Relations binaires Résumé de cours

I/ Relations binaires

1. Définition

Soit un ensemble E. Une relation binaire \mathcal{R} sur E est définie par un sous-ensemble G de $E \times E$.

Si
$$(x, y) \in E \times E$$
 on écrira : $x \mathcal{R}_{x} y$ pour dire que $(x, y) \in G$

On dit que G est le graphe de \mathcal{R} .

Exemples

Dans
$$E = \{a, b, c, d, e\}$$
, \mathcal{R}_0 définie par $G = \{(a, b), (a, e), (b, a), (b, c), (c, c), (d, d)\}$

Exemples de représentation du graphe

2. Représentation

♦ Représentation sagittale

Exemple pour \mathcal{R}_o

• Matrice d'une relation sur un ensemble *E* fini (ou matrice d'adjacence)

Si
$$E = \{x_1, x_2, ..., x_n\}$$
 C'est la matrice $M \in \mathcal{M}_n(\{0,1\})$ telle que $\forall i, j \mid M_{i,j} = 1 \Leftrightarrow x_i \mathcal{R}_i \mathcal{R}_j$

Exemples

Pour \mathcal{R}_{0} , matrice d'adjacence

$$\begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

3. Produit de 2 relations

♦ Définition

Soient \mathcal{R} et S deux relations binaires sur E. Le produit de ces 2 relations est la relation \mathcal{P} telle que $\forall (x,z) \in E \times E / x \mathcal{P} z \Leftrightarrow \exists y \in E \text{ tel que } x \mathcal{R}, y \text{ et } y \mathcal{S} z$

On définit ainsi la relation \mathcal{R}^2 (produit de \mathcal{R} par elle-même),... la relation \mathcal{R}^k

lacktriangle Fermeture transitive d'une relation \mathcal{R} .

C'est la relation \mathcal{R}^* telle que $\forall (x, y) \in E \times E / x$ $\mathcal{R}^* y \Leftrightarrow \exists k \in \mathbb{N}^*$ tel que $x \mathcal{R}^k y$

Exemple : généalogie

E = 1'ensemble des individus d'une même famille depuis plusieurs générations.

Soient les relations binaires :

- $x \mathcal{R} y$ ssi x est le père de y
- x S y ssi x est la mère de y
- x Ty ssi x est un enfant de y

On peut définir les liens familiaux à l'aide des opérations sur les relations binaires :

 \mathcal{R}^2 = est grand père paternel de

 S^2 = est grand mère maternelle de

 $\mathcal{R}.S$ = est grand père maternel de

S.R = est grand mère paternelle de

 $\mathcal{P} = (\mathcal{R} \ ou \ S) = \text{est parent de}$

 \mathcal{P}^* = est un ancêtre de

 T^* = est un descendant de

 $\mathcal{T}.\mathcal{P}$ = est frère ou sœur de (ou soi-même).

♦ Matrice du produit, de la fermeture transitive

On définit les opérations \oplus et \otimes dans $\{0, 1\}$ par les tables :

\oplus	0	1	et	\otimes	0	1	
0	0	1		0	0	0	
1	1	1		1	0	1	

On étend alors les opérations \oplus et \otimes à $\mathcal{M}_n(\{0,1\})$:

Pour A et $B \in \mathcal{M}_n(\{0,1\})$, en notant $A = (a_{i,j})$ et $B = (b_{i,j})$,

on pose
$$A \oplus B = (a_{i,j} \oplus b_{i,j})$$
 et $A \otimes B = \bigoplus_{k=1}^{n} (a_{i,k} \otimes b_{k,j})$.

Pour
$$A \in \mathcal{M}_n(\{0,1\})$$
 on pose $A^{\otimes 2} = A \otimes A$, $A^{\otimes 3} = A \otimes A \otimes A$,..., $A^{\otimes (k+1)} = A^{\otimes k} \otimes A$.

Alors, si A est la matrice de \mathcal{R} et B la matrice de \mathcal{S} , on a

 $A \otimes B$ est la matrice de $\mathcal{R}.\mathcal{S}$

 $A^{\otimes k}$ est la matrice de \mathbb{R}^{k}

 $\bigoplus_{k} (A^{\otimes k})$ est la matrice de \mathbb{R}^*

Exemple

R				\mathcal{R}^2					\mathbb{R}^3					\mathcal{R}^4						R 5									
d e f					c b					d a					$\begin{array}{c c} c \longrightarrow b \\ \hline d \longrightarrow a \\ \hline \end{array}$					d a									
		P	4			$A^{\otimes 2}$					$A^{\otimes 3}$					$A^{\otimes 4}$					$A^{\otimes 5}$								
0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
0	1	0	0	1	0	1	1	0	0	1	0	1	1	0	0	1	0	1	1	0	0	1	0	1	1	0	0	1	0
	1	0	0	0	0_	1	0	0	0	0	0_	0	1	0	0	0	0_	1	0	0	0	0	0	0	1	0	0	0	$_{0}\rfloor$

Propriétés: Si $\mathcal{R}^{k+1} = \mathcal{R}^k$ alors $\forall i \geqslant k \mathcal{R}^i = \mathcal{R}^k$

Si Card(E) = n alors $\mathbb{R}^* = (\mathbb{R} \text{ ou } \mathbb{R}^2 \text{ ou ... ou } \mathbb{R}^n)$, soit $A^* = \bigoplus_{k=1}^n (A^{\otimes k})$

Exemple

Exchipic					
${\cal R}$	\mathcal{R}^2	\mathcal{R}^3	${\cal R}^{4}$	\mathcal{R}^5	\mathcal{R}^{6}
d a	d e f	c b a a	d a	c b a a	G &
R	\mathcal{R} ou \mathcal{R}^2	\mathcal{R} ou \mathcal{R}^2 ou \mathcal{R}^3	\mathcal{R} ou \mathcal{R}^2 \mathcal{R}^4	\mathcal{R} ou \mathcal{R}^2 \mathcal{R}^5	${\cal R}^*$
c - b a	d b a	d a a	c b b a a a a	d a a	c b a

Complexité:

Le calcul du produit de 2 matrices $n \times n$ est de complexité $O(n^3)$

(on peut certes améliorer si la matrice est très "creuse")

Le calcul de $A^{\otimes n}$ est donc de complexité $O(n^4)$

En faisant le produit "binaire" on peut arriver à une complexité $O\left(n^3\ln\left(n\right)\right)$

4. Propriétés des relations binaires

Soit \mathcal{R} une relation sur E. On dit que \mathcal{R} est :

- réflexive ssi $\forall x \in E / x \Re x$
- symétrique ssi $\forall (x, y) \in E \times E / x \ \mathcal{R}, y \Leftrightarrow y \ \mathcal{R}, x$
- antisymétrique ssi $\forall (x, y) \in E \times E / (x \Re y \text{ et } y \Re x) \Rightarrow (x = y)$
- transitive ssi $\forall (x, yz) \in E \times E \times E / (x \Re y \text{ et } y \Re z) \Rightarrow (x \Re z)$

Si \mathcal{R}_{\cdot} est transitive,

on peut sans risque écrire $x_1 \mathcal{R} x_2 \mathcal{R} x_3 \mathcal{R} \dots \mathcal{R} x_{k-1} \mathcal{R} x_k$ au lieu de $(x_1 \mathcal{R} x_2 \text{ et } x_2 \mathcal{R} x_3 \text{ et ... et } x_{k-1} \mathcal{R} x_k)$, mais on s'interdira de le faire si \mathcal{R} n'est pas transitive :

Exemple: ne pas écrire $x \neq y \neq z$ car on ne sait pas si x = z ou si $x \neq z$

Remarque: \mathcal{R} est transitive $\iff \mathcal{R}^2$ est contenue dans \mathcal{R} , et si A est la matrice de \mathcal{R} , \mathcal{R} est transitive $\iff A \oplus A^{\otimes 2} = A$

Remarque : si \mathcal{R} est réflexive alors \mathcal{R} est contenue dans \mathcal{R}^2 , et donc $A \oplus A^{\otimes 2} = A^{\otimes 2}$, $A \oplus A^{\otimes 2} \oplus A^{\otimes 3} = A^{\otimes 3}$...

La matrice de la fermeture transitive de \mathcal{R} est donc $A^* = A \oplus A^{\otimes 2} \oplus ... \oplus A^{\otimes n} = A^{\otimes n}$

Comme $A^{\otimes n} = A^{\otimes n+} = A^{\otimes n+2} = \dots$ son calcul est en $O(n^3 \ln(n))$

Exemple pour n=2020, on calcule $A^{\otimes 2}$, $A^{\otimes 4}$, $A^{\otimes 8}$,... $A^{\otimes 1024}$, $A^{\otimes 2048}$ en 10 multiplications et $A^*=A^{\otimes 2020}=A^{\otimes 2048}$ est la matrice de \mathcal{R}^*

On peut simplifier la représentation d'une relation ...

• quand elle est symétrique (segments au lieu de flêches)

• quand elle est transitive : On ne trace que flèches que l'on ne peut pas déduire des autres par transitivité

Interprétation des propriétés d'une relation \mathcal{R} par sa matrice d'adjacence M:

- \triangleright R est réflexive ssi tous les termes de la diagonale de M sont égaux à 1
- \triangleright \mathcal{R} est symétrique ssi M est symétrique
- \triangleright si M est antisymétrique alors R est antisymétrique mais si R est antisymétrique, M peut avoir des termes non nuls sur la diagonale (boucles de R) dans ce cas elle n'est pas antisymétrique.
- $ightharpoonup \mathbb{R}$ est transitive ssi $M \oplus M^{\otimes 2} = M$
- ightharpoonup La fermeture transitive de $\mathcal R$ est la "plus petite" relation transitive "contenant" $\mathcal R$. On la note $\mathcal R^*$