Serial No.: Case No.: To be assigned MC057YP

Page

3

10/526346 PTO1 Rec'd PCT/PT 0 2 MAR 2005

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A method of treatment of rheumatoid arthritis by administering, to one in need of such treatment, an effective amount of a phosphodiesterase-4 inhibiting compound.

2. (Currently Amended) A method of treatment of rheumatoid arthritis according to claim 1 by administering, to one in need of such treatment, an effective amount of a compound represented by Formula (I):

(I)

or a pharmaceutically acceptable salt thereof wherein:

R is hydrogen, C₁-6alkyl, halogen or CF₃;

 $\label{eq:reconstruction} \begin{array}{c} R^1 \text{ is -} (\text{CH}_2)_m \text{-} \text{CO-N}(R^4) \text{-} \text{S}(\text{O})_2 \text{-} R^5, \text{-} (\text{CH}_2)_m \text{-} \text{CO-N}(R^4) \text{-} \text{S}(\text{O})_2 \text{-} N R^6 R^7, \text{-} (\text{CH}_2)_m \text{-} \text{S}(\text{O})_2 \text{-} N (R^4) \text{-} \text{CO-N} R^6 R^7, \text{ or -C}(\text{OH})(\text{C}_1\text{-}6\text{haloalkyl})_2, \\ \text{wherein m is 0, 1 or 2,} \end{array}$

 $\rm R^2$ and $\rm R^3$ are each independently C1-7alkyl, substituted C1-7 alkyl, wherein the substituent is F, Cl, Br or I, 2-phenethyl or 2-indanyl, optionally mono or di-substituted, wherein the substituents on the benzene ring are each independently halogen, -C1-6alkoxy, -C1-6alkylthio, -CN, -CF3, -C1-6alkyl, -N3, or -CO2H,

 R^4 is hydrogen, -C₁₋₆alkyl, phenyl, benzyl or 2-phenethyl, optionally mono or disubstituted, wherein the substituents on the benzene ring are independently halo, -C₁₋₆alkoxy, -C₁₋₆alkylthio, -CN, -CF₃, -C₁₋₆alkyl, -N₃, or -CO₂H,

 R^5 , R^8 and R^{11} are each independently -CF3, -C1-6alkyl, phenyl, benzyl or 2-phenethyl, optionally mono or di-substituted, wherein the substituents on the benzene ring are independently halogen, -C1-6alkoxy, -C1-6alkylthio, -CN, -CF3, -C1-6alkyl, N3, or -CO2H,

 $R^6,\,R^7,\,R^9$ and R^{10} are each independently hydrogen, or -C1-6alkyl, or

Page 4

 R^6 and R^7 may be joined to form a saturated 5, 6 or 7 membered heterocycle, said heterocycle containing a heteroatom which is nitrogen and optionally containing an additional hetero atom which is an O or an S atom or NR^4 , and optionally containing a carbonyl group;

HET is pyridyl or imidazolyl, optionally mono-, or disubstituted, wherein the substituents are independently halogen, -C1-6alkyl, -C1-6alkoxy, -C1-6alkylthio, benzyl, 2-phenethyl, -NHCOR 8 , -NR 9 R 10 , -NHS(O)₂R 11 , OH, -CN, or -CF₃, or the N-oxides thereof; and

X is N, $N \rightarrow O$, or CH.

3. (Currently amended) A method of treatment of rheumatoid arthritis according to claim 1 by administering to one in need of such treatment an effective amount of a compound represented by Formula (II):

(II)

or a pharmaceutically acceptable salt thereof, wherein

S₁, S₂, and S₃ are independently H, -OH, halogen, -C₁-C₆alkyl, -NO₂, -CN, or -C₁-C₆alkoxy, wherein the alkyl and alkoxy groups are optionally substituted with 1-5 substituents; wherein each substituent is independently a halogen or OH;

R₁ is a H, OH, halogen, or -C₁-C₆alkyl, -cycloC₃-C₆alkyl, -C₁-C₆alkenyl, -C₁-C₆alkoxy, aryl, heteroaryl, -CN, -heterocycloC₃-C₆alkyl, -amino, -C₁-C₆alkylamino, -(C₁-C₆alkyl)(C₁-C₆alkyl)amino, -C₁-C₆alkyl(oxy)C₁-C₆alkyl, -C(O)NH(aryl), -C(O)NH(heteroaryl), -SO_nNH(aryl), -SO_nNH(heteroaryl), -SO_nNH(C₁-C₆alkyl),

 $-C(O)N(C_0-C_6alkyl)(C_0-C_6alkyl), -NH-SO_n-(C_1-C_6alkyl), -SO_n-(C_1-C_6alkyl), -(C_1-C_6alkyl), -(C_1-$

C6alkyl)-O-C(CN)-dialkylamino, or -(C1-C6alkyl)-SOn-(C1-C6alkyl) group, wherein any of

the groups is optionally substituted with 1-5 substituents; wherein each substituent is independently a halogen, -OH, -CN, -C1-C6alkyl, -cycloC3-C6alkyl, -C(O)-O-(C0-C6alkyl), -C(O)-aryloxy, -C1-C6alkoxy,

-(C0-C6alkyl)(C0-C6alkyl)amino, cycloalkyloxy, acyl, acyloxy, -cycloC3-C6alkyl, heterocycloC3-C6alkyl, aryl, heteroaryl, carbamoyl, or -SO $_n$ -(C1-C6alkyl);

A is CH, C-ester, or C-R4;

5

Page

R2 and R3 independently is an aryl, heteroaryl, H, halogen, -CN, -C1-C6alkyl, heterocycloC3_6alkyl, -C1-C6alkoxy, carbamoyl, -C(O)OH,

 $-(C_1-C_6alkyl)-SO_n-(C_1-C_6alkyl), -C(O)N(C_0-C_6alkyl)(C_0-C_6alkyl), or$

-C1-C6alkylacylamino group, wherein any of the groups is optionally substituted with 1-5 substituents, wherein each substituent is independently an aryl, heteroaryl, halogen, -NO2, -C(O)OH, -CN, -C1-C6alkyl, -SOn-(C1-C6alkyl), -SOn-(aryl), aryloxy, -heteroaryloxy, C1-C6alkoxy, N-oxide, -C(O)-heterocycloC3-C6alkyl, -NH-cycloC3-C6alkyl, amino, -OH, or -(C0-C6alkyl)(C0-C6alkyl)amino, -C(O)-N(C0-C6alkyl)(C0-C6alkyl) substituent group, wherein each substituent group independently is optionally substituted with -OH, C1-C6alkoxy, -C1-C6alkyl, -cycloC3-C6alkyl, aryloxy, -C(O)OH, -C(O)O(C1-C6alkyl), halogen, -NO2, -CN, -SOn-(C1-C6alkyl), or -C(O)-N(C0-C6alkyl)(C0-C6alkyl);

one of R₂ and R₃ must be an aryl or heteroaryl, optionally substituted; when R₂ and R₃ are both an aryl or heteroaryl, then R₂ and R₃ may be optionally connected by a thio, oxy, or (C₁-C₄alkyl) bridge to form a fused three ring system; R₄ is an aryl, -C₁-C₆alkyl, heteroaryl, -CN, carbamoyl,

-(C₁-C₆alkyl)-SO_n-(C₁-C₆alkyl), -C(O)N(C₀-C₆alkyl)(C₀-C₆alkyl), or -C₁-C₆alkylacylamino group, wherein any of the groups is optionally substituted with 1-5 substituents, wherein each substituent is independently a -CN, halogen, -C(O)(C₀-C₆alkyl),

-C(O)O(C₀-C₆alkyl), -C₁-C₆alkyl, -SO_n-(C₁-C₆alkyl), -OH, C₁-C₆alkoxy, or -(C₀-C₆alkyl)(C₀-C₆alkyl)amino, group;

n is independently 0, 1, or 2; and R₂ or R₃ may optionally be joined to R₄ by a bond to form a ring.

4. (Original) The method of claim 2, wherein said compound is represented by

5. (Original) The method of claim 3, wherein said compound is represented by

Page 6

6. (Original) A method of treatment of rheumatoid arthritis by administering to one in need of such treatment an effective amount of N-(3,5-dichloropyrid-4-yl)-3-cyclopropylmethoxy-4-difluoromethoxybenzamide.

7. (Original) A method of treatment of rheumatoid arthritis by administering, to one in need of such treatment, an effective amount of a compound represented by Formula (III):

$$R^{5}$$
 R^{4}
 N
 N
 R^{7}
 R^{8}
 R^{8}
 R^{3}

(III)

or a pharmaceutically acceptable salt thereof, wherein R is H, -C₁-6alkyl or -C₃-6cycloalkyl;

Page 7

 $R^1 \text{ is H, or a --}C_{1-6}alkyl, -C_{3-6}cycloalkyl, -C_{1-6}alkoxy, -C_{2-6}alkenyl, -C_{3-6}alkynyl, -C(O)-C_{1-6}alkyl, -C(O)-aryl, -(C_{0-6}alkyl)-SO_{n}-(C_{1-6}alkyl), -(C_{0-6}alkyl)-SO_{n}-(C_{1-6}alkyl), -(C_{0-6}alkyl)-SO_{n}-(C_{1-6}alkyl), phenyl, heteroaryl, or heterocycloC_{3-7}alkyl group, wherein any of the groups is optionally substituted with 1-3 independent -C_{1-6}alkyl, -C_{1-6}alkoxy, OH, -N(C_{0-6}alkyl)(C_{0-6}alkyl), -(C_{0-6}alkyl)-SO_{n}-(C_{1-6}alkyl), nitro, CN, =N-O-C_{1-6}alkyl, -O-N=C_{1-6}alkyl, or halogen substituents;$

R² is absent, H, halogen, -C₁-6alkyl, -C₃-6cycloalkyl, -C₁-6alkyl(C₃-6cycloalkyl)(C₃-6cycloalkyl), -C₁-6alkoxy, phenyl, heteroaryl, heterocycloC₃-7alkyl, nitro, CN, =N-O-C₁-6alkyl, -O-N=C₁-6alkyl, -N(C₀-6alkyl)(C₀-6alkyl), -NHSO_n-(C₁-6alkyl), -NHC(O)-C₁-6alkyl, -NHC(O)-aryl, -C(O)-C₁-6alkyl, -C(O)-O-C₁-6alkyl, -C₁-6alkyl(=N-OH), -C(N=NOH)C₁-6alkyl, -C₀-6alkyl(oxy)C₁-6alkyl-phenyl, -SO_nNH(C₀-6alkyl), or -(C₀-6alkyl)-SO_n-(C₁-6alkyl), wherein the phenyl, heteroaryl or heterocycloC₃-7alkyl is optionally substituted with halogen, -C₁-6alkyl, -C₁-6alkoxy, hydroxy, -N(C₀-6alkyl)(C₀-6alkyl), or -C(O)-O-C₁-6alkyl, and any alkyl is optionally substituted with 1-6 independent halogen or -OH substituents;

n is 0, 1, or 2;

R³ is absent, H, OH, -N(C₀-6alkyl)(C₀-6alkyl), halogen or C₁-6alkyl, wherein any alkyl is optionally substituted with 1-6 independent halogen, OH, or -N(C₀-6alkyl)(C₀-6alkyl) substituents;

 R^4 , R^5 , R^6 , and R^7 each independently is H, halogen, $-C_{1\text{-}6}$ alkyl, $-C_{1\text{-}6}$ alkoxy, $-SO_{n}$ – $(C_{1\text{-}6}$ alkyl), nitro, CN, or $-N(C_{0\text{-}6}$ alkyl)($C_{0\text{-}6}$ alkyl), and any alkyl is optionally substituted with 1-6 independent halogen or -OH substituents; and

 R^8 is phenyl, pyridyl, pyrimidyl, indolyl, quinolinyl, thienyl, pyridonyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, or imidazolyl; or oxides thereof when R^8 is a heteroaryl; or H, $-C_1$ -6alkyl, or $-C_3$ -6cycloalkyl, and any alkyl is optionally substituted with 1-6 independent halogen, $-N(C_0$ -6alkyl)(C_0 -6alkyl), $-N(C_3$ -7cycloalkyl)(C_0 -6alkyl), $-N(C_3$ -7cycloalkyl)(C_3 -7cycloalkyl), N-heterocyclo C_4 -7alkyl, $-SO_n$ -(C_1 -6alkyl), $-SO_n$ -(aryl), or $-C_1$ -0H substituents.

8. (New) A compound according to claim 7 wherein

R is hydrogen; R¹ is cyclopropyl; R, R⁴ R⁵, R⁶ and R⁷ are each hydrogen; and R⁸(R²)(R³) is 3-pyridine N-oxide.