和华库左	技术资料	古科信自	执占答讯	精彩尽在鼎好
ルルのエイナ、	イソノハルル		3/2V 5-3 1/1 1/1/1-	

TIP125/126/127

TIP125/126/127

TIP125/126/127

Monolithic Construction With Built In Base-Emitter Shunt Resistors

- High DC Current Gain: hFE=1000 @ VCE= -4V, IC= -3A (Min.)
- Collector-Emitter Sustaining Voltage
- Low Collector-Emitter Saturation Voltage
- Industrial Use
- Complementary to TIP120/121/122

Absolute Maximum Ratings T_a=25℃ unless otherwise noted

CHARACTERISTICS	SYMBOL	RATING	UNIT
Collector-Base Voltage : TIP125	V _{CBO}	-60	V
: TIP126		-80	V
: TIP127		-100	V
Collector-Emitter Voltage : TIP125	V _{CEO}	-60	V
: TIP126		-80	V
: TIP127		-100	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current(DC)	Ic	-5	Α
Collector Current(Pulse)	I _{CP}	-8	Α
Base Current	I _B	I _B -120	
Collector Dissipation(Ta=25 ℃)	P _C	2	W
Collector Dissipation(Tc=25 °C)	P _C	65	W
Junction Temperature	T_J	150	℃
Storage Temperature	T _{STG}	-65~150	℃

PNP Epitaxial Silicon Darlington Transistor

Electrical Characteristics $T_a=25^{\circ}C$ unless otherwise noted

CHARACTERISTICS	SYMBOL	Test Condition	Min	Max	Unit
Collector-Emitter Sustaining Voltage : TIP125 : TIP126 : TIP127	V _{CEO} (SUS)	I _C =-100mA, I _B =0	-60 -80 -100		V V V
Collector Cut-off Current : TIP125 : TIP126 : TIP127	I _{CEO}	V_{CE} = -30V, I_{B} =0 V_{CE} = -40V, I_{B} =0 V_{CE} = -50V, I_{B} =0		-2 -2 -2	mA mA mA
Collector Cut-off Current : TIP125 : TIP126 : TIP127	I _{CBO}	V_{CE} = -60V, I_{E} =0 V_{CE} = -80V, I_{E} =0 V_{CE} = -100V, I_{E} =0		-1 -1 -1	mA mA mA
Emitter Cut-off Current	I _{EBO}	V _{EB} = -5V,I _C =0		-2	mA
DC Current Gain	h _{FE}	$V_{CE} = -3V, I_{C} = -0.5A$ $V_{CE} = -3V, I_{C} = -3A$	1000 1000		
Collector-Emitter Saturation Voltage	V _{CE} (sat)	$I_{C} = -3A, I_{B} = -12mA$ $I_{C} = -5A, I_{B} = -20mA$		-2 -4	V V
Base-Emitter ON Voltage	V _{BE} (on)	$V_{CE} = -3V, I_{C} = -3A$		-2.5	V
Output Capacitance	C _{ob}	V _{CB} = -10V,I _E =0, f=0.1MHz		300	pF

* Pulse Test: PW≤300us, Duty Cycle≤2%

Typical Characteristics

Figure 1. DC current Gain

Figure 2. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

Figure 3. Output and Input Capacitance vs. Reverse Voltage

Figure 4. Safe Operating Area

Figure 5. Power Derating

Package Dimension

TO-220 (A)

Package Dimension

TO-220 (B)

