Homework 4

Question 2

Part 1:

My **HashTable** class is implemented by using the following private variables.

private:

```
int* table;
LocationStatus* status;
int hashTableSize;
CollisionStrategy strategy;
int curSize;
```

Where I defined enum LocationStatus { OCCUPIED, EMPTY, DELETED } for knowing the status of a location in the hashTable. The variables table and status are used as the arrays for hashTable storage. Note that they could also have been packed into a struct but the current implementation keeps them separate.

While probing, the *stopping conditions* are designed such that a search can be stopped and returned unsuccessful if the search reaches an EMPTY location. In order to avoid *infinite loops*, the total number of probes is limited to hashTableSize, since the indices repeat after that. This can be proved mathematically for all strategies as follows.

Proof:

Initial starting index is,

```
index = key % tableSize
```

for ith probing iteration,

For linear probing:

```
newIndex = (index + i) \% \ tableSize after \ tableSize \ probes \ (i = tableSize + k), newIndex = (index + tableSize + k) \% \ tableSize = (index + k) \% \ tableSize which shows that index repeats after tableSize probes.
```

For quadratic Probing:

```
newIndex = (index + i^2) \% \ tableSize after tableSize probes (i = tableSize + k), newIndex = (index + tableSize^2 + k^2 + ((2k)^* tableSize)) \% \ tableSize = (index + k^2) \% \ tableSize which shows that index repeats after tableSize probes.
```

For double hashing:

```
newIndex = (index + (i*hash2(item))) \% \ tableSize after \ tableSize \ probes \ (i = tableSize + k), newIndex = (index + ((tableSize + k)*hash2(item))) \% \ tableSize newIndex = (index + ((tableSize*hash2(item)) + (k*hash2(item)))) \% \ tableSize newIndex = (index + (k*hash2(item))) \% \ tableSize which \ shows \ that \ index \ repeats \ after \ tableSize \ probes.
```

Part 2:

The table size used was 29. The data used for the driver function and the corresponding outputs are as follows:

Using Linear probing:

3 inserted	0 00
77 inserted	0: 29
34 inserted	1: 233
51 inserted	2: 88
19 inserted	3: 3
32 not removed	4: 58
48 inserted	5: 34
51 found after 1 probes	
17 inserted	6: 1
18 inserted	7: 7
0 not found after 1 probes	8: 356
356 inserted	9: 63
255 inserted	10:
548 inserted	11:
233 inserted	12:
88 inserted	
233 found after 1 probes	13:
45 inserted	14:
7 inserted	15:
33 inserted	16:
17 removed	17: 46
84 inserted 1 inserted	18: 18
26 not removed	
86 inserted	19: 77
255 found after 1 probes	20: 19
63 inserted	21: 48
22 inserted	22: 51
33 removed	23: 255
29 inserted	24: 22
58 inserted	
23 inserted	25: 23
46 inserted	26: 548
84 found after 2 probes	27: 84
45 removed	28: 86

Using Quadratic probing:

3 inserted	0: 29
77 inserted	1: 233
34 inserted	2: 88
51 inserted	
19 inserted	3: 3
32 not removed	4: 58
48 inserted	5: 34
51 found after 1 probes	6: 63
17 inserted	7: 7
18 inserted	
0 not found after 1 probes	8: 356
356 inserted	9: 22
255 inserted	10: 1
548 inserted	11:
233 inserted	12:
88 inserted	13:
233 found after 1 probes	
45 inserted	14: 23
7 inserted	15:
33 inserted	16:
17 removed	17: 46
84 inserted	18: 18
1 inserted	
26 not removed	19: 77
86 inserted	20: 19
255 found after 2 probes 63 inserted	21:
22 inserted	22: 51
33 removed	23: 48
29 inserted	24: 255
58 inserted	2 233
23 inserted	25:
46 inserted	26: 548
84 found after 2 probes	27: 84
45 removed	28: 86
45 Tellioved	

Using Double Hashing:

3 inserted	
77 inserted	0: 29
34 inserted	1: 233
51 inserted	2: 88
19 inserted	3: 3
32 not removed	4:
48 inserted	
51 found after 1 probes	5: 34
17 inserted	6: 84
18 inserted	7: 7
0 not found after 1 probes	8: 356
356 inserted	9: 1
255 inserted	10:
548 inserted	
233 inserted	11: 63
88 inserted	12:
233 found after 1 probes	13:
45 inserted	14:
7 inserted	15: 22
33 inserted	16: 48
17 removed	
84 inserted	17: 46
1 inserted	18: 18
26 not removed	19: 77
86 inserted	20:
255 found after 2 probes	21: 23
63 inserted	22: 51
22 inserted	
33 removed	23: 19
29 inserted	24: 255
58 inserted	25:
23 inserted 46 inserted	26: 548
	27: 58
84 found after 3 probes	
45 removed	28: 86

Part 3:

We obtain the following results after using different collision resolution schemes like linear and quadratic probing and double hashing.

Using Linear probing:

```
Load factor: 0.758621
Average empirical Successful probes: 1.51724
Average empirical UnSuccessful probes: 10.5172
Average theoretical Successful probes: 2.57143
Average theoretical UnSuccessful probes: 9.08163
```

Where the theoretical values are obtained using,

$$\frac{1}{2} \left[1 + \frac{1}{1 - \alpha} \right] \qquad \text{for a successful search} \qquad \frac{1}{2} \left[1 + \frac{1}{\left(1 - \alpha \right)^2} \right] \qquad \text{for an unsuccessful search}$$

Using Quadratic probing:

```
Load factor: 0.758621
Average empirical Successful probes: 1.55172
Average empirical UnSuccessful probes: 4.65517
Average theoretical Successful probes: 1.87364
Average theoretical UnSuccessful probes: 4.14286
```

Using Double Hashing:

```
Load factor: 0.758621
Average empirical Successful probes: 1.7931
Average empirical UnSuccessful probes: -1
Average theoretical Successful probes: 1.87364
Average theoretical UnSuccessful probes: 4.14286
```

Where the theoretical values are obtained using,

$$\frac{-\log_e(1-\alpha)}{\alpha} \qquad \text{for a successful search} \quad \frac{1}{1-\alpha} \qquad \text{for an unsuccessful search}$$

It can be observed that the theoretical and empirical values are very close to each other. Moreover, we also observe that linear probing performs the worst mainly due to the clustering problem. Quadratic probing and double hashing perform fairly better.

Conclusion:

This homework was a good exercise to understand and implement hashTables and the understanding different collision resolution strategies and their comparison and analysis.