Mathematics 3345: Foundations of Higher Mathematics – Homework 12

Author: Danny Kan (<u>kan.74@osu.edu</u>)

Date of Submission: Friday, October 27, 2023

Question 1

Let A, B, and C be sets. Prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Theorem 1

Suppose that A, B, and C are sets. We would like to prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Proof of Theorem 1

Suppose that A, B, and C are sets. We would like to prove that

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Let $z \in A \times (B \cup C)$. Then, z = (x,y) with $x \in A$ and $y \in B \cup C$. So, $y \in B$ or $y \in C$. If $y \in B$, then $z = (x,y) \in A \times B$. Similarly, if $y \in C$, then $z = (x,y) \in A \times C$. So, $(x,y) \in (A \times B) \cup (A \times C)$. Therefore, $A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$. Let $z \in (A \times B) \cup (A \times C)$. Then, either $z \in A \times B$ or $z \in A \times C$. If $z \in A \times B$, then z = (x,y), with $x \in A$ and $y \in B$. Since $B \subseteq B \cup C$, we have that $y \in B \cup C$. So, $z = (x,y) \in A \times (B \cup C)$. Similarly, If $z \in A \times C$, then z = (x,y), with $x \in A$ and $y \in C$. Since $C \subseteq B \cup C$, we have that $y \in B \cup C$. So, $z = (x,y) \in A \times (B \cup C)$. This means that $(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$. Finally, we can conclude that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Question 2

Let A, B, and C be sets. Prove that if $A \times C = B \times C$ and $C \neq \emptyset$, then A = B.

Theorem 2

Suppose that A, B, and C are sets. We would like to prove that if $A \times C = B \times C$ and $C \neq \emptyset$, then A = B.

Proof of Theorem 2

Suppose that A, B, and C are sets. We would like to prove that if $A \times C = B \times C$ and $C \neq \emptyset$, then A = B. Suppose that $A \times C = B \times C$ and $C \neq \emptyset$, but $A \neq B$ for a contradiction. If $A \neq B$, there exists an element, a, such that $a \in A$ and $a \notin B$ or there exists and element, b, such that $b \notin A$ and $b \in B$. Since $C \neq \emptyset$, there exists and element, c, such that $c \in C$. $c = (a, c) \in A \times C$ since $c \in A$ and $c \in C$, but $c = (a, c) \notin A \times C$ since $c \notin A$ and $c \in C$, but $c = (a, c) \notin A \times C$ since $c \notin A$. So, $c \notin A \times C \neq B \times C$, which is clearly a contradiction to our original assumption that $c \in C$ and $c \in C$ a

Question 3

Are these sets the graph of a function from \mathbb{R} to \mathbb{R} ? Justify your answer.

• $G = \{(x, e^x), x \in \mathbb{R}\}$

Solution

Yes, $G = \{(x, e^x), x \in \mathbb{R}\}$ is a function from \mathbb{R} to \mathbb{R} since for every input value of x in \mathbb{R} , there is a unique output value e^x in \mathbb{R} . It is the function $f(x) = e^x$.

• $G = \{(e^x, x), x \in \mathbb{R}\}$

Solution

Yes, $G = \{(e^x, x), x \in \mathbb{R}\}$ is a function from \mathbb{R} to \mathbb{R} since for every input value of e^x in \mathbb{R} , there is a unique output value x in \mathbb{R} .

• $G = \{(x, -3x), x \in \mathbb{R}\}$

Solution

Yes, $G = \{(x, -3x), x \in \mathbb{R}\}$ is a function from \mathbb{R} to \mathbb{R} since for every input value of x in \mathbb{R} , there is a unique output value -3x in \mathbb{R} . It is the function f(x) = -3x.

 $\bullet \ G = \{(-3x, x), x \in \mathbb{R}\}\$

Solution

Yes, $G = \{(-3x, x), x \in \mathbb{R}\}$ is a function from \mathbb{R} to \mathbb{R} since for every input value of -3x in \mathbb{R} , there is a unique output value x in \mathbb{R} . It is the function $f(x) = \frac{-x}{3}$.

Question 4

Sketch the set $G = \{(x^2, x), x \in \mathbb{R}\} \subset \mathbb{R}^2$. Does it define the graph of a function from $[0, +\infty]$ to \mathbb{R} ? Justify your answer.

Solution to Question 4

Please refer to Figure 1 for the sketch of the set $G = \{(x^2, x), x \in \mathbb{R}\} \subset \mathbb{R}^2$. The set $G = \{(x^2, x), x \in \mathbb{R}\} \subset \mathbb{R}^2$ does define a function from $[0, +\infty]$ to \mathbb{R} since for every input value of x^2 in $[0, +\infty]$, there is only one unique output value x in \mathbb{R} . Since the domain is restricted to $[0, +\infty]$, we get that $f(x) = \sqrt{x}$. We do not have to consider $f(x) = -\sqrt{x}$. If the domain would have been the set containing all real numbers, $G = \{(x^2, x), x \in \mathbb{R}\} \subset \mathbb{R}^2$ would not have been a function since it would not pass the vertical line test (VLT). By restricting the domain to $[0, +\infty]$, we ensure that there is only one unique output value for each input value.

Figure 1: Sketch of $G = \{(x^2, x), x \in \mathbb{R}\} \subset \mathbb{R}^2$

Question 5

Let $f: A \to B$ be a function, and let Y, Z be subsets of B. Prove that $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$.

Theorem 3

Suppose that $f: A \to B$ is a function, and consider Y, Z as subsets of B. We would like to prove that $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$.

Proof of Theorem 3

Suppose that $f: A \to B$ is a function, and consider Y, Z as subsets of B. We would like to prove that:

$$f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$$

Let $x \in f^{-1}(Y \cap Z)$. Then, $f(x) \in Y \cap Z$. So, $f(x) \in Y$ and $f(x) \in Z$. This means that $x \in f^{-1}(Y)$ and $x \in f^{-1}(Z)$, implying that $f^{-1}(Y) \cap f^{-1}(Z)$ is true. Therefore, $f^{-1}(Y \cap Z) \subseteq f^{-1}(Y) \cap f^{-1}(Z)$. Let $x \in f^{-1}(Y) \cap f^{-1}(Z)$. Then, both:

- $x \in f^{-1}(Y)$
- $x \in f^{-1}(Z)$

If $x \in f^{-1}(Y)$, then $f(x) \in Y$. If $x \in f^{-1}(Z)$, then $f(x) \in Z$, implying that $f(x) \in Y \cap Z$, which means that $x \in f^{-1}(Y \cap Z)$. Therefore, $f^{-1}(Y) \cap f^{-1}(Z) \subseteq f^{-1}(Y \cap Z)$. Finally, we conclude that $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$.

4