AI504: Programming for Artificial Intelligence

Week 4: Autoencoders

Edward Choi
Grad School of AI
edwardchoi@kaist.ac.kr

Today's Topic

- Latent representation
- Autoencoders
- Training Process (not just for autoencoders)
- Visualization
- Autoencoder variants
 - Denoising autoencoder
 - Sparse autoencoder

• Man/Woman classification with an MLP.

4-dimensional hidden representation

0.8 0.1 0.9 0.4

0.1

0.2

0.1

0.1

Latent Space (4-D)

Consists of 4 axes:

- Long Hair?
- Mustache?
- Ribbon?
- Make up?

Latent Space

- How did we learn this space?
 - By minimizing the cross entropy loss!

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Learning the 2D space for classification

Latent Space

- Your latent space is shaped by your loss function (your task)
 - Man/Woman classification
 - Iris classification
 - House price regression
 - Word embedding
 - French-English translation

Latent Space

- Your latent space is shaped by your loss function (your task)
 - Man/Woman classification
 - Iris classification
 - House price regression
 - Word embedding
 - French-English translation
 - Image compression

Consists of Encoder and Decoder

Code , Latent Variables, Latent Representation

Consists of Encoder and Decoder

Consists of Encoder and Decoder

- Encoding
 - $z = f(W_1x + b_1)$
- Decoding

•
$$x' = f(W_2z + b_2)$$

- Loss
 - $\mathcal{L}(x, x') = ??$

Mean Squared Error (MSE) loss

- Encoding
 - $z = f(W_1x + b_1)$
- Decoding

•
$$x' = f(W_2z + b_2)$$

Loss

•
$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_2^2$$

(Squared Error)

Using muliple layers

- Encoding
 - $h = f(W_1x + b_1)$
 - $z = f(W_2h + b_2)$
- Decoding
 - $h' = f(W_3z + b_3)$
 - $x' = f(W_4h' + b_4)$

Compression

Need to pack all information in 4-D

→ Need to learn some useful hidden features

Compression

Still consists of 4 axes?

- Long Hair?
- Mustache?
- Ribbon?
- Make up?

Compression

Still consists of 4 axes?

- Long Hair?
- Mustache?
- Ribbon?
- Make up?

Probably Not!

- Think about PCA

Autoencoders VS PCA

- PCA
 - Minimize reconstruction error
 - == Maximize variance
 - Linear transformation
 - Select k var-maximizing bases
 - Ignore small variance
 - Use kernels to map to higher dim space

- Autoencoder
 - MInimize reconstruction error
 - == Maximize variance
 - Non-Linear transformation
 - Use k dims to compress
 - Implicitly ignore small variance
 - Can easily map to higher dim space

Encoding to a higher dimensional space

If dim(z) > dim(x), what would happen to the MSE loss?

Training Process

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best *M* on test set

- Split into train/validation/test
 - 8:1:1, 6:2:2 depending on real-world use case
 - Consider N-fold cross validation
- → Can use scikit-learn train_test_split

- Split into train/validation/test
- Load data
 - Entire data into the memory
 - Handling small datasets
 - Stream data from the disk
 - When data doesn't fit in memory
 - When streaming from DB, video, audio
- → Use torch.utils.data.Dataset & torch.utils.data.DataLoader

- Split into train/validation/test
- Load data
- Define a model $M \rightarrow Use torch.nn.Module$
 - Define loss L
 - Cross entropy, MSE, L₂ Regularization
 - → Use torch.nn.* (or define your own)

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
 - SGD, Adagrad, Adam, Adamax, etc.
- → Use torch.optim.*

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best *M* on test set

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for K batches
 - Fetch a random minibatch (X, y)
 - Push X through M
 - Obtain y'
 - Calculate L(y, y')
 - Use O to update M's params
 - Evaluate M on validation set
 - If best validation perf, save M

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for *K* batches
 - Fetch a random minibatch (X, y)

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for *K* batches
 - Fetch a random minibatch (X, y)
 - X: B number of samples
 - y: B number of labels
 - → Use torch.utils.data.DataLoader

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for *K* batches
 - Fetch a random minibatch (X, y)
 - Push X through M

$$\rightarrow$$
 $y' = M(X)$

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for *K* batches
 - Fetch a random minibatch (X, y)
 - Push X through M
 - Calculate L(y, y')

$$\Rightarrow$$
 c = L(y, y')
(Also print c every once in a while)

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for K batches
 - Fetch a random minibatch (X, y)
 - Push X through M
 - Obtain y'
 - Calculate L(y, y')
 - Use O to update M's params

```
→ O.zero_grad()
c.backward()
O.step()
```

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for *K* batches
 - Evaluate *M* on validation set

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for N epochs
 - Repeat for *K* batches
 - Repeat for *J* batches of valid. set
 - Fetch next minibatch (X, y)
 - Use another DataLoader
 - Push X through M
 - Obtain y'
 - Save batch performance

•
$$y == y', (y - y')^2$$

Calculate validation performance

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Repeat for *N* epochs
 - Repeat for *K* batches
 - Repeat for *J* batches of valid. set
 - Calculate validation performance
 - Accuracy, AUROC, MSE, etc.
 - If best validation perf so far, save M
 - → copy.deepcopy(M.state_dict())
 or torch.save(M.state_dict(), path)

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Split into train/validation/test
- Load data
- Define a model *M*
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Load best M
- Evaluate best *M* on test set
- Calculate test performance

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

Load best M

→ M.load_state_dict(model_state_dict)
or M.load_state_dict(torch.load(path))

- Split into train/validation/test
- Load data
- Define a model M
 - Define loss L
- Define optimizer O
- Training Loop
- Evaluate best M on test set

- Load best M
- Repeat for *T* batches of test set
 - Fetch next minibatch (X, y)
 - Use another DataLoader
 - Push X through M
 - Obtain y'
 - Save batch performance
 - $y == y', (y y')^2$
- Calculate test performance
 - Accuracy, AUROC, RMSE, etc.

Visualization

• It's easier to draw (or scatter) on a 2D plane

- We need an additional dimension reduction
 - From dim(**z**) to 2
 - So that we can plot on a 2D plane.

- We need an additional dimension reduction
 - From dim(**z**) to 2
 - So that we can plot on a 2D plane.
- Popular algorithms
 - PCA
 - t-SNE
 - UMAP

- Popular algorithms
 - PCA
 - Variance-based
 - In scikit-learn
 - t-SNE
 - Distance-based
 - In scikit-learn
 - UMAP
 - Distance-based
 - Needs explicit installation
 - Depends on scikit-learn

- Popular algorithms
 - PCA
 - Variance-based
 - In scikit-learn
 - t-SNE
 - Distance-based
 - In scikit-learn
 - UMAP
 - Distance-based
 - Needs explicit installation
 - Depends on scikit-learn

See https://pair-code.github.io/understanding-umap/ for a comparison between t-SNE and UMAP

Autoencoder Variants

- Induce sparse latent representations
 - For better performance in downstream classification

- Induce sparse latent representations
 - For better performance in downstream classification

Loss function = $L(\mathbf{x}, \mathbf{x'}) + \Omega(\mathbf{z})$

- Reconstruction L(x, x')
- Sparsity inducing term $\Omega(\mathbf{z})$

- Induce sparse latent representations
 - For better performance in downstream classification

Loss function = $L(\mathbf{x}, \mathbf{x'}) + \Omega(\mathbf{z})$

- Reconstruction L(x, x')
- Sparsity inducing term $\Omega(\mathbf{z})$

Using KL-divergence

- $\Omega(\mathbf{z}) = \sum_{i} KL(\rho||\hat{\rho}_{i})$
- $\hat{\rho}_i$ = Average activation of z_j
- ρ = Target Bernoulli dist. mean

- Induce sparse latent representations
 - For better performance in downstream classification

Z

Loss function = $L(\mathbf{x}, \mathbf{x'}) + \Omega(\mathbf{z})$

- Reconstruction L(x, x')
- Sparsity inducing term $\Omega(\mathbf{z})$

Using L₁ Regularization

•
$$\Omega(\mathbf{z}) = \lambda \sum_i |z_i|$$

- Reconstruct an input with random noise (i.e. corrupted input)
 - Small noise doesn't affect higher-level representation (i.e. raw data)
 - Autoencoder must learn useful patterns to perform denoising

- Reconstruct an input with random noise (i.e. corrupted input)
 - Small noise doesn't affect higher-level representation (i.e. raw data)
 - Reminds you of something?
 - Autoencoder must learn useful patterns to perform denoising

- Reconstruct an input with random noise (i.e. corrupted input)
 - Small noise doesn't affect higher-level representation (i.e. raw data)
 - Reminds you of something? → PCA
 - Autoencoder must learn useful patterns to perform denoising

- Reconstruct an input with random noise (i.e. corrupted input)
 - Small noise doesn't affect higher-level representation (i.e. raw data)
 - Autoencoder must learn useful patterns to perform denoising

Loss function = $L(\mathbf{x}, \mathbf{x'})$

• NOT $L(\tilde{\mathbf{x}}, \mathbf{x}')$

Corrupt

Usually Gaussian noise

AI504: Programming for Artificial Intelligence

Week 4: Autoencoders

Edward Choi
Grad School of AI
edwardchoi@kaist.ac.kr