# LEÇON 9: ÉBULLITION, CONDENSATION

Phénomènes de changement de phase liquide/gaz

#### INTRODUCTION

- Changement de phase:
  - □ Ordre de grandeur:



#### INTRODUCTION

- Ebullition:
  - Introduction
  - □ Présentation générale
  - □ Différents modes d'ébullition
  - □ L'ébullition en vase
- Condensation
  - Introduction
  - □ La condensation en film sur la plaque plane verticale en régime laminaire
  - □ Extension aux régimes ondulants et turbulents

# **EBULLITION: INTRODUCTION**

- Exemples d'application:
  - □ Refroidissement électronique de forte puissance





# **EBULLITION: INTRODUCTION**

- Exemples d'application:
  - □ Centrale nucléaire: générateurs de vapeur



- Ebullition:
  - □ Changement de phase: vaporisation
  - □ Mouvement du liquide et du gaz

⇒Convection

- Principes de base:
  - □ Cas d'un liquide sous refroidi: T<sub>moyenne liquide</sub> < T<sub>sat</sub>
    - Présence d'une paroi chauffée (T<sub>p</sub> > T<sub>sat</sub> )
      - a) Le liquide près de la paroi est surchauffé
      - b) Formation d'un noyau de vapeur
      - c) Création d'une bulle
      - d) Le sommet de la bulle arrive dans le liquide plus froid



- Principes de base:
  - □ Cas d'un liquide sous refroidi: T<sub>moyenne liquide</sub> < T<sub>sat</sub>
    - Présence d'une paroi chauffée (T<sub>p</sub> > T<sub>sat</sub> )
      - d) Le sommet de la bulle arrive dans le liquide plus froid
      - e) La bulle perd de la chaleur à l'interface liquide/vapeur
      - Les forces d'inertie ont été dissipées : la bulle se contracte. Du liquide "froid" la suit



- Principes de base:
  - □ Cas d'un liquide sous refroidi: T<sub>moyenne liquide</sub> < T<sub>sat</sub>
    - Présence d'une paroi chauffée (T<sub>p</sub> < T<sub>sat</sub> )
      - f) La bulle se contracte. Du liquide "froid" la suit
      - La phase vapeur a été condensée : la bulle a disparu et le "mur chauffant" est "frappé" par un courant de liquide "froid"
      - h) Le film liquide surchauffé s'est reformé et le cycle se reproduit



- Principes de base:
  - $\Box$  Cas d'un liquide avec  $T_{moyenne\ liquide} > T_{sat}$
  - □ Comportement proche a) à c)
  - □ Détachement de la bulle



- Nouvelles grandeurs:
  - □ Température de saturation T<sub>sat</sub>
  - □ Chaleur Latente L<sub>v</sub>
  - $\Box$  Tension superficielle (bulles) $\sigma$
  - $\square$  Différentes masses volumiques (liquide/vapeur) $\rho_l$  et  $\rho_v$
  - □ ...

Nouveaux nombres adimensionnels

$$\square$$
 Jakob:  $Ja = \frac{C_L \Delta T}{L_v}$ 

$$\square \text{ Bond:} Bo = \frac{g(\rho_L - \rho_v)L^2}{\sigma}$$

# EBULLITION: DIFFÉRENTS MODES D'ÉBULLITION

- Ebullition en vase:
  - □ Sans agitation extérieure
  - □ Clos ou libre
  - A T ou φ imposée
- Ebullition en convection forcée
  - □ Très complexe et spécifique
  - □ Hors du cadre de ce cours

- A T imposée:
  - □ Dispositif expérimental:
    - Cartouches chauffantes maintiennent T<sub>s</sub>
    - Bloc de cuivre homogénéise T<sub>s</sub>
    - Thermocouples
      - □ Mesure de T<sub>s</sub>
      - $\ \square$  Mesure du gradient de T  $\Rightarrow \phi$



- A T imposée:
  - □ Zone OA:  $\Delta T_e = T_s T_{sat} < 5$ °C:
    - Convection naturelle
    - Pas d'ébullition



- A T imposée:
  - $\square$  Zone AB: 5°C< $\triangle T_e = T_s T_{sat} < 10$ °C:
    - Bulles isolées
    - Fort brassage



- A T imposée:
  - □ Zone BC:  $10^{\circ}\text{C}<\Delta\text{T}_{\text{e}}=\text{T}_{\text{s}}-\text{T}_{\text{sat}}<30^{\circ}\text{C}$  :
    - Colonnes de bulles
    - Mouvement du liquide vers la surface chaude freiné
    - h ⋈, mais ∆T ↗, donc φ ↗



- A T imposée:
  - $\square$  Zone CD: 30°C< $\triangle T_e = T_s T_{sat} < 120$ °C:
    - Film de vapeur instable à la surface mais de +en+ stable
    - h >+vite que ΔT ⊅ donc φ>



- A T imposée:
  - $\square$  Zone CD: 30°C< $\triangle T_e = T_s T_{sat} < 120$ °C:
    - Film stable de vapeur à la surface
    - φ ↗ à cause du rayonnement et de la conduction au travers du film



- A φ imposé:
  - □ Dispositif expérimental:
    - Film chauffant
      - φ imposée
      - Mesure de φ=UI/S
    - Thermocouple
      - $\Box T_s$



- A φ imposé:
  - $\square$  Après C: Une faible  $\nearrow$  de  $\phi \Rightarrow$  très rapide  $\nearrow$  de  $\Delta T_e$
  - □ Phénomène d'hystérisis lors du refroidissement



- Formules et corrélations:
  - □ Ebullition nucléée:

$$\varphi = \mu_l L_v \left( \frac{g(\rho_L - \rho_v)}{\sigma} \right)^{1/2} \left( \frac{c_L \Delta T}{C_{sf} L_v Pr^n} \right)^3$$



- Formules et corrélations:
  - $\Box$  Flux critique  $\phi_c = \phi_{max}$

$$\varphi_c = \frac{\pi}{24} L_v \rho_v \left( \frac{\sigma g(\rho_L - \rho_v)}{\rho_v^2} \right)^{1/4} \left( \frac{\rho_L + \rho_v}{\rho_L} \right)^{1/2}$$



- Formules et corrélations:
  - $\Box$  Flux critique  $\phi_c = \phi_{max}$

$$\varphi_c = \frac{\pi}{24} L_v \rho_v \left( \frac{\sigma g(\rho_L - \rho_v)}{\rho_v^2} \right)^{1/4} \left( \frac{\rho_L + \rho_v}{\rho_L} \right)^{1/2}$$

□ II peut s'approcher par:

$$\varphi_c \cong 0.149.L_v.\rho_v \left( \frac{\sigma g(\rho_L - \rho_v)}{\rho_v^2} \right)^{1/4}$$

- Condensation:
  - □ Changement de phase
  - Mouvement du liquide et du gaz
  - ⇒Convection

 Comme pour l'ébullition, Coefficients d'échange très importants

- Configurations très variées:
  - □ Convection naturelle



□ Convection forcée interne



□ Convection forcée externe



- Configurations très variées:
  - □ Géométries:





- Configurations très variées:
  - ☐ Mode de condensation:
    - En film
    - En gouttes sur une surface
    - En gouttelettes (brouillard)
    - Par contacts divers



(d)

#### Généralités:





- Hypothèses (Nusselt 1916):
  - □ Plaque de hauteur H et de largeur b
  - □ Film liquide laminaire
  - □ Propriétés thermophysiques uniformes
  - □ Vapeur entièrement à T<sub>sat</sub>
  - □ Pas d'entraînement de la vapeur :  $\frac{\partial u}{\partial y}\Big|_{y=\delta} = 0$
  - □ Advection négligée (transfert de quantité de mouvement et d'énergie) dans le film
    - Transfert conductif: distribution linéaire de T

- Equation de quantité de mouvement:
  - □ Simplifiée (cf. leçon 4)

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho_L}\frac{\partial p}{\partial x} + \frac{\mu_L}{\rho_L}\frac{\partial^2 u}{\partial y^2} + \frac{F_x}{\rho_L}$$

 $\square$  Pas d'advection  $\nearrow F_x = \rho_L g$  $\frac{\partial^2 u}{\partial y^2} = \frac{1}{\mu_L} \frac{dP}{dx} - \frac{F_x}{\mu_L} = \frac{1}{\mu_L} \frac{dP}{dx} - \frac{\rho_L g}{\mu_L}$ 

□ Equation:

$$\frac{\partial^2 u}{\partial y^2} = -\frac{g}{\mu_L} (\rho_L - \rho_v)$$

 $\square$  Conditions aux limites: u(0)=0  $\frac{\partial u}{\partial v} = 0$ 

 $-\rho_{\nu}g$ 

$$\left. \frac{\partial u}{\partial y} \right|_{y=\delta} = 0$$

- Equation de quantité de mouvement:
  - □ Solution:

$$u(y) = \frac{g(\rho_L - \rho_v)\delta^2}{\mu_L} \left[ \frac{y}{\delta} - \frac{1}{2} \left( \frac{y}{\delta} \right)^2 \right]$$

□ Débit masse:

$$\dot{m}(x) = b \int_0^{\delta(x)} \rho_L \, u(y) \, dy$$

En remplaçant u(y) par son expression

$$m(x) = \frac{b \rho_L (\rho_L - \rho_v) g \delta^3(x)}{3\mu_L}$$

#### Transfert de chaleur:

□ Flux libéré par condensation

$$dQ = L_v dm = \frac{\lambda_L (T_{sat} - T_s) b dx}{\delta}$$

$$\square \text{ Or } \dot{m}(x) = \frac{b \rho_L (\rho_L - \rho_v) g \delta^3(x)}{3\mu_L}$$

$$\Rightarrow \delta(x) = \left[ \frac{4\lambda_L \mu_L (T_{sat} - T_s) x}{g \rho_L (\rho_L - \rho_v) L_v} \right]^{1/4}$$

- Transfert de chaleur:
  - □ Coefficient d'échange

$$h_x b dx (T_{sat} - T_s) = dQ = \frac{\lambda_L b dx (T_{sat} - T_s)}{\delta}$$
  $\Rightarrow h_x = \frac{\lambda_L}{\delta(x)}$ 

- □ Correction:
  - Prise en compte de l'advection:

$$L'_{v} = L_{v} \left( 1 + 0.68 Ja \right)$$
 avec  $Ja = \frac{C_{PL} \left( T_{sat} - T_{s} \right)}{L_{v}}$ 

Donc

$$h_{x} = \left[ \frac{g \rho_{L} (\rho_{L} - \rho_{v}) \lambda_{L}^{3} L_{v}'}{4\mu_{L} (T_{sat} - T_{s}) x} \right]^{1/4}$$

- Extension aux régimes ondulants et turbulents:
  - $\square$  Diamètre hydraulique  $D_h=4\delta$
  - □ Nombre de Reynolds:

$$\operatorname{Re}_{\delta} = \frac{\rho_L u_{moyen} D_h}{\mu_L}$$

Donc

$$\operatorname{Re}_{\delta} = \frac{\rho_L u_{moyen} 4\delta}{\mu_L} = \frac{4m}{\mu_L b} = \frac{4g \rho_L (\rho_L - \rho_v) \delta^3}{3\mu_L^2}$$

- Extension aux régimes ondulants et turbulents:
  - □ Nombre de Reynolds:

$$Re_{\delta} = \frac{4g \rho_L (\rho_L - \rho_v) \delta^3}{3\mu_L^2}$$

- ☐ Si < 30: laminaire
- $\square$  Si 30 < Re<sub> $\delta$ </sub> < 1800: ondulant

$$\frac{\overline{h}_{H}(v_{L}^{2}/g)^{1/3}}{\lambda_{L}} = \frac{\text{Re}_{\delta}}{1,08\,\text{Re}_{\delta}^{1,22}-5,2}$$

 $\square$  Si Re<sub>8</sub> > 1800: turbulent

$$\frac{\overline{h}_{H} \left(v_{L}^{2} / g\right)^{1/3}}{\lambda_{L}} = \frac{\text{Re}_{\delta}}{8750 + 58 \,\text{Pr}^{-0.5} \left(\text{Re}_{\delta}^{0.75} - 253\right)}$$

- Extension aux régimes ondulants et turbulents:
  - $\square$  Si Re<sub>8</sub> > 1800: turbulent

$$\frac{\overline{h}_{H} \left(v_{L}^{2} / g\right)^{1/3}}{\lambda_{L}} = \frac{\text{Re}_{\delta}}{8750 + 58 \,\text{Pr}^{-0.5} \left(\text{Re}_{\delta}^{0.75} - 253\right)}$$

