

Description

The Power MOSFET is fabricated using the advanced planer VDMOS technology. The resulting device has low conduction resistance, superior switching performance and high avalanche energy.

Features

- ♦ Low R_{DS(on)}
- ◆ Low gate charge (typ. Q_g = 34.2 nC)
- 100% UIS tested
- RoHS compliant

Applications

- Power factor correction.
- Switched mode power supplies.
- ◆ LED driver.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	650	V
Continuous drain current (T _C = 25°C)	ID	10	Α
(T _C = 100°C)		6.3	A
Pulsed drain current 1)	I _{DM}	40	A
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse 2)	Eas	500	mJ
Peak diode recovery dv/dt 3)	dv/dt	5	V/ns
Power Dissipation C TO-220F/TO-220FNarrow Pin			
(T _C = 25°C)		40	W
Derate above 25°C	D	0.32	W/°C
Power Dissipation	- P _D		
C TO-220TO-262\ TO-263 (T _C = 25°C)		130	W
Derate above 25°C		1.04	W/°C
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	Is	10	A
Diode pulse current	Is,pulse	40	А

Thermal Characteristics

	Davamatav	Cumbal	Value]
Parameter	Symbol	C TO-220F\TO-220FNarrow Pin	C TO-220\TO-251\TO-252	Unit	·	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal resistance, Junction-to-case	Rejc	3.13	0.96	°C/W
Thermal resistance, Junction-to-ambient	Reja	110	62.5	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube	Units/Reel
VSM10N65-TF	TO-220F	VSM10N65-TF	50	
VSM10N65-T62	TO-262	VSM10N65-T62	50	
VSM10N65-T3	TO-263	VSM10N65-T3		800
VSM10N65-TC	TO-220C	VSM10N65-TC	50	

Electrical Characteristics T_c = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	'		•			
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =0.25 mA	650	-	-	V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =0.25 mA	2	-	4	V
Drain cut-off current	I _{DSS}	V _{DS} =650 V, V _{GS} =0 V,				
		T _j = 25°C	-	-	1	μA
		T _j = 125°C	-		100	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =30 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =5A	-	0.81	1.0	Ω
Dynamic characteristics						
Input capacitance	C _{iss}	V _{DS} = 25 V, V _{GS} = 0 V,	-	1622	-	
Output capacitance	Coss	f = 1 MHz	-	144.2	-	pF
Reverse transfer capacitance	C _{rss}		-	6.8	-	
Turn-on delay time	t _{d(on)}	V _{DD} = 325 V, I _D = 10 A	-	14.16	-	
Rise time	t _r	$R_G = 10 \Omega$, $V_{GS}=15 V$	-	34.64	-	ns
Turn-off delay time	t _{d(off)}		-	65.72	-	
Fall time	t _f		-	16.04	-	
Gate charge characteristics	'					
Gate to source charge	Qgs	V _{DD} =520 V, I _D =10 A,	-	8.8	-	
Gate to drain charge	Q _{gd}	V _{GS} =0 to 10 V	-	12.89	-	nC
Gate charge total	Qg		-	34.2	-	
Gate plateau voltage	V _{plateau}		-	5	-	V
Reverse diode characteristics						
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =10 A	-	-	1.5	V
Reverse recovery time	t _{rr}	V _R =325 V, I _F =10 A,	-	418.8	-	ns
Reverse recovery charge	Qrr	dI _F /dt=100 A/µs	-	3.40	-	μC
Peak reverse recovery current	I _{rrm}		-	16.28	-	А

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. L=10mH, I_{AS} = 10A, Starting T_j = 25°C.
- 3. I_{SD} = 10A, di/dt \leq 100A/us, V_{DD} \leq BV_{DS}, Starting T_j= 25°C.

Electrical Characteristics Diagrams

Figure 1. Typical Output Characteristics

Figure 3. On-Resistance Variation vs. Drain Current

Figure 5. Breakdown Voltage vs. Temperature

Figure 2. Transfer Characteristics

Figure 4. Threshold Voltage vs. Temperature

Figure 6. On-Resistance vs. Temperature

Figure 7. Capacitance Characteristics

Figure 9. Maximum Safe Operating Area

C C TO-220F/TO-220Marrow Pin

 V_{DS} ,Drain-Source Voltage (V)

Figure 11. Power Dissipation vs. Temperature

Figure 8. Gate Charge Characteristics

Q_G ,Total Gate Charge (nC)

Figure 10. Maximum Safe Operating Area C C TO-220/0-262/TO-263

 V_{DS} ,Drain-Source Voltage (V)

Figure 12. Power Dissipation vs. Temperature

T_c ,Case temperature (°C)

Figure 13. Continuous Drain Current vs. Temperature

Figure 14. Body Diode Transfer Characteristics

Figure 15 Transient Thermal Impedance, Junction to CaseC TO-220F/TO-220FNarrow Pin

Figure 16. Transient Thermal Impedance, Junction to CaseC TO-220/TO-262/TO-263

v1.2 Page 5 http://www.vseei.com/

Shenzhen VSEEI Semiconductor Co., Ltd

Gate Charge Test Circuit & Waveform

Unclamped Inductive Switching Test Circuit & Waveforms

