1.2. Espacios de medida

- 1. Sea (X, \mathcal{F}, μ) un espacio de medida finito y $A \in \mathcal{F}$ tal que $\mu(A) = \mu(X)$. Probar que $\mu(B) = \mu(A \cap B)$, para todo $B \in \mathcal{F}$.
- **2**. Sea (X, \mathcal{F}, μ) un espacio de medida. Mostrar que $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B)$, para todo $A, B \in \mathcal{F}$.
- 3. Sea X un conjunto infinito no numerable. Sobre la σ -álgebra \mathcal{F} formada por los subconjuntos contables o cuyo complementario es contable, se define la aplicación

$$\mu(A) = \begin{cases} 0 & \text{si } A \text{ contable,} \\ 1 & \text{si } A^c \text{ contable.} \end{cases}$$

Mostrar que μ es una medida de probabilidad sobre (X, \mathcal{F}) .

- 4. Sea (X, \mathcal{F}, μ) un espacio de medida y $B \in \mathcal{F}$ un conjunto medible fijo. Consideramos la σ -álgebra $\mathcal{F} \cap B$ (ver el problema 12). Mostrar que la aplicación $\mu_B : \mathcal{F} \cap B \to [0, \infty]$ definida mediante $\mu_B(C) = \mu(C)$ es una medida sobre $(B, \mathcal{F} \cap B)$ llamada la restricción de μ a B.
- 5. Sea (X, \mathcal{F}, μ) un espacio de medida σ -finito. Mostrar que existe una partición de X, $\{B_n\}$ (los B_n son disjuntos y $\bigcup B_n = X$), tal que $\mu(B_n) < \infty$, para todo n.
- 6. Sea X un conjunto numerable. Definimos para $A \subset X$

$$\mu(A) = \begin{cases} 0 & \text{si } A \text{ es finito} \\ \infty & \text{si } A \text{ es infinito} \end{cases}$$

- (a) Probar que μ es finitamente aditiva, pero no numerablemente aditiva.
- (b) Encontrar $\{A_n\} \subset \mathcal{P}(X)$ tal que $A_n \uparrow X$ y $\mu(A_n) = 0$, para todo n.
- 7. Sea (X, \mathcal{F}, μ) un espacio de medida σ -finito. Sea \mathcal{G} una sub- σ -álgebra de \mathcal{F} , y ν la restricción de μ a \mathcal{G} . Probar con un ejemplo que (X, \mathcal{G}, ν) no es necesariamente σ -finito.
- 8. Sea X un conjunto contable y $f:X\to [0,\infty]$ una función positiva. Definimos

$$\mu(A) = \sum_{x \in A} f(x), \quad A \subset X \quad (\mu(\emptyset) = 0).$$

Mostrar que μ es una medida sobre $(X, \mathcal{P}(X))$. ¿Es σ -finita?

9. Sea X un conjunto arbitrario (posiblemente no contable) y $f:X\to [0,\infty]$ una función positiva. Se define la suma de f(x) en X mediante

$$\sum_{x \in X} f(x) = \sup \left\{ \sum_{x \in F} f(x) : F \subset X \text{ y } F \text{ finito} \right\}.$$

Consideramos el conjunto $A = \{x \in X : f(x) > 0\}.$

- (a) Si A no es contable, mostrar que $\sum_{x \in X} f(x) = \infty$. Sugerencia: $A = \bigcup_{n=1}^{\infty} A_n$ con $A_n = \{x \in X : f(x) > 1/n\}$, luego existiría un A_n no contable.
- (b) Si A es numerable, entonces $\sum_{x \in X} f(x) = \sum_{n=1}^{\infty} f(b(n))$, donde $b : \mathbb{N} \to A$ es cualquier biyección (entre \mathbb{N} y A) y la suma de la derecha se entiende como una serie usual. Sugerencia: Si $B_N = b(\{1, \ldots, N\})$, cualquier F finito de A está contenido en algún B_N .
- (c) Mostrar que $\mu(B) = \sum_{x \in B} f(x)$, para $B \subset X$ es una medida sobre $(X, \mathcal{P}(X))$.