Data Science and Visualization (DSV, F23)

4. Classification (I)

Hua Lu

https://luhua.ruc.dk; luhua@ruc.dk

PLIS, IMT, RUC

Next phase in this course

- scikit-learn (sklearn): most prominent open source Python library for machine learning
 - https://scikit-learn.org/

- Classification
- Regression
- Clustering
- Association rules

Agenda

- Introduction to machine learning
 - Supervised learning
 - Unsupervised learning
- Classification and model evaluation
- Typical classification models

What is Machine Learning (ML)?

- ML is about extracting knowledge from data. It involves statistics, artificial intelligence and computer science.
- Through means of computing, making use of experience to improve the performance of a target system.
 - Data -> Experience & Knowledge (often as models) -> Improved performance
 - Learning: Generating a E&K from the data

- Labeled data needed: Supervised learning
- Unlabeled data: Unsupervised learning
- Hybrid: Semi-supervised learning

Typical tasks for ML

- Regression
- Classification
- Clustering
- Association rules
- Dimensionality reduction

Supervised vs. Unsupervised Learning

- Supervised learning generalizes from *known examples* to automate decision-making processes.
 - Classification: Predict a discrete value from a pre-defined set of class labels
 - E.g., given a loan applicant, predict if she/he is a good or bad client. (Approval or rejection)
 - More examples: digital recognition from handwritings, fraud detection in banking, spam filtering.
 - Regression: Predict a continuous value from a continuous range
 - E.g., predict the price of a stock
- Unsupervised learning does not need any known examples. It works on input data directly. (Future lectures)
 - E.g., similarity based client grouping, outlier detection for website access patterns

Supervised Learning: Training Data

- Known examples are called training data, aka labelled data.
- For classification, each data example consists of some features and a class label.
 Each class label should have at least one example. E.g.,
 - (client's full record, fraud or not) pairs for fraud detection
 - Features: original attributes or values derived from them
 - Handwriting images for 0, 1, ..., 8, 9
 - Features: all pixels in an image
 - We know the number of each image
 - (email, spam or not) pairs for spam filtering
 - Features: words in an email.
- Feature selection and engineering
 - Which attributes to use?
 - How to derive features from attributes?

Supervised Learning Processes

- Data labeling: the process of identifying raw data (bank records, images, email, etc.) and adding a meaningful and informative label for each data sample
 - Often manual, tedious but necessary for machine learning
- Training: the process of using training data to generate a model.
 - We fit the model to the training data for which we know the labels or 'Y' values.
 - We hope the model can *generalize* to various unseen test data.
- Testing: Applying the model to new, unseen data (test data).

Generalization

- The goal of machine learning: Building from training data a model that can *generalize* to (unseen) test data.
- Overfitting: A model works well on the training data but generalizes poorly to unseen data.
 - Noises exist in the training/test data.
 - Training data is too little, failing to contain sufficient variance.
 - Too many features are used in training, while some of them don't exist in test data.
 - The model type used is too complex.
- Underfitting: A model even does not work well on the training data.
 - Too few features are used in training.
 - The model type used is too simple.

Example: Leaf Detection/Classification

Training data (leaf samples)

Fix: Use more features or a more complex model.

Fix: Include more training samples. E.g., those in other colors.

Test data (unseen)

An *overfitting* model might say "Not a leaf".

- The training data samples all have sawtooth
- The model thinks a leaf must have sawtooth.

An underfitting model might say "A leaf".

- Only color is used as the feature.
- The model thinks everything green is a leaf.

An *overfitting* model might say "Not a leaf".

- The training data samples are all green.
- The model thinks a leaf must be green.

Agenda

- Introduction to machine learning
- Classification and model evaluation
 - Classification steps
 - Classification performance
- Typical classification models

Classification: Three Major Steps

- 1. Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label column
 - The set of tuples used for model construction is training set
 - A model is created using an algorithm on selected features.
 - Simply speaking, features are columns or generated based on columns.
 - Not all columns are used for creating a model.
 - Feature selection or engineering decides which features (columns) to be used.
 - The model is represented as classification rules, a decision tree, or mathematical formulae.
 - The model can predict the class label for a given (unseen) tuple
- 2. Model validation
- 3. Model application/test

Classification: Three Steps (cont.)

- 2. Model validation: to evaluate how good your model is for the given validation data set; to tune the parameters of a model (parameter tuning).
 - Estimate accuracy of the model using validation set (data set for validation)
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Validation set should be independent of training set (otherwise overfitting)
 - If the accuracy is *acceptable*, the model can be used to *classify new/unseen data* (model application/test)
 - Different models may be compared for selection of the best
 - NB: Sometimes validation is also called test (e.g., in sklearn)
- 3. Model application/test: for classifying future or unseen objects
 - For those objects, you don't know their classes!

Split Labelled Data

- sklearn.model selection.train test split
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
 - X_train: features of training data; y_train: class labels of training data
 - X_test: features of validation data; y_test: class labels of validation data
 - test_size: percentage of validation data
 - random_state: randomization of the split. A fixed number will enable reproducibility.
- Different ways of split can result in different models and performance
 - We will see more next week

Step 1: Model Construction

Step 2: Model Validation

Joseph | Assistant Prof

- Two classes
 - Tenured
 - Not tenured

Classifier

groundtruth

yes

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

- How good is the results on the validation data?
- Evaluate your model

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes

Validation

Data

predicted	
no	
yes	
yes	
yes	

Step 3: Model Application/Test

- Two classes
 - Tenured
 - Not tenured

Classifier Performance

- Consider a binary classifier
 - Target class A: positive
 - Target class NOT A: negative
- Consider the ground truth and classification result. There are four cases.
 - Put it simply, ground truth is the 'fact' we know.

Performance Metrics (for One Class A)

- Precision (exactness)
 - How often the positive classification is correct.
 - TP / (TP+FP)
- Recall (completeness)
 - How many of the actual positive cases are classified as positive.
 - TP / (TP+FN)

Accuracy

- The fraction of the time when the classifier gives the correct classification.
- (TP+TN) / (TP+FP+TN+FN)

This is easy to understand for *binary classification*.

Precision, Recall and F-measures

- Perfect score for Precision and Recall is 1
- Inverse relationship exists between Precision and Recall
- F measure (F_1 or F-score): harmonic mean of Precision and Recall

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

- F_B : weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

What if more than two class labels?

Confusion Matrix

- Three pre-defined classes A, B, C
- Ground truth and classification result

Object	Ground Truth	Classification Result
object-1	A	A
object-2	В	A
object-3	C	C
object-4	C	C
object-5	В	В
object-6	A	В
object-7	В	В

- Confusion Matrix (N x N for N classes)
 - The cell M[i, j] counts the case that groundtruth i is classified as j

- Accuracy = (TP+TN) /All
 - In this example, Accuracy = (1+2+2)/7 = 71.4%

Precision/Recall in Confusion Matrix

- Calculate the precision p_i for each class C_i
 - Overall precision is the average of all p_i s
- Calculate the recall r_i for each class C_i
 - Overall recall is the *average* of all r_i s
- Example
 - p_A =30/60=1/2, r_A =30/100=3/10
 - $p_B = 60/120 = 1/2$, $r_B = 60/100 = 3/5$
 - p_c =80/120=2/3, r_c =80/100=4/5
 - Overall precision = 5/9, overall recall = 17/30

Confusion matrix

Classification result B **Total** Ground truth 100 30 50 20 Recall for A: r_{Δ} B 20 60 20 100 \mathbf{C} 10 10 80 100 120 60 120 300 Total

Precision for A: p_A

Analyze Your Confusion Matrix

- Essentially, the more zeroes or smaller the numbers on all cells but the diagonal, the better a classifier is. So you may analyze your confusion matrix and tweak your features accordingly.
- Confusion matrix gives strong clues as to where your classifier is going wrong.
 - E.g., if for Class A you can see that the classifier incorrectly predicts Class B for majority of the mislabeled cases, it indicates the classifier is somehow confused between classes A and B.
 - One way to fix this is to add biasing features to improve classification of class A, e.g., more training data of A.

Agenda

- Introduction to machine learning
- Classification and model evaluation
- Typical classification models
 - Rule based classifier (the previous tenure example)
 - Decision tree
 - Random forest
 - K nearest neighbors (KNN, next week)

Classification Using Decision Trees

- The classification model (classifier) is organized as a tree for decision making.
 - It's thus called a decision tree.
- Internal nodes are associated with an *attribute/column* and arcs with *values* for that attribute.
- A leaf node tells the predicted class label.
 - Each person has attributes/columns:
 - (age, student [yes/no], credit rating)
 - p1(18, yes, fair)
 - p2(55, no, excellent)
 - Two classe labels
 - Buy computer
 - Not buy computer

Another Decision Tree Example

Example in Jupyter Notebook

- Diabetes dataset
 - 768 data objects of 9 columns/attributes
 - Available in Moodle
- Decision tree for classification (2 classes)
 - 1: Positive of diabetes
 - 0: Negative
- Lecture4_diabetes.ipynb

Construction/Optimization of Decision Trees

• Input:

Advanced

- Training data: a set of data in which the classes are already known.
- Ouput:
 - A decision tree that can be used for classification.
- Basic idea:
 - Generating a decision tree *top-down* using the training data.
 - Each internal node of the tree partitions the training data into groups based on a **splitting attribute** and a **splitting condition** for the node

 NB: You can specify how
 - Measure of the quality of a split: gini index and entropy.
 - Best split vs. Random split (in sklearn)
 - In a leaf node, all the items at the node belong to the same class, or all attributes have been considered and no further partitioning is possible.

a DT is constructed.

Random Forest (of Decision Trees)

- Decision trees' main drawback: tendency to overfit the training data.
 - Overfitting: A model focuses so much on training data that it does not generalize well to unseen data in predication.
- A random forest
 - A collection of decision trees (DT)
 - Each DT is slightly different from the others
 - With many DTs, we can maintain good prediction and reduce overfitting by using all trees' majority vote as the classification result.

Random Forest, cont.

- Two ways of introducing randomness to the tree building
 - Randomly selecting the training data points
 - Randomly selecting the features in each tree node split
- Random forest is an example of ensemble learning
 - Use a combination of models to increase prediction accuracy
 - Combine a series of T learned models/classifiers, C_1 , C_2 , ..., C_T , with the aim of creating an improved model C^*
 - A simple combination: majority vote

Continued Example in Jupyter Notebook

- Diabetes dataset
 - 768 data objects of 9 columns/attributes
 - Available in Moodle
- On the same data set, we can construct many different decision trees.
- We can also construct a random forest.
- Lecture4_diabetes.ipynb
 - Optimizing decision trees
 - Random forest

Comments on Decision Trees

- Given the same training data set, different decision trees may be constructed by different methods (with different parameters)
- A decision tree may be unbalanced

• At the same level, different nodes in a decision tree may split on

different attributes.

 Decision trees belong to eager learners

Eager vs Lazy Learning

- Eager learning (model based methods): Given a set of training samples, constructs a classification model before receiving new (e.g., test) data to classify.
 - More time in training but less time in predicting/classification
 - E.g., we need to construct a decision tree before using it.
- Lazy learning (e.g., instance-based learning): Simply stores training data as instances (or only minor processing) and waits until a new instance must be classified
 - Less time in training but more time in predicting/classification
 - E.g., k nearest neighbors: Instances represented as points in a metric space (e.g., Euclidean space).

Summary

- Supervised learning
 - Model construction/training, validation, test
 - Labelled data splitting
- Classification performance evaluation
 - Precision, recall, accuracy
 - Confusion matrix
- Classification models
 - Decision tree
 - Random forest

References

- Mandatory reading
 - Muller and Guido: Introduction to Machine Learning with Python, O'Reilly, 2016
 - Chapter 1
 - A First Application: Classifying Iris Species
 - Chapter 2
 - Decision Trees, Ensembles of Decision Trees
 - You may refer to Lecture-4/Lecture4_iris_csv.ipynb in Moodle
- Further reading
 - Decision tree
 - Tutorial: https://www.datacamp.com/community/tutorials/decision-tree-classification-python
 - Doc: https://scikit-learn.org/stable/modules/enerated/sklearn.tree.DecisionTreeClassifier.html
 - Random forest
 - **Tutorial**: https://www.datacamp.com/community/tutorials/random-forests-classifier-python
 - **Doc**: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Exercises

Using the Titanic dataset (available in Moodle), do the following in Lecture4-Exercise_Titanic_template.ipynb (available in Moodle)

- 1. Obtain a reduced dataset *D* that only contains the following features
 - Survived, Pclass, Sex and Age
 - NB: Data preprocessing is needed, e.g., transform to numerals, imputing missing values (NA)
- 2. Split the dataset D into two parts: 80% for training (D_T) and 20% for validation/test D_v .
 - NB: You may use different ratios, do the subsequent steps, and see the effect
- 3. Build a decision tree for predicting if a passenger can survive. Use D_T to train the model, apply the model to D_V , and evaluate the classification accuracy.
 - Try to build a number of different trees using different parameters, see their accuracy
- 4. Build a random forest on the same training/test datasets, obtain its accuracy, and plot the important features for it.