Inter-Domain Routing & BGP

Outline

The glue that holds the Internet together: interdomain routing with The Border Gateway Protocol (BGP)

Architecture of Dynamic Routing

Policy based: BGP

The Routing Domain of BGP is the entire Internet

Technology of Distributed Routing

Link State

- Topology information is <u>flooded</u> within the routing domain
- Best end-to-end paths are computed locally at each router.
- Best end-to-end paths determine next-hops.
- Based on minimizing some notion of distance
- Works only if policy is <u>shared</u> and <u>uniform</u>
- Examples: OSPF, IS-IS

Vectoring

- Each router knows little about network topology
- Only best next-hops are chosen by each router for each destination network.
- Best end-to-end paths result from composition of all next-hop choices
- Does not require any notion of distance
- Does not require uniform policies at all routers
- Examples: RIP, BGP

The Gang of Four

Link State

Vectoring

IGP

OSPF IS-IS

RIP

EGP

BGP

Many Routing Processes Can Run on a Single Router

Internet Hierarchy

- What is an Autonomous System (AS)?
 - A set of routers under a single technical administration, using an *intra-domain routing* protocol (IGP) and common metrics to route packets within the AS and using an *inter-domain routing* protocol (EGP) to route packets to other ASes
 - Sometimes ASes use multiple intra-domain routing protocols and metrics, but appear as a single AS to other ASes
- * Each AS is assigned a unique ID

AS Numbers (ASNs)

ASNs are 16 bit values. 64512 through 65535 are "private"

Currently over 12,000 in use.

- Yale: 29
- MIT: 3
- Harvard: 11
- Genuity: 1
- AT&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...
- •

ASNs represent units of routing policy

AS announced on the Internet

Autonomous Routing Domains Don't Always Need BGP or an ASN

Static routing is the most common way of connecting an autonomous routing domain to the Internet.

This helps explain why BGP is a mystery to many ...

Picture of the Internet

- Intra-domain routing inside an AS
- Iner-domain routing between ASes

A Logical View of the Internet

- Internet connectivity is provided by commercial entities called ISPs, who compete for profit yet have to cooperate to provide connectivity
 - Each ISP has its own AS (sometimes multiple ASes)
- Not all ISPs are created equal
 - > Tier 1 ISP
 - "Default-free" global reachability info
 - > Tier 2 ISP
 - Regional or country-wide
 - > Tier 3 ISP
 - Local

Inter-AS Relationship: Transit vs. Peering

Policy Impact on Routing

* AS relationships

- > Customer-provider
- > Peers

Want "Valley-free" routes

- > Number links as (+1, 0, -1) for provider, peer and customer links
- ➤ In any path, you should only see sequence of +1, followed by at most one 0, followed by sequence of -1

Customer-Provider Hierarchy

provider customer

The Peering Relationship

Peering Provides Shortcuts

Policy-Based Routing

- Policies are used to force customer-provider-peer relationships, backup links, load balancing, ...
- Can't use shortest path routing
 - > No universal metric policy-based decisions
 - > Main characteristic of shortest path does not hold $(i\rightarrow x\rightarrow j$ is shortest route, then $x\rightarrow j$ is shortest route)
- Problems with distance-vector:
 - > Bellman-Ford algorithm may not converge, and may loop
- Problems with link state:
 - Metric used by different routers are not the same > loops
 - > LS database too large entire Internet
 - > May expose policies to other AS's

BGP: Distance Vector with Path

- * Each routing update carries the entire path
 - > e.g.,: destination 18.26/16 is reachable using {AS1, AS3, AS11}
- When AS receives a routing update
 - > Reject routes with loops
 - To detect loops check whether my AS is already in path
- * AS remembers loop-free routes
- For each destination, the AS chooses the best route according its policies.
- AS advertises a neighbor routes to a subset of all the destinations, depending on its policy
 - > E.g., I might hide from you that I know how to get to destination X, because I don't want to deliver your messages to X
- * AS advertises to neighbors only those routes that it uses
 - > Ensures that if $i \rightarrow x \rightarrow j$ is the used route, then $x \rightarrow j$ is the used route
 - > What happens if an AS advertises routes that it doesn't use?
- Advantage:
 - > Metrics are local AS chooses path, protocol ensures no loops

Implementing Customer/Provider and Peer/Peer relationships using BGP

- BGP provides capability for enforcing various policies
- Policies are <u>not</u> part of BGP: they are provided to BGP as configuration information
- BGP enforces policies by
 - choosing paths from multiple alternatives (importing routers)
 - 2. controlling advertisement to other AS's (exporting routes)

Importing Routes

- * Based on route attributes
 - > First, Prefer customer > peer > provider
 - > Then, Shortest AS PATH length
 - > Then, look at other route attributes

Exporting Routes

- When an AS exports a route, others can use the AS to forward packets along that route
- * Rules:
 - > Export customers routes to everyone
 - · why?
 - > Export routes to your own addresses to everyone
 - · Why?
 - Don't export routes advertised to you by your provider (may advertise them to customers)
 - · Why?
 - Don't export routes advertised to you by your peer (may advertise them to customers)
 - · Why?

Import Routes

Export Routes

AS Graphs Depend on Point of View

BGP-4

- BGP = Border Gateway Protocol
- Is a <u>Policy-Based</u> routing protocol
- Is the <u>de facto EGP</u> of today's global Internet
- Relatively simple protocol, but configuration is complex and the entire world can see, and be impacted by, your mistakes.
 - 1989 : BGP-1 [RFC 1105]
 - Replacement for EGP (1984, RFC 904)
 - 1990 : BGP-2 [RFC 1163]
 - 1991 : BGP-3 [RFC 1267]
 - 1995 : BGP-4 [RFC 1771]
 - Support for Classless Interdomain Routing (CIDR)

BGP Operations (Simplified)

Four Types of BGP Messages

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: <u>Announcing</u> new routes or <u>withdrawing</u> previously announced routes.

announcement –

prefix + <u>attributes values</u>

BGP Attributes

Value 1 2 3 4 5	Code ORIGIN AS_PATH NEXT_HOP MULTI_EXIT_DISC LOCAL_PREF	Reference [RFC1771] [RFC1771] [RFC1771] [RFC1771] [RFC1771]	Most important attributes
6 7 8 9	ATOMIC_AGGREGATE AGGREGATOR COMMUNITY ORIGINATOR_ID CLUSTER_LIST	[RFC1771] [RFC1771] [RFC1997] [RFC2796] [RFC2796]	
11 12 13 14 15 16	DPA ADVERTISER RCID_PATH / CLUSTER_ID MP_REACH_NLRI MP_UNREACH_NLRI EXTENDED COMMUNITIES	[Chen] [RFC1863] [RFC1863] [RFC2283] [RFC2283] [Rosen]	
255	reserved for development		

From IANA: http://www.iana.org/assignments/bgp-parameters

Not all attributes need to be present in every announcement

Attributes are Used to Select Best Routes

them all!)

BGP Route Processing

Route Selection Summary

Highest Local Preference

Enforce relationships

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

traffic engineering

Lowest IGP cost to BGP egress

Lowest router ID

Throw up hands and break ties

Tweak Tweak Tweak

- For inbound traffic
 - Filter outbound routes
 - Tweak attributes on outbound routes in the hope of influencing your neighbor's best route selection
- For <u>outbound</u> traffic
 - Filter <u>inbound</u> routes
 - Tweak attributes on <u>inbound</u> routes to influence best route selection

outbound inbound routes traffic inhound outbound routes traffic

In general, an AS has more control over outbound traffic

AS Graphs Do Not Show Topology!

BGP was designed to throw away information!

The AS graph may look like this.

Reality may be closer to this...

Shorter Doesn't Always Mean Shorter

Shedding Inbound Traffic with ASPATH Padding Hack

Padding May Not Shut Off All Traffic

Padding in this way is often used as a form of load balancing

COMMUNITY Attribute to the Rescue!

Hot Potato Routing: Go for the Closest Egress Point

This Router has two BGP routes to 192.44.78.0/24.

Hot potato: get traffic off of your network as Soon as possible. Go for egress 1!

Getting Burned by the Hot Potato

Many customers want their provider to carry the bits!

Cold Potato Routing with MEDs (Multi-Exit Discriminator Attribute)

This means that MEDs must be considered BEFORE IGP distance!

Note1: some providers will not listen to MEDs

Note2: MEDs need not be tied to IGP distance

Two Types of BGP Neighbor Relationships

 Internal Neighbor (iBGP) in the same Autonomous System

iBGP

- AS has more than one router participating in eBGP
- * iBGP is run between BGP routers in the same AS to allow all of them to obtain a complete and consistent view of external routes

Internal BGP (iBGP)

- Same messages as eBGP
- * Different rules about re-advertising prefixes:
 - Prefix learned from eBGP can be advertised to iBGP neighbor and vice-versa, but
 - Prefix learned from one iBGP neighbor cannot be advertised to another iBGP neighbor
 - Reason: no AS PATH within the same AS and thus danger of looping.

We learned

- Inter-domain routing uses policy
- As a result, routing is not a simple optimization of a single number which can be done using shortest path algorithms
- * BGP is designed to route based on policies

Validity of the routing information: Origin authentication

IP Address Ownership and Hijacking

- IP address block assignment
 - -Regional Internet Registries (ARIN, RIPE, APNIC)
 - -Internet Service Providers
- Proper origination of a prefix into BGP
 - -By the AS who owns the prefix
 - -... or, by its upstream provider(s) in its behalf
- However, what's to stop someone else?
 - -Prefix hijacking: another AS originates the prefix
 - BGP does not verify that the AS is authorized
 - -Registries of prefix ownership are inaccurate

- Consequences for the affected ASes
 - Blackhole: data traffic is discarded
 - Snooping: data traffic is inspected, and then redirected
 - Impersonation: data traffic is sent to bogus destinations 13

Hijacking is Hard to Debug

- Real origin AS doesn't see the problem
 - -Picks its own route
 - -Might not even learn the bogus route
- May not cause loss of connectivity
 - -E.g., if the bogus AS snoops and redirects
 - -... may only cause performance degradation
- Or, loss of connectivity is isolated
 - -E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
 - -Analyzing updates from many vantage points
 - -Launching traceroute from many vantage points₁₄

Sub-Prefix Hijacking

- Originating a more-specific prefix
 - Every AS picks the bogus route for that prefix
 - Traffic follows the longest matching prefix

How to Hijack a Prefix

- The hijacking AS has
 - –Router with eBGP session(s)
 - Configured to originate the prefix
- Getting access to the router
 - -Network operator makes configuration mistake
 - Disgruntled operator launches an attack
 - -Outsider breaks in to the router and reconfigures
- Getting other ASes to believe bogus route
 - Neighbor ASes not filtering the routes
 - -... e.g., by allowing only expected prefixes
 - -But, specifying filters on peering links is hard