Game Theory

Lecture 2: Dynamic Games of Complete Information, Theory

Alex Alekseev

Winter Semester 2024-25

Motivation

- In many strategic situations in real life the players do not choose their actions simultaneously, but rather sequentially.
- Examples:
 - Bargaining: offers and counteroffers
 - Firm decisions such as market entry, R&D or other investment choices, which are often made before competition in the product market occurs.
 - Legislative decisions by the government (e.g., taxes and subsidies, tariffs), followed by firms' choices of product and pricing policies.
 - (Credible?) Promises of politicians to rule out coalitions with certain other parties, followed by voters deciding for which party to vote.
- This sequential structure cannot be captured by a game in normal form.

Extensive form of dynamic games

Definition

The extensive-form of a dynamic game consists of:

- 1. a set of players (N)
- 2. players' payoff as function of final outcomes $(v_i(\cdot))$
- 3. order of moves
- 4. actions of players when they can move
- 5. the knowledge that players have when they can move
- 6. probability distributions over exogenous events
- 7. common knowledge of this structure among all players

Game trees

It is convenient to represent an extensive game by a tree:

Definition

A game tree is a set of nodes $x \in X$ with a precedence relation x > x'. which means "x precedes x'". Every node in a game tree has only one predecessor. The precedence relation is transitive $(x > x', x' > x'' \Rightarrow x > x'')$, asymmetric $(x > x' \Rightarrow \text{not } x' > x)$, and **incomplete** (not every pair of nodes x and x' can be ordered). There is special node called the root of the tree, denoted by x_0 , that precedes any other $x \in X$. Nodes that do not precede other nodes are called **terminal** nodes. Terminal nodes denote the final outcomes of the game with which payoffs are associated. Every node x that is not a terminal node is assigned either to a player i(x), with the action set $A_i(x)$, or to Nature.

4

Example

- The nodes in the tree correspond to the histories of the game.
- A player is assigned to each non-terminal node of the tree. This is the player who takes an action at this node.
- The action chosen by the player at a given node leads to a new node which either is a terminal node or a node where another player (or nature) is supposed to take an action.
- Players payoffs (in utilities) are indicated at the terminal nodes of the tree.

Information sets

Which information do players have when it is their turn to move?

Definition

Every player i has a collection of information sets $h_i \in H_i$ that partition the nodes of the game at which player i moves with the following properties:

- 1. If h_i is a singleton that includes only x, then player i who moves at x knows that he is at x.
- 2. If $x \neq x'$ and if both $x \in h_i$ and $x' \in h_i$ then player i who moves at x does not know whether he is at x or at x'.
- 3. If $x \neq x'$ and if both $x \in h_i$ and $x' \in h_i$, then $A_i(x') = A_i(x)$.

7

Example

Perfect versus imperfect information

Furthermore, complete information games can distinguished in more detail with respect to their information structure:

Definition

A game of complete information is called a game of

- 1. perfect information, if every information set is a singleton and there are no moves of nature
- 2. imperfect information otherwise.

Imperfect information may result from **exogenous** or **endogenous** uncertainty.

Strategies in extensive games

Definition

A **(pure) strategy** of player i is a **complete plan of play** that describes which action player i chooses at each of his information sets. That is, a pure strategy for player i is a mapping s_i that assigns an action $s_i(h_i) \in A_i(h_i)$ for every information set $h_i \in H_i$. (Observe that each player's feasible actions are the same for each node in a given information set.)

⇒ Important: In extensive games, actions and strategies are not the same!

Example

In the example above, s_1 with $s_1(\emptyset) = L$ is a strategy for player 1, and s_2 with $s_2(L) = \ell_1, s_2(R) = \ell_2$ is a strategy for player 2.

Another example

The set of pure strategies for player 1 is $\{(L,\ell),(L,r),(R,\ell),(R,r)\}.$

Mixed versus Behavioral Strategies

Definition

A **mixed strategy** in an extensive game is a probability distribution over the set of pure strategies as defined above.

Definition

A **behavioral strategy** specifies for each information set $h_i \in H_i$ an independent probability distribution over $A_i(h_i)$ and is denoted by σ_i , where $\sigma_i(a_i(h_i))$ is the probability that player i plays action $a_i(h_i) \in A_i(h_i)$ in information set h_i .

As shown in Kuhn (1953), any randomization over play can be represented by either mixed or behavioral strategies (under the assumption of **perfect recall**, i.e., a player never forgets anything she once knew.).

A mixed strategy of player 1 is a probability distribution over the set of pure strategies $\{(L, \ell), (L, r), (R, \ell), (R, r)\}$.

A behavioral strategy of player 1 are two independent probability distributions over $\{L, R\}$ and over $\{\ell, r\}$.

At first sight this does not seem to be the same, because, e.g., the mixed strategy, where player 1 plays (L,ℓ) with probability $\frac{1}{2}$ and (R,r) with probability $\frac{1}{2}$ is not induced by any behavioral strategy: for any non-degenerate behavioral strategy player 1 also plays (L,r) and (R,ℓ) with positive probability.

Nevertheless, there is a behavioral strategy that is equivalent to the mixed strategy in the sense that it induces the same distribution over terminal nodes, independent of player 2's strategy.

If player 2 plays A, then for the given mixed strategy of player 1 ((L, ℓ) and (R, r) with probability $\frac{1}{2}$ each) the terminal nodes (L, A, ℓ) and (R) are reached with probability $\frac{1}{2}$.

The same distribution over terminal nodes is obtained if player 1 plays the behavioral strategy, where he chooses L with probability $\frac{1}{2}$ and ℓ with probability 1.

A similar argument applies if player 2 plays strategy B.

Conversely, it is easy to see that there is an equivalent mixed strategy for any behavioral strategy:

Consider the behavioral strategy, where player 1 plays L with probability p and ℓ with probability q.

These probabilities induce the following distribution over the set of pure strategies $\{(L, \ell), (L, r), (R, \ell), (R, r)\}$ and hence a mixed strategy for player 1:

 (L,ℓ) with probability pq (L,r) with probability p(1-q) (R,ℓ) with probability (1-p)q (R,r) with probability (1-p)(1-q)

Nash equilibrium

The Nash equilibria of extensive-form games can be found by looking at their **normal-form representation**, where

- each player's strategy set S_i is the set of her strategies in the extensive game
- a player's utility at a strategy profile s is her utility under the resulting outcome in the extensive game

Note: Every extensive-form game has a unique normal-form representation, but not vice versa.

Example revisited

		Player 2			
		(ℓ_1,ℓ_2)	(ℓ_1, r_2)	(r_1,ℓ_2)	(r_1,r_2)
Player 1	L	3, 1	3, 1	1,0	1,0
	R	1, 1	2, 2	1, 1	2,2

We see that the strategy profiles $(L,(\ell_1,\ell_2)),(L,(\ell_1,r_2))$ are outcome-equivalent as both lead to the same terminal node.

The outcome-equivalence is due to the fact that player 2's strategy is only different at the node (history) R that is not reached during the actual play of the game since player 1 chooses action L.

Hence, the extensive game has 3 Nash equilibria: $(L, (\ell_1, \ell_2)), (L, (\ell_1, r_2))$ and $(R, (r_1, r_2))$.

When we look only at the normal-form representation of the game, all Nash equilibria seem to be equally plausible.

However, if we look at the extensive form, the Nash equilibrium $(R, (r_1, r_2))$ does not seem plausible:

- This strategy profile is a Nash equilibrium because player 2
 "threatens" to play r₁ if player 1 chooses L instead of R. Thus,
 player 1's best-response is to play R.
- **But:** Player 2's threat to play r_1 if player 1 deviates to L is not credible as player 2 can achieve a higher payoff by playing ℓ_1 in that case. In other words: r_1 is not a Nash equilibrium in the subgame that follows the history L.
- Given that player 1 gets a higher payoff from playing L if player 2 plays ℓ_1 than from playing R given that player 2 plays r_2 , any Nash equilibrium, where player 1 plays R seems implausible.

Hence, this Nash equilibrium relies on an empty threat off the equilibrium path.

Definition

Let σ^* be a Nash equilibrium profile of behavioral strategies in an extensive-form game. We say that an information set is **on (off) the equilibrium path** if, given σ^* , it is reached with positive (zero) probability.

Ruling out such implausible Nash equilibria that are supported by incredible threats off the equilibrium path leads to the notion of a **subgame perfect equilibrium** (Selten, 1965).

Subgame perfection requires that a player's strategy is a best-response to the strategies of the other players in **all subgames** of the game, not only in those subgames that are actually reached in equilibrium.

Subgames

Definition

A proper **subgame** G of an extensive form game Γ consists of only a single node (i.e., an information set that is a singleton) and all its successors in Γ with the property that if $x \in G$ and there is some x' which is in the same information set as x (i.e. $x' \in h(x)$), then $x' \in G$. The subgame G is itself a game tree with its information sets and payoffs inherited from Γ .

By convention, the whole game is typically also counted as a subgame.

Examples

Subgame Perfect Equilibrium

Definition

Let Γ be an *n*-player extensive-form game. A behavioral strategy profile σ^* is a **subgame-perfect (Nash) equilibrium** if for every proper subgame G of Γ , the restriction of σ^* to G is a Nash equilibrium in G.

In other words: A subgame perfect equilibrium is a strategy profile that induces a Nash equilibrium in every subgame.

Every subgame perfect equilibrium is a Nash equilibrium.

Example

Backward Induction

In an extensive game that is finite in the sense of having terminal nodes, subgame perfect equilibria can easily be found by **backward induction**.

Simply work backwards in finding optimal behavior, starting at the end of the game tree.

Observe that an extensive game may have several subgame perfect equilibria: This is the case, if at some stage of the backward induction procedure a player has several optimal actions.

Existence of subgame perfect equilibria

The backward induction procedure also delivers a simple proof of existence of a subgame perfect equilibrium for finite extensive games:

Theorem (Existence of subgame perfect equilibria)

Every extensive game with perfect information that is finite in the sense of having terminal nodes has at least one subgame perfect equilibrium.