ROTTING BANDITS ARE NOT HARDER THAN STOCHASTIC ONES

J. SEZNEC, A. LOCATELLI, A. CARPENTIER, A. LAZARIC, M. VALKO

julien.seznec@lelivrescolaire.fr

Setup

BANDITS:

At each round *t*:

- SELECT an action *i*
- RECEIVE noisy reward

ROTTING HYPOTHESIS:

- · Each time we pull an arm, reward decay
- \cdot Maximum decay between two pulls: L

GOAL: Maximimize cumulative reward

 $N_{i,T}^{\pi}-1$

APPLICATIONS: education, economics ...

What's new?

FEWA algorithm

- \star Minimax optimal. $T^{2/3} \rightarrow T^{1/2}$
- ★ Solves an open problem
- ★ First problem dependent guarantee recovers bandits
- ★ Adaptive to L does not need it as an input

Prior work

- Heidari et al. (2016)
- Optimal oracle knows μ_i
 - → Select the arm with largest next reward Define regret against this optimal oracle

$$R_T(\pi) = \sum_{i \in \text{UP}} \sum_{s=N_{i,T}^{\pi}+1}^{N_{i,T}^{\star}} \mu_i(s) - \sum_{i \in \text{OP}} \sum_{s=N_{i,T}^{\star}+1}^{N_{i,T}^{\pi}} \mu_i(s)$$

- No noise but unknown μ_i
 - → Select the arm with largest last reward
 - → Is minimax optimal.

- Levine et al. (2017)

- Noisy reward sliding window average:
 - → Select the arm with largest average of the **h** last reward sample $\mathbb{E}\left[R_T(G)\right] \leq KL$
- Optimize *h* for the bias-variance trade-off

$$\mathbb{E}\left[R_T\left(\pi_{\text{wSWA}}\right)\right] = \tilde{O}\left(L^{1/3}\sigma^{2/3}K^{1/3}T^{2/3}\right)$$

Algorithm

FEWA: Filtering on Expanding Window Average

Input: K, σ, α

1: **for**
$$t \leftarrow K + 1, K + 2, \dots$$
 do

2:
$$\delta_t \leftarrow \frac{1}{Kt^{\alpha}}$$

$$h \leftarrow 1$$

4:
$$\mathcal{K}_1 \leftarrow \mathcal{K}$$

 \mathbf{do}

6:
$$\mathcal{K}_{h+1} \leftarrow \left\{ i \in \mathcal{K}_h \mid \widehat{\mu}_i^h(N_{i,t}) \ge \max_{j \in \mathcal{K}} \widehat{\mu}_j^h(N_{j,t}) - 2c(h, \delta_t) \right\}$$

7:
$$h \leftarrow h + 1$$

8: while
$$h \leq \min_{i \in \mathcal{K}_h} N_{i,t}$$

9: SELECT:
$$\{i \in \mathcal{K}_h \mid h > N_{i,t}\}$$

How does it work?

- ★ Method: Filter the set of arms
- ★ Based on: Expanding size of arms history (newest samples first)
- ★ Statistical tool: New way of using Hoeffding bound to both
 - ★ Select relevant data history
 - ★ Select arm maximizing exploration/exploitation tradeoff

Lemma

w.p.
$$1 - \delta_t$$
, $\forall h \leq N_{i,t}$, $\overline{\mu}_i^h(N_{i,t}) \geq \max_{i \in \mathcal{X}} \mu_i(N_{j,t}) - 4c(h, \delta_t)$

Guarantees

WORST-CASE BOUND

$$\mathbb{E}\left[R_T\left(\pi_{\mathrm{F}}\right)\right] \leq C\sigma\sqrt{KT\log(KT)} + KL$$

PROBLEM-DEPENDENT BOUND

$$\mathbb{E}\left[R_T\left(\pi_{\mathrm{F}}\right)\right] \leq \sum_{i \in \mathcal{K}} O\left(\frac{\log(KT)}{\Delta_{i,h_{i,T}^{+}-1}}\right)$$

- Difference between the worst reward pulled by the optimal policy and the average of the h first overpulls of arm i.
- $h_{i,T}^+$ High-probability upper bound on the number of overpulls for FEWA.

Computational complexity

FEWA has an O(t) time and space complexity:

1. Perform log(t) filters:

2. Keep log(t) statistics:

Experiments

2 arms - Minimal single drop experiment

10 arms - Adapting to multiple decays

constant arm

2000

500

- 9 arms with abrupt decay at 1000 pulls
- Geometric sequence of decays: 0.002 → 20

Competing against UCB1

- 1) Filtering policy < UCB index policy
- 2) More possible events → Looser CB