Node structure of binary tree :-


```
Node structure :-
struct Node
{
    struct *left;
    int data;
    struct *right;
};
```



```
For the above Binary Tree :-

Nodes = 6, Edges = 5 [ For n nodes, (n-1) edges are there ]

Here 40,50,60 are called leaves sinces these nodes have child count as 0.

40,50 are sibiling

Height = level + 1

Maximum nodes at that level 2 power of I (level) [ pow(2,I) ]

Height = 3 Total maximum nodes of above tree is 2^3 - 1 = 8 - 1 = 7
```

Different ways to traverse through binary tree : -

BFS = Breadth First Search

DFS = Depth First Search

1. Level Order :-

It is same as order of the given tree

Ex:- 10 20 30 40 50 60

2. Inorder:-

It means Left Subtree - Root - Right Subtree

Ex:- 40 20 50 10 60 30 70

Left	Root	Right					
40	20	50					
Left Subtree							

10
Root

Left	Root	Right					
60	30	70					
Right Subtree							

3. Post Order:-

It means Left Subtree - Right Subtree - Root

Ex:- 40 50 20 60 70 30 10

Left	Right	Root						
40	50	20						
Left Subtree								

Left	Right	Root						
60	70	30						
Right Subtree								

4. Pre Order :-

10
Root

Root	Left	Right					
20	40	50					
Left Subtree							

Root	Left	Right						
30	60	70						
Right Subtree								

Accessing nodes of binary tree using array :-

			Left of 10)		F	Right of 10)	
	Left of 20				Right	ROOT	Left of		Right
Inorder	L (40)		R (40)		of 20		30		of 30
	80	40	90	20	50	10	60	30	70

			Left of 10)	ſ				
		Left of 20)	Right		Left of Right			ROOT
Postorder	L (40)	R (40)		of 20		30	of 30		
	80	90	40	50	20	60	70	30	10

		Left of 10					Right of 10		
	ROOT		Left of 20			Right		Left of	
Preorder				L (40)	R (40)	of 20		30	of 30
	10	20	40	80	90	50	30	60	70

	Left of 50									R	ight of 50	0	
Inordor		Left of 40		Right of 40		ROOT	L	eft of 80			Right		
Inorder	L (30)		R (30)		L (45)		R (45)		L (70)		R (70)		of 80
	25	30	35	40	42	45	48	50	65	70	75	80	90

Postorder				Left of 50)	Right of 50							
	Left of 40			F	Right of 40)		Left of 80			Right		ROOT
	L (30)	R (30)		L (45)	R (45)			L (70)	R (70)		of 80		
	25	35	30	42	48	45	40	65	75	70	90	80	50

Preorder			Left of 50													
	ROOT			Left of 40)	F	Right of 4	0		Left of 80			Right			
					L (30)	R (30)		L (45)	R (45)			L (70)	R(70)	of 80		
	50	40	30	25	35	45	42	48	80	70	65	75	90			

Construction of binary tree using Queue data structure :-

0	1	2	3	4	5	6	7	8
10	20	30	40	50	60	70	80	90

Same Logic

- 1.Left subtree values are less than root
- 2. Right subtree values are greater than root

Inorder	10	20	25	30	40	42	50	55	60	100	110	120	200
Postorder	25	20	10	30	42	40	55	60	110	200	120	100	50
Preorder	50	40	30	10	20	25	42	100	60	55	120	110	200

Search operation:-

Search(20)

1. Temp = root = 50

50 == 20

50 < 20

50 > 20

[Since 3rd condition is correct we have to check left of temp i.e; **temp = temp->left**]

2. Temp = 50->left = 40

40 == 20

40 < 20

40 > 20

[Since 3rd condition is correct we have to check left of temp i.e; **temp = temp->left**]

3. Temp = 40->left = 30

30 == 20

30 < 20

20 > 20

[Since 3rd condition is correct we have to check left of temp i.e; temp = temp->left]

4. Temp = 30->left = NULL

Since **temp == NULL**, we no need to check any of the three conditions and can say **element is not found** . So, 20 is not in the above binary tree.

Search(55)

1. Temp = root = 50

50 == 55

50 < 55

50 > 55

[Since 2nd condition is correct we have to check right of temp i.e; temp = temp->right]

2. Temp = 50->right = 60

60 == 55

60 < 55

60 > 55

[Since 3rd condition is correct we have to check left of temp i.e; **temp = temp->left**]

3. Temp = 60->left = 55

55 == 55

55 < 55

55 > 55

Since 1^{st} condition is correct, we no need to check any of the three conditions and can say **element is found** . So, 55 is found in the above binary tree.

Search(val)

temp = root
while true
if temp->val == key:print element found
if temp->val > key:temp = temp->left
if temp->val < key:temp = temp->right
if temp == NULL:element not found

Insert Operation :-

Insert(20)

1. Temp = root = 50

50 == 20

50 < 20

50 > 20

Insert(val) temp = root while true if root == NULL :root = NN(key)break if temp->val == key :print element is already in tree break if temp->val > key:if temp->left != NULL :- temp = temp->left else:- temp->left = NN(i.e; key) break if temp->val < key :if temp->right != NULL :- temp = temp->right else:- temp->right = NN(i.e; key) break

[Since 3rd condition is correct we have to check left of temp i.e; temp = temp->left = 50->left = 40 != NULL]

2. Temp = 50->left = 40

40 == 20

40 < 20

40 > 20

[Since 3rd condition is correct we have to check left of temp i.e; temp = temp->left = 40->left = 30 != NULL]

3. Temp = 40->left = 30

30 == 20

30 < 20

30 > 20

[Since 3rd condition is correct we have to check left of temp i.e; **temp = temp->left = 30->left = NULL**]

4. Temp = 30->left = NULL

Since temp == NULL and 20 < 30, we no need to check any of the three conditions and can insert element at left of 30 as new node. So, 20 is inserted as a left child of 30 in the above binary tree.

Insert(55)

1. Temp = root = 50

50 == 55

50 < 55

50 > 55

[Since 2nd condition is correct we have to check right of temp i.e; temp = temp->right = 50->right = 60 != NULL]

2. Temp = 50 - right = 60

[Since 3rd condition is correct we have to check left of temp i.e; temp = temp->left = 60->left = 55 != NULL]

3. Temp = 60->left = 55

Since 1st condition is correct, we no need to check remaining conditions and can say **element is already present in the binary search tree**.

Insert(100)

1. Temp = root = 50

[Since 2nd condition is correct we have to check right of temp i.e; temp = temp->right = 50->right = 60 != NULL]

2. Temp = 50->right = 60

[Since 2nd condition is correct we have to check right of temp i.e; temp = temp->right = 60->right = 65 != NULL]

3. Temp = 60->right = 65

[Since 2nd condition is correct we have to check right of temp i.e; temp = temp->left = 65->right = NULL]

4. Temp = 65->right = NULL

Since **temp ==NULL** and **100 > 65**, we no need to check any of the three conditions and can **insert element at right of 65 as new node** .So, 100 is inserted as a left child of 65 in the above binary tree.

Delete Operation :-

Let's work on the following example to understand the delete operation.

50 40 80 30 45 70 90 25 35 42 48 65 100

There are three cases to delete an element

- 1. Node has zero child → 25, 35, 42, 48, 65, 100
- 2. Node has one child \rightarrow 70, 90
- 3. Node has two child \rightarrow 30, 45, 40, 80, 50

We want to return the res to main function in any case if res == NULL :- It prints element not found

Else it prints res free it's memory

General procedure in deleting any of the node

If root == NULL

we have to return NULL

temp = root

parent = NULL

while(temp && temp->data != key)

if temp->data > key :- parent = temp;

temp = temp->left

else :- parent = temp; temp = temp->right

delete(25) :-

1. temp = root = 50 and parent = NULL

50 == 25

50 < 25

50 >25

[Since 3rd condition is correct we have to check left of temp i.e; **parent = temp = 50 and temp = temp->left = 50->left = 40 != NULL**]

2. temp = 40 and parent = 50

40 == 25

40 < 25

40 > 25

[Since 3rd condition is correct we have to check left of temp i.e; **parent = temp = 40 and temp = temp->left = 40->left = 30 != NULL**]

3. temp = 30 and parent = 40

30 == 25

30 < 25

30 >25

For deleting Leave nodes
(temp->right == NULL &&
temp->left == NULL)

res = temp
if parent->right != NULL &&
parent ->right->data== key:parent->right != NULL
else if parent->left != NULL &&
parent ->left->data== key:parent->left == NULL

return res

[Since 3rd condition is correct we have to check left of temp i.e; **parent = temp = 30 and temp = temp->left = 30->left = 25 != NULL**]

4. temp = 25 and parent = 30

25 == 25

25 < 25

25 > 25

[Since 3rd condition is correct we have to check left of temp i.e; parent = temp = 30 and temp = temp->left = 30->left = 25 != NULL]

Here 1st condition is correct, we no need to check remaining conditions and can copy 25 to res. Since 30->left = **25** != **NULL** Now we have to make **30->left as NULL** by returning **res** to main the **element is printed on compiler and it's memory is freed in the binary search tree**.

delete(70) :-

1. temp = root = 50 and parent = NULL

[Since 2nd condition is correct we have to check right of temp i.e; parent = temp = 50 and temp = temp->right = 50->right = 80 != NULL]

2. temp = 80 and parent = 50

80 == 70

80 < 70

80 > 70

[Since 3rd condition is correct we have to check left of temp i.e; **parent = temp = 80 and temp = temp->left = 80->left = 70 != NULL**]

3. temp = 70 and parent = 80

70 == 70

70 < 70

70 > 70

[Since 1st condition we no need to check remaining conditions and can copy 70 to temp.]

Since 80->left = 70 != NULL and 70 == Key. Therefore, 80->left = 70->left = 65 by returning res = 70 to main the element is printed on compiler and it's memory is freed in the binary search tree

delete(90) :-

1. temp = root = 50 and parent = NULL

50 == 90

50 < 90

50 > 90

[Since 2nd condition is correct we have to check right of temp i.e; **parent = temp = 50 and temp = temp->right = 50->right = 80 != NULL**]

2. temp = 80 and parent = 50

80 == 90

80 < 90

80 > 90

[Since 2nd condition is correct we have to check right of temp i.e; parent = temp = 80 and temp = temp->right = 80->right = 90 != NULL]

3. temp = 90 and parent = 80

90 == 90

90 < 90

90 > 90

[Since 1st condition we no need to check remaining conditions and can copy 90 to temp.]

Since 80->right = 90 != NULL and 90 == Key. Therefore, 80->right = 90->right = 100 by returning res = 90 to main the element is printed on compiler and it's memory is freed in the binary search tree.

(temp->right == NULL)

res = temp
if parent->right != NULL &&
parent ->right->data== key :parent->right = temp->left
else if parent->left != NULL &&
parent ->left->data== key:parent->left == temp->left
return res

For deleting single child left node

For deleting single child right node

Delete (50):-

1. temp = root = 50 and parent = NULL

[Since 1st condition we no need to check remaining conditions and can copy 70 to temp.]

Since 50->right = **80** != **NULL** and 50->left = **40** != **NULL** and **50** == **Key.** In this case, we cannot directly return the res = **50** to main the element is printed on compiler and it's memory is freed in the binary search tree.

Before returning we to swap the 50 with it's inorder predecessor or inorder successor

If we swap 50 with it's inorder predecessor the tree will be like this

If we swap 50 with it's inorder successor the tree will be like this

For deleting two child nodes (temp->right != NULL && temp->left != NULL)

In this case, swapping will occur,
For this we have to declare two
more pointer variables p and t.
And val as integer variable instead
of key
t = temp->right
p = NULL
while (t->left):p = t
t = t->left

if p != NULL : res = t
 val = t->data
t->data = temp-> data
 temp->data = val
 p->left = t->right
 return res

else:res = t
val = t->data
t->data = temp-> data
temp->data = val
temp->right = t->right
return res

AVL TREE:-

AVL Tree is a Self balancing tree.

Balancing Factor:-

It is the difference between maximum depth of left and maximum right of a node. i.e; (max depth of left – max depth of right)

It must be 0,-1,1

Rotations:-

- 1. Left Rotation
- 2. Right Rotation

We use the above rotations to balance the above tree.

4 cases :-

- 1. Right right case → Left rotation
- 2. Left left case Right rotation
- 3. Right left case → Right rotation and Left rotation
- 4. Left right case → Left rotation and Right rotation

Left left case \rightarrow **Right rotation**

Right rotation :-

Let's consider three numbers 15, 12, 10 in place of X, Y, T1

Right right case → Left rotation

Left rotation :-

Example:-

Left right case → **Left rotation and Right rotation**

Example:-

Let's consider three numbers 15, 5, 10 in place of X, Y, T2

Right left case → Right rotation and Left rotation

Example:-

Let's consider three numbers 15, 20 , 17 in place of X, Y, T2 $\,$

Let's work on this example to clearly understand the above all cases 15, 18, 12, 8, 54, 5, 14, 13, 9, 59, 20, 17, 21

Here balancing factor of 12 is 2 which is unbalanced and this is the left left case. So we have to apply right rotation on 12,8,5 .

Here balancing factor of 12 is 2 which is unbalanced and this is the right left case. So we have to apply right rotation on 12,14,13 and left rotation on 12,13,14. Balanced factor of 15 also get balanced when it's left subtree gets balanced.

Here balancing factor of 8 is -2 which is unbalanced and this is right left case. To balance this first we have to apply right rotation on 12, 13, 14. Then, we have to apply left rotation on 8,12,9. Balanced factor of 15 also get balanced when it's left subtree gets balanced.

Here balancing factor of 18 is 2 which is unbalanced and this is right right case. To balance this we have to apply left rotation on 18, 54, 59.

we have to balance 54th left which is unbalanced and this is left right case.

To balance this we have to apply left rotation on 18, 20, 21.

Then, we have to apply right rotation on 54, 20,21.

