21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 7 - Sunday November 6, 2011. Due Friday November 11

Exercise 43: i) Prove that the ring $2\mathbb{Z}$ and the ring $3\mathbb{Z}$ are not isomorphic.

ii) Prove that the ring $\mathbb{Z}[x]$ and the ring $\mathbb{Q}[x]$ are not isomorphic.

Exercise 44: Decide which of the following are ideals of the ring $\mathbb{Z}[x]$:

- i) the set of all polynomials whose constant term is a multiple of 3,
- ii) the set of all polynomials whose coefficient of x^2 is a multiple of 3,
- iii) the set of all polynomials whose constant term, coefficient of x, and coefficient of x^2 are zero,
- iv) the set of all polynomials in which only even powers of x appear (i.e. $\mathbb{Z}[x^2]$),
- v) the set of all polynomials whose sum of all coefficients is zero,
- vi) the set of all polynomials whose sum of all coefficients of even powers of x is zero, and whose sum of all coefficients of odd powers of x is zero,
 - vii) the set of all polynomials P such that P'(0) = 0.

Exercise 45: Let R be a commutative unital ring, and let P_1, \ldots, P_n be prime ideals.

- i) Suppose that A is an ideal such that for $i=1,\ldots,n$ there exists $a_i\in A\cap P_i$ such that $a_i\notin P_j$ for all $j\neq i$, and let $b=a_1+(a_2\cdots a_n)$; show that $b\in A$ but $b\notin P_1\cup\cdots\cup P_n$.
 - ii) Show that if an ideal B is such that $B \subset P_1 \cup \cdots \cup P_n$, then $B \subset P_i$ for some $i \in \{1, \ldots, n\}$.

Exercise 46: Let R be a ring with at least one non-zero element, and such that for each non-zero $a \in R$ there is a unique $b \in R$ satisfying $a \, b \, a = a$, which one writes $b = \psi(a)$.

- i) Show that multiplication is regular (i.e. for each non-zero $r \in R$, rx = ry implies x = y and xr = yr implies x = y).
 - ii) Show that a b a = a implies b a b = b, i.e. if $b = \psi(a)$, then $a = \psi(b)$.
 - iii) Show that there is an identity for multiplication, and that R is a division ring.

Exercise 47: Let p be an odd prime, and let $R \subset \mathbb{Q}$ be the set of rational numbers whose denominator in reduced form (i.e. $\frac{a}{b}$ with $b \in \mathbb{Z}^*$ and $a \in \mathbb{Z}$ satisfying (a,b)=1) is not divisible by p, and let $J \subset R$ be the set of such rational numbers whose numerator in reduced form is a multiple of p.

- i) Show that R is a subring of \mathbb{Q} and J is an ideal of R.
- ii) If $\frac{a}{b}$, $\frac{c}{d} \in R$ (so that $b, d \neq 0 \pmod{p}$), one writes that $\frac{a}{b} = \frac{c}{d} \pmod{p}$ if $\frac{a}{b} \frac{c}{d} \in J$. Show that $1 + \frac{1}{2} + \ldots + \frac{1}{p-1} = 0 \pmod{p}$.

Exercise 48: (Putnam 1996-A5) If p is a prime greater than 3, and $k = \lfloor 2p/3 \rfloor$, prove that the sum

$$\binom{p}{1} + \binom{p}{2} + \dots + \binom{p}{k}$$

of binomial coefficients is divisible by p^2 .

(For example $\binom{7}{1} + \binom{7}{2} + \binom{7}{3} + \binom{7}{4} = 7 + 21 + 35 + 35 = 2.7^2$.)

Exercise 49: One considers the ring of Gaussian integers, $\mathbb{Z}[i] = \{z = a + ib \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$, with $V(z) = z \overline{z} = a^2 + b^2$.

- i) If x_0 is a positive integer and $y_0=a+b\,i\in\mathbb{Z}[i]$, show that there exists $q,r\in\mathbb{Z}[i]$ with $y_0=q\,x_0+r$ with either r=0 or $r\neq 0$ and $V(r)\leq \frac{V(x_0)}{2}$. ii) If $x\in\mathbb{Z}[i]$ with $x\neq 0$ and $y\in\mathbb{Z}[i]$, show by considering $x_0=x\,\overline{x}$ that $y=q\,x+r$ with either r=0
- ii) If $x \in \mathbb{Z}[i]$ with $x \neq 0$ and $y \in \mathbb{Z}[i]$, show by considering $x_0 = x \overline{x}$ that y = qx + r with either r = 0 or $V(r) \leq \frac{V(x)}{2}$, so that $\mathbb{Z}[i]$ is an Euclidean domain.
 - iii) Show that $Z[\sqrt{-2}] = \{z = a + i\sqrt{2} b \mid a, b \in \mathbb{Z}\}$ with $V(z) = z\overline{z} = a^2 + 2b^2$, is an Euclidean domain.