SCE 5809 - REDES NEURAIS

REDE NEURAL DO TIPO MULTI-CAMADAS

Profa. Roseli Romero

Roseli Romero

II - Algoritmo Back-Propagation

Out(x) =
$$g(\sum_{i} W_{i} g(\sum_{i} w_{i} x_{i}))$$

Isto é uma função não-linear de uma combinação linear de funções não lineares de combinações lineares das entradas

Roseli Romero

II - Algoritmo BackPropagation

OBJETIVO

• Encontrar um conjunto de pesos $\{W_j\}, \{w_{jk}\},$ para MINIMIZAR $\sum_{I} (y_i - Out(\underline{x}_i))^2$

pelo metodo do "gradiente descent".

OBS: Convergência para um MINIMO global não é garantida.

Na prática: não é problema!!!

Roseli Romero

II - Algoritmo Back-Propagation

$$\Delta w_{jk} = -\eta \delta_j^{p} out_k^{p}$$

• Se o neurônio está na camada de saída

$$\delta_{pj} = (y_j^p - out_j^p) f'(net_j^p) \qquad net_j^p = \sum_k w_{jk} out_k^p$$

• Se o neurônio está na camada oculta

$$\delta_{pj} = f'(net_j^p) \sum_k \delta_k^p w_{kj}$$

MULTI-LAYER PERCEPTRON

- Redes de apenas uma camada só representam funções linearmente separáveis
- Redes de múltiplas camadas solucionam essa restrição
- O desenvolvimento do algoritmo Back-Propagation foi um dos motivos para o ressurgimento da área de redes neurais em 1986 por Rumelhart et.

Roseli Romero

PROCESSO DE APRENDIZADO Fase 2: Feed-Backward Atualização dos pesos da 2º camada escondida PE, WILL OF PE, WILL

II - Algoritmo Back-Propagation

Out(x) =
$$g(\sum_{j} W_{j} g(\sum_{i} w_{i} x_{i}))$$

Isto é uma função não-linear de uma combinação linear de funções não lineares de combinações lineares das entradas

Roseli Romero

II - Algoritmo BackPropagation

OBJETIVO

• Encontrar um conjunto de pesos {W_j},{w_{jk}}, para

MINIMIZAR $\sum_{i} (y_i - Out(\underline{x}_i))^2$

pelo metodo do "gradiente descent".

OBS: Convergência para um MINIMO global não é garantida.

Na prática: não é problema!!!

Roseli Romer

II - Algoritmo Back-Propagation

$$\Delta w_{jk} = -\eta \delta_{j}^{p} out_{k}^{p}$$

• Se o neurônio está na camada de saída

$$\delta_{pj} = (y_j^p - out_j^p) f'(net_j^p) \qquad net_j^p = \sum_k w_{jk} out_k^p$$

• Se o neurônio está na camada oculta

$$\delta_{pj} = f'(net_j^p) \sum_{Roseli Romero} \delta_k^p w_{kj}$$

MULTI-LAYER PERCEPTRON

- Redes de apenas uma camada só representam funções linearmente separáveis
- Redes de múltiplas camadas solucionam essa restrição
- O desenvolvimento do algoritmo Back-Propagation foi um dos motivos para o ressurgimento da área de redes neurais em 1986 por Rumelhart et.

Roseli Romer

PROCESSO DE APRENDIZADO Fase 1: Feed-Forward Fluxo de Dados 2 Camada de Saída PE, PE, PE, Roseli Romero

ALGORITMO

Este procedimento de aprendizado é repetido diversas vezes, até que *para todos processadores de camada de saída e para todos padrões de treinamento*, o erro seja menor do que o especificado.

Roseli Romero

ALGORITMO

Inicialização: pesos iniciados com valores aleatórios e pequenos ([-1,1]) Treinamento

Repita

Considere um novo padrão de entrada x_i e seu respectivo vetor de saída t_i desejado do conj. de treinamento;

Repita

- Aplica-se o mesmo par $(x_i t_i)$
- calcule se as saídas dos processadores, começando da primeira camada escondida até a camada de saída;
- calcula-se o erro na camada de saída
- atualiza os pesos de cada processador, começando pela camada de saída, até a camada de entrada;

até que erro quadrático médio para esse padrão, seja <= tolerância. até que o erro quadrático médio seja <= tolerância para todos os padrões de conjunto de treinamento