## **Computer Exercise IV: Digital Modulation**

#### **I- Prelab Assignment:**

1.

$$b_i = 1, 0, 0, 1, 0 \quad \forall i = 1, ... 5$$
 
$$b(t) = b_i \quad 0 \le t \le 1/R_b$$

a)

```
clear all
clc
b = [1 0 0 1 0]; Rb = 1000;
simulation = 100; e = 1;
time = 0.0001 : 0.0001 : simulation*(1/Rb);
for i = 1:simulation
    if e > length(b)
        e = 1;
end
Ask(1+(i-1)*10:i*10) = b(e)*cos(2*pi*(5e+3)*time(1+(i-1)*10:i*10));
e = e + 1;% index of binary sequence
end
plot(time,Ask)
```



b)

```
clear all
clc
b = [1 0 0 1 0];Rb = 1000;
simulation = 15;e = 1;
time = 0.0001 : 0.0001 : simulation*(1/Rb);
for i = 1:simulation
    if e > length(b)
        e = 1;
    end
Psk(1+(i-1)*10:i*10) = cos(2*pi*(5e+3)*time(1+(i-1)*10:i*10)+pi+pi*b(e));
```

```
e = e + 1;% index of binary sequence
end
plot(time, Psk)
```



c)

```
clear all
clc
b = [1 0 0 1 0];Rb = 1000;
simulation = 20;e = 1;
time = 0.000001 : 0.000001 : simulation*(1/Rb);
for i = 1:simulation
    if e > length(b)
        e = 1;
    end
Fsk(1+(i-1)*1000:i*1000) = cos(2*pi*((6e+3)-b(e)*(3e+3))*...
time(1+(I 1)*1000:i*1000));
e = e + 1;% index of binary sequence
end
plot(time,Fsk)
```



## 2.

#### For ASK:

plot(psd(spectrum.periodogram, Ask, 'Fs', 100000, 'NFFT', length(Ask)));



## For psk:

plot(psd(spectrum.periodogram,Psk,'Fs',100000,'NFFT',length(Psk)));



## For FSK:

plot(psd(spectrum.periodogram,Fsk,'Fs',100000,'NFFT',length(Fsk)));



3.

```
v = Ask .* cos(2*pi*(5e+3)*time);
Matchfilter = ones(1,10);
W = conv(Matchfilter,v);
% sampeling at 10th member because it's at the center of convolved signal
S = [W(10),W(20),W(30),W(40),W(50)];
bb = S> 0.5
```

bb =

1 0 0 1 0

## A. Generation of Modulated Signals

## \*Amplitude-Shift Keying (ASK)

## A.1, 2, 3

```
clear all
clc
b = [1 0 0 1 0];Rb = 1000;
b(6:10) = randi([0 1],[1 5]);
simulation = 10;
time = 0.00001 : 0.00001 : simulation*(1/Rb);
XU = zeros(1,length(time));
for i = 1:simulation
XU(1+(i-1)*100:i*100) = b(i);
end
SA = XU.*cos(2*pi*((8e+3))*time);
plot(time,XU)
```

```
axis([0 max(time) -0.01 1.01])
figure
plot(time,SA)
figure
plot(psd(spectrum.periodogram,XU,'Fs',100000,'NFFT',length(XU)));
figure
plot(psd(spectrum.periodogram,SA,'Fs',100000,'NFFT',length(SA)));
```









# \*Phase-Shift Keying (PSK)

## A.4,5,6

phase difference between sp and the carrier  $cos(2\pi fct)$  during the first =  $0^{\circ}$  and second =  $180^{\circ}$ 

```
clear all
clc
b = [1 0 0 1 0]; Rb = 1000;
b(6:10) = randi([0 1],[1 5]);
simulation = 5;
time = 0.00001 : 0.00001 : simulation*(1/Rb);
XP = zeros(1,length(time));
for i = 1:simulation
XP(1+(i-1)*100:i*100) = 2*b(i)-1;
end
```

```
SP = XP.*cos(2*pi*((8e+3))*time);
plot(time, XP)
axis([0 max(time) -1.01 1.01])
figure
plot(time, SP)
figure
plot(time, SP)
hold on
plot(time, cos(2*pi*((8e+3))*time))
figure
plot(psd(spectrum.periodogram, XP, 'Fs', 100000, 'NFFT', length(XP)));
figure
plot(psd(spectrum.periodogram, SP, 'Fs', 100000, 'NFFT', length(SP)));
```









## \*Frequency-Shift Keying (FSK)

## A.6, 7

```
clear all
clc
b = [1 0 0 1 0];Rb = 1000;
b(6:10)= randi([0 1],[1 5]);
simulation = 5;
time = 0.00001 : 0.00001 : simulation*(1/Rb);
XP = zeros(1,length(time));
for i = 1:simulation
XP(1+(i-1)*100:i*100) = 2*b(i)-1;
end
SF = vco(XP,[4e+3 8e+3],1e+5);
plot(time,SF)
figure
plot(psd(spectrum.periodogram,SF,'Fs',100000,'NFFT',length(SF)));
```





One way to implement an FSK signal is by using to ASK signals with different carrier frequencies:



Where : f1 = mark frequency(4 kHz) and f2 = space frequency(8 kHz)Surely FSK is not efficient bandwidth . ASK is desire as this point.

#### **B.** Coherent and Noncoherent Detection

## \*Coherent Detection

#### **B**.1

```
YA = SA.*cos(2*pi*((8e+3))*time);
plot(time, YA)
figure
plot(psd(spectrum.periodogram, YA, 'Fs', 100000, 'NFFT', length(YA)));
```





B.2By assuming matched filter is normalized to it's energy.

```
YA = SA.*cos(2*pi*((8e+3))*time);
ZA = conv(0.01*ones(1,100),YA);
Output_of_unipolar_NRZ_signal = conv(0.01*ones(1,100),XA);
plot(time(1:500),ZA(1:500))
figure
plot(time(1:500),Output_of_unipolar_NRZ_signal(1:500))
```

Because two mentioned output are equivalent to each other.





B.3

By assuming matched filter is normalized to it's energy.

| Phase Error | Peak Amplitude [V] |
|-------------|--------------------|
| 0°          | 0.5                |
| 20°         | 0.47               |
| 60°         | 0.25               |
| 80°         | 0.09               |
| 120°        | 0                  |

Surely Phase  $Error = 0^{\circ}$  is desirable for BER.

B.4

Assuming sampler samples at  $1/R_b$  and Vth = 0.5:

At Phase Error =  $60^{\circ} \Rightarrow \hat{b} = 00000$ 

At Phase Error =  $120^{\circ} \Rightarrow \hat{b} = 00000$ 

B.5





So if we consider Vth = 0.5 all the sequence cannot be decoded correctly.







frequency of the envelope =  $f_c - f_0 = 8 \text{ kHz} - 7985 \text{ Hz} = 15 \text{ Hz}$ 

## C. System Performance Under Noise

#### **Coherent Detection**

## C.1,2,3

```
clear all
clc
b = [1 \ 0 \ 0 \ 1 \ 0]; Rb = 1000;
b(6:500) = randi([0 1], [1 495]);
simulation = 500;
time = 0.00001 : 0.00001 : simulation*(1/Rb);
XA = zeros(1,length(time));
for i = 1:simulation
XA(1+(i-1)*100:i*100) = b(i);
SA = XA.*cos(2*pi*((8e+3))*time);
Y = SA + sqrt(0.5) * randn(1, length(SA));
YA = Y.*cos(2*pi*((8e+3))*time);
ZA = conv(0.01*ones(1,100),YA);
eyediagram(ZA,200)
figure
plot(time(1:500), SA(1:500), time(1:500), Y(1:500))
legend('SA, modulated signal','Y, the output of channel')
% sampeling at 1/Rb or at center of eyediagram and Vth = 1/2*(top to down of
open eye) = 0.25
```

```
Z = ZA(100:100:end);% every bit interval includes 100 samples
bb = Z> 0.25;
noe = sum(abs(bb-b));% number of error
BER = noe/simulation
% BER theory
N0 = 2e-5;
EBN0 = (sum(SA.*SA)/(Rb*length(SA)))/N0;
BER_teory = qfunc(sqrt(EBN0))
```

BER = 0 BER\_teory = 2.2049e-04





## **Computer Exercise V: Matched Filter and Bit Error Rate (BER)**

## I- Prelab Assignment:

A:

a,b)

```
clear all
clc
simulation = 5;T = 1e-3;
rt = zeros(1,simulation*100);
t = 0.00001:0.00001:simulation*T;
x = 1;% impulse
nsamp = 100;
rt(1:100) = rectpulse(x,nsamp);
plot(t,rt(1:length(t)))
axis([0 0.0011 -0.01 1.01])
figure
out = 0.01*conv(rt,rt);
plot(t,out(1:length(t)))
```





c)

```
clear all
clc
```

```
simulation = 5;T = 1e-3;
rt = zeros(1,1+simulation*100);
t = 0:0.00001:simulation*T;
x = 1;% impulse
nsamp = 100;
rt1 = rectpulse(x,nsamp/2);
plot(t(1:50),rt1)
figure
rt(1:99) = 0.02*conv(rt1,rt1);
plot(t,rt(1:length(t)))
axis([0 0.0011 -0.01 1.01])
figure
out = 1/99*conv(rt,rt);
plot(t,out(1:length(t)))
```



B: a.b.c)

#### Assuming; W = 10 kHz is channel bandwidth

```
clear all
clc
b = [1 0 0 1 0]; Rb = 1000; W = 1e+4;
b(6:500) = randi([0 1], [1 495]);
simulation = 500;
time = 0.00001 : 0.00001 : simulation*(1/Rb);
X = zeros(1,length(time));
for i = 1:simulation
```

```
X(1+(i-1)*100:i*100) = 2*b(i)-1;
end
T = 1e-3;
Y = X + sqrt(0.5) * randn(1, length(X));
rt = zeros(1, simulation*100);
x = 1;% impulse
nsamp = 100;
rt(1:100) = rectpulse(x, nsamp);
out = 0.01*conv(Y,rt);
plot(time,out(1:length(time)))
rms noise = sqrt(var(out))
Peak out matched filter = max(abs(out))
the average energy X = sum(X.*X) / (Rb*length(X))
N0 = 1e-4;
EBN0 = the average energy X/N0;
Pe = qfunc(sqrt(2*EBN0))
```

 $rms_noise = 0.5777$ 

Peak\_out\_matched\_filter = 1.2629

the\_average\_energy\_X = 1.0000e-03

Pe = 3.8721e-06



**C**:

a,b)

$$\frac{1}{1+j2\pi fRC} \leftrightarrow \frac{1}{RC}e^{-\frac{t}{RC}}u(t) \quad , \quad \Delta f = 1 \, kHz$$

```
clear all
clc
% assuming sampel per symbol = 1
simulation = 1000000;
b = [1 0 0 1 0];Rb = 1000;W = 1e+3;
b(6:simulation) = randi([0 1],[1 simulation-5]);
time = 0.001 : 0.001 : simulation*(1/Rb);
X = zeros(1,length(time));
```

```
for i = 1:simulation
X(1+(i-1)*1:i*1) = 2*b(i)-1;
end
T = 1e-3;
Y = X + sqrt(0.05)*randn(1,length(X));
channel = (2000*pi)*exp(-(2000*pi)*time);
out_channel = (1/length(time))*conv(Y,channel);
receive_signal = (1/length(time))*conv(out_channel,channel);
detected_sig = receive_signal(1:1:simulation*1);
bb = detected_sig > 0;
noe = sum(abs(bb-b));
Pe = noe/simulation
plot(time,out_channel(1:length(time)))
rms_noise = sqrt(var(out_channel))
Peak_out_channel = max(abs(out_channel))
```

Pe =

6.0000e-06

rms noise =

8.5023e-06

Peak\_out\_channel =

#### 2.4881e-05



# **II- Procedure:**

## A. Characteristics of Matched Filters

A.1,2,3

$$r = matched \ filter \ based \ on \ r = rect \left( \frac{t - \frac{T}{2}}{T} \right)$$
 ,  $T = 1ms$ 





The time when the filter output reaches its maximum value = T = 1ms

A.4





The time when the filter output reaches its maximum value = T = 10ms



The time when the filter output reaches its maximum value = T = 1ms

A.5



A.6



A.7
Assuming selected matched filter is rect.





#### **B. Signal Detection**

B.1, 2, 3, 4

$$\frac{1}{1+j2\pi fRC} \leftrightarrow \frac{1}{RC} e^{-\frac{t}{RC}} u(t) \quad , \quad RC = \frac{1}{2\pi (4900)}, \Delta f = 4.9 \; kHz$$

```
clear all
clc
simulation = 10;
b10 = [1 \ 0 \ 0 \ 1 \ 0]; Rb = 1000; W = 1e+3;
b10(6:simulation) = randi([0 1],[1 simulation-5]);
time = 0 : 0.00001 : simulation*(1/Rb);
X10 = zeros(1, length(time));
for i = 1:simulation
X10(1+(i-1)*100:i*101) = 2*b10(i)-1;
channel = (2*pi*(4900))*exp(-(2*pi*(4900))*time);
out channel = (1/length(time))*conv(X10,channel);
Y10 = out channel + sgrt(2/2) * randn(1, length(out channel));
y10 = Y10(1+100:100:1+simulation*100);
bar y10 = y10 > 0 ;
noe1 = sum(abs(bar y10-b10));
Pe1 = noe1/simulation
rt1 = zeros(1,1+simulation*100);
x = 1;% impulse
nsamp = 101;
rt1(1:101) = rectpulse(x, 101);
Z10 = (1/length(time))*conv(Y10,rt1);
z10 = Z10(1+100:100:1+simulation*100);
bb = z10 > 0;
noe2 = sum(abs(bb-b10));
Pe2 = noe2/simulation
% if sampling instants other than KT
zz10 = Z10(1+100+90:100:1+simulation*100+90);
bb1 = zz10 > 0;
noe3 = sum(abs(bb1-b10));
Pe3 = noe3/simulation
plot(time, Y10(1:length(time)))
figure
plot(time, Z10(1:length(time)))
```

Pe1 = 0 Pe2 = 0

Pe3 = 0.6000

- → Decoding after Matched filter is easier because Matched filter can degrade the noise effect.
- $\rightarrow$  If sampling instants other than those specified (KT) the probability of error will be larger (Pe3) because we are sampling wrong samples(next samples) or correct samples with amplitude lower than noise.



#### C. Matched-Filter Receiver

#### C.1,2

An example of code for this part just for the case  $\sigma^2 = 0.5 \, W$  and assumes the sample number = 10.

```
clear all
clc
simulation = 2000;
nsamp = 10;
b = [1 \ 0 \ 0 \ 1 \ 0]; Rb = 1000; W = 1e+3;
b(6:simulation) = randi([0 1],[1 simulation-5]);
time = 0.000001 : 0.0001 : simulation*(1/Rb);
X = zeros(1, length(time));
for i = 1:simulation
X(1+(i-1)*nsamp:i*nsamp) = 2*b(i)-1;
end
channel = (2*pi*(4900))*exp(-(2*pi*(4900))*time);
y = X + sqrt(0.5/2) * randn(1, length(X));
out channel = (1/length(time))*conv(y,channel);
rt1 = zeros(1, simulation*nsamp);
x = 1;% impulse
rt1(1:nsamp) = rectpulse(x,nsamp);
z = (1/nsamp) *conv(out_channel,rt1);
eyediagram(z,nsamp)
% with help of eyediagram : sampling instant = -0.1*Tb + KTb , V th = 0
z10 = z(nsamp-1:nsamp:simulation*nsamp-1);
```

```
bb = z10 > 0 ;
noe = sum(abs(bb-b));
Pe_empirical = noe/simulation
% Theory Pe
N0 = 0.5/(4900);
Eb = sum(X.*X)/(Rb*length(X));
EbN0 = Eb/N0;
Pe_theoretical = qfunc(sqrt(2*EbN0))
```



| $\sigma^2[W]$ | Pe empirical                                   | Pe theoretical |
|---------------|------------------------------------------------|----------------|
|               |                                                |                |
| 0.5           | $0 (or O(10^{-6})$                             | 4.7735e-06     |
|               | when at least 10 <sup>6</sup> bits generated ) |                |
| 1             | $0 (or O(10^{-4})$                             | 8.7256e-04     |
|               | when at least 10 <sup>4</sup> bits generated)  |                |
| 1.5           | 0.0015                                         | 0.0053         |
| 2             | 0.004                                          | 0.0134         |

# C.3 Sampling at KTb:

| $\sigma^2[W]$ | Pe empirical                                   |
|---------------|------------------------------------------------|
| 1             | $0 (or O(10^{-4})$                             |
|               | when at least 10 <sup>4</sup> bits generated ) |
| 1.5           | 0.0015                                         |
| 2             | 0.0045                                         |

C.4

$$\alpha = \frac{Out.Matched\ filter(t = Tb - 0.5(0.1)Tb\ or - 0.9(0.1)Tb)}{Out.Matched\ filter(t = Tb)}$$

$$P_{theoritical} = Q(\sqrt{\frac{2\alpha Eb}{N0}})$$



Table 1 : sample instant: KTb - 0.5(0.1)Tb

| $\sigma^2[W]$ | Pe empirical                                                | Pe theoretical |
|---------------|-------------------------------------------------------------|----------------|
| 0.5           | $0 (or O(10^{-6})$<br>when at least $10^6$ bits generated ) | 7.9769e-06     |
| 1             | $0 (or O(10^{-4})$<br>when at least $10^4$ bits generated)  | 0.0011         |
| 1.5           | 0.002                                                       | 0.0064         |
| 2             | 0.045                                                       | 0.0155         |

# **Computer Exercise VI : Equalization**

a)





```
clear all
clc
Fs = 1000; L = 11;
h = [-0.8  0.6  0.002  1.05  -0.43  0.19  0.512  -0.005  -0.2  0.3  -0.01  0.085];
n = 0:L;
H = ffft(h);
f = Fs*(0:(length(h)/2))/length(h);
P2 = abs(H/(L+1));
Hw = P2(1:(L+1)/2+1);
Hw(2:end-1) = 2*Hw(2:end-1);
plot(n,h)
title('h[n]')
xlabel('n')
ylabel('Amplitude')
figure
```

```
plot(f,Hw)
title('Single-Sided Amplitude Spectrum of h[n]')
xlabel('f (Hz)')
ylabel('|Hw(f)|')
```

b)

Assuming: W = Fs, roll-of-factor = 0:

$$SNR = \frac{2Eav}{N0} \left( \int_{-W}^{W} \frac{1}{|H(f)|^2} df \right)^{-1}, \qquad N0 = 0.2 \, W/Hz$$

SNR = 0.0720

```
clear all
 clc
 Fs = 1000; L = 11;
 h = [-0.8 \ 0.6 \ 0.002 \ 1.05 \ -0.43 \ 0.19 \ 0.512 \ -0.005 \ -0.2 \ 0.3 \ -0.01 \ 0.085];
 n = 0:L;
 H = fft(h);
 f = Fs*(0:0.01:(length(h)/2))/length(h);
 P2 = abs(H/(L+1));
Hw = P2(1:0.01:(L+1)/2+1);
Hw(2:end-1) = 2*Hw(2:end-1);
 plot(n,h)
 title('h[n]')
 xlabel('n')
 ylabel('Amplitude')
 figure
 plot(f,Hw)
 title('Single-Sided Amplitude Spectrum of h[n]')
 xlabel('f (Hz)')
 ylabel('|Hw(f)|')
 SNR = 2/0.2* (sum (1./(Hw).^2)*0.01)^-1
```

c)

i)

Nf + 1 = 2K + 1, 
$$C_{opt} = \Gamma^{-1} \xi$$
:

```
clear all
clc
Fs = 1000; L =11; ntab = 25;
h = [-0.8 0.6 0.002 1.05 -0.43 0.19 0.512 -0.005 -0.2 0.3 -0.01 0.085];
n = 0:L;
H = fft(h);
f = Fs*(0:0.01:(length(h)/2))/length(h);
P2 = abs(H/(L+1));
Hw = P2(1:0.01:(L+1)/2+1);
```

```
Hw(2:end-1) = 2*Hw(2:end-1);
% peak distortion criterion for ZFE EQ.
c = [h zeros(1,13)];
g = [h(1) zeros(1,24)];
Gama = toeplitz(c,g);
zeta = [zeros(1,12) \ 1 \ zeros(1,12)]';
Copt = inv(Gama)*zeta;% ZFE EQ. coefficients
% Set up parameters and signals.
M = 4; % Alphabet size for modulation
msg = randint(1500,1,M); % Random message
modmsg = pskmod(msg,M); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
filtmsg = filter(h,1,modmsg); % Introduce channel distortion
constellation = pskmod([0:M-1],M); % Set signal constellation.
symbolest = 1/norm(Copt) *conv(Copt, filtmsg); % Equalize.
% Plot signals.
hh = scatterplot(filtmsg,1,trainlen,'bx'); hold on;
scatterplot(symbolest,1,trainlen,'r.',hh);
scatterplot(constellation,1,0,'k*',hh);
legend('Filtered signal', 'Equalized signal',...
'Ideal signal constellation');
hold off;
```



```
nn = -(ntab-1)/2:(ntab-1)/2;
plot(nn,Copt)
figure
FCopt = fft(Copt);
ff = Fs*(0:0.01:(length(Copt)/2))/length(Copt);
PP2 = abs(FCopt/(ntab));
HwCopt = PP2(1:0.01:(ntab)/2+1);
HwCopt(2:end-1) = 2*HwCopt(2:end-1);
plot(ff,HwCopt)
```

By attending to q = conv(Copt,h)

$$SNR = \frac{2Eb}{N0(\sum q[m \neq 0])} (1 - \sum q[m \neq 0])^2 = 10 \times 153$$





ii)

```
clear all
clc
Fs = 1000;L =11;ntab = 25;
h = [-0.8 0.6 0.002 1.05 -0.43 0.19 0.512 -0.005 -0.2 0.3 -0.01 0.085];
% Set up parameters and signals.
M = 4; % Alphabet size for modulation
msg = randint(1500,1,M); % Random message
modmsg = pskmod(msg,M); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
filtmsg = filter(h,1,modmsg); % Introduce channel distortion.
% Equalize the received signal.
[e,W] = lms1(0.01,ntab,filtmsg,modmsg);% Create an equalizer object.
constellation = pskmod([0:M-1],M); % Set signal constellation.
[symbolest] = conv(W,filtmsg); % Equalize.
```

```
% Plot signals.
 h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;
 scatterplot(symbolest,1,trainlen,'g.',h);
 scatterplot(constellation, 1, 0, 'k^{*}', h);
 legend('Filtered signal', 'Equalized signal',...
 'Ideal signal constellation');
 hold off
 nn = -(ntab-1)/2:(ntab-1)/2;
 figure
 plot(nn,W)
 figure
 Feq1 = fft(W);
 ff = Fs*(0:0.01:(length(W)/2))/length(W);
 PP2 = abs(Feq1/(ntab));
Hweq1 = PP2(1:0.01:(ntab)/2+1);
Hweq1(2:end-1) = 2*Hweq1(2:end-1);
 plot(ff, Hweq1)
function [e,w]=lms1(mu,M,u,d)
 % Call:
 % [e,w] = lms(mu,M,u,d);
 % Input arguments:
 % mu = step size, dim 1x1
 % M = filter length, dim 1x1
 % u = input signal, dim Nx1
 % d = desired signal, dim Nx1
% Output arguments:
% e = estimation error, dim Nx1
 % w = final filter coefficients, dim Mx1
 %initial values: 0
 w=zeros(M,1);
 %number of samples of the input signal
 N=length(u);
 %Make sure that u and d are column vectors
 u=u(:);
 d=d(:);
 %LMS
 for n=M:N
 uvec=u(n:-1:n-M+1);
 e(n) = d(n) - w' * uvec;
 w=w+mu*uvec*conj(e(n));
 e=e(:);
```







iii)

clear all

```
Fs = 1000;L = 11;ntabfor = 25;ntabback = 3;
h = [-0.8 \ 0.6 \ 0.002 \ 1.05 \ -0.43 \ 0.19 \ 0.512 \ -0.005 \ -0.2 \ 0.3 \ -0.01 \ 0.085];
% Set up parameters and signals.
M = 4; % Alphabet size for modulation
msg = randint(1500,1,M); % Random message
modmsg = pskmod(msg,M); % Modulate using QPSK.
trainlen = 500; % Length of training sequence
filtmsg = filter(h,1,modmsg); % Introduce channel distortion.
% Equalize the received signal.
eq1 = dfe(ntabfor, ntabback, rls(0.3)); % DFE
eq1.SigConst = pskmod([0:M-1],M); % Set signal constellation.
[symbolest,yd] = equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.
% Plot signals.
h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;
scatterplot(symbolest,1,trainlen,'g.',h);
scatterplot(eq1.SigConst,1,0,'k*',h);
legend('Filtered signal', 'Equalized signal',...
'Ideal signal constellation');
hold off;
```

