

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
Rakib et al.

Art Unit:

Examiner:

Serial No. unknown

Filed: 12/12/00

For: APPARATUS AND METHOD FOR SCDMA DIGITAL DATA TRANSMISSION
USING ORTHOGONAL CODES AND A HEAD END MODEM WITH NO TRACKING
LOOPS

Honorable Commissioner
of Patents and Trademarks
Washington, D.C. 20231

Morgan Hill, California
December 12, 2000

PRELIMINARY AMENDMENT

Dear Sir:

Before examining the above identified patent application, please amend the above identified case as follows.

IN THE CLAIMS

Please cancel claims 1-83 of the parent application and add the following new claims.

1 84. A remote unit modem to transmit digital data upstream to a headend modem
2 comprising:

3 a digital data receiver for receiving downstream digital data transmitted
4 from a headend modem modulated by any modulation scheme, said downstream
5 digital data either encoding a master clock generated at said headend modem in
6 payload data or other data, said master clock being used to transmit said
7 downstream data, or said downstream data including said master clock as well as
8 payload data, said digital data receiver functioning to recover said downstream
9 payload data and said master clock and generating an upstream clock from said
10 recovered master clock;

11 a digital data transmitter for coupling to a source of upstream digital

12 payload data from one or more sources, and coupled to receive said upstream
13 clock generated from said recovered master clock and using said upstream clock
14 to transmit known preamble data and, subsequently, transmitting said upstream
15 payload digital data using any modulation method, and, if necessary to separate
16 upstream payload data from several upstream data sources, using any
17 multiplexing method.

1 85. The apparatus of claim 84 wherein said upstream payload data is organized
2 as frames, and further comprising means in said transmitter for carrying out a ranging
3 process prior to transmitting said upstream payload data to determine a value for an
4 upstream frame timing delay which is used to transmit each upstream frame from this
5 transmitter which will cause said upstream frame to arrive at said headend modem with
6 its frame boundaries aligned in time with upstream frames transmitted from other
7 remote unit modem transmitters.

1 86. The apparatus of claim 85 wherein said transmitter includes a precode
2 filter and receives upstream payload data from different sources and code division
3 multiplexes data from each source using different spreading codes from an orthogonal,
4 cyclic code set, and further comprising means for performing equalization training after
5 frame synchronization has been achieved so as to determine coefficients to set into said
6 precode filter to predistort transmissions from said transmitter to reduce or eliminate
7 channel distortion.

1 87. The apparatus of claim 86 wherein said means for performing equalization
2 training further comprises means for checking the accuracy of frame synchronization
3 and adjusting said transmit frame timing delay if necessary.

1 88. The apparatus of claim 86 wherein said means for performing equalization
2 training further comprises means for adjusting the power level of transmissions from
3 this transmitter to achieve power alignment such that transmissions from this
4 transmitter arrive at said headend modem at approximately the same power level as

5 transmissions from remote unit modems.

1 89 . The apparatus of claim 87 wherein said transmitter includes a quadrature
2 amplitude modulation modulator to use QAM modulation to transmit said upstream
3 payload data, and wherein said means for performing equalization training further
4 comprises means for adjusting the power level of transmissions from this transmitter
5 to achieve power alignment such that transmissions from this transmitter arrive at said
6 headend modem at approximately the same power level as transmissions from remote
7 unit modems.

1 90. The apparatus of claim 84 wherein said transmitter includes shaping filters
2 which have transfer functions which are the Hilbert transfer function of each other so
3 as to filter upstream transmissions to achieve carrierless modulation.

1 91. The apparatus of claim 90 wherein said shaping filters have transfer
2 functions so as to filter upstream transmissions to limit their bandwidth to 6 MHz
3 centered around a center frequency.

1 92. The apparatus of claim 90 wherein said shaping filters have squared raised
2 cosine filter transfer functions so as to filter upstream transmissions to satisfy the
3 Nyquist criteria to optimize signal-to-noise enhancement and minimize intersymbol
4 interference.

1 93. The apparatus of claim 90 wherein said shaping filters are digital and
2 programmable so as to have adjustable filter transfer functions so as to filter upstream
3 transmissions to satisfy the Nyquist criteria to optimize signal-to-noise enhancement
4 and minimize intersymbol interference.

1 94. The apparatus of claim 84 wherein said transmitter receives upstream
2 payload data from multiple sources and includes a code division multiplexer which
3 functions to code division multiplex data from each source using different spreading

4 codes from a spreading code set.

1 95. The apparatus of claim 84:

2 wherein said remote unit modem is one of a plurality of remote unit
3 modems all of which share a common upstream data path to transmit data to said
4 headend modem in frames,

5 and wherein said

6 and wherein said transmitter in said remote unit modem functions to
7 receive upstream payload data from multiple sources and transmit said upstream
8 payload data in frames,

9 and wherein said transmitter further comprises ranging means for
10 determining a transmit frame timing delay which, when imposed, causes each
11 upstream transmitted frame to arrive at said headend modem with its frame
12 boundaries aligned in time with the frame boundaries of other upstream payload
13 data frames transmitted from said other remote unit modems,

14 and wherein said transmitter includes a code division multiplexer which
15 functions to code division multiplex upstream payload data from each source
16 using different spreading codes from a spreading code set.

1 96. The apparatus of claim 84:

2 wherein said remote unit modem is one of a plurality of remote unit
3 modems all of which share a common upstream data path to transmit data to said
4 headend modem in frames,

5 and wherein said digital data receiver receives downstream payload data
6 transmitted in frames from said headend modem and includes means to recover
7 said master clock from downstream frame marker data transmitted to mark the
8 beginning of every downstream frame, said downstream frame marker encoding
9 said master clock;

10 and wherein said transmitter in said remote unit modem functions to
11 receive upstream payload data from multiple sources and transmit said upstream
12 payload data in frames,

13 and wherein said transmitter further comprises ranging means for
14 determining a transmit frame timing delay which, when imposed, causes each
15 upstream transmitted frame to arrive at said headend modem with its frame
16 boundaries aligned in time with the frame boundaries of other upstream payload
17 data frames transmitted from said other remote unit modems.

1 97. The apparatus of claim 96 wherein said downstream frame marker is a
2 barker code or any other signal with good autocorrelation properties.

1 98. The apparatus of claim 96 wherein said transmitter includes circuitry to
2 generate an upstream carrier from said recovered master clock which is of the same
3 frequency as a downstream carrier used by said headend modem to transmit downstream
4 payload data, and wherein said transmitter includes means to modulate said upstream
5 payload data onto said upstream carrier for transmission.

1 99. The apparatus of claim 84 wherein said digital data receiver receives
2 downstream payload data transmitted in frames from said headend modem and includes
3 means to recover said master clock from downstream frame marker data transmitted to
4 mark the beginning of every downstream frame, said downstream frame marker
5 encoding said master clock.

1 100. The apparatus of claim 84 wherein said digital data receiver receives
2 downstream payload data transmitted in frames from said headend modem and includes
3 means to recover said master clock from pilot channel data transmitted on a downstream
4 management and control channel, and wherein said transmitter or said receiver includes
5 circuitry to either recover a master clock used to transmit downstream payload data
6 from said pilot channel data and synchronize an upstream carrier to said recovered
7 master carrier or use said recovered master clock to generate an upstream carrier
8 which is phase coherent therewith.

1 101. The apparatus of claim 84 wherein said digital data receiver receives

2 downstream payload data transmitted in frames from said headend modem and includes
3 means to recover said master clock from downstream frame marker data transmitted to
4 mark the beginning of every downstream frame, said downstream frame marker data
5 encoding said master clock, and wherein said receiver or transmitter includes means to
6 generate an upstream carrier from said recovered master clock, and wherein said
7 downstream frame marker data is any signal which has good autocorrelation properties
8 including a barker code.

1 102. The apparatus of claim 84 wherein said digital data receiver receives
2 downstream payload data transmitted in frames from said headend modem and includes
3 means to recover said master clock from downstream frame marker data transmitted to
4 mark the beginning of every downstream frame, said downstream frame marker data
5 encoding said master clock, and wherein said receiver or transmitter includes means to
6 recover data transmitted by said headend modem from which a kiloframe marker can be
7 generated such that said downstream frames can be counted by said remote unit modem,
8 and wherein said transmitter and/or receiver includes means for counting received
9 downstream frames and for counting upstream frames transmitted by said remote unit
10 modem, and for carrying out boundless ranging by receiving a frame from said headend
11 modem having any frame number and responding by sending back a response frame
12 which includes a total turnaround time service request and the frame number of the
13 downstream frame just received, and for receiving back a frame which includes the total
14 turnaround time for said remote unit modem in the form of the difference between the
15 headend modem's downstream frame count at the time said response frame is received
16 and the downstream frame number included in the response frame, and said transmitter
17 including means for using said total turnaround time along with spreading code
18 assignments transmitted to said remote unit modem from said headend modem so as to use
19 the proper spreading codes to spread the spectrum of data during specific upstream
20 frames.

1 103. The apparatus of claim 84 wherein said transmitter comprises:
2 a framer circuit functioning to receive said multiple streams of said

3 digital upstream payload data and interleave said data into a plurality of frames,
4 said framer circuit outputting one or more information vectors per frame, said
5 information vectors containing data from said input streams of digital upstream
6 payload data;

7 a code division multiple access multiplexer circuit functioning to receive
8 said information vectors and spread the Fourier spectrum thereof using
9 orthogonal spreading codes to perform a coding transformation so as to generate
10 one or more symbols from each information vector having a spread power
11 spectrum;

12 a modulator for using said one or more symbols to modulate one or more
13 radio frequency carriers for transmission to said headend modem.

1 104. The apparatus of claim 84 wherein said transmitter comprises:

2 a framer circuit functioning to receive said multiple streams of said
3 digital upstream payload data and interleave said data into a plurality of frames,
4 said framer circuit outputting one or more information vectors per frame, said
5 information vectors containing data from said input streams of digital upstream
6 payload data organized as individual elements, each element comprised of a
7 plurality of bits;

8 a trellis encoder coupled to receive said information vectors and trellis
9 encode each element to add redundant bits that can be used at said headend modem
10 to recover said data elements and correct for reception errors caused by channel
11 impairments, said trellis encoder outputting trellis encoded information vectors;

12 a code division multiple access multiplexer circuit functioning to receive
13 said trellis encoded information vectors and spread the Fourier spectrum thereof
14 using orthogonal spreading codes to perform a coding transformation so as to
15 generate one or more symbols from each information vector having a spread
16 power spectrum; and

17 a carrierless shaping filter modulator comprised of a first filter to
18 passband filter the spread spectrum resulting from code division multiplexing of
19 said real information vectors to pass only a first passband of predetermined

20 limited bandwidth and center frequency and further comprised of a second filter
21 having a filter transfer function which is the Hilbert transform of the transfer
22 function of said first filter and functioning to passband filter the spread
23 spectrum resulting from code division multiplexing of said imaginary
24 information vectors to pass only a first passband of predetermined limited
25 bandwidth and center frequency.

1 105. The apparatus of claim 104 further comprising means in said receiver and
2 said transmitter for receiving code assignment messages from said headend modem
3 specifying which particular spreading codes are to be used at specific times, and for
4 controlling said code division multiple access multiplexer to use the assigned spreading
5 codes at the assigned times.

1 106. The apparatus of claim 104 further comprising means in said receiver and
2 said transmitter for receiving code assignment messages from said headend modem
3 specifying which particular spreading codes are to be used at specific times, and for
4 controlling said code division multiple access multiplexer to use the assigned spreading
5 codes at the assigned times.

1 107. The apparatus of claim 84 wherein said transmitter includes means for
2 receiving one or more input streams of upstream data which may be on separate
3 conductors or in separate timeslots of a time division multiplexed stream, and for
4 interleaving data from different streams or from different times in the same stream into
5 each of a plurality of elements of one or more information vectors, and wherein said
6 transmitter further comprises means for encoding each element of each information
7 vector with a predetermined number of error correction bits.

1 108. The apparatus of claim 84 wherein said transmitter includes means for
2 receiving one or more input streams of upstream data which may be on separate
3 conductors or in separate timeslots of a time division multiplexed stream, and for
4 interleaving data from different streams or from different times in the same stream into

5 each of a plurality of elements of one or more information vectors.

1 109. The apparatus of claim 84 wherein said transmitter includes comprises
2 means for encoding each element of each information vector with a predetermined
3 number of error correction bits.

1 110. The apparatus of claim 84 wherein said remote unit modem includes a code
2 division multiplexer and means for implementing code diversity.

1 111. The apparatus of claim 102 wherein said digital data transmitter is a
2 spread spectrum transmitter, and wherein said receiver further comprises means to
3 recover downstream code allocation messages transmitted by said headend modem that
4 define which spreading codes are to be used by said remote unit modem during particular
5 upstream frames, and wherein said transmitter further comprises means for using the
6 assigned spreading codes to spread the spectrum of said upstream data during the
7 upstream frames designated in said downstream messages.

1 112. A method of transmitting digital data upstream to a headend modem
2 comprising:

3 receiving downstream digital data transmitted from a headend modem
4 modulated by any modulation scheme, said downstream digital data either
5 encoding a master clock generated at said headend modem in payload data or
6 encoded in other data, said master clock being used to transmit said downstream
7 data, and recovering said downstream payload data and said master clock and
8 generating an upstream clock from said recovered master clock;

9 receiving upstream digital payload data from one or more sources, and
10 receiving said upstream clock generated from said recovered master clock and
11 using said upstream clock to transmit known preamble data and, subsequently,
12 using said master clock and at least one upstream carrier to transmit said
13 upstream payload digital data using any modulation method, and, if necessary to
14 separate upstream payload data from several upstream data sources or

15 transmitted from more than one remote unit modem, using any multiplexing
16 method.

1 113. The method of claim 112 further comprising the steps of recovering a
2 master carrier from pilot channel data transmitted by said headend modem and using
3 said recovered master carrier to synchronize a local upstream carrier, and modulating
4 said upstream payload data onto said local upstream carrier.

1 114. The process of claim 112 further comprising the steps of generating a
2 local upstream carrier from said recovered master clock, and modulating said upstream
3 payload data onto said local upstream carrier.

1 115. The process of claim 112 further comprising the steps of code division
2 multiplexing said upstream payload data prior to modulation onto said upstream carrier.

1 116. The process of claim 113 further comprising the steps of code division
2 multiplexing said upstream payload data prior to modulation onto said upstream carrier.

1 117. The process of claim 114 further comprising the steps of code division
2 multiplexing said upstream payload data prior to modulation onto said upstream carrier.

1 118. The process of claim 112 further comprising the steps of organizing said
2 upstream payload data as frames, and carrying out a ranging process prior to
3 transmitting said preamble data and said upstream payload data, said ranging process for
4 determining a value for an upstream frame timing delay which is used to transmit each
5 upstream frame from said remote unit modem which will cause said upstream frame to
6 arrive at said headend modem with its frame boundaries aligned in time with upstream
7 frames transmitted from other remote unit modems so as to achieve frame
8 synchronization.

1 119. The process of claim 117 further comprising the steps of organizing said

2 upstream payload data as frames, and carrying out a ranging process prior to
3 transmitting said preamble data and said upstream payload data, said ranging process for
4 determining a value for an upstream frame timing delay which is used to transmit each
5 upstream frame from said remote unit modem which will cause said upstream frame to
6 arrive at said headend modem with its frame boundaries aligned in time with upstream
7 frames transmitted from other remote unit modems.

1 120. The process of claim 119 further comprising the steps of receiving
2 upstream payload data from different sources and code division multiplexing said
3 upstream payload data using spreading codes from an orthogonal, cyclic code set, and
4 performing equalization training after frame synchronization has been achieved so as to
5 determine coefficients to set into a precode filter to predistort transmissions from said
6 transmitter to reduce or eliminate channel distortion.

1 121. The process of claim 118 further comprising the steps of checking that
2 proper frame synchronization still exists by transmitting training data on a
3 predetermined training orthogonal spreading code, and for adjusting said transmit frame
4 timing delay if proper frame synchronization does not still exist by receiving
5 adjustment data from a spread spectrum receiver in said headend modem that causes said
6 remote unit modem to either adjust the transmit frame timing delay thereof by a
7 specified amount or to re-perform a fine tuning ranging process to adjust the transmit
8 frame timing delay thereof to achieve precise frame synchronization, and further
9 comprising the step of adjusting the power level transmitted by said remote unit modem
10 such that its transmitted power level arrives at said spread spectrum receiver in said
11 headend modem at approximately the same power level as transmissions from all other
12 remote unit modems transmitting to the same headend modem.

1 122. The process of claim 120 further comprising the steps of adjusting the
2 power level of transmissions from this transmitter to achieve power alignment such
3 that transmissions from this transmitter arrive at said headend modem at
4 approximately the same power level as transmissions from remote unit modems.

1 123. The process of claim 120 wherein said step of using said master clock and
2 at least one upstream carrier to transmit said upstream payload digital data using any
3 modulation method comprises using quadrature amplitude modulation to transmit said
4 upstream payload data on two carriers of the same frequency but offset in phase by 90
5 degrees from each other, and further comprising the step of adjusting the power level of
6 transmissions from this transmitter to achieve power alignment such that
7 transmissions from this transmitter arrive at said headend modem at approximately the
8 same power level as transmissions from remote unit modems.

1 124. A remote unit modem to transmit digital data upstream to a headend
2 modem comprising:

3 a digital data receiver for receiving downstream digital data transmitted
4 in frames from a headend modem modulated by any modulation scheme, said
5 digital data receiver functioning to recover said downstream payload data and a
6 downstream frame marker signal and functioning to output said downstream data;
7 a digital data upstream transmitter for coupling to a source of upstream
8 digital payload data having a first clock rate from one or more sources and
9 organizing upstream digital payload data into upstream frames of the same length
10 as said downstream frames, and having ranging means for transmitting a ranging
11 signal at various trial and error transmit frame timing delay values and
12 receiving messages back from said headend modem that are used to adjust said
13 transmit frame timing delay value until a value is found which causes frame
14 synchronization to exist, frame synchronization being defined as the arrival of
15 upstream frames at said headend modem with their frame boundaries aligned in
16 time with the frame boundaries of upstream frames transmitted from other
17 remote unit modems to said head end modem, said upstream transmitter for
18 generating a chip clock at a much higher rate than said first clock rate and for
19 generating an upstream carrier and for using said chip clock to multiply one or
20 more orthogonal spreading codes times the upstream data in one or more
21 upstream frames to generate one or more upstream frames of spread spectrum

22 data and for transmitting said frames of upstream spread spectrum payload
23 digital data using any modulation method and the transmit frame timing delay
24 which caused frame synchronization to exist.

1 125. The apparatus of claim 124 further comprising training means for, from
2 time to time, checking the continued accuracy of the frame synchronization and for
3 cooperating with said head end modem to adjust said frame synchronization when
4 necessary, and for cooperating with said head end modem to adjust the power level of
5 transmissions by said remote unit modem such that transmissions therefrom arrive at
6 said head end modem at approximately the same power level as transmissions from other
7 remote unit modems, and for cooperating with said head end modem to adjust FFE and DFE
8 filter coefficients in said upstream transmitter to predistort upstream data
9 transmissions to compensate for channel impairments.

1 126. The apparatus of claim 124 further comprising interleaving means for
2 interleaving said upstream payload data over time to form a plurality of information
3 vectors for each upstream frame, each information vector comprised of a plurality of
4 elements, each element comprised of one or more bits of said upstream payload data.

1 127. The apparatus of claim 124 further comprising interleaving means for
2 interleaving said upstream payload data over time to form a plurality of information
3 vectors for each upstream frame, each information vector comprised of a plurality of
4 elements, each element comprised of one or more bits of said upstream payload data.

1 128. The apparatus of claim 126 further comprising error correction encoding
2 means for receiving said information vectors and encoding said information vectors with
3 error detection and correction bits.

1 129. The apparatus of claim 127 further comprising Trellis encoder means for
2 receiving said information vectors and encoding each element of said information vectors

3 with redundant error detection and correction bits.

1 130. The apparatus of claim 130 further comprising Trellis encoder means for
2 receiving said information vectors and encoding each element of said information vectors
3 with redundant error detection and correction bits, and for dividing the resulting bits
4 into real and imaginary components to generate real and imaginary information vectors
5 from each said information vectors, each said real and imaginary information vector
6 comprised of the same number of elements as there were elements in the information
7 vector from which it was generated, and wherein said upstream transmitter multiplies
8 said orthogonal spreading code at the chip clock rate times each said element of each said
9 real and imaginary information vector to generate real and imaginary result vectors
10 each comprised of a plurality of chips, and wherein said upstream transmitter has
11 circuitry to use said chips of said real and imaginary result vectors to define quadrature
12 amplitude modulation constellation points and transmit said constellation points using
13 carrierless modulation.

1 131. The apparatus of claim 130 further comprising means to implement at
2 least a normal mode and fallback mode for the Trellis encoding.

1 132. A process of bidirectional digital data communication carried out by
2 remote unit modem to exchange digital data transmissions with a headend modem
3 comprising the steps of:

4 receiving downstream digital data transmitted in frames from a headend
5 modem modulated by any modulation scheme;
6 recovering said downstream payload data and a master clock encoded in a
7 downstream frame marker signal;
8 presenting said downstream data at an output;
9 receiving upstream digital payload data having a first clock rate from one
10 or more sources;
11 organizing upstream digital payload data into upstream frames of the
12 same length as said downstream frames;

13 transmitting a ranging signal at various trial and error transmit frame
14 timing delay values;
15 receiving messages back from said headend modem that are used to adjust
16 said transmit frame timing delay value until a value is found which causes frame
17 synchronization to exist, frame synchronization being defined as the arrival of
18 upstream frames at said headend modem with their frame boundaries aligned in
19 time with the frame boundaries of upstream frames transmitted from other
20 remote unit modems to said head end modem;
21 generating a chip clock that is phase coherent with said recovered master
22 clock and at a much higher rate than said first clock rate;
23 generating an upstream carrier that is phase coherent with said
24 recovered master clock;
25 using said chip clock to multiply one or more orthogonal spreading codes
26 times the upstream data in one or more upstream frames to generate one or more
27 upstream frames of upstream spread spectrum payload data;
28 transmitting said frames of upstream spread spectrum payload digital
29 data using any modulation method and said upstream carrier, and using the
30 transmit frame timing delay in transmitting each upstream frame which caused
31 frame synchronization to exist.

1 133. The process of claim 132 further comprising the steps of:
2 from time to time, checking the continued accuracy of the frame
3 synchronization; and
4 cooperating with said head end modem to adjust said frame
5 synchronization when necessary;
6 cooperating with said head end modem to adjust the power level of
7 transmissions by said remote unit modem such that transmissions therefrom
8 arrive at said head end modem at approximately the same power level as
9 transmissions from other remote unit modems; and
10 cooperating with said head end modem to adjust filter coefficients in said
11 upstream transmitter to predistort upstream data transmissions to compensate

12 for upstream channel impairments.

1 134. The process of claim 132 further comprising the step of interleaving said
2 upstream payload data over time to form a plurality of information vectors for each
3 upstream frame, each information vector comprised of a plurality of elements, each
4 element comprised of one or more bits of said upstream payload data.

1 135. The process of claim 133 further comprising the step of interleaving said
2 upstream payload data over time to form a plurality of information vectors for each
3 upstream frame, and Trellis encoding each element to add redundant error correction
4 bits and map each element into corresponding inphase and quadrature elements of
5 corresponding inphase and quadrature information vectors and code division
6 multiplexing each inphase and quadrature information vector.

1 136. The process of claim 132 wherein the step of organizing upstream digital
2 payload data into upstream frames of the same length as said downstream frames further
3 comprising the steps of organizing each said upstream frame as one or more information
4 vectors and encoding said information vectors with error detection and correction bits.

1 137. The process of claim 135 wherein the step of using said chip clock to
2 multiply one or more orthogonal spreading codes times the upstream data in one or more
3 upstream frames comprises code division multiplexing each of said inphase and
4 quadrature information vectors to generate inphase and quadrature result vectors, and
5 wherein said step of transmitting said frames of upstream spread spectrum payload
6 digital data using any modulation method comprises the steps of using said inphase and
7 quadrature result vectors to set the information content of two quadrature amplitude
8 modulated radio frequency signals formed by carrierless modulation using two shaping
9 filters having filter transfer functions which are the Hilbert transform of one another.

1 138. The process of claim 132 further comprising the steps of:
2 interleaving upstream payload data to form one or more information

3 vectors for each upstream frame;

4 Trellis encoding each element of said information vectors with redundant

5 error detection and correction bits;

6 mapping the resulting bits into real and imaginary components of

7 constellation points to generate real and imaginary information vectors from

8 each said information vectors, each said real and imaginary information vector

9 comprised of the same number of elements as there were elements in the

10 information vector from which it was generated;

11 multiplying said elements of said real and imaginary information vectors

12 by one or more said orthogonal, cyclic spreading codes at the chip clock rate

13 times to generate real and imaginary result vectors each comprised of a plurality

14 of chips;

15 using said chips of said real and imaginary result vectors to generate

16 upstream signals to transmit using carrierless quadrature amplitude

17 modulation;

18 transmitting said upstream signals to said headend modem over a cable

19 television hybrid fiber coaxial cable transmission medium which is

20 simultaneously carrying downstream analog cable television signals and

21 downstream digital data without interfering therewith by using frequency

22 division multiplexing between said upstream and said downstream.

1 139. A process comprising:

2 in each remote unit modem of a distributed bidirectional digital data

3 communication system having a plurality of remote unit modems coupled by a shared

4 transmission media to a central unit modem which uses a master clock and a master

5 carrier which is generated from said master clock to transmit downstream data to said

6 remote unit modems, recovering at least said master clock and using said recovered

7 master clock to generate local clock and carrier signals which are phase coherent with

8 said master clock, said local carrier also being of the same frequency as said master

9 carrier, and using said local clock and local carrier signals to recover downstream data,

10 and using said local clock and carrier signals in each said remote unit modem to transmit

11 known upstream preamble data followed by upstream payload data received at said
12 remote unit modem.

1 140. A remote unit transceiver in a distributed communication system having
2 said central unit transceiver coupled by a shared transmission media to a plurality of
3 remote unit transceivers said central unit transceiver using a master clock and master
4 carrier signals to transmit downstream data to said remote unit transceivers,
5 comprising:

6 a receiver for recovering said master clock and master carrier signals
7 and using them to receive said downstream data and to synchronize local clock and
8 carrier signals, respectively; and

9 a transmitter for receiving upstream payload data and for using said
10 synchronized local clock signal and said synchronized local carrier signal to
11 transmit known preamble data to said central unit modem then to transmit said
12 upstream payload data using any form of multiplexing and any form of
13 modulation.

1 141. A transmitter for use in a distributed digital data communication system
2 comprised of a plurality of physically distributed transmitters coupling to a shared
3 transmission medium which transmit data to a headend receiver, comprising:

4 any code division multiplexed or time division multiplexed transmitter
5 for transmitting one or more upstream frames of data comprised of preamble
6 data followed by payload data in frames to said headend receiver;

7 ranging circuitry including a programmed microprocessor for carrying
8 out a ranging process to center a ranging signal in a gap between frames of
9 upstream data transmitted by other transmitters which have already achieved
10 frame synchronization such that their frames arrive at said headend receiver
11 with their frame boundaries aligned in time, said ranging process resulting in
12 determination of a transmit frame timing delay for use by said transmitter
13 which causes frame synchronization to occur.

1 142. A method for communicating in a distributed digital data communication
2 system having a plurality of remote unit transceivers coupled by a shared transmission
3 medium to a central unit transceiver, comprising:

4 transmitting one or more ranging signals from a remote unit transceiver
5 to said central unit transceiver with trial and error adjusted transmit frame
6 timing delay values;

7 receiving one or more ranging messages from said central unit
8 transceiver the content of which assist in a ranging process to achieve frame
9 synchronization;

10 receiving a downstream frame marker signal from said central unit
11 transceiver that has a master clock encoded therein;

12 transmitting to said central unit transceiver known preamble data
13 followed by frames of upstream data using an upstream clock rate which is
14 derived from said master clock encoded in said frame marker signal.

1 143. The method of claim 142 further comprising the steps:

2 after frame synchronization has been achieved, transmitting to said
3 central unit transceiver one or more iterations of training data having its
4 spectrum spread by a plurality of adjacent, orthogonal, cyclic spreading codes
5 for use in power alignment and upstream equalization and a check on the
6 continued existence of frame synchronization;

7 receiving a gain message from said central unit transceiver for use in
8 setting transmit power levels by said remote unit transceiver; and

9 receiving at a remote unit transceiver an equalization coefficient message
10 containing filter coefficients for use in setting equalization filter coefficients in
11 said remote unit modem; and

12

13 receiving one or more messages from said central unit modem containing
14 data indicating whether frame synchronization continues to exist.

REMARKS

Please examine the above new claims.

Respectfully submitted,

Dated: December 12, 2000

Ronald Craig Fish
Reg. No. 28,843
Tel 408 778 3624
FAX 408 776 0426
Ronfpatents@worldnet.att.net

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail in an envelope addressed: Commissioner of Patents and Trademarks, Washington D.C. 20231 on

(Date Of Deposit) 12/12/00

Express Mail Receipt Number: _____

Ronald Craig Fish, President
Ronald Craig Fish a Law Corporation
Reg. No. 28,843