

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$ $\sigma_{1^-}^{\#1}$ $\sigma_{1^-}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{\text{-}}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
$\tau_{1}^{\#1}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}_{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{\alpha \beta}$	$o_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} \dagger^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$t_1^{\#2} +^{\alpha}$

$\alpha \beta \chi$	0	0	0					
$\omega_2^{\#1}$)	$\sigma_{0}^{\#1}$)	0	0	$\frac{1}{r_2+t_2}$
α^{FL}	0	0	0	σ_{i})))	$\frac{1}{k^2 r_2}$
$\alpha \beta f_2^{\#}$	MI.			$\tau_0^{\#2}$	0	0	0	0
$\omega_2^{\#_+^1}$ α_i	$\frac{3k^2r_3}{2}$	0	0	$\tau_{0}^{\#1}$	0	0	0	0
3	$-\alpha\beta$	$-\alpha \beta$	χβα	$\sigma_{0^+}^{\#1}$	0	0	0	0
	$\omega_2^{\#1}$ †	$f_2^{#1}$ 1	$\omega_{2}^{\#1} + ^{6}$		$\sigma_{0}^{\#1}\dagger$	$\tau_0^{\#1} \uparrow$	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}\dagger$

	$'''$ #1 + $\alpha\beta$	$\omega_2 + 1$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_2^{#1} +^{lphaeta\chi}$		σ_{0}^{*1}	- 	t ₀ [#] † 0		$Q_{0}^{*-} \downarrow 0$	
	#	1	1	П	М	М	М	М	2	2	25
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0}^{#1} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\sigma_{2}^{\#1}\alpha\beta\chi==0$	$\tau_2^{\#1}\alpha\beta == 0$	Total #:

	Quadratic pole				
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)\rho^2} > 0$			
?	Polarisations:	2			
1					

 $-\frac{t_2}{r_2} > 0$

 $-\frac{1}{r_2} > 0$

Odd