Machine Learning: Homework Assignment 6 E4525 Spring 2018, IEOR, Columbia University

Due: Apr 19th, 2018

1. Exponential Distribution

 $s \in \mathbb{R}^+$ (s continuous and s > 0) has exponential distribution

$$p(s; \lambda) = \lambda e^{-\lambda s}$$
 for $\lambda > 0$ (1)

which is an exponential family distribution.

Give expressions for

- (a) Base measure h(s).
- (b) Sufficient statistic T(s).
- (c) canonical parameter η as a function of the natural parameter λ .
- (d) The cumulant function $A(\eta)$.
- (e) The average and variance of s as a function of λ

2. Gamma Distribution, shape parameter α known

 $s \in \mathbb{R}^+$ (s continuous and s > 0), s has Gamma distribution

$$p(s;\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} s^{\alpha - 1} e^{-\beta s} \quad \text{for } \alpha > 0, \ \beta > 0$$
 (2)

if we assume α is a known fixed number, $p(s; \beta)$ is has an exponential family distribution with a scalar canonical parameter η .

Give expressions for

- (a) Base measure h(s).
- (b) Sufficient statistic T(s).
- (c) canonical parameter η as a function of the natural parameter β .
- (d) What does the constrain $\beta > 0$ in the definition of the Gamma distribution imply for the canonical parameter?
- (e) The cumulant function $A(\eta)$.
- (f) The average and variance of s as a function of α and β

(g) show that the exponential distribution of exercise 1 is an special case of the Gamma distribution.

3. Gamma Distribution, shape parameter α unknown

 $s \in \mathbb{R}^+$ (s continuous and s > 0) has distribution

$$p(s; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} s^{\alpha - 1} e^{-\beta s} \quad \text{for} \quad \alpha > 0, \ \beta > 0.$$
 (3)

If we assume α is unknown number, $p(s; \alpha, \beta)$ is an exponential family distribution with a two dimensional canonical parameter $\eta = (\eta_1, \eta_2)$.

Give expressions for

- (a) Base measure h(s).
- (b) Sufficient statistic $T(s) = (T_1(s), T_2(s))$.
- (c) canonical parameter $\eta = (\eta_1, \eta_2)$ as a function of the natural parameters (α, β) .
- (d) The cumulant function $A(\eta)$.

4. Generalized Linear Model for Gamma Distribution: canonical link

We have two random variables $X \in \mathbb{R}^D$ and $Y \in \mathbb{R}^+$. We assume that $Y|_X$ is a Gamma distribution with the same assumptions of problem 2: Y has a Gamma distribution with α fixed

$$p(y|x;\eta,\alpha) = h(y)e^{\eta y - A(\eta)} \tag{4}$$

where h(y) and $A(\eta)$ are given as the solutions of problem 2.

We further assume the canonical link (note the minus sign)

$$\eta(x) = -(b + x^T w). \tag{5}$$

where $w = (w_1, \ldots, w_D)$.

Given N observations $\{x_i, y_i\}$ give expression for the following

- (a) The maximum likelihood loss function $E_{Gam}(b, w; \{x_i, y_i\})$
- (b) The expected value $\hat{y}(x; b, w)$ of y conditional on x as a function of α , b and w
- (c) The gradient of the loss E_{Gam} for changes of b and w_d
- (d) What does the constrain $\beta > 0$ in the definition of the Gamma probability distribution imply for the parameters b and w?

5. Generalized Linear Model for Gamma Distribution: log link

To avoid the constrained optimization that you analyzed in problem 4d We have two random variables X and Y. We assume that $Y|_X$ is a Gamma

distribution with the assumptions of problem 2 For $s \in \mathbb{R}^+$ (s continuous and s>0) has Gamma distribution

$$p(y|x;\eta,\alpha) = h(s)e^{\eta s - A(s)}$$
(6)

where η , h(s) and $A(\eta)$ are given as the solutions of problem 2.

We further a non-canonical link defined by $\psi(\eta) = -e^{-\eta}$

$$\eta(x) = \psi(b + x^T b) = -e^{-b - x^T w}.$$
(7)

Given N observations $\{x_i, y_i\}$ give expression for the following

- (a) The maximum likelihood loss function $E_{\text{Gam}}^{\log}(b, w; \{x_i, y_i\})$
- (b) The expected value $\hat{y}(x;b,w)$ of y conditional on x as a function of $\alpha,\,b$ and w
- (c) The gradient of the loss $E_{\rm Gam}^{\rm log}$ for changes of b and w_d