Started on Wednesday, 19 January 2022, 7:30 PM

State Finished

Completed on Wednesday, 19 January 2022, 8:15 PM

Time taken 44 mins 51 secs

Marks 19.00/20.00

Grade 9.50 out of 10.00 (95%)

Question 1

Correct

Mark 1.00 out of 1.00

The power of signal $x[n]=(-1)^nu[n]$ is

Select one:

- a. 1
- b. 0.5

 ✓
- c. 0.25
- d. None of these

Your answer is correct.

The correct answer is: 0.5

Question 2

Correct

Mark 1.00 out of 1.00

The energy of the signal $x[n] = cos(rac{\pi n}{3}).\left(u[n] - u[n-6]
ight)$ is

Select one:

- a. 1
- b. 2
- © c. 3 √
- d. 6

Your answer is correct.

The correct answer is: 3

Correct

Mark 1.00 out of 1.00

The odd component of the signal $x(t)=e^{(-2t)}cos(t)$ is

Select one:

- \bigcirc a. cosh(2t)cos(t)
 - b. -cosh(2t)cos(t)
- \bigcirc c. sinh(2t)cos(t)
- d. -sinh(2t)cos(t)

4

Your answer is correct.

The correct answer is: -sinh(2t)cos(t)

Question 4

Correct

Mark 1.00 out of 1.00

The signal $x(t) = Acos(\omega t + \phi)$ is

Select one:

- a. a power signal
- b. an energy signal
- c. neither an energy nor a power signal
- d. an energy as well as a power signal

Your answer is correct.

The correct answer is: a power signal

Correct

Mark 1.00 out of 1.00

Even and Odd parts of a unit-step function u(t) are respectively

where

$$sgn(t) = \left\{ egin{array}{ll} -1 & & t < 0 \ 1 & & t > 0 \end{array}
ight.$$

Select one:

- \bigcirc a. $rac{1}{2},rac{-1}{2}sgn(t)$
- igodesign b. $rac{-1}{2},rac{1}{2}sgn(t)$
- $igcup c. rac{-1}{2}, rac{-1}{2} sgn(t)$
- lacksquare d. $rac{1}{2},rac{1}{2}sgn(t)$

Your answer is correct.

The correct answer is: $\frac{1}{2},\frac{1}{2}sgn(t)$

Question 6

Correct

Mark 1.00 out of 1.00

x[n] is defined as

$$x[n] = \left\{egin{array}{ll} 0 & & n < -2 ext{ and } n > 4 \ 1 & & ext{otherwise} \end{array}
ight.$$

Determine the value of n for which x[-n-2] is guaranteed to be zero.

Select one:

- \bigcirc a. n < 1 and n > 7
- igcup b. n < -4 and n > 2
- \bigcirc c. n < -6 and n > 0
- $igcup d. \ n < -2 \ and \ n > 4$

Your answer is correct.

The correct answer is: $n < -6 \ and \ n > 0$

Correct

Mark 1.00 out of 1.00

The signal s(t) = cos(2t) imes cos(4t) is

Select one:

- a. Aperiodic
 - b. Periodic with fundamental frequency 6 rad/s
- c. Periodic with fundamental frequency 4 rad/s
- d. Periodic with fundamental frequency 2 rad/s

Your answer is correct.

The correct answer is: Periodic with fundamental frequency 2 rad/s

Question 8

Correct

Mark 1.00 out of 1.00

Fundamental frequency of periodic signal $e^{(j\omega_o n)}$ is given as (where m is integer and N is the period of the signal)

Select one:

- \bigcirc a. $m(rac{N}{2\pi})$
- $igcup b. N(rac{2\pi}{m})$
- lacksquare c. $m(rac{2\pi}{N})$

1

d. None of these

Your answer is correct.

The correct answer is: $m(\frac{2\pi}{N})$

Incorrect

Mark 0.00 out of 1.00

The signal $x(t)=4\sin(3\pi\ t)+3\cos\left(3\pi\ t+\frac{\pi}{3}\right)$ is a power signal. The average power of the signal is

Select one:

- \bigcirc a. 4.95
- o b. 12.5
- \odot c. $12-6\sqrt{3}$

d. 25

Your answer is incorrect.

The correct answer is: 12.5

Question 10

Correct

Mark 1.00 out of 1.00

Value of the integral

$$\int_{rac{3\pi}{2}}^{2\pi} \left[2\cos\!\left(rac{t}{2}
ight) + t^2
ight] \delta(t-\pi) dt$$
 is

Select one:

- \bigcirc a. $rac{\pi^2}{2}$
- b. 0 √
- \circ c. π^2
- \bigcirc d. $\sqrt{2}\pi$

Your answer is correct.

The correct answer is: 0

Correct

Mark 1.00 out of 1.00

Which of the following represents an invertible system?

Select one:

- lacksquare a. y(t)=x(t-3)
 - **√**
- \bigcirc b. $y(t) = \sin(x(t))$
- $igcup c. \ y[n] = x[n]x[n-1]$
- \bigcirc d. $y(t)=x^2(t)$

Your answer is correct.

The correct answer is: y(t) = x(t-3)

Question 12

Correct

Mark 1.00 out of 1.00 Which of the following signals have same average power

$$x_1(t) = 20\sin(3\pi t)$$

$$x_2(t) = 20\sin(6\pi(t-2/3))$$

$$x_3(t) = 2\cos(6\pi t + \pi/2)$$

$$x_4(t) = 10\cos(3\pi(t-2/3)) + 10\cos(4\pi t)$$

Select one:

- \bigcirc a. $x_1(t)$ and $x_2(t)$
 - ~
- \bigcirc b. $x_1(t)$ and $x_4(t)$
- \bigcirc c. $x_2(t)$ and $x_4(t)$
- \bigcirc d. $x_1(t), x_2(t), \text{ and } x_4(t)$

Your answer is correct.

The correct answer is: $x_1(t)$ and $x_2(t)$

Correct

Mark 1.00 out of 1.00

If the energy of a continuous-time signal x(t) is 12, then the energy of the signal 2x(3t-5) is given by

Select one:

- a. 16 🇸
- b. 8
- c. 18
- d. 12

Your answer is correct.

The correct answer is: 16

Question 14

Correct

Mark 1.00 out of 1.00

Which of the following systems is/are invertible?

Select one:

- \bigcirc a. $y(t) = \sin(x(t))$
- \bigcirc b. $y[n] = \sum_{k=-\infty}^{\infty} x[k]$
- lacksquare c. $y(t)=x\left(rac{t}{2}
 ight)$

 \bigcirc d. $y(t)=rac{dx(t)}{dt}$

Your answer is correct.

The correct answer is: $y(t) = x\left(\frac{t}{2}\right)$

Correct

Mark 1.00 out of 1.00

Consider the time domain signal given as

$$f(t)=5+3\cos(\pi t)+2\sin\!\left(rac{2\pi t}{3}
ight)+2\cos\!\left(rac{\pi t}{2}+rac{\pi}{4}
ight).$$

where time t is in seconds. The fundamental period of f(t) in seconds is

Select one:

- a. 6
- b. 4
- c. 2
- d. 12

Your answer is correct.

The correct answer is: 12

Question 16

Correct

Mark 1.00 out of 1.00

The value of the integral $\int_{-2}^4 \sin(2t) \delta(2t-\frac{\pi}{2}) dt$ is

Select one:

- \bigcirc a. $\sqrt{3}$
- \bullet b. $\frac{1}{2}$
 - **√**
- \circ c. $\sqrt{2}$
- d. 0

Your answer is correct.

The correct answer is: $\frac{1}{2}$

Correct

Mark 1.00 out of 1.00

Let x(t) be a real continuous time signal. The even part of the signal x(t) is $x_e(t)$ and the odd part is $x_o(t)$. Which of the following statements are true?

$$S_1:\int_{-\infty}^{\infty}|x(t)|^2dt=\int_{-\infty}^{\infty}|x_e(t)|^2dt+\int_{-\infty}^{\infty}|x_o(t)|^2dt$$

$$S_2:\int_{-\infty}^{\infty}x_o(t)dt=0$$

$$S_3:\int_{-\infty}^{\infty}x_e(t)x_o(t)dt=0$$

Select one:

- igcup a. S_2 and S_3 only
- igcup b. S_1 and S_3 only
- lacksquare c. S_1 , S_2 , and S_3

4

 $igcup ext{d. } S_1 ext{ and } S_2 ext{ only }$

Your answer is correct.

The correct answer is: S_1 , S_2 , and S_3

Question 18

Correct

Mark 1.00 out of 1.00

Let x(t) and y(t) denote the input and output of a continuous time system. Which of the following descriptions corresponds to a casual system?

Select one:

$$igcup a.\ y(t)=(t-4)x(t+1)$$

$$igcup b. \ y(t) = x(t-3) + x(t+2)$$

o c.
$$y(t) = (t+3)x(t+3)$$

$$lacksquare$$
 d. $y(t)=(t+5)x(t-1)$

Your answer is correct.

The correct answer is: y(t)=(t+5)x(t-1)

Question 19 Correct Mark 1.00 out of 1.00	Consider the following discrete time sequence: x[n]={1,2,3,4,5,6,7(origin),6,5,4,3,2,1} Evaluate x[2n] and x[3n]
	Select one: a. x[3n]={1,3,5,7(origin),5,3,1} and x[2n]={1,4,7(origin),4,1} b. x[2n]={2,5,6(origin),3,1} and x[3n]={2,4,6,6(origin),4,2,1} c. x[2n]={1,3,5,7(origin),5,3,1} and x[3n]={1,4,7(origin),4,1} d. x[2n]={2,4,6,6(origin),4,2,1} and x[3n]={2,5,6(origin),3,1}
	Your answer is correct. The correct answers are: x[2n]={1,3,5,7(origin),5,3,1} and x[3n]={1,4,7(origin),4,1}, x[2n]={2,4,6,6(origin),4,2,1} and x[3n]={2,5,6(origin),3,1}
	Find the fundamental time period of the signal.
Correct	Find the fundamental time period of the signal: $x(t) = sin(2t) + cos(3\pi t)$
	$x(t) = sin(2t) + cos(3\pi t)$ Select one:
Correct Mark 1.00 out of	$x(t) = sin(2t) + cos(3\pi t)$ Select one: a. None of these \checkmark
Correct Mark 1.00 out of	$x(t) = sin(2t) + cos(3\pi t)$ Select one:
Correct Mark 1.00 out of	$x(t) = sin(2t) + cos(3\pi t)$ Select one: a. None of these \checkmark b. 3π
Correct Mark 1.00 out of	$x(t) = sin(2t) + cos(3\pi t)$ Select one: a. None of these \checkmark b. 3π c. 2

Course feedback ▶