

Department of Anesthesiology, Pharmacology & Therapeutics

Faculty of Medicine

Getting started with mix0mics

Amrit Singh, PhD
Assistant Professor

April 13th, 2023 | 11:45-12:35 EST

Comp Bio lab code

Land acknowledgement

I would like to acknowledge that I work on the traditional, ancestral, and unceded territory of the Coast Salish Peoples, including the territories of the xwməθkwəýəm (Musqueam), Skwxwú7mesh (Squamish), Stó:lō and Səĺílwəta?/Selilwitulh (Tsleil-Waututh) Nations.

Traditional: Traditionally used and/or occupied by Musqueam people

Ancestral: Recognizes land that is handed down from generation to generation

Unceded: Refers to land that was not turned over to the Crown (government) by a treaty or other agreement

Learning outcomes

By the end of this lecture you will be able to:

- 1. Describe what the *mixOmics* R-library can do.
- 2. Describe when to use which method and for what purpose (exploration, classification, integration).
- 3. Analyze data using mixOmics for various purposes (exploration, classification, integration)

High-dimensional data

- n <<< p (number of observations is much smaller than the number variables)
- data is highly correlated

univariate

p_1 ## 1 0.249 0.247 ## 3 0.281 0.846 -0.791 -0.337## 7 0.179 ## 8 0.022 ## 9 -0.366 ## 10 -0.487

multivariate

```
p_2
                                                                               p_10
              -1.750
                      0.18000 -0.0114
                                       -1.370
                                                                             0.6270
      -2.1200
               1.540 -1.58000 -0.1750
                                       -1.140
                                              -0.162 -0.215
      -0.6970
               0.655
                      1.76000
                               1.8900
                                        0.659
                                               0.717 -0.390
                                                             1.020
                                                                            -0.0564
       0.3740
               0.984
                      0.00456 -2.0400 -1.080 -0.277
                                                      0.516
                                                            -0.768
                                                                            -0.2160
       1.6400
               0.605 -0.90400
                               0.2330 -0.931 -1.010
                                                      0.862
                                                                             0.6350
      -0.7670
               1.110 -1.68000 -1.0300
                                        2.120
                                               0.461 - 0.995
                                                             0.359 -1.5200
                                                                             0.7930
      -1.6200
               0.162
                      0.60500
                               0.9520
                                        0.976 -0.706
                                                             0.182
                                                                            -1.0100
      -0.0352 -0.895 -0.20600
                               0.0174 -2.090 -1.420
                                                      1.200
                                                             0.514 -0.5370
                                                                             0.2280
       0.5360
               0.389
                      0.20900 -1.8200 -1.570
                                               0.792 -1.170
                                                             0.891
                                                                             0.2370
## 10 -0.5940 -0.799
                      1.82000 0.2710 -0.921 -1.130 -0.870
                                                                             1.1500
```


What can you do with high-dimensional data?

Unsupervised (clustering)

Supervised (regression/classification)

Tensorflow playground

mix0mics

- initiative started and maintained by Prof Kim-Anh Lê Cao
- R-library with 19 methods for high-dimensional data (exploratory analyses, classification, regression, data integration, meta-analysis)

Lab head: A/Prof Kim-Anh Lê Cao

NHMRC Career Development Fellow

Melbourne Integrative Genomics (MIG) & School
of Mathematics and Statistics

Building 184 ground floor | University of
Melbourne | Parkville VIC 3010

@: kimanh.lecao[at]unimelb.edu.au | twitter: @mixOmics_team | Ph: +61 3 8344 3971

What does mixOmics offer? methods...

mixOmics.org | *variable selection 7 / 24

What does mixOmics offer? when to use these methods...

What does mix0mics offer? graphics...

mixOmics.org

Getting started with mix0mics

- 1. Download R
- 2. Download RStudio
- 3. install mixOmics

install mixOmics

```
if (!require("BiocManager", quietly = TRUE))
   install.packages("BiocManager")

BiocManager::install("mixOmics")
```

load vignette

```
openVignette("mixOmics")
```

Dataset used in this talk

Breast Cancer multi omics data from TCGA

This data set is a small subset of the full data set from The Cancer Genome Atlas that can be analysed with the DIABLO framework. It contains the expression or abundance of three matching omics data sets: mRNA, miRNA and proteomics for 150 breast cancer samples (Basal, Her2, Luminal A) in the training set, and 70 samples in the test set. The test set is missing the proteomics data set.

```
library(mixOmics)
data(breast.TCGA)
lapply(breast.TCGA$data.train, dim)
```

```
## $mirna
## [1] 150 184
##
## $mrna
## [1] 150 200
##
## $protein
## [1] 150 142
##
## $subtype
## NULL
```

breast cancer subtypes

```
addmargins(table(breast.TCGA$data.train$subtype))

##
## Basal Her2 LumA Sum
## 45 30 75 150
```

Analysis plan

Analysis	Methods	Functions
Exploratory data analysis	PCA	pca() plotIndiv()
Discriminant analysis	sPLSDA	splsda() tune(), perf() plotIndiv(), plotVar()
Data integration analysis	DIABLO	block.splsda() tune(), perf() plotDiablo(), circosPlot()

Exploratory data analysis using PCA

Discriminant analysis using sPLSDA

- based on the eda it seems **mrna** is better at separating classes than **mirna**, lets test this.
- this may or may not be true since we peeked at the data (need to test model with another dataset)

• mrna

```
## $overall
          max.dist_centroids.dist_mahalanobis.dist
                        0.1653333
## comp1 0.2146667
                                         0.1653333
## comp2 0.0920000
                        0.1026667
                                         0.1226667
## $BER
          max.dist centroids.dist mahalanobis.dist
                        0.1851852
                                         0.1851852
## comp1 0.3454815
## comp2 0.1177778
                        0.1137778
                                         0.1361481
```

• mirna

```
## $overall
          max.dist_centroids.dist_mahalanobis.dist
## comp1 0.2613333
                        0.2946667
                                         0.2946667
## comp2 0.2226667
                        0.2426667
                                         0.2133333
## $BER
          max.dist centroids.dist mahalanobis.dist
## comp1 0.3884444
                        0.3197037
                                         0.3197037
## comp2 0.3042963
                        0.2680000
                                         0.2551111
```

Find optimal models

• mrna

• mirna

Test sPLSDA models using data from other observations (patients)

• mrna

mrna, BER=0.16

• mirna

Variables in mrna model

```
##
              value.var
## ZNF552
            -0.75801237
## KDM4B
            -0.58296361
## PREX1
            -0.20979766
## LRIG1
            -0.17185790
## CCNA2
             0.10963799
## CDK18
             0.69045321
## TP53INP2 -0.68042479
## NDRG2
             0.22678162
## STAT5A
             0.07254351
## TRIM45
             0.06003335
## JAM3
             0.72727214
## E2F1
            -0.53439117
## FRMD6
             0.33920140
## ASF1B
            -0.23142418
## HTRA1
             0.12994836
```

```
cim(mrna_model,
    row.sideColors = mixOmics::color.mixo(as.numeric(b))
```


Data integration using DIABLO

Design matters!

```
## mrna mirna protein

## mrna 0 1 1

## mirna 1 0 1

## protein 1 1 0
```

```
# set number of component per data set
ncomp = 3
test.keepX = list(mrna = c(10, 30), mirna = c(15, 25),

## setup cluster - use SnowParam() on Widnows
BPPARAM <- BiocParallel::MulticoreParam(workers = para
tune <- tune.block.splsda(
    X = data,
    Y = breast.TCGA$data.train$subtype,
    ncomp = ncomp,
    test.keepX = test.keepX,
    design = design,
    nrepeat = 2,
    BPPARAM = BPPARAM
)</pre>
```

```
## Design matrix has changed to include Y; each block will be
## linked to Y.

##
## You have provided a sequence of keepX of length: 2 for block
## This results in 8 models being fitted for each component and
```

Bioinformatics. 2019 Sep 1;35(17):3055-3062.

Finding the optimal DIABLO model

tune\$choice.keepX

```
## $mrna
## [1] 10 30 10
##
## $mirna
## [1] 15 25 25
##
## $protein
## [1] 4 4 4
```

DIABLO model

DIABLO: Sample and variable plots

plotIndiv(diablo)

DIABLO

##
trimming values to [-3, 3] range for cim visualisation. See

Singh A et al., Handbook of Biomarkers and Precision Medicine CRC Press 2019:596

Department of Anesthesiology, Pharmacology & Therapeutics

Faculty of Medicine

THANK YOU!

April 13th, 2023 | 11:45-12:35 EST

© Comp Bio lab