

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 10

MAT1106 — Introducción al Cálculo Fecha: 2020-10-01

Problema 1:

Sea $A \subset \mathbb{R}$ un conjunto finito no vacío, demuestre que existen $m, M \in A$ tales que para todo $a \in A$ se tiene $m \leq a \leq M$. m y M se denotarán como el mínimo de A^1 y el máximo de A^2 , respectivamente.

Solución problema 1: Inducción sobre el tamaño del conjunto. Se escribe $A = \{a\} \cup (A \setminus \{a\})$.

Problema 2:

- 1) Sea x_n una sucesión acotada, demuestre que toda subsucesión es acotada.
- 2) Sea x_n una sucesión monótona no acotada, demuestre que toda subsucesión es no acotada.
- 3) Encuentre una sucesión no acotada x_n , tal que tiene al menos una subsucesión acotada. ¿Existe alguna que tenga infinitas subsucesiones acotadas?

Solución problema 2:

- 1) Contradicción y definición.
- 2) Contradicción, buen orden sobre los indices de subsucesión acotada.

 $^{^{1}}m = \min A$

 $^{^{2}}M = \max A$

3) $x_{2n} = n, x_{2n+1} = 0$

Problema 3:

Sea x_n una sucesión de números enteros, demuestre que x_n siempre cumple al menos una de las siguientes propiedades:

- (a) Tiene una cantidad finita de términos distintos, en otras palabras el conjunto $S = \{x_n : n \in \mathbb{N}\}$ es finito.
- (b) Es no acotada.

Solución problema 3:

Problema 4:

Sea

$$x_n = \sum_{k=1}^n \frac{1}{k}$$

Demuestre que para todo n, se tiene que

$$x_{2^n} \ge \frac{n+1}{2}.$$

Solución problema 4:

Problema 5:

Sea

$$x_n = \sum_{k=1}^n \frac{1}{k^2}$$

¿Existe algún valor n tal que $x_n > 2$?

Hint: Vea que para $k \ge 2$ se tiene $\frac{1}{k^2} \le \frac{1}{k(k-1)} = \frac{1}{k} - \frac{1}{k-1}$.

Solución problema 5: