$FUNDERING\ AF\ TILBYGNING\ AF\\ STR \varnothing YBERGS\ PAL \not\!\!E$

P2 Projekt - Modellernes virkelighed Gruppe B149 Byggeri & Anlæg Aalborg Universitet D. 27. maj 2015

Første Studieår v/ Det Teknisk-Naturvidenskabelige Fakultet

Byggeri og Anlæg Strandvejen 12-14 9000 Aalborg http://www.tnb.aau.dk

Titel:	Synopsis:	
Projekt:		
·		
P2-projekt - Modellernes virkelighed		
Projektperiode:		

Projektgruppe:

Februar 2015 - Maj 2015

B149

Deltagere:

Jacob Scharling Jørgensen Karoline Vestergaard Hansen Katrine Nørgaard Reberholt Marc Lund Nielsen Michael Elgaard Mortensen Morten Rask Jensen Nikolaj Skov Gravesen

Vejledere:

Katrine Rabjerg Meltofte Gitte Lyng Grønbech Johan Clausen

Oplagstal: 9 Sidetal: 79 Bilag: 4

Afsluttet 27-05-2015

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale med forfatterne.

Forord

Denne rapport er udarbejdet af gruppe B228, der er en gruppe af 1. semesters studerende på Byggeri og Anlæg-uddannelsen ved Aalborg Universitet. *Model og Virkelighed* er det overordnede tema for projektet. Projektet omhandler den nye cykel/gangbro ved Jernbanebroen, som går mellem Aalborg og Nørresundby. Aalborg kommune har bevilligt penge til broen, og projektet forventes færdigt indenfor de næste år.

Der rettes stor tak til vejleder Jannie Sønderkær Nielsen for vejledning og konstruktiv kritik. Endvidere rettes en stor tak til byrådsmedlem Jens Toft Nielsen for interview og rådgivning omkring den kommende Kulturbro, hvilken i dette projekt betegnes cykel/gangbro. Tak til personerne der har taget sig tid til at besvare spørgeskemaet. De samlede beregninger kan findes på hjemmesiden www.markhaurum.com, da der kun vil findes eksempler og korte uddrag af beregningerne i rapporten.

Læsevejledning

Der vil igennem rapporten fremtræde kildehenvisninger, og disse vil være samlet i en kildeliste bagerst i rapporten. Der er i rapporten anvendt kildehenvisning efter Harvardmetoden, så i teksten refereres en kilde med [Efternavn, År]. Denne henvisning fører til kildelisten, hvor bøger er angivet med forfatter, titel, udgave og forlag, mens Internetsider er angivet med forfatter, titel og dato. Figurer og tabeller er nummereret i henhold til kapitel, dvs. den første figur i kapitel 7 har nummer 7.1, den anden, nummer 7.2, osv.

Jacob Scharling Jørgensen	Karoline Vestergaard Hansen	Katrine Nørgaard Reberholt
Marc Lund Nielsen	Michael Elgaard Mortensen	Morten Rask Jensen
——————————————————————————————————————		

Indholdsfortegnelse

Kapite	l 1 Indledning	1
Kapitel	1 2 Problemformulering	3
2.1	Problemformulering og problemstillinger	3
2.2	Problemafgrænsning	3
Kapitel	l 3 Aalborg i vækst	5
3.1	Aalborg gennem tiden	5
3.2	Strøybergs Palæ	6
Kapitel	l 4 Et fremtidigt Aalborg	9
4.1	Kommuneplan	9
4.2	Aalborg Kommuneplan	10
	4.2.1 Aalborg Vækstakse	
4.3	Vækstaksens betydning	
	4.3.1 Er visionerne realistiske?	
	4.3.2 Hvorfor udvide Strøybergs Palæ?	
Kapitel	l 5 Udvikling af området	L 7
5.1	Lokalplan	17
5.2	Lokalplan 1-1-107	
	5.2.1 Fra gammel til ny lokalplan	
5.3	Delkonklusion	
Kapitel	1 6 Dimensionering	23
6.1	Laster	
	6.1.1 Permanent last	
	6.1.2 Variable laster	
	6.1.3 Nyttelast	
6.2	Lastkombinationer	
Kapitel	l 7 Stål	37
Kapitel	l 8 Geoteknik	39
8.1		39
8.2		39
8.3		39
0.0		40
		40 40
		41
		42
		±2 43
	O.O.O IIIMUIOIISVIIIMOI	rU

8.3.6 Vurdering af fejlkilder	43
Kapitel 9 Konklusion	45
Litteratur	47
Appendiks A Forsøg: Vandindhold	51
Appendiks B Forsøg: Sigteanalyse	53
Appendiks C Forsøg: Kornvægtfylde	57
Appendiks D Forsøg: Løs og fast lejring	59

Indledning

Aalborg Kommune er med et indbyggertal på over 205.000 og et areal på cirka $1.140 \ km^2$, landets tredjestørste kommune målt på indbyggertal og landets anden største kommune målt på areal [Dansk Center for Byhistorie]. Det område, som Kommunen dækker, er vist på Figur 1.1.

Aalborg er en tidligere industriby og førhen var industriområderne placeret i Aalborg Centrum. Nye planer for Aalborg har ført denne industri ud i nogle yderpunkter af Aalborg by. Derfor har kommunen nye visioner om at flytte kultur, studieliv og turisme ind, hvor der før var industri. Kommunens visioner omkring byens udvikling fremgår af Kommuneplanen, hvor det primære fokus i denne rapport vil være et område gennem Aalborg, der er tiltænkt mest vækst, dette betegnes som Vækstaksen (se Figur 4.1).

Indenfor de seneste 5-10 år har Aalborgs centrale havnefront gennemgået en stor udvikling. Denne er stadig i gang, hvilket ses ved, at der kommer flere boligbyggerier til havnen, som Strøybergs Palæ er en del af.

Det har siden år 2010 været på tale, at lave en tilbygning til den bevaringsværdige bygning, Strøybergs Palæ. Bygningen er fra år 1908 [Forvaltning, 1908-2015], beliggende centralt i Aalborg ved Slotspladsen, der er en cirka 200 meter vejstrækning og plads ved Aalborgs centrale havnefront, samt i nærheden af museet Utzon Centret og overfor shoppingcentret Friis. Figur 1.2 viser Strøybergs Palæs beliggenhed.

Når der skal anlægges nye arealer, bygninger, veje osv., skal det opføres i henhold til en lokalplan, der dækker et mindre område inden for kommunen, og har til formål at styre udviklingen indenfor dette område ved hjælp af fastlagte regler og målsætninger. Den gældende lokalplan for området ved Strøybergs Palæ er lokalplan 1-1-107.

Figur 1.1. Aalborg Kommune

Figur 1.2. Strøybergs Palæs beliggenhed

Problemformulering 2

2.1 Problemformulering og problemstillinger

bla bla

- Hvad gør det fordelagtigt at tilbygge i området omkring Strøybergs Palæ?
- Har Vækstaksen en betydning for tilbygningen af Strøybergs Palæ?

2.2 Problemafgrænsning

bla bla

Aalborg i vækst 3

Aalborg har stor fokus på udviklingen af byen, og flere centrale områder i byen har indenfor de seneste fem år gennemgået en større renovering og fornyelse. Følgende afsnit vil beskrive byens udvikling helt tilbage fra dens grundlæggelse og frem til i dag, da Vækstaksen yderligere vil ændre på Aalborgs identitet som tidligere industriby. Slutteligt vil en af Aalborgs gamle og bevaringsværdige bygninger, Strøybergs Palæ, beskrives, da der er planer om en udvikling af denne bygning i form af en tilbygning.

3.1 Aalborg gennem tiden

Aalborg er en by fra omkring år 1040, og er i dag Danmarks fjerde største by [Danske, 2014]. Byen har gennem årene udviklet sig til en købstadsby og handelscentrum for Nordjylland [for Byhistorie]. Dette grundet dens beliggenhed ved Limfjordens smalleste punkt og udmundingen af tre større åer, der var grundlag for små havne. Beliggenheden har gjort det muligt for Aalborg, at udvikle sig i størrelse og som by. I 1500-tallet nød byen godt af silde- og korneksport til Norge, samt studeeksport til Tyskland [for Byhistorie]. Da Limfjorden var sandet til, skulle alt eksport vest for Aalborg gå gennem Aalborg for at blive fragtet til Norge og andre steder. Aalborg fik velstand og flere indbyggere der i 1600-tallet nåede op på omkring 4.000 indbyggere [Dansk Center for Byhistorie]. På daværende tidspunkt blev Aalborg Danmarks andenstørste by. Dette varede ikke ved, da andre jyske byer blev prioriteret højere af kongen, og derved udviklede de sig mere eksponentielt i det kommende århundrede end Aalborg. Det, at Limfjorden brød igennem på vestsiden og Danmark mistede Norge, gavnede heller ikke Aalborgs position i forhold til handlen [Dansk Center for Byhistorie].

Til trods for dette fortsatte Aalborg alligevel med at udvikle sig, og 1800-tallets industrialisering fik indbyggertallet til at stige stødt. Fra 1830'erne flyttede flere industrier til Aalborg, heriblandt spritfabrikken (forløberen for De Danske Spritfabrikker) og C.W Obels Tobaksfabrik. De store kridt- og lerfund i undergrunden ved Aalborg lagde grunden for cementindustrien, hvor Aalborg Portland, som den største cementfabrik, alene beskæftigede 450 ansatte. Mange flere industrier blev grundlagt eller flyttede til Aalborg, og en del af disse var blandt landets største inden for deres område. Dette fik indbyggertallet til at stige gennem en cirka 50-årig periode til 30.000. Det var ikke kun indbyggertallet der steg. For at Aalborg by skulle kunne følge med eksporten, som også dengang hovedsageligt foregik via skibsfragt, udvidede byen havnen, som i starten af 1900-tallet blev Danmarks næststørste havn [for Byhistorie].

Befolkningstallet er siden 1990'erne vokset, og er i dag stadig stigende [Dansk Center for Byhistorie]. Dette er resultatet af, at Aalborg har udviklet sig fra at være en industriby til at være en kompetenceby [Kommune, 25.11.2013b]. Hovedårsagen til denne udvikling er,

at størstedelen af industrien, som Aalborg var kendt for at have inde i centrum af byen, og som var hoveddelen af identiteten af Aalborg, er flyttet til yderkanterne af byen. I stedet er der nu fokus på at have et levende Aalborg, som skal kendes for at være en kompetenceby [Kommune, 25.11.2013b].

Havnefronten på Aalborgs side af Limfjorden er blevet et nøglepunkt for Aalborg Kommune, da denne tidligere var fyldt med fabrikker. Der er siden år 2000 foretaget mange ændringer ved havnefronten for at gøre Aalborg mere attraktiv og give den en ny identitet som byen for kompetence og innovation [A/S et al., 2009].

Disse ændringer har blandt andet været, at dele af den industri, som lå ved havnefronten, er flyttet ud af det centrale Aalborg og ud til mere fremkommelige steder [Kommune, 25.11.2013b]. Dette har givet plads til et område med mere serviceerhyerv. Denne type erhvervsområde gør det også muligt at opføre boliger i området, da der ikke vil være de samme støjgener, som der ville komme fra et industriområde. Denne udvikling fik muligheden for at tage fart, efter der blev lavet en ændring i planloven den 1. juli 2003, der ændrede bestemmelserne for byomdannelse. Denne ændring gjorde det muligt for kommunerne at omdanne tidligere industriområder til blandt andet servicebygninger og boligområder [Johansen og Mathiasen, 2004]. En del af denne udvikling har været bebyggelsen af flere forskellige kollegieboliger som for eksempel Bikuberne ved Utzon Parken og Larsen Waterfront. Disse boliger ligger tæt op ad nogle nye kulturelle bygninger som Utzon Centeret og Musikkens Hus, samt Nordkraft, som tidligere var et kulkraftværk, men i dag er omdannet til et kulturhus med mulighed for både sport og kulturelle oplevelser. Disse byggerier viser den udvikling, som Aalborgs centrale havnefront gennemgår fra industriområde til boligområde. Havnefronten er i en stadig udvikling, da der fortsat kommer flere boligbyggerier til. Det har også givet anledning til tilbygninger, her i blandt en kommende tilbygning til den bevaringsværdige bygning Strøybergs Palæ, der ligger ved havnefronten [Kommune, b].

3.2 Strøybergs Palæ

Strøybergs Palæ er en ejendom fra år 1908 [Forvaltning, 1908-2015], beliggende centralt i Aalborg ved havnefronten, Utzon Centret, butikscentret Friis og Slotspladsen.

Lokalplan 1-1-107 har opdelt området, omfattende Strøybergs Palæ, i to delområder. Delområde A med matrikelnummer 518g omfatter den bevaringsværdige sidebygning til Strøybergs Palæ, og delområde B med matrikelnummer 519b omfatter den bevaringsværdige hovedbygning til Strøybergs Palæ [Kommune, Oktober 2012, s. 7]. Hovedbygningen ligger på Nyhavnsgade 11, og er fordelt på stueetage, 1. sal, 2. sal samt kælder og tagetage, mens sidebygningen ligger på Nyhavnsgade 9 og er fordelt på stueetage, 1. sal, 2. sal og 3. sal samt kælder og tagetage. Ejendommen er op til 22 m høj og har et samlede grundareal på 1037 kvm [Forvaltning, 1908-2015].

Strøybergs Palæ er siden opførelsen blevet anvendt til mange forskellige formål. Nyhavnsgade 9 blev opført som en ejerlejlighedsejendom, opdelt i ni ejerlejligheder af forskellig størrelse, og Nyhavnsgade 11 blev på daværende tidspunkt primært brugt til erhverv. Kælderen blev i år 1920 omdannet fra hestestald til garage, og er derudover blevet brugt som lager [Forvaltning, 1908-2015]. I dag bliver Strøybergs Palæ hovedsageligt anvendt til erhverv, og huser blandt andet ejendomsmæglerfirmaet EDC Danebo.

Siden år 2010 har det været på tale, at lave en tilbygning til Strøybergs Palæ, og omdanne bygningen til lejligheder med udsigt over Limfjorden [A/S, 2008]. I den forbindelse blev lokalplan 1-1-107 udarbejdet med et ønske om at lave denne tilbygning. Området ønskes hovedsageligt anvendt til kontor- og serviceerhverv samt boligformål [Kommune, Oktober 2012, s. 7].

Et fremtidigt Aalborg

Nedenstående afsnit vil behandle Aalborgs kommuneplan med primært fokus på Aalborgs Vækstakse, der er ét af fem hovedpunkter i kommuneplanen. En beskrivelse af de fire resterende fokuspunkter vil give en forståelse for, at kommunen har flere tanker om byens udvikling, og alle fem fokuspunkter har relevans for hinanden og gavner til byens udvikling.

4.1 Kommuneplan

En kommuneplan er kommunens overordnede plan for kommunens udvikling. Indenfor en periode på 12 år fastlægger kommunen de overordnede mål og retningslinjer for kommunens udvikling såvel i byerne som i det åbne land [Aalborg Kommune, 25.11.2013a].

En kommuneplan består af; en hovedstruktur, retningslinjer, kommuneplanrammer, bilag og tilhørende planredegørelse.

Hovedstrukturen er den overordnede, strategiske og sammenfattende fysiske plan for kommunen. Den fastlægger de overordnede mål for udviklingen inden for de enkelte sektorer for hele kommunen og for de enkelte områder [Aalborg Kommune, 25.11.2013a].

Retningslinjerne udgør de overordnede rammer for kommuneplanlægningen. De fastsætter principperne for arealanvendelsen i kommunen, og danner ligeledes grundlag for kommunens administration af planlovens landzonebestemmelser, samt administrationen af kompetencer indenfor anden lovgivning, herunder natur-, miljø-, bygge- og vejlovgivningen og husdyrloven. Retningslinjerne angiver sammen med områdeudpegningerne hvilke forhold, der skal tages hensyn til i administrationen, og hvilke konkrete skøn der skal foretages for disse områder [Aalborg Kommune, 25.11.2013b].

Kommuneplanrammerne styrer den overordnede arealanvendelse og danner ramme for indholdet i nye lokalplaner. Planrammerne fastlægger dermed mål, muligheder og begrænsninger for arealanvendelse i de enkelte dele af kommunen. Kommuneplanrammerne har to niveauer: 1) by/bydel/landområde og 2) rammeområder. Det første niveau "by/bydel/landområde", behandler områdets særlige problemer, værdier og muligheder i en sammenhæng. Det andet niveau "rammeområder", er det mest detaljerede niveau i kommuneplanen rent geografisk. Her fastsættes de bestemmelser, der danner grundlag for lokalplaner [Aalborg Kommune, 31.12.2006b].

Bilag er de generelle rammebestemmelser, hvor der henvises til de aktuelle bilag fra de enkelte emner [Aalborg Kommune, 23.11.2009].

Planredegørelser beskriver forudsætninger for, og ændringerne i den konkrete planlægning. Byrådet offentliggør, sammen med alle kommuneplanforslag eller med forslag til kommuneplantillæg¹, en redegørelse om planens baggrund og sammenhæng med anden planlægning. Kommuneplanen ledsages også af en planredegørelse og planstrategi, hvilken laves minimum hvert fjerde år i tilknytning til kommunens budget. Denne er byrådets instrument og baner vejen for at realisere kommuneplanens mål. Her oplyses blandt andet om kommuneplanens væsentlige forudsætninger, planlægninger der er gennemført det forgangne år, det kommende års kommuneplaninitiativer samt byrådets vurdering af og strategi for udviklingen for både det kommende år (budgetåret), de kommende fire år (overslagsårene) og en længere periode på 12 år. Desuden laves der jævnligt statusredegørelser, som giver et overordnet billede af kommunens fysiske udvikling og præsenterer de økonomiske tiltag, der knytter sig til kommunens sektorer og geografiske områder [Aalborg Kommune, 31.12.2006a].

4.2 Aalborg Kommuneplan

Aalborg Kommuneplan beskriver kommunens udvikling inden for de 12 kommende år og er opdelt i fem fokuspunkter:

- 1. Byerne et godt sted at bo hele livet
- 2. Nødvendige forbindelser mobilitet
- 3. Det åbne land
- 4. Bæredygtighedsprofil
- 5. Aalborg den attraktive storby

Et af Aalborg Kommuneplans fem fokuspunkter er "Byerne - et godt sted at bo hele livet". De større byer under Aalborg Kommune har, i kraft af nærheden til Aalborg, en god infrastruktur, et varieret serviceudbud samt tilstrækkeligt befolkningsunderlag. Det er et særligt potentiale for byvækst, der skal udnyttes for at understøtte Aalborg som Norddanmarks Vækstdynamo.

Byvæksten skal have særligt fokus på nye, kreative boligformer, som tilgodeser klimaudfordringer, demografiske udfordringer og bæredygtighed.

Ikke kun de større byer nær Aalborg har en væsentlig rolle i projektet. Mindre byer og landsbyer er også i fokus, og har en særlig rolle som opland til Aalborg med store kvaliteter indenfor bosætning, rekreation og friluftsliv [Kommune, 25.11.2013a].

Et andet af Aalborg Kommuneplans fem fokuspunkter er "Nødvendige forbindelser - mobilitet". Dette fokuspunkt omhandler byens behov for forbindelser, der kan håndtere transportbehovet og gøre det mere attraktivt at benytte offentlig transport såsom bus og tog, samt at tage cyklen, da Aalborg Kommune har en målsætning om at blive Danmarks førende cykelby. Kommunens mål er færre bilkøer, god adgang til indkøb, service og arbejdspladser samt sikring af forbindelser, der understøtter en effektiv godstransport. Derudover satser Aalborg på en letbane som det bærende element i byen [Kommune, 25.11.2013d].

Fokuspunktet "Det åbne land" omhandler benyttelsen og beskyttelsen af det åbne land.

¹Opstår der problemer med at realisere en lokalplan ud fra kommuneplanen, så anvendes der et kommuneplantillæg, som er et supplement til den eksisterende kommuneplan. Denne kan justere og ændre bestemmelserne i kommuneplanen, for at gøre det muligt at realisere lokalplanen [Kommune, c].

Dette skal ske på et bæredygtigt grundlag med plads til oplevelser, natur, erhvervsinteresser og vedvarende energi. Det åbne land skal danne ramme om levende og aktive områder [Kommune, 25.11.2013c].

Aalborg Kommune har også stor fokus på bæredygtighed og har dertil punktet "Bæredygtighedsprofil". Udviklingen af et bæredygtigt samfund omhandler flere punkter, såsom at passe på miljøet, klimaet og naturen, om at bygge byer for mennesker og om at få det bedste ud af den nuværende økonomiske virkelighed. En bred tilgang til bæredygtighed er derfor udgangspunktet [Kommune, 25.11.2013e].

4.2.1 Aalborg Vækstakse

Det femte og sidste fokuspunkt i Aalborgs kommuneplan er "Aalborg - den attraktive storby". Dette fokuspunkt indeholder yderligere tre punkter; vækstaksen som byens motor, byudviklingsprincipper for Aalborg og fokus på bykvalitet.

Aalborg Kommune har valgt at koncentrere sig om et vækstbånd, kaldet Vækstaksen, som skal danne grundlag for Aalborgs udvikling, hvor der er fokus på det generelle udviklingsprincip [Kommune, 25.11.2013b]. Området går fra Aalborg Lufthavn i vest, gennem midtbyen, til Campus og videre ud til østhavnen, hvilket illustreres på Figur 4.1.

Blandt Vækstaksens mest centrale elementer er færdiggørelsen og videreudviklingen af en række større områder i Aalborg, som for fremtiden skal være med til at skabe Aalborg som storby og præge dens identitet. Gennem disse færdiggørelser vil bykvaliteten øges, og byen vil blive mere attraktiv. Der lægges derfor stor vægt på arkitektoniske overvejelser samt historiske skulpturer og monumenter, når der skal bygges og renoveres [Kommune, 25.11.2013b].

Her har havnefronten, som et af de første områder, gennemgået en stor renovering, hvor der er etableret både Aalborg Havnebad, Jomfru Ane Parken og sportsfaciliteter. Derudover blev Tivoli Karolinelund fjernet i 2011, og i 2012 åbnede en ny Karolinelund park, som nu danner ramme for mange forskellige nichekulturer, såsom koncerter, Platform 4, legepladser og meget mere, og parken er fortsat under udvikling [VisitAalborg, a] [VisitAalborg, b].

Aalborg er gennem renoveringen af den nye havnefront også vokset som kulturby, og i dag er kultur blevet en bærende del af byen, hvor der findes KUNSTEN Museum, Aalborg Kongres & Kultur Center, Nordkraft samt det nye Musikkens Hus, der åbnede i 2014, hvor der hver uge afholdes forskellige koncerter og andre arrangementer. Dette er altsammen med til at styrke Aalborg som vækstby og byens erhvervsturisme [Kommune, 25.11.2013b]. Ligeledes er der planer om en ny kulturbro på Jernbanebroen, som også skal være med til at styrke kulturen i Aalborg og Aalborg Kommune. Ved at styrke kulturen styrkes bykvaliteten også, og byen bliver en levende by, hvor det er muligt at binde shopping, café og kulturliv sammen [Aalborg] [VisitAalborg, c].

Den gamle Eternitgrund i Aalborg havde i en lang årrække stået ubrugt hen, men gennem de sidste fem år er der etableret både studieboliger, supermarkeder, fitnesscenter og et nyt legeland for børn. Virksomheder som Plus Bolig og COWI er ligeledes flyttet ned på Eternitten, og i dag er Eternitten blevet en stor drivkraft for Aalborg, hvor der fortsat er fremtidige planer om grønne arealer også [Kommune, a].

Projektet om Vækstaksen er i fuld gang, og inden for den nærmeste fremtid skal også Godsbanearealet og det østlige Aalborg udvikles, for at øge oplevelsesmulighederne, kulturtilbudene og skabe attraktive og bæredygtige livsvilkår her. Det er dog ikke kun nybyggerier, som Vækstaksen har fokus på. For Aalborg Kommune er det også vigtigt, at vedligeholde de gamle bygninger, for at opretholde byens historisk identitet [Kommune, 25.11.2013b].

Figur 4.1. Aalborgs Væsktakse [Kommune, 25.11.2013b]

Vækstaksen skal være attraktiv for alle aldersgrupper og skal derfor have noget at tilbyde hver enkelte borger, og skal ligeledes være med til at skabe oplevelsesmuligheder og kulturtilbud.

En stor del af planerne for Vækstaksen er byfortætning, mobilitet, studieby og miljø [Kommune, 25.11.2013b]. Der er i Aalborg Kommune stor udviklingspotentiale inden for byfortætning. På Figur 4.2 ses udviklingspotentialet i Vækstaksen. De markerede lilla områder er der hvor Aalborg Kommune har bedst udviklingspotentiale [Kommune, 25.11.2013b].

Dette udviklingspotentiale er i form af tilbyggelse og omdannelse af boliger, arbejdspladser og naturområder. Byfortætning kan resultere i en meget presset infrastruktur, derfor er mobilitet et essentielt punkt for optimering af byens potentiale [Kommune, 25.11.2013b]. Det er vigtigt, at der er let og hurtigt adgang til offentlig transport, og det skal gøres mere attraktivt, at tage cyklen. Målet er, at få en stor by til at opfattes som en "lille by", ved at gøre transport lettilgængeligt og derfor nemt at komme fra bydel til bydel. Infrastrukturen vil styrkes blandt andet via en cykelmotorvej samt en kommende letbane, som skal forbinde Østhavnen, Campus, det kommende superhospital i Aalborg Øst, midtbyen og ud til Aalborg Lufthavn [Kommune, 25.11.2013b].

Ved Vækstaksens to endepunkter ligger Aalborgs største industriområder, Aalborg Østhavn og Aalborg Lufthavn. Disse industriområder er kommet til, efter industrifirmaer er begyndt at flytte fra havnefronten og ud til yderkanten af Vækstaksen. Trods denne flytning forbliver Aalborg en erhvervsby samtidig med, at den gradvist omdannes til en studieby. De store industrifirmaer er stadig vigtige for Aalborg, da de er med til at skabe omsætning og arbejdspladser [Kommune, 25.11.2013b].

Da Aalborg gradvist omdannes til en studieby, er det vigtigt, at der i Vækstaksen støttes op om Aalborgs studieliv og studiemiljø, da 10% af Aalborg Kommunes befolkning be-

Figur 4.2. Udviklingspotentiale [Kommune, 25.11.2013b]

står af studerende [Universitet]. Et godt studiemiljø vil styrke innovation, konkurrence og vækst i erhvervslivet. Det er nødvendigt med gode uddannelsesmuligheder, faciliteter samt ungdomsboliger til de studerende, hvilket også vil gøre det attraktivt for udefrakommende at studere i Aalborg. Centrum for studielivet i Aalborg udspringer fra Campus i Aalborg Øst, hvor størstedelen af de videregående uddannelser findes [Kommune, 25.11.2013b].

Aalborg Kommune ønsker også at udvikle byens natur og udendørsliv. Til at opnå dette vil kommunen opføre parker, stisystemer og vandløb. Vandløbene vil give byen historisk identitet, samtidig med at de vil beskytte byen under eventuel øget vandstand, da de kan forsinke vandet [Kommune, 25.11.2013b]. Formålet med parkerne og et naturrigt Aalborg er at skabe et sundhedsfremmende forhold for alle aldersgrupper og beskytte klimaet. Desuden vil Aalborg Kommune gøre Aalborg til en miljøvenlig storby, som antages at gøre byen mere attraktiv, og dermed øge indbyggertallet. Derfor vil Aalborg Kommune genoprette naturen og give velfærd til byens borgere [Kommune, 25.11.2013b].

4.3 Vækstaksens betydning

Formålet med Vækstaksen er, at styrke Aalborg som by, og der er en forventning fra Aalborg Kommune om, at byen bliver Nordjyllands Vækstdynamo, men er dette realistisk? Nedenstående afsnit vil stille spørgsmålstegn ved Vækstaksen, og diskutere, hvilken sammenhæng Strøybergs Palæ og Vækstaksen har med hinanden. I den forbindelse vil der diskuteres, hvorfor der ønskes en tilbygning, og hvorfor det netop er i dette område, det er fordelagtigt at udvide.

4.3.1 Er visionerne realistiske?

Vækstaksen er placeret således, at den går gennem Aalborgs centrale områder for kultur, uddannelse, erhverv og miljø. Aalborg Kommune ønsker at etablere en god infrastruktur, som den kommende Letbane for eksempel skal hjælpe med [Kommune, 25.11.2013b]. Det er fordelagtigt at udvide samt udvikle i Vækstaksen, da områderne samt virksomhederne er drivkraften for Aalborg [Aalborg, 2014a], og det er her, at byens liv er, og fremtiden skal skabes. Selvom områderne i dag fungerer som drivkraft, skal disse stadig videreudvikles,

da Aalborg er en by i stor vækst, hvilket afspejles af både stigende indbyggertal og antal virksomheder, som flytter til og skabes i Aalborg [Statistik][Junker]. Derfor kan Aalborg Kommune ikke blot stille sig tilfreds med de nuværende tilstande, da byen skal udvides, for at være forberedt på fremtiden; ellers er der ikke plads til udviklingen, og den vil bremses, gå helt i stå eller i værste fald gå den anden vej.

Udviklingen af byen vil primært ske gennem en byfortætning, da de centrale områder allerede i dag er fyldt med liv samt kultur, erhverv og uddannelse. Der er altså ikke tale om store udvidelser af områderne, men snarere optimeringer af de allerede eksisterende områder, og derfor kan infrastrukturen opleve problemer.

I takt med at indbyggertallet stiger kan det formodes at antallet af biler vil stige. Derfor kan spørgsmålet stilles, om det er realistisk med en fortætning af byen samtidig med, at Aalborg Kommune har en målsætning om, at det skal være let at færdes i byen som fodgænger, cyklist og med offentlig transport [Kommune, 25.11.2013b]. Dette afspejler sig i trafikken omkring Nyhavnsgade, som strækker sig fra Nordkraft forbi Strøybergs Palæ og videre langs med havnefronten. Her er vejen ændret fra en 4-sporet vej til en 2-sporet. Derfor er antallet af bilister næsten halveret, fra 20.500 (ÅDT) til 11.000 (ÅDT), og hastigheden er sænket [Kommune, Oktober 2012, s. 6]. Selvom Aalborg Kommune har sænket antallet af bilister omkring centrum, så vil en udvikling af byen og et øget indbyggertal betyde, at flere bilister igen vil køre gennem centrum, så trafikken igen vil begynde at stige. Derfor har Aalborg Kommune kun løst problemet delvist, for med tanke på en kommende vækst for byen så øges årsdøgntrafikken. Det betyder, at Aalborg Kommune igen vil stå med et problem, hvis ønsket om at opretholde et lavt antal bilister samt at det skal være let at færdes i byen for de bløde trafikanter, skal imødekommes. Nu er det blot ikke muligt at skære ned på antallet af kørespor, og derved skal der findes en ny løsning, med mindre Aalborg Kommune ændrer synspunkt på problemet.

Aalborg Kommune ønsker færre biler omkring centrum, for at gøre det mere attraktivt og lettere for de bløde trafikanter at færdes [Kommune, 21.11.2012] [Schouenborg, 08.09.2014]. Letbanen vil gøre det mere attraktivt at undvære bil i Aalborg, men i takt med fortætningen er spørgsmålet, om det er nok, til at det føles let at færdes i Aalborg. Et andet fokuspunkt er en tredje Limfjordsforbindelse, som der i dag er ønske om [Vejdirektoratet, 2011]. Trafikken i morgen- og eftermiddagstimerne til og fra Aalborg er tæt, og særligt når der opstår et trafikuheld i en af Limfjordsforbindelserne for køretøjer over Limfjorden, så opstår der trafikale problemer omkring den anden forbindelse, og centrum bliver overbelastet. Dette kan en tredje Limfjordsforbindelse afhjælpe, da den af naturlige årsager vil medføre flere biler på vejen, og omvendt vil trafikken også blive mere jævn fordelt, da der kommer en ekstra strækning, som bilisterne kan anvende. Dette kan gavne Aalborg Centrum, både ved den daglige trafik omkring centrum, og ved et eventuelt uheld i Limfjordstunnelen, da det ikke længere kun vil være centrum, der så giver adgang for bilister til at passere over på den anden side af fjorden. Her vil en tredje forbindelse så også vil kunne anvendes, og dermed lette trafikken.

Aalborg har et ønske om at være Danmarks bedste studieby [Aalborg, 2014b], og derfor kræves der nok studieboliger til de studerende. Der er i landet en generel mangel på studieboliger, og dette gør sig også gældende for Aalborg, selvom det ikke er i ligeså høj grad som eksempelvis København. Det skyldes Aalborgs store fokus på de studerende og behovet for studieboliger, hvoraf der er blevet bygget over 6.000 studieboliger siden 2010

inden for Vækstaksen, både på Aalborg og Nørresundby siden, og der bygges fortsat flere nye boliger i dag [Øhrstrøm og Washuus, 2014]. Dette er et led i Vækstaksen og planerne om Aalborgs fremtid. De seneste fem år har de videregående uddannelser oplevet rekordmange ansøgninger og dermed flere studerende [Clement og Andersen, 2014], hvilket betyder, at studieboligerne hurtigt bliver lejet ud. Der er fra år 2009 til 2014 kommet ca. 8.000 flere studerende til [Universitet, 2013, s. 9]. Et af kommunens fokuspunkterne er, at gøre Aalborg en attraktiv studieby med studievenlige priser på boligerne. Sammenlignes priserne med de tre andre storbyer i Danmark; Aarhus, Odense og København, er boligerne i Aalborg væsentlig billigere [Home, 2014], hvilket kan være en medvirkende faktor til, at Aalborg er attraktiv for de unge.

Aalborg Kommune har også et ønske om, at byen skal være for alle mennesker i alle aldersgrupper samt et attraktivt sted for erhverv [Landsforening, 05.05.2014] [Kommune, 25.11.2013b]. Spørgsmålet er dog, hvor erhverv skal etableres inden for Vækstaksen, og hvad der kan gøres for de indbyggere, som ikke er studerende. Havnefronten, som er en af de bærende elementer i Vækstaksen, anvendes ikke kun af unge, men også af børnefamilier. Derudover byder Aalborg også på naturområder og attraktioner, som er for alle i alle aldersgrupper.

For nye virksomheder gælder det, at der skal være kontorlokaler og bygninger, som kan huse virksomhederne. Ligeledes skal virksomhedens beskæftigelse gerne passe med Aalborg, således at der er en sammenhæng mellem kunde og virksomhed. Med en målsætning om, at være en attraktiv storby med mange muligheder for virksomheder, er der derfor et godt grundlag for at drive virksomhed i Aalborg, også i fremtiden. Indenfor Vækstaksen ligger der utallige virksomheder, men der er stadig tomme erhvervslokaler, som vil give plads til flere virksomheder. Heriblandt skal der ske en udvidelse af Strøybergs Palæ, som har en central beliggenhed i Vækstaksen, helt nede ved havnefronten.

4.3.2 Hvorfor udvide Strøybergs Palæ?

Strøybergs Palæ ligger i Vækstaksen. På Figur 4.2 ses det, at Strøybergs Palæ ligger i det lilla område og er dermed i et område, hvor der er størst mulighed for udvikling inden for Vækstaksen. Grundet havnefrontens udvikling de sidste 10 år, har der været fokus på udviklingen her, og nu har Aalborg Kommune godkendt forespørgslen om en tilbygning til Strøybergs Palæ, da der allerede er bygget Musikkens Hus, havnefronten, Utzon Centeret og Utzon Parken omkring området. Udviklingen omkring havnefronten er sket i takt med Vækstaksens fokus herpå. Om havnefronten havde fået en udvikling overhovedet eller i lige så høj grad, hvis tankerne og ideérne omkring Vækstaksen ikke var blevet sat i værk, kan diskuteres. Uden en vækstakse vil der stadig ske en udvikling ved havnefronten, men ikke i ligeså høj grad, som nu, hvor Vækstaksen bringer ekstra fokus på området. Dog må det formodes, at havnefronten ikke vil udvikle sig i samme retning i forhold til de kulturmæssige fokuspunkter som Vækstaksen giver.

Det kan ligeledes diskuteres om Vækstaksen overhovedet har haft indflydelse på udvidelsen af Strøybergs Palæ. Placeringen af Strøybergs Palæ midt i Vækstaksen, kan tænkes at have haft indflydelse på beslutningen om, at der skal laves en tilbygning, fordi bygningen skal leve op til Aalborg Kommunes forventninger, og ønsker for fremtiden. Tilbygningen kan

bruges til erhvervslokaler, og dette vil kunne tiltrække en eller flere nye virksomheder til området, og dermed være med til at udvikle både området og Aalborg by. Omvendt kan spørgsmålet dog også stilles, om denne tilbygning vil få den ønskede effekt og kunne leve op til disse målsætninger. Det vil være naivt at tro, at en udvidelse på nogle få hundrede kvadratmeter vil gøre en betydende forskel for Aalborg, og det kan derfor ikke alene være grunden til tilbygningen, men snarere en af flere årsager. Strøybergs Palæ er kun en lille del af Vækstaksen, og skal derfor ikke bære Aalborgs udvikling og vækst alene.

Hovedpunkterne i Vækstaksen er, at Aalborg skal vokse som by, og udvikles gennem en byfortætning, hvor målet er, at tiltrække flere virksomheder og indbyggere. En udvidelse af Strøybergs Palæ vil give ekstra erhvervslokaler og/eller lejligheder, og dette passer godt sammen med Vækstaksen. Tilbygningen betyder desuden, at Strøybergs Palæ vil få et mere harmonisk udseende ud mod vandet, da tilbygningen vil blive bygget i samme arkitektoniske stil som resten af bygningen, og den nordøstlige del af bygningen vil komme op i cirka samme højde, som resten af bygningen. Sammen med resten af havnefronten vil Strøybergs Palæ gennemgå en renovering, som løfter udseendet samt medfører, at området vil få en mere ensformet og harmonisk stil.

Det, at området bliver et centralt fokuspunkt for fremtiden betyder også, at området bliver mere attraktivt, idét der kommer til at ske en fortsat udvikling af området, og netop derfor kan en tilbygning være en god investering, da det giver ekstra plads og bedre forudsætninger for udviklingen.

Udvikling af området

I det følgende afsnit vil lokalplanen for området ved Strøybergs Palæ beskrives, da denne sammen med kommuneplanen indeholder en række informationer om Strøybergs Palæ, og fastsætter rammerne for den kommende tilbygning.

Til sidst vil der foretages en sammenligning mellem den førhen gældende lokalplan for området og den nuværende lokalplan, for at undersøge, hvilke ændringer der har været nødvendige at foretage, for at kunne realisere tilbygningen til Strøybergs Palæ.

5.1 Lokalplan

En lokalplan tager udgangspunkt i en fremsat kommuneplan, og har til formål at styre udviklingen i et område. Lokalplanen skal give borgerne og byrådet et indblik i et bestemt område og give dem mulighed for at komme med tiltag til den fremlagte plan. Her fastsætter byrådet rammerne for, hvordan arealer, bygninger, beplantning, veje, stier m.fl. skal anlægges i et givent område. Lokalplaner skal ifølge planloven udformes af byrådet, der har pligt til dette, før der kan gennemføres større bygge- og anlægsprojekter [Kommune, Oktober 2012, s. 4].

En lokalplan indeholder punkterne; redegørelse, planbestemmelser og bilag [Kommune, Oktober 2012, s. 4].

Planen starter med en redegørelse, hvor lokalplanens baggrund og formål fastsættes og hele indholdet fremlægges. Der bliver også redegjort for miljømæssige forhold, hvordan lokalplanen forholder sig til andet byggeri, og om der kræves tilladelser eller anden slags dispensationer fra forskellige myndigheder.

I lokalplanen informeres der om planbestemmelser, som er områdets fremtidige anvendelse. Dette illustreres via tekst og billeder.

Til sidst i lokalplanen ligger alle bilagene. Disse består oftest af forskellige kort (matrikelkort, arealanvendelseskort m.m.) samt forskellige tabeller omkring støj fra erhverv og trafik m.m. Bilagene er med til at uddybe og illustrere lokalplanbestemmelserne.

Byrådet kan til enhver tid udarbejde et lokalplanforslag. Når et forslag til lokalplanen er udformet, skal det offentliggøres i mindst otte uger, hvor borgerne kan komme med indsigelser eller forslag til ændringer. Efter de otte ugers offentliggørelse bedømmer byrådet, hvorvidt eventuelle indsigelser eller ændringer vil blive taget op. Dernæst vedtages planen, hvor den bekendtgøres i avisen og er hermed bindende for ejendommene, som ligger i lokalplanområdet.

Der må ikke laves ændringer i området i strid med lokalplanen, dog må eksisterende bebyggelser og anvendelse, der er etableret før lokalplanforslagets offentliggørelse, fortsætte.

Endvidere er der ikke pligt til at gennemføre tiltag, der beskriver lokalplanen [Kommune, Oktober 2012, s. 4].

5.2 Lokalplan 1-1-107

Lokalplan 1-1-107 er lokalplanen for området ved Strøybergs Palæ. Lokalplanen er vedtaget af Aalborg Byråd den 12. november 2012, og offentligt bekendtgjort den 21. november 2012 [Kommune, Oktober 2012, s. 20].

Området for lokalplanen er ca. 1.200 m^2 , og ligger ca. 100 m fra Limfjorden. Øst for lokalplanområdet ligger Gammel Havn, mod nord og vest ligger Utzon Parken og mod syd Nyhavnsgade. Ud over Strøybergs Palæ, der ligger i planområdet, er der også enkelte mindre bygninger, garager m.m. For at lokalplanen kan blive realiseret, skal mindre bygninger nedrives, hvis de ikke er bevaringsværdige [Kommune, Oktober 2012, s. 6]. Området, som lokalplanen dækker, ses på Figur 5.1.

Lokalplanen er udarbejdet med et ønske om, at lave en tilbygning til Strøybergs Palæ, hvor anvendelsesmulighederne i området således vil blive ændret til beboelse, serviceerhverv og kontorerhverv. Lokalplanen er udformet således, at den tager hensyn til, at den nye bebyggelse udformes efter den eksisterende bevaringsværdige bygning, eventuelt med et nutidigt arkitektonisk udtryk, således der er harmoni mellem den nuværende bygning og tilbygningen. Her tages der hensyn til bygningsskala, facaderytme og farve, da Strøybergs Palæ er vurderet til at være en bevaringsværdig bygning med en bevaringsværdi 4, som er middelværdi [Kommune, Oktober 2012, s. 5 og 9]. Bevaringsværdien bestemmes på baggrund af fem værdier; arkitektonisk værdi, kulturhistorisk værdi, miljømæssig værdi, originalitet og tilstand, hvor vurderingen er givet i forhold til helhedsindtrykket af bygningens kvalitet og tilstand, dog vil den arkitektoniske- og den kulturhistoriske værdi veje tungest for bevaringsværdien. Bygninger med bevaringsværdi 2-4 er bygninger, som er fremtrædende grundet deres arkitektur, kulturhistorie og håndværksmæssige udførelse [Kulturstyrelsen]. Lokalplanen fortæller desuden, at tage skal udføres som saddeltage eller som flade tage [Kommune, Oktober 2012, s. 17].

Lokalplanen indeholder to delområder, hvor delområdet B er hovedbygningen af Strøybergs Palæ, mens delområde A er sidebygningen dertil og et byggefelt liggende mod nord, hvilket er illustreret på Figur 5.2. Inden for delområde A må ny bebyggelse opføres i 4 etager, samt en tagetage, og med en kælder maksimalt 1,25 m over terræn, som kan anvendes til parkering, depot og lignende. Inden for delområde B må ny bebyggelse opføres i 3 etager samt en tagetage og med en kælder maksimalt 2 m over terræn. I alt må tilbygningen højst være 19 m høj [Kommune, Oktober 2012, s. 7 og 16].

Da lokalplanområdet ligger meget kystnært skal der i større grad dimensioneres efter klimatiske faktorer og ændringer. Her er hovedpunktet vandstandsstigning. Her tages der udgangspunkt i Aalborg Kommunes klimastrategi. Den forudsiger, at den generelle indre vandstand i nordjyske farvande vil kunne stige med op til 1 m. Derfor er der fastsat en minimum sokkelkote for stueplan på nye bygninger på 2,36 m DVR 90 grundet risikoen for vandstandsstigning [Kommune, Oktober 2012, s. 9].

Bygningen ligger placeret tæt op ad detailhandel og erhverv. Området benyttes af kollektiv trafik. Da bygningen ligger placeret ved Nyhavnsgade, kan dette give støjgener fra trafikken. Derfor skal der tages højde for dette, når der bygges. Det indendørs støjniveau

Figur 5.1. Lokalplan 1-1-107, lokalplanområde [Kommune, Oktober 2012, s. 40]

Figur 5.2. Lokalplan 1-1-107, delområde A og B [Kommune, Oktober 2012, bilag 1, s. 33]

må ikke overstige L_{den} 33 dB, og ved udendørs opholdsarealer må den ikke overstige L_{den} 58 dB. Støjisolering skal primært ske indvendigt, så bygningen ikke ændrer udseende. Overholdelse af de forskellige grænseværdier for støj skal kunne dokumenteres, før bygningen må tages i brug [Kommune, Oktober 2012, s. 8]. Området er kortlagt på vidensniveau 1 og 2 efter jordforureningsloven. Et areal bliver kortlagt på vidensniveau 1, hvis der er kendskab til aktiviteter, der kan forårsage forurening på arealet. Det vil blive kortlagt på vidensniveau 2, hvis der er dokumentation for forurening i jord og grundvand på arealet [Miljøministeriet]. Hvis der i forbindelse med bygge- og anlægsarbejde konstateres tegn på jordforurening, skal arbejdet standses og kommunens Teknik- og Miljøforvaltning skal underrettes. Herefter vurderes det, om der skal fastsættes vilkår, inden arbejdet kan genoptages [Kommune, Oktober 2012, s. 10].

Lokalplanen skal udarbejdes i samspil med den nuværende kommuneplan og anden fysisk planlægning i området omkring. Planen er, at der i lokalplanens område kan indrettes et mindre antal boliger. Det forventes at Aalborg Midtby får etableret 2.116 nye boliger i

perioden 2008-2019. I bygningen kan desuden etableres butikker på maksimalt 250 m^2 og 500 m^2 pr. etage jf. kommuneplanen [Kommune, Oktober 2012, s. 8].

5.2.1 Fra gammel til ny lokalplan

I kraft med vedtagelsen af lokalplan 1-1-107 ophæves lokalplanen 10-082 for det område, som lokalplan 1-1-107 omfatter. På trods af, at de to lokalplaner omfatter to forskellige områdestørrelser, så er lokalplanerne fortsat ens på flere punkter, heriblandt miljøforholdene for området. Der er dog nogle små forskelle, og disse forskelle vil blive analyseret i det følgende afsnit. Nedenfor på Figur 5.3 ses lokalplanområdet for lokalplan 10-082.

Figur 5.3. Tidligere gældende lokalplan, 10-082, for området [Kommune, August 2006, s. 17]

I lokalplan 10-082 kan ny bebyggelse for området Strøybergs Palæ bygges i 4 etager samt tagetage med en maksimal højde på 22 m [Kommune, August 2006, s. 19], hvor der i lokalplan 1-1-107 kan bygges i op til 3 etager samt tagetage for ny bebyggelse med en maksimal højde på 19 m. Denne ændring i højden kan skyldes, at der har været indsigelser imod de 22 m, da dette muligvis ville fjerne en udsigt eller sollys for de berørte personer.

Der er i lokalplan 1-1-107 ligeledes taget højde for vandstandsstigning i Limfjorden, hvilket ikke er gjort i lokalplan 10-082. Grunden til dette kan skyldes, at der ikke tages højde for detaljerne, da lokalplan 10-082 foruden Strøybergs Palæ indeholder tiltag til Utzon Centeret, Slotspladsen og First Slotshotel.

Ligeledes bliver der præciseret i lokalplan 1-1-107, at isolering for trafikstøj ikke må ændre på facadens udseende, hvor der i lokalplan 10-082 blot står, at enhver ændring på bygningens facade kræver en tilladelse [Kommune, August 2006, s. 19]. En grund til at der først i lokalplan 1-1-107 står beskrevet, hvordan isoleringen skal foretages samt at facadeændringer kræver en tilladelse, kan være, at lokalplan 10-082 dækker over et større område end 1-1-107, og at detaljerne på tilbygningen dermed først er relevant for lokalplan 1-1-107.

For ny bebyggelse og nye tilbygninger, som er omfattet af lokalplan 1-1-107, gælder det, at nye bygninger skal opføres i overensstemmelse med den eksisterende bebyggelse,

dog gerne med nutidig arkitektonisk formsprog. Tilbygninger skal opføres i tilknytning til den eksisterende bevaringsværdige bygning, og skal derfor have det samme arkitektoniske udtryk, som bygningen i forvejen har [Kommune, Oktober 2012, s. 7].

Dette punkt i lokalplanen forklarer de overordnede rammer for ny bebyggelse og tilbygning, men udover dette, er det mere frit for det pågældende rådgivningsfirma, at designe og konstruere de pågældende bygninger. De skal blot overholde lokalplanens givne rammer, hvorefter det kan diskuteres og fortolkes, hvor og hvornår grænsen for det arkitektoniske udtryk overskrides. Denne balance er derfor mest op til det rådgivende ingeniørselskab at fortolke.

5.3 Delkonklusion

Der er i de foregående afsnit redegjort for Aalborgs historie og baggrunden for byens udvikling. Ligeledes er der beskrevet, hvad en kommuneplan og lokalplan er, og der er lavet en dybdegående analyse af Aalborgs kommuneplan, med særligt fokus på Vækstaksen. Inden for vækstaksen ligger Strøybergs Palæ, som hører under den nuværende lokalplan 1-1-107, hvilken også er behandlet, analyseret og sammenlignet med den tidligere lokalplan for området, 10-0-82. Endelig er der foretaget en diskussion, hvor spørgsmålet stilles, hvorfor det er godt at udvikle i netop dette område, og derunder hvilken sammenhæng der er mellem Strøybergs Palæ og Vækstaksen.

Kommuneplanen er den overordnede ramme for byens udvikling, mens lokalplanen beskriver et mindre område inden for kommunen, og har til formål at styre udviklingen af dette. Aalborg Kommune er vokset som by gennem tiden, og gennem den nuværende kommuneplan har kommunen en målsætning om, at blive Nordjyllands Vækstdynamo og blive en by med fokus på udvikling af studerende, erhverv, kultur med mere.

Blandt Aalborg Kommunes fem fokuspunkter er det fokuspunktet "Aalborg - den attraktive storby", omhandlende Vækstaksen, der er blevet behandlet. Vækstaksen beskriver et område i Aalborg, hvor der er planer om fremtidig udvikling. Disse områder består i dag af virksomheder, uddannelsesinstitutioner, kulturattraktioner og andre interessepunkter for Aalborg Kommune. Det er netop disse område, der skal skabe grobund for den fremtidige vækst i Aalborg, og derfor er det fordelagtigt at udvikle yderligere i netop disse områder.

Et af hovedpunkterne i Vækstaksen er, at udvikle Aalborg gennem en byfortætning, hvor målet er at få flere virksomheder og indbyggere til byen. En tilbygning af Strøybergs Palæ vil give ekstra erhvervslokaler og lejligheder, hvilket passer godt sammen med kommunens ønske om byfortætning.

Med en beliggenhed inden for Vækstaksen i et af de områder, hvor der er størst mulighed for udvikling, er der grundlag for en udvidelse af Strøybergs Palæ. Derudover har de seneste 10 års udvikling af havnefronten, givet øget fokus på udviklingen i dette område, hvilket gør området mere attraktivt. Dette er et godt grundlag for at lave en tilbygning, som vil give ekstra plads og bedre forudsætninger for udviklingen. Tilbygningen kan blandt andet bruges til erhvervslokaler, som kan tiltrække nye virksomheder til områder, og dermed være med til at udvikle byen. Dog vil en mindre udvidelse af Strøybergs Palæ ikke have en stor betydning for Aalborg og dens udvikling, da bygningen kun er en lille del af Vækstaksen.

Dimensionering 6

Figur 6.1 viser de nye byggefelter inden for henholdsvis delområde A og delområde B til Strøybergs Palæ ([Kommune, Oktober 2012], s. 16). Denne rapport fokuserer på byggefeltet inden for delområde B, hvor ny bebyggelse, ifølge lokalplan 1-1-107, må opføres i 3 etager samt en tagetage og med en kælder maksimalt 2 m over terræn. Ved opførsel af ny bebyggelse i delområde B, skal to nuværende mindre bygninger fjernes.

Figur 6.1. Lokalplan 1-1-107, delområde A og B [??]

Med udgangspunkt i lokalplan 1-1-107 har bygningen fået de størrelser og dimensioner, som ses på Figur 6.2.

Tilbygningen bliver 12,5 meter lang og 12 meter bred i henhold til den eksisterende bygningsbredde. Kælderen har en højde på i alt 3,25 m, hvor 1,25 m ligger over terræn. Stueetagen, 1. sal og 2. sal har hver især en højde på 4,9 m og tagetagen har en højde på 3 meter med en hældning på 26,6 grader. I alt er tilbygningen 19 m høj over terræn.

For at kunne beregne de laster som påvirker tilbygningen, er der opstillet nedenstående statisk system for bygningen. Systemet er opstillet som en bjælkekonstruktion.

Beregningerne opdeles for to gavle og to facader. Det antages at gavlene hver er 12 m lang og 16 m høj, eksklusiv en gavltrekant med en højde på 3 m, og har 9 vinduer med dimensionerne; 0,95 m bred og 1,5 m høj.

De to facader er 12,5 m lang og 16 m høj. Den har elleve vinduer, med samme mål som for vinduerne på gavlene, og en dør, som er 1,5 m bred og 2,1 m høj.

Figur 6.2. Tilbygningens dimensioner

For at kunne beregne de laster, som påvirker tilbygningen, er der opstillet et statisk system for tilbygningen. Systemet er opstillet som en bjælkekonstruktion og indeholder tre rammekonstruktioner som vist på Figur 6.3.

Figur 6.3. Statiske system

På disse rammekonstruktioner vil etagedækkene virke som en belastning, i stedet for at virke som en del af konstruktion. Dette er muligt, da der kan opsættes en samling mellem etagedækkene og stålkonstruktion, som ses på Figur 6.4.

Med denne opstilling kan reaktionerne beregnes og der ud fra finde belastningen, som vil komme på funderingen, men først skal lasterne beregnes.

Figur 6.4. Etageovergang på tilbygningen

6.1 Laster

Tilbygningen til Strøybergs Palæ vil blive udsat for en række forskellige laster, både permanente- og variable laster, hvilke vil blive beregnet i dette afsnit således, at der senere hen kan opstilles lastkombinationer, regnes reaktionskræfter, snitkræfter, spændinger samt brudgrænse- og anvendelsesgrænsetilstande.

6.1.1 Permanent last

Egenlasten er en permanent last. For tilbygningen til Strøybergs Palæ beregnes denne gennem de gjorte antagelser samt de givne mål, som er illustreret på Figur 6.2.

Last fra væg

Facade

Facaderne antages for at være ens samt indeholde lige mange vinduer og døre. Der antages at være 11 vinduer og én dør pr. facade.

Ét vindue regnes til være 0,95 m bred og 1,5 m høj TJEK MED MICHAEL! + KILDE. Døren antages at være 1,5 m bred og 2,1 m høj KILDE. Arealet for én facade bestemmes til:

$$12,5m \cdot 16,0m - (1,5m \cdot 0,95m \cdot 11 + 1,5m \cdot 2,1m) = 181,175m^2$$

Til beregning af væggens egenlast vides det, at der skal påregnes en indervæg og et isoleringslag, mens den ydervæggen ikke er en del af det statiske system og dermed ikke skal medregnes.

Ifølge KILDE(http://www.bolius.dk/tunge-indvendige-vaegge-19288) aflæses en typisk indervæg til at være 130 mm tyk, og det antages, at denne værdi benyttes til tilbygningen af Strøybergs Palæ. Dermed kan værdien for indervæggen af facaden nu bestemmes ved at gange facadens areal uden viduer og dør med tykkelsen, hvorefter denne værdi ganges med densiteten for mursten, hvilket er $1500, 0 \frac{kg}{m^3}$:

$$181,175m^2 \cdot 130mm \cdot 1500, 0\frac{kg}{m^3} \cdot 9,82\frac{m}{s^2} = 35329,125kg$$

Denne værdi omregnes til N ved at gange med tyngdeaccelerationen:

$$35329, 125kg \cdot 9, 82\frac{m}{s^2} = 346, 932kN$$

I og med facaderne er identiske ganges de 346,932kN med 2:

$$346,932kN \cdot 2 = 693,864kN$$

Isoleringslaget skal ifølge KILDE($http://www.byggeriogenergi.dk/media/5932/indv_efterisolering_massive_mw$ være 100 mm tyk. Det antages, at typen af isolering har densiteten $30\frac{kg}{m^3}$ KILDE (http://www.rockwool.dk/produ 60-flexibatts).

Facadens areal uden vinduer og dør med tykkelsen, hvorefter denne værdi ganges med densiteten for isoleringen:

$$181,175m^2 \cdot 0, 1 \cdot 30 \frac{kg}{m^3} \cdot 9,82 \frac{m}{s^2} = 5,337kN$$

I og med facaderne er identiske ganges de 5,337kN med 2:

$$5,337kN \cdot 2 = 10,675kN$$

Gavl

Da den ene gavl ligger op ad den nuværende bygning, vil der ikke være vinduer på denne gavl, mens der antages at være 9 vinduer, identiske med dem for facaden, for gavlen, der ikke ligger op ad den nuværende bygning. Til forskel for facadens areal, har gavlene også arealet for tagetagen, som har dimensionerne der ses på Figur 6.5. Arealet for facaden der ikke ligger op ad den nuværende bygning bestemmes dermed til:

$$12m \cdot 16m + 3m \cdot 12m \cdot 0, 5 - 1, 5m \cdot 0, 95m \cdot 9 = 197, 175m^2$$

Figur 6.5. Dimensioner for tagetagen

Ligesom for facaderne skal der også påregnes en indervæg og et isoleringslag for gavlene, og det antages at værdierne for facaderne er ens med gavlene med hensyn til tykkelse og densitet for indervæg og isolering.

Værdien for indervæggen bestemmes til:

$$197, 175m^2 \cdot 130mm \cdot 1500, 0 \frac{kg}{m^3} \cdot 9, 82 \frac{m}{s^2} = 377, 570kN$$

Værdien for isolering bestemmes til:

$$197,175m^2 \cdot 100mm \cdot 30 \frac{kg}{m^3} \cdot 9,82 \frac{m}{s^2} = 5,809kN$$

Hermed regnes værdierne nu for gavlen, der ligger op ad den nuværende bygning. Arealet af gavlen bestemmes til:

$$12m \cdot 16m + 3m \cdot 12m \cdot 0, 5 = 210, 0m^2$$

Værdien for indervæggen bestemmes til:

$$210,0m^2 \cdot 130mm \cdot 1500, 0 \frac{kg}{m^3} \cdot 9, 82 \frac{m}{s^2} = 402, 129kN$$

Værdien for isolering bestemmes til:

$$210,0m^2 \cdot 100mm \cdot 30 \frac{kg}{m^3} \cdot 9,82 \frac{m}{s^2} = 6,187kN$$

Last fra gulv

Det antages at bygnings etager kun består af gulv, dvs. ingen skillevægge, trapper og andre former for genstande, der mindsker mængden af gulv. Derfor er den samlede mængde gulv pr. etage $12.5m \cdot 12.0m = 150.0m^2$.

Fire ud af de fem etager består af bærende gulv, hvor den sidste, kælderetagen, ligger på fundamentet. Et bærende gulv antages at bestå af et armeret betondæk nederst, der oftest er mellem 80 mm og 200 mm tyk. Der antages, at den er 120 mm tyk, hvorpå der ligger bjælker. Bjælkernes opgave er at lede og overføre lasterne ud i understøtning. Derefter vil ligge et undergulv, mellemgulv og til sidst selve gulvbelægningen, og mellem betondækket og undergulvet lægges isoleringen.

Først bestemmes gulvets last for en etage, hvorefter denne ganges denne med fire, da der er fire etager foruden kælderetagen. Betondækkets andel beregnes først, da både længden, bredden og tykkelsen kendes.

Rumfanget af betonen for én etage bestemmes til:

$$12.5m \cdot 12.0m \cdot 120mm = 18.0m^3$$

Rumfanget ganges med betons densitet, som er $2400 \frac{kg}{m^3}$, KILDE (http://materials.dk/links/D5x5%20Beton hvorefter denne værdi ganges med tyngdeaccelerationen, for at få værdien i kN, som der ganges med 4, for at få lasten for alle fire etager:

$$18.0m^3 \cdot 2400 \frac{kg}{m^3} \cdot 9.82 \frac{m}{s^2} \cdot 4 = 1693.440kN$$

Der er behov for bjælker, som hver er 6,25 m lang, da de er halvdelen af tilbygningens længde, 140,0 mm høj og 140,0 mm bred KILDE (http://www.danskbyggeri.dk/files/Filbibliotek/Erhvervs%20og%20 $byggeteknik/Tolerancer/52615.toemrer_net.pdf$). Disse anlægges langs med tilbygningen. For at bestemme hvor mange bjælker, der er behov for, divideres længden af tilbygningen med 400 mm, da der skal være 400 mm imellem hver bjælke KILDE.

$$\frac{125m}{400mm} = 31,25$$
 bjælker

Da der ikke kan optræde 31,25 bjælker rundes der op til 32 bjælker.

Rumfanget af én bjælke, som består af to bjælker med længden 6,25 m, ganges med bjælkens densitet fir tørrumvægt af træ KILDE (http://trae.dk/index.asp?page=%2FDokumenter%2FDokument.asp.hvorefter denne værdi ganges med tyngdeaccelerationen og ganges med 4:

$$7,840m^3 \cdot 510 \frac{kg}{m^3} \cdot 9,82 \frac{m}{s^2} \cdot 4 = 157,057kN$$

Isoleringsarealet for tilbygningen er det samlede gulvareal minus det areal, som bjælkerne ligger på:

$$150,m^2 - (140mm \cdot 12.5m \cdot 32) = 94.0m^2$$

Isoleringslaget har samme højde som bjælkerne og har en densitet på $30\frac{kg}{m^3}$ KILDE (http://www.rockwool.dk/pro 60-flexibatts). Dermed kan værdien for isolering bestemmes til:

$$94.0m^2 \cdot 140mm \cdot 30 \frac{kg}{m^3} \cdot 9.82 \frac{m}{s^2} \cdot 4 = 15.508kN$$

Gulvbelægningen antages for at være linoleumsgulv med en højde på 2,5mm KILDE! med en densitet på 2,9 $\frac{kg}{m^3}$ KILDE (http://www.kjeldtoft.com/upl/website/download-brochurer-/DesktopTekniskespecifikationer.pdf). Dermed kan værdien for linoleumsgulv bestemmes til:

$$2.5mm \cdot 12.5m \cdot 12.0m \cdot 2.9 \frac{kg}{m^3} \cdot 9.82 \frac{m}{s^2} \cdot 4 = 0.043kN$$

Last fra tag

Det antages at taget, som benyttes, er et mellemtungt tag, som har værdien $600 \frac{N}{m^2}$, (http://www.ringstedspaer.dk/konstruktioner.htm) og det er et sadeltag med teglsten. Der er derfor fundet en middelværdi for lasten fra taget til systemet.

Tagets areal bestemmes ud fra Figur 6.5:

$$6.7m \cdot 12.5m \cdot 2 = 167.500m^2$$

Arealet ganges med værdien for mellemtungt tag:

$$167,500m^2 \cdot 600 \frac{N}{m^2} = 100,500kN$$

Samlet last

De beregnede laster for væg, gulv og tag lægges nu sammen, for at få den samlede egenlast, som divideres med arealet, som den virker over:

$$\frac{0kN}{125m \cdot 120m} = 23,085 \frac{kN}{m^2}$$

6.1.2 Variable laster

Af variable laster optræder der både snelast, vindlast og nyttelast på bygningen, og disse udregnes efter Dansk Standard Eurocode 1991.

Snelast

Til at beregne hvordan snelasten påvirker tilbygningen anvendes den karaktiske snelast og formlen:

$$s = \mu_i \cdot C_e \cdot C_t \cdot s_k$$

- s: karakteristisk snelast
- μ_i : formfaktoren for snelasten, som sættes til 0.8 [Standard, 2014, tabel 5.2 kapitel 5.3]
- C_e : eksponeringsfaktoren
- C_t : termisk faktor, som sættes til 1.0 [Standard, 2014, kapitel 5.2]
- s_k : karakteristisk terrænværdi, som sættes til 1 $\frac{kN}{m^2}$ [Standard, 2014, kapitel 4.1]

Til at bestemme den karakteristiske snelast, beregnes eksponeringsfaktoren C_e .

Eksponeringsfaktoren, C_e , bestemmes ved:

$$C_e = C_{top} \cdot C_s$$

- C_{top} : topografi faktor, som sættes til 1.0 [Standard, 2014, tabel 5.1 kapitel 5.2]
- C_s : størrelse faktor, som sættes til 1.0 [Standard, 2014, kapitel 5.2]

Eksponeringsfaktoren kan nu bestemmes til:

$$C_e = 1.0 \cdot 1.0 = 1.0$$

Strøybergs Palæ har et saddeltag, og dermed skal der tages højde for fire lasttilfælde, som ses på Figur INDSÆTTE FIGUR!

Lasttilfælde 1

$$s_1 = 0.8 \cdot 1.0 \cdot 1.0 \cdot 1 \frac{kN}{m^2} = 0.8 \frac{kN}{m^2}$$

Lasttilfælde 2 og 3

$$s_2 = \frac{1}{2} \cdot 0.8 \cdot 1.0 \cdot 1.0 \cdot 1 \frac{kN}{m^2} = 0.4 \frac{kN}{m^2}$$

<u>Lasttilfælde 4</u>

$$s_4 = \mu_w \cdot C_e \cdot C_t \cdot s_k \frac{kN}{m^2}$$

- μ_w : formfaktoren, som sættes til 1.2 eftersom α er 26.565° [Standard, 2014, kapitel 5.3.3]

Den karakteristiske snelast for lasttilfælde 4 kan nu bestemmes til:

$$s_4 = 1.2 \cdot 1.0 \cdot 1.0 \cdot 1 \frac{kN}{m^2} = 1.2 \frac{kN}{m^2}$$

I og med at lasttilfælde 4 giver den største last, anvendes denne til videre beregning.

Vindlast

Vindlasten beregnes for det højeste punkt på konstruktionen, hvilket er på tagspidsen for tilbygningen, da det er det punkt, hvor vinden er kraftigst.

FIGUR! - henvis til den med taget, som skal være i egenlasten

Til at bestemme vindlasten på tilbygningen bruges følgende formel:

$$w_e = q_p(z_e) \cdot c_{pe}$$

- q_p : peakhastighedstrykket
- z_e : referencehøjden for det udvendige vindtryk
- c_{pe} : formfaktoren for det udvendige vindtryk

Den maksimale belastning fra vinden, peakhastighedstrykket q_p , bestemmes ved:

$$q_p(z_e) = \left[1 + 7I_v(z_e)\right] \cdot \frac{1}{2} \cdot \mathbf{p} \cdot v_m^2(z_e)$$

- I_v : vindturbulens
- ρ : densiteten for luft $1.25 \frac{kg}{m^3}$ KILDE
- v_m : middelvindhastigheden

For at bestemme peakhastigheden, beregnes først vindturbulens $I_v(z)$ samt middelvindhastigheden v_m .

Vindturbulens, $I_v(z)$, bestemmes ved:

$$I_v(z) = \frac{\sigma_v}{V_m(z)} = \frac{k_1}{c_0(z) \cdot ln(\frac{z}{z_0})}$$

- k_1 : turbulensfaktor, sættes til 1.0 [Standard, 2014, kapitel 4.4]
- $c_0(z)$: orografifaktoren, som sættes til 1.0 [Standard, 2014, kapitel 4.3.1]
- z: højde, som er 19 m
- z_0 : ruhedslængde, som sættes til 1.0 for terrænkategori IV [Standard, 2014, tabel 4.1 kapitel 4.3.2]

Vindturbulensen kan nu bestemmes til:

$$I_v(z) = \frac{1.0}{1.0 \cdot ln(\frac{19}{1.0})} = 0.340$$

Middelvindhastigheden, v_m , bestemmes ved:

$$v_m(z) = c_r(z) \cdot c_0(z) \cdot v_b$$

- $c_r(z)$: ruhedsfaktor
- v_b : basisvindhastigheden

Til at bestemme middelvindhastigheden, beregnes basisvindhastigheden samt ruhedsfaktor.

Basisvindhastigheden, v_b , bestemmes ved:

$$v_b = c_{dir} \cdot c_{season} \cdot v_{b,0}$$

- c_{dir} : retningsfaktor, som sættes til 1.0 [Standard, 2014, tabel 1a kapitel 4.2]
- c_{season} : årstidsfaktor, som sættes til 1.0 [Standard, 2014, tabel 1b kapitel 4.2]
- $v_{b,0}$: grundværdi for basisvindhastigheden, som sættes til 24 $\frac{m}{s}$, da dette er gældende for størstedelen af Danmark [Standard, 2014, kapitel 4.2]

Basisvindhastigheden kan nu bestemmes til:

$$v_b = 1.0 \cdot 1.0 \cdot 24 \frac{m}{s} = 24 \frac{m}{s}$$

Ruhedsfaktor, $c_r(z)$, bestemmes ved:

$$c_r(z) = k_r \cdot \ln(\frac{z}{z_0})$$

- k_r : terrænfaktor

Terrænfaktoren, k_r , bestemmes ved:

$$k_r = 0.19 \cdot (\frac{z_0}{z_{0,II}})^{0.07}$$

- $z_{0,II}$: værdi for ruhedslængde for terrænkategori II, som sættes til 0.05 [Standard, 2014, kapitel 4.3.2]

$$k_r = 0.19 \cdot \left(\frac{1.0}{z_{0.05}}\right)^{0.07} = 0.234$$

Ruhedsfaktor kan nu bestemmes til:

$$c_r(z) = 0.234 \cdot ln(\frac{19}{1.0}) = 0.690$$

Middelvindhastigheden kan nu bestemmes til:

$$v_m(z) = 0.690 \cdot 1.0 \cdot 24 \frac{m}{s} = 16.569 \frac{m}{s}$$

Peakhastighedstrykket q_p i højden z, kan nu bestemmes til:

$$q_p(z_e) = [1 + 7 \cdot 0.340] \cdot \frac{1}{2} \cdot 1.25 \frac{kg}{m^3} \cdot (16.569 \frac{m}{s})^2 = 0.579 \frac{kN}{m^2}$$

HVAD GØR VI NU??

Figur 6.6. Zoneinddeling af taget

For alle zoner bestemmes $c_{pe,10}$. Der opstilles en lineær ligning med sammenhæng mellem $c_{pe,10}$ værdierne og graderne 15 og 30. Herefter indsættes taghældningen, 26.565° i ligningen og værdien for $c_{pe,10}$ i den pågældende zone fås.

Zone F

Ud fra [Standard, 2014, tabel 7.4a kapitel 7.2.5] er de negative værdier for zone F: -0.9 og -0.5. Her ud fra fås ligningen, og $c_{pe,10,neg}$ bestemmes:

$$f(\alpha) = 0.0267 \cdot \alpha - 1.3 \rightarrow c_{pe,10,neg} = -0.592$$

De positive værdier for zone F er: 0.2 og 0.7. Her ud fra fås ligningen, og $c_{pe,10,pos}$ bestemmes:

$$f(\alpha) = 0.0333 \cdot \alpha - 0.3 \rightarrow c_{pe,10,pos} = 0.585$$

Zone G

De negative værdier for zone G er: -0.8 og -0.5. Her ud fra fås ligningen, og $c_{pe,10,neg}$ bestemmes:

$$f(\alpha) = 0.02 \cdot \alpha - 1.1 \rightarrow c_{pe,10,neg} = -0.569$$

De positive værdier for zone G er: 0.2 og 0.7. Her ud fra fås ligningen, og $c_{pe,10,pos}$ bestemmes:

$$f(\alpha) = 0.0333 \cdot \alpha - 0.3 \rightarrow c_{pe,10,pos} = 0.585$$

Zone H

De negative værdier for zone H er: -0.3 og -0.2. Her ud fra fås ligningen, og $c_{pe,10,neg}$ bestemmes:

$$f(\alpha) = 0.00667 \cdot \alpha - 0.4 \rightarrow c_{pe,10,neg} = -0.223$$

De positive værdier for zone H er: 0.2 og 0.4. Her ud fra fås ligningen, og $c_{pe,10,pos}$ bestemmes:

$$f(\alpha) = 0.0133 \cdot \alpha - 1.178 \cdot 10^{-16} \rightarrow c_{pe,10,pos} = 0.354$$

Zone I

Den negative værdi for zone I er: -0.4. Her ud fra fås ligningen, og $c_{pe,10,neg}$ bestemmes:

$$f(\alpha) = -5.234 \cdot 10^{-18} \cdot \alpha - 0.4 \rightarrow c_{pe,10,neg} = -0.4$$

Den positive værdi for zone I er: 0.0. Her ud fra fås ligningen, og $c_{pe,10,pos}$ bestemmes:

$$f(\alpha) = 0.0 \to c_{pe,10,pos} = 0.0$$

Zone J

De negative værdier for zone J er: -1.0 og -0.5. Her ud fra fås ligningen, og $c_{pe,10,neg}$ bestemmes:

$$f(\alpha) = 0.0333 \cdot \alpha - 1.5 \rightarrow c_{pe,10,neg} = -0.615$$

Den positive værdi for zone J er: 0.0. Her ud fra fås ligningen, og $c_{pe,10,pos}$ bestemmes:

$$f(\alpha) = 0.0 \to c_{pe,10,pos} = 0.0$$

INDSÆTTE DET SIDSTE!

6.1.3 Nyttelast

Ud fra [Standard, 2014, tabel 6.2 kapitel 6.3.1.2] aflæses den jævnt fordelte last, q_k , for kategori A1, som er bolig og lokale adgangsveje, til at være $1, 5\frac{kN}{m^2}$. Denne last beregnes for alle etager på tilbygningen samlet set.

$$Q_K3 = q_k \cdot A \cdot antaletager$$

- A: arealet af én etage, som sættes til $150,0m^2$
- antal etager for tilbygningen er 5, men der ses bort fra kælderetagen

Nyttelasten kan nu bestemmes til:

$$Q_K 3 = 1,5 \frac{kN}{m^2} \cdot 150,0 m^2 \cdot 4 = 900,0 kN$$

6.2 Lastkombinationer

INTROTEKST

Lastkombination 1: Egenlast

Den regningsmæssige egenlasten bestemmes ud fra følgende formel:

$$E_{d,1} = \gamma_{G1} \cdot K_{FI} \cdot G_{K1}$$

- γ_{G1} : partialkoefficienten for den permanente last, som sættes til 1,2 [Standard, 2013, tabel A 1.2(B+C) anneks A.1.3.1]
- K_{FI} : konsekvensklasse CC3, som sættes til 1,1 [Standard, 2013, tabel A 1.2(A) anneks A.1.3.1]
- G_{K1} : karakteristisk egenlast for den permanente last [kN], som sættes til 3437,86 kN

Den regningsmæssige egenlast kan nu bestemmes til:

$$E_{d,1} = 1, 2 \cdot 1, 1 \cdot 3437, 86kN = 4,538 \cdot 10^3 kN$$

Lastkombination 2: Vindlast dominerende

Den regningsmæssige last, for vindlast dominerende, bestemmes ud fra følgende formel:

$$E_{d,2} = \gamma_{G1} \cdot K_{FI} \cdot G_{K1} + \gamma_{O1} \cdot K_{FI} \cdot Q_{K1} + \gamma_{O2} \cdot \Psi_{0,2} \cdot K_{FI} \cdot Q_{K2} + \gamma_{O3} \cdot \Psi_{0,3} \cdot K_{FI} \cdot Q_{K3}$$

- γ_{Q1} : partialkoefficienten, som sættes til 1,5 [Standard, 2013, tabel A 1.2(B+C) anneks A.1.3.1]
- Q_{K1} : karakteristisk nyttelast for vind, som sættes til X
- γ_{Q2} : partialkoefficenten, som sættes til 1,5 [Standard, 2013, tabel A 1.2(B+C) anneks A.1.3.1]
- $\Psi_{0,2}$: Ψ -faktor, som sættes til 0,0, ved vindlast dominerende [Standard, 2013, tabel A 1.1 anneks A.1.2.2]
- Q_{K2} : karakteristisk nyttelast for sne, som sættes til Y
- γ_{Q3} : partialkoefficenten, som sættes til 1,5 [Standard, 2013, tabel A 1.2(B+C) anneks A.1.3.1]
- $\Psi_{0.3}$: Ψ -faktor, som sættes til 0,5 [Standard, 2013, tabel A 1.1 anneks A.1.2.2]
- Q_{K3} : karakteristisk nyttelast for bolig, som sættes til 900,0 kN

Den regningsmæssige værdi for vindlast dominerende kan nu bestemmes til:

$$E_{d,2} =$$

Lastkombination 3: Snelast dominerende

Den regningsmæssige last, for snelast dominerende, bestemmes ud fra følgende formel:

$$E_{d,3} = \gamma_{G1} \cdot K_{FI} \cdot G_{K1} + \gamma_{Q1} \cdot \Psi_{0,1} \cdot K_{FI} \cdot Q_{K1} + \gamma_{Q2} \cdot K_{FI} \cdot Q_{K2} + \gamma_{Q3} \cdot \Psi_{0,3} \cdot K_{FI} \cdot Q_{K3}$$

- $\Psi_{0,1}$: $\Psi\text{-faktor, som sættes til 0,3 [Standard, 2013, tabel A 1.1 anneks A.1.2.2]}$

Den regningsmæssige værdi for snelast dominerende kan nu bestemmes til:

$$E_{d,3} =$$

Lastkombination 4: Nyttelast dominerende

Den regningsmæssige last, for nyttelast dominerende, bestemmes ud fra følgende formel:

$$E_{d,4} = \gamma_{G1} \cdot K_{FI} \cdot G_{K1} + \gamma_{Q1} \cdot \Psi_{0,1} \cdot K_{FI} \cdot Q_{K1} + \gamma_{Q2} \cdot \Psi_{0,2} \cdot K_{FI} \cdot Q_{K2} + \gamma_{Q3} \cdot K_{FI} \cdot Q_{K3}$$

- $\Psi_{0,2}$: $\Psi\text{-faktor, som sættes til 0,3 [Standard, 2013, tabel A 1.1 anneks A.1.2.2]}$

Den regningsmæssige værdi for nyttelast dominerende kan nu bestemmes til:

$$E_{d,4} =$$

Stål 7

Geoteknik 8

HER INDSÆTTES JORD-DELEN (som Michael er ved at skrive)

8.1 Fundering

De to mest almindelige funderingsmetoder er pælefundering og direkte fundering.

Ved direkte fundering hviler fundamentet direkte på terrænet.

Ved pælefundering er søjleformede pæle af træ, beton, og/eller stål, rammet, presset, vibreret eller udstøbt i jorden. Pæleformen er normalt cylindrisk med cirkulært eller kvadratisk tværsnit (KILDE: side 355 i "lærebog i geoteknik"). Ligesom ved direkte fundering er formålet med pælefundering og pælene at overføre belastningen fra overbygningen og ned til det bæredygtige jordlag.

Valg af funderingsmetode afhænger af jordbunds- og grundvandsforhold samt de belastninger, som konstruktionen er udsat for (KILD: side 355 i "lærebog i geoteknik). Det er derfor nødvendigt at have kendskab til områdets geologi, og at tolke på de boreprofiler, der bliver udført på stedet.

8.2 Antagelser

Idét Aalborg er funderet på meget blødt ler, benyttes boreprofiler fra Hals/Hou, og det antages, at disse boreprofiler er fra området ved Strøybergs Palæ.

Forsøgene er udført på baskarpsand fra Sverige, hvilket antages at være sandet fra boreprofilerne.

8.3 Forsøg

For at bestemme styrkeparametre for jorden udføres laboratorieforsøg, som bruges ved dimensionering af fundamentet.

Formålet med forsøgene er at bestemme friktionsvinklen, ved:

$$\varphi_{tr} = 30^{\circ} - \frac{3}{U} + (14 - \frac{4}{U})I_D$$

- U = Uensformighedtal

 $- = I_D = \text{Relativ lejringst}$ æthed

Gruppe B228 8. Geoteknik

Friktionsvinklen φ er et mål for sand styrke, og skønnes ud fra sigteanalyse samt løs og fast lejring. Ved hjælp af nedenstående fire forsøg bestemmes friktionsvinklen, idet uensformighedstallet og den relative lejringstæthed bestemmes herudfra:

- 1. Vandindhold
- 2. Sigteanalyse
- 3. Kornvægtfylde
- 4. Løs og fast lejring

Tabeller over resultater, fremgangsmåde, apparaturliste samt fejlkilder for de enkelte forsøg, findes i bilag A-D.

8.3.1 Forsøg 1: Vandindhold

Formålet med forsøget "vandindhold" er at finde vandindholdet w i jordprøven. Vandindholdet er defineret som jordens vægttab i % af tørvægten ved tørring i et varmeskab ved en temperatur på 105 grader. For naturligt forekommende jordarter kan vandindholdet ligge mellem nul og flere hundrede procent.

Vandindholdet beregnes ved:

$$w = \frac{Vandvgt}{Kornvgt} = \frac{W_w}{W_s} \cdot 100\% = \frac{(W+sk) - (W_s + sk)}{(W_s + sk) - sk} \cdot 100\%$$

- W_w = Vægten af vandet i prøven [g]
- W_s = Vægten af det tørrede materiale [g]
- W = Vægten af prøven før tørring [g]
- sk = Vægten af skålen [g]

Forsøget er udført to gange. Vandindholdet for de to forsøg er beregnet til:

$$w_1 = \frac{8102g - 8099g}{8099g - 307g} \cdot 100\% = 0.04\%$$

$$w_2 = \frac{8983g - 89.79}{89.79g - 3.11g} \cdot 100\% = 0.05\%$$

Til videre beregninger benyttes gennemsnittet for vandindholdet for forsøg 1 og forsøg 2, som er 0.04%.

MANGLER KONKLUSION.....

8.3.2 Forsøg 2: Sigteanalyse

Formålet med "sigteanalyse" er at bestemme jordkornenes vægtmæssige fordeling efter størrelse i sand- og grusfraktion, for at beregne uensformighedstallet U for jorden:

$$U = \frac{d_{60}}{d_{10}}$$

- $d_{60} = 60\%$ -fraktilen

- $d_{10} = 10\%$ -fraktilen

Uensformighedstallet fortæller, hvor velsorteret jorden er:

- Velsorteret: U < 2- Sorteret: 2 < U < 3,5- Ringe sorteret: 3,5 < U < 7

- Usorteret: U > 7

Forsøget er udført to gange, og der er derfor lavet en sigtekurve for hvert forsøg, og uensformighedstallet er udregnet for begge forsøg.

Det procentvise gennemfald i hver sigte er beregnet, og herudfra fås nedenstående sigte-kurver:

SIGTEKURVER INDSÆTTES HER

Uensformighedstallet for begge forsøg er beregnet, ved at lave lineær regression i mellem henholdsvis 10% og 60% og derved finde 10%-fraktilen og 60%-fraktilen.

Ved forsøg 1 er 10%-fraktilen og 60%-fraktilen beregnet til:

$$d_{10} = 0.08 \text{ og } d_{60} = 0.14$$

Uensformighedstallet er hermed:

$$U = \frac{0.14}{0.08} = 1.67$$

Ved forsøg 2 er 10%-fraktilen og 60%-fraktilen beregnet til:

$$d_{10} = 0.91 \text{ og } d_{60} = 0.15$$

Uensformighedstallet er dermed beregnet til:

$$U = \frac{0,15}{0.91} = 1,64$$

Til videre beregninger benyttes gennemsnittet af uensformighedstallet for forsøg 1 og forsøg 2, som er 1,65. Dette tal fortæller, at jorden er velsorteret.

8.3.3 Forsøg 3: Kornvægtfylde

Formålet med "kornvægtfylde" er at finde den relative densitet d_s , også kaldet kornvægtfylden, for jordprøven. For jordarter uden organisk indhold kan kornvægtfylden variere fra 2,65 for rent kvartsand til 2,85 for visse lermineraler. I dette forsøg søges altså et resultat der ligger så tæt på 2,65 som muligt.

Kornvægtfylden beregnes ved:

Gruppe B228 8. Geoteknik

$$d_s = \frac{W_s(p_w)^t}{W_s + W_2 - W_1}$$

- W_s = Vægten at tørt kommateriale [g]
- $(p_w)^t$ = Densitet af demineraliseret vand ved målte temperatur $\left[\frac{g}{cm^3}\right]$
- W_2 = Vægten af pyknometeret fyldt med demineraliseret vand [g]
- W_1 = Vægten af pyknometer fyldt med prøve og demineraliseret vand [g]

Forsøget er udført to gange. Kornvægtfylden for de to forsøg er beregnet til:

$$d_{s,1} = \frac{16127g \cdot 0.998 \frac{g}{mL}}{16127g + 641.16g - 728899} = 2.188 \frac{g}{m^3}$$
$$d_{s,2} = \frac{15006g \cdot 0.998 \frac{g}{mL}}{15006g + 61597g - 70940g} = 2.643 \frac{g}{m^3}$$

Resultatet fra forsøg 2 anvendes til videre beregninger, fordi resultatet fra forsøg 1 vurderes til at være for langt fra den ønskede værdi på 2,65.

8.3.4 Forsøg 4: Løs og fast lejring

Formålet med "løs og fast lejring" er finde jordens relative lejringstæthed I_D . Lejringstætheden er et tal som vokser fra 0 til 1, når lejringstætheden varierer fra den løseste til den fasteste lejring.

 I_D bestemmes ved:

$$I_D = \frac{e_{max} - e_{insitu}}{e_{max} - e_{min}}$$

- $e_{min}=$ jordens gennemsnitlige poretal for den fasteste lejring
- $e_{max} = \text{jordens}$ gennemsnitlige poretal for den løseste lejring
- $e_{insitu} = \text{jordens naturlige poretal}$

Jordens naturlige poretal e_{insitu} bestemmes ved:

$$e_{insitu} = (1+w)\frac{d_s\rho_w V}{W_s} - 1$$

- w = det naturlige vandindhold [rent tal], som er fundet i forsøg 1: Vandindhold
- d_s = kornvægtfylde [rent tal], som er fundet i forsøg 3: Kornvægtfylde
- ρ_w = Vands densitet på $1\frac{g}{cm^3}$
- V = Volumen af materialet $[cm^3]$
- $W_s = ???$

Der er udført fire forsøg for henholdsvis den løse lejring og den faste lejring. e_{min} , e_{max} og e_{insitu} og den relative lejringstæthed I_D er beregnet til:

$$e_{min} = \frac{0595 + 0571 + 0573 + 0569}{4} = 0,577$$

$$e_{max} = \frac{0.873 + 0.875 + 0.874 + 0.873}{4} = 0.874$$

$$e_{insitu} = (1+0) \cdot \frac{2643 \cdot 100 \cdot 26939}{4214} - 1 = 0,690$$

$$I_D = \frac{0874 - 0690}{0874 - 0577} = 0,619$$

MANGLER KONKLUSION.....

8.3.5 Friktionsvinkel

Efter udførelsen af de fire forsøg, kan friktionsvinklen beregnes til:

$$30^{\circ} - \frac{3}{165} + (14 - \frac{4}{165}) \cdot 0,619 = 35,3^{\circ}$$

I FIGUR XX ses det, at der kan trækkes henholdsvis 3 eller 5 grader fra friktionsvinklen eller lægges 1 eller 2 grader til friktionsvinkel, alt efter jordens type. Baskarpsandkornene er vurderet til at være afrundede, og derfor trækkes der 3 grader fra den friktionsvinklen der er fundet ovenfor, og der fås en friktionsvinkel på 32,3°.

Friktionsvinklen vurderes ud fra FIGUR XX. Der aflæses ud fra de 32 grader, hvor graderingen aflæses som værende enskornet og lejringstætheden aflæses som værende middel.

8.3.6 Vurdering af fejlkilder

Fejlkilder for de enkelte forsøg beskrives i det dertilhørende appendix. Det der gør sig gældende for alle forsøgene er, at jo flere forsøg der bliver udført, jo bedre og mere præcist resultat.

Konklusion 9

Litteratur

- Aalborg, 2014a. Business Aalborg. Bedre Overblik, Temperaturmåling på erhvervslivet i Aalborg. http://www.aalborg.dk/media/676544/BEDRE-Overblik-nr-1-2014.pdf, 2014. Downloadet: 08.03.2015.
- Aalborg, 2014b. Business Aalborg. Ungdommens Aalborg. http://www.aalborg.dk, 2014. Downloadet: 08.03.2015.
- **Aalborg**. Kulturbro Aalborg. Formål med kulturbro-Aalborg. http://www.kulturbroaalborg.dk. Downloadet: 25.02.2015.
- Aalborg Kommune, 23.11.2009. Aalborg Kommune. *Bilag*. http://www.aalborgkommuneplan.dk, 23.11.2009. Downloadet: 24.03.2015.
- Aalborg Kommune, 25.11.2013a. Aalborg Kommune. Om Kommuneplanen. http://www.aalborgkommuneplan.dk, 25.11.2013. Downloadet: 25.02.2015.
- **Aalborg Kommune**, **31.12.2006a**. Aalborg Kommune. *Planredegørelse*. http://www.aalborgkommuneplan.dk, 31.12.2006. Downloadet: 24.03.2015.
- Aalborg Kommune, 31.12.2006b. Aalborg Kommune. *Kommuneplanrammer*. http://www.aalborgkommuneplan.dk, 31.12.2006. Downloadet: 24.03.2015.
- **Aalborg Kommune**, **25.11.2013b**. Aalborg Kommune. *Retningslinjer*. http://www.aalborgkommuneplan.dk, 25.11.2013. Downloadet: 24.03.2015.
- A/S, 2008. Calum A/S. *Investeringsejendomme*. http://www.calum.dk/, 2008. Downloadet: 05-03-2015.
- **A/S et al.**, **2009**. Niras Konsulenterne A/S, Mette Glarborg Bahrenscheer, Kirstine Iversen, Peer Frank og Peter Frost-Møller. *Brug Havnen, Industrihavnens kulturarv*. ISBN: 978-87-91298-09-7, Handbook. Kulturarvsstyrelsen, 2009.
- Clement og Andersen, 2014. Karen Clement og Thomas Nørgaard Andersen. Rekordmange optaget på videregående uddannelser - hver fjerde får afslag. http://www.b.dk/nationalt/rekordmange-optaget-paa-videregaaende-uddannelser-hver-fjerde-faar-afslag, 2014. Downloadet: 24-03-2015.
- Dansk Center for Byhistorie. Dansk Center for Byhistorie. Danske Købstæder: Aalborg Historiske Befolkningstal. http://byhistorie.inet-designer.dk/. Downloadet: 07.03.2015.
- Danske, 2014. Redaktionen Den Store Danske. Aalborg historie.

 http://www.denstoredanske.dk/Danmarks_geografi_og_historie/Danmarks_geografi/Jylland/Jylland_-_byer/Aalborg_(Historie), 2014.

 Downloadet: 25.03.2015.

Gruppe B228 Litteratur

- for Byhistorie. Dansk Center for Byhistorie. Danske Købstæder: Aalborg. http://byhistorie.inet-designer.dk/. Downloadet: 07.03.2015.
- Forvaltning, 1908-2015. Aalborg Kommunes Tekniske Forvaltning. *Nyhavnsgade 9-11*. Byggesagsarkiv, 1908-2015.
- Home, 2014. Home. Aalborg: Studiebolig med landets billigste 'husleje'. http://www.home.dk, 2014. Downloadet: 26-03-2015.
- Johansen og Mathiasen, 2004. Mette Johansen og Line Mathiasen. Byomdannelse på Aalborg Østre Havn, Kampen om fremtiden. Handbook. Aalborg Universitet, 2004.
- Junker. Flemming Junker. Rekordmange nye virksomheder i Aalborg. http://nordjyske.dk/artikel/rekordmange-nye-virksomheder-i-aalborg/300147e6-7380-429c-b37f-ec782b15de9a/112/1201. Downloadet: 20-03-2015.
- Kommune, 21.11.2012. Aalborg Kommune. Alternativ rutenet i forbindelse med letbanen 1. etape. http://www.aalborgletbane.dk, 21.11.2012. Downloadet: 26-03-2015.
- Kommune, 25.11.2013a. Aalborg Kommune. Byerne et godt sted at bo hele livet. http://www.aalborgkommuneplan.dk, 25.11.2013. Downloadet: 24.03.2015.
- Kommune, a. Aalborg Kommune. Eternittens omdannelse. http://www.aalborg.dk. Downloadet: 25.02.2015.
- Kommune, August 2006. Aalborg Kommune. Lokalplan 10-082. http://www.aalborgkommune.dk, August 2006. Downloadet: 27.02.2015.
- Kommune, b. Aalborg Kommune.
- Kommune, **25.11.2013b**. Aalborg Kommune. *Aalborg den attraktive storby*. http://www.aalborgkommuneplan.dk, 25.11.2013. Downloadet: 25.02.2015.
- Kommune, **25.11.2013c**. Aalborg Kommune. *Det åbne land*. http://www.aalborgkommuneplan.dk, 25.11.2013. Downloadet: 24.03.2015.
- Kommune, Oktober 2012. Aalborg Kommune. *Lokalplan 1-1-107*. http://www.aalborgkommune.dk, Oktober 2012. Downloadet: 25.02.2015.
- Kommune, **25.11.2013d**. Aalborg Kommune. *Nødvendige forbindelser mobilitet*. http://www.aalborgkommuneplan.dk, 25.11.2013. Downloadet: 24.03.2015.
- Kommune, **25.11.2013e**. Aalborg Kommune. *Bæredygtighedprofil*. http://www.aalborgkommuneplan.dk, 25.11.2013. Downloadet: 24.03.2015.
- Kommune, c. Vesthimmerlands Kommune. Kommuneplantillæg. http://www.vesthimmerland.odeum.com. Downloadet: 25.02.2015.
- Kulturstyrelsen. Kulturstyrelsen. Hvad er bevaringsværdi? http://www.kulturarv.dk. Downloadet: 27.02.2015.
- Landsforening, 05.05.2014. Kommunernes Landsforening. Aalborg ønsker bedre image. http://www.kl.dk, 05.05.2014. Downloadet: 26-03-2015.

- Miljøministeriet. Miljøministeriet. Kortlægning og områdeklassificering. http://www.mst.dk. Downloadet: 27.02.2015.
- Schouenborg, 08.09.2014. Jesper Schouenborg. Byråd vil have sporvogne i Aalborg. http://www.nordjyske.dk, 08.09.2014. Downloadet: 26-03-2015.
- **Standard**, **2013**. Dansk Standard. Forkortet udgave af Eurocode 0 Projekteringsgrundlag for bærende konstruktioner. ISBN: 978-87-7310-832-1, 2. udgave, 1. oplag. Fonden Dansk Standard, 2013.
- Standard, 2014. Dansk Standard. Forkortet udgave af Eurocode 1 Last på bærende konstruktioner. ISBN: 978-87-7310-882-6, 2. udgave, 1. oplag. Fonden Dansk Standard, 2014.
- Statistik. Danmarks Statistik. Danmarks Statistik befolknings tal Aalborg 2008-2015. http://www.statistikbanken.dk/statbank5a/selectvarval/saveselections.asp. Downloadet: 20-03-2015.
- Universitet. Aalborg Universitet. Campus Aalborg. http://www.sict.aau.dk. Downloadet: 25.02.2015.
- Universitet, 2013. Aalborg Universitet. Fakta 2013. http://www.aau.dk, 2013.
 Downloadet: 26-03-2015.
- Vejdirektoratet, 2011. Vejdirektoratet. 3. Limfjordsforbindelse. http://www.vejdirektoratet.dk/DA/vejprojekter/limfjorden/Documents/H%C3% B8ringsnotat%203.%20Limfjordsforbindelse.pdf, 2011. Downloadet: 24-03-2015.
- VisitAalborg, a. VisitAalborg. Jomfru Ane Parken. http://www.visitaalborg.dk. Downloadet: 25.02.2015.
- VisitAalborg, b. VisitAalborg. Karolinelund. http://www.visitaalborg.dk. Downloadet: 25.02.2015.
- VisitAalborg, c. VisitAalborg. Musikkens Hus. http://www.visitaalborg.dk. Downloadet: 25.02.2015.
- Øhrstrøm og Washuus, 2014. Daniel Øhrstrøm og Dorte Washuus. Smukke Studieboliger er en succes. Kristeligt dagblad, page 1, 2014.

Forsøg: Vandindhold

Formål

Formålet med dette forsøg er at finde vandindholdet, w, i en jordprøve. Vandindholdetn er defineret som, jordens vægttab i % af tørvægten ved tørring i et varmeskab ved en temperatur på 105° C til konstant vægt er opnået.

Apperaturliste

- Vægt, vejenøjagtighed 0.01 g
- Skål i varme- og korrosionsbestandigt materiale
- Tørreskab, temperatur til 105°C

Tabel 1

Fremgangsmåde

Først findes en ren og tør foliebakke vejes, og vægten noteres som sk. Efterfølgende udtages en passsende mængde jord, jf. tabel 1, og anbringes i foliebakken, og det hele vejes omgående sammen, og noteres som W+sk.

Foliebakken anbringes nu i tørreskabet ved 105° C, og tørres fra fredag til mandag (Normalt tørres det i 24 timer, da konstant vægt normalt er opnået eftter dette tidsrum). Efter tørringen sættes foliebakken til afkåling i vacuumekssikator til rumtemperatur er opnået. Den afkølede foliebakke med den nu tørre jordprøve vejes, $W_s + sk$

Beregninger

Beregninger udføres på følgende måde:
$$w = \frac{W_w}{W_s} * 100\% = \frac{(W+sk)-(W_s+sk)}{(W_s+sk)-sk} * 100\%$$
 Vandindholdet regnes nu forsøg 2:
$$w = \frac{(81,02)-(80,99)}{(80,99)-3,07} * 100\% = 0,038501\%$$
 Vandindholdet regnes nu for forsøg 2:
$$w = \frac{(89,83)-(89,79)}{(89,79)-3,11} * 100\% = 0,046147\%$$

Fejlkilder

Forskelligheden i de 2 prøveforsøg kan skyldes brugen af 2 forskellige vægte med forskellige størrelse usikkerheder. En anden fejlkilde er at størrelserne på prøverne er forskellige vægten er med en difference på 8,81 g, samt der ikke er taget højde for tabel 1, så mængden af prøvemateriale sker ud fra anbefaling.

Delkonklusion

Udfra de opnåede resultater kan det konkluderes at

Forsøg: Sigteanalyse

Formål

Formålet med forsøger er at bestemme jordkornenes vægtmæssige fordeling efter størrelse i sand- og grusfraktion, for at beregne uensformighedstallet for jorden, der skal bruges i de videre beregninger af friktionsvinklen.

Velsorteret: U<2 Sorteret: 2<U<3,5

Ringe sorteret: 3,5<U<7

Usorteret: U>7

Apparaturliste

- Sigter med mindst maskevidde på 0,063 mm

- Rystemaskine

- Vægt med vejenøjagtighed på 0,01 g

- Sigtebørste

- Skåle i korrosion bestandigt materiale

Fremgangsmåde

Ved en sigteanalyse kan der både udføres en grovsigtning og en finsigtning. Grovsigtningen udføres, hvis materialet vurderes til at have partikler over 16 mm. I dette forsøg er der kun udført en finsigtning, da partiklerne vurderes til at være mindre en 16 mm. Sigtningen er udført på sigter fra 0,063 mm til 2 mm (sigtemålene kan ses i tabellen over resultaterne).

Først rengøres hver enkelt sigte forsigtigt med sigtebørste, og herefter samles sigterne forløbende fra den største maskevdde øverst til bunden nederst. Det afmålte materiale hældes på sigten med den største maskevidde på 2 mm, hvorefter sigtetårnet placeres i rystemaskinen og sigtes i 20 minutter.

Sigteresterne i hver enkelt sigte overføres til skåle og vejes. Hver sigte placeres med bunden opad på et stort stykke papir, og der fejes let på bagsiden, således materialet der sidder fast i maskerne løsnes.

Alle resultaterne skrives ind i nedenstående tabel, hvor det procentvise gennemfald i hver sigte beregnes ved $gennemfald[\%] = \frac{gennemfald[g]}{samletprve[g]} \cdot 100[\%]$. Herefter optegnes en sigte-kurve over resultaterne med det procentvise gennemfald af y-aksen i aritmisk skala, og kornstørrelse af x-aksen i logaritmisk skala. Herpå aflæses de to punkter der ligger mellem henholdsvis 10% og 60%, og der laves lineær regression imellem de to punkter. Herudfra kan 10%-fraktilen, d_{10} , og 60%-fraktilen, d_{60} , beregnes. Disse bruges til at udregne uensformighedstallet $U = \frac{d_{60}}{d_{10}}$

Resultater

Tabel over resultater for det første udførte forsøg:

Tabel over resultater for det andet udførte forsøg:

Beregninger

Forsøg 1

HER INDSÆTTES SIGTEKURVE FOR FORSØG 1

For at finde 10%-fraktilen er der lavet lineær regression imellem sigte med maskestørrelse 0.075 mm og 0.125 mm, hvor følgende ligning fremgår:

$$d_{10} = 862.42 \cdot x - 63.223$$

For at finde 60%-fraktilen er der lavet lineær regression imellem sigte med maskestørrelse 0,125 mm og 0,15 mm, hvor følgende ligning fremgår:

$$d_{60} = 937.12 \cdot x - 72.56$$

Henholdsvis 10%-fraktilen og 60%-fraktilen er beregnet til: $d_{10}=0,085\%$ og $d_{60}=0,14\%$

Uensformighedstallet beregnes til:

$$U = \frac{d_{60}}{d_{10}} = \frac{0.14}{0.085} = 1,67$$

Forsøg 2

HER INDSÆTTES SIGTEKURVE FOR FORSØG 2

Ligesom ovenfor, er 60%-fraktilen og 10%-fraktilen beregnet, ved at lave lineær regression imellem de to punkter, der ligger mellem henholdsvis 60% og 10% i sigtekurven. Disse punkter, er de samme som ovenfor. På samme måde, bliver uensformighedstallet beregnet.

$$d_{10} = 502, 31 \cdot x - 35, 635 \leftrightarrow d_{10} = 0,091$$

$$d_{60} = 1390, 7 \cdot x - 146, 68 \leftrightarrow d_{60} = 0, 15$$

$$U = \frac{d_{60}}{d_{10}} = \frac{0,15}{0,091} = 1,64$$

Til videre beregninger benyttes gennemsnittet af de to fundne værdier for uensformighedstallet:

$$\frac{1,67+1,64}{2} = 1,65$$

Fejlkilder

Sigteresterne kan ikke være børstet helt ud af maskerne, og alt materialet bliver dermed ikke vejet med. Derudover er det muligt, at sigterne ikke er blevet børstet grundigt nok inden forsøgsstart, og der kan dermed sidde materiale fra anden prøve i maskerne, der bliver vejet med.

Noget materiale kan være gået tabt under processen, idet partiklerne er meget små.

Delkonklusion

Uensformighedstallet er beregnet til U=1,65, hvilket fortæller, at jorden er velsorteret, idet U < 2.

Forsøg: Kornvægtfylde

Formål

Formålet med forsøget er, at finde den relative densitet d_s , også kaldet kornvægtfylden for en jordprøve.

Apparaturliste

- Pyknometer
- Bægerglas
- Termometer, nøjagtighed 0,1°C
- Vægt, vejenøjagtighed på 0,001 g
- Tørreskab, temperatur til 105° C

Fremgangsmåde

Dette forsøg laves med friktionsjord (tør metode). Der udtages en prøve af 150 g tørstof og dette placeres i et 500 mL pyknometer. Pyknometeret fyldes ca. halvt op med luftfrit demineraliseret vand og der drejes på pyknometeret for at undgå luftbobler. Derefter hældes der så meget vand i, at vandet flyder over, når proppen sættes i. Proppen sættes i, og der sørges igen for, at der ikke er luftbobler til stede. Pyknometeret med materiale, vand og prop vejes og kaldes W_1 . Herefter måles temperaturen i pyknometeret, og temperaturen noteres. Så aflæses W_2 i et kalibreringsskema og noteres. Der benyttes linear interpolation til at finde vægten af pyknomeret ved temperaturer, som ikke er ens med dem opgivet i skemaet.

Resultater

	Forsøg 1	Forsøg 2
Pyknometer nr.	103	100
$W_1 = W_{pyk} + W_s + W_{vand} [g]$	728,89	709,40
Temperatur [°C]	22	23
$W_2 = W_{pyk+vand} [g]$	641,164	615,967
Tørstof, W_s , [g]	161,27	150,06
Vands densitet, p_w^t , $\left[\frac{g}{mL}\right]$	0,998	0,998
Relativ densitet, $d_s = \frac{W_s \cdot p_w^t}{W_s + W_2 - W_1}, \left[\frac{g}{m^3}\right]$	2,188	2,644

Beregninger

Rumfang af tørstof findes ved formlen:

$$\frac{W_s + W_2 - W_1}{p_w^t}$$

Alle tallene kendes og rumfanget kan beregnes for forsøg 1 og forsøg 2.

Forsøg 1

$$V_1 = \frac{161,27g + 641,164g - 728,29g}{0,998 \frac{g}{mL}} = 7,43 \cdot 10^{-5} m^3$$

Dette omregnes til mm^3 :

$$V_1 = \frac{7,43 \cdot 10^{-5} m^3}{mm^3} = 74307,48mm^3$$

Forsøg 2

$$V_2 = \frac{150,06g + 615,967g - 709,40g}{0.998 \frac{g}{mL}} = 5,68 \cdot 10^{-5} m^3$$

Dette omregnes til mm^3 :

$$V_2 = \frac{5,68 \cdot 10^{-5} m^3}{mm^3} = 56764, 94mm^3$$

Den relative densitet findes ved formlen:

$$d_s = \frac{W_s \cdot (p_w)^t}{W_s + W_2 - W_1}$$

Forsøg 1

$$d_{s,1} = \frac{161,27g \cdot 0,998 \frac{g}{mL}}{161,27g + 641,164g - 728,89g} = 2,19 \frac{g}{m^3}$$

Forsøg 2

$$d_{s,2} = \frac{150,06g \cdot 0,998 \frac{g}{mL}}{150,06g + 615,967g - 709,4g} = 2,64 \frac{g}{m^3}$$

Fejlkilder

En fejlkilde ved dette forsøg, er luftbobler i pyknometeret. Derudover var det en del af forsøget af benytte en vacuumekssikkator, men pga. manglende tid blev dette trin sprunget over. En anden fejlkilde er at der kan være forskellige temperature i pyknometeret og udover disse fejlkilder er der også måleusikkerheder, som eksempelvis når der skulle vejes tørstof og pyknometer eller temperaturen.

Delkonklusion

Ud fra resultaterne kan det konkluderes, at... Derfor anvendes resultatet fra forsøg 2 kun til videre beregning.

Forsøg: Løs og fast lejring

Formål

Formålet med dette forsøg er at bestemme hvor meget materiale der er tilbageholdt, som bruges til at finde lejringstætheden og poretallet af materialet.

Apperaturliste

- Lille cylinder
- Tragt
- Stållineal
- Stamper passende til valgte cylinder
- Specialskydelære passende til valgte cylinder
- Vægt, vejenøjagtighed 0,01 g
- Sigte med maskevidde på 5 mm

Fremgangsmåde

- Løs lejring En delprøve af jordprøven er taget fra til forsøgende. Der startes med at placere cylinderen i en bakke. I cylinderen anbringes sigten. Så hældes materialet forsigtigt op i sigten. Det skal glide ned ad kanten på sigten og videre i cylinderen. Der bruges tilstrækkeligt materiale at cylinderen kan fyldes helt op og så noget går over kanten. Sigten hæves nu forsigtigt op ad cylinderen. Det skal gøres over ca. et minut i en jævn og flydende bevægelse. Når alt materialet er blevet hældt i cylinderen fjernes toppen med en stållineal således at materialet flågter med cylinderens overflade. Ved siden af cylinderet slås der hårdt to gange i bordet, så materialet sætter sig. Materiale der skulle befinder sig på ydersiden af cylideren børstes væk. Herefter vejes cylinderen og materialet, Cyl+Ws. Cylinderen tømmes for materiale , børstes og vejes Cyl.
- Fast lejring Samme delprøve fra løs lejring bruges til fast lejring. Til fast lejring bliver cylinderet fyldt ad fem gange. Mellem hver fyldning, bliver materialet jævnet ud med en stållineal derefter stampes der. Antallet af slag stiger for hvert lag der kommer i. Stamperen holdes lodret i cylinderen. Faldloddet føres op til stopklodsen for at slippes og foretage frit fald. For hvert tiende slag tages stamperen for at der ikke fastklemmes materiae mellem stamperen og cylinderetsvæg. Stamperens fod børstes for materiale som eventuelt skulle være presset mod. Inden det sidste lag skal stampes skal der være ca. 0.5 cm fra materialet og op til toppen af cylinderet. Efter sidste stampning fjernes materiale der skulle sidde fast på stamperen og skydelæren sættes på kanten af cylinderet. Højden ned til materialet måles. Materiale som skulle være på ydersiden af cylinder børstes væk og cylinderen med materialet vejes Cyl+Ws. Materialet fjernes og cylinderen bliver børstes og vejet Cyl.

Resultater

Prøve nr	1	2	3
Areal $[cm^2]$	10,0	10,0	10,0
Højde [cm]	7,0	7,0	7,0
Volume $[cm^3]$	70	70	70
$\text{Cyl} + W_s [g]$	340,45	340,46	340,50
Cyl [g]	241,99	241,99	241,99
W_s [g]	98,55	98,47	98,51
$e = \frac{d_s * p_w * V}{W_s} - 1$	$e = \frac{2,643533194*0,99757*70}{98,55} - 1$	$e = \frac{2,643533194*0,99757*70}{98,47} - 1$	$e = \frac{2,643533194*0,99757*70}{98,51} - 1$
e	e=0.873137074	e = 0.874658867	e=0.083897661

 $e_min =$ gennemsnit af de fire forsøgsresultater $e_min = \frac{0,873137074 + 0,874658867 + 0,873897661 + 0,872757011}{4}$ $e_min = 0,8736126532$

relativ densitet
$$d_s = \frac{W_s * p_w^t}{W_s + W_2 - W_1}$$

$$\frac{150,06*0,99757}{150,06+615,967-709,40} = 2,643533194$$

Samme d_s anvendes for "fest lejring"

Prøve nr	1	2	3
Areal $[cm^2]$	10,0	10,0	10,0
Højde [cm]	6,5	6,575	6,42
Volume $[cm^3]$	65	65,75	64,2
$Cyl + W_s$ [g]	349,48	349,31	346,55
Cyl [g]	241,99	238,95	238,95
W_s [g]	107,49	110,36	107,6
$e = \frac{d_s * p_w * V}{W_s} - 1$	$e = \frac{2,643533194*0,99757*65}{107,49} - 1$	$e = \frac{2,643533194*0,99757*65,75}{110,36} - 1$	$e = \frac{2,643533194*0,99757*64,2}{107,6} -$
e	e=0,59467912	e=0.571130333	e=0.573442602

 $e_min=$ gennemsnit af de fire forsøgsresultater $e_min=\frac{0,594679612+0,571130333+0,573442602+0,569178866}{4}$ $e_min=0,5771078532$

Beregninger

Poretallet beregnes udfra formelen

$$e_i n situ = (1+w) * \frac{d_s}{y} * y_w - 1$$

Ledet $\frac{d_s}{y} * y_w$ kan erstattes med ledet $\frac{d_s*p_w*V}{W_s}$,hvor vi anvender tallene fra slidet?????? SKRIV LIGE noget andet om hvor vi får tallene fra????

$$V = (\pi * 3, 5^2 * 7) = V = 269,3915701$$

$$e_i n situ = (1+0) * \frac{2,643533194*1,00*(\pi*3,5^2*7)}{421,4} - 1 = e_i n situ = 0,689951490$$

Den relative lejringstæthed, I_D er graden af det intakte materiale som er kompakteret

$$I_D = \frac{0,8736126532 - 0,689951490}{0,8736126532 - 0,5771078532} = I_D = 0,6194205396$$

FIGUR

Fejlkilder I Forsøggentagelse 2 kom der for meget materiale i cylinderen. Derfor er der taget noget ud efter de 80 slag og herefter er der givet 10 ekstra slag.