The protocol is based on UART with RS-485 physical interface.

The controler board is the master and all other nodes are slaves.

Each bus transaction (read or write) constitutes three frames:

Physical device address (provided by master)

Internal register address (provided by master)

Data (provided by master in a write operation and by slave in a read operation)

	8-bit Device Address									
ı	7	6	5	4	3	2	1	0		

Each physical device has one or more addresses in range 1-255. Address 0 is reserved.

7-bit Register Address									
R/W	6	5	4	3	2	1	0		

Each physical device has up to 128 registers with addresses 0-127.

The MSB of the register address represents a Read (=1) or Write (=0) operation.

After writing the register address by the master, the MSB determines if it is a read or a write operation.

Timing

Master and slaves agree on a specific baud rate (e.g., 9600bps) and 1 cycle=1/(baud rate)

Maximum bus idle time between consecutive frames of a transaction is 2*10=20 cycles

If the next frame of a bus transaction does not appear after this time => reset bus

On/Off Light

Register		Bits								
Address		7	6	5	4	3	2	1	0	
0	POL7	POL6	POL5	POL4	POL3	POL2	POL1	POL0		
U	RW	RW	RW	RW	RW	RW	RW	RW		
1	POL15	POL14	POL13	POL12	POL11	POL10	POL9	POL8		
1	RW	RW	RW	RW	RW	RW	RW	RW		

Writing a '1' to POLn bit turns light switch n to turn on and vice versa. Reading from POLn bit returns the current status of the light switch n.

Dimmer

Register					Bits			
Address	7	7	6	5	4	3	2	1 0
0	DM0_7	DM0_6	DM0_5	DM0_4	DM0_3	DM0_2	DM0_1	DM0_0
	RW	RW	RW	RW	RW	RW	RW	RW
1	DM1_7	DM1_6	DM1_5	DM1_4	DM1_3	DM1_2	DM1_1	DM1_0
	RW	RW	RW	RW	RW	RW	RW	RW
15	DM15_7	DM15_6	DM15_5	DM15_4	DM15_3	3 DM15_2	DM15_1	DM15_0
13	RW	RW	RW	RW	RW	RW	RW	RW

Writing a value 0 <= x <= 255 into register n (bits DMn_7-DMn_0) causes the light on (x/255)*100 % Reading from register n (bits DMn_7-DMn_0) returns the dimmer status.