ZADANIE 1: Wygeneruj trajektorię procesu narodzin i śmierci $\{X_t\}_{t\geq 0}$ z następującymi intensywnościami:

$$\lambda_n = 1; \ \mu_n = n,$$

gdzie $n \ge 0$, a $X_0 = 1$.

Wskazówka - można wykorzystać procedurę Gillespie'a

(link: http://www.math.uwaterloo.ca/ \sim tbury/documents/amath777/extinction_gillespie.pdf). Ponadto

- wykonaj N powtórzeń symulacji ($N \in \{10, 100, 1000\}$),
- oszacuj funkcję wartości średniej na bazie wygenerowanych trajekorii,
- sprawdź asymptotyczne zachowanie się rozkładu zmiennej losowej X_t przy $t \to \infty$.

Czy podany proces ma rozkład stacjonarny? Jeżeli tak, wskaż go (patrz lista 11 z Procesów Stochastycznych).

ZADANIE 2: W analogiczny sposób jak w zad. 1. wygeneruj proces $\{Y_t\}$, gdzie

$$\lambda_n = n; \ \mu_n = n, \ Y_0 = 1.$$

Potem oszacuj prawdopodobieństwo ruiny dla kilku ustalonych T, tzn. $P(Y_T=0)$. Czy proces $\{Y_t\}$ ma rozkład stacjonarny?