§1 二重积分概念

二重积分是定积分在平面上的推广,不同之处在于:定积分定义在区间上,区间的长度容易计算,而二重积分定义在平面区域上,其面积的计算要复杂得多.

- 一、平面图形的面积
- 二、二重积分的定义及其存在性
- 三、二重积分的性质

一、平面图形的面积

我们首先定义平面图形的面积. 所谓一个平面图形 P 是有界的,是指构成这个平面图形的点集是平面 上的有界点集,即存在一矩形 R , 使得 $P \subset R$. 设 P 是一平面有界图形, 用平行于二坐标轴的某一 组直线网T分割这个图形(图21-1),这时直线网T的网眼 (小闭矩形) △,可分为三类:

- (i) Δ_i 上的点都是 P 的内点;
- (ii) Δ_i 上的点都是 P 的外点, 即 Δ_i ② $P = \emptyset$;

(iii) Δ_i 上含有 P 的边界点. 将所有属于第(i) 类小矩形 (图 21-1 中紫色部分)的面积加起来,记这个和数为 $s_p(T)$,则有 $s_p(T) \leq \Delta_R$ (这里 Δ_R 表示包含P 的那个矩

形 R 的面积); 将所有第 (i) 类与第 (ii) 类小矩形的面积加起来(图 21-1中着色部分),记这个和数为 $S_P(T)$, 则有 $S_P(T) \leq S_P(T)$.

由确界存在定理可以推得,对于平面上所有直线网,数集 $\{s_p(T)\}$ 有上确界, $\{S_p(T)\}$ 有下确界. 记

$$\underline{I}_P = \sup_T \{ s_P(T) \}, \quad \overline{I}_P = \inf_T \{ S_P(T) \},$$

显然有

$$0 \le \underline{I}_P \le \overline{I}_P \,. \tag{1}$$

通常称 I_P 为 P 的内面积, I_P 为 P 的外面积.

定义1 若平面图形 P 满足 $\underline{I}_P = \overline{I}_P$,则称 P 为可求面积的图形,并把共同值 $I_P = \underline{I}_P = \overline{I}_P$ 作为 P 的面积.

定理21.1 平面有界图形 P 可求面积的充要条件是:

对任给的 $\epsilon > 0$, 总存在直线网 T, 使得

$$S_P(T) - s_P(T) < \varepsilon. \tag{2}$$

证 必要性 设有界图形 P 的面积为 I_p . 由定义 1, 有 $I_p = I_p = \overline{I}_P$. $\forall \epsilon > 0$, 由 I_p 及 \overline{I}_P 的定义知道, 分别 存在直线网 T_1 与 T_2 ,使得

$$s_{p}(T_{1}) > I_{p} - \frac{\varepsilon}{2}, S_{p}(T_{2}) < I_{p} + \frac{\varepsilon}{2}.$$
 (3)

记 T 为由 T_1 与 T_2 这两个直线网合并所成的直线网,可证得

$$S_{P}(T_{1}) \leq S_{P}(T), \quad S_{P}(T_{2}) \geq S_{P}(T).$$

于是由(3)可得

$$s_P(T) > I_P - \frac{\varepsilon}{2}$$
, $S_P(T) < I_P + \frac{\varepsilon}{2}$.

从而对直线网 T 有 $S_P(T) - S_P(T) < \varepsilon$.

充分性 设对任给的 ε > 0,存在某直线网 T,使得

$$S_P(T) - S_P(T) < \varepsilon$$
.

但
$$S_P(T) \leq \underline{I}_P \leq \overline{I}_P \leq S_P(T)$$
, 所以

$$\overline{I}_P - \underline{I}_P \leq S_P(T) - s_P(T) < \varepsilon$$
.

由 ϵ 的任意性,得 $I_P = I_P$,因而平面图形 P 可求面积.

推论 平面有界图形 P 的面积为零的充要条件是它的外面积 $I_P = 0$,即对任给的 $\epsilon > 0$,存在直线网 T,使得

$$S_p(T) < \varepsilon$$
,

或对任给的 $\epsilon > 0$,平面图形 P 能被有限个面积总和小于 ϵ 的小矩形所覆盖.

定理 21.2 平面有界图形 P 可求面积的充要条件是: P 的边界 K 的面积为零.

证 由定理21.1,P 可求面积的充要条件是: 对任给的 $\epsilon > 0$, 存在直线网T, 使得 $S_P(T) - S_P(T) < \epsilon$. 由于 $S_K(T) = S_P(T) - S_P(T)$,

所以也有 $S_K(T) < \varepsilon$.由上述推论, P 的边界K 的面积为零.

定理21.3 若曲线 K 为定义在 [a,b] 上的连续函数 f(x) 的图象,则曲线 K 的面积为零.

证由于 f(x) 在闭区间 [a,b] 上连续,所以它在 [a,b] 上一致连续. 因而, $\forall \epsilon > 0$, $\exists \delta > 0$,当

$$a = x_0 < x_1 < ? < x_n = b$$

$$\max\{\Delta x_i = x_i - x_{i-1} \mid i = 1, 2, ?, n\} < \delta$$

时, 可使 f(x) 在每个小区间 $[x_{i-1}, x_i]$ 上的振幅都成立 $\omega_i < \frac{\varepsilon}{b-a}$. 即若把曲线 K 按 $x = x_0, x_1$, ②, x_n 分成 n 个小段,则每一小段都能被以 Δx_i 为宽, ω_i 为高的小矩形所覆盖. 由于这 n 个小矩形面积的总和

$$\sum_{i=1}^{n} \omega_i \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \varepsilon,$$

因此由定理21.1 的推论即得曲线 K 的面积为零.

推论1 参量方程 $x = \varphi(t)$, $y = \psi(t)$ ($\alpha \le t \le \beta$) 所表示的光滑曲线或按段光滑曲线,其面积一定为零.

证 由光滑曲线的定义, φ',ψ'均存在且不同时为零.

由隐函数存在性定理, $\forall t_0 \in [\alpha, \beta], x'(t_0) \neq 0$ (或 $y'(t_0) \neq 0$),因此 $\exists U(t_0; \delta), x = x(t)$ (或 y = y(t)) 在 $U(t_0; \delta)$ 上有反函数. 再由有限覆盖定理,可把区间

 $[\alpha,\beta]$ 分成 n 段:

$$\alpha = t_0 < t_1 < ? < t_n = \beta,$$

使得在每一段 $[t_{i-1},t_i]$ 上, $x = \varphi(t)$ (或 $y = \psi(t)$) 存在 反函数 $t = \varphi^{-1}(x)$ (或 $t = \psi^{-1}(x)$),于是在 $[t_{i-1}, t_i]$ 上 有连续的 $y = \psi(\varphi^{-1}(x))$ (或 $x = \varphi(\psi^{-1}(y))$). 所以在 $[t_{i-1},t_i]$ 上的曲线面积为零,从而整个曲线面积为零. 推论2 由平面光滑曲线或按段光滑曲线所围的平面 图形都是可求面积的.

注 平面中并非所有的点集都是可求面积的. 例如

$$D = \{(x,y) | x,y \in Q \cap [0,1] \}.$$

易知 $0 = \underline{I}_D < \overline{I}_D = 1$,因此 D 是不可求面积的.

二、二重积分的定义及其存在性

二重积分的几何背景是 求曲顶柱体的体积.设 f(x,y)为定义在可求 面积的有界闭域 D上的 非负连续函数.求以曲 面 z = f(x, y) 为顶, D 为 底的柱体 (图21-2) 的体积 1/2

图 21-2

采用类似于求曲边梯形面积的方法.

- (1) 分割:先用一组平行于坐标轴的直线网T把区域D分成n个小区域 σ_i (i=1,2,2,n)(称T为区域D的一个分割). 以 $\Delta\sigma_i$ 表示小区域 σ_i 的面积. 这个直线网也相应地把曲顶柱体分割成n个以 σ_i 为底的小曲顶柱体 V_i (i=1,2,2,n).
- (2) 近似求和: 由于 f(x,y)在 D 上连续,故当每个 S_i 的直径都很小时, f(x,y) 在 σ_i 上各点的函数值 相差无几,因而可在 σ_i 上任取一点 (ξ_i,η_i) ,用以

 $f(\xi_i,\eta_i)$ 为高, σ_i 为底 的小平顶柱体的体积 $f(\xi_i,\eta_i)\Delta\sigma_i$ 作为 V_i 的 体积 ΔV , 的近似值(如 图21-3),即 $\Delta V_i \approx f(\xi_i, \eta_i) \Delta \sigma_i$.

把这些小平顶柱体的体积加起来,就得到曲顶柱体 体积 V 的近似值

$$V = \sum_{i=1}^{n} \Delta V_i \approx \sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i.$$

(3) 取极限: 当直线网 T 的网眼越来越细密, 即分割 T 的细度 $\|T\| = \max_{1 \le i \le n} d_i(d_i)$ 为 σ_i 的直径)趋于零时, 就有

$$\sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i \to V.$$

这类问题在物理学与工程技术中也常遇到,如求非均匀平面的质量、重心、转动惯量等等.这些都是所要讨论的二重积分的实际物理背景.

上面叙述的问题都可归为以下数学问题.

设 D 为 xy 平面上可求面积的有界闭域,f(x,y) 为定义在 D上的函数. 用任意的曲线网把 D 分成 n 个可求面积的小区域

$$\sigma_1, \sigma_2, ?, \sigma_n$$
.

以 $\Delta \sigma_i$ 表示小区域 σ_i 的面积,这些小区域构成 D 的一个分割 T,以 d_i 表示小区域 σ_i 的直径,称

$$||T|| = \max_{1 \le i \le n} d_i$$

为分割 T 的细度. 在每个 σ_i 上任取一点 (ξ_i, η_i) ,作

和式

$$\sum_{i=1}^n f(\xi_i, \eta_i) \Delta \sigma_i.$$

称它为函数 f 在 D 上属于分割 T 的一个积分和. 定义2 设 f(x,y)是定义在可求面积的有界闭域 D 上的函数. J 是一个确定的实数,若对任给的正数 ε ,总存在某个正数 δ ,使对于 D 的任何分割 T,当它的

细度 $||T|| < \delta$ 时,属于 T 的所有积分和都有

$$\left|\sum_{i=1}^{n} f(\xi_i, \eta_i) \Delta \sigma_i - J\right| < \varepsilon, \qquad (4)$$

则称f(x,y)在D上可积,数J称为函数f(x,y)在D上二重积分,记作

$$J = \iint_D f(x, y) d\sigma, \qquad (5)$$

其中f(x,y)称为二重积分的被积函数,x,y 称为积分变量,D 称为积分区域.

当
$$f(x,y)$$
≥ 0 时, 二重积分∬ $f(x,y)$ d σ 在几何上

就表示以z = f(x,y)为曲顶,D 为底的曲顶柱体的体积. 当 f(x,y) = 1时,二重积分 $\iint_D f(x,y) d\sigma$ 的值就等于积分区域 D 的面积.

注1 由二重积分定义知道,若 f(x,y) 在区域 D 上可积,则与定积分情形一样,对任何分割 T,只要当 $\|T\| < \delta$ 时,(4) 式都成立. 因此为方便计算起见,常选取一些特殊的分割方法,如选用平行于坐标轴的直线网来分割 D,则每一小网眼区域的 σ 的面积

$\Delta \sigma = \Delta x \Delta y$. 此时通常把 $\iint_D f(x, y) d\sigma$ 记作

$$\iint_{D} f(x, y) dx dy. \tag{6}$$

注2 如定积分那样类似地可证明: 函数 f(x,y) 在可求面积的 D上可积的必要条件是它在 D上有界. 设函数 f(x,y)在 D 上有界, T 为 D 的一个分割, 它 把 D 分成 n 个可求面积的小区域 σ_1,σ_2 , Ω , σ_3 , σ_4

$$M_{i} = \sup_{(x, y) \in \sigma_{i}} f(x, y)$$

$$m_{i} = \inf_{(x, y) \in \sigma_{i}} f(x, y)$$

$$(i = 1, 2, ?, n).$$

作和式 $S(T) = \sum_{i=1}^{n} M_i \Delta \sigma_i$, $s(T) = \sum_{i=1}^{n} m_i \Delta \sigma_i$, 它们分

别称为 f(x,y) 关于分割 T 的上和与下和. 二元函数的上和与下和具有与一元函数的上和与下和同样的性质, 这里就不再重复. 下面列出有关二元函数的可积性定理, 这里只证明其中的定理 21.7.

定理21.4 f(x,y)在 D 上可积的充要条件是:

$$\lim_{\|T\|\to 0} S(T) = \lim_{\|T\|\to 0} s(T).$$

定理21.5 f(x,y)在 D 上可积的充要条件是: 对于任给的正数 ϵ ,存在 D 的某个分割 T,使得 $S(T)-s(T)<\epsilon$.

定理21.6 有界闭域 D上的连续函数必可积.

定理21.7 设 f(x,y)是定义在有界闭域 D 上的有界函数. 若 f(x,y) 的不连续点都落在有限条光滑曲线上,则 f(x,y) 在 D 上可积.

证 不失一般性,可设 f(x,y)的不连续点全部落在某一条光滑曲线 L 上,并记 L 的长度为 l. 于是对任给的 $\epsilon > 0$, 把 L 等分成 $n = [l/\epsilon] + 1$ 段:

$$L_1, L_2, ?, L_n$$
.

在每段 L_i 上取一点 P_i ,使 P_i 与其一端点的弧长为 $\frac{l}{2n}$ 以 P_i 为中心作边长为 ϵ 的正方形 Δ_i ,则 $L_i \subset \Delta_i$.

从
$$L \subset \bigcap_{i=1}^n L_i \subset \Delta$$
,其 $\Delta = \bigcap_{i=1}^n L_i$. Δ W ,

$$W \le n\varepsilon^2 = ([l/\varepsilon] + 1)\varepsilon^2 \le (l/\varepsilon + 1)\varepsilon^2 = (l + \varepsilon)\varepsilon$$
.

现在把区域 D 分成两部分: 第一部分 $D_1 = D$ ② Δ_2

第二部分 $D_2 = D - D_1$.由于 f(x, y) 在 D_2 上连续,

根据定理21.6 与定理21.5, 存在 D_2 的分割 T_2 ,使得

$$S(T_2) - s(T_2) < \varepsilon$$
. $\nabla i \exists$

$$M_{\Delta} = \sup_{(x, y) \in \Delta} f(x, y), \quad m_{\Delta} = \inf_{(x, y) \in \Delta} f(x, y),$$

以T表示由 T_2 与多边形 Δ 的边界所组成的区域D的

分割,则有

$$S(T) - s(T) = (S(T_2) - s(T_2)) + (M_\Delta W - m_\Delta W) < \varepsilon + \omega W$$

$$\leq \varepsilon + (l + \varepsilon)\varepsilon\omega = (1 + l\omega + \varepsilon\omega)\varepsilon,$$

其中 ω 是 f(x,y) 在 D 上的振幅. 由于 f(x,y) 在 D 上有界, 故 ω 是有限值. 再由定理 21.5, 这就证得了 f(x,y) 在 D 上可积.

三、二重积分的性质

- 二重积分与定积分具有类似的性质, 现列举如下:
- 1. 若 f(x,y) 在 D上可积, k 为常数, 则 kf(x,y) 在 D上也可积, 且

$$\iint_D kf(x,y) d\sigma = k \iint_D f(x,y) d\sigma.$$

2. 若f(x,y), g(x,y)在 D上都可积,则

$$f(x, y) \pm g(x, y)$$

在D上也可积,且

$$\iint_{D} [f(x,y) \pm g(x,y)] d\sigma = \iint_{D} f(x,y) d\sigma \pm \iint_{D} g(x,y) d\sigma.$$

3. 若 f(x, y) 在 D_1 和 D_2 上都可积,且 D_1 与 D_2 无公共内点,则 f(x, y) 在 D_1 ② D_2 上也可积,且

$$\iint_{D_1 \supseteq D_2} f(x, y) d\sigma = \iint_{D_1} f(x, y) d\sigma + \iint_{D_2} f(x, y) d\sigma.$$

4. 若 f(x, y) 与 g(x, y) 在 D 上可积, 且 $f(x, y) \le g(x, y), (x, y) \in D,$

则有

$$\iint_D f(x,y) d\sigma \leq \iint_D g(x,y) d\sigma.$$

5. 若 f(x,y) 在 D 上可积,则函数 |f(x,y)| 在 D 上 也可积,且

$$\left| \iint_{D} f(x,y) d\sigma \right| \leq \iint_{D} |f(x,y)| d\sigma.$$

6. 若 f(x,y) 在 D 上可积,且

$$m \le f(x, y) \le M, (x, y) \in D,$$

则有

$$mS_D \leq \iint_D f(x, y) d\sigma \leq MS_D$$
,

这里 S_p 是积分区域D的面积.

7. (积分中值定理) 若 f(x,y) 在有界闭域 D 上连续,则存在 $(\xi,\eta) \in D$,使得

$$\iint_D f(x,y) d\sigma = f(\xi,\eta) S_D,$$

积分中值定理的几何意义: 在D 上, 以 z = f(x, y) ($f(x, y) \ge 0$) 为顶的曲顶柱体体积,等于一个同底

的平顶柱体的体积,这个平顶柱体的高等于 f(x,y) 在 D 中某点 (ξ,η) 处的函数值 $f(\xi,\eta)$.

*例1 设
$$D = \{(x,y) | a \le x \le b, 0 \le y \le \varphi(x) \},$$

$$L = \{(x,\varphi(x)) | x \in [a,b] \};$$

G是 \mathbb{R}^2 中有界闭域, $D \subset \operatorname{int} G \subset G$; f(x,y) 是 G 上 可积函数. 则 $\forall \varepsilon > 0$,存在顶点在 L 上的折线 l ,使得

$$\left| \iint_{D} f(x,y) \, \mathrm{d}x \, \mathrm{d}y - \iint_{\Delta} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \right| < \varepsilon.$$

其中 \triangle 是由 x = a, x = b, y = 0 与 折 乡 所围成的多 边形.

证设 $\forall (x,y) \in G, |f(x,y)| < M. \forall \varepsilon > 0,$ 令

$$\varepsilon' = \frac{\varepsilon}{2M(b-a)}.$$

由于 φ 在[a,b]上一致连续, 因此存在 $\delta > 0$, 使

 $\forall x', x'' \in [a,b], |x'-x''| < \delta$ 时,就有

$$|\varphi(x')-\varphi(x'')|<\varepsilon'.$$

取分割 $T: a = x_0 < x_1 < ? < x_n = b$,使得

$$\max\{|x_i-x_{i-1}|: i=1,?,n\} < \delta,$$

直线 $x = x_i (i = 1, 2, ?, n)$ 将 D 分割为 $D_i, i = 1, ?, n$

又将 Δ 分割为 Δ_i , i=1,?,n.则

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y - \iint_\Delta f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

$$\leq \sum_{i=1}^{n} \left| \iint\limits_{D_i} f(x,y) dx dy - \iint\limits_{\Delta_i} f(x,y) dx dy \right|$$

$$\leq \sum_{i=1}^{n} \left[\iint_{D_{i} \setminus \Delta_{i}} |f(x,y)| dxdy + \iint_{\Delta_{i} \setminus D_{i}} |f(x,y)| dxdy \right]$$

$$\leq \sum_{i=1}^{n} 2M\omega_{i} \left| x_{i} - x_{i-1} \right| = 2M(b-a)\varepsilon' = \varepsilon.$$

复习思考题

- 1.设函数 f(x,y) 在有界可求面积区域 D 上可积,求证 f(x,y) 在D上有界.
- 2.设函数 f(x,y) 和 g(x,y) 定义在可求面积区域 D 上, L 是 D 内一条光滑曲线. 若 $\forall (x,y) \in D L$,满 f(x,y) = g(x,y),试证 f(x,y) 在 D 上可积的充要条件是 g(x,y) 在 D 上可积.