

<u>Gameboard</u>

Maths

Curve Sketching and Combined Transformations 1ii

Curve Sketching and Combined Transformations 1ii

The curve $y=\ln x$ is transformed to the curve $y=\ln (\frac{1}{2}x-a)$ by means of a translation followed by a stretch. It is given that a is a positive constant.

Part A Translation	
Give full details of the translation involved.	
In which direction is the translation?	
$igcup_{igcup_{a}}$ Positive x -direction	
$igcup_{igcup_{x}}$ Negative x -direction	
igcup Positive y -direction	
$igcup_{i}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	
By how far is the translation?	
The following symbols may be useful: a, x, y	

Part B Stretch

Give full details of the stretch involved.

In which direction is the stretch?

- y-direction
- x-direction

By what factor is the stretch?

The following symbols may be useful: a, x, y

Part C Sketch (a)

Sketch the graph of $y = \ln{(\frac{1}{2}x - a)}$.

To see an example sketch, answer the following question: The graph is asymptotic to which line? Give the equation of the line in the form x=p where p is an expression.

The following symbols may be useful: a, x

Part D Sketch (b)

Sketch the graph of $y = \left| \ln \left(\frac{1}{2}x - a \right) \right|$.

To see an example sketch, answer the following question: For what value of x does the graph touch the x-axis?

The following symbols may be useful: a, $\, x$, $\, y$

Part E Values for x

Find, in terms of a, the set of values of x for which $\left|\ln\left(\frac{1}{2}x-a\right)\right|=-\ln\left(\frac{1}{2}x-a\right)$, and give the upper bound in the form x< c or $x\leq c$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =$, a, x

Find, in terms of a, the set of values of x for which $\left|\ln{(\frac{1}{2}x-a)}\right|=-\ln{(\frac{1}{2}x-a)}$, and give the lower bound in the form x>c or $x\geq c$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =$, a, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Algebraic Division 2ii

Algebraic Division 2ii

Part A Quotient and Remainder

Find the quotient and the remainder when $3x^3 - 2x^2 + x + 7$ is divided by $x^2 - 2x + 5$.

Give the quotient.

The following symbols may be useful: x

Give the remainder.

The following symbols may be useful: x

Part B Value of a and b

Hence, or otherwise, determine the values of the constants a and b such that, when $3x^3-2x^2+ax+b$ is divided by x^2-2x+5 , there is no remainder.

Give the value of a.

The following symbols may be useful: a

Give the value of b.

The following symbols may be useful: b

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 14 - A2 Pure Maths Revision (non-calculus)

<u>Gameboard</u>

Maths

Binomial: All Rational n 1i

Binomial: All Rational n 1i

Part A Partial Fractions

Given that
$$rac{3x+4}{(1+x)(2+x)^2}\equivrac{A}{1+x}+rac{B}{2+x}+rac{C}{(2+x)^2}$$
, find A , B , and C .

Find A.

The following symbols may be useful: A

Find B.

The following symbols may be useful: B

Find C.

The following symbols may be useful: c

Part B Expand

Hence or otherwise expand $\frac{3x+4}{(1+x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 .

The following symbols may be useful: x

Part C Values of x

State the set of values of x for which the expansion in the above part is valid.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- $\bigcirc x < a$
- $x \leq a$
- x > a
- $\bigcirc \quad x \geq a$
- $\bigcirc \quad a < x < b$
- $a \le x \le b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 14 - A2 Pure Maths Revision (non-calculus)

Gameboard

Maths

Functions: Graphs and Inverse Functions 3ii

Functions: Graphs and Inverse Functions 3ii

The function f(x) is defined by

$$f(x) = 1 + \sqrt{x}$$
 for $x \geqslant 0$.

Part A Domain and Range

What is the domain of the inverse function $f^{-1}(x)$? Write your answer in the form of an inequality.

The following symbols may be useful: <, <=, >, >=, f, x, y

What is the range of the inverse function $f^{-1}(x)$? Write your answer in the form of an inequality.

The following symbols may be useful: <, <=, >, >=, f, x, y

Part B
$$f^{-1}(x)$$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, x, y

Part C
$$f(x) = f^{-1}(x)$$

Find the x-value that is the solution to the equation $f(x) = f^{-1}(x)$ to four significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 14 - A2 Pure Maths Revision (non-calculus)

<u>Gameboard</u>

Maths

Trigonometry: Combined Angles 4ii

Trigonometry: Combined Angles 4ii

Part A Combined Angles

Express $8\sin\theta-6\cos\theta$ in the form $R\sin(\theta-\alpha)$, where R>0 and $0^\circ<\alpha<90^\circ$.

Give the value of R.

The following symbols may be useful: R

Give the value of α to three significant figures.

Part B Solve

Hence solve, for $0^\circ < \theta < 360^\circ$, the equation $8\sin\theta - 6\cos\theta = 9$, giving your answers in degrees to three significant figures.

Give the smallest solution.

Give the largest solution.

Part C Maximum Value

Hence find the greatest possible value of

$$32\sin x - 24\cos x - (16\sin y - 12\cos y)$$

as the angles \boldsymbol{x} and \boldsymbol{y} vary.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 14 - A2 Pure Maths Revision (non-calculus)

<u>Gameboard</u>

Maths

Trigonometry: Double Angles 1ii

Trigonometry: Double Angles 1ii

Part A The form $a\sin^2\theta + b\sin\theta + c = 0$

Express the equation $(\csc\theta)(3\cos2\theta+7)+11=0$ in the form $a\sin^2\theta+b\sin\theta+c=0$, where $a,\,b,$ and c are constants.

Give the value of a.

The following symbols may be useful: a

Give the value of b.

The following symbols may be useful: b

Give the value of c.

The following symbols may be useful: c

Part B Solve

Hence solve, for $-180^{\circ} < \theta < 180^{\circ}$, the equation $(\csc \theta)(3\cos 2\theta + 7) + 11 = 0$. Give your answers in degrees, to three significant figures.

Give the highest (most positive) solution.

Give the lowest (most negative) solution.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 14 - A2 Pure Maths Revision (non-calculus)

<u>Gameboard</u>

Maths

Series

Series

A sequence $u_1, u_2, u_3, ...$ is defined by

$$u_1 = 2 \ \ ext{and} \ \ u_{n+1} = rac{1}{1-u_n} \ ext{for} \ n \geqslant 1.$$

Part A u_2

Write down the value of u_2 .

The following symbols may be useful: u_2

Part B u_3

Write down the value of u_3 .

The following symbols may be useful: u_3

Part C u_4

Write down the value of u_4 .

The following symbols may be useful: u_4

Part D u_5

Write down the value of u_5 .

The following symbols may be useful: u_5

Part E u_{200}

Deduce the value of u_{200} .

The following symbols may be useful: u_200

Part F
$$\sum_{n=1}^{200} u_n$$

Find
$$\sum_{n=1}^{200} u_n$$
 .

Part G Amount of Chemical

Sarah is carrying out a series of experiments which involve using increasing amounts of a chemical. In the first experiment she uses $6\,\mathrm{g}$ of a chemical and in the second experiment she uses $7.8\,\mathrm{g}$ of the chemical.

Given that the amounts of chemical used form an arithmetic progression, find the total amount of chemical used in the first 30 experiments.

Part H Number of experiments possible

Instead, it is given that the amounts of chemical used form a geometric progression. Sarah has a total of $1800\,\mathrm{g}$ of the chemical available. As N, the greatest number of experiments possible, satisfies the inequality

$$1.3^N \leqslant 91$$

Use logarithms to find the greatest value for N.

The following symbols may be useful: N

Used with permission from UCLES A-level Maths papers, 2003-2017.