Transducers & Instrumentation

Module 03 - 02

Measuring Movements

 $x_S(t)$ is the movement of the accelerometer, and $\ddot{x}_S(t)$ is its acceleration.

Acceleration of the accelerometer results in movements of the mass M, $x_M(t)$.

We are interested in the relative movement of the mass within the accelerometer,

$$y(t) = x_S(t) - x_M(t)$$

Transducers & Instrumentation

CMC Vellore

$$Ms^{2}X_{M}(s) = K \cdot (X_{S}(s) - X_{M}(s)) + sB \cdot (X_{S}(s) - X_{M}(s))$$

$$X_{M}(s) = \frac{sB + K}{s^{2}M + sB + K} X_{S}(s)$$

$$\downarrow$$

$$Y(s) = X_{S}(s) - X_{M}(s) = \frac{s^{2}M}{s^{2}M + sB + K} X_{S}(s)$$

 $M\ddot{x}_M(t) = K \cdot (x_S(t) - x_M(t)) + B \cdot (\dot{x}_S(t) - \dot{x}_M(t))$

 $Y(s) = \frac{M}{s^2M + sB + K}A_S(s)$

Transducers & Instrumentation

CMC Vellore

$$Y(s) = \frac{1}{s^2 + s\frac{B}{M} + \frac{K}{M}} A_S(s)$$

Natural Frequency $\omega_n = \sqrt{\frac{K}{M}}$ Static Sensitivity $= \frac{M}{K}$

Transducers & Instrumentation

CMC Vellore

$$Y(s) = \frac{1}{s^2 + s\frac{B}{M} + \frac{K}{M}} A_S(s)$$

 $x_M(t)$ $x_S(t)$ Capacitive sensing mechanisms for y(t).

Multi-axis Accelerometers

Signal measured by the accelerometer will:

- 1) Contain acceleration due to gravity, and
- 2) Depend on the orientation of the accelerometer with respect to an inertial reference frame of interest.

$$\mathbf{a}_{S}^{S}(t) = \mathbf{R}_{E}^{S}(t) \cdot \left(\mathbf{a}_{S}^{E}(t) - g^{E}\right)$$

$$y_E$$
 y_E
Earth reference frame

Transducers & Instrumentation

CMC Vellore

Two-axis Accelerometers

$$\mathbf{g}^E = \begin{bmatrix} 0 \\ -9.81 \end{bmatrix} m s^{-2}$$

Sensor 1
$$\mathbf{a}_S^S =$$

Sensor 2
$$\mathbf{a}_S^S =$$

Sensor 3
$$\mathbf{a}_S^S =$$

Gyroscopes

 C_1 and C_2 are determined by the Coriolis force.

 ${f v}$ is known, which can be used to compute ${f \omega}$

Multi-axis Gyroscopes

$$\mathbf{\omega}_{S}^{S}(t) = \mathbf{R}_{E}^{S}(t) \cdot \mathbf{\omega}_{S}^{E}(t)$$

