Information Security

(COMP 41280)

Course Introduction

Félix Balado

School of Computer Science University College Dublin

What This Course Is About

- Information security is a broad field mainly concerned with ensuring
 - authenticity
 - integrity
 - privacy (confidentiality)

of information

- This course is an introduction to
 - 1 the theoretical underpinnings of information security
 - 2 the most important techniques and algorithms that are used to secure information

Course Introduction 2/10

Requisites

- Basic concepts from fields relevant to the course will be introduced along the way:
 - probability theory
 - information theory: "the" theory of information
 - number theory: essential for modern cryptography
- The course will be <u>as self-contained as possible</u>, but you may need additional self-study depending on your academic background

Course Introduction 3/10

Course Outline

- Shannon's cryptography model. Channel/source coding and cryptography.
- Classic ciphers. Block ciphers. DES. AES. Operation modes. Stream ciphers.
- Public key cryptography. Diffie-Hellman scheme. RSA.
- Hash functions. SHA. Authentication Codes. Digital signatures and certificates.
- Noncryptographic security. Digital data hiding: watermarking and steganography. Digital forensics and counterforensics.

Course Introduction 4/10

Practical Information

- Lectures
 - Mondays: 15:00 15:50 & 16:00 16:50 (room: CSI B002)
 - course information available on Brightspace as we go along: https://brightspace.ucd.ie
- Assessment:
 - three assignments
 - questions and problems related to the course materials

Course Introduction 5/10

Practical Information

- Rules for assignment submission
 - only accepted through Brightspace (i.e., no hardcopy or email submissions please)
 - submissions must be typed (i.e., no scanned handwritten stuff)
 and in PDF format
 - please stick to submission length guidelines
 - deadline: two weeks after assignment is posted
 - deductions for late submissions: 10 marks up to one week late, 20 marks up to two weeks late
 - no submissions accepted after two weeks late
 - exceptions: medical reason, force majeure (bereavement, etc)
 - if you are going to miss the one month deadline after which submissions are not allowed, please email me
 - justifications must be in writing (no emails please), and must be handed in to me at the end of a lecture

Course Introduction 6/10

Practical Information

- If an assignment requires programming, you can use any language you are familiar with
 - suggestion: GNU Octave or Matlab
 - no code should be submitted, just results (i.e., plots, tables, numbers,...)
- Although discussion with other students is okay, assignments are individual work
 - declaration of authorship: "I declare that all material in this assessment is my own work except where there is explicit acknowledgment and reference to the work of others"

Course Introduction 7/10

Plagiarism & UCD Computer Science

- Plagiarism is a serious academic offence
 - [Student Code, sections 6.2 & 6.3] or [UCD Registry Plagiarism Policy] or [CS Plagiarism policy and procedures]
- Our staff and demonstrators are proactive in looking for possible plagiarism in all submitted work
- Suspected plagiarism is investigated by the CS Plagiarism subcommittee
 - Usually includes an interview with student(s) involved
 - 1st offence: **usually** 0 or NG in the affected components
 - 2nd offence: may be referred to the University disciplinary committee
- Student who enables plagiarism is equally responsible

http://www.ucd.ie/students/guide/academicregs.html http://libguides.ucd.ie/academicintegrity

Course Introduction 8/10

Grades in COMP41280

Grade	Low	High	Average	Grade	Low	High	Average
	95	100	97.5	E+	35	40	37.5
Α	90	95	92.5	Ε	30	35	32.5
A-	85	90	87.5	E-	25	30	27.5
B+	80	85	82.5	F+	20	25	22.5
В	75	80	77.5	F	15	20	17.5
B-	70	75	72.5	F-	10	15	12.5
C+	65	70	67.5	G+	8	10	9.0
C	60	65	62.5	G	5	8	6.5
C-	55	60	57.5	G-	2	5	3.5
D+	50	55	52.5	NG	0	0	0.0
D	45	50	47.5		'		
D-	40	45	42.5				

Course Introduction 9/10

Some References

Lecture notes

- Cryptography:
 - Practical cryptography, N. Ferguson and B. Schneier. Wiley, 2003
 - Understanding cryptography, Paar & Pelzl. Springer, 2010
 - Cryptography and data security, Denning. Wiley, 1982
- Probability theory:
 - A first course on probability, S. Ross. Prentice Hall, 8th edition, 2010
- Information theory:
 - Elements of information theory, Cover & Thomas. Wiley, 2nd edition, 2006

Course Introduction 10/10