26th Jan sections.
1. Intuition behind p-test · When do we need it / how do we apply it?
2. The second integral from the worksheet
3. The third integral from the worksheet
1. Look out the \frac{1}{\chi'\circ} \tag{\curve first.}
The are between O and I. It looks infinite. On the other hand, the area
go to 0. Therefore \[\int_{\infty}^{1} \frac{1}{\times \text{loo}} \dx \text{converges}, \text{and} \int_{\infty}^{\infty} \dx \text{converges}.
Next, look at the to curve. This time, the weaton 0 to 1 seems to be finite, and 1 to 00 diverges! That is,
Joseph de converges, and Joto de diverges.
Finally, with $\frac{1}{5c}$, they both diverge. In summay,
Jos 1 de converges il P>1.

2. The second integral from the sheet! $\int_{-\infty}^{\infty} \frac{1}{\sqrt{5-\chi^2}} dx.$ First observation: $\sqrt{5-x^2}$ isn't defined for $x^2>5$.

In that instance, we have the sgrt of a negative number! Therefore " JS-x2" doesn't make sense from -00 to0. The largest subset of (-00,00) on which $\sqrt{15-x^2}$ is defined is $(-\sqrt{5}, \sqrt{5})$. Therefore we consider $\sqrt{5}$ $\sqrt{15-x^2}$ dx. We have two bad points, -J5 and J5. Therefore we break the integral up: $\int_{-\sqrt{5}}^{\sqrt{5}} \int_{\sqrt{5}-x^2}^{\sqrt{5}} dx = \int_{-\sqrt{5}}^{\sqrt{5}} \int_{\sqrt{5}-x^2}^{\sqrt{5}} dx$ $\int_{0}^{\sqrt{5}} \int_{\sqrt{5}-x}^{\sqrt{5}} \int_{\sqrt{5}+x^2}^{\sqrt{5}} dx$ 15 1 dx 15+x 15-x $\leq \int_{0}^{\sqrt{5}} \frac{1}{\sqrt{5-x}} dx$

This means (os(x) is greater than I -x. By the comparison test, if $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sqrt{2}-x} dx$ diverges, so does $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\cos(x)} dx$, and hence so does $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\ln(x)}{\cos(x)} dx$. Finally, by a charge of variables to $X \rightarrow t = \frac{\pi}{2} - X$, $\frac{\pi}{2} - \frac{1}{2} - \lambda d\lambda = \int_{0}^{\frac{\pi}{2} - \frac{3}{2}} \frac{1}{t} dt$, and $\int_{0}^{\frac{\pi}{2}-\frac{3}{2}} \frac{1}{t} dt$ diverges by the p-test.