Underlying shortest paths in timetables

Podkladové najkratšie cesty v cestovných poriadkoch

František Hajnovič

FMFI UK

April 23, 2013

Supervisor: doc. RNDr. Rastislav Královič PhD.

Introduction

Introduction

• Given a timetable, we query for **optimal connection** (OC):

$$(a,t,b) \rightarrow c^*_{(a,t,b)}$$
elementary connection waiting
$$0:30 \qquad 0:15 \qquad 0:30$$
[B, 11:00] [C, 11:30] [C, 11:45] [A, 12:15]

What is it about?

• Given a timetable, we query for **optimal connection** (OC):

- Motivation: large-scale timetable search engines (cp.sk, imhd.sk...)
- Approach: (distance) oracle-based approach [TZ05] pre-computation

References

Timetable and underlying graph

Place		Time			
From	To	Departure	Arrival		
Α	В	10:00	10:45		
В	C	11:00	11:30		
В	C	11:30	12:10		
В	Α	11:20	12:30		
C	Α	11:45	12:15		

Table : **Timetable** - a set of **elementary connections** (between pairs of **cities**).

Figure: Underlying graph.

Timetable and underlying graph

Place		Time			
From	To	Departure	Arrival		
Α	В	10:00	10:45		
В	C	11:00	11:30		
В	C	11:30	12:10		
В	Α	11:20	12:30		
C	Α	11:45	12:15		

Table : **Timetable** - a set of **elementary connections** (between pairs of **cities**).

Figure : Underlying graph.

- Goals:
 - Devise methods to tackle optimal connection problem
 - Analyse properties of real-world timetables

Contribution

ldea

• "Usually we go through the same sequence of cities"

- p is **USP** $\iff \exists t : path(c^*_{(a,t,b)}) = p$
- ullet we have USP p: $expand(p)
 ightarrow c_{(a,t,b)}^*$

Odchod	Príchod	Dĺžka cesty*	Použité linky	Zóny	Cena*
21:59	22:10	11 min	95	-	0,70 €
22:09	22:20	11 min	95	-	0,70 €
22:19	22:30	11 min	95	-	0,70 €
22:29	22:40	11 min	95	-	0,70 €
22:39	22:50	11 min	95	-	0,70 €

Idea

Introduction

• "Usually we go through the same sequence of cities"

- p is **USP** $\iff \exists t : path(c^*_{(a,t,b)}) = p$
- ullet we have USP p: $expand(p)
 ightarrow c_{(a,t,b)}^*$
- Overtaking [MHSWZ07] causes problems, but can be easily removed

Odchod	Príchod	Dĺžka cesty*	Použité linky	Zóny	Cena*
21:59	22:10	11 min	95	-	0,70 €
22:09	22:20	11 min	95	-	0,70 €
22:19	22:30	11 min	95	-	0,70 €
22:29	22:40	11 min	95	-	0,70 €
22:39	22:50	11 min	95	-	0,70 €

Name	Overtaken edges (%)
air01	1%
cpsk	2%
gb-coach	1%
gb-train	0%
montr	1%
sncf	1%
sncf-ter	1%
sncf-inter	6%
zsr	0%

USP-OR

- Pre-compute all conn. space $\mathcal{O}(h \; n^2 \gamma)$
 - \bullet $\,\gamma$ the average OC size
 - **h** height

Introduction USP-OR

USP-OR

- Pre-compute all conn. space $\mathcal{O}(h n^2 \gamma)$
 - \bullet γ the average OC size
 - h height
- Pre-compute all USPs space $\mathcal{O}(\tau n^2 \gamma)$
 - $\tau(x,y)$ # of USPs between x and y
- \bullet δ the density of UG

Name	au	γ	δ	h
air01	7.5	2.1	32.9	112.7
cpsk	12.1	15.9	3.9	50.7
gb-coach	5.3	5.3	5.6	48
gb-train	10.3	7.6	5.7	129.6
montr	5.1	21.0	1.9	35.0
sncf	5.6	8.6	3.4	42.4
sncf-inter	2.6	13.4	1.1	20.8
sncf-ter	5.6	12.7	3.3	34.0
zsr	3.7	13.5	2.7	21.6

Table: Daily, 200 station timetable subsets.

USP-OR	prep	size	qtime	stretch
guaranteed	$\mathcal{O}(hn^2(\log n + \delta))$	$\mathcal{O}(\tau n^2 \gamma)$	avg. $\mathcal{O}(au\gamma)$	1
τ const., $\gamma \leq \sqrt{n}$, $\delta \leq \log n$	$\mathcal{O}(hn^2 \log n)$	$\mathcal{O}(n^{2.5})$	avg. $\mathcal{O}(\sqrt{n})$	1

$USP-OR - \tau$ evolution

Figure : Changing of τ with increased time range in *sncf-200* dataset.

$USP-OR - \tau$ evolution

Figure : Changing of τ with increased time range in *sncf-200* dataset. **Segmentation** of the timetable to days.

$USP-OR - \tau$ evolution

φ τ παx τ(x, y)

40

20

20

40

600

800

1,000

Figure : Changing of τ with increased time range in *sncf-200* dataset. **Segmentation** of the timetable to days.

Figure : Changing of τ with increased # of stations in $\mathit{gb\text{-}coach}$ dataset.

$USP-OR - \tau$ evolution

Figure : Changing of τ with increased time range in *sncf-200* dataset. **Segmentation** of the timetable to days.

Figure : Changing of τ with increased # of stations in $\mathit{gb\text{-}coach}$ dataset.

• Space $\mathcal{O}(n^{2.5})$ too big anyway...

USP-OR-A

- Pre-compute USPs only among *some* cities in UG: (r_1, r_2, r_3) access node set \mathcal{A}
 - Small size: $|\mathcal{A}| \leq r_1 \cdot \sqrt{n}$

Contribution

00000000

- Small node neighbourhoods: $avg(|neigh(x)|)^2 \le r_2 \cdot n$
- Few local access nodes: $avg(|Ian_{\mathcal{A}}(x)|)^2 \leq r_3$

USP-OR-A and access nodes

USP-OR-A	guaranteed	τ, r_1, r_2, r_3 const., $\gamma \leq \sqrt{n}, \delta \leq \log n$
prep	$\mathcal{O}(f(n) + (r_1 + r_2)(\delta + \log n)hn^{1.5})$	$\mathcal{O}(f(n) + hn^{1.5} \log n)$
size	$\mathcal{O}(r_2n^{1.5} + r_1^2\tau_A\gamma_An)$	$\mathcal{O}(n^{1.5})$
qtime	avg. $\mathcal{O}(r_2 r_3 \sqrt{n} (\log(r_2 n) + \delta) + r_3 \tau_{\mathcal{A}} \gamma_{\mathcal{A}})$	avg. $\mathcal{O}(\sqrt{n}\log n)$
stretch	1	1

USP-OR-A and access nodes

USP-OR-A	guaranteed	τ, r_1, r_2, r_3 const., $\gamma \leq \sqrt{n}, \delta \leq \log n$
prep	$\mathcal{O}(f(n) + (r_1 + r_2)(\delta + \log n)hn^{1.5})$	$\mathcal{O}(f(n) + hn^{1.5} \log n)$
size	$\mathcal{O}(r_2n^{1.5}+r_1^2\tau_{\mathcal{A}}\gamma_{\mathcal{A}}n)$	$\mathcal{O}(n^{1.5})$
qtime	avg. $\mathcal{O}(r_2 r_3 \sqrt{n} (\log(r_2 n) + \delta) + r_3 \tau_{\mathcal{A}} \gamma_{\mathcal{A}})$	avg. $\mathcal{O}(\sqrt{n}\log n)$
stretch	1	1

• Minimize $|\mathcal{A}|$ s.t. $\forall x: |neigh_{\mathcal{A}}(x)| \leq \sqrt{n} \rightarrow \mathsf{NP}\text{-complete}$

USP-OR-A and access nodes

USP-OR-A	guaranteed	τ, r_1, r_2, r_3 const., $\gamma \leq \sqrt{n}, \delta \leq \log n$
prep	$\mathcal{O}(f(n) + (r_1 + r_2)(\delta + \log n)hn^{1.5})$	$\mathcal{O}(f(n) + hn^{1.5} \log n)$
size	$\mathcal{O}(r_2n^{1.5} + r_1^2\tau_A\gamma_An)$	$\mathcal{O}(n^{1.5})$
qtime	avg. $\mathcal{O}(r_2r_3\sqrt{n}(\log(r_2n)+\delta)+r_3\tau_{\mathcal{A}}\gamma_{\mathcal{A}})$	avg. $\mathcal{O}(\sqrt{n}\log n)$
stretch	1	1

- Minimize $|\mathcal{A}|$ s.t. $\forall x: |neigh_{\mathcal{A}}(x)| \leq \sqrt{n} \rightarrow \mathsf{NP}\text{-complete}$
- Choose ANs based on degree/betweenness centrality

Figure : sncf, $r_2 \le 1$.

USP-OR-A and access nodes

USP-OR-A	guaranteed	τ, r_1, r_2, r_3 const., $\gamma \leq \sqrt{n}, \delta \leq \log n$
prep	$\mathcal{O}(f(n) + (r_1 + r_2)(\delta + \log n)hn^{1.5})$	$\mathcal{O}(f(n) + hn^{1.5} \log n)$
size	$\mathcal{O}(r_2n^{1.5} + r_1^2\tau_A\gamma_An)$	$\mathcal{O}(n^{1.5})$
qtime	avg. $\mathcal{O}(r_2r_3\sqrt{n}(\log(r_2n)+\delta)+r_3\tau_{\mathcal{A}}\gamma_{\mathcal{A}})$	avg. $\mathcal{O}(\sqrt{n}\log n)$
stretch	1	1

- Minimize $|\mathcal{A}|$ s.t. $\forall x : |neigh_{\mathcal{A}}(x)| \leq \sqrt{n} \rightarrow \mathsf{NP}\text{-complete}$
- Choose ANs based on degree/betweenness centrality

Figure : sncf, $r_2 \le 1$.

ï

Conclusion

ï

Locsep

Select AN that locally separates many vertices

Figure : sncf, $r_2 \le 1$.

Figure : gb-coach, $r_2 \le 1$.

Conclusion

Contribution

00000000

Performance

• Time-dependent Dijkstra's algorithm with Fibonacci heap priority queue $\mathcal{O}(m+n\log n)\approx \mathcal{O}(n\log n)$ in our timetables

Figure: query time, sncf

Figure : query time, gb-coach

Performance

Performance and existing methods

	Dataset	sncf		gb-coach		gb-train	
	Time range	(1 day)	(1 week)	(1 day)	(1 week)	(1 day)	(1 week)
	n	700	500	1000	700	700	400
USP-OR	Speed-up	29.0	23.8	71.5	71.3	22.4	16.6
	Size-up	271.4	228.6	169.1	116.1	138.9	80.1
	n	2608	2646	2406	2448	2550	2555
USP-OR-A	Speed-up	5.2	6.3	8.0	8.8	2.8	2.8
	Size-up	5.1	7.8	7.4	10.4	4.3	5.2

Performance

Performance and existing methods

	Dataset	sncf		gb-coach		gb-train	
	Time range	(1 day)	(1 week)	(1 day)	(1 week)	(1 day)	(1 week)
USP-OR	n	700	500	1000	700	700	400
	Speed-up	29.0	23.8	71.5	71.3	22.4	16.6
	Size-up	271.4	228.6	169.1	116.1	138.9	80.1
USP-OR-A	n	2608	2646	2406	2448	2550	2555
	Speed-up	5.2	6.3	8.0	8.8	2.8	2.8
	Size-up	5.1	7.8	7.4	10.4	4.3	5.2

- Time-dependent SHARC [Del08], Time-dependent CH [BDSV09]
 - Speed-ups of about 26 / 1500, respectively (earliest arrival only)
 - Meant for time-dependent routing in road networks
- Engineering time-expanded graphs... [DPW09]
 - Max speed-up of 56 (Railways with 30000 stations!)
 - Remodelling unimportant stations in time expanded graphs

Performance and existing methods

Contribution

	Dataset	sncf		gb-coach		gb-train	
	Time range	(1 day)	(1 week)	(1 day)	(1 week)	(1 day)	(1 week)
USP-OR	n	700	500	1000	700	700	400
	Speed-up	29.0	23.8	71.5	71.3	22.4	16.6
	Size-up	271.4	228.6	169.1	116.1	138.9	80.1
USP-OR-A	n	2608	2646	2406	2448	2550	2555
	Speed-up	5.2	6.3	8.0	8.8	2.8	2.8
	Size-up	5.1	7.8	7.4	10.4	4.3	5.2

- Time-dependent SHARC [Del08], Time-dependent CH [BDSV09]
 - Speed-ups of about 26 / 1500, respectively (earliest arrival only)
 - Meant for time-dependent routing in road networks
- Engineering time-expanded graphs... [DPW09]
 - Max speed-up of 56 (Railways with 30000 stations!)
 - Remodelling unimportant stations in time expanded graphs
- Theory vs. practice difference
 - More complicated (transfers, cost of travel...)
 - Focus on one given dataset

Conclusion

Conclusion

Conclusion

- Application created to carry out analysis of real-world timetables:
 - Degrees, connectivity, BC, highway dimension, overtaking, USPs...
 - Running & evaluating tests of oracles

Application created to carry out analysis of real-world timetables:

- Degrees, connectivity, BC, highway dimension, overtaking, USPs...
- Running & evaluating tests of oracles
- Trying out novel approaches to find optimal connections in timetables
 - $\mathit{USP\text{-}OR}$: Exact and very quick answers (speed-up \approx) but high space
 - USP-OR-A: Exact and quick answers (speed-up \approx) less space-consuming
 - NN: Problem too challenging for NN/try different types of network

- [BDSV09] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-dependent contraction hierarchies. In Irene Finocchi and John Hershberger, editors, ALENEX, pages 97–105. SIAM, 2009.
 - [Del08] Daniel Delling. Time-dependent sharc-routing. In Dan Halperin and Kurt Mehlhorn, editors, ESA, volume 5193 of Lecture Notes in Computer Science, pages 332–343. Springer, 2008. ISBN 978-3-540-87743-1.
- [DPW09] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering time-expanded graphs for faster timetable information. In Ravindra Ahuja, Rolf Mohring, and Christos Zaroliagis, editors, Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages 182–206. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-05464-8.
- [MHSWZ07] Matthias Müller-Hannemann, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, chapter Timetable Information: Models and Algorithms, pages 67 – 90. Springer, 2007.
 - [TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1-24, 2005.

Thank you for the attention

