SE 3XA3: MIS Space Invaders

April 12, 2022

Team Information:

Team Number	Name	MACID
	Qianlin Chen	chenq84
L03 G07	Jiacheng Wu	wuj187
	Tingyu Shi	shit19

Table 1: Revision History

Date	Developer(s)	Change
January 26, 2022	All team members	Initial Document
March 18, 2022	Qianlin Chen	Display Modules
March 10, 2022	Jiacheng Wu	Control Modules
March 10, 2022	Tingyu Shi	Model modules
April 11, 2022	All team members	Revised document

Contents

T	MonsterColor Module	b
2	BulletState Module	6
3	Monster Module	7
4	SpaceShip Module	10
5	Bullet Module	15
6	Score Module	18
7	Block Module(newly added module)	20
8	Obstacle Module	21
9	Ammo Module	23
10	Bomb Module	26
11	Heart Module	29
12	CollisionDectection Module This module has been deleted	32
13	MonsterMatrix Module	33
14	MonsterDisplay Module This module has been deleted	38
15	SpaceShipDisplay Module	40
16	BulletDisplay Module	42
17	ScoreDisplay Module	44
18	ObstaclesDisplay Module	46
19	AmmoDisplay Module This module has been deleted	48
20	HeartDisplay Module This module has been deleted	50
21	BombDisplay Module This module has been deleted	52
22	MonsterMatrixDisplay Module	54
23	WindowSetUp Module	56
24	SingleController Module	58
25	DoubleController Module	60

26 TotalController Module	62
27 Driver Module	6 4
28 LifeDisplay Module Newly Added module	66
29 WelcomeMessageDisplay Module Newly Added module	68
30 ModeSelectionDisplay Module Newly Added module	69
31 GameInstruction Module Newly Added module	70
32 GameItemIntroductionDisplay Module Newly Added module	71
33 LoseDisplay Module Newly Added module	7 2
34 WinDisplay Module Newly Added module	7 3
List of Tables 1 Revision History	2

List of Figures

1 MonsterColor Module
Module
MonsterColor
Uses
None
Syntax
Exported Constants
None
Exported Types
MonsterType = $\{RED, BLUE, PINK\}$ # Represent Three colors of monsters
Exported Access Programs
None (This is an Enum class in python)
Semantics
State Variables
None
State Invariant
None
Assumptions
None
Access Routine Semantics
None
Consideration
When implementing in Python, use Enum class.

2 BulletState Module
Module
BulletState
Uses
None
None
Syntax
Exported Constants
None
Exported Types
BulletState = $\{FIRE, READY\}$ # Represent two states of bullets
Exported Access Programs
None (This is an Enum class in python)
Semantics
State Variables
None
State Invariant
None
Assumptions
None
Access Routine Semantics
None
Consideration
When implementing in Python, use Enum class.

3 Monster Module

Template Module

Monster

Uses

MonsterColor, Bullet, pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

Monster = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Monster	$\mathbb{R}, \mathbb{R}, \mathbb{R}, MonsterColor, \mathbb{R}$	Monster	IllegalArgumentException
-setX Method removed	\mathbb{R}		IllegalArgumentException
-setY- Method removed	\mathbb{R}		IllegalArgumentException
-getX Method removed		\mathbb{R}	
-getY- Method removed		$ \mathbb{R} $	
-getColor -Method removed		Monster Color	
reduceLife			
isDead		$\mid \mathbb{B} \mid$	
update	\mathbb{Z}		
-shoot Method removed		Bullet	
getItemType		\mathbb{Z}	

Semantics

State Variables

 $speed: \mathbb{R}$ $X: \mathbb{R}$

 $Y \colon \mathbb{R}$

 $monster_color: MonsterColor$

X_change: \mathbb{R} Y_change: \mathbb{R}

 $\begin{array}{l} \textit{life} \colon \mathbb{Z} \\ \textit{item Type} \colon \mathbb{Z} \end{array}$

image: .png file

 $rect: image.get_rect \ (This \ is \ the \ API \ of \ pygame \ library)$

State Invariant

$0 \le X \le 736$

Assumptions

None

Access Routine Semantics

new Monster(x, y, color, s,):

```
• transition:
```

```
speed, itemType := s, 1 \\ color = MonsterColor.GREEN \Rightarrow life := 1 \\ color = MonsterColor.BLUE \Rightarrow life := 2 \\ color = MonsterColor.PINK \Rightarrow life := 3 \\ image := corresponding image \\ rect := image.get\_rect(topleft = (x, y))
```

- output: out := self
- exception: exc := $((s < 0) \lor (x < 0) \lor (y < 0) \Rightarrow \text{IllegalArgumentException})$

setX(x) Method removed:

- transition: X := x
- output: none
- exception: $((x < 0) \Rightarrow \text{IllegalArgumentException})$

setY(y) Method removed:

- transition: Y := y
- output: none
- exception: $((y < 0) \Rightarrow \text{IllegalArgumentException})$

getX() Method removed:

- transition: none
- output: out := X
- exception: none

getY() Method removed:

- transition: none
- output: out := Y
- exception: none

getColor() Method removed:

- transition: none
- ullet output: $out := monster_color$
- exception: none

reduceLife():

- transition: life := life 1
- output: none
- exception: none

isDead():

- transition: none
- output: life = 0
- exception: none

update(direction):

- transition:
- $rect.x := rect.x + (direction \times speed)$
- output: none
- exception: none

$\frac{\text{shoot}()}{\text{Method removed:}}$

- \bullet transition: none
- \bullet output: $new\ Bullet(20,\ X,\ Y)$
- \bullet exception: none

getItemType():

- transition: none
- output: itemType
- exception: none

4 SpaceShip Module

Template Module

SpaceShip

Uses

Bullet, pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

SpaceShip = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Monster	$\mathbb{R}, \mathbb{R}, (\mathbb{R}, \mathbb{R}), \mathbb{R}, \mathbb{Z}$	SpaceShip	IllegalArgumentException
setX Method removed	\mathbb{R}		IllegalArgumentException
setY Method removed	\mathbb{R}		IllegalArgumentException
getX Method removed		\mathbb{R}	
getY Method removed		\mathbb{R}	
moveLeft Method removed			
moveRight Method removed			
stopMove Method removed			
reduceLife			
isDead Method removed		\mathbb{B}	
boundaryDetection			
shoot		Bullet	
update			
move			
prepare_bullet			
getBulletsGroup		pygame sprite group	
increaseLife			
getLife		\mathbb{Z}	
setLife	\mathbb{Z}		
increaseBullet			

Semantics

State Variables

```
screen\_size\_info: (\mathbb{R}, \mathbb{R})
space\_ship\_number: \mathbb{Z}
speed: \mathbb{R}
X: \mathbb{R}
Y: \mathbb{R}
X\_change: \mathbb{R}
life: \mathbb{Z}
image: .png file
rect: image.get\_rect (This is the API of pygame library)
bullets\_group: pygame sprite group
state: BulletState
shoot\_time: \mathbb{Z}
bullet\_number: \mathbb{Z}
```

State Invariant

```
0 \le X \le 7360 < life < 5
```

Assumptions

None

Access Routine Semantics

new SpaceShip(x, y, size, s, number):

```
transition: screen_size_info := size space_ship_number := number image := corresponding image rect := image.get_rect(midbottom = (x, y)) speed := s life := 5 bullets_group := new Pygame sprite group state := BulletState.READY shoot_time := 0 bullet_number := 0
output: out := self
```

• exception: exc := $((s < 0) \lor (x < 0) \lor (y < 0) \Rightarrow \text{IllegalArgumentException})$

setX(x):

- transition: X := x
- output: none

• exception: $((x < 0) \Rightarrow \text{IllegalArgumentException})$

setY(y):

• transition: Y := y

• output: none

• exception: $((y < 0) \Rightarrow \text{IllegalArgumentException})$

getX():

• transition: none

 \bullet output: out := X

• exception: none

getY():

• transition: none

• output: out := Y

• exception: none

moveLeft():

• transition: $X_change := -1 * speed$

• output: none

• exception: none

$\frac{\text{moveRight()}}{\text{:}}$

• transition: X_change := speed

• output: none

• exception: none

$\underline{\operatorname{stopMove}()}:$

• transition: $X_change := 0$

• output: none

• exception: none

reduceLife():

• transition: life := life - 1

• output: none

• exception: none

isDead():

```
• transition: none
```

• output: life = 0

• exception: none

boundaryDetection():

• transition:

```
rect.left \le 0 \Rightarrow (rect.left := 0)

rect.right \ge screen\_size\_info[0] \Rightarrow (rect.right := screen\_size\_info[0])
```

• output: none

• exception: none

shoot():

• transition: none

• output: add bullet(s) to bullet_group according to user keyboard input

• exception: none

update():

• transition:

move()
boundaryDetection()
shoot()
prepare_bullet()
bullets_group.update()

• output: none

• exception: none

move():

• transition:

```
rect.x += speed if user wants to move right rect.x -= speed if user wants to move left
```

• output: none

• exception: none

prepare_bullet():

• transition: set up the gap time between two shootings

• output: none

• exception: none

getBulletsGroup():

- transition: none
- output: out := bullets_group
- exception: none

increaseLife():

- transition: life := life + 1
- output: none
- exception: none

getLife():

- transition: none
- \bullet output: out := life
- exception: none

setLife(newLife):

- transition: life := newLife
- output: none
- exception: none

increaseBullet():

- transition: none
- \bullet output: bullet_number := bullet_number + 1
- exception: none

5 Bullet Module

Template Module

Bullet

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

Bullet = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Bullet	$\mathbb{R}, \mathbb{R}, (\mathbb{R}, \mathbb{R}), \mathbb{R}, \mathbb{Z}$	Bullet	IllegalArgumentException
-setXMethod removed	\mathbb{R}		IllegalArgumentException
-setYMethod removed	\mathbb{R}		IllegalArgumentException
getX Method removed		\mathbb{R}	
-getY Method removed		\mathbb{R}	
-setStateMethod removed	BulletState		
getState Method removed		BulletState	
move			
boundaryDetection			
update			

Semantics

State Variables

screen_size_info : (\mathbb{R}, \mathbb{R}) speed: \mathbb{R}

speea.

 $X:\mathbb{R}$

 $Y: \mathbb{R}$

Y_change: \mathbb{R}

-state: Bullet State

image: .png file

 $rect: image.get_rect \ (This \ is \ the \ API \ of \ pygame \ library)$

State Invariant

none

Assumptions

None

Access Routine Semantics

• transition: state := newState

• output: none

```
new Bullet(x, y, size, s, direction):
    • transition:
      screen\_size\_info := size
      speed := s
      image := corresponding image(direction is the condition)
      rect := image.get\_rect(center = (x, y))
    • output: out := self
    • exception: exc := ((s < 0) \lor (x < 0) \lor (y < 0) \Rightarrow \text{IllegalArgumentException})
-\text{setX}(x):
    • transition: X := x
    • output: none
    • exception: ((x < 0) \Rightarrow \text{IllegalArgumentException})
-\text{setY}(y):
    • transition: Y := y
    • output: none
    • exception: ((y < 0) \Rightarrow \text{IllegalArgumentException})
\frac{\text{getX}()}{\text{getX}()}:
    • transition: none
    • output: out := X
    • exception: none
\frac{\text{getY}()}{\text{getY}()}:
    • transition: none
    • output: out := Y
    • exception: none
-setState(newState):
```

• exception: none

getState():

- transition: none
- \bullet output: out := state
- exception: none

move():

- transition: rect.y := rect.y + speed
- output: none
- exception: none

boundaryDetection():

- transition: rect.y \leq 30 OR rect.y \geq screen_size_info[1] \Rightarrow kill self object
- output: none
- exception: none

update():

- transition: move() boundaryDetection()
- output: none
- exception: none

6 Score Module

Template Module

Score

Uses

none

Syntax

Exported Constants

None

Exported Types

Score = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new score		Score	
getScore		N	
-increaseAmount increase	N		

Semantics

State Variables

 $score: \mathbb{N}$

State Invariant

 $score \ge 0$

Assumptions

None

Access Routine Semantics

new Score():

• transition: score := 0

• output: out := self

• exception: exc := none

getScore():

• transition: none

 \bullet output: out := score

• exception: none

-increaseAmount increase(amount):

• transition: score := score + amount

• output: none

• exception: none

7 Block Module(newly added module)

Template Module

Block

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

Obstacle = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Block	\mathbb{R}, \mathbb{R}	Obstacle	

Semantics

State Variables

image: .png file

rect: image.get_rect (This is the API of pygame library)

State Invariant

None

Assumptions

None

Access Routine Semantics

new Block(x, y):

• transition:

```
image := corresponding image

rect := image.get\_rect(topleft = (x, y))
```

- output: out := self
- exception: exc := none

8 Obstacle Module

Template Module

Obstacle

Uses

Block, pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

Obstacles = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Obstacle		Obstacle	
creat_one_obstacle	\mathbb{Z},\mathbb{Z}		
getBlocksGroup		pygame sprite group	

Semantics

State Variables

 $X:\mathbb{R}$

 $Y \colon \mathbb{R}$

 $Width: \mathbb{R}$

 $Height: \mathbb{R}$

 $Area: \mathbb{R}$

blocks_group := pygame sprite group

State Invariant

None

Assumptions

None

Access Routine Semantics

```
new Obstacle():
   • transition:
      create_one_obstacle(50, 400)
     create_one_obstacle(250, 400)
     create_one_obstacle(450, 400)
     create_one_obstacle(650, 400)
   \bullet output: out := self
   • exception: exc := none
create_one_obstacle(xStart, yStart):
   • transition: create blocks starting at (xStart, yStart) and add all the blocks to blocks_group
   • output: out := self
   • exception: exc := none
getBlocksGroup():
   • transition: none
   • output: out := blocks\_group
   • exception: exc := none
\frac{\text{getX}()}{\text{getX}()}:
   • transition: none
   • output: out := X
   • exception: none
getY():
   • transition: none
   • output: out := Y
   • exception: none
\frac{\text{getArea}()}{}:
   • transition: none
   • output: out := Area
   • exception: none
```

$reduce_area(amount)$:

• transition: Area := Area - amount

• output: none

• exception: none

9 Ammo Module

Template Module

Ammo

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

Ammo = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Ammo	$\mathbb{R}, \mathbb{R}, \mathbb{R}$	Ammo	IllegalArgumentException
setX	\mathbb{R}		Illegal Argument Exception
setY	\mathbb{R}		IllegalArgumentException
getX -		\mathbb{R}	
getY		\mathbb{R}	
reduce_life			
isDead		\mathbb{B}	
move			
update	\mathbb{Z}		
getItemType		\mathbb{Z}	

Semantics

State Variables

 $speed: \mathbb{R}$

 $X: \mathbb{R}$

 $Y \colon \mathbb{R}$

X-change: \mathbb{R}

Y_change: \mathbb{R}

 $life: \mathbb{N}$

item Type: \mathbb{Z}
 image: .png file

rect: image.get_rect (This is the API of pygame library)

State Invariant

None

Assumptions

None

Access Routine Semantics

```
new Ammo(x, y, s):
```

```
• transition: speed := s
```

itemType := 3

image := corresponding image

 $rect := image.get_rect(topleft = (x, y))$

- output: out := self
- exception: exc := $((s < 0) \lor (x < 0) \lor (y < 0) \Rightarrow \text{IllegalArgumentException})$

setX(x):

- transition: X := x
- output: none
- exception: $((x < 0) \Rightarrow \text{IllegalArgumentException})$

setY(y):

- transition: Y := y
- output: none

$\frac{\text{getX}()}{}$:

- transition: none
- \bullet output: out := X
- exception: none

getY():

- transition: none
- output: out := Y
- exception: none

reduce_life():

- transition: life := life 1
- output: none
- exception: none

isDead():

- transition: none
- output: life = 0
- exception: none

move():

- transition:
 - $X := X + X_change$
 - $X \leq 0 \Rightarrow (X_change, Y := speed, Y + Y_change)$
 - $X \ge 736 \Rightarrow (X_change, Y := -1 * speed, Y + Y_change)$
- output: none
- exception: none

update(direction):

- transition:
 - $rect.x := rect.x + (direction \times speed)$
- output: none
- exception: none

getItemType():

- transition: None
- output: out := itemType
- exception: none

10 Bomb Module

Template Module

Bomb

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

Bomb = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Bomb	$\mathbb{R}, \mathbb{R}, \mathbb{R}$	Bomb	IllegalArgumentException
setX	\mathbb{R}		IllegalArgumentException
setY	\mathbb{R}		IllegalArgumentException
getX -		\mathbb{R}	
getY		\mathbb{R}	
reduce_life			
isDead		\mathbb{B}	
move			
update	\mathbb{Z}		
getItemType		\mathbb{Z}	

Semantics

State Variables

 $speed: \mathbb{R}$

 $X:\mathbb{R}$

 $Y \colon \mathbb{R}$

X-change: \mathbb{R}

Y_change: \mathbb{R}

 $life: \mathbb{N}$

itemType: \mathbb{Z} image: .png file

rect: image.get_rect (This is the API of pygame library)

State Invariant

None

Assumptions

None

Access Routine Semantics

```
new Bomb(x, y, s):
```

```
• transition:
speed := s
itemType := 4
image := corresponding image
```

 $rect := image.get_rect(topleft = (x, y))$

- output: out := self
- exception: exc := $((s < 0) \lor (x < 0) \lor (y < 0) \Rightarrow \text{IllegalArgumentException})$

setX(x):

- transition: X := x
- output: none
- exception: $((x < 0) \Rightarrow \text{IllegalArgumentException})$

setY(y):

- transition: Y := y
- output: none
- exception: $((y < 0) \Rightarrow \text{IllegalArgumentException})$

$\frac{\text{getX}()}{}$:

- transition: none
- output: out := X
- exception: none

getY():

- transition: none
- output: out := Y
- exception: none

reduce_life():

- transition: life := life 1
- output: none
- exception: none

isDead():

- transition: none
- output: life = 0
- exception: none

move():

- transition:
 - $X := X + X_change$
 - $X \leq 0 \Rightarrow (X_change, Y := speed, Y + Y_change)$
 - $X \ge 736 \Rightarrow (X_change, Y := -1 * speed, Y + Y_change)$
- output: none
- exception: none

update(direction):

- transition:
 - $rect.x := rect.x + (direction \times speed)$
- output: none
- exception: none

getItemType():

- transition: None
- output: out := itemType
- exception: none

11 Heart Module

Template Module

Heart

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

Heart = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Heart	$\mathbb{R}, \mathbb{R}, \mathbb{R}$	Heart	IllegalArgumentException
setX	\mathbb{R}		IllegalArgumentException
setY	\mathbb{R}		IllegalArgumentException
getX -		\mathbb{R}	
getY		\mathbb{R}	
reduce_life			
isDead		\mathbb{B}	
move			
update	\mathbb{Z}		
getItemType		\mathbb{Z}	

Semantics

State Variables

 $speed: \mathbb{R}$

 $X:\mathbb{R}$

 $Y \colon \mathbb{R}$

X-change: \mathbb{R}

Y_change: \mathbb{R}

 $life: \mathbb{N}$

itemType: \mathbb{Z} image: .png file

rect: image.get_rect (This is the API of pygame library)

State Invariant

None

Assumptions

None

Access Routine Semantics

```
new Heart(x, y, s):
```

```
• transition: speed := s
```

itemType := 2

 $image := corresponding \ image$

 $rect := image.get_rect(topleft = (x, y))$

- output: out := self
- exception: exc := $((s < 0) \lor (x < 0) \lor (y < 0) \Rightarrow \text{IllegalArgumentException})$

setX(x):

- transition: X := x
- output: none
- exception: $((x < 0) \Rightarrow \text{IllegalArgumentException})$

setY(y):

- transition: Y := y
- output: none

$\frac{\text{getX}()}{}$:

- transition: none
- output: out := X
- exception: none

getY():

- transition: none
- output: out := Y
- exception: none

reduce_life():

- transition: life := life 1
- output: none
- exception: none

isDead():

- transition: none
- output: life = 0
- exception: none

move():

- transition:
 - $X := X + X_change$
 - $X \leq 0 \Rightarrow (X_change, Y := speed, Y + Y_change)$
 - $X \ge 736 \Rightarrow (X_change, Y := -1 * speed, Y + Y_change)$
- output: none
- exception: none

update(direction):

- transition:
 - $rect.x := rect.x + (direction \times speed)$
- output: none
- exception: none

getItemType():

- transition: None
- output: out := itemType
- exception: none

12 CollisionDectection Module This module has been deleted

Service Module

Service

Uses

None

Syntax

Exported Constants

None

Exported Types

None

Exported Access Programs

Routine name	In	Out	Exceptions
isCollided	$\mathbb{R}, \mathbb{R}, \mathbb{R}, \mathbb{R}$	\mathbb{B}	

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

isCollided (x_1, x_2, y_1, y_2) :

- transition: none
- output: $distance(x_1, x_2, y_1, y_2) \le 27$
- \bullet exception: exc := none

Local Function

distance:
$$[\mathbb{R}, \mathbb{R}, \mathbb{R}, \mathbb{R}] \Rightarrow \mathbb{R}$$

distance $(x_1, x_2, y_1, y_2) \equiv \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

13 MonsterMatrix Module

Template Module

MonsterMatrix

Uses

Monster, Ammo, Heart, Bomb, pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

MonsterMatrix = ?

Exported Access Programs

D	Т		- ·
Routine name	In	Out	Exceptions
new MonsterMatrix	$\mathbb{Z},\mathbb{R},(\mathbb{N},\mathbb{N})$	MonsterMatrix	IllegalArgumentException
getMatrix		seq of seq [Monster, Ammo, Heart, Bomb]	
move			
shoot			
round1			
round2			
round3			
round4			
round5			
getMonstersGroup		pygame sprite group	
boundaryDetection			
move_down			
getBulletsGroup		pygame sprite group	
update			

Semantics

State Variables

 $speed: \mathbb{R}$

M: seq of seq[Ammo Monster Heart Bomb]

monsters_group : pygame sprite group

direction : \mathbb{Z}

screen_size_info: (\mathbb{R}, \mathbb{R})

bullets_group: pygame sprite group

State Invariant

None

Assumptions

None

Access Routine Semantics

new MonsterMatrix(round, s):

```
• transition:
```

```
speed := s
round = 1 \Rightarrow M := m1(with monsters randomly replaced by Ammo, Bomb, Heart)
round = 2 \Rightarrow M := m2(with monsters randomly replaced by Ammo, Bomb, Heart)
round = 3 \Rightarrow M := m3(with monsters randomly replaced by Ammo, Bomb, Heart)
round = 4 \Rightarrow M := m4(with monsters randomly replaced by Ammo, Bomb, Heart)
round = 5 \Rightarrow M := m5(with monsters randomly replaced by Ammo, Bomb, Heart)
```

- \bullet output: out := self
- exception: exc := $(\neg (0 \le round \le 5) \lor (s < 0)) \Rightarrow IllegalArgumentException)$

round1():

- transition: add m1 to monsters_group with game items randomly replaced
- output: none
- exception: none

round2():

- transition: add m2 to monsters_group with game items randomly replaced
- output: none
- exception: none

round3():

- transition: add m3 to monsters_group with game items randomly replaced
- output: none
- exception: none

round4():

- transition: add m4 to monsters_group with game items randomly replaced
- output: none
- exception: none

round5():

- transition: add m5 to monsters_group with game items randomly replaced
- \bullet output: none
- exception: none

getMonstersGroup():

- transition: none
- output: out := monsters_group
- exception: none

boundaryDetection():

- transition: if any of the monster in monsters_group touches the edge of the screen, move the whole monster matrix down.
- output: none
- exception: none

move_down():

- transition: $\forall \ gameItem \in monsters_group : gameItem.rect.y += 2$
- output: none
- exception: none

getMatrix() Method removed:

- transition: none
- output: out := M
- exception: none

move() Method removed:

- transition: Monster Matrix moves in direction east \rightarrow south \rightarrow west
- output: none
- exception: none

shoot():

- transition: Monsters M shoot bullets randomly and add bullets object to bullets_group.
- output: none
- exception: none

getBulletsGroup():

• transition: none

• output: out := bullets_group

• exception: none

update():

• transition:

 $\forall \ gameItem \in monsters_group : gameItem.update()$ boundaryDetection() bullets_group.update()

• output: none

• exception: none

Local Types

GM means green monster.

BM means blue monster.

PM means pink monster.

14 MonsterDisplay Module This module has been deleted

UserInterface Module

MonsterDisplay

Uses

Monster, MonsterColor

Syntax

Exported Constants

N/A

Exported Types

Monster Display = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new MonsterDisplay	pygame window object, MonsterColor	MonsterDisplay	
show	N, N, Boolean		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

 $SCREEN: pygame\ window\ object$

img: Monster Picture

State Invariant

N/A

Assumptions

new MonsterDisplay(screen, monster_color)

• transition:

```
SCREEN := screen monster\_color = MonsterColor.GREEN \Rightarrow img := green monster picture monster\_color = MonsterColor.BLUE \Rightarrow img := blue monster picture monster\_color = MonsterColor.PINK \Rightarrow img := pink monster picture
```

- output: out := self
- exception: None

show(x, y, isDead):

- transition: $isDead \Rightarrow Display img \ at \ (x,y)$
- output: none
- input definitions: x and y represent the monster display coordinate. isDead is used to clarify whether the monster is killed.
- exception: None

15 SpaceShipDisplay Module

UserInterface Module

SpaceShipDisplay

Uses

SpaceShip, pygame.sprite.Sprite

Syntax

Exported Constants

N/A

Exported Types

SpaceShipDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new SpaceShipDisplay	pygame window object, N, pygame sprite group	SpaceShipDisplay	
show	N, N		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

N/A

State Invariant

 $SCREEN: pygame\ window\ object$

imq: SpaceShip Picture

space_ship_group: pygame sprite group

Assumptions

new SpaceShipDisplay(screen, spaceship_number, group)

```
• transition: SCREEN := screen space\_number = 1 \Rightarrow img := spaceship1 picture space\_number = 2 \Rightarrow img := spaceship2 picture space\_ship\_group := group
```

 \bullet output: out := self

• exception: None

 $show(\frac{x,y}{})$:

• transition: space_ship_group.draw(SCREEN) # This is pygame API

• output: none

 \bullet exception: None

16 BulletDisplay Module

UserInterface Module

BulletDisplay

Uses

BulletState, Bullet, pygame.sprite.Sprite

Syntax

Exported Constants

N/A

Exported Types

Bullet Display = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new BulletDisplay	pygame window object, pygame sprite group	BulletDisplay	
show	\mathbb{N} , \mathbb{N} , BulletState-		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

 $SCREEN: pygame\ window\ object$

imq: Bullet Picture

bullets_group: pygame sprite group

State Invariant

N/A

Assumptions

new BulletDisplay(screen, bullets)

```
• transition:
SCREEN := screen
img := bullet picture
bullets\_group := bullets
```

• output: out := self

• exception: None

show(x, y, state):

• transition: $state = BulletState.FIRE \Rightarrow Display img at (x, y)$ bullets_group.draw(SCREEN) # This is pygame API

• output: none

17 ScoreDisplay Module

UserInterface Module

 ${\bf Score Display}$

Uses

Score

Syntax

Exported Constants

N/A

Exported Types

ScoreDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new ScoreDisplay	pygame window object	ScoreDisplay	
show	$\mathbb{N}, \mathbb{N}, \mathbb{N}$		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

 $SCREEN: pygame\ window\ object$

State Invariant

N/A

Assumptions

new ScoreDisplay(screen)

 \bullet transition: SCREEN := screen

 \bullet output: out := self

• exception: None

show(x, y, score):

• transition: Display score at (x, y).

• input definitions: x and y represent the score's coordinate. score represent the total scores of player(s).

• output: none

18 ObstaclesDisplay Module

UserInterface Module

ObstaclesDisplay

Uses

Obstacle pygame.sprite.Sprite

Syntax

Exported Constants

N/A

Exported Types

ObstaclesDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new ObstaclesDisplay	pygame window object, pygame sprite group	ObstaclesDisplay	
show	N, N, B-		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

 $SCREEN: pygame\ window\ object$

imq: Obstacle Picture

blocks_group: pygame sprite group

State Invariant

N/A

Assumptions

new ObstaclesDisplay(screen, blocks)

```
    transition:
    SCREEN := screen
    img := Obstacle Picture
    blocks_group := blocks
```

• output: out := self

• exception: None

show(x, y, isDestroy):

• transition: $\neg isDestroy \Rightarrow Display img \ at \ (x, y)$ blocks_group.draw(SCREEN) # This is pygame API

• output: none

19 AmmoDisplay Module This module has been deleted

UserInterface Module

AmmoDisplay

Uses

Ammo

Syntax

Exported Constants

N/A

Exported Types

AmmoDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new AmmoDisplay	pygame window object	AmmoDisplay	
show	$\mathbb{N}, \mathbb{N}, \mathbb{B}$		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

SCREEN: pygame window object

img: Picture of Ammo

State Invariant

N/A

Assumptions

new AmmoDisplay(screen)

• transition: SCRREN := screen $img := Ammo\ Picture$

• output: out := self

• exception: None

show(x, y, isShot):

• transition: $\neg isShot \Rightarrow Display img \ at \ (x,y)$

 \bullet input definitions: x, y represent the coordinate of ammo picture to be displayed. *isShot* represents the state of ammo, it is True if the ammo is shoot.

• output: none

20 HeartDisplay Module This module has been deleted

UserInterface Module

HeartDisplay

Uses

Heart

Syntax

Exported Constants

N/A

Exported Types

HeartDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new HeartDisplay	pygame window object	HeartDisplay	
show	$\mathbb{N}, \mathbb{N}, \mathbb{B}$		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

SCREEN: pygame window object

img: Picture of Heart

State Invariant

N/A

Assumptions

new HeartDisplay(screen)

```
• transition: SCRREN := screen img := Heart\ Picture
```

```
• output: out := self
```

• exception: None

show(x, y, isShot):

- transition: $\neg isShot \Rightarrow Display img \ at \ (x,y)$
- \bullet input definitions: x, y represent the coordinate of Heart picture to be displayed. *isShot* represents the state of Heart, it is True if the Heart is shoot.
- output: none
- exception: None

21 BombDisplay Module This module has been deleted

UserInterface Module

BombDisplay

Uses

Bomb

Syntax

Exported Constants

N/A

Exported Types

BombDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new BombDisplay	pygame window object	BombDisplay	
show	$\mathbb{N}, \mathbb{N}, \mathbb{B}$		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

SCREEN: pygame window object

img: Picture of Bomb

State Invariant

N/A

Assumptions

new BombDisplay(screen)

• transition: SCRREN := screen $img := Bomb\ Picture$

• output: out := self

• exception: None

show(x, y, isShot):

- transition: $\neg isShot \Rightarrow Display img \ at \ (x,y)$
- \bullet input definitions: x, y represent the coordinate of Bomb picture to be displayed. isShot represents the state of Bomb, it is True if the Bomb is shoot.

• output: none

22 MonsterMatrixDisplay Module

UserInterface Module

MonsterMatrixDisplay

Uses

BombDisplay, MonsterDisplay, AmmoDisplay, HeartDisplay, MonsterMatrix, pygame.sprite.Sprite

Syntax

Exported Constants

N/A

Exported Types

MonsterMatrixDisplay = ?

Exported Access Programs

Routine name	In	Out	Exce
new MonsterMatrixDisplay	pygame window object, pygame sprite group	MonsterMatrixDisplay	
show	-Monster Matrix		

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

SCREEN: pygame window object monsters_group: pygame sprite group

State Invariant

N/A

Assumptions

new MonsterMatrixDisplay(screen, monsters)

```
    transition:
        SCREEN := screen
        monsters_group := monsters
    output: out := self
```

 $\bullet\,$ exception: None

show(M):

• transition: $\forall object \in M \mid object.show(x, y, isDead/isShot)$ M here could be $Monster\ Ammo\ Heart\ Bomb$ monsters_group.drawSCREEN # This is pygame API

• output: none

 \bullet exception: None

23 WindowSetUp Module

UserInterface Module

 ${\color{red} \mathbf{SetUpDisplay}}$ WindowSetUp

Uses

None

Syntax

Exported Constants

N/A

Exported Types

SetUpDisplay WindowSetUp = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new SetUpDisplay WindowSetUp	\mathbb{Z},\mathbb{Z}	SetUpDisplay WindowSetUp	
show- Method removed			
getScreen		pygame window object	
setTitle			
setIcon			
setBackground			

Semantics

Environment Variables

screen: It is the game screen that is manipulated by the following functions to alter display. This is update by a precise frame rate to depict various game objects on the game screen.

State Variables

SCREEN: pygame window object

 $w: \mathbb{Z}$ h: \mathbb{Z}

State Invariant

N/A

Assumptions

```
new SetUpDisplay WindowSetUp (width, height)
   • transition:
     SCREEN := new \ pygame \ window \ object
     w := width
     h := height
   • output: out := self
   • exception: None
show():
   • transition: Display The following contents
       - Welcoming message
       - Display game mode selection
       - Game instruction
       - Prevent game addiction message
   • output: none
   • exception: None
getScreen()
   • transition: none
   • output: out := SCREEN
   • exception: none
setTitle()
   • transition: set Title of the game window
   • output: none
   • exception: none
setIcon()
   • transition: set Icon of the game window
   • output: none
   • exception: none
setBackgroup()
   • transition: set background of the game window
```

• exception: none

• output: none

24 SingleController Module

Template Module

SingleController

Uses

 $Bullet Display, Monster Matrix Display, Space Ship Display, Score Display, Obstacles Display, \\ \textbf{pygame.sprite.Spite}$

Syntax

Exported Constants

None

Exported Types

SingleController = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new SingleController	pygame window, pygame screen	SingleController	
run	Keyboard Inputs		
getScore		\mathbb{Z}	
doesWin		\mathbb{B}	

Semantics

State Variables

All the model objects and corresponding display objects.

State Invariant

None

Assumptions

None

Access Routine Semantics

new SingleController(window, screen):

• transition: Create the model objects and corresponding display objects.

• output: out := self

run()

- transition: The controller should do the following things:
 - Let player move space by pressing \leftarrow and \rightarrow .
 - Let player shoot bullet by pressing SPACE.
 - If any monster is dead or any game item is shot, let them disappear from the game window.
 - If any monsters are shot, increase the score.
 - If any game items are shot, do corresponding operations.
 - If a round is finished, go to the next round.
 - If the spaceship is shot, decrease spaceship lives.
 - If the obstacle is shot, decrease obstacle areas.
- output: none
- exception: none

getScore()

- transition: none
- output : out := score of this game
- exception: none

doesWin()

- transition: none
- output : out := if the player wins
- exception: none

25 DoubleController Module

Template Module

DoubleController

Uses

 $Bullet Display, Monster Matrix Display, Space Ship Display, Score Display, Obstacles Display, \\ \textbf{pygame.sprite.Sprite} \\ \textbf{Sprite} \\ \textbf{$

Syntax

Exported Constants

None

Exported Types

Double Controller = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new DoubleController	pygame window, pygame screen	DoubleController	
run	Keyboard Inputs		
getScore		\mathbb{Z}	
doesWin		\mathbb{B}	

Semantics

State Variables

All the model objects and corresponding display objects.

State Invariant

None

Assumptions

None

Access Routine Semantics

new DoubleController(window, screen):

- transition: Create the model objects and corresponding display objects.
- output: out := self
- exception: None

run()

- transition: The controller should do the following things:
 - Let player1 move space by pressing \leftarrow and \rightarrow .
 - Let player1 shoot bullet by pressing SPACE.
 - Let player2 move space by pressing A and D.
 - Let player2 shoot bullet by pressing S.
 - If any monster is dead or any game item is shot, let them disappear from the game window.
 - If any monsters are shot, increase the score.
 - If any game items are shot, do corresponding operations.
 - If a round is finished, go to the next round.
 - If the spaceship is shot, decrease spaceship lives.
 - If the obstacle is shot, decrease obstacle areas.
- output: none
- exception: none

getScore()

- transition: none
- output : out := score of this game
- exception: none

doesWin()

- transition: none
- output : out := if the player wins
- exception: none

26 TotalController Module

Template Module

TotalController

Uses

SetUpDisplay WindowSetUp

Syntax

Exported Constants

None

Exported Types

TotalController = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new TotalController		TotalController	
run	Keyboard Input		

Semantics

State Variables

s: WindowSetUp

State Invariant

None

Assumptions

None

Access Routine Semantics

new TotalController():

- transition: s := newSetUpDisplay()
- output: out := self
- exception: None

run()

\bullet transition:

s.run()

If user chooses single player model \Rightarrow Invoke Single Controller If user chooses double player model \Rightarrow Invoke Double Controller

• output: none

27 Driver Module

Template Module

Driver

Uses

TotalController

Syntax

Exported Constants

None

Exported Types

Driver = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new Driver		Driver	
run			

Semantics

State Variables

 $t: {\it TotalController}$

State Invariant

None

Assumptions

None

Access Routine Semantics

new Driver():

- transition: $t := new\ TotalController()$
- output: out := self
- exception: None

run()

 \bullet transition: t.run()

• output: none

28 LifeDisplay Module Newly Added module

Template Module

LifeDisplay

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

LifeDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new LifeDisplay	pygame screen	LifeDisplay	
show	$\mathbb{R}, \mathbb{R}, \mathbb{Z}, \mathbb{Z}$		

Semantics

State Variables

SCREEN: pygame window object

State Invariant

None

Assumptions

None

Access Routine Semantics

new LifeDisplay(screen):

• transition: SCREEN := screen

• output: out := self

• exception: None

show(x, y, life, index)

ullet transition: display life at (x, y) # Index is used to indicate which spaceship's life to be displayed

• output: none

29 WelcomeMessageDisplay Module Newly Added module

Template Module

WelcomeMessageDisplay

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

WelcomeMessageDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new WelcomeMessageDisplay	pygame screen	WelcomeMessageDisplay	

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

new WelcomeMessageDisplay(screen):

• transition: display welcome message at screen

• output: out := self

30 ModeSelectionDisplay Module Newly Added module

Template Module

ModeSelectionDisplay

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

ModeSelectionDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new ModeSelectionDisplay	pygame screen	ModeSelectionDisplay	

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

new ModeSelectionDisplay(screen):

• transition: display mode selection message at screen

• output: out := self

31 GameInstruction Module Newly Added module

Template Module

GameInstruction

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

GameInstruction = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new GameInstruction	pygame screen, game mode	GameInstruction	

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

new GameInstruction(screen, mode):

- transition: display proper game instruction according to mode at screen
- output: out := self
- exception: None

32 GameItemIntroductionDisplay Module Newly Added module ule

Template Module

GameItemIntroductionDisplay

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

GameItemIntroductionDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new GameItemIntroductionDisplay	pygame screen	GameItemIntroductionDisplay	

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

new GameItemIntroductionDisplay(screen):

- transition: display game items introduction on screen
- output: out := self
- exception: None

33 LoseDisplay Module Newly Added module

Template Module

 ${\bf Lose Display}$

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

LoseDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new LoseDisplay	pygame screen, \mathbb{Z}	LoseDisplay	

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

new LoseDisplay(screen, score):

• transition: display lose message and score on screen

• output: out := self

34 WinDisplay Module Newly Added module

Template Module

WinDisplay

Uses

pygame.sprite.Sprite

Syntax

Exported Constants

None

Exported Types

WinDisplay = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new WinDisplay	pygame screen, \mathbb{Z}	WinDisplay	

Semantics

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

new WinDisplay(screen, score):

• transition: display win message and score on screen

• output: out := self