Running hiGeoSSE

Caetano, D.S., O'Meara, B.C., and Beaulieu J.M.
April 09, 2018

Getting started

This tutorial gives some basic information on how to set up and execute parameter estimates for a series of models using hiGeoSSE (Caetano et al., in review). The hiGeoSSE models can be used to infer ancestral ranges, rates of dispersion and extirpation as well as testing hypothesis about range-dependent diversification processes.

The main difference between GeoSSE and hiGeoSSE is that here we implement models that allow for diversification rate variation both within and between geographical areas. Such models are more adequate to empirical data then homogeneous diversification rates implied by GeoSSE (as well as BiSSE). The hiGeoSSE models belong to the same category of Hidden-Markov models as HiSSE. Thus, the concepts will be familiar to you if you have some experience with HiSSE (and vice-versa).

Best place to install the package with the new functions provided here is from our github repository using the package devtools:

```
library( devtools )
## At the moment you need to point to the development branch on github.
install_github(repo = "thej022214/hisse", ref = "higeosse_dev")
```

Before getting started, be sure to load the hisse and diversitree packages:

```
library(hisse)
```

```
## Loading required package: ape
## Loading required package: deSolve
## Loading required package: GenSA
## Loading required package: subplex
## Loading required package: nloptr
library(diversitree)
```

Simulating a range-independent process

Here we will simulate a phylogenetic tree using neutral geographical ranges. We will incorporate three different rates of diversification. Thus, the correct process here is: "rates of diversification vary independently of the geographic ranges".

We use a simulation here just because it is an easy way to produce data and because we know the underlying diversification process. Otherwise, if you have an empiricial dataset, all the steps we show here apply. Just make sure to substitute the phylogeny and data with your dataset.

```
## Generate a list with the parameters of the model:
pars <- SimulateHiGeoSSE(hidden.areas = 1, return.HiGeoSSE_pars = TRUE)
pars

## $model.pars
## A B</pre>
```

```
## s01 0 0
## s0 0 0
## s1
       0 0
       0 0
## x0
## x1
       0 0
## d0 0 0
## d1 0 0
##
## $q.01
##
       01A 01B
## 01A NA
## 01B
        O NA
##
## $q.0
##
      OA OB
## OA NA O
## OB O NA
##
## $q.1
##
      1A 1B
## 1A NA O
## 1B O NA
##
## attr(,"class")
## [1] "list"
                       "HiGeoSSE_pars"
```

The object pars is a list with all the parameter values for this model in the correct order and format, but all values are 0. Thus, we need to populate these parameters with numbers in order to perform the simulation.

```
pars$model.pars[,1] <- c(0.1, 0.1, 0.1, 0.03, 0.03, 0.05, 0.05)
pars$model.pars[,2] <- c(0.2, 0.2, 0.2, 0.03, 0.03, 0.05, 0.05)
pars$q.01[1,2] <- pars$q.01[2,1] <- 0.05
pars$q.0[1,2] <- pars$q.0[2,1] <- 0.05
pars$q.1[1,2] <- pars$q.1[2,1] <- 0.05</pre>
```

```
## $model.pars
##
          Α
## s01 0.10 0.20
## s0 0.10 0.20
## s1 0.10 0.20
## x0
       0.03 0.03
## x1
      0.03 0.03
## d0
      0.05 0.05
## d1 0.05 0.05
##
## $q.01
##
        01A 01B
## 01A
       NA 0.05
## 01B 0.05
              NA
##
## $q.0
##
        OA
             0B
## OA
        NA 0.05
## OB 0.05
```

```
##
## $q.1
## 1A 1B
## 1A NA 0.05
## 1B 0.05 NA
##
## attr(,"class")
## [1] "list" "HiGeoSSE_pars"
```

Now we can use the parameters with the same function we applied before SimulateHiGeoSSE to generate both the data and the phylogeny.

Here we will set the seed for the simulation, so the outcome of the simulation is always the same. Note that you can change the seed or skip this lines to generate a different, random, dataset.

```
set.seed(1234)
sim.higeosse <- SimulateHiGeoSSE(pars=pars, hidden.areas = 1, x0 = "OA", max.taxa = 200)
## [1] "Simulating the phylogeny..."
## [1] "Simulation finished!"</pre>
```

Setting up the models

In this tutotial we will fit a total of four models. Two models with a range-indendent diversification process and two other models in which the range have an effect on the diversification rate of the lineages (each with either one or two rate classes).

Note that the function to estimate the parameters of the model is commented out below. Just uncomment and run to perform the estimate of the models. Here we will load results from a previous estimate.

Models 1 and 2 below do not include hidden classes. Note that in this case the model will have 3 speciation parameters and 2 extirpation parameters.

```
## Model 1 - Dispersal parameters vary only, no range-dependent diversification.
speciation \leftarrow c(1,1,1)
extirpation \leftarrow c(1,1)
trans.rate <- TransMatMakerHiGeoSSE(hidden.areas=0)</pre>
\# \mod 1 \leftarrow HiGeoSSE(phy = sim.higeosse\$phy, data = sim.higeosse\$data, f=c(1,1,1),
#
                     speciation=speciation, extirpation=extirpation,
#
                     hidden.areas=FALSE, trans.rate=trans.rate)
## Model 2. Canonical GeoSSE model, range effect on diversification
speciation \leftarrow c(1,2,3)
extirpation \leftarrow c(1,2)
trans.rate <- TransMatMakerHiGeoSSE(hidden.areas=0)</pre>
# mod2 < HiGeoSSE(sim.higeosse\$phy, data = sim.higeosse\$data, f=c(1,1,1),
                     speciation=speciation, extirpation=extirpation,
                     hidden.areas=FALSE, trans.rate=trans.rate)
```

Models 3 and 4 below have 2 hidden rates each. In this case the models will have twice the number of parameters: 6 speciation parameters and 4 extirpation parameters.

```
## Model 3. HiGeoSSE model with 1 hidden area, no range-dependent diversification.
## Note below how parameters vary among hidden classes but are the same within each
## hidden class.
speciation <- c(1,1,1,2,2,2)
extirpation <- c(1,1,2,2)</pre>
```

Load the fit of the models:

```
load( "higeosse_vignette.Rsave" )
```

Now that we have the fit for the 4 models we can check their parameter estimates.

First model assumes a homogeneous diversification rate across the tree independent of the ranges.

mod1

```
##
## Fit
##
                -lnL
                                   AIC
                                                    AICc
                                                                    n.taxa
           -803.026
                             1614.052
                                                1614.257
                                                                   200.000
##
## n.hidden.classes
##
               1.000
##
## Model parameters:
##
                                             xOA
##
          s0A
                      s1A
                                 s01A
                                                         x1A
                                                                 d0A 01A
## 0.10495443 0.10495443 0.10495443 0.04700056 0.04700056 0.04523465
##
      d1A_01A
## 0.06328808
```

Second model assumes a range-dependent diversification process without hidden states. This means that diversification shifts occurr across the branches of the tree and are correlated to the ranges.

```
mod2
```

```
##
## Fit
                                                    AICc
##
                -lnL
                                   ATC
                                                                    n.taxa
          -802.1938
                            1618.3876
                                               1618.9709
                                                                  200.0000
##
## n.hidden.classes
             1.0000
##
##
## Model parameters:
##
##
          sOA
                                 s01A
                                             x0A
                                                                 d0A 01A
                      s1A
## 0.11383796 0.10000999 0.08864935 0.04545565 0.06020702 0.05333405
##
      d1A_01A
## 0.05346983
```

Third model incoporates shifts in diversification across the tree but these are independent of the ranges. Note that the parameter estimes vary between hidden classes but are held the same among different ranges within

each hidden class. This is an example of our more complex null model in HiGeoSSE. This model can be extended to fit up to 5 hidden classes.

```
mod3
##
## Fit
##
                -lnL
                                    AIC
                                                     AICc
                                                                      n.taxa
           -810.6062
                             1639.2124
##
                                                1640.1597
                                                                    200.0000
  n.hidden.classes
##
              2.0000
##
##
##
  Model parameters:
##
##
             s0A
                           s1A
                                        s01A
                                                        x0A
                                                                      x1A
## 4.996388e+00 4.996388e+00 4.996388e+00 7.411601e+02 7.411601e+02
##
        d0A_01A
                       d1A_01A
                                      dOA_OB
                                                    d1A_1B
                                                                d01A_01B
##
  7.983518e-03 9.980557e+01 2.339666e-05 2.339666e-05 2.339666e-05
##
             s0B
                                        s01B
                                                        x0B
                           s<sub>1</sub>B
  1.742381e-01 1.742381e-01 1.742381e-01 1.670225e-01 1.670225e-01
##
##
        d0B 01B
                       d1B 01B
                                      dOB OA
                                                    d1B 1A
                                                                d01B 01A
```

Finally, the third model describes a range-dependent diversification process while also accounting for multiple rate classes. This is the most complex model in this set.

```
##
## Fit
##
                                    AIC
                -lnL
                                                     AICc
                                                                     n.taxa
##
          -798.7843
                             1627.5686
                                                1630.1773
                                                                   200.0000
  n.hidden.classes
##
##
              2.0000
##
## Model parameters:
##
##
             sOA
                           s1A
                                        s01A
                                                       x0A
                                                                     x1A
  1.371612e-01 7.618960e-02 1.668092e-01 7.176987e-02 7.841790e-02
##
##
        d0A 01A
                      d1A 01A
                                      dOA OB
                                                    d1A_1B
                                                                d01A 01B
##
   6.001005e-02 7.188738e-02 7.811913e-03 7.811913e-03 7.811913e-03
##
             s0B
                           s1B
                                        s01B
                                                       x0B
                                                                     x<sub>1</sub>B
## 6.434724e-02 1.261423e-01 2.066618e-09 7.637460e-03 4.241552e-02
##
        d0B 01B
                       d1B 01B
                                      dOB OA
                                                                d01B 01A
                                                    d1B_1A
```

4.497654e-02 3.689476e-02 7.811913e-03 7.811913e-03 7.811913e-03

6.429553e-02 9.702651e-02 2.339666e-05 2.339666e-05 2.339666e-05

Computing Akaike Weights.

mod4

Akaike weights are important to evaluate the relative importance of each of the models to explain the variation observed in the data. This quantity takes into account pennalties associated to the number of free parametes.

Models with higher weight show better fit to the data and, as a result, have more weight when performing model averaging (see below).

To compute model weight we can use one of the functions of the package. This will work with both HiSSE and HiGeoSSE objects.

```
GetModelWeight(model1 = mod1, model2 = mod2, model3 = mod3, model4 = mod4)
         model1
                      model2
                                   model3
                                                model4
## 8.963818e-01 1.025742e-01 3.083187e-06 1.040898e-03
## As the number of models in the set grows, naming each model in the set can become hard.
## So one can use a list (created by some automated code) as an imput also:
list.higeosse <- list(model1 = mod1, model2 = mod2, model3 = mod3, model4 = mod4)
GetModelWeight(list.higeosse)
##
         model1
                      model2
                                   model3
                                                model4
## 8.963818e-01 1.025742e-01 3.083187e-06 1.040898e-03
```

Model averaging and plotting.

Now we can model average the results. Note that this step will reflect the Akaike model weights that we computed above.

For this we need first to perform a marginal reconstruction for each of the models in the set. This will reconstruct the hidden states at the nodes of the phylogeny. Then we can use this information to compute the model average for the rates.

These can take a while to run. We will load the results of previous analyses. Uncomment the code below to perform the reconstructions.

```
# recon.mod1 <- MarginReconGeoSSE(phy = mod1$phy, data = mod1$data, f = mod1$f,
#
                                   pars = mod1$solution, hidden.areas = mod1$hidden.areas,
#
                                   root.type = mod1$root.type, root.p = mod1$root.p,
#
                                   aic = mod1$AIC, n.cores = 4)
# recon.mod2 <- MarginReconGeoSSE(phy = mod2$phy, data = mod2$data, f = mod2$f,</pre>
                                   pars = mod2$solution, hidden.areas = mod2$hidden.areas,
#
#
                                   root.type = mod2$root.type, root.p = mod2$root.p,
#
                                   aic = mod2\$AIC, n.cores = 4)
\# recon.mod3 <- MarginReconGeoSSE(phy = mod3\$phy, data = mod3\$data, f = mod3\$f,
                                   pars = mod3$solution, hidden.areas = mod3$hidden.areas,
#
#
                                   root.type = mod3$root.type, root.p = mod3$root.p,
#
                                   aic = mod3\$AIC, n.cores = 4)
\# recon.mod4 <- MarginReconGeoSSE(phy = mod4\#phy, data = mod4\#data, f = mod4\#f,
#
                                   pars = mod4$solution, hidden.areas = mod4$hidden.areas,
#
                                   root.type = mod4$root.type, root.p = mod4$root.p,
#
                                   aic = mod4\$AIC, n.cores = 4)
## Load previous results:
load( "higeosse_recons_vignette.Rsave" )
```

The results are phylogenetic trees with information on the nodes.

```
recon.mod1
```

```
##
## Phylogenetic tree with 200 tips and 199 internal nodes.
##
## Tip labels:
## sp14, sp16, sp21, sp23, sp26, sp30, ...
## Node labels:
## 1, 3, 1, 3, 3, 1, ...
```

```
##
## Rooted; includes branch lengths.
recon.mod2
## Phylogenetic tree with 200 tips and 199 internal nodes.
## Tip labels:
## sp14, sp16, sp21, sp23, sp26, sp30, ...
## Node labels:
## 1, 3, 1, 1, 3, 1, ...
## Rooted; includes branch lengths.
recon.mod3
## Phylogenetic tree with 200 tips and 199 internal nodes.
##
## Tip labels:
## sp14, sp16, sp21, sp23, sp26, sp30, ...
## Node labels:
## 2, 6, 6, 4, 6, 4, ...
##
## Rooted; includes branch lengths.
recon.mod4
##
## Phylogenetic tree with 200 tips and 199 internal nodes.
## Tip labels:
## sp14, sp16, sp21, sp23, sp26, sp30, ...
## Node labels:
## 1, 3, 1, 1, 3, 1, ...
##
## Rooted; includes branch lengths.
Now that we have the AIC associated with each model and their reconstruction across the nodes of the tree
```

we can compute the model average:

```
recon.models <- list(recon.mod1, recon.mod2, recon.mod3, recon.mod4)
model.ave.rates <- GetModelAveRates(x = recon.models, type = "tips")</pre>
## Warning in CheckReconBounds(x = list(rates.tips.turnover,
## rates.tips.net.div, : Models in position 3 have parameters outside the
## bounds defined by 'bound.matrix' argument. These will NOT be included in
## the reconstruction.
```

The error message appeared here because the function uses the argument bound.par.matrix in order to exclude models with parameter estimates outside the pre-defined bounds. You can use these bounds to make sure that models with poor MLE estimates will not influence the model averages.

The result of the reconstrution is a matrix with the parameter estimates for each of the tips species averaged over all models. Note that for the GeoSSE model there is no "extinction" parameter associated with widespread (01) lineages. Also not that one can change the type of model averaging (between tips, nodes, and both) when callin the GetModelAveRates function.

```
head( model.ave.rates )
##
    taxon state.0 state.1 state.01 turnover net.div speciation
## 1 sp14 0 0 1 0.3133588 0.3133588 0.1031989
## 2 sp16
             1
                    0
                            0 0.1527295 0.1058221 0.1058792
## 3
                    0
                            0 0.1527351 0.1058224 0.1058822
     sp21
              1
                    0
                             0 0.1527147 0.1058211 0.1058713
## 4
     sp23
              1
                    0
## 5 sp26
                            0 0.1527019 0.1058203 0.1058645
              1
                 0
## 6 sp30
              0
                            1 0.3137521 0.3137521 0.1033111
## extinct.frac extinction
     0.0000000 0.00000000
## 1
     0.4428098 0.04685031
## 2
## 3 0.4428264 0.04685293
## 4 0.4427659 0.04684335
## 5
      0.4427281 0.04683735
      0.0000000 0.00000000
## 6
```

Finally, we can plot the use the resulting data matrix to make a plot of the results.


```
## $rate.tree
## Object of class "contMap" containing:
##
## (1) A phylogenetic tree with 200 tips and 199 internal nodes.
##
## (2) A mapped continuous trait on the range (0.104231, 0.318219).
##
## $state.tree
## Object of class "contMap" containing:
##
## (1) A phylogenetic tree with 200 tips and 199 internal nodes.
##
## (2) A mapped continuous trait on the range (0, 2.002).
```