Com	pact	Metric	Spaces

Def? A metric space (M,d) is said to be compact if for every collection of open sets { Ux} in M s.t. M = UUx, } a finite subcollection {U1, ..., Un } set. M= UUs. In other words, (M,d) is compact if every open cover of M has a finite subcover. (HW): (M,d) is compact iff for any collection of closed sets I in M s.t. OF the for all choices of finitely many sets Fig., Fine T then

SET

OF the Girls Intersection property.

FET - M,d) If every open covering of M has a finite subcover, then (M,d) is totally bdd. Indeed, for E>O, consider A= & B(2, E) | 26 My. Then A forms an open covering of M. Heme, I am, n2, ..., xn & M = ÜB(xj, E) So (Md) is totally bad. If (M,d) has the finite intensection property, then M is complete. Indeed, we will show that the Nested Set Thm. holds in M. Let & Fil be a decreasing seg. of honempty closed sets in M with diam(Fin) >0. Then $\bigcap_{j=1}^{n} F_{j} = F_{n}$ (as F_{j} 's are nested). Hence $\bigcap_{j=1}^{n} F_{j} \neq \emptyset$, F_{j} and F_{j} F_{j} Home by the finite intersection property, OF: # \$. Therefore M is complete. (HW). Q. If M is totally bad, then is M compact (Def")? Q. If M is complete, then is M compact?

	Open over property => totally bad.
	<u>* </u>
	finite indevsection property => compléte.
(HW) ->	(M,d) is compact (=> totally bdd and complete.
	Remark: Recall that M is complete iff Newted Set Thm.
	· Mis compact iff for a nested seg, of nonempty closed sets
	8 Fn b, NFn ≠ p. (Condition diam(Fn) >0 not required)
	· ·
	· M is compact Iff every "countable" open cover hava finite subcover.
7	An analogue of the Heine-Bovel Thm:
O "	
Kecall:	(Heine-Bovel Thm.) (IR's 11.11z) n71.
	A is compact iff A is closed and bdd.
7	(M,d) complete metric space and ACM.
	A is compact iff A is closed and totally bold.
Dcf.	
	that converges in M.
((4)	()) () () () () () () () () (
(Hn)	(M,d) is compact iff M is segmentially compact.
	C
	Consequence: A compact => A is closed in M (HW)
	A compet. (= M compact + A closed in M

 $f: (M,d) \rightarrow (N,g)$ cts. map. K: compact in M Then f(K) is compact in N. Consequences? . (M,d) compact If f: M→ IR is cts., Hen f is bdd (i.e., §f(x)) x ∈ M s is a bad set in IR) Recall: f: [9,6] > IR cts. Hun f is bdd. . (M,d) compact f: (M,d) → IR ck. Then f attains its max- and min values. Recall: f: [a, b] - IR ds. then f affering its max and min. · f: [9,6] -> R ck. Then f[9,6] is compact & connected subset of IR. If fis constant, then f[9,6] = gcs. If f is nonconstant, then f[9,6] connected implies it is an interval. Moreover, f[9,5] is compact implies f[9,5] is closed & bdd. Hence f[9,6] = [c,d]. · (M,d) compact. C(M) = } f: (M,d) → IR cts. } Then, ||f|| := sup { |f(x)|} defines a norm on C(M). Recall: (C [9,6] |1.1100) is a normed linear space. - R C(M) is a complete metric space Q. Is (C(M), 11.112) totally bold ?