RandLib documentation

Aleksandr Samarin

November 11, 2017

Contents

Ι	General information	2
1	Calculation of sample moments	3
II	Continuous univariate distributions	4
2	Beta distribution2.1 Arcsine distribution2.2 Balding-Nichols distribution2.3 Uniform distribution	4 5 6
3	Beta-prime distribution	7
4	Degenerate distribution	8
5	Exponentially-modified Gaussian distribution	9
6	F-distribution	10
7	Gamma distribution 7.1 Chi-squared distribution	10 10 10 11
8	Geometric Stable distribution 8.1 Asymmetric Laplace distribution	
9	Noncentral Chi-Squared distribution	12

10 Planck distribution	12
11 Stable distribution 11.1 Normal distribution	12 12 14 14 14 15
12 Pareto distribution	15
13 Weibull	18
III Discrete univariate distributions	20
14 Beta-binomial distribution	20
15 Binomial distribution 15.1 Bernoulli	20 20
16 Poisson distribution	21
IV Bivariate distributions	25
17 Bivariate Normal distribution	25
18 Normal-Inverse-Gamma distribution	25
19 Trinomial distribution	25
V Circular distributions	26
20 von Mises distribution	2 6
21 Wrapped Exponential distribution	26
VI Singular distributions	27
22 Cantor distribution	27

Part I

General information

1 Calculation of sample moments

We use extension of Welford's method from Knuth. For every n-th element x we have

$$\delta = x - m_1,$$

$$m'_1 = m_1 + \frac{\delta}{n},$$

$$m'_2 = m_2 + \delta^2 \frac{n-1}{n},$$

$$m'_3 = m_3 + \delta^3 \frac{(n-1)(n-2)}{n^2} - 3\delta \frac{m_2}{n},$$

$$m'_4 = m_4 + \delta^4 \frac{(n-1)(n^2 - 3n + 3)}{n^3} + 6\delta^2 \frac{m_2}{n^2} - 4\delta \frac{m_3}{n}.$$

Then $\mathbb{E}[X] = m_1'$, $\operatorname{Var}(X) = \frac{m_2}{n}$, $\operatorname{Skew}(X) = \frac{\sqrt{n}m_3'}{m_2'^{3/2}}$ and $\operatorname{Kurt}(X) = \frac{nm_4'}{m_2'^2}$ (we return excess kurtosis).

Part II

Continuous univariate distributions

2 Beta distribution

Estimation of shapes with known support. Assume that a = 0, b = 1 and we have a sample $X = (X_1, \ldots, X_n)$. Then a log-likelihood function is

$$\ln \mathcal{L}(\alpha, \beta | X) = \sum_{i=1}^{n} \ln f(X_i; \alpha, \beta)$$

$$= (\alpha - 1) \sum_{i=1}^{n} \ln X_i + (\beta - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(\alpha, \beta).$$
(1)

Differentiating with respect to the shapes, we obtain

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = \sum_{i=1}^{n} \ln X_i + n(\psi(\alpha + \beta) - \psi(\alpha)),$$

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \sum_{i=1}^{n} \ln(1 - X_i) + n(\psi(\alpha + \beta) - \psi(\beta)).$$

Differentiating again we get the Hessian matrix:

$$H(\ln \mathcal{L}(\alpha, \beta | X)) = n \cdot \begin{pmatrix} \psi_1(\alpha + \beta) - \psi_1(\alpha) & \psi_1(\alpha + \beta) \\ \psi_1(\alpha + \beta) & \psi_1(\alpha + \beta) - \psi_1(\beta) \end{pmatrix}.$$

Then we can find the estimators numerically, using Newton's procedure. The initial values of estimators are found via method of moments:

$$\hat{\alpha}_0 = \overline{X}_n \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right),$$

$$\hat{\beta}_0 = (1 - \overline{X}_n) \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right).$$

These values are applicable only if $\hat{s}_n^2 < \overline{X}_n(1 - \overline{X}_n)$. If this condition is not satisfied, we set $\hat{\alpha}_0 = \hat{\beta}_0 = 0.001$.

In the general case, when $a \neq 0$ or $b \neq 1$, we use the following transformation:

$$Y_i = \frac{X_i - a}{b - a}$$

and estimate parameters, using sample Y.

2.1 Arcsine distribution

Relation to Beta distribution:

$$X \sim B(1 - \alpha, \alpha, a, b).$$

Estimation of shape. For Arcsine distribution log-likelihood function (1) turns into

$$\ln \mathcal{L}(\alpha|X) = -\alpha \sum_{i=1}^{n} \ln X_i + (\alpha - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(1 - \alpha, \alpha).$$

Taking the derivative with respect to α we get

$$\frac{\partial \ln \mathcal{L}(\alpha|X)}{\partial \alpha} = \sum_{i=1}^{n} \ln \frac{1 - X_i}{X_i} + n\pi \cot(\pi \alpha).$$

Therefore, maximum-likelihood function is

$$\hat{\alpha} = -\frac{1}{\pi} \operatorname{atan} \left(\frac{n\pi}{\sum_{i=1}^{n} \ln \frac{1 - X_i}{X_i}} \right).$$

If $\hat{\alpha}$ is negative, we add 1, because $\frac{\text{atan}}{\pi} \in (-0.5, 0.5)$, while $\alpha \in (0, 1)$.

2.2 Balding-Nichols distribution

Notation:

$$X \sim \text{Balding} - \text{Nichols}(p, F)$$

with $p, F \in (0, 1)$. Relation to Beta distribution:

$$X \sim B(pF', (1-p)F')$$

with
$$F' = (1 - F)/F$$
.

2.3 Uniform distribution

Relation to Beta distribution:

$$X \sim B(1, 1, a, b).$$

Estimation of support.

Frequentist inference. Likelihood function is

$$\mathcal{L}(a,b|X) = \frac{1}{(b-a)^n} \mathbf{1}_{\{X_i \in [a,b] \ \forall i=1,...,n\}}.$$

Therefore, $\mathcal{L}(a,b|X)$ is the largest for $\hat{b}=X_{(n)}$ and $\hat{a}=X_{(1)}$. However, using the fact that $X_{(k)}\sim B(k,n+1-k,a,b)$, these are biased estimators:

$$\mathbb{E}[X_{(1)}] = \frac{an+b}{n+1} \quad \text{and} \quad \mathbb{E}[X_{(n)}] = \frac{a+bn}{n+1}.$$

To get unbiased estimators we make the transformations:

$$\tilde{a} = \frac{nX_{(1)} - X_{(n)}}{n-1}$$
 and $\tilde{b} = \frac{nX_{(n)} - X_{(1)}}{n-1}$.

Then we get

$$\mathbb{E}[\tilde{a}] = \frac{n\mathbb{E}[X_{(1)}] - \mathbb{E}[X_{(n)}]}{n-1} = \frac{n(an+b) - (a+bn)}{n^2 - 1} = a.$$

Analogously, $\mathbb{E}[\tilde{b}] = b$.

Bayesian inference. Let us say, we try to estimate $\theta = b - a$ with known a. We set the prior distribution $\theta \sim \text{Pareto}(\alpha, \sigma)$:

$$h(\theta|\alpha,\sigma) = \frac{\alpha\sigma^{\alpha}}{\theta^{\alpha+1}} \mathbf{1}_{\{\theta \ge \sigma\}}.$$

The density of posterior distribution is

$$f(\theta|X) \propto \frac{\alpha \sigma^{\alpha}}{\theta^{\alpha+n+1}} \mathbf{1}_{\{\theta \geq \max(\sigma, X_{(n)} - a)\}} \sim \operatorname{Pareto}(\alpha + n, \max(\sigma, X_{(n)} - a)).$$

Hence, Bayesian estimator is

$$\mathbb{E}[\theta|X] = \frac{\alpha+n}{\alpha+n-1} \max(\sigma, X_{(n)} - a)$$

and MAP estimator is

$$\theta_{MAP} = \max(\sigma, X_{(n)} - a).$$

3 Beta-prime distribution

Relation to other distributions:

$$\frac{X}{1+X} \sim B(\alpha, \beta),$$

$$\frac{\beta}{\alpha}X \sim F(2\alpha, 2\beta).$$

Estimation of shapes. Using relationship with Beta distribution we transform the sample:

$$Y_i = \frac{X_i}{1 + X_i}, \quad 1 \le i \le N,$$

and run BetaRand estimation for Y.

Notation	$X \sim B'(\alpha, \beta)$
Parameters	$\alpha, \beta > 0$
Support	$x \in \mathbb{R}^+$
P.d.f.	$f(x) = \frac{x^{\alpha - 1}(1 + x)^{-\alpha - \beta}}{B(\alpha, \beta)}$
C.d.f.	$F(x) = I_{\frac{x}{1+x}}(\alpha, \beta)$
Expectation	$\mathbb{E}[X] = \frac{\alpha}{\beta - 1} 1_{\{\beta > 1\}} + \infty 1_{\{\beta \le 1\}}$
Variance	$\operatorname{Var}(X) = \frac{\alpha(\alpha+\beta-1)}{(\beta-2)(\beta-1)^2}, \text{ if } \beta > 1$
Median	Searched numerically
Mode	$\max\left(\frac{\alpha-1}{\beta+1},0\right)$.
C.f.	Calculated numerically

4 Degenerate distribution

Notation	$X \sim \delta(a)$
Parameters	$a \in \mathbb{R}$
Support	x = a
P.d.f.	$f(x) = \delta(a)$
C.d.f.	$F(x) = 1_{\{x \le a\}}$
Expectation	$\mathbb{E}[X] = a$
Variance	Var(X) = 0
Median	a
Mode	a
C.f.	$\phi(t) = e^{ita}$

5 Exponentially-modified Gaussian distribution

Notation	$X \sim \mathrm{EMG}(\mu, \sigma, \lambda)$
Parameters	$\mu \in \mathbb{R}, \sigma > 0, \lambda > 0$
Support	$x \in \mathbb{R}$
P.d.f.	$f(x) = \dots$
C.d.f.	$F(x) = \dots$
Expectation	$\mathbb{E}[X] = \mu + 1/\lambda$
Variance	$\operatorname{Var}(X) = \sigma^2 + 1/\lambda^2$
Median	Searched numerically
Mode	Searched numerically
C.f.	$\phi(t) = \dots$

6 F-distribution

Notation	$X \sim \mathrm{F}(d_1, d_2)$
Parameters	$d_1, d_2 > 0$
Support	$x \in \mathbb{R}^+$
P.d.f.	$f(x) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{xB\left(\frac{d_1}{2}, \frac{d_2}{2}\right)}$
C.d.f.	$F(x) = I_{\frac{d_1 x}{d_1 x + d_2}} \left(\frac{d_1}{2}, \frac{d_2}{2} \right)$
Expectation	$\mathbb{E}[X] = \frac{d_2}{d_2 - 2} \text{ for } d_2 > 2$
Variance	$Var(X) = \frac{2d_2^2(d_1 + d_2 - 2)}{d_1(d_2 - 2)^2(d_2 - 4)} \text{ for } d_2 > 4$
Median	Searched numerically
Mode	$\max\left(\frac{d_2(d_1-2)}{d_1(d_1+2)}, 0\right)$
C.f.	Calculated numerically

Relation to other distributions:

$$\frac{d_1X}{d_2+d_1X} \sim B\left(\frac{d_1}{2}, \frac{d_2}{2}\right),$$
$$\frac{d_1}{d_2}X \sim B'\left(\frac{d_1}{2}, \frac{d_2}{2}\right).$$

7 Gamma distribution

7.1 Chi-squared distribution

Relation to Gamma distribution:

7.2 Erlang distribution

The only difference between Gamma and Erlang distributions is that a second one takes an integer shape parameter k.

Notation	$X \sim \Gamma(\alpha, \beta)$
Parameters	$\alpha > 0, \beta > 0$
Support	$x \in \mathbb{R}^+$
P.d.f.	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$
C.d.f.	$F(x) = P(\alpha, \beta x)$
Expectation	$\mathbb{E}[X] = \frac{\alpha}{\beta}$
Variance	$\operatorname{Var}(X) = \frac{\alpha}{\beta^2}$
Median	Searched numerically
Mode	$\max\left(\frac{\alpha-1}{\beta},0\right)$
C.f.	$\phi(t) = \left(1 - \frac{it}{\beta}\right)^{-\alpha}$

7.3 Exponential distribution

Notation	$X \sim \operatorname{Exp}(\lambda)$
Parameters	$\lambda > 0$
Support	$x \in \mathbb{R}^+$
P.d.f.	$f(x) = \lambda e^{-\lambda x}$
C.d.f.	$F(x) = 1 - e^{-\lambda x}$
Expectation	$\mathbb{E}[X] = \frac{1}{\lambda}$
Variance	$\operatorname{Var}(X) = \frac{1}{\lambda^2}$
Median	$\frac{\ln(2)}{\lambda}$
Mode	0
C.f.	$\phi(t) = \frac{\lambda}{\lambda - it}$

Relation to Gamma distribution: $X \sim \Gamma(1, \beta)$.

8 Geometric Stable distribution

- 8.1 Asymmetric Laplace distribution
- 8.2 Laplace distribution
- 9 Noncentral Chi-Squared distribution
- 10 Planck distribution
- 11 Stable distribution
- 11.1 Normal distribution

Relation to Stable distribution:

$$X \sim S_2(\cdot, \sigma^2/2, \mu)$$

Notation	$X \sim \chi_k^{\prime 2}(\lambda)$
Parameters	$k > 0, \lambda > 0$
Support	$x \in \mathbb{R}^+$
P.d.f.	$f(x) = \dots$
C.d.f.	$F(x) = P_{\frac{k}{2}}(\dots)$
Expectation	$\mathbb{E}[X] = k + \lambda$
Variance	$Var(X) = 2(k+2\lambda)$
Median	Searched numerically
Mode	Searched numerically
C.f.	$\phi(t) = \frac{\exp\frac{it\lambda}{1-2it}}{(1-2it)^{k/2}}$

Notation	$X \sim \operatorname{Planck}(a, b)$
Parameters	a, b > 0
Support	$x \in \mathbb{R}^+$
P.d.f.	$f(x) = \frac{b^{a+1}}{\Gamma(a+1)\zeta(a+1)} \cdot \frac{x^a}{e^{bx} - 1}$
C.d.f.	Calculated numerically
Expectation	$\mathbb{E}[X] = \frac{(a+1)\zeta(a+2)}{b\zeta(a+1)}$
Variance	$Var(X) = \frac{(a+1)(a+2)\zeta(a+3)}{b^2\zeta(a+1)} - (\mathbb{E}[X])^2$
Median	Searched numerically
Mode	$\frac{W_0(-ae^{-a})+a}{b}$, if $a>1$, otherwise 0
C.f.	Calculated numerically

Notation	$X \sim S_{\alpha}(\beta, \gamma, \mu)$
Parameters	$\alpha \in (0,2], \beta \in [-1,1],$ $\gamma > 0, \mu \in \mathbb{R}$ $x \in \mathbb{R}, \text{ if } \beta \neq 1,$
Support	$x \in \mathbb{R}$, if $\beta \neq 1$, $x \in [\mu, \infty)$, if $\beta = 1$, $\alpha < 2$, $x \in (-\infty, \mu]$, if $\beta = -1$, $\alpha < 2$
P.d.f.	Calculated numerically
C.d.f.	Calculated numerically
Expectation	$\mathbb{E}[X] = \mu \text{ for } \alpha > 1,$ otherwise undefined
Variance	$Var(X) = 2\gamma^2 1_{\{\alpha=2\}} + \infty 1_{\{\alpha<2\}}$
Median	μ for $\beta = 0$, otherwise searched numerically
Mode	μ , if $\beta = 0$ or $\alpha = 2$, $\mu + \frac{\beta \gamma}{3}$, if $ \beta = 1$ and $\alpha = \frac{1}{2}$, otherwise searched numerically
C.f.	$\phi(t) = \dots$

11.2 Cauchy distribution

Relation to Stable distribution:

$$X \sim S_1(0, \gamma, \mu)$$

11.3 Levy distribution

Relation to Stable distribution:

$$X \sim S_{\frac{1}{2}}(1, \gamma, \mu)$$

11.4 Holtsmark distribution

Relation to Stable distribution:

$$X \sim S_{\frac{3}{2}}(0, \gamma, \mu)$$

11.5 Landau distribution

Relation to Stable distribution:

$$X \sim S_1(1, \gamma, \mu)$$

12 Pareto distribution

Estimation of parameters.

Frequentist inference. Log-likelihood function is

$$\ln \mathcal{L}(\alpha, \sigma | X) = n \ln \alpha + n\alpha \ln \sigma - (\alpha + 1) \sum_{i=1}^{n} \ln X_i.$$

We assume that $\sigma \leq X_{(1)}$, otherwise sample X couldn't have been generated from such distribution. It is obvious, that $\ln \mathcal{L}(\alpha, \sigma | X)$ is an increasing function in terms of σ , therefore $\hat{\sigma} = X_{(1)}$ is an optimal estimator. Let's take derivative with respect to α :

$$\frac{\partial \ln \mathcal{L}(\alpha, \sigma | X)}{\partial \alpha} = \frac{n}{\alpha} + n \ln \sigma - \sum_{i=1}^{n} \ln X_i.$$

From this we conclude that the maximum-likelihood estimator of shape is

$$\hat{\alpha} = \frac{1}{\frac{1}{n} \left(\sum_{i=1}^{n} \ln X_i \right) - \ln \hat{\sigma}}.$$

It is known that $\hat{\sigma} \sim \operatorname{Pareto}(n\alpha, \sigma)$ and $\hat{\alpha} \sim \operatorname{Inv-}\Gamma(n-1, n\alpha)$ and they are independent. Then

$$\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{1 - \frac{1}{n\alpha}}$$

and

$$\mathbb{E}[\hat{\alpha}] = \frac{n\alpha}{n-2}.$$

Therefore, in order to get unbiased estimators we need to make the following transformations:

$$\tilde{\alpha} = \frac{n-2}{n}\hat{\alpha}$$
 and $\tilde{\sigma} = \hat{\sigma} \left(1 - \frac{1}{(n-1)\hat{\alpha}}\right)$.

Note that if we estimate parameters separately, then $\hat{\alpha} \sim \text{Inv-}\Gamma(n, n\alpha)$ and transformations are different.

Bayesian inference. We now assume that σ is known and prior distribution of α is $\Gamma(\kappa, \beta)$:

$$h(\alpha) = \frac{\beta^{\kappa}}{\Gamma(\kappa)} \alpha^{\kappa - 1} e^{-\beta \alpha}.$$

The density of posterior distribution is

$$f(\alpha|X) \propto \prod_{i=1}^{n} \frac{\sigma^{\alpha}}{X_{i}^{\alpha-1}} \cdot \alpha^{\kappa+n-1} e^{-\beta\alpha} \propto \alpha^{\kappa+n-1} e^{-(\beta+\sum_{i=1}^{n} \ln(X_{i}/\sigma))\alpha}.$$

Therefore, $\alpha | X \sim \Gamma(\kappa + n, \beta + \sum_{i=1}^{n} \ln(X_i/\sigma))$ and Bayesian estimator is

$$\mathbb{E}[\alpha|X] = \frac{\kappa + n}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

MAP estimator is

$$\alpha_{MAP} = \frac{\kappa + n - 1}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

Now let it be vice versa, α is known while σ is not. The we say that a priori $\sigma \sim \operatorname{Pareto}(\kappa, \theta)$:

$$h(\sigma) = \frac{\kappa \theta^{\kappa}}{\sigma^{\kappa+1}}.$$

Then posterior distribution is:

$$f(\sigma|X) \propto \prod_{i=1}^{n} \frac{1}{X_i^{\alpha-1}} \cdot \sigma^{\alpha n - \kappa - 1} \sim \text{Pareto}(\kappa - \alpha n, \theta).$$

This imposes the following additional constraint on the prior shape hyperparameter: $\kappa > \alpha n$. Bayesian estimator:

$$\mathbb{E}[\sigma|X] = \frac{(\kappa - \alpha n)\theta}{\kappa - \alpha n - 1}.$$

MAP estimator:

$$\sigma_{MAP} = \theta$$
.

13 Weibull

Estimation of scale

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\lambda, k|X) = n(\ln k - \ln \lambda) + (k-1) \sum_{i=1}^{n} (\ln X_i - \ln \lambda) - \frac{1}{\lambda^k} \sum_{i=1}^{n} X_i^k.$$

The derivative with respect to scale:

$$\frac{\partial \ln \mathcal{L}(\lambda, k|X)}{\partial \lambda} = -\frac{nk}{\lambda} + \frac{k}{\lambda^{k+1}} \sum_{i=1}^{n} X_i^k = 0.$$

Therefore, maximum-likelihood estimation for λ is

$$\hat{\lambda} = \left(\sum_{i=1}^{n} X_i^k\right)^{\frac{1}{k}}.$$

Bayesian inference. Assume k is known. Instead of estimating λ we give an estimation for λ^k . Let's say that prior distribution of λ^k is Inv- $\Gamma(\alpha, \beta)$:

$$h(\lambda^k) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{-k(\alpha+1)} e^{-\beta/\lambda^k}.$$

Posterior distribution then:

$$f(\lambda^k|X) \propto \lambda^{-k(\alpha+1+n)} e^{-\frac{1}{\lambda^k}(\beta+\sum_{i=1}^n X_i^k)} \sim \text{Inv-}\Gamma(\alpha+n,\beta+\sum_{i=1}^n X_i^k).$$

Bayesian estimator:

$$\mathbb{E}[\lambda^k|X] = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n - 1},$$

MAP estimator:

$$\lambda_{MAP}^k = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n + 1}.$$

Part III

Discrete univariate distributions

14 Beta-binomial distribution

15 Binomial distribution

Notation	$X \sim \operatorname{Bin}(n, p)$
Parameters	$n \in \mathbb{N}, p \in [0, 1]$
Support	$k \in \{0, \dots, n\}$
P.m.f.	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$
C.d.f.	$\mathbb{P}(X \le k) = I_{1-p}(n-k, 1+k)$
Expectation	$\mathbb{E}[X] = np$
Variance	Var(X) = np(1-p)
Median	[np]
Mode	[(n+1)p]
C.f.	$\phi(t) = (1 - p + pe^{it})^n$

15.1 Bernoulli

Notation:

 $X \sim \text{Bernoulli}(p)$.

Relation to Binomial distribution:

 $X \sim \text{Bin}(1, p)$.

16 Poisson distribution

Notation	$X \sim \text{Po}(\lambda)$
Parameters	$\lambda > 0$
Support	$k \in \mathbb{N}_0$
P.m.f.	$\mathbb{P}(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
C.d.f.	$\mathbb{P}(X \le k) = Q(k+1, \lambda)$
Expectation	$\mathbb{E}[X] = \lambda$
Variance	$Var(X) = \lambda$
Median	$\sim \max\left(\left[\lambda + \frac{1}{3} - \frac{0.02}{\lambda}\right], 0\right)$
Mode	$[\lambda]$
C.f.	$\phi(t) = \exp\{\lambda(e^{it} - 1)\}$

Generator (let $\delta = \mu \in \mathbb{Z}$). (There is a mistake in Lemma 3.8 in first inequality). Recall that

$$q(X) = X \ln(\lambda) - \ln\left(\frac{(\mu + X)!}{\mu!}\right).$$

We denote acceptance probability $\mathbb{P}(W \leq q(X))$ by p.

• $k = \mu$. Probability to be in this setting is 1/c.

$$\mathbb{P}(X=0|W\leq q(X)) = \frac{\mathbb{P}(X=0,W\leq q(X))}{\mathbb{P}(W\leq q(X))} = \frac{1}{pc}.$$

On the other hand it should be equal to:

$$\frac{1}{pc} = \frac{\lambda^{\mu} e^{-\lambda}}{\mu!}.$$

• $k = \mu + 1$.

$$\begin{split} \mathbb{P}(X=1|W\leq q(X)) &= \frac{\mathbb{P}(X=1,W\leq q(X))}{\mathbb{P}(W\leq q(X))} = \frac{\lambda}{p(\mu+1)c} \\ &= \frac{\lambda^{\mu+1}e^{-\lambda}}{(\mu+1)!}. \end{split}$$

• $k < \mu$. Here was mistake in the book. We adjust the probabilities. Probability to be in this setting is $\sqrt{\pi \mu/2e}/c$.

$$\mathbb{P}(W \leq q(X), X = k - \mu | U \leq c_1) = \mathbb{P}\left(-\frac{N^2}{2} + \frac{1}{2} - E < q(\lfloor -|N|\sqrt{\mu}\rfloor), \lceil |N|\sqrt{\mu}\rceil = \mu - k\right)$$

$$= \mathbb{P}\left(-\frac{N^2}{2} + \frac{1}{2} - E < \lfloor -|N|\sqrt{\mu}\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -|N|\sqrt{\mu}\rfloor)!}{\mu!}\right), \frac{\mu - k - 1}{\sqrt{\mu}} \leq |N| < \frac{\mu - k}{\sqrt{\mu}}\right)$$

$$= \mathbb{P}\left(U < \exp\left\{\frac{N^2}{2} - \frac{1}{2} + \lfloor -|N|\sqrt{\mu}\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -|N|\sqrt{\mu}\rfloor)!}{\mu!}\right)\right\}$$

$$= \frac{\mu - k - 1}{\sqrt{\mu}} \leq |N| < \frac{\mu - k}{\sqrt{\mu}}\right)$$

$$= \sqrt{\frac{2}{e\pi}} \int_{\frac{\mu - k - 1}{\sqrt{\mu}}}^{\frac{\mu - k}{\sqrt{\mu}}} \exp\left\{\lfloor -|n|\sqrt{\mu}\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -|n|\sqrt{\mu}\rfloor)!}{\mu!}\right)\right\} dn$$

$$= \sqrt{\frac{2}{e\pi\mu}} \int_{\mu - k - 1}^{\mu - k} \exp\left\{\lfloor -z\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -z\rfloor)!}{\mu!}\right)\right\} dz$$

$$= \sqrt{\frac{2}{e\pi\mu}} \exp\left\{(k - \mu) \ln(\lambda) - \ln\left(\frac{k!}{\mu!}\right)\right\}$$

$$= \sqrt{\frac{2}{e\pi\mu}} \lambda^{k - \mu} \frac{\mu!}{k!}$$

Hence,

$$\begin{split} \mathbb{P}(X = k - \mu | W \leq q(X)) &= \frac{\mathbb{P}(W \leq q(X), X = k - \mu)}{\mathbb{P}(W \leq q(X))} \\ &= \sqrt{\frac{2}{\pi \mu e}} \lambda^{k - \mu} \frac{\mu!}{k!} \cdot \sqrt{\pi \mu e/2} \frac{\lambda^{\mu} e^{-\lambda}}{\mu!} \\ &= \frac{\lambda^k e^{-\lambda}}{k!} \end{split}$$

• $k \in [\mu + 2, 2\mu]$. Probability to be in this setting is $\sqrt{\frac{3\pi\mu}{4}}e^{\frac{1}{3\mu}}/c$. We also have

$$W = \frac{-Y^2 + 2Y}{3\mu} - E = \frac{1}{3\mu} - \frac{N^2}{2} - E.$$

Then

$$\begin{split} \mathbb{P}(W \leq q(X)|X = k - \mu|U \in \ldots) &= \mathbb{P}\bigg(\frac{1}{3\mu} - \frac{N^2}{2} - E < q(\lceil 1 + |N|\sqrt{3\mu/2} \rceil), \lceil 1 + |N|\sqrt{3\mu/2} \rceil) = k - \mu \\ &= \mathbb{P}\bigg(U < \exp\Big\{-\frac{1}{3\mu} + \frac{N^2}{2} + q(\lceil 1 + |N|\sqrt{3\mu/2} \rceil)\Big\}, \\ &= \frac{k - \mu - 2}{\sqrt{3\mu/2}} < |N| \leq \frac{k - \mu - 1}{\sqrt{3\mu/2}}\bigg) \\ &= \sqrt{\frac{2}{\pi}} e^{-\frac{1}{3\mu}} \int_{\frac{k - \mu - 1}{\sqrt{3\mu/2}}}^{\frac{k - \mu - 1}{\sqrt{3\mu/2}}} \exp\Big\{q(\lceil 1 + |n|\sqrt{3\mu/2} \rceil)\Big\} dn \\ &= \sqrt{\frac{4}{3\pi\mu}} e^{-\frac{1}{3\mu}} \int_{k - \mu - 1}^{k - \mu} \exp\Big\{\lceil z \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil z \rceil)!}{\mu!}\bigg)\Big\} dz \\ &= \sqrt{\frac{4}{3\pi\mu}} e^{-\frac{1}{3\mu}} \mu! \frac{\lambda^{k - \mu}}{k!}. \end{split}$$

• $k > 2\mu$. Probability to be in this setting is $6e^{-\frac{2+\mu}{6}}/c$.

$$\begin{split} \mathbb{P}(W \leq q(X)|X = k - \mu|U \in \ldots) &= \mathbb{P}\bigg(-\frac{2 + \mu}{6} - V - E < q(\lceil \mu + 6V \rceil), \lceil \mu + 6V \rceil = k - \mu\bigg) \\ &= \mathbb{P}\bigg(-\frac{2 + \mu}{6} - V + \ln(U) < \lceil \mu + 6V \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil \lambda + 6V \rceil)!}{\mu!}\bigg) \\ &= \mathbb{P}\bigg(U < \exp\bigg\{\frac{2 + \mu}{6} + V + \lceil \mu + 6V \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil \mu + 6V \rceil)!}{\mu!}\bigg)\bigg\} \\ &= \frac{k - 2\mu - 1}{6} < V \leq \frac{k - 2\mu}{6}\bigg) \\ &= \int_{\substack{k - 2\mu - 1 \\ 6}}^{\frac{k - 2\mu}{6}} \exp\bigg\{\frac{2 + \mu}{6} + \lceil \mu + 6v \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil \mu + 6v \rceil)!}{\mu!}\bigg)\bigg\} dv \\ &= \frac{e^{\frac{2 + \lambda}{6}}}{6} \int_{k - \mu - 1}^{k - \mu} \exp\bigg\{\lceil z \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil z \rceil)!}{\mu!}\bigg)\bigg\} dz \\ &= \frac{e^{\frac{2 + \lambda}{6}}}{6} \exp\bigg\{(k - \mu) \ln(\lambda) - \ln\bigg(\frac{k!}{\mu!}\bigg)\bigg\} \\ &= \frac{e^{\frac{2 + \lambda}{6}}}{6} \lambda^{k - \mu} \frac{\mu!}{k!} \end{split}$$

$$\mathbb{P}(X = k - \mu | W \le q(X)) = \frac{\mathbb{P}(W \le q(X), X = k - \mu)}{\mathbb{P}(W \le q(X))}$$
$$= \frac{e^{\frac{2+\lambda}{6}}}{6} \lambda^{k-\mu} \frac{\mu!}{k!} \cdot \frac{6e^{-\frac{2+\mu}{6}}}{pc}$$
$$= \frac{\lambda^k e^{-\lambda}}{k!}$$

Part IV Bivariate distributions

- 17 Bivariate Normal distribution
- 18 Normal-Inverse-Gamma distribution
- 19 Trinomial distribution

Part V Circular distributions

- 20 von Mises distribution
- 21 Wrapped Exponential distribution

Part VI

Singular distributions

22 Cantor distribution

Implemented distributions (under titles special cases are listed):

- Continuous distributions
 - Generalised extreme value ????????

Gumbel

Frechet

Weibull

- Geometric-Stable distribution

(Asymmetric) Laplace distribution

- Inverse-Gamma
- Inverse-Gaussian
- Irwin-Hall
- Kolmogorov-Smirnov

Logistic Log-Normal Nakagami Chi Maxwell-Boltzmann Rayleigh Noncentral Chi-Squared Pareto Planck Raised-cosine Raab-Green Sech Stable Cauchy Holtsmark Landau Levy Normal t-distribution Triangular Von-Mises Wigner-Semicircle Disrete: Beta-binomial Binomial Bernoulli Categorical Hypergeometric Logarithmic Negative-binomial (Polya) Pascal Geometric Negative-hypergeometric Poisson Rademacher Skellam Uniform discrete Yule Zeta Zipf Singular: Cantor Bivariate: Bivariate Normal Normal-inverse-Gamma