CS 181: Homework 1

Jonathan Woong 804205763 Summer 2017

Discussion 1A

Thursday $20^{\rm th}$ July, 2017

Problem 1. Given NFA N

find the language $\mathcal{L}(N)$ and build DFA DN equivalent to N.

state	ϵ -closure
{Ø}	{Ø}
$\{q_0\}$	$\{q_0\}$
$\{q_1\}$	$\{q_1\}$
$\{q_2\}$	$\{q_2\}$
$\{q_3\}$	$\{q_0,q_3\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$
$\{q_0,q_2\}$	$\{q_0,q_2\}$
$\{q_0,q_3\}$	$\{q_0,q_3\}$
$\{q_1,q_2\}$	$\{q_1,q_2\}$
$\{q_1,q_3\}$	$\{q_0,q_1,q_3\}$
$\{q_2,q_3\}$	$\{q_0, q_2, q_3\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$
$\{q_0, q_1, q_3\}$	$\{q_0,q_1,q_3\}$
$\{q_0,q_2,q_3\}$	$\{q_0,q_2,q_3\}$
$\{q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$

Problem 2. Build DFA D and NFA N such that L(D)=L(N), which consists of all binary strings that have substring 00110001.

$$\Sigma = \{0,1\}$$

$$\label{eq:local_sum} \mathcal{L}(D) = \{x00110001y \mid x,y \in \Sigma^*\}$$

Problem 3. Find if the language $L = \{a^3b \; ; \; a,b \in \Sigma\}$ is regular and prove that your answer is correct. The language L is regular because we can construct the following finite automata:

Here, the word aaab is accepted by language L, and by definition, any language that is accepted by a finite automata (DFA or NFA) is also a regular language (Kleene-Myhill Theorem).