Analysis Edwin Park 2023 CONTENTS Edwin P.

Contents

1	Curl	1
2	Integrals	2
A	Appendix	2

1 Curl

Theorem 1.0.0.1.

$$\nabla \times \vec{F} = 0 \Rightarrow \exists \, f: X \to \mathbb{R}, \, \nabla f = \vec{F},$$

given that \vec{F} is defined on X, an open, simply connected subset of \mathbb{R}^3 .

2 Integrals

We define the Riemann-Stieltjis integral. Let μ be our non-decreasing, bounded "measure function", and f bounded over the interval [a,b]. Then, we define the lower and upper sums of a partition P of that interval:

$$U(f, \mu, P) := \sum_{p \in P} \sup_{p} (f) \Delta_{p} \mu;$$

$$L(f,\mu,P) := \sum_{p \in P} \inf_{p} (f) \Delta_{p} \mu.$$

Where $\Delta_p \mu = \mu(\text{endpoint}) - \mu(\text{startpoint})$. In turn we define the upper and lower Riemann-Stieltjis integrals:

$$\overline{\int_a^b} f \, d\mu := \inf_P U(f, \mu, P) \,;$$

$$\underline{\int_a^b} f\,d\mu \coloneqq \sup_P L(f,\mu,P)\,.$$

(Is it okay to take the inf/sup over partitions? Aren't there "more" partitions than there are real numbers?) The crucial property is that refining the partition non-strictly increases the lower sum and non-strictly decreases the upper sum. Also, we note that

A Appendix