Grenzwerte und Konvergenz

Jendrik Stelzner

Inhaltsverzeichnis

L	Vorb	ereitungen	1
2	Gren	renzwerte	
	2.1	Konvergenz und Ordnung	4
	2.2	Konvergenz und Rechenoperationen	5

1 Vorbereitungen

Definition 1. Eine Teilmenge $A \subseteq \mathbb{R}$ heißt nach oben beschränkt, falls es ein $s \in \mathbb{R}$ gibt, so dass $a \leq s$ für alle $a \in A$; s heißt dann eine obere Schranke von A. A heißt nach oben unbeschränkt, falls A nicht nach oben beschränkt ist.

A heißt nach unten beschränkt, falls es ein $t \in \mathbb{R}$ gibt, so dass $t \leq a$ für alle $a \in A$; t heißt dann untere Schranke von A. A heißt nach unten unbeschränkt, falls A nicht nach unten beschränkt ist.

A heißt beschränkt, falls A sowohl nach oben als auch nach unten beschränkt ist.

Beispiel(e). 1. $N \subseteq \mathbb{R}$ ist nach unten beschränkt und nach oben unbeschränkt.

- 2. $\mathbb{Z} \subseteq \mathbb{R}$ ist nach unten und oben unbeschränkt.
- 3. Das Einheitsintervall $[0,1] \subseteq \mathbb{R}$ ist beschränkt.
- 4. Jede endliche Menge $X \subseteq \mathbb{R}$ ist beschränkt.
- 5. Ist $B \subseteq \mathbb{R}$ nach unten, bzw. oben beschränkt, so ist $A \subseteq \mathbb{R}$ ebenfalls nach unten, bzw. oben beschränkt. Ist B nach unten, bzw. oben unbeschränkt, so ist auch A nach unten, bzw. oben unbeschränkt.
- 6. Eine Teilmenge $A\subseteq \mathbb{R}$ ist genau dann nach unten, bzw. oben beschränkt, falls die Teilmenge

$$-A = \{-a \mid a \in A\} \subseteq \mathbb{R}$$

nach oben, bzw. unten beschränkt ist.

Bemerkung 2. Eine Teilmenge $A \subseteq \mathbb{R}$ ist genau dann beschränkt, falls es ein R > 0 gibt, so dass $|a| \leq R$ für alle $a \in A$.

Beweis. Gibt es ein solches R, so ist $-R \le a \le R$ für alle $a \in A$ und somit ist A sowohl nach oben als auch nach unten beschränkt, also beschränkt.

Ist A beschränkt, so gibt $s,t\in\mathbb{R}$, so dass $t\leq a\leq s$ für alle $a\in A$. Für $R\coloneqq\max\{|s|,|t|\}$ ist dann $|a|\leq R$ für alle $a\in A$.

Definition 3. Es sei $A \subseteq \mathbb{R}$ eine Teilmenge und $s \in \mathbb{R}$. s heißt Supremum von A, falls s eine kleinste obere Schranke von A ist, d.h. falls

- 1. s ist eine obere Schranke von A, und
- 2. für jede obere Schranke t von A ist $s \leq t$.

s heißt Infimum von A, falls s eine größte untere Schranke von A ist, d.h. falls

- 1. s ist eine untere Schranke von A, und
- 2. für jede untere Schranke t von A ist $t \leq s$.

Bemerkung 4. Existiert ein Supremum, bzw. Infimum einer Teilmenge $A \subseteq \mathbb{R}$, so ist dieses eindeutig, d.h. sind $s,t \in \mathbb{R}$ Suprema, bzw. Infima von A, so ist s=t. Falls das Supremum von A existiert, so schreiben wir hierfür sup A. Für das Infimum schreiben wir inf A, sofern dieses existiert.

Beweis. Es seien s und t Suprema von A. Da s ein Supremum von A und t eine obere Schranke von A ist, ist $s \leq t$. Durch Vertauschen der Rollen ergibt sich, dass auch $t \leq s$. Daher ist s = t.

Sind s und t Infima von A, so ergibt sich s = t analog.

Ist $A\subseteq\mathbb{R}$ nicht nach oben beschränkt, so besitzt A keine obere Schranke und somit auch kein Supremum. Wie sich herausstellt, ist diese Bedingung für Teilmengen von \mathbb{R} schon hinreichend:

Proposition 5. *Es sei* $A \subseteq \mathbb{R}$ *eine Teilmenge.*

- 1. Ist A nach oben beschränkt, so existiert sup A.
- 2. Ist A nach unten beschränkt, so existiert inf A.

Wir wollen diese Proposition hier nicht beweisen, da der Beweis von der konkreten Konstruktion der reellen Zahlen abhängt.

Lemma 6 (Charakterisierung von sup und inf). *Es sei* $A \subseteq \mathbb{R}$ *eine nach oben beschränkte Teilmenge.*

- 1. Für eine obere Schranke s von A ist $s=\sup A$ genau dann, wenn es für alle $\varepsilon>0$ ein $a\in A$ mit $s-\varepsilon< a\le s$ gibt.
- 2. Für eine untere Schranke s von A ist $s=\inf A$ genau dann, wenn es für alle $\varepsilon>0$ ein $a\in A$ mit $s\leq a< s+\varepsilon$ gibt.

Beweis. 1. Angenommen es ist $s=\sup A$. Es sei $\varepsilon>0$ beliebig aber fest. Da s die kleinste obere Schranke von A ist, ist $s-\varepsilon$ keine obere Schranke von A. Es gibt also $a\in A$ mit $s-\varepsilon< a$. Da s eine obere Schranke von A ist, ist auch $a\le s$. Zusammen ist daher $s-\varepsilon< a\le s$. Aus der Beliebigkeit von $\varepsilon>0$ folgt die Implikation.

Angenommen es ist $s \neq \sup A$. Dann gibt es eine kleinere obere Schranke t < s von A. Für $\varepsilon \coloneqq (s-t)/2 > 0$ ist dann für alle $a \in A$

$$a \leq t < t + \varepsilon = s - \varepsilon.$$

Es gibt dann kein $a \in A$ mit $s - \varepsilon < a \le s$.

2. Der Beweis läuft analog zum vorherigen.

2 Grenzwerte

Im Folgenden handelt es sich, sofern nicht anders angegeben, bei allen Folgen um Folgen auf \mathbb{R} .

Definition 7. Eine Folge $(x_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt, bzw. nach unten beschränkt, bzw. beschränkt, falls die Punktmenge $\{x_n\mid n\in\mathbb{N}\}$ nach oben beschränkt, bzw. nach unten beschränkt, bzw. beschränkt ist.

Definition 8. Es sei $(x_n)_{n\in\mathbb{N}}$ eine Folge auf \mathbb{R} und $x\in\mathbb{R}$. (x_n) konvergiert gegen x, falls es für alle $\varepsilon>0$ ein $N\in\mathbb{N}$ gibt, so dass $|x_n-x|<\varepsilon$ für alle $n\geq N$. Wir schreiben dann $\lim_{n\to\infty}x_n=x$, bzw. $x_n\to x$ für $n\to\infty$.

Wir sagen, dass die Folge (x_n) konvergent ist, falls es ein $x \in \mathbb{R}$ gibt, so dass $x_n \to x$ für $n \to \infty$. x heißt dann der Grenzwert der Folge (x_n) .

Proposition 9. Der Grenzwert einer konvergenten Folge ist eindeutig, d.h. ist $(x_n)_{n\in\mathbb{N}}$ eine konvergente Folge und sind $x, x' \in \mathbb{R}$ mit $x_n \to x$ und $x_n \to x'$ für $n \to \infty$, so ist x = x'.

Beweis. Angenommen es ist $x \neq x'$. Dann ist $\varepsilon \coloneqq |x-x'| > 0$. Da $x_n \to x$ gibt es $n_1 \in \mathbb{N}$, so dass $|x_n - x| < \varepsilon/3$ für alle $n \ge n_1$. Da $x_n \to x'$ gibt es $n_2 \in \mathbb{N}$, so dass $|x_n - x'| < \varepsilon/3$ für alle $n \ge n_2$. Für $N \coloneqq \max\{n_1, n_2\}$ ist dann für alle $n \ge N$ sowohl $|x_n - x| < \varepsilon/3$ als auch $|x_n - x'| < \varepsilon/3$. Daher ist nach der Dreiecksungleichung

$$|x - x'| = |(x_N - x') - (x_N - x)| \le |x_N - x'| + |x_N - x| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2}{3}\varepsilon,$$

im Widerspruch zu $\varepsilon = |x - x'| > 0$.

Beispiel(e). 1. Wir haben $\lim_{n\to\infty} 1/n=0$: Es sei $\varepsilon>0$ beliebig aber fest. Nach Archimedes gibt es ein $N\in\mathbb{N},\,N\geq 1$ mit $N>1/\varepsilon$. Für alle $n\geq N$ ist dann $\varepsilon>1/n$ und damit

$$0 \leq \frac{1}{n} \leq \varepsilon \quad \text{für alle } n \geq N.,$$

also $|0-1/n|<\varepsilon.$ Dass $\lim_{n\to\infty}1/n=0$ folgt daher aus der Beliebigkeit von $\varepsilon>0.$

- 2. Die konstante Folge $(c)_{n\in\mathbb{N}}$ konvergiert gegen c.
- 3. Es ist $\lim_{n\to\infty} n^{1/n}=1$. Zum Beweis hiervon sei $\varepsilon>0$ beliebig aber fest. Es sei $N\in\mathbb{N}$ mit $N\geq 2$ und $N\geq 1+2/\varepsilon^2$. Für alle $n\geq N$ ist dann $(n-1)\varepsilon^2/2\geq 1$ und somit

$$(1+\varepsilon)^n = \sum_{k=0}^n \binom{n}{k} \varepsilon^k = 1 + n\varepsilon + \frac{n(n-1)}{2} \varepsilon^2 + \dots$$
$$> 1 + \frac{n(n-1)}{2} \varepsilon^2 = 1 + n \frac{(n-1)\varepsilon^2}{2} \ge 1 + n > n.$$

Daher ist für alle $n \geq N$

$$1 \le n^{1/n} < 1 + \varepsilon$$

und somit $|1-n^{1/n}|<\varepsilon$. Aus der Beliebigkeit von $\varepsilon>0$ folgt, dass $n^{1/n}\to 1$ für $n\to\infty$.

2.1 Konvergenz und Ordnung

Lemma 10. Sei $(x_n)_{n \in \mathbb{N}}$ eine konvergente Folge. Dann ist (x_n) beschränkt, d.h. es gibt R > 0, so dass $|x_n| < R$ für alle $n \in \mathbb{N}$.

Beweis. Es sei $x\coloneqq \lim_{n\to\infty}x_n$. Da $x_n\to x$ für $n\to\infty$ gibt es ein $N\in\mathbb{N}$ mit $|x_n-x|<1$ für alle $n\ge N$. Es ist dann nach der Dreiecksungleichung für alle $n\ge N$

$$|x_n| = |x + x_n - x| \le |x| + |x_n - x| < |x| + 1.$$

Für

$$R := \max\{|x_0|, |x_1|, \dots, |x_{N-1}|, |x|+1\}$$

ist daher $|x_n| \leq R$ für alle $n \in \mathbb{N}$.

Lemma 11. Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen mit $a_n \leq b_n$ für alle $n \in \mathbb{N}$. Dann ist auch $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$.

Beweis. Es sei $a:=\lim_{n\to\infty}a_n$ und $b:=\lim_{n\to\infty}b_n$. Angenommen, es ist b< a. Dann ist $\varepsilon:=|a-b|=a-b>0$. Da $a_n\to a$ für $n\to\infty$ gibt es $n_1\in\mathbb{N}$ mit $|a_n-a|<\varepsilon/3$ für alle $n\ge n_1$. Da $b_n\to b$ für $n\to\infty$ gibt es $n_2\in\mathbb{N}$ mit $|b_n-b|<\varepsilon/3$ für alle $n\ge n_2$. Für $N=\max\{n_1,n_2\}$ ist dann

$$b_N < b + \frac{\varepsilon}{3} < b + \frac{2\varepsilon}{3} = a - \frac{\varepsilon}{3} < a_N,$$

im Widerspruch zu $a_n \leq b_n$.

Lemma 12 (Sandwich-Lemma). Es seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ Folgen mit $a_n \leq b_n \leq c_n$ für alle $n\in\mathbb{N}$. Konvergieren die beiden äußeren Folgen (a_n) und (c_n) und gilt $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$, so konvergiert auch (b_n) und es gilt

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n.$$

Beweis. Wir setzen $x\coloneqq \lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n$. Es sei $\varepsilon>0$ beliebig aber fest. Da $a_n\to x$ für $n\to\infty$ gibt es $n_1\in\mathbb{N}$ mit $|a_n-x|<\varepsilon$ für alle $n\ge n_1$. Da $c_n\to x$ für $n\to\infty$ gibt es $n_2\in\mathbb{N}$ mit $|c_n-x|<\varepsilon$ für alle $n\ge n_2$. Für $N\coloneqq \max\{n_1,n_2\}$ ist daher für alle $n\ge N$

$$x - \varepsilon < a_n \le b_n \le c_n < x + \varepsilon$$

also $|x-b_n|<\varepsilon$ für alle $n\geq N$. Wegen der Beliebigkeit von $\varepsilon>0$ zeigt dies, dass $\lim_{n\to\infty}b_n=x$.

Proposition 13 (Bolzano-Weierstraß). Es sei $(x_n)_{n\in\mathbb{N}}$ eine beschränkte monotone Folge. Dann konvergiert (x_n) .

Beweis. Wir betrachten den Fall, dass (x_n) monoton steigend ist. Da (x_n) nach oben beschränkt ist existiert $x \coloneqq \sup_{n \in \mathbb{N}} x_n$. Wir wollen zeigen, dass $x_n \to x$ für $n \to \infty$.

Es sei $\varepsilon>0$ beliebig aber fest. Aus der Charakterisierung des Supremums wissen wir, dass es $N\in\mathbb{N}$ mit $x-\varepsilon< x_N\le x$. Wegen der Monotonie von (x_n) erhalten wir, dass $x-\varepsilon< x_n$ für alle $n\in\mathbb{N}$, und dass $x_n\le x$ für alle $n\ge N$ folgt direkt aus der Definition von x. Es ist also

$$x - \varepsilon < x_n \le x$$
 für alle $n \ge N$,

und somit insbesondere $|x-x_n|<\varepsilon$ für alle $n\geq N$. Wegen der Beliebigkeit von $\varepsilon>0$ folgt, dass $\lim_{n\to\infty}x_n=x$.

Der Fall, dass (x_n) monoton fallend ist, läuft analog.

2.2 Konvergenz und Rechenoperationen

Proposition 14. Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen mit Grenzwerten $a:=\lim_{n\to\infty}a_n$ und $b:=\lim_{n\to\infty}b_n$.

1. Die Folge $(a_n + b_n)_{n \in \mathbb{N}}$ ist ebenfalls konvergent und

$$\lim_{n \to \infty} (a_n + b_n) = a + b = \left(\lim_{n \to \infty} a_n\right) + \left(\lim_{n \to \infty} b_n\right).$$

2. Für alle $c \in \mathbb{R}$ ist die Folge $(ca_n)_{n \in \mathbb{N}}$ konvergent und

$$\lim_{n \to \infty} (ca_n) = ca = c \lim_{n \to \infty} a_n.$$

3. Die Folge $(a_n \cdot b_n)_{n \in \mathbb{N}}$ ist ebenfalls konvergiert und

$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} b_n\right).$$

4. Ist $a_n \neq 0$ für alle $n \in \mathbb{N}$ und $a \neq 0$, so konvergiert auch die Folge $(1/a_n)_{n \in \mathbb{N}}$ und es ist

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a} = \frac{1}{\lim_{n \to \infty} a_n}$$

5. Ist $b_n \neq 0$ für alle $n \in \mathbb{N}$ und $b \neq 0$, so ist auch $(a_n/b_n)_{n \in \mathbb{N}}$ konvergent und

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}$$

Beweis. 1. Es sei $\varepsilon>0$ beliebig aber fest. Da $a_n\to a$ für $n\to\infty$ gibt es $n_1\in\mathbb{N}$ mit $|a-a_n|<\varepsilon/2$ für alle $n\ge n_1$. Da $b_n\to b$ für $n\to\infty$ gibt es $n_2\in\mathbb{N}$ mit $|b-b_n|<\varepsilon/2$ für alle $n\ge n_2$. Für $N:=\max\{n_1,n_2\}$ ist dann für alle $n\ge N$

$$|(a+b) - (a_n + b_n)| = |(a-a_n) + (b-b_n)|$$

$$\leq |a-a_n| + |b-b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Aus der Beliebigkeit von $\varepsilon > 0$ folgt, dass $\lim_{n \to \infty} (a_n + b_n) = a + b$.

2. Für c=0 ist die Aussage klar. Ansonsten sei $\varepsilon>0$ beliebig aber fest. Da $a_n\to a$ für $n\to\infty$ gibt es $N\in\mathbb{N}$ mit $|a-a_n|<\varepsilon/|c|$ für alle $n\ge N$. Es ist dann für alle $n\ge N$

$$|ca - ca_n| = |c||a - a_n| < |c|\frac{\varepsilon}{|c|} = \varepsilon.$$

Aus der Beliebigkeit von $\varepsilon > 0$ folgt damit, dass $\lim_{n \to \infty} (ca_n) = ca$.

3. Es sei $\varepsilon>0$ beliebig aber fest. Da (a_n) konvergiert, ist (a_n) insbesondere beschränkt. Es gibt also ein c>0 mit $|a_n|< c$ für alle $n\in\mathbb{N}$. Wir bemerken zunächst, dass für alle $n\in\mathbb{N}$

$$|ab - a_n b_n| = |ab - a_n b + a_n b - a_n b_n|$$

$$\leq |ab - a_n b| + |a_n b - a_n b_n|$$

$$= |a - a_n||b| + |a_n||b - b_n|$$

$$\leq |b||a - a_n| + c|b - b_n|.$$
(1)

Wir unterscheiden nun zwischen zwei Fällen: Ist b=0, so ist nach (1)

$$|ab - a_n b_n| \le c|b - b_n|$$

Da $b_n \to b$ für $n \to \infty$ gibt es ein $N \in \mathbb{N}$ mit $|b-b_n| < \varepsilon/c$ für alle $n \ge N$. Es ist daher für alle $n \ge \mathbb{N}$

$$|ab - a_n b_n| \le c|b - b_n| < c \frac{\varepsilon}{c} = \varepsilon.$$

Ist andererseits $b \neq 0$, und somit auch $|b| \neq 0$, so gibt es wegen $a_n \to a$ für $n \to \infty$ ein $n_1 \in \mathbb{N}$ mit $|a-a_n| < \varepsilon/(2|b|)$ für $n \geq n_1$, und wegen $b_n \to b$ für $n \to \infty$ ein $n_2 \in \mathbb{N}$ mit $|b-b_n| < \varepsilon/(2c)$ für alle $n \geq n_2$. Für $N \coloneqq \max\{n_1, n_2\}$ ist dann für alle $n \geq N$

$$|ab - a_n b_n| \le |b||a - a_n| + c|b - b_n| < |b| \frac{\varepsilon}{2|b|} + c \frac{\varepsilon}{2c} = \varepsilon.$$

In beiden Fällen folgt aus der Beliebigkeit von $\varepsilon>0$, dass (a_nb_n) konvergiert und $\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$.

4.