Diversity and Novelty in Web Search, Recommender Systems and Data Streams

WSDM 2014 TUTORIAL

Rodrygo L. T. Santos – UFMG, Brazil Pablo Castells – UAM, Spain Ismail Sengor Altingovde – METU, Turkey Fazli Can – Bilkent, Turkey

Outline

- PART I
 - Background (Santos)
- PART II
 - Diversity and Novelty in Search (Altingovde+Santos)
- PART III
 - Diversity and Novelty in Recommendation (Castells)
- PART IV
 - Diversity and Novelty in Data Streams (Can)

Diversity and Novelty in Web Search, Recommender Systems and Data Streams

PART I: BACKGROUND

Rodrygo L. T. Santos – UFMG, Brazil

Information Retrieval (IR)

- The goal of an IR system is to provide relevant items given a user's information need
 - Relevant search results given a user's query
 - Relevant recommendations given a user's profile
- Determining relevance is the key challenge (Goffman, 1964)
 - A user's prerogative
 - Can be estimated at best

Ranking Optimality

- PRP is optimal under certain assumptions (Gordon & Lenk, 1991, 1992)
 - A1. The probability of relevance is estimated with certainty, with no measure of risk
 - A2. The probability of relevance is estimated independently for every document

Limiting Assumption A1

- Assumption
 - A1. The probability of relevance is estimated with
 certainty, with no measure of risk
- Limitation: ambiguity
 - Information needs and items are ambiguously represented (Turtle & Croft, 1996)

• Wikipedia lists over 50 meanings for 'rio'... - ... but we can only display '10 blue links' • 16% of all web search queries are ambiguous (Song, 2009)

- Every query is underspecified to some extent

(Cronen-Townsend & Croft, 2002)

Limiting Assumption A2 Assumption A2. The probability of relevance is estimated independently for every document Limitation: redundancy "The relationship between a document and a query is necessary but not sufficient to determine relevance" (Goffman, 1964)

Diversity and Novelty

- · Diversity
 - "the need to resolve ambiguity" [in the retrieval request]
- Novelty
 - "the need to avoid redundancy" [in the retrieval response]

(Clarke et al., 2008)

Greedy Best First Search

- In each iteration, select the document d that maximizes a scoring/ranking function f
- · Algorithm outline:
 - R: input ranking
 - D: final ranking
 - τ: ranking cutoff

 $D \leftarrow \emptyset$ **while** $|D| < \tau$ **do** $d \leftarrow \arg\max_{d \in R \setminus D} f(q, d, D)$ $R \leftarrow R \setminus \{d\}$ $D \leftarrow D \cup \{d\}$

Diversity and Novelty in Web Search, Recommender Systems and Data Streams

PART II: DIVERSITY AND NOVELTY IN WEB SEARCH

Ismail Sengor Altingovde – METU, Turkey Rodrygo L. T. Santos – UFMG, Brazil

Sub-Query Coverage (Santos et al., 2010)

• Basic idea: score a document proportionally to its relevance to different sub-queries

$$f_{\text{xQuAD}}(q, d, \mathcal{D}_q) = (1 - \lambda) \ p(d|q) \ \text{document relevance} \\ + \lambda \sum_{s \in \mathcal{S}_q} p(s|q) \ p(d|q, s) \prod_{d_j \in \mathcal{D}_q} (1 - p(d_j|q, s)) \\ \text{document diversity}$$

Sub-Query Coverage (Santos et al., 2010)

• Basic idea: score a document proportionally to its relevance to different sub-queries

Top performing approach at TREC 2009-2012

Diversity Evaluation

benchmarks

D metrics

cascade metrics

IA metrics

Evaluation Benchmarks

- · Basic test collection layout
 - Set of documents
 - Set of queries
 - Set of relevance assessments
 - (query, document) \rightarrow label
 - (query, document, aspect) \rightarrow label
- Advanced features
 - Graded relevance labels
 - Aspect intents
 - Aspect probabilities
 - (query, aspect) → label

Evaluation Benchmarks

- TREC 6-8 Interactive track (Over, 1997, 1998; Hersh & Over, 1999)
 - 20 queries
- TREC 2009-2012 Web track (Clarke et al., 2009-2012)
 - 200 queries
- NTCIR 9-10 Intent task, NTCIR 11 iMine task (Sakai & Song, 2012)
 - 200 + 50 queries

Diversity and Novelty in Web Search, Recommender Systems and Data Streams

PART III:
DIVERSITY AND NOVELTY IN
RECOMMENDER SYSTEMS

Pablo Castells - UAM, Spain

Diversity in recommender systems

Search diversity:

"Avoid redundancy of possible user intents (aspects) as a means to cope with the uncertainty in the query"

Diversity in recommender systems

Recommendation diversity:

"Avoid redundancy of possible user intents (aspects) as a means to cope with the uncertainty in the query"

Diversity in recommender systems

Recommendation diversity:

"Avoid redundancy of possible user intents (aspects) as a means to cope with the uncertainty in the query in the observed evidence of user interests"

Why diversify recommendations (Vargas, Castells & Vallet SIGIR 2011, 2012)

For better system effectiveness ("a safer bet")

- Uncertainty in user preferences
 - Ambiguity, underspecification
 - Preferences are multiple, dynamic, contextual...
 - Much broader needs than in search
- · Increase chances of at least some relevant item
- · Equivalent to search diversity principle
 - Infer the user's intent based on what the user asks
 vs. what the user does

Why diversify recommendations

For the sake of it: direct user satisfaction

- •Natural variety-seeking drive in human behavior
 - Within a recommendation and over time
 - Desire for the unfamiliar, alternation among the familiar
 - Ideal level of stimulation
- •Multiple simultaneous needs and tastes

Diversity but also **novelty**

- •Broaden the user's horizon
- •The task is often explicitly about discovery

Why diversify recommendations (Fleder Mgt. Sci. 2009, McNee CHI 2006)

For enhanced business performance

- •Sales diversity: mitigate risk, expand the business
- •Long tail: draw revenues from market niches
 - "Sell less of more"
 - Higher profit margin on cheaper long-tail products

Search diversity applied to recommender systems

Applying aspect diversity to recommendation
(Shi et al SIGIR 2012; Vargas et al SIGIR 2011, 2012; Vargas & Castells OAIR 2013; ...)

i ltems

u 1 3 2 5 2 User profile

Applying implicit IR diversification

. Smyth 2001, Ziegler 2005, Hurley TOIT 2011, Shi SIGIR 2012, Vargas et al SIGIR 2011,

- Implicit IR diversification re-ranking algorithms can be applied even more straightforwardly to recommendation
- In fact some state of the art recommendation diversification algorithms are essentially MMR
 - Just a baseline scoring function and a similarity measure are needed $f(i|D,u)=(1-\lambda)\,\hat{r}(u,i)+\frac{\lambda}{|D|}\sum_{i\in D}d(i,j)$
- MPT has also been adapted to recommendation

Recommendation novelty and diversity evaluation and metrics

Novelty and diversity metrics

Recommendation diversity metrics...

- •Are not defined in terms of ranking
- •Do not involve relevance

Different metrics for different notions

- •Three most common: intra-list diversity, unexpectedness, inverse popularity
- •Several other, more particular metrics

Novelty and diversity metrics (Smyth & McClave ICCBR 2001, Ziegler et al WWW 2005, etc.) Intra-list diversity: average pairwise distance $ILD = \frac{2}{|R|(|R|-1)} \sum_{\substack{i,j \in R \\ i \neq j}} d(i,j)$ Some distance measure, e.g. d(i,j) = 1 - sim(i,j) with sim = cosine, Jaccard, etc. on item features

Recommendation novelty and diversity enhancement algorithms

Diversity enhancement

• Enhance diversity by greedy maximization of:

nance diversity by greedy maximization of:
$$f(i|D,u) = (1-\lambda) \, \hat{r}(u,i) + \frac{\lambda}{|D|} \sum_{j \in D} d(i,j)$$

• Equivalent to MMR

Tested as cosine on item features (Amazon's book taxonomy, trip characteristics)

Evaluated by ILD

• Variant of approach (Hurley & Zhang 2011)

Novelty and diversity enhancement Novelty and diversity by linear recommender hybridization Pareto optimization problem: multi-objective maximization of accuracy & novelty & diversity → evolutionary algorithm Tests with ensemble of 8 common recommender algorithms Find the Pareto frontier on tradeoffs between the 3 metrics Effective individuals better than constituents and baseline ensembles

Unified perspective

Tentative definitions

Diversity

•Generally applies to a set of items:

how different the items are from each other

•Variants: simple, aggregate, inter-user, inter-system, temporal...

Novelty

- •Refers to an item, different from prior experience
- •Can apply to a set as the average novelty of its elements
- •Variants : different, not known, unexpected / surprising / unfamiliar, serendipitous...

Conclusions

- Novelty & diversity as important in recommendation as in search
- IR diversity principles, metrics and algorithms can be applied
- Plus further particular motivation and techniques
- Wide variety of novelty and diversity metrics and methods
- Most can be unified in a common scheme