Linux, day 10

MDadm

Prepping your lab: VBox

- In VirtualBox, change the three dummy disks.
 - Enable hot-plugging.

Prepping your lab: VBox

Prepping your lab: mounts

- In the Linux VM verify the disks are unused.
 - mount | grep "sd?"
 - Unmount your mounts of sdb, sdc and sdd.
 - grep -i "sd?" /etc/fstab
 - Remove any lines for sdb, sdc and sdd.
 - sudo mkdir /mnt/data

Prepping disks for RAID

- Some people suggest you partition them,
 - Others say to just use the whole device.
 - mdadm says "partition table will be meaningless"
- Apply GPT partitioning.
 - Use partition type "Linux RAID" (29) in fdisk.
 - Or "FD00" in gdisk.

Prepping our disks (three times)

```
sudo fdisk /dev/sdb
# Three times enter, y to overwrite
 # Type RAID
```

Making a RAID1, with spare

Remember how to use those backslashes?

```
$ sudo mdadm --create --verbose \
   --level=1 --metadata=1.2 \
   --raid-devices=2 /dev/md/MyRAID1 \
   /dev/sdb /dev/sdc \
   --spare-devices=1 /dev/sdd
```

Then use it

• Format, mount and use.

```
$ sudo mkfs.ext4 /dev/md/MyRAID1
```

\$ sudo mount /dev/md/MyRAID1 /mnt/data

\$ sudo touch /mnt/data/testfile

Saving your array config

- The location of the config file differs per Linux!
 - sudo find /etc -name "mdadm.conf"

```
$ sudo mdadm --detail --scan | \
sudo tee -a /etc/mdadm.conf
# Change that path!
```

Checking RAID health

- mdadm software RAID is pretty basic!
 - cat /proc/mdstat
 - sudo mdadm --detail /dev/md/MyRAID1
 - journalctl | grep -e "kernel: md" -e "mdadm"

Fun time

• On the guest OS, keep an eye on RAID.

\$ sudo mdadm --monitor /dev/md/MyRAID1

Let's break it!

Remove the second 100MB virtual disk.

What happened?

- mdadm noticed the failure,
 - Grabbed the hot spare and started rebuilding.
 - The failed disk disappeared.

• Check "/proc/mdstat", "mdadm" and "journalctl".

Question!?

- What would be a nice way to test availability?
- If your boss wants you to prove "mdadm" is good,
 - How would you run the tests?
 - Can Python or shell scripts help?

Let's rebuild

Re-attach the virtual disk you removed.

Let's rebuild

And we will re-add the disk to the RAID set.

```
$ sudo mdadm --manage /dev/md/MyRAID1 \
--add /dev/sdc
```

\$ sudo cat /proc/mdstat

Done? Break it all.

```
$ sudo umount /mnt/data
$ sudo mdadm --stop /dev/md/MyRAID1
$ sudo rm /etc/mdadm.conf # adjust path!
$ sudo mdadm --zero-superblock /dev/sdb
$ sudo mdadm --zero-superblock /dev/sdc
$ sudo mdadm --zero-superblock /dev/sdd
```

For your homework: RAID5

Needs three virtual disks!

```
$ sudo mdadm --create --verbose \
   --level=5 --metadata=1.2 \
   --raid-devices=3 /dev/md/MyRAID5 \
   /dev/sdb /dev/sdc /dev/sdd
```

LVM

The problem we need to solve

- Partitioning disks allows <u>some</u> flexibility.
- But growing, shrinking and moving?
 - That's a huge hassle!

- LVM allows much greater flexibility,
 - Through another layer of virtualization.

LVIVI concepts

/mnt/b/ mount points logical volumes LV: /dev/myvg/vol1 VG: /dev/myvg/ volume group PV: sdb physical volume PV: sdc PV: sdd /dev/sdc /dev/sdb /dev/sdd physical disk

Prepping our disks (three times)

```
$ sudo fdisk /dev/sdb
 # Three times enter, y to overwrite
  # Type LVM
```

Creating phys. volumes

This adds the device to LVM control

```
$ sudo pvcreate /dev/sdb1
$ sudo pvcreate /dev/sdc1
$ sudo pvcreate /dev/sdd1
```

That may fail...

- "pvcreate" will notice if disks are re-used.
 - Wipe and try again!

```
$ sudo wipefs -a /dev/sdb
$ sudo wipefs -a /dev/sdc
$ sudo wipefs -a /dev/sdd
```

Making the volume group

This collects the disks for usage.

```
$ sudo vgcreate myvg \
/dev/sdb1 /dev/sdc1 /dev/sdd1
```

\$ sudo vgdisplay myvg

Our first volume!

• This collects the disks for usage.

```
$ sudo lvcreate -L 50M -n vol1 myvg
```

- \$ sudo vgdisplay
- \$ sudo lvdisplay

Then use it

• Format, mount and use.

```
$ sudo mkfs.ext4 /dev/myvg/vol1
```

\$ sudo mount /dev/myvg/vol1 /mnt/data

\$ sudo touch /mnt/data/testfile

Check things out

The commands start with pv*, vg*, lv*.

pvdisplay	Show all physical volumes
vgdisplay	Show all volume groups
lvdisplay	Show all logical volumes

Resizing file systems

For example, on a volume that was 50 MB.

```
$ sudo lvresize -L 70M /dev/myvg/vol1
```

\$ sudo resize2fs /dev/myvg/vol1

Tear it all down!

Breaking what we made is easy.

```
$ sudo umount /mnt/data
$ sudo lvremove /dev/myvg/vol1
$ sudo vgremove /dev/myvg
$ sudo pvremove /dev/sdb1 /dev/sdc1 \
  /dev/sdd1
```

Want more?

- You can have multiple volume groups.
 - Each with multiple volumes.
- You can add more disks.
- You can grow existing groups and volumes.

What will we do today?

- Recap
- (More) storage management
 - Devices, MDadm, LVM
- TLS, cryptography and certificates
- Extra lab: NFS server
- Closing: homework and Q&A

LAB: NFS server

Time for research

- Can you make the following?
 - Setup your Ubuntu VM as NFS server.
 - Make /var/userdata on Ubuntu.
 - Make that directory an NFS file share.
 - Setup Fedora as NFS client, and mount the share.

Closing

Homework

- Reading:
 - Chapter 12
 - Chapter 21
 - Chapter 23
 - Chapter 26

Homework

- Go do:
 - Retry your RAID1 setup, incl. the "failed" device.
 - Use your three disks to make one mdadm RAID5.
 - On the RAID5 set, make an LVM volume group
 - And a 100MB logical volume, on /mnt/data.

Homework

/mnt/b/

mount

LV: /dev/myvg/vol1

log. vol

VG: /dev/myvg/

vol. grp.

PV: /dev/md/MyRAID5

phys. vol.

/dev/md/MyRAID5

MDadm

/dev/sdb

/dev/sdc

/dev/sdd

phys. disk

Advanced homework

- Go do:
 - Take the 100MB logical volume you made.
 - And expand it to 150MB.
 - You need to grow both the logical volume,
 - as well as the file system.