Election Prediction

Daniel Spakowicz
11/7/2016

Created as part of STAT 625: Statistical Case Studies

This script was created after discussions with Dennis Walsh, though no code was shared.

This script reads in a table of poll results, reduces the set to those after the national conventions, and computes a margin of victory based on the votes for Clinton and Trump only. The distrubtion of the margins of victory are used to calculate a weighted mean, where the weights are adjustments for the grade assigned to each poll and its age. A normal distrubtion using the mean and variance of the margin of victory distribution is used to calculate a probability of Clinton winning the state.

	State	MOV	MOV.lwb	MOV.upb	ProbClinton
1	Florida	0.01	-0.05	0.07	0.57
2	Michigan	0.07	0.02	0.12	0.92
3	North Carolina	0.01	-0.03	0.06	0.62
4	Pennsylvania	0.06	0.02	0.10	0.92
5	Colorado	0.07	-0.01	0.16	0.80
6	Ohio	-0.01	-0.06	0.04	0.41
7	Wisconsin	0.09	0.00	0.17	0.85
8	Minnesota	0.11	0.06	0.16	0.99
9	Arizona	-0.00	-0.06	0.06	0.50
10	New Hampshire	0.09	-0.03	0.21	0.78
11	Nevada	0.01	-0.04	0.06	0.60
12	Georgia	-0.06	-0.13	0.01	0.21
13	Iowa	-0.01	-0.08	0.06	0.44
_14	Texas	-0.10	-0.17	-0.03	0.07

Appendix

```
# Subset to only those that occurred after the last convention
x \leftarrow x[x$enddate >= "2016-07-21",]
### Weighted mean of all post-convention polls, adjusted for grade and age
# Create a data frame of grade correction scores
grade.cor <- data.frame(frac = seq(1, 0.5, length.out = 10),
                       grade = c("A+", "A", "A-", "B+", "B", "B-", "C+",
                                 "C", "C-", "D"))
# Correct the poll sample size by grade
for (i in 1:nrow(x)) {
 if (x$grade[i] == "") {
   x$samplesize.grade[i] <- x$samplesize[i] * 0.75
 } else {
   x$samplesize.grade[i] <- x$samplesize[i] *</pre>
     grade.cor$frac[which(grade.cor$grade == x$grade[i])]
 }
}
# Correct for the age of the poll
dates <- seq.Date(from = min(x$startdate), to = Sys.Date(), by = 1)</pre>
age.cor <- data.frame(date = dates,</pre>
                     correction = seq(from = 0.2, to = 1,
                                      length = length(dates)))
# Correct the sample size by age of poll
for (i in 1:nrow(x)) {
 x$samplesize.grade.age[i] <- x$samplesize.grade[i] *</pre>
   age.cor$correction[which(age.cor$date == x$enddate[i])]
}
# Calculate the proportion of Clinton votes (b/n Clinton and Trump only)
x$pc <- (x$rawpoll_clinton * x$samplesize.grade.age) /</pre>
 ((x$rawpoll_clinton * x$samplesize.grade.age) +
     (x$rawpoll_trump * x$samplesize.grade.age))
# Calculate the proportion of Trump votes (b/n Clinton and Trump only)
xpt <- 1 - xpc
# Find the Margin of Victory (>O Clinton, <O Trump)
x$MOV <- x$pc - x$pt
# Preallocate memory to data frame
df <- data.frame(State = states,</pre>
                MOV = NA,
                MOV.lwb = NA,
                MOV.upb = NA,
                ProbClinton = NA)
# Calculate the weighted mean MOV and standard deviations for each state
```