STAT 2509 Assignment 4:

1 Run the Procedures on the provided Regression Data:

a) Use the Bonnard Selection Procedure using Fo*=4.2 (to-add-variable); We must find the Max SSIR for our one term models: XI is higest at 14829 thus, we can see that !

 $F = \frac{SSR(X_1)}{MSE(X_1)} = \frac{SSR(X_1)}{MSE(X_1)} = \frac{14829}{119.45210} = 124.14 > 6=4.2$

. We keep the XI term

WE Continue the Same thing on the two term model:

- XI Was Kest, So we must use a model w/ XI in it:

XIIK4 has the highest SSR at 15543

thus, we can see that!

$$F_{\lambda} = \frac{MSR(x_{4}|x_{1})}{MSE(x_{1}|x_{4})} = \frac{SSR(x_{4}|x_{1})/(dSs_{12}(x_{1}|x_{4}) - dSs_{12}(x_{1})}{MSE(x_{1}|x_{4})} - dSs_{12}(x_{1}|x_{4})$$

$$= \underbrace{[SSR(x_{1}) - SSIR(x_{1}|x_{4})]/(12 - 13)}_{69.93|49}$$

$$= \frac{14629 - 15543}{69.93149} = \frac{-714}{69.93149} = 10.21 > F_0 = 4.2$$

. We keep the X1, X4 term

We Continue for the three term model, Keeping X1, X4: XyX2,X4 has the highest SSR at 15848

$$X_{1}X_{2}X_{4}$$
 has the highest SSR at 15848
thus, we can see that:

$$F_{3} = \frac{MSR(X_{2}|X_{1}X_{4})}{MSE(X_{2}|X_{1}X_{4})} = \frac{SSR(X_{2}|X_{1}X_{4})}{MSE(X_{1}X_{2}X_{4})} - dfssr(x_{1}X_{2}X_{4})$$

$$= \frac{MSR(X_{1}X_{4})}{MSE(X_{1}X_{2}X_{4})} - dfssr(x_{1}X_{2}X_{4})$$

$$= \frac{SSR(X_{1}X_{4})}{MSE(X_{1}X_{2}X_{4})} - \frac{16543 - 15848}{48.59743}$$

$$= \frac{305}{48.59743} = \frac{6.28}{48.59743} > F_{0} = 4.2$$

 $= \frac{305}{48.57743} = 6.28 > F_0 = 4.2$

. We keep the Kilkajky term

```
We Continue for the four term model, Keeping X,, Xa, X4:
                              XIIX2, X3, X4 is the only model with ssie at 15857,8
                              thus, we can see that:
                                   F_{4} = \frac{MSR(X_{3}|X_{1}X_{2}X_{4})}{MSE(X_{1}X_{2}X_{3}X_{4})} = \frac{SSR(X_{3}|X_{1}X_{2}X_{4})/(dss_{SR}(x_{1}X_{2}X_{3}X_{4}) - dss_{SR}(x_{1}X_{2}X_{3}X_{4})}{MSE(X_{1}X_{2}X_{3}X_{4})}
                                                                                  MSE(XIX2X3X4)
                                      _ [SSR(X, XQX4)-SSIR(XXXXX)/(10-11)
                                      - [[5848-15857.8]/(-1)
52.47557
                                    =0.1868 7 < Fo=4.2
                            .. We don't add the X3 term So the best model is (X1X2X4)
                 b) Use the Backward Elimination Procedure using Fo=4.1 (to-delete-variable):

Note that (to) = Fo* | let ?=15857.8, 2=52.47557
                        F_{1} = \frac{MSR(x_{1}|x_{2}x_{3}x_{4})}{MSE_{5}} = \frac{(12277 - 7)/(10-11)}{3} = 68.20 > F_{0}
F_{2} = \frac{MSR(x_{2}|x_{1}x_{3}x_{4})}{MSE_{5}} = \frac{(15561 - 7)/(10-11)}{3} = 5.66 > F_{0}
         AS:
 MSR (An. Wazkus Xny)
                           F3 = MSR (X3/X1/2X4) = (15848 = P )/(0-11) = 0.19 < Fo
      MSEG
                           Fy = MSR(X4/X,X2X3) = (14897 - P)/(10-11) = 16.40 > Fo
        MSEA
                         4) (F3 = 0,19) 84 is the Smallest So eliminate X3 from
                                the model. let 7=48,59743
                          FI - MSIR (X1/X2/4) = (11/10-15848)/(11-12) = 97.49>Fo
     As:
   MSR(Xni |Xmaxna)
                        F_ = MSR(x2|X14) = (15543-15848)/(11-12) = 6.28>Fo
       MSES
_ (SSRg-SSEp)/(dbsse-
                         Fy = MSR(X4/X/2) = (14990-15848)/(11-12) = 17.66 > Fo
   dossar)
     MSER
                       All F values are greater then Fo So no variables can be
                     deleted.
                           Lowe remove only the X3 term from the model thus the
                               best model is XIXXX4
```

Since:

F>R.R => 75.55 > 7.074 the full model fits & is significant

```
C) Use the Stepwise regression Procedure using Fox = 4.2 (to-add) & F*=4.1
        (to-delete):
Checkis Sit all one term model: forward Selection we really a LD We Keep X, fit all 2-term models: X, -> X, X4
        is X1 redundent when X4 is added into the model

F = MSIR (X1X4) = [SSR(X1)-SSIR(X1X4)]/(12-13)

MSE(X1X4) 69,73/49

= [11085-15543][-1] = 63.75
         Since Fi>Fo, we keep both X1, X4
         For 3 term models, from forward Selection, we also Keep X2 (X, 2 X4)
         IS X, redundant When X2 & X4 are in the model!
              F_{1} = \frac{MSIR(X_{1}|X_{2}X_{4})}{MSE(X_{1}X_{2}X_{4})} = \frac{\left[SSR(X_{2}X_{4}) - SSR(X_{1}X_{2}X_{4})\right]/(|I-12)}{48.69743}
= \frac{\left[11100 - 15848\right]/(-1)}{48.59743} = 97.70
              Since Fi> Fo We Keep X,
      Since Fi>Fo we keep X4
        So for we have X1/2/X4
       From Langed Selection Procedure we already Know X3 is not in the model
           11 Don't test for X3
       .. The nest Set is XIXXX3
```

2) Run the tests on the Avoided Site data;

CRD, three Steps:
Parametric test - must have Normal distribution Steps: test all three Conditions I) Harteley's Test -> tests Assumption of Constant varience I) Main test -> tests differences between treatments III) Tukeys test -> Which groups are different C.R.D Tese: Assumptions: 1) Plots are randomly assigned to 4 independent Swampy Sites 2) taken from 4 normally distributed populations 3) With equal varience, of I) To check the Assumption of equal varience use Hartey's test, we need Si's for i=1,2,3,4 where $n=1,2=n_3=n_4=6$, K=4, $\pi=6$, End=6, N=24: $S_1^2 = \frac{\sum_{i=1}^n y_{i,i}^2 - (\sum_{i=1}^n y_{i,i}^2)^2/n_1}{\sum_{i=1}^n y_{i,i}^2} = 217.47, \sum_{i=1}^n y_{i,i}^2$ - (5.72+6.32+6.12+62+5.82+6.22)-[5.7+6.3+6.1+6+5.8+6.2] $= \frac{217.47 - (36.1)/6}{5} = 0.0536666666$ $S_{2}^{2} = \frac{\sum_{j=1}^{n} y_{2j}^{2} - (\sum_{j=1}^{n} y_{2j})^{2}/n_{2}}{\sum_{j=1}^{n} y_{2j}^{2}} = 192.31, \sum_{j=1}^{n} y_{2j}^{2} = 33.9 = \sqrt{1 - y_{2j}^{2}}$ = 192.31-(33.9)3/6 = 0.155 $S_{3}^{2} = \frac{\sum_{i=1}^{n_{3}} y_{3i}^{2} - (\sum_{i=1}^{n_{3}} y_{3i}^{2})^{2}/n_{3}}{\sum_{i=1}^{n_{3}} y_{3i}^{2} = |72.57|} \sum_{j=1}^{n_{3}} y_{3j} = 32.1 = T_{3} = \sqrt{5}$ $= \frac{172.57 - (32.1)^2/6}{6-1} = 0.167 + Max$ $S_{4}^{2} = \frac{\sum_{i=1}^{N} j_{i} j_{i}^{2} - (\sum_{i=1}^{N} y_{i}^{2})^{2} / h_{4}}{n-1} \left| \sum_{i=1}^{N} y_{i}^{2} = 80.35, \sum_{j=1}^{N} y_{4j} = 21.9 = T_{4} = y_{4} \right|$ $=\frac{80.35-79.935}{C-1}=0.083$

```
Qaim! The variences are not all the same
                                                        Ho: 512=53=53=53
                                                      Ha: At least one of the or does not equal one of the others
                                                       0 = 0.01 OR 0.05
                     Test - Statistic:
                                                    F_{\text{max}} = \frac{S_{\text{max}}^2}{S_{\text{min}}^2} = \frac{0.167}{0.0536666666} = 3.1118
                 Rejection-Region:
We raject the if Frax > Frax (x,15)-1) ia = (Frax (4,5); 0.01 = 28 } for a = 0.1 we here the if Frax > Frax (x,15)-1) ia = (Frax (4,6); 0.05 = 13.7) tests
               9=0.1 So find 4> K=#sites=4, [7]=#Samples=6
           both 0,01 & 0,05 | thus, Fmox(4,6-1)ia = Fmox(4,5)ia
                                       We Can now See!
                                                                        Fmax (4,5);0.05 (Fmax (4,5);0.01
                                                                          4) Thus, we cannot Reject to => the varience of each group is equal
                                       ". We Conclude at 90% Confidence our assumption of equal varience is
                                                 not violated; Assumption is valid.
TSS = \( \frac{4}{2} \sqrt{\frac{1}{2}} \quad \frac{1}{2} \quad \quad \quad \quad \frac{1}{2} \quad \q
                                                 =\sum_{j=1}^{n}y_{1j}^{2}+\sum_{j=1}^{n}y_{2j}^{2}+\sum_{j=1}^{n}y_{3j}^{2}+\sum_{j=1}^{n}y_{3j}^{2}+\sum_{j=1}^{n}y_{3j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}y_{2j}+\sum_{j=1}^{n}
                                             = 217.47+192.31+172.57+80.35 - \frac{36.1+33.9+32.1+21.97^2}{24}
                                           =662.7 - \frac{(124)^2}{24} = 662.7 - 640\frac{2}{3} = 22\frac{1}{30} = 22.0333
                          SST_r = \sum_{i=1}^{4} \frac{T_i^2}{n_i} - \frac{\left(\sum_{i=1}^{4} \sum_{j=1}^{4} J(i)\right)^2}{n_i}
                                                                      = \frac{36.1^2}{6} + \frac{33.9^2}{6} + \frac{32.1^2}{6} + \frac{21.9^2}{6} - \left[ \frac{1}{361} 2.1^{\frac{1}{2}} \frac{1}{362} + \frac{1}{362} 2.1^{\frac{1}{2}} \frac{1}{362} + \frac{1}{362} 2.1^{\frac{1}{2}} \right]
                                                                    =660\frac{61}{150} - \frac{124^2}{24} = 19.74
```

$$SSE = TSS - SST_r = 22.0333 - 19.74 = 2.293333$$

$$MST_r = \frac{SST_r}{K-1} = \frac{19.74}{4-1} = \frac{19.74}{3} = 6.58$$

$$MSE = \frac{SSE}{n-K} = \frac{2.293333}{24-4} = 0.114666$$

$$F = \frac{MST_r}{MSE} = \frac{6.58}{0.11466666} = 57.3837 = 57.38$$

$$ANOVA Table:$$

Source	df	Sum of Squares	Mean Squares	F-Value	Pr>F	df=K-1=4-1=3
Model	3	19.74	6.58	57,38	<0.0001	df=11-K=24-4
Error	20	2.2933333	0.11466666			= 20
Corrected	23	22.033333				Total of = df+df=
Total 1	2	001100000				= 20+3=23

$$F_{\alpha(K-t,n-K)} = F_{0.10(4-1,24-4)} = F_{0.10(3,20)} = 2.38$$

LD: Since FT> Fa = D Reject Ho

Note: Our Caim for the main test

Claim: there is a difference in the mean plant growth for the Swamp Sites Ho: KI = K2=K3=K4 => the means are the same

Ha: at least one of the 16's does not equal another K

thus, As per above, we can conclude as per a 10% level of Significence there's a difference in the means of the plant growth of the Swamp Sites.

II) Turkeys Test -> Which groups are different:

1) Calculate (=)=(=)=6 pairs of []i-Ji for

Ho: Ki = Hi - D Sites are the Same I Ceaim:

Ha: Hi + Hi - Sites are different I the means are different

For i=1, j=2: |36.1-33.9| |6=2.2/6=0.366667. i=1, j=3: |36.1-32.1| |6=4/6=0.6666667. i=1, j=4: |36.1-21.9| |6=14.2/6=2.366667. i=2, j=3: |33.9-32.1| |6=1.8/6=0.3

i=2, j=4: |33.9-21.9|/6=12/6=2

i=3, i=4: 32.1-21.9 6=10.2/6=1.7

Hypothesis test:

I) Qaim: At least one median differs from the rest
Ho: Md, = Md2 = Md4
Ha: At least one of the Md's =

I) Test-Statistics:
$$\begin{aligned}
&H = \frac{12}{n(n+1)} \left[\sum_{i=1}^{4} \frac{T_{R_{i}^{2}}}{n_{i}} - 3(n+1) \right] \\
&= \frac{12}{24(25)} \left[\frac{119^{2}}{6} + \frac{90.5^{2}}{6} + \frac{67.5^{2}}{6} + \frac{21^{2}}{6} \right] - 3(25) \\
&= \frac{12}{600} \left[4603.75 \right] - 75 \\
&= 90.075 - 75 = 17.075
\end{aligned}$$

II) Rejection-Region:

We reject the if $H > X_{a;(K-1)}^2 = X_{a,lo;(3)}^2 = 6.25$ $H = 17.075 > X_{a,lo;(3)}^2 = 6.25 - 17.075 > 6.25$ So $H > X_{a,lo;(3)}^2 = 6.25$

45 We reject to Since H > x 0.10;(3)

IV) Conclusion:

We have rejected to, so we accept that that atleast one of the Md's = another of the Md's.

The attached SAS Code verifies the above results.

450 1 01 /

Qa SAS output

The SAS System

The ANOVA Procedure

	Class Le	vel Information			
lass	Levels	Values			
ite	4	sitel sitell sitelll s	itelV		
	4	>4 sites		-l;	
Numb	er of Ob	servations Read	24	3#1-1	0.4-6-
Numb	er of Ob	servations Used	24	p# data	enjngs.

Connor 101041125 ods graphics off

The ANOVA Procedure

Connor 101041125 ods graphics off

The SAS System

The ANOVA Procedure

Connor 101041125 ods graphics off

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for growth

Note: This test controls the Type I experimentwise error rate.

Alpha	Q.D -D 0 = 0.1
Error Degrees of Freedom	20 Dn-K
Error Mean Square	0.114667 MSE
Critical Value of Studentized Range	(3.46154) 17 Pack, n-K)
Minimum Significant Difference	0.4785 >h.S.d.

site Comparison	Difference Between Means	en Simultaneous 90% Confidence			
sitel - sitell	[5] 0.3667	-0.1119	0.8452		MI=1
sitel - sitelll	19-43 0.6667	0.1881	1.1452	***	KI =
sitel - sitelV	151-54 2.3667	1.8881	2.8452	***	KI #
sitell - sitel	192-91 -0.3667	-0.8452	0.1119		H2=
sitell - sitelll	\(\bar{y}_2-\bar{y}_3 \) 0.3000	-0.1785	0.7785		K2=
sitell - sitelV	192-94 2.0000	1.5215	2.4785	***	Kst
sitelll - sitel	写五 -0.6667	-1.1452	-0.1881	***	K3#
sitelll - sitell	13-42 -0.3000	-0.7785	0.1785		H3=
sitellI - sitelV	73-74 1.7000	1.2215	2.1785	***	H3#
sitelV - sitel	2.3667	-2.8452	-1.8881	***	K4#
sitelV - sitell	4-41 -2.0000	-2.4785	-1.5215	***	K4 #
siteIV - siteIII	1-1.7000 July 1.7000	-2.1785	-1.2215	***	H47

Connor 101041125 ods graphics off

The NPAR1WAY Procedure

XOI	Class	(Ran sified	k Sum by Va	s) for Varial riable site	ole growth
N	Sum of Scores			Std Dev Under H0	Mean Score
6	£19.00	Tirl	75.0	14.977157	19.833333
6	90.50	TRZ	75.0	14.977157	15.083333
6	69.50	TR3	75.0	14.977157	11.583333
6	21.00	TRH	75.0	14.977157	3.500000
	N 6 6	Class Sum of Scores 6 (19.00) 6 (90.50) 6 (69.50)	Classified Sum of Exp Scores Und 6 419.00 TRI 6 90.50 TR3	Classified by Value of N Scores	N Scores Under H0 Under H0 6 19.00 75.0 14.977157 6 90.50 78.3 75.0 14.977157 6 69.50 78.3 75.0 14.977157

Kruskal-Walli	s Test	
Chi-Square	17.1271	4> ∞H
DF	(3)	-DK-1
Pr > Chi-Square	0.0007	

Connor 101041125 ods graphics off

(3) Run the tests on the Provided Plot-treatment data:

RBD, three Steps:

I) Harteley's Test

II) Main Test

III) Turkeys Test

Parametric test

RBD Test:

Assumptions !

1) three independent insecticides assigned randomly to Sour plots
2) Populations Correspond to each Combination of insecticide - Plot are normally distributed

3) With Equal varience, 52

4) No interactions between treatment-group Combination on the insecticide-Plot Combination

I) To check the assumption of equal varience use Hartley's test, we need S_i^2 's for i=1,2,3, where $n_1=n_2=n_3=4$, K=3, b=4, $\overline{n}=b=4$, $\overline{L}\overline{n}=4$, n=bK=12:

$$S_1^2 = \frac{\sum_{i=1}^{b} y_i^2 - \left(\sum_{i=1}^{b} y_i\right)^2}{b-1} = \frac{13362 - (280)^2/4}{4-1} = 45.66$$

$$S_{2}^{2} = \frac{\sum_{j=1}^{b} y_{2j}^{2} - \left(\sum_{j=1}^{b} y_{2j}^{2}\right)^{2}}{b} = \frac{30625 - (342)^{2}/4}{4 - 1} = 58.25 \, \text{A}^{\text{max}}.$$

$$S_3^2 = \frac{\sum_{j=1}^{2} y_{3j}^2 - \sum_{b=1}^{2} y_{3j}^2}{b} = \frac{25698 - (320)^2/4}{4 - 1} = 32.66 \, \text{A}^{\text{min}}$$

$$\sum_{j=1}^{6} y_{ij} = \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} \frac{1}{3} \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \frac{1}{3} = \frac$$

$$\sum_{j=1}^{5} y_{ij}^{2} = |3362| \sum_{j=1}^{5} y_{2j}^{2} = 30625| \sum_{j=1}^{5} y_{3j}^{2} = 25698$$

(Raim: The Variences are not all the Same

Ho:
$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2$$
:

Ha: At least one of the $\sigma^2 \neq$ the others

 $\alpha = 0.01$

Test-Statistic:

Fmax = $\frac{S_{max}^2}{32.66} = \frac{58.25}{32.66} = \frac{1.307}{332} = \frac{1.783163265}{1.7832}$

Rejection-Region:

We reject the if Fmax > Fmax(4.04-0)/a Fmax(3.3)/0.01 = 85

We reject the if Fmax > Fmax(4.04-0)/a Fmax(3.3)/0.05 = 27.8

thus, Fmax(3.4-1)/a = Fmax(3.3)/a

 $\alpha = 0.1$ So find both 0.01 2 0.05 for the fmax test:

Fmax < Fmax(3.3)/0.05 < Fmax(3.3)/0.01

Let Thus, we cannot Reject to \Rightarrow the varience of each group is equal in we conclude at 97% Conditions our assumption of equal varience is not Violated; Assumption is valid.

II) Move on to Main Test:

TSS = $\frac{3}{3}$

Tile = $\frac{1}{12}$
 $\frac{1}$

$$SSE = TSS - SST_r - SSB = 2334.9166 - 1925.166 - 386.25$$

$$SSE = 23.5 | SST = TSS - SSE = 2334.9166 - 23.5 = 2311.4166$$

$$MST_r = \frac{SST_r}{K-1} = \frac{1925.166}{3-1} = \frac{962.5833}{3-1}$$

$$MSB = \frac{8SB}{b-1} = \frac{386.25}{4-1} = \frac{128.75}{2.3}$$

$$MSE = \frac{SSE}{df} = \frac{23.5}{(K-1)(b-1)} = \frac{23.5}{2.3} = \frac{3.9166}{3.9166}$$

$$MST = \frac{SST}{df_r} = \frac{2311.4166}{5} = \frac{12-1}{462.2833}$$

$$Total df = Kb-1 = 4.3-1 = 12-1 = 11, df_E = (K-1)(b-1) = 2.3 = 6$$

$$df_T = Total df - df_E = 11-6=5$$

$$F = \frac{MST}{MSE} = \frac{462.2633}{3.9166} = \frac{118.03}{3.9166}$$

ANOVA Table:

Source	1	Sum of Sources	Mean Square	F-Value	PASF
Model	5	2311.4166	462.2833	118.03	(0.000)
Emor	6	23.5	3.9166		
Correctes		2334.9166			

	Source	36	ANOVA SS	MS .	F-Value	Pr>F		
	P106	3	386.25	128.75	32.87	0.0004		
1	in sect	2	1925.166	962.5833	245.77	40.0001		
					= 245.7 : 32.87			
	For LK-	€, bK)=Fo.1	0(3,12)=	2.61			
	4	>F	> Fo.106	3,12) QS	118.03 >	2.61	Reject	Но

Note: Our Claim for the main test

legim: there's a difference in the mean effectiveness of the insecticides on the Plots

Ho: K1=K2=K3=> the means are the same

Ha: At least one Ws doesn't equal another K

thus, as per above, we can conclude as per a 1% level of Significence there's a difference in the means of the insecticitie effectiveness on the Plots.

III) Turkeys Test:

1) Calculate (1) = (3) = 3 Pairs of | Fi-Ji | for Ho: Ki = Ki vs. Ha: Ki + Ki for i, i=1,2,3 ; i +i

Ho: Sites are same J Claim:
tta: Sites are different J the treatments all are the Same

For i=1, i=2: 230-349/4=29.75

j=1, j=3: |230-320|/4=22.5

1=2,5=3: |349-320|14= 7.25

2) h.s.d. = $9a(K_1(b-1)(K-1))\sqrt{MSE(1+1)}$ = $9(3.6)(47/48)^{1/2}$ $= 3.558 (47/48)^{1/2} = 3.5207$

thus:

1 1- 12 = 29.75 > 3.5207 = D Ky + K2

1-13 = 22.5>3.5207 => KI = K3

13-53 = 7.25 > 3.5207 => K2 + K3

So We Know that all the sites are the Same within Limits to a 97% Considerce So, We Cannot reject Ho

45 Accept to: the Sites are all the Same means for treatment

Non-Parametric Test:

Assume:

1) R.B.D.

2) In each insecticise-Plot Combination we have population with approximatly the Same Shape & Spread

3) No interactions between flots & insecticides

Hypothesis Test:

I) (egim: At least one median differs from the rest

Ho: Md, = Md, = Mda = Md3 = Md4

Ha: At least one of the Md's = the others

II) Test-Statistics:

$$H = \frac{12}{bK(K+1)} \left[\sum_{i=1}^{4} T_{Ri}^{2} - 3b(K+1) \right]$$

$$= \frac{12}{3k(4)} \left[4^{2} + 12^{2} + 8^{2} \right] - 3(4)(3+1)$$

$$= \frac{1}{4} \left[224 \right] - 48 = \boxed{8}$$

IV) Conclusion:

We don't reject to & Conclude at 1% level of Significence there's an evidence to say that the medians of the insecticides does not differ.

Sits output

Q3 SAS Code

age I of 4

The SAS System

The ANOVA Procedure

	Class L	evel Info	rmation		,		
	Class	Levels	Values	>60	lumn	S	
	plot	4	1234				
	insect	3	123				
		J	> Rows				
Nui	mber of O	bservation	ons Read	12	7	# 1-4-	C. 100
Nui	mber of O	bservation	ons Used	12	1	m Uqla	Samples

Connor 101041125

The ANOVA Procedure

Dependent Variable: seedlings

Sour	ce		DF	Sum of So	quares	Mea	n S	quare	F Va	alue	Pr > F
Mode	el	1/7	(5	BST 2311.4	116667	46	32.28	33333	(118	3.03	<.0001
Erro	r	48	E (6	SE 23.5	500000	MSE	3.91	16667		5	F
Corr	ected	Total	(11	2334.9	16667						
			4	Total of	TSS						
	1	R-Squ	ıare	Coeff Var	Root N	ISE	see	dlings	Mea	n	
		0.989	935	2.641678	1.979057		74.9166		7		
				SUS				MSIS		7 Fiz	,
	Sour	ce D	F 4	Anova SS	Mean	Squa	are	F Valu	ıe/ F	r >	F
	<u> </u>		386.250000	128.	750000		00 32.8	0.000	.0004	4	
			925.166667	962.583		583333 245.7		77) <	.000	1	
				459	STr	C	F>/	ISTr	DE	i.	
				Conno	or 10104	1125	ř.			,	

The ANOVA Procedure

Tukey's Studentized Range (HSD) Test for seedlings

Note: This test controls the Type I experimentwise error rate.

Alpha	0.01
Error Degrees of Freedom	(6
Error Mean Square	3.916667
Critical Value of Studentized Range	6.33032
Minimum Significant Difference	6.264

	. Co	mparisons s are i	ignificant at the 0.0 ndicated by ***.	1 level	
	insect Comparison	Difference Between Means	Simultaneous 99% Limits		
-2,5=3	2 - 3	7.250	0.986	13.514	***
2,0=1	2 - 1	29.750	23.486	36.014	***
3/3=2	3 - 2	-7.250	-13.514	-0.986	***
3,5=1	3 - 1	22.500	16.236	28.764	***
13=2	1 - 2	-29.750	-36.014	-23.486	***
j=3	1 - 3	-22.500	-28.764	-16.236	***

Same as Worksheet 23, Turklys Test Result

Connor 101041125

Hi + His for all listed Companisons

The FREQ Procedure

Summary Statistics for insect by seedlings Controlling for plot

Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	2.0000	0.1573
2	Row Mean Scores Differ	2	8.0000	0.0183

Total Sample Size = 12

Connor 101041125

```
siteIII 5.4 siteIII 5.0 siteIII 6.0 siteIII 5.6 siteIII 4.9 siteIII 5.2
                                                                                                                                                                                     siteII 6.2 siteII 5.3 siteII 5.7 siteII 6.0 siteII 5.2 siteII 5.5
                                                                                                                          cards;
siteI 5.7 siteI 6.3 siteI 6.1 siteI 6.0 siteI 5.8 siteI 6.2
footnote 'Connor 101041125'
                                                                                         input site$ growth @@;
                            ods graphics off;
                                                           data ecology;
```

siteIV 3.7 siteIV 3.2 siteIV 3.9 siteIV 4.0 siteIV 3.5 siteIV 3.6 proc anova; class site; run;

proc NPAR1WAY WILCOXON; run;

means site/tukey cldiff alpha=0.10;

model growth=site;

class site;

run;

DJ SAS Code

Name: Connor Raymond Stewart ID: 101041125

```
tables plot*insect*seedlings/CMH2 scores=rank noprint;
                                                                                                                                                                                                                                                      class plot insect;
model seedlings=plot insect;
means insect/tukey cldiff alpha=0.01;
                                                              input insect plot seedlings @@;
footntoe 'Connor 101041125';
                                                                                                       1 1 56 1 2 49 1 3 65 1 2 1 84 2 2 78 2 3 94 2 3 1 80 3 2 72 3 3 83 3
                      ods graphics off;
                                         data beans;
                                                                                                                                                                                                                                                                                                                         run;
proc freq;
                                                                                                                                                                                                                                      proc anova;
                                                                                    cards;
                                                                                                                                                                                                                 run;
```

run;

Q3 SAS Coole Name: Connor Raymond Stewart

ID: 101041125