

Computer vision in the new era of Artificial Intelligence and Deep Learning

Visión por computador en la nueva era de la Inteligencia Artificial y el Deep Learning

Rubén Usamentiaga*, Alberto Fernández°

- * University of Oviedo
- ° TSK

Gijón (Spain) 5 – 16 April 2021

Scikit-learn Introducing scikit-learn for classification, regression and clustering

- scikit learn introduction classification.ipynb
- scikit learn introduction regression.ipynb
- k means clustering sklearn.ipynb

- <u>scikit learn introduction classification.ipynb</u>
- scikit learn introduction regression.ipynb
- k means clustering sklearn.ipynb

supervised vs unsupervised learning

Classification: predicting a label

Classification uses supervised learning techniques to find the relationship between the features and the assigned label (e.g. spam/no spam)

Regression: predicting a quantity

Regression uses supervised learning techniques to learn a mapping Customers are grouped into function from the features to a different categories based on variable. continuous output problem requires the the regression prediction of a quantity. All houses algorithm has no information have a price.

Clustering: assigning a cluster

A their purchasing behaviour, but unsupervised learning about the labels (or classes) associated with each sample

Classification vs regression

In some cases, it is possible to convert a regression problem to a classification problem. For example, the age to be predicted could be converted into discrete buckets. Age in a continuous range between [0 and 100] could be converted into:

Class 0: 0 - 2

Class 1: 3 - 8

Class 2: 8 - 12

. . . .

Scikit-learn for classification: dataset

```
from sklearn.datasets import load_iris

iris = load_iris()
x = iris.data
y = iris.target
feature_names = iris.feature_names
target_names = iris.target_names
```

x.shape: (150,4) y.shape: (150,1)


```
Feature names: '['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']'
Target names: '['setosa' 'versicolor' 'virginica']'
```

As we have three classes, this is a three-class classification problem, because our task here is to classify each sample in one of the three classes (the species of Iris).

Scikit-learn for classification: training

```
from sklearn.model_selection import train_test_split

# Split the dataset for training and testing:
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=123)
```

```
x train shape: '(120, 4)'
x test shape: '(30, 4)'
```

Training (fit)

from sklearn import tree

Create the decision tree classifier
tree_classifier=tree.DecisionTreeClas
sifier(random_state=0, max_depth=3)

We can train the model with fit function:

tree_classifier.fit(x_train,y_train)

Making predictions using the trained model

```
sepal length of 5 cm
sepal width of 5 cm
petal length of 5 cm
petal width of 0.7999 cm.
```


 $new_sample = np.array([[5, 5, 5, 0.7999]])$

```
# Predict the class for this new sample:
predicted_class = tree_classifier.predict(n
ew_sample)

pred_class = predicted_class[0]
class_name = iris.target_names[pred_class]
```

Model persistence

```
from joblib import dump

dump(tree_classifier,
  'iris_tree_classifier.joblib')

from joblib import load

tree_classifier_iris =
  load('iris_tree_classifier.joblib')
```


Measuring the accuracy of the trained model

```
# 1. After training, the model is ready to make predictions:
tree_predictions = tree_classifier.predict(x_test)

# 2. Get the comparisons (True/False) for each one:
comparisons = (tree_predictions == y_test)
print("comparisons array: \n '{}'".format(comparisons))

# 3. Calculate the accuracy using np.mean():
my_accuracy = np.mean(comparisons)
print("The accuracy of the model is: '{}'".format(my_accuracy))
```

```
import sklearn.metrics as metrics

metrics.accuracy_score(y_test, tree_predictions)
metrics.classification_report(y_test, tree_predictions)
metrics.plot_confusion_matrix(tree_classifier, x_test, y_test)
```


Scikit-learn for regression: dataset

Scikit-learn for regression: training and testing

```
from sklearn import linear_model

# Create linear regression object:
model = linear_model.LinearRegression()

# Train the model using the training sets:
model.fit(x_train, y_train)

# The coefficients and the intercept factor:
print("Coefficients: {}".format(model.coef_))
print("Intercept: {}".format(model.intercept_))
```

```
Coefficients: [[2.99811861]]
Intercept: [49.14094108]
```

```
from sklearn.metrics import mean_squ
ared_error, r2_score

# Make predictions using the testing
set
y_preds = model.predict(x_test)

# Model score:
model.score(x_test, y_test))

# The mean squared error (mse):
mean_squared_error(y_test, y_preds)

r2_score(y_test, y_preds)
```


linear_model.LinearRegression estimator is heavily influenced by the outliers

linear_model.HuberRegressor is robust to outliers

The parameter epsilon controls the number of samples that should be classified as outliers. The smaller the epsilon, the more robust it is to outliers. greater than 1.0, default=1.35

HuberRegressor(epsilon=2.0)

Dataset for regression (with outliers)

HuberRegressor estimator is less influenced by the outliers. Moreover, as the parameter epsilon is increased for the HuberRegressor estimator, the obtained results get closer to the results obtained with the LinearRegression estimator.

Dataset for regression (with outliers)

Robust linear model estimation using RANSAC

```
# Robustly fit linear model with RANSAC algorithm
ransac = linear_model.RANSACRegressor()
ransac.fit(X, y)
inlier_mask = ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)
```

Boolean mask of inliers classified as True.


```
plt.scatter(X[inlier_mask],
y[inlier_mask],
color='yellowgreen',
marker='.', label='Inliers')
```

```
plt.scatter(X[outlier_mask],
y[outlier_mask],
color='gold', marker='.',
label='Outliers')
```

K-Means clustering for color quantization in scikit-learn

Scikit-learn Introducing scikit-learn for classification, regression and clustering