Les indispensables en mathématiques

Loris Caruhel

22/03/2025

Table des matières

1	Voc	abulai	ires	4
2	Nor 2.1		premiers mposition en facteurs premiers	6
3	Les	fractio	ons	7
4	Les	puissa	ances	8
5	Les	identi	ités remarquables	9
	5.1	Puissa	ance 2	9
	5.2	Puissa	ance 3	9
6	Les	racine	es	10
7	Exp	onenti	ielles et logarithme	11
8	Trig	gonomé	étrie	12
	8.1	,	riétés	12
	8.2	Foncti		
		8.2.1	Originales	
		8.2.2	Réciproques	
		8.2.3	Hyperboliques	
		8.2.4	Hyperboliques réciproques	
		8.2.5	Complémentaires (secondaires)	
		8.2.6	Complémentaires hyperboliques	
	8.3		amentales	
	0.0	8.3.1	Identités trigonométriques fondamentales	
		8.3.2	Formules de somme et différence	
		8.3.3	Angles associés	
		8.3.4	Arguments doubles	
		8.3.5	Arguments triples	
		8.3.6	Formules de Carnot	
		8.3.7	Formules de Simpson	
		8.3.8	Développements tangentiels	
9	Les	dérivé	és	17
	9.1		el du principe des dérivés	
	9.2		és des fonctions usuelles	
10	Les	primit	tives usuelles	21
11	Int <i>é</i>	m egrales		23
			riétés de l'intégrale	
			ration par parties	
		<u> </u>		
12	Le c	change	ement de variable	25

13	3 Limites	2
	13.1 Opérations sur les limites	2
	13.1.1 Somme	2
	13.1.2 Produit	2
	13.1.3 Quotient	2
	13.2 Limites usuelles	
	13.3 Logarithmes et exponentielles	2
	13.4 Puissances et racines	2
	13.5 Comparaisons importantes	
	13.6 Limites du type	
	13.7 Forme indéterminée (FI)	
	13.8 Croissances comparées	2
	13.9 Règle de l'Hôpital	2
14	4 Polynômes	2
	14.1 Polynômes du 1er et 2ème degré	2
	14.2 Polynômes du 3ème degré	
15	5 Algèbre booléennes	2
	15.1 Opérateur booléens et tables de vérité	2
	15.2 Définitions et expressions négatives	
	15.2.1 Définitions	
	15.2.2 Négations	
	15.3 Propriétés de la négation	
	15.4 Propriétés de la conjonction	
	15.5 Propriétés de la disjonction	
	15.6 Le problème de satisfiabilité d'une équation booléenne	
16	5 Ensembles	3
	16.1 Quelques définitions	3
	16.2 Les quantificateurs	
	16.3 Les quantificateurs et l'appartenance	
	16.4 Définition par extension versus définition par compréhension	
	16.5 La cardinalité d'un ensemble	

1 Vocabulaires

Fonction injective

Une fonction $f: A \to B$ est **injective** si:

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

- Cela signifie que deux éléments différents de A ont des images différentes.
- Pas de doublons dans les images.

Exemple: f(x) = 2x est injective sur \mathbb{R} . $f(x) = x^2$ ne l'est pas, car f(2) = f(-2) = 4.

Fonction surjective

Une fonction $f: A \to B$ est surjective si :

$$\forall y \in B, \ \exists x \in A \text{ tel que } f(x) = y$$

- Toutes les valeurs possibles dans B sont atteintes.

Exemple: $f(x) = x^3$ est surjective sur \mathbb{R} . $f(x) = e^x$ ne l'est pas sur \mathbb{R} , car son image est strictement positive.

Fonction bijective

Une fonction est bijective si elle est à la fois injective et surjective.

- Elle associe chaque élément de A à un unique élément de B, et couvre tout B.
- Elle possède une fonction réciproque f^{-1} .

Exemple: f(x) = x + 3 est bijective sur \mathbb{R} .

Fonction réversible

Une fonction est **réversible** si on peut revenir en arrière, c'est-à-dire s'il existe une fonction inverse f^{-1} telle que :

$$f^{-1}(f(x)) = x$$
 et $f(f^{-1}(y)) = y$

Remarque: Une fonction est réversible si et seulement si elle est bijective.

Fonction différentiable

Une fonction est **différentiable** si elle admet une dérivée, c'est-à-dire si elle est "lisse", sans saut ni point anguleux.

Exemples:

- $f(x) = \sin(x)$ est différentiable partout.
- f(x) = |x| n'est pas différentiable en x = 0, car elle présente une pointe.

- 2 Nombres premiers
- 2.1 Décomposition en facteurs premiers

3 Les fractions

— Addition :
$$\boxed{\frac{a}{b} + \frac{c}{d} = \frac{a \times d + b \times c}{b \times d}}$$

— Soustraction :
$$\frac{a}{b} - \frac{c}{d} = \frac{a \times d - b \times c}{b \times d}$$

— Multiplication :
$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

— Division :
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{a \times d}{b \times c}$$

— Simplification :
$$\frac{a \times k}{b \times k} = \frac{a}{b}$$
, $k \neq 0$

— Puissance :
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

— Inverse :
$$\frac{1}{a} = a^{-1}$$

4 Les puissances

— Produit :
$$a^n \times a^m = a^{n+m}$$

— Inverse :
$$\boxed{\frac{1}{a^n} = a^{-n}}$$

— Quotient :
$$a^n = a^{n-m}$$

— Puissance d'un quotient :
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

— Puissance de puissance :
$$(a^n)^m = a^{n \times m}$$

— Exposants identiques :
$$a^n \times b^n = (ab)^n$$

— Exposant fractionnaire :
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

— Pour
$$n$$
 impair $(-a)^n = -a^n$

— Pour
$$n$$
 pair $(-a)^n = a^n$

$$- a^0 = 1$$

5 Les identités remarquables

5.1 Puissance 2

$$- \left[(a+b)^2 = a^2 + 2ab + b^2 \right]$$

$$- \left[(a-b)^2 = a^2 - 2ab + b^2 \right]$$

$$- \left[(a+b)(a-b) = a^2 - b^2 \right]$$

$$- \left[a^2 + b^2 = (a+b)^2 - 2ab \right]$$

5.2 Puissance 3

$$- \left[(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \right]$$

$$- \left[(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \right]$$

$$- \left[a^3 + b^3 = (a+b)(a^2 - ab + b^2) \right]$$

$$- \left[a^3 - b^3 = (a - b)(a^2 + ab + b^2) \right]$$

6 Les racines

— Produit :
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

— Quotient :
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

— Racine d'une puissance :
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

— Produit de racines :
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

— Racine d'un carré parfait :
$$\sqrt{a^2 = |a|}$$

— Racine carrée de zéro :
$$\sqrt{0} = 0$$

— Racine carrée d'un nombre négatif (complexe) :
$$\sqrt{-a} = i\sqrt{a}$$
 (si $a > 0$)

— Racine carrée d'une somme :
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$

$$-\left[\lim_{x\to 0^+} \sqrt{x} = 0\right]$$

$$- \overline{\lim_{x \to +\infty} \sqrt{x} = +\infty}$$

7 Exponentielles et logarithme

— Produit :
$$n(ab) = ln(a) + ln(b)$$

— Division :
$$ln\left(\frac{a}{b}\right) = ln(a) - ln(b)$$

— Propriété
$$\mathbf{1}: \boxed{ln(a^n) = nln(a)}$$

— Propriété 2 :
$$ln(\sqrt{a}) = \frac{1}{2}ln(a)$$

— Propriété 3 :
$$n\left(\frac{1}{b}\right) = -ln(b)$$

— Propriété 4 :
$$ln(e^x) = x$$

— Propriété 5 :
$$e^{ln(x)} = x$$

— Propriété 6 :
$$a^b = e^{b \ln(a)}$$

— Limites :

$$- \left[\lim_{x \to +\infty} e^x = +\infty \right]$$

$$-\left[\lim_{x\to-\infty}e^x=0\right]$$

$$-- \lim_{x \to 0^+} \ln(x) = -\infty$$

$$- \left[\lim_{x \to -\infty} \ln(x) = +\infty \right]$$

8 Trigonométrie

8.1 Propriétés

FIGURE 1 — Quelques propriétés des fonctions de base

FIGURE 2 – Cercle trigonométrique

8.2 Fonctions

8.2.1 Originales

$$- \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$- \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$-\left[\tan(x) = \frac{\sin(x)}{\cos(x)} = x + \frac{x^3}{3} + \frac{2x^5}{15} + \cdots\right] \quad \text{sur} \quad x \neq \frac{\pi}{2} + k\pi \quad \text{avec} \quad k \in \mathbb{Z}$$

8.2.2 Réciproques

$$- \left[\arcsin(x) \quad \text{sur} \quad x \in [-1, 1] \right]$$

$$- \boxed{\arccos(x) \quad \text{sur} \quad x \in [-1, 1]}$$

$$- \left[\arctan(x) \quad \text{sur} \quad x \in \mathbb{R} \right]$$

8.2.3 Hyperboliques

$$- \cosh(x) = \frac{e^x + e^{-x}}{2}$$

$$- \int \tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

8.2.4 Hyperboliques réciproques

$$-- arsinh(x) = \ln\left(x + \sqrt{x^2 + 1}\right)$$

$$- \left| \operatorname{arcosh}(x) = \ln \left(x + \sqrt{x^2 - 1} \right) \right| \quad \operatorname{sur} \quad x \ge 1$$

$$-\left[\operatorname{artanh}(x) = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)\right] \quad \operatorname{sur} \quad |x| < 1$$

8.2.5 Complémentaires (secondaires)

— Cotangente :
$$\cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)}$$
 $sur \quad x \neq k\pi$

— Sécante :
$$\sec(x) = \frac{1}{\cos(x)}$$
 $sur \quad x \neq \frac{\pi}{2} + k\pi$

— Cosécante :
$$\csc(x) = \frac{1}{\sin(x)}$$
 $sur \quad x \neq k\pi$

8.2.6 Complémentaires hyperboliques

$$-\left[\coth(x) = \frac{1}{\tanh(x)} = \frac{\cosh(x)}{\sinh(x)}\right] \quad sur \quad x \neq 0$$

$$-- sech(x) = \frac{1}{\cosh(x)}$$

$$-\left| csch(x) = \frac{1}{\sinh(x)} \right| \quad sur \quad x \neq 0$$

8.3 Fondamentales

8.3.1 Identités trigonométriques fondamentales

$$-\sin^2 x + \cos^2 x = 1$$

$$- \cot x = \frac{\cos x}{\sin x}$$

$$- \boxed{1 + \tan^2 x = \frac{1}{\cos^2 x}}$$

$$- \left[1 + \cot^2 x = \frac{1}{\sin^2 x} \right]$$

$$- \sec x = \frac{1}{\cos x}$$

8.3.2 Formules de somme et différence

$$-\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

$$- \left| \cos(a \pm b) = \cos a \cos b \mp \sin a \sin b \right|$$

$$- \left[\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \pm \tan a \tan b} \right]$$

8.3.3 Angles associés

$$-\sin(\pi + a) = -\sin a$$

$$-\cos(\pi + a) = -\cos a$$

$$- \left[\tan(\pi + a) = \tan a \right] \text{ pour tout } a \in \mathbb{R}, \ a \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$

$$- \left| \sin \left(\frac{\pi}{2} - a \right) = \cos a \right|$$

$$-\left[\cos\left(\frac{\pi}{2} - a\right) = \sin a\right]$$

$$- \left[\tan \left(\frac{\pi}{2} - a \right) = \cot a \right] \quad \text{pour tout } a \in \mathbb{R}, \ a \neq k\pi, \ k \in \mathbb{Z}$$

$$-\left|\sin\left(\frac{3\pi}{2} - a\right)\right| = -\cos a$$

$$-\left|\cos\left(\frac{3\pi}{2} - a\right)\right| = -\sin a$$

$$-\left|\tan\left(\frac{3\pi}{2} - a\right)\right| = -\cot a \quad \text{pour tout } a \in \mathbb{R}, \ a \neq k\pi, \ k \in \mathbb{Z}$$

8.3.4 Arguments doubles

$$-\sin(2a) = 2\sin a \cos a$$

$$-\cos(2a) = \cos^2 a - \sin^2 a$$

$$-\left|\tan(2a) = \frac{2\tan a}{1-\tan^2 a}\right| \text{ pour tout } a \in \mathbb{R}, \ a \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$

8.3.5 Arguments triples

$$- \sin(3a) = 3\sin a - 4\sin^3 a$$

$$-\cos(3a) = -3\cos a + 4\cos^3 a$$

$$-\left|\tan(3a) = \frac{3\tan a - \tan^3 a}{1 - 3\tan^2 a}\right| \quad \text{pour tout } a \in \mathbb{R}, \ a \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$$

8.3.6 Formules de Carnot

$$- \left[1 + \cos(2a) = 2\cos^2 a\right]$$

$$- \left[1 - \cos(2a) = 2\sin^2 a\right]$$

8.3.7 Formules de Simpson

$$- \cos a \cdot \cos b = \frac{1}{2} \left[\cos(a-b) + \cos(a+b) \right]$$

$$- \sin a \cdot \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$

$$- \sin a \cdot \cos b = \frac{1}{2} \left[\sin(a-b) + \sin(a+b) \right]$$

8.3.8 Développements tangentiels

$$- \overline{\tan(a) + \tan(b) = \frac{\sin(a+b)}{\cos(a) \times \cos(b)}}$$

$$- \tan(a) = \frac{\sin(2a)}{2\cos^2(a)}$$

9 Les dérivés

9.1 Rappel du principe des dérivés

La dérivée d'une fonction f(x) représente le taux de variation de cette fonction. Elle peut être notée f'(x) ou encore $\frac{df}{dx}$. Le calcul et l'étude de la dérivée sont des notions importantes dans l'étude des fonctions.

FIGURE 3 – Représentation d'une tangente

Le signe de la dérivée permet d'indiquer les variations de la fonction f. C'est ce qui représente la tangente à la fonction. Et la dérivée elle-même représente le coefficient directeur de la tangente à f au point.

Une dérivé est représenter par le coefficient directeur de la tangente :

FIGURE 4 – Représentation du coefficient directeur

Donc par déduction, c'est la limite de ce coefficient directeur vers le point $(x_0, f(x_0))$ Nous avons donc :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Une fonction peut ne pas avoir de dérivé en tout point de celle-ci.

FIGURE 5 – Déduire le signe de la fonction

Grâce à f'(x) nous pouvons voir ici que les points où elle s'annule sont les changements de variation de la fonction f(x).

9.2 Dérivés des fonctions usuelles

Table 1: Tableau des dérivés usuelles

Fonction f	Dérivé f'	Domaine de définition D_f
f(x) = a	f'(x) = 0	\mathbb{R}
f(x) = x	f'(x) = 1	\mathbb{R}
$f(x) = x^n$	$f'(x) = nx^{n-1}$	$\mathbb{R}, n \in \mathbb{N}^*$
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$]-\infty,0[\cup]0,+\infty[$
$f(x) = \frac{1}{x^n}$	$f'(x) = -\frac{n}{x^{n+1}}$	$]-\infty,0[\cup]0,+\infty[$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	\mathbb{R}_+
f(x) = ln(x)	$f'(x) = \frac{1}{x}$	\mathbb{R}_+^*
$f(x) = e^x$	$f'(x) = e^x$	\mathbb{R}
$f(x) = \sin(x)$	$f'(x) = \cos(x)$	\mathbb{R}
$f(x) = \cos(x)$	$f'(x) = -\sin(x)$	\mathbb{R}
f(x) = tan(x)	$f'(x) = 1 + tan^2(x) = \frac{1}{cos^2(x)}$	$\mathbb{R}\backslash\left\{\tfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\right\}$
f(x) = u	f'(x) = u'	
$f(x) = u^n$	$f'(x) = nu'u^{n-1}$	
$f(x) = \frac{1}{u}$	$f'(x) = -\frac{u'}{u^2}$	
$f(x) = \frac{1}{u^n}$	$f'(x) = -\frac{nu'}{u^{n-1}}$	
$f(x) = \sqrt{u}$	$f'(x) = \frac{u'}{2\sqrt{u}}$	
f(x) = ln(u)	$f'(x) = \frac{u'}{u}$	
$f(x) = e^u$	$f'(x) = u'e^u$	
$f(x) = \sin(u)$	f'(x) = u'cos(u)	
$f(x) = \cos(u)$	f'(x) = -u'sin(u)	
f(x) = tan(u)	$f'(x) = u'(1 + tan^2(u))$	

Fonction f	Dérivé f'	Domaine de définition D_f
f(x) = u + v	f'(x) = u' + v'	
f(x) = uv	f'(x) = u'v + uv'	
$f(x) = \frac{u}{v}$	$f'(x) = \frac{u'v - uv'}{v^2}$	
f(x) = au	f'(x) = au'	
f(x) = u(ax + b)	f'(x) = au'(ax + b)	
$f(x) = (f \circ u)(x)$	$f'(x) = f'(u(x)) \times u'(x)$	

10 Les primitives usuelles

TABLE 2: Tableau des primitives usuelles

Fonction f	Primitives F	Domaine de définition D_f
f(x) = k	F(x) = kx + C	\mathbb{R}
f(x) = x	$F(x) = \frac{x^2}{2}$	\mathbb{R}
$f(x) = x^n$	$F(x) = \frac{x^{n+1}}{n+1} + C$	$n \in \mathbb{Z} \backslash \{-1; 0\}$
$f(x) = a^x$	$F(x) = \frac{a^x}{\ln(a)} + C$	\mathbb{R}
$f(x) = \frac{1}{x}$	F(x) = ln(x) + C	\mathbb{R}^*
$f(x) = \frac{1}{x^n}$	$F(x) = -\frac{1}{(n-1)x^{n-1}} + C$	$]-\infty,0[\cup]0,+\infty[$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x} + C$	\mathbb{R}_+
f(x) = ln(x)	F(x) = xln(x) - x + C	\mathbb{R}_+^*
$f(x) = e^x$	$F(x) = e^x + C$	\mathbb{R}_+^*
$f(x) = \sin(x)$	$F(x) = -\cos(x) + C$	\mathbb{R}
$f(x) = \cos(x)$	$F(x) = \sin(x) + C$	\mathbb{R}
f(x) = tan(x)(x)	F(x) = -ln(cos(x)) + C	$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$
$f(x) = 1 + tan^{2}(x) = \frac{1}{cos^{2}(x)}$	F(x) = tan(x) + C	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$
$f(x) = u'u^n$	$F(x) = \frac{u^{n+1}}{n+1} + C$	$n \in \mathbb{Z} \backslash \left\{-1; 0\right\}$
$f(x) = \frac{u'}{\sqrt{u}}$	$F(x) = 2\sqrt{u} + C$	\mathbb{R}
$f(x) = \frac{u'}{u^2}$	$F(x) = -\frac{1}{u} + C$	$n \in \mathbb{N}, n \ge 2$
$f(x) = \frac{u'}{u^n}$	$F(x) = -\frac{1}{(n-1)u^{n-1}} + C$	$n \in \mathbb{N}, n \ge 2$
$f(x) = \frac{u'}{u}$	F(x) = ln(u) + C	\mathbb{R}
$f(x) = u'e^u$	$F(x) = e^u + C$	\mathbb{R}
f(x) = u'cos(u)	$F(x) = \sin(u) + C$	\mathbb{R}
f(x) = u'sin(u)	$F(x) = -\cos(u) + C$	\mathbb{R}

Fonction f	Primitives F	Domaine de définition D_f
f(x) = u'tan(u)	$F(x) = -\ln \cos(u) + C$	$\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi \right\}$

11 Intégrales

11.1 Propriétés de l'intégrale

$$\int_{a}^{b} f(x)dx = -\int_{a}^{b} f(x)dx$$

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx \quad \text{(Chasles)}$$

$$f(x) \ge sur[a;b] \Rightarrow \int_{a}^{b} f(x)dx \ge 0 \quad \text{(Positivit\'e)}$$

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g \quad \text{(Lin\'earit\'e)}$$

11.2 Intégration par parties

L'intégration par parties est une méthode inspirée de la dérivation d'un produit de fonctions.

Formule générale

$$\int u(x) v'(x) dx = u(x) v(x) - \int u'(x) v(x) dx$$

Justification (à partir de la dérivée d'un produit)

On sait que:

$$\frac{d}{dx}(u(x)v(x)) = u'(x)v(x) + u(x)v'(x)$$

En intégrant des deux côtés :

$$\int \frac{d}{dx} (u(x) v(x)) dx = \int u'(x) v(x) dx + \int u(x) v'(x) dx$$

Or, par la propriété fondamentale de l'intégration :

$$u(x) v(x) = \int u'(x) v(x) dx + \int u(x) v'(x) dx$$

En isolant l'intégrale cherchée:

$$\int u(x) v'(x) dx = u(x) v(x) - \int u'(x) v(x) dx$$

Choix des fonctions

On choisit:

- u(x): une fonction facile à dériver,
- v'(x): une fonction facile à intégrer.

Exemple

Calculons:

$$\int x \, e^x \, dx$$

On choisit:

$$u(x) = x \implies u'(x) = 1$$

 $v'(x) = e^x \implies v(x) = e^x$

Alors, d'après la formule d'intégration par parties :

$$\int x e^x dx = x e^x - \int 1 \cdot e^x dx$$
$$\int x e^x dx = x e^x - e^x + C$$

• Calcul d'une aire à partir d'une intégrale :

FIGURE 6 – Calculs d'intégrales sur une courbes

12 Le changement de variable

Le changement de variable est une méthode fondamentale utilisée en mathématiques pour simplifier une expression, résoudre une équation, ou effectuer un calcul (comme une dérivée, une intégrale, ou une équation différentielle).

Principe général

On remplace une variable x par une nouvelle variable u, définie par une fonction :

$$u = \varphi(x)$$

Cela permet de transformer un problème en fonction de x en un problème en fonction de u, souvent plus simple à traiter.

But

Le but est de :

- simplifier une expression complexe,
- adapter une fonction à une forme connue,
- utiliser une symétrie ou une substitution astucieuse,
- résoudre plus facilement une équation ou une intégrale.

Exemple: résolution d'équation

Résolvons l'équation suivante :

$$x^4 + 2x^2 - 8 = 0$$

On pose:

$$u = x^2 \quad \Rightarrow \quad x^4 = u^2$$

L'équation devient :

$$u^2 + 2u - 8 = 0$$

On résout :

$$u = \frac{-2 \pm \sqrt{(2)^2 + 4 \cdot 8}}{2} = \frac{-2 \pm \sqrt{36}}{2} = \frac{-2 \pm 6}{2} \Rightarrow u = 2 \text{ ou } u = -4$$

On revient à la variable x:

$$x^2 = 2 \Rightarrow x = \pm \sqrt{2}$$
 (car $x^2 = -4$ n'a pas de solution réelle)

Remarque

Le changement de variable doit être :

- bijectif* (ou du moins localement injectif*) pour être réversible*,
- différentiable* si on travaille avec des fonctions continues, dérivables ou intégrables,
- accompagné d'un retour à la variable initiale si nécessaire.

13 Limites

13.1 Opérations sur les limites

13.1.1 Somme

$\lim_{x \to \alpha} f(x) =$	L	L	L	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to \alpha} g(x) =$	L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to \alpha} f(x) + g(x) =$	L + L'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.

13.1.2 Produit

$\lim_{x \to \alpha} f(x) =$	L	L	∞	0
$\lim_{x \to \alpha} g(x) =$	L'	∞	∞	∞
$\lim_{x \to \alpha} f(x) \times g(x) =$	$L \times L'$	∞	∞	F.I.

 ∞ désigne $+\infty$ ou $-\infty$.

13.1.3 Quotient

$\lim_{x \to \alpha} f(x) =$	L	$L \neq 0$	L	∞	∞	0
$\lim_{x \to \alpha} g(x) =$	$L' \neq 0$	0	∞	L	∞	0
$ \lim_{x \to \alpha} \frac{f(x)}{g(x)} = $	$\frac{L}{L'}$	∞	0	∞	F.I.	F.I.

13.2 Limites usuelles

$$-\lim_{x \to +\infty} x^2 = +\infty \quad \lim_{x \to -\infty} x^2 = +\infty$$

$$-\lim_{x \to +\infty} x^3 = +\infty \quad \lim_{x \to -\infty} x^3 = -\infty$$

$$-\lim_{x\to +\infty} \sqrt{x} = +\infty$$

13.3 Logarithmes et exponentielles

$$-\lim_{x\to 0^+} \ln x = -\infty \quad \lim_{x\to +\infty} \ln x = +\infty$$

$$-\lim_{x\to -\infty}e^x=0 \quad \lim_{x\to +\infty}e^x=+\infty$$

13.4 Puissances et racines

$$-\lim_{x \to 0^+} \frac{1}{x} = +\infty \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$-\lim_{x \to \infty} \frac{1}{x^n} = 0 \quad \text{(pour } n > 0\text{)}$$

$$-\lim_{x\to\infty}\sqrt[x]{x}=1$$

13.5 Comparaisons importantes

$$-x \ll \ln x \ll x^a \ll a^x \ll x! \ll x^x$$
 avec $x \to +\infty$ et $a > 1$

13.6 Limites du type

Faire la règle des signes

$$\frac{k \neq 0}{\pm \infty} = 0^{\pm} \qquad \frac{k \neq 0}{0^{\pm}} = \pm \infty \qquad \pm \infty \times \pm \infty = \pm \infty$$

13.7 Forme indéterminée (FI)

En présence d'une FI, on peut développer, factoriser, utiliser les "croissances comparées".

13.8 Croissances comparées

$$-\lim_{x\to 0^+} x^n \ln x = 0$$

$$-\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$$

$$-\lim_{x \to -\infty} x^n e^x = 0$$

$$-\lim_{x\to +\infty} \frac{e^x}{x^n} = +\infty$$

13.9 Règle de l'Hôpital

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$

$$f(a) = 0 \quad g(a) = 0$$

$$f, g \text{ dérivables}$$

$$g'(a) \neq 0$$

14 Polynômes

14.1 Polynômes du 1er et 2ème degré

→ Polynômes du 1erdegré

$$ax + b = 0 \iff x = \frac{-b}{a}$$

x	-∞	$\frac{-b}{a}$		+∞
ax + b	signe de	e (-a) 0	signe de <i>a</i>	

• Polynômes du 2nddegré

x	$-\infty$	+∞
P(x)	S	igne de <i>a</i>

x	-∞		<i>x</i> ₀		+∞
P(x)		signe de <i>a</i>	0	signe de <i>a</i>	

x	$-\infty$	x_1	x_2	+∞
P(x)	sig	. a 0 sig.	(-a) 0	sig. a

14.2 Polynômes du 3ème degré

$$- \left[a^3 - b^3 = (a - b)(a^2 + ab + b^2) \right]$$

15 Algèbre booléennes

15.1 Opérateur booléens et tables de vérité

- L'opérateur de négation "¬", correspondant au "non" du français.
- L'opérateur de conjonction "\lambda", correspondant au "et" du français.
- L'opérateur de disjonction "V", correspondant au "ou" du français.
- L'opérateur d'implication "⇒", correspondant au "si ... alors ...".
- L'opérateur d'équivalence "⇔", correspondant au "... si et seulement si ...".
- L'opérateur de disjonction exclusive "⊕", correspondant à "ou exclusif" (soit l'un, soit l'autre, mais pas les deux).
- L'opérateur de non-implication "≠", qui signifie que l'implication ne tient pas.
- L'opérateur de non-équivalence "♠", pour "n'est pas équivalent à".

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftarrow q$	$p \Leftrightarrow q$	$p \oplus q$
v	v	f	V	v	V	V	V	f
v	f	f	f	v	f	V	f	v
f	v	v	f	v	V	f	f	v
f	f	v	f	f	V	V	v	f

Table 3 – Priorité des opérateurs booléens.

Symbole(s)	$\mathbf{Nom}(\mathbf{s})$			
¬	Négation	(priorité élevée)		
^ V	Conjonction, Disjonction			
\Rightarrow	Implication			
\Leftrightarrow	Si et seulement si	$(priorit\'e\ faible)$		

15.2 Définitions et expressions négatives

15.2.1 Définitions

$$p \Rightarrow q \iff \neg p \lor q$$

$$p \Leftarrow q \iff q \Rightarrow p$$

$$p \Leftrightarrow q \iff (p \Rightarrow q) \land (q \Rightarrow p)$$

$$(p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r) \ (\mathit{Transitivit\'e})$$

$$p \Rightarrow q \iff \neg q \Rightarrow \neg p \ (Contraposition)$$

$$p \oplus q \iff (p \land \neg q) \lor (\neg p \land q)$$

$$p \oplus q \iff \neg(\neg p \lor q) \lor \neg(p \lor \neg q)$$

$$(p \iff q) \iff ((p \land q) \lor (\neg p \land \neg q))$$

$$(\neg p \iff q) \iff \neg(p \iff q)$$

$$(\neg p \iff \neg q) \iff (p \iff q)$$

$$(\neg p \iff q) \iff (p \iff \neg q)$$

15.2.2 Négations

$$\neg(p \Rightarrow q) \iff p \land \neg q$$

$$\neg(p \Leftarrow q) \iff \neg p \land q$$

$$\neg(p \Leftrightarrow q) \iff (p \land \neg q) \lor (\neg p \land q)$$

$$\neg (p \land q) \iff \neg p \lor \neg q \text{ (De Morgan I)}$$

$$\neg (p \lor q) \iff \neg p \land \neg q \text{ (De Morgan II)}$$

15.3 Propriétés de la négation

Soit p une expression booléenne, alors :

$$a: \neg(\neg p) \iff p$$
 (Double négation)

$$b: p \lor \neg p \iff vrai$$
 (Tiers exclu)

$$c: p \land \neg p \iff faux$$
 (Contradiction)

15.4 Propriétés de la conjonction

Soit p, q et r des expressions booléennes, alors :

$$a: p \wedge vrai \iff p$$
 (Élément neutre)

$$b: p \land faux \iff faux$$
 (Élément absorbant)

$$c: p \land p \iff p$$
 (Idempotence)

$$\begin{aligned} \mathbf{d} &: p \wedge q \iff q \wedge p \\ \mathbf{e} &: (p \wedge q) \wedge r \iff p \wedge (q \wedge r) \end{aligned} &\qquad \qquad (Commutativit\acute{e}) \\ \mathbf{f} &: (p \vee q) \wedge r \iff (p \wedge r) \vee (q \wedge r) \end{aligned} &\qquad (Distributivit\acute{e}) \\ \mathbf{g} &: (p \wedge q) \Rightarrow p \end{aligned} &\qquad (Affaiblissement de la conjonction) \end{aligned}$$

15.5 Propriétés de la disjonction

Soit p, q et r des expressions booléennes, alors :

$$a: p \lor \text{faux} \iff p \qquad \qquad (\text{\'{E}l\'{e}ment neutre})$$

$$b: p \lor \text{vrai} \iff \text{vrai} \qquad \qquad (\text{\'{E}l\'{e}ment absorbant})$$

$$c: p \lor p \iff p \qquad \qquad (Idempotence)$$

$$d: p \lor q \iff q \lor p \qquad \qquad (Commutativit\'{e})$$

$$e: (p \lor q) \lor r \iff p \lor (q \lor r) \qquad \qquad (Associativit\'{e})$$

$$f: (p \land q) \lor r \iff (p \lor r) \land (q \lor r) \qquad \qquad (Distributivit\'{e})$$

$$g: p \Rightarrow (p \lor q) \qquad \qquad (Renforcement de la disjonction)$$

15.6 Le problème de satisfiabilité d'une équation booléenne

Une **instance du problème SAT** consiste en une équation booléenne contenant des variables libres. Une telle instance est dite **satisfiable** lorsqu'il existe une assignation de variables telle que l'équation est évaluée à vrai.

L'équation définissant une instance du problème SAT est généralement exprimée sous une forme standard que l'on désigne par **forme normale conjonctive**. On parle alors d'un problème **SAT-CNF** (l'abréviation CNF vient de l'anglais "conjunctive normal form"). Voici un exemple d'instance du problème SAT-CNF:

$$\phi_c: (x_1 \vee x_2) \wedge (\neg x_1 \vee x_3) \wedge (\neg x_2 \vee \neg x_3) \wedge (x_1 \vee x_2 \vee x_3).$$

En logique mathématique, le terme littéral désigne une variable booléenne ou la négation d'une variable booléenne (dans l'expression ϕ_c , "x1" et "¬x1" sont des littéraux) et le terme clause désigne une disjonction de littéraux (l'expression ϕ_c comporte quatre clauses, dont la première est "x1 \vee x2"). Considérant ces définitions, une forme normale conjonctive est une conjonction de clauses. À moins de spécifications contraires, une clause peut contenir un nombre quelconque de littéraux.

Une instance d'un problème SAT-CNF comprend exclusivement les opérateurs de base : la disjonction " \vee ", la conjonction " \wedge " et la négation " \neg ".

16 Ensembles

16.1 Quelques définitions

$$S = T \stackrel{def}{=} (\forall e \mid e \in S \iff e \in T)$$

$$S \neq T \stackrel{def}{=} \neg (S = T)$$

$$(\forall x \in T \mid P(x)) \stackrel{def}{=} (\forall x \mid x \in T \Rightarrow P(x)) \quad \text{(Quantificateur universel)}$$

$$(\exists x \in T \mid P(x)) \stackrel{def}{=} (\exists x \mid x \in T \land P(x)) \quad \text{(Quantificateur existentiel)}$$

$$\forall P = \neg \exists \neg P$$

$$\neg (\forall x \in T \mid P(x)) \iff (\exists x \in T \mid \neg P(x)) \quad \text{(Première loi de De Morgan)}$$

$$\neg (\exists x \in T \mid P(x)) \iff (\forall x \in T \mid \neg P(x)) \quad \text{(Deuxième loi de De Morgan)}$$

16.2 Les quantificateurs

16.3 Les quantificateurs et l'appartenance

En logique et en théorie des ensembles, plusieurs symboles sont utilisés pour exprimer des relations entre des éléments et des ensembles.

Appartenance à un ensemble

L'opérateur d'appartenance "∈" permet d'indiquer si un élément appartient à un ensemble. Par exemple, l'expression :

$$e \in S$$

se lit "e appartient à l'ensemble S". Il s'agit d'une expression booléenne, c'est-à-dire qu'elle est soit vraie, soit fausse selon les cas.

Pour dire qu'un élément n'appartient pas à un ensemble, on utilise la notation :

$$e \notin S$$

L'ensemble vide

Le symbole " \emptyset " désigne l'ensemble vide, c'est-à-dire l'ensemble qui ne contient aucun élément :

$$\emptyset = \{\}$$

Les quantificateurs logiques

Les quantificateurs sont utilisés pour faire des affirmations sur tous les éléments d'un ensemble, ou sur l'existence d'un ou plusieurs éléments. Il en existe principalement deux :

- Le quantificateur universel " \forall " signifie "pour tout" ou "quel que soit". Par exemple : $\forall x \in \mathbb{N}, x \geq 0$ signifie "tout entier naturel est supérieur ou égal à zéro".
- Le quantificateur existentiel " \exists " signifie "il existe". Par exemple : $\exists x \in \mathbb{Z}, \ x < 0$ signifie "il existe un entier relatif strictement négatif".

16.4 Définition par extension versus définition par compréhension

Jusqu'à maintenant, nous avons présenté les ensembles par leur **définition par extension**, c'est-à-dire en énumérant les éléments de l'ensemble (par exemple, " $A := \{1, 2, 3, 4, 5\}$ "). Nous introduisons maintenant la **définition par compréhension** qui consiste plutôt à présenter les propriétés que respectent les éléments d'un ensemble.

Pour définir un ensemble par compréhension, nous utilisons la notation

$$S := \{ f(x) \mid R(x) \}$$

qu'on lit "S est l'ensemble des f(x) tels que R(x)", où :

- f(x) est une fonction qui décrit les éléments de l'ensemble;
- R(x) est une expression booléenne qui permet de restreindre le contenu de l'ensemble.

Autrement dit, on a $f(x) \in S$ si et seulement si R(x) est **vrai**.

Voici quelques exemples d'ensembles définis par compréhension :

- $A := \{x \mid x \in \mathbb{N} \land 1 \leq x \leq 5\}$, l'ensemble des nombres entiers entre 1 et 5 inclusivement;
- $B := \{x \mid x \text{ est une voyelle}\}$, l'ensemble des voyelles de l'alphabet ;
- $\mathbb{N}^* := \{x \mid x \in \mathbb{N} \land x \neq 0\}$, l'ensemble des **nombres naturels excluant le zéro**;
- $F := \{2x \mid x \in \mathbb{N}^*\}$, l'ensemble des nombres pairs positifs ;
- $G:=\{2^x\mid x\in\mathbb{N}\wedge x\leq 8\}$, l'ensemble des puissances de 2 de 1 à 256 ;
- $\mathbb{Z} := \{x \mid x \in \mathbb{N} \lor -x \in \mathbb{N}\}, \text{ l'ensemble des nombres relatifs};$
- $-\mathbb{Q} := \left\{ \frac{x}{y} \mid x \in \mathbb{Z}, \ y \in \mathbb{N}^* \right\},$ l'ensemble des **nombres rationnels**.

16.5 La cardinalité d'un ensemble

La cardinalité d'un ensemble correspond au nombre d'éléments qu'il contient. On note |S| la cardinalité de l'ensemble S.