

FORMELSAMMLUNG FELDER, WELLEN UND LEITUNGEN

Sommersemester 22

Name: Die Prinzen - Alles nur geklaut

Matrikelnummer: MATNR

Letzte Änderung: 30. Juni 2022

Lizenz: GPLv3

Inhaltsverzeichnis

1	Gru	ndlagen 1
	1.1	mathematische
	1.2	Rechenregeln
	1.3	Schnittwinkel zweier Vektoren
	1.4	Logarithmische Maße
	1.5	Randbedingung
	1.6	Begriffe
	1.7	Vergleich/Umrechnung
	1.8	Kartesische Koordinaten
	1.9	Zylinderkoordinaten
	1.10	Kugelkoordinaten
2	Max	kwell'schen Gleichungen
	2.1	Integralsätze
3	Feld	
	3.1	E-Felder an Grenzflächen
	3.2	Elektrostatik
		3.2.1 Potential Gleichung
		3.2.2 Green'sche Funktionen
	3.3	Magnetostatik
		3.3.1 Vektorpotential in Abhängigkeit von der Stromdichte
		3.3.2 Biot-Savart-Gesetz
		3.3.3 Elektrischer Dipol
		3.3.4 Magnetischer Dipol
	3.4	Skineffekt
4	Wel	
	4.1	Ausbreitung
		4.1.1 Allgemein
		4.1.2 Im leeren Raum(Vakuum)
		4.1.3 Im verlustlosen/idealen Dielektrika
		4.1.4 Im Dielektrika mit geringem Verlust
		4.1.5 Im guten Leiter
	4.2	Übergang
		4.2.1 Zwischen Dielektrika mit geringem Verlust
	4.3	Energie und Poyntingvektor (Energieflussdichte)
		4.3.1 Leistung
		4.3.2 Leistung nach Dämpfung
		4.3.3 Leistung vom Kabel transportiert
	4.4	dÀlembertsche Gleichung (allg.)
	4.5	Helmholtz-Gleichungen (Frequenzbereich)
	1.0	4.5.1 Zeitbereich
		4.5.2 Frequenzbereich (harmonisch)
	4.6	Wellenzahl
	4.7	Wellenlänge
	4.8	Phasengeschwindigkeit
	4.0	4.8.1 Gruppengeschwindigkeit
	4.9	Polarisation
	-	Verlustlose Polarisation
		Totalrefexion
		Grenzwinkel
		Brewster-/Polarisationswinkel
	4.14	Senkrechter Einfall
		4.14.1 Senkrechter Einfall ideales/verlustl. Dielekt
		4.14.2 Spezialfall Medium 1 ist Luft
		4.14.3 Spezialfall Medium 2 ist Luft
		4.14.4 Spezialfall beide Medien NICHT magnetisch
		4.14.5 Spezialfall Medium 2 idealer Leiter
		Stehwellenverhältnis
		Senkrechte (E-Feld) Polarisation (H-Feld parallel)
	4.17	Parallel (E-Feld) Polarisation (H-Feld senkrecht)

5	Leit	tungen 13
	5.1	Leitungsparameter
		5.1.1 Doppelleitung:
		5.1.2 Koaxial Leitung
		5.1.3 Parallele Platten
	5.2	Allgemeine Lösung Leitungsgleichung
	5.2	
		5.2.1 Verlustlose Übertragungsleitung
		5.2.2 vernachlässigbarer Widerstandsbelag
		5.2.3 vernachlässigbarer Leitwertbelag
	5.3	Übertragungsleitung mit Last
		5.3.1 Vorgehen Eingangswiderstand
		5.3.2 Reflexionsfaktor entlang einer Leitung
		5.3.3 Stehwellenverhältnis
		5.3.4 Position von Extrema
		5.3.5 Spezialfall: Angepasste Leitung
		5.3.6 Spezialfall: Kurzgeschlossene Leitung
		1
	٠,	5.3.8 Spezialfall: Ohm'sch abgeschlossene Leitung
	5.4	Mehrfachreflexionen bei fehlender Anpassung
•	C .	41. D'
6		ith-Diagramm 16
	6.1	Allgemein
_		
7		llenleiter 17
	7.1	Koaxial Leiter
		7.1.1 Wellenwiderstand
		7.1.2 Dämpfung
	7.2	Mikrostreifenleiter
		7.2.1 Effektive Permittivitätszahl
		7.2.2 Schmale Streifen
		7.2.3 Breite Streifen
	7.3	Hohlleiter
	7.3	VSWR (Voltage Standing Wave Ratio) und Return Loss
	1.4	v5wh (voltage Standing wave Ratio) und Return Loss
8	Ant	tennen 18
G	8.1	Herz'scher Dipol
	0.1	•
		8.1.1 Allgemein
		8.1.2 Nahfeld
		8.1.3 Fernfeld
		8.1.4 Abgestrahlte Leistung im Fernfeld
		8.1.5 Strahlungswiderstand
	8.2	Magnetischer Dipol
		8.2.1 Fernfeld
		8.2.2 Abgestrahlte Leistung im Fernfeld
		8.2.3 Nahfeld
	8.3	Lineare Antenne
	0.0	8.3.1 Dipolantenne
	8.4	Antennenkenngrößen
	0.4	
		8.4.1 Abgestrahlte Leistung
		8.4.2 Verlustleistung
		8.4.3 Wirkungsgrad
		8.4.4 Richtcharakteristik
		8.4.5 Richtfunktion/Richtfaktor
		8.4.6 Gewinn
		8.4.7 Wirksame Antennenfläche
	8.5	Bezugsantennen
	8.6	Senden und Empfangen
	J.0	8.6.1 Freiraumdämpfung/Freiraumdämpfungsmaß
		8.6.2 Leistungspegel/Freiraumpegel
	0 =	
	8.7	Antennentabelle

1 Grundlagen

1.1 mathematische

Divergenz/Rotation/Gradient

div: Vektor \rightarrow Skalar (Quelle / Senke) rot: Vektor auf Vektorfeld (rot = 0 für E. erhaltendes Feld) grad: Skalar-/Gradientenfeld \rightarrow Vektorfeld (Richtung stärkster Feldänderung)

$$\operatorname{div} \vec{G} = \nabla \cdot \vec{G} \qquad = \frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y} + \frac{\partial G_z}{\partial z}$$

$$\begin{cases} = 0 & \Rightarrow \text{Volumen} \\ > 0 & \Rightarrow \text{Quelle} \\ < 0 & \Rightarrow \text{Senke} \end{cases}$$

$$\operatorname{rot} \vec{G} = \nabla \times \vec{G} \qquad = \begin{pmatrix} \frac{\partial G_z}{\partial y} - \frac{\partial G_y}{\partial z} \\ \frac{\partial G_x}{\partial z} - \frac{\partial G_z}{\partial x} \\ \frac{\partial G_y}{\partial x} - \frac{\partial G_x}{\partial y} \end{pmatrix}$$

$$\operatorname{grad} G = \nabla \cdot G \qquad \qquad = \qquad \begin{pmatrix} \frac{\partial G}{\partial x} \\ \frac{\partial G}{\partial y} \\ \frac{\partial G}{\partial z} \end{pmatrix}$$

1.2 Rechenregeln

$$\begin{array}{lll} \nabla \cdot (\vec{f} \times \vec{g}) & = & (\nabla \times \vec{f}) \cdot \vec{g} - (\nabla \times \vec{g}) \cdot \vec{f} \\ \nabla \cdot (fg) & = & f(\nabla g) + g(\nabla f) \\ \nabla \cdot (f\vec{g}) & = & g(\nabla \vec{f}) + f(\nabla \vec{g}) \\ \nabla \times (f\vec{g}) & = & \nabla f \times \vec{g} + f(\nabla \times \vec{g}) \\ \mathrm{rot} \, \mathrm{grad} \, f & = & 0 \Rightarrow \mathrm{Gradientenfeld} \, \mathrm{Quellenfrei} \\ \mathrm{div} \, \mathrm{rot} \, \vec{f} & = & 0 \Rightarrow \mathrm{Wirbelfeld} \, \mathrm{Quellenfrei} \end{array}$$

Nabla Operator

$$\nabla = \vec{\nabla} = \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}, \frac{\partial G}{\partial z}\right)$$

Feldänderung bei Bewegung

$$\begin{split} \Delta G &= \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial y} \Delta y + \frac{\partial G}{\partial z} \Delta z \\ &= dG = \operatorname{grad} G \cdot d\vec{s} \end{split}$$

1.3 Schnittwinkel zweier Vektoren

$$\vec{E} \cdot \vec{H} = |\vec{E}| \cdot |\vec{H}| \cdot \cos(\varphi)$$

$$\cos(\varphi) = \frac{E_x \cdot H_x + E_y \cdot H_y + E_z \cdot H_z}{|E| \cdot |H|}$$

1.4 Logarithmische Maße

- dBm=1mW
- $dB\mu V = 1\mu V$
- dBmV=1mV
- $dBi \rightarrow Isotropic$

Dezibel [dB]

$$X[dB] = 20 \cdot \log \left(\frac{U_1}{U_2}\right) \qquad X[dB] = 10 \cdot \log \left(\frac{P_1}{P_2}\right)$$
$$U_1 = U_2 \cdot 10^{X/20 \text{dB}} \qquad P_1 = P_2 \cdot 10^{X/10 \text{dB}}$$
$$1 \text{dB} \, \hat{=} \qquad 0,1151 \text{Np}$$

Neper [Np]

$$X[Np] = \ln\left(\frac{U_1}{U_2}\right) \qquad X[Np] = \frac{1}{2} \cdot \ln\left(\frac{P_1}{P_2}\right)$$

$$U_1 = U_2 \cdot e^X \qquad P_1 = P_2 \cdot e^{2X}$$

$$1\text{Np} = 8,686\text{dB}$$

1.5 Randbedingung

Dirichlet-RB	Funktion nimmt an den Rändern einen bestimmten Wert an (Bsp.: $\rho_r = 5V$)
Neumann-RB	Die Normalableitung der Fkt. nimmt an den Rändern einen be- stimmten Wert an

1.6 Begriffe

	Begriff	Beschreibung
ρ	Raumladungsdichte	

1.7 Vergleich/Umrechnung

·	ı	ı
Kart.	Zyl.	Kug.
x	$r\cos\varphi$	$r \sin \vartheta \cos \varphi$
y	$r\sin\varphi$	$r\sin\vartheta\sin\varphi$
\overline{z}	z	$r\cos\vartheta$
$\sqrt{x^2 + y^2}$	r	
$\frac{y}{x}$	φ	
\overline{z}	z	
$dx\cos\varphi + dy\sin\varphi$	dr	
$dy\cos\varphi - dx\sin\varphi$	$rd\varphi$	
dz	dz	
$\sqrt{x^2 + y^2 + z^2}$		r
$\arctan \frac{y}{x}$		φ
$\arctan \frac{\sqrt{x^2 + y^2}}{z}$		θ
$dx \sin \theta \cos \varphi + dy \sin \theta \sin \varphi + dz \cos \theta$		dr
$dy\cos\varphi - dx\sin\varphi$		$r\sin\vartheta d\varphi$
$dx \cos \theta \cos \varphi + dy \cos \theta \sin \varphi - dz \sin \theta$		$rd\vartheta$

1.8 Kartesische Koordinaten

Skalarfeld:

$$\phi = \phi(x; y; z)$$

Vektorfeld:

$$\vec{F} = \vec{F}(x; y; z) = F_x \vec{e}_x + F_y \vec{e}_y + F_z \vec{e}_z$$

Rechtssystem:

$$\vec{e}_x \times \vec{e}_y = \vec{e}_z$$

Linienelemente:

$$ds = \sqrt{dx^2 + dy^2 + dz^2}$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \right] \vec{e}_x + \left[\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \right] \vec{e}_y + \left[\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right] \vec{e}_z$$

Laplace Operator:

$$\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\begin{split} \Delta \vec{E} &= \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_x \vec{e}_x + \Delta E_y \vec{e}_y + \Delta E_z \vec{e}_z \\ &= \left[\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} \right] \vec{e}_x + \left[\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} \right] \vec{e}_y + \left[\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} \right] \vec{e}_z \end{split}$$

1.9 Zylinderkoordinaten

Skalarfeld:

$$\phi = \phi(r; \varphi; z)$$

Vektorfeld:

$$\vec{F} = \vec{F}(r;\varphi;z) = F_r \vec{e}_r + F_\varphi \vec{e}_\varphi + F_z \vec{e}_z$$

Linienelemente:

$$ds = \sqrt{dr^2 + r^2 d\varphi^2 + dz^2}$$

Volumenelemente:

$$dv = r dr d\varphi dz$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \vec{e}_\varphi + \frac{\partial \phi}{\partial z} \vec{e}_z$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \vec{D}_r \right) + \frac{1}{r} \cdot \frac{\partial \vec{D}_{\varphi}}{\partial \varphi} + \frac{\partial \vec{D}_z}{\partial z}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[\frac{1}{r} \cdot \frac{\partial E_z}{\partial \varphi} - \frac{\partial E_{\varphi}}{\partial z} \right] \vec{e_r} + \left[\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right] \vec{e_{\varphi}} + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \cdot E_{\varphi} \right) - \frac{\partial E_r}{\partial \varphi} \right] \vec{e_z}$$

Laplace Operator:

$$\Delta\phi = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} + \frac{\partial^2 \phi}{\partial z^2}$$

$$\vec{E} = \left[\Delta E_r - \frac{2}{r^2} \frac{\partial E_{\varphi}}{\partial \varphi} - \frac{E_r}{r^2} \right] \vec{e}_r + \left[\Delta E_{\varphi} + \frac{2}{r^2} \frac{\partial E_r}{\partial \varphi} - \frac{E_{\varphi}}{r^2} \right] \vec{e}_{\varphi} + [\Delta E_z] \vec{e}_z$$

1.10 Kugelkoordinaten

Skalarfeld:

$$\phi = \phi(r; \vartheta; \varphi)$$

Vektorfeld:

$$\vec{F} = \vec{F}(r; \vartheta; \varphi) = F_r \vec{e}_r + F_\vartheta \vec{e}_\vartheta + F_\varphi \vec{e}_\varphi$$

Linienelement:

$$ds = \sqrt{dr^2 + r^2 \sin^2 \vartheta d\varphi^2 + r^2 d\vartheta^2}$$

Volumenelement:

$$dv = r^2 \sin \vartheta dr d\vartheta d\varphi$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial \phi}{\partial \vartheta} \vec{e_\vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial \phi}{\partial \varphi} \vec{e_\varphi}$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r^2} \frac{\partial (r^2 D_r)}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial (\sin \vartheta \cdot D_\vartheta)}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial D_\varphi}{\partial \varphi}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \frac{1}{r \sin \vartheta} \left[\frac{\partial \left(\sin \vartheta \cdot E_{\varphi} \right)}{\partial \vartheta} - \frac{\partial E_{\vartheta}}{\partial \varphi} \right] \vec{e}_{r} + \frac{1}{r} \left[\frac{1}{\sin \vartheta} \frac{\partial E_{r}}{\partial \varphi} - \frac{\partial r E_{\varphi}}{\partial r} \right] \vec{e}_{\vartheta} + \frac{1}{r} \left[\frac{\partial \left(r E_{\vartheta} \right)}{\partial r} - \frac{\partial E_{r}}{\partial \vartheta} \right] \vec{e}_{\varphi}$$

Laplace Operator:

$$\Delta\phi = \frac{1}{r^2} \left\{ \frac{\partial}{\partial r} \left(r^2 \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{\sin \vartheta} \cdot \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \cdot \frac{\partial \phi}{\partial \vartheta} \right) + \frac{1}{\sin^2 \vartheta} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} \right\}$$

Laplace Operator in Kugelkoordinaten, angewandt auf einen Vektor:

$$\Delta \vec{E} = \left[\Delta E_r - \frac{2}{r^2} E_r - \frac{2}{r^2 \sin \vartheta} \frac{\partial \left(\sin \vartheta \cdot E_\vartheta \right)}{\partial \vartheta} - \frac{2}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_r$$

$$+ \left[\Delta E_\vartheta - \frac{E_\vartheta}{r^2 \sin^2 \vartheta} + \frac{2}{r^2} \frac{\partial E_r}{\partial \vartheta} - \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_\vartheta$$

$$+ \left[\Delta E_\varphi - \frac{E_\varphi}{r^2 \sin^2 \vartheta} + \frac{2}{r^2 \sin \vartheta} \frac{\partial E_r}{\partial \varphi} + \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\vartheta}{\partial \varphi} \right] \vec{e}_\varphi$$

2 Maxwell'schen Gleichungen

differentielle Form

Integralform

$$\operatorname{div} \mathbf{D} = \nabla \cdot \mathbf{D} = \rho$$

Gauß

$$\iint_{\partial V} \mathbf{D} \cdot d\mathbf{a} = \iiint_{V} \rho \cdot dV = Q(V)$$

Gaußsches Gesetz: Das elektrische Feld ist ein Quellenfeld. Die Ladung Q bzw. die Ladungsdichte ρ ist Quelle des elektrischen Feldes.

Der (elektrische) Fluss durch die geschlossene Oberfläche ∂V eines Volumens V ist gleich der elektrischen Ladung in seinem Inneren.

$$\operatorname{div} \mathbf{B} = \nabla \cdot \mathbf{B} = 0$$

$$\iint_{\partial V} \mathbf{B} \cdot d\mathbf{a} = 0$$

Das magnetische Feld ist quellenfrei. Es gibt **keine magnetischen Monopole**.

Der mag. Fluss durch die geschlossene Oberfläche ∂V eines Volumens V entspricht der magnetischen Ladung in seinem Inneren, nämlich Null, da es keine magnetischen Monopole gibt.

$$\mathsf{rot}\,\mathbf{E} = \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} = -\iint_A rac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a} = -rac{d\Phi_{ ext{eing.}}}{dt}$$

Induktionsgesetz: Jede zeitlichen Änderung eines Magnetfeldes bewirkt ein elektrisches Wirbelfeld. Die induzierte Umlaufspannung bzgl. der Randkurve ∂A einer Fläche A ist gleich der negativen zeitlichen Änderung des magnetischen Flusses durch diese Fläche.

$$\operatorname{rot} \mathbf{H} = \nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t} \quad \stackrel{\text{Stokes}}{\hspace{0.5cm}} \qquad \oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \iint_{A} \mathbf{j} \cdot d\mathbf{a} + \iint_{A} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{a}$$

Amperesches Gesetz: Jeder Strom und jede zeitlichen Änderung des elektrischen Feldes (Verschiebungsstrom) bewirkt ein magnetisches Wirbelfeld. Die mag. Umlaufspannung bzgl. der Randkurve ∂A der Fläche A entspricht dem von dieser Fläche eingeschlossenen Strom. (inkl. Verschiebungsstrom)

Durchflutungssatz:

Elektrischer Strom ist Ursache für magnetische Wirbelfeld

Induktionsgesetz:

Ein sich zeitlich änderndes Magnetfeld erzeugt ein Elektrisches Wirbelfeld

$$\int_c \vec{H} d\vec{s} = \Theta = \iint_A \vec{J} d\vec{A} = \frac{d\Phi_e}{dt}$$

$$\oint \vec{E} d\vec{s} = u_{ind} = -\frac{d}{dt} \iint \vec{B} d\vec{A} = -\frac{d\Phi_m}{dt}$$

$$\boxed{rot\vec{E} = -\frac{\partial \vec{B}}{\partial t} = -\mu \cdot \frac{\partial \vec{H}}{\partial t}}$$

Differentielle ohmsche Gesetz:

Bewegte elektrische Ladung erzeugt Magnetfeld Bei isotropen Stoffen sind ε u. μ Skalare:

$$rot\vec{H} = \vec{J} = \sigma \cdot \vec{E}$$

 $\mu = \mu_0 \cdot \mu_r$

Fundamentalsatz der Analysis

Gauß: Vektorfeld das aus Oberfläche von Volumen strömt muss aus Quelle in Volumen

 $\varepsilon = \varepsilon_0 \cdot \varepsilon_r$

Stokes: innere Wirbel kompensieren \rightarrow Rand betrachten

$$\int_{a}^{b} \operatorname{grad} F \cdot d\vec{s} = F(b) - F(a)$$

$$\iiint_{V} \operatorname{div} \vec{A} \cdot dV = \oiint_{\partial V} \vec{A} \cdot d\vec{a}$$

$$\iint_{A} \operatorname{rot} \vec{A} \cdot d\vec{a} = \oint_{\partial A} \vec{A} \cdot d\vec{r}$$

3 Felder

Materialgleichungen

$$\vec{J} = \kappa \vec{E}$$

$$\vec{B} = \mu \vec{H}$$

$$\vec{D} = \varepsilon \vec{E}$$

Feldunterscheidung

$$\vec{E}(x,y,z)$$

$$\vec{E}(x,y,z,t)$$

$$\vec{E}(x, y, z, t) \cdot cos(\omega t - \beta z)$$

E-Felder an Grenzflächen

Dielektrische Grenzfläche

Querschichtung: $D_{1n} = D_{2n}$

$$\iint \vec{D} \cdot d\vec{a} = 0$$

Längsschichtung: $E_{1t} = E_{2t}$

ng:
$$E_{1t} = E_2$$

$$\oint \vec{E} \cdot d\vec{s} = 0$$

Schrägschichtung:
$$\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{E_{1t}/E_{1n}}{E_{2t}/E_{2n}} = \frac{\varepsilon_1}{\varepsilon_2}$$

Grenzfläche dielektrischer Leiter

Längsschichtung: $E_{1t} = E_{2t}$

$$\oint \vec{E} \cdot d\vec{s} = 0$$

Querschichtung:

$$D_{1n} = \frac{Q}{A}$$

Grenzfläche an magn. Feldern

Querschichtung: $B_{1n} = B_{2n}$

$$\oiint \vec{B} \cdot d\vec{a} = 0$$

Längsschichtung: $H_{1t} = H_{2t}$

$$\oint \vec{H} \cdot d\vec{s} = 0$$

Schrägschichtung: $\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{\mu_1}{\mu_2}$

3.2 Elektrostatik

ullet wirbelfreies Feld o Elektrische Ladungen sind Quellen des Feldes

$$\vec{D} = \varepsilon \vec{E}$$

$$= \operatorname{rot}\operatorname{grad} E$$

3.2.1 Potential Gleichung

$$\operatorname{div}\operatorname{grad}\varphi = -\frac{\rho}{\varepsilon}$$

 \Rightarrow **Poisson-Gleichung** mit $\rho = 0$

\rightarrow Laplace-Gleichung

$$\Delta \varphi + \underbrace{\frac{\operatorname{grad} \varepsilon \cdot \operatorname{grad} \varphi}{\varepsilon}}_{=0 \text{ wenn homogen}} = -\frac{\rho(x,y,z)}{\varepsilon}$$

$$\frac{d^2\varphi}{dx^2} + \frac{d^2\varphi}{dy^2} + \frac{d^2\varphi}{dz^2} = -\frac{\rho(x,y,z)}{\varepsilon}$$

3.2.2 Green'sche Funktionen

Potential einer Punktladung

$$\varphi(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r} \qquad [V]$$

E-Feld einer Punktladung

$$\vec{E}(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r^2} \cdot \vec{e}_r \qquad \left\lceil \frac{V}{m} \right\rceil$$

D-Feld einer Punktladung

$$\vec{D}(r) = \frac{Q}{4\pi \cdot r^2} \cdot \vec{e_r} \qquad \left[\frac{As}{m^2} \right]$$

Potentialfeld einer Ladungsverteilung

 $mit \ \varphi(\infty) = 0$

$$\varphi(x, y, z) = \frac{1}{4\pi\varepsilon} \iiint_{V'} \frac{\rho(x', y', z')}{|\vec{r} - \vec{r}'|} dV'$$

mit der Green'schen Funktion $G(\vec{r}, \vec{r}') = \frac{1}{4\pi\varepsilon|\vec{r}-\vec{r}'|}$

$$\varphi(x, y, z) = \iiint_{V'} G\left(\vec{r}'\vec{r}'\right) \rho\left(\vec{r}'\right) dV'$$

3.3 Magnetostatik

- Wirbelfeld, quellenfrei und hat immer geschlossene Feld-
- Nach $rot\vec{H} = j \rightarrow$ nur wirbelfrei wenn j = 0
- \bullet Damit Skalar
potential φ_m existiert muss H wirbelfrei
- keine magnetischen Monopole $grad\vec{B} = 0$
- Vektorpotential $\vec{A}=$ Maß für Φ_{magn} durch Fläche A

Coulomb-Eichung

$$\Delta \vec{A} = -\mu \vec{J}$$
$$\vec{B} = \cot \vec{A}$$

3.3.1 Vektorpotential in Abhängigkeit von der Stromdichte

$$\vec{A}(x,y,z) = \frac{\mu}{4\pi} \iiint_{V'} \frac{\vec{J}\left(x',y',z'\right)}{|\vec{r}-\vec{r}\,'|} dV'$$

3.3.2 Biot-Savart-Gesetz

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \operatorname{grad} \frac{1}{|\vec{r} - \vec{r}'|} \times \mathrm{d}\vec{s}'$$

mit grad $\frac{1}{|\vec{r} - \vec{r}'|} = -\frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3}$

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \frac{\mathrm{d}\vec{s}' \times (\vec{r} - \vec{r}')}{\left| \vec{r} - \vec{r}' \right|^3}$$

 \vec{r} : Aufpunkt \vec{r}' : Quellpunkt

3.3.3 Elektrischer Dipol

$$\begin{split} \varphi &= \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ &= \frac{Q}{4\pi\varepsilon_0} \cdot \frac{r_2 - r_1}{r^2} & \qquad \varphi \approx \frac{Qd\cos\theta}{4\pi\varepsilon_0 r^2} \\ \vec{E} &= -\nabla\varphi & \qquad = \frac{1}{4\pi\varepsilon_0} \cdot \left(\frac{3(\vec{p} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}}{r^3}\right) \end{split}$$

3.3.4 Magnetischer Dipol

I entlang Leiter

$$\begin{split} A(r) &= \frac{\mu_0 \cdot I}{4\pi} \int \frac{d\vec{s}}{|\vec{r} - \vec{s}|} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} \\ \vec{B} &= \nabla \times \vec{A} = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{m} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{m}}{r^3} \right) \end{split}$$

3.4 Skineffekt

Äquivalente Leiterschichtdicke (Amp: $A \cdot \frac{1}{e}$):

$$\delta = \frac{1}{\sqrt{\pi\mu\sigma f}} = \sqrt{\frac{2}{\omega\mu\sigma}} \qquad [m]$$

Widerstand/Oberflächenwiderstand:

$$R_{AC} = rac{l}{\sigma \cdot A_{ t eff}}$$
 $R_{DC} = rac{l}{\sigma \pi R^2}$ $R_F = rac{1}{\sigma \delta}$

Feldstärke verglichen mit der Oberfläche:

$$H\left(x,t\right) = H_{0} \cdot e^{-x/\delta} \cdot \cos\left(\omega t - \frac{x}{\delta}\right)$$

analog für E-Feld

Leistung verglichen mit der Oberfläche:

$$P(x,t) = \frac{1}{2} \cdot E_0 \cdot e^{-x/\delta} \cdot H_0 \cdot e^{-x/\delta}$$

Amplitude und Phase bezogen auf δ :

Amplitude:
$$x = \delta \cdot \ln(\text{Dämpfung}[\])$$

Phase: $\varphi = -\frac{x}{\delta}$

Effektive Fläche:

$$\begin{split} A_{\text{eff}} &= A_{\text{ges}} - A_{\sigma} = R^2 \pi - (R - \delta)^2 \pi \\ &= 2 \cdot \pi \delta \left(R - \frac{\delta}{2} \right) \end{split}$$

Wenn die Länge nicht gegeben ist oder nach Wieviel % nimmt der Widerstand bei einer bestimmten Frequenz, kann dies mit der folgenden Formel berechnet werden:

Bessel-Funktion:

$$\begin{split} \frac{R_{AC}}{R_{DC}} &= \begin{cases} 1 + \frac{1}{3}x^4 & \text{für} & x < 1 \\ x + \frac{1}{4} + \frac{3}{64x} & \text{für} & x > 1 \end{cases} \\ \frac{X_{AC}}{R_{DC}} &= \begin{cases} x^2 \left(1 - \frac{x^4}{6}\right) & \text{für} & x < 1 \\ x - \frac{3}{64x} + \frac{3}{128x^2} & \text{für} & x > 1 \end{cases} \\ \boxed{x = \frac{r_0}{2\delta}} \qquad r_0 \hat{=} \text{ Außendurchmesser} \end{split}$$

4 Wellen

- Ausbreitungsphänomen von E und H
- Ausbreitungsgeschw. kleiner c_0
- raumzeitlicher Vorgang $cos(\omega t \beta z)$
- Energie- ohne Materietransport
- Poyntingvektor $\vec{S} = \vec{E} \times \vec{H}$ Einheit[S]= $\frac{W}{m^2}$ Falls $\vec{E} \perp \vec{H}$ und $\vec{S} \perp \vec{E}$ und $\vec{S} \perp \vec{H}$

Wellengleichung

$$\vec{E} = \underbrace{E_0 \cdot e^{-\alpha z}}_{\text{Amplitude}} \cdot \underbrace{e^{-\alpha z}}_{\text{positive z-Richtung}} \cdot \underbrace{cos(\omega t - \beta z)}_{\text{Zeit- und Raumabhängigkeit}}$$

Analog für H-Feld

Fortpflanzungskonstante γ

$$\underline{\gamma} = \alpha + j\beta$$

 α : Dämpfungskonstante [Np/m]

 β : Phasenkonstante [rad/m]

 v_p : Phasengeschwindigkeit [m/s]

 v_g : Gruppengeschwindigkeit [m/s]

 λ : Wellen [m]

4.1 Ausbreitung

4.1.1 Allgemein

$$\lambda = \frac{2\pi}{\beta} \qquad E_2 = E_1 e^{-\alpha z}$$

$$v_p = \lambda \cdot f = \frac{\omega}{\beta}$$

$$\alpha = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} - 1\right)}$$

$$\beta = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} + 1\right)}$$

$$\underline{Z}_F = \underline{\frac{E}{H}} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

4.1.2 Im leeren Raum(Vakuum)

$$\alpha = 0$$

$$\beta = \frac{\omega}{c_0}$$

$$\lambda = \frac{c_0}{f}$$

$$v_p = c_0$$

$$\underline{Z}_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega \approx 377\Omega$$

4.1.3 Im verlustlosen/idealen Dielektrika

verlustlos: $\sigma=0$, maximale Wirkleistung Z_F rein reel \rightarrow ebene Welle

$$\alpha = 0$$

$$\beta = \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r} = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{\lambda}$$

$$\lambda = \frac{c_0}{f} \frac{1}{\sqrt{\mu_r \varepsilon_r}}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}}$$

$$\boxed{\underline{Z}_F = \sqrt{\frac{\mu}{\varepsilon}}}$$

4.1.4 Im Dielektrika mit geringem Verlust

geringer Verlust: $0 < \sigma \ll \omega \varepsilon$

$$\alpha \approx \frac{\sigma}{2} \cdot \sqrt{\frac{\mu}{\varepsilon}} = \frac{\sigma}{2} \cdot Z_{F0}$$

$$\beta \approx \omega \sqrt{\mu \varepsilon} \left(1 + \frac{1}{8} \cdot \frac{\sigma^2}{\omega^2 \varepsilon^2} \right)$$

$$\lambda = \frac{c_0}{f} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$\underline{Z_F} = \sqrt{\frac{\mu}{\varepsilon}} \left(1 - \frac{j\sigma}{\omega \varepsilon} \right)^{-1/2} \approx Z_{F0} \left(1 + \frac{j\sigma}{2\omega \varepsilon} \right)$$

4.1.5 Im guten Leiter

geringer Verlust: $\sigma \gg \omega \varepsilon$

$$\alpha \approx \beta \approx \sqrt{\frac{\omega\mu\sigma}{2}} = \frac{1}{\delta} \sim \sqrt{f}$$

$$\lambda = 2\pi\sqrt{\frac{2}{\omega\mu\sigma}} = 2\pi\delta$$

$$v_p = \frac{2\pi}{\beta} = \omega\delta$$

$$\boxed{\underline{Z}_F = \sqrt{\frac{j\omega\mu}{\sigma}} \approx \frac{1+j}{\sigma \cdot \delta}}$$

4.2 Übergang

4.2.1 Zwischen Dielektrika mit geringem Verlust

$$\lambda_{1} = \frac{\lambda_{0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad \lambda_{2} = \frac{\lambda_{0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$= \frac{\lambda_{1} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$\beta_{1} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}} \qquad \beta_{2} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r2}\varepsilon_{r2}}$$

$$Z_{F1} = \frac{Z_{F0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad Z_{F2} = \frac{Z_{F0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

4.3 Energie und Poyntingvektor (Energieflussdichte)

$$\vec{S} = \vec{E} \times \vec{H} \qquad \left[\frac{\mathbf{W}}{\mathbf{m}^2}\right]$$

$$S = \frac{1}{2} \cdot E \cdot H =$$

$$= \frac{1}{2} \cdot \frac{E^2}{Z_{F0}} =$$

$$= \frac{1}{2} \cdot H^2 \cdot Z_{F0}$$

$$\vec{S}_{\text{av}} = \frac{1}{2} \cdot Re\{\vec{E} \times \vec{H}^*\}$$

$$S = \frac{P}{A_{\text{Fläche}}}$$

4.3.1 Leistung

$$P = \iint \vec{S}_{\rm av} d\vec{a}$$

$$W_M = 1/_2 \cdot \mu \cdot H^2$$

$$W_E = 1/_2 \cdot \varepsilon \cdot E^2$$

4.3.2 Leistung nach Dämpfung

$$P_1 = P_0 \cdot e^{-2\alpha z}$$

4.3.3 Leistung vom Kabel transportiert

$$P = \frac{\hat{U}^2}{2 \cdot Z_L}$$

4.4 dÀlembertsche Gleichung (allg.)

$$\begin{split} \Delta \vec{E} - \kappa \mu \frac{\partial \vec{E}}{\partial t} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} &= \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} - \kappa \mu \frac{\partial \vec{H}}{\partial t} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} &= 0 \end{split}$$

Isolator, ideales Dielektrikum, Nichtleiter $\kappa = 0$

$$\begin{split} \Delta \vec{E} &= \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} + \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} &= \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} \end{split}$$

sehr gute Leiter

$$\begin{split} \Delta \vec{E} &= \kappa \mu \frac{\partial \vec{E}}{\partial t} + \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} &= \kappa \mu \frac{\partial \vec{H}}{\partial t} \end{split}$$

4.5 Helmholtz-Gleichungen (Frequenzbereich)

$$\Delta \underline{\vec{E}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{E}} = \operatorname{grad} \frac{\rho}{\varepsilon}$$
$$\Delta \underline{\vec{H}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{H}} = 0$$

4.5.1 Zeitbereich

$$\Delta \vec{E} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$
$$\Delta \vec{H} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} = 0$$

4.5.2 Frequenzbereich (harmonisch)

$$\Delta \underline{\vec{E}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{E}} = 0$$
$$\Delta \underline{\vec{H}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{H}} = 0$$

Zeitabhängigkeit harmonisch:

$$\begin{split} \Delta \vec{H} &= (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{H} \\ \Delta \vec{E}i &= (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{E} + grad\frac{\rho}{\varepsilon} \end{split}$$

keine Raumladung $\rho = 0$

$$\Delta \vec{E} = (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{E}$$

Ebene Wellen

$$\Delta \vec{E} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\sigma + j\omega\varepsilon)\vec{E}$$
$$\Delta \vec{H} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\sigma + j\omega\varepsilon)\vec{H}$$

4.6 Wellenzahl

Im Vakuum:
$$k_0 = \frac{\omega}{c_0}$$

$$k = \frac{\omega}{v_p} = \frac{2\pi f}{v_p} = |\vec{k}|$$

$$= \frac{\omega \cdot n}{c_0} = n \cdot k_0 = \frac{1}{\sqrt{u_r \cdot \varepsilon}} \cdot k_0 = k_r \cdot k_0$$

4.7 Wellenlänge

$$\lambda = \frac{\lambda_0}{\sqrt{\mu_r \cdot \varepsilon_r}} = \frac{2\pi}{k} = \frac{v_p}{f} = [m]$$
$$= \frac{\lambda_0}{n} = \frac{2\pi}{n \cdot k_0}$$
$$\lambda_0 = \frac{c_0}{f} = \frac{2\pi}{k_0}$$

4.8 Phasengeschwindigkeit

$$\frac{dz}{dt} = v_p = c = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_r \mu_0 \varepsilon_r \varepsilon_0}} \qquad v_{p, \texttt{Medium} \le c_0}$$

4.8.1 Gruppengeschwindigkeit

$$v_g = \frac{d\omega}{dk} = \frac{\text{Wegstück der Wellengruppe}}{\text{Laufzeit der Wellengruppe}}$$

$$E_1(z,t) = E\cos((\omega_0 - \Delta\omega)t - (\beta_0 - \Delta\beta)z)$$

$$E_2(z,t) = E\cos((\omega_0 + \Delta\omega)t - (\beta_0 + \Delta\beta)z)$$

$$\downarrow$$

$$E(z,t) = 2E \cdot \underbrace{\cos(\omega_0 t - \beta_0 z)}_{\text{Grundfrequenz }\omega} \cdot \underbrace{\cos(\Delta\omega t - \Delta\beta z)}_{\text{Einhüllende }\Delta\omega}$$

$$v_p = \frac{\omega_0}{\beta_0}$$

$$v_g = \frac{\Delta\omega}{\Delta\beta}$$

4.9 Polarisation

Lineare	wenn der Endpunkt des E-Vektors eine Li- nie beschreibt	H oder E
Elliptische	Endpunkt des E- Vektors eine Ellipse beschreibt	$E \neq H$
Kreisförmige	der Endpunkt des E- Vektors einen Kreis be- schreibt	E = H

4.10 Verlustlose Polarisation

$$Z_F = \sqrt{\frac{\mu}{\varepsilon}}$$

$$r_s = \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_i - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_t}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_t + \sqrt{\varepsilon_{r1}} \cos \theta_i}$$

$$t_s = \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_t + \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i}$$

$$r_p = \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_t - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cos \theta_t}$$

$$t_p = \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cos \theta_t}$$

4.11 Totalrefexion

$$\sin \theta_g = \frac{n_2}{n_1} = \frac{\sqrt{\varepsilon_{r2}\mu_{r2}}}{\varepsilon_{r1}\mu_{r1}}$$

4.12 Grenzwinkel

$$\alpha_g = \sin^{-1} \left(\sqrt{\frac{\mu_{r1} \varepsilon_{r1}}{\mu_{r2} \varepsilon_{r2}}} \right)$$

4.13 Brewster-/Polarisationswinkel, r = 0

- Snelliusche Brechungsgesetz
- Paralleler Reflexionskoeffizient:

$$\frac{\mu_{r1} = \mu_{r2}}{\sin \theta_b} = \sqrt{\frac{\varepsilon_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\mu_1(\varepsilon_1^2 - \varepsilon_2^2)}}$$

$$\tan \theta_b = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1}$$

• Senkrechter Reflexionskoeffizient:

$$\overline{\varepsilon_{r1} = \varepsilon_{r2}}$$

$$\sin \theta_b = \sqrt{\frac{\mu_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\varepsilon_1(\mu_2^2 - \mu_1^2)}}$$

$$\tan \theta_b = \sqrt{\frac{\mu_2}{\mu_1 + \mu_2}}$$

$$\frac{\sin \vartheta_2}{\sin \vartheta_1} = \frac{k_h}{k_g} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{n_1}{n_2} = \frac{v_{p,2}}{v_{p,1}} = \frac{\lambda_2}{\lambda_1}$$

4.14 Senkrechter Einfall $\theta_h = 0$

$$t = \frac{2 \cdot Z_{F2}}{Z_{F1} + Z_{F2}} \qquad r = \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}}$$
$$= \frac{\sqrt{\varepsilon_{r2}} - \sqrt{\varepsilon_{r1}}}{\sqrt{\varepsilon_{r2}} + \sqrt{\varepsilon_{r1}}}$$

$$0 < t < 2$$
 $0 < |r| < 1$

Elektrisches Feld:

$$E_t = t \cdot E_h$$
$$E_r = r \cdot E_h$$

$$E_t = E_h + E_r$$

$$t \cdot E_h = E_h + r \cdot E_h$$

$$t = 1 + r$$

Magnetisches Feld:

$$H_t = t \cdot H_h$$
$$H_r = r \cdot H_h$$

$$\begin{aligned} H_t &= H_h + H_r \\ \frac{t \cdot E_h}{Z_{F2}} &= \frac{E_h}{Z_{F1}} - \frac{r \cdot E_h}{Z_{F1}} \\ \frac{t}{Z_{F2}} &= \frac{1}{Z_{F1}} - \frac{r}{Z_{F1}} \end{aligned}$$

4.14.1 Senkrechter Einfall ideales/verlustl. Dielekt. $\sigma = 0$

$$\mathrm{reel:}\ Z_F = \sqrt{\frac{\mu}{\varepsilon}}$$
 imaginär: $\gamma = j\omega\sqrt{\mu\varepsilon}$

$$r = \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}} = \frac{\sqrt{\frac{\mu_2}{\varepsilon_2}} - \sqrt{\frac{\mu_1}{\varepsilon_1}}}{\sqrt{\frac{\mu_2}{\varepsilon_2}} + \sqrt{\frac{\mu_1}{\varepsilon_1}}}$$
$$t = \frac{2Z_{F2}}{Z_{F1} + Z_{F2}} = \frac{2\sqrt{\varepsilon_{r1}\mu_{r2}}}{\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}}$$

4.14.2 Spezialfall Medium1 ist Luft

$$\mu_{r1} = \varepsilon_{r1} = 1$$

$$r = \frac{\sqrt{\mu_{r2}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}}$$

$$t = \frac{2\sqrt{\mu_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}}$$

4.14.3 Spezialfall <u>Medium2</u> ist Luft

$$\mu_{r2} = \varepsilon_{r2} = 1$$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\mu_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\mu_{r1}}}$$

$$t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\mu_{r1}} + \sqrt{\varepsilon_{r1}}}$$

4.14.4 Spezialfall <u>beideMedien</u> NICHT magnetisch

$$\mu_{r1} = \mu_{r2} = 1$$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

$$t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

4.14.5 Spezialfall <u>Medium2</u> idealer Leiter

$$Z_{F2} = 0$$

$$r = -1$$

$$t = 0$$

$$\overline{S} = 0$$

$$E_1 = -2j \cdot E_h \cdot \sin(\beta_1 z)$$

$$H_1 = 2 \cdot H_h \cdot \cos(\beta_1 z)$$

StehendeWelle

 $\rightarrow H_{max}$ und E_{min} bei $n \cdot \lambda/2$ $\rightarrow H_{min}$ und E_{max} bei $(2n-1) \cdot \lambda/4$ $\rightarrow 90^{\circ} Phasenverschiebung$

4.15 Stehwellenverhältnis

$$SWR = \frac{E_{\max}}{E_{\min}} = \frac{H_{\max}}{H_{\min}} = \frac{E_h + E_r}{E_h - E_r} = \frac{1 + |r|}{1 - |r|} \quad 1 < s < \infty$$

4.16 Senkrechte (E-Feld) Polarisation (H- 4.17 Parallel (E-Feld) Polarisation (H-Feld Feld parallel) senkrecht)

mit
$$Z_{F0}=120\pi\approx 377\Omega$$

$$Z_{Fn} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{rn}}}$$
$$\frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

 $n: { t Brechungsindex} \quad ; \quad heta_h = heta_r$

$$\frac{\sin \theta_t}{\sin \theta_h} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$$
$$\sin \theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin \theta_h$$

- magnetischer/elektrischer Reflexionsfaktor [1]
- magnetischer Transmissionsfaktor [1]
- elektrischer Transmissionsfaktor [1]

$$r_{s} = r_{es} = r_{ms} =$$

$$= \frac{Z_{F2} \cdot \cos \theta_{h} - Z_{F1} \cdot \cos \theta_{t}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= \frac{\cos \theta_{h} - \sqrt{\varepsilon_{r2}/\varepsilon_{r1} - \sin^{2} \theta_{h}}}{\cos \theta_{h} + \sqrt{\varepsilon_{r2}/\varepsilon_{r1} - \sin^{2} \theta_{h}}}$$

$$t_{ms} = Z_{F1} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= (1 - r_{s}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F1}}{Z_{F2}} \cdot t_{es}$$

$$t_{es} = Z_{F2} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= 1 + r_{s}$$

$$E_r = r_s \cdot E_h$$

$$E_t = t_{es} \cdot E_h$$

$$H_r = r_s \cdot H_h$$

$$H_t = t_{ms} \cdot H_h$$

mit
$$Z_{F0}=120\pi\approx 377\Omega$$

$$Z_{Fn} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{rn}}}$$
$$\frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

 $n: \mathtt{Brechungsindex} \ ; \ \theta_h = \theta_r$

$$\frac{\sin \theta_t}{\sin \theta_h} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$$
$$\sin \theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin \theta_h$$

- magnetischer/elektrischer Reflexionsfaktor [1]
- magnetischer Transmissionsfaktor [1]
- elektrischer Transmissionsfaktor [1]

$$r_{p} = r_{ep} = r_{mp} =$$

$$= \frac{Z_{F2} \cdot \cos \theta_{t} - Z_{F1} \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{t} + Z_{F1} \cdot \cos \theta_{h}} =$$

$$= \frac{\varepsilon_{r2} \cos \theta_{h} - \sqrt{\varepsilon_{r2} \varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}{\varepsilon_{r2} \cos \theta_{h} + \sqrt{\varepsilon_{r2} \varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}$$

$$t_{mp} = Z_{F1} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= 1 - r_{p}$$

$$t_{ep} = Z_{F2} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= (1 + r_{p}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F2}}{Z_{F1}} \cdot t_{mp}$$

$$E_r = r_p \cdot E_h$$

$$E_t = t_{ep} \cdot E_h$$

$$H_r = r_p \cdot H_h$$

$$H_t = t_{mp} \cdot H_h$$

5 Leitungen

Medium	C (pF/m)	L (nH/m)	ν (m/μs)	Ζ (Ω)	R for f≤ 1kHz (mΩ/m)
RG58/U Coaxial Cable	93.5	273	198	54	53
RG58C/U Coaxial Cable	101	252	198	50	50
RG59B/U Coaxial Cable	72.0	405	185	75	45
CAT-5 Twisted Pair (Solid)	49.2	495	203	100	180
Vacuum	8.85	1260	299	377	
Water	708	1260	34	42	[3]

5.1 Leitungsparameter

 $\sigma =$ Leitwert des Dielektr.

 σ_c = Leitwert des Leiters

5.1.1 Doppelleitung:

a =Leiter Radius

d = Abstand zw. den Leitern

$R = \frac{1}{\pi a \delta \sigma_c}$
$L = \frac{\mu}{\pi} \cosh^{-1} \frac{d}{2a}$
$G = \frac{\pi \sigma}{\cosh^{-1}(d/2a)}$
$C = \frac{\pi \varepsilon}{\cosh^{-1}(d/2a)}$

5.1.2 Koaxial Leitung

a = innen Radius b = außen Radius

$$\begin{split} \vec{H}(r,z) &= \frac{I}{2\pi r} \cdot e^{-j\beta z} \cdot \vec{e}_{\varphi} \\ \vec{E}(r,z) &= \frac{I}{2\pi r} \cdot Z_F \cdot e^{-j\beta z} \cdot \vec{e}_r \\ &= \frac{\hat{U}}{r \cdot \ln{(2b/2a)}} \cdot e^{-j\beta z} \cdot \vec{e}_r \end{split}$$

$$R = \frac{1}{2\pi\delta\sigma_c} \left[\frac{1}{a} + \frac{1}{b} \right]$$

$$L = \frac{\mu}{2\pi} \ln \frac{b}{a}$$

$$G = \frac{2\pi\sigma}{\ln(b/a)}$$

$$C = \frac{2\pi\varepsilon}{\ln(b/a)}$$

5.1.3 Parallele Platten

w = Platten Breite

d = Abstand zw. Platten

Für Sinus-Anregung:

$$I = \frac{U}{Z_L} = \underbrace{\frac{U_0}{Z_L}}_{I_0} \cdot e^{-j\beta z \cdot e^{j\omega t}}$$

$$U = \int \vec{E} d\vec{s} \stackrel{w \gg d}{=} E \cdot d \to E = \frac{U_0}{d} \cdot {}^{-j\beta z} \cdot \vec{e}_x$$

$$I = \oint \vec{H} d\vec{s} = H \cdot w \to H = \frac{I_0}{w} \cdot {}^{-j\beta z} \cdot \vec{e}_y$$

$$\vec{E}(r, z) = \frac{I}{2\pi r} \cdot Z_F \cdot e^{-j\beta z} \cdot \vec{e}_r$$

$$= \frac{\hat{U}}{r \cdot \ln{(2b/2a)}} \cdot e^{-j\beta z} \cdot \vec{e}_r$$

$R = \frac{2}{w\delta\sigma}$
$L = \frac{\mu d}{w}$
$G = \frac{\sigma w}{d}$
$C = \frac{w\varepsilon}{d}$

Für beliebige Leitergeometrie gelten folgende Zusammenhänge:

$$LC = \mu \varepsilon$$
 und $\frac{G}{C} = \frac{\sigma}{\varepsilon}$

Leitungen gehen HIN und ZURÜCK!!! Länge verdoppeln!!!

5.2 Allgemeine Lösung Leitungsgleichung

$$\begin{split} \underline{U}(z) &= U_h e^{\gamma z} + U_r e^{-\gamma z} = U_h e^{\gamma d} + U_r e^{-\gamma d} \\ \underline{I}(z) &= I_h e^{\gamma z} + I_r e^{-\gamma z} = \frac{U_h}{Z_L} e^{\gamma d} - \frac{U_r}{Z_L} e^{-\gamma d} \\ \underline{Z}_L &= \frac{U_h}{I_h} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \\ \underline{\gamma} &= j\omega \sqrt{LC} \cdot \sqrt{\frac{RG}{j^2 \omega^2 LC} + \frac{G}{j\omega C} + \frac{R}{j\omega L} + 1} \\ \lambda &= \frac{2\pi}{\beta} \\ v_p &= \frac{\omega}{\beta} \\ l_{\text{elektr.}} &= \beta \cdot l \\ \alpha &= \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} - 1\right)} \\ \beta &= \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} + 1\right)} \end{split}$$

Verlustlose Übertragungsleitung

$$\begin{split} &\underline{\gamma} = j\omega\sqrt{LC} = j\beta \\ &Z_L = \frac{U_h}{U_r} = \sqrt{\frac{L}{C}} \\ &v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c_0}{\sqrt{\mu_r\varepsilon_r}} \\ &\lambda = \frac{2\pi}{\beta} = \frac{1}{f\sqrt{LC}} = \frac{v_p}{f} = \frac{c_0}{f\sqrt{\mu_r\varepsilon_r}} \end{split}$$

vernachlässigbarer Widerstandsbelag

	$G\ll \omega C$	$G \gg \omega C$	$G = \omega C$
α	$rac{G}{2}\sqrt{rac{L}{C}}$	$\sqrt{\frac{\omega GL}{2}}$	$0,455 \omega \sqrt{LC}$
β	$\omega\sqrt{LC}\left(1+\frac{1}{8}\frac{G^2}{\omega^2C^2}\right)$	$\sqrt{\frac{\omega GL}{2}}$	1,1 $\omega\sqrt{LC}$
v_p	$\frac{1}{\sqrt{LC}}$	$\sqrt{\frac{2\omega}{GL}}$	$\frac{0,91}{\sqrt{LC}}$

	Verlustarmes Dielektrikum	Guter Leiter
	$\sigma \ll \omega \epsilon$	$\sigma\gg\omega\epsilon$
α	$\frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}}$	$\sqrt{\frac{\omega\mu\sigma}{2}}=\frac{1}{\delta}$
β	$\omega\sqrt{\mu\epsilon}\left(1+\frac{1}{8}\frac{\sigma^2}{\omega^2\epsilon^2}\right)$	$\sqrt{\frac{\omega\mu\sigma}{2}}=\frac{1}{\delta}$
v_p	$\frac{1}{\sqrt{\mu\epsilon}}$	$\omega\delta$

5.2.3 vernachlässigbarer Leitwertbelag

	O
	Ebene Welle
$R \leftrightarrow \sigma$ $L \leftrightarrow \epsilon$	$\alpha = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \epsilon^2}} - 1 \right)}$
$C \leftrightarrow \mu$	$\beta = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \epsilon^2}} + 1 \right)}$

	$R\ll \omega L$	$R \gg \omega L$	$R = \omega L$
α	$\frac{R}{2}\sqrt{\frac{C}{L}}$	$\sqrt{\frac{\omega RC}{2}}$	$0,455~\omega\sqrt{LC}$
β	$\omega\sqrt{LC}\left(1+\frac{1}{8}\frac{R^2}{\omega^2L^2}\right)$	$\sqrt{\frac{\omega RC}{2}}$	1,1 $\omega\sqrt{LC}$
v_p	$\frac{1}{\sqrt{LC}}$	$\sqrt{\frac{2\omega}{RC}}$	$\frac{0,91}{\sqrt{LC}}$

	Dielektrikum	Guter Leiter		
	$\sigma \ll \omega \epsilon$	$\sigma\gg\omega\epsilon$		
α	$\frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}}$	$\sqrt{\frac{\omega\mu\sigma}{2}} = \frac{1}{\delta}$		
β	$\omega\sqrt{\mu\epsilon}\left(1+\frac{1}{8}\frac{\sigma^2}{\omega^2\epsilon^2}\right)$	$\sqrt{\frac{\omega\mu\sigma}{2}}=\frac{1}{\delta}$		
v_p	$\frac{1}{\sqrt{\mu\epsilon}}$	$\omega\delta$		

Übertragungsleitung mit Last 5.3

$$U(z) = U_h \cdot e^{\gamma z} + U_r \cdot e^{-\gamma z} = U_h \cdot e^{\gamma d} + U_r \cdot e^{-\gamma d}$$

$$I(z) = I_h \cdot e^{\gamma z} + I_r \cdot e^{-\gamma z} = \frac{U_h}{Z_L} e^{\gamma d} - \frac{U_r}{Z_L} e^{-\gamma d}$$

5.3.1 Vorgehen Eingangswiderstand

Wenn mit Smithdiagramm gearbeitet wird liefert dieses Schritte 3 und 4

1. Lastimpedanz

$$\underline{Z}_A = \frac{1}{\frac{1}{R_A} + j\omega C_A}$$

2. Reflexion am Leitungsende

$$\underline{r}_A = \underline{r}(z=0) = \frac{Z_A - \underline{Z}_L}{Z_A + \underline{Z}_L}$$

3. Reflexion am Leitungsanfang

$$\underline{r}_E = \underline{r}(z = d) = \underline{r}_A \cdot e^{-j2\beta d}$$

4. Bestimmung der Impedanz

$$\underline{Z}_E = \underline{Z}_L \cdot \frac{1 + \underline{r}_E}{1 - \underline{r}_E}$$

5. Eingangswiderstand

$$\underline{Z}_E = \frac{1}{\frac{1}{Z_E} + j\omega C_E}$$

Reflexionsfaktor entlang einer Leitung

$$\begin{split} r_E &= r_A^{-2\underline{\gamma}l} = r_A e^{-2\alpha l} e^{-j2\beta l} \\ \alpha &= -\frac{\ln(r_A)}{2l} [\mathrm{Np/m}] \qquad \qquad \beta = \frac{\phi_2 - \phi_1}{2l} [\mathrm{rad/m}] \end{split}$$

5.3.3 Stehwellenverhältnis

SWR =
$$\frac{U_{\text{max}}}{U_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{1 + |r(z)|}{1 - |r(z)|} = \frac{|U_H| + |U_R|}{|U_H| - |U_R|}$$

Position von Extrema

$$r_A = |r_A| \cdot e^{-j\theta_r} \rightarrow \theta_r$$
 in rad

 $f_{\tt min} \to {\rm Minimum}({\rm Knoten})$ der Spannungen $f_{\tt max} \to {\rm Maximum}({\rm B\ddot{a}uche}) \ {\rm der \ Spannungen}$

$$\begin{split} \lambda_{\min/\max} &= \frac{c_0}{f_{\min/\max}\sqrt{\mu_{r1}\varepsilon_{r1}}} \\ z_{\min} &= \frac{-n \cdot \lambda_{\min}}{2} \quad \rightarrow n = -\frac{2z}{\lambda_{\min}} \\ z_{\max} &= \frac{-(2n+1)\lambda_{\max}}{4} \quad \rightarrow n = -\frac{4z + \lambda_{\max}}{2 \cdot \lambda_{\max}} \\ z &= \frac{\lambda_{\min} \cdot \lambda_{\max}}{4(\lambda_{\min} - \lambda_{\max})} \end{split}$$

Spezialfälle auf der nächsten Seiten

5.3.5 Spezialfall: Angepasste Leitung

$$Z_A = Z_L = Z(z)$$
 $r_A = 0 o \text{reflexionsfrei}$
 $\text{SWR} = 1$
 $U(z) = U_h \cdot e^{j\beta z}$
 $I(z) = I_h \cdot e^{j\beta z}$
 $= \frac{U_h}{Z_L} \cdot e^{j\beta z}$

5.3.6 Spezialfall: Kurzgeschlossene Leitung

$$Z_A = 0$$

$$Z(z) = jZ_L \cdot \tan(\beta z) \qquad \rightarrow \text{rein imaginär}$$

$$r_A = -1$$

$$\text{SWR} = \infty$$

$$U(z) = U_h \cdot 2j \sin(\beta z) \qquad \rightarrow U(z = 0) = 0$$

$$I(z) = U_h \cdot 2\cos(\beta z) \qquad \rightarrow I(z = 0) = I_A = \frac{2U_h}{Z_L}$$

5.3.7 Spezialfall: Leerlaufende Leitung

$$\begin{split} Z_A &= \infty \\ Z(z) &= -j Z_L \cdot \cot(\beta z) & \to \text{rein imagin\"{a}r} \\ r_A &= 1 \\ \text{SWR} &= \infty \\ U(z) &= U_h \cdot 2\cos(\beta z) & \to U(z=0) = 0 \\ I(z) &= U_h \cdot 2j\sin(\beta z) & \to I(z=0) = I_A = \frac{2 \cdot U_h}{Z_L} \end{split}$$

5.3.8 Spezialfall: Ohm'sch abgeschlossene Leitung

$$r_A = \mathtt{reell}$$

$$rac{R_A>Z_L}{} o heta_r=0 o r_A$$
 ist negativ $o z_{ exttt{max}}=rac{\lambda}{2}\cdot n$

$$\frac{R_A < Z_L}{\rightarrow \theta_r = \pi}$$

$$\rightarrow z_{\min} = \frac{\lambda}{2} \cdot n$$

5.4 Mehrfachreflexionen bei fehlender Anpassung

$$u_{1r} = r_A \cdot u_{1h}$$

$$u_{2h} = r_I \cdot u_{1r} = r_I \cdot r_A \cdot u_{1h}$$

$$u_{2r} = r_A \cdot u_{2h} = r_I \cdot r_A^2 \cdot u_{1h}$$

$$u_{3h} = r_I \cdot u_{2r} = r_I^2 \cdot r_A^2 \cdot u_{1h}$$

Reflexionsfaktor Leitungsanfang: $\underline{r}_I = \frac{R_I - Z_L}{R_I + Z_L}$

Reflexionsfaktor Leitungsende: $\underline{r}_A = \frac{R_A - Z_L}{R_A + Z_L}$

Signallaufzeit: $t_d = \frac{l}{c_0} \cdot \sqrt{\mu_r \varepsilon_r}$

Hinlaufende Welle $u_{1h} = \hat{u}_G \cdot \frac{Z_L}{Z_L + R_I}$

6 Smith-Diagramm

6.1 Allgemein

$$\begin{split} \underline{z}_n &= \frac{\underline{Z}_n}{Z_L} \\ \underline{r}_n &= \frac{\underline{Z}_n - Z_L}{\underline{Z}_n + Z_L} = \frac{\underline{z}_n - 1}{\underline{z}_n + 1} = \frac{1 - \underline{y}_n}{1 + \underline{y}_n} \\ m &= \frac{1 - |\underline{r}|}{1 + |\underline{r}|} \end{split}$$

7 Wellenleiter

7.1 Koaxial Leiter

7.1.1 Wellenwiderstand

D = Außendurchmesserd = Innendurchmesser

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln \frac{D}{d}$$

7.1.2 Dämpfung

Ohm'sche Verluste $R \ll \omega L$

$$\alpha_0 = \frac{\sqrt{\frac{f \cdot \mu}{\pi \cdot \sigma}}}{120\Omega} \cdot \frac{\sqrt{\varepsilon_r}}{D} \cdot \frac{1 + \frac{D}{d}}{\ln \frac{D}{d}}$$

<u>Dielektrische Verluste</u> $G \ll \omega C, \tan \delta = (^G/_{\omega C})$

$$\alpha_d = \pi \sqrt{\varepsilon_r} \cdot \tan \delta \cdot \frac{f}{c_0}$$

7.2 Mikrostreifenleiter

7.2.1 Effektive Permittivitätszahl

Unterschiedliche Phasengeschwindigkeit \rightarrow Dispersion

$$\varepsilon_{r, \texttt{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2\sqrt{1 + 10 \cdot \frac{\mathbf{h}}{\mathbf{w}}}}$$

Je größer $\frac{\mathbf{w}}{\mathbf{h}}$ desto mehr nähert sich $\varepsilon_{r,\texttt{eff}}$ an ε_r und

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_{r, \text{eff}} \cdot \mu_{r, \text{eff}}}}$$

7.2.2 Schmale Streifen

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_{r, \rm eff}}} \cdot \ln \left(\frac{8 \rm h}{\rm w} + \frac{\rm w}{4 \rm h} \right)$$

7.2.3 Breite Streifen

$$Z_L = \frac{120\pi\Omega}{\sqrt{\varepsilon_{r,\text{eff}}}} \cdot \frac{1}{\frac{\text{w}}{\text{h}} + 2,42 - 0,44 \cdot \frac{\text{h}}{\text{w}} + \left(1 - \frac{\text{h}}{\text{w}}\right)^6}$$

7.3 Hohlleiter

$$f_c = \frac{c_0}{2a}$$

7.4 VSWR (Voltage Standing Wave Ratio) und Return Loss

$$s = \text{VSWR} = \frac{1 + |r|}{1 - |r|} \ge 1$$
$$|r| = \frac{s - 1}{s} + 1$$
$$\alpha_r = -20 \log(r) dB$$
Missmatch Loss
$$ML = -10 \log(1 - r^2) dB$$

8 Antennen

8.1 Herz'scher Dipol

8.1.1 Allgemein

$$\begin{split} \vec{H} &= -\frac{I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \theta \left(\frac{1}{j\beta R} + \frac{1}{(j\beta R)^2} \right) \vec{e}_{\phi} \\ \vec{E} &= -\frac{Z_F I_0 \Delta l' \beta^2}{2\pi} e^{-j\beta R} \cdot \cos \theta \left(\frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{R} \\ &= -\frac{Z_F I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \theta \left(\frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{\theta} \end{split}$$

8.1.2 Nahfeld(Fresnel-Zone):

$$\frac{\lambda}{2\pi R} \gg 1$$
 oder $\beta R \ll 1$

Überwiegend **Blindleistungsfeld**, da E zu H 90° phasenverschoben

$$\begin{split} \vec{H} &\approx \frac{I_0 \Delta l'}{4\pi R^2} \cdot \sin \theta \cdot \vec{e}_{\phi} \\ \vec{E} &\approx \frac{I_0 \Delta l'}{2\pi j \omega \varepsilon R^3} \cos \theta \cdot \vec{e}_{R} \\ &+ \frac{I_0 \Delta l'}{4\pi j \omega \varepsilon R^3} \sin \theta \cdot \vec{e}_{\theta} \end{split}$$

8.1.3 Fernfeld (Fraunhofer-Zone):

$$\frac{\lambda}{2\pi R} \ll 1$$
 oder $\beta R \gg 1$

Überwiegend **Wirkleistungsfeld**, \vec{S} nach außen somit Kugelwelle

mit
$$\eta = Z_{F0}$$

$$H \approx j \frac{\beta I_0 \Delta l'}{4\pi R} \cdot e^{-j\beta R} \cdot \sin \theta \cdot \vec{e}_{\phi}$$
$$E \approx j \frac{\beta Z_F I_0 \Delta l'}{4\pi R} \cdot e^{-j\beta R} \cdot \sin \theta \cdot \vec{e}_{\theta}$$

8.1.4 Abgestrahlte Leistung im Fernfeld

$$\begin{split} P_{\rm rad} &= \frac{Z_{F0}I_0^{~2}\beta^2(\Delta l')^2}{12\pi} \\ &= \frac{I_0^2Z_F\pi}{3} \cdot \frac{\Delta l'^2}{\lambda^2} \\ &= 40\pi^2\Omega \cdot \left(\frac{I_0\Delta l'}{\lambda}\right)^2 \\ S_{av} &= \frac{Z_FI_0^2\beta^2(\Delta l')^2}{32\pi^2R^2} \cdot \sin^2\theta \cdot \vec{e}_R \\ &= \frac{1}{2}\operatorname{Re}\left\{\vec{E} \times \vec{H}^*\right\} \end{split}$$

8.1.5 Strahlungswiderstand

$$R_S = \frac{2}{3}\pi Z_F \left(\frac{\Delta l'}{\lambda}\right)^2$$
$$= 80\pi^2 \Omega \left(\frac{\Delta l'}{\lambda}\right)^2$$

8.2 Magnetischer Dipol

$$\vec{A} = \frac{\mu m}{4\pi R^2} (1 + j\beta R) e^{-j\beta R} \sin \theta \cdot \vec{e}_{\phi}$$
$$\Delta l \to \beta \pi \ a^2$$

$$\begin{split} \vec{H} &= -\frac{j\omega\mu\beta^2 m}{2\pi Z_{F0}} e^{-j\beta R} \cdot \cos\theta \left(\frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_R \\ &= -\frac{j\omega\mu\beta^2 m}{4\pi Z_{F0}} e^{-j\beta R} \cdot \sin\theta \left(\frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_\theta \\ \vec{E} &= \frac{j\omega\mu\beta^2 m}{4\pi} e^{-j\beta R} \sin\theta \left(\frac{1}{j\beta R} + \frac{1}{(j\beta R)^2} \right) \vec{e}_\phi \end{split}$$

8.2.1 Fernfeld

$$E \approx -\frac{\beta m \omega \mu}{4\pi R} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\phi}$$
$$H \approx -\frac{\beta m \omega \mu}{4\pi R Z_{F0}} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\theta}$$

8.2.2 Abgestrahlte Leistung im Fernfeld

$$\begin{split} P_{\rm rad} &= \frac{Z_F \beta^4 m^2}{12\pi} \\ &= \frac{m^2 \mu \omega^4}{12\pi v_p^3} \\ S_{av} &= \frac{Z_F \beta^4 m^2}{32\pi^2 R^2} \cdot \sin^2 \theta \cdot \vec{e}_R \\ &= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\} \end{split}$$

8.2.3 Nahfeld

$$E \approx -\frac{jm\omega\mu}{4\pi R^2}\sin\theta \cdot \vec{e}\phi$$

$$H \approx \frac{m}{4\pi R^3}(2\cos\theta \cdot \vec{e}_R + \sin\theta \cdot \vec{e}_\theta)$$

8.3 Lineare Antenne

$$I(z') = I_0 \cdot \sin \left[\beta \left(\frac{L}{2} - |z'|\right)\right]$$

8.3.1 Dipolantenne

$$\vec{H} = j \cdot \frac{I_0}{2\pi R} \cdot e^{-j\beta R} \cdot \frac{\cos\left[\left(\frac{\beta L}{2}\right)\cos\theta\right] - \cos\left(\frac{\beta L}{2}\right)}{\sin\theta} \cdot \vec{e}_{\phi}$$

$$\vec{E} = H \cdot Z_F \cdot \vec{e}_\theta$$

$$I_0 = \sqrt{\frac{2 \cdot P_{Send}}{R_S}}$$

 ${\bf Die\ mittlere\ Strahlungsleistungsdichte}$

$$\vec{S}_{av} = \frac{Z_F I_0^2}{8\pi^2 R^2} \left(\frac{\cos\left(\frac{\beta L}{2}\cos\theta\right) - \cos\left(\frac{\beta L}{2}\right)}{\sin\theta} \right)^2 \cdot \vec{e}_R$$

Die gesamte Strahlungsleistung

$$P_S = \frac{Z_F I_0^2}{4\pi} \int_{\theta=0}^{\theta=\pi} \frac{\left(\cos\left(\frac{\beta L}{2}\cos\theta\right) - \cos\left(\frac{\beta L}{2}\right)\right)^2}{\sin\theta} \cdot \vec{e_\theta}$$

8.4 Antennenkenngrößen

 $\underline{Z}_A := Antennenimpedanz$

 $R_V := Verlustwiderstand$

 $R_S := Strahlungswiderstand$

 $X_A := \text{Antennenblindwiderstand}$ D := Directifity/Richtfaktor

G := Gain/Gewinn $A_{eff} := Wirksame Antennenfläche$

Abgestrahlte Leistung 8.4.1

$$P_S = \frac{1}{2} \cdot I_A^2 \cdot R_S$$

8.4.2 Verlustleistung

$$P_V = \frac{1}{2} \cdot I_A^2 \cdot R_V$$

8.4.3Wirkungsgrad

$$\eta = \frac{P_S}{P_S + P_V} = \frac{R_S}{R_S + R_V}$$

8.4.4 Richtcharakteristik

 $C_i \stackrel{\wedge}{=}$ isotroper Kugelstrahler als Bezugsgröße in Hauptabstrahlrichtung

$$C(\vartheta, \varphi) = \frac{E(\vartheta, \varphi)}{E_{\text{max}}} = \frac{H(\vartheta, \varphi)}{H_{\text{max}}} = \frac{U(\varphi, \vartheta)}{U_{\text{max}}} \quad 0 \le C(\vartheta, \varphi) \le 1$$

$$C_i(\vartheta, \varphi) = \frac{E(\vartheta, \varphi)}{E_i} = \frac{H(\vartheta, \varphi)}{H_i} \qquad C_i > 1$$

8.4.5 Richtfunktion/Richtfaktor

In [dB] angeben!

$$\begin{split} D(\vartheta,\varphi) &= \frac{S(\vartheta,\varphi)}{S_i} \\ D &= \max\{D(\vartheta,\varphi)\} = \frac{S_{\max}}{S_i} \\ D(\vartheta,\varphi) &= C_i^2(\vartheta,\varphi) = D \cdot C^2(\vartheta,\varphi) \end{split}$$

8.4.6 Gewinn

$$G = \eta \cdot D$$
 [dB]

Wirksame Antennenfläche

$$A_{eff} = \frac{\lambda^2}{4\pi} \cdot G = \frac{Z_{F0}}{4R_S} \cdot l_{eff}^2$$

8.5 Bezugsantennen

$$g = 10 \cdot log(G) dB$$

mit P_0 : Eingangsleistung der Antenne

$G{ ightarrow}Bezugsantenne$:

Elementardipol zu Kugelstrahler

$$D = 1,50 \rightarrow g = 1,76 \text{dBi}$$

Halbwellendipol zu Kugelstrahler

$$D=1,64 \rightarrow g=2,15 \mathrm{dBi}$$

EIRP: Eqivalent Isoropic Radiated Power

$$EIRP = P_0 \cdot G_i[dBi]$$

ERP: Eqivalent Radiated Power (verlustloser Halbwellendipol)

$$ERP = P_0 \cdot G_d[dBd]$$

Senden und Empfangen 8.6

Senden = transmit = TX

Empfangen = receive = RX

$$\frac{P_{RX}}{P_{TX}} = A_{eff,RX} \cdot A_{eff,TX} \cdot \frac{1}{\lambda^2 r^2}$$

$$= D_{i,RX} \cdot \eta_{RX} \cdot D_{i,TX} \cdot \eta_{TX} \cdot \left(\frac{\lambda}{4\pi r}\right)^2$$

$$A_{eff}(\theta) = G_{RX} \cdot \frac{\lambda^2}{4\pi} \cdot \frac{3}{2} \cdot \sin^2 \theta$$

$$P_{RX} = S_{RX} \cdot A_{eff}$$

$$= P_{TX} \cdot G_{TX} \cdot G_{RX} \cdot \left(\frac{\lambda}{4\pi r}\right)^2$$

$8.6.1 \quad Freiraum d\"{a}mpfung/Freiraum d\"{a}mpfungsmaß$

$$F = \frac{P_{TX}}{P_{RX}} \cdot \left(\frac{4\pi d}{\lambda}\right)^2 \qquad [1]$$

$$a_0 = 20 \lg\left(\frac{4\pi d}{\lambda}\right) = 20 \lg\left(\frac{4\pi df}{c_0}\right) \qquad [dB]$$

$\bf 8.6.2 \quad Le istung spegel/Freir aumpegel$

$$L = 10 \lg \left(\frac{P}{1 \text{mW}} \right) \quad [\text{dBm}]$$

$$L_{RX} = L_{TX} + g_{TX} + g_{RX} - a_0 \quad [\text{dB}]$$

8.7 Antennentabelle

6.7 Antennentabene										
Antennenart	Darstellung, Belegung	Richtfaktor, Gewinn Linear (in dB)	wirksame Antennen - fläche	effektive Höhe	Strahlungs- Widerstand	vertikales Richtdiagramm (3-dB-Bereich)	horizontales Richtdiagramm			
isotrope Antenne	fiktiv	1:(0dB)	$\frac{\lambda^2}{4\pi} = 0.08\lambda^2$	_	_	+	+			
Hertzscher Dipol, Dipol mit End- kapazität		1,5; (1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12 \lambda^2$	l	$80\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° &	$\begin{array}{c} 9 = 90^{\circ} \\ \mathbf{H}_{\mathbf{p}} \end{array}$			
kurze Antenne mit Dachkapazität auf lei- tender Ebene $h << \lambda$	100	3;(4.8dB)	$\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$	h	$160\left(\frac{\pi h}{\lambda}\right)^2\Omega$	E.v. Hg/ (45°) ⊗	ϑ-90° ⊗ E ϑ / Hφ			
kurze Antenne auf leitender Ebene h << %	2000	3;(4,8dB)	$\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$	<u>h</u> 2	$40\left(\frac{\pi\hbar}{\lambda}\right)^2\Omega$	145° N _H ρ ⊗	#=90°			
2 /4 - Antenne auf leitender Ebene	1/4 3/4	3,28;(5,1dB)	0,065 2 ²	$\frac{\lambda}{2\pi} = 0.16 \lambda$	40Ω	139° N N	$ \begin{array}{c} \vartheta = 90^{\circ} \\ + \\ \otimes \varepsilon_{\vartheta} \end{array} $			
kurzer Dipol / << %	, J. P	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	1/2	$20\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° ⊗ ⊗	+ H _g ∈ 90°			
λ/2 - Dipol	2/2	1,64;(2,1dB)	0,13 λ ²	$\frac{\mathbf{\lambda}}{\mathbf{\pi}} = 0.32\mathbf{\lambda}$	73Ω	78° 8 8)/H _p			
λ -Dipol		2,41;(3,8dB)	0,19 2 ²	>> λ	200Ω	€# Hg ⊗	$+ \int_{H_{\varphi}}^{\mathfrak{F}=90^{\circ}} \otimes \varepsilon_{\vartheta}$			
2 /2 -Schleifendipol	1/2 p	1,64;(2,1dB)	0.13 2 ²	$\frac{2\lambda}{\pi} = 0.64\lambda$	290Ω	178° ⊗ H _p	+			
Schlitzantenne in Halbraum strahlend	2/2 9 9 0° 0° p	3,28;(5,1dB)	0,26 2 2	-	≈ 500 Ω	$\begin{array}{c} H_{\vartheta} \\ \hline 78^{\circ} & E_{\varphi} \\ \hline -90^{\circ} \leq \varphi \leq 90^{\circ} \end{array}$	∂=90° ⊗ H ₃ ,			
kleiner Rahmen, n-Windungen, beliebige Form	Fläche A $\varphi = 0^{\circ} \bigcirc \bullet \varphi$	1,5;(1,8dB)	$\frac{3\boldsymbol{\lambda}^2}{8\pi} = 0.12\boldsymbol{\lambda}^2$	<u>2πηΑ</u> λ	$\frac{31000 n^2 (\text{A/m})^2}{(\lambda/m)^4}$	φ = 90° Eυ	φ=0° 90°			
Spulenantenne auf langem Ferritstab l >> D	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	$\frac{\pi^2 \cap \mu_r D^2}{2\lambda}$	19100 $n^2 \mu_{\rm r}^2 \left(\frac{D}{\lambda}\right)^4$	φ=90°	\$\varphi = 90°			
Linie aus Hertzschen Dipolen $l >> \lambda$		$\approx \frac{4}{3} \frac{l}{\lambda}$	$\frac{/\lambda}{8} \approx 0.12/\lambda$	_	_	E. → ⊙ H _φ 50° λ//	$+ \underbrace{\begin{array}{c} \mathcal{F} = 90^{\circ} \\ \mathcal{E}_{\mathcal{V}} \otimes \\ \mathcal{H}_{\varphi} \end{array}}$			
Zeile aus Hertzschen Dipolen l>>2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\approx \frac{8}{3} \frac{l}{\lambda}$	$\frac{l \lambda}{4} = 0.25 \lambda$	-		H ₂ √⊙ E _φ	$\varphi = 0^{\circ}$ $\varphi = 90^{\circ}$ $\downarrow E_{\varphi}$ \bowtie \bowtie \bowtie \bowtie			
einseitig strahlende Fläche $a >> \lambda$, $b >> \lambda$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\approx \frac{6.5 \cdot 10^6 ab}{\lambda^2}$	ab	-	-	51° λ /b φ=0°	\$ = 90°			
Yagi - Uda-Antenne mit 4 Direktoren		≈5+10// 1	-	_	-	$ \begin{array}{c} $	$ \begin{array}{c} \vartheta = 90^{\circ} \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\ H_{\varphi} & \otimes E_{\vartheta} \end{array} $			