Supervised Learning Meeting 8/15

Bo Han, Chen

National Yang Ming Chiao Tung University, Taiwan bhchen312551074.cs12@nycu.edu.tw

August 15, 2023

Presentation Overview

- Environment
- Public Dataset Oxford 102 Flower NSL-KDD
- 3 Self-Made Dataset MLB
- 4 Conclusion
- **6** References
- **6** Q & A

Environment

- Python 3.10.12
 - PyTorch 2.0.1
 - Scikit-learn 1.2.2
- platform: Google Colab
 - GPU: Nvidia Tesla T4

Public Dataset

Oxford 102 Flower

- preprocessing
 - split the train, valid, test data (1020, 1020, 6149)
 - resize the image data (224*224)
 - normalization
- hyperparameters
 - batch size: 100
 - epochs: 50
- classifier
 - VGG 19
 - ResNet
 - residual-block

Figure 1: VGG training progress-accuracy

Figure 2: VGG training progress-loss

Bo Han, Chen (NYCU) Meeting 8/15 August 15, 2023 5 / 18

Figure 3: ResNet training progress-accuracy

Figure 4: ResNet training progress-loss

Bo Han, Chen (NYCU) Meeting 8/15 August 15, 2023 6/18

Model	Accuracy
${\sf myVGG}$	59.55%
myResNet	75.34%
ResNet50 [1]	90.00%
EffNet-L2 [2]	99.65%

Public Dataset NSL-KDD

- preprocessing
 - one-hot encoding
 - min-max normalization
 - mapping the attack class
 - normal
 - Dos
 - Probe
 - R2L
 - U2R
 - data split (125973, 22544)
- classifier
 - KNN
 - SVM

Figure 5: train data size-accuracy on NSL-KDD

Figure 6: KNN neighbor-accuracy

Figure 7: SVM degree-accuracy

Result

Figure 8: ROC Curves on NSL-KDD

Model	Accuracy
myKNN	75.71%
mySVM	76.44%
ANN [3]	79.90%
CNN [4]	80.13%

- preprocessing
 - min-max normalization
 - reorganize the class label
- classifier
 - Decision Tree
 - XGBoost
- cross-validation
 - Stratified K Fold with K=5
 - 60 instances a fold

decision tree min_samples_leaf - accuracy 1.0 0.8 accuracy 0.2 9 10 11 12 13 14 15 16 17 18 19 20 samples

Figure 9: Decision tree split sample-accuracy

Figure 10: Decision tree leaf sample-accuracy

Bo Han, Chen (NYCU) Meeting 8/15 August 15, 2023 14/18

Figure 11: XGBoost estimator-accuracy

Figure 12: XGBoost max depth-accuracy

Bo Han, Chen (NYCU) Meeting 8/15 August 15, 2023 15/18

Conclusion

- more efficient way for hyperparameter tuning
 - ex: evolutionary algorithm
- try different preprocessing method
 - ex: dimensionality reduction

- [1] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. "When vision transformers outperform resnets without pre-training or strong data augmentations". In: arXiv preprint arXiv:2106.01548 (2021).
- [2] Pierre Foret et al. "Sharpness-aware minimization for efficiently improving generalization". In: arXiv preprint arXiv:2010.01412 (2020).
- [3] Bhupendra Ingre and Anamika Yadav. "Performance analysis of NSL-KDD dataset using ANN". In: 2015 international conference on signal processing and communication engineering systems. IEEE. 2015, pp. 92–96.
- [4] Yalei Ding and Yuqing Zhai. "Intrusion detection system for NSL-KDD dataset using convolutional neural networks". In: *Proceedings of the 2018 2nd International conference on computer science and artificial intelligence.* 2018, pp. 81–85.

Thanks for Listening

Q & A

Bo Han, Chen (NYCU) Meeting 8/15 August 15, 2023 18 / 18