1/6

Figure 1.

SEQ ID NO:1

GCTCCAAAGAGACATTTTGGGGTGGCAAAATAGTCTACAGGATTCTATGGCATA
GGAGACAACTCTCAGATAGCTCTGCAGACCTGCTCCAAAGAAGTATAGGAGAAG
CCAGGATTTATAAGAACTTTTTTGTTGGGAAAAATAAATGTAGTCAAACATAAAAAG
ACAACTGCTAATAACAAACAATAGACATGTCAAGATAATGACCTTAGTGCCTTTCT
ATGTGTGGAAAGACTCAAGAATCTGGGGTCATTGAACTTTTTCCTTAGATATGCA
TCTTAATATCCTGGGGTCAGTATAATCCAAATGCTTCCTGTTTTTCTCCATCCTAA
AGTCCCCTCCGGGTGCACTGATGGGTTCCCCTCCAGTGGGCAACTGCAGTGGC
AATTGGCTTGATCTCTGTAGAACTGGAATGGTGGCCAACATTCTTTTCTTTACAG
TATCCTGAGTCTGGGAGGGGCTGTGTGGGCCAGAGCCTGNATGCTGGTGGTTAT
AAGCTGGGCCCCAGGCGCCCGAGGCCAGACTCACCTCATCAGGCCCTGCACGTGGCAGGCGCCGGGGCCCGAGGCCAGACTCACCTCATCAGGCCCTGCTGCA
GTGGGAGCAGGGAGAGAGAGCAGGGCCAGACCATG

N = C or T at polymorphic site

SEQ ID NO:2

Forward primer:

GCTCCAAAGAGACATTTTGGGGTGGC

SEQ ID NO:3

Reverse primer:

CATGCTGCCCCTACCACTGCTACTCT

Figure 2. SphI restriction digest of porcine CYP11a1 PCR fragment

Figure 3. Comparison of submaxillary salivary gland $\Delta 16$ -androstenes in boars possessing a CYP11a1 single nucleotide polymorphism.

Genotype

	CC	СТ	P value
Rate of gain (kg BW/d)	$0.76 \pm .01$	0.72 ± .01	.05
Carcass length (cm)	85.17 ± .38	82. 96 ± .47	.001
Submaxillary salivary gland (SMG) wt (g)	92.1 ± 3.1	71.5 ± 4.9	.0001
Δ16- androstenes in SMG (μg/g)	38.7 ± 4.1	23.9 ± 5.0	.05
Relative SMG wt (g/kg BW)	$0.72 \pm .023$	$0.58 \pm .027$.001
Bulbourethral gland length (mm)	128.8 ± 2.4	117.7 ± 2.9	.01
Relative bulbourethral gland wt (g/kg BW)	93.8 ± 4.0	73.5 ± 4.9	.01
Testis wt (g)	628.6 ± 27.1	530.2 ± 25.4	.05
Relative testis wt (g/kg BW)	$4.92 \pm .20$	4.33 ± .24	.10
Serum testosterone at slaughter (ng/ml)	2.04 ± .28	1.59 ± .35	.32

Figure 4. Growth, carcass, and reproductive traits of pigs with CC or CT CYP11a1 polymorphism.

in the second of the second of

1 gcagatgtcc ctggtgattc ctgaaacagg ccctctgttt aaattcttca gcagttagag 61 ggaaggtcaa tttttcccaa ggcttttggg ctttgattgt tttcattttt aaattatctg 121 cattctaaag agatattttg ggtggcagat tttgctctcc tacaggactt tgtctaggag 181 acggctctca ggccagctcc gacgactgtt ccaaagaagt aagggaaagc tagggtttat 241 atcaatcttt ttttttgctg ggagaagggg gatgaacatg tagtcaaaca taaaaagatc 301 actgctaatc ccaaacaaca gacacctcaa gtgaatggtt ttagtgtttt tctatatatg 361 ttgtttagtc actaagtcct gtccgactct tttgcgactc catagactgt agcccaccaa 421 gctcctctgt ccatgggatt tttctaggca agaatactgg agtgggttgc catttccttc 481 tecetgggat ettectaace caaggactga accettgtet eetgeattge aggtggattt 541 tttaccgact gagccaccag ggaagttatg tgtgcaagaa tccggggtca tggaaatttt 601 cccttagata tacatcgtat ctagggacca gtacaatgca aatgcttcct gtttttcttc 661 atcctgaagt ctcctcaggg tgcattgagg gagggagtcc cctcaggtgg gtgaccacag 721 tggctgacgc ttgatgttgt agaactggaa tgatgggtta cattctttcg tttacagtac 781 tgagtctggg aggagctgtg tgggctggag tcagccggag gaggctgacc gccctgtcag 841 cttctcactt agccttgagc tggtgattat aagctgggtc ccagggtccc agggccagag 901 tcacctgctg cagtacgage agagacagea geagetgtgg gggcageatg ctageaaggg 961 ggcttcccct ccgttcagcc ctggtcaaag cctgcccacc catcctgagc tcagtggggg 1021 agggctgggg ccaccacagg gtgggcactg gagagggagc tggcatctcc acaaagaccc 1081 ctcgcccta cagtgagatc ccctccctg gtgacaatgg ctggcttaac ctctaccatt 1141 tctggaggga gaagggctca cagagaatcc actttcgcca catcgagaac ttccagaagt 1201 atggcccat ttacaggtaa gcctggcagg aggattgggg ctggcgggat aggaagcct 1261 gtggtggccc cctccctgaa aggtctgccc tccccttcca ggctctggtt cacctctgac 1321 tttatttctt cctgcctggc ggtggcagga gtagagttaa tgcttcccag acagtgggtt 1381 cactteccag ceetgaggee teaacagtee eegggeteta caccettaga aactttgggg 1441 aggtggggag gcccaagaaa ataagccccg ġ

FIGURE 5

6/6

1	cttttttcgg	ttgtaccttt	gtctctgtac	agatattttg	taatatatta	aaaacaaaac
61	ctactgagct	cctcgccttg	agcccaggat	tcagggataa	gagcgaggtc	gccccggccg
121	tgcgccgccc	tgctcccatg	ctctccaggg	ctgcacccat	agcgggcagc	tttcaggcat
181	gccgctgtgc	cggagggatc	ccagccctcg	cgggggtcca	ctacccattg	cccagctcct
241	cgggagctcg	gcctttcgac	caggtgccgg	gtgaatggag	agcgggttgg	ctcaacctgt
301	accacttctg	gaaggaggga	ggcttccaca	acgtgcacaa	catcatggcc	agcaagttcc
361	agcgctttgg	gcccatctac	agggagaagt	tgggtgtcta	cgagagcgtg	aatatcatca
421	gcccccgcga	tgcggccacg	ctcttcaagt	cagaggggat	gctgcccgag	cgcttcagcg
481	tgcccccatg	ggtggcatac	cgtgactacc	gcaacaagcc	ctacggcgtg	ctcctcaaga
541	caggggaggc	ctggcgctcg	gaccgcctga	ccctgaacaa	ggaggtgctg	tcgccgcagg
601	tggtggacag	cttcgtgccc	ttgctggacc	aggtgagcca	ggactttttg	cggcgggcac
661	gggcgcaggt	ccagcagagc	ggccgggagc	gctggacggc	cgacttcagc	cacgagctct
721	tccgctttgc	cttggagtct	gtgtgccacg	tgctgtatgg	ggaacgcctg	gggctgctgc
781	aggactttgt	ggacccagag	gcacagcagt	tcatcgacgc	cgtcaccctc	atgttccaca
841	ccacctcccc	catgctctac	gtgccacccg	ccctgctccg	ccacctcaac	accaagacat
901	ggcgtgacca	cgtgcatgct	tgggatgcca	tcttcacaca	ggctgacaaa	tgtatccaaa
961	acgtttaccg	ggacatccgg	ctgcaacgca	agagcaccga	ggagcacacg	ggcatcctct
1021	tcagcctcct	tgtgcaggac	aagctgcccc	tggatgacat	caaggccagc	gtcaccgaga
1081	tgatggcggg	cggcgtggac	acgacttcca	tgactctgca	atgggccatg	ctggagctgg
1141	cacgatcccc	gggcatccag	gagcggctgc	gggcagaggt	gctggcagcc	aagcaggagg
1201	cacaggggga	cagggtgaag	atgctgaaga	gcatccgact	gctcaaagcc	gccatcaagg
1261	agactctcag	gctgcacccg	gtggcggtga	cgctgcagag	gtacaccaca	caggaggtca
1321	tcctgcagga	ctaccgcatc	cccccaaga	cgctggtgca	ggttggtctc	tacgccatgg
1381	gacgagaccc	tgaggtcttc	cccaagccgg	agcagttcaa	ccctgagcgc	tggctggtga
1441	tgggctccaa	gcacttcaag	ggactgagct	ttgggtttgg	gccacggcag	tgtctgggtc
1501	gtcgcatcgc	cgagctggag	atgcagctct	tcctcatgca	catcctggag	aactttaaga
1561	tcgaaaccaa	gcgggcggtg	gaagttggga	ccaagttcga	cctcattctt	gtccctgaaa
1621	aacccatcta	cctgagactg	cggcccctcc	agccccagga	gtgacatggg	gtgtccccag
1681	ttggtcccag	cttggggaca	cctccatcag	ctcagcgcat	tcagccttgg	ctccagccct
	_		ggctgcccc	ttcccatttt	cttcgcctct	gatttgctct
1801	gtaatttctg	caccaaaagc				

FIGURE 6