COMS30035, Machine learning: Introduction

Rui Ponte Costa

Department of Computer Science, SCEEM University of Bristol

September 26, 2022

Disclaimer

These are unusual years. COVID-19 means that we had to change our teaching processes. So please bear with us – we are trying our best.

Agenda

- What is machine learning?
- Examples
- ▶ How does it relate to other units?
- What will we cover?
- Unit outline
- Assessments/coursework
- Labs

What is machine learning?

- Machine Learning (ML) is the study of computer algorithms that learn a model of data. These models are then used to make predictions and better understand the problem at hand.
- It is typically grounded on statistical science¹ and seen as a subfield of Artificial Intelligence.

¹Remember to review some key statistical concepts. See lain Murray's crib-sheet with a revision of math commonly used in ML here.

Machine learning interest [Google trends]

Machine learning interest [Google trends]

In contrast to Computer Science, Machine Learning is increasing in popularity.

Examples: Linear regression

When we regress one variable against another using a linear model.

Pros: Simple model Cons: Simple model

Example: Can we predict property prices in Boston?

Examples: Classification

When we want to automatically separate data into classes.

Pros: A wide range of methods that work well (e.g. ANNs or SVMs).

Cons: Needs labelled data (i.e. sample X is an example of a dog).

Example: Is it a dog or a bagel?

Examples: Graphical models

When we use a graphical model to represent an explicit probabilistic model.

Pros: Easy to interpret and explicit notion of uncertainty. **Cons**: Can be hard to estimate.

Example: What are the changes of survival for a smoker?

Examples: Dimensionality reduction

Used to compress data to a much smaller number of dimentions.

Pros: Easy to compute (e.g. using PCA). **Cons**: Loss of features semantics.

Example: How many features/components are enough to explain 80% of the variance in a given dataset? More here.

Examples: Generating text in natural language

Pros: Can give impressive results (e.g. using deep learning).

Cons: Models can be hard to interpret.

Example using a Transformer (a type of neural network):

Input: "Machine Learning is the study of computer algorithms that learn a model of data."

Output/completion: "Traditional AI, such as natural language processing, machine translation, image recognition, and <u>machine translation</u> relies heavily on well-defined data, and can perform well without much further manipulation of the data. Typically, a machine learning system recognizes patterns of data and then uses those patterns to predict outcomes of a given scenario. (see prediction)"

Try it out app.inferkit.com/demo!

How does it relate to other units

- This unit builds directly on previous units
 - Data Science for CS (previously known as SPS) [introduction to data science in Python]
 - Algorithms I and II [design/analyse algorithms, and data structures]
 - Math for CS I and II [algebra and statistics]
- And is a building block for more advanced units (4th year):
 - Advanced ML
 - Applied Deep Learning (neural networks)
 - Information Processing & the Brain (ML and neuroscience)
 - Cloud Computing and Big Data (ML on the cloud)
 - Advanced Computer Vision (ML for vision)
 - Applied Data Science (ML and data management)

What we will cover

We will focus on the following textbook

Bishop, C. M., Pattern recognition and machine learning (2006). Available for free here.

With some sections from:

Murphy, K., Machine learning a probabilistic perspective (2012). The book is also freely available <u>here</u>.

What we will cover

- Part 1: Overview, ML concepts, revisiting regression and neural networks [» Rui Ponte Costa, unit director]
- 2. Part 2: SVMs, Graphical models, mixture models, EM, Continuous latent models (PCA, ICA) [» James Cussens]
- 3. Part 3: Sequential data (RNNs, HMMs), model ensembles [» Edwin Simpson]

Unit Outline

On the unit BB page; and uob-coms30035.github.io

On the drift bb page, and dob-comsologic fluids.io				
Weeks	First lecture	Second lecture	Labs [Thu 9am-12pm]	Live lecture [Q&A class; Tues 9-10am]
1	Introduction [stream]	Machine learning concepts [stream]	L1: Revision of Jupyter Notebook and ML libraries [answers]	General questions about the unit
2	Revisiting regression [stream], Bayesian regression [stream], Classification and neural networks [stream]	Kernel machines [Kernels 1, stream] [Kernels 2, stream] [Kernels 3, stream]	L2: Regression, nnets and SVMs	ML concepts, regression, classification and nnets
3	Introduction to graphical models [Prob revision, stream, mp4] [PGM 1, stream, mp4] [Netica demo, stream, mp4] [PGM 2, stream, mp4] [PGM 3, stream, mp4]	Bayesian ML using graphical models	L3: Probabilistic graphical models [answers]	Kernel machines and probabilistic graphical models
4	k-means and mixtures of Gaussians	The EM algorithm	L4: k-means and EM [answers]	The k-means and EM
5	PCA	kernel PCA and ICA	L5: PCA and ICA [answers]	PCA and ICA
6	Reading week			
7	Sequential data	Sequential data	L6: Hidden Markov Models [answers]	Modelling sequential data
8	Selection and Combination	Trees, Mixtures and Crowds	L7: Trees and Ensemble methods [answers]	Combining models using ensembles and probabilistic methods
9-11	Coursework weeks			
12	Review week			

Online/in person teaching

Every week you will get two teaching components:

- 1. Asynchronous/during your own time:
 - 2 recorded lectures (available on github webpage)
 - Pointers to textbook (Bishop book)
- 2. Synchronous/during the time set in your timetable:
 - ▶ 1 live lecture (QA/problem class) [1 hour; Tue 1-2pm in person!]
 - 1 lab based on the lectures taught on that week [three hours; in person (or online if you cannot be in person)]

Microsoft Teams

This year all our synchronous activities will be run **in person**. For questions we have a Teams channel **COMS30035**: **Machine Learning** (**Teaching Unit**)

How to join?

- 1. Install Microsoft Teams.
- 2. You should be already added to our Team.
- 3. Enter Team and the appropriate channel.

Assessments

Option 1, 100% Coursework²: A small project involving a ML problem [fulltime in weeks 9-11]

Coursework released at beginning of week 9.

Discussion with others is encouraged, but submissions need to be unique [plagiarism is taken seriously!]

- Option 2, 100% Exam
- Labs are only formative, but we highly encourage you to finish all of them, as it will massively help you preparing for either option.

 $^{^2}$ It is possible to change options until end of Week 2, but remember that you can only do 2 units via Option 1.

Labs

- Thursday 9am 12pm [as in timetable]: In person
- ► Lab Environment [Jupyter + Python] ³

- Lab Work:
 - Work proactively offline and/or online.

³For those doing the CS undergrad, we will follow a similar setup to Data Science for CS.

Labs: Important!!

- Main source of 1:1 support will be from the TAs in the labs!
- Labs are in person!
- Labs are essential for a good understanding of ML!

Your TAs

That you will interact with through Teams:

- Abanoub Ghobrial
- Will Greedy
- Dabal Pedamonti
- Amarpal Sahota
- Amirhossein Dadashzadeh
- Benjamin Arana-Sanchez
- Stefan Radic Webster

Tasks

- Live Q&A (Tue 1-2pm): Bring questions about the structure of the unit
 - You can use the Teams QA>Ask Question system to ask question before hand.
- Next Lab (Week 1): Jupyter Notebook and intro to Python-Sklearn
 - 1. Go to MVB computer labs (2.11)
 - 2. See link to lab 1 on BB
 - Ask TAs for help!