

Workshop 7

COMP90051 Machine Learning Semester 2, 2020

Learning Outcomes

By the end of this workshop you should be able to:

- explain how VAEs can be used to (approximately) fit latent variable models
- compute the objective function for VAEs—the evidence lower bound
- 3. implement a VAE in Keras/TensorFlow

Variational autoencoders (VAEs)

Problem: fit a latent variable model $p_{\theta}(\mathbf{x}, \mathbf{z}) = p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})$ where

- x is the observed data,
- z is an (unobserved) latent variable,
- θ is a set of unknown parameters

- VAEs can handle complex models where the likelihood $p_{\theta}(\mathbf{x}|\mathbf{z})$ is parameterised by a deep neural net
- Other methods break down in this case, because the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ and marginal $p_{\theta}(\mathbf{x})$ become intractable

Variational autoencoders (VAEs)

- Since $p_{\theta}(\mathbf{z}|\mathbf{x})$ is intractable, approximate it by $q_{\phi}(\mathbf{z}|\mathbf{x})$
- Can do inference using stochastic gradient descent

VAE objective function

• Maximise the evidence lower bound (ELBO) with respect to the model parameters $m{ heta}$ and $m{\phi}$:

$$\mathcal{L}_{\boldsymbol{\theta}, \boldsymbol{\phi}}(\mathbf{x}) = \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{Z}|\mathbf{X})}[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z})] - D_{\mathrm{KL}}[q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})||p(z)]$$

- The ELBO simultaneously
 - * approximately maximises the marginal likelihood $p_{\theta}(\mathbf{x})$
 - * minimises the KL divergence from the true posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ to the approximation $q_{\phi}(\mathbf{z}|\mathbf{x})$
- We'll minimise the negative ELBO in our implementation:

$$-\mathcal{L}_{\theta,\phi}(\mathbf{x}) = \underbrace{-\mathbb{E}_{q_{\phi}(\mathbf{Z}|\mathbf{X})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})]}_{\text{reconstruction loss}} + \underbrace{D_{\text{KL}}[q_{\phi}(\mathbf{z}|\mathbf{x})||p(z)]}_{\text{regularisation term}}$$

A generative model for MNIST

- Express an image as a flattened array $\mathbf{x} \in \{0,1\}^d$
 - Note: we're assuming a 1-bit (black/white) image

Assume an independent Bernoulli likelihood

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{i=1}^{d} \pi_i^{x_i} (1 - \pi_i)^{1 - x_i} \text{ where}$$
$$\boldsymbol{\pi} = (\pi_1, \dots, \pi_d) = \text{DecoderNN}_{\theta}(\mathbf{z})$$

• Assume latent variable $\mathbf{z} \in \mathbb{R}^m$ has a spherical Gaussian prior $p_{\theta}(\mathbf{z}) = \mathcal{N}(\mathbf{z}; 0, \mathbf{I})$

Posterior approximation

- The VAE framework requires us to specify a tractable approximation $q_{\phi}(\mathbf{z}|\mathbf{x})$ for the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$
- We assume $p_{\theta}(\mathbf{z}|\mathbf{x})$ can be well-approximated by a factorised Gaussian:

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}; \boldsymbol{\mu}, \operatorname{diag}(\boldsymbol{\sigma}))$$
 where $(\boldsymbol{\mu}, \log \boldsymbol{\sigma}) = \operatorname{EncoderNN}_{\phi}(\mathbf{x})$

• VAE will tune ϕ to make $p_{\theta}(\mathbf{z}|\mathbf{x}) \approx q_{\phi}(\mathbf{z}|\mathbf{x})$

Worksheet 7