

SEQUENCE LISTING

<110> FUTAMURA, MANABU
YOU, MING
ZHANG, ZHONGQIU

<120> GENE EXPRESSION AND POLYMORPHISMS ASSOCIATED WITH LUNG
CANCER

<130> 22727-04393

<140> 10/595,571
<141> 2006-04-27

<150> PCT/US04/35690
<151> 2004-10-27

<150> 60/514,673
<151> 2003-10-27

<160> 38

<170> PatentIn Ver. 3.3

<210> 1
<211> 716
<212> PRT
<213> Homo sapiens

<400> 1
Met Ser Gly Ser Lys Lys Lys Lys Val Thr Lys Ala Glu Arg Leu Lys
1 5 10 15

Leu Leu Gln Glu Glu Glu Arg Arg Leu Lys Glu Glu Glu Ala
20 25 30

Arg Leu Lys Tyr Glu Lys Glu Glu Met Glu Arg Leu Glu Ile Gln Arg
35 40 45

Ile Glu Lys Glu Lys Trp His Arg Leu Glu Ala Lys Asp Leu Glu Arg
50 55 60

Arg Asn Glu Glu Leu Glu Leu Tyr Leu Leu Glu Arg Cys Phe Pro
65 70 75 80

Glu Ala Glu Lys Leu Lys Gln Glu Thr Lys Leu Leu Ser Gln Trp Lys
85 90 95

His Tyr Ile Gln Cys Asp Gly Ser Pro Asp Pro Ser Val Ala Gln Glu
100 105 110

Met Asn Thr Phe Ile Ser Leu Trp Lys Glu Lys Thr Asn Glu Thr Phe
115 120 125

Glu Glu Val Ile Glu Lys Ser Lys Val Val Leu Asn Leu Ile Glu Lys
130 135 140

Leu Lys Phe Ile Leu Leu Glu Thr Pro Pro Cys Asp Leu Gln Asp Lys
 145 150 155 160

Asn Ile Ile Gln Tyr Gln Glu Ser Ile Leu Gln Leu Gln Glu Leu Leu
 165 170 175

His Leu Lys Phe Gly Val Ala Thr Glu Ile Leu Leu Lys Gln Ala Ser
 180 185 190

Thr Leu Ala Asp Leu Asp Ser Gly Asn Met Glu Lys Val Ile Lys Asp
 195 200 205

Glu Asn Val Thr Leu Tyr Val Trp Ala Asn Leu Lys Lys Asn Pro Arg
 210 215 220

His Arg Ser Val Arg Phe Ser Glu Thr Gln Ile Gly Phe Glu Ile Pro
 225 230 235 240

Arg Ile Leu Ala Thr Ser Asp Ile Ala Val Arg Leu Leu His Thr His
 245 250 255

Tyr Asp His Val Ser Ala Leu His Pro Val Ser Thr Pro Ser Lys Glu
 260 265 270

Tyr Thr Ser Ala Val Thr Glu Leu Val Lys Asp Asp Val Lys Asn Val
 275 280 285

Glu Lys Ala Ile Ser Lys Glu Val Glu Glu Ser Lys Gln Gln Glu
 290 295 300

Arg Gly Ser His Leu Ile Gln Glu Glu Glu Ile Lys Val Glu Glu Glu
 305 310 315 320

Gln Gly Asp Ile Glu Val Lys Met Ser Ser Ala Glu Glu Glu Ser Glu
 325 330 335

Ala Ile Lys Cys Glu Arg Glu Met Lys Val Leu Ser Glu Thr Val Ser
 340 345 350

Ala Ala Gln Leu Leu Val Glu Asn Ser Ser Glu Lys Pro Asp Phe
 355 360 365

Phe Glu Asp Asn Val Val Asp Leu Cys Gln Phe Thr Thr Leu Gly Gly
 370 375 380

Val Tyr His Leu Asp Ile Leu Glu Leu Pro Pro Gln Cys Lys Pro Val
 385 390 395 400

Lys Gly Trp Met Ile Val Glu Ile Leu Lys Glu Gly Leu Gln Lys Tyr
 405 410 415

Thr Tyr Pro Pro Glu Thr Thr Glu Glu Phe Glu Thr Glu Asn Ala Phe
 420 425 430

Pro Pro Ile Glu Val Thr Leu Glu Val His Glu Asn Val Ile Phe Phe
 435 440 445

Glu Asp Pro Val Val Val Arg Trp Asp Ala Glu Gly Lys His Trp Arg
 450 455 460

Thr Asp Gly Ile Ser Asn Val Ser Tyr Lys Pro Lys Glu Arg Leu Val
 465 470 475 480

Thr Phe Ser Leu Asp Thr Phe Gly Pro Val Thr Leu Ile Gln Asp Ala
 485 490 495

His Ile Asn Met Pro Tyr Gln Ser Trp Glu Leu Arg Pro Leu Asp Val
 500 505 510

Asn Lys Val Leu Leu Thr Val Thr Thr Val Phe Thr Glu Ile Gln Ile
 515 520 525

Gln Ile Lys Glu Asn Leu Cys Met Leu Ser Ser Ile Lys Leu Lys Asp
 530 535 540

Lys Lys His Ile Ser Ile Leu Glu Gly Thr Trp Met Thr Pro Ile Pro
 545 550 555 560

Phe Ile Ile Ala Leu Lys Glu Ala Gly Leu Asn Ile Phe Pro Thr Arg
 565 570 575

His Ser His Phe Tyr Val Ile Ile Asn Asn Lys Val Pro Leu Val Glu
 580 585 590

Val Lys Ala Tyr Arg Gln Met Ala Leu Leu Ser Ser Ala Phe Ala Phe
 595 600 605

Gly Trp Ser Lys Trp Asn Leu Leu Cys Asn Ser Thr Lys Val Val Phe
 610 615 620

Lys Val Arg Glu His Leu Thr Glu Glu Cys Thr Glu Asn Pro Asn Trp
 625 630 635 640

Ala Leu Leu Met Phe Ser Gly Asp Arg Ala Gln Arg Leu Lys Ile Lys
 645 650 655

Glu Glu Ser Glu Ala Phe Ser Glu Ala Leu Lys Glu Glu Thr Glu Phe
 660 665 670

His Ser Thr Leu Tyr His Met Val Lys Asp Phe Ala Ser Glu Glu Ala
 675 680 685

Met Glu Lys Val Arg Ser Ser Asn Cys Gln Phe Val Asn Ser Val Cys
 690 695 700

His Met Leu Leu Ser Thr Arg Leu Leu Ser Tyr Ser
 705 710 715

<210> 2
 <211> 2151
 <212> DNA
 <213> Homo sapiens

<400> 2

atgtctggca gtaagaaaaa gaaagtccacc aaagctgaac gattgaagct gctacaagag 60
 gaggaggaga gacgactgaa agaggaagag gaagcccggtt tgaaaatatga gaaaagaagaa 120
 atggaaaggc ttgaaataca gcgaatttaggaa aaaaaaaaaat ggcatcgact tgaagcaaaa 180
 gatctagaaa ggagaaatga agaactgaa gaactttatt tattagagag gtgttttcct 240
 gaagcagaga aattgaaaca ggaaaactaaa ttgccttcctc agtggaaagca ctacattcaa 300
 tgtgtatggc gtcctgatcc ttcaatggcc caagaaaatga acacgtttat tagtttgtgg 360
 aaagagaaaa caaatgagac ttttgaggaa gtgattgaga agagtaaagt agtgcataat 420
 ttaattgaga aattgaaatt tattttactg gaaactccac catgtgattt gcaagataaa 480
 aatataatac agtaccaaga atcaatacta caactgcagg agctccctca tcttaaattc 540
 ggtgtagcca cagaataact tctcaaacaa gcttagtactt tggcagatct ggacagtgg 600
 aatatgaaaaa aagtcttcaa agatgaaaaat gttactctgt atgtgtggc aaacctcaag 660
 aagaatccaa ggcacacaag tgtagatttctc tctgaaacac aaattggatt tgagattcca 720
 aggatattag caacaatgtca cattgctgtc cgactccctgc atacccacta tgatcatgtt 780
 tctgcactgc accctgtttc aacaccatca aagaataaca cttctgcagt aactgagctt 840
 gtcaaaagatg atgtaagaa tgtagaaaaa gcaatcagca aggaggctga agaagagttcc 900
 aaacaacaag aaagagggtc tcacttaatt caggaggaag aaataaaaat tgaggaggaa 960
 caagggtata ttgaagtgaa aatgaggctc gctgaggaag aatctgaagc cataaaaatgt 1020
 gaacgagaga tgaaagtatt aagtgaaact gttcagcag cacagtgtt gctggtagag 1080
 aattcttctg aaaagccaga tttcttgaa gacaatgtgg tggatttatg ccagttcaca 1140
 actctgggtg gaggatataccca cttggatatt ttggagctc ctccacagtg taaaccagtg 1200
 aagggtatgg tgattgtgg aataactcaaa gaaggattac agaaatacac atatcctccg 1260
 gaaactacag aagagtttga gacagaaaaat gcttcccac ctatagaggt cacacttgag 1320
 gttcatgaga atgtaatctt tttttagggat cctgtgggttga taaggtggta tgctgaaggt 1380
 aaacatttgg aactgtatgg catcagaat gtatcctaca aaccaaaaaga aagacttgta 1440
 acattcagcc tggacacccctt tggccctgtt accttgcattt aagatgctca tattaacatg 1500
 ccgttaccatg catggaaact aagaccactt gatgtaaata aagtactttt aactgtgact 1560
 acagtttta ctgagattca aatacaaattt aaggaaaaacc tctgcatttgc atcttcaatc 1620
 aaactaaaag acaagaaaaca catctctatt ttggaaaggaa cctggatgac tccttattcct 1680
 ttcattattt ctgtggaaaga agctggactg aatatcttc ctactagaca ctctcatttt 1740
 tatgtttttaa taaaacaataa ggttcccttg gttagaagtga aagcttacatcg acagatggcc 1800
 ctactaagtt ctgttttgc atttgggttgg agcaagtggta acctactatcg taattctaca 1860
 aaagtcttat ttaaggttag ggaacacccctt actgaagaat gtactgagaa tcctaattgg 1920
 gcccattttaa tggttagtgg tgacagagca caaagactga agatcaagga agagagtgag 1980
 gcattttctg aagcacttaa agaagaaaact gagtttcattt ctactttata tcacatggtg 2040
 aaggatttttgc ttcttgagga agcaatggag aaagtcttgc gttccaactg tcagtttgc 2100
 aactctgtgtt gccacatgtt gctcttacc agattgctca gctactccta a 2151

<210> 3

<211> 730

<212> PRT

<213> Mus sp.

<400> 3

Met	Ala	Pro	Lys	Ser	Lys	Lys	Ala	Pro	Ser	Lys	Lys	Lys	Met	Thr	Lys
1							10						15		

Ala	Glu	Arg	Leu	Arg	Leu	Met	Gln	Glu	Glu	Glu	Arg	Arg	Leu	Lys
						20			25			30		

Glu	Glu	Glu	Glu	Ala	Arg	Leu	Lys	Phe	Glu	Glu	Glu	Gln	Glu	Arg
							35		40			45		

Leu	Glu	Ile	Gln	Arg	Ile	Glu	Arg	Glu	Lys	Trp	Asn	Leu	Leu	Glu	Lys
								50		55		60			

Lys Asp Leu Glu Arg Arg Ser Gln Glu Leu Glu Glu Leu Ala Leu Leu
 65 70 75 80

Glu Gly Cys Phe Pro Glu Ala Glu Lys Gln Lys Arg Glu Ile Arg Ala
 85 90 95

Leu Ala Gln Trp Lys His Tyr Thr Glu Cys Asp Gly Ser Pro Asp Pro
 100 105 110

Trp Val Ala Gln Glu Met Asn Thr Phe Ile Ser Leu Trp Glu Glu Glu
 115 120 125

Lys Asn Gln Ala Phe Glu Gln Val Met Glu Lys Ser Lys Leu Val Leu
 130 135 140

Ser Leu Ile Glu Lys Val Lys Leu Ile Leu Leu Glu Thr Pro Thr Tyr
 145 150 155 160

Glu Leu Asp His Arg Thr Val Leu Gln His Gln Gly Ser Ile Leu Arg
 165 170 175

Leu Gln Glu Leu Leu Ser Leu Lys Ile Asn Val Ala Thr Glu Leu Leu
 180 185 190

Leu Arg Gln Ala Ser Asn Leu Ala Asp Leu Asp Thr Gly Asn Met Glu
 195 200 205

Lys Ile Ile Lys Asp Glu Asn Val Thr Leu Tyr Val Trp Ala Asn Leu
 210 215 220

Lys Lys Asn Pro Arg His Arg Ser Val Arg Phe Ser Glu Thr Gln Ile
 225 230 235 240

Gly Phe Glu Ile Pro Arg Ile Leu Ala Thr Ser Asn Val Ala Leu Arg
 245 250 255

Leu Leu His Thr Arg Tyr Asp His Ile Thr Pro Leu Phe Pro Ile Ala
 260 265 270

Val Thr Glu Gln Asn Gln Asn Pro Val Gly Ala Glu Gln Val Asn Val
 275 280 285

Glu Glu Ser Thr Glu Lys Ala Met Thr Glu Glu Lys Leu Phe Thr Glu
 290 295 300

Glu Lys Ala Ala Asn Glu Asp Glu Gln Pro Lys Ala Glu Gln Glu Arg
 305 310 315 320

Glu Leu Asn Leu Val Gln Glu Glu Asn Lys Tyr Glu Ala Ile Glu Asn
 325 330 335

Thr Val Leu Gln Arg Thr Ser Asp Ser Glu Gly Glu Asp Ser Gln Thr
 340 345 350

Thr Gln Leu Glu Leu Glu Met Lys Leu Leu Ser Glu Ala Val Leu Ala
 355 360 365

Ala Gln Leu Cys Leu Val Glu Asn Val Val Glu Leu Pro Glu Ala Ser
 370 375 380
 Gln Ala Tyr Lys Val Asp Leu Cys His Phe Ser Thr Leu Gly Gly Val
 385 390 395 400
 Tyr His Leu Asp Val Leu Glu Leu Pro Pro Gln Cys Lys Pro Val Lys
 405 410 415
 Gly Trp Val Leu Val Glu Ile Leu Gln Glu Gly Leu Gln Arg Phe Ile
 420 425 430
 Tyr Pro Pro Asp Thr Thr Glu Glu Pro Asp Pro Asp Val Thr Phe Pro
 435 440 445
 Pro Ile Glu Val Thr Leu Glu Ile His Lys Ser Val Ile Phe Phe Glu
 450 455 460
 Arg Pro Arg Val Val Arg Trp Asp Asn Glu Gly Lys Phe Trp Arg Ser
 465 470 475 480
 Asp Gly Ile Ser Ser Val Tyr Tyr Asn Arg Glu Asp Arg Leu Leu Thr
 485 490 495
 Phe Ser Met Asp Thr Leu Gly Pro Val Thr Leu Ile Gln Asp Ala His
 500 505 510
 Val Asn Met Pro Tyr Gln Ser Trp Glu Met Ser Pro Cys Gly Met Asn
 515 520 525
 Lys Val Leu Leu Ile Val Lys Thr Val Phe Met Glu Leu Gln Ile Tyr
 530 535 540
 Ile Lys Glu Asn Leu Cys Met Leu Ala Ser Val Lys Leu Arg Gly Lys
 545 550 555 560
 Gly Leu Glu Phe His Leu Lys Gly Lys Trp Met Ala Pro Ile Pro Phe
 565 570 575
 Ile Leu Ala Leu Lys Glu Ala Gly Leu Asn Ile Phe Pro Ala Val Tyr
 580 585 590
 Ser His Phe Tyr Val Val Ile Asn Asn Lys Val Pro Gln Val Glu Leu
 595 600 605
 Lys Ala Tyr Arg Gln Met Ala Leu Leu Ser Ser Ala Phe Ser Phe Gly
 610 615 620
 Trp Ser Lys Trp Asn Met Val Cys Asn Ser Thr Arg Val Val Ile Arg
 625 630 635 640
 Val Arg Glu Gln Leu Ser Glu Glu Thr Glu His His Thr Trp Ser Leu
 645 650 655
 Leu Met Phe Ser Gly Asp Arg Ala Gln Met Leu Lys Met Gln Glu Glu
 660 665 670

Asn	Asp	Lys	Phe	Ser	Glu	Ala	Leu	Arg	Glu	Gly	Thr	Glu	Phe	His	Ser
675					680				685						
Thr	Leu	Tyr	His	Met	Met	Lys	Asp	Phe	Ala	Ser	Pro	Val	Ala	Met	Glu
690					695				700						
Arg	Val	Arg	His	Ser	Asn	Cys	Gln	Phe	Ile	Asp	Ser	Val	Cys	Tyr	Met
705					710				715				720		
Leu	Leu	Ser	Ile	Arg	Val	Leu	Ser	Tyr	Ser						
					725				730						

<210> 4
<211> 2413
<212> DNA
<213> Mus sp.

<400> 4

tttgtagtgg	gcgtggcctg	tcgtcttgc	aaccgtgagc	gttcctgctc	tgcagcgttc	60
actttccct	aagcaaagt	cctgcttctg	tcatggctcc	caaataaaaa	aaggctccca	120
gtaagaaaaa	gatgacaaa	gcccggcgac	tgccggctgat	gcaggaggag	gaggagagac	180
gcctgaagga	ggaagaagag	gcgcggctga	aatttgaaaa	agaagaacag	gaaaggctag	240
aaatacagcg	gattgagaga	gagaagtgg	atctgctgga	aaagaaaagac	ctagaacgaa	300
gaagccaaga	gcttgaagag	cttgctctgc	tcgagggttg	ttttcctgaa	gcagagaaac	360
agaagccgga	aattc gagct	ctggctcagt	ggaagcacta	cacggagtgt	gatgggagcc	420
ccgaccctt	ggttgcccag	gaaatgaaca	cgttcattag	cctgtggaa	gaggagaaga	480
accaggcctt	tgaacaagt	atggagaaaa	gcaaactggt	gctgtcgtt	attgaaaagg	540
tgaagttaa	tttactggaa	actccgacat	atgagctgg	ccacaggact	gtccctgcagc	600
atcaagggtc	aattctgcgc	ctacaagagc	tgctcagcct	gaagataaac	gtggccacag	660
aactactt	tcgacaagct	agtaacttag	cagatctgg	cactggaaat	atggagaaaa	720
tcatcaaga	tgagaatgtc	accctgtacg	tgtggcaaa	cctcaaaaag	aatccaaggc	780
accggagtgt	gaggttctca	gagacacaaa	ttggatttga	aatccccagg	atctggcca	840
cgagcaatgt	tgctcttgcg	cttctacaca	cacgctatgc	ccacatcaca	cccttgttcc	900
ccattggcgt	cactgagcaa	aatcaaaaacc	ccgtgggagc	agagcaagtc	aacgtcgagg	960
aaagtacaga	aaaggccatg	actgaagaaa	agcttta	tgaagaaaa	gctgccaacg	1020
aagatgagca	gcccaagggt	gaacagaaaa	gagagctcaa	cttggtcaa	gaggagaaca	1080
aatatgaagc	tatagagaac	actgtttac	aaaggacttc	cgactctgaa	ggggaggatt	1140
cccaaaccac	ccaaactgaa	ctggagatga	agctgctgag	tgaagcagtc	ttacgagcac	1200
agctgtgcct	ggtagagaat	gtgggtggaa	tgcagaa	ctcacaagcc	tacaagggtg	1260
acttgtgcca	tttctctacc	ctggggcggcg	tgtaccac	ggatgttctg	gagctgcccc	1320
ctcagtgcaa	gcctgtgaag	ggctgggtgc	tagtggagat	actccaggaa	ggactgcaga	1380
ggttatata	tcctccagac	accacagagg	aacctgatcc	agacgtcacc	ttcccaccca	1440
tagaggtcac	actggagatc	cacaagagcg	tcatcttctt	ttagccct	agggtcgta	1500
ggtgggacaa	tgaaggtaaa	ttctggcggt	cagatggcat	cagcagtgtc	tattacaacc	1560
gagaagacag	gctcctaacc	ttcagtatgg	atactttggg	ccctgtgacc	ttgattcagg	1620
atgctcacgt	gaacatgcct	taccagtct	gggagatgag	tccctgtggc	atgaacaaag	1680
tccttctaat	agtgaagacg	gttttcatgg	agctccagat	atacatcaag	gaaaacctct	1740
gcatgtggc	ttcagtgaaa	ctgagggca	aggactcga	gtttcatcta	aaaggaaaat	1800
ggatggctcc	tatacccttc	attctggctt	tgaagaggc	cgggctgaac	atcttccctg	1860
ctgtataactc	ccatttttat	gtggtcatca	acaataaggt	accccagggt	gagttgaagg	1920
cctatccgca	aatggccctg	ctgagctctg	ccttctcg	tggctggagc	aagtggaaaca	1980
tggtctgcaa	ttccacaaagg	gttgcattc	gggtgaggg	acaactgtca	gaagaaacag	2040
agcaccatac	ctggtcgtc	ctcatgttca	gtggtgacag	agcgcagatg	ctcaagatgc	2100
aggaagagaa	cgacaagttc	tcggagccc	tcagggaggg	caccgagttc	cactccacct	2160
tgtaccacat	gatgaaggac	ttcgccccc	ccgtggcaat	ggagagggtc	aggcattcga	2220
actgccagtt	catcgactca	gtgtctaca	tgctgctgtc	tatccgcgtc	ctcagctatt	2280
cctagctatt	cctagccctt	acagcggtg	taagcatggt	ggacccttat	accgagagga	2340

atcaggatc tttccagtca gccgctaaag tgatttaaga gcaccaggcg ttccagccac 2400
actgaaaaag gaa 2413

<210> 5
<211> 18
<212> PRT
<213> Mus sp.

<400> 5
Gln Arg Ile Glu Arg Glu Lys Trp Asn Leu Leu Glu Lys Lys Asp Leu
1 5 10 15

Glu Arg

<210> 6
<211> 18
<212> PRT
<213> Mus sp.

<400> 6
Gln Arg Ile Glu Arg Glu Lys Trp Ser Leu Leu Glu Lys Lys Asp Leu
1 5 10 15

Glu Arg

<210> 7
<211> 7
<212> PRT
<213> Mus sp.

<400> 7
Val Asn Gly Arg Ala Val Ser
1 5

<210> 8
<211> 9
<212> PRT
<213> Mus sp.

<400> 8
Phe Val Trp Glu Gly Gln Ser Lys Phe
1 5

<210> 9
<211> 7
<212> PRT
<213> Mus sp.

<400> 9
Val Asn Gly His Ala Val Ser
1 5

<210> 10
<211> 9
<212> PRT
<213> Mus sp.

<400> 10
Phe Val Trp Glu Glu Gln Lys Lys Phe
1 5

<210> 11
<211> 18
<212> PRT
<213> Mus sp.

<400> 11
Gly Arg Asp Tyr Pro Lys Gly Ala Gly Tyr Phe Lys Arg Arg Leu Lys
1 5 10 15

Asn Val

<210> 12
<211> 18
<212> PRT
<213> Mus sp.

<400> 12
Gly Arg Asp Tyr Pro Lys Gly Ala Asp Tyr Phe Lys Arg Arg Leu Lys
1 5 10 15

Asn Val

<210> 13
<211> 5
<212> PRT
<213> Mus sp.

<400> 13
Thr Glu Asp Ser Ile
1 5

<210> 14
<211> 7
<212> PRT
<213> Mus sp.

<400> 14
Gly Ala Gly His Phe Tyr Ser
1 5

<210> 15
<211> 5
<212> PRT
<213> Mus sp.

<400> 15
Val Glu Arg Thr Arg
1 5

<210> 16
<211> 5
<212> PRT
<213> Mus sp.

<400> 16
Gly Pro Pro Pro Val
1 5

<210> 17
<211> 5
<212> PRT
<213> Mus sp.

<400> 17
Thr Glu Gly Ser Ile
1 5

<210> 18
<211> 7
<212> PRT
<213> Mus sp.

<400> 18
Gly Ala Asp His Leu Tyr Ser
1 5

<210> 19
<211> 5
<212> PRT
<213> Mus sp.

<400> 19
Val Glu Gly Thr Arg
1 5

<210> 20
<211> 5
<212> PRT
<213> Mus sp.

<400> 20
Gly Pro Leu Pro Val
1 5

<210> 21
<211> 730
<212> PRT
<213> Mus sp.

<220>
<221> MOD_RES
<222> (60)
<223> Variable amino acid

<400> 21
Met Ala Pro Lys Ser Lys Lys Ala Pro Ser Lys Lys Lys Met Thr Lys
1 5 10 15
Ala Glu Arg Leu Arg Leu Met Gln Glu Glu Glu Glu Arg Arg Leu Lys
20 25 30
Glu Glu Glu Glu Ala Arg Leu Lys Phe Glu Lys Glu Glu Gln Glu Arg
35 40 45
Leu Glu Ile Gln Arg Ile Glu Arg Glu Lys Trp Xaa Leu Leu Glu Lys
50 55 60
Lys Asp Leu Glu Arg Arg Ser Gln Glu Leu Glu Glu Leu Ala Leu Leu
65 70 75 80
Glu Gly Cys Phe Pro Glu Ala Glu Lys Gln Lys Arg Glu Ile Arg Ala
85 90 95
Leu Ala Gln Trp Lys His Tyr Thr Glu Cys Asp Gly Ser Pro Asp Pro
100 105 110
Trp Val Ala Gln Glu Met Asn Thr Phe Ile Ser Leu Trp Glu Glu Glu
115 120 125
Lys Asn Gln Ala Phe Glu Gln Val Met Glu Lys Ser Lys Leu Val Leu
130 135 140
Ser Leu Ile Glu Lys Val Lys Leu Ile Leu Leu Glu Thr Pro Thr Tyr
145 150 155 160
Glu Leu Asp His Arg Thr Val Leu Gln His Gln Gly Ser Ile Leu Arg
165 170 175
Leu Gln Glu Leu Leu Ser Leu Lys Ile Asn Val Ala Thr Glu Leu Leu
180 185 190
Leu Arg Gln Ala Ser Asn Leu Ala Asp Leu Asp Thr Gly Asn Met Glu
195 200 205
Lys Ile Ile Lys Asp Glu Asn Val Thr Leu Tyr Val Trp Ala Asn Leu
210 215 220
Lys Lys Asn Pro Arg His Arg Ser Val Arg Phe Ser Glu Thr Gln Ile
225 230 235 240

Gly Phe Glu Ile Pro Arg Ile Leu Ala Thr Ser Asn Val Ala Leu Arg
 245 250 255
 Leu Leu His Thr Arg Tyr Asp His Ile Thr Pro Leu Phe Pro Ile Ala
 260 265 270
 Val Thr Glu Gln Asn Gln Asn Pro Val Gly Ala Glu Gln Val Asn Val
 275 280 285
 Glu Glu Ser Thr Glu Lys Ala Met Thr Glu Glu Lys Leu Phe Thr Glu
 290 295 300
 Glu Lys Ala Ala Asn Glu Asp Glu Gln Pro Lys Ala Glu Gln Glu Arg
 305 310 315 320
 Glu Leu Asn Leu Val Gln Glu Glu Asn Lys Tyr Glu Ala Ile Glu Asn
 325 330 335
 Thr Val Leu Gln Arg Thr Ser Asp Ser Glu Gly Glu Asp Ser Gln Thr
 340 345 350
 Thr Gln Leu Glu Leu Glu Met Lys Leu Leu Ser Glu Ala Val Leu Ala
 355 360 365
 Ala Gln Leu Gln Leu Val Glu Asn Val Val Glu Leu Pro Glu Ala Ser
 370 375 380
 Gln Ala Tyr Lys Val Asp Leu Cys His Phe Ser Thr Leu Gly Gly Val
 385 390 395 400
 Tyr His Leu Asp Val Leu Glu Leu Pro Pro Gln Cys Lys Pro Val Lys
 405 410 415
 Gly Trp Val Leu Val Glu Ile Leu Gln Glu Gly Leu Gln Arg Phe Ile
 420 425 430
 Tyr Pro Pro Asp Thr Thr Glu Glu Pro Asp Pro Asp Val Thr Phe Pro
 435 440 445
 Pro Ile Glu Val Thr Leu Glu Ile His Lys Ser Val Ile Phe Phe Glu
 450 455 460
 Arg Pro Arg Val Val Arg Trp Asp Asn Glu Gly Lys Phe Trp Arg Ser
 465 470 475 480
 Asp Gly Ile Ser Ser Val Tyr Tyr Asn Arg Glu Asp Arg Leu Leu Thr
 485 490 495
 Phe Ser Met Asp Thr Leu Gly Pro Val Thr Leu Ile Gln Asp Ala His
 500 505 510
 Val Asn Met Pro Tyr Gln Ser Trp Glu Met Ser Pro Gln Gly Met Asn
 515 520 525
 Lys Val Leu Leu Ile Val Lys Thr Val Phe Met Glu Leu Gln Ile Tyr
 530 535 540

Ile Lys Glu Asn Leu Cys Met Leu Ala Ser Val Lys Leu Arg Gly Lys
 545 550 555 560
 Gly Leu Glu Phe His Leu Lys Gly Lys Trp Met Ala Pro Ile Pro Phe
 565 570 575
 Ile Leu Ala Leu Lys Glu Ala Gly Leu Asn Ile Phe Pro Ala Val Tyr
 580 585 590
 Ser His Phe Tyr Val Val Ile Asn Asn Lys Val Pro Gln Val Glu Leu
 595 600 605
 Lys Ala Tyr Arg Gln Met Ala Leu Leu Ser Ser Ala Phe Ser Phe Gly
 610 615 620
 Trp Ser Lys Trp Asn Met Val Cys Asn Ser Thr Arg Val Val Ile Arg
 625 630 635 640
 Val Arg Glu Gln Leu Ser Glu Glu Thr Glu His His Thr Trp Ser Leu
 645 650 655
 Leu Met Phe Ser Gly Asp Arg Ala Gln Met Leu Lys Met Gln Glu Glu
 660 665 670
 Asn Asp Lys Phe Ser Glu Ala Leu Arg Glu Gly Thr Glu Phe His Ser
 675 680 685
 Thr Leu Tyr His Met Met Lys Asp Phe Ala Ser Pro Val Ala Met Glu
 690 695 700
 Arg Val Arg His Ser Asn Cys Gln Phe Ile Asp Ser Val Cys Tyr Met
 705 710 715 720
 Leu Leu Ser Ile Arg Val Leu Ser Tyr Ser
 725 730

<210> 22
<211> 716
<212> PRT
<213> Homo sapiens

<220>
<221> MOD_RES
<222> (185)
<223> Variable amino acid

<400> 22
Met Ser Gly Ser Lys Lys Lys Val Thr Lys Ala Glu Arg Leu Lys
 1 5 10 15
 Leu Leu Gln Glu Glu Glu Arg Arg Leu Lys Glu Glu Glu Ala
 20 25 30
 Arg Leu Lys Tyr Glu Lys Glu Glu Met Glu Arg Leu Glu Ile Gln Arg
 35 40 45

Ile Glu Lys Glu Lys Trp His Arg Leu Glu Ala Lys Asp Leu Glu Arg
 50 55 60

Arg Asn Glu Glu Leu Glu Glu Leu Tyr Leu Leu Glu Arg Cys Phe Pro
 65 70 75 80

Glu Ala Glu Lys Leu Lys Gln Glu Thr Lys Leu Leu Ser Gln Trp Lys
 85 90 95

His Tyr Ile Gln Cys Asp Gly Ser Pro Asp Pro Ser Val Ala Gln Glu
 100 105 110

Met Asn Thr Phe Ile Ser Leu Trp Lys Glu Lys Thr Asn Glu Thr Phe
 115 120 125

Glu Glu Val Ile Glu Lys Ser Lys Val Val Leu Asn Leu Ile Glu Lys
 130 135 140

Leu Lys Phe Ile Leu Leu Glu Thr Pro Pro Cys Asp Leu Gln Asp Lys
 145 150 155 160

Asn Ile Ile Gln Tyr Gln Glu Ser Ile Leu Gln Leu Gln Glu Leu Leu
 165 170 175

His Leu Lys Phe Gly Val Ala Thr Xaa Ile Leu Leu Lys Gln Ala Ser
 180 185 190

Thr Leu Ala Asp Leu Asp Ser Gly Asn Met Glu Lys Val Ile Lys Asp
 195 200 205

Glu Asn Val Thr Leu Tyr Val Trp Ala Asn Leu Lys Lys Asn Pro Arg
 210 215 220

His Arg Ser Val Arg Phe Ser Glu Thr Gln Ile Gly Phe Glu Ile Pro
 225 230 235 240

Arg Ile Leu Ala Thr Ser Asp Ile Ala Val Arg Leu Leu His Thr His
 245 250 255

Tyr Asp His Val Ser Ala Leu His Pro Val Ser Thr Pro Ser Lys Glu
 260 265 270

Tyr Thr Ser Ala Val Thr Glu Leu Val Lys Asp Asp Val Lys Asn Val
 275 280 285

Glu Lys Ala Ile Ser Lys Glu Val Glu Glu Ser Lys Gln Gln Glu
 290 295 300

Arg Gly Ser His Leu Ile Gln Glu Glu Glu Ile Lys Val Glu Glu Glu
 305 310 315 320

Gln Gly Asp Ile Glu Val Lys Met Ser Ser Ala Glu Glu Glu Ser Glu
 325 330 335

Ala Ile Lys Cys Glu Arg Glu Met Lys Val Leu Ser Glu Thr Val Ser
 340 345 350

Ala Ala Gln Leu Leu Leu Val Glu Asn Ser Ser Glu Lys Pro Asp Phe
 355 360 365
 Phe Glu Asp Asn Val Val Asp Leu Cys Gln Phe Thr Thr Leu Gly Gly
 370 375 380
 Val Tyr His Leu Asp Ile Leu Glu Leu Pro Pro Gln Cys Lys Pro Val
 385 390 395 400
 Lys Gly Trp Met Ile Val Glu Ile Leu Lys Glu Gly Leu Gln Lys Tyr
 405 410 415
 Thr Tyr Pro Pro Glu Thr Thr Glu Glu Phe Glu Thr Glu Asn Ala Phe
 420 425 430
 Pro Pro Ile Glu Val Thr Leu Glu Val His Glu Asn Val Ile Phe Phe
 435 440 445
 Glu Asp Pro Val Val Val Arg Trp Asp Ala Glu Gly Lys His Trp Arg
 450 455 460
 Thr Asp Gly Ile Ser Asn Val Ser Tyr Lys Pro Lys Glu Arg Leu Val
 465 470 475 480
 Thr Phe Ser Leu Asp Thr Phe Gly Pro Val Thr Leu Ile Gln Asp Ala
 485 490 495
 His Ile Asn Met Pro Tyr Gln Ser Trp Glu Leu Arg Pro Leu Asp Val
 500 505 510
 Asn Lys Val Leu Leu Thr Val Thr Thr Val Phe Thr Glu Ile Gln Ile
 515 520 525
 Gln Ile Lys Glu Asn Leu Cys Met Leu Ser Ser Ile Lys Leu Lys Asp
 530 535 540
 Lys Lys His Ile Ser Ile Leu Glu Gly Thr Trp Met Thr Pro Ile Pro
 545 550 555 560
 Phe Ile Ile Ala Leu Lys Glu Ala Gly Leu Asn Ile Phe Pro Thr Arg
 565 570 575
 His Ser His Phe Tyr Val Ile Ile Asn Asn Lys Val Pro Leu Val Glu
 580 585 590
 Val Lys Ala Tyr Arg Gln Met Ala Leu Leu Ser Ser Ala Phe Ala Phe
 595 600 605
 Gly Trp Ser Lys Trp Asn Leu Leu Cys Asn Ser Thr Lys Val Val Phe
 610 615 620
 Lys Val Arg Glu His Leu Thr Glu Glu Cys Thr Glu Asn Pro Asn Trp
 625 630 635 640
 Ala Leu Leu Met Phe Ser Gly Asp Arg Ala Gln Arg Leu Lys Ile Lys
 645 650 655

Glu Glu Ser Glu Ala Phe Ser Glu Ala Leu Lys Glu Glu Thr Glu Phe
 660 665 670
 His Ser Thr Leu Tyr His Met Val Lys Asp Phe Ala Ser Glu Glu Ala
 675 680 685
 Met Glu Lys Val Arg Ser Ser Asn Cys Gln Phe Val Asn Ser Val Cys
 690 695 700
 His Met Leu Leu Ser Thr Arg Leu Leu Ser Tyr Ser
 705 710 715

<210> 23
 <211> 737
 <212> PRT
 <213> Ciona intestinalis

<400> 23
 Met Pro Pro Lys Ser Pro Asn Arg Ser Gly Lys Ser Thr Pro Thr Arg
 1 5 10 15
 Gly Arg Pro Gly Glu Lys Lys Asp Glu Glu Lys Leu Leu Gln Asp Glu
 20 25 30
 Glu Glu Glu Arg Leu Arg Leu Glu Gln Glu Glu Lys Ala Arg Gln Glu
 35 40 45
 Lys Glu Ala Arg Glu Lys Leu Glu Gln Glu Arg Arg Ala Glu Leu Asp
 50 55 60
 Thr Lys Lys Asp Lys Gln Val Phe Glu Thr Asn Ile Glu Leu Gly Ala
 65 70 75 80
 Val Lys Leu Glu Val Glu Gln Val Lys Asn Asp Lys Leu Ala His Ala
 85 90 95
 Glu Trp Asn Arg Tyr Met Lys Cys Asp Gly Lys Pro Asp Pro Thr Ser
 100 105 110
 Val Lys Glu Ile Asn Thr Phe Ile Ser Leu Ser His Glu Lys Gly Ser
 115 120 125
 Pro Asp Val Asn Ile Val Leu Glu Asp Ala Lys Leu Ile Leu Ser Leu
 130 135 140
 Ile Ser Asp Leu Asn Glu Leu Leu Glu Asp Phe Thr Pro Glu Glu Phe
 145 150 155 160
 Glu Gln Lys Val Asp Ser Tyr Arg Gln Thr Ile Leu Ser Leu Gln Asp
 165 170 175
 Leu Leu Leu Asn Arg Tyr Asn Glu Ala Thr Leu Lys Met Leu Lys Glu
 180 185 190
 Ala Ser Tyr Glu Ala Asp Ser Glu Ser Gly Asn Leu Gln Lys Val Val
 195 200 205

Asp Gly Glu Asn Glu Thr Ile Met Leu Trp Ala Asn Leu Asn Lys Asn
 210 215 220

Pro Arg Phe Lys Leu Phe Glu Phe Glu Asn Glu Lys Ile Ser Phe Glu
 225 230 235 240

Leu Pro Lys Val Leu Ala Met Ala Asp Ile Ala Val Arg Ile Leu Arg
 245 250 255

Thr Lys Phe Asp His Tyr Ser His Gln Cys Thr Thr Phe Leu Pro Lys
 260 265 270

Lys Lys Lys Val Lys Asp Glu Glu Pro Ile Pro Glu Glu Pro Pro Lys
 275 280 285

Pro Glu Asp Ala Glu Glu Val Glu Val Lys Gly Asp Glu Glu Asn Gly
 290 295 300

Glu Asp Ala Lys Ser Val Val Glu Glu Gly Arg Gln Ser Lys Gln Ser
 305 310 315 320

Asn Glu Pro Gly Leu Val Asn Glu Gly Glu Lys Glu Glu Glu Thr Lys
 325 330 335

Lys Asp Glu Asn Glu Gly Glu Lys Glu Asp Ala Val Lys Thr Pro Asp
 340 345 350

Val Gln Ile Glu Ile Glu Asp Asp Glu Glu Glu Ile Leu Asp Pro Asp
 355 360 365

Val Val Asp Leu Arg Gln Phe Ser Pro Leu Gly Gly Val Tyr His Val
 370 375 380

Asp Leu Leu Lys Thr Pro Pro Gln Pro Asn Ile Val Arg Gly Trp Thr
 385 390 395 400

Leu Thr Gln Ile Ile Asp Lys Pro Leu Ser Thr Val Lys Tyr Pro Ser
 405 410 415

Asp Asn Pro Asn Thr Gly Arg Ser Ser Ser Arg Val Ala Ser Ala Asn
 420 425 430

Pro Glu Gly Arg Asp Glu Gly Ser Pro Ser Lys Thr Pro Leu Glu Gln
 435 440 445

Gln Gln Pro Pro Ile Gly Leu Thr Phe Ala Leu Pro Ser Asn Val Met
 450 455 460

Phe Phe Glu Glu Pro Gln Val Ala Ser Trp Asp Ser Ser Asp Lys His
 465 470 475 480

Trp Lys Thr Ser Gly Ile Thr Asp Thr Asn Phe Asp Glu Glu Asn Arg
 485 490 495

Lys Leu Leu Phe Lys Thr Gln Glu Phe Gly Thr Phe Cys Leu Met Gln
 500 505 510

Asp Ser His Leu Asn Met Pro Phe Gln Ser Trp Glu Leu Lys Pro Lys
 515 520 525

Gly Thr Asn Ser Thr Val Leu Thr Ile Thr Ala Ala Ile Ala Glu Val
 530 535 540

Glu Ile Glu Val Lys Asp Ser Lys Cys Arg Leu Asn Ala Pro Ala Glu
 545 550 555 560

Asp Pro Pro Lys Glu Leu Ser Gly Leu Tyr Gly Lys Trp Met Ala Val
 565 570 575

Pro Lys Leu Ile Ala Ala Met Arg Asp Ala Gly Val Asn Val Phe Pro
 580 585 590

Ala Glu Asp Ser His Lys Phe Val Ser Ile Gln Ser Lys Glu Val Asp
 595 600 605

Leu Glu Arg Val Tyr Glu Gln Met Ala Ile Leu Ser Ser Thr Phe Ala
 610 615 620

Phe Ser Trp Ser Lys Trp Asn Asn Asp Ala Gly Ser Lys Gln Val Ile
 625 630 635 640

Ile Gln Ile Ala Pro Cys Leu Ile Lys Glu Asn Val Pro Arg Asp Ala
 645 650 655

Val Ser Asp Asp Asp Trp Ser Ile Phe Ser Val Ser Asp Asp Met Ser
 660 665 670

Tyr Lys Leu Ala Leu Ser Glu Tyr Asp Glu Glu Phe Ala Asp Val Val
 675 680 685

Ala Lys Gly Ala Thr Tyr His Cys Asp Leu Leu His Ala Gln Tyr Glu
 690 695 700

Arg Gln Pro Leu Lys Thr Ala Thr Lys Asn Cys Trp Asn Asn Ser Pro
 705 710 715 720

Lys Asn His Lys Thr Arg Thr Ser Phe Ser Phe Thr Arg Leu Pro His
 725 730 735

Tyr

<210> 24
 <211> 229
 <212> PRT
 <213> Rattus sp.

<400> 24
 Met Gly Pro Val Thr Leu Ile Gln Asp Ala His Val Asn Met Pro Tyr
 1 5 10 15

Gln Ser Trp Glu Leu Ser Pro Leu Gly Met Asn Lys Ala Leu Leu Met
 20 25 30

Val Thr Thr Val Phe Ile Glu Leu Gln Ile His Ile Lys Glu Thr His
 35 40 45

 Cys Met Leu Ala Ala Val Lys Leu Lys Gly Lys Ser Arg Glu Leu Arg
 50 55 60

 Val Ile Gly Lys Trp Met Thr Pro Ile Pro Phe Ile Leu Ala Leu Lys
 65 70 75 80

 Glu Ala Gly Leu Asn Ile Phe Pro Ala Val Tyr Ser His Phe Tyr Val
 85 90 95

 Val Val Asn Asn Lys Asn Pro Gln Met Glu Leu Lys Ala Tyr Arg Gln
 100 105 110

 Met Ala Leu Leu Ser Ser Ala Phe Ser Phe Gly Trp Ser Lys Trp Asn
 115 120 125

 Met Val Cys Asn Ser Thr Arg Val Val Phe Arg Val Arg Glu His Ile
 130 135 140

 Ser Glu Glu Glu Glu Gln Asn Thr Trp Ala Leu Leu Met Phe Ser Gly
 145 150 155 160

 Asp Arg Ala Gln Met Leu Lys Met Gln Glu Glu Ser Asp Gln Phe Ser
 165 170 175

 Glu Thr Leu Arg Glu Gly Ser Glu Phe His Ser Thr Leu Tyr His Met
 180 185 190

 Met Lys Asp Phe Ala Ser Pro Glu Ala Thr Glu Lys Val Arg His Ser
 195 200 205

 Asn Cys Gln Phe Ile Asp Ser Val Cys Tyr Met Leu Leu Ser Val Arg
 210 215 220

 Val Leu Ser Tyr Ser
 225

<210> 25
 <211> 2417
 <212> DNA
 <213> Homo sapiens

<400> 25
 tatattggca gttattgagg gtaaaagcaat atattgtAAC agaatgtata aatatttttG 60
 ataaaacagt ctatattttA ttaaaaaaATG aattataacc cattttcAGT tttgcctgca 120
 tcataagagt gagcaCTCCA ttgctttctt tcctggccAC actgctacAA tccAGCactA 180
 actatccatg tccagggtAA ggatcgAGAT cgagaAGCCC acactGCCAG tgaaaaAGCT 240
 acgtctttac tgcatAAATT agagGAAGCA atttcggAAC aacggAACCT tcaaACTATA 300
 aatactgaat tATCGAACAC ttGCCAGGC cttcAGCAGA agacaAGGAA actGAAGAAG 360
 ctTTTTAGAT gAGGAATTTC ctcactatGA ttCCCTGTCC tgcgcAGATG caattcaACA 420
 accttctCAA gaaaaATTGA agcAGTGTG ccACAAAActA tatGGTGGTC aAGGAAGCAAG 480
 aatacatcAG acACCCCTGA CCTTGAAACA tacGTGCTGG tacACACCTC tgcTGGATGC 540
 ctTATCTCTG gATAGTTTA cAGCAGTCC AACCTGGAA tcaACACCTT tCTCAGGTGT 600
 agccaACCAA atCCACACTC tGTGTGAAAG GCCCACATAT ggAGAAGTAA aggATGGTGC 660
 tttggatGTA aaaAGACAAAC acaAGTCCC AGGCCCCACA agtGGCCCCA gCCAGGAAC 720

gaatctctca ggctgcata gatatgaatga tgacccaagt atggaagaga atgggtttga 780
 acgcgtgtgt cctgagagcc tgctgcagtc cagggatat tcctcactac cattacccag 840
 acacacttca tcgacagacg gtactataac ttcaagtgtat cctggattag aaattctgaa 900
 tatggcttct tgcgttccgt acagaaaactc gctctgttaag aaagaggagg atacaagatc 960
 agcttctccc acgatagagg cccaggcac aagtccagct catgataata ttgcattcca 1020
 agactctacg agtaaggata aaaccatatt aaatctggaa gccaaagagg aaccagaaac 1080
 aatagaagaa cataaaaaaag aacatgttc aggagactct gtggtttccc ctttcctgt 1140
 aaccactgtg aaatcggtt acgttagaca aagtgagaac acttctgtct atgagaagga 1200
 ggtggaggca gaatttctca gattatctt gggatttaag tgcgttgggt ttaccttgg 1260
 gaagagagtg aagcttgaag agaggtcccg tgactggca gaagaaaatt tgaagaaaga 1320
 aatcaactac tctttaaac tattagtc tttaacacct ctgtgtgaag atgacaacca 1380
 ggcacaggaa atcattaaga agctggagaa gagtataaaag tttcttagcc agtgtgcagc 1440
 acgagtgcc agtagggctg agatgttggg agccatcaat cagggaaagcc gggtagtta 1500
 agcagttgaa gtgtatgttcc acgacgttgc aacatttgaag aggtgtatg ccaaagagca 1560
 cgctgaatta gaagaactga aacaggttct tctgcagaat gaaaggctt tcaatcctct 1620
 tgaagatgtat gatgactgcc aaattaaaaa acgttcagct tctctaaact ccaagccatc 1680
 ttctctacga agagtgacta ttgcctctt acccagaaat attggaaatg cagaatgg 1740
 ggctggatgtg gaaaataatg atcgatttag tagaaggctca agcagttggc gtatgggg 1800
 gtcaaagcag agtgaacacc gtccctcatt acctcgattt attagcacct attcctggg 1860
 agatgctgaa gaagaaaaat gtgaactaaa aactaaagat gactcagagc catctggaga 1920
 agaaacagta gaaaggacaa ggaagccaag tctttctgaa aagaaaaata atccatcaaa 1980
 gtgggatgtc tcttcagttt atgacacaat agtttctgg gcaacaaatc tcaagtccctc 2040
 catcagaaag gctaataagg ccctctggct ctctattgca ttcatgttac tggatggc 2100
 tttatgtgagc ttcttcacag gccaattatt ccagaagtct gtggatggccg ctccccacaca 2160
 gcaagaggac tcatggacgt ctctagaaca tatcttggccat gactccgaca 2220
 caatgggcca ccaccagtgt gacagcagga catcctaata tatggatctt gatgggg 2280
 tttcagttatc tgaacttcgt aaatttagtaa cttttagctg ggaaagtata gcatgaaacc 2340
 agaggttctc agaatgaccg taagatagct tacatttctt cttttgcct ttatctcccc 2400
 aactaaaata caatggg 2417

<210> 26
 <211> 2263
 <212> DNA
 <213> Mus sp.

<400> 26
 aagaggtat cctggccctg ctgcgcggc ccgtgcaaaac agaattgcag aagttgagcc 60
 tacgcttatac attccgtga gaagaaaagc atattccag tttcctgtgc ctaagaacaa 120
 gcatccagcg cccttcccgcc ggctcaaaacc caggctgacc tgcgtatgt ggtcagggg 180
 atcaggatgg ggctctgcga tgaggcaagc ctctgttaca agaacttagag gaagcgattc 240
 cagaaggaga tcacagtccc cagcactact cagactcagg agctgaagac cagggcggtt 300
 cagtatgcct gtgtcttgac ggcctcacag caattccaag gctagaactg acacccatct 360
 catgtgccag aaactcagcc catgtctgt gtaaaaggct ccccgagaca ggaaccagaa 420
 gatggggctt tggacgtgac aagagggtgc cagtgccac tccccacgga aggctccatc 480
 ttgggacagg agcttctaga ctgtaccaga atgaacgagg accagagtac agacgagaat 540
 ggtgctgacc acttgtattc cgagagcccg tcacagctca gggagtatct cacacagcca 600
 tgcgtctgaac agacttcatc ctgcggagagc actgtgacgt caagtgtatc tggatcagac 660
 attttgcaca tggcttctgg tgaccttgc tgcaaaacctc tctgtgagaa ggaggaggaa 720
 gcaagagccg cctctgccc gcaaggcacc agcttagctc ctgtgttta tggagactac 780
 acgagtgtgg gctggccaa ggctgcattcc cagctggaaag caggagagga actcagaacc 840
 acagaaaacg gagggaaaggc cagtgccccc ggagagacgg agatttccat gccccccaaa 900
 gcatctgtga agctcgatcc ttttcagcag agtggaaaca ctgcgttac tgagaaggaa 960
 gtggggcag agtccctcag gttatcttgg ggcacttaatgt gtcgttgggt tacattggag 1020
 aagaggggtga agcttgaaga gaggtcccg gacctggcag agggaaaattt gaagaaagaa 1080
 atcacaaact gtttaaagct ttttaggtcg ctgcactcccc tgcgtgttgc ggcacaaccag 1140
 gctcaggaaa tcgttaagaa gctggagaag agtatagtac tgctcagcc gtcacagcc 1200
 cgagtggcca gcaaggcgtga gatgtggc gccatcaacc agggaaagccg ggtgagtaga 1260

gcgggtggagg tgatgatcca gcacgtggag aacctgaagc ggatgtacgc caaagagcac 1320
 gcagagctgg aggatctgaa gcaaggactg ctgcagaacg acaggtctt taactctctg 1380
 ccagatgaag atgactgtca gattaaaaag cgtcatactt ctctaaattc caagccatct 1440
 tctctcgaa gagtgaccat tgcctcttg cccaggaatc ttggaaatgt gggctggtg 1500
 tcagggcatgg aaaataatga cagattcagc cggcggtcga gcagctggag aatccctgggg 1560
 acaaagcagg gtgagcaccc cccctcgctg catcgcttca tcagcaccta ttctgggccc 1620
 gacgctgagg acgagagaag tgacgtgaaa gccagagacg ccccaagaacc acaaggcgaa 1680
 gaggcagtgg aggggaccag gaagcccagc cttctgaga ggagaagtag cacattggcc 1740
 tgggacaggg gcacaatctg cagctcagtg gcttcctggg tcactcacact gcaggcgtcc 1800
 ttccagaagag ccaacagagc actctggctc acggggctca tcatactcatact gatccgcagcg 1860
 ctgatgact tcctcacagg tcagctctc cagacagccg tggaggctgc gcccacacag 1920
 gagggggact cctggctgtc tctagaacac atcttatggc catttaccag actctgtcat 1980
 gatggaccac tgccagtgactgacgtgc agctcaatgt acccttggat tttaacgttt 2040
 ccttctgaga ttttaaattt ggttaactttt ttttagtaac tatagtgcaa agctagggtc 2100
 ctcagcagct gggatctttt tattccccaa caaaagcaca ggggactaca aaaggggaggg 2160
 gaccacccctt agggtatTTT aatgagctt ctgagtgaga ggcatacagac ttatggaga 2220
 tgtatccaaa taaagaccat tcaaatttta aaaaaaaaaaaa aaa 2263

<210> 27
 <211> 1155
 <212> DNA
 <213> Homo sapiens

<400> 27
 atggatttgc gtaacggatc ggcagagtgt accggagaag gaggatcaaa agaggtggtg 60
 gggacttttta aggtaaaga cctaataatgc acaccagcta ccattttaaa ggaaaaacca 120
 gaccccaata atctggttt tggaaactgtg ttacacggatc atatgctgac ggtggagtgg 180
 tcctcagagt ttggatggga gaaacctcat atcaaggcctc ttccagaacct gtcattgcac 240
 cctggctcat cagctttgc ctagcagtg gaattatttg aaggattgaa ggcatttcga 300
 ggagtagata ataaaattcg actgtttcag ccaaaccctca acatggatag aatgtatcgc 360
 tctgctgtga gggcaactct gccggattt gacaaggaaag agcttttaga gtgtattcaa 420
 cagcttgc aattggatca agaatgggtc ccatattcaa catctgtcat tctgtatatt 480
 cgtcctgcat tcattggAAC tgagccttct ttggagtc agaaggctac caaagccctg 540
 ctctttgtac tcttgagccc agtgggacct tattttcaa gtggAACctt taatccagt 600
 tccctgtggg ccaatccccaa gtatgtaaag gcctggaaag gtggAACtgg ggactgcaag 660
 atgggaggga attacggctc atctctttt gccaatgtg aagacgtaga taatgggtgt 720
 cagcagggtcc tggcgtcta tggcagagac catcagatca ctgaagtggg aactatgaat 780
 ctttttctt actggataaa tgaagatgga gaagaagaac tggcaactcc tccactagat 840
 ggcattatc ttccaggagt gacaaggcgg tgcatctgg acctggcaca tcagtggggt 900
 gaatttaagg tgcagagag atacctcacc atggatgact tgacaacagc cctggagggg 960
 aacagagtga gagagatgtt tagctctggt acagcctgtg ttgtttgccc agtttctgat 1020
 atactgtaca aaggcgagac aatacacatt ccaactatgg agaatggtcc taagctggca 1080
 agccgcacatc tgagcaaatt aactgatatc cagatggaa gagaagagag cgactggaca 1140
 attgtgcata cctgaa 1155

<210> 28
 <211> 1161
 <212> DNA
 <213> Mus sp.

<400> 28
 atgaaggact gcagtaatgg atgctcccgcg ccgtttgctg gagaagagg atcagaagaa 60
 gtggcagaga cttttagggc caaagatctc atcatcacac cagccactgt cttaaaaagag 120
 aagccggacc cggattcgtt ggtctttgga gctacgttca ctgaccacat gctgacgggt 180
 gagttggctt ctgcgtctgg atgggagaaa cctcacatta agcctttgg aaacttggccc 240
 atacatcccc ctcgcctctgt tttgcactac gctgtggaaac tgtttgaagg ctggaaagcc 300

tttcgaaaaa ttgataacaa gatccgattt ttccggccgg acctcaacat ggatagaatg 360
 tgccgatctg ctgtgaggac cacgctgccg atgtttgaca aggaggagct cctaaagtgt 420
 attcttcagc ttotacagat cgaccaagaa tgggttccct actccacctc tgccagcctc 480
 tacatccgccc ccacatttat cggaacttag ccacatctttg gcgtcaagaa gccttccaaa 540
 gcccctactct ttgtgatcct gagccccgtg ggaccttatt tttcttagtgg atcttttact 600
 ccgggtgtccc tggggccaa tccaaagtac atcagagcct ggaaagggtgg gactggagac 660
 tgcaagatgg gcggcaattt tggagccctt cttctggcac agtgcgaggc cgtggagaat 720
 ggctgtcagc aggttctgtg gctgtacggc aaggacaacc agataactga agtaggcaca 780
 atgaatcttt tcctctactg gataaacgaa gacggagaag aggagctggc aacggccccc 840
 ctagatggca tcattctccc gggagtgacc aggagagca tcctggagct ggacacaacag 900
 tggggtaat ttaaggatgt tgagagacac ctacccatgg atgacccggc caccggccct 960
 gaggggaaaca gaggtaagga gatgttcggc tcagggacag cctgcgttgt ctgcccagtc 1020
 tctgatattc tggataaggc ccagatgctg catattccaa cgatggagaa tggccccaag 1080
 ctgcgaagtc gaatccctggg aaagctgact gatatccagt atgaaagggt ggagagtgac 1140
 tggacaatcg agtaccctgt a 1161

<210> 29
 <211> 5436
 <212> DNA
 <213> Homo sapiens

<400> 29
 ggccgcggcg gggggaggcag cagcggccgc ggcagtggcg gggcgaaagg tggccggccgc 60
 tcggccagta ctccccggccc ccgcatttc ggactggag cgagcgcggc gcaggcactg 120
 aaggcggcg gggggccaga ggctcagcgg ctccccaggtg cgggagagag gcctgctgaa 180
 aatgactgaa tataaacttg tggtagttgg agctgggtggc gttagcaaga gtgccttgac 240
 gatacagcta attcagaatc attttgttga cgaatatgtat ccaacaatag aggattcccta 300
 caggaagcaa gtagtaattt atggagaaac ctgtctttt gatattctcg acacagcagg 360
 tcaagaggag tacagtgc当地 tgagggacca gtacatgagg actggggagg gcttctttt 420
 tgtatttgcc ataaataata ctaaatattt tgaagatatt caccattata gagaacaaat 480
 taaaagaggat aaggactctg aagatgtacc tatggcttca gttagaaata aatgtgattt 540
 gccttctaga acagtagaca caaaacaggc tcaggactt gcaagaatgtt atgaaattcc 600
 ttttatttgc acatcagcaa agacaagaca gagagtggag gatgtttttt atacattgg 660
 gagggagatc cgacaaataca gattggaaaa aatcagcaaa gaagaaaaga ctccctggctg 720
 tgtggaaaatt aaaaaatgc当地 ttataatgtt atctgggtt ttagatgttcc ttctatacat 780
 tagttcgaga aattcgaaaa cataaaagaaa agatggacaa agatggaaa aagaagaaaa 840
 agaagtcaaa gacaaagtgt gtaattatgt aaatacaatt tgtactttt tcttaaggca 900
 tacttagaca agtggtaatt tttgtacatt acactaaattt attagcattt gtttttagcat 960
 tacctaattt tttcctgtt ccatcgacac tggtagctt taccttaat gcttattttt 1020
 aaatgacagt ggaagttttt tttcctcta agtgcaggta ttcccagagt tttggttttt 1080
 gaactagcaa tggctgtgaa aaagaaaactg aatacctaag atttctgtct tggggttttt 1140
 ggtgcattgc gttgattact tcttattttt ctaccattt gtgaatgtt gtgtgaaaca 1200
 aattaatgaa gcttttgaat catccctatt ctgtgtttt tctagtccata taaatggatt 1260
 aattactaat tttagtttgc accttctaat tggtttttac tggaaacattt agggAACACA 1320
 aattttatggg ctccctgtatg atgattttt taggcattcat gtcctataatgt ttgtcatccc 1380
 ttagatgtt aaagtttacac tggtagtttgc gttttttt ccttccact gctatttagtc 1440
 atggctactc tccccaaaat attatatttt ttctataaaa agaaaaaaaaat ggaaaaaaaaat 1500
 tacaaggcaa tggaaacttat tataaggcca ttccctttt acattagata aattactata 1560
 aagactccta atagttttt ctgttaaggc agacccaggta tggaaatgggg attattatag 1620
 caaccatttt ggggtatata ttacatgtca ctaaattttt ataataattt aaaaatgtttt 1680
 aacaagtata aaaaatttctc ataggaatta aatgttagtct ccctgtgtca gactgtctt 1740
 tcatagtata actttttatc ttcccttca cttggatctt tggatgttggt tttaattctg 1800
 cttgtgacat taaaagatgtt tttggccagg tttagtgc当地 tttaggtttt aagagaccaa 1860
 ggttgcagg ccaggccctg tggtaacccctt tgacccatc tagagatgtt cacagcatgg 1920
 actgtgtccc cacgggtatc cttggatgtc atgcattttt tagtcaaaaat gggggggac 1980
 tagggcagtt tggatgtctc aacaagatac aatctcactc tgggtggtc ctgctgacaa 2040
 atcaagagca ttgttttttgc ttcttaagaa aacaaactct tttttaaaaa ttacttttaa 2100

atattaactc aaaagtttagt attttgggtt ggtgggtgtc caagacatta atttttttt 2160
 taaaacaatga agtggaaaaaag ttttacaatc tctagggttt gctagttctc ttaacactgg 2220
 ttaaaattaac attgcataaaa cactttcaa gtctgatcca tatttaataa tgctttaaaa 2280
 taaaataaaa aacaatcctt ttgataaaatt taaaatgtta ctattttaa aataaatgaa 2340
 gtgagatggc atggtgaggt gaaagtatca ctggactagg aagaagggtga cttaggttct 2400
 agataggtgt cttttaggac tctgattttg aggacatcac ttactatcca ttcttcatg 2460
 taaaagaag tcatctcaaa ctcttagtt ttttttttta caactatgt aatttatattc 2520
 catttacata aggatacact tatttgcataa gctcagcaca atctgttaat ttttaaccta 2580
 tggcacccca tcttcagtgc cagtttggg caaaattgtg caagagggtga agtttatatt 2640
 tgaatatcca ttctcggtt aggacttcc ttccatatta gtgtcatctt gcctccctac 2700
 cttccacatg ccccatgact tgatgcagtt ttaatacttg taatccccctt aaccataaga 2760
 ttactgtc tggatcttccatgaa gttttccact gaggcacatc agaaatgccc 2820
 tacatctt ttcctcaggg ctcaagagaa tctgacagat accataaagg gatttgacct 2880
 aatcaaat tttcagggtgg tggctgtgc tttgaacatc tctttgtgc ccaatccatt 2940
 agcgacagta ggattttca aacctggat gaatagacag aaccctatcc agtggaaagga 3000
 gaatttaata aagatagtgc tggaaagaaatt ccttaggtaa tctataacta ggactactcc 3060
 tggtaacagt aatacattcc attgttttag taaccagaaa tcttcatgca atgaaaaata 3120
 cttaattca tgaagcttac tttttttt tgggtcaga gtctcgctt tgcacccag 3180
 gctggaatgc agtggcgcca tctcagctca ctgcacaccc catctccag gttcaagcga 3240
 ttctcggtcc tcggcctctt gagtagctgg gattacaggg gtgtgccact acactcaact 3300
 aattttgtt tttttaggag agacggggtt tcacccctgtt ggccaggctg gtctcgaaact 3360
 cctgacccca agtgattcac ccaccttggc ctcataaacc tgggtcag aactcattta 3420
 ttcagcaaat atttatttag tgcctaccag atgcccgtca cccgcacaagg cactgggtat 3480
 atggtatccc caaaacaagag acataatccc ggtcctttagg tagtgctagt gtggctgt 3540
 atatcttact aaggcctttg gtatacggacc cagagataaac acgatgcgtt ttttagttt 3600
 gcaaaagaagg ggtttggctt ctgtgccagc tctataattt ttttgctacg attccactga 3660
 aactcttcga tcaagctact ttatgttaat cacttcattt ttttaaagga ataaacttga 3720
 ttatattgtt ttttatttttgcataactgt gatttttttta ggacaattac tgcacacatt 3780
 aagggtgtatg tcagatattc atattgaccc aaatgtgtaa tattccagtt ttctctgcat 3840
 aagaattaa aataacttca aaaattaata gttttatctg ggtacaaaata aacagggtgcc 3900
 tgaacttagt cacagacaag gaaacttctt tggtaaaaatc actatgat tctgaaattgt 3960
 atgtgaaact acagatctt ggaacactgt ttaggttagg tggtaagact tacacagttac 4020
 ctgcgttcttca cacagagaaa gaaatggcca tacttcagga actgcagtgc ttatggggg 4080
 atatttaggc ctcttgaattt tttgatgtt atgggcattt ttttaaggta gtggtaattt 4140
 acctttatgtt gaaatgggaa tgggtttaaca aaagattttt ttttgtagag attttaaagg 4200
 gggagaatttcc tagaaataaaa tggtaacctaa ttattacagc cttaaaagaca aaaatccctt 4260
 ttgaagtttt tttttttttttt gctaaattac atagacttag gcattaaacat gtttgtggaa 4320
 gaatatacgca gacgtatattt gtttgcattt gtttgcattt cccaaatggg cattcttaggc 4380
 tctatttttac tggatcacac tggatcacac tttttttttttaaacttttata gtttatcaaa 4440
 actgttgtca ccattgcaca attttgcctt aatataataca tagaaactttt gtggggcatg 4500
 ttaagttaca gtttgcacaa gtttgcattt tttttttttttaaacttttata gtttatcaaa 4560
 aaacattttt tcttcaaaca gtttgcattt tttttttttttaaacttttata gtttatcaaa 4620
 aaactatctg aagatttcca ttttgcattt gtttgcattt tttttttttttaaacttttata gtttatcaaa 4680
 tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 4740
 aataactggat agcatgaattt gtttgcattt gtttgcattt tttttttttttaaacttttata gtttatcaaa 4800
 tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 4860
 ctgtgttttca gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 4920
 aatttagggg aaaaaaaaaatg tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 4980
 ccccaacagag cttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5040
 tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5100
 tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5160
 ctggaaacatg cacattttttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5220
 agttgttttca gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5280
 aatgaccactt cttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5340
 gtgatctaaa atttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5400
 aataaaaaataa gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttgcattt tttttttttttaaacttttata gtttatcaaa 5436

```

<210> 30
<211> 5312
<212> DNA
<213> Homo sapiens

<400> 30
ggccgcggcg gcggaggcag cagcggcgcc ggcagtggcg gcggcgaagg tggcggcg 60
tcggccaga ctccccgccc cggccatttc ggactgggag cgagcgcggc gcagggcactg 120
aaggcggcgg cggggccaga ggctcagcgg ctcagggtg cgggagagag gcctgctgaa 180
aatgactgaa tatcaaacttg tggtagttt agctggtggc gtaggcaaga gtgccttgac 240
gatacagcta attcagaatc attttggta cgaatatgtat ccaacaataag aggattccta 300
caggaagcaa gttagtaattt atggagaaac ctgtctttt gatatttcg acacagcagg 360
tcaaggaggag tacatgtcaa tgagggacca gtacatgagg actggggagg gcttcttgg 420
tgtatggcc ataaataata ctaaatcatt tgaagatattt caccattata gagaacaaat 480
taaaagagtt aaggactctg aagatgtacc tatggtccta gtaggaaata aatgtgattt 540
gccttctaga acagtagaca caaaacaggc tcaggactta gcaagaagtt atgaaattcc 600
tttattgaa acatcagcaa agacaagaca gggtgttat gatgccttct atacattagt 660
tcgagaaatt cgaaaacata aagaaaagat gagcaaaagat ggtaaaaaga agaaaaaagaa 720
gtcaaagaca aagtgtgtaa ttatgttaat acaatttgta cttttttctt aaggcatact 780
agtacaagtg gtaattttt tacattacac taaaatttata gcatttgcatt tagcattacc 840
taatttttt cctgctccat gcagactgtt agctttacc ttaaatgctt attttaaaat 900
gacagtggaa gttttttttt cctctaagtg ccagtattcc cagagtttgc gtttttgaac 960
tagcaatgcc tggaaaaaaag aaactgaata cctaagattt ctgtcttggg gtttttggg 1020
catgcagttg attacttctt atttttctta ccaattgtga atgttgggtt gaaacaaatt 1080
aatgaagctt ttgaatcatc cctattctgt gtttatctta gtcacataaa tggattaatt 1140
actaatttca gttgagacct tctaattttt gtttactgaa acattgaggg aacacaaatt 1200
tatgggccttc ctgatgtatc ttcttcttagg catcatgtcc tatagtttgt catccctgtat 1260
gaatgtaaag ttacactgtt cacaagggtt ttgtctcctt tccactgcta ttagtcatgg 1320
tcactctccc caaaatatttattt tttttttctt ataaaaagaa aaaaatggaa aaaaattaca 1380
aggcaatggaa aacttatttata aggccatttc ctttcacat tagataaatttactataaaga 1440
ctcctaataag ctttccctgt taaggcagac ccagttatggaa atggggattt ttatgcaac 1500
cattttgggg cttatatttac atgtactataa atttttataa taattgaaaa gattttaaca 1560
agtataaaaaa atttcatag gaattaaatg tagtctccct gtgtcagact gcttttcat 1620
agtataactt taaatctttt cttcaacttgc agtctttgaa gatagtttta attctgctt 1680
tgacattaaa agattatttg ggccagttt agcttatttag gttgtgaaga gaccaagggtt 1740
gcaaggccag gcccgtgtg aaccttttagg ctttcataga gagtttcaca gcatggactg 1800
tgtccccacg gtcatccagt gttgtcatgc atttgttagt caaaatgggg aggactagg 1860
gcagtttggaa tagctcaaca agatacaatc tcactctgtt gttgtcttgc tgacaaatca 1920
agagcattgc ttttggttct taagaaaaaca aactctttt taaaatttac tttttaaat 1980
taactcaaaa gttgagattt tgggggtggg gtgtgccaag acattaattt tttttttaaa 2040
caatgaagtg aaaaagttt acaatctcta gtttggctta gttctttttaa cactggttaa 2100
attaacatttgc cataaacact tttcaagtctt gatccatatt taataatgtt taaaataaaa 2160
aataaaaaaca atccttttga taaattttaa atgttactta tttttaaaata aatgaagtga 2220
gatggcatgg tgaggtgaaa gtatcactgg acttaggaaga aggtgactta gttcttagat 2280
aggtgtcttt tagactctg attttgagga catcacttac tatccatttc ttcatgtttaa 2340
aagaagtcata cttcaacttct tagttttttt tttttacaac tatgttaattt atattccatt 2400
tacataagga tacacttattt tgcgtcaagtc agcacaatct gtaaaattttt aacctatgtt 2460
acaccatctt cagtgcctgtt cttggggcaaa atttgtgcagag aggtgaagtt tatattttgaa 2520
tatccattct cgttttagga ctcttcttcc atatttgcatttcatcttgcct ccctacccctt 2580
cacatgcccc atgactgtat gcatgtttaa tacttgcatttcccttaacc ataagattta 2640
ctgtgtgtt ggtatcttcc tcaaggctca agagaatctg acagatacc taaaggaggatt tgacctaatac 2700
actaattttc aggtggtggc tgatgtttt aacatcttca gtaggtatggat agacagaacc tgcgtcccaa tccatttagcg 2820
acagtaggat tttcaaaacc tggatgtatggat agacagaacc tcatccatgtt gaaaggagaat 2880
ttaataaaaaga tagtgcgttca agaatttctt aggtatcttca taacttaggac tactccttgg 2940
aacagtaata cattccattt ttttagtaac cagaaaatctt catgcaatga aaaataacttt 3000
aattcatgaa gcttactttt tttttttttt gtcagagtctt cgctcttgc acccaggctg 3060
gaatgcagtgcgccttc agctcactgc aacccatcttccatc tcccgaggttc aagcgattct 3120

```

cgtgcctcg cctcctgagt agctgggatt acaggcgtgt gccactacac tcaactaatt 3180
 tttgtatTTT taggagagac ggggTTTcac cctgttgcc aggctggtct cgaactcctg 3240
 acctcaagtG attcacccac ctggcctca taaacctgtt ttgcagaact catttattca 3300
 gcaaataATTt atttagtgcc taccagatgc cagtcaccgc acaaggact gggatatgg 3360
 tatccccAAA caagagacat aatcccggc cttaggtgt gctagtgtgg tctgtaatat 3420
 cttactaagg ccttggtat acgaccaga gataaacacga tgcgtatTTT agtttgcaa 3480
 agaaggggTT tggctctgt gccagctcta taattgttt gctacgattc cactgaaact 3540
 ctgcataaG gctactttat gtaaatcact tcattgttt aaaggaataa acttgattat 3600
 attgtttttT tatttggcat aactgtgatt ctTTtaggac aattactgta cacattaagg 3660
 tggatgtcAG atattcatat tgacccaaat gtgtatatt ccagTTTCT ctgcataagt 3720
 aattaaaATA tactaaaaaa ttaatagttt tattctggta caaaAAaca ggtgcctgaa 3780
 ctatTCaca gacaaggAAA cttctatgta aaaatcacta tgatTTCTGA attgctatgt 3840
 gaaactacAG atcttggAA cactgtttAG gttaggggtt aagacttaca cagtagctcg 3900
 tttctacaca gagaAAagAAA tggccataCT tcaggaactg cagtgcTTAT gaggggatAT 3960
 tttaggcctCT tgaatTTTG atgttagatgg gcatttttt aaggtagtgg ttaattacCT 4020
 ttatgtgaAC ttGAATGGT ttaacAAAG attgttttt gtagagattt taaaggGGGA 4080
 gaattctaga aataAAatGTT acctaattat tacagcCTTA aagacaAAAAA tccttGTTGA 4140
 agtttttta aaaaaAGCTA aattacatAG acttaggcat taacatgttt gtggagaAt 4200
 atagcagacG tatattgtat catttgagtG aatgttCCCA agtaggcatt ctaggcTCTA 4260
 tttaactgAG tcacactgca taggaattta gaaCCTAact ttataggtt atcaAAactG 4320
 ttgtcaccat tgcacaattt tgcctaata tatacataga aactttgtgg ggcatgttaa 4380
 gttacagtTT gcacaAGGTC atctcatttG tattccattG atttttttt tcttctaaAC 4440
 attttttCTT caaacAGTat ataactttt ttaggggatt tttttttaga cagaaaaAc 4500
 tatctgaAGA tttcatttG tcaAAAGTA atgatttCTT gataattgtg tagtaatgtt 4560
 ttttagaACC cagcagttAC cttaaAGCTG aatttatTT tagtaacttC tggTTtaata 4620
 ctggatAGCA tgaattCTGC attgagaaAC tgaatAGCTG tcataAAATG aaactttCTT 4680
 tctaaAGAAA gataACTACA ttagttCTTG aagaatAGTC ataactAGat taagatCTGT 4740
 gttttagTTT aatAGTTGA agtgcctgtt tggataatG ataggtatt tagatgaatt 4800
 taggggAAAaaaAGTTAC tgcagatATG ttgaggGCCc atctctCCCC ccacacCCCC 4860
 acagagCTAA ctgggttaca gtgttttac cgaaAGGTTc caattccact gtcttGTT 4920
 ttcatgtGA aaataCTTT gcattttCC tttgagtGCC aatttCTTAC tagtactatt 4980
 tcttaatgtA acatgtttAC ctggaatgtA ttttaactat tttgtatAG tgtaAAactGA 5040
 aacatgcACA tttgtacat tggTTttCT tttgtgggac atatgcAGtG tgatccAGtT 5100
 gtttccATC attgggttGC gctgacCTAG gaatgttGGT catatCAAAC attaaaaAAAtG 5160
 accactCTT taattGAAAT taactttAA atgtttatAG gatgtgtGC tggtaAGtGA 5220
 tctaaaATTt gtaatattt tgcataGAAc tgcataCTC ctaatttattG taatgtAATA 5280
 aaaatAGtTA cagtGacAAA aaaaaaaaaaA aa 5312

<210> 31
 <211> 570
 <212> DNA
 <213> Mus sp.

<400> 31
 atgactgagt ataaacttGt ggtggTTGGA gctggTggCG taggcaAGAG cgccttgacG 60
 atacagctaa ttcaGAAatca ctTTgtggat gagttatgacc ctacgatAGa ggactcctac 120
 agggAAacaAG tagtaattGA tggagAAacc tggTCTCTGG atattctcGA cacAGCAGGT 180
 caagaggAGT acagtGCAAT gagggaccAG tacatgagAA ctggggAGGG ctTTCTTGT 240
 gtatTTGCCA taaataataAC taaatCATTt gaagatattc accattatAG agaacaAAatt 300
 aaaAGAGTAA aggactCTGA agatgtGCCT atggTCTCTGG tagggAAataA gtgtgatttG 360
 ccttctAGAA cAGTAGACAC gaaACAGGCT caggAGTTAG caaggAGtTA cgggattCCG 420
 ttCATtgAGA cCTCAGCAAA gacaAGACAG agagtggAGG atgcTTTTA tacattGGtG 480
 agagAGatCC gacAGtACAG attgaaaaAA atcAGCAAAG aagAAAAGAC tcctggCTGT 540
 gtgaaaATTt aaaaatGCGT tataatgtAA 570

<210> 32
<211> 1567
<212> DNA
<213> Mus sp.

<400> 32
cgacgcgtg ggccggcagcg ctgtggccgc ggctgagacg gcaggggaag gcggccggcgg 60
ctcgccccgg agtcccgcgc cccgcgcatt tcggacccgg agcgagcgcg ggcgcggccct 120
gaaggccggcg gcgggagcct gaggccggc ggctccggcg cgccggagaga ggcctgctga 180
aaatgactga gtataaactt gtggtggttg gagctgggtgg cgtaggcaag agcgccttga 240
cgatacagct aattcagaat cactttgtgg atgagtagcga ccctacgata gaggactct 300
acaggaaaaca agtagtaatt gatggagaaa cctgtcttgg gatatatttc gacacagcag 360
gtcaagagga gtacagtgcata atgagggacc agtacatgag aactggggag ggcttcttt 420
gtgtatttc cataaataat actaaatcat ttgaagatat tcaccattat agagaacaaa 480
ttaaaagagt aaaggactct gaagatgtgc ctatggctt ggtagggaat aagtgtgatt 540
tgccttc tag aacagttagac acgaaacagg cttaggagtt agcaaggagt tacgggattc 600
cgttcattga gacctcagca aagacaagac agggtgttga cgatgccttc tatacattag 660
tccgagaaat tcgaaaacat aaagaaaaaga tgagcaaaga tggagaagaag aagaagaaga 720
agtcaaggac aagggttaca gttatgttac tactttgttac tctttcttaa ggacacactta 780
agtaaaagtg tgatfffft acattacact aaattattag catttggttt agcattacct 840
aatctttttt tttcttc ttcgtgcataa ctgtcagctt ttatctcaaa tgcttatttt 900
aaaagaacag tggaaacactt ctttttcta agtgcctgttta ttccctgggt tttggactta 960
aactagcaat gcctgtggaa gagactaaag acctgagact ctgtcttggg atttggtgca 1020
tgcagttgat tccttgc tag ttctcttacc aactgtgaac actgtatggga agcaggataa 1080
tgaagcttcc ggaccatccc tgctctgtgt ccatctactc atccaatggaa gtcattagca 1140
gtcaatcgca gcttcactgg acactgaggg gtcacagact taggctccct ttgagtacg 1200
tccagcgtgt cctagacttt atcatcttcc agaggcgttag gcagactgtt cacaaggct 1260
ttctcttagt ttccactgca attaatcttgc gtaactccct caaatagtat atttttcta 1320
gaaaaggggaa aaaatggaaa aaaaaaaaaa ggoaatggaa aatgttgaaa tccattcagt 1380
ttccatgttac gctaaattac tgtaagattc ctataatagc ttttcttggt aaggcagacc 1440
cagtagaaa tagtaataaac catttgggtt atatttacat gctactaaat ttttgtaata 1500
attcaaaacaat cttagcata tataaaaagt tctcataaga attaagtaca aaaaaaaaaa 1560
aaaaaaaaa 1567

<210> 33
<211> 1534
<212> DNA
<213> Mus sp.

<400> 33
acacagactg ggggagggtgg gattcttcgc ccatagagag aggcattgaa taegtgcact 60
ctgacatttc tcgtgagaat ggtcttcta gtaccagtgt agcaaaggaa tcataaaattt 120
tgataaaactg aagacagttt gattagcagg gaagagaaga ggcacccctt ctgccagcca 180
tgatgaagga agcatcggtt cctctagccca gtgtcaccagg catcaataag caagacagta 240
aagtacagga tggagagata agaaaaagaaa aaatttggaaac catcactcca tcgaaacagc 300
attcttcagt ccacttcttcc ccaaagataa tggattcaga ctccaccacg ctcatccct 360
tgtcccgctc attttcccaa gaaatccca ttggcttcta ccagatcacc agcacccaga 420
acagctccac cttatcgcc agaggacagc tggcttctaa atccaccatc ctgagctgt 480
cccacaaaga cagcagccctg ggaaagcaga gcaccagctc catggttcca cggaggcagc 540
cccagtgcag ctgtacgtg gatacgtata cttttggaa tggtgaggat tatttcttt 600
ctttgtttgg agaatcgaaag aagctcaccc cccacacacc ccaagccgag aacgtgagcg 660
aacacccctc tggatccctt gaggaaatcg gccaattttac atccaggatct ctcggagaaa 720
ttaaaatagc tgaggtaat atcaaggggcc tctttgttgc gttgtcaac tcctccaaatg 780
aaaaggaagt agagatttggaa aaccacattt ttcagcaaaa cgtgaatggaa cacgcagtc 840
ccttgcacca gttccccgac aacatcacac tgcaggccaa ctccacgggtt acagtgtggg 900
cagcagcttcc ggaagcaaaag ccacagccac caacggactt tggggagaaacagagca 960
agttccgatc cagtcggac tgcacgacca tcttgcacca gccaatggg gaggccattt 1020

```

cctggtacac tcctatccac tggaagcaag cctgggagaa gtttagagact gacattgaat 1080
tcgaaagatg ctcaagtggtg gtcccatcaa tgagaaaacca catgtttgga tggataacag 1140
catctgtctc ttccacaac gaggagaaaag aagaaccaat acagaaaacg ccctcccaag 1200
tctaccctgt cctctacaga gaaaaggaaa tcccgccaac tgtcttaccc aataagagcc 1260
cctggtgccg caatcccaac acttctccac atccgtacag ctctctgatt gactcacatg 1320
actcggacat ttccgaaagc agtttagata cacagctcaa gcctcagcca accaagccca 1380
aaccagaccc agggaccaag aaaaagaaaag caaagtata agaaaatgga aagccatgaa 1440
atctgtgaac gtgagtaact attgttagt tgctttataa caaaatattc cacaataat 1500
tgcaataaat ttttgagggt ctcgcttat gacc 1534

```

<210> 34
<211> 1353
<212> DNA
<213> Mus sp.

<400> 34

```

ggccgcgttgt gccgc当地 gctggagtga ggccgtctga gcaagctgtc gtctggaccc 60
cagacctgct ggttgtgaag tatatcatgt ataaaaagtgg atcaattcca tggtaagtga 120
aaatggccaa ttctgttacga ggagaagttac tgactcttta taaaaatctg ctgtatctt 180
gacgggacta tccaaaagga gcagactatt taaaaggcg tttgaagaac gttttccctta 240
aaaacaagga tggggaggac ccagagaaga tcaaaagaact tatcgacacga ggagaatttg 300
taatgaagga gctagaggcc ttgtacttcc tttaggaaata cagagctatg aagcaacgtt 360
actattcaga taccaaagtc tgaccaatca ttgcaccagt cgagctgaca accagtgt 420
gctgtttgcc tggtaactt attaaaaat aattcagtt aaaagggtga gatacatgg 480
ttttaaaaaa atgagttgcc ctactgtact gaaatagtt tcaaccctt tgataactgag 540
agctttgccc ataattccctt tattactgaa atagtaactt tagtacccctt catgataata 600
taattttgaa agaaaataca cttaaattttt aaacatgtta tagccaaat tcttaagtct 660
atttcttcat ttactgtatgaa gattgtcact atcgaatggt gtctgacagg cttggccctt 720
agcttctaga gtgtctttgt cttgtttt tgggttttgg ttagccccatc tagtatacta 780
aagtgcataat tcaaggctct ctacagacac ctccaaaatgaa tttaaatgca gttatcaaaa 840
taagacatgt gaaggtgacc tctatcttga gaaggtcagt ggggtacttag cattgtgt 900
ctattattcc cattattctt tggctgtcg gcctgcctta agttctgaaac cactcaagt 960
agctttcatg aggagttgtatgttccctt atttctgcca taaaagctgg tataatttct 1020
gtcgacctgt aaccgagtcctt atgtggcagt ggacctaacc caggcaggac tgtaagttt 1080
agcaaaaatgt ttatgtatgaa gtttttagca acgttataaa taacatttct aacttaaaag 1140
ctgcaaatag tgggtcttattt aggattctgt atcaggctgg agagatggct cagtggtt 1200
gaggactgac tgctcttcca gaggtcttga atttaattcc cagcaaccat atgggtggctt 1260
acaaccatct gtaatgggat ctgtatgtcca cttctgggtgt gtctgaacac agacagtgt 1320
ctcatagaat aaataaaataa acgaataat ctt 1353

```

<210> 35
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 35
gaccaaaagcc gagcgactgc ggc

<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 36
cggtgtcttg atgaagaagc t

21

<210> 37
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 37
tgacatccgt aaagacctct atgcc

25

<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
primer

<400> 38
gaggttagcac gtggcggtca cgaa

24