

Not for New Designs

HiPerFET™ Power MOSFETs

N-Channel Enhancement Mode Avalanche Rated, High dv/dt, Low t_{rr} IXFK 27N80 IXFK 25N80 IXFN 27N80 IXFN 25N80

$\mathbf{V}_{\mathtt{DSS}}$	I _{D25}	$R_{\scriptscriptstyle{DS(on)}}$	
800 V	27 A	0.30 Ω	
800 V	25 A	0.35 Ω	
800 V	27 A	0.30 Ω	
800 V	25 A	0.35 Ω	

TO-264 AA (IXFK)

miniBLOC, SOT-227 B (IXFN) E153432

G = Gate S = Source

D = Drain TAB = Drain

Either Source terminal at miniBLOC can be used as Main or Kelvin Source

Features

- International standard packages
- JEDECTO-264 AA, epoxy meet UL 94 V-0, flammability classification
- miniBLOC, with Aluminium nitride isolation
- $\bullet \ \, \mathsf{Low} \,\, \mathsf{R}_{\mathsf{DS} \, \mathsf{(on)}} \, \mathsf{HDMOS^{\mathsf{TM}}} \, \mathsf{process}$
- Rugged polysilicon gate cell structure
- Unclamped Inductive Switching (UIS) rated
- · Low package inductance
- · Fast intrinsic Rectifier

Applications

- DC-DC converters
- · Battery chargers
- Switched-mode and resonant-mode power supplies
- · DC choppers
- · Temperature and lighting controls

Advantages

- · Easy to mount
- Space savings
- · High power density

Symbol	Test Conditions	Maximu	m Rating	gs
		IXFK	IXFN	<u> </u>
V _{DSS}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	800	800	V
V _{DGR}	$T_J = 25^{\circ}C$ to 150°C; $R_{GS} = 1 \text{ M}\Omega$	800	800	V
V _{GS}	Continuous	±20	±20	V
V _{GSM}	Transient	±30	±30	V
I _{D25}	$T_{\rm c} = 25^{\circ}$ C, Chip capability 27N8	0 27	27	A
	25N8		25	Α
I _{DM}	$T_{\rm C}$ = 25°C, pulse width limited by $T_{\rm JM}$ 27N8	0 108	108	Α
	$T_{C} = 25^{\circ}C \qquad 25N8$		100	Α
I _{AR}	27N8	-	14	Α
	25N8	0 13	13	Α
E _{AR}	T _c = 25°C	30	30	mJ
dv/dt	$I_{\rm S} \le I_{\rm DM}$, di/dt ≤ 100 A/ μ s, $V_{\rm DD} \le V_{\rm DSS}$, $T_{\rm J} \le 150^{\circ}$ C, $R_{\rm G} = 2~\Omega$	5	5	V/ns
$\overline{\mathbf{P}_{\scriptscriptstyle \mathrm{D}}}$	$T_{c} = 25^{\circ}C$	500	520	W
T,		-55 .	+150	°C
T _{JM}			150	°C
T _{stg}		-55 .	+150	°C
T _L	1.6 mm (0.063 in) from case for 10 s	300	-	°C
V _{ISOL}	50/60 Hz, RMS t = 1 min	-	2500	V~
	$I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	-	3000	V~
M _d	Mounting torque	0.9/6		Nm/lb.in.
	Terminal connection torque	-	1.5/13	Nm/lb.in.
Weight		10	30	g
			1	

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unle})$	Character ss otherwi		
		min.	typ.	max.	
V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 3 \text{ mA}$	800			V
	V _{DSS} temperature coefficient		0.096		%/K
V _{GH(th)}	$V_{DS} = V_{GS}, I_{D} = 8 \text{ mA}$	2		4.5	V
	$V_{\text{GS(th)}}$ temperature coefficient		-0.214		%/K
I _{gss}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$			±200	nA
I _{DSS}	$V_{DS} = 0.8 \bullet V_{DSS}$ $V_{GS} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		500 2	μA mA
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 0.5 \bullet I_{D25}$ Pulse test, $t \le 300 \mu\text{s},$ duty cycle $d \le 2 \%$	25N80 27N80		0.35 0.30	Ω

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless min.})$	aracter otherwi typ.		cified)
g _{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 \bullet I_{D25}, \text{ pull}$	lse test 16	28		S
C _{iss}		7930	8400	9740	pF
C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, \text{ f}$	= 1 MHz 630	712	790	pF
\mathbf{C}_{rss}	J	146	192	240	pF
t _{d(on)})		30		ns
t _r	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \bullet$	V_{DSS} , $I_{D} = 0.5 \bullet I_{D25}$	80		ns
t _{d(off)}	$R_{\rm G} = 1 \Omega$ (External),		75		ns
t _f	J		40		ns
$\mathbf{Q}_{\mathrm{g(on)}}$		320	350	400	nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \bullet$	V_{DSS} , $I_{D} = 0.5 \cdot I_{D25}38$	46	56	nC
\mathbf{Q}_{gd}	J	120	130	142	nC
R_{thJC}	TO-264 AA			0.25	K/W
R _{thCK}	TO-264 AA		0.15		K/W
R _{thJC}	miniBLOC, SOT-227 B			0.24	K/W
R _{thCK}	miniBLOC, SOT-227 B		0.05		K/W

2.29

3.17

6.07

8.38

3.81

6.04

1.57

3.66

6.27

8.69

4.32

6.30

1.83

Р

Q

Q1

R R1

S

.090

.125

.239

.330

.150

.238

.062

.144

.247

.342

.170

.248

.072

Source-Drain Diode		$(T_1 = 25^{\circ}C, \text{ unless } C)$	aracteristic Values		
Symbol	Test Conditions	$(T_j = 25 \text{ G}, \text{ unless G})$ min.	typ.	max.	ii c u)
I _s	$V_{GS} = 0 V$	27N80 25N80		27 25	A A
I _{sm}	Repetitive; pulse width limited by T _{JM}	27N80 25N80		108 100	A A
V _{SD}	$I_F = 100 \text{ A}, V_{GS} = 0 \text{ V},$ Pulse test, $t \le 300 \mu\text{s}, \text{ duty}$	cycle d ≤ 2 %		1.5	V
t _{rr} Q _{RM} I _{RM}	$I_F = I_S$, -di/dt = 100 A/ μ s, $V_R =$	100 V T _J = 25°C T _J = 125°C T _J = 25°C	2 17	250 400	ns ns μC A

Dim.	Millimeter		Incl	nes
	Min.	Max.	Min.	Max.
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
Е	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	38.00	38.23	1.496	1.505
J	11.68	12.22	0.460	0.481
K	8.92	9.60	0.351	0.378
L	0.76	0.84	0.030	0.033
M	12.60	12.85	0.496	0.506
N	25.15	25.42	0.990	1.001
0	1.98	2.13	0.078	0.084
Р	4.95	5.97	0.195	0.235
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.174
S	4.72	4.85	0.186	0.191
Т	24.59	25.07	0.968	0.987
U	-0.05	0.1	-0.002	0.004

IXYS reserves the right to change limits, test conditions, and dimensions.

Figure 1. Output Characteristics at 25°C

Figure 3. $R_{\text{DS(on)}}$ normalized to 0.5 I_{D25} value vs. I_{D}

Figure 5. Drain Current vs. Case Temperature

Figure 2. Output Characteristics at 125°C

Figure 4. $\rm R_{\rm DS(on)}$ normalized to 0.5 $\rm I_{\rm D25}$ value vs. $\rm T_{\rm J}$

Figure 6. Admittance Curves

Figure 7. Gate Charge

Figure 8. Capacitance Curves

Figure 9. Forward Voltage Drop of the Intrinsic Diode

Figure 10. Transient Thermal Resistance