Mihir Gupta

101172281

Assignment #4

Robert Collier

Ans 1)

A) 7 and 9 are cut vertices of the graph after removing vertex 4 as they will disconnect vertex 0 and vertex 6 respectively.

B) The sub – graph G' is G' = (V',E')Where V' is the set $\{7,8,11\}$ and E' is the set $\{7-8,8-11,7-11\}$

This graph is a complete graph hence belongs to the set K_n and has a value of 3.

Matrix for graph G'

	7	8	11
7	0	1	1
8	1	0	1
11	1	1	0

Ans 2)

a)

Ans 3)

Graph of the matrix is:

Ans 4)

The chromatic number for the above graph is 3. (SHOWN ABOVE)

Let's take a sub – graph of the above graph, $G' = \{B, F, H\}$

Now this sub – graph belongs to the set K_n, as all the vertices are connected with every other vertex.

As we know in a complete graph every vertex has a different colour hence the minimum chromatic number of a complete graph is the number of vertices.

Vertices in G' = 3, hence minimum chromatic number = 3

Now as G' is a sub – graph of G (the above graph), G can't have chromatic number less than 3

Ans 5)

For each value of "c", the loop "d" runs "c" times.

For each value of "a", the loop "c" runs "a" times.

As there is only 1 function in the loop "d", for each value of "c", the function will run 1* " c" times.

If the loop "c" runs from (1, a+1), then it will have values from 1 to a And the number of times loop "d" will run = $\sum_{c=1}^{a} c$ times

for each value of "a", the function "c" will run $\mathbf{1}^*$ "a" times.

If the loop "a" runs from (1, n+1), then it will have values from 1 to n

And the number of times loop "c" will run $\sum_{a=1}^n a$ times

And if loop "c" runs $\sum_{a=1}^n a$ times, then loop "d" will run $\sum_{a=1}^n \sum_{c=1}^a c$ times

Every time "a" loop runs, a foo() function runs Hence for n runs, foo() function runs $\sum_{a=1}^{n} 1$ times

Total foo() runs = $\sum_{a=1}^{n} \sum_{c=1}^{a} c + \sum_{a=1}^{n} 1$

Solving:

$$\frac{n^3+3n^2+2n}{6}$$
 is the closed form of the above sigma notation

For a value of n = 2000, the function foo() would be called $\frac{2000^3 + 3*2000^2 + 2*2000}{6} = 1,335,334,000$ times

using math

Function bar()

It is called at 2 places (Loop "b" and Loop "c")

For loop "c" – each time "c" runs, function bar () is called 2 times.

Value of "c" goes from 1 to a, hence function bar() will be called $\sum_{c=1}^{a} 2$ times

The loop "c" runs "a" times

The loop "a" goes from 1 to n, hence loop "c" will be called $\sum_{\alpha=1}^{n} a$ times

So, the function bar() will be called $\sum_{a=1}^{n} (\sum_{c=1}^{a} 2)$ times.

Solving:

For loop "b", bar() is called once every time it is called, so for value from 1 to n, the function will be called $\sum_{b=1}^{n} 1$ times

The loop "b" is called "a" times

The loop "a" goes from 1 to n, hence loop "b" will be called $\sum_{a=1}^n b$ times

Hence the function bar() will be called $\sum_{a=1}^n (\sum_{b=1}^n \mathbf{1})$ times

Solving:

1.
$$\sum_{a=1}^{n} (\sum_{b=1}^{n} 1)$$

$$\sum_{a=1}^{n} n$$

3.
$$n * n$$

4.
$$n^2$$

using
$$\sum_{i=1}^{n} k = nk$$

using
$$\sum_{i=1}^{n} k = nk$$

Adding equation 1 and equation 2

1.
$$2 * \frac{n(n+1)}{2} + n^2$$

2.
$$n^2 + n + n^2$$

3.
$$2n^2 + n$$

using math

by adding

 $2n^2 + n$ is the closed from of the above sigma notations

For a value of n =2000, the function bar() would be called $2 * 2000^2 + 2000 = 8,002,000$ times

Ans 6)

a) $3n^2 - 3n + 9$ is O(n)

Proof that $3n^2 - 3n + 9$ is NOT O(n) by contradiction.

- 1. $\exists c \exists k \forall n \ge k (3n^2 3n + 9 \le cn)$
- 2. $\exists k \forall n \ge k (3n^2 3n + 9 \le an)$
- 3. $\forall n \ge b (3n^2 3n + 9 \le an)$
- 4. $\forall n \ge b (3n^2 3n < 3n^2 3n + 9)$
- 5. $\forall n \ge b \ (3n^2 3n < an)$
- 6. $\forall n \ge b \ (3n^2 < an + 3n)$
- 7. $\forall n \ge b \ (3n < a + 3)$
- 8. (3(a+3) < a + 3)
- 9. FALSE

by Existential Instantiation,1

by Existential Instantiation, 2

by math

by transitivity, 3,4

by adding 3n on both sides

by dividing both sides by n

by universal Instantiation,7

Since 3k ≮ k

b)
$$n (3n + 4logn - 2)$$
 is $\Theta(n^2)$

$$n(3n + 4logn - 2) = 3n^2 + 4n logn - 2n$$

When
$$n \geq 1$$
, $3n^2$ +4n log n -2n $< 3n^2 + 4n^2$ -2n^2 = $5n^2$

is
$$O(n^2)$$
 w/ $k = 1$, $c = 5$

When
$$n \ge 1$$
, $3n^2 + 4n \log n - 2n > 3n^2$

$$^{is}\Omega(n^2)$$
 w/ k = 1, c = 3

c)
$$n^2 (3\log n + 2)$$
 is $O(n^3)$

$$n^2 (3\log n + 2) = 3n^2 \log n + 2n^2$$

When
$$n \ge 1$$
, $3n^2 \log n + 2n^2 < 3n^3 + 2n^3 = 5n^3$

is
$$O(n^3)$$
 w/ $k = 1$, $c = 5$

d)
$$n^3 + 5n^2 + \frac{\log n}{n}$$
 is $O(n^3)$

When
$$n \ge 1$$
, $n^3 + 5n^2 + \frac{\log n}{n} < n^3 + 5n^3 + \frac{n*n*n*n}{n} = n^3 + 5n^3 + n^3 = 7n^3$

is
$$O(n^3)$$
 w/ $k = 1$, $c = 7$

e)
$$3n^2 - 4n - 5n \log n$$
 is $\Omega(n^2)$

When
$$n \ge 1$$
, $3n^2 - 4n - 5n \log n \ge 3n^2$

$$^{\mathrm{is}}\,\Omega(n^2)$$
 w/ k = 1, c =3

f)
$$n^5 - 7n^3 + 5n^2 \log n$$
 is $\Omega(n^3)$

When
$$n \ge 1$$
, $n^5 - 7n^3 + 5n^2 \log n \ge n^5 \ge n^3$

$$n^5 - 7n^3 + 5n^2 \log n \ge n^3$$

$$^{is}\Omega(n^3)$$
 w/ k = 1, c =1