Vektorit

Juulia Lahdenperä ja Lotta Oinonen

9. lokakuuta 2015

1 Vektori

1.1 xy-koordinaatisto

KOODRINAATTIAKSELIEN SUUNNAT?

Tehtävä 1.1.1. Tutki alla olevaa kuvaa 1.1.

Kuva 1.1:

- (a) Kuinka monta askelta siirrytään x-akselin suuntaan, jotta päästään pisteeseen P?
- (b) Kuinka monta askelta siirrytään y-akselin suuntaan, jotta päästään pisteeseen P?
- (c) Kuinka monta askelta siirrytään x-akselin suuntaan, jotta päästään pisteeseen Q?
- (d) Kuinka monta askelta siirrytään y-akselin suuntaan, jotta päästään pisteeseen Q?

Tason piste ilmoitetaan lukuparina (x, y), missä ensimmäinen luku x ilmoittaa xakselin suuntaisten ja toinen luku y y-akselin suuntaisten askelten lukumäärän. Näitä lukuja kutsutaan **pisteen koordinaateiksi**. Kuvan 1.1 piste S sijaitsee siinä tason pisteessä, missä x=3 ja y=2. Näin ollen pistettä S merkitään S=(3,2). Koordinaattien avulla kaikki tason pisteet voidaan määrittää yksikäsitteisesti.

Koordinaattiakselit jakavat tason neljään osaan. Osat nimetään yleensä järjestysnumeroilla I, II, III ja IV alla olevan kuvan 1.2 mukaisesti. Koordinaattiakselien leikkauskohtaa kutsutaan **origoksi**. Origoa merkitään yleensä kirjaimella O, ja sen koordinaatit ovat O = (0,0).

Kuva 1.2: Koordinaatiston neljännekset.

Tehtävä 1.1.2. Valitse kuvasta 1.2 jokaiselta koordinaatiston neljänneksellä jokin piste ja ilmoita sen koordinaatit. Miten eri neljännekset vaikuttavat koordinaattien etumerkkeihin?

Tehtävä 1.1.3. ...

- (a) Piirrä koordinaatistoon pisteet (0,2), (0,-4) ja (0,3).
- (b) Piirrä koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (0, y).
- (c) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (0, y) jollakin kokonaisluvulla y.

Tehtävä 1.1.4. ...

- (a) Piirrä koordinaatistoon pisteet (2,2), (3,3) ja (-2,-2).
- (b) Piirrä koordinaatistoon kolme uutta pistettä, jotka ovat muotoa (x, x) jollakin kokonaisluvulla x.
- (c) Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (x, x) jollakin kokonaisluvulla x.

Tehtävä 1.1.5. Piirrä kuva kaikista sellaisista tason pisteistä, jotka ovat muotoa (x, 2) jollakin kokonaisluvulla x.

1.2 Vektorin muodostaminen

Tarkastellaan seuraavaa kuvaa 1.3. Kuvassa on nuolet \bar{u}, \bar{v} ja \bar{w} , yhden x-akselin suuntaisen askeleen pituinen nuoli $\bar{\imath}$, sekä yhden y-akselin suuntaisen askeleen pituinen nuoli $\bar{\jmath}$.

Kuva 1.3: Esimerkkikuva

Huomataan, että nuolen \bar{v} päästä on sen kärkeen kolme x-akselin suuntaista askelta positiiviseen suuntaan ja kaksi y-akselin suuntaista askelta positiiviseen suuntaan. Tällainen nuoli \bar{v} voidaan ilmoittaa nuolien \bar{v} ja \bar{j} avulla muodossa $\bar{v} = 3\bar{v} + 2\bar{j}$.

Koordinaatistossa olevia nuolia kutsutaan **vektoreiksi**. Edellisen kuvan nuoli \bar{v} on siis vektori \bar{v} , joka voidaan ilmaista vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektorit $\bar{\imath}$ ja $\bar{\jmath}$ ovat käteviä, sillä niiden avulla voidaan ilmaista kaikki mahdolliset xy-koordinaatiston vektorit.

Tehtävä 1.2.1. Tarkastellaan seuraavaa kuvaa 1.4.

Kuva 1.4: Vektoreita

- (a) Ilmoita kaikki kuvassa olevat vektorit vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Mitä huomaat?
- (b) Vertaa origosta lähtevää vektoria sen kärkipisteen koordinaatteihin. Mitä huomaat?

Paikkavektori

Määritelmä 1.2.2. Origosta lähtevän vektorin $\bar{v} = x\bar{\imath} + y\bar{\jmath}$ kärki on pisteessä (x,y). Kyseistä vektoria \bar{v} kutsutaan pisteen (x,y) paikkavektoriksi.

Tehtävä 1.2.3. Piirrä vektorit $\bar{\imath}$ ja $\bar{\jmath}$ koordinaatistoon siten, että ne lähtevät origosta. Minkä pisteiden paikkavektoreita ne ovat?

1.3 Kahden pisteen välinen vektori

Tehtävä 1.3.1. ...

- (a) Piirrä kaksi pistettä koordinaatiston ensimmäiselle neljännekselle. Merkitse pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .
- (c) Ilmoita vektori \bar{v} vektorien \bar{i} ja \bar{j} avulla.
- (d) Yritä päätellä, miten vektorien i ja j kertoimet voitaisiin saada pisteiden xja y-koordinaattien avulla?

Kahden pisteen välinen vektori saadaan vähentämällä pisteiden x- ja y-koordinaatit keskenään. Esimerkiksi pisteestä A=(4,1) lähtevä ja pisteeseen (B=-1,3) päättyvä vektori \bar{v} on $\bar{v}=((-1)-4)\bar{\imath}+(3-1)\bar{\jmath}=-5\bar{\imath}+2\bar{\jmath}$.

Tehtävä 1.3.2. ...

- (a) Piirrä kaksi pistettä koordinaatiston toiselle, kolmannelle tai neljännelle neljännekselle. Merkitse pisteiden koordinaatit.
- (b) Piirrä pisteiden väliin vektori \bar{v} .
- (c) Ilmoita vektori \bar{v} vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Käytä hyväksesi piirtämiesi pisteiden x- ja y-koordinaatteja.

Tehtävä 1.3.3. Tarkastellaan alla olevaa kuvaa 1.5.

Kuva 1.5: Vektoreita

- (a) Ilmoita vektori \bar{v} vektorien \bar{i} ja \bar{j} avulla.
- (b) Ilmoita vektori \bar{w} vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.
- (c) Mitä huomaat?

Määritelmä 1.3.4. Kaksi vektoria ovat samat, jos ne voidaan esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla.

Samat vektorit

TÄHÄN INTUITIOON NOJAAVA SELVITYS SIITÄ, ETTÄ KOMPONENTTIESITYS ON YKSIKÄSITTEINEN.

Kahden pisteen välinen vektori voi kulkea kahteen eri suuntaan. Pisteestä A pisteeseen B kulkevaa vektoria merkitään \overline{AB} , ja pisteestä B pisteeseen A kulkevaa vektoria merkitään \overline{BA} .

Tehtävä 1.3.5. ...

- (a) Piirrä koordinaatistoon pisteet A ja B. Merkitse niiden koordinaatit.
- (b) Ilmoita vektori \overline{AB} vektorien \overline{i} ja \overline{j} avulla.
- (c) Ilmoita vektori \overline{BA} vektorien \overline{i} ja \overline{j} avulla.

Vektorit \overline{AB} ja \overline{BA} ovat eri vektorit, sillä niitä ei voida esittää samalla tavalla vektorien $\bar{\imath}$ ja $\bar{\jmath}$ avulla. Vektorien suunnalla on siis merkitystä.

Määritelmä 1.3.6. Kahden pisteen välillä eri suuntiin kulkevat vektorit ovat toistensa vastavektoreita. Vektorin \bar{v} vastavektoria merkitään $-\bar{v}$.

Vastavektorit

Edellisen tehtävän vektorit \overline{AB} ja \overline{BA} ovat siis toistensa vastavektoreita, ja $\overline{BA}=-\overline{AB}$.

Tehtävä 1.3.7. Tarkastellaan alla olevaa kuvaa 1.6.

Kuva 1.6: Vektoreita

Mitkä vektoreista ovat toistensa vastavektoreita?