## Análisis de Conglomerados



José A. Perusquía Cortés

Análisis Multivariado Semestre 2024 - I



Clustering es el procesos de agrupar objetos similares buscando patrones en los datos

- Técnica de aprendizaje no supervisado, i.e., a priori no necesitamos:
  - Conocer el número de clusters (en algunas ocasiones se puede conocer)
  - Un grupo de observaciones etiquetadas (training data)

- Dos tipos de métodos
  - Si no se conoce el número de clusters se tienen métodos jerárquicos aglomerativos y divisivos
  - Si se conoce el número de clusters se crean particiones (cada objeto pertenece a un cluster) o métodos "fuzzy" (cada objeto puede pertenecer a varios clusters)

## ¿Cómo se define un cluster?

- Necesitamos definir una noción de cercanía
  - Matriz de distancias
  - Matriz de disimilitudes
  - Matriz de similitudes

- En la práctica es común utilizar
  - Distancia euclidiana
  - Distancia Manhattan
  - Distancia Mahalanobis

# Métodos jerárquicos aglomerativos (AGNES)

### Métodos Aglomerativos

#### ¿Qué necesitamos?

- Una matriz de proximidades (e.g. distancias, disimilitudes)
- Medida de distancia entre clusters

#### Idea

Crear un árbol de clusters empezando con n grupos de una sola observación y e irlos uniendo por cercanía

¿Cómo medir la distancia entre clusters?

También conocido como single linkage method (Sneath, 1957; Sokal y Sneath, 1963;
Johnson, 1967)

Pados dos clusters  $C_i$  y  $C_j$  la distancia entre ellos es la disimilitud más pequeña entre uno sus miembros, i.e.

$$d\left(C_{i}, C_{j}\right) = \min\left\{d_{rs} : r \in C_{i}, s \in C_{j}\right\}$$

- Buscar la disimilitud más pequeña entre clusters
- Recalcular la matriz de disimilitudes

También conocido como complete linkage method (Sokal y Sneath, 1963; McQuitty, 1964)

Pados dos clusters  $C_i$  y  $C_j$  la distancia entre ellos es la disimilitud más grande entre uno sus miembros, i.e.

$$d\left(C_{i}, C_{j}\right) = \max\left\{d_{rs} : r \in C_{i}, s \in C_{j}\right\}$$

- Buscar la disimilitud más pequeña entre clusters
- Recalcular la matriz de disimilitudes

Pados dos clusters  $C_i$  y  $C_j$  se define la distancia entre ellos como la "distancia" entre sus centroides (Sokal y Michener, 1958; King, 1966, 1967)

$$\bar{\mathbf{X}}_i = \sum_{n \in C_i} \frac{\mathbf{X}_n}{n_i} \qquad \bar{\mathbf{X}}_j = \sum_{m \in C_i} \frac{\mathbf{X}_n}{n_j} \qquad \rightarrow \qquad d\left(C_i, C_j\right) = \delta\left(\bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j\right)$$

- Buscar la disimilitud más pequeña entre clusters
- Recalcular el centroide

$$\bar{\mathbf{X}}_{Ci \cup C_j} = \frac{n_i \bar{\mathbf{X}}_i + n_j \bar{\mathbf{X}}_j}{n_i + n_i}$$

 También conocido como incremental sum of squares method (Wishart, 1969a) basado en la idea de Ward (1963)

#### Algoritmo

- Unir los clusters que minimicen

$$I_{C_{i}C_{j}} = \sum_{k \in C_{i} \cup C_{j}} ||\mathbf{X}_{k} - \bar{\mathbf{X}}||^{2} - \left[\sum_{n \in C_{i}} ||\mathbf{X}_{n} - \bar{\mathbf{X}}_{i}||^{2} + \sum_{m \in C_{j}} ||\mathbf{X}_{m} - \bar{\mathbf{X}}_{j}||^{2}\right] = \frac{n_{i}n_{j}}{n_{i} + n_{j}} ||\bar{\mathbf{X}}_{i} - \bar{\mathbf{X}}_{j}||^{2}$$

- En particular para dos observaciones r, s

$$I_{rs} = \frac{1}{2} ||\mathbf{X}_r - \mathbf{X}_s||^2 = \frac{1}{2} d_{rs}^2$$

También conocido como group average method (Sokal y Michener, 1958; McQuitty, 1964;
Lance y Williams, 1966)

ullet Dados dos clusters  $C_i$  y  $C_j$  la distancia entre ellos se define como el promedio de las distancias de sus miembros

$$d\left(C_{i}, C_{j}\right) = \frac{1}{n_{i}n_{j}} \sum_{n \in C_{i}} \sum_{m \in C_{i}} d_{nm}$$

También conocido como Lance and Williams Flexible Method (Lance y Williams, 1967a)

- Dados tres clusters  $C_i$  ,  $C_j$  y  $C_k$  definimos la distancia de  $C_k$  y  $C_i$  U  $C_j$  como:

$$d\left(C_{k}, C_{i} \cup C_{j}\right) = \alpha_{1}d(C_{k}, C_{i}) + \alpha_{2}d(C_{k}, C_{j}) + \beta d(C_{i}, C_{j}) + \gamma \mid d(C_{k}, C_{i}) - d(C_{k}, C_{j}) \mid d(C_{k}, C_{i}) \mid d($$

Casos particulares: vecino más cercano, vecino más lejano, centroide, Ward y promedio

Lance y Williams sugieren  $\alpha_1=\alpha_2$ ,  $\beta<1$ ,  $\alpha_1+\alpha_2+\beta=1$ ,  $\gamma=0$ 

## Implementación

- En R: librería cluster
- Para un clustering aglomerativo se usa la función agnes y recibe como parámetros:
  - x : datos (matriz o data frame) o matriz de disimilitudes
  - diss: booleano indicando si x es una matriz de disimilitudes
  - metric : la métrica para calcular las disimilitudes de x
  - stand: booleano indicando si se deben estandarizar los datos
  - method: la liga a utilizar par el clustering



Estos métodos son para datos de los cuales no se sabe el grupo

 Iris tiene etiquetas y solo lo utilizamos para ejemplificar los métodos y ver como algunas ligas pueden tener un mejor performance

 Si en la vida real ya conocen los grupos no es necesario hacer clustering a menos de que existan dudas en los grupos iniciales Vecino más cercano



#### Primer grupo



#### Segundo grupo



Ward



#### Primer grupo



Segundo grupo



#### Tercer grupo



• Medida de similitud de un objeto y el cluster al que pertenece comparado con el resto (Rousseeuw, 1987).

- Construcción para el i-ésimo objeto en el cluster A:
  - Obtener la disimilitud promedio de su cluster a(i)
  - Obtener el mínimo de las disimilitudes promedio de los otros clusters, i.e.,  $b(i) = \min_{C \neq A} \{d(i,C)\} \text{ (dicho cluster es la segunda mejor opción)}$
  - Definimos la silhouette como:

$$s(i) = \frac{b(i) - a(i)}{\max\{b(i), a(i)\}}$$



#### **Observaciones**

- $-1 \le s(i) \le 1$  por lo que:
  - Si s(i) > 0 el objeto está bien clasificado
  - Si s(i)=0 el objeto está a la misma distancia de A y de B
  - Si s(i) < 0 el objeto está mal clasificado
- Podemos crear una gráfica poniendo los silhouettes ordenados por cada cluster, en  $\mathbf{R}$  usar la función silhouette()
- Proporciona una forma de medir que tanta estructura hemos descubierto usando el promedio de las silhouettes  $\bar{s}(k)$  y una posible forma de elegir k con el silhouette coefficient  $SC = \max\{\bar{s}(k)\}$

• (Posible interpretación) Kaufman (1990) proporciona la siguiente tabla basado en su experiencia:

- Si  $SC \in (.70,1]$  se ha encontrado una fuerte estructura de clustering

- Si  $SC \in (.5, .7]$  se ha encontrado una estructura razonable

- Si  $SC \in (.25,.5]$  la estructura es débil y se debe considerar otro método

- Si  $SC \leq .25$  no se encontró una estructura sustancial

## Ejemplo: Iris + agnes (single)

#### Silhouette



Average silhouette width: 0.69

| Obs. | Cluster | Alternativa | Silhouette  |  |
|------|---------|-------------|-------------|--|
| 58   | 2       | 1           | -0.02211145 |  |
| 99   | 2       | 1           | -0.15177853 |  |

## Ejemplo: Iris + agnes (ward)

#### Silhouette



Average silhouette width: 0.55

| Obs. | Cluster | Alternativa | Silhouette  |  |
|------|---------|-------------|-------------|--|
| 53   | 2       | 3           | -0.05092527 |  |
| 135  | 2       | 3           | -0.04842929 |  |

# Métodos jerárquicos divisivos (DIANA)

#### Idea

Empezar con un cluster de tamaño n e irlo dividiendo.

- Ventajas (Williams y Lance, 1977)
  - El proceso empieza con el contenido máximo de información.
  - La división no tiene que continuar hasta tener *n* clusters.

#### Restricción

 $-2^{n-1}-1$  formas de separar n objetos en 2 grupos ... imposible analizar todos los casos

#### Idea

La división se basa en una sola variable

#### Problemas

- Sensible a outliers
- Difícil de adaptar con una mezcla de variables cuantitativas y cualitativas
- Errores frecuentes de clasificación

### Mono-variables

- Si todas las variables son dicotómicas:
  - Dividimos las observaciones en dos grupos dependiendo si tienen el atributo A

#### ¿Cómo elegimos a A?

- Maximice alguna medida de distancia entre dos grupos e.g.: estadístico  $\chi^2$ 

| Var. r\ Var. s | Presente | Ausente | Total  |
|----------------|----------|---------|--------|
| Presente       | а        | Ь       | a+b    |
| Ausente        | C        | Ь       | c+d    |
| Total          | a+c      | b+d     | a+b+c+ |

$$\chi_{rs}^{2} = \frac{n(ad - bc)^{2}}{(a+b)(a+c)(b+d)(c+d)}$$

Elegimos A como la que maximice:  $\sum \chi_{jA}^2$ 

- Para variables cuantitativas:
  - Dividir de tal forma que se minimice la suma de cuadrados dentro del grupo (within-group) o maximizar la suma de cuadrados entre grupos (between-group)

$$B = n_1 (\bar{x}_1 - \bar{x})^2 + n_2 (\bar{x}_1 - \bar{x})^2 = n_1 \bar{x}_1^2 + n_2 \bar{x}_2^2 - n\bar{x}^2$$

- Para no considerar todas las posibles divisiones se sugiere:
  - Ordenar los datos y hacer la división en la r donde se maximice

$$R = r\bar{x}_1^2 + (n - r)\bar{x}_2^2$$



#### • Objetivo

La división se basa elegir en cada paso a la observación más disimilar en promedio

- Seleccionar el cluster más grande
- Buscar la observación más disimilar en promedio
- Empezar un nuevo grupo con esta observación
- Reagrupar las observaciones dependiendo su disimilitud entre los miembros del grupo antiguo y el nuevo

## Implementación

- En R: librería cluster
- Para un clustering aglomerativo se usa la función diana y recibe como parámetros:
  - x: datos (matriz o data frame) o matriz de disimilitudes
  - diss: booleano indicando si x es una matriz de disimilitudes
  - metric: la métrica para calcular las disimilitudes de x
  - stand: booleano indicando si se deben estandarizar los datos
  - stop.at.k: el valor en el cual se debe detener la división



#### Primer grupo



Segundo grupo



### Tercer grupo



#### Silhouette



Average silhouette width: 0.54

| Obs. | Cluster | Alternativa | Silhouette   |
|------|---------|-------------|--------------|
| 58   | 1       | 2           | -0.21035377  |
| 94   | 1       | 2           | -0.24078366  |
| 99   | 1       | 2           | -0.082634985 |

# Métodos de particiones

### ¿De qué va?

ullet Dado un número de clusters k se busca agrupar las n observaciones en estos clusters optimizando algún criterio.

### Difficultad

El número de formas de separar n objetos en k grupos está dado por el número de Sterling del segundo tipo:

$$S(n,k) = \left\{ \begin{array}{c} n \\ k \end{array} \right\}$$

- Por ejemplo: S(16,8) = 2,141,764,053 (Imposible considerar todas las particiones)



### ¿ Cómo escoger k?

- Usar método aglomerativo (no es ideal)
- Usar algún modelo que permita reasignar las observaciones

### Algoritmo

- 1. Seleccionar k observaciones como los centroides de los clusters
- 2. Asignar el resto de las observaciones al cluster más cercano
- 3. Actualizar el centroide a cada paso (e.g. k-means) o hasta el final
- 4. Buscar objetos mal asignados y reasignar
- 5. Repetir hasta optimizar el criterio

Varios criterios han sido propuestos basados en la identidad

$$\mathbf{T} = \mathbf{W} + \mathbf{B} = \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

- Donde:
  - W es la matriz de variación dentro del cluster (within-cluster).
  - B es la matriz de variación entre clusters (between-cluster).

ullet Se busca minimizar (alguna función) de f W o maximizar (alguna función) f B

### Criterios de clustering

- Minimizar tr(W)
- Popular por su simplicidad y costo computacional
- Invariante ante transformaciones ortogonales pero no ante todas las transformaciones singulares no lineales (i.e. diferente soluciones para los datos y los datos estandarizados)
- Maximizar tr (BW)<sup>-1</sup>
- No es muy confiable ya que no corrige errores en los grupos (Maronna y Jacovkis, 1974)
- Minimizar
- Invariante ante transformaciones no singulares
- Mayor sensibilidad a la estructura de los datos (Friedman y Rubin, 1967)
- Puede verse influenciado por una variable que permita crear clusters bien definidos (Marriott, 1971)



Etiquetas originales

k-means

No hay indicio de observaciones mal clasificadas



### Alternativas

- Seleccionar otra métrica (e.g. Manhattan)
- Usar el medoide en lugar de la medias (algoritmo pam() en R)





• Encontramos que las observaciones mal clasificadas son:

| Observación | Cluster Asignado | Cluster Alternativo | Silhouette |
|-------------|------------------|---------------------|------------|
| 114         | 2                | 3                   | -0.028     |
| 122         | 2                | 3                   | -0.042     |
| 73          | 2                | 3                   | -0.063     |
| 52          | 2                | 3                   | -0.098     |
| 55          | 2                | 3                   | -0.103     |
| 66          | 2                | 3                   | -0.109     |
| 76          | 2                | 3                   | -0.185     |

## Métodos de Multi-Pertenencia

### Motivación

En ocasiones es más significativo permitir que las observaciones pertenezcan a varios grupos.

### Idea

Encontrar un coeficiente de pertenencia para cada objeto,  $u_{im} \in [0,1]$  , (membership

coefficient) para cada cluster de tal forma que  $\sum_{m=1}^{k} u_{im} = 1$ 

- Algoritmo iterativo propuesto por Kaufman en 1990 (en R usamos fanny())
- Se busca minimizar la función:

$$\sum_{m=1}^{k} \frac{\sum_{i,j=1}^{n} u_{im}^{2} u_{jm}^{2} d(i,j)}{2 \sum_{j=1}^{n} u_{jm}^{2}}$$

Para medir el tipo de clustering (suave o duro) usamos el coeficiente de Dunn (1976):

$$F_k = \sum_{i=1}^n \sum_{m=1}^k \frac{u_{im}^2}{n}$$

ullet El mínimo de  $F_k$  se alcanza cuando hay máxima difusión (complete fuzziness) y el máximo cuando se crea una partición.

Algunos coeficientes de pertenencia

| Observación | Grupo 1 | Grupo 2 | Grupo 3 |
|-------------|---------|---------|---------|
| 102         | 0.32    | 0.22    | 0.45    |
| 143         | 0.08    | 0.16    | 0.75    |
| 57          | 0.09    | 0.65    | 0.25    |
| 71          | 0.07    | 0.44    | 0.47    |
| 139         | 0.06    | 0.72    | 0.20    |
| 84          | 0.05    | 0.69    | 0.25    |
| 114         | 0.05    | 0.75    | 0.18    |
| 122         | 0.11    | 0.61    | 0.27    |
| 73          | 0.14    | 0.28    | 0.56    |
| <b>52</b>   | 0.09    | 0.63    | 0.27    |
| 55          | 0.07    | 0.65    | 0.27    |
| 66          | 0.11    | 0.62    | 0.26    |
| 76          | 0.05    | 0.69    | 0.25    |

¿ Cómo podemos pasar a un clustering duro?

• Elegir el grupo con la probabilidad más grande

| Observación | Grupo 1 | Grupo 2 | Grupo 3 |
|-------------|---------|---------|---------|
| 102         | 0.32    | 0.22    | 0.45    |
| 143         | 0.08    | 0.16    | 0.75    |
| <b>57</b>   | 0.09    | 0.65    | 0.25    |
| 71          | 0.07    | 0.44    | 0.47    |
| 139         | 0.06    | 0.72    | 0.20    |
| 84          | 0.05    | 0.69    | 0.25    |
| 114         | 0.05    | 0.75    | 0.18    |
| 122         | 0.11    | 0.61    | 0.27    |
| 73          | 0.14    | 0.28    | 0.56    |
| 52          | 0.09    | 0.63    | 0.27    |
| 55          | 0.07    | 0.65    | 0.27    |
| 66          | 0.11    | 0.62    | 0.26    |
| 76          | 0.05    | 0.69    | 0.25    |

#### Silhouette



Average silhouette width: 0.54



| Obs. | Cluster | Alternativa | Silhouette   |
|------|---------|-------------|--------------|
| 77   | 2       | 3           | -0.049675159 |
| 124  | 2       | 3           | -0.106637328 |
| 134  | 2       | 3           | -0.046329606 |
| 147  | 2       | 3           | -0.007183398 |
| 150  | 2       | 3           | -0.114522411 |