1) [39] TRUE/FALSE (mark each as T or F)
F Linear (i.e., "progressive overflow") with a separate collision area is the most time-efficient collision resolution algorithm
A BST index gives faster random access (e.g., for a query) than a hash table index - to access MainData file records
A random access file structure (like Asg1's MainData file) must use fixed-length record locations (vs. variable-length)
For a given BST with specific values, you can "reverse-engineer" the tree to determine the record-order of the raw data file
There can be > 1 program in a VisualStudio/C# or NetBean/Java project
If an app needed random access for WMU students using WIN (i.e., ID#) as the key
T A hash FILE is a good choice F A direct address FILE is a good choice
If an app needed random access for WMU students using email address as the key
TA hash FILE is a good choice FA direct address FILE is a good choice
If MainData was a hash FILE (hashed on NAME), you could do key-sequential access of that file by ID if you had an ID INDEX which was structured as a(n) [each of the following 5 is a separate T/F question]
F 1 I/O takes about 50 times as long as 1 internal instruction F Random access files must be binary files
The order of the input data affects a BST's search time Binary files must be random access files
A given GROUP of values always results in the same exact BST_T_ You can do key-sequential access of a BST
T A BST can be used for a lookup table in memory T A given input file always gives the same exact BS
External indexes have faster search time than internal indexes Short fat trees are better than tall skinny trees
An internal index is always better than an external index A BST is "logically" in key-sequence
Direct address files are a type of hash file without collisions Post-order traversal of a BST isn't really of any
Direct address tables have slower query time than hash tables F A BST would make a good external index
T A C#/Java program can run another C#/Java program F You can do key-sequential access on a hash tal
You can use direct address for a lookup table in memory BST nodes could be stored in an array of node
InOrder traversal of a hash table gives key-sequential access F BST's grow taller on the root end (vs. the lea
If chaining's used for a hash table, the links are subscript values The DRPs in the Hash table index are RRNs
A BST is physically in key-sequence in the array

F

2) [3] For some DCT of h	dated and		2		
2) [3] For some BST of n	eight 4, could the root pos	sibly contain the 5th smallest value? (Y	es or No) Yes		
		ould get with 13 KV's?	(a number)		
What's the height	of the tallest BST you cou	ald get with 13 KV's?	(a number)		
2) [0] What's the ORDER	- 4 CO 1 mi minimi				
3) [9] What's the ORDER		ime, not space) for a SINGLE operation	on on the specified DATA structure?		
	BST	Hash Table	Ordered List		
INSERT →	0(log, n)		<u> </u>		
DELETE →	O(log 2 n)	0(1)	8(n)		
QUERY →	8(leg 2 n)	8(1)	O(log2n)		
		QUERY transaction for each of these			
DIRECT ADDRESS $\theta(1)$			KEY-SEQUENTIAL (D/M) O(log2n)		
SERIAL	(n)	HASH	0(3)		
[1] When determining	the above order of compl	exities, what's the important OPERA	TION (Time - unit)		
that's used for de	termining the estimate?	(that is, what's the "measurement un	Big O notation		
5) Grow a BST from this	data (in the order shown)	: FGJCE	AIHDB		
[5] Show it "conceptual	lly" (as a tree "picture")		A		
	" (as it's actually stored i	in memory)	WE G		
(like asgn 2 work	sheet) INCLUDE ALL	PARTS			
[3] Average search path	(successful): 3/10	3.1	30 P		
[3] PreOrder traversal:	FCABEDG	TIH_	(3)		
,					
[506] [[LP4+] [K	(ey][RP+R]		2(2) +3(3) + 4(3) +5		
	F 1	11	10		
1 1-1	9 2				
2 6	5 -1		+4+9+12+5		
012345	C 4 E -1		10		
4 0	-		= 14+17		
	A 9 T -1				
6 7 -1	-		10		
7 -1	H -1		= 31		
	D -1		10		
9 -1	B -1		0.1		
			= 3.1		

5] The best performing na	ch EII E structure	a meas to ded he	ably good hash function), one can ge	cate chamin	for the
H(1.5)		wit)	as the time-performance for a		
(a number)	her) (the measurement unit)		about95	% for the p	acking density.
18, 27, ables use DivisionRemai _N_LOC or MAX_N_F	48, 44, 98 inder for the HF. IOME_LOC, as	The 2 different (sappropriate). Sl	order. [The following are the keys]. O, 87 CR Algorithms are specified below. now the 2 tables – with labels at the tables. This table uses LINEAR with	Use 10 as Max top of & subscr	ipts on the left.
This table uses CHAINING with SEPARATE area MAX _ N _ LOC = 10			MAX - N - LOC = 10		
	D/[Link]	[F\$U67]		[KE)]	[508]
LAL		0		0	0
	1-1	1			3
NAME OF THE OWNER,	-1	2		111	2
	-1	3			3
44	-1	4		44	
	-1	5			5
	-1	6			6
27	14	7		27	7
18	14	8		18	1
		9			8
48	1	10		48	10
98	10	11		98	11
78	11	12		88	3
07	-1	13		3	1
54					7 /3
37	13	IH		1 7	7 1 4

Average Search Path for this table (for successful searches):

[2+2] Average Search Path for this table (for successful searches):