Hierarchical Clustering

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- No assumptions on the number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

- Hierarchical clusterings may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

– Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Complexity of hierarchical clustering

 Distance matrix is used for deciding which clusters to merge/split

At least quadratic in the number of data points

Not usable for large datasets

Agglomerative clustering algorithm

- Most popular hierarchical clustering technique
- Basic algorithm
 - 1. Compute the distance matrix between the input data points
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the distance between two clusters
 - Different definitions of the distance between clusters lead to different algorithms

Input/Initial setting

 Start with clusters of individual points and a distance/proximity matrix

Intermediate State

After some merging steps, we have some clusters

	C1	C2	C 3	C4	C5
C 1					
C2					
C3					
C4					
C 5					

Distance/Proximity Matrix

Intermediate State

Merge the two closest clusters (C2 and C5) and update the distance matrix.

C3 C5 C2

Distance/Proximity Matrix

After Merging

"How do we update the distance matrix?"

			C2			
		C1	U C5	С3	C4	
	C 1		?			
C2 U	C5	?	?	?	?	
	C 3		?			
	C4		?			

Distance between two clusters

Each cluster is a set of points

- How do we define distance between two sets of points
 - Lots of alternatives
 - Not an easy task

Distance between two clusters

Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j

 The distance is defined by the two most similar objects

$$D_{sl}(C_i, C_j) = \min_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Single-link clustering: example

 Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1	12	13	1 4	I 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
1 4	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

Single-link clustering: example

Nested Clusters

Dendrogram

Strengths of single-link clustering

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of single-link clustering

Original Points

Two Clusters

- Sensitive to noise and outliers
- It produces long, elongated clusters

Distance between two clusters

Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j

 The distance is defined by the two most dissimilar objects

$$D_{cl}(C_i, C_j) = \max_{x, y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Complete-link clustering: example

 Distance between clusters is determined by the two most distant points in the different clusters

_		l 2			
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Complete-link clustering: example

Nested Clusters

Dendrogram

Strengths of complete-link clustering

- More balanced clusters (with equal diameter)
- Less susceptible to noise

Limitations of complete-link clustering

- Tends to break large clusters
- All clusters tend to have the same diameter small clusters are merged with larger ones

Distance between two clusters

Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_i

$$D_{avg}\left(C_{i},C_{j}\right) = \frac{1}{\left|C_{i}\right| \times \left|C_{j}\right|} \sum_{x \in C_{i}, y \in C_{j}} d(x,y)$$

Average-link clustering: example

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

	I 1	12	I 3	 4	1 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
I 3	0.10	0.70	1.00	0.40	0.30
1 4	0.65	0.60	0.40	1.00	0.80
I 5	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Average-link clustering: example

Nested Clusters

Dendrogram

Average-link clustering: discussion

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Distance between two clusters

 Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$

Distance between two clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ij}

$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$

- r_i: centroid of C_i
- r_i: centroid of C_i
- r_{ij}: centroid of C_{ij}

Ward's distance for clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of k-means
 - Can be used to initialize k-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

- For a dataset X consisting of n points
- O(n²) space; it requires storing the distance matrix
- O(n³) time in most of the cases
 - There are n steps and at each step the size n² distance matrix must be updated and searched
 - Complexity can be reduced to O(n² log(n)) time for some approaches by using appropriate data structures

Divisive hierarchical clustering

- Start with a single cluster composed of all data points
- Split this into components
- Continue recursively
- Monothetic divisive methods split clusters using one variable/dimension at a time
- Polythetic divisive methods make splits on the basis of all variables together
- Any intercluster distance measure can be used
- Computationally intensive, less widely used than agglomerative methods

Model-based clustering

- Assume data generated from k probability distributions
- Goal: find the distribution parameters
- Algorithm: Expectation Maximization (EM)
- Output: Distribution parameters and a soft assignment of points to clusters

Model-based clustering

- Assume k probability distributions with parameters: $(\theta_1,...,\theta_k)$
- Given data X, compute $(\theta_1,...,\theta_k)$ such that $Pr(X|\theta_1,...,\theta_k)$ [likelihood] or $In(Pr(X|\theta_1,...,\theta_k))$ [loglikelihood] is maximized.
- Every point xeX need not be generated by a single distribution but it can be generated by multiple distributions with some probability [soft clustering]

EM Algorithm

- Initialize k distribution parameters $(\theta_1,...,\theta_k)$; Each distribution parameter corresponds to a cluster center
- Iterate between two steps
 - Expectation step: (probabilistically) assign points to clusters

 Maximation step: estimate model parameters that maximize the likelihood for the given assignment of points

EM Algorithm

- Initialize k cluster centers
- Iterate between two steps
 - Expectation step: assign points to clusters

$$\Pr(x_i \in C_k) = \Pr(x_i \mid C_k) / \sum_j \Pr(x_i \mid C_j)$$

$$w_k = \frac{\sum_i \Pr(x_i \in C_k)}{n}$$

Maximation step: estimate model parameters

$$r_k = \frac{1}{n} \sum_{i=1}^n \frac{\Pr(x_i \in C_k)}{\sum_{i=1}^n \Pr(x_i \in C_j)}$$