EXERCISES

1. PART I

Exercise 1.1. Choose randomly $0 \le a, b \le 1000$ and compute the set

 $S = \{0 \le m \le 1000 \mid a \text{ divides } m \text{ and } b \text{ divides } m\}.$

Exercise 1.2 (Bingo). Choose randomly 6 different numbers between 1 and 90, then *extract* randomly other 6 <u>different</u> numbers between 1 and 90. Check Check how many elements these two sets have in common.

Exercise 1.3. Construct the set with the first fifty powers of 2.

Exercise 1.4. Calculate how many numbers of the form $x^2 + 3x + 1$ with $0 \le x \le 100$ are also multiples of 5.

Exercise 1.5. Compute the truth table for the boolean expression $(x \land y) \lor (\neg x \land \neg y)$.

Exercise 1.6. Check that the following expression is true for all $1 \le n \le 1000$.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Exercise 1.7. Compute the first twenty lines of Pascal's triangle.

Exercise 1.8. Choose randomly $2 \le a \le 1000$. If a is prime then print "a is prime", print the factorization of a otherwise.

Exercise 1.9. Find $1 \le x, y \le 100$ such that $x^2 + p^2 = 10037$.

Exercise 1.10. Find the minimal prime number p such that p is not a *Mersenne prime*, i.e. $2^p - 1$ is not prime.

Exercise 1.11. Prove that the Fermat's conjecture is false, i.e. $2^{2^n} + 1$ is not prime for every positive integer n.

Exercise 1.12. Choose randomly $-100 \le a \le 100$. Write a case-statement that returns "a is zero" if a = 0, "a is positive" if a > 0 and "a is negative" if a < 0.