

LESSON 9

Independence

CSCI 3022

Course Logistics: Your Fourth Week At A Glance

Mon 2/3	Tues 2/4	Wed 2/5	Thurs 2/6	Fri 2/7
Attend & Participate in Class		Attend & Participate in Class	HW 4 Due 11:59pm via Gradescope	In Class Quiz 3 (beginning of class): Scope: Lessons 1-6; HW 2 & HW 3 Attend & Participate in Class
	Quiz 2 grades posted		HW 3 feedback/ grades posted	HW 5 released

Quiz 3 Details

- Pencil and paper quiz will take place the 15 minutes of class on Friday
- Scope: Lessons 1-6 and all concepts covered in HW 2 & HW 3
 - There will be some questions where you will be asked to either fill-in-the blank for code or select which code will lead to a given output
- Study Tips:
 - Review the Lesson Learning Objectives <u>listed in the Course Schedule</u> on Canvas and make sure you can meet each of the objectives
 - Review the key concepts covered in each HW question could you explain/apply the concepts you learned in those questions?
- You are allowed a calculator
- You are allowed a 2-sided 8.5" x11" crib sheet
 - (in addition you are also allowed to bring the <u>Data Wrangling with Pandas</u> <u>Cheatsheet</u> for any quiz/exam)

Plan for next few weeks

Probability and more specifically *probability* distributions are used to model data sets.

Finish Lesson 8: (<u>start at slide 20</u>)

This Lesson:

Independence

Roadmap

The Core Probability Toolkit

The Law of Total Probability

$$\mathrm{P}(E) = \mathrm{P}(E \, \mathrm{and} \, F) + \mathrm{P}(E \, \mathrm{and} \, F^{\, \mathrm{C}}) \qquad \mathrm{P}(E) = \sum_{i=1}^n \mathrm{P}(E \, \mathrm{and} \, B_i)$$
 $\mathrm{P}(E) = \mathrm{P}(E|F) \, \mathrm{P}(F) + \mathrm{P}(E|F^{\, \mathrm{C}}) \, \mathrm{P}(F^{\, \mathrm{C}}) \qquad = \sum_{i=1}^n \mathrm{P}(E|B_i) \, \mathrm{P}(B_i)$

Definition of Conditional Probability

$$\mathrm{P}(E|F) = rac{\mathrm{P}(E \, \mathrm{and} \, F)}{\mathrm{P}(F)}$$

Multiplication Rule

 $= P(F|E) \cdot P(E)$

 $P(E \text{ and } F) = P(E|F) \cdot P(F)$

Axiom 1: $0 \le P(E) \le 1$

Axiom 2:
$$P(S) = 1$$

Axiom 3: If E and F are mutually exclusive, then P(E or F) = P(E) + P(F)

Otherwise, use Inclusion-Exclusion:

$$\mathrm{P}(E\,\mathrm{or}\,F)=\mathrm{P}(E)+\mathrm{P}(F)-\mathrm{P}(E\,\mathrm{and}\,F)$$

Bayes' Theorem

$$\mathrm{P}(B|E) = rac{\mathrm{P}(E|B)\cdot\mathrm{P}(B)}{\mathrm{P}(E)}$$

$$P(B|E) = \frac{P(E|B) \cdot P(B)}{P(E|B) \cdot P(B) + P(E|B^{C}) \cdot P(B^{C})}$$

De Morgan's Laws

$$(A \text{ or } B)^C = A^C \text{ and } B^C$$

$$(A \text{ and } B)^C = A^C \text{ or } B^C$$

$$P(E|F) = P(E)$$

P(E and F) = P(E) P(F)

Learning Objectives:

- State the definition of independent events
- Determine whether two events are independent.

Independent Events

Independence:

- Definition
- Examples

Independence

Two events *E* and *F* are defined as <u>independent</u> if:

Otherwise E and F are called dependent events.

If *E* and *F* are independent, then:

Statement:

If E and F are independent, then P(E|F) = P(E).

Proof:

$$P(E|F) = \frac{P(E|F)}{P(F)}$$
 Definition of conditional probability
$$= \frac{P(E)P(F)}{P(F)}$$
 Independence of E and F

= P(E) Taking the bus to cancellation city

Knowing that *F* happened does not change our belief that *E* happened.

Independent events E and F P(E,F) = P(E)P(F)P(E|F) = P(E)

Suppose you flip a fair coin twice.

Define event H₁: coin lands on heads on the 1st flip event H₂: coin lands on heads on the 2nd flip

Are H₁ and H₂ independent or dependent?

Independent events E and F P(E,F) = P(E)P(F)P(E|F) = P(E)

Suppose you flip a fair coin twice.

Define event H₁: coin lands on heads on the 1st flip event H₂: coin lands on heads on the 2nd flip

Are H₁ and H₂ independent or dependent?

Recall: a **joint probability table** gives the joint probability of each possible outcome

	H ₁	T ₁
H ₂		
T ₂		

$$S = \{ (H_1, H_2), (T_1, H_2), (H_1, T_2), (T_1, T_2) \}$$

$$P(H_1, H_2) =$$

- Independent events E and F P(E,F) = P(E)P(F) P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 5$

- 1. Are E and F independent?
- 2. Are E and G independent?

Independent events E and F P(E,F) = P(E)P(F) P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 5$

- 1. Are E and F independent?
- 2. Are E and G independent?

Independent events E and F P(E,F) = P(E)P(F) P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$
 - event *G*: $D_1 + D_2 = 5$

		■

1. Are *E* and *F* independent?

Recall: a **joint probability table** gives the joint probability of each possible outcome

	E	E'
F		
F'		

2. Are E and G independent?

Independent events E and F P(E,F) = P(E)P(F) P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 5$

1. Are E and F independent?

Recall: a **joint probability table** gives the joint probability of each possible outcome

	E	E'
F	1/36	5/36
F'	5/36	25/36

Independent events E and F P(E,F) = P(E)P(F) P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$ event G: $D_1 + D_2 = 5$

1. Are E and F independent?

Recall: a **joint probability table** gives the joint probability of each possible outcome

	E	E'
F	1/36	5/36
F'	5/36	25/36

$$P(E) = 1/6$$

 $P(F) = 1/6$
 $P(EF) = 1/36$

🗹 <u>independent</u>

Independent events E and F P(E,F) = P(E)P(F)P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$

event F: $D_2 = 6$

event *G*: $D_1 + D_2 = 5$

		 	. ,
•			E
			■

1. Are *E* and *F* independent?

Recall: a **joint probability table** gives the joint probability of each possible outcome

	E	E'
F	1/36	5/36
F'	5/36	25/36

$$P(E) = 1/6$$

$$P(F) = 1/6$$

$$P(EF) = 1/36$$

$$\text{independent}$$

	E	E'
G		
G'		

Independent events E and F P(E,F) = P(E)P(F) P(E|F) = P(E)

Roll two 6-sided dice, yielding values D_1 and D_2 .

Let event E: $D_1 = 1$

event F: $D_2 = 6$

event *G*: $D_1 + D_2 = 5$

•			
•			
		2	

1. Are *E* and *F* independent?

Recall: a **joint probability table** gives the joint probability of each possible outcome

	E	E'
F	1/36	5/36
F'	5/36	25/36

2. Are *E* and *G* independent?

	E	E'
G	1/36	3/36
G'	5/36	27/36

Independent events E and F P(E,F) = P(E)P(F)P(E|F) = P(E)

- Roll two 6-sided dice, yielding values D_1 and D_2 .
- Let event E: $D_1 = 1$ event F: $D_2 = 6$
 - event *G*: $D_1 + D_2 = 5$

S E allu F			F(E F) = F(E)			
	•					B
	•					•

1. Are *E* and *F* independent?

Recall: a **joint probability table** gives the joint probability of each possible outcome

	E	E'
F	1/36	5/36
F'	5/36	25/36

$$P(E) = 1/6$$

$$P(F) = 1/6$$

$$P(EF) = 1/36$$

$$independent$$

2. Are *E* and *G* independent?

	E	E'
G	1/36	3/36
G'	5/36	27/36

$$P(E) = 1/6$$

 $P(G) = 4/36 = 1/9$
 $P(EG) = 1/36 \neq P(E)P(G)$
 \times dependent

Roll two 6-sided dice, yielding values D_1 and D_2 .

Let event E: $D_1 = 1$

event
$$F$$
: $D_2 = 6$

event *G*:
$$D_1 + D_2 = 5$$

$$D_1 + D_2 = 7$$

$$G = \{(1,4), (2,3), (3,2), (4,1)\}$$

1. Are E and F independent?

event H:

$$P(E) = 1/6$$

 $P(F) = 1/6$
 $P(E,F) = 1/36$

<u>independent</u>

2. Are E and G independent?

$$P(E) = 1/6$$

 $P(G) = 4/36 = 1/9$
 $P(E,G) = 1/36 \neq P(E)P(G)$

X dependent

3. Are E and H independent?

• Roll two 6-sided dice, yielding values D_1 and D_2 .

Let event E: $D_1 = 1$

event
$$F$$
: $D_2 = 6$

event *G*:
$$D_1 + D_2 = 5$$

$$D_1 + D_2 = 7$$

- 1. Are E and F independent?

event H:

$$P(E) = 1/6$$
$$P(F) = 1/6$$

$$P(E,F) = 1/36$$

2. Are E and G independent?

 $G = \{(1,4), (2,3), (3,2), (4,1)\}$

$$P(E) = 1/6$$

 $P(G) = 4/36 = 1/9$
 $P(EG) = 1/36 \neq P(E)P(G)$

× dependent

3. Are E and H independent?

Independent Trials

We often are interested in experiments consisting of n independent trials.

- n trials, each with the same set of possible outcomes
- n-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:

- Flip a coin n times
- Roll a die n times
- Send a multiple-choice survey to n people
- Send n web requests to k different servers

Generalizing Independence

Three events E, F, and G are independent if:

n events E_1, E_2, \dots, E_n are independent if:

```
P(E,F,G) = P(E)P(F)P(G), \text{ and}
P(EF) = P(E)P(F), \text{ and}
P(EG) = P(E)P(G), \text{ and}
P(FG) = P(F)P(G)
\text{for } r = 1, ..., n:
\text{for every subset } E_1, E_2, ..., E_r:
P(E_1E_2, ..., E_r) = P(E_1)P(E_2) \cdots P(E_r)
```


- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2 .
- Let event E: $D_1 = 1$

event F: $D_2 = 6$

event H $D_1 + D_2 = 7$

$$H = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

- independent?
- independent?
- 1. Are E and F 2. Are E and H 3. Are F and H 4. Are E, F, Hindependent?
 - independent?

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

Network reliability

Consider the following parallel network:

- n independent routers, each with probability p_i of functioning (where $1 \le i \le n$)
- E = functional path from A to B exists.

What is P(E)?

$$P(E) = P(\ge 1 \text{ one router works})$$

$$= 1 - P(\text{all routers fail})$$

$$= 1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n)$$

$$= 1 - \prod_{i=1}^{n} (1 - p_i)$$

≥ 1 with independent trials: take complement

- 1. True or False? Two events E and F are independent if:
- A. Knowing that F happens means that E can't happen.
- B. Knowing that F happens doesn't change probability that E happened.
- 2. Are E and F independent in the following pictures?

Be careful:

- Independence is NOT mutual exclusion.
 - Independence is difficult to visualize graphically.

- True or False? Two events E and F are independent if:
- Knowing that *F* happens means that *E* can't happen.
- Knowing that F happens doesn't change probability that E happened.
- 2. Are E and F independent in the following pictures?

Be careful:

ı	•	Independence i	is	NOT mutual exclusion.
	_	landa a a a da a a a d		difficult to viewalles was

Let P(E)>0, P(F)>0	Independent	Dependent
Disjoint	Not possible	If disjoint, then dependent
Not Disjoint	Possible! Need to test mathematically	Possible! Need to test mathematically

Sally Clark:

https://www.mcgrayne.com/disc.htm

