专题 3-3 二次函数面积定值、比例问题以及米勒角问题

01

题型•解读

【题型1】作铅垂高解决面积定值问题

例 1-1 湖北武汉市·中考真题

2023·齐齐哈尔·中考真题 (删减)

南通·中考真题

2023.山东泰安.中考真题

【题型2】作平行线解决面积问题

例 2-1 山东省临沂市·中考真题

2023.四川甘孜·中考真题

四川凉山州·中考真题

连云港·中考真题

2023:黑龙江·中考真题

江苏徐州·中考真题

【题型3】面积比例问题的转化定值问题 或函数表达式 例 3-1 内蒙古通辽市·中考真题

2023.辽宁盘锦.中考真题

2022·福建·统考模拟预测

【题型4】面积比例问题的转化为线段比

例 4-1

深圳市中考真题

牡丹江中考真题

2022·四川内江中考真题

2023·四川泸州中考真题

2022·四川内江中考真题

【题型5】 米勒角(最大张角问题)

例题 5-1

山东烟台中考真题

2023.四川宜宾中考真题

02

满分•技巧

一、面积定值与等值问题

1.定值问题

【问题描述】

思路1: 铅垂法列方程解.

根据 B、C 两点坐标得直线 BC 解析式: y=-x+3, 设点 P 坐标为 $\left(m,-m^2+2m+3\right)$,

过点P作 $PQ \perp x$ 轴交BC于点Q,则点Q坐标为(m, -m+3),

思路 2: 构造等积变形

同底等高三角形面积相等.

取 BC 作水平宽可知水平宽为 3, 根据 $\triangle PBC$ 面积为 3, 可知铅垂高为 2,

在y轴上取点Q使得CQ=2,过点Q作BC的平行线,交点即为满足条件的P点.

当点Q坐标为(0,5)时,PQ解析式为:y=-x+5,联立方程: $-x^2+2x+3=-x+5$,解之即可.

当点Q坐标为(0,1)时,PQ解析式为:y=-x+1,联立方程: $-x^2+2x+3=-x+1$,解之即可.

2. 等值问题

【问题描述】

如图, 抛物线 $y=-x^2+2x+3$ 与 x 轴交于 A、B 两点 (点 A 在点 B 左侧), 与 y 轴交于点 C, 连接 BC, 抛物线上存在一点 P 使得 $\triangle PBC$ 的面积等于 $\triangle BOC$ 的面积,求点 P 坐标.

思路1: 铅垂法

计算出 $\triangle BOC$ 面积,将"等积问题"转化为"定积问题",用铅垂法可解.

思路 2: 构造等积变形

过点O作BC的平行线,与抛物线交点即为所求P点,

另外作点O关于点C的对称点M,过点M作BC平行线与抛物线的交点亦为所求P点.

先求直线解析式,再联立方程即可求得P点坐标.

二、面积比例问题

1、方法突破

除了三角形、四边形面积计算之外,面积比例也是中考题中常见的条件或结论,对面积比例的分析,往往比求面积要复杂得多,这也算是面积问题中最难的一类.

大部分题目的处理方法可以总结为两种:(1)计算;(2)转化.

策略一: 运用比例计算类

策略二:转化面积比

如图, B、D、C 三点共线, 考虑 $\triangle ABD$ 和 $\triangle ACD$ 面积之比.

转化为底: 共高,面积之比化为底边之比: 则 $S_{\Delta ABD}: S_{\Delta ACD} = BD: CD$.

更一般地,对于共边的两三角形 $\triangle ABD$ 和 $\triangle ACD$,连接 BC,与 AD 交于点 E,则 $S_{\triangle ABD}:S_{\triangle ACD}=BM:CN=BE:CE\,.$

策略三: 进阶版转化

在有些问题中,高或底边并不容易表示,所以还需在此基础上进一步转化为其他线段比值,比如常见有: "A"字型线段比、"8"字型线段比.

"A"字型线段比: $S_{\triangle ABD}: S_{\triangle ACD} = BD: CD = BA: AM$.

"8"字型线段比: $S_{\Delta ABD}: S_{\Delta ACD} = BD: CD = AB: CM$.

转化为垂线: 共底,面积之比化为高之比: $S_{\triangle ABD}: S_{\triangle ACD} = BD: CD = BM: CN$.

总结:面积能算那就算,算不出来就转换;底边不行就作高,还有垂线和平行.

三、米勒角问题(最大张角)

【问题描述】

1471年, 德国数学家米勒向诺德尔提出这样一个问题:

如图,点A、B 直线I的同一侧,在直线I上取一点P,使得 $\angle APB$ 最大,求P点位置.

【问题铺垫】

圆外角:如图,像 $\angle APB$ 这样顶点在圆外,两边和圆相交的角叫圆外角.

相关结论: 圆外角等于这个角所夹两条弧的度数差(大减小)的一半.

如图,
$$\angle P = \angle ACB - \angle PBC = \frac{\widehat{AB} - \widehat{CD}}{2}$$
.

换句话说,对同一个圆而言,圆周角>圆外角.

【问题解决】

结论: 当点P不与A、B 共线时,作 $\triangle PAB$ 的外接圆,当圆与直线I 相切时, $\angle APB$ 最大.

证明:在直线1上任取一点M(不与点P重合),连接AM、BM,

 $\angle AMB$ 即为圆 O 的圆外角,

- ∴∠APB>∠AMB, ∠APB 最大.
- ∴当圆与直线 l 相切时, ∠APB 最大.

特别地, 若点 $A \setminus B$ 与 P 分别在一个角的两边, 如下图, 则有 $OP^2 = OA \cdot OB$. (切割线定理)

证明: ∵∠POA=∠BOP, ∠OPA=∠OBP(弦切角定理)

$$\therefore \triangle AOP \hookrightarrow \triangle POB, \quad \therefore \frac{OA}{OP} = \frac{OP}{OB}, \quad \therefore OP^2 = OA \cdot OB.$$

即可通过OA、OB 线段长确定OP 长,便知P 点位置.

03

核心•题型

03

核心•题型

【题型1】作铅垂高解决面积定值问题

例 1-1 湖北武汉市·中考真题

- 1. 抛物线 *L*: $y = -x^2 + bx + c$ 经过点 *A* (0, 1), 与它的对称轴直线 x = 1 交于点 B.
- (1) 直接写出抛物线 L 的解析式;
- (2) 如图 1, 过定点的直线 y = kx k + 4(k < 0) 与抛物线 L 交于点 M、N. 若 $\triangle BMN$ 的面积等于 1, 求 k 的值.

【分析】

(1) 解析式: $y = -x^2 + 2x + 1$;

(2) 考虑到直线过定点 Q (1, 4), 且 M、N 均为动点, 故考虑用割补法.

 $S_{\Delta BMN} = S_{\Delta QBN} - S_{\Delta QBM}$, 分别过 M、N 作对称轴的垂线, 垂足分别记为 G、H,

$$S_{\Delta BMN} = \frac{1}{2}QB \times NH - \frac{1}{2}QB \times MG = \frac{1}{2}QB(NH - MG) = \frac{1}{2}QB(x_N - x_M),$$

考虑 $x_N - x_M$: 联立方程: $-x^2 + 2x + 1 = kx - k + 4$, 化简得 $x^2 + (k-2)x - k + 3 = 0$,

$$x_N - x_M = \sqrt{(k-2)^2 - 4(-k+3)} = \sqrt{k^2 - 8}$$
, $\therefore S_{\Delta BMN} = \frac{1}{2} \times 2 \times \sqrt{k^2 - 8} = 1$,

解得: $k_1 = -3$, $k_2 = 3$ (舍).

故k的值为-3.

2023·齐齐哈尔·中考真题 (删减)

2. 如图,抛物线 $y = -x^2 + \frac{7}{2}x + 2$ 上的点 A, C 坐标分别为(0,2),(4,0),抛物线与 x 轴负半轴交于点 B,点 M 为 y 轴负半轴上一点,且 OM = 2,连接 AC,CM,点 P 是抛物线位于第一象限图象上的动点,连接 AP,CP,当 $S_{\triangle PAC} = S_{\triangle ACM}$ 时,求点 P 的坐标

【答案】 P(2,5)

【分析】过点 P 作 $PF \perp x$ 轴于点 F,交线段 AC 于点 E,用待定系数法求得直线 AC 的解析式为 $y = -\frac{1}{2}x + 2$,设点 P 的横坐标为 $p(0 ,则 <math>P\left(p, -p^2 + \frac{7}{2}p + 2\right)$, $E\left(p, -\frac{1}{2}p + 2\right)$,故 $PE = -p^2 + 4p(0 ,先求得 <math>S_{\triangle ACM} = 8$,从而得到 $S_{\triangle PAC} = \frac{1}{2}PE \cdot OC = -2p^2 + 8p = 8$,解出 P 的值,从而得出点 P 的坐标;

【详解】解:过点P作 $PF \perp x$ 轴于点F,交线段AC于点E,

设直线 AC 的解析式为 $y=kx+m(k\neq 0)$,

将 A(0,2), C(4,0)代入 y = kx + m, 得

设点P的横坐标为p(0

$$P\left(p,-p^2+\frac{7}{2}p+2\right), \quad E\left(p,-\frac{1}{2}p+2\right),$$

$$\therefore PE = -p^2 + \frac{7}{2}p + 2 - \left(-\frac{1}{2}p + 2\right) = -p^2 + 4p(0$$

$$S_{\triangle ACM} = 8$$
, ∴ $S_{\triangle PAC} = \frac{1}{2} PE \cdot OC = -2 p^2 + 8 p = 8$, 解得 $p_1 = p_2 = 2$, ∴ $P(2,5)$

南通·中考真题

3. 定义: 若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的"等值点".例如,

点 (1,1) 是函数 $y = \frac{1}{2}x + \frac{1}{2}$ 的图象的"等值点".

- (1) 分别判断函数 y = x + 2 , $y = x^2 x$ 的图象上是否存在"等值点"? 如果存在,求出"等值点"的坐标; 如果不存在,说明理由;
- (2) 设函数 $y = \frac{3}{x}(x > 0)$, y = -x + b 的图象的"等值点"分别为点 A, B, 过点 B 作 $BC \perp x$ 轴, 垂

足为C. 当 ΔABC 的面积为 3 时, 求b 的值;

解: (1) 在y=x+2中, 令x=x+2, 得0=2不成立,

:. 函数 y = x + 2 的图象上不存在"等值点";

在
$$y = x^2 - x$$
 中, 令 $x^2 - x = x$,

解得: $x_1 = 0$, $x_2 = 2$,

:. 函数 $y = x^2 - x$ 的图象上有两个"等值点" (0,0) 或 (2,2);

(2) 在函数
$$y = \frac{3}{r}(x > 0)$$
 中, 令 $x = \frac{3}{r}$,

解得: $x = \sqrt{3}$,

$$\therefore A(\sqrt{3}, \sqrt{3}),$$

在函数 y = -x + b 中, 令 x = -x + b,

解得:
$$x = \frac{1}{2}b$$
,

$$\therefore B(\frac{1}{2}b, \frac{1}{2}b),$$

 $:: BC \perp x \leftrightarrow$

$$\therefore C(\frac{1}{2}b, 0),$$

$$\therefore BC = \frac{1}{2} |b|,$$

:: ΔABC 的面积为 3,

$$\therefore \frac{1}{2} \times \frac{1}{2} |b| \times |\sqrt{3} - \frac{1}{2}b| = 3,$$

当
$$b < 0$$
 时, $b^2 - 2\sqrt{3}b - 24 = 0$,

解得 $b=-2\sqrt{3}$,

当
$$0 \cdot b < 2\sqrt{3}$$
 时, $b^2 - 2\sqrt{3}b + 24 = 0$,

$$\because \triangle = (-2\sqrt{3})^2 - 4 \times 1 \times 24 = -84 < 0 ,$$

:. 方程
$$b^2 - 2\sqrt{3}b + 24 = 0$$
 没有实数根,

当 b开2
$$\sqrt{3}$$
 时, $b^2 - 2\sqrt{3}b - 24 = 0$,

解得: $b = 4\sqrt{3}$, 综上所述, b 的值为 $-2\sqrt{3}$ 或 $4\sqrt{3}$

2023.山东泰安·中考真题

4. 如图 1, 二次函数 $y = ax^2 + bx + 4$ 的图象经过点 A(-4,0), B(-1,0).

- (1)求二次函数的表达式;
- (2) 若点 P 在二次函数对称轴上, 当 $\triangle BCP$ 面积为 5 时, 求 P 坐标;
- (3)小明认为,在第三象限抛物线上有一点 D,使 $\angle DAB + \angle ACB = 90^{\circ}$;请判断小明的说法是否正确,如果正确,请求出 D 的坐标;如果不正确,请说明理由.

【答案】(1) $y = x^2 + 5x + 4$

$$(2)\left(-\frac{5}{2},4\right)$$
 $\stackrel{4}{\cancel{\searrow}}\left(-\frac{5}{2},-16\right)$

【分析】(1) 直接运用待定系数法求解即可;

(2) 首先求出直线 BC 解析式,然后通过设P 点坐标,并表示对应Q 点坐标,从而利用"割补法"计算 ΔBCP 的面积表达式并建立方程求解即可;

【详解】(1) 解: 将 A(-4,0), B(-1,0) 代入 $y = ax^2 + bx + 4$ 得:

$$\begin{cases} 16a - 4b + 4 = 0 \\ a - b + 4 = 0 \end{cases}$$
, 解得:
$$\begin{cases} a = 1 \\ b = 5 \end{cases}$$
 ... 抛物线解析式为: $y = x^2 + 5x + 4$;

(2) 解: 由抛物线 $y=x^2+5x+4$ 可知, 其对称轴为直线 $x=-\frac{5}{2}$, C(0,4),

设直线 BC 解析式为: y = kx + c, 将 B(-1,0), C(0,4)代入解得: $\begin{cases} k = 4 \\ c = 4 \end{cases}$

∴直线 BC解析式为: y=4x+4,此时,如图所示,作 PQ//x轴,交 BC于点Q,

 \therefore 点 P 在二次函数对称轴上, \therefore 设 $P\left(-\frac{5}{2},m\right)$,则 $Q\left(\frac{m-4}{4},m\right)$,

$$\therefore PQ = \left| \frac{m-4}{4} - \left(-\frac{5}{2} \right) \right| = \left| \frac{m+6}{4} \right|, \quad \therefore S_{\triangle BCP} = \frac{1}{2} PQ \left(y_C - y_B \right) = \frac{1}{2} \times \left| \frac{m+6}{4} \right| \times 4 = \left| \frac{m+6}{2} \right|,$$

ご要使得 $\triangle BCP$ 面积为 5, $\therefore \left| \frac{m+6}{2} \right| = 5$, 解得: m=4 或 m=-16,

$$\therefore P$$
 的坐标为 $\left(-\frac{5}{2},4\right)$ 或 $\left(-\frac{5}{2},-16\right)$

【题型2】作平行线解决面积问题

例 2-1 山东省临沂市·中考真题

- 5. 在平面直角坐标系中,直线 y=x+2 与 x 轴交于点 A ,与 y 轴交于点 B ,抛物线 $y=ax^2+bx+c(a<0)$ 经过点 A 、B .
- (1) 求a、b满足的关系式及c的值.
- (2) 如图,当a = -1时,在抛物线上是否存在点P,使 ΔPAB 的面积为 1? 若存在,请求出符合条件的所有点P 的坐标,若不存在,请说明理由.

【分析】

(1) 点A 坐标为 (-2, 0), 点B 坐标为 (0, 2),

代入解析式可得: c=2, 4a-2b+2=0

(2) 考虑 A、B 水平距离为 2, ΔPAB 的面积为 1,故对应的铅垂高为 1.

当 a=-1 时,可得 b=-1, 抛物线解析式为 $y=-x^2-x+2$.

取点 C(0, 3) 作 AB 的平行线, 其解析式为: y=x+3,

联立方程 $-x^2-x+2=x+3$,解得x=-1,故点 P_1 坐标为(-1, 2)

取点 D(0, 1) 作 AB 的平行线, 其解析式为: y=x+1,

联立方程 $-x^2-x+2=x+1$,解得 $x_1=-1+\sqrt{2}$, $x_2=-1-\sqrt{2}$.

点 P_2 坐标为 $\left(-1+\sqrt{2},\sqrt{2}\right)$ 、点 P_3 坐标为 $\left(-1-\sqrt{2},-\sqrt{2}\right)$.

2023.四川甘孜.中考真题

6. 已知抛物线 $y = x^2 + bx + c$ 与 x 轴相交于 A(-1,0), B 两点, 与 y 轴相交于点 C(0,-3).

(1)求 b, c 的值;

(2)P 为第一象限抛物线上一点, $\triangle PBC$ 的面积与 $\triangle ABC$ 的面积相等,求直线 AP 的解析式

【答案】(1)
$$\begin{cases} b = -2, \\ c = -3. \end{cases}$$
, (2) $y = x + 1$

(3)存在,点 P' 的坐标为 $\left(1+\sqrt{21},-2+\sqrt{21}\right)$ 或 $\left(1-\sqrt{21},-2-\sqrt{21}\right)$

【分析】(1) 由待定系数法即可求解:

- (2) $S_{\land PBC} = S_{\land ABC}$ 得到 AP//BC, 即可求解;
- (3) 由题意的: $\angle AEP = \angle AEP', P'E = PE$. 即可求解.

【详解】(1) 由题意, 得 $\begin{cases} 1-b+c=0, \\ c=-3. \end{cases}$

$$\therefore \begin{cases} b = -2, \\ c = -3. \end{cases}$$

(2) 由 (1) 得抛物线的解析式为 $y=x^2-2x-3$.

 $\Rightarrow y = 0$, y = 0, y = 0,

- ∴B点的坐标为(3,0).
- $:: S_{\triangle PBC} = S_{\triangle ABC}$,
- $\therefore AP//BC$.
- : B(3,0), C(0, -3),
- ∴直线 BC 的解析式为 y = x 3.
- $\therefore AP//BC$,
- ∴可设直线 AP 的解析式为 y = x + m.
- ∵ *A*(-1,0) 在直线 *AP* 上,
- 0 = -1 + m.
- $\therefore m = 1$.
- :. 直线 AP 的解析式为 y=x+1.

四川凉山州·中考真题

- 7. 如图, 抛物线 $y = ax^2 + bx + c$ 的图象过点 A(-1,0) 、B(3,0) 、C(0,3) .
- (1) 求抛物线的解析式;
- (2) 在抛物线的对称轴上是否存在一点 P,使得 ΔPAC 的周长最小,若存在,请求出点 P 的坐标及 ΔPAC 的周长;若不存在,请说明理由;
- (3) 在 (2) 的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 $S_{\Delta PAM} = S_{\Delta PAC}$? 若存在,请求出点M 的坐标;若不存在,请说明理由.

【分析】

(1) 抛物线解析式为: $y = -x^2 + 2x + 3$;

(2) 将军饮马问题, 作点 C 关于对称轴的对称点 C (2, 3), 连接 AC, 与对称轴交点即为所求 P 点, 可得 P 点坐标为 (1, 2), $\triangle PAC$ 的周长亦可求.

(3) 过点 C作 AP 平行线与抛物线交点即为 M 点,联立方程得解;记 AP 与 y 轴交点为 Q 点,作点 C 关于 Q 点的对称点点 D,过点 D 作 AP 的平行线,与抛物线在 x 轴上方部分的交点即为所求 M 点,联立方程得解.

连云港·中考真题

- 8. 如图, 抛物线 $y = mx^2 + (m^2 + 3)x (6m + 9)$ 与 x 轴交于点 $A \setminus B$, 与 Y 轴交于点 C , 已知 B(3,0) .
- (1) 求m 的值和直线BC对应的函数表达式;
- (2) P 为抛物线上一点,若 $S_{\Delta PBC} = S_{\Delta ABC}$,请直接写出点 P 的坐标;

解: (1) 将 B(3,0) 代入 $y = mx^2 + (m^2 + 3)x - (6m + 9)$, 化简得, $m^2 + m = 0$,

M = 0 (含) $\not \leq m = -1$, $\therefore m = -1$, $\therefore y = -x^2 + 4x - 3$.

 $\therefore C(0,-3)$, 设直线 BC 的函数表达式为 y = kx + b,

将 B(3,0) , C(0,-3) 代入表达式, 可得, $\begin{cases} 0 = 3k + b \\ -3 = b \end{cases}$, 解得, $\begin{cases} k = 1 \\ b = -3 \end{cases}$

:. 直线 BC 的函数表达式为 y=x-3.

(2)如图,过点 A 作 $AP_1//BC$,设直线 AP_1 交 y 轴于点 G ,将直线 BC 向下平移 GC 个单位,得到直线 P_2P_3 .

由 (1) 得直线 BC 的表达式为 y=x-3, A(1,0),

二直线 AG 的表达式为 y=x-1,

联立
$$\begin{cases} y = x - 1 \\ y = -x^2 + 4x - 3 \end{cases}$$
 解得
$$\begin{cases} x = 1 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} x = 2 \\ y = 1 \end{cases}$$

 $\therefore P_1(2,1) \not \leq (1,0)$

由直线 AG 的表达式可得 G(0,-1),

$$\therefore GC = 2$$
, $CH = 2$,

:. 直线 P_2P_3 的表达式为: y=x-5,

联立
$$\begin{cases} y = x - 5 \\ y = -x^2 + 4x - 3 \end{cases}$$

解得,
$$\begin{cases} x = \frac{3 - \sqrt{17}}{2} \\ y = \frac{-7 - \sqrt{17}}{2} \end{cases}$$
, **或**,
$$\begin{cases} x = \frac{3 + \sqrt{17}}{2} \\ y = \frac{-7 + \sqrt{17}}{2} \end{cases}$$

$$\therefore P_2(\frac{3-\sqrt{17}}{2}, \frac{-7-\sqrt{17}}{2}), P_3(\frac{3+\sqrt{17}}{2}, \frac{-7+\sqrt{17}}{2}),;$$

综上可得,符合题意的点
$$P$$
 的坐标为: $(2,1)$, $(1,0)$, $(\frac{3-\sqrt{17}}{2}$, $\frac{-7-\sqrt{17}}{2})$, $(\frac{3+\sqrt{17}}{2}$, $\frac{-7+\sqrt{17}}{2})$

2023·黑龙江·中考真题

9. 如图, 抛物线 $y = ax^2 + bx + 3 = x$ 轴交于 A(-3,0), B(1,0) 两点, 交Y 轴于点 C.

(1)求抛物线的解析式.

(2)抛物线上是否存在一点 P,使得 $S_{\triangle PBC} = \frac{1}{2} S_{\triangle ABC}$,若存在,请直接写出点 P 的坐标;若不存在,请说明理由.

【答案】(1)
$$y = -x^2 - 2x + 3$$

(2)存在, 点P的坐标为(-2,3)或(3,-12)

【分析】(1) 采用待定系数法,将点A和点B坐标直接代入抛物线 $y = ax^2 + bx + 3$,即可求得抛物线的解析式.

(2) 过线段 AB 的中点 D,且与 BC 平行的直线上的点与点 B,点 C 连线组成的三角形的面积都等于 $\frac{1}{2}S_{_{ABC}}$,则此直线与抛物线的交点即为所求;求出此直线的解析式,与抛物线解析式联立,即可求得答案.

【详解】(1) 解: 因为抛物线 $y = ax^2 + bx + 3$ 经过点 A(-3,0) 和点 B(1,0) 两点, 所以

$$\begin{cases} 9a - 3b + 3 = 0 \\ a + b + 3 = 0 \end{cases}$$

解得

$$\begin{cases} a = -1 \\ b = -2 \end{cases}$$

所以抛物线解析式为: $y = -x^2 - 2x + 3$.

(2) 解:如图,设线段 AB 的中点为 D,可知点 D 的坐标为 (-1,0),过点 D 作与 BC 平行的直线 l,假设与抛物线交于点 P_1 , P_2 (P_1 在 P_2 的 E 边),(P_2 在 图中未能显示).

设直线 BC 的函数解析式为 $y = kx + b_1(k \neq 0)$.

因为直线 BC 经过点 B(1,0) 和 C(0,3) ,所以

$$\begin{cases} k + b_1 = 0 \\ b_1 = 3 \end{cases}$$

解得
$$\begin{cases} k = -3 \\ b_1 = 3 \end{cases}$$

所以,直线BC的函数解析式为: y = -3x + 3.

 $\mathbb{Z}P_1P_2//BC$,

可设直线 P_1P_2 的函数解析式为 $y = -3x + b_2$,

因为直线 P_1P_2 经过点D(-1,0),所以

 $3+b_2=0$.

解得 $b_2 = -3$.

所以,直线 P_1P_2 的函数解析式为y = -3x - 3.

根据题意可知,

$$S_{\Delta DBC} = \frac{1}{2} S_{\Delta ABC}$$
.

 $\mathbb{Z}P_1P_2//BC$,

所以,直线 P_1P_2 上任意一点P'与点B,点C连线组成的 $_{\Delta}P'BC$ 的面积都满足 $S_{_{\Delta}P'BC} = \frac{1}{2}S_{_{\Delta}ABC}$.

所以,直线 P_1P_2 与抛物线 $y=-x^2-2x+3$ 的交点 P_1 , P_2 即为所求,可得

$$-3x - 3 = -x^2 - 2x + 3,$$

化简,得

$$x^2 - x - 6 = 0$$
,

解得 $x_1 = 3$, $x_2 = -2$,

所以, 点 P_1 的坐标为(-2,3), 点 P_2 的坐标为(3,-12).

故答案为: 存在, 点 P 的坐标为 (-2,3) 或 (3,-12).

江苏徐州·中考真题

- 10. 如图,点 $A \times B$ 在 $y = \frac{1}{4}x^2$ 的图象上. 已知 $A \times B$ 的横坐标分别为 -2×4 ,直线 AB 与 y 轴交于点 C ,连接 $OA \times OB$.
- (1) 求直线 AB 的函数表达式;
- (2) 求 ΔAOB 的面积;
- (3) 若函数 $y = \frac{1}{4}x^2$ 的图象上存在点 P,使 ΔPAB 的面积等于 ΔAOB 的面积的一半,则这样的点 P 共有 _____个.

解: (1) : 点 A 、 B 在 $y = \frac{1}{4}x^2$ 的图象上, A 、 B 的横坐标分别为 -2 、 4 ,

A(-2,1), B(4,4),

设直线 AB 的解析式为 y = kx + b,

$$\therefore \begin{cases} -2k+b=1\\ 4k+b=4 \end{cases}, \quad \mathbf{\text{pr}} \begin{cases} k=\frac{1}{2}\\ b=2 \end{cases}$$

$$\therefore$$
 直线 AB 为 $y = \frac{1}{2}x + 2$;

(2)
$$\triangle y = \frac{1}{2}x + 2 + 0$$
, $\Rightarrow x = 0$, $y = 2$,

:. C 的坐标为(0,2),

$$\therefore OC = 2$$
,

$$\therefore S_{\Delta AOB} = S_{\Delta AOC} + S_{\Delta BOC} = \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 2 \times 4 = 6 \ .$$

(3)过OC的中点,作AB的平行线交抛物线两个交点 P_1 、 P_2 ,此时 $\triangle P_1AB$ 的面积和 $\triangle P_2AB$ 的面积等于 $\triangle AOB$ 的面积的一半,

作直线 P_1P_2 关于直线 AB 的对称直线,交抛物线两个交点 P_3 、 P_4 ,此时 \triangle P_3AB 的面积和 \triangle P_4AB 的面积等于 $\triangle AOB$ 的面积的一半,

所以这样的点P共有4个,

故答案为4.

【题型3】面积比例问题的转化定值问题或函数表达式

例 3-1 内蒙古通辽市·中考真题

- 11. 已知,如图,抛物线 $y = ax^2 + bx + c(a \neq 0)$ 的顶点为 M(1,9) ,经过抛物线上的两点 A(-3,-7) 和 B(3,m) 的直线交抛物线的对称轴于点 C .
- (1) 求抛物线的解析式和直线 AB 的解析式.
- (2)在抛物线上 A、M 两点之间的部分(不包含 A、M 两点),是否存在点 D,使得 $S_{\Delta DAC} = 2S_{\Delta DCM}$? 若存在,求出点 D 的坐标:若不存在,请说明理由.

【分析】

(1) 设顶点式, 代入A点坐标, 可得解析式为: $y = -x^2 + 2x + 8$.

当 x=3 时, y=5, 故点 B 坐标为 (3, 5), ∴直线 AB 的解析式为: y=2x-1.

(2) 铅垂法表示△ACD 的面积:

设点 D 坐标为 $(m,-m^2+2m+8)$, 过点 D 作 $DP \perp x$ 轴交 $AB \vdash P$ 点,

则 P 点坐标为(m,2m-1), 线段 $DP=-m^2+9$,

$$S_{\Delta ACD} = \frac{1}{2} \times 4 \times (-m^2 + 9) = -2m^2 + 18$$
,

面积公式表示 $\triangle MCD$ 的面积:

过点 D 作 $DQ \perp MC$ 交 MC 于点 Q, 则 DQ = 1 - m,

$$S_{\Delta MCD} = \frac{1}{2} \times MC \times DQ = \frac{1}{2} \times 8 \times (1 - m) = -4m + 4$$

$$S_{\Delta DAC} = 2S_{\Delta DCM}$$
, $-2m^2 + 18 = 2(-4m + 4)$

解得: m=5 或-1. 考虑 D 点在 A、M 之间的抛物线上, 故 m=-1. D 点坐标为 (-1, 5).

2023.辽宁盘锦·中考真题

12. 如图, 抛物线 $y = ax^2 + bx + 3$ 与 x 轴交于点 A(-1,0), B(3,0), 与 Y 轴交于点 C.

(1)求抛物线的解析式.

(2)如图,点E是第一象限内一点,连接AE交Y轴于点D,AE的延长线交抛物线于点P,点F在线段CD上,且CF=OD,连接FA,FE,BE,BP,若 $S_{\triangle AFE}=S_{\triangle ABE}$,求 $\triangle PAB$ 面积.

【答案】(1) $y = -x^2 + 2x + 3$, (2) Q(2.3), (3) $\frac{7}{2}$

【分析】(1) 将点 A(-1,0), B(3,0)代入抛物线 $y = ax^2 + bx + 3$ 得到 $\begin{cases} a - b + 3 = 0 \\ 9a + 3b + 3 = 0 \end{cases}$, 解方程组即可得到答案;

(2) 设 MN = 4m, BN = 3m, 则 BM = QM = 5m, 则 QN = 9m, ON = 3 - 3m, 从而表示出点 Q 的 坐标为 (3-3m,9m), 代入抛物线解析式, 求出 m 的值即可得到答案;

(3) 求出直线 AP 的表达式,利用 $S_{\triangle AFE} = S_{\triangle ABE}$,得到 $\frac{1}{2}DF \cdot (x_A - x_E) = \frac{1}{2}AB \cdot y_E$,求出点 P 的坐标,再根据 $S_{\triangle PAB} = \frac{1}{2}AB \times y_P$ 进行计算即可得到答案.

【详解】(1) 解: : 抛物线 $y = ax^2 + bx + 3 = x$ 轴交于点 A(-1,0), B(3,0),

(2) 解: 设点 $P(m, -m^2 + 2m + 3)$, 直线 AP 的解析式为 y = kx + b,

∴
$$A(-1,0)$$
, ∴ $\begin{cases} -k+b=0 \\ km+b=-m^2+2m+3 \end{cases}$, 解得: $\begin{cases} k=-(m-3) \\ b=-(m-3) \end{cases}$,

:. 直线 AP 的解析式为 y = -(m-3)x - (m-3), 当 x = 0 时, y = -(m-3) = 3 - m,

$$\therefore (0.3-m)$$
, $\therefore OD = 3-m$, $\therefore CF = OD = 3-m$,

在抛物线 $y = -x^2 + 2x + 3$ 中, 当 x = 0 时, y = 3, $\therefore C(0.3)$, $\therefore OC = 3$,

$$\therefore DF = OC - OD - CF = 3 - (3 - m) - (3 - m) = 2m - 3$$

设点 E 的坐标为 (t, -(m-3)t - (m-3)), $\therefore A(-1,0)$, B(3,0), $\therefore AB = 4$, $\therefore S_{\triangle AFE} = S_{\triangle ABE}$,

$$\therefore \frac{1}{2}DF \cdot (x_A - x_E) = \frac{1}{2}AB \cdot y_E, \quad \therefore \frac{1}{2} \times (2m - 3) \times (t + 1) = \frac{1}{2} \times 4 \times \left[-(m - 3)t - (m - 3) \right],$$

解得:
$$m = \frac{5}{2}$$
, ∴点 P 的坐标为 $\left(\frac{5}{2}, \frac{7}{4}\right)$, ∴ $S_{\Delta PAB} = \frac{1}{2}AB \times y_P = \frac{1}{2} \times 4 \times \frac{7}{4} = \frac{7}{2}$.

13. 在平面直角坐标系 xOy 中,已知抛物线 $y = ax^2 + bx$ 经过 A (4, 0),B (1, 4) 两点. P 是抛物线上一点,且在直线 AB 的上方.

- (1)求抛物线的解析式;
- (2)若 $\triangle OAB$ 面积是 $\triangle PAB$ 面积的 2 倍,求点 P 的坐标

【答案】(1)
$$y = -\frac{4}{3}x^2 + \frac{16}{3}x$$
, (2)存在, $\left(2, \frac{16}{3}\right)$ 或 (3, 4)

【分析】(1) 待定系数法求解析式即可求解;

(2) 待定系数法求得直线 AB 的解析式为 $y = -\frac{4}{3}x + \frac{16}{3}$,过点 P 作 $PM \perp x$ 轴,垂足为 M, PM 交 AB 于 点 N . 过 点 B 作 $BE \perp PM$, 垂 足 为 E . 可 得 $S_{\triangle PAB} = S_{\triangle PNB} + S_{\triangle PNA} = \frac{3}{2}PN$, 设 $P\left(m, -\frac{4}{3}m^2 + \frac{16}{3}m\right)(1 < m < 4)$,则 $N\left(m, -\frac{4}{3}m + \frac{16}{3}\right)$. 由 $PN = \left(-\frac{4}{3}m^2 + \frac{16}{3}m\right) - \left(-\frac{4}{3}m + \frac{16}{3}\right) = \frac{8}{3}$,解方程求得 m 的值,进而即可求解;

【详解】(1) 解: (1) 将 A (4, 0), B (1, 4) 代入 $y = ax^2 + bx$,

得
$$\left\{ egin{aligned} a+4b&=0 \\ a+b&=4 \end{aligned} \right.$$
 解 解 $\left\{ egin{aligned} a=-rac{4}{3} \\ b=rac{16}{3} \end{aligned} \right.$ 所以抛物线的解析式为 $y=-rac{4}{3}x^2+rac{16}{3}x$.

(2) 设直线 AB 的解析式为 $y = kx + t(k \neq 0)$,

将 A (4, 0), B (1, 4) 代入 y = kx + t,

过点 P 作 $PM \perp x$ 轴,垂足为 M,PM 交 AB 于点 N. 过点 B 作 $BE \perp PM$,垂足为 E.

 $\text{Ff VX } S_{\triangle PAB} = S_{\triangle PNB} + S_{\triangle PNA} = \frac{1}{2} PN \times BE + \frac{1}{2} PN \times AM = \frac{1}{2} PN \times \left(BE + AM\right) = \frac{3}{2} PN \text{ .}$

因为 A (4, 0), B (1, 4), 所以 $S_{\triangle OAB} = \frac{1}{2} \times 4 \times 4 = 8$.

因为 $\triangle OAB$ 的面积是 $\triangle PAB$ 面积的 2 倍,所以 $2 \times \frac{3}{2} PN = 8$, $PN = \frac{8}{3}$.

设
$$P\left(m, -\frac{4}{3}m^2 + \frac{16}{3}m\right) (1 < m < 4)$$
,则 $N\left(m, -\frac{4}{3}m + \frac{16}{3}\right)$.

$$\text{FT VX } PN = \left(-\frac{4}{3}m^2 + \frac{16}{3}m\right) - \left(-\frac{4}{3}m + \frac{16}{3}\right) = \frac{8}{3} \text{ , } \text{ PP } -\frac{4}{3}m^2 + \frac{20}{3}m - \frac{16}{3} = \frac{8}{3} \text{ , }$$

解得 $m_1 = 2$, $m_2 = 3$. 所以点 P 的坐标为 $\left(2, \frac{16}{3}\right)$ 或 (3, 4). zz

2022·福建·统考模拟预测

14. 在平面直角坐标系 xOy 中,已知抛物线 $y = ax^2 + bx$ 经过 A (4, 0),B (1, 4) 两点. P 是抛物 线上一点,且在直线 AB 的上方.

(1)求抛物线的解析式;

(2)若 $\triangle OAB$ 面积是 $\triangle PAB$ 面积的 2 倍, 求点 P 的坐标;

【答案】(1)
$$y = -\frac{4}{3}x^2 + \frac{16}{3}x$$

(2)存在,
$$\left(2,\frac{16}{3}\right)$$
或 (3, 4)

【分析】(1) 待定系数法求解析式即可求解;

(2) 待定系数法求得直线 AB 的解析式为 $y=-\frac{4}{3}x+\frac{16}{3}$, 过点 P 作 $PM \perp x$ 轴,垂足为 M , PM 交 AB 于点 N . 过点 B 作 $BE \perp PM$, 垂足为 E . 可得 $S_{\triangle PAB} = S_{\triangle PNB} + S_{\triangle PNA} = \frac{3}{2}PN$,设 $P\left(m, -\frac{4}{3}m^2 + \frac{16}{3}m\right)(1 < m < 4)$,则 $N\left(m, -\frac{4}{3}m + \frac{16}{3}\right)$. 由 $PN = \left(-\frac{4}{3}m^2 + \frac{16}{3}m\right) - \left(-\frac{4}{3}m + \frac{16}{3}\right) = \frac{8}{3}$,解方程求得 m 的值,进而即可求解;

【详解】(1) 解: (1) 将 A (4, 0), B (1, 4) 代入 $y = ax^2 + bx$,

得
$$\left\{ egin{aligned} a+4b&=0 \\ a+b&=4 \end{aligned}
ight.$$
 解 解 $\left\{ egin{aligned} a=-rac{4}{3} \\ b=rac{16}{3} \end{aligned}
ight.$ 所以 抛 物 线 的 解 析 式 为 $y=-rac{4}{3}x^2+rac{16}{3}x$.

(2) 设直线 AB 的解析式为 $y = kx + t(k \neq 0)$,

将 A (4, 0), B (1, 4) 代入 y = kx + t,

得
$$\begin{cases} 4k + t = 0 \\ k + t = 4 \end{cases}$$

解得
$$\begin{cases} k = -\frac{4}{3} \\ t = \frac{16}{3} \end{cases}$$

所以直线 AB 的解析式为 $y = -\frac{4}{3}x + \frac{16}{3}$.

过点P作 $PM \perp x$ 轴, 垂足为M, PM 交AB 于点N. 过点B作 $BE \perp PM$, 垂足为E.

 $\text{FT is } S_{\triangle PAB} = S_{\triangle PNB} + S_{\triangle PNA} = \frac{1}{2}PN \times BE + \frac{1}{2}PN \times AM = \frac{1}{2}PN \times \left(BE + AM\right) = \frac{3}{2}PN \text{ .}$

因为 A (4, 0), B (1, 4), 所以 $S_{\triangle OAB} = \frac{1}{2} \times 4 \times 4 = 8$.

因为 $\triangle OAB$ 的面积是 $\triangle PAB$ 面积的 2 倍,

所以
$$2 \times \frac{3}{2} PN = 8$$
 , $PN = \frac{8}{3}$.

设
$$P\left(m, -\frac{4}{3}m^2 + \frac{16}{3}m\right) (1 < m < 4)$$
,则 $N\left(m, -\frac{4}{3}m + \frac{16}{3}\right)$.

FT VX
$$PN = \left(-\frac{4}{3}m^2 + \frac{16}{3}m\right) - \left(-\frac{4}{3}m + \frac{16}{3}\right) = \frac{8}{3}$$
,

$$\mathbb{E}p - \frac{4}{3}m^2 + \frac{20}{3}m - \frac{16}{3} = \frac{8}{3}$$
,

解得 $m_1 = 2$, $m_2 = 3$.

所以点P的坐标为 $\left(2,\frac{16}{3}\right)$ 或(3, 4).

【题型4】面积比例问题的转化为线段比

例 4-1

- 15. 如图, 抛物线 $y = ax^2 + 2x + c(a < 0)$ 与 x 轴交于点 A 和点 B (点 A 在原点的左侧, 点 B 在原点的右侧),与 y 轴交于点 C , OB = OC = 3 .
- (1) 求该抛物线的函数解析式.
- (2)如图,连接 BC,点 D 是直线 BC 上方抛物线上的点,连接 OD, CD . OD 交 BC 于点 F ,当 $S_{\Delta COF}: S_{\Delta CDF}=3:2$ 时,求点 D 的坐标.

【分析】

- (1) 解析式: $y = -x^2 + 2x + 3$
- (2) 显然 $\triangle COF$ 和 $\triangle CDF$ 共高,可将面积之比化为底边之比.

 $OF: DF = S_{\triangle COF}: S_{\triangle CDF} = 3:2$,

思路1:转化底边之比为"A"字型线段比

在 y 轴上取点 E(0, 5), (为何是这个点? 因此此时 OC: CE=3: 2)

过点E作BC的平行线交x轴于G点,

EG与抛物线交点即为所求 D点,

根据平行线分线段成比例, OF: FD=OC: CE=3: 2.

直线 EG 解析式为: y=-x+5,

与抛物线联立方程, 得: $-x^2 + 2x + 3 = -x + 5$,

解得: $x_1 = 1$, $x_2 = 2$.

故 D 点坐标为 (1, 4) 或 (2, 3).

思路 2: 转化底边之比为"8"字型线段比

过点 D 作 DG//y 轴交 BC 边于点 G,则 $\frac{OF}{FD} = \frac{OC}{DG}$,又 OC = 3,故点 G 满足 DG = 2 即可. 这个问题设 D 点坐标即可求解.

也可以构造水平"8"字,过点 D 作 DG//x 轴交 BC 于点 G,则 $\frac{OF}{FD} = \frac{OB}{DG}$,又 OB = 3, $\therefore DG = 2$ 即可. 但此处问题在于水平线段不如竖直线段易求,方法可行但不建议.

其实本题分析点的位置也能解:

思路 3: 设点 D 坐标为 $(m,-m^2+2m+3)$,

根据 OF: DF=3: 2, 可得 F 点坐标为 $\left(\frac{3}{5}m, -\frac{3}{5}m^2 + \frac{6}{5}m + \frac{9}{5}\right)$,

点 F 在直线 BC 上,将点坐标代入直线 BC 解析式:y=-x+3,

$$-\frac{3}{5}m^2 + \frac{6}{5}m + \frac{9}{5} = -\frac{3}{5}m + 3,$$

解得 $m_1 = 1$, $m_2 = 2$,

故 D 点坐标为 (1, 4) 或 (2, 3).

这个计算的方法要求能理解比例与点坐标之间的关系,即由D点坐标如何得到F点坐标.

深圳市中考真题

16. 如图抛物线经 $y = ax^2 + bx + c$ 过点 A(-1,0) , 点 C(0,3) , 且 OB = OC .

- (1) 求抛物线的解析式及其对称轴;
- (2) 点 P 为抛物线上一点,连接 CP ,直线 CP 把四边形 CBPA 的面积分为 3:5 两部分,求点 P 的坐标.

【分析】

- (1) 解析式为 $y = -x^2 + 2x + 3$, 对称轴为直线 x=1.
- (2) 连接 CP, 可将四边形 CBPA 分为 $\triangle CAP$ 和 $\triangle CBP$.

即 $S_{\triangle CAP}: S_{\triangle CBP} = 3:5$ 或 $S_{\triangle CAP}: S_{\triangle CBP} = 5:3$.

考虑 $\triangle CAP$ 和 $\triangle CBP$ 共底边 CP, 记 CP 与 x 轴交于点 M, 则 $S_{\triangle CAP}: S_{\triangle CBP} = AM: BM$

①AM: BM=5: 3, 点 M 坐标为 $\left(\frac{3}{2},0\right)$,

根据 C、M 坐标求解直线 CM 解析式: y = -2x + 3,

联立方程: $-x^2 + 2x + 3 = -2x + 3$, 解得: $x_1 = 0$ (舍), $x_2 = 4$.

故 P 点坐标为 (4, -5).

②AM: BM=3: 5, 点 M 坐标为 $\left(\frac{1}{2},0\right)$,

根据 C、M 坐标求解直线 CM 解析式为: y = -6x + 3,

联立方程: $-x^2 + 2x + 3 = -6x + 3$, 解得: $x_1 = 0$ (舍), $x_2 = 8$.

故 P 点坐标为 (8, -45).

牡丹江中考真题

- 17. 抛物线 $y = -x^2 + bx + c$ 经过点 A(-3,0) 和点 C(0,3).
- (1) 求此抛物线所对应的函数解析式,并直接写出顶点D的坐标;
- (2) 若过顶点 D 的直线将 ΔACD 的面积分为1:2 两部分,并与x 轴交于点 Q,则点 Q 的坐标为 ____.

注: 抛物线
$$y = ax^2 + bx + c(a \neq 0)$$
 的顶点坐标 $(-\frac{b}{2a}, \frac{4ac - b^2}{4a})$

【淘宝店铺: 向阳百分百】

解: (1) 把点 A(-3,0) 和点 C(0,3) 代入 $y = -x^2 + bx + c$ 得: $\begin{cases} -9 - 3b + c = 0 \\ c = 3 \end{cases}$

解得:
$$\begin{cases} b = -2 \\ c = 3 \end{cases}$$
, $\therefore y = -x^2 - 2x + 3$, $\therefore y = -x^2 - 2x + 3 = -(x+1)^2 + 4$,

∴顶点 D(-1,4).

(2) 取线段 AC 的三等分点 $E \times F$, 连接 $DE \times DF$ 交 x 轴于点 $Q_1 \times Q_2$, 则:

 $S_{\Delta DAE}: S_{\Delta DEC} = 1:2$, $S_{\Delta DAF}: S_{\Delta DFC} = 2:1$, $\therefore A(-3,0)$, C(0,3),

 $\therefore E(-2,1)$, F(-1,2) , $\therefore DF \perp x$ 轴于点 Q_2 , $\therefore Q_2(-1,0)$,

设直线 DE 的解析式为: $y = kx + b(k \neq 0)$,

把点
$$D(-1,4)$$
, $E(-2,1)$ 代入,得:
$$\begin{cases} -k+b=4 \\ -2k+b=1 \end{cases}$$
, 解得:
$$\begin{cases} k=3 \\ b=7 \end{cases}$$

:. 直线 DE 的表达式为: y=3x+7,

当
$$y = 0$$
 时, $x = -\frac{7}{3}$, $\therefore Q_1(-\frac{7}{3}, 0)$.

故答案为: $Q_1(-\frac{7}{3}, 0)$, $Q_2(-1,0)$.

2022·四川内江中考真题

18. 如图,抛物线 $y=ax^2+bx+c$ 与 x 轴交于 A (- 4, 0),B (2, 0),与 y 轴交于点 C (0, 2).

- (1)求这条抛物线所对应的函数的表达式;
- (2)点 P 为抛物线上一点,连接 CP,直线 CP 把四边形 CBPA 的面积分为 1:5 两部分,求点 P 的坐

标.

【答案】(1)
$$y = -\frac{1}{4}x^2 - \frac{1}{2}x + 2$$
, (2) 点 P 的坐标为(6, -10)或($-\frac{14}{3}$, $-\frac{10}{9}$).

【分析】(1)运用待定系数法即可解决问题;

(2)过点 D 作 $DH \perp AB$ 于 H, 交直线 AC 于点 G, 过点 D 作 $DE \perp AC$ 于 E, 可用待定系数法求出直线 AC 的解析式,设点 D 的横坐标为 m,则点 G 的横坐标也为 m,从而可以用 m 的代数式表示出 DG,然后利用 $\cos \angle EDG = \cos \angle CAO$ 得到 $DE = \frac{2\sqrt{5}}{5}DG$, 可得出关于 m 的二次函数,运用二次函数的最值即可解决问题

【详解】(1) : 抛物线 $y=ax^2+bx+c$ 与 x 轴交于 A (-4,0), B (2,0), 与 y 轴交于点 C (0,2).

(2) 如图, 设直线 CP 交x 轴于点E,

直线 CP 把四边形 CBPA 的面积分为 1:5 两部分,

 $\mathbb{X} : S \triangle PCB : S \triangle PCA = \frac{1}{2} EB \times (y_C - y_P) : \frac{1}{2} AE \times (y_C - y_P) = EB : AE ,$

则 EB: AE=1: 5 或 5: 1

则 AE=5 或 1,

即点E的坐标为(1,0)或(-3,0),

将点 E 的坐标代入直线 CP 的表达式: y=nx+2,

解得: n = -2 或 $\frac{2}{3}$,

故直线 *CP* 的表达式为: y = -2x+2 或 $y = \frac{2}{3}x+2$,

联立方程组
$$\begin{cases} y = -2x + 2 \\ y = -\frac{1}{4}x^2 - \frac{1}{2}x + 2 \end{cases} \begin{cases} y = \frac{2}{3}x + 2 \\ y = -\frac{1}{4}x^2 - \frac{1}{2}x + 2 \end{cases}$$

解得: x=6 或 $-\frac{14}{3}$ (不合题意值已舍去),

故点P的坐标为 (6, -10) 或 ($-\frac{14}{3}$, $-\frac{10}{9}$).

2023.四川泸州中考真题

19. 如图,在平面直角坐标系 xOy 中,已知抛物线 $y = ax^2 + 2x + c$ 与坐标轴分别相交于点 A, B, C(0,6) 三点,其对称轴为 x = 2 .

(1)求该抛物线的解析式;

(2)点F是该抛物线上位于第一象限的一个动点,直线AF分别与Y轴,直线BC交于点D, E.

①当CD = CE时,求CD的长;

②若 $\triangle CAD$, $\triangle CDE$, $\triangle CEF$ 的面积分别为 S_1 , S_2 , S_3 , 且满足 $S_1 + S_3 = 2S_2$, 求点F 的坐标.

【答案】(1)
$$y = -\frac{1}{2}x^2 + 2x + 6$$

(2) $18 - 2\sqrt{2}$; 2F(4,6)

【分析】(1) 根据抛物线对称轴为x=2,可得 $-\frac{2}{2a}=2$,求得 $a=-\frac{1}{2}$,再将C(0,6)代入抛物线,根据待定系数法求得c. 即可解答:

(2) ①求出点B, 点A 的坐标,即可得到直线BC 的解析式为y=-x+6,设CD=a,则D(0,6-a),求得AD 的解析式,列方程求出点E 的坐标,最后根据CD=CE 列方程,即可求出CD 的长;

②过 E,F 分别作 AB 的垂线段,交 AB 于点 G,H ,过点 D 作 EG 的垂线段,交 EG 于点 I ,根据 $S_1+S_3=2S_2$,可得 AD+EF=2DE ,即 $\frac{DE}{AF}=\frac{1}{3}$,证明 $\triangle DEI \hookrightarrow \triangle AFB$,设 $F\left(h,-\frac{1}{2}h^2+2h+6\right)$,得 到直线 AF 的解析式,求出点 D 的坐标,即可得到点 E 的坐标,将点 E 的坐标代入 y=-x+6 解方程,即可解答.

【详解】(1) 解:根据抛物线的对称轴为x=2.

得
$$-\frac{2}{2a}=2$$
,

解得
$$a = -\frac{1}{2}$$
,

将C(0,6)代入抛物线可得6=c,

:. 抛物线的解析式为
$$y = -\frac{1}{2}x^2 + 2x + 6$$
;

(2) **M**: y = 0 **H**, $q = -\frac{1}{2}x^2 + 2x + 6$,

解得 $x_1 = 6$, $x_2 = -2$,

 $\therefore A(-2,0)$, B(6,0),

设 CB 的解析式为 y=kx+b, 将 C(0,6), B(6,0)代入 y=kx+b,

$$\left. \begin{array}{l}
 6 = b \\
 0 = 6k + b
 \end{array} \right.$$

解得
$$\begin{cases} k = -1 \\ b = 6 \end{cases}$$

 $\therefore CB$ 的解析式为 y = -x + 6,

设CD = a, 则D(0,6-a),

设 AD 的解析式为 $y = k_1 x + b_1$, 将 D(0,6-a), A(-2,0) 代入 $y = k_1 x + b_1$,

$$\left\{
 \begin{array}{l}
 6 - a = b_1 \\
 0 = -2k_1 + b_1
 \end{array}\right.$$

解得
$$\begin{cases} k_1 = \frac{6-a}{2} \\ b_1 = 6-a \end{cases}$$

 $\therefore AB$ 的解析式为 $y = \frac{6-a}{2}x + 6-a$,

联立方程
$$\begin{cases} y = -x + 6 \\ y = \frac{6-a}{2}x + 6-a \end{cases},$$

解得
$$\begin{cases} x = \frac{2a}{8-a} \\ y = \frac{48-8a}{8-a} \end{cases}$$

根据
$$CD = CE$$
 , 得 $a = \sqrt{\left(\frac{2a}{8-a}\right)^2 + \left(\frac{48-8a}{8-a} - 6\right)^2}$,

解得 $a_1 = 8 - 2\sqrt{2}$, $a_2 = 8 + 2\sqrt{2}$,

经检验, $a_1 = 8 - 2\sqrt{2}$, $a_2 = 8 + 2\sqrt{2}$ 是方程的解,

:: 点 F 是该抛物线上位于第一象限的一个动点,

:D在Y轴正半轴,

 $\therefore a < 6$

$$\therefore a = 8 - 2\sqrt{2}$$

即 CD 的长为 $8-2\sqrt{2}$;

②解:如图,过E,F分别作AB的垂线段,交AB于点G,H,过点D作EG的垂线段,交EG于点I,

$$:: S_1 + S_3 = 2S_2$$

$$\therefore AD + EF = 2DE$$

$$\therefore \frac{DE}{AF} = \frac{1}{3},$$

设
$$F\left(h, -\frac{1}{2}h^2 + 2h + 6\right)$$
 , 则 $AH = h + 2$,

$$:: EG \perp AB, FH \perp AB$$

$$\therefore EG // FH$$
,

$$\therefore \angle DEI = \angle AFB$$
,

$$::DI\perp EG$$
.

$$\therefore \angle DIE = 90^{\circ}$$

$$\triangle DEI \triangle AFB$$
,

∴
$$DI = \frac{1}{3}AB = \frac{1}{3}h + \frac{2}{3}$$
, 即点 D 的横坐标为 $\frac{1}{3}h + \frac{2}{3}$,

$$EI = \frac{1}{3}FH = -\frac{1}{6}h^2 + \frac{2}{3}h + 2$$
,

设 AF 的解析式为
$$y = k_2 x + b_2$$
, 将 $A(-2,0)$, $F(h, -\frac{1}{2}h^2 + 2h + 6)$,

代入得
$$\begin{cases} 0 = -2k_2 + b_2 \\ -\frac{1}{2}h^2 + 2h + 6 = k_2h + b_2 \end{cases},$$

解得
$$\begin{cases} k_2 = -\frac{1}{2}h + 3\\ b_2 = -h + 6 \end{cases}$$

$$\therefore AF 的解析式为 y = \left(-\frac{1}{2}h + 3\right)x - h + 6,$$

$$\therefore D(0,-h+6), \quad \mathbb{F}^p DO = -h+6,$$

$$\therefore \angle DOG = 90^{\circ}$$

$$\therefore IG = DO = -h + 6$$

$$\therefore EG = EI + IG = -\frac{1}{6}h^2 - \frac{1}{3}h + 8, \quad \text{PP}\ E\left(\frac{1}{3}h + \frac{2}{3}, -\frac{1}{6}h^2 - \frac{1}{3}h + 8\right),$$

将
$$E\left(\frac{1}{3}h + \frac{2}{3}, -\frac{1}{6}h^2 - \frac{1}{3}h + 8\right)$$
 代入 $y = -x + 6$,

得
$$-\frac{1}{6}h^2 - \frac{1}{3}h + 8 = -\frac{1}{3}h - \frac{2}{3} + 6$$
,

解得
$$h_1 = 4$$
, $h_2 = -4 < 0$ (含去), $\therefore F(4,6)$.

2022·四川内江中考真题

20. 如图, 抛物线 $y=ax^2+bx+c$ 与 x 轴交于 A(-4,0), B(2,0), 与 y 轴交于点 C(0,2).

- (1)求这条抛物线所对应的函数的表达式;
- (2)点 P 为抛物线上一点,连接 CP,直线 CP 把四边形 CBPA 的面积分为 1:5 两部分,求点 P 的坐标.

【答案】(1)
$$y = -\frac{1}{4}x^2 - \frac{1}{2}x + 2$$

(2)点 P 的坐标为(6, -10)或($-\frac{14}{3}$, $-\frac{10}{9}$).

【分析】(1)运用待定系数法即可解决问题;

(2) 根据 $S_{\triangle}PCB$: $S_{\triangle}PCA = \frac{1}{2}EB \times (y_C - y_P) : \frac{1}{2}AE \times (y_C - y_P) = BE : AE$, 即可求解.

【详解】(1) : 抛物线 $y=ax^2+bx+c$ 与 x 轴交于 A (-4,0), B (2,0), 与 y 轴交于点 C (0,2).

$$\therefore \begin{cases}
16a - 4b + c = 0 \\
4a + 2b + c = 0 \\
c = 2
\end{cases}$$

解得:
$$\begin{cases} a = -\frac{1}{4} \\ b = -\frac{1}{2} \\ c = 2 \end{cases}$$

- ∴ 抛物线的解析式为 $y = -\frac{1}{4}x^2 \frac{1}{2}x + 2$;
- (2) 如图,设直线CP交x轴于点E,

直线 CP 把四边形 CBPA 的面积分为 1: 5 两部分,

 $\mathbb{X} : S_{\triangle}PCB: S_{\triangle}PCA = \frac{1}{2}EB \times (y_C - y_P): \frac{1}{2}AE \times (y_C - y_P) = EB: AE$

则 EB: AE=1: 5 或 5: 1

则 AE = 5 或 1,

即点 E 的坐标为 (1, 0) 或 (-3, 0),

将点E的坐标代入直线CP的表达式:y=nx+2,

解得: n = -2 或 $\frac{2}{3}$,

故直线 *CP* 的表达式为: y = -2x + 2 或 $y = \frac{2}{3}x + 2$,

联立方程组
$$\begin{cases} y = -2x + 2 \\ y = -\frac{1}{4}x^2 - \frac{1}{2}x + 2 \end{cases} \begin{cases} y = \frac{2}{3}x + 2 \\ y = -\frac{1}{4}x^2 - \frac{1}{2}x + 2 \end{cases},$$

解得: x=6 或 $-\frac{14}{3}$ (不合题意值已舍去),

故点 P 的坐标为 (6, -10) 或 ($-\frac{14}{3}$, $-\frac{10}{9}$).

【题型5】 米勒角(最大张角问题)

例题 5-1

21. 如图,在平面直角坐标系中,A (1, 0)、B (5, 0) 直线 l 经过点 C (-1, 2),点 P 是直线 l 上的动点,若 $\angle APB$ 的最大值为 45°,求直线 l 的解析式.

【分析】

考虑到直线 l 未知但 $\angle APB$ 的最大值已知为 45° ,故构造圆. 记 $\triangle ABP$ 外接圆圆心为 M 点,则 $\angle AMB=2$ $\angle APB=90^{\circ}$,

故可确定M点位置.

根据A(1, 0)、B(5, 0), 不难求得M点坐标为(3, 2),

连接MC、MP, 考虑到圆M与直线CP相切,故 $MP \perp CP$, $\triangle CPM$ 是直角三角形.

 $\therefore MC=4$, $MP=MA=2\sqrt{2}$,

 $\therefore CP = 2\sqrt{2}$, 即 $\triangle CPM$ 是等腰直角三角形,

易求 P 点坐标为 (1, 4),

又 C 点坐标为 (-1, 2),

可求直线 l 的解析式为 y=x+3.

山东烟台中考真题

- 22. 如图,抛物线 $y = ax^2 + bx + 3$ 与 x 轴交于 A (-1, 0)、B 两点,与 y 轴交于点 C,过点 C 作 CD $\bot y$ 轴交抛物线于另一点 D,作 $DE \bot x$ 轴,垂足为点 E,双曲线 $y = \frac{6}{x}(x > 0)$ 经过点 D,BD.
- (1) 求抛物线的表达式;
- (2) 动点 P 从点 O 出发,以每秒 1 个单位长度的速度沿 OC 方向运动,运动时间为 t 秒,当 t 为何值时, $\angle BPD$ 的度数最大? (请直接写出结果)

【分析】

- (1) 考虑到点 D 纵坐标与点 C 相同,为 3,代入反比例解析式,可得 D 点坐标为(2,3),根据 A、D 坐标可得抛物线解析式: $y = -x^2 + 2x + 3$.
- (2) 求t即求P点位置.

思路 2: 切割线定理

延长 BD 交 y 轴于 M 点,则当 $MP^2 = MD \cdot MB$ 时, \angle BPD 最大.

考虑到 B (3, 0)、D (2, 3), 可得直线 BD 解析式: y = -3x + 9, 故直线 BD 与 y 轴交点 M 点坐标为 (0, 9),

 $MD = 2\sqrt{10}$, $MB = 3\sqrt{10}$,

 $\therefore MP^2 = MD \cdot MB = 60,$

 $\therefore MP = 2\sqrt{15}$,

∴P 点坐标为 $(0,9-2\sqrt{15})$,

故 t 的值为 $9-2\sqrt{15}$.

2023·四川宜宾中考真题

23. 如图, 抛物线 $y = ax^2 + bx + c$ 与 x 轴交于点 A(-4,0) 、 B(2,0) ,且经过点 C(-2,6) .

(1)求抛物线的表达式;

(2)在x 轴上方的抛物线上任取一点N,射线AN、BN 分别与抛物线的对称轴交于点P、Q,点Q 关于x 轴的对称点为Q',求 $\triangle APQ'$ 的面积;

(3)点 $M \neq y$ 轴上一动点, 当 $\angle AMC$ 最大时, 求 M 的坐标.

【答案】(1) $y = -\frac{3}{4}x^2 - \frac{3}{2}x + 6$

$$(2) S_{\Delta APQ'} = \frac{81}{4}$$

(3)
$$M(0.12-4\sqrt{5})$$

【分析】(1) 设抛物线的解析式为 y=a(x+4)(x-2), 代入点 C 的坐标, 确定 a 值即可.

(2) $\frac{1}{2}N\left(m,-\frac{3}{4}m^2-\frac{3}{2}m+6\right)$, $\frac{1}{2}(4N)$ 的解析式为 y=kx+b, $\frac{1}{2}(4N)$ 的解析式为 y=px+q, $\frac{1}{2}(4N)$

示出P, Q, Q'的坐标, 进而计算即可.

(3) 当M是y轴与经过A, C, M三点的圆的切点是最大计算即可.

【详解】(1) : 抛物线 $y = ax^2 + bx + c = x$ 轴交于点 A(-4,0)、 B(2,0),

∴设抛物线的解析式为y = a(x+4)(x-2),

$$\therefore 6 = a(-2+4)(-2-2)$$
,

解得
$$a = -\frac{3}{4}$$
,

$$\therefore y = -\frac{3}{4}(x+4)(x-2)$$
,

$$\therefore y = -\frac{3}{4}x^2 - \frac{3}{2}x + 6.$$

(2) 如图, 当点 N 在对称轴的右侧时,

$$y = -\frac{3}{4}x^2 - \frac{3}{2}x + 6 = -\frac{3}{4}(x+1)^2 + \frac{27}{4}$$
,

∴对称轴为直线 x=-1,

设
$$N\left(m, -\frac{3}{4}m^2 - \frac{3}{2}m + 6\right)$$
, 直线 AN 的解析式为 $y = kx + b$, 直线 BN 的解析式为 $y = px + q$,

$$\therefore \begin{cases}
-4k + b = 0 \\
mk + b = -\frac{3}{4}m^2 - \frac{3}{2}m + 6
\end{cases}
\begin{cases}
2p + q = 0 \\
mp + q = -\frac{3}{4}m^2 - \frac{3}{2}m + 6
\end{cases}$$

解得
$$\begin{cases} k = \frac{-\frac{3}{4}m^2 - \frac{3}{2}m + 6}{m+4}, \\ b = \frac{-3m^2 - 6m + 24}{m+4}, \end{cases} = \frac{-\frac{3}{4}m^2 - \frac{3}{2}m + 6}{m-2},$$

.. 直线
$$AN$$
 的解析式为 $y = \frac{-\frac{3}{4}m^2 - \frac{3}{2}m + 6}{m + 4}x + \frac{-3m^2 - 6m + 24}{m + 4}$, 直线 BN 的解析式为

$$y = \frac{-\frac{3}{4}m^2 - \frac{3}{2}m + 6}{m - 2}x + \frac{\frac{3}{2}m^2 + 3m - 12}{m - 2},$$

발
$$x = -1$$
 타, $y = \frac{-\frac{3}{4}m^2 - \frac{3}{2}m + 6}{m + 4} \times (-1) + \frac{-3m^2 - 6m + 24}{m + 4} = \frac{-\frac{9}{4}m^2 - \frac{9}{2}m + 18}{m + 4} = -\frac{9}{4}(n - 2)$

$$y = \frac{-\frac{3}{4}m^2 - \frac{3}{2}m + 6}{m - 2} \times (-1) + \frac{\frac{3}{2}m^2 + 3m - 12}{m - 2} = \frac{\frac{9}{4}m^2 + \frac{9}{2}m - 18}{m - 2} = \frac{9}{4}(m + 4)$$

:
$$P\left(-1, -\frac{9}{4}(m-2)\right)$$
, $Q\left(-1, \frac{9}{4}(m+4)\right)$, $Q'\left(-1, -\frac{9}{4}(m+4)\right)$,

$$\therefore PQ' = -\frac{9}{4}(m-2) + \frac{9}{4}(m+4) = \frac{27}{2}$$
,

$$\therefore S_{\triangle APQ'} = \frac{1}{2} \times \frac{27}{2} \times 3 = \frac{81}{4}.$$

如图, 当点N在对称轴的左侧时,

$$y = -\frac{3}{4}x^2 - \frac{3}{2}x + 6 = -\frac{3}{4}(x+1)^2 + \frac{27}{4},$$

if
$$N\left(m, -\frac{3}{4}m^2 - \frac{3}{2}m + 6\right)$$
, $P\left(-1, -\frac{9}{4}(m-2)\right)$, $Q\left(-1, \frac{9}{4}(m+4)\right)$, $Q'\left(-1, -\frac{9}{4}(m+4)\right)$,

$$PQ' = -\frac{9}{4}(m-2) + \frac{9}{4}(m+4) = \frac{27}{2}$$
,

$$\therefore S_{\triangle APQ'} = \frac{1}{2} \times \frac{27}{2} \times 3 = \frac{81}{4}.$$

综上所述,
$$S_{\Delta APQ'} = \frac{81}{4}$$
.

(3) 当 $\triangle AMC$ 的外接圆与OM 相切, 切点为M时, $\angle AMC$ 最大,

设外接圆的圆心为 E, O 是异于点 M 的一点, 连接 QA, QC, QA 交圆于点 T,

则 $\angle AMC = \angle ATC$, 根据三角形外角性质, 得 $\angle ATC > \angle AQC$, 故 $\angle AMC > \angle AQC$,

∴ ∠AMC 最大,

设OA与圆交于点H,连接MH,ME,根据切线性质,

$$\angle EMO = \angle MOA = 90^{\circ}$$
.

作直径HN,连接MN,

$$\therefore$$
 $\angle HMN = 90^{\circ}$, $\angle MNH = \angle MAH$,

$$EM = EH$$
.

$$\angle EMH = \angle EHM$$
,

$$\therefore 90^{\circ} - \angle EMH = 90^{\circ} - \angle EHM$$

$$\therefore \angle OMH = \angle MNH = \angle MAH$$
,

$$\therefore \triangle OMH \hookrightarrow \triangle OAM$$
,

$$\therefore \frac{OM}{OA} = \frac{OH}{OM}$$

$$\therefore OM^2 = OA \cdot OH$$

设
$$OM = y, OH = x$$
.则 $AH = 4 - x$.

$$\therefore y^2 = 4x$$
,

$$\therefore y = 2\sqrt{x}$$

过点 E 作 $EF \perp OA$, 垂足为 F, 过点 C 作 $CG \perp OA$, 垂足为 G, 交 EM 于点 P,

根据垂径定理, 得 $AF = FH = \frac{4-x}{2}$, 四边形 EMOF 是矩形,

:
$$EC = EM = OF = x + \frac{4-x}{2} = \frac{4+x}{2}$$
,

根据C(-2,6), 得CD = PM = OG = 2, CG = 6

∴
$$PE = EM - PM = \frac{4+x}{2} - 2 = \frac{x}{2}$$
,

$$\therefore CP = CG - PG = CG - OM = 6 - 2\sqrt{x},$$

在直角三角形 PEC 中,

$$\therefore (\frac{x}{2})^2 + (6 - 2\sqrt{x})^2 = (\frac{4+x}{2})^2,$$

$$\therefore x+16=12\sqrt{x}$$

$$\therefore (x+16)^2 = (12\sqrt{x})^2$$
,

$$x^2 - 112x + 256 = 0$$

解得 $x_1 = 56 - 24\sqrt{5}$, $x_2 = 56 + 24\sqrt{5} > 4$ (含去),

$$\therefore y = 2\sqrt{x} = 2\sqrt{56 - 24\sqrt{5}} = 2\sqrt{\left(6 - 2\sqrt{5}\right)^2} = 2\left(6 - 2\sqrt{5}\right) = 12 - 4\sqrt{5},$$

故 $OM = 12 - 4\sqrt{5}$, ∴ 当 $\angle AMC$ 最大时, $M(0.12 - 4\sqrt{5})$.