ELECTION OF THE PROPERTY OF TH

主讲人: Nill

课程的意义不在于课程结束后,你认为我说的都是对的,我们的最大动力是:通过这门课程的学习,你能证明,我是对的或者我是错的。

深圳市我是你的眼有限公司

专业的FPGA、无线通信方案商

微信公众号: MYMINIEYE

答疑邮箱: support@myminieye.com

网址: www.myminieye.com 淘宝店铺: 小眼睛半导体

关注&交流

• 微信公众号:

• 讨论群:

微信讨论群二维码

QQ讨论群二维码

课程目标:

- 解析CSI转HDMI的设计流程
 - 1) 从DPHY输出并行流中提取有效数据;
 - 2) CSI数据流结构;
 - 3) 视频流信号缓冲;
 - 4) TMDS编码串行输出;

TE

CSI连接链路及接收层级定义

Lane N - High Speed Unidirectional Data

Lane control capture

Number of Bytes, N, transmitted is an integer multiple of the number of lanes:

DATA IDENTIFIER (DI): Contains the Virtual Channel Identifier and the Data Type Information Data Type denotes the format/content of the Application Specific Payload Data. Used by the application specific layer. 16-bit WORD COUNT (WC): The receiver reads the next WC data words independent of their values. The receiver is NOT looking for any embedded sync sequences within the payload data. The receiver uses the WC value to determine the end End of the Packet 8-bit Error Correction Code (ECC) for the Packet Header: 8-bit ECC code for the Packet Header. Allows 1-bit errors with the packet header to be corrected and 2-bit errors to be detected APPLICATION SPECIFIC PAYLOAD CHECKSUM (CS) Word Count (WC) Data WC-2 Data WC-1 Data WC-3 16-bit Checksum Data WC-4 Data ID Data 0 Data 1 Data 2 က ECC Data EoT LPS SoT LPS 32-bit **PACKET DATA:** 16-bit **PACKET** Length = Word Count (WC) * Data Word **PACKET HEADER** Width (8-bits). There are NO restrictions **FOOTER** (PH) on the values of the data words (PF) Word Count (WC) Data ID ECC LPS SoT EoT LPS

32-bit SHORT PACKET (SH) Data Type (DT) = 0x00 – 0x0F

DATA IDENTIFIER

Table 3 Data Type Classes

Data Type	Description
0x00 to 0x07	Synchronization Short Packet Data Types
0x08 to 0x0F	Generic Short Packet Data Types
0x10 to 0x17	Generic Long Packet Data Types
0x18 to 0x1F	YUV Data
0x20 to 0x27	RGB Data
0x28 to 0x2F	RAW Data
0x30 to 0x37	User Defined Byte-based Data
0x38 to 0x3F	Reserved

P74 P84 P88 P96

Data Type	Description
0x18	YUV420 8-bit
0x19	YUV420 10-bit
0x1A	Legacy YUV420 8-bit
0x1B	Reserved
0x1C	YUV420 8-bit (Chroma Shifted Pixel Sampling)
0x1D	YUV420 10-bit (Chroma Shifted Pixel Sampling)
0x1E	YUV422 8-bit
0x1F	YUV422 10-bit

Data Type	Description
0x20	RGB444
0x21	RGB555
0x22	RGB565
0x23	RGB666
0x24	RGB888
0x25	Reserved
0x26	Reserved
0x27	Reserved

Table 6 Synchronization Short Packet Data Type Codes

Data Type	Description
0x00	Frame Start Code
0x01	Frame End Code
0x02	Line Start Code (Optional)
0x03	Line End Code (Optional)
0x04 to 0x07	Reserved

Data Type	Description
0x10	Null
0x11	Blanking Data
0x12	Embedded 8-bit non Image Data
0x13	Reserved
0x14	Reserved
0x15	Reserved
0x16	Reserved
0x17	Reserved

Payload Data per packet must be a multiple of 8-bits

KEY:

LPS – Low Power State ECC – Error Correction Code

FS – Frame Start LS – Line Start DI – Data Identifier

CS – Checksum FE – Frame End

FE – Frame En LE – Line End WC – Word Count

ED - Embedded Data

Figure 45 Multiple Packet Example

FE - Frame End

LE - Line End

FS - Frame Start

LS - Line Start

CSI2 接收框图

TMD编码流程

| 帧缓冲

- 1、MiPi接口输出数据率和MiPi接口跑的数据率相关,与vesa等显示协议定义的像素时钟的频率没有直接联系。 MiPi与HDMI之间时钟域不一致;
- 2、从MiPi数据流结构可得知解析出的数据是以帧为单位,提取相应每行的有效数据; 在HDMI输出需要有显示标准的行场同步信号,故接口转换中需要重建显示同步时序;

帧缓冲功能结构

帧缓冲视频流时序

I_vin0_de 在一行内必须连续,不支持一行内 DE 不连续。

系统设计功能模块框图

深圳市我是你的眼有限公司

专业的FPGA、无线通信方案商