MIDTERM 2 REVIEW - MATH 4341

1. Proofs of Theorems

- (1) Let Y be a subset of a topological space X. Then
 - (a) $\partial Y = X \setminus (\operatorname{Int} Y \cup \operatorname{Int}(X \setminus Y)) = \overline{Y} \cap \overline{X \setminus Y}$,
 - (b) $\overline{Y} = Y \cup \partial Y$,
 - (c) $\overline{Y} = Y \cup Y'$,
 - (d) $x \in \overline{Y}$ if and only if every neighborhood of x intersects Y.
- (2) A topological space X is T_1 if and only if $\{x\}$ is closed for all $x \in X$.
- (3) If $\{y_n\}$ is a subsequence of $\{x_n\}$ and $x_n \to x$, then $y_n \to x$.
- (4) Let (X, d) be a metric space with the metric topology. Then a sequence $\{x_n\}$ in X converges to $x \in X$ if and only if

$$\forall \epsilon > 0, \exists N > 0 : n > N \Rightarrow d(x_n, x) < \epsilon.$$

- (5) Let X be Hausdorff. If $x_n \to x$ and $x_n \to y$ in X, then x = y.
- (6) (The sequence lemma) Let $A \subset X$. If there is a sequence in A that converges to x then $x \in \bar{A}$. The converse holds if X is first-countable.
- (7) Let X and Y be topological spaces. If $f: X \to Y$ be continuous, then $x_n \to x$ in X implies that $f(x_n) \to f(x)$ in Y. The converse holds if X is first-countable; that is, if $x_n \to x$ implies that $f(x_n) \to f(x)$ for all convergent sequences $\{x_n\}$, then f is continuous.
- (8) Let $p = (0, 0, \dots, 0, 1) \in S^n$ be the "north pole". Then $S^n \setminus \{p\} \simeq \mathbb{R}^n$.
- (9) A topological space X is connected if and only if \emptyset and X are the only subsets of X that are both open and closed.
- (10) Let $X = U \cup V$ for disjoint open sets U and V, and let $Y \subset X$. If Y is connected, then $Y \subset U$ or $Y \subset V$.
- (11) Let $\{A_i\}_{i\in I}$ be a collection of connected subspaces of a topological space X with a common point $x \in X$; i.e. $x \in A_i$ for all $i \in I$. Then $\bigcup_{i \in I} A_i$ is connected.
- (12) Let $A \subset X$ be connected. If a subset $B \subset X$ satisfies $A \subset B \subset \overline{A}$, then B is also connected. In particular, \overline{A} is connected whenever A is.
- (13) Let $f: X \to Y$ be a continuous map between topological spaces. If X is connected, then f(X) is also connected.
- (14) (Intermediate value theorem) Let $f: X \to \mathbb{R}$ be continuous and assume that X is connected. If there is an $r \in \mathbb{R}$ and $x, y \in X$ so that f(x) < r < f(y), then there is a $z \in X$ with f(z) = r.
- (15) Let X_1, \dots, X_n be topological spaces. Then $X_1 \times \dots \times X_n$ is connected if and only if every X_i is.
- (16) \mathbb{R} is connected.
- (17) S^n is connected for all $n \geq 1$.
- (18) A path-connected space is connected.
- (19) Let $\{C_i\}_{i\in I}$ be the set of connected components of a topological space X. Then (a) $X = \bigcup_{i\in I} C_i$ and the C_i are pairwise disjoint,

- (b) if $Y \subset X$ is connected, then $Y \subset C_i$ for some $i \in I$, (c) $C_i \subset X$ is connected for each $i \in I$, and (d) C_i is closed for all $i \in I$.

2. Problems

- (1) Examples in lecture notes.
- (2) Homework 5, 6, 7, 8.