Undecidable problems for Recursively enumerable languages

continued...
class 21

Take a recursively enumerable language L

Decision problems:

• L is empty?

• L is finite?

• L contains two different strings of the same length?

All these problems are undecidable

Theorem:

For a recursively enumerable language L it is undecidable to determine whether L is finite

Proof:

We will reduce the halting problem to this problem


```
We will build a decider for the halting problem:

M \longrightarrow Halting problem

decider

M \longrightarrow Halting problem

decider

M \longrightarrow M

doesn't

doesn't
```


Take a recursively enumerable language L

Decision problems:

L is empty?

L is finite?

L contains two different strings of the same length?

All these problems are undecidable

Theorem:

```
Let M be the TM with L(M) = L

Suppose we have the decider for the two-strings problem:

Two-strings problem decider

NO L(M) Doesn't contain two equal length strings
```



```
Construct machine M_w:

On arbitrary input string s

Initially, simulate M on input w

When M enters a halt state, accept if s=a or s=b

(two equal length strings L(M_w)=\{a,b\})

Otherwise, reject s ( L(M_w)=\varnothing )
```


Rice's Theorem

Definition:

Non-trivial properties of recursively enumerable languages:

any property possessed by some (not all) recursively enumerable languages

Some non-trivial properties of recursively enumerable languages:

- $\cdot L$ is empty
- $\cdot L$ is finite
- \cdot L contains two different strings of the same length

22

Rice's Theorem:

Any non-trivial property of a recursively enumerable language is undecidable

The Post Correspondence Problem

Some <u>undecidable</u> problems for context-free languages:

- Is $L(G_1) \cap L(G_2) = \emptyset$? G_1, G_2 are context-free grammars
- \cdot Is context-free grammar G ambiguous?

We need a tool to prove that the previous problems for context-free languages are undecidable:

The Post Correspondence Problem

26

The Post Correspondence Problem

Input: Two sequences of n strings

$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, ..., v_n$$

There is a Post Correspondence Solution if there is a sequence i, j, ..., k such that:

PC-solution:
$$w_i w_j \cdots w_k = v_i v_j \cdots v_k$$

Indeces may be repeated or ommited

__

Example:
$$w_1 w_2 w_3 A: 100 11 111$$

$$B:$$
 $\begin{array}{cccc} v_1 & v_2 & v_3 \\ 001 & 111 & 11 \end{array}$

PC-solution: 2,1,3
$$w_2w_1w_3 = v_2v_1v_3$$

11100111

Example: $w_1 \quad w_2 \quad w_3 \quad 00 \quad 001 \quad 1000$ $w_1 \quad v_2 \quad v_3 \quad 0 \quad 011 \quad 011$

There is no solution

Because total length of strings from \ensuremath{B} is smaller than total length of strings from \ensuremath{A}

The Modified Post Correspondence Problem

Inputs:
$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, ..., v_n$$

MPC-solution:
$$1, i, j, ..., k$$

$$w_1 w_i w_j \cdots w_k = v_1 v_i v_j \cdots v_k$$

Example: $w_1 \quad w_2 \quad w_3 \\ A: \quad 11 \quad 111 \quad 100$

 $B: \begin{array}{ccccc} v_1 & v_2 & v_3 \\ 111 & 11 & 001 \end{array}$

MPC-solution: 1,3,2 $w_1w_3w_2 = v_1v_3v_2$

11100111

We will show:

1. The MPC problem is undecidable (by reducing the membership to MPC)

2. The PC problem is undecidable (by reducing MPC to PC)

Theorem: The MPC problem is undecidable

Proof: We will reduce the membership problem to the MPC problem

34

Membership problem

Input: recursive language $\,L\,$

string w

Question: $w \in L$?

Undecidable

Membership problem

 ${\bf Input:} \ \ {\bf unrestricted} \ \ {\bf grammar} \ \ {\bf G}$

string w

Question: $w \in L(G)$?

<u>Undecidable</u>

A	В	Grammar G
$FS \Rightarrow$	F	S: start variable F: special symbol
а	а	For every symbol a
V	V	For every variable $\it V$

A	В	Grammar G
E	$\Rightarrow wE$	string w $E: special symbol$
у	х	For every production $x \to y$
\Rightarrow	⇒	42

A			В	
w_1 :	$FS \Rightarrow$	v_1 :	F	
w_2 :	а	v_2 :	a	
	b		b	
	c		c	
:	\boldsymbol{A}	:	\boldsymbol{A}	
	B		B	
	C		C	
<i>w</i> ₈ :	S	<i>v</i> ₈ :	S	44

A			В	
w ₉ :	$E \Rightarrow$	v ₉ :	aaacE	
	aABb		S	
	Bbb		S	
i i	C	:	Bb	
	aac		AC	
w_{14} :	\Rightarrow	v_{14} :	\Rightarrow	
				45

Grammar
$$G: S \rightarrow aABb \mid Bbb$$
 $Bb \rightarrow C$
 $AC \rightarrow aac$

$$aaac \in L(G)$$
 $S \Rightarrow aABb \Rightarrow aAC \Rightarrow aaac$

$$S \Rightarrow aABb$$

$$A$$

$$w_1 \qquad w_{10}$$

$$F \qquad S \Rightarrow a \qquad A \qquad B \qquad b$$

$$v_1 \qquad v_{10}$$

$$B$$

$$S \Rightarrow aABb \Rightarrow aAC$$

$$A$$

$$w_1 \quad w_{10} \quad w_{14} \quad w_2 \quad w_5 \quad w_{12}$$

$$F \quad S \Rightarrow a \quad A \quad B \quad b \Rightarrow a \quad A \quad C$$

$$v_1 \quad v_{10} \quad v_{14} \quad v_2 \quad v_5 \quad v_{12}$$

$$B$$

Since the membership problem is undecidable,
The MPC problem is uncedecidable

END OF PROOF

Proof: We will reduce the MPC problem to the PC problem

Theorem: The PC problem is undecidable

We will build a decider for the MPC problem

String Sequences MPC solution? $A \longrightarrow MPC \text{ problem decider}$ $B \longrightarrow NO$

We need to convert the input instance of one problem to the other

MPC problem decider

Convert inputs

B

PC problem decider

no no

A,B : input to the MPC problem $A=w_1,w_2,\ldots,w_n$ $B=v_1,v_2,\ldots,v_n$

We construct new sequences C,D $C = w'_0, w'_1, \dots, w'_n, w'_{n+1}$ $D = v'_0, v'_1, \dots, v'_n, v'_{n+1}$ $A = w_1, w_2, \dots, w_n$ $B = v_1, v_2, \dots, v_n$

 $A \hspace{1cm} w_i = abcad$ $C \hspace{1cm} w_i' = a*b*c*a*d*$ We insert a special symbol between any two symbols

$$B$$
 $v_i = abcad$

$$D$$
 $v'_i = *a * b * c * a * d$

Special Cases

C

D

$$w_0' = *w_1$$
 $v_0' = v_1'$

$$v_0' = v_1'$$

$$w'_{n+1} = \Diamond$$

$$w'_{n+1} = \Diamond$$
 $v'_{n+1} = *\Diamond$

C,D has a PC solution if and only if

A, B has an MPC solution

PC-solution
$$w_0' \cdots w_k' w_{n+1}' = v_0' \cdots w_k' v_{n+1}'$$

MPC-solution
$$w_1 \cdots w_k = v_1 \cdots v_k$$

Since the MPC problem is undecidable, The PC problem is undecidable

END OF PROOF

Some <u>undecidable</u> problems for context-free languages:

- Is $L(G_1) \cap L(G_2) = \emptyset$? $G_1, G_2 \text{ are context-free grammars}$
- Is context-free grammar G ambiguous?

We reduce the PC problem to these problems

Theorem: Let G_1, G_2 be context-free grammars. It is undecidable to determine if $L(G_1) \cap L(G_2) = \emptyset$

Proof: Rdeduce the PC problem to this problem

A,B: input to the PC problem

$$A = w_1, w_2, ..., w_n$$

$$B = v_1, v_2, \dots, v_n$$

 $A = w_1, w_2, ..., w_n$

$$B = v_1, v_2, ..., v_n$$

Introduce new unique symbols:

$$a_1, a_2, ..., a_n$$

. .

 $a_1, a_2, ..., a_n$

 $A = w_1, w_2, ..., w_n$

 $L_A = \{s: \ s = w_i w_j \cdots w_k a_k \cdots a_j a_i\}$

Context-free grammar G_A :

$$S_A \rightarrow w_i S_A a_i \mid w_i a_i$$

 $a_1, a_2, ..., a_n$

$$B = v_1, v_2, ..., v_n$$

$$L_B = \{s: \ s = v_i v_j \cdots v_k a_k \cdots a_j a_i\}$$

Context-free grammar G_R :

$$S_B \rightarrow v_i S_B a_i \mid v_i a_i$$

_.

(A,B) has a PC solution

if and only if

$$L(G_A) \cap L(G_B) \neq \emptyset$$

 $L(G_1) \cap L(G_2) \neq \emptyset$ $s = w_i w_j \cdots w_k a_k \cdots a_j a_i$ $s = v_i v_j \cdots v_k a_k \cdots a_j a_i$

Because a_1, a_2, \dots, a_n are unique

There is a PC solution:

$$s = w_i w_j \cdots w_k a_k \cdots a_j a_i$$

Since PC is undecidable,
the empty-intersection problem is undecidable

END OF PROOF

Theorem: For a context-free grammar G, it is undecidable to determine if G is ambiguous

Proof: Reduce the PC problem to this problem

 S_A start variable of G_A S_B start variable of G_B S start variable of G $S \to S_A \mid S_B$

