MATH H104: Homework 8

William Guss 26793499 wguss@berkeley.edu

November 3, 2015

30. I'll prove this one in reverse, first defining the general β cantor set.

Definition 1. The β cantor set, F_{β} , is defined as an iterative process of which the first iteration is defined for $0 < \beta < 1$ by taking the middle β of [0,1] and letting F_{β}^1 be the remaining two intervals of outermeasure $\frac{1-\beta}{2}$. In general, at any iteration of the process n, F_{β}^n is comprised of 2^n pieces, each of outer measure P_n . The process for generating P_{n+1} is the same as for the first iteration: remove $P_n\beta$ from each piece of outer measure P_n and yield two pieces of outer measure $P_n(1-\beta)/2$. Lastly, $F_{\beta} \subset F_{\beta}^{n-1} \subset F_{\beta}^{n-1}$ for all n.

Theorem 1. For any $0 < \beta < 1$, F_{β} is a zero set.

Proof. To show this, for every $\epsilon > 0$ we need to find a countable collection of open sets which cover F_{β} and have outer measure less than ϵ . By the definition of F_n we have that at any iteration n the total outer measure is $P_n 2^n$. Thus we solve the recurrence relation,

$$P_n = P_{n-1} \frac{(1-\beta)}{2},$$

by letting $P_n = \frac{(1-\beta)}{2}$ and solving for the initial conditions that $P_0 = 1$. Thus the total outer measure of F_{β}^n is defined as

$$outer(F_{\beta}^{n}) = \frac{(1-\beta)^{n}}{2^{n}} 2^{n} = (1-\beta)^{n} \to 0$$

by $0 < 1 - \beta < 1$. So for every ϵ there is a large enough N such that by extending F_{β}^{N} to a very close open interval containing F_{β}^{N} and thereby F_{β} , the outer measure is less than ϵ . So F_{β} is a zero set.

It follows simply that the middle fourths cantor set is a zero-set.

31. Again I'll provide a definition for the general fat cantor set and apply it to the specific definition provided.

Definition 2. The fat β cantor set, F_{β} , is defined as an iterative process of which the first iteration is defined for $0 < \beta < 1$ by taking the middle β^n of [0,1] and letting F_{β}^1 be the remaining two intervals of outermeasure $\frac{1-\beta^n}{2}$. In general, at any iteration of the process n, F_{β}^n is comprised of 2^n pieces, each of outer measure P_n . The process for generating P_{n+1} is the same as for the first iteration: remove $P_n\beta^n$ from each piece of outer measure P_n and yield two pieces of outer measure $P_n(1-\beta^n)/2$. Lastly, $F_{\beta} \subset F_{\beta}^n \subset F_{\beta}^{n-1}$. for all n.

Theorem 2. The fat β cantor set is not zero set.

Proof. We essentially need to show that as F_{β}^{n} approaches F_{β} , the outer measure of F_{β}^{n} does not tend towards 0. By the definition of F_{n} we have that at any iteration n the total outer measure is $P_{n}2^{n}$. Thus we solve the recurrence relation,

$$P_n = P_{n-1} \frac{(1-\beta^n)}{2}.$$

Using intuition from the β canot set case, we let P_n be for the form

$$P_n = \frac{(1 - \beta^n)}{a_n 2^N}$$

for some sequence a_n depending on n. Then we can find a_n by considering the ratio P_n/P_{n-1} . This essentially yields that $a_n - a_{n-1} = 1$. Ommitting the application of variation of parameters to this recurrence relation, we yield $a_n = n$. Thus the total outer measure of F_{β}^n is defined as

outer
$$(F_{\beta}^n) = \frac{(1-\beta^n)^n}{2^n} 2^n = (1-\beta^n)^n \to 1$$

by $0 < 1 - \beta < 1$. So there could not possibly be a sequence of countable open coverings of F_{β} with outer measure approaching 0. This completes the proof.

In the particular case of the problem, letting $\beta = 1/4$ apply the previous theorem, and yield that the outer measure of the fat cantor set is 1. This is remarkable!

Theorem 3. The property that S is a zero set is not topological.

Proof. It suffices to show that for two sets A, B which are homeomorphic, the zero set property does not hold. Clearly $F_{\beta} \cong C_{\beta}$ since they are both cantor spaces. However Thoerem 2 states that F_{β} is not a zero set, whereas C_{β} is. So by counter example, the zero set property is not topological.