$11n_{80} (K11n_{80})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 35u^{14} - 160u^{13} + \dots + 2098b - 1482, -1803u^{14} - 7193u^{13} + \dots + 2098a - 16837, u^{15} + 4u^{14} + \dots + 12u + 1 \rangle$$

$$I_2^u = \langle -u^2 + b - u - 1, -u^3 - u^2 + a - u + 1, u^4 + u^3 + u^2 + 1 \rangle$$

$$I_3^u = \langle b^2 - bu + b + u, a + u, u^2 - u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 35u^{14} - 160u^{13} + \dots + 2098b - 1482, \ -1803u^{14} - 7193u^{13} + \dots + 2098a - 16837, \ u^{15} + 4u^{14} + \dots + 12u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.859390u^{14} + 3.42850u^{13} + \dots + 8.95853u + 8.02526 \\ -0.0166826u^{14} + 0.0762631u^{13} + \dots + 2.44423u + 0.706387 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.477121u^{14} - 1.81888u^{13} + \dots - 5.69495u - 3.69733 \\ 0.0319352u^{14} + 0.211153u^{13} + \dots - 0.407531u - 0.337941 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.167779u^{14} - 0.946139u^{13} + \dots - 3.19876u - 3.48236 \\ 0.167779u^{14} + 0.661582u^{13} + \dots - 1.09628u - 0.447092 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.715443u^{14} + 2.87226u^{13} + \dots + 8.20591u + 7.89180 \\ 0.00905624u^{14} + 0.0300286u^{13} + \dots + 3.28742u + 0.859390 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.782173u^{14} + 3.06721u^{13} + \dots + 7.92898u + 6.06625 \\ -0.0619638u^{14} - 0.0738799u^{13} + \dots + 1.00715u + 0.409438 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.782173u^{14} + 3.06721u^{13} + \dots + 7.92898u + 6.06625 \\ -0.0619638u^{14} - 0.0738799u^{13} + \dots + 1.00715u + 0.409438 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{713}{2098}u^{14} - \frac{2585}{2098}u^{13} + \dots + \frac{20215}{2098}u + \frac{10090}{1049}u^{13} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{15} + 4u^{14} + \dots + 12u + 1$
c_2,c_5	$u^{15} + 10u^{14} + \dots + 112u - 1$
c_3, c_7	$u^{15} - 2u^{14} + \dots + 16u - 16$
c_6, c_{10}	$u^{15} - 3u^{14} + \dots - 24u - 16$
c_8, c_9, c_{11}	$u^{15} + 7u^{14} + \dots - 16u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{15} + 10y^{14} + \dots + 112y - 1$
c_2, c_5	$y^{15} - 6y^{14} + \dots + 13488y - 1$
c_{3}, c_{7}	$y^{15} - 20y^{14} + \dots + 128y - 256$
c_6, c_{10}	$y^{15} + 21y^{14} + \dots - 1984y - 256$
c_8, c_9, c_{11}	$y^{15} - 3y^{14} + \dots + 134y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.443471 + 0.899923I		
a = -2.22456 - 0.69076I	1.31612 + 1.82919I	23.9935 - 13.4254I
b = -0.00537 + 2.93789I		
u = 0.443471 - 0.899923I		
a = -2.22456 + 0.69076I	1.31612 - 1.82919I	23.9935 + 13.4254I
b = -0.00537 - 2.93789I		
u = -1.154120 + 0.257445I		
a = -0.114455 - 1.265520I	-5.23991 + 4.29122I	5.74651 - 1.92061I
b = 0.21776 + 1.65198I		
u = -1.154120 - 0.257445I		
a = -0.114455 + 1.265520I	-5.23991 - 4.29122I	5.74651 + 1.92061I
b = 0.21776 - 1.65198I		
u = -0.707815 + 0.947595I		
a = 0.362571 - 0.587039I	9.44393 - 2.71266I	11.43593 + 3.34052I
b = -0.068426 - 0.205683I		
u = -0.707815 - 0.947595I		
a = 0.362571 + 0.587039I	9.44393 + 2.71266I	11.43593 - 3.34052I
b = -0.068426 + 0.205683I		
u = 0.416218 + 0.666363I		
a = -0.168507 - 0.746645I	-0.075833 + 1.377120I	-0.42484 - 4.74084I
b = -0.225041 + 0.497206I		
u = 0.416218 - 0.666363I		
a = -0.168507 + 0.746645I	-0.075833 - 1.377120I	-0.42484 + 4.74084I
b = -0.225041 - 0.497206I		
u = 0.136912 + 1.276840I		
a = -1.156530 - 0.039261I	-2.05262 + 0.52363I	2.28909 - 0.30141I
b = 0.148725 + 0.753403I		
u = 0.136912 - 1.276840I		
a = -1.156530 + 0.039261I	-2.05262 - 0.52363I	2.28909 + 0.30141I
b = 0.148725 - 0.753403I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.68964 + 1.30605I		
a = 1.367780 - 0.217281I	-8.47013 - 10.83430I	4.46568 + 4.98924I
b = -0.35945 + 1.80414I		
u = -0.68964 - 1.30605I		
a = 1.367780 + 0.217281I	-8.47013 + 10.83430I	4.46568 - 4.98924I
b = -0.35945 - 1.80414I		
u = -0.39863 + 1.51864I		
a = -0.749856 + 0.006232I	-11.10030 - 1.26356I	2.58190 + 0.63912I
b = 0.03559 - 1.70713I		
u = -0.39863 - 1.51864I		
a = -0.749856 - 0.006232I	-11.10030 + 1.26356I	2.58190 - 0.63912I
b = 0.03559 + 1.70713I		
u = -0.0927870		
a = 7.36713	1.10369	8.82440
b = 0.512405		

II. $I_2^u = \langle -u^2 + b - u - 1, -u^3 - u^2 + a - u + 1, u^4 + u^3 + u^2 + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + u^{2} + u - 1 \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + u^{2} + 2u - 1 \\ -u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u^{2} + u - 1 \\ u^{2} + u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u^{2} + u - 1 \\ u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^3 5u^2 + 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^4 - u^3 + u^2 + 1$
c_2, c_5, c_7	$u^4 + u^3 + 3u^2 + 2u + 1$
c_3	$u^4 - u^3 + 3u^2 - 2u + 1$
c_4	$u^4 + u^3 + u^2 + 1$
c_6,c_{10}	u^4
c_{8}, c_{9}	$(u+1)^4$
c_{11}	$(u-1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^4 + y^3 + 3y^2 + 2y + 1$
c_2, c_3, c_5 c_7	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_6, c_{10}	y^4
c_8, c_9, c_{11}	$(y-1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.351808 + 0.720342I		
a = -1.54742 + 1.12087I	1.43393 + 1.41510I	11.48794 - 2.21528I
b = 0.95668 + 1.22719I		
u = 0.351808 - 0.720342I		
a = -1.54742 - 1.12087I	1.43393 - 1.41510I	11.48794 + 2.21528I
b = 0.95668 - 1.22719I		
u = -0.851808 + 0.911292I		
a = -0.452576 + 0.585652I	8.43568 - 3.16396I	4.01206 + 4.08190I
b = 0.043315 - 0.641200I		
u = -0.851808 - 0.911292I		
a = -0.452576 - 0.585652I	8.43568 + 3.16396I	4.01206 - 4.08190I
b = 0.043315 + 0.641200I		

III.
$$I_3^u=\langle b^2-bu+b+u,\ a+u,\ u^2-u+1\rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} bu \\ b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} bu - b + 2u \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} bu - b + 2u \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -bu + b - 2u \\ u-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2bu - 2b + 2u \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2bu - 2b + 2u \\ b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 3bu 6b u + 5

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^2$
c_{3}, c_{7}	u^4
C4	$(u^2 - u + 1)^2$
c_6, c_8, c_9	$(u^2 - u - 1)^2$
c_{10}, c_{11}	$(u^2+u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \ c_5$	$(y^2+y+1)^2$
c_3, c_7	y^4
c_6, c_8, c_9 c_{10}, c_{11}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	8.88264 + 2.02988I	4.50000 + 2.34537I
b = 0.309017 - 0.535233I		
u = 0.500000 + 0.866025I		
a = -0.500000 - 0.866025I	0.98696 + 2.02988I	4.50000 - 9.27358I
b = -0.80902 + 1.40126I		
u = 0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	8.88264 - 2.02988I	4.50000 - 2.34537I
b = 0.309017 + 0.535233I		
u = 0.500000 - 0.866025I		
a = -0.500000 + 0.866025I	0.98696 - 2.02988I	4.50000 + 9.27358I
b = -0.80902 - 1.40126I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} + u + 1)^{2})(u^{4} - u^{3} + u^{2} + 1)(u^{15} + 4u^{14} + \dots + 12u + 1)$
c_2, c_5	$((u^{2} + u + 1)^{2})(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{15} + 10u^{14} + \dots + 112u - 1)$
c_3	$u^{4}(u^{4} - u^{3} + 3u^{2} - 2u + 1)(u^{15} - 2u^{14} + \dots + 16u - 16)$
C ₄	$((u^{2}-u+1)^{2})(u^{4}+u^{3}+u^{2}+1)(u^{15}+4u^{14}+\cdots+12u+1)$
<i>c</i> ₆	$u^{4}(u^{2}-u-1)^{2}(u^{15}-3u^{14}+\cdots-24u-16)$
c ₇	$u^{4}(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{15} - 2u^{14} + \dots + 16u - 16)$
c_8,c_9	$((u+1)^4)(u^2-u-1)^2(u^{15}+7u^{14}+\cdots-16u-1)$
c_{10}	$u^{4}(u^{2}+u-1)^{2}(u^{15}-3u^{14}+\cdots-24u-16)$
c_{11}	$((u-1)^4)(u^2+u-1)^2(u^{15}+7u^{14}+\cdots-16u-1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2+y+1)^2)(y^4+y^3+3y^2+2y+1)(y^{15}+10y^{14}+\cdots+112y-1)$
c_2, c_5	$((y^2+y+1)^2)(y^4+5y^3+\cdots+2y+1)(y^{15}-6y^{14}+\cdots+13488y-1)$
c_3, c_7	$y^4(y^4 + 5y^3 + \dots + 2y + 1)(y^{15} - 20y^{14} + \dots + 128y - 256)$
c_{6}, c_{10}	$y^{4}(y^{2} - 3y + 1)^{2}(y^{15} + 21y^{14} + \dots - 1984y - 256)$
c_8, c_9, c_{11}	$((y-1)^4)(y^2-3y+1)^2(y^{15}-3y^{14}+\cdots+134y-1)$