

SI100B Introduction to Information Science and Technology (Electrical Engineering)

Lecture #6 Analog Circuits

Instructor: Junrui Liang (梁俊睿)

Oct. 29th, 2021

The Theme Story

(Pictures are from the Internet)

Study Purpose of Lecture #6

- 哲学(bao'an)三问
 - Who are you?
 - Where are you from?
 - Where are you going?

To answer those questions throughout your life

- In this lecture, we ask
 - How to connect a discrete digital machine to the physical world?
 - What are the purpose and basic principle of an analog circuit 模拟电路?
 - How to convert analog (continuous) signal into digital (discrete) signal?

(Pictures are from the Internet)

Lecture Outline

- The real world vs. a binary world
- Fundamentals of analog (linear) circuit 模拟电路
 - Amplification 放大的原理
 - Operational amplifier 运算放大器
- Basic MOS amplifier 单MOS管放大器
 - Voltage range and frequency limitations 电压范围和频率限制
- Analog to digital conversion (ADC) 模数转换
- Digital to analog conversion (DAC) 数模转换

What if a real world becomes binary (black or white)?

The colorful real world

A binary world every pixel can only be either 1 (black) or 0 (white)

How to approximate the real world?

The colorful real world

A gray scale world every pixel can only be a number between 1 (black) or 0 (white)

How to approximate the real world?

The colorful real world

A colorful approximation

You must understand both the optics (physics of light) & its digital approximation

The real world vs. a binary world

The importance of amplification

- In the mechanical domain
 - What is amplified?
 - What is reduced?

- In the electrical domain
 - What is amplified?
 - What is reduced?

How about these?

- In the mechanical domain
 - What is amplified?
 - What is reduced?

- In the electrical domain
 - What is amplified?
 - What is reduced?

(Electronic) amplifier

- An electronic device that increases the power of a signal
 - Taking energy from a power supply
 - controlling the output to match the input signal shape but with a larger amplitude
 - The opposite of an attenuator
 - An amplifier provides gain, an attenuator provides loss

Operational amplifier (op amp 运算放大器)

- One of the most widely used electronic devices
- Originally from analog computers for doing mathematical operations
- Characteristics
 - DC-coupled
 - Voltage amplifier
 - High gain $(A \rightarrow \infty)$
 - A differential input $(V_+ V_-)$
 - A single-ended output (V_{out})

$$V_{out} = A(V_+ - V_-)$$

Realization

BJT Technology

A component-level diagram of the common 741 op-amp. Dotted lines outline: current mirrors (red); differential amplifier (blue); class A gain stage (magenta); voltage level shifter (green); output stage (cyan).

CMOS Technology

Realization

· Layout view of a simple CMOS operational amplifier

Applications

Audio system

Bio-electric signal

Ideal op amp

Voltage follower

A voltage follower is a op-amp circuit which has a voltage gain of 1

Open-loop and close-loop gain

- Open-loop gain 开环增益
 - Large but finite
 - Instable subjected to the manufacturing process, temperature, etc.

• Close-loop gain 闭环增益

Gain = Vout/Vin = Rf/Rin

Summing amplifier circuit

MOSFET in digital applications: a review

(Razavi, Fundamentals of Microelectronics)

Beyond the on/off states

For digital electronics

For analog electronics

(Razavi, Fundamentals of Microelectronics)

I/V characteristics

Linear region:

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} [2(V_{GS} - V_{TH}) V_{DS} - V_{DS}^{2}]$$

A voltage-controlled resistor 压控电阻

Saturation region:

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS})$$

A voltage controlled current source 压控电流源

(Razavi, Fundamentals of Microelectronics)

Basic MOS amplifier

(Neamen, Electronic Circuit Analysis and Design)

Voltage range limitations

• In a real transistor circuit

• A lever 杠杆 example

Frequency limitations

 Parasitic components of a MOSFET Frequency response

ADC & DAC

ADC example: Flash ADC (direct-conversion ADC)

Digital-to-analog converter (DAC)

The simplest form

Digital-to-analog converter (DAC)

• The R-2R ladder

$$V_{out} = -\frac{R_f}{R} \left(\frac{D_7}{2} + \frac{D_6}{4} + \frac{D_5}{8} + \frac{D_4}{16} + \frac{D_3}{32} + \frac{D_2}{64} + \frac{D_1}{128} + \frac{D_0}{256} \right) \qquad D = 0 \text{ or } 1$$