О числе геодезических между вершинами многогранника

1 Введение

 Γ еодезической линией (геодезической) на поверхности в \mathbb{R}^3 называется спрямляемая жорданова кривая, локально кратчайшая в каждой точке[1]. Рассмотрим следующую задачу: найти количество геодезических между вершинами многогранника, длина которых не превосходит заданного параметра τ . Причём, нас интересуют и самопересекающиеся геодезические, в том числе и те, что проходят через другие вершины многогранника.

В работе Д. Фукс и Е. Фукс [2] были изучены *замкнутые* геодезические на правильных многоранниках. Они получили результат для правильного тетраэдра, а также описывают все замкнутые геодезические на кубе и регулярном октаэдре.

В 2015 году Д. Дэвис, В. Додс, С. Трауб и Дж. Янг [3] исследовали несамопересекающиеся геодезические между двумя заданными точками на многограннике. На правильном тетраэдре были описаны все геодезические от вершины к точке, которая может быть другой вершиной. Так же они использовали дерево Штерна-Броко, чтобы исследовать рекурсивную структуру геодезических между вершинами на кубе.

2 Правильный тетраэр

Возьмём правильный тетраэдр ABCD с длинной ребра 1. Опишем все геодезические между вершинами этого тетраэдра, длина которых не превосходит τ .

Рассмотрим *полную развёртку* данного тетраэдра: решётка, состоящая из правильных треугольников, *узлами* которой являются вершины тетраэдра. Введём систему координат, в которой угол между осями $\frac{\pi}{3}$.

Точка A – начало координат, $B=(1,0),\ C=(0,1).$ Таким образом, вершине A соответствуют все точки $(2m,2n),\ B\to (2m+1,2n),\ C\to (2m,2n+1),\ D\to (2m+1,2n+1)$ (здесь и далее считаем $m,n\in\mathbb{Z}$). Расстояние от начала координат до целой точки X с координатами (m,n) вычисляется

как
$$||X|| = \sqrt{m^2 - 2 \cdot m \cdot n \cdot \cos\left(\frac{2\pi}{3}\right) + n^2} = \sqrt{m^2 + mn + n^2}.$$

Утверждение 1. Число геодезических между вершинами правильного тетраэдра, длина которых не превосходит τ равно

$$T(\tau) = \frac{\pi}{\sqrt{3}}\tau^2 + \frac{1}{2}P(\tau^2).$$

Здесь и далее P(x) – некоторая функция погрешности, наболее важные опубликованные результаты оценки которой:

$$P(x) << x^{23/73} (\log x)^{315/146},$$

$$\liminf_{x \to \infty} \left(\frac{P(x)}{x^{1/4} (\log x)^{1/4}} \right) < 0.$$

Оценка погрешности была уточнена в 2005 году в статье Ноуарка [4].

Доказательство. Задача практически сводится к тому, чтобы найти количество целых точек $X\left(m,n\right)$: $||X|| \leq \tau$.

$$\sqrt{m^2 + mn + n^2} \le \tau \implies m^2 + mn + n^2 \le \tau^2$$
.

А количество целых точек, удовлетворяющих этому неравеству, описано в статье [4] и равно $\frac{2\pi}{\sqrt{3}}\tau^2 + P(\tau^2)$. Разделим число решений на 2, так как решения (m,n) и (-m,-n) описывают одну и ту же

 $P(\tau^2)$. Разделим число решений на 2, так как решения (m,n) и (-m,-n) описывают одну и ту же геодезическую и получим заявленную формулу для $T(\tau)$.

3 Правильный октаэдр

Раскрасим грани октаэдра в два цвета так, чтобы у соседних граней октаэдра были разные цвета. Пометим вершины октаэдра неупорядоченными парами 12, 13, 14, 23, 24, 34 по следующему правилу: две вершины соединены ребром, если какая-то цифра является общей для двух вершин. Тогда получим, что

- белые грани задаются набором из трёх вершин, у которых есть одна общая цифра;
- \bullet черные грани набор вершин, таких, что значение 1, 2, 3 или 4 не включено ни в одну из вершин.

Тогда развёрткой октаэдра можно замостить плоскость следующим образом:

И случай с октаэдром становится аналогичен случаю с тетраэдром, с попракой лишь на то, что теперь нас интересуют все целочисленные решения неравенства $\sqrt{m^2+mn+n^2} \le \tau$, так решения (m,n) и (-m,-n) задают разные геодезические. Значит количество искомых геодезических на правильном октаэдре вдвое больше, чем на правильном тетраэдре. Отсюда следует следуещее

Утверждение 2. Число геодезических между вершинами правильного октаэдра, длина которых не превосходит au равно

$$O(\tau) = \frac{2\pi}{\sqrt{3}}\tau^2 + P(\tau^2).$$

4 Заключение

Мною были прочитаны и исследованы несколько статей на русском и английском языках. Это хороший старт для того, чтобы в дальнейшем заниматься научной деятельностью.

По итогам практики, я узнала много нового из разных областей математики. Учитывая специфику задачи (исследование геодезических), чтобы лучше погрузиться в тему, я ознакомилась с некоторыми учебными материалами по дифференциальной геометрии. В процессе решения я столкнулась с задачей из области теории чисел, как позже выяснилось, называемой "проблемой круга Гаусса описывающей число целых точек внутри круга радиуса r. Затем прочитала статью о решении этой задачи для случая произвольного эллипса. А в попытках решить задачу нахождения числа геодезических между вершинами куба, я познакомилась с таким понятием, как "дерево Штера-Броко". Эта идя представления неотрицательных несократимых дробей так же используется и в теории алгоритмов.

K тому же я преобрела опыт чтения литературы на английском языке и опыт исследования задач. Считаю практику очень полезной.

Список литературы

- [1] В. Ю. Протасов. О числе замкнутых геодезических на многограннике. $\mathit{УMH}$, 63:197—198, Jun 2008.
- [2] E. Fuchs D. B. Fuchs. Closed geodesics on regular polyhedra. *Mosc. Math. J.*, pages 265–279, April–June 2007.
- [3] D. Davis, V. Dods, C. Traub, and J. Yang. Geodesic trajectories on regular polyhedra. *ArXiv e-prints*, August 2015.

[4]	Werner Georg 55(2):519–530,	Nowak. Primitive, Jun 2005.	lattice points insid	de an ellipse.	Czechoslovak 1	$Mathematical\ Journal,$