Antihypertensive agents

By Robert Pórszász

AHA criteria for hypertension in adults

	BLOOD PRESSURE (mmHg)		
CLASSIFICATION	SYSTOLIC	DIASTOLIC	
Normal	<120	and < 80	
Prehypertension	120-139	or 80–89	
Hypertension, stage 1	140-159	or 90–99	
Hypertension, stage 2	≥160	or ≥ 100	
Hypertensive crisis	>180	or > 110	

General treatment strategy of hypertension

```
Diagnosis- 3- 6 independent measurements.

Determination of primary vs. secondary hypertension.

If secondary, treat underlying pathology.

If primary, initiate lifestyle changes

smoking cessation

weight loss
diet

stress reduction
less alcohol
etc.
```

Pharmacological treatment

Aim: To reduce blood pressure to the normal range. Two mmHg decrease in BP reduces CV mortality with 7% and stroke incidence with 10%.

Classes of antihypertensive drugs

• First line therapies

- Diuretics
- β-blockers
- CCB
- ACEI
- ARB

• Second line therapies

- Central sympatholytics (α2 agonists)
- Peripheral α1 adrenergic receptor antagonists
- DRI (Direct Renin Inhibitors)
- Vasodilators

Diuretics

- First choice of drug in the treatment.
- Mainly three groups are used:
 - Thiazides
 - Potassium sparing diuretics
 - Loop diuretics

Chlorothiazide

Thiazides (benzothiadiazines)

Because loop and thiazide diuretics increase sodium delivery to the distal segment of the distal tubule, this increases potassium loss (potentially causing *hypokalemia*) because the increase in distal tubular sodium concentration stimulates the aldosterone-sensitive sodium pump to increase sodium reabsorption in exchange for potassium and hydrogen ion, which are lost to the urine. The increased hydrogen ion loss can lead to *metabolic alkalosis*. Part of the loss of potassium and hydrogen ion by loop and thiazide diuretics results from activation of the RAAS that occurs because of reduced blood volume and arterial pressure. Increased aldosterone stimulates sodium reabsorption and increases potassium and hydrogen ion excretion into the urine.

Hemodynamic actions of thiazides

PHASES	Blood pressure	Heart rate	Cardiac output	Peripheral resistance
Acute phase (appr. First 1 month)	1	1	1	1
Chronic phase	1		\iff	1

Through their effects on sodium and water balance, diuretics decrease blood volume and venous pressure. This decreases cardiac filling (preload) and, by the Frank-Starling mechanism, decreases ventricular stroke volume and cardiac output, which leads to a fall in arterial pressure. The decrease in venous pressure reduces capillary hydrostatic pressure, which decreases capillary fluid filtration and promotes capillary fluid reabsorption, thereby reducing edema if present. There is some evidence that loop diuretics cause venodilation, which can contribute to the lowering of venous pressure. Long-term use of diuretics results in a fall in systemic vascular resistance (by unknown mechanisms) that helps to sustain the reduction in arterial pressure.

Summary of thiazides beneficial effects in the treatment of hypertension

- 1. Decrease preload
- 2. Decrease stroke volume and CO
- 3. Reduces capillary hydrostatic pressure, reduces edema formation
- 4. Reduces TPR
- 5. Induce venodilation
- 6. Decrease of sensitivity of vessels against vasoconstrictors
- 7. Increased kallikrein production (kininogenkallikrein-bradykinin pathway)

Side effects of thiazides

- Hypokalemia
- Metabolic alkalosis
- Increase of blood glucose (hyperglycemia)
- Temporary hyperlipidemia
- Increase of uric acid level (hyperuricemia, gout risk!)
- Hypercalcemia
- Hyponatremia
- Hypomagnesemia
- Hypocalciuria

Thiazide compounds

Altizide Bendroflumethiazide Chlorothiazide Cyclopenthiazide Cyclothiazide Epitizide Hydrochlorothiazide Hydroflumethiazide Mebutizide Methyclothiazide Polythiazide Trichlormethiazide

Thiazide-like compounds

Chlortalidone		Advantages of indapamide:
	1.	Lower incidence of hypokalemia
Clofenamide	2.	Vasodilator:
Clopamide	2.1.	Increment of PG synthesis
Clorexolone	2.2.	Intracellular Ca ²⁺ antagonist (calmodulin complex
	2.3	Blockade of slow Ca ²⁺ channels
Fenquizone	3.	Lower incidence of insulin resistance
Indapamide	4.	Does not alter glucose and lipid metabolism
Mefruside	5 .	Only sligh increment in uric acid level
	6.	1.25-5.0 mg one daily dose in the morning
Metolazone	7.	Fix combination with perindopril (4 mg)
Meticrane		(CO-PRENESSA, CO-DALNESSA)
Quinethazone		CI_OH

Xipamide

Indapamide

Loop diuretics

Furosemide

Azosemide

Bumetanide

Etacrynic acid

Etozolin

Muzolimine

Ozolinone

Piretanide

Tienilic acid

Torasemide

HN—SNH₂

Sulfonamide structure!

- Starts to work in 5 min if i.v. administered
- Tinnitus
- Photosensibilization
- Hyperglycemia
- Gout

Ototoxicity and liver damage in high dose

Potassium sparing diuretics

- Epithelial sodium channel (ESC) blockers
 - Amiloride, triamteren, benzamil
- Aldosterone antagonists
 - Spironolactone, Eplerenone, Canrenone,
 Finerenone

Beta blockers

• 1st generation (non-selective)

Drug	Membr. stab. effect	ISA	Lipid sol.
Pindolol	+	+++	+
Timolol	-	+ -	+
Sotalol	-	-	+
Propranolol	+ +	-	+ +
Oxprenolol	+	+	++

Beta blockers

• 2nd generation (beta1 selective drugs)

Drug	Membr. stab. effect	ISA	Lipid solubility
Metoprolol	+ -	-	++
Atenolol	_	_	_
Esmolol	_	_	+ -
Bisoprolol	_	_	+ -

Beta blockers

• 3rd generation (vasodilatory beta blockers)

Drug	Lipid solubility	Mechanism of vasodilation
Labetalol OH OH OH	+++	Alpha-receptor blockade
Carvedilol	+	Alpha-receptor blockade
Nebivolol	+ -	NO potentiating effect

Antihypertensive MOA of beta blockers

Heart

β1

Kidney

β1

Beta1:Beta2=80:20 Cardioselective beta blockers

Circulating epinephrine excites beta2 receptors (vasodilation). Beta blockers thus can cause a little vasoconstriction at the beginning.

 $\alpha 1 (\alpha 2)!!!$

Sympathetic Nerve

Juxtaglomerular apparatus. Beta 1 receptors – renin production (renin-ANG I – ANG II) After beta receptor blockade, renin-induced ANG I (ANG II) production decreases

· Calcium channel blocker

Α

- AH-1058
- Amlodipine
- Amlodipine/valsartan
- Anipamil
- Aranidipine
- Arbaclofen placarbil
- Atagabalin
- Azelnidipine

В

- Baclofen
- Barbiturate
- Barnidipine
- Bencyclane
- Benidipine
- Bepridil
- Berbamine
- Bupropion/zonisamide

С

- · Calcium channel blocker toxicity
- Canadine
- Carboxyamidotriazole
- Cilnidipine
- Clentiazem
- Clevidipine
- Cycleanine

D

- Darodipine
- Dauricine
- Devapamil
- Dihydropyridine
- Diltiazem
- Dimeditiapramine
- Diproteverine
- Dotarizine

Е

Efonidipine

- Emopamil
- Enpiperate

F

- Falipamil
- Fantofarone
- Felodipine
- Fendiline
- Flunarizine

G

- Gabapentin
- · Gabapentin enacarbil
- Gabapentinoid
- Gallopamil

- 1

- Imagabalin
- Imepitoin
- Isradipine

J

• JTV-519

Κ

- Kava
- Kavain
- Ketamine

L

- Leconotide
- Lercanidipine
- Levamlodipine
- Lidoflazine
- Lomerizine

М

- Manidipine
- Manoalide
- · 4-Methylpregabalin
- · Methysticin
- Mibefradil
- Mirogabalin
- Monatepil

Ν

- Naftopidil
- Nicardipine
- Nifedipine
- · Niflumic acid
- Niguldipine
- Niludipine
- Nilvadipine
- Nimodipine
- Nisoldipine
- Nitrendipine
- Norverapamil

0

- Olmesartan/amlodipine
- Oxodipine

Р

- PD-217,014
- Phenibut
- Pinaverium bromide
- Pranidipine
- Pregabalin
- Prenylamine

R

- Racemorphan
- Ralfinamide
- Rhynchophylline
- Riodipine

S

- Safinamide
- Sesamodil

т

- Tetrandrine
- Tolperisone
- TROX-1

V

Verapamil

Z

- Ziconotide
- Zonisamide

The different binding sites of CCBs result in differing pharmacological effects

Use-dependent binding (targets cardiac cells)

Voltage-dependent binding (targets smooth muscle)

- First generation
 - Verapamil (phenylalkylamine)
 - Diltiazem (benzothiazepine)
 - Nifedipin (dihydropiridine, DHP)
- Second generation
 - Nisoldipine
 - Nitrendipine
 - Isradipine
 - Felodipine
 - Nimodipine
- Third generation
 - Amlodipine
 - Lacidipine
 - Lercanidipine

1st generation agents: short action

Verapamil and diltiazem: specific drugs for sinuatrial and AV node. Antiarrhythmic agents

Nifedipin: specific for smooth muscle.

Antianginal and antihypertensive drugs.

2nd generation drugs: long acting, tissue specificity (e.g. nimodipin: specificity for brain vessels)

3rd generation agents: highly lipophylic drugs, long-lasting vasodilation, antiatherosclerotic effect

• Advantages:

- Unlike diuretics no adverse metabolic effects but mild adverse effects like – dizziness, fatigue etc.
- Do not compromise haemodynamics no impairment of work capacity
- No sedation or CNS effect
- Can be given to asthma, angina and PVD patients
- No renal and male sexual function impairment
- No adverse fetal effects and can be given in pregnancy
- Minimal effect on quality of life

- Contraindications:
 - Unstable angina
 - Heart failure
 - Hypotension
 - Post infarct cases
 - Severe aortic stenosis
- Preparation and dosage:
 - Amlodipine 2.5, 5 and 10 mg tablets (5-10 mg OD)

nifedipine)

- Stamlo, Amlopres, Amlopin etc.
- Nimodipine 30 mg tab and 10 mg/50 ml injection
 - Vasotop, Nimodip, Nimotide etc.

Side effects:
Ankle edema (N)
Tachycardia, palpitation (N)
Constipation (V and D)
Bradycardia (V and D)
AV block (V and D)
60% increase in AMI (short acting

Clevidipine (CLEVIPREX)

- Highly selective vascular L-type CCB
- No effect on venous capacitance vessels → no effect on pre-load
- Blood and extravascular esterases metabolize it (good in liver and kidney damage), but no change in metabolization in patients pseudocholinesterase deficiency
- Half life: 10-15 min
- Produces a 4-5% reduction in systolic blood pressure within 2–4 minutes after starting a 1–2 mg/hour infusion.
- No evidence of tolerance development even after long infusions.
- Formulated as a lipid emulsion in 20% soybean oil (Intralipid) and contains approximately 0.2 g of fat per mL (2.0 kcal/ml). (TG level can be changed!)
- Contains
 - glycerin (22.5 mg/mL)
 - purified egg yolk phospholipids (12 mg/mL)
 - sodium hydroxide to adjust pH (6.0-8.0).

RAAS

Pharmacological targets in RAAS

Components of the RAS. The heavy arrows show the classical pathway, and the light arrows indicate alternative pathways. Receptors involved: AT1, AT2, AT4, Mas, MrgD, and PRR. AP, aminopeptidase; E, endopeptidases; PCP, prolylcarboxylpeptidase.

ACE2

- A carboxypeptidase, ACE2, cleaves one amino acid from the carboxyl terminal to convert AngII to Ang(1–7). ACE2 may also convert AngI to Ang(1–9), which is then converted to Ang(1–7) by ACE, neprilysin, and endopeptidases. ACE2 contains a single catalytic domain that is 42% identical to the two catalytic domains of ACE. AngII is the preferred substrate for ACE2, with 400-fold higher affinity than AngI.
- The counterregulation of the actions of AngII by ACE2 occur in at least two ways:
 - 1. It decreases AngII levels and limits its effects by metabolizing it to Ang(1–7).
 - 2. It increases levels of Ang(1–7), which acts on Mas receptors to oppose AngII actions.
- Angiotensin-converting enzyme 2 is not inhibited by the standard ACE inhibitors and has no effect on bradykinin. Reduced expression or deletion of ACE2 is associated with hypertension, defects in cardiac contractility, and elevated levels of AngII. Inhibition of AT1 receptors by ARBs increases the expression of ACE2. Overexpression of the ACE2 gene decreases blood pressure and prevents AngII-induced cardiac hypertrophy in hypertensive rats. ACE2 is protective against diabetic nephropathy through the Ang(1–7)/Mas receptor pathway.

Schematic diagram of opposing arms in the RAS. Therapeutic interventions aim to inhibit the ACE/AngII/AT1 receptor axis (red) and enhance ACE2/Ang(1–7)/Mas receptor axis (green). VSMC: vascular smooth muscle cells.

RAS peptides and their identified receptors

RECEPTOR	RAS PEPTIDE	EFFECT	
AT ₁	AngII, AngIII, AngA, Ang(1–12)	Vasoconstriction hypertrophy Fibrosis, nephropathy	
AT ₂	AngII, AngIII, Ang(1–7), Ang(1–9), AngA	Vasodilation, antihypertrophy, antifibrosis Natriuresis	
Mas	Ang(1-7)	Vasodilation, antihypertrophy, antifibrosis Natriuresis	
MrgD	Alamandine	Vasodilation, antihypertrophy, antifibrosis	
AT ₄	AngIV, Ang(3–7)	Neuroprotection Cognition Renal vasodilation Natriuresis	
PRR	Prorenin, renin	Hypertrophy, fibrosis Apoptosis	

Major effects of RAAS

Three major physiological pathway of renin release activation

The active site of ACE

Rang et al: Rang & Dale's Pharmacology, 7e Copyright © 2011 by Churchill Livingstone, an imprint of Elsevier Ltd. All rights reserved.

Table 9.1 — Peptide substrates of ACE.			
Peptide Amino acid sequence			
Angiotensin I	Asp-Arg-Val-Tyr-lle-His-Pro-Phe-His-Leu		
Bradykinin	Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg		
des-Arg ⁹ -bradykin	in Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe		
Enkephalins: Pentapeptide	Tyr-Gly-Gly-Phe-Met		
Heptapeptide	Tyr-Gly-Gly-Phe-Met-Arg-Phe		
Octapeptide	Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu		
β-Neo-endorphin	Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro		
Dynorphin ₁₋₈	Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile		
Dynorphin ₁₋₆	Tyr-Gly-Gly-Phe-Leu-Arg		
Neutrotensin	<glu-leu-tyr-glu-asn-lys-pro-arg-arg-pro-tyr-lle-leu< td=""></glu-leu-tyr-glu-asn-lys-pro-arg-arg-pro-tyr-lle-leu<>		
Substance P	Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH₂ ↑ ↑		
	4:1		
LH-RH	<glu-his-trp-ser-tyr-gly-leu-arg-pro-gly-nh₂ td="" ↑="" ↑<=""></glu-his-trp-ser-tyr-gly-leu-arg-pro-gly-nh₂>		
Arrows denote primary	(↑) and secondary (↑) sites of cleavage by ACE.		

TABLE C136.2

ANGIOTENSIN-CONVERTING ENZYME INHIBITORS: DOSAGE STRENGTHS AND TREATMENT GUIDELINES

Drug	Trade name	Usual total daily dose in hypertension (mg) (frequency/d) ^a	Usual total daily dose in heart failure (mg) (frequency/d) ^a	Comment	Fixed-dose combinations ^b
Benazepril	Lotensin	20–40 (1)	Not FDA approved for heart failure		Benazepril and hydrochloro- thiazide (Lotensin HCT)
Captopril	Capoten	75–300 (2–3)	18.75–150.00 (3)	Generically available	Captopril and hydrochloro- thiazide (Capozide ^c)
Enalapril	Vasotec	5–40 (1–2)	5–40 (2)	Generic and intravenous	Enalapril and hydrochloro- thiazide (Vaseretic)
Fosinopril	Monopril	10–40 (1)	10–40 (1)	Renal and hepatic elimination	Fosinopril and hydrochloro- thiazide (Monopril-HCT)
Lisinopril	Prinivil, Zestril	10–40 (1)	5–20 (1)	Generically available	Lisinopril and hydrochlorothi- azide (Prinzide, Zestoretic)
Moexipril	Univasc	7.5–30.0 (1)	Not FDA approved for heart failure		Moexipril and hydrochloro- thiazide (Uniretic)
Perindopril	Aceon	4–16 (1)	Not FDA approved for heart failure	Indicated in high-risk vascular patients	, ,
Quinapril	Accupril	20–80 (1)	10–40 (1–2)	•	Quinapril and hydrochloro- thiazide (Accuretic)
Ramipril	Altace	5–20 (1)	10 (2)	Indicated in high-risk vascular patients	•
Trandolapril	Mavik	2–8 (1)	2–4 (1)	Renal and hepatic elimination	

FDA, U.S. Food and Drug Administration; HCT, hydrochlorothiazide.

^aLower doses are often recommended to initiate therapy. Higher doses are recommended for chronic therapy to provide full 24-hour coverage.

^bFixed-dose combinations in this class all contain a thiazide-type diuretic.

^cCapozide is indicated for first-step treatment of hypertension.

TABLE C136.1

U.S. FOOD AND DRUG ADMINISTRATION-APPROVED INDICATIONS FOR ANGIOTENSIN-CONVERTING ENZYME INHIBITORS

Drug	Hypertension	Heart failure	Diabetic nephropathy	High-risk cardiovascular disease
Captopril	•	• (Post-MI) ^a	•	
Benazepril	•			
Enalapril	•	• ^b		
Fosinopril	•	•		
Lisinopril	•	• $(Post-MI)^a$		
Moexipril	•	, ,		
Perindopril	•			•°
Quinapril	•	•		
Ramipril	•	• (Post-MI)		• ^c
Trandolapril	•	• (Post-MI)		

MI, myocardial infarction.

^cOn the basis of results of the Heart Outcomes Prevention Evaluation (HOPE) study and The European Trial on Reduction of Cardiac Events with Perindopril in Stable Coronary Artery Disease (EUROPA).

^aCaptopril and lisinopril are indicated for heart failure treatment post–myocardial infarction and as adjunctive therapy for heart failure.

^bEnalapril is indicated for high-risk individuals and for asymptomatic and symptomatic patients.

Table 22-4. Summary of drugs that inhibit the renin-angiotensin-aldosterone system

Class	Drug ^a	Pharmacokinetics	Adverse effects ^b	Uses	Notes
ACE inhibitors	Captopril	Short acting $t_{1/2} \sim 2 \text{ h}$ Dose 2-3 times daily	Cough Hypotension Proteinuria Taste disturbance	Hypertension Heart failure After MI	ACEIs are cleared mainly by renal excretion
	Enalapril	Pro-drug-active metabolite enalaprilat $t_{1/2} \sim$ 11 h Dose 1-2 times daily	Cough Hypotension Reversible renal impairment (in patients with renal artery stenosis)	As captopril	Lisinopril, perindopril, ramipril, trandalopril are similar Some are licensed for different uses (e.g. stroke, left ventricular hypertrophy)
Angiotensin receptor blockers (ARBs)	Valsartan	<i>t</i> _{1/2} ∼6 h	Hypotension Reversible renal impairment (in patients with renal artery stenosis)	Hypertension Heart failure	ARBs are cleared by hepatic metabolism
	Losartan	Long-acting metabolite $t_{1/2} \sim 8 \text{ h}$	As valsartan	As valsartan Diabetic nephropathy	Irbesartan is similar, with $t_{1/2} \sim 10$ -15 h
	Candesartan	$t_{1/2}$ 5-10 h Long acting because receptor complex is stable	As valsartan	As valsartan	Given as prodrug ester (candesartan cilexetil)
Renin inhibitor	Aliskiren	Low oral bioavailability $t_{1/2}$ 24 h	As valsartan, also diarrhoea	Essential hypertension	Licensed in 2007, the first drug of this type
Aldosterone antagonists	Eplerenone	t _{1/2} 3-5 h	As valsartan, especially hyperkalemia Nausea, diarrhoea	Heart failure after MI	
	Spironolactone	Prodrug converted to canrenone, which has $t_{\rm 1/2} \sim \! 24~{\rm h}$	As eplerenone Also oestrogenic effects (gynaecomastia, menstrual irregularity, erectile dysfunction)	Primary hyperaldosteronism Heart failure Oedema and ascites (e.g. in hepatic cirrhosis)	

a All drugs listed are orally active.

Examples for ACEI: enalapril (Vasotec); quinapril (Accupril); fosinopril (Monopril); moexipril (Univasc); lisinopril (Zestril, Prinivil); benazepril (Lotensin); captopril (Capoten)

b Adverse effects common to all drugs listed include hyperkalemia (especially in patients with impaired renal function) and teratogenesis. ACEI, angiotensin-converting enzyme inhibitor; MI, myocardial infarction.

Clinical use of ACEI

- Antihypertensive
 - $\sim 50\%$ response ($\sim 90\%$ with diuretic)
 - → Systemic Vascular Resistance
 - → Stress or Relfex induced sympathetic stimulation
 - $\rightarrow \text{Heart rate}$
 - ↑ Sodium excretion, ↓ Blood volume
- Congestive Heart Failure
 - ↓Vascular Resistance, Blood volume, Heart rate
 - $-\uparrow$ C.O. (no change in myocardial O_2 consumption)
- Diabetic Nephropathy
 - Dilates afferent and efferent renal arterioles
 - → Glomerular capillary pressure
 - ↓Growth of mesangial cells/matrix due to Ang II?

Side effects of ACEI

Common

- Dry Cough
 - 5-20% of patients
 - Not dose-related; occurs within 1 wk. 6 mo.
 - Women > men
 - May Require cessation of therapy
- Fetopathic Potential
 - Not teratogenic in 1st trimester
 - Developmental defects in 2nd or 3rd trimester

Rare

- Angioneurotic Edema (or Angioedema)
 - $\sim 0.1 0.5\%$ of patients
 - Not dose-related; occurs within 1st week
 - Severe swelling of mouth, tongue, lips, airway
 - may be life-threatening

Side effects and contraindications of ACEI

- Rare
 - Hypotension
 - First dose effect in patients with elevated PRA, salt depletion, CHF
 - Hyperkalemia
 - In patients with renal insufficiency, diabetic nephropathy
 - Acute Renal Failure
 - Patients with renal stenosis, heart failure, volume depleted
 - Skin Rash
- Extremely Rare (reversible)
 - Alteration/loss of taste
 - Neutropenia
 - Glycosuria
 - Hepatotoxicity

Additional benefits of ACEI

- Cardioprotective
- Reduce incidence of second heart attack
- Reduce cardiovascular complications in patients with risk factors
- Reduce incidence of diabetes in high risk patients
- Reduce complications in diabetic patients

Annual cost of treatment of ACEIs and ARBs

Patent expiry dates for sartans

- Valsartan November 2011

– Eprosartan April 2012

- Candesartan April 2012

- Azilsartan June 2012

- Irbesartan October 2013

- Telmisartan December 2013

- Olmesartan February 2017

Target Doses for ACEIs and ARBs in Trials Investigating the Addition of an ACEI or an ARB to Standard Medical Therapy for Stable Ischemic Heart Disease and Preserved Left Ventricular Systolic Function

Clinical Trial	Group	Drug	Trial Target Dose (mg/day)
НОРЕ	ACEI	Ramipril	10
PART-2	ACEI	Ramipril	5–10
SCAT	ACEI	Enalapril	20
CAMELOT	ACEI	Enalapril	20
EUROPA	ACEI	Perindopril	4–8
PEACE	ACEI	Trandolapril	4
SMILE- ISCHEMIA	ACEI	Zofenopril	60
TRANSCEND	ARB	Telmisartan	80
Kondo J, et al.	ARB	Candesartan	4

Overall Summary of the Evidence-Based Benefits of Adding an ACEI or an ARB to Standard Medical Therapy for Stable Ischemic Heart Disease With Preserved Left Ventricular Systolic Function

	ACEI		ARB		
Outcome	Risk	Level of Evidence	Risk	Level of Evidence	
Total Mortality	Decreased	High	No effect	Moderate	
CV Mortality	Decreased	Moderate	No effect	Moderate	
Nonfatal MI	Decreased	High	No evidence		
Stroke	Decreased	Moderate	No effect	Moderate	
Combined Risk of CV Mortality, Nonfatal MI, and Stroke	No effect	Moderate	Decreased	Moderate	
Atrial Fibrillation	No effect	High	No effect	High	
Total Hospitalizations	No effect	Moderate	No effect	Moderate	
Angina-Related Hospitalizations	No effect	High	No effect	High	
HF-Related Hospitalizations	Decreased	High	No effect	Moderate	
Revascularization	Decreased	High	No effect	Moderate	

DRI: Aliskiren

• Aliskiren binds to the S3^{bp} binding pocket of renin, essential for its activity. Binding to this pocket prevents the conversion of angiotensinogen to angiotensin I.

Possible side effects:

Angioedema

Hyperkalemia (particularly when used with ACE inhibitors in diabetic patients)

<u>Hypotension</u> (particularly in volume-depleted patients)

Diarrhea and other GI symptoms

Headache

Dizziness

Cough

Rash

Elevated <u>uric acid</u>, <u>gout</u>, and renal stones

Rarely: allergic swelling of the face, lips or tongue and difficulty breathing

Contraindications:

Pregnancy: other drugs such as ACE inhibitors, also acting on the reninangiotensin system have been associated with fetal malformations and neonatal death.

Breast feeding: during animal studies, the drug has been found present in milk.

Centrally acting sympatholytic drugs

- α2 agonists
 - clonidine
 - guanabenz
 - guanfacine
 - α-methyldopa

In pregnancy α-methyldopa is the first choice of drug.

I1 (imidazoline)
receptor agonists:
I1 receptors mediate
sympatho-inhibitory
effect

Side effects: dry mouth, sedation, impared mental acuity, rebound hypertension

Centrally acting a₂ agonists

- Alpha-Methyldopa: a prodrug
 - Precursor of Dopamine and NA
 - MOA: Converted to alpha methyl noradrenaline which acts on alpha-2 receptors in brain and causes inhibition of adrenergic discharge in medulla – fall in PVR and fall in BP
 - Various adverse effects cognitive impairement, postural hypotension, positive coomb`s test etc. – Not used therapeutically now except in Hypertension during pregnancy
- Clonidine: Imidazoline derivative, partial agonist of central alpha-2 receptor
 - Not frequently used now because of tolerance and withdrawal hypertension
- Guanfacine, guanabenz

Peripheral a₁ adrenergic receptor antagonists

- Non selective alpha blockers are not used in chronic essential hypertension (phenoxybenzamine, phentolamine), only used sometimes as in phaechromocytoma
- Specific alpha-1 blockers like prazosin, terazosin and doxazosine are used
- PRAZOSIN is the prototype of the alpha-blockers
- Reduction in t.p.r and mean BP also reduction in venomotor tone and pooling of blood reduction in CO
- Does not produce tachycardia as presynaptic auto (alpha-2) receptors are not inhibited autoregulation of NA release remains intact

Peripheral a₁ adrenergic receptor antagonists

Adverse effects:

- Prazosin causes postural hypotension start 0.5 mg at bed time with increasing dose and upto 10 mg daily
- Fluid retention in monotherapy
- Headache, dry mouth, weakness, dry mouth, blurred vision, rash, drowsiness and failure of ejaculation in males

• Current status:

- Several advantages improvement of carbohydrate metabolism – diabetics, lowers LDL and increases HDL, symptomatic improvement in BHP
- But not used as first line agent, used in addition with other conventional drugs which are failing diuretic or beta blocker
- Doses: Available as 0.5 mg, 1 mg, 2.5 mg, 5 mg etc. dose:1-4 mg thrice daily (Minipress/Prazopress)

Directly acting vasodilators

- Calcium antagonists (e.g. **nifedipine**, **diltiazem**, **verapamil**): block Ca²⁺ entry in response to depolarisation. Common adverse effects include ankle swelling and (especially with verapamil) constipation.
- K_{ATP} channel activators (e.g. **minoxidil**): open membrane potassium channels, causing hyperpolarisation. Ankle swelling and increased hair growth are common.
- Drugs that increase cytoplasmic cyclic nucleotide concentrations by:
 - increasing adenylyl cyclase activity, for example prostacyclin (epoprostenol), β_2 -adrenoceptor agonists, adenosine
 - increasing guanylyl cyclase activity: nitrates (e.g. glyceryl trinitrate, nitroprusside)
 - inhibiting phosphodiesterase activity (e.g. sildenafil).

Indirectly acting vasodilators

- Drugs that interfere with the sympathetic nervous system (e.g. α_1 -adrenoceptor antagonists). Postural hypotension is a common adverse effect.
- Drugs that block the renin-angiotensin system:
 - - renin inhibitors (e.g. aliskiren)
 - angiotensin-converting enzyme inhibitors (e.g. ramipril); dry cough may be troublesome
 - - AT₁ receptor antagonists (e.g. **losartan**).
- Drugs or mediators that stimulate endothelial NO release (e.g. acetylcholine, bradykinin).
- Drugs that block the endothelin system:
 - endothelin synthesis (e.g. phosphoramidon)
 - endothelin receptor antagonists (e.g. bosentan).

Vasodilators with unknown mechanism: alcohol, propofol, hydralazine

Clinical use of antihypertensive drugs

Group of drug	Main indication	Possible indication	Main contraindication	Possible contraindication
Thiazides	Heart failure, elder patient, systolic hypertension	DM	Gout	Dyslipidaemia, sexually active males
Beta blockers	Angina pectoris, after AMI, tachicardia	Heart failure, gravidity, DM, glaucoma, aortic aneurism, ES	Asthma, COPD, II./III. AV block	Dislipidaemia, sport, peripheral blood vessel disease, psoriasis
Alfa-1 blockers	Prostate hypertrophy	Metabolic sy., dyslipidaemia		Orthostatic hypotension, aortic aneurism, congestive heart failure
ACEI	Heart failure, Left ventricle dysfunction, after AMI, diabetic nephropathy	IHD	Gravidity, Bilateral renal artery stenosis, hyperkalaemia	Aortic stenosis
AT1 blockers	Heart failure, Left ventricle dysfunction, diabetic nephropathy		Gravidity, bilateral renal artery stenosis, hyperkalaemia	Aortic stenosis
Ca ⁺⁺ antagonists	Angina pectoris, elder patient, systolic hypertension	Peripheral blood vessel disease	II./III. AV block	Congestive heart failure, aortic aneurism, aortic stenosis
Imidazoline I-1 rec blocker		Diabetes mellitus, metabolic syndrome	II./III. AV block	
Centrally acting alfa-2 rec agonists	Gravidity	Aortic aneurism	II./III. AV block, depression, liver disease	
Direct vasodilators		Therapy resistent hypertonia, hypertonic crisis	Aorta/mitral valve stenosis	IHD, aortic aneurism, cerebrovascular ischaemia

Rang et al: Rang & Dale's Pharmacology, 7e Copyright © 2011 by Churchill Livingstone, an imprint of Elsevier Ltd. All rights reserved.

HEMODYNAMIC EFFECTS OF LONG-TERM ADMINISTRATION OF ANTIHYPERTENSIVE AGENTS

	HEART RATE	CARDIAC OUTPUT	TOTAL PERIPHERAL RESISTANCE	PLASMA VOLUME	PLASMA RENIN ACTIVITY
Diuretics	\leftrightarrow	\leftrightarrow	\	_↓	1
Sympatholytic agents					
Centrally acting	-↓	_↓	↓	-↑	-↓
α ₁ Blockers	_↑	_↑	↓	_↑	\leftrightarrow
β Blockers					
No ISA	\downarrow	\downarrow	_↓	_↑	↓
ISAª	↓ ↑	\leftrightarrow	↓	_↑	-↓
Arteriolar vasodilators	1	1	↓	1	1
Ca ²⁺ channel blockers	↓ or ↑	↓ or ↑	↓	_↑	_↑
ACEIs	\leftrightarrow	\leftrightarrow	↓	\leftrightarrow	1
AT ₁ receptor blockers	\leftrightarrow	\leftrightarrow	\	\leftrightarrow	1
Renin inhibitor	\leftrightarrow	\leftrightarrow	\	\leftrightarrow	↓ (but renin ↑)

Treatme Systolic >160 or diastolic >100 Systolic 140-159 or diastolic 90-99 (Stage 1 hypertension) (Stage 2 hypertension) Lifestyle modifications as a trial · Lifestyle modifications and Thiazide and ACEI, ARB, or CCB Consider adding thiazide • Or consider ACEI plus CCB Recheck and review Recheck and review readings in 3 months readings in 2-4 weeks No Yes BP at goal? Thiazide for most patients or ACEI, ARB, CCB, or combination • If currently on BP med(s), titrate and/or add drug from different class Recheck and review Encourage self-monitoring and readings in 2-4 weeks adherence to medication · Advise patient to alert office if Yes BP at goal? she/he notes BP elevation or side effects No Continue office visits as clinically appropriate Optimize dosage(s) or add medications · Address adherence, advise on self-monitoring, and request readings from home and other settings · Consider secondary causes Consider referral to

HTN specialist

Treatment of hypertensive crisis

- Commonly utilized agents
 - Nitroprusside
 - Nitroglycerin
 - Esmolol
 - Labetalol
 - Hydralazine
 - Nicardipine or Clevidipine (new agent)

