



# Ensemble based discriminative models for Visual Dialog Challenge 2018

Shubham Agarwal \*

Raghav Goyal



Heriot Watt University, Edinburgh, UK Adeptmind Scholar, Adeptmind Inc., Montreal, Canada

### OVERVIEW

Goal: Visual Dialog Challenge - Conversational dialogue about visual content

### **Contributions:**

- Ensemble of three discriminative models
  - LF-RCNN
  - MN-RCNN
  - MN-RCNN-Wt
- Final submission on 'test-std' split achieves NDCG score of 55.46 and MRR value of 63.77
- Faster RCNN [4] with ResNet-101 trained on Visual genome dataset [1,5] for object level image representations
- Memory Networks compared to concatenation for encoding dialogue history

#### ENSEMBLING

- Ensembled final layer's log-softmax output distribution over candidate answers
- Mean of log probabilities from individual models
- Also tried taking maximum of results but mean performed better



## INDIVIDUAL COMPONENTS

#### Late Fusion R-CNN (LF-RCNN)

- Late Fusion encoder [2] with concatenated history;
  Glove embeddings frozen, not fine-tuned
- Object-level features are weighed using only question embeddings



## Memory Network R-CNN (MN-RCNN)

- Memory Network encoder with bi-directional GRUs and word embeddings fine-tuned
- Object-level features weighed by question and caption embeddings



## • Weighted MN-R-CNN (MN-RCNN-Wt)

 Additional gated linear layer applied to the dot product of candidate answer and encoder output



### RESULTS:

Evaluation results of individual components on validation set

|   | Model      | MRR   | R@1   | R@5   | R@10  | Mean |
|---|------------|-------|-------|-------|-------|------|
| • | Baseline   | 57.57 | 42.98 | 74.64 | 84.91 | 5.48 |
|   | LF-RCNN    | 61.94 | 48.08 | 79.04 | 88.23 | 4.61 |
|   | MN-RCNN    | 62.99 | 49.07 | 80.13 | 88.74 | 4.45 |
|   | MN-RCNN-Wt | 63.11 | 49.29 | 80.10 | 89.09 | 4.43 |
| • |            |       |       |       |       |      |

- Results for the challenge on test-std.
- Ensemble of best performing models for the final submission

| Model                | NDCG (x 100) | MRR (x 100) | R@1   | R@5   | R@10  | Mean |
|----------------------|--------------|-------------|-------|-------|-------|------|
| LF-RCNN              | 51.69        | 61.03       | 47.03 | 77.83 | 87.55 | 4.70 |
| MN-RCNN              | 53.59        | 61.25       | 46.78 | 79.43 | 87.93 | 4.63 |
| MN-RCNN-Wt           | 53.20        | 61.50       | 47.10 | 78.7  | 88.38 | 4.54 |
| Ensemble (all three) | 55.46        | 63.77       | 49.8  | 81.22 | 90.03 | 4.11 |

## CONCLUSIONS

- Object level image representations using Faster RCNN gave huge uplift
- Bi-directional GRUs constantly performed better than uni-directional LSTMs
- Memory Networks outperformed Late fusion encoders for encoding conversational history
- Fine-tuning Glove embeddings performed better than their counterparts
- Mean performed better than maximum for ensembling

## REFERENCES

[1] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. "Bottom-up and top-down attention for image captioning and visual question answering." In CVPR, 2018. [2] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. Moura, D. Parikh, and D. Batra. "Visual Dialog." In CVPR, 2017.

[3] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. Bernstein, and L. Fei-Fei. "Visual genome: Connecting language and vision using crowdsourced dense image annotations." In IJCV 2017.

[4] S. Ren, K. He, R. Girshick, and J. Sun. "Faster R-CNN: Towards real-time object detection with region proposal networks." In NIPS 2015.

[5] D. Teney, P. Anderson, X. He, and A. van den Hengel. "Tips and tricks for visual question answering: Learnings from the 2017 challenge."