Techniques algébriques

Coefficients binomiaux

QCOP TALG. 1

Soit $n \in \mathbb{N}^*$. Soient $k \in [1, n-1]$.

- 1. Énoncer et démontrer de manière combinatoire une formule liant $\binom{n}{k}$ et $\binom{n-1}{k-1}$.
- **2.** Exprimer $\binom{n}{k}$ en fonction de $\binom{n-1}{k-1}$.
- 3. Retrouver ces résultats à l'aide de l'expression de $\binom{n}{k}$ à l'aide de factorielles.

QCOP TALG.2

- 1. Définir $\binom{n}{k}$ pour $(n,k) \in \mathbb{N}^2$.
- 2. Énoncer et démontrer la formule du binôme de Newton.
- **3.** Soient E et F deux ensembles finis.
 - a) Calculer Card $(\mathscr{P}(E))$.
 - **b)** Calculer Card $(\mathscr{P}(E \times F))$.

QCOP TALG.3

- 1. Donner la relation de Pascal.
- 2. Démontrer par récurrence que :

$$\forall n \in \mathbb{N}, \, \forall k \in \llbracket 0, n \rrbracket, \, \binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

3. En pratique, comment calcule-t-on $\binom{n}{k}$?

QCOP TALG.4 *

- Énoncer et démontrer de manière combinatoire la formule du triangle de Pascal pour les coefficients binomiaux.
- **2.** Soient $n, p \in \mathbb{N}$. On considère $S_n := \sum_{k=0}^n \binom{p+k}{p}$.
 - a) Représenter les termes de S_n sur le triangle de Pascal.
 - **b)** Soit $k \in \mathbb{N}^*$. Simplifier $\binom{p+k+1}{p+1} \binom{p+k}{p+1}$.
 - c) Calculer S_n .

Sommes usuelles

QCOP TALG.5

Soit $(u_n)_n$ une suite arithmétique de premier terme $a \in \mathbb{C}$ et de raison $r \in \mathbb{C}$.

- **1.** Définir $(u_n)_n$ par récurrence et exprimer explicitement, pour $n \in \mathbb{N}$, le terme u_n .
- **2.** a) Soit $n \in \mathbb{N}$. Déterminer une expression simplifiée de la somme $\sum_{k=0}^{n} u_k$.
 - **b)** Soient $N_0, N_1 \in \mathbb{N}$ avec $N_0 \leqslant N_1$. Exprimer $\sum_{k=N_0}^{N_1} u_k$.
- 3. Soit $n \in \mathbb{N}^*$. Retrouver, à l'aide de ce qui précède, les valeurs de $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n-1} k$ et $\sum_{k=0}^{n+1} k$.

QCOP TALG.6

- 1. Soit $a \in \mathbb{R} \setminus \{1\}$. Soient $N_0, N_1 \in \mathbb{N}$ avec $N_1 \geqslant N_0$.
 - Exprimer $\sum_{k=N_0}^{N_1} a^k$ comme un quotient faisant intervenir des puissances de a.
- **2.** Soit $a \in \mathbb{R}$. Déterminer les limites suivantes :

$$\lim_{n \to +\infty} \sum_{k=0}^{n} a^{k} \quad \text{ et } \quad \lim_{n \to +\infty} \sum_{k=1}^{n} a^{k}$$

dans les cas $a \in [0,1[$, a = 1 et a > 1.

Indication. On pourra utiliser tous les résultats de Terminale sur les suites géométriques.

QCOP TALG.7 ★

- **1.** Soient $a, b \in \mathbb{R}$. Soit $n \in \mathbb{N}^*$. Compléter et démontrer : $a^n b^n = \cdots \sum_{k=1}^m \cdots$
- **2.** Soient $a_0, a_1, a_2, a_3 \in \mathbb{R}$. On définit la fonction $P: x \longmapsto a_0 + a_1x + a_2x^2 + a_3x^3$. Soit $c \in \mathbb{R}$ tel que P(c) = 0.

Montrer que :

$$\exists b_0, b_1, b_2 \in \mathbb{R} : \forall x \in \mathbb{R}, \quad P(x) = (x - c)(b_0 + b_1 x + b_2 x^2).$$