Analysis of relation between PepsiCo's stock price and obesity in the United States: the role of ill-fitting fashion as a factor of influence in weight gain.

Shan S. Bala December 15, 2014

GENERAL OVERVIEW

designers within fashion industry Obesity creates a niche market opportunity for

Sensemaking

designers have a hand in the obesity epidemic? Counterintuitive: Did fashion fads initiated by

Plan

Gather and interpret data pertaining to fashion trends and obesity. Use appropriate technique to derive insights.

Present

findings and implications. Encountered issues, limitations,

new consumer categories Plus-Size, Big & Tall relatively

Obesity: multifactor influence

pepsi Correlation analysis •

Timeline: 1960 – turn of century Regression analysis Experiment design & discuss

future slides Discussed within context in

Fashion trends & obesity epidemic

Timeline overview

Adding some complexity

Linear regression analysis

Linear regression function

with Pepsi more or less standing in as proxy for entire industry

Obesity% = $\beta_0 + \beta_1 stockprice + u$

Introduce fashion trend variable

as a dichotomous attribute

$$ill - fit = \begin{cases} 1 & if ill - fitting fashion trends \\ 0 & if it does not (snug - fit) \end{cases}$$

$$Obesity\% = \beta_0 + \delta_0 ill - fit + \beta_1 stockprice + u$$

(\)	For every \$1 increase in Pepsi's stock the obese population increases by	Explaining Pepsi's Coeff.	Obesity% = $\beta_0 + \delta_0 ill - fit + \beta_1 stockprice + u$	53.34 1	2005 41.82 1 35%	14.06 1	7.37 1	1.72 0	1980 0.56 0 15%	PepsiSP III-fitting trend Obese	
Discussed model lacks predictive value. Considering the very small sample size, "logging" the dependent variable (obesity%) and PePsi's stock price "normalizes" the distribution and offers insight into the elasticity between StockPrice and Obesity%	Critical value=3.36493	14.25708 3.54007 4.69335	ngu	0.00000000000000000000000000000000000	Revised function & key takeaways						6

Graphs of data points

In separating the ill-fit trend from the snug-fit trend, it is clear there is a difference in both the intercept and slope of each set's data points

% Obese 20% 10%

\$0.00

\$10.00

\$20.00 \$30.00 \$40.00

PepsiCo's Stock Price

40%

≡-fit

Apply LN and Regress

 $\ln(Obesity\%) = \beta_0 + \delta_0 ill - fit + \ln(\beta_1 stockprice) + u$

OVERALL FITMultiple R

Observations R Square Standard Error Adjusted R Square 0.956711767

0.984418526 0.969079834

0.070606881

Transforming the model

able to determine "odds" for purposes of inference. conforms to a t-distribution). Another benefit is being still within a linear realm, helps bring the setup closer Converting the model to reflect data behavior, albeit to a z-distribution (previous regression function

ANOVA & other stats

ANOVA				Alpha	0.02	
	df	SS	MS	F	p-value	sig
Regression	2	0.78123518	2 0.78123518 0.39061759 78.3533815 0.00016811	78.3533815	0.00016811	yes
Residual	5	0.02492666 0.00498533	0.00498533			
Total	7	0.80616183				
	coeff	std err	t stat	p-value	lower	upper
Intercept	-1.7626524	0.04213381	-1.7626524 0.04213381 -41.834632 1.4722E-07 -1.9044297 -1.620875:	1.4722E-07	-1.9044297	-1.6208751
PepsiSP	0.13339319	0.03625579	0.13339319 0.03625579 3.67922444 0.01430516 0.01139499 0.25539139	0.01430516	0.01139499	0.25539139
III-fit trend	0.15576596	0.13554773	1.14915945	0.15576596 0.13554773 1.14915945 0.30247458 -0.3003427 0.6118740	-0.3003427	0.6118746

The F-Stat Inference

The F-Statistic is extremely large in this case at 78+

Variance, according to the F distribution, is mostly between the fashion trend variable and stock price,

Need more data.

each variable.

as opposed to the variances within

Experiment suggestion

How does the relative fit of one's attire impact the feeling of fullness? The volume of food intake?

Experiment design Controlled double-blind

- Random selection
- -Obese, overweight, normal
- n > 100 for each bucket
- Vary time-span Short-term, long-term
- Initial & on-going Surveys

ORIENTATION

EVALUATIVE

03

BIOLOGICAL

NEURO-

PERSONALITY

PERSONAL

THINKING STYLE

BIASES

Questions? Comments?