1	-	н	-CHN-C-S
711	CH-CH ₂ -	2	2	1	-	н	-CHN-C-CH3
712	CH-2-	2	2	1	-	н	-chyc-s
713	CH2-	2	2	1	-	н	-CH-N-C
	с⊢—СН₂-						∠ CH
715	C├ - CH₂-	2	2	1	-	н	-c+nc-s

т	2	b	ı	Δ.	t	6	_
	d	IJ	ı	e	l.	0	ь

Comp No.	id. R^{1} $(CH_{2})_{\overline{1}}$	- km n c	hirality R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
716	с⊢СН2.	- 2 2 1	- н	-CH-Y-C-NH
717	C	2 2 1	- H·	-CH-N-C-() NO2
718	C├─ੑੑੑि}CH₂-	2 2 1	- , н	-CH-N-C-N H
719	CH-€ CH₂-	2 2 1	- н	-c+n-c-()
720.	С├-{}СН₂-	2 2 1	- н	-CHN-C- Br
721	C├ \ CH ₂ -	2 2 1	·. - н	-CHN-C-N
722	CH_CH ₂ -	2 2 1 -	н	-CHN-C-CH₂OH
723	CH-CH ₂ -	2 2 1 -	н	-CHNC-NH2
724	CH⊋-	2 2 1 -	н	-CH-V-C-C(CH3)3
				-c+n-c-()-c-()
726	с⊢{_}сн₂-	2 2 1 -	н	-снис-сн ₃

Ta	b	le	1	.6	7

Table 1	1.67	•					
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
727	с⊢(сн₂-	2	2	1	- .	H ·	-c+v-c-(>-cı
728	CH-€-CH₂-	2	2	1	-	н	-c+n-c-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
729	CH-√ CH ₂ -	2	2	1	-	Н	-CHN-C
730	CH-{	2	2	1	-	Н	-CH-N-C-
731	CH-CH ₂ -	2	2	1	-	н.	-CH-NC-CH3
732	CHCH2-	2	2	1	-	Н	-CIHN C-CF3
733	C	2	2	1	-	н	-CH-N-C- HO CH(CH ₃) ₂
734	CH ₂ -	2	2	1	-	H	-CH-N-C
	CHCH_2-						-CH-N-C-CF3
736	CI—CH ₂ -	2	2	1	-	н	-CH-N-C
737	CH-€-	2	2	1	-	н	-CH-N-CCF3

Ta	ble	1.	68
----	-----	----	----

738	R^1 R^2 $(CH_2)_j$ CH_2 CH_2	2					$-(CH_2)_{{\rho}{\downarrow}_5}(CH_2)_{{q}}G-R^6$
			2	1	-		
. 720	CH-2-	2				Н	-CH-N-C
739			2	1		н	-cH-N-CNH
740	С├-{}СН₂-	2	2	1	-	н	-CH-N-C
741 (C⊢√CH₂-	2	2	1	· -	н	-CHN-C-\(\sigma\) NO2
742	C	2	2	1 ·	-	н .	-CH-N-C-S
743 c	CH-{	2	2	1		н	-ching-Co
744 c	CH-{}-CH₂-	2	2	1	<u>.</u> ·	Н 	-CH-N-C-CH3
745 c	CH-2-	2	2	1 .	-	Н	-CH-N-C-(CH ₃) ₃
746 c	CH ₂ -	2	2	1	-	н	-CH-N-C-N-CH ₃
747 c	⊢———CH ₂ -	2	2	1	1.	н	-CHN-C
748 cr	() CH ₂ -	2	2	1	-	Н	-chnc-s

Ta	h	10	4	6	n
18	n	le:		n	У

lable 1							
Compd.	R^1 $(CH_2)_j$	k	m	n	chirality	R³	$-(CH_2)^{\frac{R^4}{p}}_{\frac{1}{R^5}}(CH_2)^{\frac{1}{q}}_{\frac{1}{q}}G^{-}R^6$
749	с⊢(Сн₂-	2	2	1	-	н	-c+n-c
750	C├ ~ CH ₂ -	2	2	1	-	н	-CHN C
751	CHCH ₂ -	2	2	1	-	н	CH²OH
752	CH-CH ₂ -	. 2	2	1	-	. н	CF ₃ −CHNC− H CH ₂ OH CF ₃
753	CI-CH ₂ -	2	2	1	-	н	-CH-N-C-CN -CH2OH
754	CH-2-	2	2	1	-	н	-CH-N-C- H CH2OH
755	CH-CH ₂ -	. 2	2	1		н	-CH-N-C- CH2OH
756	CI-CH ₂ -	. 2	2	1	-	н	-CHN-C
757	CHCH ₂ -	2	2	1	•	н	OCH ₂ CH ₃ -CH-N-C- CH ₂ OH
758	CH-CH ₂ -	2	2	1	-	Н	-CH-N-C
759	С⊢ СН₂-	2	2	1	-	н	-CH-N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Table 1.70

							•
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R3.	-(CH ₂) _p + (CH ₂) _q G-R ⁶
760	CH ₂ -	2	2	1	-	н	-CHNC-CF3
761 ,	с⊢—СН₂-	2	2	1	-	H	-CH-N-CF CH ₂ OH
762	CH2-	2	2	1	-	н	-СH-N-С-СF ₃ -СH-N-С-С СH ₂ OH
763	C├ - CH ₂ -	. 2	2	1	-	н	-CH-N-C- H CH²OH
764	CH-{	. 2	2	1	- ·	Н	CH ₃
765	CHCH ₂ -	2	2	1	-	н	CH ₃ O CH ₃
766	CH-2-	2	2	1	-	н .	CH ₃ O CF ₃ -C-N-C-C
767	C├-{}CH ₂ -	2	2	1	-	н	CH3 P CH3 -C-N-C-CH3
768	с⊢—Сн₂-	2	2	1	-	н .	CH ₃ O Br
769	С⊢—СН₂-	2	2	1	-	н	CH ₃ P OCF ₃
770	С⊢—СН₂-	2	2	1	-	н	CH ₃ P CF ₃

Table 1.71

Table	1.7 1						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
771	CICH ₂ -	2	2	1	-	н	CH ₃ P CF ₃ -C-N-C-F CH ₃
772	C├ - CH₂-	2	2	1	-	н	CH ₃ O -C-N-C-C-CF ₃ -CH ₃
773	CH-CH2-	2	2	1	-	н	CH ₃ P -C-N-C-(CH ₃) ₃
774	CH₂-	2	2	1	-	н	CH ₃ O CH ₃ SCH ₃
775	С├-{}СН₂-	2.	2	1	-	н	CH ₃ P CH ₃ -C-N-C- C CH ₃ C(CH ₃) ₃
776	CI—⟨CH₂-	2	2	1	-	Н	CH3 CH3
777	CHCH ₂ -	2	2	1	-	н	CH ₃ O CF ₃ -C-N-C-CO -CH ₃ CH ₃
778	C├ - CH ₂ -	2	2	1	-	н	CH ₃ O NO ₂ -C-N-C-CI CH ₃
779	C├ - ⟨CH ₂ -	2	2	1	-	н	CH3 CH
780	CI-CH ₂ -	2	2	1	-	н	CH ₃ O NO ₂
781	с⊢Ст}-сн₂-	2	2	1	-	н	CH3 0 -C-N-C-N- CH3 H

Table 1.72

Table	1.1 2						
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
782	C⊢√ CH₂-	2	2	1	-	н	СН ₃ О ОСН ₃
783	CHCH2-	2	2	1		Н	CH ₃ OCH₂CH ₃ CH ₃ CH ₃
784	CH-CH ₂ -	2	2	1	-	н	CH ₃ O CF ₃
785	CH-CH ₂ -	2	2	1	-	н	CH ₃ OCH ₃ CH ₃ OCH ₃
786	CH-CH ₂ -	2	2.	1	-	Ħ	-C-N-C-().
787	CHCH2-	2	2	1	- .	Н .	-C-N-C-CH ₃
788	CH2-	2	2	1 .	-	H .	H ₂ C—CH ₂
789	C├ - CH ₂ -	2	2	1	<u>-</u>	Н	-C-N-C-O-12 H ₂ C-O-12
790	C├ - CH ₂ -	2	2	1	-	н	-C-N-C-()
791	C├ ~ CH ₂ -	2	2	1	-	Н	-C-N-C-NO ₂
792	C⊢-{	2	2	1	-	н	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $

Table 1.73

rable i	.73						•
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
793	CI—(CH ₂ -	. 2	2	1	-	н	-C-N-C-F
794	CH-2-	2	2	1	-	н .	H ₂ C CH ₂ F
795	CH_CH ₂ -	2	2	. 1	-	н	$ \begin{array}{c} $
796	CH_CH ₂ -	2	2	1	•	н	H ₂ C-CH ₂
797	CH-CH2-	2	2	1.	-	н	O CH ₃ -C-N-C-CH ₂ C(CH ₃) ₃
798	C├ - CH₂-	2	2	1	-	Н	-C-H2 CH3
799	CH-CH ₂ -	2	2	1	-	. Н	-C-N-C-O H H ₂ C-CH ₂ CH ₃
800	CH-CH2-	2	2	1		H	-C-N-C
801	CH-2-	2	2	1	-	н	-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-
802	С├─॔ि СН₂-	2	2	1	-	н	-C-N-C
803	С⊢СН₂-					н	H ₂ C—CH ₂ OCH ₃ -C—N-C— H H ₂ C—CH ₂ OCH ₂ CH ₃ OCH ₂ CH ₃ H ₂ C—CH ₂

T-1	ble	4	74
ıaı	שוע	1.	/ 4

	117 3						•
Compd No.	$H \xrightarrow{R^1} (CH_2)_{i}$	- k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
804	с⊢СУ-сн₂.	- 2	2	1	-	н	CF ₃
805	С├-{}-СН₂-	· 2	2	1	-	Н	H ₂ C-CH ₂ OCH ₃
806	C⊢(_)-CH₂-	2	2	1	-	Н	H ₂ C CH ₂
807 .	C⊢(CH₂-	. 2	2	1	-	н	(CH2)2-C-NH2
808	СН-СН2-	2	2	1		Н	CH-N-C CH ₃ (CH ₂) ₂ C-NH ₂
809	CH-CH ₂ -	2	2	1	-	н	-CH-N-C-NH ₂
810	C⊢—CH₂-	2	2	1	- <u>-</u>	н	-CH-N-C
811	CHCH ₂ -	2	2	1	-	Н	-CH-N-C-N-H ₂ (CH ₂) ₂ C-NH ₂
812	CH-CH ₂ -	2	2	1	- .	н	-CH-N-C
813	C⊢(CH₂-	2	2	1 .	-	Н	-CH-N-C
814	С⊢Сту−СН₂-	2 2	2	1	•	Н	CH-N-C

Table 1.75

Compd.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
815	C⊢CH₂-	2	2	1	-	Н	-CH-N-C-CF3
816	CHCH ₂ -	. 2	2	1	-	н	-CH+N-C-(CF3 (CH2) 2 C-NH2 0
817	CHCH ₂ -	2	2.	1	-	н	-CH-N-C-X-F (CH ₂) ₂ -C-NH ₂
818	CHCH ₂ -	2	2	.1	-	н	-CH-N-C
. 819	CHCH_2-	2	2	1	· .	H	-CH-N-C-C-S-CF3
820	CH2-	2	2	1	-	н	- CH-N-C
821	CHCH ₂ -	2	.2	1	-	н	-CH-N-C
822	CH-CH ₂ -	2	2	1	-	· H	CH-N-C- CH₂OCH₃
823	CH-CH ₂ -	2	2	1	-	н	-CH-N-C- CH2OCH3
824	CHCH_2-	2	2	1	-	н	-CH-V-C- H CH ² OCH ³ C(CH ³) ³
825	CH-CH ₂ -	2	2	1	-	н	-CH-N-C

T	а	ь	le	1	.7	6
•	-	•	• •			u

Table	1.70						
Compo	$H^{2} \longrightarrow (CH_{2})_{j}$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
826	CHCH ₂ -	2	2	1	-	н	-CH-N-C- CH ₃ -CH ₂ OCH ₃
827	CH-{CH₂-	2	2	1	-	н	CH-N-C-NH
828	C├─ੑੑੑि CH₂-	2	2	1	-	н	CH-N-C- CH2OCH3
829	С├-{	Ż	2	1	-	н	-CH-N-C- CH2OCH3 F
830	C├────────────────────────────────────	2	2	1	-	. н	CF ₃ -CH-N-C
831	C├ - CH₂-	2	2	1	-	Н	-CH-N-C-(-) CH ₂ OCH ₃
832 .	C├─ੑੑੑੑੑੑੑ ` CH₂-	, 2	2	1	-	Н	-CH-N-C- CH2OCH3
833	CH-2-	2	2	1	-	н	-CH-N-C- H CH ₂ OCH ₃
834	CH-CH₂-	2	2	1		н	-CH-N-C- H CH ₂ OCH ₃
835	С⊢СН₂-	2 :	2	1	-	н	-CH-N-C- H CH2OCH3
836	С⊢—СН₂-	2 2	2 1	İ	-	н	-СH-N-С-СН3 СН ₂ ОСН3

Table 1.77

Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
837	С⊢-{	2	2	·1	-	н	-СH-N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
838	CH-CH ₂ -	2	2	1		Н	-CH-N-C
839	CHCH ₂ -	2	2	. 1	-	н	-CH-N-C
840	CH-€ CH₂-	2	2	1	-	Н	-(CH ₂) ₃ -C-
841 .	CHCH ₂ -	2	2	1	-	н.	-(CH ₂) ₂ -C-
842	CH ₂ -	2	. 2	1	-	Н	-(CH ₂) ₂ -C-CI
843	CHCH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -CH ₃
844	CHCH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C-CH ₃
845 _.	C├ - CH ₂ -	2	2	1	-	н	$-(CH_2)_2$ - C - CH_3
846	CH-CH ₂ -	2	2	1	-	н	-(CH ₂) ₂ -C
847	с⊢(Сн₂-	2	2	1	-	н	-(CH ₂) ₂ -C

100

Table 1.78

Table	1.7 6						
Compd No.	· R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
848	CH-{CH₂-	2	2	1	-	Н	-(CH ₂) ₂ - CH ₃
849	CH ₂ -	2	2	1	-	Н	$-(CH_2)_2$ - C - O CH ₃
850	СН-СН2-	2	2	1	-	н	- CH ₂ - \$\frac{0}{5} - CH ₃
851	CH-CH ₂ -	2	2	1	-	н. _.	- CH ₂ - N-C- N-CF ₃
852	СН-СН₂-	2	2	1	-	н.	-CH ₂ -N-C-N-CF ₃
853	CHCH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-
854	CH-CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-N-CH ₃
855	C⊢CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
856	CH2-	2	2	1	-	н	-CH ₂ -N-C-N-C-C+3
857	СН ₂ -	2	2	1 .	-	н	-CH ₂ -N-C-N-OCH ₃
858	CHCH ₂ -	2	2	1	-	н	-CH2-N-C-N-C-N-OCH3
							<u>;</u>

Table 1.79

Table 1	.79						
Compd.	R ¹ (CH ₂)	, k	m	n	chirality	R³	$-(CH_2)_{p}^{\frac{R^4}{15}}(CH_2)_{q}^{-}G-R^6$
859	с⊢(Сн₂-	2	2	. 1	-	н	- CH ₂ - N C- N
860	C⊢(CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-CN
861	CH-2-	2	2	1	-	, н	- CH ₂ -N-C N-
862	с⊢—СН₂-	2	2	1	-	н	-CH ₂ -N-C-N-CH ₃
863	. C⊢(CH₂-	2	2	1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
864	CH-€-CH ₂ -	2	2	· 1	-	н	- CH ₂ -N-C-N-C-N-OCH ₃
865	CI—CH₂-	2	2	1	-	អ	- CH ₂ -N-S-CH ₃
866	с⊢—СН₂-	2	2	1	-	н	- CH ₂ -N-S-CF ₃
867	C├ - CH₂-	2	2	1	-	н	- CH ₂ - N-S-CF ₃
868	C├ - CH₂-	2	2	1	-	н	-CH ₂ -N-S-CH ₂ CH ₃
869	С⊢СН₂-	2	2	1	-	н	-CH ₂ -N-S-CH(CH ₃) ₂

:.

Ta				_	_
12	h	10	- 1	8	റ
···a	v			. О	u

lable	1.80				
Compd. No.	R (CH ₂),-	k m n	chirality	R³ –(CI	R ⁴ H ₂) p (CH ₂) q G−R ⁶
870	CH2-	2 2 1	-	н _	- CH ₂ - N- S-
871	CH2-	2 2 1	-	H -ch ₂	2- N- S- (CH ₂) ₃ CH ₃
872	C├ - CH₂-	2 2 1	-	н -	- CH ₂ - N- S-
873	· CH-CH ₂ -	2 2 1	- 1	- С ғ	H ₂ -N-C-O-CH ₂ -
874	СН-СН2-	2 2 1	- F	ł . <u>.</u>	CH O C N CI
875	(CH ₂ -	2 2 1	- F	(CH ₂ -N-C-CF ₃
876	Br—CH ₂ -	2 2 1	- н	c	CH ₂ -N-C-CF ₃
877	NC-{\rightarrow}-CH2-	2 2 1	- н	-с	O CF ₃
878 c	02 N-(CH2-	2 2 1	- н	-c	H ₂ - № C-
879	O CH ₂ -	2 2 1	- н	CI	H ₂ -N-C-CF ₃
880	0^0 CH₂-	2 2 1	- н	Cr	O CF ₃

Table 1.81

Table	1.0 1						
Compd.	R ¹ (CH ₂);	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
881	Br CH ₂ -	2	2	1	-	. Н	- CH ₂ -N-C-CF ₃
882	OH2-	2	2	1	- .	н	- CH ₂ - N C CF ₃
883	CI CH ₂ -	. 2	2	1	-	н	- CH ₂ -N-C-CF ₃
884	н°с.с-Н—С сн⁵-	2	2	1		н	- CH ₂ -N-C-CF ₃
885	H ₃ C-\$-(CH ₂ -	. 2	2	1	-	н	- CH ₂ -N-C
886	F—()— CH₂-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
887	F ₃ C-CH ₂ -	2	2	1	-	. н	- CH ₂ -N-C-CF ₃
888	HO	2	2	1	-	н	- CH ₂ - N- C- CF ₃ .
	CH₂-						- CH ₂ - N- C-
890	CI CH ₂ -	2	2	1	-	н	$-CH_{2}-N C - CF_{3}$ $-CH_{2}-N C - CF_{3}$
891	CH₂-	2	2	1		н	- CH ₂ - N- CF ₃

104

Table 1.82

Compo	$H^{1} \xrightarrow{R^{2}} (CH_{2})_{j}$	k	m	'n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
892	H ₃ CO — CH ₂ -	2	2	1	•	H.	- CH ₂ -N-C
893	O ₂ N CH ₂ -	2	2	1	-	H _.	- CH ₂ -N-C-CF ₃
894	HO CH_3 H_3C CH_2 CH_3 .	2	2	1	-	н	- CH ₂ -N-C-✓CF ₃
895	(CH ₂) ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
896	CN CH ₂ -	2 [.]	. 2	1	-	н	-CH ₂ -N-C
897	HO ₂ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
898	HO ₂ C-\(\bigc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
899	OCH ₃	2	2	1	- .	н	- CH ₂ - N- C-CF ₃
90ò	H₃∞₂C-€ CH₂-	2	2	1	-	Н	- CH ₂ -N-C-CF ₃
901	CH-	2	2	1	-	н	- CH ₂ -N-C-CF ₃ .
.902	O ₂ N CH ₂ -	2	2	1		н	- CH ₂ -N-C-CF ₃

105

Table 1.83

lable	1.03						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
903	н₃со — сн₂- осн₃	2	2	1	-	н	- CH ₂ - N- CF ₃
904	HO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
905	O ₂ N CH ₂ -	2	2	1	-	н .	CH ₂ -N-C-CF ₃
906	(CH ₂) ₃ -	2	2	1		н	- CH ₂ - № C-
907	CH(CH ₂) ₂ −	2	2	. 1	-	н	- CH ₂ -N-C-CF ₃
908	N+ C O CH ₂ -	2	2	1	<u>.</u> .	н	- CH ₂ -N-C-
909	N C-\-CH2-	2	2	1	-	н	- CH ₂ -N-C-CF ₃
910	CH ² − CH ² −	2	2	1	-	н .	-CH ₂ -N-C-CF ₃
911	CI CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
912	Br CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
913	H ₃ CO—CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃

Table 1.8	4
-----------	---

lable	1.84					,	
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(ĊH ₂) _p + (CH ₂) _q G−R ⁶
914	CH2O-CH2	- 2	2	1	-	Н	- CH ₂ - N- C - CF ₃
915	OH CHCH ₂ -	2	2	1	•	Н	- CH ₂ - N- C-
916	N CH ₂ -	2	2	1	•	н	- CH ₂ -N-C-CF ₃
917	N=>- CH ₂ -	2	2	1 ·	-	Н	- CH ₂ -N-C-CF ₃
918 н	1,5CO ₂ C: CH ₂	2	2	1	. -	н	- CH ₂ -N-C-CF ₃
919	H ₃ C-\(\bigcirc\)- CH ₂ -	2	2	1	-	н	- CH ₂ -N-C-CF ₃
920	OCF ₃	2	2	1	•	Н.	- CH ₂ - N-C-CF ₃
921	CH ₂ -	2 2	2	1	- ·	н	- CH ₂ -N-C-
922	CH₂-	2 2	?	1		н	- CH ₂ -N-C-CF ₃
923	CH-CH-	2 2	-	I	-	Н	- CH ₂ -N-C-CF ₃
924 ^H	2N-C,0 CH ² -	2 2	1		-	н	-CH2-N-C-CF3

107

Tal		-	8	*
1 2	-1-	_	u	•
101	DIE.		U	•

lable	1.85						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
925	H ₂ N-C-CH ₂ -	2	2	1 .	-	н	-CH ₂ -N-C-CF ₃
926	CH2-CH2-CH2-	2	. 2	1	-	н	-CH ₂ -N-C-CF ₃
927	F ₃ CQ CH ₂ -	2	2	1	;	н	-CH ₂ -N-C-CF ₃
928	F ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
929	H ₃ CS-CH ₂ -	2	2	1		н	-CH ₂ -N-C-CF ₃
930	CH ₃ —CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
931	NC —CH₂-	2	2	1	 -	н	-CH ₂ -N-C-CF ₃
932	NO ₂ CH ₂ −	2	2	1	-	н	-CH ₂ -N-C-CF ₃
933	Сн− сн-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
934	O ₂ N — CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
935	O ₂ N —CH ₂ -	2	2	1	-	H	-CH _{2-N} -C-CF ₃

Table	1	8.	6
-------	---	----	---

lable	1.86						
Compd. No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	-(CH ₂) p CH₂)q G-R⁶
936	NO ₂	2	2	1	•	н	-CH ₂ -N-C-CF ₃
937 · .	(H3C)2N-(CH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
938	C ├──	2	. 2	1	•	н	-CH ₂ -N-C-CF ₃
939	O ₂ N C — CH ₂ -	2	2	1	-	H .	-CH ₂ -N-C
940	CH²-	2	2	1		н	-CH ₂ -N-C-CF ₃
941	F₃C C⊢———CH₂-	2	2	1	-	H .	-CH ₂ -N-C-CF ₃
942	с⊢{	2	2	1	-	н	$ \begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & $
943	CH-CH ₂ -	1	4	0	-	н	-CH ₂ -N-C-CF ₃
	CH-2-						-CH ₂ -N-C-CH ₃
945	CH2-	1	4	0	-	н	-CH ₂ -N-C-
946 (CI(CH₂-	1	4	0	-	н	-CH ₂ -N-C

109

Ta	b	le	1.	8	7

lable	1.07						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
947 [.]	C⊢€CH2-	1	4	0	-	н	-(CH ₂) ₂ -N-C
948	C├ - CH₂-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CI
949	CH-CH2-	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₂ -
950	CHCH ₂ -	0	4	1	-	, H	- CH ₂ - N- C-
951 . .	C├ - CH ₂ -	1	2	0	R	н	-CH2-N-C-C-CH3
952 ·	CHCH ₂ -	1	2	0	R	н	-CH2-N-C-(CH3)2
953	C├ - CH₂-	1	2	0	R	н	-(CH ₂) ₂ -N-C
954	C├ - CH₂-	1	2	0	R [.]	н	-CH ₂ -N-C- H H ₃ C-NH
955	CH-CH ₂ -	1	2	0	R	H	-(CH ₂) ₂ -N-C-\\ H ₃ C-NH
956	CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- H
	CH-CH2-						-CH ₂ -N-C-

-			_	_
Ta	n	7	8.	0
	_	 	. О	О

958 $C \mapsto CH_2 - 1 2 0 R H $	rable	1.88				
959 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C 960 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C 961 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C 962 CH CH ₂ - 1 2 0 R H -(CH ₂) ₂ -N-C 963 CH CH ₂ - 1 2 0 R H -(CH ₂) ₂ -N-C 964 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C 965 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C 965 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C 966 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C	Compd. No.	R ¹ (CH ₂)	k m	n chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
960 $CH - CH_2 - 1 2 0 R H - (CH_2)_{2} - N - C - CH_2 - 1 2 0 R H - (CH_2)_{2} - N - C - CH_2 $	958	C├───────────────	1 2 (0 R	н	-(CH ₂) ₂ -N-C-OH
961 CH_{2}^{-} 1 2 0 R H $-CH_{2}^{-}$ 1 2 0 R H $-CH_{2}^{-}$ 1 2 0 R H $-CH_{2}^{-}$ 1 2 0 R H $-(CH_{2})_{z}$ N C $-(CH_$	959	CH2-	1 2 () R	н	-сн ^{5-и-с} -Сн ³
962 CH CH ₂ - 1 2 0 R H -(CH ₂) _{Z-N-C} - 963 CH CH ₂ - 1 2 0 R H -(CH ₂) _{Z-N-C} - 964 CH CH ₂ - 1 2 0 R H -CH ₂ -N-C 965 CH CH ₂ - 1 2 0 R H -(CH ₂) _{Z-N-C} - 966 CH CH ₂ - 1 2 0 R H -(CH ₂) _{Z-N-C} - 966 CH CH ₂ - 1 2 0 R H -(CH ₂) _{Z-N-C} - 967 CH ₂ - 1 2 0 R H -CH ₂ - N-C	960	CH2-	1 2 0	R	н	-(CH ₂) ₂ -N-C-CH ₃
963 $CH \longrightarrow CH_2^-$ 1 2 0 R H $-(CH_2)_2 - N - C \longrightarrow CH_2^-$ 1 2 0 R H $-(CH_2)_2 - N - C \longrightarrow CH_2^-$ 1 2 0 R H $-(CH_2)_2 - N - C \longrightarrow CH_2^-$ 1 2 0 R H $-(CH_2)_2 - N - C \longrightarrow CH_2^-$ 966 $CH \longrightarrow CH_2^-$ 1 2 0 R H $-(CH_2)_2 - N - C \longrightarrow CH_2^-$	961	CH-CH₂-	1 2 0	R	Н.	-сн ₂ -м-с- Н с- Н сн ₃
964 CH_{2} 1 2 0 R H $-CH_{2}$ 1 $-CH_{$	962	ÇI—(¯¯)-CH₂-	1 2 0	R	н.	-(CH ₂) ₂ -N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
965 CH ₂ - 1 2 0 R H -(CH ₂) _Z -N-C- 966 CH ₂ - 1 2 0 R H -CH _Z -N-C-	963	CHCH ₂ -	1 2 0	R	н	-(CH ₂) ₂ -N-С-ОН
966 CH2- 1 2 0 R H -CH2-N-C-	964	C├ - CH ₂ -	1 2 0	R	Н	-CH ₂ -N-C- H C- CO₂CH ₃
	965	C⊢(-)-CH₂-	1 2 0	Ŗ	н	-(CH ₂) ₂ -N-С
967 CH-CH-1 2 0 R	966	CH-€T-CH2-	1 2 0	R ·	н	-СH ₂ -N-С-С-СН ₃
						•
968 CH₂- 1 2 0 R H -CH₂-N-C-	68 d	CH₂-	1 2 0	R .	н	-CH-N-C-NH

111

Tab	le	1.	8	9
-----	----	----	---	---

lable	1.89						
Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
969	ССН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
970	CH-CH ₂ -	1	2	0	Ŗ	н	-CH ₂ -N-C-\(\sigma\) N(CH ₃) ₂
971	CH-CH2-	1	2	0	R	н	-(CH ₂) ₂ -N-C
972	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-NH ₂
973 .	CHCH ₂ -	1	2	0	R ·	H.	-(CH ₂) _Z -N-C-NH ₂
974	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CNH ₂
975	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-\(\bigc\)-NH ₂
	CH-CH ₂ -					н	-CH2-N-C-
977	СН-СН2-	. 1	2	0	R	н	-(CH ₂) ₂ -N-C-NH
978	CH2-	1	2	0	R	н	-CH ² -N-C-NH
979	CH-CH ₂ -	1	2	0	R	н	-(CH ₂) ₂ -N-C-NH

112

T	้ล	h	le	1	.9	n
	u	~				v

	1.50						
Compo	$\frac{R^{1}}{R^{2}} (CH_{2})_{j}$		k r	n n	chirality	R³	-(CH ₂) _P (CH ₂) _q G-R ⁶
980	C — CH ₂ -	· 1	1 2	2 0	R	н	-CH2-N-C-CH3
	CI—CH₂-					н	-(CH ₂) ₂ -N-C-CH ₃
982	СН ₂ -	1	2	0	R		-CH ₂ -N-C
983	СН-СН2-	1	2	0	R	н	-(CH ₂) ₂ -N-C- H (H ₃ C) ₂ N
984	.CHCH ₂ -	1	2	0	R	н .	-СH ₂ -N-ССН ₂ ОН
985	CH-CH ₂ -	1	2	0 .	R	н	-(CH ₂) ₂ -N-С
986	CH CH	1	2	0	R	Н .	-CH ₂ -N-C-C-CF ₃
987	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
988	CH ₂ -	1	4	0	-	Н.	-CH ₂ -N-C-CF ₃
989	CH ₂ -	1	4	0	· <u>-</u>		-CH ₂ -N-C-O-CH ₂
990	CH ₂ -	1	4	0	-	н .	-сн ₂ -N-с-

113

Table 1.91

Table 1	1.91						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
991	CH-CH2-	1	4	0	-	н	-(CH ₂) ₂ -C-
992	CH-CH2-	1	4	0	-	н	OCH ₃ -(CH ₂) ₂ -C
993	CH-2−	1	4	0	-	н	-(CH ₂) ₂ -C
994	C⊢√CH₂-	1	4	0	-	H	-(CH ₂) ₃ -C-\bigsim \bigsim .
995	CH-2−	1	4	. 0	<u>-</u> .	н	-(CH ₂) ₃ -C
996 [°] .	CH-€	1	4	0	-	н	-(CH ₂) ₃ -C-N-CH ₃
997	CH-CH ₂ -	2	2	. 1	-	н	-CH-N-C- CH₂CH(CH₃)₂
998	CH2-	2	2	1	-	н	-CHN-C
999	CH-CH ₂ -	2	2	1	-	Н	O CH ₃ -CH-N-C- CH ₃ -CH ₂ CH ₁ (CH ₃) ₂
1000	CH ₂ -	2	2	1	-	н .	- ÇH-N-С- H H CH2CҢCH3b2
1001	С⊢СН2-	2	2	1	-	н	OCH ₂ CH ₃ -CH-N-C

114

Table 1.92

	1.5 2			•			
Compo No.	$d. \begin{array}{c} R^{1} \\ R^{2} \end{array} - (CH_{2})_{j} - CH_{2}$	k	m	n	chirality	[*] R³	$-(CH_2)_{\rho} + (CH_2)_{\overline{q}} G - R^6$
1002	С⊢СТ-СН₂-	2	2	1	-	н	OCF ₃ -CHN-C
1003	С├-{СН₂-	2	2	1	-	н	-CH-N-C
1004	С├─{	2	2	1	-	н	O OCH3 -CHN-C- H OH2CH(CH3)2 OCH3
1005	C⊢√ CH₂-	2	2	1		н	O
1006	C├ - _CH₂-	2	2	1	-	Н -	OCH₂CH3 -CH-N-C- CH2CH3 -CH2CH(CH3)2
1007	CHCH ₂ -	2	2	1	-	H	О ОСН ₂ СН ₃ -СН N-С- С ОСН ₂ СН ₃ -СН 2СН(СН ₃) ₂ ОСН ₂ СН ₃
1008	CHCH ₂ -	2	2	1	-	н	-CH-VF-C(CH ₂) ₂ -C-VH ₂
1009	CH-2-	2	2 ·	1	-	н,	-CHN-C
1010	C⊢CH₂-	2	2	1	-	Н	CH2)2-C-NH2
1011	C├ - CH ₂ -	2	2	1	-	н	(CH2)2-G-NH2.
1012	С⊢—СН₂-	2	2	1	-	н .	(сну)-С-ин ² осн ³

1 1 5

Table 1.93

Compd.	R ¹ (CH ₂)	k	m	n	chirality	Ή³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1013	CHCH2-	. 2	·2	1	-	н	-CHNC
1014	CH-CH ₂ -	2	2	1	-	н	-CH-0-C
1015	CH_CH ₂ -	2	Ż	1	-	н	CH4)2-C-NH2 OCH2CH3
1016	CH ₂ -	2	2	0	-	н	-CH ₂ -N-C-
1017	CH2	2	2	0 .	-	H	-сн ₂ -к-с-
1018	C⊢√CH₂-	2	2	1	-	Н	-CH ₂ -N-C
1019	CH2-	2	2	1	-	н	-CH ₂ -N-C
1020	CH2−	2	2	1	-	Н .	-CH ₂ -N-C
1021	C	. 2	2	1	-	н	$-CH_2-N-C-$ F_3CCH_2O CCH_2CF_3
1022	C ├── CH₂-	2	2	1	-	H	CH3 OCH3
1023	C⊢—CH₂-	2 .	2	1	-	н	CH3 CH3 CH3 CH3 CH3 CH3

116

T	а	b	le	1.	9	4

	e 1.94					
Comp No.	od. R^2 (CH ₂)	k m	n	chirality	R³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
1024	С-СН2-	2 2	1	•	Н	(S) OCH ₃ -CH-N-C
1025	с⊢(сн₂-	. 2 2	1	-	. н	(S) OCH ₂ CH ₃ -CH _N -C-OCH ₂ CH ₃ -CH ₃
1026	CHCH₂-	2 2	1	-	н	(S) P OCH₂CH₃ -CH-N-C OCH₂CH₃ CH₃ OCH₂CH₃
1027	CH₂-	2 2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C-OCH ₃
1028	. CH-CH ₂ -	2 2 ·.·	1	- ·	н	(S) OCH ₂ CF ₃ -CH-N-C-CH ₂ CF ₃ OCH ₂ CF ₃
1029	CH-2-	2 2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C H CH ₃
1030	C├ - CH₂-	2 2	1		н	(S) OCF ₃ -CH-N-C-CH-N-C-CH ₃
1031	CH-CH ₂ -	2 2	1	-	Н	(S) O OCH ₃ -CH-N-C-OCH ₃ CH ₃
1032	CH-2-	2 2	1	-	н .	(R) OCH ₃ -CH-N-C
1033	CHCH ₂ -	2 2	1	-	Н	(F) O CH ₂ CH ₃ -CH ₂ CH ₃ CH ₃
1034	С⊢√СН₂-	2 2	ı	- .	Н	(F) OCH ₃ -CH-N-C

117

Table 1.95

lable 1	•						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}^{\overline{H}^4}_{\overline{P}^5}(CH_2)_{\overline{q}}^{\overline{-}}G^{-}R^6$
1035	с⊢(сн₂-	2	2	1	-	н	$ \begin{array}{c c} -(CH_2)_{\overline{p}} & & & \\ \hline -(CH_2)_{\overline{p}} & & & \\ \hline R^5 & & & \\ \hline (H_2)_{\overline{q}} & & & \\ \hline (GH_3)_{\overline{p}} & & & \\ -CH_2CH_3 & & & \\ \hline -CH_3 & & & \\ \hline CH_3 & & & \\ CH_3 & & & \\ \hline CH_3 & & & \\ CH_3 & & & \\ \hline CH_3 $
1036	_ CH-{CH₂-	2	2	1	-	н	$(R) \longrightarrow OCH_2CH_3$ $-CH_1N_1C \longrightarrow OCH_2CH_3$ $CH_3 \longrightarrow OCH_2CH_3$
1037	C├ - CH ₂ -	2	2	1		н	(FI) → OCH₂CH₃ → OCH₃ ← H CH₃
1038	СН ₂ -	2	2	1	-	Ħ	(A) OCH ₂ CF ₃ -CH-N-C-(-) -H-H-C-(-) CH ₃ OCH ₂ CF ₃
1039	CH-CH2-	2	2	1.	<u>-</u>	н	(FI) OCH ₂ CH ₃ -CH-N-C- CH ₃ CH ₃
1040	CH-2-	2	2	· 1	-	н	(R) OCF3 -CHN-C-S CH3
1041	C├ - CH₂-	2	2	1	-	н	(F) OCH ₃ -CH-N-C- H CH ₃
1042	CH-2-	2	2	1	-	н	-CH ₂ -N-C-S
	CH_CH2-					н	-CH ₂ -N-C
1044	ССH ₂ -	2	2	1		н	$-CH_2-N-C$ H_2N OCH_3
1045	CH-CH2-	2	2	1	-	н	-CH ₂ -N-C

118 .

Table 1.96

тарте	1.50						
Compd. No.	R ¹ /(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1046	C├ - CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1047	CH-2-	2	2	1	-	Н	$-CH_2-N-C \xrightarrow{\begin{array}{c} CH_3 \\ H_2N \end{array}} CH_3$
. 1048	CH2-	2	2	1	-	H _.	$-CH_2-N-C \longrightarrow OCH_3$ $+I_2N OCH_3$
1049	С├-{}СН₂-	2	2	1	-	н	-CH ₂ -N-C
1050	C	2	2	1.	-	Н	(5) OCH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₃
1051	CH	2	2	1	-	Н	(S) Q CH ₂ CH ₃ -CH-N-C-C H CH ₂ CH(CH ₃) ₂
1052	CH-CH ₂ -	2	2	1		Н	(S) OCH ₃ -CH-N-C
1053	C├	2	2 .	1	-	н	(S) Q OCH ₂ CH ₃ -CH+N-C- OCH ₂ CH ₃ CH ₂ CH(CH ₃) ₂
1054	С⊢—СН₂-	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C- OCH ₂ CH ₃ CH ₂ CH(CH ₃) ₂ OCH ₂ CH ₃
1055	С├-{	2	2	1	-	н	(S) OCH ₂ CH ₃ -CH-N-C
1056	С⊢√_СН₂-	2	2	1	-	н	(S) P OCH ₂ CF ₃ -CH-N-C- CH-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) ₂ OCH ₂ CF ₃

÷

119

Table 1	9.7			1	1 9		
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
1057	CHCH ₂ -	2	. 2	1	-	·Η	-(CH ₂) _p + (CH ₂) _q G - R° R ⁵ OCH ₂ CH ₃ -CH+N-C- H CH ₂ CH(CH ₃) ₂
1058	с⊢—СН ₂ -	2	2	1	-	н	(S) P OCH ₃ -CH-N-C C CH ₂ CH ₂ CH(CH ₃) ₂
1059	С⊢-{	2	2	1	-	н	(S) OCF ₃ -CH-N-C
1060	C├ - ⟨CH ₂ -	2	2	1	<u>.</u> .	Н	(<i>H</i>) Q OCH ₂ CH ₃ -CH-N-C- OCH ₃ H CH ₂ CH(CH ₃) ₂
1061	СН-СН2-	2	2	1		н .	(<i>F</i>) OCH ₂ CF ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂ OCH ₂ CF ₃
1062	CHCH2-	2	2	1	-	н	(S) P - CH-N-C- CH ₂ CH(CH ₃) ₂
1063	CI—(CH₂-	2	2	1	-	н	(F) OCH ₃ -CH-N-C
1064	CI—CH₂-	2	2	1	-	Н	(F) OCF ₃ -CH-N-C
1065	CH-2-	2	2	1	-	н	(F) OCH ₃ -CH-N-C
1066	C├ - CH₂-	2	2	1	-	н	(R) CH ₂ CH ₃ -CH-N-C- H CH ₂ CH(CH ₃) ₂
1067	C├ ─ CH₂-	2	2	1	-	н	(A) 0 OCH ³ −CH-NC- OCH ³ CH ⁵ CH(CH ³) ⁵ OCH ³

120

Tal	ole	1.	98
-----	-----	----	----

Table	1.90						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶ · · · · · · · · · · · · · · · · · · ·
1068	С⊢—СН₂-	2	2	1	- ,	Н	CH ₂ CH(CH ₃) ₂
1069	C ⊢ CH₂-	2	2	1	-	н .	(H) Q OCH₂CH₃ -CH+N-C OCH₂CH₃ CH₂CH(CH₃)₂ OCH₂CH₃
1070	CH-CH ₂ -	2	2	1	· -	н	CH2OCH2
1071	CH-2-	2	2	1	-	н	-CH-NC-N
1072	CH2−	2	2	1	· -,	н	OH ₂ O CH ₂ OC(CH ₃) ₃
1073	CH-CH ₂ -	2	2	1	-	H	-CH-N-C
1074	CHCH_2-	2	2	1	-	Н	-CH-N-C
1075	C├─ੑੑੑि}-CH₂-	2	2	1	-	Н	OH-N-C-OCF3
1076	. CH-CH3-	2	2	1	-	Н	-CH-N-C
- 1077	CH-CH ₂ -	2	2	1	-	н	-CH-N-CCF3 CH2OCH2-
1078	C├ - CH₂-	2	2	1	-	н	-CH-N-C-C

Table	1.99
-------	------

Table _. 1	•						
Compd.	R ¹ (CH ₂)	k	m	n	chirality	· R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1079	C ├── CH₂-	2	2	1	<u>-</u>	• н	CH ₂ OCH ₂ CH ₃
1080	CH-€CH ₂ -	2	2	1	-	н	OCH ₂ CH ₃
1081	CHCH ₂ -	2	2	1	-	н	-CH-N-C-CH ₃ -CH-N-C-CH ₃ -OCH ₃ OCH ₃ OCH ₃
1082	C├ - CH ₂ -	2	2	1	-	Н	(S) P -CH-N-C-
1083	C├ - CH ₂ -	2	2	1	-	. н	(A) P O
1084	CH-CH ₂ -	. 1	2	0	R	H	$-CH_2-N$ H_2N
1085	CH-CH ₂ -	1	2.	0	R	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
1086	CH-2-	1	2	0	R	H .	$-CH_2-NC-$ H_2N
					•		-CH ₂ -N-C-N-H
1088	CH-2-	1	2	0	R	н	-CH ₂ -N-C-
1089	СI—СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-

1 2 2

7	2	h	le	1	1	Λ	ሰ
	a	u	15			u	u

raute	1.100						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^6$
1090	CH-CH ₂ -	1	2	0	R	н	-CH2-N-C
1091	С⊢С СН₂-	1	2	0	R ·	.н	-CH ₂ CH ₂ -N-C-
1092	С⊢√СН₂-	1	2 .	0	R	н ·	-CH ₂ CH ₂ -N-C
1093	CHCH2-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-
1094 .	CHCH2-	1	2	0	R	н.	-CH ₂ CH ₂ -N-C-N-H
1095	CH-CH ₂ -	1	2	0	R	H	-CH ₂ CH ₂ -N-C-
1096	C⊢CH₂-	1	2	0	R	н	-CH ₂ CH ₂ -N-C-N-H-H-H-F
1097	C⊢√CH₂-	. 1	2	0	R	н	-CH2CH2-N-C-
1098	С⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-Br H -CH ₃
1099	С⊢—СН₂-	1	2	0	R	н	-CH₂-N-C-Br
1100	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

1 2 3

				•	4
Tah	9	7	1	()	1

lable 1	.101						
Compd.	R ¹ -(CH ₂) _j -	k	m	n	chirality	· R³	$-(CH_2)_{\overline{p}} + \frac{\Pi^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1101	C├ - CH₂-	1	2	0	R	н	-CH2-N-C
1102	CH2-	1	2	0	R	н	-CH ₂ -N-CNO ₂
1103	H ₃ CCH ₂ -	1	2	0	R	н	-CH ⁵ -M-C-∕
1104	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1105	H₃Ç-{,CH₂-	1	2	,0	R	H .	-CH ₂ -N-C
1106	H₃C-⟨CH₂-	.1	2	0	R	н	-CH ₂ -N-C
	H₃C-⟨CH₂-					н	-CH ₂ -N-CNO ₂
1108	CH ₃ CH ₂ - CH ₃	1 ·	2	0	R	н	-CH ₂ -N-C
1109	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
1110	CH₃ CH₃	1	2	0.	R	н	-CH ₂ -N-C
1111	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C

124

Tab	۰ ما	1 1	02
· au	ıe	1.1	uz.

Compd No.	R ¹ (CH ₂),-	k	m	n	chirality	R³	$-(CH_2)_{p} + G_2 + G_3 + G_4$
1112	CH ₃	1	2	0	R	н	-CH ₂ -N-CNO ₂
1113	C├─⟨CH2-	2	2	1	-	н	-CH ₂ -N-C-√S-CH ₃
1114	СҢСН₂-	2	2	1	•	н	-CH ₂ -N-C
1115	С-СН2-	2	2	1	-	. н ·	-CH ₂ -N-C
1116	CH-CH2-	2	2.	1	٠.	Н	-CH ₂ -N-C
1117	C├ - CH ₂ -	2	2	1	-	H ·	-CH ₂ -N-C-NO ₂
1118	— H c — C→ Cη ² -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	H₃CS-{					н	-СH ₂ -N-С-СF ₃ .
1120	H ₃ CQ CH ₂ - OCH ₃	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
1121	H ₃ C O ₂ N-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1122 (+	H3 G GH2CH-CH2- CH(CH3)2	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 5

T.	2	h	1	2	-1	١.'	1	n	3
	а.	u	11	=				v	v

lable	1.103						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	'R³	$-(CH_2)_{\rho} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
1123	CH₂−	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1124	O ₂ N_O-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1125	C├ - CH ₂ -	2	2	1	-	н	-CH-N-C
1126	C├ - CH ₂ -	2	2	1	· <u>-</u>	н	-CH-N-C
1127	с{	2	2	1	-	н	-CH-N-C-NH CH ₂ OCH ₂
1128	с⊢СН₂-	2	2	1	-	н	-CH-N-C-CF3
1129	с⊢СН₂−	2	2	1	-	н .	-CH-N-C
1130	с⊢(2	2	1	-	н	-CH-NC-
1131	C├ ~ CH₂-	. 2	2	1	· <u>-</u>	н	-CH-N-C
1132	CH	2	2	1	-	. Н	-CH-N-C
1133	H ₃ CQ H ₃ CO—CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃
•							·

126

Ta	ы	0	- 1	.1	Ω	1
ıa	v.	C			v	4

Table	1.104						
Compo No.	$H^{2} \longrightarrow (CH_{2})_{j}$	- k	m	n	chirality	R³	—(CH ₂) p G -R [€]
1134	H₃CO CH H₃CO CH	1 ₂ - 1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1135	O-CH ₂ -NO ₂	. 1	2	0	R	н	-СH ₂ -N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
1136	О Н₃СО СН ₂ -	· 1	2	0	R	н	-CH ₂ -N-C-CF ₃
1137	CH₂− Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1138	CH ₂ -	,1	2	0	R	Н	-CH ₂ -N-C-√CF ₃
	(CH ₂) ₂				R	н	-CH ₂ -N-C-CF ₃
1140	O ₂ N O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
	CH₂-					H ·	-CH ₂ -N-C-CF ₃
1142	CH ₂ -	. 1	2	0	R	H .	-CH ₂ -N-C-CF ₃
1143	O-cHZO-CHZ	_ 1	2	0	R .	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1144	H ₃ CO - CH ₂ -	1	2	0	R	н	-CH₂-N-C-⟨\$\circ\$CF3

127

Table 1.105

lable	1.105						
Compd.	R ¹ R ² (CH ₂) _j	k	m	n	chirality ·	R³	·(CH ₂) p (CH₂)q G-R⁶
1145	H ₃ CQ H ₃ CO————————————————————————————————————	1	2	0	R	Н .	-CH ₂ -N-C-
1146	OH2O-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1147	4c-c-H → cH2	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1148	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-⟨CF ₃ .
1149	CH ₃ CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ CH ₃
1150	CH ₃ CH ₂ -	1	2	o	R	н	-CH ₂ -N-C-CH ₂ CH ₃
1151	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CH ₂ -CF ₃
1152	CH ₃					Н	н к
1153	CH ₃ CH ₃	1	2	0	R	H	-CH ₂ -N-C-N-C-N-H-
1154	CH₃ CH₂−	1	2	0	R	. H	-CH ₂ -N-C-N-CH ₃
1155	CH₃ N CH₂- CH₃	1	2		R	н	$-CH_{2}-H$ $-CH_{2}-H$ $-CH_{2}-H$ $-CH_{2}-H$ $-CH_{3}-H$ $-CH_{2}-H$ $-CH_{3}-H$ $-CH_{3}-H$ $-CH_{3}-H$ $-CH_{3}-H$ $-CH_{3}-H$ $-CH_{3}-H$

128

Table 1.106

Compd. No.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_p$ $+$ $\frac{R^4}{R^5}(CH_2)_q$ $-G-R^6$
1156	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ .
1157	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н .	-CH ₂ -N-C-SCH ₃
	CH ₃ CH ₂ CH ₃				•		-CH ₂ -N-CH H H ₂ N CI
1159	CH₃ CH₂− CH₃	1	2 .	0	R	H	$-CH_2-N$ C OCH_3 OCH_3 OCH_3
1160	CH₃ CH₃	1	2	. 0	R	н	$-CH_2-N-C$ H_2N B_1
	OH H₃CO-⟨CH₂-					н	-CH ₂ -N-C-CF ₃
1162	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1163	H₃CO-CH₂-	1	2	0	R	н	-CH ₂ -N-C
	H ₃ CO—CH ₂ -					Н	-CH ₂ -N-C
1165	O-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1166	Br CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

1 2 9

Table	1.1	107
-------	-----	-----

lable	1.107						
Compd.	R ¹ / _P -(CH ₂) _j -	k	m	n	chirality	[·] R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1167	с⊢{сн₂-	2	2	1		н	-CH ₂ -N-C-
1168	CL N CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1169	H ₃ C- C-H ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF₃
1170	CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C- H CF ₃
1171	СНСН2-	1	2	0	.R	Н	−CH ₂ −N-C−−−Br
1172	ÇH-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-H
1173	С⊢—СН₂-	1	2	0.	R	н	-CH ₂ -N-C-N-N-H-OCH ₃
1174	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1175	H ₃ C-CH ₂ -	1	2	0	R .	Н	-CH ₂ -N-C
							-CH ₂ -N-C-N-H
1177	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-

1 3 0

Table 1.108

lable	1.108						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	吊 ⁴ −(CH ₂) _p (CH ₂) _q G−R ⁶ R ⁵
1178	H ₃ CCH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C
1179	н₃С-{_}-Сн₂-	1	2	0	R	Н	-CH ₂ -N-C
1180	H ₃ C-⟨CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-H
	CH³-					Н	-CH ₂ -N-C
	CH ₃						-CH ₂ -N-C-N-H
1183	CH₃ N CH₂- CH₃	1	2	O	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1184	CH₃ N→CH₂- CH₃	1	2	0	R		-CH ₂ -N-C-
	CH ₃ CH ₂ -						-CH ₂ -N-C-NO ₂
							-CH ₂ -N-C-N-H
1187	С⊢√СН₂-	2	2	1	-	н	-CH ₂ -N-C- CH ₃ -CH ₂ -N-C- Br
1188	С⊢{	2	2	1	-	Н	-CH ₂ -N-C

Ta	h	le	1	1	0	9

rable	1.109	_					
Compd. No.	R^1 (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p}^{R^4}$ $+(CH_2)_{q}^{-}G-R^6$
1189	C├ - CH₂- '	2	2	. 1	-	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1190	CH-CH2-	2	2	1	-	Н	-CH ₂ -N-C
1191	CH ₃ CH ₂ CH ₃	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
	CH ₃ CH ₂ − CH ₃				•	·H	-CH ₂ -N-C
	CH ₃ CH ₂ − CH ₃					. н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
	CH ₃ CH ₂ CH ₃					H	-CH ₂ -N-C
1195	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-сн ₂ -м-с-
	CH ₃ CH₂- CH₃						-CH2-N-C-\(\sigma\)NO2
1197	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C- H
1198	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1199	CH ₃ N CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-CH ₃
							•

1 3 2

Table 1.110

Comp No.	d. R2 (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1200	CH ₃ N→CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CI
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C- F
1202	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1203	H ₃ C-\CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
.1204	H ₃ C-CH ₂ -	1	2	0	R	н,	-CH ₂ -N-C
1205	H₃C()CH₂-	1	2	0 ·	R	н	-CH₂-N-C-
1206	H ₃ C-CH ₂ -	1	2 .	0	R	н	-CH ₂ -N-C-NO ₂
1207	H ₃ CCH ₂ -	1	2	0	R	н .	−CH ₂ −N-C− F
1208	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1209	H₃C-⟨	1 .	2	0	R	н	-CH ₂ -N-C-CI
1210	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH₂-N-C

1 3 3

Table 1.111

, abic							
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1211	H ₃ C-CH ₂ -	1	ż	0	R	Н	-CH ₂ -N-C-F
1212	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1213	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ F_3C
1214	CH-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-CF ₃
1215	CH-CH ₂ -	2	2	1	. · . -	н	-CH ₂ -N-C-CI
1216	CI-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1217	C-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1218	CHCH2-	1	2	0	R	н	-CH ₂ -N-C-CH ₃
	CH-CH ₂ -						-CH ₂ -N-C-CI
1220	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1221	CHCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
					•		

134

T	a	b	le	1.	1	1	2

Com No	pd. R^2 (CH ₂)	k m	ı n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1222	C ← CH ₂ -	1 2	0	R	н	-CH ₂ -N-C-\ H
1223	C⊢(CH₂-	1 2	0	R	н	P S
1224	C├─()—CH₂-	1 2	0	R	н	-CH ₂ -N-C
1225	H ₃ CCH ₂ -	1 2	0	R	н	-CH ₂ -N-C-CF ₃
1226	H ₃ C-\(\bigc\)-CH ₂ -	1 2	0	R	H	CH ₂ -N-C
1227	H ₃ C-CH ₂ -	1 2	0	R	н	-CH ₂ -N-C-CI
1228	H ₃ C-CH ₂ -	1 2	0	R	Н	-CH ₂ -N-C
1229	H ₃ C-CH ₂ -	1 2	0	R	н	-CH ₂ -N-C
1230	H ₃ C-\					-CH ₂ -N-C-\ N
1231	H ₃ C-CH ₂ -	1 2	0	R	н.	-CH ₂ -N-C
1232	H ₃ C-CH ₂ -	1 2	0	R	н .	-CH ₂ -N-C
						•

1 3 5

Table 1.113

Table 1	1.113						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} G - R^6$
1233	CH₃ N—CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1234	CH ₃ N CH ₂ - CH ₃	1	2	0	R ·	Н	-CH ₂ -N-C-CH ₃
1235	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-CI
1236	CH₃ N—CH₂- CH₃	1	. 2	0	R	н	$-CH_2-NC-$ H_2N
1237	CH ₃ CH ₂		•			Н	-CH ₂ -N-C-F
1238	CH ₃ CH ₂ CH ₃	1	2	0	R	Н	-CH₂-N-C-\NH
1239	CH ₃ N CH ₂ -					Н	-CH ₂ -N-C-S
1240	CH ₃ CH ₂ - CH ₃						-CH₂-N-C- HO
1241	CHCH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1242	CH2-	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1243	CH_CH ₂ -	2	2	1	-	н	-CH₂-N-C-CI

136

Ta	b	le	1.	1	1	4

	,,,,,						
Compd. No.	R ² (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p G-R ⁶
1244	CHCH2-	2	2	1	-	н	-CH ₂ -N-C
1245	С-СН2-	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1246	C├ - CH₂-	2	2	1	-	н	-CH₂-N-C-N-CH₃
1247	C├ \ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-S-S-
1248	CH-CH ₂ -	. 2	2	1	<u>.</u> .	н	-CH ₂ -N-C
1249	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1250	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	CH ₃ CH ₂ - CH ₃					Н	-CH ₂ -N-C
							$-CH_2-N-C CH(CH_3)_2$.
253	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
254	CH₃ CH₂-	1	2	0	R	· н	-CH ₂ -N-C

137

Table 1.115

rable	1.113						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1255	С⊢СН2-	1	2	0	R	Н	-CH ₂ -N-C-
1256	H ₃ C-CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C-
1257	CH ₃ CH ₂ − CH ₃	1	2	0	R	, H	-CH ₂ -N-C
1258	H ₃ C-\(\bigcirc\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1259	CH₃ CH₂−	1	.2	0	R	н	-CH ₂ -N-C-
1260	H ₃ C	1	2	.0	R	H	-CH ₂ -N-C-OCH ₂ CH ₃
1261	C⊢—CH₂-	1	2	0	R .	Н	$-CH_2-N-C- \bigcirc O \\ H_3C$
1262	H ₃ C-\(\sum_2\)-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1263	CH ₃ CH ₂ - CH ₃	1	.2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
.1264	CH-CH ₂ -	1	2	0	R	Н	-CH2-N-C
1265	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C

138

Table 1.116

Table	1.110						
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) p CH₂ CH₂ G-R⁶ CH₂
1266	CH₃ N −CH₂− CH₃	1	2	0	R	н	-CH2-H-CO-H-C
1267	CH2-	. 1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1268	CH2-	1	2	0	R	H .	-CH ₂ -N-C-CI
1269	CI-CH ₂ -	1	. 2	0	R	н	-CH₂-N-C
1270	СН-СН2-	1	2	. 0	R	н	-CH ₂ -N-C
1271	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-F
1272	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
	H ₃ C-CH ₂ -		•			н	-CH ₂ -N-C
1274	H ₃ C-CH ₂ -	1	2	0	R	н	H₃CÓ P P P P HO Br HO
1275	H ₃ C-{CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1276.	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

1 3 9

Table 1.117

lubic	1.117						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ₃	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
1277	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-N-H-OCF ₃
1278	CH ₃ CH ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-
	CH ₃ CH ₂ - CH ₃					н	-CH ₂ -N-C-SBr
1280	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C- H HO .
1281	CH ₃ N CH ₂ − CH ₃	1	. 2	0	R	Н	-CH ₂ -N-CF
1282	С-СН2-	2	2	1	-	Н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1283	С⊢{СН₂-	2	2	1	-	н	-CH ₂ -N-C- H ₃ CO
1284	CH- ()-CH₂-	2	2	1	-	н	-CH ₂ -N-C
1285	C⊢-{\rightarrow}-CH2-	2	2	1	-	· н	-CH ₂ -N-C
1286	H ₃ ¢ H ₃ ¢	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1287	O ₂ N-\(\sigma\) CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

140

Table 1.118

	1.1.10					•	
Compd No.	I. R ¹ (CH ₂) _j	k	m	n	chirality	R³	, -(CH ₂) _p + (CH ₂) _q G-R ⁶
1288	HQ H₃CO————————————————————————————————————	1	2	0		н	-CH ₂ -N-C-CF ₃
1289	CH ₃ CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1290	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	$-CH_2-N\cdot C$ H_2N CH_3
1291	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-CH ₃
1292	H ₃ C-CH ₂ -	1	2	0	R.	н	-CH ₂ -N-C
1293	H ₃ CCH ₂ -	1	2	0	R	н ·	-CH ₂ -N-C-CF ₃
1294	H₃CCH₂-	1	2	0	R	Н	-CH ₂ -N-CF
1295	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -N-с-(СН ₃) ₃
1296	H ₃ C-(-)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1297	H ₃ CCH ₂ -	1	2	0	R	н	$-CH_2-N-C-CH_3$ F_3C
1298	H ₃ CO CH ₂ -	1	2	0	R	н	$-CH_{2}-N \cdot C - CH_{3}$ $F_{3}C$ $-CH_{2}-N \cdot C - CF_{3}$

141

Table 1.119

lable	1,113						<u> </u>
Compd.	R ² (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- G-R^6$
1299	H ₃ CO H ₃ CO — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- CF ₃
	OCH ₃ H ₃ CO-CH ₂ -				R	н	-CH ₂ -N-C-CF ₃
1301	OCH ₃ H ₃ CO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1302	H ₃ CO-CH ₃	1	2	0	.R	н .	-CH ₂ -N-C-CF ₃
1303	H ₃ CO — CH ₂ -	1	2	0	R	, н	-CH ₂ -N-C-CF ₃
1304	H ₀ CQ	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1305	H ₃ CO-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1306	H₃CCH₂Q H₃CO-CH ₂ -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1307	H ₃ CO CH ₂ -	1	2	0	′ R	н	-CH ₂ -N-C-CF ₃
1308	CH₂-	1	2	Ö	R	н	-CH ₂ -N-C-CF ₃
1309	H ₃ CO CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃

142

Ta	h	۱.	4	4	2	Λ
1 4	ם	ıe	- 1.		~	u

							•
Compd. No.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1310	H ₃ CQ HO————————————————————————————————————	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
1311	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1312	CH ₂ -	1	2	0	R ·	н	-CH ₂ -N-C- CF ₃
1313	Br CH ₂ -	1	2	0	R	H	-CH ₂ -N-C- CF ₃
1314.	O ₂ N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1315	H₃C CH₂-	1	2	0	R	H	-CH ₂ -N-C-CF ₃
1316	F ₃ C CH ₂ -	. 1	2 ·	0	R	H .	-CH ₂ -N-C-CF ₃
1317	O ₂ 'N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1318	с⊢ СН₂-	1	2	0	R	н	-CH₂-N-C-CF3
1319	СН ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
1320	Вг—√СН₂−	1	2	0	R	н	-CH₂-N-C-⟨S

143

Table 1.121

lable	1.121						
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1321	с⊢(сн₂-	1	2	0	R .	н	-CH2-N-C
1322	CH-€	1	2	0	R	н	-CH ₂ -N-C- CH ₃
1323	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CI
1324	CHCH2-	1	. 2	0	R ·	н	-CH ₂ -N-C
1325	CHCH ₂ -	1	2	0	R ·	н.	-CH ₂ -N-C
1326	C⊢-{	1	2	0	R	н	-CH ₂ -N-C- HO
1327	C⊢-{	1 .	2	0	R	н	$-CH_2-N-C H_2N$
1328	H ₃ C-CH ₂ -	1	2	0	R	н	-CH₂-N-C-SBr
1329	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CH ₃
1330	. H ₃ C− € CH ₂ -	1	2	0	R	н	-CH ₂ -N-C CI
1331	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C

144

Ta	b	le	1.	1	2	ク

· ubie	1.122						•
Compd. No.	R ¹ (CH ₂),	k	т	ı n	chirality	Ř³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G^-R^6$
1332	H₃C-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C
1333	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-
1334	H₃C-{}CH₂-	1	2	0	· ·R	н .	-CH ₂ -N-C
	CH ₃ CH ₂ -					н 	-CH ₂ -N-C
	CH ₃ CH ₂ CH ₃					н	сн ₂ -N-С-СН ₃
1337	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C
1338	CH ₃ N CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C- HO
1339	CH ₃					Н	-сн ₂ -N-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-С-
1340	CH ₃ CH ₂ -	1	2	0	R	. H	-CH ₂ -N-C
1341	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-N-C$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$ $+G$
1342	С⊢—СН₂-	2 .	2	1	-	н	-CH₂-N-C-ScI

145

Table 1.123

lable 1	,123						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³ •	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G^{-R^6}$
1343	С⊢—СН₂-	2	2	1	-	н	-CH2-N-C-CH3
1344	CH2-	2	2	1	-	н	-CH2-N-C
1345	C├ - CH ₂ -	2	2	. 1	-	Н	-CH ₂ -N-C- HO CH ₃
1346	C⊢√_CH₂-	2	2	1	-	. н	-CH ₂ -N-C-√ HO
1347	C├ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S CH ₃
1348	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S CH ₃
1349	CH ₃ CH ₂ - CH ₃	1	2	0	R	H	-CH ₂ -N-C-\STCH ₃
1350	C├ \ _CH ₂ -	2	2	1	-	Н	CH2-N-C-(S) CH3
1351	CHCH ₂ -	1	2	0	R	H	-0+2-11-0-0+3 -0+2-11-0-0+3 -0+2-11-0-0+3
1352	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R ·	н	-013-lt.c.
	CH ₃ N CH₂- CH₃						-012-17 C-13

146

Ta	ы	e ·	1.	1	2	4

	1.124				
Compo No.	$d. \xrightarrow{R^2} (CH_2)_{j}$	k m n	chirality	R³	$-(CH_2)_{p}$ $+\frac{R^4}{R^5}$ $(CH_2)_{q}$ $-G-R^6$
1354	СН-{СН ₂	- 2 2 1	-	н	-0+2-11 C-0+3
1355	с⊢СҺ₂	1 2 0	R	Н	-CH ₂ -N-C-CN H ₂ N
	_	1 2 0		н	-CH ₂ -N-C-
1357	CH₂-	1 2 0	R	н	-CH ₂ -N-C-CN
	CH_CH ₂ -		-	н	$-CH_2-N_1C$ H_2N
1359	CH₃	1 2 0		Н	-CH ₂ -N-C-
1360	CH ₃ CH ₂ - CH ₃	1 2 0	R	н	-CH ₂ -N-C
1361	H ₃ C-CH ₂ -		R	н	-CH ₂ -N-C
1362		1 2 0		. н	-CH ₂ -N-C-CH ₃
1363	CH ₃	1 2 0	R	н	-CH ₂ -N-C-CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃ -CH ₃
364 F	H ₃ C-CH ₂ -	1 2 0	R	Н	-CH ₂ -N-C-CH ₃

1 4 7

Table 1.125

	20						
Compd. No.	R ¹ (CH ₂) ₁	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1365	CH₃ CH₃	1	2	0	R	н	-CH ₂ -N-C
1366	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ² -H-C- b-CH ³
1367	H ₃ C-CH ₂ -	1	2	0	R	н	-СH ₂ -N-ССH ₃
1368	СЊ_СН2-	1	2	0	R	н	-CH ₂ -N-C
1369	CH-2-	1.	_ 2	0	R	н .	-CH ₂ -N-C- F ₃ CCH ₂ O
1370	С ⊢√ СН₂-	1	2	0	R	н	-CH ₂ -N-C-S Br
1371	C├ ~ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1372	C	1	2	0	R	н	-CH2-HC-
1373	H ₃ C-CH ₂ -	1	2	0	R	н	-сн ₂ -м-с-С-СГ
1374	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1375	H ₃ C-CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C-SBr

:

148

Table 1.126

							•
Compd. No.	R ¹ (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1376	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1377	H ₃ C-\CH ₂ -	1	2	0	R R	н	-CH2-NC-
1378	CH₃ CH₂− CH₃	1	2	0	R	н	-CH ₂ -N-C-CI
1379	CH₃ CH₂− CH₃	1	2	0	R	Н	-CH ₂ -N-C- H F ₃ CCH ₂ O
1380	CH ₃ N CH ₂ - CH ₃	1	2.	0	R	H	-CH ₂ -N-C-⟨S) Br
1381	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1382	CH ₃ CH ₂ -	1	2	0	R	Н	- CH2-HC-
1383	СН-СН2-	2	2	1	-	Н .	-CH ₂ -N-C-CF ₃
1384	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-S Br
1385	CH2-	2	2	1		н	-CH ₂ -N-C-
1386	С-СН2-	2	2	1	-	н	-CH2-HC-

149

Table 1.127

rable	1.121						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _P + (CH ₂) _q -G-R ⁶
1387	CH₃ N CH₂- CH₃	. 1	2	0	R	н	-CH ₂ -N-C
1388	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃ -CH ₃ -N-C-(CH ₃) ₃
1389	CH ₃ CH ₂ - CH ₃	1	2	. 0	R	н	-CH ⁵ -H-C
1390	H_3C CH_3 H_3C CH_2 CH_3	1	2	0	. R	Н	-CH ₂ -N-C-CF ₃
1391	H ₃ C — CH ₂ -	1	2	0	. R	н	-CH ₂ -N-C-CF ₃
1392	CI H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1393	н₃ссн ₂ —————сн ₂ -	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1394	O ₂ N	1	2	0	R	н .	-CH₂-N-C-CF₃
•	H ₂ C=CH-CH ₂ -						-CH ₂ -N-C-CF ₃
1396	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1397	Br.—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
				٠			

150

Table 1.128

Compd No.	R. (CH ₂)	k	m	n	chirality	⁻ R³	$-(CH_2)_{p}\frac{R^4}{R^5}(CH_2)_{q}-G-R^6$
1398	CH-CH-CH-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1399	CH-CH-CH	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1400	с⊢—Сн-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1401	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	Ŕ	н	-CH2-N-C-N-C-N-H
1402	H ₃ C-CH ₂ -	. 1	2	0	Ŗ	н	$-CH_2-N-C- OCH_3$ $-CH_2-N-C- OCH_3$ $-CH_3- OCH_3$
1403	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH2-N-C-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1404	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1405	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1406	H ₃ C-CH ₂ -	1	2 .	0	R	н	-CH ₂ -N-C
1407	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-
1408	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-\

151

Table 1.129

lable !	1.120		_				
Compd.	R ¹ R ² (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) p 1 (CH ₂) q G-R ⁶
1409	H ₃ C-\CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C-CH ₃
1410	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1411	с⊢—СН₂-	1	2	0	R	н	-CH ₂ -N-C-C-NH
1412	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH2-NH H3C-C-NH
.1413	CH ₃ CH ₂ − CH ₃	· 1	2	0	R .	Н	-CH2-N-C-NH
1414	C ⊢ CH₂-	2	2	1	-	н	-CH2-N-C-NH
1415	C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-SCN H ₂ N
1416	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCN H ₂ N
1417	CH ₃ CH ₂ − CH ₃	1	2	0	R	Н	-CH ₂ -N-C-SCN
1418	CH-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ $+_2N$ $+_2N$ $+_2N$
1419	CH-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C$ H_2N SH

1 5 2

Т	ลไ	hI	е	1	4	3	n
•	ч.	•	C			J	v

Compd. R^{1} $(CH_{2})_{1}$ R^{2} $(CH_{2})_{1}$ $(CH_{2})_{1}$ $(CH_{2})_{1}$ $(CH_{2})_{1}$ $(CH_{2})_{2}$ $(CH_{3})_{1}$ $(CH_{3})_{2}$ $(CH_{3})_{2}$ $(CH_{3})_{2}$ $(CH_{3})_{3}$ $(CH_{3})_{4}$ $(CH_{3})_{4$	1	2	0	R	Н	-(CH2)p + G + G + G + G + G + G + G + G + G +
CL	1				н	-CH ₂ -N-C-SH
1421 CH ₂ - CH ₃		2	0			
•	2			R	н	-CH ₂ -N-C-SH
1422 C⊢√ CH₂- 2	-	2	1	-	н	-CH ₂ -N-C-SH H ₂ N
1423 с⊢С сн₂- 1	 	2	0	R	н	-CH ₂ -N-C-
1424 H ₃ C-√ CH ₂ - 1		2	0	R	. н	-CH ₂ -N-C-
CH₃ 1425 N −CH₂− 1 CH₃	2	2	0	·R	. н	-CH2-N-C-
1426 C⊢√ CH₂- 2	2	2	1	-	Н	-CH ₂ -N-C-
1427 C⊢√ CH₂- 2	2	?	1	~	н .	-CH ₂ -N-C-SBr H ₃ C-NH
1428 C⊢√CH₂- 2	2		1	-	н	-CH ₂ -N-C
1429 ңссн₂о-С 2	2	1	l	-	Н	-CH ₂ -N-C-CI
1430 CH ₂ - 2	2	1			н	$-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

153

Table 1.131

Compd. No.	R ² (CH ₂) _i -	k	m	n	chirality	Ŕ³ 	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1431	ңссн₂о-СҺ₂-	2	2	1	•	н	-CH ₂ -N-C-Br
1432	O————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C$ H_2N H_2N
1433	ңссн ₂о-()— сн₂-	2	2	1	-	н	-сн ₂ -мс-
1434	H3CCH 2O-CH2-	2	2	1	-	Н	-chz-N-c-
1435	н₀ссн₂—Сн₂-	2	2	1	-	н.	$-CH_2-N-C$ H_2N
1436	(H ₃ C) ₂ CH————CH ₂ -	2	2	1	- ·	Н	-CH ₂ -N-C-
1437	H ₃ C(CH ₂) ₂ O	2	2	1	-	н	-CH ₂ -N-C
1438	H3CCH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
1439	(HbC)2CH-{\rightarrow}-CH2-	2	2	1	-	, н	-CH ₂ -N-C
1440	H ₃ C(CH ₂) ₂ O-(-)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1441	Н₃СЅ-{}СН₂-	2	2	1	-	н	-CH ₂ -N-C

154

Table 1.132

Comp No.	od. $R^1 \longrightarrow (CH_2)_i$	k m	n n	chirality	R ³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1442	н₃ссн₂—Сн₂-	- 2 2	1	-	Н	-CH2-N-C
1443	(Ĥc)₂CH-()-CH ₂ -	2 2	1	-	н	-CH2-NC
1444	H₃C(CH₂)₂O()-CH₂-	2 2	1	:	Н	-CH2-N-C
1445	н₃ссн₂—Сн₂-	2 2	1	•	н	-CH2-NC
1446	(H ₂ C) ₂ CH-√2-CH ₂ -	2 2	1	-	H	-CH2-N-C
1447	ӉС(СН ₂) ₂ О{	2 2	1	-	н	-0+2-N-C
1448	H ₃ CSCH ₂ -	2 2	i	<u>.</u>	н .	-CH ₂ -N-C
1449	H ₃ CCH ₂ —CH ₂ -	2 2	1	-	Н	-CH ₂ -N-C-CF ₃
450	(H ₂ C) ₂ CH-⟨CH ₂ -	2 2	1	-		-сн ₂ -N-с-СF ₃
451	(H ₃ CCH ₂) ₂ N————————————————————————————————————	2 2	1	-	Н	-CH2-N-C
452	H ₃ CO—CH ₂ -	2 2	1	-	н	-CH ₂ -N-C-CF ₃

155

Table 1.133

lable	1.133						
Compd.	R ¹ (CH ₂);-	k	m	n	chirality	R³	-(CH ₂) p + (CH ₂) q G-R ⁶
1453	H ₂ C(CH ₂) ₂ O	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1454 .	њссн 20-⟨}-сн2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1455	H ₃ CQ HO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1456	CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-CF ₃
1457	(CH ₃) ₂ N-(CH ₂ -	2	2	1		H	-CH ₂ -N-C-
1458	H ₃ CQ HO——————CH₂-	2	. 2	1 .	-	н	-CH ₂ -N-C
1459	(H ₃ C) ₂ N-\(\bigce\)-CH ₂ -	2	2	1	-	н	$-CH_2-NCC\longrightarrow Br$
1460	HO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-\longrightarrow_{H_2N}^{Q}$
1461	H ₃ CO HO—CH₂-	2	2	1	-	н	-сн ₂ - но сн ₄ - осн
1462	HO—CH₂-	2	2	1	-	н	-CH2-NC-HN CH2-OCH
1463	C⊢()−CH₂−	2	1	1	-	н	-CH ⁵ -M-C-⟨

156

Table 1.134

		1.104							
	Compd. No.	R ² (CH ₂) _j		k ı	n n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
	1464	c-{) —сн₂-	2	· -	1 1	-	Н	-CH ₂ -N-C-
	1465	с⊢С	}—СН₂ -	2	1	1	-	Н	-CH ₂ -N-C-CF ₃
	1466	c-(≻-Сн ₂ -	2	1	1	- '	н	-CH ₂ -N-C-
	1467	СН	CH₂-	2	1	1	-	н	-CH2-N-C
	1468	CH_	−CH ₂ −.	2	1	-1	-	Н	-CH ₂ -N-C
	1469	c -(-CH ₂	2	1	1	-	н	-CH ₂ -N-C-CF ₃
,	1.470	с-{_}	-CH₂ -	2	1	1	-	н .	-CH ₂ -N-C-CI
	1471 (Н	-CH ₂ -N-C
							R		-CH ₂ -N-C- CF ₃
1	473	Br S-c	H ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1.	474	CH ₃	CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃

157

Table 1.135

Table	.135						
Compd. No.	R ² (CH ₂) _j -	k	m	n.	chirality	R³	$-(CH_2)_{p \downarrow 5}^{R^4} (CH_2)_{q}^{-} G-R^6$
1475	Ch .	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1476	Br S CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-CF ₃
1477	B-CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1478	B-Q-042-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1479	H ₃ C−(CH ₃ CH ₂ − CH ₃	1	. 2	0	R	н	-CH ₂ -N-C
1480	CH ₃	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1481	H ₃ C — CH ₂ - H ₃ C	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1482	Br CH2-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1483	H ₃ C CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1484 c	\$\{\frac{1}{2}\}\CH_2\-	1 .	2	0	R	Н	-CH ₂ -N-C-CF ₃
1485	H₃C€	1	2	0	R	н	-CH ₂ -N-C-S

158

Т	а	h	le	1.	1	3	6

Table	1.130						
Compd. No.	R ¹ (CH ₂)	· k	: m	n	chirality	R³	-(CH ₂) _p (CH ₂) _q G-R ⁶
1486	н₃С-{_}Сн₂	- 1	2	0	R	н	-CH ₂ -N-C
1487	H₃C-(- 1	2	0	R	н	-CH ₂ -N-C-
1488	H ₃ C-\(\bigc\)-CH ₂ -	- 1	2	0	R	н	O CH₃ -CH₂-N-C-
1489	H ₃ C-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
1490	H ₃ C-CH ₂ -	1	2	. 0	R	н	-CH ₂ -N-C-CH ₃
1491	Н₃С—СН₂-	1	2	0	R	н	-CH ₂ -N-C-
1492	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-\ N-
	CH ₃ CH ₂ -					н	-015-Hc- 65
1494	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1495	CH ₃ N − CH ₂ − CH ₃	1	2	0	R .	н	-CH ₂ -N-C-N H ₃ C
1496	CH ₃ CH ₃	1	. 2	0	R	H .	-CH ₂ -N-C-N-C-N H ₃ C -CH ₂ -N-C-N-C-N H ₃ C -CH ₂ -N-C-N-C-N H ₃ C

159

Table 1.137

. 45.0							
Compd.	R ¹ (CH ₂)	. k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1497	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C
1498	CH ₃ CH ₂ -					н	-сн ₂ -н-с-√
1499	CH ₃ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-√
1500	CH₃ CH₂- CH₃					н	-CH ₂ -N-C-CH ₃
1501	CH ₃ CH ₂ -	1	2	0	· R	н	-CH₂-N-C
1502	CH ₃ CH ₂ - CH ₃	1	2	0	R	• н	-CH ₂ -N-C
1503	CH ₃ CH ₂ CH ₃	1	2	0	R	н •.	-CH ₂ -N-C
	H ₂ N-CH ₂ -					н	-CH ₂ -N-C-CF ₃
1505	-CH ₂ Q -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1506	_с⊢сн₂-	2	1	1	-	н	-CH ₂ -N-C
	CH ₂ -						-CH ₂ -N-C

160

Table 1.138

Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	—(CH ₂) p CH ₂) q G−R ⁶
1508	CH2-	2	1	1		н	-CH ₂ -N-C-F H ₂ N
1509	CHCH2-	2	1	1	-	н	-CH ₂ -N-C-
1510	CH-2-	2	. 1	1	-	н	$-CH_2-NC-$ H_2N
1511	С⊢—СН₂-	2	. 1	1	-	н	-CH ₂ -N-C-SBr
1512	CH-{-}-CH2-	2	1	1		н	-CH ₂ -N-C
1513	C├─ (CH ₂ -	2	1	1	-	Н	-CH2-N-C-
1514 (H ₃ CCH ₂) ₂ N-{\(\bigcirc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
	HQ H ₃ CO————————————————————————————————————					Н	-CH ₂ -N-C
516 (r	H ₃ CCH ₂) ₂ N	2	2	1	-	н	-CH ₂ -N-C
517 _F	HQ . H ₃ CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C- H ₂ N -CH ₂ -N-C- H ₃ N -CH ₂ -N-C- H ₂ N -CH ₂ -N-C- H ₃ N -CH ₂ -N -CH ₂
518 _H	HQ H₃CO————————————————————————————————————	2	2	1	-	н.	-сн ₂ - рс- н н сн ₂ - оснь

161

Table 1.139

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} + G^-R^6$
1519	HQ H ₃ CO—CH ₂ —	2	2	1	-	H _.	-CH2-NC-
1520	Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1521	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1522	CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1523	H ₃ CO————————————————————————————————————	1	2	0	. R .	н	-CH ₂ -N-C
1524	H ₃ CQ HO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-Br
1525	Br€ CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-S
	H₃CO-{}CH₂-					н	-CH ₂ -N-C
1527	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1528	H₃CQ H₃CO————————————————————————————————————	1	2	0	R	H	-CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃ -CH ₂ -N-C-OCF ₃
1529	H ₃ CQ HO————————————————————————————————————	1	2	0 .	R	, н	-CH ₂ -N-C-

162

Tat	ole	1	1 4	0

lable	1.140						
Compo No.	d. R ² (CH ₂	₂);—	k m	ח ח	chirality	R³	$-(CH_2)_p + (CH_2)_q - G - R^6$
1530 ·	8	:H ₂ -	1 2	0	R	н	-CH ₂ -N-C-CF ₃
1531	H₃CO-{	СН ₂ - ·	1 2	0	R	н	-CH₂-N-C-CF3
1532	Cr	12— 1	2	0	R	н	-CH ₂ -N-C-⟨ CF ₃
1533	н₃со-	_{CH2} - 1	2	0	R	н	-CH ₂ -N-C CF ₃
1534	H ₃ CQ HO—CH	₁₂ - 1	2	0	· R	. н.:	-CH ₂ -N-C ← F
1535	Br—CH	l ₂ 1	2	0	R	Н	-CH ₂ -N-C-CF₃
1536	н₃со-{с	H ₂ - 1	2	0	R	н	-CH ₂ -N-C
1537	CH ₂	1	2	0	R	н .	-CH ₂ -N-C
	H₃CQ H₃CO————————————————————————————————————					н	-CH ₂ -N-C
1539	H ₃ CQ HO————————————————————————————————————	- 1	2	0 .	R	н	-CH ₂ -N-C-CF ₃
1540	Br—CH ₂	- 1	2	0	R	н	$-CH_{2}-N+C$
	-						

163

Table 1.141

· ubie	1,171						
Compo No.	$\frac{H^{1}}{H^{2}} - (CH_{2})_{j} -$,	< m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1541	H ₃ CO-{\bigce}-CH ₂	- 1	2	0	R	H	-CH2-N-C-CF3
1542	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF₃ H C-F F
1543	H ₃ CO C C C C C C C C C C C C C C C C C C	. 1	2	0	R	н	-CH ₂ -N-C-CF ₃ -F
1544	H ₃ CQ HO—CH ₂ —	.1	2	0	- R	н .	-CH ₂ -N-C-F
1545	CL_S_CH ₂ -	1	2		R	н.	-CH ₂ -N-C-CF ₃
	H ₃ CO F F CH ₂ -					н	-CH ₂ -N-C-CF ₃
1547	H ₃ CO- Br	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1548	H ₃ C-\CH ₂ -	1	2	0	R	H	-CH ₂ -N-C CH ₃ CH ₃ CH ₃
1549	H₃C-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C
	H ₃ C-\(\bigce\)-CH ₂ -				_		-0+2-H-0-H-0-CH-3
1551	H ₃ C-CH ₂ -	1	2	0	R	н	-CH2-HC-

164

Table 1.142

Compd.	R ¹ (CH ₂) _j -	, k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1552	H₃C()-CH₂-	1	2	0	R	Н	-CH ₂ -N-C-
1553	н₃С-{Сн₂-	1	2	0	R	,H	
1554	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1555 、	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-N H ₃ C
1556	H ₃ E-CH ₂ -	1	2	0	R	н.	-CH ₂ -N-C-O H ₃ -C
1557	H ₃ C-CH ₂ -	1	2	0 .	R	Н	-CH ₂ -N-C-N-C-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-
1558	H ₃ C-CH ₂ -	1	2	. 0	R	Н	-CH ₂ -N-C-N-N-CH ₃
	H ₃ C-CH ₂ -					Н	-CH ₂ -N-C-(CH ₃) ₃ H ₃ C
1560	H ₃ C-CH ₂ -	1	2	0	R ·	н	-CH2-N-C-
1561	H ₃ C-CH ₂ -	1 .	2	0	R	н	$-CH_2-N_1C-CH_3 CH_3 CH_3 CH_3$
	H ₃ C-CH ₂ -					н	$-CH_2-N$ O_2 O_2 O_3 O_3 O_4 O_5 O_5 O_5 O_6 O_7 O_8

165

Table 1.143

Table	1,140						
Compd.	R ² (CH ₂) _j	k	m	n	chirality	· R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1563	н₃с-{}-сн₂-	1	2	0	R	Н	-CH'-H, C
1564	H ₃ C-CH ₂ -	1	, 2	0	R	Н	-c+2-11,c-
1565	CH₃ N CH₂- CH₃	1	2	0	R	н	-CH ₂ -N-C
1566	CH₃ CH₂- CH₃	1	2	0	R	· H	$-CH_2-N-C O_2N$ OCH_3
1567	CH ₃ . CH₂−	1	2	0	R ·	н	-CH ₂ -NC
1568	CH ₃ CH ₂ − CH ₃				R	н	-ortho
1569	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-cH ₂ -N ₂ -CN ₃
1570	H₃CS-{CH₂-	2	2	1	-	н	-CH ₂ -N-C
1571	H₃CSCH₂-	2	2	1	-	н	, o
1572	~ C- C}-0+2	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1573	н,со-{}-йс-{}-оч-	2	2	1	-	н	-CH ₂ -N-C-CF ₃

166

Table 1.144

rable	1.144						
Compd. No.	R ² (CH ₂),	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1574	₩¢ ⟨ ┣╬ <mark>⟨</mark> ┣œ	₂ - 2	2	1	•	н	-CH ₂ -N-C-CF ₃
1575	с	<u>.</u> 2	2	1	-	н	-CH ₂ -N-C-CF ₃
1576	€ N.C CH2	- 2	2	1 .	-	Н	-CH ₂ -N-C-CF ₃
1577	HOICHT THE CONT	- 2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1578	H ² C CH ²	. 2	2	1	<u>.</u> .	н	-CH ₂ -N-C-CF ₃
1579	CH3 PCH2-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1580	— H C{}-CH₂-	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1581	CHCH ₂ -	2	2	1	-	Н	-CH ₂ -NC-NH H ₀ -S-NH
1582	C├ - CH ₂ -	2	2	1	-	Н	-сн к. с к. с. г. г. с. г. г. с. г. г. с. г. г. с. г. с. г. г. с. г. с. г. г. с. г. г. с. г. г. с. г.
1583	с⊢—Сн₂-	1	2	0	R	н	$-CH_2-N$ H_2N CF_3
584	С⊢—СН₂-	1	2	0	R	н	$-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$ $-CH_{2}-N-C-$ $H_{2}N$

167

Table 1.145

lable 1	1,145						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - G - R^6$
1585	С⊢-{_}-СН₂-	1	2	0	R	Н	-CH ₂ -N-C
1586	CH-CH ₂ -	. 1	2	0	R	Н	-CH2-HC-N
1587	CH-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1588	CH-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
1589	H ₃ C-CH ₂ -	.1	2		R	H	-CH ₂ -N-C
1590	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
1591	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-CN
1592	H₃C-√CH₂-	1	2	0	R	н	-CH ₂ -N-C-N=
1593	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1594	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	$-CH_2-NC- \bigcirc CF_3$ $+I_2N$
1595	CH ₃ CH ₂ -	1	2	0	R	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$

168

Table 1.146

. 45.0							
Compd. No.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1596	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-S
1597	CH ₃ CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-
1598	CH₃ CH₃					Н	-CH ₂ -N-C-
1599	CH ₃ CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C
1600	С⊢—СН₂-	2	. 2	1	-	Н	-CH ₂ -N-C
1601	C├ ─ CH ₂ -	.2	2	.1	~	н	-CH ₂ -N-C
1602	C⊢√_CH₂-	2	2	1	-	Н	-CH₂-N-C-
1603	с{	2	2	1	-	Н	-CH ₂ -N-C-\
1604	с⊢—Сн₂-	2	2	1	-	н	-CH ₂ -N-C
	CH-CH ₂ -					н	$-CH_{2}-N-C$
606	CH-{	1	2	0	R	Н	-CH ₂ -N-C-SCF ₃

169

Table 1.147

Table 1	1.147						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_p + \frac{R^4}{R^5} (CH_2)_q - G^6$
1607	H ₃ CCH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1608	CH ₃ N − CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1609	CH-{	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
1610	CF ₃ Q CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1611	CH2-H2-CH2-	2	2	. 1	-	н	-CH ₂ -N-C-CF ₃
1612	н ₂ со(сн ₃₎₂ -мс	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1613	H, C- CH3 P	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1614	F ₃ CS—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1615	F ₃ CS—CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-CF ₃
1616	F ₃ CS—CH ₂ -	2	2	1	-	· н	-CH ₂ -N-C-
	F₃CS—CH₂-					н	$-CH_{2}-N$ $H_{2}N$ $-CH_{2}-N$ $H_{2}N$ Br $-CH_{2}-N$ $H_{2}N$

170

Table 1.1	4	В
-----------	---	---

	1.148						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1618	. HQ H ₃ CO————————————————————————————————————	_ 1	2	0	R	н	-CH ₂ -N-C-
1619	H ₃ CO-CH ₂ -	_ 1	2	0	R	Н	-CH ₂ -N-C
1620	HQ H ₃ CO-CH ₂ -	. 1	2	0	R	.н	-CH ₂ -N-C-CF ₃
1621	HQ H₃CO-CH₂-	1	2	0	R	Н	-CH₂-N-C-CF3
1622	HQ H ₃ CO—CH ₂ —	1	2	0	. R	н	-CH₂-N-C-CF3
1623	HO-CH ₂ -	1	2	0	R :	н	-CH ₂ -N-C-Br
1624	HOCH ₂ -	1	2 .	0	R	н	-CH ₂ -N-C
1625	HO-CH ₂ -	1	2	0	R	н ·	-CH ₂ -N-C-CF ₃
626	HO- ()-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
627	но-{СҺ₂-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃ -CH ₂ -N-C-CF ₃
628 н	₃CS-()-CH ₂ -	1	2	O	R	н	-CH ₂ -N-C- H

171

Table 1.149

	1,149						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}}$ $+$ $(CH_2)_{\overline{q}}$ $-G-R^6$
1629	H₃CS	1	2	0	R	н	-CH ₂ -N-CF
1630	H ₃ C CH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C-CF ₃
, 1631	H ₂ NCH ₂ ————————————————————————————————————	1	2	0	R	Н.	-CH ₂ -N-C-CF ₃
1632	CF ₃ —CH ₂ -	1	2	0	R	Н .	-CH ₂ -N-C-CF ₃
1633	H ₃ CS NC——N CH ₂ —	1	. 2	0	R.	н	-CH ₂ -N-C-CF ₃
1634	(Hc)2CH-(-)-CH2-	1	. 2	0	R	Н	-CH₂-N-C-CF3
1635	H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
•	H ₃ C-CH ₂ -					H	-CH ₂ -N-C
1637	CH ₃ CH ₂ - CH ₃	1	2	0	R	· H	-CH ₂ -N-C-(CH ₂) ₄ CH ₃
1638	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C-C(CH ₂) ₃ CH ₃
1639	CH₃ N CH₂- CH₃	1	2	0	R	Н	-сн5-Д с Сн3 — Д с осн5сн3

Table 1.150

Table	1.130						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
1640	CH ₃ N CH₂- CH₃	1	2	0	R	Н	· ·
1641	CH ₃ CH ₂ -	1	2	0	R	H	-CH2-N-C
	CH_3 CH_2 CH_3		·			н	-CH ₂ -N-C-N O ₂ N-N
1643	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
1644	CH ₃ CH ₂ -	1	2	0.	R	H .	-CH ₂ -N-C
1645	CI CH₂-	1	2	0	R .	Н	-CH ₂ -N-C-CF ₃
1646	Br O-CH2-	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1647	H ₃ C(CH ₂) ₃ ———————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C- H
1648	H ₃ C(CH ₂) ₃	1	2	0	R	H	-CH ₂ -N-C−C−CF ₃
1649	H ₃ C(CH ₂) ₂ —————————————————————————————————	2	2	1	- · ·	Н	CF ₃ :
1650	H ₃ C(CH ₂) ₂ —————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-CF ₃

173

. Table 1.151

lable	1.131	•					•	
Compd.	R ¹	-(CH ₂);	k	m	n	chirality	· R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
1651	H₃C(CH ₂)	3-CH2-	2	2	1		н	-CH2-N-C
1652	н₃с(сн ₂);	3CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1653	H ₃ C(CH ₂);	2−СН2−	2	2	1	•	Н	-CH ₂ -N-C
1654	H₃C(CH₂);	2-CH2-	2	2	1	-	н	-CH ₂ -N-C-Sr H H ₂ N
1655 .	H ₃ C(CH ₂);	3-CH2-	2	2	1		н.	-сн ₂ -й-с ни сн ₂ -(о-1) ₃ -с нь
1656	H ₃ C(CH ₂);		2	2	1	-	Н	-CH ₂ -N-C-I
1657	H ₃ C(CH ₂) ₂	_CH₂-	. 2	2	1	-	н	-CH2-N-G
1658	H3C(CH3)2	-CH2-	2	2	1	- ·	н	-CH ₂ -N-C-
1659	с⊢{	}-CH₂́-	2	2	1	•	н	H_2N CH_2-N-C H_2N CI
1660	8—	CH ₂	1	2	0	R	н	$-CH_2-NC - CF_3$ H_2N
1661	Br—	CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C$ $+L_{2}N$ $-CH_{2}-N\cdot C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$

174

Table 1.152

Compo	d. R ¹ /(CH	₂) _j	k	m	n	chirality	R3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1662	B	CH₂-	1	2	0	R	Н	-CH ₂ -N-C-F
1663	В	· CH₂−	1	2	0	R	н	-CH ₂ -N-C
1664	H₃CS—	·CH₂−	2 .	2	1	-	н	$-CH_2-NCC- CF_3$ $+ H_2N$
1665	Н₃СЅ-{	CH₂−	2	2	1	-	H	$-CH_2-N-C-$ H_2N
1666	нася-{-}	СН ₂	2	2	1	-	н.	-CH ₂ -N-C-F
1667	н₃ссн₂—С	·CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
1668	н₃ссн₂-√	СН ₂	2	2	1	-	·H	$-CH_2-N-C$ H_2N F H_2N
1669	н₃ссн₂—(CH₂−	2	2	1	-	Н	-CH ₂ -N-C
1670	н₃ссн ₂ —{}	CH₂ -	2	2	1	-	н	$-CH_{2}-N\cdot C$ $H_{2}N$ OCF_{3}
1671	н₃ссн₂—(CH₂−	2	2	1	÷	н .	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $+I_{2}N$ $-CH_{2}-N\cdot C$ $+I_{2}N$ $+I_{2}N$
1672 .	њссн₂–⟨¯¯⟩-с	CH ₂ -	2 .	2	1	-	н	-CH ₂ -N-C-CF ₃
	•							

175

т	2	h	le	1	1	5	3
Ł	a	L	16			•	v

lable	1,133						
Compd.	R ¹ (CH ₂),-	k	m	n	chirality	·R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
1673	н₃ссн₂-√-сн₂-	2	2	1	-	Н	-CH ₂ -N-C
1674	FCH ₂ -	2	2	1	-	н	-CH ₂ -N-CBr
1675	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
1676	- F-CH ₂ -	2	2	1	-	Н	$-CH_2-N$ H_2N
1677	F	2 .	2	1	-	Н	-CH ₂ -N-C-Br
1678	F-CH ₂ -	2	2	1	-	н.	-CH ₂ -N-C
1679	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1680	F-CH ₂ -	2	2	1	-	· н	$-CH_2-N-C$ H_2N
1681	FCH ₂ -	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1682	F(-)CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
1683	O-N-CH2-	2	2	1	-	н	-CH ₂ -N-C- Br

176

Т	2	h	le	1	1	5	1
	•	u.				_	

lable	1.154						
Compd.	R ² (CH ₂) _j	- k	m	n	chirality	· R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q-G-R^6}$
1684	~ He-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-Co-	он₂- 2	2	1	•	Н	-CH ₂ -N-C
1685	- H-C	сн₂- 2	2	1	-	Н	-CH ₂ -N-C
1686	CHC-C	:H₂- 2	2	1	-	. н	-CH ₂ -N-C
1687	N+ c	:H₂- 2	2	1	- .	н	$-CH_2-N$ C H_2N
1688	— H c ← C − c	н ₂ - 2	2	1		Н .	-CH ₂ -N-C-
1689	W-6	н ₂ - 2	2	1	-	Н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1690		H ₂ - 2	2	1	-	н	-CH ₂ -N-C
1691	Chc-O-c	H ₂ - 2	2	1	-	н	-CH ₂ -N-C-Br
							-CH ₂ -N-C
1693	H ₃ C—CH ₂	_ 1	2	0.	R	н ·	-CH ₂ -N-C
1694	H ₃ C-CH ₂	_ 1	2	0	R	Н	$-CH_2-N$ $+_2N$ $+_2N$ $+_2N$
1694	H₃C-{}-CH₂	_ 1	2		н	Н	-CH ₂ -N-C- H H ₂ N

177

τ.	L	۱.	1	4	5	5
ıа	ומ	e	- 1	. 1	J	J

lable	1.100						
Compd.	R ¹ (CH ₂),	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} - G - R^6$
1695	CH ₃ · CH ₂ -	1	2	0	R	н	$-CH_2-NC- \longrightarrow_{H_2N}^{O}$
1696	CH ₃ −CH ₂ −	1.	2	0	R	н	$-CH_2-NC-$ H_2N
1697 ·	CH ₃	1	2	0	R	н	-CH ₂ -N-C
1698	CH ₃	1	2	0	R	Н	$-CH_{2}-N-C$ $H_{2}N$ OCF_{3} $H_{2}N$
1699	H ₃ C−⟨CH ₂ −·	1	2	0	R	Н .	-CH ₂ -N-C
1700	CH ₃	1	2	0	R	H	-CH ₂ -N-C
1701	H ₂ C=CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
1702	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1703	-CH ₂ -	1	2	0	R	н	$-CH_2-N$ $-CH_2-N$ H_2N CF_3
1704	но-€-сн₂-	1	2	0	R .	н	-CH ₂ -N-C
1705	CH2−	1	2	. 0	R	н	$-CH_{2}-N-C$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$
	•						

178

Ta	b	le	1	.1	5	6
----	---	----	---	----	---	---

Table	1.130						
Compd.	R ¹ /(CH ₂) _j -	k	m	n	chirality	. H3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1706	O—CH₂-	1	2	0	R	Н	$-CH_2-NC- \bigcirc CF_3$ H_2N
1707	H₃CS-{}_CH₂-	1	2	0	Ř	H·	$-CH_2-N$ CF_3 H_2N
1708	н₃ссн₂—⟨¯⟩—сн₂-	1	2	0	R	Н	$-CH_2-N-C \longrightarrow CF_3$ H_2N
	(H ₂ C)₂CH-⟨				R	н	-CH ₂ -N-C-\ H ₂ N
1710	H ₃ C Br—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1711	CH₃ CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1712	H ₃ CCH ₂ Q HO————————————————————————————————————	1	2	0	R	. н	-CH ₂ -N-C-CF ₃
1713	110 0112					н	-CH ₂ -N-C-CF ₃
1714	H ₃ CO—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1715	N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
1716	CH ₂ -	1	2	0	R	H .	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CF_{3}$ $-CH_{2}-N-C-$ $-CF_{3}$

179

Table 1.157

rable	1.10.						
Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	· R³	$-(CH_2)_{\overline{P}}^{\overline{R}^4}(CH_2)_{\overline{q}}G^-R^6$
1717	N_OCH ₃ H ₃ CO-⟨N_CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
·1718	CH ₃ CH ₃	1	2	0	R	н	-CH ₂ -N-C
1719	CH2-	1	. 2	0	R .	н	-CH ₂ -N-C-CF ₃
1720	H ₃ CO-C H ₃ C-CH ₂ - CH ₃	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
1721	ң _а ссн ₂ —Сн ₂ -	1	2 .	0	R	н	-CH₂-N-C-⟨CF₃
1722	-CH ₂ -	1	2	0	. R	H	-CH ₂ -N-C-CF ₃
1723	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	CH₃ H₃C-⟨ CH₂-					Н	-CH ₂ -N-C-CF ₃
1725	H_3C CH_3 CH_2 CH_2	1	2	0	R .	Н	- CH ₂ -N-C-⟨CF ₃
1726	н₃ссн₂—Сн₂-	1	2	0	R	н	-CH2-N-C-CF3
1727	CH₂-	1	2	0	R	н	-CH ₂ -N-CF

180

Table 1.158

	1.150		•	
Com No	pd. R^2 $(CH_2)_i$	k m n chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1728	CH ₂ -	1 2 0 R	Н	-CH ₂ -N-C-C-F
1729	H ₃ C-CH ₂ -	1 2 0 R	Н	-CH ₂ -N-C
1730	H ₃ C	1 2 0 R	н	-CH₂-N-C-CF₃
1731	H ₃ CO N CH ₂ -	1 2 0 R	н	-CH ₂ -N-C-
. 1732	HOCH2-CH2-	1 2 0 R .	Н	-CH ₂ -N-C-CF ₃
1733	CH ₂ -	1 2 0 R	Н	-CH ₂ -N-C-CF ₃
1734	H ₃ CS—CH ₂ -	1 2 0 R	н	-CH ₂ -N-C-CF ₃
1735	ң,ссн₂-{_}Сн₂-	1 2 0 R	н	-CH ₂ -N-C- H
1736		1 2 0 R		
1737	CH ₃ -CH ₂ -	1 2 0 R	н ,	-CH ₂ -N-C- F -CH ₂ -N-C- F -CH ₂ -N-C- F F
1738	H ₃ C — CH ₂ -	2 0 R	н	-CH ₂ -N-C-CF ₃

Та	h	ما	1	1	15	q
10	U		4			J

I abic	1.700						
Compd.	R ² (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
1739	(H ₂ C) ₂ CH CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF
1740	CH ₂ -	1.	2	0	R	н	-CH ₂ -N-C-Br
1741	н₃СS(1	.2	0	R	н	-CH ₂ -N-C-
1742	н₃ссн₂—Сн₂-	1	2	0	R	Н	-CH ₂ -N-C-
1743	CH ₂ -	1	2	0	R	Н.	-CH ₂ -N-C-
1744	CH ₃ CH ₂ −	1	2	0	R	Н	-CH ₂ -N-C-
1745	H_3C CH_3 CH_2	1	2	0	R	Н	-CH ₂ -N-C-
1746	(H ₂ C) ₂ CH————————————————————————————————————	1 .	2	0	·R	Н	-CH₂-N-C-
1747	-CH ₂ -	1	2	0	R	Н	$-CH_2-N-C H_2N$ Br
	н₃ссн₂ — Сн₂-					н	-CH ₂ -N-C
1749	CH ₃ - CH ₂ -	1	2	0	R	н	-CH ₂ -N-C

182

Table 1.160

							<u>. </u>	
Comp No.	R ²	≻(CH ₂)j−	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{h^5}$ $(CH_2)_q$ $- R^6$
1750	Ø	: : :	1	2	0	R	н	-CH ₂ -N-C
1751	H₃CS—	CH₂-	1	2	0	- R	н	-CH ₂ -N-C-OCF ₃
1752	Н₃ССН₂-	-{_}сн₂-	1	2	0	R.	н	-CH ₂ -N-C-OCF ₃
1753	~					R	н	-CH2-N-C
		CH ₃ —CH ₂ -				R	Н	-CH ₂ -N-C-C
1755	н₃с-√	CH ₃	1 ;	2 0		R .	H	-CH ₂ -N-C
						R	H .	-CH ₂ -N-C-OCF ₃
	Br	Br CH₂− Br				R	н	-CH ₂ -N-C-CF ₃
1758	H₃CO— Br	Br CH ₂ -	1 2	0		R	н	-CH ₂ -N-C-CF ₃
759	Н₃С−С	}—СН ₂ –	1 2	0		R	н .	-01~WE-(-)
760	н₃с-{¯	⊢ Сн₂-	1 2	0	i	R	Н	-CH ₂ -N-C
					_			•

:

183

Table 1.161

Table 1	.161						
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	. _{K3}	$-(CH_2)^{R^4}_{P_5}(CH_2)^{-G-R^6}_{Q}$
1761	н ₃ с-{	1	2	0	R	н	-CH2-HC
1762	CH ₃ CH ₂ − CH ₃	1	2	0	R	н	-CH ₂ -N-C-N-C-N-C1
1763	€ CH2-	2	2	0	-	н .	-CH ₂ -N-C
1764	CH₂-	2	2	0	-	Н	-CH ₂ CH ₂ -N-C
1765	. CH ₂ -	2	2	0	-	Н	(S) OCH₂CH₃ -CH+N-C
1766	—CH₂-	2	2	0	-	Н	(<i>F</i> I)
1767	CH-CH ₂ -	1	3	. 1	-	н	-CH ₂ -N-C
1768	C⊢√CH5-					н	OCH2CH3
1769	CH_3 CH_2 CH_3 CH_3	1	2	0	R	Н	-CH2-N-C-N-CI -CH2-N-C-N-CI -CH2-N-C-N-CI -CH2-N-C-N-CI
1770	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH2-HC-M-CI
1771	CH ₃ CH ₂ - CH ₃	1	, 2	0	R	Н	-CH ₂ -N-C- (H ₃ C) ₃ C-C+N-C H ₃ C 0

184

Ta	b	le	1	.1	6	2

	1.102						
Compd. No.	R ² (3,12/j				chirality	. K3	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1772	CH ₃ CH ₂ - CH ₃				R·	н	-cH-N-C
1773	CH ₃ CH ₂ -	1	2	0	R	н	H ₃ C — H ₃ C
1774	CH³	1	2	0	R	Н	-CH ₂ -N-C-N-C-N-C-OCH ₃
1775	HO- CH ₂ − H ₃ CO	1	2	0	R	Н	-CH ₂ -N-CF ₃
1776	H ₃ CO-√ CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
1777	'CH-€CH2-	Ź	2	1	-	Н	$-CH_2-N C - CF_3$ H_2N
1778	H ₃ C(CH ₂ -	2	2	1	-	н .	$-CH_2-N-C$ H_2N
1779	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1780	Br-CH ₂ -	2	2	1	٠.	н	-CH ₂ -N-C
1781	HO-{-}-CH ₂ -	2	2,	1	-	н	$-CH_{2}-N-C$ $-CH_{2}-N-C$ $+2N$ $-CH_{2}-N-C$ $+2N$ $-CH_{2}-N-C$ $+2N$ $-CF_{3}$ $-CH_{2}-N-C$ $+2N$ $+2N$
1782 . н₂	.c-cн-(cн ₂ -	2	2	1	•	н	-CH ₂ -N-C

Tab	le 1	1.1	63

						•	
Compd. No.	R ¹ (CH ₂) _j	k	m	n	chirality	⁻ R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q} - (CH_2)_{q}$
1783	NC-CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C
1784	€ CH₂−	2	2	1	-	н	-CH ₂ -N-C
1785	CH ₃ (CH ₂) ₂ —CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1786	O—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
1787	CH3(CH2)2-\(\bigcup_{\rightarrow}\)-CH2-	· 1	2	0	R	н	-CH ₂ -N-C
1788	. CH ₃	2	2	1	-	H	$-CH_2-N-C-4$ H_2N
1789	H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$ CF_3
1790	C├ - CH ₂ -	1	2	0	S	H	-CH ₂ -N-C
1791	CH2−	1	2	0	S	н	$-CH_2-NC-$ H_2N H_2N
1792	CH ₃ CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1793	CI—CH ₂ —	2	2	1	-	Н	-CH ₂ -N-C

Table 1.16	4
------------	---

Tabl	e 1.164						
Com No	pd. R^{1} $(CH_{2})_{j}$	- k	m	n	chirality	·R³	-(CH ₂) _p = (CH ₂) _q G-R ⁶
1794	H₃C−CH₂	- 2	2	1	-	н	-CH ₂ -N-C
1795	CH2−	2	2	1	-	н	-CH ₂ -N-C
. 1796	Br—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C H ₂ N-F
1797	HO-CH _Z -	2	2	1	-	н	-CH ₂ -N-C
1798	H₃CO-{}-CH₂-	- 2	2	1	-	Н	-CH ₂ -N-C-F H : H ₂ N
1799	H ₂ C=CH-(CH ₂ -	- 2	2	1	-	н	-CH ₂ -N-C
1800	NC-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1801	CH ₂ -				•	Н	-CH ₂ -N-C
1802	HO-√CH₂-CH₂-	1	2 ()	R	н	$-CH_2-N-C-$ H_2N $-CH_2-N-C-$ H_2N $-CH_2-N-C-$ H_2N $-CF_3$ $-CH_2-N-C-$ H_2N
1803	HO-CH ₂ -	1 2	2 0)	R	н	-CH ₂ -N-C-CF ₃
1804	H ₃ C(CH ₂) ₂ -CH ₂ -	2 2	? 1		-	н	-CH ₂ -N-C

Table 1.16	
lanie ilio:	5

rable	1.105				•		
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p R ⁴ (CH ₂) _q G-R ⁶
1805	Br—⟨CH ₂	1	. 2	0	R	H	-CH ₂ -N-C-SCF ₃
1806	H₃CO-(CH₂-	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1807	H ₃ CQ . HO————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1808	HQ H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1809	HO-CH ₂ -	1	. 2	. 0	R	н	-CH ₂ -N-C-SCF ₃
1810	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1811	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1812	H ₃ CS-CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-SCF ₃
1813	H₃CCH₂—(1	2	O	R .	н	-CH ₂ -N-C-SCF ₃
1814	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-SCF ₃
	H ₃ C-CH ₂ -						-CH ₂ -N-C-SCF ₃

1816 (CH ₃) ₃ CH CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1818 B C CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1819 H ₃ CO CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1820 H ₃ CO CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1821 H ₃ CO CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1822 HO CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1823 C CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1824 CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1825 H ₃ CS CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1826 CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1827 C CCHF ₂ 1828 CH ₂ CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1829 CCHF ₂ 1820 CH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1820 CCHF ₂ 1821 CCH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1821 CCH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1822 CCH ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂ 1823 CCHF ₂ 1 2 0 R H $\frac{1}{-CH_2 - H^2}$ CCHF ₂		ie 1.	100						
1817 (CH ₃) ₃ C C CH ₂ 1 2 0 R H $\frac{1}{1818}$ B C CH ₂ 1 2 0 R H $\frac{1}{1819}$ CCHF ₂ 1 2 0 R H $\frac{1}{1819}$ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂ CCHF ₂ CCHF ₂ CCHF ₂ 1 2 0 R H $\frac{1}{1820}$ CCHF ₂	Com	ipd. D.	R ¹ (CH ₂)	-	k n	n n	chirality	⁻ R³	-(CH ₂) p (CH ₂) q G-R ⁶
1818 B $-CH_{2}$ 1 2 0 R H $-CH_{2}$ 1 2 0 R $-CH_{2}$ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	181	6 (c	H ₃) ₂ CH-{	1 ₇ - ·	1 2	? 0	R	Н.	-CH ₂ -N-C-SCF ₃
1819 $H_{3}CO - CH_{2} - 1 2 0 R H$ 1820 $H_{3}CO - CH_{2} - 1 2 0 R$ 1821 $H_{3}CO - CH_{2} - 1 2 0 R$ 1822 $HO - CH_{2} - 1 2 0 R$ 1823 $O - CH_{2} - 1 2 0 R$ 1824 $O - CH_{2} - 1 2 0 R$ 1825 $O - CH_{2} - 1 2 0 R$ 1826 $O - CH_{2} - 1 2 0 R$ 1827 $O - CH_{2} - $	1817	7 (c	н₃)₃ с-{-}Сн	l ₂ - 1	2	0	R	н	-CH ₂ -N-C-SCF ₃
1820 $H_{3}CO$ H_{2} 1 2 0 R H $-CH_{2}$ 1 2 0 R $H_{3}CO$ $-CH_{2}$ 1 2 0 R $-CH_{2}$ $-CH_{$	1818	3	Вг—{	1	2	0	R	н	-CH ₂ -N-C-C
1821 $H_{3}CO \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-CH_{2}$ N C $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N C $-C$	1819		,co-()-сн ₂	- 1	2	0	R	н	-CH ₂ -N-C- OCHF₂
1822 $HO \longrightarrow CH_{2}$ 1 2 0 R H $CH_{2} \longrightarrow CH_{2}$ 1 2 0 R H $CH_{2} \longrightarrow CH_{2}$ 1 2 0 R H $CH_{2} \longrightarrow CH_{2}$ 1 2 0 R 1 $CH_{2} \longrightarrow CH_{2}$ 1 2 0 R 1 $CH_{2} \longrightarrow CH_{2}$ 1 $CH_{2} \longrightarrow CH_{2}$ 1 2 0 R 1 $CH_{2} \longrightarrow CH_{2}$ 1 $CH_{2} \longrightarrow CH_{2} \longrightarrow CH_{2}$ 1 $CH_{2} \longrightarrow CH_{2} \longrightarrow CH$	1820	+	13CQ 10-CH ₂ -	1	2	O	R	H	-CH ₂ -N-C
1823	1821	Нз	но co-Сh ₂ -	. 1	2	0	R	Н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-
1824 $-CH_2$ 1 2 0 R H $-CH_2$ 1 2 0 R $-CH_2$ $-CH_2$ $-CH_2$ 1 2 0 R $-CH_2$	1822	Н	O-{CH2-	1	2	0	R	H	-CH ₂ -N-C-OCHF ₂
1825 H ₃ CS—CH ₂ - 1 2 0 R H —CH ₂ -N-C-	1823	ĺ	-CH ₂ -	1	2	0	R	н .	-CH ₂ -N-C-OCHF ₂
	1824	ζ	-CH ₂ -	1	2	0	. R	. н	- H
1826 H ₃ CCH ₂ -CH ₂ - 1 2 0 R H -CH ₂ -N-C-	1825	H₃C	S-(CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-C
	1826	Н₃СС	H ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-

Compd. R^{1} $(CH_{2})_{j}$ k m n chirality R^{3} $-(CH_{2})_{p}$ R^{4} (CH_{2}) R^{5} (CH_{2})	OCHF ₂
CU.	OCHF ₂
1828 H ₃ C CH ₂ - 1 2 0 R H C-CH ₂ -N-C-	
	OCHF ₂
1829 H ₃ C CH ₂ - 1 2 0 R H -CH ₂ -N-C-	- C
1830 (CH₃)₂CH-CH₂- 1 2 0 R H -CH₂-N-C-HN-C-HN-C-HN-C-HN-C-HN-C-HN-C-HN-C-HN-C-HN-	OCHF ₂
1831 вг—СH₂- 1 2 0 R H —СH₂-N-С—	C(CH ₃) ₃
1832 H₃CO-⟨ CH₂- 1 2 0 R H -CH₂-N-C-⟨	C(CH ₃) ₃
1833 HO-CH ₂ - 1 2 0 R H -CH ₂ -N-C-C	C(CH ₃) ₃
1834 H ₃ CO—CH ₂ — 1 2 0 R H —CH ₂ —N-C—	C(CH ₃) ₃
1835 HO-CH₂- 1 2 0 R H -CH₂-N-C-	C(CH ₃) ₃
1836 CH ₂ - 1 2 0 R H -CH ₂ -N-C	O_C(CH₃)₃
1837 CH ₂ - 1 2 0 R H -CH ₂ -N-C-	

Т	al	٦l	۵	1	1	6	Ω
•	44	,,	Ç			v	0

Compo	d R ¹ (OLL)					<u>:</u>	D4
No.	$\frac{R^{1}}{R^{2}} - (CH_{2})_{i} -$	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + \frac{R^4}{R^5} (CH_2)_{\overline{q}} G - R^6$
1838	H₃CS-(CH₂-	1	2	0	. R	H	-CH ₂ -N-C-C(CH ₃) ₃
1839	H₃CCH₂—⟨¯¯)-CH₂-	1	2	. 0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1840	O-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
	H ₃ C-CH ₂ -					н	-CH ₂ -N-C
1842	H ₃ C — CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-(CH ₃) ₃
1843	(CH ₃) ₂ CH-CH ₂ -	1	2	0 .	R	н	-CH ₂ -N-C-(CH ₃) ₃
1844	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-(CH ₃) ₃
	H ₃ CCH ₂ —CH ₂ -				R	н	-CH ₂ -N-C- HN CH ₂ -CH ₂ CH ₃
1846	CH ₃ -CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1847	(CH ₃) ₀ C− ⟨	1	2	0	R .	н	-CH ₂ -N-COCHF ₂
848	H ₃ CQ HO————————————————————————————————————	1	2	0	R ·	н	- CH ₂ -N-C-

Table	1.1	169
-------	-----	-----

Tuble	1.103						•
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (CH_2)_{q}$
1849	CH₂-	1	2	0	R ·	н	- CH ₂ -N-C-
1850	H ₃ CCH ₂ CH ₂ -	1	2	0	R	н	-CH2-NC
1851	CH ₃ C-CH ₂	1	2	0	R	н	-CH ₂ -N-C-
1852	O ← CH ₂ −	. 1	2	0	R	н	-CH ₂ -N C-
1853	H ₃ CQ HO————————————————————————————————————	1	2	0	R	н.	-CH ₂ -N-C-
1854	-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
1855	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C-
1856	CH ₃	1	2	0	R	н	-CH ₂ -N-C-
1857	O-CH ₂ -	1	2	0	R		-CH ₂ -N-C-
1858	Br—CH₂-	1	2	0	R	н	-CH ₂ -N-C
1859	H ₃ CO-⟨CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C$ $-CH_{2}-N\cdot C$ $H_{2}N$ $H_{2}N$ Br $-CH_{2}-N\cdot C$ $H_{2}N$

Table 1.170 192

l able	e 1.170	٠.,				~ 0 2		•
Comp No.	od. R ¹	≻(CH ₂)j−	ŀ	c m	ı n	chirality	₽³	$-(CH_2)_{p}$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
1860	H₃CC	}CH₂-	1	2	0	R	Н	-CH ₂ -N-C
1861	Н³ĊО- Н	OCH ₂ -	_ 1	2	0	R	н	-CH ₂ -N-C Br
1862	но{	CH ₂ -	1	2	0	R	: H	-CH ₂ -N-C
1863			1	2	0	R	н	-CH ₂ -N-C
1864	H₃CS - √	_СН2-	1	2	0	R .	н •	-CH ₂ -N-C
1865	~					R	н	-CH ₂ -N-C Br
1866	H₃C- H₃C	CH ₃ −CH ₂ −	1	2	0	R	н	-CH ₂ -N-C-Br
1867	(CH ₃)₂CH-	О −сн ₇ −	1	2	0	R	н	-CH ₂ -N-C
1868	(CH3⅓ C(1	2	0	R	Н	-CH ₂ -N-C-Br
1869	Вг−√) —сн₂–	1	2	0	R	н	-CH ₂ -N-C
1870	н₃со-{		1	2	0	R	н	-CH ₂ -N-C-

193

Ta	h	ما	1	1	7	1

rabie	1.171						
Compd.	R ¹ /(CH ₂) _j -	k	m ·	n	chirality	R³	$-(CH_2)^{-\frac{R^4}{1}}_{P_5}(CH_2)^{-\frac{1}{4}}_{Q_5}G-R^6$
1871	н ₃ со но—Сн ₂ -	1	2	0	R	Н	-CH ₂ -N-C-
1872	HQ H ₃ CO—CH ₂ -	.1	2	0	R	н	$-CH_2-N-C$ H_2N
1873	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1874	CH ₂ -	1	. 2	0	R	Н	$-CH_2-N$ C H_2N
1875	. CH2-	1	2 ·	0	R	н •	-CH ₂ -N-C-
1876	H₃CS-()-CH₂-	1	2	0	R	н	$-CH_2-N+C$ H_2N
1877	H ₃ CCH ₂	1	2	0	R	н	$-CH_2-N-C$ $H_2 N$
1878	CH₂-					н	-CH ₂ -N-C
1879	CH ₃ H ₃ C — CH ₂ -	1	2	0	R.	н	$-CH_2-N$ H_2N
1880	(CH ₃) ₂ C H————————————————————————————————————	1	2	0	R		-CH ₂ -N-C
1881	(CH ₃) ₃ C-\CH ₂ -'	1	2	0	R	н	-CH ₂ -N-C-

Table 1.17:	2	2	2	2																																																																																			ĺ		ı		•	•		•																								٠	•																											
-------------	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	---	--	---	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Table	1.172						
Comp No.	d. R^2 $(CH_2)_i$	k	m	n	chirality	R³	-(CH ₂) _p +(CH ₂) _q -G-R ⁶
1882	Вг—СН₂-	1	2	0	R .	н	-CH ₂ -N-C
1883	H₃CO-{}CH₂	- 1	2	0	R	н	-CH ₂ -N-C
1884	H ₃ CQ HO→CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1885	HO H ₃ CO-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
1886	HO-CH ₂ -	. 1	2	0	R	н	-CH ₂ -N-C
1887	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1888	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1889	H₃CS-CH₂-	1	2	0	R	н	$-CH_2-N-C$ H_2N
1890	H ₃ CCH ₂ —CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1891	CH ₂ - CH ₃ -CH ₂ -	1	2	0	R	н	$-CH_{2}-NCC$ $H_{2}N$ $-CH_{2}-NCC$ $H_{2}N$ $-CH_{2}-NCC$ $H_{2}N$ $+CH_{2}-NCC$ $+$
1892	H ₃ C-CH ₂ -	1	2	0	R .	` н	-CH ₂ -N-C

Tab	ole	1.	173

Compd. No.	R ¹ (CH ₂);	k	m	n	chirality	R³	-(CH ₂) _p +3 (CH ₂) _q G-R ⁶
1893	H_3C CH_3 CH_2 CH_2	1	2	0	R	н	$-CH_2-N-C$ H_2N
1894	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
1895.	(CH ₃) ₃ C————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C-NO ₂
1896	HQ H ₃ CO—CH ₂ —	1	2	0	R	Н	-CH ₂ -N-C
1897	H ₃ CS-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N H_2N
1898	H ₃ CCH ₂ ————————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
1899	(CH ₃) ₂ CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
1900	HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1901	H ₃ C(CH ₂) ₂	1	. 2	0	Ŗ	ң	$-CH_2$ -N-C- \rightarrow OCF ₃ H_2N
1902	CH₂-	1	2	0	R	н	$-CH_{2}-NCH_{2}-NCH_{2}-NCH_{3}$ $-CH_{2}-NCH_{2}-NCH_{3}$
1903	(CH ₃) ₂ CH	2	2	1	•	н	-CH ₂ -N-C

Table	1.	17	4
-------	----	----	---

able	1.174						
Compo	d. R^1 (CH ₂)	k	m	n	chirality	R³	-(CH ₂) p G (CH ₂) q G-R ⁶
1904	н ₃ с(сн ₂) ₂ —{сн,	a− 2	2	1	•	н	-CH ₂ -N-C-
1905	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1906	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
1907	HO-{	1	2	0	R	н	$-CH_2-N$ C H_2N OCF_3
1908 ·	H ₃ CO-CH ₂ -CH ₂	1	2	0	R	н	-CH ₂ -N-C
1909	H ₂ C=CH-CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ OCF_3
1910	- Br€	2	2	1	-	н	-CH ₂ -N-C-OCF ₃
.1911	CH ₂ -	2	2	1		Н	-CH ₂ -N-C
1912	HO-CH2-				-	н	-CH ₂ -N-C
1913	CH ₃ -CH ₂ -	2 2	2 1	ł		Н	-CH ₂ -N-C
1914	H ₃ C-CH ₂ -	2 2	2 1		•	н	$-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$ $-CH_{2}-N-C$ $H_{2}N$

	Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^-R^6$
•	1915	H ₃ CC _. H ₂ Q HO————————————————————————————————————	1	2	0	R	Н	-CH ₂ -N-C
	1916	H ₃ C HO—CH ₂ —	1	2	0	R	н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
	1917	H ₃ CC H ₂ Q HO————————————————————————————————————	2	2	1	-	H	$-CH_2-N-C-$ H_2 H_2 H_2 H_3
	1918	H ₃ C HO-CH ₂ -	2	2	1	- -	Н	$-CH_2$ - N - C - H_2 N C - H_2 N
	1919	CH ₂ -	2 .	2	1	-	н	-CH ₂ -N-C-CF ₃
	1920	CH-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
	1921	CH_CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N OCF_3 H_2N
	1922	CH2-CH2-	2	2	1	-	н	-CH ₂ -N-C
	1923	Br-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
	1924	H ₃ CO-{\bigce}-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-SCF ₃
	1925	F	2	2	1	-	н	$-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $-CH_{2}-N+C$ $+C$ $-CH_{2}-N+C$

198

Table	1.1	76
-------	-----	----

		·					
Compd. No.	R ¹ (CH ₂) _i -	k	m	n	chirality	Ŕ³	$-(CH_2)_{P} + (CH_2)_{Q} - G - R^6$
1926	F-CH ₂ -	2	2	1		Н	-CH ₂ -N-C-SCF ₃
1927	HO-{}-CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-SCF ₃
1928	CH ₂ -	2	2	1	-	н	-CH2-N-C-SCF3
1929	CH ₂ -	2	2	1.	-	н	-CH ₂ -N-C-SCF ₃
1930	H ₃ CS-()-CH ₂ -	2	2	. 1	- ·	Н	-CH ₂ -N-C-SCF ₃
1931	H ₃ CCH ₂ —CH ₂ -	2	. 2	1	-	н	-CH ₂ -N-C-SCF ₃
1932	O√CH ₂ -	. 2	2	1	-	н	-CH ₂ -N-C
	CH ₃ -CH ₂ -				-	H	-CH ₂ -N-C-SCF ₃
1934	H_3C CH_3 $-CH_2$ $-CH_2$	2	2	1	-	Н	-CH ₂ -N-C-SCF ₃
	O ₂ N-(CH ₂ -				-	н	-CH ₂ -N-C-SCF ₃
1936	H₃C-{	2	2	1	-	н	-CH ₂ -N-C-SCF ₃

Ta	h	ما	4	1	17	7
10	u	15				

lable	1.177						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
1937	(CH ₃) ₂ CH-CH ₂ -	2.	2	1	-	н	-CH ₂ -N-C-SCF ₃
1938	8r—⟨	2	2	. 1	-	н	-CH ₂ -N-C
1939	H₃CO-{}-CH₂-	2	2	1	-	H.	-CH ₂ -N-C
1940	F	2	2	1	-	н .	-CH ₂ -N-C
1941	F—CH ₂ -	2	2	1.	 :	н	-CH ₂ -N-C
1942	HO	2	2	1	-	н	-CH ₂ -N-C
1943	CH₂-	2	2	1	-	н.	-CH ₂ -N-C
1944	CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ CH_3 CH_3
1945	H₃CS-⟨CH₂-	2	2	1	-	н	-CH ₂ -N-C
1946	H ₃ CCH ₂ —CH ₂ -	2	2	1	-	н	$-CH_2$ -N-C- \longrightarrow CH_3
1947	O—CH₂-	2	2	1	٠.	н	-CH ₂ -N-C

- able	1.176					·	
Compo No.	$H \xrightarrow{R^1} (CH_2)_i -$	k	m	n	chirality	R³	$-(CH_2)_{p}$ $+ \frac{R^4}{R^5}$ $(CH_2)_{q}$ $- \frac{G}{R^6}$
1948	CH ₃	2	2	1	<u>.</u> .	н	-CH ₂ -N-C- Br CH ₃
1949	H ₃ C CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1950	O ₂ N-CH ₂ -	2	2	1	-	н ,	-CH ₂ -N-C
1951	H ₃ C-\CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CH ₃
1952	Br—⟨	2	2	1	-	H	-CH ₂ -N-C-
1953	H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1954	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-→F
1.955	F-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1956	HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
1957	O—CH₂-	2	2	1	-	н	-CH ₂ -N-CBr
1958	-CH ₂ -	2	2	1	•	н	-CH ₂ -N-C

Tab	ما	1	1	7	q
Iau					J

Compd. No.	R ¹ -(CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
1959	H ₃ CS-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF
1960	H ₃ CCH ₂ -CH ₂ -	2	2	1	-	н	-CH2-N-C-Sr F
1961	O−CH ₂ −	2	2	1	-	н	-CH ₂ -N-C
1962	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C Br
1963	H_3C CH_3 CH_2 CH_2	2	2	1	-	H	-CH ₂ -N-C
1964	O ₂ N-{CH ₂ -,	2	2	1		Н	-CH ₂ -N-C
1965	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-CF
1966	(CH ₃) ₂ CH-√CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-Br
1967	Br-√CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1968	H ₃ CO-{	2	2	1	-	н	-CH ₂ -N-C
1969	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Table	1.180						
Compd No.	R^1 (CH ₂) _i	k n	n n	chirality	R³	$-(CH_2)_{p+5}^{R^4}(CH_2)_{q}G-R^6$
1970	Ç √ −0	H ₂ -	2 2	2 1	•	н .	-CH ₂ -N-C
1971	C.	1 ₂ - 2	2 2	! 1	-	. н	-CH ₂ -N-C
1972	H₃CS-(-)-C	CH2− 2	2 2	1	٠.	H	$-CH_2-\dot{N}\cdot\dot{C}-\underbrace{\qquad}^F$ H_2N
1973	H₃CCH₂—	сн₂– 2	2 2	1		н	-CH ₂ -N-C
1974	H₃C−⟨CH₃	_{i2} - 2	2	1	- '	Н	$-CH_2-N-C$ H_2N
.1975	O ₂ N-(-)-CH	i _z - 2	2	1	-	н	-CH ₂ -N-C
1976	H₃C-⟨}-CH	z 2	2	1		н	-CH ₂ -N-C
1977	NC-CH	₂- 2	2	1		н	$-CH_2-N^{-1}C$ H_2N
1978	(CH ₃) ₂ C H− ⟨ ¯⟩−C	H₂- 2	2	1		н	-CH ₂ -N-C
1979	CH ₂	. 2	2	1		н	-CH ₂ -N-C
1980	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

Tal	ы	е	1	.1	18	1

rabie	1.101						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	Ĥ³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^{6}$
1981	O ₂ N-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1982	NC-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C-F
1983	(CH ₃) ₂ CH-\(\bigcirc\)-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H ₂ N
1984	BrCH ₂ -	2	2	1	-	Ĥ.	-CH ₂ -N-C
1985	H ₃ CO-CH ₂ -	2	2	1	-	. н	- CH ₂ -N-C
1986	HO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
1987	CH ₂ -	2	2	1	. .	н	-CH ₂ -N-C
1988	CH₂-	2	2	1	-	н	$-CH_2-N-C-$ H_2N
1989	H ₃ CS-CH ₂ -	2	2	1	-	н	$-CH_2-NCC-$ H_2N
1990	H₃CCH₂—CH₂–	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
1991	CH ₂ -	2	2	1	-	н	-ÇH ₂ -N-C-

Table	1.182						
Compd.	R ² (CH ₂)	k	m	n	chirality	R³	$-(CH_2)_{p} + G^4 + (CH_2)_{q} - G^6$
1992	CH ₃ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1993	O ₂ N-CH ₂ -	2	2	. 1	-	н	-CH ₂ -N-C
1994	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
1995	NC-CH ₂ -	2	2	1	• .	н	-CH ₂ -N-C-
1996	(CH ₃) ₂ CH-√CH ₂ -				-	н	$-CH_2-NC \longrightarrow H_2N$
1997	H ₃ C CH ₂ -	2	2	1	-	н	$-CH_2-N-C \longrightarrow H_2N$
1998	Br—€CH ₂ -	2	2	, 1	-	н	-CH ₂ -N-C-
1999	H₃CO-(2	2	1	-	Н	-CH ₂ -N-C-
. 2000	F-CH ₂ -	2	2	1	-	н .	-сн ₂ -N-с-С
	HO-CH ₂ -						-CH ₂ -N-C-
2002	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2002	ζ ₀ , ω., , , , , , , , , , , , , , , , , ,	2	2	1	-	Н	-CH ₂ -N-C-

Table 1.183	Ta	bl	e	1	.1	8	3
-------------	----	----	---	---	----	---	---

Table	1.183						
Compd.	R ¹ / _P -(CH ₂) _j -	k	m	n	chirality	R³	-:(CH ₂) _p + (CH ₂) _q G-R ⁶
2003	CH ⁵ -	2	2	1	•	Н	-CH ₂ -N-C-CI
2004	H₃CS-CH₂-	2	2	1	-	н	-CH ₂ -N-C-
2005	H ₃ CCH ₂ ————————————————————————————————————	2	2	1	-	Н	-CH ₂ -N-C-CI
2006	H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CI
2007	O ₂ N-⟨ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2008	H ₃ C-(CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2009	NC-CH ₂ -	2	2	1	-	Н	-сн ₂ -и с-
	(CH ₃) ₂ CH−€ CH ₂ -		•		-	н	-CH ₂ -N-C
2011	CH ₃ H ₃ C - CH ₂ -	2	2	. 1	-	Ĥ	-CH ₂ -N-C-CI
2012	Br—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2013	н₃со-СН₂-	2	2	1	-	н	-CH ₂ -N-C

Table 1.184

· abic	1.104						
Compo No.	d. R^1 (CH ₂)j-	k	m	п	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2014	HO-{	2	2	1	:	н .	-CH₂-N-C-S-CI
2015	CH₂-	2	2	1	•	н	-CH ₂ -N-C
2016	-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-
2017	H3CS-CH2-	2	2	1	-	Н	-CH ₂ -N-C
2018 .·	H ₃ CCH ₂ ————————————————————————————————————	2	2	1		н	-CH ₂ -N-C
2019	CH₂-	2	2	1	-	н	-CH ₂ -N-C
-2020	H ₃ C-CH ₂ -	2	2	1	-	Н	-CH2-N-C-(S)-CI
2021	O ₂ N-CH ₂ -	2	2	1	-	Н .	-CH ₂ -N-C
2022	H ₃ C-CH ₂ -						-CH ₂ -N-C
2023 -	NC-CH ₂ -	2	2	1	-	Н.	-CH ₂ -N-C- GI
	(CH ₃)₂CH						-CH ₂ -N-C

ı

Table	1.185	

							•
Compd.	R ¹ (CH ₂) _j	k	m	n _.	chirality	R³	-(CH ₂) _p +5 (CH ₂) _q -G-R ⁶
2025	H ₃ C CH ₂ -	2	2	1	•	Н	-CH ₂ -N-C
2026	F-CH ₂ -	2	2	1	-	H	-CH ₂ -N-C-
20.27	Br-CH ₂ -	2	2	1	-	н	$-CH_2-N-C-\longrightarrow_{H_2N}^{P}$
2028	H ₃ CO-CH ₂ -	2	2	1	-	. н	$-CH_2-N-C$ H_2N Br
°2029 ·	HO-CH ₂ -	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2030	CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N Br
2031	CH₂-	2	2	1	-	н	$-CH_2-N-C$ H_2N Br
2032	O CH₂-	2	2	1	ے	н	-CH ₂ -N-C
2033	CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N H_2N
2034	0 ₂ N-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 N
2035	H ₃ C-CH ₂ -	2	2	1	-	Н.	CH ₂ -N-C

Compd No.	R^{1} $(CH_{2})_{j}$	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2036	NC-CH2-	2	2	. 1		н	-CH ₂ -N-C
2037	H ₃ C — СН ₂ -	2	2	1	-	н	-CH ₂ -N-C-Br
2038	F-CH ₂ -	2	2	1	-	н :	$-CH_{2}-N \stackrel{Q}{C} \longrightarrow \stackrel{Br}{\longrightarrow} H_{2}N$
2039	H₃C-()-CH ₂ -	2	2	1	-		-CH ₂ -N-C- H CN
2040	H ₃ C-CH ₂ -	1	2	0	R .	н .	-cH ⁵ -M-c-cH-OH
2041	H ₃ C-\(\bigc\)-CH ₂ -	1	2	0	R	Н	-CH2-N-C-CH-
2042	H ₃ C-CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C
2043	H ₃ C-CH ₂ -	1	2	0	R	н	-CH _Z -N-C-CH _Z -CH ₃
2044	CH ₃ CH₂- CH₃		2	0	R	н	-CH ₂ -N-C
2045	CH₃ CH₃	1	2	0	R	н	-CH2-N-C-N-CI
2046	CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ - CH ₂ - CH ₃	1	2	0	R .	н	-CH2-N-C-N-CH3

Table 1.187

Tubic 1	.107						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2047	CH ₃ CH₂- CH₃	1	2	0	R .	н	-CHNC
2048	CH ₃ CH ₂ - CH ₃	1	2	0	R	н	-CH ₂ -N-C
2049	CH ₃ CH ₂ CH ₃	1	2	0	R	н	-CH2-HN-CH3
2050	H₃C S CH₂-	1	2	0	R	н	-CH ₂ -N-C
2051	H ₃ C CH ₂ -	1	2	0	R	Н	CH2-N-C
2052	Br CH ₂ − OCH ₂ CH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2N
2053	H ₃ CQ CH ₂ O-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
	H ₃ CO-CH ₂ -					н	$-CH_2-N$ C H_2 H_2 H_2 H_2
2055	H ₃ CQ CH ₂ -	2	2	1		. н	$-CH_2-N-C-$ H_2N
2056	Br CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N
2057	H ₃ CO—CH ₂ —	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N

210

Table 1.188

	1.100						
Compd No.	$\begin{array}{c} R^1 \\ R^2 \end{array} - (CH_2)_j -$	k	m	n	chirality	R ³	$-(CH_2)_{p} + (CH_2)_{q} G - R^6$
2058	H ₃ CQ OCH ₃	2	2	1	-	Н	-CH ₂ -N-C
2059	CH ₂	2	2	1	-	н	-CH ₂ -N-C
2060	H ₃ CO CH ₂ -CH ₂ -OCH ₃	2	2	1	-	н	$-CH_2$ N C F H_2 N
2061	F_CH ₃	2	2	1	-	н	-CH ₂ -N-C
2062	H₃CO-CH₂-	2	2	1	-	н	-CH ₂ -N-C
2063	H ₃ CO H ₃ C − CH ₂ − H ₃ CO	2	2	1	· •	н .	- CH ₂ -N-C
2064	BC-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2065	H ₃ CCH ₂ Q H ₃ CCH ₂ O-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2066	OCH ₂ -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F
2067	(H;C) ₂ CHCH ₂ ————————————————————————————————————	2	2	1	-	н .	-CH ₂ -N-C
2068	CL F—CH ₂ -	2	2	1	•	н	-CH ₂ -N-C

Table 1.189

rabie	1.109						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2069	H ₃ C CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2070	Br_CH ₂ -OCH ₃	2	2	1	-	H :	-CH ₂ -N-C
2071	H ₃ CO-CH ₂ -OCH ₃	2	2	1	-	н	$-CH_2-N-C$ H_2 H_2 H_2 H_2
2072	(H ₃ C) ₂ CHO-⟨□ − CH ₂ − .	2	2	1	-	н	-CH ₂ -N-C
2073	CH ₂ Q	2	2	1	-	H.	-CH ₂ -N-C
2074	H3CO-CH2-	2	2	1	-	н .	-CH ₂ -N-CF H H ₂ N
2075	H ₃ CQ —CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2076	F-CH ₂ -					Н	-CH ₂ -N-CF H H ₂ N
2077	CICH ₂ OH	2	2	1		н	-CH ₂ -N-C
2078	H ₃ CCH ₂ Q OH CH ₂ -	2	2	1	-		-CH ₂ -N-C
2079	CH ₂ Q H ₃ CO-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C

212

Table 1,190

Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{10^6} (CH_2)_{q} - G - R^6$
2080	CH ₂ Q H ₃ CO————————————————————————————————————	2	2	1	-	н	-CH ₂ -N-C
2081	CI HO—CH ₂ —	2	2	. 1	· _	н	-CH ₂ -N-C-F H ₂ N
2082	OH -CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F-F
2083	H₃CO HO———————————————————————————————————	1	2	0	R	н	-CH ₂ -N-C
2084	H0	1.	2	0	R	Н	-CH ₂ -N-C-CF ₃
2085	OH H₃CO-⟨CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2086	CI HOCH₂-	1	2	0	R	. н	-CH ₂ -N-C
2087	(H ₃ C) ₂ N-⟨□} CH ₂ -	1	2	0	R	н	$-CH_2-N-C-$ H_2N
	(H ₃ CCH ₂) ₂ N-CH ₂ -					н	-CH ₂ -N-C
2089	F-CH ₂ -	1	2	0	R	н	$-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$ $-CH_{2}-N+C$ $H_{2}N$
2090	O-CH ₂ -	1	2	0	R	н	$-CH_2-N-C$ H_2N CF_3

2 1 3

Table 1.191

								•
Compd. No.	R ¹ (CH	2)j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2091	c-{>	 CH₂−	2	2	1	-	H	OCH ₂ CH ₃
2092	c-{	CH2 ⁻ .	.2	2	· 1	-	н	- CH-NC
2093	c-(CH₂−	2	2	1		н	(F) OCH ₂ CH ₃ -CH-N-C- H H CH ₂ CH ₂ SCH ₃
2094	CH	CH ₂	2	2	1	-	н .	(A O OCH ₂ CH ₃ -CH-N-C-CH ₂ CH ₃ CH ₂)
2095	C (CH₂−	2	2	· 1	-	н	$(H) \qquad OCH_2CH_3$ $-CHNC \qquad OCH_2CH_3$ $-CHNC \qquad OCH_2CH_3$ $C(CH_3)_3$
2096	CI()-	CH₂−	2	2	1	-	, н .	(R O OCH ₂ CH ₃ -CH-N-C C CH ₂ CH ₃ -CH ₂ CH ₃
2097	c-C-	CH₂−	2	2	1	-	н	(F) OCH ₂ CH ₃ CH-N-C
2098	c-(CH₂−	2	2	1	-	н .	(A O O CH ₂ CH ₃ - CH N C C C C C C C C C C C C C C C C C
2099	c	CH ₂ −	2	2	1	-	н	() O CH ₂ CH ₃
2100	a-{_}	CH ₂ −	2	2	1	-	н	CH ₂ CH ₃ OCH ₂ CH ₃ OCH ₂ CH ₃
2101	ic-()	CH ₂ -	2	2	1	-	Н	(A OCH ₂ CH ₃ -CH-N-C OCH ₂ -CH ₃ CH ₂ -OCH ₂ -

2 1 4

Table 1.192

Table	1.192						
Compd. No.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - (C$
2102	CHCH2-	2	2	1	-	Н	CH2CH2-C-OCH2-CH3
2103	CHCH ₂ -	2	2	1	-	Н	() O OCH ₂ CH ₃ -CH-N-C-H H H ₂ C-CHOCH ₂ -H R
2104	CI—CH2-	2	2	1	-	Н	() O OCH ₂ CH ₃ -CH ₂ C-OCH ₃ H H CH ₂ C-OCH ₃ O R
2105	H ₃ CQ OH	2	2	1	•	н	$-CH_2-N-C$ H_2N
2106	H ₃ C OH	2	. 2	1	-	н	$-CH_2-N-C$ H_2N
2107	Br CH ₂ -	2	2	1	-	н	
2108	CH ₃	2	2	1	•	н	-CH ₂ -N-C
2109	Br CH ₂ -	2	2	1	-	Н	$-CH_2-N$ C H_2 H_2 H_2 H_3
	H ₃ CCH ₂ CH ₂ -					н	$-CH_{2}-N-C$ $H_{2}N$
2111	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2112	H ₃ CO CH ₂ -	2	2	1	, -	Н	-CH ₂ -N-C

2 1 5

Table 1.193

lable	1.133						•
Compd. No.	R ¹ (CH ₂);-	k	m	n	chirality	R ³	$-(CH_2)_{\overline{p}} + \frac{R^4}{15} (CH_2)_{\overline{q}} - G^-R^6$
· . 2113	H ₂ N H ₃ CO—CH ₂ -	2	2	1	•	н	-CH ₂ -N-C
2114	H ₂ N H ₃ C — CH ₂ -	2	2	1	÷.	н	-CH ₂ -N-C
2115	CH2-	2	2	1	-	н	(F) OCH ₂ CH ₃ -CH-N-C
2116	CH-€	2	2	1	-	H	(<i>F</i>) 0 CH ₂ CH ₃ −CH-N-C- H CH(CH ₃)CH ₂ CH ₃
2117	CH-2-	2	. 2	1	• -	H ,	CH ₂ -NH
2118	HO—CH ₂ —	1	2	0	R .	н	-CH ₂ -N-C-CF ₃
2119	. ОН НО-{CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C-CF ₃
2120	B	1	2	0	R	Н	-CH ₂ -N-C
	ОСН ₃ НО-{СН ₂ -					Н	-CH ₂ -N-C- H ₂ N
2122	CI—CH₂−	1	2	0	R .	Н	$-CH_2-N-C-V$ H_2N
2123	CH2-CH2-NO2	1	2	0	R	Н	$-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$ $-CH_{2}-N-C-$

2 1 6

Table	1.	.1	9	4
-------	----	----	---	---

	1.194						
Compd No.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
2124	O ₂ N CI—CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-
2125	O ₂ N H ₃ CO—CH ₂ —	1	. 2	0	R	н	-CH ₂ -N-C
2126	O ₂ N H ₃ C—CH ₂ -	1	2	0	R	Η·	-CH ₂ -N-C
2127	CH ₂ -NH ₂	1	2	0	Ŗ	н	-CH ₂ -N-C-CF ₃
2128	H ₂ N H ₃ CO CH ₂ -	1.	2	.0	R	H	$-CH_2-N-C H_2N$ CF_3
2129 ·	H ₂ N H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2130	O-N N= CH ₂ -	2	2	1	-	H	-CH ₂ -N-C
2131	CH ₃ CH ₂ - CH ₃	2	2	1		н	-CH ₂ -N-C
2132	H ₂ N CH ₂ -CH ₂ -	1	2	0	R	Н	-CH _{2-N} -C-CF ₃
2133	(H ₃ C) ₂ N CH ₂ -				R	н	-CH ₂ -N-C-CF ₃
2134	CH ₂ - N(CH ₃) ₂	1	2	0	R	н	$-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{2}-N-C$ $+_{2}N$ $-CH_{3}-N-C$ $+_{3}N$ $-CH_{4}-N-C$ $+_{4}N$ $-CF_{3}$ $-CH_{5}-N-C$ $+_{5}N$

217

Table 1.195

I able	1.195						
Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2135	(H ₃ C) ₂ N H ₃ CO—CH ₂ -	1	2	0	R	H	-CH ₂ -N-C-
2136	(H ₃ C) ₂ N H ₃ C-CH ₂ -	1	2	0	\ R	н	-CH ₂ -N-C-CF ₃
2137	CH ₃	1	2	0	R	H	- CH ₂ -N-C- CF ₃
2138	CH ₃ CH ₂ - CH ₃	1	2	0	R ·	н	$-CH_2-N-C$ H_2N
2139	H ₃ C, CI N CH ₂ - CH ₃	1	2.	0	R	н	-CH ₂ -N-C-CF ₃
2140	CH ₂ -	2	2	1	-	н	$-CH_2-N-C H_2N$
2141	H ₂ N HO—CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
	H ₂ N CH ₂ -					н	-CH ₂ -N-C
2143	HN-C-CH3	2	2	1	-	н	$-CH_2-N-C-$ H_2N $-CH_2-N-C-$ H_2N $-CH_3-N-C-$ H_2N
2144	H ₂ N H ₃ CO-CH ₂ -				-	н	$-CH_2-N+C-$ H_2N
2145	H ₂ N HO—CH ₂ -	2	2	1	· -	н	$-CH_2-N^*C-V$ H_2N CF_3 $-CH_2-N^*C-V$ H_2N

218

Table 1.196

	1.130							
Comp No.	d. R ¹	(CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{p}} + (CH_2)_{\overline{q}} - G - R^6$
2146		CH ₂ -	2	.2	1	-	н	-CH ₂ -N-C
2147	Q H₃C-C-N H₃CO-	IH CH₂-	2	2	1	-	Н	-CH ₂ -N-C
2148	Р Н₃С-С-N НО—(H → CH ₂ -	2	2	1	- ·	н :	-CH ₂ -N-C
2149	O ₂ N HO	_}_cH₂-	1	2	0	R	н	-CH ₂ -N-C
		H - CH ₂ -					н	$-CH_2-N-C- \begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\l$
2151		о у-сн₂-	1	2	0	R ·	н	-CH ₂ -N-C
2152	0 H₃C-C-N H₃CO-	H CH ₂ -	1	2	0	R .	н	-CH ₂ -N-C
2153		H CH ₂ -					н	-CH ₂ -N-C
2154	Q H₃C-C-NI H₃CO-√	H 	2	2	1	-	н .	-CH ₂ -N-C
2155	0 H₃C-C-NH HO—	. CH2-	2	2	1	-	н	-CH ₂ -N-C
2156)—СН ₂ - МС-СН3 О	2	2	1	- - ,	н	$-CH_{2}-N+C$

2 1 9

Table 1.197

Compd. No.	R ¹ (CH ₂) _j	k	m [.]	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2157	CH ₃	1	2	0	R	Н	-CH ₂ -N-C
2158	H ₃ C-NH HO-CH ₂ -	1	2	0	R	н	$-CH_2-N$ CF_3 H_2N
2159	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1	-	н	$-CH_2-N-C$ H_2N F
2160	H ₃ C-NH HO-CH ₂ -	2	2	1	•	н	$-CH_2-N-C$ H_2N
2161	H ₃ C-NH CH ₂ -	2	. 2	1		н	-CH ₂ -N-C
2162	H ₃ C-NH H ₃ CO-CH ₂ -	2	2	1.	-	Н	$-CH_2-N-C- \longrightarrow H_2N$
2163	H ₃ C-NH HO-CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2164	ÇH₃ N CH₂-				R	н	-CH ₂ -N-C
2165	H N CH₂-	1	2	0	R	н	-CH ₂ -N-C
2166	[1	2	0	R	н	$-CH_2-N+C- \longrightarrow \\ H_2N$
2167	H N CH ₂ -	1	2	0	R	, н	$-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $-CH_{2}-N \cdot C \longrightarrow CF_{3}$ $-CH_{2}-N \cdot C \longrightarrow H_{2}N$ $-CH_{2}-N \cdot C \longrightarrow H_{2}N$ $-CH_{2}-N \cdot C \longrightarrow H_{2}N$

Table 1.198

Compd. R_2 (CH ₂) ₁ k m n chirality R_3 -(CH ₂) _p R_5 (CH ₂) _q G -R 2168 R_3 (CH ₂) _q R_5								
2169 H_3C CH_3 1 2 0 R H $-CH_2$ CF_3 2170 CH_2 1 2 0 R H $-CH_2$ CF_3 2171 CH_3 1 2 0 R H $-CH_2$ CF_3 2172 CH_3 1 2 0 R H $-CH_2$ CF_3 2174 CH_3 1 2 0 R H $-CH_2$ CF_3 2175 CH_3 1 2 0 R H $-CH_2$ CF_3 2176 CH_3 1 2 0 R H $-CH_2$ CF_3 2176 CH_3 1 2 0 R H $-CH_2$ CF_3 2176 CH_3 1 2 0 R H $-CH_2$ CF_3		• •					R ³	$-(CH_2)_{p} + (CH_2)_{q} - G-R^{0}$
2170	2168	H ₃ C C-OCH ₃ H ₃ C CH ₃	1	2	0	R .	н	-CH ₂ -N-C
2171 $\stackrel{H_3C}{\underset{H_2N}{\longrightarrow}} CH_2$ 1 2 0 R H $\stackrel{-CH_2-N-C}{\underset{H_2N}{\longrightarrow}} CF_3$ 2172 $\stackrel{H_3C}{\underset{H_2N}{\longrightarrow}} CH_2$ 1 2 0 R H $\stackrel{-CH_2-N-C}{\underset{H_2N}{\longrightarrow}} CF_3$ 2173 $\stackrel{H_3C}{\underset{H_2N}{\longrightarrow}} CH_2$ 1 2 0 R H $\stackrel{-CH_2-N-C}{\underset{H_2N}{\longrightarrow}} CF_3$ 2174 $\stackrel{H_3C}{\underset{S}{\longrightarrow}} CH_2$ 1 2 0 R H $\stackrel{-CH_2-N-C}{\underset{H_2N}{\longrightarrow}} CF_3$ 2175 $\stackrel{-CH_3}{\underset{S}{\longrightarrow}} CH_2$ 1 2 0 R H $\stackrel{-CH_2-N-C}{\underset{H_2N}{\longrightarrow}} CF_3$	2169					R	. Н	-CH ₂ -N-C
2172 F_3 C CH_2 1 2 0 R H CH_2 1 2 0 R CF_3 2173 CH_2 1 2 0 R CH_3 1 2 0 R CH_2 1 2 0 R CH_3 1 2 0 R CH_2 1 2 0 R CH_3 1 2 0 R CH_3 1 2 0 R CH_4 CH_2 1 2 0 R CH_4 CH_5 1 2 0 R CH_5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2170	C) CH2-	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
2172 $F_{3}C$ CH_{2} 1 2 0 R \cdot H $-CH_{2}$ CF_{3} 2173 CH_{2} 1 2 0 R \cdot H $-CH_{2}$ CF_{3} 2174 CH_{2} 1 2 0 R \cdot H $-CH_{2}$ CF_{3} 2175 CCH_{3} 1 2 0 R \cdot H $-CH_{2}$ CF_{3} 2176 CH_{2} 1 2 0 R \cdot H $-CH_{2}$ CF_{3}	2171	H ₃ C N CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2173 $\xrightarrow{\text{H}_3\text{C}} \xrightarrow{\text{CH}_2} = 1$ 2 0 R H $\xrightarrow{\text{CH}_2-\text{N-C}} \xrightarrow{\text{CF}_3} = 1$	2172	F ₃ C CH ₂ -	1	2	0	R ·	н	
2175 $H_{3}CO \longrightarrow CH_{2}$ 1 2 0 R H $-CH_{2}$ N CF_{3} 2176 $-CH_{2}$ 1 2 0 R H $-CH_{2}$ N $-CH_{2}$ 1 2 0 R $-CH_{2}$ N $-CH_{2}$ 1 2 0 R $-CH_{2}$ N $-CH_{2}$	2173	S—CH ₂ -	1	2	0	R [.]	н	
2175 $H_3CO \xrightarrow{N} CH_2 - 1 2 0 R H -CH_2 - N CF_3$ 2176 $H_3CO \xrightarrow{N} CH_2 - 1 2 0 R H -CH_2 - N C - CF_3$	2174	H ₃ C CH ₃ B CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2176 $H_{3}C$ CH_{2}^{-} 1 2 0 R H $-CH_{2}^{-}$ CF_{3} $-CH_{2}^{-}$ 1 2 0 R H $-CH_{2}^{-}$ $-CH_{2}^{-}$ $-CH_{2}^{-}$ 1 2 0 R $-CH_{2}^{-}$ $-CH_{2$	2175	H ₃ CO−⟨N− CH ₂ −	1	2	0	R	, н	
2177 H_3C OH CH_2 — 1 2 0 R H $-CH_2$ — H_2N CF_3 CH_2OH 1 2 0 R H $-CH_2$ — CH_2 — CH_3 —	2176	H ₃ C'N -CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2178 H ₃ CO-C 1 2 0 R H -CH ₂ -N-C-S	21 7 7	СН₂ОН	1	2	0	R	н	-CH ₂ -N-C
П214	2178	H ₃ CO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃

221

Table 1.199

lable	1,133			_			
Compd. No.	R ¹ (CH ₂) -	k	m	n	chirality	R ³	$-(CH_2)_{p} + \frac{R^4}{1} (CH_2)_{q} - G^{-R^6}$
2179	H ₃ C-Ç-N → CH ₂ -	1	2	0	R·	н	$-CH_2-N+C H_2N$
2180	C(CH ₂) ₂ -	1	2	0	R	н	$-CH_2-N+C-V$ H_2N
2181	H ₃ CO	1	2	0	R	Н .	$-CH_2-N-C$ H_2 H_2 N
2182	H ₃ C N CH ₂ -	1	2	0	R	Н	-CH ₂ -N-C- H ₂ N
2183	Ş-N N= CH₂-	1	2	0	R	• н	$-CH_2-N-C H_2N$ CF_3
2184	\$ ⁻ N CH₂-	2	2	1	-	Н	$-CH_2-N-C$ H_2N H_2N
2185	S-N N=CH ₂ -	2	2	1	-	н	$-CH_2-NC- \longrightarrow H_2N$
2186	H N CH ₂ -	2	2	1	-	H	$-CH_2-N-C H_2N$ CF_3
2187	H ₂ N HO—CH ₂ -	1	2	0	R	Н	$-CH_2-N-C-$ H_2N CF_3 H_2N
2188	CH ₂ -	2	2	1	•	Н	$-CH_2-N-C-$ H_2N H_2N
2189	CH ₂	1	2	0	R	н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2,22

Table 1.200

Table	1.200						
Compd. No.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q G-R ⁶
2190	CH ₂ -	2	2	1		н	-CH ₂ -N-C-F
2191	CH ₂ -	2	2	1	-	н	-CH ₂ -N-C-CF ₃
2192	S H CH ₂ -	2	2	. 1	-	н	$-CH_2-N+C-$ H_2N CF_3 H_2N
2193	S H CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2194 •	H ₂ N H ₃ C — CH ₂ —	2	2	1	-	н٠	-CH ₂ -N-C
⁻ 2195	H ₂ N CH ₂ -CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2196	H ₃ C-NH . H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2197	H₃C-NH H₃CO-CH₂-	1	2	0	R	н	-CH ₂ -N-C-CF ₃
2198	H ₃ C-NH C-CH ₂ -	1	2	0.	R	н	-CH ₂ -N-C
2199	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	$-CH_{2}-N-C-$ $+L_{2}N$ $+L_{2}N$ $-CH_{2}-N-C$ $+L_{2}N$ $+L_{2}N$ $+L_{2}N$
2200	H ₃ C-NH C⊢ CH₂-	2	2	1		н .	O CF3

Tal	ы	۵	1	.2	n	1
10	91	•			u	- 1

lable l	1.201						
Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	-(CH ₂) _p + (CH ₂) _q -G-R ⁶
2201	H ₃ C-NH H ₃ C-CH ₂ -	2	2	1	-	н	-CH ₂ -N-C
2202	H CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$ CF_3
2203	CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C
2204	CH ₃	2	2	1·	-	н	$-CH_2-N-C H_2N$ CF_3
2205	CH ₃	2	2	, 1	-	н	$-CH_2-N-C$ H_2N H_2N
2206	HO-CH ₂ -	2	2	1	-	н	$-CH_2-NC- \longrightarrow H_2N$
2207	CH ₃	2	2	1	-	н	-CH ₂ -N-C-F H H ₂ N
	HN-CH ₃					н	$-CH_2-NC- \bigcirc \\ H_2N$
2209	HN-CH ₃	2	2	1	-	н.	$-CH_2-N-C$ H_2 H_2 H_2 H_3
2210	CH ₂ -	1	2	0	R	н	-CH ₂ -N-CF ₃
2211.	CH₂-	. 2	2		-	н	$-CH_{2}-N-C + F$ $+L_{2}N$ $-CH_{2}-N-C + H$ $+L_{2}N$ $-CH_{2}-N-C + H$ $+L_{2}N$ $-CH_{2}-N-C + H$ $+L_{2}N$ $-CH_{3}-N-C + H$

224

Table 1.202

Compd. No.	R ¹ (CH ₂) _j	-	k m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2212	CH _Z	_ 2	2	1	-	Н	-CH ₂ -N-C
2213	H ₂ N CH-CH ₂	_ 2	2	. 1	-	н	-CH ₂ -N-C
2214	H ₂ N H ₃ C-CH ₂	_: 2	2	1	-	н	-CH ₂ -N-C-CF ₃
2215	Н₃С-НИ	₂ 1	2	0	R	н	-CH ₂ -N-C-F ₃
2216 F	PCCH ² N PCCH ² N PCCH ³ N	l ₂ - 1	2	0	R	н	-CH ₂ -N-C
2217	H ₃ CO-Ç ^O H ₃ C-V-CH ₂ - CH ₃	. 1	2	0	R	н	-CH ₂ -N-C
2218	С├-{_}-СН₂-	1	2	0	R	н	-CHZ-N-C-CF3
2219	CH_CH ₂ -	. 1	2	0	R	н	- CH ₂ -N C-N CF ₃
2220	CH_CH2-	1	2	0	R .	н	-CH ₂ -N-C-N-CH(CH ₃) ₂
2221	CH ₂ —CH ₃ —	1	2	0	R	Н	-CHZ-NC-CF3 HN OC-N-C-OH3
2222 F	H ₃ C CO ₂ CH ₃ CH ₂ -CH ₂ -CH ₃	1	2	0	R	н	-CH ₂ -N-C-H ₂ N C-F ₃ -CH ₂ -N-C-H ₂ N C-F ₃

Table 1.203

Compd.	R ¹ (CH ₂) _j -	k	m	n	chirality	R³	$-(CH_2)_{\overline{P}} + (CH_2)_{\overline{q}} - G - R^6$
2223	CHZ-CH _Z -	1	2	0	R	н	-CH ₂ -N-C-N-N-N-N-N-CF ₃
2224	CHCH ₂ -	1	2	0	R	н	-CH2-N-C-N-N-
2225	CH	1	2	0	R	н	-CHZ-N-C-NN
2226	H ₃ C CH ₂ -CH ₂ -	1	2	0	R	н	$-CH_2-N+C-$ H_2N
2227	CI(CH ₂ -	1	2	0	R	н	-CH-HC-HN HN C-H-NCH0)2
2228	CI—(CH₂-	1	2	0	R	н	-CH2-N C-N CF3
2229	O—CH₂- CH₃	1	2	0	R ,	н	-CH ₂ -N-C- H ₂ N
	H ₃ CCH ₂ —CH ₂ —CH ₂ —					н	-CH ₂ -N-C
2231	H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_{2}-N\cdot C$
2232	H ₃ C H ₃ CO-CH ₂ -	1	2	0	R	н	$-CH_{2} \xrightarrow{N^{2}C} \xrightarrow{OCF_{3}}$ $H_{2}N$
2233	CH ₂	1	. 2	0	R	н	-CH ₂ -N-C

226

Ta	b	le	1	.2	0	4
----	---	----	---	----	---	---

	e 1.204						
Com _l No		k	: m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2234	CH ₂ -CH ₃	1	2	0	R	н	-CH ₂ -N-C
2235	CH ₂ -	1	2	0	R	н .	$-CH_2-N-C$ H_2 H_2 N
2236	FCH ₂ -	1	. 2	0	R	н	-CH ₂ -N-C
2237	CL CH ₂ -	1	2	0	R	. н	-CH ₂ -N-C
2238	H ₃ CO CH ₂ -	i	2	0	R	н	$-CH_2$ -N-C- H_2 N
2239	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2240	CH2-CH3	1	2	0	R	н	-CH ₂ -N-C-OCF ₃
2241	H ₃ C N	1	2	0	R	H	-CH ₂ -N-C-S
2242	CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2243	(H ₃ C) ₂ N-\	1	2	0	R	н	-CH ₂ -N-C- H ₂ N-C- H ₂ N
2244	F H	1	2	0	R	Н	OCF ₃ -CH ₂ -N-C- H ₂ N OCF ₃

227

Ta	h	le	1	.2	O	5

Compd.	R ¹ (CH ₂) _j	k	m	n	chirality	R³	$-(CH_2)_{p} + \frac{R^4}{R^5} (CH_2)_{q} - G - R^6$
2245	H ₃ C N CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2246	H ₂ CCH ₂ H	1	2	0	R	Н	$-CH_2-N-C H_2N$ CF_3
2247	(H:C) ₂ CH N CH ₂ -	1	2	0	R	н	$-CH_2-N-C H_2N$
2248	CH_CH ₂ -	1	2	0	R	н	-CH ₂ -N-C- H H ₂ N
2249	H ₂ N CH ₂	1	2	0	R	н	-CH ₂ -N-C
2250	H ₂ N HO-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2251	H ₂ N H ₃ C-CH ₂ -	1	2	0	R	н	-CH ₂ -N-C
2252	CH ₂ -					н	-CH ₂ -N-C-CF ₃
2253	F CH ₂ - N H CH ₂ - N H CH ₂ -	2	2	1	-	н	$-CH_{2}-N+C-$ $H_{2}N$ CF_{3} CF_{3}
2254	H ₃ CO CH ₂ -	2	2	1	-	н	-CH ₂ -N-C- H ₂ N CF ₃ -CH ₂ -N-C- H ₁ N CF ₃
2255	H ₃ C N H	2	2	1	-	н	-CH ₂ -N-C-CF ₃

WO 00/69432 PCT/JP00/03203

228

Table 1.206

Compd.	R ¹ (CH ₂)j-	k	m	n	chirality	R³	$-(CH_2)_{p} + (CH_2)_{q} - G - R^6$
2256	CH ₂ -	2	2	1		Н	-CH ₂ -N-C
2257	H ₃ CQ CH ₂ -	2	2	1	-	Н	-CH ₂ -N-C

WO 00/69432 PCT/JP00/03203

229

本発明においては、環状アミン化合物の酸付加体も用いられる。かかる酸として、例えば塩酸、臭化水素酸、硫酸、リン酸、炭酸などの鉱酸;マレイン酸、クエン酸、リンゴ酸、酒石酸、フマル酸、メタンスルホン酸、トリフルオロ酢酸、蟻酸などの有機酸が挙げられる。

5 さらに、本発明においては、例えばヨウ化1- (4-クロロベンジル) -1-メ チル-4- [{N- (3-トリフルオロメチルベンゾイル) グリシル} アミノメチル] ピペリジニウムのような、環状アミン化合物のC₁-C₆アルキル付加体も用いられる。ここで、アルキル基としては、例えばメチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、2-メチルペンチル、1-エチルブチルが好適な具体例として挙げられるが、特に好ましい例としては、メチル基、エチル基などが挙げられる。また、アンモニウム陽イオンの対陰イオンの好適な具体例としては、フッ化物、塩化物、臭化物、またはヨウ化物などのハロゲン化物陰イオンを挙げることができる。

本発明においては、上記式(I)で表される化合物のラセミ体、および可能なすべての光学活性体も用いることができる。

上記式(I)で表される化合物は、WO9925686記載の下記に示すいずれかの一般的な製造法を用いることにより合成することができる。

20 (製造法1)

下記式 (II)

$$\begin{array}{c}
R^{1} \\
 \longrightarrow (CH_{2})_{j} - N \\
R^{2} \\
\end{array}$$

$$\begin{array}{c}
(CH_{2})_{k} \\
(CH_{2})_{m} \\
\end{array}$$

$$\begin{array}{c}
(CH_{2})_{n} - NH \\
\vdots \\
R^{3}
\end{array}$$

$$(II)$$

25

[式中、 R^1 、 R^2 、 R^3 、j、k、m、およびnは、上記式 (I) におけるそれぞれの定義と同じである。]

で表される化合物1当量と、下記式(III)

$$HO - \overset{O}{C} - (CH_2)_p - \overset{R^4}{\underset{R^5}{\longleftarrow}} (CH_2)_q - G - R^6$$
 (III)

5 [式中、R⁴、R⁵、R⁶、G、p、およびqは、上記式(I)におけるそれぞれの定義と同じである。]

で表されるカルボン酸、またはその反応性誘導体の0. 1-10当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

上記式 (III) で表されるカルボン酸の「反応性誘導体」とは、例えば酸ハロゲン 10 化物、酸無水物、混合酸無水物などの合成有機化学分野において通常使用される反 応性の高いカルボン酸誘導体を意味する。

かかる反応は、適当量のモレキュラーシーブなどの脱水剤;ジシクロヘキシルカルボジイミド (DCC)、N-xチルーN' - (3-ジメチルアミノプロピル)カルボジイミド (EDCIまたはWSC)、カルボニルジイミダゾール (CDI)、

- N-ヒドロキシサクシンイミド(HOSu)、N-ヒドロキシベンゾトリアゾール (HOBt)、ベンゾトリアゾール-1-イルオキシトリス(ピロリジノール)ホスホニウム=ヘキサフルオロホスフェート(PyBOP)、2-(1H-ベンゾトリアゾール-1-1イル)-1, 1, 3, 3-テトラメチルウロニウム=ヘキサフルオロホスフェート(HBTU)、2-(1H-ベンゾトリアゾール-1-4ル)
- 20 -1, 1, 3, 3-テトラメチルウロニウム=テトラフルオロボレート (TBTU)、2-(5-ノルボルネン-2, 3-ジカルボキシイミド)-1, 1, 3, 3-テトラメチルウロニウム=テトラフルオロボレート (TNTU)、O-(N-サクシニミジル)-1, 1, 3, 3-テトラメチルウロニウム=テトラフルオロボレート (TSTU)、プロモトリス (ピロリジノ) ホスホニウム=ヘキサフルオロホス
- 25 フェート (PyBroP) などの縮合剤;炭酸カリウム、炭酸カルシウム、炭酸水素ナトリウムなどの無機塩基、トリエチルアミン、ジイソプロピルエチルアミン、ピリジンなどのアミン類、(ピペリジノメチル)ポリスチレン、(モルホリノメチル)ポリスチレン、(ジメチルアミノメチル)ポリスチレン、ポリ (4ービニルピリジン) などの高分子支持塩基などの塩基を適宜用いることにより、より円滑に進
- 30 行させることができる。

(製造法2)

下記式 (IV)

$$\begin{array}{c}
R^1 \\
\longrightarrow (CH_2)_j -X
\end{array} (IV)$$

5

[式中、 R^1 、 R^2 、および j は、上記式 (I) におけるそれぞれの定義と同じであり、Xはハロゲン原子、アルキルスルホニルオキシ基、またはアリールスルホニルオキシ基を表す。]

10 で表されるアルキル化試薬1当量と、下記式(V)

$$\begin{array}{c} \text{HN} \\ \text{HN} \\ \text{(CH2)}_{m} \end{array} \longrightarrow \begin{array}{c} \text{CH}_{2} \\ \text{R}^{3} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{R}^{3} \end{array} \longrightarrow \begin{array}{c} \text{R}^{4} \\ \text{CH}_{2} \\ \text{R}^{5} \end{array} \longrightarrow \begin{array}{c} \text{CH}_{2} \\ \text{R}^{5} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{C} \end{array} \longrightarrow \begin{array}{c} \text{C} \\ \text{C}$$

15

[式中、 R^3 、 R^4 、 R^5 、 R^6 、G、k、m、n、p、およびqは、上記式 (I) におけるそれぞれの定義と同じである。]

で表される化合物 0.1-10 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

20 かかる反応は、上記製造法1と同様の塩基を適宜用いることにより、より円滑に に進行させることができる。さらに、本製造方法においてヨウ化カリウム、ヨウ化 ナトリウムなどのヨウ化物を共存させることにより、反応を促進できる場合がある

上記式 (IV) において、Xはハロゲン原子、アルキルスルホニルオキシ基、アリ つルスルホニルオキシ基を表す。かかるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が好ましく挙げられる。アルキルスルホニルオキシ基の好適な具体 例としては、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基 などが挙げられる。アリールスルホニルオキシ基の好適な具体例としては、トシルオキシ基を挙げることができる。

(製造法3)

下記式 (VI)
$$R^1$$
 \rightarrow (CH₂)_{j-1}-CHO (VI)

または、下記式 (VII)

$$R^{1}-CHO$$
 (VII)

[式中、 R^1 は上記式(I)における R^1 の定義と同じであり、jは0を表す場合に 10 相当する。]

で表されるアルデヒド1当量と、上記式 (V) で表される化合物 0.1-10 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

かかる反応は、一般に還元的アミノ化反応と呼ばれ、還元条件としては、パラジウム、白金、ニッケル、ロジウムなど金属を含む触媒を用いる接触水素添加反応、

15 水素化リチウムアルミニウム、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナト リウム、トリアセトキシ水素化ホウ素ナトリウムなどの複合水素化物およびボラン を用いる水素化反応、または電解還元反応などを用いることができる。

(製造法4)

下記式 (VIII)

20

25 [式中、 R^1 、 R^2 、 R^3 、 R^4 、 R^5 、 R^7 、j、k、m、n、p、および q は、上記式 (I) におけるそれぞれの定義と同じである。]

で表される化合物1当量と、下記式 (IX)

$$HO-A-R^6$$
 (IX)

[式中、R⁶は上記式 (I) におけるR⁶の定義と同じであり、Aはカルボニル基ま 30 たはスルホニル基を表す。]

で表されるカルボン酸またはスルホン酸、またはそれらの反応性誘導体 0. 1-1

0 当量を、無溶媒下、または溶媒存在下に反応させることによる製造方法。

上記式 (IX) で表されるカルボン酸またはスルホン酸の反応性誘導体とは、例えば酸ハロゲン化物、酸無水物、混合酸無水物などの合成有機化学分野で一般に使用される反応性の高いカルボン酸またはスルホン酸誘導体を意味する。かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いることにより、より円滑に進行させることができる。

(製造法5)

上記式 (VIII) で表される化合物 1 当量と、下記式 (X)

$$Z = C = N - R^{6} \tag{X}$$

10 [式中、R⁶は上記式(I)におけるR⁶の定義と同じであり、Zは酸素原子または 硫黄原子を表す。]

で表されるイソシアネートまたはイソチオシアネート 0. 1-10 当量を、無溶媒 下または溶媒存在下に反応させることによる製造方法。

(製造法6)

15 下記式 (XI)

$$\begin{array}{c}
R^{1} & \xrightarrow{(CH_{2})_{j}} - N \xrightarrow{(CH_{2})_{n}} - (CH_{2})_{n} - N - \stackrel{!}{C} - (CH_{2})_{p} - \stackrel{R^{4}}{\longleftarrow} (CH_{2})_{q} - A - OH \quad (XI)
\end{array}$$

20

[式中、R¹、R²、R³、R⁴、R⁵、j、k、m、n、p、およびqは、上記式(I)におけるそれぞれの定義と同じであり、Aはカルボニル基またはスルホニル基 を表す。]

で表される化合物1当量と、下記式(XII)

$$R^6 - NH_2 \qquad (XII)$$

「式中、R⁶は上記式(I)におけるR⁶の定義と同じである。]

で表されるアミン0.1-10 当量を、無溶媒下または溶媒存在下に反応させることによる製造方法。

かかる反応は、上記製造法1と同様の脱水剤、縮合剤、または塩基を適宜用いる 30 ことにより、より円滑に進行させることができる。

上記製造法1-6において、各反応に供する基質が、一般に有機合成化学におけ

る各反応条件において反応するか、あるいは反応に悪影響を及ぼすことが考えられる置換剤を有する場合には、その官能基を既知の適当な保護基で保護して反応に供した後、従来既知の方法を用いて脱保護することにより、目的の化合物を得ることができる。

5 さらに、本発明で用いる化合物は、例えばアルキル化反応、アシル化反応、還元 反応などの、一般に有機合成化学において使用される既知の反応を用いて、上記製 造法6により製造される化合物の(単数または複数の)置換基をさらに変換するこ とによっても得ることができる。

上記各製造法において、反応溶媒としては、ジクロロメタン、クロロホルムなど のハロゲン化炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジエチルエーテル、テトラヒドロフランなどのエーテル類、酢酸エチルなどのエステル類、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどの非プロトン性極性溶媒、メタノール、エタノール、イソプロピルアルコールなどのアルコール類などが、反応に応じて適宜用いられる。

15 いずれの製造方法ににおいても、反応温度は-78°Cから+150°C、好ましくは0°Cから100°Cの範囲である。反応完了後、通常の単離、精製操作、すなわち、濃縮、濾過、抽出、固相抽出、再結晶、クロマトグラフィーなどを行うことにより、目的とする上記式(1)で表される環状アミン化合物を単離することができる。また、それらは通常の方法により薬学的に許容される酸付加体または C_1-C_6 アルキル付加体に変換することができる。

実施例

25

本発明を以下、具体的に実施例に基づいて説明する。しかしながら、本発明はこれらの実施例に記載された化合物に限定されるものではない。以下の実施例において各化合物に付された化合物番号(Compd. No.)は、Table1.1-1.206において好適な具体例として挙げた化合物に付された化合物番号(Compd. No.)と対応している。

[参考例1] <u>3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩の合成</u>

30 $4-\rho$ ロロベンジルクロリド (4. 15g、25.8mmol) と Pr_2NEt (6. 67g、51.6mmol) を、3-[(tert-ブトキシカルボニル)

WO 00/69432

アミノ} ピロリジン(4.81g、25.8mmol)のDMF溶液(50mL)に加えた。反応混合物を70℃で15時間攪拌し、溶媒を減圧下に除去した。再結晶(アセトニトリル、50mL)により目的とする3-[(tert-ブトキシカルボニル)アミノ]-1-(4-クロロベンジル)ピロリジン(6.43g、80

- 5 %)を黄白色固体として得た。 ¹H NMR (CDCl₃、300MHz) δ 1.37 (s, 9 H), 1.5-1.7 (br, 1 H), 2.1-2.4 (m, 2 H), 2.5-2.7 (m, 2 H), 2.83 (br, 1 H), 3.57 (s, 2 H), 4.1-4.3 (br, 1 H), 4.9-5.1 (br, 1 H), 7.15-7.35 (br, 4 H); 純度はRPLC/MSで求めた(98%)。ESI/MS m/e 311.0 (M⁺+H、C₁₆H₂₄ClN₂O₂)
- 3-[(tert-ブトキシカルボニル)アミノ]-1-(4-クロロベンジル)ピロリジン(6.38g、20.5mmol)のメタノール(80mL)溶液に 1M HCl-Et₂O(100mL)を加え、25℃で15時間攪拌した。溶媒を 減圧下に除去し、固体を得、再結晶(メタノール/アセトニトリル=1:2、130mL)で精製することにより、3-アミノ-1-(4-クロロベンジル)ピロリ
- 15 ジン・二塩酸塩(4.939g、85%)を白色粉末として得た。 ¹H NMR(d₆-DMSO、300MHz)δ 3.15 (br, 1 H), 3.3-3.75 (br-m, 4 H), 3.9 (br, 1 H), 4.05 (br, 1 H), 4.44 (br, 1 H), 4.54 (br, 1 H), 7.5-7.7 (m, 4 H), 8.45 (br, 1 H), 8.60 (br, 1 H); 純度はRPLC/MSで求めた(>99%)。ESI/MS m/e 211.0 (M⁺+H、C₁₁H₁₆ClN₂)
- 20 光学活性(R) 3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩と(S) 3-アミノ-1-(4-クロロベンジル)ピロジジン・二塩酸塩を、それぞれ対応する原料を用いて上記の方法により合成した。生成物は、上記ラセミ体と同じ¹H NMRを示した。

[実施例1] 3-(N-ベンゾイルグリシル) アミノー1-(4-クロロベンジ

25 ル) ピロリジン (化合物番号1) の合成

30

N-ベンゾイルグリシン(9.3 mg、0.055 mmol)、3-エチル-1
-[3-(ジメチルアミノ)プロピル]カルボジイミド・塩酸塩(EDCI)(1
0.5 mg)および1-ヒドロキシベンゾトリアゾール・水和物(HOBt)(7
.4 mg)を、3-アミノ-1-(4-クロロベンジル)ピロジジン・二塩酸塩(
14.2 mg、0.050 mmol)とトリエチルアミン(15.2 mg)のクロロホルム(2.5 mL)溶液に加えた。この反応混合物を25℃で16時間攪拌し

WO 00/69432 PCT/JP00/03203

236

、2M NaOH水溶液($2mL \times 2$)と食塩水で洗浄した。PTFE膜フィルターによる濾過後、溶媒を減圧下に除去し、3-(N-ベンゾイルグリシル) アミノー1-(4-クロロベンジル) ピロジジン(化合物番号 1)を黄白色油状体として得た(17.7mg、95%)。純度はRPLC/MSで求めた(95%)。ESI/MS m/e 372.0 (M^++H 、 $C_{20}H_{22}CIN_3O_2$) [実施例 2-32]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1 の方法に従って合成した。ESI/MSデータ、収量、および収率を表 2 にまとめた。

10

表 2

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2	2	C21 H24 C1 N3 O2	386	16.4	85
. 3	3	C19 H21 C1 N4 O2	373	18.7	100
4	4	C21 H21 C1 F3 N3 O2	440	57.2	69
5	82	C22 H23 C1 F3 N3 O2	454	5.6	11
6	85	C21 H24 C1 N3 O2	386	22.6	59
7	86	C21 H23 C1 N4 O4	431	21.2	
8	214	C22 H25 C1 N2 O2	385	23.9	98
9	215	C23 H27 C1 N2 O3	415	17.4	62
10	216	C20 H23 C1 N2 O2 S	391		84
11	217	C23 H27 C1 N2 O4	431	21.6	定量的
12	218	C23 H27 C1 N2 O2		15.3	66
13	219	C22 H24 C1 F N2 O3	399	12.8	64
14	220	C22 H25 C1 N2 O2	419	18.1	86
15	221		385	16.4	85
16		C21 H23 C1 N2 O2	371	14.9	80
17		C21 H22 C12 N2 O2	405	13.3	65
		C25 H31 C1 N2 O3	443	18.4*	63
18		C20 H23 C1 N2 O3 S	407	11.2	28
19		C22 H26 C1 N3 O2	400	22.7	定量的
20		C23 H28 C1 N3 O3	430	21.0	98
21		C22 H25 C12 N3 O2	434	21.9	100
22	228	C23 H28 Cl N3 O3	430	20.8	97
23	229	C25 H32 C1 N3 O2	462	25.4	定量的
24	230	C26 H31 C1 F N3 O2	472	26.0	定量的

PCT/JP00/03203

•	2	7
4	J	- (

25	231	C24 H28 C1 N3 O3	442	30.3*	定量的
26	232	C22 H32 C1 N3 O2	406	3.9	19
27	233	C23 H28 Cl N3 O2	414	8.5	41
28	234	C22 H27 C1 N4 O2	415	7.3	35
29	235	C24 H29 C12 N3 O2	462	9.0	39
30	236	C25 H29 C1 N4 O3 S	501	17.4	69
31	237	C21 H24 C1 N3 O3	402	14.2	71
32	238	C21 H23 C12 N3 O3	436	23.4	定量的

*トリフルオロ酢酸塩の収率。

WO 00/69432

[参考例2] (R) - 3 - [(N - t e r t - ブトキシカルボニル) グリシル] アミノー1 - (4 - クロロベンジル) ピロリジンの合成

- 5 (R) -3-アミノ-1-(4-クロロベンジル)ピロリジン・二塩酸塩(4.54g、16.0mmol)、2M NaOH溶液(80mL)、および酢酸エチル(80mL)の混合物を攪拌し、有機層を分離し、水層を酢酸エチル(80mL×2)で抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、遊離の(R) -3-アミノ-1-(4-クロロベンジル)ピロリジン(3.35g、99%)を得た。
- (R) -3-アミノ-1-(4-クロロベンジル) ピロリジン(3.35g、16mmol)のジクロロメタン(80mL)溶液に、トリエチルアミン(2.5mL、17.6mmol)、N-tert-ブトキシカルボニルグリシン(2.79g、16.0mmol)、EDCI(3.07g、16.0mmol)、およびHOBt(12.16g、16mmol)を加えた。反応混合物を25℃で16時間攪拌した後、2M NaOH溶液(80mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(100mL×3)。有機層を合わせて水(100mL×2)と食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO2、酢酸エチル)により、目的とする(R) -3-[N-(tert-ブトキシカルボニル)グリシル]アミノ-1-(4-クロロベンジル)ピロリジン(5.40g、92%)を得た。

[参考例3] <u>(R)-1-(4-クロロベンジル)-3-(グリシルアミノ)ピ</u>ロリジンの合成

(R) - 3 - [N-(tert-ブトキシカルボニル) グリシル} アミノー1-

(4-クロロベンジル) ピロリジン (5.39g、14.7mmol)のメタノール (60mL)溶液に、4M HClジオキサン (38mL)溶液を加えた。この溶液を室温で2時間攪拌した。反応混合物を濃縮し、2M NaOH溶液(80mL)を加えた。混合液をジクロロメタン (80mL×3)で抽出し、抽出液を合わせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー (SiO₂、酢酸エチル/エタノール/トリエチルアミン=90:5:5)により、(R)-3-(グリシルアミノ)-1-(4-クロロベンジル)ピロリジン (3.374g、86%)を得た。1H NMR (CDCl₃、270MHz) δ 1.77 (dd, J=1.3 および6.9 Hz, 1 H), 2.20-3.39 (m, 2 H), 2.53 (dd, J=3.3および9.6 Hz, 1 H), 2.62 (dd, J=6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 3

- 10 , 2.62 (dd, J = 6.6および9.6 Hz, 1 H), 2.78-2.87 (m, 1 H), 3.31 (s, 2 H), 5.57(s, 2 H), 4.38-4.53 (br, 1 H), 7.18-7.32 (m, 4 H), 7.39(br, s, 1 H) その他の3-アシルアミノー1- (4-クロロベンジル) ピロリジン類も、それぞれ対応する原料および反応剤を用いて参考例2および3の方法に従って合成された。
- 15 (S) -1- (4-クロロベンジル) -3- (グリシルアミノ) ピロリジン:3 . 45g、79% (2工程)。
 - (R) $-3-(\beta-T$ ラニルアミノ) -1-(4-クロロベンジル) ピロリジン: 3. 79g、85%(2工程)。
 - (S) -3 (β アラニルアミノ) -1 (4 クロロベンジル) ピロリジン
- 20 : 3. 72g、86% (2工程)。
 - (R) $-3-[(S)-アラニルアミノ)-1-(4-クロロベンジル) ピロリジン: <math>368 \,\mathrm{mg} \times 65\%$ (2工程)。
 - (R) -3-[(R) -アラニルアミノ) <math>-1-(4-クロロベンジル) ピロリジン: $425 \,\mathrm{mg}$ 、75%($2 \,\mathrm{T}$ 程)。
- 25 (R) $-3 [(2S) 2 P \ge J 3 F x = \mu \eta \eta \eta J J J \eta J T \ge J 1$
 - (4 クロロベンジル)ピロリジン:566mg、78%(2工程)。 (R) - 3 - [(2R) - 2 - アミノー3-チエニルプロパノイル] アミノー1
 - (4-クロロベンジル) ピロリジン: 5.85mg、81% (2工程)。
 - (R) 3 (2 T ミノー 2 メチルプロパノイル) アミノー 1 (4 クロ
- 30 ロベンジル) ピロリジン:404mg、66% (2工程)。
 - (R) -3- [(2S) -2-アミノ-4- (メチルスルホニル) ブタノイル]

アミノー1ー(4ークロロベンジル)ピロリジン:535mg、72% (2工程)

- (R) -3-(グリシルアミノ)-1-(4-メチルベンジル) ピロリジン: 410 . 65g、収率62%(3-[(tert-ブトキシカルボニル) アミノ] ピロリジンからの収率)。
- (R) -1- (4-プロモベンジル) -3- (グリシルアミノ) ピロリジン: 2 . 55g、収率68% ((R) -3-アミノ-1- (4-プロモベンジル) ピロリ ジンからの収率); ¹H NMR (CDCl₃、270MHz) δ 1.37-1.78 (m, 3 H), 2.23-2.39 (m, 2 H), 2.50-2.67 (m, 2 H), 2.80-2.89 (m, 1 H), 3.32 (s, 2 H), 3.58 (s, 2 H), 4.39-4.55 (m, 1 H), 7.21 (d, J = 6.5 Hz, 2 H), 7.45 (d, J = 6.5 Hz, 2 H)
 - (R) -1-(2, 4-ジメチルベンジル) -3-(グリシルアミノ) ピロリジン: 1.56g、収率58%(3-[(tert-ブトキシカルボニル) アミノ]
- 20 ピロリジンからの収率); ¹H NMR(CDCl₃、270MHz)δ 1.55-1. 78 (m, 3 H), 2.30 (s, 3 H), 2.23-2.31 (m, 2 H), 2.33 (s, 3 H), 2.51-2.63 (m, 2 H), 2.78-2.87 (m, 1 H), 3.30(s, 2 H), 3.55 (s, 2 H), 4.38-4.60 (m, 1 H), 6.95 (d, J = 7.6 Hz, 1 H), 6.97(s, 1 H), 7.13 (d, J = 7.6 Hz, 1 H), 7.43 (br-s, 1 H)
- 25 (R) -1-(3, 5-ジメチルイソキサゾール-4-イルメチル) -3-(グリシルアミノ) ピロリジン: 3. <math>14g、収率45% (3-[(tert-ブトキシカルボニル) アミノ] ピロリジンからの収率)。

[実施例33] (S) - 3 - [N - [3, 5 - ビス (トリフルオロメチル) ベン ソイル] グリシル] アミノー1 - (4 - クロロベンジル) ピロリジン (化合物番号

30 5)の合成

3, 5-ビス(トリフルオロメチル)ベンゾイルクロリド(0.060mmol

)のクロロホルム溶液(O. 4mL)を、(S)-1-(4-クロロベンジル)-3-(グリシルアミノ)ピロリジン(O. 050mmol)とトリエチルアミン(O. 070mmol)のクロロホルム(1. 0mL)溶液に加えた。この反応混合物を室温で2. 5時間攪拌した後、(アミノメチル)ポリスチレン樹脂(1. 04mmol/g、50mg、50mmol)を加え、混合物を室温で12時間攪拌した。反応混合物を濾過し、樹脂をジクロロメタン(O. 5mL)で洗浄した。濾液と洗液とを合わせ、ジクロロメタン(4mL)を加え、溶液を2M NaOH水溶液(O. 5mL)にて洗浄して濃縮することにより、(S)-3-[N-[3, 5-ビス(トリフルオロメチル)ベンゾイル]グリシル]アミノー1-(4ークロロベンジル)ピロジジン(化合物番号5)を得た(14. 4mg、57%)。純度はRPLC/MSで求めた(97%)。ESI/MS m/e 508.0 (M++H、C22H20ClF6N3O2)

[実施例34-239]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 15 33の方法に従って合成した。ESI/MSデータ、収量、および収率を表3にまとめた。

表 3

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
34	5	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	14.4	57
35	6	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	17.0	77
36	7	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	17.7	79
37	8	C ₂₀ H ₂₁ ClFN ₃ O ₂	390.0	12.7	65
38	9	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	39.0	定量的
39	10	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	23.5	定量的
40	11	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	22.4	定量的
41	12	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	15.9	74
42	13	$C_{21}H_{21}ClF_3N_3O_2$	440.0	13.1	60
43	14	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	16.4	85
44	15	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.7	77
45	16	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	28.2	定量的
46	17	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	35.6	定量的
47	18	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.8	定量的

48	19	C21H22C1N3O4	416.0	16.3	78
49	20	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	24.9	定量的
50	21	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	17.9	78
51	22	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	9.4	41
52	23	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	15.4	67
53	24	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₃	456.0	20.7	91
54	25	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	18.5	81
55	26	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	21.9	定量的
56	27	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	16.8	81
57	28	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	6.8	33
58	29	C ₂₂ H ₂₀ ClF ₆ N ₃ O ₂	508.0	20.8	82
59	30	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	.440.0	15.2	69
60	31	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	15.6	69
61	32	C ₂₀ H ₂₁ C1FN ₃ O ₂	390.0	11.8	61
62	33	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	15.8	72
63	34	C ₂₁ H ₂₄ ClN ₃ O ₃	402.5	33.8	定量的
64	35	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	56.1	定量的
65	36	C ₂₂ H ₂₆ ClN ₃ O ₄	432.5	37.6	定量的
66	37	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	440.0	12.6	57
67	38	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	12.3	64
68	39	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	15.9	78
69	40	C ₂₁ H ₂₄ ClN ₃ O ₂	402.0	11.6	58
70	41	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	442.0	17.8	81
71	42	C ₂₁ H ₂₁ ClN ₄ O ₂	397.5	22.4	定量的
72	43	C ₂₁ H ₂₂ ClN ₃ O ₄	416.0	30.1	· 定量的
73	44	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.4	59
74	45	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	13.2	58
75	46	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	14.4	63
76	47	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₃	456.0	16.4	72
77	48	C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458	16.5	72
78	49	C ₂₀ H ₂₁ ClN ₄ O ₄	417.0	12.5	.60
79	50	. C ₂₁ H ₂₀ ClF ₄ N ₃ O ₂	458.0	26.3	定量的
80	51	C ₂₀ H ₂₁ BrClN ₃ O ₂	450.0	8.6	38
81	52	C ₂₀ H ₂₁ C1 FN ₃ O ₂	390.5	4.1	21
82	53	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	5.4	27
83	54	C ₂₀ H ₂₀ Cl ₃ N ₃ O ₂	440.0	8.8	40
84	55	C ₂₀ H ₂₀ BrCl ₄ N ₃ O ₂	440.0	7.7	35
85	56	C21H24ClN3O2	386.0	4.8	25
86	57	C ₂₂ H ₂₆ ClN ₃ O ₄	429.5	4.9	23

87	58	C ₂₀ H ₂₁ Cl ₂ N ₃ O ₂	406.0	4.1	20
88	59	C ₂₀ H ₂₁ BrClN ₃ O ₂	452.0	3.5	16
89	60	C ₂₆ H ₂₆ ClN ₃ O ₂	448.5	7.3	33
90	61	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	7.1	33
91	62	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.4	54
92	63	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	6.0	
93	64	C ₂₁ H ₂₁ ClN ₄ O ₂	397.0	7.0	30
94	65	C ₂₄ H ₂₄ ClN ₃ O ₂	422.0	7.7	
95	66	C ₂₄ H ₂₄ ClN ₃ O ₂	422.0	6.3	36
96	67	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	4.7	30
97	68	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	7.8	
98	69	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	7.3	38
99	70	C ₂₀ H ₂₀ ClF ₂ N ₃ O ₂	408.0	9.1	36
100	71	C22H26ClN3O4	429.0	5.6	45
101	72	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	456.0	6.2	26
102	73	C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂	456.5	16.8	27
103	74	C ₂₂ H ₂₄ ClN ₃ O ₄	430.0	16.4	74
104	75	C ₂₁ H ₂₀ Cl F ₄ N ₃ O ₂	458.0	16.4	76
105	76	C ₂₁ H ₂₀ C1F ₄ N ₃ O ₂	458.0	17.0	70
106	77	C ₂₀ H ₁₉ ClF ₃ N ₃ O ₂	426.0	16.2	74
107	78	C ₂₀ H ₁₉ C1F ₃ N ₃ O ₂	426.0	18.0	76
108	79	C ₂₂ H ₂₀ Cl F ₆ N ₃ O ₂	508.0	18.8	85
109	80	C ₂₂ H ₂₀ C1F ₆ N ₃ O ₂	508.0	16.4	74 65
110	81	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	13.9	70
111	83	C20H21C1N4O4	417.0	16.0	77
112	84	C20H21ClN4O4	417.0	21.6	
113	87	C23H22C1F6N3O2	522.0	17.5	定量的 67
114	88	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	13.9	61
115	89	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	15.4	66
116	90	C ₂₁ H ₂₃ C1FN ₃ O ₂	404.0	10.7	53
117	91	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	13.7	60
118	92	C ₂₂ H ₂₆ C1N ₃ O ₃	416.0	38.4	定量的
119	93	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	25.2	定量的
120	94	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	16.5	74
121	<u>95</u>	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	16.3	72
122	96	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	16.7	84
123	97	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.2	53
124	98	C ₂₂ H ₂₅ C1N ₃ O ₂	416.5	11.8	57
125	99	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	14.8	65

127 101	126	100	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	9.5	46
128 102 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 13.1 56 129 103 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 36.5 定量的 130 104 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 22.8 97 131 105 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 20.1 85 132 106 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₃ 470.0 27.4 定量的 133 107 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 18.5 78 134 108 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 11.9 55 135 109 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 23.9 定量的 136 110 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 23.9 定量的 137 111 C ₂₂ H ₂₃ C1F ₄ N ₃ O ₂ 522.0 9.5 36 138 112 C ₂₂ H ₂₃ C1F ₄ N ₃ O ₂ 454.0 3.9 17 139 113 C ₂₁ H ₂₃ C1N ₅ O ₂ 466.0 7.5 32 140 114 C ₂₁ H ₂₃ C1N ₅ O ₂ 456.0 6.6 29 142 116 C ₂₂ H ₂₃ C1N ₅ O ₄ 446.0 4.8 23 143 117 C ₂₃ H ₂₄ C1F ₃ N ₃ O ₂ 456.0 6.6 29 144 118 C ₂₃ H ₂₆ C1N ₅ O ₄ 446.0 6.4 29 144 118 C ₂₂ H ₂₆ C1N ₅ O ₄ 446.0 5.2 23 146 120 C ₂₂ H ₂₃ C1F ₅ N ₃ O ₂ 454.0 5.2 23 146 120 C ₂₂ H ₂₃ C1F ₅ N ₃ O ₂ 456.0 5.2 23 146 120 C ₂₂ H ₂₃ C1F ₅ N ₃ O ₂ 456.0 5.2 23 146 120 C ₂₂ H ₂₃ C1N ₅ O ₄ 446.0 64.4 29 147 121 C ₂₃ H ₂₆ C1N ₅ O ₄ 446.0 5.2 23 148 122 C ₂₂ H ₂₆ C1N ₅ O ₄ 446.0 5.2 23 146 120 C ₂₂ H ₂₆ C1N ₅ O ₂ 455.0 5.2 23 146 120 C ₂₂ H ₂₆ C1N ₅ O ₂ 455.0 5.2 23 146 120 C ₂₂ H ₂₆ C1N ₅ O ₂ 456.0 5.4 22 147 121 C ₂₁ H ₂₃ C1 ₂ N ₅ O ₂ 456.0 5.4 22 147 121 C ₂₁ H ₂₃ C1 ₂ N ₅ O ₂ 456.0 5.4 22 147 121 C ₂₁ H ₂₃ C1 ₂ N ₅ O ₂ 456.0 5.4 24 150 124 C ₂₂ H ₂₆ C1N ₅ O ₂ 470.5 4.4 22 150 124 C ₂₂ H ₂₆ C1N ₅ O ₂ 470.5 5.4 24 150 124 C ₂₂ H ₂₆ C1N ₅ O ₂ 470.5 5.4 24 150 124 C ₂₂ H ₂₆ C1N ₅ O ₂ 470.0 7.8 37 151 125 C ₂₂ H ₂₆ C1N ₅ O ₂ 472.0 7.3 31 152 126 C ₂₂ H ₂₆ C1N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 129 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 44 128 C ₂₂ H ₂₆ C1F ₅ N ₅ O ₂ 472.0 10.4 46 159 133 C ₂₁ H ₂₅ C1N ₅ O ₂ 472.0 10.4 40 159 133 C ₂₁ H ₂₅ C1N ₅ O ₂						
129 103						
130						
131 105						
132 106 C ₂₂ H ₂₂ ClF ₃ N ₃ O ₂ 470.0 27.4 定量的 133 107 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 18.5 78 134 108 C ₂₁ H ₂₂ ClN ₄ O ₄ 431.0 11.9 55 135 109 C ₂₁ H ₂₂ ClN ₄ O ₄ 431.0 23.9 定量的 136 110 C ₂₁ H ₂₂ ClN ₄ O ₄ 431.0 24.4 定量的 137 111 C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂ 522.0 9.5 36 138 112 C ₂₂ H ₂₂ ClF ₆ N ₃ O ₂ 454.0 3.9 17 139 113 C ₂₁ H ₂₂ BClN ₃ O ₂ 466.0 7.5 32 140 114 C ₂₁ H ₂₂ ClF ₃ N ₃ O ₂ 456.0 6.6 29 142 116 C ₂₂ H ₂₂ ClF ₃ O ₃ O ₄ 446.0 6.4 29 144 118 C ₂₁ H ₂₂ ClN ₃ O ₄ 446.0 6.4 29 144 118 C ₂₃ H ₂₂ ClN ₃ O ₄ 446.0 6.4 29 144 118 C ₂₃ H ₂₂ ClN ₃ O ₄ 446.0 6.4 29 145 119 C ₂₂ H ₂₂ ClN ₃ O ₄ 446.0 5.2 23 146 120 C ₂₂ H ₂₂ ClN ₃ O ₂ 454.0 5.2 23 146 120 C ₂₂ H ₂₂ ClN ₃ O ₂ 454.0 5.2 23 147 121 C ₂₁ H ₂₂ ClN ₃ O ₂ 454.0 5.4 22 147 121 C ₂₁ H ₂₂ ClN ₃ O ₂ 454.0 5.4 24 150 124 C ₂₂ H ₂₂ ClN ₃ O ₂ 454.0 5.4 24 150 124 C ₂₂ H ₂₂ ClN ₃ O ₂ 470.0 7.8 37 148 122 C ₂₂ H ₂₂ ClN ₃ O ₂ 470.0 5.4 24 150 124 C ₂₂ H ₂₂ ClN ₃ O ₂ 470.0 5.4 24 150 124 C ₂₂ H ₂₂ ClN ₃ O ₂ 470.0 5.4 24 150 124 C ₂₂ H ₂₂ ClN ₃ O ₂ 470.0 5.4 24 150 124 C ₂₂ H ₂₂ ClN ₃ O ₂ 470.0 5.4 24 150 124 C ₂₂ H ₂₂ ClN ₃ O ₂ 470.0 5.4 6 19 153 127 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 4.6 19 153 127 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 154 128 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 155 128 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 156 130 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 157 128 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 158 128 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 159 130 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 159 131 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 159 131 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 159 131 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 159 131 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 64 159 133 C ₂₁ H ₂₂ ClN ₃ O ₂ 472.0 10.4 64 159 133 C ₂₁ H ₂₂ ClN ₃ O ₂ 472.0 10.4 44 159 130 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.4 69 159 133 C ₂₁ H ₂₂ ClN ₃ O ₂ 472.0 10.4 69 159 130 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 10.5 69 160 134 C ₂₁ H ₂₃ ClN ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClN ₃ O ₂ 472.0 13.5 68						
133 107 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 18.5 78 134 108 C ₃ H ₂₂ ClN ₄ O ₄ 431.0 11.9 55 135 109 C ₂₁ H ₂₂ ClN ₄ O ₄ 431.0 23.9 定量的 136 110 C ₂₁ H ₂₂ ClN ₄ O ₄ 431.0 24.4 定量的 137 111 C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂ 522.0 9.5 36 138 112 C ₂₂ H ₂₂ ClF ₆ N ₃ O ₂ 454.0 3.9 17 139 113 C ₂₁ H ₂₂ BrClN ₃ O ₂ 466.0 7.5 32 140 114 C ₂₁ H ₂₂ ClF ₃ N ₃ O ₂ 456.0 6.6 29 141 115 C ₂₁ H ₂₂ ClN ₃ O ₃ 416.0 4.8 23 141 115 C ₂₁ H ₂₂ ClN ₃ O ₃ 416.0 4.8 23 143 117 C ₂₃ H ₂₆ ClN ₃ O ₃ 416.0 4.8 23 144 118 C ₂₃ H ₂₆ ClN ₃ O ₄ 446.0 6.4 29 144 118 C ₂₃ H ₂₆ ClN ₃ O ₄ 446.0 5.2 23 145 119 C ₂₂ H ₂₂ ClF ₃ N ₃ O ₂ 454.0 5.2 23 146 120 C ₂₂ H ₂₂ ClN ₃ O ₂ 454.0 5.2 23 146 120 C ₂₂ H ₂₂ ClN ₃ O ₂ 454.0 5.2 23 147 121 C ₂₁ H ₂₂ ClN ₃ O ₂ 454.0 5.2 23 148 122 C ₂₂ H ₂₆ ClN ₃ O ₂ 454.0 5.4 22 147 121 C ₂₁ H ₂₂ Cl ₂ N ₃ O ₂ 454.0 5.4 22 147 121 C ₂₁ H ₂₂ ClN ₃ O ₂ 400.5 4.4 22 147 121 C ₂₁ H ₂₂ ClN ₃ O ₂ 454.0 5.4 22 149 123 C ₂₁ H ₂₂ ClN ₃ O ₂ 454.0 5.4 2 150 124 C ₂₂ H ₂₆ ClN ₃ O ₂ 4754.0 5.4 2 150 124 C ₂₂ H ₂₆ ClN ₃ O ₂ 4754.0 5.4 2 150 124 C ₂₂ H ₂₆ ClN ₃ O ₂ 4754.0 5.4 2 150 124 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 4754.0 5.4 6 19 151 125 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 4.6 19 153 127 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 10.4 44 154 128 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 10.4 44 157 131 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 10.4 44 159 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 68 160 134 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
134 108						
135 109						
136						
137			_1			
138						
139						36
140 114 C ₂₁ H ₂₃ C1FN ₃ O ₂ 404.0 6.1 30 141 115 C ₂₁ H ₂₂ C1 ₃ N ₃ O ₂ 456.0 6.6 29 142 116 C ₂₂ H ₂₆ C1N ₃ O ₃ 416.0 4.8 23 143 117 C ₂₃ H ₂₆ C1N ₃ O ₄ 446.0 6.4 29 144 118 C ₂₃ H ₂₆ C1N ₃ O ₄ 446.0 24.6 定量的 145 119 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 455.0 5.2 23 146 120 C ₂₂ H ₂₆ C1N ₃ O ₂ 400.5 4.4 22 147 121 C ₂₁ H ₂₃ C1 ₂ N ₃ O ₂ 420.0 7.8 37 148 122 C ₂₂ H ₂₆ C1N ₃ O ₂ 416.5 14.1 68 149 123 C ₂₁ H ₂₂ C1 ₃ N ₃ O ₂ 454.0 5.4 24 150 124 C ₂₂ H ₂₃ C1N ₄ O ₂ 411.0 34.0 定量的 151 125 C ₂₂ H ₂₆ C1N ₃ O ₄ 430.5 32.0 定量的 152 126 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 4.6 19 153 127 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 10.4 44 154 128 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 7.3 31 155 129 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 10.4 44 154 128 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 15.1 64 157 131 C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂ 472.0 8.6 36 158 132 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 32.0 定量的 159 133 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 32.0 定量的 159 133 C ₂₁ H ₂₃ C1S ₄ O ₄ 431.0 4.4 20 159 133 C ₂₁ H ₂₃ C1F ₄ N ₃ O ₂ 472.0 8.6 36 158 132 C ₂₁ H ₂₃ C1F ₄ N ₃ O ₂ 472.0 8.6 36 159 133 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 4.4 20 159 133 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ C1N ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ C1F ₁ N ₃ O ₂ 466.0 7.8 34 162 136 C ₂₁ H ₂₃ C1F ₁ N ₃ O ₂ 404.0 13.7 68						17
141 115	139	113		466.0	7.5	32
142 116	140	114	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	6.1	30
143 117	141	115	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	456.0	6.6	29
144	142	116	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	4.8	23
145	143	117	C ₂₃ H ₂₈ ClN ₃ O ₄	446.0	6.4	29
146 120	144	118	C23H28ClN3O4	446.0	24.6	定量的
147 121 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.0 7.8 37 148 122 C ₂₂ H ₂₆ ClN ₃ O ₂ 416.5 14.1 68 149 123 C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂ 454.0 5.4 24 150 124 C ₂₂ H ₂₃ ClN ₄ O ₂ 411.0 34.0 定量的 151 125 C ₂₂ H ₂₄ ClN ₃ O ₄ 430.5 32.0 定量的 152 126 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 4.6 19 153 127 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 10.4 44 154 128 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 7.3 31 155 129 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 15.1 64 157 131 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 8.6 36 158 132 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 4.4 20 159 133 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 32.0 定量的 160 134 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₃ O ₂ 466.0 7.8 34 162 136 C ₂₁ H ₂₃ ClFN ₃ O ₂ 404.0 13.7 68	145	119	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	5.2	23
148 122 C ₂₂ H ₂₆ ClN ₃ O ₂ 416.5 14.1 68 149 123 C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂ 454.0 5.4 24 150 124 C ₂₂ H ₂₃ ClN ₄ O ₂ 411.0 34.0 定量的 151 125 C ₂₂ H ₂₄ ClN ₃ O ₄ 430.5 32.0 定量的 152 126 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 4.6 19 153 127 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 10.4 44 154 128 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 7.3 31 155 129 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 15.1 64 157 131 C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃ 470.0 15.1 64 158 132 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 4.4 20 159 133 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 32.0 定量的 160 134 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32	146	120	C ₂₂ H ₂₆ ClN ₃ O ₂	400.5	4.4	22
149 123 C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂ 454.0 5.4 24 150 124 C ₂₂ H ₂₃ ClN ₄ O ₂ 411.0 34.0 定量的 151 125 C ₂₂ H ₂₄ ClN ₃ O ₄ 430.5 32.0 定量的 152 126 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 4.6 19 153 127 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 10.4 44 154 128 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 7.3 31 155 129 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₂ ClF ₃ N ₃ O ₃ 470.0 15.1 64 157 131 C ₂₂ H ₂₂ ClF ₃ N ₃ O ₂ 472.0 8.6 36 158 132 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 4.4 20 159 133 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 32.0 定量的 160 134 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClFN ₃ O ₂ 466.0 7.8 34 162	147	121	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	. 420.0	7.8	37
150	148	122	C ₂₂ H ₂₆ ClN ₃ O ₂	416.5	14.1	68
151 125 C ₂₂ H ₂₄ ClN ₃ O ₄ 430.5 32.0 定量的 152 126 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 4.6 19 153 127 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 7.3 31 154 128 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 7.3 31 155 129 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 13.5 57 156 130 C ₂₂ H ₂₃ ClF ₃ N ₃ O ₃ 470.0 15.1 64 157 131 C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂ 472.0 8.6 36 158 132 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 4.4 20 159 133 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 32.0 定量的 160 134 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ ClN ₃ O ₂ 466.0 7.8 34 162 136 C ₂₁ H ₂₃ ClFN ₃ O ₂ 404.0 13.7 68 163 137 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.5 14.6 69	149	123	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	5.4	24
152	150	124	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	34.0	定量的
153 127 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 10.4 44 154 128 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 7.3 31 155 129 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 13.5 57 156 130 $C_{22}H_{23}C1F_3N_3O_3$ 470.0 15.1 64 157 131 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 8.6 36 158 132 $C_{21}H_{23}C1N_4O_4$ 431.0 4.4 20 159 133 $C_{21}H_{23}C1N_4O_4$ 431.0 32.0 定量的 160 134 $C_{21}H_{23}C1N_4O_4$ 431.0 6.9 32 161 135 $C_{21}H_{23}BrC1N_3O_2$ 466.0 7.8 34 162 136 $C_{21}H_{23}C1FN_3O_2$ 404.0 13.7 68 163 137 $C_{21}H_{23}C1_2N_3O_2$ 420.5 14.6 69	151	125	C22H24ClN3O4	430.5	32.0	定量的
154 128 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 7.3 31 155 129 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 13.5 57 156 130 $C_{22}H_{23}C1F_3N_3O_3$ 470.0 15.1 64 157 131 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 8.6 36 158 132 $C_{21}H_{23}C1N_4O_4$ 431.0 4.4 20 159 133 $C_{21}H_{23}C1N_4O_4$ 431.0 32.0 定量的 160 134 $C_{21}H_{23}C1N_4O_4$ 431.0 6.9 32 161 135 $C_{21}H_{23}BrC1N_3O_2$ 466.0 7.8 34 162 136 $C_{21}H_{23}C1FN_3O_2$ 404.0 13.7 68 163 137 $C_{21}H_{23}C1_2N_3O_2$ 420.5 14.6 69	152	126	C22H22ClF4N3O2	. 472.0	4.6	19
155 129 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 13.5 57 156 130 $C_{22}H_{23}C1F_3N_3O_3$ 470.0 15.1 64 157 131 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 8.6 36 158 132 $C_{21}H_{23}C1N_4O_4$ 431.0 4.4 20 159 133 $C_{21}H_{23}C1N_4O_4$ 431.0 32.0 定量的 160 134 $C_{21}H_{23}C1N_4O_4$ 431.0 6.9 32 161 135 $C_{21}H_{23}BrC1N_3O_2$ 466.0 7.8 34 162 136 $C_{21}H_{23}C1FN_3O_2$ 404.0 13.7 68 163 137 $C_{21}H_{23}C1_2N_3O_2$ 420.5 14.6 69	153	127	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	10.4	44
156 130 $C_{22}H_{23}C1F_3N_3O_3$ 470.0 15.1 64 157 131 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 8.6 36 158 132 $C_{21}H_{23}C1N_4O_4$ 431.0 4.4 20 159 133 $C_{21}H_{23}C1N_4O_4$ 431.0 32.0 定量的 160 134 $C_{21}H_{23}C1N_4O_4$ 431.0 6.9 32 161 135 $C_{21}H_{23}BrC1N_3O_2$ 466.0 7.8 34 162 136 $C_{21}H_{23}C1FN_3O_2$ 404.0 13.7 68 163 137 $C_{21}H_{23}C1_2N_3O_2$ 420.5 14.6 69	154	128	C22H22C1F4N3O2	472.0	7.3	31
157 131 $C_{22}H_{22}C1F_4N_3O_2$ 472.0 8.6 36 158 132 $C_{21}H_{23}C1N_4O_4$ 431.0 4.4 20 159 133 $C_{21}H_{23}C1N_4O_4$ 431.0 32.0 定量的 160 134 $C_{21}H_{23}C1N_4O_4$ 431.0 6.9 32 161 135 $C_{21}H_{23}BrC1N_3O_2$ 466.0 7.8 34 162 136 $C_{21}H_{23}C1FN_3O_2$ 404.0 13.7 68 163 137 $C_{21}H_{23}C1_2N_3O_2$ 420.5 14.6 69	155	129	C ₂₂ H ₂₂ Cl F ₄ N ₃ O ₂	472.0	13.5	57
158 132 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 4.4 20 159 133 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 32.0 定量的 160 134 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 7.8 34 162 136 C ₂₁ H ₂₃ ClFN ₃ O ₂ 404.0 13.7 68 163 137 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.5 14.6 69	156	130	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₃	470.0	15.1	64
159 133 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 32.0 定量的 160 134 C ₂₁ H ₂₃ ClN ₄ O ₄ 431.0 6.9 32 161 135 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 7.8 34 162 136 C ₂₁ H ₂₃ ClFN ₃ O ₂ 404.0 13.7 68 163 137 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.5 14.6 69	157	131	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	8.6	36
160 134 $C_{21}H_{23}C1N_4O_4$ 431.0 6.9 32 161 135 $C_{21}H_{23}BrC1N_3O_2$ 466.0 7.8 34 162 136 $C_{21}H_{23}C1FN_3O_2$ 404.0 13.7 68 163 137 $C_{21}H_{23}C1_2N_3O_2$ 420.5 14.6 69	158	132	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	4.4	20
161 135 C ₂₁ H ₂₃ BrC1N ₃ O ₂ 466.0 7.8 34 162 136 C ₂₁ H ₂₃ C1FN ₃ O ₂ 404.0 13.7 68 163 137 C ₂₁ H ₂₃ C1 ₂ N ₃ O ₂ 420.5 14.6 69	159	133	C21H23C1N4O4	431.0	32.0	定量的
162 136 C ₂₁ H ₂₃ C1FN ₃ O ₂ 404.0 13.7 68 163 137 C ₂₁ H ₂₃ C1 ₂ N ₃ O ₂ 420.5 14.6 69	160	134	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	6.9	32
163 137 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.5 14.6 69	161	135	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	7.8	34
	162	136	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.0	13.7	68
164 138 C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂ 454.0 17.7 78	163	137	C21H23Cl2N3O2	420.5	14.6	69
	164	138	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	17.7	78

165	139	C ₂₁ H ₂₂ BrCl ₄ N ₃ O ₂	454.0	17.2	76
166	140	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	15.0	75
167	141	C ₂₃ H ₂₈ ClN ₃ O ₄	443.5	13.9	62
168	142	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.7	65
169	143	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	16.1	
170	144	C ₂₇ H ₂₈ ClN ₃ O ₂	462.0	17.6	69
171	145	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0		.76
172	146	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	16.0	71
173	147	C ₂₃ H ₂₈ ClN ₃ O ₂	414.0		75
174	148	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	16.2	78
175	149	C ₂₅ H ₂₆ ClN ₃ O ₂		14.9	73
176	150	C ₂₅ H ₂₆ ClN ₃ O ₂	436.0	17.1	78
177	151		436.0	13.1	. 60
178	152	C ₂₁ H ₂₂ Cl F ₂ N ₃ O ₂	422.0	14.8	70
179	153	C ₂₁ H ₂₂ Cl F ₂ N ₃ O ₂	422.0	15.3	73
180	154	C ₂₁ H ₂₂ C1F ₂ N ₃ O ₂	422.0	15.3	73
181	154	C ₂₁ H ₂₂ C1F ₂ N ₃ O ₂	422.0	16.4	78
182		C ₂₃ H ₂₈ C1N ₃ O ₄	443.0	16.9	76
183	156	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	470.5	12.6	54
184	157	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	470.0	20.0	85
185	158	C ₂₃ H ₂₆ ClN ₃ O ₄	444.0	17.4	78
186	159	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	18.4	78
187	160.	22 22 4-3-2	472.0	19.6	83
188	161	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	17.0	77
	162	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	17.1	78
189	163	C ₂₃ H ₂₂ C1F ₆ N ₃ O ₂	522.0	20.8	80
190	164	C ₂₃ H ₂₂ ClF ₆ N ₃ O ₂	522.0	2.7	10
191	165	C ₂₃ H ₂₈ ClN ₃ O ₂	414.0	16.4	79
192	166	C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂	454.0	8.6	38
193	167	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	11.6	50
194	168	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	11.5	55
195	169	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0	10.0	44
196	170	C ₂₂ H ₂₂ ClF ₄ N ₃ O ₂	472.0	10.4	44
197	171	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	8.9	42
198	172	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	10.3	53
199	173	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	14.6	68
200	174	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	454.0	10.4	46
201	175	C ₂₁ H ₂₃ BrClN ₃ O ₂	464.0	13.4	58
202	176	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	12.7	60
203	177	C ₂₁ H ₂₂ Cl ₃ N ₃ O ₂	454.0		

204	178	C ₂₂ H ₂₂ C1F ₄ N ₃ O ₂	472.0	12.9	55
205	179	C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂	420.0	13.3	63
206	180	C ₂₁ H ₂₄ ClN ₃ O ₂	386.0	24.2	定量的
207	181	C ₂₁ H ₂₃ ClN ₄ O ₄	431.0	1.0	1
208	182	C ₂₃ H ₂₅ ClF ₃ N ₃ O ₂	468.0	15.1	65
209	183	C ₂₂ H ₂₅ BrClN ₃ O ₂	478.0	18.0	75
210	184	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	16.3	75
211	185	C ₂₂ H ₂₄ Cl ₃ N ₃ O ₂	468.0	18.6	79
212	186	C ₂₃ H ₂₄ ClF ₄ N ₃ O ₂	486.0	16.5	68
213	187	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₂	434.0	14.4	66
214	. 188	C ₂₂ H ₂₆ ClN ₃ O ₂	400.0	14.0	70
215	189	C ₂₂ H ₂₅ ClN ₄ O ₄	445.0	16.8	76
216	190	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	17.7	66
217	.191	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	20.4	75
218	192	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	16.9	67
219	193	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	18.3	68
220	194	C26H24ClF4N3O2S	554.0	19.4	70
221	195	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	19.1	76
222	196	C ₂₅ H ₂₆ ClN ₃ O ₂ S	468.0	16.0	68
223	197	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	18.4	72
224	198	C ₂₆ H ₂₅ ClF ₃ N ₃ O ₂ S	536.0	13.9	52
225	199	C ₂₅ H ₂₅ BrClN ₃ O ₂ S	546.0	12.9	47
226	200	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	15.6	62
227	201	C ₂₅ H ₂₄ Cl ₃ N ₃ O ₂ S	536.0	17.3	64
228	202	C ₂₆ H ₂₄ ClF ₄ N ₃ O ₂ S	554.0	15.4	56
229	203	C ₂₅ H ₂₅ Cl ₂ N ₃ O ₂ S	502.0	13.5	54
230	204	$C_{25}H_{26}ClN_3O_2S$	468.0	13.7	59
231	205	C ₂₅ H ₂₅ ClN ₄ O ₄ S	513.0	13.9	54
232	206	$C_{24}H_{27}C1F_3N_3O_4S$	546.0	10.0	37
233	207	C ₂₃ H ₂₇ BrClN ₃ O ₄ S	558.0	17.1	61
234	208	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	17.0	66
235	209	C ₂₃ H ₂₆ Cl ₃ N ₃ O ₄ S	546.0	7.3	27
236	210	C ₂₄ H ₂₆ ClF ₄ N ₃ O ₄ S	564.0	19.2	68
237	211	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₄ S	512.0	7.9	31
238	212	C ₂₃ H ₂₈ ClN ₃ O ₄ S	478.0	13.7	57
239	213	C ₂₃ H ₂₇ ClN ₄ O ₄ S	523.0	5.5	21

[実施例240] (R) -3- [N-[3-フルオロ-5-(トリフルオロメチル) ベンゾイル] グリシル] アミノー1-(3, 5-ジメチルイソキサゾール-4-イルメチル) ピロリジン(化合物番号1191)の合成

3-フルオロ-5- (トリフルオロメチル) ベンゾイルクロリド (0.058m mol) のジクロロメタン溶液 (1mL) を、 (R)-1-(3,5-ジメチルイ5 ソオキサゾール-4-イルメチル) -3- (グリシルアミノ) ピロリジン (0.0 50mmol) およびピペリジノメチルポリスチレン (58mg) のクロロホルム (0.2mL) とジクロロメタン (0.75mL) の溶液に加えた。反応混合物を 室温で2時間攪拌した後、メタノール(1.0mL)を加え、室温で10時間攪拌 した。反応混合物を、Varian™SCXカラムに負荷し、メタノール(16m 10 L) にて洗浄した。生成物を2M NH3のメタノール (6 mL) 溶液で溶出し、濃 縮することにより、 (R) -3-[N-[3-フルオロ-5-(トリフルオロメチル) ベンゾイル] グリシル] アミノー1ー(3, 5ージメチルイソオキサゾールー 4ーイルメチル) ピロリジン(化合物番号1191)(19. 5 mg、88%)を 得た。純度は、RPLC/MSで求めた(100%)。ESI/MS m/e 4 15 43. 2 $(M^++H, C_{20}H_{22}F_4N_4O_3)$

[実施例241-265]

20

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用い、実施例240の方法に従って合成した。ESI/MSデータ、収量、および収率を表4にまとめた。

表 4

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
241	1192	C20 H22 F4 N4 O3	443.2	19.2	87
242	1193	C20 H23 F3 N4 O4	441.0	17.5	79
243	1194	C21 H22 F6 N4 O3	493.0	20.4	83
244	1195	C19 H23 Br N4 O3	435.1	16.8	77
245	1196	C19 H23 N5 O5	402.2	16.2	81
246	1197	C20 H22 F4 N4 O3	443.2	17.6	80
247	1198	C19 H23 C1 N4 O3	391.0	16.5	84
248	1199	C20 H26 N4 O3	371.0	16.1	87
249	1200	C19 H22 C12 N4 O3	425.0	18.0	85

WO 00/69432

247

PCT/JP00/03203

250	1201	C19 H22 F2 N4 O3	393.0	16.6	85
251	1202	C20 H22 F4 N4 O3	443.2	16.8	76
252	1203	C22 H24 F3 N3 O3	436.2	17.1	79
253	1204	C23 H23 F6 N3 O2	488.2	18.1	74
254	1205	C21 H24 Br N3 O2	430.0	17.5	81
255	1206	C21 H24 N4 O4	397.0	16.2	82
256	1207	C22 H23 F4 N3 O2	438.2	17.5	80
257	1208	C21 H24 C1 N3 O2	386.0	15.8	82
258	1209	C22 H27 N3 O2	366.0	15.7	86
259	1210	C21 H23 C12 N3 O2	420.0	17.8	85
260	1211	C21 H23 F2 N3 O2	388.0	16.3	84
261	1212	C22 H23 F4 N3 O2	438.2	17.4	80
262	1213	C24 H24 C1 F6 N3 O2	536.2	24.0	90
263	1214	C23 H24 C1 F4 N3 O3	486.2	22.2	91
264	1215	C22 H24 C13 N3 O2	467.9	20.9	89
265	1216	C22 H24 C1 F2 N3 O2	436.0	19.3	89

「実施例266] (R) -1-(4-クロロベンジル) -3-[[N-(4-ジメチルアミノベンゾイル) グリシル] アミノ] ピロリジン(化合物番号952)の合成

5 (R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジン(13.8 mg、0.052 mmol)のクロロホルム(2 mL)溶液に、トリエチルアミン(0.021 mL、0.15 mmol)、4-(ジメチルアミノ) 安息香酸(10 mg、0.061 mmol)、EDCI(10.2 mg、0.053 mmol) およびHOBt(7.5 mg、0.055 mmol)を加えた。この反応混合物を室温で15時間攪拌した。溶液を2 MNaOH水溶液(2 mL×2)と食塩水(2 mL)にて洗浄し、ジクロロメタン(3 mL)を用いてPTFE膜で濾過して乾燥した。濃縮により(R)-1-(4-クロロベンジル)-3-[[N-(4-ジメチルアミノベンゾイル)グリシル]アミノ] ピロリジン(化合物番号952)を得た(24.9 mg)。純度は、RPLC/MSで求めた(91%)。ESI/MS m/e 415.0(M++H、C22 H27 C1 N4O2)

[実施例267-347]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 266の方法に従って合成した。必要であれば、固相抽出(VarianTM SCX

カラム)またはクロマトグラフィー($HPLC-C_{18}$)により精製し、目的物を得た。ESI/MSデータ、収量、および収率を表 5 にまとめた。

表 5

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
267	951	C22 H24 C1 N3 O4	430.0	26.3	定量的
268	953	C23 H29 C1 N4 O2	429.0	28.8	定量的
269	954	C21 H25 C1 N4 O2	401.0	27.9	定量的
270	955	C22 H27 C1 N4 O2	415.0	26.8	定量的
271	956	C21 H24 C1 N3 O3	402.0	10.3	51
272	957	C20 H22 C1 N3 O3	388.0	1.4	7
273	958	C21 H24 C1 N3 O3	402.5	1.2	6
274	959	C22 H25 C1 N4 O3	429.5	4.7	22
275	960	C23 H27 C1 N4 O3	443.0	10.9	49
276	961	C21 H25 C1 N4 O2	401.0	28.4	定量的
277	962	C22 H27 C1 N4 O2	415.0	24.9	定量的
278	963	C21 H24 C1 N3 O3	402.0	4.4	22
279	964	C22 H24 C1 N3 O4	430.0	29.5	定量的
280	965	C23 H26 C1 N3 O4	444.0	27.2	定量的
281	966	C22 H24 C1 N3 O3	414.0	27.0	定量的
282	967	C23 H26 C1 N3 O3	428.0	27.0	定量的
283	968	C22 H23 C1 N4 O2	411.0	21.4	定量的
284	969	C23 H25 C1 N4 O2	425.0	27.6	定量的
285	970	C22 H27 C1 N4 O2	415.0	28.6	定量的
286	971	C23 H29 C1 N4 O2	429.0	27.9	定量的
287		C20 H23 C1 N4 O2	387.0	26.2	定量的
288		C21 H25 C1 N4 O2	401.0	26.8	定量的
289		C20 H23 C1 N4 O2	387.0	26.6	定量的
290		C21 H25 C1 N4 O2	401.0	28.2	定量的
291		C22 H23 C1 N4 O2	411.0	29.2	定量的
292		C23 H25 C1 N4 O2	425.0	29.5	定量的
293		C20 H21 C1 N6 O2	413.0	2.2	11
294		C21 H23 C1 N6 O2	427.0	10.2	48
295	980	C22 H25 C1 N4 O3	429.0	28.8	定量的
296		C23 H27 C1 N4 O3	443.0	11.9	54
297		C22 H27 C1 N4 O2	415.0	27.4	定量的
298	983 (C23 H29 C1 N4 O2	429.5	28.1	定量的

300 985 C22 H26 C1 N3 O3 416.0 28.6 定義的 301 1149 C21 H28 N4 O4 401 15.5* 38 302 1150 C21 H26 N4 O3 385 10.9* 28 303 1151 C21 H25 F3 N4 O3 439 17.3* 39 304 1152 C21 H24 F1 SO O3 415 12.7* 30 305 1153 C21 H24 C1 N5 O3 430 17.5* 41 306 1154 C22 H27 N5 O3 410 20.6* 50 307 1155 C19 H23 F3 N4 O4 429 13.8* 32 308 1156 C21 H30 N4 O4 403 17.7* 43 309 1157 C18 H24 N4 O3 S2 409 12.6* 30 310 1158 C19 H23 F3 N5 O4 400 16.9* 38 311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.9 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O3 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O4 399 15.2 48 324 1401 C23 H25 N4 O2 425 8.3* 16 325 1389 C19 H22 N6 O4 399 15.2 48 326 1403 C20 H24 N4 O2 353 14.8 59 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 320 1296 C20 H25 N4 O2 353 17.0 60 320 1296 C20 H25 N4 O2 353 17.0 60 320 1296 C20 H25 N4 O2 353 17.0 60 320 1296 C20 H25 N4 O2 353 17.0 60 320 1296 C20 H25 N4 O2 353 17.0 60 321 1207 C21 H24 N4 O2 353 17.0 60 322 1389 C19 H22 N4 O2 353 17.0 60 323 170 C26 H28 N4 O2 353 17.0 60 324 1401 C23 H25 C1 N4 O2 353 17.0 60 325 1402 C24 H28 N4 O2 353 17.0 60 326 1405 C21 H26 N4 O2 353 17.0 60 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 353 17.0 60 332 1770 C26 H37 N5 O4 484 12.7* 23 333 1771 C26 H37 N5 O4 509 559 13.1* 21 336 1774 C28 H38 N5 O4 509 6.2* 11 336 1774 C28 H38 N5 O4 509 6.2* 11	299	984	C21 H24 C1 N3 O3	402.0	27.7	定量的
301 1149 C21 H28 N4 O4 401 15.5* 38 302 1150 C21 H28 N4 O3 385 10.9* 28 303 1151 C21 H25 F3 N4 O3 439 17.3* 39 304 1152 C21 H24 F N5 O3 415 12.7* 30 305 1153 C21 H24 C1 N5 O3 430 17.5* 41 306 1154 C22 H27 N5 O3 410 20.6* 50 307 1155 C19 H23 F3 N4 O4 429 13.6* 32 308 1156 C21 H30 N4 O4 403 17.7* 43 309 1157 C18 H24 N4 O3 S2 409 12.6* 30 310 1158 C19 H23 C12 N5 O3 440 16.9* 38 311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.9 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 16 326 1403 C20 H24 N4 O2 353 17.0 60 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O5 519 11.6* 23 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H37 N5 O4 509 6.2* 11	300	985	C22 H26 C1 N3 O3	416.0	28.6	
303 1151 C21 H25 F3 N4 O3 439 17.3* 39 304 1152 C21 H24 F N5 O3 415 12.7* 30 305 1153 C21 H24 C1 N5 O3 430 17.5* 41 306 1154 C22 H27 N5 O3 410 20.6* 50 307 1155 C19 H23 F3 N4 O4 429 13.8* 32 308 1156 C21 H30 N4 O4 403 17.7* 43 309 1157 C18 H24 N4 O3 S2 409 12.6* 30 310 1158 C19 H23 R5 O3 440 16.9* 38 311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.9 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 22 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.8 58 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 N4 O2 425 8.3* 16 325 1402 C24 H38 N4 O2 353 17.0 60 326 1403 C20 H24 N4 O2 353 17.0 60 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H24 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 329 1407 C22 H28 N4 O2 353 17.0 60 331 170 C26 H28 C12 N6 O4 559 13.1* 21 331 1771 C26 H37 N5 O4 599 13.1* 21 333 1771 C26 H37 N5 O4 599 13.1* 21 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 5551 13.6* 22	301	1149	C21 H28 N4 O4	401	15.5*	
304 1152 C21 H24 F N5 O3 415 12.7* 30 305 1153 C21 H24 C1 N5 O3 430 17.5* 41 306 1154 C22 H27 N5 O3 410 20.6* 50 307 1155 C19 H23 F3 N4 O4 429 13.8* 32 308 1156 C21 H30 N4 O4 403 17.7* 43 309 1157 C18 H24 N4 O3 S2 409 12.6* 30 310 1158 C19 H23 C12 N5 O3 440 16.9* 38 311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H38 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 14.8 52 328 1405 C21 H26 N4 O2 353 14.8 52 329 1407 C22 H28 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 5 399 17.3 54 329 1407 C22 H28 N4 O2 5 19 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 509 6.2* 11 336 1774 C28 H39 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	302	1150	C21 H28 N4 O3	385	10.9*	28
305	303	1151	C21 H25 F3 N4 O3	439	17.3*	39
306	304	1152	C21 H24 F N5 O3	415	12.7*	30
307 1155 C19 H23 F3 N4 O4 429 13.8* 32 308 1156 C21 H30 N4 O4 403 17.7* 43 309 1157 C18 H24 N4 O3 S2 409 12.6* 30 310 1158 C19 H23 C12 N5 O3 440 16.9* 38 311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.9 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 <td>305</td> <td>1153</td> <td>C21 H24 C1 N5 O3</td> <td>430</td> <td>17.5*</td> <td>41</td>	305	1153	C21 H24 C1 N5 O3	430	17.5*	41
308	306	1154	C22 H27 N5 O3	410	20.6*	50
309 1157 C18 H24 N4 O3 S2 409 12.6* 30 310 1158 C19 H23 C12 N5 O3 440 16.9* 38 311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 <td>307</td> <td>1155</td> <td>C19 H23 F3 N4 O4</td> <td>429</td> <td>13.8*</td> <td>32</td>	307	1155	C19 H23 F3 N4 O4	429	13.8*	32
310 1158 C19 H23 C12 N5 O3 440 16.9* 38 311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.8 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53	308	1156	C21 H30 N4 O4	403	17.7*	43
311 1159 C22 H31 N5 O6 462 38.6* 85 312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 <td>309</td> <td>1157</td> <td>C18 H24 N4 O3 S2</td> <td>409</td> <td>12.6*</td> <td>30</td>	309	1157	C18 H24 N4 O3 S2	409	12.6*	30
312 1160 C20 H26 Br N5 O3 464 20.4 45 313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 <td>310</td> <td>1158</td> <td>C19 H23 C12 N5 O3</td> <td>440</td> <td>16.9*</td> <td>38</td>	310	1158	C19 H23 C12 N5 O3	440	16.9*	38
313 1289 C20 H27 N5 O4 403 5.8* 14 314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 17.0 60	311	1159	C22 H31 N5 O6	462	38.6*	85
314 1290 C21 H29 N5 O3 400 6.9* 17 315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 <td>312</td> <td>1160</td> <td>C20 H26 Br N5 O3</td> <td>464</td> <td>20.4</td> <td>45</td>	312	1160	C20 H26 Br N5 O3	464	20.4	45
315 1291 C24 H28 N4 O2 405 22.4 68 316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 </td <td>313</td> <td>1289</td> <td>C20 H27 N5 O4</td> <td>403</td> <td>5.8*</td> <td>14</td>	313	1289	C20 H27 N5 O4	403	5.8*	14
316 1292 C22 H27 Br N4 O2 461 23.8 15 317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 </td <td>314</td> <td>1290</td> <td>C21 H29 N5 O3</td> <td>400</td> <td>6.9*</td> <td>17</td>	314	1290	C21 H29 N5 O3	400	6.9*	17
317 1293 C22 H23 F4 N3 O2 438 20.9 59 318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 <td>315</td> <td>1291</td> <td>C24 H28 N4 O2</td> <td>405</td> <td>22.4</td> <td>68</td>	315	1291	C24 H28 N4 O2	405	22.4	68
318 1294 C22 H23 F4 N3 O2 438 20.8 59 319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21	316	1292		461	23.8	15
319 1295 C23 H31 N3 O3 398 17.5 54 320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 </td <td>317</td> <td>1293</td> <td>C22 H23 F4 N3 O2</td> <td>438</td> <td>20.9</td> <td>59</td>	317	1293	C22 H23 F4 N3 O2	438	20.9	59
320 1296 C20 H25 N3 O2 S2 404 18.8 58 321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23	318	1294	C22 H23 F4 N3 O2	438	20.8	59
321 1297 C21 H24 F3 N3 O3 424 18.1 53 322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 <td>319</td> <td>1295</td> <td>C23 H31 N3 O3</td> <td>1</td> <td>17.5</td> <td>54</td>	319	1295	C23 H31 N3 O3	1	17.5	54
322 1388 C21 H32 N6 O3 417 7.4* 24 323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 510 5.5* 9 335 1773 C28 H39 N5 O4 510 5.5* 9 335 1774 C28 H34 N6 O6 551 13.6* 22	320	1296	C20 H25 N3 O2 S2	404	18.8	58
323 1389 C19 H22 N6 O4 399 15.2 48 324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22 <td>321</td> <td>1297</td> <td>C21 H24 F3 N3 O3</td> <td>424</td> <td>18.1</td> <td>53</td>	321	1297	C21 H24 F3 N3 O3	424	18.1	53
324 1401 C23 H25 C1 N4 O2 425 8.3* 16 325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	322	1388	C21 H32 N6 O3	417	7.4*	24
325 1402 C24 H32 N4 O5 457 8.3* 15 326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	323	1389	C19 H22 N6 O4	399	15.2	48
326 1403 C20 H24 N4 O2 353 14.8 52 327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	324	1401	C23 H25 C1 N4 O2	425	8.3*	16
327 1404 C20 H24 N4 O2 353 17.0 60 328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	325	1402	C24 H32 N4 O5	457	8.3*	15
328 1405 C21 H26 N4 O2 S 399 17.3 54 329 1407 C22 H28 N4 O2 S 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	326	1403	C20 H24 N4 O2	353	14.8	52
329 1407 C22 H28 N4 O2 S . 413 19.1 57 330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	327		C20 H24 N4 O2	353	17.0	60
330 1410 C19 H24 N4 O3 357 9.7* 59 331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	328	1405		399	17.3	54
331 1769 C22 H26 C1 F3 N4 O5 519 11.6* 20 332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	329	1407		. 413	19.1	57
332 1770 C26 H28 C12 N6 O4 559 13.1* 21 333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	330	1410	C19 H24 N4 O3	357	9.7*	59
333 1771 C26 H37 N5 O4 484 12.7* 23 334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	331	1769	C22 H26 Cl F3 N4 O5	519	11.6*	20
334 1772 C28 H39 N5 O4 510 5.5* 9 335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	332	1770	C26 H28 C12 N6 O4	559	13.1*	21
335 1773 C28 H37 N5 O4 509 6.2* 11 336 1774 C28 H34 N6 O6 551 13.6* 22	333	1771	C26 H37 N5 O4	484	12.7*	23
336 1774 C28 H34 N6 O6 551 13.6* 22	334	1772	C28 H39 N5 O4	510	5.5*	9
	335	1773	C28 H37 N5 O4	509	6.2*	11
337 2039 C19 H24 N4 O2 341 5.2* 14	336			551		22
	337	2039	C19 H24 N4 O2	341	5.2*	14

220					
338	2040	C22 H27 N3 O4	398	2.0*	5
339	2041	C23 H29 N3 O3	396	6,2*	15
340	2042	C25 H37 N3 O2	413	2.6*	6
341	2043	C24 H31 N3 O2	394	6.8*	17
342	2044	C25 H28 N4 O4	449	8.7*	16
343	2045	C26 H29 C1 N6 O4	525	11.4*	19
344	2046	C27 H32 N6 O4	505	. 7.7*	13
345	2047	C28 H32 N4 O4	489	10.0*	18
346	2048	C28 H37 N5 O5	524	3.7*	
347	2049	C28 H37 N5 Q4	509		. 6
				5.3*	9

*トリフルオロ酢酸塩の収率。

5

[実施例348] <u>(R) -1-(4-クロロベンジル) -3-[[N-(2-アミノ-5-クロロベンゾイル) グリシル] アミノ] ピロリジン (化合物番号108-4) の合成</u>

(R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジン(0.050mmol)のクロロホルム(2mL)溶液に、2-アミノ-5-クロロ安息香酸(0.060mL)とジイソプロピルカルボジイミド(0.060mmol)を加えた。この反応混合物を室温で15時間攪拌した。この混合液を、Varian[™]SCXカラムに負荷し、メタノール(15mL)で洗浄した。生成物を、2MNH₃のメタノール(5mL)溶液を用いて溶出し、濃縮することにより、(R)-1-(4-クロロベンジル)-3-[N-[2-アミノ-5-クロロベンゾイル)グリシル]アミノ]ピロリジン(化合物番号1084)を得た(12.7mg、60%)。純度は、RPLC/MSで求めた(87%)。ESI/MS m/e421.0(M++H、C₂₀H₂₂Cl₂N₄O₂)

[実施例349-361]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 348の方法に従って合成した。原料のアミンが残存している場合には、イソシアナトメチル化ポリスチレン(50mg)のクロロホルム (1mL)溶液を加えて室 温で反応させ、濾過、濃縮することによってによって目的物を得た。ESI/MSデータ、収量、および収率を表6にまとめた。

WO 00/69432

表 6

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
349	1085	C ₂₀ H ₂₂ ClN ₅ O ₄	432.0	4.1	19
350	1086	C ₂₀ H ₂₃ ClN ₄ O ₂	387.0	7.9	41
351	1087	C ₂₂ H ₂₃ ClN ₄ O ₂	411.0	15.0	73
352	1088	C ₁₈ H ₂₀ ClN ₃ O ₃	362.0	12.9	71
353	1089	C ₂₂ H ₂₂ ClFN ₄ O ₂	429.0	16.0	75
354	1090	C ₂₂ H ₂₆ ClN ₃ O ₃	416.0	15.8	76
355	1091	C ₂₁ H ₂₄ Cl ₂ N ₄ O ₂	435.0	10.9	50
356	1092	C ₂₁ H ₂₄ ClN ₅ O ₄	446.0	7.9	35
357	1093	C ₂₁ H ₂₅ ClN ₄ O ₂	401.0	9.5	47
358	1094	C ₂₃ H ₂₅ ClN ₄ O ₂	425.0	15.8	74
359	1095	C ₁₉ H ₂₂ ClN ₃ O ₃	376.0	_13.5	72
360	1096	C ₂₃ H ₂₄ ClFN ₄ O ₂	443.0	11.8	53
361	1097	C ₂₃ H ₂₈ ClN ₃ O ₃	430.0	15.1	70

[実施例362] (R) -1-(4-クロロベンジル) -3-[[N-(3-ブロモ-4-メチルベンゾイル) グリシル] アミノ] ピロリジン(化合物番号1098) の合成

[実施例363-572]

10

15

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例362の方法に従って合成した。必要であれば、分取TLCにより精製し、目的物を得た。ESI/MSデータ、収量、および収率を表7にまとめた。

下記の3化合物は、それぞれ、化合物番号1415、1416、および1417 5 の副生成物として得られた。

化合物番号1419:7.9mg、収率38%、ESI/MS m/e 419

. 0 $(C_{20}H_{23}ClN_4O_2S)$

化合物番号1420:7.1mg、収率36%、ESI/MS m/e 399

 $. 2 (C_{23}H_{26}N_4O_2S)$

10 化合物番号1421:7.4mg、収率37%、ESI/MS m/e 404 .2(C₁₉H₂₅N₅O₃S)

表 7

実施例	化合物番号	N 7 -4	DOT (100 (· ·
	化古物金万	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
363	1099	C ₂₀ H ₂₀ BrClFN ₃ O ₂	470.0	3.1	13
364	1100	C ₂₀ H ₂₀ Cl ₂ FN ₃ O ₂	424.0	3.1	15
365	1101	C ₂₁ H ₂₃ ClIN ₃ O ₂	512.0	12.5	49
366	1102	C ₂₁ H ₂₃ ClN ₄ O ₄	431.2	7.7	36
367	1103	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	13.8	62
368	1104	C ₂₁ H ₂₃ BrFN ₃ O ₂	450.0	16.5	74
369	1105	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	14.7	73
370	1106	$C_{22}H_{26}IN_3O_2$	492.0	18.5	75
371	1107	C ₂₂ H ₂₆ N ₄ O ₄	411.2	15.2	74
372	1108	C ₂₀ H ₂₅ BrN ₄ O ₃	449.0	12.8	57
373	1109	C ₁₉ H ₂₂ BrFN ₄ O ₃	455.0	16.2	71
374	1110	C ₁₉ H ₂₂ ClFN ₄ O ₃	409.2	14.4	70
375	1111	C ₂₀ H ₂₅ IN ₄ O ₃	497.0	17.9	72
376	1112	C ₂₀ H ₂₅ N5O ₅	416.2	14.9	72
377	1113	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	16.1	65
378	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
379	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
380	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	81
381	1117	C ₂₃ H ₂₇ C1N ₄ O ₄	459.2	18.7	81
382	1171	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	4.9	21
383	1172	C ₂₂ H ₂₃ ClN ₄ O ₃	427.2	16.1	75

384	1173	C ₂₃ H ₂₅ ClN ₄ O ₃	441.2	22.8	定量的
385	1174	C ₂₀ H ₂₂ Cl FN ₄ O ₂	405.2	21.4	定量的
386	1175	C ₂₂ H ₂₆ BrN ₃ O ₂	446.0	15.8	71
387	1176	C ₂₃ H ₂₆ N ₄ O ₃	407.2	17.6	87
388	1177	C ₂₄ H ₂₈ N ₄ O ₃	421.2	20.2	96
389	1178	C ₂₁ H ₂₅ FN ₄ O ₂	385.0	16.2	84
390	1179	C ₂₁ H ₂₅ N ₅ O ₄	412.2	2.3	11
391	1180	C ₂₃ H ₂₆ N ₄ O ₂	391.0	21.6	
392	1181		451.0	20.1	定量的
		C ₂₀ H ₂₅ BrN ₄ O ₃	L		89
393	1182	C ₂₁ H ₂₅ N ₅ O ₄	412.2	13.3	65
394	1183	C ₂₂ H ₂₇ N ₅ O ₄	426.2	20.9	98
395	1184	C ₁₉ H ₂₄ FN ₅ O ₃	390.0	20.0	定量的
396	1185	C ₁₉ H ₂₄ N ₆ O ₅	417.2	18.2	87
397	1186	C ₂₁ H ₂₅ N ₅ O ₃	396.2	17.6	89
398	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
399	1188	C ₂₄ H ₂₇ ClN ₄ O ₃	455.2	17.2	` 76
400	1189	C ₂₅ H ₂₉ ClN ₄ O ₃	469.2	21.1	90
401	1190	C ₂₂ H ₂₆ ClFN ₄ O ₂	433.2	20.4	94
402	1217	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	38.5	81
403	1218	C ₂₁ H ₂₃ ClFN ₃ O ₂	404.2	35.6	88
404	1219	$C_{21}H_{23}Cl_2N_3O_2$	420.0	3.7	9
405	1220	C ₂₀ H ₂₂ ClIN ₄ O ₂	513.0	53.0	定量的
406	1221	C ₂₀ H ₂₁ ClF ₂ N ₄ O ₂	423.0	38.7	92
407	1222	C ₁₉ H ₂₃ ClN ₄ O ₂	375.2	33.6	90
408	1223	C ₂₆ H ₂₆ ClN ₃ O ₂ S	496.0	43.7	88
409	1224	C ₂₀ H ₂₁ ClN ₄ O ₅	433.0	40.6	94
410	1225	$C_{22}H_{23}C1F_3N_3O_2$	454.2	18.4	41
411	1226	C ₂₂ H ₂₆ FN ₃ O ₂	384.0	17.1	45
412	1227	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	17.5	44
413	1228	C21H25IN4O2	493.0	23.3	47
414	1229	C ₂₁ H ₂₄ F ₂ N ₄ O ₂	403.2	18.4	46
415	1230	C ₂₀ H ₂₆ N ₄ O ₂	355.2	15.7	44
416	1231	C ₂₇ H ₂₉ N ₃ O ₂ S	476.0	20.9	88
417	1232	C ₂₁ H ₂₄ N ₄ O ₅	413.0	19.9	96
418	1233	C ₂₀ H ₂₂ ClF ₃ N ₄ O ₃	459.0	19.4	85
419	1234	C ₂₀ H ₂₅ FN ₄ O ₃	389.0	17.8	92
420	1235	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.7	92
421	1236	C ₁₉ H ₂₄ IN ₅ O ₃	498.0	23.9	96
422	1237	C ₁₉ H ₂₃ F ₂ N ₅ O ₃	408.2	19.0	93
	<u> </u>			L	

WO 00/69432

429 430 431 432 433 434 435 436 437 438 439 440	1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255	C ₁₈ H ₂₅ N ₅ O ₃ C ₂₅ H ₂₈ N ₄ O ₃ S C ₁₉ H ₂₃ N ₅ O ₆ C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂ C ₂₃ H ₂₇ ClFN ₃ O ₂ C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ C ₂₂ H ₂₆ ClIN ₄ O ₂ C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂ C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₀ H ₂₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₀ H ₂₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₀ H ₂₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₀ H ₂₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₀ H ₂₀ ClN ₃ O ₂ S C ₂₁ H ₂₃ ClN ₃ O ₂ C ₂₂ H ₃₀ N ₄ O ₃ C ₂₀ H ₂₀ ClN ₃ O ₂ C ₂₁ H ₂₁ ClN ₄ O ₃ C ₂₂ H ₃₀ N ₄ O ₃ C ₂₀ H ₂₂ Br ClN ₄ O ₂ C ₂₁ H ₂₅ Br N ₄ O ₂	360.0 481.2 418.0 502.0 432.2 448.0 541.0 451.0 403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2 467.0	16.3 21.4 19.9 22.5 21.2 21.6 26.4 21.3 19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3 21.3	91 89 95 90 98 96 98 94 96 94 90 33 72 定量的 86 80
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440	1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254	C ₁₉ H ₂₃ N ₅ O ₆ C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂ C ₂₃ H ₂₇ ClFN ₃ O ₂ C ₂₃ H ₂₇ ClFN ₃ O ₂ C ₂₂ H ₂₆ ClIN ₄ O ₂ C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂ C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₈ H ₃₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C20 H20 Cl2 N4 O4 C21 H23 Cl N4 O4 C19 H22 Cl N5 O5 C23 H28 Cl N3 O2 C24 H31 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br Cl N4 O2	418.0 502.0 432.2 448.0 541.0 451.0 403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2	19.9 22.5 21.2 21.6 26.4 21.3 19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3	95 90 98 96 98 94 96 94 90 33 72 定量的 86 80
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441	1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂ C ₂₃ H ₂₇ ClFN ₃ O ₂ C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ C ₂₂ H ₂₆ ClIN ₄ O ₂ C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂ C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₂ H ₂₅ ClN ₄ O ₅ C ₂₀ H ₂₀ Cl2 N ₄ O ₄ C ₂₁ H ₂₃ Cl N ₄ O ₄ C ₂₁ H ₂₃ Cl N ₄ O ₄ C ₂₁ H ₂₃ Cl N ₅ O ₅ C ₂₃ H ₂₈ Cl N ₃ O ₂ C ₂₄ H ₃₁ N ₃ O ₂ C ₂₄ H ₃₁ N ₃ O ₂ C ₂₂ H ₃₀ N ₄ O ₃ C ₂₀ H ₂₂ Br Cl N ₄ O ₂	502.0 432.2 448.0 541.0 451.0 403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2	22.5 21.2 21.6 26.4 21.3 19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3	90 98 96 98 94 96 94 90 33 72 定量的 86 80
427 428 429 430 431 432 433 434 435 436 437 438 439 440	1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254	C ₂₃ H ₂₇ C1FN ₃ O ₂ C ₂₃ H ₂₇ C1 ₂ N ₃ O ₂ C ₂₂ H ₂₆ C1IN ₄ O ₂ C ₂₂ H ₂₅ C1F ₂ N ₄ O ₂ C ₂₁ H ₂₇ C1N ₄ O ₂ C ₂₈ H ₃₀ C1N ₃ O ₂ S C ₂₂ H ₂₅ C1N ₄ O ₅ C20 H20 C12 N4 O4 C21 H23 C1 N4 O4 C19 H22 C1 N5 O5 C23 H28 C1 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	432.2 448.0 541.0 451.0 403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2	21.2 21.6 26.4 21.3 19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3	98 96 98 94 96 94 90 33 72 定量的 86 80
428 429 430 431 432 433 434 435 436 437 438 439 440 441	1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ C ₂₂ H ₂₆ ClIN ₄ O ₂ C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂ C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₈ H ₃₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C20 H20 Cl2 N4 O4 C21 H23 Cl N4 O4 C19 H22 Cl N5 O5 C23 H28 Cl N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br Cl N4 O2	448.0 541.0 451.0 403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2	21.6 26.4 21.3 19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3	96 98 94 96 94 90 33 72 定量的 86 80
429 430 431 432 433 434 435 436 437 438 439 440	1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254	C ₂₂ H ₂₆ ClIN ₄ O ₂ C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂ C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₈ H ₃₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C20 H20 Cl2 N4 O4 C21 H23 Cl N4 O4 C19 H22 Cl N5 O5 C23 H28 Cl N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br Cl N4 O2	541.0 451.0 403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2	26.4 21.3 19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3	98 94 96 94 90 33 72 定量的 86 80
430 431 432 433 434 435 436 437 438 439 440 441	1245 1246 1247 1248 1249 1250 1251 1252 1253 1254	C ₂₂ H ₂₅ C1F ₂ N ₄ O ₂ C ₂₁ H ₂₇ C1N ₄ O ₂ C ₂₈ H ₃₀ C1N ₃ O ₂ S C ₂₂ H ₂₅ C1N ₄ O ₅ C20 H20 C12 N4 O4 C21 H23 C1 N4 O4 C19 H22 C1 N5 O5 C23 H28 C1 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	451.0 403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2	21.3 19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3	94 96 94 90 33 72 定量的 86 80
431 432 433 434 435 436 437 438 439 440	1246 1247 1248 1249 1250 1251 1252 1253 1254	C ₂₁ H ₂₇ ClN ₄ O ₂ C ₂₈ H ₃₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C20 H20 Cl2 N4 O4 C21 H23 Cl N4 O4 C19 H22 Cl N5 O5 C23 H28 Cl N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br Cl N4 O2	403.2 524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2	19.4 24.7 20.7 7.4 15.5 22.9 17.9 15.8 17.3	96 94 90 33 72 定量的 86 80
432 433 434 435 436 437 438 439 440	1247 1248 1249 1250 1251 1252 1253 1254	C ₂₈ H ₃₀ ClN ₃ O ₂ S C ₂₂ H ₂₅ ClN ₄ O ₅ C20 H20 Cl2 N4 O4 C21 H23 Cl N4 O4 C19 H22 Cl N5 O5 C23 H28 Cl N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br Cl N4 O2	524.0 461.0 451.0 431.2 436.0 414.2 394.2 399.2	24.7 20.7 7.4 15.5 22.9 17.9 15.8	94 90 33 72 定量的 86 80
433 434 435 436 437 438 439 440	1248 1249 1250 1251 1252 1253 1254	C ₂₂ H ₂₅ C1N ₄ O ₅ C20 H20 C12 N4 O4 C21 H23 C1 N4 O4 C19 H22 C1 N5 O5 C23 H28 C1 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	461.0 451.0 431.2 436.0 414.2 394.2 399.2	20.7 7.4 15.5 22.9 17.9 15.8 17.3	90 33 72 定量的 86 80 87
434 435 436 437 438 439 440	1249 1250 1251 1252 1253 1254	C20 H20 C12 N4 O4 C21 H23 C1 N4 O4 C19 H22 C1 N5 O5 C23 H28 C1 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	451.0 431.2 436.0 414.2 394.2 399.2	7.4 15.5 22.9 17.9 15.8 17.3	33 72 定量的 86 80 87
435 436 437 438 439 440 341	1250 1251 1252 1253 1254 1255	C21 H23 C1 N4 O4 C19 H22 C1 N5 O5 C23 H28 C1 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	431.2 436.0 414.2 394.2 399.2	15.5 22.9 17.9 15.8 17.3	72 定量的 86 80 87
436 437 438 439 440 441	1251 1252 1253 1254 1255	C19 H22 C1 N5 O5 C23 H28 C1 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	436.0 414.2 394.2 399.2	22.9 17.9 15.8 17.3	定量的 86 80 87
437 438 439 440 441	1252 1253 1254 1255	C23 H28 C1 N3 O2 C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	414.2 394.2 399.2	17.9 15.8 17.3	86 80 87
438 3 439 3 440 3 441 1	1253 1254 1255	C24 H31 N3 O2 C22 H30 N4 O3 C20 H22 Br C1 N4 O2	394.2 399.2	15.8	86 80 87
439 440 441	1254 1255	C22 H30 N4 O3 C20 H22 Br C1 N4 O2	399.2	17.3	87
440 1	1255	C20 H22 Br Cl N4 O2			
441 1			467.0	21.3	
	1256	C21 H25 Br N4 O2			91
442 1		22 144 02	445.0	20.7	93
	1257	C19 H24 Br N5 O3	450.0	21.8	97
443 1	1258	C21 H25 Cl N4 O2	401.2	18.1	90
444]	1259	C19 H24 C1 N5 O3	406.0	20.1	99
	1260	C23 H29 N3 O3	396.2	16.8	85
	261	C23 H30 Cl N3 O3	432.2	19.8	. 92
		C24 H33 N3 O3	412.2	17.4	85
		C22 H32 N4 O4	417.2	18.7	90
		C25 H26 C1 N3 O3	452.2	29.1	定量的
		C26 H29 N3 O3	432.2	18.1	84
		C24 H28 N4 O4	437.2	19.3	88
		C ₂₃ H ₂₂ C1F ₃ N ₄ O ₃	495.2	20.6	83
		C ₂₁ H ₂₃ Cl ₂ N ₃ O ₃	436.0	17.5	80
		C ₂₀ H ₂₁ BrClN ₃ O ₃	468.0	19.2	82
		C ₂₀ H ₂₁ Cl ₂ N ₃ O ₃	422.2	17.3	82
		C ₂₀ H ₂₀ ClFN ₄ O ₄	435.0	17.1	79
		C ₂₄ H ₂₅ F ₃ N ₄ O ₃	475.2	21.7	91
		$C_{22}H_{26}Cln_3O_3$	416.2	17.8	86
		C ₂₁ H ₂₄ BrN ₃ O ₃	448.0	19.5	87
		C ₂₁ H ₂₄ ClN ₃ O ₃	402.2	16.7	83
461 12	276 C	21H23FN4O4	415.2	18.1	87

463 1278	462	1277	C ₂₂ H ₂₄ F ₃ N ₅ O ₄	480.2	20.3	85
464 1279 C ₁₉ H ₂₃ BcN ₄ O ₄ 451.0 21.3 94 465 1280 C ₁₉ H ₂₃ CclN ₄ O ₄ 407.2 19.1 94 466 1281 C ₁₉ H ₂₂ EN ₃ O ₅ 420.2 19.1 91 467 1282 C ₂₅ H ₂₆ C1F ₃ N ₄ O ₅ 523.2 25.0 96 468 1283 C ₂₃ H ₂₇ C1 ₂ N ₃ O ₅ 464.2 12.2 53 469 1284 C ₂₂ H ₂₃ BcC1 ₂ N ₃ O ₅ 466.0 24.1 97 470 1285 C ₂₂ H ₂₅ Ccl ₂ N ₃ O ₅ 450.2 21.8 97 471 1321 C ₂₀ H ₂₀ BcCl ₂ N ₃ O ₂ 486.0 5.1 21 472 1322 C ₂₁ H ₂₅ C1 ₂ N ₃ O ₂ 420.0 10.5 50 473 1323 C ₂₀ H ₂₆ Cl ₂ N ₃ O ₂ 400.2 22.2 定量的 475 1325 C ₂₁ H ₂₆ C1N ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₆ C1N ₃ O ₃ 476.0 22.2 93 477 1327 C ₂₁ H ₂₅ C1N ₃ O ₃ 476.0 22.2 22.2 定量的 478 1328 C ₂₁ H ₂₅ C1N ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 460.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₃ 514.0 26.9 定量的 480 1330 C ₂₁ H ₂₅ C1N ₃ O ₂ 460.0 23.1 99 480 1330 C ₂₁ H ₂₅ C1N ₃ O ₂ 400.2 16.4 82 481 1331 C ₂₂ H ₂₆ C1N ₃ O ₂ 400.2 16.4 82 482 1332 C ₂₆ H ₂₉ N ₃ O ₃ 382.2 19.6 定量的 483 1333 C ₂₁ H ₂₆ ClN ₃ O ₃ 476.0 25.3 定量的 484 1334 C ₂₂ H ₂₆ N ₃ O ₃ 382.2 19.6 定量的 485 1335 C ₃₁ H ₂₂ RClN ₃ O ₃ 382.2 19.6 定量的 486 1336 C ₂₀ H ₂₅ ClN ₃ O ₃ 382.2 19.6 定量的 487 1337 C ₃₁ H ₂₂ RClN ₃ O ₃ 382.2 19.6 定量的 488 1338 C ₂₂ H ₂₆ N ₃ O ₃ 494.0 25.3 定量的 489 1339 C ₂₂ H ₂₆ N ₄ O ₄ 381.2 19.0 定量的 489 1339 C ₂₂ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₂ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 490 1340 C ₃₃ H ₂₃ RClN ₄ O ₃ 471.0 25.8 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 493 1343 C ₂₃ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 494 1344 C ₂₂ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 495 1345 C ₂₃ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 496 1346 C ₂₃ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 497 1347 C ₃₁ H ₂₂ ClN ₃ O ₃ 494.0 27.2 定量的 498 1348 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 499 1349 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 491 1341 C ₂₂ H ₂₆ ClN ₃ O ₃ 448.0 21.4 95 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 493 1343 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 494 1344 C ₂₂ H ₂₆ ClN ₃ O ₃ 448.0 21.4 95 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₄ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 497 1347 C ₁₃ H ₂₂ ClN ₃ O ₂ 448						
465 1280 C ₁₉ H ₂₂ ClN ₄ O ₄ 407.2 19.1 94 466 1281 C ₁₉ H ₂₂ FN ₅ O ₅ 420.2 19.1 91 467 1282 C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃ 523.2 25.0 96 468 1293 C ₂₃ H ₂₅ Cl ₂ N ₃ O ₃ 464.2 12.2 53 469 1284 C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃ 464.2 12.2 53 469 1284 C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃ 450.0 24.1 97 470 1285 C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃ 450.2 21.8 97 471 1321 C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂ 486.0 5.1 21 472 1332 C ₂₁ H ₂₅ Cl ₂ N ₃ O ₂ 420.0 10.5 50 473 1323 C ₂₀ H ₂₅ Cl ₂ N ₃ O ₃ 402.2 22.2 定量的 474 1324 C ₂₁ H ₂₅ Cl ₃ N ₃ O ₃ 402.2 22.2 定量的 475 1325 C ₂₇ H ₂₆ ClN ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₅ ClN ₃ O ₃ 476.0 22.2 93 477 1327 C ₂₁ H ₂₅ ClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 460.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 460.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 460.0 23.1 99 480 1330 C ₂₁ H ₂₃ BrClN ₃ O ₂ 400.2 16.4 82 481 1331 C ₂₁ H ₂₃ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₆ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 362.2 19.6 定量的 484 1334 C ₂₂ H ₂₆ N ₃ O ₃ 471.0 25.8 定量的 485 1335 C ₃₀ H ₂₆ ClN ₄ O ₂ 381.2 19.0 定量的 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₂ 381.2 19.0 定量的 487 1337 C ₁₃ H ₂₅ ClN ₄ O ₃ 471.0 25.8 定量的 488 1338 C ₂₀ H ₂₅ ClN ₄ O ₃ 471.0 25.8 定量的 489 1339 C ₂₂ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₂ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 490 1340 C ₁₃ H ₂₃ ClN ₄ O ₄ 387.0 20.5 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 493 1343 C ₂₃ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 494 1344 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 494.0 27.2 定量的 496 1346 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 497 1347 C ₁₃ H ₂₇ ClN ₃ O ₃ 494.0 27.2 定量的 498 1349 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 499 1349 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 491 1341 C ₂₆ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 c2						
466 1281 C ₁₉ H ₂₂ FN ₃ O ₅ 420.2 19.1 91 467 1282 C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃ 523.2 25.0 96 468 1283 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃ 464.2 12.2 53 469 1284 C ₂₂ H ₂₅ BrClN ₃ O ₃ 496.0 24.1 97 470 1285 C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃ 450.2 21.8 97 471 1321 C ₂₉ H ₂₆ BrCl ₂ N ₃ O ₂ 486.0 5.1 21 472 1322 C ₂₁ H ₂₅ Cl ₂ N ₃ O ₂ 420.0 10.5 50 473 1323 C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂ 532.0 7.1 27 474 1324 C ₂₁ H ₂₄ ClN ₃ O ₃ 476.0 22.2 定量的 475 1325 C ₂₁ H ₂₅ ClN ₃ O ₃ 476.0 22.2 定量的 476 1326 C ₂₂ H ₂₅ ClN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ BrClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClN ₃ O ₂ 456.0 23.1 99 479 1329 C ₂₂ H ₂₅ ClN ₃ O ₂ 456.2 21.1 93 481 1331 C ₂₁ H ₂₃ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₈ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 381.2 19.0 定量的 486 1336 C ₂₂ H ₂₆ IN ₄ O ₂ 381.2 19.0 定量的 487 1337 C ₁₉ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 488 1338 C ₂₂ H ₂₆ N ₄ O ₄ 381.2 19.0 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 490 1340 C ₁₉ H ₂₁ DlN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ DlN ₄ O ₃ 517.0 23.1 89 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 493 1343 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ R ₄ O ₄ 386.0 20.5 定量的 493 1343 C ₂₂ H ₂₆ R ₄ O ₄ 386.0 20.5 定量的 494 1344 C ₂₂ H ₂₆ DlN ₄ O ₃ 471.0 25.8 定量的 495 1345 C ₂₀ H ₂₆ DlN ₄ O ₄ 499.0 28.2 定量的 496 1346 C ₂₀ H ₂₆ DlN ₄ O ₄ 499.0 28.2 定量的 497 1347 C ₂₁ H ₂₆ DlN ₄ O ₄ 499.0 28.2 定量的 498 1348 C ₂₂ H ₂₆ DlN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ DlN ₄ O ₄ 499.0 28.2 定量的 492 1342 C ₂₂ H ₂₆ BrClN ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₂ H ₂₆ ClN ₃ O ₂ 514.0 27.2 定量的 494 1344 C ₂₂ H ₂₆ ClN ₃ O ₂ 514.0 27.2 定量的 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 522.0 23.8 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₂ 514.0 27.2 26.9 28.9 19 497 1347 C ₁₃ H ₂₂ ClN ₃ O ₂ 532.0 16.9 43 498 1348 C ₂₀ H ₂₆ ClN ₃ O ₂ 532.0 16.9 43						
467 1282						
468 1283 C ₂ H ₂ C ₂ Cl ₂ N ₃ O ₃ 464.2 12.2 53 469 1284 C ₂ H ₂ SBrClN ₃ O ₃ 496.0 24.1 97 470 1285 C ₂ H ₂ SCl ₂ N ₃ O ₃ 450.2 21.8 97 471 1321 C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂ 486.0 5.1 21 472 1322 C ₂ t ₁ H ₂₂ Cl ₂ N ₃ O ₂ 420.0 10.5 50 473 1323 C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂ 532.0 7.1 27 474 1324 C ₂₁ H ₂₄ ClN ₃ O ₃ 476.0 22.2 定量的 475 1325 C ₂₁ H ₂₂ ClN ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₁ ClN ₃ O ₃ 476.0 22.2 93 477 1327 C ₂₁ H ₂₂ ClN ₃ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₁ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₂ ClN ₃ O ₃ 400.2 16.4 82 480 1330 C ₂₁ H ₂₂ ClN ₃ O ₂ 400.2 16.4 82 481 1331 C ₂₁ H ₂₂ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₈ H ₂₂ N ₃ O ₃ 382.2 19.6 定量的 483 1333 C ₂₁ H ₂₁ IN ₃ O ₃ 382.2 19.6 定量的 484 1334 C ₂₂ H ₂₂ N ₃ O ₃ 456.2 21.1 93 485 1335 C ₁₉ H ₂₂ BrClN ₄ O ₂ 381.2 19.0 定量的 486 1336 C ₂₀ H ₂₂ IN ₄ O ₂ 381.2 19.0 定量的 487 1337 C ₁₉ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 488 1338 C ₂₀ H ₂₂ N ₃ O ₃ 455.2 18.5 91 489 1339 C ₂₂ H ₂₂ N ₃ O ₄ 461.2 23.7 定量的 480 1330 C ₂₁ H ₂₂ IN ₄ O ₃ 517.0 23.1 89 481 1331 C ₂₁ H ₂₂ N ₄ O ₄ 386.0 20.5 定量的 482 1332 C ₂₂ H ₂₂ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₂ H ₂₂ N ₄ O ₄ 387.2 20.6 定量的 490 1340 C ₁₉ H ₂₂ IN ₄ O ₄ 386.0 20.5 定量的 491 1341 C ₂₀ H ₂₂ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₂ R ₃ ClN ₄ O ₄ 386.0 20.5 定量的 493 1343 C ₂₃ H ₂₂ ClN ₄ O ₄ 386.0 20.5 定量的 494 1344 C ₂₂ H ₂₂ Cl ₂ N ₃ O ₂ 514.0 27.2 定量的 495 1345 C ₂₃ H ₂₂ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₂ ClN ₃ O ₃ 430.2 23.8 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₃ 392.0 16.9 43 498 1348 C ₂₀ H ₂₂ N ₃ O ₂ S 372.2 6.9 19						
469 1284			1			
470 1285 C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃ 450.2 21.8 97 471 1321 C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂ 486.0 5.1 21 472 1322 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.0 10.5 50 473 1323 C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂ 532.0 7.1 27 474 1324 C ₂₁ H ₂₄ ClN ₃ O ₃ 402.2 22.2 定量的 475 1325 C ₂₇ H ₂₆ ClN ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₁ ClN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ ClN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₂ H ₂₃ ClN ₃ O ₂ 512.2 20.8 81 482 1332 C ₂₆ H ₂₃ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₂ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₃ H ₂₂ BrClN ₄ O ₃ 405.2 18.5 91 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₃ H ₂₂ ClN ₄ O ₃ 405.2 18.5 91 488 1338 C ₂₀ H ₂₅ N ₁ O ₄ 499.0 28.2 定量的 490 1340 C ₁₉ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 461.2 23.7 定量的 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 499.0 28.2 定量的 493 1343 C ₂₂ H ₂₆ N ₄ O ₄ 499.0 27.2 定量的 494 1344 C ₂₂ H ₂₆ N ₄ O ₄ 499.0 28.2 定量的 495 1345 C ₂₂ H ₂₆ RN ₄ O ₄ 499.0 27.2 定量的 496 1346 C ₂₂ H ₂₆ RN ₄ O ₄ 499.0 27.2 定量的 497 1347 C ₂₉ H ₂₆ RClN ₃ O ₃ 430.2 23.8 定量的 498 1348 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 499 1340 C ₂₁ H ₂₆ IN ₃ O ₃ 430.2 23.8 定量的 490 1340 C ₂₁ H ₂₆ IN ₃ O ₃ 430.2 23.8 定量的 491 1341 C ₂₂ H ₂₆ RClN ₃ O ₂ 560.0 27.0 96 492 1342 C ₂₂ H ₂₆ RClN ₃ O ₃ 430.2 23.8 定量的 493 1343 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 494 1344 C ₂₂ H ₂₆ RClN ₃ O ₃ 430.2 23.8 定量的 495 1345 C ₂₂ H ₂₆ RClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ RClN ₃ O ₃ 430.2 23.8 定量的 497 1347 C ₁₃ H ₂₂ ClN ₃ O ₂ 560.0 27.0 96 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 392.0 16.9 43 499 1349 C ₁₆ H ₂₄ N ₄ O ₃ S 377.2 6.9 19						
471 1321 C ₂₀ H ₂₀ BrCl ₂ N ₃ O ₂ 486.0 5.1 21 472 1322 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.0 10.5 50 473 1323 C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂ 532.0 7.1 27 474 1324 C ₂₁ H ₂₄ ClN ₃ O ₃ 402.2 22.2 定量的 475 1325 C ₂₁ H ₂₆ ClN ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₁ ClIN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ ClN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₅ ClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₆ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₀ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₃ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₃ H ₂₂ ClN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 490 1340 C ₁₃ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 493 1343 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 494 1344 C ₂₂ H ₂₆ RO ₄ O ₄ 386.0 20.5 定量的 495 1345 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 497 1347 C ₁₃ H ₂₂ ClN ₃ O ₂ 560.0 27.0 96 498 1348 C ₂₂ H ₂₆ ClN ₃ O ₃ 32.0 16.9 43 499 1349 C ₁₆ H ₂₆ N ₁ O ₃ 377.2 8.1 43						
472 1322 C ₂₁ H ₂₃ Cl ₂ N ₃ O ₂ 420.0 10.5 50 473 1323 C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂ 532.0 7.1 27 474 1324 C ₂₁ H ₂₄ ClN ₃ O ₃ 402.2 22.2 定量的 475 1325 C ₂₇ H ₂₆ ClN ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₁ ClIN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ ClN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClIN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₆ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₉ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₉ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₂ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₉ H ₂₂ ClN ₄ O ₃ 405.2 18.5 91 488 1338 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 461.2 23.7 定量的 490 1340 C ₁₉ H ₂₁ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ RCl ₂ N ₃ O ₂ 448.0 21.4 95 493 1343 C ₂₃ H ₂₇ Cl2N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₆ Cl ₂ N ₃ O ₂ 448.0 21.4 95 495 1345 C ₂₃ H ₂₆ Cl ₂ N ₃ O ₂ 448.0 21.4 95 496 1346 C ₂₂ H ₂₆ Cl ₂ N ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₆ Cl ₂ N ₃ O ₂ 560.0 27.0 96 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ 392.0 16.9 43 498 1348 C ₂₀ H ₂₀ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₆ H ₂₄ N ₄ O ₃ S 377.2 8.1 43						
473 1323 C ₂₀ H ₂₀ Cl ₂ IN ₃ O ₂ 532.0 7.1 27 474 1324 C ₂₁ H ₂₄ ClN ₅ O ₃ 402.2 22.2 定量的 475 1325 C ₂₂ H ₂₆ ClN ₅ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₁ ClIN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ ClN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₂ H ₂₅ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClIN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₆ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₆ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₃ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₂ N ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₃ H ₂₂ ClIN ₄ O ₃ 405.2 18.5 91 488 1338 C ₂₀ H ₂₂ N ₄ O ₄ 367.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 490 1340 C ₁₃ H ₂₃ IN ₄ O ₄ 499.0 26.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 514.0 27.2 定量的 494 1344 C ₂₂ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 497 1347 C ₁₃ H ₂₂ ClN ₃ O ₃ 52.0 16.9 43 498 1348 C ₂₀ H ₂₈ N ₃ O ₂ S 372.2 6.9 19						
474 1324 C ₂₁ H ₂₄ ClN ₃ O ₃ 402.2 22.2 定量的 475 1325 C ₂₁ H ₂₆ ClN ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₁ ClIN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ ClN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClIN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₆ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₆ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₅ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₆ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₅ H ₂₂ ClIN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 490 1340 C ₁₅ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₆ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ RrCl ₂ N ₃ O ₂ 448.0 21.4 95 493 1343 C ₂₃ H ₂₆ ClN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 572.2 6.9 19 499 1349 C ₁₆ H ₂₄ N ₃ O ₂ 377.2 8.1 43						
475 1325 C ₂₇ H ₂₆ ClN ₃ O ₃ 476.0 22.2 93 476 1326 C ₂₀ H ₂₁ ClIN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ ClN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClIN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₉ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 485 1335 C ₁₅ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₉ H ₂₂ ClIN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₅ H ₂₂ ClIN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 480 1340 C ₁₅ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 490 1340 C ₁₅ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₈ RCl ₂ N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₆ ClN ₃ O ₂ 510.0 27.0 96 495 1345 C ₂₂ H ₂₆ ClN ₃ O ₃ 392.0 16.9 43 498 1348 C ₂₀ H ₂₆ ClN ₃ O ₂ 392.0 16.9 43 499 1349 C ₁₆ H ₂₆ ClN ₃ O ₂ 377.2 8.1 43						
476 1326 C ₂₀ H ₂₁ C1IN ₃ O ₃ 514.0 26.9 定量的 477 1327 C ₂₁ H ₂₅ CIN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ CIN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ C1IN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₆ H ₂₅ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₆ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₉ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₉ H ₂₂ C1IN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 461.2 23.7 定量的 490 1340 C ₁₉ H ₂₃ IN ₄ O ₄ 499.0 26.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 514.0 27.2 定量的 494 1344 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 497 1347 C ₁₉ H ₂₂ ClIN ₃ O ₂ 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 377.2 8.1 43						
477 1327 C ₂₁ H ₂₅ ClN ₄ O ₂ 401.2 24.2 定量的 478 1328 C ₂₁ H ₂₃ BrClN ₃ O ₂ 466.0 23.1 99 479 1329 C ₂₂ H ₂₆ ClN ₃ O ₂ 400.2 16.4 82 480 1330 C ₂₁ H ₂₃ ClIN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₈ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₄ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₅ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₃ H ₂₂ ClIN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 461.2 23.7 定量的 490 1340 C ₁₅ H ₂₃ IN ₄ O ₄ 499.0 26.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₆ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 560.0 27.0 96 495 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 542.0 29.4 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 537.2 6.9 19 499 1349 C ₁₆ H ₂₄ N ₃ O ₂ 377.2 8.1 43						93
478	476	1326				定量的
479 1329	477	1327	$C_{21}H_{25}C1N_4O_2$	401.2	24.2	定量的
480 1330 C ₂₁ H ₂₃ ClIN ₃ O ₂ 512.2 20.8 81 481 1331 C ₂₁ H ₂₄ N ₃ O ₃ 382.2 19.6 定量的 482 1332 C ₂₈ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 255.3 定量的 484 1334 C ₂₂ H ₂₆ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₉ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₉ H ₂₂ ClIN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 461.2 23.7 定量的 490 1340 C ₁₉ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 548.0 21.4 95 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 392.0 16.9 43 498 1348 C ₂₀ H ₂₆ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₆ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	478	1328	C ₂₁ H ₂₃ BrClN ₃ O ₂	466.0	23.1	99
481	479	1329	C ₂₂ H ₂₆ ClN ₃ O ₂	400.2	16.4	82
482 1332 C ₂₈ H ₂₉ N ₃ O ₃ 456.2 21.1 93 483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₈ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₉ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₉ H ₂₂ ClIN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₈ N ₄ O ₄ 461.2 23.7 定量的 490 1340 C ₁₉ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 514.0 27.2 定量的 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 448.0 21.4 95 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₅ ClN ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 377.2 8.1 43	480	1330	$C_{21}H_{23}ClIN_3O_2$	512.2	20.8	81
483 1333 C ₂₁ H ₂₄ IN ₃ O ₃ 494.0 25.3 定量的 484 1334 C ₂₂ H ₂₈ N ₄ O ₂ 381.2 19.0 定量的 485 1335 C ₁₉ H ₂₂ BrClN ₄ O ₃ 471.0 25.8 定量的 486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₉ H ₂₂ ClIN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₈ N ₄ O ₄ 461.2 23.7 定量的 490 1340 C ₁₉ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 448.0 21.4 95 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19	481	1331	C ₂₁ H ₂₄ N ₃ O ₃	382.2	19.6	定量的
1334 C ₂₂ H ₂₈ N ₄ O ₂ 381.2 19.0 定量的 25.8 定量的 25.8 定量的 26.8 26.8 26.8 26.8 26.9 27.0	482	1332	C ₂₈ H ₂₉ N ₃ O ₃	456.2	21.1	93
485	483	1333	C ₂₁ H ₂₄ IN ₃ O ₃	494.0.	25.3	定量的
486 1336 C ₂₀ H ₂₅ ClN ₄ O ₃ 405.2 18.5 91 487 1337 C ₁₉ H ₂₂ ClIN ₄ O ₃ 517.0 23.1 89 488 1338 C ₂₀ H ₂₆ N ₄ O ₄ 387.2 20.6 定量的 489 1339 C ₂₆ H ₂₆ N ₄ O ₄ 461.2 23.7 定量的 490 1340 C ₁₉ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ ClN ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ 372.2 6.9 19 499 1349 C ₁₆ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	484	1334	C ₂₂ H ₂₈ N ₄ O ₂	381.2	19.0	定量的
487	485	1335	C ₁₉ H ₂₂ BrClN ₄ O ₃	471.0	25.8	定量的
488 1338 C ₂₀ H ₂₆ N ₄ O4 387.2 20.6 定量的 28.9 23.7 定量的 23.7 定量的 23.7 定量的 23.7 定量的 23.7 定量的 24.0 23.7 定量的 24.0 24.2 24.0	486	1336	C ₂₀ H ₂₅ ClN ₄ O ₃	405.2	18.5	91
489 1339 C ₂₆ H ₂₈ N ₄ O ₄ 461.2 23.7 定量的 28.2 定量的 28.2 定量的 28.2	487	1337	C ₁₉ H ₂₂ ClIN ₄ O ₃	517.0	23.1	89
490 1340 C ₁₉ H ₂₃ IN ₄ O ₄ 499.0 28.2 定量的 491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₆ Cl ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₅ Cl ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ Cl ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₆ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	488	1338	C ₂₀ H ₂₆ N ₄ O4	387.2	20.6	定量的
491 1341 C ₂₀ H ₂₆ N ₄ O ₄ 386.0 20.5 定量的 492 1342 C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₆ Cl ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₆ Cl ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ Cl ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 377.2 8.1 43	489	1339	C ₂₆ H ₂₈ N ₄ O ₄	461.2	23.7	定量的
492 1342 C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂ 514.0 27.2 定量的 493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₈ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₅ ClN ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₈ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	490	1340	C ₁₉ H ₂₃ IN ₄ O ₄	499.0	28.2	定量的
493 1343 C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂ 448.0 21.4 95 494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₆ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₅ ClIN ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₆ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	491	1341	C ₂₀ H ₂₆ N ₄ O ₄	386.0	20.5	定量的
494 1344 C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂ 560.0 27.0 96 495 1345 C ₂₃ H ₂₈ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₅ ClIN ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₈ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	492	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	514.0	27.2	定量的
495 1345 C ₂₃ H ₂₈ ClN ₃ O ₃ 430.2 23.8 定量的 496 1346 C ₂₂ H ₂₅ ClIN ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₈ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	493	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
496 1346 C ₂₂ H ₂₅ ClIN ₃ O ₃ 542.0 29.4 定量的 497 1347 C ₁₉ H ₂₂ ClN ₃ O ₂ S 392.0 16.9 43 498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₈ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	494	1344	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	495	1345	C ₂₃ H ₂₈ ClN ₃ O ₃	430.2	23.8	定量的
498 1348 C ₂₀ H ₂₅ N ₃ O ₂ S 372.2 6.9 19 499 1349 C ₁₈ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	496	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	定量的
499 1349 C ₁₈ H ₂₄ N ₄ O ₃ S 377.2 8.1 43	497	1347	C ₁₉ H ₂₂ ClN ₃ O ₂ S	392.0	16.9	43
	498	1348	C ₂₀ H ₂₅ N ₃ O ₂ S	372.2	6.9	19
500 1350 C ₂₁ H ₂₆ C1N ₃ O ₂ S 420.0 13.0 62	499	1349	C ₁₈ H ₂₄ N ₄ O ₃ S	377.2	8.1	43
	500	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62

501	1351	C22H24BrClN4O3	500.0		
502	1352		509.2	5.0	10
503	1353		489.2	3.6	15
504	1354	21-20-11-504	494.0	2.8	11
505	1355	24 20	537.2	5.2	19
506	1356		412.0	25.5	定量的
507			392.0	16.5	84
	1357	C20 H24 N6 O3	397.2	19.9	定量的
508	1358	C23 H26 C1 N5 O2	440.2	21.8	99
509	1368	$C_{21}H_{20}Cl_2F_3N_3O_2$	474.0	18.4	78 .
510	1369		568.0	24.1	85
511	1370	C ₁₈ H ₁₉ BrClN ₃ O ₂ S	458.0	19.4	85
512	1371	C ₂₆ H ₂₆ ClN ₃ O ₄ S	512.2	22.1	86
513	1372	C ₂₆ H ₂₆ ClN ₃ O ₂	448.0	19.1	85
514	1373	$C_{22}H_{23}ClF_3N_3O_2$	454.2	16.2	71
515	1374	C ₂₅ H ₂₇ F ₆ IN ₃ O ₄	548.2	22.1	81
516	1375	$C_{19}H_{22}BrN_3O_2S$	436.0	17.1	78
517	1376	C ₂₇ H ₂₉ N ₃ O ₄ S	492.0	19.4	79
518	1377	C ₂₇ H ₂₉ N ₃ O ₂	428.2	18.1	85
519	1378	$C_{20}H_{22}ClF_3N_4O_3$	459.0	17.3	75
520	1379	$C_{23}H_{26}F_{6}IN_{4}O_{5}$	553.2	21.0	76
521	1380	C ₁₇ H ₂₁ BrN ₄ O ₃ S	443.0	16.4	74
522	1381	C25H28N4O5S	497.0	18.4	74
523	1382	C ₂₅ H ₂₈ N ₄ O ₃	433.2	17.3	80
524	1383	$C_{23}H_{24}Cl_2F_3N_3O_2$	502.0	20.0	80
525	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87
526	1385	C ₂₈ H ₃₀ ClN ₃ O ₄ S	540.2	23.8	88
527	1386	$C_{28}H_{30}ClN_3O_2$	476.0	20.0	84
528	1411	C ₂₂ H ₂₄ Cl ₂ N ₄ O ₃	463.0	0.4	2
529	1412	C ₂₃ H ₂₇ ClN ₄ O ₂	443.0	1.3	6
530	1413	C ₂₁ H ₂₆ ClN ₅ O ₄	448.0	1.1	5
531	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
532	1415	C ₂₁ H ₂₂ ClN ₅ O ₂ S	444.0	6.8	31
533	1416	C ₂₂ H ₂₅ N ₅ O ₂ S	424.0	4.8	23
534	1417	C ₂₀ H ₂₄ N ₆ O ₃ S	429.2	4.5	21
535	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	. 10.4	44
536	1423	C27 H26 C1 N3 O3	476.0	23.9	定量的
537	1424	C27 H29 N3 O4 S	456.2	28.0	定量的
538	1425	C26 H28 N4 O4	461.2	22.3	97
539	1426	C29 H30 C1 N3 O3	504.2	26.8	定量的
			<u>-L</u>		V-35H)

257

540	1583	C21 H22 C1 F3 N4 O2	455.0	14.6	64
541	1584	C21 H22 C1 F3 N4 O3	471.0	17.4	74
542	1585	C19 H20 Br C1 N4 O2	453.0	15.6	69
543	1586	C19 H20 C12 N4 O2	407.2	2.3	11
544	1587	C26 H26 C1 N3 O3	464.0	15.4	66
545	1588	C20 H23 C1 N4 O2	387.0	14.8	77
546	1589	C22 H25 F3 N4 O2	435.2	11.1	51
547	1590	C20 H25 F3 N4 O3	451.2	16.3	72
548	1591	C20 H23 Br N4 O2	433.0	15.4	71
549	1592	C20 H23 C1 N4 O2	387.0	15.6	81
550	1593	C27 H29 N3 O3	444.2	14.8	67
551	1594	C20 H24 F3 N5 O3	440.2	16.2	74
552	1595	C20 H24 F3 N5 O4	456.2	15.4	68
553	1596	C18 H22 Br N5 O3	436.0	15.6	72
554	1597	C18 H22 C1 N5 O3	391.8	14.4	73
555	1598	C25 H28 N4 O4	449.2	15.9	71
556	1599	C19 H25 N5 O3	372.2	15.8	85
557	1606	C21 H21 C1 F3 N3 O2 S	472.0	17.0	72
558	1607	C21 H21 C1 F3 N3 O2 S	452.2	15.3	68
559	1608	C20 H23 F3 N4 O3 S	457.2	15.9	70
560	1660	C21 H22 Br F3 N4 O2	501.0	19.0	76
561	1661	C21 H22 Br F3 N4 O3	517.0	16.2	63
562	1662	C20 H21 Br F2 N4 O2	469.0	15.1	65
563	1663	C20 H22 Br C1 N4 O2	467.0	14.5	62
564	1692	C20 H23 Br2 N3 O3	514	7.3	28
565	1693	C22 H26 F2 N4 O2	417	16.2	78
566	1694	C22 H27 F N4 O2	399	21.8	定量的
567	1695	C22 H27 Br N4 O2	459	24.5	定量的
568	1696	C22 H27 I N4 O2	507	27.4	定量的
569	1697	C22 H27 C1 N4 O2	415	22.1	定量的
570	1698	C23 H27 F3 N4 O3	465	24.3	定量的
571	1699	C23 H27 F3 N4 O2	449	25.3	定量的
572	1700	C22 H25 Br Cl N3 O2	480	17.8	74

例えば、化合物番号 1583 は、下記のNMRを示した。 1 H NMR(400 M H z、CD $_{3}$ OD) δ 1.64-1.72 (m, 1 H), 2.20-2.30 (m, 1 H), 2.41-2.51 (m, 2 H), 2.71-2.78 (m, 2 H), 3.59(dd, J = 15.4, 12.9 Hz, 2 H), 3.94(s, 2 H), 4 35-4.41(m, 1 H), 6.82 (d, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6 Hz, 1 H), 7.29 (s, 4 H), 7.40 (dd, J = 8.6 Hz, 1 Hz)

.6, 1.7 Hz, 1 H), 7.85 (d, J = 0.96 Hz, 1 H)

[参考例4] (S) -3- [N- [3- (トリフルオロメチル) ベンゾイル] グ リシル] アミノピロリジンの合成

- 10 縮した。カラムクロマトグラフィー(SiO_2 、酢酸エチル/メタノール/トリエチルアミン=85:10:5-60:30:5)で精製することにより、(S)-3 -[N-[3-(トリフルオロメチル)ベンゾイル] グリシル] アミノピロリジン(1.70g、<math>81%)を油状物として得た。 1H NMR($CDC1_3$ 、270M Hz) δ 1.76(d, J=7.3 Hz, 1 H), 2.07-2.25 (m, 1 H), 2.81-2.98 (m, 2 H)
- 15 ', 3.02-3.11 (m, 2 H), 4.12 (s, 2 H), 4.41 (br, 1 H), 6.90 (br, 1 H), 7.45 (br, 1 H), 7.58 (dd, $J = 7.3 \pm U7.3 \pm U7.3 Hz$, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 8.02 (d, J = 7.3 Hz, 1 H), 8.11 (s, 1 H); ESI/MS m/e 316.0 (M ^++H , $C_{14}H_{16}F_3N_3O_2$)

さらに、(R)-3-[N-[3-(トリフルオロメチル)ベンゾイル] グリシ 20 ル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。 1. 49g、68%;生成物は、(S)<math>-異性体のものと同じ 1 H NMRとESI/MSを示した。

さらに、(R) -3-[N-[2-アミノー5-(トリフルオロメチル) ベンゾイル] グリシル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。<math>0.1.0

25 法に従って合成した。316mg、93%; ESI/MS m/e 331.2 (M^++H 、 $C_{14}H_{17}F_3N_4O_2$)

さらに、(R) -3-[N-[2-(tert-プトキシカルボニルアミノ)-5-(トリフルオロメトキシ) ベンゾイル] グリシル] アミノピロリジンを対応する原料および反応剤を用いて前記の方法に従って合成した。定量的収率; 1 H NMR (CDCl $_3$ 、400MH $_2$) δ 1.51 (s, 9 H), 1.60-1.70 (m, 2 H), 2.10-2.25 (m, 1 H), 2.80-2.88 (m, 1 H), 2.89-2.98 (m, 1 H), 3.04-3.18 (m, 2 H), 4.

WO 00/69432 PCT/JP00/03203

05 (d, J = 4.9 Hz, 2 H), 4.43 (br, 1 H), 6.15 (br, 1 H), 7.03 (br, 1 H), 7. 32 (d, J = 9.3 Hz, 1 H), 7.38 (s, 1 H), 8.42 (d, J = 9.3 Hz, 1 H)

[実施例573] (R) - 3 - [[N - [2 - (tert - ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] <math>-1 - (4 - 1)

5 <u>200</u>

ベンジル)ピロリジンの合成

(R) -1-(4-クロロベンジル) -3-(グリシルアミノ) ピロリジン(5.0g、18.7mmol)のジクロロメタン(100mL)溶液に、トリエチルアミン(2.9mL、20.5mmol)、2-(tert-ブトキシカルボニル7ミン(2.9mL、20.5mmol)、2-(tert-ブトキシカルボニル0アミノ)-5-(トリフルオロメチル) 安息香酸(6.27g、20.5mmol)、EDCI(3.9g、20.5mmol)およびHOBt(2.8g、20.5mmol)を加えた。この反応混合物を室温で一晩攪拌した。この反応混合物に2M NaOH水溶液(80mL)を加え、ジクロロメタンで抽出した。この抽出物を無水Na2SO4で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO2、ヘキサン/酢酸エチル=1:1-1:4)で精製することにより、(R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル]アミノ]-1-(4-クロロベンジル)ピロリジン(9.41g、91%)を白色アモルファス状固体として得た。ESI/MS m/e555.2(M++H、C26H30C1F3N4O4)

20 [参考例5] (R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジンの合成(R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-(4-クロロベンジル) ピロリジン(6.3g、11.4mmol)、Pd(OH)₂(1.68g)、蟻酸(3.7mL) およびメタノール(80mL) の混合物を50℃で一晩攪拌した。この混合物を室温まで冷却した後、パラジウム触媒をセライト濾過により除去し、遮液を濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル/メタノール=5:1-4:1)で精製することにより(R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル} ア30 ミノ] ピロリジン(4.42g、90%)を白色固体として得た。¹H NMR(CDC1₃、400MHz) δ 1.48(s,9H),2.0-2.4(m,2H),3.42-3.71(m,5)

WO 00/69432 PCT/JP00/03203

260

H), 4.00-4.22 (m, 2 H), 4.56 (br, 1 H), 7.48 (d, J=9.0 Hz, 1 H), 7.93 (s , 1 H), 8.17 (br, 1 H), 8.33 (d, J = 9.0 Hz, 1 H), 8.45 (br, 1 H) [実施例574] <u>(S) -1-ベンジル-3-[N-[3-(トリフルオロメチ</u> ル) ベンゾイル] グリシル] アミノピロリジン(化合物番号239)の合成

(S) -3- [N-[3-(トリフルオロメチル) ベンゾイル] グリシル] アミ 5 ノピロリジン(0.06mmol)のアセトニトリル(1.1mL)溶液と(ピペ リジノメチル) ポリスチレン (2. 6-2. 8mmol/g、30mg) を、臭化 ベンジル(0.050mmol)のアセトニトリル(0.4mL)溶液に加えた。 この反応混合物を45℃で5時間攪拌した。混合液を室温まで冷却した後、樹脂を 濾過にて除去し、濾液を濃縮した。残査をアセトニトリル (1.0mL) に溶解し 10 、フェニルイソシアネート(0.008mL、0.05mmol)を加えた。混合 液を室温にて1時間攪拌し、Varian™ SCXカラムに負荷し、メタノール (15 m L) にて洗浄した。生成物を、2 M N H₃ のメタノール (6 m L) 溶液を用 いて溶出し、濃縮することにより (S) -1-ベンジル-3- [N-(3-(トリ フルオロメチル) ベンゾイル] グリシル] アミノピロリジン (化合物番号239) を得た(9.0mg、44%)。純度をRPLC/MSにて求めた(99%)。E SI/MS m/e 406.0 (M+H, $C_{21}H_{22}F_3N_3O_2$) [実施例575] <u>(R)-1-(4-ブチルベンジル)-3-[[N-(3-ト</u>

リフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号164 8) の合成

15

20

(R) -3- [N-[3-(トリフルオロメチル) ベンゾイル] グリシル] アミ ノピロリジン(0.050mmol)、4-ブチルベンズアルデヒド(0.18m mol)、NaBH₃CN (0.23mmol) およびメタノール (1.85mL) の混合物に酢酸 (O. 060mL) を加えた。この反応混合物を60℃で12時間 攪拌した。室温まで冷却し、Varian™ SCXカラムに負荷し、メタノール (25 $15\,\mathrm{m\,L}$)にて洗浄した。生成物を、 $2\,\mathrm{M}$ $\mathrm{N\,H_3}$ のメタノール($5\,\mathrm{m\,L}$)溶液を用 いて溶出し、濃縮することにより、 (R) - 1 - (4 - プチルベンジル) - 3 - [[N-(3-トリフルオロメチルベンゾイル) グリシル} アミノ] ピロリジン(化 合物番号1648) を得た (20.6mg、89%)。純度をRPLC/MSにて 求めた (91%)。ESI/MS m/e 462.2 (M++H、C $_{25}$ H $_{30}$ F $_{3}$ N 3O2)

[実施例576-738]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 5 7 4 または 5 7 5 の方法に従って合成した。必要であれば、分取TLCまたはクロマトグラフィー($HPLC-C_{18}$)を用いて精製することにより目的物を得た。 E SI/MSデータ、収量、および収率を表 8 にまとめた。

表 8

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
576	240	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	10.2	48
577	241	C ₂₁ H ₂₁ ClF ₃ N ₃ O ₂	440.0	12.1	55
578	242	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.9	59
5.79	243	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	13.8	58
580	244	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	13.1	62
581	245	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	11.9	56
582	246	C ₂₁ H ₂₁ Cl F ₃ N ₃ O ₂	440.0	8.5	39
583	247	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂ .	474.0	10.5	44
584	248	C ₂₂ H ₂₄ CF ₃ N ₃ O ₃	436.0	11.0	51
585	249	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	12.8	54
586	250	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.0	52
587	251	C ₂₁ H ₂₁ F ₄ N ₃ O ₂	424.0	13.5	64
588	252	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	11.8	. 54
589	253	C ₂₂ H ₂₄ F ₃ N ₃ O ₂	420.0	11.1	53
590	254	C ₂₁ H ₂₀ C1F ₃ N ₄ O ₄	485.0	2.4	10
591	255	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	12.2	54
592	256	C ₂₁ H ₂₁ F ₃ N ₄ O ₄	451.0	11.4	51
593	257	C ₂₂ H ₂₁ F ₆ N ₃ O ₂	474.0	11.1	47
594	258	C ₂₄ H ₂₆ F ₃ N ₃ O ₄	478.0	15.3	64
595	259	C ₂₂ H ₂₃ ClF ₃ N ₃ O ₂	420.0	6.4	31
596	260	C ₂₁ H ₂₀ Cl ₂ F ₃ N ₃ O ₂	474.0	12.1	51
597	261	$C_{22}H_{21}ClF_6N_3O_2$	474.0	13.6	57
598	262	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	15.2	63
599	263	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	14.5	60
600	264	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	9.3	37
601	265	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	11.6	48
602	266	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	8.9	40
603	267	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	10.3	47

605 269 C ₂₁ H ₂₄ F ₃ N ₃ O ₄ S 484.0 8.0 33 606 270 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38 607 271 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 442.0 6.1 28 608 272 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 431.0 12.6 59 609 273 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.6 59 610 274 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 7.7 36 611 275 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 431.0 12.7 59 612 276 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 442.0 11.7 53 613 277 C ₂₂ H ₂₂ F ₃ N ₃ O ₂ 462.0 12.7 59 614 278 C ₂₃ H ₂₂ F ₃ N ₃ O ₂ 464.0 13.0 56 615 279 C ₂₂ H ₂₂ F ₃ N ₃ O ₃ 490.0 10.4 42 616 280 C ₂₂ H ₂₂ F ₂ N ₃ O ₃ 490.0 12.0 52 617 281	604	268	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	6.3	1 07
606 270 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 8.9 38 607 271 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 6.1 28 608 272 C ₂₂ H ₂₄ F ₃ N ₃ O ₃ 422.0 13.6 59 609 273 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 431.0 12.6 59 610 274 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 431.0 7.7 36 611 275 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 431.0 12.7 59 612 276 C ₂₁ H ₂₀ F ₃ N ₃ O ₂ 442.0 11.7 53 613 277 C ₂₂ H ₂₅ F ₃ N ₃ O ₂ 442.0 11.7 53 614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 617 281 C ₂₃ H ₂₂ F ₃ N ₃ O ₄ 462.0 12.0 49 618 282 C ₂₃ H ₃₀ F ₃ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₂ H ₂₁ F ₆ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₂ H ₂₂ F ₃ N ₃ O ₂ 462.0 12.0 52 620 284 C ₂₂ H ₂₅ C1F ₃ N ₃ O ₂ 406.0 4.8 19 620 284 C ₂₂ H ₂₅ C1F ₃ N ₃ O ₂ 406.0 4.8 24 621 285 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 406.0 4.8 24 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 474.0 8.1 34 623 287 C ₂₂ H ₂₁ F ₄ N ₃ O ₂ 474.0 8.1 34 626 290 C ₂₂ H ₂₁ F ₄ N ₃ O ₂ 474.0 6.0 29 627 291 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 474.0 6.0 29 628 292 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 474.0 6.0 29 629 293 C ₂₁ H ₂₂ C1F ₃ N ₃ O ₂ 474.0 6.0 29 629 293 C ₂₁ H ₂₂ C1F ₃ N ₃ O ₂ 474.0 6.0 25 630 294 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 474.0 6.0 25 631 295 C ₂₂ H ₂₄ F ₄ N ₃ O ₂ 474.0 6.0 25 632 296 C ₂₂ H ₂₄ F ₄ N ₃ O ₂ 474.0 6.0 25 633 297 C ₂₁ H ₂₂ C1F ₃ N ₃ O ₂ 474.0 6.0 25 639 296 C ₂₂ H ₂₄ F ₄ N ₃ O ₂ 474.0 6.0 25 630 294 C ₂₂ H ₂₄ F ₄ N ₃ O ₂ 474.0 6.0 25 631 295 C ₂₂ H ₂₄ F ₄ N ₃ O ₂ 474.0 6.0 25 632 296 C ₂₂ H ₂₄ F ₄ N ₃ O ₂ 474.0 6.0 25 633 297 C ₂₁ H ₂₅ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 297 C ₂₁ H ₂₅ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 297 C ₂₁ H ₂₅ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 297 C ₂₁ H ₂₅ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 297 C ₂₁ H ₂₅ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 296 C ₂₂ H ₂₄ F ₄ S ₃ N ₃ O ₂ 474.0 6.0 6.0 25 634 298 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 474.0 6.0 6.1 39 637 301 C ₂₁ H ₂₅ F ₄ N ₃ O ₂ 474.0 6.0 6.1 39 638 302 C ₂₂ H ₂₄ F ₄ S ₃ N ₃ O ₂ 474.0 15.1 6.7 6 639 303 C ₂₂ C ₂₄ C ₂₄ C ₁₅ N ₃ O ₂ 474.0 15.6 6 631 306 C ₂₄ H ₂₅ C1F ₃ N ₃ O ₂ 474.0 12.6 6	605	269				27
607 271 C ₂₁ H ₂ e _P S _N yO ₂ 442.0 6.1 28 608 272 C ₂ H ₂ F _S N ₃ O ₃ 422.0 13.6 59 609 273 C ₂ H ₂ F _S N ₄ O ₂ 431.0 12.6 59 610 274 C ₂ H ₂ F _S N ₃ O ₂ 431.0 7.7 36 611 275 C ₂ H ₂ F _S N ₃ O ₂ 431.0 12.7 59 612 276 C ₂ H ₂ F _S N ₃ O ₂ 442.0 11.7 53 613 277 C ₂ H ₂ F _S N ₃ O ₂ 442.0 9.5 39 614 278 C ₂ H ₂ F _S N ₃ O ₂ 442.0 11.7 53 613 277 C ₂ H ₂ F ₂ F ₃ N ₃ O ₂ 462.0 9.5 39 614 278 C ₂ H ₂ F ₃ F ₃ N ₃ O ₂ 462.0 12.0 42 615 279 C ₂ H ₂ F ₃ F ₃ N ₃ O ₂ 462.0 12.0 42 616 280 C ₂ H ₂ F ₃ F ₃ N ₃ O ₂ 462.0 12.0 49 617 281 <t< td=""><td>606</td><td>270</td><td></td><td></td><td></td><td></td></t<>	606	270				
608 272 C2182FSNAO3 422.0 13.6 59 609 273 C22H21FSNAO2 431.0 12.6 59 610 274 C22H21FSNAO2 431.0 12.6 59 610 274 C22H21FSNAO2 431.0 7.7 36 611 275 C22H21FSNAO2 431.0 12.7 59 612 276 C21H20FSNJO2 442.0 11.7 53 613 277 C21H22FSNJO2 482.0 9.5 39 614 278 C23H22FSNJO4 464.0 13.0 56 615 279 C22H21FSNJO4 464.0 13.0 56 616 280 C22H21FSNJO4 464.0 13.0 56 617 281 C22H22FSNJO4 464.0 13.0 56 618 282 C22H21FSNJO4 450.0 4.9 22 619 283 C26H23FJNJO4 450.0 4.9 22 619 283 C26H23FJNJO2 516.0 4.8 19 621 285 C22H22FJNJO2 516.0 4.8 19 622 286 C21H22FJNJO2 406.0 4.8 24 623 287 C21H22FJNJO2 406.0 4.8 24 624 288 C21H22FJNJO2 400.0 5.8 26 625 289 C21H22C1FJNJO2 474.0 8.1 34 626 290 C22H21FNJO2 474.0 8.1 34 627 291 C22H21FNJO2 474.0 8.1 34 628 C22H22FJNJO2 474.0 6.2 29 629 293 C21H21C1FJNJO2 474.0 6.0 25 630 294 C22H21FNJO2 474.0 6.0 25 633 297 C21H21C1FJNJO2 474.0 6.0 25 633 297 C21H21C1FJNJO2 474.0 6.0 25 633 297 C21H21C1FJNJO2 474.0 6.0 25 634 298 C22H21FNJO3 474.0 6.0 25 635 299 C22H21FNJO3 474.0 6.0 25 636 300 C21H21FNJO3 474.0 6.0 25 637 301 C21H21FNJO3 474.0 6.0 25 638 302 C21H21C1FJNJO2 420.0 6.0 39 639 303 C22H21FNJO3 436.0 12.2 56 630 300 C21H21FNJO3 474.0 6.0 25 631 295 C22H21FNJO3 474.0 6.0 25 633 297 C21H21FNJO3 474.0 6.0 25 634 298 C22H21FNJO3 474.0 6.0 25 635 299 C22H21FNJO3 474.0 6.0 25 636 300 C21H21FNJO4 475.0 15.1 67 637 301 C21H21FNJO4 475.0 15.1 67 638 302 C21H21FNJO4 475.0 15.1 67 639 303 C22H21FNJO4 475.0 15.1 67 631 304 C22H21FNJO4 475.0 15.1 67 633 303 C22H21FNJO4 475.0 15.1 67 634 306 C24H21FNJO4 475.0 14.5 61	607	271				
609 273 C22H21F3NAO2 431.0 12.6 59 610 274 C22H21F3NAO2 431.0 7.7 36 611 275 C22H21F3NAO2 431.0 12.7 59 612 276 C21H20F3N3O2 442.0 11.7 53 613 277 C21H26F3N3O2 482.0 9.5 39 614 278 C23H21F6N3O3 480.0 10.4 42 615 279 C22H21F6N3O3 490.0 10.4 42 616 280 C22H21F6N3O3 490.0 12.0 49 617 281 C22H22F3N3O4 450.0 4.9 22 618 282 C25H30F3N3O2 462.0 12.0 52 619 283 C20H23F3NAO2 462.0 12.0 52 619 283 C20H23F3NAO3 425.0 8.1 38 620 284 C21H25C1F3N3O2 406.0 4.8 24 622 286 C21H21C1F3N3O2 406.0 4.8 24 623 287 C21H21C1F3N3O2 440.0 5.8 26 624 288 C21H20C12F3N3O2 474.0 8.1 34 625 289 C21H20C12F3N3O2 474.0 8.1 34 626 290 C22H24F3N3O2 474.0 8.1 34 626 290 C22H24F3N3O2 474.0 8.1 34 627 291 C21H21C1F3N3O2 474.0 8.0 34 628 292 C21H21C1F3N3O2 474.0 8.0 34 629 293 C21H21C1F3N3O2 474.0 8.0 34 620 294 C21H25C12F3N3O2 474.0 8.1 34 625 289 C21H20C12F3N3O2 474.0 8.1 22 627 291 C21H21C1F3N3O2 474.0 8.0 34 628 292 C21H21C1F3N3O2 474.0 8.0 34 629 293 C21H21C1F3N3O2 474.0 8.0 34 620 294 C2H22F3N3O2 474.0 8.0 34 620 294 C2H24F3N3O2 474.0 8.0 34 625 289 C21H21C1F3N3O2 474.0 8.0 34 626 290 C22H24F3N3O2 474.0 8.0 32 627 291 C21H21C1F3N3O2 474.0 6.2 29 628 292 C21H21C1F3N3O2 474.0 6.2 29 629 293 C21H21C1F3N3O2 474.0 6.0 25 633 297 C21H21F6N3O2 474.0 6.0 25 633 297 C21H21FAN3O2 474.0 6.0 25 634 298 C22H24CF3N3O3 436.0 12.2 56 634 298 C22H24C7F3N3O3 436.0 12.2 56 635 299 C22H24F3N3O3 436.0 12.2 56 636 300 C21H22FAN3O2 474.0 6.0 25 637 301 C21H21FAN3O2 474.0 6.0 25 638 302 C21H21FAN3O2 474.0 6.0 25 639 303 C22H21FAN3O3 436.0 12.2 56 631 295 C22H21C1F6N3O2 474.0 6.0 25 633 300 C21H21FAN3O2 474.0 6.0 25 634 298 C22H24F3N3O3 436.0 12.2 56 635 299 C22H24F3N3O3 436.0 12.2 56 636 300 C21H21FAN3O2 474.0 6.0 25 637 301 C21H21FAN3O2 474.0 6.0 25 638 302 C21H21FAN3O2 474.0 6.0 25 639 303 C22H21FAN3O3 436.0 12.2 56 631 296 C22H24F3N3O3 436.0 12.2 56 633 300 C21H21FAN3O2 474.0 6.0 25 634 298 C22H21FAN3O2 474.0 6.0 25 635 299 C22H24F3N3O3 436.0 12.2 56 637 301 C21H21FAN3O2 474.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	608					
610 274 C _{22H21} F ₃ N ₄ O ₂ 431.0 7.7 36 611 275 C _{22H21} F ₃ N ₄ O ₂ 431.0 12.7 59 612 276 C _{21H20} F ₅ N ₃ O ₂ 442.0 11.7 53 613 277 C _{27H26} F ₃ N ₃ O ₂ 482.0 9.5 39 614 278 C _{23H24} F ₃ N ₃ O ₄ 464.0 13.0 56 615 279 C _{22H21} F ₆ N ₃ O ₃ 490.0 10.4 42 616 280 C _{22H21} F ₆ N ₃ O ₃ 490.0 12.0 49 617 281 C _{22H22} F ₃ N ₃ O ₄ 450.0 4.9 22 618 282 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₀ H ₂₂ F ₃ N ₃ O ₂ 406.0 4.8 19 620 284 C ₂₇ H ₂₆ C ₁ F ₃ N ₃ O ₂ 406.0 4.8 24 622 286 C ₂₇ H ₂₄ F ₃ N ₃ O ₂ 424.0 4.5 21 623 287 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 8.1 34 625 289 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 29 627 291 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 630 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 631 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 632 296 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 29 627 291 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 29 628 292 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 29 629 293 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 424.0 4.5 20 630 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 29 627 291 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 420.0 6.2 29 628 292 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 8.1 34 631 295 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 294 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 634 296 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 474.0 6.0 25 635 299 C ₂₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 636 300 C ₂ H ₂₂ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 5.1 22 637 291 C ₃₁ H ₂₁ F ₃ N ₃ O ₂ 474.0 6.0 5.1 22 638 302 C ₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 5.1 22 639 C ₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 5.1 22 630 294 C ₂ H ₂₁ F ₃ N ₃ O ₂ 474.0 6.0 5.1 22 631 295 C ₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 5.1 39 631 295 C ₂ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 6.0 25 632 296 C ₂ H ₂₁ F ₃ N ₃ O ₂ 474.0 6.0 6.0 25 633 307 C ₂ H ₂₁ F ₃ N ₃ O ₂ 474.0 6.0 6.0 25 634 298 C ₂₂ H ₂₁ F ₃ N ₃ O ₂ 474.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	609					
611 275 C ₂₂ H ₂₁ F ₃ N ₄ O ₂ 431.0 12.7 59 612 276 C ₂₁ H ₂₀ F ₅ N ₃ O ₂ 442.0 11.7 53 613 277 C ₂₇ H ₂₆ F ₃ N ₃ O ₂ 482.0 9.5 39 614 278 C ₂₂ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 12.0 49 617 281 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 462.0 12.0 52 618 282 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₀ H ₂₁ F ₃ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₀ H ₂₁ F ₃ N ₃ O ₂ 462.0 12.0 52 619 284 C ₂₇ H ₂₂ C1F ₃ N ₃ O ₂ 406.0 4.8 19 620 284 C ₂₇ H ₂₂ C1F ₃ N ₃ O ₂ 406.0 4.8 24 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21 623 287 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 474.0 8.1 34 625 289 C ₂₁ H ₂₀ C1 ₂ F ₃ N ₃ O ₂ 420.0 6.0 29 626 290 C ₂₂ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 20 627 291 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 6.2 29 628 292 C ₃ H ₂₁ C1F ₃ N ₃ O ₂ 424.0 6.2 29 629 293 C ₂₁ H ₂₂ C1F ₃ N ₃ O ₂ 424.0 6.2 29 629 293 C ₂₁ H ₂₂ C1F ₃ N ₃ O ₂ 424.0 6.2 29 629 293 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 424.0 6.2 29 629 293 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 424.0 6.2 29 629 293 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 424.0 6.2 29 629 293 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 424.0 6.2 29 630 294 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 474.0 5.1 22 631 295 C ₂₂ H ₂₁ C1F ₃ N ₃ O ₂ 474.0 6.0 25 632 296 C ₂₂ H ₂₁ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 297 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 299 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 474.0 6.0 25 633 299 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 299 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 420.0 6.1 39 631 295 C ₂₂ H ₂₁ C1F ₃ N ₃ O ₂ 420.0 6.1 39 633 297 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 420.0 6.1 39 634 298 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 420.0 6.1 39 635 299 C ₂₂ H ₂₂ F ₃ N ₃ O ₂ 420.0 6.1 39 636 300 C ₂₁ H ₂₂ C1F ₃ N ₃ O ₂ 474.0 6.0 5.5 637 301 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 420.0 6.1 39 638 302 C ₂₂ H ₂₂ F ₃ N ₃ O ₂ 470.0 15.1 67 639 303 C ₂₂ H ₂₂ C1F ₃ N ₃ O ₂ 470.0 15.1 67 639 303 C ₂₂ H ₂₂ C1F ₃ N ₃ O ₂ 470.0 16.6 74 639 303 C ₂₂ H ₂₂ C1F ₃ N ₃ O ₂ 470.0 16.6 74 639 303 C ₂₂ H ₂₂ C1F ₃ N ₃ O ₂ 470.0 12.6 53 640 304 C ₂₄ H ₂₆ C1F ₃ N ₃ O ₄ 476.0 12.6 53 640 306 C ₂₄ H ₂₆ C1F ₃ N ₃ O ₄ 476.0 174.5 61	610	274				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	611	275				
613 277 C ₂₁ H ₂₆ F ₃ N ₃ O ₂ 482.0 9.5 39 614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₄ 450.0 4.9 22 617 281 C ₂₃ H ₂₅ F ₃ N ₃ O ₄ 462.0 12.0 49 618 282 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₀ H ₂₁ F ₃ N ₃ O ₃ 425.0 8.1 38 620 284 C ₂₇ H ₂₅ F ₃ N ₃ O ₂ 406.0 4.8 19 621 285 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 406.0 4.8 24 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 440.0 5.8 26 624 288 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 8.1 34 625 289 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 420.0 6.0 29 627 291 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 424.0 4.5 20 629 293 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 424.0 4.5 20 629 293 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 424.0 4.5 20 629 293 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 424.0 6.2 29 627 291 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 424.0 6.2 29 628 292 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 630 294 C ₂₂ H ₂₄ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 631 295 C ₂₂ H ₂₁ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 632 296 C ₂₂ H ₂₄ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 296 C ₂₂ H ₂₄ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 636 299 293 C ₂₁ H ₂₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 637 296 C ₂₂ H ₂₄ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 639 299 C ₂₂ H ₂₄ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 631 295 C ₂₂ H ₂₁ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 632 296 C ₂₂ H ₂₄ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 633 296 C ₂₂ H ₂₄ C ₁ C ₁ F ₃ N ₃ O ₂ 474.0 6.0 25 635 299 C ₂₂ H ₂₄ C ₁ C ₁ C ₁ C ₁ O ₃ O ₂ 474.0 6.0 25 636 290 C ₂₂ H ₂₄ C ₁ C ₁ C ₁ C ₂ O ₃ O ₂ 474.0 6.0 25 637 296 C ₂₂ H ₂₄ C ₁ C ₁ C ₁ C ₁ O ₃ O ₂ 474.0 6.0 25 638 302 C ₂₁ H ₂₁ C ₁ C ₁ C ₁ O ₃ O ₂ 474.0 6.0 6.0 25 639 303 C ₂₂ H ₂₄ C ₁ C ₁ C ₁ O ₃ O ₂ 474.0 6.0 6.0 25 630 296 C ₂₂ H ₂₄ C ₁ C ₁ O ₃ O ₂ 474.0 6.0 6.0 25 637 296 C ₂₂ H ₂₄ C ₁ C ₁ O ₃ O ₂ 474.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	612					
614 278 C ₂₃ H ₂₄ F ₃ N ₃ O ₄ 464.0 13.0 56 615 279 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 10.4 42 616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 12.0 49 617 281 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 4.9 22 618 282 C ₂₃ H ₃₀ F ₃ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 8.1 38 620 284 C ₂₇ H ₂₅ C1F ₃ N ₃ O ₂ 516.0 4.8 19 621 285 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 406.0 4.8 24 621 286 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 424.0 4.5 21 623 287 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 440.0 5.8 26 624 288 C ₂₁ H ₂₂ C1 ₂ F ₃ N ₃ O ₂ 474.0 8.1 34 625 289 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 420.0 6.0 29 627 291	613	277				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	614	278				
616 280 C ₂₂ H ₂₁ F ₆ N ₃ O ₃ 490.0 12.0 49 617 281 C ₂₂ H ₂₂ F ₃ N ₃ O ₄ 450.0 4.9. 22 618 282 C ₂₅ H ₃₀ F ₃ N ₃ O ₂ 462.0 12.0 52 619 283 C ₂₀ H ₂₃ F ₃ N ₄ O ₃ 425.0 8.1 38 620 284 C ₂₇ H ₂₅ C1F ₃ N ₃ O ₂ 516.0 4.8 19 621 285 C ₂₁ H ₂₂ F ₃ N ₃ O ₂ 406.0 4.8 24 622 286 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 21 623 287 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 474.0 8.1 34 625 289 C ₂₁ H ₂₀ C1 ₂ F ₃ N ₃ O ₂ 474.0 8.1 34 626 290 C ₂₂ H ₂₄ F ₃ N ₃ O ₂ 420.0 6.0 29 627 291 C ₂₁ H ₂₁ F ₄ N ₃ O ₂ 424.0 4.5 20 628 292 C ₂₁ H ₂₁ C1F ₃ N ₃ O ₂ 420.0 6.0 29 629 293 C ₂₁ H ₂₀ C1 ₂ F ₃ N ₃ O ₂ 420.0 6.0 29 629 293 C ₂₁ H ₂₀ C1 ₂ F ₃ N ₃ O ₂ 474.0 8.1 32 630 294 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 420.0 6.0 29 631 295 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 474.0 5.1 22 633 296 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 474.0 6.0 25 639 297 C ₂₁ H ₂₀ C1 ₂ F ₃ N ₃ O ₂ 474.0 6.0 25 631 295 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 474.0 6.0 25 632 296 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 474.0 6.0 25 633 296 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 474.0 6.0 25 634 298 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 420.0 6.0 25 635 299 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 420.0 8.2 39 6363 296 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 420.0 8.1 39 637 298 C ₂₂ H ₂₄ C1F ₃ N ₃ O ₂ 420.0 8.1 39 638 300 C ₂₁ H ₂₀ C1F ₃ N ₄ O ₄ 485.0 13.7 57 637 301 C ₂₁ H ₂₁ C1F ₃ N ₄ O ₄ 485.0 13.7 57 638 302 C ₂₂ H ₂₁ C1F ₃ N ₄ O ₄ 451.0 15.1 67 639 303 C ₂₂ H ₂₁ C1F ₃ N ₄ O ₄ 451.0 12.6 53 640 304 C ₂₄ H ₂₆ F ₃ N ₃ O ₂ 474.0 12.6 53 641 305 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 474.0 12.6 53 642 306 C ₂₄ H ₂₄ CF ₃ N ₃ O ₂ 474.0 12.6 53	615					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	616				ļ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	617				_L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	618					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u> </u>					38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		i				24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1				26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<u> </u>				34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					L	34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_L			19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•					39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<u> </u>		67
640 304 C ₂₄ H ₂₆ F ₃ N ₃ O ₄ 478.0 12.6 53 641 305 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 420.0 8.4 37 642 306 C ₂₄ H ₂₆ C1 ₂ F ₃ N ₃ O ₂ 420.0 8.4 37						74
641 305 C ₂₂ H ₂₃ C1F ₃ N ₃ O ₂ 420.0 8.4 37						53
642 306 Co.Ho.Cl.F.N.O. 474 37					14.5	61
$C_{21}\Pi_{20}C_{12}\Gamma_{3}N_{3}C_{2}$ 474.0 13.5 57						37
	042	306	C21H20C12F3N3O2	474.0	13.5	57

643	307	C ₂₂ H ₂₁ ClF ₆ N ₃ O ₂	474.0	3.7	16
644	308	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	7.2	30
645	309	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.7	28
646	310	C ₂₇ H ₂₆ F ₃ N ₃ O ₃	498.0	4.2	17
647	311	C ₂₁ H ₂₁ BrF ₃ N ₃ O ₂	484.0	6.3	26
648	312	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	2.4	11
649	313	C ₂₂ H ₂₄ F ₃ N ₃ O ₃	436.0	1.9	9
650	314	C ₂₃ H ₂₅ F ₃ N ₄ O ₃	463.0	5.0	22
651	315	C ₂₂ H ₂₄ F ₃ N ₃ O ₄ S	484.0	2.5	10
652	316	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	3.3	14
653	317	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	4.5	20
654	318	C ₂₁ H ₂₂ F ₃ N ₃ O ₃	422.0	7.9	34
655	319	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	6.5	30
656	320	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.2	66
657	321	C ₂₂ H ₂₁ F ₃ N ₄ O ₂	431.0	14.9	69
658	322	C ₂₁ H ₂₀ F ₅ N ₃ O ₂	442.0	13.6	62
659	323	C ₂₇ H ₂₆ F ₃ N ₃ O ₂	482.0	3.9	16
660	324	C ₂₃ H ₂₄ F ₃ N ₃ O ₄	464.0	15.2	66
661	325	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	16.1	. 66
662	326	C ₂₂ H ₂₁ F ₆ N ₃ O ₃	490.0	13.6	56
663	327	C ₂₂ H ₂₂ F ₃ N ₃ O ₄	450.0	5.4	24
664	328	C ₂₅ H ₃₀ F ₃ N ₃ O ₂	462.0	10.9	47
665	329	C ₂₀ H ₂₃ F ₃ N ₄ O ₃	425.0	12.0	57
666	986	C27 H25 C1 F3 N3 O2	516.0	1.5	6
667	1118	C28 H27 F3 N4 O3	525	21.5	62
668	1119	C22 H24 F3 N3 O2 S	452	16.9	57
669	1120	C23 H26 F3 N3 O4	466	20.5	67
670	1121	C22 H23 F3 N4 O4	465	16.8	55
671	1122	C28 H36 F3 N3 O2	504	21.0	63
672	1123	C25 H23 Br F3 N3 O2	534	26.6	75
673	1124	C19 H19 F3 N4 O5	441	21.3	73
674	1133	C23 H26 F3 N3 O4	467	33.6	84
675	1134	C24 H28 F3 N3 O5	496	34.8	82
676	1135	C22 H21 F3 N4 O6	495	32.6	77
677	1136	C23 H24 F3 N3 O5	480	36.6	89
678	1137	C22 H21 Br F3 N3 O4	529	30.8	69
679	1138	C24 H26 F3 N3 O2	446	32.7	86
680	1139	C22 H24 F3 N3 O2	420	18.6	51
681	1140	C21 H20 F3 N5 O6	496	20.5	49
L	L				

682	1141	C25 H24 F3 N3 O2	456	22.5	58
683	1142	C25 H24 F3 N3 O2	456	21.6	55
684	1143	C35 H34 F3 N3 O4	618	27.3	53
685	1144	C23 H26 F3 N3 O4	466	25.5	64
686	1145	C23 H25 F3 N4 O6	511	38.0	88
687	1146	C28 H28 F3 N3 O3	512	38.3	89
688	1147	C23 H25 F3 N4 O3	463	27.1	62
689	1148	C27 H26 F3 N3 O2	482	22.4	57
690	1161	C22 H24 F3 N3 O4	452	13.5	58
691	1162	C24 H28 F3 N3 O3	464	16.7	70
692	1163	C22 H23 F4 N3 O3	454	15.8	68
693	1164	C23 H26 F3 N3 O3	450	15.7	68
694	1165	C23 H24 F3 N3 O4	464	16.3	68
695	1166	C22 H23 Br F3 N3 O3	513	15.0	57
696	1168	C17 H17 C1 F3 N5 O2 S	448	6.9*	23
697	1169	C20 H22 F3 N5 O3 S	470	1.7*	6
698	1170	C22 H22 F3 N5 O2	446	2.3*	8
699	1286	C26 H33 F3 N4 O3	507	25.3*	51
700	1287	C21 H20 F3 N5 O6	496	4.0*	8
701	1288	C22 H24 F3 N3 O4	452	3.6*	13
702	1298	C23 H25 Br F3 N3 O4	544	28.4	定量的
703	1299	C24 H28 F3 N3 O5	496	1.4	6
704	1300	C23 H26 F3 N3 O4	466	7.3	33
705	1301	C24 H28 F3 N3 O5	496	12.6	53
706	1302	C24 H28 F3 N3 O3 .	464	24.5	定量的
707	1303	C23 H25 Br F3 N3 O4	544	22.2	86
708	1304	C29 H30 F3 N3 O4	542	28.6	定量的
709	1305	C26 H26 F3 N3 O3	486	35.4	定量的
710	1306	C24 H28 F3 N3 O4	480	8.1	35
711	1307	C23 H26 F3 N3 O5	482	27.9	定量的
712	1308	C23 H24 F3 N3 O3	448	5.9	28
713	1309	C23 H25 F3 I N3 O4	592	24.0	85
714	1310	C22 H24 F3 N3 O4	452	3.4	16
715	1311	C22 H22 F3 N3 O4	450	3.4	16
716	1312	C21 H21 F3 I N3 O2	532	18.1	72
717	1313	C21 H21 Br F3 N3 O2	484	17.4	76
718	1314	C19 H19 F3 N4 O4 S	457	16.8	77
. 719	1315	C20 H22 F3 N3 O3	410	13.6	70
720	1316	C22 H20 C1 F6 N3 O2	508	18.6	77
-					

721	1317	C21 H20 C1 F3 N4 O4	485	17.0	74
722	1318	C21 H20 C1 F4 N3 O2	458	17.0	78
723	1319	C21 H20 C1 F4 N3 O2	458	17.6	81
724	1320	C21 H20 Br F4 N3 O2	502	18.5	77
725	1390	C26 H32 F3 N3 O2	476	16.1	51
726	1391	C23 H26 F3 N3 O2	434	20.0	76
727	1392	C22 H23 C1 F3 N3 O2	454	20.0	67
728	1393	C23 H26 F3 N3 O2	434	20.1	70
729	1394	C22 H23 F3 N4 O4	465	18.4	60
730	1395	C23 H24 F3 N3 O2	432	21.4	75
731	1396	C26 H26 F3 N3 O2	470	20.4	66
732	1397	C21 H20 Br2 F3 N3 O2	562	14.5	54
733	1398	C22 H22 C12 F3 N3 O2	488	10.8	47
734	1399	C22 H22 C12 F3 N3 O2	488	9.4	40
735	1400	C22 H23 C1 F3 N3 O2	454	19.1	88
73,6	1614	C22 H21 F6 N3 S	506.0	24.2	96
737	2050	C20 H22 F3 N3 O2 S	426	6.0	30
738	2051	C21 H23 F3 N4 O2	421	6.5	. 32

^{*}トリフルオロ酢酸塩の収率。

[実施例739-748]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例5 75の方法に従って合成した。必要であれば、分取TLCで精製することにより目 的物を得た。ESI/MSデータ、収量、および収率を表9にまとめた。

表 9

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
739	1650	C24 H28 F3 N3 O2	448.0	20.4	91
740	1706	C23 H25 F3 N4 O3	463.2	3.7	11
741	1707	C22 H25 F3 N4 O2 S	467.0	10.3	29
742	1708	C23 H27 F3 N4 O2	449.2	11.4	34
743	1709	C24 H29 F3 N4 O2	463.2	15.2	44
744	1775	C22 H25 F3 N4 O4	467.2	9.2	26.3
745	1776	C22 H25 F3 N4 O4	467.2	8.9	25.4
746	1787	C24 H29 F3 N4 O2	463.2	5.6	16.1
747	1802	C23 H27 F3 N4 O4	481.2	11.7	32.5

748	1803	C22 H25 F3 N4 O3	451.2	9.6	28.4

[実施例749] <u>(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] アミノ] -1-(3-ヒドロキシ-4-メトキシベンジル) ピロリジン (化合物番号1896) の合成</u>

- (R) -3-[N-[2-(tert-ブトキシカルボニルアミノ) -5-(トリフルオロメトキシ) ベンゾイル] グリシル] アミノピロリジン (0.050mm ol)、3-ヒドロキシー4-メトキシベンズアルデヒド (0.060mmol)、NaBH₃CN (0.15mmol) およびメタノール (1.3mL) の混合物に、酢酸 (0.050mL) を加えた。この反応混合物を60℃で8時間攪拌した。
- 7ミノ] -1-(3-ヒドロキシー4ーメトキシベンジル) ピロリジン (化合物番号1896) を得た(9.1mg、38%)。純度をRPLC/MSにて求めた(93%)。ESI/MS m/e 483 (M++H、C₂₂H₂₅F₃N₄O₅)
 [実施例750-757]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 20 749の方法に従って合成した。ESI/MSデータ、収量、および収率を表 10 にまとめた。

表 10

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
750	1897	C22 H25 F3 N4 O3 S	483	22.7	94.1
751	1898	C23 H27 F3 N4 O3	465	12.2	52.5
752	1899	C24 H29 F3 N4 O3	479	14.4	60.2
753	1900	C22 H25 F3 N4 O5	483	2.6	10.8
754	1901	C24 H29 F3 N4 O3	479	14.5	60.6
755	1902	C23 H25 F3 N4 O4	479	12.0	· .
756		C23 H27 F3 N4 O5			50.2
		220 MZ, 13 M4 O3	467.2	2.5	6.7

PCT/JP00/03203

757	1916	C22 H25 F3 N4 O4	467.2	3.1	8.9

[実施例758] (R) -3-[[N-(2-アミノ-5-トリフルオロメチル) ベンゾイル) グリシル] アミノ] -1-(4-ビニルベンジル) ピロリジン(化合物番号1701) の合成

5 (R) -3-[[N-(2-アミノ-5-(トリフルオロメチル) ベンゾイル) グリシル] アミノ] ピロリジン (0.050mmol)、4ービニルベンジルクロリド (9.9mg、0.065mL)、ピペリジノメチルポリスチレン (60mg)、アセトニトリル (1.0mL)、およびクロロホルム (0.30mL)の混合物を50℃で12時間攪拌した。この反応混合物を室温まで冷却し、Varian[™] SCXカラムに負荷し、メタノール (15mL)にて洗浄した。生成物を、2MNH₃のメタノール (5mL) 溶液を用いて溶出し、濃縮することにより、(R) -3-[[N-(2-アミノ-5-(トリフルオロメチル)ベンゾイル)グリシル]アミノ]-1-(4-ビニルベンジル)ピロリジン (化合物番号1701)を得た(19.6mg、88%)。純度をRPLC/MSにて求めた(92%)。ES I/MS m/e 547.2 (M+H、C₂₃H₂₅C1F₃N₄O₂)[実施例759-762]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 758の方法に従って合成した。必要であれば、分取TLCで精製することにより 目的物を得た。ESI/MSデータ、収量、および収率を表11にまとめた。

20 表 11

25

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
759	1702	C22 H25 F3 N4 O3	451.2	5.3	24
760	1703	C22 H23 F3 N4 O4	465.2	5.0	22
761	1704	C21 H23 F3 N4 O3	437.2	20.9	96
762	1705	C21 H21 C12 F3 N4 O2	489.2	9.3	38

[実施例763] (R) -3-[[N-(2-アミノ-5-(トリフルオロメトキシ)ベンゾイル) グリシル] アミノ] -1-(2, 4-ジクロロベンジル) ピロリジン (化合物番号1905) の合成

(R) -3-[[N-(2-アミノ-5-(トリフルオロメトキシ) ベンゾイル) グリシル] アミノ] ピロリジン (0.050mmol)、2,4-ジクロロベンジルクロリド (0.066mL)、ピペリジノメチルポリスチレン (60mg)、アセトニトリル (0.8mL)、およびクロロホルム (0.5mL)の混合物を60℃で12時間攪拌した。この反応混合物を室温まで冷却し、Varian™ SC Xカラムに負荷し、50%クロロホルム/メタノール (10mL) とメタノール (10mL) にて洗浄した。生成物を、2M NH3のメタノール (5mL) 溶液を用いて溶出し、濃縮した。得られた残さに4M HClの1,4ジオキサン (2mL)溶液を加え、室温で一晩攪拌した。濃縮後、分取TLCにて精製することにより、(R) -3-[[N-(2-アミノ-5-(トリフルオロメトキシ) ベンゾイル) グリシル] アミノ] -1-(2,4-ジクロロベンジル) ピロリジン (化合物番号1905)を得た(17.6mg、70%)。純度をRPLC/MSにて求めた(93%)。ESI/MS m/e 505(M++H、C21H21Cl2F3N4O3))

15 [実施例764-770]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例763の方法に従って合成した。ESI/MSデータ、収量、および収率を表12にまとめた。

表 12

20

実施例	化合物番号	分子式	ESI/MS m/e	.b. E	
		7,20	DOI/145 M/E	収量 (mg)	収率 (%)
764	1906	C22 H23 F3 N4 O5	481	0.4	
765		C21 H23 F3 N4 O4		9.4	39.1
			453	7.5	33.2
766	1908	C22 H25 F3 N4 O4	467	7.7	33.0
767	2180	C22 H24 C1 F3 N4 O2	469	1.3	26
768	2181	C23 H25 F3 N6 O3	ļJ		
769			491	4.3	52
		C19 H22 F3 N5 O2 S	442	7.0	51
770	1909	C23 H25 F3 N4 O3	463	8.7	37.6

WO 00/69432 PCT/JP00/03203

(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル} アミノ] ピロリジン(0.050mmol)、4-クロロ-2-ニトロベンジルクロリド(0.050mmol)、ピペリジノメチルポリスチレン(60mg)、アセトニトリル(1.0mL)、および、クロロホルム(0.7mL)の混 合物を50℃で一晩攪拌した。この反応混合物を冷却し、Varian™ SCXカラムに負荷し、50%クロロホルム/メタノール(10mL)とメタノール(10mL)にて洗浄した。生成物を、2M NH3のメタノール(5mL)溶液を用いて溶出し、濃縮した。得られた残さにエタノール(3mL)と10%パラジウム炭素を加え、この溶液を水素雰囲気下、室温で1.5時間攪拌した。濾過、濃縮後、分10 取TLCで精製することにより、(R) -3-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル)グリシル]アミノ]-1-(2-アミノー4ークロロベンジル)ピロリジン(化合物番号1921)を得た(2.2mg,6%)。純度をRPLC/MSにて求めた(81%)。ESI/MS m/e 486.2(M++H、C21H23C1F3N5O3)

[実施例772] (R) -3-[[N-(2-アミノ-5-ドリフルオロメチルベンゾイル) グリシル] アミノ] -1-(4-ブロモ-2-フルオロベンジル) ピロリジン(化合物番号2120)の合成

 $(R) - 3 - [[N - (2 - (tert - \vec{J}) + \vec{J}) - \vec{J}) - 5 - \vec{J}]$ リフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン(0.050mmo 20 1)、4-ブロモ-2-フルオロベンズアルデヒド(0.015mmol)、メタ ノール (1. 5 m L) 、および、酢酸 (0. 0 1 6 m L) の混合物に、Na B H₃ C N(0.25mmol)のメタノール(0.50mL)溶液を加えた。この反応混 合物を50℃で一晩攪拌した。室温まで冷却後、Varian™ SCXカラムに負 荷し、メタノール(5 m L × 2)にて洗浄した。生成物を、2 M N H₃のメタノー 25 ル(5mL)溶液を用いて溶出し、濃縮した。残査をメタノール(0. 25mL) に溶解し、4M HClのジオキサン溶液を加えた。この溶液を室温にて5時間攪 拌し、濃縮した。残査をメタノールに溶解し、VarianTM SCXカラムに負荷 し、メタノール (5 m L × 2) にて洗浄した。生成物を 2 M N H₃のメタノール (5mL) 溶液を用いて溶出し、濃縮した。得られた残さを酢酸エチル (0.5mL 30)に溶解し、Varian™ SCXカラムに負荷し、酢酸エチル/メタノール=5 :1(6mL)を用いて溶出し、濃縮することにより、(R)-3-[[N-(2

WO 00/69432 PCT/JP00/03203

270

5 [実施例773-793]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例772の方法に従って合成した。ESI/MSデータ、収量、および収率を表13にまとめた。

表 13

10

実施例	化合物番号	分子式	ESI/MS m	収量 (mg)	収率 (%)
773	2083	C22 H24 Br F3 N4 O4	/e 545.2	2.9	
774	2084	C23 H27 F3 N4 O5	497.2		11
775	2085	C22 H25 F3 N4 O4	467.2	5.1	21
776	2086	C21 H22 C1 F3 N4 O3	471.0	3.1	13
777	2087	C23 H28 F3 N5 O2	464.2	4.6	.20
778	2088	C25 H32 F3 N5 O2		5.6	24
779	2089	C21 H21 F5 N4 O2	492.2	5.9	24
780		C27 H27 F3 N4 O3	457.2	4.5	20
781		C21 H23 F3 N4 O4	513.2	8.0	31
782		C21 H23 F3 N4 O4	453.1	2.7	12
783		C22 H25 F3 N4 O4	453.1	4.3	19
784		C21 H21 C1 F4 N4 O2	467.0	1.2	2
785		C22 H22 F3 N5 O6	472.9	13.1	28
786		C21 H21 C1 F3 N5 O4	510.1	13.1	51
787		C22 H24 F3 N5 O5	500.1	15.6	62
788		C22 H24 F3 N5 O4	496.0	16.0	65
789		C22 H24 C1 F3 N4 O2	480.1	15.6	65
790		226 H29 F3 N6 O2	469.2	2.6	11
791			515.3	25.1	98
792		20 H24 C1 F3 N6 O2	473.2	25.0	98
793		21 H22 F3 N5 O5	482.3	4.9	34
,,,,	213/	22 H25 F3 N4 O3	451.2	15.5	70

[実施例794] (R) -3-[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] <math>-1-(2,4-ジメトキシピリミジン-5-イルメチル) ピロリジン (化合物番号<math>2175) の合成

(R) -3-[N-(2-r)]-5-N-(1)] パングイル) グリシル $\}$ アミノ] ピロリジン(17.2 mg、0.04 mm o I)をTHF(1 m L)に溶解し、2,4-ジメトキシー5ーピリミジンカルボキサアルデヒド(6.7 mg、0.04 mm o I)を加え、続いてトリアセトキシ水素化ホウ素ナトリウム(12.7 mg、0.06 mm o I)と氷酢酸(2.4 mg、0.04 mm o I)を加えた。この混合物を50で24時間攪拌した後、濃縮した。残査をジクロロメタン(1 m L)に溶解し、1 M NaOH水溶液(1 m L)で洗浄した。有機層を回収し、濃縮後、25%トリフルオロ酢酸のジクロロメタン(1 m L)溶液を加えて室温で1時間攪拌した後、濃縮した。残査をHPLCにて精製することにより、(R) -3-[N-(2-r)]-5-N-(2-r) パージン(化合物番号 -2+N-(2-r) というでは、1 m R の -3+N-(2-r) の

15 [実施例795-803]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例794の方法に従って合成した。ESI/MSデータ、収量、および収率を表14にまとめた。

表 14

20

10

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
795	2165	C18 H21 F3 N6 O2	411	2.0	27.
796	2166	C18 H20 F3 N5 O2 S	428	9.9	66
797	2167	C24 H25 F3 N6 O2	487	15.1	73
798	2169	C24 H29 F3 N4 O2	463	1.2	24
799	2170	C26 H25 C1 F3 N5 O2	520	6.0	40
800	2171	C19 H23 F3 N6 O2	425	16.8	88
801	2174	C23 H24 Br F3 N4 O2 S2	591	5.3	53
802	2178	C25 H28 F3 N5 O4	518	5.4	62
803	2179	C25 H28 F3 N5 O3	502	6.3	60

] アミノ] ピロリジン (化合物番号2127) の合成

(R) -3-[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-(4,5-メチレンジオキシ-2-ニトロベンジル) ピロリジン(30:5mg)、10% Pdカーボン(6mg)、およびメタノール(3mL)の混合物を水素雰囲気下、室温で10時間攪拌した。パラジウム触媒をセライトで濾過し、濾液を濃縮した。固相抽出(Bond Elut™ SI、20%メタノール/酢酸エチル)で精製することにより、(R) -1-(2-アミノー4,5-メチレンジオキシベンジル) -3-[N-2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン(化合物番号2127)を得た(21.9mg、76%)。純度をRPLC/MSにて求めた(95%)。ESI/MS m/e 480.1 (M++H、C22H24F3N5O4)

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例804の方法に従って合成した。ESI/MSデータ、収量、および収率を表15に まとめた。

表 15

	化合物番号	分子式	ESI/MS m	収量 (mg)	収率 (%)
805	2128	C22 H26 F3 N5 O3	466.0	8.6	. 30
806	2129	C22 H26 F3 N5 O2	450.1	13.1	37

[実施例807] (R) -1- (3-アミノ-4-クロロベンジル) -3- [[
 N- (2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号2132) の合成

ルオロメチルベンゾイル)グリシル] アミノ] ピロリジン(化合物番号2132)を得た(10.5 mg、34%)。純度をRPLC/MSにて求めた(84%)。 ESI/MS m/e 470.2 (M^++H 、 $C_{21}H_{23}F_3N_5O_2$)

(R) - 3 - [[N - (2 - (tert - プ) +) +) +) - (N - (2 - (tert -) +) +) +)リフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (0. 150mmo 1)、4,5-メチレンジオキシ-2-ニトロベンズアルデヒド(O.45mmo 1) 、メタノール (4.5mL) 、および酢酸 (0.048mL) の混合物に、N 10 a BH₃CN (0.75mmol) のメタノール (1.50mL) 溶液を加えた。こ の反応混合物を50℃で一晩攪拌した。室温まで冷却し、Varian™ SCXカ ラムに負荷し、メタノールにて洗浄した。生成物を2M NH₃のメタノール溶液を 用いて溶出し、濃縮することにより(R)-3-[N-(2-(tert-ブト)キシカルボニルアミノ) -5-トリフルオロメチルベンゾイル) グリシル] アミノ 15]-1-(4,5-メチレンジオキシ-2-ニトロベンジル)ピロリジンを得た。 得られた (R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)]-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-(4,5-メチ レンジオキシー2-ニトロベンジル) ピロリジン(0.150mmol)、10% Pdカーボン(22mg)、およびメタノール(4.5mL)の混合物を水素雰囲 20 気下、室温で一晩攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮する

気下、室温で一晩攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することにより(R)-1-(2-アミノ-4,5-メチレンジオキシベンジル)-3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル]アミノ]ピロリジンを得た(87.1mg、定量的)25。特記すべき副生成物はTLCにおいて検出されなかった。

さらに、(R)-1-(3-Tミノ-4-メトキシベンジル)-3-[[N-(2-(tert-)7トキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジンと、(R)-1-(3-アミノ-4-メチルベンジル)-3-[[N-(2-(tert-)7トキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジンを、それぞれ対応する原料および反応剤を用いて実施例808の方法に従って合成した。

- (R) -1- (3-アミノ-4-メトキシベンジル) -3- [[N-(2-(t ertーブトキシカルボニルアミノ) -5-トリフルオロメチルベンゾイル) グリ シル] アミノ] ピロリジン:101mg、定量的;特記すべき副生成物はTLCに おいて検出されなかった。
- (R) 1 (3 T ミノー 4 メチルベンジル) 3 [[N (2 (te))]5 r t - ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシ ル] アミノ] ピロリジン: 97. 2mg、定量的;特記すべき副生成物はTLCに おいて検出されなかった。

[実施例809] (R) -1-(3-アミノ-4-クロロベンジル) -3-[[10 ンゾイル) グリシル] アミノ] ピロリジンの合成

- (R) -3-[[N-(2-(tert-プトキシカルボニルアミノ) -5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (O. 150mmo 1)、4-クロロ-3-ニトロベンズアルデヒド(0.45mmol)、メタノー
- ル (4.5 m L) 、および、酢酸 (0.048 m L) の混合物に、NaBH₃CN (15 0. 75mmol) のメタノール (1.50mL) 溶液を加えた。この反応混合物 を50℃で一晩攪拌した。室温まで冷却し、Varian™ SCXカラムに負荷し 、メタノールにて洗浄した。生成物を 2M NH_3 のメタノール溶液を用いて溶出し 、濃縮することにより(R)-3- [[N-(2-(tert-ブトキシカルボニ
- ルアミノ) -5-トリフルオロメチレベンゾイル) グリシル] アミノ] -1- (4 20 ークロロー3ーニトロベンジル) ピロリジンを得た。

得られた (R) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)- 5 - トリフルオロメチルベンゾイル) グリシル] アミノ] - 1 - (4 - クロロー 3-ニトロベンジル) ピロリジン、10%Pdカーボン(22mg)、酢酸エチル

- (2.7mL)、およびメタノール(0.3mL)の混合液を水素雰囲気下、室温 25 で15時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することに より (R) -1- (3-アミノ-4-クロロベンジル) -3- [[N- (2-te r t - ブトキシカルボニルアミノ) - 5 - トリフルオロメチレンベンゾイル) グリ. シル] アミノ] ピロリジンを得た(89.7mg、定量的)。特記すべき副産物は 30
- TLCにおいて検出されなかった。

[実施例810] (R) -1 - (3-アミノ-4-ヒドロキシベンジル) -3-

WO 00/69432

[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン (化合物番号2187) の合成

実施例808の方法に従って合成した(R) - 1 - (3 - アミノー4 - ヒドロキシベンジル) - 3 - [[N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジン(20mg)の、4M HClジオキサン(2.0mL)溶液を室温で一晩攪拌した。この溶液を濃縮した後、残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メタノールにて洗浄後、2M NH3のメタノール溶液を用いて溶出した。濃縮後、分取TLC(SiO₂、酢酸エチル/メタノール=4:1)で精製することにより、(R) - 1 - (3 - アミノー4 - ヒドロキシベンジル) - 3 - [[N - (2 - (アミノー5 - トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジン(化合物番号2187)を得た(9.6mg、59%)。純度をRPLC/MSにて求めた(86%)。ESI/MS m/e 452.3 (M++H、C21H24F3N5O3)

15 [実施例 8 1 1] (R) -3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-[4-クロロ-3-(ジメチルアミノ) ベンジル] ピロリジン (化合物番号 2 1 3 3) の合成

(R) -1 - (3-アミノ-4-クロロベンジル) -3 - [N-(2-(te))]rtーブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル) グリシ ル] アミノ] ピロリジン (44.9mg)、メタノール (0.95mL)、酢酸 (20 0. 05mL) 、および37%HCHO水溶液 (0. 15mL) の混合物にNaB H₃CN(38mg)を加えた。この反応混合物を50℃で一晩攪拌した。室温まで 冷却し、濃縮後、残査に2M NaOH水溶液と酢酸エチルを加え、有機層を分離 し、水層を酢酸エチルで抽出した。有機層を合わせて、乾燥、濃縮した。残査をV 25 arianTM SCXカラムに負荷し、メタノールにて洗浄した。生成物を2M N H₃のメタノール溶液を用いて溶出し、濃縮した。残査を50%濃塩酸/ジオキサン に溶解し、室温で1時間攪拌した。この反応液を5M NaOH水溶液でpH10 に調節し、酢酸エチルで抽出した(2回)。抽出物を合わせてNa。SO。で乾燥、 濾過、濃縮した。分取TLC (SiO₂、20% メタノール/酢酸エチル)で精製 30 することにより、(R)-3- [[N-(2-アミノ-5-トリフルオロメチルベ ンゾイル) グリシル] アミノ] -1- [4-クロロ-3-(ジメチルアミノ) ベン

ジル] ピロリジン (化合物番号 $2\,1\,3\,3$) ($1\,0$. $9\,m\,g$ 、 $2\,8\,\%$) を得た。純度 をRPLC/MSにて求めた ($9\,5\,\%$)。ESI/MS m/e $4\,9\,8$. 3 (M^+ +H、 $C_{2\,3}H_{2\,7}Cl\,F_3N_5O_2$)

[実施例812-814]

5 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 8 1 1 の方法に従って合成した。ESI/MSデータ、収量、および収率を表 1 6 にまとめた。

表 16

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
812	2134	C ₂₄ H ₂₈ F ₃ N ₅ O ₄	508.4	19.0	50
813	2135	C ₂₄ H ₃₀ F ₃ N ₅ O ₃	494.4	21.8	50
814	2136	C ₂₄ H ₃₀ F ₃ N ₅ O ₂	478.4	29.2	69

10

25

(R) -1-(3-アミノ-4-ヒドロキシベンジル) -3-[[N-(2-(15 tert-プトキシカルボニルアミノ) -5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン(27.3mg、0.049mmol)、37%HC HO溶液(4.0mg、0.049mmol)、酢酸(0.10mL)、およびメタノール(1.3mL)の混合物にNaBH₃CN(9.2mg)を加えた。この反応混合物を60℃で一晩攪拌した。室温まで冷却し、Varian™ SCXカラムに負荷し、メタノールにて洗浄した(5mL×2)。生成物を2M NH₃のメタノール溶液(8mL)を用いて溶出し、濃縮した。

得られた残さをメタノール($1\,m$ L)に溶解し、 $4\,M$ HClのジオキサン溶液($1.0\,m$ L)を加えた。室温で 3時間攪拌後、濃縮した。残査をメタノール($1\,m$ L)に溶解し、 $V\,a\,r\,i\,a\,n^{\,TM}\,S\,C\,X$ カラムに負荷し、メタノールにて洗浄し($5\,m$ L×2)、 $2\,M$ NH $_3\,$ のメタノール溶液($8\,m$ L)を用いて溶出した。濃縮後、分取TLC($S\,i\,O_2$)で精製することにより、 (R) -3-[[N-(2-r)]] フェノー 5- トリフルオロメチルベンゾイル)グリシル [N,M] アミノ [N,M] [

アミノー4ーヒドロキシベンジル)ピロリジン(化合物番号2158)(4.3 mg、19%)を得た。純度をRPLC/MSにて求めた(71%)。ESI/MS m/e 480.3 (M^++H 、 $C_{22}H_{26}F_3N_5O_3$)

[実施例816] (R) -1-(3-アセチルアミノー4-メトキシベンジル)
 -3-[[N-(2-アミノー5-トリフルオロメチルベンゾイル) グリシル] アミノ] ピロリジン(化合物番号2152)の合成

(R) $-1-(3-T \in J-4-E \in J-4)$ (R) $-3-[[N-(2-(tert-J)+2)J-4-E \in J-4]$ ($-5-E \in J-4$) -3-[[N-(2-(tert-J)+2)J-4] ($-5-E \in J-4$) が リシル] アミノ] ピロリジン (50.5mg) のピリジン (1mL) 溶液に、無水 10 酢酸 (1mL) を加えた。この反応混合物を室温で一晩攪拌し、メタノールを加えた。濃縮後、1m NaOH溶液を加え、酢酸エチルで抽出し、有機層を濃縮した。分取TLC (SiO_2) で精製することにより、 (R) $-1-(3-T \in J-4-J+2)$ でデンジル) -3-[[N-(2-(tert-J)+2)J-4-J+2)J-4-J+2) ピロリジンルアミノ) $-5-E \in J-4$ ($-5-E \in J-4$) ピロリジンを得た。

得られた(R) - 1 - (3 - アセチルアミノー 4 - メトキシベンジル) - 3 - [N - (2 - (tert-ブトキシカルボニルアミノ) - 5 - トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジンを50%6M塩酸のジオキサン溶液に溶解し、室温で2時間攪拌した。5M NaOH溶液でpH10とし、酢酸エチルで抽出した。有機層を濃縮し、分取TLC(SiO₂)で精製することにより、(R) - 1 - (3 - アセチルアミノー4 - メトキシベンジル) - 3 - [[N - (2 - アミノー5 - トリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジン(化合物番号2152)(3.7 mg、8%)を得た。純度をRPLC/MSにて求めた(100%)。ESI/MS m/e 508.3 (M++H、C₂₄H₂₈F₃N₅O 25 4)

[実施例817-819]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例8 16の方法に従って合成した。ESI/MSデータ、収量、および収率を表17に まとめた。

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
817	2150	C23H25C1F3N5O3	512.3	3.8	
818	2151	C24H26F3N5O5	522.2	3.1	9
819	2153	C24H28F3N5O3	492.3	4.3	10

5 ピロリジン(化合物番号2189)の合成

実施例 8080 方法に従って合成した(R) -1-(3-r)-4-t ドロキシベンジル) -3-[[N-(2-(tert-ブトキシカルボニルアミノ)-5-t] ートリフルオロメチルベンゾイル)グリシル] アミノ] ピロリジン(20mg)の THF(2mL)溶液に、オルト蟻酸トリエチル(0.20mL、3.3当量)とピリジニウム <math>p-t ルエンスルホネート(1.2mg、 $0.4当量)を加えた。この反応混合物を還流下、一晩攪拌した。室温まで冷却後、濃縮した。残査を酢酸エチルに溶解し、Bond <math>Elut^{TM}$ Siカラムに負荷し、酢酸エチル/メタノール=4:1を用いて溶出し、濃縮した。

20 3%) を得た。純度をRPLC/MSにて求めた(97%)。ESI/MS m/e 462.3 (M^++H 、 $C_{22}H_{22}F_3N_5O_3$)

[実施例821] (R) -3-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノ] -1-[ベンゾ [c] チアジアゾール-5-イル) ピロリジン (化合物番号2183) の合成

25 5- (ヒドロキシメチル) ベンゾ [c] チアジアゾール (8.3mg、0.05 0mmol)、(ピペリジノメチル) ポリスチレン (86mg)、およびクロロホルム (1mL) の混合物にメタンスルホニルクロリド (0.0042mL) を加え

、室温で1.5時間攪拌した。アセトニトリル($1 \, \mathrm{mL}$)と(R) $-3 - [[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンジル)グリシル]アミノ]ピロリジン(<math>0.060\,\mathrm{mmol}$)を加え、 $50\,\mathrm{C}$ で3時間攪拌した。室温まで冷却後、フェニルイソシアネート($30\,\mathrm{mg}$)を加え、室温で1時間攪拌し、 $Varian^\mathrm{TM}$ SCXカラムに負荷し、メタノール($5\,\mathrm{mL}$)とクロロホルム($5\,\mathrm{mL}$)にて洗浄した。生成物を $2\,\mathrm{M}$ NH $_3$ のメタノール溶液($3\,\mathrm{mL}$)を用いて溶出し、濃縮した。

得られた物質をジクロロメタン($1\,\mathrm{m\,L}$)に溶解し、 $1\,\mathrm{m\,M}$ クロロトリメチルシランと $1\,\mathrm{m\,M}$ フェノールのジクロロメタン溶液($1\,\mathrm{m\,L}$)を加えた。この溶液を室 $10\,\mathrm{m\,E}$ 5 時間攪拌し、 $V\,\mathrm{a\,r\,i\,a\,n^{\,\mathrm{TM}}}$ SCXカラムに負荷し、メタノールとジクロロメタンにて洗浄した。生成物を $2\,\mathrm{m\,M\,M}$ NH $_3$ のメタノール溶液を用いて溶出し、濃縮した。

分取TLC(SiO_2 、酢酸エチル/メタノール=3:1)で精製することにより、(R)-3-[N-(2-アミノ-5-トリフルオロメチルベンゾイル)グリ シル] アミノ] <math>-1-[ベンゾ[c] チアジアゾール-5-イル)ピロリジン(化 合物番号2183)(11.5mg、48%)を得た。純度を<math>RPLC/MSにて 求めた(86%)。ESI/MS m/e $479.2 (M⁺+H、<math>C_{21}H_{21}F_3N_6O_2S$)

[参考例6] <u>4-[[N-(1-(9-フルオレニルメトキシカルボニル) ピロ</u> 20 <u>リジン-3-イル) カルバモイルメチル] アミノメチル] -3-メトキシフェニル</u> オキシメチルーポリスチレンの合成

(R) -1-(9-フルオレニルメトキシカルボニル) -3-グリシルアミノピロリジン・塩酸塩(4.38g、10mmol)のDMF(65mL)溶液に、酢酸(0.3mL)、トリアセトキシ水素化ホウ素ナトリウム(1.92g)、および4-ホルミル-3-(メトキシフェニルオキシメチル)ーポリスチレン(1mmol/g、200g)を加えた。この混合物を2時間振とうした後、濾過した。樹脂をメタノール、DMF、ジクロロメタン、およびメタノールで洗浄し、乾燥することにより目的物を得た(2.73g)。

[実施例822-912] 3-アミノピロリジンの固相合成法

30 相当するカルボン酸 (1.6 mmol)、HBTU (1.6 mmol)、および DMF (6 mL) の混合物にジイソプロピルエチルアミン (3.6 mL) を加え、

5 得られた樹脂、ピペリジン(3.2mL)、およびDMF(12.8mL)の混合物を10分間振とう後、濾過した。樹脂をDMFとジクロロメタンで洗浄し乾燥した。

この乾燥した樹脂 (0.05 mL) にNaBH (OAc) $_3$ (0.25 mmol) 、酢酸 (0.025 mL) とDMF (1 mL) の混合物を加えた。相当するアルデヒド (2.5 mmol) を加え、2時間振とう後、濾過し、メタノール、10% ジイソプロピルエチルアミンのDMF溶液、DMF、ジクロロメタン、およびメタノールにて洗浄した。樹脂、水 (0.050 mL) 、およびトリフルオロ酢酸 (0.95 mL) の混合液を1時間振とう後、濾過した。樹脂をジクロロメタンとメタノールにて洗浄した。濾液と洗液を合わせ、濃縮した。得られた粗製生物をVarian $^{\text{TM}}$ SCXカラムに負荷し、メタノール(15 mL)にて洗浄した。生成物を2M NH $_3$ のメタノール(5 mL)溶液を用いて溶出し、濃縮した。

必要であれば、分取TLCまたはHPLCにより精製することにより、目的物を得た。ESI/MSデータ、収量、および収率を表18にまとめた。

表 18

20

10

15

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
822	1805	C21 H21 Br F3 N3 O2 S	516	13.3	76
823	1806	C22 H24 F3 N3 O3 S	468	12.8	81
824	1807	C22 H24 F3 N3 O4 S	484	13.7	83
825	1808	C22 H24 F3 N3 O4 S	484 ·	14.9	91
826	1809	C21 H22 F3 N3 O3 S	454	12.9	84
827	1810	C22 H22 F3 N3 O4 S	482	12.9	79
828	1811	C24 H26 F3 N3 O2 S	478	12.9	79
829	1812	C22 H24 F3 N3 O2 S2	484	5.3	32
830	1813	C23 H26 F3 N3 O2 S	466	12.8	81
831	1814	C23 H24 F3 N3 O3 S	480	9.7	59
832	1815	C23 H26 F3 N3 O2 S	466	12.7	80
833	1816	C24 H28 F3 N3 O2 S	480	14.4	88

834	1817	C25 H30 F3 N3 O2 S	494	14.1	84
835	1818	C21 H22 Br F2 N3 O3	482	13.4	82
836	1819	C22 H25 F2 N3 O4	434	11.7	79
837	1820	C22 H25 F2 N3 O5	450	11.8	77
838	1821	C22 H25 F2 N3 O5	450	13.3	87
839	1822	C21 H23 F2 N3 O4	420	11.9	83
840	1823	C22 H23 F2 N3 O5	448	11.9	78
841	1824	C24 H27 F2 N3 O3	. 444	9.1	60
842	1825	C22 H25 F2 N3 O3 S	450	11.3	74
843	1826	C23 H27 F2 N3 O3	432	10.8	74
844	1827	C23 H25 F2 N3 O4	446	12.7	84
845	1828	C23 H27 F2 N3 O3	432	11.7	80
846	1829	C24 H29 F2 N3 O3	446	14.3	94
847	1830	C24 H29 F2 N3 O3	446	10.0	66
848	1831	C22 H28 Br N3 O3	462	4.8	31
849	1832	C23 H31 N3 O4	414	10.4	74
850	1833	C23 H31 N3 O5	430	12.1	83
851	1834	C23 H31 N3 O5	430	12.0	82
852	1835	C22 H29 N3 O4	400	7.9	58
853	1836	C23 H29 N3 O5	428	11.1	76
854	1837	C25 H33 N3 O3	424	13.3	92
855	1838	C23 H31 N3 O3 S	430	8.7	60
856	1839	C24 H33 N3 O3	412	11.3	81
857	1840	C24 H31 N3 O4	426	12.9	89
858	1841	C24 H33 N3 O3	413	12.8	91
859	1842	C25 H35 N3 O3	426	8.7	60
860	1843	C25 H35 N3 O3	426	12.2	84
861	1844	C26 H37 N3 O3	440	11.3	76
862	1845	C31 H37 Br N4 O2	577	6.4	30
863	1846	C23 H28 F3 N3 O2 S	480	12.8	81
864	1847	C25 H31 F2 N3 O3	460	12.2	78
865	1848	C27 H29 N3 O4	460	6.1	39
866	1849	C29 H31 N3 O2	454	15.1	98
867	1850	C28 H31 N3 O2	442	12.7	85
868	1851	C28 H31 N3 O2	442	14.3	95
869	1852	C28 H29 N3 O3	456	3.4	22
870	1853	C27 H29 N3 O6 S	524	15.4	87
871	1854	C29 H31 N3 O4 S	518	15.8	90
872	1855	C28 H31 N3 O4 S	506	17.0	99

282

873	1856	C28 H31 N3 O4 S	506	3.0	1 12
874	1857	C28 H29 N3 O5 S	520		17
875	1858	C20 H22 Br2 N4 O2	511	10.0	57
876	1859	C21 H25 Br N4 O3	<u> </u>	9.3*	37
877	1860	C21 H25 Br N4 O4	461	6.7*	29
878	1861	C21 H25 Br N4 O4	477	9.5*	40
879	1862	C20 H23 Br N4 O3	477	10.0*	42
880	1863	C21 H23 Br N4 O4	447	7.8*	34
881	1864	C21 H25 Br N4 O4	475	3.4*	14
882	1865		477	3.9*	16
883	1866	C22 H25 Br N4 O3	473	6.4*	27
884	1867	C23 H29 Br N4 O2	472	7.0*	29
885		C23 H29 Br N4 O2	473	7.6*	32
	1868	C24 H31 Br N4 O2	487	9.1*	37
886	1869	C20 H22 Br I N4 O2	557	8.9*	33
887	1870	C21 H25 I N4 O3	509	9.2*	37
888	1871	C21 H25 I N4 O4	525	6.3*	25
889	1872	C21 H25 I N4 O4	525	5.9*	23
890	1873	C20 H23 I N4 O3	495	7.7*	31
891	1874	C21 H23 I N4 O4	523	8.2*	32
892	1875	C23 H27 I N4 O2	519	6.7*	26
893	1876	C21 H25 I N4 O2	525	4.3*	17
894	1877	C22 H27 I N4 O2	507	7.9*	32
895	1878	C22 H25 I N4 O3	521	8.4*	33
896	1879	C23 H29 I N4 O2	521	8.2*	32
897	1880	C23 H29 I N4 O2	521	8.1*	32
898	1881	C24 H31 I N4 O2	535	8.6*	33
899	1882	C20 H22 Br N5 O4	476	5.3*	22
900	1883	C21 H25 N5 O5	428	5.7*	26
901	1884	C21 H25 N5 O6	444	8.2*	36
902	1885	C21 H25 N5 O6	444	5.0*	22
903	1886	C20 H23 N5 O5	414	8.7*	40
904	1887	C21 H23 N5 O6	442	7.8*	34
905	1888	C23 H27 N5 O4	438	5.6*	25
906	1889	C21 H25 N5 O4 S	444	13.2*	58
907	1890	C22 H27 N5 O4	426	11.3*	51
908	1891	C22 H25 N5 O5	440	7.4*	33
909	1892	C22 H27 N5 O4	426	5.5*	25
910	1893	C23 H29 N5 O4	440	5.7*	25
911	1894	C23 H29 N5 O4	440	9.4*	41
_				ı	l l

WO 00/69432 PCT/JP00/03203

283

912	1895	C24 H31 N5 O4	455	8.5*	37
		<u> </u>			1

*トリフルオロ酢酸塩の収率。

25

30

H)

[参考例7] <u>2-カルバモイル-1-(4-クロロベンジル)ピロリジンの合成</u> d1-プロリンアミド・塩酸塩(2.5g、21.8mmol)のアセトニトリ ル (35mL)溶液に、トリエチルアミン(7.45mL)と4ークロロベンジルクロリド(3.88g、24.1mmol)を加えた。この反応混合物を70℃で 4時間、続いて25℃で16時間攪拌した。得られた混合物をジクロロメタン(20mL)で希釈し、水で洗浄した(30mL×3)。有機層を乾燥し(MgSO₄)、濃縮した。クロマトグラフィー(SiO₂、メタノールージクロロメタン)により 2-カルバモイル-1-(4-クロロベンジル)ピロリジンを得た(5.21g、81%)。

[参考例8] 2-(アミノメチル)-1-(4-クロロベンジル) ピロリジンの合成

2-カルバモイル-1-(4-クロロベンジル)ピロリジンを1M BH₃-TH 15 F(9.4mL)に溶解し、70℃に加熱した。16時間と25時間後の2回、さらに1M BH₃-THF(0.5当量)を加えた。40時間後1M塩酸を加え、3時間還流させ、3M塩酸(6mL)を加え、反応物をさらに3時間加熱攪拌した。25℃まで冷却し、6M NaOH水溶液にてアルカリ性とし、ジクロロメタン(4×15mL)にて抽出した。クロマトグラフィー(SiO₂、PrOH/H₂O/20 NH₄OH=8:1:1)で精製することにより、2-(アミノメチル)-1-(4-クロロベンジル)ピロリジン(1.21g、86%)を得た。

さらに、光学的活性な(S)-2-(アミノメチル)-1-(4-クロロベンジル) ピロリジンと(R)-2-(アミノメチル)-1-(4-クロロベンジル) ピロリジンを、それぞれ相当する原料および反応剤を用いて上記の方法に従って合成した。

(S) -2-(アミノメチル) -1-(4-クロロベンジル) ピロリジン: 1 H NMR(CDCl $_3$ 、400MH $_2$) δ 1.40-1.80 (m, 5 H), 1.80-1.95 (m, 1 H), 2.12-2.21 (m, 1 H), 2.48-2.65 (m, 1 H), 2.66-2.78 (m, 2 H), 2.85-2.95 (m, 1 H), 3.26 (d, $_3$ = 13.2 Hz, 1 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 3.93 (d, $_3$ = 13.2, 1 H), 7.20-7.40 (m, 4 H), 9.20-7.40 (m, 4 H), 9.20 (m, 4 H), 9.

(R) -2- (アミノメチル) -1- (4-クロロベンジル) ピロリジンは、 (S) - 異性体と同じ 1 H NMRを示した。

[実施例913] <u>2-[(N-ベンゾイルロイシル) アミノメチル] -1-(4</u> -クロロベンジル) ピロリジン (化合物番号344) の合成

- 2 (アミノメチル) -1 (4 クロロベンジル) ピロリジン (22.5 mg、0.10 mmol) とdlーベンゾイルロイシン (0.12 mL) のクロロホルム (1 mL) 溶液に、EDCI (23 mg)、HOBt (16.2 mg)、およびトリエチルアミン (15.2 μ L) を加え、25℃で16時間攪拌した。この反応混合物を、ジクロロメタン (0.5 mL) で希釈し、2M NaOH水溶液 (0.
- 10 75 m L × 2) で洗浄し、PTF E 膜で濾過することによって乾燥し、濃縮することにより、2-[(N-ベンゾイルロイシル) アミノメチル] -1-(4-クロロベンジル) ピロリジン(化合物番号344)を得た(74 m g、定量的)。純度をRPLC/MSにて求めた(85%)。ESI/MS m/e 442(M++H、C23H32C1N3O2)

15 [実施例914-933]

20

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例913の方法に従って合成した。必要であれば、クロマトグラフィー($HPLC-C_18$ 、アセトニトリル/ H_2O /TFA)で精製し、目的物をTFA塩として得た。ESI/MSデータ、収量、および収率を表19にまとめた。また、化合物番号339と340はそれぞれ下記の1H NMRを示した。

表 19

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
914	330	C21 H24 C1 N3 O2	386	75*	定量的
915	331	C22 H26 C1 N3 O2	400	44*	70
916	332	C24 H30 C1 N3 O5	476	57	定量的
917	333	C20 H23 C1 N4 O2	387	40	定量的
918	334	C22 H26 C1 N3 O2	400	68	定量的
919	335	C21 H23 C1 N4 O4	431	73	定量的
920	336	C22 H23 C1 F3 N3 O2	454	75	定量的
921	337	C22 H26 Cl N3 O2	400	68	
922	338	C22 H26 C1 N3 O2	400	70	定量的

PCT/JP00/03203

923	341	C22 H26 C1 N3 O2	400	80*	定量的
924	342	C22 H26 C1 N3 O2	400	68	定量的
925	343	C24 H30 Cl N3 O2	428	63	定量的
926	345	C23 H27 C1 N2 O2	399	68*	定量的
927	346	C23 H26 C1 F N2 O3	433	51	定量的
928	347	C24 H29 Cl N2 O2	413	47	定量的
929	348	C23 H27 C1 N2 O2	399	26	定量的
930	349	C21 H25 C1 N2 O3 S	421	42	定量的
931	350	C26 H33 C1 N2 O3	457	12.4	54
932	351	C22 H26 C1 N3 O3	416	34	81
933	352	C22 H25 C12 N3 O3	450	51	定量的

*トリフルオロ酢酸塩の収率。

20

[実施例 9 3 4] <u>化合物番号 3 3 9</u>: 8 2 %; ¹H NMR (CDC 1₃) δ 1 .52-1.75 (m, 4 H), 1.84-1.95 (m, 1 H), 2.10-2.20 (m, 1 H), 2.67-2.78 (m, 1 H), 2.80-2.90 (m, 1 H), 3.10-3.20 (m, 1 H), 3.25 (d, J = 13.1 Hz, 1 H), 3.5 0-3.60 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H); 4.28-4.20 (m, 2 H), 7.00-7.05 (m, 1 H), 7.12-7.29 (m, 4 H), 7.51 (t, J = 7.8 Hz, 1 H), 7.74 (d, J = 7.8 Hz, 1 H), 7.99 (d, J = 7.8 Hz, 1 H), 8.10-8.27 (m, 2 H)

[実施例 9 3 5] <u>化合物番号 3 4 0</u>: 6 8 %; ¹ H NMR (CDC 1 ₃) δ 1.5 10 5-1.73 (m, 4 H), 1.86-1.97 (m, 1 H), 2.12-2.21 (m, 1 H), 2.67-2.76 (m, 1 H), 2.86-2.93 (m, 1 H), 3.14-3.21 (m, 1 H), 3.27 (d, J = 13.1 Hz, 1 H), 3.52-3 .59 (m, 1 H), 3.89 (d, J = 13.1 Hz, 1 H), 4.09-4.21 (m, 2 H), 7.00-7.07 (m, 1 H), 7.12-7.30 (m, 4 H), 7.50 (t, J = 7.8 Hz, 1 H), 7.73 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.10-8.25 (m, 2 H)

15 [参考例9] <u>3-(アミノメチル)-1-(4-クロロベンジル)ピロリジンの</u> 合成

4-カルボキシー1-(4-クロロベンジル)ピロリジン-2-オン(5.05g、20mmol)、EDCI(2.85g、22mmol)、HOBt(2.97g、22mmol)、およびジクロロメタン(100mL)の混合物に0.5Mアンモニアのジオキサン溶液(60mL、30mmol)を加えた。この反応混合物を室温で15時間攪拌し、2M HCl(3回)と2M NaOH水溶液(100mL×4)で洗浄した。有機層を無水硫酸マグネシウムで乾燥、濾過、濃縮す

ることにより、4ーカルバモイルー1ー(4ークロロベンジル)ピロリジンー2ー オン(1.49g)を無色の固体として得た。

4-カルバモイル-1-(4-クロロベンジル) ピロリジン-2-オン (1.4 9g) のTHF (15mL) 溶液に1. 0M BH3のTHF溶液 (25mL) を加 えた。この反応混合物を室温で15時間攪拌した。室温まで冷却後、溶媒を減圧下 に除去した。水 (30mL) と濃塩酸 (10mL) を加え、混合物を100℃で2 時間、室温で1時間攪拌した。2M NaOH水溶液(100mL)を加え、酢酸 エチル (50mL×3) で抽出した。有機層を合わせて、K₂CO₃で乾燥、濾過、 濃縮した。カラムクロマトグラフィー(SiO2、15%メタノールー5%トリエチ ルアミン/ジクロロメタン)で精製することにより、3-(アミノメチル)-1-(4-クロロベンジル) ピロリジン (860mg、19%) を無色油状物として得 た。

[参考例10] 1-(4-クロロベンジル)-3-[(グリシルアミノ)メチル] ピロリジンの合成

3- (アミノメチル) -1- (4-クロロベンジル) ピロリジン (860 mg、15 3. 8mmol) 、トリエチルアミン(5. 7mmol)、Nーtert-ブトキ シカルボニルグリシン (704mg)、EDCI (594mg)、HOB t (67 3 m g) 、およびジクロロメタン (20 m L) の混合物を室温で15時間攪拌した 。ジクロロメタン(50mL)を加え、溶液を2M NaOH水溶液(50mL× 2) で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、3-[[20 N- (tert-ブトキシカルボニル) グリシル] アミノメチル] -1- (4-ク

ロロベンジル) ピロリジン (1.31g、90%) を得た。

3- [[N- (tert-ブトキシカルボニル) グリシル] アミノメチル] -1 - (4-クロロベンジル) ピロリジン (804mg、2.11mmol) のメタノ ール(10mL)溶液に4M HClのジオキサン溶液(5mL)を加えた。室温 25 で3. 5時間攪拌した後、濃縮し、1M NaOH水溶液(20mL)を加えた。 ジクロロメタン(20mL×3)で抽出し、抽出物を合わせて、硫酸ナトリウムで 乾燥、濃縮することにより、1-(4-クロロベンジル)-3-[(グリシルアミ ノ) メチル] ピロリジン(599mg、100%)を得た。純度をRPLC/MS にて求めた(100%)。ESI/MS m/e 282.2(M^++H 、 $C_{14}H_2$

30 $_{0}CIN_{3}O)$ [実施例936] 3-[[N-[3-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル) ピロリジン (化合物番号1463) の合成

3- (トリフルオロメチル) ベンゾイルクロリド (0.058mmol) のジク5 ロロメタン (0.2mL) 溶液を、1- (4-クロロベンジル) -3- [(グリシルアミノ) メチル] ピロリジン (0.050mmol) のクロロホルム (0.2mL) 溶液とピペリジノメチルポリスチレン (60mg) のジクロロメタン (1mL) 溶液の混合物に加えた。この反応混合物を室温で2.5時間攪拌した後、メタノール (0.30mL) を加え、この反応混合物をVarianTM SCXカラムに負10 荷し、メタノール (15mL) で洗浄した。生成物を、2M NH3のメタノール (5mL) 溶液を用いて溶出し、濃縮することにより、 (3- [[N- [3-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1- (4-クロロベンジル) ピロリジン (化合物番号1463) を得た (22.4mg、99%)。純度をRPLC/MSにて求めた (97%)。ESI/MS m/e 454.2 (M++H

[実施例937-944]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例936の方法に従って合成した。ESI/MSデータ、収量、および収率を表20にまとめた。

20

表 20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
937	1464	C22 H23 C1 F3 N3 O3	470.0	21.0	89
938	1465	C23 H22 C1 F6 N3 O2	522.0	24.5	94
939	1466	C21 H23 Br Cl N3 O2	466.0	20.8	90
940	1467	C21 H23 C12 N3 O2	420.0	19.6	93
941	1468	C21 H23 C1 N4 O4	431.2	19.5	91
942	1469	C22 H22 Cl F4 N3 O2	472.0	21.8	92
943	1470	C21 H22 C13 N3 O2	456.0	22.1	97
944	1471	C21 H22 C1 F2 N3 O2	422.0	20.9	99

[実施例945] 3-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル)

<u>グリシル] アミノメチル] -1- (4-クロロベンジル) ピロリジン (化合物番号 1506) の合成</u>

1-(4-クロロベンジル) -3-[(グリシルアミノ)メチル] ピロリジン(
0.050mmol)のクロロホルム(1.35mL)とtertーブタノール(
5 0.05mL)の溶液に、2-アミノー4,5-ジフルオロ安息香酸(0.060mmol)、ジイソプロピルカルボジイミド(0.060mmol)およびHOB
t(0.060mmol)を加えた。この反応混合物を室温で19時間攪拌した後、Varian™SCXカラムに負荷し、メタノール/クロロホルム=1:1(10mL)とメタノール(10mL)で洗浄した。生成物を、2MNH3のメタノール(5mL)溶液を用いて溶出し、濃縮することにより、3-[[N-[2-アミノー4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(4-クロロベンジル)ピロリジン(化合物番号1506)を得た(22.0mg、定量的)。純度をRPLC/MSにて求めた(92%)。ESI/MSm/e 437(M+H、C21H23C1F2N4O2)

15 [実施例946-952]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例945の方法に従って合成した。ESI/MSデータ、収量、および収率を表21にまとめた。

表 21

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
946	1506	C21 24 Br Cl N4 O2	481	20.6	86
947	1507	C21 H24 F C1 N4 O2	419	21.7	定量的
948	1509	C27 H28 C1 N3 O2	462	26.5	定量的
949	1510	C21 H24 C1 I N4 O2	527	22.0	84
950		C19 H21 Br Cl N3 O2 S	472	23.7	定量的
951		C21 H24 C12 N4 O2	435	22.3	定量的
952	1513	C27 H28 Cl N3 O4 S	526	24.6	94

[参考例11] 1- (4-クロロベンジル) ニペコチン酸の合成

4-クロロベンジルクロリド (6. 42g、39. 9mmol) と Pr_2NEt (7. 74g、40. 0mmol) を、二ペコチン酸エチル (6. 29g、40.

20

25

30

 $0 \, \mathrm{mmol}$ のアセトニトリル($15 \, \mathrm{mL}$)溶液に加えた。この反応混合物を $70 \, \mathrm{CC}$ で $1.5 \, \mathrm{fhll}$ 提押した後、溶媒を減圧下に除去した。残査に飽和 $\mathrm{NaHCO_3}$ 水溶液($50 \, \mathrm{mL}$)を加え、酢酸エチル($100 \, \mathrm{mL}$)で抽出した。有機層を飽和 $\mathrm{NaHCO_3}$ 水溶液で洗浄し、 $\mathrm{Na_2SO_4}$ で乾燥した。溶媒を減圧下に除去することにより、 $1-(4-2 \, \mathrm{nmax})$ ニペコチン酸エチルを赤黄色の油状物として得た($11.0 \, \mathrm{g}$ 、 $97.8 \, \mathrm{w}$)。このものは精製することなく使用した。純度を $\mathrm{RPLC}/\mathrm{MS}$ にて求めた($97 \, \mathrm{w}$)。 $\mathrm{ESL}/\mathrm{MS}/\mathrm{m}$ m e $382.2 \, \mathrm{(M^+ + H)}$ 、 $\mathrm{C_{15}\,H_{21}\,Cl\,NO_2}$)

LiOH (1.66g)の H_2O (25mL)溶液を、 $1-(4-\rho uu \sim vi v)$) $= ^2 ^2 + vi v$ の $= ^2$

[参考例13] 3-アミノ-1-(4-クロロベンジル) ピペリジンの合成

[実施例953] 1-(4-クロロベンジル)-3-[[N-(3-メチルベン ゾイル) グリシル] アミノ] ピペリジン (化合物番号355) の合成

N-(3-メチルベンゾイル) グリシン(10.6mg、0.055mmol)、EDCI(10.5mg) および1-ヒドロキシベンゾトリアゾール水和物(7.4g)を、1-(4-クロロベンジル)-3-アミノピペリジン・二塩酸塩(14.9mg、0.050mmol)とトリエチルアミン (15.2mg)のクロロホルム (2.5mL) 溶液に加えた。この反応混合物を25℃で16時間攪拌し、2 N NaOH水溶液(2mL×2)と食塩水(1mL)で洗浄した。PTF E膜による濾過後、溶媒を減圧下に除去し、1-(4-クロロベンジル)-3-[

[N-(3-メチルベンゾイル) グリシル] アミノ] ピペリジン (化合物番号355) を得た (17.4mg、87%)。純度をRPLC/MSにて求めた (97%)。ESI/MS m/e 400.0 (M++H、C₂₂H₂₆C1N3O₂)

20 [実施例954-982]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例953の方法に従って合成した。ESI/MSデータ、収量、および収率を表22にまとめた。また、化合物番号358は下記の1H NMRを示した。

表 22

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
954	354	C21 H24 Cl N3 O2	386	16.1	83
955	356	C20 H23 C1 N4 O2	387	19.4	100
956	357	C22 H26 C1 N3 O2	400	16.8	84
957	359	C22 H26 C1 N3 O2	400	8.9	17
958	360	C22 H25 C1 N4 O4	445	25.6	定量的

PCT/JP00/03203

291

WO 00/69432

5

959	361	C23 H27 C1 N2 O2	399	15.5	29
960	362	C24 H29 C1 N2 O3	429	12.4	58
961	363	C21 H25 C1 N2 O2 S	405	22.2	定量的
962	364	C24 H29 C1 N2 O4	445	20.7	93
963	365	C24 H29 C1 N2 O2	413	15.6	75
964	366	C23 H26 C1 F N2 O3	433	21.6	100
965	367	C23 H27 C1 N2 O2	399	11.9	60
966	368	C22 H25 C1 N2 O2	385	16.0	83
967	369	C22 H24 C12 N2 O2	419	13.9	60
968	370	C26 H33 C1 N2 O3	457	15.9	54
969	371	C25 H31 C1 N2 O3	443	19.6	84
970	372	C21 H25 C1 N2 O3 S	421	23.0	定量的
971	373	C23 H28 Cl N3 O2	414	19.1	92
972	374	C24 H30 C1 N3 O3	444	18.6	84
973	375	C23 H27 C12 N3 O2	448	18.0	80
974	376	C24 H30 C1 N3 O3	444	19.6	88
975	377	C25 H31 C12 N3 O2	476	20.7	87
976	378	C27 H33 C1 F N3 O2	486	23.9	98
977	379	C25 H30 C1 N3 O3	456	33.3	定量的
978	380	C24 H30 C1 N3 O2	428	9.8	46
979	381	C21 H26 C1 N3 O3 S	436	10.3	47
980	382	C22 H26 C1 N3 O3	416	24.4	定量的
981	383	C22 H25 C12 N3 O3	450	27.5	定量的

[実施例 9 8 2] <u>化合物番号 3 5 8</u>: 8 8 %; ¹H NMR (CDC 1₃) δ 1.5 3-1.75 (m, 4 H), 2.12-2.20 (m, 1 H), 2.37-2.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 2.53-2.61 (m, 1 H), 3.38-3.50 (m, 2 H), 4.06-4.20 (m, 3 H), 7.10-7.13 (m, 1 H), 7.18-7.30 (m, 4 H), 7.59 (t, J = 7.8 Hz, 1 H), 7.79 (d, J = 7.8 Hz, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.11 (s, 1 H) [参考例 1 4] <u>1 -ベンジルー4ー [N-(tert-ブトキシカルボニル)</u>グリシル]アミノ] ピペリジンの合成

4-アミノー1-ベンジルピペリジン(3.80g、20mmol)のジクロロ 10 メタン(40mL)溶液に、N-(tert-ブトキシカルボニル)グリシン(3 .48g、20mmol)、EDCI(4.02g、21mmol)、およびHO Bt(2.83g、21mmol)を加えた。この反応混合物を室温で12時間攪

拌した後、2M NaOH溶液を加えた。有機層を分離し、水層をジクロロメタンで抽出した($20mL \times 2$)。有機層を合わせて水(20mL)および食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO_2 、酢酸エチル/メタノール/トリエチルアミン=85:12:

3)で精製することにより、1ーベンジルー4ー [Nー(tertーブトキシカルボニル)グリシル]アミノピペリジンを得た(6.59g、95%)。

[参考例15] 1-ベンジル-4-(グリシルアミノ) ピペリジンの合成

1ーベンジルー4ー [Nー(tertーブトキシカルボニル) グリシル] アミノピペリジン(6.59g)のメタノール(80mL)溶液に、4M HC1のジオキサン溶液を加えた。この溶液を室温で2時間攪拌した。濃縮後、2M NaOH水溶液(20mL)を加え、ジクロロメタン(40mL)で抽出し、抽出物を合わせて無水硫酸ナトリウムで乾燥、濃縮した。カラムクロマトグラフィー(SiO2、酢酸エチル/メタノール/トリエチルアミン=85:12:3)で精製することにより1ーベンジルー4ー(グリシルアミノ)ピペリジン(3.91g、83%)を

得た: ¹H NMR (CDCl₃、400MHz) δ 1.47-1.59 (m, 2 H), 1.59 (b r, 2 H), 1.76-1.96 (m, 2 H), 2.10-2.19 (m, 2 H), 2.75-2.87 (m, 2 H), 3.29 (s, 2 H), 3.50 (s, 2 H), 3.65-3.89 (m, 1 H), 7.15-7.23 (m, 1 H), 7.23-7.33 (m, 5 H)

その他の4-アシルアミノ-1-ベンジルピペリジンを、それぞれ対応する原料および反応剤を用いて参考例14と15の方法に従って合成した。

 $4-(\beta-r$ ラニルアミノ) -1-ベンジルピペリジン: 2. 46g、51%(2 工程)。

1-ベンジル-4- ((S) -ロイシルアミノ) ピペリジン: 1. 78 g、 74 % (2 工程)。

25 1 - ベンジル-4-((R) - ロイシルアミノ) ピペリジン:1.48g、61% (2工程)。

[実施例983] <u>4-(N-ベンゾイルグリシル) アミノー1-ベンジルピペリジン (化合物番号386)</u>の合成

塩化ベンゾイル (0.060mmol) のクロロホルム (0.4mL) 溶液を、30 1-ベンジルー4ー (グリシルアミノ) ピペリジン (0.050mmol) とトリエチルアミン (0.070mmol) のクロロホルム (1.0mL) 溶液に加えた

PCT/JP00/03203

。この反応混合物を室温で12時間振とうした後、(アミノメチル)ポリスチレン樹脂(1.04mmol/g、50mg、50mmol)を加え、室温で12時間振とうした。反応混合物を濾過し、樹脂をジクロロメタン(0.5mL)で洗浄した。濾液と洗液を合わせて、ジクロロメタン(4mL)を加え、溶液を2M NaOH水溶液(0.5mL)で洗浄し、4-(N-ベンゾイルグリシル)アミノー1-ベンジルピペリジン(化合物番号386)を得た(11.3mg、64%)。純度をRPLC/MSにて求めた(94%)。ESI/MS m/e 352.0(M^++H 、 $C_{21}H_{25}N_3O_2$)

[実施例984-1034]

10 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 983の方法に従って合成した。ESI/MSデータ、収量、および収率を表23 にまとめた。

表 23

arba A.C. Smil	1 4 4 7 7	0 1	TOT (10 /)		
実施例	化合物番号	分子式 	ESI/MS m/e	収量 (mg)	収率 (%)
984	384	C22 H26 C1 N3 O2	400	60.0	定量的
985	385	C21 H23 C1 N4 O4	431	58.7	91
986	387	C25 H27 N3 O2	402.5	15.5	77
987	388	C21 H24 N4 O4	397.0	16.2	82
988	389	C23 H27 N3 O4	410.0	16.2	79
989	390	C22 H24 F3 N3 O2	420.0	17.4	83
990	391	C22 H23 F4 N3 O2	438.0	18.4	84
991	.392	C22 H24 F3 N3 O3	436.0	17.1	79
992	393	C21 H24 Br N3 O2	430.0	18.0	84
993	394	C21 H24 C1 N3 O2	386.0	16.4	85
994	395	C21 H24 Br N3 O2	430.0	17.2	80
995	396	C21 H23 F2 N3 O2	388.0	15.1	78
996	397	C21 H23 C12 N3 O2	420.0	11.7	56
997	398	C22 H27 N3 O2	366.0	13.1	72
998	399	C26 H29 N3 O2	416.0	15.8	76
999	400	C22 H26 N4 O4	411.0	17.4	85
1000	401	C24 H29 N3 O4	424.0	16.9	80
1001	402	C23 H26 F3 N3 O2	434.0	17.7	82
1002	403	C23 H25 F4 N3 O2	452.0	18.6	82

				·	
1003		C23 H26 F3 N3 O3	450.0	17.8	79
1004		C22 H26 Br N3 O2	444.0	17.9	81
1005	406	C22 H26 C1 N3 O2	400.0	15.5	78
1006	407	C22 H26 Br N3 O2	444.0	17.8	80
1007	408	C22 H25 F2 N3 O2	402.0	15.6	78
1008	409	C22 H25 C12 N3 O2	434.0	17.6	81
1009	410	C25 H33 N3 O2	408.0	16.2	79
1010	411	C29 H35 N3 O2	458.5	18.8	82
1011	412	C25 H32 N4 O4	453.0	19.4	86
1012	413	C27 H35 N3 O4	466.0	19.8	85
1013	414	C26 H32 F3 N3 O2	476.0	20.2	85
1014	415	C26 H31 F4 N3 O2	494.0	20.5	83
1015	416	C26 H32 F3 N3 O3	492.0	19.5	79
1016	417 ·	C25 H32 Br N3 O2	486.0	19.1	79
1017	418	C25 H32 C1 N3 O2	442.0	17.7	80
1018	419	C25 H32 Br N3 O2	486.0	20.3	83
1019	420	C25 H31 F2 N3 O2	444.0	18.6	84
1020	421	C25 H31 C12 N3 O2	476.0	19.4	81
1021	422	C25 H33 N3 O2	408.0	14.4	71
1022	423	C29 H35 N3 O2	458.0	16.4	72
1023	424	C25 H32 N4 O4	453.0	18.1	80
1024	425	C27 H35 N3 O4	466.0	16.4	70
1025	426	C26 H32 F3 N3 O2	476.0	17.3	73
1026	427	C26 H31 F4 N3 O2	494.0	18.8	76
1027	428	C26 H32 F3 N3 O3	492.0	18.4	75
1028	429	C25 H32 Br N3 O2	486.0	17.9	74
1029	430	C25 H32 C1 N3 O2	442.0	15.7	71
1030	431	C25 H32 Br N3 O2	486.0	17.7	73
1031	432	C25 H31 F2 N3 O2	444.0	16.6	75
1032	433	C25 H31 C12 N3 O2	476.0	18.7	78
1033	1016	C22 H23 C1 F3 N3 O2	454	32.5*	53
1034	1017	C21 H24 C1 N3 O2	386	55.2*	定量的

^{*}トリフルオロ酢酸塩の収率。

[参考例16] <u>3-カルバモイル-1-(4-クロロベンジル)ピペリジンの合成</u>

5 ニペコタミド (6. 40g、50mmol) のアセトニトリル (150mL) と

エタノール(20mL)溶液に、トリエチルアミン(7.0mL、50mmol)と4-クロロベンジルクロリド(8.05g、50mmol)を加えた。この反応混合物を50℃で16時間攪拌した。室温に冷却後、飽和NaHCO $_3$ 水溶液(50mL)と水(150mL)を加え、酢酸エチル(150mL×3)で抽出し、抽出液を食塩水で洗浄した。Na $_2$ SO $_4$ で乾燥し、濃縮して淡赤の固体を得た。この粗製固体をエーテル(100mL)で洗浄し、3-カルバモイル-1-(4-クロロベンジル)ピペリジンを得た(6.98g、54%)

[参考例 1 7] <u>3-(アミノメチル)-1-(4-クロロベンジル)ピペリジン</u>の合成

10 3-カルバモイルー1ー(4ークロロベンジル)ピペリジン(3.80g、15 mmol)をTHF(30mL)に溶解し、1M BH₃-THF(9.4mL)を加え、70℃で15時間攪拌した。0℃に冷却後、2M塩酸(50mL)を加え、室温でさらに3時間攪拌し、4M NaOH水溶液にてアルカリ性とし、酢酸エチル(100mL×3)で抽出した。抽出液を合わせて食塩水で洗浄し、無水Na₂S O₄で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO₂、酢酸エチル/エタノール/トリエチルアミン=80:15:5)で精製することにより3ー(アミノメチル)−1ー(4ークロロベンジル)ピペリジン(2.05g、55%)を得た: ¹H NMR(CDCl₃、400MH₂)δ 1.00-1.09 (m, 1 H), 1.50-1.87 (m, 7 H), 1.97-2.06 (m, 1 H), 2.65-2.77 (m, 2 H), 3.16-3.26 (m, 2 H), 3.20 32 (s, 2 H), 3.40 (d, J=13.3 Hz, 1 H), 3.49 (d, J=13.3 Hz, 1 H), 7.22-7.33 (m, 5 H)

[実施例1035]3-[(N-ベンゾイルグリシル) アミノ] メチルー1-(4-クロロベンジル) ピペリジン (化合物番号434) の合成

塩化ベンゾイル (0.060mmol) のクロロホルム (0.4mL) 溶液を、3-[(グリシルアミノ)メチル]-1-(4-クロロベンジル) ピペリジン (0.050mmol) とトリエチルアミン (0.070mmol) のクロロホルム (1.0mL) 溶液に加えた。この反応混合物を室温で2.5時間振とうした後、(アミノメチル) ポリスチレン樹脂 (1.04mmol/g、50mg、50mmol) を加え、室温で12時間振とうした。濾過し、樹脂をジクロロメタン (0.5mL) で洗浄した。濾液と洗液を合わせ、ジクロロメタン (4mL) を加えて、2M NaOH水溶液 (0.5mL) で洗浄、濃縮することにより、3-[(N-ベ

ンゾイルグリシル)アミノ] メチルー1-(4-0ロロベンジル)ピペリジン(化合物番号434)を得た(14.7mg、74%)。純度をRPLC/MSにて求めた(91%)。ESI/MS m/e 400(M^++H 、 $C_{22}H_{26}$ ClN $_3$ O $_2$)

5 [実施例1036-1058]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1035の方法に従って合成した。ESI/MSデータ、収量、および収率を表 24にまとめた。

表 24

実施例	化合物番号	分子式	Par /sec /		
			ESI/MS m/e	収量 (mg)	収率 (%)
1036	435	C26 H28 C1 N3 O2	450	16.0	71
1037	436	C22 H25 C1 N4 O4	445	18.9	85
1038	437	C24 H28 C1 N3 O4	458	18.2	79
1039	438	C23 H25 C1 E3 N3 O2	468	19.0	81
1040	439	C23 H24 C1 F4 N3 O2	486	20.2	83
1041	440	C23 H25 C1 F3 N3 O3	484	18.9	78
1042	441	C22 H25 Br Cl N3 O2	478	19.2	80
1043	442	C22 H25 C12 N3 O2	434	17.3	80
1044	443	C22 H25 Br Cl N3 O2	478	18.8	79
1045	444	C22 H24 C1 F2 N3 O2	436	16.7	77
1046	445	C22 H24 C13 N3 O2	468	17.9	76
1047	446	C23 H28 C1 N3 O2	414	14.6	71
1048	447	C27 H30 C1 N3 O2	464	17.0	73
1049	448	C23 H27 Cl N4 O4	459	19.5	85
1050	449	C25 H30 C1 N3 O4	472	17.1	72
1051	450	C24 H27 C1 F3 N3 O2	482	19.4	81
1052	451	C24 H26 C1 F4 N3 O2	500	18.2	73
1053	452	C24 H27 C1 F3 N3 O3	498	18.8	76
1054	,453	C23 H27 Br Cl N3 O2	492	19.4	
1055	. 454 . (C23 H27 C12 N3 O2	448	16.5	79
1056	455	223 H27 Br Cl N3 O2	492	19.3	74
1057		223 H26 C1 F2 N3 O2	450		78
1058		23 H26 C13 N3 O2		17.1	76
		1 010 110 02	482	16.9	70

[参考例 18] 4-(アミノメチル)-1-(4-クロロベンジル) ピペリジン の合成

 $4-(アミノメチル) ピペリジン(7.00g、61.3 mmol)のアセトニトリル(100 mL)溶液に、<math>K_2CO_3$ (3.02g)と4-クロロベンジルクロリド(3.52g、21.8 mmol)を順に加えた。この反応混合物を60℃で16時間攪拌した後、25℃に冷却し、濃縮した。残査をジクロロメタン(75 m L)と水(50 mL)の間に分画し、水(50 mL×2)と食塩水(50 mL×1)で洗浄した。有機層を乾燥($MgSO_4$)、濃縮後、クロマトグラフィー(SiO_2 、 $4%H_2O-^i$ PrOH)により精製し、4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン(3.58g、<math>69%)を得た。

[実施例1059] 4-[(N-ベンゾイルグリシル) アミノ] メチル-1-(4-クロロベンジル) ピペリジン (化合物番号458) の合成

4-(アミノメチル)-1-(4-クロロベンジル) ピペリジン(50mg、0.21mmol)のジクロロメタン(1mL)溶液に、馬尿酸(38mg、0.2.15 1mmol)、EDCI(48mg、0.24mmol)、HOBt(31mg、0.23mmol)、およびトリエチルアミン(38μL、0.27mmol)を加えた。この反応混合物を25℃で16時間振とうした後、1mLのジクロロメタンで希釈し、2M NaOH水溶液(0.75mL×2)で洗浄し、乾燥(MgSO4)し、濃縮した。クロマトグラフィー(SiO2、6-8%メタノール/ジクロロメタン)で精製することにより4-[(Nーベンゾイルグリシル)アミノ]メチルー1-(4-クロロベンジル)ピペリジン(化合物番号458)を得た。これをTFAにて処理し、TFA塩を得た(105mg、97%)。純度をRPLC/MSにて求めた(85%)。ESI/MS m/e 400(M++H、C22H26C1N3O2)

25 [実施例1060-1086]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1059の方法に従って合成した。ESI/MSデータ、収量、および収率を表25にまとめた。

5

実施例	化合物番号		T=== 4		
			ESI/MS m/e	収量 (mg)	収率 (%)
1060	459	C23 H28 C1 N3 O2	414	86*	78
1061	460	C23 H28 C1 N3 O2	414	55	定量的
1062	461	C23 H25 C1 F3 N3 O2	468	65	定量的
1063	462	C23 H28 C1 N3 O2	414	61	定量的
1064	463	C23 H28 C1 N3 O2	414	54	定量的
1065	464	C25 H32 Cl N3 O5	490	56	定量的
1066	465	C21 H 25 C1 N4 O2	401	38	96
1067	466	C22 H25 C1 N4 O4	445	15	34
1068	557	C23 H28 C1 N3 O2	414	58*	66
1069	558	C23 H 28 Cl N3 O2	414	55	定量的
1070	618	C25 H32 C1 N3 O2	442	58	定量的
1071	686	C26 H34 Cl N3 O2	456	62	定量的
1072	749	C34 H37 C1 N4 O2	569	7.2*	18
1073	750	C24 H30 Cl N3 O3	444	4.7*	14
1074	840	C24 H29 C1 N2 O2	413	52*	58
1075	841	C23 H27 C1 N2 O2	399	52	定量的
1076	842	C23 H26 C12 N2 O2	433	55	定量的
1077	843	C25 H31 C1 N2 O2	427	58	定量的
1078	844	C24 H29 C1 N2 O2	413	56	定量的
1079	845	C24 H29 C1 N2 O4 S	477	62	定量的
1080	846	C29 H31 C1 N2 O3	491	43	88
1081	847	C24 H28 C1 F N2 O3	447	54	定量的
1082	848	C25 H31 C1 N2·O2	427	47	
1083	849	C25 H31 C1 N2 O4	459	55	定量的定量的
1084	850	C22 H27 C1 N2 O3 S	435	46	定量的
1085	873	C20 H28 C1 N3 O2	378	. 44.8	定量的
1086	874	23 H27 C12 N3 O3	464	51	
				-	定量的

4- (アミノメチル) -1- (4-クロロベンジル) ピペリジン (120mg) を、NaI (2.6当量) の存在下、アセトニトリル中、70℃で16時間、3,3-ジフェニルプロピルメタンスルホネート (1.0当量) と反応させた。常法処理の後、カラムクロマトグラフィー (SiO₂) で精製することにより、1- (4-クロロベンジル) -4- [N-(3,3-ジフェニルプロピル) アミノメチル] ピ

WO 00/69432

ペリジン (118mg、54%) を得た。純度は、RPLC/MSで求めた (98%)。

4-(アミノメチル)-1-(4-クロロベンジル)ピペリジン(120mg)をメタノール中、2,2-ジフェニルアセトアルデヒド(0.66当量)とポリマー担持水素ホウ素を用いて25℃で16時間還元的アミノ化反応を行い、次いで常法処理とカラムクロマトグラフィー(SiO₂)により、1-(4-クロロベンジル)-4-[N-(2,2-ジフェニルエチル)アミノメチル]ピペリジン(70mg、49%)を得た。純度は、RPLC/MSで求めた(98%)。

[実施例1087] <u>4-[N-(N-ベンゾイルグリシル)-N-(2,2-ジ</u>フェニルエチル) アミノメチル]-1-(4-クロロベンジル) ピペリジン (化合物番号524) の合成

1-(4-クロロベンジル)-4-[N-(2, 2-ジフェニルエチル) アミノメチル) ピペリジン(0.084mmol) のジクロロメタン溶液に、馬尿酸(1.1当量)、HBTU(1.1当量)、HOBt(1.1当量)を加えた。この反応混合物を40℃で24時間攪拌した。常法処理と分取TLC(SiO₂)により、4-[N-(N-ベンゾイルグリシル)-N-(2, 2-ジフェニルエチル) アミノメチル]-1-(4-クロロベンジル) ピペリジン(化合物番号524)を得た(8.5mg、17%)。純度をRPLC/MSにて求めた(98%)。ES1/MS m/e 580(M++H、C36H38C1N3O₂)

[実施例1088-1090]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 087の方法に従って合成した。ESI/MSデータ、収量、および収率を表26 25 にまとめた。

表 26

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1088	521	C38 H39 C1 F3 N3 O2	662	5.5	10
1089	522	C37 H37 C1 F3 N3 O2	648	8.6	16
1090	523	C37 H40 C1 N3 O2	594	4.8	10

[参考例21] <u>1-(4-クロロベンジル)-4-[(バリルアミノ)メチル]</u> ピペリジンの合成

4-(アミノメチル)-1-(4-クロロベンジル) ピペリジン <math>(1.0g.4.2mmol) のジクロロメタン (21mL) 溶液に、トリエチルアミン (0.7

- 6mL、5.44mmol)、dl-N-(tert-ブトキシカルボニル)バリン(1.09g、5.03mmol)、EDCI(883mg、4.61mmol)、およびHOBt(623mg、4.61mmol)を加えた。この反応混合物を25℃で16時間攪拌した後、ジクロロメタン(20mL)で希釈し、2M NaOH溶液(20mL×2)と食塩水(20mL×1)で洗浄し、乾燥(MgSO4
- 10)し、濃縮した。クロマトグラフィー(SiO₂、3%メタノール/ジクロロメタン)で精製することにより、1-(4-クロロベンジル)-4-[[(N-Boc-バリル)アミノ]メチル]ピペリジン(1.1g、60%)を淡琥珀色油状物として得た。ESI/MS m/e 438(M++H)

1- (4-クロロベンジル) -4- [[(N-Boc-バリル) アミノ] メチル

- 15] ピペリジン (1.1g、2.51mmol)を3M HCl-メタノール溶液 (25mL)に溶解し、25℃で1時間攪拌した。この反応混合物を濃縮し、得られた塩を'BuOH/H₂O=3:1 (25mL)に溶解した。陰イオン (OH⁻) 交換樹脂を、溶液がやや塩基性となるまで加えた。濾過、濃縮することにより、1-(4-クロロベンジル)-4-[(バリルアミノ)メチル]ピペリジン (819mg)
- 20 、97%)を得た。この化合物はこれ以上の精製を必要としなかった。ESI/MS m/e 338.1 (M^++H 、 $C_{18}H_{28}ClN_3O$)

さらに、その他の4-[(アシルアミノ)メチル]-1-(4-クロロベンジル)ピペリジンを、それぞれ対応する原料および反応剤を用いて参考例21の方法に従って合成した。

25 1-(4-クロロベンジル)-4-[(グリシルアミノ)メチル]ピペリジン:
 0.830g、67%(2工程)、ESI/MS 269(M++H)

1- (4-クロロベンジル) -4- [(セリルアミノ) メチル] ピペリジン: 0

- . 286g、20% (2工程)、ESI/MS 326 (M++H)
 - 4- [(アラニルアミノ) メチル] -1-(4-クロロベンジル) ピペリジン:
- 30 1.20g、65% (2工程)、ESI/MS 310 (M++H) 1-(4-クロロベンジル)-4-[(プロリルアミノ)メチル] ピペリジン:

1. 48g、86% (2工程)、ESI/MS 336 (M++H)

1-(4-クロロベンジル)-4-[(グルタミニルアミノ) メチル] ピペリジン: 0.830g、27%(2工程)、ESI/MS 367(M⁺+H)

1-(4-クロロベンジル)-4-[((2-メチルアラニル)アミノ)メチル・

- 5] ピペリジン: 2. 24g、62% (2工程)、ESI/MS 324 (M⁺+H) 1-(4-クロロベンジル)-4-[((O-メチルセリル)アミノ)メチル] ピペリジン: 0. 686g、38% (2工程)、ESI/MS 340 (M⁺+H) 1-(4-クロロベンジル)-4-[((1-アミノシクロプロピルカルボニル)アミノ)メチル] ピペリジン: 2. 03g、82% (2工程)、ESI/MS
- 10 3 2 2 $(M^+ + H)$

1- (4-クロロベンジル) -4- [(ロイシルアミノ) メチル] ピペリジン:

- 1. 30g、58% (2工程)、ESI/MS 352 (M++H)
- 1-(4-クロロベンジル)-4-[((O-ベンジルセリル) アミノ) メチル] ピペリジン:1.34g、56%(2工程)、ESI/MS 416(M++H)
- [参考例22] 1-(tert-ブトキシカルボニル)-4-[[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジンの合成4-(アミノメチル)-1-(tert-ブトキシカルボニル) ピペリジン(5.72g) のジクロロメタン(150mL) 溶液に、トリエチルアミン(3.51g)、N-(9-フルオレニルメチルオキシカルボニル) グリシン(7.93g、
- 20 26.7mmol)、EDCI(3.80g)、HOBt(4,33g)を加えた。この反応混合物を室温で18時間攪拌した後、水(100mL×3)と食塩水(100mL×2)で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮した。0℃でアセトニトリル/メタノール(150mL/1mL)で再結晶し、1-(tert-ブトキシカルボニル)-4-[[N-(9-フルオレニルメチルオキシカルボニル)
- 25 グリシル] アミノメチル] ピペリジン (5.75g、44%) を黄白色の結晶として得た。

1-(tert-ブトキシカルボニル)-4-[[N-(9-フルオレニルメチ
 30 ルオキシカルボニル)グリシル]アミノメチル]ピペリジンピペリジン(3.17g、6.42mmol)を、4M HClのジオキサン溶液に加えた。この溶液を

15

室温で5時間攪拌後、濃縮し、4-[[N-(9-7) + 2) + 2] ではいった。この生成物はこれ以上の精製をせずに用いた。

[参考例24] 4-[[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] <math>-1-(4-メチルチオベンジル) ピペリジンの合成

4-[[N-(9-7)(3+1)] アミノメチル アンカルボニル) グリシル] アミノメチル] ピペリジン(1.00g、2.33mmol)の1%酢酸 2.33mmol)の1%酢酸 2.3mmol)の2.3mmol)の2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)の2.3mmol0)を2.3mmol0)の2.3mmol0)の2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)を2.3mmol0)の2.3mmol0)を2.3mmol0

4-[[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジン(1.00g、2.33mmol)の2.5%酢酸/メタノール

20 (80mL) 溶液に、4-エチルベンズアルデヒド(1.09g、8.16mmol) とNaBH₃CN(6.59g、10.5mmol) を加えた。この反応混合物を60℃で13時間攪拌した。室温に冷却後、1M NaOH水溶液(50mL) とジクロロメタン(50mL) を加えた。有機層を分離し、水層をジクロロメタン(50mL×3) で抽出した。有機層を合わせて食塩水で洗浄し、無水硫酸ナトリ

25 ウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO_2 、メタノール/酢酸エチル=2:8)により1-(4-エチルベンジル)-4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジン(740 mg、62%)を得た。

[参考例26] <u>4-[(グリシルアミノ)メチル]-1-(4-メチルチオベン</u> 30 <u>ジル)ピペリジンの合成</u>

4- [[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメ

チル] -1-(4-メチルチオベンジル) ピペリジン (590mg) とピペリジン (1mL) のDMF (4mL) 溶液を60℃で2時間攪拌した。濃縮後、カラムクロマトグラフィー (SiO₂、トリエチルアミン/メタノール/ジクロロメタン=1:1:9) で精製することにより4-[(グリシルアミノ)メチル]-1-(4- メチルチオベンジル) ピペリジン (365mg) を白色の固体として得た。 1H NMR (CDC1₃、270MHz) δ 1.25(dd, J=12 Hz, 4.1 Hz, 2H), 1.34(dd, J=12 Hz, 4.1 Hz, 2H), 1.77(d, J=7.3 Hz, 1H), 1.94(t, J=9.5 Hz, 2H), 2.48(s, 3H), 2.80(d, J=12 Hz, 2H), 3.18(t, J=6.2 Hz, 2H), 3.35(s, 2H), 3.45(s, 2H), 7.18-7.29(m, 4H), 7.3 5(br-s, 1H)

さらに、1-(4-x + y) - 4-[(y + y) + y] ピペリジンを、対応する原料および反応剤を用いて参考例 26 の方法に従って合成した:333 mg、79%。

[参考例 27] 4-[(グリシルアミノ) メチル] -1-(4-フルオロベンジ

15 ル) ピペリジンの合成

4-[[N-(9-フルオレニルメチルオキシカルボニル) グリシル] アミノメチル] ピペリジン(1.50g、3.49mmol)、4-フルオロベンジルプロミド(0.478mL、3.84mmol)、およびトリエチルアミン(1.47mL、10.5mmol)のアセトニトリル(200mL)溶液を室温で13時間20 攪拌した。カラムクロマトグラフィー(SiO2、10%メタノール/ジクロロメタン)により4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジンとピペリジンを得た。さらに、4-[[N-(9-フルオレニルメチルオキシカルボニル)グリシル]アミノメチル]ピペリジンとピペリジンとピペリジン(5mL)のDMF(5mL)溶液を室温で17時間攪拌した。濃縮後、カラムクロマトグラフィー(SiO2、トリエチルアミン/メタノール/ジクロロメタン=0.5:2:8)により精製し、4-[(グリシルアミノ)メチル]-1-(4-フルオロベンジル)ピペリジン(453mg、46%)を得た。

[参考例28] 4-[(グリシルアミノ)メチル]-1-(4-N-フェニルカルバモイル) ベンジル] ピペリジンの合成

 $5\,\mathrm{mL}$ 、8.88 mmol)、KI($50\,\mathrm{mg}$ 、0.30 mmol)、およびアセトニトリル($200\,\mathrm{mL}$)の混合物に、 $4-(\mathrm{N-}7\mathrm{mmol})$ ベンジルクロリド($800\,\mathrm{mg}$ 、3.26 mmol)のアセトニトリル($100\,\mathrm{mL}$)溶液を滴下した。この混合物を室温で19時間攪拌し、さらに $60\,\mathrm{CC}$ で5時間攪拌した。濃縮後、カラムクロマトグラフィー(SiO_2 、 $5\,\mathrm{SM}$ メタノール/ジクロロメタンートリエチルアミン/メタノール/ジクロロメタン=2:2:96)により精製し、 $4-[(\mathrm{Myl})\mathrm{Myl}\mathrm$

[実施例1091] 1-(4-クロロベンジル)-4-[[N-(3-シアノベンゾイル) バリル] アミノメチル] ピペリジン (化合物番号<math>619) の合成

1- (4-クロロベンジル) -4- [(バリルアミノ)メチル] ピペリジン (2 0 mg、0.059 mm o 1)のジクロロメタン (0.60 mL)溶液に、トリエチルアミン (0.011 mL、0.077 mm o 1)、m-シアノ安息香酸 (28 mg、0.071 mm o 1)、EDCI (13 mg、0.065 mm o 1)、および、HOBt (9 mg、0.065 mm o 1)を加えた。この反応混合物を25℃で16時間攪拌した。得られた溶液をジクロロメタン (0.75 mL)で希釈し、2M NaOH水溶液 (0.75 mL×2)で洗浄し、PTF E膜で濾過することによって乾燥した。濃縮により1-(4-クロロベンジル)-4- [[N-(3-シアノベンゾイル)バリル]アミノメチル]ピペリジン (化合物番号619) (2 4.2 mg、88%)を得た。これはそれ以上の精製を要しなかった。純度をRPLC/MSにて求めた (85%)。ESI/MS m/e 467 (M++H、C26

[実施例1092-1543]

 $H_{31}CIN_4O_2$

10

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 25 1091の方法に従って合成した。ESI/MSデータ、収量、および収率を表 2 7にまとめた。

表 27

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1092	467	C22 H25 Br Cl N3 O2	478	11	46
1093	468	C24 H31 Cl N4 O2	443	9	41

PCT/JP00/03203

1094	469	C23 H28 C1 N3 O3	430	7*	27
1095	470	C23 H25 C1 N4 O2	425	21	定量的
1096	471	C24 H28 C1 N3 O4	458	7	29
1097	472	C29 H31 N3 O3	504	5*	21
1098	473	C24 H28 C1 N3 O3	442	16	71
1099	474	C23 H25 C1 F3 N3 O2	468	14	60
1100	475	C25 H32 C1 N3 O2	442	5	22
1101	476	C22 H25 C1 N4 O4	445	4	17
1102	477	C25 H32 C1 N3 O3	458	10*	36
1103	478	C21 H27 C1 N4 O2	403	9	47
1104	479	C20 H24 C1 N3 O3	390	17	87
1105	480	C20 H23 Br Cl N3 O3	470	23	定量的
1106	481	C20 H24 C1 N3 O2 S	406	7	33
1107	482	C21 H26 C1 N3 O2 S	420	9	45
1108	483	C21, H26 C1 N3 O2 S	420	8	40
1109	484	C24 H27 C1 N4 O2	439	9*	34
1110	485	C24 H24 C1 F6 N3 O2	536	13	49
1111	486	C23 H25 C1 N4 O2	425	16	74
1112	487	C22 H25 C12 N3 O2	434	5	24
1113	488	C22 H27 C1 N4 O2	415	7	32
1114	489	C24 H24 C1 F6 N3 O2	536	21	78
1115	490	C24 H30 C1 N3 O3	444	8	35
1116	491	C23 H24 C1 F4 N3 O2	486	19	79
1117	492	C23 H25 C1 F3 N3 O3	484	18	76
1118	493	C23 H24 C12 F3 N3 O2	502	23	92
1119	494	C23 H24 C1 F4 N3 O2	486	. 19	79
1120	495	C23 H24 C1 F4 N3 O2	486	20	83
1121	496	C23 H24 C1 F4 N3 O2	486	12	48
1122	497	C25 H32 C1 N3 O3	458	4	16
1123	498	C23 H26 C1 F3 N4 O2	483	13	52
1124	499	C24 H31 C1 N4 O2	443	8	36
1125	500	C23 H28 C1 N3 O3	430	10	48
1126	501	C22 H24 Br Cl N4 O4	523	10	39
1127	502	C22 H24 C1 F N4 O4	463	4	17
1128	503	C22 H24 C12 N4 O4	479	12	52
1129	504	C24 H30 C1 N3 O4	460	11	43
1130	505	C22 H24 Br Cl N4 O4	523	2	8
1131	506	C20 H23 C1 N4 O5	435	2	10
1132	507	C21 H26 Cl N3 O3	404	9	44
					

WO 00/69432 PCT/JP00/03203

1134 509 C20 H23 Br C1 N3 O2 S 484 12	1133	508	C24 H26 C1 N3 O2 S	456	,	
1135 510 C22 H28 C1 N3 O3 418 9 448 1136 511 C24 H32 C1 N3 O3 446 9 440 1137 512 C25 H29 C1 N4 O2 453 10 45 1138 513 C24 H28 C1 N3 O3 4442 9 41 1139 514 C26 H34 C1 N3 O3 4442 9 41 1139 514 C26 H34 C1 N3 O3 430 5 24 1140 515 C23 H28 C1 N3 O3 430 5 24 1141 525 C23 H28 C1 N3 O3 430 5 24 1141 525 C20 H24 C1 N3 O3 390 6 31 1143 527 C20 H24 C1 N3 O2 390 6 31 1144 528 C25 H30 C1 F3 N4 O4 543 28.2 95 1145 529 C20 H24 C1 N3 O2 529 5 17 1146 530 C31 H33 C1 N4 O2 529 5 17 1146 530 C31 H33 C1 N4 O2 529 5 17 1146 530 C31 H33 C1 N4 O2 529 5 17 1147 531 C21 H26 C1 N3 O3 418 8 40 40 1149 533 C21 H26 C1 N3 O3 418 8 40 1149 533 C21 H26 C1 N3 O3 418 8 40 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 472 18 75 1156 540 C25 H29 C1 N3 O3 472 18 75 1156 540 C25 H29 C1 N3 O2 428 4.6* 51 1159 543 C24 H26 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 7.3* 23 1160 544 C22 H25 C1 F3 N3 O2 468 6.8* 22 146 6.8*	1134	509			1	5
1136	1135	510	<u></u>			
1137 512 C25 H29 C1 N4 O2	1136	511				
1138	1137	512				
1139	1138					
1140 515 C23 H28 C1 N3 O3 430 5 24 1141 525 C23 H28 C1 N3 O4 S 478 20 85 1142 526 C20 H24 C1 N3 O3 390 6 31 1143 527 C20 H24 C1 N3 O2 S 406 8 39 1144 528 C25 H30 C1 F3 N4 O4 543 28.2 95 1145 529 C20 H23 C1 N4 O4 S 451 9 39 1146 530 C31 H33 C1 N4 O2 529 5 1.7 1147 531 C21 H26 C1 N3 O3 418 8 40 1149 533 C21 H26 C1 N3 O3 418 8 40 1149 533 C21 H26 C1 N3 O3 404 6 32 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 460 8 34 1153 537 C25 H34 C1 N3 O3 480 9 36 1154 538 C27 H30 C1 N3 O3 460 8 34	1139					
1141 525 C23 H28 C1 N3 O4 S 478 20 85 1142 526 C20 H24 C1 N3 O3 390 6 31 1143 527 C20 H24 C1 N3 O2 S 406 8 39 1144 528 C25 H30 C1 F3 N4 O4 543 28.2 95 1145 529 C20 H23 C1 N4 O4 S 451 9 39 1146 530 C31 H33 C1 N4 O2 529 5 17 1147 531 C21 H26 C1 N3 O3 418 8 40 1149 532 C22 H28 C1 N3 O3 418 8 40 1149 533 C21 H26 C1 N3 O3 404 6 32 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 S 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 480 9 36 1154 538 C27 H30 C1 N3 O3 460 8 34	1140					
1142 526 C20 H24 C1 N3 O3 390 6 31 1143 527 C20 H24 C1 N3 O2 S 406 8 39 1144 528 C25 H30 C1 F3 N4 O4 543 28.2 95 1145 529 C20 H23 C1 N4 O4 S 451 9 39 1146 530 C31 H33 C1 N4 O2 529 5 17 1147 531 C21 H26 C1 N3 O3 436 8 37 1148 532 C22 H28 C1 N3 O3 404 6 32 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 S 448 8 37 1151 535 C22 H26 C1 N3 O3 S 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 480 9 36 1155 539 C22 H25 C1 F3 N3 O3 472 18 75	1141					
1143 527 C20 H24 C1 N3 O2 S 406 8 39 1144 528 C25 H30 C1 F3 N4 O4 543 28.2 95 1145 529 C20 H23 C1 N4 O4 S 451 9 39 1146 530 C31 H33 C1 N4 O2 529 5 17 1147 531 C21 H26 C1 N3 O3 S 436 8 37 1148 532 C22 H28 C1 N3 O3 418 8 40 1149 533 C21 H26 C1 N3 O3 404 6 32 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 S 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 472 18 75 1155 539 C22 H26 C1 N5 O4 460 2.4 10 1155 540 C25 H29 C1 N4 O2 453 8 36	1142					
1144 528 C25 H30 C1 F3 N4 O4 543 28.2 95 1145 529 C20 H23 C1 N4 O4 S 451 9 39 1146 530 C31 H33 C1 N4 O2 529 5 17 1147 531 C21 H26 C1 N3 O3 S 436 8 37 1148 532 C22 H28 C1 N3 O3 418 8 40 1149 533 C21 H26 C1 N3 O3 404 6 32 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 5 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 480 9 36 1155 539 C22 H25 C1 F3 N3 O3 472 18 75 1156 540 C25 H29 C1 N4 O2 453 8 36 1157 541 C22 H26 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 4.6* 51 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 17.4* 55 1164 548 C22 H24 C13 N3 O2 468 14.1* 44 1165 549 C22 H24 C13 N3 O2 468 14.1* 44 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H26 C1 F N3 O2 428 14.2* 49 1169 553 C25 H26 C1 F N3 O2 428 14.2* 49 1169 553 C25 H26 C1 F N3 O2 428 14.2* 49 1169 550 C24 H26 C1 F N4 O2 457 0.9* 3	<u></u>					31
1145 529 C20 H23 C1 N4 O4 S 451 9 39 39 1146 530 C31 H33 C1 N4 O2 529 5 17 1147 531 C21 H26 C1 N3 O3 S 436 8 37 1148 532 C22 H28 C1 N3 O3 418 8 40 1149 533 C21 H26 C1 N3 O3 4004 6 32 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 5 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 460 8 34 1155 539 C22 H25 C1 F3 N3 O3 472 18 75 1156 540 C25 H29 C1 N4 O2 453 8 36 1157 541 C22 H26 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 4.6* 51 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 17.4* 55 1164 548 C22 H24 C13 N3 O2 468 17.4* 55 1165 549 C22 H24 C13 N3 O2 468 17.4* 55 1165 549 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 14.1* 44 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 428 42.2* 49 1168 552 C24 H27 C1 F3 N3 O2 448 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 元量的						39
1146						95
1147						39
1148					5	17
1149 533 C21 H26 C1 N3 O3 404 6 32 1150 534 C21 H25 C1 N4 O5 449 5 20 1151 535 C22 H26 C1 N3 O3 S 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 480 9 36 1155 539 C22 H25 C1 F3 N3 O3 472 18 75 1156 540 C25 H29 C1 N4 O2 453 8 36 1157 541 C22 H26 C1 N5 O4 460 2.4 10 1158 542 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 6.8* 22 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 5.7* 18 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1171 555 C24 H26 C1 N4 O2 477 0.9* 3			_ 1		8	37
1150					8	40
1151 535 C22 H26 C1 N3 O3 S 448 8 37 1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 480 9 36 1155 539 C22 H25 C1 F3 N3 O3 472 18 75 1156 540 C25 H29 C1 N4 O2 453 8 36 1157 541 C22 H26 C1 N5 O4 460 2.4 10 1158 542 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 6.8* 22 1164 548 C22 H24 C12 N4 O4 479 5.7* <		L			6	32
1152 536 C23 H31 C1 N4 O2 431 6 28 1153 537 C25 H34 C1 N3 O3 460 8 34 1154 538 C27 H30 C1 N3 O3 480 9 36 1155 539 C22 H25 C1 F3 N3 O3 472 18 75 1156 540 C25 H29 C1 N4 O2 453 8 36 1157 541 C22 H26 C1 N5 O4 460 2.4 10 1158 542 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F N3 O2 550 38.0* 定量的 1170 554 C24 H26 C12 N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 457 0.9* 3					5	20
1153					8	37
1154			i		6	28
1155 539 C22 H25 C1 F3 N3 O3 472 18 75 1156 540 C25 H29 C1 N4 O2 453 8 36 1157 541 C22 H26 C1 N5 O4 460 2.4 10 1158 542 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 <td< td=""><td></td><td></td><td></td><td>460</td><td>8</td><td>34</td></td<>				460	8	34
1156 540 C25 H29 C1 N4 O2 453 8 36 1157 541 C22 H26 C1 N5 O4 460 2.4 10 1158 542 C24 H30 C1 N3 O2 .428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550					9	36
1157 541 C22 H26 C1 N5 O4 460 2.4 10 1158 542 C24 H30 C1 N3 O2 428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 482 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C12 N4 O2 457			ii		18	75
1158 542 C24 H30 C1 N3 O2 .428 4.6* 51 1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C12 N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 457 <td></td> <td></td> <td></td> <td>453</td> <td>8</td> <td>36</td>				453	8	36
1159 543 C24 H30 C1 N3 O2 428 20.6* 71 1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 479 479 0.9* 3				460	2.4	10
1160 544 C22 H25 C1 F N3 O2 418 15.8* 56 1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 470 470 470 470				.428	4.6*	51
1161 545 C22 H24 C13 N3 O2 468 7.3* 23 1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 473 473				428	20.6*	71
1162 546 C22 H24 C13 N3 O2 468 17.4* 55 1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O3 473 473				418	15.8*	56
1163 547 C22 H24 C13 N3 O2 468 14.1* 44 1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 473 473				468	7.3*	23
1164 548 C22 H24 C13 N3 O2 468 6.8* 22 1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O3 473 473				468	17.4*	55
1165 549 C22 H24 C12 N4 O4 479 5.7* 18 1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O3 473 473				468	14.1*	44
1166 550 C22 H24 C12 N4 O4 479 18.9* 58 1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O3 473 473					6.8*	22
1167 551 C24 H30 C1 N3 O2 428 14.2* 49 1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O3 473 473				479	5.7*	18
1168 552 C24 H27 C1 F3 N3 O2 482 30.6* 94 1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 473 473				479	18.9*	58
1169 553 C25 H26 C1 F6 N3 O2 550 38.0* 定量的 1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O3 473 0.9* 3				428	14.2*	49
1170 554 C24 H26 C1 F N4 O2 457 0.9* 3 1171 555 C24 H26 C12 N4 O2 457 0.9* 3			l l	482	30.6*	94
1171 555 C24 H26 C12 NA C2 477 0.9* 3				550	38.0*	定量的
11/1 555 C24 H26 C12 N4 O2 473 11.1* 35			I	457	0.9*	3
	11/1	555 ———	C24 H26 C12 N4 O2	473	11.1*	35

1172 556 C25 H29 C I N4 O2 453 12.5* 41 1173 559 C25 H26 CI F6 N3 O2 550 15 72 1174 560 C24 H27 CI N4 O2 439 12 68 1175 561 C23 H27 BE CI N3 O2 448 13 75 1176 562 C23 H27 CI2 N3 O2 448 13 75 1177 563 C25 H26 CI F6 N3 O2 550 14 66 1178 564 C25 H32 CI N3 O3 458 5 28 1179 565 C24 H26 CI F4 N3 O2 500 12 61 1180 566 C24 H26 CI F4 N3 O2 500 12 61 1181 567 C24 H26 CI F4 N3 O2 500 15 77 1183 569 C24 H26 CI F4 N3 O2 500 11 59 1184 570 C24 H26 CI F4 N3 O2 500 11 59 1185 571 C26 H34 CI N3 O3 472 14 77 1186 572 C24 H28 CI F3 N4 O2 497 11						,
1174	1172	556	C25 H29 C1 N4 O2	453	12.5*	
1175	1173	559	C25 H26 C1 F6 N3 O2	550	15	72
1176 562 C23 H27 C12 N3 O2 448 13 75 1177 563 C25 H26 C1 F6 N3 O2 550 14 66 1178 564 C25 H32 C1 N3 O3 458 5 28 1179 565 C24 H26 C1 F4 N3 O2 500 12 61 1180 566 C24 H27 C1 F3 N3 O3 498 12 62 1181 567 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 15 77 1184 570 C24 H26 C1 F4 N3 O2 500 11 59 1184 570 C24 H26 C1 F4 N3 O2 500 11 59 1186 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H26 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 420 13 80 1197 583 C26 H31 C1 N4 O2 453 17 94 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H37 C1 N4 O2 449 14 85 1200 586 C3 H27 C12 N3 O2 448 17 97 1201 587 C24 H37 C1 N4 O2 449 5 5 29 1203 589 C27 H36 C1 N3 O3 448 17 97 1204 590 C26 H34 C1 N3 O3 448 17 97 1205 588 C3 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 449 17 91 1204 590 C26 H34 C1 N3 O3 444 4 02 1207 593 C24 H30 C1 N3 O3 444 4 4 20 1207 593 C24 H30 C1 N3 O3 444 4 4 20 1208 594 C23 H28 C1 N3 O3 444 4 4 20 1207 593 C24 H30 C1 N3 O3 444 4 4 20 1208 594 C23 H38 C1 N3 O3 444 4 4 20 1208 594 C23 H38 C1 N3 O3 444 4 4 20 1208 594 C23 H38 C1 N3 O3 444 4 4 20 1208 594 C23 H38 C1 N3 O3 444 4 2 14	1174	560		439	12	68
1177 563 C25 H26 C1 F6 N3 O2 550 14 66 1178 564 C25 H32 C1 N3 O3 458 5 28 1179 565 C24 H26 C1 F4 N3 O2 500 12 61 1180 566 C24 H27 C1 F3 N3 O3 498 12 62 1181 567 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 11 59 1184 570 C24 H26 C1 F4 N3 O2 500 16 84 1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 15 75 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 S 460 16 87 1190 576 C22 H28 C1 N3 O2 S 470 15 81 1191 577 C22 H28 C1 N3 O2 S 470 15 </td <td>1175</td> <td>561</td> <td>C23 H27 Br Cl N3 O2</td> <td>494</td> <td>14</td> <td>73</td>	1175	561	C23 H27 Br Cl N3 O2	494	14	73
1178 564 C25 H32 C1 N3 O3 458 5 28 1179 565 C24 H26 C1 F4 N3 O2 500 12 61 1180 566 C24 H27 C1 F3 N3 O3 498 12 62 1181 567 C24 H26 C1 F4 N3 O2 516 12 61 1182 568 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 11 59 1184 570 C24 H26 C1 F3 N4 O2 500 16 84 1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 S 500 15 75 1189 575 C25 H28 C1 N3 O2 S 466 13 71 1190 576 C22 H28 C1 N3 O2 S 470 15 </td <td>1176</td> <td>562</td> <td>C23 H27 C12 N3 O2</td> <td>448</td> <td>13</td> <td>75</td>	1176	562	C23 H27 C12 N3 O2	448	13	75
1179	1177	563	C25 H26 C1 F6 N3 O2	550	14	66
1180 566 C24 H27 C1 F3 N3 33 498 12 62 1181 567 C24 H26 C12 F3 N3 O2 516 12 61 1182 568 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 11 59 1184 570 C24 H26 C1 F4 N3 O2 500 16 84 1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 N3 O2 500 12 64 1187 573 C21 H25 Br C1 N3 O2 500 15 75 1189 575 C25 H34 C1 N3 O2 500 15 75 1189 576 C22 H28 <td< td=""><td>1178</td><td>564</td><td>C25 H32 C1 N3 O3</td><td>458</td><td>5</td><td>28</td></td<>	1178	564	C25 H32 C1 N3 O3	458	5	28
1181 567 C24 H26 C12 F3 N3 O2 516 12 61 1182 568 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 16 84 1184 570 C24 H26 C1 F4 N3 O2 500 16 84 1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 N3 O2 500 12 64 1187 573 C21 H25 Br C1 N3 O2 500 15 75 1189 575 C25 H34 C1 N3 O2 500 15 75 1189 575 C25 H34 C1 N3 O2 466 13 71 1190 576 C22 H28 C1 <td< td=""><td>1179</td><td>565</td><td>C24 H26 C1 F4 N3 O2</td><td>500</td><td>12</td><td>61</td></td<>	1179	565	C24 H26 C1 F4 N3 O2	500	12	61
1182 568 C24 H26 C1 F4 N3 O2 500 15 77 1183 569 C24 H26 C1 F4 N3 O2 500 11 59 1184 570 C24 H26 C1 F4 N3 O2 500 16 84 1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O2 S4 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S4 420 13 80 1195 581 C21 H26 C1 N3 O2 S4 420 13 80 1196 582 C22 H28 C1 N3 O2 S4 420 13<	1180	566	C24 H27 C1 F3 N3 O3	498	12	62
1183 569 C24 H26 C1 F4 N3 O2 500 11 59 1184 570 C24 H26 C1 F4 N3 O2 500 16 84 1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S 466 13 71 1191 577 C22 H28 C1 N3 O2 S 470 15 81 1192 578 C25 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 420 13 80 1195 581 C21 H26 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 448 17 97 1201 587 C24 H27 C1 N3 O2 448 17 97 1202 588 C23 H29 C1 N3 O2 448 17 97 1203 589 C27 H36 C1 N3 O2 448 17 97 1204 590 C26 H34 C1 N3 O2 446 470 4 24 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 4 20 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1181	567	C24 H26 C12 F3 N3 O2	516	12	61
1184 570 C24 H26 C1 F4 N3 O2 500 16 84 1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S 466 13 71 1191 577 C22 H28 C1 N3 O2 S 470 15 81 1192 578 C25 H29 C1 N4 O2 453 17 94 1193 579 C25 H29 C1 N3 O2 S 434 15 91 1194 580 C22 H28 C1 N3 O2 S 420 13 80 1195 581 C21 H26 C1 N3 O2 S 434 10 59 1196 582 C22 H28 C1 N3 O2 S 434 10	1182	568	C24 H26 C1 F4 N3 O2	500	15	77
1185 571 C26 H34 C1 N3 O3 472 14 77 1186 572 C24 H28 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O3 418 12 72 1192 578 C25 H29 C1 N4 O2 453 17 94 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 434 10 59 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 S 434 10 <	1183	569	C24 H26 C1 F4 N3 O2	500	11	59
1186 572 C24 H28 C1 F3 N4 O2 497 11 55 1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O3 418 12 72 1192 578 C25 H29 C1 N4 O2 453 17 94 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18	1184	570	C24 H26 C1 F4 N3 O2	500	16	84
1187 573 C21 H25 Br C1 N3 O2 S 500 12 64 1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O3 418 12 72 1192 578 C25 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 9	1185	571	C26 H34 C1 N3 O3	472	14	77
1188 574 C21 H25 Br C1 N3 O2 S 500 15 75 1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O3 418 12 72 1192 578 C25 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H29 C1 N4 O2 482 17 91 1201 587 C24 H27 C1 F3 N3 O2 470 4 24 <td>1186</td> <td>572</td> <td>C24 H28 C1 F3 N4 O2</td> <td>497</td> <td>11</td> <td>55</td>	1186	572	C24 H28 C1 F3 N4 O2	497	11	55
1189 575 C25 H34 C1 N3 O3 460 16 87 1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O3 418 12 72 1192 578 C25 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29	1187	573	C21 H25 Br Cl N3 O2 S	500	12	64
1190 576 C22 H28 C1 N3 O2 S2 466 13 71 1191 577 C22 H28 C1 N3 O3 418 12 72 1192 578 C25 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29	1188	574	C21 H25 Br Cl N3 O2 S	500	15	75
1191 577 C22 H28 C1 N3 O3 418 12 72 1192 578 C25 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24	1189	575	C25 H34 C1 N3 O3	460	16	87
1192 578 C25 H28 C1 N3 O2 S 470 15 81 1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O3 444 4 20 <	1190	576	C22 H28 C1 N3 O2 S2	466	13	71
1193 579 C25 H29 C1 N4 O2 453 17 94 1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20	1191	577	C22 H28 C1 N3 O3	418	12	72
1194 580 C22 H28 C1 N3 O2 S 434 15 91 1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 430 4 25	1192	578	C25 H28 C1 N3 O2 S	470	15	81
1195 581 C21 H26 C1 N3 O2 S 420 13 80 1196 582 C22 H28 C1 N3 O2 S 434 10 59 1197 583 C26 H31 C1 N4 O2 467 6 31 1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38 </td <td>1193</td> <td>579</td> <td>C25 H29 C1 N4 O2</td> <td>453</td> <td>17</td> <td>94</td>	1193	579	C25 H29 C1 N4 O2	453	17	94
1196 582 C22 H28 Cl N3 O2 S 434 10 59 1197 583 C26 H31 Cl N4 O2 467 6 31 1198 584 C30 H32 Cl N3 O3 518 18 92 1199 585 C24 H27 Cl N4 O2 439 14 85 1200 586 C23 H27 Cl2 N3 O2 448 17 97 1201 587 C24 H27 Cl F3 N3 O2 482 17 91 1202 588 C23 H29 Cl N4 O2 429 5 29 1203 589 C27 H36 Cl N3 O2 470 4 24 1204 590 C26 H34 Cl N3 O2 456 6 36 1205 591 C25 H33 Cl N4 O2 457 7 38 1206 592 C24 H30 Cl N3 O3 444 4 20 1207 593 C24 H30 Cl N3 O3 444 2 14 1208 594 C23 H28 Cl N3 O3 430 4 25 1209 595 C25 H30 Cl N3 O4 472 7 38 <td>1194</td> <td>580</td> <td>C22 H28 C1 N3 O2 S</td> <td>434</td> <td>15</td> <td>91</td>	1194	580	C22 H28 C1 N3 O2 S	434	15	91
1197 583 C26 H31 Cl N4 O2 467 6 31 1198 584 C30 H32 Cl N3 O3 518 18 92 1199 585 C24 H27 Cl N4 O2 439 14 85 1200 586 C23 H27 Cl2 N3 O2 448 17 97 1201 587 C24 H27 Cl F3 N3 O2 482 17 91 1202 588 C23 H29 Cl N4 O2 429 5 29 1203 589 C27 H36 Cl N3 O2 470 4 24 1204 590 C26 H34 Cl N3 O2 456 6 36 1205 591 C25 H33 Cl N4 O2 457 7 38 1206 592 C24 H30 Cl N3 O3 444 4 20 1207 593 C24 H30 Cl N3 O3 430 4 25 1208 594 C23 H28 Cl N3 O3 430 4 25 1209 595 C25 H30 Cl N3 O4 472 7 38	1195	581	C21 H26 C1 N3 O2 S	420	13	80
1198 584 C30 H32 C1 N3 O3 518 18 92 1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1196	582	C22 H28 C1 N3 O2 S	434	10	59
1199 585 C24 H27 C1 N4 O2 439 14 85 1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1197	583	C26 H31 Cl N4 O2	467	6	31
1200 586 C23 H27 C12 N3 O2 448 17 97 1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1198	584	C30 H32 C1 N3 O3	518	18	92
1201 587 C24 H27 C1 F3 N3 O2 482 17 91 1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1199	585	C24 H27 C1 N4 O2	439	14	85
1202 588 C23 H29 C1 N4 O2 429 5 29 1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1200	586	C23 H27 C12 N3 O2	448	17	97
1203 589 C27 H36 C1 N3 O2 470 4 24 1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1201	587	C24 H27 C1 F3 N3 O2	482	17	91
1204 590 C26 H34 C1 N3 O2 456 6 36 1205 591 C25 H33 C1 N4 O2 457 7 38 1206 592 C24 H30 C1 N3 O3 444 4 20 1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1202	588	C23 H29 C1 N4 O2	429	5	29
1205 591 C25 H33 Cl N4 O2 457 7 38 1206 592 C24 H30 Cl N3 O3 444 4 20 1207 593 C24 H30 Cl N3 O3 444 2 14 1208 594 C23 H28 Cl N3 O3 430 4 25 1209 595 C25 H30 Cl N3 O4 472 7 38	1203	589	C27 H36 C1 N3 O2	470	4	24
-1206 592 C24 H30 Cl N3 O3 444 4 20 1207 593 C24 H30 Cl N3 O3 444 2 14 1208 594 C23 H28 Cl N3 O3 430 4 25 1209 595 C25 H30 Cl N3 O4 472 7 38	1204	590	C26 H34 C1 N3 O2	456	6	36
1207 593 C24 H30 C1 N3 O3 444 2 14 1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1205	591	C25 H33 C1 N4 O2	457	7	38
1208 594 C23 H28 C1 N3 O3 430 4 25 1209 595 C25 H30 C1 N3 O4 472 7 38	1206	592	C24 H30 C1 N3 O3	444	4	20
1209 595 C25 H30 C1 N3 O4 472 7 38	1207	593	C24 H30 C1 N3 O3	444	2	14
	1208	594	C23 H28 C1 N3 O3	430	4	25
1210 596 C25 H30 C1 N3 O3 456 7 40	1209	595	C25 H30 C1 N3 O4	472	7	38
	1210	596	C25 H30 C1 N3 O3	456	7	40

WO 00/69432 PCT/JP00/03203

1211	597	C25 H30 C1 N3 O3	1		
1212		C21 H26 C1 N3 O3	456	15	85
1213		C22 H29 C1 N4 O2	404	15	94
1214			417	5	30
1215		C21 H25 Br C1 N3 O3	484	6	34
1216		C24 H30 C1 N3 O3	444	5	28
1217		C25 H33 C1 N4 O2	457	5	28
1218	100	C23 H29 C1 N4 O2	429	4	22
1219		C21 H27 Cl N4 O2	403	9	58
1220		C21 H26 C1 N3 O3	404	17	87
		C21 H26 Cl N3 O2 S	420	15	74
1221	607	C22 H28 C1 N3 O3 S	450	31	定量的
1222		C23 H30 C1 N3 O3	432	17	80
1223	609	C22 H28 C1 N3 O3	418	18	89
1224	610	C23 H28 C1 N3 O3 S	462	20	86
1225	611	C26 H36 C1 N3 O3	474	21	90
1226	612	C28 H32 C1 N3 O3	494	20	84
1227	613	C23 H27 C1 F3 N3 O3	486	19	81
1228	614	C24 H33 C1 N4 O2	445	23	定量的
1229	615	C25 H29 C1 N4 O2	453	4	20
1230	616	C32 H35 C1 N4 O2	543	11	40
1231	617	C25 H27 C1 F3 N3 O2	482	6.7	37
. 1232	620	C25 H31 Br Cl N3 O2	520	15	49
1233	621	C25 H31 C12 N3 O2	476	18	64
1234	622	C27 H37 C1 N4 O2	485	14	50
1235	623	C26 H34 C1 N3 O3	472	19	69
1236	624	C25 H31 C1 N4 O4	487	21	73
1237	625	C25 H33 C1 N4 O2	457	19	69
1238	626	C27 H30 C1 F6 N3 O2	578	8	25
1239	627	C27 H36 C1 N3 O3	486	16	55
1240	628	C27 H34 C1 N3 O4	500	24	80
1241	629	C26 H30 C1 F4 N3 O2	528	18	56
1242	630	C26 H31 C1 F3 N3 O3	526	21	68
1243	631	C26 H30 C12 F3 N3 O2	544	15	48
1244	.632	C26 H30 C1 F4 N3 O2	528	13	41
1245	633	C26 H30 C1 F4 N3 O2	528	20	63
1246	634	C26 H30 C1 F4 N3 O2	528	19	62
1247	635	C28 H38 C1 N3 O3	500	11	36
1248	636	C26 H34 C1 N3 O2	456	21	89
1249	637	C26 H31 C1 F3 N3 O2	510	20	95
					

	- 200				
1250	638	C26 H31 C1 N4 O2	467	15	54
1251	639	C27 H37 C1 N4 O2	485	19	66
1252	640	C26 H34 C1 N3 O3	472	16	56
1253	641	C27 H34 C1 N3 O4	500	18	59
1254	642	C32 H36 C1 N3 O3	546	24	73
1255	643	C26 H31 C1 F3 N3 O2	510	16	54
1256	644	C29 H40 C1 N3 O2	498	18	61
1257	645	C25 H33 C1 N4 O2	457	22	78
1258	646	C26 H34 Cl N3 O3	472	13	47
1259	647	C27 H34 C1 N3 O3	500	13	46
1260	648	C28 H38 C1 N3 O2	484	17	60
1261	649	C28 H38 C1 N3 O3	500	12.5	42
1262	650	C32 H36 C1 N3 O3	546	1*	2 .
1263	651	C28 H35 C1 N4 O2	495	4*	12
1264	652	C25 H31 C1 N4 O4	487	5*	14
1265	653	C30 H42 C1 N3 O3	528	1*	3
1266	654	C27 H34 C1 N3 O3	484	7*	21
1267	655	C26 H32 C1 F3 N4 O2	525	6*	16
1268	656	C23 H30 C1 N3 O3	. 432	6*	18
1269	657	C23 H30 C1 N3 O2 S	448	4*	13
1270	658	C27 H33 C1 N4 O2	48	1*	4
1271	659	C23 H29 C1 N4 O4 S	493	4*	10
1272	660	C34 H39 Cl N4 O2	571	3*	7
1273	661	C24 H32 C1 N3 O3 S	478	3*	7
1274	662	C25 H34 C1 N3 O3	460	2*	6
1275	663	C24 H32 C1 N3 O3	446	2*	5
1276	664	C24 H31 C1 N4 O5	491	2*	5
1277	665	C25 H32 C1 N3 O3 S	490	1*	3
1278	666	C26 H37 C1 N4 O2	473	3*	7
1279	667	C30 H36 C1 N3 O3	522	3*	7
1280	668	C25 H31 C1 F3 N3 O3	514	2*	6
1281	669	C24 H33 C1 N4 O2	445	15*	45
1282	670	C23 H29 Br Cl N3 O3	510	3*	7
1283	671	C23 H29 C1 N4 O5	477	2*	5
1284	672	C23 H31 C1 N4 O2	431	2*	7
1285	673	C23 H30 C1 N3 O2 S	448	2*	6
1286	674	C24 H32 C1 N3 O2 S	462	3*	9
1287	675	C24 H32 C1 N3 O2 S	462	1*	4
1288	676	C27 H33 C1 N4 O2	482	2*	6
					

1289	677	C28 H35 C1 N4 O2	T		
1290			495	2*	6
1291		C24 H32 C1 N3 O3	446	3*	9
1291	679	C27 H32 C1 N3 O2 S	498	1*	3
	680	C23 H29 Br C1 N3 O2 S	526	2*	6
1293	681	C25 H34 C1 N3 O3	460	. 2*	5
1294	682	C27 H38 C1 N3 O3	488	2*	4
1295	683	C24 H32 C1 N3 O2 S2	494	1*	4
1296	684	C26 H36 C1 N3 O4 S2	554	2*	5
1297	685	C24 H32 C1 N3 O4 S2	526	3*	7
1298	687	C25 H30 C1 N3 O2	440	24	定量的
1299	688	C27 H28 C1 F6 N3 O2	576	28	98
1300	689	C26 H29 C1 N4 O2	465	23	99
1301	690	C25 H29 Br C1 N3 O2	518	26	99
1302	691	C27 H35 Cl N4 O2	483	24	97
1303	692	C26 H32 C1 N3 O3	470	24	定量的
1304	693	C27 H28 C1 F6 N3 O2	576	16	55
1305	694	C27 H34 C1 N3 O3	484	25	定量的
1306	695	C27 H32 Cl N3 O4	498	12	47
1307	696	C26 H29 C1 F3 N3 O3	524	25	95
1308	697	C26 H29 Cl N4 O2	465	15	64
1309	698	C27 H35 C1 N4 O2	483	24	定量的
1310	699	C26 H32 C1 N3 O3	470	26	. 定量的
1311	700	C27 H32 C1 N3 O4	498	15	62
1312	701	C27 H32 C1 N3 O3	482	11	44
1313	702	C26 H29 C1 F3 N3 O2	508	23	94
1314	703	C28 H36 C1 N3 O2	482	26	定量的
1315	704	C25 H29 Cl N4 O4	485	11	43
1316	705	C24 H30 Cl N3 O2 S	460	25	定量的
1317	706	C24 H30 C1 N3 O2 S	460	25	定量的
1318	707	C26 H29 C1 F3 N3 O2	508	15	, 55
1319	708	C23 H27 Br Cl N3 O2 S	526	25	92
1320	709	C24 H30 C1 N3 O2 S2	492	26	定量的
1321	710	C23 H27 Br Cl N3 O2 S	526	25	94
1322	711	C25 H32 C1 N3 O3	458	26	定量的
1323	712	C27 H30 C1 N3 O2 S	496	26	定量的
1324	713	C24 H30 C1 N3 O3	444	26	定量的
1325	714	C28 H33 C1 N4 O2	493	12	50
1326	715	C23 H28 C1 N3 O2 S	446	24	定量的
1327	716	C27 H31 C1 N4 O2	479	32	定量的
		·			/C 351 J

1328			I	T		
1330 719 C23 H28 C1 N3 O3 430 24 定意的 1331 720 C23 H27 Br C1 N3 O3 510 24 95 1332 721 C24 H31 C1 N4 O2 443 22 98 1333 722 C26 H32 C1 N3 O3 470 9 37 1334 723 C25 H31 C1 N4 O2 455 10 44 44 1335 724 C29 H38 C1 N3 O2 496 28 定量的 28 定量的 1336 725 C32 H34 C1 N3 O3 544 26 95 1337 726 C27 H33 C1 N4 O3 497 3 11 1338 727 C25 H29 C12 N3 O2 474 25 定量的 1339 728 C25 H31 C1 N4 O4 485 26 定量的 28 定量的 1340 729 C25 H29 C12 N3 O2 474 21 90 1341 730 C25 H29 C12 N3 O2 474 21 90 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 28 28 1347 736 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H28 C1 F4 N3 O2 526 23 87 1349 738 C26 H28 C1 F4 N3 O2 526 23 87 1349 738 C25 H32 C1 N3 O3 458 23 84 150 739 C27 H31 C1 N4 O2 479 19 66 66 1351 740 C24 H31 C1 N4 O2 479 19 66 66 1351 740 C24 H31 C1 N4 O2 479 19 66 66 1351 740 C24 H31 C1 N4 O3 486 23 82 1355 744 C26 H28 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 436 23 80 1357 746 C26 H33 C1 N3 O3 436 23 82 1354 745 C25 H29 C1 F3 N3 O3 512 23 74 1355 746 C26 H33 C1 N3 O3 512 23 74 1355 746 C26 H33 C1 N3 O3 546 23 80 1357 746 C26 H33 C1 N3 O3 566 7 20 1360 751 C24 H30 C1 N3 O3 566 7 20 1360 753 C24 H30 C1 N3 O3 566 7 20 1360 755 C24 H30 C1 N3 O3 566 7 20 1360 755 C24 H30 C1 N3 O3 566 7 20 1364	1328	717	C23 H27 C1 N4 O5	475	23	95
1331 720 C23 H27 Br C1 N3 O3 510 24 95 1332 721 C24 H31 C1 N4 O2 443 22 98 1333 722 C26 H32 C1 N3 O3 470 9 37 1334 723 C25 H31 C1 N4 O2 455 10 44 1335 724 C29 H38 C1 N3 O2 496 28 定量的 1336 725 C32 H34 C1 N3 O3 544 26 95 1337 726 C27 H33 C1 N4 O3 497 3 11 1338 727 C25 H29 C12 N3 O2 474 25 25 25 1339 728 C25 H31 C1 N4 O4 485 26 26 26 1340 729 C25 H29 C12 N3 O2 474 21 90 1341 730 C25 H29 C12 N3 O2 474 21 90 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 25 1346 735 C26 H28 C1 F4 N3 O2 526 25 23 87 1347 736 C26 H28 C1 F4 N3 O2 526 23 87 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O2 479 19 66 1355 741 C23 H27 C1 N4 O4 8 491 26 88 1355 741 C23 H27 C1 N4 O4 8 491 26 88 1357 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N3 O3 446 22 82 1360 751 C24 H30 C1 N3 O3 566 7 20 1362 753 C24 H30 C1 N3 O3 566 7 20 1363 754 C23 H28 C1 N3 O3 566 7 20 1364 755 C24 H30 C1 N3 O3 464 8 29 1365 756 C23 H27 C1 N4 O5 475 5 18						定量的
1332 721 C24 H31 C1 N4 O2 443 22 98 1333 722 C26 H32 C1 N3 O3 470 9 37 1334 723 C25 H31 C1 N4 O2 455 10 44 1335 724 C29 H38 C1 N3 O2 496 28 定量的 1336 725 C32 H34 C1 N3 O3 544 26 95 1337 726 C27 H33 C1 N4 O3 497 3 11 1338 727 C25 H29 C12 N3 O2 474 25 定量的 1339 728 C25 H31 C1 N4 O2 455 21 92 1340 729 C25 H29 C1 N3 O2 474 25 定量的 1341 730 C25 H29 C12 N3 O2 474 21 92 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 25 94 1347 736 C26 H30 C1 F3 N4 O2 523 24 78 1348 737 C26 H28 C1 F4 N3 O2 526 25 94 1349 738 C25 H32 C1 N3 O3 458 23 84 1349 738 C25 H32 C1 N3 O3 458 23 84 1349 738 C25 H32 C1 N3 O3 458 23 84 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 486 23 80 1355 744 C26 H32 C1 N3 O3 486 23 80 1355 744 C26 H32 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H28 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1365 756 C23 H27 C1 N4 O5 475 5 5 18					24	定量的
1333 722 C26 H32 C1 N3 O3 470 9 37 1334 723 C25 H31 C1 N4 O2 455 10 44 1335 724 C29 H38 C1 N3 O2 496 28 定量的 1336 725 C32 H34 C1 N3 O3 544 26 95 1337 726 C27 H33 C1 N4 O3 497 3 11 1338 727 C25 H29 C12 N3 O2 474 25 定量的 1339 728 C25 H31 C1 N4 O2 455 21 92 1340 729 C25 H29 C12 N3 O2 474 21 90 1341 730 C25 H29 C12 N3 O2 474 21 90 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 488 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 25 94 1347 736 C26 H28 C1 F4 N3 O2 526 23 87 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 8 491 26 88 1353 742 C24 H30 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 746 C26 H38 C1 N3 O3 430 21 81 1355 746 C26 H38 C1 N3 O3 430 21 81 1355 746 C26 H38 C1 N3 O3 430 21 81 1355 746 C26 H32 C1 N3 O3 430 21 81 1356 745 C27 H36 C1 N3 O3 444 3 11 1359 748 C23 H28 C1 N3 O3 566 7 20 1360 751 C24 H30 C1 N3 O3 566 7 20 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1364 755 C24 H30 C1 N3 O3 446 8 29 1365 756 C23 H27 C1 N4 O5 475 5 18	1331		C23 H27 Br Cl N3 O3	510	24	95
1334	1332	721	C24 H31 C1 N4 O2	443	22	98
1335 724 C29 H38 C1 N3 O2 496 28 定量的	1333	722	C26 H32 C1 N3 O3	470	9	37
1336 725 C32 H34 C1 N3 O3 S44 26 95 1337 726 C27 H33 C1 N4 O3 497 3 11 1338 727 C25 H29 C12 N3 O2 474 25 定量的 1339 728 C25 H31 C1 N4 O2 455 21 92 1340 729 C25 H29 C1 N3 O2 474 21 90 1341 730 C25 H29 C12 N3 O2 474 21 90 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 25 94 1347 736 C26 H30 C1 F3 N4 O2 526 23 87 1347 736 C26 H30 C1 F3 N4 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 436 23 80 1356 745 C27 H36 C1 N3 O3 436 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 454 25 91 1356 745 C27 H36 C1 N3 O3 446 22 82 1360 751 C24 H30 C1 N3 O3 446 22 82 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1364 755 C24 H30 C1 N3 O3 464 8 29 1365 756 C23 H27 C1 N4 O5 475 5 18 1365 756 C24 H30 C1 N3 O3 464 8 29 1365 756 C24 H30 C1 N3 O3 464 8 29 1365 756 C24 H30 C1 N3 O3 464 8 29 1365 756 C23 H27 C1 N4 O5 475 5 18 1365 756 C23 H27 C1 N4 O5 475 5 18	1334	723	C25 H31 C1 N4 O2	455	10	44
1337 726 C27 H33 C1 N4 O3 497 3 11 1338 727 C25 H29 C12 N3 O2 474 25 定量的 1339 728 C25 H31 C1 N4 O2 455 21 92 1340 729 C25 H29 C1 N4 O4 485 26 定量的 1341 730 C25 H29 C12 N3 O2 474 21 90 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 25 94 1347 736 C26 H28 C1 F4 N3 O2 526 23 87 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 546 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1335	724	C29 H38 Cl N3 O2	496	28	定量的
1338 727 C25 H29 C12 N3 O2	1336	725	C32 H34 C1 N3 O3	544	26	95
1339 728 C25 H31 C1 N4 O2 455 21 92	1337	726	C27 H33 C1 N4 O3	497	3	11
1340 729 C25 H29 C1 N4 O4 485 26 定量的 1341 730 C25 H29 C12 N3 O2 474 21 90 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H28 C1 F4 N3 O2 526 21 66 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H28 C1 N3 O3 512 23 74 1359 748 C25 H28 C1 N3 O3 512 23 74 1359 748 C25 H28 C1 N3 O3 512 23 74 1359 748 C25 H28 C1 N3 O3 512 23 74 1359 748 C25 H28 C1 N3 O3 566 7 20 1362 753 C24 H30 C1 N3 O3 464 8 29 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 464 8 29 1364 755 C24 H30 C1 N3 O3 464 8 29 1365 756 C23 H27 C1 N4 O5 475 5 18 18 1865 756 C23 H27 C1 N4 O5 475 5 18 18 1865 756 C23 H27 C1 N4 O5 475 5 18 18 1865 756 C23 H27 C1 N4 O5 475 5 5 18 18 1865 756 C23 H27 C1 N4 O5 475 5 5 18 1865 756 C23 H27 C1 N4 O5 475 5 5 18 1865 1865 756 C23 H27 C1 N4 O5 475 5 5 18 1865 756 C23 H27 C1 N4 O5 475 5 5 18 1865 756 C23 H27 C1 N4 O5 475 5 5 18 1865 756 C23 H27 C1 N4 O5 475 755 5 18 1865 756 C23 H27 C1 N4 O5 475 755 756	1338	727	C25 H29 C12 N3 O2	474	25	定量的
1341 730 C25 H29 C12 N3 O2 474 21 90 1342 731 C27 H32 C1 N3 O3 482 10 41 1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H28 C1 F4 N3 O2 526 23 87 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O3 544 25 91 1360 751 C24 H30 C1 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C1 N4 O3 455 6 22 1364 755 C24 H30 C1 N3 O3 464 8 29 1365 756 C23 H27 C1 N4 O5 475 5 18	1339	728	C25 H31 C1 N4 O2	455	21	92
1342	1340	729	C25 H29 C1 N4 O4	485	26	定量的
1343 732 C26 H28 C1 F4 N3 O2 526 27 定量的 1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H30 C1 F3 N4 O2 523 24 78 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 446 <td>1341</td> <td>730</td> <td>C25 H29 C12 N3 O2</td> <td>474</td> <td>21</td> <td>90</td>	1341	730	C25 H29 C12 N3 O2	474	21	90
1344 733 C28 H36 C1 N3 O3 498 22 89 1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H28 C1 F4 N3 O2 523 24 78 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 486 23 80 1356 745 C27 H36 C1 N3 O3 486 23 80 <td>1342</td> <td>731</td> <td>C27 H32 C1 N3 O3</td> <td>482</td> <td>10</td> <td>41</td>	1342	731	C27 H32 C1 N3 O3	482	10	41
1345 734 C26 H28 C1 F4 N3 O2 526 25 94 1346 735 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H30 C1 F3 N4 O2 523 24 78 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 S 430 21 81 1355 744 C26 H32 C1 N3 O3 S 486 23 80 1357 746 C26 H35 C1 N4 O2 S 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 S 446 22	1343	732	C26 H28 C1 F4 N3 O2	526	27	定量的
1346 735 C26 H28 C1 F4 N3 O2 526 23 87 1347 736 C26 H30 C1 F3 N4 O2 523 24 78 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 430 21 81 1354 743 C23 H28 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 <td>1344</td> <td>733</td> <td>C28 H36 Cl N3 O3</td> <td>498</td> <td>22</td> <td>89</td>	1344	733	C28 H36 Cl N3 O3	498	22	89
1347 736 C26 H30 C1 F3 N4 O2 523 24 78 1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O2 454 25 91 1356 745 C27 H36 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 566 7 20	1345	734	C26 H28 C1 F4 N3 O2	526	25	94
1348 737 C26 H28 C1 F4 N3 O2 526 21 66 1349 738 C25 H32 C1 N3 O3 458 23 84 1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O2 454 25 91 1356 745 C27 H36 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 455 6 22 1362 753 C24 H27 C1 N4 O3 455 6 22	1346	735	C26 H28 Cl F4 N3 O2	526	23	87
1349 738 C25 H32 Cl N3 O3 458 23 84 1350 739 C27 H31 Cl N4 O2 479 19 66 1351 740 C24 H31 Cl N4 O5 489 23 77 1352 741 C23 H27 Cl N4 O4 S 491 26 88 1353 742 C24 H30 Cl N3 O3 S 476 23 82 1354 743 C23 H28 Cl N3 O3 S 430 21 81 1355 744 C26 H32 Cl N3 O2 S 454 25 91 1356 745 C27 H36 Cl N3 O3 S 486 23 80 1357 746 C26 H35 Cl N4 O2 S 471 27 96 1358 747 C25 H29 Cl F3 N3 O3 S 512 23 74 1359 748 C23 H28 Cl N3 O2 S 446 22 82 1360 751 C24 H30 Cl N3 O3 S 444 3 11 1361 752 C25 H26 Cl F6 N3 O3 S 566 7 20 1362 753 C24 H27 Cl N4 O3 S 455 6 <	1347	736	C26 H30 Cl F3 N4 O2	523	24	78
1350 739 C27 H31 C1 N4 O2 479 19 66 1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 A30 21 81 1355 744 C26 H32 C1 N3 O2 A54 25 91 1356 745 C27 H36 C1 N3 O3 A86 23 80 1357 746 C26 H35 C1 N4 O2 A71 27 96 1358 747 C25 H29 C1 F3 N3 O3 S12 23 74 1359 748 C23 H28 C1 N3 O2 SA46 22 82 1360 751 C24 H30 C1 N3 O3 A44 3 11 1361 752 C25 H26 C1 F6 N3 O3 S66 7 20 1362 753 C24 H27 C1 N4 O3 A55 6 22 1363 754 C23 H27 C1 N3 O3 A64 464 8 29 1364 755 C24 H30 C1 N3 O4 A60 6 22	1348	737	C26 H28 Cl F4 N3 O2	526	21	66
1351 740 C24 H31 C1 N4 O5 489 23 77 1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 S 430 21 81 1355 744 C26 H32 C1 N3 O2 S 454 25 91 1356 745 C27 H36 C1 N3 O3 S 486 S 23 80 1357 746 C26 H35 C1 N4 O2 S 471 S 27 96 1358 747 C25 H29 C1 F3 N3 O3 S 512 S 23 74 1359 748 C23 H28 C1 N3 O2 S 446 S 22 82 1360 751 C24 H30 C1 N3 O3 S 444 S 3 11 1361 752 C25 H26 C1 F6 N3 O3 S 566 T 20 1363 754 C23 H27 C1 N4 O3 S 464 S 29 1364 755 C24 H30 C1 N3 O4 S 460 S 22 1365 756 C23 H27 C1 N4 O5 S 475 S 5 18	1349	738	C25 H32 Cl N3 O3	458	23	84
1352 741 C23 H27 C1 N4 O4 S 491 26 88 1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 A30 21 81 1355 744 C26 H32 C1 N3 O2 A54 25 91 1356 745 C27 H36 C1 N3 O3 A86 23 80 1357 746 C26 H35 C1 N4 O2 A71 27 96 1358 747 C25 H29 C1 F3 N3 O3 S12 23 74 1359 748 C23 H28 C1 N3 O2 S A46 22 82 1360 751 C24 H30 C1 N3 O3 A44 3 11 1361 752 C25 H26 C1 F6 N3 O3 S66 7 20 1362 753 C24 H27 C1 N4 O3 A55 6 22 1363 754 C23 H27 C12 N3 O3 A64 6 22 1364 755 C24 H30 C1 N3 O4 A60 6 22 1365 756 C23 H27 C1 N4 O5 A75 5 18	1350	739	C27 H31 Cl N4 O2	479	19	66
1353 742 C24 H30 C1 N3 O3 S 476 23 82 1354 743 C23 H28 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O2 454 25 91 1356 745 C27 H36 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1351	740	C24 H31 Cl N4 O5	489	23	77
1354 743 C23 H28 C1 N3 O3 430 21 81 1355 744 C26 H32 C1 N3 O2 454 25 91 1356 745 C27 H36 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1352	741	C23 H27 Cl N4 O4 S	491	26	88
1355 744 C26 H32 C1 N3 O2 454 25 91 1356 745 C27 H36 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1353	742	C24 H30 Cl N3 O3 S	476	23	82
1356 745 C27 H36 C1 N3 O3 486 23 80 1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1354	743	C23 H28 C1 N3 O3	430	21	81
1357 746 C26 H35 C1 N4 O2 471 27 96 1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1355	744	C26 H32 C1 N3 O2	454	25	91
1358 747 C25 H29 C1 F3 N3 O3 512 23 74 1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1356	745	C27 H36 C1 N3 O3	486	23	80
1359 748 C23 H28 C1 N3 O2 S 446 22 82 1360 751 C24 H30 C1 N3 O3 444 3 11 1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1357	746	C26 H35 Cl N4 O2	471	27	96
1360 751 C24 H30 Cl N3 O3 444 3 11 1361 752 C25 H26 Cl F6 N3 O3 566 7 20 1362 753 C24 H27 Cl N4 O3 455 6 22 1363 754 C23 H27 Cl2 N3 O3 464 8 29 1364 755 C24 H30 Cl N3 O4 460 6 22 1365 756 C23 H27 Cl N4 O5 475 5 18	1358	747	C25 H29 C1 F3 N3 O3	512	23	74
1361 752 C25 H26 C1 F6 N3 O3 566 7 20 1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1359	748	C23 H28 C1 N3 O2 S	446	22	82
1362 753 C24 H27 C1 N4 O3 455 6 22 1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1360	751	C24 H30 C1 N3 O3	444	3	11
1363 754 C23 H27 C12 N3 O3 464 8 29 1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1361	752	C25 H26 C1 F6 N3 O3	566	7	20
1364 755 C24 H30 C1 N3 O4 460 6 22 1365 756 C23 H27 C1 N4 O5 475 5 18	1362	753	C24 H27 C1 N4 O3	455	6	22
1365 756 C23 H27 C1 N4 O5 475 5 18	1363	754	C23 H27 C12 N3 O3	464	8	29
	1364	755	C24 H30 C1 N3 O4	460	6	22
1366 757 C25 H32 C1 N3 O4 474 5 18	1365	756	C23 H27 C1 N4 O5	475	5	18
	1366	757	C25 H32 C1 N3 O4	474	5	18

WO 00/69432

3 1 2

1367	758	C25 H30 C1 N3 O5	1 400		
1368		C24 H27 C1 F3 N3 O4	488	5	18
1369		C24 H26 C1 F4 N3 O3	514	6	20
1370		C24 H26 C1 F4 N3 O3	516	6	18
1371		C24 H27 C1 F3 N3 O3	516	3	10
1372	763	C23 H28 C1 N3 O3	498	2	95
1373		C24 H30 C1 N3 O2	430	4	95
1374	765	C25 H32 C1 N3 O2	428	9	42
1375	. 766		442	10	47
1376	767	C25 H29 C1 F3 N3 O2	496	10	42
1377	767		506	8	32
1378	769	C24 H29 Br C1 N3 O2	506	9	35
1379		C25 H29 C1 F3 N3 O3	512	6	22
1379	770	C25 H28 C1 F4 N3 O2	514	3	10
	771	C25 H28 C1 F4 N3 O2	514	10	37
1381	772	C25 H29 C1 F3 N3 O2	496	8	33
1382	773	C26 H36 C1 N3 O3	474	10	41
1383	774	C23 H30 C1 N3 O2 S2	480	12	50
1384	775	C27 H38 C1 N3 O3	488	14	57
1385	776	C29 H34 C1 N3 O3	508	12	49
1386	777	C24 H29 C1 F3 N3 O3	500	22	87
1387	778	C24 H28 C12 N4 O4	507	6.	22
1388	779	C24 H29 C12 N3 O2	462	10	46
1389	780	C24 H29 C1 N4 O4	473	15	65
1390	781	C26 H31 C1 N4 O2	467	7*	20
1391	782	C25 H32 C1 N3 O3	458	8*	23
1392	783	C26 H34 C1 N3 O3	472	7*	19
1393	784	C26 H31 C1 F3 N3 O2	510	7*	17
1394	785	C26 H34 C1 N3 O4	488	6*	17
1395	786	C24 H28 C1 N3 O2	426	22	9
1396	787	C25 H30 C1 N3 O2	440	21	94
1397	788	C25 H27 C1 F3 N3 O2	494	4*	14
1398	789	C25 H30 C1 N3 O4 S	504	9	35
1399	790	C24 H27 C12 N3 O2	460	5*	16
1400	791	C24 H27 C1 N4 O4	471	3*	10
1401	792	C25 H27 C1 F3 N3 O3	510	5*	16
1402	793	C25 H26 C1 F4 N3 O2	511	5*	16
1403	794	C25 H26 C1 F4 N3 O2	512	5*	16
1404	795	C25 H27 C1 F3 N3 O2	494	6*	21
1405	796	C23 H28 C1 N3 O2 S2	478	4*	14
					

1407 798 C27 H32 C1 N3 O3 506 3 13 1408 799 C24 H27 C1 F3 N3 O3 506 3 13 1408 799 C24 H27 C1 F3 N3 O3 498 3* 11 1409 800 C24 H26 C12 N4 O4 505 5* 15 1410 801 C26 H29 C1 N4 O2 465 12 41 1411 802 C25 H30 C1 N3 O3 456 5* 15 1412 803 C26 H32 C1 N3 O3 470 6* 16 1413 804 C26 H29 C1 F3 N3 O2 508 8* 20 1414 805 C26 H32 C1 N3 O3 470 6* 16 1415 806 C24 H27 BL C1 N3 O2 506 5* 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O3 539 20.5 70 1424 815 C26 H30 C1 F3 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 557 25.8 85 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 C1 F3 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F4 N4 O3 557 26.8 88 1429 820 C25 H30 C1 F3 N4 O3 557 26.8 88 1420 811 C25 H30 C1 F3 N4 O3 557 26.8 88 1421 812 C24 H28 C1 F4 N4 O3 557 26.8 88 1422 813 C26 H30 C1 F3 N4 O3 557 26.8 88 1423 814 C26 H29 C1 F4 N4 O3 557 26.8 88 1424 815 C26 H29 C1 F4 N4 O3 557 26.8 88 1425 816 C2 F4 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 C1 F3 N4 O4 555 27.1 90 1428 819 C27 H29 C1 F4 N4 O3 577 26.8 88 1427 818 C25 H30 C1 F3 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F4 N4 O3 557 26.8 88 1429 820 C25 H30 C1 N3 O3 539 25.3 86 1431 822 C23 H30 C1 N3 O3 52 496 41 93 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 503 37 83 1435 826 C24 H29 C1 F3 N3 O4 524 28 61 1437 828 C25 H29 C1 F3 N3 O4 524 28 61 1438 829 C25 H29 C1 F3 N3 O4 524 28 61 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 BC C1 N3 O3 530 35 74 1440 831 C24 H29 BC C1 N3 O3 523 45 98 1441 832 C24 H29 C1 F3 N3 O3 522 496 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 BC C1 N3 O3 523 45 98 1441 832 C24 H29 C1 F3 N3 O3 522 496 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 BC C1 N3 O3 523 45 98 1444 833 C24 H29 C1 F3 N3 O3 523 45 98	1 1400	797	1027 H26 61 H2 62	1 406	7.1	-
1408 799 C24 H27 C1 F3 N3 O3 498 3* 11 1409 800 C24 H26 C12 N4 O4 505 5* 15 1410 801 C26 H29 C1 N4 O2 465 12 41 1411 802 C25 H30 C1 N3 O3 456 5* 15 1412 803 C26 H32 C1 N3 O3 470 6* 16 1413 804 C26 H29 C1 F3 N3 O2 508 8* 20 1414 805 C26 H32 C1 N3 O3 470 6* 16 1415 806 C26 H32 C1 N3 O4 486 6* 15 1415 806 C24 H27 Br C1 N3 O2 506 5* 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 82 523 25.0 88 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O3 539 20.5 70 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H29 C1 F4 N4 O3 557 25.8 85 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F6 N4 O3 557 26.8 88 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H30 C1 N3 O3 520 45 97 1439 830 C25 H29 C1 F4 N3 O3 530 45 97 1439 830 C25 H29 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C1 N3 O3 512 42 93 1443 834 C25 H29 C1 F3 N3 O4 548 38 87 1444 833 C24 H29 C1 N3 O3 512 42 93	1406		C27 H36 C1 N3 O3	486	7*	29
1409 800 C24 H26 C12 N4 O4 505 5* 15 1410 801 C26 H29 C1 N4 O2 465 12 41 1411 802 C25 H30 C1 N3 O3 456 5* 15 1412 803 C26 H32 C1 N3 O3 470 6* 16 1413 804 C26 H29 C1 F3 N3 O2 508 6* 20 1414 805 C26 H32 C1 N3 O4 486 6* 15 1415 806 C24 H27 Br C1 N3 O2 506 5* 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 定量的 定量的 定量的 定量的 定量的 定量的 1418 809 C25 H33 C1 N4 O3 485 29.9 定量的 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 S2 523 25.0 88 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 25.8 85 1426 817 C26 H29 C1 F4 N4 O3 557 25.8 88 1426 819 C27 H29 C1 F6 N4 O3 557 26.8 88 1426 819 C27 H29 C1 F6 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F6 N4 O3 557 26.8 88 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1434 825 C29 H34 C1 N3 O4 524 28 61 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 524 28 61 1436 827 C26 H31 C1 N4 O3 530 357 433 824 C27 H38 C1 N4 O3 530 357 434 343 264 264 H31 C1 N4 O3 483 433 264 61 644						L
1410 801 C26 H29 C1 N4 O2 465 12 41 1411 802 C25 H30 C1 N3 O3 456 5* 15 1412 803 C26 H32 C1 N3 O3 470 6* 16 1413 804 C26 H29 C1 F3 N3 O2 508 8* 20 1414 805 C26 H32 C1 N3 O4 486 6* 15 1415 806 C24 H27 Br C1 N3 O2 506 5* 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 S2 S23 25.0 88 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O3 539 20.5 70 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 25.8 88 1427 818 C25 H30 Br C1 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F6 N4 O3 557 26.8 88 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 528 40 86 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H30 C1 F3 N3 O4 528 40 86 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 BF C1 N3 O3 523 45 98 1441 832 C24 H29 C1 N3 O3 523 45 98 1441 832 C24 H29 C1 F3 N3 O3 512 42 93			<u></u>			l
1411 802 C25 H30 C1 N3 O3 456 5・ 15 1412 803 C26 H32 C1 N3 O3 470 6・ 16 1413 804 C26 H29 C1 F3 N3 O2 508 8・ 20 1414 805 C26 H32 C1 N3 O4 486 6・ 15 1415 806 C24 H27 Br C1 N3 O2 506 5・ 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 539 20.5 70 1421 812 C24 H31 C1 N4 O3 539 20.5 70 1422 813 C26 H30 C1 F3 N4 O4 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 557 25.8 88 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F6 N4 O3 557 25.8 86 1431 822 C23 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 52 496 41 93 1432 823 C26 H31 C1 N4 O3 524 28 61 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1437 828 C25 H29 C1 F3 N3 O4 516 40 87 1438 829 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 530 35 74 1441 832 C24 H29 Br C1 N3 O3 530 35 74 1444 83 834 C25 H29 C1 F3 N3 O3 512 42 93					5*	
1412 803 C26 H32 C1 N3 O3 470 6* 16 1413 804 C26 H29 C1 F3 N3 O2 508 6* 20 1414 805 C26 H32 C1 N3 O4 486 6* 15 1415 806 C24 H27 Br C1 N3 O2 506 5* 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 539 20.5 70 1422 813 C26 H30 C1 F3 N4 O3 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 25.8 88 1427 818 C25 H30 Br C1 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 539 25.3 40 86 1431 822 C23 H30 C1 N3 O3 52 496 41 93 1433 824 C27 H38 C1 N3 O4 554 28 61 1434 825 C29 H34 C1 N3 O4 554 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 530 35 74 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C1 F3 N3 O4 528 40 86 1441 832 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 Br C1 N3 O3 523 45 98 1443 834 C25 H29 C1 F3 N3 O3 512 42 93						41
1413 804 C26 H29 C1 F3 N3 O2 508 8+ 20 1414 805 C26 H32 C1 N3 O4 486 6+ 15 1415 806 C24 H27 Br C1 N3 O2 506 5+ 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 S2 523 25.0 88 1422 813 C26 H30 C1 F3 N4 O4 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 557 26.8 88 1428 819 C27 H29 C1 F6 N4 O3 551 27.1 90 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 2496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 C28 1433 824 C27 H38 C1 N3 O4 554 28 61 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 530 35 74 1439 830 C25 H38 C1 F3 N3 O4 528 40 86 1431 822 C25 H38 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C1 F3 N3 O3 523 45 98 1441 832 C24 H29 C1 F3 N3 O3 523 45 98 1443 834 C25 H29 C1 F3 N3 O3 523 45 98 1441 832 C24 H29 C1 F3 N3 O3 512 42 93	1411	802		456	5*	15
1414 805 C26 H32 C1 N3 O4 486 6* 15 1415 806 C24 H27 Br C1 N3 O2 506 5* 14 1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 S2 523 25.0 88 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O3 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 25.8 85 1426 817 C26 H29 C1 F4 N4 O3 557 </td <td>1412</td> <td>803</td> <td></td> <td>470</td> <td>6*</td> <td>16</td>	1412	803		470	6*	16
1415 806 C24 H27 Br Cl N3 O2 506 5* 14 1416 807 C27 H32 Cl N5 O3 510 29.7 定量的 1417 808 C26 H33 Cl N4 O3 485 29.9 定量的 1418 809 C25 H30 Cl2 N4 O3 505 30.2 定量的 1419 810 C30 H35 Cl N4 O4 551 31.0 定量的 1420 811 C25 H29 Cl2 N5 O5 550 30.4 定量的 1421 812 C24 H31 Cl N4 O3 S2 523 25.0 88 1422 813 C26 H30 Cl F3 N4 O3 539 20.5 70 1423 814 C26 H30 Cl F3 N4 O3 539 20.5 70 1424 815 C26 H29 Cl F4 N4 O3 557 25.8 85 1425 816 C26 H30 Cl F3 N4 O3 539 25.3 86 1427 818 C25 H30 Br Cl N4 O3 557 26.8 88 1427 818 C25 H30 Br Cl N4 O3 607 13.9 42 1429 820 C25 H30 Cl N5 O5 516	1413	804	C26 H29 C1 F3 N3 O2	508	8*	20
1416 807 C27 H32 C1 N5 O3 510 29.7 定量的 1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 S2 523 25.0 88 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O3 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 25.8 85 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 551 27.1 90 1428 819 C27 H29 C1 F6 N4 O3 <t< td=""><td>1414</td><td>805</td><td>C26 H32 C1 N3 O4</td><td>486</td><td>6*</td><td>15</td></t<>	1414	805	C26 H32 C1 N3 O4	486	6*	15
1417 808 C26 H33 C1 N4 O3 485 29.9 定量的 1418 809 C25 H30 C12 N4 O3 505 30.2 定量的 1419 810 C30 H35 C1 N4 O4 551 31.0 定量的 1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 S2 523 25.0 88 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 70 70 70 70 70 70 7	1415	806	C24 H27 Br Cl N3 O2	506	5*	14
1418 809 C25 H30 C12 N4 O3 505 30.2 定量的	1416	807	C27 H32 C1 N5 O3	510	29.7	定量的
1419	1417	808	C26 H33 C1 N4 O3	485	29.9	定量的
1420 811 C25 H29 C12 N5 O5 550 30.4 定量的 1421 812 C24 H31 C1 N4 O3 S2 523 25.0 88 1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O4 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H29 C1 F4 N4 O3 557 25.8 88 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 551 27.1 90 1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C1 N3 O3 478 38 91 1442 833 C24 H29 C1 N3 O3 512 42 93	1418	809	C25 H30 C12 N4 O3	505	30.2	定量的
1421	1419	810	C30 H35 Cl N4 O4	551	31.0	定量的
1422 813 C26 H30 C1 F3 N4 O3 539 20.5 70 1423 814 C26 H30 C1 F3 N4 O4 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 551 27.1 90 1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O3 483 31 72 1435 826 C24 H29 C1 F3 N3 O4 516	1420	811	C25 H29 C12 N5 O5	550	30.4	定量的
1423 814 C26 H30 C1 F3 N4 O4 555 22.7 75 1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 551 27.1 90 1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1437 828 C25 H29 C1 F3 N3 O3 530	1421	812	C24 H31 Cl N4 O3 S2	523	25.0	88
1424 815 C26 H29 C1 F4 N4 O3 557 25.8 85 1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 551 27.1 90 1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O3 530 3	1422	813	C26 H30 C1 F3 N4 O3	539	20.5	70
1425 816 C26 H30 C1 F3 N4 O3 539 25.3 86 1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 551 27.1 90 1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 35<	1423	814	C26 H30 C1 F3 N4 O4	555	22.7	75
1426 817 C26 H29 C1 F4 N4 O3 557 26.8 88 1427 818 C25 H30 Br C1 N4 O3 551 27.1 90 1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1440 831 C24 H29 Br C1 N3 O3 530 35 <td>1424</td> <td>815</td> <td>C26 H29 Cl F4 N4 O3</td> <td>557</td> <td>25.8</td> <td>85</td>	1424	815	C26 H29 Cl F4 N4 O3	557	25.8	85
1427 818 C25 H30 Br Cl N4 O3 551 27.1 90 1428 819 C27 H29 Cl F6 N4 O3 607 13.9 42 1429 820 C25 H30 Cl N5 O5 516 14.1 51 1430 821 C24 H28 Cl2 N4 O5 523 40 86 1431 822 C23 H30 Cl N3 O3 S2 496 41 93 1432 823 C26 H31 Cl N4 O3 483 43 定量的 1433 824 C27 H38 Cl N3 O4 503 37 83 1434 825 C29 H34 Cl N3 O4 524 28 61 1435 826 C24 H29 Cl F3 N3 O4 516 40 87 1436 827 C26 H31 Cl N4 O3 483 31 72 1437 828 C25 H29 Cl F3 N3 O4 528 40 86 1438 829 C25 H28 Cl F4 N3 O3 530 35 74 1440 831 C24 H29 Br Cl N3 O3 478 38 91 1441 832 C24 H29 Cl N4 O5 488 38	1425	816	C26 H30 C1 F3 N4 O3	539	25.3	86
1428 819 C27 H29 C1 F6 N4 O3 607 13.9 42 1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38	1426	817	C26 H29 C1 F4 N4 O3	557	26.8	88
1429 820 C25 H30 C1 N5 O5 516 14.1 51 1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42	1427	818	C25 H30 Br Cl N4 O3	551	27.1	90
1430 821 C24 H28 C12 N4 O5 523 40 86 1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 <	1428	819	C27 H29 C1 F6 N4 O3	607	13.9	42
1431 822 C23 H30 C1 N3 O3 S2 496 41 93 1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1429	820	C25 H30 C1 N5 O5	516	14.1	51
1432 823 C26 H31 C1 N4 O3 483 43 定量的 1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1430	821	C24 H28 C12 N4 O5	523	40	86
1433 824 C27 H38 C1 N3 O4 503 37 83 1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1431	822	C23 H30 C1 N3 O3 S2	496	41	93
1434 825 C29 H34 C1 N3 O4 524 28 61 1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1432	823	C26 H31 C1 N4 O3	483	43	定量的
1435 826 C24 H29 C1 F3 N3 O4 516 40 87 1436 827 C26 H31 C1 N4 O3 483 31 72 1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1433	824	C27 H38 C1 N3 O4	503	37	83
1436 827 C26 H31 Cl N4 O3 483 31 72 1437 828 C25 H29 Cl F3 N3 O4 528 40 86 1438 829 C25 H28 Cl F4 N3 O3 530 45 97 1439 830 C25 H28 Cl F4 N3 O3 530 35 74 1440 831 C24 H29 Br Cl N3 O3 523 45 98 1441 832 C24 H29 Cl2 N3 O3 478 38 91 1442 833 C24 H29 Cl N4 O5 488 38 87 1443 834 C25 H29 Cl F3 N3 O3 512 42 93	1434	825	C29 H34 C1 N3 O4	524	28	61
1437 828 C25 H29 C1 F3 N3 O4 528 40 86 1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1435	826	C24 H29 C1 F3 N3 O4	516	40	87
1438 829 C25 H28 C1 F4 N3 O3 530 45 97 1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1436	827	C26 H31 C1 N4 O3	483	31	72
1439 830 C25 H28 C1 F4 N3 O3 530 35 74 1440 831 C24 H29 Br C1 N3 O3 523 45 98 1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1437	828	C25 H29 C1 F3 N3 O4	528	40	86
1440 831 C24 H29 Br Cl N3 O3 523 45 98 1441 832 C24 H29 Cl2 N3 O3 478 38 91 1442 833 C24 H29 Cl N4 O5 488 38 87 1443 834 C25 H29 Cl F3 N3 O3 512 42 93	1438	829	C25 H28 C1 F4 N3 O3	530	45	97
1441 832 C24 H29 C12 N3 O3 478 38 91 1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1439	830		530	35	74
1442 833 C24 H29 C1 N4 O5 488 38 87 1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1440	831	C24 H29 Br Cl N3 O3	523	45	98
1443 834 C25 H29 C1 F3 N3 O3 512 42 93	1441	832	C24 H29 C12 N3 O3	478	38	91
	1442	833	C24 H29 C1 N4 O5	488	38	87
1444 835 C24 H30 C1 N3 O3 444 43 定量的	1443	834	C25 H29 C1 F3 N3 O3	512	42	93
	1444	835	C24 H30 C1 N3 O3	444	43	定量的

1445	836	C25 H32 C1 N3 O3	458	37	91
1446	837	C25 H29 C1 F3 N3 O3	512	41	91
1447	838	C26 H34 C1 N3 O4	488	34	78
1448	839	C27 H36 C1 N3 O6	534	37	71
1449	942	C27 H30 C1 F6 N3 O2	578	17	48
1450	997	C26 H34 C1 N3 O2	456	7.6*	23
1451	998	C27 H33 C1 F3 N3 O2	524	6	15
1452	999	C27 H36 C1 N3 O2	470	8	24
1453	1000	C27 H36 C1 N3 O3	486	9	. 24
1454	1001	C28 H38 C1 N3 O3	500	4	10
1455	1002	C27 H33 C1 F3 N3 O3	540	9	23
1456	1003	C28 H38 C1 N3 O2	484	7	21
1457	1004	C28 H38 C1 N3 O4	516	11	30
1458	1005	C29 H40 C1 N3 O5	547	9	23
1459	1006	C30 H42 C1 N3 O4	544	8	21
1460	1007	C32 H46 C1 N3 O5	589	7	17
1461	1008	C25 H31 Cl N4 O3	471	25	79
1462	1009	C26 H33 C1 N4 O4	501·	35	97
1463	1010	C27 H35 Cl N4 O4	515	35	9
1464	1011	C27 H35 C1 N4 O3	499	32	54
1465	1012	C27 H35 C1 N4 O5	531	27	77
1466.	1013	C28 H37 C1 N4 O6	561	14	37
1467	1014	C29 H39 C1 N4 O5	559	24	66
1468	1015	C31 H43 C1 N4 O6	603	25	65
1469	1018	C26 H34 C1 N3 O4	488	13.0*	39
1470	1019	C28 H38 C1 N3 O5	532	13.4*	37
1471	1020	C25 H32 Cl N3 O4	474	12.7*	40
1472	1021	C26 H28 C1 F6 N3 O4	596	13.8*	34
1473	1022	C25 H32 C1 N3 O4	474	14.2*	37
1474	1023	C25 H32 C1 N3 O2	442	11.5*	32
1475	1024	C26 H34 C1 N3 O5	504	12.0*	30
1476	1025	C27 H36 C1 N3 O4	502	14.7*	37
1477	1026	C29 H40 C1 N3 O5	546	13.5*	32
1478	1027	C26 H34 C1 N3 O4	488	11.9*	31
1479	1028	C27 H30 C1 F6 N3 O4	610	14.6*	31
1480	1029	C25 H32 C1 N3 O3	458	14.0*	38
1481	1030	C24 H27 C1 F3 N3 O3	498	14.0*	35
1482	1031	C24 H30 C1 N3 O3	444	10.4*	29
1483	1032	C25 H32 C1 N3 O4	474	14.9*	39
		·			

PCT/JP00/03203

1484	1033	C25 H32 C1 N3 O2	442	13.3*	37
1485	1034	C26 H34 C1 N3 O5	504	13.7*	34
1486	1035	C27 H36 C1 N3 O4	502	16.7*	42
1487	1036	C29 H40 C1 N3 O5	547	15.5*	36
1488	1037	C26 H34 C1 N3 O4	488	14.1*	36
1489	1038	C27 H30 C1 F6 N3 O4	610	17.5*	37
1490	1039	C25 H32 C1 N3 O3	458	15.1*	41
1491	1040	C24 H27 C1 F3 N3 O3	498	15.4*	39
1492	1041	C24 H30 C1 N3 O3	444	12.7*	35
1493	1042	C22 H26 Br Cl N4 O2	495	10.4*	25
1494	1043	C22 H26 C12 N4 O2	449	11.1*	29
1495	1044	C23 H29 C1 N4 O2	429	5.2*	14
1496	1045	C23 H29 C1 N4 O3	445	12.4*	33
1497	1046	C22 H25 C13 N4 O2	483	10.0*	25
1498	1047	C24 H31 C1 N4 O2	443	12.1*	32
1499	1048	C25 H33 C1 N4 O5	505	16.1*	39
1.500	1049	C23 H28 Br Cl N4 O2	507	12.0*	29
1501	1050	C28 H38 C1 N3 O4	516	39.2*	定量的
1502	1051	C28 H38 C1 N3 O2	484	34.0*	定量的
1503	1052	C29 H40 C1 N3 O5	546	14.5*	39
1504	1053	C30 H42 C1 N3 O4	544	11.8*	32
1505	1054	C32 H46 C1 N3 O5	588	12.2*	31
1506	1055	C29 H40 C1 N3 O4	530	44.5*	定量的
1507	1056	C30 H36 C1 F6 N3 O4	652	46.0*	定量的
1508	1057	C28 H38 C1 N3 O3	500	11.2*	32
1509	1058	C27 H36 C1 N3 O3	486	35.5*	定量的
1510	1059	C27 H33 C1 F3 N3 O3	540	41.4*	定量的
1511	1060	C29 H40 C1 N3 O4	530	13.6*	37
1512	1061	C30 H36 C1 F6 N3 O4	652	44.2*	定量的
1513	1062	C28 H38 C1 N3 O3	500	39.9*	定量的
1514	1063	C27 H36 C1 N3 O3	486	12.0*	35
1515	1064	C27 H33 C1 F3 N3 O3	540	37.8*	定量的
1516	1065	C28 H38 C1 N3 O4	516	12.3*	. 34
1517	. 1066	C28 H38 C1 N3 O2	484	30.7*	90
1518	1067	C29 H40 C1 N3 O5	546	13.8*	37
1519	1068	C30 H42 C1 N3 O4	544	13.1*	35
1520	1069	C32 H46 C1 N3 O5	589	14.1*	35
1521	1070	C29 H34 C1 N3 O3 S2	572	38.3	93
1522	1071	C32 H35 C1 N4 O3	559	39.6	98

1523	1072	Iggs ::45			
	L	C33 H42 Cl N3 O4	580	40.9	98
1524	1073	C35 H38 C1 N3 O4	600	40.5	94
1525	1074	C30 H33 C1 F3 N3 O4	592	38.7	91
1526	1075	C31 H33 C1 F3 N3 O4	604	38	87
1527	1076	C30 H33 C1 N4 O5	565	38.5	94
1528	1077	C31 H33 C1 F3 N3 O3	588	35.8	
1529	1078	C30 H34 C1 N3 O3	520		84
1530	1079			34.7	93
1531		C31 H36 C1 N3 O3	534	38.4	定量的
	1080	C32 H38 C1 N3 O4	564	39.3	97
1532	1081	C33 H40 C1 N3 O6	610	45.5	定量的
1533	1082	C28 H36 C1 N3 O3	498	4.1*	10
1534	1083	C28 H36 C1 N3 O3	498	6.4*	16
1535	1125	C30 H32 C12 N4 O5	599	3.4*	8
1536	1126	C30 H32 Br Cl N4 O5	644	3.4*	7
1537	1127	C32 H35 C1 N4 O3	559	1.6*	
1538	1128	C31 H32 C1 F4 N3 O3	606		4
1539	1129			4.3*	10
1540		C31 H32 C1 F4 N3 O3	606	5.9*	14
	1130	C30 H33 Br Cl N3 O3	599	5.7*	13
1541	1131	C30 H33 C12 N3 O3	554	6.4*	16
1542	1132	C31 H33 C1 F3 N3 O3	588	6.3*	15
1543	1167	C27 H34 C1 N3 O3	484	1.8*	4

^{*}トリフルオロ酢酸塩の収率。

[実施例1544]1-(4-クロロベンジル) -4-[[N-(3, 5-ビス
(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1213) の合成

3,5ービス(トリフルオロメチル)ベンゾイルクロリド(0.058mmol)のジクロロメタン(1mL)溶液を、1ー(4ークロロベンジル)ー4ー[(グリシルアミノ)メチル]ピペリジン(0.050mmol)、クロロホルム(0.2mL)、ピペリジノメチルポリスチレン(58mg)、ジクロロメタン(0.75mL)の混合物に加えた。この反応混合物を室温で2時間攪拌した後、メタノール(1.0mL)を加え、室温で30分攪拌した。反応混合物をVarianTMSCXカラムに負荷し、メタノール(16mL)で洗浄した。生成物を、2MNH3のメタノール(6mL)溶液を用いて溶出し、濃縮することにより、1ー(4ークロロベンジル)ー4ー[[Nー(3,5ービス(トリフルオロメチル)ベンゾイル

WO 00/69432 PCT/JP00/03203

3 1 7

) グリシル] アミノメチル] ピペリジン(化合物番号1213)(24.0 mg, 90%)を得た。純度をRPLC/MSにて求めた(100%)。ESI/MS m/e 536.2 (M^++H 、 $C_{24}H_{24}ClF_6N_3O_2$)

[実施例1545-1547]

5 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1544の方法に従って合成した。ESI/MSデータ、収量、および収率を表 2 8にまとめた。

表 28

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1545	1214	C23 H24 C1 F4 N3 O3	486.2	22.2	91
1546	1215	C22 H24 C13 N3 O2	467.9	20.9	89
1547	1216	C22 H24 Cl F2 N3 O2	436.0	19.3	89

10

[実施例1548] 4-[[N-(3-ブロモ-4-メチルベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル) ピペリジン (化合物番号1113) の合成

1-(4-クロロベンジル) -4-[(グリシルアミノ)メチル)ピペリジン(
0.050mmol)のクロロホルム(1.35mL)およびtertープタノール(0.15mL)の溶液に、3-ブロモー4-メチル安息香酸(0.060mmol)、ジイソプロプルカルボジイミド(0.060mmol)、およびHOBt(0.060mmol)を加えた。この反応混合物を室温で15時間攪拌した。混合物をVarian™ SCXカラムに負荷し、メタノール/クロロホルム=1:1 (12mL)およびメタノール(12mL)で洗浄した。生成物を、2M NH₃のメタノール(5mL)溶液を用いて溶出し、濃縮することにより、4-[[N-(3-ブロモー4-メチルベンゾイル)グリシル]アミノメチル]-1-(4-クロロベンジル)ピペリジン(化合物番号1113)を得た(16.1mg、65%)。純度をRPLC/MSにて求めた(95%)。ESI/MS m/e 494.

25 0 $(C_{23}H_{27}BrClN_3O_2)$

[実施例1549-1619]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1

WO 00/69432 PCT/JP00/03203

3 1 8

548の方法に従って合成した。必要であれば、分取TLCにより精製して目的物を得た。ESI/MSデータ、収量、および収率を表29にまとめた。

化合物番号1422は化合物番号1418の副生成物として得られた: 5.6 mg、収率25%; ESI/MS m/e 447.2 (C₂₂H₂₇CIN₄O₂S)

-

表 29

oto (for bot					
実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1549	1114	C ₂₂ H ₂₄ BrClFN ₃ O ₂	498.0	20.2	81
1550	1115	C ₂₂ H ₂₄ Cl ₂ FN ₃ O ₂	452.2	18.6	82
1551	1116	C ₂₃ H ₂₇ ClIN ₃ O ₂	539.1	21.9	81
1552	1117	C ₂₃ H ₂₇ ClN ₄ O ₄	459.2	18.7	81
1553	1187	C ₂₃ H ₂₇ BrClN ₃ O ₂	494.0	22.1	90
1554	1188	C24H27C1N4O3	455.2	17.2	76
1555	1189	C ₂₅ H ₂₉ C1N ₄ O ₃	469.2	21.1	90
1556	1190	C ₂₂ H ₂₆ C1FN ₄ O ₂	433.2	20.4	94
.1557	1241	C ₂₃ H ₂₄ Cl ₂ F ₃ N ₃ O ₂	502.0.	22.5	90
1558	1242	C ₂₃ H ₂₇ C1FN ₃ O ₂	432.2	21.2	98
1559	1243	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.6	96
1560	1244	C ₂₂ H ₂₆ ClIN ₄ O ₂	541.0	26.4	98
1561	1245	C ₂₂ H ₂₅ ClF ₂ N ₄ O ₂	451.0	21.3	94
1562	1246	C ₂₁ H ₂₇ ClN ₄ O ₂	403.2	19.4	96
1563	1247	$C_{28}H_{30}ClN_3O_2S$	524.0	24.7	94
1564	1248	C ₂₂ H ₂₅ ClN ₄ O ₅	461.0	20.7	90
1565	1282	C ₂₅ H ₂₆ ClF ₃ N ₄ O ₃	523.2	25.0	96
1566	1283	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₃	464.2	12.2	53
1567	1284	C ₂₂ H ₂₅ BrClN ₃ O ₃	496.0	24.1	97
1568	1285	C ₂₂ H ₂₅ Cl ₂ N ₃ O ₃	450.2	21.8	97
1569	1342	C ₂₂ H ₂₄ BrCl ₂ N ₃ O ₂	.514.0	27.2	定量的
1570	1343	C ₂₃ H ₂₇ Cl ₂ N ₃ O ₂	448.0	21.4	95
1571	,	C ₂₂ H ₂₄ Cl ₂ IN ₃ O ₂	560.0	27.0	96
1572	1345	C ₂₃ H ₂₈ C1N ₃ O ₂	430.2	23.8	定量的
1573	1346	C ₂₂ H ₂₅ ClIN ₃ O ₃	542.0	29.4	定量的
1574	1350	C ₂₁ H ₂₆ ClN ₃ O ₂ S	420.0	13.0	62
1575	1354	C ₂₄ H ₂₈ BrClN ₄ O ₃	537.2	5.2	19
1576	1358	C ₂₃ H ₂₆ ClN ₅ O ₂	440.2	21.8	99
1577	1383	$C_{23}H_{24}Cl_2F_3N_3O_2$	502.0	20.0	80
1578	1384	C ₂₀ H ₂₃ BrClN ₃ O ₂ S	486.0	21.0	87

1579	1385	C ₂₈ H ₃₀ C1N ₃ O ₄ S	540.2	23.8	88
1580	1386	C ₂₈ H ₃₀ ClN ₃ O ₂	476.0	20.0	84 -
1581	1414	C ₂₄ H ₂₈ Cl ₂ N ₄ O ₃	491.0	0.8	3
1582	1418	C ₂₃ H ₂₆ ClN ₅ O ₂ S	472.0	10.4	44
1583	1436	C29 H30 C1 N3 O3	504.2	26.8	定量的
1584	1600	C23 H26 C1 F3 N4 O2	483.2	16.5	68
1585	1601	C23 H26 C1 F3 N4 O3	499.0	20.0	80
1586	1602	C21 H24 Br Cl N4 O2	481.0	18.1	75
1587	1603	C21 H24 C12 N4 O2	435.0	5.5	25
1588	1604	C27 H30 C1 N3 O3	492.0	18.6	76
1589	1605	C21 H27 C1 N4 O2	415.2	18.1	87
1590	1609	C23 H25 N3 O2 S	500.0	18.3	73
1591	1659	C22 H26 C12 N4 O2	449.0	366.0	83
1592	_ 1664	C24 H29 F3 N4 O2 S	495.2	13.7	55
1593	1665	C24 H29 F3 N4 O3 S ·	511.2	14.9	58
1594	1666	C23 H28 F2 N4 O2 S	463.2	12.9	. 56
1595	1667	C22 H27 Br2 N3 O3	542	26.1	96
1596	1668	C24 H30 F2 N4 O2	445	22.9	定量的
1597	1669	C24 H31 F N4 O2	427	24.0	定量的
1598	1670	C24 H31 I N4 O2	535	28.1	定量的
1599	1671	C25 H31 F3 N4 O3	493	26.8	定量的
1600	1672	C25 H31 F3 N4 O2	478	24.7	·定量的
1601	1673	C24 H29 Br Cl N3 O2	508	24.9	98
1602	1674	C20 H22 Br2 F N3 O3	532 .	25.6	96
1603	1675	C22 H25 F3 N4 O2	435	21.5	99
1604	1676	C22 H26 F2 N4 O2	417	21.4	定量的
1605	1677	C22 H26 Br F N4 O2	479	23.4	98
1606	1678	C22 H26 F I N4 O2	525	27.4	定量的
1607	1679	C22 H26 C1 F N4 O2	433	22.4	定量的
1608	1680	C23 H26 F4 N4 O3	483	25.5	定量的
1609	1681	C23 H26 F4 N4 O2	467	23.2	99
1610	1682	C23 H26 Br Cl F N3 O	498	24.2	98
1611	1683	C27 H28 Br2 N4 O4	633	31.8	定量的
1612	1684	C29 H31 F2 N5 O3	536	28.3	定量的
1613	1685	C29 H32 F N5 O3	518	31.1	定量的
1614	1686	C29 H32 Br N5 O3	578	29.6	定量的
1615	1687	C29 H32 I N5 O3	626	32.4	定量的
1616	1688	C29 H32 C1 N5 O3	534	28.2	定量的
1617	1689	C30 H32 F3 N5 O4	584	31.7	定量的

16	18	1690	C30 H32 F3 N5 O3	568	30.6	定量的
16	19	1691	C29 H30 Br Cl N4 O3	599	31.4	定量的

例えば、化合物番号 $1\ 2\ 4\ 5\ 2\ 1\ 6\ 0\ 0\ d$ 下記のNMRスペクトラムを示した。 化合物番号 $1\ 2\ 4\ 5\ 1$ H NMR($2\ 7\ 0$ MH z、CDC $1\ 3$) δ 1. 20-1: 97 (m , 7H), $2.\ 80$ - $2.\ 86$ (m, 2H), $3.\ 19$ (t, $J=6.\ 5$ Hz, 2H), $3.\ 43$ (s, 2H), $4.\ 02$ (d, $J=5.\ 3$ Hz, 2H), $5.\ 52$ (br s, 2H), $6.\ 44$ (d, $J=11.\ 9$, $6.\ 6$ Hz, 1H), $7.\ 02$ (br s, 1H), $7.\ 21$ - $7.\ 32$ (m, 5H)

化合物番号 $1\ 6\ 0\ 0$: 1 H NMR ($2\ 7\ 0$ MH z 、CDC l_3) δ 1.25-1.97(m , 9H), 2.82-2.87(m, 2H), 3.21(t, J = 6.5 Hz, 2H), 3.44(s, 2H), 4.06(d, J = 5.1 Hz, 2H), 5.98(br s, 1H), 6.71(d, J = 8.3 Hz, 1H), 6.87(br s, 1H), 7.26(s, 4H), 7.43(dd, J = 5.9 Hz, 1H), 7.64(s, 1H)

[実施例1620] 1-(4-2) 1-

1-(4-クロロベンジル)-4-[(グリシルアミノ)メチル]ピペリジン(15 14.8 mg、0.05 mmol)のクロロホルム(2 mL)溶液に、(ピペリジノメチル)ポリスチレン樹脂(28 mg、2.8 mmol/g)と4-イソプロピルベンゼンスルホニルクロリド(1.5 当量)を加え、25℃で16時間提拌した。濾過後、濃縮することにより、1-(4-クロロベンジル)-4-[[N-(4-イソプロピルフェニルスルホニル)グリシル]アミノメチル]ピペリジン(化合20 物番号869)(22.1 mg、92%)を得た。純度をRPLC/MSにて求めた(86%)。ESI/MS m/e 478(M++H、C24H32N3O3S)[実施例1621-1627]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1620の方法に従って合成した。ESI/MSデータ、収量、および収率を表30 にまとめた。

表 30

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1621	865	C22 H28 C1 N3 O3 S	450	16.2	72

1622	866	C22 H25 C1 F3 N3 O3 S	504	8.8	35
1623	867	C23 H24 C1 F6 N3 O3 S	572	8.0	28 ·
1624	868	C23 H30 C1 N3 O3 S	464	9.6	41
1625	870	C22 H28 C1 N3 O3 S	450	8.8	39
1626	871	C25 H34 C1 N3 O3 S	492	11.1	45
1627	872	C21 H26 C1 N3 O3 S	436	9.6	44

1 ー (4 ークロロベンジル) ー4 ー [(グリシルアミノ) メチル] ピペリジン (14.8 mg、0.05 mmol) のクロロホルム (2 mL) 溶液に、(ピペリジノメチル) ポリスチレン樹脂 (28 mg、2.8 mmol/g)、3 ー (トリフルオロメチル) フェニルイソシアネート (1.3 当量) を加え、25℃で16時間攪拌した。 (アミノメチル) ポリスチレン樹脂を加え、25℃で16時間攪拌し、残のイソシアネートを捕捉した。濾過および濃縮により、1 ー (4 ークロロベンジル) ー4 ー [[2 ー (3 ー (4 ートリフルオロメチルフェニル) ウレイド) アセチルアミノ] メチル] ピペリジン (化合物番号852) (19 mg、78%) を得た。純度をRPLC/MSにて求めた (92%)。ESI/MS m/e 483(M++H、C23H26C1F3N4O2)

15 [実施例1629-1641]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1628の方法に従って合成した。ESI/MSデータ、収量、および収率を表31にまとめた。

表 31

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1629	851	C23 H26 Cl F3 N4 O2	483	13.2	55
1630	853	C22 H27 Cl N4 O2	416	8.5*	32
1631	854	C23 H29 C1 N4 O2	429	11.4*	42
1632	855	C23 H29 C1 N4 O2	429	10.1*	37
1633	856	C24 H29 C1 N4 O3	457	10.3*	36
1634	857	C23 H29 C1 N4 O3	445	10.9*	39

1635	858	C23 H29 C1 N4 O3	445	8.6*	31
1636	859	C22 H26 C12 N4 O2	449	11.0*	39 ·
1637	860	C23 H26 C1 N5 O2	440	9.2*	33
1638	861	C22 H27 C1 N4 O S	431	13.3	62
1639	862	C23 H29 C1 N4 O S	445	15.3	69
1640	863	C23 H29 Cl N4 O2 S	461	14.7	64
1641	864	C23 H29 C1 N4 O2 S	461	13.1	57
LL					

*トリフルオロ酢酸塩の収率。

[実施例1642] 1-(4-クロロベンジル) -4-[[N-(3-エトキシベンゾイル) -D-フェニルアラニル] アミノメチル] ピペリジン (化合物番号2091) の合成

1-(4-クロロベンジル)-4-(アミノメチル)ピペリジン(100mg)のクロロホルム (3mL)溶液に、トリエチルアミン(0.090mL)、N-(tert-ブトキシカルボニル)-D-(フェニルアラニン)(122mg)、EDCI(89mg)、およびHOBt(62mg)を加え、室温で17時間攪拌した。この反応混合物を1M NaOH水溶液(2mL×2)と食塩水(2mL)で洗浄し、有機層を乾燥、濃縮することにより、1-(4-クロロベンジル)-4-[[N-(tert-ブトキシカルボニル)-D-フェニルアラニル]アミノメチル]ピペリジンを得た。

得られた1-(4-クロロベンジル)-4-[[N-(tert-ブトキシカル ボニル)-D-フェニルアラニル] アミノメチル] ピペリジンをメタノール (5 m L) に溶解し、4 M HClのジオキサン溶液を加えた。この溶液を室温で19時間攪拌し濃縮した。

得られた残さと3-エトキシ安息香酸(80mg、0.48mmol)のクロロホルム溶液(1mL)にトリエチルアミン(0.090mL)、EDCI(90m20g)、およびHOBt(68mg)を加え、室温で17時間攪拌した。この反応混合物を1M、NaOH水溶液(1.5mL×2)と食塩水(1.5mL)で洗浄し、有機層を乾燥、濃縮した。カラムクロマトグラフィー(SiO2、ジクロロメタン/メタノール=95:5)により精製し、1-(4-クロロベンジル)-4-[[N-(3-エトキシベンゾイル)-D-フェニルアラニル]アミノメチル]ピペリジン(化合物番号2091)(183.5mg、82%)を得た。純度をRPLC

/MSにて求めた (99%)。ESI/MS m/e 534.0 (M^++H 、 C_{31} $H_{36}CIN_3O_3$)

[実施例1643-1657]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 5 642の方法に従って合成した。ESI/MSデータ、収量、および収率を表32 にまとめた。

表 32

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1643	2092	C33 H37 C1 N4 O3	572.8	152.9	64
1644	2093	C27 H36 C1 N3 O3 S	518.0	177.4	82
1645	2094	C29 H34 C1 N3 O3 S	539.9	164.4	73
1646	2095	C28 H38 C1 N3 O3	500.0	139.1	66
1647	2096	C31 H42 C1 N3 O3	540.0	161.7	71
1648	2097	C27 H36 C1 N3 O3	485.8	157.8	78
1649	2098	C31 H35 C12 N3 O3	567.9	172.2	72
1650	2099	C30 H34 C1 N3 O3	519.8	144.7	66
1651	2100	C32 H38 Cl N3 O4	564.0	181.5	77
1652	2101	C38 H42 C1 N3 O4	639.9	192.3	72 ·
1653	2103	C33 H40 Cl N3 O4	577.8	159.9	66
1654	2104	C28 H36 C1 N3 O5	530.1	99.7	45
1655	2115	C27 H36 Cl N3 O3	486.2	122.9	60
1656	2116	C28 H38 C1 N3 O3	500.1	118.3	57
1657	2117	C28 H34 Cl N5 O3	524.1	98.3	45

10 [参考例29] 1-(tert-ブトキシカルボニル)-4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジンの合成
N-[3-(トリフルオロメチル) ベンゾイル] グリシン (4.22g、17.0mmol)、EDCI(4.25g、22.1mmol)、1-ヒドロキシベンゾトリアゾール水化物(2.99g、22.1mmol)、およびトリエチルアミン(1.72g)を、1-(tert-ブトキシカルボニル)-4-(アミノメチル] ピペリジン(4.03g)の乾燥ジクロロメタン(200mL)溶液に加えた。この反応混合物を25℃で20時間攪拌した後、H2O(100mL)を加え、ジ

クロロメタン($50\,\text{mL}\times2$)で抽出した。抽出物を合わせて、 H_2O ($50\,\text{mL}\times2$)と食塩水($50\,\text{mL}$)で洗浄し、乾燥($Mg\,SO_4$)、濃縮することにより、黄色油状物を得た。これをカラムクロマトグラフィー($Si\,O_2$ 、 $70\,\text{% 酢酸 } x$ チルーへキサン)にて精製し、1- ($t\,e.r\,t-$ ブトキシカルボニル)-4- [[N- (3- (L) (L

[参考例30] <u>4-[[N-(3-(トリフルオロメチル)ベンゾイル)グリシ</u> ル]アミノメチル]ピペリジンの合成

1-(tert-ブトキシカルボニル)-4-[[N-(3-(トリフルオロメ 5 チル) ベンゾイル) グリシル] アミノメチル] ピペリジン (2.29g、5.16 mmol) のメタノール (40mL) 溶液に、1M HCl-Et₂O (55mL) を加え、25℃で15時間攪拌した後、溶媒を減圧下に除去した。2M NaOH 水溶液 (100mL) を加え、酢酸エチル (100mL×3) で抽出した。抽出液 を合わせ、食塩水 (50mL) で洗浄し、乾燥 (K₂CO₃) 濃縮することにより、

20 白色の固体を得た。これをカラムクロマトグラフィー(SiO₂、メタノール/ジクロロメタン/トリエチルアミン=7:6:1)により精製し、4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジンを白色固体として得た(1.27g、72%)。純度はRPLC/MSにて求めた(98%)。ESI/MS m/e 344.1 (M++H、C₁₆H₂₀N₃O₂)

25 [実施例1658] <u>1-[3-(トリフルオロメトキシ)ベンジル]-4-[(N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号927)の合成</u>

4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン(19.9mg、0.058mmol) のアセトニトリル(1.0 mL) 溶液と(ピペリジノメチル)ポリスチレン(55mg、2.7mmol塩基/gレジン)を、3-(トリフルオロメトキシ) ベンジルブロミド(12.3mg

3 2 5

、0.048mmol)のアセトニトリル(1.0mL)溶液に加え60℃で2.5時間攪拌した。フェニルイソシアネート(6.9mg、0.048mmol)を冷却した反応混合物に加え、25℃で1時間攪拌した後、反応混合物をVarian n^{TM} SCXカラムに負荷し、メタノール(<math>20mL)で洗浄した。生成物を2M NH_3 のメタノール溶液で溶出し、濃縮することにより、1-[3-(トリフルオロメトキシ)ベンジル]-4-[(N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号927)を黄白色油状物として得た(<math>22.8mg、91%)。純度はRPLC/MSにて求めた(99%)。 $ESI/MS m/e 518.1 (M^++H、<math>C_{24}H_{25}F_6N_3O_3$)

10 [実施例1659-1710]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1658に従って合成した。ESI/MSデータ、収量、および収率を表33にま とめた。

表 33

15

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1659	875	C23 H26 F3 N3 O2	434	6.3	40
1660	876	C23 H25 Br F3 N3 O2	512	4.3	23
1661	877	C24 H25 F3 N4 O2	459	11.3	68
1662	878	C23 H25 F3 N4 O4	479	8.3	48
1663	884	C25 H29 F3 N4 O3	491	10.8	61
1664	885	C24 H28 F3 N3 O4 S	512	9.0	49
1665	886	C23 H25 F4 N3 O2	452	12.7	78
1666	887	C24 H25 F6 N3 O2	502	13.9	77
1667	888	C23 H26 F3 N3 O3	450	11.5	71
1668	889	C29 H30 F3 N3 O2	510	12.4	68
1669	890	C27 H28 F3 N3 O2	484	12.0	69
1670	891	C23 H24 C12 F3 N3 O2	502	11.4	63
1671	892	C24 H28 F3 N3 O3	464	11.7	70
1672	893	C24 H26 F3 N5 O5	522	13.9	74
1673	894	C26 H32 F3 N3 O3	492	11.3	64
1674	895	C24 H28 F3 N3 O2	448	4.8	30
1675	896	C24 H25 F3 N4 O2	459	17.5	定量的
1676	897	C24 H26 F3 N3 O4	478	9.2	57

1677	898	C24 H26 F3 N3 O4	478	1 00	
1678	899	C24 H28 F3 N3 O3		8.9	55
1679	900		464	13.7	82 -
1680		C25 H28 F3 N3 O4	492	18.6	定量的
	901	C29 H30 F3 N3 O2	510	13.7	75
1681	902	C23 H24 F3 N5 O6	524	12.6	• 67
1682	903	C25 H30 F3 N3 O4	494	14.0	79
1683	906	C25 H30 F3 N3 O2	462	11.2	67
168,4	907	C31 H34 F3 N3 O2	538	19.6	75
1685	908	C30 H31 F3 N4 O3	553	30.4	76
1686	909	C30 H31 F3 N4 O3	553	12.6	63
1687	910	C23 H24 C12 F3 N3 O2	502	11.0	61
1688	911	C23 H25 Cl F3 N3 O2	468	20.2	89
1689	912	C23 H24 Br2 F3 N3 O2	590	20.2	95
1690	913	C24 H28 F3 N3 O3	464	12.6	76
1691	914	C30 H32 F3 N3 O3	540	13.9	72
1692	915	C24 H28 F3 N3 O3	464	8.3	25
1693	916	C22 H25 F3 N4 O2	435	2.5	8
1694	917	C22 H25 F3 N4 O2	435	2.7	9
1695	918	C26 H30 F3 N3 O4	506	3.9	22
1696	919	C24 H28 F3 N3 O2	448	15.9	99
1697	920	C24 H25 F6 N3 O3	518	20.3	81
1698	921	C27 H28 F3 N3 O2	484	15.5	89
1699	922	C20 H26 F3 N3 O2	398	7.3	51
1700	. 923	C29 H29 C1 F3 N3 O2	544	12.5	48
1701	928	C24 H25 F6 N3 O3	518	21.4	86
1702	929	C24 H28 F3 N3 O2 S	480	23.7	定量的
1703	930	C24 H28 F3 N3 O2	448	21.3	99
1704	931	C24 H25 F3 N4 O2	459	21.4	97
1705	932	C23 H24 C1 F3 N4 O4	513	15.6	63
1706	933	C24 H28 F3 N3 O2	448	16.6	77
1707	934	C22 H25 F3 N4 O2	435	18.0	
1708	935	C23 H25 F3 N4 Q4	479	15.1	43
1709	936	C23 H25 F3 N4 O4	479	15.4	65
1710	1615	C24 H25 F6 N3 O2 S	534.2		67
			334.2	26.3	99

[実施例1711]1-[4-(ジメチルアミノ) ベンジル] -4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号937)の合成

4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (20.0mg、0.058mmol) のメタノール (1.0mL) 溶液とNaBH₃CN (16.5mg) を、4-(ジメチルアミノ) ベンズアルデヒド (30.4mg、0.204mmol) の5%酢酸溶液 (1.0mL) に加え 、60℃で19時間攪拌した。溶媒を留去して固体を得た。アセトニトリル (2.0mL) とフェニルイソシアネート (6.9mg、0.048mmol) を加え、25℃で1時間攪拌した。反応混合物をVarian™ SCXカラムに負荷し、メタノール (20mL) で洗浄した。生成物を2M NH₃-メタノール (6mL) を用いて溶出し、溶出液を濃縮することにより、1-[4-(ジメチルアミノ) ベンジル] -4-[(N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号937) を黄白色油状物として得た (13.5mg、49%)。純度はRPLC/MSにて求めた (87%)。ESI/MS m/e 477.3 (M++H、C25H31F3N4O2) [実施例1712-1729]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1711に従って合成した。必要であれば、分取TLC(SiO_2)で精製し、目的

物を得た。ESI/MSデータ、収量、および収率を表34にまとめた。

表 34

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1712	879	C24 H26 F3 N3 O4	478	13.0	62
1713	880	C24 H26 F3 N3 O4	478	16.3	78
1714	881	C23 H25 Br F3 N3 O2	512	11.4	51
1715	882	C29 H30 F3 N3 O3 ·	526	13.4	58
1716	883	C23 H25 C1 F3 N3 O2	468	7.9	39
1717	904	C23 H26 F3 N3 O3	450	3.3	17
1718	905	C21 H23 F3 N4 O4 S	485	27.7	98
1719	938	C23 H24 C1 F4 N3 O2	486	8.6.	30
1720	939	C23 H24 C1 F3 N4 O4	513	11.0	37
1721	940	C23 H26 F3 N3 O3	450	5.5	21
1722	941	C24 H24 C1 F6 N3 O2	536	11.2	36
1723	987	C30 H32 F3 N3 O2	524	17.5	76
1724	1449	C25 H30 F3 N3 O2	462	21.6	80

1725	1450	C26 H32 F3 N3 O2			
1726	1450		476	23.5	85
1/20	1452	C27 H35 F3 N4 O2	505	5.1	17 .
1727	1453	C26 H32 F3 N3 O3	492	22.0	
1728	1454	C25 H30 F3 N3 O3		22.0	77
			478	21.4	77
1729	1456	C25 H28 F3 N3 O4	492	23.8	83
			<u>. L </u>		

[実施例1730]1-[3-ヒドロキシー4ーメトキシベンジル] -4-[[
N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリ
ジン(化合物番号1452) の合成

5 4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (20.0mg、0.058mmol) と3-ヒドロキシ-4-メトキシベンズアルデヒド (33mg) の5%酢酸/メタノール (1.0mL) 溶液を、NaBH₃CN (16.5mg) の5%酢酸/メタノール (1.0mL) 溶液に加え、60℃で15時間攪拌した。反応混合物をVarian™ SCXカラムに負

荷し、メタノール(15mL)で洗浄した。生成物を2M NH_3 -メタノール(5mL)を用いて溶出し、濃縮することにより、1-[3-EFD+2-4-4-4] トキシベンジル] -4-[[N-(3-(FDD)+2-4-4-4-4]] アミノメチル] ピペリジン(化合物番号 1452)を得た(25.8mg、92%)。純度はRPLC/MSにて求めた(91%)。ESI/MS m/e 480 (M++H、 $C_{24}H_{28}F_3N_3O_4$)

15

[実施例1731-1733] 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1

730の方法に従って合成した。必要であれば分取TLCによって目的物を得た。

ESI/MSデータ、収量、および収率を表35にまとめた。

20 . 表 35

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1731	1455	C24 H28 F3 N3 O4	480	24.0	86
1732	1647	C27 H34 F3 N3 O2	490.2	23.6	96
1733	1649	C26 H32 F3 N3 O2	476.2	23.1	97

[実施例1734] 1-(4-ベンジルベンジル] -4-[[N-(3-(トリ

フルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号926) の合成

メタンスルホニルクロリド (4.2mg、0.037mmol) のクロロホルム (1.0mL) 溶液および (ピペリジノメチル) ポリスチレン (54mg、2.7 mmol塩基/g樹脂)を、4- (ベンジル) ベンジルアルコール (8.7 mg、 0. 044mmol) のクロロホルム (1. 0mL) 溶液に加え、25℃で15時 間攪拌した。4-[[N-(3-(トリフルオロメチル)ベンゾイル)グリシル) アミノメチル] ピペリジン (15. 1mg、0. 044mmol) とKI (2mg)をこの反応混合物に加え、混合液をさらに65℃で5時間攪拌した。フェニルイ 10 ソシアネート (5.2 mg) を冷却した反応混合物に加え、25℃で1時間攪拌後 、反応混合物をVarianTM SCXカラムに負荷し、メタノール(20mL)で 洗浄した。生成物を2M NH₃のメタノール (5 mL) 溶液を用いて溶出、濃縮す ることにより、1-(4-ベンジルベンジル]-4-[[N-(3-(トリフルオ ロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号926)を黄白色油状物として得た(5.6mg、29%)。純度はRPLC/MSにて 求めた (94%)。 ESI/MS m/e 524.1 $(M^++H, C_{30}H_{32}F_3N$ ₃O₂)

[参考例31] 4-[[(N-(ベンジルオキシカルボニル) グリシル) アミノ] メチル] <math>-1-(tert-ブトキシカルボニル) ピペリジンの合成

4 ー (アミノメチル) ー1ー (tertープトキシカルボニル) ピペリジン (3 54g、16.5mmol)のクロロホルム (80mL)溶液に、トリエチルアミン (2.8mL、20mmol)、Nー (ベンジルオキシカルボニル)グリシン (3.77g、18mmol)、EDCI (3.45g、18mmol)、およびHOBt (2.43g、18mmol)を加え、室温で15時間攪拌した後、2MNaOH水溶液 (100mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した (100mL×3)。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー (SiO2、酢酸エチル)により精製し、4ー[[(Nー (ベンジルオキシカルボニル)グリシル)アミノ]メチル]ー1ー(tertープトキシカルボニル)ピペリジンをアモルファス状固体として得30た (6.27g、94%)

[参考例32] <u>4- [(グリシルアミノ)メチル]-1-(tert-</u>ブトキシ

カルボニル) ピペリジンの合成

10 4-[(グリシルアミノ) メチル] -1-(tert-ブトキシカルボニル) ピペリジン(1.33g、4.90mmol)のクロロホルム(25mL)溶液に、トリエチルアミン(0.75mL、5.4mmol)、2-アミノ-5-クロロ安息香酸(840mg、4.9mmol)、EDCI(940mg、4.9mmol)、およびHOBt(660mg、4.9mmol)を加え、室温で3時間攪拌した後、2M NaOH水溶液(20mL)を加えた。有機層を分離し、水層をジクロロメタンで抽出した(20mL×3)。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO2、酢酸エチル)により精製し、4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル)アミノ]メチル]-1-(tert-ブトキシカルボニル)ピペリジンを固体として得20 た(1.63g、78%)。

[参考例34] 4-[[(N-(2-アミノ-5-クロロベンゾイル) グリシル) アミノ] メチル] ピペリジンの合成

4-[[(N-(2-アミノ-5-クロロベンゾイル) グリシル) アミノ] メチル]-1-(tert-ブトキシカルボニル) ピペリジン (1.63g、3.84 mmol)のメタノール (20mL) 溶液に、4M HClのジオキサン (9.5 mL)溶液を加え、室温で6時間攪拌した。反応混合物を濃縮し、2M NaOH水溶液 (20mL)を加え、ジクロロメタン (20mL×3)で抽出した。有機層を合わせて、無水硫酸ナトリウムで乾燥、濾過、濃縮することにより、4-[[(N-(2-アミノー5-クロロベンゾイル) グリシル) アミノ] メチル] ピペリジンを得た (1.19g、95%): ¹H NMR (CDCl₃、270MHz) δ 1.10-1.76(m, 4H), 2.55(td, J=2.4と12.2 Hz, 2H), 3.00-3.10(m, 2H), 3.17(t,

J = 6.2 Hz, 2H), 3.48(s, 2H), 4.03(d, J = 4.9 Hz, 2H), 5.50(br. s, 2H), 6.1 1-6.23(m, 1H), 6.60(d. J = 8.8 Hz, 1H), 6.85-7.02(m, 1H), 7.15(dd, J = 2.7 \pm 8.8 Hz, 1H), 7.38(d, J = 2.4 Hz, 1H); ESI/MS m/e 3 2 5.2 (M++H, C₁₅H₂₃ClN₄O₂)

[実施例1735] <u>4-[[(N-(2-(tert-ブトキシカルボニルアミ</u> 10 <u>ノ)-4,5-ジフルオロベンゾイル)グリシル)アミノ]メチル]-1-(4-</u>クロロベンジル)ピペリジンの合成

1-(4-クロロベンジル)-4-[(グリシルアミノ)メチル]ピペリジン・ 二塩酸塩(738mg、2mmol)のジクロロメタン(20mL)溶液に、トリ エチルアミン(1.1mL、8mmol)、2-(tert-ブトキシカルボニル アミノ)-4,5-ジフルオロ安息香酸(607mg、2.2mmol)、EDC I(422mg、2.2mmol)、およびHOBt(337mg、2.2mmo 1)を加え、室温で14時間攪拌した後、0.6M NaOH水溶液(50mL)を加え、ジクロロメタンで抽出した(3回)。有機層を合わせ、無水硫酸ナトリウムで乾燥、濾過、濃縮し、4-[[(N-(2-(tert-ブトキシカルボニル アミノ)-4,5-ジフルオロベンゾイル)グリシル)アミノ]メチル]-1-(4-クロロベンジル)ピペリジンを得た(1.01g、92%)。ESI/MS

m/e 551. 3 $(M^++H, C_{27}H_{33}ClF_2N_4O_4)$

25

さらに、4-[[(N-(2-(tert-プトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル) アミノ] メチル]-1-(4-クロロベンジル) ピペリジンも対応する原料および反応剤を用い、上記の方法に従って合成した。<math>3.03g、82%; ESI/MS m/e 583.2 (M^++H 、 C_{28} H_{34} Cl F_3 N $_4$ O $_4$)

[参考例 3 5] <u>4-[[(N-(2-アミノ-5-トリフルオロメチルベンゾイ</u>ル) グリシル) アミノ] メチル] ピペリジンの合成

 $1-(4-\rho \Box \Box \lor \Box \lor)$ $-4-[[(N-(2-r \in J-5-h \cup J))]$ メチルベンゾイル) グリシル) アミノ] メチル] ピペリジン $(447 \, \text{mg}, 0.9]$

 $3\,\mathrm{mmol}$) EPd (OH) $_2$ (60 mg、0.23 mmol) の5% 蟻酸/メタノール (10 mL) 溶液を50 CC で14時間攪拌した。パラジウム触媒をセライト濾過して除去し、遮液を濃縮した。残査に1M NaOH水溶液(15 mL)を加え、酢酸エチルで抽出した(30 mL×3)。有機層を合わせて、無水硫酸ナトリウム上乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO_2 、酢酸エチル/メタノール/トリエチルアミン=70:25:5)により精製し、4-[[(N-(2-アミノー5-トリフルオロメチルベンゾイル)グリシル)アミノ] メチル] ピペリジンを得た(284 mg、86%)。ESI/MS m/e 359.0 (M++H、 $\mathrm{C}_{16}\mathrm{H}_{21}\mathrm{F}_3\mathrm{N}_4\mathrm{O}_2$)

- 10 さらに、4-[[(N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル) アミノ] メチル] ピペリジン、4-[[N-(2-(tert-ブトキシカルボニルアミノ) -5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] ピペリジン、および4-[[(N-(2-(tert-ブトキシカルボニルアミノ) -5-トリフルオロメトキシベンゾイル) グリシル) アミノ] メチル] ピペリ

 $4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフル20 オロメトキシベンゾイル) グリシル] アミノメチル] ピペリジン:定量的; <math>^1$ H NMR (CDC1 $_3$ 、400MHz) δ 1.10-1.25(m, 2H), 1.45-1.73(m, 3H), 1.51 (s, 9H), 2.53-2.64(m, 2H), 3.04-3.13(m, 2H), 3.22(t, J=6.3 Hz, 2H), 4.09(d, J=4.6 Hz, 2H), 5.91(br. s, 1H), 7.08(br, s., 1H), 7.32(d. J=9.0 Hz, 1H), 7.38(s, 1H), 8.43(d, J=9.0 Hz, 1H)

30 7%; ESI/MS m/e 459.3 (M^++H 、 $C_{21}H_{29}F_3N_4O_4$) [実施例1736] 4-[[N-(2-アミノ-5-クロロベンゾイル) グリシ

ル] アミノメチル] -1- (4-エトキシベンジル) ピペリジン (化合物番号1429)、および1- (4-エトキシベンジル) -4- [[N- (2- (4-エトキシベンジル) アミノー5-クロロベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1433) の合成

シアノ水素化ホウ素ナトリウム(140mmol)のメタノール(0.4mL)溶液を4-[[(N-(2-アミノ-5-クロロベンゾイル)グリシル]アミノメチル]ピペリジン(0.10mmol)、4-エトキシベンズアルデヒド(0.10mmol)、酢酸(0.050mL)、およびメタノール(1.6mL)の混合物に加え、60℃で14時間攪拌した。反応混合物をVarian™SCXカラムに負荷し、メタノール(20mL)で洗浄した。生成物を2MNH3のメタノール溶液で溶出し、濃縮した。分取TLC(SiO2、酢酸エチル/メタノール)により4-[[N-(2-アミノ-5-クロロベンゾイル)グリシル]アミノメチル]-1-(4-エトキシベンジル)ピペリジン(化合物番号1429)、および1-(4-エトキシベンジル)ー4-[[N-(2-(4-エトキシベンジル)アミノー5-クロロベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号1433)を得た。

化合物番号1429:4.5 mg、20%; 純度はRPLC/MSにて求めた(95%)。ESI/MS m/e 459.2 (M⁺+H、C₂₄H₃₁ClN₄O₃) 化合物番号1433:8.4 mg、28%; 純度はRPLC/MSにて求めた(98%)。ESI/MS m/e 593.2 (M⁺+H、C₃₃H₄₁ClN₄O₄) [実施例1737-1779]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1736の方法に従って合成した。ESI/MSデータ、収量、および収率を表36にまとめた。

25 表 36

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率·(%)
1737	1430	C24 H29 C1 N4 O4	473.0	3.1	13
1738	1431	C24 H31 Br N4 O3	505.2	5.8	23
1739	1432	C24 H29 Br N4 O4	517.0	4.1	16
1740	1434	C33 H41 Br N4 O6	637.2	9.7	30

1741	1435	C24 H31 Cl N4 O2			
1742		C25 H33 C1 N4 O2	443.2	9.7	44
1743		i	457.2	12.5	55 ·
1744		C25 H33 C1 N4 O3	473.2	9.4	40
1745	1438	C24 H31 Br N4 O2	489.2	5.9	24
1745	1439	C25 H33 Br N4 O2	503.2	15.2	61
1747	1440	C25 H33 Br N4 O3	519.2	11.0	43
	1441	C23 H29 Br N4 O2 S	507.2	9.3	37
1748	1442	. C33 H41 C1 N4 O2	561.4	6.8	24
1749	1443	C35 H45 C1 N4 O2	589.4	9.8	33
1750	1444	C35 H45 Cl N4 O4	621.4	9.4	30
1751	1445	C33 H41 Br N4 O2	605.2	6.5	21
1752	1446	C35 H45 Br N4 O2	635.2	10.7	34
1753	1447	C35 H45 Br N4 O4	665.4	12.4	37
1754	_ 1448	C31 H37 Br N4 O2 S2	643.2	7.6	24
1755	1457	C24 H32 C1 N5 O2	458.2	4.5	20
1756	1458	C23 H29 Cl N4 O4	461.2	6.0	26
1757	1459	C24 H32 Br N5 O2	504.0	6.8	27
1758	1460	C23 H29 Br N4 O4	505.0	8.0	32
1759	1461	C31 H37 C1 N4 O6	597.2	5.9	20
1760	1462	C31 H37 Br N4 O6	643.2	6.0	19
1761	1514	C26 H36 C1 N5 O2	486.2	5.5	23
1762	1515	C23 H29 Cl N4 O4	463.0	5.8	25
1763	1516	C26 H36 Br N5 O2	530.2	4.2	. 16
1764	1517	C23 H29 Br N4 O4	505.0	6.5	26
1765	. 1518	C31 H37 C1 N4 O6	597.2	4.3	14
1766	1519	C31 H37 Br N4 O6	641.2	5.3	17
1767	1570	C23 H29 Cl N4 O2 S	461.0	2.7	12
1768	1571	C31 H37 C1 N4 O2 S2	597.2	4.9	16
1769	1651	C37 H49 Br N4 O2	663.2	5.5	17
1770	1652	C26 H35 Br N4 O2	515.2	6.0	23
1771	1653	C35 H45 Br N4 O2	633.2	5.0	16
1772	1654	C25 H33 Br N4 O2	501.0	6.2	25
1773	1655	C37 H49 C1 N4 O2	617.4	5.6	18
1774	1656	C26 H35 C1 N4 O2	471.2	5.9	25
1775	1657	C35 H45 C1 N4 O2	589.2	4.6	16
1776	1658	C25 H33 C1 N4 O2	457.2	5, 3	23
1777	1785	C26 H33 F3 N4 O2	491.2	4.7	12.8
1778	1786	C25 H29 F3 N4 O3	491.2	3.7	10.1
1779	1804	C25 H32 F2 N4 O2	459.2	3.3	9.6

[実施例1780] 4-[[N-(2-アミノ-5-トリフルオロメトキシベン ゾイル) グリシル] アミノメチル] -1-(4-イソプロピルベンジル) ピペリジン (化合物番号1903) の合成

 $4 - [[N - (2 - (tert - \overline{y}) + + y) + y] - (1 - (1 - y) + y) - (1 - y) - ($ 5 オロメトキシ) ベンゾイルグリシル] アミノメチル] ピペリジン (0.050mm o 1) 、4-イソプロピルベンズアルデヒド (0.060mmol)、NaH3CN (O. 15 mm o l)、およびメタノール(1.3 m L)の混合物に、酢酸(10 mL) を加え、60℃で8時間攪拌した。室温に冷却後Varian™ SCXカラ ムに負荷し、メタノール(10mL)で洗浄した。生成物を2M NH。のメタノー 10 ル (5 m L) 溶液で溶出し、濃縮した。残さに、4 M H C l のジオキサン溶液 (2 m L) を加え、溶液を室温で一晩攪拌した。濃縮後、分取TLCにより精製し、 4-[[N-(2-アミノ-5-トリフルオロメトキシベンゾイル) グリシル] ア ミノメチル]-1-(4-イソプロピルベンジル)ピペリジン(化合物番号190 3) を得た (6.6 mg、26%)。純度はRPLC/MSにて求めた (93%) ^{*} 15 $_{\circ}$ SI/MS m/e 507 (M⁺+H, C₂₆H₃₃F₃N₄O₃) [実施例1781-1783]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1780の方法に従って合成した。ESI/MSデータ、収量、および収率を表37にまとめた。

· 表 37

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1781	1904	C26 H33 F3 N4 O3	507	9.6	37.9
1782	1917	C25 H31 F3 N4 O5	525.2	1.2	3.1
1783	1918	C24 H29 F3 N4 O4	495.2	2.8	7.5

[実施例1784] 4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル
 25) グリシル] アミノメチル] -1-(5-プロモー2-エトキシベンジル) ピペリジン (化合物番号2052) の合成

 $4 - [[N - (2 - (tert - \vec{J}) + \hat{z}) + \hat{z}]) - 4, 5 - (\vec{y})$

ルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0. 050mmol) 、5-ブロモー2-エトキシベンズアルデヒド(0.15mmol)、メタノール (1. 2mL)、および酢酸(0. 030mL)の混合物に、NaBH3CN(0. 25mmol) を加え、50℃で13時間攪拌した。室温に冷却し、Varian^T M SCXカラムに負荷し、メタノール(5mL×3)で洗浄した。生成物を2M $\mathrm{NH_3}$ のメタノール($5\,\mathrm{mL}$)溶液で溶出し、濃縮した。残さに、ジクロロメタン(1 m L) およびトリフルオロ酢酸 (O. 5 O m L) を加え、室温で10分攪拌した 。反応混合物を濃縮し、残査をメタノールに溶解し、VarianTM SCXカラム に負荷し、メタノール (5 m L) で洗浄した。生成物を2 M NH_3 のメタノール (5 m L)溶液で溶出し、濃縮した。分取 T L C (SiO₂、酢酸エチル/メタノール 10 =10:1) により精製し、4-[[N-(2-アミノ-4, 5-ジフルオロベン ゾイル) グリシル] アミノメチル] -1- (5-ブロモ-2-エトキシベンジル) ピペリジン(化合物番号2052)を得た(10.2mg、38%)。純度はRP LC/MSにて求めた(96%)。SI/MS m/e 539.2 (M++H、C $_{24}H_{29}BrF_{2}N_{4}O_{3}$

[実施例1785-1792]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 784の方法に従って合成した。ESI/MSデータ、収量、および収率を表38 にまとめた。

20

15

表 38

	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1785	2053	C30 H34 F2 N4 O4	553.4	12.7	46
1786	2054	C27 H30 F2 N4 O3	497.2	13.7	55
1787	2055	C23 H28 F2 N4 O4	463.2	10.1	44
1788	2056	C22 H24 Br F3 N4 O2	515.2	7.7	30
1789	2057	C23 H27 Br F2 N4 O3	527.0	8.6	33
1790	2058	C24 H30 F2 N4 O4	477.2	6.4	27
1791	2059	C28 H30 F2 N4 O3	509.4	6.7	26
1792	2060	C25 H32 F2 N4 O5	507.2	7.2	28

[実施例1793] 4-[N-(2-アミノ-4,5-ジフルオロベンゾイル

3 3 7

<u>) グリシル] アミノメチル] -1-(3,4-ジエトキシベンジル) ピペリジン(</u>化合物番号2065) の合成

 $4 - [[N - (2 - (tert - \vec{J}) + \hat{J}) - 4, 5 - (\vec{J})]$ ルオロベンゾイル) グリシル] アミノメチル] ピペリジン(0.050mmol) 、3、4-ジエトキシベンズアルデヒド(0.15mmol)、メタノール(1. 2mL)、および酢酸(0.050mL)の混合物にNaBH₃CN(0.25mm ol)を加え、50℃で一晩攪拌した。室温に冷却し、Varian™ SCXカラ ムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH3のメタノ ール (5 m L) 溶液で溶出し、濃縮した。残さにジクロロメタン (2 m L) とフェ ニルイソシアネート (O. 10mL) を加え、室温で1時間攪拌し、Varian^T M SCXカラムに負荷してメタノール (5 m L) で洗浄した。生成物を 2 M N H。 のメタノール (5 m L) 溶液を用いて溶出し、濃縮した。残査をメタノール (0. 25mL) に溶解し、4M HClのジオキサン (0.125mL) 溶液を加え、 室温で一晩攪拌し濃縮した。残査をメタノールに溶解し、Varianтm SCXカ ラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH₃のメタ ノール (5 m L) 溶液を用いて溶出し、濃縮することにより、4 - [[N-(2-アミノー4.5-ジフルオロベンゾイル)グリシル]アミノメチル]ー1ー(3. 4-ジエトキシベンジル) ピペリジン (化合物番号2065) を得た (21.2m g、84%)。純度はRPLC/MSにて求めた(97%)。ESI/MS m/ e 505. 2 $(M++H, C_{26}H_{34}F_2N_4O_4)$

[実施例1794-1808]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1793の方法に従って合成した。ESI/MSデータ、収量、および収率を表39にまとめた。

25

10

15

20

表 39

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1794	2061	C23 H27 F3 N4 O2	449.2	12.6	56
1795	2062	C23 H27 F3 N4 O3	465.2	19.7	85
1796	2063	C25 H32 F2 N4 O4	491.2	19.8	81
1797	2064	C22 H24 Br F3 N4 O2	515.2	17.5	68
1798	2066	C29 H32 F2 N4 O3	523.2	18.0	69

1799	2067	C26 H34 F2 N4 O2	473.2	21.9	93
1800	2068	C22 H24 C1 F3 N4 O2	469.2	11.2	48 .
1801	2069	C24 H30 F2 N4 O3	461.4	20.2	88
1802	2070	C23 H27 Br F2 N4 O3	527.2	17.7	67
1803	2071	C24 H30 F2 N4 O4	477.2	10.9	46
1804	2072	C25 H32 F2 N4 O3	475.2	19.3	81
1805	2073	C29 H32 F2 N4 O3	523.2	22.8	87
1806	2074	C29 H32 F2 N4 O4	539.2	22.5	84
1807	2075	C23 H27 F3 N4 O3	465.2	14.9	64
1808	2076	C22 H24 F4 N4 O2	453.2	21.9	97

[実施例1809] <u>4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(2-ヒドロキシ-3-メチルベンジル) ピペリジン(化合物番号2106)</u>の合成

4- [[N-(2-(tert-ブトキシカルボニルアミノ)-4, 5-(ジフ 5 ルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol) 、2-ヒドロキシー3-メチルベンズアルデヒド(0.25mmol)、メタノー ル (1. 0 m L) 、および酢酸 (0. 040 m L) の混合物にNaBH₃CN (0. 40mmol)を加え、50℃で一晩攪拌した。室温に冷却しVarian™ SC Xカラムに負荷し、メタノール($5\,\mathrm{m\,L} \times 2$)で洗浄した。生成物を $2\,\mathrm{M}$ $\mathrm{N\,H_3}$ の 10 メタノール (5 m L) 溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール= 5:1 (1mL) に溶解しVarian™ SCXカラムに負荷し、酢酸エチル/メ タノール=5:1 (5mL) を用いて溶出し、濃縮した。残査をメタノール (2m L) に溶解し、4M HClのジオキサン(0.50mL)溶液を加え、室温で一 晩攪拌し、濃縮した。残査をメタノールに溶解し、Varian™ SCXカラムに 15 負荷し、メタノール($5\,\mathrm{m\,L} \times 2$)で洗浄した。生成物を $2\,\mathrm{M}$ $\mathrm{N\,H_3}$ のメタノール (5 m L) 溶液を用いて溶出し、濃縮した。分取TLCにより4-[[N-(2-アミノー4, 5ージフルオロベンゾイル) グリシル] アミノメチル] -1-(2-ヒドロキシー3-メチルベンジル)ピペリジン(化合物番号2106)を得た。純 度はRPLC/MSにて求めた (97%)。ESI/MS m/e 447.0 (20 M++H, $C_{23}H_{28}F_{2}N_{4}O_{3}$)

[実施例1810-1823]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1

339

809の方法に従って合成した。ESI/MSデータ、収量、および収率を表40にまとめた。

表 40

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1810	2077	C22 H25 Cl F2 N4 O3	467.2	3.7	16
1811	2078	C24 H30 F2 N4 O4	477.2	1.9	8
1812	2079	C30 H34 F2 N4 O4	553.4	4.8	17
1813	2080	C22 H25 C1 F2 N4 O3	467.2	13.5	58
1814	2081	C22 H25 Cl F2 N4 O3	467.2	13.8	59
1815	2082	C23 H28 F2 N4 O4	463.2	9.6	42
1816	2105	C23 H28 F2 N4 O4	463.2	ND	ND
1817	2106	C23 H28 F2 N4 O3	447.0	ND	ND
1818	2107	C20 H23 Br F2 N4 O2 S	503.1	ND	ND
1819	2108	C25 H28 F2 N4 O2 S	487.2	ND	ND
1820	2109	C20 H23 Br F2 N4 O3	487.0	ND	ND
1821	2110	C22 H28 F2 N4 O3	435.1	ND	ND
1822	2111	C22 H24 Cl F3 N4 O2	469.0	ND	ND
1823	2112	C24 H29 Br F2 N4 O4	557.0	иĎ	ND

5 ND: 未決定

[実施例1824] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メチルベンジル) ピペリジン(化合物番号2114)の合成

4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-(ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジン(0.050mmol)、4-メチルー3-ニトロベンズアルデヒド(0.25mmol)、メタノール(1.2mL)、および酢酸(0.050mL)の混合物にNaBH₃CN(0.50mmol)を加え、50℃で一晩攪拌した。室温に冷却しVarian™SCXカラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2MNH₃のメタノール(5mL)溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=2:1(2mL)に溶解し、Varian™Siカラムに負荷し、酢酸エチル/メタノール=2:1(6mL)を用いて溶出し、濃縮した。残査をメタノール(1mL)に溶解し、4MHClのジオキサン(0.50mL)溶液を加え、室温で一晩攪

25

拌し、濃縮した。残査をメタノールに溶解し、 $Varian^{TM}$ SCXカラムに負荷し、メタノール($5mL \times 2$)で洗浄後、2M NH $_3$ のメタノール(5mL)溶液を用いて溶出した。濃縮により4-[[N-(2-T > 1)-4, 5-ジフルオロベンゾイル)グリシル] アミノメチル] <math>-1-(4-メチル-3-ニトロベンジル)ピペリジンを得た。

- 10 濃縮した。分取TLC (SiO₂、酢酸エチル/メタノール=3:1) により4-[N-(2-アミノ-4,5-ジフロロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メチルベンジル) ピペリジン (化合物番号2114) を得た(2.9mg、13%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m/e 446.1 (M++H、C₂₃H₂₉F₂N₅O₂)
- 15 [実施例1825] <u>4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メトキシベンジル) ピペリジン (化合物番号2113) の合成</u>

表記の化合物4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-メトキシベンジル) ピペリジン (20 化合物番号2113) を、対応する原料および反応剤を用い、実施例1824の方法に従って合成した。4.6mg、20%収率;ESI/MS m/e 462.2 (M++H、C23H29F2N5O3)

[実施例1826] 1-(3-アミノ-4-ヒドロキシベンジル)-4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4、<math>5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンの合成

4-[[N-(2-(tert-ブトキシカルボニルアミノ) -4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0.35mmol)、4-ヒドロキシ-3-ニトロベンズアルデヒド (1.22mmol)、メタノール (3.8mL)、および酢酸 (0.175mL) の混合物にNaBH₃CN (1.58mmol)のメタノール (3.2mL) 溶液を加え、50℃で一晩攪拌した。室温

30 mmol)のメタノール(3.2mL)溶液を加え、50℃で一晩攪拌した。室温まで冷却し、Varian™ SCXカラムに負荷し、メタノール(5mL×2)で

洗浄した。生成物を 2M NH_3 のメタノール(5mL)溶液で溶出し、濃縮した。 残さを酢酸エチル/メタノール= 5:1 に溶解し、 $Varian^{TM}$ Siカラムに負荷し、酢酸エチル/メタノール= <math>5:1 (10mL) を用いて溶出し、濃縮することにより、4-[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル)グリシル] アミノメチル] <math>-1-(4-t) -1

ーニトロベンジル) ピペリジンを得た (175mg、87%)。

得られた4~[[N~(2~(tertーブトキシカルボニルアミノ)~4,5 ~ジフルオロベンゾイル)グリシル]アミノメチル]~1~(4~ヒドロキシ~3~ニトロベンジル)ピペリジン、10%パラジウムカーボン(45 mg)、および、メタノール(5 m L)の混合物を水素雰囲気下、室温で4時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮して1~(3~アミノー4~ヒドロキシベンジル)~4~[[N~(2~(tertーブトキシカルボニルアミノ)~4、5~ジフルオロベンゾイル)グリシル]アミノメチル]ピペリジンを得た(100 mg、60%)。

15 [実施例1827] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-アミノ-4-ヒドロキシベンジル) ピペリジン(化合物番号2141)の合成

- 20 ノメチル]ピペリジン(20.0mg、0.035mmol)のメタノール(1m L)溶液に、4M HClのジオキサン(0.50mL)溶液を加え、室温で一晩 攪拌した。濃縮した後、残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メタノール(5mL×2)で洗浄し、2M NH₃のメタノール(5mL)溶液で溶出した。濃縮により4-[[N-(2-アミノ-4,5-ジフルオロベ
- 25 ンゾイル) グリシル] アミノメチル] -1- (3-アミノ-4-ヒドロキシベンジル) ピペリジン (化合物番号2141) を得た (17.6 mg、定量的)。純度はRPLC/MSにて求めた (85%)。ESI/MS m/e 448.3 (M⁺+H、C₂₂H₂₇F₂N₅O₃)

[実施例1828-1831]

30 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 826と1827の方法に従って合成した。必要であれば、分取TLCで精製し、

3 4 2

目的物を得た。ESI/MSデータおよび最終工程の収量、収率を表41にまとめた。

表 41

実施例	化合物番号	分子式	ESI/MS m	収量 (mg)	収率 (%)
1828	2140	C23 H27 F2 N5 O4	476.3	6.7	28.4
1829	2144	C24 H30 F3 N5 O3	494.2	18.7	82.0
1830	2145	C23 H28 F3 N5 O3	480.3	19.8	63.7
1831	2146	C24 H28 F3 N5 O4	508.3	13.5	81.7

[実施例1832] 1-(3-アミノ-4-クロロベンジル)-4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンの合成

5

25

4-[[N-(2-(tert-ブトキシカルボニルアミノ) -4,5-ジフル オロベンゾイル) グリシル] アミノメチル] ピペリジン (0.14mmol)、4-クロロ-3-ニトロベンズアルデヒド (0.50mmol)、メタノール (1.5mL)、および酢酸 (0.070mL)の混合物に、NaBH₃CN (0.63mmol)のメタノール (1.3mL)溶液を加え、50℃で一晩攪拌した。室温に冷却し、Varian™ SCXカラムに負荷し、メタノールで洗浄した。生成物を15 2M NH₃のメタノール溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=5:1に溶解し、Varian™ Siカラムに負荷し、酢酸エチル/メタノール=5:1 (6mL)を用いて溶出し、濃縮することにより、4-[[N-(2-(tert-ブトキシカルボニルアミノ) -4,5-ジフルオロベンゾイル)グリシル] アミノメチル] -1-(4-クロロ-3-ニトロベンジル) ピペリジンを得た20 (44mg、53%)。ESI/MS m/e 596.3 (M++H)

4-[[N-(2-(tert-プトキシカルボニルアミノ)-4,5-ジフルオロベングイル)グリシル]アミノメチル]-1-(4-クロロ-3-ニトロベンジル)ピペリジン(<math>121mg、0.20mmol)、10%パラジウムカーボン(85mg)、酢酸エチル(10mL)、およびメタノール(1mL)の混合物を水素雰囲気下、室温で19時間攪拌した。パラジウム触媒を濾過により除去し、濾液を濃縮することにより、1-(3-アミノ-4-クロロベンジル)-4-[[N]]

-(2-(tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを得た(78mg、68%)。

[実施例1833] 1-(3-アミノ-4-クロロベンジル)-4-[N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジ

5 ン (化合物番号2142)の合成

表記の化合物 1-(3-r)-4-0 ロロベンジル)-4-[[N-(2-r)-1]-4、5-ジフルオロベンゾイル)グリシル] アミノメチル] ピペリジン(化合物番号 2 1 4 2)を対応する原料および反応剤を用いて実施例 1 8 2 7 の方法に従って合成した。 1 3. 7 mg、 9 8%; 純度はRPLC/MSにて求めた(8 3%)。 ESI/MS m/e 4 6 6. 2(M^++H 、 $C_{22}H_{26}ClF_2N_5O_2$)
[実施例 1 8 3 4] 1-(3-r)+1 1-(3-r)+

 $1-(3-r \le 1-4-t \le 1-$ ーブトキシカルボニルアミノ)ー4,5ージフルオロベンゾイル)グリシル]アミ 15 ノメチル] ピペリジン (27mg、0.049mmol)、 (ピペリジノメチル) ポリスチレン (2. 7 mmol/g、60 mg、0. 15 mmol)、およびジク ロロメタン (2mL) の混合物に、無水酢酸 (0.12mmol) のジクロロメタ ン(O. 12mL)溶液を加え、室温で3時間攪拌した。混合物をVarianTM SCXカラムに負荷し、メタノールで洗浄した。生成物を2M NH3のメタノール 20 溶液で溶出し、濃縮した。残さを酢酸エチル/メタノール=5:1に溶解し、Va rian™ Siカラムに負荷し、酢酸エチル/メタノール=5:1 (6mL)を用 , いて溶出、濃縮することにより1-(3-アセチルアミノ-4-ヒドロキシベンジ ル) -4-[[N-(2-(tert-ブトキシカルボニルアミノ) -4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを得た(30mg、定 25 量的)。ESI/MS m/e 590.4 $(M^++H, C_{29}H_{37}N_5O_6)$ 上記で得た1-(3-アセチルアミノ-4-ヒドロキシベンジル)-4-[[N - (2- (tert-プトキシカルボニルアミノ) - 4、5-ジフルオロベンゾイ ル) グリシル] アミノメチル] ピペリジンのメタノール (1 m L) 溶液に、4 M HCIのジオキサン溶液(O. 50mL)を加え、溶液を室温で一晩攪拌した。濃 30 縮した後、残査をメタノールに溶解し、VarianTM SCXカラムに負荷し、メ

タノール($5\,\mathrm{mL} \times 2$)で洗浄し、 $2\,\mathrm{M}$ NH $_3$ のメタノール($5\,\mathrm{mL}$)溶液で溶出した。濃縮後、分取TLC(SiO_2 、酢酸エチル/メタノール=3:2)により精製し、 $1-(3-\mathrm{P}$ セチルアミノー4ーヒドロキシベンジル) $-4-[[N-(2-(\mathrm{P}\mathrm{S})^2-4,5-(\mathrm{P}\mathrm{S})^2-4-(\mathrm{$

[実施例1835-1839]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例 1 8 2 6 と 1 8 3 4 の方法に従って合成した。ESI/MSデータおよび最終工程の収量および収率を表 4 2 にまとめた。

実施例 化合物番号 分子式 ESI/MS m 収量 (mg) 収率 (%) /e 1835 2143 C25 H29 F2 N5 O5 518.3 4.8 45 1836 2147 C25 H31 F2 N5 O4 504.3 3.0 23 1837 2154 C26 H32 F3 N5 O4 536.4 4.1 66 1838 2155 C25 H30 F3 N5 O4 522.3 5.5 71 1839 2156 C26 H30 F3 N5 O5 550.3 7.0 78

表 42

[実施例1840] 4-[[N-(2-アミノ-4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-メチルアミノ-4-ヒドロキシベンジル) ピペリジン(化合物番号2160)の合成

4-[[N-(2-(tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル) グリシル] アミノメチル]-1-(3-アミノー4-ヒドロキシ) ピペリジン(20.4mg、0.037mmol)、37%HCHO溶液(3.0mg、0.037mmol)、酢酸(0.1mL)、およびメタノール(1.3mL)の混合物に、NaBH₃CN(7.0mg)のメタノール(0.2mL)溶液を加え、60℃で一晩攪拌した。室温に冷却し、Varian™ SCXカラムに負荷し、メタノール(5mL×2)で洗浄した。生成物を2M NH₃のメタノール(25 8mL)溶液で溶出し、濃縮することにより4-[[N-(2-tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンソイル)グリシル] アミノメチル

] -1-(3-メチルアミノー4-ヒドロキシベンジル) ピペリジンを得た。上記で得た4-[N-(2-tert-ブトキシカルボニルアミノ) -4,5 -ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-メチルアミノー4-ヒドロキシベンジル) ピペリジンのメタノール (1.0 mL) 溶液に、4M
 5 HC1のジオキサン (1.0 mL) 溶液を加え、室温で3時間攪拌した。濃縮後、残査をメタノール (1 mL) に溶解し、Varian M SCXカラムに負荷し、メタノール (5 mL×2) で洗浄し、2M NH3のメタノール (8 mL) 溶液で溶出した。濃縮後、分取TLC (SiO2) により精製し、4-[N-(2-アミノー4,5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3-メチルア コンノー4-ヒドロキシベンジル) ピペリジン (化合物番号2160) を得た(3.4g、20%)。純度はRPLC/MSにて求めた (96%)。ESI/MS m/e 462.4 (M+H、C23H29F2N5O3)

[実施例1841-1844]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 826と1840の方法に従って合成した。ESI/MSデータおよび最終工程の 収量および収率を表43にまとめた。

表 43

実施例	化合物番号	分子式	ESI/MS m /e	収量 (mg)	収率 (%)
1841	2159	C24 H31 F2 N5 O3	476.3	7.6	48
1842	2161	C23 H28 C1 F2 N5 O2	480.3	7.3	45
1843	2162	C25 H32 F3 N5 O3	508.4	6.0	24
1844	2163	C24 H30 F3 N5 O3	494.3	4.3	15

20 [実施例1845] <u>4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(ベンゾ [c] フラザン-5-イル) ピペリジン (化合物番号2130) の合成</u>

4- [[N-(2-(tert-ブトキシカルボニルアミノ)-4、5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol)、

25 5- (ブロモメチル) ベンゾ [c] フラザン (0.75 m L) 、 (ピペリジノメチル) ポリスチレン (2.6-2.8 m m o l / g、60 m g、0.15 m m o l)

、メタノール (0.2 mL)、アセトニトリル (1.0 mL)、およびクロロホルム (0.50 mL) の混合物を50℃で一晩攪拌した。室温まで冷却し、VarianTM SCXカラムに負荷し、メタノール (5 mL×2) で洗浄した。生成物を2 M NH₃のメタノール (5 mL) 溶液で溶出し、濃縮した。残さにクロロホルム (5 mL) とフェニルイソシアネート (0.075 mL)を加え、室温で1時間攪拌し、VarianTM SCXカラムに負荷し、メタノール (5 mL×2)で洗浄した。生成物を2 M NH₃のメタノール (5 mL)溶液で溶出し、濃縮した。残査をメタノール (1 mL) に溶解し、4 M HCIのジオキサン (0.50 mL)溶液を加え、室温で一晩攪拌し、濃縮した。残査をメタノールに溶解し、Varia

n™ SCXカラムに負荷し、メタノール (5mL×2) で洗浄し、2M NH₃のメタノール (5mL) 溶液で溶出した。濃縮後、分取TLC (SiO₂、酢酸エチル/メタノール=5:1) により精製し、4-[[N-(2-アミノー4, 5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(ベンゾ [c] フラザン-5-イル) ピペリジン (化合物番号2130) を得た (3.6mg、16%)。純度はRPLC/MSにて求めた (87%)。ESI/MS m/e 459.3 (M⁺

+H、 $C_{22}H_{24}F_{2}N_{6}O_{3}$) [実施例1846] 4-[[N-(2-T)]-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] -1-(3,5-ジメチルイソキサゾール-4-イル

<u>) ピペリジン (化合物番号2131</u>) の合成

25 [実施例1847] <u>4-[[N-(2-アミノ-5-クロロベンゾイル) グリシル] アミノメチル] -1-[4-トリフルオロメチルチオ) ベンジル] ピペリジン (化合物番号1616) の合成</u>

4- [[N-(2-アミノー5-クロロベンゾイル) グリシル] アミノメチル] ピペリジン(16.2mg、0.050mmol)、4-(トリフルオロメチルチ 30 オ) ベンジルクロリド(20.3mg、0.075mmol)、アセトニトリル(1.0mL)、およびクロロホルム(0.50mL)の混合物を60℃で15時間

3 4 7

攪拌した。冷却後、 $Varian^{TM}$ SCXカラムに負荷し、メタノール(<math>15mL) で洗浄した。生成物を2M NH_3 のメタノール(5mL)溶液で溶出し、濃縮することにより4-[N-(2-T > 1-5-0) P-(2-T > 1-5-0

[実施例1848-1868]

本発明で用いる化合物をそれぞれ対応する原料および反応剤を用いて実施例18 10 47の方法に従って合成した。必要であれば、分取TLCによって精製し、目的物 を得た。ESI/MSデータおよび最終工程の収量および収率を表44にまとめた

表 44

中址周	化合物番号	分子式	ESI/MS m/e	(D.)	(प्राप्त (०)
关地列	化口物份方	万十八	BS17715 M7C	収量 (mg)	収率 (%)
1848	1617	C23 H26 Br F3 N4 O2 S	559.0	21.0	75
1849	1777	C23 H25 C12 F3 N4 O2	517.0	16.3	63.0
1850	1778	C24 H29 F3 N4 O2	463.2	9.5	41.1
1851	1779	C24 H27 F3 N4 O4	493.2	12.7	51.6
1852	1780	C23 H26 Br F3 N4 O2	527.0	16.4	62.2
1853	1781	C23 H27 F3 N4 O3	465.2	10.0	28.7
1854	1782	C25 H29 F3 N4 O2	475.2	12.2	34.3
1855	1783	C24 H26 F3 N5 O2	474.2	17.2	48.4
1856	1784	C23 H27 F3 N4 O2	449.2	11.3	33.6
1857	1788	C25 H31 F3 N4 O2	477.2	10.0	42.0
1858	1789	C24 H29 F3 N4 O3	479.2	10.0	27.9
1859	1792	C24 H30 F2 N4 O2	445.2	5.9	26.5
1860	1793	C22 H24 C12 F2 N4 O2	485.2	9.2	37.9
1861	1794	C23 H28 F2 N4 O2	431.2	5.7	26.5
1862	1795	C23 H26 F2 N4 O4	461.2	6.0	26.1
1863	1796	C22 H25 Br F2 N4 O2	497.0	10.5	42.4
1864	1797	C22 H26 F2 N4 O3	433.2	3.5	16.2
1865	1798	C23 H28 F2 N4 O3	447.2	5.6	25.1
1866	1799	C24 H28 F2 N4 O2	443.2	5.5	24.9

1867	1800	C23 H25 F2 N5 O2	442.2	9.4	42.6
1868	1801	C22 H26 F2 N4 O2	417.2	6.5	31.2

[実施例1869] 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾ イル) グリシル] アミノメチル] <math>-1-(4- プロモベンジル) ピペリジン (化合物番号1910) の合成

4-[N-(2-tert-ブトキシカルボニルアミノ) -5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol)、トキシベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol)、イーブロモベンジルブロミド (0.060mmol)、ピペリジノメチルポリスチレン (60mg)、アセトニトリル (0.8mL)、およびクロロホルム (0.5mL)の混合物を60℃で12時間攪拌した。冷却後、Varian™ SCX カラムに負荷し、50%クロロホルム/メタノール (10mL) およびメタノール (10mL) で洗浄した。生成物を2M NH3のメタノール (5mL) 溶液で溶出し、濃縮した。残さに4M HClの1、4ージオキサン (2mL) 溶液を加え、室温で一晩攪拌した。濃縮後、分取TLCにより精製し、4-[N-(2-アミノー5-トリフルオロメトキシベンゾイル) グリシル] アミノメチル] -1-(4-ブロモベンジル) ピペリジン (化合物番号1910)を得た (6.5mg、24%)。純度はRPLC/MSにて求めた (96%)。ESI/MS m/e 545 (M*+H、C23H26BrF3N4O3)

[実施例1870-1873]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例1 20 869の方法に従って合成した。ESI/MSデータおよび最終工程の収量および 収率を表45にまとめた。

表 45

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1870	.1911	C23 H25 C12 F3 N4 O3	533	10.6	. 39.7
1871	1912	C23 H27 F3 N4 O4	481	12.5	52.0
1872	1913	C25 H31 F3 N4 O3	493	7.5	30.5
1873	1914	C24 H29 F3 N4 O3	479	11.0	46.0

15

20

イル) グリシル] アミノメチル] -1- (ベンズ [d] イミダゾール-5-イル) ピペリジン (化合物番号2186) の合成

4-[N-(2-(tert-ブトキシカルボニルアミノ)-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] ピペリジン (0.060mmol)、1-(tert-ブトキシカルボニル)-6-(ブロモメチル) ベンズ [d] イミダゾール (15.6mg、0.050mmol)、(ピペリジノメチル) ポリスチレン (86mg、0.15mmol)、およびアセトニトリル (2mL) の混合物を50℃で3時間攪拌した。室温に冷却後、フェニルイソシアネート (30mg)を加え、室温で1時間攪拌し、Varian™ SCXカラムに負荷し、メタノール (5mL) とクロロホルム (5mL) で洗浄した。生成物を2M NH3のメタノール (5mL) 溶液で溶出し、濃縮した。

得られた物質をメタノール($1 \, \text{mL}$)に溶解し、 $4 \, \text{M}$ HClのジオキサン($1 \, \text{mL}$)溶液を加え、室温で一晩攪拌した。 $V \, \text{arian}^{\text{TM}}$ SCXカラムに負荷し、メタノール($5 \, \text{mL}$)およびジクロロメタンで洗浄した。生成物を $2 \, \text{M}$ NH $_3$ のメダノール溶液で溶出し、濃縮した。分取TLC($S \, \text{i} \, \text{O}_2$ 、酢酸エチル/メタノール=3:1)により $4-[[N-(2-r \, \text{s} \, \text{J} - \text{b} \, \text{J} - \text{b} \, \text{J} - \text{b} \, \text{J} \, \text{J} \, \text{J} \, \text{J}$ により $4-[[N-(2-r \, \text{s} \, \text{J} - \text{b} \, \text{J} がリシル] アミノメチル] $-1-(\text{ベンズ}[d] \, \text{J} \, \text{S} \, \text{J} \,$

[実施例1875] <u>4-[[N-(2-アミノ-4,5-ジフルオロベンゾイル</u>) グリシル] アミノメチル] -1-(ベンゾ [c] チアジアゾール-5-イル) ピペリジン(化合物番号2184)の合成

5-(ヒドロキシメチル) ベンゾ [c] チアジアゾール (8.3 mg、0.05
25 0 mm o 1) 、 (ピペリジノメチル) ポリスチレン (86 mg) 、およびクロロホルム (1 m L) の混合物に、メタンスルホニルクロリド (0.0042 m L) を加え、この混合物を室温で1.5 時間攪拌した。アセトニトリル (1 m L) と4-[[(N-(2-(tert-ブトキシカルボニルアミノ)-4,5-ジフルオロベンゾイル) グリシル] アミノメチル] ピペリジンを加え、この反応混合物を50℃で3時間攪拌した。室温に冷却後、フェニルイソシアネート (30 mg) を加え、室温で1 時間攪拌し、Varian™ SCXカラムに負荷し、メタノール (5 m L

-)およびクロロホルム($5\,\mathrm{m\,L}$)で洗浄した。生成物を $2\,\mathrm{M}$ NH $_3$ のメタノール($3\,\mathrm{m\,L}$)溶液で溶出し、濃縮した。得られた残さをジクロロメタン($1\,\mathrm{m\,L}$)に溶解し、 $1\,\mathrm{M}$ クロロトリメチリシランおよび $1\,\mathrm{M}$ フェノールのジクロロメタン($1\,\mathrm{m\,L}$)溶液を加えた。室温で $5\,\mathrm{時間攪拌後}$ 、 $V\,\mathrm{a\,r\,i\,a\,n^{TM}}$ SCXカラムに負荷し、
- 5 メタノールおよびジクロロメタンで洗浄した。生成物を2M NH₃のメタノール溶液で溶出した。分取TLC(SiO₂、酢酸エチル/メタノール=3:1)により精製し、4-[[N-(2-アミノー4,5-ジフルオロベンゾイル)グリシル]アミノメチル]-1-(ベンゾ[c]チアジアゾール-5-イル)ピペリジン(化合物番号2184)を得た(1.3mg、5.5%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m/e 475.2 (M++H、C₂₂H₂₄F₂N

[実施例1876] 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(ベンゾ[c] チアジアゾール-5-イル) ピペリジン (化合物番号2185) の合成

6 O 2 S)

- 4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(ベンゾ[c] チアジアゾール-5-イル) ピペリジン (化合物番号2185) を、対応する原料および反応剤を用いて実施例1875の方法に従って合成した。7. 2mg、28%収率; ESI/MS m/e 507. 4 (M^++H 、 $C_{23}H_{25}F_3N_6O_2S$)
- 20 [実施例1877] <u>4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(2-アミノ-4-クロロベンジル) ピペリジン (化合物番号1919) の合成</u>

4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] ピペリジン (0.050mmol)、4-クロロ-2-ニトロベンジ

- 25 ルクロリド(0.050mmol)、ピペリジノメチルポリスチレン(60mg)、アセトニトリル(1.0mL)、およびクロロホルム(0.7mL)の混合物を50℃で一晩攪拌した。冷却後、Varian™ SCXカラムに負荷し、クロロホルム/メタノール(10mL)およびメタノール(10mL)で洗浄した。生成物を2M NH₃のメタノール(5mL)溶液で溶出し、濃縮した。得られた残さにエ
- 30 タノール(3 m L)と10%パラジウムカーボン(15 m g)を加え、混合物を水 素雰囲気下、室温で1.5時間攪拌した。濾過、濃縮後、分取T L C により精製し

、4-[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] -1-(2-アミノ-4-クロロベンジル) ピペリジン (化合物番号 1919) を得た(5. $1\,\mathrm{mg}$ 、14%)。純度はRPLC/MSにて求めた(90%)。; ${}^{1}\mathrm{H}$ NMR($400\mathrm{MHz}$ 、CDC13) δ 1.09-1.32(m, 4H), 1.41-1.59(m, 1H), 1.66(d, $J=12.5\,\mathrm{Hz}$, 2H), 1.88(t, $J=11.5\,\mathrm{Hz}$, 2H), 2.82(d, $J=11.5\,\mathrm{Hz}$, 2H), 3.17(t. $J=6.5\,\mathrm{Hz}$, 2H), 3.42(s, 2H), 4.05(d, $J=3.5\,\mathrm{Hz}$, 2H), 4.85(br s, 1H), 5.92(br s, 2H), 6.25-6.36(m, 1H), 6.55-6.66(m, 1H), 6.70(d, $J=8.5\,\mathrm{Hz}$, 1H), 6.85(d, $J=8.5\,\mathrm{Hz}$, 1H), 7.26(s, 1H), 7.42(d, $J=8.5\,\mathrm{Hz}$, 1H), 7.68(s, 1H); ESI/MS m/e 498.2 (M++H、C23H27ClF3N5O2)

[実施例1878-1879]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 1877の方法に従って合成した。ESI/MSデータおよび最終工程の収量および収率を表 46にまとめた。

15

25

10

表 46

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1878	1920	C22 H26 C1 F2 N5 O2	466.2	3.5	10.0
1879	1922	C23 H27 C1 F3 N5 O3	514.2	1.2	3.1

[実施例1880] 4-[[N-(2-アミノ-5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] <math>-1-(ベンズ[d] オキサゾール-5-イル)

20 ピペリジン (化合物番号2188) の合成

実施例1826の方法に従って合成した1- (3-アミノー4-ヒドロキシベンジル) -4- [[N- (2-(tert-ブトキシカルボニルアミノ) -5-トリフルオロメチルベンゾイル) グリシル] アミノメチル] ピペリジン (34.8mg、0.060mmol) のTHF (2mL) 溶液に、オルト蟻酸トリエチル (0.033mL、3.3当量) およびピリジニウムpートルエンスルホネート (2mg、0.4当量) を加え、還流下、一晩攪拌した。室温まで冷却後、混合物を濃縮した。残査を酢酸エチルに溶解し、BondElutTM Siカラムに負荷し、酢酸エチル/メタノール=4:1で溶出し、濃縮した。

20

25

得られた残さを酢酸エチル(1.5 mL)に溶解し、4 M HClのジオキサン溶液(0.5 mL)を加えた。室温で一晩攪拌した後、5 M NaOH水溶液で p H10に調節し、酢酸エチルで抽出した。抽出液を濃縮し、分取TLC(SiO₂、酢酸エチル/メタノール=4:1)で精製して4-[[N-(2-アミノー5-トリフルオロメチルベンゾイル)グリシル]アミノメチル]-1-(ベンズ [d] オキサゾール-5-イル)ピペリジン(化合物番号2188)を得た(1.6 mg、5%)。純度はRPLC/MSにて求めた(94%)。ESI/MS m/e 490.3 (M^+ +H、 $C_{24}H_{26}F_3N_5O_3$)

[実施例1881] 4-[N-(2-アミノ-4, 5-ジフルオロベンゾイル
 10)グリシル]アミノメチル]-1-(2-オキソ-2, 3-ジヒドロ-1, 3-ベンズオキサゾール-5-イル)ピペリジン(化合物番号2190)の合成

1- (3-アミノ-4-ヒドロキシ) -4- [[N-(2-(tert-ブトキ

- (5 mL) 溶液で溶出し、濃縮した。得られた残さに、1 M クロロトリメチルシランと1 M フェノールのジクロロメタン(2 mL) 溶液を加えた。室温で2 時間 攪拌し、濃縮後、残査をメタノールに溶解し、V a r i a n TM S C X カラムに負荷し、メタノール(5 m L) 溶液で溶出し、濃縮した。分取 T L C (S i O $_2$ 、酢酸エチル/メタノール = 5:2)により精製し、4 ー [[N ー (2 ー アミノー4, 5 ー ジフルオロベンゾイル) グリシル] アミノメチル] ー 1 ー
- ル)グリシル] アミノメチル] -1-(2-オキソ-2,3-ジヒドロ-1,3-ベンゾキサゾール-5-イル) ピペリジン(化合物番号2190)を得た(4.1mg、22%)。純度はRPLC/MSにて求めた(100%); ESI/MSm/e 474.2(M++H、 $C_{23}H_{25}F_{2}N_{5}O_{4</sub>)$
- 30 [実施例1882-1884]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例

1881の方法に従って合成した(化合物番号2192と2193の合成には、クロロ蟻酸フェニルの代わりにクロロチオ蟻酸フェニルを用いた)。ESI/MSデータおよび最終工程の収量および収率を表47にまとめた。

表 47

5

20

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1882	2191	C24 H26 F3 N5 O4	506.3	3.1	10
1883	2192	C23 H25 F2 N5 O3 S	490.2	6.9	35
1884	2193	C24 H26 F3 N5 O3 S	522.2	3.6	11 .

[参考例36] <u>4-[N-(1-(9-フルオレニルメトキシカルボニル)ピペリジン-4-イルメチル)カルバモイルメチル]アミノメチル]-3-メトキシフェニルオキシメチル-ポリスチレン</u>

10 1-(9-フルオレニルメトキシカルボニル)-4-(グリシルアミノメチル) ピペリジン・塩酸塩(10mmol)のDMF(65mL)溶液に、酢酸(0.3 mL)、トリアセトキシ水素化ホウ素ナトリウム(1.92g)、および4-ホルミル-3-(メトキシフェニルオキシメチル)ーポリスチレン(1mmol/g、200g)を加え、2時間振とうし、濾過した。樹脂をメタノール、DMF、ジクロロメタン、および、メタノールで洗浄し、乾燥して目的の物質を得た。

[実施例1885-2000] 4-アミノメチルピペリジン類の固相合成

相当するカルボン酸(1.6 mmol)、HBTU(1.6 mmol)、および DMF(6 mL)の混合物にジイソプロピルエチルアミン(3.6 mmol)を加え、2分間振とうした。4-[[N-(1-(9-7))]]アミノメチル)カルボニル)ピペリジンー4-(1) カルバモイルメチル〕アミノメチル]-3-(1) トキシフェニロキシメチルーポリスチレン(0.4 mmol)を加え、1時間振とうし、濾過した。樹脂をDMFとジクロロメタンで洗浄し、乾燥した。

得られた樹脂(0.05mmol)に、NaBH(OAc)₃(0.25mmol)、酢酸(0.025mmol)、およびDMFの混合物を加え、さらに相当する アルデヒド(2.5mmol)を加えて2時間振とう後、濾過し、メタノール、10%ジイソプロピルエチルアミンのDMF溶液、DMF、ジクロロメタン、およびメタノールにて洗浄した。この樹脂と水(0.050mL)、およびトリフルオロ

酢酸($0.95\,\mathrm{mL}$)の混合物を1時間振とうし、濾過し、樹脂を $50\,\mathrm{mL}$ の混合物を1時間振とうし、濾過し、樹脂を $50\,\mathrm{mL}$ とメタノールで洗浄した。濾液と洗液をまとめて、濃縮した。残さを $10\,\mathrm{mL}$ が以来を表 $10\,\mathrm{mL}$ にて洗浄した。生成物を $10\,\mathrm{mL}$ にて洗浄した。生成物を $10\,\mathrm{mL}$ にて洗浄した。生成物を $10\,\mathrm{mL}$ にて洗浄した。必要であれば、分取 $10\,\mathrm{mL}$ にまたは $10\,\mathrm{mL}$ にまたは $10\,\mathrm{mL}$ により精製し、 $10\,\mathrm{mL}$ によいなで表 $10\,\mathrm{mL}$ によいなで表 $10\,\mathrm{mL}$ によいた。

表 48

実施例 化合物番号 分子式 ESI/MS m/e 収量 (mg) 収率 (8) 1885 1923 C23 H25 Br F3 N3 O2 S 544 15.7 87 1886 1924 C24 H28 F3 N3 O3 S 496 14.6 89 1887 1925 C23 H25 F4 N3 O2 S 484 11.7 73 1888 1926 C23 H24 F5 N3 O2 S 502 13.9 84 1889 1927 C23 H26 F3 N3 O3 S 482 10.7 67 1890 1928 C24 H26 F3 N3 O4 S 510 14.3 85 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S 506 14.7 88 1893 1931 C25 H36 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O2 S 509 7.1* 35 1895 1933 C25 H32 F3 N3 O2 S	実施例	ルム無平見	N 7 -4	Incr (No. /		
1886 1924 C24 H28 F3 N3 O3 S 496 14.6 89 1887 1925 C23 H25 F4 N3 O2 S 484 11.7 73 1888 1926 C23 H24 F5 N3 O2 S 502 13.9 84 1889 1927 C23 H26 F3 N3 O3 S 482 10.7 67 1890 1928 C24 H26 F3 N3 O4 S 510 14.3 85 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S 509 7.1* 35 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O2 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1895 1933 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S <td< th=""><th>天地列</th><th>化合物番号</th><th>分子式</th><th>ESI/MS m/e</th><th>収量 (mg)</th><th>収率 (%)</th></td<>	天地列	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
1887 1925 C23 H25 F4 N3 O2 S 484 11.7 73 1888 1926 C23 H24 F5 N3 O2 S 502 13.9 84 1889 1927 C23 H26 F3 N3 O3 S 482 10.7 67 1890 1928 C24 H26 F3 N3 O4 S 510 14.3 85 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S 512 14.4 85 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 509 11.1 66 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 BF FN3 O2 S	1885	1923	C23 H25 Br F3 N3 O2 S	544	15.7	87
1887 1925 C23 H25 F4 N3 O2 S 484 11.7 73 1888 1926 C23 H24 F5 N3 O2 S 502 13.9 84 1889 1927 C23 H26 F3 N3 O3 S 482 10.7 67 1890 1928 C24 H26 F3 N3 O4 S 510 14.3 85 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S 512 14.4 85 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 509 11.1 66 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br F N3 O2 S	1886	1924	C24 H28 F3 N3 O3 S	496	14.6	89
1888 1926 C23 H24 F5 N3 O2 S 502 13.9 84 1889 1927 C23 H26 F3 N3 O3 S 482 10.7 67 1890 1928 C24 H26 F3 N3 O4 S 510 14.3 85 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S2 512 14.4 85 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 509 11.1 66 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br P N3 O2 S 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 S <td>1887</td> <td>1925</td> <td>C23 H25 F4 N3 O2 S</td> <td>484</td> <td></td> <td></td>	1887	1925	C23 H25 F4 N3 O2 S	484		
1889 1927 C23 H26 F3 N3 O3 S 482 10.7 67 1890 1928 C24 H26 F3 N3 O4 S 510 14.3 85 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S2 512 14.4 85 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 S 509 11.1 66 1901 1939 C24 H30 Br N3 O3 S 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 S <td>1888</td> <td>1926</td> <td>C23 H24 F5 N3 O2 S</td> <td>502</td> <td></td> <td></td>	1888	1926	C23 H24 F5 N3 O2 S	502		
1890 1928 C24 H26 F3 N3 O4 S 510 14.3 85 1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S 512 14.4 85 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H36 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 S 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 A 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 A 476 4.9* 25 1903 1941 C23 H28 Br N3 O3 A <td>1889</td> <td>1927</td> <td>C23 H26 F3 N3 O3 S</td> <td>482</td> <td></td> <td></td>	1889	1927	C23 H26 F3 N3 O3 S	482		
1891 1929 C26 H30 F3 N3 O2 S 506 14.7 88 1892 1930 C24 H28 F3 N3 O2 S2 512 14.4 85 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 S 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 S 488 5.0* 25 1902 1940 C23 H26 Br F2 N3 O2 S 476 4.9* 25 1903 1941 C23 H28 Br N3 O3 S 474 1.7* 9 1905 1943 C24 H28 Br N3 O2 S <td>1890</td> <td>1928</td> <td>C24 H26 F3 N3 O4 S</td> <td>510</td> <td></td> <td></td>	1890	1928	C24 H26 F3 N3 O4 S	510		
1892 1930 C24 H28 F3 N3 O2 S2 512 14.4 85 1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 S 509 11.1 66 1901 1939 C24 H30 Br N3 O3 S 488 5.0* 25 1901 1939 C24 H30 Br N3 O2 S 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 S 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 S 474 1.7* 9 1905 1943 C24 H28 Br N3 O2 S <td>1891</td> <td>1929</td> <td></td> <td><u> </u></td> <td></td> <td></td>	1891	1929		<u> </u>		
1893 1931 C25 H30 F3 N3 O2 S 494 14.3 88 1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2	1892	1930				
1894 1932 C25 H28 F3 N3 O3 S 509 7.1* 35 1895 1933 C25 H30 F3 N3 O2 S 494 14.3 88 1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 488 3.2* 16 1909 1947 C25 H32 Br N3 O2 48	1893	1931				
1895						
1896 1934 C26 H32 F3 N3 O2 S 509 14.4 86 1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 488 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 <td></td> <td></td> <td></td> <td>509</td> <td>7.1*</td> <td>35</td>				509	7.1*	35
1897 1935 C23 H25 F3 N4 O4 S 511 14.9 88 1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 S 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 S 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 S 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 S 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 S 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 S 502 S 6.6* 32 1906 1944 C26 H32 Br N3 O2 S 498 S 7.0* 35 1907 1945 C24 H30 Br N3 O2 S 488 S 3.2* 16 1909 1947 C25 H32 Br N3 O2 S 486 S 4.9* 25 1910 1948 C25 H32 Br N3 O2 S 486 S 4.9* 25		1933	C25 H30 F3 N3 O2 S	494	14.3	88
1898 1936 C24 H28 F3 N3 O2 S 480 13.3 84 1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 488 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25		1934	C26 H32 F3 N3 O2 S	509	14.4	86
1899 1937 C26 H32 F3 N3 O2 S 509 11.1 66 1900 1938 C23 H27 Br2 N3 O2 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 488 3.2* 16 1908 1946 C25 H32 Br N3 O2 486 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1897	1935	C23 H25 F3 N4 O4 S	511	14.9	88
1900 1938 C23 H27 Br2 N3 O2 538 5.3* 25 1901 1939 C24 H30 Br N3 O3 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 488 3.2* 16 1908 1946 C25 H32 Br N3 O2 486 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1898	1936	C24 H28 F3 N3 O2 S	480	13.3	84
1901 1939 C24 H30 Br N3 O3 488 5.0* 25 1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 488 3.2* 16 1908 1946 C25 H32 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1899	1937	C26 H32 F3 N3 O2 S	509	11.1	66
1902 1940 C23 H27 Br F N3 O2 476 4.9* 25 1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 488 3.2* 16 1908 1946 C25 H32 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1900	1938	C23 H27 Br2 N3 O2	538	5.3*	25
1903 1941 C23 H26 Br F2 N3 O2 494 6.1* 30 1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 5 504 11.1 67 1908 1946 C25 H32 Br N3 O2 488 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1901	1939	C24 H30 Br N3 O3	488	5.0*	25
1904 1942 C23 H28 Br N3 O3 474 1.7* 9 1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 504 11.1 67 1908 1946 C25 H32 Br N3 O2 488 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1902	1940	C23 H27 Br F N3 O2	476	4.9*	25
1905 1943 C24 H28 Br N3 O4 502 6.6* 32 1906 1944 C26 H32 Br N3 O2 498 7.0* 35 1907 1945 C24 H30 Br N3 O2 S 504 11.1 67 1908 1946 C25 H32 Br N3 O2 488 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1903	1941	C23 H26 Br F2 N3 O2	494	6.1*	30
1906	1904	1942	C23 H28 Br N3 O3	474	1.7*	9
1907 1945 C24 H30 Br N3 O2 S 504 11.1 67 1908 1946 C25 H32 Br N3 O2 488 3.2* 16 1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1905	1943	C24 H28 Br N3 O4	502	6.6*	32
1908	1906	1944	C26 H32 Br N3 O2	498	7.0*	35
1909 1947 C25 H30 Br N3 O3 500 5.7 35 1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1907	1945	C24 H30 Br N3 O2 S	504	11.1	67
1910 1948 C25 H32 Br N3 O2 486 4.9* 25	1908	1946	C25 H32 Br N3 O2	488	3.2*	16
1011 1040 026 034 0 026	1909	1947	C25 H30 Br N3 O3	500	5.7	35
1911 1949 C26 H34 Br N3 O2 500 6.7* 33	1910	1948	C25 H32 Br N3 O2	486	4.9*	25
	1911	1949	C26 H34 Br N3 O2	500	6.7*	33

1012	1950	C23 H27 Br NA CA	503	5 0+	25
1912		C23 H27 Br N4 O4		5.0*	25
1913	1951	C24 H30 Br N3 O2	472	5.1*	26
1914	1952	C22 H24 Br2 F N3 O2	542	14.9	83
1915	1953	C23 H27 Br F N3 O3	492	13.9	86
1916	1954	C22 H24 Br F2 N3 O2	480	12.5	79
1917	1955	C22 H23 Br F3 N3 O2	498	13.2	80
1918	1956	C22 H25 Br F N3 O3	478	7.0	44
1919	1957	C23 H25 Br F N3 O4	506	4.0*	20
1920	1958	C25 H29 Br F N3 O2	502	14.6	88
1921	1959	C23 H27 Br F N3 O2 S	508	13.1	78
1922	1960	C24 H29 Br F N3 O2	490	13.8	85
1923	1961	C24 H27 Br F N3 O3	504	2.7*	13
1924	1962	C24 H29 Br F N3 O2	490	12.7	78
1925	1963	C25 H31 Br F N3 O2	504	13.5	81
1926	1964	C22 H24 Br F N4 O4	507	14.8	88
1927	1965	C23 H27 Br F N3 O2	476	12.1	77
1928	1966	C25 H31 Br F N3 O2	504	13.4	80
1929	1967	C22 H26 Br F N4 O2	477	4.7*	20
1930	1968	C23 H29 F N4 O3	429	6.9*	32
1931	1969	C22 H27 F N4 O3	415	3.7*	17
1932	1970	C23 H27 F N4 O4	443	5.4*	24
1933	1971	C25 H31 F N4 O2	439	4.3*	. 20
1934	1972	C23 H29 F N4 O2 S	445	6.2*	28
1935	1973	C24 H31 F N4 O2	427	6.3*	29
1936	1974	C24 H31 F N4 O2	427	4.9*	23
1937	1975	C22 H26 F N5 O4	444	5.9*	27
1938	1976	C23 H29 F N4 O2	413	6.7*	32
1939	1977	C23 H26 F N5 O2	424	5.1*	24
1940	1978	C25 H33 F N4 O2	441	6.3*	29
1941	1979	C25 H30 F2 N4 O2	457	8.0*	35
1942	1980	C24 H28 F2 N4 O3	459	6.0*	26
1943	1981	C22 H25 F2 N5 O4	462	9.3*	41
1944	1982	C23 H25 F2 N5 O2	442	6.0*	27
1945	1983	C25 H32 F2 N4 O2	459	8.3*	37
1946	1984	C22 H26 Br I N4 O2	585	9.7*	36
1947	1985	C23 H29 I N4 O3	537	9.2*	36
1948	1986	C22 H27 I N4 O3 .	523	5.8*	23
1949	1987	C23 H27 I N4 O4	551	8.2*	32
1950	1988	C25. H31 I N4 O2	547	6.7*	26
	L	1	<u>. </u>		

WO 00/69432

356

1951	1989	C23 H29 I N4 O2 S	553	6.4*	25
1952	1990	C24 H31 I N4 O2	535	7.2*	29
1953	1991	C24 H29 I N4 O3	549	5.6*	22
1954	1992	C24 H31 I N4 O2	535	6.2*	25
1955	1993	C22 H26 I N5 O4	552	10.2*	40
1956	1994	C23 H29 I N4 O2	521	7.5*	30
1957	1995	C23 H26 I N5 O2	532	6.8*	27
1958	1996	C25 H33 I N4 O2	549	7.1*	28
1959	1997	C25 H33 I N4 O2	549	3.0*	12
1960	1998	C22 H25 Br Cl N3 O2	478	7.6*	39
1961	1999	C23 H28 C1 N3 O3	430	7.0*	39
1962	2000	C22 H25 C1 F N3 O2	418	14.1	102
1963	2001	C22 H26 C1 N3 O3	416	6.3*	36
1964	2002	C23 H26 C1 N3 O4	444	7.1*	39
1965	2003	C25 H30 C1 N3 O2	440	15.3	105
1966	2004	C23 H28 C1 N3 O2 S	446	8.4*	45
1967	2005	C24 H30 Cl N3 O2	428	7.4*	41
1968	2006	C24 H30 C1 N3 O2	428	13.8	98
1969	2007	C22 H25 C1 N4 O4	445	16.0	109
1970	2008	C23 H28 C1 N3 O2	414	14.1	103
1971	2009	C23 H25 C1 N4 O2	425	14.8	106
1972	2010	C25 H32 C1 N3 O2	. 442	14.5	99
1973	2011	C25 H32 C1 N3 O2	442	14.5	99
1974	2012	C22 H24 Br2 Cl N3 O2	558	12.8*	58
1975	2013	C23 H27 Br C1 N3 O3	508	8.6*	42
1976	2014	C22 H25 Br Cl N3 O3	494	6.0*	30
1977	2015	C23 H25 Br C1 N3 O4	522	8.4*	40
1978	2016	C25 H29 Br Cl N3 O2	518	17.6	103
1979	2017	C23 H27 Br Cl N3 O2 S	524	17.1	99
1980	2018	C24 H29 Br Cl N3 O2	506	14.7	88
1981	2019	C24 H27 Br C1 N3 O3	520	8.0*	38
1982	2020	C24 H29 Br Cl N3 O2	506	14.7	88
1983	2021	C22 H24 Br Cl N4 O4	523	12.0*	57
1984	2022	C23 H27 Br Cl N3 O2	492	8.5*	42
1985	2023	C23 H24 Br Cl N4 O2	503	6.3*	31
1986	2024	C25 H31 Br Cl N3 O2	520	9.6*	46
1987	2025	C25 H31 Br Cl N3 O2	520	15.0	87
1988	2026	C22 H23 Br C1 F2 N3 O2	514	15.8	93
1989	2027	C22 H26 Br2 N4 O2	537	10.7*	42
		-	<u> </u>		

1990	2028	C23 H29 Br N4 O3	489	8.5*	36
1991	2029	C22 H27 Br N4 O3	475	7.5*	32
1992	2030	C23 H27 Br N4 O4	503	6.8*	28
1993	2031	C25 H31 Br N4 O2	499	6.2*	26
1994	2032	C24 H29 Br N4 O3	501	8.9*	37
1995	2033	C24 H31 Br N4 O2	487	9.1*	39
1996	2034	C22 H26 Br N5 O4	504	6.4*	26
1997	2035	C23 H29 Br N4 O2	473	6.5*	28
1998	2036	C23 H26 Br N5 O2	484	6.3*	27
1999	2037	C25 H33 Br N4 O2	501	5.4*	22
2000	2038	C22 H25 Br F2 N4 O2	495	5.4*	23

*トリフルオロ酢酸塩の収率。

[実施例2001] 1-(3-カルバモイルベンジル)-4-[[N-(3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番

5 号924)の合成

EDCI (10.7mg)、1ーヒドロキシベンゾトリアゾール・水和物(7.5mg)、トリエチルアミン(15.4mg)、0.5M NH $_3$ のジオキサン溶液(0.1mL、0.05mmol)、およびDMF(0.5mL)を、1ー(3ーカルボキシベンゾイル)ー4ー[[Nー(3ートリフルオロメチル)ベンゾイル)

- グリシル] アミノメチル] ピペリジン (19.4mg、0.041mmol)のクロロホルム溶液(2.5mL)の溶液に加え、25℃で20時間振とうし、2MNaOH水溶液(2 × 2mL)と食塩水 (1mL)にて洗浄した。PTFE膜フィルターによる濾過後、溶媒を減圧下に除去し、1-(3-カルバモイルベンジル)-4-[[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチ
- 15 ル] ピペリジン (化合物番号924) を黄白色の固体として得た (17.9 m g、92%)。純度はRPLC/MSにて求めた (89%)。ESI/MS m/e 447.3 (M⁺+H、C₂₄H₂₇F₃N₄O₃)

[実施例2002] 1-(4-カルバモイルベンジル)-4-[[N-(3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番

20 号925)の合成

化合物番号925は、対応する原料および反応剤を用いて実施例2001の方法 に従って合成した。14.2mg、72%。純度はRPLC/MSにて求めた(8

358

- 1 ー (4 ーニトロベンジル) ー4ー [[Nー (3ートリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (22.4 mg、0.047 mm o l) のエタノール (3 mL) 溶液を、25℃において、5%パラジウム炭素 (10 mg) の存在下に1時間、1気圧の水素雰囲気下で水素化した。触媒を濾過により除去し、エタノール (5 mL) で洗浄した。濾液をまとめて、濃縮することにより、10 1ー (4ーアミノベンジル) ー4ー [[Nー (3ートリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号516) を黄白色の固体として得た (20.1 mg、96%)。純度はRPLC/MSにて求めた (99%)。ESI/MS m/e 449.1 (M++H、C23H27F3N4O2) [実施例2004-2005]・
- 15 化合物番号517と518を、それぞれ対応する原料および反応剤を用いて、実施例2003の方法に従って合成した。ESI/MSデータおよび最終工程の収量および収率を表49にまとめた。

表 49

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2004	517	C23 H27 F3 N4 O2	449	26.5	78
2005	518	C23 H27 F3 N4 O2	449	25.3	71

20

[実施例2006] 1-[4-(ベンゾイルアミノ) ベンジル]-4-[N-(3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号519) の合成

EDCI(4.7mg)、1-ヒドロキシベンゾトリアゾール・水和物(3.3 mg)、トリエチルアミン(2.5mg)、および安息香酸(3.0mg)を、1-(4-アミノベンジル)-4-[[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(10.1mg、0.023mmol)のジクロロメタン溶液(2.5mL)に加え、25℃で16時間振とうした。反応混

合物を 2M NaOH水溶液($2mL \times 2$)と食塩水(1mL)にて洗浄した後、PTFE膜フィルターにより濾過し、溶媒を減圧下に留去することにより、黄色油状体を得た。これを分取TLC(SiO_2 、10%メタノール/ジクロロメタン)にて精製し、1-[4-(ベンゾイルアミノ)ベンジル]-4-[N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号 <math>519)を無色の油状体として得た(4.6mg、36%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 553.2 (M^++H 、 $C_{30}H_3$ $_1F_3N_4O_3$)

[実施例2007] 1-[4-(ピペリジノカルボニル)ベンジル]-4-[[
 N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号1572)の合成

ピペリジン (0.048mg)、ジイソプロピルカルボジイミド (0.45mm ol)のDMF溶液 (0.15mL)、1-ヒドロキシベンゾトリアゾール水化物 (0.45mmol)のDMF溶液を、1-(4-カルボキシベンジル)-4-[
15 [N-(3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (0.040mmol)のDMF (1.0mL)溶液に加え、室温で17時間振とう後、VarianTM SCXカラムに負荷し、クロロホルム/メタノール=1:1(5mL)およびメタノール(5mL)にて洗浄した。生成物を2M NH3のメタノール(5mL)溶液で溶出し、濃縮して1-[4-(ピペリジノカルボニル20)ベンジル]-4-[[N-(3-(トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン (化合物番号1572)を得た(14.3mg、66%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 545(M++H、C29H35F3N4O3)

[実施例2008-2015]

25 本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例2 007の方法に従って合成した。ESI/MSデータおよび最終工程の収量および 収率を表50にまとめた。

表 50

実施例	化合物番号	│	ESI/MS m/el	収量	(ma)	収率 (%)
~ ne 1/3	ICH WE 7	77 1 24	,	ル単	(mg)	1 40 - (8)
Į.						
•	1		1 1			

2008	1573	C31 H33 F3 N4 O4	583	17.6	76
2009	1574	C31 H33 F3 N4 O3	567	18.8	83
2010	1575	C30 H30 C1 F3 N4 O3	587	3.2	14
2011	1576	C28 H33 F3 N4 O4	547	21.1	97
2012	1577	C26 H31 F3 N4 O4	521	5.1	24
2013	1578	C31 H33 F3 N4 O3	567	16.9	75
2014	1579	C31 H33 F3 N4 O3	567	6.0	26
2015	1580	C29 H35 F3 N4 O3	545	15.1	69

[実施例2016] 1-[4-(クロロホルミル) ベンジル] -4-[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジンの 合成

5 1-(4-カルボキシベンジル) -4-[[N-(3-トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン(240mg) と塩化チオニル(1mL) の混合物を室温で12時間攪拌した後、余分の塩化チオニルを減圧下に除去することにより、1-[4-(クロロフォルミル) ベンジル] -4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジンを10 得た。この酸塩化物は、それ以上精製することなく用いた。

[実施例2017] 1-[4-[N-(2-メトキシエチル) カルバモイル] ベンジル] <math>-4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1612) の合成

1-[4-(クロロホルミル) ベンジル] -4-[[N-(3-トリフルオロメ チル) ベンゾイル) グリシル] アミノメチル] ピペリジン (0.042mmol) 、2-メトキシエチルアミン (3.8mg、0.050mmol)、ピペリジノメ チルポリスチレン (46mg)、およびジクロロメタン (1.5mL)の混合物を 室温で17時間攪拌した。水 (0.020mL)を加え、混合物を30分攪拌した 後、メタノール (1mL)を加え、混合物をVarian™ SCXカラムに負荷し 、メタノール (10mL) にて洗浄した。生成物を、2M NH3のメタノール溶液で溶出し、濃縮することにより、1-[4-[N-(2-メトキシエチル)カルバモイル] ベンジル] -4-[[N-(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号1612)を得た (26.7mg、100%)。純度はRPLC/MSにて求めた (92%)。ESI/MS m/

e 5 3 5. 2 $(M^++H, C_{27}H_{33}F_3N_4O_4)$

[実施例2018-2020]

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて実施例2 017に従って合成した。必要であれば、分取TLCによって精製し、目的物を得 5 た。ESI/MSデータ、収量、および収率を表51にまとめた。

表 51

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2018	1610	C31 H30 F6 N4 O3	621.2	4.4	14
2019	1611	C30 H29 C12 F3 N4 O3	621.2	35.7	定量的
2020	1613	C32 H35 F3 N4 O3	581.2	29.9	定量的

[実施例2021] 4-[N-[5-ブロモ-2-(メチルアミノ) ベンゾイル
 10] グリシル] アミノメチル-1-(4-クロロベンジル) ピペリジン (化合物番号 1427) の合成

4- [N-(2-アミノ-5-ブロモベンゾイル) グリシル] アミノメチル-1 -(4-クロロベンジル) ピペリジン(化合物番号1042)(50mg、0.10mmol)のオルト蟻酸トリエチル(6.5mL)溶液を150℃で17時間攪 拌した。濃縮により黄色固体を得た。この黄色固体のエタノール(3mL)溶液に、水素化ホウ素ナトリウム(7.6mg、0.2mmol)を加え、室温で14時間攪拌した。得られた白色沈殿をジクロロメタンに溶解し、溶液を1M NaOH水溶液(2mL)にて洗浄した。有機層を分離し、K2CO3で乾燥し、濾過、濃縮した。カラムクロマトグラフィー(SiO2、20%メタノール/クロロホルム)に よって精製し、4- [N-[5-ブロモー2-(メチルアミノ)ベンゾイル]グリシル] アミノメチルー1-(4-クロロベンジル)ピペリジン(化合物番号1427)を得た(40mg、80%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m/e 505(M++H、C23H28BrClF6N4O2)[実施例2022] 4- [N-[5-ブロモー2-(ジメチルアミノ)ベンゾイ

25 <u>ル] グリシル] アミノメチルー1 - (4 - クロロベンジル) ピペリジン (化合物番号1428) の合成</u>

シアノ水素化ホウ素ナトリウム(26mg、0.42mmol)と酢酸(14L

WO 00/69432

)を、4- [N-(2-アミノ-5-ブロモベンゾイル)グリシル] アミノメチル
-1-(4-クロロベンジル)ピペリジン(化合物番号1042)(67mg、0
. 14mmol)、37%ホルムアルデヒド水溶液(0.112mL、1.4mm
ol)、アセトニトリル(2mL)、およびメタノール(1.5mL)の混合物に
5 加え、50℃で30時間攪拌した後、1M NaOH水溶液およびジクロロメタンを加えた。水層を分離し、有機層をK2CO3で乾燥、濾過、濃縮した。カラムクロマトグラフィー(SiO2、20%メタノール/酢酸エチル)により精製し、4- [N-[5-ブロモー2-(ジメチルアミノ)ベンゾイル]グリシル] アミノメチル
-1-(4-クロロベンジル)ピペリジン(化合物番号1428)を得た(60m
10 g、82%)。純度はRPLC/MSにて求めた(100%)。ESI/MS m
/e 523 (M++H、C24H30BrClF6N4O2)

[実施例2023]4-[[N-[5-ブロモー2-(メチルスルホニルアミノ) ベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル) ピペリジン (化合物番号1581) の合成

- 4-[N-[2-アミノ-5-ブロモベンゾイル] グリシル] アミノメチル] -1-(4-クロロベンジル) ピペリジン (25mg、0.05mmol)、メタンスルホニルクロリド (0.0045mL)、トリエチルアミン (0.026mL)、およびジクロロメタン (2mL) の混合物を室温で17時間攪拌した。反応混合物をカラムクロマトグラフィー (SiO₂) で精製し、Varian™ SCXカラムに負荷し、メタノール (5mL) にて洗浄した。生成物を、0.1M HCl
 - のメタノール (5 m L) 溶液で溶出し、濃縮して 4-[N-[5-プロモー2-(メチルスルホニルアミノ) ベンゾイル] グリシル] アミノメチル] <math>-1-(4-0) クロロベンジル) ピペリジン (化合物番号 1581) を得た (5.4 m g、 19%)。 ESI/MS m/e 573.0 (M++H、C23H28BrClN4O4S)
- 25 [実施例2024] <u>4-[[N-[5-プロモー2-(ビス(メチルスルホニル) アミノ) ベンゾイル) グリシル] アミノメチル] -1-(4-クロロベンジル) ピペリジン (化合物番号1582) の合成</u>

1 - (4 - クロロベンジル) - 4 - [[N - [2 - アミノ - 5 - ブロモベンゾイル] グリシル] アミノメチル] ピペリジン (5 7 mg、0. 10 mm o l)、メタ
 30 ンスルホニルクロリド (0.018 mL、0.024 mL)、トリエチルアミン (0.068 mL)、およびジクロロメタン (2 mL)の混合物を室温で8時間攪拌

した。 $1\,M$ NaOH水溶液($1\,m$ L)を加え、ジクロロメタン($2\,m$ L×3)に て抽出した。抽出液を合わせて、 $K_2\,CO_3$ で乾燥、濾過、濃縮した。カラムクロマトグラフィー($S\,i\,O_2$)により精製し、 $4-[[N-[5-プロモー2-(ビス(メチルスルホニル)アミノ)ベンゾイル)グリシル]アミノメチル]-1-(4-クロロベンジル)ピペリジン(化合物番号<math>1\,5\,8\,2$)を得た($4\,0\,m\,g$ 、 $6\,2\,\%$)。 $E\,S\,I\,/\,M\,S\,m\,/\,e\,6\,5\,1\,(M^++H,\,C_{2\,4}\,H_{3\,0}\,B\,r\,C\,I\,N_4\,O_6\,S_2)$ [実施例 $2\,0\,2\,5$] <u>ョウ化1-(4-クロロベンジル)-1-メチル-4-[[N-[3-トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジニウム(化合物番号 $4\,6\,1\,0$ ョウ化メチルアンモニウム塩)の合成</u>

4-[N-[3-トリフルオロメチル)ベンゾイル)グリシル] アミノメチル] ピペリジン (30mg、0.087mmol)のアセトニトリル (1.0mL) 溶液と (ピペリジノメチル)ポリスチレン (80mg、2.7mmol塩基/g樹脂)を、4-クロロベンジルクロリド (11.7mg、0.073mmol)のクロロホルム (1.0mL)溶液に加え、60℃で2時間攪拌した。フェニルイソシアネート*(10.4mg、0.087mmol)を、室温まで冷却した反応混合物に加え、25℃で1時間攪拌した後、Varian™ SCXカラムに負荷し、メタノール (20mL)にて洗浄した。生成物を、2M NH3のメタノール (6mL)溶液で溶出し、濃縮しすることにより、1-(4-クロロベンジル)-4-[N-[3-トリフルオロメチル)ベンゾイル)グリシル] アミノメチル] ピペリジンを無色の油状体として得た。

[実施例2026] 1-(4-クロロベンジル)-4-[N-メチル-N-[N
 30 -(3-(トリフルオロメチル) ベンゾイル) グリシル] アミノメチル] ピペリジン (化合物番号520) の合成

ホルムアルデヒド水溶液(108mg、1.33mmol、37wt%)を1-(4-クロロベンジル)-4-(アミノメチル)ピペリジン(318mg、1.33mmol)とNaBH₃CN(668mg)の10%酢酸/メタノール(3mL)溶液に加え、25℃で1時間攪拌した。反応混合物をDowexTM 50Wx2カラム(10mL)に負荷し、メタノール(20mL)にて洗浄した。生成物を、2MNH₃のメタノール(6mL)溶液で溶出し、濃縮して1-(4-クロロベンジル)-4-[(メチルアミノ)メチル]ピペリジンを無色の油状体として得、これを精製せずに用いた。

EDCI (85mg)、1-ヒドロキシベンゾトリアゾール・水和物 (60mg 10)を、1-(4-クロロベンジル)-4-[(メチルアミノ)メチル]ピペリジン (111mg、0.44mmol)のジクロロメタン (4mL)溶液に加え、25℃で1時間攪拌後、2M NaOH (2mL×2)水溶液で洗浄した。PTFE膜フィルターで濾過後、溶媒を滅圧下に除去して黄色油状体を得、これを分取TLCにて精製し、1-(4-クロロベンジル)-4-[N-メチル-N-[N-(3-15 (トリフルオロメチル)ベンゾイル)グリシル]アミノメチル]ピペリジン(化合物番号520)を黄白色油状体として得た(14.0mg、3.4%)。純度はRPLC/MSにて求めた(99%)。ESI/MS m/e 482.1 (M++H、C24H27C1F3N3O2)

[参考例37] 3-アミノホモピペリジンの合成

- DL-á-アミノーε-カプロラクタム(2g、16mmol)のTHF(70 mL)溶液に、1M BH₃-THF溶液(80mL)を加え、3時間還流した。2 M塩酸(50mL)を加え、反応をさらに1時間加熱、還流し、その後25℃に冷却した。反応物を4M NaOH溶液を加えてアルカリ性とし(pH10)、酢酸エチル(200mL×3)で抽出した。有機層を合わせ、飽和NaHCO₃水で洗浄し、乾燥(MgSO₄)、濃縮することにより、目的物を得た(990mg、54%)。これをそれ以上精製することなく使用した。
- [参考例:3.8] <u>3-アミノー1-(4-クロロベンジル)ホモピペリジンの合成</u> 3-アミノホモピペリジン(1.71g、15mmol)のアセトニトリル(4 5mL)溶液に、p-クロロベンジルクロリド(463mg、2.9mmol)と 30 K₂CO₃(828g、6mmol)を加え、70℃で9時間加熱攪拌した。25℃ に冷却し、濃縮して黄色固体を得た。残査をH₂O(5mL)と酢酸エチル(50m

L)の間に分配し、酢酸エチル($50\,\mathrm{mL}\times2$)で抽出した。有機層を合わせて食塩水($20\,\mathrm{mL}$)で洗浄し、乾燥($\mathrm{Mg}\,\mathrm{SO}_4$)、濃縮した。得られた黄色油状物をクロマトグラフィー($\mathrm{Si}\,\mathrm{O}_2$ 、 $5-20\,\mathrm{\%}$ メタノール/ジクロロメタン勾配溶出)にて精製し、目的物を黄色油状体として得た($639\,\mathrm{mg}$ 、 $93\,\mathrm{\%}$)。

5 [実施例2027] <u>1-(4-クロロベンジル)-3-[(4-ベンゾイルブチ</u>リル)アミノ] ホモピペリジン(化合物番号994)の合成

3-アミノー1-(4-クロロベンジル) ホモピペリジン (24mg、0.10 mmol) および4ーベンゾイルブチル酸 (1.2当量) のクロロホルム (1mL) の溶液に、EDCI (23mg)、HOBt (16.2mg)、およびトリエチルアミン (15.2μL) を加え、25℃で16時間攪拌した。この反応混合物をジクロロメタン (0.5mL) にて希釈し、PTFE膜にて濾過し、濃縮して1-(4-クロロベンジル) -3-[(4-ベンゾイルブチリル) アミノ] ホモピペリジン (化合物番号9°94) を得た(43mg、99%)。純度はRPLC/MSにて求めた(98%)。ESI/MS m/e 413 (M++H、C24H29CIN2

[実施例2028-2042]

20

本発明で用いる化合物を、それぞれ対応する原料および反応剤を用いて、実施例 2027に従って合成した。必要であれば、クロマトグラフィー($HPLC-C_{18}$)によって精製し、目的物をTFA塩として得た。ESI/MSデータ、収量、および収率を表 52にまとめた。

表 52

実施例	化合物番号	分子式	ESI/MS m/e	収量 (mg)	収率 (%)
2028	943	C23 H25 C1 F3 N3 O2	468	6	28
2029	944	C23 H28 Cl N3 O2	414	5	29
2030	945	C22 H25 Cl N4 O4	445	6	30
2031	946	C23 H27 C1 N4 O4	459	. 5	24
2032	947	C25 H31 C1 N2 O4	459	4	20
2033	948	C24 H29 C12 N3 O2	462	6	32
2034	949	C25 H32 C1 N3 O2	442	6	31
2035	988	C23 H25 C1 F3 N3 O2	468	45	92
2036	989	C23 H28 C1 N3 O3	430	44	97

20

25

990	C22 H26 C1 N3 O2	400	41	99
991	C23 H27 C1 N2 O2	399	41	97
992	C25 H31 C1 N2 O4	459	47	98
993	C25 H31 C1 N2 O2	427	44	98
995	C25 H31 C1 N2 O3	443	44	95
996	C24 H31 C1 N4 O2	443	5*	11
	991 992 993 995	991 C23 H27 C1 N2 O2 992 C25 H31 C1 N2 O4 993 C25 H31 C1 N2 O2 995 C25 H31 C1 N2 O3	991 C23 H27 C1 N2 O2 399 992 C25 H31 C1 N2 O4 459 993 C25 H31 C1 N2 O2 427 995 C25 H31 C1 N2 O3 443	991 C23 H27 C1 N2 O2 399 41 992 C25 H31 C1 N2 O4 459 47 993 C25 H31 C1 N2 O2 427 44 995 C25 H31 C1 N2 O3 443 44

*トリフルオロ酢酸塩の収率。

[実施例2043] <u>THP-1細胞へのMIP-1α結合に対する被験化合物の</u>阻害能の測定

とト前単球白血病細胞であるTHP-1細胞を、1×10⁷個/mLになるようにアッセイバッファー(RPMI-1640(Gibco-BRL社製)に0.1%BSA、25mM HEPESを加えpH7.4に調整したもの)に懸濁し、細胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を、被験化合物溶液とした。ヨウ素標識されたヒトMIP-1α(DuPont NEN社製)2
 50nCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。96ウェルフィルタープレート(ミリポア社製)に、1ウェルあたり被験化合物25μL、標識リガンド溶液25μL、細胞懸濁液50μLの順番に分注し攪拌後(反応溶液100μL)、18℃で1時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷PBS200μLで2回洗浄した(冷PBS200μL加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウェルあたり25μLずつ加え、フィルター上の細胞が保持する放射能をトップカウント(パッカード社製)で測定した。

試験化合物の代わりに、非標識ヒトMIP-1α (Peprotech社製) 1 00ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%としてヒトMIP-1αのTHP-1細胞への結合に対する被験化合物の阻害能を算出した。

阻害率 (%) = $[1 - (A-B) / (C-B)] \times 100$

(A:試験化合物添加時のカウント、B:非標識ヒトMIP- $1\alpha100$ ng添加時のカウント、C: [125 I] 標識ヒトMIP- 1α のみ添加したときのカウント)本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、 2μ Mまたは 10μ Mの濃度おいて、それぞれ20-50%、50

%-80%、および>80%の阻害能を示した。

10μΜの濃度において20%-50%の阻害能を示した化合物:

化合物番号29、37、41、45、46、47、50、82、85、107、1 20, 134, 214, 217, 218, 220, 222, 225, 226, 22 7, 228, 229, 230, 231, 233, 234, 236, 237, 238 , 333, 334, 335, 336, 338, 340, 342, 347, 348, 349, 350, 352, 357, 359, 361, 366, 372, 374, 3 75, 376, 380, 382, 383, 385, 470, 471, 472, 47 3, 474, 483, 484, 488, 489, 491, 497, 499, 500 \[
 502 \, 506 \, 508 \, 510 \, 514 \, 515 \, 518 \, 524 \, 543 \,
 \] 10 553, 554, 555, 556, 563, 571, 575, 576, 578, 5 79, 580, 583, 586, 587, 588, 590, 591, 592, 59 5, 596, 598, 603, 610, 611, 612, 614, 624, 625 . 626, 629, 635, 638, 639, 640, 641, 642, 643, 15 644, 646, 647, 648, 649, 652, 653, 658, 659, 6 60, 665, 666, 669, 671, 675, 677, 679, 681, 68 2, 684, 691, 695, 696, 700, 702, 704, 706, 711 . 712, 714, 717, 721, 723, 724, 726, 727, 728, $7\ 2\ 9\ ,\ 7\ 3\ 1\ ,\ 7\ 3\ 7\ ,\ 7\ 3\ 9\ ,\ 7\ 4\ 0\ ,\ 7\ 4\ 1\ ,\ 7\ 4\ 2\ ,\ 7\ 4\ 4\ ,\ 7\ 4\ 6\ ,\ 7$ 20 65, 767, 772, 773, 774, 775, 776, 780, 781, 78 5, 786, 787, 788, 790, 791, 792, 793, 795, 796 , 797, 798, 805, 806, 807, 810, 813, 820, 821, 822, 824, 825, 827, 829, 830, 833, 834, 837, 8 38, 844, 853, 855, 873, 877, 878, 880, 882, 88 7, 888, 891, 894, 901, 903, 904, 905, 911, 929 25 , 932, 933, 935, 938, 940, 948, 993, 996, 1006 1018, 1026, 1028, 1035, 1048, 1053, 1054, 1 055, 1056, 1068, 1070, 1071, 1072, 1073, 107 5, 1076, 1081, 1763, 1764

30 10μMの濃度において50%-80%の阻害能を示した化合物:化合物番号1、2、3、4、7、13、22、23、24、25、27、31、3

2, 38, 48, 83, 119, 121, 123, 131, 215, 216, 22 1, 235, 337, 351, 354, 358, 362, 363, 365, 367 、368、369、373、378、381、384、458、459、463、 465, 466, 467, 468, 478, 479, 480, 482, 485, 4 86, 487, 492, 493, 494, 495, 496, 498, 501, 50 3, 504, 507, 511, 512, 513, 520, 523, 527, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 545, 546, 547, 548, 549, 5 50, 551, 552, 558, 559, 560, 561, 562, 565, 56 $7 \,,\, 5 \,, 6 \,, 8 \,,\, 5 \,, 6 \,, 9 \,,\, 5 \,, 7 \,,\, 0 \,,\, 5 \,, 7 \,,\, 2 \,,\, 5 \,, 7 \,,\, 3 \,,\, 5 \,, 7 \,,\, 4 \,,\, 5 \,, 7 \,,\, 5 \,,\, 8 \,,\, 1 \,,\, 5 \,,\, 8 \,,\, 2 \,,\, 1$ 10 609, 613, 615, 616, 618, 619, 620, 621, 628, 6 30, 631, 632, 633, 634, 636, 637, 645, 651, 65 4,655,657,661,662,664,673,674,676,678 . 680, 683, 685, 687, 688, 689, 693, 703, 705, 15 707, 708, 709, 710, 713, 716, 718, 719, 720, 7 25,730,732,733,734,735,736,749,750,75 1, 752, 753, 754, 756, 758, 760, 762, 763, 764 . 766, 768, 769, 770, 771, 777, 778, 779, 784, 794, 799, 800, 802, 804, 808, 809, 811, 812, 8 20 15, 816, 819, 828, 831, 832, 835, 836, 839, 84 0, 845, 846, 847, 848, 850, 851, 854, 857, 858 , 859, 860, 861, 862, 863, 865, 866, 867, 868, 872、874、876、886、899、910、942、998、1004、 1005, 1007, 1013, 1015, 1016, 1017, 1019, 10 25 20, 1021, 1022, 1024, 1030, 1037, 1042, 1043 . 1044. 1045. 1046. 1047. 1049. 1050. 1052. 1 059, 1060, 1061, 1067, 1069, 1074, 1078, 107 9, 1080, 1766

30 10μMの濃度において>80%の阻害能を示した化合物:化合物番号461、464、469、481、490、505、509、521、

30

526、528、544、564、566、601、605、617、622、6
23、627、650、656、663、668、672、686、690、69
2、694、715、743、747、748、755、757、759、761
、782、783、803、814、817、818、826、849、856、
864、869、870、871、999、1000、1001、1002、10
03、1008、1009、1010、1011、1012、1023、1029
、1031、1032、1033、1034、1036、1038、1039、1
040、1041、1051、1057、1058、1062、1063、106
4、1065、1066、1082、1083

10 2μMの濃度において20%-50%の阻害能を示した化合物:
化合物番号1042、1043、1244、1245、1416、1435、14
36、1438、1441、1480、1570、1583、1584、1589
、1590、1594、1595、1601、1660、1672、1687、1
724、1779、1780、1787、1795、1796、1798、179
15 9、1802、1893、1894、1898、1900、1915、1919、
1920、2092、2096、2098、2100

2μMの濃度において50%-80%の阻害能を示した化合物: 化合物番号1190、1414、1600、2091、2094、2095 2μMの濃度において>80%の阻害能を示した化合物:

20 化合物番号2093、2097、2099、2103、2104

[実施例2044] <u>THP-1細胞へのMCP-1の結合に対する阻害能の測定</u>
1. ヒトMCP-1遺伝子含有組換えバキュロウィルスの作製

公知のヒトMCP-1遺伝子配列(例えばYoshimura、T. et al. Febs Letters 1 989、244、487-493など参照)に基づき制限酵素認識部位を付加したDNA合成プライマーを2種類(5・-CACTCTAGACTCCAGCATGA-3・および5・-TAGCTGCAGATTCTTGGGTTG-3・)を用いて、ヒト血管内皮細胞(クラボー社より購入)由来cDNAをPCR法により増幅し、制限酵素(PstIおよびXbaI)切断後、トランスファーベクターpVL1393(Invitrogen社製)に組み込んだ。かかるベクターと感染性バキュロウィルスをSf-9昆虫細胞にコトランスフェクトし、その上清からプラークアッセイ法によりヒトMCP-1遺伝子組換えバキュロウィルスを単離した。

2. [125 I] 標識バキュロウィルス発現ヒトMCP-1の取得

ISHII、K. らの方法(Biochemical and Biophysical Research Communicat ions 1995, 206, 955-961参照) に従い、Sf-9昆虫細胞5×10⁶個に、上記ヒ トMCP-1遺伝子組換えバキュロウィルス5×10⁷PFU(プラーク形成ユニッ ト)を感染させ、EX-CELL401培地にて7日間培養し、得られた培養上清 をヘパリンセファロースカラム(ファルマシア社製)でアフィニティー精製した後 、逆相HPLC(Vydac C18 カラム)に付し、精製ヒトMCP-1を得 た。得られた精製ヒトMCP-1につき、アマシャム社に蛋白標識を依頼し、ボル トン・ハンター法により作製された [125 I] 標識バキュロウィルス発現ヒトMCP -1を得(比活性:2000Ci/mmol)、以下の試験に用いた。 10 3-1. [¹²⁵ I] 標識バキュロウィルス発現ヒトMCP-1のTHP-1細胞への

結合に対する阻害能の測定 (方法1)

ヒト前単球由来白血病細胞である $\mathrm{THP}-1$ 細胞を $\mathrm{1} imes \mathrm{10}^{7}$ 個 $\mathrm{/mL}$ になるよう にアッセイバッファー (RPMI-1640 (Gibco-BRL社製) に0.1 %BSA、25mM HEPESを加え、pH7.4に調整したもの) に懸濁し細 15 胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶 液とした。上述の [125] 標識バキュロウィルス発現ヒトMCP-1を1μCi/ mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。 96ウエルフィルタープレート(ミリポア社製)に、1ウエルあたり被験化合物溶 液25μL、標識リガンド溶液25μL、細胞懸濁液50μLの順番に分注し、撹 20 拌後(反応溶液 1 0 0 μ L)、18℃で1時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷PBS 200μ Lで 2回洗浄した(冷<math>PBS 200μ Lを加えた後、濾過)。フィルターを風乾後、 液体シンチレーターを 1 ウエルあたり 2 5 μ L ずつ加え、フィルター上の細胞が保 持する放射能をトップカウント (パッカード社製) で測定した。

被験化合物の代わりに上述のバキュロ発現ヒトMCP-1 (非標識) 100ng を添加した時のカウントを非特異的吸着として差し引き、被験化合物を何も添加し ないときのカウントを100%としてヒトMCP-1のTHP-1細胞への結合に 対する被験化合物の阻害能を算出した。

阻害率 (%) = $\{1-(A-B) / (C-B)\} \times 100$ 30 (A:被験化合物添加時のカウント、B:非標識ヒトMCP-1 100ng添加 時のカウント、 $C: [^{125}1]$ 標識ヒトMCP-1のみ添加した時のカウント) 本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、 $1 \mu M$ 、 $10 \mu M$ 、または $100 \mu M$ の濃度おいて、それぞれ20 - 50%、50% - 80%、および>80%の阻害能を示した。

100μMの濃度において20%-50%の阻害能を示した化合物:
 化合物番号3、6、11、15、16、19、28、44、88、92、94、104、111、112、124、125、133、219、220、224、228、236、338、343、346、347、348、349、362、363、367、368、371、373、381、618、847、849、850、

10 866, 867, 869, 870, 871, 872, 873

100μMの濃度において50%-80%の阻害能を示した化合物:

化合物番号1、8、10、12、18、21、26、30、33、35、39、8 4、89、90、91、96、97、98、99、100、101、103、10 6、108、109、110、116、122、126、216、218、221 15、225、226、231、330、332、333、334、337、341、 342、350、352、354、356、359、360、361、364、3 66、374、375、379、382、462、463、464、557、68 6、840、841、842、843、844、845、846、848、862

20 1 0 0 μ Mの濃度において> 8 0 %の阻害能を示した化合物:

, 863, 864, 865, 868

化合物番号2、4、5、7、13、14、17、20、22、23、24、25、27、29、31、32、34、36、38、40、41、42、43、45、46、47、48、49、50、83、85、86、95、102、105、107、113、114、115、119、120、121、123、127、128、

25 129, 130, 131, 132, 134, 214, 215, 217, 227, 2 37, 238, 331, 335, 336, 339, 340, 345, 351, 35 5, 357, 358, 383, 458, 459, 460, 466, 558, 851 , 852, 861, 874

10μMの濃度において20%-50%の阻害能を示した化合物:

30 化合物番号12、18、30、34、40、42、43、51、52、53、54、55、56、57、59、60、64、66、75、76、77、78、79、

82, 89, 90, 97, 98, 102, 103, 116, 127, 128, 12 9, 130, 132, 135, 136, 140, 141, 144, 156, 157 , 159, 160, 161, 162, 163, 166, 167, 168, 169, $1\ 7\ 0\ ,\ 1\ 7\ 1\ ,\ 1\ 7\ 2\ ,\ 1\ 7\ 3\ ,\ 1\ 7\ 4\ ,\ 1\ 7\ 5\ ,\ 1\ 7\ 6\ ,\ 1\ 7\ 8\ ,\ 1\ 7\ 9\ ,\ 1$ $9\,\,0\,,\,\,1\,\,9\,\,1\,,\,\,1\,\,9\,\,2\,,\,\,1\,\,9\,\,5\,,\,\,1\,\,9\,\,7\,,\,\,2\,\,0\,\,0\,,\,\,2\,\,0\,\,2\,,\,\,2\,\,0\,\,3\,,\,\,2\,\,0\,\,4\,,\,\,2\,\,0$ 5 $5\,,\,2\,0\,8\,,\,2\,3\,3\,,\,2\,3\,4\,,\,2\,3\,5\,,\,2\,3\,9\,,\,2\,4\,0\,,\,2\,4\,1\,,\,2\,4\,2\,,\,2\,4\,3$. 245, 247, 249, 250, 255, 263, 264, 269, 274, 278, 279, 282, 306, 316, 317, 323, 324, 380, 4 04, 409, 433, 446, 448, 449, 451, 470, 471, 47 3, 476, 479, 486, 488, 489, 497, 498, 499, 501 10 527, 530, 532, 542, 545, 560, 563, 564, 565, 5 66, 568, 569, 572, 573, 574, 575, 578, 583, 58 4, 586, 587, 589, 590, 599, 600, 601, 603, 606 . 612, 613, 620, 621, 622, 624, 625, 627, 629, 15 630, 632, 634, 636, 637, 640, 641, 642, 643, 6 44, 645, 646, 647, 648, 649, 658, 678, 682, 68 7, 692, 694, 764, 775, 856, 857, 860, 881, 882 、883、884、890、89²、899、900、903、905、907、 908, 911, 912, 916, 917, 921, 922, 923, 925, 9 20 27, 931, 932, 935, 939, 940, 968, 986, 1039, 1 041, 1045, 1047, 1062, 1063, 1083

10μMの濃度において50%-80%の阻害能を示した化合物:

化合物番号7、32、36、61、62、63、65、67、69、70、71、72、73、74、81、91、105、114、121、123、134、137、138、139、146、147、148、149、151、154、165、177、232、244、248、251、252、253、256、259、261、266、267、276、286、292、293、295、301、305、307、310、314、315、320、322、328、434、4335、434、435、436、437、439、440、443、447、450、452、453、454、455、456、468、469、472、474、475、477、

478, 480, 481, 482, 483, 485, 490, 493, 494, 5
00, 505, 511, 517, 520, 529, 534, 540, 543, 54
4, 548, 555, 556, 561, 562, 570, 576, 579, 611
, 617, 853, 854, 855, 858, 859, 875, 877, 879,
880, 885, 886, 887, 888, 891, 894, 895, 904, 9
06, 909, 910, 913, 914, 918, 928, 930, 933, 93
7, 938, 945, 970, 1040, 1044, 1046

10μMの濃度において>80%の阻害能を示した化合物:

化合物番号31、45、46、48、58、68、80、83、113、115、10 142、143、145、150、152、265、268、272、275、283、285、287、288、290、291、294、296、297、302、308、309、313、321、325、326、358、438、441、442、444、445、457、466、467、484、487、491、492、495、496、503、518、537、538、547、554、815 76、878、919、929、943

 $1 \mu M$ の濃度において 20% - 50%の阻害能を示した化合物:

化合物番号1118、1121、1136、1143、1146、1158、11 59、1167、1170、1359、1361、1362、1363

 $1 \mu M$ の濃度において 5 0 % - 8 0 %の阻害能を示した化合物:

20 化合物番号1133、1134、1137、1141、1156、1161、11 62、1163、1164、1166

1μΜの濃度において>80%の阻害能を示した化合物:

化合物番号1147

25

<u>3-2. [125 I] 標識バキュロウィルス発現ヒトMCP-1のTHP-1細胞への</u> 結合に対する阻害能の測定(方法 2)

ヒト前単球由来白血病細胞であるTHP-1細胞を 1×10^7 個/mLになるようにアッセイバッファー(50mM HEPES、pH7.4、1.0mM CaC l_2 、5.0mM MgC l_2 、 $0.5%BSA)に懸濁し細胞懸濁液とした。被験化合物をアッセイバッファーで希釈した溶液を被験化合物溶液とした。上述の [<math>^{125}$ I] 標識バキュロウィルス発現ヒトMCP-1を 1μ Ci/mLになるようにアッ

30 I] 標識バキュロウィルス発現ヒトMCP-1を1μCi/mLになるようにアッセイバッファーで希釈した溶液を標識リガンド溶液とした。96ウエルフィルター

プレート(ミリポア社製)に、1ウエルあたり被験化合物溶液25µL、標識リガンド溶液25µL、細胞懸濁液50µLの順番に分注し、撹拌後(反応溶液100µL)、18℃で1時間インキュベートした。

反応終了後、反応液をフィルター濾過し、フィルターを冷PBS 200μLで 2回洗浄した(冷PBS 200μLを加えた後、濾過)。フィルターを風乾後、液体シンチレーターを1ウエルあたり25μLずつ加え、フィルター上の細胞が保持する放射能をトップカウント(パッカード社製)で測定した。被験化合物の代わりに上述のバキュロ発現ヒトMCP-1 (非標識) 100ngを添加したときのカウントを非特異的吸着として差し引き、被験化合物を何も添加しないときのカウントを100%としてヒトMCP-1のTHP-1細胞への結合に対する被験化合物の阻害能を算出した。

阻害率 (%) = $\{1 - (A-B) / (C-B)\} \times 100$

 $(A: 被験化合物添加時のカウント、<math>B: 非標識ヒトMCP-1 100ng添加時のカウント、<math>C: [^{125}I]$ 標識ヒトMCP-1のみ添加した時のカウント)

15 本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば下記の化合物は、 $0.2\mu M$ 、 $1\mu M$ 、または $10\mu M$ の濃度おいて、それぞれ20-50%、50%-80%、および>80%の阻害能を示した。

 10μ Mの濃度において 20% - 50% の阻害能を示した化合物 : 化合物番号 1560

10μMの濃度において50%-80%の阻害能を示した化合物: 化合物番号1550

10μMの濃度において>80%の阻害能を示した化合物: 化合物番号541、1042、1043、1559

1 μ Mの濃度において 2 0 % - 5 0 %の阻害能を示した化合物:

- 25 化合物番号1098、1100、1101、1104、1105、1109、11 10、1116、1174、1175、1176、1178、1187、1188 、1189、1197、1198、1199、1200、1201、1202、1 209、1210、1211、1212、1222、1225、1229、123 0、1237、1238、1243、1250、1259、1261、1265、
- 30 1266, 1272, 1277, 1282, 1294, 1299, 1302, 13 07, 1315, 1318, 1319, 1320, 1329, 1330, 1335

WO 00/69432 PCT/JP00/03203

3 7 5

, 1336, 1337, 1343, 1344, 1353, 1355, 1356, 1 357、1358、1368、1372、1385、1386、1392、140 0, 1413, 1422, 1423, 1425, 1426, 1429, 1430, 1432, 1437, 1440, 1445, 1446, 1447, 1448, 14 50, 1452, 1453, 1455, 1458, 1459, 1461, 1463 5 . 1464, 1466, 1468, 1469, 1470, 1471, 1474, 1 479, 1482, 1485, 1507, 1508, 1510, 1511, 151 2, 1513, 1514, 1515, 1516, 1518, 1519, 1521, 1522, 1524, 1535, 1538, 1540, 1542, 1544, 15 10 71, 1573, 1574, 1575, 1576, 1577, 1578, 1579 , 1580, 1581, 1582, 1585, 1587, 1598, 1602, 1 603, 1604, 1609, 1611, 1612, 1613, 1614, 161 5, 1616, 1617, 1618, 1622, 1627, 1630, 1643, 1646, 1662, 1669, 1716, 1717, 1723, 1728, 17 15 31, 1733, 1736, 1739, 1740, 1747, 1750, 1755 . 1757, 1758, 1759, 1760, 1761, 1762, 1769, 1 770、1771、1772、1773、1774、1777、1783、178 4, 1785, 1791, 1793, 1904, 1911, 1917, 2057, 2061, 2063, 2064, 2065, 2066, 2067, 2068, 20 20 69, 2071, 2072, 2073, 2074, 2075, 2076, 20802081, 2082, 2110, 2112, 2123, 2130, 2131, 2 139, 2170, 2180, 2181, 2182, 2212, 2216, 221 7, 2219, 2220, 2222, 2224, 2225, 2228, 2247, 2253, 2254, 2255, 2256, 2257

25 1μMの濃度において50%-80%の阻害能を示した化合物: 化合物番号37、298、318、1084、1091、1103、1106、1 108、1111、1113、1114、1115、1138、1142、116 5、1179、1190、1192、1193、1195、1196、1204、 1205、1206、1207、1208、1245、1246、1255、12 30 57、1258、1262、1263、1293、1300、1342、1351 、1352、1354、1370、1371、1373、1375、1377、1

378, 1380, 1381, 1383, 1384, 1391, 1411, 141 2、1414、1417、1418、1419、1421、1424、1431、 1436, 1439, 1449, 1454, 1456, 1457, 1460, 14 $6\ 2,\ 1\ 4\ 7\ 2,\ 1\ 4\ 7\ 3,\ 1\ 4\ 8\ 7,\ 1\ 5\ 0\ 2,\ 1\ 5\ 0\ 4,\ 1\ 5\ 0\ 6,\ 1\ 5\ 1\ 7$, 1525, 1526, 1527, 1529, 1530, 1531, 1532, 1 $5\ 3\ 3\ ,\ 1\ 5\ 3\ 4\ ,\ 1\ 5\ 3\ 6\ ,\ 1\ 5\ 3\ 7\ ,\ 1\ 5\ 3\ 9\ ,\ 1\ 5\ 4\ 1\ ,\ 1\ 5\ 4\ 5\ ,\ 1\ 5\ 9$ 3, 1600, 1601, 1606, 1608, 1619, 1620, 1621, $1\ 6\ 2\ 3\ ,\ 1\ 6\ 2\ 4\ ,\ 1\ 6\ 2\ 5\ ,\ 1\ 6\ 2\ 6\ ,\ 1\ 6\ 2\ 8\ ,\ 1\ 6\ 2\ 9\ ,\ 1\ 6\ 4\ 5\ ,\ 1\ 6$ 50, 1654, 1658, 1663, 1664, 1665, 1670, 1671 . 1672, 1673, 1675, 1678, 1679, 1681, 1684, 1 10 $6\,8\,7,\,1\,6\,8\,8,\,1\,6\,8\,9,\,1\,6\,9\,0,\,1\,7\,1\,1,\,1\,7\,1\,2,\,1\,7\,1\,4,\,1\,7\,1$ 8, 1722, 1725, 1726, 1727, 1729, 1730, 1732, 1734, 1735, 1737, 1741, 1742, 1743, 1744, 17 45, 1746, 1748, 1751, 1753, 1754, 1756, 1779 , 1781, 1782, 1786, 1788, 1789, 1790, 1792, 1 15 $7\,9\,5\,,\,1\,7\,9\,7\,,\,1\,7\,9\,8\,,\,1\,8\,0\,0\,,\,1\,8\,0\,1\,,\,1\,8\,0\,4\,,\,1\,8\,4\,8\,,\,1\,8\,6$ 2, 1883, 1885, 1886, 1887, 1889, 1893, 1894, 1903, 1905, 1910, 1912, 1913, 1914, 1918, 19 $2\ 2\ ,\ 1\ 9\ 7\ 6\ ,\ 1\ 9\ 8\ 5\ ,\ 2\ 0\ 2\ 7\ ,\ 2\ 0\ 3\ 5\ ,\ 2\ 0\ 6\ 2\ ,\ 2\ 0\ 8\ 3\ ,\ 2\ 0\ 8\ 4$. 2088, 2089, 2090, 2111, 2124, 2125, 2126, 2 20 $1\ 3\ 5\ ,\ 2\ 1\ 6\ 7\ ,\ 2\ 1\ 7\ 1\ ,\ 2\ 1\ 7\ 5\ ,\ 2\ 2\ 1\ 1\ ,\ 2\ 2\ 2\ 1\ ,\ 2\ 2\ 2\ 6\ ,\ 2\ 2\ 3$ 1, 2240

1 μ M の 濃度において > 8 0%の 阻害能を示した化合物:

化合物番号299、311、312、329、1042、1043、1085、1 119、1191、1203、1220、1228、1236、1244、125 6、1288、1295、1308、1310、1376、1382、1393、 1395、1415、1416、1420、1435、1438、1441、14 80、1481、1570、1583、1584、1589、1590、1594 、1595、1607、1634、1660、1661、1666、1668、1 30 695、1696、1697、1698、1699、1701、1702、170 3、1704、1705、1706、1707、1708、1709、1713、 WO 00/69432 PCT/JP00/03203

3 7 7

1

1724、1749、1752、1775、1776、1778、1780、1787、1794、1796、1799、1802、1803、1841、1869、1870、1871、1872、1876、1877、1892、1896、1897、1898、1899、1900、1901、1902、1906、19057、1908、1909、1915、1916、1919、1920、1921、2085、2086、2087、2113、2114、2118、2119、2120、2121、2122、2127、2128、2129、2132、2133、2136、2137、2138、2159、2161、2162、2169、2172、2178、2179、2187、2189、2193、2210、2210、2213、2214、2215、2216,227、2229、2230、2232、2233、2235、2236、2237、2238、2241、2242、2243、2244、2245、2246、2248、2249、2250、2251、2252

0. 2 μ Mの濃度において 2 0 % - 5 0 %の阻害能を示した化合物:

15 化合物番号1680、1682、1686、1691、1694、1700、18 05, 1810, 1811, 1812, 1813, 1815, 1816, 1817 , 1818, 1819, 1820, 1824, 1825, 1826, 1827, 1 828, 1832, 1833, 1834, 1835, 1836, 1839, 184 0, 1842, 1843, 1851, 1852, 1853, 1854, 1855, 20 1856, 1858, 1859, 1860, 1863, 1864, 1865, 18 66, 1868, 1874, 1878, 1879, 1880, 1888, 1890 , 1891, 1895, 1926, 1927, 1928, 1929, 1930, 1 934, 1935, 1937, 1945, 1946, 1951, 1952, 195 3, 1954, 1959, 1960, 1961, 1962, 1966, 1969, 1970, 1971, 1972, 1973, 1977, 1978, 1979, 19 25 80, 1981, 1985, 2014, 2027, 2028, 2033, 2035 2039, 2040, 2041, 2042, 2044, 2045, 2046

0. 2 μ Mの濃度において 5 0 % - 8 0 %の阻害能を示した化合物 :

化合物番号1677、1678、1679、1681、1687、1688、16 30 89、1690、1695、1697、1808、1809、1841、1848 、1861、1862、1869、1870、1871、1872、1873、1 876、1877、1883、1884、1885、1886、1887、188 9、1893、1894、1976

0. 2 μ Mの濃度において> 8 0 %の阻害能を示した化合物: 化合物番号 1 6 9 6、1 8 9 2

5 [実施例2045] MCP-1レセプター発現細胞へのMCP-1の結合に対する阻害能の測定([¹²⁵ I] 標識ヒトMCP-1を用いた評価)

1. MCP-1レセプター発現細胞の取得

YAMAGAMI, S. らが取得したMCP-1レセプターcDNA断片 (Bio chemical and Biophysical Research Communications 1994, 202, 1156-1162参照)

- 10 を発現プラスミドpCEP-4 (Invitrogen社製)のNotI部位に連結し、得たプラスミドをLipofectamine試薬 (Gibco-BRL社製)によりヒト腎上皮由来293-EBNA細胞にトランスフェクトし、選択薬剤 (ハイグロマイシン) 存在下で培養後、安定発現株を取得した。レセプターの発現は、[125 I] 標識ヒトMCP-1の結合性で確認した。
- 15 <u>2. [125 I] 標識バキュロウィルス発現ヒトMCP-1のMCP-1レセプター発</u> 現細胞への結合に対する阻害能の測定

培養シャーレ上のMCP-1レセプター発現細胞をセルスクレーパーではがして 6×10^6 個/mLになるように、アッセイバッファー (D-MEM (Gibco-BRL社製) に 0.1%BSA、25mM HEPESを加え、pH7.4に調製したもの) に影響し、何味の味を開きます。

20 したもの) に懸濁し、細胞懸濁液とした。その後の操作は実施例2044と同様に実施した。

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、本実施例における代表的な化合物の阻害能は、実施例2044において示された阻害能とほぼ同等であった。

25 [実施例2046] 細胞遊走阻害活性の測定

本発明による化合物の細胞遊走阻害活性を調べる目的で、モノサイト遊走因子M CP-1によって引き起こされる細胞遊走の測定をヒト前単球由来白血病細胞TH P-1を遊走細胞として用い、Fallらの方法 (J. Immunol. Methods. 1980, 33 , 239-247) に準じて以下のように行った。すなわち96 穴マイクロケモタキシスチ

30 ャンバー(Neuroprobe;登録商標)のチャンバー上室(200μL)にはTHP-1細胞を2×10⁶/mL(RPMI-1640(Flow Labor

a tories社製)+10%FCSで懸濁したもの)、下室(35 μ L)には同液でヒト・リコンビナントMCP-1(Peprotech社製)を最終濃度20 ng/mLになるように希釈したものを入れ、両室の間にポリカーボネートフィルター(PVP-free, Neuroprobe;登録商標)を固定し、37℃で5%CO₂存在下に2時間インキュベートを行った。

フィルターを取り出し、Diff Quick液(国際試薬社製)にてフィルター下面に遊走した細胞を固定染色し、次いでプレートリーダー(Molecula r Device社製)にて、測定波長550nmで測定し、3穴の平均値を求めることにより、遊走細胞数の指標とした。このとき、被験化合物を上室にTHPー10 1細胞とともに各種濃度にして添加し、細胞遊走阻害活性(阻害度: IC_{50} (μ M))を求めた。阻害度は{(上室に被験化合物無添加の場合のMCP-1による遊走細胞数)ー(下室にMCP-1無添加の場合の遊走細胞数)=100%}としてその50%の阻害を示した化合物の濃度を IC_{50} とした。

本発明の有効成分である環状アミン誘導体の阻害能を測定したところ、例えば、下記の化合物の Γ C $_{50}$ 値は 0 . $1~\mu$ M以下であった。

IC₅₀値が 0. 1 μ M以下である化合物の例:

化合物番号4、37、298、299、311、312、318、329、461 886, 909, 1042, 1043, 1085, 1119, 1138, 114 2, 1165, 1179, 1191, 1203, 1205, 1220, 1228, 20 1236, 1244, 1245, 1256, 1288, 1293, 1295, 13 08, 1310, 1352, 1376, 1382, 1393, 1395, 1416 . 1420, 1435, 1436, 1438, 1441, 1480, 1531, 1 532, 1570, 1583, 1584, 1589, 1590, 1594, 159 5, 1600, 1601, 1607, 1660, 1661, 1664, 1666, 25 1668, 1698, 1699, 1701, 1702, 1703, 1704, 17 06, 1707, 1708, 1709, 1713, 1775, 1776, 1778 1779, 1787, 1794, 1796, 1799, 1802, 1803, 1 896, 1898, 1899, 1900, 1901, 1902, 1906, 190 7, 1908, 1909, 1915, 1916, 1919, 1920, 1921, 30 2087, 2114, 2128, 2129, 2132, 2137, 2141, 21 44, 2157, 2158, 2189, 2213, 2214, 2235, 2236

. 2241, 2242, 2244, 2249, 2250, 2251

実施例2043、2044、2045、および2046における結果は、本発明の化合物がMIP- 1α および/またはMCP-1などのケモカインのレセプター拮抗剤として、ケモカインの標的細胞への作用を阻害する活性を有することを明確に示している。

[実施例2047] マウスコラーゲン関節炎に対する抑制効果の検討

マウスコラーゲン関節炎は、Katoらの方法 (Arthritis in mice induced by a single immunization with collagen. Ann. Rheum. Dis., 55, 535-539, 1996) に準じて作製した。

10 1. 方法

5

ウシ関節由来のタイプIIコラーゲン(コラーゲン技術研修会)を等量のフロインドの完全アジュバント(ICN Immunobiologicals)と混合し、均質なエマルジョンを作製した。エマルジョン作製には、超音波ホモジナイザー(タイテック株式会社)を使用した。エマルジョンをDBA/1マウス(日本チャ

15 ールス・リバー株式会社) の尾根部皮内にツベルクリン用ガラスシリンジおよび 2 7 G注射針を用い 0. 1 5 m g / 0. 1 m L / b o d y) 投与した。

被験化合物を乳鉢にて0.5%カルボキシメチルセルロースナトリウム (CMC、和光純薬工業株式会社) 水溶液に懸濁し、所定の投与液を調整し、エマルジョンを投与した翌日から経口投与した。

20 投与群は、0.5%CMCを投与した群(以下コントロール群)、被験化合物の30あるいは100mg/kgを投与した3群である。溶媒あるいは被験化合物は一日一回投与した。各群の動物数は16匹とした。

2. 関節炎の評価

エマルジョン投与後12週間後に、安部の方法(関節炎モデルにおける免疫療法 25 。炎症 12, 417-422, 1992)によって関節腫脹の程度を四肢それぞれの指関節について採点した。各肢は、点数0から3の4段階で採点し、最高を12点とした。

3. 滑膜の増殖、関節軟骨の破壊、および軟骨下骨の骨破壊に対する作用

関節炎点数を観察した後、右後肢を採取した。パラフィン包埋後、膝関節部位の 30 薄切切片を作製し、ヘマトキシリン・エオジン染色を施し、滑膜の増殖、関節軟骨 の破壊、および軟骨下骨の骨破壊に対する作用を常法により評価した。点数は、各 々の測定項目について点数0から4の5段階で行った。

4. 評価結果

コントロール群に対するカテゴリー型のダネット試験を実施し、p値が0.05 以下の場合を有意差があるとした。以下の図表は、平均値±標準偏差(SD)で表示した。化合物番号1583を12週間経口投与した場合の関節炎に対する結果を図1に示す。化合物番号1583を投与した群は、コントロール群に対し有意に関節炎スコアを抑制した。

化合物番号1583の滑膜の増殖、関節軟骨の破壊、および軟骨下骨の骨破壊に 対する結果をそれぞれ図2-4に示す。化合物1583は、いずれの評価項目についても有意に抑制した。

[実施例2048] ラットコラーゲン関節炎に対する抑制効果の検討

ラットコラーゲン関節炎は、Trenthamらの方法 (Autoimmunity to type II collagen: an experimental model of arthritis. J. Exp. Med., 146, 857-68(1977)) に基づき、これを以下のように改変して作製した。

15 1. 方法

10

20

25

ウシ関節由来のタイプIIコラーゲン(コラーゲン技術研修会)およびムラミルジペプチド(CHEMICON International社)を、最終濃度が、各々0.08%および0.02%となるようにフロイント不完全アジュバンド(CHEMICON International社)と混合して均質なエマルジョンを作製した。エマルジョンは、4℃にて、コネクターで結合した2本のガラスシリンジ内で、激しく攪拌して調製した。エマルジョンをLewis系雌性ラット(日本チャールス・リバー;6週齢)の背部内皮に、ツベルクリン用のガラスシリンジおよび26G注射針を用いて、1mLを10か所に分けて免疫した。1週後、上記と同様に調製したエマルジョンを、尾根部皮内に0.1mL追加免疫した(ブースト)。

被験化合物を乳鉢にて0.5%カルボキシメチルセルロースナトリウム (CMC、和光純薬工業株式会社)水溶液に懸濁し、所定の投与液を調製し、初回のエマルジョン投与日から3週間連日経口投与した。

投与群は、無処置の群(以下インタクト群)、0.5%CMCを投与した群(以 30 下コントロール群)および化合物番号1245の300mg/kgを投与した3群 である。溶媒あるいは被験化合物は1日1回投与した。各群の動物数は8匹とした 2. 関節炎の評価

後肢の足関節腫脹を、その体積変化を測定することで評価した。ブースト実施日および、その2、5、7、9、12、14日後の計7回にわたって、ラット左右後肢の足蹠容積を、ラット後肢足蹠浮腫容積測定装置(TK-105、UNICON)を用いて測定した。結果は、ブースト実施日の足蹠容積を100%とし、その後の増加率で示した。各群における、すべての左右後肢容積の平均をもって、その群の平均値とした。

3. 評価結果

20

25

10 化合物番号1245を3週間連日経口投与した場合の関節炎に対する結果を図5に示す。図中の値は平均値±S. E. で表示した。コントロール群に対してStudentのt検定あるいはWilcoxon検定を実施し、P値が0.05以下の場合を有意差があるとした。化合物番号1245を投与した群は、ブースト後5、7、9、12、14日後の各タイムポイントにおいて、コントロール群に対し有意15 (5、7、14日後:P<0.01、9、12日後:P<0.001)に関節腫脹を抑制した。

実施例2047および実施例2048における結果により、本発明の薬剤は、関節炎、慢性関節リウマチ、変形性関節症、外傷性の関節破壊、骨粗鬆症、腫瘍など、軟骨破壊あるいは骨破壊を伴う疾患に対して有効な治療もしくは予防効果を有することが示された。

[実施例2049] WKY-rat馬杉腎炎モデルにおける抑制作用の検討 1. 方法(実験1、2共通)

ラット腎臓皮質のトリプシン消化物をウサギに免疫して得た抗糸球体基底膜血清を4週齢雌のWKYラット(チャールスリバー株式会社)に2.5mL/kg体重の割合で静脈内投与して糸球体腎炎を惹起した。

当該抗血清を投与後、1、4、7、10、14日目にラット用代謝ケージ(日本 クレア)により各動物の尿を24時間採取し、尿量を尿重量を以て測定し、尿中に 含有される蛋白質濃度を尿髄液中蛋白測定キット(トネインTP-II、大塚製薬)を用いて測定して1日あたりの尿中排泄蛋白量を求めた。

30 また、当該抗血清投与後15日目に実験に供した動物の血清を採取し、血中クレアチニンをクレアチニン測定キット(オートセラCRE、第一化学株式会社)を用

10

い、日立7070型オートアナライザーにて測定した。

被験化合物は100mg/kg体重を抗糸球体基底膜血清投与日より1日2回(実験1では午前10時前後および午後6時前後、実験2では午前10時前後および午後5時前後)、毎日経口投与した。対照群では投与液溶媒(0.5%カルボキシメチルセルロース水溶液)のみを経口投与した。投与容量は10mL/kg体重とした。動物のN数は10とした。

2. 結果と考察

抗糸球体基底膜血清投与後4日目にて各実験群にて尿蛋白が検出され始め、以後14日目まで経時的に尿蛋白量は増加して腎炎が惹起された。化合物番号1583を投与した群では当該抗血清投与後7日目に対照群に比較して26%の尿蛋白量の抑制傾向を認め、同10、14日目では各々51、54%の有意な(p<0.01、Mann-Whitney U test)尿蛋白量の抑制を認めた(図6)。抗糸球体基底膜血清投与後15日目の血中クレアチニンを測定したところ,化合物1583投与群は対照群に比較して20%の有意な(p<0.01、Mann-Whitney U test)減少を認めた(表53)。

従って、化合物 1 5 8 3 によりラットの糸球体障害および腎機能増悪が軽減され 腎炎が抑制されたことがわかる。

表53

血清クレアチニン抑制効果

20

15

化合物投与15日目の血流	青クレアチニン値 (mg/dl)
Placebo	化合物 1583
0.49±0.06	0. 39±0. 03**

2-2. 実験 2

25 抗糸球体基底膜血清投与後4日目頃より各実験群にて尿蛋白が検出され始め、以後14日目まで経時的に尿蛋白量は増加して腎炎の惹起が確認された。化合物1245を投与した群では当該抗血清投与後4、7、10、14日目に対照群に比較して各々74、85、81、82%の有意な(p<0.001、Mann-Whitney U test)尿蛋白量の抑制を認めた(図7)。抗糸球体基底膜血清投30 与後15日目の血中クレアチニンを測定したところ、化合物A投与群は対照群に比較して10%の有意な(p<0.05、Student's t-test)減少

を認めた(表54)。

従って、化合物1245によりラットの糸球体障害および腎機能増悪が軽減され 腎炎が抑制されたことがわかる。

表54

5

血清クレアチニン抑制効果

化合物 1245 投与 1 5 日目の血清クレアチニン値(mg/dl)

control	化合物 1245
0.53 ± 0.05	0.48±0.04 [‡]

10 以上の結果より、本発明の化合物が、糸球体腎炎、間質性腎炎、またはネフローゼ症候群などの腎炎もしくは腎症に対して有効な治療もしくは予防効果を有することが示された。

[実施例2050] マウス慢性再発性実験的アレルギー性脳脊髄炎モデルにおける抑制効果の検討

15 1. 方法

Okuda Sの報告 (Okuda Y., et al. J. Neuroimmunol. 81, 201-210 (1998)) に記載の方法に準じ、慢性再発性実験的アレルギー性脳脊髄炎動物モデルを作製した。

8週齢雌のSJL/J×PL/J F1マウス (Jackson Lab.)の 腹部に500μgのRabbit myelin basic protein (Sigma) および500μgのMycobacterium tubercul osis H37Ra (Difco) を含んだ不完全アジュバント (Difco) /生理食塩水=1:1 (体積比)のエマルジョン100μLを皮下注射した。24時間後、400ngのBordetella pertussis toxin (Sigma) を含む100μLの生理食塩水を腹腔内投与し、慢性再発性実験的アレルギー性脳脊髄炎の誘導を行った。標本数は10とした。

被験化合物を乳鉢にて0.5% (重量/体積) カルボキシメチルセルロースナトリウム (和光純薬工業株式会社) 水溶液に懸濁し、所定の溶液を調製し、エマルジョンを投与した日から経口投与した。

30 慢性再発性実験的アレルギー性脳脊髄炎の臨床症状は田平らが記載した方法 (『 免疫実験操作法』 p. 1178-1181、南江堂 (1995)) を用い、動物各 個体を1日1回観察することにより評価した。すなわち、スコア0=正常;スコア 1=尾の緊張低下(limp tail);スコア2=軽い歩行異常;スコア3= 明らかな後肢脱力;スコア4=後肢対麻痺;スコア5=瀕死または死亡、とした。 2. 結果および考察

5 2-1. 実験1: 化合物番号1583の効果

エマルジョン投与後41日までの結果を表55と図8に示す。

症状の推移は各観察日における各実験群の平均値で示した。また、表55における最大症状スコアでは、各動物が観察期間中に示した症状スコアの最大値を当該例の代表値として採用した。統計解析方法は、症状スコアについては対照群に対する対応のない多群間のノンパラメトリック検定を使用した。その他の計量値については対照群に対する多重比較(Dunnnettoの多重比較)を用いた。

対照群に比較して化合物番号1583投与群では100mg/kg体重投与群において発症1回目での発症日遅延傾向(有意差なし)、症状抑制(p<0.05)、発症期間短縮(p<0.05)が認められた。化合物1583の30mg/kg体重投与群では、これらの項目に対する明確な効果が見られないが、用量依存効果の傾向は見られた。尚、図8中、「化合物1」は本発明における化合物番号1ではなく、化合物番号1583の化合物を意味する。

表55

า	Λ
۷	v

10

15

実験群	対照群	化合物番号 1583	化合物 1583
天 教研	V1 222 F4	1	
		30 mg/kg 体重	100 mg/kg 体重
発症1回目			
発症日	12.6 ± 1.9	12.3 ± 1.9	13.6 ± 2.0
最大症状スコア	3.9 ± 0.6	3.5 ± 0.9	2.4 ± 1.3 *
発症期間	8.8 ± 2.5	9.8 ± 3.3	5.7 ± 3.8*
発症2回目(再発)			
発症日	26.8 ± 7.5	26. 3 ± 3. 4	28.5 ± 4.7*
最大症状スコア	3.8 ± 0.8	. 3.7 ± 0.6	3.0 ± 0.9*
発症期間	計算せず	計算せず	計算せず

25

2-2. 実験 2: 化合物番号 1 2 4 5 の効果

エマルジョン投与後21日までの結果を表56と図9に示す。

症状の推移は各観察日における各実験群の平均値で示した。また、表56におけ 30 る最大症状スコアでは、各動物が観察期間中に示した症状スコアの最大値を当該例 の代表値として採用した。統計解析方法は、症状スコアについては対照群に対する

^{*:} p < 0.05

対応のない2群間のノンパラメトリック検定を使用した。その他の計量値については対照群に対する2群比較(Student's totest)を用いた。

対照群に比較して、化合物番号1245の300mg/kg体重投与群では発症 日遅延(p<0.05)、症状抑制傾向(有意差なし)が認められた。

5

表56

実験群	対照群	化合物番号1245
		300mg/kg体重
発症頻度(発症動物数/免疫動物数)	34/39	17/19
発症日	11. 2±2. 0	13.2±2.4*
最大症状スコア	3.0 ± 0.9	2. 5±1. 5
発症期間	5. 5±1. 7	5. 4±2. 4

* p < 0.05

以上の結果より、本発明の化合物が、多発性硬化症などの脱髄疾患に対して有効な治療もしくは予防効果を有することが示された。

10 また、実施例2043-2050において示された結果は、本発明の化合物が、ケモカインレセプター拮抗剤として、動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋症、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うっ血性心不全、ウィルス性髄膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎など、MIP-1 αおよび/またはMCP-1などのケモカインが関与すると考えられる諸疾患の治療薬もしくは予防薬となり得ることを示している。

[実施例2051] 錠剤の製造

化合物1583を30mg含有する錠剤を下記処方により製造した。

20 化合物 1 5 8 3

30 mg

ラクトース

87 mg

デンプン

30 mg

ステアリン酸マグネシウム

 $3 \, \mathrm{mg}$

[実施例2052] 注射剤の製造

WO 00/69432 PCT/JP00/03203

387

1 m L 中に化合物 1 5 8 3 の塩酸塩を 0. 3 m g 含有する注射用溶液を下記の処方により製造した。

化合物1583(塩酸塩)

30mg

食塩

900mg

5 注射用蒸留水

100mL

産業上の利用可能性

本発明で用いる環状アミン化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体は、ケモカイン受容体拮抗剤として 、MIP-1αおよび/またはMCP-1などのケモカインの標的細胞に対する作用を抑制する作用を有するので、単球、リンパ球などの白血球の組織への浸潤が疾患の進行、維持に重要な役割を演じている動脈硬化症、慢性関節リウマチ、乾癬、喘息、潰瘍性大腸炎、腎炎(腎症)、多発性硬化症、肺線維症、心筋症、肝炎、膵臓炎、サルコイドーシス、クローン病、子宮内膜症、うっ血性心不全、ウィルス性 15 髄膜炎、脳梗塞、ニューロパシー、川崎病、敗血症、アレルギー性鼻炎、およびアレルギー性皮膚炎などの疾患に対する治療薬および/または予防薬として有用である。

請求の範囲

1. 下記式(1)

[式中、 R^1 はフェニル基、 $C_3 - C_8$ シクロアルキル基、またはヘテロ原子として酸 素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基を 10 表し、上記R¹におけるフェニル基または芳香族複素環基はベンゼン環、またはヘテ ロ原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳 香族複素環基と縮合して縮合環を形成していてもよく、さらに上記R1におけるフェ ニル基、C₃-C₈シクロアルキル基、芳香族複素環基、または縮合環は、任意個の ハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カルバモイ 15 ル基、 $C_1 - C_6$ アルキル基、 $C_3 - C_8$ シクロアルキル基、 $C_2 - C_6$ アルケニル基、 $C_1 - C_6$ アルコキシ基、 $C_1 - C_6$ アルキルチオ基、 $C_3 - C_5$ アルキレン基、 $C_2 C_4$ アルキレンオキシ基、 C_1 - C_3 アルキレンジオキシ基、フェニル基、フェノキシ 基、フェニルチオ基、ベンジル基、ベンジルオキシ基、ベンゾイルアミノ基、C2- C_7 アルカノイル基、 C_2 - C_7 カルコキシカルボニル基、 C_2 - C_7 アルカノイルオ 20 キシ基、 $C_2 - C_7$ アルカノイルアミノ基、 $C_2 - C_7$ N - アルキルカルバモイル基、 $C_4 - C_9 N - シクロアルキルカルバモイル基、<math>C_1 - C_6 アルキルスルホニル基、C$ 3-C₈ (アルコキシカルボニル) メチル基、N-フェニルカルバモイル基、ピペリ ジノカルボニル基、モルホリノカルボニル基、1-ピロリジニルカルボニル基、式 :-NH (C=O) O-で表される2価基、式:-NH (C=S) O-で表される 25 2価基、アミノ基、モノ(C_1-C_6 アルキル)アミノ基、またはジ(C_1-C_6 アル キル)アジノ基で置換されていてもよく、これらのフェニル基、C3-C8シクロア ルキル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、ヒ ドロキシ基、アミノ基、トリフルオロメチル基、C₁-C₆アルキル基、またはC₁- C_6 アルコキシ基によってさらに置換されていてもよい。 30

 R^2 は、水素原子、 $C_1 - C_6$ アルキル基、 $C_2 - C_7$ アルコキシカルボニル基、ヒ

ドロキシ基、またはフェニル基を表し、 R^2 における C_1-C_6 アルキル基またはフェニル基は、任意個ののハロゲン原子、ヒドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換されていてもよい。ただし、j=0のときは R^2 はヒドロキシ基ではない。

5 jは0-2の整数を表す。

k は 0 - 2 の整数を表す。

mは2-4の整数を表す。

nは0または1を表す。

 R^3 は、水素原子または(それぞれ同一または異なった任意個のハロゲン原子、ヒ 10 ドロキシ基、 C_1-C_6 アルキル基、または C_1-C_6 アルコキシ基によって置換され ていてもよい1または2個のフェニル基)によって置換されていてもよい C_1-C_6 アルキル基を表す。

R⁴およびR⁵は、同一または異なって、水素原子、ヒドロキシ基、フェニル基、 またはC₁-C₆アルキル基を表し、R⁴およびR⁵におけるC₁-C₆アルキル基は、 15 任意個のハロゲン原子、ヒドロキシ基、シアノ基、ニトロ基、カルボキシル基、カ ルバモイル基、メルカプト基、グアニジノ基、Ca-Caシクロアルキル基、CI-C gアルコキシ基、C1-Cgアルキルチオ基、(任意個のハロゲン原子、ヒドロキシ基 、C₁-C₆アルキル基、C₁-C₆アルコキシ基、もしくはベンジルオキシ基によっ て置換されていてもよいフェニル基)、フェノキシ基、ベンジルオキシ基、ベンジ ルオキシカルボニル基、 $C_2 - C_1$ アルカノイル基、 $C_2 - C_1$ アルコキシカルボニル 20 基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 N-アルキルカルバモイル基、 C_1-C_6 アルキルスルホニル基、アミノ基、モノ($C_1 - C_6$ アルキル) アミノ基、ジ ($C_1 - C_6$ アルキル) アミノ基、または (ヘテロ 原子として酸素原子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香 族複素環基またはそのベンゼン環との縮合により形成される縮合環) により置換さ 25 れていてもよく、あるいはR⁴およびR⁵は両者一緒になって3-6員環状炭化水素

pは0または1を表す。

を形成していてもよい。

qは0または1を表す。

30 Gt, $-CO_{-}$, $-SO_{2}_{-}$, $-CO_{-}O_{-}$, $-NR^{7}_{-}CO_{-}$, $-CO_{-}NR^{7}_{-}$, $-NH_{-}CO_{-}NH_{-}$, $-NH_{-}CS_{-}NH_{-}$, $-NR^{7}_{-}SO_{2}_{-}$, $-SO_{2}_{-}N$

 R^7- 、-NH-CO-O-、または-O-CO-NH-で表される基を表す。ここで、 R^7 は水素原子または C_1-C_6 アルキル基を表すか、あるいは R^7 は R^5 と一緒になって C_2-C_6 アルキレン基を形成していてもよい。

 R^6 は、フェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_6 シクロアルケニル基 、ベンジル基、または、ヘテロ原子として酸素原子、硫黄原子、および/もしくは 窒素原子を1-3個有する芳香族複素環基を表し、上記 R^6 におけるフェニル基、ベンジル基、または芳香族複素環基は、ベンゼン環、またはヘテロ原子として酸素原 子、硫黄原子、および/もしくは窒素原子を1-3個有する芳香族複素環基と縮合 して縮合環を形成していてもよく、さらに上記 R^6 におけるフェニル基、 C_3-C_8 シ クロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、苦香族複素環基、ナ

10 クロアルキル基、 C_3-C_6 シクロアルケニル基、ベンジル基、芳香族複素環基、または縮合環は、任意個のハロゲン原子、ヒドロキシ基、メルカプト基、シアノ基、ニトロ基、チオシアナト基、カルボキシル基、カルバモイル基、トリフルオロメチル基、 C_1-C_6 アルキル基、 C_3-C_8 シクロアルキル基、 C_2-C_6 アルケニル基、 C_1-C_6 アルコキシ基、 C_3-C_8 シクロアルキルオキシ基、 C_1-C_6 アルキルチオ

基、 C_1-C_3 アルキレンジオキシ基、フェニル基、フェノキシ基、フェニルアミノ基、ベンジル基、ベンゾイル基、フェニルスルフィニル基、フェニルスルホニル基、3-フェニルウレイド基、 C_2-C_7 アルカノイル基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカノイルオキシ基、 C_2-C_7 アルカノイルアミノ基、 C_2-C_7 アルカルバモイル基、 C_1-C_6 アルキルスルホニル基、フェニルカル

20 バモイル基、N, N-ジ(C_1-C_6 アルキル)スルファモイル基、アミノ基、モノ (C_1-C_6 アルキル)アミノ基、ジ(C_1-C_6 アルキル)アミノ基、ベンジルアミノ基、 C_2-C_7 (アルコキシカルボニル)アミノ基、 C_1-C_6 (アルキルスルホニル)アミノ基、またはビス(C_1-C_6 アルキルスルホニル)アミノ基により置換されていてもよく、これらのフェニル基、 C_3-C_8 シクロアルキル基、 C_3-C_8 シク

25 ロアルケニル基、ベンジル基、芳香族複素環基、または縮合環の置換基は、任意個のハロゲン原子、シアノ基、ヒドロキシ基、アミノ基、トリフルオロメチル基、 C_1 $-C_6$ アルキル基、 C_1 $-C_6$ アルキル基、 C_1 $-C_6$ アルキル)アミノ基、またはジ(C_1 $-C_6$ アルキル)アミノ基、またはジ(C_1 $-C_6$ アルキル)アミノ基によってさらに置換されていてもよい。]

30 で表される化合物、その薬学的に許容される酸付加体、またはその薬学的に許容されるC₁-C₆アルキル付加体を有効成分とする、ケモカインもしくはケモカインレ

セプターが関与する疾患の治療薬もしくは予防薬。

2. 疾患が軟骨破壊または骨破壊を伴う疾患である請求の範囲第1項記載の治療 薬もしくは予防薬。

5

- 3. 軟骨破壊または骨破壊を伴う疾患が、関節炎、慢性関節リウマチ、変形性関 節症、外傷、骨粗鬆症、または腫瘍である請求の範囲第2項記載の治療薬もしくは 予防薬。
- 10 4. 疾患が慢性関節リウマチである請求の範囲第1項記載の治療薬もしくは予防 薬。
 - 5. 疾患が、腎炎もしくは腎症である請求の範囲第1項記載の治療薬もしくは予防薬。

15

- 6. 疾患が、糸球体腎炎、間質性腎炎、またはネフローゼ症候群である請求の範囲第5項記載の治療薬もしくは予防薬。
- 7. 疾患が、脱髄疾患である請求の範囲第1項記載の治療薬もしくは予防薬。

20

- 8. 疾患が、多発性硬化症である請求の範囲第7項記載の治療薬もしくは予防薬
- 9. f ケモカインがMIP-1 α もしくはMCP-1 である請求の範囲第1項記載の治療薬もしくは予防薬。

25

- 10. ケモカインレセプターがCCR1もしくはCCR2である請求の範囲第1項記載の治療薬もしくは予防薬。
- 11. 上記式 (I) で表される化合物、その薬学的に許容される酸付加体、また 30 はその薬学的に許容される C_1-C_6 アルキル付加体を有効成分とする医薬組成物。

図 1

WO 00/69432 PCT/JP00/03203

2/8

図 2

図 3

WO 00/69432

3/8

図 4

(図5)

図 6

6/8

図 7

....

WO 00/69432 PCT/JP00/03203

8/8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/03203

A CLAS	SIFICATION OF SUBJECT MATTER			
Int.	C1 ⁷ A61K31/40, 422, 4439, 404, 45 0, 506, 4184, 4178, 423, 4192, 445, 429	45, 4525, 4535, 454, 427, 433, 55, A61B43/00, 20/00, 0/00	4245, 4155, 5377,	
// 4	.0/D20//14, 33, 34, 405/06, 12, 14, 4	01/06, 12, 14, 409/06, 12, 14	, 403/06, 12, 14,	
	o International Patent Classification (IPC) of to both	national classification and IPC	,	
	ocumentation searched (classification system follows	ed by classification symbols)		
4709 // C 413/	C1 ⁷ A61K31/40, 422, 4439, 404, 45, 506, 4184, 4178, 423, 4192, 445, 429 07D207/14, 33, 34, 405/06, 12, 14, 414, 417/06, 211/34, 60, 62, 513/04, tion searched other than minimum documentation to the searched other than minimum documentation the searched other than minimum documentation that the searched other than minimum documentation the searched other than minimum documentation that the searched other than minimum documentation that the searched other than minimum documentation the searched other than minimum documentation that the searched other than minimum documentation the searched other than minimum documentation that the searched other than minimum documentation the searched other than minimum documentation that the searched other than minimum documentation the searched other than minimum documentation the searched other than minimum documentation	45, 4525, 4535, 454, 427, 433, 55, A61P43/00, 29/00, 9/00, 301/06, 12, 14, 409/06, 12, 14, 223/02	37/00, 25/00, 11/00 4, 403/06, 12, 14,	
	lata base consulted during the international search (na			
REG.	ISTRI(SIN), CA(SIN), CAOLD(SIN), C	APLUS (STN)	arch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where		Relevant to claim No.	
X A	Khalid, M. et al., "N,N'-disub as novel cancer chemotherapeutic Res., Vol.13, Suppl.1, pp.57-6	agents", Drugs Exp. Clin	1-3,9-11 4-8	
X A	WO, 98/50534, Al (SMITHKLINE E 12 November, 1998 (12.11.98) & EP, 991753, Al & AU, 9872 & ZA, 9803843, A & NO, 9905	2885, A	1-3,9-11 4-8	
X A	EP, 217286, A1 (OKAMOTO, SHOSU 08 April, 1987 (08.04.87), compounds No.42 & JP, 63-022061, A & US, 4895 & CA, 1297633, A & AU, 6305	5842, A	11 1-10	
. PX	WO, 99/25686, A1 (TEIJIN LIMIT 27 May, 1999 (27.05.99) & AU, 9913741, A	ED),	1-11	
PΧ	WO, 00/31032, A1 (F.HOFFMANN-L 02 June, 2000 (02.06.00), & DE, 19955794, A	A ROCHE AG),	1-11	
M Further	documents are listed in the continuation of Box C.	See patent family annex.		
** Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family				
Date of the ac 09 Au	ctual completion of the international search agust, 2000 (09.08.00)	Date of mailing of the international searce 22 August, 2000 (22.4)	h report 08.00)	
	iling address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No.		Telephone No.	i	
orm PCT/IS	A/210 (second sheet) (July 1992)			

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category* & FR, 2786185, A & GB, 2343893, A

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

1						
Int. C17 A6	風する分野の分類(国際特許分類(IPC) 51K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 4 43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // C07 4, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/0	127, 433, 4245, 4155, 5377, 4709, 506, 4184, 4	178, 423, 4192, 445, 14, 409/06, 12, 14,			
B. 調査を	行った分野					
調査を行った	最小限資料 (国際特許分類 (IPC))					
,,	1K31/40, 422, 4439, 404, 4545, 4525, 4535, 454, 4 43/00, 29/00, 9/00, 37/00, 25/00, 11/00 // c07 4, 413/14, 417/06, 211/34, 60, 62, 513/04, 223/0	11/01//14 33 34 405/05 19 14 401/05 10 1	178, 423, 4192, 445, 14, 409/06, 12, 14,			
最小限資料以						
国際調査で使	ー 用した電子データベース(データベースの名利	な 調本に体用した用款し				
			•			
K D G T	STRY (STN), CA (STN), CAC	OLD (STN), CAPLUS (STN)	÷			
C. 関連する	ると認められる文献					
引用文献の			即法上了			
カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号			
X	Khalid, M. et al., "N, N'-disubstitu	ited L-isoglutamines as novel	1-3, 9-11			
A	cancer chemotherapeutic agents' Suppl. 1, p. 57-60 (1987)	, Drugs Exp. Clin. Res., Vol. 13,	4-8			
X	WO, 98/50534, A1 (SMITHKLINE BEECH	IAM CORDODATION				
A	12.11月.1998(12.11.98)	IAM CORPORATION)	1-3, 9-11			
	&EP, 991753, A1 &AU, 9872885, A &ZA	, 9803843, A &NO, 9905433, A	4-8			
		, , , , , , , , , , , , , , , , , , , ,				
x C欄の続き	にも文献が列挙されている。	□ パテントファミリーに関する別線	紙を参照。			
* 引用文献の		の日の後に公表された文献	·			
「A」特に関連 もの	のある文献ではなく、一般的技術水準を示す	「T」国際出願日又は優先日後に公表さ	れた文献であって			
「E」国際出願	日前の出願または特許であるが、国際出願日	て出願と矛盾するものではなく、 論の理解のために引用するもの	発明の原理又は理			
以後に公	以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明					
日若しく	日若しくは他の特別な理由を確立するために引用する「V」特に関連のまるではないと考えられるもの					
文献(理由を付す) 上の文献との、当業者にとって自明である組合せに						
「P」国際出願	日前で、かつ優先権の主張の基礎となる出願	よって進歩性がないと考えられる「&」同一パテントファミリー文献	もの			
国際調査を完了	した日 09.08.00	国際調査報告の発送日 22.08.0	0			
関係調査機関の	名称及びあて先	特許庁審査官(権限のある職員)	4P 9638			
日本国金	特許庁 (ISA/JP) 便番号100-8915	榎本 佳予子 、	4P 9638			
東京都	郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 中部 2400					

国際調査報告

国際出願番号 PCT/JP00/03203

v	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X A	EP, 217286, A1 (OKAMOTO, SHOSUKE) 8.4月.1987(08.04.87) 化合物NO.42参照 &JP, 63-022061, A &US, 4895842, A &CA, 1297633, A &AU, 6305186, A	11 1-10
PX	WO, 99/25686, A1 (TEIJIN LIMITED) 27.5月.1999(27.05.99) &AU, 9913741, A	1-11
PX	WO, 00/31032, A1 (F. HOFFMANN-LA ROCHE AG) 2.6月.2000(02.06.00) &DE19955794, A &GB, 2343893, A &FR, 2786185, A	1-11
·		
		-
		•
	·	
,		

This Page Blank (uspto)