Домашнее задание 5

1

Построим рекуррентное соотношение: заполним первую ячейку размером 2×1 серым прямоугольником, останется еще f(n-1) способ заполнить оставшуюся часть. Теперь посмотрим на первый квадрат размером 2×2 , способов его заполнить 3: черный квадрат, белый и серые полоски, повернутые на 90 градусов. И f(n-2) способами можем заполнить оставшуюся часть. Получаем f(n) = f(n-1) + 3f(n-2).

Получим аналитическое выражение:

$$\lambda^2 - \lambda - 3 = 0,$$
 $\lambda = \frac{1 \pm \sqrt{13}}{2},$ $f(n) = C_1(\frac{1 + \sqrt{13}}{2})^n + C_2(\frac{1 - \sqrt{13}}{2})^n, f_0 = 0, f_1 = 1,$ получаем, что $C_1 = 1/\sqrt{13}, C_2 = -1/\sqrt{13}, f(n) = \frac{1}{\sqrt{13}}((\frac{1 + \sqrt{13}}{2})^n - (\frac{1 - \sqrt{13}}{2})^n)$ $13^{(31-1)/2} = 13^{15} = 13^4 \cdot 13^4 \cdot 13^4 \cdot 13^3 = 1000 \cdot 27 = 30 = -1 \mod 31 \Rightarrow$ квадратичный невычет. Аналогично задаче $2.D - 1$: $2^{-1} = 16 \mod 31, 13^{-1} = 12 \mod 31, 12x((16 + 16x)^n - (16 - 16x)^n), 31 \cdot 31 = 961, 30000 = 3 \cdot 10^4 = 3 \cdot 80 = 240 \mod 960. g(240) = g(30000).$

2.1

- (i) g(2) = 4 + 4 + 2 + 2. Количество возможных путей, если первой вершиной, которою мы посещаем будет 1 или 4 4 + 4 = 8, 2, 3 2 + 2. Итог: 12.
- (ii) Посчитаем все возможные пути на n шаге, очевидно, что $g(n)=g_1(n)+g_2(n)+g_3(n)+g_4(n)$, где $g_i(n)$ путь, оканчивающийся в i-ой вершине. Тогда $g(n+1)=4g_1(n)+4g_4(n)+2g_2(n)+2g_3(n)=2g(n)+4g(n-1)$
- $\lambda^2 2\lambda 4\lambda = 0 \iff \lambda = 1 + \sqrt{5}, 1 \sqrt{5},$ получаем $g_n = C_1 \cdot (1 + \sqrt{5}) + C_2 \cdot 1 \sqrt{5}, g_0 = 1, g_1 = 4.$ При начальных условиях получаем: $g_n = \frac{\sqrt{5}+3}{2\sqrt{5}}(1+\sqrt{5})^n + \frac{\sqrt{5}-3}{2\sqrt{5}}(1-\sqrt{5})^n.$

Чтобы вычислить g_n надо посчитать $(1\pm\sqrt{5})^n$ по модулю 29. Это можно сделать с помощью быстрого возведения в степень за $O(\log n)$.

(iv) Пусть k — период. Пара g_i, g_{i-1} однозначно определяет пару g_{i+1}, g_i , получается, что, если встретится пара еще раз, то алгоритм зациклится. Возможных пар p^2 (остатки по модулю p). Посмотрим, когда повториться: $(g_n, g_{n-1}) = (g_{n-k}, g_{n-k-1}) = \dots = (g_{n \mod k}, g_{n \mod k-1})$. Деление по модулю выполняется за $O((\log n)^3)$ (Дасгупта, алгоритмы, страница 21). П (iii) $11^2 = 5 \mod 29, 22^{-1} = 4 \mod 29,$ получаем: $g_n = 14 \cdot 4 \cdot (12)^n + 32 \cdot (-10)^n \mod 29, g_n = (-2) \cdot (12)^n + 3 \cdot (-10)^n$. $12^{20000} = 12^{714 \cdot 28 + 8} = 12^8 = 144 = 1 \mod 29,$

$$12^{80} = 12^{80} = 12^{80} = 12^{80} = 144 = 1 \mod 29,$$

$$(-10)^{20000} = (-10)^{714 \cdot 28 + 8} = 10^{8} = 25 = \mod 29,$$

$$g_{20000} = -2 + 3 \cdot 25 = 15.$$

2.Д-1

5 — квадратичный невычет по модулю 23. Работаем в кольце $Z_{23}[x]$ — кольцо многочленов над полем Z_{23} . $Z_{23}[x]/(x^2-5)$ — поле, так как многочлен не приводим в кольце. $\sqrt{5}=x$, полуаем $g_n=\frac{(x+3)\sqrt{5}}{10}(1+x)^n+\frac{(x-3)\sqrt{5}}{10}(1-x)^n=7x(x+3)(1+x)^n+7x(x-3)(1-x)^n=7x((x+3)(1+x)^n+(x-3)(1-x)^n)$ mod 23, так как $10^{-1}=7$ mod 23. Порядок $Z_{23}[x]/(x^2-5)$ равен $23^2-1=528=3\cdot 11\cdot 16\Rightarrow F_{528}=Z_3\otimes Z_{16}\otimes Z_{11}$, имеем: $(1-x)^{528}=1=(1+x)^{528},F_{528+n}^{23}=F_n^{23}$. $10000=10^4$, находим $10^4=528\cdot 19-32$ mod 528, тогда: $496\longleftrightarrow$ найдем $F_{496}:(1\pm x)^2=1\pm 2x+x^2=6\pm 2x,$ $(1\pm x)^4=36\pm 24x+4x^2=10\pm x,$

```
(1 \pm x)^8 = 100 + x^2 \pm 20x = 13 \mp 3x
 (1 \pm x)^{16} = 100 + 9x^2 \mp 60x = 7 \mp 9x,
 (7 \pm 9x)^2 = (49 + 81x^2 \pm 14 \cdot 9x) = (-6 \mp 11x),
 (-6 \mp 11x)^2 = 36 \mp 132x + 121x) = (-3 \mp 6x),
 (-3 \mp 6x)^2 = (9 + 36x^2 \pm 36x) = (5 \pm 13x),
(5 \pm 13x)^2 = (25 + 169x^2 \pm 130x) = (-4 \mp 8x).
(x\pm 1)^{496} = (x\pm 1)^{256+128+64+32+16} = (-4\mp 8x)(5\mp 13x)(-3\mp 6x)(-6\mp 11x)(7\mp 9x) = (7\mp 9x)(-14+3)3 = (-4\pm 8x)(5\pm 13x)(-3\pm 6x)(-6\pm 11x)(-6\pm 11x)(-14\pm 13x) = (-4\pm 11x)(-14\pm 
 -10(7 \mp 9x). -x((x+3)(7-9x)+(x-3)(7+9x)) = -x(7x+21-45-27x+7x-21+45-27x) =
  -x \cdot (-40x) = 40 \cdot 5 = 200 = 16.
```

3.

Пусть язык $L \in \mathcal{NP}$. Покажите, что он полиномиально сводится (по Карпу) к языку STOP описаний пар (M,ω) машин Тьюринга и входов таких, что M останавливается на входе ω .

 $L \in \mathcal{NP} \Rightarrow L \leq 3-SAT$. Теперь построим такую MT, которая будет выдавать 1, если нашла выполняющий набор для формулы и 0 в противном случае. Пусть $\phi - \mathrm{KH}\Phi$, в которой не больше 3 литералов в каждом дизъюнкте. Тогда $f(\phi) = (MT, \phi)$. Получаем, что, если $\phi \in 3 - SAT \Rightarrow (MT, \omega) \in STOP$, если $\phi \notin 3 - SAT \Rightarrow (MT, \omega) \notin STOP$. Сводимость полиномиальная, так как, очевидно, машину Тьюринга можем построить за полином.

4.

Пусть $L \in \mathcal{NPC} \cap co\text{-}\mathcal{NP}$, тогда:

1) $\bar{L} \in \mathcal{NP}$, 2) $L \in \mathcal{NP}$, 3) $\forall A \in \mathcal{NP} \ \exists f : x \in A \iff f(x) \in L$. Докажем, дополнение любого языка из \mathcal{NP} лежит в \mathcal{NP} . Действительно, $\forall A \in \mathcal{NP} \ \exists f : x \notin A \iff f(x) \notin L$, то есть $\forall A \in \mathcal{NP} \ \exists f : x \in A \iff f(x) \notin L$ $\bar{A} \iff f(x) \in \bar{L}$, следовательно, $\forall A \in \mathcal{NP} \hookrightarrow \bar{A} < \bar{L}$. То есть дополнение любого языка сводится к языку из \mathcal{NP} , следовательно, лежит в \mathcal{NP} . Доказано.

6.

- (i) Схема испытаний Бернулли с k успехами (за успех будем принимать выпадение орла, за неуспех выпадение решки). Получаем: $C_{10}^5(\frac{1}{2})^5(\frac{1}{2})^5 = C_{10}^5(\frac{1}{2})^{10} = \frac{126}{512}$.
- (ii) Пусть A событие, при котором выпало больше орлов чем решек. Очевидно, что события Aи \bar{A} — выпало больше решек, равновероятны. P(=) — вероятность того, что количества равны.
- $P(A) + P(\bar{A}) + P(=) = 1 \iff 2P(A) = 1 \frac{126}{512} \iff P(A) = \frac{386}{1024} = \frac{193}{512}.$ (*iii*) Количество элементарных исходов 2^{10} , количество благоприятных исходов 2^{5} , тогда вероятность равна $\frac{1}{2^5} = \frac{1}{32}$. (iv)

7.

(i) Пусть A — на первой выпало 6, B — сумма равна 7. $P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{\frac{1}{6}\frac{1}{6}}{\frac{1}{6}} = \frac{1}{6}$ (ii) $E(X) = \sum_{6} y_i \cdot P(X=y_i)$, тогда $E(\max(X_1, X_2)) = 1 \cdot 1/36 + 2 \cdot 3/36 + 3 \cdot 5/36 + 4 \cdot 7/36 + 5 \cdot 9/36 + 3 \cdot 1/36 + 3 \cdot 1/36$

$$6 \cdot 11/36 = \sum_{i=1}^{6} i \cdot \left(\frac{2i-1}{36}\right)$$

 $E(min(X_1, X_2)) = 1 \cdot 11/36 + 2 \cdot 9/36 + 33/36 + 4 \cdot 5/36 + 5 \cdot 3/36 + 6 \cdot 1/36 = \sum_{i=1}^{6} i \cdot (\frac{13-2i}{36}),$ тогда

$$E(\max(X_1, X_2)) + E(\min(X_1, X_2)) = \frac{1}{36} \sum_{i=1}^{6} (13i - 2i^2 + 2i^2 - i) = \frac{1}{3} \sum_{i=1}^{6} i = 7.$$

(iii) A — выпало четное, B — выпало кратное 3.

 $P(A|B) = \frac{1}{2}, P(A) = \frac{3}{6} = \frac{1}{2} \to \text{события независимы.}$

(можно было так: $P(A \cap B) = \frac{1}{6}$, $P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$). (iv) В полном графе на n вершинах $C_n^2 = \frac{n(n-1)}{2}$ ребер, следовательно, всего графов на n вершинах (пространство элементарных исходов) $2^{\frac{n(n-1)}{2}}$. Посчитаем еоличество простых циклов. Занумеруем

вершины от 1 до n. Тогда циклы вида 1-2-3-4-1 и 2-3-4-1-2, очевидно, являются одинаковыми (полученные циклическим сдвигом). Следовательно, всего протых циклов будет $\frac{n!}{2n}$ (2 так как можем сдвигать вправо и влево). P(случайный граф является простым циклом $)=\frac{\frac{n!}{2n}}{2^{\frac{n(n-1)}{2}}}$. $P(A)<\frac{n^n}{2^{\frac{n(n-1)}{2}}}=\frac{2^{n\cdot\log_2 n}}{2^{\frac{n(n-1)}{2}}},\, n^2$ растет гораздо быстрее $n\log_2 n\Rightarrow\lim_{n\to\infty}P(A)=0$.

8 (BTΦ?).

Пусть m — количество шаров в каждой урне, l,p — количество белых шаров в первой и второй урнах соответственно. A — из превой урны все шары белые, B,C — из второй урны все шары белые, черные, тогда $P(A) = P(B) + P(C) \Rightarrow (\frac{l}{m})^n = (\frac{p}{m})^n + (\frac{m-p}{m})^n$, пусть $x = m - p, l^n = x^n + p^n$, но это уравнение не имеет решений в целых ненулевых числах l,p,x (великая теорема Ферма). Следовательно, n=0, обе урны пустые.

9.

(Ссылаюсь на данную статью https://www.pvsm.ru/algoritmy/117848) Авторы показывают, что математическое ожидание числа нажатий клавиатуру для почучения строки s есть сумма обратных вероятностей каждого префикса в этой строке, который также является суффиксом этого же слова. Тогда, для последовательности PPO математическое ожидание числа бросков: $PPO - - 1/8 \Rightarrow M(N) = 8$, POP - 1/8 и $1/2 \Rightarrow 10$. Получаем, что число шагов в среднем, чтобы получить последовательность PPO меньше, следовательно, мы с большей вероятностью встретим ее раньше чем POP.

10.

Возьмем последовательность из двух цифр:00 — будет означать 0, 10, 01 - будут означать 1, 11 - запустить алгоритм заново. Очевидно, что вероятность получить 0 - 1/3, 1 - 2/3.

Пусть исходный генератор печатает бит за O(1). Пусть задача — получить последовательность из 0 и 1 длиной n (0 с вероятностью 1/3, 1-2/3), тогда в лучшем случае ни разу не придется запускать алгоритм заново, следовательно, исходному генератору с вероятностями 1/2 понадобится O(2n) времени.

В худшем случае исходный генератор всегда будет выдавать 11 и каждый раз алгоритм придется перезапускать. Оценим математическое ожидание числа ходов исходного генератора для получения последовательности 11: посчитаем префиксы, которые одновременно являются и суффиксами и сложим их обратные вероятности, получим: 1-p(1)=1/2, 11-p(11)=1/4, получаем M(число шагов для получения последовательности 11) = 6. Получается, что в среднем, чтобы получить последовательность из n битов, потребуется 2n+n/2 тактов (то есть исходный генератор выводит 6 битов, 4 из которых преобразуются в нужную часть последовательности, а остальные 2-11. Обратно:

3.

Рассматривается язык L выполнимых формул от n переменных вида $C_1 \wedge C_2 \wedge \ldots \wedge C_m$, где каждый C_k имеет один из трех видов: $(x_i \equiv x_j)$, $(\overline{x_i} \equiv x_j)$, $(x_i \equiv \overline{x_j})$, $(\overline{x_i} \equiv \overline{x_j})$ Эквивалентности такого вида $(x_i \equiv x_j)$ можно заменить на равновыполнимые дизъюнкты: $(x_i \vee \overline{x_j}) \wedge (\overline{x_i} \vee x_j)$, тогда любая формула из L будет представима в виде КНФ с 2m дизъюнктами. Далее к полученному языку сведем язык РОВНО-3 — SAT. Для этого