1 Топология

Определение 1

Топологическое пространство — это пара (X,Ω) , где $\Omega\subset 2^X$ и выполнено 3 свойства:

- 1) $\varnothing, X \in \Omega$,
- (2) $A, B \in X \Rightarrow A \cap B \in X$,
- 3) $A_i \in X, i \in I \Rightarrow \bigcup A_i \in X$.

 $i{\in}I$

Элементы множества Ω называются *открытыми* множествами.

Если $A-\mathit{открыто}$, то $X\setminus A-\mathit{замкнуто}$.

Задача 1

Переформулируйте аксиомы для замкнутых множеств.

Пример 1. Топология называется тривиальной или антидискретной, если $\Omega = \emptyset, X$.

Задача 2

Докажите, что тривиальная топология — топология.

 Π ример 2. Топология называется $\partial uc\kappa pemnoù$, если $\Omega=2^X$.

Задача 3

Докажите, что дискретная топология — топология.

Задача 4

Пусть X есть луч $[0, +\infty)$, а Ω состоит из \varnothing , X и всевозможных лучей $(a, +\infty)$, где a>0.

Докажите, что Ω — топология на X.

Такая топология называется топология стрелки

Задача 5

Пусть X есть плоскость. Является ли топологической структурой набор множеств, состоящих из \varnothing , X и открытых кругов с центром в начале координат и всевозможными радиусами?

Задача 6

Пусть X состоит из четырёх элементов: $X = \{a, b, c, d\}$. Выясните, какие из следующих трёх наборов его подмножеств являются топологическими структурами в X (т.е. удовлетворяют аксиомам топологической структуры):

- 1) \varnothing , X, $\{a\}$, $\{b\}$, $\{a,c\}$, $\{a,b,c\}$, $\{a,b\}$;
- $(2) \varnothing, X, \{a\}, \{b\}, \{a,b\}, \{b,d\};$
- 3) \varnothing , X, $\{a, c, d\}$, $\{b, c, d\}$.

Задача 7

Свойства замкнутых множеств. Докажите что:

- 1) Пересечение любого набора замкнутых множеств замкнуто;
- 2) Объединение любого конечного набора замкнутых множеств замкнуто;
- 3) Пустое множество и всё пространство (т.е. всё множество носитель топологической структуры) замкнуты.

Определение 2

Ваза топологии — некоторый набор открытых множеств, такой, что всякое непустое открытое множество представимо в виде объединения множеств из этого набора.

Пример 3. Всевозможные интервалы составляют базу стандартной топологии на \mathbb{R} .

Задача 8

Докажите эквивалентные определения базы:

- 1) Совокупность Σ открытых множеств является базой топологии Ω , когда для всякого множества $U \in \Omega$ и всякой точки $x \in U$ существует такое множество $V \in \Sigma$, что $x \in V \subset U$.
- 2) Совокупность Σ подмножеств множества X является базой некоторой топологии в X, когда X есть объединение множеств из Σ и пересечение любых двух множеств из Σ представляется в виде объединения множеств из Σ .

Задача 9

Рассмотрим следующие три набора подмножеств плоскости \mathbb{R}^2 :

- 1) набор Σ_2 , состоящий из всевозможных открытых кругов (т.е. кругов, в которые не включаются ограничивающие их окружности);
- 2) набор Σ_{∞} , состоящий из всевозможных открытых квадратов (квадратов без граничных точек сторон и вершин), стороны которых параллельны координатным осям (они задаются неравенствами вида $\max\{|x-a|,|y-b|\} < r$);

3) набор Σ_1 , состоящий из всевозможных открытых квадратов, стороны которых параллельны биссектрисам координатных углов (они задаются неравенствами вида |x-a|+|y-b|< r).

Докажите, что каждый из наборов Σ_2 , Σ_∞ и Σ_1 служит базой некоторой топологической структуры в \mathbb{R}^2 , и структуры, определяемые этими базами, совпадают.

Задача 10*

Докажите, что всевозможные бесконечные арифметические прогрессии, состоящие из натуральных чисел, образуют базу некоторой топологии в N.

С помощью этой топологии докажите, что множество простых чисел бесконечно. Воспользуйтесь тем, что в противном случае множество {1} было бы открытым (?!).

Определение 3

Если Ω_1 и Ω_2 — топологические структуры в множестве X и $\Omega_1 \subset \Omega_2$, то говорят, что структура Ω_2 **тоньше**, чем Ω_1 , а Ω_1 — **грубее**, чем Ω_2 .

Пример 4. Дискретная топология самая тонкая, а антидискретная самая грубая.

2 Метрическое пространство

Определение 4

Метрическое пространство — это пара (X,d), где $d: X \times X \to R_+$ и выполнено 3 свойства:

- 1) $d(x,y) = 0 \Leftrightarrow x = y$,
- 2) $d(x,y) = d(y,x), \forall x, y \in X$,
- 3) Неравенство треугольника $\forall x, y, z$

$$d(x,y) + d(y,z) \geqslant d(x,z).$$

d называется **метрикой** или **расстоянием**

Пример 5.
$$\left(\mathbb{R}^n, \sqrt{\sum_{i=1}^n (x_i-y_i)^2}\right)$$
 — Евклидово расстояние

Задача 11

Докажите, что *Евклидово расстояние* — метрика

Пример 6.
$$(X,d), d = \begin{cases} 1, x \neq y \\ 0, x = y \end{cases}$$
 — метрика лентяя, дискретная метрика

Задача 12

Докажите, что дискретная метрика — метрика

Определение 5

$$\|x\|_p = p^{-
u_p(x)} - p$$
-адическая норма

Пример 7.
$$(\mathbb{Q},d),d(r,s)=\|r-s\|_p-p$$
-адическая метрика

Задача 13

Докажите, что *р-адическая метрика* — метрика

Пример 8.
$$(\mathbb{R}^n, d), d(x, y) = \left(\sum_{i=1}^n (x_i - y_i)^p\right)^{\frac{1}{p}}$$
 — метрика ℓ_p

Задача 14

Докажите, что метрика ℓ_p — метрика

Определение 6

(X,d) — метрическое пространство. r > 0

Открытый $uap - B_r(x_0) = \{ y \in X \mid d(y, x_0) < x \}.$

Замкнутый шар — $\overline{B_r(x_0)} = \{ y \in X \mid d(y, x_0) \leqslant x \}.$

3амкнутый wap, также называют $\partial ucком$ и обозначают $D_r(x_0) = \overline{B_r(x_0)}$

 $C\phi epa - S_r(x_0) = \{ y \in X \mid d(y, x_0) = x \}.$

Задача 15

Как устроены шары в метрике лентяя?

Задача 16

Как устроены шары в *p-адической метрике*?

Задача 17

Как устроены шары в метриках $\ell_1, \, \ell_2, \, \ell_\infty$?

Определение 7

(X, d) — метрическое пространство.

Топология Ω_d **индуцированная** метрикой определяется так:

 $A \in \Omega_d$, если A представляется как объединение открытых шаров в X.

Задача 18

Проверьте корректность определения индуцированной топологии.

Пример 9. ℝ со стандартной метрикой.

Открытые шары = открытые интервалы.

Примеры замкнутых множеств: $[0,1], \{2,3,9\};$

Задача 19

Докажите, что $A = \left\{\frac{1}{n}\right\}_{n \in \mathbb{Z}_{>0}}$ замкнутым не является, а $A \cup \{0\}$ — замкнуто

Задача 20

(X,d) — метрическое пространство. $U \subset X - om\kappa pumo \Leftrightarrow \forall x \in U \exists \varepsilon : B_{\varepsilon}(x) \subset U$

Определение 8

 (X, ρ) — метрическое пространство, $A \subset X$. Тогда сужение метрики ρ на $A \times A$ является метрикой в A и $(A, \rho|_{A \times A})$ — метрическое пространство. Оно называется подпространством пространства (X, ρ) .

Определение 9

Шар $D_1(0)$ и сфера $S_1(0)$ пространства \mathbb{R}^n (с евклидовой метрикой) обозначаются символами D^n и S^{n-1} и называются n-мерным шаром и (n-1)-мерной сферой. Они рассматриваются как метрические пространства — подпространства пространства \mathbb{R}^n .

 Π ример 10. Убедитесь в том, что: D^1 есть отрезок [-1;1], D^2 есть круг, S^0 — пара точек $\{-1,1\}$; S^1 — окружность, S^2 — сфера, D^3 — шар.

Задача 21

Докажите, что для любых точек x,a произвольного метрического пространства и любого числа $r>\rho(x,a)$ имеют место включения

$$B_{r-\rho(a,x)}(x) \subset B_r(a)$$
, a $D_{r-\rho(a,x)}(x) \subset D_r(a)$