

Certamen 2

Nicolás Gómez Morgado Investigación de Operaciones

8 de julio de 2024

Índice

1.	Mat	eria 2	2
	1.1.	Cadenas de Markov	2
		1.1.1. Proceso estocástico	2

1. Materia

1.1. Cadenas de Markov

1.1.1. Proceso estocástico

Es una sucesión X_n de variables aleatorias, donde n es un número entero no negativo. Se dice que X_n es un proceso estocástico si para cada n, X_n es una variable aleatoria.

Ejemplo:

Supongamos que X_n = Estado del clima en el dia n = 1, 2, 3, ...Supongamos que los estudios posibles son n:nublado, s:soleado, r:lluvia

$$\Omega: n, s, r = \text{Espacio muestral}$$

Realización de X_n :

Supuestos para la cadena de Markov:

- 1. El estado de la cadena en el instante n+1 depende solo del estado en el instante actual n (no de anteriores[n-1,n-2,n-3...]).
- 2. Con este supuesto se establecen las probabilidades condicionales homogéneas.

 P_{ij} :Probabilidad de pasar del estado i al estado j en una etapa.

Notar que P_{ij} no depende de n.

Con esto se forma una matriz conformada por $P = (P_{ij})_{ij=1,2,3,...,*}$

P: Matriz de transición de probabilidades en una etapa.

3. Supongamos que nuestros ejemplos:

$$P =$$
n
s
$$\begin{pmatrix} 0.7 & 0.2 & 0.1 \\ 0.1 & 0.6 & 0.3 \\ 0.2 & 0.3 & 0.5 \end{pmatrix}$$

Obs.: Cada pila es una distribución de probabilidad condicional.

$$\sum_{j} P_{ij} = 1 - P_i$$

4. Para cada cadena de Markov P tiene asociados un dia de transición entre estados.

