Data Export for Thrust 3 (Heni's Students)

<u>About:</u> This folder contains experimental sensor data collected with the origami device. The data sets were saved as MATLAB .mat files.

Data Files:

- sensor_data_trial1_LostMarkers.mat = useful for validation, but possibly NOT useful for training. This data set contains a few lost markers, which leads to jumps in the ground truth kinematics obtained from mocap.
- sensor data trial2.mat = good data set.
- sensor data trial3.mat = good data set.

Variables within each data file:

- gyro_speed{} = (deg/s) 1D angular rate of gyroscopes. Each *cell array* corresponds to a different gyroscope sensor; 3 gyroscope sensors in total:
 - o gyro_speed{1} = angular rate of link #1 (ω_1)
 - o gyro_speed{2} = angular rate of link #2 (ω_2)
 - o gyro_speed{3} = angular rate of link #3 (ω_3)
- hall_angle{} = (deg) angle measurement obtained from the hall effect sensors. Each *cell array* corresponds to a different hall effect sensor; 4 hall sensors were used in total, two hall sensors for each robot joint (θ):
 - o hall angle{1} = angle of joint #1 (θ_1)
 - o hall_angle{2} = angle of joint #1 (θ_1)
 - o hall angle{3} = angle of joint #2 (θ_2)
 - o hall angle{4} = angle of joint #2 (θ_2)
- hall_volt_raw = (volt) voltage raw reading of the hall effect sensor. Included for reference only.
- time_sensor = (sec) time stamp values. These are synchronized with the sensor measurements and the mocap angles.
- mocap_angle{} = (deg) mocap joint angles, used as ground truth. The variable has 3 cell arrays which correspond to:
 - o mocap_angle{1} = angle of joint 1 (θ_1)
 - o mocap_angle{2} = angle of joint 2 (θ_2)
 - mocap_angle{3} = orientation of end-effector (φ)

Details About the Experiment Setup:

- Check the illustration included below.
- A bench test was conducted (no human wearer). A random motion was induced in the robot. This robot measured the 1D joint angles (sagittal plane only).
- The origami robot consists of 3 links, and 2 internal joints. The φ angle (mocap_angle{3}) corresponds to the robot's end effector orientation / human torso angle.
- One Gyroscope is mounted on each link. A total of 3 gyroscopes were used to measure:
 - o Gyro 1 (gyro_speed{1}): angular rate of link #1 (ω_1)

- o Gyro 2 (gyro_speed{2}): angular rate of link #2 (ω_2)
- o Gyro 3 (gyro_speed{3}): angular rate of link #3 (ω ₃)
- 2 hall effect sensors are mounted on each Joint (redundant sensors). A total of 4 hall sensors were used to measure the following joints:
 - o Hall 1 (hall_angle{1}): measures joint #1 angle (θ_1)
 - o Hall 2 (hall_angle{2}): measures joint #1 angle (θ_1)
 - o Hall 3 (hall_angle{3}): measures joint #2 angle (θ_2)
 - o Hall 4 (hall_angle{4}): measures joint #2 angle (θ_2)

Figure: Illustration of Origami Robot and the corresponding state variables:

- ω_i = angular rate of link *i*, measured with gyro *i*.
- θ_i = angle of joint i.
- ϕ = robot end-effector orientation / human torso angle (mocap_angle{3}).