EXERCICE N°2

Sans utiliser de calculatrice, comparer :

1) $\sqrt{0.02}$ et $\sqrt{0.005}$

 $\sqrt{0,02}$ et $\sqrt{0,005}$ appartiennent tous les deux à l'intervalle $\begin{bmatrix} 0 \\ \end{bmatrix}$; + $\infty \begin{bmatrix} \end{bmatrix}$ sur lequel la fonction Carré est strictement croissante.

(Le corrigé)

De plus $(\sqrt{0,02})^2 = 0.02$ et $(\sqrt{0,005})^2 = 0.005$ Comme 0.02 > 0.005 on en déduit que : $\sqrt{0.02} > \sqrt{0.005}$

3) $17\sqrt{2}$ et 24

 $17\sqrt{2}$ et 24 appartiennent tous les deux à l'intervalle $[0; +\infty[$ sur lequel la fonction Carré est strictement croissante.

De plus

 $(17\sqrt{2})^2 = 578$ et $24^2 = 576$ Comme 578 > 576 on en déduit que : $17\sqrt{2} > 24$ 2) $5\sqrt{7}$ et $4\sqrt{11}$

 $5\sqrt{7}$ et $4\sqrt{11}$ appartiennent tous les deux à l'intervalle $[0; +\infty[$ sur lequel la fonction Carré est strictement croissante.

De plus

 $(5\sqrt{7})^2 = 175$ et $(4\sqrt{11})^2 = 176$ Comme 175 < 176 on en déduit que : $5\sqrt{7} < 4\sqrt{11}$

4) $-\sqrt{21}$ et $-\sqrt{14}$

 $-\sqrt{21}$ et $-\sqrt{14}$ appartiennent tous les deux à l'intervalle $]-\infty$; 0] sur lequel la fonction Carré est strictement décroissante. De plus

 $(-\sqrt{21})^2 = 21$ et $(-\sqrt{14})^2 = 14$ Comme 21 > 14 on en déduit que : $-\sqrt{21} < -\sqrt{14}$

1) En effet, la fonction Carré est strictement croissante sur $[0; +\infty[$ donc :

Si a < b alors $a^2 < b^2$

Si on avait eu $\sqrt{0,02} < \sqrt{0,005}$ alors on aurait eu 0,02 < 0,005 ce qui n'est pas... On a donc bien $\sqrt{0,02} \ge \sqrt{0,005}$ et comme $\sqrt{0,02} \ne \sqrt{0,005}$ on peut même écrire :

 $\sqrt{0,02} > \sqrt{0,005}$.

- 2) Le raisonnement est le même.
- 3) Le raisonnement est le même.
- 4) Cette fois attention, on est sur l'intervalle où la fonction Carré est décroissante. Les conclusions vont donc être contraires au questions précédentes.