

FCC TEST REPORT

For

SHENZHEN MAGICSEE TECHNOLOGY CO., LTD.

Android TV box

Model No.: N5, N5MAX, N6MAX

Prepared For : SHENZHEN MAGICSEE TECHNOLOGY CO., LTD.

Address : No 242 Building 4, Xixiang Road, Baoan District, Shenzhen City,

Guangdong Province, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180831003-04

Date of Receipt : Aug. 31, 2018

Date of Test : Aug. 31~Sept. 28, 2018

Date of Report : Sept. 28, 2018

Contents

1. General Information			V4Pofer	Anbe		
1.1. Client Information	notek	Anbo		10.4	ote.	7U.
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During 1.4. Description of Test Modes 1.5. List of channels	wotek.	Anbore	An		upotek	Anbo.
1.3. Auxiliary Equipment Used During	g Test	oto day.	k Anbi		, Hotek	hupote,
1.4. Description of Test Modes	Anbe		4910	opore	Anv	Kapotek
1.5. List of channels	Anbox			Motek	Anbo	···/
1.6. Description Of Test Setup	N	poter	'upo		k 4700	ole Am
1.7 Toot Equipment List						50to D9
1.8. Description of Test Facility 2. Summary of Test Results 3. Conducted Emission Test 3.1. Test Standard and Limit	,0,-	bri.	Roporer	Anb		1
2. Summary of Test Results	apoter	Anba		ie _K	Thore	
3. Conducted Emission Test	Ne Otek	Anbor		Yell	unboten	Anbo
3.1. Test Standard and Limit		_M	oter Ar	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	otel	1
3.2. Test Setup	Anb		apotek.	Aupor		, w. Yay
3.3. Test Procedure	K Ant	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	unbote.	Aug.	1
3.4. Test Data	otek	Mpofe.	Anb		stek A	nbors 1
4. Radiation Spurious Emission and Band I 4.1. Test Standard and Limit	Edge	"Potek	Aupor	bi.	-otek	
4.1. Test Standard and Limit	'upo	wotel	· odos	, b	Up.	1
4.3. Test Procedure	oto dy.	k Anbe		Hote ^K	- Nupote.	Anb1
4.4. Test Data	(otek p	upore,	Vur.	2000	tek 2
4.2. Test Setup	Ani	Yey	, hotek	Anbor		8 ^N 3
5.1. Test Standard and Limit	stek t	Yupo.	, otek	odna	re. M	3
5.2. Test Setup	hotek	Anbore	Anv		botek	Anbo
5.3. Test Procedure	,n.,, <u>ke</u> K	botek	Anbo.	V	oteK	3
5.4. Test Data	Anbe	ļ	iek au	oote	Vur.	3
6. 6DB Occupy Bandwidth Test	Anbore	Am	1935	Kubotek	Anbo	3
6.1. Test Standard and Limit	dos	otek Ar	100	notek	Anbo	3
6.2. Test Setup		botek	Anbore.	A.m.		
6.3. Test Procedure	, P	'U.,	hotek	Anbo	V	otek
6.4. Test Data	botek	Anbo		K DY	pole	3
7. Power Spectral Density Test	botek	Anboic	An	, tek	obotek	Anbo
7.1. Test Standard and Limit	bri.	dodn	en Ani	,	, otek	3
7.2. Test Setup	Anb		ootek	Auporg	VII.	e ^k b ^{ote} .3
7.3. Test Procedure	Anbo	Dr. 177	rek.	aboten	Anbe	3
7.4. Test Data	lek	upoter	Anbe	, not	ek An	
8. 100kHz Bandwidth of Frequency Band I	Edge Requ	irement	Anbole	V. V.	tek-	
8.1. Test Standard and Limit	/po	VII.	Anbote	An An	o~	
8.2. Test Setup	Anboten	Anb	e	otek	Anbore	
8.3. Test Procedure	, botek	Anbol	- P.	ote ^K	anbotek.	Anb. 3
8.4. Test Data	Ban	rek an	oter	'UD'	not/	, Alboria
6.4. Test Data	Anu		abotek	Anbor		4
9.1. Test Standard and Requirement	ek Ar	Jpo.	A" otek	Anbot	An	Δ
2.1. 1000 Standard und Roquitofficilit	NC	- ote	AUD		404	-1001 AT

9.2. Antenna Connected Construction	tek.	anboten	Anbe	, otek	43
APPENDIX I TEST SETUP PHOTOGRAPH		botek	Anbor	by.	44
APPENDIX II EXTERNAL PHOTOGRAPH	100	h, motek	hupote,	Ann	46
APPENDIX III INTERNAL PHOTOGRAPH	Anbore	Vive	کوپرکلی	stek Aupor	50

TEST REPORT

Applicant : SHENZHEN MAGICSEE TECHNOLOGY CO., LTD.

Manufacturer : SHENZHEN MAGICSEE TECHNOLOGY CO., LTD.

Product Name : Android TV box

Model No. : N5, N5MAX, N6MAX

Trade Mark : Magicsee

Rating(s) : (via adapter input: AC 100~240V, 50/60Hz ,0.5A; output: DC 5V, 2A)

Test Standard(s) : FCC Part15 Subpart C 2017, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v04

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test			Aug. 31~Sept	l. 20, 2010	
			20/2/04	(arg	
Anboten Anbo			Mus 00	Anbo	
Prepared by	DOTE	Anboten	Ann	An'	DOLC VILL
hotek Anbotek	MBOTH	in the state of th	(Engineer / O	liay Yang)	Anbotek Anb
U.S.	Ambotek	anbott			
Anbotek Anbotek	S AMDOGOV		Snavy	Meng	
Reviewer	FICE	The state of the s	Anb O	bo Anbote	Anbotek Anbotek
			(Supervisor / Sı	nowy Meng)	
			K Ans	Anbotek	
			Sally Z	hong	
Approved & Authorized	Signer _	Anbotek Anb	ntek V nbol	ek V Aupore	K Motek
			(Manager / Sa	ally Zhang)	

1. General Information

1.1. Client Information

Applicant	: SHENZHEN MAGICSEE TECHNOLOGY CO., LTD.	P.
Address	: No 242 Building 4, Xixiang Road, Baoan District, Shenzhen City, Guangdong Province, China	e.k
Manufacturer	: SHENZHEN MAGICSEE TECHNOLOGY CO., LTD.	potek
Address	No 242 Building 4, Xixiang Road, Baoan District, Shenzhen City, Guangdong Province, China	Anbo
Factory	: SHENZHEN MAGICSEE TECHNOLOGY CO., LTD.	Pic
Address	No 242 Building 4, Xixiang Road, Baoan District, Shenzhen City, Guangdong Province, China	3K

1.2. Description of Device (EUT)

Product Name	:	Android TV box	Anbotek Anbotek Anbotek Ar
Model No.	:	N5, N5MAX, N6MAX (Note: All samples are the same only.)	e except the solutions, so we prepare "N5" for test
Trade Mark	•	Magicsee	Anbotek Anbotek Anbotek Anbo
Test Power Supply	:	AC 240V, 60Hz for adapter/ AC	120V, 60Hz for adapter
Test Sample No.	:	S1(Normal Sample), S2(Engine	ering Sample)
		Operation Frequency:	2402MHz-2480MHz
		Transfer Rate:	1 Mbits/s
Product		Number of Channel:	40 Channel
Description		Modulation Type:	GFSK Andrew Andrew Andrew
		Antenna Type:	FPCB Antenna
		Antenna Gain(Peak):	2.5 dBi

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for BT4.2 BLE.

1.3. Auxiliary Equipment Used During Test

Keyboard	:	Manufacturer: DELL
		M/N: SK-8120
		S/N: CN-0DJ365-71616-49J-0MVR-A00
		CE, FCC, VCCI, KCC, TUV-GS
		Cable, 1.on, distributed
		k otek Anbo An ok boten Anb
Mouse	:	Manufacturer: DELL
		M/N: MS111-1
		S/N: CN-0KW2YH-71616-488-1CBJ
		Input Rating: DC 5V, 0.1A
		Cable: 1.8m unshielded
		CE. FCC. VCCI. KCC. TUV-GS
		Anbotek Anbotek Anbotek Anbotek Anbotek
Adapter	:	Model: DZD-5020
		- P/1,
		Output: DC 5V. 2000mA
		otek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
TV	:	Manufacturer: SONY
		M/N· KDI -26FX550
		S/N: 1012240 CE , FCC: DOC

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	otek Anbotek AnboteCH00 Anbotek Anbotek
Mode 2	nbotek Anbotek AnCH19 Anbotek Anbotek
Mode 3	CH39
Mode 4	Keeping TX+Charging mode

	For Conducted Emission						
	Final Test Mode	Description					
J.e.K	Mode 4	Keeping TX+Charging mode					

	For Radiated Emission								
Fi	nal Test Mo	ode			I	Description			
Anbc Anbc	Mode 1	Anbotek	Anbot	ek P	nbotek	CH00	Anbo	te,	Anbotek
otek A	Mode 2	Anbotek	ek An'	potek	Anbotek	CH19	e. Viek	anbotek.	Anbo
Anbotek	Mode 3	ek Anbo	botek	Anbotel	Anbo	СН39	nbotek	Anbote	'K DI
Anbotek	Mode 4		Anbotek		Keeping	ГХ+Chargi	ng mode		otek

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.
- (3) When the product is set to continuous transmission signal mode for measurement, The duty cycle value is greater than 98%

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	09	2420	18	2438	27	2456	36	2474
01	2404	10,000	2422	19	2440	28	2458	37	2476
02	2406	ek 11 An	2424	20	2442	29	2460	38	2478
03	2408	12	2426	21	2444	30	2462	39	2480
04	2410	13	2428	22	2446	31	2464		
05	2412	14	2430	23	2448	32	2466		olek
06	2414	15,000	2432	24	2450	33	2468		
07	2416	16	2434	25	2452	34	2470		
08	2418	ote ^k 17	2436	26	2454	35	2472		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

1.6. Description Of Test Setup

CE

1.7. Test Equipment List

Nov. 17, 2017 Nov. 17, 2017 Nov. 17, 2017 Nov. 17, 2017	Cal. Interval 1 Year 1 Year
Nov. 17, 2017 Nov. 17, 2017	1 Year
Nov. 17, 2017	1 Year
Notek	Vupo.
Nov. 17, 2017	Nu
K 600	1 Year
Nov. 18, 2017	1 Year
Nov. 17, 2017	1 Year
Nov. 20, 2017	1 Year
Nov. 20, 2017	1 Year
Nov. 17, 2017	1 Year
Nov. 17, 2017	1 Year
Nov. 17, 2017	1 Year
N/A	N/A
Nov. 18, 2017	1 Year
Nov. 17, 2017	1 Year
Nov. 17, 2017	1 Year
Nov. 18, 2017	1 Year
Nov. 18, 2017	1 Year
Nov. 18, 2017	1 Year
Nov. 01, 2017	1 Year
Nov. 01, 2017	1 Year
	Nov. 18, 2017 Nov. 17, 2017 Nov. 20, 2017 Nov. 20, 2017 Nov. 17, 2017 Nov. 17, 2017 N/A Nov. 18, 2017 Nov. 17, 2017 Nov. 17, 2017 Nov. 17, 2017 Nov. 18, 2017

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Conducted Peak Output Power	PASS
15.247(a)(2)	6dB Occupied Bandwidth	PASS
15.247(e)	Power Spectral Density	PASS
15.247(d)	Band Edge	PASS
Remark: "N/A" is an abbrev	Tupos View Poster Augo Is	Anbotek Anbol

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	07 Anbore America	Anbotek Anbo tek					
	Γ	Maximum RF Line Voltage (dBuV)						
	Frequency	Quasi-peak Level	Average Level					
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
	500kHz~5MHz	56 box	46					
	5MHz~30MHz	60	botek 50 bote Ar					

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode

Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	0.1500	35.26	19.90	55.16	65.99	-10.83	QP	
2	0.1500	19.95	19.90	39.85	55.99	-16.14	AVG	
3	0.2220	16.35	19.89	36.24	52.74	-16.50	AVG	
4	0.4340	30.25	19.95	50.20	57.18	-6.98	QP	
5	0.4780	12.68	19.97	32.65	46.37	-13.72	AVG	
6	0.6340	12.92	20.02	32.94	46.00	-13.06	AVG	
7	0.8660	21.54	20.08	41.62	56.00	-14.38	QP	
8	1.1700	28.96	20.12	49.08	56.00	-6.92	QP	
9	1.2460	10.18	20.12	30.30	46.00	-15.70	AVG	F T
10	1.5700	27.60	20.13	47.73	56.00	-8.27	QP	T
11	1.8740	9.44	20.14	29.58	46.00	-16.42	AVG	
12	2.4420	27.68	20.15	47.83	56.00	-8.17	QP	

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode

Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
1	0.1539	36.65	19.90	56.55	65.78	-9.23	QP	
2	0.1539	18.69	19.90	38.59	55.78	-17.19	AVG	
3	0.2380	17.32	19.89	37.21	52.16	-14.95	AVG	
4	0.3980	11.37	19.93	31.30	47.89	-16.59	AVG	
5	0.5020	25.11	19.98	45.09	56.00	-10.91	QP	
6	0.8100	28.81	20.07	48.88	56.00	-7.12	QP	
7	0.8740	10.70	20.09	30.79	46.00	-15.21	AVG	
8	0.9940	26.69	20.12	46.81	56.00	-9.19	QP	
9	1.1060	25.92	20.12	46.04	56.00	-9.96	QP	
10	1.4380	8.81	20.13	28.94	46.00	-17.06	AVG	
11	1.8620	8.09	20.14	28.23	46.00	-17.77	AVG	
12	2.0579	24.25	20.14	44.39	56.00	-11.61	QP	

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode

Test Specification: AC 120V, 60Hz via adapter

Comment: Live Line

(MHz)	(dBuV)	(dB)	(dBuV)	dBuV	(dB)	Detector	Remark
0.1500	18.34	19.90	38.24	55.99	-17.75	AVG	
0.1700	36.30	19.90	56.20	64.96	-8.76	QP	
0.2220	19.11	19.89	39.00	52.74	-13.74	AVG	
0.2980	16.38	19.89	36.27	50.30	-14.03	AVG	
0.6860	10.48	20.04	30.52	46.00	-15.48	AVG	
0.7700	28.57	20.06	48.63	56.00	-7.37	QP	
1.0740	28.25	20.12	48.37	56.00	-7.63	QP	-
1.2980	8.57	20.13	28.70	46.00	-17.30	AVG	
1.6380	7.61	20.13	27.74	46.00	-18.26	AVG	
1.6460	26.11	20.13	46.24	56.00	-9.76	QP	
2.5140	24.30	20.15	44.45	56.00	-11.55	QP	
3.7380	22.88	20.17	43.05	56.00	-12.95	QP	
	(MHz) 0.1500 0.1700 0.2220 0.2980 0.6860 0.7700 1.0740 1.2980 1.6380 1.6460 2.5140	(MHz) (dBuV) 0.1500 18.34 0.1700 36.30 0.2220 19.11 0.2980 16.38 0.6860 10.48 0.7700 28.57 1.0740 28.25 1.2980 8.57 1.6380 7.61 1.6460 26.11 2.5140 24.30	(MHz) (dBuV) (dB) 0.1500 18.34 19.90 0.1700 36.30 19.90 0.2220 19.11 19.89 0.2980 16.38 19.89 0.6860 10.48 20.04 0.7700 28.57 20.06 1.0740 28.25 20.12 1.2980 8.57 20.13 1.6380 7.61 20.13 1.6460 26.11 20.13 2.5140 24.30 20.15	(MHz) (dBuV) (dB) (dBuV) 0.1500 18.34 19.90 38.24 0.1700 36.30 19.90 56.20 0.2220 19.11 19.89 39.00 0.2980 16.38 19.89 36.27 0.6860 10.48 20.04 30.52 0.7700 28.57 20.06 48.63 1.0740 28.25 20.12 48.37 1.2980 8.57 20.13 28.70 1.6380 7.61 20.13 27.74 1.6460 26.11 20.13 46.24 2.5140 24.30 20.15 44.45	(MHz) (dBuV) (dB) (dBuV) dBuV 0.1500 18.34 19.90 38.24 55.99 0.1700 36.30 19.90 56.20 64.96 0.2220 19.11 19.89 39.00 52.74 0.2980 16.38 19.89 36.27 50.30 0.6860 10.48 20.04 30.52 46.00 0.7700 28.57 20.06 48.63 56.00 1.0740 28.25 20.12 48.37 56.00 1.2980 8.57 20.13 28.70 46.00 1.6380 7.61 20.13 27.74 46.00 1.6460 26.11 20.13 46.24 56.00 2.5140 24.30 20.15 44.45 56.00	(MHz) (dBuV) (dB) (dBuV) dBuV (dB) 0.1500 18.34 19.90 38.24 55.99 -17.75 0.1700 36.30 19.90 56.20 64.96 -8.76 0.2220 19.11 19.89 39.00 52.74 -13.74 0.2980 16.38 19.89 36.27 50.30 -14.03 0.6860 10.48 20.04 30.52 46.00 -15.48 0.7700 28.57 20.06 48.63 56.00 -7.37 1.0740 28.25 20.12 48.37 56.00 -7.63 1.2980 8.57 20.13 28.70 46.00 -17.30 1.6380 7.61 20.13 27.74 46.00 -18.26 1.6460 26.11 20.13 46.24 56.00 -9.76 2.5140 24.30 20.15 44.45 56.00 -11.55	(MHz) (dBuV) (dB) (dBuV) dBuV (dB) Detector 0.1500 18.34 19.90 38.24 55.99 -17.75 AVG 0.1700 36.30 19.90 56.20 64.96 -8.76 QP 0.2220 19.11 19.89 39.00 52.74 -13.74 AVG 0.2980 16.38 19.89 36.27 50.30 -14.03 AVG 0.6860 10.48 20.04 30.52 46.00 -15.48 AVG 0.7700 28.57 20.06 48.63 56.00 -7.37 QP 1.0740 28.25 20.12 48.37 56.00 -7.63 QP 1.2980 8.57 20.13 28.70 46.00 -17.30 AVG 1.6380 7.61 20.13 27.74 46.00 -18.26 AVG 1.6460 26.11 20.13 46.24 56.00 -9.76 QP 2.5140 24.30 20.1

Test Site: 1# Shielded Room

Operating Condition: Keeping TX+ Charging Mode

Test Specification: AC 120V, 60Hz via adapter

Comment: Neutral Line

No.	(MHz)	(dBuV)	Factor (dB)	(dBuV)	dBuV	Over Limit (dB)	Detector	Remark
1	0.1500	19.42	19.90	39.32	55.99	-16.67	AVG	
2	0.1740	34.08	19.90	53.98	64.76	-10.78	QP	
3	0.2260	15.81	19.89	35.70	52.59	-16.89	AVG	
4	0.4580	28.09	19.96	48.05	56.73	-8.68	QP	
5	0.5140	11.33	19.98	31.31	46.00	-14.69	AVG	
6	0.5820	28.10	20.00	48.10	56.00	-7.90	QP	
7	0.9460	27.58	20.11	47.69	56.00	-8.31	QP	
8	0.9980	10.29	20.12	30.41	46.00	-15.59	AVG	
9	1.3140	8.87	20.13	29.00	46.00	-17.00	AVG	
10	1.5140	26.48	20.13	46.61	56.00	-9.39	QP	
11	1.9020	25.13	20.14	45.27	56.00	-10.73	QP	
12	2.1700	9.41	20.14	29.55	46.00	-16.45	AVG	

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	9 and 15.205	Am	Anbotek F	upo tek	
	Frequency	Field strength	Limit	Remark	Measurement	
	(MHz)	(microvolt/meter)	(dBuV/m)	Kemark	distance (m)	
	0.009MHz~0.490MHz	2400/F(kHz)	stek - Wupor	ek Air	300	
	0.490MHz-1.705MHz	24000/F(kHz)	nbotek - Anbo	stek - vip	30 Marie	
	1.705MHz-30MHz	30	Anbotek A	ipo stek	nbotek 30 Anbi	
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	Anbote's A	
	88MHz~216MHz	150	43.5	Quasi-peak	Anb3lek	
	216MHz~960MHz	200	46.0	Quasi-peak	3 botek	
	960MHz~1000MHz	500	54.0	Quasi-peak	tek 3 Anbotek	
	Above 1000MHz	500	54.0	Average	botek 3 Anbo	
	Adove 1000MHZ	Ame botek	74.0	Peak	ambotel3 A	

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

During the test, pre-scan the Three modes, and found the modulation Middle channel which is the worst case, only the worst case is recorded in the report

Job No.: SZAWW180831003-01 Temp.(°C)/Hum.(%RH): 24.3 °C/55%RH

Standard: FCC PART 15C Power Source: AC 240V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal

Job No.: SZAWW180831003-01 Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: AC 240V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical

Job No.: SZAWW180831003-01 Temp.(°C)/Hum.(%RH): 24.3°C/55%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Horizontal

Job No.: SZAWW180831003-01 Temp.(°C)/Hum.(%RH): 24.3 °C/55%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: Keeping TX+ Charging Mode Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode: 0	CH00			Test	Test channel: Lowest					
				Peak Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
4804.00	35.57	34.04	6.58	34.09	42.10	74.00	-31.90	botV		
7206.00	30.68	37.11	7.73	34.50	41.02	74.00	-32.98	No Ve		
9608.00	30.44	39.31	9.23	34.79	44.19	74.00	-29.81	V		
12010.00	*	tek	hotek p	upote	Vu.	74.00	Vupos	V		
14412.00	* And	Net Net	nbotek	Anbotek	Yu., Potek	74.00	Anbor	v V		
4804.00	39.50	34.04	6.58	34.09	46.03	74.00	-27.97	Н		
7206.00	32.28	37.11	7.73	34.50	42.62	74.00	-31.38	H		
9608.00	29.70	39.31	9.23	34.79	43.45	74.00	-30.55	Anbote H		
12010.00	* nbote	Aupo	rek V	botek	Anbotek	74.00	anbotek	$^{\text{PH}^{\text{b}}}$		
14412.00	lek * Anbi	Jek by	loor b	botek	Anborek	74.00	anbotek.	ΗР		
330			A	verage Valu	e					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
4804.00	24.71	34.04	6.58	34.09	31.24	54.00	-22.76	V		
7206.00	19.56	37.11	7.73	34.50	29.90	54.00	-24.10	V		
9608.00	18.75	39.31	9.23	34.79	32.50	54.00	-21.50	V		
12010.00	potek * A	100	h. abotek	Anbores	Anbo	54.00	Anbo	V		
14412.00	Anbotek	Aupor	Pri Potek	Anbote	Ambo	54.00	rek An	V		
4804.00	28.75	34.04	6.58	34.09	35.28	54.00	-18.72	Aupote,		
7206.00	21.62	37.11	7.73	34.50	31.96	54.00	-22.04	ÞΉ		
9608.00	18.33	39.31	9.23	34.79	32.08	54.00	-21.92	H		
12010.00	*	potek	Aupote	Anotok	Anbotek	54.00	A.V.	Н Ж		
14412.00	*	hotek	Anboten	YU0_	k abote	54.00	r bu	ote ^K H		

Test Results (1GHz-25GHz)

Test Mode: 0	CH19			Test	channel: Midd	le		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4880.00	35.28	34.38	6.69	34.09	42.26	74.00	-31.74	botV
7320.00	30.49	37.22	7.78	34.53	40.96	74.00	-33.04	No Ve
9760.00	30.27	39.46	9.35	34.80	44.28	74.00	-29.72	V
12200.00	*	tek	obotek p	upore	An	74.00	Aupo	V
14640.00	* *	otek	nbotek	Anbotek	Yu. Potek	74.00	Anbos	v V
4880.00	39.15	34.38	6.69	34.09	46.13	74.00	-27.87	Н
7320.00	32.06	37.22	7.78	34.53	42.53	74.00	-31.47	H
9760.00	29.50	39.46	9.35	34.80	43.51	74.00	-30.49	Anbote
12200.00	* Anbote	Aupo	rek V	botek	Anbotek	74.00	Anbotek	PH
14640.00	cek * Amb	Yek by	loor P	potek	Anboren	74.00	Anbotek	ΗР
			A	verage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4880.00	24.48	34.38	6.69	34.09	31.46	54.00	-22.54	V
7320.00	19.40	37.22	7.78	34.53	29.87	54.00	-24.13	V
9760.00	18.61	39.46	9.35	34.80	32.62	54.00	-21.38	V
12200.00	poter * A	loo,	han botek	Anbotes	Anbo	54.00	Anbo	V
14640.00	Anbote*	Aupor	Annabotek	Anbolt	Ambo	54.00	tek An	V
4880.00	28.48	34.38	6.69	34.09	35.46	54.00	-18.54	Anboten H
7320.00	21.44	37.22	7.78	34.53	31.91	54.00	-22.09	ÞΉ
9760.00	18.17	39.46	9.35	34.80	32.18	54.00	-21.82	Н
12200.00	** *	potek	Yupoter.	Andotek	Anbotek	54.00	Alle	Н
14640.00	*	bolek	Anboten	Vuo.	k shote	54.00	P.U.	ote ^K H

Test Results (1GHz-25GHz)

Test Mode: 0	CH39			Test	channel: Highe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	34.86	34.72	6.79	34.09	42.28	74.00	-31.72	vot V
7440.00	30.21	37.34	7.82	34.57	40.80	74.00	-33.20	Ve
9920.00	30.03	39.62	9.46	34.81	44.30	74.00	-29.70	V
12400.00	*	stek v	obotek p	upoto ok	An. botek	74.00	Aupor	V
14880.00	* And	riek	nbotek	Aupote, ok	Aur	74.00	Anbo	v V
4960.00	38.65	34.72	6.79	34.09	46.07	74.00	-27.93	Н
7440.00	31.75	37.34	7.82	34.57	42.34	74.00	-31.66	H
9920.00	29.22	39.62	9.46	34.81	43.49	74.00	-30.51	Anbor
12400.00	* pote	Anbo	18K	obotek	Anbotes	74.00	Anbotek	\mathbf{H}_{p}
14880.00	ek * Anbo	Vice V	100- b	abotek	Aupoten	74.00	Anbotek	НР
		**	A	verage Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	24.15	34.72	6.79	34.09	31.57	54.00	-22.43	V
7440.00	19.18	37.34	7.82	34.57	29.77	54.00	-24.23	V
9920.00	18.41	39.62	9.46	34.81	32.68	54.00	-21.32	V
12400.00	ooter * Ar	100 FEK	abotek.	Anboten	Aug ofe	54.00	Anbo	V
14880.00	Anbote*	Anbo.	A. abotek	Anbote	Anb	54.00	otek Au	V
4960.00	28.11	34.72	6.79	34.09	35.53	54.00	-18.47	Anbola
7440.00	21.19	37.34	7.82	34.57	31.78	54.00	-22.22	ÞΉ
9920.00	17.94	39.62	9.46	34.81	32.21	54.00	-21.79	H
12400.00	*	potek	Aupor	Anotek	Ambotek	54.00	hote	Н
14880.00	*	botek	Anbote	Ans	k hote	54.00	ek b.	ote ^K H

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.24	7 (b)(3)	Annatek	Anbotek	Anbote	Air
Test Limit	30dBm	A. nbotek	Anbore.	Ann	Anbotek	Anbor	ik br

5.2. Test Setup

5.3. Test Procedure

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW ≥DTS bandwidth.
- 2. Set the VBW≥3*RBW.
- 3. Set the span ≥ 3*RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature :	24℃
Test Result	:	PASS	Humidity :	55%RH

010	K NO NO	10,	1
Channel Frequency	Peak Power output	Limit	Results
(MHz)	(dBm)	(dBm)	Results
2402	-4.667	30	PASS
2440	-4.710	30	PASS
2480	-4.260	abotek 30 Anbotes	PASS

CH: Low

CH: Middle

CH: High

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.24	7 (a)(2)	Am botek	Anbotek	Anbo	þ.
Test Limit	>500kHz	Anbotek	Anboro	All	Anbotek	Anbo	, Y

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 24°C
Test Result : PASS Humidity : 55%RH

	Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results	
Pro-	Low	2402	697.4	k nbotek	PASS	
	Middle	2440	693.2	>500	PASS	
Vek-	High	2480	698.2	otek Anbotek	PASS	

CH: Low

CH: Middle

CH: High

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C	Section 15.24	7 (e)	Am	Anbotek	Anbo	p.
Test Limit	8dBm	Anbotek	Aupora	An. botek	Anbotek	Anbo	(- b.

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item Power Spectral Density Test Mode CH Low ~ CH High 24°C Test Voltage DC 3.7V Battery inside Temperature Humidity Test Result **PASS** 55%RH

Channel	Frequency (MHz)	PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Results	
Low	2402	-19.521	8.00	PASS	
Middle	2440	-19.551	8.00	PASS	
High	2480	-19.184	8.00	PASS	

CH: Low

CH: Middle

CH: High

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Band edge : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 24° C Test Result : PASS Humidity : 55° RH

Fr	equency Band (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Results
potek	2400	52.616	>20	PASS
Anbotek	2483.5	54.266	>20	PASS

CH: Low

CH: High

Conducted Emission Method

CH: Low

CH: Middle

CH: High

Code:AB-RF-05-a

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufactured may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed Point-to-point operations may employ transmitting antennas with directional gain greater that 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1

9.2. Antenna Connected Construction

The BT antenna is a FPCB Antenna which permanently attached, and the best case gain of the antenna is 2.5 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

----- End of Report -