Harvard University Computer Science 20

In-Class Problems 12

Wednesday, February 24, 2016

Author: Hannah Blumberg

Executive Summary

- A set is simply a "bunch of objects." The objects that comprise a set are called its *elements* or *members*.
- A set is determined by its elements: two sets are equal if and only if they have exactly the same elements. For this reason, sets are not inherently ordered and elements of a set cannot "appear more than once" in the set.
- A set A is a subset of a set B, denoted by $A \subseteq B$, if every object in A is also in B.
- The *union* of two sets A and B, denoted by $A \cup B$, is the set of all objects that are either in A or in B (or both).
- The *intersection* of two sets A and B, denoted by $A \cap B$, is the set of all objects that are in both A and B.
- The product of two sets A and B, denoted by $A \times B$, is the set of all ordered pairs (x, y) such that x is an element of A (written $x \in A$) and y is an element of B (written $y \in B$).
- The difference of A and B, denoted by A B or $A \setminus B$, is the set of elements that are in A but are not in B.
- The *complement* of a set X (in a domain D) is the set $\overline{X} = \{y \in D : y \notin X\}$ or $\overline{X} = \{y \in D : \neg (y \in X)\}$ containing all objects that are not elements of X.
- The power set of A, denoted by P(A), is the set of all subsets of A.
- We often use set-builder notation as a concise way to describe what it means for a particular element x to be a member of a set S, denoting the set of all $x \in D$ satisfying the property P by $\{x \in D \mid P(x)\}$.
- A set is *finite* if it can be put in one-to-one correspondence with a bounded sequence of natural numbers $(1, \ldots, n)$.
- The cardinality of a finite set A, written |A|, is the number of elements in that set.

PROBLEM 1

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{a, b, c, d, 4, 5\}$.

(A) What is $A \cap B$?

(B) What is $A \cup B$?

(C) What is $|A \times B|$?

(D) What is |P(A)|?

Solution.

(A) $\{4,5\}$

(B) $\{1, 2, 3, 4, 5, a, b, c, d\}$

(C) 30

(D) 2^5

PROBLEM 2

Using set-builder notation, give formal descriptions of the following sets:

(A) The product of two sets X and Y.

(B) The difference between two sets X and Y.

(C) The power set of a set X, denoted P(X).

Solution.

(A) $XY = \{(x, y) \mid x \in X \land y \in Y\}$

(B) $X - Y = \{z \mid z \in X \land z \notin Y\}$

(C) $P(X) = \{A \mid A \subseteq X\}$

PROBLEM 3

(A) Explain why $|X \cup Y| \neq |X| + |Y|$.

(B) Provide a formula for $|X \cup Y|$ in terms of |X|, |Y|, and $|X \cap Y|$.

(C) (BONUS) Generalize this formula to unions of more than two sets.

Solution.

(A) $|X \cup Y| \neq |X| + |Y|$ if X and Y have any elements in common. Each element that is in both X and Y is counted twice in |X| + |Y|, but only counted once in $|X \cup Y|$.

(B)
$$|X \cup Y| = |X| + |Y| - |X \cap Y|$$

(C)

$$\bigcup_{i=1}^{n} S_{i} = \left(\sum_{i=1}^{n} |S_{i}|\right) - \left(\sum_{i \leq i < j \leq n} |S_{i} \cap S_{j}|\right) + \left(\sum_{i \leq i < j < k \leq n} |S_{i} \cap S_{j} \cap S_{k}|\right) - \dots + \left((-1)^{n-1} |\bigcap_{i=1}^{n} S_{i}|\right)$$

PROBLEM 4

(BONUS) There are 100 students enrolled in at least one of the following classes: CS20, CS51, and Math 21b. There are 60 students enrolled in CS20, 70 students enrolled in CS51, 30 students enrolled in Math 21b, and 10 students enrolled in all three classes.

- (A) Let A, B, and C represent the set of all students in CS20, CS51, and Math 21b respectively. Represent the information given above using set union, intersection, and cardinality.
- (B) How many students are enrolled in exactly two of the classes?

Solution.

(A)
$$|A \cup B \cup C| = 100$$
, $|A| = 60$, $|B| = 70$, $|C| = 30$, $|A \cap B \cap C| = 10$

(B)
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$$

Let t be the number of students enrolled in exactly two classes.
 $100 = 160 - t + 10$
 $t = 70$