# Deciding the Loosely Guarded Fragment and Querying Its Horn Fragment Using Resolution

Sen Zheng, Renate A. Schmidt

University of Manchester, UK

September 22, 2020

1. Deciding LGF



#### 1. Deciding LGF

### The loosely guarded fragment (LGF)

- Subsumes the guarded fragment
- Subsumes description logic ALCHIO
- Generalises standard modal logics  $\mathcal{K}, \mathcal{D}, \mathcal{S}3, \mathcal{B}$
- Express the temporal logic operater until

#### 1. Deciding LGF

### The loosely guarded fragment (LGF)

- Subsumes the guarded fragment
- Subsumes description logic *ALCHIO*
- Generalises standard modal logics  $\mathcal{K}, \mathcal{D}, \mathcal{S}3, \mathcal{B}$
- Express the temporal logic operator until

### **Deciding LGF**

**1**.  $\Sigma \models \bot$ , given  $\Sigma$  in LGF

S. Zheng, R. A. Schmidt

2. BCQ answering for Horn LGF



S. Zheng, R. A. Schmidt

#### 2. BCQ answering for Horn LGF

The Horn loosely guarded fragment (Horn LGF)

Subsumes the guarded existential rules

S. Zheng, R. A. Schmidt

#### 2. BCQ answering for Horn LGF

### The Horn loosely guarded fragment (Horn LGF)

• Subsumes the guarded existential rules

### Boolean conjunctive query (BCQ)

• Returns yes or no.

#### 2. BCQ answering for Horn LGF

### The Horn loosely guarded fragment (Horn LGF)

• Subsumes the guarded existential rules

### Boolean conjunctive query (BCQ)

• Returns yes or no.

#### BCQ answering for Horn LGF

**2**.  $\Sigma \cup \mathcal{D} \models q$ , given  $\Sigma$  in Horn LGF, ground atoms  $\mathcal{D}$ , a BCQ q

◆ロト ◆部ト ◆差ト ◆差ト を めらぐ

### Motivation

### Deciding LGF/BCQ answering for Horn LGF

Hyper-tree width queries

 $\mathcal{D} \models q$  $\Sigma \cup \mathcal{D} \models q$ 

- Query containment/evaluation/entailment
- Ontology-based data access (OBDA) systems

Constraint-satisfaction/homomorphism problem

#### Motivation

### Deciding LGF/BCQ answering for Horn LGF

Hyper-tree width queries

$$\mathcal{D} \models q$$
$$\Sigma \cup \mathcal{D} \models q$$

- Query containment/evaluation/entailment
- Constraint-satisfaction/homomorphism problem
- Ontology-based data access (OBDA) systems



### Problems of interest

#### Some decidability results:

- First-order logic is undecidable
- Deciding LGF is 2EXPTIME-complete
- Querying Horn LGF is 2EXPTIME-complete

### Problems of interest

#### Some decidability results:

- First-order logic is undecidable
- Deciding LGF is 2EXPTIME-complete
- Querying Horn LGF is 2EXPTIME-complete

#### Problem:

No practical procedure exists for querying Horn LGF

### Problems of interest

#### Some decidability results:

- First-order logic is undecidable
- Deciding LGF is 2EXPTIME-complete
- Querying Horn LGF is 2EXPTIME-complete

#### Problem:

No practical procedure exists for querying Horn LGF

#### Contributions:

- A practical procedure for deciding LGF
- First practical procedure to query Horn LGF
- First practical procedure for answering star queries and cloud queries over LGF

### Resolution decides LGF

Shown by [de Nivelle et al. 2003] and [Ganzinger et al. 1999]:

• Introduce the 'MAXVAR' technique

#### Problems:

- Complicated
- Not considering queries

# Reasoning using resolution

- **1**. Deciding LGF:  $\Sigma \models \bot$
- **2**. Querying Horn LGF:  $\Sigma \cup \mathcal{D} \models q \iff \Sigma \cup \mathcal{D} \cup \neg q \models \bot$

# Reasoning using resolution

- **1**. Deciding LGF:  $\Sigma \models \bot$
- **2**. Querying Horn LGF:  $\Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup \neg q \models \bot$



Applying resolution on  $\Sigma$  (or  $\Sigma \cup \mathcal{D} \cup \neg q$ ) derives

- $\bot \Rightarrow$  Unsatisfiable (Yes)
- Saturated clauses ⇒ Satisfiable (No)

# Reasoning using resolution

- **1**. Deciding LGF:  $\Sigma \models \bot$
- **2**. Querying Horn LGF:  $\Sigma \cup \mathcal{D} \models q \quad \Leftrightarrow \quad \Sigma \cup \mathcal{D} \cup \neg q \models \bot$



Applying resolution on  $\Sigma$  (or  $\Sigma \cup \mathcal{D} \cup \neg q$ ) derives

- $\bot \Rightarrow$  Unsatisfiable (Yes)
- Saturated clauses ⇒ Satisfiable (No)

### In finitely many steps!

# Deciding LGF using resolution

#### Challenges:

Deeper terms and wider resolvents

# Deciding LGF using resolution

#### Challenges:

Deeper terms and wider resolvents

### Example 1

Given loosely guarded clauses C,  $C_1$ ,  $C_2$  and  $C_3$ :

$$C = \neg A_1 xy \lor \neg A_2 yz \lor \neg A_3 zx \qquad C_1 = A_1(fx, x) \lor D(gx) \lor \neg G_1 x$$

$$C_2 = A_2(fx, fx) \lor \neg G_2 x \qquad C_3 = A_3(x, fx) \lor \neg G_3 x$$

C,  $C_1$ ,  $C_2$  and  $C_3$  derives  $D(g(fx)) \vee \neg G_1(fx) \vee \neg G_2x \vee \neg G_3(fx)$ .

# Contribution 1: Deciding LGF

*LGF-Res* system: ordered resolution with selection using **a special top variable selection refinement** 

- A variation of [de Nivelle et al., 2003]
- No need for a specific unification algorithm
- Within the framework of [Bachmair et al., 2001]
- Fully developed definitions and proofs
- Minor corrections

### Example 1

Given loosely guarded clauses C,  $C_1$ ,  $C_2$  and  $C_3$ :

$$C = \neg A_1 xy \lor \neg A_2 yz \lor \neg A_3 zx \qquad C_1 = A_1(fx, x) \lor D(gx) \lor \neg G_1 x$$

$$C_2 = A_2(fx, fx) \lor \neg G_2 x \qquad C_3 = A_3(x, fx) \lor \neg G_3 x$$

 $C, C_1, C_2$  and  $C_3$  derives  $D(g(fx)) \vee \neg G_1(fx) \vee \neg G_2x \vee \neg G_3(fx)$ .

### Example 1

Given loosely guarded clauses C,  $C_1$ ,  $C_2$  and  $C_3$ :

$$C = \neg A_1 xy \lor \neg A_2 yz \lor \neg A_3 zx \qquad C_1 = A_1(fx, x) \lor D(gx) \lor \neg G_1 x$$

$$C_2 = A_2(fx, fx) \lor \neg G_2 x \qquad C_3 = A_3(x, fx) \lor \neg G_3 x$$

$$C, C_1, C_2$$
 and  $C_3$  derives  $D(g(fx)) \vee \neg G_1(fx) \vee \neg G_2x \vee \neg G_3(fx)$ .

**Top variable resolution**: Resolving the potentially deepest literals

- $\{x/ffx', y/fx', z/fx'\}$  to substitute variables in C
- 2 Select only  $\neg A_1 xy$  and  $\neg A_3 zx$

### Example 1

Given loosely guarded clauses C,  $C_1$ ,  $C_2$  and  $C_3$ :

$$C = \neg A_1 xy \lor \neg A_2 yz \lor \neg A_3 zx \qquad C_1 = A_1(fx, x) \lor D(gx) \lor \neg G_1 x$$

$$C_2 = A_2(fx, fx) \lor \neg G_2 x \qquad C_3 = A_3(x, fx) \lor \neg G_3 x$$

 $C, C_1, C_2$  and  $C_3$  derives  $D(g(fx)) \vee \neg G_1(fx) \vee \neg G_2x \vee \neg G_3(fx)$ .

**Top variable resolution**: Resolving the potentially deepest literals

- $\{x/ffx', y/fx', z/fx'\}$  to substitute variables in C
- 2 Select only  $\neg A_1 xy$  and  $\neg A_3 zx$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

### Example 1

Given loosely guarded clauses C,  $C_1$ ,  $C_2$  and  $C_3$ :

$$C = \neg A_1 xy \lor \neg A_2 yz \lor \neg A_3 zx \qquad C_1 = A_1(fx, x) \lor D(gx) \lor \neg G_1 x$$

$$C_2 = A_2(fx, fx) \lor \neg G_2 x \qquad C_3 = A_3(x, fx) \lor \neg G_3 x$$

C,  $C_1$ ,  $C_2$  and  $C_3$  derives  $D(g(fx)) \vee \neg G_1(fx) \vee \neg G_2x \vee \neg G_3(fx)$ .

**Top variable resolution**: Resolving the potentially deepest literals

- $\{x/ffx', y/fx', z/fx'\}$  to substitute variables in C
- 2 Select only  $\neg A_1 xy$  and  $\neg A_3 zx$

#### No term depth increase!

# Contribution 2: Querying (Horn) LGF

### Query-Res system: extends LGF-Res by considering queries

- Compute top variables in query clauses
- Query pair clauses ⇒ not limited to LGF
- Top variable resolution ⇒ rewriting queries
- Querying Horn LGF
- Star/cloud querying over LGF

### Conclusions and Future Work

- A practical procedure to decide LGF
- First practical procedure to query Horn LGF
- First practical procedure to answer star/cloud queries over LGF
- Top variable resolution avoids variable depth increase

### Conclusions and Future Work

- A practical procedure to decide LGF
- First practical procedure to query Horn LGF
- First practical procedure to answer star/cloud queries over LGF
- Top variable resolution avoids variable depth increase
- Querying the whole of the (loosely) guarded fragment?
- Querying the guarded negation fragment ( $\approx$ )?
- Deciding fluted logic?
- Experiments

Thanks!