Particle SOP

- 1 Input 0=パーティクルの発生源 入力されたジオメトリの各ポイントからパーティクルを発生させます
- 2 Input 1=衝突 パーティクルが入力されたオブジェクトに衝突します
- 3 Input 2=外部からの力 パーティクルに作用する力場を設定できます
- 4 Input 3=**引力** 入力したジオメトリ表面のランダムな位置にパーティクルが向かいます

Input0 に入力されたジオメトリの各ポイントからパーティクルが発生します Sort SOP の Point Sort を変更するとパーティクルの発生順を変更できます

今回はパーティクルの動きをコントロールするための力が作用する位置を移動させるため、
Particle SOP の3番目の入力口(Input2 Force)を利用します。力が作用する場は Metaball SOP と
Force SOP を組み合わせます。 Metaball SOP の大きさが Force の影響範囲になります。

Force SOP のパラメーター

Radial Force

メタボールの中心から外にかけての引力、斥力(反発力)を設定します

Directional Force

ディレクション・ベクトルに沿ってフォースが作用します。

Axial Force 任意の軸方向の力が加わる

Vortex Force 任意の軸まわりにパーティクルを回転させます

Spiral Force 任意の軸に垂直な引力、反発力が発生します

Parcle SOP のパラメーター

Particles ページ

Birth 毎秒生まれるパーティクルの数

Life Expect パーティクルが存在する期間 (デフォルトは3秒です)

State ページ

Remove Unused Points

On にすると寿命を終えたパーティクルが削除されます

— SOP to CHOP

Particle SOP のジオメトリオブジェクトからチャンネルを作成します

P アトリビュート (位置) を tx ty tz に、v アトリビュート (速度) を vx vy vz、life アトリビュート (寿命) を life age に指定します。Rotate to Vector[xyz] にベクトルを指定すると向き方向を指定できます。その時に v アトルビュートが使用できます。

これらを Geometry COMP のインスタンシングのパラメーターとして適用します。

― マウスや Leap Motion でコントロールします

マウスの場合

Mouse In CHOP でマウスの座標を取得し、Math CHOP で値を調整します。

Leap Motion の場合

Leap Motion CHOP でマウスの座標を取得し、Select CHOP で hand0/palm:rx,ry,rz の 3 つのチャンネルを取り出します。その後 Math CHOP で値を調整します。

どちらの場合も出てきた値を Metaball SOP の center に入れます。

一 レンダリング

LIGHT

Light COMP と Environment Light COMP (環境光)の二つを配置します。

Environment Light COMP には HDRI(High Dynamic Range Image) と呼ばれる環境光の情報の入ったパノラマ 画像を使います。

HDRI は、<u>HDRI Haven</u> などのサイトから画像が無料で入手できます。(https://hdrihaven.com/hdris/)

CAMERA

Camera COMP と Null COMP を配置します。 Camera COMP の Look at に Null COMP を指定するとカメラは Null COMP の方向を常に見るようになります。

GEOMETRY

PBR MAT

PBR (物理ベースレンダリング)

Metallic 金属かそうでないかを指定。1が金属、0が非金属

Roughness 素材の表面の粗さを指定。1だと荒く、0だとツルツルした質感になる

Constant MAT

テクスチャーを適用する場合は Color Map を使用します。

今回参考にしたリンク先です。どうもありがとうございます。

http://satoruhiga.com/TDWS2018/day15/ http://satoruhiga.com/TDWS2018/day16/ http://satoruhiga.com/TDWS2019/day9/