

Recursion and Tower of Hanoi

Dr. Animesh Chaturvedi

Assistant Professor: IIIT Dharwad

Young Researcher: Heidelberg Laureate Forum

Postdoc: King's College London & The Alan Turing Institute

PhD: IIT Indore MTech: IIITDM Jabalpur

HEIDELBERG LAUREATE FORUM

Recursion

- A process by which a function calls itself repeatedly.
- Such a function is called a recursive function

- Recursion may be direct or cyclically in a chain
- Direct recursion.
- When a function f(...) calls f(...).
- Cyclically in a chain recursion.
 - f1(...) calls f2(...), f2(...) calls f3(...) ... fi(...) calls f1(...)

Some Examples of Recursion

• Example 1: Factorial calculation

```
n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1

n! = n \times (n-1)!

factorial(n) = n \times factorial(n-1)
```

• Example 2: Fibonacci number sequence

```
1, 1, 2, 3, 5, 8, 13, 21, .....
n_{i} = n_{i-1} + n_{i-2}
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
```

Some Examples of Recursion

• Example 3: GCD of two positive integers

$$gcd(10, 15) = 5, gcd(11, 13) = 1$$

 $gcd(m,n) = gcd(m-n,n), if m>n else gcd(m,n-m)$

• Example 4: Recursion formula

$$T(n) = n + 2 \times T(n-1)$$

 $T(100) = ?$

Some Examples of Recursion

- Example 5: Tower of Hanoi
 Move n disks from A C
 = move (n-1) disks from A to B
 + move the disk from A to C
 - + move (n-1) disk from B to C
- Example 6: Sorting Merge Sort, Quick Sort,
- Example 7: Traversal of Binary Tree
 Pre-order, Inorder, Postorder Traversal of Binary Tree

Base case and Recursive case

• For a function to be written in recursive form, two conditions are to be satisfied:

- Condition 1: Base case
 - The problem statement must include a stopping condition. A simple occurrence that can be answered directly.
- Condition 2: **Recursive case**
 - It should be possible to express the problem in recursive form.
 - A more complex occurrence of the problem that cannot be directly answered, but can instead be described in terms of smaller occurrences of the same problem.

- The problem statement
- Initially all the disks are stacked on the A pole.
- Required to transfer all the disks to the C pole.
 - Only one disk can be moved at a time.
 - A larger disk cannot be placed on a smaller disk.

- Recursive statement of the general problem of n disks
- Step 1:
 - Move the top (n-1) disks from A to B
- Step 2:
 - Move the largest disk from A to C.
- Step 3:
 - Move the (n-1) disks from B to C.


```
#include <stdio.h>
void move(int n, char A, char B, char C);
int main()
{ int n; /* Number of disks */
  scanf ("%d", &n);
  move (n, 'A', 'B', 'C');
  return 0;
void move (int n, char A, char B, char C)
  if (n > 0) {
          move (n-1, A, C, B);
          printf ("Move disk %d from %c to %c n", n, A, C);
          move (n-1, B, C, A);
return;
```

Towers of Hanoi – Execution

n = 3

Move disk 1 from A to C Move disk 2 from A to B Move disk 1 from C to B Move disk 3 from A to C Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

n = 4

Move disk 1 from Tower A to Tower C
Move disk 2 from Tower A to Tower B
Move disk 1 from Tower C to Tower B
Move disk 3 from Tower A to Tower C
Move disk 1 from Tower B to Tower A
Move disk 2 from Tower B to Tower C
Move disk 1 from Tower A to Tower C
Move disk 4 from Tower A to Tower B
Move disk 1 from Tower C to Tower B
Move disk 2 from Tower C to Tower A
Move disk 1 from Tower C to Tower A
Move disk 3 from Tower C to Tower B
Move disk 3 from Tower A to Tower C
Move disk 2 from Tower A to Tower C

Move disk 1 from Tower C to Tower B

How many moves are required for *n* disks?

n = 5Move disk 1 from A to C Move disk 2 from A to B Move disk 1 from C to B Move disk 3 from A to C Move disk 1 from B to A Move disk 2 from B to C Move disk 1 from A to C Move disk 4 from A to B Move disk 1 from C to B Move disk 2 from C to A Move disk 1 from B to A Move disk 3 from C to B Move disk 1 from A to C Move disk 2 from A to B Move disk 1 from C to B Move disk 5 from A to C Move disk 1 from B to A Move disk 2 from B to C Move disk 1 from A to C Move disk 3 from B to A Move disk 1 from C to B Move disk 2 from C to A Move disk 1 from B to A Move disk 4 from B to C Move disk 1 from A to C Move disk 2 from A to B Move disk 1 from C to B Move disk 3 from A to C Move disk 1 from B to A Move disk 2 from B to C Move disk 1 from A to C תודה רבה

Ευχαριστώ

Hebrew

Greek

Спасибо

Danke

Russian

German

धन्यवादः

Merci

ধন্যবাদ

Sanskrit

நன்றி

Tamil

شكراً Arabic

French

Gracias

Spanish

Bangla

Thank You English

നന്ദി

ಧನ್ಯವಾದಗಳು Kannada

Malayalam

多謝

Grazie

Italian

ధన్యవాదాలు

Telugu

આભાર Gujarati

Traditional Chinese

ਧੰਨਵਾਦ Punjabi

धन्यवाद

Hindi & Marathi

多谢

Simplified Chinese

https://sites.google.com/site/animeshchaturvedi07

Obrigado Portuguese ありがとうございました apanese

ขอบคุณ Thai

감사합니다

Korean