ЛЕКЦИЯ 6: СВОЙСТВА И ЭВОЛЮЦИЯ ЗВЁЗД РАЗНОЙ МАССЫ

ВВЕДЕНИЕ В АСТРОФИЗИКУ. ВШЭ 2022/2023. БАКАЛАВРЫ, 4-Й МОДУЛЬ.

АНТОН БИРЮКОВ (АСТРОНОМИЧЕСКИЙ ИНСТИТУТ МГУ ИМ. М.В. ЛОМОНОСОВА И ВШЭ), К.Ф.-М.Н

ПЛАНЛЕКЦИИ

- 1. Спойлер: что нужно знать об эволюции звёзд?
- 2. Диаграмма Герцшпрунга-Рассела: зачем это нужно?
- 3. Свойства звёзд разных масс на главной последовательности ГР-диаграммы.
- 4. Эволюция звёзд разных масс (и как она выглядит на ГР-диаграмме)

СПОЙЛЕР

- \succ Звёзды имеют разную массу («рабочий диапазон» ~ 0.5 до $20-30 M_{\odot}$) и разный химсостав (доля элементов тяжелее гелия от $\sim 10^{-3}$ до ~ 5 в солнечных единицах);
- \succ Звёзды с M до $\sim 10 M_{\odot}$ -- это «маломассивные» звёзды, а более тяжелые «массивные».
- ightharpoonup Массивные звёзды яркие и горячие (L до $\sim 10^5 L_{\odot}$, $T \sim 10^4$ К), а маломассивные тусклые и холодные ($L > 10^{-3} L_{\odot}$, $T \sim 10^3$ К);
- Массивные звёзды живут миллионы лет, а маломассивные миллиарды;
- ightharpoonup Массивные звёзды ($M>10-12M_{\odot}$) скорее закончат свою жизнь как нейтронная звезда или чёрная дыра, а маломассивые как белый карлик.
- В массивных звёздах образуются элементы до железа, а в маломассивных до магния.

ИОСИФ ШКЛОВСКИЙ: ЖИЗНЬ ЗВЕЗДЫ

«... история существования любой звезды — это поистине титаническая борьба между силой гравитации, стремящейся ее неограниченно сжать, и силой газового давления, стремящейся ее «распылить»... но в конце концов, как мы увидим дальше, победа будет за гравитацией. Такова драма эволюции любой звезды....»

HA AAAEKOŬ IIAAHETE BEHEPE

На далекой планете Венере Солнце пламенней и золотистей. На Венере, ах, на Венере У деревьев синие листья...

Эти стихи написаны сорок лет назад русским поэтом Гумилевым. Синие листья Гумилева - это поэтическая метафора. Он был прекрасным поэтом, но не мог предвидеть появления новой науки - астроботаники. Согласно основоположнику этой нау-

Что же произо- Профессор И. ШКЛОВСКИЙ шло в науке?

покрыта густым слоем облаков. Пелена облаков там настолько плотная, что поверхность планеты совершенно под ней не видна. По этой причине астрономы почти ничего не знали о физических условиях, господствующих на поверхности Венеры. Неизки Г. А. Тихову, «синие листья» долж- вестен и до сих пор даже период ее вращения вокруг сво-

Как хорошо всем известно, Венера но, излучает широкий спектр элек-

тромагнитных волн, в том числе и радиоволны. Поэтому, зная поток радиоизлучения от Венеры, а также расстояние до нее и размеры планеты, можно по известным простым формулам физики определить температуру излучающей поверхности. Результаты оказались поразительными. По наблюдениям на волнах 3 и 10

Всякое нагретое и речи о том, что на поверхности тело, как извест- планеты есть моря.

Какой же мрачный это мир! Раскаленные скалы, полное отсутствие водоемов, углекислая плотная атмосфера и пелена облаков, закрывающая все небо. Сквозь нее не видно ни солнца, ни звезд, что и говоритькартина совсем не такая радостная, как она рисовалась поэту, чьими стихами мы начали эту статью.

Как непохожи эти две соседние

ФОРМИРОВАНИЕ ЗВЕЗДЫ

 Звёздообразование запускается при достижении облаком джинсовской массы:

$$M_I \propto T^{3/2} \rho^{-1/2}$$

- По ходу сжатия возможна (и скорее наступает) фрагментация облака из-за повышения плотности.
- Условие возможности фрагментации: показатель адиабаты γ < 4/3

ГЛОБУЛЫ

	Mass	5 - $50M_{\odot}$	0.5 - $5M_{\odot}$
	Size	$0.2 - 1 \mathrm{pc}$	0.02 - 0.05 pc
ЗД РАЗНОЙ МАССЫ	Mean density	10^3cm^{-3}	10^7cm^{-3}
	Gas temperature	15 K	10 K
	Line widths	$0.5 - 2 km s^{-1}$	$0.4 - 0.7 \text{km s}^{-1}$

БАРНАРД 68 И ПОГЛОЩЕНИЕ

Межзвёздная среда более прозрачна в ИК+ диапазоне.

РАСПРЕДЕЛЕНИЕ ЗВЁЗД ПО НАЧАЛЬНЫМ МАССАМ

Функция масс Солпитера (Salpeter, 1955):

$$\xi(M) = \xi_0 M^{-2.35}$$

$$N(M_1 \dots M_2) = \xi_0 \int_{M_1}^{M_2} M^{-2.35} dM$$

$$M_{
m min} pprox 0.08 M_{\odot}$$
 (возможность устойчивого рр-цикла)

$$M_{
m max} pprox 150 \, M_{\odot}$$
 (Эддингтоновский предел в нашу эпоху. В ранней вселенной вполне могли быть звёзды с $M \sim 5 \cdot 10^4 \, M_{\odot}$).

РАССТОЯНИЯ ДО ЗВЁЗД

The Cosmic Distance Ladder:

 $L_{
m iso,bol} = F_{
m bol} \cdot 4\pi D^2$ -- болометрическая светимость звезды.

Method of Trigonometric Parallaxes

ЛЕКЦИЯ 6: СТРОЕНИЕ И ЭВОЛЮЦИЯ ЗВЁЗД РАЗНОЙ МАССЫ

1 пк ≈ 206265 a. e. $\approx 3 \cdot 10^{18}$ см p'' = 1/(D [пк])

СПЕКТРЫ ЗВЁЗД

Анджело Секки (1818 - 1878)

ГАРВАРДСКАЯ СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ

Вильямина Флеминг (1857 — 1911)

Спектральные классы делятся на подклассы (A0,A1,A2...A9).

11

Солнце — звезда класса G2V. V = "5-й класс светимости"

ЛЕКЦИЯ 6: СТРОЕНИЕ И ЭВ

Спектральный класс

- Температуры определяются по спектрам.
- Для определения светимости необходимо знать расстояние (в идеале – по параллаксу), а также учесть межзвездное поглощение.
- Самые легкие звезды имеют массу 0.08 солнечных.
- Самые тяжелые из образующихся в нашу эпоху: около 100+ солнечных.
- С ростом массы резко растет светимость.
- Время жизни тем больше, чем меньше масса звезды.

ДИАГРАММА ГЕРЦШПРУНГА-РАССЕЛА ДЛЯ СКОПЛЕНИЯ

Все звёзды скопления имеют примерно один возраст.

$$L_{\odot} = 4 \cdot 10^{26} \, \mathrm{Br} = 4 \cdot 10^{33} \, \mathrm{эрг/c}$$

ДИАГРАММА ГЕРЦШПРУНГА-РАССЕЛА ДЛЯ СКОПЛЕНИЯ

Typical Globular Cluster H-R Diagram

GAIA: ГР-ДИАГРАММА ДЛЯ РАССЕЯННЫХ СКОПЛЕНИЙ

GAIA: ГР-ДИАГРАММА ДЛЯ ШАРОВЫХ СКОПЛЕНИЙ

ЭВОЛЮЦИЯ ДО ГЛАВНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

ПРОТОЗВЕЗДА И ЕЁ ОКРЕСТНОСТИ

Main difference: massive stars affect their surroundings

High-mass SF

Low-mass SF

ZAMS

- > ZAMS = Zero Age Main Sequence (главная последовательность нулевого возраста)
- На ГР-диаграмме выделяют классы светимости (отдельные поледовательности) звёзд:

I(a,b) — сверхгиганты
II — яркие гиганты
III — гиганты
IV — субгиганты
V — карлики (Солнце)
VI — субкарлики
VII — белые карлики

ЛЕКЦИЯ 6: СТРОЕНИЕ И ЭВОЛЮЦИЯ ЗВЁЗД РАЗНОЙ МАССЫ

СООТНОШЕНИЕ МАССА-СВЕТИМОСТЬ

ightharpoonup B маломассивных звёздах преобладает газовое давление $(P_g \propto T)$ и поэтому

$$L_{\rm low-m} \propto M^{3...4}$$

ightharpoonup В массивных звёздах существенно в том числе и давление излучения $(P_r \propto T^4)$, поэтому

$$L_{\rm high-m} \propto M^{1...2}$$

СОТНОШЕНИЕ МАССА-РАДИУС

 $L \propto \varepsilon M \propto \rho T^{\alpha} M$

$$M^3 \propto \frac{M}{R^3} \left(\frac{M}{R}\right)^{\alpha} M \Rightarrow R \propto M^{\frac{\alpha-1}{\alpha+3}}$$

 $\alpha_{PP} \sim 4$, $\alpha_{CNO} \sim 20$

ДОЛГАЯ ЭВОЛЮЦИЯ ЗВЕЗД МАЛОЙ МАССЫ

 Расчеты проведены с помощью программы SSE (Single Star Evolution).

http://astronomy.swin.edu.au/~jhurley/stellar.html

➤ Наиболее употребимый на сегодня код MESA (Modules for Experiments in Stellar Astrophysics)

http://www.astro.wisc.edu/~townsend/static.php?
ref=mesa-web

Evolutionary Tracks off the Main Sequence

ЭВОЛЮЦИЯ ЗВЕЗД В ЦЕЛОЙ

- За свою жизнь звезда
 переживает несколько эпох
 «главной последовательности»,
 во время которых в ядре горя
 разные элементы.
- Чем тяжелее ядра атомов, тем быстрее такой элемент сгорает.
- Горение более тяжелого элемента сопровождается бОльшим энерговыделением.

ЛЕКЦИЯ 6: СТРОЕНИЕ И ЭВОЛЮЦИЯ ЗВЁЗД РАЗНОЙ МАССЫ

МАССА – ПЕРВЫЙ ГЛАВНЫЙ ПАРАМЕТР

- Чем массивнее звезда– тем больше онаизлучает и меньшеживет.
- Массивные звезды в конце жизни взрываются, а их ядра становятся нейтронными звездами или черными дырами.
- Маломассивные звезды сбрасывают лекция спочки, и их ядра лекция спочки, и их ядра становятся белыми карликами.

ВРЕМЯ ЖИЗНИ ЗВЕЗДЫ НА ГЛАВНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

ЕНХАЙНА ДЛЯ $M=5M_{\odot}$

27

ЭВОЛЮЦИЯ МАЛОМАССИВНЫХ ЗВЁЗД

ПРОВАЛ ГЕРЦШПРУНГА

Гелиевое ядро с массой ниже некоторой находится в равновесии и не вырождено.

Водород горит в слоевом источнике.

Это стадия субгиганта.

Растет масса ядра.

Это приводит к резкому сжатию – начинается RGB.

При массе >2 солнечных предельная масса (предел Шенберга-Чандрасекара) достигается быстро.

Ядро сжимается — начинается стадия гиганта. Т.о., у таких звезд стадия субгиганта короткая. Поэтому возникает «провал Герцшпрунга» - звезды очень быстро пересекают эту часть диаграммы.

ЛЕКЦИЯ 6: СТРОЕНИЕ И ЭВОЛЮЦИЯ ЗВЁЗД РАЗНОЙ МАССЫ

ГОРИЗОНТАЛЬНАЯ ВЕТВЬ И ПОЛОСА НЕСТАБИЛЬНОСТИ

- На горизонтальной ветви идет горение гелия в ядре звезды.
- Массы ядер у разных звезд примерно одинаковы, поэтому светимость отличается слабо.
- А вот температура зависит от массы водородной оболочки. И этот параметр отличается сильно.
- Типичное время жизни на горизонтальной ветви 100 млн. лет.

30

РЕАКЦИИ В МАССИВНЫХ ЗВЕЗДАХ

$$^{12}{
m C} + ^{12}{
m C}
ightarrow \left\{ egin{array}{ll} ^{24}{
m Mg} + \gamma \;, & {
m Первая \ ctaдия} - {
m горение} \ & {
m углерода.} \ & {
m углеродное \ ядро \ при \ \it M} > 10 \it M_{\odot} \ & {
m Yrлеродное \ ядро \ при \ \it M} > 10 \it M_{\odot} \ & {
m He} {
m Bulker}
ightarrow {
m He} {
m He} \ . \end{array}
ight.$$

$$^{16}{\rm O} + ^{16}{\rm O} \rightarrow \left\{ \begin{array}{l} ^{32}{\rm S} + \gamma \; , \\ ^{31}{\rm P} + p \; , \\ ^{31}{\rm S} + n \; , \\ ^{28}{\rm Si} + ^{4}{\rm He} \; , \\ ^{24}{\rm Mg} + 2 \, ^{4}{\rm He} \; . \end{array} \right.$$

При миллиарде градусов начинается горение кислорода.

$$^{28}{\rm Si} + ^{4}{\rm He} \ ^{\longrightarrow} \ ^{32}{\rm S} + \gamma$$
 .

Фотодиссоциация приводит к Появлению альфа-частиц.

$$^{32}\mathrm{S} + ^{4}\mathrm{He} \;\; \rightleftarrows \;\; ^{36}\mathrm{Ar} + \gamma \; ,$$
 $^{36}\mathrm{Ar} + ^{4}\mathrm{He} \;\; \rightleftarrows \;\; ^{40}\mathrm{Ca} + \gamma \; ,$ $^{40}\mathrm{Ca} + \gamma \; ,$ $^{40}\mathrm{C$

25 масс Солнца

ЭВОЛЮЦИЯ МАССИВНЫХ ЗВЕЗД

nonburning hydrogen hydrogen fusion

helium fusion

carbon fusion

Interval $(i-j)$ Mass (M_{\odot})	(1–2)	(2-3)	(3-4)	(4–5)	(5–6)
15	1.010 (7)	2.270 (5)		7.55 (4)	
9			9.113 (4)		6.552 (4)
5			1.372 (6)		
3			1.033 (7)		
2.25		7 7	3.696 (7)	• •	. ,
1.5			3.490 (8)	, ,	, ,
1.25			1.045 (9)	• .	_ , ,
1.0	7 (9)		1.20 (9)	, ,	

Interval $(i-j)$ Mass (M_{\odot})	(6–7)	(7–8)	(8–9)	(9–10)
15	7.17 (5)	6.20 (5)	1.9 (5)	. 3.5 (4)
9	4.90 (5)	9.50 (4)	3.28 (6)	1.55 (5)
5	6.05 (6)	1.02 (6)	9.00 (6)	9.30 (5)
3	2.51 (7)	4.08 (7)		6.00 (6)

МЕТАЛЛИЧНОСТЬ

ХИМИЧЕСКАЯ ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Большинство химических элементов, с которыми мы сталкиваемся в жизни (и из которых состоим), возникли в звездах в течение их жизни в результате термоядерных реакций, или на последних стадиях жизни массивных звезд — во взрывах сверхновых. До образования звезд обычное вещество в основном существовало в виде водорода (самый распространенный элемент) и гелия.

ЛИТЕРАТУРА

- > А. Засов, К. Постнов «Курс общей астрофизики», Гл. 5 и 6. (github)
- > С. Ламзин, «Физика и эволюция звёзд» (github)
- O.R. Polls, «Stellar structure and evolution» (github)
- Я. Зельдович, С. Блинников, Н. Шакура «Физические основы строения и эволюции звёзд», Гл. 6, http://www.astronet.ru/db/msg/1169513/index.html
- ➤ К. Постнов «Лекции по общей астрофизике для физиков», ч. 6 и 7 <u>http://www.astronet.ru/db/msg/1176797</u>

ДОМАШНЕЕ ЗАДАНИЕ 7

- **1. (4 балла).** Светимость массивных звёзд главной последовательности определяется эффективностью CNO-цикла. Его удельное энерговыделение примерно равно $\varepsilon=5$ МэВ/нуклон. Зная это и считая, что непрозрачность ядрах таких звёзд определяется томпсоновским рассеянием на свободных электронах, получите верхнюю оценку минимального времени $t_{\rm max}$, которое проведёт массивная звезда на главной последовательности.
- 2. **(6 баллов)**. Воспользовавшись теоремой вириала для политропного шара покажите, что такой шар оказывается неустойчивым при показателе адиабаты $\gamma < 4/3$.