	/
6	disposed between the first object and the second object;
7	a first driving system which moves the first object in
8	the first direction, at least a part of the first driving
9	system being on one side of the projection system;
10	a second driving system which finely moves the first
11	object while the first object is moved by the first driving
12	system, at least a part of the second driving system being
13	on the one side of the projection system; and
14	a third driving system which moves the second object in
15	the second direction, at least a part of the third driving
16	system being on the other side of the projection system
1	38. An apparatus according to claim 37, wherein
2	the first object includes a mask having a pattern area, and
3	the second object includes a work-piece on which a pattern

July 3

1

2

3

--39. An apparatus according to claim 37, wherein said second driving system rotates said first object.--

of the mask is transferred .--

--40. An apparatus according to claim 37, wherein said second driving system moves said first object two-dimensionally.--

An apparatus according to claim 37, wherein said first driving system includes a linear motor .----42. An apparatus according to claim 37, wherein said third driving system includes a linear motor .----43. An apparatus according to claim 37, further comprising: a detecting system which detects a relative relationship between the first object and the second object. 5 An apparatus according to claim 43, wherein 1 said relationship includes a positional 2 deviation between said first object and said second 3 object 45. An apparatus according to claim 43, wherein said detecting system includes an interferometer .----46. An apparatus according to claim 37, further 1 comprising: 2 a supporting member which supports the first object, 3 wherein the first object is moved in the first direction by/maving the supporting member with the first 5 driving system, and the second driving system finely moves 6 the first/object relative to the supporting member. --7

3

1	47. An apparatus according to claim 46, wherein
2	the second driving system famely moves the first object
3	without a weight of the supporting member
1	48. An apparatus according to claim 37, further
)2	comprising:
3	a first supporting member which is movable in the first
4	direction; and
5	a second supporting member which is movable relative to
6	the first supporting member and which supports the first
7	object,
8	wherein the first object is moved in the first
9	direction by moving the first supporting member with the
10	first driving system, and the first object is finely moved
11	by moving the second supporting member, with the second
12	driving system, relative to the first supporting member
· 1	49. An apparatus according to claim 48, wherein
2	at least a part of said second driving system is provided at
3	said first supporting member
1	50. An apparatus according to claim 48, further
2	comprising:
3	a reflective surface disposed on the second supporting
4	member; and
5	an interferometer, optically connected to the

6 reflective surface, which is used for detecting positional
7 information of the first object.--

--51. An apparatus according to claim 48, wherein the second driving system finely moves the second supporting member without a weight of the first supporting member.--

--52. An apparatus according to claim 37, wherein an exposure beam irradiated onto said first object defines a rectangular illumination area on said first object.--

-- 53. An apparatus according to claim 37, wherein said projection system includes a reflective and refractive optical system.--

--54. An apparatus according to claim 38, wherein said second driving system moves said first object finely before the pattern area of said mask begins to be illuminated with an exposure beam.--

the first driving system and the third driving system

operate respectively to move the first object and the second
object synchronously; and

the second driving system operates to correct a

positional relationship between the first object and the

3/4

ng a synghronous movement of the first
ond object
aratus according to claim 37, wherein
on and said second direction are paralle.
another.
aratus according to claim 56, wherein
system and the third driving system
to move the first object and the second
ly in the respective first and second
iving system operates to correct a
nship between the first object and the
ng a synchronous movement of the first
ond object
earatus according to claim 37, further
ring device which detects positional
first object; and
suring device which detects positional
second object
paratus according to claim 58, wherein
system and the third driving system

4	object synchronously based on the positional information
5	detected by the first and second measuring devices; and
6	the second driving system operates to correct a
7	positional relationship between the first object and the
8	second object during a synchronous movement of the first
9	object and the second object
1	60. An apparatus according to claim 37, wherein
2	the projection system has a projection magnification which
3	includes reduction magnification
1	61. An apparatus according to claim 60, wherein
2	the first driving system and the third driving system
3	operate separately to move the first object and the second
4	object synchronously based on the reduction magnification of
5	the projection system; and
6	the second driving system operates to correct a
7	positional relationship between the first object and the
8	second object during a synchronous movement of the first
9	object and the second object
1	62. An apparatus according to claim 37, wherein
2	a speed of movement of said first object and a speed of
3	movement of said second object are different from each
4	other
	1

1	63. An apparatus according to claim 62, wherein
2	the first driving system and the third driving system
3	operate separately to move the first object and the second
4	object synchronously, the first object being moved at a
5	first speed and the second object being moved at a second
6	speed; and
7	the second driving system operates to correct a
8	positional relationship between the first object and the
9	second object during a synchronous movement of the first
LO	object and the second object
1	64. An apparatus according to claim 63, wherein
2	the first speed is faster than the second speed
1	65. An apparatus according to claim 37, wherein
2	said first object and said second object are moved under
3	respective first and second speed controls which are
4	different from each other
1	66. An apparatus according to claim 65, wherein
2	the first driving system and the third driving system
3	operate separately to move the first object and the second
4	object synchronously, the first object being moved under the
5	first speed control and the second object being moved under
6	the second speed control; and
7	the second driving system operates to correct a
8	positional relationship between the first object and the
	8

9	second object during a synchronous movement of the first
10	object and the second object
1	67. An apparatus according to claim 66, wherein
2	when said first object is accelerated under said first speed
3	control, said second object moves at a constant speed under
4	said second speed control
1	68. A scanning exposure method in which a first
2	object is moved in a first direction and a second object is
3	moved in a second direction for a scanning exposure, the
4	method comprising:
>5	moving a first object in the first direction by using a
6	first driving system;
7	finely shifting the first object by using a second
8	driving system while the first object is moved by the first
9	driving system; and
10	moving a second object in the second direction by using
11	a third driving system
- SCHALL STATE	56
1	- 69. A method according to claim 68, wherein
2	the first object includes a mask having a pattern area, and
3	the second object includes a work-piece on which a pattern
4	of the mask is transferred
	~ /
1	70. A method according to claim 68, wherein
X	$\sim 10^{-1}$

1	71. A method according to claim 68, wherein
2	said second driving system shifts said first object two-
3	dimensionally.
	55 72. A method according to claim 68, wherein
	said first driving system includes a linear motor
1,	
W10 1	73. A method according to claim 68, wherein
T y y $_2$	said third driving system includes a linear motor
	60 55
AIII 1	- 74. A method according to claim 68, further
2	comprising:
3	detecting a relative relationship between the first
4	object and the second object
<i></i>	
1	75. A method according to claim 74, wherein
2	said relative relationship includes a positional deviation
3	between said first object and said second
4	object
a-1)	6 - 76. A method according to claim 74, wherein
Ship	
1 Q ²	said relative relationship is detected by an
J23/	<u>interferometer</u>
	/ Alian to aloim 60 whorein
1	77. A method according to claim 68, wherein
2	the first driving system moves a supporting member, which
	10
	2)

	<i>'</i>
3	supports the first object, in the first direction, and
4	the first object is moved in the first direction by
5	moving the supporting member with the first driving system,
6	and the second driving system finely shifts the first object
7	relative to the supporting member
1	78. A method according to claim 77, wherein
2	the second driving system finely shifts the first object
3	without a weight of the supporting member
1	79. A method according to claim 68, wherein
2	the first driving system moves a first supporting member in
3	the first direction; and
4	the second driving system finely shifts a second
5	supporting member, which supports the first object, relative
)	to the first supporting member,
/7	wherein the first object is moved in the first
8	direction by moving the first supporting member with the
9	first driving system and is finely shifted by moving the
10	second supporting member with the second driving system
1	80. A method according to claim 79, wherein
2	at least a part of said second driving system is provided at
3	said first supporting member
1	81. A method according to claim 79, wherein
2	the second driving system finely shifts the second

3	supporting member without a weight of the first supporting
4	member
1	82. A method according to claim 68, wherein
2	an exposure beam irradiated onto said first object defines a
3	rectangular illumination area on said first object
1	83. A method according to claim 69, wherein
2	said second driving system shifts said first object finely
3	before the pattern area of said mask begins to be
4	illuminated with an exposure beam
C. C	. 55
TA	6 A method according to claim 68; wherein
W.V	
MA	the first driving system and the third driving system
(b)	operate respectively to move the first object and the second
4	object synchronously; and
5	the second driving system operates to correct a
6	positional relationship between the first object and the
7	second object during a synchronous movement of the first
L_8_	object and the second object
1	85. A method according to claim 68, wherein
2	said first direction and said second direction are parallel
3	and reverse to one another
ļ	
1	86. A method according to claim 85, wherein
2	the first driving system and the third driving system

operate separately to move the first object and the second 3 object synchronously in the respective first and second 4 directions; and 5 the second driving system operates to correct a 6 positional relationship between the first object and the 7 second object during a synchronous movement of the first 8 object and the second object. --9 --87. A method according t/p claim 68, further 1 comprising: measuring positional information of the first object; 3 and measuring positional information of the second 5 6 object. ----88. A method according to claim 87, wherein 1 the first driving system and the third driving system 2 operate separately to move the first object and the second 3 object synchronously based on the respective detected 4 positional information bf the first and second objects; and 5 the second driving system operates to correct a 6 positional relationsh p between the first object and the . 7 second object during a synchronous movement of the first 8 object and the second object.-9 --89. A method according to claim 68, wherein 1 the first driving system and the third driving system 2 13

3	operate separately to move the first object and the second
4	object synchronously based on a projection magnification of
5 .	a projection system which is used for the scanning exposure,
6	the projection magnification including reduction
7	magnification; and
8	the second driving system operates to correct a
9	positional relationship between the first object and the
10	second object during a synchronous movement of the first
11	object and the second object
1	90. A method according to claim 68, wherein a
2	speed of movement of said first object and a speed of
3	movement of said second object are different from each
4	other
1	91. A method according to claim 90, wherein
2	the first driving system and the third driving system
3	operate separately to move the first object and the second
4	object synchronously, the first object being moved at a
5	first speed and the second object being moved at a second
6	speed; and
7	the second driving system operates to correct a
8	positional relationship between the first object and the
9	second object during a synchronous movement of the first
10	object and the second object

		/
	1	92. A method according to claim/91, wherein
	2	the first speed is faster than the second speed
	1	93. A method according to claim 68, wherein
	2	said first object and said second object are moved under
	3	respective first and second speed controls which are
	4	different from each other
	1	94. A method according to claim 93, wherein
	2	the first driving system and the third driving system
	3	operate separately to move the first object and the second
	4	object synchronously, the first object being moved under the
	5	first speed control and the second object being moved under
	6	the second speed control; and
	7	the second driving system operates to correct a
	8	positional relationship between the first object and the
	9	second object during a synchronous movement of the first
	10	object and the second object
	1	95. A method according to claim 94, wherein
	2	when said first object is accelerated under said first speed
	3	control, said second object moves at a constant speed under
	4	said second speed control

My 2

--96. A circuitry element produced with use of th

5

6

7

8

9

12

13

14

15

16

17

18

1

2

3

-- 97. A method for making a scanning exposure apparatus in which a first object is moved in a first direction and a second object is moved in a second direction for a scanning exposure, the method comprising:

providing a projection system for the scanning exposure, which is disposed between the first object and the second object;

providing a first driving system which moves the first object in the first direction, at least a part of the first driving system being on one side of the projection system;

providing a second driving system which finely moves the first object while the first object is moved by the first driving system, at least a part of the second driving system being on the one side of the projection system; and providing a third driving system which moves the second

object in/the second direction, at least a part of the third driving/system being on the other side of the projection system. --

76 A method according to claim 97, wherein the first object includes a mask having a pattern area, and the second object includes a work-piece on which a pattern of the mask is transferred. --

--99. A method according to claim 97, wherein said second driving system ratates said first object .--

1	100. A method according to claim 97, wherein
2	said second driving system moves said first object two-
3	dimensionally
المربعة عمور	10 75
\int_{-1}^{1}	10. A method according to claim 97, wherein
2	said first driving system includes a linear motor
1 1	~ /
M10 1	102. A method according to claim 97, wherein
$\int \int \int \int 2$	said third driving system includes a linear motor
At 1	103. A method according to claim 97, further
	comprising:
3'/	providing a detecting system which detects a relative
	relationship between the first object and the second
5	object.
	and a deliberation to aloim 103 wherein
1	104. A method according to claim 103, wherein
2	said relative relationship includes a positional deviation
3	between said first object and said second
4	object
1	S/ 105. A method according to claim 103, wherein
1	said detecting system includes an interferometer
. کھے	said detecting system includes an insulation
1	106. A method according to claim 97, further
2	comprising:
3	providing a supporting member which supports the first
	17
71	
クヤ	

=

4	object,
5	wherein the first object is moved in the first
6	direction by moving the supporting member with the first
7	driving system, and the second driving system finely moves
8	the first object relative to the supporting member
1	107. A method according to claim 106, wherein
2	the second driving system finely moves the first object
3	without a weight of the supporting member
1	108. A method according to claim 97, further
2	<pre>comprising:</pre>
3	providing a first supporting member which is movable in
4	the first direction; and
)5	providing a second supporting member which is movable
6	relative to the first supporting member and which supports
7	the first object,
8	wherein the first object is moved in the first
9	direction by moving the first supporting member with the
10	first driving system and is finely moved relative to the
11	first supporting member by moving the second supporting
12	member with the second driving system
1	109. A method according to claim 108, wherein
2	at least a part of said second driving system is provided at

}	,
1	110. A method according to claim 108 further
2	<pre>comprising:</pre>
3	providing a reflective surface disposed on the second
4	supporting member; and
5	providing an interferometer, optically connected to the
6	reflective surface, which is used for detecting positional
7	information of the first object/
1	111. A method according to claim 108, wherein
2	the second driving system/finely moves the second supporting
3	member without a weight of the first supporting member
1	112. A method according to claim 97, wherein
2	an exposure beam irradiated onto said first object defines a
3	rectangular illumination area on said first object
	86. 75113. A method according to claim 97, wherein
2	said projection system includes a reflective and refractive
3	optical system
1	114. A method according to claim 98, wherein
2	said second driving system moves said first object finely
/ 3	before the pattern area of said mask begins to be
4	illuminated with an exposure beam
12	98145. A method according to claim 97, wherein
	the first driving system and the third driving system
	19

operate respectively to move the first object and the second
object synchronously; and
the second driving system operates to correct a
positional relationship between the first object and the
second object during a synchronous movement of the first
object and the second object
116. A method according to claim 97, wherein
said first direction and said second direction are parallel
and reverse to one another
117. A method according to claim 116, wherein
the first driving system and the third driving system
operate separately to move the first object and the second
object synchronously in the respective first and second
directions; and
the second driving system operates to correct a
positional relationship between the first object and the
second object during a synchronous movement of the first
object and the second object
118. A method according to claim 97, further
comprising:
providing a first measuring device which detects
positional information of the first object; and
providing a second measuring device which detects
positional information of the second object
20

--,

1	119. A method according to claim 118, wherein
-	
2	the first driving system and the third driving system
3	operate separately to move the first object and the second
4	object synchronously based on the respective detected
5	positional information detected by the first and second
6	measuring devices; and
7	the second driving system operates to correct a
8	positional relationship between the first object and the
9	second object during a synchronous movement of the first
10	object and the second object
1	120. A method according to claim 97, wherein
2	the projection system has a projection magnification which
3	includes reduction magnification
1	121. A method according to claim 120, wherein
2	the first driving system and the third driving system
3	operate separately to move the first object and the second
4	object synchronously based on the reduction magnification of
5	the projection system; and
6	the second driving system operates to correct a
7 .	positional relationship between the first object and the
8	second object during a synchronous movement of the first
9	object and the second object

	/
1	122. A method according to claim 97, wherein
2	a speed of movement of said first object and a speed of
3	movement of said second object are different from each
4	other
1	123. A method according to claim 122, wherein
2	the first driving system and the third driving system
3	operate separately to move the first object and the second
4	object synchronously, the first object being moved at a
5	first speed and the second object being moved at a second
6	speed; and
7	the second driving system operates to correct a
8	positional relationship between the first object and the
9	second object during a synchronous movement of the first
10	object and the second object
1	124. A method according to claim 123, wherein
2	the first speed is faster than the second speed
1	125. A method according to claim 97, wherein
2	said first object and said second object are moved under
3 .	respective first and second speed controls which are
4	different from each other.
1	126. A method according to claim 125, wherein
2	the first driving system and the third driving system

M