A Partial Proof of R2 for the Bounded Buffer

THEOREM $Inv \wedge Inv' \wedge Next \Rightarrow [C!Next]_{C!vars}$

 $\langle 1 \rangle 1$. Assume: Inv, Inv', Producer

Prove: C!Send

 $\langle 2 \rangle 1$. Len(chBar) $\neq N$

PROOF: Type OK and the definition of chBar implies $Len(chBar) = p \ominus c$, so $\langle 2 \rangle 1$ follows from *Producer*. $\langle 2 \rangle 2$. chBar' = Append(chBar, IHead(in))

 $\langle 3 \rangle 1. \ (chBar \in Seq(Msgs)) \land (Len(chBar) = p \ominus q)$

PROOF: By TypeOK and definition of chBar.

 $\langle 3 \rangle 2$. $(chBar' \in Seq(Msgs)) \wedge (Len(chBar') = (p \ominus q) + 1)$

 $\langle 4 \rangle 1. \ p' \ominus q' = (p \ominus q) + 1$

 $\langle 5 \rangle 1. \ p' \ominus q' = (p \oplus 1) \ominus q$

PROOF: By Producer.

 $\langle 5 \rangle 2$. $(p \oplus 1) \ominus q = (p \ominus q) \oplus 1$

PROOF: By TypeOK and the arithmetic properties of \oplus and \ominus . $\langle 5 \rangle 3. \ (p \ominus q) \oplus 1 = (p \ominus q) + 1$

PROOF: $p \ominus q < N$ by Producer, so $(p \ominus q) + 1 < 2N$ (by the assumption on N). By definition of \oplus , this implies $(p \ominus q) + 1 =$ $(p \ominus q) \oplus 1).$

 $\langle 5 \rangle 4$. Q.E.D. PROOF: By $\langle 5 \rangle 1$, $\langle 5 \rangle 2$, and $\langle 5 \rangle 3$.

 $\langle 4 \rangle 2$. Q.E.D.

 $\langle 3 \rangle 4$. Q.E.D.

PROOF: By Inv', the definition of chBar, and $\langle 4 \rangle 1$.

 $\langle 3 \rangle 3$. $\wedge chBar'[(p \ominus q) + 1] = IHead(in))$

 $\land \forall i \in 1..(p \ominus q) : chBar'[i] = chBar[i]$

 $\langle 4 \rangle 1$. The set $\{(c \oplus (i-1))\% N : i \in 1 ... ((p \ominus c)+1)\}$ contains $(p \ominus c)+1$ distinct numbers.

PROOF: By TypeOK and Property BB, since Producer implies $p \ominus c <$ N, so $(p \ominus c) + 1 \leq N$.

 $\langle 4 \rangle 2$. $(c \oplus (i-1))\% N$ equals p% N for $i = (p \ominus c) + 1$

PROOF: The arithmetical properties of \oplus and \ominus imply $c \oplus (p \ominus c) = p$.

 $\langle 4 \rangle$ 3. Q.E.D. PROOF: By $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and the definition of *chBar*, since *Producer* and

TypeOK imply $\forall j \in 0..(N-1): buf'[j] = \text{if } j = p\%N \text{ Then } IHead(in) \text{ else } buf[j]$ PROOF: By $\langle 3 \rangle 1$, $\langle 3 \rangle 2$, and $\langle 3 \rangle 3$.

 $\langle 2 \rangle 3. \ (in' = ITail(in)) \land (out' = out)$

PROOF: By Producer.

 $\langle 2 \rangle 4$. Q.E.D.

PROOF: By $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, $\langle 2 \rangle 3$, and the definition of *Send*.

 $\langle 1 \rangle 2$. Assume: Inv, Consumer

Prove: C!Rcv

PROOF: Left as an exercise.

 $\langle 1 \rangle 3$. Q.E.D.

PROOF: By $\langle 1 \rangle 1$, $\langle 1 \rangle 2$, and the definitions of Next and C! Next.

CLOSE