36-755: Advanced Statistics

Fall 2017

Lecture 13: Wednesday, October 11

Lecturer: Alessandro Rinaldo Scribe: Benjamin LeRoy

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

13.1 Visualizing Shrinkage

Recall that for Ridge regression:

$$\hat{\beta}_{ridge} = \operatorname{argmin}_{\beta \in \mathbb{R}^d} ||Y - X\beta||^2 + \lambda ||\beta||^2, \quad \lambda \ge 0$$
$$= (X^T X + \lambda I_d)^{-1} X^T Y$$

To motivate approaching ridge regression in terms of spectral decomposion observe the following about Ordinary Least Squares when $r = rank(X) \le \min\{n, d\}$.

We can decompose $X = U\Lambda V^T$ where Λ diagonal, with r non-zero values $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r$. We'll express $U = [u_1, ..., u_d]$. Then:

$$X\hat{\beta}_{ols} = X(X^T X)^+ X^T$$
$$= \sum_{i=1}^R u_i u_i^T Y$$

Back to ridge regression we have:

$$X\hat{\beta}_{ridge} = X(X^TX + \lambda \mathbb{I}_d)X^TY$$

Plugg in in SVD of X and noticing that

$$X^T X + \lambda \mathbb{I}_d = V \Lambda^2 V^T + \lambda \mathbb{I}_d = V (\Lambda^2 + \mathbb{I}_d) V^T$$

we have that

$$\begin{split} X \hat{\beta}_{ridge} &= U \Lambda V^T V (\Lambda^2 + \lambda \, \mathbb{I})^{-1} V^T V \Lambda U^T Y \\ &= U \Lambda (\Lambda^2 + \lambda \, \mathbb{I})^{-1} \Lambda U^T Y \\ &= U H U^T Y \end{split} \qquad \text{def of V (orthonormal structure gets } V^T V = \mathbb{I}_d) \end{split}$$

$$\text{where } H = \begin{bmatrix} \frac{\sigma_1^2}{\sigma_1^2 + \lambda} & & & & 0 \\ & \ddots & & & & \\ & & \frac{\sigma_r^2}{\sigma_r^2 + \lambda} & & & \\ & & & 0 & & \\ & & & \ddots & \\ 0 & & & & 0 \end{bmatrix}.$$

Which means we can express

$$X\hat{\beta}_{ridge} = \sum_{i=1}^{r} u_i \frac{\sigma_i^2}{\sigma_i^2 + \lambda} u_i^T Y$$

This can be thought of as a weighted projection onto the PC directions of X with a shrinkage by λ , especially comparing to $X\hat{\beta}_{ols} = \sum_{i=1}^{r} u_i u_i^T Y$.

To really think about the shrinkage seen in ridge regression (and Lasso and best subset selection) we focus on the basic case where $Y \sim (\mu, \sigma^2 \mathbb{I}) \in \mathbb{R}^d$ with the goal of estimating μ . Under these assumptions we observe:

$\hat{\mu}$	argmin representation	reduction	comment
$\hat{\mu}_{mle} \ \hat{\mu}_{ridge}$	$ = Y $ $= \operatorname{argmin}_{\mu \in \mathbb{R}^d} Y - \mu ^2 + \lambda \mu ^2 $	$=\frac{Y}{1+\lambda}$	shrinks $\rightarrow 0$
$\hat{\mu}_{lasso}$	$= \operatorname{argmin}_{\mu \in \mathbb{R}^d} Y - \mu ^2 + \lambda \mu _1$	$= \operatorname{soft}_{\lambda/2}(Y)$	where $\operatorname{soft}_{\lambda/2}(Y) = \begin{cases} x - \lambda/2 & x > \lambda/2 \\ 0 & x \leq \lambda/2 \\ x + \lambda/2 & x < -\lambda/2 \end{cases}$ where $\operatorname{hard}_{\sqrt{\lambda}}(Y) = \begin{cases} x & x > \sqrt{\lambda} \\ 0 & x < \sqrt{\lambda} \end{cases}$
$\hat{\mu}_{ ext{best subset}}$	$ = \operatorname{argmin}_{\mu \in \mathbb{R}^d} Y - \mu ^2 + \lambda \mu _0 $	$=\operatorname{soft}_{\lambda/2}(Y)$	where $\operatorname{hard}_{\sqrt{\lambda}}(Y) = \begin{cases} x & x > \sqrt{\lambda} \\ 0 & x < \sqrt{\lambda} \end{cases}$

Figure 13.1 provides a visual of each of these shrinkage functions compared to the OLS function (y = x).

Figure 13.1: Different shrinkage lines for the basic case

When X is orthogonal in the standard regression case and $\mu = X\beta$ then we have:

$$\hat{\mu}_{ridge} = \frac{X^T Y}{1+\lambda} = \frac{\hat{\beta}_{ols}}{1+\lambda} \qquad \hat{\mu}_{lasso} = \operatorname{soft}_{\lambda/2}(\hat{\beta}_{ols}) \qquad \hat{\mu}_{best \text{ subset}} = \operatorname{hard}_{\sqrt{\lambda}}(\hat{\beta}_{ols})$$

13.2 Fast Rates for Lasso

13.2.1 Reminders

In the last lecture we saw that Lasso could give us slow rates (compared to the best subset selection) if $\lambda_n \geq \frac{||X^T \epsilon||_{\infty}}{n}$. Specifically that if the constraint on λ_n held then for c > 0:

$$\frac{1}{2n}||X(\hat{\beta}_{lass}-\beta^*||^2 \leq 4||\beta^*||_1\lambda \qquad \text{ with prob } \geq 1-\frac{1}{n^c}$$

Where, with assumptions of sub-Gaussian noise and bounded covariates, we saw this had order $o\left(\sigma\sqrt{\frac{\log n + \log d}{n}}\right)$.

This was slower than with the best subset selection where, as a reminder:

$$\hat{\beta}_{\text{best subset}} = \operatorname{argmin}_{\beta \in \mathbb{R}^d} \frac{1}{2n} ||Y - X\beta||^2 + \lambda ||\beta||_0$$

and which yields preformance of order $||\beta^*||_0 \frac{\sigma^2}{n} (\log d + \log n)$.

Additionally, recall that if $\lambda_{min}\left(\frac{X^TX}{n}\right) > c$ then $\frac{1}{2}||\hat{\beta}_{lasso} - \beta^* * ||^2 \le \frac{4}{c}||\beta^*||_1\lambda_n$.

13.2.2 Fast Rates for Lasso

In order to get fast rates for the Lasso, we need the restricted eigenvalue (RE) condition defined as below.

Definition 13.1 X satisfies the $RE(\alpha, \kappa)$ condition with $\alpha > 1$, $\kappa > 0$ for some $S \subseteq \{1, ..., d\}$ if

$$\frac{1}{n}||X\Delta||^2 \ge \kappa ||\Delta||^2 \qquad \text{for all} \quad \Delta \in C_\alpha(S) = \{x \in \mathbb{R}^d : ||x_{S^C}||_1 \le \alpha ||x_S||_1\}$$

Aside: The constraint $\frac{1}{n}||X\Delta||^2 \ge \kappa ||\Delta||^2$ can be though of as forcing $||X\Delta||^2$ to have at least some amount of curvature on the S dimensions. One can think about this like bounding the derivative in those dimensions from below as Δ is the difference between $\hat{\beta}$ and β .

Theorem 13.2 Assuming the following conditions:

- 1) $Y = X\beta^* + \epsilon$ $\epsilon \in SG(\sigma^2)$ independent
- 2) $supp(\beta^*) = \{i : \beta_i \neq 0\} = S$
- 3) X satisfies the $RE(3,\kappa)$ conditional with respect to S

then if $\lambda_n \geq \frac{2||X^T \epsilon||_{\infty}}{n}$ we have that

$$\frac{1}{n}||X\hat{\Delta}||^2 \le 9\lambda_n^2\frac{|S|}{\kappa} \quad and \quad ||\hat{\Delta}|| \le 3\sqrt{|S|}\frac{\lambda_n}{\kappa}$$

Aside: This is the same preformance as best subset selection noting that $|S| = |\beta^*|_0$.

Proof: Under these assumptions we first show that $\hat{\Delta} \in C_3(S)$: Recall the basic inequality (via Δ inequality and expansion) we obtained in the last lecture:

$$0 \le \frac{1}{2n} ||X\hat{\Delta}||^2 \le \frac{\epsilon^T X \hat{\Delta}}{n} + \lambda_n \left(||\beta^*||_1 - ||\hat{\beta}||_1 \right)$$
 (13.1)

Since β^* is S-sparse and recalling that $\hat{\Delta} = \hat{\beta} - \beta^*$, then

$$||\beta^*||_1 - ||\hat{\beta}||_1 = ||\beta_S^*||_1 - ||\beta_S^* + \hat{\Delta}_S||_1 + ||\hat{\Delta}_{S^C}||_1$$

From this we can observe that

$$\frac{1}{n}||X\hat{\Delta}||^2 \le \frac{2}{n}||X^T\epsilon||_{\infty}||\hat{\Delta}||_1 \qquad (\mathbf{i})$$

$$+ 2\lambda \left(||\hat{\Delta}_S||_1 - ||\hat{\Delta}_{S^C}||_1\right) \quad (\mathbf{ii})$$
(13.2)

Where (i) comes from Holder's inequality and (ii) comes a substitution into equation 13.1 from the triangle inequality giving

$$||\beta_S^*||_1 \le ||\hat{\Delta}_S||_1 + ||\beta_S^* + \hat{\Delta}_S||$$

$$\Leftrightarrow ||\hat{\Delta}_S||_1 \ge ||\beta_S^*||_1 - ||\beta_S^* + \hat{\Delta}_S||$$

Using the fact that $\frac{2||X^T\epsilon||_{\infty}}{n} \leq \lambda_n$ from the theorem assumptions, we have that we can constrain $\frac{1}{n}||X\hat{\Delta}||^2$ in equation 13.2 by

$$\leq \lambda ||\hat{\Delta}_{S}||_{1} + \lambda_{n}||\hat{\Delta}_{S^{C}}||_{1} + 2\lambda_{n}(||\hat{\Delta}_{S}||_{1} - ||\hat{\Delta}_{S^{C}}||_{1})$$

$$\leq \lambda_{n}(3||\hat{\Delta}_{S}||_{1} - ||\hat{\Delta}_{S^{C}}||_{1})$$

This implies that $\hat{\Delta} \in C_3(S)$, so we can use the fact that $\frac{||X\hat{\Delta}||^2}{n} \ge ||\hat{\Delta}||^2 \kappa$.

So, we can constraint $\frac{1}{n}||X\hat{\Delta}||^2$ in the following way,

$$\begin{split} \frac{1}{n}||X\hat{\Delta}||^2 &\leq \lambda_n(3||\hat{\Delta}_S||_1 - ||\hat{\Delta}_{S^C}||_1) \\ &\leq 3\lambda_n(||\hat{\Delta}||_1) \\ &\leq 3\lambda_n\sqrt{|S|}||\hat{\Delta}_S||_2 \qquad \qquad \text{because } x \in \mathbb{R}^d \colon ||x||_2 \leq ||x||_1 \leq \sqrt{d}||x||_2 \\ &\leq 3\lambda_n\sqrt{|S|}||\hat{\Delta}||_2 \\ &\leq 3\lambda_n\sqrt{|S|}\frac{||X\hat{\Delta}||}{\sqrt{n}} \qquad \qquad \text{from the RE condition we showed first.} \end{split}$$

Observing that both sides of the equation has a multiple of $\frac{||X\hat{\Delta}||}{\sqrt{n}}$ we can obtain:

$$\frac{1}{\sqrt{n}}||X\hat{\Delta}|| \le 3\lambda_n \sqrt{\frac{|S|}{\kappa}}$$
$$\frac{1}{n}||X\hat{\Delta}||^2 \le 9\lambda_n^2 \frac{|S|}{\kappa}$$

which gives us the first part of the conclusion. Additionally, from the RE condition we have that $\frac{||X\hat{\Delta}||^2}{n} \ge ||\hat{\Delta}||^2 \kappa$ which leads to

$$||\hat{\Delta}||\sqrt{\kappa} \le \frac{||X\hat{\Delta}||}{\sqrt{n}} \le 3\lambda_n \sqrt{\frac{|S|}{\kappa}}$$

Which provides us with the fact that $||\hat{\Delta}|| = ||\hat{\beta}_{lasso} - \beta^*|| \le 3\lambda_n \sqrt{\frac{|S|}{\kappa}}$.

In order to obtain the fast rate we need with high probability we have a λ_n such that $\lambda_n \geq \frac{2||X^T\epsilon||_{\infty}}{n}$. If the columns of X are normalized so that they have norm $O(\sqrt{n})$ then you can take $\lambda_n \asymp \sigma \sqrt{\frac{\log n + \log d}{n}}$ and the assumption will hold with probability $\geq 1 - \frac{1}{n^c}$.