Technical Information

The algorithm and system we have developed serve as a **core component of a Web3-based privacy-enhanced AI chatbot framework**. The overall workflow can be summarized as follows:

1. User input handling

Natural language queries provided by users are ingested within the Docker container, using the JobDetails structure to flexibly handle file-based input.

1. PII (Personally Identifiable Information) masking

Before any external communication occurs, the input data undergoes Named Entity Recognition (NER) using SpaCy's en_core_web_sm model.

Entities labeled as PERSON, GPE, and EMAIL are detected and replaced with the [MASKED] token to prevent leakage of sensitive information to external APIs.

This is the core mechanism for ensuring user privacy.

1. Context retrieval and semantic search integration

Based on the dataset determined by the query (cameroon or enron), the system generates semantic embeddings using SentenceTransformer (all-MiniLM-L6-v2 model).

It then performs efficient top-3 nearest neighbor search via FAISS index to retrieve relevant contextual documents.

These results are incorporated into a carefully engineered prompt for external LLM inference.

1. Ollama API integration for external LLM inference

The constructed prompt is sent to the Ollama API (/api/generate endpoint), invoking the external mistral model for inference.

The Docker container uses an environment variable (OLLAMA_URL) to dynamically configure the backend API URL, ensuring compatibility in containerized environments.

Technical Information

1. Result saving and Docker I/O compliance

Final results, comprising original question, sanitized question, dataset, context, and response, are saved in JSON format to /data/outputs/result.json.

This path aligns with Docker volume mounts, allowing seamless automation of output verification in test and deployment scenarios.

This system is designed to **integrate with the Clio-X Web3 privacy-preserving framework**, where the Ollama LLM server operates securely outside Clio-X itself, communicating with the algorithm container over REST APIs.

In summary,

our algorithm provides a fully Dockerized, privacy-aware AI chatbot component that incorporates PII masking, semantic search, external LLM inference, and Web3 readiness, meeting both performance and security objectives.

Technical Information 2