MÉTODO DOS MOMENTOS

Como determinar o potencial $V(\vec{r})$ em todo o espaço, se apenas o conhecemos em alguma região?

Exemplo: potencial vale V_o no condutor de volume V. Qual o valor do potencial $V(\vec{r})$ em um ponto \vec{r} qualquer?

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \iint_{S'} \frac{\rho_S(\vec{r}')}{|\vec{r} - \vec{r}'|} ds'$$

Como determinar P_{S} no condutor?

A função desconhecida ($\rho_{_S}$) está sob a integral

Equação Integral

Método de Solução:

A função desconhecida é escrita como o somatório de funções conhecidas (funções de base), com coeficientes a determinar.

Distribuição de carga em uma placa com potencial Vo

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \iint_{S'} \frac{\rho_s(\vec{r}')}{|\vec{r} - \vec{r}'|} ds'$$

Condição de contorno: $V(\vec{r}) = V_o \quad \vec{r} \in placa$

$$V(\vec{r}) = V_o \qquad \vec{r} \in place$$

Se a distribuição de carga for conhecida na placa, o potencial pode ser calculado em qualquer ponto do espaço.

Discretização:

Discretização da superfície da placa.

$$\Delta = \frac{L}{N}$$

Ordenar os quadrados, com pontos centrais

$$\vec{r}_n$$
 $n = 1, 2, ..., N^2$

n	i	j
1	1	1
2	2	1
÷	:	÷
N	N	1
N+1	1	2
N+2	2	2
÷	÷	÷
N^2	N	N

$$\vec{r}_n = (x_i, y_j)$$

$$\begin{cases} x_i = (i - 1/2)\Delta & i = 1,..., N \\ y_j = (j - 1/2)\Delta & j = 1,..., N \end{cases}$$

$$n = i + (j - 1)N$$

Aproximação:

A distribuição superficial de carga será aproximada por uma soma de funções pulso em cada sub-domínio (quadrado).

Aproximação da densidade superficial de carga constante por partes.

Condição de contorno:

Potencial constante Vo na placa.

$$V_o = \frac{1}{4\pi\varepsilon_0} \iint_{S'} \frac{\rho_s(\vec{r}')}{|\vec{r} - \vec{r}'|} ds' \qquad \vec{r} \in placa$$

A condição de contorno será imposta no centro de cada quadrado (point-matching):

$$\vec{r}_m$$
 $m = 1, 2, ..., N^2$

m	p	q	
1	1	1	
2	2	1	
:	:	÷	
N	N	1	
N+1	1	2	
N+2	2	2	
÷	÷	÷	
N^2	N	N	

$$\vec{r}_m = (x_p, y_q)$$

$$\begin{cases} x_p = (p - 1/2)\Delta & p = 1,..., N \\ y_q = (q - 1/2)\Delta & q = 1,..., N \end{cases}$$

$$m = p + (q - 1)N$$

Impondo o potencial Vo no ponto $\vec{r}_m = (x_p, y_q)$ e usando a expansão da distribuição de carga na placa:

$$V_{o} = \frac{1}{4\pi\varepsilon_{0}} \iint_{S'} \frac{\rho_{s}(\vec{r}')}{|\vec{r}_{m} - \vec{r}'|} ds'$$

$$V_{o} = \frac{1}{4\pi\varepsilon_{0}} \iint_{S'} \frac{\sum_{n=1}^{N^{2}} a_{n} P_{n}(x', y')}{|\vec{r}_{m} - \vec{r}'|} ds'$$

$$V_{o} = \sum_{n=1}^{N^{2}} a_{n} \frac{1}{4\pi\varepsilon_{0}} \iint_{S'} \frac{P_{n}(x', y')}{|\vec{r}_{m} - \vec{r}'|} ds'$$

$$\sum_{n=1}^{N^{2}} a_{n} \frac{1}{4\pi\varepsilon_{0}} \int_{x_{i} - \Delta/2}^{x_{i} + \Delta/2} \int_{y_{j} - \Delta/2}^{y_{j} + \Delta/2} \frac{1}{|\vec{r}_{m} - \vec{r}'|} dx' dy' = V_{o}$$

$$m = 1, 2, ..., N^{2}$$

Equação linear com incógnitas a_n :

Organizando em forma matricial:

$$Z \qquad \begin{vmatrix} a_1 \\ \vdots \\ a_{N^2} \end{vmatrix} = V$$

$$Z_{mn} = V_o$$

$$Z_{mn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{|\vec{r}_m - \vec{r}'|} dx' dy'$$

[Z]: matriz de impedância

[V]: matriz de tensão

Matriz de Impedância:

$$Z_{mn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_i - \Delta/2}^{y_j + \Delta/2} \frac{1}{|\vec{r}_m - \vec{r}'|} dx' dy'$$

 Z_{mn} é igual ao potencial no ponto \vec{r}_{m} gerado por uma densidade superficial de carga constante e igual a 1 no sub-domínio n.

$$\vec{r}_{m} = (x_{p}, y_{q})$$

$$\vec{r}' = (x', y')$$

$$|\vec{r}_{m} - \vec{r}'| = \sqrt{(x_{p} - x')^{2} + (y_{q} - y')^{2}}$$

$$Z_{mn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{\sqrt{(x_p - x')^2 + (y_q - y')^2}} dx' dy'$$

Se $m \neq n$: Z_{mn} pode ser aproximado como se toda a carga do quadrado n estivesse concentrada no centro.

$$Z_{mn} \approx \frac{1}{4\pi\varepsilon_{0}} \int_{x_{i}-\Delta/2}^{x_{i}+\Delta/2} \int_{y_{i}-\Delta/2}^{y_{j}+\Delta/2} \frac{1}{\sqrt{(x_{p}-x_{i})^{2}+(y_{q}-y_{j})^{2}}} dx'dy'$$

$$Z_{mn} \approx \frac{1}{4\pi\varepsilon_{0}} \frac{\Delta^{2}}{\sqrt{(x_{p}-x_{i})^{2}+(y_{q}-y_{j})^{2}}}$$

$$Z_{mn} \approx \frac{1}{4\pi\varepsilon_0} \frac{\Delta^2}{\sqrt{(x_p - x_i)^2 + (y_q - y_j)^2}}$$

2 Se m=n: Elementos da diagonal principal de Z_{mn} :

$$m = n \qquad \Longrightarrow \qquad \begin{cases} i = p & x_i = x_p \\ j = q & y_j = y_q \end{cases}$$

$$Z_{mn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{\sqrt{(x_p - x')^2 + (y_q - y')^2}} dx' dy'$$

$$Z_{nn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{\sqrt{(x_i - x')^2 + (y_j - y')^2}} dx' dy' = u = x' - x_i \qquad du = dx'$$

$$v = y' - y_j \qquad dv = dy'$$

$$= \frac{1}{4\pi\varepsilon_0} \int_{-\Delta/2 - \Delta/2}^{\Delta/2} \int_{-\Delta/2 - \Delta/2}^{\Delta/2} \frac{1}{\sqrt{u^2 + v^2}} du \, dv = \frac{1}{4\pi\varepsilon_0} \int_{-\Delta/2}^{\Delta/2} \ln\left[u + \sqrt{u^2 + v^2}\right]_{-\Delta/2}^{\Delta/2} dv = \frac{1}{4\pi\varepsilon_0} \int_{-\Delta/2}^{\Delta/2} \ln\left[\frac{\Delta/2 + \sqrt{(\Delta/2)^2 + v^2}}{-\Delta/2 + \sqrt{(\Delta/2)^2 + v^2}}\right] dv$$

Usando www.wolfram.com:

$$\int \ln \left[\frac{\sqrt{x^2 + a^2} + a}{\sqrt{x^2 + a^2} - a} \right] dx = x \ln \left[\frac{\sqrt{x^2 + a^2} + a}{\sqrt{x^2 + a^2} - a} \right] + 2a \ln \left(\sqrt{x^2 + a^2} + x \right)$$

Exemplo:

Condutor de Placas Paralelas

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \iint_{S'} \frac{\rho_S(\vec{r}')}{|\vec{r} - \vec{r}'|} ds'$$

Condições de contorno:

$$V(\vec{r}) = \begin{cases} V_{O} & \vec{r} \in placa & cima \\ 0 & \vec{r} \in placa & baixo \end{cases}$$

Se a distribuição de carga for conhecida na placa, o potencial pode ser calculado em qualquer ponto do espaço.

Discretização:

Discretização da superfície das placas.

$$\Delta = \frac{L}{N}$$

Ordenar os quadrados, com pontos centrais

$$\vec{r}_n$$
 $n = 1, 2, ..., 2N^2$

n	i	j	k
1	1	1	0
2	2	1	0
:	:	:	;
N^2	N	N	0
N^2+1	1	1	1
$N^2 + 2$	2	1	1
÷	i	÷	:
$2N^2$	N	N	1

$$\vec{r}_n = (x_i, y_j, z_k)$$

$$\begin{bmatrix} x_i = (i - 1/2)\Delta & i = 1, ..., N \\ y_j = (j - 1/2)\Delta & j = 1, ..., N \\ z_k = k d & k = 0, 1 \end{bmatrix}$$

$$k = 0$$
 placa de baixo
 $k = 1$ placa de cima

$$n = i + (j-1)N + kN^2$$

Aproximação:

A distribuição superficial de carga será aproximada por uma soma de funções pulso em cada sub-domínio (quadrado).

Aproximação da densidade superficial de carga constante por partes.

Condições de contorno:

Potencial constante Vo na placa superior e 0 (zero) na inferior.

$$\frac{1}{4\pi\varepsilon_0} \iint_{S'} \frac{\rho_s(\vec{r}')}{|\vec{r} - \vec{r}'|} ds' = \begin{cases} V_o & \vec{r} \in placa & cima \\ 0 & \vec{r} \in placa & baixo \end{cases}$$

A condição de contorno será imposta no centro de cada quadrado (point-matching):

\vec{r}_m $m = 1, 2,, 2N^2$

m	р	q	S
1	1	1	0
2	2	1	0
:	÷	:	÷
N^2	N	N	0
$N^2 + 1$	1	1	1
$N^2 + 2$	2	1	1
÷	i	÷	÷
$2N^2$	N	N	1

$$m = p + (q-1)N + sN^2$$
 $s = 0$ placa de baixo $s = 1$ placa de cima

Impondo o potencial no ponto $\vec{r}_m = (x_p, y_q, z_s)$ e usando a expansão da distribuição de carga na placa:

$$\frac{1}{4\pi\varepsilon_{0}} \iint_{S'} \frac{\rho_{s}(\vec{r}')}{|\vec{r}_{m} - \vec{r}'|} ds' = V(z_{s})$$

$$\rho_{s}(x, y, z) \approx \sum_{n=1}^{2N^{2}} a_{n} P_{n}(x, y, z)$$

$$\sum_{n=1}^{2N^{2}} a_{n} P_{n}(x, y, z)$$

Equação linear com incógnitas a_n :

$$V_{m} = V(z_{s}) = \begin{cases} 0 & 1 \le m \le N^{2} \\ V_{o} & N^{2} + 1 \le m \le 2N^{2} \end{cases}$$

$$Z_{mn} = \frac{1}{4\pi\varepsilon_{0}} \int_{x_{i} - \Delta/2}^{x_{i} + \Delta/2} \int_{y_{j} - \Delta/2}^{x_{j} + \Delta/2} \frac{1}{|\vec{r}_{m} - \vec{r}'|} dx' dy'$$

Matriz de Impedância:

$$Z_{mn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_i - \Delta/2}^{y_j + \Delta/2} \frac{1}{|\vec{r}_m - \vec{r}'|} dx' dy'$$

 Z_{mn} é igual ao potencial no ponto \vec{r}_m gerado por uma densidade superficial de carga constante e igual a 1 no sub-domínio n.

$$|\vec{r}_{m}| = (x_{p}, y_{q}, z_{s}) |\vec{r}'| = (x', y', z_{k}) |\vec{r}_{m} - \vec{r}'| = \sqrt{(x_{p} - x')^{2} + (y_{q} - y')^{2} + (z_{s} - z_{k})^{2}}$$

$$Z_{mn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{\sqrt{(x_p - x')^2 + (y_q - y')^2 + (z_s - z_k)^2}} dx' dy'$$

Se $m \neq n$: Z_{mn} pode ser aproximado como se toda a carga do quadrado n estivesse concentrada no centro.

$$Z_{mn} \approx \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{\sqrt{(x_p - x_i)^2 + (y_q - y_j)^2 + (z_s - z_k)^2}} dx' dy'$$

$$Z_{mn} \approx \frac{1}{4\pi\varepsilon_0} \frac{\Delta^2}{\sqrt{(x_p - x_i)^2 + (y_q - y_j)^2 + (z_s - z_k)^2}}$$

2 Se m=n: Elementos da diagonal principal de Z_{mn} :

$$m = n$$

$$i = p$$

$$j = q$$

$$k = s$$

$$z_k = z_s$$

$$Z_{nn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{\sqrt{(x_i - x')^2 + (y_j - y')^2 + (z_k - z_k)^2}} dx' dy'$$

$$Z_{nn} = \frac{1}{4\pi\varepsilon_0} \int_{x_i - \Delta/2}^{x_i + \Delta/2} \int_{y_j - \Delta/2}^{y_j + \Delta/2} \frac{1}{\sqrt{(x_i - x')^2 + (y_j - y')^2}} dx' dy' =$$

Leitura:

- Elementos de Eletromagnetismo, Matthew Sadiku, 3ª Ed., 2006 Cap. 15
- Advanced Engineering Electromagnetics, C. A. Balanis, 1989