ECE637 Lab report 2 2-D Random Processes

Name: Chengzhang Zhong

Section 1. Power Spectral Density of an Image

Part 1. The gray scale image img04g.tif

Part 2. The power spectral density plots for block sizes of 64 \times 64, 128 \times 128, and 256 \times 256

Figure 1. Block size 64*64

Figure 2. Block size 128*128

Figure 3. Block size 256*256

Part 3. The improved power spectral density estimate

Figure 4. The improved power spectral density estimate

Part 4. Code for BetterSpecAnal.m

```
function BetterSpecAnal(img)
N = 64;
z=zeros(N,N);
Z=zeros(N,N);
[m,n] = size(img); %get the size of this img
%Y axis is the row = 512,X axis is the col = 768
stx = m/2-5*N/2; %get the start point of 25 windows at the center
sty = n/2-5*N/2; %this is a dynamic range, varies with different
image size
W = hamming(64)*hamming(64)'; %hamming window
for k=1:5
   for l=1:5
W.*img((sty+N*(l-1)):(sty-1+N*1),(stx+N*(k-1)):(stx-1+N*1)
N*k)); %pick a window and multiply by hamming window
       Z = abs(fft2(z)).^2 + Z; %Sum up
   end
```

```
end
% Compute the power spectrum for the NxN region
Z = (1/N^2) * (Z);
z = z/25;
% Use fftshift to move the zero frequencies to the center of
the plot
Z = fftshift(Z);
% Compute the logarithm of the Power Spectrum.
Zabs = log(Z);
% Plot the result using a 3-D mesh plot and label the x and
y axises properly.
x = 2*pi*((0:(N-1)) - N/2)/N;
y = 2*pi*((0:(N-1)) - N/2)/N;
figure
mesh(x,y,Zabs)
xlabel('\mu axis')
ylabel('\nu axis')
```

Section 2. Power Spectral Density of a 2-D AR Process

Part 1. The image 255 * (x + 0.5)

Figure 1. Random image 512*512

Part 2. The image y + 127

Figure 2. Filtered image(y+127)

Part 3. A mesh plot of the function $\log S_y(e^{j\mu}, e^{j\nu})$

Figure 3. power spectral density

By doing the calculation on $H(z_1,z_2)$, the difference equation can be interpreted as y(m,n) = 3*x(m,n) + 0.99*y(m-1,n) + 0.99y(m,n-1) - 0.9801*y(m-1,n-1)

Part 4. A mesh plot of the log of the estimated power spectral density of y using *BetterSpecAnal(y)*

Figure 4. a better power spectral density

Part 5. MATLAB code

```
clc
clear
close

img = rand(512);%generate a 512X512 matrix on (0,1)
img = img - 0.5;%map the matrix into (-0.5,0.5)
img_scaled=255*(img+0.5);
imwrite(uint8(img_scaled),'rand_img.tif');%generate the actual image

y = zeros(513,513); %adding a zero col and zero row for calculation
yf = zeros(512,512); %image after filtered

for k = 1:512 %k cols, for x axis
    for l = 1:512 %l rows, for y axis
        y(k+1,1+1) =

3*img(k,1)+0.99*y(k,1+1)+0.99*y(k+1,1)-0.9801*y(k,1);
```

```
yf(k,1) = y(k+1,1+1) + 127;
   end
end
imwrite(uint8(yf), 'rand filterd.tif')
N = 512;
\mbox{\%} Compute the power spectrum for the NxN region
Z = (1/N^2) * abs(fft2(yf)).^2;
% Use fftshift to move the zero frequencies to the center of
the plot
Z = fftshift(Z);
% Compute the logarithm of the Power Spectrum.
Zabs = log(Z);
% Plot the result using a 3-D mesh plot and label the x and
y axises properly.
x = 2*pi*((0:(N-1)) - N/2)/N;
y = 2*pi*((0:(N-1)) - N/2)/N;
figure
mesh(x,y,Zabs)
xlabel('\mu axis')
ylabel('\nu axis')
BetterSpecAnal(yf)
```