

IIT Guwahati Lecture 38

Course BT 631

Protein Structure, Function and Crystallography

Prof. Arun Goyal

Dept. of Biosciences and Bioengineering

Membrane Proteins

- The second large class of proteins distinct from globular proteins are the membrane proteins.
- Members of this group of proteins probably make up the vast majority of all proteins found in cells.
- For many years the purification of these proteins remained very difficult and limited our knowledge of their structure and function.

Membrane Protein (ATP synthetase)

- Even most inactive of humans metabolizes kilogram quantities of ATP in a normal day and this occurs by the repeated phosphorylation with an average of each molecule of ADP/ATP being 'turned over' about 1000 times per day.
- The enzyme responsible for the synthesis of ATP is the F₁F₀ ATPase, also called ATP synthase or ATP synthetase.
- Dissection of enzyme complex and genetic studies show that ATP synthase contains 8 different subunits in *E. coli*, whilst a greater number of subunits in mammalian enzymes.
- Despite variations in subunit number similarity exists in their ratios and primary sequences with most enzymes having a combined molecular mass between 550 and 650 kDa.

The Reaction of ATP synthetase

ATP synthase catalyzes the formation of adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (P_i).

It is classified under ligases as it changes ADP by the formation of P-O bond (phosphodiester bond). The overall reaction catalyzed by ATP synthase is:

$$ADP + P_i + 2H^+_{out} \rightleftharpoons ATP + H_2O + 2H^+_{in}$$

The formation of ATP from ADP and P_i is energetically unfavorable and would normally proceed in the reverse direction.

In order to drive this reaction forward, ATP synthase couples ATP synthesis during <u>cellular</u> <u>respiration</u> to an <u>electrochemical gradient</u> created by the difference in <u>proton</u> (H⁺) concentration across the <u>inner mitochondrial membrane</u> in <u>eukaryotes</u> or the <u>plasma membrane</u> in bacteria.

In Plants during <u>photosynthesis</u>, ATP is synthesized by ATP synthase using a proton gradient created in the <u>thylakoid lumen</u> through the thylakoid membrane.

- ATP synthases contain two distinct functional units each with different biological and chemical properties.
- A hydrophobic, membrane-binding, domain called F_0 , that interacts with a larger globular domain peripherally associated with the membrane.
- F_o stands for 'factor oligomycin' referring to the binding of this antibiotic to the hydrophobic portion, while the peripheral protein, F_1 is simply "factor one".
- In an isolated state the F_1 unit hydrolyses ATP but cannot catalyse ATP synthesis.
- For this reason F₁ domain is described as an ATPase.
- F_o forms a 'channel' that allows a flux of protons and their use in ATP synthesis.

• The much larger F_1 unit, contains 5 different subunits (α - ϵ) having a stoichiometry $\alpha 3\beta 3\gamma 1\delta 1\epsilon 1$ (Table)

• The total mass of the F_1F_0 ATPase from bovine mitochondria is ~450 kDa with the F_1 unit having a mass of ~370 kDa and arranged as a spheroid of dimensions 8×10 nm wide

supported on a stem or stalk 3 nm in length.

• ATP synthetase structure has shown a second peripheral stalk connecting the F_1 and F_o domains in the enzyme (Fig.)

• The second stalk visible using cryoelectron microscopy of F_1F_0 from *E. coli*, chloroplast and mitochondrial ATPases is located around the outside of the globular F_1 domain and may act as a stator (stationary part) to counter the tendency of the $(\alpha\beta)3$ domain to follow the rotation of the central stalk.

Organization of ATP synthases. Bovine F1ATPase (left) and ATP synthase of E. coli (right).

- In *E. coli* F_o is extremely hydrophobic and consists of 3 subunits designated a, b and c (Table).
- In *E. coli* a ratio of a1, b2, c9–14 exists, with a and c subunits making to form a proton channel.

Table. The composition of ATP synthetases.

Subunits in	F1 region	Eukaryotic (bovine) α3β3γδε
α	509 re	sidues, Mr∼55,164
β	480	51,595
γ	272	30,141
δ	190	20,967
ε	146	15,652
Subunits in Fo region Prokaryotic (<i>E. coli</i>) a, b2, c9–14		
а	271	30,285
b	156	17,202
С	79	8,264

A mechanism for ATP synthesis was proposed by Paul Boyer before the structural data were available.

G.B. Cox independently suggested a rotary motor involved the c subunit ring turning, relative to the a and b subunits.

At the time (1984) the concept of enzymes using rotary motion to catalyse reactions was unusual.

However, the idea of a rotary switch was so novel that there were few serious attempts to test it until over a decade later when in 1995 the first structures for bovine F_1 ATPase produced by John E. Walker and co-workers supported this model. It was established that all species contain a, b and c subunits within the F_0 part of the enzyme.

The Nobel Prize in Chemistry 1997

Born: 7 January 1941, Halifax, United Kingdom

Affiliation at the time of the award: MRC Laboratory of Molecular Biology,

Cambridge, United Kingdom

Prize motivation: "for their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)."

- All life requires energy. In both plants and animals, energy is stored and transported by a special molecule, adenosine triphosphate (ATP).
- Photosynthesis and respiration generate a flow of hydrogen ions, which are used to build up ATP molecules with the help of ATP synthase.
- In 1974 Paul Boyer presented a theory explaining how ATP synthase works.
- The theory was substantiated in 1994, when John Walker used X-ray crystallography to determine the structure of ATP synthase.

John E. Walker

F₁ region

- The F_1 portion of ATP synthase is hydrophilic and responsible for hydrolyzing ATP. The F_1 unit protrudes into the mitochondrial matrix space. Subunits α and β make a hexamer with 6 binding sites.
- Three of them are catalytically inactive and they bind ADP.
- Three other subunits catalyze the ATP synthesis. The other F_1 subunits γ , δ , and ϵ are a part of a rotational motor mechanism (rotor/axle).
- The γ subunit allows β to go through conformational changes (i.e., closed, half open, and open states) that allow for ATP to be bound and released once synthesized.
- The F₁ particle is large and can be seen in the transmission electron microscope by negative staining.
- These are particles of 9 nm diameter that pepper the inner mitochondrial membrane.

F_o region

- F_O is a water insoluble protein with 8 subunits and a transmembrane ring.
- The ring has a tetramer shape with a helix protein that goes through conformational changes when protonated and deprotonated, pushing neighboring subunits to rotate, causing the spinning of F_0 which then also affects conformation of F_1 , resulting in switching of states of alpha and beta subunits.
- The F_0 region of ATP synthase is a proton pore that is embedded in the mitochondrial membrane. It consists of three main subunits, a, b, and c. Six c subunits make up the rotor ring, and subunit b makes up a stalk connecting to F_1 OSCP that prevents the $\alpha\beta$ hexamer from rotating.
- Subunit a connects b to the c ring. This part of the enzyme is located in the mitochondrial inner membrane and couples proton translocation to the rotation the causes ATP synthesis in the F_1 region.

Hypothetical model for generation of rotation by proton transfer through the Fo domain of ATP synthase.

The central cylinder (blue) consists of c subunits; the external part (green) corresponds to single subunit.

Red line indicates the proton path.

A scheme for ATP synthesis envisaged three discrete stages

- 1. Translocation of protons by the F_o .
- 2. Catalysis of ATP synthesis *via* the formation of a phospho-anhydride bond between ADP and P_i by F_1 .
- 3. A coupling between synthesis of ATP and the controlled dissipation of the proton gradient *via* the coordinated action and interaction of F_1 and F_0 .