Toward Head-Neck Rehabilitation Using Wearable Robots

Haohan Zhang, Ph.D. Feb 11th 2021

Problem – Head Drop

http://practicalneurology.com/videos.asp?f=video23

Current Care

Problem – Head Drop

http://practicalneurology.com/videos.asp?f=video23

Unmet Needs

- Improve posture and restore motion
- **Enable social participation**

Outline

- Design of wearable robots for head drop
 - **Engineering developments**
 - Clinical evaluations
- New research horizon
 - Converging themes
 - Prior work
 - Potential directions

Outline

- Design of wearable robots for head drop
 - **Engineering developments**
 - Clinical evaluations
- New research horizon
 - Converging themes
 - Prior work
 - Potential directions

Design Objectives

A wearable machine that is

- Biomechanically compatible
 - Meet structural and motion characteristics
 - Allow large ranges of rotation
- Easy and safe to use
 - Lightweight and easy to don/doff
 - Intuitive and safe control interfaces

Step 1 – Characterize Head-Neck Motion

- Vicon MoCap system with 10 cameras
- Measure head rotation relative to shoulders
- Four types of head-neck movements
 - Sagittal plane flexion-extension
 - Frontal plane lateral bending
 - Transverse plane axial rotation
 - Combined motion
- Head-neck motion is predominantly rotations, with small translations.

Step 2 – Choose a mechanical structure

- 3-DOF closed-chain structure with revolute joints
 - Closed-chain Low moving inertia
 - 3-DOF Large rotation with small translation
 - Revolute joints Easy to fabricate
- 3-RRS mechanism with special axes alignments
 - Revolute joints within a chain intersect at a point
 - Easy to assemble
 - Coupled rotation and translation

Step 3 – Optimization

Choose parameters to meet the biomechanical data.

- Hierarchical random search
- Parameter space geometric parameters of the structure.
- Multiple objectives Maximize rotational range of motion and minimize error in translation.

Realization – 1st Generation

- Can be integrated with other sensors, e.g., EMG, virtual reality, eye-tracker, ...
- Modular design for different usages
 - Measurement (potentiometers)
 - Passive support (springs)
 - Active intervention (servomotors)

	Measurement Brace	Spring-Loaded Brace	Motorized Brace
Functionality	Measure real-time head angles in three-dimensions	Support the head in various static configurations	Apply controllable force and motion to the head
Key Features	Spatial angle recordingLarge range of motion	Quick adjustmentCompliance	Active interactionForce/position control
Weight	0.5 kg	0.9 kg	1.2 kg

Realization – 1st Generation

- Can be integrated with other sensors, e.g., EMG, virtual reality, eye-tracker, ...
- Modular design for different usages
 - Measurement (potentiometers)
 - Passive support (springs)
 - Active intervention (servomotors)

Realization – 2nd Generation

- One joint module Dynamixel servo units
 - High backdrivability Transparency
 - Encoders Position feedback
 - Current sensors Low-cost force feedback
- Advantages
 - More compact and easier to use
 - Mode change can be achieved in software
 - Can be used for training (force modulation)

Control Interface – Motion Assistance

Characteristics of five enrolled subjects

ID	Gender	Age	Height (cm)	Weight (kg)
001	M	55	195	91
002	М	33	185	116
003	F	56	169	73
004	М	76	166	69
005	М	39	183	110

Movement functions with respect to time¹

Motion Tasks	Functions (Units: SI)	
Sagittal Plane Flexion-Extension	$x_{(t)} = 15^{\circ} \sin(0.2\pi t + 0.73) - 10^{\circ}$	
Coronal Plane Lateral Bending	$x_{(t)} = 20^\circ \sin(0.2\pi t)$	
Transversal Plane Axial Rotation	$x_{(t)} = 25^{\circ} \sin(0.2\pi t)$	

Notes: 1 – Each motion is repeated 5 times, with the middle three cycles recorded for data analysis.

Without Assistance (Baseline)

With Assistance (Assist)

Independent Variables

- Experimental Conditions: without assistance vs. with assistance
- Movement Planes: Sagittal, Frontal, and *Transverse*
- Muscle sites: *left / right SCM* and *SC*

Dependent Variables

- In-plane tracking error (*IPE*)
- Out-of-plane error (OPE)
- Range-of-motion error (RME)
- Integrated EMG (*iEMG*)

Key Results – Movement Accuracy

- Without Assistance the error is higher than With Assistance
- Movement planes do not influence the result of OPE

Key Results – Muscle Activity

- Without Assistance the muscle activation is higher than With Assistance
- Different muscles have a similar effect on iEMG

Conclusions

- The powered robotic brace
 - Is wearable and safe to use
 - Improves the movement quality
 - Reduces the muscle activation
- The user interface may be upgraded to accommodate more users, especially those with low upper limb strength and poor finger control.

Outline

- Design of wearable robots for head drop
 - **Engineering developments**
 - Clinical evaluations
- New research horizon
 - Converging themes
 - Prior work
 - Potential directions

Converging Research Themes

Converging Research Themes

Prior Work – Movement

Rope model to explain muscle-movement pattern of head-neck

- Head-neck movement in healthy can be explained by a four-rope model.
- These ropes work in pairs to actuate a specific head rotation.

Zhang et al., Annals of Clinical and Translational Neurology (2019)

Prior Work – Movement

How well does head-neck command orientations?

- The head-neck can command orientation;
- But the head-neck commits more tracking errors and time delays than the hand-wrist.

Zhang et al., IEEE Transaction on Neural System and Rehabilitation Engineering (2019)

Potential Research

Computational biomechanics

- Predictive simulation models
- Infer design of wearable robots

Mortensen, Vasavada, and Merryweather, Plos One (2018)

New devices

https://www.youtube.com/watch?v= V CLX5MD_LA

https://en.wikipedia.org/wiki/Quadcopter

Converging Research Themes

Prior Work – Force Control

 f^d can be a function of

Time

Base

Head orientation

Zhang et al., IROS (2020)

Potential Research

Study neuromuscular response to perturbation

Le Flao, Brughelli, Hume, and King, Sports Medicine (2018)

Render forces (g-force, impact, etc.)

https://www.cxcsimulations.com/

https://en.wikipedia.org/wiki/Flight simulator

Training/evaluating motor functions

Converging Research Themes

Bio-inspiration

Head-eye response to a target in the field of view

Prior Work – Bioinspired Eye Control

Chang, Zhang, and Agrawal, BioRob (2020)

Prior Work – Bioinspired Eye Control

- This controller is proved to be correct;
- But, this rule-based controller is not intuitive and intelligent enough.
 - Data-driven approach
 - Adaptive control
 - **End-to-end learning**

Takeaways

A wearable robotic neck brace has been developed for head drop, but has promising potential to also contribute to other clinically or scientifically motivated research.

Head-neck rehabilitation using robotics is a new but exciting field. The research topic is multi-disciplinary and diverse, calling for experts in many fields to contribute.

Takeaways

Zhang et al., Journal of Mechanism and Robotics (2021)

Acknowledgements

Advisor

Students

Funding

Collaborators

Email: hz2347@columbia.edu

THANK YOU!