MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2017 Calculator-free Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 8 of term 2, 2017

Section One: Calculator-free

(50 Marks)

1(a)(i) (2 marks)

Solution	
$f(x) = \sqrt{5 + x^2}$	
$f'(x) = \frac{1}{2}(5+x^2)^{-1/2} \cdot 2x = \frac{2x}{2\sqrt{5+x^2}}$	
Marking key/mathematical behaviours	Marks
correctly differentiates using chain rule	1
• recognises $\sqrt{5+x^2}$ as $(5+x^2)^{1/2}$	1

Question 1(a)(ii) (2 marks)

Solution
$$f(x) = \frac{x}{e^{3x} + 5}$$

$$f'(x) = \frac{(e^{3x} + 5)1 - 3xe^{3x}}{(e^{3x} + 5)^2}$$
Marking key/mathematical behaviours

Marking key/mathematical behaviours	Marks
correctly differentiates using quotient rule	1
correctly determines derivative of denominator	1

Question 1(b) (3 marks)

$y = 5\cos(3x + 1)$	
$\frac{dy}{dx} = -15\sin(3x+1)$	
$\left \left(\frac{dy}{dx} \right)^2 + 9y^2 \right = 225 \sin^2(3x+1) + 225 \cos^2(3x+1) = 225$	
Marking key/mathematical behaviours	Marks
XXIII.	Marks 1
Marking key/mathematical behaviours	Marks 1 1

Question 2 (6 marks)

Solution

$$\frac{dF}{d\theta} = \frac{-1200(3\cos\theta - 4\sin\theta)}{(3\sin\theta + 4\cos\theta)^2}$$

$$\frac{dF}{d\theta} = 0$$
 when $3\cos\theta - 4\sin\theta = 0$ i.e. when $\tan\theta = \frac{3}{4}$

In the interval $0 \le \theta \le \frac{\pi}{2}$, $F = F(\theta)$ has just one stationary point, which occurs when $\tan \theta = \frac{3}{4}$

If
$$\tan \theta = \frac{3}{4}$$
 then $\sin \theta = \frac{3}{5}$ and $\cos \theta = \frac{4}{5}$ (3-4-5 right triangle), so $F = \frac{1200}{\frac{9}{5} + \frac{16}{5}} = 240$

If
$$\theta = 0$$
, $F = \frac{1200}{0+4} = 300$ and if $\theta = \pi/2$, $F = \frac{1200}{3} = 400$

So the minimum value of F is indeed 240

Marking key/mathematical behaviours	Marks
differentiates correctly	1+1
identifies the single stationary point	1
 evaluates F at the stationary point 	1
 checks values of F at the end points 	1
gives correct answer	1

Question 3(a) (2 marks)

Solution	
$v(t) = 30\left(1 + \cos\frac{\pi}{5}t\right) = 0 \Longrightarrow 1 + \cos\frac{\pi}{5}t = 0$	
$\Rightarrow \frac{\pi}{5}t = \pi \Rightarrow t = 5$ (smallest positive solution)	
So first at rest after 5 seconds	
Marking key/mathematical behaviours	Marks
• obtains $1 + \cos \frac{\pi}{5}t = 0$	1
gives correct answer	1

Question 3(b) (2 marks)

Solution	
$a(t) = -6\pi \sin\frac{\pi}{5}t = 0 \text{ when } t = 0$	
So the initial acceleration is zero.	
Marking key/mathematical behaviours	Marks
differentiates correctly	1
obtains correct answer	1

Solution	
Since $v(t) \ge 0$ for all $t \ge 0$, the particle never moves 'backwards'.	
So it never returns to its starting point.	
Marking key/mathematical behaviours	Marks
correct answer	1
valid reason	1

Question 3(d) (2 marks)

Solution
$$x(10) - x(0) = \int_0^{10} 30(1 + \cos\frac{\pi}{5}t) dt$$

$$= \left(30t + \frac{150}{\pi}\sin\frac{\pi}{5}t\right)|_0^{10} = \left(300 + \frac{150}{\pi}\sin 2\pi\right) - \left(\frac{150}{\pi}\sin 0\right)$$

$$= 300$$

Since the particle never moves backwards, the distance travelled is 300 m.

Marking key/mathematical behaviours	Marks
ullet obtains distance travelled as the integral of $v(t)$	1
evaluates integral correctly	1

Page **4** © MAWA 2017

Question 4(a) (5 marks)

Solution

The shaded area = area of the square – area of the quarter circle – area of the triangle

$$= k^{2} - \frac{\pi \left(\frac{k}{2}\right)^{2}}{4} - \frac{1}{2} \times \frac{k}{2} \times k$$

$$= k^{2} - \frac{\pi k^{2}}{16} - \frac{k^{2}}{4}$$

$$= \frac{16k^{2}}{16} - \frac{\pi k^{2}}{16} - \frac{4k^{2}}{16}$$

$$= \left(\frac{12 - \pi}{16}\right) \times k^{2}$$

Hence the probability p, of a dart landing within the shaded area is,

$$p = \frac{\text{shaded area}}{\text{area of square}}$$
$$= \frac{\left(\frac{12 - \pi}{16}\right) \times \cancel{k}^2}{\cancel{k}^2}$$
$$= \left(\frac{12 - \pi}{16}\right)$$

Marking key/mathematical behaviours	Marks
States how the shaded area may be calculated (line 1 of solution)	1
Calculates at least one of the areas of the required regions	1
 Determines the shaded area in terms of k 	1
States the probability as a ratio of the total area	1
Simplifies to the required result	1

Question 4(b) (2 marks)

Solution

 $P(\text{first and third, shaded}) = P(\text{first, shaded}) \times P(\text{second, not shaded}) \times P(\text{third, shaded})$

$$= p \times (1-p) \times p$$
$$= p^2 \times (1-p)$$

Marking key/mathematical behaviours	Marks
• Uses the result from part (a) to determine $P(\text{second, not shaded})$	1
Applies the multiplication principle correctly	1

Question 4(c) (2 marks)

Solution	
Probability Jamie hits the green region only once in three throws	
$= P(S \overline{S} \overline{S}) + P(\overline{S} S \overline{S}) + P(\overline{S} \overline{S} S)$	
$= 3 \times p \times (1-p)^2$	
Marking key/mathematical behaviours	Marks
States the three ways that this can happen	1
Applies the addition principle and determines the correct result	1

Question 4(d) (2 marks)

Solution	
Probability Jamie hits the green region at least once in three throws	
$=1-P(\overline{S}\ \overline{S}\ \overline{S})$	
$=1-(1-p)^3$	
Marking key/mathematical behaviours	Marks
	1
Recognises the compliment	•

Question 5(a) (2 marks)

Solution	
$\int (e^{7x-1} + 5x^2) \ dx = \frac{e^{7x-1}}{7} + \frac{5x^3}{3} + c$	
Marking key/mathematical behaviours	Marks
correctly integrates each term	1
 correctly adds constant of integration (1 mark penalty once only throughout the rest of question 5) 	1

Question 5(b) (2 marks)

Solution	
$\int \frac{4x^3 + 3}{x^2} dx = \int 4x + 3x^{-2} dx$	
$= 2x^2 - \frac{1}{x^3} + c$	
Marking key/mathematical behaviours	Marks
correctly simplifies integral	1
correctly integrates each term	1

Question 5(c) (2 marks)

Solution	
$\int 5(2x-3)^3 dx = \frac{5(2x-3)^4}{4\times 2} + c$	
$= \frac{5}{8} (2x - 3)^4 + c$	
Marking key/mathematical behaviours	Marks
recognises the rule	1
correctly integrates	1

Question 5(d) (2 marks)

Solution	
$\int [\sin(2x+3) + 2\cos(\pi x)] dx = -\frac{1}{2}\cos(2x+3) + \frac{2}{\pi}\sin(\pi x) + c$	
$\frac{1}{2}$ $\frac{1}{\pi}$ $\frac{1}{\pi}$	
Marking key/mathematical behaviours	Marks
correctly integrates first term	1
correctly integrates second term	1

Question 6 (4 marks)

Solution $\cos 2x = \cos^2 x - \sin^2 x$ $\Rightarrow \cos 2x = 1 - \sin^2 x - \sin^2 x$ $\Rightarrow \cos 2x = 1 - 2\sin^2 x$ $\therefore \sin^2 x = \frac{1}{2}(1 - \cos 2x)$ $\int \sin^2 (x) dx = \frac{1}{2} \int (1 - \cos(2x)) dx$ $= \frac{1}{2} \left(x - \frac{1}{2}(2x) \right) + c$

Marking key/mathematical behaviours	Marks
• correctly manipulates the expansion to express $sin^2(x)$ in terms of $cos(2x)$	2
correctly integrates each part	2

Question 7(a) (2 marks)

Solution $\int_{-\pi}^{\frac{\pi}{2}} \cos(\pi - x) \ dx = -\sin(\pi - x) \Big]_{-\pi}^{\frac{\pi}{2}}$ $= -\left[\sin\left(\frac{\pi}{2}\right) - \sin(2\pi)\right]$ = -[1 - 0]

Marking key/mathematical behaviours	Marks
correctly integrates	1
correctly evaluates	1

Question 7(b) (2 marks)

Solution		
$ \frac{d}{dx} \left[\int_{x}^{4} \frac{4t^{2}-3}{\sqrt{t}} dt \right] $	=	$\frac{d}{dx} \left[- \int_4^x \frac{4t^2 - 3}{\sqrt{t}} dt \right]$
	=	$-\frac{4x^2-3}{\sqrt{x}}$

Marking key/mathematical behaviours	Marks
indicates the change of limits	1
correctly applies fundamental theorem	1

Question 7(c) (2 marks)

Solution
$$\int_0^{\frac{\pi}{6}} \frac{d}{dx} [\sin(2x)] dx = [\sin(2x)]_0^{\frac{\pi}{6}}$$

$$= \sin\left(\frac{\pi}{3}\right) - \sin(0)$$

$$= \frac{\sqrt{3}}{2} - 0$$

$$= \frac{\sqrt{3}}{2}$$
Marking key/mathematical behaviours

• correctly integrates
• correctly evaluates

1

Page **9** © MAWA 2017