

CM 2607 Advanced Mathematics for Data Science

Tutorial No 07

- 1) List the first five terms of the sequences defined by:
 - a. $a_n = 3n + 5$

b.
$$a_0 = 0$$
, $a_1 = 1$, $a_n = a_{n-1} + 0.5 * a_{n-2}$

c.
$$a_n = 2(3^2 - 1)$$

d.
$$a_0 = 12, a_n = \begin{cases} 3a_{n-1} + 1 & \text{if } a_{n-1} \text{ is odd} \\ \frac{a_{n-1}}{2} & \text{if } a_{n-1} \text{ is even} \end{cases}$$

e.
$$a_n = 2 + (n-1) * 4$$

f.
$$a_n = 2 \times (-1^{n-1})$$

- 2) Find the sum of the first 10 terms for the following arithmetic sequences:
 - a. a = 1, d = 0.5

b.
$$a = -5$$
, $d = 3$

c.
$$a = 0$$
, $d = -2$

3) Find the sum of the fist 5 terms for the following geometric sequences:

a.
$$a = 1, r = 2$$

b.
$$a = 2, r = -3$$

c.
$$a = 1, r = 5$$

4) Determine whether these sequences are monotonic and/or bounded.

a.
$$a_n = \frac{1}{n}$$

b.
$$a_n = a_{n-1} \times -1.5$$
, $a_0 = 1$

c.
$$a_n = a_{n-1} + 2$$
, $a_0 = 1$

d.
$$a_n = \begin{cases} a_{n-1} + a_{n-2}, & \text{if } n \text{ is even} \\ a_{n-1} - a_{n-2}, & \text{if } n \text{ is odd} \end{cases}$$

e.
$$a_n = -0.9 \times a_{n-1}$$
, $a_0 = 1$

5) Identify whether these sequences converge, diverge, or does not converge or diverge. If they converge, find the limits of these sequences.

a.
$$a_n = \frac{n+1}{n+2}$$

b.
$$a_n = a_{n-1} + 3$$
, $a_0 = 1$

c.
$$a_n = n^2 - 2n + 1$$

d.
$$a_n = n \cdot e^n$$

e.
$$a_n = n \cdot \cos\left(\frac{n}{2}\right)$$

f.
$$a_n = \frac{1}{2n} \cdot (\sin(n+\pi) + 1)$$

g.
$$a_n = |-2 * n + 5|$$

h.
$$a_n = \frac{\cos(n)}{n}$$

i.
$$a_n = \frac{\sin(2n) + \cos(3n+1)}{n}$$

j. $a_n = \frac{\sin(n) + 1}{n^2}$

$$j. \quad a_n = \frac{\sin(n) + 1}{n^2}$$

6) Plot the first 100 terms of the following sequences. You may use python.

a.
$$a_n = 0.1n^2 - 10n + 5$$

b.
$$a_n = a_{n-1} + 0.5a_{n-1}, a_0 = 1, a_1 = 1$$

c. $a_n = \sum_{m=0}^{m=n-1} \frac{a_m}{n-m}, a_0 = 1$

c.
$$a_n = \sum_{m=0}^{m=n-1} \frac{a_m}{n-m}$$
, $a_0 = 1$

d.
$$a_n = \begin{cases} \frac{a_{n-1}}{3} & \text{if n is divisible by 3} \\ a_0 = 3 \\ 2a_{n-1} - 1 & \text{otherwise} \end{cases}$$

c.
$$a_n = \sum_{m=0}^{\infty} \frac{1}{n-m}, a_0 = 1$$

d. $a_n = \begin{cases} \frac{a_{n-1}}{3} & \text{if } n \text{ is divisible by 3} \\ a_0 = 3 \\ 2a_{n-1} - 1 & \text{otherwise} \end{cases}$
e. $a_n = \begin{cases} \frac{a_{n-1}}{-5}, & a_{n-1} > 5 \\ 1.5a_{n-1}, & -5 \ge a_{n-1} \ge 5, \\ a_{n-1} \times -2, & a_{n-1} < -5 \end{cases}$
f. $a_n = \sin\left(\frac{\pi n}{12}\right)$
g. $a_n = \frac{n+1}{0.1n^2 - 5x + 2.5}$

f.
$$a_n = \sin\left(\frac{\pi n}{12}\right)$$

g.
$$a_n = \frac{n+1}{0.1n^2 - 5x + 2.5}$$