ENED 1091: Homework #5 Due: Week 4 at beginning of Recitation

Problem 1: Resultant Force

Consider the following three forces:

$$F_1 = 15 \angle 30^{\circ} N$$
; $F_2 = 20 \angle 150^{\circ} N$; $F_3 = 75 \angle -140^{\circ} N$

(a) Resolve each force into an x-component and y-component. Fill in the table below. Show your work!

Force	x-component	y-component
F1	12.99	7.5
F2	-17.32	10
F3	-57.45	-48.21

(b) Calculate the resultant force in rectangular form and polar form. Show your work and include units in your answers!

Resultant Force (Rectangular Form): $F_x = \underline{} -61.78N\underline{} F_y = \underline{} -30.71N\underline{}$

Resultant Force (Polar Form): 68.99N 198.53°

Problem 2: Statics

Write the force balance equations for the diagram shown below that represents an object hanging from two wires. Then write the equations in matrix form (Ax = b) and use MATLAB to solve for the tension $(T_1 \text{ and } T_2)$ in the two wires. Show your work and include units in your answers!

Force Balance Equations:

 $T1*\cos(15/180*pi)+T2*\cos(60/180*pi)=55$

 $T1*\sin(15/180*pi)=T2*\sin(60/180*pi)$

Matrix Equation:

A:	x :	b:
0.9659 0.5000	T1	55
0.2588 - 0.8660	T2	0

MATLAB Commands:

```
A=[0.9659 0.5;0.2588 -0.8660];
if det(A)~=0
    solution=inv(A)*[4.4482;0];
end
disp(solution)
```

SOLUTION:

$$T1 = 49.3131 \text{ lbs}$$
 $T2 = 14.7370 \text{ lbs}$

Problem 3: Systems of Linear Equations

Shown below is a diagram of a simple truss along with a free body diagram assuming the beams are all in compression.

Equilibrium Equations for Joint 1:

$$\sum F_x = 0: -F_1 \cos(30^o) + F_3 \cos(60^o) = 0$$

$$\sum F_y = 0: -F_1 \sin(30^o) - F_3 \sin(60^o) - 1000 = 0$$

(a) Equilibrium Equations for Joint 2? Enter Equations below:

$$H_2+F_2+F_1\cos(30^\circ)=0$$

$$V_2 + F_1 \sin(30^\circ) = 0$$

(b) Equilibrium Equations for Joint 3? Enter Equations below:

$$F_2 + F_3 \cos(60^\circ) = 0$$

$$V_3 + F_3 \sin(60^\circ) = 0$$

(c) Enter the matrix equation below by completing the table below:

-cos(30)	0	cos(60)	0	0	0
-sin(30)	0	-sin(60)	0	0	0
cos(30)	1	0	0	0	1
sin(30)	0	0	1	0	0
0	1	cos(60)	0	0	0
0	0	sin(60)	0	1	0

$$\begin{array}{c|ccccc}
 & & & F1 \\
 & F2 \\
 & F3 \\
 & & V2 \\
 & & V3 \\
 & & H2
\end{array} = \left(\begin{array}{c}
 0 \\
 1000 \\
 0 \\
 0 \\
 0 \\
 0
\end{array} \right)$$

(d) Use MATLAB to solve for F1, F2, F2, V2, V3, and H.

MATLAB COMMANDS:

```
A=[ -cosd(30),0,cosd(60),0,0,0;
    -sind(30),0,-sind(60),0,0,0;
    sind(30),1,0,0,0,1;
    cosd(30),0,0,1,0,0;
    0,1,cosd(60),0,0,0;
    0,0,sind(60),0,1,0];
B=[0;1000;0;0;0;0];
X=inv(A)*B
```

FORCES:

Problem 4: Mesh Analysis

A student in a circuits class writes mesh equations for the circuit shown below and now must solve for the unknown currents $(I_1, I_2, \text{ and } I_3)$.

$$11.3 I_1 - 9.1 I_2 = 18$$

$$-9.1 I_1 + 23.4 I_2 - 6.8 I_3 = -18$$

$$-6.8 I_2 + 10.1 I_3 = -3$$

(a) Write the equations in matrix form and use MATLAB to solve for all three currents. The units for the currents will be in milliamps (mA).

Matrix Equation:

A:			x:	b:
11.3	-9.1	0	I1	18
-9.1	23.4	-6.8	I2	-18
0	-6.8	10.1	I3	-3

MATLAB Commands:

SOLUTION:

$$I1 = 1.2059A$$
 $I2 = -0.4806A$ $I3 = -0.6206A$

(b) Find the current through the 9.1 k Ω resistor and find the voltage drop across the 9.1 k Ω resistor. Show your calculations and include units in your answers.

<u>I=I1+I2=1.6865mA</u>

 $U=I*9.1 \text{ k}\Omega=15.34715\text{V}$

Problem 5: Mesh Analysis

A student in a circuits class writes mesh equations for the circuit shown below and now must solve for the unknown currents $(I_1, I_2, I_3, \text{ and } I_4)$.

$$4.7 I_1 + 3.6(I_1 - I_2) + 1(I_1 - I_3) = 0$$

$$3.6(I_2 - I_1) + 2I_2 + 1.1(I_2 - I_4) = -12$$

$$1(I_3 - I_1) + 4.7(I_3 - I_4) + 8.1I_3 = 9$$

$$4.7(I_4 - I_3) + 1.1(I_4 - I_2) + 2.2I_4 = 0$$

(a) Write the equations in matrix form and use MATLAB to solve for all four currents. The units for the currents will be in milliamps (mA).

Matrix Equation:

A:	-			x :	b:
9.3	-3.6	-1	0	I1	0
-3.6	6.7	0	-1.1	I2	-12
-1	0	13.8	-4.7	I3	9
0	-1.1	-4.7	8	I4	0

MATLAB Commands:

SOLUTION:

I1 = -0.7872 mA I2 = -2.2045 mA I3 = 0.6149 mA I4 = 0.0582 mA

(b) Find the current through the 1.1 k Ω resistor and find the voltage drop across the 1.1 k Ω resistor. Show your calculations and include units in your answers.

$$\begin{split} &I_4 - I_2 = 2.2627 mA \\ &U = (I_4 - I_2) \times 1.1 \; k\Omega = 2.49 V \end{split}$$