

Routing and switching (TI40122)

April Rustianto, S.Komp, M.T, CCIE-IA, JNCIP-SP, MTCINE, MTCTCE, MTCUME, MTCWE, MTCIPv6E, MTCSE, ITILv3, COA, UEWA, UBWA, UBRSA, NSE2, AWS CCP

Pendahuluan Routing and Switching (konsep vlan dan link aggregation)

Cakupan Materi

- 1. konsep vlan dan link aggregation
- 2. Pengertian spanning tree protocol
- 3. Konsep routing pada jaringan
- Pengertian dynamic routing (OSPF)
- 5. NAT (Network Address Translation)
- 6. Pengertian border gateway protocol
- 7. Pengertian border gateway protocol (lanjutan)
- 8. UTS

- 9. Manipulasi routing pada protocol bgp
- Manipulasi routing pada protocol bgp (lanjutan)
- 11. Konsep dasar MPLS
- 12. MPLS service dan implementasinya
- 13. MPLS service dan implementasinya (lanjutan)
- 14. Pengenalan software define network
- 15. Kapita Selekta
- **16**. UAS

Evaluasi dan Referensi

Evaluasi

UTS (25%), UAS (25%), absensi (5%) tugas (20%) praktikum (25%)

Referensi

- Materi tersedia di elen.nurulfikri.ac.id
- Silahkan enroll coursenya **Routing dan Switching 2021-1** (**A**) Pengumpulan tugas juga terdapat di elena.nurulfikri.ac.id dimana terdapat time limit pengumpulan tugas yang harus dipatuhi

Tools atau Perangkat lunak Pendukung

Berikut ini merupakan software pendukung yang diperlukan pada mata kuliah ini:

- PacketTracer
- •GNS3
- •EVE-NG

Konsep Vlan

- •VLAN pada CCNA routing and switching study guide didefinisikan sebagai pengelompokan logis pengguna jaringan dan sumber daya terhubung ke port yang ditentukan secara administratif pada switch
- •Vlan memecah broadcast domain menjadi lebih kecil, sehingga jika perangkat berbeda vlan ingin berkomunikasi harus melewati router

Konsep Vlan (lanjutan)

- •Informasi vlan dapat dibawa ke switch lain dengan cara menambahkan tagging pada paket (vlan tagging).
- •Vlan tagging ada proses menambahkan field vlan tag pada packet di layer-2 seperti terlihat pada gambar

Konsep Vlan (lanjutan)

- Penambahan vlan tagging terjadi pada interface trunk.
- Interface trunk dapat melewatkan banyak vlan.
- Interface trunk
 memungkinkan
 pengelompokan logis tidak
 terbatas pada posis
 geografis, seperti terlihat
 pada gambar

Inter-vlan routing

- Komunikasi antar vlan membutuhkan sebuah router atau perangkat layer-3 dikarenakan sudah berbeda broadcast domain.
- Terdapat dua metode untuk melakukan inter-vlan routing:
 - Menggunakan router
 Inter-vlan routing menggunakan router seringkali disebut dengan router on stick.
 - Menggunakan switch layer-3
 Inter-vlan routing yang menggunakan switch layer-3 tidak memerlukan tambahan tambahan router, hanya perlu menambahkan konfigurasi pada perangkat.

Praktikum vlan dan inter-vlan routing

Konfigurasi VLAN

Konfigurasi vlan:

Switch>enable

Switch#configure terminal

Switch(config)#vlan 10

Switch(config-vlan)#name STAFF-IT

Membuat vlan dengan nama STAFF IT

Membuat vlan dengan nama STAFF ADMIN

Switch(config-vlan)#vlan 20

Switch(config-vlan)#name STAFF-ADMIN Switch(config-vlan)#do show vlan

Switch(config-vlan)#int range fa0/1-2

Switch(config-if-range)#sw acc vl 10

Switch(config-if-range)#int range fa0/3-4

Switch(config-if-range)#sw acc vlan 20

Switch(config-if-range)#do sh vl br

Menambahkan vlan pada interface

Verifikasi vlan

Praktikum Inter-vlan routing (router on stick)

Konfigurasi Inter-vlan routing

Konfigurasi Inter-Vlan:

Router(config)#int g0/0/0

Router(config-if)#no sh

Router(config-if)#ex

Sub Interface vlan 10:

Router(config)#int g0/0/0.10

Router(config-subif)#encapsulation dot1q 10

Router(config-subif)#ip add 192.168.10.1 255.255.255.0

Sub Interface vlan 20:

Router(config)#int g0/0/0.20

Router(config-subif)#encapsulation dot1q 20

Router(config-subif)#ip add 192.168.20.1 255.255.255.0

Membuat sub-interface dan gateway bagi vlan 10

Membuat sub-interface dan gateway bagi vlan 20

Praktikum Inter-vlan routing (switch L3)

Konfigurasi Inter-vlan routing

Switch#conf t

Switch(config)#ip routing

Switch(config)#vlan 10

Switch(config-vlan)#name sakti

Switch(config-vlan)#vlan 20

Switch(config-vlan)#name smk

Membuat vlan 10 dan 20

Switch(config)#int range fa0/1-2

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 10

Switch(config-if)#int range fa0/3-4

Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 20

Assign interface akses vlan 10 dan 20

Switch(config)#int vlan 10

Switch(config-if)#no shutdown

Switch(config-if)#ip add 192.168.1.1 255.255.255.0

Switch(config-if)#int vlan 20

Switch(config-if)#no shutdown

Switch(config-if)#ip add 192.168.2.1 255.255.25.0

Membuat interface vlan sebagai gateway vlan 10 dan 20

Konsep Link Aggregation

- •Link aggregation adalah metode menggabungkan beberapa interface menjadi satu link *logical* yang berfungsi meningkatkan *bandwidth* dan menyediakan redudansi link.
- Keuntungan lain menggunakan link aggregation adalah menghilangkan
 STP sehingga semua link dapat bekerja tanpa adanya blocking
- Terdapat dua jenis protokol link aggregation yang didukung oleh Cisco:
 - LACP
 - LACP merupakan standard protokol link aggregation yang dikeluarkan oleh IEEE. Terdapat dua mode LACP, yaitu:
 - ✓ Mode active → aktif mengirimkan paket LACP untuk membuat link aggregation beroperasi
 - ✓ Mode passive → menunggu paket LACP dari tetangga untuk membuat link aggregation beroperasi

Konsep Link Aggregation (continue)

- PAgP
 - PAGP merupakan protokol link aggregation proprietary dari Cisco, terdapat dua mode PAgP, yaitu:
 - Desirable → aktif mengirimkan paket PAgP untuk membuat link aggregation beroperasi
 - Auto → menunggu paket PAgP dari tetangga untuk membuat link aggregation beroperasi

Praktikum link aggregation

Konfigurasi LACP

Switch1(config)#int range fa0/1 - fa0/3

Switch1(config-if-range)#channel-group 1 mode active

Switch1(config-if-range)#channel-protocol lacp

Switch1(config-if-range)#exit

Switch1(config)#int port-channel 1

Switch1(config-if)#switchport mode trunk

Switch1(config-if)#exit

Switch2(config)#int range fa0/1 - fa0/3

Switch2(config-if-range)#channel-group 1 mode active

Switch2(config-if-range)#channel-protocol lacp

Switch2(config-if-range)#exit

Switch2(config)#int port-channel 1

Switch2(config-if)#switchport mode trunk

Switch2(config-if)#exit

Switch1#show etherchannel summary Switch2#show etherchannel summary

Membuat konfigurasi link aggregation pada interface fa0/1-fa0/3 di switch 2

Membuat konfigurasi link aggregation pada interface fa0/1-fa0/3 di switch 2

Verifikasi link aggregation

Apabila hasil nya seperti ini : LACP Fa0/1(P) Fa0/2(P) Fa0/3(P) Itu artinya Link Aggregation LACP berhasil dijalankan

