CIS 575. Introduction to Algorithm Analysis Material for February 12, 2024

Proving Correct an Iterative Algorithm on Integers

©2020 Torben Amtoft

1 Loop Invariants for Correctness Proofs

In the previous note, we considered programs of the form

$$P$$
while G
 B

To prove the correctness of such a program, wrt. a precondition Pre and a postcondition Post, we need to guess a loop invariant Φ and then verify each item of the checklist

- 1. (Establish) $\{Pre\}\ P\ \{\Phi\}$
- 2. (Maintain) $\{\Phi \wedge G\} B \{\Phi\}$
- 3. (Correctness) $\Phi \wedge \neg G$ logically implies Post
- 4. (**Terminate**) if a state satisfies Φ then G will eventually become false.

Here $\{Q\}$ $C\{R\}$ means that executing C in a state that satisfies Q will result in a state that satisfies R.

In this and subsequent notes we shall illustrate this checklist through several, increasingly advanced, examples.

2 Verifying a Loop Manipulating Integers

Recall from the first week that we considered the *fibonacci* function

$$\begin{aligned} \mathsf{fib}(0) &= \mathsf{fib}(1) &= 1 \\ \mathsf{fib}(n+2) &= \mathsf{fib}(n) + \mathsf{fib}(n+1) \text{ for } n \geq 0 \end{aligned}$$

and claimed that it may be implemented by the *iterative* program

$$i, j \leftarrow 1, 1$$

for $k \leftarrow 1$ to $n - 1$
 $i, j \leftarrow j, i + j$
return j

We shall now verify that claim (for $n \ge 1$). For that purpose, we need to come up with a loop invariant; we suggest (perhaps based on simulating the program on small values of n)

$$j = \mathsf{fib}(k)$$
 and $i = \mathsf{fib}(k-1)$ and $1 \le k \le n$

It is useful to observe that a loop

$$\mathbf{for}\ q \leftarrow a\ \mathbf{to}\ b$$

(where C does not modify a, b or q) is equivalent to

$$\begin{aligned} q &\leftarrow a \\ \mathbf{while} \ q &\leq b \\ C \\ q &\leftarrow q+1 \end{aligned}$$

We can then embark on verifying the 4 items.

Establish When the loop test is first evaluated, we have i = j = k = 1. We must thus show $1 = \mathsf{fib}(1)$ and $1 = \mathsf{fib}(0)$ which follows from the definition of fib , and $1 \le 1 \le n$ which follows from our assumption.

Maintain We must prove that for each iteration of the loop body, if the invariant holds for the initial values of i, j, k then it also holds for the final values of i, j, k. We thus need to distinguish between the "old" value and the "new" value of a variable; for that purpose, it is a convenient notation to use primes to denote the new values. Using that notation, we have

$$i' = j, \ j' = i + j, \ k' = k + 1$$

and our assumption is that the invariant holds for the old values: $j = \mathsf{fib}(k)$ and $i = \mathsf{fib}(k-1)$ and $1 \le k$; also, as the loop guard is true, we have $k \le n-1$. We must prove that the invariant holds for the new values: $j' = \mathsf{fib}(k')$ and $i' = \mathsf{fib}(k'-1)$ and $1 \le k' \le n$ which follows from the calculations

$$j' = i + j = fib(k - 1) + fib(k) = fib(k + 1) = fib(k')$$

 $i' = j = fib(k) = fib(k' - 1)$
 $k' = k + 1 \le (n - 1) + 1 = n$

Correctness Observe that at loop exit we have k = n (to see this formally, recall that the for loop is equivalent to a while loop with guard $k \le n-1$ so at exit we have k > n-1 which together with $k \le n$ from the invariant implies k = n). From $j = \mathsf{fib}(k)$ we thus infer $j = \mathsf{fib}(n)$ which justifies that j is returned.

Terminate for loops always terminate.

_