<u>Last time</u> A sub X

the subspace topology on A induced by X is $\{A \ cap \ V \mid V \ is \ an \ open \ set \ in \ X\}$

if U sub A sub X then (U open in X) implies (U open in A) [why?] but converse can fail

Rem [how do subsp's interact with cts maps?]

- 1. if A sub X, then the inclusion map i : A to X def by i(a) = a is cts
- 2. compositions of cts maps are cts
- 3. so if f : X to Y is cts, then f|_A : A to Y is cts (compare to PS2, #6)

Rem if A is open in X itself then (U open in A) iff (U open in X) (see PS2, #3)

Thm if {B_i}_{i in I} is a basis for the top on X,
then {A cap B_i}_{i in I} is a basis for
the subspace top on A

by earlier criterion, just need to show: for all U open in A and x in U, have i s.t. x in A cap B i sub U

indeed, U = A cap V for some V open in X then x in V, so have i s.t. x in B_i sub V so x in A cap B_i, and also, A cap B_i sub U (Munkres §20) recall from real analysis:

Idea metric topology on X generalizes analytic topology on R^n

a metric on a set X is a function $d: X \times X$ to $[0, \infty)$

<u>Thm</u> the metric topology really is a topology

s.t., for all x, y, z in X, 1) d(x, y) = 0 implies x = y2) d(x, y) = d(y, x)3) $d(x, y) + d(y, z) \ge d(x, z)$

<u>Df</u>

Pf exactly like the proof that the anlytic topology is a topology

given $\delta > 0$, let B $d(x, \delta) = \{y \text{ in } X \mid d(x, y) < \delta\}$

[so how much weirder can it be?]

<u>Df</u> the metric topology on X induced by d:

in any X: the discrete metric defined by d(x, x) = 0 d(x, y) = 1 when x neq y

U is open in the metric topology iff for all x in U, there is a $\delta > 0$ s.t. B_d(x, δ) sub U

1) and 2) easy

Thm suppose d induces T on X, d' induces T' on X

if
$$x = z$$
:
 $d(x, y) + d(y, z) \ge 0 = d(x, z)$
[because $d(-, -) \ge 0$]

if $x \neq z$:

Rem

then T is finer than T' iff for all x in X and $\epsilon > 0$, there is $\delta > 0$ s.t. $B_d(x, \delta) \text{ sub } B_{d'}(x, \epsilon)$

either
$$y \neq x$$
 or $y \neq z$
so $d(x, y) + d(y, z) \ge 1 = d(x, z)$

Pf exercise (Munkres Lem 20.2)

observe B
$$d(x, 1) = \{x\}$$
 for all x. thus:

<u>Ex</u> [picture of B_d(x, δ) versus B_ ρ (x, δ)]

the discrete metric induces the discrete topology

euclidean metric: $d(x, y) = sqrt((x_1 - y_1)^2 + ... + (x_n - y_n)^2)$

square metric: $\rho(x, y) = \max(|x_1 - y_1|, ..., |x_n - y_n|)$ observe:

d(x, y)

$$\leq$$
 sqrt(n max_i (x_i - y_i)^2)

= $sqrt(n) \rho(x, y)$

 $\rho(x, y) = \text{sqrt}(\max_{i} |x_i - y_i|^2)$

 $\leq d(x, y)$

shows [note reverse directions!]:

 $B_{\rho}(x, \varepsilon/\operatorname{sqrt}(n)) = \{y \mid \rho(x, y) < \varepsilon/\operatorname{sqrt}(n)\}$

= $\{y \mid sqrt(n) \ \rho(x, y) < \epsilon\}$ sub $\{y \mid d(x, y) < \epsilon\}$

 $= B d(x, \varepsilon)$

similarly, B_d(x, ϵ) sub B_ ρ (x, ϵ)

Thm Euclidean and square metrics both induce the analytic topology on R^n

in general:

<u>Df</u>

metrics d, d' are called <u>equivalent</u> iff there exist A, B > 0 s.t. $d(x, y) \le A d'(x, y)$ and $d'(x, y) \le B d(x, y)$

uniformly in x and y

<u>Thm</u>

if two metrics are equivalent, then their metric topologies coincide

<u>Rem</u>

converse is false: see PS2, #9–10

Q

what about infinite-dim'l space?

 $R^{\omega} = \{(x_1, x_2, ...) \mid x_i \text{ in } R \text{ for all } i\}$

 $R^{\infty} = \{(x_1, x_2, ...) \mid x_i \neq 0 \text{ for only fin. many } i\}$

Euclidean and square metrics don't work on $R^{\wedge}\omega$

Q do they still work on R^∞?

Q are there other metrics on R^{ω} ?

(Munkres §15, 19) given {X_i}_{i in I}

we write prod_{i in I} X_i for the set of sequences $(x_i)_{i in I}$ such that x_i in X_i for all i

Q if each X_i has a topology, do we get a natural topology on prod_{i in I} X_i?