CSc 133 Lecture Notes

13 - Transformations

Computer Science Department
California State University, Sacramento

CSC 133 Lecture Note Slides 13 - Transformations

Overview

- Affine Transformations: Translation, Rotation, Scaling
- Transforming Points & Lines
- Matrix Representation of Transforms
- Homogeneous Coordinates
- Concatenation of Transformations

The "Transformation" Concept

- "Original object" could be anything
 - o We will focus on geometric objects
- "Transformed object" is usually (but not necessarily) of same type

3

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

"Affine" Transformations

- Properties:
 - "Map" (transform) finite points into finite points
 - Map parallel lines into parallel lines
- Common examples used in graphics:
 - Translation
 - Rotation
 - Scaling

Transformations on Points

Translation

$$P = (x, y)$$
 $T = (+2, +3)$
 $P' = (x+2, y+3)$

$$P \rightarrow \boxed{T} \rightarrow P'$$

or

$$P' \leftarrow \boxed{T} \leftarrow P$$

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Transformations on Points (cont.)

5

Rotation <u>about the origin</u> (point on X axis)

$$cos (\phi) = x' / x ; hence$$

 $x' = x cos (\phi)$

$$\sin (\phi) = y' / x$$
; hence $y' = x \sin (\phi)$

$$P \rightarrow | R | \rightarrow P'$$

Transformations on Points (cont.)

Rotation about the origin (arbitrary point)

$$\cos(\varphi) = X / R \quad \text{and} \quad \sin(\varphi) = Y / R;$$

$$X = R \cos(\varphi) \quad \text{and} \quad Y = R \sin(\varphi)$$

$$X' = R \cos(\varphi + \theta)$$

$$= R (\cos(\varphi)\cos(\theta) - \sin(\varphi)\sin(\theta))$$

$$= \frac{R \cos(\varphi)}{\cos(\theta)} \cos(\theta) - \frac{R \sin(\varphi)}{\sin(\theta)} \sin(\theta)$$

$$= \frac{X}{\cos(\theta)} - \frac{Y}{\sin(\theta)} \sin(\theta)$$
Similarly,
$$Y' = X \sin(\theta) + Y \cos(\theta)$$

7

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Transformations on Points (cont.)

- Scaling
 - Multiplication by a "scale factor"

$$P = (x, y)$$

 $S = (s_x, s_y)$
 $P' = (x*s_x, y*s_y)$

$$P \rightarrow \mid S \mid \rightarrow P'$$

or

Transformations on Points (cont.)

- Scaling is
 - Relative to the origin (like rotation)
 - Different from a "move":
 - Translate (3,3) always moves exactly 3 units
 - Scale (3,3) depends on the initial point being scaled:

```
P(1,1)*Scale(3,3) \rightarrow P'(3,3) ("move" of 2)

P(4,4)*Scale(3,3) \rightarrow P'(12,12) ("move" of 8)
```

- Scaling by a fraction: move "closer to origin"
- Scaling by a negative value: "reflection" across axes ("mirroring")
- Scaling where s_x ≠ s_y: change "aspect ratio"

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Transformations on Points (cont.)

- Rotating a point about an arbitrary point
 - o Problem: rotation formulas are *relative to the origin*

Transformations on Points (cont.)

- Solution:
 - Translate to origin
 - Perform rotation
 - Translate "back"

- 1. Translate P(x,y) by (-a, -b)
- 2. Rotate (translated) P
- 3. "Undo" the translation (translate result by (+a, +b))

11

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Transformations on Lines

Translation: translate the endpoints

• Translate (Line(p1,p2)) = Line (Translate(p1), Translate(p2))

Transformations on Lines (cont.)

Rotation <u>about the origin</u>: rotate the endpoints

• Rotate (Line(p1,p2)) = Line (Rotate(p1), Rotate(p2))

13

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Transformations on Lines (cont.)

Scaling: scale the endpoints

- Scale (Line(p1,p2)) = Line (Scale(p1), Scale(p2))
- Note how scale seems to "move" also

Transformations on Lines (cont.)

 Question: what is the result of Scale(-0.5, -0.5) applied to this line?

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Some general rules for scaling:

- Absolute Value of Scale Factor > 1 → "bigger"
- Absolute Value of Scale Factor < 1 → "smaller"
- Scale Factor < 0 → "flip" ("mirror")

Identity Operations:

- For translation: 0 → No Change
- For rotation: 0 → No Change
- For scaling: 1 → No Change

Transformations on Lines (cont.)

- Rotating a line about an endpoint
 - o Intent: P1 doesn't change, while P2 → P2' (i.e. rotate P2 by θ about P1)
 - o Again recall: rotation formulas are about the origin
 - □ What \underline{is} the result of applying Rotate (θ) to P2?

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Transformations on Lines (cont.)

 Solution: as before – force the rotation to be "about the origin"

- 1. **P2.translate** (-**P1.x**, -**P1.y**)
- 2. P2.rotate (θ)
- 3. **P2.translate** (**P1.x**, **P1.y**)

Note "object-oriented" form

Transformations Using Matrices

Translation

$$P = (x, y)$$
 $T = (+2, +3)$
 $P' = (x+2, y+3)$

$$P' = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} (x+2) \\ (y+3) \end{bmatrix}$$

19

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Matrix Transformations (cont.)

Rotation (CCW) about the origin

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

$$P' = \begin{bmatrix} x & y \end{bmatrix} * \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$
$$= \begin{bmatrix} (x\cos(\theta) - y\sin(\theta)) & (x\sin(\theta) + y\cos(\theta)) \end{bmatrix}$$

Matrix Transformations (cont.)

Scaling

$$P = (x, y)$$

$$S = (s_x, s_y)$$

$$P' = (x*s_x, y*s_y)$$

$$P' = \begin{bmatrix} x & y \end{bmatrix} * \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$
$$= \begin{bmatrix} (x * s_x) & (y * s_y) \end{bmatrix}$$

21

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Homogeneous Coordinates

- Motivation: uniformity between different matrix operations
- General Plan:
 - Represent a 2D point as a triple: [x y 1]
 - Represent every transformation as a 3 x 3 matrix
 - Use matrix multiplication for all transformations

Homogeneous Transformations

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ T_x & T_y & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ T_x & T_y & 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Rotation
$$\begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Scaling

23

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Applying Transformations

Translation

$$\begin{bmatrix} x & y & 1 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ T_x & T_y & 1 \end{bmatrix} = \begin{bmatrix} (x+T_x) & (y+T_y) & 1 \end{bmatrix}$$

Applying Transformations (cont.)

Rotation

$$\begin{bmatrix} x & y & 1 \end{bmatrix} * \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= [(x\cos(\theta) - y\sin(\theta)) (x\sin(\theta) + y\cos(\theta)) \ 1]$$

25

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Applying Transformations (cont.)

Scaling

$$\begin{bmatrix} x & y & 1 \end{bmatrix} * \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} (x * S_x) & (y * S_y) & 1 \end{bmatrix}$$

Column-Major Representation

• Translation:
$$\begin{bmatrix} (x+T_x) \\ (y+T_y) \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• Rotation:
$$\begin{bmatrix} (x\cos(\theta) - y\sin(\theta)) \\ (x\sin(\theta) + y\cos(\theta)) \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Active Matrix Areas

Row-major form

Column-major form

Same size "active area" - 6 elements (3x2 or 2x3)

Concatenation of Transforms

Typical Sequence:

```
P1 × Translate(tx,ty) = P2;

P2 × Rotate(\theta) = P3;

P3 × Scale(sx,sy) = P4;

P4 × Translate(tx,ty) = P5;
```

29

CSc Dept. CSUS

CSC 133 Lecture Note Slides
13 - Transformations

Concatenation of Transforms (cont.)

In (row-major) Matrix Form:

Concatenation of Transforms (cont.)

Alternate Matrix Form:

$$\left(\left(\begin{bmatrix} x_1 & y_1 & 1 \end{bmatrix} \times \left(& T1 & \right) \right) \times \left(& R1 & \right) \times \left(& S1 & \right) \times \left(& T2 & \right) \right) \\
= \left(x_1 \times y_2 \times y_2 \times y_3 \times y_4 \times y_4$$

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Concatenation of Transforms (cont.)

31

Matrix multiplication is <u>associative</u>:

In Column-Major Form

$$\begin{bmatrix} x & 2 \\ y & 2 \\ 1 \end{bmatrix} = \begin{bmatrix} Trans \\ (x, y) \end{bmatrix} \times \begin{bmatrix} x & 1 \\ y & 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x & 3 \\ y & 3 \\ 1 \end{bmatrix} = \begin{bmatrix} Rot & (\theta) \\ (sx, sy) \end{bmatrix} \times \begin{bmatrix} x & 2 \\ y & 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x & 4 \\ y & 4 \\ 1 \end{bmatrix} = \begin{bmatrix} Scale \\ (sx, sy) \end{bmatrix} \times \begin{bmatrix} x & 3 \\ y & 3 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x & 5 \\ y & 5 \\ 1 \end{bmatrix} = \begin{bmatrix} Trans \\ (x, y) \end{bmatrix} \times \begin{bmatrix} x & 4 \\ y & 4 \\ 1 \end{bmatrix}$$

CSc Dept, CSUS

CSC 133 Lecture Note Slides 13 - Transformations

Column-Major Form (cont.)

33

$$\begin{bmatrix} x_5 \\ y_5 \\ 1 \end{bmatrix} = \left(\begin{bmatrix} \mathbf{72} \\ \end{bmatrix} \times \left(\begin{bmatrix} \mathbf{S1} \\ \end{bmatrix} \times \left(\begin{bmatrix} \mathbf{R1} \\ \end{bmatrix} \times \left(\begin{bmatrix} \mathbf{T1} \\ \end{bmatrix} \times \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} \right) \right) \right)$$

$$\begin{bmatrix} x_{5} \\ y_{5} \\ 1 \end{bmatrix} = \left(\begin{bmatrix} T2 \\ x \end{bmatrix} \times \begin{bmatrix} S1 \\ x \end{bmatrix} \times \begin{bmatrix} R1 \\ x \end{bmatrix} \times \begin{bmatrix} T1 \\ y_{1} \\ 1 \end{bmatrix} \right) \times \begin{bmatrix} x_{1} \\ y_{1} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_{5} \\ y_{5} \\ 1 \end{bmatrix} = \begin{bmatrix} M \\ x_{1} \\ y_{1} \\ 1 \end{bmatrix}$$