comparing two small sample proportions

Dr. Mine Çetinkaya-Rundel Duke University

from MythBusters

"to know something like the back of your hand"

	back	palm	total
correct		7	18
incorrect		5	6
total	12	12	24
\hat{p}	0.9167	0.5833	0.75

Do these data provide convincing evidence that there is a difference in how good people are at recognizing the backs and the palms of their hands?

	Ho: 7					$Pback - Ppalm \neq 0$
1.	inde					
	√ u		back	palm	total	oup we can assume that the guess t is independent of another. ople guessing — assume to be met for
	1 60	correct		7	18	ple quessing - assume to be met for
		incorrect		5	6	urposes
2.	sam	total	12	12	24	$9 \text{ and } 12 \times 0.25 = 3 -$
			0.9167	0.5833	0.75	se simulation methods

simulation scheme

- 1. Use 24 index cards, where each card represents a subject.
- 2. Mark 18 of the cards as "correct" and the remaining 6 as "wrong".
- 3. Shuffle the cards and split into two groups of size 12, for back and palm.
- 4. Calculate the difference between the proportions of "correct" in the back and palm decks, and record this number.
- 5. Repeat steps (3) and (4) many times to build a randomization distribution of differences in simulated proportions.

interpreting the simulation results

simulate the experiment under the assumption of independence, i.e. leaving things up to chance.

- results from the simulations look like the data → the difference between the proportions of correct guesses in the two groups was **due to chance**.
- ▶ results from the simulations do not look like the data → the difference between the proportions of correct guesses in the two groups was not due to chance, but because people actually know the backs of their hands better.

