

Centrifugeuse

On considère une centrifugeuse de laboratoire composée d'un bâti (S_0), d'un bras (S_1) et d'un balancier (S_3).

Sous l'effet centrifuge dû à la rotation du bras S_1 l'éprouvette S_2 s'incline pour se mettre pratiquement dans l'axe du bras. De fait, le liquide dont la masse volumique est la plus grande est rejeté au fond de l'éprouvette. Paramétrage du système :

- R_0 (O, \vec{x} , \vec{y} , \vec{z}) est un repère lié à S_o .
- S_1 est en liaison pivot d'axe $(0, \vec{x})$ avec S_0 . Le repère R_1 $(0, \vec{x_1}, \vec{y_1}, \vec{z_1})$ est un repère lié à S_1 , on note $\alpha = (\vec{y}, \vec{y_1})$, l'angle mesuré autour de x.
- S_2 est en liaison pivot d'axe (A, $\overline{z_1}$) avec S_1 . Le repère $R_2(A, \overline{x_2}, \overline{y_2}, \overline{z_2})$ est un repère lié à S_2 , on note $\beta = (\vec{x}, \overline{x_2})$ l'angle mesuré autour de z_1 .

On donne $\overrightarrow{OA} = a \ \overrightarrow{y_1}$ et $\overrightarrow{AG} = b \ \overrightarrow{x_2}$ où **a** et **b** sont des constantes positives exprimées en m

- 1) Représenter les figures des rotations planes (changements de repères)
- 2) Exprimez $\overrightarrow{\Omega}_{R_1/R_0}$; $\overrightarrow{\Omega}_{R_2/R_1}$ et $\overrightarrow{\Omega}_{R_2/R_0}$
- 3) Exprimez $\vec{V}_{0 \text{ S1/S0}}$ par dérivation . Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 4) Exprimez $\vec{V}_{A \text{ S1/S0}}$ par dérivation . Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 5) Exprimez $\vec{V}_{A \text{ S1/S0}}$ par changement de point . Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 6) Exprimez $\vec{V}_{G \text{ S2/S1}}$ par dérivation. Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 7) Exprimez $\vec{V}_{G \text{ S2/S0}}$ par dérivation. Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 8) Exprimez $\vec{V}_{GS2/S0}$ par changement de point . Vous l'exprimerez dans la base ($\vec{x_1}, \vec{y_1}, \vec{z_1}$)
- 9) Exprimez $\vec{I}_{G \text{ S2/S0}}$ par dérivation . Vous l'exprimerez dans la base ($\overrightarrow{x_1}$, $\overrightarrow{y_1}$, $\overrightarrow{z_1}$)