Microbial Ecology Analysis Report

Contents

1. Alpha Diversity Analysis	
shannon Index \hdots	;
$simpson\ Index \qquad \dots $	
2. Beta Diversity Change Analysis	4
P-Tab Results	
AOV-Tab Results	,
3. Taxonomic Feature Analysis	1:

1. Alpha Diversity Analysis

1.1 Alpha Diversity Boxplots

```
alpha_boxplot_results <- generate_alpha_boxplot_long(data.obj = data.obj,</pre>
                                                         alpha.obj = alpha.obj,
                                                         alpha.name = alpha.name,
                                                         subject.var = subject.var,
                                                         time.var = time.var,
                                                         t0.level = change.base,
                                                         ts.levels = NULL,
                                                         group.var = group.var,
                                                         strata.var = strata.var,
                                                         base.size = base.size,
                                                         theme.choice = theme.choice,
                                                         custom.theme = custom.theme,
                                                         palette = palette,
                                                         pdf = pdf,
                                                         file.ann = file.ann,
                                                         pdf.wid = pdf.wid,
                                                         pdf.hei = pdf.hei)
alpha_boxplot_results
```

[[1]]

[[2]]

1.2 Alpha Diversity Test Results

shannon Index

Term	Estimate	Std.Error	Statistic	P.Value
(Intercept)	3.569	0.01796	198.7	5.438e-33
time1	-0.01388	0.01296	-1.072	0.296
sex1	0.02937	0.01757	1.671	0.111
$\operatorname{group} 1$	-0.03626	0.01701	-2.131	0.04633

shannon Index Analysis

The variable (Intercept) has a statistically significant impact on the shannon diversity index with an estimate of 3.57.

The variable time 1 does not appear to have a statistically significant effect on the shannon diversity index. The estimate of its effect is -0.01.

The variable sex1 does not appear to have a statistically significant effect on the shannon diversity index.

The estimate of its effect is 0.03.

The variable group 1 has a statistically significant impact on the shannon diversity index with an estimate of -0.04.

simpson Index

Term	Estimate	Std.Error	Statistic	P.Value
(Intercept)	0.951	0.001899	500.8	1.293e-40
time1	-0.00155	0.001485	-1.044	0.3084
sex1	0.00244	0.001858	1.313	0.2047
$\operatorname{group} 1$	-0.003201	0.001799	-1.779	0.09122

simpson Index Analysis

The variable (Intercept) has a statistically significant impact on the simpson diversity index with an estimate of 0.95.

The variable time 1 does not appear to have a statistically significant effect on the simpson diversity index. The estimate of its effect is 0.

The variable sex1 does not appear to have a statistically significant effect on the simpson diversity index. The estimate of its effect is 0.

The variable group 1 does not appear to have a statistically significant effect on the simpson diversity index. The estimate of its effect is 0.

2. Beta Diversity Change Analysis

2.1 Beta Diversity Ordination

```
beta_ordination_results <- generate_beta_ordination_pair(data.obj = data.obj,</pre>
                                                             dist.obj = dist.obj,
                                                             pc.obj = NULL,
                                                             subject.var = subject.var,
                                                             time.var = time.var,
                                                             group.var = group.var,
                                                             strata.var = strata.var,
                                                             dist.name = dist.name,
                                                             base.size = base.size,
                                                             theme.choice = theme.choice,
                                                             custom.theme = custom.theme,
                                                             palette = palette,
                                                             pdf = pdf,
                                                             file.ann = file.ann,
                                                             pdf.wid = pdf.wid,
                                                             pdf.hei = pdf.hei)
beta_ordination_results
```

[[1]]

[[2]]

2.2 Beta Diversity Test Pair

P-Tab Results

Term	D1.p.value	D2.p.value	omni.p.value
sex	0.445	0.48	0.469
group	0.445	0.48	0.469
$_{ m time}$	0.445	0.48	0.469

Beta Diversity PERMANOVA Analysis for Variable: sex

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the omnibus PERMANOVA test.

Beta Diversity PERMANOVA Analysis for Variable: group

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

The variable group does not appear to have a statistically significant effect on the beta diversity according to the omnibus PERMANOVA test.

Beta Diversity PERMANOVA Analysis for Variable: time

The variable time does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable time does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

The variable time does not appear to have a statistically significant effect on the beta diversity according to the omnibus PERMANOVA test.

AOV-Tab Results

Variable	DF	Sum_Sq	Mean_Sq	F_Statistic	R_Squared	P_Value	Distance
sex	1	0.123	0.123	1.991	0.046	0.445	BC
group	1	0.068	0.068	1.091	0.025	0.445	$_{\mathrm{BC}}$
$_{ m time}$	1	0.019	0.019	0.311	0.007	0.445	BC
Residuals	40	2.479	0.062	NA	0.922	NA	$_{ m BC}$
Total	43	2.689	NA	NA	1	NA	$_{ m BC}$
sex	1	0.228	0.228	1.737	0.04	0.48	Jaccard
group	1	0.151	0.151	1.151	0.027	0.48	Jaccard
$_{ m time}$	1	0.05	0.05	0.38	0.009	0.48	Jaccard
Residuals	40	5.258	0.131	NA	0.924	NA	Jaccard
Total	43	5.687	NA	NA	1	NA	Jaccard

sex Variable Analysis

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

group Variable Analysis

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

time Variable Analysis

The variable time does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable time does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

```
Residuals Variable Analysis
```

```
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
Total Variable Analysis
## Warning: NAs introduced by coercion
## Warning: NAs introduced by coercion
```

2.3 Beta Diversity PC Boxplot

[[1]][[1]]

```
pc_boxplot_longitudinal_results <- generate_beta_pc_boxplot_long(</pre>
 data.obj = data.obj,
 dist.obj = dist.obj,
  pc.obj = NULL,
  pc.ind = c(1, 2),
  subject.var = subject.var,
  time.var = time.var,
 t0.level = change.base,
 ts.levels = NULL,
 group.var = group.var,
 strata.var = strata.var,
 dist.name = dist.name,
 base.size = base.size,
 theme.choice = theme.choice,
 custom.theme = custom.theme,
 palette = palette,
 pdf = pdf,
 file.ann = file.ann,
 pdf.wid = pdf.wid,
 pdf.hei = pdf.hei
## [1] "Initializing distance objects..."
## [1] "Calculating Bray-Curtis dissimilarity..."
## [1] "Calculating Jaccard dissimilarity..."
## [1] "All calculations complete."
## [1] "Calculating PC..."
## [1] "Processing BC distance..."
## [1] "Calculating MDS..."
## [1] "Calculation complete."
## [1] "Calculating PC..."
## [1] "Processing Jaccard distance..."
## [1] "Calculating MDS..."
## [1] "Calculation complete."
pc_boxplot_longitudinal_results
## [[1]]
```


[[1]][[2]]

[[2]] [[1]]

[[2]][[2]]

3. Taxonomic Feature Analysis

3.1 Taxa Change Dotplot

```
taxa_dotplot_results <- generate_taxa_dotplot_pair(data.obj = data.obj,</pre>
                                                      subject.var = subject.var,
                                                      time.var = time.var,
                                                      group.var = group.var,
                                                      strata.var = strata.var,
                                                      feature.level = feature.level,
                                                      feature.dat.type = feature.dat.type,
                                                      features.plot = features.plot,
                                                      top.k.plot = top.k.plot,
                                                      top.k.func = top.k.func,
                                                      prev.filter = prev.filter,
                                                      abund.filter = abund.filter,
                                                      base.size = base.size,
                                                      theme.choice = theme.choice,
                                                      custom.theme = custom.theme,
                                                      palette = palette,
                                                      pdf = pdf,
                                                      file.ann = file.ann,
                                                      pdf.wid = pdf.wid,
                                                      pdf.hei = pdf.hei)
taxa_dotplot_results
```

[[1]]

[[2]]

3.2 Taxa Heatmap Pair

```
taxa_heatmap_pair_results <- generate_taxa_heatmap_pair(
  data.obj = data.obj,
  subject.var = subject.var,
  time.var = time.var,
  group.var = group.var,
  strata.var = strata.var,</pre>
```

```
feature.level = feature.level,
  feature.dat.type = feature.dat.type,
  features.plot = NULL,
  top.k.plot = NULL,
  top.k.func = NULL,
  prev.filter = prev.filter,
  abund.filter = abund.filter,
  base.size = base.size,
  palette = palette,
  cluster.rows = NULL,
  cluster.cols = NULL,
 pdf = pdf,
 file.ann = file.ann,
  pdf.wid = pdf.wid,
  pdf.hei = pdf.hei
)
```


3.3 Taxa Barplot Pair

```
taxa_barplot_pair_results <- generate_taxa_barplot_pair(</pre>
  data.obj = data.obj,
  subject.var = subject.var,
  time.var = time.var,
  group.var = group.var,
  strata.var = strata.var,
  feature.level = feature.level,
  feature.dat.type = feature.dat.type,
  feature.number = 20,
  base.size = base.size,
  theme.choice = theme.choice,
  custom.theme = custom.theme,
  palette = palette,
  pdf = pdf,
  file.ann = file.ann,
  pdf.wid = pdf.wid,
  pdf.hei = pdf.hei
taxa_barplot_pair_results
```

[[1]] ## [[1]][[1]]

[[1]][[2]]

##

[[2]]

[[2]][[1]]

[[2]][[2]]

3.4 Taxa Change Test

```
abund.filter = abund.filter,
feature.level = feature.level,
feature.dat.type = feature.dat.type,
...)
```

0 features are filtered! The filtered data has 44 samples and 8 features will be tested! Fit linear mixed effects models ... Completed. 0 features are filtered! The filtered data has 44 samples and 22 features will be tested! Fit linear mixed effects models ... Completed.

Taxa Test Results

• Phylum:

Table 5: Table continues below

	~		T 0 D 11 01	T D C C C	~
Variable	Group	Base.Mean	Log2.Fold.Change	LFC.SE	Stat
Actinobacteria	Placebo	33971	-0.3054	0.1846	-1.655
Actinobacteria	$_{ m LGG}$	33971	-0.3054	0.1846	-1.655
Bacteroidetes	Placebo	162079	0.05483	0.152	0.3608
Bacteroidetes	$_{ m LGG}$	162079	0.05483	0.152	0.3608
Cyanobacteria	Placebo	176.1	-0.4582	0.3193	-1.435
Cyanobacteria	$_{ m LGG}$	176.1	-0.4582	0.3193	-1.435
Firmicutes	Placebo	774024	-0.1266	0.1051	-1.205
Firmicutes	$_{ m LGG}$	774024	-0.1266	0.1051	-1.205
Fusobacteria	Placebo	27.42	0.06221	0.1538	0.4045
Fusobacteria	$_{ m LGG}$	27.42	0.06221	0.1538	0.4045
Proteobacteria	Placebo	14987	0.1163	0.1059	1.098
Proteobacteria	$_{ m LGG}$	14987	0.1163	0.1059	1.098
Spirochaetes	Placebo	49.27	-0.04386	0.08825	-0.497
Spirochaetes	$_{ m LGG}$	49.27	-0.04386	0.08825	-0.497
Verrucomicrobia	Placebo	14686	-0.07808	0.1682	-0.4641
Verrucomicrobia	$_{ m LGG}$	14686	-0.07808	0.1682	-0.4641
Actinobacteria	Placebo	33971	-0.2258	0.1787	-1.263
Actinobacteria	$_{ m LGG}$	33971	-0.2258	0.1787	-1.263
Bacteroidetes	Placebo	162079	-0.06315	0.1472	-0.4291
Bacteroidetes	$_{ m LGG}$	162079	-0.06315	0.1472	-0.4291
Cyanobacteria	Placebo	176.1	0.4332	0.3092	1.401
Cyanobacteria	$_{ m LGG}$	176.1	0.4332	0.3092	1.401
Firmicutes	Placebo	774024	0.008547	0.1017	0.084
Firmicutes	$_{ m LGG}$	774024	0.008547	0.1017	0.084
Fusobacteria	Placebo	27.42	-0.2345	0.1489	-1.575
Fusobacteria	$_{ m LGG}$	27.42	-0.2345	0.1489	-1.575
Proteobacteria	Placebo	14987	0.08107	0.1025	0.7908
Proteobacteria	$_{ m LGG}$	14987	0.08107	0.1025	0.7908
Spirochaetes	Placebo	49.27	0.01399	0.08545	0.1637
Spirochaetes	$_{ m LGG}$	49.27	0.01399	0.08545	0.1637
Verrucomicrobia	Placebo	14686	0.2714	0.1629	1.666
Verrucomicrobia	$_{ m LGG}$	14686	0.2714	0.1629	1.666
Actinobacteria	Placebo	33971	0.1065	0.1123	0.9488
Actinobacteria	$_{ m LGG}$	33971	0.1065	0.1123	0.9488
Bacteroidetes	Placebo	162079	0.2407	0.141	1.707
Bacteroidetes	$_{ m LGG}$	162079	0.2407	0.141	1.707
Cyanobacteria	Placebo	176.1	-0.0213	0.2575	-0.0827
Cyanobacteria	$_{ m LGG}$	176.1	-0.0213	0.2575	-0.0827
Firmicutes	Placebo	774024	0.02152	0.08183	0.2629

-					
Variable	Group	Base.Mean	Log2.Fold.Change	LFC.SE	Stat
Firmicutes	LGG	774024	0.02152	0.08183	0.2629
Fusobacteria	Placebo	27.42	-0.1807	0.1426	-1.267
Fusobacteria	$_{ m LGG}$	27.42	-0.1807	0.1426	-1.267
Proteobacteria	Placebo	14987	0.01307	0.0941	0.1389
Proteobacteria	$_{ m LGG}$	14987	0.01307	0.0941	0.1389
Spirochaetes	Placebo	49.27	-0.0712	0.06589	-1.081
Spirochaetes	$_{ m LGG}$	49.27	-0.0712	0.06589	-1.081
Verrucomicrobia	Placebo	14686	0.2349	0.156	1.505
Verrucomicrobia	$_{ m LGG}$	14686	0.2349	0.156	1.505

P.Value	Adjusted.P.Value	Mean.Abundance	Mean.Prevalence	Output.Element
0.1144	0.5718	0.04218	1	sex1
0.1144	0.5718	0.03437	1	sex1
0.7202	0.7202	0.1949	1	sex1
0.7202	0.7202	0.1753	1	sex1
0.1676	0.5718	0.0004066	1	sex1
0.1676	0.5718	0.0008344	1	sex1
0.2431	0.5718	0.7248	1	sex1
0.2431	0.5718	0.7446	1	sex1
0.688	0.7202	5.22 e-05	1	sex1
0.688	0.7202	2.914e-05	1	sex1
0.2859	0.5718	0.01655	1	sex1
0.2859	0.5718	0.018	1	sex1
0.6249	0.7202	5.056e-05	1	sex1
0.6249	0.7202	5.371e-05	1	sex1
0.6451	0.7202	0.0168	1	sex1
0.6451	0.7202	0.02451	1	sex1
0.2217	0.4434	0.04218	1	group1
0.2217	0.4434	0.03437	1	group1
0.6702	0.8935	0.1949	1	$\operatorname{group} 1$
0.6702	0.8935	0.1753	1	$\operatorname{group} 1$
0.1773	0.4434	0.0004066	1	$\operatorname{group} 1$
0.1773	0.4434	0.0008344	1	$\operatorname{group} 1$
0.9339	0.9339	0.7248	1	$\operatorname{group} 1$
0.9339	0.9339	0.7446	1	$\operatorname{group} 1$
0.1232	0.4434	5.22 e-05	1	group1
0.1232	0.4434	2.914e-05	1	$\operatorname{group} 1$
0.4388	0.7021	0.01655	1	group1
0.4388	0.7021	0.018	1	group1
0.8717	0.9339	5.056e-05	1	group1
0.8717	0.9339	5.371e-05	1	group1
0.1035	0.4434	0.0168	1	group1
0.1035	0.4434	0.02451	1	group1
0.3535	0.5656	0.04218	1	time1
0.3535	0.5656	0.03437	1	time1
0.09557	0.5603	0.1949	1	time1
0.09557	0.5603	0.1753	1	time1
0.9349	0.9349	0.0004066	1	time1
0.9349	0.9349	0.0008344	1	time1
0.7952	0.9349	0.7248	1	time1
0.7952	0.9349	0.7446	1	time1

P.Value	Adjusted.P.Value	Mean.Abundance	Mean.Prevalence	Output.Element
0.2125	0.5656	5.22e-05	1	time1
0.2125	0.5656	2.914e-05	1	time1
0.8908	0.9349	0.01655	1	time1
0.8908	0.9349	0.018	1	time1
0.2921	0.5656	5.056e-05	1	time1
0.2921	0.5656	5.371e-05	1	time1
0.1401	0.5603	0.0168	1	time1
0.1401	0.5603	0.02451	1	time1

• Family:

Table 7: Table continues below

Variable	Group	Base.Mean	Log2.Fold.Change	LFC.SE
Actinobacteria	Placebo	35289	-0.3022	0.1662
Actinobacteria	$_{ m LGG}$	35289	-0.3022	0.1662
Asteroleplasma	Placebo	23.94	0.0136	0.1099
Asteroleplasma	$_{ m LGG}$	23.94	0.0136	0.1099
Bacilli	Placebo	38826	0.07496	0.166
Bacilli	$_{ m LGG}$	38826	0.07496	0.166
Bacteroidetes	Placebo	168364	0.05804	0.1402
Bacteroidetes	$_{ m LGG}$	168364	0.05804	0.1402
Clostridium cluster I	Placebo	157.6	0.1807	0.4096
Clostridium cluster I	$_{ m LGG}$	157.6	0.1807	0.4096
Clostridium cluster III	Placebo	2182	-0.2539	0.1601
Clostridium cluster III	$_{ m LGG}$	2182	-0.2539	0.1601
Clostridium cluster IV	Placebo	220427	-0.1993	0.103
Clostridium cluster IV	$_{ m LGG}$	220427	-0.1993	0.103
Clostridium cluster IX	Placebo	4775	-0.07251	0.2203
Clostridium cluster IX	$_{ m LGG}$	4775	-0.07251	0.2203
Clostridium cluster XI	Placebo	6362	-0.08547	0.09576
Clostridium cluster XI	$_{ m LGG}$	6362	-0.08547	0.09576
Clostridium cluster XIII	Placebo	26.74	-0.01264	0.09212
Clostridium cluster XIII	$_{ m LGG}$	26.74	-0.01264	0.09212
Clostridium cluster XIVa	Placebo	480369	-0.1085	0.1095
Clostridium cluster XIVa	$_{ m LGG}$	480369	-0.1085	0.1095
Clostridium cluster XV	Placebo	1320	0.1052	0.1949
Clostridium cluster XV	$_{ m LGG}$	1320	0.1052	0.1949
Clostridium cluster XVI	Placebo	3559	-0.1469	0.2689
Clostridium cluster XVI	$_{ m LGG}$	3559	-0.1469	0.2689
Clostridium cluster XVII	Placebo	491	-0.524	0.3771
Clostridium cluster XVII	$_{ m LGG}$	491	-0.524	0.3771
Clostridium cluster XVIII	Placebo	3328	0.08725	0.2782
Clostridium cluster XVIII	$_{ m LGG}$	3328	0.08725	0.2782
Cyanobacteria	Placebo	182.9	-0.455	0.3583
Cyanobacteria	$_{ m LGG}$	182.9	-0.455	0.3583
Fusobacteria	Placebo	28.48	0.06542	0.1678
Fusobacteria	$_{ m LGG}$	28.48	0.06542	0.1678
Proteobacteria	Placebo	15568	0.1195	0.1241
Proteobacteria	$_{ m LGG}$	15568	0.1195	0.1241
Spirochaetes	Placebo	51.18	-0.04065	0.08924

Variable	Group	Base.Mean	Log2.Fold.Change	LFC.SE
Spirochaetes	LGG	51.18	-0.04065	0.08924
Uncultured Clostridiales	Placebo	2929	-0.5293	0.3006
Uncultured Clostridiales	$_{ m LGG}$	2929	-0.5293	0.3006
Uncultured Mollicutes	Placebo	486.4	-1.06	0.3895
Uncultured Mollicutes	$_{ m LGG}$	486.4	-1.06	0.3895
Verrucomicrobia	Placebo	15256	-0.07487	0.185
Verrucomicrobia	$_{ m LGG}$	15256	-0.07487	0.185
Actinobacteria	Placebo	35289	-0.2184	0.161
Actinobacteria	$_{ m LGG}$	35289	-0.2184	0.161
Asteroleplasma	Placebo	23.94	-0.1085	0.1065
Asteroleplasma	$_{ m LGG}$	23.94	-0.1085	0.1065
Bacilli	Placebo	38826	0.1157	0.1607
Bacilli	$_{ m LGG}$	38826	0.1157	0.1607
Bacteroidetes	Placebo	168364	-0.05571	0.1357
Bacteroidetes	$_{ m LGG}$	168364	-0.05571	0.1357
Clostridium cluster I	Placebo	157.6	0.2279	0.3966
Clostridium cluster I	$_{ m LGG}$	157.6	0.2279	0.3966
Clostridium cluster III	Placebo	2182	-0.09452	0.155
Clostridium cluster III	$_{ m LGG}$	2182	-0.09452	0.155
Clostridium cluster IV	Placebo	220427	-0.02172	0.09968
Clostridium cluster IV	$_{ m LGG}$	220427	-0.02172	0.09968
Clostridium cluster IX	Placebo	4775	-0.3542	0.2133
Clostridium cluster IX	$_{ m LGG}$	4775	-0.3542	0.2133
Clostridium cluster XI	Placebo	6362	0.01901	0.09272
Clostridium cluster XI	$_{ m LGG}$	6362	0.01901	0.09272
Clostridium cluster XIII	Placebo	26.74	-0.07978	0.0892
Clostridium cluster XIII	$_{ m LGG}$	26.74	-0.07978	0.0892
Clostridium cluster XIVa	Placebo	480369	0.02607	0.106
Clostridium cluster XIVa	$_{ m LGG}$	480369	0.02607	0.106
Clostridium cluster XV	Placebo	1320	0.002068	0.1887
Clostridium cluster XV	$_{ m LGG}$	1320	0.002068	0.1887
Clostridium cluster XVI	Placebo	3559	0.1685	0.2603
Clostridium cluster XVI	$_{ m LGG}$	3559	0.1685	0.2603
Clostridium cluster XVII	Placebo	491	-0.6377	0.3651
Clostridium cluster XVII	$_{ m LGG}$	491	-0.6377	0.3651
Clostridium cluster XVIII	Placebo	3328	0.004551	0.2694
Clostridium cluster XVIII	$_{ m LGG}$	3328	0.004551	0.2694
Cyanobacteria	Placebo	182.9	0.4407	0.3469
Cyanobacteria	$_{ m LGG}$	182.9	0.4407	0.3469
Fusobacteria	Placebo	28.48	-0.227	0.1625
Fusobacteria	$_{ m LGG}$	28.48	-0.227	0.1625
Proteobacteria	Placebo	15568	0.08851	0.1202
Proteobacteria	$_{ m LGG}$	15568	0.08851	0.1202
Spirochaetes	Placebo	51.18	0.02142	0.0864
Spirochaetes	$_{ m LGG}$	51.18	0.02142	0.0864
Uncultured Clostridiales	Placebo	2929	0.1455	0.2911
Uncultured Clostridiales	$_{ m LGG}$	2929	0.1455	0.2911
Uncultured Mollicutes	Placebo	486.4	0.3234	0.3771
Uncultured Mollicutes	$_{ m LGG}$	486.4	0.3234	0.3771
Verrucomicrobia	Placebo	15256	0.2789	0.1791
Verrucomicrobia	$_{ m LGG}$	15256	0.2789	0.1791
Actinobacteria	Placebo	35289	0.08206	0.1211

Variable	Group	Base.Mean	Log2.Fold.Change	LFC.SE
Actinobacteria	$_{ m LGG}$	35289	0.08206	0.1211
Asteroleplasma	Placebo	23.94	0.02459	0.09874
Asteroleplasma	LGG	23.94	0.02459	0.09874
Bacilli	Placebo	38826	-0.1114	0.07465
Bacilli	LGG	38826	-0.1114	0.07465
Bacteroidetes	Placebo	168364	0.2162	0.13
Bacteroidetes	LGG	168364	0.2162	0.13
Clostridium cluster I	Placebo	157.6	-0.04603	0.2159
Clostridium cluster I	LGG	157.6	-0.04603	0.2159
Clostridium cluster III	Placebo	2182	0.152	0.07007
Clostridium cluster III	LGG	2182	0.152	0.07007
Clostridium cluster IV	Placebo	220427	0.04121	0.09359
Clostridium cluster IV	LGG	220427	0.04121	0.09359
Clostridium cluster IX	Placebo	4775	-0.03185	0.1832
Clostridium cluster IX	LGG	4775	-0.03185	0.1832
Clostridium cluster XI	Placebo	6362	0.0268	0.07295
Clostridium cluster XI	LGG	6362	0.0268	0.07295
Clostridium cluster XIII	Placebo	26.74	0.07004	0.05675
Clostridium cluster XIII	LGG	26.74	0.07004	0.05675
Clostridium cluster XIVa	Placebo	480369	-0.005182	0.07042
Clostridium cluster XIVa	LGG	480369	-0.005182	0.07042
Clostridium cluster XV	Placebo	1320	0.03479	0.1082
Clostridium cluster XV	$_{ m LGG}$	1320	0.03479	0.1082
Clostridium cluster XVI	Placebo	3559	-0.02628	0.127
Clostridium cluster XVI	LGG	3559	-0.02628	0.127
Clostridium cluster XVII	Placebo	491	-0.3649	0.2613
Clostridium cluster XVII	$_{ m LGG}$	491	-0.3649	0.2613
Clostridium cluster XVIII	Placebo	3328	-0.1445	0.1793
Clostridium cluster XVIII	LGG	3328	-0.1445	0.1793
Cyanobacteria	Placebo	182.9	-0.04578	0.2696
Cyanobacteria	LGG	182.9	-0.04578	0.2696
Fusobacteria	Placebo	28.48	-0.2052	0.1557
Fusobacteria	LGG	28.48	-0.2052	0.1557
Proteobacteria	Placebo	15568	-0.01141	0.1086
Proteobacteria	LGG	15568	-0.01141	0.1086
Spirochaetes	Placebo	51.18	-0.09568	0.06559
Spirochaetes	LGG	51.18	-0.09568	0.06559
Uncultured Clostridiales	Placebo	2929	0.165	0.1919
Uncultured Clostridiales	LGG	2929	0.165	0.1919
Uncultured Mollicutes	Placebo	486.4	0.1781	0.2956
Uncultured Mollicutes	LGG	486.4	0.1781	0.2956
Verrucomicrobia	Placebo	15256	0.2104	0.1716
Verrucomicrobia	$_{ m LGG}$	15256	0.2104	0.1716

Table 8: Table continues below

Stat	P.Value	Adjusted.P.Value	Mean.Abundance	Mean.Prevalence
-1.818	0.08488	0.5192	0.04218	1
-1.818	0.08488	0.5192	0.03437	1
0.1237	0.9029	0.9029	3.022 e-05	1
0.1237	0.9029	0.9029	2.051e-05	1

Stat	P.Value	Adjusted.P.Value	Mean.Abundance	Mean.Prevalence
0.4516	0.6567	0.833	0.0385	1
0.4516	0.6567	0.833	0.04534	1
0.414	0.6811	0.833	0.1949	1
0.414	0.6811	0.833	0.1753	1
0.4412	0.6641	0.833	0.00033	1
0.4412	0.6641	0.833	0.0003955	1
-1.586	0.1293	0.569	0.002347	1
-1.586	0.1293	0.569	0.002078	1
-1.936	0.06788	0.5192	0.2095	1
-1.936	0.06788	0.5192	0.2045	1
-0.3291	0.7457	0.833	0.007537	1
-0.3291	0.7457	0.833	0.004222	1
-0.8925	0.3833	0.833	0.006057	1
-0.8925	0.3833	0.833	0.006176	1
-0.1372	0.8923	0.9029	2.892e-05	1
-0.1372	0.8923	0.9029	2.327e-05	1
-0.9904	0.3344	0.833	0.4377	1
-0.9904	0.3344	0.833	0.464	1
0.5395	0.5958	0.833	0.001648	1
0.5395	0.5958	0.833	0.001587	1
-0.5465	0.5911	0.833	0.004221	1
-0.5465	0.5911	0.833	0.004221	1
-1.39	0.1807	0.6627	0.001405	1
-1.39	0.1807	0.6627	0.001409 0.0005492	1
0.3136	0.7572	0.833	0.004429	1
0.3136	0.7572	0.833	0.004423	1
-1.27	0.2195	0.6898	0.0004435	1
-1.27	0.2195 0.2195	0.6898	0.0004000	1
0.3898	0.6988	0.833	5.22e-05	1
0.3898	0.6988	0.833	2.914e-05	1
0.9625	0.3479	0.833	0.01655	1
0.9625	0.3479	0.833	0.018	1
-0.4555	0.6539	0.833	5.056e-05	1
-0.4555	0.6539	0.833	5.371e-05	1
-1.761	0.09439	0.5192	0.003867	1
-1.761	0.09439 0.09439	0.5192 0.5192	0.003807 0.004424	1
-1.701 -2.721	0.09459 0.01355	0.2981	0.0008387	1
-2.721 -2.721	0.01355 0.01355	0.2981 0.2981	0.001109	1
-2.721 -0.4047	0.01333 0.6879	0.2981 0.833	0.01109	
-0.4047	0.6879	0.833	0.02451	1 1
-1.357	0.1908	0.8042	0.02431 0.04218	1
-1.357 -1.357				
	$0.1908 \\ 0.321$	0.8042	0.03437	1
-1.019		0.8994 0.8994	3.022e-05	1
-1.019 0.7201	0.321		2.051e-05	1
0.7201	0.4802	0.8994	0.0385	1
0.7201	0.4802	0.8994	0.04534	1
-0.4104	0.6837	0.9237	0.1949	1
-0.4104	0.6837	0.9237	0.1753	1
0.5746	0.5723	0.8994	0.00033	1
0.5746	0.5723	0.8994	0.0003955	1
-0.6097	0.5493	0.8994	0.002347	1
-0.6097	0.5493	0.8994	0.002078	1

Stat	P.Value	Adjusted.P.Value	Mean.Abundance	Mean.Prevalence
-0.2179	0.8299	0.9237	0.2095	1
-0.2179	0.8299	0.9237	0.2045	1
-1.66	0.1133	0.8042	0.007537	1
-1.66	0.1133	0.8042	0.004222	1
0.205	0.8398	0.9237	0.006057	1
0.205	0.8398	0.9237	0.006176	1
-0.8945	0.3823	0.8994	2.892e-05	1
-0.8945	0.3823	0.8994	2.327e-05	1
0.2458	0.8084	0.9237	0.4377	1
0.2458	0.8084	0.9237	0.464	1
0.01096	0.9914	0.9914	0.001648	1
0.01096	0.9914	0.9914	0.001545	1
0.6471	0.5253	0.8994	0.001337	1
0.6471	0.5253 0.5253	0.8994	0.004221 0.004837	1
-1.747	0.09686	0.8944	0.004857 0.001405	1
	0.09686			
-1.747		0.8042	0.0005492	1
0.0169	0.9867	0.9914	0.004429	1
0.0169	0.9867	0.9914	0.004493	1
1.27	0.2193	0.8042	0.0004066	1
1.27	0.2193	0.8042	0.0008344	1
-1.397	0.1701	0.8042	5.22e-05	1
-1.397	0.1701	0.8042	2.914e-05	1
0.7365	0.4704	0.8994	0.01655	1
0.7365	0.4704	0.8994	0.018	1
0.2479	0.8069	0.9237	5.056e-05	1
0.2479	0.8069	0.9237	5.371 e-05	1
0.4998	0.623	0.9137	0.003867	1
0.4998	0.623	0.9137	0.004424	1
0.8574	0.4019	0.8994	0.0008387	1
0.8574	0.4019	0.8994	0.001109	1
1.557	0.1274	0.8042	0.0168	1
1.557	0.1274	0.8042	0.02451	1
0.6776	0.5054	0.942	0.04218	1
0.6776	0.5054	0.942	0.03437	1
0.249	0.8058	0.942	3.022 e-05	1
0.249	0.8058	0.942	2.051 e-05	1
-1.493	0.1503	0.6346	0.0385	1
-1.493	0.1503	0.6346	0.04534	1
1.662	0.1043	0.6346	0.1949	1
1.662	0.1043	0.6346	0.1753	1
-0.2132	0.8332	0.942	0.00033	1
-0.2132	0.8332	0.942	0.0003955	1
2.17	0.04164	0.6346	0.002347	1
$\frac{2.17}{2.17}$	0.04164 0.04164	0.6346	0.002547 0.002078	1
	0.04104 0.6642	0.0340 0.942	0.002078 0.2095	1
0.4403				
0.4403	0.6642	0.942	0.2045	1
-0.1739	0.8636	0.942	0.007537	1
-0.1739	0.8636	0.942	0.004222	1
0.3674	0.717	0.942	0.006057	1
0.3674	0.717	0.942	0.006176	1
1.234	0.2307	0.6346	2.892e-05	1
1.234	0.2307	0.6346	2.327e-05	1

Stat	P.Value	Adjusted.P.Value	Mean.Abundance	Mean.Prevalence
-0.07359	0.942	0.942	0.4377	1
-0.07359	0.942	0.942	0.464	1
0.3215	0.751	0.942	0.001648	1
0.3215	0.751	0.942	0.001587	1
-0.2069	0.8381	0.942	0.004221	1
-0.2069	0.8381	0.942	0.004837	1
-1.396	0.1772	0.6346	0.001405	1
-1.396	0.1772	0.6346	0.0005492	1
-0.8056	0.4295	0.942	0.004429	1
-0.8056	0.4295	0.942	0.004493	1
-0.1698	0.8668	0.942	0.0004066	1
-0.1698	0.8668	0.942	0.0008344	1
-1.318	0.1949	0.6346	5.22 e-05	1
-1.318	0.1949	0.6346	2.914e-05	1
-0.105	0.9174	0.942	0.01655	1
-0.105	0.9174	0.942	0.018	1
-1.459	0.1594	0.6346	5.056e-05	1
-1.459	0.1594	0.6346	5.371e-05	1
0.8597	0.3997	0.942	0.003867	1
0.8597	0.3997	0.942	0.004424	1
0.6025	0.5533	0.942	0.0008387	1
0.6025	0.5533	0.942	0.001109	1
1.226	0.2273	0.6346	0.0168	1
1.226	0.2273	0.6346	0.02451	1

Output.Element

sex1

sex1

sex1

sex1

sex1

sex1

sex1

sex1

sex1

 ${\rm sex} 1$

sex1

sex1

sex1

sex1

sex1

sex1

 $\begin{array}{c} {\rm sex1} \\ {\rm sex1} \end{array}$

sex1

sex1

sex1

sex1

sex1

sex1

sex1

Output.Element
sex1
sex1
sex1
sex1
group1
$\operatorname{group} 1$
group1
$\operatorname{group} 1$
$\operatorname{group} 1$
$\operatorname{group} 1$
group1
group1
group1
group1
$\operatorname{group} 1$
group1

Output.Element
$\operatorname{group} 1$
$\operatorname{group} 1$
group1
$\operatorname{group} 1$
${ m time 1}$
$_{ m time1}$
time1
time1
${ m time1}$
${ m time1}$
time1
time1
time1
$_{ m time1}$
$_{ m time1}$
time1
$_{ m time1}$
$_{ m time1}$
$_{ m time1}$
time1
time1
time1
$_{ m time1}$
time1
$_{ m time1}$
time1
0111101

 $\begin{array}{c} time 1 \\ time 1 \end{array}$

Output.Element	
$egin{array}{c} ext{time1} \ ext{time1} \end{array}$	

3.5 Taxa Boxplot for Significant Taxa

```
taxa_test_results <- do.call('rbind', taxa_test_results)</pre>
significant_taxa <- taxa_test_results$Variable[taxa_test_results$Adjusted.P.Value < 1]
taxa_change_boxplot_results <- generate_taxa_change_boxplot_pair(data.obj = data.obj,</pre>
                                                                 subject.var = subject.var,
                                                                 time.var = time.var,
                                                                 group.var = group.var,
                                                                 strata.var = strata.var,
                                                                 change.base = change.base,
                                                                 change.func = change.func,
                                                                 feature.level = feature.level,
                                                                 feature.dat.type = feature.dat.type,
                                                                 features.plot = significant_taxa,
                                                                 top.k.plot = top.k.plot,
                                                                 top.k.func = top.k.func,
                                                                 prev.filter = prev.filter,
                                                                 abund.filter = abund.filter,
                                                                 base.size = 10,
                                                                 theme.choice = theme.choice,
                                                                 custom.theme = custom.theme,
                                                                palette = palette,
                                                                pdf = pdf,
                                                                 file.ann = file.ann,
                                                                 pdf.wid = pdf.wid,
                                                                pdf.hei = pdf.hei)
taxa_change_boxplot_results
```

[[1]]

[[2]]


```
taxa_indiv_change_boxplot_results <- generate_taxa_indiv_change_boxplot_pair(data.obj = data.obj,</pre>
                                    subject.var = subject.var,
                                    time.var = time.var,
                                    group.var = group.var,
                                    strata.var = strata.var,
                                    change.base = change.base,
                                    change.func = change.func,
                                    feature.level = feature.level,
                                    features.plot = significant_taxa,
                                    feature.dat.type = feature.dat.type,
                                    top.k.plot = top.k.plot,
                                    top.k.func = top.k.func,
                                    prev.filter = prev.filter,
                                    abund.filter = abund.filter,
                                    base.size = 10,
                                    theme.choice = theme.choice,
                                    custom.theme = custom.theme,
                                    palette = palette,
                                    pdf = TRUE,
                                    file.ann = file.ann,
                                    pdf.wid = pdf.wid,
                                    pdf.hei = pdf.hei)
```

The boxplot results for individual taxa or features can be found in the current working directory. The relevant file is named: taxa_indiv_change_boxplot_pair_subject_subject_time_time_change_base_1_feature_level_Phylum_prev_filter_0_abund_filter_0_group_group_strata_sex.pdf. Please refer to this file for more detailed visualizations. The boxplot results for individual taxa or features can be found in the current working directory. The relevant file is named: taxa_indiv_change_boxplot_pair_subject_subject_time_time_change_base_1_feature_level_Family_prev_filter_0_abund_filter_0_group_group_strata_sex.pdf. Please refer to this file for more detailed visualizations.