习题: (第 15 讲 多值函数 2020.4.14)

1. 求多值函数

$$\operatorname{Log}\left(\frac{z^2 - 1}{z}\right)$$

的支点. 证明多值函数在区域 $\mathbb{C}-(-\infty,-1]\cup[0,1]$ 上可以取到单值的全纯分支.

2. 求出区域

$$\Omega = \left\{ z \in \mathbb{C}; |\text{Re}(z)| < \frac{\pi}{2}, \text{Im}(z) > 0 \right\}$$

在正弦函数 $\sin z$ 下的像. Ω 是 $\sin z$ 的单叶性区域吗?

3. 求双全纯映射 f, 将角域 $\{z \in \mathbb{C}; 0 < \arg z < 3\pi/4\}$ 映 到单位圆 \mathbb{D} , 满足

$$f(e^{3\pi i/8}) = 0$$
, $\arg f'(e^{3\pi i/8}) = 0$.

- 4. 在 $\Omega = \mathbb{C} \{iy; y \geq 0\}$ 上给出对数函数的单值支为 $\log_{\Omega}(z)$, (满足 $\log_{\Omega}(1) = 2\pi i$), 计算 $\log_{\Omega}(e)$, $\log_{\Omega}(-2)$, $\log_{\Omega}(-i)$.
- 5. 假设 f 在单位圆 $\mathbb D$ 上全纯, 不取零值. 证明存在 $\mathbb D$ 上全纯函数 g, 满足

$$g(x) = |f(x)|, x \in (-1, 1).$$

6. 假设 f 在 0 的邻域 U 内全纯, 并且 0 是 f 的 $n \ge 1$ 阶 零点. 证明存在 0 的邻域 $V \subset U$ 上的全纯函数 g, 满足

$$f(z) = g(z)^n, \ z \in V.$$

7. 写出 i^i 的所有可能取值.