成绩	
----	--

模拟电子技术基础试卷

试卷号: B140008

姓名_____ 学号____ 日期____

(请考生注意:本试卷共 页)

大题	1	1 1	[1]
成绩			

- 一、选择正确答案填入空内,只需填入A、B、C、D (本大题分 6 小题, 每小题 12 分, 共 72 分)
- 1、从括号中选择正确的答案,用A、B、C、D填空。 在如图所示的电路中,已知二极管的反向击穿电压为 100V,当 V=10V、温度为 20℃时, $I=1\mu A$.
 - 1. 当 V 增大到 20V 时,则 I 约为____。

(A. $10\mu A$, B. $2\mu A$, C. $1\mu A$, D. $0.5\mu A$)

- 2. 当 *V* 保持 10V 不变,温度升高到 30°, 则 *I* 约为____。
- (A. $10\mu A$, B. $2\mu A$, C. $1\mu A$,
- D. 0.5uA)
- 3. 在实际使用中,该二极管的反向工作电压通常不应该超过___。
- (A. 100V,
- B. 50V,
- C. 10V)

- 2、从括号中选择合理的参数,用A、B、C…填空。 已知图示电路中晶体管的 $\beta=100$, 要求电路有尽可能大的线性工作范围。
- 1. 当 $R_b = 1M\Omega$ 时, R_c 应选____。(A. 1 k Ω , B. 5.1 k Ω , C. 10 k Ω ,
- D. $100 \,\mathrm{k}\Omega$)
 - 2. 当 $R_c = 2k\Omega$ 时, R_b 应选____。(A. $100k\Omega$,B. $200k\Omega$, C. $390k\Omega$,

D. $1 M\Omega$)

- 3、正弦波振荡电路如图所示,试选择正确答案填空: 1. 该电路为___类型。
 - (A. 变压器反馈式, B. 电感三点式, C. 电容三点式)
- 2. 反馈信号取自 两端电压。

(A. 电容 C_1 , B. 电容 C_2 , C. 电感L)

3. 振荡频率表达式 $f_0 \approx ____$ 。

(A.
$$\frac{1}{2\pi L(C_1 + C_2)}$$
, B. $\frac{1}{2\pi \sqrt{L(C_1 + C_2)}}$, C. $\frac{1}{2\pi \sqrt{L \cdot \frac{C_1 C_2}{C_1 + C_2}}}$)

4. 若电路不起振,可在____两端并接一个大电容 (A. *R*_e, B. *R*_{b2}, C. *R*_{b1})

4、分别指出下列传递函数表达式各表示哪一种滤波电路(A. 低通, B. 高通, C. 带通, D. 带阻, E. 全通)。

1.
$$A_u(s) = -\frac{A_{up} \frac{1}{Q} \omega_0 s}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

2.
$$A_{u}(s) = \frac{A_{up} \left[\left(\frac{s}{\omega_{0}} \right)^{2} - \frac{1}{Q} \frac{s}{\omega_{0}} + 1 \right]}{\left(\frac{s}{\omega_{0}} \right)^{2} + \frac{1}{Q} \frac{s}{\omega_{0}} + 1}$$

 ${f 5}$ 、在图示三角波发生器中,已知 ${f A}_1$ 、 ${f A}_2$ 均为理想运算放大器,其输出电压的两个极限值为 ${f \pm}$ ${f 12V}$ 。

选择填空: 判断由于什么原因使输出电压 u_{01} 或 u_{0} 产生变化。可能出现的原因有:

- $A. R_W$ 的滑动端上移
- B. $R_{\rm W}$ 的滑动端下移

C. R₁增大

D. R₂增大

E. R₄增大

F. C 增大

G. C 减小

- H. $U_{\rm Z}$ 增大
- 1. *u*_O周期增大; ()
- 2. *u*₀幅值增大; ()
- 3. *u*₀波形上移; ()
- 4. u_{01} 幅值增大。 ()

- **6、**在图示稳压电路中,稳压管的稳定电压 $U_{\rm Z}{=}5{\rm V}$,最大耗散功率 $P_{\rm ZM}{=}200{\rm mW}$,最小稳定电流 $I_{\rm Zmin}{=}5{\rm mA}$,正向导通电压 $U_{\rm D}{=}0.7{\rm V}$ 。选择正确答案填入空内。
 - 1. $U_{\rm I}$ =12V,R=2k Ω , $R_{\rm L}$ =1k Ω ,则 $U_{\rm O}$ =_____
 - A 037
- B. 0.7V
- C. 4V
- D. 5V
- 2. $U_{\rm I}$ =15V,R= $R_{\rm L}$ =1k Ω ,则 $U_{\rm O}$ =
 - A. 0.7V
- R 4V
- C. 5V
- D. 7.5V
- 3. 若 $U_{\rm I}$ =15V,R=200 Ω ,则 R 中的电流 $I_{\rm R}$ =______;
 - A. 75mA
- B. 50mA
- C. 40mA
- D. 25mA

为保证电路正常工作, L的最大值不应超过

- A. 45mA
- B. 35mA
- C. 30mA
- D. 25mA

- $I_{\rm L}$ 的最小值应大于______
 - A. 0mA
- B. 5mA
- C. 10mA
- D. 35mA

二、判断下列说法是否正确,凡对者打"",错者打""(本 大 题 12 分)

图示运算电路中,已知 A_1 、 A_2 为理想运算放大器,输入电压 $u_{II}=0.2$ V、 $u_{I2}=0.5$ V 下列结论是在电路的诸多参数中仅改变其中一个参数而得到的,试判断是否正确。正确者打" \checkmark ",错误者打" \times "。

- 1. 当电阻 R_1 增大时 ,输出电压 u_0 将减小。()
- 2. 当电阻 R_2 减小时 ,输出电压 u_0 将减小。()
- 3. 当电阻 R_4 增大时 ,输出电压 u_0 将增大。()
- 4. 当电阻 $R_2 = 0$ 时,输出电压 u_0 仅与 u_{12} 有关,与 u_{11} 无关。()
- 5. 当电阻 R_6 =0 时,电压放大倍数 $A_u = \frac{u_0}{u_{12} u_{11}} = \infty$ 。 ()

三、填空:将正确答案填写在横线上。(本大题分2小题,每小题8分,共16分)

1、为了能获得尽量低的下限截止频率,试问:在图示放大电路中电容选配得是否合理? 若不合理,则改正之(只能调换现有电容的位置,不能改变现有电容的电容量)。

 ${f 2}$ 、试指出图示电路欲实现放大有哪些接线上的错误,在不增、减元器件时,请把错误的接线在图上改正过来,设电路中的 ${f A}_1$ 、 ${f A}_2$ 、 ${f A}_3$ 均为理想运放。

