МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 1383	Сапожников А.Э.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Получение знаний о ветвлениях и работе с целочисленными значениями на языке Ассемблера.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: a) значения функций

i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из

табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в

табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные

комбинации параметров a, b и k, позволяющие проверить различные маршруты

выполнения программы, а также различные знаки параметров а и b.

Выполнение работы.

Вариант 3.7.5

$$i1=f1(a,b,i) := a>b ? : 7 - 4*i : 8 - 6*i$$

$$i2=f2(a,b,i) := a>b ? -(4*i-5) : 10 - 3*i$$

$$res=f3(i1,i2,k) := min(|i1|, 6) ? k=0 : |i1|+|i2|$$

1. В целях оптимизации сразу обрабатываем обе функции:

(f1 и f3 для ситуаций a > b или a <= b)

2. формулы:

7 -
$$4*i = 7 + (-i << 2)$$

$$8 - 6*i = 8 - (i << 2 + i + i)$$

$$-(4*i-5) = 5 - (i << 2)$$

10 - 3*i = 10 + (-i << 2) + i

для упрощения рассчетов считается 4*і

Таблица 1- тесты программы

Номер	Входные данные	Результат
1	a = 0 b = 0 i = 0 k = 0	i1 = 8-0 i2 = 10 res = 6
2	a = 0 b = -1 i = 1 k = 0	i1 = 3 i2 = -7 res = 1
3	a = 0 b = -1 i = -1 k = 0	i1 = 11 i2 = 9 res = 6
4	a = 1 $b = 1$ $i = 1$ $k = 1$	i1 = 2 i2 = 7 res = 9
5	a = 2 b = 3 i = 4 k = -1	i1 = -16 i2 = -2 res = 18
6	a = 3 b = 2 i = -2 k = 1	i1 = 15 i2 = 13 res = 28
7	a = -3 b = 2 i = 2 k = 0	i1 = -4 i2 = 4 res = 4

Выводы.

Мною были изучены работа с целыми числами на языке Ассемблера и ветвления.

Приложение А

Исходный код программы

```
Название файла: lr3.asm
a EQU -3
b EQU 2
i EQU 2
k EQU 0
AStack SEGMENT STACK
    DW 12 DUP(?)
AStack ENDS
DATA SEGMENT
    res DW 0
DATA ENDS
CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:AStack
Main PROC FAR
    push ds
    sub ax, ax
    push ax
    mov ax, i
    shl ax, 1
    shl ax, 1
    mov bx, ax
    mov cx, a
    cmp cx, b
    jle fless
    neg ax
    add ax, 7
    push ax ;i1
    mov ax, bx
```

neg ax

```
add ax, 5
    push ax ;i2
    jmp f3
fless:
    mov ax, bx
    add ax, i
    add ax, i
    neg ax
    add ax, 8
    push ax
    mov ax, bx
    neg ax
    add ax, i
    add ax, 10
    push ax
f3:
    pop cx ;i1
    add cx, 0
    cmp cx, 0
    jns ilabs ; |i1| = |i1|
    neg cx
ilabs:
    mov ax, k
    cmp ax, 0
    jne f3v2
    pop bx
    cmp cx, 6
    jl finish
    mov cx, 6
    jmp finish
f3v2:
    pop dx ;i2
    add dx, 0
    cmp dx, 0
    jns i2abs ; |i2| = |i2|
    neg dx
i2abs:
    add cx, dx
finish:
    mov [res], cx
```

push cx
pop cx
ret
Main ENDP
CODE ENDS
END Main

ПРИЛОЖЕНИЕ В ФАЙЛЫ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: LR3.lst

```
Microsoft (R) Macro Assembler Version 5.10
    11/13/22 17:24:3
    Page 1-1
=-0003
                    a EQU -3
= 0002
                    b EQU 2
= 0002
                     i EQU 2
= 0000
                     k EQU 0
 0000
                AStack SEGMENT STACK
 0000 0000[
                         DW 12 DUP(?)
    3333
          1
0018
                 AStack ENDS
 0000
                 DATA SEGMENT
                         res DW 0
 0000
     0000
 0002
                 DATA ENDS
 0000
                 CODE SEGMENT
                 ASSUME CS:CODE, DS:DATA, SS:AStack
 0000
                 Main PROC FAR
0000 1E
                     push ds
 0001 2B C0
                         sub ax, ax
 0003 50
                     push ax
```

```
0004 B8 0002
                       mov ax, i
 0007 D1 E0
                        shl ax, 1
0009 D1 E0
                        shl ax, 1
000B 8B D8
                        mov bx, ax
000D B9 FFFD
                            mov cx, a
0010 83 F9 02
                            cmp cx, b
0013 7E 11
                        jle fless
0015
     F7 D8
                       neg ax
0017 05 0007
                        add ax, 7
001A 50
                    push ax ;i1
001B
     8B C3
                        mov ax, bx
001D F7 D8
                        neg ax
001F 05 0005
                            add ax, 5
0022 50
                  push ax ;i2
0023 EB 1A 90
                            jmp f3
0026
                fless:
0026 8B C3
                        mov ax, bx
0028 05 0002
                            add ax, i
002B 05 0002
                            add ax, i
002E F7 D8
                        neg ax
0030 05 0008
                            add ax, 8
0033 50
                   push ax
0034 8B C3
                        mov ax, bx
0036 F7 D8
                       neg ax
0038 05 0002
                            add ax, i
003B 05 000A
                            add ax, 10
Microsoft (R) Macro Assembler Version 5.10
   11/13/22 17:24:3
   Page 1-2
003E 50
                 push ax
003F
                f3:
003F 59
                   pop cx ;i1
0040 83 C1 00
                            add cx, 0
0043 83 F9 00
                            cmp cx, 0
 0046 79 02
                        jns ilabs ; |i1| = |i1|
```

```
0048 F7 D9
               neg cx
004A
              ilabs:
004A B8 0000
                        mov ax, k
004D 3D 0000
                        cmp ax, 0
0050 75 OC
                     jne f3v2
0052 5B
                pop bx
0053 83 F9 06
                         cmp cx, 6
0056 7C 13
                     jl finish
0058 B9 0006
                         mov cx, 6
005B EB 0E 90
                         jmp finish
005E
              f3v2:
005E 5A
                 pop dx ;i2
                         add dx, 0
005F 83 C2 00
0062 83 FA 00
                         cmp dx, 0
0065 79 02
                     jns i2abs ; |i2| = |i2|
0067 F7 DA
                     neg dx
0069
              i2abs:
0069 03 CA
                    add cx, dx
006B
              finish:
006B 89 0E 0000 R mov [res], cx
006F 51
                 push cx
0070 59
                 pop cx
0071 CB
                 ret
0072
              Main ENDP
0072
              CODE ENDS
              END Main
Microsoft (R) Macro Assembler Version 5.10
   11/13/22 17:24:3
   Symbols-1
Segments and Groups:
                         Length
          Name
                                      Align
Combine Class
PARA
STACK
PARA
```

NONE

DATA . NONE	•	•	•	•	•	•	•	•	•	•	•	•	•	0	002	PARA
Symbols:																
Attr				N	a	m	е						T	ype		Value
Α	•	•	•	•	•	•	•	•	•	•	•	•	•	NUI	MBER	-0003
в				•	•	•	•	•	•	•	•	•	•	NUI	MBER	0002
F3	•	•	•	•	•		•	•	•	•	•	•	•	L	NEAR	003F
CODE F3V2.	•	•	•	•	•		•	•	•	•	•	•	•	L	NEAR	005E
CODE		•		•	•	•	•	•	•	•	•	•	•	L	NEAR	006B
CODE FLESS CODE	•	•	•	•		•		•	•		•	•	•	L	NEAR	0026
I				•	•	•	•	•	•	•	•	•	•		MBER	0002
I1ABS CODE	•	•	•	•	•	•	•	•	•	•	•	•	•	L	NEAR	004A
I2ABS CODE	•	•	•	•	•	•	•	•	•	•	•	•	•	L	NEAR	0069
к				•			•		•	•	•		•	NUI	MBER	0000
MAIN . CODE	•	Ler	· ng	th	· =	00	072	•	•	•	•	•	•	F	PROC	0000
RES . DATA	•	•	•	•		•	•	•	•		•	•	•	L	WORD	0000
@CPU . @FILENA @VERSIO		• •				•	•			•				TE2 TE2	KT LR3	

⁸⁶ Source Lines

⁸⁶ Total Lines

²⁰ Symbols

48018 + 461289 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors