

SM-2302: Software for Mathematicians

Matlab3: Numerical Techniques

Dr. Huda Ramli

Mathematical Sciences, Faculty of Science, UBD huda, raml i @ubd.edu.bn

Semester I, 2023/24

Interpolation

Interpolation is used to estimate data points between two known points. The most common interpolation technique is linear interpolation.

- In MATLAB, we can use the interp1() function
- There are many options for interpolation methods, for e.g.
 - linear (default)
 - o nearest,
 - o spline,
 - o cubic, etc.
- Refer to help interp1 for more details

Given the following data points:

X	0	1	2	3	4	5
У	15	10	9	6	2	0

Find the interpolated value for x = 3.5.

Using the default linear interpolation, we get the answer 4.

```
x = 0:5;

y = [15, 10, 9, 6, 2, 0];

plot(x, y, '-o')
```

% Find interpolated value for x=3.5 $y_lin = interp1(x,y,3.5)$

Using the spline interpolation on the same data results in the plotted interpolated points.

```
x = 0:5;
y = [15, 10, 9, 6, 2, 0];
new_x = 0:2.5:5;
% Find interpolated values using spline:
y_spline = interp1(x,y,new_x,'spline')
% Original points and interpolated points in same graph:
plot(x,y, new_x,y_spline, '-o')
```


Curve Fitting

- It is often more convenient to model empirical data as a mathematical function: y = f(x). Then, we can easily calculate any desired data based on this mathematical model.
- MATLAB's built-in curve fitting functions:
 - 1. >> p = polyfit(x,y,n) finds coefficients of a polynomial p(x) of degree n
 - 2. >> polyval(p,x) returns the value of a polynomial p(x) evaluated at x

These techniques use a polynomial of degree n that fits data y best in a least-squares sense.

• A **polynomial** is expressed as:

$$p(x) = p_1 x^n + p_2 x^{n-1} + \ldots + p_n x + p_{n+1}$$

where $p_1, p_2, \ldots, p_{n+1}$ are the coefficients of the polynomial.

MATLAB represents p(x) as the vector:

$$p = [p_1; p_2; \cdots p_n; p_{n+1}]$$

Regression Models

- Polynomial Regression: $y(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$
- **Linear Regression**: y(x) = ax + b is a polynomial of the first order.

Example 2 (Linear Regression)

Find the linear regression model of the data given in Example 1.

```
x = 0.5;

y = [15, 10, 9, 6, 2, 0];

n = 1; \% first order polynomial

p = polyfit(x,y,n)

a = p(1); b = p(2);

ymodel = a*x + b;

plot(x,y,'o', x,ymodel,'b-')
```

The answer is ans = -2.9143 14.2857 which gives the linear model: y = -2.9143c + 14.2857 as shown in the resulting graph.

Example 3 (Polynomial Regression)

Use polyfit and polyval functions to compare different orders of the polynomial regression models for the same data given in Example 1:

X	0	1	2	3	4	5
У	15	10	9	6	2	0

Since we only have 6 data points, we will study models up to the 5th order polynomial.

```
 \begin{array}{c} x = [0, \ 1, \ 2, \ 3, \ 4 \ , 5]; \\ y = [15, \ 10, \ 9, \ 6, \ 2 \ , 0]; \\ \text{for } n = 2:5 \ \% \ \text{From orders} \ 2 \ \text{to} \ 5 \\ p = polyfit(x, y, n) \\ y model = polyval(p, x); \\ subplot(2, 2, n - 1) \\ plot(x, y, \ 'o', x, ymodel) \\ title(sprintf(\ 'Model \ of \ order \ \%d', \ n)); \\ \text{end} \end{array}
```

The resulting polynomial regression models are

$$y_2(x) \approx 0.05x^2 - 3.2x + 14.5$$

 $y_3(x) \approx -0.065x^3 + 0.5x^2 - 4x + 14.7$
 $y_4(x) \approx 0.2x^4 - 1.9x^3 + 6.3x^2 - 9.4x + 15$
 $y_5(x) \approx -0.04x^5 + 0.7x^4 - 4.2x^3 + 10.3x^2 - 11.8x + 15$

Example 4 (Model fitting)

Given the following data:

Height, h(ft)							
Flow, $f(ft^3/s)$	0	2.6	3.6	4.03	6.45	11.22	30.61

Create polynomial regression models of the following order:

- (i) linear
- (ii) quadratic
- (iii) cubic

Which gives the best model? Plot the result in the same plot and compare them. Add xlabel, ylabel, title and a legend to the plot and use different line styles so the user can easily see the comparison.

```
1 % Script to plot polynomial regression models
2 clear, clc
3
  % Real Data:
  height = [0, 1.7, 1.95, 2.60, 2.92, 4.04, 5.24];
  flow = [0, 2.6, 3.6, 4.03, 6.45, 11.22, 30.61];
  new height = 0:0.5:6; % generate new height values used to test the model
8
  polyorder = 1: % linear
  p1 = polyfit (height, flow, polyorder) % first order model
  new_flow1 = polyval(p1, new_height); % use the model to find new flow values
12
   polyorder = 2; % quadratic
  p2 = polyfit (height, flow, polyorder) % second order model
  new flow2 = polyval(p2, new height);
16
  polyorder = 3; % cubic
  p3 = polyfit (height, flow, polyorder) % third order model
```

new flow3 = polyval(p3, new height);

Numerical differentiation

The derivative of a function y = f(x) is a measure of how y changes with x:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

A numerical approach to the derivative of a function y = f(x) is

$$\frac{dy}{dx} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

MATLAB offers functions for numerical differentiation:

- diff(x): Difference and approximate derivative for a vector x
- polyder(p): Differentiate polynomial, returns the derivative of the polynomial whose coefficents are the elements of vector **p**

Use numerical differentiation to find $\frac{dy}{dx}$ on the function $y = x^2$, based on the data points:

We know that the exact solution is: $\frac{dy}{dx} = 2x$.

We will compare the results from the numerical differentiation with the exact solution.

```
x = -2:2; y = x.^2;
dydx_num = diff(y)./diff(x);
dydx_exact = 2*x;
dydx = [[dydx_num, NaN]', dydx_exact'] % NaN is added to the vector to get ...
    same length of vectors
plot(x,[dydx_num, NaN],'b', x,dydx_exact,'g') % Plot the derivatives
```

This yields the following results:

How can we get a better approximation result?

Consider the equation $y = x^3 + 2x^2 - x + 3$.

- (a) Find $\frac{dy}{dx}$ analytically.
- (b) Taking x = [-5, 5], use diff function to approximate the derivative $\Delta y/\Delta x$.
- (c) Compare the data in 2D array and compare the graphs of the exact value of $\frac{dy}{dx}$ and the numerical approximation in the same plot.
- (d) Increase the number of data points and compare.

The exact solution is

$$\frac{dy}{dx} = 3x^2 + 4x - 1.$$

```
x = -5:1:5;
v = x.^3 + 2*x.^2 - x + 3; % Define the function v(x)
% Plot the function v(x)
plot(x, y)
title ('v')
% Find nummerical solution to dy/dx
dydx_num = diff(y)./diff(x);
dvdx = 3*x.^2 + 4.*x -1;
dydx = [[dydx num, NaN]', dydx exact']
% Plot nummerical vs analytical solution to dy/dx
figure (2)
plot(x,[dydx num, NaN], x, dydx exact)
title ('dy/dx')
legend ('numerical solution', 'analytical solution')
```

Differentiation on Polynomials

A polynomial can be expressed in the general form:

$$y(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$$

and its derivative is $y'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + \ldots + a_{n-1}$.

In Example 6,

- The equation $y = x^3 + 2x^2 x + 3$ can be defined as a polynomial using the function: $>> p = [1 \ 2 \ -1 \ 3]$ where n = 3.
- Then polyder(p) ans =

which agrees with our analytical derivative $\frac{dy}{dx} = 3x^2 + 4x - 1$.

Numerical integration

- The integral of a function f(x) is denoted as: $\int_{a}^{b} f(x) dx.$
- An integral can be seen as the area under a curve. Given y = f(x) the area A under the curve can be approximated by dividing the area between the limits into trapezoids:

$$A = \sum_{i=1}^{n} \frac{f(x_i) + f(x_{i-1})}{2} \Delta x \quad \text{where} \quad \Delta x = x_i - x_{i-1}$$

This is known as the **trapezoid rule**.

The area of a trapezoid is obtained by adding the area of arectangle and a triangle:

$$A_1 = y_0 \Delta x + \frac{1}{2}(y_1 - y_0) \Delta x = \frac{(y_0 + y_1) \Delta x}{2}$$

Numerical integral functions

Function	Description	Example		
diff	Difference and approximate derivative	dydx = diff(y)./diff(x)		
	diff(x):			
	$[x_2-x_1, x_3-x_2, \cdots x_n-x_{n-1}]$			
trapz	Computes the approximate integral using	trapz(x,y)		
	the trapezoidal method			
quad	Numerically evaluate integral, adaptive	quad(func,a,b)		
	Simpson quadrature method			
quadl	Same as quad but uses adaptive Labatto	quadl(func,a,b)		
	quadrature			
polyint	Integrate polynomial analytically	polyint(p)		
integral	Numerically integrates function func from	integral (func,xmin,xmax)		
	xmin to xmax			

func is a scalar-valued function from a to b.

Use the trapezoid rule and diff function to solve the numerical integral of x^2 from 0 to 1.

```
x = 0:0.1:1:
 func = @(x) x.^2;
 y = func(x);
 plot(x,y)
5
 % Calculate the Integral (Trapezoid method):
  avg y = y(1: length(x) - 1) + diff(y)/2;
```

- A = sum(diff(x).*avg v)
- 9 % Use built - in trapz function:
- 12
- A trapz = trapz(x,y)
- % Calculate the Integral (Simpson method): $A = simp = quad('x.^2', 0,1)$
 - % Calculate the Integral (Lobatto method):
 - A lab = quadl(@(x) func(x), 0,1)

15