

2.4 GHz WLAN (DTS Systems)

FCC Test Report

FOR:

Inhand Electronics

Model Name: CTC-IS IPU

Product Description: Tracking device (Government/Military)

FCC ID: 24C4A-CTCISIPU

47 CFR Part 2, 15.247

TEST REPORT #: EMC_CONNE_034_14001_15.247_DTS_WLAN_rev1 DATE: 2015-1-20

FCC listed A2LA Accredited

IC recognized # 3462E

CETECOM Inc.

6370 Nancy Ridge Drive Suite 101 • San Diego, CA 92121 • U.S.A.

Phone: +1 (858) 362 2400 • Fax: +1 (858) 587 4809 • E-mail: info@cetecomusa.com • http://www.cetecom.com
CETECOM Inc. is a Delaware Corporation with Corporation number: 2113686

Test Report #:

TABLE OF CONTENTS

1	Asse	ssment	3	
2	Adm	inistrative	4	
	2.1	Identification of the Testing Laboratory Issuing the Test Report	4	
	2.2	Identification of the Client	4	
	2.3	Identification of the Manufacturer	4	
3	Equipment under Test (EUT)			
	3.1	Specification of the Equipment under Test	5	
	3.2	Identification of the Equipment under Test (EUT)	6	
	3.3	Environmental conditions during Test	6	
	3.4	Dates of Testing	6	
	3.5	Other Testing Notes:	7	
4	Subj	ect Of Investigation	8	
5	Sum	mary of Measurement Results	9	
6	Meas	surements	10	
	6.1	Radiated Measurement Procedure	.10	
	6.1.1	Sample Calculations for Radiated Measurements	.11	
	6.2	Maximum Conducted Output Power	.12	
	6.2.1	Limits:	.12	
	6.2.2	Test Conditions:	.12	
	6.2.3	Test Procedure	.12	
	6.2.4	Test Result: 2.4 GHz Band		
	6.2.5	Maximum Power Verification	.13	
	6.2.6	Test Verdict:		
	6.2.7	Test Data/plots: 2.4 GHz Band		
	6.3	Radiated Transmitter Spurious Emissions:		
	6.3.1	Limits:		
	6.3.2	Test Conditions:		
	6.3.3	Measurement procedure:		
	6.3.4	Test Result:		
	6.3.5	Measurement Result		
_	6.3.6	Test data/ plots: 2.4 GHz Band		
7		Equipment and Ancillaries used for tests		
8	Test	Setup Diagram:	28	
9	Revi	sion History	29	

Date of Report: 2015-1-20

1 Assessment

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations. No deviations were ascertained.

Company	pany Description	
In Hand Electronics	Tracking device(Government/Military)	CTC-IS IPU

Responsible for Testing Laboratory:

Milton Ponce Deleon

2015-1-20	2015-1-20 Compliance (Manager Compliance)		
Date	Section	Name	Signature

Responsible for the Report:

Muhammad Umair Anees

2015	5-1-20 Co	mpliance (EMC 7	Test Engineer)	
D	ate S	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

Date of Report: 2015-1-20

2 Administrative Data

2.1 <u>Identification of the Testing Laboratory Issuing the Test Report</u>

Company Name:	CETECOM Inc.	
Department:	Compliance	
Address:	6370 Nancy Ridge Drive #101 San Diego, CA 92121 U.S.A.	
Telephone:	+1 (858) 362-2400	
Fax:	+1 (858) 587-4809	
Compliance Manager:	Milton Deleon	
Responsible Project Leader:	Muhammad Anees	

2.2 Identification of the Client

Applicant's Name:	InHand Electronics, Inc.	
Street Address:	30 West Gude Drive Suite 550	
City/Zip Code	Rockville, MD 20850	
Country	United States	
Contact Person:	Mark Price	
Phone No.	(240) 558-2014	
e-mail:	mprice@inhandelectronics.com	

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Same as client
City/Zip Code	
Country	

Date of Report: 2015-1-20

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name:	CTC-IS IPU		
FCC-ID:	24C4A-CTCISIPU		
Product Description:	Tracking device(Government/Military)		
Technology / Type(s)	Microchip's Zigbee module MRF24J40MA with FCC ID OA3MRF24J40MA		
of Modulation:	IEEE 802.15.4, using DSSS with O-QPSK		
Operating Frequency Ranges (MHz) / Channels	Nominal band: 2400-2483.5 Center to center: 2405 (Ch11) – 2475 (Ch 25), 16 channels		
Antenna Information as declared:	PCB dipole antenna with 2dBi maximum gain		
Power Supply/ Rated Operating Voltage Range:	External Battery pack with a 15VDC output		
Rated Operating Temperature Range:	-18°C ~ +49°C		
Test Sample Status:	Prototype		
Other Radios	Sierra Wireless Integrated Radio Module MC 7354 features:		
included in the	LTE,HSPA+,GSM/GPRS/EDGE,		
device:	EV-DO Rev A, 1xRTT		

Date of Report: 2015-1-20

3.2 <u>Identification of the Equipment under Test (EUT)</u>

EUT # Serial Number		Sample	HW/SW Version
1	DEF0000104	Radiated/Conducted	001/002

3.3 Environmental conditions during Test

The following environmental conditions were maintained during the course of testing:

Ambient Temperature: 20-25°C Relative Humidity: 40-60%

3.4 Dates of Testing

 $\overline{09/09/2014 - 10/01/2014}$

Date of Report: 2015-1-20

3.5 Other Testing Notes:

The device was configured for Zigbee operation by a set of commands provided by the manufacturer, capable of setting the unit in different channels of operation.

The Device was set to continuous framed Tx (burst) mode per test SW and could thus be operated with > 98% duty cycle during testing.

The EUT was tested on low, mid and high channels (2.4GHz) in 802.15.4 standard.

Date of Report: 2015-1-20

4 Subject Of Investigation

The objective of the evalulation documented in this report was to assess if the performance of the EUT meets the relevant requirements listed in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations.

This test report is to support a request for new equipment authorization under the FCC ID **24C4A-CTCISIPU**.

All testing was performed on the product referred to in Section 3 as EUT.

This product integrates the pre-certified Zigbee module: Microchip's MRF24J40MA

Taking into account, guidance from FCC KDB 996369 (modular approval) and where relevant test procedures did not change, conducted test results are leveraged from the test report # 3147916BOX-004 issued by Intertek - ETL SEMKO on May 13, 2008 for FCC/IC certification of the integrated Zigbee module Microchip's MRF24J40MA with FCC ID 24C4A-CTCISIPU.

Date of Report: 2015-1-20

5 <u>Summary of Measurement Results</u>

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§15.247(e)	Power Spectral Density	Nominal	IEEE 802.15.4					Note 1
§15.247(a)(1)	Emission Bandwidth	Nominal	IEEE 802.15.4					Note 1
§15.247(b)(3)	Maximum Peak Conducted Output Power	Nominal	IEEE 802.15.4					Complies
§15.247(d)	Band edge compliance	Nominal	IEEE 802.15.4					Note 1
§15.247(d)	TX Spurious emissions- Conducted	Nominal	IEEE 802.15.4					Note 1
\$15.247(d) \$15.209(a)	TX Spurious emissions- Radiated	Nominal	IEEE 802.15.4					Complies
§15.207(a)	AC Conducted Emissions <30MHz	Nominal	IEEE 802.15.4					-

NA= Not Applicable; NP= Not Performed.

Note 1: Results leveraged from Microchip MRF24J40MA Zigbee module's original FCC filing.

Date of Report: 2015-1-20

6 Measurements

6.1 Radiated Measurement Procedure

The radiated measurement is performed according to: ANSI C63.4 (2009) ANSI C63.10 (2009)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 16 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9kHz to 30MHz, a Biconilog antenna is used from 30MHz to 1GHz, two different horn antennas are used to cover frequencies up to 40GHz.

Radiated Measurement Uncertainty: ±3dB

Date of Report: 2015-1-20

6.1.1 Sample Calculations for Radiated Measurements

Measurements from the Spectrum Analyzer/ Receiver are used to calculate the Field Strength, taking into account the following parameters:

1. Measured reading in dBµV

- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

FS $(dB\mu V/m)$ = Measured Value on SA $(dB\mu V)$ + Cable Loss (dB)+ Antenna Factor (dB/m) Eg:

Frequency (MHz)	Measured SA (dBμV)	Cable Loss (dB)	Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)	
1000	80.5	3.5	14	98.0	

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the above equation.

Date of Report: 2015-1-20

6.2 Maximum Conducted Output Power

6.2.1 Limits:

FCC §15.247 (b)(3): 1W (30dBm)

6.2.2 Test Conditions:

Tnom: 21°C; Vnom: 15V

6.2.3 Test Procedure

Measurements are according to FCC KDB 558074 D01 DTS v03r02 section 9.2.1. §15.247 permits the maximum (average) conducted output power to be measured as an alternative to the maximum peak conducted output power. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.

Note: Maximum conducted output power is calculated from radiated EIRP measurement and the rated antenna gain, due to unavailability of a conducted EUT sample.

Spectrum Analyzer settings:

Maximum Average Output Power (KDB section 9.2.2.2)

Span = 1.5 times the OBW.

RBW = 1-5% of the OBW, not to exceed 1 MHz

 $VBW \ge 3xRBW$

Sweep = auto

Detector function = RMS

Trace = Average of 100 traces

Use integrated band power method. Set channel bandwidth \geq OBW bandwidth of the emission being measured.

OBW = 2.96 MHz (referenced from the modules original FCC filing report. See section 4.)

The EUT was measured in a radiated fashion. The Effective Isotropic Radiated Power (EIRP) is measured since the device has integral antenna for the Zigbee radio. The field strength measurements are converted to power reading taking into account the transducer factor (TF) of the antenna. These calculations are done by the EMC 32 software. Since the referenced KDB ask for power integration across the OBW of the signal, this calculation was done manually in excel by adding EIRP values in the OBW data range. Thus plots in section 6.2.7 show the maximum EIRP at any given point, and not the integrated power value.

6.2.4 Test Result: 2.4 GHz Band

Measured Maximum EIRP (dBm)						
	Fr	requency (MHz)				
Mode	2405	2440	2480			
	Channel 11	Channel 18	Channel 26			
IEEE 802.15.4	-1.48	-1.76	-3.06			

Date of Report: 2015-1-20

6.2.5 Maximum Power Verification

Channel No.	Frequency (MHz)	Pre-certified module EIRP (dBm)	Measured EIRP (dBm)
11	2405	-3.5	-1.48
18	2440	-2.9	-1.76
26	2480	-5.6	-3.06

There is a delta of about 2 dBs between the pre-certified module data and measured data. The difference could arise due to radiated measurement tolerance and uncertainty.

6.2.6 Test Verdict:

Passed

CETECOM

6.2.7 Test Data/plots: 2.4 GHz Band

EIRP Low Channel

FCC ID:24C4A-CTCISIPU **CETECOM**™

EIRP Mid Channel

FCC ID:24C4A-CTCISIPU CETECOM™

EIRP High Channel

6.3 Radiated Transmitter Spurious Emissions:

6.3.1 Limits:

§15.247/15.205/15.209

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Frequency of emission (MHz)	Field strength (μV/m)
30–88	100 (40dBμV/m)
88–216	150 (43.5 dBμV/m)
216–960	200 (46 dBμV/m)
Above 960	500 (54 dBμV/m, average) (Peak limit: 54 dBμV/m,)

Frequency of emission (MHz)	Field strength (μV/m)	Measurement Distance (m)		
0.009-0.490	2400/F(kHz)	300		
0.490–1.705	24000/F(kHz)	30		
1.705–30.0	30	30		

Date of Report: 2015-1-20

6.3.2 Test Conditions:

Tnom: 23 °C; Vnom: 15V

6.3.3 Measurement procedure:

Measurement according to ANSI C63.10:2009 (also refer to section 6.1 in this test report)

6.3.4 Test Result:

Unless mentioned otherwise, the emissions outside the limit lines in the plots are from the transmit signal.

Plots reported here represent the worst case emissions for horizontal and vertical antenna polarizations and for three orientations of the EUT.

6.3.5 Measurement Result

Pass.

6.3.6 Test data/ plots: 2.4 GHz Band

Transmitter Radiated Spurious Emission: Ch Mid-10kHz - 30MHz

Test Report #:

Transmitter Radiated Spurious Emission: Ch Low- 30 MHz – 1GHz

Transmitter Radiated Spurious Emission: Ch Mid- 30 MHz – 1GHz

Transmitter Radiated Spurious Emission: Ch High- 30 MHz – 1GHz

Test Report #:

Transmitter Radiated Spurious Emission: Ch Low- 1 GHz - 3GHz

Transmitter Radiated Spurious Emission: Ch Mid- 1 GHz – 3GHz

Transmitter Radiated Spurious Emission: Ch High- 1 GHz – 3GHz

Test Report #:

Transmitter Radiated Spurious Emission: Ch Low- 3 GHz - 18GHz

Transmitter Radiated Spurious Emission: Ch Mid- 3 GHz – 18GHz

Transmitter Radiated Spurious Emission: Ch High- 3 GHz – 18GHz

Transmitter Radiated Spurious Emission: Ch Mid- 18 GHz - 26 GHz

7 <u>Test Equipment and Ancillaries used for tests</u>

Equipment Name	Manufacturer	Type/Model	Serial No.	Cal Date	Cal Interval	Next cal date
3m Semi- Anechoic Chamber:						
	Rohde und					
Spectrum Analyzer	Schwarz	FSU 26	200302	6/2013	2 years	6/2015
	Rohde und					
Spectrum Analyzer	Schwarz	FSV 40	0547	7/2014	2 years	7/2016
	Rohde und					
Receiver	Schwarz	ESR3	101663	2/2013	2 years	2/2015
	Rohde und					
LISN	Schwarz	ESV 216	101129	1/2013	2 years	1/2015
Radio Communications	Rohde and	G1 577 400				
Tester	Schwarz	CMU 200	121672	7/2013	2 years	7/2015
Los Dariadia Antonna	Rohde and Schwarz	HL 050	100515	4/2013	2 ******	4/2016
Log Periodic Antenna	Rohde and	ПL 030	100313	4/2013	3 year	4/2010
Ultralog Antenna	Schwarz	HL 562	100495	2/2012	3 year	2/2015
Double-ridge Horn Antenna	Schwarz	TIL 302	100473	2/2012	3 year	2/2013
(1G-18G)	ETS-Lindgren	3117-PA	00167061	7/2014	3 year	7/2017
Double-ridge Horn Antenna	215 Emagren	3117 111	00107001	772011	3 year	772017
(18G-40G)	ETS-Lindgren	3116C-PA	00166821	7/2014	3 year	7/2017
Loop Antenna	ETS-Lindgren	6512	00164698	7/2014	3 year	7/2017
200p i meeme	Rohde and	3012	0010.000	772011	o year	772017
Open Switch Control Unit	Schwarz	OPS 130	10085	n/a		
Extention Unit Open Switch	Rohde and					
Control Unit	Schwarz	OSP 150	10086	n/a		
			TT			
			1.5SI/204/60709			
Turn Table TT	Maturo	1.5 SI	10	n/a		
			CAM4.0-	,		
Compact antenna Mast	Maturo	CAM 4.0-P	P/067/6000910	n/a		
Multiple Control Unit	Maturo	MCU	2140910	n/a		
	Rohde and			Part of the system calibration		
Pre-Amplifier	Schwarz	TS-PR 18	100072			
High Pass Filter	Mini-Circuits	SHP-1200+	RUU11201224			
High Pass Filter	Wainwright Instr.	WHKX 3.0/18	109			

Test Report #: EMC_CONNE_034_14001_15.247_DTS_WLAN_rev1 Fe

Date of Report: 2015-1-20

FCC ID:24C4A-CTCISIPU **CETECOM**

8 <u>Test Setup Diagram:</u>

Date of Report: 2015-1-20

9 Revision History

Date	Report Name	Changes to	Report
		report	prepared by
2014-11-	EMC CONNE 034 14001 15.247 DTS WLAN	First official	M. Umair Anees
04	EMC_CONNE_034_14001_13.247_D15_WEAN	version	WI. Ullian Ances
2015-1-20	EMC_CONNE_034_14001_15.247_DTS_WLAN_rev	Formatting, revised	M. Hmain Anaga
2013-1-20	1	section 6.2	M. Umair Anees