Vorlesung 15

Nächste Woche Mittwoch: keine Vorlesung

Physikvorträge am Dies

EINLADUNG

zu den öffentlichen Antrittsvorlesungen am Dies academicus Mittwoch, den 7. Dezember 2022

Prof. Dr. Florian **Bernlochner** (Experimentalphysik-Teilchenphysik)

"Suche nach neuen Phänomenen in der Physik mit schweren Quarks"

anlässlich seiner Berufung auf eine W2-Professur für Experimentalphysik-Teilchenphysik um 12:15 Uhr im Hörsaal XIV des Universitätshauptgebäudes Prof. Dr. Claude **Duhr** (Theoretische Teilchenphysik)

" It's Elementary – eine Einführung in die Physik der Elementarteilchen"

anlässlich seiner Berufung auf eine W3Professur für Theoretische Teilchenphysik
um 11:15 Uhr
im Hörsaal XIV des
Universitätshauptgebäudes

Jun.-Prof. Dr. Leonie **Esters** (Klimadynamik)

"Wo der Himmel den Ozean berührt – Der Gasaustausch zwischen Ozean und Atmosphäre"

anlässlich ihrer Berufung auf eine W1-Professur für Klimadynamik um 10:15 Uhr im Hörsaal XIV des Universitätshauptgebäudes

Prof. Dr. Philipp **Hieronymi** (Reine Mathematik)

"Gödel, Tarski, Oei: Praktische Anwendungen von Entscheidbarkeitsresultaten aus der Mathematischen Logik"

anlässlich seiner Berufung auf eine W2-Professur für Reine Mathematik um 13:15 Uhr im Hörsaal XIV des Universitätshauptgebäudes Dr. Tatjana **Lenz** (Physik)

" 10 Jahre Higgs-Boson: Was haben wir gelernt?"

zur Vollziehung ihrer Habilitation in der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn und zur Verleihung der Bezeichnung Privatdozentin um 14:15 Uhr im Hörsaal XIV des Universitätshauptgebäudes

Prof. Dr. Connie **Lu** (Anorganische Chemie)

"Designing a Sustainable Future through Chemistry"

anlässlich ihrer Berufung auf eine W3Professur für Anorganische Chemie
um 15:15 Uhr
im Hörsaal XIV des
Universitätshauptgebäudes

Prof. Dr. Zbyněk **Malenovský** (Physische Geographie)

"Imaging the invisible: Revealing hidden traits of plants with quantitative remote sensing"

Prof. Dr. Elvira **Mass** (Developmental Biology of the Immune System)

"Entwicklungsursprünge von Gesundheit und Krankheit"

anlässlich seiner Berufung auf eine W3Professur für Physische Geographie
um 16:15 Uhr
im Hörsaal XIV des
Universitätshauptgebäudes

anlässlich ihrer Berufung auf eine W3Professur für Developmental Biology of the
Immune System
um 17:15 Uhr
im Hörsaal XIV des
Universitätshauptgebäudes

Prof. Dr. Estela Suarez (High Performance Computing / Höchstleistungsrechnen)

"High Performance Computing goes Modular"

anlässlich ihrer Berufung auf eine W2-Professur für High Performance Computing /
Höchstleistungsrechnen
um 16:15 Uhr
im Hörsaal XIII des
Universitätshauptgebäudes

Dr. Timo **Thünken** (Zoologie)

"Evolution von Inzuchtpräferenz"

zur Vollziehung seiner Habilitation in der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn und zur Verleihung der Bezeichnung Privatdozent um 17:15 Uhr im Hörsaal XIII des Universitätshauptgebäudes

b) $\perp zur Erde$: freier Fall \overrightarrow{g} zeigt nicht zum Erdmittelpunkt

Abweichung klein (20 cm auf 100 m durch F_{ZF} , kleiner durch F_{c})

Gerade umgekehrt in der Südhalbkugel

($\overrightarrow{w}_{||}$ ändert seine Richtung nicht, aber \overrightarrow{v} zeigt für einen freien Fall in die andere Richtung)

4.4 Das Foucault-Pendel

(Bonn-Edition)

Pendel mit Länge ℓ , kleine Amplitude

Damit Richtungsänderung in \boldsymbol{z} vernachlässigbar und Gleichungen des mathematischen Pendels gelten

Horizontale Coriolisbeschleunigung:

zeigt immer in N-S Richtung

wechselt Richtung am Äquator

Nur Horizontale Coriolisbeschleunigung spielt eine maßgebliche Rolle

 \rightarrow Effekt der Zentrifugalkraft kann in Redefinition von g absorbiert werden

$$F_c = 2m \ (\overrightarrow{v}' \times \overrightarrow{\omega}_\perp)$$

 F_c wirkt nach rechts

 F_c wirkt nach rechts

Einzig beobachtbare Änderung : Bahnkurve dreht sich um die vertikale z-Achse

Pendelbahnkurve in der x-y-Ebene:

Rotation am Nordpol oder Südpol:

Rotation am Nordpol oder Südpol:
$$\Omega_{\rm Pole} = \frac{2\pi}{{\rm Tag}} = \omega_E$$

$$= \frac{2\pi}{3600 \times 24\,{\rm s}} = 7\cdot 10^{-5}\,{\rm s}^{-1}$$
 Botation am Äquator :

Rotation am Äquator:

$$\Omega_{\text{Aequator}} = 0$$

Warum? Weil $\overrightarrow{\omega}_{\perp} = 0!$

Winkelgeschw. dazwischen:

$$\Omega_{\text{Bonn}} = \omega_{\perp} = \omega_{E} \sin(\theta) \rightarrow T = \frac{2\pi}{\Omega_{\text{Bonn}}} \approx 31 \text{ h}$$

Breitengrad Bonn: ca. $\theta = 50.7^{\circ}$

Ca. 20.7° in 90 min

5. Gravitation

5.1 Bewegung im Zentralkraftfeld & Energie

Zentralkraftfeld:

$$\overrightarrow{F}(\overrightarrow{r}) = \overrightarrow{F}(|\overrightarrow{r}|)$$

$$E_{\text{pot}}(\vec{r}) = E_{\text{pot}}(|\vec{r}|)$$

Masse des Objekts, welches das Zentralkraftfeldes erzeugt

$$\overrightarrow{F}(\overrightarrow{r}) = \overrightarrow{F}(|\overrightarrow{r}|)$$

$$E_{\text{pot}}(\overrightarrow{r}) = E_{\text{pot}}(|\overrightarrow{r}|) = -GmM \frac{1}{|\overrightarrow{r}|}$$

Masse des Probekörpers

Bahnkurve (in Polarkoordinaten):

$$\vec{r}(t) = r(t) \left(\cos \varphi(t), \sin \varphi(t), 0\right) = r(t) \overrightarrow{e}_r$$

$$\overrightarrow{v}(t) = \overrightarrow{r} \overrightarrow{e}_r + \dot{\varphi} r \overrightarrow{e}_T$$

$$\dot{\varphi} = \omega$$

$$\rightarrow v^2 = \dot{r}^2 + r^2 \dot{\varphi}^2 + 2\dot{r} r \quad \overrightarrow{e}_r \cdot \overrightarrow{e}_T = \dot{r}^2 + r^2 \omega^2$$

Gesamtenergie:

$$E_{\rm tot} = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m r^2 \omega^2 + E_{\rm pot}(r)$$

$$\parallel \qquad \qquad \parallel$$

$$E_{\rm radial}^{\rm radial} \qquad E_{\rm kin}^{\rm tangential}$$

$$tangentiale kin. Energie$$

radiale kin. Energie

$$= \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} + E_{\rm pot}(r) \qquad \text{mit} \qquad L = m\omega \, r^2$$
 (wenn $\overrightarrow{\omega} \perp \overrightarrow{v}$ was beim Zentralpot. gilt)

$$E_{
m pot}^{
m eff}(r)$$
 weil $L={
m const}$ hängt der tang. Teil nur von r ab $L={
m const}$ folgt aus $\dot L=ec r imes ec F=0$ für $ec F \mid \mid ec r$

(Zentralkraft)

- $E \gg 0$: $E_{
 m kin}^{
 m radial} > E_{
 m pot}^{
 m eff}$ ightarrow Keine geschlossene Bahn (Hyperbel, Parabel, ...)
- E < 0 : $E_{\rm kin}^{\rm radial} > 0$ für $r_1 < r < r_2$ \rightarrow Ellipse
- E < 0 : $E_{\rm kin}^{\rm radial} = 0 \rightarrow {\rm Kreisbahn}$

E < 0 gebundenes System : Planeten, Satelliten (später: Moleküle, e^- in Atom)

5.2 Keplersche Gesetze

Messung der Planetenbewegung durch Tycho-Brahe (1546 - 1601)

Interpretation durch Kepler (1571 - 1630)

- → heliozentrisches Weltbild
- ightarrow 3 Gesetze (quantitativ), folgen alle aus $\overrightarrow{L}=0$!

1. Keplersches Gesetz:

Bewegung der Planeten erfolgt auf einer Ebene auf Ellipsenbahnen

Sonne befindet sich in einem der Brennpunkte der Ellipse

$$\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p} = \text{const.}$$
 $\overrightarrow{L} \perp \overrightarrow{r}$ für alle t (und $\overrightarrow{L} \perp \overrightarrow{v}(t)$)

Keplersches Gesetz: Flächensatz

In gleichen Zeiten wird die gleiche Fläche überstrichen ,

$$\frac{\mathrm{d}A}{\mathrm{d}t} = \mathrm{const}.$$

$$\rightarrow \frac{\mathrm{d}A}{\mathrm{d}t} = \frac{1}{2m} |\vec{r} \times \vec{p}| = \frac{1}{2m} |\vec{L}| = \text{const denn } \vec{L} = \text{const}$$

Keplersches Gesetz:

$$\frac{T^2}{a^3} = \text{const}$$

T: Umlaufzeit

a: große Halbachse

etwas kompliziertere Herleitung - im 3. KG steckt Newtons Gravitationsgesetz

Herleitung z.B. mit $F_{\rm ZP} = F_{\rm G}$: $mr\omega^2 = G\frac{mM}{r^2}$

 $\operatorname{Mit} \omega = \frac{2\pi}{T} \operatorname{finden wir}$

$$mr\left(\frac{2\pi}{T}\right)^2 = G\frac{mM}{r^2} \to T^2 = \left(\frac{4\pi^2}{GM}\right)r^3 \to T^2 \propto r^3$$

Verallgemeinerung von radialen zu Elliptischen Bahnen ersetzt $r \to a$ (Beweis kompliziert)

$$\rightarrow \frac{T^2}{a^3} = \frac{GM}{4\pi^2}$$

Planetary orbital radius against orbital period in log-log space

Planetary Orbit Simulator

https://astro.unl.edu/classaction/animations/renaissance/kepler.html

5.3 Newtons Gravitationsgesetz

Oder man dreht das Argument der vorherigen Folie um:

Wenn das 3. KG universell gilt, dann muss es auch für Kreisbahnen gelten und wir können uns Newtons Gravitationsgesetz herleiten:

$$\overrightarrow{F}_G = GmMf(r) \overrightarrow{r}$$
 Zentralkraft

Auf einer Kreisbahn gilt
$$\rightarrow \vec{F}_{\rm G} = -\vec{F}_{\rm ZF} = m\omega^2 \vec{r} = m\frac{(2\pi)^2}{T^2} \vec{r}$$

$$\Rightarrow f(r) \sim \frac{1}{T^2}$$
 und mit 3. KG $\frac{T^2}{r^3} = \text{const} \rightarrow f(r) \sim \frac{1}{r^3}$

Wir finden:
$$\Rightarrow \overrightarrow{F}_{G} = -GmM\frac{\overrightarrow{r}}{r^{3}} = -G\frac{mM}{r^{2}}\overrightarrow{e}_{r}$$

Gravitationskonstante G ist universelle Naturkonstante (nicht "erklärbar")

(vgl.
$$g = G \frac{m_E}{R_E^2}$$
 ist keine Naturkonstante!)