

Learning to recover 3D shape from a single image

Len Bauer

May 29, 2024

Example

Distorted Point Cloud

Figure: Predicted Depth

Figure: Walls clearly stretched

Example

Recovered Shift

Figure: Edges are now straight

Example

Recovered Shift & Focal Length

Figure: Final result of 3d shape

DPM Training

Figure: Depth prediction model

DPM Training

Figure: Depth prediction model

CNN trained on mixture of existing datasets

DPM Training

Figure: Depth prediction model

- CNN trained on mixture of existing datasets
- predicts depth maps
- fails to predict scale and shift

PCM Training

Figure: Point cloud module

PCM Training

Figure: Point cloud module

Point cloud encoder

PCM Training

Figure: Point cloud module

- Point cloud encoder
- takes initial guess
- predicts shift and focal length adjustment factors

Inference

Figure: Both models combined together!

PCM training

PCM training

Operates on point clouds derived from depth maps, not images.

■ Hence we can train models to learn 3D scene shape **priors** using:

PCM training

- Hence we can train models to learn 3D scene shape **priors** using:
 - Synthetic 3D data

PCM training

- Hence we can train models to learn 3D scene shape **priors** using:
 - Synthetic 3D data
 - Data from 3D laser scanning devices

PCM training

- Hence we can train models to learn 3D scene shape **priors** using:
 - Synthetic 3D data
 - Data from 3D laser scanning devices
- Domain gap between datasets is less significant for point clouds than for images.

PCM training

- Hence we can train models to learn 3D scene shape **priors** using:
 - Synthetic 3D data
 - Data from 3D laser scanning devices
- Domain gap between datasets is less significant for point clouds than for images.
- Point cloud data sources are less diverse than internet images.

Monocular Depth Estimation

Monocular depth estimation

... relies on high-level scene priors and data-driven approaches.

- Challenges include:
 - Diversity of training data from different cameras.
 - Different image priors affecting depth estimation.
- Web stereo images and videos provide depth supervision up to a scale and shift due to unknown camera baselines.

State-of-the-art

Models use loss functions invariant to scale and shift.

- Camera focal length may not be accessible at test time, leading to 3D scene shape distortion.
- Scene shape distortion is critical for downstream tasks (e.g. 3D photography).

We use a pinhole camera model for 3D point cloud reconstruction:

$$\begin{cases} x = \frac{u - u_0}{f} d \\ y = \frac{v - v_0}{f} d \\ z = d \end{cases}$$
 (1)

Key points:

 \bullet (u_0, v_0): Camera optical center

We use a pinhole camera model for 3D point cloud reconstruction:

$$\begin{cases} x = \frac{u - u_0}{f} d \\ y = \frac{v - v_0}{f} d \\ z = d \end{cases}$$
 (1)

Key points:

- (u_0, v_0) : Camera optical center
- f: Focal length
- d: Depth

We use a pinhole camera model for 3D point cloud reconstruction:

$$\begin{cases} x = \frac{u - u_0}{f} d \\ y = \frac{v - v_0}{f} d \\ z = d \end{cases}$$
 (1)

Key points:

- (u_0, v_0) : Camera optical center
- f: Focal length
- d: Depth
- \blacksquare f scales x and y, not z

We use a pinhole camera model for 3D point cloud reconstruction:

$$\begin{cases} x = \frac{u - u_0}{f} d \\ y = \frac{v - v_0}{f} d \\ z = d \end{cases}$$
 (1)

Key points:

 (u_0, v_0) : Camera optical center

f: Focal length

■ d: Depth

 \blacksquare f scales x and y, not z

■ Shift in *d*

We use a pinhole camera model for 3D point cloud reconstruction:

$$\begin{cases} x = \frac{u - u_0}{f} d \\ y = \frac{v - v_0}{f} d \\ z = d \end{cases}$$
 (1)

Key points:

- (u_0, v_0) : Camera optical center
- f: Focal length
- d: Depth
- \blacksquare f scales x and y, not z
- Shift in *d* affects *x*, *y*, and *z* non-uniformly, causing shape distortions

Example distortion

RGB

Example distortion

GT point cloud

Example distortion

Distorted point cloud

Distorted point cloud

Training Process

Perturbed input point cloud with incorrect shift and focal length:

■ Ground truth depth d^* transformed by shift Δ_d^* :

$$\Delta_d^* \sim$$

Training Process

Perturbed input point cloud with incorrect shift and focal length:

■ Ground truth depth d^* transformed by shift Δ_d^* :

$$\Delta_d^* \sim \mathcal{U}(-0.25, 0.8)$$

■ Ground truth focal length f^* scaled by α_f^* :

$$\alpha_f^* \sim$$

Training Process

Perturbed input point cloud with incorrect shift and focal length:

lacksquare Ground truth depth d^* transformed by shift Δ_d^* :

$$\Delta_d^* \sim \mathcal{U}(-0.25, 0.8)$$

■ Ground truth focal length f^* scaled by α_f^* :

$$\alpha_f^* \sim \mathcal{U}(0.6, 1.25)$$

Depth shift recovery:

Depth shift recovery:

■ Perturbed 3D point cloud $\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*)$

Depth shift recovery:

- Perturbed 3D point cloud $\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*)$
- Input to shift point cloud network $\mathcal{N}_d(\cdot)$
- Objective function:

Depth shift recovery:

- Perturbed 3D point cloud $\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*)$
- Input to shift point cloud network $\mathcal{N}_d(\cdot)$
- Objective function:

$$L = \min_{\theta} \| \qquad \qquad \| \qquad \qquad (2)$$

Depth shift recovery:

- Perturbed 3D point cloud $\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*)$
- Input to shift point cloud network $\mathcal{N}_d(\cdot)$
- Objective function:

$$L = \min_{\theta} \| \mathcal{N}_d(\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*), \theta) - \Delta_d^* \|$$
 (2)

Depth shift recovery:

- Perturbed 3D point cloud $\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*)$
- Input to shift point cloud network $\mathcal{N}_d(\cdot)$
- Objective function:

$$L = \min_{\theta} \| \mathcal{N}_d(\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*), \theta) - \Delta_d^* \|$$
 (2)

Focal length recovery:

Point cloud $\mathcal{F}(u_0, v_0, \alpha_f^* f^*, d^*)$

Depth shift recovery:

- Perturbed 3D point cloud $\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*)$
- Input to shift point cloud network $\mathcal{N}_d(\cdot)$
- Objective function:

$$L = \min_{\theta} \| \mathcal{N}_d(\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*), \theta) - \Delta_d^* \|$$
 (2)

- Point cloud $\mathcal{F}(u_0, v_0, \alpha_f^* f^*, d^*)$
- Input to focal length point cloud network $\mathcal{N}_f(\cdot)$
- Objective function:

$$L = \min_{\alpha} \| \tag{3}$$

Objective Functions

Depth shift recovery:

- Perturbed 3D point cloud $\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*)$
- Input to shift point cloud network $\mathcal{N}_d(\cdot)$
- Objective function:

$$L = \min_{\theta} \| \mathcal{N}_d(\mathcal{F}(u_0, v_0, f^*, d^* + \Delta_d^*), \theta) - \Delta_d^* \|$$
 (2)

Focal length recovery:

- Point cloud $\mathcal{F}(u_0, v_0, \alpha_f^* f^*, d^*)$
- Input to focal length point cloud network $\mathcal{N}_f(\cdot)$
- Objective function:

$$L = \min_{\theta} \| \mathcal{N}_f(\mathcal{F}(u_0, v_0, \alpha_f^* f^*, d^*), \theta) - \alpha_f^* \|$$
(3)

During inference:

■ GT depth \longrightarrow predicted depth d, normalized [0, 1].

During inference:

- GT depth \longrightarrow predicted depth d, normalized [0, 1].
- Initial guess of focal length f.
- \hookrightarrow Reconstructed point cloud $\mathcal{F}(u_0, v_0, f, d)$.

During inference:

- GT depth \longrightarrow predicted depth d, normalized [0, 1].
- Initial guess of focal length f.
- \hookrightarrow Reconstructed point cloud $\mathcal{F}(u_0, v_0, f, d)$.
- Fed to networks $\mathcal{N}_d(\cdot)$ and $\mathcal{N}_f(\cdot)$ to predict:
 - Shift Δ_d
 - Focal length scaling factor α_f

During inference:

- GT depth \longrightarrow predicted depth d, normalized [0, 1].
- Initial guess of focal length f.
- \hookrightarrow Reconstructed point cloud $\mathcal{F}(u_0, v_0, f, d)$.
- Fed to networks $\mathcal{N}_d(\cdot)$ and $\mathcal{N}_f(\cdot)$ to predict:
 - Shift Δ_d
 - Focal length scaling factor α_f

- Initial focal length with field of view (FOV) of 60°.
- Two separate networks for better performance.

Normalization

Whats the problem with Min-Max normalization?

Normalization

Whats the problem with Min-Max normalization?

- **Normalization**: Transforms each ground truth depth map to a similar numerical range.
- Combined Methods:
 - Tanh normalization
 - Trimmed Z-score
 - Pixel-wise mean average error (MAE)

Image-level Normalized Regression Loss

$$L_{ILNR} =$$

- \mathbf{d}_i : Predicted depth
- \bullet d_i^* : Ground truth depth
- $\overline{d_i^*}$: Normalized depth
- lacksquare $\mu_{\textit{trim}}$: Mean of trimmed depth map
- lacksquare σ_{trim} : Standard deviation of trimmed depth map

Image-level Normalized Regression Loss

$$L_{ILNR} =$$

$$\overline{d_i^*} = rac{d_i^* - \mu_{trim}}{\sigma_{trim}}$$

- \mathbf{d}_i : Predicted depth
- \bullet d_i^* : Ground truth depth
- $\overline{d_i^*}$: Normalized depth
- lacksquare $\mu_{\textit{trim}}$: Mean of trimmed depth map
- lacksquare σ_{trim} : Standard deviation of trimmed depth map

Image-level Normalized Regression Loss

$$L_{ILNR} = \frac{1}{N} \sum_{i=1}^{N} \left| d_i - \overline{d_i^*} \right|$$

$$\overline{\textit{d}_{\textit{i}}^*} = rac{\textit{d}_{\textit{i}}^* - \mu_{\textit{trim}}}{\sigma_{\textit{trim}}}$$

- \mathbf{d}_i : Predicted depth
- \bullet d_i^* : Ground truth depth
- $\overline{d_i^*}$: Normalized depth
- lacksquare $\mu_{\textit{trim}}$: Mean of trimmed depth map
- lacksquare σ_{trim} : Standard deviation of trimmed depth map

Image-level Normalized Regression Loss

$$L_{ILNR} = \frac{1}{N} \sum_{i=1}^{N} \left| d_i - \overline{d_i^*} \right| + \left| \tanh \left(\frac{d_i}{100} \right) - \tanh \left(\frac{\overline{d_i^*}}{100} \right) \right|$$
 (4)

$$\overline{\textit{d}_{\textit{i}}^*} = \frac{\textit{d}_{\textit{i}}^* - \mu_{\textit{trim}}}{\sigma_{\textit{trim}}}$$

- \mathbf{d}_i : Predicted depth
- \bullet d_i^* : Ground truth depth
- $\overline{d_i^*}$: Normalized depth
- lacksquare $\mu_{\textit{trim}}$: Mean of trimmed depth map
- lacksquare σ_{trim} : Standard deviation of trimmed depth map

Pair-wise normal loss. Normals are an important geometric property and a complementary modality to depth. Many methods use normal constraints to improve depth quality (e.g., virtual normal loss), but they often miss local geometric quality.

- Proposed method: Pair-wise normal (PWN) loss
- Benefits:
 - Enforces supervision in surface normal space
 - Includes edges and planes
 - Better constraints on global and local geometric relations

Surface Normal Calculation

- Obtained from reconstructed 3D point cloud using local least squares fitting.
- Align predicted and ground truth depth with scale and shift factor.
- Sample 100K paired points per training sample.
- Ensure global geometric quality by sampling paired points globally.

(5)

PWN Loss Definition

$$L_{PWN} = rac{1}{N} \sum_{i=1}^{N} |n_{Ai} \cdot n_{Bi} - n_{Ai}^* \cdot n_{Bi}^*|$$

where n^* denotes ground truth surface normals.

Multi-scale Gradient Loss

$$L_{MSG} = \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{N} \left| \nabla_k^{\mathsf{x}} d_i - \nabla_k^{\mathsf{x}} d_i^* \right| + \left| \nabla_k^{\mathsf{y}} d_i - \nabla_k^{\mathsf{y}} d_i^* \right| \tag{6}$$

Slide 22/27

Loss Application

Dataset	Structure- guided ranking loss	ILNR	PWN (plane)	PWN (edge)	Multi-scale gradient loss
Taskonomy	✓	✓	✓	✓	✓
3D Ken Burns	✓	✓	✓	✓	✓
DIML	✓	✓	✓		✓
HRWSI+Holopix	✓				
Weight	1	1	1	1	0.5

Table: Losses on different datasets.

Taskonomy

Holopix50k

7

Fig. 4. Diversity of content found in the Holopix50k dataset

Limitations

- unusual camera properties
- uncommon view angle (top-to-down).
- strange angle of wall
- flat image with few geometric cues: e.g. sky
- radial distortion: e.g. fish eye lense

End of Presentation

 $\|\textit{RGB}\|$ MiDaS (another state-of-the-art 2021 tool) $\|$ " Ours - Baseline" $\|$ " Ours" $\|$