An Efficient Robust Approach to the Day-ahead Operation of an Aggregator of Electric Vehicles

Álvaro Porras Cabrera

Joint work with:

- Ricardo Fernández-Blanco Carramolino
- Juan Miguel Morales González
- Salvador Pineda Morente

Informs Annual Meeting, 2020 Virtual November 7-13, 2020

Deterministic Formulation

Uncertainty is disregarded.

Optimal for expected values.

Computationally tractable.

Stochastic Formulation

Uncertainty using scenarios.

Optimal on average.

Number of scenarios.

Uncertainty using a few intuitive parameters.

Robust against adverse situations.

Scalability.

Deterministic Formulation

- λ_t are expected values $\rightarrow \hat{\lambda}_t$
- $\alpha_{v,t}$ are expected values $\rightarrow \hat{\alpha}_{v,t}$

$$(c_{v,t}, d_{v,t}, s_{v,t}, c_{v,t}^D) \in \Phi(\hat{\alpha}_{v,t}, \hat{\tau}_{v,t})$$

$$\min_{\Xi^{D}} \sum_{t \in \mathcal{T}} \widehat{\lambda}_{t} p_{t} + \sum_{t \in \mathcal{T}} \sum_{v \in \mathcal{V}} \left(c_{v,t}^{D} + C_{1}^{p} s_{v,t} \right)
\text{subject to:}
$$p_{t} = \sum_{v \in \mathcal{V}} \left(c_{v,t} - d_{v,t} \right), \quad \forall t \in \mathcal{T}
- P^{G} \leq p_{t} \leq P^{G}, \quad \forall t \in \mathcal{T}
e_{v,t} = e_{v,t-1} + \eta_{v} c_{v,t} \widehat{\alpha}_{v,t} - \frac{d_{v,t}}{\eta_{v}} - \widehat{\tau}_{v,t} + s_{v,t},
\quad \forall v \in \mathcal{V}, t \in \mathcal{T}
c_{v,t} \leq \overline{C}_{v}, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}
d_{v,t} \leq \overline{D}_{v} \widehat{\alpha}_{v,t}, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}
\underline{E}_{v} \leq e_{v,t} \leq \overline{E}_{v}, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}
e_{v,N_{T}} = e_{v,0}, \quad \forall v \in \mathcal{V}
c_{v,t}^{D} = \left| \frac{S}{100} \right| C_{v}^{E} \left(\frac{1}{\eta_{v}} d_{v,t} + \widehat{\tau}_{v,t} \right), \quad \forall v \in \mathcal{V}, t \in \mathcal{T}
c_{v,t}, d_{v,t}, e_{v,t}, c_{v,t}^{D}, s_{v,t} \geq 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$$$

$$\hat{\alpha}_{v,19} = 0.5$$

Deterministic Formulation

Average of all profiles

Each profile is a scenario

Deterministic Formulation

- Uncertainty is disregarded.
- Optimal for expected values.

Hierarchical Formulation

Stochastic Formulation

- Optimal on average.
- Number of scenarios.

Proposed Approach

• Characterization of the uncertainty in EV availability using a parameter set:

$$\Theta_{v} = \left\{ K_{v}, \underline{\alpha}_{v,t}, \overline{\alpha}_{v,t} \right\}$$

• Now, $\alpha_{v,t}$ are variables that depend on an uncertainty set:

$$\sum_{t \in \mathcal{T}} \alpha_{v,t} \geq K_v, \forall t \in \mathcal{T}, v \in \mathcal{V}$$

$$\underline{\alpha_{v,t}} \leq \alpha_{v,t} \leq \overline{\alpha_{v,t}}, \forall t \in \mathcal{T}, v \in \mathcal{V}$$

$$\alpha_{v,t} \in \{0,1\}, \forall t \in \mathcal{T}, v \in \mathcal{V}$$

$$\underline{\alpha}_{v,t}, \overline{\alpha}_{v,t}$$

$$\underline{\alpha}_{v,t}=1$$

$$\overline{\alpha}_{v,t}=0$$

Álvaro Porras Cabrera

9

Hierarchical Formulation

Hierarchical Formulation

Energy required for transportation

Total net energy injections into the EV-battery

Availability profiles

$$\min_{\Xi^R} \sum_{t \in \mathcal{T}} \widehat{\lambda}_t p_t + \sum_{t \in \mathcal{T}} \sum_{v \in \mathcal{V}} \left(c_{v,t}^D + C_1^p s_{v,t} \right)$$

subject to:

$$p_t = \sum_{v \in \mathcal{V}} (c_{v,t} - d_{v,t}), \quad \forall t \in \mathcal{T}$$
$$-P^G \le p_t \le P^G, \quad \forall t \in \mathcal{T}$$

$$-P^G \le p_t \le P^G, \quad \forall t \in \mathcal{T}$$

$$(c_{v,t}, d_{v,t}, s_{v,t}, c_{v,t}^D) \in \Phi(\alpha_{v,t}, \tau_{v,t}), \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\sum_{t \in \mathcal{T}} \tau_{v,t} = \widehat{\xi}_v, \quad \forall v \in \mathcal{V}$$

$$\tau_{v,t} \le \left(\overline{E}_v - \underline{E}_v\right) \left(1 - \alpha_{v,t}\right), \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\tau_{v,t} \ge 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\tau_{v,t} \ge 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\psi_v^{wc} \ge \widehat{\xi}_v, \quad \forall v \in \mathcal{V}$$

$$\psi_v^{wc} \in \Lambda_v(c_{v,t}, d_{v,t}), \quad \forall v \in \mathcal{V}$$

$$\alpha_{v,t} \in \Upsilon_v(c_{v,t}, d_{v,t}), \quad \forall v \in \mathcal{V}$$

Lower level Problems Determining the Sets Λ_v

$$\psi_{v}^{wc} = \min_{\alpha'_{v,t}} \sum_{t \in \mathcal{T}} \alpha'_{v,t} \left(\eta_{v} c_{v,t} - \frac{1}{\eta_{v}} d_{v,t} \right)$$
subject to:
$$\sum_{t \in \mathcal{T}} \alpha'_{v,t} \ge K_{v} : (\zeta'_{v})$$

$$\underline{\alpha}_{v,t} \le \alpha'_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}'_{v,t}, \overline{\beta}'_{v,t}), \quad \forall t \in \mathcal{T}$$

$$\alpha'_{v,t} \in \{0,1\}, \quad \forall t \in \mathcal{T}$$

Lower level Problems Determining the Sets Υ_v

$$\min_{\alpha_{v,t}} \sum_{t \in \mathcal{T}} \alpha_{v,t} \left(\eta_v c_{v,t} + \frac{1}{\eta_v} d_{v,t} \right)
\text{subject to:}
\sum_{t \in \mathcal{T}} \alpha_{v,t} \ge K_v : (\zeta_v)
\underline{\alpha}_{v,t} \le \alpha_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}_{v,t}, \overline{\beta}_{v,t}), \quad \forall t \in \mathcal{T}
\alpha_{v,t} \in \{0,1\}, \quad \forall t \in \mathcal{T}$$

Methodology

- Non-convex.
- KKT conditions not applicable.

- Convex.
- KKT conditions applicable.

$$\psi_{v}^{wc} = \min_{\alpha'_{v,t}} \sum_{t \in \mathcal{T}} \alpha'_{v,t} \left(\eta_{v} c_{v,t} - \frac{1}{\eta_{v}} d_{v,t} \right)$$
subject to:
$$\sum_{t \in \mathcal{T}} \alpha'_{v,t} \ge K_{v} : (\zeta'_{v})$$

$$\underline{\alpha}_{v,t} \le \alpha'_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}'_{v,t}, \overline{\beta}'_{v,t}), \quad \forall t \in \mathcal{T}$$

$$\alpha'_{v,t} \in \{0,1\}, \quad \forall t \in \mathcal{T}$$

$$\psi_{v}^{wc} = \min_{\alpha'_{v,t}} \sum_{t \in \mathcal{T}} \alpha'_{v,t} \left(\eta_{v} c_{v,t} - \frac{1}{\eta_{v}} d_{v,t} \right)$$
subject to:
$$\sum_{t \in \mathcal{T}} \alpha'_{v,t} \ge K_{v} : (\zeta'_{v})$$

$$\underline{\alpha}_{v,t} \le \alpha'_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}'_{v,t}, \overline{\beta}'_{v,t}), \quad \forall t \in \mathcal{T}$$

$$0 \le \alpha'_{v,t} \le 1, \quad \forall t \in \mathcal{T}$$

$$\min_{\alpha_{v,t}} \sum_{t \in \mathcal{T}} \alpha_{v,t} \left(\eta_v c_{v,t} + \frac{1}{\eta_v} d_{v,t} \right)
\text{subject to:}
\sum_{t \in \mathcal{T}} \alpha_{v,t} \ge K_v : (\zeta_v)
\underline{\alpha}_{v,t} \le \alpha_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}_{v,t}, \overline{\beta}_{v,t}), \quad \forall t \in \mathcal{T}
\underline{\alpha}_{v,t} \in \{0,1\}, \quad \forall t \in \mathcal{T}$$

$$\min_{\alpha_{v,t}} \sum_{t \in \mathcal{T}} \alpha_{v,t} \left(\eta_v c_{v,t} + \frac{1}{\eta_v} d_{v,t} \right)
\text{subject to:}
\sum_{t \in \mathcal{T}} \alpha_{v,t} \ge K_v : (\zeta_v)
\underline{\alpha}_{v,t} \le \alpha_{v,t} \le \overline{\alpha}_{v,t} : (\underline{\beta}_{v,t}, \overline{\beta}_{v,t}), \quad \forall t \in \mathcal{T}
0 \le \alpha_{v,t} \le 1, \quad \forall t \in \mathcal{T}$$

Methodology

Matrix Totally Unimodular

Integer

$$\psi_{v}^{wc} = \min_{\alpha'_{v,t}} \sum_{t \in \mathcal{T}} \alpha'_{v,t} \left(\eta_{v} c_{v,t} - \frac{1}{\eta_{v}} d_{v,t} \right)$$
subject to:
$$\sum_{t \in \mathcal{T}} \alpha'_{v,t} \ge (K_{v}) \left(\zeta'_{v} \right)$$

$$\alpha'_{v,t} \le \alpha'_{v,t} \le (\overline{\alpha}_{v,t}) : (\underline{\beta}'_{v,t}, \overline{\beta}'_{v,t}), \quad \forall t \in \mathcal{T}$$

$$0 \le \alpha'_{v,t} \le 1, \quad \forall t \in \mathcal{T}$$

$$\min_{\alpha_{v,t}} \sum_{t \in \mathcal{T}} \alpha_{v,t} \left(\eta_v c_{v,t} + \frac{1}{\eta_v} d_{v,t} \right)
\text{subject to:}
\sum_{t \in \mathcal{T}} \alpha_{v,t} \ge (K_v) : (\zeta_v)
\underline{\alpha_{v,t}} \le \alpha_{v,t} \le \overline{\alpha_{v,t}} : (\underline{\beta}_{v,t}, \overline{\beta}_{v,t}), \quad \forall t \in \mathcal{T}
0 \le \alpha_{v,t} \le 1, \quad \forall t \in \mathcal{T}$$

Optimal solution takes integer values

Methodology

The original hierarchical program can be transformed into a single-level equivalent as follows:

Dual objective function

Dual feasibility constraints

- Primal feasibility constraints.
- Dual feasibility constraints.
- The equality corresponding to the strong duality condition.

$$\min_{\Xi^R} \sum_{t \in \mathcal{T}} \widehat{\lambda}_t p_t + \sum_{t \in \mathcal{T}} \sum_{v \in \mathcal{V}} \left(c_{v,t}^D + C_1^p s_{v,t} \right)$$
subject to:

$$p_t = \sum_{v \in \mathcal{V}} (c_{v,t} - d_{v,t}), \quad \forall t \in \mathcal{T}$$

$$-P^G \le p_t \le P^G, \quad \forall t \in \mathcal{T}$$

$$(c_{v,t}, d_{v,t}, s_{v,t}, c_{v,t}^D) \in \Phi(\alpha_{v,t}, \tau_{v,t}), \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\sum_{t \in \mathcal{T}} \tau_{v,t} = \widehat{\xi}_v, \quad \forall v \in \mathcal{V}$$

$$\tau_{v,t} \leq \left(\overline{E}_v - \underline{E}_v\right) \left(1 - \alpha_{v,t}\right), \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\tau_{v,t} \ge 0, \quad \forall v \in \mathcal{V}, t \in \mathcal{T}$$

$$\psi_v^{wc} \ge \widehat{\xi}_v, \quad \forall v \in \mathcal{V}$$

$$\psi_v^{wc} \in \Lambda_v(c_{v,t}, d_{v,t}), \quad \forall v \in \mathcal{V}$$

$$\alpha_{v,t} \in \Upsilon_v(c_{v,t}, d_{v,t}), \quad \forall v \in \mathcal{V}$$

Case Study

Base Case

- 120 days of simulation.
- 100 EVs.

Metric	DF	SF	HIF
Total Cost (€)	2.282,4	2.708,4	2.888,4
Total energy bought (MW)	162.2	155.1	114.2
Total energy sold (MW)	96.5	83.1	47.7
Deviations from energy balance of EV's battery (MW)	10,3	4,7	4,0
Deviations from the minimum value of energy sold (MW)	13,4	1,2	0,4

DF and SF compared to HF:

- Total cost decreases by 21.0% and 6.2%.
- Energy deviations from EV-batteries increase by 157.5% and 17.5%.
- Deviations from the minimum value of the energy sold increase up to 13.4 and 1.2 MWh.

Conclusion

- EV's aggregator market participation model:
 - simple, effective and efficient.
- **Reduction** of deviations from the energy balance of EV batteries.
- Reductions come at the expense of increasing the total trading costs in the day-ahead market.
- The computational speed of the proposed model is up to 25% faster than its stochastic counterpart.

Á. Porras, R. Fernández-Blanco, J. M. Morales and S. Pineda, "An Efficient Robust Approach to the Day-ahead Operation of an Aggregator of Electric Vehicles," in IEEE Transactions on Smart Grid, DOI: 10.1109/TSG.2020.3004268, Jun. 2020

An Efficient Robust Approach to the Day-ahead Operation of an Aggregator of Electric Vehicles

Thank you for your attention

Any question?

Álvaro Porras Cabrera

Joint work with:

- Ricardo Fernández-Blanco Carramolino
- Juan Miguel Morales González
- Salvador Pineda Morente

Informs Annual Meeting, 2020 Virtual

November 7-13, 2020

