3D Data Processing

Feature extraction

Hyoseok Hwang

Knowledge

A Section of the Sect

- What are in the image?
- How to know?

• By comparing the video with your knowledge

- What do we compare?
 - Planes?
 - Edges?
 - Point(region)?
 - Circles, ellipses, lines, blobs etc

• Comparison from features

Features

Comparison from features

Features

An early of the control of the contr

• Comparison from features

Features: Preview

- Detection (extraction)
 - Define interest points (region)
- Description
 - Feature descriptor

No chance to find true matches!

- Matching
 - Determine correspondence between descriptors

Features: Preview

- Applications of Feature Matching
 - Image alignment and stitching
 - 3D structure from motion
 - Motion tracking
 - Robot navigation
 - Image retrieval
 - Object and face recognition
 - Human action recognition

An example of feature matching

An example of feature matching

NASA Mars Rover images with SIFT feature matches

Requirements

Saliency

 Same points in different images should have similar features and vice-versa

Repeatability

• Should be detectable at the same locations in different images despite changes in viewpoint and illumination

Repeatability?

- Rotation invariant
- Scale invariant
- Affine invariant

Scale invariant

Appendix

- Gestalt psychology
 - The way we form our perceptions are guided by certain principles or laws.
 - These principles or laws determine what we see or make of things or situation

Law of closure

Find an animal

Appendix

A Section of the sect

Gestalt psychology

- What types can we use for features?
 - Edges
 - Distinguishability of edge is low
 - Region around a point are usually used
 - Region contains corners
 - Blob region

corners

blobs

A Contract of the Contract of

- What points would you choose?
- How can define them in mathematics?

Corner detection (Harris)

- Basic idea
 - We should easily recognize the point by looking through a small window
 - Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

"edge": no change along the e edge direction

"corner":
significant change i
n all directions

- Consider shifting the window W by (u,v)
 - How do the pixels in W change?
 - Compare each pixel before and after by summing up the squared differences (SSD)
 - This defines an SSD "error" of E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

SSD: Sum of Squared Difference

appendix:
$$SSD = \sum_{(u,v)\in I} (I_1[u,v] - I_2[u,v])^2$$

Small motion assumption

Taylor Series expansion of I:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x,y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

• Using the small motion assumption, replace I with a linear approximation

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

$$\approx \sum_{(x,y)\in W} (I(x,y) + I_x(x,y)u + I_y(x,y)v - I(x,y))^2$$

$$\approx \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2$$

(Shorthand: $I_x = \frac{\partial I}{\partial x}$)

Using the small motion assumption, replace I with a linear approximation

$$E(u, v) \approx \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$\approx \sum_{(x,y)\in W} (I_x^2u^2 + 2I_xI_yuv + I_y^2v^2)$$

$$\approx Au^2 + 2Buv + Cv^2$$

$$A = \sum_{(x,y)\in W} I_x^2 \qquad B = \sum_{(x,y)\in W} I_x I_y \qquad C = \sum_{(x,y)\in W} I_y^2$$

•Thus, *E(u,v*) is locally approximated as a *quadratic form*

Quadratic form

- A quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial).
- A Simple example

$$4x^2 + 2xy - 3y^2$$

• This also be represented using matrix in the form of $Q(x) = x^T A x$

$$4x^{2} + 2xy - 3y^{2} \rightarrow \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 4 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Therefore,

$$Au^2 + 2Buv + Cv^2 \rightarrow [u \quad v]\begin{bmatrix} A & B \\ B & C \end{bmatrix}\begin{bmatrix} u \\ v \end{bmatrix}$$

- The second moment matrix
 - The surface E(u, v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^{2} + 2Buv + Cv^{2}$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$H$$

Symmetric matrix

 $A = \sum_{x} I_x^2$

 $(x,y) \in W$

 $B = \sum_{x} I_x I_y$

 $(x,y) \in W$

 $(x,y) \in W$

 $C = \sum_{y} I_y^2$

- The second moment matrix
 - The surface E(u, v) is locally approximated by a quadratic form.

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge: $I_x=0$

$$H = \left[\begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right]$$

- The second moment matrix
 - The surface E(u, v) is locally approximated by a quadratic form.

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge: $I_y=0$

$$H = \left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right]$$

- General case
 - The shape of H tells us something about the distribution of gradients around a pixel
 - We can visualize H as an ellipse with axis lengths determined by the eigenvalues of H and orientation determined by the eigenvectors of H

Ellipse equation:

$$\begin{bmatrix} u & v \end{bmatrix} & H & \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

 λ_{\max} , λ_{\min} : eigenvalues of H

direction of the slowest change

As a first or a first

Classification of image points using eigenvalues

of *M*:

- Corner definition
 - How can we define that both eigenvalues are "large enough?"
 - There are many suggestions, but the following two equations are mainly used for the response function.

$$R = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

$$\begin{bmatrix} A & B \\ B & C \end{bmatrix}$$

Determinant of H: $\lambda_1 \lambda_2$ = AC - BB

Trace of H: $\lambda_1 + \lambda_2$ = A+C

Corner definition

$$\lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

$$\frac{\lambda_1\lambda_2}{\lambda_1+\lambda_2}$$

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

- Should we calculate the eigenvalues for every window every time?
- NO. Instead, we can only compute determinant and trace of H

A Parish and the second of the

• Example

An Article of Article

• Get R

And Andrew Andre

• Threshold (R > value)

• Find local maxima (Maximum values within defined area)

As a first and a f

• Overlap on original image (corners: red points)

Exercise


```
import cv2
import numpy as np
filename = 'zip.png'
img = cv2.imread(filename)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 2, 3, 0.04)
# #result is dilated for marking the corners, not important
# dst = cv2.dilate(dst,None)
# for display
for r in range(dst.shape[0]):
   for c in range(dst.shape[1]):
      if dst[r,c] > 0.02*dst.max():
         cv2.circle(img, (c, r), 3, (0, 255, 255), -1)
cv2.imshow('dst',img)
if cv2.waitKey(0) & 0xff == 27:
   cv2.destroyAllWindows()
```


- Properties of Harris Corners
 - Rotation Invariance
 - Ellipse rotates but the shape (i.e. eigenvalues) remain the same
 - Corner response R is invariant to image rotation.
 - Partial invariance to affine intensity change

- NOT invariant to image scale
- Corner at one scale may not be a corner at another
- Scale is user specified parameter

FAST

Features from Accelerated Segment Test

- Each pixel in the circle is labeled from integer number 1 to 16 clockwise.
- A pixel p is a corner point if the pixel satisfies conditions below:
- Condition 1
 - A set of N contiguous pixels S, $\forall x \in S$, the intensity of $x > I_p + t$
- Condition 2
 - A set of N contiguous pixels S, $\forall x \in S$, the intensity of $x < I_p t$
- Rotation invariant?
- Scale invariant?

Automatic scale selection by increasing the size of windows

How to find corresponding patch sizes?

- Basic Idea
 - Response values of cornerness are determined by
 - the scale of image with the fixed window size=
 - the scale of window with the fixed image size
 - Solution: various window size or various image size

Image Pyramid

• Reducing the size of the image = increasing the size of the window.

• Laplacian of Gaussian(LOG): Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

 Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

- Edge = ripple
- Blob = superposition of two ripples
- Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Difference of Gaussian

 Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)

Difference of Gaussian example

import matplotlib.pyplot as plt
import numpy as np
from scipy.ndimage import gaussian_filter1d

x = np.arange(100)
y = np.zeros(x.shape, np.float32)
y[45:55] = 1

y3 = gaussian_filter1d(y, 3)
y6 = gaussian_filter1d(y, 5)

plt.plot(y, '--', label='original data')
plt.plot(y3, '--', label='filtered, sigma=3')
plt.plot(y6, ':', label='filtered, sigma=6')
plt.plot(y6-y3, '-', label='DOG')

plt.grid()
plt.grid()
plt.show()

Gaussian filtering Sigma = 3, 5

Difference of Gaussian

DoG – Efficient Computation

- Computation in Gaussian scale pyramid
 - Same region of different scale will be extracted by blob detection in image pyramid

- Difference of Gaussian
 - Difference of Gaussians is a feature enhancement algorithm that involves the subtraction of one Gaussian blurred version of an original image from another, less blurred version of the original.

Thank you