



## Efficient electrocatalytic desulfurization and synchronous hydrogen evolution from H<sub>2</sub>S via anti-sulfuretted NiSe nanowire array catalyst

Chao Duan <sup>a,b</sup>, Chun Tang <sup>b,\*</sup>, Shan Yu <sup>b</sup>, Lina Li <sup>c</sup>, Jinjin Li <sup>d</sup>, Ying Zhou <sup>a,b,\*\*</sup>

<sup>a</sup> State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University Chengdu, 610500, China

<sup>b</sup> School of New Energy and Materials, Southwest Petroleum University Chengdu, 610500, China

<sup>c</sup> Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China

<sup>d</sup> Laboratory of Natural Gas Sweetening, Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gas Field Company, Chengdu 610213, Sichuan, China



### ARTICLE INFO

#### Keywords:

Electrocatalysis

Hydrogen evolution

Sulfur oxidation reaction

HER coupling reaction

### ABSTRACT

Decreasing energy consumption of water splitting strategy by replacing oxygen evolution reaction (OER) with more facile sulfide oxidation reaction (SOR) to H<sub>2</sub> evolution and value-added sulfur products is a promising technology. Nevertheless, the unsatisfactory catalyst long-term stability and passivation issues substantially limit the overall productivity. Herein, we report an anti-sulfuretted NiSe nanowire array catalyst on nickel foam (NiSe/NF), this catalyst exhibits a significantly reduced anode potential of 0.49 V vs. RHE at 100 mA cm<sup>-2</sup> compared to the oxygen evolution reaction (1.78 V vs. RHE) and remains admirable stability for more than 500 h without passivation. Particularly, the skillful combination of UV-vis, *in situ* Raman, and attenuated total reflection Fourier transform infrared spectra, we reveal that S<sup>2-</sup>/HS<sup>-</sup> has been selectively converted to S<sub>n</sub><sup>2-</sup> and by-product S<sub>2</sub>O<sub>3</sub><sup>2-</sup> rather than sulfur, which avoids long-perplexing passivation issue of solid sulfur. For the first time, we demonstrate the feasibility of the system (SOR + HER) in a commercial membrane electrode assembly stack, which affords 19.0 mL min<sup>-1</sup> H<sub>2</sub> at a low cell voltage of 1.0 V with consuming the electricity of 2.63 kWh Nm<sup>-3</sup> H<sub>2</sub>. This work provides a new avenue for low-cost H<sub>2</sub> production by H<sub>2</sub>S electrooxidation desulfurization.

### 1. Introduction

Electrocatalytic water splitting powered by clean energy to produce green H<sub>2</sub> is considered a promising alternative strategy because of the limited source of fossil fuels and increasing environmental contamination [1,2]. However, the oxygen evolution reaction (OER) still sustains huge overall electricity consumption due to the sluggish process for the multiple proton and electron transfer steps [3]. Replacing the OER with a thermodynamically more readily oxidation reaction to reduce overall energy consumption is a potentially energy-saving approach to facilitate H<sub>2</sub> production. Besides, the anode oxidation reactions have the extra advantage of obtaining valuable chemicals or dealing with environmental pollution, such as electrooxidation of alcohols, hydrazine, 5-hydroxymethylfurfural, wastewater, and waste gas *et. al*[4–6].

In the above electrooxidation reactions, the H<sub>2</sub>S oxidation degradation has received wide attention because of 10 million tons of emissions per year from sour natural gas and ultra-low oxidation potential (0.17 V)

compared with oxygen evolution reaction (1.23 V) [7–9]. With extreme toxicity and corrosivity, H<sub>2</sub>S has to be pretreated for further exploitation of high sulfur gas reservoirs. The conventional method for H<sub>2</sub>S purification relies on the Claus process (H<sub>2</sub>S + 3/2 O<sub>2</sub> → SO<sub>2</sub> + H<sub>2</sub>O, 2 H<sub>2</sub>S + SO<sub>2</sub> → 2 H<sub>2</sub>O + 3 S, > 1000 °C), through which only sulfur is recycled, while H<sub>2</sub> is wasted and SO<sub>2</sub> unavoidably emitted [10]. Therefore, the electrocatalytic degradation of H<sub>2</sub>S is a promising energy conversion technology for simultaneously energy-saving H<sub>2</sub> production and sulfur recovery under mild conditions. However, this one-stone-kills-two birds technology is limited by unexpected anodic sulfur passivation and poisoning effect in a sulfur-rich environment, which substantially decreases electrocatalytic activity and long-term stability [11].

To resolve sulfur passivation, indirect routes were developed involving redox mediators (Fe<sup>2+</sup>/Fe<sup>3+</sup>, VO<sup>2+</sup>/VO<sup>2+</sup>, I<sup>-</sup>/I<sub>3</sub><sup>-</sup>) to oxidize S<sup>2-</sup> anions, which are restricted by complicated process [12–17]. Alternatively, direct routes have been developed to alleviate sulfur passivation including the mechanical stirring method, sulfur dissolution with

\* Corresponding author.

\*\* Corresponding author at: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University Chengdu, 610500, China.

E-mail addresses: [tangchun@swpu.edu.cn](mailto:tangchun@swpu.edu.cn) (C. Tang), [yzhou@swpu.edu.cn](mailto:yzhou@swpu.edu.cn) (Y. Zhou).



**Fig. 1.** (a) Schematic diagram of the *in situ* grown process for preparing NiSe/NF catalysts; (b-d) SEM images of NiSe/NF; (e) TEM image of one NiSe nanowire; (f) HRTEM image and (g) SAED pattern of NiSe nanowire; (h-j) HAADF-STEM image and EDX elemental mapping of Ni and Se for NiSe nanowire.

organic solvents, and sulfur sublimation [18–20], which need extra toxic organics or consume tremendous energy. Recently, Deng et al. developed chainmail catalysts to avoid sulfur poison and hence achieved a relatively stable performance [21,22]; Zhang et al. reported self-cleaning electrodes to weaken interaction with sulfur species [23]. Despite impressive progress in electrocatalysts for H<sub>2</sub>S splitting [24–27], the investigation of sulfide oxidation reaction (SOR) mechanisms is still in its infancy, which also strongly affects the H<sub>2</sub> evolution performance. Particularly, according to the potential-pH diagrams [28], elemental sulfur, S<sub>n</sub><sup>2-</sup>, and various oxyanions such as SO<sub>3</sub><sup>2-</sup>, S<sub>2</sub>O<sub>3</sub><sup>2-</sup>, SO<sub>4</sub><sup>2-</sup> et al. are involved in the oxidation of sulfide solutions [29], and these oxyanions undoubtedly affect the long-term stability of H<sub>2</sub> production. However, revealing the mechanism of H<sub>2</sub>S oxidation to realize further sustainable H<sub>2</sub> production has been rarely explored.

In previous reports, selenides show good stability in sulfur-containing solutions [30–32]. Besides, NiSe has good conductivity and excellent activity, which is widely used in lithium-sulfur batteries and water electrolysis [33–35]. Herein, we develop an anti-sulfuretted integrated NiSe nanowire array on Ni foam (NiSe/NF) for efficient electrocatalytic desulfurization coupling energy-saving H<sub>2</sub> production. Notably, the NiSe/NF exhibits unprecedented performance in alkaline media compared with precious Pt/C and RuO<sub>2</sub> catalysts, displaying 500 h durability with no decay at 0.4 V. Particularly, by combining UV-vis,

*in situ* Raman, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra, we reveal that the efficient H<sub>2</sub>S electrooxidation degradation of NiSe/NF originates from the S<sup>2-</sup> and HS<sup>-</sup> mostly converted to S<sub>n</sub><sup>2-</sup> and by-product S<sub>2</sub>O<sub>3</sub><sup>2-</sup> rather than sulfur in solution. Our results are essential to understand the intrinsic SOR mechanism and further regulate the product selectivity.

## 2. Experimental

### 2.1. Materials

NF was purchased from Kunshan Long Sheng Bao electronic material, NaBH<sub>4</sub> and Se powder were bought from Chengdu Chron Chemicals Co. Ltd., and Hydrochloric acid (HCl) and ethanol were purchased from Aladdin Ltd. (Shanghai, China). All the reagents were used as received. The water used throughout all experiments was purified through a Millipore system.

### 2.2. Preparation of NiSe/NF catalyst

A piece of NF ( $2 \times 3 \text{ cm}^2$ ) was washed with 3 M HCl, ethanol, and deionized water several times to ensure the surface of the NF was well cleaned before use. For the preparation of NaHSe solution, 0.118 g Se



**Fig. 2.** (a) SOR polarization curves of NiSe/NF in comparison with other catalysts. (b) Current densities for NiSe/NF, powdery NiSe, 10 % Pt/C, and RuO<sub>2</sub> at the potential of 0.4–0.7 V for SOR. (c) Comparison of the LSV curves between the SOR and OER on the NiSe/NF electrode. (d) The LSV of NiSe/NF before and after 500 h stability test for SOR. (e) Durability measurement of NiSe/NF at 0.4 V for 500 h.

powder was added into 3 mL deionized water containing 0.130 g NaBH<sub>4</sub>. After gently stirring for several minutes, a clear NaHSe solution was obtained. The freshly prepared NaHSe solution was added to 30 mL ethanol under N<sub>2</sub> flow. Then the solution was transferred into a 50 mL Teflon-lined stainless steel autoclave with a piece of pretreated NF maintained at 140 °C for 12 h in an electric oven. After the autoclave cooled down slowly at room temperature, the sample was collected and washed with water and ethanol several times and then dried at 60 °C for 4 h. The mass of NiSe catalyst on NF was calculated as follows. The weight increment (x mg) of NF can be directly weighted after the growth of NiSe.  $\text{NiSe}_{\text{loading}} = x \text{ mg} \times (M_{\text{NiSe}}/M_{\text{Se}}) = x \text{ mg} \times (138/79) = 1.747 \times \text{mg}$ , where M is the molecular weight or atomic weight. For NiSe/NF electrode, the loading mass of NiSe is about 7.8 mg cm<sup>-2</sup>.

### 2.3. Characterizations

XRD data were acquired on a Philips X'Pert diffractometer with Cu

K $\alpha$  radiation ( $\lambda = 1.5418 \text{ \AA}$ ). SEM measurements were carried out on a ZEISS Sigma 300 scanning electron microscope at an accelerating voltage of 20 kV. TEM measurements were performed on FEI TECNAI G20 electron microscopy (FEI, American) with an accelerating voltage of 200 kV. Energy dispersive spectroscopy (EDS) mapping were conducted by FEI TF20. XPS measurements were performed on a Thermo Fisher Scientific K-Alpha X-ray photoelectron spectrometer using Mg as the exciting source. The ATR-FTIR measurements were carried out on a Bruker infrared spectrometer (Tensor II) equipped with a liquid nitrogen-cooled mercury-cadmium-telluride (MCT) detector. The *in situ* Raman spectra were performed by a high-resolution Raman spectrometer system (Horiba LabRam HR) equipped with 473 nm laser excitations.

### 2.4. Electrochemical measurements

Electrochemical measurements were performed with a CHI 660D

electrochemical analyzer (CH660 Instruments, Inc., Shanghai) in a standard three-electrode system using NiSe/NF as the working electrode, a graphite rod as the counter electrode and a Hg/HgO electrode as the reference electrode. All potentials measured were calibrated to RHE using the following equation:  $E(\text{RHE}) = E(\text{Hg/HgO}) + 0.098 \text{ V} + 0.0591 * \text{pH}$ . Polarization curves were obtained using LSV with a scan rate of  $5 \text{ mV s}^{-1}$  and no activation was used before recording the polarization curves. The long-term durability test was performed using chronoamperometry measurements. To weaken the influence of reactant concentration on catalyst activity, the electrolyte was replaced every 6 days.

### 3. Results and discussion

#### 3.1. Synthesis and characterization

**Fig. 1a** exhibits the synthesis procedure of integrated NiSe/NF by direct selenization of commercially available Ni foam. The crystal structure of NiSe/NF was characterized by x-ray diffraction (XRD). **Fig. S1** shows the peaks belonging to NiSe (PDF No.18-0887) [36,37]. Moreover, the surface morphologies of NiSe/NF were reflected by Scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, and the NiSe nanowire array was observed in **Fig. 1b-e**. High-resolution TEM (HRTEM) with the results shown in **Fig. 1f**, the interplanar distances of  $2.85$  and  $3.01 \text{ \AA}$  can be identified as (300) and (101) planes of NiSe (**Fig. 1f**), respectively. The selected-area electron-diffraction (SAED) pattern (**Fig. 1g**) displays discrete spots corresponding to the (300), (021) planes of the NiSe. The HAADF-TEM and EDS mapping images further reveal the uniform distribution of Se and Ni (**Fig. 1h-j**). X-ray photoelectron spectroscopy (XPS) in **Fig. S2** offers the valence state of NiSe. Meanwhile, in the Fourier-transformed (FT)  $k^3$ -weighted extended X-ray absorption fine structure (EXAFS) spectra (**Fig. S3**), the peak at about  $2.08 \text{ \AA}$  is assigned to the Ni-Se scattering path [38]. Thus, we can conclude that the NiSe nanowire array is successfully grown on Ni foam.

#### 3.2. Electrocatalytic performance

The electrocatalytic performances for SOR were evaluated in  $1.0 \text{ M NaOH}$  solution with or without  $1.0 \text{ M Na}_2\text{S}$ . Linear sweep voltammograms (LSVs) over various catalysts were determined. As shown in **Fig. 2a**, Pt/C, RuO<sub>2</sub>, and powdery NiSe exhibit very limited activity with the need potential of around  $0.5 \text{ V}$  to drive  $10 \text{ mA cm}^{-2}$ . Remarkably, NiSe/NF electrode presents greatly enhanced SOR activity and it only demands a low potential of  $0.14 \text{ V}$  to drive the same current density. In sharp contrast, NiSe/NF exhibits a negligible current density in  $1.0 \text{ M NaOH}$  solution under the same potential window (**Fig. S4**). Furthermore, the current density of integrated NiSe/NF at  $0.7 \text{ V}$  is  $7.6$  times of powdery NiSe owing to the electron highway between the catalyst and substrate (**Fig. 2b**). Compared with the potential for OER of electrocatalytic water splitting, the SOR potential of NiSe/NF at  $100 \text{ mA cm}^{-2}$  is only  $0.49 \text{ V}$ , which is  $1.29 \text{ V}$  lower than that of OER (**Fig. 2c**). Besides, we also explored the cathodic HER activity of NiSe/NF as shown in **Fig. S5a**. LSV curves for HER indicate that NiSe/NF has better electrocatalytic activity than nickel foam and Pt foil. For HER coupled SOR system,  $\text{H}_2$  is a rapidly produced at significantly lower potential, which indicate that SOR is more favorable than OER to promote hydrogen evolution (**Fig. S5b**). Moreover, a comparison of SOR with reported water electrolyzers coupling HER and various anodic reactions was summarized in **Table S1**, the potential at current density for  $100 \text{ mA cm}^{-2}$  of various anodic reactions sharply demonstrate that SOR is more conducive to occurring at a low potential.

To understand the enhanced SOR performance, the electrochemical active surface area (ECSA) of NiSe/NF and NF was estimated from the electrochemical double-layer capacitance (**Fig. S6**) [39]. The capacitance of NiSe/NF and NF is  $10.89 \text{ mF cm}^{-2}$  and  $0.27 \text{ mF cm}^{-2}$ ,

**Table 1**

The performance and durability of SOR for NiSe/NF compared with the previous works.

| Catalysts                         | Current density ( $\text{mA cm}^{-2}$ ) | Stability (h) | Activity at $0.6 \text{ V}$ ( $\text{mA cm}^{-2}$ ) | Ref.      |
|-----------------------------------|-----------------------------------------|---------------|-----------------------------------------------------|-----------|
| NiSe/NF                           | $\sim 30$                               | 500           | $\sim 207$                                          | This work |
| CoNi@NGs                          | $\sim 25$                               | 500           | $\sim 150$                                          | [21]      |
| Ni <sub>3</sub> S <sub>2</sub>    | $\sim 20$                               | 100           | $\sim 80$                                           | [23]      |
| WS <sub>2</sub>                   | $\sim 70$                               | 192           | $\sim 58$                                           | [24]      |
| CuS/NF                            | $\sim 50$                               | 48            | $\sim 200$                                          | [25]      |
| CoFeS <sub>2</sub>                | $\sim 50$                               | 120           | $\sim 200$                                          | [26]      |
| CoS <sub>2</sub> @C/MXene/NF      | $\sim 300$                              | 240           | $\sim 250$                                          | [27]      |
| Co-Ni <sub>3</sub> S <sub>2</sub> | /                                       | 24            | $\sim 100$                                          | [48]      |
| Ni <sub>3</sub> S <sub>2</sub>    | /                                       | /             | $\sim 80$                                           | [48]      |
| NiCu-MoS <sub>2</sub>             | 75                                      | 150           | $\sim 290$                                          | [49]      |
| MoS <sub>2</sub>                  | /                                       | /             | $\sim 100$                                          | [49]      |
| Ni-MoS <sub>2</sub>               | /                                       | /             | $\sim 180$                                          | [49]      |
| Cu-MoS <sub>2</sub>               | /                                       | /             | $\sim 150$                                          | [49]      |

respectively, indicating NiSe/NF further steers the kinetics of SOR by producing more catalytic active sites. On the other hand, electrochemical impedance spectroscopy (EIS) is a significant test method in studying the kinetics process. **Fig. S7** illustrates the Nyquist plots of the measured impedance of the SOR process on NiSe/NF and NF electrodes from an open circuit potential (OCP) to  $0.507 \text{ V}$ . These Nyquist plots were fitted with an equivalent circuit. The  $R_{ct}$  and CPE represent the  $\text{S}^*$  ions adsorption resistance and pseudocapacitance, respectively [40]. The changing trend of  $R_{ct}$  and CPE could reveal the  $\text{S}^*$  evolution on the catalyst surface during SOR. Similar studies have been reported for  $\text{H}\bullet$  and  $\text{OH}\bullet$  evolution in the HER and OER processes, respectively [41]. NiSe/NF electrode at different potential presents similar  $R_s$  values, the changes of total charge transfer resistance is dominated by  $R_{ct}$  with the adsorbed  $\text{S}^*$  intermediate species during SOR. As shown in **Table S2**, NiSe/NF catalyst possesses lower  $R_{ct}$  that suggests fast charge-transfer kinetics, confirming the superior catalytic activity.

Stability is a crucial parameter to evaluate the long-term SOR of the electrocatalysts for practical applications. In previous reports, Pt, Ni foil, and metal oxides were easily passivated and poisoned [23]. Deng et al. reported graphene-encapsulated CoNi alloy (CoNi@NGs) to protect the catalyst active center from sulfide passivation and poisoning. In addition, a series of metal sulfides also have good sulfur resistance for SOR.

**Table 1** compares the durability and current density with reported catalysts. Among the listed catalysts, the CoNi@NGs catalyst exhibited relatively well activity and stability, but the synthesis process of chainmail catalysts is complex and expensive. Interestingly, NiSe/NF with nano brush structure has similar properties to metal sulfides, which also exhibited excellent anti-sulfurated stability without any protection strategy. As expected, the polarization curve after the  $500 \text{ h}$  durability test shows a high performance without decay compared with the initial (**Fig. 2d**). As shown in **Fig. 2e**, the long-term electrochemical stability of NiSe/NF was also examined by chronopotentiometry at a constant potential of  $0.4 \text{ V}$  for  $500 \text{ h}$ , the current density of NiSe/NF remained at around  $30 \text{ mA cm}^{-2}$ . The fluctuations of stability are due to temperature differences between day and night according to **Fig. S8**. Moreover, the XRD, XPS, TEM, SEM and EDS characterization of NiSe/NF after stability test are given in **Fig. S9**. The XRD, SEM and TEM images indicate that catalyst remains NiSe crystal structure and nanowire morphology (**Fig. S9a,d,e**). The Ni 2p XPS analysis after reaction rules out the formation of oxyhydroxide or oxide species on NiSe surface due to far lower anodic potential of SOR than that of OER in sulfion solution (**Fig. S9b-c**). Meanwhile, it still can be clearly seen that the existence of Ni, Se elements in NiSe/NF after SOR (**Fig. S9f**), we logically consider the actual active specie is probably still NiSe phase. Therefore, the extremely high stability of NiSe/NF prompts us to further explore the SOR mechanism.



**Fig. 3.** (a) H<sub>2</sub> production rates and (b) H<sub>2</sub> Faradaic efficiencies in galvanostatic test at 100 mA cm<sup>-2</sup> (inset: photograph with the reaction procedure); (c) UV-Vis spectra of 100 times diluted electrolyte at different times; (d) XRD spectra of the anodic product after acidification (inset: photograph of the collected product of S powder).



**Fig. 4.** In situ ATR-FTIR spectra during a chronoamperometry test at 0.627 V on the NiSe/NF electrode in 1.0 M Na<sub>2</sub>S and NaOH solution.

### 3.3. Mechanism investigation

To clarify the anode and cathodic actual products, we carry out a galvanostatic test at 100 mA cm<sup>-2</sup> current density, the cathode gas was identified as H<sub>2</sub> by gas chromatograph with H<sub>2</sub> production rate remained at around 0.77 mL min<sup>-1</sup> cm<sup>-2</sup> which extrapolates 99.9 % H<sub>2</sub> faradaic efficiency (Fig. 3a, b). As the reaction proceeds, the anodic electrolyte becomes yellow and darker (inset of Fig. 3b), which implies an increase the concentration of S<sub>n</sub><sup>2-</sup> [42,43].

To investigate the mechanism of SOR, we firstly used UV-vis to probe the products in the electrolyte. Fig. 3c reveals the peaks shown at 297 nm, 518 nm, and 613 nm, corresponding to the chain polysulfides

(S<sub>2</sub><sup>2-</sup>-S<sub>n</sub><sup>2-</sup>) in the electrolyte [29,44],

and the signal strength of the polysulfides increases obviously as the reaction progresses. In addition, anodic yellow powder product after acidification (Fig. 3d), corresponded to elemental sulfur by XRD characterization [45]. Therefore, the reaction equations of SOR in the solution can be expressed as the following Eqs. (1)–(3):



Besides, we designed *in situ* electrochemical ATR-FTIR spectroscopy systems to evaluate the sulfide oxidative products in the electrolyte (Fig. S10a). To identify the wavenumber of sulfur-related species peaks, ATR-FTIR tests for a series of sulfur-related electrolytes are conducted (Fig. S11). Table S3 lists the characteristic peaks of SO<sub>3</sub><sup>2-</sup> (935 cm<sup>-1</sup>), S<sub>2</sub>O<sub>3</sub><sup>2-</sup> (997 cm<sup>-1</sup>, 1115 cm<sup>-1</sup>), SO<sub>4</sub><sup>2-</sup> (1099 cm<sup>-1</sup>), according to Fig. S11 and previous works [29]. Fig. 4 exhibits *in situ* electrochemical ATR-FTIR spectroscopy. With the development of anodic oxidation at 0.627 V, the peak at 1117 cm<sup>-1</sup>, and 997 cm<sup>-1</sup> corresponding to the S-O stretching vibration of S<sub>2</sub>O<sub>3</sub><sup>2-</sup> increases with time, which indicates that S<sup>2-</sup>/HS<sup>-</sup> can be oxidized to S<sub>2</sub>O<sub>3</sub><sup>2-</sup> in alkaline conditions. Furthermore, the FTIR spectroscopy without NiSe/NF catalyst as blank experiment was studied. As presented in Fig. S12, the two peaks around 750–850 cm<sup>-1</sup> wavenumber likely assign to Ge-O bond vibration of germanium crystal exclude sulfur-related species according to previous work reported [56]. Thus, the pathway is derived as the following Eqs. (4)–(5):





**Fig. 5.** (a) In situ Raman spectra in the range of 250–2800 cm<sup>-1</sup> at a potential between 0.277 and 0.602 V on NiSe/NF electrode in 1.0 M Na<sub>2</sub>S and NaOH solution; (b) Illustration of SOR reaction routes over NiSe/NF.



**Fig. 6.** (a) Photograph of an electrolyzer device and large area NiSe/NF electrode; (b) Schematic illustration of the structure of an electrolyzer cell; (c) Amount of H<sub>2</sub> production at 1.0 V; (d) Photograph of the electrolysis cell used in the machine testing at 1.0 V voltage.

Meanwhile, there is no signal of polysulfide because of weak signal for S-S bond vibration in ATR-FTIR. Raman spectroscopy could work well for sulfur-containing aqueous solutions. Hence, we designed *in situ* Raman spectroscopy cell to probe the sulfur oxidative products (Fig. S10b). The Raman spectra of various sulfur-related species were given in Fig. S13 as references. Table S4 shows the characteristic peaks of SO<sub>3</sub><sup>2-</sup> (466 cm<sup>-1</sup>, 612 cm<sup>-1</sup>, 962 cm<sup>-1</sup>), S<sub>2</sub>O<sub>3</sub><sup>2-</sup> (334 cm<sup>-1</sup>, 443 cm<sup>-1</sup>, 532 cm<sup>-1</sup>, 664 cm<sup>-1</sup>, 997 cm<sup>-1</sup>, 1123 cm<sup>-1</sup>), SO<sub>4</sub><sup>2-</sup> (978 cm<sup>-1</sup>), S (151 cm<sup>-1</sup>, 216 cm<sup>-1</sup>, 471 cm<sup>-1</sup>), HS<sup>-</sup> (2571 cm<sup>-1</sup>), S<sub>n</sub><sup>2-</sup>, according to the reported work [46,47,50–55,57,58].

Fig. 5a exhibits obvious peaks with enhancement during the SOR. Among them, the Raman signal at 415 cm<sup>-1</sup>, 443 cm<sup>-1</sup> are indexed to the S<sub>n</sub><sup>2-</sup>, and the Raman signal at 443 cm<sup>-1</sup>, 663 cm<sup>-1</sup>, and 993 cm<sup>-1</sup> are assigned to the S<sub>2</sub>O<sub>3</sub><sup>2-</sup>. With the potential increase, the peak strength of

S<sub>n</sub><sup>2-</sup> and S<sub>2</sub>O<sub>3</sub><sup>2-</sup> also increases, consistent with ATR-FTIR and UV-vis. The faradic efficiency of S<sub>2</sub><sup>2-</sup> and S<sub>2</sub>O<sub>3</sub><sup>2-</sup> were 88.1 % and 2.3 % respectively after calculation (Fig. S14c-d). All these results reveal that S<sup>2-</sup>/HS<sup>-</sup> has been mostly converted to polysulfide and by-product S<sub>2</sub>O<sub>3</sub><sup>2-</sup> in NaOH solution, as shown in Fig. 5b. This chain-grown mechanism of polysulfides reveals that NiSe/NF electrode is capable of continuously catalyzing polysulfides from short to long chains, which prevents NiSe/NF from sulfur passivation for efficient H<sub>2</sub> evolution coupling synchronous desulfurization.

### 3.4. Potential industrial applications

For potential industrial applications, the large area NiSe/NF was prepared (Fig. 6a). Then, the cutted NiSe/NF electrode with 6 cm

diameter was used in a commercial membrane electrode assembly stack, which consisted of one HER cell and one SOR cell (Fig. 6b). The system uses NiSe/NF as the cathode and anode catalysts. Particularly, with the cell voltage of 1.0 V, the NiSe/NF||NiSe/NF couple electrolyzer shows a  $19.0 \text{ mL min}^{-1}$   $\text{H}_2$  production rate with current density of  $106 \text{ mA cm}^{-2}$  as shown in Fig. 6c and d, while under such potential cannot drive water splitting with no  $\text{H}_2$  production. Moreover, the HER coupled SOR system consumes electricity of  $2.63 \text{ kWh Nm}^{-3}$  much lower than water splitting at a low cell voltage of 1.0 V ( $4.0\text{--}6.0 \text{ kWh Nm}^{-3}$ ) [59]. Taking all things into account, the anti-sulfuretted NiSe/NF catalyst demonstrates its potential in energy-saving electrocatalytic  $\text{H}_2$  generation coupling the high-value utilization of  $\text{H}_2\text{S}$ .

#### 4. Conclusions

In summary, the anti-sulfuretted NiSe/NF nanowire array has been demonstrated as a superior catalyst for efficient electrocatalytic  $\text{H}_2$  generation coupling desulfurization. It showed around 99 %  $\text{H}_2$  faradaic efficiency and remained 500 h stability without decay at 0.4 V. Additionally, UV-vis, *in situ* ATR-FTIR, and Raman spectroscopy suggest that  $\text{S}^{2-}/\text{HS}^-$  have been mostly converting  $\text{S}_n^{2-}$  and by-product  $\text{S}_2\text{O}_3^{2-}$  in NaOH solution. Importantly, NiSe/NF||NiSe/NF membrane electrode assembly stack exhibits ultra-low electricity consumption of  $2.63 \text{ kWh}$  to  $1 \text{ Nm}^3 \text{ H}_2$  production. This work not only first demonstrates of NiSe nanowire array as a highly efficient anti-sulfuretted catalyst in technological devices for energy-saving electrolytic  $\text{H}_2$  generation from  $\text{H}_2\text{S}$  splitting but also deep insights into the SOR mechanisms, further guiding the rational design of more advanced electrocatalysts.

#### CRediT authorship contribution statement

**Chao Duan:** Conceptualization, Methodology, Investigation, Writing-Original Draft. **Shan Yu:** Formal analysis, Methodology, Validation, Investigation. **Jinjin Li:** Methodology, Resources. **Lina Li:** Resources, Methodology. **Chun Tang:** Conceptualization, Supervision, Funding acquisition. **Ying Zhou:** Supervision, Conceptualization, Project administration, Funding acquisition.

#### Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Data Availability

Data will be made available on request.

#### Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No 22178291, 22002123, 22109132), the Provincial Key Research and Development Project of Sichuan (2022YFSY0052, 2022NSFSC0023, 2021YFSY0046), Natural Science Foundation of Sichuan (2022NSFSC1264), Science Project of SWPU (2021JBGS01), Scientific research starting project of SWPU (No.2021QHZ014). We thank the staff at the BL11B beamline of Shanghai Synchrotron Radiation Facilities (SSRF) for assistance with the XAFS measurements.

#### Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2022.122255.

#### References

- [1] C.N. Zou, Z. Yang, D.B. He, Y.S. Wei, J. Li, A.L. Jia, J.J. Chen, Q. Zhao, Y.L. Li, J. Li, S. Yang, Petrol. Explor. Dev. + 45 (2018) 604–618.
- [2] M. Li, X.Q. Zheng, L. Li, Z.D. Wei, Acta Phys. Chim. Sin. 37 (2021), 2007054-2007050.
- [3] X.S. Wang, Y. Zheng, W.C. Sheng, Z.C.J. Xu, M. Jaroniec, S.Z. Qiao, Mater. Today 36 (2020) 125–138.
- [4] Z.H. Li, Y.F. Yan, S.M. Xu, H. Zhou, M. Xu, L.N. Ma, M.F. Shao, X.G. Kong, B. Wang, L.R. Zheng, H.H. Duan, Nat. Commun. 13 (2022) 1–14.
- [5] W.J. Liu, Z. Xu, D. Zhao, X.Q. Pan, H.C. Li, X. Hu, Z.Y. Fan, W.K. Wang, G.H. Zhao, S. Jin, Nat. Commun. 11 (2020) 1.
- [6] C. Tang, R. Zhang, W.B. Lu, Z. Wang, D.N. Liu, S. Hao, G. Du, A.M. Asiri, X.P. Sun, Angew. Chem. Int. Ed. 56 (2017) 842–846.
- [7] M. Dan, S. Yu, Y. Li, S.Q. Wei, J.L. Xiang, Y. Zhou, J. Photoch. Photobio. C 42 (2020), 100339.
- [8] Z.H. Xie, S. Yu, X.B. Fan, S.Q. Wei, L.M. Yu, Y.Q. Zhong, X.W. Gao, F. Wu, Y. Zhou, J. Energy Chem. 52 (2021) 234–242.
- [9] X.P. Li, C. Huang, W.K. Han, T. Ouyang, Z.Q. Liu, Chin. Chem. Lett. 32 (2021) 2597–2616.
- [10] M. Dan, S.Q. Wei, D.E. Doronkin, Y. Li, Z.Y. Zhao, S. Yu, J.D. Grunwaldt, Y.H. Lin, Y. Zhou, Appl. Catal. B-Environ. 243 (2019) 790–800.
- [11] A.G. De Crisci, A. Moniri, Y.M. Xu, Int. J. Hydrot. Energy 44 (2019) 1299–1327.
- [12] H.Y. Huang, Y. Yu, K.H. Chung, Energ. Fuel. 23 (2009) 4420–4425.
- [13] H.Y. Huang, J. Shang, Y. Yu, K.H. Chung, Int. J. Hydrot. Energy 44 (2019) 5108–5113.
- [14] W.G. Ma, H. Wang, W. Yu, X.M. Wang, Z.Q. Xu, X. Zong, C. Li, Angew. Chem. Int. Ed. 57 (2018) 3473–3477.
- [15] K. Obata, Y. Shinohara, S. Tanabe, I. Waki, K. Kotovos, K. Ohkawa, K. Takanabe, Energy Technol., Ger. 7 (2019), 1900575.
- [16] Q.W. Zhou, Z.H. Shen, C. Zhu, J.C. Li, Z.Y. Ding, P. Wang, F. Pan, Z.Y. Zhang, H. X. Ma, S.Y. Wang, H.G. Zhang, Adv. Mater. 30 (2018), 1800140.
- [17] B. Zhang, J. Bai, Y. Zhang, C.H. Zhou, P.B. Wang, L.N. Zha, J.H. Li, A. Simchi, B. X. Zhou, Environ. Sci. Technol. 55 (2021) 14854–14862.
- [18] J.L. Lee, Y.S. Shih, Ind. Eng. Chem. Process Des. Dev. 25 (1986) 834–836.
- [19] S. Alexander, J. Winnick, Sep. Sci. Technol. 25 (1990) 2057–2072.
- [20] Y.J. Ma, X.B. Jin, Y. Hu, Q. Huang, Z.Y. Wang, Energ. Fuel. 34 (2020) 7756–7762.
- [21] M. Zhang, J. Guan, Y.C. Tu, S.M. Chen, Y. Wang, S.H. Wang, L. Yu, C. Ma, D. H. Deng, X.H. Bao, Energy Environ. Sci. 13 (2020) 119–126.
- [22] M. Zhang, J. Guan, Y.C. Tu, S.H. Wang, D.H. Deng, Innovation 2 (2021), 100144.
- [23] S. Zhang, Q.W. Zhou, Z.H. Shen, X. Jin, Y.C. Zhang, M. Shi, J. Zhou, J.G. Liu, Z. D. Lu, Y.N. Zhou, H.G. Zhang, Adv. Funct. Mater. 31 (2021), 2101922.
- [24] L.C. Yi, Y.X. Ji, P. Shao, J.X. Chen, J.W. Li, H. Li, K. Chen, X.X. Peng, Z.H. Wen, Angew. Chem. Int. Ed. 60 (2021) 21550–21557.
- [25] Y.H. Pei, J. Cheng, H. Zhong, Z.F. Pi, Y. Zhao, F.M. Jin, Green. Chem. 23 (2021) 6975–6983.
- [26] M. Kumar, T.C. Nagaiah, J. Mater. Chem. A 10 (2022) 7048–7057.
- [27] L.Y. Zhang, Z.Y. Wang, J.S. Qiu, Adv. Mater. 34 (2022), 2109321.
- [28] F.E. Bedoya-Lora, A. Hankin, G.H. Kelsall, Electrochim. Acta 314 (2019) 40–48.
- [29] S. Yu, F. Wu, P.K. Zou, X.B. Fan, C. Duan, M. Dan, Z.H. Xie, Q. Zhang, F.Y. Zhang, H. Zheng, Y. Zhou, Chem. Commun. 56 (2020) 14227–14230.
- [30] I. Grigioni, M. Bernareggi, G. Sinibaldi, M.V. Dozzi, E. Sell, Appl. Catal. A- Gen. 518 (2016) 176–180.
- [31] Y. Zhong, Y. Shao, F. Ma, Y. Wu, B. Huang, X. Hao, Nano Energy 31 (2017) 84–89.
- [32] Y.L. Zhiliang Jin, Xuqiang Hao Ni, Acta Phys. Chim. Sin. 10 (2021), 1912033.
- [33] Y. Wang, X. Li, M. Zhang, Y. Zhou, D. Rao, C. Zhong, J. Zhang, X. Han, W. Hu, Y. Zhang, K. Zaghib, Y. Wang, Y. Deng, Adv. Mater. 32 (2020), e2000231.
- [34] T. Yan, J. Feng, P. Zeng, G. Zhao, L. Wang, C. Yuan, C. Cheng, Y. Li, L. Zhang, J. Energy Chem. 74 (2022) 317–323.
- [35] X. Zhang, Y.Y. Zhang, Y. Zhang, W.J. Jiang, Q.H. Zhang, Y.G. Yang, L. Gu, J.S. Hu, L.J. Wan, Small Methods 3 (2018), 1800317.
- [36] C. Tang, N.Y. Cheng, Z.H. Pu, W. Xing, X.P. Sun, Angew. Chem. Int. Ed. 54 (2015) 9351–9355.
- [37] L.W. Mi, H. Sun, Q. Ding, W.H. Chen, C.T. Liu, H.W. Hou, Z. Zheng, C.G. Shen, Dalton T. 41 (2012) 12595–12600.
- [38] S.L. Han, Y.N. Hao, Z.Y. Guo, D.S. Yu, H.J. Huang, F. Hu, L.L. Li, H.Y. Chen, S. J. Peng, Chem. Eng. J. 401 (2020), 126088.
- [39] H.Q. Zhou, F. Yu, Y.F. Huang, J.Y. Sun, Z. Zhu, R.J. Nielsen, R. He, J. Bao, W. A. Goddard, S. Chen, Z.F. Ren, Nat. Commun. 7 (2016) 12765.
- [40] R.L. Doyle, M.E.G. Lyons, J. Electrochem. Soc. 160 (2013) H142–H154.
- [41] Z.H. Xiao, Y.C. Huang, C.L. Dong, C. Xie, Z.J. Liu, S.Q. Du, W. Chen, D.F. Yan, L. Tao, Z.W. Shu, G.H. Zhang, H.G. Duan, Y.Y. Wang, Y.Q. Zou, R. Chen, S.Y. Wang, J. Am. Chem. Soc. 142 (2020) 12087–12095.
- [42] I.G.D. Lana, Q.L. Zhang, K.T. Chuang, H. Wang, Ind. Eng. Chem. Res. 39 (2000) 2505–2509.
- [43] J.P. Fornés, J.M. Bisang, Electrochim. Acta 243 (2017) 90–97.
- [44] C.A. Linkous, C. Huang, J.R. Fowler, J. Photoch. Photobio. A 168 (2004) 153–160.
- [45] J. Lee, W. Choi, J. Eletrochem. Soc. 162 (2015) A935–A939.
- [46] C. Schmid, T.M. Seward, Chem. Geol. 467 (2017) 64–75.
- [47] E.A. Nicol, J.Y. Baron, J. Mirza, J.J. Leitch, Y. Choi, J. Lipkowski, J. Solid, State Electr. 18 (2013) 1469–1484.
- [48] Y. Li, Y. Duan, K. Zhang, W. Yu, Chem. Eng. J. 433 (2022), 134472.
- [49] M. Kumar, T.C. Nagaiah, J. Mater. Chem. A 10 (2022) 13031–13041.
- [50] K.U.V. Raben, P.B. Dorain, R.K. Chang, B.L. Laube, Chem. Phys. Lett. 84 (1987) 405–409.

[51] C. Nims, B. Cron, M. Wetherington, J. Macalady, J. Cosmidis, *Sci. Rep.* 9 (2019) 7971.

[52] R.L. Aggarwal, L.W. Farrar, D.L. Polla, J. Raman, *Spectrosc.* 42 (2011) 461–464.

[53] S. Sun, T. Cai, Y. Liu, J. Wang, *J. Appl. Spectrosc.* + 82 (2015) 182–187.

[54] G. Ma, H.G. Yan, J.Y. Shi, X. Zong, Z.B. Lei, C. Li, *J. Catal.* 260 (2008) 134–140.

[55] C.L. Corkhill, P.L. Wincott, J.R. Lloyd, D.J. Vaughan, *Geochim. Cosmochim. Ac.* 72 (2008) 5616–5633.

[56] G. Kartopu, A.V. Sapelkin, V.A. Karavanskii, U. Serincan, R. Turan, *J. Appl. Phys.* 103 (2008), 113518.

[57] J.P. Lelieur, P. Dubois, G. Lepoutre, *Inorg. Chem.* 27 (1988) 1883–1890.

[58] J. Li, J.J. Lu, X.C. Lu, B. Tu, B.J. Ouyang, X.D. Han, R.C. Wang, *Geomicrobiol. J.* 33 (2016) 118–134.

[59] F. Sun, D.T. He, K.Z. Yang, J.S. Qiu, Z.Y. Wang, *Angew. Chem. Int. Ed.* 61 (2022), e202203929.