Hypernetwork for self-calibrating brain computer interface

Mengzhan Liufu*, Ryien Hosseini, Mingyuan Xiang, Henry Hoffmann Department of Computer Science, University of Chicago August 16, 2024

Introduction: Brain Computer Interface

Ongoing brain Activity

Real-time data streaming

Brain computer interface

Processing

Human interpretable concepts

Deo et.al 2023 Translating deep learning to neuroprosthetic control Willett et.al 2023 A high-performance speech neuroprosthesis

Introduction: BCI calibration for new user

Differences of brain activity and hardware between individuals

Krumpe et.al 2017; Kamrud et.al 2021

Challenge in supervised calibration

Supervised calibration requires labeled data. Accessing data labels from new user is impractical for real-time BCI applications.

Challenge in unsupervised calibration

Unsupervised calibration typically involves feature space alignment, which usually requires brain data from existing users.

May be challenging to access due to privacy or sheer quantity.

Schematic reproduced from: Ko et.al 2021

Method: Hypernetwork

If given proper clue, hypernetworks can **generate** near-optimal weights, which are usually acquired through iterative, time-consuming optimization process.

Method: Hypernetwork for unsupervised, real-time calibration

Method: HypernetBCI architecture

Result: test accuracy vs. amount of calibration data

HYPERShallowFBCSPNet on Schirrmeister2017 Dataset , Calibrate model for each subject (cross subject calibration), 3 reps each point

Result: visualizing weights to understand calibration efficacy

Weight tensors produced by fine tuning

Reduced weight tensors from fine tune classifier Subjects 75 Subject 1 Subject 2 50 Subject 3 Reduced dimension 2 Subject 4 25 Subject 5 Subject 6 0 -Subject 7 Subject 8 -25 Subject 9 -50Subject 10 Subject 11 -75Subject 12 Subject 13 -10025 75 -100-75 -50 -25 50 100 Reduced dimension 1

Weight tensors produced by hypernetBCI

Contributions

First to apply hypernetwork for unsupervised domain adaptation

Calibration takes one forward pass, repeatable and good for real-time adjustment

Data efficient, good for edge deployment (brain implants)

Appendix I: Experiment setup

Dataset

Appendix II: motor imagery classification dataset

Imagined movements

Appendix II: sleep stage classification dataset

Sleep stages (or awake)

Appendix III: fine tuning part(s) of the model while freezing others

Motor Imagery Classification

Fine tune part(s) of ShallowFBCSPNet for Schirrmeister2017 dataset fine tune learning rate = 6.50e-04

Sleep Stage Classification

Fine tune part(s) of SleepStagerChambon2018 for SleepPhysionet dataset fine tune learning rate = 1.00e-03

