Teoria da Computação	Nome:	
1 3	Número:	
Segundo Semestre 2018/2019		
Mini-Teste 4 - versão C		
1/6/2019		
Duração: 45 Minutos	Classificar (Sim/Não)	

Este enunciado tem 5 páginas (incluindo esta). Apenas volte a página quando o professor assim o disser. Quem não pretender ter nota nesta prova (ou seja, pretender "desistir") deve indicar em cima que não pretende a prova classificada.

A folha de respostas múltiplas está anexa a este enunciado. Qualquer pergunta errada desconta 1/3 do seu valor no total da pontuação obtida com as respostas certas. Não é permitido o uso de qualquer tipo de material auxiliar ou electrónico enquanto estiver na sala em que decorre a prova.

Tabela de Pontuação

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total:	100	

1. (10 points) Qual das opções corresponde à minimização do autómato seguinte.

$$\langle \{s,t,u,v,w,x,y\}, \{0,1\}, s, \delta, \{w\} \rangle, \text{ com } \delta : \begin{array}{c|ccc} & 0 & 1 \\ \hline s & t & x \\ \hline t & u & v \\ \hline u & t & v \\ \hline v & w & x \\ \hline w & w & x \\ \hline x & & \\ \hline y & x & w \\ \hline \end{array}$$

A.
$$\langle \{s,t,u,w,x\}, \{0,1\}, s, \delta, \{w\} \rangle$$
, com $\delta : \begin{array}{c|cccc} & s & t & x \\ \hline s & t & x \\ \hline t & u & v \\ \hline u & t & v \\ \hline w & w & x \\ \hline x & & & \end{array}$

B.
$$\langle \{s,t,u,w\}, \{0,1\}, s, \delta, \{w\} \rangle$$
, com δ :
$$\begin{array}{c|cccc}
& 0 & 1 \\
\hline
s & t & \\
\hline
& t & u & v \\
\hline
& u & t & v \\
\hline
& w & w & \\
\end{array}$$

D.
$$\langle \{s, u, v, w\}, \{0, 1\}, s, \delta, \{w\} \rangle$$
, com δ :
$$\begin{array}{c|cccc}
 & 0 & 1 \\
\hline
s & u & \\
\hline
u & u & v \\
\hline
v & w & \\
\hline
w & w & \\
\end{array}$$

E. nenhuma das anteriores

2. (10 points) Seja Y uma variável e E uma expressão regular na qual Y não ocorre. Pelo Lema de Arden, obtém-se a seguinte equivalência.

A.
$$Y = Y + E \Leftrightarrow Y = E$$

B.
$$Y = Y + E \Leftrightarrow Y = \varepsilon$$

C.
$$Y = Y + E \Leftrightarrow Y = E^*$$

D.
$$Y = Y + E \Leftrightarrow Y = Y^*E$$

- E. nenhuma das anteriores
- 3. (10 points) O autómato

$$\operatorname{start} \longrightarrow \left(\begin{array}{c} S \\ \end{array} \right) \left(\begin{array}{c} b \\ a \end{array} \right) \left(\begin{array}{c} V \\ \end{array} \right) \left(\begin{array}{c} O \\ \end{array} \right) \left(\begin{array}{c}$$

gera um sistema com as seguintes equações:

A.
$$S = aT$$
, $T = bS$, $T = aV$, $V = bT$, $V = cV$, $V = \varepsilon$;

B.
$$S = Ta$$
, $T = Sb$, $T = Va$, $V = Tb$, $V = Vc$, $S = \varepsilon$;

C.
$$S = aT$$
, $T = bS$, $T = aV$, $V = bT$, $V = cV$;

D.
$$S = aT$$
, $T = bS$, $T = aV$, $V = bT$, $V = cV$, $S = \varepsilon$;

- E. nenhuma das anteriores.
- 4. (10 points) O sistema seguinte, resolvido em ordem a S, dá uma expressão equivalente a qual das expressões abaixo?

$$S = aT + bV$$
, $T = bT + bV$, $V = aV + \varepsilon$

A.
$$ab^* + \epsilon ba^*$$

B.
$$(ab^* + \epsilon)ba^*$$

C.
$$ab^+a^*$$

D.
$$ab^* + ba^*$$

- E. nenhuma das anteriores.
- 5. (10 points) Considere a linguagem $\{0^k 1^{k^2} 0^k \mid k \in \mathbb{N}\}$. Prova-se que não é regular utilizando o Lema da Bombagem, sendo um dos contra-exemplos para p=4:

A.
$$w = 001111100, x = 00, y = 11 e i = 1$$

B.
$$w = 001111100, x = 001, y = 1 e i = 0$$

C.
$$w = 00111100$$
, $x = 001$, $y = 11$ e $i = 0$

D.
$$w = 00111100$$
, $x = 0011$, $y = \epsilon$ e $i = 1$

E. nenhuma das anteriores.

- 6. (10 points) Considere a gramática independente de contexto $G = \langle \{S, T\}, \{0, 1\}, P, S \rangle$ com $P = \{(S, 0T0), (S, 0110), (T, \varepsilon), (T, 11T11)\}$. A sua linguagem é:
 - A. $\{1^{2n} \mid n \in \mathbb{N}_0\}$
 - B. $\{01^{2n}0 \mid n \in \mathbb{N}\}$
 - C. $\{0^n 1^{2n} 0^n \mid n \in \mathbb{N}\}$
 - D. $\{0^n 1^{2n} 0^n \mid n \in \mathbb{N}_0\}$
 - E. nenhuma das anteriores.
- 7. (10 points) Qual das seguintes palavras não é derivável pela gramática anterior?
 - A. 00
 - B. 0110
 - C. 011110
 - D. 00111100
 - E. nenhuma das anteriores.
- 8. (10 points) Considere a gramática independente de contexto

$$G = \langle \{S, B\}, \{;, c, if, then, end, tt, ff\}, P, S \rangle$$

com P contendo exactamente as regras seguintes.

$$S \to \mathbf{c} \; ; S \mid \text{if } B \; \text{then } S \; \text{end} \mid \epsilon$$

$$B \to \mathtt{tt} \mid \mathtt{ff}$$

Qual das seguintes opções está correcta?

- A. $FIRST(S) = \{c, if, \epsilon\}, FIRST(B) = \{tt, ff\}, FOLLOW(S) = \{end\} \in FOLLOW(B) = \{then\}$
- B. $FIRST(S) = \{c, if\}, FIRST(B) = \{tt, ff\}, FOLLOW(S) = \{c, end\} \in FOLLOW(B) = \{then\}$
- C. $FIRST(S) = \{c, if\}, FIRST(B) = \{tt, ff\}, FOLLOW(S) = \{end\} \in FOLLOW(B) = \{then\}$
- D. $FIRST(S) = \{c, if, \varepsilon\}, FIRST(B) = \{tt, ff\}, FOLLOW(S) = \{c, end\} \in FOLLOW(B) = \{then\}$
- E. nenhuma das anteriores.

9. (10 points) Considere a gramática da questão anterior. Qual das seguintes opções corresponde à tabela de parsing do analisador sintáctico LL(1)?

	δ	;	С	if	then		end	tt	ff	
A.	S	SE	1	2	SE		3	SE	SE	
	\overline{B}	SE	SE	SE	SE		SE	4	5	
	δ	ε	;	С	if	t	hen	end	tt	ff
В.	\overline{S}	SE	1	1	2	SE		3	SE	SE
	В	SE	SE	SE	SE		SE	SE	4	5
С.	δ	$ $ ε	;	С	if	t	hen	end	tt	ff
	S	3	SE	1	2		SE	3	SE	SE
	B	SE	SE	SE	SE		SE	SE	4	5
	δ	;	С	if	then		end	tt	ff	
D.	S	SE	1	2	SE		SE	SE	SE	
D .										

- E. nenhuma das anteriores.
- 10. (10 points) Ao processar a palavra if tt then if end, o analisador sintático LL(1) correspondente à gramática da questão 8 termina com:
 - A. a entrada e a pilha vazias.
 - B. a entrada vazia e end na pilha.
 - C. end na entrada e a pilha vazia.
 - D. if end na entrada e B end na pilha.
 - E. nenhuma das anteriores.