

Automotive, Industrial & Multimarket

Edition 2008-11-13

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Infineon RFT v2.0 MAB-X816483-004

FCC ID: WFO-ADAMRFMO

IC: 6850 B-ADAMRFMO

Notice

This device complies with Part 15 of the FCC Rules and with RSS-210 of Industry Canada Operation is subject to the following conditions:

- 1. this device may not cause harmful interference, and
- 2. this device must accept any interference received, including interference that may cause undesired operation.

Notice

Changes or modifications made to this equipment not expressly approved by Infineon Technologies may void the FCC authorization to operate this equipment.

Notice

Applications including the Mc Adams RF module must have an exterior label showing the information below: "Contains FCC ID:WFO-ADAMRFMO"

Name

Dr. Jörg Schönfeld IMM API PGM +49 89 234 84251 +49 89 234 955 5608

E-Mail

joerg.schoenfeld@infineon.com www.infineon.com

Declaration of Conformity

Company Information:

Infineon technologies

Am Campeon 1-12 85579 Neubiberg

Germany

Declares that the product:

Mc Adams RF Module

MAB-X816483-004

Conforms to the following directives:

1999/5/EC

(R&TTE)

2004/108/EC (EMC) and 2006/95/EC

(LVD)

and meets these essential standards:

SAFETY:

EN60950-1: 2005 (2nd edition) and/or EN60950-1:2006

Tolot

EMC:

EN 301489-1 V1.6.1 and

EN 301489-17: V1.2.1

Spectrum use: EN300 328 V1.7.1

Munich 30.10.2008

---- Am Campeon 1-12 0-85579 Neublberg phone +69 89 234-0 Max Dietrich Kley Peter Bauer (CRO), Prof. Dr. Hermann Eul, Dr. Reinhard Place, Dr. Marca Schröter Amtsgericht Mänchen HRS 126492 Neuhiberg

DeclarationOfConformity vsd

McAdan	ns 2.4 GHz Smart Transceiver Module
Revisio	n History: 2008-11-13, Rev. 1.2
Previou	s Version: 1.0
Page	Subjects (major changes since last revision)
	Table 1, Table 3, Table 5, Table 6, Figure 3 updated.
Previou	s Version: 1.1
	Figure 2 added
	Table 1, Figure 1, Figure 2, Figure 4, Figure 5 and layout guidelines updated

Trademarks of Infineon Technologies AG

ABMTM, A-GOLDTM, AOPTM, BlueMoonTM, ConverGateTM, ConverpathTM, COSICTM, C166TM, DUALFALCTM, DuSLICTM, E-GOLDTM, ELASTecTM, EpicTM, FALCTM, FlexiSLICTM, GEMINAXTM, GIGAFLOWTM, GOLDMOSTM, INCATM, IOMTM, IPVDTM, IsacTM, IWETM, IWORXTM, LEDFETTM, M-GOLDTM, MuSLICTM, OCTALFALCTM, OCTATTM, OmniTuneTM, OmniViaTM, OPTIVERSETM, PASiTM, PROSOCTM, QUADFALCTM, SCEPTRETM, SCOUTTM, SEROCCOTM, S-GOLDTM, SICOFITM, SIEGETTM, SLICTM, SMARTIITM, SMARTIPMTM, SMARTIPM+TM, SMARTIUETM, SMARTI3GTM, SMARTI3GTM, SMINTTM, SOCRATESTM, TrueNTRYTM, VINAXTM, VINETICTM, VIONTICTM, VOIPROTM, WDCTTM, WildPassTM, X-GOLDTM, XMMTM, X-PMUTM.

Other Trademarks

Microsoft[®], Visio[®], Windows[®] of Microsoft Corporation. Linux[®] of Linus Torvalds. FrameMaker[®] of Adobe Systems Incorporated. APOXI[®], COMNEON™ of Comneon GmbH & Co. OHG. PrimeCell[®], RealView[®], ARM®, ARM® Developer Suite™ (ADS), Multi-ICE™, ARM1176JZ-S™, CoreSight™, Embedded Trace Macrocell™ (ETM), Thumb®, ETM9™, AMBA™, ARM7™, ARM9™, ARM7TDMI-S™, ARM926EJ-S™ of ARM Limited. OakDSPCore®, TeakLite® DSP Core, OCEM® of ParthusCeva Inc. IndoorGPS™, GL-20000™. GL-LN-22™ of Global Locate. mipi™ of MIPI Alliance. CAT-iq™ of DECT Forum. MIPS™, MIPS II™, 24KEc™ of MIPS Technologies, Inc. Texas Instruments[®], PowerPAD™, C62x™, C55x™, VLYNQ™, Telogy Software™, TMS320C62x™, Code Composer Studio™, SSI™ of Texas Instruments Incorporated. Luxworks® of LSI Corporation. Bluetooth[®] of Bluetooth SIG, Inc. IrDA[®] of the Infrared Data Association. Java™, SunOS™, Solaris™ of Sun Microsystems, Inc. Philips[®], I2C-Bus[®] of Koninklijke Philips Electronics N.V. Epson[®] of Seiko Epson Corporation. Seiko® of Kabushiki Kaisha Hattori Seiko Corporation. Panasonic® of Matsushita Electric Industrial Co., Ltd. Murata® of Murata Manufacturing Company. Taiyo Yuden™ of Taiyo Yuden Co., Ltd. TDK® of TDK Electronics Company, Ltd. Motorola® of Motorola, Inc. National Semiconductor®, MICROWIRE™ of National Semiconductor Corporation. IEEE® of The Institute of Electrical and Electronics Engineers, Inc. Samsung®, OneNAND®, UtRAM® of Samsung Corporation. Toshiba® of Toshiba Corporation. Dallas Semiconductor®, 1-Wire[®] of Dallas Semiconductor Corp. NOVeA™ of Virage Logic Corp. ISO[®] of the International Organization for Standardization. IEC™ of the International Engineering Consortium. EMV™ of EMVCo, LLC. Zetex® of Zetex Semiconductors. Rohm™ of Rohm Co., Ltd. Microtec® of Microtec Research, Inc. Verilog® of Cadence Design Systems, Inc. ANSI® of the American National Standards Institute, Inc. WindRiver® and VxWorks® of Wind River Systems, Inc. Nucleus™ of Mentor Graphics Corporation.

Table of Contents

Table of Contents

		4
	Table of Contents	. 7
	List of Tables	. 9
1	2.4 GHz Smart Transceiver Module	
1.1	Overview	10
1.2	Reference Schematic and Layout Guidelines	12
2	Electrical Specifications	14
2.1	Absolute Maximum Ratings	14
2.2	Operating Conditions	
2.3	Radio Specifications	15
2.4	SPI Timing	16
	Terminology	18
	References	19

Mc Adams 2.4 GHz Smart Transceiver Module

Figure 1	Declaration of Conformity	. 5
Figure 2	Top View of the 2.4GHz Smart Transceiver Module	
Figure 3	Decoupling Circuit	. 12
Figure 4	Footprint on Host Board for Mc Adams Module	. 13
Figure 5	Module Drawing	. 13
Figure 6	SPI Timing Diagram	. 17

List of Tables

List of Tables

Table 1	Module Pin Description	10
Table 2	Absolute Maximum Ratings	
Table 3	Normal Operating Conditions	14
Table 4	DC Supply Power Up Current	15
Table 5	RF Receiver RFIO Port1	15
Table 6	RF Transmitter RFIO Port1	16
Table 7	SPI Timing Characteristics	16

1 2.4 GHz Smart Transceiver Module

This Application Note provides guidelines, hints, requirements and electrical specifications to enable customer to design in the 2.4 GHz Smart Transceiver module "Mc Adams" in wireless XBOX applications.

1.1 Overview

The 2.4 GHz Smart Transceiver module is intended to be used as a main building block in wireless XBOX peripheral systems. It can be easily connected to the host board. Communication between a backend processor and the module is done via a serial peripheral interface (SPI). The module top view is given in **Figure 2**.

2.4GHz Smart Transceiver Module 2.vsd

Figure 2 Top View of the 2.4GHz Smart Transceiver Module

The Mc Adams RF module comprises a 2.4 GHz Smart Transceiver IC that is supported by a 12 MHz crystal oscillator and a security device, needed for authorization as an XBOX conform peripheral. The RF output is connected via a matching circuit (discrete balun) to a printed inverted F-antenna.

Note: Applications including the Mc Adams RF module must have an exterior label showing the information below: "Contains FCC ID:WFO-ADAMRFMO"

Furthermore it features module pins at the edges of the PCB which are described in Table 1.

Table 1 Module Pin Description

Pin	Name	Туре	Function
X1	VSSA	GND	analog GND
X2	VSSIO	GND	digital GND

Table 1 Module Pin Description (cont'd)

Pin	Name	Туре	Function
X3	VSSIO	GND	digital GND (module extra GND pin)
X4	VDDIOSEC	GND	IO Supply for security device
X5	CLKOUT	0	12 MHz clock or SysClk output for backend
			Note: Voltage range of the microcontroller clock input needs to be checked against output voltage on CLKOUT. If it doesn't fit a level shifter needs to be added on the host board.
X6, X7	VSSIO	GND	digital GND (module extra GND pins)
X8X10	VSSA	GND	analog GND (module extra GND pins)
X11	WAKEUP_1#	I	Wakeup, external 1.5k pull up resistor to VDDIO needed on host board, active low
X12, X13	VDDIO	Supply	IO Supply
X14	GPIO(3)	Ю	General Purpose IO
X15	GPIO(4)	Ю	General Purpose IO
X16	D_AVAIL#	0	SPI slave data available
X17	GPIO(2)	Ю	General Purpose IO or FRAME_SYNC#
X18	CS#	I	SPI chip select
X19	MOSI	I	SPI master output slave input signal
X20	MISO	0	SPI master input slave output signal
X21	WAKEUP_0#	I	Wakeup, external 1.5k pull up resistor to VDDIO needed on host board, active low
X22	CLK	I	SPI clock
X23	RESET#	I	Reset, external 1.5k pull up resistor to VDDIO needed on host board
X24	VDDCREG	S	VDDC regulator output
X25X32	VSSA	GND	analog GND (module extra GND pins)

Symbols:

I: Input

O: Output

S: Supply

1.2 Reference Schematic and Layout Guidelines

Layout guidelines

Some generic layout guidelines and parameters for the application host board are desribed below:

- Material recommendation: epoxy glass, nema grade FR4, halogen free ROHS and WEE compliant, rating 110-150 °C
- Place the McAdams module in a way that the antenna is not in the middle of the application PCB but at the edge
- Place ground plane under the Mc Adams module for shielding. Take particular note that there is no ground plane, trace or something similar below the antenna area to avoid RF signal disturbances.
- If possible leave a hole below the antenna area

In order to minimize crosstalk at the Mc Adams module a decoupling circuit for its power supply (VDDIO) should be placed on the host PCB. A simple decoupling circuit with a ferrite choke and three capacitors is shown in **Figure 3**.

Decoupling 2.vsd

Figure 3 Decoupling Circuit

The Mc Adams Module has to be soldered onto the host board. The appropriate footprint for the host board is shown in **Figure 4**.

Note: dimensions in mm [mil]

2.4GHz Smart Transceiver Module Footprint.vsd

Figure 4 Footprint on Host Board for Mc Adams Module

The module drawing is illustrated in Figure 5.

Note: dimensions in mm

2.4GHz Smart Transceiver Module Drawing.vsd

Figure 5 Module Drawing

2 Electrical Specifications

2.1 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings

Description	Min	Тур	Max	Units
Storage Temperature	-55		+150	°C
I/O Supply Voltage	-0.9		4.0	V
Input Voltage Range	-0.9		4.0	°C
Output Voltage Range	-0.9		4.0	°C
Lead Temp. (solder 4 sec)			+260	°C
RF core Power Supply Voltage	-0.3		1.9	V
Absolute difference between power supplies			0.3	V
Voltage on any pin			Vdd+0.3V	V
Storage Temperature			+150	°C
Lead Temp. (solder 4 sec)			+260	°C
ESD - human body model			2	KV
ESD - machine model			200	V

Attention: Stresses above those listed here are likely to cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Maximum ratings are not operating conditions.

2.2 Operating Conditions

Table 3 Normal Operating Conditions

Description	Min.	Тур.	Max.	Units
Normal Operating ambient temperature range	5		+60	°C
Refer to CMOS digital input (35 ppm overall)		12		MHz
Input Supply Voltage VDDIO	2.0		3.6	V
I/0 Voltgage	2.0		3.6	V

2.3 Radio Specifications

Table 4 DC Supply Power Up Current

Description	Condition	Min.	Тур.	Max.	Units
Static current in power down	After reset and tbd			10	μΑ
Receive mode current with PLL synthesizer switch on	-90 dBm sensitivity		15		mA
Transmit mode current	High output power		15		mA
RF setup mode current	Tbd programmed		17		mA
Max. RF current	Including RF output current of the PA stage;		72		mA

Table 5 RF Receiver RFIO Port1

Description	Condition	Min.	Тур.	Max.	Units
Receiver input frequency range RFIO1/RFIO1X		2401		2483	MHz
LNA Input resistance (balanced)	f = 2440 MHz		100		Ohm
LNA Input capacitance	f = 2440 MHz		1		pF
LO leakage				-60	dBm
Low RSSI limit				-88	dBm
High RSSI limit		-48			dBm
RSSI resolution	4-bit		3		dB
Receiver sensitivity	BER <=1E-3; Ta=25°C	-92	-90		dBm
Receiver sensitivity degrade by full temperature range	BER <=1E-3; 0°C<=Ta<=+65°C		2		dBm
Receiver sensitivity, degraded by frequency offset	frequency offset <= ±50Hz; Ta= 25°C		1.5	3	dBm
Receiver input power range	Ta = 25°C	-92		10	dBm
Intermodulation performance level (IP3)	Ta=25°C; BER <= 1E-3; RF wanted f= 2442 MHz, Pin = -70 dBm, FSK @2438 MHz, CW @2440 MHz	-27	-18		dBm
Interferer performance in high sensitivity mode; RF wanted f=2442 MHz, Pin = -70dBm, Ta=25°C, f=(2442+k+2)MHz	k = 0 (Co-channel) k = +/-1 k = +/-2 k =+/-3		10 -23 -50 -55		dBc dBc dBc dBc
Out of band blocking	1-2000 MHz 2000 - 2400 MHz 2484 - 6000 MHz		-30 -20 -20		dBm

Table 6 RF Transmitter RFIO Port1

Description	Condition	Min.	Тур.	Max.	Units
Transmitter output frequency range		2401		2483	MHz
Output power (high gain)			4		dBm
Output power (low gain)		-41	-38	-37	dBm
Coarse output power steps	Tx power control bits: 00000> 10000		25		dBm
Fine output power steps	Tx power control bits: 00000 + 1	1	2	4	dBm
Adjacent channel noise power (P/N)	P/N = +/-1 P/N = +/-2 P/N = +/-3		-36 -65 -68		dBc dBc dBc
Spurious Emission conducted device operation	30 MHz to 1 GHz 1.0 GHZ to 12,75 GHz 1.8 GHz to 1.9 GHz 5.15 GHz to 5.30 GHz		-60 -40 -60 -75		dBm dBm dBm dBm

2.4 SPI Timing

Table 7 SPI Timing Characteristics

Parameter	Limit Values			Unit	Test Condition
	Min.	Тур.	Max.		
f _{SPI} 1)			7.518	MHz	f _{sys} = 24 MHz
t ₁	200			ns	
$\overline{t_2}$	100			ns	
$\overline{t_3}$	100			ns	
t _{out_delay}			20	ns	
t _{setup}	5			ns	

¹⁾ SPI frequency can be calculated by $f_{SPI} = f_{sys} / (3 + 8ns * f_{sys})$

ADAMS SPI-Timing.vsd

Figure 6 SPI Timing Diagram

Terminology

Terminology

SPI Serial Peripheral Interface

References

References

[1] Adams Smart Transceiver Data Sheet Rev. 1.1

www.infineon.com Published by Infineon Technologies AG