FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO ANÁLISE NUMÉRICA – Aula 11 – 2º SEMESTRE/2019 PROF. Jamil Kalil Naufal Júnior

TEORIA: INTERPOLAÇÃO E APROXIMAÇÃO DE FUNÇÕES (IV)

Nossos **objetivos** nesta aula são:

- Conhecer o problema de aproximação de funções
- Conhecer e praticar com o Método de Mínimos Quadrados para aproximação de funções lineares

Para esta semana, usamos como referência a **Seção 8.1** (**Aproximação de Mínimos Quadrados Discretos**) do nosso livro da referência básica:

BURDEN, R.L., FAIRES, J.D. **Análise Numérica**. 10.ed. São Paulo: Cengage Learning, 2017.

Não deixem de ler esta seção depois desta aula!

APROXIMAÇÃO DE FUNÇÕES

Considere os 10 pontos mostrados no gráfico abaixo:

Se observarmos com cuidado este gráfico, verificaremos que há uma tendência destes pontos em se aproximar de uma reta, conforme mostrado no gráfico abaixo:

 Diferentemente do problema de interpolação, na aproximação estamos interessados em obter curvas que minimizem a distância a um determinado conjunto de pontos dados.

MÉTODO DE MÍNIMOS QUADRADOS (MMQ)

O Método de Mínimos Quadrados (MMQ) consiste em encontrar os coeficientes de uma reta que minimizem a função-distância quadrática mostrada a seguir:

$$E \equiv E_2(a_0, a_1) = \sum_{i=1}^{m} [y_i - (a_1 x_i + a_0)]^2$$

■ Para o exemplo do gráfico anterior, estaríamos procurando por coeficientes a₀ e a₁ que minimizem a função-distância abaixo:

$$E_2(a_0, a_1) = \sum_{i=1}^{10} [y_i - (a_1 x_i + a_0)]^2$$

 Como se trata de uma função de duas variáveis, no processo de encontrar os pontos críticos (possivelmente, os pontos de mínimos), vamos usar derivadas de primeira ordem e igualá-las a 0:

$$\frac{\partial E}{\partial a_0} = 0$$
 and $\frac{\partial E}{\partial a_1} = 0$

Expandindo as equações acima, teremos:

$$0 = \frac{\partial}{\partial a_0} \sum_{i=1}^{m} \left[(y_i - (a_1 x_i - a_0))^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0)(-1) \right]$$

$$0 = \frac{\partial}{\partial a_1} \sum_{i=1}^{m} \left[y_i - (a_1 x_i + a_0) \right]^2 = 2 \sum_{i=1}^{m} (y_i - a_1 x_i - a_0) (-x_i)$$

Simplificando estas duas equações, obteremos as seguintes equações:

$$a_0 \cdot m + a_1 \sum_{i=1}^m x_i = \sum_{i=1}^m y_i$$
 and $a_0 \sum_{i=1}^m x_i + a_1 \sum_{i=1}^m x_i^2 = \sum_{i=1}^m x_i y_i$.

■ Temos, então, um **sistema com duas equações e duas incógnitas**. Resolvendo este sistema, obteremos os seguintes valores para os coeficientes a₀ e a₁ :

$$a_0 = \frac{\sum_{i=1}^{m} x_i^2 \sum_{i=1}^{m} y_i - \sum_{i=1}^{m} x_i y_i \sum_{i=1}^{m} x_i}{m \left(\sum_{i=1}^{m} x_i^2\right) - \left(\sum_{i=1}^{m} x_i\right)^2}$$

$$a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}.$$

 O método MMQ consiste em efetuar todas os somatórios indicados anteriormente, obtendo os dois coeficientes desejados da reta de aproximação. 1. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	y_i			
1	1.3			
2	3.5			
3	4.2			
4	5.0			
5	7.0			
6	8.8			
7	10.1			
8	12.5			
9	13.0			
10	15.6			

2. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	y _i			
0	1.0000			
0.25	1.2840			
0.50	1.6487			
0.75	2.1170			
1.00	2.7183			

EXERCÍCIOS EXTRA-CLASSE

1. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	1.0	1.1	1.3	1.5	1.9	2.1
y_i	1.84	1.96	2.21	2.45	2.94	3.18

2. Encontre a reta aproximadora de pontos pelo Método MMQ para os dados abaixo:

x_i	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
y_i	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.50	326.72

3. Implemente o Método MMQ em Python.