Devi Ahilya University, Indore, India				II Year B.E. (Computer Engineering)			
Institute of Engineering & Technology				(Full Time)			
Subject Code & Name	Instruc	tions Hou	rs per	Credits			
		Week					
CER3C2	L	T	P	L	T	P	Total
OBJECT ORIENTED	3	1	2	3	1	1	5
PROGRAMMING							
Duration of Theory							
Paper: 3 Hours							

Learning Objectives:

- 1. To provide the knowledge of Object Oriented Programming Paradigm.
- 2. To learn basic constructs of programming language that are implementing tools for object oriented program development.
- 3. To develop skill to analyze and code for problem solution in object oriented approach.

Pre-requisites: Basic skills of Programming

COURSE CONTENTS

UNIT-I

Introduction to Object Oriented Programming: Object Oriented Concepts, Merits of Object Oriented Technology. Abstraction, Encapsulation, Information Hiding. Object Model: definition, State, behavior, Identity and messages. Concept of object initialization, constructors, constructor overloading. Access modifiers: Class attributes and methods. Introduction to object model of software development.

UNIT-II

Introduction to Java classes and objects: Java features: Java syntax, data types, data type conversions, control statements, operators and their precedence. Introduction to Class: Instance members and member functions. String Handling, Wrapper classes: Arrays and Vectors.

UNIT-III

Inheritance and Polymorphism: Class relationships: Inheritance and its types, Merits and Demerits. Association. Association inheritance, Polymorphism: Dynamic method dispatch, Runtime polymorphism, Abstract classes, Interfaces and Packages.

UNIT-IV

Exception Handling and Multithreading: Exceptions: Need for exceptions, Checked Vs Unchecked exceptions, creating custom exceptions. Multithreading: Introduction, Priorities and scheduling, Inter-thread communication, Thread Synchronization and its life cycle.

UNIT-V

Java I/O, Applets and Event Handling: Basic concept of streams I/O stream & reader-writer classes. File handling. Applet and its Life Cycle, Basic GUI elements, Event Delegation Model and event handling

Learning Outcomes:

Upon Completing the Course, Student will able to:

- 1. Analyze and code the solution to problem using object oriented paradigm.
- 2. Understand Java language constructs.
- 3. Apply object model for software development

BOOKS RECOMMENDED:

- [1] Cay S.Horstmann, Core JAVA Vol-1, 9/e, Pearson Education 2012.
- [2] Herbert Schildt, *The complete Reference*, 9/e, Tata McGraw Hill 2014.
- [3] Scott W Amber, The Object Primer, 3/e, Cambridge 2004.
- [4] Timothy Budd, Object Oriented Programming, 3/e, Pearson Education 2002.
- [5] Kathy Sierra, Bert Bates, *Head First Java*, 2/e, Oreilly Publications 2005.

List of Practical Assignment:

- 1. Experiments to understand program development environment for Java language.
- 2. Writing program to learn basic language constructs like identifier, variables, data types and console input/output...
- 3. Writing program to learn control statements.
- 4. Writing program to use class and objects to model problem domain entity in program domain.
- 5. Writing program to use inheritance and polymorphism features.
- 6. Programs to use exception and understanding modeling errant condition in execution as class and objects.
- 7. Experiments to learn Multi-Thread execution.
- 8. Writing program to code applications needing concurrency and exploring inter-thread communication mechanism.
- 9. Experiments to understand stream concept and study various stream abstractions and implementation available in the language
- 10. Exploring GUI components and understanding Event Delegation Model. Understanding (GUI) objects and their communication based program to realize object oriented programming in action.
