哈尔滨工程大学"交通+"交叉学科论坛

零碳排放型智能交通模型可循环利用 融合框架研究

童峥,副教授、博士 东南大学 交通学院

2022年09月27日

- 1 研究背景
- 2 决策级证据融合框架
- 3 融合框架在交通领域的应用
- 4 结论与展望

一、研究背景 <mark>双碳计划与AI的矛盾</mark>

- **➢ 2020年中国制定了"双碳"计划,旨在倡导绿色、环保、低碳的生活与生产方式;**
- > AI模型开发占全球碳排放总量2%, 我国占其中78.89%;
- > 我国采取强有力措施整治比特币,显著降低碳排放;
- > 全球缺乏合适的手段减少其他AI模型开发带来的碳排放。

一、研究背景 深度学习模型循环利用现状

- ➤ AI模型开发的碳排放来源于基于GPU与CPU训练的深度学习模型;
- ➢ 深度学习模型的循环利用主要包括迁移学习与模型融合;
- > 迁移学习的fine-tune过程仍然需要长时间的GPU与CPU运算,造成大量碳排放;
- > 深度学习模型融合包括数据级、模型级、**决策级**三个方向。

深度学习

模型再利用

迁移学习

模型融合

一、研究背景 深度学习模型融合存在的问题

- 深度学习模型决策级融合存在两个显著问题[1]:
- 数据与模型的不完整性;
- 数据与模型的不可靠性。
- > Tong等人[2]指出现阶段基于贝叶斯概率的深度神经网络无法解决这两个问题。

- [1] Z Tong. Evidential deep neural network in the framework of Dempster-Shafer theory.
- [2] Z Tong, P Xu, T Denoeux. Fusion of evidential CNN classifiers for image classification. arXiv preprint arXiv:2108.10233.

- 1 研究背景
- 2 决策级证据融合框架
- 3 融合框架在交通领域的应用
- 4 结论与展望

二、决策级证据融合框架機选

基于Dempster-Shafer (DS) 理论的决策级证据融合框架由3部分组成:

- > 基于多个预训练深度神经网络的**特征提取器**
- **▶ DS信度函数层——构建信度函数**
- > 信度函数融合单元——融合不同特征特征提取器信度函数

二、决策级证据融合框架|预训练深度神经网络

决策级证据融合框架下的预训练深度神经网络具有如下特点:

- ➤ 不同結構神经网络(卷积神经网络、循环神经网络、Transformer)
- ➤ 不同任务的预训练权重 (Pavementscapes、Cityscapes、ImageNet)
- ➢ 不同维度输出特征张量 (128、256、1024、2048…)

不同机器学习任务

"3R"跨学科技术在交通 8/19页

二、决策级证据融合框架|DS信度函数层

各个预训练特征提取器后插入了一个DS信度函数层[1],用于将特征向量转化为各个预训练特征提取器对应任务的信度函数。对于任意分类任务,设识别框架 $\Omega = \{\omega_1, ..., \omega_M\}$,一个DS层步骤如下:

- ightharpoonup 计算特征向量与若干个prototype p^i 的欧几里得距离,i=1,...,I;
- ightarrow 将prototype p^i 的欧几里得距离激活为信度函数 $m^i = \{m^i(\omega_1), ..., m^i(\omega_M), m^i(\Omega)\};$
- ightarrow 采用Demspter规则将ho信度函数融合,输出 $m=\{m(\omega_1),...,m(\omega_M),m(\Omega)\}$ 。

$$m^1$$
 $\oplus m^2$ (A):= $\frac{\sum_{B\cap C=A}m^1(B)m^2(C)}{1-\sum_{B\cap C=\emptyset}m^1(B)m^2(C)}$
Demspter 规则

[1] T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE transactions on SMC A, 30(2):131-150,2000.

二、决策级证据融合框架|信度函数融合单元

信度函数融合单元将不同DS信度函数层的信度函数融合为一组信度函数[1]:

- ightharpoonup 重组识别框架 $\Omega^1, ..., \Omega^K$;
- ▶ 映射不同DS信度函数层的信度函数至重组框架;
- > 采用Demspter规则将映射完成的不同组信度函数融合;
- > 采用pignistic规则进行最终决策。

Frame	Class				
CIFAR-10 Ω^1	airplane, automobile, bird, cat, deer, dog, frog, horse, ship,				
	truck, ω_0^1 .				
Tiny ImageNet Ω^2	reel, volleyball, rocker, police wagon, limousine,, (200				
	classes), ω_0^2 .				
Flower-102 Ω^3	bengal, boxer,, (102 species of flowers), ω_0^3 .				
Common frame Ω^0	airplane, deer, horse, ship, reel, volleyball, rocker, police wagon,				
	limousine,, (200 classes from Tiny ImageNet), buttercup,				
	alpine sea holly,, (102 species of flowers).				

不同任务识别框架重组实例

$$\bullet \; \{ \rho(\{\omega\}), \omega \in \Omega \} \subseteq 2^\Theta \text{ is a partition of } \Theta,$$

$$\bullet \, \forall A \subseteq \Omega, \rho(A) = \bigcup_{\omega \in A} \rho(\{\omega\}).$$

$$\begin{pmatrix} 0 & \text{otherwise,} \\ \end{pmatrix}$$

$$BetP(\omega) = \sum_{A \subseteq \Omega, \omega \in A} \frac{m(A)}{|A|}, \quad \forall \omega \in \Omega.$$

$$\mathbb{E}_{m,p}(f_A) = \sum_{j=1}^{M} \widehat{u}_{A,j} Bet P_m(\{\omega_j\}),$$

pignistic规则

[1] Z. Tong, Ph. Xu, T. Denoeux. Fusion of evidential CNN classifiers for image classification. In: International Conference on International Conference on Belief Functions. (Best paper award)

"3R"跨学科技术在交通 10/19页

- 1 研究背景
- 2 决策级证据融合框架
- 3 融合框架在交通领域的应用
- 4 结论与展望

三、融合框架在交通领域的应用无人驾驶图像

决策级证据融合框架成功组合不同<mark>无人驾驶</mark>数据训练的图像分割模型并形成更完善的驾驶识别 框架:

- ▶ 重组了Pascal VOC 2012、Cityscapes、Stanford background三个;
- ➤ 融合了训练完成的FCN-8s、SegNet、DeepLab等主流深度学习模型;
- ➢ 融合过程不再需要fine-tune训练,完全不占用资源和能源,现有模型得到更加充分利用。

Frame	Class			
Pascal VOC Ω^1	person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,			
	boat, bus, car, motorbike, train, bottle, chair, dining table, pot-			
	ted plant, sofa, tv, background.			
Cityscapes Ω^2	person, rider, car, truck, bus, rails, motorcycle, bicycle, caravan,			
	trailer, road, sidewalk, parking, rail track, building, wall, fence,			
	guard rail, bridge, tunnel, pole, pole group, traffic sign, traffic			
	light, vegetation, terrain, sky, ground, void.			
Stanford background Ω^3	sky, tree, road, grass, water, building, mountain, foreground.			
Common frame Ω^0	person, rider, bird, cat, cow, dog, horse, sheep, aeroplane, bicy-			
	cle, boat, bus, car, motorbike, train, caravan, trailer, road, side-			
	walk, parking, rail track, building, wall, fence, guard rail, bridge,			
	tunnel, pole, pole group, traffic sign, traffic light, terrain, sky,			
	tree, grass, mountain, bottle, chair, dining table, potted plant,			
	sofa, tv, ω_0^0 .			

融合结果示例

三、融合框架在交通领域的应用无人驾驶图像

- ➢ 融合了训练完成的FCN-8s、SegNet、DeepLab等主流深度学习模型,形成了更泛化的模型, 实现了模型资源的可重复利用;
- ▶ 融合过程不再需要fine-tune训练,完全不占用资源和能源;
- ▶ 融合前后模型的准确率未发生显著变化,甚至得到了提高。

(\mathbf{a})									
	Classifier	Pascal VOC	Cityscapes	Stanford background	Overall				
Before fusion	E-FCN-8s	0.634	0.649	0.756	-				
	P-FCN-8s [77]	0.627	0.648	0.748	-				
After fusion	MFE-FCN-8s	0.653	0.663	0.780	0.669				
	PMF-FCN-8s	PMF-FCN-8s $\overline{0.638}$ $\overline{0.658}$ $\overline{0.76}$		0.769	0.661				
	BF-FCN-8s	0.604	0.633	0.754	0.635				
	E2E MFE-FCN-8s	0.656	0.665	0.782	0.671				
	E2E PMF-FCN-8s	0.643	0.662	0.770	0.665				
	E2E BF-FCN-8s	0.613	0.639	0.758	0.642				
	E2E PFC-FCN-8s 0.651 0.653 0.769		0.769	0.660					
	E2E EFC-FCN-8s	0.650	0.658	0.773	0.664				
		(b)							
	Classifier	Pascal VOC	Cityscapes	Stanford background	Overall				
Before fusion	E-FCN-SegNet	0.652	0.565	0.778	-				
before fusion	P-FCN-SegNet [1]	0.645	0.558	0.773	-				
After fusion	MFE-FCN-SegNet	0.662	0.578	0.785	0.609				
	PMF-FCN-SegNet	0.653	0.566	0.775	0.598				
	BF-FCN-SegNet	0.650	0.538	0.761	0.576				
	E2E MFE-FCN-SegNe		0.583	0.787	0.613				
	E2E PMF-FCN-SegNe	t 0.655	0.570	0.777	0.601				
	E2E BF-FCN-SegNet	0.652	0.549	0.765	0.585				
	E2E PFC-FCN-SegNet		0.569	0.775	0.601				
	E2E EFC-FCN-SegNet	0.660	0.572	0.779	0.604				

融合结果分析

三、融合框架在交通领域的应用公路病害识别

Ω^1	Longitudinal crack ω_1^1 Lateral crack ω_2^1	Alligator crack ω_5^1	Pothole ω_6^1	Repair area ω_3^1	Rut ω_4^1	Background ω_7^1
Ω^2	Crack ω_1^2			Paver	nent ω_2^2	
Ω^3	Linear crack ω_1^3	Alligator crack ω_3^3		Paver	nent ω_2^3	
Ω^0	Longitudinal crack ω_1^0 Lateral crack ω_2^0	Alligator crack ω_5^0	Pothole ω_6^0	Repair area ω_3^0	Rut ω_4^0	Background ω ₇ ⁰

不同模型公路病害识别框架组合

三、融合框架在交通领域的应用路面无损检测

- 1 研究背景
- 2 决策级证据融合框架
- 3 融合框架在交通领域的应用
- 4 结论与展望

四、结论与展望

- ◆ 结论:
- > 实现了交通领域深度学习模型的决策级融合,完成了AI模型的循环利用;
- > 融合过程不再需要额外的GPU与CPU训练,避免模型多次开发的耗电与碳排放;
- ➢ 融合结果准确性不低于原始模型;

- ◆ 展望:
- 回归类深度神经网络在决策级证据融合框架下的应用;
- ▶ 更多交通行业应用场景。

参考文献

- > Z Tong, P Xu, T Denoeux. Fusion of evidential CNN classifiers for image classification. 2022 Belief function conference (Best paper).
- > Z Tong, P Xu, T Denoeux. An evidential classifier based on Dempster-Shafer theory and deep learning. Neurocomputing 450, 275-293.
- > Z Tong, P Xu, T Denoeux. Evidential fully convolutional network for semantic segmentation. Applied Intelligence, 1-24.
- > Z Tong. Evidential deep neural network in the framework of Dempster-Shafer theory. Université de Technologie de Compiègne.
- > Z Tong, Tao Ma, W. Zhang. Evidential transformer in the framework of Dempster-Shafer theory for pavement distress segmentation. Submitted to Computer-Aided Civil and Infrastructure Engineering.

谢谢聆听,欢迎提问!