Relatório de CT-213: Programação dinâmica

Henrique F. Feitosa

Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo, Brasil

1 Introdução

Nessa prática, buscou-se implementar os algoritmos de programação dinâmica no contexto da solução de um processo decisório de markov. Os algoritmos implementados foram:

- 1. policy evaluation
- 2. policy iteration
- 3. value iteration

O objetivo dessa prática é avaliar as políticas e e determinar politicas ótimas para um grid world.

Inicialmente, implementou-se o *policy evaluation* seguindo a equação de Bellman e usando uma condição de parada, as quais estão mostrados abaixo.

$$\nu_{\pi}(s) = \sum_{a \in A} \pi(a|s) r(s, a) + \gamma \sum_{a \in A} \sum_{s' \in S} \pi(a|s) p(s'|s, a) \nu_{\pi}(s')$$

$$\max_{s \in S} |\nu_{k+1}(s) - \nu_k(s)| < \varepsilon$$

Após isso, a implementação da iteração de política alterna entre a avaliação de política e o aprimoramento de política. Ademais, a implementação do algoritmo de iteração de valor consiste em iterar diretamente sobre a função valor de acordo com a equação de otimalidade de Bellman:

$$v_*(s) = \max_{a \in A} (r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \nu_{\pi}(s'))$$

Finalmente, comparou-se os resultados dos algoritmos implementados para dois casos:

$$p_c = 1.0$$
$$\gamma = 1.0$$

$$p_c = 0.8$$
$$\gamma = 0.98$$

2 Resultados e Discussão

Os resultados obtidos estão nas figuras 1 e 2.

```
-384.09,
-380.45,
                                                        -339.93,
                 -382.73,
                              -381.19,
                                                                     -339.93
                -377.91,
-368.82,
                             -374.65,
                                                        -334.92,
-324.92,
                                                                    -334.93
-324.93
                             -359.85,
    -374.34,
                                           -344.88,
                             -346.03,
    -368.76,
                -358.18,
                                                        -289.95,
                                                                     -309.94]
                 -344.12,
                             -315.05,
                                           -250.02,
                                                        -229.99,
    -359.12,
                 -354.12,
                                           -200.01,
                                                        -145.00,
                                                                        0.00
Policy:
[ SURDL
                 SURDL
                             SURDL
                                                                    SURDL
    SURDL
                SURDL
                             SURDL
                                                        SURDL
                                                                    SURDL
                                          SURDL
    SURDL
                 SURDL
                             SURDL
                                                        SURDL
                                                                    SURDL
                SURDL
                             SURDL
                                                        SURDL
                                                                    SURDL
    SURDL
                             SURDL
                                          SURDL
                SURDL
                                                        SURDL
   SURDL
                SURDL
                                          SURDL
                                                       SURDL
Value iteration:
Value function:
                                -8.00,
-7.00,
                                                          -6.00,
-5.00,
     -10.00,
                    -9.00,
                                                                       -7.00
-6.00
-5.00
      -9.00,
                   -8.00,
                   -7.00,
                                -6.00,
                                             -5.00,
                                                          -4.00,
      -8.00,
                   -6.00,
                                -5.00,
                                                          -3.00,
                                                                       -4.00
      -7.00,
                                             *
-3.00,
                   -5.00,
                                -4.00,
                                                          -2.00,
      -7.00,
                                             -2.00,
                                                                        0.00
                   -6.00,
                                                          -1.00,
                                                                       DL
                                RD
                                             RD
                                                                      SURD
Policy iteration:
Value function:
                                                          -6.00,
-5.00,
-4.00,
     -10.00,
                                -8.00,
-7.00,
-6.00,
                                                                       -7.00
-6.00
-5.00
      -9.00,
                   -8.00,
-7.00,
                                             *
-5.00,
      -8.00,
      -7.00,
                                -5.00,
                   -6.00,
                                                          -3.00,
                                                                       -4.00
                                             -3.00,
-2.00,
                                -4.00,
                                                          -2.00,
-1.00,
                   -5.00,
      -7.00,
                   -6.00,
                                                                        0.00
Policy:
                                RD
                                             R
*
                                                                       DL
                                                                      SURD
```

Figura 1. Mostra o resultado dos algoritmos para $\gamma=1$ e $p_c=1$

Value foresti					
Value functi		47.04		45 43	45 453
[-47.19,	-47.11,	-47.01,	* ,	-45.13,	-45.15]
[-46.97,	-46.81,	-46.60,		-44.58,	-44.65]
[-46.58,	-46.21,	-45.62,	-44.79,	-43.40,	-43.63]
[-46.20,	-45.41,	-44.42,		-39.87,	-42.17]
* ,	-44.31,	-41.64,	-35.28,	-32.96,	*]
[-47.19, [-46.97, [-46.58, [-46.20, [* , [-45.73,	-45.28,		-29.68.	-21.88	0.00]
Policy:					
	SURDL .	SURDL ,		SURDL .	SURDL]
SURDL ,	SURDL ,	SURDL ,	* ,	SURDL ,	SURDL]
SURDL ,	CUID DI	SURDL ,	SURDL ,	SURDL ,	SURDL]
[SURDL ,	CURRI		* *		SURDL]
[SURDL ,	SURDL ,	SURDL ,	,	SURDL ,	*]
L ,	SURDL ,	SURDL ,	SURDL ,	SURDL ,	
[SURDL ,	SURDL ,		SURDL ,	SURDL ,	S]
Malan da d					
Value iteration:					
Value functi					
[-11.65, [-10.72, [-9.72, [-8.70, [* , [-8.63,		-9.86,		-7.79,	-8.53]
[-10.72,	-9.78,	-8.78,	* ,	-6.67,	-7.52]
[-9.72,	-8.70,	-7.59,	-6.61,	-5.44,	-6.42]
[-8.70,	-7.58,	-6.43,		-4.09,	-5.30]
į * ,	-6.43,	-5.17,	-3.87,	-2.76,	* 1
[-8.63,	-7.58,		-2.69,	-1.40,	0.00]
Policy:					
	D,	D ,		D ,	D]
Ì Ď ,	Ď,	n '	* ,	Ď,	Ďĺ
[RD ,	, '	n ′		, '	Ď
[RD ,		, ´			Ľi
[R ,		,	,	_ ′	*]
Ļ ,	R ,	к, *	D ,	D,	"] S 1
[R ,			R ,	R ,	2]
Dalian itaastiaa					
Policy iteration:					
Value functi		0.00		7 70	0.533
[-11.65, [-10.72, [-9.72, [-8.70, [* , [-8.63,		-9.86,		-7.79,	-8.53]
[-10.72,		-8.78,		-6.67,	-7.52]
[-9.72,	-8.70,	-7.59,	-6.61,	-5.44,	-6.42]
[-8.70,	-7.58,	-6.43,		-4.09,	-5.30]
į * ,	-6.43,	-5.17,	-3.87,	-2.76,	*]
[-8.63,	-7.58,		-2.69,	-1.40,	0.00]
Policy:					
[Ď,	D ,	D,		D ,	D]
į D ,	Ď,	Ď,		Ď,	D j
[RD ,	Ď,	Ď,	R ,	Ď,	Ď Í
[R ,	RD ,	n ′		Ď,	ĹÍ
* .	R,	R,	D ,	Ď,	* 1
[D , [D , [RD , [* , [R ,	Ü,	*	R.	R.	s i
L ,	,	,	,	ι,	

Figura 2. Mostra o resultado dos algoritmos para $\gamma=0.98$ e $p_c=0.8$

Assim, pode-se perceber que a política ótima encontrada foi a mesma para o policy iteration e para o value iteration, o que era espoerado. Além disso, cabe ressaltar que se diminuissemos o valor do γ e do p_c , é esperado que o value function diminua significantemente, uma vez que o retorno considerado se torna menor por causa do γ e o algoritmo ganha uma característica de explotation

com a diminuição do $p_c,$ fazendo com que diminua a possibilidade de cair em mínimos locais.