Algoritmos e Programação de Computadores Disciplina 113476

http://www.nickgentry.com/

Prof. Alexandre Zaghetto http://alexandre.zaghetto.com zaghetto@unb.br

Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação O presente conjunto de *slides* não pode ser reutilizado ou republicado sem a permissão do instrutor.

Módulo 01 O Histórico da Computação

1. Conceito de Número

- O primeiro grande passo do homem rumo à Ciência e à tecnologia talvez tenha sido a concepção da idéia de número.
 - ✓ Como surgiu a idéia do número?

✓ Comparação entre conjuntos.

2. Primeiros Métodos de Cálculo

• É quase certo que o primeiro instrumento de cálculo que o homem utilizou foram seus próprios dedos.

• Ábaco: instrumento construído de contas móveis em eixos, representando dígitos de um número.

• William Oughtred (1575-1660) e a Régua de Cálculo:

• Bastões (ou ossos) de Napier:

• Blaise Pascal (1623 - 1662) e a Pascaline:

• Gottfried Wilhelm von Leibniz (1646 - 1716):

- Revolução Industrial: contribuiu no desenvolvimento de dispositivos automáticos.
- Basile Bouchon, Jean Falcon, Jacques Vaucanson e Joseph Marie Jacquard (Século XVIII):

• Charles P. Babbage (1791 - 1871).

- Projetou dois tipos de máquinas:
 - √ a máquina de diferenças; e
 - ✓ a máquina analítica.

• Com a invenção do motor elétrico (Michael Faraday, Joseph Henry, Tomas Davenport, Nikola Tesla), no fim do século XIX, surgiu uma grande quantidade de máquinas de somar acionadas por motores elétricos.

• Em 1889 **Herman Hollerith** (1860 - 1929) desenvolveu uma máquina perfuradora de cartões e uma máquina elétrica tabuladora que contava, classificava e ordenava informações armazenadas em cartões perfurados.

• Relé (Joseph Henry):

• **Konrad Zuse** (1910 - 1955) e o Z1:

• **Howard H. Aiken** (1900 - 1973) e o *Automatic Sequence Controlled Calculator* (ASCC) ou Harvard Mark I.

5. Componentes Eletrônicos

- Primeiras Invenções (1930 1945)
 - ✓ Os cientistas passaram a utilizar a válvula.

- √ É um dispositivo eletrônico que controla a passagem de corrente elétrica.
- ✓ Ver funcionamento no Moodle, link: "As válvulas eletrônicas".

5. Componentes Eletrônicos

Primeiras Invenções (1930 – 1945)

✓ Na mesma época em que Zuse e Aiken realizavam seus trabalhos com dispositivos eletromecânicos, dois outros cientistas desenvolveram computadores usando válvulas.

✓ John V. Atanasoff (1903 – 1995)

✓ Alan Turing (1912 - 1954)

- Primeira geração: Computadores à Válvula
 - ✓ ENIAC *Electronic Numerical Integrator and Calculator*:
 - > Projetado por **John William Mauchly** e **John Presper Eckert**, de 1943 a 1946.

- Primeira geração: Computadores à Válvula
 - ✓ Uma vertente do aperfeiçoamento do ENIAC é atribuída ao matemático **John von Neumann**.

✓ Em 1946 von Neumann e vários outros cientistas em Princeton iniciaram a construção de uma nova máquina, um computador eletrônico de programa armazenado, o IAS.

- Primeira geração: Computadores à Válvula
 - ✓ No IAS, o conceito de programa armazenado eliminou a necessidade de se alterar as ligações com cabos ou outros dispositivos.
 - ✓ A arquitetura proposta permanece até os dias de hoje.

• Segunda geração: Computadores Transistorizados

✓ Transistor: realiza as mesmas funções básicas de uma válvula, porém o faz consumindo muito menos energia e calor, o que o tornou rapidamente substituto completo das válvulas.

✓ Bell Laboratories, **John Bardeen**, **Walter Bratain** e **William Schockley**.

- Segunda geração: Computadores Transistorizados
 - √ 1958: IBM 7090 Aplicações científicas.

- Terceira geração: Computadores com Circuitos Integrados (LSI Large Scale Integration).
 - ✓ Circuito Integrado: O ponto importante no conceito de circuitos integrados é que se pode formar múltiplos transistores em um único elemento de silício.
 - ✓ Jack Kilby, da Texas Instruments Co. e Robert Noyce, da Fairchild Semiconductor Inc.

• Terceira geração: Computadores com Circuitos Integrados (LSI - Large Scale Integration).

✓ Em 1964, a IBM se utilizou das recentes inovações tecnológicas na área da microeletrónica (os circuitos integrados) e lançou a sua mais famosa "família" de computadores, a série/360.

- Quarta geração: Computadores que Utilizam VLSI (Very Large Scale Integration).
 - ✓ A 4a geração é marcada pelo aparecimento dos computadores pessoais ou microcomputadores.

✓ Intel 4004: 1971

- Lei de Moore: prevê que o número de transistores dobra a cada 2 anos (http://www.intel.com/technology/mooreslaw/).
- Enunciada pela primeira vez em 1965 por Gordon Moore, um dos fundadores da Intel.

Microprocessor	Year of Introduction	Transistors
4004	1971	2,300
8008	1972	2,500
8080	1974	4,500
8086	1978	29,000
Intel286	1982	134,000
Intel386™ processor	1985	275,000
Intel486 [™] processor	1989	1,200,000
Intel® Pentium® processor	1993	3,100,000
Intel® Pentium® II processor	1997	7,500,000
Intel® Pentium® III processor	1999	9,500,000
Intel® Pentium® 4 processor	2000	42,000,000
Intel® Itanium® processor	2001	25,000,000
Intel® Itanium® 2 processor	2003	220,000,000
Intel® Itanium® 2 processor (9MB cache)	2004	592,000,000

• Lei de Moore: prevê que o número de transistores dobra a cada 2 anos (http://www.intel.com/technology/mooreslaw/).

