Lagrangian density
$$\beta h_{\alpha\beta} h^{\alpha\beta} - \beta h^{\alpha}_{\alpha} h^{\beta}_{\beta} + \frac{1}{2} \alpha \partial_{\beta} h^{\chi}_{\chi} \partial^{\beta} h^{\alpha}_{\alpha} + \alpha \partial_{\alpha} h^{\alpha\beta} \partial_{\chi} h^{\chi}_{\beta} - \frac{1}{2} \alpha \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta}$$

$$\alpha \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\chi} h^{\chi}_{\beta} - \frac{1}{2} \alpha \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta}$$
Added source term:
$$h^{\alpha\beta} \mathcal{T}_{\alpha\beta}$$
(No source constraints)

Pole residue:

Polarisations:

Square mass:

Spin:

Parity:

2

 \mathcal{B}

 $3+\alpha k^2$

0

 α < 0 && β < 0

Unitarity conditions

 $h_{0+}^{\#1}$

(No massless particles)