T P C 3+1 0 3

METALLURGY & MATERIALS SCIENCE

Course Objective:

To understand the basic fundamentals of Material science and Physical metallurgy. The basic concepts to be taught will help for the improvement, proper selection and effective utilization of materials which is essential to satisfy the ever increasing demands of the society.

UNIT - I

Learning Objective: To know the basic concepts of bonds in metals and alloys. To understand the basic requirements for the formation of solid solutions and other compounds.

Structure of Metals and Constitution of alloys: Bonds in Solids – Metallic bond - crystallization of metals, grain and grain boundaries, effect of grain boundaries on the properties of metal / alloys – determination of grain size. Necessity of alloying, types of solid solutions, Hume Rotherys rules, intermediate alloy phases, and electron compounds.

UNIT-II

Learning objectives: To understand the regions of stability of the phases that can occur in an alloy system in order to solve the problems in practical metallurgy.

Equilibrium Diagrams : Experimental methods of construction of equilibrium diagrams, Isomorphous alloy systems, equilibrium cooling and heating of alloys, Lever rule, coring miscibility gaps, eutectic systems, congruent melting intermediate phases, peritectic reaction. Transformations in the solid state – allotropy, eutectoid, peritectoid reactions, phase rule, relationship between equilibrium diagrams and properties of alloys. Study of important binary phase diagrams of Cu-Ni-, Al-Cu, Bi-Cd, Cu-An, Cus-Sn and Fe-Fe3C.

UNIT-III

Learning objectives: To study the basic differences between cast irons and steels, their properties and practical applications.

Cast Irons and Steels: Structure and properties of White Cast iron, Malleable Cast iron, grey cast iron, Spheriodal graphite cast iron, Alloy cast irons. Classification of steels, structure and properties of plain carbon steels, Low alloy steels, Hadfield manganese steels, tool and die steels.

UNIT - IV

Learning objectives: To study the affect of various alloying elements on iron-iron carbide system. To understand the various heat treatment and strengthening processes used in practical applications.

Heat treatment of Alloys: Effect of alloying elements on Fe-Fe3C system, Annealing, normalizing, Hardening, TTT diagrams, tempering, Hardenability, surface - hardening methods, Age hardening treatment, Cryogenic treatment of alloys.

UNIT - V

Learning objectives: To study the properties and applications of widely used non-ferrous metals and alloys so as to use the suitable material for practical applications.

Non-ferrous Metals and Alloys: Structure and properties of copper and its alloys, Aluminium and its alloys, Titanium and its alloys.

UNIT - VI

Learning objectives: To study the properties and applications of ceramic, composite and other advanced materials so as to use the suitable material for practical applications.

Ceramic and composite materials: Crystalline ceramics, glasses, cermaets, abrasive materials, nanomaterials – definition, properties and applications of the above.

Classification of composites, various methods of component manufacture of composites, particle – reinforced materials, fiber reinforced materials, metal ceramic mixtures, metal – matrix composites and C-C composites.

TEXT BOOKS:

- 1. Introduction to Physical Metallurgy Sidney H. Avener McGrawHill
- Essential of Materials science and engineering Donald R.Askeland -Thomson.

- 1. Material Science and Metallurgy Dr. V.D.kodgire.
- 2. Materials Science and engineering Callister & Baalasubrahmanyam
- Material Science for Engineering students Fischer Elsevier Publishers.
- 4. Material science and Engineering V. Rahghavan
- 5. Introduction to Material Science and Engineering Yip-Wah Chung CRC Press.
- 6. Material Science and Metallurgy A V K Suryanarayana B S Publications.
- 7. Material Science and Metallurgy U. C. Jindal Pearson Publications

T P C 3+1 0 3

MECHANICS OF SOLIDS

Objective:

The students completing this course are expected to understand the basic terms like stress, strain, poissons ratio...etc and different stresses induced in beams, thin cylinders, thick cylinders, columns. Further, the student shall be able to understand the shear stresses in circular shafts.

UNIT - I

Objective: After studying this unit student will know the basic terms like stress, strain poissons ratio...etc and stresses in bars of varying cross sections, composite bars, thermal stress in members, stresses on inclined planes with analytical approach and graphical approach, strain energy under different loadings and also problem solving techniques.

SIMPLE STRESSES & STRAINS: Elasticity and plasticity – Types of stresses & strains–Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio & volumetric strain – Bars of varying section – composite bars – Temperature stresses- Complex Stresses - Stresses on an inclined plane under different uniaxial and biaxial stress conditions - Principal planes and principal stresses - Mohr's circle - Relation between elastic constants, Strain energy – Resilience – Gradual, sudden, impact and shock loadings.

UNIT - II

Objective: After studying this unit student will know the construction of shear force diagrams and bending moment diagrams to the different loads for the different support arrangements and also problem solving techniques.

SHEAR FORCE AND BENDING MOMENT: Definition of beam – Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, u.d.l, uniformly varying loads and combination of these loads – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT - III

Objective: After studying this unit student will know the bending and shear stress induced in the beams which are made with different cross sections like

rectangular, circular, triangular, I, T angle sections and also problem solving techniques.

FLEXURAL STRESSES: Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R Neutral axis – Determination bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections.

SHEAR STRESSES: Derivation of formula – Shear stress distribution across various beams sections like rectangular, circular, triangular, I, T angle sections.

UNIT - IV

Objective: After studying this unit student will know how to finding slope and deflection for different support arrangements by Double integration method, Macaulay's method and Moment-Area and also problem solving techniques.

DEFLECTION OF BEAMS: Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, - U.D.L uniformly varying load. Mohr's theorems – Moment area method – application to simple cases including overhanging beams.

Brief explanation of Statically Indeterminate Beams and solution methods.

UNIT - V

Objective: After studying this unit student will know how a cylinder fails, what kind of stresses induced in cylinders subjected to internal, external pressures and also problem solving techniques.

THIN CYLINDERS: Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and Volumetric strains – changes in dia, and volume of thin cylinders – Riveted boiler shells – Thin spherical shells.

THICK CYLINDERS: –lame's equation – cylinders subjected to inside & outside pressures –compound cylinders.

UNIT -VI

Objective: After studying this unit student will know shear stresses induced in circular shafts, discussing columns in stability point of view and columns with different end conditions.

TORSION: Introduction-Derivation- Torsion of Circular shafts- Pure Shear-Transmission of power by circular shafts, Shafts in series, Shafts in parallel. **COLUMNS:** Buckling and Stability, Columns with Pinned ends, Columns with other support Conditions, Limitations of Euler's Formula, Rankine's Formula.

TEXT BOOKS:

- 1. Strength of materials by Bhavikatti, Lakshmi publications.
- 2. Solid Mechanics, by Popov.
- 3. Mechanics of Materials by Ferdinand P Beer, E Russell Johnston, and John T Dewolf.

- 1. Strength of Materials -By Jindal, Umesh Publications.
- 2. Analysis of structures by Vazirani and Ratwani.
- 3. Mechanics of Structures Vol-III, by S.B.Junnarkar.
- 4. Strength of Materials by S.Timshenko.
- 5. Strength of Materials by Andrew Pytel and Ferdinond L. Singer Longman.

T P C 3+1 0 3

THERMODYNAMICS

Course Objectives: To impart the knowledge of the thermodynamic laws and principles so as to enable the student to prepare an energy audit of any mechanical system that exchange heat and work with the surroundings.

UNIT - I

Objectives: The student should be able to understand the basic concepts like thermodynamic system, its boundary and related fundamental definitions. Distinguision between point function and path function shall be made with respect to energy, work and Heat.

Intoduction: Basic Concepts: System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Cycle – Reversibility – Quasi – static Process, Irreversible Process, Causes of Irreversibility – Energy in State and in Transition, Types, Work and Heat, Point and Path function. Zeroth Law of Thermodynamics – Concept of Temperature – Principles of Thermometry –Reference Points – Const. Volume gas Thermometer – Scales of Temperature, Ideal Gas Scale – PMM I.

UNIT II

Objectives: To learn the first law of thermodynamics, which is also the energy conservation principle, and should be able to apply to different thermodynamic systems. To understand the concept of equality of temperature and the principle of operation of various temperature measuring devices. To learn the applications of steady flow energy equation to the various mechanical components.

Joule's Experiments – First law of Thermodynamics – Corollaries – First law applied to a Process – applied to a flow system – Steady Flow Energy Equation. Throttling and free expansion processes – deviations from perfect gas model – vander Waals equation of state – compressibility charts – variable specific heats – gas tables.

UNIT - III

Objectives: To understand the second law statements and the associated terms and should be able to apply the principles to heat engines. Should be able to analyse the concepts of Carnot cycle, entropy, availability and

irreversibility. Should be able to understand the use of Maxwells relations and thermodynamic functions.

Limitations of the First Law – Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence / Corollaries, PMM of Second kind, Carnot's principle, Carnot cycle and its specialties, Thermodynamic scale of Temperature, Clausius Inequality, Entropy, Principle of Entropy Increase – Energy Equation, Availability and Irreversibility – Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations – Elementary Treatment of the Third Law of Thermodynamics.

UNIT IV

Objectives: should understand the process of steam formation and its representation on property diagrams with various phase changes and should be able to calculate the quality of steam after its expansion in a steam turbine, with the help of standard steam tables and charts.

Pure Substances, p-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point at critical state properties during change of phase, Dryness Fraction – Clausius – Clapeyron Equation Property tables. Mollier charts – Various Thermodynamic processes and energy Transfer – Steam Calorimetry.

UNIT - V

Objectives: Should be able to use Psychrometric chart and calculate various psychrometric properties of air.

Mixtures of perfect Gases – Mole Fraction, Mass friction Gravimetric and volumetric Analysis – Dalton's Law of partial pressure, Avogadro's Laws of additive volumes – Mole fraction, Volume fraction and partial pressure, Equivalent Gas const. And Molecular Internal Energy, Enthalpy, sp. Heats and Entropy of Mixture of perfect Gases and Vapour, Atmospheric air - Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, saturated Air, Vapour pressure, Degree of saturation – Adiabatic Saturation, Carrier's Equation – Psychrometric chart.

UNIT - VI

Objectives: To understand the concept of air standard cycles and should be able to calculate the efficiency and performance parameters of the systems that use these cycles.

Power Cycles : Otto, Diesel, Dual Combustion cycles, Sterling Cycle, Atkinson Cycle, Ericcson Cycle, Lenoir Cycle – Description and

representation on P–V and T-S diagram, Thermal Efficiency, Mean Effective Pressures on Air standard basis – comparison of Cycles.

Refrigeration Cycles : Brayton and Rankine cycles – Performance Evaluation – combined cycles, Bell- Coleman cycle, Vapour compression cycle-performance Evaluation.

TEXT BOOKS:

- 1. Engineering Thermodynamics, PK Nag 4th Edn, TMH.
- 2. Thermodynamics An Engineering Approach with student resources DVD Y.A.Cengel & M.A.Boles , 7th Edn McGrawHill

- 1. Engineering Thermodynamics Jones & Dugan PHI
- 2. Thermodynamics J.P.Holman , McGrawHill
- 3. Basic Engineering Thermodynamics A. Venkatesh Universities press.
- 4. An Introduction to Thermodynamics Y.V.C.Rao Universities press.
- 5. Thermodynamics W.Z.Black & J.G.Hartley, 3rd Edn Pearson Publ.
- 6. Engineering Thermodynamics D.P.Misra, Cengage Publ.
- Engineering Thermodynamics P.Chattopadhyay Oxford Higher Edn Publ.

T P C 3+1 0 3

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Unit - I:

(*The Learning objective of this Unit is to understand the concept and nature of Managerial Economic s and its relationship with other disciplines, Concept of Demand and Demand forecasting)

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics and Scope-Managerial Economics and its relation with other subjects-Concepts of Demand-Types-Determents-Law of Demand its Exception-Elasticity of Demand-Types and Measurement-Demand forecasting and its Methods.

(**The Learner is equipped with the knowledge of estimating the Demand for a product and the relationship between Price and Demand)

Unit - II:

(*The Learning objective of this Unit is to understand the concept of Production function, Input Output relationship, different Cost Concepts and Concept of Cost-Volume-Profit Analysis)

Production and Cost Analyses:

Production function-Isoquants and Isocosts-Law of Variable proportions-Cobb-Douglas Production function-Economics of Sale-Cost Concepts-Opportunity Cost-Fixed vs Variable Costs-Explicit Costs vs Implicit Costs-Out of Pocket Costs vs Imputed Costs-Cost Volume Profit analysis-Determination of Break-Even Point (Simple Problem).

(**One should understand the Cost Concepts for decision making and to estimate the least cost combination of inputs).

Unit - III:

(*The Learning Objective of this Unit is t understand the Nature of Competition, Characteristics of Pricing in the different market structure and significance of various pricing methods).

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly and Monopolistic and Oligopoly – Features – Price, Output Determination – Managerial Theories of firm: Maris and Williamson's models – Methods of Pricing: Limit Pricing, Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive, Transaction based pricing, Priority Pricing.

(** One has to understand the nature of different markets and Price Output determination under various market conditions)

Unit – IV:

(*The Learning objective of this Unit is to know the different forms of Business organization and their Merits and Demerits both public & private Enterprises and the concepts of Business Cycles)

Types of Business Organization and Business Cycles:

Features and Evaluation of Sole Trader – Partnership – Joint Stock Company – State/Public Enterprises and their forms – Business Cycles – Meaning and Features – Phases of Business Cycle.

(**One should equipped with the knowledge of different Business Units)

Unit - V:

(*The Learning objective of this Unit is to understand the different Accounting Systems preparation of Financial Statements and uses of different tools for performance evaluation).

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry Systems – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow cash flow statements (Simple Problems).

(**The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis).

Unit - VI:

(*The Learning objective of this Unit is to understand the concept of Capital, Capitalization, Capital Budgeting and to know the techniques used to evaluate Capital Budgeting proposals by using different methods).

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Need for Capital Budgeting-Techniques of Capital Budgeting-Traditional and Modern Methods.

(**The Learner is able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making).

Note: *Learning Objective

** Learning Assessment

TEXT BOOKS

1. Dr. N. Appa Rao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi – 2011

- Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011
- 3. Prof. J.V.Prabhakara rao, Prof. P. Venkatarao. 'Managerial Economics and Financial Analysis', Ravindra Publication.

- 1. V. Maheswari: Managerial Economics, Sultan Chand.
- 2. Suma Damodaran: Managerial Economics, Oxford 2011.
- 3. Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House 2011.
- 4. Vanitha Agarwal: Managerial Economics, Pearson Publications 2011.
- 5. Sanjay Dhameja: Financial Accounting for Managers, Pearson.
- 6. Maheswari: Financial Accounting, Vikas Publications.
- 7. S. A. Siddiqui & A. S. Siddiqui : Managerial Economics and Financial Analysis, New Age International Publishers, 2012.

T P C 3+1 0 3

BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Preamble:

This course covers the topics related to analysis of various electrical circuits, operation of various electrical machines, various electronic components to perform well in their respective fields.

Learning Objectives:

- i. To learn the basic principles of electrical law's and analysis of networks.
- To understand the principle of operation and construction details of DC machines.
- To understand the principle of operation and construction details of transformer.
- To understand the principle of operation and construction details of alternator and 3-Phase induction motor.
- v. To study the operation of PN junction diode, half wave, full wave rectifiers and OP-AMPs.
- vi. To learn the operation of PNP and NPN transistors and various amplifiers.

UNIT - I

ELECTRICAL CIRCUITS: Basic definitions, Types of network elements, Ohm's Law, Kirchhoff's Laws, inductive networks, capacitive networks, series, parallel circuits and star-delta and delta-star transformations.

UNIT - II

DC MACHINES: Principle of operation of DC generator – emf equation - types – DC motor types –torque equation – applications – three point starter, swinburn's Test, speed control methods.

UNIT - III

TRANSFORMERS: Principle of operation of single phase transformers – e.m.f equation – losses –efficiency and regulation.

UNIT - IV

AC MACHINES: Principle of operation of alternators – regulation by

synchronous impedance method –principle of operation of 3-Phase induction motor – slip-torque characteristics - efficiency – applications.

UNIT V

RECTIFIERS & LINEAR ICs: PN junction diodes, diode applications (Half wave and bridge rectifiers). Characteristics of operation amplifiers (OP-AMP) - application of OP-AMPs (inverting, non inverting, integrator and differentiator).

UNIT VI

TRANSISTORS: PNP and NPN junction transistor, transistor as an amplifier, single stage CE Amplifier, frequency response of CE amplifier, concepts of feedback amplifier.

Outcomes:

- i. Able to analyse the various electrical networks.
- ii. Able to understand the operation of DC generators,3-point starter and conduct the Swinburne's Test.
- iii. Able to analyse the performance of transformer.
- iv. Able to explain the operation of 3-phase alternator and 3-phase induction motors.
- Able to analyse the operation of half wave, full wave rectifiers and OP-AMPs.
- vi. Able to explain the single stage CE amplifier and concept of feedback amplifier.

TEXT BOOKS:

- 1. Electronic Devices and Circuits, R.L. Boylestad and Louis Nashelsky, 9th edition, PEI/PHI 2006.
- 2. Electrical Technology by Surinder Pal Bali, Pearson Publications.
- 3. Electrical Circuit Theory and Technology by John Bird, Routledge Taylor & Francis Group

REFERENCE BOOKS:

- Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah,TMH Publications.
- Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition.
- 3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition.
- 4. Industrial Electronics by G.K. Mittal, PHI.

T P C 3+1 0 3

COMPUTER AIDED ENGINEERING DRAWING PRACTICE

Course Objective:

To enhance the student's knowledge and skills in engineering drawing and to introduce drafting packages and commands for computer aided drawing and modeling.

Unit-I:

Objective: The knowledge of projections of solids is essential in 3D modeling and animation. The student will be able to draw projections of solids. The objective is to enhance the skills they already acquired in their earlier course in drawing of projection and sections of solids.

PROJECTIONS OF PLANES & SOLIDS: Projections of Regular Solids inclined to both planes – Auxiliary Views. Sections and Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views.

Unit-II:

The knowledge of development of surfaces of solids is required in designing and manufacturing of the objects. Whenever two or more solids combine, a definite curve is seen at their intersection. The intersection of solids also plays an important role in designing and manufacturing. The objective is to impart this knowledge through this topic.

DEVELOPMENT AND INTERPENETRATION OF SOLIDS: Development of Surfaces of Right Regular Solids – Prisms, Cylinder, Pyramid Cone and their parts.

Interpenetration of Right Regular Solids – Intersection of Cylinder Vs Cylinder, Cylinder Vs Prism, Cylinder Vs Cone.

Unit-III:

Isometric projections provide a pictorial view with a real appearance. Perspective views provides a realistic 3D View of an object. The objective is to make the students learn the methods of Iso and Perspective views.

ISOMETRIC PROJECTIONS: Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Transformation of Projections: Conversion of Isometric Views to Orthographic Views – Conventions.

PERSPECTIVE PROJECTIONS: Perspective View: Points, Lines, Plane Figures and Simple Solids, Vanishing Point Methods(General Method only).

In part B computer aided drafting is introduced.

Unit IV:

The objective is to introduce various commands in AutoCAD to draw the geometric entities and to create 2D and 3D wire frame models.

Introduction to Computer aided Drafting: Generation of points, lines, curves, polygons, dimensioning. Types of modeling: object selection commands – edit, zoom, cross hatching, pattern filling, utility commands, 2D wire frame modeling, 3D wire frame modeling.

Unit V:

By going through this topic the student will be able to understand the paperspace environment thoroughly. View points and view ports: view point coordinates and view (s) displayed, examples to exercise different options like save, restore, delete, joint, single option.

Unit VI:

The objective is to make the students create geometrical model of simple solids and machine parts and display the same as an Isometric, Orthographic or Perspective projection.

Computer aided Solid Modeling: Isometric projections, orthographic projections of isometric projections ,Modeling of simple solids, Modeling of Machines & Machine Parts.

TEXT BOOKS:

- 1. Engineering Graphics, K.C. john, PHI Publications
- 2. Engineering drawing by N.D Bhatt, Charotar publications.

- Mastering Auto CAD 2013 and Auto CAD LT 2013 George Omura, Sybex.
- 2. Auto CAD 2013 fundamentals- Elisemoss, SDC Publ.
- 3. Engineering Drawing and Graphics using Auto Cad T Jeyapoovan, vikas.
- 4. Engineering Drawing + Auto CAD K Venugopal, V. Prabhu Raja, New Age.
- 5. Engineering Drawing RK Dhawan, S Chand
- 6. Engineering Drawing MB Shaw, BC Rana, Pearson
- 7. Engineering Drawing KL Narayana, P Kannaiah, Scitech
- 8. Engineering Drawing Agarwal and Agarwal, Mc Graw Hill
- 9. Engineering Graphics PI Varghese, Mc Graw Hill.
- 10. Text book of Engineering Drawing with auto-CAD, K.venkata reddy / B.S. publications.

T P C 0 3 2

BASIC ELECTRICAL & ELECTRONICS Engg. LAB

Section A: Electrical Engineering:

The following experiments are required to be conducted as compulsory experiments:

- 1. Swinburne's test on D.C. Shunt machine (Predetermination of efficiency of a given D.C. Shunt machine working as motor and generator).
- 2. OC and SC tests on single phase transformer (Predetermination of efficiency and regulation at given power factors).
- 3. Brake test on 3-phase Induction motor (Determination of performance characteristics).
- 4. Regulation of alternator by Synchronous impedance method.
- 5. Speed control of D.C. Shunt motor by
 - a) Armature Voltage control b) Field flux control method
- 6. Brake test on D.C. Shunt Motor.

Section B: Electronics Engineering:

- 1. PN junction Diode characteristics A. Forward bias, B. Reverse bias. (Cut in voltage & Resistance calculations)
- 2. Transistor CE Characteristics (Input and Output).
- 3. Full wave Rectifier with and without filters.
- 4. CE Amplifiers.
- 5. RC Phase Shift Oscillator.
- 6. Class A Power Amplifier.

T P C 0 3 2

MECHANICS OF SOLIDS & METALLURGY LAB

Course Objective:

To impart practical exposure on the microstructures of various materials and their hardness evaluation. Also to impart practical knowledge on the evaluation of material properties through various destructive testing procedures.

NOTE: Any 6 experiments from each section A and B.

(A) MECHNICS OF SOLIDS LAB:

- 1. Direct tension test
- 2. Bending test on
 - a) Simple supported
 - b) Cantilever beam
- 3. Torsion test
- 4. Hardness test
 - a) Brinells hardness test
 - b) Rockwell hardness test
- 5. Test on springs
- 6. Compression test on cube
- 7. Impact test
- 8. Punch shear test

(B) METALLURGY LAB:

- Preparation and study of the Micro Structure of pure metals like Iron, Cu and Al.
- 2. Preparation and study of the Microstructure of Mild steels, low carbon steels, high C steels.
- 3. Study of the Micro Structures of Cast Irons.
- 4. Study of the Micro Structures of Non-Ferrous alloys.
- 5. Study of the Micro structures of Heat treated steels.
- 6. Hardeneability of steels by Jominy End Quench Test.
- 7. To find out the hardness of various treated and untreated steels.