Removal of Ultra-Fast MR-Gradient and Ballistocardiogram Artifacts in High-Density EEG-Signals to Detect Sleep

Anders Stevnhoved Olsen

BSc. Student – Medicine and Technology

Sleep

 Sleep is believed to be a process critical to the existence of human life, but we know very little about it

- A research team at NRU is set to explore new knowledge on sleep more specifically the Glymphatic System – using simultaneous EEG and fMRI:
 - EEG is a well established modality for sleep observation but lacks spatial characteristics
 - fMRI makes images of the brain from which functionality can be interpreted

Electroencephalography (EEG)

• EEG measures electrical potentials on the surface of the brain caused by the slow postsynaptic potentials that follow action potentials

A set of electrodes is placed on the scalp according to predefined

locations

 The signals measured are mainly characterized by their frequency and amplitude

Sleep can be described from these signals

Name	Symbol	Frequency range
delta	δ	0.5-4Hz
theta	θ	4-8Hz
alpha	α	8 - 13Hz
beta	β	13 - 30Hz
gamma	γ	> 30Hz

Magnetic Resonance Imaging

• Using a strong magnetic field (B_0) and some smaller magnetic gradients, MRI can create images of the brain.

- Some different causes for artifacts in EEG inside MR:
 - Switching of magnetic gradients
 - Gradient Artifact (GA)
 - The strong constant magnetic field B_0
 - Ballistocardiogram (BCG)
 - Head motion

The Gradient Artifact (GA)

- Caused by the switching of magnetic gradients
- Morphology:
 - Steeply rising transients
 - Shows little fluctuation over time
 - Frequency of (in this thesis) 5-10 Hz

The Ballistocardiogram (BCG)

- Originates from the heart
- Heavily amplified by the B_0 -field
- Morphology:
 - Fluctuates more than the GA
 - Frequency is not constant

Thesis setup

- Data from 2 healthy volunteers
- 256 EEG-channels and 1 ECG-channel
- Trigger signal from MR-scanner
- 12 data sets of ≈5 minutes
- Sampling rate of 1000Hz
- GA removal with AAS and OBS
- OBS removal with AAS, OBS and ICA
- QRS-detection

Average Artifact Subtraction (AAS) Optimal Basis Sets (OBS)

- Assumes high similarity between adjacent artifacts
- Creates template artifacts using a moving average window
- Templates are made at points of:
 - MR-trigger signal for GA

- OBS is an extension to AAS to capture and remove residual artifacts
- It combines the moving average window with a Principal Component Analysis (PCA)
- Both algorithms operate channel-wise

- A subset of leads is chosen
- The first comparison is the correlation between methods

- Pearson correlation coefficients for all leads and all data sets were all r>0.9999
- Indicating high similarity

Frontal	Central	Occipital
F3-M2	C3-M2	O1-M2
F4-M1	C4-M1	O2-M1

- To strengthen any conclusions made, other statistics are made:
 - Fisher's r-to-z transformation on differences of correlation coefficients
 - Paired t-test on the differences in slopes of linear fit

• Fisher's r-to-z transformation showed no significant differences in 180 comparisons.

 It is concluded that the two methods are not different for GA-correction

Ballistocardiogram removal

Three different methods for BCG removal

Independent Component Analysis (ICA)

- Computes statistically independent components
- Does not operate channel-wise
- 256 channels gives 256 independent components

- Disadvantages:
 - Scrolling through all components is time consuming
 - Potential high variability in which components are chosen between data sets

An extension to ICA

An extension to ICA is proposed to tackle the disadvantages.

 Each component is divided into artifact long segments

- The segments are averaged
- The averaged segments are repeated at time points of R-peaks
- The Pearson correlation coefficient is found

• 3 comparisons to make

AAS vs OBS	Mean	Standard deviation
F3-M2	0.80	0.11
F4-M1	0.78	0.13
C3-M2	0.77	0.12
C4-M1	0.79	0.13
O1-M2	0.77	0.091
O2-M1	0.79	0.14

AAS vs ICA	Mean	Standard deviation
F3-M2	0.91	0.058
F4-M1	0.91	0.069
C3-M2	0.90	0.073
C4-M1	0.93	0.036
O1-M2	0.89	0.076
O2-M1	0.91	0.066

OBS vs ICA	Mean	Standard deviation
F3-M2	0.75	0.093
F4-M1	0.74	0.11
C3-M2	0.71	0.093
C4-M1	0.76	0.11
O1-M2	0.72	0.069
O2-M1	0.75	0.12

 Fisher's r-to-z transformation showed significant difference in most comparisons

Most in those involving OBS

Lead 1	Lead 2	AAS vs OBS	AAS vs ICA	OBS vs ICA
F3-M2	F4-M1	all	10 of 12	all
F3-M2	C3-M2	all	all	all
F3-M2	C4-M1	11 of 12	11 of 12	all
F3-M2	O1-M2	all	9 of 12	all
F3-M2	O2-M2	10 of 12	10 of 12	all
F4-M1	C3-M2	all	all	all
F4-M1	C4-M1	all	7 of 12	all
F4-M1	O1-M2	all	all	11 of 12
F4-M1	O2-M2	10 of 12	all	all
C3-M2	C4-M1	all	all	all
C3-M2	O1-M2	all	11 of 12	all
C3-M2	O2-M2	all	9 of 12	all
C4-M1	O1-M2	all	11 of 12	all
C4-M1	O2-M2	all	10 of 12	all
O1-M2	O2-M2	all	11 of 12	all

Conclusion

AAS and OBS are not different for GA-correction

- AAS, OBS and ICA are all significantly different
- OBS seems to be more different

- Further analyses could include:
 - Component topography
 - Spectral analysis
 - Sleep-scoring on data by an expert

Slopes

For GA: The paired t-test showed significant differences in 6 of 15 comparisons. The example shown has $p=0.0084\,$

For BCG: Only 2 out of 45 comparisons

