数据手册

汉威电子科技有限公司

Mob:18682281331刘小姐

微信:18682281331 Q Q: 2442006921

E-m:eva.liu@hiwelltech.com

淘宝店铺:汉威电子科技有限公司

GM8285C

1.8V 低功耗 28 位 LVDS 发送器

2013.07

成都国腾电子技术股份有限公司

GM8285C

GM8285C		
		少数版 大 时间 2012 年 07 月
版本记录: 3.1		当前版本时间: 2013 年 07 月
新旧版本改动比	比较:	
旧版	当前版本	主题(和旧版本相比的主要变化)
文档页数	文档页数	主题(和旧似平相记的主要文化)
10	11	增加 BGA56 封装

如果您有技术、交付或价格方面的任何问题,请联系成都国腾电子技术股份有限公司的相关办公室或 当地的代理商,或访问官方网站: www. gotecom. com 谢谢!

编制时间: 2013 年 07 月 由成都国腾电子技术股份有限公司发布 发布地点: 成都 成都国腾电子技术股份有限公司版权所有

GM8285C

1 概述

GM8285C型 1.8V 低功耗 28 位 LVDS 发送器, 其功能是将并行数据编码为高速串行数据,实现信号的快速可靠传输。该器件可将 28 位并行数据转换为 4 对串行 LVDS 差分信号,同时并行输出 1 路 LVDS 差分时钟信号。

本器件片内集成锁相环模块,锁相环输入频率范围 20MHz~135MHz。

I/O 电压支持 1.8V/3.3V, core 电压为 1.8V/3.3V 的 28 位可编程数据选通 Channel-Link 发送器,支持 1080p(60Hz)视频显示,适合 VGA, XGA, SXGA, UXGA 格式的数据从控制器到显示设备的传输。

2 特征

- a) 工作温度范围: -40℃~85℃;
- b) I/O 电源电压: 3.3V 或 1.8V;
- c) Core 电源电压: 3.3V 或 1.8V
- d) 输入信号: 28 位并行 LVCMOS 数据信号和 1 路 LVCMOS 时钟信号;
- e) 输出信号: 4对 LVDS 数据信号和 1对 LVDS 时钟信号;
- f) 输入时钟频率: 25MHz~135MHz;
- g) 封装形式: TSSOP56 和 BGA56;

3 封装及引脚功能说明

本器件有 TSSOP56 和 BGA56 两种封装形式,引脚排布分别如图 1 和图 2 所示。

图 1 TSSOP56 引脚排布图

GM8285C

图 2 BGA56 引脚排布图

各引脚功能描述见表 1:

表 1 芯片引脚功能说明

端口符号	端	口序号	I/0 类型	功能说明	
AII 11 11 7	TSS0P56	BGA56	1/0天至	20 HZ 60.90	
LVCMO 并行数	据和时钟端口				
D0∼D27	51, 52, 54, 55, 56, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 50	J2, K1, K2, J3, K3, K4, J4, K5, K6, J6, H4, H6, G5, G6, F6, E5, E6, D6, D5, C6, B6, B5, A6, A5, A4, B4, A3, J1	LVCMOS 输入	LVCMOS 输入信号,默认下拉; 18bit 应用时,未使用输入端,应下拉 到 GND。	
CLKIN	31		LVCMOS 输入	LVCMOS 时钟输入端,默认下拉。	
控制和配置站	岩口				
RS	1	G4	LVCMOS 输入	LVDS 摆幅控制输入端,默认下拉; RS V0D (mV) H 250~450 L 100~300	
CLKSEL	17	D4	LVCMOS 输入	并行数据时钟采样边沿选择端,默下拉; 为高,时钟上升沿采样数据; 为低,时钟下降沿采样数据。	
SHTDN	32	В3	LVCMOS 输入	关断控制端,默认下拉; 为高,芯片正常输出; 为低,关断芯片,输出为高阻态。	

GM8285C

表1(续)

端口符号	端	口序号	I/0 类型	功能说明	
利用口切り	TSS0P56	BGA56	1/0天至	-20 HZ 200	
LVDS 端口					
YOP, YOM Y1P, Y1M Y2P, Y2M	47, 48 45, 46 41, 42	H2, H1 G2, G1 E2, E1	LVDS 输出	LVDS 差分输出端; 关断时,LVDS 差分输出端为高阻态。	
Y3P, Y3M	37, 38	C2, C1	LVDS 输出	LVDS 差分输出端; 关断时,LVDS 差分输出端为高阻态。 18bit 应用时,此差分输出端悬空。	
CLKOUTP, CLKOUTM	39, 40	D2, D1	LVDS 输出	LVDS 差分时钟输出端; 关断时,LVDS 差分输出端为高阻态。	
电源和地端口	1				
IOVCC	26	C4	电源	I/0 电源端,支持 1.8V/3.3V 电压; 应用时应与前级输入RGB信号摆幅保 持匹配。	
VCC	9	Н5	电源	数字电源端,支持 1.8V/3.3V 电压。	
PLLVCC	34	B2	电源	PLL 电源端,支持 1.8V/3.3V 电压。	
LVDSVCC	44	F1	电源	LVDS 电源端,支持 1.8V/3.3V 电压。	
GND	5, 13, 21, 29, 33, 35, 36, 43, 49, 53,	J5, H3, G3, F5, F2, D3, C5, C3, B1, A1	地	地端	

4 功能描述

GM8285C 为 1.8V 低功耗 28 位 LVDS 发送器,可支持 1.8V/3.3V 应用,可应用于 24 位数和 18 位数视频图像发送领域。

芯片具有输入时钟采样沿可选、LVDS 差分输出摆幅可调功能和低功耗特性。

1) 输入数据和时钟采样时序关系

输入的 28 bits 数据与参考时钟为同步关系,可选择用上升沿采样或下降沿采样,如下图所示:

a) 上升沿采样(CLKSEL 为高电平电压)

GM8285C

b) 下降沿采样(CLKSEL 为低电平电压)

图 3 输入并行数据与参考时钟关系图

对于输入时钟与数据的关系,要求如下:

建立时间: t_{SU}≥2.0ns, 保持时间: t_H≥0.8ns。

2) LVDS 输出时钟和数据编码关系

输出的 4 路串行数据流与同步时钟对应时序关系如下图所示:

图 4 输出 LVDS 串行数据流与同步时钟关系图

3) 电源电压配置在应用时的对应关系如下表所示:

表 2 电源电压配置表

配置 类别	I/O 电源电压 (IOVCC)	CORE 电源电压 (VCC=PLLVCC=LVDSVCC)	前级 LVTTL 输入幅度与 I/O 电源电压保持一致
1	3.3V	3.3V	3.3V
2	3.3V	1.8V	3.3V
3	1.8V	3.3V	1.8V
4	1.8V	1.8V	1.8V

4) 18bit 和 24bit 应用时数据位对应关系如下图所示:

GM8285C

0.11.6	N]	
Graphic C	Controller		GM8285C
<u>18-BIT</u>	<u>24-BIT</u>		
RED0	RED0		D0
RED1	RED1		D1
RED2	RED2		D2
RED3	RED3		D3
RED4	RED4		D4
RED5	RED5		D6
NA	RED6		D27
NA	RED7		D5
GREEN0	GREEN0		D7
GREEN1	GREEN1		D8
GREEN2	GREEN2		D9
GREEN3	GREEN3		D12
GREEN4	GREEN4		D13
GREEN5	GREEN5		D14
NA	GREEN6		D10
NA	GREEN7		D11
BLUE0	BLUE0		D15
BLUE1	BLUE1		D18
BLUE2	BLUE2		D19
BLUE3	BLUE3		D20
BLUE4	BLUE4		D21
BLUE5	BLUE5		D22
NA	BLUE6		D16
NA	BLUE7		D17
Hsync	Hsync		D24
Vsync	Vsync		D25
DE	DE		D26
NA	RSVD	-	D23
CLOCK	CLOCK		CLOCK

图 5 视频源与显示屏的位数保持一致应用时像素数据位对应关系

	٦	
Graphic Controller		<u>GM8285C</u>
18-BIT视频源		后级接24bit显示频
NA		D0
NA		D1
RED0		D2
RED1		
RED2		D4
RED3		D6
RED4		D27
RED5		D5
NA		D7
NA		D8
GREEN0		D9
GREEN1		D12
GREEN2		D13
GREEN3		D14
GREEN4		D10
GREEN5		D11
NA		D15
NA		D18
BLUE0		D19
BLUE1		D20
BLUE2		D21
BLUE3		D22
BLUE4		D16
BLUE5		D17
Hsync		D24
Vsync		D25
DE		D26
NA		D23
CLOCK		CLOCK

	1	
Graphic Controller 24-BIT视频源		<u>GM8285C</u> 后级接18bit显示频
<u> 24-DI 1 7光/9贝7/8</u>		711277777
RED2		D0
RED3		D1
RED4		D2
RED5		D3
RED6		D4
RED7		D6
NA		D27
NA		D5
GREEN2		D7
GREEN3		D8
GREEN4		D9
GREEN5		D12
GREEN6		D13
GREEN7		D14
NA		D10
NA		D11
BLUE2		D15
BLUE3		D18
BLUE4		D19
BLUE5		D20
BLUE6		D21
BLUE7		D22
NA		D16
NA		D17
Hsync		D24
Vsync		D25
DE		D26
NA NA		D23
CLOCK		CLOCK

图 6 视频源与显示屏的位数不一致应用时像素数据位对应关系

GM8285C

5) LVDS 差分输出摆幅可调

差分输出摆幅可调,其功能主要是通过RS控制端口,实现LVDS输出差分摆幅的控制。低摆幅LVDS输出可以进一步降低系统的EMI,减小芯片功耗。详细配置见下表, R_L =100 Ω 。

表 3 LVDS 输出摆幅配置表

V (RS pin)	LVDS 输出摆幅(mV)
VCCIO	250~450
GND	100~300

6) 芯片工作状态配置表

表 4 功能状态配置表

输入信号				输出信号
V(SHTDN) V(CLKSEL) V(RS) 输入数据/时				LVDS 输出状态
GND	X	X	X	Z(高阻态)
VCCIO	VCCIO/ GND	VCCIO	见图 2	标准摆幅输出,输出关系见图3
VCCIO	VCCIO/ GND	GND	见图 2	低摆幅输出,输出关系见图3

5 参数指标

5.1 极限工作条件

- d) 结温 (Tj) ······125℃
- e) 引线耐焊接温度*T*_h) (4s) ·······260℃
- f) 功耗 (P_D) ······· 1.0W

5.2 推荐工作条件

表 5 推荐工作条件

符号	参数	最 小	最 大	单 位
VCC	电源电压	1.71	1.89	V
VCC	七砂七匹	3.0	3.6	•
VCCPP	电源电压噪声幅值	1	100	mV
t_{CIP}	输入时钟周期	7.41	40	ns
$t_{\rm CIT}$	输入时钟转换时间	1.0	3.0	ns
t_{CIH}	输入时钟高电平时间	$0.4t_{CIP}$	$0.6t_{\rm CIP}$	ns
$t_{\rm CIL}$	输入时钟低电平时间	$0.4t_{CIP}$	$0.6t_{\rm CIP}$	ns
$t_{\rm XIT}$	输入数据转换时间	1.0	6.0	ns
t_{STC}	建立时间	2.0	1	ns
$t_{ m HTC}$	保持时间	0.8		ns
TA	工作温度	-40	85	$^{\circ}$

5.3 静态参数

GM8285C

表 6 静态特性参数

特性	符	条 件: 除另有规定, V _{IOVCC} =3.3V±0.3V或 1.8V±0.18V	极降	单	
付 注	号	$V_{\text{PLLVCC}} = V_{\text{LVDSVCC}} = V_{\text{CC}} = 3.3V \pm 0.3V$ 或 1.8 $V \pm 0.18V$	最小	最大	位
输入高电平电压	V _{IH}	V_{IOVCC} =3.0V, V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =3.0V	2.0	V _{IOVCC}	
柳八阳七十七丛	▼ IH	V_{IOVCC} =1.62V, V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =3.0V	V _{IOVCC} /2+0.3	V _{IOVCC}	\mathbf{v}
输入低电平电压	$V_{\rm IL}$	V_{IOVCC} =3.6V, V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =3.6V	GND	0.8	
柳八队屯「屯压	V IL	V_{IOVCC} =1.98V, V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =3.6V	GND	V _{IOVCC} /2-0.3	
输入电流	I_{IN}	V_{IOVCC} =1.98 V 或 3.6 V , V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =3.3 V , V_{IN} = V_{IOVCC} 或GND	-25	25	μА
输入钳位电压	V_{CL}	I_{CL} =-18mA, V_{IOVCC} =3.6V, V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =3.3V	_	-1.5	V
差分输出电压	V	V_{IOVCC} = V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =1.62 V 和 3.6 V , V_{RS} = V_{IOVCC} , R_{L} =100 Ω	250	450	- mV
左 分 棚 山 电压	V_{OD}	V_{IOVCC} = V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} = 1.62 V和 3.6 V, V_{RS} = GND , R_L = 100Ω	100	300	IIIV
共模输出电压	Vos	V_{IOVCC} = V_{PLLVCC} = $V_{LVDSVCC}$ = V_{CC} =1.62 V , V_{RS} = V_{IOVCC} 和GND, R_L =100 Ω	1.125	1.375	V
输出短路电流	I_{OS}	所有电源电压为 3.6V, V_O =0V, R_L =100 Ω	_	-24	mA
输出高阻态电流	I_{OZ}	所有电源电压为 3.6V,V _{SHTDN} =0V,V _O =0V	_	±10	μΑ
关断电源电流	I_{CCZ}	电源电压为 3.6V, 所有输入均为 0V	_	100	μΑ

5.4 动态参数

表 7 动态特性参数

特性	符号	条 件: 除另有规定, V _{IOVCC} =3.3V±0.3V或 1.8V±			极限值		
44 1年	刊与	$0.18VV_{PLLVCC} = V_{LVDSVCC} = V_{CC} = 3.3$	最小	最大	位		
目标标识		电源电压为 3.6V,	f=75MHz	_	67		
最坏情况 模式电源电流	I_{CCW}	$V_{RS}=3.6V, R_{L}=100\Omega,$	f=100MHz	_	96	mA	
Der (203, 200		$C_L \leq 10 pF$	f=135MHz		119		
LVDS 差分输出上升时 间(20%~80%)	t_R	$R_L=100\Omega$, $C_L \le 10 pF$, $f=135M$	MHz, $V_{RS} = V_{IOVCC}$;		1.5	ns	
LVDS 差分输出下降时 间(80%~20%)	t_{F}	V _{IOVCC} =V _{PLLVCC} =V _{LVDSVCC} =V _{CC} =1.62V			1.5	ns	
锁相环建立时间	t _{PLLS}	$R_L=100\Omega$, $C_L \leq 10pF$, $V_{RS}=V_{IOVCC}$,			1	ms	
		V _{IOVCC} =V _{PLLVCC} =V _{LVDSV}	V _{IOVCC} =V _{PLLVCC} =V _{LVDSVCC} =V _{CC} =1.62V		1	1113	
人 关断延迟时间	t_{PDD}	$R_L=100\Omega$, $C_L \leq 10pF$,	$V_{RS}=V_{IOVCC}$,	_	100	ns	
<u> </u>	4PDD	$V_{IOVCC} = V_{PLLVCC} = V_{LVDSVCC} = V_{CC} = 1.62V$			100	113	
功能测试 1	_	f _{CLK} =25MHz, V _{CLKSEL} =0 和V _{IOVCC} , 最坏情况模式输入			式参照图	3 的	
切能测试.I —		f _{CLK} =135MHz, V _{CLKSEL} =0 和V _{IOVCC} , 最坏情况模式输入		数据与	时钟的关	系图	
功能兼容: SN75LVDS83B, V _{IOVCC} =V _{PLLVCC} =V _{LVDSVCC} =							
为旧的, 风 乙		$V_{CC}=V_{IOVCC}=3.3V \pm 0.3V$					

GM8285C

表 9 典型应用电源电流列表

分辨率	刷新率 (Hz)	像素时 钟频率 (MHz)	电源电流(mA)@ RS=H		
			IOVCC (3.3V)	(VCC+PLLVCC+LVDSVCC) (3.6V)	Total
1024 x 768	60	65	7.1	30.8	37.9
	70	75	7.1	31.5	38.6
	75	78.75	7.1	31.8	38.9
	85	94.5	7.1	32.7	39.8
1152 x 864	75	108	7.1	33.9	41.0
1280 x 768	85	117.5	7.1	34.7	41.8
1280 x 1024	75	135	7.1	36.1	43.2

6 机械尺寸

1) TSSOP56 封装外形尺寸如下:

注: 1) 为引出端识别标志区。

单位为毫米

			1 12/4 13/1			
尺寸符号	数 值					
	最小	公 称	最大			
A	_	_	1.20			
A_1	0.05	_	0.15			
b	0.15	_	0.30			
c	0.07	_	0.22			
Е	5.90		6.30			
e	_	0.50	1			
D	13.70	_	14.30			
$H_{\rm E}$	7.90	_	8.30			
L_{P}	0.45	_	0.75			

图 7 TSSOP56 外壳外形

GM8285C

2) BGA56 封装外形尺寸如下:

单位为毫米

			十四万七八			
尺寸符号	数 值					
	最 小	公 称	最大			
A	_	_	1.00			
A1	_	0.32	_			
A2	0.54	0.60	0.66			
b	0.35	0.40	0.45			
D	6.90	7.00	7.10			
Е	4.40	4.50	4.60			
e	_	0.65	_			
SE	_	0.325	_			
SD	_	0.325	_			
E1	_	3.25	_			
D1	_	5.85	_			
JEDEC	MO-246(REF.)					

图 8 BGA56 外壳外形

GM8285C

7 产品应用信息

典型应用图

下图为GM8285C在24bit图像传输系统中的典型应用图。R_U、R_D为RS和CLKSEL设置为 高、低电平时的上拉和下拉电阻值, R_U =1 $K\Omega$ 、 R_D =0 Ω 。 R_U 、 R_D 焊接时二者取其一。 C_0 、 C_1 为电源滤波电容, C_0 =0.1 μ F、 C_1 =0.01 μ F。 L_0 为磁珠, L_0 =60 Ω /100MHz。 R_0 为并行数据匹 配电阻, $R_0=33\,\Omega$ 。 R_1 和 C_2 为时钟信号匹配电阻、电容,具体值视前级视频信号源时钟信号 的驱动能力。通常 R_1 =50 Ω , C_2 =10pF。

7.2 应用说明

1. PCB 板设计注意事项:

- 1) PCB 至少采用四层板设计:
- 2) 电源滤波电容尽可能的靠近芯片电源 pin;
- 3) 每组电源都需要通过磁珠进行隔离且都要增加电源滤波电容;
- 4) PCB 板尽可能铺设大面积的 GND 层次:
- 5) LVDS 输出差分信号走线设计成 100 Ω 差分匹配, 走线尽可能保持等长;
- 6) LVDS 输出差分信号正负通道间隔 S1 尽可能的小;
- 7) LVDS 各输出差分信号通道间的间隔至少要大于 2 倍 S1;
- 8) 100 Ω 终端电阻要尽可能的靠近 LVDS 接收器输入端口;
- 9) LVDS 输出差分信号通路尽可能的少用通孔,且走线避免设计成 90° 弯角;

GM8285C

2. 器件应用注意事项:

- 1) 应用过程中,芯片的电源电压、输入电压范围、测试温度以及测试条件等都需要严格遵守数据手册规定。
- 2) 用于测试和焊接的工作台面,测试仪器以及高低温箱等都必须具有防静电设施。
- 3) 测试和使用过程中,测试人员也必须带防静电腕带,在防静电台面上进行操作,禁止直接手持芯片。
- 4) 测试和使用过程中出现异常现象时,应该注意保护芯片。