EE6506 - COMPUTATIONAL ELECTROMAGNETICS ASSIGNMENT - 1 - SRIVENKATIA EE18B038 I have discussed with these people: Sockar Sii R, Charlan Bhat A. Sriental - 23/02/21 1) a) Grown's 1st identity: $\int \varphi \, \partial \psi \, ds = \int \varphi \, \nabla^2 \psi \, dV + \int \nabla \varphi \cdot \nabla \psi \, dV$ V: volume of a bound ragion with surface S. at any point on S, define outword normal: n targent to surface: t LHS = $\oint \varphi \frac{\partial \psi}{\partial n} ds = \oint \varphi \left(\frac{\partial \psi}{\partial n} \hat{n} \cdot d\hat{s} \right)$ $\frac{\partial \psi \hat{n} \cdot d\hat{s}}{\partial n} = \left(\frac{\partial \psi \hat{n} + \partial \psi \hat{f}}{\partial t}\right) \cdot d\hat{s}$ ds: small area element = dsn. as the 2" dot product gives O.

- LHS= $\frac{1}{2}$ $\frac{1}{2}$ from Graus Divergence thoron, & A.ds = ((P.A) dV for any vector field A. V: vol. enclosed by S here, the vector field $\vec{A} \triangleq P \nabla \psi$ $\frac{1}{2} \oint (\varphi \nabla \psi) \cdot d\hat{s} = \int \nabla \cdot (\varphi \nabla \psi) dV$ from std. thorows of vector adulus, $\rightarrow \nabla \cdot (\vec{p} \vec{A}) = \vec{p}(\nabla \cdot \vec{A}) + \vec{A} \cdot \nabla \vec{p}$ for a vector field \vec{A} here, $\vec{A} \stackrel{?}{=} \nabla \psi$. $\nabla \cdot (\phi \nabla \psi) = \phi(\nabla \cdot \nabla \psi)$ → V. (V4) = V24, by defn-of scalar Laplacian operator $\frac{1}{s} \frac{\partial \varphi}{\partial v} ds = \int (\varphi \nabla^2 \psi) dv + \int (\nabla \varphi) \varphi(\nabla \psi) dv.$ Green's 2" identity: $\oint (\varphi \partial \psi - \psi \partial \varphi) ds = \iint (\varphi \nabla^2 \psi - \psi \nabla^2 \varphi) dv$

proof: as a corollary of the 1st identity, \$ P D W ds = S[P D W + (D P · D W)] dV $\oint_{S} \frac{\varphi}{\partial n} ds = \iint_{V} \left[\frac{\varphi}{V} \nabla^{2} \varphi + (\nabla \varphi \cdot \nabla \varphi) \right] dV.$ on subtracting the above two agas, $\oint_{S} \left(\varphi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \varphi}{\partial n} \right) ds = \int_{V} \left(\varphi \nabla^{2} \psi - \psi \nabla^{2} \varphi \right) dV$ 2) given conditions about the madium: source free, homogenous, intropic & linear E : constant all through the madium (isotropic) $P \cdot \bar{D} = f_{0}, \qquad E \nabla \cdot \bar{E} = 0. \qquad \nabla \cdot \bar{E} = 0$ $\vec{E} = \left[d(x+y) \hat{x} + \beta(x-y) \hat{y} \right] \sin(\omega t).$ $= \nabla \cdot \vec{E} = d d(x+y) + B d(x-y) = 0.$ $\frac{\partial x}{\partial x} = \frac{\partial y}{\partial x}$ $\frac{\partial x}{\partial x} = \frac{\partial y}{\partial x} = \frac{\partial x}{\partial x} =$

4)	the MATLAB code is added in the appendix. The plots are also added in the appendix along with the code the meshgrid function is used to form the 2D array of x,y coordinates. hill is constructed using the gaussian function: Z=onp(-(x-5)^2-4(y-3)^2)
0	the outward normal is calculated as $\nabla(g)$ where $g(x,y,z) = z - f(x,y)$. $f(x,y) = \exp(-(x-5)^2 - 4(y-3)^2)$
	the results are validated against the inbuilt MATLAB function, surfnorm
5)	The modium is assured to be intropic. " 4: constant throughout the modium of homogenous.
	: from Maxwell's equations, $\nabla \times \bar{E} = -\partial \bar{B}$
	as the fields are time harmonic, $\frac{\partial \vec{B}}{\partial t} = y \partial \vec{H} = j w y \vec{H}$
	$-: \nabla x \tilde{E} = -j \omega_{Y} \tilde{H}. \qquad \qquad \tilde{H} = j (\bar{\nabla} x \tilde{E}). $
	Vx E is computed symbolically in terms of x, y, Z.
	for $\vec{E} = (x \sin z, y^2, z^3x)$, obtained $\vec{H} = j$ $(0, x \cos(z) - z^3, 0)$

	all the field torms have an implicit e'ut-Yz torm attached.
	assering modium is non magnetic, 4 = 40
	as the dependence on t , Z : uniform for all field components, $\frac{\partial(\cdot)}{\partial t} = j \omega(\cdot). \frac{\partial(\cdot)}{\partial z} = -\gamma(\cdot)$
	as $\nabla \times \bar{E} = -4 \partial \bar{H}$, => $\left(\frac{\partial E_z}{\partial y} - \frac{\partial E_z}{\partial z} - \frac{\partial E_z}{\partial z$
	as $\nabla x \bar{H} = \mathcal{E} \partial \bar{\mathcal{E}}$, \Rightarrow $\left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}, \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y}\right)$ $= \partial w \mathcal{E} \left(\mathcal{E}_x, \mathcal{E}_y, \mathcal{E}_z\right)$
	$\frac{\partial E_z + \gamma E_y = -j \omega_y H_x}{\partial y} = -j \omega_z E_x - (iv)$
100	$\frac{-\gamma E_{x} - \partial E_{z} = -j\omega_{y} H_{y}}{\overline{\partial_{x}}} - \frac{(ii)}{\overline{\partial_{x}}} - \frac{(ii)}{\partial_{x$
	$\frac{\partial E_{y} - \partial E_{x} = -j\omega_{y}H_{z} - (vi)}{\partial x} \frac{\partial H_{y} - \partial H_{x}}{\partial x} = j\omega_{z}E_{z} - (vi).$
	those 6 equations are valid even for any arbitrary E(x, x).
	solve this system of agas to represent Ex, Ey, Hx, Hy in terms of Ez, Hz
1	

as
$$\frac{1}{2}(\cdot) = -\frac{1}{2}(\cdot)$$
, $\frac{1}{2}(\cdot) \stackrel{\triangle}{=} \left(\frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{y^2}{2}\right)(\cdot)$

define $h^2 = Y^2 + \omega^2 q \mathcal{E}$. reta: h^2 : ret

 $\frac{\partial^{2}H_{z} + \partial^{2}H_{z} + h^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial \varepsilon}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}{h^{2}}$ $\frac{\partial^{2}H_{z} + \partial^{2}H_{z} + h^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial \varepsilon}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}{h^{2}}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial \varepsilon}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\nabla^{2}H_{z} + \kappa^{2}H_{z} = -\frac{\partial}{\partial y}\psi_{0}\left(\frac{\partial H_{z}}{\partial y}\frac{\partial x}{\partial x}\frac{\partial x}{\partial x}\right)}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\partial y}\varepsilon}$ $\frac{\partial^{2}H_{z} + \omega^{2}\psi_{0}\varepsilon}{\partial y}\varepsilon}$