Московский физико-технический институт

Лабораторная работа

Резонанс токов

выполнили студенты 653 группы ФФКЭ Агафонов Владислав Карпова Татьяна

1 Цель работы

Исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

2 В работе используются:

- генератор сигналов
- источник тока, нагруженный на параллельный колебательный контур с переменной ёмкостью
- двулучевой осциллограф
- цифровые вольтметры

3 Теоретические положения

Схема экспериментального стенда для изучения резонанса токов в параллельном колебательном контуре показана на рис. 1. Синусоидальный сигнал от генератора GFG-8255A поступает на вход источника тока, собранного на операционном усилителе ОУ с полевым транзистором ПТ, питание которых осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 вольт. Цепи питания на схеме не показаны, представлен только резистор, переменное напряжение, на котором в используемой схеме равно напряжению на входе «+» операционного усилителя.

Рис. 1: Схема экспериментального стенда

Напряжение $E=E_0cos(\omega t+\phi_0)$ поступает на вход «+» операционного усилителя от генератора через согласующую RC-цепочку. Это же напряжение через разъём «U1» подаётся одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Переменное напряжение на резисторе R1, как отмечалось выше, при этом также равно E. Напряжение на контуре U, совпадающее с напряжением на конденсаторе, подаётся со знаком «-» через разъём «U2» на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245. Показанные на схеме установки ещё два конденсатора без наименований (помимо входящего в RC-цепочку) играют вспомогательную роль и не влияют на характеристики контура. Символ «->+» отмечает наличие источника питания полевого транзистора. Ток затвора «з» полевого транзистора ничтожно мал, так что токи истока «и» и стока «с» практически совпадают и равны току во внешней цепи контура. Как видно из схемы,

$$I = \frac{E}{R_1} = I_0 cos(\omega t + \phi_0), \quad I_0 = \frac{E_0}{R_1}$$

4 Ход работы

1. Проведём измерения характеристик контура при разных значениях ёмкости конденсатора. Будем фиксировать резонансные частоты f и напряжения U в контуре при разных C, так же регистрируя входное напряжение E. Результаты измерений занесём в таблицу 1. При расчётах импеданса при резонансе Z_{res} , добротности контура Q, суммарного сопротивления R_{Σ} , реактивного сопротивления ρ , эквивалентного последовательного сопротивления конденсатора R_{smax} были использованы формулы:

$$\begin{split} Z_{res} &= \frac{U}{I_0} = \frac{U}{E/R_1} & \rho = \sqrt{\frac{L}{C}} & Q = \frac{Z_{res}}{\rho} \\ R_{\Sigma} &= \frac{Z_{res}}{Q^2} & R_{smax} = \frac{tg\delta}{\omega C} & R_L = R_{smax} - R \end{split}$$

Таблица 1: Измерения характеристик контура при разных ёмкостях

Cn , н Φ	f , к Γ ц	E, B	U, B	L , мк Γ н	ρ , Om	Z_{res} , Om	Q	$R_{\Sigma}, O_{\mathrm{M}}$	R_{max} ,OM	R_L , Om
25.100	32.113	0.350	2.056	978.599	197.454	5926.936	30.017	6.578	0.198	2.881
33.200	27.886	0.349	1.582	981.137	171.908	4574.747	26.612	6.460	0.172	2.788
47.300	23.186	0.349	1.155	996.156	145.122	3337.934	23.001	6.309	0.145	2.664
57.400	21.248	0.349	0.986	977.445	130.494	2847.052	21.818	5.981	0.131	2.351
67.500	19.472	0.349	0.835	989.727	121.089	2415.614	19.949	6.070	0.121	2.449
82.700	17.700	0.349	0.706	977.661	108.728	2042.610	18.786	5.788	0.109	2.179
101.600	16.070	0.348	0.587	965.417	97.479	1697.456	17.414	5.598	0.098	2.000

Рассчитаем погрешности определения индуктивности катушки и сопротивления катушки.

2. Снимем амплитудно-частотную характеристику контура при ёмкостях C_2 и C_4 . Для этого будем снимать зависимость напряжения в контуре от частоты колебаний. Результаты измерений занесём в табл. 2, резонансные кривые U(f) представим на рис. 2

Проведём сравнительный анализ АЧХ для двух ёмкостей в контуре. $C_4 > C_2$, формула для добротности $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$. При повышении ёмкости падает добротность контура.

3. Построим графики АЧХ в координатах $U/U_0(f/f_0)$. По этим графикам (ширина резонансной кривой на уровне $\frac{1}{\sqrt{2}}$) определим добротность контуров.

$$Q = \frac{1}{\Pi_{0.7}}$$

$$Q_2 = 26.31$$

$$Q_4 = 22.22$$

Значения, определённые в пункте 1:

$$Q_2 = 26.62$$
 $Q_4 = 21.82$

Эти значения практически совпадают.

4. Построим ФЧХ для контура с C_2 в координатах $x = f/f_0$ $y = \varphi/\pi$ (рис. 5). По графику определим добротность контура следующим методом: расстояние между точками по оси x, в которых y меняется от $-\pi/4$ до $\pi/4$, равно 1/Q.

$$Q = \frac{1}{1,002 - 0,966} \approx 27,7$$

Таблица 2: Зависимость частоты колебаний от напряжения

C_2		C_4		
f , Γ ц	U,B	f , Γ ц	U,B	
17.012	0.0581	12.740	0.0424	
17.861	0.0648	13.190	0.0458	
18.687	0.0725	14.092	0.0536	
19.034	0.0762	14.918	0.0625	
20.257	0.0916	15.513	0.0704	
21.401	0.1110	16.366	0.0851	
22.510	0.1376	17.847	0.1270	
23.827	0.1878	18.160	0.1407	
24.810	0.2524	19.155	0.2093	
25.430	0.3146	19.858	0.3094	
25.786	0.3739	20.342	0.4496	
26.176	0.4578	20.833	0.7330	
26.964	0.8016	21.140	0.9554	
27.394	1.2200	21.233	0.9846	
27.627	1.4952	21.539	0.8210	
27.931	1.5576	21.884	0.6205	
28.373	1.0974	22.285	0.4339	
29.188	0.5811	23.074	0.2673	
30.062	0.3737	24.022	0.1821	
31.011	0.2690	24.771	0.1460	
32.190	0.2008	25.222	0.1306	
34.125	0.1433	26.031	0.1103	
34.816	0.1305	27.071	0.0924	
35.326	0.1226	27.880	0.0823	
36.193	0.1111	28.500	0.0760	
37.183	0.1009	29.031	0.0716	
38.216	0.0920	29.647	0.0670	
39.663	0.0823			

5. Построим векторную диаграмму для токов и напряжений в контуре. Определим значения токов на конденсаторе и на катушке, а также напряжение в контуре, резонансе по формулам

$$I_0 = \frac{E}{R_1} = 0.0034 A \ I_c = I_L = Q I_0 = \frac{QE}{R_1} = 0.006 A$$
 $U = Q \rho I_0 = \frac{QE}{R_1} = 0.586 B$

Также определим сдвиги по фазе их от основного тока I_0 :

$$\varphi_c = \frac{\pi}{4} - \frac{R + R_L}{\rho} = 86.7^{\circ}$$
 $\varphi_L = -\frac{\pi}{2} + \delta = 90^{\circ}$ $\varphi_U = \frac{R + R_L}{\rho} + \delta = 3.2^{\circ}$

5 Вывод

В ходе работы мы ознакомились с явлением резонанса токов, изучили метод комплексных амплитуд, изучили амплитудно-частотные и фазово-частотную характеристику колебательного контура, составленного из элементов, используемых в современной радиотехнике. В ходе эксперимента была с большой точностью разными методами определена добротность колебательного контура при разных значениях ёмкости конденсатора в цепи, а также рассчитаны некоторые другие характеристики контура. Результаты определения добротности непосредственными измерениями параметров контура, методом резонансных кривых и по исследованию ФЧХ совпадают.

Также было исследовано само поведение токов и напряжений в контуре. Выяснено, какой вклад вносят в цепь сопротивление конденсатора (очень незначительный) и катушки (порядка сопротивления резистора в цепи). Численно получено значение индуктивности катушки и её сопротивления. Сделан вывод, что при точном расчёте цепей обязательно нужно учитывать сопротивление катушки. Была также построена векторная диаграмма токов и напряжений в исследуемом контуре, изучена природа явления резонанса токов.

Рис. 2: АЧХ контуров с С2 и С4

Рис. 3: АЧХ контуров с С2 и С4 в относительных координатах

f	x	x0	f/f0	x/x0
17050	-0,8	1	0,96328	-0,8
17150	-0,7		0,96893	-0,7
17200	-0,6		0,97175	-0,6
17260	-0,5		0,97514	-0,5
17310	-0,4		0,97797	-0,4
17360	-0,3		0,98079	-0,3
17400	-0,2		0,98305	-0,2
17450	-0,1		0,98588	-0,1
17490	0	0,8	0,98814	0
17510	0,1		0,98927	0,1
17540	0,2		0,99096	0,2
17580	0,3		0,99322	0,3
17600	0,4		0,99435	0,4
17640	0,5		0,99661	0,5
17680	0,6		0,99887	0,6
17700	0,7		1	0,7
17750	0,8		1,00282	0,8
17760	0,9		1,00339	0,9
17780	1	0,7	1,00452	1
17820	1,1		1,00678	1,1
17850	1,2		1,00847	1,2
17870	1,3		1,0096	1,3
17900	1,4		1,0113	1,4
17950	1,5		1,01412	1,5
17990	1,6	0,6	1,01638	1,6
18020	1,7		1,01808	1,7
18070	1,8		1,0209	1,8
18130	1,9		1,02429	1,9
18190	2		1,02768	2
18260	2,1		1,03164	2,1
18310	2,2		1,03446	2,2
18560	2,3		1,04859	2,3

Рис. 4: ФЧХ контура C_2 , результаты измерений

Рис. 5: ФЧХ контура C_2

Рис. 6: Векторная диаграмма токов и напряжения для контура с добротностью Q=17.414