### R-CNN의 정의와 구조 Definition of Convolution Neural Networks

#### 1. R-CNN의 정의

Regions with Convolutional Neuron Networks의 약자로, 영역을 설정하고 CNNs을 활용하여 물체 인식(Object Detection)을 수행하는 신경망이다.

#### 2. R-CNN의 구조와 절차



# 데이터와 레이블을 투입 Input the Images and Label



#### 물체 인식(Object Detection)에서의 데이터와 레이블

; 데이터- 이미지(Image) // 레이블 - 정답 테두리상자(Bounding Box) 물체를 포함하는 영역을 사각형으로 가시화한 것

#### 테두리 상자(BB)의 학습 과정

선택적 탐색(Selective Search)를 통해 임의의 BB를 설정

임의의 BB와 사전에 준비한 정답 BB의 10U를 계산

IOU; Intersection Over Union

IOU가 특정 값 이상이 되도록 임의 영역을 조정

### 영역 제안; 선택적 탐색 Region Proposal by Selective Search

#### 1. 선택적 탐색이란?

전부를 탐색하는 완전 탐색(Complete Search)과는 달리 특정 기준에 따라 탐색을 실시하는 것으로, 여기서는 상향식(Bottom-Up)의 탐색방법 중 하나인 계층적 그룹 알고리즘(Hierachical Grouping Algorithm)등이 사용되었다.

#### 2. R-CNN에서의 선택적 탐색의 절차

선택적 탐색은 초기의 작은 크기의 세분화 영역을 설정하고, 이를 계층적 그룹 알고리즘을 사용하여 병합하고, 이를 바탕으로 영역을 제안 하는 단계로 진행된다.

#### 작은 크기의 초기 영역을 설정

Felzenszwalb&Huttenlocher - Segmentation

P. F. Felzenszwalb&D. P. Huttenlocher. Efficient GraphBased Image Segmentation. IJCV, 59:167-181, 2004

#### 작은 영역을 큰 영역으로 병합

Hierachical Grouping Algorithm

J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013

ROI(Regions of Interest) 설정 Region Proposals

### 작은 크기의 초기 영역을 설정 Initial Segmentation by Felzenszwalb&Huttenlocher

#### 1. 그래프 이론 (Graph Theory)

그래프 이론은 수학에서 객체 간에 짝을 이루는 관계를 모델링하기 위해 사용되는 수학 구조인 그래프에 대한 연구이다. 그래프는 꼭짓점(vertex), 교점(node), 점(point)으로 구성되며, 이들은 선 또는 변(edge)으로 연결된다. (출처 - 위키백과)



$$G = (V, E)$$

vertex: a, b, c, d, e, f, g

edge: (a,b), (a,e), (a,f), (a,g), (b,c), (b,f), (c,d), (c,g), (e,f), (f,g)

degree; d(x)=4 (x=a, f), d(y)=3 (y=b, c, e, g), d(d)=1

#### 2. 이미지를 그래프로 표현





$$pixel \rightarrow vertex \ v_i \in V \ connection(of\ pixel) \rightarrow edge \ (v_i,v_j) \in E$$
 $edge\ e=(v_i,v_j) \sim weight \ w(e)=w((v_i,v_j))=|\ I(p_i)-I(p_j)| \ I(*)=Intensity\ of\ Pixel$ 
 $<$ Components>  $<$ Segmentation>



Each Component  $C (\subseteq S)$  Corresponds Connected Component in G' = (V, E')  $E' \subseteq E$ 

### 3. Pairwise Region Comparison Predicate



$$D(C_1, C_2) = \begin{cases} true & if \ Dif(C_1, C_2) > MInt(C_1, C_2) \\ false & (영역 합침) \ otherwise \end{cases}$$

$$MInt(C_1,C_2) = min\{Int(C_1) + \tau(C_1), Int(C_2) + \tau(C_2)\}$$
  $\tau(C) = k / |C|$ 

$$Int(C) = \max_{e \in MST(C,E)} w(e) \quad MST; \\ Minimum Spanning Tree \quad Dif(C_1,C_2) = \min_{v_i \in C_1, v_j \in C_2, (v_i,v_j) \in E} w((v_i,v_j))$$

#### 4. 전체 알고리즘

IMAGE Graph G=(V, E)

- 1. Sort E into  $\pi = (o_1,...,o_m)$  by non-decreasing edge weight.
- 2. Start with a segmentation  $S^o$ , where each vertex  $v_i$  is in own component.

for q in range(1, m+1):

Construct S<sup>p</sup> given S<sup>p-1</sup>

Let  $v_i$  and  $v_j$  denote the vertices connected by the q-th edge in ordering i.e.  $o_q = (v_i, v_j)$ 

Let  $C_i^{q-1}$  be the component of  $S^{q-1}$  containing  $v_j$ ,  $C_j^{q-1}$  the component containing  $v_j$ 

$$D(C_{i}^{q-1}, C_{j}^{q-1}) = \begin{cases} S^{q} = S^{q-1} & \text{if } Dif(C_{i}^{q-1}, C_{j}^{q-1}) > MInt(C_{i}^{q-1}, C_{j}^{q-1}) \\ S^{q} & \text{is obtained by merging } C_{i}^{q-1}, C_{j}^{q-1} & \text{otherwise} \end{cases}$$

$$Return \ S = S^{m}$$

Segmented IMAGE Segmentation of V

## 작은 영역을 큰 영역으로 병합; 계층적 병합 알고리즘 Merging the Segmentations; Hierachical Grouping Algorithm

Merging the Segmentations; Hierachical Grouping Algorithm (COLOUR) IMAGE

- 1. Obtain initial regions  $R = \{r_1, \dots, r_n\}$  by Felzenszwalb & Huttenlocher's Segmentation(Previous Method).
- 2. Initialize similarity set  $S = \phi$
- 3. foreach Neighbouring region pair $(r_i, r_j)$  do Calculate similarity  $s(r_i, r_j)$ ,  $S=S \cup s(r_i, r_j)$
- 4. while  $S \neq \emptyset$  do

  Get highest similarity  $s(r_i, r_j) = max(S)$ , Merge corresponding regions  $r_i = r_i \cup r_j$ Remove similarities regarding  $r_i : S = S \setminus s(r_i, r_*)$ , Remove similarities regarding  $r_j : S = S \setminus s(r_*, r_j)$   $S = S \cup S_i$ ,  $R = R \cup r_i$
- 5. Extract object location boxes L from all regions in R

Set of object location hypothesis L (Region Proposal)

## 제안된 영역을 CNNs의 입력값으로 Region Proposals as A Inputs of CNNs



서로 다른 크기의 ROI를 CNNs의 <mark>정해진 크기</mark>로 맞추어서 각각을 입력값으로 입력

#### WRAPPING

CNNs

### 분류 및 테두리상자 조정 Classification and Bounding Box Regression

#### 1. 서포트 벡터 머신(SVM)을 통한 분류

SVM은 기계 학습의 분야 중 하나로 패턴 인식, 자료 분석 등을 위한 지도 학습 모델이며, 주로 분류와 회귀 분석을 위해 사용한다.



각각의 분류 클래스에 대해서 SVM을 적용한 Matrix를 기반으로 분류 작업을 시행 (해당 클래스 ~ O / X)

#### 2. 테두리상자 조정 (Bounding-Box Regression)



$$P_{st}$$
 ;Bounding Box  $\hat{G}_{st}$  ;Optimized Bonding Box

$$G_{\!*}$$
 :Ground Truth  $d_{\!*}(\cdot)$  ;Transformation Function

$$P^{i} = (P_{x}^{i}, P_{y}^{i}, P_{w}^{i}, P_{h}^{i}) \rightarrow G = (G_{x}, G_{y}, G_{w}, G_{h})$$

$$\hat{G}_{x} = P_{w} d_{x}(P) + P_{x} \qquad \hat{G}_{y} = P_{h} d_{y}(P) + P_{y}$$

$$\hat{G}_{w} = P_{w} \exp(d_{w}(P)) \qquad \hat{G}_{h} = P_{h} \exp(d_{h}(P))$$

$$w_* = \underset{\hat{w}_*}{argmin} \sum_{i}^{N} (t^i - \hat{w}_*^T \Phi_5(P^i))^2 + \lambda ||\hat{w}_*||^2$$

$$t_x = (G_w - P_w)/P_w$$
  $t_y = (G_h - P_h)/P_h$   
 $t_w = log(G_w/P_w)$   $t_h = log(G_h/P_h)$ 

### RCNN 학습 과정 Process of Training RCNN

- 1. ImageNet의 데이터셋을 바탕으로 CNNs(논문에서는 AlexNet)을 미리 학습
- 2. 미리 학습된 CNNs을 해당 작업(물체 인식)을 위해 미세 조정(Fine Tuning)
- 3. 미세조정을 통해 조정된 SVMs과 Bounding Box Regressors(IOU≥0.5)를 학습시킴.



### R-CNN 한계점

- 합성곱 신경망의 입력을 위한 고정된 크기를 위해 warping/crop을 사용해야하며 그 과 정에서 이미지 정보 손실이 일어난다.
- 2000개의 영역마다 CNN을 적용해야 하기에 학습 시간이 오래 걸린다.
- 학습이 여러 단계로 이루어지며 이로 인해 긴 학습 시간과 대용량 저장 공간이 요구된다.
- Object Detection의 속도 자체도 느리다.