4) Prove that \mathbb{Z}_8 is not a homomorphic image of \mathbb{Z}_{15} .

If \mathbb{Z}_8 is a homomorphic image of \mathbb{Z}_{15} ,

then $\emptyset(\mathbb{Z}_8)$ is a subgroup of \mathbb{Z}_{15} for some mapping $\emptyset: \mathbb{Z}_8 \to \mathbb{Z}_{15}$.

For a non-trivial homomorphism $|\emptyset(\mathbb{Z}_8)| = 8$. Also $|\mathbb{Z}_{15}| = 15$.

But 8×15 . $\Rightarrow \emptyset(\mathbb{Z}_8) \times \mathbb{Z}_{15}$ [by Lagrange Theorem of groups]

Thus, \mathbb{Z}_8 is not a homomorphic image of \mathbb{Z}_{15} .

- I) Find all solutions of the equation $x^2+x-6=0$ in the ring \mathbb{Z}_{14} by factoring $x^2+x-6=(x+3)(x-2)=0$ (given) : roots = $\overline{2}$, $\overline{4}$, $\overline{9}$, $\overline{11}$ mod 14
- Find all solutions of the equation $x^3 2x^2 3x = 0$ in the ring \mathbb{Z}_{12} $x^3 - 2x^2 - 3x = \pi(\pi + 1)(\pi - 3) = 0$ (given): roots = 0,3,5,8,9, 11 mod 12.