Students adaptability in online education

Importing all the modules

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import plotly.express as px
import statistics as s

df=pd.read_csv('/content/students_adaptability_level_online_education.csv')

df

	Gender	Age	Education Level	Institution Type	IT Student	Location	Load- shedding	Financial Condition	Internet Type	Network Type	Class Duration	Se I
0	Воу	21- 25	University	Non Government	No	Yes	Low	Mid	Wifi	4G	3-6	
1	Girl	21- 25	University	Non Government	No	Yes	High	Mid	Mobile Data	4G	1-3	
2	Girl	16- 20	College	Government	No	Yes	Low	Mid	Wifi	4G	1-3	
3	Girl	11- 15	School	Non Government	No	Yes	Low	Mid	Mobile Data	4G	1-3	
4	Girl	16- 20	School	Non Government	No	Yes	Low	Poor	Mobile Data	3G	0	
1200	Girl	16- 20	College	Non Government	No	Yes	Low	Mid	Wifi	4G	1-3	
1201	Girl	16- 20	College	Non Government	No	No	High	Mid	Wifi	4G	3-6	
1202	Воу	11- 15	School	Non Government	No	Yes	Low	Mid	Mobile Data	3G	1-3	
1203	Girl	16- 20	College	Non Government	No	No	Low	Mid	Wifi	4G	1-3	
1204	Girl	11- 15	School	Non Government	No	Yes	Low	Poor	Mobile Data	3G	1-3	

1205 rows × 14 columns

df.shape

(1205, 14)

df.loc[100]

Gender	Boy
Age	11–15
Education Level	School
Institution Type	Non Government
IT Student	No
Location	Yes
Load-shedding	Low
Financial Condition	Mid
Internet Type	Wifi
Network Type	4G
Class Duration	0
Self Lms	No

Device Mobile
Adaptivity Level Low
Name: 100, dtype: object

df.size

16870

df.dtypes

Gender Age	object object
Education Level	object
Institution Type	object
IT Student	object
Location	object
Load-shedding	object
Financial Condition	object
Internet Type	object
Network Type	object
Class Duration	object
Self Lms	object
Device	object
Adaptivity Level	object
dtype: object	

df.sample()

	Gender	Age	Education Level	Institution Type	IT Student	Location	Load- shedding	Financial Condition	Internet Type	Network Type	Class Duration	Se [·]
533	Воу	11- 15	School	Non Government	No	Yes	Low	Poor	Mobile Data	3G	1-3	1

df.info()

#	Column	Non-Null Count	Dtype
0 1 2 3 4 5 6 7 8 9 10 11 12 13 dtyp	Gender Age Education Level Institution Type IT Student Location Load-shedding Financial Condition Internet Type Network Type Class Duration Self Lms Device Adaptivity Level Des: object(14)	1205 non-null	object
memo	ory usage: 131.9+ KB		

df.nunique()

Gender	2
Age	6
Education Level	3
Institution Type	2
IT Student	2
Location	2
Load-shedding	2
Financial Condition	3
Internet Type	2
Network Type	3
Class Duration	3
Self Lms	2

Adaptivity Level 3
dtype: int64

df.isna()

	Gender	Age	Education Level	Institution Type	IT Student	Location		Financial Condition	Internet Type	Network Type	Class : Duration
0	False	False	False	False	False	False	False	False	False	False	False I
1	False	False	False	False	False	False	False	False	False	False	False I
2	False	False	False	False	False	False	False	False	False	False	False I
3	False	False	False	False	False	False	False	False	False	False	False I
4	False	False	False	False	False	False	False	False	False	False	False I
1200	False	False	False	False	False	False	False	False	False	False	False I
1201	False	False	False	False	False	False	False	False	False	False	False I
1202	False	False	False	False	False	False	False	False	False	False	False I
1203	False	False	False	False	False	False	False	False	False	False	False I
1204	False	False	False	False	False	False	False	False	False	False	False I

1205 rows × 14 columns

df.isna().sum()

Gender	α
	U
Age	0
Education Level	0
Institution Type	0
IT Student	0
Location	0
Load-shedding	0
Financial Condition	0
Internet Type	0
Network Type	0
Class Duration	0
Self Lms	0
Device	0
Adaptivity Level	0
dtype: int64	

df.describe().transpose()

	count	unique	top	freq
Gender	1205	2	Воу	663
Age	1205	6	21-25	374
Education Level	1205	3	School	530
Institution Type	1205	2	Non Government	823
IT Student	1205	2	No	901
Location	1205	2	Yes	935
Load-shedding	1205	2	Low	1004
Financial Condition	1205	3	Mid	878
Internet Type	1205	2	Mobile Data	695
Network Type	1205	3	4G	775
Class Duration	1205	3	1-3	840
Self Lms	1205	2	No	995
Device	1205	3	Mobile	1013
Adaptivity Level	1205	3	Moderate	625

plot.update_layout(title='Bar Graph showing distribution of gender' ,title_x=0.5)

Univarient Analysis

plot=px.pie(df,'Gender')

Bar Graph showing distribution of gender

plot=px.pie(df,'Institution Type')
plot.update_layout(title='Bar graph showing distribution of Institution Type' ,title_x=0.5)

Bar graph showing distribution of Institution Type

plot=px.pie(df,'Education Level')
plot.update_layout(title='Bar Graph showing distribution of education level' ,title_x=0.5)

Bar Graph showing distribution of education level

plot=px.pie(df,'Device')
plot.update_layout(title='Bar Graph showing distribution of device' ,title_x=0.5)

Bar Graph showing distribution of device

plt.figure(figsize=(10, 6))
sns.histplot(df['Age'],color='skyblue')
plt.title('Distribution of Age Level in Histogram')

Text(0.5, 1.0, 'Distribution of Age Level in Histogram')

Distribution of Age Level in Histogram

sns.countplot(x= 'IT Student' ,data=df, linewidth=2,color='purple')
plt.title("Count plot showing distribution of IT students")
plt.show()


```
plt.figure(figsize=(10, 6))
sns.histplot(df['Class Duration'],color='red')
plt.xlabel('Class Duration in (Hours)')
plt.title('Distribution of Class Duration in Histogram')
```

 ${\sf Text}(\textbf{0.5, 1.0, 'Distribution of Class Duration in Histogram'})$

Distribution of Class Duration in Histogram

sns.countplot(x= 'Device' ,data=df, linewidth=2,color='orange')
plt.show()

plot=px.pie(df,'Location')
plot.update_layout(title='Bar Graph Showing distribution of Location' ,title_x=0.5)

Bar Graph Showing distribution of Location

px.pie(df,'Financial Condition')

px.pie(df,'Adaptivity Level')

Multivarient Analysis

```
plot=px. sunburst(
    df,
    path=['Adaptivity Level', 'Device', 'Gender'],
    color_discrete_map={'Mid': 'blue', 'Other': 'red'},
)
plot.update_layout(title='Sunburst Chart for Adaptivity Level' ,title_x=0.5)
```

Sunburst Chart for Adaptivity Level


```
['Gender',
'Age',
'Education Level',
'Institution Type',
'IT Student',
'Location',
'Load-shedding',
'Financial Condition',
'Internet Type',
'Network Type',
'Class Duration',
'Self Lms',
'Device',
'Adaptivity Level']
```

df.columns.tolist()

Encoding

Since data are composed of categorical values, we use LabelEncoder() to encode into numeric values

from sklearn.preprocessing import LabelEncoder

```
data=df
```

```
label_encoders = {}
categorical_columns = data.columns

for column in categorical_columns:
    label_encoders[column] = LabelEncoder()
    data[column] = label_encoders[column].fit_transform(data[column])
```

df.head()

	Gender	Age	Education Level	Institution Type	IT Student	Location	Load- shedding	Financial Condition	Internet Type	Network Type	Class Duration	Self Lms
0	0	3	2	1	0	1	1	0	1	2	2	0
1	1	3	2	1	0	1	0	0	0	2	1	1
2	1	2	0	0	0	1	1	0	1	2	1	0
3	1	1	1	1	0	1	1	0	0	2	1	0
4	1	2	1	1	0	1	1	1	0	1	0	0

from sklearn.model_selection import train_test_split

```
X=df.drop('Adaptivity Level', axis=1)
y=df['Adaptivity Level']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print(f"X train {X_train.shape}")
print(f"X test {X_test.shape}")
print(f"Y train {y_train.shape}")
print(f"Y test {y_test.shape}")
```

```
X train (964, 13)
X test (241, 13)
Y train (964,)
Y test (241,)
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,r2_score
from sklearn.metrics import confusion_matrix,accuracy_score, classification_report,ConfusionMatrixDisplay
log reg = LogisticRegression(max iter=1000)
# Train the model
log_reg.fit(X_train, y_train)
# Predict on the test set
y_pred = log_reg.predict(X_test)
# Calculate accuracy
accuracy_log_reg = accuracy_score(y_test, y_pred)
#check accuracy of training and testing
print("Train Accuracy :", accuracy_score(y_train, log_reg.predict(X_train)))
print("Train Confusion Matrix:")
print(confusion_matrix(y_train, log_reg.predict(X_train)))
#plot confusion matrix for training set
plt.figure(figsize=(3, 3))
cm_train = confusion_matrix(y_train, log_reg.predict(X_train))
sns.heatmap(cm_train, annot=True, fmt='d', cmap='Blues', xticklabels=['Predicted 0', 'Predicted 1'], yticklabels=
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix - Training Set')
plt.show()
print("-"*45)
print("Test Accuracy :", accuracy_score(y_test, log_reg.predict(X_test)))
print("Test Confusion Matrix:")
print(confusion matrix(y test,log reg.predict(X test)))
# Plot the Confusion Matrix for Test Set
plt.figure(figsize=(3, 3))
cm_test = confusion_matrix(y_test, log_reg.predict(X_test))
sns.heatmap(cm_test, annot=True, fmt='d', cmap='Blues', xticklabels=['Predicted 0', 'Predicted 1'], yticklabels=[
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix - Test Set')
plt.show()
    Train Accuracy: 0.6929460580912863
    Train Confusion Matrix:
    [[ 35 17 25]
```