MATH 321 Homework 6 (due 11/16) NAME:

(3pts) 1. The accompanying figure represents a function with domain $\{4, 5, 6, 7, 8\}$.

- (a) The codomain is _____
- (b) The range is _____
- (c) The image of 5 is _____
- (d) The image of 8 is _____
- (e) The preimage of 9 is _____
- (f) This function is onto.

True False

(g) This function is one-to-one.

True False

- (3pts) 2. Circle True or False, as appropriate.
 - (a) A function is onto if and only if every element in the domain has an True False image.
 - (b) A function is onto if and only if every element in the codomain has True False an image.
 - (c) A function is onto if and only if every element in the codomain has a True False preimage.
 - (d) A function is onto if and only if every element in the codomain has a True False unique preimage.
 - (e) A function is onto if and only if (the range) \cap (the codomain) = \emptyset . True False
 - (f) A function is one-to-one if and only if every element in the codomain True False has a unique preimage.
 - (g) A function is one-to-one if and only if distinct elements in the domain True False map to distinct elements in the codomain.

(apts)	Э.	Let $S = \{0, 2, 4, 6\}$ and $T = \{1, 3, 5, 7\}$. Determine whether each of the following sets of ordered pairs is a function with domain S and codomain T . If so, it is one-to-one? Is it onto?						
		(a)	$\{(0,2),(2,4),(4,$	(6,6),(6,0) is				
			○ a function	O one-to-one	O onto	one of these		
		(b)) $\{(6,3),(2,1),(0,3),(4,5)\}$ is					
			○ a function	O one-to-one	O onto	one of these		
		(c)	$\{(2,3),(4,7),(0,1),(6,5)\}$ is					
			○ a function	O one-to-one	O onto	one of these		
		(d)	$\{(2,1),(4,5),(6,$	(5,3) is				
			○ a function	O one-to-one	\bigcirc onto	one of these		
		(e)	(e) $\{(6,1),(0,3),(4,1),(0,7),(2,5)\}$ is					
			○ a function	O one-to-one	\bigcirc onto	one of these		

- (3pts) 4. Let $S = \{a, b, c, d\}$ and $T = \{x, y, z\}$.
 - (a) If possible, give an example of a function from S to T that is onto.

(b) If possible, give an example of a function from S to T that is one-to-one.

(c) The number of functions from S to T is $___$.

- 5. (V 5.1.9) Suppose $f:A\to C$ and $g:B\to C$ are functions. (See V 5.1.7 for the meaning of notation used in this exercise.)
- (2pts) (a) Prove that if A and B are disjoint, then $f \cup g \colon A \cup B \to C$.

(1pts) (b) More generally, prove that $f \cup g \colon A \cup B \to C$ iff $f \upharpoonright (A \cap B) = g \upharpoonright (A \cap B)$.

- 6. (V 5.1.17)
- (1pts) (a) Suppose $g: A \to B$ and let $\operatorname{Ker} g = \{(x,y) \in A \times A \mid g(x) = g(y)\}$. Show that $\operatorname{Ker} g$ is an equivalence relation on A.

(2pts) (b) Suppose R is an equivalence relation on A and let $g \colon A \to A/R$ be the function defined by the formula $g(x) = [x]_R$. Show that $R = \{(x,y) \in A \times A \mid g(x) = g(y)\}$.

(2pts)	7.	(V 5.2.16) Suppose R is an equivalence relation on A and suppose $f: A \to B$ is compatible with R . Ex 5.1.18 gives the definition of compatible, and also asks you to prove that there is a unique function $h: A/R \to B$ such that for all $x \in A$, $h([x]_R) = f(x)$. Now prove that h is one-to-one iff $(\forall x \in A)(\forall y \in A)(f(x) = f(y) \longrightarrow (x,y) \in R)$.					

- 8. (cf. V 5.3.13) Suppose $f: A \to B$ is onto. Let $K = \mathrm{Ker}(f) = \{(x,y) \in A \times A \mid f(x) = f(y)\}$. By Ex 5.1.17 K is an equivalence relation on A.
- (2pts) (a) Consider the relation $h \subseteq A/K \times B$ defined by $h = \{([x]_K, f(x)) \mid x \in A\}$. Prove that h is actually a function from A/K to B, and satisfies $h([x]_K) = f(x)$.

(1pts) (b) Prove that h is one-to-one and onto. (Hint: See Ex 5.2.16)

(1pts) (c) It follows from part (b) that h has an inverse function, $h^{-1} \colon B \to A/K$. Prove that for all $b \in B$, $h^{-1}(b) = \{x \in A \mid f(x) = b\}$.

SUGGESTED PROBLEMS

The following exercises are also recommended: 5.1.7, 5.1.18, 5.2.8, 5.2.17, 5.2.18, 5.3.9.

Page	Points	Score
1	6	
2	6	
3	3	
4	3	
5	2	
6	4	
Total:	24	