Sixth Session

Alireza Moradi

Multiple linear regression (MLR)

• Linear regression (discussed in last session) is a simple approach to supervised learning. It assumes that the relationship between Y and X is linear.

• Although it may seem overly simplistic, linear regression is extremely useful both

conceptually and practically.

 We described linear regression with one independent variable. Recall that our model was:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot X_i$$

• In Multiple linear regression (MLR), we have multiple independent variables.

Multiple linear regression

Example:

	Observation	Area(m ²)	Number of bedrooms	Age(years)	Total Price(\$ K)
٢	1	54	1	12	128
	2	75	2	2	186
	3	80	1	5	150
	4	40	0	30	63
	5	38	0	5	96
	6	120	3	10	299
	7	90	1	12	197
	8	95	1	7	250
	9	86	2	1	200
	10	65	1	5	210

Multiple linear regression

• In Multiple Linear Regression, our model is:

$$y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_p \cdot X_p$$

• Given estimates for $\beta_0, \beta_1, ..., \beta_p$ we can make predictions using the following formula:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot X_1 + \hat{\beta}_2 \cdot X_2 + \dots + \hat{\beta}_P \cdot X_P$$

• For linear regression problems, two common methods for finding the line of best fit are **Ordinary Least Squares (OLS)** and **Gradient Descent**.

Multiple linear regression

- Linear regression with more than one features form a hyperplane.
- For example, with 2 features, we will have a **plane** as our model.

- ✓ A **plane** is a 2-dimensional hyperplane embedded in a 3-dimensional space.
- ✓ A **line** is a 1-dimensional hyperplane embedded in a 2-dimensional space.

MLR; Standard notation

- $x_j \Rightarrow j\text{-}th$ feature $\forall j = 1, 2, \dots, p$ p = number of features
- $X \Rightarrow Vector of features$:

$$X = \left[x_1, x_2, \dots, x_p\right]$$

• $X^{(i)} \Rightarrow$ features of *i-th* training example $\forall j = 1, 2, \dots, n$ n = number of observations

Observation	Area(m ²)	Number of	Age(years)	Total
Observation		bedrooms		Price(\$ K)
1	54	1	12	128
2	75	2	2	186
3	80	1	5	150
4	40	0	30	63
5	38	0	5	96
6	120	3	10	299
7	90	1	12	197
8	95	1	7	250
9	86	2	1	200
10	65	1	5	210

• $x_j^{(i)} \Rightarrow \text{value of feature } j \text{ in } i\text{-}th \text{ training}$ example

Vectorization

- In ML, **vectorization** is the process of converting data into numerical vectors. These vectors then become the input for ML algorithms.
- Without vectorization:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

• With vectorization:

$$\beta = [\beta_1, \beta_2, \dots, \beta_p]$$

$$X = [x_1, x_2, \dots, x_p]$$

$$y = \beta_0 + \beta \cdot X$$
 Dot product

Vectorization

- Vectorization allows performing operations on multiple data elements simultaneously, which can lead to faster computations.
- For example:

$$y = 2 + 2.3 + 3.1 + 4.2 + 2.4$$

- This optimization leverages the parallel processing capabilities of modern CPUs and GPUs.
- In a nutshell, Vectorization can often enable **parallelized computations**, potentially leading to significantly **faster calculations** for specific operations on large datasets, leveraging the capabilities of modern processors.

Gradient Descent in MLR

- We can modify gradient decent algorithm from one feature to multiple features.
- The idea is to iteratively update each feature's weight until the convergence.

Repeat untill convergence{

$$\beta_j = \beta_j - \alpha \frac{\partial J(\beta)}{\partial \beta_j}$$

}

Gradient Descent in MLR

• In MLR our parameters are:

$$\beta_0, \beta_1, \beta_2, \ldots, \beta_p$$

• For convenience of notation, we define $x_0 = 1$ and rewrite the model as:

$$\hat{y} = \hat{\beta}_0 \cdot X_0 + \hat{\beta}_1 \cdot X_1 + \hat{\beta}_2 \cdot X_2 + \dots + \hat{\beta}_p \cdot X_p$$

• The cost function is:

$$J(\beta_0, \beta_1, \beta_2, \dots, \beta_p) = \frac{1}{2n} \sum_{i=1}^n (\hat{y}^{(i)} - y^{(i)})^2$$

Gradient Descent in MLR

• As we said before the new algorithm for gradient descent in MLR will be:

Repeat untill convergence{ $\beta_{j,\,new} = \beta_j - \alpha \frac{\partial J(\beta)}{\partial \beta_j}$ }

• We should simultaneously update β_j for every j = 0, 1, 2, ..., p and the new algorithm will be:

Repeat untill convergence{

$$\beta_{j,new} = \beta_j - \alpha \frac{1}{n} \sum_{i=1}^n (\hat{y}^{(i)} - y^{(i)}) x_j^{(i)}$$

Polynomial regression

- The truth is almost never linear!
- A polynomial regression model is a machine learning model that can capture non-linear relationships between variables by fitting a nonlinear regression line.
- Model with one feature:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \dots + \beta_d x_1^d$$

Polynomial regression

• We can find the non-linear regression line by converting a polynomial regression to a multiple linear regression.

- We can use this trick with other terms. (E.g., $x_1' = \sqrt{x_1 \cdot x_2}$)
- "Essentially, all models are wrong, but some are useful" by George Box

Interpretation

- We interpret β_i as the average effect on Y of a one unit increase in x_i , holding all other predictors fixed.
- For example:

$$y = 16.3 + 2.24 x_1 + 5.3 x_2 - 1.3 x_3$$

 $y = 16.3 + 2.24 x_1 + 5.3 x_2 - 1.3 x_3$ $\begin{cases} x_1 \Rightarrow \text{Area}(m^2) \\ x_2 \Rightarrow \text{Number of bedrooms} \\ x_3 \Rightarrow \text{Age(years)} \end{cases}$

- Claims of causality should be avoided for observational data. "Correlation does not imply causation" - Karl Pearson
- A regression coefficient β_i estimates the expected change in Y per unit change in x_i , with all other predictors held fixed. But **predictors usually change together!**

Interpretation

• The true way of interpreting => partial derivatives

- The partial derivative of y with respect to x_j (denoted as $\frac{\partial y}{\partial x_j}$) indicates how much y changes in response to a unit change in x_j , holding all other variables constant.
- For example:

$$y = 6x_1^2 + 3x_1 + x_2 - x_1 \cdot x_2$$

 x_1

 x_2

Interpretation

- Despite its simplicity, the linear model has distinct advantages in terms of its interpretability and often shows good predictive performance.
- The reason:

$$\frac{\partial y}{\partial x_i} = \beta_j$$

Train – test splitting

- The train-test split is a technique for **evaluating the performance** of a machine learning algorithm.
- ✓ The **training set** is used to train the model.
- ✓ The **test set** evaluates its performance on unseen data.
- A commonly used ratio is **80:20**, which means 80% of the data is for training and 20% for testing. Other ratios such as 70:30, 60:40, and even 50:50 are also used in practice.

Train – test splitting

Train – **test splitting**

For our example:

Observation	$\Lambda_{roo}(m^2)$	Number of	Age(years)	Total
Observation	Alea(III)	bedrooms	Age(years)	Price(\$ K)
1	54	1	12	128
2	75	2	2	186
3	80	1	5	150
4	40	0	30	63
5	38	0	5	96
6	120	3	10	299
7	90	1	12	197
8	95	1	7	250
9	86	2	1	200
10	65	1	5	210

Observation	Area(m ²)	Number of	Age(years)	Total
Observation		bedrooms		Price(\$ K)
1	54	1	12	128
2	75	2	2	186
3	80	1	5	150
4	40	0	30	63
5	38	0	5	96
6	120	3	10	299
7	90	1	12	197
8	95	1	7	250

Observation	Area(m ²)	Number of bedrooms	Age(years)	Total Price(\$ K)
9	86	2	1	200
10	65	1	5	210

Evaluation metrics for regression

 An evaluation metric should allow us to compare two models directly.

which model is better in this example?

Evaluation metrics for regression

- We want a metric that evaluates model performance using both training and test data.
- Regression models are often evaluated using MSE, RMSE, MAE, MAPE, R², adjusted R², AIC, BIC, and Cp.
- ✓ Mean Squared Error (MSE)
- ✓ Root Mean Squared Error (RMSE)
- ✓ Mean Absolute Error (MAE)
- ✓ Mean absolute percentage error (MAPE)

- ✓ Coefficient of determination (R² or COD)
- ✓ Akaike information criterion (AIC)
- ✓ Bayesian Information Criterion (BIC)
- ✓ Mallows' Cp (Cp)
- In this course we introduce **MSE** and **R**².

R-squared (R²)

• R-Squared is a statistical measure in a regression model that determines the proportion of variance in the dependent variable that can be explained by the independent variable.

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

✓ What does $R^2 = 90\%$ means?

R-squared (R²)

Mean Squared Error (MSE)

• Mean Squared Error (MSE) formula:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• This is the train set:

	Total Price	Prediction	Error	Error ²
1	128	120	8	64
2	186	180	6	36
3	150	160	-10	100
4	63	65	-2	4
5	96	100	-4	16
6	299	300	-1	1
7	197	197	0	0
8	250	250	0	0
	Summa	-3	221	

Mean Squared Error (MSE)

• Train set and test set:

	Total Price	Prediction	Error	$Error^2$
1	128	120	8	64
2	186	180	6	36
3	150	160	-10	100
4	63	65	-2	4
5	96	100	-4	16
6	299	300	-1	1
7	197	197	0	0
8	250	250	0	0
	Summa	-3	221	

$MSE = \frac{1}{n}\sum_{i=1}^{n}$	$\sum_{i=1}^{n} (y_i)$	$-\widehat{y_i})^2$
-----------------------------------	------------------------	---------------------

	Total Price	Prediction	Error	Error ²
9	200	207	-7	49
10	210	205	5	25
	Summa	2	74	

• One of the most essential notions in modern data science is the **bias-variance tradeoff.**

- Training error versus test error:
- ✓ What is model complexity?

• Simulated data: Black line

• Another example:

• The general idea is that developing models always is **a balance between** models that vary too much, and models which are too heavily biased.

Underfit, fit and overfit

- You could in theory make a function that always equals some arbitrary number.(E.g., mean) So regardless of the values of inputs, we always get the same output.
- This is an example of a model that is completely biased and is one extreme of our bias variance tradeoff.
- Models that lean towards the bias extreme are experiencing what is called **underfitting**.

Underfit, fit and overfit

• The other end is a model which varies so much that it doesn't generalize well. (Test data shows this!)

• This is called **overfitting** and is when a model matches the data so closely that it fails to generalize to new data.

