Exercícios - 6

Circuitos em regime sinusoidal

(adaptados de Engineering Circuit Analysis, Hayt, Kemmerly, Durbin, 6ª Edição, 2002 e 8ª Edição, 2012)

1- Considere um circuito série com três elementos ligados por esta ordem: uma resistência de $I\Omega$, um condensador de IF e uma bobina de IH.

Assumindo que a frequência de operação é *1 rad/s*, calcule:

- a) O fasor de corrente no circuito se a tensão na resistência for $1 \angle 30^{\circ}V$;
- **b)** O fasor de tensão aos terminais do conjunto condensador mais bobina;
- c) O fasor de tensão pedido em b) mas para o caso de uma frequência de 2 rad/s.
- **2-** No circuito da fig. 1 a frequência do gerador sinusoidal é 1000 rad/s e $I_{10}=2\angle 42^{\circ}$ mA.
- a) De que tipo (resistência, condensador ou bobina) é o elemento à direita da resistência de 10Ω se $V=40\angle 132^{\circ} \, mV$?
- **b)** Qual é o valor desse elemento?
- c) Se $I=1.56 \angle 80.66^{\circ}$ mA, calcule o valor do elemento à direita da resistência de 25Ω .

3- Calcule $i_L(t)$ no circuito da fig. 2.

4- Supondo que o valor da fonte de tensão presente no circuito da fig. 3 é $2.5cos(10t + 9^{\circ})V$, calcule as correntes $i_1(t)$ e $i_2(t)$.

5- Aplique a análise de malhas ao circuito da fig. 4 e apresente o sistema de equações resultante na forma matricial.

6- Determine o equivalente de Norton do circuito da fig.5, considerando uma frequência de *Irad/s*.

7- Para o circuito da fig. 6 considere $Z_1=5 \angle 50^{\circ}\Omega$ e $Z_2=8 \angle -20^{\circ}\Omega$. Calcule a potência média dissipada por cada impedância e a potência média fornecida por cada fonte de corrente.

8- Para o circuito da fig. 7 considere $Z_I = (2+j5)\Omega$ e $Y_2 = (0.1-j0.3)S$. Calcule:

a) a potência média dissipada pela resistência de 3Ω ,

b) a potência média fornecida pelo gerador.

9- Determine o valor eficaz da tensão v(t) dada por: $v(t) = 10 + 9\cos(100t) + 6\sin(100t) V$

10- Determine o valor médio e o valor eficaz das tensões periódicas $v_l(t)$ e $v_2(t)$ representadas na fig. 8.

Respostas

1- a)
$$V_R = 1 \angle 30^{\circ}V$$
; **b)** $V_{LC} = 0V$; **c)** $V_{LC} = 1.5 \angle 120^{\circ}V$

2- a) Bobina; **b)** 20mH; **c)** Condensador de valor $50\mu F$.

3-
$$i_L(t) = 8.84 \cos(100t - 45^{\circ})[A];$$

4-
$$i_1(t) = 0.35cos(10t + 11.5^\circ) A;$$
 $i_2(t) = 0.4cos(10t + 38^\circ) A$

5-
$$\begin{bmatrix}
(3-j0.2) & j0.2 & -3 & 0 \\
(0.005+j0.2) & j1.2 & 0 & -j1.4 \\
-3 & 0 & (3-j0.2) & j0.2 \\
0 & -j1.4 & j0.2 & (5+j1.2)
\end{bmatrix}
\begin{bmatrix}
I_1 \\ I_2 \\ I_3 \\ I_4
\end{bmatrix} = \begin{bmatrix}
9 \\ 0 \\ j9 \\ -j9
\end{bmatrix}$$

6-
$$I_N = 0.89 \angle -63.4$$
°A em paralelo com $Z_N = 1.12 \angle 63.4$ ° Ω

7-
$$P_{ZI}$$
=177.2W, P_{Z2} =161.9W, P_{I0A} =93.6W e P_{II0A} =245.3W.

8- a)
$$P_{3\Omega}$$
=10.85W;

b)
$$P_{gerador} = 20.72W$$
.

9-
$$V_{eff}$$
=12.59 V .

10- a)
$$V_{m\'edio} = 10V$$
; $V_{eff} = 12.25V$;

b)
$$V_{m\'edio} = 0.625V$$
; $V_{eff} = 1.44V$.