Билет 6

Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования

Московский технический университет связи и информатики

БИЛЕТ	Утверждаю Зав.кафедрой		
№ 6			
Факультет	РиТ	Курс2	
Дисциплина	OTC		

- 1. Обнаружение детерминированного сигнала на фоне АБГШ. Корреляционный прием.
- 2. Ошибки в теории дискретизации и восстановлении непрерывных функций.

Задача. Построить спектр дискретного сигнала $x_{\delta}(t)=x(t)\delta_{T}(t)$, если $\delta_{T}(t)$ - периодическая с периодом T=0.5 мс последовательность дельта - функций, а непрерывный сигнал имеет спектр

$$S(f) = 1 - 2 \cdot 10^{-3} |f|, \qquad |f| \le 0.5 \text{ kGH}.$$

1 ВОПРОС

2.1.3. <u>Обнаружение детерминированных сигналов на фоне аддитивного</u> ГБШ.

Пусть $\eta_i \sim N(0, \sigma_\eta^2)$ - ГБШ. Мгновенные значения такой помехи распределены по гаусовскому закону $w_\eta(x) = \frac{1}{\sqrt{2\pi}\sigma_\eta}e^{\frac{-x^2}{2\sigma_\eta^2}}$, с нулевым математическим ожиданием и дисперсией σ_η^2 . Отсчёты такой помехи независимы, спектральная плотность мощности равномерна. Тогда функция правдоподобия факторизуется:

$$w(\vec{y}_n|H_k) = \prod_{i=1}^n w(y_i|H_k), k=0;1$$

Мгновенные значения входного воздействия при гипотезе H_0 распределены по закону: $w(y_i|H_0)=\frac{1}{\sqrt{2\pi}\sigma_\eta}e^{\frac{-y_i^2}{2\sigma_\eta^2}}$, при гипотезе H_1 :

$$\begin{split} w(y_i|\mathbf{H}_1) &= \frac{1}{\sqrt{2\pi}\sigma_{\eta}} e^{\frac{-(y_i - S_i)^2}{2\sigma_{\eta}^2}} => \\ w(\vec{\mathbf{y}}_n|\mathbf{H}_0) &= (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^n \prod_{i=1}^n e^{\frac{-y_i^2}{2\sigma_{\eta}^2}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^n e^{\frac{-\sum_{i=1}^n y_i^2}{2\sigma_{\eta}^2}} \\ w(\vec{\mathbf{y}}_n|\mathbf{H}_1) &= (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^n \prod_{i=1}^n e^{\frac{-(y_i - S_i)^2}{2\sigma_{\eta}^2}} = (\frac{1}{\sqrt{2\pi}\sigma_{\eta}})^n e^{\frac{-\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_{\eta}^2}} => \\ \Lambda(\vec{\mathbf{y}}_n) &= \frac{\left(\frac{1}{\sqrt{2\pi}\sigma_{\eta}}\right)^n e^{\frac{-\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_{\eta}^2}}}{\left(\frac{1}{\sqrt{2\pi}\sigma_{\eta}}\right)^n e^{\frac{-\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_{\eta}^2}}} = \frac{e^{\frac{-\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_{\eta}^2}}}{e^{\frac{-\sum_{i=1}^n y_i^2}{2\sigma_{\eta}^2}}} = e^{\frac{\sum_{i=1}^n (y_i - S_i)^2}{2\sigma_{\eta}^2}} = e^{\frac{\sum_{i=1}^n (y_i - S_i$$

$$\frac{1}{\sigma_{\eta}^2}\sum_{i=1}^n y_i S_i = \ln C + \frac{1}{\sigma_{\eta}^2}\sum_{i=1}^n \frac{S_i^2}{2}$$
 или $\sum_{i=1}^n y_i S_i = \sigma_{\eta}^2 \ln C + \sum_{i=1}^n \frac{S_i^2}{2}$.

Тогда получим алгоритм обнаружения:

если
$$\sum_{i=1}^{n} y_i S_i \ge C' => \gamma_1$$
 (2.13)
если $\sum_{i=1}^{n} y_i S_i < C' => \gamma_0$

 $E = \sum_{i=1}^{n} S_{i}^{2}$ - энергия сигнала =>

$$C' = \sigma_{\eta}^2 \ln C + \frac{E}{2}$$
 (2.14)

Формулы (2.13) и (2.14)- обработка дискретного детерминированного сигнала на фоне ГБШ.

Если обработке подвергается непрерывный сигнал y(t), то сумма заменяется интегралом: $\lambda(y(t)) = \int_0^T y(t) \, S(t) dt$ - корреляционный интеграл, Т-длительность сигнала C' находится по (2.14), где $E = \int_0^T S(t)^2 \, dt = >$

Если
$$\lambda(y(t)) \ge C' \Longrightarrow \gamma_1$$
, (2.15)
если $\lambda(y(t)) < C' \Longrightarrow \gamma_0$

Т. о. получили корреляционную обработку сигнала в непрерывном времени.

Рисунок 2.1. Корреляционная обработка детерминированного дискретного сигнала (а), непрерывного сигнала (б) на фоне ГБШ.

ДОП ИНФА

Для обнаружения детерминированного сигнала на фоне АБГШ (аддитивный белый гауссовский шум) также отлично подойдет согласованный фильтр, т. к. он обеспечивает максимально возможное пиковое отношение сигнал / шум.

Критерий оптимальности согласованного фильтра: $q_B = q_B max$, т. е. на выходе согласованного фильтра должно реализоваться максимальное отношение сигнал/шум.

$$q_{s} = \frac{\left|s_{s}(t_{0})\right|^{2}}{\sigma_{\eta s}^{2}} = \frac{\frac{1}{2\pi} \left|\int\limits_{-\infty}^{\infty} S(j\omega)K(j\omega)e^{j\omega t_{0}}d\omega\right|^{2}}{\int\limits_{-\infty}^{\infty} G_{\eta}(\omega) \left|K(j\omega)\right|^{2}d\omega}, \ \text{где} \quad t_{0} \ \text{- некоторый момент}$$

времени, $q_{\rm B}$ — отношение сигнал/шум по мощности на выходе фильтра в момент времени $t_{\rm O}$

Далее надо найти такую $K(j\omega)$, при которой $q_{\scriptscriptstyle B}=q_{\scriptscriptstyle Bmax}$.

Поставленная задача может быть решена методом вариационного исчисления или используя неравенство Шварца-Буняковского.

Неравенство Шварца-Буняковского:

Если имеются две произвольные комплексные функции f(x) и g(x), то выполняется соотношение:

 $\left|\int_{-\infty}^{\infty} f^*(x) \cdot g(x) dx\right|^2 \le \int_{-\infty}^{\infty} |f(x)|^2 dx \cdot \int_{-\infty}^{\infty} |g(x)|^2 dx$, причем знак «=» имеет место, если $g(x) = C_0 f(x)$, где C_0 =const, «*» знак сопряжения.

Тогда, полагая:

$$f^*(x) = \frac{S(j\omega)e^{j\omega t_0}}{\sqrt{2\pi G_{\eta}(\omega)}}, \quad g(x) = K(j\omega) \cdot \sqrt{G_{\eta}(\omega)},$$

и учитывая

$$\frac{\left|\int_{-\infty}^{\infty} f^*(x) \cdot g(x) dx\right|^2}{\int_{-\infty}^{\infty} |g(x)|^2 dx} \leq \int_{-\infty}^{\infty} |f(x)|^2 dx, \text{ имеем}$$

$$\frac{\left|\int_{-\infty}^{\infty} \frac{S(j\omega) e^{j\omega t_0}}{\sqrt{2\pi G_{\eta}(\omega)}} \cdot K(j\omega) \cdot \sqrt{G_{\eta}(\omega)} d\omega\right|^2}{\int_{-\infty}^{\infty} \left|K(j\omega) \cdot \sqrt{G_{\eta}(\omega)}\right|^2 d\omega} = \frac{1}{2\pi} \cdot \frac{\left|\int_{-\infty}^{\infty} S(j\omega) K(j\omega) e^{j\omega t} d\omega\right|^2}{\int_{-\infty}^{\infty} G_{\eta}(\omega) |K(j\omega)|^2 d\omega} q_{\mathrm{B}}$$

$$\leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|S(j\omega)|^2}{G_{\eta}(\omega)} d\omega,$$

 $q_{{\scriptscriptstyle \mathrm B}max}$ определяется правой частью данного выражения

$$=> \qquad q_{\rm B} = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} \frac{|S(j\omega)|^2}{G_{\eta}(\omega)} d\omega$$
 (2.19)
$$\text{и } q_{\rm B} = q_{\rm Bmax} \text{ , если } K(j\omega) \cdot \sqrt{G_{\eta}(\omega)} = C_0 \cdot \frac{S^*(j\omega)e^{-j\omega t_0}}{\sqrt{2\pi G_{\eta}(\omega)}} =>$$

$$K(j\omega) = const \cdot \frac{S^*(j\omega)}{G_n(\omega)} \cdot e^{-j\omega t_0}$$
 (2.20)

Формула (2.20) — оптимальная КЧХ фильтра, (2.19) — максимальное отношение сигнал/шум на выходе фильтра для произвольной стационарной помехи со спектральной плотностью мощности $G_{\eta}(\omega)$. Такая обработка оказывается не является оптимальной. Однако, она оптимальна , если $\eta(t)$ — гауссовский шум со спектральной плотностью мощности $G_{\eta}(\omega) = \frac{N_0}{2}$. В этом случае оптимальный фильтр называется согласованным.

Согласованный фильтр — линейный фильтр, на выходе которого получается максимально возможное пиковое отношение сигнал/шум при приёме полностью известного сигнала на фоне БГШ.

=> (2.19)
$$\rightarrow q_{\rm B} = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} \frac{2|S(j\omega)|^2}{N_0} d\omega = \frac{2E}{N_0}$$

где $\mathrm{E} = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} |S(j\omega)|^2 d\omega$ — энергия сигнала т. е.

$$q_{\rm B} = \frac{2E}{N_0} \tag{2.21}$$

(2.20) преобразуется в

$$K(j\omega) = const \cdot S^*(j\omega) \cdot e^{-j\omega t_0}$$
 (2.22)

2 ВОПРОС

1.3.5. Погрешности дискретизации и восстановления непрерывных сигналов.

Теорема Котельникова точно справедлива только для сигналов с финитным (конечным) спектром. На рис.1.18 показаны некоторые варианты финитных спектров:

Однако спектры реальных информационных сигналов бесконечны. В этом случае теорема Котельникова справедлива с погрешностью.

Погрешность дискретизации определяется энергией спектральных составляющих сигнала, лежащих за пределами частоты $\omega_{\text{в}}$.

$$\overline{\Delta E_{\delta}^{2}} = \int_{\omega}^{\infty} \left| \dot{S}_{x}(\omega) \right|^{2} d\omega \tag{1.10}$$

Вторая причина возникновения погрешностей – не идеальность восстанавливающего ФНЧ.

Т.о., погрешность дискретизации и восстановления непрерывного сигнала определяется следующими причинами:

- 1) Спектры реальных сигналов не финитны.
- 2) АЧХ реальных ФНЧ неидеальны.

Например, если в качестве ФНЧ использовать RC- фильтр, то восстановленный сигнал на его выходе будет иметь вид:

Рис.1.20.

с учетом того, что импульсная реакция RC-фильтра равна:

$$g_{RC}(t) = \frac{1}{RC}e^{-\frac{t}{RC}}$$

<u>Вывод</u>: чем выше ω_{s} и чем ближе характеристики ФНЧ к идеальным, тем ближе восстановленный сигнал к исходному.

ДОПОЛНИТЕЛЬНАЯ ТЕОРИЯ КО 2 ВОПРОСУ!!!!!!!!!!!!!!!!!(НА ВСЯКИЙ СЛУЧАЙ).....

1.3.4. Восстановление непрерывного сигнала из отсчётов.

В линию связи передаются импульсы-отсчёты, которые поступают на вход приёмника.

Для восстановления исходного непрерывного сигнала из импульсов-отсчётов надо эти импульсы подать на вход идеального фильтра низких частот (ИФНЧ), который имеет следующие характеристики.

Амплитудно-частотная характеристика идеального ФНЧ (АЧХ ИФНЧ) имеет вид:

Рис.1.16

Импульсная реакция ИФНЧ, т.е. реакция на дельта-импульс имеет вид:

Первая формула - это выражение для импульсной реакции ИФНЧ, вторая и третья формулы определяют моменты времени, для которых $g_{\mathit{ИФНЧ}}(t)$ обращается в ноль.

Со спектральной точки зрения мы пропускаем дискретизированный сигнал, имеющий спектр в соответствии с рис.1.13 или 1.15, через ИФНЧ с АЧХ рис. 1.16. Очевидно, что на выходе ИФНЧ получим спектр:

$$S(\omega) = K S_{\pi}(\omega) = K S_{\kappa}(\omega) / \Delta t;$$

или для АИМ с**и**гнала получим: $S(\omega) = KS_{\pi}(\omega) = K a_0 S_x(\omega) / 2$.

Таким образом, с точностью до постоянного множителя мы получили на выходе ИФНЧ спектр исходного сигнала x(t). С временной точки зрения мы получили исходный непрерывный сигнал x(t).

ЗАДАЧА

 $x_{\partial}(t) = x(t)$ (t) - дискретизированный сигнал x(t) - исходный сигнал.

 $\mathbb{S}^{-}(t)$ -периодическая последовательность δ - импульсов.

