ADAMAS UNIVERSITY PURSUE EXCELLENCE	ADAMAS UNIVERSITY END-SEMESTER EXAMINATION: JANUARY 2021 (Academic Session: 2020 – 21)			
Name of the Program:	B.Tech	Semester:	III	
	Mechanical Engineering			
Paper Title:	ENGG. THERMODYNAMICS	Paper Code:	EME42115	
Maximum Marks:	40	Time duration:	03 HRS	
Total No of questions:	08	Total No of Pages:	02	
(Any other information for the student may be mentioned here)				

Answer all the Groups Group A

Answer all the questions of the following

 $5 \times 1 = 5$

- 1. a) What is the difference between a closed system and open system?
 - b) Define Intensive property with examples.
 - c) What do you understand by macroscopic and microscopic approach?
 - d) Which property of a system increases when heat is transferred at i) Constant Volume ii) Constant Pressure
 - e) Why heat and work not completely interchangeable forms of energy?

GROUP -B

Answer *any three* of the following

 $3 \times 5 = 15$

- 2. Find the enthalpy, entropy and volume of steam at 1.4Mpa, 380° C
- **3.** Establish the Inequality of Claussius.
- **4.** A cyclic heat engine operates between a source temperature of 800°C and a sink temperature of 30°C. What is the least rate of heat rejection per kW net output of the engine?
- **5.** A stationary mass of gas is compressed without friction from an initial state of 0.3m³ and 0.105 MPa to a final state of 0.15m³ and 0.105MPa, the pressure remaining constant during the process. How much does the internal energy of the gas change?

GROUP -C

Answer *any two* of the following

 $2 \times 10 = 20$

6. i) What is the difference between standard symbols of E and U? [4] ii) A piston and cylinder contain a fluid system which passes through a complete cycle of four processes. During a cycle, the sum of all heat transfers is -170 kJ. The system completes 100 cycles per minute. Complete the following table showing the method for each item, and compute the net rate of work output in kW.

Process	Q (kJ/min)	W (kJ/min)	ΔE (kJ/min)
a-b	0	2170	-
b-c	21000	0	-
c-d	-2100	-	-36600
d-a	-	-	-

[6]

i) Write down the Maxwell's equation.ii) Derive the *first* TdS equation. **7**.

[5] [5]

i) State the equivalence of Kelvin Planck and Claussius statement of thermodynamics 8. ii) Derive the maximum work obtainable from two finite bodies at temperatures T₁ and T_2 .