PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-100464

(43) Date of publication of application: 12.04.1994

(51)Int.Cl.

A61K 37/30 A61K 37/30

A61K 47/18 A61K 47/26 A61K 47/36

(21)Application number: 04-147121

(71)Applicant: ASAHI CHEM IND CO LTD

(22) Date of filing:

08.06.1992

(72)Inventor: OKUMURA KATSUHIKO

KOMADA FUSAO

YAMAMOTO NAKAYUKI SAKAKIBARA HIDEO

(54) COMPOSITION OF CALCITONINS FOR TRANSPULMONARY ADMINISTRATION (57)Abstract:

PURPOSE: To obtain a powder composition for transpulmonary administration, capable of efficiently absorbing a calcitonin from alveolar mucosa, having excellent stability of active ingredient because of powder preparation, consequently enabling practical use of administration agent substituting an injection of a calcitonin.

CONSTITUTION: A powdery composition for transpulmonary administration comprises a powdery calcitonin and at least a water-soluble base, has 60% or more particle size distribution of particles having ≤10 micron average particle diameter of the composition.

LEGAL STATUS

[Date of request for examination]

21.12.1998

[Date of sending the examiner's decision of

12.11.2002

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

MENU SEARCH INDEX DETAIL JAPANESE

1/1

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The powder constituent for transpulmonary administration of calcitonins with which calcitonins are made into an active principle, and a water-soluble basis is contained at least, and particle distribution of the mean particle diameter of this constituent of 10 microns or less is characterized by being powdered at 60% or more.

[Claim 2] The powder constituent for transpulmonary administration according to claim 1 which is one sort chosen from the group which a water-soluble basis becomes from water-soluble saccharide, dextrins, and amino acid, or two sorts or more.

[Claim 3] The powder constituent for transpulmonary administration according to claim 1 in which calcitonins come to carry out 0.1-100 unit content per 1mg of these constituents.

[Translation done.]

Drawing selection drawing 1

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-100464

(43)公開日 平成6年(1994)4月12日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FI	技術表示箇所
A 6 1 K 37/30	ABJ	8314-4C		
	ADD			
9/14	· L	7329-4C	•	
	D	7329-4C		
	U	7329-4C	-	
			審査請求 未請求	請求項の数3(全 4 頁) 最終頁に続く
(21)出願番号	特顧平4-147121		(71)出願人	000000033
				旭化成工業株式会社
(22)出願日	平成4年(1992)6月	₹8日		大阪府大阪市北区堂島浜1丁目2番6号
			(72)発明者	奥村 勝彦
				滋賀県大津市一里山3丁目39-6
			(72)発明者	駒田 富佐夫
				兵庫県西宮市甲陽園東山町9番57
			(72)発明者	山本 仲行
				静岡県田方郡大仁町三福632番地の1 旭
				化成工業株式会社内
			(72)発明者	榊原 秀夫
				静岡県田方郡大仁町三福632番地の1 旭
				化成工業株式会社内
•				
		· · · · · · · · · · · · · · · · · · ·		

(54) 【発明の名称】 カルシトニン類の経肺投与用組成物

(57)【要約】

【構成】 カルシトニン類を有効成分とし、少なくとも 水溶性の基剤を含有し、かつ該組成物の平均粒子径の1 0ミクロン以下の粒子分布が60%以上で、粉末状であ るカルシトニン類の経肺投与用粉末組成物。

【効果】 カルシトニン類の経肺投与用粉末組成物は、肺胞粘膜より安全にカルシトニン類を効率よく吸収せしめることができ、また粉末製剤であるので有効成分の安定性に優れ、したがってカルシトニン類の注射剤にかわる投与剤の実用化を可能とした。

【特許請求の範囲】

【請求項1】 カルシトニン類を有効成分とし、少なく とも水溶性の基剤を含有し、かつ該組成物の平均粒子径 の10ミクロン以下の粒子分布が60%以上で、粉末状 であることを特徴とするカルシトニン類の経肺投与用粉 末組成物。

【請求項2】 水溶性の基剤が、水溶性の糖類、デキス トリン類およびアミノ酸類からなる群より選ばれた1種 または2種以上である請求項1記載の経肺投与用粉末組 成物。

【請求項3】 カルシトニン類が、該組成物1gにつき 0. 1~100単位含有してなる請求項1記載の経肺投 与用粉末組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、カルシトニン類を有効 成分とし、少なくとも水溶性の基剤を含有し、かつ該組 成物の平均粒子径の10ミクロン以下の粒子分布が60 %以上で、粉末状であることを特徴とするカルシトニン 類の経肺投与用粉末組成物に関する。

[0002]

【従来の技術】現在治療薬として用いられている生理活 性ペプチド類の中でカルシトニン類は、血清カルシウム ・リン酸低下作用および骨吸収抑制作用、抗潰瘍作用を 有するペプチドホルモンとして一般に知られている。臨 床的には各種高カルシウム血症および骨ページェット 病、骨粗鬆症に対する治療薬として使用されている。し かしながらカルシトニンは親水性であり分子量が約3, 400程度のペプチドであるため、膜透過性が低くまた 消化管内で酵素分解され易いことから経口投与では体内 30 に吸収させることは極めて困難であることが知られてい る。

【0003】したがって、従来は皮下、筋肉内注射およ び静脈内注射に限られてきた。しかしながら、注射は苦 痛を伴うために鼻、直腸、肺、膣、眼、口腔粘膜、皮膚 等の投与方法が多く試みられているが、膜透過性、蛋白 分解酵素による分解などによる問題があった。

[0004]

【発明が解決しようとする課題】一方、カルシトニンに 噴射剤を使用した肺吸収用エアゾールが提案されている 40 (特開昭60-161924号)。この噴射剤は一般に 比較的低毒性で不活性ガスである液化フッ化炭化水素 (フロン) を使用するため大気中に廃棄されることによ り地球環境を破壊する原因であることからフロンの使用 は好ましくなく、そこでフロンを使用しないで肺胞に均 一に吸入投与することにより安全でしかも効率よくカル シトニン類が吸収されるより好適なカルシトニン類の経 肺投与用粉末組成物を提供しようとするものである。

[0005]

はフロンのような噴射剤を使用しないでより簡便で且つ 咽頭部でのカルシトニン類の付着を防ぎ、効果が確実に 発現する経肺投与用カルシトニン類の投与剤型について 鋭意研究した結果、カルシトニン類を含有する水溶性の 基剤を含有する混合物の組成物を10ミクロン以下に微 粉砕することにより、経肺投与から効率良く全身にカル シトニン類が吸収することを見出した。

2

【0006】本発明は上記の知見に基づいて完成された もので、カルシトニン類を有効成分とし、少なくとも水 10 溶性の基剤を含有し、かつ該組成物の平均粒子径の10 ミクロン以下の粒子分布が60%以上で、粉末状である ことを特徴とするカルシトニン類の経肺投与用粉末組成 物である。

【0007】本発明の有効成分であるカルシトニン類 は、血清カルシウム・リン酸低下作用および骨吸収抑制 作用、抗潰瘍作用を有するポリペプチドホルモンとして 一般に知られている。臨床的には各種高カルシウム血症 および骨ページェット病、骨粗鬆症に対する治療薬とし て使用されている。カルシトニン類には天然型または合 20 成による誘導体が知られており、天然型カルシトニンの 例としてはウナギカルシトニン、サケカルシトニン、ブ タカルシトニン、ヒトカルシトニン、ニワトリカルシト ニン等が挙げられ、また合成カルシトニンとしては、好 適には天然型カルシトニンの1.7位ジスルフィド結合 をアミノスペリン酸にてエチレン結合に置換した誘導体 であり、例えば〔ASU^{1.7}〕 ウナギカルシトニン(W HO、一般名:エルカトニン)、〔ASU1-7〕 サケカ ルシトニン、 [ASU1-7] ニワトリカルシトニンまた は〔ASU¹・¹〕ヒトカルシトニン等が挙げられる。特 にエルカトニンは本発明で用いる最も好適なカルシトニ ンである。

【0008】本発明に用いられる水溶性の基剤として は、水溶性の糖類、デキストリン類、およびアミノ酸類 である。糖類としてはたとえば単糖類、二糖類や多糖類 が挙げられるが好ましくはD-マンニトール、ブドウ 糖、乳糖、果糖、トレハロース、イノシトール、ショ糖 であり、多糖類としてのデキストリン類は好ましくはα サイクロデキストリン、β-サイクロデキストリン、 γ-サイクロデキストリン等が挙げられる。アミノ酸類 としてグリシン、タウリン等が挙げられる。

【0009】本発明の経肺投与用粉末組成物の調製は公 知の凍結乾燥および混合、粉砕に順じて行うことができ る。

【0010】例えば、均一なカルシトニンの経肺投与用 粉末組成物を得るには、有効量の微量なカルシトニン類 と水溶性の基剤とを一旦蒸留水に溶解し、凍結乾燥して 固体とし、さらに微粉砕するために例えばボールミル粉 砕機およびジェットミル粉砕機を用いて微粉末に調製す ることができる。また必要に応じて凍乾物に必要量の増 【課題を解決するための手段】そこで本発明の発明者ら 50 量剤を添加して混合粉砕することにより目的の濃度およ

び量に調製することができる。

【0011】さらに、本発明の経肺投与用粉末組成物の 粒子径は10ミクロン以下の粒度分布が60%以上であ ることが好ましい。10ミクロン以上では吸入しても肺 胞まで届かずに気管支等に付着してカルシトニンの吸収 率が低下する。そのため、本発明の組成物は少なくとも 10ミクロン以下の粒子が60%以上、好ましくは75 %以上である。

【0012】本発明の組成物中のカルシトニン類の濃度 の濃度で、好ましくは1単位~50単位/mgであり、 このカルシトニン類の濃度を勘案してカルシトニン類と 水溶性の基剤との配合を調整すればよい。

【0013】また本発明の経肺投与用粉末組成物の1回 の投与量は組成物として10~100mgが好ましく、 1日の投与回数は1~3回が好適である。この組成物に おける経肺投与方法としては特に限定されるものではな く、例えばカプセルに組成物を充填し、使用時に吸入器 (スピンヘラー) に装着して組成物を肺内に吸入する方 とができる。

[0014]

【実施例】以下に実施例および実験例を挙げて、本発明 を更に詳しく説明するが、本発明はこれに限定されるも のではない。

[0015]

【実施例1】エルカトニン40mgとD-マンニトール 2gをピーカーに取り、蒸留水50mlを加えて溶解し た後、溶液を凍結乾燥し乳鉢で粉砕して均一なエルカト ニン100単位/mgを含有する凍乾粉末を得た。この 30 に装着してヒトの肺に確実に噴霧できる。 ようにして得られたエルカトニン100単位/mgを含 有する凍乾粉末1.2gとD-マンニトール28.8g をよく混合し、ジェットミル (パウレック社製) を使用 して微粉砕した。このようにして得られた粉末製剤はエ ルカトニンを4.5単位(液体クロマトグラフィーによ る実測値)/mg含有したドライパウダーとして調製さ れた。このドライバウダーとして調製された経肺投与用 粉末組成物の粒度分布を粒度分布測定装置(SACT-2:島津製作所)により測定した結果、5ミクロン以下 61.6%、5~10ミクロン13.4%、10~20 40 ミクロン4.0%、20ミクロン以上21.0%であっ

【0016】実験1:動物実験

(a) ラットにおけるエルカトニンの経肺投与後の血中 Ca濃度の影響

ペントパルピタール麻酔下、露出させたラット気管切開 部位より、肺に実施例1で調製したエルカトニン4.5 単位/mgを含有するドライパウダーを15単位/K g、30単位/Kg、75単位/Kg加圧式インヘラー

30分、1時間、2時間、3時間、4時間毎に採血して 血中のカルシウム濃度を測定した。

(b) 結果

エルカトニン経肺投与後の血中カルシウム濃度を測定し た結果を図1(縦軸は血中カルシウム濃度(mg/d 1)、横軸は投与後時間 (Hr) を示す) に示した。こ の図1から明らかな通り、本発明の経肺投与用粉末組成 物の投与量が15単位(図中、●で示す)、30単位 (図中、▲で示す)、75単位(図中、■で示す)と高 としては、一般に0.1単位/mg \sim 100単位/mg10くなるに従い用量依存的に投与後の血中カルシウム濃度 の低下が観察され、図1から明らかなように、エルカト ニンが肺より効率よく吸収されたことを示している。

[0017]

【実施例2】エルカトニン40mgとトレハロース2g をピーカーに取り、蒸留水50mlを加えて溶解した 後、溶液を凍結乾燥し乳鉢で粉砕して均一なエルカトニ ン100単位/mgを含有する凍乾粉末を得た。このよ うにして得られたエルカトニン100単位/mgを含有 する凍乾粉末1.2gとトレハロース28.8gをよく 法により効率よく肺からカルシトニン類を吸収させるこ 20 混合した粉末をジェットミル (パウレック社製) を使用 して徴粉砕した。このようにして得られた組成物はエル カトニンを4.3単位/mg含有したドライパウダーの 経肺投与用粉末組成物として調製された(粒度分布;5 ミクロン以下65.4%、5~10ミクロン16.6 %、10~20ミクロン5.3%、20ミクロン以上1 2. 7%)。次いで、得られたドライパウダーを2号カ プセルに24mg充填することにより、1カプセル当た りエルカトニン100単位を含有する製剤を得ることが できる。更にそのカプセルを吸入装置(スピンヘラー)

[0018]

【実施例3】エルカトニン40mgとグリシン2gをビ カーに取り、蒸留水50mlを加えて溶解した後、溶 液を凍結乾燥し乳鉢で粉砕して均一なエルカトニン10 0単位/mgを含有する凍乾粉末を得た。このようにし て得られたエルカトニン100単位/mgを含有する凍 乾粉末1.2gとグリシン28.8gをよく混合した粉 末をジェットミル(パウレック社製)を使用して微粉砕 した。このようにして得られた組成物はエルカトニンを 4単位/mg含有したドライバウダーの経肺投与用粉末組 成物として調製された(粒度分布;5ミクロン以下5 4. 4%、5~10ミクロン20. 8%、10~20ミ クロン8.2%、20ミクロン以上16.4%)。

[0019]

【実施例4】エルカトニン40mgとグリシン2gをビ -カーに取り、蒸留水50mlを加えて溶解した後、溶 液を凍結乾燥し乳鉢で粉砕して均一なエルカトニン10 0単位/mgを含有する凍乾粉末を得た。このようにし て得られたエルカトニン100単位/mgを含有する凍 にて経肺投与 $(n=3\sim4)$ した。投与前および投与後 50 乾粉末2. 4 gとグリシン27. 6 gをよく混合した粉

末をジェットミル (パウレック社製) を使用して微粉砕した。このようにして得られた組成物はエルカトニンを8単位/mg含有したドライパウダーの経肺投与用粉末組成物として調製された (粒度分布;5ミクロン以下66.9%、5~10ミクロン15.3%、10~20ミクロン10.2、20ミクロン以上7.6%)。次いで、このドライパウダーを2号カプセルに25mg充填することにより、1カプセル当たりエルカトニン200単位を含有する製剤を得ることができる。更にそのカプセルを吸入装置 (スピンヘラー) に装着してヒトの肺に 10確実に噴霧できる。

[0020]

【実施例5】合成サケカルシトニン134mgとDーマンニトール2gをピーカーに取り、蒸留水50mlを加えて溶解した後、溶液を凍結乾燥し乳鉢で粉砕して均一な合成サケカルシトニン200単位/mgを含有する凍乾粉末を得た。このようにして得られた合成サケカルシトニン200単位/mgを含有する凍乾粉末1.2gとDーマンニトール28.8gをよく混合した粉末をジェットミル(パウレック社製)を使用して微粉砕した。このようにして得られた組成物は合成サケカルシトニンを8単位/mg含有したドライバウダーの経肺投与用粉末

組成物として調製された(粒度分布;5ミクロン以下57.3%、5~10ミクロン18.6%、10~20ミクロン10.2、20ミクロン以上13.9%)。次いで、このドライバウダーを2号カブセルに25mg充填することにより、1カブセル当たり合成サケカルシトニン200単位を含有する製剤を得ることができる。更にそのカブセルを吸入装置(スピンヘラー)に装着してヒトの肺に確実に噴霧できる。

[0021]

【発明の効果】本発明のカルシトニン類の経肺投与用粉末組成物は、肺胞粘膜より簡単で安全にカルシトニン類を効率よく吸収せしめることができる。また粉末製剤であるので有効成分の安定性に優れている。したがって本発明により、カルシトニン類の注射剤にかわる投与剤の実用化が可能になった。

[0022]

【図面の簡単な説明】

【図1】

フロントページの続き

(51) Int. Cl. 5 識別記号 庁内整理番号 F I 技術表示箇所 A 6 1 K 47/18 B 7433-4 C 47/26 B 7433-4 C 47/36 B 7433-4 C

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-100464

(43)公開日 平成6年(1994)4月12日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
A 6 1 K 37/30	ABJ	8314-4C		
	ADD			•
9/14	L	7329-4C		
	D	7329-4C		
	U	7329-4C		•
			審査請求 未請求	: 請求項の数3(全4頁) 最終頁に続く
(21)出願番号	特願平4-147121		(71)出願人	000000033
				旭化成工業株式会社
(22)出願日	平成4年(1992)6月	18日		大阪府大阪市北区堂島浜1丁目2番6号
			(72)発明者	奥村 勝彦
				滋賀県大津市一里山3丁目39-6
			(72)発明者	駒田 富佐夫
				兵庫県西宮市甲陽園東山町 9番57
•			(72)発明者	山本 仲行
				静岡県田方郡大仁町三福632番地の1 旭
				化成工業株式会社内
			(72)発明者	榊原 秀夫
•				静岡県田方郡大仁町三福632番地の1 旭
				化成工業株式会社内
			ŀ	

(54) 【発明の名称】 カルシトニン類の経肺投与用組成物

(57)【要約】

【構成】 カルシトニン類を有効成分とし、少なくとも 水溶性の基剤を含有し、かつ該組成物の平均粒子径の1 0ミクロン以下の粒子分布が60%以上で、粉末状であ るカルシトニン類の経肺投与用粉末組成物。

【効果】 カルシトニン類の経肺投与用粉末組成物は、肺胞粘膜より安全にカルシトニン類を効率よく吸収せしめることができ、また粉末製剤であるので有効成分の安定性に優れ、したがってカルシトニン類の注射剤にかわる投与剤の実用化を可能とした。

【特許請求の範囲】

【請求項1】 カルシトニン類を有効成分とし、少なく とも水溶性の基剤を含有し、かつ該組成物の平均粒子径 の10ミクロン以下の粒子分布が60%以上で、粉末状 であることを特徴とするカルシトニン類の経肺投与用粉 末組成物。

【請求項2】 水溶性の基剤が、水溶性の糖類、デキス トリン類およびアミノ酸類からなる群より選ばれた1種 または2種以上である請求項1記載の経肺投与用粉末組 成物。

【請求項3】 カルシトニン類が、該組成物1mにつき 0. 1~100単位含有してなる請求項1記載の経肺投 与用粉末組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、カルシトニン類を有効 成分とし、少なくとも水溶性の基剤を含有し、かつ該組 成物の平均粒子径の10ミクロン以下の粒子分布が60 %以上で、粉末状であることを特徴とするカルシトニン 類の経肺投与用粉末組成物に関する。

[0002]

【従来の技術】現在治療薬として用いられている生理活 性ペプチド類の中でカルシトニン類は、血清カルシウム ・リン酸低下作用および骨吸収抑制作用、抗潰瘍作用を 有するペプチドホルモンとして一般に知られている。臨 床的には各種高カルシウム血症および骨ページェット 病、骨粗鬆症に対する治療薬として使用されている。し かしながらカルシトニンは親水性であり分子量が約3. 400程度のペプチドであるため、膜透過性が低くまた 消化管内で酵素分解され易いことから経口投与では体内 30 に吸収させることは極めて困難であることが知られてい る。

【0003】したがって、従来は皮下、筋肉内注射およ び静脈内注射に限られてきた。しかしながら、注射は苦 痛を伴うために鼻、直腸、肺、膣、眼、口腔粘膜、皮膚 等の投与方法が多く試みられているが、膜透過性、蛋白 分解酵素による分解などによる問題があった。

[0004]

【発明が解決しようとする課題】一方、カルシトニンに 噴射剤を使用した肺吸収用エアゾールが提案されている 40 (特開昭60-161924号)。この噴射剤は一般に 比較的低毒性で不活性ガスである液化フッ化炭化水素 (フロン) を使用するため大気中に廃棄されることによ り地球環境を破壊する原因であることからフロンの使用 は好ましくなく、そこでフロンを使用しないで肺胞に均 一に吸入投与することにより安全でしかも効率よくカル シトニン類が吸収されるより好適なカルシトニン類の経 肺投与用粉末組成物を提供しようとするものである。

[0005]

はフロンのような噴射剤を使用しないでより簡便で且つ 咽頭部でのカルシトニン類の付着を防ぎ、効果が確実に 発現する経肺投与用カルシトニン類の投与剤型について 鋭意研究した結果、カルシトニン類を含有する水溶性の 基剤を含有する混合物の組成物を10ミクロン以下に微 粉砕することにより、経肺投与から効率良く全身にカル シトニン類が吸収することを見出した。

2

【0006】本発明は上記の知見に基づいて完成された もので、カルシトニン類を有効成分とし、少なくとも水 10 溶性の基剤を含有し、かつ該組成物の平均粒子径の10 ミクロン以下の粒子分布が60%以上で、粉末状である ことを特徴とするカルシトニン類の経肺投与用粉末組成 物である。

【0007】本発明の有効成分であるカルシトニン類 は、血清カルシウム・リン酸低下作用および骨吸収抑制 作用、抗潰瘍作用を有するポリペプチドホルモンとして 一般に知られている。臨床的には各種高カルシウム血症 および骨ページェット病、骨粗鬆症に対する治療薬とし て使用されている。カルシトニン類には天然型または合 20 成による誘導体が知られており、天然型カルシトニンの 例としてはウナギカルシトニン、サケカルシトニン、ブ タカルシトニン、ヒトカルシトニン、ニワトリカルシト ニン等が挙げられ、また合成カルシトニンとしては、好 適には天然型カルシトニンの1.7位ジスルフィド結合 をアミノスペリン酸にてエチレン結合に置換した誘導体 であり、例えば〔ASU¹-¹〕 ウナギカルシトニン (W HO、一般名:エルカトニン)、〔ASU1-7〕 サケカ ルシトニン、〔ASU¹・¹〕 ニワトリカルシトニンまた は〔ASU¹・¹〕ヒトカルシトニン等が挙げられる。特 にエルカトニンは本発明で用いる最も好適なカルシトニ ンである。

【0008】本発明に用いられる水溶性の基剤として は、水溶性の糖類、デキストリン類、およびアミノ酸類 である。糖類としてはたとえば単糖類、二糖類や多糖類 が挙げられるが好ましくはD-マンニトール、プドウ 糖、乳糖、果糖、トレハロース、イノシトール、ショ糖 であり、多糖類としてのデキストリン類は好ましくはα -サイクロデキストリン、β-サイクロデキストリン、 アーサイクロデキストリン等が挙げられる。アミノ酸類 としてグリシン、タウリン等が挙げられる。

【0009】本発明の経肺投与用粉末組成物の調製は公 知の凍結乾燥および混合、粉砕に順じて行うことができ

【0010】例えば、均一なカルシトニンの経肺投与用 粉末組成物を得るには、有効量の微量なカルシトニン類 と水溶性の基剤とを一旦蒸留水に溶解し、凍結乾燥して 固体とし、さらに微粉砕するために例えばボールミル粉 砕機およびジェットミル粉砕機を用いて微粉末に調製す ることができる。また必要に応じて凍乾物に必要量の増 【課題を解決するための手段】そこで本発明の発明者ら 50 量剤を添加して混合粉砕することにより目的の濃度およ

び量に調製することができる。

【0011】さらに、本発明の経肺投与用粉末組成物の 粒子径は10ミクロン以下の粒度分布が60%以上であ ることが好ましい。10ミクロン以上では吸入しても肺 胞まで届かずに気管支等に付着してカルシトニンの吸収 率が低下する。そのため、本発明の組成物は少なくとも 10ミクロン以下の粒子が60%以上、好ましくは75 %以上である。

【0012】本発明の組成物中のカルシトニン類の濃度 としては、一般に0.1単位/mg \sim 100単位/mg10くなるに従い用量依存的に投与後の血中カルシウム濃度 の濃度で、好ましくは1単位~50単位/mgであり、 このカルシトニン類の濃度を勘案してカルシトニン類と 水溶性の基剤との配合を調整すればよい。

【0013】また本発明の経肺投与用粉末組成物の1回 の投与量は組成物として10~100mgが好ましく、 1日の投与回数は1~3回が好適である。この組成物に おける経肺投与方法としては特に限定されるものではな く、例えばカブセルに組成物を充填し、使用時に吸入器 (スピンヘラー) に装着して組成物を肺内に吸入する方 とができる。

[0014]

【実施例】以下に実施例および実験例を挙げて、本発明 を更に詳しく説明するが、本発明はこれに限定されるも のではない。

[0015]

【実施例1】エルカトニン40mgとD-マンニトール 2gをピーカーに取り、蒸留水50mlを加えて溶解し た後、溶液を凍結乾燥し乳鉢で粉砕して均一なエルカト ニン100単位/mgを含有する凍乾粉末を得た。この 30 に装着してヒトの肺に確実に噴霧できる。 ようにして得られたエルカトニン100単位/mgを含 有する凍乾粉末1.2gとD-マンニト-ル28.8g をよく混合し、ジェットミル (パウレック社製) を使用 して微粉砕した。このようにして得られた粉末製剤はエ ルカトニンを4.5単位(液体クロマトグラフィーによ る実測値) /mg含有したドライパウダーとして調製さ れた。このドライパウダーとして調製された経肺投与用 粉末組成物の粒度分布を粒度分布測定装置(SACT-2:島津製作所)により測定した結果、5ミクロン以下 61.6%、5~10ミクロン13.4%、10~20 40 ミクロン4.0%、20ミクロン以上21.0%であっ た。

【0016】実験1:動物実験

(a) ラットにおけるエルカトニンの経肺投与後の血中 Ca濃度の影響

ペントパルピタール麻酔下、露出させたラット気管切開 部位より、肺に実施例1で調製したエルカトニン4.5 単位/mgを含有するドライパウダーを15単位/K g、30単位/Kg、75単位/Kg加圧式インヘラー 30分、1時間、2時間、3時間、4時間毎に採血して

(b) 結果

血中のカルシウム濃度を測定した。

エルカトニン経肺投与後の血中カルシウム濃度を測定し た結果を図1 (縦軸は血中カルシウム濃度 (mg/d 1)、横軸は投与後時間(Hr)を示す)に示した。こ の図1から明らかな通り、本発明の経肺投与用粉末組成 物の投与量が15単位(図中、●で示す)、30単位 (図中、▲で示す)、75単位(図中、■で示す)と高 の低下が観察され、図1から明らかなように、エルカト ニンが肺より効率よく吸収されたことを示している。

[0017]

【実施例2】エルカトニン40mgとトレハロース2g をピーカーに取り、蒸留水50mlを加えて溶解した 後、溶液を凍結乾燥し乳鉢で粉砕して均一なエルカトニ ン100単位/mgを含有する凍乾粉末を得た。このよ うにして得られたエルカトニン100単位/mgを含有 する凍乾粉末1.2gとトレハロース28.8gをよく 法により効率よく肺からカルシトニン類を吸収させるこ 20 混合した粉末をジェットミル (パウレック社製)を使用 して微粉砕した。このようにして得られた組成物はエル カトニンを4. 3単位/mg含有したドライパウダーの 経肺投与用粉末組成物として調製された(粒度分布:5 ミクロン以下65.4%、5~10ミクロン16.6 %、10~20ミクロン5.3%、20ミクロン以上1 2. 7%)。次いで、得られたドライバウダーを2号カ プセルに24mg充填することにより、1カプセル当た りエルカトニン100単位を含有する製剤を得ることが できる。更にそのカプセルを吸入装置(スピンヘラー)

[0018]

【実施例3】エルカトニン40mgとグリシン2gをビ -カーに取り、蒸留水50mlを加えて溶解した後、溶 液を凍結乾燥し乳鉢で粉砕して均一なエルカトニン10 0単位/mgを含有する凍乾粉末を得た。このようにし て得られたエルカトニン100単位/mgを含有する凍 乾粉末1.2gとグリシン28.8gをよく混合した粉 末をジェットミル(パウレック社製)を使用して微粉砕 した。このようにして得られた組成物はエルカトニンを 4単位/嘘含有したドライバウダーの経肺投与用粉末組 成物として調製された(粒度分布:5ミクロン以下5 4. 4%、5~10ミクロン20. 8%、10~20ミ クロン8.2%、20ミクロン以上16.4%)。

[0019]

【実施例4】エルカトニン40mgとグリシン2gをビ -カーに取り、蒸留水50mlを加えて溶解した後、溶 液を凍結乾燥し乳鉢で粉砕して均一なエルカトニン10 0単位/mgを含有する凍乾粉末を得た。このようにし て得られたエルカトニン100単位/mgを含有する凍 にて経肺投与 $(n=3\sim4)$ した。投与前および投与後 50 乾粉末 2. 4 g とグリシン 2 7. 6 g をよく混合した粉

末をジェットミル (パウレック社製) を使用して微粉砕した。このようにして得られた組成物はエルカトニンを8単位/mg含有したドライパウダーの経肺投与用粉末組成物として調製された (粒度分布;5ミクロン以下66.9%、5~10ミクロン15.3%、10~20ミクロン10.2、20ミクロン以上7.6%)。次いで、このドライパウダーを2号カプセルに25mg充填することにより、1カプセル当たりエルカトニン200単位を含有する製剤を得ることができる。更にそのカプセルを吸入装置 (スピンヘラー) に装着してヒトの肺に 10確実に噴霧できる。

[0020]

【実施例5】合成サケカルシトニン134mgとDーマンニトール2gをピーカーに取り、蒸留水50mlを加えて溶解した後、溶液を凍結乾燥し乳鉢で粉砕して均一な合成サケカルシトニン200単位/mgを含有する凍乾粉末を得た。このようにして得られた合成サケカルシトニン200単位/mgを含有する凍乾粉末1.2gとDーマンニトール28.8gをよく混合した粉末をジェットミル(パウレック社製)を使用して微粉砕した。このようにして得られた組成物は合成サケカルシトニンを8単位/mg含有したドライバウダーの経肺投与用粉末

組成物として調製された(粒度分布:5ミクロン以下57.3%、5~10ミクロン18.6%、10~20ミクロン10.2、20ミクロン以上13.9%)。次いで、このドライパウダーを2号カプセルに25mg充填することにより、1カプセル当たり合成サケカルシトニン200単位を含有する製剤を得ることができる。更にそのカプセルを吸入装置(スピンへラー)に装着してヒトの肺に確実に噴霧できる。

[0021]

【発明の効果】本発明のカルシトニン類の経肺投与用粉末組成物は、肺胞粘膜より簡単で安全にカルシトニン類を効率よく吸収せしめることができる。また粉末製剤であるので有効成分の安定性に優れている。したがって本発明により、カルシトニン類の注射剤にかわる投与剤の実用化が可能になった。

[0022]

【図面の簡単な説明】

【図1】

フロントページの続き

(51) Int. Cl. 5

識別配号 庁内整理番号

FΙ

技術表示箇所

A 6 1 K 47/18

47/26

B 7433-4C B 7433-4C

47/36

B 7433-4C