

Inteligência Artificial

Profa. Patrícia R. Oliveira EACH / USP

Parte 3 – Aprendizado Simbólico: Árvores de Decisão

Este material é parcialmente baseado em slides do Prof. Thiago Pardo (ICMC/USP)

Árvores de Decisão (ADs)

- Trata-se de um modelo prático de uma função recursiva que determina o valor de uma variável (realização de um teste) e, baseando-se neste valor, executa-se uma ação.
- Esta ação pode ser a escolha de outra variável (realização de outro teste) ou a saída (classe).

Exemplo de árvore de decisão

Árvores de Decisão (ADs)

- As árvores de decisão são treinadas de acordo com um conjunto de exemplos previamente classificados
 - Aprendizado supervisionado
- Posteriormente, outros exemplos fora do conjunto de treinamento devem ser classificados de acordo com essa mesma árvore.
- É possível ter uma visão gráfica da tomada de decisão.

Quando usar ADs?

- Instâncias (exemplos) são representadas por pares atributo-valor.
- Função objetivo assume apenas valores discretos.
- Hipóteses disjuntivas podem ser necessárias.
- Conjunto de treinamento possivelmente corrompido por ruído (valores errados, incompletos ou inconsistentes).
- Exemplos:
 - Diagnóstico médico, diagnóstico de equipamentos, análise de crédito.

5

Estrutura

- Uma AD alcança sua decisão executando uma sequência de testes.
- Cada nó interno na árvore corresponde a um teste do valor de um dos atributos do conjunto de exemplos T.
- As ramificações a partir de um nó interno são rotuladas com os possíveis valores do teste realizado nesse nó.
- Cada nó-folha na árvore especifica a classe a ser retornada se aquela folha for alcançada.

Exemplo

 Para classificar um novo exemplo, basta começar pela raiz, seguindo cada teste até que a folha seja alcançada.

8

AD para funções booleanas

- Qualquer função booleana pode ser escrita como uma árvore de decisão.
- Cada linha na tabela verdade corresponde a um caminho na árvore.

Exercício

- Determine as tabelas verdade e as correspondentes ADs para as seguintes funções booleanas:
 - A not B
 - A v [B ∧ C]

Transformação de uma AD em regras

- IF (aparência = sol) ∧ (umidade = alta) THEN JogaTenis = não
- IF (aparência = sol) ∧ (umidade = normal) THEN JogaTenis = sim

........

11

Transformação de uma AD em regras

- Toda AD pode ser representada como um conjunto de regras de classificação, sendo que cada regra é gerada percorrendo-se um caminho na AD, da raiz até uma das folhas.
- A regra prediz a classe associada à folha.
- A parte condicional da regra é obtida pela conjunção das condições de cada nó no caminho.
- Cada conceito (classe) induzido pela AD pode ser expresso por uma disjunção de conjunções.
 - Regra para o conceito JogarTenis?

12

Transformação de uma AD em regras

- Conceito JogarTennis:

```
((aparência = sol) ∧ (umidade = normal)) v (aparência = nublado) v
((aparência = chuva) ∧ (vento = fraco))
2º semestre 2011
```


Construção de uma AD

A idéia base:

- 1. Escolher um atributo.
- Estender a árvore adicionando um ramo para cada valor do atributo.
- Passar os exemplos para as folhas (tendo em conta o valor do atributo escolhido).
- 4. Para cada folha
 - 4.1. Se todos os exemplos são da mesma classe, associar essa classe à folha.
 - 4.2. Senão repetir os passos 1 a 4.

Atributo de particionamento

- A chave para o sucesso de um algoritmo de aprendizado de AD depende do critério utilizado para escolher o atributo que particiona (atributo de teste) o conjunto de exemplos em cada iteração
- Questão: como escolher o atributo de particionamento?

Outro Exemplo

- Decidir se devo esperar por uma mesa em um restaurante, dados os atributos:
- 1. Alternate: há um restaurante alternativo na redondeza?
- 2. Bar: existe um bar confortável onde eu possa esperar?
- 3. **Fri/Sat**: hoje é sexta ou sábado?
- 4. **Hungry:** estou com fome?
- 5. Patrons: número de pessoas no restaurante (None, Some, Full).
- 6. **Price:** faixa de preços (\$, \$\$, \$\$\$)
- 7. Raining: está chovendo?
- 8. **Reservation:** tenho reserva?
- 9. **Type:** tipo do restaurante (French, Italian, Thai, Burger)
- 10. **WaitEstimate:** tempo de espera estimado (0-10, 10-30, 30-60, >60).

Outro Exemplo (cont.)

Exemplos disponíveis:

Example	Attributes								Target		
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Classificação dos exemplos em positivo (T) ou negativo (F).

Escolha de Atributos

- Objetivo: encontrar a menor árvore que seja consistente com os exemplos.
- Ideia: (recursivamente) encontre o atributo "mais significante" como raiz da sub-árvore.
- Um bom atributo divide os exemplos em subconjuntos que (preferivelmente) são "todos positivos" ou "todos negativos".

Escolha de Atributos

Pergunta: qual dos dois atributos deve ser escolhido como raiz da AD?

Escolha de Atributos

Resposta: Patrons é um atributo melhor do que Type para ser raiz da AD.

Algoritmo ID3 (informal)

- Se existem alguns exemplos positivos e alguns negativos, escolha o melhor atributo para dividi-los.
- Se todos os exemplos restantes forem positivos (ou todos negativos), então terminamos: podemos responder Sim ou Não.
- Se não resta nenhum exemplo, nenhum exemplo desse tipo foi observado. Então retorna-se um valorpadrão calculado a partir da classificação de maioria no pai do nó.

Algoritmo ID3 (informal)

- Se não resta nenhum atributo, mas há exemplos positivos e negativos, quer dizer que esses exemplos tem exatamente a mesma descrição, mas classificações diferentes.
- Isso acontece quando:
 - alguns dados estão incorretos; dizemos que existe <u>ruído</u> nos dados;
 - os atributos não fornecem informações suficientes para descrever a situação completamente;
 - o domínio não é completamente determinístico;
 - saída simples: utilizar uma votação pela maioria.

Algoritmo ID3 (formal)

- Algoritmo recursivo
- ID3(Examples, Target_attribute, Attributes)
 - Examples: exemplos de treinamento
 - Target_attribute: atributo cujos valores devem ser previstos pela AD
 - Attributes: atributos que podem ser testados pela AD.

D3 (Examples, Target_attribute, Attributes)

Grie um nó raiz Root para a AD

So todos os exemplos forem positivos, retorne o nó Root, com rótulo + Se todos os exemplos forem negativos, retorne o nó Root, com rótulo -Se Attributes for vazio, retorne o nó Root, com rótulo = valor mais com um de Target_Attribute em Examples

Caso Contrário Begin

A← o atributo que meshor classifica Examples

O a trib u to para Reo $t \leftarrow \mathcal{A}$

Para cada possíve svasor, v_i para A

Adicione um novo ramo abaixo de Lot correspondente ao teste $A = v_i$ Se ja Example s_{vi} o subconjunto de Example s com valor v_i para ASe Example s_{vi} for vazio Então

Abaixo de sse novo ramo, adicione um novo nó fosha, com rótuso = valor mais com um de Target_Attribute em Examples

Se nã o

Abaixo desse novo ramo, adicione a subárvore D3 (Examples_{vi}, Target_attribute, Attributes - {A})

End Return Reot

Como definir o que é um Atributo melhor?

- A escolha de atributos deve minimizar a profundidade da árvore de decisão;
- Escolher um atributo que vá o mais longe possível na classificação exata de exemplos;
- Um atributo perfeito divide os exemplos em conjuntos que são todos positivos ou todos negativos.
- Solução: medir os atributos a partir da quantidade esperada de informações fornecidas por ele.

25

Como definir o que é um Atributo melhor?

- É necessária uma boa medida quantitativa.
- O algoritmo ID3 utiliza uma medida denominada de ganho de informação
 - propriedade estatística.
 - mede o quão bem um atributo separa os exemplos de treinamento de acordo com a meta de classificação.
 - baseada na medida de entropia.

Entropia

- Caracteriza a heterogeneidade de classes em uma coleção de exemplos.
- Seja uma coleção S, contendo exemplos positivos e negativos de um determinado conceito, a entropia de S é dada por:

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{-} \log_2 p_{-}$$

em que:

 p_{θ} : proporção de exemplos positivos em S.

 P_- : proporção de exemplos negativos em S.

Obs: para o cálculo de entropia, define-se $0 \log_2 0 = 0$.

Entropia – Exemplo

- Suponha que S é uma coleção de 14 exemplos, sendo 9 desses positivos e 5 negativos.
- Notação: [9+, 5–]
- Entropia de S:

$$Entropy([9+,5-]) = -(9/14)\log_2(9/14) - (5/14)\log_2(5/14)$$
$$= 0.940$$

Entropia

- Note que a entropia é igual a 0 se todos os membros de S pertencerem a mesma classe (os dados estão perfeitamente classificados).
- A entropia será igual a 1 se a coleção apresentar um número igual de exemplos positivos e negativos.
- No caso da classificação booleana, a medida da entropia varia de 0 ("perfeitamente classificado") a 1 ("totalmente aleatório").

Entropia

Entropia – Caso Geral

• Qualquer que seja o número de classes em um conjunto de dados S, a entropia de S é dada pela fórmula:

$$Entropia(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

em que p_i é a proporção de exemplos da classe i pertencentes a S e c é o número total de classes.

Ganho de Informação

 Ganho(S,A): está relacionado à redução esperada na entropia do conjunto S pelo particionamento deste, de acordo com os valores observados do atributo A.

$$Ganho(S, A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

em que:

Valores(A): conjunto de todos os valores possíveis para A.

S_v: subconjunto de S para o qual A tem o valor v.

Exemplo

- Atributo Vento, com valores forte e fraco.
- Coleção S com 14 exemplos, sendo que 9 são positivos e 5 são negativos ([9+,5-]).
- Desses 14 exemplos, suponha que 6 dos exemplos positivos e dois exemplos negativos tem *Vento* = *fraco* [6+,2-] e o resto tem *Vento* = *forte* ([3+,3-]).
- Portanto
 - Valores(Vento) = fraco, forte
 - Distribuição de S = [9+,5-]
 - Distribuição de $S_{fraco} = [6+,2-]$
 - Distribuição de S_{forte} = [3+,3-]

Exemplo

$$Ganho(S, Vento) \equiv Entropia(S) - \sum_{v \in \{fraco, forte\}} \frac{|Sv|}{|S|} Entropia(Sv)$$

$$Ganho(S, Vento) \equiv Entropia(S) - \left(\frac{8}{14}\right) Entropia(Sfraco) - \left(\frac{6}{14}\right) Entropia(Sforte)$$

$$Ganho(S, Vento) \equiv 0.940 - \left(\frac{8}{14}\right)0.811 - \left(\frac{6}{14}\right)1.00$$

 $Ganho(S, Vento) \equiv 0.048$

• Qual o ganho de informação do atributo A2 em relação a esse conjunto de treinamento?

Instância	A1	A2	Classe
1	Т	Т	+
2	Т	Т	+
3	Т	F	-
4	F	F	+
5	F	Т	_
6	F	Т	_

Construindo uma AD

dia	aparência	temperatura	umidade	vento	jogar tênis
D1	ensolarado	quente	alta	fraco	não
D2	ensolarado	quente	alta	forte	não
D3	nublado	quente	alta	fraco	sim
D4	chuva	moderada	alta	fraco	sim
D5	chuva	fria	normal	fraco	sim
D6	chuva	fria	normal	forte	não
D7	nublado	fria	normal	forte	sim
D8	ensolarado	moderada	alta	fraco	não
D9	ensolarado	fria	normal	fraco	sim
D10	chuva	moderada	normal	fraco	sim
D11	ensolarado	moderada	normal	forte	sim
D12	nublado	moderada	alta	forte	sim
D13	nublado	quente	normal	fraco	sim
D14	chuva	moderada	alta	forte	não

- Qual deverá ser o nó raiz da árvore?
 - O ganho de informação deve ser calculado para cada atributo do conjunto de treinamento (menos o atributo classe).
 - O atributo que resultar no maior ganho de informação é selecionado como atributo de teste.

- Para cada atributo:
 - Ganho(S, aparência) = 0.246
 - Ganho(S, umidade) = 0.151
 - Ganho(S, vento) = 0.048
 - Ganho(S, temperatura) = 0.029
- De acordo com a medida de ganho de informação, o atributo aparência é o que melhor prediz o atributo classe, jogar_tênis, sobre o conjunto de treinamento.

- Todo exemplo para o qual aparência=nublado tem o atributo classe jogar_tênis=sim
 - é criado um nó folha com a classificação jogar_tênis=sim (chamada recursiva).
- Os nós descendentes correspondentes a aparência=ensolarado e aparência=chuva ainda tem entropias diferentes de zero
 - deverá ser criada uma nova AD abaixo de cada um desses ramos (chamada recursiva).

- O processo de <u>selecionar</u> um novo atributo e <u>particionar</u> os exemplos de treinamento é repetido para cada nó descendente não folha.
 - usa-se somente os exemplos associados àquele nó.
 - atributos que já foram usados nos nós ascendentes deste são excluídos do processo de seleção.
 - um atributo pode aparecer no máximo uma vez ao longo de um mesmo caminho na AD.

- O processo de <u>selecionar</u> e <u>particionar</u> continua até que uma dessas condições seja atingida:
 - (1) todos os atributos já foram usados ao longo do caminho na AD;
 - (2) os exemplos de treinamento associados ao nó folha possuem o mesmo valor para o atributo classe.
 - a entropia desse nó é igual a zero.

dia	aparência	temperatura	umidade	vento	jogar tênis
D1	ensolarado	quente	alta	fraco	não
D2	ensolarado	quente	alta	forte	não
D3	nublado	quente	alta	fraco	sim
D4	chuva	moderada	alta	fraco	sim
D5	chuva	fria	normal	fraco	sim
D6	chuva	fria	normal	forte	não
D7	nublado	fria	normal	forte	sim
D8	ensolarado	moderada	alta	fraco	não
D9	ensolarado	fria	normal	fraco	sim
D10	chuva	moderada	normal	fraco	sim
D11	ensolarado	moderada	normal	forte	sim
D12	nublado	moderada	alta	forte	sim

S_{ensolarado} = {D1, D2, D8, D9, D11}

```
Ganho(S_{ensolarado}, umidade) = 0.970 - (3/5)0.0 - (2/5)0.0 = 0.970

Ganho(S_{ensolarado}, temperatura) = 0.970 - (2/5)1.0 - (2/5)0.0 - (1/5)0.0 = 0.570

Ganho(S_{ensolarado}, vento) = 0.970 - (2/5)1.0 - (3/5)0.918 = 0.019
```

Nesse caso, o maior ganho de informação está no atributo umidade.

Exercício

Overfitting em ADs

- O algoritmo ID3 expande cada ramificação na AD até que todos os exemplos estejam classificados corretamente.
 - Indesejável quando há ruído nos dados.
 - Pode levar a árvores superajustadas aos exemplos de treinamento (overfitting).

Overfitting em ADs

Evitando Overfitting em ADs

- Duas abordagens básicas:
 - parar de expandir a AD quando um novo particionamento não for significativo (<u>pré-poda</u>).
 - · difícil de estimar precisamente quando parar.
 - construir a AD completa e depois realizar um procedimento de poda (pós-poda).

Exemplo de Poda

Poda por Redução de Erro

- Divide o conjunto de dados em conjunto de treinamento, conjunto de validação e conjunto de teste.
- Podar um nó significa remover a subárvore a partir daquele nó, tornando-o um nó-folha e designando-lhe a classificação mais comum.
- Faça até que seja prejudicial (aumente o erro do modelo):
 - 1) avalie o impacto da poda sobre o conjunto de validação para cada nó da AD.
 - 2) remova o nó que diminua mais significativamente o erro do modelo.

Efeito da Poda por Redução de Erro

Pós-poda de Regras

- 1) Converta a AD em um conjunto de regras equivalente.
- 2) Pode cada regra de forma independente, removendo pré-condições que resultem na melhora da precisão da AD.
- 3) Ordene as regras finais de acordo com as suas precisões estimadas.
 - considere essa sequência nas classificações subsequentes.

55

O que fazer com atributos contínuos, que não são discretos?

Solução:

- Valores dos atributos s\(\tilde{a}\) o discretizados, ou seja, divididos em intervalos.
- Novos atributos booleanos são criados e testados em função dos intervados definidos.

Atributos Contínuos: ID3

Exemplo:

Temperature: 40 48 60 72 80 90

PlayTennis: No No Yes Yes No

- Escome-se o valor que melhor divide o espaço, de forma que haja o maior ganho de informação.
- Foi mostrado que esse valor fica entre os limites das mudanças de classes (entre 48 e 60; entre 80 e 90).
 - ((48+60)/2 Temperature>54 (80+90)/2 Temperature>85
- Temperature>54 causa maior ganho de informação e é escolhido como atributo teste.

57

Exercício

Pessoa	Cabelo (em cm)	Peso (em kg)	Idade	Classe
P1	0	125	36	masculino
P2	25	75	34	feminino
P3	5	45	10	masculino
P4	15	39	8	feminino
P5	10	10	1	feminino
P6	2,5	85	70	masculino
P7	20	80	41	feminino
P8	25	90	38	masculino
P9	15	100	45	masculino

Leituras

- MITCHELL, T. Machine Learning. McGraw Hill, 1997
 - Capítulo 3: Decision Tree Learning.
- REZENDE, S. (Ed.) Sistemas Inteligentes Fundamentos e Aplicações. Manole, 2003.
 - Capítulo 5: Indução de Regras e Árvores de Decisão.
- RUSSEL, S.; NORVIK, P. Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.
 - Capítulo 18: Aprendizado a partir de Observações