

CLASSIFICATION OF DIABETIC

PATIENTS
SUBTITLE: USING VARIOUS
CLASSIFICATION ALGORITHMS
PRESENTED BY: MANAV BARIK
STUDENT ID: 21070122092

- AIM:
- TO CLASSIFY PATIENTS AS DIABETIC OR NON-DIABETIC USING VARIOUS CLASSIFICATION ALGORITHMS AND EVALUATE THEIR PERFORMANCE.
- OBJECTIVE:
 - INSTALL AND EXPLORE CLASSIFICATION PACKAGES IN R.
 - CHOOSE AN APPROPRIATE CLASSIFICATION ALGORITHM.
 - APPLY THE ALGORITHM TO THE DIABETES DATASET.
 - EVALUATE THE MODEL'S PERFORMANCE
 USING ACCURACY, PRECISION, RECALL, AND
 F1-SCORE.
 - VISUALIZE THE CLASSIFIER'S DECISION BOUNDARIES.

STEP-BY-STEP GUIDE

1.INSTALL AND LOAD NECESSARY PACKAGES

- INSTALL PACKAGES: CARET, E1071, GGPL0T2.
- LOAD PACKAGES IN R.

2. LOAD THE DIABETES DATASET

• USE THE PIMA INDIANS DIABETES CATASET FROM THE UCI MACHINE LEARNING REPOSITORY.

DATA PREPROCESSING

- CHECK FOR MISSING VALUES:
- USE SUM(IS.NA(DATA)) TO IDENTIFY ANY MISSING DATA.
- SPLIT THE DATA:
 - CREATE TRAINING AND TESTING SETS USING CREATEDATAPARTITION.

TRAIN A CLASSIFICATION MODEL

- MODEL SELECTION:
- WE'LL USE A DECISION TREE FOR THIS EXAMPLE.
- TRAINING THE MODEL:
 - CODE: MODEL <-
- TRAIN(OUTCOME ~ ., DATA = TRAINDATA, METHOD = "RPART")

MODEL EVALUATION

- MAKE PREDICTIONS:
- USE THE TRAINED MODEL TO PREDICT OUTCOMES ON THE TEST DATA.
- PERFORMANCE METRICS:
 - ACCURACY, PRECISION, RECALL, F1-SCORE.
- EXAMPLE METRICS FOR DECISION TREE:
- ACCURACY: 0.675
 - PRECISION: 0.528
 - RECALL: 0.588
- F1-SCORE: 0.556

DECISION TREE CLASSIFIER PERFORMANCE:

ACCURACY: 0.6753246753246753

PRECISION: 0.5280898876404494

RECALL: 0.5875

F1-SCORE: 0.5562130177514792

SUPPORT VECTOR MACHINE PERFORMANCE

- SVM CLASSIFIER PERFORMANCE:
 - **ACCURACY: 0.753**
 - PRECISION: 0.672
 - RECALL: 0.563
 - F1-SCORE: 0.612

VISUALIZING DECISION BOUNDARIES

VISUALIZATION:

CODE SNIPPET FOR VISUALIZATION

- USE GGPLOT TO PLOT DECISION BOUNDARIES BASED ON GLUCOSE AND BMI.
-)

 \circ

 \bigcirc

- GGPLOT(TRAINDATA, AES(X = GLUCOSE, Y = BMI, COLOR = AS.FACTOR(OUTCOME))) +
 - GEOM_POINT() +
- STAT_CONTOUR(DATA = AS.DATA.FRAME(PREDICT(MODEL, TRAINDATA, TYPE = "PROB")), AES(Z = ..LEVEL...), BINS = 1) +
- LABS(TITLE = "DECISION BOUNDARIES", X = "GLUCOSE", Y = "BMI")

CONCLUSION

 \bigcirc

 \bigcirc

 \bigcirc

- SUMMARY:
 - A DECISION TREE WAS USED TO CLASSIFY PATIENTS AS DIABETIC OR NON-DIABETIC.
 - THE MODEL'S PERFORMANCE WAS EVALUATED USING VARIOUS METRICS.
 - VISUALIZATION OF DECISION BOUNDARIES AIDS IN UNDERSTANDING MODEL PREDICTIONS.
 - THIS APPROACH CAN BE EXTENDED TO OTHER CLASSIFICATION ALGORITHMS AND DATASETS FOR COMPREHENSIVE ANALYSIS

THANKYOU FOR YOUR

ATTENTION