Polinómio de Taylor

Tangente

Proposição

O polinómio P definido por

$$P(x) = f(x_0) + f'(x_0)(x - x_0)$$

 \acute{e} o único polinómio de grau ≤ 1 para o qual

$$\lim_{x \to x_0} \frac{f(x) - P(x)}{x - x_0} = 0.$$

Corolário

Se Q(x) = ax + b verificar que, para x perto de x_0 ,

$$|f(x) - Q(x)| \le |f(x) - (f(x_0) + f'(x_0)(x - x_0))|,$$

então
$$Q(x) = f(x_0) + f'(x_0)(x - x_0)$$
.

Tangente

Sejam $f: D \to E$ uma função e $x_0 \in D$ tal que f é derivável em x_0 . A equação da tangente ao gráfico de f no ponto $(x_0, f(x_0))$ é

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Nota

A reta $P(x) = f(x_0) + f'(x_0)(x - x_0)$ satisfaz $P(x_0) = f(x_0)$ e $P'(x_0) = f'(x_0)$.

Factorial

Seja $n \ge 1$ um número natural. O factorial de n é o número natural $n! = n \cdot (n-1) \cdots 1$. Define-se também 0! = 1.

Exemplos

Temos 1! = 1, $2! = 2 \cdot 1 = 2$ e $3! = 3 \cdot 2 \cdot 1 = 6$. Observe-se também que, para $n \in \mathbb{N}$, $(n+1)! = (n+1) \cdot n!$.

Polinómio de Taylor

Sejam $f:D\to E$ uma função e $x_0\in D$ tal que a n-ésima derivada de f existe em x_0 . O polinómio

$$P(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

é chamado polinómio de Taylor de f de ordem n à volta de x_0 .

Nota

Tem-se

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Exemplos

(iii) Consideremos a função $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=e^x$. O polinómio de Taylor de ordem n à volta de 0 é o polinómio P dado por

$$P(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n.$$

Com efeito, para todo o $k \in \mathbb{N}$, temos $f^{(k)}(x) = e^x$ e portanto

$$\frac{f^{(k)}(0)}{k!} = \frac{e^0}{k!} = \frac{1}{k!}.$$

Exemplos

- (i) Seja $f: D \to E$ derivável em $x_0 \in D$. A equação de recta correspondente ao polinómio de Taylor de f de ordem 1 à volta de x_0 é a equação da tangente ao gráfico de f no ponto $(x_0, f(x_0))$.
- (ii) Seja f um polinómio de grau m,

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_m(x - x_0)^m.$$

Para n < m o polinómio de Taylor de f de ordem n à volta de x_0 é o polinómio

$$P(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n.$$

Para $n \geq m, f$ é o seu próprio polinómio de Taylor de ordem n à volta de x_0 .

Exemplos

- (iv) Consideremos a função $f:]0, +\infty[\to \mathbb{R}$ definida por $f(x) = \frac{1}{x}$ e o ponto $x_0 = 1$. Temos
 - $f(x) = x^{-1}$
 - $f'(x) = -x^{-2}$
 - $f''(x) = 2x^{-3}$
 - $f'''(x) = -6x^{-4}$
 - $f^{(4)}(x) = 24x^{-5}$

Mostra-se por indução que $f^{(k)}(x) = (-1)^k k! x^{-(k+1)}$. Logo

$$\frac{f^{(k)}(1)}{k!} = (-1)^k.$$

Assim, o polinómio de Taylor de ordem n à volta de 1 de f é o polinómio P dado por

$$P(x) = 1 - (x - 1) + (x - 1)^{2} - (x - 1)^{3} \dots + (-1)^{n} (x - 1)^{n}.$$

Fórmula de Taylor-Young

Teorema

Sejam $f: D \to E$ derivável até a ordem $n e x_0 \in D$. O polinómio de Taylor de f de ordem n à volta de x_0 é o único polinómio P de grau $\leq n$ para o qual existe uma função $\varepsilon: D \setminus \{x_0\} \to \mathbb{R}$ tal que

$$f(x) = P(x) + (x - x_0)^n \varepsilon(x), \quad \lim_{x \to x_0} \varepsilon(x) = 0.$$

A última linha é a fórmula de Taylor-Young de ordem n para f à volta de x_0 .

Exemplo

A fórmula de Taylor-Young de ordem 3 para a função $x\mapsto e^x$ à volta de 0 é

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{3!}x^3 + x^3\varepsilon(x), \quad \lim_{x \to 0} \varepsilon(x) = 0.$$

Aplicação ao cálculo de limites

Pretende-se calcular o limite $\lim_{x\to 0}\frac{\sin x-x}{x^3}$. Seja f a função definida por $f(x)=\sin x$. Temos

$$f'(x) = \cos x$$
, $f''(x) = -\sin x$, $f'''(x) = -\cos x$

e então

$$f(0) = 0$$
, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$.

A fórmula de Taylor-Young de ordem 3 para f à volta de 0 é então

$$\operatorname{sen} x = x - \frac{1}{3!}x^3 + x^3 \varepsilon(x), \quad \lim_{x \to 0} \varepsilon(x) = 0.$$

Fórmula de Taylor-Young

Corolário

Sejam $f: D \to E$ n vezes derivável e P o polinómio de Taylor de ordem n de f à volta de x_0 . Seja Q um polinómio de grau $\leq n$ tal que, para x perto de x_0 ,

$$|f(x) - Q(x)| \le |f(x) - P(x)|.$$

Então Q = P.

10

Aplicação ao cálculo de limites

Logo

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{x - \frac{1}{3!}x^3 + x^3 \varepsilon(x) - x}{x^3}$$

$$= \lim_{x \to 0} \frac{-\frac{1}{3!}x^3 + x^3 \varepsilon(x)}{x^3}$$

$$= \lim_{x \to 0} \left(-\frac{1}{6} + \varepsilon(x) \right)$$

$$= -\frac{1}{6}.$$

12

Fórmula de Taylor-Lagrange

Teorema

Sejam f uma função de classe C^n definida num intervalo I e $x_0, x \in I$. Seja P o polinómio de Taylor de f de ordem n à volta de x_0 . Se $x \neq x_0$ e $f^{(n+1)}(z)$ existir pelo menos para todo o z compreendido estritamente entre x_0 e x, então existe um número c compreendido estritamente entre x_0 e x tal que é válida a seguinte fórmula de Taylor-Lagrange:

$$f(x) = P(x) + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

Nota

Para n=0 obtemos o Teorema de Lagrange.

13

Aplicação ao cálculo de valores aproximados

Pretende-se mostrar que 0,095 é um valor arredondado de $\ln 1,1,$ isto é que

$$0,0945 < \ln 1, 1 < 0,0955.$$

Consideremos a função f definida por $f(x) = \ln(1+x)$. Temos

$$f'(x) = \frac{1}{1+x}$$
, $f''(x) = -\frac{1}{(1+x)^2}$, $f'''(x) = \frac{2}{(1+x)^3}$

e

$$f(0) = 0$$
, $f'(0) = 1$, $f''(0) = -1$.

A fórmula de Taylor-Lagrange de ordem 2 para f à volta de 0 é então

$$ln(1+x) = x - \frac{x^2}{2} + \frac{2x^3}{3!(1+c)^3}, \quad 0 < c < x \text{ ou } x < c < 0.$$

Tomando x = 0, 1 vem

$$\ln 1, 1 = 0, 1 - 0,005 + \frac{2 \times 0,001}{3!(1+c)^3}$$
$$= 0,095 + \frac{0,001}{3(1+c)^3}, \quad 0 < c < 0, 1.$$

Exemplo

A formula de Taylor-Lagrange de ordem 4 para a função $f(x) = \cos x$ à volta de 0 é

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{\sec c}{5!} x^5, \quad 0 < c < x \text{ ou } x < c < 0.$$

Com efeito, $f'(x) = -\sin x$, $f''(x) = -\cos x$, $f'''(x) = \sin x$, $f^{(4)}(x) = \cos x$, $f^{(5)}(x) = -\sin x$ e

$$f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0, f^{(4)}(0) = 1.$$

14

Aplicação ao cálculo de valores aproximados

Basta mostrar que $-0,0005 < \ln 1, 1 - 0.095 < 0,0005$, ou seja

$$|\ln 1, 1 - 0,095| < 0,0005.$$

Temos

$$|\ln 1, 1 - 0,095| = \left| \frac{0,001}{3(1+c)^3} \right|$$

$$= \frac{0,001}{3(1+c)^3} \qquad \text{(pois } c > 0\text{)}$$

$$< \frac{0,001}{3(1+0)^3} \qquad \text{(pois } c > 0\text{)}$$

$$= \frac{0,001}{3}$$

$$< \frac{0,001}{2}$$

$$= 0,0005.$$

16