Tema 2

Representación de números naturales

Juan J. Navarro

<u>iuanjo@ac.upc.edu</u>

Tel: 93 4016983 Despacho D6-205

Copyright © Juan J. Navarro. Departament d'Arquitectura de Computadors. Universitat Politècnica de Catalunya

Tema 2

Introducción

Sistemas convencionales en base b:

Decimal

Binario

Hexadecimal

Cambios de base

Copyright © Juan J. Navarro. Departament d'Arquitectura de Computadors. Universitat Politècnica de Catalunya

Información digital

Información Digital: Información (datos) codificados mediante un vector de dígitos

 $X_{n-1}, X_{n-2}, ..., X_2, X_1, X_0$

Dígito: elemento de un conjunto de símbolos finito. (decimal: 10 símbolos, $\mathbf{x_i} \in \{0, 1, 2, ..., 9\}$)

BIT (**BI**nary digi**T**) Dígito binario: elemento de un conjunto de dos símbolos, $\mathbf{x_i} \in \{0, 1\}$

Información digital

Codificar con un vector de n bits:

- n bits pueden codificar 2^n símbolos diferentes.
- M símbolos requieren n bits, con n ≥ $log_2 M$.

3

Codificación de información

Un elemento concreto, de un conjunto de M elementos, se codifica como un vector (tira, secuencia) de n bits, con $n \ge \log_2 M$:

$$X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0)$$

Codificaciones Standard:

Caracteres alfanuméricos → código ASCII de 8 bits (1 byte) ¡Ver tabla en internet!

Subconjunto finito de:

Números naturales → Sistema convencional en base 2 (binario)

Números enteros → Complemento a 2

Números reales → ANSI/IEEE Floating Point Standard

5

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

Interpretación de un vector de bits

¿Qué representa el vector X = 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 ?

Respuesta: depende de la regla de interpretación.

Interpretado como un número

- natural (codificado en binario): X₁₁ = 50.925
- entero (codificado en complemento a 2): X_s = -47.379
- real (codificado en coma flotante SISA-F): X_f = -0,019134

Interpretado como una instrucción de lenguaje máquina

- SISA-I: X_{sisa-I} = instrucción ilegal
- SISA-F: $X_{sisa-F} = STF -19(R3)$, F3

Interpretado como una cadena de 2 caracteres consecutivos

ASCII: X_{ascii} = caracter ilegal, carácter ilegal

6

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

¿Cómo representamos los números N?

Naturales = {0, 1, 2, 3, ...} (Unsigned integers)

Respuesta: NO, aunque las dos representaciones usan los mismos símbolos, {3, 4, 5}

Vale por 30 Vale por 300

Representamos un número mediante un vector de símbolos (cifras, dígitos) $X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0) con x_i \in \{0, 1, 2, ..., 8, 9\}$ pesa 10

(El dígito x_i pesa 10ⁱ)

Sistema convencional en base b

Representación/Codificación de un subconjunto de naturales en el s.c.b. b

Naturales = {0, 1, 2, 3, ...} (*Unsigned integers*)

Sistema de numeración (reglas para la representación):

Sea el vector de dígitos $X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0)$ con $x_i \in \{0, 1, 2, ..., b-1\}$

El valor que representa el vector X interpretándolo como un número natural codificado en el **sistema convencional en base b** es:

$$X_u = X_{n-1}b^{n-1} + X_{n-2}b^{n-2} + \dots + X_2b^2 + X_1b^{1} + X_0b^0 = \sum_{(i=0,\dots,n-1)} X_ib^i$$

(Rango de la representación para n dígitos: $0 \le X_{ij} \le b^n$ -1)

7

Sistema convencional en base 2

Codificación de un subconjunto de los números naturales en el s.c.b. 2 (binario)

Naturales = {0, 1, 2, 3, ...} (*Unsigned integers*)

Sistema de numeración (reglas para la representación):

Sea el vector de bits $X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0)$ con $x_i \in \{0, 1\}$

El valor que representa el vector X interpretándolo como un número natural codificado en el **sistema convencional en base 2** es:

$$\mathbf{X}_{\mathbf{u}} = \mathbf{x}_{n-1} 2^{n-1} + \mathbf{x}_{n-2} 2^{n-2} + \dots + \mathbf{x}_{2} 2^{2} + \mathbf{x}_{1} 2^{1} + \mathbf{x}_{0} 2^{0} = \sum_{(\mathbf{i}=0,\dots,n-1)} \mathbf{x}_{\mathbf{i}} 2^{\mathbf{i}}$$

(Rango de la representación para n bits: $0 \le X_{ij} \le 2^n - 1$)

9

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

Sistema convencional en base 16

Codificación de un subconjunto de los números N en el s.c.b. 16 (hexadecimal)

Naturales = $\{0, 1, 2, 3, ...\}$ (Unsigned integers)

Sistema de numeración (reglas para la representación):

Sea el vector de dígitos $X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0)$ con $X_i \in \{0, ..., 9, A, ..., F\}$

El valor que representa el vector X interpretándolo como un número natural codificado en el **sistema convencional en base 16** es:

$$X_u = x_{n-1} 16^{n-1} + x_{n-2} 16^{n-2} + ... + x_2 16^2 + x_1 16^1 + x_0 16^0 = \sum_{(i=0,...,n-1)} x_i 16^i$$

(Rango de la representación para n dígitos: $0 \le X_n \le 16^n$ -1)

U

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

Convenio para el vector de dígitos

$$X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0)$$

Simplificación (cuando no haya dudas):

$$X = X_{n-1} X_{n-2} ... X_2 X_1 X_0$$
 v.g: $X = 10010001$

¿Pero los dígitos de X son binarios, decimales o hexadecimales?

$$X = 10010001_2$$
 $X_{11} = 145$

$$X = 10010001_{16} (X = 0x10010001)$$
 $X_{u} = 268500993$

$$X = 10010001_{10}$$
 $X_{u} = 10010001$

(X,, siempre se expresa en decimal)

Ejemplos de codificación

bits X	X _u
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Vector de Valor

Ejemplo:
$$X = 1011$$

 $X_u = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 8 + 0 + 2 + 1 = 11$

Encontrar X_u a partir de X (cambio de base de binario a decimal)

Dado X =
$$(x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0)$$
 con $x_i \in \{0, 1\}$

encontrar

$$X_u = X_{n-1}2^{n-1} + X_{n-2}2^{n-2} + ... + X_22^2 + X_12^1 + X_02^0 = \sum_{(i=0,...,n)} X_i 2^i =$$

Si hacemos estas operaciones en decimal obtendremos la representación del valor Xu en decimal

- Ejercicio:
 - X = 1011

 $X_{..} = 11$

X = 11011100

 $X_{..} = 220$

X = 0011000111110101

 $X_{..} = 12.789$

Convright @ Juan J. Navarro, Universitat Politècnica de Catalunya.

Ejercicio 1

1. Obtened el valor, Z_{II}, del número natural representado en binario por el siguiente vector de bits, Z (para cada uno de los apartados):

 $_{1}$ Z = 1101

Z = 11000100

Z = 00101111

Z = 10110101

7 = 1111

Copyright © Juan J. Navarro. Universitat Politècnica de Catalunya.

Encontrar X a partir de X_u (cambio de base de decimal a binario)

$\begin{array}{ccc} & C & & C \\ & C & & C \end{array} \qquad D = C \cdot d + r = D$ $X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0) \text{ con } x_i \in \{0, 1\}$ $X_{11} = X_{n-1}2^{n-1} + X_{n-2}2^{n-2} + ... + X_22^2 + X_12 + X_0 =$ $X_{11} = (x_{n-1}2^{n-2} + x_{n-2}2^{n-3} + ... + x_22 + x_1) + x_0$ $(x_{n-1}2^{n-2} + x_{n-2}2^{n-3} + ... + x_22 + X_1)$ x_0 cociente de dividir X₁₁ por 2 resto de dividir X,, por 2

- El bit de menor peso es el resto de dividir por 2 el valor del número que se desea representar en binario
- Repetir el proceso con el cociente para encontrar el resto de bits

Ejemplo

Dado $X_{11} = 426$ encontrar $X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0)$ que lo representa en binario

Ejercicio 1

1. Obtened el vector X de 8 bits que representa en binario cada uno de los siguientes números naturales (expresad X también en hexadecimal). Indicad los casos en que el número no pueda representarse en binario con 8 hits:

$$_{1.}$$
 $X_{u} = 35$

$$2. X_{11} = 79$$

$$X_{u} = 145$$

$$_{4.}$$
 $X_{u} = 284$

5.
$$X_u = 14$$

Convright @ Juan 1 Navarro Universitat Politècnica de Catalunya

Solución Ejercicio 1

1. Obtened el vector X de 8 bits que representa en binario cada uno de los siguientes números naturales (expresad X también en hexadecimal). Indicad los casos en que el número no pueda representarse en binario con 8 bits:

$$_{1.}$$
 $X_{u} = 35$

2.
$$X_{II} = 79$$
 $X = 01001111$

$$X_{11} = 145$$

$$X = 10010001$$

X = 00100011

$$X_{11} = 284$$

no representable con 8 bits (100011100)

5.
$$X_{ij} = 14$$

$$X = 00001110$$

Convright @ Juan 1 Navarro Universitat Politècnica de Catalunya

Uso de hexa para vectores de bits

- La palabra del SISA-I es de 16 bits
- ¿Rango de representación de naturales con 16 bits?
- \bullet 0 \leq X₁₁ \leq 2¹⁶-1 => 0 \leq X₁₁ \leq 65.536
- Es engorroso escribir vectores de 16 bits (peor de 32 o 64)
- Usaremos notación hexadecimal para los vectores binarios de bits (es más compacta)

Binario ⇔ Hexadecimal

$$X = (x_{n-1}, x_{n-2}, ..., x_2, x_1, x_0) \text{ con } x_i \in \{0, 1\}$$

$$X_u = X_{n-1}2^{n-1} + X_{n-2}2^{n-2} + ... + X_22^2 + X_12^1 + X_02^0 =$$

$$= (x_{n-1}2^3 + x_{n-2}2^2 + x_{n-3}2^1 + x_{n-3}) 16^k + \dots$$

$$h_k$$

$$\dots + (x_72^3 + x_62^2 + x_52^1 + x_4) 16 + (x_32^3 + x_22^2 + x_12^1 + x_0)$$

... +
$$(x_7 2^3 + x_6 2^2 + x_5 2^1 + x_4)$$
 16 + $(x_3 2^3 + x_2 2^2 + x_1 2^1 + x_0)$

$$X = \underbrace{1\ 0\ 0\ 1}_{9}\underbrace{0\ 0\ 1\ 1}_{1}\underbrace{1\ 0\ 1\ 1}_{1}\underbrace{1\ 0\ 1\ 0}_{1}$$

$$X = 0x93BA$$