Quantile and Expectile Regresions

Arthur Charpentier (Université de Rennes 1)

Erasmus School of Economics, May 2017

http://freakonometrics.hypotheses.org

Econometrics vs Machine Learning

As claimed in Freedman (2005), Statistical Models, in econometrics, given some probability space $(\Omega, \mathcal{A}, \mathbb{P})$, assume that y_i are realization of i.i.d. variables Y_i (given $\mathbf{X}_i = \mathbf{x}_i$) with distribution F_{m_i} ("conditional distribution story" or "causal story"). E.g.

$$Y|X = x \sim \mathcal{N}(\underbrace{x^{\mathsf{T}}\beta}_{m(x)}, \sigma^2) \text{ or } Y|X = x \sim \mathcal{B}(m(x)) \text{ where } m(x) = \frac{e^{x^{\mathsf{T}}\beta}}{1 + e^{x^{\mathsf{T}}\beta}}$$

Then solve ("maximum likelihood" framework)

$$\widehat{m}(\cdot) = \underset{m(\cdot) \in \mathcal{F}}{\operatorname{argmax}} \left\{ \log \mathcal{L}(m(\boldsymbol{x}); \boldsymbol{y}) \right\} = \underset{m(\cdot) \in \mathcal{F}}{\operatorname{argmax}} \left\{ \sum_{i=1}^{n} \log f_{m(\boldsymbol{x}_i)}(y_i) \right\}$$

where $\log \mathcal{L}$ denotes the log-likelihood, see Haavelmo (1944) The Probability Approach in Econometrics.

Econometrics vs Machine Learning

In machine learning ("explanatory data story" in Freedman (2005), Statistical Models), given some dataset (\boldsymbol{x}_i, y_i) , solve

$$m^{\star}(\cdot) = \underset{m(\cdot) \in \mathcal{F}}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(m(\boldsymbol{x}_i), y_i) \right\}$$

for some loss functions $\ell(\cdot,\cdot)$. There is no probabilistic model per se.

But some loss functions have simple and interesting properties, e.g. $\ell_s(x,y) = \mathbf{1}_{\mathbf{1}_{x>s}\neq y}$ for classification, associated with missclassification dummy (with cutoff threshold s),

$$y_i = 0$$
 $y_i = 1$
$$m(\boldsymbol{x}_i) \le s \qquad n_{00} \qquad n_{01} \qquad \widehat{m}_s(\cdot) = \operatorname*{argmin}_{m(\cdot) \in \mathcal{F}} \{n_{01} + n_{01}\}$$

$$m(\boldsymbol{x}_i) > s \qquad n_{10} \qquad n_{11}$$

OLS Regression, ℓ_2 norm and Expected Value: $\ell_2(x,y) = [x-y]^2$

Let
$$\mathbf{y} \in \mathbb{R}^n$$
, $\overline{y} = \operatorname*{argmin}_{m \in \mathbb{R}} \left\{ \sum_{i=1}^n \frac{1}{n} \left[\underbrace{y_i - m}_{\varepsilon_i} \right]^2 \right\}$. It is the empirical version of

$$\mathbb{E}[Y] = \underset{m \in \mathbb{R}}{\operatorname{argmin}} \left\{ \int \left[\underbrace{y - m} \right]^2 dF(y) \right\} = \underset{m \in \mathbb{R}}{\operatorname{argmin}} \left\{ \mathbb{E}\left[\| \underbrace{Y - m} \|_{\ell_2} \right] \right\}$$

where Y is a random variable.

Thus,
$$\underset{m(\cdot):\mathbb{R}^k\to\mathbb{R}}{\operatorname{argmin}} \left\{ \sum_{i=1}^n \frac{1}{n} \left[\underbrace{y_i - m(\boldsymbol{x}_i)}_{\varepsilon_i} \right]^2 \right\}$$
 is the empirical version of $\mathbb{E}[Y|\boldsymbol{X} = \boldsymbol{x}]$.

See Legendre (1805) Nouvelles méthodes pour la détermination des orbites des comètes and $Gau\beta$ (1809) Theoria motus corporum coelestium in sectionibus conicis solem ambientium.

Median Regression, ℓ_1 norm and Median: $\ell_1(x,y) = |x-y|$

Let $\mathbf{y} \in \mathbb{R}^n$, median $[\mathbf{y}] \in \underset{m \in \mathbb{R}}{\operatorname{argmin}} \left\{ \sum_{i=1}^n \frac{1}{n} | \underbrace{y_i - m}_{\varepsilon_i} | \right\}$. It is the empirical version of

$$\operatorname{median}[Y] \in \underset{m \in \mathbb{R}}{\operatorname{argmin}} \left\{ \int \left| \underbrace{y - m} \right| dF(y) \right\} = \underset{m \in \mathbb{R}}{\operatorname{argmin}} \left\{ \mathbb{E} \left[\left\| \underbrace{Y - m} \right\|_{\ell_1} \right] \right\}$$

where Y is a random variable, $\mathbb{P}[Y \leq \text{median}[Y]] \geq \frac{1}{2}$ and $\mathbb{P}[Y \geq \text{median}[Y]] \geq \frac{1}{2}$.

$$\underset{m(\cdot):\mathbb{R}^k\to\mathbb{R}}{\operatorname{argmin}} \left\{ \sum_{i=1}^n \frac{1}{n} |\underline{y_i - m(\boldsymbol{x}_i)}| \right\} \text{ is the empirical version of } \underbrace{\operatorname{median}[\boldsymbol{Y}|\boldsymbol{X} = \boldsymbol{x}]}_{\varepsilon_i}.$$

See Boscovich (1757) De Litteraria expeditione per pontificiam ditionem ad dimetiendos duos meridiani and Laplace (1793) Sur quelques points du système du monde.

Quantiles and Expectiles, $\ell(x,y) = \mathcal{R}(x-y)$

Consider the following risk functions

$$\mathcal{R}_{\tau}^{\mathsf{q}}(u) = u \cdot (\tau - \mathbf{1}(u < 0)), \ \tau \in [0, 1]$$

with $\mathcal{R}_{1/2}^{q}(u) \propto |u| = ||u||_{\ell_1}$, and

$$\mathcal{R}_{\tau}^{e}(u) = u^{2} \cdot (\tau - \mathbf{1}(u < 0)), \ \tau \in [0, 1]$$

with $\mathcal{R}_{1/2}^{\mathsf{e}}(u) \propto u^2 = ||u||_{\ell_2}^2$.

$$Q_Y(\tau) = \underset{m}{\operatorname{argmin}} \left\{ \mathbb{E} \left(\mathcal{R}_{\tau}^{\mathsf{q}}(Y - m) \right) \right\}$$

which is the median when $\tau = 1/2$,

$$E_Y(\tau) = \underset{m}{\operatorname{argmin}} \{ \mathbb{E} (\mathcal{R}_{\tau}^{\mathsf{e}}(X - m)) \}$$

which is the expected value when $\tau = 1/2$.

Elicitable Measures

"elicitable" means "being a minimizer of a suitable expected score"

T is an elicatable function if there exits a scoring function $S : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ (see functions $\ell(\cdot, \cdot)$ introduced above) such that

$$T(Y) = \operatorname*{argmin}_{x \in \mathbb{R}} \left\{ \int_{\mathbb{R}} S(x, y) dF(y) \right\} = \operatorname*{argmin}_{x \in \mathbb{R}} \left\{ \mathbb{E} \big[S(x, Y) \big] \text{ where } Y \sim F. \right\}$$

see Gneiting (2011) Making and evaluating point forecasts.

The mean, $T(Y) = \mathbb{E}[Y]$ is elicited by $S(x, y) = ||x - y||_{\ell_2}^2$

The median, T(Y) = median[Y] is elicited by $S(x, y) = ||x - y||_{\ell_1}$

The quantile, $T(Y) = Q_Y(\tau)$ is elicited by $S(x,y) = \tau(y-x)_+ + (1-\tau)(y-x)_-$

The expectile, $T(Y) = E_Y(\tau)$ is elicited by $S(x,y) = \tau(y-x)_+^2 + (1-\tau)(y-x)_-^2$

Quantiles and Expectiles (Technical Issues)

One can also write empirical quantiles and expectiles as

quantile: argmin
$$\left\{ \sum_{i=1}^{n} \omega_{\tau}^{\mathsf{q}}(\varepsilon_{i}) | \underbrace{y_{i} - q_{i}}| \right\}$$
 where $\omega_{\tau}^{\mathsf{q}}(\epsilon) = \left\{ \begin{array}{l} 1 - \tau \text{ if } \epsilon \leq 0 \\ \tau \text{ if } \epsilon > 0 \end{array} \right.$

expectile: argmin
$$\left\{ \sum_{i=1}^{n} \omega_{\tau}^{\mathsf{e}}(\varepsilon_{i}) (\underbrace{y_{i} - q_{i}})^{2} \right\}$$
 where $\omega_{\tau}^{\mathsf{e}}(\epsilon) = \left\{ \begin{array}{l} 1 - \tau \text{ if } \epsilon \leq 0 \\ \tau \text{ if } \epsilon > 0 \end{array} \right.$

Expectiles are unique, not quantiles...

Quantiles satisfy $\mathbb{E}[\operatorname{sign}(Y - Q_Y(\tau))] = 0$

Expectiles satisfy $\tau \mathbb{E}[(Y - E_Y(\tau))_+] = (1 - \tau)\mathbb{E}[(Y - E_Y(\tau))_-]$

(those are actually the first order conditions of the optimization problem).

Expectiles as Quantiles (Interpretation)

For every $Y \in L^1$, $\tau \mapsto E_Y(\tau)$ is continuous, and strictly increasing

if Y is absolutely continuous,
$$\frac{\partial E_Y(\tau)}{\partial \tau} = \frac{\mathbb{E}[|X - E_Y(\tau)|]}{(1 - \tau)F_Y(E_Y(\tau)) + \tau(1 - F_Y(E_Y(\tau)))}$$

"Expectiles have properties that are similar to quantiles" Newey & Powell (1987)
Asymmetric Least Squares Estimation and Testing. The reason is that expectiles of a distribution F are quantiles a distribution G which is related to F, see Jones (1994) Expectiles and M-quantiles are quantiles: let

$$G(t) = \frac{P(t) - tF(t)}{2[P(t) - tF(t)] + t - \mu}$$
 where $P(s) = \int_{-\infty}^{s} y dF(y)$.

The expectiles of F are the quantiles of G.

Distortion: Expectiles as Quantiles (Gaussian, Lognormal & Poisson)

Empirical Quantiles & Empirical Expectiles

Consider some i.id. sample $\{y_1, \dots, y_n\}$ with distribution F (abs. continuous).

$$Q_{\tau} = \operatorname{argmin} \left\{ \mathbb{E} \left[\mathcal{R}_{\tau}^{\mathsf{q}} (Y - q) \right] \right\} \text{ where } Y \sim F \text{ and } \widehat{Q}_{\tau} \in \operatorname{argmin} \left\{ \sum_{i=1}^{n} \mathcal{R}_{\tau}^{\mathsf{q}} (y_i - q) \right\}$$

Then as
$$n \to \infty$$
, $\sqrt{n}(\widehat{Q}_{\tau} - Q_{\tau}) \stackrel{\mathcal{L}}{\to} \mathcal{N}\left(0, \frac{\tau(1-\tau)}{f^2(Q_{\tau})}\right)$

$$E_{\tau} = \operatorname{argmin} \left\{ \mathbb{E} \left[\mathcal{R}_{\tau}^{\mathsf{e}}(Y - m) \right] \right\} \text{ where } Y \sim F \text{ and } \widehat{E}_{\tau} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} \mathcal{R}_{\tau}^{\mathsf{e}}(y_i - m) \right\}$$

Then as
$$n \to \infty$$
, $\sqrt{n}(\widehat{E}_{\tau} - E_{\tau}) \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, s_{\tau}^2)$ where, if

$$\mathcal{I}_{\tau}(x,y) = \tau(y-x)_{+} + (1-\tau)(y-x)_{-}$$
 (elicitable score for quantiles),

$$s_{\tau}^{2} = \frac{\mathbb{E}[\mathcal{I}_{\tau}(E_{\tau}, Y)^{2}]}{(\tau[1 - F(E_{\tau})] + [1 - \tau]F(Eu_{\tau}))^{2}}.$$

Quantile Regression (and Heteroskedasticity)

We want to solve, here,
$$\min \left\{ \sum_{i=1}^n \mathcal{R}_{\tau}^{\mathsf{q}}(y_i - \boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\beta}) \right\}$$

$$y_i = \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta} + \varepsilon_i \text{ so that } \widehat{Q}_{y|\boldsymbol{x}}(\tau) = \boldsymbol{x}^\mathsf{T} \widehat{\boldsymbol{\beta}} + F_\varepsilon^{-1}(\tau)$$

Optimization Algorithm: Quantile Regression

Simplex algorithm to solve this program. Primal problem is

$$\min_{\boldsymbol{\beta}, \boldsymbol{u}, \boldsymbol{v}} \left\{ \tau \mathbf{1}^\mathsf{T} \boldsymbol{u} + (1 - \tau) \mathbf{1}^\mathsf{T} \boldsymbol{v} \right\} \text{ s.t. } \boldsymbol{y} = \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{u} - \boldsymbol{v}, \text{ with } \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n_+$$

and the dual version is

$$\max_{\boldsymbol{d}} \left\{ \boldsymbol{y}^{\mathsf{T}} \boldsymbol{d} \right\} \text{ s.t. } \boldsymbol{X}^{\mathsf{T}} \boldsymbol{d} = (1 - \tau) \boldsymbol{X}^{\mathsf{T}} \boldsymbol{1} \text{ with } \boldsymbol{d} \in [0, 1]^n$$

Koenker & D'Orey (1994) A Remark on Algorithm AS 229: Computing Dual Regression Quantiles and Regression Rank Scores suggest to use the simplex method (default method in R). Portnoy & Koenker (1997) The Gaussian hare and the Laplacian tortoise suggest to use the interior point method.

Running time is of order $n^{1+\delta}k^3$ for some $\delta > 0$ and $k = \dim(\beta)$ (it is $(n+k)k^2$ for OLS, see wikipedia).

Quantile Regression Estimators

OLS estimator $\widehat{\boldsymbol{\beta}}^{\mathsf{ols}}$ is solution of

$$\widehat{\boldsymbol{eta}}^{\mathsf{ols}} = \operatorname{argmin} \left\{ \mathbb{E} \left[\left(\mathbb{E}[Y | \boldsymbol{X} = \boldsymbol{x}] - \boldsymbol{x}^\mathsf{T} \boldsymbol{eta} \right)^2 \right] \right\}$$

and Angrist, Chernozhukov & Fernandez-Val (2006) Quantile Regression under Misspecification proved that

$$\widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{q}} = \operatorname{argmin} \left\{ \mathbb{E} \left[\omega_{\tau}(\boldsymbol{\beta}) \left(Q_{\tau}[Y | \boldsymbol{X} = \boldsymbol{x}] - \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta} \right)^{2} \right] \right\}$$

(under weak conditions) where

$$\omega_{\tau}(\boldsymbol{\beta}) = \int_{0}^{1} (1 - u) f_{y|\boldsymbol{x}}(u\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta} + (1 - u)Q_{\tau}[Y|\boldsymbol{X} = \boldsymbol{x}]) du$$

 $\hat{\boldsymbol{\beta}}_{\tau}^{\mathsf{q}}$ is the best weighted mean square approximation of the true quantile function, where the weights depend on an average of the conditional density of Y over $\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}$ and the true quantile regression function.

Quantile Regression Estimators

Under weak conditions, $\widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{q}}$ is asymptotically normal:

$$\sqrt{n}(\widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{q}} - \boldsymbol{\beta}_{\tau}^{\mathsf{q}}) \stackrel{\mathcal{L}}{\to} \mathcal{N}(0, \tau(1-\tau)D_{\tau}^{-1}\Omega_{x}D_{\tau}^{-1}),$$

where

$$D_{\tau} = \mathbb{E}[f_{\varepsilon}(0)\boldsymbol{X}\boldsymbol{X}^{\mathsf{T}}] \text{ and } \Omega_{x} = \mathbb{E}[\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}].$$

hence, the asymptotic variance of $\widehat{\beta}$ is

$$\widehat{\mathrm{Var}}[\widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{q}}] = \frac{\tau(1-\tau)}{[\widehat{f}_{\varepsilon}(0)]^2} \left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{x}_{i}\right)^{-1}$$

where $\hat{f}_{\varepsilon}(0)$ is estimated using (e.g.) an histogram, as suggested in Powell (1991) Estimation of monotonic regression models under quantile restrictions, since

$$D_{\tau} = \lim_{h \downarrow 0} \mathbb{E}\left(\frac{\mathbf{1}(|\varepsilon| \le h)}{2h} \boldsymbol{X} \boldsymbol{X}^{\mathsf{T}}\right) \sim \frac{1}{2nh} \sum_{i=1}^{n} \mathbf{1}(|\varepsilon_{i}| \le h) \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathsf{T}} = \widehat{D}_{\tau}.$$

Visualization, $au\mapsto \widehat{oldsymbol{eta}}_{ au}^{\mathbf{q}}$

See Abreveya (2001) The effects of demographics and maternal behavior on the distribution of birth outcomes

Visualization, $\tau\mapsto \widehat{\boldsymbol{\beta}}_{\tau}^{\mathbf{q}}$

See Abreveya (2001) The effects of demographics and maternal behavior on the distribution of birth outcomes

Quantile Regression on Panel Data

In the context of panel data, consider some fixed effect, α_i so that

$$y_{i,t} = \boldsymbol{x}_{i,t}^{\mathsf{T}} \boldsymbol{\beta}_{\tau} + \alpha_i + \varepsilon_{i,t} \text{ where } Q_{\tau}(\varepsilon_{i,t} | \boldsymbol{X}_i) = 0$$

Canay (2011) A simple approach to quantile regression for panel data suggests an estimator in two steps,

• use a standard OLS fixed-effect model $y_{i,t} = \boldsymbol{x}_{i,t}^{\mathsf{T}} \boldsymbol{\beta} + \alpha_i + u_{i,t}$, i.e. consider a within transformation, and derive the fixed effect estimate $\widehat{\boldsymbol{\beta}}$

$$(y_{i,t} - \overline{y}_i) = (\boldsymbol{x}_{i,t} - \overline{\boldsymbol{x}}_{i,t})^\mathsf{T} \boldsymbol{\beta} + (u_{i,t} - \overline{u}_i)$$

- estimate fixed effects as $\widehat{\alpha}_i = \frac{1}{T} \sum_{t=1}^{T} (y_{i,t} \boldsymbol{x}_{i,t}^{\mathsf{T}} \widehat{\boldsymbol{\beta}})$
- finally, run a standard quantile regression of $y_{i,t} \widehat{\alpha}_i$ on $\boldsymbol{x}_{i,t}$'s.

See rqpd package.

Quantile Regression with Fixed Effects (QRFE)

In a panel linear regression model, $y_{i,t} = \mathbf{x}_{i,t}^{\mathsf{T}} \boldsymbol{\beta} + u_i + \varepsilon_{i,t}$,

where u is an unobserved individual specific effect.

In a fixed effects models, u is treated as a parameter. Quantile Regression is

$$\min_{\boldsymbol{\beta}, \boldsymbol{u}} \left\{ \sum_{i, t} \mathcal{R}^{\mathsf{q}}_{\tau}(y_{i, t} - [\boldsymbol{x}_{i, t}^{\mathsf{T}} \boldsymbol{\beta} + u_i]) \right\}$$

Consider Penalized QRFE, as in Koenker & Bilias (2001) Quantile regression for duration data,

$$\min_{\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_{\kappa}, \boldsymbol{u}} \left\{ \sum_{\boldsymbol{k}, i, t} \omega_{\boldsymbol{k}} \mathcal{R}^{\mathsf{q}}_{\tau_{\boldsymbol{k}}} (y_{i, t} - [\boldsymbol{x}_{i, t}^{\mathsf{T}} \boldsymbol{\beta}_{\boldsymbol{k}} + u_i]) + \lambda \sum_{i} |u_i| \right\}$$

where ω_{k} is a relative weight associated with quantile of level τ_{k} .

Quantile Regression with Random Effects (QRRE)

Assume here that $y_{i,t} = \boldsymbol{x}_{i,t}^{\mathsf{T}} \boldsymbol{\beta} + \underbrace{u_i + \varepsilon_{i,t}}_{=n_{i,t}}$.

Quantile Regression Random Effect (QRRE) yields solving

$$\min_{oldsymbol{eta}} \left\{ \sum_{i,t} \mathcal{R}^{\mathsf{q}}_{ au}(y_{i,t} - oldsymbol{x}_{i,t}^{\mathsf{T}} oldsymbol{eta})
ight\}$$

which is a weighted asymmetric least square deviation estimator.

Let $\Sigma = [\sigma_{s,t}(\tau)]$ denote the matrix

$$\sigma_{ts}(\tau) = \begin{cases} \tau(1-\tau) & \text{if } t = s \\ \mathbb{E}[\mathbf{1}\{\varepsilon_{it}(\tau) < 0, \varepsilon_{is}(\tau) < 0\}] - \alpha^2 & \text{if } t \neq s \end{cases}$$

If
$$(nT)^{-1}\boldsymbol{X}^{\mathsf{T}}\{\mathbb{I}_n \otimes \Sigma_{T \times T}(\tau)\}\boldsymbol{X} \to \mathbf{D}_0 \text{ as } n \to \infty \text{ and } (nT)^{-1}\boldsymbol{X}^{\mathsf{T}}\Omega_f\boldsymbol{X} = \mathbf{D}_1, \text{ then}$$

$$\sqrt{nT}\left(\widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{q}} - \boldsymbol{\beta}_{\tau}^{\mathsf{q}}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \mathbf{D}_1^{-1}\mathbf{D}_0\mathbf{D}_1^{-1}\right).$$

Expectile Regression

We want to solve, here, $\min_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \mathcal{R}_{\tau}^{\mathsf{e}}(y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}) \right\}$

see Koenker (2014) Living Beyond our Means for a comparison quantiles-expectiles

Expectile Regression

Solve here
$$\min_{\beta} \left\{ \sum_{i=1}^{n} \mathcal{R}_{\tau}^{e}(y_{i} - \boldsymbol{x}_{i}^{\mathsf{T}}\boldsymbol{\beta}) \right\}$$
 where $\mathcal{R}_{\tau}^{e}(u) = u^{2} \cdot (\tau - \mathbf{1}(u < 0))$

"this estimator can be interpreted as a maximum likelihood estimator when the disturbances arise from a normal distribution with unequal weight placed on positive and negative disturbances" Aigner, Amemiya & Poirier (1976)

Formulation and Estimation of Stochastic Frontier Production Function Models.

See Holzmann & Klar (2016) Expectile Asymptotics for statistical properties.

Expectiles can (also) be related to Breckling & Chambers (1988) M-Quantiles.

Comparison quantile regression and expectile regression, see Schulze-Waltrup et al. (2014) Expectile and quantile regression - David and Goliath?

Visualization, $au\mapsto \widehat{oldsymbol{eta}}_{ au}^{\mathbf{e}}$

See Abreveya (2001) The effects of demographics and maternal behavior on the distribution of birth outcomes

Expectile Regression, with Random Effects (ERRE)

Quantile Regression Random Effect (QRRE) yields solving

$$\min_{oldsymbol{eta}} \left\{ \sum_{i,t} \mathcal{R}^{\mathsf{e}}_{lpha}(y_{i,t} - oldsymbol{x}_{i,t}^{\mathsf{T}} oldsymbol{eta})
ight\}$$

One can prove that

$$\widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{e}} = \Big(\sum_{i=1}^{n} \sum_{t=1}^{T} \widehat{\omega}_{i,t}(\tau) \boldsymbol{x}_{it} \boldsymbol{x}_{it}^{\mathsf{T}} \Big)^{-1} \Big(\sum_{i=1}^{n} \sum_{t=1}^{T} \widehat{\omega}_{i,t}(\tau) \boldsymbol{x}_{it} y_{it} \Big),$$

where $\widehat{\omega}_{it}(\tau) = |\tau - \mathbf{1}(y_{it} < \boldsymbol{x}_{it}^{\mathsf{T}}\widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{e}})|.$

Expectile Regression with Random Effects (ERRE)

If $W = \operatorname{diag}(\omega_{11}(\tau), \dots \omega_{nT}(\tau))$, set

$$\overline{W} = \mathbb{E}(W), H = \boldsymbol{X}^{\mathsf{T}} \overline{W} \boldsymbol{X} \text{ and } \Sigma = \boldsymbol{X}^{\mathsf{T}} \mathbb{E}(W \varepsilon \varepsilon^{\mathsf{T}} W) \boldsymbol{X}.$$

and then

$$\sqrt{nT} \{ \widehat{\boldsymbol{\beta}}_{\tau}^{\mathsf{e}} - {\boldsymbol{\beta}}_{\tau}^{\mathsf{e}}) \} \xrightarrow{\mathcal{L}} \mathcal{N}(0, H^{-1}\Sigma H^{-1}),$$

see Barry et al. (2016) Quantile and Expectile Regression for random effects model.

Application to Real Data QRRE QRRE ERRE ERRE 0.150.1 Intercept 0.050.5-0.050.6 0.8 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.2 0.4 0.4 0.04 Mother educ. Education 0.1 0.020.05-0.020.6 0.8 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.4 0.2 0.4 0.02 0.15Father educ. Experience 0.1 0.05 -0.020.8 0.2 0.4 0.8 0.2 0.4 0.6 $Experience^2$ Broken home -0.002-0.1-0.004-0.20.4 0.6 0.6 0.8 0.2 0.4 0.8 0.2 0.4 1 0 0.02 Nbr of siblings -0.02-0.020.2 0.2 0.4