**Date:** 08/08/2025

### **EXPERIMENT-2**

### AIM:

- a). Write an Assembly language program for 8051 micro controller to complement the data in port-2 and external memory location 0FFC0H with time delay of 1 sec using timer 0 in mode 1 for crystal frequency of 11.0592MHz.
- b). Write an Assembly language program for 8051 micro controller to complement the data in port-2 and external memory location 0FFC0H with time delay of 2 sec using timer 1 in mode 2 for crystal frequency of 11.0592MHz.

# TOOLS REQUIRED: PC, Keil uvision5

### THEORY:

- ❖ The 8051 has two timers/counters, they can be used either as
  - > Timers to generate a time delay or as
  - > Events counters to count events happening outside the microcontroller.
- ❖ Both Timer 0 and Timer 1 are 16 bits wide
  - ➤ Since 8051 has an 8-bit architecture, each 16-bit timer is accessed as two separate registers of low byte and high byte
- Accessed as low byte and high byte
  - ➤ The low byte register is called TL0/TL1 and
  - ➤ The high byte register is called TH0/TH1
  - > Accessed like any other register
    - MOV TL0, #4FH
    - MOV R5, TH0



- ❖ Both timers 0 and 1 use the same register, called TMOD (timer mode), to set the various timer operation modes
- ❖ TMOD is 8-bit register
  - > The lower 4 bits are for Timer 0
  - > The upper 4 bits are for Timer 1
  - ➤ In each case

- The lower 2 bits are used to set the timer mode
- The upper 2 bits to specify the operation



#### **PROCEDURE:**

- 1. Turn on the computer, create a folder on D drive saved with Register Number.
- 2. Open Keil uVision5 in desktop, or windows start menu -> all programs->open Keil uVision5.

# **Creating Project:**

- 3. Go to project ->click on new uVision project -> create a new folder saved with experiment number within the already existed register number folder in D drive mentioned in step 1, -> enter the project name -> click on save.
- 4. Select the device for target -> In devices -> Enter P89C51RD2XX in Search toolbar -> click on ok -> select **No** for dialog box message "Copy STARTUP.A51 to project folder and add files to project".

(or)

Choose NXP -> to select the device P89C51RD2XX -> click on ok -> select **No** for Copy STARTUP.A51 to project folder.

## **Creating Coding File:**

5. Go to file -> click on new->go to save (choose the path to save the file, It is saved within the name of experiment number folder mentioned in step 3)-> enter a file name with extension .asm ->save the file.

## **Linking the Coding File to Project:**

- 6. Right-click on Source group1 in project bar-> Add existing files to source group1-> choose the experiment number folder path and select all files in the folder -> select .asm code file -> click on add-> click on close.
- 7. Write the assembly language program in .asm code file and save it.

### **Executing the Code File:**

- 8. Right-click on .asm code file->Click on Build target to check the errors (i.e 0-Errors,0-Warning)
- 9. Go to debug->Click on Start/Stop Debug Session -> click on ok for dialog box message "running code size limit 2K" -> and Click on RUN in debug label
- 10. Observe the output in Register windows, Memory windows, Serial window.

### **CALCULATIONS:**

## a) TIMER 0 MODE 1, 1SEC TIME DELAY

- $\triangleright$  Since XTAL = 11.0592 MHz
- ➤ 12 Machine Cycles = 1 Clock Cycles
- $\triangleright$  Single clock period = 11.0592MHz/12 = 921.6KHz

= 1/921.6 = 1.085us

Required delay = number of clocks X single clock period 1sec = number of clocks X 1.085us Number of clocks = 9.21,658

➤ Mode 1 is 16 bit timer, Maximum clocks 65536

- Maximum time delay from 0000H state to FFFFH state is = 65536 X 1.085us = 71.1ms
- ➤ 1 sec = loop count X 71.1ms Loop count = 14.06 = 0EH
- $\triangleright$  Therefore, we have initial values in TH = #00H and TL = #00H, TMOD = #01H

# b) TIMER 1 MODE 2, 2SEC TIME DELAY

- $\triangleright$  Since XTAL = 11.0592 MHz,
- ➤ 12 Machine Cycles = 1 Clock Cycle
- $\triangleright$  Single clock period = 11.0592MHz/12 = 921.6Khz

= 1/921.6KHz = 1.085us

Required delay = number of clocks X single clock period 2sec = number of clocks x 1.085us Number of clocks = 18,43,317

- Mode 2 is 8 bit timer, Maximum clocks 256
- Maximum time delay from 00H state to FFH state is

= 256 X 1.085 us = 277.76 us

- ➤ 2 sec = loop count X 277.76us Loop count = 7200 = 1C20H
- $\triangleright$  Therefore, we have Initial values in TH = #00H, TMOD = #20H

### **OUTPUTS:**

## **a**)

View -> Memory windows -> memory 1





## Peripherals -> I/O ports -> Port 2





## b)

View -> Memory windows -> memory 1





# Peripherals -> I/O ports -> Port 2





# **PROGRAMS:**

a)

| ADDRESS | <b>OPCODES</b> | LABELS | MNEMONICS | OPERANDS     |
|---------|----------------|--------|-----------|--------------|
| 0000    |                |        | ORG       | 00H          |
| 0000    | 758901         |        | MOV       | TMOD,#01H    |
| 0003    | 7455           |        | MOV       | A,#55H       |
| 0005    | 90FFC0         |        | MOV       | DPTR,#0FFC0H |
| 0008    | 1110           | L2     | ACALL     | DELAY        |
| 000A    | F0             |        | MOVX      | @DPTR,A      |
| 000B    | F5A0           |        | MOV       | P2,A         |
| 000D    | F4             |        | CPL       | A            |
| 000E    | 80F8           |        | SJMP      | L2           |
| 0010    | 780E           | DELAY  | MOV       | R0,#0EH      |
| 0012    | 758A00         | L1     | MOV       | TL0,#00H     |
| 0015    | 758C00         |        | MOV       | TH0,#00H     |
| 0018    | D28C           |        | SETB      | TR0          |
| 001A    | 308DFD         | HERE   | JNB       | TF0, HERE    |
| 001D    | C28D           |        | CLR       | TF0          |
| 001F    | C28C           |        | CLR       | TR0          |
| 0021    | D8EF           |        | DJNZ      | R0,L1        |
| 0023    | 22             |        | RET       |              |
|         |                |        | END       |              |

b)

| ADDRESS | OPCODES | LABELS | MNEMONICS | OPERANDS      |
|---------|---------|--------|-----------|---------------|
| 0000    |         |        | ORG       | 00H           |
| 0000    | 758920  |        | MOV       | TMOD,#20H     |
| 0003    | 7455    |        | MOV       | A,#AAH        |
| 0005    | 90FFC0  |        | MOV       | DPTR, #0FFC0H |
| 0008    | 1110    | LOOP   | ACALL     | DELAY         |
| 000A    | F4      |        | CPL       | A             |
| 000B    | F0      |        | MOVX      | @DPTR,A       |
| 000C    | F5A0    |        | MOV       | P2,A          |
| 000E    | 80F8    |        | SJMP      | LOOP          |
| 0010    | 791C    | DELAY  | MOV       | R1,#1CH       |
| 0012    | 7A20    | BACK2  | MOV       | R2,#20H       |
| 0014    | 758D00  | BACK1  | MOV       | TH1,#00H      |
| 0017    | D28E    |        | SETB      | TR1           |
| 0019    | 308FFD  | HERE   | JNB       | TF1,HERE      |
| 001C    | C28F    |        | CLR       | TF1           |
| 001E    | C28E    |        | CLR       | TR1           |
| 0020    | DAF2    |        | DJNZ      | R2,BACK1      |
| 0022    | D9EE    |        | DJNZ      | R1,BACK2      |
| 0024    | 22      |        | RET       |               |
|         |         |        | END       |               |

## **RESULT:**

- a) Assembly language program (ALP) using **Timer 0 in Mode 1** for a 1-second delay, to complement the data at **Port 2** and external memory location 0xFFC0, successfully executed.
- **b)** Assembly language program (ALP) using **Timer 1 in Mode 2** for a 2-second delay, to complement the data at **Port 2** and external memory location 0xFFC0, successfully executed.