清华大学本科生考试试题专用纸 多元微积分期末考题(A)

系名	名
—.	填空题(每空3分,共15空)(请将答案直接填写在横线上!)
1.	1. 设 $\Omega = \{(x,y,z) \mid x^2 + y^2 \le 1, \ 0 \le z \le \sqrt{x^2 + y^2} \}$, $I = \iiint_{\Omega} f(x,y,z) dx dy dz$ 。 化为柱坐标下的累次积分 $I =$ 。
2.	设曲线 L 的参数方程为 $x=1-\sin t$, $y=1-\sqrt{2}\cos t$, $0 \le t \le 2\pi$,则第一类曲线积分
	$\int_{L} \sqrt{x^2 - 2x + 2} dl = \underline{\qquad}$
3.	设 S 为单位球面 $x^2 + y^2 + z^2 = 1$,则 $\iint (x+1)^2 dS =$ 。
	$\vec{V}(x,y,z) = (x+y+z,xy+yz+zx,xyz)$, $\mathcal{V}(x,y,z) = (x+y+z,xy+yz+zx,xyz)$
5.	$f(x,y,z) = e^{x+y+z}$,则 grad $f = $, rot(grad f) =。
	设 函 数 $f(x) = x^2 + x + 2$ 在 区 间 $[0,2)$ 上 的 Fourier 展 开 为 $S(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} [a_n \cos(n\pi x) + b_n \sin(n\pi x)]$,则 $S(0) = \underline{\hspace{1cm}}$ 。
7.	三重积分 $ \iiint_{x^2+y^2+z^2\leq 1} x^{99} y^{100} z^{101} dx dy dz = $ 。
8.	级数 $\sum_{n=1}^{+\infty} \frac{2^n}{(n+1)!}$ 的和为。
	函数 $\frac{1}{1-x}$ 在 $x_0 = 2$ 点的 Taylor 级数为。
10.	第二类曲线积分 $\int_{L^+} \frac{x^\lambda dy - y dx}{x^2 + y^2} = 0$ 对上半平面的任意光滑闭曲线 L 都成立,则常数
	$\lambda = \underline{\hspace{1cm}}_{\circ}$
11.	S^+ 为球面 $x^2 + y^2 + z^2 = 1$ 的外侧,则第二类曲面积分

12. 函数
$$f(x) = \int_0^x \frac{\sin t}{t} dt$$
 在 $x_0 = 0$ 点的幂级数展开为______。

13. 设幂级数
$$\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$$
 在 $x=3$ 处收敛, 且当 $x<3$ 时发散, 则 $a=$ ______。

14. 设
$$D = \{ (x, y) | 0 \le x \le 1, x^2 \le y \le 1 \}$$
,则 D 的形心横坐标 $\bar{x} = \underline{\hspace{1cm}}$

- 二. 计算题 (每题 10 分, 共 40 分)
- 1. 设 S^+ 为锥面 $z = \sqrt{x^2 + y^2}$ ($0 \le z \le 1$)的下侧,求 $\iint_{S^+} (x + y) dy \wedge dz + (2y z) dz \wedge dx$ 。
- 2. 求两个球体 $x^2 + y^2 + z^2 \le 1$ 、 $x^2 + y^2 + (z-2)^2 \le 4$ 相交部分的体积。
- 3. 设 $f(x) = \sin^2(x^2)$,
 - (I) 求 f(x) 在 $x_0 = 0$ 点的幂级数展开;

(II) 求
$$f^{(n)}(0), n = 1, 2, 3, \dots$$

三. 证明题

1. (9分)(I) 2π 为周期的函数 f(x) 在 $[-\pi,\pi]$ 上的定义为 $f(x) = \cos \alpha x$ (α 不是整数),将其展成 Fourier 级数(提示: $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$);

(II) 利用 (I) 证明:
$$\cot x = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{x^2 - n^2 \pi^2}, \quad x \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$$

2. (6 分)设函数 P(x,y), $Q(x,y) \in C^{(1)}(\mathbb{R}^2)$, 在以任意点 (x_0,y_0) 为中心,任意正数r为 半径的上半圆周 Γ 上的第二类曲线积分

$$\int_{\Gamma} P(x,y)dx + Q(x,y)dy = 0 \cdot 求证: 在 \mathbb{R}^{2} 上有$$
$$P(x,y) \equiv 0, \frac{\partial Q}{\partial x}(x,y) \equiv 0 \cdot$$

(提示: 用 Green 公式)