Cipolla's algorithm*

张晴川 qzha536@aucklanduni.ac.nz

June 15, 2020

1 问题

给定素数 p 和整数 n, 在 \mathbb{F}_p 上求平方根 \sqrt{n} , p 是素数。

2 核心思路

我们在 \mathbb{F}_p 的二次扩张上求平方根,如果 n 在 \mathbb{F}_p 上已经有平方根,那么求出的结果一定也在 \mathbb{F}_p 内,这是因为任意一个域中 $x^2=n$ 都最多只有两个根(拉格朗日定理)。

3 做法

Lemma (欧拉准则).

$$x^{\frac{p-1}{2}} = \begin{cases} 1 & x \neq -2 \\ -1 & x \neq -2 \end{cases}$$

首先考虑在 \mathbb{F}_p 中随一个数 a 满足 $\omega=a^2-n$ 不是二次剩余,由于 \mathbb{F}_p 有一半的数不是二次剩余,这一步很快,判定用欧拉准则即可。

^{*}更多内容请访问: https://github.com/SamZhangQingChuan/Editorials

现在考虑 \mathbb{F}_p 的二次扩张 $\mathbb{F}_p(\sqrt{\omega})$ 。 我们来证明 n 的一个平方根是:

$$(a+\sqrt{\omega})^{\frac{p+1}{2}}$$

Proof. 只需要证明 $(a + \sqrt{\omega})^{p+1} = n$ 即可:

$$(a + \sqrt{\omega})^{p+1} = (a + \sqrt{\omega})^p (a + \sqrt{\omega})$$

$$= (a^p + \sqrt{\omega}^p)(a + \sqrt{\omega})$$

$$= (a + \sqrt{\omega}^{p-1}\sqrt{\omega})(a + \sqrt{\omega})$$

$$= (a + \omega^{\frac{p-1}{2}}\sqrt{\omega})(a + \sqrt{\omega})$$

$$= (a - \sqrt{\omega})(a + \sqrt{\omega})$$

$$= a^2 - \omega^2$$

$$= a^2 - (a^2 - n)$$

$$= n$$

$$(a + \sqrt{\omega})^p (a + \sqrt{\omega})$$

$$\therefore 1 < i < p \implies \binom{p}{i} = 0$$

$$\therefore 1 < i < p \implies \binom{p}{i} = 0$$

所以 $(a+\sqrt{\omega})^{\frac{p+1}{2}}$ 确实是 n 平方根,如果 n 在 \mathbb{F}_p 中是二次剩余,那么我们得到的结果一定也在 \mathbb{F}_p 中。