Chimera-2016-I Emulator Assignment

Practical 5 - Arithmetic

CANS Tech INC

It is the easy stuff now...

You have already done some arithmetic

Implementing the SBC Instruction

Once again inside the Group_1 function switch add

case 0xB7: // SBC
CODE HERE
break;

SBC	Addressing	Opcode	
Register subtracted	A-B	0xB7	
to Accumulator with	A-C	0xC7	
Carry	A-L	0xD7	
Flags: T T T	A-H	0xE7	
notes	A-M	0xF7	

SBC is ADC with a '-' instead of a '+'

Implementing the OR Instruction

Once again inside the Group_1 function switch add

case 0xBB: // OR CODE HERE break;

OR	Addressing	Opcode
Register bitwise	A-B	0xBB
inclusive or with	A-C	0xCB
Accumulator	A-L	0xDB
Flags: T T	A-H	0xEB
notes	A-M	0xFB

OR is AND with a '|' instead of a '&'

Remember there is 15 marks for quility of code!

Think about the similarities between some instructions

Implementing the COMA Instruction

Once again inside the Group_1 function switch add

case 0x9B: // COMA CODE HERE break;

COMA	Addressing Opcode
Negate Memory or	A 0x9B
Accumulator	
Flags: T T T	
notes	

COMA simply takes the 1Šs complement of Register A 1's complement inverts each of the bits
One way is to invert the bits in Register A is to XOR it with 0xFF Another way would be to use the c operator

Now you can implement ADD, SUB, XOR, TEST, DEC, SAL, SHR, NEG, SWI, RTI,

