# Dynamical models of disease spread

Jonathan Dushoff, McMaster University

National Taiwan University College of Public Health

March 2023

## Outline

## What is dynamical modeling?

#### Modeling approaches

Conceptual modeling

Deterministic models

C. I I I I I

Stochastic models

Statistical fitting

#### Limitations

Heterogeneity

Behavioural changes



#### Measles reports from England and Wales



► Start with rules about how things change in short time steps





- ▶ Start with rules about how things change in short time steps
  - Usually based on individuals





- ▶ Start with rules about how things change in short time steps
  - Usually based on individuals
- Calculate results over longer time periods





- ▶ Start with rules about how things change in short time steps
  - Usually based on individuals
- Calculate results over longer time periods
  - Usually about populations





- Start with rules about how things change in short time steps
  - Usually based on individuals
- Calculate results over longer time periods
  - Usually about populations

► A dynamic model is based on a model world



- A dynamic model is based on a model world
- ► The model world has *enough* assumptions to allow us to calculate dynamics



- A dynamic model is based on a model world
- The model world has enough assumptions to allow us to calculate dynamics
- ► The model world is *simpler* than the real world



- A dynamic model is based on a model world
- The model world has enough assumptions to allow us to calculate dynamics
- ► The model world is *simpler* than the real world
- Essentially, all models are wrong, but some are useful. – Box and Draper (1987), Empirical Model Building . . .



- A dynamic model is based on a model world
- The model world has enough assumptions to allow us to calculate dynamics
- ► The model world is *simpler* than the real world
- Essentially, all models are wrong, but some are useful. – Box and Draper (1987), Empirical Model Building...



► Divide people into categories:



▶ Divide people into categories:



► Susceptible: can be infected

Divide people into categories:



- Susceptible: can be infected
- ► Infectious: can infect others

Divide people into categories:



- Susceptible: can be infected
- Infectious: can infect others
- ► Recovered: cannot be infected

Divide people into categories:



- Susceptible: can be infected
- Infectious: can infect others
- Recovered: cannot be infected

# What determines transition rates? (preview)



## What determines transition rates?



► People get better independently

## What determines transition rates?



- ▶ People get better independently
- ► People get infected by infectious people

#### What determines transition rates?



- ► People get better independently
- ▶ People get infected by infectious people

## Outline

#### What is dynamical modeling?

## Modeling approaches

Conceptual modeling Conceptual modeling Deterministic models Stochastic models Statistical fitting

#### Limitations

Heterogeneity
Behavioural changes

## Outline

#### What is dynamical modeling?

# Modeling approaches Conceptual modeling

Conceptual modeling
Deterministic models
Stochastic models
Statistical fitting

#### Limitations

Heterogeneity
Behavioural changes





## Outline

#### What is dynamical modeling?

## Modeling approaches

Conceptual modeling

#### Conceptual modeling

Deterministic models

Stochastic models

Statistical fitting

#### Limitations

Heterogeneity

Behavioural changes



► What is the final result?



- ▶ What is the final result?
- ► How do disease levels change?



- ▶ What is the final result?
- ► How do disease levels change?
- ► When does disease increase, decrease?



- ► What is the final result?
- ► How do disease levels change?
- ▶ When does disease increase, decrease?

► The number of people recovering or becoming infected is *proportional* to the number infected

- ► The number of people recovering or becoming infected is *proportional* to the number infected
  - ▶ I infect three people, they each infect 3 people . . .

- ► The number of people recovering or becoming infected is *proportional* to the number infected
  - ▶ I infect three people, they each infect 3 people . . .
  - ► How fast does disease grow?

- ► The number of people recovering or becoming infected is *proportional* to the number infected
  - ▶ I infect three people, they each infect 3 people . . .
  - ► How fast does disease grow?
  - ► How quickly do we need to respond?

- ► The number of people recovering or becoming infected is *proportional* to the number infected
  - ▶ I infect three people, they each infect 3 people . . .
  - How fast does disease grow?
  - How quickly do we need to respond?

## little r

► We measure epidemic *speed* using little *r*:

## little r

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]
  - ightharpoonup Disease increases like  $e^{rt}$

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]
  - Disease increases like e<sup>rt</sup>
- ► Characteristic time scale is C = 1/r

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]
  - Disease increases like e<sup>rt</sup>
- ▶ Characteristic time scale is C = 1/r
  - ► Closelr related to doubling time

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]
  - Disease increases like e<sup>rt</sup>
- ▶ Characteristic time scale is C = 1/r
  - Closelr related to doubling time
  - ▶ COVID,  $C \approx 1$ month

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]
  - Disease increases like e<sup>rt</sup>
- ▶ Characteristic time scale is C = 1/r
  - Closelr related to doubling time
  - ▶ COVID,  $C \approx 1$ month
  - ▶ HIV in SSA,  $C \approx 18$ month

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]
  - Disease increases like e<sup>rt</sup>
- ▶ Characteristic time scale is C = 1/r
  - Closelr related to doubling time
  - ▶ COVID,  $C \approx 1$ month
  - ▶ HIV in SSA,  $C \approx 18$ month
- ▶ Often focus on initial period (may also say  $r_0$ )

- We measure epidemic speed using little r:
  - Units: [1/time]
  - Disease increases like e<sup>rt</sup>
- ▶ Characteristic time scale is C = 1/r
  - Closelr related to doubling time
  - ▶ COVID,  $C \approx 1$ month
  - ▶ HIV in SSA,  $C \approx 18$ month
- ▶ Often focus on initial period (may also say  $r_0$ )

## Exponential growth



## Result: disease does not always spread



▶ If rate out of I is faster than the rate into I

## Result: disease does not always spread



- ▶ If rate out of I is faster than the rate into I
- ightharpoonup I 
  ightarrow 0 and the outbreak stops

## Result: disease does not always spread



- ▶ If rate out of I is faster than the rate into I
- ightharpoonup I 
  ightarrow 0 and the outbreak stops

$$\blacktriangleright \ \mathcal{R} = \beta/\gamma = \beta D = (cp)D$$

▶ R is the number of people who would be infected by an infectious individual *in a fully susceptible population*.

$$ightharpoonup \mathcal{R} = \beta/\gamma = \beta D = (cp)D$$

c: Contact Rate

- $\triangleright \mathcal{R} = \beta/\gamma = \beta D = (cp)D$ 
  - c: Contact Rate
  - ▶ p: Probability of transmission (infectivity)

- $\triangleright \mathcal{R} = \beta/\gamma = \beta D = (cp)D$ 
  - c: Contact Rate
  - p: Probability of transmission (infectivity)
  - ► *D*: Average duration of infection

- $\triangleright \mathcal{R} = \beta/\gamma = \beta D = (cp)D$ 
  - c: Contact Rate
  - p: Probability of transmission (infectivity)
  - D: Average duration of infection
- ▶ A disease can invade a population if and only if R > 1.

- $\triangleright \mathcal{R} = \beta/\gamma = \beta D = (cp)D$ 
  - c: Contact Rate
  - p: Probability of transmission (infectivity)
  - D: Average duration of infection
- lacktriangle A disease can invade a population if and only if  $\mathcal{R} > 1$ .
- ▶ Often focus on initial period (may also say  $\mathcal{R}_0$ )

- $\triangleright \mathcal{R} = \beta/\gamma = \beta D = (cp)D$ 
  - c: Contact Rate
  - p: Probability of transmission (infectivity)
  - D: Average duration of infection
- lacktriangle A disease can invade a population if and only if  ${\cal R}>1$ .
- ▶ Often focus on initial period (may also say  $\mathcal{R}_0$ )

### Yellow fever in Panama

#### endemic equilibrium





# Example: Dengue (Taiwan CDC)

#### Indigenous cases



#### Imported cases





▶ When S gets low, then I goes down and the outbreak stops



- ▶ When S gets low, then I goes down and the outbreak stops
- ► There is not always a reason why you didn't get infected!



- ▶ When S gets low, then I goes down and the outbreak stops
- ▶ There is not always a reason why you didn't get infected!
  - Everyone in this model is assumed to be the same



- ▶ When S gets low, then I goes down and the outbreak stops
- ▶ There is not always a reason why you didn't get infected!
  - Everyone in this model is assumed to be the same

▶ We can *implement* the model and see what it's going to do

- ▶ We can *implement* the model and see what it's going to do
- ► This requires more assumptions, for example:

- ▶ We can *implement* the model and see what it's going to do
- ▶ This requires more assumptions, for example:
  - ► Time steps or continuous time?

- ▶ We can *implement* the model and see what it's going to do
- This requires more assumptions, for example:
  - Time steps or continuous time?
  - ► Deterministic or stochastic?

- ▶ We can *implement* the model and see what it's going to do
- This requires more assumptions, for example:
  - Time steps or continuous time?
  - Deterministic or stochastic?

### Outline

#### What is dynamical modeling?

#### Modeling approaches

Conceptual modeling Conceptual modeling

#### Deterministic models

Stochastic models
Statistical fitting

#### Limitations

Heterogeneity Behavioural changes

## **Simulations**



### **Simulations**





# Simulations (repeat)



# Closing the circle



# Closing the circle



▶ \* Births and deaths



▶ \* Births and deaths

# Closing the circle (repeat)







\* Loss of immunity



\* Loss of immunity

#### Processes and rates



| Event                                        | transition | rate                                    | Effect $(S, I)$           |
|----------------------------------------------|------------|-----------------------------------------|---------------------------|
| Infection<br>Recovery<br>Loss of<br>immunity |            | $\beta SI/N \\ \gamma I \\ \mu (N-S-I)$ | (-1,1)<br>(0,-1)<br>(1,0) |

#### Result: Diseases tend to oscillate



# Result: Oscillations tend to be damped



# What is missing from our model world? (repeat)

#### Measles reports from England and Wales



► Almost everything! So what's important?



Almost everything! So what's important?

**>** \*



- Almost everything! So what's important?
- \* Seasonality



- Almost everything! So what's important?
- \* Seasonality

\*



- Almost everything! So what's important?
- \* Seasonality
- \* Chinese New Year!



- Almost everything! So what's important?
- \* Seasonality
- ► \* Chinese New Year!

**▶** \*



- Almost everything! So what's important?
- \* Seasonality
- ► \* Chinese New Year!
- \* School terms



- Almost everything! So what's important?
- \* Seasonality
- ► \* Chinese New Year!
- \* School terms
- **▶** ≯



- Almost everything! So what's important?
- \* Seasonality
- ► \* Chinese New Year!
- \* School terms
- ▶ \* Randomness



- Almost everything! So what's important?
- \* Seasonality
- ► \* Chinese New Year!
- \* School terms
- \* Randomness
- **\***



- Almost everything! So what's important?
- \* Seasonality
- \* Chinese New Year!
- \* School terms
- \* Randomness
- ▶ \* Any of these things can interact with damped oscillations



- Almost everything! So what's important?
- \* Seasonality
- \* Chinese New Year!
- \* School terms
- \* Randomness
- ▶ \* Any of these things can interact with damped oscillations



► How much Ebola spread occurs before vs. after death



- ► How much Ebola spread occurs before vs. after death
- ► Highly context dependent



- ► How much Ebola spread occurs before vs. after death
- ► Highly context dependent
  - ► Funeral practices, disease knowledge



- ► How much Ebola spread occurs before vs. after death
- Highly context dependent
  - Funeral practices, disease knowledge
- ► Weitz and Dushoff Scientific Reports 5:8751.



- ► How much Ebola spread occurs before vs. after death
- Highly context dependent
  - Funeral practices, disease knowledge
- Weitz and Dushoff Scientific Reports 5:8751.



#### Model with latent period



#### Include post-death transmission



# Result: generation interval links $r\mathcal{R}(preview)$



#### Result: generation interval links $r\mathcal{R}$

► If we know  $\mathcal{R}$ , faster generations mean faster spread (bigger r)



#### Result: generation interval links $r\mathcal{R}$

- ► If we know  $\mathcal{R}$ , faster generations mean faster spread (bigger r)
- ► If we know *r*, slower generations mean stronger spread (bigger  $\mathcal{R}$ )



#### Result: generation interval links $r\mathcal{R}$

- ► If we know  $\mathcal{R}$ , faster generations mean faster spread (bigger r)
- ▶ If we know r, slower generations mean stronger spread (bigger R)



# Example: COVID



# Example: COVID



#### Result: It is easier to reduce the peak than the total cases



# Example: COVID waves (preview)



# Example: COVID waves (preview)





## Example: COVID waves (preview)

New Variants of Concern (VOCs) and Early Variants (non-VOCs)



► alpha variant was increasing even though total was decreasing



- alpha variant was increasing even though total was decreasing
- using a dynamical perspective allows us to project the effect of this



- alpha variant was increasing even though total was decreasing
- using a dynamical perspective allows us to project the effect of this



### Outline

#### What is dynamical modeling?

#### Modeling approaches

Conceptual modeling
Conceptual modeling

Stochastic models

Statistical fitting

#### Limitations

Heterogeneity
Behavioural changes

| Event                                        | transition | rate                                    | Effect $(S, I)$           |
|----------------------------------------------|------------|-----------------------------------------|---------------------------|
| Infection<br>Recovery<br>Loss of<br>immunity | $I \to R$  | $\beta SI/N \\ \gamma I \\ \mu (N-S-I)$ | (-1,1)<br>(0,-1)<br>(1,0) |

► We can add random changes to the rates

| Event                                        | transition | rate                                    | Effect $(S, I)$           |
|----------------------------------------------|------------|-----------------------------------------|---------------------------|
| Infection<br>Recovery<br>Loss of<br>immunity | ·-         | $\beta SI/N \\ \gamma I \\ \mu (N-S-I)$ | (-1,1)<br>(0,-1)<br>(1,0) |

- ▶ We can add random changes to the rates
  - ightharpoonup Contact rate  $(\beta)$ , for example, may go up and down for reasons we can't predict

| Event                                        | transition | rate                                    | Effect $(S, I)$           |
|----------------------------------------------|------------|-----------------------------------------|---------------------------|
| Infection<br>Recovery<br>Loss of<br>immunity | ·-         | $\beta SI/N \\ \gamma I \\ \mu (N-S-I)$ | (-1,1)<br>(0,-1)<br>(1,0) |

- We can add random changes to the rates
  - Contact rate  $(\beta)$ , for example, may go up and down for reasons we can't predict
- ► We also get a stochastic model even by just treating individuals as individuals!

| Event                                        | transition | rate                                    | Effect $(S, I)$           |
|----------------------------------------------|------------|-----------------------------------------|---------------------------|
| Infection<br>Recovery<br>Loss of<br>immunity |            | $\beta SI/N \\ \gamma I \\ \mu (N-S-I)$ | (-1,1)<br>(0,-1)<br>(1,0) |

- We can add random changes to the rates
  - Contact rate  $(\beta)$ , for example, may go up and down for reasons we can't predict
- We also get a stochastic model even by just treating individuals as individuals!

# Deterministic spread



# Demographic spread



## Demographic spread



► Demographic refers to the *minimum* stochasticity corresponding to treating individuals as individuals



## Demographic spread



 Demographic refers to the minimum stochasticity corresponding to treating individuals as individuals



#### Result: outbreaks can die out at random

▶ In simple models, the probability of a single introduction going extinct at random is  $1/\mathcal{R}$ 



#### Result: outbreaks can die out at random

- In simple models, the probability of a single introduction going extinct at random is  $1/\mathcal{R}$
- ► If an introduction does not lead to an outbreak, there's not always a reason



#### Result: outbreaks can die out at random

- In simple models, the probability of a single introduction going extinct at random is  $1/\mathcal{R}$
- ▶ If an introduction does not lead to an outbreak, there's not always a reason



# Result: Pattern of outbreak sizes is related to $\mathcal{R}(repeat)$

#### Indigenous cases



#### Imported cases



## Result: stochasticity interacts with oscillations (preview)



### Result: stochasticity interacts with oscillations



### Outline

#### What is dynamical modeling?

#### Modeling approaches

Conceptual modeling

Deterministic models

Stochastic models

Statistical fitting

#### Limitations

Heterogeneity

Behavioural changes





#### Sierra Leo

► How certain or uncertain are our projections?



### Sierra Leo

- How certain or uncertain are our projections?
- ► What else do we need to know?



### Sierra Leo

- How certain or uncertain are our projections?
- ► What else do we need to know?



### Outline

#### What is dynamical modeling?

### Modeling approaches

Conceptual modeling Conceptual modeling Deterministic models Stochastic models

#### Limitations

Heterogeneity Behavioural changes

### Outline

#### What is dynamical modeling?

#### Modeling approaches

Conceptual modeling Conceptual modeling Deterministic models

Stochastic models

Statistical fitting

#### Limitations

Heterogeneity

Behavioural changes



► Simple models treat the world like this cup



- Simple models treat the world like this cup
- ► People are all the same



- Simple models treat the world like this cup
- ▶ People are all the same
- ► Perfectly mixed



- Simple models treat the world like this cup
- ▶ People are all the same
- ► Perfectly mixed
- ► Lots of people



- Simple models treat the world like this cup
- People are all the same
- Perfectly mixed
- Lots of people
  - (for deterministic models)



- Simple models treat the world like this cup
- ▶ People are all the same
- Perfectly mixed
- Lots of people
  - (for deterministic models)

# Human heterogeneity



Human heterogeneity



# Human heterogeneity



## Example: Gonorrhea

## endemic equilibrium



## Example: Gonorrhea

## endemic equilibrium



## Example: Gonorrhea

## endemic equilibrium



► Disease levels are more resistant to change



- Disease levels are more resistant to change
- ► Higher when averaged transmission is low

# endemic equilibrium 1.0 | Coefficient of variation | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |

- Disease levels are more resistant to change
- ► Higher when averaged transmission is low
- Lower when averaged transmission is high

# endemic equilibrium 1.0 | Coefficient of variation | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |

- Disease levels are more resistant to change
- Higher when averaged transmission is low
- Lower when averaged transmission is high

# endemic equilibrium 1.0 | Coefficient of variation | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |

# Example: HIV



# Example: HIV



## Outline

## What is dynamical modeling?

## Modeling approaches

Conceptual modeling Conceptual modeling Deterministic models Stochastic models

Statistical fitting

#### Limitations

Heterogeneity

Behavioural changes

## Behavioural changes

► I can calculate the motion of heavenly bodies, but not the madness of people. — Isaac Newton



## Behavioural changes

► I can calculate the motion of heavenly bodies, but not the madness of people. – Isaac Newton



# Example: COVID



## Example: HIV



# Example: Dengue (Taiwan CDC)

## Indigenous cases



### Imported cases



## Example: monkeypox



## Example: COVID awareness



Weitz et al.

https://www.pnas.org/doi/10.1073/pnas.2009911117

▶ Dynamic models are an essential tool to link scales

- Dynamic models are an essential tool to link scales
- ► Very simple models can provide useful insights

- Dynamic models are an essential tool to link scales
- Very simple models can provide useful insights
- ► More complex models can provide more detail, but also require more assumptions, and more choices

- Dynamic models are an essential tool to link scales
- Very simple models can provide useful insights
- More complex models can provide more detail, but also require more assumptions, and more choices
  - ► Statistical fitting can guide in interpretation

- Dynamic models are an essential tool to link scales
- Very simple models can provide useful insights
- More complex models can provide more detail, but also require more assumptions, and more choices
  - Statistical fitting can guide in interpretation
- ▶ We can evaluate assumptions, and make better models

- Dynamic models are an essential tool to link scales
- Very simple models can provide useful insights
- More complex models can provide more detail, but also require more assumptions, and more choices
  - Statistical fitting can guide in interpretation
- We can evaluate assumptions, and make better models