1

AI1103: Assignment 1

Chitneedi Geetha Sowmya CS20BTECH11011

Download all python codes from

https://github.com/Geetha495/AI1103/blob/main/ Assignment1/Assignment1.py

and latex-tikz codes from

https://github.com/Geetha495/AI1103/blob/main/ Assignment1/Assignment1.tex

1 Problem

Determine Pr(E|F), if a coin is tossed three times

i E: head on third toss, F: heads on first two tosses

ii E: at least two heads, F: at most two heads

iii E: at most two tails, F: at least one tail

2 Solution

In an experiment of tossing a coin n(=3) times, random variable $X \in \{0, 1, 2, 3\}$ follows binomial distribution.

The binomial distribution formula is:

$$Pr(X = k) = {}^{n}C_{k} \times p^{k} \times (1 - p)^{n-k}$$

Where:

k	k	total number of "successes"		
p)	probability of a success on an individual trial		
n	ı	number of trials $= 3$		

TABLE 3: The binomial distribution formula

- (i) From table 3, Pr(E|F) = 0.5
- (ii) X denotes number of heads. From table 3, Pr(E|F) = 0.428
- (iii) X denotes number of tails. From table 3, Pr(E|F) = 0.857

Pr(Event)	Calculation
Pr(F)	From product rule,
	$=\frac{1}{2}\times\frac{1}{2}$
	$= 0.25^{\circ}$
Pr(EF)	From product rule,
	$=\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}$
	= 0.125
Pr(E F)	$=\frac{\Pr(EF)}{\Pr(F)}$
	=0.5

TABLE 3: Part(i)

Pr(Event)	Calculation
Pr(F)	$= \Pr(X \le 2)$
	= Pr(X = 0) + Pr(X = 1) + Pr(X = 2)
	$= {}^{3}C_{0}\left(\frac{1}{2}\right)^{3} + {}^{3}C_{1}\left(\frac{1}{2}\right)^{3} + {}^{3}C_{2}\left(\frac{1}{2}\right)^{3}$
	= 0.875
Pr(EF)	= Pr(X = 2)
	= 0.375
Pr(E F)	$=\frac{\Pr(EF)}{\Pr(F)}$
	= 0.428

TABLE 3: Part(ii)

Pr(Event)	Calculation
Pr(F)	$= \Pr(X \ge 1)$
	$= 1 - \Pr(0)$
	= 0.875
Pr(EF)	$= \Pr(X = 1) + \Pr(X = 2)$
	= 0.75
Pr(E F)	$= \frac{\Pr(EF)}{\Pr(F)}$
	= 0.857

TABLE 3: Part(iii)