作业六:排序算法

李沁霞 3210300363 统计学 2022 年 11 月 25 日

1 简介

我们比较两种强大的排序算法,快速排序 (quicksort) 和堆排序 (heapsort)。快速排序通常在实践中使用,而内存有问题时使用堆排序。 首先简单的介绍一下快速排序和堆排序的算法流程,然后比较它们的测试结果。

2 快速排序

快速排序基于分而治之的方法。总的来说,快速排序算法遵循三个主要步骤:

- 1. 选取一个元素作为基准
- 2. 将较小的元素移动到左侧, 而大的元素移动到右侧
- 3. 在每个分区上重复上述步骤

平均而言,最佳情况下快速排序算法的时间复杂度为 O(nlogn)。最坏情况的时间复杂度为 $O(n^2)$,如果选错了主元就发生这种情况。快速排序实现时不稳定,则最佳情况下的时间复杂度可能为 O(logn),而平均情况为 O(n)。

3 堆排序

堆排序是一种基于二叉堆数据结构的比较排序方法。堆排序算法有四个主要步骤:

1. 构建一个最小(或最大)堆

- 2. 此时,最小项存储在堆的根部。从根节点删除元素,并在右边的叶子储存在根节点中。
- 3. 堆化树的根
- 4. 当堆的大小大于1时, 重复步骤2和3

Percdown 是一个以正确的顺序排列节点使他们遵循堆属性的过程。堆排序在所有情况下的时间复杂度都是 O(nlogn),但是堆排序使用 O(1) 辅助空间,所以如果内存有问题,使用堆排序是一个不错的选择。

4 测试结果

Size	Efficiency %	Heapsort (s)	Quicksort (s)
10000	1	0.003	0.001
	10	0.005	0.001
	90	0.004	0.001
	99	0.004	0.001
100000	1	0.059	0.012
	10	0.062	0.007
	90	0.046	0.006
	99	0.045	0.01
1000000	1	0.346	0.077
	10	0.333	0.08
	90	0.318	0.063
	99	0.307	0.067