

Fabian Gabel

28. September 2016

Lineare Grundtypen

- 1 Die Transportgleichung und Methode der Charakteristik
- 1.1 Physikalische Interpretation
- 1.2 Lineare Konvektion

2

3

4

5

Schwache Lösungstheorie in Sobolevräumen

6 Elliptische Randwertprobleme: Der Fall n=1

Dirichlet
problem
$$\begin{cases} -u'' = f \text{ auf } [0,1], f \in ([0,1]) \\ u(0) = u(1) = 0 \end{cases}$$

klassische Lösung: $u \in C^2([0,1])$, welches (DP) erfüllt.

Zugang in 4 Schritten

- (A) Einführung einer schwachen Lösung → Sobolevraum
- (B) Existenz und Eindeutigkeit einer schwachen Lösung
- (C) Reularität der schwachen Lösung
- (D) Rückkehr zur klassischen Lösung

$$I=(a,b)\subseteq\mathbb{R}, -\infty\leq a< b\leq\infty$$
 Sei $u\in C^1(\overline{I}), \varphi\in C^\infty_c(I)$

$$\int_I u' \varphi dx = \underbrace{u \varphi|_a^b}_{=0 \text{ wegen kompaktem Träger}} - \int_I u \varphi' dx$$

6.1 Definition

Wir definieren <u>Sobolevraum</u> $H_1(I)$ via

$$H^1(I) := \left\{ u \in L^2(\Omega) \colon \text{ es existiert } g \in L^2(I) \text{ mit } \int_I u \varphi' dx = - \int_I g \varphi dy \text{ für alle } \varphi \in C_c^\infty(I) \right\}$$

Für $u \in H^1(I)$ heißt Du := g die schwache Ableitung von u.

Bemerkung. Die Funktion g ist eindeutig bestimmt (Fundamentallemma).

Beispiel. $u(x) = \frac{1}{2}(|x| + x)$

$$\implies u \in H^{1}(I) \ und \ Du = H \ mit \ H(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & -1 < x < 0 \end{cases}$$

Versehe $H^1(I)$ mit Skalarprodukt:

$$(u,v)_{H^1} := (u,v)_{L^2} + (u',v')_{L^1}$$

und Norm

$$||u||_{H^1} := (||u||_{L^2}^2 + ||u'||_{L^2}^2)^{\frac{1}{2}}$$

6.2 Lemma

 $H^1(I)$ ist ein Hilbertraum. Übungsaufgabe.

6.3 Satz

Sei $u \in H^1(I)$. Dann existiert $\tilde{u} \in C(\overline{I})$ mit $\tilde{u} = u$ fast überall auf I und

$$\tilde{u}(x) - \tilde{u}(y) = \int_{y}^{x} u'(s)ds, \quad x, y \in \overline{I}.$$

Beweis: Übungsaufgabe

6.4 Satz

Sei $-\infty < a < b < \infty$. Dann ist die Einbettung

$$H^1(a,b) \hookrightarrow C([a,b])$$

kompakt.

Beweis. Zu besprechen

6.5 Korollar (partielle Integration in H^1)

Seien $u, v \in H^1(a, b)$. Dann $u \cdot v \in H^1(a, b)$ und es gilt:

$$(uv)' = u'v + uv'$$
 sowie $\int_y^x u'v = uv|_y^x - \int_y^x uv'$

für $x, y \in [a, b]$.

6.6 Satz

Sei $-\infty < a < b < \infty, u \in L^2(a,b)$. Dann

$$u \in H^1(a,b) \iff \text{es existiert } C > 0 \text{ mit } |\int_a^b u\varphi'| \le C \|\varphi\|_{L^2}$$

für alle $\varphi \in C_c^{\infty}(a, b)$.

Beweis. \Rightarrow :

⇐: Betrachten Abbildung

$$f \colon C_c^{\infty}(I) \ni \varphi \mapsto -\int_a^b u\varphi' dx$$

Dann ist f Linearform, definiert auf dichtem Teilraum von L^2

 \implies es existiert stetige Fortsetzung auf $L^2(a,b)$.

 $\stackrel{\text{R.F.}}{\Longrightarrow} \text{ es existiert genau ein } g \in L^2(a,b) \text{ mit } f(\varphi) = (g,\varphi), \varphi \in L^2.$

Insb. $-\int u\varphi' = \int g\varphi$ für alle $\varphi \in C_c^{\infty}(I)$.

$$\stackrel{\mathrm{Def.}}{\Longrightarrow} u \in H^1(a,b)$$

Definition 6.7

Seien $\infty < a < b < \infty$. Setze

$$H_0^1(a,b) := \overline{C_c^{\infty}(a,b)}_{\|\cdot\|_{H^1(a,b)}}$$

und versehe $H_0^1(a,b)$ mit der induzierten Topologie.

Bemerkung. Dann ist auch $H_0^1(a,b)$ ein Hilbertraum.

6.8 Satz

Sei $u \in H^1(a, b)$ mit $-\infty < a < b < \infty$. Dann

$$u \in H_0^1(a, b) \iff u(a) = u(b) = 0.$$

Beweis Übungsaufgabe.

6.9 Satz (Poincare)

Seien $-\infty < a < b < \infty$. Dann existiert C > 0 mit $\|u\|_{L^2(a,b)} \le C\|u'\|_{L^2(a,b)}$ für $u \in H^1_0(a,b)$.

Beweis. Sei $u \in H^1_0(a, b)$, a < x < b. $u(x) \stackrel{6.8}{=} u(x) - u(a) \int_a 1 \cdot u'(x) ds$

$$u(x) \stackrel{6.8}{=} u(x) - u(a) \int_{-1}^{6.3^x} 1 \cdot u'(x) ds$$

$$|u(x)|^{2} \stackrel{\text{C.S.}}{\leq} \left(\int_{a}^{x} 1 ds \right) \left(\int_{a}^{x} |u'(s)|^{2} ds \right) \leq (b-a) \|u'\|_{2}^{2}$$

$$\implies \|u\|_{2}^{2} \leq (b-a)^{2} \|u'\|_{L^{2}}^{2} \implies \|u\|_{2} \leq (b-a) \|u'\|_{2}$$

6.10 Definition

Sei $m \geq 2$. Setze $H^m(I) := \{u \in H^{m-1}(I) \colon u' \in H^{m-1}(I)\}$

Bemerkung. $u \in H^m(I) \iff \text{es gibt } g_1, \dots, g_m \in L^2(I) \text{ mit}$

$$\int_{I} uD^{j}\varphi = (-1)^{j} \int_{I} g_{j}\varphi, \quad \varphi \in C_{c}^{\infty}(I), j = 1, \dots, m$$

Notation. $D^2u := u'' := (u')', D^mu$ analog.

Bemerkung. Versehen mit Skalarprodukt

$$(u,v)_{H^m} := (u,v)_{L^2} + \sum_{j=1}^m (D^j u, D^j v)_{L^2}$$

und zugehöriger Norm

$$||u||_{H^m} := \left(\sum_{j \le m} ||D^j u||_{L^2}^2\right)^{\frac{1}{2}}$$

ist $H^m(I)$ ein Hilbertraum.

6.11 Lemma (Fundamentallemma der Variationsrechnung)

Sei $\Omega \subseteq \mathbb{R}^n$ offen, $f \in L^1_{loc}(\Omega)$. Falls

$$\int_{\Omega} f\varphi = 0 \quad \text{für } \varphi \in C_c^{\infty}(\Omega),$$

dann: f = 0 fast überall in Ω .

Beweis findet sich in Alt Funktionalanalysis.

Zurück zum Dirichletproblem

6.12 Definition

Eine schwache Lösung des (DP) ist eine Funktion $u \in H^1_0(a,b)$ mit

$$\int u'v' = \int fv, \quad v \in H_0^1(a,b).$$

Schritt A: klassische Lösung \implies schwache Lösung

Sei
$$v \in H_0^1(a,b), f \in L^2(a,b)$$
. Dann
$$\stackrel{6.5}{\Longrightarrow} - \int u''v = -u'v|_a^b + \int u'v' = \int fv$$

Schritt B: Existenz und Eindeutigkeit einer schwachen Lösung

Z.z.: Für $f \in L^2(a,b)$ existiert genau ein $u \in H^1_0(a,b)$ mit

$$\int u'v' = \int fv \tag{*}$$

Beweis. Definiere $a(u,v) := \int_I u'v', u,v \in H_0^1(a,b).$

Dann ist a stetige und koerzive Bilinearform auf H_0^1 , denn

$$|a(u,v)|^2 \stackrel{\text{H\"older}}{\leq} (\int (u')^2)(\int (v')^2) \leq ||u||_{H^1}^2 ||v||_{H^1}^2 \implies a \text{ stetig.}$$

a koerziv, denn

$$\begin{array}{l} a(u,u) = \int_a^b |u'|^2 = \frac{1}{2} \int |u'|^2 + \frac{1}{2} \int |u'|^2 \\ \geq \frac{1}{2} \int |u'|^2 + \frac{1}{2c} \int_a^b |u|^2 \geq \tilde{C} \|u\|_{H^1}^2, u \in H^1_0(I). \end{array}$$

Also ist a stetige, koerzive Bilinearform.

Betrachte rechte Seite von (*): Linearform $\varphi \colon v \mapsto \int fv$.

 $\text{Lax-Milgram} \implies \text{es existiert genau ein } u \in H^1_0(a,b) \text{ mit } a(u,v) = \varphi(v) \text{ für alle } v \in H^1_0(a,b).$

D.h.:
$$\int_a^b u'v' = \int fv, v \in H_0^1(a,b)$$
, also schwache Lösung des (DP).

Schritt C: Regularität

Zeige: $f \in L^1(a,b), u \in H^1_0(a,b)$ schwache Lösung $\implies u \in H^2(a,b)$.

Denn: $\int u'v = \int fv, v \in C_c^{\infty}(a, b)$.

$$\overset{\text{Satz 6.6} \, + \, \text{H\"{o}lder}}{\Longrightarrow} \, u' \in H^1(a,b) \implies u \in H^2(a,b)$$

Weiter $f \in L^2(a,b) \cap C[a,b] \implies u \in C^2[a,b]$, denn:

$$u' \in H^1 \implies \int_a^b u'v' = u'v|_a^b - \int_a^b u''v = \int_a^b fv$$

$$\implies \int_a^b (f + u'')v = 0, v \in C_c^{\infty}(a, b)$$

Fundamentallemma -u'' = f fast überall und da f stetig folgt $u \in C^2([a, b])$.

Schritt D: Rückkehr zur klassischen Lösung

Sei $u \in C^2(\overline{I})$ schwache Lösung des (DP) $\implies u$ klassische Lösung von (DP)

Beweis. Da $u \in H_0^1(a, b)$ gilt nach Satz 6.8: u(a) = u(b) = 0 und

$$\int u'v' = \int fv, v \in C_c^{\infty}(a,b) \stackrel{\text{part. Int}}{\Longrightarrow} \int (-u'' - f)v = 0, v \in C_c^{\infty}(a,b)$$

Fundamentallemma -u'' - f = 0 fast überall.

$$u \in C^2[a,b] \implies -u'' = f$$

Zusammenfassend gilt:

6.13 Theorem

- a) für alle $f \in L^2(a,b)$ existiert genau eine schwache Lösung des (DP)
- b) ist f zusätzlich stetig, so existiert genau eine klassische Lösung des (DP)

7 Sovolevräume und Randwertprobleme II

Sei $\Omega \subseteq \mathbb{R}^n$ offen.

7.1 Definition

Der Sobolevraum $H^1(\Omega)$ ist definiert durch

$$H^1(\Omega) := \{ u \in L^2(\Omega) \colon \text{ es ex. } g_1, \dots, g_n \in L^2(\Omega), \text{ sodass für } \varphi \in C_c^{\infty}(\Omega) \text{ und } 1 \leq i \leq n \text{ gilt: } \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} g_i(\Omega) \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx_i = -\int_{\Omega$$

Bemerkung. a) Das Fundamentallemma impliziert, dass die g_i eindeutig bestimmt sind.

b) Für
$$u \in H^1(\Omega)$$
 definiert man $\frac{\partial u}{\partial x_i} := g_i$ und $\nabla u := (\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}) = \operatorname{grad} u$.

Wir versehen $H^1(\Omega)$ mit dem Skalarprodukt

$$(u,v)_{H^1} := (u,v)_{L^2} + \sum_{i=1}^n \left(\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i}\right)_{L^2}$$

und der zugehörigen Norm

$$||u||_{H^1(\Omega)} = \left(||u||_{L^2}^2 + \sum_{i=1}^n ||\frac{\partial u}{\partial x_i}||_{L^2}^2\right)^{\frac{1}{2}}.$$

7.2 Satz

Der Raum $H^1(\Omega)$ ist ein Hilbertraum.

Beweis Übung.

Sei $m \geq 2$. Der Raum $H^m(\Omega)$ sei definiert durch

Mit Skalalprodukt

$$(u,v)_{H^m(\Omega)} := \sum_{|\alpha| \le m} (D^{\alpha}u, D^{\alpha}v)_{L^2}$$

ist $H^m(\Omega)$ ein Hilbertraum.

7.3 Definition

Wir definieren den Raum $H_0^1(\Omega)$ durch

$$H_0^1(\Omega) := \overline{C_c^{\infty}}_{\|\cdot\|_{H^1(\Omega)}}.$$

Bemerkung.a) Mit der von H^1 induzierten Norm ist $H^1_0(\Omega)$ ein Hilbertraum.

b) Im Allgemeinen gilt $H_0^1(\Omega) \neq H^1(\Omega)$.

7.4 Dirichlet-Problem

Sei $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt. Finde $u \colon \overline{\Omega} \to \mathbb{R}$ mit

(DP)
$$\begin{cases} -Deltau &= f \text{ in } \Omega \\ u = 0 \text{ auf } \partial \Omega \end{cases}$$

wobei $\Delta u := \sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$ der Laplace-Operator angewand auf u sei. Die Bedingung $u|_{\partial\Omega} = 0$ heißt Dirichlet-Randbedingung.

Notation. Eine klassische Lösung von (DP) ist eine Funktion $u \in C^2(\overline{\Omega})$, die (DP) löst. Eine schwache Lösung von (DP) ist eine Funktion $u \in H^1_0(\Omega)$ mit

$$\int_{\Omega} \nabla u \nabla v = \int_{\Omega} f v \quad \text{ für } v \in H_0^1(\Omega).$$

Schritt A: klassische Lösung \implies schwache Lösung

7.5 Lemma

Sei $\Omega \subseteq \mathbb{R}^n$ mit glattem Rand, $u \in H^1(\Omega) \cap C(\overline{\mathbb{R}})$. Dann gilt:

$$u \in H_0^1(\Omega) \iff u = 0 \text{ auf } \partial\Omega$$

Beweis. Siehe Evans S.273.

Sei u klassische Lösung. Dann $u \in H^1(\Omega) \cap C(\overline{\Omega}) \stackrel{7.5}{\Longrightarrow} u \in H^1_0(\Omega)$.

Ferner: Für $v\subseteq C_c^\infty(\Omega)$ gilt nach Divergenz-Satz (z.B. Evans S.712):

$$0 = \int_{\partial\Omega} v \frac{\partial u}{\partial \nu} d\sigma = \int_{\Omega} \operatorname{div} (v \nabla u) = \int_{\Omega} \nabla v \nabla u + \int_{\Omega} v \Delta u$$

$$\implies \text{ für } v \in C_c^{\infty}(\Omega) \colon \int_{\Omega} \nabla v \nabla u = \int_{\Omega} fv$$

 $\stackrel{\text{Dichtheit}}{\Longrightarrow} u$ schwache Lösung von (DP).

Schritt B: Dirichletsches Prinzip

Für $f\in L^2(\Omega)$ existziert genau ein $u\in H^1_0(\Omega):u$ schwache Lösung von (DP). zum Beweis:

7.6 Satz (Poincaresche Ungleichung)

Sei $\Omega\subseteq\mathbb{R}^n$ offen, beschränkt. Dann existiert $C=C(\Omega)>0$, sodass für $u\in H^1_0(\Omega)$ gilt

$$||u||_{L^2(\Omega)} \le C||\nabla u||_{L^2}.$$

Beweis. Siehe Übung 6

Betrachte auf H_0^1 die Bilinearform $a(u,v) := \int_{\Omega} \nabla u \nabla v$ und die Linearform $\varphi(v) := \int_{\Omega} fv$.

Dann: a, φ stetig: klar (Hölder)

a koerzitiv:

$$\begin{split} a(u,u) &= \int_{\Omega} |\nabla u|^2 = \frac{1}{2} \int |\nabla u|^2 + \frac{1}{2} \int |\nabla u|^2 \\ & \overset{\text{Poincare}}{\geq} \frac{1}{2} \int |\nabla u|^2 + \frac{1}{2C^2} |u|^2 \geq \text{const} \cdot \|u\|_{H^1}^2 \quad \text{ für alle } u \in H^1_0 \end{split}$$

Mit Lax-Milgram folgt: Es existiert genau ein $u \in H^1_0(\Omega)$ mit $a(u,v) = \varphi(v)$ für alle $v \in H^1_0(\Omega)$.

Schritt C: Regularität der schwachen Lösung

ohne Beweis: Sei $f \in L^2$ und u schwache Lösung von (DP), $\partial \Omega$ glatt. Dann

- a) Sei $f \in H^m(\Omega)$. Dann $u \in H^{m+2}$ und $||u||_{H^{m+2}} \le c||f||_{H^m}$.
- b) Sei $m>\frac{n}{2}$. Dann $H^{m+2}(\Omega)\hookrightarrow L^2(\Omega)$ (Sobolevsche Einbettungssätze).

Schritt D: Rückkehr zur klassischen Lösung

Sei $f \in H^m$ mit $m > \frac{n}{2} \stackrel{\text{Bew. (*)}}{\Longrightarrow}$ schwache Lösung $u \in H_0^1(\Omega) \cap C^2(\overline{\Omega}) \stackrel{\text{Lemma 7.5}}{\Longrightarrow} u = 0$ auf $\partial\Omega$.

Weiter: für $v \in C_c^{\infty}(\Omega)$: $\int -\Delta u = \int fv$.

 $\stackrel{\text{Fundamental lemma}}{\Longrightarrow} -\Delta u = f \text{ fast "uberall" in } \Omega$

 $\stackrel{u \in C^2}{\Longrightarrow} -\Delta u = f$, d.h. u ist klassische Lösung von (DP).

Beweis von (*):

Lemma (Lemma von Sobolev). Sei $\Omega \subseteq \mathbb{R}^n$ offen, $m > \frac{n}{2} + k$, $u \in H^m(\Omega)$, dann existiert $g \in C^k(\Omega)$ mit g = u fast überall. Mit anderen Worten: $H^m(\Omega) \hookrightarrow C^k(\Omega)$, falls $m > \frac{n}{2} + k$.

Beweis. Für $\Omega = \mathbb{R}^n$ via Fourier-Trafo:

Bekannt: $g \in L^1(\mathbb{R}^n), x^{\alpha}g \in L^1(\mathbb{R}^n)$ für $|\alpha| \leq k$, dann $\hat{g} \in C^k(\mathbb{R}^n)$ (**).

Idee: Zeige $f \in H^m(\mathbb{R}^n) \stackrel{!}{\Longrightarrow} \xi^{\alpha} \hat{f} \in L^1(\mathbb{R}^n) (\Longrightarrow f \in C^k(\mathbb{R}^n)).$

$$\begin{split} \int_{\mathbb{R}^n} |\xi^{\alpha} \hat{f}(\xi)| d\xi &\leq \int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{|\alpha|}{2}} |\hat{f}(\xi)| d\xi \\ &= \int_{\mathbb{R}^n} (1 + |\xi|^2)^{\frac{m}{2}} |\hat{f}(\xi)| \frac{1}{(1 + |\xi|^2)^{\frac{m-|\alpha|}{2}}} d\xi \\ &= \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^m |\hat{f}(\xi)|^2 d\xi \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} \frac{1}{(1 + |\xi|^2)^{m-|\alpha|}} d\xi \right)^{\frac{1}{2}} \end{split}$$

Also gilt $\xi^{\alpha} \hat{f} \in L^1(\mathbb{R}^n) \stackrel{(**)}{\Longrightarrow} f \in C^k(\mathbb{R}^n)$.

Für $\Omega \subseteq \mathbb{R}^n$ setze f glatt auf \mathbb{R}^n fort.

7.7 Störung niedriger Ordnung

Sei $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt. Finde $u \colon \overline{\Omega} \to \mathbb{R}$ mit

(P)
$$\begin{cases} -\Delta u + \lambda u = f \text{ in } \Omega \\ u = 0 \text{ auf } \partial \Omega \end{cases}$$

für ein $\lambda \in \mathbb{R}$.

Eine schwache Lösung von (P) ist $u \in H_0^1(\Omega)$ mit

$$\int_{\Omega} \nabla u \nabla v + \int_{\Omega} \lambda u v = \int_{\Omega} f v \text{ für alle } v \in H_0^1(\Omega).$$

Wie erhält man eine schwache Lösung?

$$a(u,v):=\int_{\Omega}\nabla u\nabla v+\int_{\Omega}\lambda uv,\quad \varphi(v)=\int_{\Omega}fv,\quad u,v\in H^1_0, f\in L^2.$$

 a, φ stetig auf $H_0^1(\Omega)$: nachrachnen \checkmark a koerziv:

$$\begin{split} a(u,u) &= \int_{\Omega} |\nabla u|^2 + \lambda \int_{\Omega} |u|^2 \\ &= \|nablau\|_2^2 + \lambda \|u\|_2^2 + \varepsilon \left(\int u^2 + \int |\nabla u|^2 - \int u^2 - \int |\nabla u|^2 \right) \quad (0 < \varepsilon < 1) \\ &= \varepsilon \|u\|_{H^n}^2 + (1 - \varepsilon) \|\nabla u\|_2^2 + (\lambda - \varepsilon) \|u\|_2^2 \\ &\stackrel{\text{Poincare}}{\geq} \varepsilon \|u\|_{H^1}^2 + \frac{1 - \varepsilon}{c^2} \|u\|_2^2 + (\lambda - \varepsilon) \|u\|_2^2 \\ &= \varepsilon \|u\|_{H^1}^2 + \left[\frac{1}{c^2} + \lambda - \varepsilon (1 + \frac{1}{c^2}) \right] \|u\|_2^2. \end{split}$$

d.h., falls $\frac{1}{c^2} > -\lambda$ (betrachte den Vorfaktor vor der Norm), so ist für hinreichend kleine ε die Bilinearform koerziv. $\frac{1}{c^2} > -\lambda \implies \frac{1}{c^2} + \lambda > 0$

Wir haben gezeigt:

7.8 Lemma

Falls $\frac{1}{c^2} > -\lambda$, so ist a koerzive, stetige Bilinearform auf $H_0^1(\Omega)$.

Mit Lax-Milgram: $\frac{1}{c^2} > -\lambda \implies$ es existiert genau ein $u \in H^1_0(\Omega)$, schwache Lösung von (P). Fixiere nun $\lambda_0 > -\frac{1}{c^2}$ und $a_{\lambda_0} := \int_{\Omega} \nabla u \nabla v + \lambda_0 \int uv$. Dan gibt es für jedes $f \in L^2$ ($\implies \varphi$ stetige Linearform) eine eindeutige schwache Lösung $u^* \in H^1_0(\Omega)$ von (P), d.h.

$$a_{\lambda_0}(u^*, v) = (f, v)_{L^2}$$

Die Abbildung $f \mapsto u^*$ induziert einen Operator $R_{\lambda_0} \colon L^2(\Omega) \to H^1_0(\Omega)$ mit folgenden Eigenschaften:

i) für
$$f\in L^2(\Omega), v\in H^1_0(\Omega)$$
 gilt $a_{\lambda_0}(R_{\lambda_0}f,v)=(f,v)_{L^2}$

ii) $R_{\lambda_0} \colon L^2(\Omega) \to H^1_0(\Omega)$ ist linear und stetig.

iii) $R_{\lambda_0} \colon L^2(\Omega) \to L^2(\Omega)$ ist kompakt.

Beweis. i) nach Definition

ii) Linearität: Seien $\alpha_1, \alpha_2 \in \mathbb{C}, f_1, f_2 \in L^2, v \in H_0^1$. Dann

$$a_{\lambda_0}(R_{\lambda_0}(\alpha_1 f_1 + \alpha_2 f_2) - \alpha_1 R_{\lambda_0}(f_1) - \alpha_2 R_{\lambda_0}(f_2), v)$$

$$\stackrel{\text{i)}}{=} (\alpha_1 f_1 + \alpha_2 f_2, v) - \alpha_1(f_1, v) - \alpha_2(f_2, v) = 0$$

Stetigkeit: z.z: $||R_{\lambda_0}f||_{H_0^1} \leq \text{const.} \cdot ||f||_{L^2}$

 $a_{\lambda_0} \text{ koerziv, d.h. es ex } \varepsilon_0 > 0 \text{: } \alpha_{\lambda_0}(w,w) \geq \varepsilon_0 \|w\|_{H^1_0}^2 \text{ für } w \in H^1_0.$

$$\implies \|R_{\lambda_0} f\|_{H_0^1}^2 \leq \frac{1}{\varepsilon_0} a_{\lambda_0} (R_{\lambda_0} f, R_{\lambda_0} f) \stackrel{\mathrm{i}}{=} \frac{1}{\varepsilon_0} (f, R_{\lambda_0} f)_{L^2} \stackrel{\mathrm{C.S.}}{\leq} \frac{1}{\varepsilon_0} \|f\|_{L^2} \|R_{\lambda_0} f\|_{L^2} \leq \frac{1}{\varepsilon} \|f\|_{L^2} \|R_{\lambda_0} f\|_{H_0^1}$$

$$\implies \text{fin } f \in L^2, \|P_{\lambda_0} f\|_{L^2} \leq \frac{1}{\varepsilon} \|f\|_{L^2} \|R_{\lambda_0} f\|_{H_0^1}$$

 $\implies \text{ für } f \in L^2 \colon \|R_{\lambda_0} f\|_{H^1_0} \leq \tfrac{1}{\varepsilon} \|f\|_{L^2}$

 $\implies R_{\lambda_0}$ stetig.

(iii) Es gilt:

$$L^2(\Omega) \overset{R_{\lambda_0}}{\underset{\text{stetig}}{\longrightarrow}} H^1_0(\Omega) \overset{\text{kompakt}}{\underset{7.10}{\longleftrightarrow}} L^2(\Omega)$$

7.9 Satz (Rellich)

Sei $\Omega \subseteq \mathbb{R}^n$ offen, beschränkt. Dann ist $H_0^1(\Omega) \hookrightarrow L^2(\Omega)$ kompakt.

Beweis: Literatur.

8 Der Raum der Testfunktionen $D(\Omega)$ und der Raum der Distributionen $D'(\Omega)$

In diesem Abschnitt sei $\Omega \subseteq \mathbb{R}^n$ offen. Wir setzen $D(\Omega) := C_c^{\infty}(\Omega)$.

Beispiel.

$$\varphi(x) := \begin{cases} e^{-\frac{1}{1-|x|^2}} & : |x| < 1\\ 0 & : sonst \end{cases}$$

Dann gilt $\varphi \in D(\mathbb{R}^n)$.

8.1 Definition

Seien $(\varphi_j) \subseteq D(\mathbb{R}^n)$, $\varphi \in D(\Omega)$. Wir sagen $\varphi \to \varphi$ in $D(\Omega)$, fall

i) es existiert $K \subseteq \Omega$ kompakt mit supp $\varphi_j \subseteq K$ für alle $j \in \mathbb{N}$.

ii) $\lim_{j\to\infty} \|D^{\alpha}\varphi_j - D^{\alpha}\varphi\|_{\infty} = 0$ für alle Multiindizes α .

Bemerkung. $D(\Omega)$ mit diesem Konvergenzbegriff <u>nicht</u> metrisierbar.

8.2 Satz

Seien $\varphi_j \to \varphi$, $\psi_j \to \psi$ in $D(\Omega)$. Dann:

i) für $\beta_1, \beta_2 \in \mathbb{R}$ gilt:

$$\beta_1 \varphi_j + \beta_2 \psi_j \to \beta_1 \varphi + \beta_2 \psi.$$

ii) $D^{\alpha}\varphi \to D^{\alpha}\varphi$ in $D(\Omega)$ für alle Multiindices α , mit anderen Worten: D^{α} sit stetige Abbildung auf $D(\Omega)$

8.3 Defintion

Wir setzen $D'(\Omega) := \{T : D(\Omega) \to \mathbb{C} \text{ stetig, linear}\}$. Die Elemente von $D'(\Omega)$ heißen <u>Distributionen</u>.

Notation. $\langle \varphi, T \rangle := T(\varphi) \text{ für } \varphi \in D(\Omega).$

8.4 Satz

Sei $T: D(\Omega) \to \mathbb{C}$ linear. Dann sind äquivalent:

- i) $T \in D'(\Omega)$, d.h. T stetig.
- ii) für $K \subseteq \Omega$ kompakt gibt es $C \ge 0$, N = N(K,T), sodass für $\varphi \in D(\Omega)$ mit supp $\varphi \subseteq K$ gilt:

$$|T(\varphi)| \le C \sum_{|\alpha| \le N} ||D^{\alpha} \varphi||_{\infty}$$
 (*)

Beweis. ii) \Rightarrow i) \checkmark

i) \Rightarrow ii): Ang. Beh. falsch. Dann gibt es $K \subseteq \mathbb{R}^n$ kompakt, sodass für alle $N \in \mathbb{N}$ ein $\varphi_N \in D(\Omega)$ ex. mit supp $\varphi_N \subseteq K$ und $|T\varphi_N| > N \sum_{|\alpha| \le N} \|D^\alpha \varphi_N\|_{\infty}$. Sei $\phi_j := \frac{\varphi_j}{|T\varphi_j|}$. Dann $\phi_j \to 0$ in $D(\Omega)$ aber $|T\phi_j| = 1$. Widerspruch.

Denn für alle Multiindices α gilt $\|D^\alpha \phi_j\|_{\infty} < \frac{1}{j}$, falls $\|D^\alpha (\varphi_j)\|_{\infty} \neq 0$.

8.5 Definition

Falls (*) gilt, so heißt \underline{T} von Ordnung N auf K. Falls T für alle kompakten $K \subseteq \Omega$ von Ordnung N auf K ist, so heißt \underline{T} von Ordnung N auf K. Falls K von Ordnung K0 ist, so heißt K1 von Ordnung auf K2.

8.6 Die Diracsche Distribution δ_a

Sei $a \in \Omega$. Wir setzen $\langle \varphi, \delta_y \rangle := \varphi(a)$ für $\varphi inD(\Omega)$. dann ist $\delta_a \in D'(\Omega)$, denn: Sei $\varphi_j \to \varphi inD(\Omega)$, dann $|langle\varphi_j, \delta_a\rangle| = |\varphi_j(a) - \varphi(a)| \le ||\varphi_j - \varphi||_{\infty} \stackrel{\alpha = \emptyset}{\to} 0$.

Notation. $\delta := \delta_0$

8.7 Der Cauchysche Hauptwert

Sei $\Omega = \mathbb{R}$. Dann $f(x) = \frac{1}{x} \in L^1_{loc}(\mathbb{R} \setminus \{0\}, \text{ aber } \int_{\mathbb{R}} \frac{\varphi(x)}{x} dx$ existiert nicht für alle $\varphi \in D(\mathbb{R})$. Man setze:

$$\langle \varphi, \operatorname{pv} \frac{1}{x} \rangle := \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} dx, \quad \varphi \in D(\mathbb{R}).$$

Dann ist pv $\frac{1}{x} \in D'(\mathbb{R})$, denn:

Sei $\varphi_j \to 0$ in $D(\mathbb{R})$. Dann ex. a > 0, sodass für $j \in \mathbb{N}$ gilt : supp $\varphi_j \in [-a, a]$. Nun:

$$\lim_{\varepsilon \to 0} \int_{|x| \ge \varepsilon} \frac{\varphi_j(x)}{x} dx = \lim_{\varepsilon \to 0} \left[\varphi_j(0) \underbrace{\int_{\varepsilon \le |x| \le a} \frac{1}{x} dx}_{=0 \text{ Symmetrie}} + \int_{\varepsilon \le |x| \le a} \frac{\varphi_j(x) - \varphi_j(0)}{x} dx \right]$$
$$= \int_{-a}^{a} \frac{\varphi_j(x) - \varphi_j(0)}{x} dx,$$

denn $\left|\frac{\varphi_j(x)-\varphi_j(0)}{x}\right| \le \|\varphi_j'\|_{C([-a,a])}$.

Da pv $\frac{1}{x}$: $D(\mathbb{R}) \to \mathbb{C}$ linear folgt aus

$$|\lim_{\varepsilon} \to 0 \int_{|x| \ge \varepsilon} \frac{\varphi_j(x)}{x} dx |\mathcal{M} \widetilde{\mathbf{W}} \mathbf{S} 2a \|\varphi_j'\|_{\infty} \to 0,$$

dass pv $\frac{1}{x}$ stetig und somit Distribution ist.

8.8 Weiteres Beispiel

$$\langle \varphi, \frac{1}{x \pm i0} \rangle := \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \frac{1}{x \pm i\varepsilon} \varphi(x) dx, \quad \varphi \in D(\mathbb{R})$$

Dann $\frac{1}{x \pm i0} \in D'(\mathbb{R})$ und $\frac{1}{x \pm i0} = \text{pv } \frac{1}{x} \pm i\pi \delta$.

Beweis siehe Übung 9.

8.9 Satz

Sei $f \in L^1_{loc}(\Omega)$.

a) Dann def. die Abbildung $T_f : D(\Omega) \to \mathbb{C}$ gegeben durch:

$$\langle \varphi, T_f \rangle := \int_{\Omega} f \varphi dx$$

eine Distribution T_f in $D'(\Omega)$.

b) $T_f = 0$ in $D'(\Omega) \iff f = 0$ f.ü.

Beweis. a) Sei $\varphi_j \to \varphi$ in $D(\Omega)$. Dann ex. $K \subseteq \Omega$ kompakt, sodass supp $\varphi_j \subseteq K$ für $j \in \mathbb{N}$, supp $\varphi \subseteq K$ und $\|\varphi_j - \varphi\|_{\infty} \to 0$.

$$\implies |\langle \varphi_j - \varphi, T_f \rangle| = |\int_{\Omega} (\varphi_j - \varphi)f| \le ||\varphi_j - \varphi|| \int_K f dx \to 0.$$

b) Fundamentallemma.

8.10 Lemma

Sei $f \in L^1_{loc}(\Omega)$ mit $\int_{\psi} f = 0$ für alle $\psi \in C_c(\Omega)$. Dann f = 0 f.ü.

8.11 Definition

Seien $T_j, T \in D'(\Omega)$ für $j \in \mathbb{N}$. dann $T_j \to T$ in $D'(\Omega)$, falls $T_j(\varphi) \to T(\varphi)$ für $\varphi \in D(\Omega)$. Der Konvergenzbegriff auf $D'(\Omega)$ ist also der der schwach-*-Konvergenz.

8.12 Beispiele

a) Sei $(f_j) \subseteq C(\mathbb{R}^n)$ mit $f_j \to f$ gleichmäßig auf allen $K \subseteq \mathbb{R}^n$ kompakt. Dann:

$$\lim_{j} \int_{\mathbb{R}^{n}} f_{j}(x)\varphi(x)dx = \int_{\mathbb{R}^{n}} f(x)\varphi(x)dx$$

für alle $\varphi \in D(\mathbb{R}^n)$, d.h. $T_{f_j} \to T_f$ in $D'(\mathbb{R}^n)$.

b) Sei $f \in L^1(\mathbb{R})$ mit $||f||_{L^1} = 1$ und $f \ge 0$. Für $\varepsilon > 0$ setze $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} f(\frac{x}{\varepsilon})$. Dann

$$T_{f_{\varepsilon}} \to \delta$$

in $D(\mathbb{R}^n)$.

c) expliziges Beispile: Gauß Kern

$$K(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{|x|^2}{2}}$$

Dann
$$||K||_{L^1} = 1$$
 und

$$\frac{1}{\varepsilon^n} \frac{1}{(2\pi)^{fracn2}} e^{-\frac{|x|^2}{2\varepsilon}} \to \delta$$

d)

$$\langle \varphi, T_j \rangle := \int_{|x| > \frac{1}{i}} \frac{\varphi(x)}{x} dx.$$

Dann $T_j \to \operatorname{pv} \frac{1}{x}$ in $D'(\Omega)$. (Trick wie in 8.7 benutzen)

8.13 Elementare Operationen mit Distributionen: Multiplikation mit einer Funktion

Sei $a \in C^{\infty}(\Omega), T \in D'(\Omega)$. Man setzt:

$$\langle aT, \varphi \rangle := \langle T, a\varphi \rangle \quad \text{für } \varphi \in D(\Omega).$$

Beispiel. i) $(a\delta) = a(0)\delta$ für alle $a \in C^{\infty}(\mathbb{R}^n)$, denn:

$$\langle a\delta, \varphi \rangle = \langle \delta, a\varphi \rangle = a(0)\varphi(0) = a(0)\langle \delta, \varphi \rangle.$$

 $ii) x \text{ pv } \frac{1}{x} = 1, denn$

$$\langle x \operatorname{pv} \frac{1}{x}, \varphi \rangle = \langle \operatorname{pv} \frac{1}{x}, x \varphi \rangle = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{x \varphi(x)}{x} dx = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \varphi(x) dx = \int_{\mathbb{R}} \varphi(x) dx = \langle 1, \varphi \rangle,$$

für alle $\varphi \in D(\mathbb{R})$.

8.14 Ableitung einer Distribution

Sei $f \in C^1(\mathbb{R}^n) \implies T_f \in D'(\mathbb{R}^n)$. Also für $\varphi \in D(\mathbb{R}^n)$:

$$\langle T_{D_j f}, \varphi \rangle \stackrel{\text{Def}}{=} \int_{\mathbb{R}^n} (D_j f) \varphi dx = - \int_{\mathbb{R}^n} f D_j \varphi ds = - \langle T_f, D_j \varphi \rangle$$

Allgemein: $f \in C^k(\mathbb{R}^n), |\alpha| \leq k$. Dann

$$\langle T_{D^{\alpha}f}, \varphi \rangle = \int_{\mathbb{R}^n} (D^{\alpha}f)\varphi dx = (-1)^{|\alpha|} \int_{\mathbb{R}^n} fD^{\alpha}\varphi dx = (-1)^{|\alpha|} \langle T_f, D^{\alpha}\varphi \rangle.$$

Daher ist folgende Definition natürlich:

8.15 Definition

Sei $T \in D'(\Omega)$. Dann ist $D\alpha T$ definiert durch

$$\langle D^{\alpha}T, \varphi \rangle := (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle \quad , \varphi \in D(\Omega), \alpha \text{ Multiindex.}$$

8.16 Bemerkung

- a) $T \in D'(\Omega)$, dann $D^{\alpha}T \in D'(\Omega)$ für jedes α , denn:
 - $D^{\alpha}T$ linear \checkmark
 - $D^{\alpha}T$ stetig. Z.z.: $\varphi_j \to \varphi$ in $D(\Omega) \implies D^{\alpha}\varphi_j \to D^{\alpha}\varphi$ in $D(\Omega)$. T stetig $\implies (-1)^{|\alpha|}\langle T, D^{\alpha}\varphi_j \rangle \to (-1)^{|\alpha|}\langle T, D^{\alpha}\varphi \rangle$ $\implies \langle D^{\alpha}T, \varphi_j \rangle \to \langle D^{\alpha}T, \varphi \rangle$
- b) Leibniz-Regel/Produktregel:

Seien $a \in C^{\infty}(\Omega), T \in D'(\Omega)$. Dann $aT \in D'(\Omega)$ (8.13) und

$$D^{\alpha}(aT) = \sum_{\beta \subseteq \alpha} {\alpha \choose \beta} D^{\beta} a D^{\alpha - \beta} T$$

Beweis Übungsaufgabe.

c) Sei $f \in C^k(\Omega)$ und $|\alpha| \leq k$. Dann stimmt $D^{\alpha}f$ im distributionellen Sinne mit der klassischen Ableintung $f^{(\alpha)}$ überein, denn

$$\langle T_{D^{\alpha}f}, \varphi \rangle = \int_{\mathbb{R}^n} (D^{\alpha}f)\varphi dx = \int_{\mathbb{R}^n} f^{(\alpha)}\varphi = \langle T_{f(\alpha)}, \varphi \rangle.$$

8.17 Beispiele

a) Die Heavyside-Funktion ist gegeben durch

$$H(x) = \begin{cases} 1, x > 0 \\ 0, x \le 0 \end{cases}.$$

Dann $H \in D'(\mathbb{R})$

$$\implies \langle H', \varphi \rangle \stackrel{\mathrm{Def}}{=} - \langle H, \varphi' \rangle = - \int_0^\infty \varphi'(x) dx = \varphi(0) = \langle \delta, \varphi \rangle,$$

für alle $\varphi \in D(\Omega) \implies H' = \delta$

b)
$$\langle D^{\alpha} \delta, \varphi \rangle = (-1)^{|\alpha|} \langle \delta, D^{\alpha} \varphi \rangle = (-1)^{|\alpha|} D^{\alpha} \varphi(0)$$

c) $D(\ln(|x|)) = \operatorname{pv}(\frac{1}{x})$, denn:

$$\begin{split} \langle D(\ln|x|), \varphi \rangle &= -\langle \ln|x|, D\varphi \rangle = -\int_{\mathbb{R}} \ln|x| \varphi'(x) dx \\ &= -\lim_{\varepsilon \to 0} \left[\varphi(-\varepsilon) \ln(\varepsilon) - \int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx - \ln(\varepsilon) \varphi(\varepsilon) - \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right] \\ &= \lim_{\varepsilon \to 0} \left[-\underbrace{(\varphi(\varepsilon) - \varphi(-\varepsilon)) \ln(\varepsilon)}_{\to 0} + \int_{\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right] \\ &= \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} dx = \langle \operatorname{pv} \frac{1}{x}, \varphi \rangle, \quad \varphi \in D(\mathbb{R}). \end{split}$$

Der vorletzte Schritt folgt aus Mittelwertsatz und l'Hospital, denn

$$\frac{2\varepsilon(\varphi(\varepsilon)-\varphi(-\varepsilon))}{2\varepsilon}\ln(\varepsilon)\leq 2\sup_{x\in[-\varepsilon,\varepsilon]}|\varphi'(x)|\varepsilon\ln(\varepsilon)\to 0$$

8.18 Der adjungierte Operator

Sei $A := \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ ein Differentialoperator mit konstanten Koeffizienten $a_{\alpha} \in \mathbb{C}$. Sei $T \in D'(\Omega)$. Dann:

$$\langle AT, \varphi \rangle = \langle \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha} T, \varphi \rangle \stackrel{8.10, 8.13}{=} \sum_{|\alpha| \le m} (-1)^{|\alpha|} a_{\alpha} \langle T, D^{\alpha} \varphi \rangle$$
$$= \langle T, \sum_{|\alpha| \le m} (-1)^{|\alpha|} a_{\alpha} D^{\alpha} \varphi \rangle = \langle T, A^* \varphi \rangle$$

mit $A^* := \sum_{|\alpha| \leq m} (-1)^{|\alpha|} a_{\alpha} D^{\alpha}$ Adjungierte von A. Also $\langle AT, \varphi \rangle = \langle T, A^* \varphi \rangle$ für $\varphi \in D(\Omega)$.

Beispiel. Δ . Dann $\Delta * = \Delta$.

8.19 Translation

Für $a \in \mathbb{R}^n, T \in D'(\mathbb{R}^n)$ sei τ_a gegeben durch $\tau_a \varphi(x) := \varphi(x-a), \varphi \in D(\mathbb{R}^n)$. Definiere daher die <u>Translation von T</u> via

$$\langle \tau_a T, \varphi \rangle := \langle T, \tau_{-a} \varphi \rangle, \quad \varphi \in D(\mathbb{R}^n)$$

Zur Motivation betrachte $f \in L^1_{\text{loc}}$. Dann gilt mit der Substitution y = x - a:

$$\langle \tau_a T_f, \varphi \rangle = \int_{\mathbb{D}} \tau_a f(x) \varphi(x) dx = \int_{\mathbb{D}} f(y) \varphi(y+a) dy = \langle f, \tau_{-a} \varphi \rangle.$$

8.20 Spiegelung

Sei $\varphi \colon \mathbb{R}^n \to \mathbb{C}$ und $\tilde{\varphi}(x) := \varphi(-x)$. Setze dann

$$\langle \tilde{T}, \varphi \rangle := \langle T, \tilde{\varphi} \rangle \quad \varphi D(\mathbb{R}^n), T \in D'(\mathbb{R}^n)$$

Motivation analog zu Translation

Sei $f \in L^1_{loc}(\mathbb{R}^n), g \in D(\mathbb{R}^n)$. Setze h(y) := f(y)g(x-y). Falls $h \in L^1(\mathbb{R}^n)$, so ist

$$(f * g)(x) = \int_{\mathbb{R}^n} g(x - y)f(y)dy$$

wohldefiniert.

Betrachte $\varphi \mapsto \langle T_f, \varphi \rangle = \int f(y)\varphi(y)dy$. Dann $(f * g)(x) = T_f(\tilde{\tau}_x g)$ mit $\tilde{\tau}_x g(y) = g(x - y)$. Daher ist die folgende Definition natürlich:

8.21 Definition

Sei $T \in D'(\mathbb{R}^n), \varphi \in D(\mathbb{R}^n)$. Definiere $T * \varphi$ durch

$$(T * \varphi)(x) := \langle T, \tilde{\tau}_x \varphi \rangle, \quad x \in \mathbb{R}^n$$

8.22 Beispiel (Faltung mit δ)

$$(\delta * \varphi) \stackrel{\text{Def}}{=} \langle \delta, \tilde{\tau}_x \varphi \rangle = (\tilde{\tau}_x \varphi)(0) = \varphi(x),$$

das heißt $\delta * \varphi = \varphi$. Mit anderen Worten: δ ist Identität bezüglich *.

8.23 Satz

Seien $T \in D'(\mathbb{R}^n), \varphi \in D(\mathbb{R}^n)$. Dann $T * \varphi \in C^{\infty}(\mathbb{R}^n)$ und

$$D_j(T * \varphi) = (D_j T) * \varphi = T * (D_j \varphi).$$

Beweis. a) $T * \varphi$ stetig:

$$(\tilde{\tau}_{x'}\varphi)(y) - (\tilde{\tau}_x\varphi)(y) = \varphi(x'-y) - \varphi(x-y)$$

$$\implies \tilde{\tau}_{x'}\varphi \to \tilde{\tau}_x\varphi \text{ in } D(\mathbb{R}^n) \text{ für } x' \to x$$

$$\stackrel{\text{T Dist.}}{\Longrightarrow} \langle T, \tilde{\tau}_{x'}\varphi \rangle \to \langle T, \tilde{\tau}_x\varphi \rangle,$$

das heißt $\lim_{x'\to x} (T*\varphi)(x') = (T*\varphi)(x)$. Zur Stetigkeit der Abbildung $x\mapsto \tau_x\varphi$ vergleiche Roch S.83

b) Sei $h \in \mathbb{R} \setminus \{0\}$. Dann

$$\frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi)(y) = \frac{1}{h}(\varphi(x+he_i-y) - \varphi(x-y))$$

$$= \frac{1}{h}(\varphi(x-y+he_i) - \varphi(x-y)) \to (\frac{\partial}{\partial_i}\varphi)(x-y)$$

$$\implies \frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi) \to \tilde{\tau}_x(\frac{\partial}{\partial_i}\varphi) \text{ in } D(\mathbb{R})$$

$$\implies D_i(T * \varphi)(x) = \lim_{h \to 0} \frac{1}{h}(\langle T, \tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi \rangle)$$

$$= \lim_{h \to 0} \langle T, \frac{1}{h}(\tilde{\tau}_{x+he_i}\varphi - \tilde{\tau}_x\varphi) \rangle \stackrel{T \text{ stetig}}{=} \langle T, \tilde{\tau}_x \frac{\partial}{\partial_i}\varphi \rangle$$

$$\stackrel{\text{Def}}{=} (T * \frac{\partial}{\partial_i}\varphi)(x)$$

 $\implies (T * \varphi)$ besitzt pratielle Ableitung und

$$\frac{\partial}{\partial_i}(T * \varphi) = T * (\frac{\partial}{\partial_i}\varphi)$$

Iteriere

$$\frac{partial}{\partial x_i} \frac{\partial}{\partial x_i} (T * \varphi) = T * (\partial_j \partial_i \varphi) \implies T * \varphi \in C^{\infty}(\mathbb{R}^n)$$

und damit

$$\begin{split} \frac{\partial}{\partial_i} (T * \varphi)(x) &= (T * \frac{\partial}{\partial_i} \varphi)(x) \stackrel{\text{Def}}{=} \langle T, \tilde{\tau}_x (\frac{\partial}{\partial_i} \varphi) \rangle \\ &= \langle T, -\frac{\partial}{\partial_i} (\tilde{\tau}_x \varphi) \rangle \stackrel{\text{Def Abl}}{=} \langle \frac{\partial}{\partial_i} T, \tilde{\tau}_x \varphi \rangle = (\frac{\partial}{\partial_i} T * \varphi)(x) \end{split}$$

Zusammenfassend gilt

8.24 Theorem

Sei $A = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ ein Differentialoperator mit konstanten Koeffizienten $a_{\alpha} \in \mathbb{C}$. Sei $T \in D'(\mathbb{R}^n)$ mit $AT = \delta$ und sei $f \in D(\mathbb{R}^n)$. Dann ist die Funktion

$$u := T * f \in C^{\infty}(\mathbb{R}^n)$$

und eine Lösung der Gleichung Au = f im Sinne von Distributionen.

Beweis.

$$Au = A(T * f) \stackrel{8.23}{=} AT * f \stackrel{\text{Vor.}}{=} \delta * f \stackrel{8.22}{=} f \quad \Box$$

8.25 Definition

Sei $A = \sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$, $\alpha \in \mathbb{C}$ ein Differentialoperator. Dann heißt $T \in D'(\mathbb{R}^n)$ mit Eigenschaft $AT = \delta$ Fundamentallösung von A.

Beispiel. i) $A = \Delta$

- $ii) A = \partial_t \Delta$
- iii) $A = \partial_{tt} \Delta = \square$
- iv) $A = \partial_t i\Delta$

9 Fundamentallösungen

10 Distributionen mit kompaktem Träger und Faltung

10.1 Definition

Sei $T \in D'(\Omega)$, $\Omega \subseteq \mathbb{R}^n$ offen. Für $\omega \subseteq \Omega$ definitieren wir die Einschränktung T_ω von T auf $D(\omega)$ via

$$\langle T_{\omega}, \varphi \rangle := \langle T, \varphi \rangle$$
 für alle $\varphi \in D(\omega)$.

Setze

$$O_T := \{x \in \Omega : \text{ ex ex. offene Umg. } V \text{ von } x \text{ mit } T_V = 0\}$$

Alternativ lässt sich O_T auch als Vereinigung aller Umgebungen schreiben, auf denen die Einschränktung von T verschwindet. (Z.B. Rudin S.164)

Dann heißt

$$\operatorname{supp} T := \Omega \setminus O_T$$

der Träger von T.

Bemerkung. supp T ist (relativ) abgeschlossen in Ω .

10.2 Satz

Sei $\varphi \in D(\Omega)$, $T \in D'(\Omega)$ mit supp $\varphi \cap \text{supp } T = \emptyset$. Dann gilt $\langle T, \varphi \rangle = 0$.

10.3 Bemerkung

a) Sei $f \in L^1_{loc}(\Omega)$. Dann gilt supp $T_f := \text{supp } f$.

b) supp $\delta_a = \{a\}$ supp $D^{\alpha} = \{a\}$ supp $H = [0, \infty)$

10.4 Definition

Setze $\mathcal{E}:=C^{\infty}(\Omega)$ versehen mit der folgenden Konvergenz: $\varphi_j \to \varphi \text{ in } \mathcal{E}(\Omega) \iff \text{für } K \subset \Omega \text{ kompakt, } \alpha \text{ Multiindex: } \|D^{\alpha}\varphi_j - D^{\alpha}\varphi\|_{L^{\infty}(K)} \to 0 \text{ für } j \to \infty.$

10.5 Lemma

- a) $D(\Omega)$ ist dicht in $\mathcal{E}(\Omega)$.
- b) Die Einbettung $D(\Omega) \hookrightarrow \text{ist stetig.}$

Beweis. b) trivial

a) Sei $\psi \in \mathcal{E}(\Omega)$. Wähle $w_n \subset \Omega$ mit $w_n \subset w_{n+1}$ und $\bigcup_{n \in \mathbb{N}} = \Omega$. Sei weiterhin $\varphi_n \in D(\Omega)$ mit $\varphi_n|_{w_n} = 1$.

$$\varphi_n \psi \in D(\Omega), \varphi_n \psi \to \psi \text{ in } \mathcal{E}(\Omega).$$

10.6 Satz

Sei $T \in D'(\Omega)$ mit supp T kompakt. Dann existiert genau ein $\tilde{T} \in \mathcal{E}'(\Omega)$ mit $\langle \tilde{T}, \varphi \rangle = \langle T, \varphi \rangle$ für alle $\varphi \in D(\Omega)$.

10.7 Satz

Sei $\tilde{T} \in \mathcal{E}'(\Omega)$ und $T \in D'(\Omega)$ Einschränkung von \tilde{T} auf $D'(\Omega)$. Dann ist supp T kompakt.

10.8 Bemerkung

Die letzten beiden Sätze besagen, dass wir $\mathcal{E}'(\Omega)$ mit dem Raum der Distributionen mit kompaktem Träger identifizieren können.

11 Faltung von Distributionen mit kompaktem Träger

In diesem Abschnitt: $\Omega = \mathbb{R}^n, D = D(\mathbb{R}^n), D' = D'(\mathbb{R}^n).$ Faltng von $T \in D'$ mit $\varphi \in D$:

$$(T * \varphi)(x) = \langle T, \tilde{\tau}_x \varphi \rangle, \quad x \in \mathbb{R}^n.$$

Ziel: Ausdehnung obiger Definitio auf große Klasse!

11.1 Beispiele (Vorsicht)

Sei H Heaviside-Funktio, dann:

a)
$$(H * \varphi)(x) = \int_{-\infty}^{x} \varphi(s) ds$$
, $\varphi \in D$

b)
$$\delta' * H = \delta$$

c)
$$1 * \delta' = 0$$

d)
$$1 * (\delta' * H) = 1\delta = 1$$

e)
$$(1 * \delta') * H = 0 * H = 0$$

also ist * nicht assoziativ.

11.2 Lemma

Sei $T \in D', \varphi, \varphi_1, \varphi_2 \in D$.

a)
$$\tau_x(T * \varphi) = (\tau_x T) * \varphi = T * (\tau_x \varphi)$$

b)
$$T * (\varphi_1 * \varphi_2) = (T * \varphi_1) * \varphi_2$$
.

Beweis Übungsaufgabe.

11.3 Definition

Sei $T \in D'$ mit kompaktem Träger. Nach 10.6 existiert eine eindeutige Fortsetzung zu stetiger Linearform auf C^{∞} , ebenfalls bezeichnet mit T. Setze:

$$(T * \varphi)(x) := T(\tilde{\tau}_x \varphi), \quad \varphi \in C^{\infty}(\mathbb{R}^n), \quad x \in \mathbb{R}^n.$$

11.4 Satz (Eigenschaften)

Sei $T \in D'$ mit supp T kompakt, $\varphi \in C^{\infty}(\mathbb{R}^n)$. Dann

a)
$$\tau_x(T * \varphi) = (\tau_x T) * \varphi = T * (\tau_x \varphi)$$

b)
$$T * \varphi \in C^{\infty}$$
 und $D^{\alpha}(T * \varphi) = (D^{\alpha}T) * \varphi = T * (D^{\alpha}\varphi)$

c)
$$\varphi \in D \implies T * \varphi \in D$$

d)
$$\varphi_1 \in D \implies T * (\varphi * \varphi_1) = (T * \varphi) * \varphi_1 = (T * \varphi) * \varphi$$

11.5 Definition

Seien $S, T \in D'$ und mindestens eine habe kompakten Träger. Setze

$$\langle S * T, \varphi \rangle := (S * (T * \tilde{\varphi}))(0), \quad \varphi \in D$$

Übungsaufgabe: Faltung ist wohldefiniert.

11.6 Theorem

Seiein $R, S, T \in D'$. Dann:

- a) Falls mindestens eine der Distributionen R und S kompakten Träger hat, so gilt R*S = S*R.
- b) Falls mindestens eine der Distributionen R und S kompakten Träger hat, so gilt supp $(R*S) \subset \text{supp } R + \text{supp } S$.
- c) Falls midestens 2 der Distributionen R, S, T kompakten Träger hat, so gilt: (R * S) * T = R * (S * T).
- d) $D^{\alpha}T = (D^{\alpha}\delta) * T$.
- e) Falls mindestens eine der Distributionen R, S kompakten Träger hat, gilt:

$$D^{\alpha}(R * S) = (D^{\alpha}R) * S = R * (D^{\alpha}S)$$

Beweis Übung.

12 Fouriertransformation auf $\mathcal{S}(\mathbb{R}^n)$

12.1 Definition

Der Raum $\mathcal{S}(\mathbb{R}^n)$ ist definiert durch

$$\mathcal{S} = \mathcal{S}(\mathbb{R}^n) = \left\{ f \in C^{\infty}(\mathbb{R}^n) \colon |f|_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^{\beta} D^{\alpha} f(x)| \leq \infty \text{ für alle } \alpha,\beta \right\}$$

und heißt Raum der schnell fallenden Funktionen.

Notation. $|f|_m := \sup |\alpha| \le m, |\beta| \le m|f|_{\alpha,\beta}$

12.2 Definition

Eine Folge $(F_j) \subseteq \mathcal{S}$ konvergiert gegen $f \in S, f_j \to f$ in \mathcal{S} , falls $|f_n - f|_m \to 0$ für alle $m \in \mathbb{N}$.

Bemerkung. a) $\mathcal{S}(\mathbb{R}^n)$ ist Frechet-Raum.

- b) $D(\mathbb{R}^n) \subset \mathcal{S}(\mathbb{R}^n)$.
- c) $x \mapsto e^{-|x|^2} \in \mathcal{S} \setminus D$.

12.3 Definition

Sei $u \in \mathcal{S}$. Die Fouriertrafo von u ist definiert durch

$$\hat{u}(\xi)\mathcal{F}u(\xi) := \int_{\mathbb{R}^n} e^{-i\langle x,\xi\rangle} u(x) dx, \xi \in \mathbb{R}^n$$

12.4 Lemma (Eigenschafen)

- a) \mathcal{F} ist lineare, stetige Abbildung von \mathcal{S} nach \mathcal{S} .
- b) $(D^{\alpha})(\xi) = (i\xi)^{\alpha}\hat{u}(\xi), \xi \in \mathbb{R}^n, u \in \mathcal{S}.$
- c) $((-ix)^{\alpha}u)(\xi) = D^{\alpha}\hat{u}(\xi), u \in \mathcal{S}, x, y \in \mathbb{R}^n.$

Beweis: Übungsaufgabe.

12.5 Beispiel

Sei $f(x) := e^{-\frac{|x|^2}{2}}, x \in \mathbb{R}^n$. Dann:

$$\hat{f}(\xi) = (2\pi)^{\frac{n}{2}} e^{-\frac{|\xi|^2}{2}}, \xi \in \mathbb{R}^n$$

Mit anderen Worten: $(2\pi)^{\frac{n}{2}}$ ist Eigenwert der Fouriertransformation zum Eigenvektor f. Beweis Übungsaufgabe.

12.6 Lemma

Seien $f, g \in \mathcal{S}(\mathbb{R}^n)$. Wir definieren

$$\tau_y f(x) := f(x - y)$$

$$m_y f(x) := e^{i\langle x, y \rangle}$$

$$d_a f(x) := f(ax)$$

Dann gilt

i)
$$(\tau_y f)(\xi) = (m_{-y}\hat{f})(\xi)$$

ii)
$$(m_y f) = (\tau_y \hat{f})(\xi)$$

iii)
$$(d_a f)(\xi) = |a|^{-n} (d_{\frac{1}{a}} \hat{f})(\xi)$$

iv)
$$\int \hat{f}(x)g(x) = \int f(x)\hat{g}(x)$$

Beweis Übungsaufgabe.

Definition (inverse Fouriertransformation) 12.7

Für $f \in \mathcal{S}(\mathbb{R}^n)$ definieren wir die inverse Fouriertransformation via

$$(\mathcal{F}^{-1}(f))(x) = \check{f}(x) := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\langle x,\xi\rangle} f(\xi) d\xi.$$

12.8 Theorem

Die Fouriertransformation ist ein Isomorphismus von $\mathcal S$ nach $\mathcal S$ Mit anderen Worten $(\hat{f}) = f$ f+r alle $f \in S(\mathbb{R}^n)$.

Beweis.
$$(\hat{f})(x) := \frac{1}{(2\pi)^n} \int e^{i\langle x,\xi\rangle} \hat{f}(\xi) d\xi \stackrel{!}{=} f(x).$$

Für $\varepsilon > 0$ definieren wir:

Für
$$\varepsilon > 0$$
 definieren wir:

$$I_{\varepsilon}(x) := \frac{1}{(2\pi)^n} \int e^{i\langle x,\xi\rangle} e^{-\frac{\varepsilon^2 |\xi|^2}{2}} \hat{f}(\xi) d\xi = \frac{1}{(2\pi)^n} \int g(\xi) \hat{f}(\xi) d\xi$$
Mit $g(\xi) = (m_x d_{\varepsilon} \varphi)(\xi)$ mit $\varphi(\xi) = e^{-\frac{|\xi|^2}{2}}$.

$$\stackrel{\text{Lemma}}{\Longrightarrow} \hat{g}(\eta) = \varepsilon^{-n} (2\pi)^{\frac{n}{2}} e^{-\frac{|\eta-x|^2}{2\varepsilon^2}}$$
Beispiel 12.5

Mit
$$g(\xi) = (m_x d_{\varepsilon} \varphi)(\xi)$$
 mit $\varphi(\xi) = e^{-\frac{|\xi|^2}{2}}$

$$\underset{\text{Beigniol 12.5}}{\overset{\text{Lemma}}{\Longrightarrow}} \hat{g}(\eta) = \varepsilon^{-n} (2\pi)^{\frac{n}{2}} e^{-\frac{|\eta - x|^2}{2\varepsilon^2}}$$

$$\begin{split} I_{\varepsilon}(x) &= \frac{1}{(2\pi)^n} \int g(\xi) \hat{f}(\xi) d\xi = \frac{1}{(2\pi)^n} \int \hat{g}(\xi) f(\xi) d\xi \\ &= \varepsilon^{-n} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{-\frac{|\xi - x|^2}{2\varepsilon^2}} f(\xi) d\xi \\ &= \frac{1}{(2\pi)^{\frac{n}{2}}} (f * \varphi_{\varepsilon})(x), \quad \varphi(x) = \frac{1}{\varepsilon^n} \varphi(\frac{x}{\varepsilon}), \varphi(x) = e^{-\frac{|x|^2}{2}} \end{split}$$

 (φ_{ε}) Mollifier, d.h. $I_{\varepsilon} \to f$ in $p(\mathbb{R}^n)$.

 \implies es existiert $(\varepsilon_l) \subset \mathbb{R}_+ : I_{\varepsilon_l}(x) \to f(x)$ fast überall.

$$\stackrel{\text{Lebesgue}}{\Longrightarrow} I_{\varepsilon}(x) \to \frac{1}{(2\pi)^n} \int e^{i\langle x,\xi\rangle} \hat{f}(\xi) d\xi \implies \text{Behauptung.}$$

12.9 Bemerkung

Sei \tilde{f} gegeben durch $\tilde{f}(x) = f(-x), f \in \mathcal{S}(\mathbb{R}^n)$. Dann:

$$\hat{\hat{f}} = (2\pi)^n \tilde{f}.$$

12.10 Theorem

- (i) Seien $f, g \in \mathcal{S}$, dann $f * g \in \mathcal{S}$ mit $(f * g) = \hat{f} \cdot \hat{g}$.
- (ii) $(f \cdot g) = \hat{f} * \hat{g}$
- (iii) $\int f\overline{g}dx = (2\pi)^{-n} \in \hat{f}\overline{\hat{g}}d\xi$ (Parseval/Plancherel)

Beweis. (i) $f * g \in \mathcal{S}$ (Übungsaufgabe)

$$(f * g)(\xi) = \int_{\mathbb{R}^n} e^{-i\langle x, \xi \rangle} \int_{\mathbb{R}^n} f(x - y) g(y) dy dx$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-i\langle (x - y), \xi \rangle} f(x - y) dx e^{-i\langle y, \xi \rangle} g(x) dy$$
$$= \hat{f} \cdot \hat{g}(\xi)$$

(ii) Aus (i):
$$(\hat{f} * \hat{g}) = \hat{\hat{f}} \cdot \hat{\hat{g}} \implies \hat{f} * \hat{g} = (\tilde{f} \cdot \tilde{g})(2\pi)^{2n} = (2\pi)^{2n}(f \cdot g)$$

(iii) Sei
$$h = (2\pi)^{-n} \overline{\hat{g}} \implies \hat{h}(\xi) = (2\pi)^{-n} \int e^{-i\langle x, \xi \rangle} \overline{\hat{g}}(x) dx$$

$$\implies \overline{\hat{h}} = g(\xi)$$

$$\implies \int f\overline{g}dx = \int f\hat{h} = \int \hat{f}\cdot h = (2\pi)^{-n}\int \hat{f}\overline{\hat{g}}$$