

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

22.10.1997 Patentblatt 1997/43

(51) Int. Cl.⁶: C07D 213/30, C07C 233/22,
C07D 295/18, A61K 31/44,
A61K 31/165

(21) Anmeldenummer: 97105721.1

(22) Anmelddatum: 07.04.1997

(84) Benannte Vertragsstaaten:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE

(30) Priorität: 18.04.1996 DE 19615263

(71) Anmelder: BAYER AG
51368 Leverkusen (DE)(72) Erfinder:
• Goldmann, Siegfried, Dr.
42327 Wuppertal (DE)

- Müller, Ulrich, Dr.
42111 Wuppertal (DE)
- Connell, Richard, Dr.
06516 West Haven CT (US)
- Bischoff, Hilmar, Dr.
42113 Wuppertal (DE)
- Denzer, Dirk, Dr.
42115 Wuppertal (DE)
- Gruetzmann, Rudi, Dr.
42657 Solingen (DE)
- Beuck, Martin, Dr.
40699 Erkrath (DE)

(54) Benzylxyloxy-substituierte Phenylglycinolamide als Arzneimittel

(57) Benzylxyloxy-substituierte Phenylglycinolamide der allgemeinen Formel (I)

in welcher

A für einen 4- bis 8-gliedrigen, gesättigten oder partiell ungesättigten Carbocyclyus steht, oder
für Phenyl steht, oder
für einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatome aus der Reihe S, N und/oder O steht,

wobei die oben aufgeführten Ringsysteme gegebenenfalls bis zu 5-fach gleich oder verschieden durch Phenyl, Pyridyl, Carboxyl, Cyano, Carboxyl, Halogen, Nitro, Hydroxyl, durch geradketiges oder verzweigtes Alkyl, Alkoxy, Alkoxy carbonyl, Polyfluoralkyl oder Polyfluoralkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel $\text{-SO}_2\text{R}^5$, $\text{-NR}^6\text{R}^7$ oder $\text{-CO-NR}^8\text{R}^9$ substituiert sind, und die übrigen Substituenten die in Anspruch 1 angegebenen Bedeutung haben, werden hergestellt durch Umsetzung von Benzylxyloxy-substituierten Phenyllessigsäuren mit Phenylglycinolen. Die Benzylxyloxy-substituierten Phenylglycinolamide eignen sich als Wirkstoffe in Arzneimitteln, insbesondere in Arzneimitteln zur Behandlung von Atherosklerose.

Beschreibung

Die vorliegende Erfindung betrifft Benzyloxy-substituierte Phenylglycinamide, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als antithrombotische Arzneimittel.

5 Es ist bekannt, daß erhöhte Blutspiegel von Triglyceriden (Hypertriglyceridämie) und Cholesterin (Hypercholesterinämie) mit der Genese von atherosklerotischen Gefäßwand-Veränderungen und koronaren Herzkrankheiten assoziiert sind.

10 Ein deutlich erhöhtes Risiko für die Entwicklung koronarer Herzkrankungen liegt darüber hinaus vor, wenn diese beiden Risikofaktoren kombiniert auftreten, was wiederum mit einer Überproduktion an Apolipoprotein B-100 einhergeht. Es besteht daher nach wie vor ein starkes Bedürfnis, wirksame Arzneimittel zur Bekämpfung der Atherosklerose sowie koronarer Herzkrankheiten zur Verfügung zu stellen.

Die vorliegende Erfindung betrifft Benzyloxy-substituierte Phenylglycinamide der allgemeinen Formel (I)

in welcher

25 A für einen 4- bis 8-gliedrigen, gesättigten oder partiell ungesättigten Carbocyclycus steht, oder
für Phenyl steht, oder
für einen 5- bis 6-gliedrigen aromatischen Heterocyclus mit bis zu 3 Heteroatome aus der Reihe S, N und/oder O steht,
30 wobei die oben aufgeführten Ringsysteme gegebenenfalls bis zu 5-fach gleich oder verschieden durch Phenyl, Pyridyl, Carboxyl, Cyano, Carboxyl, Halogen, Nitro, Hydroxy, durch geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkoxycarbonyl, Polyfluoralkyl oder Polyfluoralkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel -SO₂R⁵, -NR⁶R⁷ oder -CO-NR⁸R⁹ substituiert sind,
35 worin

40 R⁵ Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet,
R⁶, R⁷, R⁸ und R⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 10 Kohlenstoffatomen bedeuten,
45 R⁸ und/oder R⁹ oder
Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeuten, oder Benzyl oder Phenyl bedeuten, die gegebenenfalls durch Halogen, Nitro, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen substituiert sind,
oder

50 R⁸ und R⁹ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden, der gegebenenfalls ein weiteres Heteroatom aus der Reihe S, N und/oder O enthalten kann,

X für eine Bindung oder für die >C=O-Gruppe steht,

55 D und E gleich oder verschieden sind und für Wasserstoff, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen, Azido, Hydroxy, Halogen, geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkenyl mit jeweils bis zu 6 Kohlenstoffatomen stehen,

R¹ für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder für geradkettiges oder verzweigtes Alkyl mit bis zu 10 Kohlenstoffatomen steht,

R² für Wasserstoff oder für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

R³ für Wasserstoff oder für die -CH₂-OH-Gruppe steht,

R⁴ für Phenyl steht, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy, Halogen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substituiert ist,

und deren Salze.

Die erfindungsgemäßen Benzyloxy-substituierten Phenylglycinamide können auch in Form ihrer Salze vorliegen. Im allgemeinen seien hier Salze mit organischen oder anorganischen Basen oder Säuren genannt.

Im Rahmen der vorliegenden Erfindung werden physiologisch unbedenkliche Salze bevorzugt. Physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen können Salze der erfindungsgemäßen Stoffe mit Mineralsäuren, Carbonsäuren oder Sulfonsäuren sein. Besonders bevorzugt sind z.B. Salze mit Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluisulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Zitronsäure, Fumarsäure, Maleinsäure oder Benzoësäure.

Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein, welche eine freie Carboxygruppe besitzen. Besonders bevorzugt sind z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak, oder organischen Aminen, wie beispielsweise Ethylamin, Di- bzw. Triethylamin, Di- bzw. Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Arginin, Lysin, Ethyleniamin oder 2-Phenylethylamin.

Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren oder deren jeweiligen Mischungen. Diese Mischungen der Enantiomeren und Diastereomeren lassen sich in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

Ein 4- bis 8-gliedriger, gesättigter oder partiell ungesättigter Carbocyclyus (A) steht im Rahmen der Erfindung für einen Cyclobuten-, Cyclopenten-, Cyclohexen-, Cyclohepten-, Cycloocten-, Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl- oder Cycloheptyl-Rest. Bevorzugt sind der Cyclopenten-, Cyclohexen-, Cyclohepten-, Cyclopentyl-, Cyclohexyl- und Cycloheptyl-Rest.

Ein 5- bis 6-gliedriger aromatischer Heterocyclus (A) steht im Rahmen der Erfindung im allgemeinen beispielsweise für Thienyl, Furyl, Pyrimidyl oder Pyridyl. Bevorzugt sind Pyridyl und Thiienyl.

Bevorzugt sind Verbindungen der allgemeinen Formel (I),
in welcher

A für Cyclopentyl, Cyclohexyl, Cyclopentenyl, Cyclohexenyl oder für Pyridyl, Phenyl oder Furyl steht,
wobei die oben aufgeführten Ringe gegebenenfalls bis zu 5-fach gleich oder verschieden durch Phenyl, Pyridyl, Fluor, Chlor, Brom, Cyan, Nitro, Hydroxy, Carboxyl, durch geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkoxycarbonyl, Polyfluoralkyl oder Polyfluoralkoxy mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -SO₂R⁵, -NR⁶R⁷ oder -CO-NR⁸R⁹ substituiert sind,
worin

R⁵ Phenyl, Methyl oder Ethyl bedeutet,

R⁶, R⁷, R⁸ und R⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen bedeuten,
oder

R⁸ und/oder R⁹ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder Benzyl oder Phenyl bedeuten, die gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Hydroxy oder durch geradkettiges oder verzweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sind,
oder

R⁸ und R⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl-, Pyridyl- oder Piperidinylring bilden,

X für eine Bindung oder für die >C=O-Gruppe steht,

D und E gleich oder verschieden sind und für Wasserstoff, Cyclopropyl, Cyclopentyl, Cyclohexyl, Azido, Hydroxy, Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkenyl mit jeweils bis zu 3 Kohlenstoffatomen stehen,

R¹ für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl steht, oder für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen steht,

R² für Wasserstoff, oder für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R³ für Wasserstoff oder für die -CH₂-OH-Gruppe steht,

R⁴ für Phenyl steht, das gegebenenfalls bis zu 2-fach gleich oder verschieden durch Hydroxy, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert ist,

und deren Salze.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in welcher

A für Cyclopentyl, Cyclohexyl, Cyclopentenyl, Cyclohexenyl oder für Phenyl oder Pyridyl steht, wobei die oben aufgeführten Ringe gegebenenfalls bis zu 3-fach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Nitro, Hydroxy, durch geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Trifluormethyl, Trifluormethoxy, Carboxyl, oder durch eine Gruppe der Formel -SO₂R⁵, -NR⁶R⁷ oder -CO-NR⁸R⁹ substituiert sind, worin

R⁵ Phenyl oder Methyl bedeutet,

R⁶, R⁷, R⁸ und R⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, oder

R⁸ und/oder R⁹ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder Benzyl oder Phenyl bedeuten, die gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Hydroxy, Methyl oder Methoxy substituiert sind, oder

R⁸ und R⁹ gemeinsam mit dem Stickstoffatom einen Morphinyl-, Pyrrolidinyl- oder Piperidinylring bilden,

X für eine Bindung oder für die >C=O-Gruppe steht,

D und E gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor oder Brom stehen,

R¹ für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl steht, oder für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen steht,

R² für Wasserstoff steht,

R³ für Wasserstoff oder für die -CH₂-OH-Gruppe steht,

R⁴ für Phenyl steht, das gegebenenfalls bis zu 2-fach gleich oder verschieden durch Hydroxy, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert ist,

und deren Salze.

Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I),

in welcher

D und E für Wasserstoff stehen

5 und

R¹ für Cyclopentyl, Cyclohexyl oder Cycloheptyl steht.

Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, daß man
10 Carbonsäuren der allgemeinen Formel (II),

in welcher

25 A, D, E, X und R¹ die angegebene Bedeutung haben,

gegebenenfalls unter vorgeschalteter Aktivierung der Carbonsäurefunktion mit Verbindungen der allgemeinen Formel
(III)

30

35

in welcher

R², R³ und R⁴ die angegebene Bedeutung haben,

40 gegebenenfalls unter Schutzgasatmosphäre, gegebenenfalls in inerten Lösemitteln, in Anwesenheit einer Base und/oder Hilfsmittels umsetzt.

Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

45

50

55

Als Lösemittel eignen sich hierbei inerte organische Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören Ether, wie Diethylether oder Tetrahydrofuran, Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, 1,2-Dichlorethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethylen oder Trichlorethylen, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan, oder Erdölfraktionen, Nitromethan, 35 Dimethylformamid, Aceton, Acetonitril oder Hexamethylphosphorsäuretriamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt sind Dichlormethan, Tetrahydrofuran, Aceton und Dimethylformamid.

Alle Basen eignen sich die üblichen anorganischen oder organischen Basen. Hierzu gehören bevorzugt Alkalihydroxide wie beispielsweise Natrium- oder Kaliumhydroxid, oder Alkalicarbonate wie Natrium- oder Kaliumcarbonat, oder Alkalialkoholate wie beispielsweise Natrium- oder Kaliummethanolat, oder Natrium- oder Kaliummethanolat, oder 40 organische Amine wie Triethylamin, Picolin oder N-Methylpiperidin, oder Amide wie Natriumamid oder Lithiumdiisopropylamid, oder metallorganische Verbindungen wie Butyllithium oder Phenyllithium. Bevorzugt sind Natrium- und Kaliumcarbonat und Triethylamin.

Die Base wird in einer Menge von 0,6 mol bis 5 mol, bevorzugt von 0,7 mol bis 2 mol, bezogen auf 1 mol der Verbindung der allgemeinen Formel (II) eingesetzt.

45 Die Reaktion wird im allgemeinen in einem Temperaturbereich von 0°C bis 150°C, bevorzugt von +20°C bis +110°C durchgeführt.

Die Umsetzung kann bei normalen, erhöhtem oder bei erniedrigtem Druck durchgeführt werden (z.B. 0,5 bis 5 bar). Im allgemeinen arbeitet man bei Normaldruck.

Zur Aktivierung der Carbonsäurefunktion eignen sich im allgemeinen Basen und/oder Dehydratisierungsreagenzien wie beispielsweise Diisopropylcarbodiimid, Dicyclohexylcarbodiimid oder N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimid-Hydrochlorid oder Carbonylverbindungen wie Carbonyldiimidazol oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfonat oder Propanophosphorsäureanhydrid oder Isobutylchloroformat oder Benztetrazolylxyloxy-tris-(dimethylamino)phosphonium-hexafluorophosphat oder Phosphorsäurediphenylesteramid oder Methansulfonsaurechlorid, gegebenenfalls in Anwesenheit von Basen wie Triethylamin oder N-Ethylmorpholin oder N-55 Methylpiperidin oder Dicyclohexylcarbodiimid und N-Hydroxysuccinimid.

Die säurebindenden Mittel und Dehydratisierungsreagenzien werden im allgemeinen in einer Menge von 0,5 bis 3 mol, bevorzugt von 1 bis 1,5 mol, bezogen auf 1 mol der entsprechenden Carbonsäuren, eingesetzt.

Die Verbindungen der allgemeinen Formel (II) sind teilweise bekannt oder neu und können dann beispielsweise hergestellt werden, indem man

Verbindungen der allgemeinen Formel (IV)

5

10

in welcher

D, E und R¹ die angegebene Bedeutung haben,

15

und

T für eine typische Hydroxyschutzgruppe, bevorzugt für Benzyl oder tert.-Butyl steht,

20 nach Abspaltung dieser Schutzgruppe nach üblichen Methoden,
mit Verbindungen der allgemeinen Formel (V)

25 in welcher

A und X die oben angegebene Bedeutung haben

und

30 Y für Halogen, vorzugsweise Brom steht,

in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base umsetzt,
und im Fall der Säuren die Ester versetzt.

35 Die Verbindungen der allgemeinen Formeln (IV) und (V) sind an sich bekannt oder nach üblichen Methoden herstellbar.

Die Verbindungen der allgemeinen Formel (III) sind ebenfalls bekannt oder nach üblichen Methoden herstellbar.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) haben ein nicht vorhersehbares pharmakologisches Wirkspektrum.

40 Sie können als Wirkstoffe in Arzneimitteln zur Reduzierung von Veränderungen an Gefäßwänden Verwendung finden und zur Behandlung von Koronaren Herzerkrankungen, Herzinsuffizienz, Störungen der Hirnleistung, ischämischen Gehirnerkrankungen, Apoplex, Durchblutungsstörungen, Mikrozirkulationsstörungen und Thrombosen.

Weiterhin spielt bei der Okklusion von Gefäßen die Proliferation glatter Muskelzellen eine ausschlaggebende Rolle.

45 Die erfindungsgemäßen Verbindungen sind geeignet, diese Proliferation zu inhibieren und damit atherosklerotische Prozesse zu verhindern.

Die erfindungsgemäßen Verbindungen zeichnen sich durch eine Senkung der ApoB-100-assoziierten Lipoproteinen (VLDL und seiner Abbauprodukte, wie z.B. LDL), des ApoB-100, der Triglyceride und des Cholesterins aus. Damit besitzen sie wertvolle, im Vergleich zum Stand der Technik überlegene pharmakologische Eigenschaften.

Überraschenderweise besteht die Wirkung der erfindungsgemäßen Verbindungen zunächst in einer Verminderung oder vollständigen Inhibition der Bildung und/oder der Freisetzung von ApoB-100-assoziierten Lipoproteinen aus Leberzellen, was eine Senkung des VLDL-Plasmaspiegels zur Folge hat. Diese VLDL-Senkung muß mit einer Senkung der Plasmaspiegel von ApoB-100, LDL, Triglyceriden und von Cholesterin einhergehen; es werden also gleichzeitig mehrere der obengenannten Risikofaktoren gesenkt, die an Gefäßwandveränderungen beteiligt sind.

55 Die erfindungsgemäßen Verbindungen können daher zur Prävention und Behandlung von Atherosklerose, der Fettssucht, Pankreatitis und der Obstipation eingesetzt werden.

1. Hemmung der Freisetzung ApoB-100-assozierter Lipoproteine

Der Test zum Nachweis der Hemmung der Freisetzung ApoB-100-assozierter Lipoproteine aus Leberzellen

erfolgte in vitro mit kultivierten Leberzellen, bevorzugt mit Zellen der humanen Linie HepG2. Diese Zellen werden unter Standardbedingungen in Medium für die Kultur eukaryotischer Zellen gezüchtet, bevorzugt in RPMI 1640 mit 10% fötalem Kälberserum. HepG2-Zellen synthetisieren und sezernieren in den Kulturrüberstand ApoB-100-assoziierte Lipoproteinpunkte, die im Prinzip ähnlich aufgebaut sind wie die VLDL- bzw. LDL-Partikel, die im Plasma zu finden sind.

5 Diese Partikel können mit einem Immunoassay für humanes LDL nachgewiesen werden. Dieser Immunoassay erfolgt mit Antikörpern, die im Kaninchchen gegen humanes LDL unter Standardbedingungen induziert worden waren. Die anti-LDL-Antikörper (Kan-anti-LDL-Ak) wurden an einem Immunosorbens mit humanem LDL affinitätschromatographisch gereinigt. Diese gereinigten Kan-anti-LDL-Ak werden an die Oberfläche von Plastik adsorbiert. Zweckmäßigweise erfolgt diese Adsorption an die Plastikoberfläche von Mikrotiterplatten mit 96 Vertiefungen, bevorzugt an MaxiSorp-Platten. Wenn im Überstand von Hep-G2-Zellen ApoB-100-assoziierte Partikel vorhanden sind, dann können diese an die insolubilisierten Kan-anti-LDL-Ak binden, und es entsteht ein Immunkomplex, der an die Plastikoberfläche gebunden ist. Nicht gebundene Proteine werden durch Waschen entfernt. Der sich an der Plastikoberfläche befindliche Immunkomplex wird mit monoklonalen Antikörpern nachgewiesen, die nach Standardbedingungen gegen humanes LDL induziert und gereinigt worden waren. Diese Antikörper wurden mit dem Enzym Peroxidase konjugiert.

10 15 Peroxidase setzt das farblose Substrat TMB in Gegenwart von H_2O_2 in ein gefärbtes Produkt um. Nach Ansäuerung des Reaktionsgemisches mit H_2SO_4 wird die spezifische Lichtadsorption bei 450 nm bestimmt, die ein Maß für die Menge von ApoB-100-assoziierten Partikeln ist, die von den HepG2-Zellen in den Kulturrüberstand sezerniert worden waren.

Überraschenderweise hemmen die erfindungsgemäßen Verbindungen die Freisetzung der ApoB-100-assoziierten

20 Partikel. Der IC_{50} -Wert gibt an, bei welcher Substanzkonzentration die Lichtadsorption im Vergleich zur Kontrolle (Lösungsmittelkontrolle ohne Substanz) um 50% inhibiert ist.

2. Bestimmung der VLDL-Sekretion in vivo am Hamster

25 Der Effekt der Testsubstanzen auf die VLDL-Sekretion in vivo wird am Hamster untersucht. Hierzu werden Goldhamster nach Prämedikation mit Atropin (83 mg/kg s.c.) mit Ketavet (83 mg/kg s.c.) und Nembutal (50 mg/kg i.p.) наркотisiert. Wenn die Tiere reflexfrei geworden sind, wird die V. jugularis freipräpariert und kanüliert. Anschließend werden 0,25 ml/kg einer 20%igen Lösung von Triton WR-1339 in physiologischer Kochsalzlösung appliziert. Dieses Detergens hemmt die Lipoproteinlipase und führt so zu einem Anstieg des Triglyceridspiegels aufgrund eines ausbleibenden Katabolismus von sezernierten VLDL-Partikeln. Dieser Triglycerideranstieg kann als Maß für die VLDL-Sekretionsrate herangezogen werden. Den Tieren wird vor sowie ein und zwei Stunden nach Applikation des Detergents durch Punktions des retroorbitalen Venenplexus Blut entnommen. Das Blut wird zwei Stunden bei Raumtemperatur, anschließend über Nacht bei 4°C inkubiert, um die Gerinnung vollständig abzuschließen. Danach wird 5 Minuten bei 10.000 g zentrifugiert. Im so erhaltenen Serum wird die Triglyceridkonzentration mit Hilfe eines modifizierten kommerziell erhältlichen Enzymtests bestimmt (Mercktest® Triglyceride Nr. 14354). 100 µl Serum werden mit 100 µl Testreagenz in 96-Lochplatten versetzt und 10 Minuten bei Raumtemperatur inkubiert. Anschließend wird die optische Dichte bei einer Wellenlänge von 492 nm in einem automatischen Platten-Lesegerät bestimmt (SLT-Spectra). Serumproben mit einer zu hohen Triglyceridkonzentration werden mit physiologischer Kochsalzlösung verdünnt. Die in den Proben enthaltene Triglyceridkonzentration wird mit Hilfe einer parallel gemessenen Standardkurve bestimmt. Testsubstanzen werden in 40 diesem Modell entweder unmittelbar vor Applikation des Detergents intravenös verabreicht oder vor Einleitung der Narhose oral oder subkutan.

3. Hemmung der intestinalen Triglyceridabsorption in vivo (Ratten)

45 Die Substanzen, die auf ihre triglyceridabsorptionshemmende Wirkung in vivo untersucht werden sollen, werden männlichen Wistar-Ratten mit einem Körpergewicht zwischen 170 und 230 g oral verabreicht. Zu diesem Zweck werden die Tiere 18 Stunden vor der Substanzapplikation in Gruppen zu 6 Tieren eingeteilt und anschließend wird ihnen das Futter entzogen. Trinkwasser steht den Tieren ad libitum zur Verfügung. Die Tiere der Kontrollgruppen erhalten eine wäßrige Traganth-Suspension bzw. eine Traganth-Suspension die Olivenöl enthält. Die Traganth-Olivenöl-Suspension wird mit dem Ultra-Turrax hergestellt. Die zu untersuchenden Substanzen werden in einer entsprechenden Traganth-Olivenöl-Suspension ebenfalls mit dem Ultra-Turrax, direkt vor der Substanzapplikation suspendiert.

50 Jeder Ratte wird vor der Schlundsondenapplikation zur Bestimmung des basalen Serumtriglyceridegehaltes Blut durch Punktions des retroorbitalen Venenplexus' entnommen. Anschließend werden die Traganth-Suspension, die Traganth-Olivenöl-Suspensionen ohne Substanz (Kontrolltiere), bzw. die Substanzen, suspendiert in einer entsprechenden Traganth-Olivenöl-Suspension, den nüchternen Tieren mit einer Schlundsonde verabreicht. Die weiteren Blutentnahmen zur Bestimmung des postprandialen Serumtriglycerideranstiegs erfolgen in der Regel 1, 2 und 3 Stunden nach der Schlundsondenapplikation.

Die Blutproben werden zentrifugiert und nach Gewinnung des Serums die Triglyceride photometrisch mit einem EPOS-Analyser 5060 (Eppendorf Gerätetechnik, Netheler & Hinz GmbH, Hamburg) bestimmt. Die Bestimmung der Trigly-

ceride erfolgt vollenzymatisch mit einem handelsüblichen UV-Test.

Der postprandiale Serumtriglyceridanstieg wird durch Subtraktion des Triglyceridvorwertes jeden Tieres von seinen korrespondierenden postprandialen Triglyceridkonzentrationen (1, 2 und 3 Stunden nach Applikation) ermittelt.

Die Differenzen (in mmol/l) zu jedem Zeitpunkt (1, 2 und 3 Stunden) werden in den Gruppen gemittelt, und die Mittelwerte des Serumtriglyceridanstiegs (ΔTG) der substanzbehandelten Tiere mit den Tieren verglichen, die nur die Traganth-Öl-Suspension erhalten.

Ebenso wird der Serumtriglyceriderlauf der Kontrolltiere, die nur Traganth erhalten, berechnet. Der Substanzeffekt zu jedem Zeitpunkt (1, 2 oder 3 Stunden) wird wie folgt ermittelt und in % von der ölbelaesteten Kontrolle angegeben.

10

$$\Delta \% \text{ Triglyceridanstieg} = \frac{\Delta TG_{\text{Substanz}} - \Delta TG_{\text{Traganthkontrolle}}}{\Delta TG_{\text{Öbelastung}} - \Delta TG_{\text{Traganthkontrolle}}} \times 100$$

15 Effekt von 10 mg Prüfsubstanz / kg KG p.o. auf den Triglyceridanstieg (%) 2 h nach einer Triglyceridbelastung im Serum nüchtern Ratten. Der Serumtriglyceridanstieg fettbelasterter Kontrolltiere bezogen auf den Serumtriglyceridspiegel von Traganth-Kontrolltieren entspricht 100%. n = 6 Tiere pro Gruppe.

Die statistische Auswertung erfolgt mit Student's t-Test nach vorheriger Überprüfung der Varianzen auf Homogenität.

20 Substanzen, die zu einem Zeitpunkt den postprandialen Serumtriglyceridanstieg, verglichen mit dem der unbehandelten Kontrollgruppe, statistisch signifikant ($p < 0,05$) um mindestens 30 % vermindern, werden als pharmakologisch wirksam angesehen.

4. Hemmung der VLDL-Sekretion in vivo (Ratte)

25

Die Wirkung der Testsubstanzen auf die VLDL-Sekretion wird ebenfalls an der Ratte untersucht. Dazu wird Ratten 500 mg/kg Körpergewicht Triton WR-1339 (2,5 mg/kg), gelöst in physiologischer Kochsalzlösung, intravenös in die Schwanzvene appliziert. Triton WR-1339 inhibiert die Lipoproteinfosphatase und führt somit durch Hemmung des VLDL-Katabolismus zu einem Anstieg des Triglycerid- und Cholesterinspiegels. Diese Anstiege können als Maß für die VLDL-Sekretionsrate herangezogen werden.

Den Tieren wird vor sowie eine und zwei Stunden nach Applikation des Detergents durch Punktion des retroorbitalen Venenplexus Blut entnommen. Das Blut wird zur Gerinnung 1 h bei Raumtemperatur inkubiert und das Serum durch Zentrifugation mit 10 000 g für 20 s gewonnen. Anschließend werden die Triglyceride mittels eines handelsüblichen gekoppelten Enzymtests (Sigma Diagnostics®, Nr. 339) bei einer Wellenlänge von 540 nm photometrisch bestimmt.

35 Die Messung erfolgt mit Hilfe eines ebenfalls gekoppelten Enzymtests (Boehringer Mannheim®, Nr. 1442350) bei einer Wellenlänge von 546 nm. Proben mit Triglycerid- bzw. Cholesterinkonzentrationen, die den Meßbereich der Methoden überschreiten, werden mit physiologischer Kochsalzlösung verdünnt. Die Ermittlung der jeweiligen Serumkonzentrationen erfolgt anhand parallel gemessener Standardreihen. Testsubstanzen werden unmittelbar nach der Tritoninjektion oral, intravenös oder subcutan appliziert.

40 Die Erfindung betrifft außerdem die Kombination von Benzylxyloxy-substituierten Phenylglycinolamiden der allgemeinen Formel (I) mit einem Glucosidase- und/oder Amylasehemmer zur Behandlung von familiärer Hyperlipidaemien, der Fetsucht (Adipositas) und des Diabetes mellitus. Glucosidase- und/oder Amylasehemmer im Rahmen der Erfindung sind beispielsweise Acarbose, Adiposine, Voglibose, Miglyitol, Emiglitate, MDL-25637, Camiglibose (MDL-73945), Ten-damistate, AI-3688, Trestatin, Pradimicin-Q und Salbastatin.

45 Bevorzugt ist die Kombination von Acarbose, Miglyitol, Emiglitate oder Voglibose mit einer der oben aufgeführten erfindungsgemäßen Verbindungen der allgemeinen Formel (I).

Die neuen Wirkstoffe können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulat, Aerosole, Sirupe, Emulsionen, Suspensions und Lösungen, unter Verwendung inerter, nicht-toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösemittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90-Gew.-% der Gesamtmasse vorhanden sein, d.h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

50 Die Formulierungen werden beispielsweise hergestellt durch Verstreichen der Wirkstoffe mit Lösemitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiemitteln, wobei z.B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösemittel als Hilfslösemittel verwendet werden können.

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral oder parenteral, insbesondere perlingual oder intravénös.

Für den Fall der parenteralen Anwendung können Lösungen des Wirkstoffs unter Verwendung geeigneter flüssiger Trägermaterialien eingesetzt werden.

Im allgemeinen hat es sich als vorteilhaft erwiesen, bei intravenöser Applikation Mengen von etwa 0,001 bis 1 mg/kg, vorzugsweise etwa 0,01 bis 0,5 mg/kg Körpergewicht zur Erzielung wirksamer Ergebnisse zu verabreichen, und bei oraler Applikation beträgt die Dosierung etwa 0,01 bis 20 mg/kg, vorzugsweise 0,1 bis 10 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchem die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muß. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

10

Ausgangsverbindungen

Beispiel I

15 2-[4-(3-Chlorbenzyloxyphenyl)-2-cyclopentyl]-essigsäure-tert.butylester

20

25

30

35 1 g 2-(4-Hydroxyphenyl)-2-cyclopentyl-essigsäure-tert.butylester (US 834.734) und 1,2 ml 3-Chlorbenzylbromid werden in 10 ml DMF gelöst und mit 0,9 g K₂CO₃ 14 h auf 60-70°C erwärmt. Nach Abkühlung wird mit Wasser versetzt und mit Ether ausgeschüttelt und getrocknet. Man erhält 1,3 g der Titelverbindung als Öl. R_f = 0,48 (Cyclohexan / Essigester 9:1)

40

Beispiel II

45 2-[4-(3-Chlorbenzyloxyphenyl)-2-cyclopentyl]-essigsäure

45

50

55

1,1 g der Verbindung aus Beispiel I werden in 12 ml Dioxan gelöst und mit 0,6 ml konz. HCl versetzt, 8 h am Rückfluß gekocht, eingeengt, in CH₂Cl₂ gelöst, mit Wasser neutral gewaschen und eingeengt. Der Rückstand wird mit H₂O kristallisiert.

5 Ausbeute: 0,6 g (60% d.Th.)
Fp.: 99-100°C

Herstellungsbeispiele

10 **Beispiel 1**

2-[4-(3-Chlorbenzyloxyphenyl)-2-cyclopentyl]-N-[(2-hydroxy)-1-(R)-phenylethyl]-2-essigsäureamid

15

20

25

30

0,52 g der Verbindung aus Beispiel II werden in 8 ml THF gelöst, auf -30°C gekühlt und nacheinander mit 0,62 ml Triethylamin und 0,13 ml Mesylchlorid versetzt und 30 min bei -30°C gerührt. Anschließend werden 0,25 g (R)(-)2-Hydroxy-1-phenyl-ethylamin und Dimethylaminopyridin (beide gelöst in 4 ml THF) bei -30°C zugetropft, 30 min bei -30°C und 2 h bei Raumtemperatur gerührt. Man erhält 50% der Titelverbindung. Fp.: 148-149°C

35 In Analogie zur Vorschrift des Beispiels 1 werden die in der Tabelle 1 aufgeführten Verbindungen hergestellt:

40

45

50

55

Tabelle 1

	Bsp.-Nr.	A	X	R ¹	R ¹⁰	Mp. (°C)	R _f *
10	2		Bindung			145-7	
15	3		Bindung			179-80	
20	4		Bindung			155-6	
25	5					amorph	0,5 ¹⁾
30	6					amorph	0,25 und 0,31 ¹⁾
35	7					amorph	0,34 ²⁾
40	8		Bindung			167	
45							
50							

	Bsp.-Nr.	A	X	R ¹	R ¹⁰	Mp. (°C)	R _f [*]
5	9		Bindung			139-40	
10	10		Bindung			amorph	0,48 und 0,40 ¹⁾
15	11		Bindung			156-7	
20	12		Bindung			165-6	
25	13		Bindung			175-6	
30	14		Bindung			152-3	
35	15		Bindung			amorph	0,37 und 0,33 ¹⁾
40	16		Bindung			144-5	
45	17		Bindung			160-3	
50							

Bsp.-Nr.	A	X	R ¹	R ¹⁰	Mp. (°C)	R _f
5	18		Bindung			amorph
10	19		Bindung			144-6
15	20		Bindung			132-4
20	21		Bindung			151-3
25	22		Bindung			175-7
30	23		Bindung			144
35	24		Bindung			160-2
40	25		Bindung			158-9
45	26		Bindung			156-7
50						

Bsp.-Nr.	A	X	R ¹	R ¹⁰	Mp. (°C)	R _f
5	27 	Bin-dung			amorph	0,10 ¹⁾
10	28 	Bin-dung			186-8	
15	29 	Bin-dung				0,19 ¹⁾
20	30 	Bin-dung			182-3	
25	31 	Bin-dung			177-8	
30	32 	Bin-dung			152-3	
35	33 	Bin-dung			115-6	
40	34 	Bin-dung			amorph	0,67 ¹⁾
45						
50						

Bsp.-Nr.	A	X	R ¹	R ¹⁰	Mp. (°C)	R _f
5 35		Bin-dung			amorph	0,29 ²⁾
10 36		Bin-dung			amorph	0,22 ¹⁾
15 37		Bin-dung			165-6	
20 38		Bin-dung			amorph	0,26 ¹⁾
25 39		Bin-dung			157-8	
30 40		Bin-dung			amorph	0,13 ¹⁾
35 41		Bin-dung			amorph	0,08 ²⁾ 0,30 ¹⁾

Bsp.-Nr.	A	X	R ¹	R ¹⁰	Mp. (°C)	R _f *
42		Bindung			amorph	0,04 ¹⁾
43		Bindung			amorph	

¹⁾ Cyclohexan / EE = 1:1

²⁾ Cyclohexan / EE = 7:3

25 Patentansprüche

1. Benzyloxy-substituierte Phenylglycinolamide der allgemeinen Formel (I)

in welcher

A für einen 4- bis 8-gliedrigen, gesättigten oder partiell ungesättigten Carbocyclus steht, oder für Phenyl steht, oder für einen 5- bis 6-gliedrigen aromatischen Heterocyclicus mit bis zu 3 Heteroatome aus der Reihe S, N und/oder O steht,
wobei die oben aufgeführten Ringsysteme gegebenenfalls bis zu 5-fach gleich oder verschieden durch Phenyl, Pyridyl, Carboxyl, Cyano, Carboxyl, Halogen, Nitro, Hydroxy, durch geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkoxykarbonyl, Polyfluoralkyl oder Polyfluoralkoxy mit jeweils bis zu 6 Kohlenstoffatomen oder durch eine Gruppe der Formel $-SO_2R^5$, $-NR^6R^7$ oder $-CO-NR^6R^9$ substituiert sind,
worin

R⁵ Phenyl oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen bedeutet.

R^6 , R^7 , R^8 und R^9 gleich oder verschieden sind und Wasserstoff oder geradketiges oder verzweigtes Alkyl mit bis zu 10 Kohlenstoffatomen bedeuten,
oder

R⁸ und/oder R⁹ Cycloalkyl mit 3 bis 6 Kohlenstoffatomen bedeuten, oder Benzyl oder Phenyl bedeuten, die gegebenenfalls durch Halogen, Nitro, Hydroxy oder durch geradkettiges oder verzweigtes

Alkyl oder Alkoxy mit jeweils bis zu 4 Kohlenstoffatomen substituiert sind,
oder

5 R⁶ und R⁹ gemeinsam mit dem Stickstoffatom einen 5- bis 7-gliedrigen, gesättigten oder ungesättigten
Heterocyclicus bilden, der gegebenenfalls ein weiteres Heteroatom aus der Reihe S, N
und/oder O enthalten kann,

10 X für eine Bindung oder für die >C=O-Gruppe steht,

15 D und E gleich oder verschieden sind und für Wasserstoff, Cycloalkyl mit 3 bis 8 Kohlenstoffatomen,
Azido, Hydroxy, Halogen, geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkenyl mit
jeweils bis zu 6 Kohlenstoffatomen stehen,

20 R¹ für Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder für geradkettiges oder verzweigtes
Alkyl mit bis zu 10 Kohlenstoffatomen steht,

25 R² für Wasserstoff oder für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen
steht,

30 R³ für Wasserstoff oder für die -CH₂-OH-Gruppe steht,

35 R⁴ für Phenyl steht, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy,
Halogen oder geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen substitu-
iert ist,

40 und deren Salze.

2. Benzyloxy-substituierte Phenylglycinolamide der Formel nach Anspruch 1
in welcher

45 A für Cyclopentyl, Cyclohexyl, Cyclopentenyl, Cyclohexenyl oder für Pyridyl, Phenyl oder Furyl
steht, wobei die oben aufgeführten Ringe gegebenenfalls bis zu 5-fach gleich oder verschie-
den durch Phenyl, Pyridyl, Fluor, Chlor, Brom, Cyan, Nitro, Hydroxy, Carboxyl, durch gerad-
kettiges oder verzweigtes Alkyl, Alkoxy, Aloxycarbonyl, Polyfluoralkyl oder Polyfluoralkoxy
50 mit jeweils bis zu 3 Kohlenstoffatomen oder durch eine Gruppe der Formel -SO₂R⁵, -NR⁶R⁷
oder -CO-NR⁸R⁹ substituiert sind,
worin

55 R⁵ Phenyl, Methyl oder Ethyl bedeutet,

60 R⁶, R⁷, R⁸ und R⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit
bis zu 8 Kohlenstoffatomen bedeuten,
oder

65 R⁸ und/oder R⁹ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder Benzyl oder Phenyl bedeuten, die
gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Hydroxy oder durch geradkettiges oder ver-
zweigtes Alkyl oder Alkoxy mit jeweils bis zu 3 Kohlenstoffatomen substituiert sind,
oder

70 R⁶ und R⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl-, Pyridyl- oder Piperidinyl-
ring bilden,

75 X für eine Bindung oder für die >C=O-Gruppe steht,

80 D und E gleich oder verschieden sind und für Wasserstoff, Cyclopropyl, Cyclopentyl, Cyclohexyl,
Azido, Hydroxy, Fluor, Chlor, Brom, geradkettiges oder verzweigtes Alkyl, Alkoxy oder Alkenyl
mit jeweils bis zu 3 Kohlenstoffatomen stehen,

85 R¹ für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl steht, oder für gerad-

kettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen steht,

5 R² für Wasserstoff, oder für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

R³ für Wasserstoff oder für die -CH₂-OH-Gruppe steht,

10 R⁴ für Phenyl steht, das gegebenenfalls bis zu 2-fach gleich oder verschieden durch Hydroxy, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen substituiert ist,

und deren Salze.

15 3. Benzyloxy-substituierte Phenylglycinamide der Formel nach Anspruch 1
in welcher

A für Cyclopentyl, Cyclohexyl, Cyclopentenyl, Cyclohexenyl oder für Phenyl oder Pyridyl steht, wobei die oben aufgeführten Ringe gegebenenfalls bis zu 3-fach gleich oder verschieden durch Fluor, Chlor, Brom, Cyano, Nitro, Hydroxy, durch geradkettiges oder verzweigtes Alkyl, 20 Alkoxy, Alkoxycarbonyl mit jeweils bis zu 3 Kohlenstoffatomen, Trifluormethyl, Trifluormethoxy, Carboxyl, oder durch eine Gruppe der Formel -SO₂R⁵, -NR⁶R⁷ oder -CO-NR⁸R⁹ substituiert sind, worin

25 R⁵ Phenyl oder Methyl bedeutet,

R⁶, R⁷, R⁸ und R⁹ gleich oder verschieden sind und Wasserstoff oder geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen bedeuten, oder

30 R⁸ und/oder R⁹ Cyclopropyl, Cyclopentyl oder Cyclohexyl bedeuten, oder Benzyl oder Phenyl bedeuten, die gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Hydroxy, Methyl oder Methoxy substituiert sind, oder

35 R⁸ und R⁹ gemeinsam mit dem Stickstoffatom einen Morpholinyl-, Pyrrolidinyl- oder Piperidinytring bilden,

40 X für eine Bindung oder für die >C=O-Gruppe steht,

D und E gleich oder verschieden sind und für Wasserstoff, Fluor, Chlor oder Brom stehen,

45 R¹ für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl steht, oder für geradkettiges oder verzweigtes Alkyl mit bis zu 8 Kohlenstoffatomen steht,

R² für Wasserstoff steht,

R³ für Wasserstoff oder für die -CH₂-OH-Gruppe steht,

50 R⁴ für Phenyl steht, das gegebenenfalls bis zu 2-fach gleich oder verschieden durch Hydroxy, Fluor, Chlor, Brom oder geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen substituiert ist, und deren Salze.

55 4. Benzyloxy-substituierte Phenylglycinamide der Formel nach Anspruch 1
in welcher

D und E für Wasserstoff stehen

und

R¹ für Cyclopentyl, Cyclohexyl oder Cycloheptyl steht.

5. Benzyloxy-substituierte Phenylglycinamide nach Anspruch 1 bis 4 als Arzneimittel.

6. Verfahren zur Herstellung von Benzyloxy-substituierten Phenylglycinamiden nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man Carbonsäuren der allgemeinen Formel (II),

10

20

in welcher

A, D, E, X und R¹ die angegebene Bedeutung haben,

25 gegebenenfalls unter vorgeschalteter Aktivierung der Carbonsäurefunktion mit Verbindungen der allgemeinen Formel (III)

30

35

in welcher

R², R³ und R⁴ die angegebene Bedeutung haben,

40 gegebenenfalls unter Schutzgasatmosphäre, gegebenenfalls in inerten Lösemitteln, in Anwesenheit einer Base und/oder Hilfsmittels umsetzt.

7. Arzneimittel enthaltend mindestens ein Benzyloxy-substituiertes Phenylglycinamid nach Anspruch 1 bis 4 sowie ein pharmakologisch unbedenkliches Formulierungshilfsmittel.

45 8. Arzneimittel nach Anspruch 7 zur Behandlung von Atherosklerose.

9. Verwendung von Benzyloxy-substituierten Phenylglycinamiden nach Anspruch 1 bis 4 zur Herstellung von Arzneimitteln.

50 10. Verwendung von Benzyloxy-substituierten Phenylglycinamiden nach Anspruch 1 bis 4 zur Herstellung von Arzneimitteln zur Behandlung von Atherosklerose.

55

Europäisches
Patentamt

EUROPÄISCHER TEILRECHERCHENBERICHT Nummer der Anmeldung
 der nach Regel 45 des Europäischen Patent-
 übereinkommens für das weitere Verfahren als
 europäischer Recherchenbericht gilt
 EP 97 10 5721

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich der maßgeblichen Teile	Betreff: Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.6)
A	EP 0 344 519 A (BAYER AG) 6.Dezember 1989 * Ansprüche; Beispiel 34 *	1-10	C07D213/30 C07C233/22 C07D295/18 A61K31/44 A61K31/165
A, P	EP 0 716 082 A (BAYER AG) 12.Juni 1996 * das ganze Dokument *	1-10	
			RECHERCHIERTE SACHGEBIETE (Int.CI.6)
			C07D C07C A61K
UNVOLLSTÄNDIGE RECHERCHE			
Nach Auffassung der Recherchenabteilung entspricht die vorliegende europäische Patentanmeldung den Vorschriften des Europäischen Patentübereinkommens so wenig, daß es nicht möglich ist, auf der Grundlage einiger Patentansprüche sinnvolle Ermittlungen über den Stand der Technik durchzuführen. Vollständig recherchierte Patentansprüche: Unvollständig recherchierte Patentansprüche: Nicht recherchierte Patentansprüche: Grund für die Beschränkung der Recherche: Siehe Ergänzungsbogen C			
Recherchiert	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	30.Juli 1997	Bosma, P	
KATEGORIE DER GENANNTEN DOKUMENTEN			
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen oder mehreren Kategorien A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur			
T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument			

UNVOLLSTÄNDIGE RECHERCHE

Nach Auffassung der Recherchenabteilung entspricht die vorliegende europäische Patentanmeldung den Vorschriften des europäischen Patentübereinkommens so wenig, daß es nicht möglich ist, auf der Grundlage einiger Patentansprüche sinnvolle Ermittlungen über den Stand der Technik durchzuführen.

Vollständig recherchierte Patentansprüche: 2-10

Unvollständig recherchierte Patentansprüche: 1

Nicht recherchierte Patentansprüche:

Grund für die Beschränkung der Recherche:

Der Gegenstand der Ansprüche umfasst einen zu grossen Bereich von chemisch grundverschiedenen Resten. Daher ist eine vollständige Recherche aus ökonomischen Gründen nicht möglich und ist der Recherchenbericht nicht als vollständig anzusehen. (Siehe Richtlinien für das Europäische Patentamt, Teil B, Kapitel III, 2). In Anlehnung an den Geist und das erfinderische Konzept der vorliegenden Anmeldung ist die Recherche auf die Beispiele und die angegebenen Ansprüche beschränkt worden.