

Menu

- Three classes of digital machines
- Three stages of digital design
- Logic Design
- Circuit Design

University of Florida, EEL 3701 – File 02 © Drs. Schwartz & Arroyo

1

EEL3701: Digital Logic & Computer Systems Classes of Digital Machines

- Three Classes of Digital Machines
 - >Combinational Circuits / Logic Circuits
 - >Sequential Logic
 - -Algorithmic State Machines (ASM)
 - >Microcomputers/Microprocessors
 - -Von-Neumann/Atanasoff Digital Computer Model

Combinatorial and Sequential Logic

- Combinational Logic
 - >Machines that have zero memory
 - >Boolean Algebra & K-Maps
 - >Design of "glue" parts in larger digital applications
- Sequential Logic
 - >Finite Memory circuits
 - >Feedback & the concept of the *state* of a machine

University of Florida, EEL 3701 – File 02 © Drs. Schwartz & Arroyo

3

EEL3701: Digital Logic & Computer Systems Algorithmic State Machines

- Algorithmic State Machines (ASM or FSM)
 - >A *modern* approach to sequential logic design
 - > Has a *programming flavor*, while allowing increased design complexity
- Microcomputers/Microprocessors
 - >Partially infinite memory
 - >General-purpose digital machines
 - >Architecture of a microprocessor
 - >Examples:
 - Microchip's Atmel AVR (EEL3923) and XMEGA (EEL3744)
 - Microchip's PIC (EEL3923)
 - Historic: 68HC11, 8051, TMS320F28335 (TI DSC)

- G-CPU
University of Florida, EEL 3701 – File 02
© Drs. Schwartz & Arman

4

Model of Combinational Digital

Machines

$$X = [x_1, x_2, ..., x_n]^T$$

 $Y = [y_1, y_2, ..., y_m]^T$

$$Y = F(X) = [f_1(X), f_2(X), ..., f_m(X)]^T$$

Each output y_i can be computed if the inputs \boldsymbol{x}_j are known.

 $y_i(t) = f_m(X(t))$ {We often omit the (t) notation.}

University of Florida, EEL 3701 – File 02 © Drs. Schwartz & Arroyo

5

EEL3701: Digital Logic & Computer Systems Model of Sequential Digital Machines

Each Q is called a **state** \equiv a summary of the past or historical behavior.

Y = F(Q,X) There are m equations or m scalar functions.

 $Q^+ = G(Q,X)$ There are k equations or k scalar functions.

University of Florida, EEL 3701 - File

6

EEL3701: Digital Logic & Computer Systems Algorithmic State Machine (ASM) Design

Example: Add 1 to the number I am thinking of?

University of Florida, EEL 3701 – File 02 © Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems Algorithmic State Machine (ASM) Design

- The "modern model" for designing state machines >It is about 37 year old (created in mid-1970's)
- Has a programming flavor
- ASM does not introduce a new class of machines

University of Florida, EEL 3701 – File 02

Von-Neumann/Atanasoff Digital Computer Model

EEL3701: Digital Logic & Computer Systems Three Stages in the Design of **Digital Systems**

- System Design or System Specifications:
 - >Break the overall system into subsystems
 - >Specify the characteristics of each subsystem
- Example: Designing a digital computer involves specifying the number of bits per word, size of memory, buses, etc.

Logic Design

- Logic Design: How to interconnect the basic logic building blocks to perform specific functions
- Example: In building an arithmetic logic unit (ALU), you needs to specify the logic gates and flip-flops that will give the unit the capability to manipulate nbit binary numbers

University of Florida, EEL 3701 – File 0

© Drs. Schwartz & Arroyo

11

EEL3701: Digital Logic & Computer Systems

Circuit Design

- Circuit Design: How to interconnect specific components, e.g., ICs, resistors, switches, LEDs, etc.
- The lectures of this course deal primarily with logic design.
- The laboratory deals with logic circuit design, circuit constructions and debugging, and implementation.

© Drs. Schwartz & Arroyo

The End!

University of Florida, EEL 3701 – File 0: © Drs. Schwartz & Arrovo

13