Applications of Differentiation

Kelin Zhu

ART

Here, we will discuss the common uses of differentiation in contest problems that are not explicitly about Calculus.

Q1 Jensen's inequality and Tangent Line Trick

A part of why "Trvial by Jensen's" is often said as a meme regarding problems that may or may not involve inequalities is its true power.

2 Local maximas and minimas

Here is the first problem I have ever solved in any contest using differentiation, which is a prime example of how the roots of derivatives can give us critical information on a function.

Example (Stormersyle mock AMC 10/25). An ordered pair (a,b) is spicy if there exists real c such that the polynomial $f(x) = x^3 + ax^2 + bx + c$ has all real roots. For how many ordered pairs (a,b) of integers with $1 \le a, b \le 20$ is (a,b) spicy?

Solution: The key claim is the following: such a real c exists iff f has a local minima and maxima.

Since nonreal roots of a real-coefficient polynomial come in complex conjugate pairs, f', which has degree 2, has either 2 distinct zeroes, no zeroes or a double root.

If it has two distinct roots, then we can draw a horizontal line between the local minima and maxima; since the polynomial is continuous, the line will intersect f between the two critical points, once as $x \to -\infty$ and once as $x \to \infty$.

if it has a double root, then we can shift f so that the inflection point is a triple root.

Otherwise, f strictly increases (as 3 > 0), and it's obviously impossible to choose a c such that f has 3 roots.

Therefore, we just need to calculate the number of pairs (a, b) with $4a^2 - 12b \ge 0$, which can easily be computed to be **305**.

Here is a much more difficult example that still utilizes the properties of local minimas and maximas.

Example (2021 HMMT Feb. AlgNT/9). Find all monic cubic polynomials f following properties:

- \blacksquare f is odd, and
- \blacksquare over all reals c, f(f(x)) c has either 1,5 or 9 roots.

Walkthrough:

3 Section 3

Q4 Problems

Minimum is [TBD \blacktriangle]. Problems denoted with \clubsuit are required. (They still count towards the point total.) [2 \clubsuit] **Problem 1 (SMT 2021)** Farley the frog starts at the first lily pad in an infinite row of lily pads. If she is currently on the nth lily pad, she has a $\frac{1}{n}$ probability of jumping to the n+1th lilypad. Find the expected number of lily pads that she will ever reach.