

In the Claims

1. (Currently Amended) An adhesion-enhanced polyimide film which comprises a core layer composed of a polyimide (A) having high rigidity and a low linear expansion coefficient, at least one side of which has a thin-layer with a thickness of 0.05 to 1 μm formed by heating a coated layer comprising a heat-resistant surface treatment agent and a polyimide precursor which yields a highly heat-resistant amorphous polyimide (B) obtained from at least one aromatic tetracarboxylic dianhydride selected from the group consisting of 2,3,3',4'-biphenyltetracarboxylic dianhydride[[],] and 2,2',3,3'-biphenyltetracarboxylic dianhydride and ~~an~~ at least one aromatic diamine selected from the group consisting of p-phenylenediamine and 4,4'-diaminodiphenyl ether.
2. (Previously Presented) The adhesion-enhanced polyimide film according to claim 1, wherein the polyimide (A) is obtained from 3,3',4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine or p-phenylenediamine and 4,4'-diaminodiphenyl ether, from 3,3',4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride and p-phenylenediamine or p-phenylenediamine and 4,4'-diaminodiphenyl ether, or from pyromellitic dianhydride and p-phenylenediamine and 4,4'-diaminodiphenyl ether.
3. (Previously Presented) The adhesion-enhanced polyimide film according to claim 1, wherein the polyimide (A) is obtained using 3,3',4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine as the main components at 50 mole percent or greater to 100 mole percent of the total.
4. (Cancelled)
5. (Cancelled)

6. (Previously Presented) The adhesion-enhanced polyimide film according to claim 1, wherein the heat-resistant surface treatment agent is an aminosilane compound, an epoxysilane compound or a titanate compound.

7. (Previously Presented) The adhesion-enhanced polyimide film according to claim 1, wherein the polyimide (A) core layer has a thickness of 10 to 35 μm .

8. (Cancelled)

9. (Previously Presented) The adhesion-enhanced polyimide film according to claim 1, wherein the polyimide film as a whole has a tensile modulus (MD) of between 6 GPa and 12 GPa and a linear expansion coefficient of 5×10^{-6} to 30×10^{-6} cm/cm/ $^{\circ}\text{C}$ (at 50-200 $^{\circ}\text{C}$).

10. (Cancelled)

11. (Cancelled)

12. (Original) An adhesion-enhanced polyimide film in which a metal layer is laminated directly or via an adhesive onto an adhesion-enhanced polyimide film according to claim 1.

13. (Previously Presented) A flexible metal foil laminated body comprising a metal layer laminated directly or via an adhesive onto an adhesion-enhanced polyimide film according to claim 1.

14. (Previously Presented) A flexible metal foil laminated body comprising a metal layer laminated directly or via an adhesive onto an adhesion-enhanced polyimide film according to claim 2.

15. (Previously Presented) A flexible metal foil laminated body comprising a metal layer laminated directly or via an adhesive onto an adhesion-enhanced polyimide film according to claim 3.

16. (Cancelled)

17. (Cancelled)

18. (Previously Presented) A flexible metal foil laminated body comprising a metal layer laminated directly or via an adhesive onto an adhesion-enhanced polyimide film according to claim 6.

19. (Previously Presented) A flexible metal foil laminated body comprising a metal layer laminated directly or via an adhesive onto an adhesion-enhanced polyimide film according to claim 7.

20. (Cancelled)

21. (Previously Presented) A flexible metal foil laminated body comprising a metal layer laminated directly or via an adhesive onto an adhesion-enhanced polyimide film according to claim 9.

22. (Cancelled)