

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

2 Luigi Miazzo

V			
ſ	2022-06-01		Solu
	2022-05-31		Un'urna
	2022-05-30		Que
	2022-05-27		Ques
	2022-05-26		Qual è $_{ m Sia}$ $I_{ m 27}$
	2022-05-25		prima p
	2022-05-24		Dobbia
	2022-05-23		
	2022-05-20		Da cui i
	2022-05-19		
	2022-05-18		• La
	2022-05-17		Ques
	2022-05-16		Qual è
	2022-05-13		Sia S l'
	2022-05-12		Notiam
	2022-05-11		Vale in
	2022-05-10		II nume
	2022-05-09		Per evid
	2022-05-06		Ci viene
	2022-05-05		
	2022-05-04		dove
	2022-05-03		
	2022-05-02		
	2022-04-29		e inoltre
	2022-04-28		
	2022-04-27		Quindi
	2022-04-26		
	2022-04-22		• La
	2022-04-21		
	2022-04-20		
	2022-04-20		
	2022-04-15		
	2022-04-13		
	2022-04-13		
	2022-04-12		
	2022-04-11		
	2022-04-08		
	2022-04-07		
1	2022-04-06	Ş.	
l	2022-04-05		
	2022-04-04		
	2022-04-01		

2022-04-01

2022-03-31

2022-03-30

2022-03-29

2022-03-28

2022-03-24

Soluzioni all'esercizio del 2022-04-05 creato per luigi.miazzo

na contiene 27 palline, numerate da 1 a 27. Si estraggono due palline con reimmissione.

esiti e soluzioni

sito 1

la probabilità che almeno una delle due palline pescate sia etichettata con un numero strettamente maggiore di 25?

 $I_7=\{r\in\mathbb{N}|r\leq 27\}$, lo spazio campionario è $\Omega=I_{27} imes I_{27}$ e rappresenta le possibili coppie di risultati delle estrazioni. $A=I_{27}\setminus I_{25}=\{k+1,\ldots,n\}$ corrisponde all'evento "una pallina estratta ha numero maggiore di k". Siano $A_1=A imes I_{27}$ e rappresenta le possibili coppie di risultati delle estrazioni. $A=I_{27}\setminus I_{25}=\{k+1,\ldots,n\}$ corrisponde all'evento "una pallina estratta ha numero maggiore di k". Siano $A_1=A imes I_{27} imes A_2=I_{27} imes A$ gli eventi per cui la pallina estratta o, rispettivamente, la seconda, abbia un numero strettamente maggiore di 25.

amo calcolare la probabilità di $A_1 \cup A_2$. Notiamo che A_1 e A_2 non sono disgiunti e, contando gli elementi, abbiamo

$$P(A_1) = P(A_2) = rac{2 \cdot 27}{27 \cdot 27} = rac{2}{27}, \qquad P(A_1 \cap A_2) = rac{2 \cdot 2}{27 \cdot 27} = rac{2^2}{27^2}$$

i ricaviamo:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) = rac{2 \cdot 2}{27} - rac{25^2}{2^2}.$$

- La risposta corretta è: 0.1426612
- La risposta inserita è: 104/729

sito 2

la probabilità che la somma dei numeri sulle due palline sia pari sapendo che almeno una delle due palline pescate è etichettata con un numero strettamente maggiore di 25?

l'evento in cui la somma dei numeri sulle due palline è pari.

no che la somma di due numeri è pari se entrambi gli addendi sono pari o se entrambi sono dispari. Allora contiamo il numero di possibili coppie di palline con numeri della stessa parità.

generale che l'insieme I_n contiene $\lfloor rac{n}{2}
floor$ numeri pari e $n - \lfloor rac{n}{2}
floor$ numeri dispari.

ero di possibili coppie di palline estratte entrambe etichettate con numero pari in A_1 è: $\lfloor rac{2}{2}
floor \cdot \lfloor rac{27}{2}
floor$

nero di possibili coppie di palline estratte entrambe etichettate con numero dispari in A_1 è: $\left(2-\lfloor rac{2}{2}
floor
ight)\cdot \left(27-\lfloor rac{27}{2}
floor
ight)$.

videnti ragioni di simmetria, gli stessi risutati valgono per A_2 .

ne chiesto di calcolare $P(S|A_1 \cup A_2)$. Abbiamo

$$P(S|A_1 \cup A_2) = \frac{P(S \cap (A_1 \cup A_2))}{P(A_1 \cup A_2)} = \frac{P((S \cap A_1) \cup (S \cap A_2))}{P(A_1 \cup A_2)} = \frac{P(S \cap A_1) + P(S \cap A_2) - P(S \cap A_1 \cap A_2)}{P(A_1 \cup A_2)}.$$

$$P(S\cap A_1) + P(S\cap A_2) = rac{2\left(\lfloorrac{2}{2}
floor\cdot\lfloorrac{27}{2}
floor+\left(2-\lfloorrac{2}{2}
floor
ight)\cdot\left(27-\lfloorrac{27}{2}
floor
ight)
ight)}{27^2},$$

$$P(S\cap A_1\cap A_2) = rac{\left(\lfloorrac{2}{2}
floor^2 + \left(2-\lfloorrac{2}{2}
floor
ight)^2
ight)}{27^2}.$$

 $P(S|A_1 \cup A_2) = 0.5$

La risposta inserita è: 52/104