Performance Optimization in Geographical Based Routing Protocol in MANETS

Vikas Goyal
Department of Computer
Science & Engineering
M.Tech (Student)

Giani Zail Singh Punjab Technical University Campus, Bathinda, India

vikasbti.1986@rediffmail.com

Dr. Shaveta Rani Department of Computer Science & Engineering Giani Zail Singh Punjab Technical University Campus, Bathinda, India garg_shavy@yahoo.com Dr. Paramjit Singh
Department of Computer
Science & Engineering
Giani Zail Singh Punjab
Technical University Campus,
Bathinda, India
param2009@yahoo.com

Abstract--- MANET deals with the wireless links of concern resources. Each device connects using the dynamically configuration in the whole network. To require the more than one hop communicate as intermediate node between source nodes to destination node during the lack of available the transmission range. In the research paper, there is analysis of performance of GRP with proposed algorithm MGRP. The performance analyzed by using OPNET MODELER 14.5" Simulator. The simulation performance parameters are -Packet Dropped, Total Number of Backtracks, Delay, Traffic Sent and Throughput for comparing existing GRP and proposed algorithms MGRP.

Keywords-- *MANET*, *GRP*, *OPNET Modeler* 14.5

INTRODUCTION

Within the transmission range the mobile nodes can communicates through broadcast medium in the network. In the MANET. the limited available of bandwidth and computing resources i.e. hardware and battery powers enable less traffic in the The signal strength and network. propagation delay [1] varies as per the time circumstances. The transmitters, receivers and antennas [2] use as resources in the network. The nodes work in the network acts as router [3], [4] forwarding data packet for other nodes. protocol responsible to shares the medium due to arbitrary access. The local

neighborhood zone [5], the MAC protocol the messages acknowledgement to source node from destination node. In the wireless sensor network (WSN) the communication process by MAC. The numerous function of MAC protocol are battery checking, resource checking and delay checking the data transmission. during cooperative and delay tolerance [6] handles Sensor-MAC (S-MAC).MANET ROUTING PROTOCOLSWhen we want the data packets transmission from sender node to destination node, we need a dedicated path or a route that is decided by various routing protocols. In this research paper, there is Geographical Routing Protocol (GRP) performance improvement by optimization route by alternative route.

Geographical Routing Protocol (GRP)In the Geographical Routing Protocol, every mobile node communicates within the range of particular regions is known as Geocast communication as per figure 1. The location information about concern nodes and its associate neighbor node of particular regions have kept in the GRP Protocol. To minimization topology storage and associate cost [7], independently by dynamic nature in the GRP. combination the feature of reactive and Geographical Routing Protocol (GRP) [8], to reduce the route discovery process and delay by reactive technique and to search the optimal path for routing by using GRP.

Fig 1: Geographical Routing Protocol with regions (Geocast Communication

PROPOSED WORK

In the proposed work, to improves the performance by making alternative route, if primary route is broken. In the energy check process, to check the energy level of node, to compare the node energy with energy threshold, if any node having weak energy then ignores the nodes for participation for routing that enables to quickly services and provides optimal technique for routing. The weak energy nodes don't consider for routing because in that case to needs to follow the alternative route that takes the large amount of time means increase the delay for transfer data packets for routing. To provides Quality of Service (QoS) by filter the group of nodes as cluster. To fulfill the requirement for the proposed algorithms technique called Modified-Geographical Routing Protocol (MGRP) is used.

Fig 2: Flow Chart of Modified Geographical Routing Protocol (MGRP)

RESULTS & DISCUSSION

In the proposed algorithm to enhances the performance as compared to Geographical Routing Protocol (GRP). Various performance parameters have been analyzed performance comparison.

Simulation Setup

In this paper, the network is created by using OPNET Modeler 14.5 simulator, a wireless Ad hoc network with size 5×5 Kilometer scale Office type. In the figure 3, the simulator setup consists of 25 mobile nodes (Workstations), Rx Group config (Receiver Group Configuration Mobility). There are two scenarios: first scenario implements the Geographical Routing Protocol. In the Second scenario there is performance improved in the Geographical Routing Protocol (GRP).

Fig 3: Simulator setup having 25 Mobile nodes TABLE 1 SIMULATION PARAMETERS

Simulation Parameters	Values
Simulator Version	Opnet Modeler 14.5
Network Scale	Office Type
Network Size	5×5 Kilometer
Technology Used	MANET
Routing Protocols	GRP
Number of Mobiles nodes	25
Simulation Time	1 Hour
Physical characteristics	Direct Sequence
Data Rate (bps)	1 Mbps

Performance Evaluation:

Packet Dropped (bits/sec):

In the figure 4, to represent the graph of packet dropped in the two scenarios: existing protocol GRP and proposed algorithm MGRP. During time period 0 to 540 seconds no packet will be dropped both GRP and MGRP. During time period 576 to 828 seconds GRP scenario packet dropped but MGRP no packet dropped. During the time period 864 seconds GRP has been 2503.031 bits/sec packet dropped but MGRP has been 53.94667 bits/sec packet dropped, because MGRP has been followed the alternative route.

Fig 4: Packet Dropped
TABLE 2
PACKET DROPPED

Time	vikasgrp-GRP-	vikasgrp-MGRP-	
(sec)	DES-1:	DES-1:	
	GRP.Packets	GRP.Packets	
	Dropped (Total)	Dropped (Total)	
	(bits/sec)	(bits/sec)	
0	0	0	
36	0	0	
72	0	0	
108	0	0	
144	0	0	
180	0	0	
216	0	0	
252	0	0	
288	0	0	
324	0	0	
360	0	0	
396	0	0	
432	0	0	
468	0	0	
504	0	0	
540	0	0	
576	50.87582	0	
612	133.5926	0	
648	190.6901	0	
684	500.3222	0	
720	785.5767	0	
756	1260.404	0	
792	1683.333	0	
828	2119.722	0	
864	2503.031	53.94667	
900	3074.897	108.6325	
936	3627.004	313.7449	
972	4084.079	697.4206	
1008	4405.87	966.6897	
1044	4790.407	1359.304	
1080	5236.703	1735.634	
	L	ı	

As per table 2, Packet Dropped in the MGRP proposed algorithm lower as compared to GRP, because optimization of the route during the transfer data packets from source node to destination node. If the throughput is high than packet dropped will be lesser. Throughput is inversely proportional to packet dropped.

Total number of backtracks:

In the figure 5, to represent the graph of total number of backtracks in the two scenarios: existing protocol GRP and proposed algorithm MGRP. During the time period 0 to 36 seconds no number of backtracks processed. During the time period 72 seconds GRP has been 1 backtrack and MGRP has been 2 backtracks. In the time period 108 seconds GRP has been 4 backtracks and MGRP has been 11 backtracks. In case of MGRP, total number of backtrack more than GRP.

Fig 5: Total Number of Backtracks

TABLE 3
TOTAL NUMBER OF BACKTRACKS

Time	vikasgrp-GRP-	vikasgrp-	
(sec)	DES-1:	MGRP-DES-1:	
	GRP.Total	GRP.Total	

	Number of	Number of		
	Backtracks	Backtracks		
0	#N/A	#N/A		
36	#N/A	#N/A		
72	1	2		
108	4	11		
144	8	9		
180	9	10		
216	9	19		
252	10	14		
288	11	14		
324	11	18		
360	#N/A	1		
396	#N/A	#N/A		
432	5	14		
468	3	13		
504	3	16		
540	#N/A	9		
576	151	#N/A		
612	15	#N/A		
648	195	8		
684	687	118		
720	471	76		
756	785	73		
792	696	81		
828	686	29		
864	680	329		
900	749	290		
936	725	701		
972	722	914		
1008	667	836		
1044	652	854		
1080	742	944		

As per table 3, Total number of Backtracks in the MGRP proposed algorithm higher as compared to GRP, because number of received path enhance process from source to destination node successful reached means no need to return the data packets from destination to source node.

Traffic Sent (packets/sec):

In the figure 6, to represent the graph of traffic sent (packets/sec) in the two scenarios: existing protocol GRP and proposed algorithm MGRP. During the time period 0 to 36 seconds no traffic sent by sender node to destination node. In the time period 72 seconds the GRP and MGRP have been traffic sent 2.027778 packets/sec.. In the time period 180 seconds the GRP has been traffic sent 13.64352 packets/sec and MGRP have been traffic sent 2.027778 packets/sec and

MGRP has been traffic sent 13.52778 packets/sec

Fig 6: Traffic Sent (packets/sec)

TABLE 4 TRAFFIC SENT (packets/sec)

-		•	
Time	vikasgrp-GRP-	vikasgrp-MGRP-	
(sec)	DES-1:	DES-1:	
	MANET.Traffic	MANET.Traffic	
	Sent	Sent	
	(packets/sec)	(packets/sec)	
0	0	0	
36	0	0	
72	2.027778	2.027778	
108	7.736111	7.826389	
144	11.07778	11.25	
180	13.64352	13.52778	
216	15.0754	15.08333	
252	16.14236	16.44792	
288	17.15432	17.3858	
324	18.03056	18.14167	
360	18.7197	18.77525	
396	19.27778	19.24306	
432	19.6688	19.75	
468	20.06349	20.14087	
504	20.43704	20.46852	
540	20.70139	20.84722	
576	21.04902	21.14052	
612	21.28086	21.32099	
648	21.47807	21.45468	
684	21.65556	21.65694	
720	21.83466	21.83598	
756	21.94444	21.95581	
792	22.13889	22.07005	
828	22.27778	22.18519	
864	22.42444	22.26	
900	22.55876	22.36325	
936	22.66975	22.45679	
972	22.77976	22.51786	
1008	22.79023	22.6159	
1044	22.82685	22.68611	
1080	22.91846	22.73029	

As per table 4, Traffic Sent in the MGRP proposed algorithm lower as compared to GRP, because there is no restriction during transmission data from source to destination node.

Delay (bits/sec):

In the figure 7, to represent the graph of delay (bits/sec) in the two scenarios: existing protocol GRP and proposed algorithm MGRP. During the time period 0 second the delay of GRP is 0.002163 bits/sec and MGRP is 0.001965 bits/sec. In the time period 36 seconds the delay GRP is 0.001511 bits/sec and MGRP is 0.001412 bits/sec.

Fig 7: Delay (bits/sec)

TABLE 5 DELAY (bits/ sec)

,	
vikasgrp-GRP-	vikasgrp-MGRP-
DES-1: Wireless	DES-1: Wireless
LAN.Delay (sec)	LAN.Delay (sec)
0.002163	0.001965
0.001511	0.001412
0.001911	0.00192
0.001997	0.00198
0.002061	0.002014
0.002122	0.002044
0.002173	0.002068
0.002188	0.002072
0.002203	0.002074
0.002217	0.002079
0.002262	0.00208
0.002263	0.002088
0.00227	0.002101
0.002276	0.002117
0.002279	0.002129
0.002275	0.002126
0.002313	0.002145
	DES-1: Wireless LAN.Delay (sec) 0.002163 0.001511 0.001911 0.001997 0.002061 0.002122 0.002173 0.002188 0.002203 0.002217 0.002262 0.002263 0.00227 0.002276 0.002279 0.002275

612	0.002308	0.00214
648	0.002315	0.002137
684	0.002387	0.002146
720	0.002426	0.002162
756	0.00246	0.00217
792	0.002495	0.002176
828	0.002522	0.002178
864	0.002547	0.002204
900	0.002561	0.00223
936	0.002573	0.002272
972	0.002574	0.002283
1008	0.002574	0.002297
1044	0.002575	0.002318
1080	0.002568	0.002323

As per table 5, Delay in the MGRP proposed algorithm lower as compared to GRP, because of the selection of nodes and optimization of the active route of filtered nodes. The lower energy node discards for routing in the network

Throughput (bits/sec):

In the figure 8, to represent the graph of throughput (bits/sec) in the two scenarios: existing protocol GRP and proposed algorithm MGRP. During the time period 0 second the throughput of GRP is 43531.11 bits/sec and MGRP is 49141.11 bits/sec. In the time period 36 seconds the throughput of GRP is 27076.11 bits/sec and MGRP is 33443.89 bits/sec.

Fig 8: Throughput (bits/sec)

TABLE 6
THROUGHPUT (bits/sec)

Time	vikasgrp-GRP-	vikasgrp-MGRP-	
(sec)	DES-1: Wireless	DES-1: Wireless	
	LAN.Throughput	LAN.Throughput	
	(bits/sec)	(bits/sec)	
0	43531.11	49141.11	
36	27076.11	33443.89	
72	31264.74	39359.33	

108	56261.5	66171.39
144	72275.16	81798.53
180	84167.11	92591.22
216	91424.32	100363.7
252	96507.25	106175.7
288	100818.7	110426.3
324	104607.4	113743.6
360	107552.2	116480
396	109937.6	117865.6
432	111746	120397.6
468	113202.2	121132.6
504	114808.8	122520.6
540	115872	124261
576	118306.1	125730.4
612	118517.8	126160.1
648	119338.8	125435.7
684	120827.3	126983.9
720	122057.8	128407
756	122496.6	129064.3
792	122916.6	129592
828	122498.3	129521.5
864	123019.9	129631.6
900	122597.3	130318.2
936	122232.8	131742.6
972	121389.7	132203.4
1008	120550.5	133279.1
1044	120123	134101.3
1080	119156.8	134203.8
1044	120123	134101.3

As per table 6, Throughput in the MGRP proposed algorithm higher as compared to GRP, because of optimization of the route before transfer of data from source node to destination node. The traffic optimization for transfer of data packets results in higher throughput.

CONCLUSIONS

In the research paper, the performance GRP has improved by implementation proposed algorithm MGRP. performance parameters are as follows: In case of MGRP Packet Dropped is lower than GRP. In the MGRP Total Number of Backtracks is greater than GRP. In the MGRP Delay is lower than GRP. In the MGRP Media Access Delay is lower than GRP. In the MGRP Traffic Sent is lower than GRP. In the MGRP Throughput is greater than GRP. The performance of MGRP improved because optimizations the route by follow the alternative path

REFERNCES

[1] AZZEDINE BOUKERCHE "Algorithms and Protocols for Wireless and Mobile Ad Hoc

Networks" University of Ottawa OttawaCanada

- [2] Sajjad Ali & Asad Ali "Performance Analysis of AODV, DSR and OLSR in MANET" Sweden 2009
- [3] Suchita Baxla, Rajesh Nema "A Review Paper on Performance Analysis of AODV, OLSR, DSR and GRP Routing Protocols of Ad hoc Networks" International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064
- [4] M. Kumar and R. Rajesh "A survey of mobile Ad-hoc reactive routing protocols in two different mobility models" International Journal of Engineering and Technology, Vol. 1, No. 1, April 2009.
- [5] Fabian Kuhn, Nancy Lynch, and Calvin Newport "The abstract MAC Layer"
- [6] <u>Qicai Yu</u>; Sch. of Inf. Sci. & Eng., Shandong Univ., Jinan; <u>Jianping Xing</u>; <u>Yan Zhou</u>; <u>Lei Zhou</u> "Performance Research and Simulation Analysis of the MAC Layer Protocols in Wireless Sensor Networks" <u>Communications and Networking in China</u>, 2006. ChinaCom '06. First International Conference on
- [7] <u>Cadger, F.</u> Sch. of Comput. & Intell. Syst., Univ. of Ulster, Derry, UK and <u>Curran</u>, <u>K.</u>; <u>Santos</u>, <u>J.</u>; <u>Moffett</u>, <u>S.</u> "A Survey of Geographical Routing in Wireless Ad-Hoc Networks" Communications Surveys & Tutorials, IEEE (Volume:15, Issue: 2)
- [8] Rong Ding; State Key Lab. of Software Dev. Environ., Beihang Univ., Beijing, China; Lei Yang "A Reactive Geographic Routing Protocol for wireless sensor networks" Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2010

Error! No text of specified sty	vle in	document.
---------------------------------	--------	-----------

