

ASTA DE BANDERA 6M

CÁLCULOS ESTADÍSTICOS

Asta de bandera de poliéster reforzado con fibra de vidrio

Asta de bandera : GRP según POLYMAST LDA

Anclaje al suelo : St 37 Tipo de hormigón : B 25

Estimación calidad del suelo : Sigma = 150 kN/m^2 **Fabricante** : **POLYMAST LDA**

Datos concernientes a la base: -diámetro = 0.60 m

-calado = 1.00m -volumen = 0.28m3 -peso = 6.22kN

Cargas en la base : -M = 1.55kN

-H = 0.42kN

-N (mástil-anclaje al suelo) = 0.63kN

Los cálculos tienen en cuenta los efectos de soporte de la presión del suelo según:

- Grundbautaschenbuch Band I 2.
- Auflage Sida 524 ff
- Con Zeta 0 = 0.683
- Gamma Mark = $18,00 \text{ kN/m}^3$

• Momento en la base: z = 0.68 m

H = 0,42 kNM = 1,97 kNm

• Esfuerzos absorbidos por el soporte lateral del suelo:

H = 0.22 kN M = 1.04 kNmM = 0.86 kNm

• Ausmitte: c = 0.13

Datos concernientes a la fijación a la base:

- Tirante d = 20,00 mm
- ◆ <u>Longitud</u> = 450,00 mm
- ◆ Clase KS 40
- ◆ Brazo torsor de los pernos de anclaje = 145,50 mm
- ◆ Momento en la brida M = 1,55 kNm
- Fuerza de apriete Z = 10,68 kN
- $\underline{\text{Sigma}} = 43,03 \text{ MN/m}^2 < 320,00 \text{ MN/m}^2$
- ! ◆ Junta de acero / hormigón según DIN 1045 B 25
 - ◆ No se han tenido en cuenta los 50 mm superiores del tirante a la hora de calcular la junta de acero / hormigón.
 - ◆ Tau permitida = 1,80 MN/m²
 - Tau real = $0.42 \text{ MN/m}^2 < 1.80 \text{ MN/m}^2$

Datos concernientes al anclaje al suelo:

• Rör : -d = 102,00 mm- t = 2,00 mm

- St 37

◆ Altura de anclaje en suelo > = 45 mm

! El anclaje en suelo del mástil/suelo puede calcularse como fuertemente anclado, reduciéndose así la fuerza th transversal en un 65% aproximadamente.

Q superior	Q inferior	M	\boldsymbol{A}	W	Sigma	Tau
KN	kN	kNm	cm ²	cm ³	MN/m^2	MN/m^2
2,34	10,98	1,52	6,28	15,41	98,64	69,87 X/XII
0,98	9,24	0,64			41,52	29,41 XII

- Sigma permisible = $180 \text{ MN/m}^2 < 98,64 \text{ MN/m}^2$
- Tau permisible = $104 \text{ MN/m}^2 < 69,87 \text{ MN/m}^2$

Anclaje en suelo:

Este es un caso de cargas extremadamente complejas. La resistencia a la carga se ha calculado por experimentación como $M=9,00~\rm kNm$ en el hormigón en tubo. No se produjo ruptura con esta carga, pero si comenzó a darse una gran distorsión y cuando se sometió a este momento el material empezó a ceder.

- M zul = 9,00 / 1,5 = 6,00 kNm
- M Real = 1,52 kNm

Datos concernientes al asta de bandera:

Carga eólica de la bandera : 0,23 kN
Carga eólica del mástil : 0,18 kN

Z	N	Q	M	A	W	Sigma
m	kN	kN	kNm	cm ²	cm ³	MN/m^2
1,13	0,02	0,14	0,14	4,43	6,86	21,09
2,25	0,04	0,17	0,32	5,55	10,85	29,40
3,38	0,06	0,232	0,52	6,67	15,76	36,43
4,50	0,09	0,36	0,96	7,80	21,57	44,54
5,30	0,12	0,40	1,26	7,80	21,57	58,66

• Mástil sin bandera, velocidad del viento X Beaufort :

- Esfuerzo de rotura: 250 MN/m
- Coeficiente parcial (gamma t): 1,10
- Factor de seguridad (gamma m): 1,10
- ◆ Factor de seguridad (gamma f): 1,35
- Esfuerzos permitidos = 250 /gamma m,t,f = 153,05 $MN/m^2 > 58,66 MN/m^2$
- ◆ Pandeo de un cilindro alargado según DIN 18800 T4 : Cx = 0,4/Kl
- $\underline{\text{Sigma xSi}} = 185,18 \text{ MN/m}^2$
- Lambda s = 1,16 k1 = 0,48

• Sigma $xS = 119,23 \text{ MN/m}^2$

$$z = 5,10 \text{ m}$$

 $M = 1,18 \text{ kNm}$
 $Sigma = 51,77 \text{ MN/m}^2$

◆Sigma permitido =119,23 / gamma m, t, $f = 72,99 \text{ MN/m}^2 < 51,77 \text{ MN/m}^2$

Datos concernientes a las condiciones:

- -La fibra de vidrio está repartida 70% longitudinalmente y 30% transversalmente.
- -El modulo elástico y carga límite han sido determinados en un ensayo 1 : 1 y sus Respectivos valores son:
 - Módulo elástico longitudinal = 20000 MN/ m²
 - Módulo elástico transversal = 10000 MN/ m²
 - Esfuerza de rotura = 250 MN/ m²
- -Estos valores satisfacen la norma DIN 18820 E sección 2.
- -La fijación al suelo se realiza mediante anclajes de acero St 37 y tirantes empotrados en hormigón KS 40 (8.8) d = 20 mm.
- -El hormigón de la base deberá ser como mínimo B 25 (DIN 1045).
- -La fijación al suelo se calcula como una viga corta en voladizo según la norma alemana Grundbautaschenbuch Band 1 2. Auflage Página 524 y siguientes.
- -El valor Cf de la bandera se obtiene a partir de DIN 1055 E 1989, Eurocode E 1991 o de la SIA 160 suiza.

Datos generales:

• Bandera : B = 1,20 m D = 3,00 m

• Altura del mástil : H = 6,00 m

• Diámetro de la base del mástil : 115,00 mm parte superior 65,00 mm

◆ Cilíndrico hasta : + 1,50m

• Grosor del material: 2,20 mm

ROS EM FIBRA DE VIERO de anclaje al suelo 90 Std:

<u>Diámetro del tubo</u>: 102,00 mm
<u>Grosor del material</u>: 2,00 mm
Bridas: t = 4,00 mm
Soldadas

Base:

<u>Diámetro</u>: 0.60 mProfundidad: 1,00 m

◆ Carga eólica :

◆ <u>Presión eólica</u> : <= 8,00 m: 0,50 kN/ m² Velocidad del vientoVIII Beaufort

<=20,00 m: 0,80 kN/m² Velocidad del viento X Beaufort

• Sólo mástil: $q = 0.67 \text{ kN/m}^2$ Velocidad del viento X Beaufort

Viento sobre la bandera:

El valor Cf se determina según la norma DIN 1055E Teil 4 1989:.

• Area de la bandera : $A = b \times d = 3,60 \text{ m}^2$

◆ Peso de la bandera : 105,00 g/m²

• Peso añadido teniendo en cuenta costuras, etc.: 3%

• Retención de agua de la bandera: 73,50 g/m²

• Peso total de la bandera mojada : 0,66 kg.

◆ <u>Cf</u> : 0,130

◆ Carga eólica de la bandera 0,130 x qw x 3,60 = 0,23 kN

• Carga eólica del mástil (Cw =0,7) = 0,18 kN

• Peso muerto del mástil = 0,13 kN