II. Etude des roulements

1. Objet de l'étude

Les roulements sont parmi les composants les plus sollicités des machines et représentent une source de panne fréquente.

Photo d'un roulement

2. Protocole

Photo du montage

Cette opération est répétée pour 4 types de roulement:

- -simple
- -défaut de bague externe profond, -défaut de bague externe peu profond -défaut de rouleau

Tableau des fréquences de défauts

Défauts	Hz
Excentricité ou excentricité du membre rotatif	8, 333
Irrégularité de la bille ou du rouleau	63,731
Fréquence de rotation des billes ou des rouleaux	31,865
Irrégularité de la bague intérieure	93,663
Irrégularité de la bague extérieure	72,964
Dimensions des billes ou des rouleaux _ Intérieur	3,650
Dimensions des billes ou des rouleaux _ Extérieur	4,683 ₁₇

2.Protocole : Signal synthétique

ajout d'une fréquence de défaut

Signal synthétique

Schéma explicatif de la fabrication du signal synthétique

Sources:

Informations: (1), (3),(7)

2.b Signal synthétique

Fréquence du défaut : 34 Hz

Résultats

Défauts	Hz
Excentricité ou excentricité du membre rotatif	8, 333
Irrégularité de la bille ou du rouleau	63,731
Fréquence de rotation des billes ou des rouleaux	31,865
Irrégularité de la bague intérieure	93,663
Irrégularité de la bague extérieure	72,964
Dimensions des billes ou des rouleaux _ Intérieur	3,650
Dimensions des billes ou des rouleaux _ Extérieur	4,683

2.c Première méthode : La détection d'enveloppe Défaut de rouleaux

Résultats

Défauts	Hz
Excentricité ou excentricité du membre rotatif	8, 333
Irrégularité de la bille ou du rouleau	63,731
Fréquence de rotation des billes ou des rouleaux	31,865
Irrégularité de la bague intérieure	93,663
Irrégularité de la bague extérieure	72,964
Dimensions des billes ou des rouleaux _ Intérieur	3,650
Dimensions des billes ou des rouleaux _ Extérieur	4,683

3.a Deuxième méthode appliquée: Le kurtosis

Kurtosis

$$Kurtosis = \frac{M_4}{M_2^2} = \frac{\frac{1}{N} \sum_{n=1}^{N} (x(n) - \bar{x})^4}{\left[\frac{1}{N} \sum_{n=1}^{N} (x(n) - \bar{x})^2\right]^2}$$

M₄ et M₂ sont les moments statistiques d'ordre 4 et d'ordre 2, x(n) est le signal temporel,

 \bar{x} est la valeur moyenne des amplitudes,

N est le nombre d'échantillons prélevés dans le signal.

- Indicateur scalaire
- Sensible aux chocs
- Sensible aux fortes vitesses

(a) Kurtosis en fonction du SNR, (b) Kurtosis en fonction des fréquences parasites pour différents SNR

Source:

Informations: (1), (25) image: (25) 26