Personalized Yelp Recommendations

GA Tech CSE6424 Data Visualization - Team Project
Brandon Tran
John Hermina
Timothy Marx

Problem Statement

- Yelp is a great resource for finding places to eat!
- However, unless you're an avid Yelp user -- Yelp cannot recommend a personalized search.
 - Multiple written multiple reviews,
 - Multiple business visits/ratings
- ► Heck, Yelp's Recommendations go on for pages and pages like google searches!
 - ▶ This isn't personalization more than just recommendations!

Project Goal

- Create an app that can allow users to input their food preferences & output a personalized restaurant search
- Additionally, <u>provide metrics</u> & limit the results as to allow users to make <u>informed decisions</u> quicker and with confidence!

Recommendation System Details

- Package: LightFM
- LightFM maps user/item features and performs dimensionality reduction to find latent factors (see Matrix Factorization) that exist in your model
- ► The model of choice here was a <u>user-based collaborative filtering</u> model
 - A method that exploits user's features (cuisine preference) to create a model that can be used to predict for a **new user (you!)** based on their own preferences

What exactly are the inputs? How was the model trained?

The Dataset

1,320,761 tips by 1,968,703 users Over 1.4 million business attributes like hours, parking, availability, and ambience Aggregated check-ins over time for each of the 209.393 businesses

- The Yelp Challenge Dataset contains lots of information
- Specifically, we used what the business tagged itself as
- Ex: The Cheesecake Factory lists under {Desserts, American (Traditional)}

- These business tags are used as inputs and the LightFM model is trained on what users that exist in the system that have reviewed +3 locations.
- Recommended restaurants are populated based on highest similarity score

Example of how User-based Collaborative Filtering works (Next slide)

Model Input & Output Overview

User_profile = ["Japanese", "Thai", "Burgers", "Korean", "Soups"]

Feature Vector for this user:

"Japanese"	"Burgers"	"American (New)"	"Wigs"	"Thai"	 "Hair Salon"
1	1	0	0	1	 0

```
All_items = {0,1,2,...,M}

M = # businesses
```


Sort

Top X recs

Putting it all together!

- 1) Preferences are fed into the model in the 1st drop-down menu
- 2) Recommendations are automatically populated from the LightFM model
- 3) Graphics are also automatically updated once businesses are populated

Yelp Recommender - Team99(198)

Note: Graphics may take ~15s to load & will automatically update with any changes to above selectors

Momofuku Noodle Bar

Most Positive Attributes
o pork
o chicken
o disappointment

service o problem

Packages/Software Utilized

- Python
 - Pandas Dataframe structure
 - Numpy General computation
 - LightFM To compute the Collaborative Filtering Algorithm
 - Dash/Plotly To generate the dashboard & Callback functions
 - Mapbox To generate the map
 - ► FBProphet To generate the forecasts
- Docker
 - ► To instance and package the project

How this can be improved

- Input options could be limited/streamlined
 - "American (New)" is likely the same as "American"
 - Also this blanket term may encapsulate other input terms such as "Burger" or "Pizza" which adds a level of confounding --- Maybe remove generic cultural words and allow the individual food items only
 - "Hair Salon" and "Wigs" are not food!
 - Manual check of keywords/tags, although conducted, was not sufficient at removing all nonsense entries
- ► The dataset could be expanded
 - ► For the project, we focused only on the Toronto area to keep the project formfit for the short timeline we had