Quiz 4 - Week 8 - due Thursday, 3 May, 11:59pm	
> Site Home	(Staff Only)
> Announcements> User Guides	
Zanlai Hu	• U > E > C > COMP9020-5184_00144 > General > Quiz 4 - Week 8 - due Thursday, 3 May, 11:59pm
	ted on Thursday, 3 May 2018, 12:56 AM
	State Finished Inted on Thursday, 3 May 2018, 6:02 PM Inted taken 17 hours 5 mins
Question 1	Grade 3.50 out of 4.00 (88%)
Correct Mark 0.50 out of 0.50	What is the clique number of a connected graph with 4 vertices and 5 edges? Answer: 3
0.00	
	The only graph with 4 vertices and 6 edges is the 4-clique K_4 , hence with one less edge the maximum clique size is 3. Refer to lecture 6, slides 20,29
Question 2	Tick all graphs that have an Euler path.
Correct Mark 0.50 out of 0.50	Select one or more: K_5 with one edge removed
	The graph on slide 16 (lecture 6)
	$K_{2,3}$ $K_{1,2,1}$
	✓ ————————————————————————————————————
	The graph on slide 16 (lecture 6) Not true. The graph has 4 vertices of odd degree, hence cannot have an Euler path.
	$K_{2,3}$ True. The graph has 2 vertices of degree 3 and 3 vertices of degree 2, hence must have an Euler path.
	$K_{1,2,1}$ True. The graph has 2 vertices of degree 3 and 2 vertices of degree 2, hence must have an Euler path.
	K_5 with one edge removed True. The graph has 3 vertices of degree 4 and 2 vertices of degree 3, hence must have an Euler path. Refer to lecture 6, slides 17,20
Question 3	What is the chromatic number of the graph on slide 16 (lecture 6)?
Correct Mark 0.50 out of 0.50	Answer: 3
	The graph has a 3-clique, hence 3 colours are necessary. It is easy to find such a 3-colouring, hence $\chi(G)=3$. Refer to lecture 6, slides 20, 27-29
Question 4 Correct	Tick all graphs that have a Hamiltonian path.
Mark 0.50 out of 0.50	Select one or more: $K_{2,2,4}$
	$\swarrow K_{1,2,3}$
	$K_{1,4,1}$ $K_{1,1,3}$
	$K_{1,2,3}$
	True. Start with one of the 3 vertices in the largest partition, then come back to this partition and finish with the three remaining vertices. $K_{2,2,4}$
	True. If you start with one of the 4 vertices in the largest partition, it is easy to find a path that visits all vertices. $K_{1,1,3}$
	True. Start with one of the 3 vertices in the largest partition, then come back to this partition and finish with the two remaining vertices. $K_{1,4,1}$
	Not true. Even if you start with one of the 4 vertices in the largest partition, you can visit at most 3 of them before you have to revisit a vertex. Refer to lecture 6, slides 20, 23-26
Question 5 Correct	Tick all statements that are true.
Mark 0.50 out of 0.50	Select one or more:
	 All graphs whose chromatic number is 4 are planar. ✓ All graphs with 6 nodes and 8 edges are planar. ✓
	You can obtain a nonplanar graph by adding one edge to $K_{2,3}$.
	When you remove two edges from K_6 , you will never obtain a planar graph. True. The remaining graph will always contain $K_{3,3}$, which is nonplanar.
	All graphs with 6 nodes and 8 edges are planar. True. K_5 requires 10 edges and $K_{3,3}$ 9 edges, hence there can be no nonplanar graph with only 8 edges.
	You can obtain a nonplanar graph by adding one edge to $K_{2,3}$. Not true. $K_{2,3}$ has 5 vertices and 6 edges, so even with one more edge you cannot obtain K_5 , which requires 10 edges. All graphs whose chromatic number is 4 are planar.
	Not true. $K_{3,3}$ has chromatic number 2 but is not planar. Refer to lecture 6, slides 35-40
Question 6	Let G be an undirected graph on 12 vertices with exactly two connected components. What is the maximum possible number of edges in G?
Incorrect Mark 0.00 out of 0.50	Answer: 91
	Let the two connected components have n and m vertices respectively, with $n+m=12$. The maximum number of edges is achieved by creating two complete graphs K_n and K_m with $n(n-1)/2+m(m-1)/2$ edges overall. This number is maximal for $n=11$, $m=1$, which gives 55 edges. Refer to lecture 6, slides 6-7, 20
Question 7	We would like to prove that $P(n)$ for all $n \geq 0$. Tick all conditions that imply this conclusion.
Correct Mark 0.50 out of 0.50	Select one or more: $ P(0) \text{ and } P(1) \text{ and } \forall n \geq 1 \ (P(n) \Rightarrow P(2 \cdot n) \land P(2 \cdot n + 1)) $
	$P(1) \text{ and } \forall n \ge 0 \ (P(n+1) \Rightarrow P(n) \land P(n+2))$
	$P(0) \text{ and } \forall n \ge 1 \ (P(n-1) \Rightarrow P(n+1) \land P(n+2))$ $P(0) \text{ and } P(1) \text{ and } \forall n \ge 1 \ (P(n) \land P(n+1) \Rightarrow P(n+2))$
	$P(1)$ and $\forall n \ge 0 (P(n+1) \Rightarrow P(n) \land P(n+2))$
	True. All cases $n \ge 0$ are covered.

P(0) and P(1) and $\forall n \geq 1 \ (P(n) \Rightarrow P(2 \cdot n) \land P(2 \cdot n+1))$ True. All cases $n \geq 0$ are covered.

P(0) and $\forall n \geq 1 (P(n-1) \Rightarrow P(n+1) \land P(n+2))$ Not true. From P(0) it follows that P(2) and P(3), but the case n=1 is not covered.

P(0) and P(1) and $\forall n \geq 1 (P(n) \land P(n+1) \Rightarrow P(n+2))$ Not true. The "first" instance of the implication is $P(1) \wedge P(2) \Rightarrow P(3)$, but P(2) is not given.

Refer to lecture 7, slides 17-28

Suppose $f, g: \{a, b\}^* \longrightarrow \{a, b\}^*$ are recursively defined as follows: • $f(\lambda) = b$ • $g(\lambda) = a$ • $f(a\omega) = f(\omega)g(\omega)$ • $f(b\omega) = g(\omega)f(\omega)$ • $g(a\omega) = g(b\omega) = f(\omega)$

What is f(bab)? Answer: ababb

Question **8**

Mark 0.50 out of

Correct

0.50

For the basic definition of the concatenation operation on words, refer to lecture 1, slide 38

 $f(bab) = g(ab)f(ab) = f(b)f(b)g(b) = g(\lambda)f(\lambda)g(\lambda)f(\lambda)f(\lambda) = ababb$

Page 1 of 1