Dimensionality reduction: feature extraction

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

Lisa StuartData Scientist

Unsupervised learning methods

- Principal component analysis (PCA) --> Lesson 3.1
- Singular value decomposition (SVD) --> Lesson 3.1
- Clustering/grouping --> Lesson 3.3
- Exploratory data mining

Dimensionality reduction != feature selection

 $^{^{1}}$ https://slideplayer.com/slide/9699240/ 2 https://www.analyticsvidhya.com/blog/2016/03/practical-guide-principal-component-analysis-python/

Curse of dimensionality

¹ https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/

1-D search

2-D search

3-D search

Dimensionality reduction methods

- PCA
- SVD

PCA

PCA

- Relationship between X and y
- Calculated by finding principal axes
- Translates, rotates and scales
- Lower-dimensional projection of the data

¹ https://scikit-learn.org/stable/modules/decomposition.html

SVD

SVD

- Linear algebra and vector calculus
- Decomposes data matrix into three matrices
- Results in 'singular' values
- Variance in data approximately equalsSS of singular values

¹ https://galaxydatatech.com/2018/07/15/singular-value-decomposition/

Dimension reduction functions

Function/method	returns
sklearn.decomposition.PCA	principal component analysis
sklearn.decomposition.TruncatedSVD	singular value decomposition
PCA/SVD.fit_transform(X)	fits and transforms data
PCA/SVD.explained_variance_ratio_	variance explained by PCs

• Other matrix decomposition algorithms

Let's practice!

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

Dimensionality reduction: visualization techniques

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

Lisa StuartData Scientist

Why dimensionality reduction?

- 1. Speed up ML training
- 2. Visualization
- 3. Improves accuracy

Visualization techniques

- PCA
- t-SNE

Visualizing with PCA

¹ https://districtdatalabs.silvrback.com/principal-component-analysis-with-python

Scree plot

¹ https://towardsdatascience.com/a-step-by-step-explanation-of-principal-component-analysis-b836fb9c97e2

t-SNE

- Probabilistic
- Pairs of data points
- Low-dimensional embedding
- Plot embeddings

Visualizing with t-SNE

```
# t-sne with loan data
from sklearn.manifold import TSNE
import seaborn as sns
loans = pd.read_csv('loans_dataset.csv')
# Feature matrix
X = loans.drop('Loan Status', axis=1)
tsne = TSNE(n_components=2, verbose=1, perplexity=40)
tsne_results = tsne.fit_transform(X)
loans['t-SNE-PC-one'] = tsne_results[:,0]
loans['t-SNE-PC-two'] = tsne_results[:,1]
```

```
# t-sne viz
plt.figure(figsize=(16,10))
sns.scatterplot(
    x="t-SNE-PC-one", y="t-SNE-PC-two",
    hue="Loan Status",
    palette=sns.color_palette(["grey","blue"]),
    data=loans,
    legend="full",
    alpha=0.3
)
```

¹ https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

Visualizing with t-SNE

PCA vs t-SNE digits data

¹ https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b

Let's practice!

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

Clustering analysis: selecting the right clustering algorithm

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

Lisa StuartData Scientist

Clustering algorithms

- Features >> Observations
- Model training more challenging
- Rely on distance calculations
- Most commonly used unsupervised technique

Practical applications of clustering

- Customer segmentation
- Document classification
- Insurance/transaction fraud detection
- Image segmentation
- Anomaly detection
- Many more...

Distance metrics: Manhattan (taxicab) distance

¹ https://en.wikipedia.org/wiki/Taxicab_geometry

Distance metrics: Euclidian distance

¹ http://rosalind.info/glossary/euclidean-distance/

K-means

- 1. Initial centroids
- 2. Assign each observation to nearest centroid
- 3. Create new centroids
- 4. Repeat steps 2 and 3

¹ http://sherrytowers.com/2013/10/24/k-means-clustering/

Hierarchical agglomerative clustering

¹ https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/

Agglomerative clustering linkage

- Ward linkage
- Maximum/complete linkage
- Average linkage
- Single linkage

Selecting a clustering algorithm

- Cluster stability assessment
- K-means and HC use Euclidian distance
- Inter- and intra-cluster distances

"An appropriate dissimilarity measure is far more important in obtaining success with clustering than choice of clustering algorithm." - from Elements of Statistical Learning

¹ https://slideplayer.com/slide/8363774/

Clustering functions

Function/method	returns
sklearn.cluster.Kmeans	K-Means clustering algorithm
sklearn.cluster.AgglomerativeClustering	Agglomerative clustering algorithm
kmeans.inertia_	SS distances of observations to closest cluster center
scipy.cluster.hierarchy as sch	Hierachical clustering for dendrograms
sch.dendrogram()	Dendrogram function

Let's practice!

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

Clustering analysis: choosing the optimal number of clusters

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

Lisa StuartData Scientist

Methods for optimal k

- Silhouette method
- Elbow method

Silhouette coefficient

- Composed of 2 scores
 - Mean distance between each observation and all others:
 - in the same cluster
 - in the nearest cluster

Silhouette coefficient values

- Between -1 and 1
 - 0 1
 - near others in same cluster
 - very far from others in other clusters
 - o **-1**
 - not near others in same cluster
 - close to others in other clusters
 - 0 0
 - denotes overlapping clusters

Silhouette score

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

¹ https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Elbow method

¹ https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-know-methods/

Optimal k selection functions

Function/method	returns
sklearn.cluster.KMeans	K-Means clustering algorithm
sklearn.metrics.silhouette_score	score between -1 and 1 as measure of cluster stability
kmeans.inertia_	SS distances of observations to closest cluster center
range(start, stop)	list of values beginning with start, up to but not including stop
<pre>list.append(kmeans.inertia_)</pre>	appends inertia value to list

Let's practice!

PRACTICING MACHINE LEARNING INTERVIEW QUESTIONS IN PYTHON

