TEORIA GRANIC - ROZGRZEWKA

- 1. Jaka funkcja (tzn. jaki "typ" funkcji potęgowa, wykładnicza itp.) daje po zawężeniu jej dziedziny do N ciąg:
- a) arytmetyczny,
- b) geometryczny
- 2. Przekształć wzór jawny ciągu w taki sposób, aby możliwe było indeksowanie wyrazów ciągu począwszy od 0, nie zmieniając przy tym wartości kolejnych wyrazów:
- a) $a_n = ln(n)$ b) $b_n = \frac{2n}{n-2}$
- 3. Podaj wzór rekurencyjny ciągu:
- a) $a_n = q^n$
- b) $b_n = n!$
- 4. Czy poniższe rówania rekurencyjne mogą posłużyć jako definicje ciągu liczbowego (po uzupełnieniu ich o podanie wartości odpowiedniej liczby pierwszych wyrazów ciągu):
- a) $a_n = a_{n-2} + a_{n-3}$
- b) $a_{2n+1} = a_{2n} + 1$
- 5. (Na moment dopuszczamy indeksowanie liczbami ujemnymi) Wyznaczyć wyrazy $F_{-1}, F_{-2}, ..., F_{-5}$ ciągu Fibonnacciego, tak aby zachowany był wzór rekurencyjny tego ciągu. Jaka zależność występuje między F_{-n} a F_n ?
- 6. Niech G_n będzie ciągiem spełniającym równanie rekurencyjne $G_n = G_{n-1} + G_{n-2}$, przy czym $G_0 = a$ oraz $G_1 = b$ dla ustalonych $a, b \in \mathbb{R}$. Podać (odgadnąć) wzór na G_n w zależności od a oraz b.
- 7. Jak określić rekurencyjnie ciąg:

$$a_n = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{\text{znak "+" występuje n razy}}$$

gdy a) wyrazy ciągu indeksujemy od zera, b) wyrazy ciągu indeksujemy od 1. (Refleksja: który ze sposobów preferujesz?)

1

Dla rozwiania wątpliwości, przykładowo $a_4 = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}}$