Metodi Matematici e Statistici per il corso di Laurea in Informatica - A.A. 2021/2022

Regressione lineare

Note:

$$\hat{y} = b_0 + b_1 x$$

$$b_1 = \frac{n \sum_{i=1}^n x_i y_i - \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n y_i\right)}{n \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$b_0 = \frac{\sum_{i=1}^n y_i - b_1 \sum_{i=1}^n x_i}{n} = \bar{y} - b_1 \bar{x}$$

Esercizio 1

Una ditta che produce lavatrici ha misurato il livello di rumorosità in funzione del peso di carico del lavaggio, ottenendo la seguente tabella

rumorosità (db)	25	26	29	31	24	29	26	27
Peso (kg)	31	33	37	38	29	35	32	35

Utilizzando la rumorosità come variabile di risposta, calcolare la retta di regressione e il coefficiente di Pearson. Commentare i risultati. Stimare il valore della rumorosità corrispondente ad un peso di 40 kg.

Esercizio 2

U'azienda produttrice di caffè ha avuto in un anno i seguenti volumi di produzione (in tonnellate)

Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno	Luglio	Agosto	Settembre
0.8	0.9	0.95	1	1.18	1.2	1.22	1.33	1.35

Stabile l'ipotetico volume di produzione di Dicembre.