Please show and explain your work where necessary. Good luck!!

- **1.** (8 points) Let $f_1(x) = e^x$ and $f_2(x) = e^{x+2}$. Note that both functions are solutions to y' = y.
 - **a.** (4 pts) Compute the Wronskian $W(f_1, f_2)$.

$$W(e^{x},e^{x+2}) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} \rightarrow \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} [x+2]^{1} \end{vmatrix} \rightarrow \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} [x+2]^{1} \end{vmatrix} \rightarrow \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x} e^{x+2} \begin{vmatrix} e^{x} & e^{x+2} \\ e^{x} & e^{x+2} \end{vmatrix} \rightarrow e^{x} e^{x} e^{x+2} \end{vmatrix} \rightarrow e^{x} e$$

- **b.** (2 pts) Are $f_1(x) = e^x$ and $f_2(x) = e^{x+2}$ linearly independent? Explain.
- **c.** (2 pts) Do $f_1(x) = e^x$ and $f_2(x) = e^{x+2}$ form a fundamental set of solutions for y' = y?
- **c.** (2 pts) Do $f_1(x) = e^x$ and $f_2(x) = e^{x+2}$ form a fundamental set of solutions for y' = y? Explain.
- **2.** (2 points) It is true that $y_1 = \sin(x)$ and $y_2 = \sin(x)$ form a fundamental set of solutions to the differential equation y'' + y = 0. Meanwhile we have $y_p = e^x$ is a solution to the differential equation $y'' + y = 2e^x$. (You do not need to show either of these previous two statements.) Provide the general solution to the differential equation $y'' + y = 2e^x$.