ISEP IG2407

QUIZ March 19th, 2020 **Documents allowed**

First name:

Full name:

For each question, there's only one good answer,

- 1 good answer = 2 pt
- 1 wrong answer = -1 pt
- No answer = 0 pt
 - 1. An audio signal, which spectrum is limited to 20 kHz was digitalized at a sampling frequency F_s = 24 kHz. The reconstruction of the original analog signal from the DAC output is:
 - Possible after applying an ideal rectangular filter over [-20 kHz, 20 kHz]
 - Possible after applying an ideal rectangular filter over [-12 kHz to 12 kHz]
 - Possible after applying an ideal rectangular filter over [-24 kHz to 24 kHz]
 - Impossible, as we don't respect the Shannon sampling theorem
 - 2. We digitalize a real valued analog signal, which spectrum belongs to the frequency band [140 MHz 160 MHz]. Which sampling frequency allows the down sampling of the signal while respecting the Shannon sampling theorem?
 - 30 *MHz* a.
 - b. 50 MHz
 - c. 70 MHz
 - d. 40~MHz
 - We consider the digitalized signal x(n) defined as: x(n) = 1 for $n \in \{0,1\}$ and x(n) = 0 for $n \in \{0,1\}$ $\{2,3,4,5\}$. The k^{th} sample of the Discrete Fourier Transform of this signal is equal to:

 - a. $2\cos\left(\frac{\pi k}{6}\right)e^{-\frac{j\pi k}{6}}$ b. $\cos\left(\frac{\pi k}{6}\right)e^{-\frac{j\pi k}{6}}$ c. $2\cos\left(\frac{\pi k}{2}\right)e^{-\frac{j\pi k}{2}}$
 - d. $\cos\left(\frac{\pi k}{2}\right)e^{-\frac{j\pi k}{2}}$
 - 4. We consider the digitalized signal x(n) defined as: $x(n) = (-1)^{n+1}$ for $n \in \{0,1,2,3\}$. The Z-transform of this signal is equal to:
 - a. $1 + z^{-1} + z^{-2} + z^{-3}$ b. $1 z^{-1} + z^{-2} z^{-3}$

 - c. $-1 + z^{-1} z^{-2} + z^{-3}$
 - d. $1 z + z z^3$
 - 5. We consider a digital signal $x(nT_s)$ with a sampling frequency $F_s = 512 \, Hz$. We calculate the Discrete Fourier Transform (DFT) on N = 256 samples. The last sample of the DFT corresponds to the frequency:

1

- a. f = 256 Hz
- b. f = 250 Hz
- c. f = 512 Hz
- d. f = 510 Hz

ISEP IG2407

- 6. We consider the following digital filter: $H(z)=\frac{1-z^{-2}}{1+z^{-2}}$. This filter has:

 a. Two poles $P_0=e^{j\pi/2}$ et $P_0^*=e^{-j\pi/2}$ and two zeros $Z_1=1$ et $Z_2=-1$ b. Two poles $P_0=e^{j\pi/4}$ et $P_0^*=e^{-j\pi/4}$ and two zeros $Z_0=e^{j\pi/2}$ et $Z_0^*=e^{-j\pi/2}$ c. Two poles $P_0=e^{j\pi/2}$ et $P_0^*=e^{-j\pi/2}$ and two zeros at the origin d. Two zeros $Z_0=e^{j\pi/2}$ et $Z_0^*=e^{-j\pi/2}$ and no poles
- 7. The impulse response of a FIR filter is given by h(0) = 1, h(1) = 0 and h(2) = -1 and h(n) = 10 if n > 3. Over the frequency band $[0, F_e/2]$, this filter is:
 - a. An all pass
 - b. A band-pass
 - c. A low-pass
 - d. A high-pass
- 8. The transfer function of an IIR filter is given by $H(z) = \frac{z^2 + 1}{z^2 + 1.96}$. This filter is
 - Non-causal
 - b. Stable
 - Unstable c.
 - d. A FIR filter
- 9. A white, zero mean, Gaussian noise s(n) having a normalized variance is filtered with a FIR filter $H(z) = 1 + z^{-1} + z^{-2}$. The signal at the output of this filter is augmented with another white zero mean, Gaussian noise w(n) having a variance equal to σ^2 . The observed signal y(n) is equal to:
 - a. s(n) + s(n-1) + s(n-2)
 - b. s(n) + w(n)
 - c. s(n) + s(n-1) + s(n-2) + w(n)
 - d. s(n) + s(n-1) + s(n-2) + w(n) + w(n-1) + w(n-2)
- 10. A white, zero mean, Gaussian noise having a normalized variance is filtered by a FIR filter H(z) = 1 + z^{-1} . The signal at the output of this filter:
 - a. Is white
 - b. Have a non-zero mean value

 - c. Have a variance equal to 2d. Have a variance equal to 1