DERWENT-ACC-NO:

2003-807881

DERWENT-WEEK:

200376

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Brown-sugar candy useful as foodstuffs, contains brown

sugar, sugar, and starch syrup as main component

PATENT-ASSIGNEE: MIKAKUTO KK[MIKAN]

PRIORITY-DATA: 2002JP-0018124 (January 28, 2002)

PATENT-FAMILY:

LANGUAGE PAGES MAIN-IPC PUB-NO PUB-DATE 005 A23G 003/00 IP 2003219802 A August 5, 2003 N/A

APPLICATION-DATA:

APPL-DATE APPL-DESCRIPTOR APPL-NO PUB-NO 2002JP-0018124 January 28, 2002 IP2003219802A N/A

INT-CL (IPC): A23G003/00

ABSTRACTED-PUB-NO: JP2003219802A

BASIC-ABSTRACT:

NOVELTY - A brown-sugar candy contains brown sugar, sugar, and starch syrup as main component. The surface of the candy is remelted to form surface-treatment layer having a thickness of 7 mu m or more. The candy has smooth surface and does not have roughness in a surface.

DETAILED DESCRIPTION - A brown-sugar candy contains brown sugar, sugar, and

starch syrup as main component. The surface of the candy is remelted to form surface-treatment layer having a thickness of 7 mu m or more. The candy has smooth surface and does not have roughness in a surface. The equal perceptual space of the color of the candy is defined by L.a.b. colorimetric system, where a = -1-(1) and b = -3-(2). The color is defined by measuring the surface with color-difference meter.

An INDEPENDENT CLAIM is also included for a method for manufacturing <u>brown-sugar candy</u>, which involves cooking <u>brown-sugar candy</u> dough having <u>brown</u>

<u>sugar</u>, sugar, and starch syrup as main component, molding cooked <u>brown sugar candy</u> dough material, remelting the surface of <u>brown sugar candy</u> and forming surface-treatment layer.

USE - As foodstuffs.

ADVANTAGE - The <u>candv</u> has favorable smooth surface and favorable food quality. The method efficiently provides <u>brown sugar candv</u>.

CHOSEN-DRAWING: Dwg.0/0

DERWENT-CLASS: D13

CPI-CODES: D03-E10;

----- KWIC -----

Basic Abstract Text - ABTX (1):

NOVELTY - A <u>brown-sugar candy</u> contains <u>brown sugar</u>, sugar, and starch syrup as main component. The surface of the <u>candy</u> is remelted to form surface-treatment layer having a thickness of 7 mu m or more. The <u>candy</u> has smooth surface and does not have roughness in a surface.

Basic Abstract Text - ABTX (2):

DETAILED DESCRIPTION - A <u>brown-sugar candy</u> contains <u>brown sugar</u>, sugar, and

starch syrup as main component. The surface of the <u>candy</u> is remelted to form surface-treatment layer having a thickness of 7 mu m or more. The <u>candy</u> has smooth surface and does not have roughness in a surface. The equal perceptual space of the color of the <u>candy</u> is defined by L.a.b. colorimetric system, where a = -1-(1) and b = -3-(2). The color is defined by measuring the surface with color-difference meter.

Basic Abstract Text - ABTX (3):

An INDEPENDENT CLAIM is also included for a method for manufacturing <u>brown-sugar candy</u>, which involves cooking <u>brown-sugar candy</u> dough having <u>brown</u>

<u>sugar</u>, sugar, and starch syrup as main component, molding cooked <u>brown sugar candy</u> dough material, remelting the surface of <u>brown sugar candy</u> and forming surface-treatment layer.

Basic Abstract Text - ABTX (5):

ADVANTAGE - The \underline{candy} has favorable smooth surface and favorable food quality. The method efficiently provides $\underline{brown \, sugar \, candy}$.

Title - TIX (1):

<u>Brown-sugar candy</u> useful as foodstuffs, contains <u>brown sugar</u>, sugar, and starch syrup as main component

Standard Title Terms - TTX (1):

BROWN SUGAR CANDY USEFUL FOOD CONTAIN BROWN SUGAR SUGAR STARCH SYRUP MAIN COMPONENT

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出限公開番号 特開2003-219802 (P2003-219802A)

(43)公開日 平成15年8月5日(2003.8.5)

(51) Int.Cl. 7 A 2 3 G 3/00

識別紀号 101 FI A 2 3 G 3/00 ディストト・(参考) 101 4B014

審査請求 未請求 請求項の数3 OL (全5 頁)

(21) 出願番号

特闘2002-18124(P2002-18124)

(22)出顧日 平成14年1月28日(2002.1.28)

(71) 出觀人 390020178

味觉離株式会社

大阪府大阪市中央区神崎町 4 番12号

(72)発明者 立川 静子

大阪府大阪市中央区神崎町 4番12号 ユー

八味覚糖株式会社内

(72)発明者 藤尾 愛子

大阪府大阪市中央区神崎町 4番12号 ユー

ハ味覚糖株式会社内 (74)代理人 100074561

弁理士 柳野 陸生

最終質に続く

(54) 【発明の名称】 黒鮯およびその製造方法

(57)【要約】

【課題】 表面に凹凸がなく滑らかで光沢があり、見た 目に綺麗であるだけでなく、食感も滑らかな黒鮎を提供

「解集・砂能及び水給を主成分とする風給 生地を炊き、炊いた風給生地を成形し、成形した風給の 表面を接処理工程により得溶組して表面処理層を形成す ることで得られる。再溶能により形況をはた表面から7 ル町上しが厚みの東面処理局を10、表面に四乙が会 冷らかで、表面を色彩色差計で測定して得られるし。2 b ま色気で度減される色の均等現堂が開における。2 が-1-1、6 で統一3 ~ 2 のが理例である風給。

【特許請求の範囲】

【請求項1】 黒糖、砂糖及び水飴を主成分とする黒飴 であって、成形後の再溶融により形成された表面から7 um以上の厚みの表面処理層を有し、表面に凹凸がなく 滑らかで、表面を色彩色差計で測定して得られるL·a· b*表色系で定義される色の均等知覚空間におけるa*値 が-1~1、b*値が-3~-2の範囲内であることを 特徴とする黒飴。

【請求項2】 黒糖、砂糖及び水飴を主成分とする黒飴 生地を炊く工程、炊いた黒飴生地を成形する工程、成形 10 した用船の表面を再窓勘して表面処理層を形成する役別 理工程を含むことを特徴とする風鉛の製造方法。

【請求項3】 後処理工程が、成形後の黒鉛を回転させ ながら表面を加熱して再溶融し、引き続き回転させなが ら冷却するものである請求項2記載の異餘の製造方法。

【発明の詳細な説明】 [0001]

【発明の属する技術分野】本発明は黒鮭およびその製造 方法に関するものである。

[0002]

【従来の技術】黒糖、砂糖及び水飴を主成分とする黒飴 は、夏場にもそれほど消費量の下がらない飴として根強 い支持を受けてきた。その理由は、黒糖のおいしさとそ の健康感にあると思われる。このような黒鉛を製造する 工程としては、例えば以下のような方法がある。第1の 方法は、黒糖、砂糖及び水飴を主成分とする黒飴生地を 炊く工程、それを型に流し込んで成型する工程からな る。第2の方法は、炊いた黒鉛生地を釜から出した後、 球断機で成形する工程からなる。更に、第3の方法とし ある.

【0003】しかし、上記第1の方法では、炊いた生地 を型に流し込んで成型し、冷却した後、型から離すた め、飴の表面にへこみが生じ、凹凸のない平坦な形状の 飴にするのは難しい。また、表面の滑らかさは上記3つ の方法の中では良い方だが、滑らかさには陽界がある。 上記第2、3の方法では表面に帯状の凹凸が発生し、滑 らかな表面の飴にするのは難しく、光沢が乏しい。更 に、見た目だけでなく、いずれの方法で製造した黒飴 も、食感の滑らかさという点でも難がある。

[0004]

【発明が解決しようとする課題】上記のように、従来の 方法により製造された黒鉛は、表面の凹凸や滑らかさ、 及び食感の滑らかさのいずれの点においても難があり、 表面に凹凸がなく滑らかで見た目に綺麗であり、かつ食 感も滑らかな黒飴が長い間要望されてきた。本発明はこ の要望に応えることを目的とし、表面に凹凸がなく滑ら かで光沢があり、見た目に綺麗であるだけでなく、食感・ も滑らかな黒鉛を提供することを目的とするものであ

[0005]

【課題を解決するための手段】前記目的を達成するた め、本発明者らは鋭電研究を重ねた結果、成形後の黒飴 を、後処理によりその表面を再溶融させた後、冷却する と、表面が整くほど滑らかになり、光沢があって見た目 に綺麗で、しかも食感も極めて滑らかな黒飴を製造する ことができることを知見し、本発明を完成させるに至っ t.

【0006】即ち、本発明に係る黒飴は、黒糖、砂糖及 び水飴を主成分とする黒飴であって、成形後の再溶融に より形成された表面から7 μm以上の厚みの表面処理層 を有し、表面に凹凸がなく滑らかで、表面を色彩色差計 で測定して得られるL*a*b*表色系で定義される色の 均等知覚空間における a・値が-1~1、b・値が-3~ 2の節用内であることを特徴とする。

【0007】又、本発明に係る黒飴の製造方法は、黒 糖、砂糖及び水鉛を主成分とする黒鉛生地を炊く工程、 炊いた黒飴生地を成形する工程、成形した黒飴の表面を 再溶融して表面処理層を形成する後処理工程を含むこと 20 を特徴とする。前記後処理工程としては、成形後の黒飴 を回転させながら表面を加熱して再溶融し、引き続き回 転させながら冷却するものであることが好ましい。 [0008]

【発明の実施の形態】本発明の黒鉛は黒糖、砂糖及び水 飴を主成分としてなる。 通常の黒飴は、生地中での水飴 の比率 (重量比、以下同じ)が3割程度で、残りが黒糖 と砂糖である。本発明では、生地中に黒糖を2割~9割 までの比率で使用できるが、好ましくは3割~7割、よ り好ましくは4割~6割程度の黒糖が含まれている態様 て、球断根に変えてスタンピングにより成形する方法も 30 である。生地中の黒糖の比率が3割以下になると色が茶 色を帯び、7割を越えると黒糖の甘さが極端に出ていく つも食することができなくなる。本発明の黒飴には、上 記黒糖、砂糖及び水飴の他、消泡剤、香料、色素などを 添加することも可能である。又、センターに果汁や果実 等を入れることも可能である。

> 【0009】本発明の黒絵を製造する方法は、黒糖、砂 糖及び水飴を主成分とする黒飴生地を炊く工程、炊いた 黒鮎生地を成形する工程、成形した黒飴の表面を再溶融 して表面処理層を形成する後処理工程を含む。

40 【0010】即ち、まず最初は、上記した黒糖比率の黒 飴生地を炊きあげることから始まる。一般に、この炊き あげ温度は135℃前後を適当とする。 ついで成形工程 に入るが、成形方法としては、例えば型への流し込み、 球断機にかける、またスタンピングといった普通に行わ れている成形法を使用することができる。本発明では、 成形後、冷却した後の黒飴を更に後処理工程にかける。 【0011】本発明の後処理工程は、成形後、冷却した 黒飴の表面を再溶融させた後、冷却することにより、黒 飴の表面に所定の厚みの表面処理層を形成するものであ 50 る。成形後の黒鉛の表面を溶融する方法としては、表面

@\$@\$©\$@ ~8.8 \$MO.XO■8 B&©©&©@@

を加熱して溶融する方法、摩擦熱により表面を溶融する 方法 加勢と康稼弊の両方を組み合わせて溶散する方法 がある。表面処理層を形成する好ましい方法としては、 成形後、冷却した黒鮎を回転させながら加熱してその表 面を所定の厚みで再溶融し、その後、引き続き回転させ ながら冷却する。これにより、形が美しく、表面に凹凸 がなく滑らかで、黒光りした極めて光沢のある黒飴を製 合することができる。本発明において、黒鮎の表面に凹 凸がなく滑らかであるという意味は、風飴の表面に肉眼 で確認できるほどの巨視的な凹凸がなく、また微視的に 10 間における a*及びb*の値に表れる。即ち、本発明の黒 も極めて平滑であることを意味する。

【0012】好ましい後処理工程の実施態様としては、 成形後、冷却した黒鉛を、回転するレポリングパンに所 定量入れ、所定の回転数のもと回転させながら加熱する ことにより、飴の表面から所定の厚みで再溶融させる。 これにより、加熱とパンの回転による摩擦熱の両方がパ ンに入れた黒鉛の表面を溶かし、後処理層を形成するこ とになる。加熱方法としては、送風機でレボリングパン に熱風を吹き込む方法、あるいはレポリングパンの下に ガスコンロや個気コンロ等の加熱手段を設置してパン自 20 という人間の感覚量を数値化したものがL*a*b*値で 体を加熱するなどの方法を採用することができる。ま た、パンに黒飴を入れる前に、予めパンを加熱しておい てもよい、このようにして回転するレポリングパン中で 給表面を再溶融した後、引き続きレポリングパン中で回 転させながら冷却する。これにより、表面に凹凸がなく 滑らかな本発明の黒飴を作ることが出来る。この後処理 時のパンの回転数は10~1000rpm、好ましくは 30~300rpmであるが、パンの大きさ、パンに入 れる黒鉛の量によって適宜調整することが好ましい。加 勢は80℃前後の温度が適当であるが、加熱時間はパン 30 の大きさとパンに入れる黒飴の量によって調整する。こ の場合、加熱温度を過度に高くしたり回転の時間が長す ぎたりすると黒鉛が互いにくっついたり形が変形したり するので注意を要する。また、加熱温度、加熱時間を調 整することにより、飴表面が再溶融して形成される表面 処理層の厚みを調整することができる。本発明の黒飴の 好適な態様は、生地を丸型(球形)に成形し、レポリン グバン中での回転によって、限りなく丸くなった光沢の ある態様であるが、丸型に限らず四角等も可能である。 いずれの形であっても、形が美しくかつ黒光りする、こ れまでになかった黒鉛を提供することができる。 【0013】なお、例えば、成形後、冷却した黒飴を、

新たな型にはめ込み、熱を一定時間かけて放置すること* L = 1 1 6 (Y/Y) 1/3-16 $a^* = 500 ((X/X_s)^{1/8} - (Y/Y_s)^{1/8})$

$$b^* = 200 ((Y/Y_0)^{1/3} - (Z/Z_0)^{1/3})$$

ここに、 X_0 、 Y_0 、 Z_0 は照明光線の3刺激値である。 ※表面が、上記

【0020】色彩色差計は、3つの波長での刺激量 (X. Y. Z) 値を測定し、上記式(3)~(5) によ り、L・、a・、b・を算出する。本発明の黒鉛は、その ※50 により製造され、現在市場に出回っている黒鉛表面のa

*でも、飴表面を再溶融して表面処理層を形成することは できる。しかし、この方法は、上記した飴を回転させな がら、その表面を再溶融させる方法に比べて生産効率が 低く、また表面の凹凸や滑らかさといった点でも回転さ せる方法のほうが有利である。

【0014】上記のように、本発明の黒飴の特徴は表面 に凹凸がなく極めて平滑で黒光りする光沢を有する点で ある。この特徴は、飴の表面を色彩色差計で測定して得 られる、L·a·b·表色系で定義される色の均等知覚空 飴は、色彩色差計を用いた測定値によって得られる上記 a・値及びb・値によって、従来の黒飴と明確に区別する ことができる.

【0015】上記色彩色差計で測定したときのL・a・b 表色系で定義される色の均等知覚空間におけるa・値及 び b・値について説明する。色彩色差計は、物の色を判 定し制御する分野において、人間の眼に代わる色彩管理 機である。この計器は試料に光源からの光を照射し、そ の反射光を受光して測定し、数値化するものである。色

【0016】即ち、CIE (国際照明委員会) は、人間 の眼は3つの波長での刺激量 (X、Y、Z)を持つと定 義し、この刺激量をもとにして、色は次式(1)、

(2)で定義される色度座標(x、y)で表現した。

[0017] 【数1】 x = X / (X + Y + Z)(1)

y = Y / (X + Y + Z)(2)

【0018】上記 (x、y)を図にプロットしたものを CIE標準色度図と呼び、すべての色はこの図の馬蹄型 の内側に位置する。このように人間の眼の感度、及び色 度座編を定義したが、この色度図では色差、つまり肉眼 で2つの色を見て感じる2つの色の違いの量と、色度座 係(x、y)上での距離とは一致していない。そこで人 間が感じる色差と、座標空間の距離のほぼ等しい均等知 覚空間が考え出された。CIEは、これを次式(3)、 (4)、(5)で表されるL*a*b*表色系で定義し 40 た。一般的に言われている明度はしの関数であり、彩 度と色相は a°と b°の関数である。

> 【数2】 (3) (4) (5)

[0019]

※表面が、上記色彩色差計による測定により求められるし *a*b*表色系でa*、b*がそれぞれ-1~1、-3~ -2の範囲の値を有する。これに対し、従来の製造方法

®∽®∽CCCC →≬♦७ ↑NO∙XO■B ®≪C⊃≪CCCC®

*、b*の値は、本発明の黒飴のそれより大きい。 【0021】なお、黒鮎の表面光沢を数字で表す場合、 光沢度計により測定することも考えられる。しかし、市 腹の光沢度計はビーム径が大きく、市販されているもの のうちでもっとも小さいビーム径を有する光沢度計で源 定しても、本発明の好ましい実施態様である丸い黒飴の 場合、実際の光沢に比べて低い値しか得られず、飴表面 の光沢を正しく評価することが困難であった。

【0022】上記したa*、b*の値を有する本発明の黒 始は、その表面から7µm以上の表面処理層を有してい 10 る。この表面処理層は、飴を切断するか破砕し、その断 面を電子顕微鏡により、例えば1,000倍程度の倍率 で観察することにより確認することができる。即ち、電 子期微鏡により観察した場合、成形後の再溶験により形 成される表面処理層は溶けたように流れて見え、それ以 外の部分は平坦でなにも見えない。これにより、表面処 理層とそれ以外の部分とに明確に区別することができ、 表面処理層の厚みを測定することができる。なお、表面 処理層の厚みは、電子顕微鏡による観察結果をコンピュ ータで画像処理することにより容易に測定することがで 20 きる。そして、表面から7 m以上の表面処理層を有す る黒飴は、上記の範囲のa・値及びb・値を有する。表面 処理層の厚みが7μm未満の場合には、a*値およびb* 値が上記の適性な範囲からはずれ、表面の平滑性が失わ れる。この表面処理層が厚ければ厚いほど表面の平滑性 は良いことになるが、良い形を保つため、又、製造時間 の制限から、おのずと厚みの上限が決まる。このような 観点から、表面処理層の好ましい厚みの上限値は100 μm、より好ましくは40μmである。

【0023】上記のような飴表面の平滑性は、見た目の 30 うえだけでなく、飴をなめたときの極めて滑らかな食感 として感じることができる。即ち、上記範囲の厚みの表 面処理層が形成された黒飴は、驚くべきことに、舐め始 めから終わりまで、いつまでも極めて滑らかな食感が楽 しめるものになる。即ち、上記のような表面処理層を有 する本発明の無触は、食感上でもこれまでになかった滑*

* らかさを有する。 [0024]

> 【実施例】次に実施例によって本発明を詳細に説明する が、本発明はこれらの実施例によりなんら制限されるも のではない.

【0025】 [実施例1~4] 黒糖、砂糖及び水飴の比 率を、水飴が30重量%、黒糖が30~60重量%の範 囲の4種類、残りを砂糖とした4種類の黒飴生地に消泡 剤としてグリセリン脂肪酸エステル1.6重量%を加 え、これを133℃、0.056MPaの真空釜で炊き あげた。次いで釜から出して丸型 (球形) にスタンピン グして、単重5gの黒飴を成形した。成形された黒飴の 表面には帯状の凹凸が見られた。直径30cmのレポリ ングパンに黒船50個を入れ、次いでレポリングパンの 回転数を30rpmから80rpmに上げつつ80℃の 熱風を吹き込んだ。1分後、レボリングパンを回転させ たまま冷却したところ、ほぼ球形で、帯状の凹凸が消失 して表面が平滑で黒光りする黒鉛が出来た。色彩色差計 により、得られた黒鉛の表面のL*a*b*を測定した。 なお、L* a* b*の測定は、日本電色(株)の色差計S 乙により行った。更に、黒鉛を金槌で粉砕し、その断面 を電子顕微鏡により1.000倍の倍率で観察し、表面 処理層の厚みをコンピュータ画像処理により求めた。な お、表面処理層の厚みとL*a*b*は、黒糖比率の異な る実施例1~4の飴について、それぞれ20個ずつ測定 した。上記のようにして測定した a · 値、b · 値の平均値 及び表面処理層の厚み幅を表1に示した。

【0026】[比較例1、2]上記実施例1において、 レボリングパンによる後処理工程を行わない以外は同様 にして黒鉛を製造し、比較例1とした。また、市販の黒 飴を比較例2とした。これら比較例1及び2について、 実施例1~4と同様にしてa*値及びb*値を測定し、結 果を表1に併せて示した。なお、比較例2の市販の黒飴 についての黒糖比率は不明である。

[0027] 【表11

	思糖比率 (重量%)	表面処理層の 厚み(μm)	a * 值	P.链
実施例1	8 0	7~25	-0.13	-2.49
灾施例 2	40	8~25	-0.22	-2.10
実施例3	5 0	7~33	-0.44	-2.50
実施例4	6 0	7~41	0.13	-2.72
比較例1	3 0	. 0	3. 1	3.1
比較例2	-	0	5. 5	5.4

【0028】表1に示す結果から明らかなように、成形 谷の再溶膜による後処理により形成された7µm以上の 表面処理層を有する本発明の黒飴は、後処理を行わない 比較例1の黒鉛や市販の黒鉛に比べて a*値、b*値が小 さく、その表面は凹凸がない滑らかな球面状で黒光りし ており、また紙め始めから終わりまでツルツルとした滑 らかな食感であった。一方、後処理を行わない比較例1※50 の再溶融により形成される表面処理層を有する本発明の

※の黒鉛は表面に帯状の凹凸があり、また舐めたときの食 感も凹凸を感じるものであった。また市販の黒鉛は、そ の表面が滑らかさに欠け、舐めたときの食感もざらつき を感じるものであった。

[0029]

【発明の効果】以上の説明から明らかなように、成形後

黒鮎は、形も綺麗で表面に凹凸がなく黒光りしており、 見た目に綺麗で、かつ総めて食感の滑らかな現鮨であ る。また、本発明の黒鮎の製造方法によれば、上記のよ かえ見た目に綺麗でかつ極めて食感も消らかな黒鮎を製 造することができる。更に、前江黒給の製造方法におい て、後処理工程が、成形後の黒鉛を回転させながら表面 を再溶酸し、引き続き回転させながら冷却するものであ る場合には、上記の黒鉛を効率よく量産することが可能 である。

フロントページの続き

(72)発明者 松居 雄毅 大阪府大阪市中央区神崎町4番12号 ユー ハ味覚糖株式会社内 Fターム(参考) 4B014 GE01 GG07 GP12 GP14 GQ03