Meteorology and Ozone, Temperature

J. Coates¹ and T. Butler¹

¹Institute for Advanced Sustainability Studies, Potsdam, Germany

September 1, 2015

5 Abstract

6

1

2

3

7 1 Introduction

$_{*}$ 2 Methodology

9 2.1 Model Setup

- MECCA box model as described in Coates and Butler (2015) to broadly simulate the
 Benelux (Belgium, Netherlands and Luxembourg) region. Solar zenith angle of 51°N was
 used to determine photolysis rates through a parameterisation and the SZA chosen is
 broadly representative of the central Benelux region.
- MECCA box model has been updated to include vertical mixing with the free troposphere
 and accordingly includes a diurnal cycle for the PBL height. These amendments are
 discussed further in Sect. 2.3.
- Simulations start at 06:00 using spring ecquinoctical conditions and the simulations ended after two days.
- All simulations performed using the Master Chemical Mechanism, MCM v3.2, (Rickard et al., 2015) and also repeated using MOZART-4 (Emmons et al., 2010). Coates and Butler (2015) describes the implementation of both MCM v3.2 and MOZART-4 for use with KPP within MECCA.

- NOx and other parameters were varied systematically to analyse the effects on ozone mixing ratios over different NOx gradients and hence different atmospheric conditions.
- VOC emissions constant until noon of first day, to simulate a plume of emitted VOC.

26 2.2 VOC Emissions

- Anthropogenic emissions from Benelux were obtained from the TNO-MACC_III emission inventory. TNO-MACC_III is the current version of the TNO-MACC_II inventory and was created using the same methodology as (Kuenen et al., 2014) and based upon improvements to the existing emission inventory during the AQMEII 2 exercises described in Pouliot et al. (2015).
- Temperature independent emissions of the biogenic VOC isoprene and monoterpenes, were calculated as a fraction of the total anthropogenic VOC emissions from each country in the Benelux region, this data was obtained from the supplementary data available from the EMEP (European Monitoring and Evaluation Programme) model (Simpson et al., 2012).
- AVOC and BVOC emissions are included as total emissions from SNAP (Selected Nomenclature for Air Pollution) source categories and these emissions were assigned to chemical groupings based on the country specific profiles for Belgium, the Netherlands and Luxembourg provided by TNO.
- The MCM v3.2 initial species were determined using the country specific profiles for each SNAP source category and where appropriate information of individual chemical species that can be represented by MCM v3.2 were determined using the speciations of Passant (2002).
- After calculating the MCM v3.2 initial VOC and respective emissions were assigned to
 the respective MOZART-4 species and the emissions in MOZART-4 were weighted by the
 carbon numbers of the MCM v3.2 species and the emitted MOZART-4 species.

Table 1: Anthropogenic NMVOC emissions in 2011 in tonnes from each SNAP category assigned from TNO-MACC_III emission inventory and biogenic VOC emission in tonnes from Benelux region assigned from EMEP. The allocation of these emissions to each MCM v3.2 and MOZART-4 species is found in the supplement.

	SNAP1	SNAP2	SNAP34	SNAP5	SNAP6	SNAP71
Belgium	4494	9034	22152	5549	42809	6592
Netherlands	9140	12173	29177	8723	53535	16589
Luxembourg	121	44	0	1372	4482	1740
Total	13755	21251	51329	15644	100826	24921
	SNAP72	SNAP73	SNAP74	SNAP8	SNAP9	BVOC
Belgium	2446	144	210	6449	821	6533
Netherlands	3230	1283	1793	10067	521	1356
Luxembourg	1051	6	324	643	0	2057
Total	6727	1433	2327	17159	1342	9946

Table 2: Belgium AVOC and BVOC emissions, in molecules $\rm cm^{-2}~s^{-1}$, translated into MCM species.

Ethane C2H6 Propane C3H8 Butanes IC4H1 NC5H NC5H2 Pentanes IC5H3 NBOF NBOF													
	H6	4.15E+08	1.11E+09	2.98E+09			1.74E+08	4.62E+07	8.17E+06		8.30E+07	8.22E+07	4.91E+09
	H8	1.14E+09	4.72E+08	1.03E + 08	3.12E+10	3.18E+08	8.49E + 06	3.15E+07	8.17E+07	2.71E+06	7.53E+07	3.56E + 07	3.35E+10
	NC4H10	7.77E+08	2.42E + 08	1.27E + 06	1.23E+11	1.18E+09	1.89E+08	3.26E + 07		4.48E+07	1.40E+08	2.20E+07	1.25E+11
	IC4H10	$^{9.48\mathrm{E}+07}$	$8.49\mathrm{E}{+07}$	$3.11E{+05}$	$2.98\mathrm{E}{+}10$	$5.36E{+07}$	$8.81E{+07}$	$1.52\mathrm{E}{+07}$		$2.09\mathrm{E}{+07}$	$7.02E{+07}$	$2.20\mathrm{E}{+07}$	$3.03\mathrm{E}{+}10$
	NC5H12	$6.21E{+08}$	$2.25\mathrm{E}{+08}$		$8.78\mathrm{E}{+10}$		$1.13E{+}08$	1.31E+07		$2.25\mathrm{E}{+07}$	4.51E+07	$1.11E{+07}$	8.89E + 10
NE	IC5H12	$2.62\mathrm{E}{+08}$	$1.21E{+08}$		$5.25\mathrm{E}{+}10$		$2.19E{+}08$	$2.54\mathrm{E}{+07}$		$4.37E{+}07$	$8.60\mathrm{E}{+07}$	1.11E+07	$5.33\mathrm{E}{+}10$
	NEOP											$1.11E{+07}$	1.11E+07
NC	NC6H14	3.89E + 08	2.39E + 07	3.15E + 08	1.26E + 10	1.05E+09	3.98E + 08	1.94E + 08		8.35E + 06	1.04E + 08	3.84E + 06	1.51E + 10
M2	M2PE			$4.06\mathrm{E}{+07}$	1.94E+09	$2.20\mathrm{E}{+08}$					$_{1.73\mathrm{E}+08}$	$1.65\mathrm{E}{+06}$	$2.37\mathrm{E}{+09}$
	M3PE			$3.04\mathrm{E}{+07}$	9.69E + 08	$2.20\mathrm{E}{+08}$					1.04E+08		$1.32E{+09}$
	NC7H16	$1.67\mathrm{E}{+08}$	$4.11E{+07}$	$1.48E{+08}$	$1.35\mathrm{E}{+}10$	$3.79E \pm 08$	6.55E+07	$3.20E \pm 07$		$1.38E{+}06$	$2.98\mathrm{E}{+07}$	$1.94E{+}07$	1.44E + 10
	M2HEX					$1.42\mathrm{E}{+08}$	$5.10E{+}07$	$2.49\mathrm{E}{+07}$		$1.07\mathrm{E}{+06}$	$4.48E{+07}$		$2.64\mathrm{E}{+08}$
M3	M3HEX					$1.42\mathrm{E}{+08}$	$3.64\mathrm{E}{+07}$	$1.78E{+07}$		$7.64\mathrm{E}{+05}$	$2.98E{+07}$		$2.27\mathrm{E}{+08}$
	M22C4										3.47E+07		3.47E+07
	M23C4										3.47E+07		3.47E+07
	NC8H18			$6.13E{+}07$	$1.01\mathrm{E}{+}10$	$4.16E{+07}$	$5.75E{+07}$	$2.81E{+}07$		$1.21\mathrm{E}{+06}$	$1.70E{+08}$	$6.63E{+}06$	$1.04\mathrm{E}{+}10$
	NC9H20			$3.41\mathrm{E}{+07}$		$1.00\mathrm{E}{+09}$						$2.21\mathrm{E}{+06}$	$1.04\mathrm{E}{+09}$
	NC10H22			$4.30\mathrm{E}{+07}$		$1.94\mathrm{E}{+09}$	$2.56\mathrm{E}{+07}$	$1.25E{+}07$		$5.38E{+05}$		$^{3.32\mathrm{E}+06}$	$2.02\mathrm{E}{+09}$
NO	NC11H24			$1.68E{+07}$		7.90E+08	9.33E + 06	$4.56\mathrm{E}{+06}$		$1.96E{+}05$	$1.91E{+07}$	$1.21\mathrm{E}{+06}$	$8.41\mathrm{E}{+08}$
NC	NC12H26					5.58E + 07	$1.52\mathrm{E}{+08}$	7.44E+07		$3.20\mathrm{E}{+06}$	1.76E + 07		3.03E + 08
CH	CHEX		3.81E+07	1.04E + 07		2.26E + 08						$1.12\mathrm{E}{+06}$	2.75E + 08
Ethene C2H4	H4	$8.93E{+07}$	$^{2.49\mathrm{E}+09}$	$3.11\mathrm{E}{+}10$			$9.61\mathrm{E}{+08}$	$5.94\mathrm{E}{+}08$	4.38E+07		$1.18E{+09}$	$1.43E{+}08$	$3.66\mathrm{E}{+}10$
Propene C3H6	9Н	$5.95\mathrm{E}{+07}$	$5.21\mathrm{E}{+08}$	$5.33E{+08}$			$3.38\mathrm{E}{+08}$	9.90E+07	$1.95E{+07}$		$2.06\mathrm{E}{+08}$	$4.10E{+07}$	$1.82E{+09}$
н	HEXIENE	$5.05\mathrm{E}{+}06$	$^{1.28\mathrm{E}+07}$									$1.63E{+}07$	3.42E+07
BU	BUTIENE		$1.80E{+07}$	$6.24\mathrm{E}{+07}$							1.96E+07		9.99E+07
ME	MEPROPENE										$9.80\mathrm{E}{+06}$		9.80E+06
	TBUT2ENE										9.80E + 06		$9.80\mathrm{E}{+06}$
CB	CBUT2ENE										$9.80E \pm 06$		9.80E+06
	CPENT2ENE		$5.65\mathrm{E}{+}06$								$3.92\mathrm{E}{+06}$		$9.57\mathrm{E}{+06}$
	TPENT2ENE		$5.65\mathrm{E}{+}06$								3.92E + 06		$9.57\mathrm{E}{+06}$
	PENTIENE		$5.14\mathrm{E}{+}06$	$5.93\mathrm{E}{+06}$							$1.57\mathrm{E}{+07}$		$2.68\mathrm{E}{+07}$
ME	ME2BUT2ENE		$3.08\mathrm{E}{+06}$								7.84E + 06		$1.09E{+}07$
ME	ME3BUT1ENE		$3.08E \pm 06$								7.84E + 06		1.09E+07
ME	ME2BUT1ENE		$2.05\mathrm{E}{+06}$										2.05E+06
Ethyne C2H2	Н2	6.97E + 05	7.84E+08	3.45E + 08			8.95E+08	2.80E + 08	1.73E+07	1.09E+07	3.95E + 08	5.38E+07	2.78E + 09

Benzene BENZENE Toluene TOLUENE MXYL Xylenes OXYL PXYL PXYL TM123B TM124B TM135B TM135B	E 6.91E+07	4.64E+08	7.7										
ylbenzenes			3.74E+US	$3.05\mathrm{E}{+09}$		$2.16\mathrm{E}{+08}$	3.56E + 07		1.53E+06	$7.98E{+}07$	2.75E+07		$4.52\mathrm{E}{+09}$
	(E 8.49E+07	1.54E + 08	4.87E+07	2.59E + 09	2.16E + 09	4.88E+08	2.26E + 07		1.30E+06	6.79E+07	1.81E+07		5.63E + 09
	4.20E+07	1.32E+07	1.60E + 06	3.74E+08	1.25E+09	1.04E+08	9.52E+06		2.05E+05	1.86E+07	3.66E+06		1.81E+09
	$9.33E{+}06$	$1.32E{+}07$	$6.42E{+05}$	3.74E + 08	$3.12\mathrm{E}{+08}$	$1.04\mathrm{E}{+08}$	9.52E+06		$2.05\mathrm{E}{+05}$	$1.51\mathrm{E}{+07}$	$2.19\mathrm{E}{+06}$		$8.40\mathrm{E}{+08}$
		$1.32E{+07}$	$6.42\mathrm{E}{+}05$	3.74E + 08	$3.12E{+08}$	7.79E+07	7.14E + 06		$1.53E{+}05$	$1.86E{+}07$	$2.93\mathrm{E}{+06}$		$8.07\mathrm{E}{+08}$
	$6.21\mathrm{E}{+03}$	$_{1.06\mathrm{E}+06}$			$2.09\mathrm{E}{+07}$	1.79E+07				$3.33E{+}06$	$3.30E \pm 05$		4.35E + 07
TM135B	$6.21E{+03}$	$1.06\mathrm{E}{+06}$	$1.46\mathrm{E}{+07}$		7.11E+07	7.50E+07				7.76E + 06	$4.40\mathrm{E}{+05}$		$1.70\mathrm{E}{+08}$
SNada	$6.21E{+03}$	$1.06\mathrm{E}{+06}$			$2.09E{\pm}07$	$2.86E{+07}$				$3.33E{+}06$	$4.40\mathrm{E}{+05}$		5.43E + 07
EDENZ	1.36E+07		1.65E + 07		5.68E+07	7.76E+07	5.32E+07	1.53E+04		1.74E+08	3.93E+06		3.96E+08
PBENZ					$1.26E{\pm}07$	6.86E + 07	4.70E+07	$1.35E{+04}$		$2.79\mathrm{E}{+07}$	$1.73E{+}06$		$1.58\mathrm{E}{+08}$
IPBENZ					$4.60E{\pm}07$					$2.79\mathrm{E}{+07}$	$1.73E{+}06$		7.57E+07
E PETHTOL	J.				$4.18E{+06}$					$5.59\mathrm{E}{+07}$			$6.00E{\pm}07$
METHTOL METHTOL)L				$1.26E{\pm}07$					$5.59\mathrm{E}{+07}$			6.84E + 07
A OETHTOL)L									4.19E+07			$4.19E{+07}$
DIET35TOL	OL					$1.45E{+08}$	9.94E + 07	$2.86E{+04}$					$2.45\mathrm{E}{+08}$
DIME35EB	3B				$7.12E{+}07$	1.79E+07	1.23E + 07	$3.53\mathrm{E}{+03}$					$1.01E{+}08$
STYRENE	E		$1.68\mathrm{E}{+07}$		1.45E + 07	$1.65E{+}07$	1.13E+07	$3.25\mathrm{E}{+03}$					$5.91E{\pm}07$
BENZAL						$2.77\mathrm{E}{+07}$	1.90E+07	$5.46\mathrm{E}{+03}$					4.68E + 07
PHENOL			$1.86E{+07}$										$1.86E{+07}$
Formaldehyde	$2.74\mathrm{E}{+07}$	$5.76E{+}08$				$2.12\mathrm{E}{+08}$	$2.78\mathrm{E}{+08}$	$1.09E{+}07$		$1.23E{+09}$	$2.22\mathrm{E}{+07}$		$2.35\mathrm{E}{+09}$
СНЗСНО	$2.82E{+06}$	7.80E + 07	7.07E+07			5.74E + 07	$1.15E{+08}$	$2.09\mathrm{E}{+06}$		$2.22\mathrm{E}{+08}$	$5.17\mathrm{E}{+06}$		5.53E + 08
CZH5CHO	O $1.61E+06$	$5.91E{+07}$				$9.67\mathrm{E}{+}06$	1.94E+07	$3.52\mathrm{E}{+05}$		$8.41E{\pm}07$	$3.92E \pm 06$		$1.78\mathrm{E}{+08}$
es de	O $1.29E+04$	4.76E+07								$6.78E{\pm}07$	$3.16E{+}06$		$1.19E{+08}$
ећу	$1.29E{\pm}04$	4.76E + 07								$4.52\mathrm{E}{+07}$	$3.16\mathrm{E}{+}06$		9.60E + 07
A C4H9CHO	O $1.08E+04$	3.99E+07									$2.64\mathrm{E}{+}06$		4.25E+07
ACR	$1.67E {\pm}04$	$6.13E{+}07$				$1.50\mathrm{E}{+07}$	3.02E+07	$5.48E{+}05$			$4.06E{+}06$		$1.11E{+08}$
Q MACR	1.33E + 04	4.90E + 07									$3.25\mathrm{E}{+}06$		$5.23\mathrm{E}{+07}$
C4ALDB	1.33E + 04	4.90E + 07				$8.01E{\pm}06$	$1.61E{+}07$	$2.92\mathrm{E}{+05}$			$3.25\mathrm{E}{+}06$		$7.67\mathrm{E}{+07}$
MGLYOX	Σ									$4.52E{+07}$			4.52E+07
Alkadienes and C4H6	1.32E+07	$2.34\mathrm{E}{+}08$	3.10E + 08	$2.09\mathrm{E}{+}10$		$4.51E{+08}$	$1.21\mathrm{E}{+08}$	3.14E+07	$1.98E{+07}$	$2.84\mathrm{E}{+}08$	$1.98E{+}07$		$2.24\mathrm{E}{+}10$
Other Alkynes C5H8	$1.05E{\pm}07$	1.86E + 08		$1.66\mathrm{E}{+}10$							1.58E + 07	3.11E+09	2.00E + 10
НСООН	$1.27E{\pm}06$	7.07E + 08								$1.67\mathrm{E}{+08}$	$5.23\mathrm{E}{+07}$		$9.28\mathrm{E}{+08}$
CH3CO2H	H $9.72E+05$	$5.42\mathrm{E}{+08}$	$4.37E{+07}$							$^{1.28\mathrm{E}+08}$	$4.01E{+}07$		7.55E + 08
Olganic Acids PROPACID	ID 7.88E+05	4.39E + 08								$1.04E{\pm}08$	3.25E+07		$5.77\mathrm{E}{+08}$
ACO2H			$3.64E\!+\!07$										3.64E+07

E				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	4 1 4 1		4 1 4 1			4	4 1 4 1		
Type	MCM.species	SNAP.1	SNAF.2	SNAP.34	SNAP.5	SNAP.6	SNAF.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
	СНЗОН	$5.18\mathrm{E}{+04}$		$2.12\mathrm{E}{+06}$		$2.00\mathrm{E}{+09}$					$4.03E{+07}$	1.81E+07		$2.07\mathrm{E}{+09}$
	C2H5OH	$3.60E \pm 04$	9.73E+08	$5.98E{+07}$		$2.05\mathrm{E}{+09}$					$2.80E{+07}$	4.77E+07		$3.16\mathrm{E}{+09}$
	NPROPOL	$2.76\mathrm{E}{+04}$				$1.67\mathrm{E}{+08}$					$2.15\mathrm{E}{+07}$	$5.78E{+}06$		$1.94\mathrm{E}{+08}$
	IPROPOL	$2.76\mathrm{E}{+04}$		$7.52\mathrm{E}{+05}$		$2.67\mathrm{E}{+08}$					$2.15\mathrm{E}{+07}$			$2.89\mathrm{E}{+}08$
	NBUTOL	$2.24\mathrm{E}{+04}$				$1.62\mathrm{E}{+08}$					$1.74E{+}07$			$1.80E{+}08$
	BUT2OL	$2.24\mathrm{E}{+04}$				$1.08E{+08}$					$1.74\mathrm{E}{+07}$	7.80E+06		$1.34E{+}08$
	IBUTOL	$2.24\mathrm{E}{+04}$				$6.77\mathrm{E}{+07}$					$1.74\mathrm{E}{+07}$			$8.51E{+07}$
	TBUTOL	$2.24\mathrm{E}{+04}$									1.74E + 07			1.74E + 07
slo	PECOH	$1.88E{+04}$									$^{1.46\mathrm{E}+07}$			1.47E + 07
оцоэ	IPEAOH	$1.88E{+04}$									$^{1.46\mathrm{E}+07}$			1.47E + 07
·Ι∀	ME3BUOL	$1.88E{+04}$									$1.46E{+07}$			$1.47\mathrm{E}{+07}$
	IPECOH	$1.88E{+04}$									$1.46\mathrm{E}{+07}$			$1.47\mathrm{E}{+07}$
	IPEBOH	$1.88E{+04}$									$1.46\mathrm{E}{+07}$			$1.47\mathrm{E}{+07}$
	CYHEXOL	$1.66\mathrm{E}{+04}$									$1.29\mathrm{E}{+07}$			$1.29\mathrm{E}{+07}$
	MIBKAOH	$1.43\mathrm{E}{+04}$				$3.46\mathrm{E}{+07}$					$1.11E{+07}$			$4.57\mathrm{E}{+07}$
	ETHGLY	$2.67\mathrm{E}{+04}$				$4.85E{+07}$					$2.08\mathrm{E}{+07}$			$6.93E{+}07$
	PROPGLY	$2.18\mathrm{E}{+04}$				$9.67\mathrm{E}{+07}$					$1.69\mathrm{E}{+07}$			$1.14E{+}08$
	С6Н5СН2ОН					$2.78\mathrm{E}{+07}$								$2.78\mathrm{E}{+07}$
	MBO	1.93E + 04									$1.50\mathrm{E}{+07}$			$1.50\mathrm{E}{+07}$
	СНЗСОСНЗ	$1.29E{+}05$	$1.08E{\pm}07$	$1.66\mathrm{E}{+08}$		$2.13E{+09}$	6.45E + 06	3.59E+07			$1.73E{+}08$	$1.06E{+}06$		$2.53\mathrm{E}{+09}$
	MEK		$8.73E{+}06$			$1.03\mathrm{E}{+09}$						$8.54\mathrm{E}{+05}$		$1.04\mathrm{E}{+09}$
	MPRK		$7.31E{+}06$									$7.15E{+}05$		$8.03E{+}06$
s	DIEK		$7.31E{+}06$									$7.15E{+}05$		$8.03\mathrm{E}{+06}$
səuo	MIPK		$7.31E{+}06$									$7.15E{+}05$		$8.03\mathrm{E}{+06}$
Ket	HEX2ONE		$6.29E{+}06$									$6.15\mathrm{E}{+}05$		$6.90E{\pm}06$
	HEX3ONE		$6.29E{+}06$									$6.15\mathrm{E}{+}05$		$6.90E{\pm}06$
	MIBK		$6.29E{\pm}06$			$6.18E{+08}$						$6.15E{+}05$		$6.25\mathrm{E}{+08}$
	MTBK		$_{6.29\mathrm{E}+06}$									$6.15E{+}05$		$6.90E{\pm}06$
	CYHEXONE		$6.42E{\pm}06$	$8.91E{\pm}06$		$5.05\mathrm{E}{+07}$						$_{6.28\mathrm{E}+05}$		6.64E + 07
	APINENE											$2.28\mathrm{E}{+06}$	$3.89\mathrm{E}{+08}$	$3.91\mathrm{E}{+08}$
Terpenes	BPINENE											$^{2.28\mathrm{E}+06}$	$3.89E{+08}$	$3.91E{+08}$
	LIMONENE					$6.87\mathrm{E}{+07}$						3.42E + 06	$3.89\mathrm{E}{+08}$	$4.61E{+08}$
	METHACET			$6.18E{\pm}07$										$6.18E{+07}$
	ETHACET			$7.08E{\pm}06$		$1.38E{+09}$								$1.39E{+09}$
sies	NBUTACET					$9.65\mathrm{E}{+}08$								$9.65\mathrm{E}{+08}$
⊧s <u>⊣</u>	IPROACET					3.40E + 08								3.40E + 08
	СНЗОСНО			6.93E + 06										6.93E + 06
	NPROACET					1.27E+08						5.94E+06		1.33E+08

CH9OCH3 CH9OCH3 Sabehor CA3E+06 CA7E+07 CA2E+07 CA2E+08 CA2E+07 CA2E+08 CA2E	Type	MCM.species	SNAP.1	SNAP.2	SNAP.34	SNAP.5	SNAP.6	SNAP.71	SNAP.72	SNAP.73	SNAP.74	SNAP.8	SNAP.9	BVOC	Total
MTBE 2.09E+07 9.06E+07 9.06E+08 9.06E+08 <th< td=""><td></td><td>СНЗОСНЗ</td><td></td><td>3.36E+07</td><td>2.43E + 08</td><td></td><td>7.77E+07</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.54E + 08</td></th<>		СНЗОСНЗ		3.36E+07	2.43E + 08		7.77E+07								3.54E + 08
MTBE 1.76E+O7 6.57E+O7 6.57E+O7 6.57E+O7 6.57E+O7 6.57E+O7 9.40E+O7 9.40E+O8 9.40E+O7 9.40E+O8 9.40E+O8 9.40E+O8 9.43E+O8 9.43E+O8 9.43E+O8 9.43E+O8 9.43E+O8 9.75E+O8 9.75E+O8 <th< td=""><td></td><td>DIETETHER</td><td></td><td>$2.09\mathrm{E}{+07}$</td><td>$9.06E{\pm}07$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$1.11E{+08}$</td></th<>		DIETETHER		$2.09\mathrm{E}{+07}$	$9.06E{\pm}07$										$1.11E{+08}$
DIPPRETHER 1.52E+07 6.57E+07 Page		MTBE		$1.76\mathrm{E}{+07}$											$1.76E{+}07$
ETBE 1.52E+07 2.04E+07 2.04E+08 2.		DIIPRETHER		$_{1.52\mathrm{E}+07}$	$6.57\mathrm{E}{+07}$								1.47E + 07		$9.56\mathrm{E}{+07}$
MO2EOL 1.728+07 400E+07 940E+07 940E+08 940E+08 <t< td=""><td>ers.</td><td>ETBE</td><td></td><td>$_{1.52\mathrm{E}+07}$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$^{1.52\mathrm{E}+07}$</td></t<>	ers.	ETBE		$_{1.52\mathrm{E}+07}$											$^{1.52\mathrm{E}+07}$
EOX2EOL 1.72E+07 7.94E+07 7.94E+07 7.94E+07 7.94E+07 7.94E+07 7.94E+08 80	पभ्ञ	MO2EOL		$2.04\mathrm{E}{+07}$			9.40E + 07								$1.14E{+08}$
PR2OHMOX 1.72E+O7 1.59E+08		EOX2EOL		$_{1.72\mathrm{E}+07}$			7.94E+07								$9.66\mathrm{E}{+07}$
BOX2ETOH 1.31E+07 7.62E+08		PR2OHMOX		$1.72\mathrm{E}{+07}$			1.59E + 08								$^{1.76\mathrm{E}+08}$
EOX2PROL 1.17E+07 4.31E+08 6.16E+08		BUOX2ETOH		$1.31E{+}07$			7.62E + 08								7.75E + 08
CH2CL2 1.36E+08 6.16E+08 6		BOX2PROL		$1.17\mathrm{E}{+07}$											$1.17E{+}07$
CH3CH2CL CH3CCL3 TRICLETH CDICLETH CDICLETH CDICLETH CDICLETH CDICLETH CDICLETH CDICLETH CDICLETH CH3CL CH3CL CCL2CH CCL2		CH2CL2			1.75E+08		6.16E + 08						1.09E+06		7.92E + 08
CH3CCL3 4.31E+08 4.31E+08 4.31E+08 4.31E+08 4.31E+08 4.31E+08 4.31E+07 4.31E+08 4.31E+09		CH3CH2CL			$1.36\mathrm{E}{+08}$										$1.36E{+08}$
TRICLETH CDICLETH CDICLETH (4.51E+07) (4.51E	suc	CH3CCL3					$4.31E{+08}$						3.47E + 05		$4.31E{+08}$
CDICLETH TDICLETH TDICLETH (4.51E+07 CH3CL	про	TRICLETH			$6.66E{\pm}07$		9.75E + 08						3.52E + 05		$1.04\mathrm{E}{+09}$
TDICLETH CH3CL CH3CL CH3CL CCL2CH2 CCL2CH2 CCL2CH3 CCL2CH3 CCL2CH3 CCL2CH3 CCL2CH3 CCL2CH3 CCL2CH3 CCCL2CH3 CCCCCCCC CCCCCCC CCCCCCCC CCCCCCCCC CCCC	30.I	CDICLETH			$4.51E{+07}$								7.11E+05		$4.58\mathrm{E}{+07}$
CH3CL CCL2CH2 CCL2CH3 CHCL2CH3 CHCL2CH3 CHCL2CH3 CHCL2CH3 VINCL CHCL2CH3 VINCL TCE	ΡΛΙ	TDICLETH			$4.51E{+07}$								4.74E + 05		$4.56\mathrm{E}{+07}$
CCL2CH2 CHCL2CH3 CHCL2CH3 CHCL2CH3 VINCL TCE TCE CHCL2CH3 4.51E+07 2.36E+08 2.36E+0	I þə	CH3CL			$1.39E\!+\!08$										$1.39E{+}08$
CHCL2CH3 VINCL TCE TCE TCE TCE TCH TCL2CH3 A.20E+07 A.20E+07 TCE TCH	nst	CCL2CH2			$4.51\mathrm{E}{+07}$										$4.51E{+}07$
VINCL TCE 1.05E+07 2.36E+08 2.	irol.	CHCL2CH3											5.35E + 05		$5.35\mathrm{E}{+}05$
TCE CHCL3	СР	VINCL			$4.20\mathrm{E}{+07}$										$4.20\mathrm{E}{+07}$
CHCL3 $ 4.30E+09 1.12E+10 3.85E+10 4.07E+11 2.73E+10 6.00E+09 2.47E+09 2.16E+08 1.85E+08 6.61E+09 $		TCE			$1.05\mathrm{E}{+07}$		$2.36\mathrm{E}{+08}$						$6.93E{+}05$		$2.48\mathrm{E}{+08}$
4.30E + 09 1.12E + 10 3.85E + 10 4.07E + 11 2.73E + 10 6.00E + 09 2.47E + 09 2.16E + 08 1.85E + 08 6.61E + 09 4.30E + 09 4.3		CHCL3			2.93E+07										2.93E+07
	Tot	al	4.30E + 09	$1.12E{+}10$	$3.85E{+}10$	4.07E + 11	2.73E + 10	6.00E + 09	2.47E + 09	2.16E + 08	$1.85E{+08}$	6.61E + 09	8.82E + 08	$4.28E{+09}$	5.09E + 11

⁴⁸ 2.3 Vertical Mixing with Diurnal Boundary Layer Height

- The base boxmodel (Sect. 2.1) includes a constant boundary layer height of 1 km and no interactions (mixing) with the free troposphere.
- A parameterisation of the diurnal profile of the planetary boundary layer (PBL) height over
 Los Angeles was provided by Boris Bonn based on data from the CARES field campaign
 (CARB, 2008).

• The PBL height was calculated at every time point for the model run and then read into
the boxmodel at each time point .

correctly

plot

check if

reference

- The concentrations of the chemical species within the PBL are diluted due to the larger mixing volume when the PBL height increases at the beginning of the day, also the increasing PBL height induces mixing of chemical species from the free troposphere with those chemical species within the PBL i.e. vertical mixing. When the PBL height collapses during night giving the stable nocturnal boundary layer, this traps the chemical species into a smaller volume thus increasing the concentrations of the chemical species.
- This vertical mixing scheme was implemented into the boxmodel using the same approach of Lourens (2012).
- The mixing ratios of O3, CO and CH4 in the free troposphere were respectively set to
 50 ppbv, 116 ppbv and 1.8 ppmv. These condions were taken from the MATCH-MPIC
 chemical weather forecast model on the 27th March (the start date of the simulations). The
 model results (http://cwf.iass-potsdam.de/) at the 700 hPa height were chosen and the
 daily average was used as input into the boxmodel.

69

• Tagged free troposphere species were also included in the boxmodel to determine effect of free troposphere species on surface ozone levels.

check reference

71 3 Results

72 4 Conclusions

73 References

- ⁷⁴ CARB. 2010 CalNex White Paper: Research at the Nexus of Air Quality and Climate Change.
- 75 Technical report, California Air Resources Board, 2008.
- J. Coates and T. M. Butler. A comparison of chemical mechanisms using tagged ozone production
- potential (TOPP) analysis. Atmospheric Chemistry and Physics, 15(15):8795–8808, 2015.
- L. K. Emmons, S. Walters, P. G. Hess, J.-F. Lamarque, G. G. Pfister, D. Fillmore, C. Granier,
- A. Guenther, D. Kinnison, T. Laepple, J. Orlando, X. Tie, G. Tyndall, C. Wiedinmyer, S. L.
- 80 Baughcum, and S. Kloster. Description and evaluation of the Model for Ozone and Related
- chemical Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3:43-67, 2010.
- 32 J. J. P. Kuenen, A. J. H. Visschedijk, M. Jozwicka, and H. A. C. Denier van der Gon.
- 83 TNO-MACC II emission inventory; a multi-year (2003–2009) consistent high-resolution european
- 84 emission inventory for air quality modelling. Atmospheric Chemistry and Physics, 14(20):
- въ 10963–10976, 2014.
- 86 AsM Lourens. Air quality in the Johannesburg-Pretoria megacity: its regional influence and
- 37 identification of parameters that could mitigate pollution. PhD thesis, North-West University,
- 88 Potchefstroom Campus, 2012.
- 89 N. Passant. Speciation of UK emissions of non-methane volatile organic compounds. Technical
- 90 report, DEFRA, Oxon, UK., 2002.
- 91 George Pouliot, Hugo A.C. Denier van der Gon, Jeroen Kuenen, Junhua Zhang, Michael D. Moran,
- and Paul A. Makar. Analysis of the emission inventories and model-ready emission datasets of
- Europe and North America for phase 2 of the AQMEII project. Atmospheric Environment, 115:
- 94 345-360, 2015.
- 95 Andrew Rickard, Jenny Young, M. J. Pilling, M. E. Jenkin, Stephen Pascoe, and S. M. Saunders.
- The Master Chemical Mechanism Version MCM v3.2. http://mcm.leeds.ac.uk/MCMv3.2/, 2015.
- 97 [Online; accessed 25-March-2015].

- D. Simpson, A. Benedictow, H. Berge, R. Bergström, L. D. Emberson, H. Fagerli, C. R. Flechard,
- 99 G. D. Hayman, M. Gauss, J. E. Jonson, M. E. Jenkin, A. Nyíri, C. Richter, V. S. Semeena,
- S. Tsyro, J.-P. Tuovinen, Á. Valdebenito, and P. Wind. The EMEP MSC-W chemical transport
- model technical description. Atmospheric Chemistry and Physics, 12(16):7825–7865, 2012.