Claims

- 1. A solid electrolyte comprising an inorganic substance comprising 5 a lithium ion conductive crystalline and being substantially free of an organic substance and an electrolytic solution.
- 2. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline is substantially free of a pore or a crystal grain boundary which obstructs ion conduction.
- 3. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline is lithium ion conductive glass-ceramics.
 - 4. A solid electrolyte as defined in claim 1 comprising an inorganic substance powder comprising a lithium ion conductive crystalline and an inorganic substance comprising Li.

20

25

- 5. A solid electrolyte as defined in claim 4 wherein the inorganic substance powder comprising a lithium ion conductive crystalline has ion conductivity of $10^{-4} \mathrm{Scm}^{-1}$ or over, has an average particle diameter of $9\,\mu$ m or below, and is contained in the solid electrolyte in an amount within a range from 50 mass% to 95 mass%.
- 6. A solid electrolyte as defined in claim 3 wherein the ion conductive glass-ceramics are in the form of a thin plate.
- 7. A solid electrolyte as defined in claim 6 wherein the lithium ion conductive glass-ceramics have a thickness within a range from 15 μ m to 200 μ m.
- 8. A solid electrolyte as defined in claim 1 having ion conductivity which is 10.5 Scm. or over.

9. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline has a predominant crystal phase of $\text{Li}_{1+x+y}\text{Al}_x\text{Ti}_{2-x}\text{Si}_y\text{P}_{3-y}\text{O}_{12}$ where $0 \le x \le 1$ and $0 \le y \le 1$.

5

10. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline comprises, in mol %;

	$ m Li_2O$	12 - 18%
10	$Al_2O_3 + Ga_2O_3$	5 – 10%
	$TiO_2 + GeO_2$	35-45%
	${ m SiO_2}$	1-10% and
-	P_2O_5	30 - 40%.

ت. بر بر

11. A solid electrolyte as defined in claim 1 wherein the inorganic substance comprising a lithium ion conductive crystalline comprises, in mass %;

	${ m Li}_2{ m O}$	3 – 10%
	$Al_2O_3 + Ga_2O_3$	5-20%
20	$TiO_2 + GeO_2$	25-40%
	${ m SiO_2}$	0.5-8% and
	P_2O_5	40 - 55%.

12. A lithium ion secondary battery comprising a solid electrolyte as defined in any of claims 1-11.

13. A lithium ion secondary battery as defined in claim 12 comprising an inorganic substance comprising a lithium ion conductive crystalline in a positive electrode and/or a negative electrode.

30

14. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is substantially free of a pore or a crystal grain boundary which obstructs ion conduction.

35

15. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is a lithium ion conductive glass ceramics.

5

10

20

30

- 16. A lithium ion secondary battery as defined in claim 13 wherein an average particle diameter of the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is 1/5 or below of an average particle diameter of an active material of the positive electrode and/or the negative electrode comprising an inorganic substance comprising a lithium ion conductive crystalline.
- 15 17. A lithium ion secondary battery as defined in claim 13 wherein an amount of the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode is 2 35 mass % of an active material of the positive electrode and/or the negative electrode.

18. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode comprises, in mol %;

25	Li ₂ O	12 - 18%
	$Al_2O_3 + Ga_2O_3$	5 - 10%
	$TiO_2 + GeO_2$	35-45%
	${ m SiO}_2$	1-10% and
	P_2O_5	30 - 40%.

19. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode comprises, in mass %;

35	Li_2O	3 - 10%
	$Al_2O_3 + Ga_2O_3$	5 - 20%

 $TiO_2 + GeO_2$ 25 - 40% SiO_2 0.5 - 8% and P_2O_5 40 - 55%.

5 20. A lithium ion secondary battery as defined in claim 13 wherein the inorganic substance comprising a lithium ion conductive crystalline contained in the positive electrode and/or the negative electrode has a predominant crystal phase of $\text{Li}_{1+x+y}\text{Al}_x\text{Ti}_{2-x}\text{Si}_y\text{P}_{3-y}\text{O}_{12}$ where $0 \le x \le 1$ and $0 \le y \le 1$.

10

15

21. A lithium ion secondary battery as defined in any of claims 13 – 17 which comprises, in the positive electrode and/or the negative electrode, the same inorganic substance as the inorganic substance comprising a lithium ion conductive crystalline contained in the solid electrolyte.