Household Power Consumption

Final Presentation of 2023 Spring Time Series

HaeLee Kim

Introduction

- Goal: Accurate predictions of the household power consumption
- Dataset: Individual household electric power consumption Data Set
- Source: https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
- Contains 2,075,259 data points with 7 features (type: float)
- Collected in a local area Sceaux (7km of Paris) of France
 between December 2006 and November 2010 (47 months), with a data point recorded every minute.
- The missing values filled with the mean of that specific hour
- Resampled Dataset :
 Step 1. resampled hourly first
 Step 2. resampled every 6 hours, resulting in one day having 4 data points. (5766x7)
- Time Series Models: Base Models Average, Naive, Drift, SES (Simple Exponential Smoothing),
 Multiple Linear Regression, ARMA, SARIMA, LSTM

1. Description of the dataset (a) (b)

#	Column	Non-Null Count	Dtype
0	Global_active_power	5766 non-null	float64
1	Global_reactive_power	5766 non-null	float64
2	Voltage	5766 non-null	float64
3	Global_intensity	5766 non-null	float64
4	Sub_metering_1	5766 non-null	float64
5	Sub_metering_2	5766 non-null	float64
6	Sub_metering_3	5766 non-null	float64

1. Description of the dataset (c) (d) (e)

e. split the dataset into train set (80%) and test set (20%)

2. Stationarity - ADF / KPSS / Rolling Mean & Variance

ADF Statistic: -5.844490

p-value: 0.000000

Critical Values:

1%: -3.431

5%: -2.862

10%: -2.567

Results of KPSS Test:

Test Statistic		0.443840
p-value	0.058259	
Lags Used		39.000000
Critical Value	(10%)	0.347000
Critical Value	(5%)	0.463000
Critical Value	(2.5%)	0.574000
Critical Value	(1%)	0.739000

3. Time Series Decomposition

- 8. The strength of trend for this data set is 0.005443627734045942
- 8. The strength of Seasonality for this data set is 0.799827216323149

4. Holt-Winters method

Mean Squared Error: 0.2565

5. Feature Selection / Elimination

o 1st step:

VIF = [('Global_reactive_power', 10.17), ('Voltage', 10.43), ('Global_intensity', 13.16), ('Sub_metering_1', 2.36), 'Sub_metering_2', 1.75), ('Sub_metering_3', 5.60)]

Singular Values = [3.34852823e+08 2.01072139e+05 4.46070182e+04 2.44847237e+04 8.30242560e+03 9.90714491e+00]

Condition Number = 5813.70

o 2nd step:

VIF = [('Global_reactive_power', 10.16), ('Voltage', 9.31), ('Sub_metering_1', 1.71), ('Sub_metering_2', 1.40), ('Sub_metering_3', 2.73)]

Condition Number = 5811.26

o 3rd step:

VIF = [('Voltage', 2.53), ('Sub_metering_1', 1.44), ('Sub_metering_2', 1.33), ('Sub_metering_3', 2.73)]

Condition Number = 5811.26

o 4th step:

Backward Stepwise Regression

5. Feature Selection / Elimination

OLS Regression Results

=============			=========
Dep. Variable:	У	R-squared:	0.734
Model:	OLS	Adj. R-squared:	0.734
Method:	Least Squares	F-statistic:	3178.
Date:	Tue, 09 May 2023	Prob (F-statistic):	0.00
Time:	16:34:02	Log-Likelihood:	-3688.4
No. Observations:	4612	AIC:	7387.
Df Residuals:	4607	BIC:	7419.
Df Model:	4		

Covariance	Type:	nonrobust

===========	========					
	coef	std err	t	P> t	[0.025	0.975]
const	0.0237	0.008	2.979	0.003	0.008	0.039
Voltage	-0.0457	0.008	-5.818	0.000	-0.061	-0.030
Sub_metering_1	0.3568	0.008	42.999	0.000	0.341	0.373
Sub_metering_2	0.2596	0.008	32.915	0.000	0.244	0.275
Sub_metering_3	0.5756	0.008	67.832	0.000	0.559	0.592
					========	=====
Omnibus:		1789.002	Durbin-Wat	son:		1.393

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 7697.182

 Skew:
 1.876
 Prob(JB):
 0.00

 Kurtosis:
 8.097
 Cond. No.
 1.56

6. Base Models - average, naïve, drift, simple and exponential smoothing

7. Multiple Linear Regression Model

a. MSE - One-step Ahead Prediction: 0.289

MSE - Forecasting: 1.650

b. AIC: 7386.812

c. BIC: 7418.994

d. RMSE: 0.538

e. Adjusted R-squared: 0.733

f. Q value is 8325.847

g. Mean of the residuals is 5.145

h. Variance of the residuals is 0.289

8. ARMA / ARIMA / SARIMA model order determination (a) (b) (c)

9. Levenberg Marquardt Algorithm

		SAR	IMAX Resul	ts		
=========	=======		=======	========		=======
Dep. Variable	:		0 No.	Observations	:	4612
Model:	,	ARIMA(4, 0,	4) Loa	Likelihood		-5186.447
Date:	Tue	e, 09 May 2	023 AIC			10392.894
Time:		18:23	:51 BIC			10457.258
Sample:			0 HQIC			10415.545
		- 4	612			
Covariance Ty	pe:		opg			
=========			=======	=========		=======
	coef	std err	Z	P> z	[0.025	0.975]
const	0.0662		0.894	0.371		
ar.L1	-0.0087		-3.827	0.000	-0.013	
ar.L2	-0.0064		-2.856	0.004	-0.011	-0.002
ar.L3	-0.0084		-3.588	0.000	-0.013	-0.004
ar.L4	0.9890	0.002	412.210	0.000	0.984	0.994
ma.L1	0.1149	0.008	13.982	0.000	0.099	0.131
ma.L2	0.1291	0.009	14.925	0.000	0.112	0.146
ma.L3	0.0947	0.008	11.752	0.000	0.079	0.110
ma.L4	-0.8180	0.008	-97.656	0.000	-0.834	-0.802
sigma2	0.5545	0.009	64.535	0.000	0.538	0.571
=========						=========
Ljung-Box (L1	(Q):		74.83	Jarque-Bera	(JB):	1321.23
Prob(Q):			0.00	Prob(JB):		0.00
Heteroskedast	icity (H):		0.61	Skew:		0.79
Prob(H) (two-	sided):		0.00	Kurtosis:		5.09
==========						

ARMA(4, 0):

Train MSE (Prediction) = 0.71, Test MSE (Forecasting) = 0.64

ARMA(4, 4):

Train MSE (Prediction) = 0.56, Test MSE (Forecasting) = 0.60

ARMA(8, 0):

Train MSE (Prediction) = 0.64, Test MSE (Forecasting) = 0.64

ARMA(8, 4):

Train MSE (Prediction) = 0.54, Test MSE (Forecasting) = 0.67

10. Diagnostic Analysis

SARIMAX Results							
=========	=======	=======	=======	:========	=======	=======	
Dep. Variable	:		O No.	Observations:		4612	
Model:		ARIMA(4, 0,	4) Log	Likelihood		-5186.447	
Date:	Tu	e, 09 May 2	023 AIC			10392.894	
Time:		18:23	:51 BIC			10457.258	
Sample:			O HQIO	:		10415.545	
		- 4	612				
Covariance Ty	pe:		opg				
=========	=======			.========			
	coef	std err	Z	P> z	[0.025	0.975]	
const	0.0662	0.074	0.894	0.371	-0.079	0.211	
ar.L1	-0.0087	0.002	-3.827	0.000	-0.013	-0.004	
ar.L2	-0.0064	0.002	-2.856	0.004	-0.011	-0.002	
ar.L3	-0.0084	0.002	-3.588	0.000	-0.013	-0.004	
ar.L4	0.9890	0.002	412.210	0.000	0.984	0.994	
ma.L1	0.1149	0.008	13.982	0.000	0.099	0.131	
ma.L2	0.1291	0.009	14.925	0.000	0.112	0.146	
ma.L3	0.0947	0.008	11.752	0.000	0.079	0.110	
ma.L4	-0.8180	0.008	-97.656	0.000	-0.834	-0.802	
sigma2	0.5545	0.009	64.535	0.000	0.538	0.571	
					=======		
Ljung-Box (L1) (Q):		74.83	Jarque-Bera (JB):	1321	.23
Prob(Q):			0.00	Prob(JB):		0	.00
Heteroskedast	ıcıty (H):		0.61	Skew:		0	.79
Prob(H) (two-	Prob(H) (two-sided): 0.00 Kurtosis: 5.09						.09

MSE of the SARIMA model (Training: Prediction): 0.5599
MSE of the SARIMA model (Test: Forecasting): 0.5730

a. Poles - AR roots:

[-9.99935888e-01+0.j -6.77291587e-05+0.99885101j -6.77291587e-05-0.99885101j 9.91381616e-01+0.j]

b. Zeros - MA roots:

[-0.97227237+0.j -0.00465345+0.98527024j -0.00465345-0.98527024j 0.86666145+0.j]

c. Estimated variance of the error for ARMA(4,4): 1.0

10. Diagnostic Analysis - Finding Better Models

SARIMAX Results

Dep. Variable: No. Observations: 4612 SARIMAX(4, 0, 4)x(1, 0, [1], 28) Log Likelihood -4829.440 Model: Tue, 09 May 2023 Date: 9680.879 9751.680 Time: 18:50:46 BIC HQIC 9705.796 Sample: - 4612

- 40.

Covariance Type: opg

========	coef			P> z		
ar.L1	-0.1402	0.017	-8.129	0.000	-0.174	-0.106
ar.L2	-0.1004	0.019	-5.354	0.000	-0.137	-0.064
ar.L3	-0.1242	0.019	-6.444	0.000	-0.162	-0.086
ar.L4	0.8012	0.017	47.262	0.000	0.768	0.834
ma.L1	0.3580	0.023	15.292	0.000	0.312	0.404
ma.L2	0.3382	0.027	12.671	0.000	0.286	0.391
ma.L3	0.2913	0.026	11.310	0.000	0.241	0.342
ma.L4	-0.5031	0.024	-21.105	0.000	-0.550	-0.456
ar.S.L28	0.9697	0.004	218.533	0.000	0.961	0.978
ma.S.L28	-0.8283	0.011	-73.737	0.000	-0.850	-0.806
sigma2	0.4744			0.000		
Ljung-Box (L1) (Q):			4.11			1508.0
Prob(Q):			0.04	Prob(JB):		0.0
Heteroskeda	sticity (H):		0.63	Skew:		0.7
Prob(H) (tw	o-sided):		0.00	Kurtosis:		5.3

MSE of the SARIMA model (Training: Prediction): 0.4771 MSE of the SARIMA model (Test: Forecasting): 0.6063

11. Deep Learning Model

Mean squared error (MSE) of LSTM is 1.5568

12. Final Model Selection

Models	MSE	AIC	BIC
Average	0.6480		
Naive	0.9933		
Drift	0.6838		
SES	0.2008		
Multiple Linear Regression	1.6502		
ARIMA (4,0,4)	0.6032	10392.894	10457.258
SARIMA (4,0,4) x (1,0,1,28)	0.6063	9680.879	<mark>9751.680</mark>
LSTM	1.5568		

13. Forecast Function & H-step Ahead Prediction

Summary / Conclusion

- aimed to provide accurate predictions of household power consumption using Time
 Series models
- implemented Time Series models, including Average, Naive, Drift, SES, Multiple Linear Regression, ARMA, SARIMA, and LSTM.
- evaluated the performance of these models using the MSE, AIC, and BIC.
- found that the SARIMA (4,0,4) x (1,0,1,28) model provided the best fit to the data with an MSE of 0.6063.

