

(51) International Patent Classification 6:

C12N 15/31, C07K 14/22, 16/12, C12Q 1/68, A61K 39/095, G01N 33/50

(11) International Publication Number:

WO 99/57280

A2 (43) International Publication Date: 11 November 1999 (11.11.99)

(21) International Application Number:

PCT/US99/09346

(22) International Filing Date:

30 April 1999 (30.04.99)

(30) Priority Data:

60/083,758	1 May 1998 (01.05.98)	US
60/094,869	31 July 1998 (31.07.98)	US
60/098,994	2 September 1998 (02.09.98)	US
60/099,062	2 September 1998 (02.09.98)	US
60/103,749	9 October 1998 (09.10.98)	US
60/103,794	9 October 1998 (09.10.98)	US
60/103,796	9 October 1998 (09.10.98)	US
60/121,528	25 February 1999 (25.02.99)	US
	•	

(71) Applicants (for all designated States except US): CHIRON CORPORATION [US/US]; 4560 Horton Street, Emeryville, CA 94608 (US). THE INSTITUTE FOR GENOMIC RE-SEARCH [US/US]; 9212 Medical Center Drive, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; Rockville, MD (US). GALEOTTI, Cesira [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). HICKEY, Erin [US/US]; Gaithersburg, MD (US). MASIGNANI, Vega [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). MORA, Marirosa [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). PETERSEN, Jeremy [US/US]; Arlington, VA (US). PIZZA, Mariagratia [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). RAPPUOLI, Rino [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). RATTI, Giulio [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). SCALATO, Enzo [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). SCARSELLI, Maria [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). TETTELIN, Herve [US/US]; Gaithersburg, MD (US). VENTER, J., Craig [US/US]; Rockville, MD (US).

(74) Agent: HARBIN, Alisa, A.; Chiron Corporation. Intellectual Property - R440, P.O. Box 8097, Emeryville, CA 94662-8097 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

(57) Abstract

The invention provides proteins from Neisseria meningitidis, including the amino acid sequences and the corresponding nucleotide sequences. The proteins are predicted to be useful antigens for vaccines and/or diagnostics.

919 (46 kDa)

A) PURIFICATION

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaíjan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	ÜA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Şri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
					••		
1							

NEISSERIA MENINGITIDIS ANTIGENS AND COMPOSITIONS

This application is a continuation-in-part of the following U.S. Provisional Patent applications, from each of which priority is claimed, and each of which is incorporated by reference in its entirety: 60/083,758 (filed May 1, 1998); 60/094,869 (filed July 31, 1998); 60/098,994 (filed September 2, 1998); 60/099,062 (filed September 2, 1998); 60/103,749 (filed October 9, 1998); 60/103,794 (filed October 9, 1998); 60/103,796 (filed October 9, 1998); and 60/121,528 (filed February 25, 1999).

This invention relates to antigens from the bacterial species: Neisseria meningitidis and Neisseria gonorrhoeae.

BACKGROUND

177

(Acres

Neisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonizes the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N. gonorrhoea, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

N. meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks. (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

Based on the organism's capsular polysaccharide, 12 serogroups of N. meningitidis have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the

United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the vaccination against H.influenzae, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease". In:

New Generation Vaccines, supra, pp. 469-488; Lieberman et al (1996) supra; Costantino et al (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 10:691-698).

Meningococcus B (menB) remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of $\alpha(2-8)$ -linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoorn (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28).

Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. *Vaccine* 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonoccocal genes and proteins (e.g. EP-A-0467714, WO96/29412), but this is by no means complete. Other men B proteins may include those listed in WO 97/28273, WO 96/29412, WO 95/03413, US 5,439,808, and US 5,879,686.

The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic *Neisseriae* including *Neisseria meningitidis* or *Neisseria gonorrhoeae*. Those sequences specific to *N. meningitidis* or *N. gonorrhoeae* that are more highly conserved are further preferred sequences.

It is thus an object of the invention is to provide Neisserial DNA sequences which encode proteins that are antigenic or immunogenic.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 illustrates the products of protein expression and purification of the predicted ORF 919 as cloned and expressed in *E. coli*.
- Fig. 2 illustrates the products of protein expression and purification of the predicted ORF 279 as cloned and expressed in *E. coli*.
- Fig. 3 illustrates the products of protein expression and purification of the predicted ORF 576-1 as cloned and expressed in *E. coli*.
- Fig. 4 illustrates the products of protein expression and purification of the predicted ORF 519-1 as cloned and expressed in *E. coli*.
- Fig. 5 illustrates the products of protein expression and purification of the predicted ORF 121-1 as cloned and expressed in *E. coli*.

Fig. 6 illustrates the products of protein expression and purification of the predicted ORF 128-1 as cloned and expressed in *E. coli*.

Fig. 7 illustrates the products of protein expression and purification of the predicted ORF 206 as cloned and expressed in *E. coli*.

Fig. 8 illustrates the products of protein expression and purification of the predicted ORF 287 as cloned and expressed in *E. coli*.

Fig. 9 illustrates the products of protein expression and purification of the predicted ORF 406 as cloned and expressed in *E. coli*.

Fig. 10 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 919 as cloned and expressed in *E. coli*.

Fig. 11 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 279 as cloned and expressed in *E. coli*.

Fig. 12 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 576-1 as cloned and expressed in *E. coli*.

Fig. 13 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 519-1 as cloned and expressed in *E. coli*.

Fig. 14 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 121-1 as cloned and expressed in *E. coli*.

Fig. 15 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 128-1 as cloned and expressed in *E. coli*.

Fig. 16 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 206 as cloned and expressed in *E. coli*.

Fig. 17 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 287 as cloned and expressed in *E. coli*.

Fig. 18 illustrates the hydrophilicity plot, antigenic index and AMPHI regions of the products of protein expression the predicted ORF 406 as cloned and expressed in *E. coli*.

Fig. 19 shows an alignment comparison of amino acid sequences for ORF 225 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 20 shows an alignment comparison of amino acid sequences for ORF 235 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 21 shows an alignment comparison of amino acid sequences for ORF 287 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 22 shows an alignment comparison of amino acid sequences for ORF 519 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

Fig. 23 shows an alignment comparison of amino acid sequences for ORF 919 for several strains of *Neisseria*. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. The Figure demonstrates a high degree of conservation among the various strains, further confirming its utility as an antigen for both vaccines and diagnostics.

THE INVENTION

The invention provides proteins comprising the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (i.e., those having sequence identity) to the *N. meningitidis* amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of homology (sequence identity) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman

homology search algorithm as implemented in MPSRCH program (Oxford Molecular) using an affine gap search with parameters:gap penalty 12, gap extension penalty 1.

The invention further provides proteins comprising fragments of the N. meningitidis amino acid sequences and N. gonorrhoeae amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure or isolated form (ie. substantially free from other N. meningitidis or N. gonorrhoeae host cell proteins)

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

According to a further aspect, the invention provides nucleic acid comprising the N. meningitidis nucleotide sequences and N. gonorrhoeae nucleotide sequences disclosed in the examples.

According to a further aspect, the invention comprises nucleic acids having sequence identity of greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) to the nucleic acid sequences herein. Sequence identity is determined as above-discussed.

According to a further aspect, the invention comprises nucleic acid that hybridizes to the sequences provided herein. Conditions for hybridization are set forth herein.

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N. meningitidis sequences or N. gonorrhoeae sequences and depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, in part or in whole, from genomic or cDNA libraries, from the

organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also protein nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of (I) a medicament for treating or preventing infection due to Neisserial bacteria (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria or (iii) for raising antibodies. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae) but are preferably N. meningitidis, especially strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of:
(a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

Having now generally described the invention, the same will be more readily understood through reference to the following examples which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Methodology - Summary of standard procedures and techniques. General

This invention provides *Neisseria meningitidis* menB nucleotide sequences, amino acid sequences encoded therein. With these disclosed sequences, nucleic acid probe assays and expression cassettes and vectors can be produced. The expression vectors can be transformed into host cells to produce proteins. The purified or isolated polypeptides (which may also be chemically synthesized) can be used to produce antibodies to detect menB proteins. Also, the host cells or extracts can be utilized for biological assays to isolate agonists or antagonists. In addition, with these sequences one can search to identify open reading frames and identify amino acid sequences. The proteins may also be used in immunogenic compositions, antigenic compositions and as vaccine components.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g., Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes I-IV (D.M. Weir and C.C. Blackwell eds 1986).

Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference.

Expression systems

The *Neisseria* menB nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, plant cells, baculoviruses, bacteria, and yeast.

i. Mammalian Systems

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation (Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In *Molecular Cloning: A Laboratory Manual, 2nd ed.*).

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible). Depending on the promoter selected, many promotes may be inducible using known substrates, such as the use of the mouse mammary tumor virus (MMTV) promoter with the glucocorticoid responsive element (GRE) that is induced by glucocorticoid in hormone-responsive transformed cells (see for example, U.S. Patent 5,783,681).

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a

regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter (Maniatis et al. (1987) *Science 236*:1237; Alberts et al. (1989) *Molecular Biology of the Cell*, 2nd ed.). Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer (Dijkema et al (1985) *EMBO J. 4*:761) and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus (Gorman et al. (1982b) *Proc. Natl. Acad. Sci. 79*:6777) and from human cytomegalovirus (Boshart et al. (1985) *Cell 41*:521). Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion (Sassone-Corsi and Borelli (1986) *Trends Genet. 2*:215; Maniatis et al. (1987) Science 236:1237).

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation (Birnstiel et al. (1985) *Cell 41*:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In *Transcription and splicing* (ed. B.D. Hames and D.M.

Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105). These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 (Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual).

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 (Gluzman (1981) Cell 23:175) or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replication systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 (Kaufman et al. (1989) Mol. Cell. Biol. 9:946) and pHEBO (Shimizu et al. (1986) Mol. Cell. Biol. 6:1074).

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines.

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: U.S. 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, Phytochemistry 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., Mol. Gen. Genet. 209:33-40 (1987); Chandler et al., Plant Molecular Biology 3:407-418 (1984); Rogers, J. Biol. Chem. 260:3731-3738 (1985); Rothstein et al., Gene 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., Molecular Microbiology 3:3-14 (1989); Yu et al., Gene 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: Advanced Plant Physiology,. Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, Plant Cell, 2:1027-1038(1990); Maas et al., EMBO J. 9:3447-3452 (1990); Benkel and Hickey, Proc. Natl. Acad. Sci. 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension.

These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iii. Baculovirus Systems

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to

those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (e.g., structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO

Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), J. Gen. Virol. 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human (alpha) α-interferon, Maeda et al., (1985), *Nature 315*:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol. 8*:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene 58*:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See

Summers and Smith supra; Ju et al. (1987); Smith et al., Mol. Cell. Biol. (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), Bioessays 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant virus) of occlusion bodies. Current Protocols in Microbiology Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, supra; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (PCT Pub. No. WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g., Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g., HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g., proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

iv. Bacterial Systems

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps

initiate transcription of the lac operon in Escherichia coli (E. coli) (Raibaud et al. (1984) Annu. Rev. Genet. 18:173). Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) (Chang et al. (1977) Nature 198:1056), and maltose.

Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) (Goeddel et al. (1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; U.S. Patent 4,738,921; EPO Publ. Nos. 036 776 and 121 775). The betalactamase (bla) promoter system (Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)), bacteriophage lambda PL (Shimatake et al. (1981) Nature 292:128) and T5 (U.S. Patent 4,689,406) promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter (U.S. Patent 4,551,433). For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor (Amann *et al.* (1983) *Gene 25*:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci. 80*:21). Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system (Studier *et al.* (1986) *J. Mol. Biol.* 189:113; Tabor *et al.* (1985) *Proc Natl. Acad. Sci. 82*:1074). In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO Publ. No. 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon

(Shine et al. (1975) Nature 254:34). The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' end of E. coli 16S rRNA (Steitz et al. (1979) "Genetic signals and nucleotide sequences in messenger RNA." In Biological Regulation and Development: Gene Expression (ed. R.F. Goldberger)). To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site, it is often necessary to optimize the distance between the SD sequence and the ATG of the eukaryotic gene (Sambrook et al. (1989) "Expression of cloned genes in Escherichia coli." In Molecular Cloning: A Laboratory Manual).

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* or *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO Publ. No. 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene (Nagai et al. (1984) Nature 309:810). Fusion proteins can also be made with sequences from the lacZ (Jia et al. (1987) Gene 60:197), trpE (Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11), and Chey (EPO Publ. No. 324 647) genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated (Miller et al. (1989) Bio/Technology 7:698).

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria (U.S. Patent 4,336,336). The

signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) (Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J.* 3:2437) and the *E. coli* alkaline phosphatase signal sequence (*phoA*) (Oka *et al.* (1985) *Proc. Natl. Acad. Sci. 82*:7212). As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from *B. subtilis* (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA 79*:5582; EPO Publ. No. 244 042).

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number

WO 99/57280

vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EPO Publ. No. 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline (Davies *et al.* (1978) *Annu. Rev. Microbiol. 32*:469). Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: Bacillus subtilis (Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541), Escherichia coli (Shimatake *et al.* (1981) *Nature* 292:128; Amann *et al.* (1985) *Gene* 40:183; Studier *et al.* (1986) *J. Mol. Biol.* 189:113; EPO Publ. Nos. 036 776, 136 829 and 136 907), Streptococcus cremoris (Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655); Streptococcus lividans (Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655), Streptomyces lividans (U.S. Patent 4,745,056).

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by

electroporation. Transformation procedures usually vary with the bacterial species to be transformed. (See e.g., use of Bacillus: Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EPO Publ. Nos. 036 259 and 063 953; PCT Publ. No. WO 84/04541; use of Campylobacter: Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; and Wang et al. (1990) J. Bacteriol. 172:949; use of Escherichia coli: Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; use of Lactobacillus: Chassy et al. (1987) FEMS Microbiol. Lett. 44:173; use of Pseudomonas: Fiedler et al. (1988) Anal. Biochem 170:38; use of Staphylococcus: Augustin et al. (1990) FEMS Microbiol. Lett. 66:203; use of Streptococcus: Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412.

v. Yeast Expression

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences.

Examples include alcohol dehydrogenase (ADH) (EPO Publ. No. 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO Publ. No. 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences (Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA 80*:1).

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (U.S. Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EPO Publ. No. 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, (Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;).

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by in vitro incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, plant, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human

superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g., EPO Publ. No. 196056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g., WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EPO Publ. No. 012 873; JPO Publ. No. 62:096,086) and the A-factor gene (U.S. Patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EPO Publ. No. 060 057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (U.S. Patent Nos. 4,546,083 and 4,870,008; EPO Publ. No. 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (See e.g., PCT Publ. No. WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator

sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

WO 99/57280

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g., plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 (Botstein et al. (1979) Gene 8:17-24), pCl/1 (Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646), and YRp17 (Stinchcomb et al. (1982) J. Mol. Biol. 158:157). In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g., Brake et al., supra.

Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome (Orr-Weaver et al. (1983) Methods in Enzymol. 101:228-245). An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced (Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750). The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as *ADE2*, *HIS4*, *LEU2*, *TRP1*, and *ALG7*, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of *CUP1* allows yeast to grow in the presence of copper ions (Butt *et al.* (1987) *Microbiol*, *Rev.* 51:351).

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors and methods of introducing exogenous DNA into yeast hosts have been developed for, inter alia, the following yeasts: Candida albicans (Kurtz, et al. (1986) Mol. Cell. Biol. 6:142); Candida maltosa (Kunze, et al. (1985) J. Basic Microbiol. 25:141); Hansenula polymorpha (Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302); Kluyveromyces fragilis (Das, et al. (1984) J. Bacteriol. 158:1165); Kluyveromyces lactis (De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135); Pichia guillerimondii (Kunze et al. (1985) J. Basic Microbiol. 25:141); Pichia pastoris (Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; U.S. Patent Nos. 4,837,148 and 4,929,555); Saccharomyces cerevisiae (Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163); Schizosaccharomyces pombe (Beach and Nurse (1981) Nature 300:706); and Yarrowia lipolytica (Davidow, et al. (1985) Curr. Genet. 10:380471 Gaillardin, et al. (1985) Curr. Genet. 10:49).

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g., [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J.

Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromyces]; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; U.S. Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75;1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Definitions

WO 99/57280

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

A "conserved" *Neisseria* amino acid fragment or protein is one that is present in a particular Neisserial protein in at least x% of *Neisseria*. The value of x may be 50% or more, e.g., 66%, 75%, 80%, 90%, 95% or even 100% (i.e. the amino acid is found in the protein in question in all *Neisseria*). In order to determine whether an animo acid is "conserved" in a particular Neisserial protein, it is necessary to compare that amino acid residue in the sequences of the protein in question from a plurality of different *Neisseria* (a reference population). The reference population may include a number of different *Neisseria* species or may include a single species. The reference population may include a number of different serogroups of a particular species or a single serogroup. A preferred reference population consists of the 5 most common *Neisseria* strains.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell.

"Epitope" means antigenic determinant, and may elicit a cellular and/or humoral response.

Conditions for "high stringency" are 65 degrees C in 0.1 xSSC 0.5% SDS solution.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as a DNA, RNA or amino acid sequence differing from but having homology with the native or disclosed sequence. Depending on the particular sequence, the degree of homology (sequence identity) between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g., 60%, 70%, 80%, 90%, 95%, 99% or more) which is calculated as described above. As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs at essentially the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions. (see, for example, U.S. Patent 5,753,235).

Antibodies

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen. "Antibody" includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanized antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying *Neisseria* menB proteins.

Antibodies elicited against the proteins of the present invention bind to antigenic polypeptides or proteins or protein fragments that are present and specifically associated with strains of *Neisseria meningitidis* menB. In some instances, these antigens may be associated with specific strains, such as those antigens specific for the menB strains. The antibodies of the invention may be immobilized to a matrix and utilized in an immunoassay or on an affinity chromatography column, to enable the detection and/or separation of polypeptides, proteins or protein fragments or cells comprising such polypeptides, proteins or protein fragments. Alternatively, such polypeptides, proteins or protein fragments may be immobilized so as to detect antibodies bindably specific thereto.

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to in vivo immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (e.g., 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein (Nature (1975) 256:495-96), or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells that express membrane-bound immunoglobulin specific for the antigen bind to the plate, and

are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (e.g., hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen (and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (e.g., in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with 125I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

Antigens, immunogens, polypeptides, proteins or protein fragments of the present invention elicit formation of specific binding partner antibodies. These antigens, immunogens, polypeptides, proteins or protein fragments of the present invention comprise immunogenic compositions of the present invention. Such immunogenic compositions may further comprise or include adjuvants, carriers, or other compositions that promote or enhance

or stabilize the antigens, polypeptides, proteins or protein fragments of the present invention. Such adjuvants and carriers will be readily apparent to those of ordinary skill in the art.

Pharmaceutical Compositions

Pharmaceutical compositions can comprise (include) either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature, when given to a patient that is febrile. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgment of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of

organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal and transcutaneous applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

Vaccines according to the invention may either be prophylactic (i.e., to prevent infection) or therapeutic (i.e., to treat disease after infection).

Such vaccines comprise immunizing antigen(s) or immunogen(s), immunogenic polypeptide, protein(s) or protein fragments, or nucleic acids (e.g., ribonucleic acid or deoxyribonucleic acid), usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or

liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the immunogen or antigen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sùlfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59 (PCT Publ. No. WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF. containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM): (3) saponin adjuvants, such as StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g., IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g., gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; (6) detoxified mutants of a bacterial ADP-ribosylating toxin such as a cholera toxin (CT), a pertussis toxin (PT), or an E. coli heat-labile toxin (LT), particularly LT-K63, LT-R72, CT-S109, PT-K9/G129; see, e.g., WO 93/13302 and WO 92/19265; and (7) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59 are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-huydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The vaccine compositions comprising immunogenic compositions (e.g., which may include the antigen, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Alternatively, vaccine compositions comprising immunogenic compositions may comprise an antigen, polypeptide, protein, protein fragment or nucleic acid in a pharmaceutically acceptable carrier.

More specifically, vaccines comprising immunogenic compositions comprise an immunologically effective amount of the immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (e.g., nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

Typically, the vaccine compositions or immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

The immunogenic compositions are conventionally administered parenterally, e.g., by injection, either subcutaneously or intramuscularly. Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal and transcutaneous applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed (e.g., Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648).

Gene therapy vehicles for delivery of constructs, including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

Retroviral vectors are well known in the art, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses e.g., MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g., HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) *Biotechniques* 6:616 and Rosenfeld (1991) *Science* 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102,

WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807. WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (i.e., there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) Human Gene Therapy 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors comprising sequences of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) Science 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ

described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in U.S. Serial No. 08/405,627, filed March 15, 1995,WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukarytic layered expression systems are also useful for expressing the nucleic acids of the invention. SeeWO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) *J. Biol. Standardization* 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) *J Cell Biochem* L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) *Proc Natl Acad Sci* 86:317; Flexner (1989) *Ann NY Acad Sci* 569:86, Flexner (1990) *Vaccine* 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) *Nature* 277:108 and Madzak (1992) *J Gen Virol* 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) *Proc Natl Acad Sci* 87:3802-3805; Enami & Palese (1991) *J Virol* 65:2711-2713 and Luytjes (1989) *Cell* 59:110, (see also McMichael (1983) *NEJ Med* 309:13, and Yap (1978) *Nature* 273:238 and Nature (1979) 277:108); human

immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) *J. Virol.* 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-1251, ATCC VR-1242; Western encephalitis virus, for example ATCC VR-740 and those described in Hamre (1966) *Proc Soc Exp Biol Med* 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu &

Naked DNA may also be employed to transform a host cell. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in U.S. 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin et al (1994) Proc. Natl. Acad. Sci. USA 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in U.S. 5,149,655; use of ionizing radiation for activating transferred gene, as described in U.S. 5,206,152 and WO92/11033.

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; inWO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered ex vivo, to cells derived from the subject; or (3) in vitro for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a tumor or lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal applications, needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the ex vivo delivery and reimplantation of transformed cells into a subject are known in the art and described in eg. WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF),

granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B.Hormones, Vitamins, Etc.

44

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C.Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides or polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccarides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D.Lipids, and Liposomes

The desired polynucleotide or polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide or polypeptide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner supra). Other commercially available liposomes include transfectace (DDAB/DOPE) and

DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, eg. Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA 76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide or polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been

isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phopholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750.

Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443.

Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA.

Further description of lipoproteins can be found in Zuckermann et al., PCT. Appln. No. US97/14465.

F.Polycationic Agents

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide or polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic Polycationic Agents

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin□, and lipofectAMINE□ are monomers that form polycationic complexes when combined with polynucleotides or polypeptides.

Immunodiagnostic Assays

Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, etc.) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200 \Box C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1µg for a plasmid or phage digest to 10⁻⁹ to 10⁻⁸ g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy

yeast gene can be detected with an exposure time of only 1 hour starting with 1 μ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10^8 cpm/ μ g. For a single-copy mammalian gene a conservative approach would start with 10 μ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10^8 cpm/ μ g, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

Tm= $81 + 16.6(\log_{10}\text{Ci}) + 0.4[\%(G + C)] - 0.6(\%\text{formamide}) - 600/n - 1.5(\%\text{mismatch}).$ where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) *Anal. Biochem.* 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are $42\Box C$ for a probe with is 95% to 100% homologous to the target fragment, $37\Box C$ for 90% to 95% homology, and $32\Box C$ for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be

washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

One example of a nucleotide hybridization assay is described by Urdea *et al.* in international patent application WO92/02526 [see also US patent 5,124,246].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis et al. [Meth. Enzymol. (1987) 155: 335-350]; US patent 4,683,195; and US patent 4,683,202. Two "primer" nucleotides hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes

containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

EXAMPLES

The examples describe nucleic acid sequences which have been identified in N. meningitidis, and N. gonorrhoeae along with their respective and putative translation products. Not all of the nucleic acid sequences are complete ie. they encode less than the full-length wild-type protein.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in N. meningitidis
- the putative translation product of said N. meningitidis sequence
- a computer analysis of said translation product based on database comparisons
- a corresponding nucleotide sequence identified from N. gonorrhoeae
- the putative translation product of said N. gonorrhoeae sequence
- a comparision of the percentage of identity between the translation product of the *N. meningitidis* sequence and the *N. gonorrhoeae* sequence.
- a corresponding nucleotide sequence identified from strain A of N. meningitidis
- the putative translation product of said N. meningitidis strain A sequence
- a comparision of the percentage of identity between the translation product of the N. meningitidis sequence and the N. gonorrhoeae sequence.
- a description of the characteristics of the protein which indicates that it might be suitably antigenic or immunogenic.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLAST1, BLAST2, tBLAST1, tBLAST2, tBLAST2, & tBLAST2 [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

Dots within nucleotide sequences represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters represent ambiguities which arose during

alignment of independent sequencing reactions (some of the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti *et al.*[Critical evaluation of the hydropathy of membrane proteins (1990) *Eur J Biochem* 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

For each of the following examples: based on the presence of a putative leader sequence and/or several putative transmembrane domains (single-underlined) in the gonococcal protein, it is predicted that the proteins from *N. meningitidis* and *N. gonorrhoeae*, and their respective epitopes, could be useful antigens or immunogenic compositions for vaccines or diagnostics.

The standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilize the disclosed sequences for vaccination or diagnostic purposes) were summarized above. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

In particular, the following methods were used to express, purify and biochemically characterize the proteins of the invention.

Chromosomal DNA Preparation

N.meningitidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20%(w/v) Sucrose, 50mM Tris-HCl, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml of lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension incubated at 37°C for 2 hours. Two phenol extractions (equilibrated to pH 8) and one CHCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes of ethanol, and collected by centrifugation.

Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by designing the 5' primers to sequence immediately downstream from the predicted leader sequence.

For most ORFs, the 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, EcoRI-NdeI or EcoRI-NheI), depending on the restriction pattern of the gene of interest. The 3' primers included a XhoI or a HindIII restriction site (table 1). This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using BamHI-XhoI, BamHI-HindIII, EcoRI-XhoI or EcoRI-HindIII), and pET21b+ (using NdeI-XhoI, NheI-XhoI, NdeI-HindIII or NheI-HindIII).

5'-end primer tail:	CGCGGATCCCATATG	(BamHI-NdeI)
	CGCGGATCCGCTAGC	(BamHI-NheI)
	CCGGAATTCTACATATG	(EcoRI-NdeI)
	CCGGAATTCTAGCTAGC	(EcoRI-NheI)
3'-end primer tail:	CCCG <u>CTCGAG</u> CCCG <u>CTCGAG</u>	(XhoI) (HindIII)

For cloning ORFs into the pGEX-His vector, the 5' and 3' primers contained only one restriction enzyme site (*EcoRI*, *KpnI* or *SalI* for the 5' primers and *PstI*, *XbaI*, *SphI* or *SalI* for the 3' primers). Again restriction sites were chosen according to the particular restriction pattern of the gene (table 1).

5'-end primer tail:	(AAA) AAAGAATTC	(EcoRI)
	(AAA) AAAGGTACC	(KpnI)
3'-end primer tail:	(AAA) AAA <u>CTGCAG</u>	(PstI)
	(AAA) AAATCTAGA	(XbaI)

AAAGCATGC

(SphI)

5' or 3'-end primer tail:

AAAAAAGTCGAC (Sall)

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The melting temperature depended on the number and type of hybridising nucleotides in the whole primer, and was determined for each primer using the formulae:

$$T_m = 4 (G+C)+ 2 (A+T)$$
 (tail excluded)
 $T_m = 64.9 + 0.41 (\% GC) - 600/N$ (whole primer)

The melting temperatures of the selected oligonucleotides were usually 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

Table 1 shows the forward and reverse primers used for each amplification. In certain cases, the sequence of the primer does not exactly match the sequence of the predicted ORF. This is because when initial amplifications were performed, the complete 5' and/or 3' sequences for some meningococcal B ORFs were not known. However the corresponding sequences had been identified in Gonococcus or in Meningoccus A. Hence, when the Meningoccus B sequence was incomplete or uncertain, Gonococcal or Meningococcal A sequences were used as the basis for primer design. These sequences were altered to take account of codon preference. It can be appreciated that, once the complete sequence is identified, this approach will no longer be necessary.

Oligonucleotides were synthesized using a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2.0ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were centrifuged and the pellets resuspended in either $100\mu l$ or 1.0ml of water. The OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectophotometer and the concentration adjusted to 2-10pmol/ μl .

Amplification

The standard PCR protocol was as follows: 50-200ng of genomic DNA was used as a template in the presence of $20-40\mu M$ of each oligonucletide primer, $400-800\mu M$ dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units TaqI DNA polymerase (using

WO 99/57280

Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase). In some cases, PCR was optimsed by the addition of 10µl DMSO or 50µl 2M Betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a two-step amplification. The first 5 cycles were performed using the hybridization temperature that excluded the restriction enzyme tail of the primer (see above). This was followed by 30 cycles using the hybridization temperature calculated for the whole length oligos. The cycles were completed with a 10 minute extension step at 72°C. The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation
First 5 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	50-55°C	72°C
Last 30 cycles	30 seconds	30 seconds	30-60 seconds
	95°C	65-70°C	72°C

Elongation times varied according to the length of the ORF to be amplified.

Amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% (w/v) agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a volume suitable to be loaded on a 1.0% agarose gel. The DNA fragment corresponding to the band of correct size was purified using the Qiagen Gel Extraction Kit, following the manufacturer's protocol. DNA fragments were eluted in a volume of 30µl or 50µl with either H2O or 10mM Tris, pH 8.5.

Digestion of PCR fragments

The purified DNA corresponding to the amplified fragment was doubly-digested with the appropriate restriction enzymes for; cloning into pET-21b+ and expressing the protein as a C-terminus His-tagged fusion, for cloning into pGEX-KG and expressing the protein as a N-

terminus GST-fusion, and for cloning into pGEX-His and expressing the protein as a N-terminus GST-His tagged fusion.

Each purified DNA fragment was incubated at 37°C for 3 hours to overnight with 20 units of appropriate restriction enzyme (New England Biolabs) in a volume of either 30 or 40µl in the presence of suitable digestion buffer. Digested fragments were purified using the QIAquick PCR purification kit (following the manufacturer's instructions) and eluted in a volume of 30µl or 50µl with either H2O or 10mM Tris, pH 8.5. The DNA concentration was determined by quantitative agarose gel electrophoresis (1.0% gel) in the presence of a titrated molecular weight marker.

Digestion of the cloning vectors (pET22B, pGEX-KG, pTRC-His A, pET21b+, pGEX-KG, and pGEX-His)

The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream of the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).10 μ g plasmid was double-digested with 50 units of each restriction enzyme in 200 μ l reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in 50 μ l of 10 mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD₂₆₀ of the sample, and adjusted to 50 μ g/ μ l. 1 μ l of plasmid was used for each cloning procedure.

 $10\mu g$ of plasmid vector was doubly-digested with 50 units of each restriction enzyme in a volume of 200 μl with the appropriate buffer overnight at 37°C. The digest was loaded onto a 1.0% agarose gel and the band corresponding to the digested vector purified using the Qiagen QIAquick Gel Extraction Kit. DNA was eluted in 50 μl of 10mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD_{260nm} and the concentration adjusted to $50\mu g/\mu l$. $1\mu l$ of plasmid was used for each cloning procedure.

Cloning

For some ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20 μ l, a molar

WO 99/57280

ratio of 3:1 fragment/vector was ligated using 0.5 μ l of NEB T4 DNA ligase (400 units/ μ l), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit", following the manufacturer's instructions.

In order to introduce the recombinant plasmid in a suitable strain, $100~\mu l$ *E. coli* DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding 800 μl LB broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200 μl of the supernatant. The suspension was then plated on LB ampicillin (100 mg/ml).

The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37 °C in either 2 ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100 µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30 µl. 5 µl of each individual miniprep (approximately 1g) were digested with either *NdeI/XhoI* or *BamHI/XhoI* and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

For other ORFs, the fragments corresponding to each ORF, previously digested and purified, were ligated into both pET21b+ and pGEX-KG. A molar ratio of of 3:1 fragment/vector was used in a final volume of 20µl, that included 0.5µl T4 DNA ligase (400 units/µl, NEB) and ligation buffer supplied by the manufacturer. The reaction was performed at room temperature for 3 hours. In some experiments, ligation was performed using the Boheringer "Rapid Ligation Kit" and the manufacturer's protocol.

Recombinant plasmid was transformed into 100µl of competent *E. coli* DH5 or HB101 by incubating the ligase reaction solution and bacteria for 40 minutes on ice then at 37°C for 3 minutes. This was followed by the addition of 800µl LB broth and incubation at 37°C for 20 minutes. The cells were centrifuged at maximum speed in an Eppendorf microfuge, resuspended in approximately 200µl of the supernatant and plated onto LB ampicillin (100mg/ml) agar.

٠...

Screening for recombinant clones was performed by growing 5 randomly selected colonies overnight at 37°C in either 2.0ml (pGEX-KG clones) or 5.0ml (pET clones) LB broth + 100µg/ml ampicillin. Cells were pelleted and plasmid DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions. Approximately 1µg of each individual miniprep was digested with the appropriate restriction enzymes and the digest loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1kb DNA Ladder, GIBCO). Positive clones were selected on the basis of the size of insert.

ORFs were cloned into PGEX-His, by doubly-digesting the PCR product and ligating into similarly digested vector. After cloning, recombinant plasmids were transformed into the E.coli host W3110. Individual clones were grown overnight at 37°C in LB broth with $50\mu g/ml$ ampicillin.

Certain ORFs may be cloned into the pGEX-HIS vector using *EcoRI-PstI* cloning sites, or *EcoRI-SalI*, or *SalI-PstI*. After cloning, the recombinant plasmids may be introduced in the *E*.coli host W3110.

Expression

Each ORF cloned into the expression vector may then be transformed into the strain suitable for expression of the recombinant protein product. 1 μl of each construct was used to transform 30 μl of *E.coli* BL21 (pGEX vector), *E.coli* TOP 10 (pTRC vector) or *E.coli* BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same *E.coli* strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100 μg/ml), incubated at 37°C overnight, then diluted 1:30 in 20 ml of LB+Amp (100 μg/ml) in 100 ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addiction of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2 mM. After 3 hours incubation at 30°C, the final concentration of the sample was checked by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet

resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

GST-fusion proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid colture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600 ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000 rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4C. The resin was washed twice with 10 ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD₂₈₀ of 0.02-0.06. The GST-fusion protein was eluted by addition of 700µl cold Glutathione elution buffer 10mM reduced glutathione, 50mM Tris-HCl) and fractions collected until the OD_{280} was 0.1. $21\mu l$ of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M") (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

For other ORFs, for each clone to be purified as a GST-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp. (100µg/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 µg/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100µg/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Recombinant protein expression was induced by addition of IPTG (final concentration 0.2mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

The bacterial pellet was resuspended in 7.5ml cold PBS. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia), previously equilibrated with PBS, and incubated at room temperature with gentle agitation for 30 min. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batchwise) with 10ml cold PBS for 10 min, resuspended in 1ml cold PBS, and loaded onto a disposable column. The resin continued to be washed with cold PBS, until the OD_{280nm} of the flow-through reached 0.02-0.01. The GST-fusion protein was eluted by addition of $700\mu l$ cold glutathione elution buffer (10mM reduced glutathione, 50mM Tris-HCl pH 8.0) and fractions collected, until the OD_{280nm} of the eluate indicated all the recombinant protein was obtained. 20μl aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. The molecular mass of the purified proteins was determined using either the Bio-Rad broad range molecular weight standard (M1) (200, 116, 97.4, 66.2, 45.0, 31.0, 21.5, 14.4, 6.5 kDa) or the Amersham Rainbow Marker (M2) (220, 66.2, 46.0, 30.0, 21.5, 14.3 kDa). The molecular weights of GST-fusion proteins are a combination of the 26 kDa GST protein and its fusion partner. Protein concentrations were estimated using the Bradford assay.

His-fusion soluble proteins large-scale purification.

For some ORFs, a single colony was grown overnight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000 rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml cold 10mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 10 mM imidazole, pH 8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again. The supernatant was collected and mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with 10mM imidazole buffer) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10 ml cold 10mM imidazole buffer for 10 minutes,

resuspended in 1ml cold 10mM imidazole buffer and loaded on a disposable column. The resin was washed at 4°C with 2ml cold 10mM imidazole buffer until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The resin was washed with 2ml cold 20mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 20 mM imidazole, pH 8) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700 μ l cold 250mM imidazole buffer (300 mM NaCl, 50 mM phosphate buffer, 250 mM imidazole, pH 8) and fractions collected until the O.D₂₈₀ was 0.1. 21 μ l of each fraction were loaded on a 12% SDS gel.

His-fusion insoluble proteins large-scale purification.

A single colony was grown overnight at 37 °C on a LB + Amp agar plate. The bacteria were inoculated into 20 ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml fresh medium and let to grow at the optimal temperature (37°C) to O.D550 0.6-0.8. Protein expression was induced by addition of 1 mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5 ml buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8). The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was stored at -20°C, while the pellets were resuspended in 2 ml guanidine buffer (6M guanidine hydrochloride, 100mM phosphate buffer, 10 mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000 rpm for 40 minutes. The supernatant was mixed with $150\mu l$ Ni²⁺-resin (Pharmacia) (previously washed with buffer B) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700 g for 5 minutes at 4°C. The resin was washed twice with 10 ml buffer B for 10 minutes, resuspended in 1ml buffer B, and loaded on a disposable column. The resin was washed at room temperature with 2ml buffer B until the flow-through reached the OD₂₈₀ of 0.02-0.06. The resin was washed with 2ml buffer C (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the $O.D_{280}$ of 0.02-0.06. The His-fusion protein was eluted by addition of 700µl elution buffer (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions collected until the OD₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel.

Purification of His-fusion proteins.

For each clone to be purified as a His-fusion, a single colony was streaked out and grown overnight at 37°C on a LB/Amp (100 μ g/ml) agar plate. An isolated colony from this plate was inoculated into 20ml of LB/Amp (100 μ g/ml) liquid medium and grown overnight at 37°C with shaking. The overnight culture was diluted 1:30 into 600ml LB/Amp (100 μ g/ml) liquid medium and allowed to grow at the optimal temperature (20-37°C) until the OD_{550nm} reached 0.6-0.8. Expression of recombinant protein was induced by addition of IPTG (final concentration 1.0mM) and the culture incubated for a further 3 hours. Bacteria were harvested by centrifugation at 8000xg for 15 min at 4°C.

The bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCl, 50mM phosphate buffer, 10mM imidazole, pH 8.0) for soluble proteins or (ii) buffer B (8M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. For insoluble proteins, pellets were resuspended in 2.0 ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCl, pH 7.5) and treated with a Dounce homogenizer for 10 cycles. The homogenate was centrifuged at 13 000xg for 40 min and the supernatant retained.

Supernatants for both soluble and insoluble preparations were mixed with 150µl Ni²⁺ resin (previously equilibrated with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 min. The resin was Chelating Sepharose Fast Flow (Pharmacia), prepared according to manufacturers protocol. The batch-wise preparation was centrifuged at 700xg for 5 min at 4°C and the supernatant discarded. The resin was washed twice (batch-wise) with 10ml buffer A or B for 10 min, resuspended in 1.0 ml buffer A or B and loaded onto a disposable column. The resin continued to be washed with either (i) buffer A at 4°C or (ii) buffer B at room temperature, until the OD_{280nm} of the flow-through reached 0.02-0.01. The resin was further washed with either (i) cold buffer C (300mM NaCl, 50mM phosphate buffer, 20mM imidazole, pH 8.0) or (ii) buffer D (8M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the the OD_{280nm} of the flow-through reached 0.02-0.01. The His-fusion protein was eluted by addition of 700µl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8.0) or (ii) elution buffer B (8 M urea, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions

collected until the $O.D_{280nm}$ indicated all the recombinant protein was obtained. $20\mu l$ aliquots of each elution fraction were analyzed by SDS-PAGE using a 12% gel. Protein concentrations were estimated using the Bradford assay.

His-fusion proteins renaturation

In the cases where denaturation was required to solubilize proteins, a renaturation step was employed prior to immunization. Glycerol was added to the denatured fractions obtained above to give a final concentration of 10%(v/v). The proteins were diluted to 200µg/ml using dialysis buffer I (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, 2.0M urea, pH 8.8) and dialysed against the same buffer for 12-14 hours at 4°C. Further dialysis was performed with buffer II (10% (v/v) glycerol, 0.5M arginine, 50mM phosphate buffer, 5.0mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C.

Alternatively, 10% glycerol was added to the denatured proteins. The proteins were then diluted to $20\mu g/ml$ using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4° C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4° C.

Protein concentration was evaluated using the formula:

Protein (mg/ml) =
$$(1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

Purification of proteins

To analyse the solubility, pellets obtained from 3.0ml cultures were resuspended in 500µl buffer M1 (PBS pH 7.2). 25µl of lysozyme (10mg/ml) was added and the bacteria incubated for 15 min at 4°C. Cells were disrupted by sonication on ice four times for 30 sec at 40W using a Branson sonifier 450 and centrifuged at 13 000xg for 30 min at 4°C. The supernatant was collected and the pellet resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂PO₄] overnight at 4°C. The

supernatants from all steps were analysed by SDS-PAGE. Some proteins were found to be soluble in PBS, others need urea or guanidium-HCl for solubilization.

For preparative scale purifications, 500ml cultures were induced and fusion proteins solubilized in either buffer M1, M2 or M3 using the procedure described above. Crude extracts were loaded onto a Ni-NTA superflow column (Quiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer employed. Unbound material was eluted by washing the column with the same buffer. The recombinant fusion protein was eluted with the corresponding buffer containing 500mM imidazole then dialysed against the same buffer in the absence of imidazole.

Mice immunisations

20μg of each purified protein are used to immunise mice intraperitoneally. In the case of some ORFs, Balb-C mice were immunised with Al(OH)₃ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For other ORFs, CD1 mice could be immunised using the same protocol. For ORFs 25 and 40, CD1 mice were immunised using Freund's adjuvant, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for still other ORFs, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49. Alternatively, 20μg of each purified protein was mixed with Freund's adjuvant and used to immunise CD1 mice intraperitoneally. For many of the proteins, the immunization was performed on days 1, 21 and 35, and immune response was monitored in samples taken on days 34 and 49. For some proteins, the third immunization was performed on day 28, rather than 35, and the immune response was measured on days 20 and 42, rather than 34 and 49.

ELISA assay (sera analysis)

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000 rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated

for 2 hours at room temperature and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200 µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200 µl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN3 in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100 µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100 µl of substrate buffer for HRP (25 ml of citrate buffer pH5, 10 mg of O-phenildiamine and 10 µl of H₂O) were added to each well and the plates were left at room temperature for 20 minutes. 100 µl H₂SO₄ was added to each well and OD₄₉₀ was followed. The ELISA was considered positive when OD490 was 2.5 times the respective pre-immune sera.

Alternatively, The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10 000rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 1 hour at 37°C and then overnight at 4°C with stirring. 100µl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200µl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200µl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 100µl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at 37°C. Wells were washed three times with PBT buffer. 100µl of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-

phenildiamine and $10\mu l$ of H_2O_2) were added to each well and the plates were left at room temperature for 20 minutes. $100\mu l$ of 12.5% H_2SO_4 was added to each well and OD_{490} was followed. The ELISA titers were calculated abitrarely as the dilution of sera which gave an OD_{490} value of 0.4 above the level of preimmune sera. The ELISA was considered positive when the dilution of sera with OD_{490} of 0.4 was higher than 1:400.

FACScan bacteria Binding Assay procedure.

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA in PBS, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD₆₂₀ of 0.07. 100µl bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:100, 1:200, 1:400) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab)₂ goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of $200\mu l$ /well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan (Laser Power 15mW) setting were: FL2 on; FSC-H threshold:92; FSC PMT Voltage: E 01; SSC PMT: 474; Amp. Gains 6.1; FL-2 PMT: 586; compensation values: 0.

OMV preparations

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10' on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000g for 10 minutes and the total cell envelope

fraction recovered by centrifugation at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30' minutes.

Western blotting

WO 99/57280

Purified proteins (500ng/lane), outer membrane vesicles (5μg) and total cell extracts (25μg) derived from MenB strain 2996 were loaded onto a 12% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, using transfer buffer (0.3 % Tris base, 1.44 % glycine, 20% (v/v) methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled anti-mouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

Bactericidal assay

MC58 and 2996 strains were grown overnight at 37° C on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7ml Mueller-Hinton broth. The suspension was incubated at 37° C on a nutator and let to grow until OD_{620} was in between 0.5-0.8. The culture was aliquoted into sterile 1.5ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD_{620} of 0.5, diluted 1:20000 in Gey's buffer and stored at 25° C.

50µl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25µl of diluted (1:100) mice sera (dilution buffer: Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25µl of the previously described bacterial suspension were added to each well. 25µl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1h were counted.

Gene Variability

WO 99/57280

The *ORF4* and *919* genes were amplified by PCR on chromosomal DNA extracted from various Neisseria strains (see list of strains). The following oligonucleotides used as PCR primers were designed in the upstream and downstream regions of the genes:

```
orf 4.1 (forward) CGAATCCGGACGCAGGACTC
orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG

919.1 (forward) AAAATGCCTCTCCACGGCTG or
CTGCGCCCTGTGTTAAAATCCCCT
919.6 (reverse) CAAATAAGAAAGGAATTTTG or
GGTATCGCAAAACTTCGCCTTAATGCG
```

The PCR cycling conditions were:

1 cycle	2 min. at 94°
30 cycles	30 sec. at 94°
	30 sec. at $\sim 54^{\circ}$ or $\sim 60^{\circ}$ (in according to Tm of the primers)
	40 sec. at 72°
1 cycle	7 min. at 72°

The PCR products were purified from 1 % agarose gel and sequenced using the following primers:

```
orf 4.1 (forward) CGAATCCGGACGGCAGGACTC orf 4.2 (forward) CGACCGCGCCTTTGGGACTG orf 4.3 (reverse) GGCAGGGAATGGCGGATTAAAG orf 4.4 (reverse) TCTTTGAGTTTGATCCAACC
```

919.1	(forward)	AAAATGCCTCTCCACGGCTG or
		CTGCGCCCTGTGTTAAAATCCCCT
919.2	(forward)	ATCCTTCCGCCTCGGCTGCG
919.3	(forward)	AAAACAGCGGCACAATCGAC
919.4	(forward)	ATAAGGGCTACCTCAAACTC
919.5	(forward)	GCGCGTGGATTATTTTTGGG
919.6	(reverse)	CAAATAAGAAAGGAATTTTG or
		GGTATCGCAAAACTTCGCCTTAATGCG
919.7	(reverse)	CCCAAGGTAATGTAGTGCCG
919.8	(reverse)	TAAAAAAAGTTCGACAGGG
919.9	(reverse)	CCGTCCGCCTGTCGTCGCCC
919.10	(reverse)	TCGTTCCGGCGGGGTCGGGG

All documents cited herein are incorporated by reference in their entireties.

The following Examples are presented to illustrate, not limit, the invention

EXAMPLE 1

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 1: Oligonucleotides used for PCR for Examples 2-10

ORF	Primer	Sequence	Restriction sites
279	Forward	CGCGGATCCCATATG-TTGCCTGCAATCACGATT <seq 3021="" id=""></seq>	BamHI-Ndel
	Reverse	CCCGCTCGAG-TTTAGAAGCGGGCGGCAA <seq 3022="" id=""></seq>	Xhol
519	Forward	CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA	BamHI-Ndel
'	Reverse	CCCG <u>CTCGAG</u> -TTTGGCGGTTTTGCTGC <seq 3024="" id=""></seq>	Xhol
576	Forward	CGCGGATCCCATATG-GCCGCCCCCGCATCT	BamHl-Ndel
	Reverse	CCCGCTCGAG-ATTTACTTTTTTGATGTCGAC <seq 3026="" id=""></seq>	Xhol
919	Forward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -CGGGCGGTATTCGGG <seq 3028="" id=""></seq>	Xhol
121	Forward	CGCGGATCCCATATG-GAAACACAGCTTTACAT <seq 3029="" id=""></seq>	BamHI-Ndel

·			
	Reverse	CCCGCTCGAG-ATAATAATATCCCGCGCCC <seq 3030="" id=""></seq>	Xhol
128	Forward	CGCGGATCCCATATG-ACTGACAACGCACT <seq 3031="" id=""></seq>	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -GACCGCGTTGTCGAAA <seq 3032="" id=""></seq>	Xhol
206	Forward	CGCGGATCCCATATG-AAACACCGCCAACCGA	BamHI-NdeI
	Reverse	CCCGCTCGAG-TTCTGTAAAAAAAGTATGTGC <seq 3034="" id=""></seq>	Xhol
287	Forward	CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG <seq 3035="" id=""></seq>	EcoRl-Nhel
	Reverse	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC <seq 3036="" id=""></seq>	Xhol
406	Forward	CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-Ndel
	Reverse	CCCGCTCGAG-AGGTTGTCCTTGTCTATG <seq 3038="" id=""></seq>	Xhol

Localization of the ORFs

The following DNA and amino acid sequences are identified by titles of the following form: [g, m, or a] [#].[seq or pep], where "g" means a sequence from N. gonorrhoeae, "m" means a sequence from N. meningitidis B, and "a" means a sequence from N. meningitidis A; "#" means the number of the sequence; "seq" means a DNA sequence, and "pep" means an amino acid sequence. For example, "g001.seq" refers to an N. gonorrohoeae DNA sequence, number 1. The presence of the suffix "-1" to these sequences indicates an additional sequence found for the same ORF, thus, data for an ORF having both an unsuffixed and a suffixed sequence designation applies to both such designated sequences. Further, open reading frames are identified as ORF #, where "#" means the number of the ORF, corresponding to the number of the sequence which encodes the ORF, and the ORF designations may be suffixed with ".ng" or ".a", indicating that the ORF corresponds to a N. gonorrhoeae sequence or a N. meningitidis A sequence, respectively. The word "partial" before a sequence indicates that the sequence may be a partial or a complete ORF. Computer analysis was performed for the comparisons that follow between "g", "m", and "a" peptide sequences; and therein the "pep" suffix is implied where not expressly stated. Further, in the event of a conflict between the text immediately preceding and describing which sequences are being compared, and the

designated sequences being compared, the designated sequence controls and is the actual sequence being compared.

ORF: contig:

279 gnm4.seq

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3039>: m279.seq

- 1 ATAACGCGGA TTTGCGGCTG CTTGATTTCA ACGGTTTTCA GGGCTTCGGC 51 AAGTTTGTCG GCGGCGGGTT TCATCAGGCT GCAATGGGAA GGTACGGACA
- 101 CGGGCAGCGG CAGGGCGCGT TTGGCACCGG CTTCTTTGGC GGCAGCCATG
- 101 CGGGCAGCGG CAGGGCGCGT TTGGCACCGG CTTCTTTGGC GGCAGCCATG
 151 GCGCGTCCGA CGGCGGCGGC GTTGCCTGCA ATCACGATTT GTCCGGGTGA
- 201 GTTGAAGTTG ACGGCTTCGA CCACTTCGCT TTGGGCGGCT TCGGCACAAA
- 251 TGGCTTTAAC CTGCTCATCT TCCAAGCCGA GAATCGCCGC CATTGCGCCC
- 301 ACGCCTTGCG GTACGGCGGA CTGCATCAGT TCGGCGCGCA GGCGCACGAG
- 351 TTTGACCGCG TCGGCAAAAT TCAATGCGCC GGCGGCAACG AGTGCGGTGT
- 401 ATTCGCCGAG GCTGTGTCCG GCAACGGCGG CAGGCGTTTT GCCGCCCGCT
- 451 TCTAAATAG

This corresponds to the amino acid sequence <SEQ ID 3040; ORF 279>: m279.pep

- 1 ITRICGCLIS TVFRASASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
- 51 ARPTAAALPA ITICPGELKL TASTTSLWAA SAQMALTCSS SKPRIAAIAP
- 101 TPCGTADCIS SARRRTSLTA SAKFNAPAAT SAVYSPRLCP ATAAGVLPPA
- 151 SK

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3041>: g279.seq

- 1 atgacgcgga tttgcggctg cttgatttca acggttttga gtgtttcggc
 - 51 aagtttgtcg gcggcgggtt tcatcaggct gcaatgggaa ggaacggata
- 101 ccggcagcgg cagggcgcgt ttggctccgg cttctttggc ggcagccatg
- 151 gtgcgtccga cggcggcggc gttgcctgca atcacgactt gtccgggcga
- 201 gttgaagttg acggcttcga ccacttcgcc ctgtgcggat tcggcacaaa
- 251 tetgeetgae etgtteatet tecaaaceca aaatggeege cattgegeet
- 301 acgccttgcg gtacggcgga ctgcatcagt tcggcgcgca ggcggacgag
- 351 tttgacggca tcggcaaaat ccaatgcttc ggcggcgaca agcgcggtgt
- 401 attegeegag getgtgteeg geaacggegg caggegttt geegeecact
- 451 tccaaatag

This corresponds to the amino acid sequence <SEQ ID 3042; ORF 279.ng>: g279.pep

- 1 MTRICGCLIS TVLSVSASLS AAGFIRLQWE GTDTGSGRAR LAPASLAAAM
- 51 VRPTAAALPA ITTCPGELKL TASTTSPCAD SAQICLTCSS SKPKMAAIAP
- 101 TPCGTADCIS SARRRTSLTA SAKSNASAAT SAVYSPRLCP ATAAGVLPPT
- 151 SK*

ORF 279 shows 89.5% identity over a 152 aa overlap with a predicted ORF (ORF 279.ng) from N. gonorrhoeae:

	10	20	30	40	50	60
m279.pep	ITRICGCLISTVFR	ASASLSAAGF	IRLOWEGIDIC	GSGRARLAPA	SLAAAMARPT	2225.02
	: :	:11111111	1111111111		111111.111	
g279	MTRICGCLISTVLS	VSASLSAAGF	IRLOWEGIDIO	SGRARI.ADA	• ############################	ווווו
	10	20	30		DEFECTIVET.	MAMMPA
			30	40	50	60

	70	80	90	100	110	120
m279.pep	ITI CPGELKLTA:	STTSLWAASAQ	MALTCSSSKPR	IAAIAPTPCGT	ADCISSARRET	SI.TA
			:	:111111111	HILLIAM	1111
g279	ITTCPGELKLTA	STTSPCADSAQ:	ICLTCSSSKPK	MAAIAPTPCGT	ADCISSARRET	SLTA
	70	80	90	100	110	120
	130	140	150			
	SAKFNAPAATSAY					
g279 S	Saksnasaatsav	/YSPRLCPATA/	AGVLPPTSKX			
	130	140	150			
The following	partial DNA s	equence was	s identified is	n N. mening	itidis <seo 1<="" td=""><td>T) 3043>·</td></seo>	T) 3043>·
a279.seg	-	•			520	
1	ATGACNCNGA	TTTGCGGCTG	CTTGATTTCA	ACGGTTTNNA	GGGCTTCGGC	
51	GAGTTTGTCG	GCGGCGGGTT	TCATGAGGCT	GCAATGGGAA	GGTACNGACA	
101	CNGGCAGCGG	CAGGGCGCGT	TTGGCGCCGG	CTTCTTTGGC	GGCAAGCATA	
151	GCGCGCTCGA	CGGCGGCGGC	ATTGCCTGCA	ATCACGACTT	GTCCGGGCGA	
201	GTTGAAGTTG	ACGGCTTCAA	CCACTTCATC	CTGTGCGGAT	TCGGCGCAAA	
251	TTTGTTTTAC	CTGTTCATCT	TCCAAGCCGA	GAATCGCCGC	CATTGCGCCC	
301	ACGCCTTGCG	GTACGGCGGA	CTGCATCAGT	TCGGCGCGCA	NGCGCACGAG	
351	TTTGACCGCG	TCGGCAAAAT	CCAATGCGCC	GGCGGCAACN	AGTGCGGTGT	
401 451	TCCGAATAG	GCTGTGTCCG	GCAACGGCGG	CAGGCGTTTT	GCCGCCCGCT	
451	TCCGAATAG					
This correspond	de to the emin	o soid soons	maa <ceo ii<="" td=""><td>D 2044 OD:</td><td>D 050</td><td></td></ceo>	D 2044 OD:	D 050	
This correspond	as to me amm	o acid seque	лсе <2FO п	D 3044; OR	F 279.a>:	
a279.pep						
1 51	MTXICGCLIS	TVXRASASLS	AAGFMRLQWE	GTDTGSGRAR	LAPASLAASI	
			ח איסיסיטיים איני	CAULTURATE	SKPRTAATAP	
-	MDCCMADOT C	ITTCPGELKL	TASTISSCAD	DAQICE ICSS	OTTE CALLETIA	
101	TPCGTADCIS	ITTCPGELKL SARXRTSLTA	SAKSNAPAAT	SAVYSPXLCP	ATAAGVLPPA	
-	TPCGTADCIS SE*	ITTCPGELKL SARXRTSLTA	SAKSNAPAAT	SAVYSPXLCP	ATAAGVLPPA	
101 151	TPCGTADCIS SE*	SARXRTSLTA	SAKSNAPAAT	SAVYSPXLCP	ATAAGVLPPA	
101 151	TPCGTADCIS	sarxrtslta 279.a showe	saksnapaat :d a 88.2% id	SAVYSPXLCP	ataagvlppa 2 aa overlap	
101 151 m279/a279 O	TPCGTADCIS SE* ORFs 279 and	279.a showe	SAKSNAPAAT 2d a 88.2% id 20 30	SAVYSPXLCP	ATAAGVLPPA 2 aa overlap	60
101 151	TPCGTADCIS SE* ORFs 279 and 1	SARXRTSLTA 279.a showe 10 LISTVFRASASI	SAKSNAPAAT da 88.2% id 20 30 LSAAGFIRLOW	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR	ATAAGVLPPA 2 aa overlap 50	מם זג ג ביים
101 151 m279/a279 O m279.pep	TPCGTADCIS SE* PRFs 279 and I ITRICGCI :	279.a showe 10 2 LISTVFRASASI	SAKSNAPAAT da 88.2% id 20 30 LSAAGFIRLOWE	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF	PTAAALPA
101 151 m279/a279 O	TPCGTADCIS SE* PRFs 279 and I ITRICGCI :	279.a showe 10 2 LISTVFRASASI	SAKSNAPAAT d a 88.2% id 20 30 LSAAGFIRLOWE	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR:	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF	PTAAALPA STAAALPA
101 151 m279/a279 O m279.pep	TPCGTADCIS SE* PRFs 279 and I ITRICGCI :	279.a showe 10 2 LISTVFRASASI	SAKSNAPAAT da 88.2% id 20 30 LSAAGFIRLOWE	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR:	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF	PTAAALPA
101 151 m279/a279 O m279.pep	TPCGTADCIS SE* PRFs 279 and I ITRICGCI :	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLOWE LSAAGFMRLOWE 20 30	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50	RPTAAALPA STAAALPA 60
101 151 m279/a279 O m279.pep a279	TPCGTADCIS SE* PRFs 279 and I ITRICGCI : MTXICGCI	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLQWE LSAAGFMRLQWE 20 30	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50	RPTAAALPA STAAALPA 60
101 151 m279/a279 O m279.pep	TPCGTADCIS SE* ORFs 279 and ITRICGCI : MTXICGCI ITICPGEI	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLW	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLQWE !!!!!!!!!!! LSAAGFMRLQWE 20 30 80 90 AASAQMALTCS	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40 0 100 ESKPRIAAIAP	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 FPCGTADCISSA	RPTAAALPA RSTAAALPA 60 120
101 151 m279/a279 O m279.pep a279	TPCGTADCIS SE* PRFs 279 and ITRICGCI : MTXICGCI ITICPGEI	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLW	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLOWE LSAAGFMRLOWE 20 30 80 90 AASAQMALTCS	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR 11111111111111111111111111111111111	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 IPCGTADCISSA	RPTAAALPA STAAALPA 60 120 RRRTSLTA
101 151 m279/a279 O m279.pep a279	TPCGTADCIS SE* PRFs 279 and ITRICGCI : MTXICGCI ITICPGEI	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLW	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLOWE LSAAGFMRLOWE 20 30 80 90 AASAQMALTCS	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40 0 100 SSKPRIAAIAP: SSKPRIAAIAP:	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 PPCGTADCISSF	RPTAAALPA RSTAAALPA 60 120 RRRTSLTA
101 151 m279/a279 O m279.pep a279	TPCGTADCIS SE* ORFs 279 and ITRICGCI : MTXICGCI ITICPGEI	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLW	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLQWE !!!!!!!!!!! LSAAGFMRLQWE 20 30 80 90 AASAQMALTCSS !!!!::!!!! ADSAQICFTCSS	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40 0 100 SSKPRIAAIAP: SSKPRIAAIAP:	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 IPCGTADCISSA	RPTAAALPA STAAALPA 60 120 RRRTSLTA
101 151 m279/a279 O m279.pep a279 m279.pep a279	TPCGTADCIS SE* ORFs 279 and ITRICGCI : MTXICGCI ITICPGEI	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLWF	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLOWE LSAAGFMRLOWE 20 30 80 90 AASAQMALTCSS : ADSAQICFTCSS 80 90	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40 0 100 SSKPRIAAIAP: SSKPRIAAIAP: 0 100	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 PPCGTADCISSF	RPTAAALPA RSTAAALPA 60 120 RRRTSLTA
101 151 m279/a279 O m279.pep a279	TPCGTADCIS SE* ORFs 279 and ITRICGCI : MTXICGCI ITICPGEI ITTCPGEI	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLWA LKLTASTTSSCA 70 8	SAKSNAPAAT ed a 88.2% id 20 30 LSAAGFIRLOWE LSAAGFMRLOWE 20 30 80 90 AASAQMALTCSS : ADSAQICFTCSS 80 90 40 150 CPATAAGVLPPA	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40 0 100 SSKPRIAAIAP: SSKPRIAAIAP: 0 100 0 100 0 100 0 100 0 100	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 PPCGTADCISSF	RPTAAALPA RSTAAALPA 60 120 RRRTSLTA
101 151 m279/a279 O m279.pep a279 m279.pep a279	TPCGTADCIS SE* ORFs 279 and TITRICGCI ITRICGCI HILLING MTXICGCI ITICPGEI ITTCPGEI ITTCPGEI SAKFNAPA	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLWF LKLTASTTSCF 70 6	SAKSNAPAAT cd a 88.2% id 20 30 LSAAGFIRLQWI LSAAGFMRLQWI LSAAGFMRLQWI 20 30 80 90 AASAQMALTCSS : : ADSAQICFTCSS 80 90 40 150 CPATAAGVLPPA	SAVYSPXLCP lentity in 152 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40 0 100 SSKPRIAAIAP: SSKPRIAAIAP: 0 100 0 100	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 PPCGTADCISSF	RPTAAALPA RSTAAALPA 60 120 RRRTSLTA
101 151 m279/a279 O m279.pep a279 m279.pep a279	TPCGTADCIS SE* ORFs 279 and ITRICGCI : MTXICGCI ITICPGEI ITTCPGEI SAKFNAPA SAKSNAPA	279.a showe 10 2 LISTVFRASASI LISTVXRASASI 10 2 70 8 LKLTASTTSLWF LKLTASTTSCF 70 6	SAKSNAPAAT cd a 88.2% id 20 30 LSAAGFIRLQWE 111111111111111111111111111111111111	SAVYSPXLCP lentity in 15% 0 40 EGTDTGSGRAR: EGTDTGSGRAR: 0 40 0 100 SSKPRIAAIAP: SSKPRIAAIAP: 0 100 0 ASKX ASKX	ATAAGVLPPA 2 aa overlap 50 LAPASLAAAMAF :: LAPASLAASIAF 50 110 PPCGTADCISSF	RPTAAALPA RSTAAALPA 60 120 RRRTSLTA

519 and 519-1 gnm7.seq

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3045>: m519.seq (partial)

1	TCCGTTATCG	GGCGTATGGA	GTTGGACAAA	ACGTTTGAAG	AACGCGACGA
51	AATCAACAGT	ACTGTTGTTG	CGGCTTTGGA	CGAGGCGGCC	GGGaCTTaGG
101	GTGTGAAGGT	TTTGCGTTAT	GAGATTAAAG	ACTTGGTTCC	GCCGCAAGAA
151	ATCCTTCGCT	CAATGCAGGC	GCAAATTACT	GCCGAACGCG	AAAAACGCGC
201	CCGTATCGCC	GAATCCGAAG	GTCGTAAAAT	CGAACAAATC	AACCTTCCCA

```
251
                  GTGGTCAGCG CGAAGCCGAA ATCCAACAAT CCGAAGGCGA GGCTCAGGCT
                  GCGGTCAATG CGTCAAATGC CGAGAAAATC GCCCGCATCA ACCGCGCCAA
           301
                  AGGTGAAGCG GAATCCTTGC GCCTTGTTGC CGAAGCCAAT GCCGAAGCCA
           351
                  TCCGTCAAAT TGCCGCCGCC CTTCAAACCC AAGGCGGTGC GGATGCGGTC
           401
                 AATCTGAAGA TTGCGGAACA ATACGTCGCT GCGTTCAACA ATCTTGCCAA
           451
                 AGAAAGCAAT ACGCTGATTA TGCCCGCCAA TGTTGCCGAC ATCGGCAGCC
           501
                 TGATTTCTGC CGGTATGAAA ATTATCGACA GCAGCAAAAC CGCCAAaTAA
           551
This corresponds to the amino acid sequence <SEQ ID 3046; ORF 519>:
     m519.pep
                 (partial)
                ... SVIGRMELDK TFEERDEINS TVVAALDEAA GAWGVKVLRY EIKDLVPPQE
            1
                  ILRSMQAQIT AEREKRARIA ESEGRKIEQI NLASGQREAE IQOSEGEAOA
           51
                 AVNASNAEKI ARINRAKGEA ESLRLVAEAN AEAIRQIAAA LQTQGGADAV
          101
                 NLKIAEQYVA AFNNLAKESN TLIMPANVAD IGSLISAGMK IIDSSKTAK*
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3047>:
     g519.seq
               atggaatttt tcattatctt gttggcagcc gtcgccgttt tcggcttcaa
            1
           51 atcctttgtc gtcatccccc agcaggaagt ccacgttgtc gaaaggctcg
          101 ggcgtttcca tcgcgccctg acggccggtt tgaatatttt gattcccttt
          151 atcgaccgcg tcgcctaccg ccattcgctg aaagaaatcc ctttagacgt
          201 acccagecag gtetgeatea egegegataa taegeaattg actgttgaeg
               gcatcatcta tttccaagta accgatccca aactcgcctc atacggttcg
          301 agcaactaca ttatggcaat tacccagett geccaaacga egetgegtte
          351 cgttatcggg cgtatggagt tggacaaaac gtttgaagaa cgcgacgaaa
          401 tcaacagtac cgtcgtctcc gccctcgatg aagccgccgg ggcttggggt
          451 gtgaaagtcc tccgttacga aatcaaggat ttggttccgc cgcaagaaat
          501 ccttcgcgca atgcaggcac aaattaccgc cgaacgcgaa aaacgcgccc
          551 gtattgccga atccgaaggc cgtaaaatcg aacaaatcaa ccttgccagt
               ggtcagcgtg aagccgaaat ccaacaatcc gaaggcgagg ctcaggctgc
               ggtcaatgcg tccaatgccg agaaaatcgc ccgcatcaac cgcgccaaag
               gcgaagcgga atccctgcgc cttgttgccg aagccaatgc cgaagccaac
          751 cgtcaaattg ccgccgccct tcaaacccaa agcggggcgg atgcggtcaa
          801 tctgaagatt gcgggacaat acgttaccgc gttcaaaaat cttgccaaag
               aagacaatac gcggattaag cccgccaagg ttgccgaaat cgggaaccct
               aattttcggc ggcatgaaaa attttcgcca gaagcaaaaa cggccaaata
          951
               а
This corresponds to the amino acid sequence <SEQ ID 3048; ORF 519.ng>:
     g519.pep
               MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
               IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
               SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG
          151 VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS
          201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAN
          251 RQIAAALQTQ SGADAVNLKI AGQYVTAFKN LAKEDNTRIK PAKVAEIGNP
          301 NFRRHEKFSP EAKTAK*
ORF 519 shows 87.5% identity over a 200 aa overlap with a predicted ORF (ORF 519.ng)
from N. gonorrhoeae:
     m519/g519
                                                        10
                                                                   20
     m519.pep
                                                 SVIGRMELDKTFEERDEINSTVVAALDEAA
                                                 1111111111111111111111111111111
                  YFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA
     g519
                    90
                             100
                                       110
                                                 120
                                                           130
                                                                      140
                                              60
                                                        70
                  GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE
     m519.pep
```

WO 99/57280

GAWGVKVLRYEIKDLVPPQEILRAMQAQITAEREKRARIAESEGRKIEQINLASGQREAE g519 150 160 170 180 190 200 100 110 120 130 IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEAIRQIAAALQTQGGADAV m519.pep IQQSEGEAQAAVNASNAEKIARINRAKGEAESLRLVAEANAEANRQIAAALQTQSGADAV g519 220 230 240 250 260 160 170 180 190 200 NLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL-ISAGMKIIDSSKTAK m519.pep 1: NLKIAGQYVTAFKNLAKEDNTRIKPAKVAEIGNPNFRRHEKFSPEAKTAK g519 270 280 290 300 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3049>: a519.seq ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG 51 101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT 201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG 251 GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC 301 351 CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA TCAACAGCAC CGTCGTCTCC GCCCTCGATG AAGCCGCCGG AGCTTGGGGT 401 451 GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT CCTTCGCTCA ATGCAGGCGC AAATTACTGC TGAACGCGAA AAACGCGCCC 501 551 GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT 601 GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC 651 GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC 701 751 CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA TCTGAAGATT GCGGAACAAT ACGTCGCCGC GTTCAACAAT CTTGCCAAAG AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG 901 ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA This corresponds to the amino acid sequence <SEO ID 3050; ORF 519.a>: a519.pep MEFFIILLAA VVVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF IDRVAYRHSL KEIPLDVPSQ VCITRONTQL TVDGIIYFQV TDPKLASYGS 51 SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG 101 VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS GOREAEIQOS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI 201 251 RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL ISAGMKIIDS SKTAK* 301 ORFs 519 and 519.a showed a 99.5% identity in 199 aa overlap m519/a519 SVIGRMELDKTFEERDEINSTVVAALDEAA m519.pep a519 YFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIGRMELDKTFEERDEINSTVVSALDEAA 100 110 120 130 140 40 50 60 70 80 GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE m519.pep GAWGVKVLRYEIKDLVPPQEILRSMQAQITAEREKRARIAESEGRKIEQINLASGQREAE a519 150 160 170 180 190

100

110

120

130

140

150

75

m519.pep

m519.pep

a519

a519

IQQSEGE!	AQAAVNASNAI	EKIARINRAK	GEAESLRLVA	EANAEAIRC	IAAALQTQGGADAV
111111			1111111111	111111111	HIIIIIIIIIII
IQQSEGE?	aqaavnasnai	EKIARINRAK	GEAESLRLV	EANAEAIRC	IAAALQTQGGADAV
210	220	230	240	250	260
_		170	180	190	200
NLKIAEQY	(VAAFNNLAKI	ESNTLIMPAN	VADIGSLISA	GMKTTDSSK	TAKY
	пинини.				

300

NLKIAEQYVAAFNNLAKESNTLIMPANVADIGSLISAGMKIIDSSKTAKX

290

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3051>:

280

```
m519-1.seq
        1 ATGGAATTTT TCATTATCTT GTTGGTAGCC GTCGCCGTTT TCGGTTTCAA
       51 ATCCTTTGTT GTCATCCCAC AACAGGAAGT CCACGTTGTC GAAAGGCTGG
      101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT
     151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT
201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG
      251 GCATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG
      301 AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC
      351 CGTTATCGGG CGTATGGAGT TGGACAAAAC GTTTGAAGAA CGCGACGAAA
401 TCAACAGTAC TGTTGTTGCG GCTTTGGACG AGGCGGCCGG GGCTTGGGGGT
      451 GTGAAGGTTT TGCGTTATGA GATTAAAGAC TTGGTTCCGC CGCAAGAAAT
      501 CCTTCGCTCA ATGCAGGCGC AAATTACTGC CGAACGCGAA AAACGCGCCC
     551 GTATCGCCGA ATCCGAAGGT CGTAAAATCG AACAAATCAA CCTTGCCAGT
          GGTCAGCGCG AAGCCGAAAT CCAACAATCC GAAGGCGAGG CTCAGGCTGC
      651 GGTCAATGCG TCAAATGCCG AGAAAATCGC CCGCATCAAC CGCGCCAAAG
     701 GTGAAGCGGA ATCCTTGCGC CTTGTTGCCG AAGCCAATGC CGAAGCCATC
     751 CGTCAAATTG CCGCCGCCCT TCAAACCCAA GGCGGTGCGG ATGCGGTCAA
     801 TCTGAAGATT GCGGAACAAT ACGTCGCTGC GTTCAACAAT CTTGCCAAAG
851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG
     901 ATTTCTGCCG GTATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 3052; ORF 519-1>: m519-1.

```
1 MEFFIILLVA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF
51 IDRVAYRHSL KEIPLDVPSQ VCITRDNTQL TVDGIIYFQV TDPKLASYGS
101 SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVA ALDEAAGAWG
151 VKVLRYEIKD LVPPQEILRS MQAQITAERE KRARIAESEG RKIEQINLAS
201 GQREAEIQQS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI
251 RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL
301 ISAGMKIIDS SKTAK*
```

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3053>:

1	ATGGAATTTT	TCATTATCTT	GTTGGCAGCC	GTCGCCGTTT	TCGGCTTCAA
51	ATCCTTTGTC	GTCATCCCCC	AGCAGGAAGT	CCACGTTGTC	GAAAGGCTCG
101	GGCGTTTCCA	TCGCGCCCTG	ACGGCCGGTT	TGAATATTTT	GATTCCCTTT
151	ATCGACCGCG	TCGCCTACCG	CCATTCGCTG	AAAGAAATCC	CTTTAGACGT
201	ACCCAGCCAG	GTCTGCATCA	CGCGCGATAA	TACGCAATTG	ACTGTTGACG
251	GCATCATCTA	TTTCCAAGTA	ACCGATCCCA	AACTCGCCTC	ATACGGTTCG
301	AGCAACTACA	TTATGGCAAT	TACCCAGCTT	GCCCAAACGA	CGCTGCGTTC
351	CGTTATCGGG	CGTATGGAGT	TGGACAAAAC	GTTTGAAGAA	CGCGACGAAA
401	TCAACAGTAC	CGTCGTCTCC	GCCCTCGATG	AAGCCGCCGG	GGCTTGGGGT
451	GTGAAAGTCC	TCCGTTACGA	AATCAAGGAT	TTGGTTCCGC	CGCAAGAAAT
501	CCTTCGCGCA	ATGCAGGCAC	AAATTACCGC	CGAACGCGAA	AAACGCGCCC
551	GTATTGCCGA	ATCCGAAGGC	CGTAAAATCG	AACAAATCAA	CCTTGCCAGT
601	GGTCAGCGTG	AAGCCGAAAT	CCAACAATCC	GAAGGCGAGG	CTCAGGCTGC
651	GGTCAATGCG	TCCAATGCCG	AGAAAATCGC	CCGCATCAAC	CGCGCCAAAG
701	GCGAAGCGGA	ATCCCTGCGC	CTTGTTGCCG	AAGCCAATGC	CGAAGCCATC
751	CGTCAAATTG	CCGCCGCCCT	TCAAACCCAA	GGCGGGGCGG	ATGCGGTCAA
801	TCTGAAGATT	GCGGAACAAT	ACGTAGCCGC	GTTCAACAAT	CTTGCCAAAG

851 AAAGCAATAC GCTGATTATG CCCGCCAATG TTGCCGACAT CGGCAGCCTG 901 ATTTCTGCCG GCATGAAAAT TATCGACAGC AGCAAAACCG CCAAATAA This corresponds to the amino acid sequence <SEQ ID 3054; ORF 519-1.ng>: g519-1.pep MEFFIILLAA VAVFGFKSFV VIPQQEVHVV ERLGRFHRAL TAGLNILIPF 1 IDRVAYRHSL KEIPLDVPSQ VCITRONTQL TVDGIIYFQV TDPKLASYGS SNYIMAITQL AQTTLRSVIG RMELDKTFEE RDEINSTVVS ALDEAAGAWG 101 VKVLRYEIKD LVPPQEILRA MQAQITAERE KRARIAESEG RKIEQINLAS 151 GOREAEIQOS EGEAQAAVNA SNAEKIARIN RAKGEAESLR LVAEANAEAI 201 251 RQIAAALQTQ GGADAVNLKI AEQYVAAFNN LAKESNTLIM PANVADIGSL 301 ISAGMKIIDS SKTAK* ORFs 519-1 and 519-1.ng showed a 99.0% identity in 315 aa m519-1/g519-1 overlap 10 30 40 50 MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL q519-1.pep MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL m519-110 20 30 40 80 90 100 KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG g519-1.pep KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG m519-1 80 90 100 130 140 150 160 170 180 ${\tt RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE}$ q519-1.pep ${\tt RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE}$ m519-1130 140 150 160 170 180 190 200 210 220 230 240 KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLRg519-1.pep m519-1 KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR 190 200 210 220 230 240 250 260 270 280 290 LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL g519-1.pep m519-1 LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL 250 260 270 280 290 310 g519-1.pep ISAGMKIIDSSKTAKX 111111111111111111 m519-1**ISAGMKIIDSSKTAKX** 310 The following DNA sequence was identified in N. meningitidis <SEO ID 3055>: a519-1.seq 1 ATGGAATTTT TCATTATCTT GCTGGCAGCC GTCGTTGTTT TCGGCTTCAA 51 ATCCTTTGTT GTCATCCCAC AGCAGGAAGT CCACGTTGTC GAAAGGCTCG 101 GGCGTTTCCA TCGCGCCCTG ACGGCCGGTT TGAATATTTT GATTCCCTTT 151 ATCGACCGCG TCGCCTACCG CCATTCGCTG AAAGAAATCC CTTTAGACGT 201 ACCCAGCCAG GTCTGCATCA CGCGCGACAA TACGCAGCTG ACTGTTGACG GTATCATCTA TTTCCAAGTA ACCGACCCCA AACTCGCCTC ATACGGTTCG 251

301 AGCAACTACA TTATGGCGAT TACCCAGCTT GCCCAAACGA CGCTGCGTTC 351 CGTTATCGGG CGTATGGAAT TGGACAAAAC GTTTGAAGAA CGCGACGAAA

aa

Thia	401 451 501 551 601 651 701 751 801 851 901	TCAACAGCAC GTGAAGGTTT CCTTCGCTCA GTATCGCCGA GGTCAAGCGCG GGTCAATGCG GTGAAGCGGA CGTCAAATTG TCTGAAGATT AAAGCAATAC ATTTCTGCCG	TGCGTTATGA ATGCAGGCGC ATCCGAAGGT AAGCCGAAAT TCAAATGCCG ATCCTTGCGC CCGCCGCCCT GCGGAACAAT GCTGATTATG GTATGAAAAAT	GATTAAAG AAATTACT CGTAAAAT CCAACAAT AGAAAATC CTTGTTGC TCAAACCC ACGTCGCC CCCGCCAA	CAC TTGGTTC CG TGAACGC CG AACAAA CC GAAGGCC CG CCGCATC CG AAGCCAA CAC GGCGGTC CG TTCAAC CTG TTGCCGA CGC AGCAAAA	CCGC CGCAA CGAA AAACG ICAA CCTTG GAGG CTCAG CAAC CGCGC ATGC CGAAG GCGG ATGCG CAAT CTTGC ACAT CGCAA	GAAAT CGCCC CCAGT GCTGC CAAAG CCATC GTCAA CAAAG CAAAG CAAAG	
11112	a519-1.pep	to the amin	o acid seque	ince <2E(у ID 3036;	OKF 519-	l.a>:	
	1 51 101 151 201	MEFFIILLAA IDRVAYRHSL SNYIMAITQL VKVLRYEIKD GQREAEIQQS RQIAAALQTQ ISAGMKIIDS	KEIPLDVPSQ AQTTLRSVIG LVPPQEILRS EGEAQAAVNA GGADAVNLKI	VCITRDNT RMELDKTF MQAQITAE SNAEKIAR	QL TVDGIIY EE RDEINST RE KRARIAE IN RAKGEAE	YFQV TDPKL TVVS ALDEA ESEG RKIEQ ESLR LVAEA	ASYGS AGAWG INLAS	
	m519-1/a51	9-1 OR	Fs 519-1 a	nd 519-1	.a showed	a 99.0%	identity	in 216
	overlap					u 55.08	raencicy	111 313
	a519-1.pep	MEFFIILL	10 AAVVVFGFKS	20 FVVIPQQEV	30 HVVERLGRFH	40 RALTAGLNI	50 LIPFIDRVAY	60 RHSL
	m519-1	MEFFIILL	VAVAVFGFKS	FVVIPOOEV	illillilli HVVERLGRFH	ilillilli IRAI.TAGI.NTI		1111
			10	20	30	40	50	60 .
	a519-1.pep			80 Stantactty	90	100	110	120
	doi'd i.pep	1111111	SQVCITRONT		IIIIIIIIIIIIII	IIIIIIIIII	LTQLAQTTLR	SVIG
	m519-1	KEIPLDVP	SOVCITRONT	QLTVDGIIY	FQVTDPKLAS	YGSSNYIMA	TOLAOTTLR	SVIG
			70	80	90	100	110	120
		1	30 1	40	150	1.60	0	
	a519-1.pep		EERDEINSTV	∙o √SALDEAAG	150 AWGVKVI.RYE	160 TKDLVPPOEI	170 ELBSMONOTE	180
		11111111	1111111111	1:11111	111111111			1111
	m519-1	RMELDKTE	EERDEINSTV	VAALDEAAG.	AWGVKVLRYE	IKDLVPPQE	LRSMQAQIT	AERE
		1	30 1	40	150	160	170	180
		1	90 20	00 :	210	220	230	240
	a519-1.pep	KRARIAES	EGRKIEQINL	ASGQREAEI	QQSEGEAOAA	VNASNAEKT	RINRAKCEA	G.123
	m519-1	1111111	11111111			11111111111		1111
	W213-1	NKARIAES.	EGRKIEQINLA 90 20	ASGQREAET O				
		-	2.		210	220	230	240
	-510 *			50 1	270	280	290	300
	a519-1.pep	LVAEANAE	AIRQIAAALQ	roggadavn:	LKIAEQYVAA	FNNLAKESNI	LIMPANVAD	IGSL
	m519-1	LVAEANAE.	 AIRQIAAALQ	LOCCADAAM. LLLLLLLLLL		PAINT AVECNO		1111
		2	50 2	50 :		280	LIMPANVAD. 290	300
		_						300
	a519-1.pep	3 ISAGMKII	10 DSSKTAKY					
	coro repep	13464111						
	m519-1	ISAGMKII	DSSKTAKX					
		3.	10					

```
576 and 576-1 gnm22.seq
```

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3057>:
```

```
m576.seq.. (partial)
          ..ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
            GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
      51
            CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
            GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
     151
            AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
     201
            TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
     251
           CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
     301
           CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
     351
           TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
     401
           GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
     451
           AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
     501
            GCGACAAAAT CGGTCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC
     551
           AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
     601
     651
            CATCAAAAA GTAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 3058; ORF 576>:

```
m576.pep. (partial)

1 .MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
51 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
101 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSQ
151 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
```

201 KIGAPENAPA KQPAQVDIKK VN*

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3059>: 9576.seq..(partial)

```
..atgggcgtgg acatcggacg ctccctgaaa caaatgaagg aacagggcgc
 1
51
       ggaaatcgat ttgaaagtct ttaccgatgc catgcaggca gtgtatgacg
       gcaaagaaat caaaatgacc gaagagcagg cccaggaagt gatgatgaaa
151
       ttcctgcagg agcagcaggc taaagccgta gaaaaacaca aggcggatgc
201
       gaaggccaac aaagaaaaag gcgaagcctt cctgaaggaa aatgccgccg
       aagacggcgt gaagaccact gcttccggtc tgcagtacaa aatcaccaaa
251
301
      cagggtgaag gcaaacagcc gacaaaagac gacatcgtta ccgtggaata
       cgaaggccgc ctgattgacg gtaccgtatt cgacagcagc aaagccaacg
351
401
      gcggcccggc caccttccct ttgagccaag tgattccggg ttggaccgaa
      ggcgtacggc ttctgaaaga aggcggcgaa gccacgttct acatcccgtc
451
501
      caacettgcc taccgcgaac agggtgcggg cgaaaaaatc ggtccgaacg
       ccactttggt atttgacgtg aaactggtca aaatcggcgc acccgaaaac
551
      gcgcccgcca agcagccgga tcaagtcgac atcaaaaaag taaattaa
```

This corresponds to the amino acid sequence <SEQ ID 3060; ORF 576.ng>:

```
g576.pep..(partial)

1 ..MGVDIGRSLK QMKEQGAEID LKVFTDAMQA VYDGKEIKMT EEQAQEVMMK
51 FLQEQQAKAV EKHKADAKAN KEKGEAFLKE NAAEDGVKTT ASGLQYKITK
101 QGEGKQPTKD DIVTVEYEGR LIDGTVFDSS KANGGPATFP LSQVIPGWTE
151 GVRLLKEGGE ATFYIPSNLA YREQGAGEKI GPNATLVFDV KLVKIGAPEN
201 APAKQPDQVD IKKVN*
```

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

```
m576/g576 ORFs 576 and 576.ng showed a 97.2% identity in 215 aa overlap
```

m576.pep 10 20 30 40 50 60 MQQASYAMGVDIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQ

g576	MGVDIGRSLKQMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQ
_	10 20 30 40 50
	70 80 90 100 110 120
m576.pep	EQQAKAVEKHKADAKANKEKGEA FLKENAAKDGVKTTASGLQYKITKQGEGKQPTKDDIV
q576	FOOD A VERNING DAY A DIVENCE A EL MONTA DE COMPANIO CONTROL DE CON
9376	EQQAKAVEKHKADAKANKEKGEAFLKENAAEDGVKTTASGLQYKITKQGEGKQPTKDDIV
	60 70 80 90 100 110
	130 140 150 160 170 180
m576.pep	TVEYEGRLIDGTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYRE
,	
g576	TVEYEGRLIDGTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYRE
	120 130 140 150 160 170
576	190 200 210 220
m576.pep	QGAGDKIGPNATLVFDVKLVKIGAPENAPAKQPAQVDIKKVNX
g576	
9376	QGAGEKIGPNATLVFDVKLVKIGAPENAPAKQPDQVDIKKVNX 180 190 200 210
	180 190 200 210
The following r	partial DNA sequence was identified in N. meningitidis <seq 3061="" id="">:</seq>
a576. seq	satisfies 2111 boddenico was identified in 14. meninguiais \5EQ ID 5001>:
a570. seq	ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
51	ACTITICGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
101	CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
. 151	ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
201	GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
251	CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG
301	GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
351	AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
401	TTCTGAAAGA AAATGCCGCC AAAGACGGCG TGAAGACCAC TGCTTCCGGC
451	CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
501	CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
551	TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTGAGCCAA
601	GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA
651 701	AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG
701 751	GCGACAAAAT CGGCCCGAAC GCCACTTTGG TATTTGATGT GAAACTGGTC AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG CTCAAGTCGA
801	CATCAAAAAA GTAAATTAA
This correspond	Is to the amino acid sequence <seq 3062;="" 576.a="" id="" orf="">:</seq>
a576.pep	52 (12 5002) CIU 5/0,07
1	MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
51	MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
101	AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASC
151	LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPVTFPLSO
201	VILGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
251	KIGAPENAPA KQPAQVDIKK VN*
5564 556	
m576/a576	ORFs 576 and 576.a showed a 99.5% identity in 222 aa overlap
m576.pep	10 20 30
mo/o.pep	MQQASYAMGVDIGRSLKQMKEQGAEIDLKV
a576	
	30 40 50 50
	30 40 50 60 70 80
	40 50 60 70 80 90
m576.pep	FTEAMQAVYDGKEIKMTEEQAQEVMMKFLOEQQAKAVEKHKADAKANKEKGEAFI KENAA
a576	FTEAMQAVYDGKE1KMTEEQAQEVMMKFLQEQQAKAVEKHKADAKANKEKGEAFLKENAA
	90 100 110 120 130 140

	100	110	120	130	140	150
m576.pep	KDGVKTTASGLQYKI	TKQGEGKQI	TKDDIVTVE	EGRLIDGTVF	DSSKANGGPV	TFPLSO
			[1111111111	THILL
a576	KDGVKTTASGLQYKI	TKQGEGKQI	TKDDIVTVE	YEGRLIDGTVF	DSSKANGGPV	TFPLSO
	150	160	170	180	190	200
	160	170	180	190	200	210
m576.pep	VIPGWTEGVQLLKEG	GEATFYIPS	SNLAYREQGA	GDKIGPNATLV	FDVKLVKIGA	PENAPA
					[[[]]]	111111
a576	VILGWTEGVQLLKEG	GEATFYIPS		SDKIGPNATLV	FDVKLVKIGA	PENAPA
	210	220	230	240	250	260
-	220					
F7C	220					
m576.pep	KQPAQVDIKKVNX					
- E 7 C						
a576	KQPAQVDIKKVNX 270					
	210					

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3063>: m576-1.seq

```
1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC
51 ACTTTCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC
101 CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG
151 ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA
201 GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTGAAAGTC TTTACCGAAG
251 CCATGCAGGC AGTGTATGAC GGCAAAGAAAA TCAAAATGAC CGAAGAGCAG
301 GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCGT
351 AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGCCT
401 TTCTGAAAGA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
451 CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAGC CGACCAAAGA
501 CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC GGTACGGTAT
551 TCGACAGCAG CAAAGCCAAC GGCGCCCCG TCACCTTCCC TTTGACAGCAG
601 GTGATTCCGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCG
701 GCGACAAAAT CGGTCCGAAC GCCACCTTGC CTACCGCGAA CAGGGTGCGC
751 AAAATCGGCG CACCCGAAAA CGCCCCCCCC AAGCAGCCGG CTCAAGTCGA
801 CATCAAAAAA GTAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 3064; ORF 576-1>: m576-1.pep

1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASSA QGDTSSIGST
51 MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTEAMQAVYD GKEIKMTEEQ
101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG
151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSKAN GGPVTFPLSQ
201 VIPGWTEGVQ LLKEGGEATF YIPSNLAYRE QGAGDKIGPN ATLVFDVKLV
251 KIGAPENAPA KQPAQVDIKK VN*

The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3065>: g576-1.seq

_		1				
	1	ATGAACACCA	TTTTCAAAAT	CAGCGCACTG	ACCCTTTCCG	CCGCTTTGGC
	51	ACTTTCCGCC	TGCGGCAAAA	AAGAAGCCGC	CCCCGCATCT	GCATCCGAAC
	101	CTGCCGCCGC	TTCTGCCGCG	CAGGGCGACA	CCTCTTCAAT	CGGCAGCACG
	151	ATGCAGCAGG	CAAGCTATGC	AATGGGCGTG	GACATCGGAC	GCTCCCTGAA
	201	ACAAATGAAG	GAACAGGGCG	CGGAAATCGA	TTTGAAAGTC	TTTACCGATG
	251	CCATGCAGGC	AGTGTATGAC	GGCAAAGAAA	TCAAAATGAC	CGAAGAGCAG
	301	GCCCAGGAAG	TGATGATGAA	ATTCCTGCAG	GAGCAGCAGG	CTAAAGCCGT
	351	AGAAAAACAC	AAGGCGGATG	CGAAGGCCAA	CAAAGAAAAA	GGCGAAGCCT
	401	TCCTGAAGGA	AAATGCCGCC	AAAGACGGCG	TGAAGACCAC	TGCTTCCGGT
	451	CTGCAGTACA	AAATCACCAA	ACAGGGTGAA	GGCAAACAGC	CGACAAAAGA
	501	CGACATCGTT	ACCGTGGAAT	ACGAAGGCCG	CCTGATTGAC	GGTACCGTAT
	551	TCGACAGCAG	CAAAGCCAAC	GGCGGCCCGG	CCACCTTCCC	TTTGAGCCAA
	601	GTGATTCCGG	GTTGGACCGA	AGGCGTACGG	CTTCTGAAAG	AAGGCGGCGA
	651	AGCCACGTTC	TACATCCCGT	CCAACCTTGC	CTACCGCGAA	CAGGGTGCGG

701 GCGAAAAAT CGGTCCGAAC GCCACTTTGG TATTTGACGT GAAACTGGTC 751 AAAATCGGCG CACCCGAAAA CGCGCCCGCC AAGCAGCCGG ATCAAGTCGA 801 CATCAAAAAA GTAAATTAA	
This corresponds to the amino acid sequence <seq 3066;="" 576-1.ng="" id="" orf="">:</seq>	
g576-1.pep	
1 MNTIFKISAL TLSAALALSA CGKKEAAPAS ASEPAAASAA QGDTSSIGST	
51 MQQASYAMGV DIGRSLKQMK EQGAEIDLKV FTDAMQAVYD GKEIKMTEEQ 101 AQEVMMKFLQ EQQAKAVEKH KADAKANKEK GEAFLKENAA KDGVKTTASG	
151 LQYKITKQGE GKQPTKDDIV TVEYEGRLID GTVFDSSKAN GGPATERISO	
201 VIPGWTEGVR LLKEGGEATF YIPSNLAYRE OGAGEKIGPN ATLVFDVKLV	
251 KIGAPENAPA KQPDQVDIKK VN*	
g576-1/m576-1 ORFs 576-1 and 576-1.ng showed a 97.8% identity in 272 overlap	aa
10 20 30 40 50 60	
g576-1.pep MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASAAGGDTSSIGSTMOODSVAMGU	
m576-1 MNTIFKISALTLSAALALSACGKKEAAPASASEPAAASSAQGDTSSIGSTMQQASYAMGV 10 20 30 40 50	
10 20 30 40 50 60	
70 80 90 100 110 120	
g576-1.pep DIGRSLKQMKEQGAEIDLKVFTDAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH	
m576-1 DIGRSLKQMKEQGAEIDLKVFTEAMQAVYDGKEIKMTEEQAQEVMMKFLQEQQAKAVEKH	
70 80 90 100 110 120	
130 140 150 160 170 180	
g576-1.pep KADAKANKEKGEAFLKENAAKDGVKTTASGLOYKITKOGEGKOPTKDDIVTVEYEGBLID	
m576-1 KADAKANKEKGEAFLKENAAKDGVKTTASGLQYKITKQGEGKQFTKDDIVTVEYEGRLID 130 140 150 160 170 180	
130 140 150 160 170 180	
190 200 210 220 230 240	
g576-1.pep GTVFDSSKANGGPATFPLSQVIPGWTEGVRLLKEGGEATFYIPSNLAYREQGAGEKIGPN	
m576-1 GTVFDSSKANGGPVTFPLSQVIPGWTEGVQLLKEGGEATFYIPSNLAYREQGAGDKIGPN	
190 200 210 220 230 240	
250 260 270	
g576-1.pep ATLVFDVKLVKIGAPENAPAKOPDOVDIKKVNX	
250 260 270	
The following DNA sequence was identified in N. meningitidis <seq 3067="" id="">:</seq>	
a576-1.seq 1 ATGAACACCA TTTTCAAAAT CAGCGCACTG ACCCTTTCCG CCGCTTTGGC	
51 ACTITCCGCC TGCGGCAAAA AAGAAGCCGC CCCCGCATCT GCATCCGAAC	
101 CTGCCGCCGC TTCTTCCGCG CAGGGCGACA CCTCTTCGAT CGGCAGCACG	
151 ATGCAGCAGG CAAGCTATGC GATGGGCGTG GACATCGGAC GCTCCCTGAA 201 GCAAATGAAG GAACAGGGCG CGGAAATCGA TTTCAAAGTC TTTTCAAA	
251 CCATGCAGGC AGTGTATGAC GGCAAAGAAA TCAAAATGAC CGAAGAGCAG	
301 GCTCAGGAAG TCATGATGAA ATTCCTTCAG GAACAACAGG CTAAAGCCCT	
351 AGAAAAACAC AAGGCGGACG CGAAGGCCAA TAAAGAAAAA GGCGAAGGCT	
451 CTGCAATACA AAATCACCAA ACAGGGCGAA GGCAAACAC CGACGAAACA	
501 CGACATCGTT ACCGTGGAAT ACGAAGGCCG CCTGATTGAC CCTACCCTAT	
TCGACAGCAG CAAAGCCAAC GGCGGCCCGG TCACCTTCCC TTTCAGCCAA	
601 GTGATTCTGG GTTGGACCGA AGGCGTACAG CTTCTGAAAG AAGGCGGCGA 651 AGCCACGTTC TACATCCCGT CCAACCTTGC CTACCGCGAA CAGGGTGCGG	
The second changing of	

701 751 801	AAAATCGGCG CACCCG	AAAA CGCG	CTTTGG T	PATTTGATG AGCAGCCG	T GAAACTGGT G CTCAAGTCG	C A					
This corresponds to the amino acid sequence <seq 3068;="" 576-1.a="" id="" orf="">:</seq>											
a576-1.pe	qe	•		, 01	<u> </u>						
ĺ	MNTIFKISAL TLSAAL	ALSA CGKKI	EAAPAS A	SEPAAASS	A OGDTSSTGS	P .					
51	MQQASYAMGV DIGRSL	KQMK EQGAI	EIDLKV F	TEAMOAVY	D GKETKMTEE	n					
101	AQEVMMKFLQ EQQAKA	VEKH KADAI	KANKEK G	EAFLKENA	A KDGVKTTASO	2					
151	LQYKITKQGE GKQPTK	DDIV TVEY	EGRLID G	TVFDSSKA	N GGPVTFPLS	1					
201	VILGWTEGVQ LLKEGG	EATF YIPSN	NLAYRE Q	GAGDKIGP	N ATLVFDVKL	ì					
251	KIGAPENAPA KQPAQV	DIKK VN*									
a576-1/m5	76-1 ODF: 576	.1 and 67									
overlap	ORES 570	-I allu J	0-1.a S	snowed a	99.6% iden	tity in 272	2 aa				
Overrap											
	10	20	30	4	50	60					
a576-1.pe	_ ·		KEAAPASA	SEPAAASS.	Ŭ ₽₩₽₽₽₽₽₽₽₩₩	00 V2244294003					
•		1				11111111					
m576-1	MNTIFKISALTLSA	ALALSACGKI	(EAAPASA	SEPAAASS	AOGDTSSTGST/						
	10	20	30	40		60					
						00					
	70	80	90	100	110	120					
a576-1.pe		EIDLKVFTE <i>r</i>	MQAVYDG	KE I KMTEE	QAQEVMMKFLOE	COORKAVEKH					
	1111111111111		1 1 1 1 1	HILLIE		TITLLIFE					
m576-1	DIGRSLKQMKEQGAI	SIDLKVFTE	MQAVYDG	KEIKMTEE(DAQEVMMKFLQE	QQAKAVEKH					
	70	80	90	100							
	,										
-576 1	130	140	150	160		180					
a576~1.pe		LKENAAKDGV	KTTASGL	QYKITKQGI	GKQPTKDDIVI	VEYEGRLID .					
m576-1				111111							
M370-1	KADAKANKEKGEAFI 130	I40	KTTASGL								
	130	140	150	160	170	180					
	190	200	210	220	١						
a576-1.pe			ZIO WTRCVOI	221 1 22002711	230	240					
			1111111	LILLILLI	TILONTWIKE(GAGDKIGPN					
m576-1	GTVFDSSKANGGPVT	FPLSOVIPG	WTEGVOL	LKEGGEATE	TTPSTITITITY	IIIIIIIIII					
	190	200	210	220		240					
					250	240					
	250	260	270								
a576-1.pe		PENAPAKQPA	QVDIKKV	NX							
		нинни	HHHH	11							
m576-1	ATLVFDVKLVKIGA			XX							
	250	260	270								

919 gnm43.seq

The following partial DNA sequence was identified in *N.meningitidis* <SEQ ID 3069>: m919.seq

1	ATGAAAAAAT	ACCTATTCCG	CGCCGCCCTG	TACGGCATCG	CCGCCGCCAT
51	CCTCGCCGCC	TGCCAAAGCA	AGAGCATCCA	AACCTTTCCG	CAACCCGACA
101	CATCCGTCAT	CAACGGCCCG	GACCGGCCGG	TCGGCATCCC	CGACCCCGCC
151	GGAACGACGG	TCGGCGGCGG	CGGGGCCGTC	TATACCGTTG	TACCGCACCT
201	GTCCCTGCCC	CACTGGGCGG	CGCAGGATTT	CGCCAAAAGC	CTGCAATCCT
251	TCCGCCTCGG	CTGCGCCAAT	TTGAAAAACC	GCCAAGGCTG	GCAGGATGTG
301	TGCGCCCAAG	CCTTTCAAAC	CCCCGTCCAT	TCCTTTCAGG	CAAAACAGTT
351	TTTTGAACGC	TATTTCACGC	CGTGGCAGGT	TGCAGGCAAC	GGAAGCCTTG
401	CCGGTACGGT	TACCGGCTAT	TACGAACCGG	TGCTGAAGGG	CGACGACAGG


```
451 CGGACGCAC AAGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
 501 CTCCGTCCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA
 551 TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA
 601 CATACCGCCG ACCTCTCCCG ATTCCCCATC ACCGCGCGCA CAACAGCAAT
 651 CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC
 701 AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC
 751 GAAGACCCTG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT
 801 GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG
 851 AACATCCYTA CGTTTCCATC GGACGCTATA TGGCGGATAA GGGCTACCTC
 901 AAACTCGGAC AAACCTCCAT GCAGGGCATT AAGTCTTATA TGCGGCAAAA
 951 TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
1001 TCCGCGAGCT TGCCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC
1051 ACGCCGCTGA TGGGGGAATA TGCCGGCGCA GTCGACCGGC ACTACATTAC
1101 CTTGGGTGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC
1201 GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT
1251 TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTC CTACCCAACG
1301 GTATGAAGCC CGAATACCGC CCGTAA
```

This corresponds to the amino acid sequence <SEQ ID 3070; ORF 919>:

```
m919.pep

1 MKKYLFRAAL YGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SFQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
201 HTADLSRFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KSYMRQNPQR LAEVLGQNPS YIFFRELAGS SNDGPVGALG
351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*
```

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 3071>:

```
ATGAAAAAAC ACCTGCTCCG CTCCGCCCTG TACGGCatCG CCGCCGCCAT
     CctcgCCGCC TGCCAAAgca gGAGCATCCA AACCTTTCCG CAACCCGACA
  51
 101 CATCCGTCAT CAACGGCCCG GACCGGCCGG CCGGCATCCC CGACCCCGCC
 151 GGAACGACGG TTGCCGGCGG CGGGGCCGTC TATACCGTTG TGCCGCACCT
 201 GTCCATGCCC CACTGGGCGG CGCaggATTT TGCCAAAAGC CTGCAATCCT
 251 TCCGCCTCGG CTGCGCCAAT TTGAAAAACC GCCAAGGCTG GCAGGATGTG
 301 TGCGCCCAAG CCTTTCAAAC CCCCGTGCAT TCCTTTCAGG CAAAGCGGTT
 351 TTTTGAACGC TATTTCACGC cgtGGCaggt tgcaggcaAC GGAAGcCTTG
 401 Caggtacggt TACCGGCTAT TACGAACCGG TGCTGAAGGG CGACGGCAGG
 451 CGGACGGAAC GGGCCCGCTT CCCGATTTAC GGTATTCCCG ACGATTTTAT
 501 CTCCGTCCCG CTGCCTGCCG GTTTGCGGGG CGGAAAAAAC CTTGTCCGCA
 551 TCAGGCAGAC ggGGAAAAAC AGCGGCACGA TCGACAATGC CGGCGGCACG
 601 CATACCGCCG ACCTCTCCCG ATTCCCCATC ACCGCGCGCA CAACGGcaat
 651 caaaGGCAGG TTTGAaggAA GCCGCTTCCT CCCTTACCAC ACGCGCAACC
 701 AAAtcaacGG CGGCgcgcTT GACGGCAAag cccCCATCCT CggttacgcC
     GAagaccCcG tcgaacttTT TTTCATGCAC AtccaaggCT CGGGCCGCCT
 801 GAAAACCCcg tccggcaaat acatCCGCAt cggaTacgcc gacAAAAACG
 851 AACAtccgTa tgtttccatc ggACGctaTA TGGCGGACAA AGGCTACCTC
 901 AAGCtcgggc agACCTCGAT GCAGGgcatc aaagcCTATA TGCGGCAAAA
 951 TCCGCAACGC CTCGCCGAAG TTTTGGGTCA AAACCCCAGC TATATCTTTT
1001 TCCGCGAGCT TGCCGGAAGC GGCAATGAGG GCCCCGTCGG CGCACTGGGC
1051 ACGCCACTGA TGGGGGAATA CGCCGGCGCA ATCGACCGGC ACTACATTAC
1101 CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG
1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CAGGCAGCGC GATCAAAGGC
1201 GCGGTGCGCG TGGATTATTT TTGGGGTTAC GGCGACGAAG CCGGCGAACT
1251 TGCCGGCAAA CAGAAAACCA CGGGATACGT CTGGCAGCTC CTGCCCAACG
1301 GCATGAAGCC CGAATACCGC CCGTGA
```

This corresponds to the amino acid sequence <SEQ ID 3072; ORF 919.ng>: g919.pep

· Peb					
1	MKKHLLRSAL	YGIAAAILAA	CQSRSIQTFP	QPDTSVINGP	DRPAGIPDPA
51	GTTVAGGGAV	YTVVPHLSMP	HWAAQDFAKS	LOSFRLGCAN	LKNROGWODV
101	CAQAFQTPVH	SFQAKRFFER	YFTPWQVAGN	GSLAGTVTGY	YEPVLKGDGR
151	RTERARFPIY	GIPDDFISVP	LPAGLRGGKN	LVRIRQTGKN	SGTIDNAGGT
201	HTADLSRFPI	TARTTAIKGR	FEGSRFLPYH	TRNQINGGAL	DGKAPILGYA
251	EDPVELFFMH	IQGSGRLKTP	SGKYIRIGYA	DKNEHPYVSI	GRYMADKGYL
301	KLGQTSMQGI	KAYMRQNPQR	LAEVLGQNPS	YIFFRELAGS	GNEGPVGALG
351	TPLMGEYAGA	IDRHYITLGA	PLFVATAHPV	TRKALNRLIM	AQDTGSAIKG
401	AVRVDYFWGY	GDEAGELAGK	QKTTGYVWQL	LPNGMKPEYR	P*

ORF 919 shows 95.9 % identity over a 441 aa overlap with a predicted ORF (ORF 919.ng) from N. gonorrhoeae:
m919/g919

	10	20	30	40	50	60
m919.pep	MKKYLFRAALYGIA	AAILAACQSK	SIQTFPQPDT	SVINGPDRPV	GIPDPAGTT	GGGGDV
			111111111	11111111:		. 11111
g919	MKKHLLRSALYGIA	AAILAACQSR	SIQTFPQPDT	SVINGPDRPA	GIPDPAGTTV	AGGGAV
	10	20	. 30	40	50	60
	70	80	90	100	110	120
m919.pep	YTVVPHLSLPHWAA(DFAKSLQSF	RLGCANLKNR	QGWQDVCAQA	FOTPVHSFO	KQFFER
g919				111111111		1:
9919	YTVVPHLSMPHWAA(160TSYN 103	RLGCANLKNR			
	70	80	90	100	110	120
	130	140	150	160	170	100
m919.pep	YFTPWQVAGNGSLAC			ARFRIVAT DO	T/U	180
					111111111	IIRSGRA
g919	YFTPWQVAGNGSLAC		LKGDGRRTER	ARFPIYGIPD	TITITITITITITITITITITITITITITITITITITI	• T.D.G.C.K.NI
•	130	140	150	160	170	180
						100
	190	200	210	220	230	240
m919.pep	LVRIROTGKNSGTII	NTGGTHTAD	LSRFPITART	TAIKGRFEGS	RFLPYHTRNO	INGGAL
_		1:111111	1111111111		1111111111	111111
g919	LVRIRQTGKNSGTII	NAGGTHTAD	LSRFPITART	TAIKGRFEGS	RFLPYHTRNO	INGGAL
	190	200	210	220	230	240
	050					
m919.pep	250	260	270	280	290	300
m919.pep	DGKAPILGYAEDPVE	PERMITTORS	GRLKTPSGKY	IRIGYADKNE	HPYVSIGRYM	
g919	DCKAPILGYARDBY			1111111111]]]]]]	HHHH
9222	DGKAPILGYAEDPVE 250	260	270			
	230	200	270	280	290	300
	310	320	330	340	350	260
m919.pep	KLGQTSMQGIKSYMF			RELAGSSNIC	JOU DVGDIGTDIM	360
					FILLITIE	IIIIII
g919	KLGQTSMQGIKAYMF	ONPORLAEV	LGONPSYIFF	RELAGSONEG	111111 DVC	 CEVACA
	310	320	330	340	350	360
				5.10	220	360
	370	380	390	400	410	420
m919.pep	VDRHYITLGAPLFVA	TAHPVTRKA	LNRLIMAQDTO	GSAIKGAVRV	DYFWGYGDEA	GELAGK
	-:		!!!!!!!!!!			111111
g919	IDRHYITLGAPLFVA	TAHPVTRKA	LNRLIMAQDT	SSAIKGAVRVI	DYFWGYGDEA	GELAGK
	370	380	390	400	410	420

This corresponds to the amino acid sequence <SEQ ID 3074; ORF 919.a>:

1301 GTATGAAGCC CGAATACCGC CCGTAA

MKKYLFRAAL CGIAAAILAA CQSKSIQTFP QPDTSVINGP DRPVGIPDPA
51 GTTVGGGGAV YTVVPHLSLP HWAAQDFAKS LQSFRLGCAN LKNRQGWQDV
101 CAQAFQTPVH SVQAKQFFER YFTPWQVAGN GSLAGTVTGY YEPVLKGDDR
151 RTAQARFPIY GIPDDFISVP LPAGLRSGKA LVRIRQTGKN SGTIDNTGGT
201 HTADLSQFPI TARTTAIKGR FEGSRFLPYH TRNQINGGAL DGKAPILGYA
251 EDPVELFFMH IQGSGRLKTP SGKYIRIGYA DKNEHPYVSI GRYMADKGYL
301 KLGQTSMQGI KAYMQQNPQR LAEVLGQNPS YIFFRELTGS SNDGPVGALG
351 TPLMGEYAGA VDRHYITLGA PLFVATAHPV TRKALNRLIM AQDTGSAIKG
401 AVRVDYFWGY GDEAGELAGK QKTTGYVWQL LPNGMKPEYR P*

501 CTCCGTCCCC CTGCCTGCCG GTTTGCGGAG CGGAAAAGCC CTTGTCCGCA 551 TCAGGCAGAC GGGAAAAAAC AGCGGCACAA TCGACAATAC CGGCGGCACA 601 CATACCGCCG ACCTCTCCCA ATTCCCCATC ACTGCGCGCA CAACGGCAAT 651 CAAAGGCAGG TTTGAAGGAA GCCGCTTCCT CCCCTACCAC ACGCGCAACC 701 AAATCAACGG CGGCGCGCTT GACGGCAAAG CCCCGATACT CGGTTACGCC 751 GAAGACCCCG TCGAACTTTT TTTTATGCAC ATCCAAGGCT CGGGCCGTCT 801 GAAAACCCCG TCCGGCAAAT ACATCCGCAT CGGCTATGCC GACAAAAACG 851 AACATCCCTA CGTTTCCATC GGACGCTATA TGGCGGACAA AGGCTACCTC 901 AAGCTCGGGC AGACCTCGAT GCAGGGCATC AAAGCCTATA TGCAGCAAAA 951 CCCGCAACGC CTCGCCGAAG TTTTGGGGCA AAACCCCAGC TATATCTTTT 1001 TCCGAGAGCT TACCGGAAGC AGCAATGACG GCCCTGTCGG CGCACTGGGC 1051 ACGCCGCTGA TGGGCGAGTA CGCCGGCGCA GTCGACCGGC ACTACATTAC 1101 CTTGGGCGCG CCCTTATTTG TCGCCACCGC CCATCCGGTT ACCCGCAAAG 1151 CCCTCAACCG CCTGATTATG GCGCAGGATA CCGGCAGCGC GATTAAAGGC 1201 GCGGTGCGCG TGGATTATTT TTGGGGATAC GGCGACGAAG CCGGCGAACT TGCCGGCAAA CAGAAAACCA CGGGATATGT CTGGCAGCTT CTGCCCAACG

m919/a919 ORFs 919 and 919.a showed a 98.6% identity in 441 aa overlap

10 20 30 40 50 60 MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV					<i>,</i> · · · · · · · · · · · · · · · · · 	O . OIIGP	
a919 MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV						50	60
a919 MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV 10 20 30 40 50 60 70 80 90 100 110 120 m919.pep YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER	m919.pep	MKKYLFRAALYGIA	aailaacqsk	SIQTFPQPDI	SVINGPDRPV	GIPDPAGTT	/GGGGAV
a919 MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV 10 20 30 40 50 60 70 80 90 100 110 120 m919.pep YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER			111111111	HHHHHH	111111111	11111111111	111111
70 80 90 100 110 120 m919.pep YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER	a919	MKKYLFRAALCGIA	aai laacqsk	SIQTFPQPDT	SVINGPDRPV	GIPDPAGTT	/GGGGAV
m919.pep YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER		10	20	30	40	50	60
m919.pep YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER		70	80	90	100	110	
a919 YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER	m010 non					110	120
a919 YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER	mara.pep	IIVVPHLSLPHWAA	ODENKSPÖSE	RLGCANLKNE	QGWQDVCAQA	\FQTPVHSFQ#	AKOFFER
a919 YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER					1111111111	THE REAL PROPERTY.	HILLI
70 00 00 100	a919	YTVVPHLSLPHWAA	ODFAKSLOSF	RIGCANIKNE	OCMODACAOA	FOTDUBLICA	MORRED
70 80 90 100 110 120		70	00				-
		70	50	90	100	110	120

m919.pep	130 YFTPWQVAGNGSLAC YFTPWQVAGNGSLAC 130		11111111111			
m919.pep	190 LVRIRQTGKNSGTII LVRIRQTGKNSGTII	1111111	210 LSRFPITART	220 TAIKGRFEGS TAIKGRFEGS	230 RFLPYHTRN(RFLPYHTRN(240 QINGGAL QINGGAL
m919.pep	250 DGKAPILGYAEDPVE	260 LFFMHIQGS	270 GRLKTPSGKY		1111111111	 ADKGYL
m919.pep	310 KLGQTSMQGIKSYMF KLGQTSMQGIKAYMQ	320 RQNPQRLAEV QNPQRLAEV	330 LGQNPSYIFF LGQNPSYIFF	340 RELAGSSNDG : RELTGSSNDG	350 PVGALGTPLN VVGALGTPLN	 GEYAGA
m919.pep	310 370 VDRHYITLGAPLFVA VDRHYITLGAPLFVA	 TAHPVTRKA			THEFT	
m919.pep	370 430 QKTTGYVWQLLPNGM QKTTGYVWQLLPNGM 430 440	380 440 KPEYRPX	390	400	410	420 .

121 and 121-1

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3075>: m121.seq

•						
	1	ATGGAAACAC	AGCTTTACAT	CGGCATCATG	TCGGGAACCA	GCATGGACGG
	51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
	101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CCAATTGCTG
	151	GATTTGCAGG	ACACAGGCGC	AGACGAACTG	CACCGCAGCA	GGATTTTGTC
	201	GCAAGAACTC	AGCCGCCTAT	ATGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
	251	GTCAAAACCT	CGCACCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
	301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTTAC	AGCATACAGC	TTGCCGATTT
	351	GCCGCTGCTG	GCGxxxxxxx	xxxxxxxxx	xxxxxxxxx	XXXXXXXXX
	401	xxxxxxxxx			xxxxxxxxx	
	451	xxxxxxxxx	XXXXXXXXX	xxxxxxxxx	xxxxxxxxx	xxxxxxxxx
	501			xxxxxxxxx		
	551			xxxxxxxxx		
	601	XXXXXXCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGTCGG	CACAAGGCAA
	651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
	701	AACGCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCAT	AAATTGGCTC
	751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
	801	TTCCCGTTTT	ACCGCGCAAA	0001110001	CGCCGTCTCA	CACGCAGCGG
	851	CAGATGCCCG	TCAAATGTAC	ATTTGCGACG	GCGGCATCCG	CAATCCTGTT
	901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
	951	CACCGCCGAC	CTGAACCTCG	ATCCGCAATG	GGTGGAAGCC	GCCGnATTTG
	1001	CGTGGTTGGC	GGCGTGTTGG	ATTAATCGCA	TTCCCGGTAG	TCCGCACAAA

1101 A

```
.
```

1051 GCAACCGGCG CATCCAAACC GTGTATTCTG AnCGCGGGAT ATTATTATTG

This corresponds to the amino acid sequence <SEQ ID 3076; ORF 121>: m121.pep

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3077>: g121.seq

```
ATGGAAACAC AGCTTTACAT CGGCATTATG TCGGGAACCA GTATGGACGG
  51 GGCGGATGCC GTGCTGGTAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
 101 AAGGGCACGC CTTTACCCCC TACCCTGACC GGTTGCGCCG CAAATTGCTG
 151 GATTTGCAGG ACACAGGCAC AGACGAACTG CACCGCAGCA GGATGTTGTC
 201 GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
251 GTCAAAACCT CGCTCCGTGC GACATTACCG CCCTCGGCTG CCACGGGCAA
 301 ACCGTCCGAC ACGCGCCGGA ACACGGTtac AGCATACAGC TTGCCGATTT
 351 GCCGCTGCTG GCGGAACTGa cgcggatttT TACCGTCggc gacttcCGCA
 401 GCCGCGACCT TGCTGCCGGC GGacaAGGTG CGCCGCTCGT CCCCGCCTTT
 451 CACGAAGCCC TGTTCCGCGA TGACAGGGAA ACACGCGTGG TACTGAACAT
 501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGGCGCA CCCGCCTTCG
 551 GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGAcgcgtg gacgcaggca
 601 cacTGGcagc TGCCTTACGA CAAAAacggt gcAAAGgcgg cacAAGGCAA
651 catatTGCcg cAACTGCTCG gcaggctGCT CGCCcaccCG TATTTCTCAC
701 AACCCcaccc aaAAAGCACG GGgcGCGaac TgtttgcccT AAattggctc
 751 gaaacctAcc ttgacggcgg cgaaaaccga tacgacgtat tgcggacgct
 801 ttcccgattc accgcgcaaA ccgTttggga cgccgtctca CACGCAGCGG
851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
 901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
 951 CACCGCCGAA CTGAACCTCG ATCCTCAATG GGTGGAGGCG gccgCATTtg
1001 cgtggttggC GGCGTGTTGG ATTAACCGCA TTCCCGGTAG TCCGCACAAA
      GCGACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
1101
```

This corresponds to the amino acid sequence <SEQ ID 3078; ORF 121.ng>: g121.pep

```
METQLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA AWAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK 351 ATGASKPCIL GAGYYY*
```

ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae: m121/g121

	10	20	30	40	50	60
m121.pep	METQLYIGIMSGTS	MDGADAVLIR	MDGGKWLGAE	GHAFTPYPGR	LRRQLLDLQI	TGADEL
101		111111111111111111111111111111111111111	1111111111		111:11111	11:11
g121	METQLYIGIMSGTS			GHAFTPYPDR	LRRKLLDLQI	TGTDEL
	10	20	30	40	50	60
m121.pep	70	80	90	100	110	120
mizi.pep	HRSRILSQELSRLY	AQTAALLICS	QNLAPSDITA	LGCHGQTVRH.	APEHGYSIQI	ADLPLL
	1111.111111111	1111111111	11111 1111		[][][]	11111

g121	HRSRMLSQELSRLY	AQTAAELLC:	SQNLAPCDITA	ALGCHGOTVR	APEHGYSTO	LADLPI.I.
	70	80	90	100	110	120
	130	140	150	160	170	180
ml21.pep	AXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXX	(XXXXXXXXXXX	(XXXXXXXXVV	VVVVVV
	1 : :			:		плллллл
g121	AELTRIFTVGDFRS	RDLAAGGQG	APLVPAFHEAI	LFRDDRETRV	LNTGGTANT	SVI.DDCA
	130	140	150	160	170	180
	190	200	210	220	230	240
m121.pep	XXXXXXXXXXXXX	OXXXXXXXX	LPYDKNGAKSA	AOGNI I POI.I.	RI.I.AHDVEN	עבע שסעמטמ∩
	:	: 1			11111111:	
g121	PAFGFDTGPGNMLM	DAWTOAHWOI	PYDKNGAKAZ	AOGNITI.POI.I.C	יוווווווו.	
•	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETYL	DGGENRYDVI	RTLSEFTAOT	מממופטמחטטים מממופטמחטטים	DADOMYTOD	CTRNDU
• -	111111:111111	111111111			TITITION	SGIRNPV
g121	GRELFALNWLETYL	DGGENRYDVI	RTLSEFTAOT	נווווווו וי	IIIIIIIII	CONNE
-	250	260	270	280	290	
	310	320	330	340	350	300
ml21.pep	LMADLAECFGTRVS			טינט דמואדשים אל ושו	DCCDURAMO	360
				**************************************	PGSPRKATG	ASKPCIL
g121	LMADLAECFGTRVS		ון ווווווווווווו משמממשרטם מ		DCC DVVV T TC	
9	310	320	330	340		
	020	320	330	340	350	360
m121.pep	XAGYYYX					
	11111					
g121	GAGYYYX					
J						

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3079>:

```
a121.seq
         ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
      51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
    101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
    151 GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
    201 GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
    251 GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
    301 ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
    351 GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
    401 GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
    451 CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
    501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
    551 GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
         CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
    651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
    701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
    751 GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
         TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
         CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
    851
    901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
         CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
         CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
   1001
         GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
   1051
   1101
         Α
```

This corresponds to the amino acid sequence <SEQ ID 3080; ORF 121.a>:

a121.pep					
1	METQLYIGIM	SGTSMDGADA	VLIRMDGGKW	LGAEGHAFTP	YPGRLRRKI.I.
51	DLQDTGADEL	HRSRMLSQEL	SRLYAOTAAE	LLCSONLAPS	DITALCCHOO
101	TVRHAPEHSY	SVQLADLPLL	AERTQIFTVG	DFRSRDLAAG	GOGAPIJVPAF
151	HEALFRODRE	TRAVLNIGGI	ANISVLPPDA	PAFGFDTGPG	MMT.MDAWMOA
201	HWQLPYDKNG	AKAAQGNILP	OLLDRLLAHP	YFAOPHPKST	GRELEALNWI
251	ETYLDGGENR	YDVLRTLSRF	TAQTVFDAVS	HAAADARQMY	ICGGGIRNPV

651

751

301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK 351 ATGASKPCIL GAGYYY* ORFs 121 and 121.a showed a 74.0% identity in 366 aa overlap m121/a121 10 20 30 40 METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL m121.pep ${\tt METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRKLLDLQDTGADEL}$ a121 10 20 30 40 70 80 90 100 110 120 HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL m121.pep HRSRMLSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHSYSVQLADLPLL a121 80 90 100 110 120 130 140 150 160 170 180 m121.pep AERTQIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRAVLNIGGIANISVLPPDA a121 130 140 150 160 170 190 200 210 220 230 240 m121.pep PAFGFDTGPGNMLMDAWMQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST a121 190 200 210 220 230 240 260 270 280 290 GRELFAINWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICDGGIRNPV m121.pep a121 GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV 250 260 270 280 290 320 330 340 LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL m121.pep LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL a121 310 320 330 340 350 **XAGYYYX** m121.pep $\Pi\Pi\Pi\Pi$ a121 **GAGYYYX** Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3081>: m121-1.seg ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG 1 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG 51 101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC 151 GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA 201 GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA 251 ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA 351 GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT 401 CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT 451 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA 551 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA 601

CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC

GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT

TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG

901 T 951 C 1001 C 1051 G 1101 A		AG 'G AA
	to the amino acid sequence <seq 121-1="" 3082;="" id="" orf="">:</seq>	
m121-1.pep 1 M	METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQL	•
51 D	DLQDTGADEL HRSRILSQEL SRLYAQTAAE LLCSONLAPS DITALGCHG	Ю
101 T	TVRHAPEHGY SIQLADLPLL AERTRIFTVG DFRSRDLAAG GOGAPLVPA	F
151 H 201 H	HEALFRDNRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWTQ HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNW	A. Ot.
251 E	ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADAROMY ICGGGIRNP	v
301 L 351 A	LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPH ATGASKPCIL XAGY <u>YY</u> *	K
m121-1/g121	CORFs 121-1 and 121.ng showed a 95.6% identity in	366 aa overlap
	10 20 30 40 50	60
m121-1.pep	METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRROLL	DLODTGADEL
g121		
3-	10 20 30 40 50	
-101 1 man	70 80 90 100 110	120
m121-1.pep	HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGY	SIQLADLPLL
g121	HRSRMLSQELSRLYAQTAAELLCSQNLAPCDITALGCHGQTVRHAPEHGY	SIQLADLPLL
	70 80 90 100 110	120
	130 140 150 160 170	180
m121-1.pep	AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGI	ANISVLPPDA
g121	AELTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDDRETRVVLNIGGI	
-	130 140 150 160 170	
	190 200 210 220 230	240
m121-1.pep	PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAOGNILPOLLDRLLAHP	YFAOPHPKST
g121		:
9101	190 200 210 220 230	
	050	
m121-1.pep	250 260 270 280 290 GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMY	300
		1111111111
g121	GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVWDAVSHAAADARQMY 250 260 270 280 290	
	0 200 250	300
m121-1.pep	310 320 330 340 350 LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHK	360
mizi i.pep		111111111
g121	LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWLAACWINRIPGSPHK	ATGASKPCIL
	310 320 330 340 350	360
_101 1	VA CHININ	
m121-1.pep	XAGYYYX	
g121	GAGYYYX	

The following DNA sequence was identified in N. meningitidis <SEQ ID 3083>: al21-1.seq
1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG


```
310
                                   320
                                            330
                                                      340
                  LMADLAECFGTRVSLHSTADLNLDPQWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
     m121-1.pep
                  LMADLAECFGTRVSLHSTAELNLDPQWVEAAAFAWMAACWVNRIPGSPHKATGASKPCIL
     a121
                                  320
                                            330
                                                      340
                                                               350
                                                                          360
                  XAGYYYX
     ml21-1.pep
                   111111
     a121
                  GAGYYYX
128 and 128-1
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3085>:
     m128.seg (partial)
            1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
           51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
          101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
          151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
          201 GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
          251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
          301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
          351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
            1 TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
           51 WGTCAAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
          101 AAmTCAAAAA ACTmTACGGC ATCGGATTTA CCGAAAAAAC yGTCCCCGTC
              TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAMCCAT
          201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
          251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
          301 CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
          351 CAGGGAAGCC CGCYTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
          401 CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
          451 TCCGGCATCA ACGGCGTAKA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
              TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
          551 ACGAAGAAAC CGGcgTTCCC yTGCCGAAAG AACTCTTsGA CAAAWTGCTC
          601 GCCGCCAAAA ACTTCCAAsG CGGCATGTTC YTsGTCCGGC AAWTGGAGTT
          651 CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
          701 AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
          751 CAGCCGCCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
          801 AGGCGGCTAT TCCGCAGCTN ATTACAGCTA CGCGTGGGCG GAAGTATTGA
          851 GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
          901 GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
          951 ngcagaatcc ttcaaagcct tccgcggccg cgaaccgagc atagacgcac
         1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
This corresponds to the amino acid sequence <SEQ ID 3086; ORF 128>:
     m128.pep
               (partial)
           1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
           51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
          101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NH
     //
           1 YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
           51 WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
          101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
          151 SGINGVXWDA VELPSQFMEN FVWEYNVLAQ XSAHEETGVP LPKELXDKXL
          201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
          251 OPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
         301 GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3087>: g128.seq

```
atgattgaca acgCActgct ccacttgggc gaagaaccCC GTTTTaatca
      aatccaaacc gaagACAtca AACCCGCCGT CCAAACCGCC ATCGCCGAAG
 101 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
 151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
 201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
 251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
 301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
 351 CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
     TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
 451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
 651 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
 801 AACCGccaaa cTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
     TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
1151
     ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1201
1251 CGCGTGGATG AACGACtaca AAGGCCGCCG CCGCTTTGCC GACGgcacGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
1401 AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TGTCCGGCAT CAAcggcgtA GAATGGGACG CGGTCGAACT GCCCAGCCAG
1501 TTTATGGAAA ACTTCGTTTG GGAATACAAT GTATTGGCAC AAATGTCCGC
     CCACGAAGAA ACCGGCGAGC CCCTGCCGAA AGAACTCTTC GACAAAATGC
1601 Tegecgccaa AAACTTCCAG CGCGGTATGT TCCTCGTCCG GCAAATGGAG
1651 TTCGCCCTCT TCGATATGAT GATTTACAGT GAAAGCGACG AATGCCGTCT
1701 GAAAAACTGG CAGCAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCA
1751 TCCAACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCacatctTC
1801 GCcggcGGCT ATTCCGCAGG CTATTACAGC TACGCATGGG CCGAAGTCCt
1851 CAGCACCGAT GCCTACGCCG CCTTTGAAGA AAGCGACGac gtcGCCGCCA
     CAGGCAAACG CTTCTGGCAA GAAAtccttg ccgtcggcgg ctCCCGCAGC
     gcgGCGGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
2001 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
```

This corresponds to the amino acid sequence <SEQ ID 3088; ORF 128.ng>: g128.pep

1 MIDNALHLG EEPRFNQIQT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
251 KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
401 IGGVYMDLYA REGKRGGAWM NDYKGRRFFA DGTLQLPTAY LVCNFAPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGEPLPKELF DKMLAAKNFQ RGMFLVRQME
551 FALFDMMIYS ESDECRLKNW QQVLDSVRKE VAVIQPPEYN RFANSFGHIF
601 AGGYSAGYYS YAWAEVLSTD AYAAFEESDD VAATGKRFWQ EILAVGGSRS

651 AAESFKAFRG REPSIDALLR QSGFDNAA*

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng) from N. gonorrhoeae: m128/g128

	10	20	30	40	50	60
g128.pep	MIDNALLHLGEE	PRFNQIQTEDI	KPAVOTAIAE	ARGQIAAVK	aqthtgwant	VERLTGIT
m128	MIDNAL LUI CEE	: :	:			11 11111
11120	MTDNALLHLGEE	PREDQIKTEDI 20	30			
	10	. 20	30	40	50	60
	70	80	90	100	110	120
g128.pep	ERVGRIWGVVSH			TVFFTETGO	DIELVNBEKT	TENICOPEN AUTOPEN
	_		1111111111		111111111	111111
m128	ERVGRIWGVVSH	LNCVADTPELR	AVYNELMPEI:	IVFFTEIGO	DIELYNRFKT	IKNSPEFD
	70	80	90	100	110	120
a120 man	130	140	150	160	170	180
g128.pep	TLSPAQKTKLDH	DLRDFVLSGAE.	LPPERQAELAI	KLQTEGAQL	3AKFSQNVLD	ATDAFGIY
m128	TLSPAQKTKLNH	ı				
	130	•			•	
	//					•
			3	340	350	360
g128.pep			YAGI	EKLREAKYAI	SETEVKKYF	PVGKVLAG
			! :			111 11 1
m128			YASI	EKLREAKYAI	SETXVKKYF	PVGXVLNG
				10	20	30
	370	380 :	390 4			
g128.pep	LFAQIKKLYGIG			100 EVETCOVVM	410	420
J		1:11111111		· ·	LIAREGERG	JAWMNDYK IIIIIIII
m128	LFAQXKKLYGIG	FTEKTVPVWHKI	OVRYXELOON	EXIGGVYMT	.	1
	40	50	60	70	80	90
	430		150 4	160	470	480
g128.pep	GRRRFADGTLQL	PTAYLVCNFAPI	PVGGKEARLS	DEILTLFHE	TGHGLHHLL	TQVDELGV
m130		THE PROPERTY OF THE PARTY OF TH	:			
m128	GRRRFSDGTLQL 100	PTAYLVCNFAPI 110				
	100	110	120	130	140	150
	490	500 9	510 5	520	530	540
g128.pep	SGINGVEWDAVE				ELFDKMLAA:	MEORGME.
				1111 1111	11 11 111	1111 131
m128	SGINGVXWDAVE	LPSQFMENFVWI	YNVLAQXSAI	IEETGVP LPI	ŒLXDKXLAAI	KNFQXGMF
	160	170	180	190	200	210
	550	550				
g128.pep	550		570 5	80	590	600
gizo.pep	LVRQMEFALFDM	:	MASOTINI I I I I I I I I I I I I I I I I I I	KEAWAA I ÖDI	EYNRFANSF(GHI FAGGY
m128	XVRQXEFALFDM	MIYSEDDEGRIJ	111111111111 11200011000WID			
	220	230	240	250	260	
				230,	200	270
	610		530 6	40	650	660
g128.pep	SAGYYSYAWAEV	LSTDAYAAFEES	DDVAATGKRF	WQEILAVG	CDCAAGGGV	שמשמשמ
100		:			111.111111	
m128	SAAA IS IAWAEV	LSADAYAAFEES	SDDVAATGKRE	WQEILAVGX	SRSGAESFK	AFRGREPS
	280	290	300	310	320	330

```
670 679
g128.pep IDALLRQSGFDNAAX
||||||:||||:
m128 IDALLRHSGFDNAVX
340
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3089>:

```
al28.seq
         ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
     51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
    101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
    151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
    201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
    251 CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
    301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
         CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
    401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
         GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
    501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
         CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
    551
    601 GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
    651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
    701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
    751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
         AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
    851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
    901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
    951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
         GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
   1001
   1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
         CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
   1101
   1151
         TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
   1201
         ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
         CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
   1251
         TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC
   1351
         GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
         AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
   1401
         TATCCGGCAT CAACGCCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
   1451
         TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
   1501
         CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
   1551
         TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
   1601
         TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
   1651
         GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
   1701
         TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
   1751
         GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
   1801
   1851
         GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
         CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
   1901
   1951
         GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
         ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
   2001
```

This corresponds to the amino acid sequence <SEQ ID 3090; ORF 128.a>:

•				,	120.00
al28.pep					
1	MTDNALLHLG	EEPRFDQIKT	EDIKPALQTA	IAEAREQIAA	IKAOTHTGWA
51	NTVEPLTGIT	ERVGRIWGVV	SHLNSVTDTP	ELRAAYNELM	PEITVFFTET
101	GQDIELYNRF	KTIKNSPEFD	TLSHAQKTKL	NHDLRDFVLS	GAELPPEOOA
151	ELAKLQTEGA	QLSAKFSQNV	LDATDAFGIY	FDDAAPLAGI	PEDALAMFAA
201	AAQSEGKTGY	KIGLQIPHYL	AVIQYADNRK	LREQIYRAYV	TRASELSDDG
251	KFDNTANIDR	TLENALQTAK	LLGFKNYAEL	SLATKMADTP	EQUINFILHOI.
301	ARRAKPYAEK	DLÄEVKAFAR	ESLGLADLQP	WDLGYAGEKL	REAKYAESET
351	EVKKYFPVGK	VLNGLFAQIK	KLYGIGFTEK	TVPVWHKDVR	YFELOONGET
401	IGGVYMDLYA	REGKRGGAWM	NDYKGRRRFS	DGTLOLPTAY	LVCNFTPPVC
451	GKEARLSHDE	ILTLFHETGH	GLHHLLTOVD	ELGVSGINGV	EWDAVET.PSO
501	FMENFVWEYN	VLAQMSAHEE	TGVPLPKELF	DKMLAAKNFO	RGMFLVROME

m128/a128 ORF	s 128 and 128			ty in 677 aa	overlap	
m128.pep	10 MTDNALLHLGI	20 EEPRFDQIKTED	30 IKPALQTAIAE	40 AREQIAAIKA	50 OTHTGWANTVI	60 TEPT.TGTT
a128		EEPRFDQIKTED 20	1111111111			
m128.pep	70 ERVGRIWGVVS	80 SHLNCVADTPEL	90 RAVYNELMPEI	100 TVFFTEIGQDI	110 ELYNRFKTI	120 KNSPEFD
a128	ERVGRIWGVVS 70	SHLNSVTDTPEL 80	RAAYNELMPEI 90	TVFFTEIGQDI 100	ELYNRFKTII 110	KNSPEFD 120
m128.pep		IH				
a128	 TLSHAQKTKLN 130	 HDLRDFVLSGA 140	ELPPEQQAELAI 150	KLQTEGAQLS <i>F</i> 160	AKFSQNVLDAT 170	DAFGIY 180
m128.pep						
a128	FDDAAPLAGIF 190	PEDALAMFAAAA 200	QSEGKTGYKIG 210	LQIPHYLAVIÇ 220	YADNRKLREÇ 230	OIYRAYV 240
m128.pep						
a128	TRASELSDDGK 250	FDNTANIDRTL	ENALQTAKLLGI 270	FKNYAELSLAT 280	KMADTPEQVI 290	NFLHDL 300
m128.pep						
a128	ARRAKPYAEKD 310	LAEVKAFARES: 320	LGLADLQPWDLO 330	: GYAGEKLREAK 340		 YFPVGK 360
m128.pep	160 17 VLNGLFAQXKK		190 PVWHKDVRYXEI	200 LQQNGEXIGGV	210 YMDLYAREGK	RGGAWM
a128	VLNGLFAQIKK 370	LYGIGFTEKTVI 380	PVWHKDVRYFEI 390	LQQNGETIGGV 400	YMDLYAREGK 410	RGGAWM 420
m128.pep	220 23 NDYKGRRRFSD		250 CNFAPPVGGREA	260 ARLSHDEILIL	270 FHETGHGLHH	LLTQVD
a128	NDYKGRRRFSD 430	GTLQLPTAYLVO	CNFTPPVGGKEA 450	ARLSHDEILTL 460	FHETGHGLHH 470	LLTQVD 480
m128.pep	280 29 ELGVSGINGVX	WDAVELPSQFMI	310 ENFVWEYNVLAC	320 XSAHEETGVP	330 LPKELXDKXL	AAKNFQ
a128	ELGVSGINGVE 490		ENFVWEYNVLAC 510	MSAHEETGVP 520	LPKELFDKML 530	AAKNFQ 540
m128.pep	340 35 XGMFXVRQXEF	ALFDMMIYSED	370 DEGRLKNWQQVI	380 DSVRKKVAVI	390 QPPEYNRFAL	SFGHIF
a128	RGMFLVRQMEF		DEGRLKNWQQVL 570	: : DSVRKEVAVV 580	: RPPEYNRFAN 590	IIIIII SFGHIF 600

400 410 420 430 440 AGGYSAAXYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGXSRSGAESFKAFRG m128.pep a128 AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG 610 620 630 640 650 660 460 470 m128.pep REPSIDALLRHSGFDNAVX a128 REPSIDALLRHSGFDNAAX 670

Further work revealed the DNA sequence identified in N. meningitidis <SEQ ID 3091>:

1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA 51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG 101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA 151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG 201 GGGCGTGGTG TCGCACCTCA ACTCCGTCGC CGACACGCCC GAACTGCGCG 251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC 301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC 351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCACGATC 401 TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA 451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC 601 GCCGCGCAAA GCGAAAGCAA AACAGGCTAC AAAATCGGCT TGCAGATTCC 651 ACACTACCTC GCCGTCATCC AATACGCCGA CAACCGCGAA CTGCGCGAAC 701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAACTTTC AGACGACGGC 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGCAA ACGCCCTGCA 801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA 851 CCAAAATGGC GGACACGCCC GAACAAGTTT TAAACTTCCT GCACGACCTC 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC CTTCGCCCGC GAAAGCCTGA ACCTCGCCGA TTTGCAACCG TGGGACTTGG 1001 GCTACGCCAG CGAAAAACTG CGCGAAGCCA AATACGCGTT CAGCGAAACC GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC 1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC 1151 1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG 1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC 1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC ACCCGTCGGC GGCAGGGAAG CCCGCCTGAG CCACGACGAA ATCCTCATCC TCTTCCACGA 1401 AACCGGACAC GGGCTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG 1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CGGTCGAACT GCCCAGCCAG 1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCAC AAATGTCAGC CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC 1551 1601 TCGCCGCCAA AAACTTCCAA CGCGGCATGT TCCTCGTCCG GCAAATGGAG TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT 1651 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAAAA GTCGCCGTCA 1701 TCCAGCCGCC CGAATACAAC CGCTTCGCCT TGAGCTTCGG CCACATCTTC 1751 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT 1801 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA 1851 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC 1901 1951 GCGGCAGAAT CCTTCAAAGC CTTCCGCGGC CGCGAACCGA GCATAGACGC 2001 ACTCTTGCGC CACAGCGGTT TCGACAACGC GGTCTGA

This corresponds to the amino acid sequence <SEQ ID 3092; ORF 128-1>: m128-1.pep.

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA 51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI

```
101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
          151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
          201 AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
          251 KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
          301 ARRAKPYAEK DLAEVKAFAR ESLNLADLQP WDLGYASEKL REAKYAFSET
          351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
              IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
          451 GREARLSHDE ILILFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
          501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
          551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
          601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
          651 AAESFKAFRG REPSIDALLR HSGFDNAV*
The following DNA sequence was identified in N. gonorrhoeae <SEQ ID 3093>:
     g128-1.seq (partial)
            1 ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
           51 AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
          101 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
          151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
          201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
```

251 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC 301 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC 401 TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA 451 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC 501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC 601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC 651 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA 801 AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC 1001 1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG 1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG 1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC 1301 . TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC 1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA 1401 AACCGGCCAC GGACTGCACC ACCT 1451 TGTCCGGCAT CAACGGCGTA AAA AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG

This corresponds to the amino acid sequence <SEQ ID 3094; ORF 128-1.ng>:

9128-1.pep (partial)

1 MIDNALLHLG EEPRFNQIKT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA
51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
251 KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV K

m128-1/g128-1 ORFs 128-1 and 128-1.ng showed a 94.5% identity in 491 aa overlap

10 20 30 40 50 60

g128-1.pep	MIDNALLHLGEEPRFNQIKTEDIKPAVQTAIAEARGQIAAVKX	AQTHTGWANTVERLTGIT
m128-1		
	10 20 30 40	50 60
	70 80 90 100	110 120
g128-1.pep	ERVGRIWGVVSHLNSVVDTPELRAVYNELMPEITVFFTEIGQI	DIELYNRFKTIKNSPEFA
m128-1		
	70 80 90 100	110 120
	130 140 150 160	170 180
g128-1.pep	TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLS	SAKFSQNVLDATDAFGIY
m128-1		AKFSONVI.DATDAFGIY
	130 140 150 160	170 180
	190 200 210 220	230 240
g128-1.pep	FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVJ	OYAGNRELREOIYRAYV
m128-1		OVADNEEL DEOLVEAVU
	190 200 210 220	230 240
	250 260 270 280	290 300
g128-1.pep	TRASELSNDGKFDNTANIDRTLENALKTAKLLGFKNYAELSLA	ATKMADTPEOVLNFLHDL
m128-1	:	
MIZO I	250 260 270 280	290 300
	310 320 330 340	350 360
g128-1.pep	ARRAKPYAEKDLAEVKAFAREHLGLADPQPWDLSYAGEKLREA	AKYAFSETEVKKYFPVGK
m128-1		
MIZO I	310 320 330 340	350 360
	370 380 390 400	410
g128-1.pep	VLAGLFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGO	410 420 SVYMDLYAREGKRGGAWM
m128-1	- [] [][[][[][[][[][[][[][[][[][[][[][[][111111111111111
11120-1	VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGG 370 380 390 400	SVYMDLYAREGKRGGAWM 410 420
	420	
g128-1.pep	430 440 450 460 NDYKGRRFADGTLQLPTAYLVCNFAPPVGGKEARLSHDEILT	470 480
		11111111111111111
m128-1	NDYKGRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILI 430 440 450 460	
	110 100	470 480
g128-1.pep	490 ELGVSGINGVK	
	111111111:	
m128-1	ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGV 490 500 510 520	
	320	530 540
following DNA	IA sequence was identified in N. meningitidis <se< td=""><td>Q ID 3095>:</td></se<>	Q ID 3095>:

The following DNA sequence was identified in N. meningitidis <SEQ ID 3095>:
a128-1.seq

1	ATGACTGACA	ACGCACTGCT	CCATTTGGGC	GAAGAACCCC	GTTTTGATCA
51	AATCAAAACC	GAAGACATCA	AACCCGCCCT	GCAAACCGCC	ATTGCCGAAG
101	CGCGCGAACA	AATCGCCGCC	ATCAAAGCCC	AAACGCACAC	CGGCTGGGCA
151	AACACTGTCG	AACCCCTGAC	CGGCATCACC	GAACGCGTCG	GCAGGATTTG
201	GGGCGTGGTG	TCGCACCTCA	ACTCCGTCAC	CGACACGCCC	GAACTGCGCG
251	CCGCCTACAA	TGAATTAATG	CCCGAAATTA	CCGTCTTCTT	CACCGAAATC
301	GGACAAGACA	TCGAGCTGTA	CAACCGCTTC	AAAACCATCA	AAAACTCCCC
351	CGAGTTCGAC	ACCCTCTCCC	ACGCGCAAAA	AACCAAACTC	AACCACGATC
401	TGCGCGATTT	CGTCCTCAGC	GGCGCGGAAC	TGCCGCCCGA	ACAGCAGGCA
451	GAATTGGCAA	AACTGCAAAC	CGAAGGCGCG	CAACTTTCCG	CCAAATTCTC

501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG 551 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC 651 701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA CCAAAATGGC GGACACCCC GAACAAGTTT TAAACTTCCT GCACGACCTC 851 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC 951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG 1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC 1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG 1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC 1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG 1251 1301 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA 1351 1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG 1451 1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC 1551 TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT 1651 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG 1701 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC 1751 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT 1851 GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC 1951 2001 ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA

This corresponds to the amino acid sequence <SEQ ID 3096; ORF 128-1.a>: a128-1.pep

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
551 FMLFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
661 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS

m128-1/a128-1 ORFs 128-1 and 128-1.a showed a 97.8% identity in 677 aa overlap

	10	20	30	40	50	60
a128-1.pep	MTDNALLHLGEEPF	FDQIKTEDI:	(PALQTAIAEA	REQIAAIKA	THTGWANTVE	
	_	111111111		1111111111		
m128-1	MTDNALLHLGEEPF	FDQIKTEDI	(PALQTAIAEA	REQIAAIKA	THTGWANTVE	PLTGIT
	10	· 20	30	40	50	60
	70	80	90	100	110	120
a128-1.pep	ERVGRIWGVVSHLN	ISVTDTPELR <i>i</i>	AYNELMPEIT	VFFTEIGQD1	ELYNRFKTI	NSPEFD
		11:111111	:111111111	111111111	1111111111	111111
m128-1	ERVGRIWGVVSHLN	SVADTPELRA	VYNELMPEIT	VFFTEIGQD1	ELYNRFKTIK	NSPEED
	70	80	90	100	110	120
	130	140	150	160	170	180

a128-1.pep	TLSHAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAF	111
11128-1	TLSPAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDATDAF 130 140 150 160 170	180
a128-1.pep	190 200 210 220 230 FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYR	240 LAYV
m128-1	FDDAAPLAGIPEDALAMFAAAAQSESKTGYKIGLQIPHYLAVIQYADNRELREQIYR	240
a128-1.pep	250 260 270 280 290 TRASELSDDGKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFL 	HDL
m128-1	TRASELSDDGKFDNTANIDRTLANALQTAKLLGFKNYAELSLATKMADTPEQVLNFL	HDL 300
a128-1.pep	310 320 330 340 350 ARRAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFP	360 VGK
m128-1	ARRAKPYAEKDLAEVKAFARESLNLADLQPWDLGYASEKLREAKYAFSETEVKKYFP	VGK 360
a128-1.pep	VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELOONGETIGGVYMDLYAREGKRGG	420 AWM
m128-1	VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGG. 370 380 390 400 410	 AWM 420
a128-1.pep	430 440 450 460 470 NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHHLLTG	480 QVD
m128-1	NDYKGRRRFSDGTLQLPTAYLVCNFAPPVGGREARLSHDEILILFHETGHGLHHLLT	QVD 480
a128-1.pep	490 500 510 520 530 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKI	540 NFQ
m128-1	ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKI	NFQ 540
a128-1.pep	RGMFLVRQMEFALFDMMIYSEDDEGRLKNWOOVLDSVRKEVAVVRPPEYNRFANSFCI	600
		nir
m128-1	RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFALSFGI	111
m128-1 a128-1.pep		111 HIF 600
	RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFALSFGI 550 560 570 580 590 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	 HIF 600 660 FRG
a128-1.pep	RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKKVAVIQPPEYNRFALSFGI 550 560 570 580 590 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	HIF 600 660 FRG FRG

206

m206.pep..

- 1 MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT 51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT 101 ARDMAAASRK IPDSRXKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS 151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*
- The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3099>: g206.seq
 - atgttttccc ccgacaaaac ccttttcctc tgtctcggcg cactgctcct 51 cgcctcatgc ggcacgacct ccggcaaaca ccgccaaccg aaacccaaac 101 agacagteeg geaaateeaa geegteegea teageeacat eggeegeaca 151 caaggetege aggaacteat getecacage eteggactea teggeacgee 201 ctacaaatgg ggcggcagca gcaccgcaac cggcttcgac tgcagcggca 251 tgattcaatt ggtttacaaa aacgccctca acgtcaagct gccgcgcacc 301 gcccgcgaca tggcggcggc aagccgcaaa atccccgaca gccgcctcaa ggccggcgac atcgtattct tcaacaccgg cggcgcacac cgctactcac 401 acgtcggact ctacatcggc aacggcgaat tcatccatgc ccccggcagc 451 ggcaaaacca tcaaaaccga aaaactctcc acaccgtttt acgccaaaaa 501 ctaccttgga gcgcatacgt tttttacaga atga

This corresponds to the amino acid sequence <SEQ ID 3100; ORF 206.ng>: g206.pep

- MFSPDKTLFL CLGALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIGRT 1 51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQLVYK NALNVKLPRT
- 101 ARDMAAASRK IPDSRLKAGD IVFFNTGGAH RYSHVGLYIG NGEFIHAPGS
- 151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*

ORF 206 shows 96.0% identity over a 177 aa overlap with a predicted ORF (ORF 206.ng) from N. gonorrhoeae: m206/g206

	10	20	30	40	50	60
m206.pep	MFPPDKTLFLCLSA	LLLASCGTTS	GKHROPKPKO	TVROIOAVRT		PU.TM.TEC
		1111111111	111111111		111 11111	
g206	MFSPDKTLFLCLGA	LLLASCGTTS	GKHRQPKPKQ	TVRQIQAVRI	SHIGRTOGSO	ELMLHS
	10	20	30	40	50	60
	70	80	90	100	110	120
m206.pep	LGLIGTPYKWGGSS	TATGFDCSGM	IIQFVYKNALN	VKLPRTARDM	AAASRKIPDS	RXKAGD
			:		1111111111	1 1111
g206	LGLIGTPYKWGGSS	TATGFDCSGM	IQLVYKNALN	VKLPRTARDM	AAASRKIPDS	RIKAGD
	70	80	90	100	110	120
	130 "	140	150	160	170	•
m206.pep	LVFFNTGGAHRYSH	VGLYIGNGEF	'IHAPSSGKTI	KTEKLSTPFY		צאייאי
	-:		1111:1111			111
g206	IVFFNTGGAHRYSH	VGLYIGNGEF		KTEKLSTPFY	AKNYLGAHTF	FTE

104

130 140 150 160 170

```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3101>: a206.seq
```

```
1 ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
51 CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
151 CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
251 TGATTCAATT CGTTTACAAA AACGCCCTCA ACGTCAAGCT GCCGCGCACC
301 GCCCGCGACA TGGCGGCGCA AACCCCAAA ATCCCCGACA GCCCCTTAA
351 GGCCGGCAC CTCGTATTCT TCAACACCGG CGCGCACAC CGCTACTCAC
401 ACGTCGGACT CTATATCGGC AACGCCGAAT TCATCCATGC CCCCAGCAGC
451 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
501 CTACCTCGGC GCACATACTT TCTTTACAGA ATGA
```

This corresponds to the amino acid sequence <SEQ ID 3102; ORF 206.a>: a206.pep

· beb					
1	MFPPDKTLFL	CLSALLLASC	GTTSGKHRQP	KPKQTVRQIQ	AVRISHIDRT
51	QGSQELMLHS	LGLIGTPYKW	GGSSTATGFD	CSGMIQFVYK	NALNVKLPRT
	ARDMAAASRK				
151					

m206/a206 ORFs 206 and 206.a showed a 99.4% identity in 177 aa overlap

JO, LL	014 5 200	- una 200.u bi	ionou u >.		y 111 1 / / aa	ovenap	
		10	20	30	40	50.	60
m206.p	ep MF	PPDKTLFLCLSA	LLLASCGTT	SGKHRQPKPKQ	TVRQIQAVRI	SHIDRTOGSO	ELMLHS
	111			11111111111	ПЕЙЕН	ШПП	111111
a206	MFI	PPDKTLFLCLSAI	LLLASCGTT	SGKHRQPKPKQ	TVRQIQAVRI	SHIDRTOGSC	ELMLHS
		10	20	30	40	50	60
		70	80	90	100	110	100
006						110	120
m206.p	ep LGI	IGTPYKWGGSS	TATGFDCSG	MIQFVYKNALN'	VKLPRTARDM	AAASRKIPDS	RXKAGD
	111						1 1111
a206	LGI	IGTPYKWGGSS	PATGFDCSG	MIQFVYKNALN	VKLPRTARDM	AAASRKIPDS	RLKAGD
		70	80	90	100	110	120
		130	1.40	150	1.50		
			140	150	160	170	
m206.p	ep LVE	FNTGGAHRYSHV	GLYIGNGE:	FIHAPSSGKTI	KTEKLSTPFY	AKNYLGAHTE	FTEX
	111					111111111	1111
a206	LVE	FNTGGAHRYSH	GLYIGNGE:	FIHAPSSGKTI	KTEKLSTPFY	AKNYLGAHTE	צידיזי
		130	140	150	160	170	

287

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3103>:

m287.seq					
1	ATGTTTAAAC	GCAGCGTAAT	CGCAATGGCT	TGTATTTTTG	CCCTTTCAGC
51	CTGCGGGGGC	GGCGGTGGCG	GATCGCCCGA	TGTCAAGTCG	GCGGACACGC
101	TGTCAAAACC	TGCCGCCCCT	GTTGTTTCTG	AAAAAGAGAC	AGAGGCAAAG
151				CAGGGCGCGC	
201	AGGCAGTCAA	GATATGGCGG	CGGTTTCGGA	AGAAAATACA	GGCAATGGCG
251				AAGACGAGGT	
301	GATATGCCGC	AAAATGCCGC	CGGTACAGAT	AGTTCGACAC	CGAATCACAC
351				GGAAAATCAA	
401	CCGGGGAATC	GTCTCAGCCG	GCAAACCAAC	CGGATATGGC	AAATGCGGCG
451	GACGGAATGC	AGGGGGACGA	TCCGTCGGCA	GGCGGGCAAA	ATGCCGGCAA
501	TACGGCTGCC	CAAGGTGCAA	ATCAAGCCGG	AAACAATCAA	GCCGCCGGTT
551	CTTCAGATCC	CATCCCCGCG	TCAAACCCTG	CACCTGCGAA	TGGCGGTAGC

```
601 AATTTTGGAA GGGTTGATTT GGCTAATGGC GTTTTGATTG ACGGGCCGTC
 651 GCAAAATATA ACGTTGACCC ACTGTAAAGG CGATTCTTGT AGTGGCAATA
 701 ATTTCTTGGA TGAAGAAGTA CAGCTAAAAT CAGAATTTGA AAAATTAAGT
     GATGCAGACA AAATAAGTAA TTACAAGAAA GATGGGAAGA ATGATAAATT
     TGTCGGTTTG GTTGCCGATA GTGTGCAGAT GAAGGGAATC AATCAATATA
 851 TTATCTTTTA TAAACCTAAA CCCACTTCAT TTGCGCGATT TAGGCGTTCT
 901 GCACGGTCGA GGCGGTCGCT TCCGGCCGAG ATGCCGCTGA TTCCCGTCAA
     TCAGGCGGAT ACGCTGATTG TCGATGGGGA AGCGGTCAGC CTGACGGGGC
1001 ATTCCGGCAA TATCTTCGCG CCCGAAGGGA ATTACCGGTA TCTGACTTAC
1051 GGGGCGGAAA AATTGCCCGG CGGATCGTAT GCCCTTCGTG TTCAAGGCGA
1101 ACCGGCAAAA GGCGAAATGC TTGCGGGCGC GGCCGTGTAC AACGGCGAAG
1151 TACTGCATTT CCATACGGAA AACGGCCGTC CGTACCCGAC CAGGGGCAGG
1201
     TTTGCCGCAA AAGTCGATTT CGGCAGCAAA TCTGTGGACG GCATTATCGA
1251 CAGCGGCGAT GATTTGCATA TGGGTACGCA AAAATTCAAA GCCGCCATCG
1301 ATGGAAACGG CTTTAAGGGG ACTTGGACGG AAAATGGCAG CGGGGATGTT
     TCCGGAAAGT TTTACGGCCC GGCCGGCGAG GAAGTGGCGG GAAAATACAG
1351
1401
     CTATCGCCCG ACAGATGCGG AAAAGGGCGG ATTCGGCGTG TTTGCCGGCA
1451 AAAAAGAGCA GGATTGA
```

This corresponds to the amino acid sequence <SEQ ID 3104; ORF 287>:

```
m287.pep

1 MFKRSVIAMA CIFALSACGG GGGGSPDVKS ADTLSKPAAP VVSEKETEAK
51 EDAPQAGSQG QGAPSAQGSQ DMAAVSEENT GNGGAVTADN PKNEDEVAQN
101 DMPQNAAGTD SSTPNHTPDP NMLAGNMENQ ATDAGESSQP ANQPDMANAA
151 DGMQGDDFSA GGQNAGNTAA QGANQAGNNQ AAGSSDPIPA SNPAPANGGS
201 NFGRVDLANG VLIDGPSQNI TLTHCKGDSC SGNNFLDEEV QLKSEFEKLS
251 DADKISNYKK DGKNDKFVGL VADSVQMKGI NQYIIFYKPK PTSFARFRRS
301 ARSRRSLPAE MPLIPVNQAD TLIVDGEAVS LTGHSGNIFA PEGNYRYLTY
351 GAEKLPGGSY ALRVQGEPAK GEMLAGAAVY NGEVLHFHTE NGRPYPTRGR
401 FAAKVDFGSK SVDGIIDSGD DLHMGTQKFK AAIDGNGFKG TWTENGSGDV
451 SGKFYGPAGE EVAGKYSYRP TDAEKGGFGV FAGKKEOD*
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3105>: g287.seq

```
atgtttaaac gcagtgtgat tgcaatggct tgtatttttc ccctttcagc
  51 ctgtggggc ggcggtggcg gatcgcccga tgtcaagtcg gcggacacgc
 101 cgtcaaaacc ggccgccccc gttgttgctg aaaatgccgg ggaaggggtg
 151 ctgccgaaag aaaagaaaga tgaggaggca gcgggcggtg cgccgcaagc
 201 cgatacgcag gacgcaaccg ccggagaagg cagccaagat atggcggcag
      tttcggcaga aaatacaggc aatggcggtg cggcaacaac ggacaacccc
 251
 301 aaaaatgaag acgcgggggc gcaaaatgat atgccgcaaa atgccgccga
 351 atccgcaaat caaacaggga acaaccaacc cgccggttct tcagattccg
 401 cccccgcgtc aaaccctgcc cctgcgaatg gcggtagcga ttttggaagg
     acgaacgtgg gcaattctgt tgtgattgac ggaccgtcgc aaaatataac
 451
     gttgacccac tgtaaaggcg attcttgtaa tggtgataat ttattggatg
 501
     aagaagcacc gtcaaaatca gaatttgaaa aattaagtga tgaagaaaaa
 601
     attaagcgat ataaaaaaga cgagcaacgg gagaattttg tcggtttggt
      tgctgacagg gtaaaaaagg atggaactaa caaatatatc atcttctata
     cggacaaacc acctactcgt tctgcacggt cgaggaggtc gcttccggcc
 701
     gagattccgc tgattcccgt caatcaggcc gatacgctga ttgtggatgg
 801 ggaagcggtc agcctgacgg ggcattccgg caatatcttc gcgcccgaag
     ggaattaccg gtatctgact tacggggcgg aaaaattgcc cggcggatcg
     tatgccctcc gtgtgcaagg cgaaccggca aaaggcgaaa tgcttgttgg
 901
 951 cacggccgtg tacaacggcg aagtgctgca tttccatatg gaaaacggcc
      gtccgtaccc gtccggaggc aggtttgccg caaaagtcga tttcggcagc
1001
     aaatctgtgg acggcattat cgacagcggc gatgatttgc atatgggtac
     gcaaaaattc aaagccgcca tcgatggaaa cggctttaag gggacttgga
1101
1151 cggaaaatgg cggcggggat gtttccggaa ggttttacgg cccggccggc
     gaggaagtgg cgggaaaata cagctatcgc ccgacagatg ctgaaaaggg
1201
1251 cggattcggc gtgtttgccg gcaaaaaaga tcgggattga
```

This corresponds to the amino acid sequence <SEQ ID 3106; ORF 287.ng>: g287.pep

MFKRSVIAMA CIFPLSACGG GGGGSPDVKS ADTPSKPAAP VVAENAGEGV

51	LPKEKKDEEA	AGGAPQADTQ	DATAGEGSQD	MAAVSAENTG	NGGAATTONP
101	KNEDAGAQND	MPQNAAESAN	QTGNNQPAGS	SDSAPASNPA	PANGGSDFGR
151	TNVGNSVVID	GPSQNITLTH	CKGDSCNGDN	LLDEEAPSKS	EFEKLSDEEK
201	IKRYKKDEQR	ENFVGLVADR	VKKDGTNKYI	IFYTDKPPTR	SARSRRSLPA
251		DTLIVDGEAV			
301	YALRVQGEPA				
351	KSVDGIIDSG	DDLHMGTQKF	KAAIDGNGFK	GTWTENGGGD	VSGRFYGPAG
401	EEVAGKYSYR	PTDAEKGGFG	VFAGKKDRD*		

m287/g287 ORFs 287 and 287.ng showed a 70.1% identity in 499 aa overlap

m287.pep	10 20 30 40 49 MFKRSVIAMACIFALSACGGGGGSPDVKSADTLSKPAAPVVSEKETEA
m287.pep	50 60 70 80 90 100 109 KEDAPQAGSQGQAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGT : :::
m287.pep	110 120 130 140 150 160 169 DSSTPNHTPDPNMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTA
m287.pep g287	170 180 190 200 210 220 229 AQGANQAGNNQAAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDS :: :
m287.pep	230 240 250 260 270 280 289 CSGNNFLDEEVQLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKP : : : : : : : ::
m287.pep	290 300 310 320 330 340 349 KPTSFARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLT :
m287.pep g287	350 360 370 380 390 400 409 YGAEKLPGGSYALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGS YGAEKLPGGSYALRVQGEPAKGEMLVGTAVYNGEVLHFHMENGRPYPSGGRFAAKVDFGS 300 310 320 330 340 350
m287.pep	410 420 430 440 450 460 469 KSVDGIIDSGDDLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYR
m287.pep	PTDAEKGGFGVFAGKKEQDX

```
g287
                  PTDAEKGGFGVFAGKKDRDX
                        420
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3107>:
     a287.seq
               ATGTTTAAAC GCAGTGTGAT TGCAATGGCT TGTATTGTTG CCCTTTCAGC
              CTGTGGGGGC GGCGGTGGCG GATCGCCCGA TGTTAAGTCG GCGGACACGC
          101 TGTCAAAACC TGCCGCCCCT GTTGTTACTG AAGATGTCGG GGAAGAGGTG
          151 CTGCCGAAAG AAAAGAAAGA TGAGGAGGCG GTGAGTGGTG CGCCGCAAGC
              CGATACGCAG GACGCAACCG CCGGAAAAGG CGGTCAAGAT ATGGCGGCAG
          251 TTTCGGCAGA AAATACAGGC AATGGCGGTG CGGCAACAAC GGATAATCCC
          301 GAAAATAAAG ACGAGGGACC GCAAAATGAT ATGCCGCAAA ATGCCGCCGA
          351 TACAGATAGT TCGACACCGA ATCACACCCC TGCACCGAAT ATGCCAACCA
              GAGATATGGG AAACCAAGCA CCGGATGCCG GGGAATCGGC ACAACCGGCA
          401
          451 AACCAACCGG ATATGGCAAA TGCGGCGGAC GGAATGCAGG GGGACGATCC
          501 GTCGGCAGGG GAAAATGCCG GCAATACGGC AGATCAAGCT GCAAATCAAG
          551 CTGAAAACAA TCAAGTCGGC GGCTCTCAAA ATCCTGCCTC TTCAACCAAT
              CCTAACGCCA CGAATGGCGG CAGCGATTTT GGAAGGATAA ATGTAGCTAA
          651 TGGCATCAAG CTTGACAGCG GTTCGGAAAA TGTAACGTTG ACACATTGTA
          701 AAGACAAAGT ATGCGATAGA GATTTCTTAG ATGAAGAAGC ACCACCAAAA
          751 TCAGAATTTG AAAAATTAAG TGATGAAGAA AAAATTAATA AATATAAAAA
              AGACGAGCAA CGAGAGAATT TTGTCGGTTT GGTTGCTGAC AGGGTAGAAA
          851 AGAATGGAAC TAACAAATAT GTCATCATTT ATAAAGACAA GTCCGCTTCA
          901 TCTTCATCTG CGCGATTCAG GCGTTCTGCA CGGTCGAGGC GGTCGCTTCC
          951 GGCCGAGATG CCGCTGATTC CCGTCAATCA GGCGGATACG CTGATTGTCG
         1001 ATGGGGAAGC GGTCAGCCTG ACGGGGCATT CCGGCAATAT CTTCGCGCCC
              GAAGGGAATT ACCGGTATCT GACTTACGGG GCGGAAAAAT TGTCCGGCGG
         1051
         1101 ATCGTATGCC CTCAGTGTGC AAGGCGAACC GGCAAAAGGC GAAATGCTTG
         1151 CGGGCACGGC CGTGTACAAC GGCGAAGTGC TGCATTTCCA TATGGAAAAC
         1201 GGCCGTCCGT CCCCGTCCGG AGGCAGGTTT GCCGCAAAAG TCGATTTCGG
         1251 CAGCAAATCT GTGGACGGCA TTATCGACAG CGGCGATGAT TTGCATATGG
        1301 GTACGCAAAA ATTCAAAGCC GTTATCGATG GAAACGGCTT TAAGGGGACT
        1351 TGGACGGAAA ATGGCGGCGG GGATGTTTCC GGAAGGTTTT ACGGCCCGGC
         1401 CGGCGAAGAA GTGGCGGGAA AATACAGCTA TCGCCCGACA GATGCGGAAA
         1451 AGGGCGGATT CGGCGTGTTT GCCGGCAAAA AAGAGCAGGA TTGA
This corresponds to the amino acid sequence <SEQ ID 3108; ORF 287.a>:
     a287.pep
              MFKRSVIAMA CIVALSACGG GGGGSPDVKS ADTLSKPAAP VVTEDVGEEV
              LPKEKKDEEA VSGAPQADTQ DATAGKGGQD MAAVSAENTG NGGAATTDNP
             ENKDEGPOND MPONAADTDS STPNHTPAPN MPTRDMGNQA PDAGESAQPA
              NQPDMANAAD GMQGDDPSAG ENAGNTADQA ANQAENNQVG GSQNPASSTN
             PNATNGGSDF GRINVANGIK LDSGSENVTL THCKDKVCDR DFLDEEAPPK
         251 SEFEKLSDEE KINKYKKDEQ RENFVGLVAD RVEKNGTNKY VIIYKDKSAS
              SSSARFRRSA RSRRSLPAEM PLIPVNQADT LIVDGEAVSL TGHSGNIFAP
         351
              EGNYRYLTYG AEKLSGGSYA LSVQGEPAKG EMLAGTAVYN GEVLHFHMEN
              GRPSPSGGRF AAKVDFGSKS VDGIIDSGDD LHMGTQKFKA VIDGNGFKGT
         401
         451 WTENGGGDVS GRFYGPAGEE VAGKYSYRPT DAEKGGFGVF AGKKEQD*
    m287/a287
                 ORFs 287 and 287.a showed a 77.2% identity in 501 aa overlap
                                            30
                                                     40
    m287.pep
                 MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSE-----KETEA
                 1: 11
                 MFKRSVIAMACIVALSACGGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA
    a287
                        10
                                  20
                                            30
                                                     40
                                                                        60
                                   70
                                            80
                                                      90
                                                               100
                                                                       109
                 KEDAPQAGSQGQAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGT
    m287.pep
                    VSGAPQADTQ--DATAGKGGQDMAAVSAENTGNGGAATTDNPENKDEGPQNDMPQNAADT
    a287
```

80

90

100

- 70

m287.pep	110 120 DSSTPNHTPDPNMLAGE STRIP STRI	:1 111 1111	1:11111111	1111111111	11111 : 11	1111
m287.pep	170 180 AQGANQAGNNQAAGS: : :: DQAANQAENNQVGGS0 180 190	:: :: :	1111:111::	:111: :1:	1:1:11111	ı
m287.pep	230 240 CSGNNFLDEEVQLKSI : : : CD-RDFLDEEAPPKSI 240 250	1111111 : []:	:1111 : ::	1111111 1:	:1 1:1:1:	: 11
m287.pep	290 300 KPTSFARFRRSARS : KSASSSSARFRRSARS 300 310	11111111111	[]][]]		111111111	1111
m287.pep	350 360 LTYGAEKLPGGSYALI LTYGAEKLSGGSYALI 360 370	11111111111	11:111111	1111 31111	1:	1111
m287.pep	410 420 GSKSVDGIIDSGDDLE GSKSVDGIIDSGDDLE 420 430	11111111111111	11111111	H:11111:1		
m287.pep	470 480 YRPTDAEKGGFGVFAC YRPTDAEKGGFGVFAC 480 490	111111				

406

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3109>: m406.seq

1	ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC
51	CGCCTGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	GGTAAACGCT
101	TTGCGGTCGA	ACAAGAACTT	GTGGCCGCTT	CTGCCAGAGC	TGCCGTTAAA
151	GACATGGATT	TACAGGCATT	ACACGGACGA	AAAGTTGCAT	TGTACATTGC
201	CACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGGT	CGCTACTCCA
251	TTGATGCACT	GATTCGTGGC	GAATACATAA	ACAGCCCTGC	CGTCCGTACC
301	GATTACACCT	ATCCACGTTA	CGAAACCACC	GCTGAAACAA	CATCAGGCGG
351	TTTGACAGGT	TTAACCACTT	CTTTATCTAC	ACTTAATGCC	CCTGCACTCT
401	CTCGCACCCA	ATCAGACGGT	AGCGGAAGTA	AAAGCAGTCT	GGGCTTAAAT
451	ATTGGCGGGA	TGGGGGATTA	TCGAAATGAA	ACCTTGACGA	CTAACCCGCG
501	CGACACTGCC	TTTCTTTCCC	ACTTGGTACA	GACCGTATTT	TTCCTGCGCG
551	GCATAGACGT	TGTTTCTCCT	GCCAATGCCG	ATACAGATGT	GTTTATTAAC
601	ATCGACGTAT	TCGGAACGAT	ACGCAACAGA	ACCGAAATGC	ACCTATACAA
651	TGCCGAAACA	CTGAAAGCCC	AAACAAAACT	GGAATATTTC	GCAGTAGACA

```
701 GAACCAATAA AAAATTGCTC ATCAAACCAA AAACCAATGC GTTTGAAGCT
751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
801 AGGAATTAAA CCGACGGAAG GATTAATGGT CGATTTCTCC GATATCCGAC
851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
901 AGTCATGAGG GGTATGGATA CAGCGATGAA GTAGTGCGAC AACATAGACA
951 AGGACAACCT TGA
```

This corresponds to the amino acid sequence <SEQ ID 3110; ORF 406>: m406.pep

```
MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
OTTOPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
ISI IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIRPYGNHTG NSAPSVEADN
SHEGYGYSDE VVROHROGOP *
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 3111>: g406.seq

```
ATGCGGGCAC GGCTGCTGAT ACCTATTCTT TTTTCAGTTT TTATTTTATC
 1
51 CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA GGCAAACGCT
101 TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA
151 GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC
201 AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT CGCTACTCCA
    TTGATGCACT GATTCGCGGC GAATACATAA ACAGCCCTGC CGTCCGCACC
251
    GATTACACCT ATCCGCGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG
301
351 TTTGACGGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT
401 CGCGCACCCA ATCAGACGGT AGCGGAAGTA GGAGCAGTCT GGGCTTAAAT
451 ATTGGCGGGA TGGGGGGATTA TCGAAATGAA ACCTTGACGA CCAACCCGCG
501 CGACACTGCC TTTCTTTCCC ACTTGGTGCA GACCGTATTT TTCCTGCGCG
551 GCATAGACGT TGTTTCTCCT GCCAATGCCG ATACAGATGT GTTTATTAAC
601 ATCGACGTAT TCGGAACGAT ACGCAACAGA ACCGAAATGC ACCTATACAA
    TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTTC GCAGTAGACA
    GAACCAATAA AAAATTGCTC ATCAAACCCA AAACCAATGC GTTTGAAGCT
701
751 GCCTATAAAG AAAATTACGC ATTGTGGATG GGGCCGTATA AAGTAAGCAA
801 AGGAATCAAA CCGACGGAAG GATTGATGGT CGATTTCTCC GATATCCAAC
851 CATACGGCAA TCATACGGGT AACTCCGCCC CATCCGTAGA GGCTGATAAC
901 AGTCATGAGG GGTATGGATA CAGCGATGAA GCAGTGCGAC AACATAGACA
951 AGGGCAACCT TGA
```

This corresponds to the amino acid sequence <SEQ ID 3112; ORF 406>: g406.pep

```
MRARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSRSSLGLN
151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA
251 AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHTG NSAPSVEADN
301 SHEGYGYSDE AVRQHRQGQP *
```

ORF 406 shows 98.8% identity over a 320 aa overlap with a predicted ORF (ORF406.a) from N. gonorrhoeae: g406/m406

	10	20	30	40	50	60
g406.pep	70 KVALYIATMGDQGS	80 GSLTGGRYSI	90 DALIRGEYIN	100 SPAVRTDYTY	110 PRYETTAETT	120 SGGLTG
m406	KVALYIATMGDQGS	GSLTGGRYSI 80	DALIRGEYIN 90	SPAVRTDYTY 100	PRYETTAETT 110	SGGLTG 120
g406.pep	130 LTTSLSTLNAPALS LTTSLSTLNAPALS	111111111:	111111111		1111111111	111111
	130	140	150	160	170	180
g406.pep	FLRGIDVVSPANAD	111111111		111111111	1111111111	111111
m406	FLRGIDVVSPANAD 190	200	GTIRNRTEMH 210	220	TKLEYFAVDR 230	TNKKLL 240
g406.pep	250 IKPKTNAFEAAYKE IKPKTNAFEAAYKE 250	11111111	111111111	[]]]]]]:]	1111111111	
g406.pep	310 SHEGYGYSDEAVRQ : SHEGYGYSDEVVRQ 310	ШШ				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 3113>: a406.seq

ATGCAAGCAC	GGCTGCTGAT	ACCTATTCTT	TTTTCAGTTT	TTATTTTATC	
CGCCTGCGGG	ACACTGACAG	GTATTCCATC	GCATGGCGGA	GGTAAACGCT	
TCGCGGTCGA	ACAAGAACTT	GTGGCCGCTT	CTGCCAGAGC	TGCCGTTAAA	
GACATGGATT	TACAGGCATT	ACACGGACGA	AAAGTTGCAT	TGTACATTGC	
AACTATGGGC	GACCAAGGTT	CAGGCAGTTT	GACAGGGGGT	CGCTACTCCA	
TTGATGCACT	GATTCGTGGC	GAATACATAA	ACAGCCCTGC	CGTCCGTACC	
GATTACACCT	ATCCACGTTA	CGAAACCACC	GCTGAAACAA	CATCAGGCGG	
TTTGACAGGT	TTAACCACTT	CTTTATCTAC	ACTTAATGCC	CCTGCACTCT	
CGCGCACCCA	ATCAGACGGT	AGCGGAAGTA	AAAGCAGTCT	GGGCTTAAAT	
ATTGGCGGGA	TGGGGGATTA	TCGAAATGAA	ACCTTGACGA	CTAACCCGCG	
		ACTTGGTACA	GACCGTATTT	TTCCTGCGCG	
		GCCAATGCCG	ATACGGATGT	GTTTATTAAC	
		ACGCAACAGA	ACCGAAATGC	ACCTATACAA	
		AAACAAAACT	GGAATATTTC	GCAGTAGACA	
		ATCAAACCAA	AAACCAATGC	GTTTGAAGCT	
		ATTGTGGATG	GGACCGTATA	AAGTAAGCAA	
		GATTAATGGT	CGATTTCTCC	GATATCCAAC	
	TCATATGGGT	AACTCTGCCC	CATCCGTAGA	GGCTGATAAC	
AGTCATGAGG		CAGCGATGAA	GCAGTGCGAC	GACATAGACA	
AGGGCAACCT	TGA				
	CGCCTGCGGG TCGCGGTCGA GACATGGATT AACTATGGGC TTGATGCACT TTTGACAGGT CGCGCACCCA ATTGGCGGA CGACACTGCC GCATAGACGT ATCGACGTAT TGCCGAAACA GAACCAATAA GCCTATAAAG AGGAATTAAA CATACGGCAA AGTCATGAGG	CGCCTGCGGG ACACTGACAG TCGCGGTCGA ACAAGAACTT GACATGGATT TACAGGCATT AACTATGGGC GACCAAGGTT TTGATGCACT ATCCACGTTA TTTGACACGT TAACCACTT CGCGCACCCA ATCAGACGGT ATTGGCGGAC CGACACTGCC TTTTCTCCC GCATAGACGT TGTTTCTCCT ATCGACGTAT TCGCAACGAT TGCCGAACAC CTGAAAGCCC GAACCAATAA AAAATTGCTC GCCTATAAAG CATACGGC AGGAATTAAA CCGACAGAAG CATACGGCAA TCATATGGGT	CGCCTGCGGG ACACTGACAG GTATTCCATC TCGCGGTCGA ACAAGAACTT GTGGCCGCTT GACATGGATT TACAGGCATT ACACGGACGA AACTATGGGC GACCAAGGTT CAGGCAGTTT TTGATGCACT ATCCACGTTA CGAAACCACC TTTGACAGGT TTAACCACTT CTTTATCTAC CGCGCACCCA ATCAGACGGT AGCGGAAGTA ATTGGCGGA TGGGGGATTA TCGAAATGAA CGACACTGCC TTTCTTCCC GCCAATGCCG ATCGACGTA TCGGAACGAT ACGCACAGA TGCCGAACAC CTGAAAGCCC ATCGACGTAT TCGGAACGAT ACGCAACAGA TGCCGAAACA CTGAAAGCCC GAACCAATAA AAAATTGCTC ATCAAACCAA GCCTATAAAG AAAATTACGC ATTGTGGATG AGGAATTAAA CCGACAGAAG GATTAATGGT AGGAATTAAA CCGACAGAAG CATACGGCAA TCATATGGGT AACTCTGCCC AGTCATGAGG GGTATGGATA CAGCGATGAA	CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGGCGGA TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT AACTATGGGC GACCAAGGTT CAGGCAGTTT GACAGGGGGT TTGATGCACT GATTCGTGGC GAATACATAA ACAGCCCTGC GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA TTTGACAGGT TTAACCACTT CTTTATCTAC ACTTAATGCC CGCCACCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT ATTGGCGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CGACACTGCC TTTCTTCCC ACTTGGTACA GACCGTATTT GCATAGACGT TCGGAACGAT ACGCAACAGA ACCGAATGC GAACCAATAA CTGAAACCA AACCAATGC GAACCAATAA AAAATTACGC ATTGTGATG GGACCGTATT GGCCTATAAAG AAAATTACGC ATTGTGATG GGACCGTATT AGGAATTAAA CCGACAGAA GATTAATGGT CGATTCCC CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA AGGAATTAAA CCGACAGAA GATTAATGGT CGATTCTCC CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA AGTCATGAGG GGTATGGATA CAGCGATGAA GCACTGCGAC	CGCCTGCGGG ACACTGACAG GTATTCCATC GCATGCCGA GGTAAACGCT TCGCGGTCGA ACAAGAACTT GTGGCCGCTT CTGCCAGAGC TGCCGTTAAA GACATGGATT TACAGGCATT ACACGGACGA AAAGTTGCAT TGTACATTGC AACTATGGC GACCAAGGTT CAGGCAGTT GACAGGGGGT CGCTACTCCA GATTACACCT ATCCACGTTA CGAAACCACC GCTGAAACAA CATCAGGCGG TTTGACACGT TTAACCACTT CTTTATCTAC ACTTAATGCC CCTGCACTCT CGCCACCCCA ATCAGACGGT AGCGGAAGTA AAAGCAGTCT GGGCTTAAAT ATTGGCGGGA TGGGGGATTA TCGAAATGAA ACCTTGACGA CTAACCCGCG CGACACTGCC TTTCTTCCC ACTTGGTACA GACCGTATT TCCTGCGCG GCATAGACGT TGTTCTCCT GCCAATGCCG ATACGGATGT GTTTATTAAC ATCGACGTAT TCGGAACGAT ACGCAACGA ACCGAAATGC GTTTATTAACA TGCCGAAACA CTGAAAGCCC AAACAAAACT GGAATATTT GCAGTAGACA GAACCAATAA AAAATTGCTC ACTAAACCAA AAACCAATGC GTTTGAAGCT GCCTATAAAG AAAATTACGC ATTGTGGATG GGACCGTATT AAGTAAGCAA AGGAATTAAA CCGAACAGA AACCAATGC GTTTGAAGCT ACGACAATAA AAAATTACGC ATTGTGGATG GGACCGTATA AAGTAAGCAA AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTCCC GATATCCAAC CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA GGCTGATAAC AGGAATTAAA CCGACAGAA CCGAATGC GACCTATAA AAGTAAGCAA AGGAATTAAA CCGACAGAAG GATTAATGGT CGATTTCTCC GATATCCAAC CATACGGCAA TCATATGGGT AACTCTGCCC CATCCGTAGA GGCTGATAAC AGGTATGAGG

This corresponds to the amino acid sequence <SEQ ID 3114; ORF 406.a>: a406.pep

1 MQARLLIPIL FSVFILSACG TLTGIPSHGG GKRFAVEQEL VAASARAAVK
51 DMDLQALHGR KVALYIATMG DQGSGSLTGG RYSIDALIRG EYINSPAVRT
101 DYTYPRYETT AETTSGGLTG LTTSLSTLNA PALSRTQSDG SGSKSSLGLN
151 IGGMGDYRNE TLTTNPRDTA FLSHLVQTVF FLRGIDVVSP ANADTDVFIN
201 IDVFGTIRNR TEMHLYNAET LKAQTKLEYF AVDRTNKKLL IKPKTNAFEA

WO 99/57280

251 301	AYKENYALWM GPYKVSKGIK PTEGLMVDFS DIQPYGNHMG NSAPSVEADN SHEGYGYSDE AVRRHRQGQP *
m406/a406	ORFs 406 and 406.a showed a 98.8% identity in 320 aa overlap
m406.pep	10 20 30 40 50 60 MQARLLIPILFSVFILSACGTLTGIPSHGGGKRFAVEQELVAASARAAVKDMDLQALHGR
a406	
	70 80 90 100 110 120
m406.pep	KVALYIATMGDQGGGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGLTG
a400	KVALYIATMGDQGSGSLTGGRYSIDALIRGEYINSPAVRTDYTYPRYETTAETTSGGLTG 70 80 90 100 110 120
m406.pep	130 140 150 160 170 180 LTTSLSTLNAPALSRTQSDGSGSKSSLGLNIGGMGDYRNETLTTNPRDTAFLSHLVQTVF
a406	
m406.pep	190 200 210 220 230 240 FLRGIDVVSPANADTDVFINIDVFGTIRNRTEMHLYNAETLKAQTKLEYFAVDRTNKKLL
a406	
	250 260 270 280 290 300
m406.pep	IKPKTNAFEAAYKENYALWMGPYKVSKGIKPTEGLMVDFSDIRPYGNHTGNSAPSVEADN
a406	IKPKTNAFEAAYKENYALWMGPYKVSKGIKPTEGLMVDFSDIQPYGNHMGNSAPSVEADN 250 260 270 280 290 300
m406.pep	310 320 SHEGYGYSDEVVRQHRQGQPX
a406	: :

EXAMPLE 2

Expression of ORF 919

The primer described in Table 1 for ORF 919 was used to locate and clone ORF 919. The predicted gene 919 was cloned in pET vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 919-His fusion protein purification. Mice were immunized with the purified 919-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; PP, purified protein, TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm

that 919 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 919 are provided in Figure 10. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, *J. Immunol* 143:3007; Roberts et al. 1996, *AIDS Res Human Retroviruses* 12:593; Quakyi et al. 1992, *Scand J Immunol Suppl* 11:9). The nucleic acid sequence of ORF 919 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 3

Expression of ORF 279

The primer described in Table 1 for ORF 279 was used to locate and clone ORF 279. The predicted gene 279 was cloned in pGex vector and expressed in E. coli. The product of protein expression and purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 279-GST purification. Mice were immunized with the purified 279-GST and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 279 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 279 are provided in Figure 11. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 279 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 4

Expression of ORF 576 and 576-1

The primer described in Table 1 for ORF 576 was used to locate and clone ORF 576. The predicted gene 576 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 576-GST fusion protein purification. Mice were immunized with the purified 576-GST and sera

were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B).. These experiments confirm that ORF 576 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 576 are provided in Figure 12. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 576 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 5

Expression of ORF 519 and 519-1

The primer described in Table 1 for ORF 519 was used to locate and clone ORF 519. The predicted gene 519 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 519-His fusion protein purification. Mice were immunized with the purified 519-His and sera were used for Western blot (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 519 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 13. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 519 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 6

Expression of ORF 121 and 121-1

The primer described in Table 1 for ORF 121 was used to locate and clone ORF 121. The predicted gene 121 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 121-His fusion protein purification. Mice were immunized with the purified 121-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 121 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 121 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 121 are provided in Figure 14. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 121 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 7

Expression of ORF 128 and 128-1

The primer described in Table 1 for ORF 128 was used to locate and clone ORF 128. The predicted gene 128 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 128-His purification. Mice were immunized with the purified 128-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D) and ELISA assay (panel E). Results show that 128 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 128 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 128 are provided in Figure 15. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J.

WO 99/57280

EXAMPLE 8

Expression of ORF 206

The primer described in Table 1 for ORF 206 was used to locate and clone ORF 206. The predicted gene 206 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 206-His purification. Mice were immunized with the purified 206-His and sera were used for Western blot analysis (panel B). It is worthnoting that the immunoreactive band in protein extracts from meningococcus is 38 kDa instead of 17 kDa (panel A). To gain information on the nature of this antibody staining we expressed ORF 206 in E. coli without the His-tag and including the predicted leader peptide. Western blot analysis on total protein extracts from E. coli expressing this native form of the 206 protein showed a recative band at a position of 38 kDa, as observed in meningococcus. We conclude that the 38 kDa band in panel B) is specific and that anti-206 antibodies, likely recognize a multimeric protein complex. In panel C is shown the FACS analysis, in panel D the bactericidal assay, and in panel E) the ELISA assay. Results show that 206 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vesicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 206 is a surfaceexposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 519 are provided in Figure 16. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 206 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 9

Expression of ORF 287

The primer described in Table 1 for ORF 287 was used to locate and clone ORF 287. The predicted gene 287 was cloned in pGex vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 287-GST fusion protein purification. Mice were immunized with the purified 287-GST and sera were used for FACS analysis (panel B), bactericidal assay (panel C), and ELISA assay (panel D). Results show that 287 is a surface-exposed protein. Symbols: M1, molecular weight marker. Arrow indicates the position of the main recombinant protein product (A). These experiments confirm that 287 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 287 are provided in Figure 17. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al. 1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 287 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 10

Expression of ORF 406

The primer described in Table 1 for ORF 406 was used to locate and clone ORF 406. The predicted gene 406 was cloned in pET vector and expressed in E. coli. The product of protein purification was analyzed by SDS-PAGE. In panel A) is shown the analysis of 406-His fusion protein purification. Mice were immunized with the purified 406-His and sera were used for Western blot analysis (panel B), FACS analysis (panel C), bactericidal assay (panel D), and ELISA assay (panel E). Results show that 406 is a surface-exposed protein. Symbols: M1, molecular weight marker; TP, N. meningitidis total protein extract; OMV, N. meningitidis outer membrane vescicle preparation. Arrows indicate the position of the main recombinant protein product (A) and the N. meningitidis immunoreactive band (B). These experiments confirm that 406 is a surface-exposed protein and that it is a useful immunogen. The hydrophilicity plots, antigenic index, and amphipatic regions of ORF 406 are provided in Figure 18. The AMPHI program is used to predict putative T-cell epitopes (Gao et al 1989, J. Immunol 143:3007; Roberts et al. 1996, AIDS Res Human Retroviruses 12:593; Quakyi et al.

1992, Scand J Immunol Suppl 11:9). The nucleic acid sequence of ORF 406 and the amino acid sequence encoded thereby is provided in Example 1.

EXAMPLE 11

Table 2 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 225 among different strains.

Table 2

225 gene variability:	List of used Neisseria strains
· ·	
Identification Strains	Source / reference
number	
Group B	
zo01_225 NG6/88	R. Moxon / Seiler et al., 1996
zo02_225 BZ198]	R. Moxon / Seiler et al., 1996
zo03_225 NG3/88	R. Moxon / Seiler et al., 1996
zo04_225 297-0	R. Moxon / Seiler et al., 1996
zo05_225 1000	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
zo07_225 BZ169 I	R. Moxon / Seiler et al., 1996
zo08_225 528 I	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
zo11_225 NGE31 I	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
zo13_225 NGE28 H	R. Moxon / Seiler et al., 1996
zo14_225 NGH38 I	R. Moxon / Seiler et al., 1996
zo15_225 SWZ107 I	R. Moxon / Seiler et al., 1996
zo16_225 NGH15 I	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
zo18_225 BZ232 F	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
zo20_225 44/76 F	R. Moxon / Seiler et al., 1996
· —	R. Moxon
zo96_225 2996 (Our collection
Group A	
<u> </u>	R. Moxon
. –	R. Moxon
. –	R. Moxon / Maiden et al., 1998
	C. INTOXOII / IVIGIUOII et ut., 1990
Group C	
	R. Moxon
zo25_225_93/4286 R	R. Moxon

Others

zo26_225 A22 (group W) R. Moxon / Maiden et al., 1998 zo27_225 E26 (group X) R. Moxon / Maiden et al., 1998 zo28_225 860800 (group Y) R. Moxon / Maiden et al., 1998

zo29_225 E32 (group Z) R. Moxon / Maiden et al., 1998

Gonococcus

zo32_225 Ng F62

R. Moxon / Maiden et al., 1998

zo33 225 Ng SN4

R. Moxon

fa1090 FA1090

R. Moxon

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

>FA1090 <SEQ ID 3115>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

Z2491 <SEQ ID 3116>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSISTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO01_225 <SEQ ID 3117>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO02_225 <SEQ ID 3118>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO03_225 <SEQ ID 3119>

MDSFFKPAVWAVLWLMFAVRLALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO04 225 <SEQ ID 3120>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO05 225 <SEO ID 3121>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO06 225 <SEQ ID 3122>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO07 225 <SEQ ID 3123>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO08_225 <SEQ ID 3124>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGSAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNFFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO09 225 <SEQ ID 3125>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO10 225 <SEQ ID 3126>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO11 225 <SEQ ID 3127>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO12 225 <SEQ ID 3128>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO13_225 <SEQ ID 3129>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFIQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO14 225 <SEQ ID 3130>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO15 225 <SEQ ID 3131>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO16 225 <SEQ ID 3132>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO17 225 <SEQ ID 3133>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO18 225 <SEQ ID 3134>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO19 225 <SEQ ID 3135>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO20 225 <SEQ ID 3136>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPINRAPARRAGNADELIGSAMGLNEQPVLPVNRVPARRAGNA DELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSVSTGFDCSGF MQHIFKRAMGINLPRTSAEQARMGTPVARSELQPGDMVFFRTLGGSRISHVGLYIGNNRF IHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO21 225 <SEQ ID 3137>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNFFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO22 225 <SEQ ID 3138>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR

SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO23 225 <SEQ ID 3139>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO24 225 <SEQ ID 3140>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO25_225 <SEQ ID 3141>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

2026 225 <SEO ID 3142>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNADELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO27 225 <SEQ ID 3143>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO28_225 <SEQ ID 3144>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNFFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO29 225 <SEQ ID 3145>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSVSTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

ZO32_225 <SEQ ID 3146>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRVKKNDPSRFLN*

ZO33_225 <SEQ ID 3147>

MDSFFKPAVWAVLWLMFAVRSALADELTNLLSSREQILRQFAEDEQPVLPVNRAPARRAG NADELIGSAMGLNEQPVLPVNRAPARRAGNADELIGSAMGLLGIAYRYGGTSVSTGFDCS GFMQHIFKRAMGINLPRTSAEQARMGAPVARSELQPGDMVFFRTLGGSRISHVGLYIGNN RFIHAPRTGKNIEITSLSHKYWSGKYAFARRIKKNDPSRFLN*

ZO96_225 <SEQ ID 3148>

MDSFFKPAVWAVLWLMFAVRPALADELTNLLSSREQILRQFAEDEQPVLPINRAPARRAG NADELIGSAMGLNEQPVLPVNRVPARRAGNADELIGNAMGLNEQPVLPVNRAPARRAGNA DELIGNAMGLLGIAYRYGGTSISTGFDCSGFMQHIFKRAMGINLPRTSAEQARMGTPVAR SELQPGDMVFFRTLGGSRISHVGLYIGNNRFIHAPRTGKNIEITSLSHKYWSGKYAFARR VKKNDPSRFLN*

Figure 19 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 225, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 12

Table 3 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 235 among different strains.

Table 3

235 gen	e variability	y: List of used Neisseria strains	
Identifica number	tion Strains	Reference	
Gı	roup B		
gnmzq01	NG6/88	Seiler et al., 1996	
	BZ198	Seiler et al., 1996	
gnmzq03	NG3/88	Seiler et al., 1996	
gnmzq04	1000	Seiler et al., 1996	
gnmzq05	1000	Seiler et al., 1996	
gnmzq07	BZ169	Seiler et al., 1996	
gnmzq08	528	Seiler et al., 1996	
gnmzq09	NGP165	Seiler et al., 1996	
gnmzq10	BZ133	Seiler et al., 1996	•
gnmzq11	NGE31	Seiler et al., 1996	
gnmzq13	NGE28	Seiler et al., 1996	
gnmzq14	NGH38	Seiler et al., 1996	
gnmzq15	SWZ107	Seiler et al., 1996	
gnmzq16	NGH15	Seiler et al., 1996	
gnmzq17	NGH36	Seiler et al., 1996	
gnmzq18	BZ232	Seiler et al., 1996	
gnmzq19		Seiler et al., 1996	
gnmzq21	MC58	Virji et al., 1992	
Gr	oup A		
gnmzq22	205900	Our collection	

gnmzq23 F6124 O

Our collection

z2491 Z2491

WO 99/57280

Maiden et al., 1998

Group C

gnmzq24 90/18311

Our collection

gnmzq25 93/4286

Our collection

Others

gnmzq26 A22 (group W) Maiden et al., 1998

gnmzq27 E26 (group X) Maiden et al., 1998

gnmzq28 860800 (group Y) Maiden et al., 1998

gnmzq29 E32 (group Z) Maiden et al., 1998

gnmzq31

N. lactamica Our collection

Gonococcus

gnmzq32 Ng F62

Maiden et al., 1998

gnmzq33 Ng SN4

Our collection

fa1090 FA1090

Dempsey et al. 1991

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856.

Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

Virji M. et al., Mol. Microbiol., 1992, 6:1271-1279

Dempsey J.F. et al., J. Bacteriol., 1991, 173:5476-5486

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3149>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*

GNMZQ01 <SEQ ID 3150>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ02 <SEQ ID 3151>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ03 <SEQ ID 3152>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST

AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

GNMZQ04 <SEQ ID 3153>

WO 99/57280

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

GNMZQ05 <SEQ ID 3154>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ07 <SEQ ID 3155>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ08 <SEQ ID 3156>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANNLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ09 <SEQ ID 3157>

MKPLILGLAAALVLSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVQPEKLHQIFGNDAVLYITITEYGTS YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

GNMZQ10 <SEQ ID 3158>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEOPK*

GNMZQ11 <SEQ ID 3159>

$$\label{thm:mkplic} \begin{align} MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST\\ AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS\\ YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT\\ DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK * \end{align}$$

GNMZQ13 <SEQ ID 3160>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ14 <SEQ ID 3161>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ15 <SEQ ID 3162>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ16 <SEQ ID 3163>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ17 <SEQ ID 3164>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ18 <SEQ ID 3165>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ19 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ21 <SEQ ID 3166>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ22 <SEQ ID 3167>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ23 <SEQ ID 3168>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ24 <SEQ ID 3169>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ25 <SEQ ID 3170>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ26 <SEQ ID 3171>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ27 <SEQ ID 3172>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK* GNMZQ28 <SEQ ID 3173>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ29 <SEQ ID 3174>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

GNMZQ31 <SEQ ID 3175>

MKPLILGLAAVLALSACQVQKAPDFDYTAFKESKPASILVVPPLNESPDVNGTWGMLAST AEPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITITEYGTS YQILDSVTTVSARARLVDSRNGKVLWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKAAAYDLLSPYSHNGILKGPRFVEEQPK*

GNMZQ32 <SEQ ID 3176>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEOPK*

GNMZQ33 <SEQ ID 3177>

MKPLILGLAAVLALSACQVRKAPDLDYTSFKESKPASILVVPPLNESPDVNGTWGMLAST AAPISEAGYYVFPAAVVEETFKENGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVGAVVNQIANSLT DRGYQVSKTAAYNLLSPYSRNGILKGPRFVEEQPK*

Z2491 <SEQ ID 3178>

MKPLILGLAAVLALSACQVQKAPDFDYTSFKESKPASILVVPPLNESPDVNGTWGVLAST AAPLSEAGYYVFPAAVVEETFKQNGLTNAADIHAVRPEKLHQIFGNDAVLYITVTEYGTS YQILDSVTTVSAKARLVDSRNGKELWSGSASIREGSNNSNSGLLGALVSAVVNQIANSLT DRGYQVSKTAAYNLLSPYSHNGILKGPRFVEEQPK*

Figure 20 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 235, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 13

Table 4 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 287 among different strains.

Table 4

287 gene variability: List of used Neisseria strains

Identification Strains

Reference

number

(Group B	
287_2	BZ198	Seiler et al., 1996
287_9	NGP165	Seiler et al., 1996
287_14	NGH38	Seiler et al., 1996
287_21	MC58	Virji et al., 1992
G	Froup A	
z2491	Z2491	Maiden et al., 1998
G	Sonococcus	
fa1090	FA1090	Dempsey et al. 1991

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden R. et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145. Virji M. et al., Mol. Microbiol., 1992, 6:1271-1279 Dempsey J.F. et al., J. Bacteriol., 1991, 173:5476-5486

The amino acid sequences for each listed strain are as follows:

287_14 <SEQ ID 3179>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG

287_2 <SEQ ID 3180>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGGQDMAAVSEENTGNGGAAATDKPKNEDEGAQNDMPQNAADTDSLTPNHTPAS NMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGGENAGNTAAQGTNQAENNQ TAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFAR FRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLP GGSYALRVQGEPSKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGII DSGDGLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKG

287_21. <SEQ ID 3181>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS $\label{thm:continuous} ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY\\ ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD\\ DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGVFAGKKEQD*$

287 9 <SEQ ID 3182>

MFKRSVIAMACIVALSACGGGGGGSPDVKSADTLSKPAAPVVTEDVGEEVLPKEKKDEEA
VSGAPQADTQDATAGKGGQDMAAVSAENTGNGGAATTDNPENKDEGPQNDMPQNAADTDS
STPNHTPAPNMPTRDMGNQAPDAGESAQPANQPDMANAADGMQGDDPSAGENAGNTADQA
ANQAENNQVGGSQNPASSTNPNATNGGSDFGRINVANGIKLDSGSENVTLTHCKDKVCDR
DFLDEEAPPKSEFEKLSDEEKINKYKKDEQRENFVGLVADRVEKNGTNKYVIIYKDKSAS
SSSARFRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYG
AEKLSGGSYALSVQGEPAKGEMLAGTAVYNGEVLHFHMENGRPSPSGGRFAAKVDFGSKS
VDGIIDSGDDLHMGTQKFKAVIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPT
DAEKGGFGVFAGKKEQD*

FA1090 <SEQ ID 3183>

MFKRSVIAMACIFPLSACGGGGGGSPDVKSADTPSKPAAPVVAENAGEGVLPKEKKDEEA
AGGAPQADTQDATAGEGSQDMAAVSAENTGNGGAATTDNPKNEDAGAQNDMPQNAAESAN
QTGNNQPAGSSDSAPASNPAPANGGSDFGRTNVGNSVVIDGPSQNITLTHCKGDSCNGDN
LLDEEAPSKSEFEKLSDEEKIKRYKKDEQRENFVGLVADRVKKDGTNKYIIFYTDKPPTR
SARSRRSLPAEIPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGS
YALRVQGEPAKGEMLVGTAVYNGEVLHFHMENGRPYPSGGRFAAKVDFGSKSVDGIIDSG
DDLHMGTQKFKAAIDGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPTDAEKGGFG
VFAGKKDRD*

Z2491 <SEQ ID 3184>

MFKRSVIAMACIFALSACGGGGGGSPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQG QGAPSAQGSQDMAAVSEENTGNGGAVTADNPKNEDEVAQNDMPQNAAGTDSSTPNHTPDP NMLAGNMENQATDAGESSQPANQPDMANAADGMQGDDPSAGGQNAGNTAAQGANQAGNNQ AAGSSDPIPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHCKGDSCSGNNFLDEEV QLKSEFEKLSDADKISNYKKDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFRRS ARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSY ALRVQGEPAKGEMLAGAAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGD DLHMGTQKFKAAIDGNGFKGTWTENGSGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGV FAGKKEQD*

Figure 21 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 287, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 14

Table 5 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 519 among different strains.

Table 5

519 gene variability: List of used Neisseria strains

Identification Strains

Source / reference

number		
Grou	рВ	
zv01_519	NG6/88	R. Moxon / Seiler et al., 1996
zv02_519	BZ198	R. Moxon / Seiler et al., 1996
zv03_519ass	NG3/88	R. Moxon / Seiler et al., 1996
zv04_519	297-0	R. Moxon / Seiler et al., 1996
zv05_519	1000	R. Moxon / Seiler et al., 1996
zv06_519ass	BZ147	R. Moxon / Seiler et al., 1996
zv07_519	BZ169	R. Moxon / Seiler et al., 1996
zv11_519	NGE31	R. Moxon / Seiler et al., 1996
zv12_519	NGF26	R. Moxon / Seiler et al., 1996
zv18_519	BZ232	R. Moxon / Seiler et al., 1996
zv19_519	BZ83	R. Moxon / Seiler et al., 1996
zv20_519ass		R. Moxon / Seiler et al., 1996
zv21_519ass	MC58	R. Moxon
zv96_519	2996	Our collection
•		
Group		D 16
zv22_519ass	205900	R. Moxon
z2491_519	Z2491	R. Moxon / Maiden et al., 1998
Other	S	
zv26_519	A22 (group	W) R. Moxon / Maiden et al., 1998
zv27_519	E26 (group	X) R. Moxon / Maiden et al., 1998
zv28_519	860800 (gr	oup Y) R. Moxon / Maiden et al., 1998
zv29_519ass	E32 (gr	oup Z) R. Moxon / Maiden et al., 1998
Gonoc		·
zv32_519	Ng F62	R. Moxon / Maiden et al., 1998
fa1090_519	FA1090	R. Moxon
References:		
Seiler A. et al. Maiden et al.,	, Mol. Microbi Proc. Natl. Aca	ol., 1996, 19(4):841-856. ad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090_519 <SEQ ID 3185>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

Z2491 519 <SEQ ID 3186>

MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV01 519 <SEQ ID 3187>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV02 519 <SEQ ID 3188>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV03 519 <SEQ ID 3189>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV04_519 <SEQ ID 3190>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV05 519 <SEQ ID 3191>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV06 519ASS <SEQ ID 3192>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVFSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERK KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV07 519 <SEQ ID 3193>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV11 519 <SEQ ID 3194>

MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV12 519 <SEQ ID 3195>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV18 519 <SEQ ID 3196>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV19 519 <SEQ ID 3197>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV20 519ASS <SEQ ID 3198>

MEFFTILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSM ISAGMKIIDSSKTAK*

ZV21 519ASS <SEQ ID 3199>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV22 519ASS <SEQ ID 3200>

MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAKIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV26_519 <SEQ ID 3201>

MEFFIILLAAVVVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV27 519 <SEQ ID 3202>

MEFFIILLVAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL ISAGMKIIDSSKTAK*

ZV28_519 <SEQ ID 3203>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV29_519ASS <SEQ ID 3204>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSIVVSALDEAAGAWGVKVLRYEIKDLVPFQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREPEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSNKTAK*

ZV32_519 <SEQ ID 3205>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVSALDEAAGAWGVKVLRYEIKDLVPPQEILRAMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

ZV96_519 <SEQ ID 3206>
MEFFIILLAAVAVFGFKSFVVIPQQEVHVVERLGRFHRALTAGLNILIPFIDRVAYRHSL
KEIPLDVPSQVCITRDNTQLTVDGIIYFQVTDPKLASYGSSNYIMAITQLAQTTLRSVIG
RMELDKTFEERDEINSTVVAALDEAAGAWGVKVLRYEIKDLVPPQEILRSMQAQITAERE
KRARIAESEGRKIEQINLASGQREAEIQQSEGEAQAAVNASNAEKIARINRAKGEAESLR
LVAEANAEAIRQIAAALQTQGGADAVNLKIAEQYVAAFNNLAKESNTLIMPANVADIGSL
ISAGMKIIDSSKTAK*

Figure 22 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 519, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 15

Table 6 lists several *Neisseria* strains which were used to assess the conservation of the sequence of ORF 919 among different strains.

Table 6

919 gene variability: List of used Neisseria strains

Identification Strains

Source / reference

number	
Group B	
zm01 NG6/88	R. Moxon / Seiler et al., 1996
zm02 BZ198	R. Moxon / Seiler et al., 1996
zm03 NG3/88	R. Moxon / Seiler et al., 1996
zm04 297-0	· · · · · · · · · · · · · · · · · · ·
zm05 1000	R. Moxon / Seiler et al., 1996
zm06 BZ147	R. Moxon / Seiler et al., 1996
zm07 BZ169	R. Moxon / Seiler et al., 1996
zm08n 528	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
zm09 NGP165 zm10 BZ133	R. Moxon / Seiler et al., 1996
	R. Moxon / Seiler et al., 1996
zmllasbc NGE31	R. Moxon / Seiler et al., 1996
zm12 NGF26	R. Moxon / Seiler et al., 1996
zm13 NGE28	R. Moxon / Seiler et al., 1996
zm14 NGH38	R. Moxon / Seiler et al., 1996
zm15 SWZ107	R. Moxon / Seiler et al., 1996
zm16 NGH15	R. Moxon / Seiler et al., 1996
zm17 NGH36	R. Moxon / Seiler et al., 1996
zm18 BZ232	R. Moxon / Seiler et al., 1996
zm19 BZ83	R. Moxon / Seiler et al., 1996
zm20 44/76	R. Moxon / Seiler et al., 1996
zm21 MC58	R. Moxon
zm96 2996	Our collection
Group A	
zm22 205900	R. Moxon
zm23asbc F6124	R. Moxon
z2491 Z2491	
22471 22471	R. Moxon / Maiden et al., 1998
Group C	
zm24 90/18311	R. Moxon
zm25 93/4286	R. Moxon
24123 757 1200	A. MOXOII
Others	
zm26 A22 (group	W) R. Moxon / Maiden et al., 1998
zm27bc E26	(group X) R. Moxon / Maiden et al., 1998
	roup Y) R. Moxon / Maiden et al., 1998
ν.υ	roup Z) R. Moxon / Maiden et al., 1998
ν.	tamica R. Moxon
Gonococcus	
zm32asbc Ng F62	R. Moxon / Maiden et al., 1998
zm33asbc Ng SN4	R. Moxon
fa1090 FA1090	R. Moxon

References:

Seiler A. et al., Mol. Microbiol., 1996, 19(4):841-856. Maiden et al., Proc. Natl. Acad. Sci. USA, 1998, 95:3140-3145.

The amino acid sequences for each listed strain are as follows:

FA1090 <SEQ ID 3207>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

Z2491 <SEQ ID 3208>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM01 <SEQ ID 3209>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM02 <SEQ ID 3210>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM03 <SEQ ID 3211>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM04 <SEQ ID 3212>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM05 <SEQ ID 3213>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLSCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM06 <SEQ ID 3214>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM07 <SEQ ID 3215>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM08N <SEQ ID 3216>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM09 <SEQ ID 3217>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM10 <SEQ ID 3218>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL

KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM11ASBC <SEQ ID 3219>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM12 <SEQ ID 3220>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM13 <SEQ ID 3221>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAEQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM14 <SEO ID 3222>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEFVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSRNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM15 <SEQ ID 3223>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDLAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNHQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEFVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM16 <SEQ ID 3224>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPGRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM17 <SEQ ID 3225>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM18 <SEQ ID 3226>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM19 <SEQ ID 3227>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM20 <SEQ ID 3228>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM21 <SEQ ID 3229>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM22 <SEQ ID 3230>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM23ASBC <SEQ ID 3231>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTSKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK MKEPGYVWQLLPNGMKPEYRP*

ZM24 <SEQ ID 3232>

WO 99/57280

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM25 <SEQ ID 3233>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPAPAGTTVAGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGKYMADKGYL KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM26 <SEQ ID 3234>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSVQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMQQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM27BC <SEQ ID 3235>

MKKYLFRAALYGISAAILAACQSKSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSSNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGETAGK
MKEPGYVWQLLPNGMKPEYRP*

ZM28 <SEQ ID 3236>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM29ASBC <SEQ ID 3237>

MKKYLFRAALCGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV
YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA
LVRIRQTGKNSGTIDNTGGTHTADLSQFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKSYMRQNPQRLAEVLGQNPSYIFFRELTGSGNDGPVGALGTPLMGEYAGA
VDRHYITLGAPLFVATTHPITRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM31ASBC <SEQ ID 3238>

MKKHLFRAALYGIAAAILAACQSKSIQTFPQPDTSIIKGPDRPAGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYVFFRELAGSGNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

ZM32ASBC <SEQ ID 3239>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKRFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKA
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSGGDGPVGALGTPLMGGYAGA
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM33ASBC <SEQ ID 3240>

MKKHLLRSALYGIAAAILAACQSRSIQTFPQPDTSVINGPDRPAGIPDPAGTTVAGGGAV
YTVVPHLSMPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPIHSFQAKRFFER
YFTPWQVAGNGSLAGTVTGYYEPVLKGDGRRTERARFPIYGIPDDFISVPLPAGLRGGKN
LVRIRQTGKNSGTIDNAGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL
DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL
KLGQTSMQGIKSYMRQNPHKLAEVLGQNPSYIFFRELAGSGNEGPVGALGTPLMGEYAGA
IDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK
QKTTGYVWQLLPNGMKPEYRP*

ZM96 <SEQ ID 3241>

MKKYLFRAALYGIAAAILAACQSKSIQTFPQPDTSVINGPDRPVGIPDPAGTTVGGGGAV YTVVPHLSLPHWAAQDFAKSLQSFRLGCANLKNRQGWQDVCAQAFQTPVHSFQAKQFFER YFTPWQVAGNGSLAGTVTGYYEPVLKGDDRRTAQARFPIYGIPDDFISVPLPAGLRSGKA LVRIRQTGKNSGTIDNTGGTHTADLSRFPITARTTAIKGRFEGSRFLPYHTRNQINGGAL DGKAPILGYAEDPVELFFMHIQGSGRLKTPSGKYIRIGYADKNEHPYVSIGRYMADKGYL KLGQTSMQGIKAYMRQNPQRLAEVLGQNPSYIFFRELAGSSNDGPVGALGTPLMGEYAGA VDRHYITLGAPLFVATAHPVTRKALNRLIMAQDTGSAIKGAVRVDYFWGYGDEAGELAGK QKTTGYVWQLLPNGMKPEYRP*

Figure 23 shows the results of aligning the sequences of each of these strains. Dark shading indicates regions of homology, and gray shading indicates the conservation of amino acids with similar characteristics. As is readily discernible, there is significant conservation among the various strains of ORF 919, further confirming its utility as an antigen for both vaccines and diagnostics.

EXAMPLE 16

Using the above-described procedures, the following oligonucleotide primers were employed in the polymerase chain reaction (PCR) assay in order to clone the ORFs as indicated:

Table 7: Oligonucleotides used for PCR to amplify complete or partial ORFs

ORF	primer	Sequence	Restriction
	-	•	sites
001	Forward	CGCGGATCCCATATG-TGGATGGTGCTGGTCAT	BamHI-
			NdeI
		CCCGCTCGAG-TGCCGTCTTGTCCCAC	XhoI
003	Forward	CGCGGATCCCATATG-GTCGTATTCGTGGC	BamHI-
	_		NdeI
		CCCGCTCGAG-AAAATCATGAACACGCGC	XhoI
005	Forward	CGCGGATCCCATATG-GACAATATTGACATGT	BamHI-
	D	COCCOMO LO GAMO LO CAMO LO CAM	NdeI
		CCCGCTCGAG-CATCACATCCGCCCG	XhoI
006	Forward	CGCGGATCCCATATG-CTGCTGGTGCTGG	BamHI-
	n	COCCCTCC A C A CTTTCCC C CTTTTCC A T CT	NdeI
007		CCCGCTCGAG-AGTTCCGGCTTTGATGT	XhoI
007	rorward	CGCGGATCCCATATG-GCCGACAACAGCATCAT	BamHI-
	Deverse	CCCGCTCGAG-AAGGCGTTCATGATATAAG	NdeI
008		CGCGGATCCCATATG-AACAACAGACATTTTG	XhoI
000	1.01 watu	COCOGNICCCATATO-AACAACAGACATTTTG	BamHI-
	Reverse	CCCGCTCGAG-CCTGTCCGGTAAAAGAC	NdeI
009		CGCGGATCCCATATG-CCCCGCGCTGCT	XhoI
007	1 OI Wala	coc <u>demiceemma</u> -ceecdedcidei	BamHI- NdeI
	Reverse	CCCGCTCGAG-TGGCTTTTGCCACGTTTT	XhoI
011		CGCGGATCCCATATG-AAGACACCCCCAAG	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-GGCGGTCAGTACGGT	XhoI
012		CGCGGATCCCATATG-CTCGCCCGTTGCC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AGCGGGGAAGAGGCAC	XhoI
013	Forward	CGCGGATCCCATATG-CCTTTGACCATGCT	BamHI-
			Ndel
	Reverse	CCCG <u>CTCGAG</u> -CTGATTCGGCAAAAAAATCT	XhoI
018	Forward	CGCGGATCCCATATG-CAGCAGAGGCAGTT	BamHI-
	_		NdeI
		CCCG <u>CTCGAG</u> -GACGAGGCGAACGCC	XhoI
019		AAAGAATTC-CTGCCAGCCGGCAAGACCCCGGC	Eco RI
		AAACTGCAG-TCAGCGGGGGGGACAATGCCCAT	Pst I
023		AAAGAATTC-AAAGAATATTCGGCATGGCAGGC	Eco RI
		AAACTGCAG-TTACCCCCAAATCACTTTAACTGA	Pst I
025		AAAGAATTC-TGCGCCACCCAACAGCCTGCTCC	Eco RI
		AAACTGCAG-TCAGAACGCGATATAGCTGTTCGG	Pst I
031	Forward	CGCGGATCCCATATG-GTCTCCCTTCGCTT	BamHI-
	D.	000000000000000000000000000000000000000	NdeI
022		CCCGCTCGAG-ATGTAAGACGGGGACAAC	XhoI
032	rorward	CGCGGATCCCATATG-CGGCGAAACGTGC	BamHI-

	Reverse	CCCGCTCGAG-CTGGTTTTTTGATATTTGTG	Ndel
033		CGCGGATCCCATATG-GCGGCGGCAGACA	XhoI
033	Torward	COCOUNTECCATATO-OCOOCOGCAGACA	BamHI-
	Reverse	CCCGCTCGAG-ATTTGCCGCATCCCGAT	NdeI
034		CGCGGATCCCATATG-GCCGAAAACAGCTACGG	XhoI
034	1 OI Wald	COCOUNTECCATATO-OCCOAAAACAGCTACGG	BamHI-
	Reverse	CCCGCTCGAG-TTTGACGATTTGGTTCAATT	NdeI
036		CGCGGATCCCATATG-CTGAAGCCGTGCG	XhoI
030	1 OI Ward	ede <u>dokiecekikid</u> -cidkkdccdidcd	BamHI-
1	Reverse	CCCGCTCGAG-CCGGACTGCGTATCGG	NdeI
038		CGCGGATCCCATATG-ACCGATTTCCGCCA	XhoI
""	101114	occ <u>com codmino</u> necdan i recocca	BamHI-
	Reverse	CCCGCTCGAG-TTCTACGCCGTACTGCC	NdeI XhoI
039		CGCGGATCCCATATG-CCGTCCGAACCGC	
		oodreed/Meede	BamHI- NdeI
	Reverse	CCCGCTCGAG-TAGGATGACGAGGTAGG	XhoI
041		CGCGGATCCCATATG-TTCGTGCGCGAACCGC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-GCCCAAAAACTCTTTCAAA	XhoI
042		CGCGGATCCCATATG-ACGATGATTTGCTTGC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-TTTGCAGCCTGCATTTGAC	XhoI
043	Forward	AAAAAAGGTACC-ATGGTTGTTTCAAATCAAAATATC	Kpn I
	Reverse	AAACTGCAG-TTATTGCGCTTCACCTTCCGCCGC	Pst I
043a	Forward	AAAAAGGTACC-GCAAAAGTGCATGGCGGCTTGGACGGTGC	Knn I
	Reverse	AAAAACTGCAG-	Pst I
		TTAATCCTGCAACACGAATTCGCCCGTCCG	1011
044	Forward	CGCGGATCCCATATG-CCGTCCGACTAGAG	BamHI-
			NdeI
		CCCGCTCGAG-ATGCGCTACGGTAGCCA	XhoI
046	Forward	AAAGAATTC-ATGTCGGCAATGCTCCCGACAAG	Eco RI
	Reverse	AAACTGCAG-TCACTCGGCGACCCACACCGTGAA	Pst I
047	Forward	CGCGGATCCCATATG-GTCATCATACAGGCG	BamHI-
			NdeI
		CCCGCTCGAG-TCCGAAAAAGCCCATTTTG	XhoI
048		AAAGAATTC-ATGCTCAACAAAGGCGAAGAATTGCC	Eco RI
		AAACTGCAG-TCAAGATTCGACGGGGATGATGCC	Pst I
049		AAAGAATTC-ATGCGGGCGCAGGCGTTTGATCAGCC	Eco RI
	Reverse	AAACTGCAG-AAGGCGTATCTGAAAAAATGGCAG	Pst I
050	Forward	CCCCC ATCCCC AT ATC CCCCCCCCCCCCCCCCCCC	
		•	NdeI
			XhoI
052	Forward	AAAAAAGAATTC-ATGGCTTTGGTGGCGGAGGAAAC	Eco RI
	Reverse	AAAAAAGTCGAC-TCAGGCGGCGTTTTTCACCTTCCT	Sal I
052a	Forward	A A A A A C A ATTC CTCCCCCC A CCA A A CCC	Eco RI
	Reverse Forward	CGCGGATCCCATATG-GGCGCGGGCTGG CCCGCTCGAG-AATCGGGCCATCTTCGA AAAAAAGAATTC-ATGGCTTTGGTGGCGGAGGAAAC	BamHI- NdeI XhoI
0525	Former	AAAAAAAAATTC CTCCCCCCTTTTTCACCTTCCT	Sal I
	1 01 11 mid	ALLERIOTATIC-OTOGCOGAGGAAACGGAAATATCCGC	Eco RI

WO 99/57280

		A A A CTCCA C TCA A A CCA A A A CCCACA	
097		AAACTGCAG-TCAAAGGAAAAGGCCGTCTGAAAAGCG	Pst I
U9/		AAAGAATTC-ATGGACACTTCAAAACAAACACTGTTG	Eco RI
000		AAACTGCAG-TCAGCCCAAATACCAGAATTTCAG	Pst I
098		AAAGAATTC-GATGAACGCAGCCCAGCATGGATACG	Eco RI
		AAACTGCAG-TTACGACATTCTGATTTGGCA	Pst I
102	Forward	AAAAAAGAATTC-GGCCTGATGATTTTGGAAGTCAACAC	Eco RI
	Reverse	AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC	Pst I
105	Forward	CGCGGATCCCATATG-TCCGCAAACGAATACG	BamHI-
	D	COCCOTTO A C. OTTOTTO TO THE PROPERTY OF THE P	NdeI
107		CCCGCTCGAG-GTGTTCTGCCAGTTTCAG	XhoI
107	Forward	AAAAAAGAATTC-	Eco RI
	Dovorso	CTGATGATTTTGGAAGTCAACACCCATTATCC	
1076	Forward	AAAAAACTGCAG-TTATCCTTTAAATACGGGGACGAGTTC AAAAAAGAATTC-	Pst I
10/0	rorward	GATACCCAAGCCCCGCCGGCACAAACTACTG	Eco RI
	Reverse	AAAAAACTGCAG-	
	ROVEISC	TTACGCGTCGCCTTTAAAGTATTTGAGCAGGCTGGAGAC	Pst I
108	Forward	AAAGAATTC-ATGTTGCCGGGCTTCAACCG	E. DI
		AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	Eco RI
108a	Forward	AAAAAAGAATTC-GGTAACACATTCGGCAGCTTAGACGGTGG	Pst I
	Reverse	AAACTGCAG-TTAGCGGTACAGGTGTTTGAAGCA	
109		AAAGAATTC-ATGTATTATCGCCGGGTTATGGG	Pst I
		AAACTGCAG-CTAGCCCAAAGATTTGAAGTGTTC	Eco RI
111		CGCGGATCCCATATG-TGTTCGGAACAACCGC	Pst I
	1011111111	-TOTTCOGAACAACCOC	BamHI-
	Reverse	CCCGCTCGAG-GCGGAGCAGTTTTTCAAA	NdeI XhoI
		CGCGGATCCCATATG-GCTTCCATCACTTCGC	BamHI-
			NdeI
		CCCGCTCGAG-CATCCGCGAAATCGTC	XhoI
117	Forward	AAAAAAGGTACC-ATGGTCGAAGAACTGGAACTGCTG	Kpn I
	Reverse	AAACTGCAG-TTAAAGCCGGGTAACGCTCAATAC	Pst I
		AAAGTCGACATGTGTGAGTTCAAGGATATTATAAG	Sal I
	Reverse	AAAGCATGC-CTATTTTTTGTTGTAATAATCAAATC	Sph I
		CGCGGATCCCATATG-GAAACACAGCTTTACAT	BamHI-
			NdeI
		CCCGCTCGAG-ATAATAATATCCCGCGCCC	XhoI
122	Forward	CGCGGATCCCATATG-GTCATGATTAAAATCCGCA	BamHI-
			NdeI
		CCCGCTCGAG-AATCTTGGTAGATTGGATTT	XhoI
125	Forward	AAAGAATTC-ATGTCGGGCAATGCCTCCTCTCC	Eco RI
	Reverse	AAA <u>CTGCAG</u> -TCACGCCGTTTCAAGACG	Det I
125a	Forward	AAAAAAGAATTC-ACGGCAGGCAGCACCGCCGCACAGGTTTC	Eco RI
	Reverse	AAAAAACTGCAG-	Pst I
	-	TTATTTTGCCACGTCGGTTTCTCCGGTGAACAACGC	
126	Forward		BamHI-

			NdeI
		CCCGCTCGAG-AAACTTCACGTTCACGCC	XhoI
150	Forward	CGCGGATCCCATATG-CAGAACACAAATCCG	BamHI-
			NdeI
		CCCGCTCGAG-ATAAACATCACGCTGATAGC	XhoI
151	Forward	AAAAAA <u>GAATTC</u> -	Eco RI
		ATGAAACAAATCCGCAACATCGCCATCATCGC	
,		AAAAAA <u>CTGCAG</u> -TCAATCCAGCTTTTTAAAGTGGCGGCG	Pst I
152	Forward	AAAAAA <u>GAATTC</u> -	Eco RI
	_	ATGAAAAACAAAGTCTGGGACCTCCC	
		AAAAAACTGCAG-TCAGGACAGGAGCAGGATGGCGGC	Pst I
153		AAAAAAGAATTC-ATGGCGTTTGCTTACGGTATGAC	Eco RI
	Reverse	AAAAAACTGCAG-TCAGTCATGTTTTTCCGTTTCATT	Pst I
153a	Forward	AAAAAAGAATTC-CGGACTTCGGTATCGGTTCCCCAGCATTG	Eco RI
	Reverse	AAAAAA <u>CTGCAG</u> -	Pst I
		TTACGCCGACGAAATACTCAGACTTTTCGG	
154	Forward	CGCGGATCCCATATG-ACTGACAACAGCCC	BamHI-
	_	00000m0010 monotone	NdeI
		CCCGCTCGAG-TCGGCTTCCTTTCGGG	XhoI
155	Forward	AAAAAAGAATTC-ATGAAAATCGGTATCCCACGCGAGTC	Eco RI
	Reverse	AAAAAACTGCAG-TTACCCTTTCTTAAACATATTCAGCAT	Pst I
156		AAAAAAGAATTC-GCACAGCAAAACGGTTTTGAAGC	Eco RI
	Reverse	AAAAAACTGCAG-TCAAGCAGCCGCGACAAACAGCCC	Pst I
157	Forward	CGCGGATCCCATATG-AGGAACGAGGAAAAAC	BamHI-
	_	000000000000000000000000000000000000000	NdeI
		CCCGCTCGAG-AAAACACAATATCCCCGC	XhoI
158	Forward	AAAAAAGAATTC-GCGGAGCAGTTGGCGATGGCAAATTCTGC	Eco RI
	Reverse	AAAAAATCTAGA-TTATCCACAGAGATTGTTTCCCAGTTC	Xba I
160	Forward	CGCGGATCCCATATG-GACATTCTGGACAAAC	BamHI-
	D	COCCOTTO CAR TO THE TOTAL CONTROL OF THE CONTROL OF	NdeI
		CCCGCTCGAG-TTTTTGCCCGCCTTCTTT	XhoI
163	Forward	AAAAAAGGTACC-ACCGTGCCGGATCAGGTGCAGATGTG	Kpn I
	Reverse	AAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTG	Xba I
163a	Forward	AAAAAAGAATTC-CGGCTGGTGCAGATAATGAGCCAGAC	Eco RI
	Reverse	AAAAAATCTAGA-TTACTCTGCCAATTCCACCTGCTCGTG	Xba I
164	Forward	CGCGGATCCCATATG-AACCGGACTTATGCC	BamHI-
	_		NdeI
		CCCGCTCGAG-TTTGTTTCCGTCAAACTGC	XhoI
165	Forward	CGCGGATCCGCTAGC-GCTGAAGCGACAGACG	BamHI-
	D .	OCCOCOMOCA C. A A MARIA MARIA A MARIA MARI	NheI
200		CCCGCTCGAG-AATATCCAATACTTTCGCG	XhoI
206	rorward	CGC <u>GGATCCCATATG</u> -AAACACCGCCAACCGA	BamHI-
	Dovos		NdeI
200		CCCGCTCGAG-TTCTGTAAAAAAAGTATGTGC	XhoI
209	rorward	CGC <u>GGATCCCATATG</u> -CTGCGGCATTTAGGA	BamHI-
			NdeI

	Davis	CCCCCTCC A C TA CCCCTC A A CCC A A CCC	
		CCCGCTCGAG-TACCCCTGAAGGCAAC	XhoI
211		AAAAAAGAATTC-ATGTTGCGGGTTGCTGCTGC	Eco RI
		AAAAAACTGCAG-CTATCCTGCGGATTGGCATTGAAA	Pst I
212	Forward	CGCGGATCCCATATG-GACAATCTCGTATGG	BamHI-
			Ndel
		CCCGCTCGAG-AGGGGTTAGATCCTTCC	XhoI
215	Forward	CGCGGATCCCATATG-GCATGGTTGGGTCGT	BamHI-
	_	000000000000000000000000000000000000000	NdeI
		CCCGCTCGAG-CATATCTTTTGTATCATAAATC	XhoI
216	Forward	CGCGGATCCCATATG-GCAATGGCAGAAAACG	BamHI-
İ	ъ	CCCCCTCC A C TA CA A TOCCCTC CO	Ndel
		CCCGCTCGAG-TACAATCCGTGCCGCC	XhoI
217	Forward	CGCGGATCCCATATG-GCGGATGACGGTGTG	BamHI-
	D	OCCOCOTOCA CA COCCOCA ATTACA CA	NdeI
210		CCCGCTCGAG-ACCCCGAATATCGAATCC	XhoI
218	Forward	CGCGGATCCCATATG-GTCGCGGTCGATC	BamHI-
	D	OCCOCCTCO A C TO A CITIC A TO A CITIC CONTROL OF A	NdeI
210		CCCGCTCGAG-TAACTCATAGAATCCTGC	XhoI
219	Forward	CGCGGATCCGCTAGC-ACGGCAAGGTTAAG	BamHI-
	Darrama	CCCCCTCC A C TTT A A A CC A MCMCCCMC A A A A C	NheI
222		CCCGCTCGAG-TTTAAACCATCTCCTCAAAAC	XhoI
223	Forward	CGCGGATCCCATATG-GAATTCAGGCACCAAGTA	BamHI-
	Dozzowaa	CCCCCTCC A C CCCTTCCCCCCCTCTC	NdeI
225		CCCGCATCCCATATC CACCACTTTCA CCACCATTTCA CACCATTTCA CCACCATTTCA CCACCATTTCA CCACCATTTCA CCACCATTTCA CACCATTTCA CACATTTCA CACCATTTCA CACCATTTCA CAC	XhoI
223	rorward	CGCGGATCCCATATG-GACGAGTTGACCAACC	BamHI-
	Reverse	CCCGCTCGAG-GTTCAGAAAGCGGGAC	NdeI
226		AAAGAATTC-CTTGCGATTATCGTGCGCACGCG	XhoI
220		AAACTGCAG-TCAAAATCCCAAAACGGGGAT	Eco RI
228		CGCGGATCCCATATG-TCGCAAGAAGCCAAACAG	Pst I
220	roiwatu	COCOCATATO-TCOCAAGAAGCCAAACAG	BamHI-
	Reverse	CCCGCTCGAG-TTTGGCGGCATCTTTCAT	NdeI
229		CGCGGATCCCATATG-CAAGAGGTTTTGCCC	XhoI
229	Torward	COCOCATATO-CAAGAGGTTTGCCC	BamHI-
	Reverse	CCCGCTCGAG-ACACAATATAGCGGATGAAC	NdeI
230		CGCGGATCCCATATG-CATCCGGGTGCCGAC	XhoI
230	TOTWALU	COCCOMPONENTATO-CATCCOOLIGCCOAC	BamHI-
	Reverse	CCCGCTCGAG-AAGTTTGGCGGCTTCGG	NdeI XhoI
232		AAAAAGAATTC-ATGTACGCTAAAAAAGGCGGTTTGGG	
		AAAAAACTGCAG-TCAAGGTTTTTCCTGATTGCCGCCGC	Eco RI
232a		AAAAAGAATTC-GCCAAGGCTGCCGATACACAAATTGA	Pst I
		AAAAAACTGCAG-TTAAACATTGTCGTTGCCGCCCAGATG	Eco RI
233	Forward	CGCGGATCCCATATG-GCGGACAAACCCAAG	Pst I
	10144	COCCONTICCONTATO-OCOOMCAAACCCAAG	BamHI-
	Reverse	CCCGCTCGAG-GACGGCATTGAGCAG	Ndel
234		CGCGGATCCCATATG-GCCGTTTCACTGACCG	XhoI
		GOOGITICACIOACCO	BamHI-

		NdeI
	Reverse GCCCAAGCTT-ACGGTTGGATTGCCATG	
235	Forward CGCGGATCCCATATG-GCCTGCCAAGTTCAAA	Hind III
233	Folward CocoonTecentato-occioccaaGiicaaa	BamHI-
	Reverse CCCGCTCGAG-TTTGGGCTGCTCTTC	NdeI
226		XhoI
230	Forward CGCGGATCCCATATG-GCGCGTTTCGCCTT	BamHI-
Į	Boyers CCCCCTCCAC ATCCCTCCCCCCCCCC	NdeI
220	Reverse CCCGCTCGAG-ATGGGTCGCGCGCGCGT	XhoI
238	Forward CGCGGATCCGCTAGC-AACGGTTTGGATGCCCG	BamHI-
	Devices CCCCCTCC & C TTTCTCT & A CTTCCTCT & T CTTCTCT & A CTTCCTCT & A CTTCTCTCT & A CTTCCTCT T & A CTTCCTCT	NheI
220	Reverse CCCGCTCGAG-TTTGTCTAAGTTCCTGATATG	XhoI
239	Forward CCGGAATTCTACATATG-CTCCACCATAAAGGTATTG	EcoRI-
	December 1	NdeI
0.40	Reverse CCCGCTCGAG-TGGTGAAGAGCGGTTTAG	XhoI
240	Forward CGCGGATCCCATATG-GACGTTGGACGATTTC	BamHI-
	D COCCOTTOO LO LA LOCOCA TITAL CONTRA	NdeI
	Reverse CCCGCTCGAG-AAACGCCATTACCCGATG	XhoI
241	Forward CCGGAATTCTACATATG-CCAACACGTCCAACT	EcoRI-
	D CCCCCTCC LC CLLTCCCCCCTTTLL	NdeI
2.0	Reverse CCCGCTCGAG-GAATGCGCCTGTAATTAATC	XhoI
242	Forward CGCGGATCCCATATG-ATCGGCAAACTTGTTG	BamHI-
	D OCCOL & COMM. & COC & Th. COC TO THE	Ndel
	Reverse GCCCAAGCTT-ACCGATACGGTCGCAG	HindIII
243	Forward CGCGGATCCCATATG-ACGATTTTTTCGATGCTGC	BamHI-
	D. COCCOTTOCA C. CO. A COTTOCATA A COLOR	NdeI
	Reverse CCCGCTCGAG-CGACTTGGTTACCGCG	XhoI
244	Forward CGCGGATCCCATATG-CCGTCTGAAGCCC	BamHI-
ļ	D COCCOTICO LO EXPERIMENTA COM LO COMP.	NdeI
246	Reverse CCCGCTCGAG-TTTTTTCGGTAGGGGATTT	XhoI
246	Forward CGCGGATCCCATATG-GACATCGGCAGTGC	BamHI-
	D OCCOCTCO LO COCCOCTCO CO	NdeI
0.45	Reverse CCCGCTCGAG-CCCGCGCTGCTGGAG	XhoI
247	Forward CGCGGATCCCATATG-GTCGGATCGAGTTAC	BamHI-
	D OCCOCTCCA C. A A CITICITICA CONTROLLA	NdeI
240	Reverse CCCGCTCGAG-AAGTGTTCTGTTTGCGCA	XhoI
248	Forward CGCGGATCCCATATG-CGCAAACAGAACACT	BamHI-
1	Develope CCCCCCCCA C CCCA MCA MCA MCA	NdeI
	Reverse CCCGCTCGAG-CTCATCATTATTGCTAACA	XhoI
249	Forward CGCGGATCCCATATG-AAGAATAATGATTGCTTC	BamHI-
	D. COCCOMOCA C PROCESS ASSESSED	NdeI
١,,,	Reverse CCCGCTCGAG-TTCCCGACCTCCGAC	XhoI
251	Forward CGCGGATCCCATATG-CGTGCTGCGGTAGT	BamHI-
	D COCCOTTON A COLLA COCCOTTON	Ndel
252	Reverse CCCGCTCGAG-TACGAAAGCCGGTCGTG	XhoI
253	Forward AAAAAAGAATTC-ATGATTGACAGGAACCGTATGCTGCG	Eco RI
	Reverse AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG	Pst I
		1 31 1

253a	Forward	AAAAAGAATTC-AAAATCCTTTTGAAAACAAGCGAAAACGG	Eco DI
2334		AAAAAACTGCAG-TTATTGGTCTTTCAAACGCCCTTCCTG	Pst I
254		AAAAAGAATTC-ATGTATACAGGCGAACGCTTCAATAC	
234		AAAAAATCTAGA-TCAGATTACGTAACCGTACACGCTGAC	Eco RI
255			Xba I
255	roiwaiu	CGCGGATCCCATATG-GCCGCGTTGCGTTAC	BamHI-
	Reverse	CCCGCTCGAG-ATCCGCAATACCGACCAG	NdeI
256		CGCGGATCCGCTAGC-TTTTAACACCGCCGGAC	XhoI
230	1.01 watu	COCOCATECOCIACE-TITTAACACCOCCOGAC	BamHI-
	Reverse	CCCGCTCGAG-ACGCCTGTTTGTGCGG	NheI XhoI
257		CGCGGATCCCATATG-GCGGTTTCTTTCCTG	BamHI-
	101111111	dediffering deddifferineerd	NdeI
	Reverse	CCCGCTCGAG-GCGCGTGAATATCGCG	XhoI
258		AAAAAGAATTC-GATTATTTCTGGTGGATTGTTGCGTTCAG	Eco RI
		AAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
258a		AAAAAGAATTC-GCGAAGGCGTGGCGCAAGGCGA	Eco RI
		AAAAAACTGCAG-CTACGCATAAGTTTTTACCGTTTTTGG	Pst I
259		CGCGGATCCCATATG-GAAGAGCTGCCTCCG	BamHI-
	10111	dimanderacered	NdeI
	Reverse	CCCGCTCGAG-GGCTTTTCCGGCGTTT	XhoI
260		CGCGGATCCCATATG-GGTGCGGGTATGGT	BamHI-
		<u> </u>	Ndel
	Reverse	CCCGCTCGAG-AACAGGGCGACACCCT	XhoI
261	Forward	AAAAAAGAATTC-CAAGATACAGCTCGGGCATTCGC	Eco RI
Ì	Reverse	AAAAAACTGCAG-TCAAACCAACAAGCCTTGGTCACT	Pst I
263	Forward	CGCGGATCCCATATG-GCACGTTTAACCGTA	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-GGCGTAAGCCTGCAATT	XhoI
264	Forward	AAAAAAGGTACC-GCCGACGCAGTGGTCAAGGCAGAA	Kpn I
		AAACTGCAG-TCAGCCGGCGGTCAATACCGCCCG	Pst I
265	Forward	AAAAAAGAATTC-GCGGAGGTCAAGAGAAGGTGTTTG	Eco RI
	Reverse	AAAAAACTGCAG-TTACGAATACGTCGTCAAAATGGG	Pst I
266		AAAGAATTC-CTCATCTTTGCCAACGCCCCCTTC	Eco RI
	Reverse	AAACTGCAG-CTATTCCCTGTTGCGCGTGTGCCA	Pst I
267	Forward	AAAGAATTC-TTCTTCCGATTCGATGTTAATCG	Eco RI
		AAACTGCAG-TTAGTAAAAACCTTTCTGCTTGGC	Pst I
269		AAAGAATTC-TGCAAACCTTGCGCCACGTGCCC	Eco RI
		AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
269a		AAAAAAGAATTC-GACTTTATCCAAAACACGGCTTCGCC	Eco RI
		AAACTGCAG-TTACGAAGACCGCAACGAAAGGCAGAG	Pst I
270		AAAGAATTC-GCCGTCAAGCTCGTTTTGTTGCAATG	Eco RI
		AAACTGCAG-TTATTCGGCGGTAAATGCCGTCTG	Pst I
271		CGCGGATCCCATATG-CCTGTGTGCAGCTCGAC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-TCCCAGCCCCGTGGAG	XhoI
			- 1101

272		AAAGAATTC-ATGACCGCAAAGGAAGAACTGTTCGC	Eco RI
		AAACTGCAG-TCAGAGCAGTTCCAAATCGGGGCT	Pst I
273		AAAGAATTC-ATGAGTCTTCAGGCGGTATTTATATACCC	Eco RI
		AAACTGCAG-TTACGCGTAAGAAAAACTGC	Pst I
274	Forward	CGCGGATCCCATATG-ACAGATTTGGTTACGGAC	BamHI-
Ì			NdeI
		CCCGCTCGAG-TTTGCTTTCAGTATTATTGAA	XhoI
276	Forward	AAAAAA <u>GAATTC</u> -	Eco RI
		ATGATTTTGCCGTCCATCACGATGATGCG	
ł		AAAAAACTGCAG-CTACACCACCATCGGCGAATTTATGGC	Pst I
277		AAAAAAGAATTC-ATGCCCCGCTTTGAGGACAAGCTCGTAGG	Eco RI
		AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
277a	Forward	AAAAAAGAATTC-GGGGCGGCGGCTGGGTTGGACGTAGG	Eco RI
	Reverse	AAAAAACTGCAG-TCATAAGCCATGCTTACCTTCCAACAA	Pst I
278	Forward	AAAAAAGGTACC-GTCAAAGTTGTATTAATCGGGCCTTTGCC	Kpn I
	Reverse	AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
278a	Forward	AAAAAAGAATTC-AAAACTCTCCTAATTCGTCATAGTCG	Eco RI
		AAAAAACTGCAG-TCATTCAACCATATCAAATCTGCC	Pst I
279		CGCGGATCCCATATG-TTGCCTGCAATCACGATT	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-TTTAGAAGCGGCGCCAA	XhoI
280	Forward	AAAAAAGGTACC-GCCCCCTGCCGGTTGTAACCAG	Kpn I
1	Reverse	AAAAAACTGCAG-TTATTGCTTCATCGCGTTGGTCAAGGC	Pst I
281		AAAAAAGAATTC-GCACCCGTCGGCGTATTCCTCGTCATGCG	Eco RI
	Reverse	AAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAG	Xba I
281a	Forward	AAAAAAGAATTC-TCCTACCACATCGAAATTCCTTCCGG	Eco RI
į	Reverse	AAAAAATCTAGA-GGTCAGAATGCCGCCTTCTTTGCCGAG	Xba I
282	Forward	AAAAAAGAATTC-CTTTACCTTGACCTGACCAACGGGCACAG	Eco RI
	Reverse	AAAAAACTGCAG-TCAACCTGCCAGTTGCGGGAATATCGT	Pst I
283		CGCGGATCCCATATG-GCCGTCTTTACTTGGAAG	BamHI-
			NdeI
		CCCGCTCGAG-ACGGCAGTATTTGTTTACG	XhoI
284	Forward	CGCGGATCCCATATG-TTTGCCTGCAAAAGAATCG	BamHI-
	_	GGGGGTGG 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NdeI
		CCCGCTCGAG-CCGACTTTGCAAAAACTG	XhoI
286	Forward	CGCGGATCCCATATG-GCCGACCTTTCCGAAAA	BamHI-
	D	CCCCCTCCACCAAACCCCCTCCCCC	NdeI
207		CCCGCTCGAG-GAAGCGCGTTCCCAAG	XhoI
287	rorward	CCGGAATTCTAGCTAGC-CTTTCAGCCTGCGGG	EcoRI-
	Deverse	CCCGCTCGAG-ATCCTGCTCTTTTTTGCC	NheI
288			XhoI
200	T.OI MAIG	CGCGGATCCCATATG-CACACCGGACAGG	BamHI-
	Reverse	CCCGCTCGAG-CGTATCAAAGACTTGCGT	NdeI
290		CGCGGATCCCATATG-GCGGTTTGGGGCGGA	XhoI
			BamHI-

Γ	 		X11 T
	Reverse	CCCGCTCGAG-TCGGCGCGGCGGCC	Ndel
292		CGCGGATCCCATATG-TGCGGGCAAACGCCC	XhoI
	1011144	TOCOOCAAACOCCC	BamHI- NdeI
	Reverse	CCCGCTCGAG-TTGATTTTTGCGGATGATTT	XhoI
294		AAAAAAGAATTC-GTCTGGTCGATTCGGGTTGTCAGAAC	Eco RI
		AAAAAACTGCAG-TTACCAGCTGATATAAAACATCGCTTT	Pst I
295		CGCGGATCCCATATG-AACCGGCCGCCTCC	BamHI-
			NdeI
ŀ	Reverse	CCCGCTCGAG-CGATATTTGATTCCGTTGC	XhoI
297	Forward	AAAAAAGAATTC-GCATACATTGCTTCGACAGAGAG	Eco RI
	Reverse	AAAAAACTGCAG-TCAATCCGATTGCGACACGGT	Pst I
298	Forward	AAAAAAGAATTC-CTGATTGCCGTGTGGTTCAGCCAAAACCC	Eco RI
	Reverse	AAAAAACTGCAG-TCATGGCTGTGTACTTGATGGTTGCGT	Pst I
299		CGCGGATCCGCTAGC-CTACCTGTCGCCTCCG	BamHI-
			NheI
		CCCGCTCGAG-TTGCCTGATTGCAGCGG	XhoI
302		AAAAAAGAATTC-ATGAGTCAAACCGATACGCAACG	Eco RI
	Reverse	AAAAAACTGCAG-TTAAGGTGCGGGATAGAATGTGGGCGC	Pst I
305	Forward	AAAAAAGGTACC-GAATTTTTACCGATTTCCAGCACCGGA	Kpn I
	Reverse	AAAAAACTGCAG-TCATTCCCAACTTATCCAGCCTGACAG	Pst I
305a	Forward	AAAAAAGGTACC-TCCCGTTCGGGCAGTACGATTATGGG	Kpn I
	Reverse	AAAAAACTGCAG-TTACAAACCGACATCATGCAGGGTGAA	Pst I
306	Forward	CGCGGATCCCATATG-TTTATGAACAAATTTTCCC	BamHI-
	Daviana	CCCCCTCCAC CCCCATCCCCAA CAA	NdeI
308		CCCGCATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGGATATGTTAAAATGGATATGTTAAAATGGATATGTTAAAATGGATATGTTAAAATGGATATGTTAAAATGGATATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAAATGTTAAATGTTTAAAATGTTAAAAATGTTAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAATGTTAAAAAA	XhoI
308	rorward	CGCGGATCCCATATG-TTAAATCGGGTATTTTATC	BamHI-
	Reverse	CCCGCTCGAG-ATCCGCCATTCCCTGC	NdeI
311		AAAAAAGGTACC-ATGTTCAGTTTTGGCTGGGTGTTT	XhoI
	Reverse	AAACTGCAG-ATGTTCATATTCCCTGCCTTCGGC	Kpn I
312	Forward	AAAAAAGGTACC-ATGAGTATCCCATCCGGCGAAATT	Pst I
	Reverse	AAACTGCAG-TCAGTTTTCATCGATTGAACCGG	Kpn I
313	Forward	AAAAAAGAATTC-ATGGACGACCGCGCACCTACGGATC	Pst I
	Reverse	AAAAAACTGCAG-TCAGCGGCTGCCGCCGATTTTGCT	Eco RI
401		CGCGGATCCCATATG-AAGGCGGCAACACAGC	Pst I
	1 OI Wala	-AAGUCGGCAACACAGC	BamHI- NdeI
	Reverse	CCCGCTCGAG-CCTTACGTTTTTCAAAGCC	XhoI
402		AAAAAAGAATTC-GTGCCTCAGGCATTTTCATTTACCCTTGC	Eco RI
	Reverse	AAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
402a	Forward	AAAAAAGAATTC-AGGCTGATTGAAAACAAACACGG	Eco RI
	Reverse	AAAAAATCTAGA-TTAAATCCCTCTGCCGTATTTGTATTC	Xba I
406	Forward	CGCGGATCCCATATG-TGCGGGACACTGACAG	BamHI-
		·	NdeI
	Reverse	CCCGCTCGAG-AGGTTGTCCTTGTCTATG	XhoI
-			

501	Forward CGCGGATCCCATATG-GCAGGCGGAGATGGC	Damili
301	Toliwar odo <u>dom odom ma</u> -dekodedokoki ode	BamHI-
	Reverse CCCGCTCGAG-GGTGTGATGTTCACCC	Ndel
502	Forward CGCGGATCCCATATG-GTAGACGCGCTTAAGCA	XhoI
302	Folward Cocoonfeccatatio-Gradacococitraagea	BamHI-
	Reverse CCCGCTCGAG-AGCTGCATGGCGGCG	NdeI
500		XhoI
303	Forward CGCGGATCCCATATG-TGTTCGGGGAAAGGCG	BamHI-
	D COCOCTOCA C OCCCCCA TITACTICA	NdeI
504	Reverse CCCGCTCGAG-CCGCGCATTCCTCGCA	XhoI
504	Forward CGCGGATCCCATATG-AGCGATATTGAAGTGACG	BamHI-
		NdeI
	Reverse GCCCAAGCTT-TGATTCAAGTCCTTGCCG	HindIII
505	Forward CGCGGATCCCATATG-TTTCGTTTACAATTCAGG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-CGGCGTTTTATAGCGG	XhoI
510	Forward CGCGGATCCCATATG-CCTTCGCGGACAC	BamHI-
		NdeI
ŀ	Reverse CCCGCTCGAG-GCGCACTGGCAGCG	XhoI
512	Forward CGCGGATCCCATATG-GGACATGAAGTAACGGT	BamHI-
		NdeI
	Reverse CCCGCTCGAG-AGGAATAGCCTTTGACG	XhoI
515	Forward CGCGGATCCCATATG-GAGGAAATAGCCTTCGA	BamHI-
]		NdeI
	Reverse CCCGCTCGAG-AAATGCCGCAAAGCATC	XhoI
516	Forward CGCGGATCCCATATG-TGTACGTTGATGTTGTGG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTTGCGGGCGGCATC	XhoI
517	Forward CGCGGATCCCATATG-GGTAAAGGTGTGGAAATA	BamHI-
		NdeI
	Reverse CCCGCTCGAG-GTGCGCCCAGCCGT	XhoI
518	Forward AAAGAATTC-GCTTTTTTACTGCTCCGACCGGAAGG	Eco RI
	Reverse AAACTGCAG-TCAAATTTCAGACTCTGCCAC	Pst I
519	Forward CGCGGATCCCATATG-TTCAAATCCTTTGTCGTCA	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTTGGCGGTTTTGCTGC	XhoI
520	Forward CGCGGATCCCATATG-CCTGCGCTTCTTTCA	BamHI-
		NdeI
	Reverse CCCGCTCGAG-ATATTTACATTTCAGTCGGC	XhoI
521	Forward CGCGGATCCCATATG-GCCAAAATCTATACCTGC	BamHI-
	oominineerde	NdeI
	Reverse CCCGCTCGAG-CATACGCCCCAGTTCC	XhoI
522	Forward CGCGGATCCCATATG-ACTGAGCCGAAACAC	
	TO T	BamHI- NdeI
	Reverse GCCCAAGCTT-TTCTGATTTCAAATCGGCA	Naei HindIII
523	Forward CGCGGATCCCATATG-GCTCTGCTTTCCGCG	
		BamHI-
		NdeI

	Reverse	CCCGCTCGAG-AGGGTGTGTGATAATAAGAAG	XhoI
525	Forward	CGCGGATCCCATATG-GCCGAAATGGTTCAAATC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-GCCCGTGCATATCATAAA	XhoI
527	Forward	AAAGAATTC-TTCCCTCAATGTTGCCGTTTTCG	Eco RI
	Reverse	AAACTGCAG-TTATGCTAAACTCGAAACAAATTC	Pst I
529		CGCGGATCCGCTAGC-TGCTCCGGCAGCAAAAC	BamHI-
			NheI
		GCCCAAGCTT-ACGCAGTTCGGAATGGAG	HindIII
530	Forward	CGCGGATCCCATATG-AGTGCGAGCGCGG	BamHI-
			NdeI
		CCCGCTCGAG-ACGACCGACTGATTCCG	XhoI
531	Forward	AAAAAAGAATTC-TATGCCGCCGCCTACCAAATCTACGG	Eco RI
	Reverse	AAAAAACTGCAG-TTAAAACAGCGCCGTGCCGACGACAAG	Pst I
532	Forward	AAAAAAGAATTC-ATGAGCGGTCAGTTGGGCAAAGGTGC	Eco RI
	Reverse	AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
532a	Forward	AAAAAAGAATTC-TTGGGTGTCGCGTTTGAGCCGGAAGT	Eco RI
	Reverse	AAAAAACTGCAG-TCAGTGTTCCAAGTGGTCGGTATCAAA	Pst I
535	Forward	AAAGAATTC-ATGCCCTTTCCCGTTTTCAGAC	Eco RI
		AAACTGCAG-TCAGACGACCCCGCCTTCCCC	Pst I
537	Forward	CGCGGATCCCATATG-CATACCCAAAACCAATCC	BamHI-
			NdeI
İ		CCCGCTCGAG-ATCCTGCAAATAAAGGGTT	XhoI
538	Forward	CGCGGATCCCATATG-GTCGAGCTGGTCAAAGC	BamHI-
	D	COCCOTTOO LO MOCO LETTERO DE LA COLONIA DE L	NdeI
520		CCCGCTCGAG-TGGCATTTCGGTTTCGTC	XhoI
539	Forward	CGC <u>GGATCCGCTAGC</u> -GAGGATTTGCAGGAAA	BamHI-
	Deverse	CCCGCTCGAG-TACCAATGTCGGCAAATC	NheI
542		AAAGAATTC-ATGCCGTCTGAAACCGTGTC	XhoI
342			Eco RI
543		AAACAATTC CCCTTCCATCCATCCATCCATCCATCCATC	Pst I
343		AAAAAAGAATTC-GCCTTCGATGGCGACGTTGTAGGTAC	Eco RI
ĺ		AAAAAA <u>TCTAGA</u> - TTAATGAAGAAGAACATATTGGAATTTTGG	Xba I
543a	Forward	AAAAAAGAATTC-GGCAAAACTCGTCATGAATTTGC	. n. n.
		AAAAAATCTAGA-	Eco RI
		TTAATGAAGAAGAACATATTGGAATTTTGG	Xba I
544	Forward	AAAGAATTC-GCGCCCGCCTTCTCCCTGCCCGACCTGCACGG	E DI
	Reverse	AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT	Eco RI
544a	Forward	AAAAAGAATTC-	Pst I
		GCAAATGACTATAAAAACAAAAACTTCCAAGTACTTGC	Eco RI
	Reverse	AAACTGCAG-CTATTGCGCCACGCGCGTATCGAT	Pst I
547	Forward	AAAGAATTC-ATGTTCGTAGATAACGGATTTAATAAAAC	Eco RI
	Reverse	AAACTGCAG-TTAACAACAAAAAAAAAACAAACCGCTT	Pst I
548	Forward .	AAAGAATTC-GCCTGCAAACCTCAAGACAACAGTGCGGC	Eco RI
	·		ECO KI

	D	AAACTCCAC TCACACCACCACCACCACCACCACCACCACCACCACCACC	
550		AAACTGCAG	Pst I
220	rorward	AAAAAAGTCGAC-	Sal I
	Daviona	ATGATAACGGACAGGTTTCATCTTTCATTTTCC	
550-		AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
Soua	rorward	AAAAAAGAATTC-GTAAATCACGCCTTTGGAGTCGCAAACGG	Eco RI
550		AAACTGCAG-TTACGCAAACGCTGCAAAATCCCC	Pst I
352		AAAAAAGAATTC-TTGGCGCGTTGGCTGGATAC	Eco RI
		AAACTGCAG-TTATTTCTGATGCCTTTTCCCAAC	Pst I
354	Forward	CGCGGATCCCATATG-TCGCCCGCGCCCAAC	BamHI-
	Dorrowan	CCCCCTCCAC CTCCCCCTCTCACACAC	NdeI
556		CCCGCTCGAG-CTGCCCTGTCAGACAC	XhoI
330		AAAGAATTC-GCGGGCGGTTTTGTTTGGACATCCCG	Eco RI
557		AAACTGCAG-TTAACGGTGCGGACGTTTCTGACC	Pst I
337	Forward	CGCGGATCCCATATG-TGCGGTTTCCACCTGAA	BamHI-
	Reverse	CCCGCTCGAG-TTCCGCCTTCAGAAAGG	NdeI
558		AAAGAATTC-GAGCTTTATATGTTTCAACAGGGGACGGC	XhoI
556	Reverse	AAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	Eco RI
5582		AAAAAAGAATTC-ATTAGATTCTATCGCCATAAACAGACGGG	Pst I
330a	Reverse	AAAAAACTGCAG-CTAAACAATGCCGTCTGAAAGTGGAGA	
560	Forward	AAAAAAGAATTC-	Pst I
300	1.01 watu	TCGCCTTTCCGGGACGGGCGCACAAGATGGC	Eco RI
	Reverse	AAAAAACTGCAG-TCATGCGGTTTCAGACGGCATTTTGGC	D-4.T
561	Forward	CCGGAATTCTACATATG-ATACTGCCAGCCCGT	Pst I EcoRI-
		more decorded to the state of t	NdeI
	Reverse	CCCGCTCGAG-TTTCAAGCTTTCTTCAGATG	XhoI
562		CGCGGATCCCATATG-GCAAGCCCGTCGAG	BamHI-
			NdeI
		CCCG <u>CTCGAG</u> -AGACCAACTCCAACTCGT	XhoI
565	Forward	CGCGGATCCCATATG-AAGTCGAGCGCGAAATAC	BamHI-
	_		NdeI
		CCCGCTCGAG-GGCATTGATCGGCGGC	XhoI
566	Forward	CGCGGATCCCATATG-GTCGGTGGCGAAGAGG	BamHI-
	D	OCCCCTCC A C CCC A TOCCCCC A A TOCCCCC	NdeI
567		CCCGCTCGAG-CGCATGGGCGAAGTCA	XhoI
567	rorward	CCG <u>GAATTC</u> TA <u>CATATG</u> -AGTGCGAACATCCTTG	EcoRI-
	Reverse	CCCCCTCGAG TTTCCCCCGAGAGGGGGG	NdeI
568		CCCGCTCGAG-TTTCCCCGACACCCTCG CGCGGATCCCATATG-CTCAGGGTCAGACC	XhoI
200	LOIWAIU	COCOGGATCCCATATO-CTCAGGGTCAGACC	BamHI-
	Reverse	CCCGCTCGAG-CGGCGCGCGTTCAG	NdeI
569		AAAAAAGAATTC-CTGATTGCCTTGTGGGAATATGCCCG	XhoI
	Reverse	A A A A A A CTCCA C TTATCCATA CA CCCTCATA CA CCCTCCATA CA CCCCTCCATA CA CCCTCCATA CA CCCCTCCATA CA CCCTCCATA CA CACCATA CA CCCTCCATA CA CACCATA CA CCCTCCATA CA CCCCTCCATA CA CACCATA CACATA CACCATA CACATA	Eco RI
570	Forward	CGCGGATCCCATATC CACACCTTCCAAAAAAA	Pst I
-		•	BamHI-
	Reverse	CCCCCTCC & C CCCCCCCCCCCCCC	NdeI Yho!
			XhoI

571	T	AAAAACAATTO	
3/1	rorward	AAAAAAGAATTC-	Eco RI
	D	ATGGGTATTGCCGGCGCCGTAAATGTTTTGAACCC	
550	Reverse	AAAAAACTGCAG-TTATGGCCGACGCGCGCGCTACCTGACG	Pst I
5/2	Forward	CGCGGATCCCATATG-GCGCAAAAAGGCAAAACC	BamHI-
	_	CCCCCTCC	NdeI
		CCCGCTCGAG-GCGCAGTGTGCCGATA	XhoI
573	Forward	CGCGGATCCCATATG-CCCTGTTTGTGCCG	BamHI-
	_		NdeI
		CCCGCTCGAG-GACGGTGTCATTTCGCC	XhoI
574	Forward	CGCGGATCCCATATG-TGGTTTGCCGCCCGC	BamHI-
	_		NdeI
		CCCGCTCGAG-AACTTCGATTTTATTCGGG	XhoI
575	Forward	CGCGGATCCCATATG-GTTTCGGGCGAGG	BamHI-
			NdeI
		CCCGCTCGAG-CATTCCGAATCTGAACAG	XhoI
576	Forward	CGCGGATCCCATATG-GCCGCCCCGCATCT	BamHI-
	_		NdeI
1		CCCGCTCGAG-ATTTACTTTTTTGATGTCGAC	XhoI
577	Forward	CGCGGATCCCATATG-GAAAGGAACGGTGTATTT	BamHI-
	_	GGGGGMGG L C L C C C C C C C C C C C C C C C C	NdeI
		CCCGCTCGAG-AGGCTGTTTGGTAGATTCG	XhoI
578	Forward	CGCGGATCCCATATG-AGAAGGTTCGTACAG	BamHI-
	T.	COCCOTTOO LO COCCULTATA	NdeI
		CCCGCTCGAG-GCCAACGCCTCCACG	XhoI
579	Forward	CGCGGATCCCATATG-AGATTGGGCGTTTCCAC	BamHI-
	T)	COCCOTTOR A C. A C. A C. A C. A C. A C. A C. A C	NdeI
500		CCCGCTCGAG-AGAATTGATGATGTGTATGT	XhoI
580	Forward	CGCGGATCCCATATG-AGGCAGACTTCGCCGA	BamHI-
	D	OCOCOTOCA O CA OPPROGRAMA	Ndel
501		CCCGCTCGAG-CACTTCCCCCGAAGTG	XhoI
581	Forward	CGCGGATCCCATATG-CACTTCGCCCAGC	BamHI-
	Damana		NdeI
500		CCCGCTCGAG-CGCCGTTTGGCTTTGG	XhoI
582	Forward	AAAAAAGAATTC-TTTGGAGAGACCGCGCTGCAATGCGC	Eco RI
	Reverse	AAAAAATCTAGA-TCAGATGCCGTCCCAGTCGTTGAA	Xba I
583	Forward	AAAAAAGAATTC-ACTGCCGGCAATCGACTGCATAATCG	Eco RI
	Reverse	AAAAAACTGCAG-TTAACGGAGGTCAATATGATGAAATTG	Pst I
584		AAAAAA <u>GAATTC</u> -	Eco RI
	_	GCGGCTGAAGCATTGAATTACAATATTGTC	
	Reverse	AAAAAACTGCAG-TCAGAACTGAACCGTCCCATTGACGCT	Pst I
585	Forward .	AAAAAAGGTACC-TCTTTCTGGCTGGTGCAGAACACCCTTGC	Eco RI
	Reverse.	AAAAAACTGCAG-TCAGTTCGCACTTTTTTCTGTTTTGGA	Pst I
586	Forward	CGCGGATCCCATATG-GCAGCCCATCTCG	BamHI-
			Ndel
		CCCGCTCGAG-TTTCAGCGAATCAAGTTTC	XhoI
587	Forward (CGCGGATCCCATATG-GACCTGCCCTTGACGA	BamHI-

F	Reverse	CCCGCTCGAG-CTGGATTATGATGTCTGTC	XhoI
610		CGCGGATCCCATATG-ATTGGAGGGCTTATGCA	BamHI-
1		mi donodo imi don	Ndel
	Reverse	CCCGCTCGAG-ACGCTTCAACATCTTTGCC	XhoI
611		CGCGGATCCCATATG-CCGTCTCAAAACGGG	BamHI-
			NdeI
Ì	Reverse	CCCGCTCGAG-AACGACTTTGAACGCGCAA	XhoI
613	Forward	CGCGGATCCCATATG-TCGCGTTCGAGCCG3	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AGCCTGTAAAATAAGCGGC	XhoI
614	Forward	CGCGGATCCCATATG-TCCGTCGTGAGCGGC	BamHI-
			NdeI
		CCCGCTCGAG-CCATACTGCGGCGTTC	XhoI
616	Forward	AAAAAAGAATTC-ATGTCAAACACAAATCAAAATGGTTGTCGG	Eco RI
	Reverse	AAAAAA <u>TCTAGA</u> -TTAGTCCGGGCGGCAGGCAGCTCG	Xba I
619a	Forward	AAAAAAGAATTC-GGGCTTCTCGCCGCCTCGCTTGC	Eco RI
	Reverse	AAAAAACTGCAG-TCATTTTTTGTGTTTTTAAAACGAGATA	Pst I
622	Forward	CGCGGATCCCATATG-GCCGCCCTGCCTAAAG	BamHI-
i			NdeI
-		CCCGCTCGAG-TTTGTCCAAATGATAAATCTG	XhoI
624	Forward	CGCGGATCCCATATG-TCCCCGCGCTTTTACCG	BamHI-
1	_		Ndel
		CCCGCTCGAG-AGATTCGGGCCTGCGC	XhoI
625	Forward	CGCGGATCCCATATG-TTTGCAACCAGGAAAATG	BamHI-
	D	CCCCCTCCAC CCCCAAAAATTA CCCCCTT	NdeI
627-		CCCGCTCGAG-CGGCAAAATTACCGCCTT	XhoI
02/a	Porvena	AAAAAAGCAGCGAGCGAGGCGCGCGCGGG	Eco RI
ŀ	Reverse	AAAAAACTGCAG-	Pst I
628	Forward	TTACGAATGAAACAGGGTACCCGTCATCAAGGC	
026	Dovorso	AAAAAAGGTACC-GCCTTACAAACATGGATTTTGCGTTC	Kpn I
6200		AAAAAACTGCAG-CTACGCACCTGAAGCGCTGGCAAA	Pst I
0298		AAAAAAGAATTC-GCCACCTTTATCGCGTATGAAAACGA	Eco RI
620-	Reverse	AAAAAACTGCAG-TTACAACACCGCCGTCCGGTTCAAACC	Pst I
USUA	Down	AAAAAAGAATTC-GCGGCTTTGGGTATTTCTTTCGG	Eco RI
(25	Reverse	AAAAAACTGCAG-TTAGGAGACTTCGCCAATGGAGCCGGG	Pst I
033	rorward	AAAAAAGAATTC-	Eco RI
	Davarca	ATGACCCAGCGACGGGTCGGCAAGCAAAACCG	
620		AAAAAACTGCAG-TTAATCCACTATAATCCTGTTGCT	Pst I
038	Davarra	AAAAAAGAATTC-ATGATTGGCGAAAAGTTTATCGTAGTTGG	
630		AAAAAACTGCAG-TCACGAACCGATTATGCTGATCGG	Pst I
039	1.01 Mat (I	CGCGGATCCCATATG-ATGCTTTATTTTGTTCG	BamHI-
	Reverse	CCCGCTCGAG-ATCGCGGCTGCCGAC	NdeI
642		CGCGGATCCCATATG-CGGTATCCGCCGCAAT	XhoI
" -	~ 01 Wata	COCCUTATO-COCTATCCGCCAAT	BamHI-
1	Reverse	CCCGCTCGAG-AGGATTGCGGGGCATTA	NdeI XhoI
L	-		VIIOI

WO 99/57280

643	Forward	CGCGGATCCCATATG-GCTTCGCCGTCGGCAG	BamHI-
"."	101	GOTTOGCCATCGGCAG	NdeI
	Reverse	CCCGCTCGAG-AACCGAAAAACAGACCGC	XhoI
644		AAAAAGAATTC-	Eco RI
		ATGCCGTCTGAAAGGTCGGCGGATTGTTGCCC	ECO KI
1	Reverse	AAAAAATCTAGA-CTACCCGCAATATCGGCAGTCCAATAT	Pst I
645		AAAAAAGAATTC-GTGGAACAGAGCAACACGTTAAATCG	Eco RI
		AAAAAACTGCAG-CTACGAGGAAACCGAAGACCAGGCCGC	Pst I
647		AAAAAGAATTC-ATGCAAAGGCTCGCCGCAGACGG	Eco RI
		AAAAAACTGCAG-TTAGATTATCAGGGATATCCGGTAGAA	Pst I
648		AAAAAGAATTC-	Eco RI
		ATGAACAGGCGCGACGCGGATCGAACG	LCO KI
	Reverse	AAAAAACTGCAG-TCAAGCTGTGTGCTGATTGAATGCGAC	Pst I
649		AAAAAAGAATTC-GGTACGTCAGAACCCGCCCACCG	Eco RI
		AAAAAACTGCAG-TTAACGGCGGAAACTGCCGCCGTC	Pst I
650		AAAAAGAATTC-ATGTCCAAACTCAAAACCATCGC	Eco RI
		AAAAACTGCAG-TCAGACGGCATGGCGGTCTGTTTT	Pst I
652		AAAAAGGTACC-	Kpn I
		GCTGCCGAAGACTCAGGCCTGCCGCTTTACCG	11pm 1
		AAAAAACTGCAG-TTATTTGCCCAGTTGGTAGAATGCGGC	Pst I
653	Forward	AAAAAAGAATTC-GCGGCTTTGCCGGTAATTTTCATCGG	Eco RI
		AAAAAACTGCAG-CTATGCCGGTCTGGTTGCCGGCGGCGA	Pst I
656a		AAAAAAGAATTC-CGGCCGACGTCGTTGCGTCCTAAGTC	Eco RI
	Reverse	AAAAAACTGCAG-CTACGATTTCGGCGATTTCCACATCGT	Pst I
657		AAAAAAGAATTC-GCAGAATTTGCCGACCGCCATTTGTGCGC	Eco RI
		AAAAAACTGCAG-TTATAGGGACTGATGCAGTTTTTTTGC	Pst I
658	Forward	CGCGGATCCCATATG-GTGTCCGGAATTGTG	BamHI-
	_		NdeI
		CCCGCTCGAG-GGCAGAATGTTTACCGTT	XhoI
661	Forward	AAAAAGAATTC-	Eco RI
	D	ATGCACATCGGCGGCTATTTTATCGACAACCC	
662		AAAAAACTGCAG-TCACGACGTGTCTGTTCGCCGTCGGGC	Pst I
003	rorward	CGCGGATCCCATATG-TGTATCGAGATGAAATT	BamHI-
	Reverse	CCCGCTCGAG-GTAAAAATCGGGGCTGC	NdeI
664		CGCGGATCCCATATG-GCGGCTGGCGCGGT	XhoI
007	ı oı waıu	COCOUNTECCATATO-OCOOCTOUCUCUUT	BamHI-
	Reverse	CCCGCTCGAG-AAATCGAGTTTTACACCAC	NdeI
665		AAAAAAGAATTC-ATGAAATGGGACGAAACGCGCTTCGG	XhoI Eco RI
	Reverse	AAAAAACTGCAG-TCAATCCAAAATTTTGCCGACGATTTC	Pst I
666	Forward	AAAAAAGAATTC-AACTCAGGCGAAGGAGTGCTTGTGGC	Eco RI
	Reverse	AAAAAATCTAGA-TCAGTTTAGGGATAGCAGGCGTAC	
667	Forward	AAAAAGAATTC-	Xba I
}		CCGCATCCGTTTGATTTCCATTTCGTATTCGTCCG	Eco RI
	Reverse	AAAAAACTGCAG-TTAATGACACAATAGGCGCAAGTC	Pst I
			1911

669	Forward	AAAAAAGAATTC-ATGCGCCGCATCATTAAAAAACACCAGCC	Eco RI
		AAAAAACTGCAG-TTACAGTATCCGTTTGATGTCGGC	Pst I
670a	Forward	AAAAAAGAATTC-AAAAACGCTTCGGGCGTTTCGTCTTC	Eco RI
	Reverse	AAAAACTGCAG-	Pst I
1		TTAGGAGCTTTTGGAACGCGTCGGACTGGC	
671	Forward	CGCGGATCCCATATG-ACCAGCAGGGTAAC	BamHI-
			NdeI
		CCCGCTCGAG-AGCAACTATAAAAACGCAAG	XhoI
672	Forward	CGCGGATCCCATATG-AGGAAAATCCGCACC	BamHI-
	_		NdeI
		CCCGCTCGAG-ACGGGATAGGCGGTTG	XhoI
673		AAAAAAGAATTC-ATGGATATTGAAACCTTCCTTGCAGG	Eco RI
		AAAAAACTGCAG-CTACAAACCCAGCTCGCGCAGGAA	Pst I
674		AAAAAAGAATTC-ATGAAAACAGCCCGCCGCCGTTCCCG	Eco RI
		AAAAAACTGCAG-TCAACGGCGTTTGGGCTCGTCGGG	Pst I
675	Forward	CGCGGATCCCATATG-AACACCATCGCCCC	BamHI-
		GGGGGTGG A G TTTCTTTG GT GT GT GT GT GT GT GT GT GT GT GT	NdeI
685		CCCGCTCGAG-TTCTTCGTCTTCAAACTGT	XhoI
677a		AAAAAAGAATTC-AGACGGCATTCCCGATCAGTCGATTTTGA	Eco RI
(00		AAAAAACTGCAG-TTACGTATGCGCGAAATCGACCGCCGC	Pst I
680	Forward	CGCGGATCCGCTAGC-ACGAAGGGCAGTTCGG	BamHI-
	Darrama	CCCCCTCC A C CATCA A A A COTTCCCC	NheI
601		CCCGCTCGAG-CATCAAAAACCTGCCGC	XhoI
091		AAAAAAGAATTC-ATGACGACGCCGATGGCAATCAGTGC	Eco RI
602		AAAAAACTGCAG-TTACCGTCTTCCGCAAAAAACAGC	Pst I
083	rorward	CGC <u>GGATCCCATATG</u> -TGCAGCACACCGGACAA	BamHI-
	Reverse	CCCGCTCGAG-GAGTTTTTTCCGCATACG	NdeI
684		CGCGGATCCCATATG-TGCGGTACTGTGCAAAG	XhoI
004	1 of ward	COCOUNTECCATATO-TOCOGTACTOTOCAAAG	BamHI-
	Reverse	CCCGCTCGAG-CTCGACCATCTGTTGCG	Ndel
685		CGCGGATCCCATATG-TGTTTGCTTAATAAACATT	XhoI
005	1011144	-TOTTIOCTTAATAATAACATT	BamHI-
	Reverse	CCCGCTCGAG-CTTTTTCCCCGCCGCA	Ndel Xhol
686		CGCGGATCCCATATG-TGCGGCGGTTCGGAAG	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CATTCCGATTCTGATGAAG	XhoI
687	Forward	CGCGGATCCCATATG-TGCGACAGCAAAGTCCA	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-CTGCGCGGCTTTTTGTT	XhoI
690	Forward	CGCGGATCCCATATG-TGTTCTCCGAGCAAAGAC	BamHI-
	_		NdeI
		CCCGCTCGAG-TATTCGCCCCGTGTTTGG	XhoI
691	Forward	CGCGGATCCCATATG-GCCACGGCTTATATCCC	BamHI-
	D	CCCCCTCCAC TTTCACCCACCACCACCACCACCACCACCACCACCACCAC	NdeI
<u></u>	Reverse	CCCGCTCGAG-TTTGAGGCAGGAAGAAG	XhoI

C 404	Tamond	CCCCCATCCCATATC TTCCTTTCCCTTTCCCC	· · · ·
094	rorwaru	CGCGGATCCCATATG-TTGGTTTCCGCATCCGG	BamHI-
	Reverse	CCCGCTCGAG-TCTGCGTCGGTGCGGT	NdeI
605			XhoI
093	roiwaid	CGCGGATCCCATATG-TTGCCTCAAACTCGTCCG	BamHI-
	Davarca	CCCGCTCGAG-TCGTTTGCGCACGGCT	NdeI
606			XhoI
090	roiwaid	CGCGGATCCCATATG-TTGGGTTGCCGGCAGG	BamHI-
	Deverce	CCCGCTCGAG-TTGATTGCCGCAATGATG	NdeI
7000			XhoI
/00a	Powaru	AAAAAAGAATTC-GCATCGACAGACGGTGTGTCGTGGAC	Eco RI
701	Esmand	AAAAAACTGCAG-TTACGCTACCGGCACGACTTCCAAACC	Pst I
/01	rorward	CGCGGATCCCATATG-AAGACTTGTTTGGATACTTC	BamHI-
	Deverse	CCCGCTCGAG-TGCCGACAACAGCCTC	NdeI
702			XhoI
702	Davierse	AAAAAAGAATTC-ATGCCGTGTTCCAAAGCCAGTTGGATTTC	Eco RI
703	Reverse	AAAAAACTGCAG-TTAACCCCATTCCACCCGGAGAACCGA	Pst I
/03	roiwaid	CGC <u>GGATCCGCTAGC</u> -CAAACGCTGGCAACCG	BamHI-
	Deverse	CCCGCTCGAG-TTTTGCAGGTTTGATGTTTG	NheI
7042		AAAAAAGAATTC-GCTTCTACCGGTACGCTGGCGCG	XhoI
/07a		AAAAAACTGCAG-	Eco RI
	Reverse	TTAGTTTTGCCGGATAATATGGCGGGTGCG	Pst I
707	Forward	CGCGGATCCGCTAGC-GAAATTATTAACGATGCAGA	D. III
	10111414	COCOMICO CHAMITATTAACCATCCACA	BamHI- NheI
	Reverse	CCCGCTCGAG-GAAACTGTAATTCAAGTTGA	XhoI
708		CGCGGATCCGCTAGC-CCTTTTAAGCCATCCAAAA	BamHI-
			NheI
	Reverse	CCCGCTCGAG-TTGACCGGTGAGGACG	XhoI
710	Forward	CGCGGATCCCATATG-GAAACCCACGAAAAAATC	BamHI-
			NdeI
	Reverse	CCCGCTCGAG-AACGGTTTCGGTCAG	XhoI
714	Forward	CGCGGATCCCATATG-AGCTATCAAGACATCTT	BamHI-
	_		NdeI
	Reverse	CCCG <u>CTCGAG</u> -GCGGTAGGTAAATCGGAT	XhoI
716	Forward	CGCGGATCCCATATG-GCCAACAAACCGGCAAG	BamHI-
	~		NdeI
		CCCGCTCGAG-TTTAGAACCGCATTTGCC	XhoI
718	Forward	CGCGGATCCCATATG-GAGCCGATAATGGCAAA	BamHI-
	Davison	CCCCCTCCAC CCCCCCCCCCCCCCCCCCCCCCCCCCCC	NdeI
720		CCCGCTCGAG-GGCGCGGGCATGGTCTTGTCC	XhoI
720	rorward	CGC <u>GGATCCCATATG</u> -AGCGGATGGCATACC	BamHI-
	Reverse	CCCG <u>CTCGAG</u> -TTTTGCATAGCTGTTGACCA	NdeI
723		CCCG <u>CTCGAG</u> -TTTTGCATAGCTGTTGACCA CGC <u>GGATCCCATATG</u> -CGACCCAAGCCCC	XhoI
, 23	LOIWAIG	COCGOATCCCATATO-CUACCCAAGCCCC	BamHI-
	Reverse	CCCG <u>CTCGAG</u> -AATGCGAATCCGCCGCC	Ndel
		THE THE THE THE TENT OF THE TE	XhoI

725	Forward CGCGGATCCCATATG-GTGCGCACGGTTAAA	- T TTT
1,23	Tolward ededoniecentato-didedeaeddi IAAA	BamHI-
	Reverse CCCGCTCGAG-TTGCTTATCCTTAAGGGTTA	NdeI
726		XhoI
/20	Forward CGCGGATCCCATATG-ACCATCTATTTCAAAAAC	BamHI-
	D 00000mag.	NdeI
	Reverse CCCGCTCGAG-GCCGATGTTTAGCGTCC	XhoI
728	Forward CGCGGATCCCATATG-TTTTGGCTGGGAACGGG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-GTGAGAAAGGTCGCGC	XhoI
729	Forward CGCGGATCCCATATG-TGCACCATGATTCCCCA	BamHI-
		NdeI
	Reverse GCCCAAGCTT-TTTGTCGGTTTTGGGTATC	HindIII
731	Forward CGCGGATCCGCTAGC-GCCGTGCCGGAGG	BamHI-
		NheI
i	Reverse CCCGCTCGAG-ACGGGCGCGCAG	XhoI
732	Forward CCGGAATTCTACATATG-TCGAAACCTGTTTTTAAGAA	EcoRI-
	TOSTUMECTOTTTTANAA	
	Reverse CCCGCTCGAG-CTTCTTATCTTTTTATCTTTC	NdeI
733	Forward CGCGGATCCCATATG-GCCTGCGGCGCAA	XhoI
1 /33	Tolward CocodATCCCATATO-OCCTOCOGCAA	BamHI-
Ì	Reverse CCCGCTCGAG-TCGCTTGCCTCCTTTAC	NdeI
724	Forward CGCGGATCCCATATG-GCCGATACTTACGGCTAT	XhoI
/34	Folward COCOGATCCCATATO-GCCGATACTTACGGCTAT	BamHI-
1	Parama CCCCCTCCAC TTTCACATTTTTCACATTTTTTCACATTTTTTCACATTTTTT	NdeI
725	Reverse CCCGCTCGAG-TTTGAGATTTTGAATCAAAGAG	XhoI
/33	Forward CGCGGATCCCATATG-AAGCAGCAGGCGGTCA	BamHI-
	Description of American Control of the Control of t	NdeI
	Reverse CCCGCTCGAG-ATTTCCGTAGCCGAGGG	XhoI
737	Forward CGCGGATCCCATATG-CACCACGACGGACACG	BamHI-
İ		NdeI
1	Reverse CCCGCTCGAG-GTCGTCGCGGGGGA	XhoI
739	Forward CGCGGATCCCATATG-GCAAAAAAACCGAACA	BamHI-
		NdeI
	Reverse CCCGCTCGAG-GAAGAGTTTGTCGAGAATT	XhoI
740	Forward CGCGGATCCCATATG-GCCAATCCGCCCGAAG	BamHI-
	- 	NdeI
	Reverse CCCGCTCGAG-AAACGCGCCAAAATAGTG	XhoI
741	Forward CGCGGATCCCATATG-TGCAGCAGCGGAGGG	BamHI-
		NdeI
	Reverse CCCGCTCGAG-TTGCTTGGCGGCAAGGC	XhoI
743	Forward CGCGGATCCCATATG-GACGGTGTTGTGCCTGTT	BamHI-
		NdeI
	Reverse CCCGCTCGAG-CTTACGGATCAAATTGACG	XhoI
745	Forward CGCGGATCCCATATG-TTTTGGCAACTGACCG	i
	111000/Hicloroco	BamHI-
	Reverse CCCGCTCGAG-CAAATCAGATGCCTTTAGG	Ndel
746	<u> </u>	XhoI
	TOCOMMICAAAAC	BamHI-

		NdeI
Re	everse CCCGCTCGAG-TTCATTCGTTACCTGACC	XhoI
	rward CCGGAATTCTAGCTAGC-CTGACCCCTTGGG	EcoRI-
	<u> </u>	NheI
Re	verse GCCCAAGCTT-TTTTGATTTTAATTGACTATAGAAC	HindIII
	rward CGCGGATCCCATATG-TGCCAGCCGCCG	BamHI-
	Tookidedeed	NdeI
Re	verse CCCGCTCGAG-TTTCAAGCCGAGTATGC	XhoI
E .	rward CGCGGATCCCATATG-TGTTCGCCCGAACCTG	BamHI-
	To To de Contraction de la con	Ndel
Re	verse CCCGCTCGAG-CTTTTTCCCCGCCGCAA	XhoI
1	rward CGCGGATCCCATATG-AACAATCTGACCGTGTT	BamHI-
		NdeI
Re	verse CCCGCTCGAG-TGGCTCAATCCTTTCTGC	XhoI
	rward CGCGGATCCGCTAGC-CGCTTCACACACACCAC	BamHI-
		NheI
Re	verse CCCGCTCGAG-CCAGTTGTAGCCTATTTTG	XhoI
	rward CGCGGATCCCATATG-CTGCCTGAAGCATGGCG	BamHI-
		NdeI
	verse CCCGCTCGAG-TTCCGCAAATACCGTTTCC	XhoI
764 For	rward CGCGGATCCCATATG-TTTTTCTCCGCCCTGA	BamHI-
		Ndel
	verse CCCGCTCGAG-TCGCTCCCTAAAGCTTTC	XhoI
765 For	ward CGCGGATCCCATATG-TTAAGATGCCGTCCG	BamHI-
_	GGGGGTTGG LG LGGGTGG	NdeI
	verse CCCGCTCGAG-ACGCCGACGTTTTTTATTAA	XhoI
/6/ For	ward CGCGGATCCCATATG-CTGACGGAAGGGGAAG	BamHI-
Day	COCCUTOCAC TTTCTCTA CACCAC	NdeI
	verse CCCGCTCGAG-TTTCTGTACAGCAGGGG	XhoI
706 FOI	ward CGCGGATCCCATATG-GCCCCGCAAAAACCCG	BamHI-
Re	verse CCCGCTCGAG-TTTCATCCCTTTTTTGAGC	NdeI
	ward CGCGGATCCCATATG-TGCGGCAGCGGCGAA	XhoI
770 101	walu COCOGATCCCATATO-TOCOGCAGCGGCGAA	BamHI-
Re	verse CCCGCTCGAG-GCGTTTGTCGAGATTTTC	NdeI
	ward CGCGGATCCCATATG-TCCGTATATCGCACCTTC	XhoI
131	- 130 GOTT GOOTH TATOUR COLLECTION	BamHI- NdeI
Re	verse CCCGCTCGAG-CGGTTCTTTAGGTTTGAG	Ndei XhoI
	ward CGCGGATCCCATATG-TTTGCGGCGTTGGTGG	BamHI-
		NdeI
	verse CCCGCTCGAG-CAATGCCGACATCAAACG	XhoI
774 For	ward CGCGGATCCCATATG-TCCGTTTCACCCGTTCC	BamHI-
_		NdeI
	verse CCCGCTCGAG-TCGTTTGCGCACGGCT	XhoI
790 For	ward CGCGGATCCCATATG-GCAAGAAGGTCAAAAAC	BamHI-
L		NdeI

	Reverse CCCGCTCGAG-GGCGTTGTTCGGATTTCG	XhoI
900		
"	Towns occ <u>served in the</u> conference of	BamHI-
	Reverse CCCGCTCGAG-ATATGGAAAAGTCTGTTGTC	NdeI
901	Forward CGCGGATCCCATATG-CCCGATTTTTCGATG	XhoI
'0'	Torward odo <u>domicochimio</u> -eccominificomio	BamHI-
1	Reverse CCCGCTCGAG-AAAATGGAACAATACCAGG	NdeI
902	Forward. CCGGAATTCTACATATG-TTGCACTTTCAAAGGATAATC	XhoI
	2	EcoRI-
	Reverse CCCGCTCGAG-AAAAATGTACAATGGCGTAC	NdeI
903		XhoI
	endedicadeACACAT	EcoRI-
	Reverse CCCGCTCGAG-GAAACTGTAATTCAAGTTGAA	NheI XhoI
904		
	Reverse AAACTGCAG-TTAATATCGATAGGTTATATG	Kpn I
904a	Forward AAAAAAGAATTC-CGGCTCGGCATTGTGCAGATGTTGCA	Pst I
, , , ,	Reverse AAACTGCAG-TTAATATCGATAGGTTATATG	Eco RI
905	Forward CGCGGATCCCATATG-AACAAAATATACCGCATC	Pst I
100	Tolward CocodATCCCATATO-AACAAAATATACCGCATC	BamHI-
	Reverse CCCGCTCGAG-CCACTGATAACCGACAGAT	Ndel
907	Forward CGCGGATCCCATATG-GGCGCGCAACGTGAG	XhoI
"	Tornau Cocococitivio-Occococica Colload	BamHI-
ĺ	Reverse CCCGCTCGAG-ACGCCACTGCCAGCG	NdeI
908		XhoI
	Reverse AAACTGCAG-TTAATATGGTTTTGTCGTTCG	Eco RI
909	Forward CGCGGATCCCATATG-TGCGCGTGGGAAACTTAT	Pst I
"	Torman Googgeriate Tococologogaacilal	BamHI-
	Reverse CCCGCTCGAG-TCGGTTTTGAAACTTTGGTTTT	NdeI
910	Forward AAAGAATTC-GCATTTGCCGGCGACTCTGCCGAGCG	XhoI
	Reverse AAACTGCAG-TCAGCGATCGAGCTGCTCTTT	Eco RI
911	Forward AAAGAATTC-GCTTTCCGCGTGGCCGGCGGTGC	Pst I
	Reverse AAAAAACTGCAG-GTCGACTTATTCGGCGGCTTTTTCCGC	Eco RI
912	Forward AAAAAAGAATTC-	Pst I
212	CAAATCCGTCAAAACGCCACTCAAGTATTGAG	Eco RI
	Reverse AAAAAACTGCAG-TTACAGTCCGTCCACGCCTTTCGC	D . *
913	Forward CGCGGATCCCATATG-GAAACCCGCCCCGC	Pst I
	The Too South Control of the Control	BamHI-
	Reverse CCCGCTCGAG-AGGTTGTTCCAGGTTG	NdeI
915	Forward CGCGGATCCCATATG-TGCCGGCAGGCGGAA	XhoI
	- SOUL SOUL TITO TO COUCAUGOUGAA	BamHI-
	Reverse CCCGCTCGAG-TTTGAAAATATAGGTATCAGG	NdeI
914	Forward AAAGAATTC-GACAGAATCGGCGATTTGGAAGCACG	XhoI
	Reverse AAACTGCAG-CTATATGCGCGGCAGGACGCTCAACGG	Eco RI
916	Forward CGCGGATCCCATATG-GCAATGATGGCGGCTG	Pst I
		BamHI-
	Reverse CCCGCTCGAG-TTTGGCGGCATCTTTCAT	NdeI
		XhoI

917	Former	AAAAAGAATTC-CCTGCCGAAAAACCGGCACCGGC	
1 31/			Eco RI
010		AAAAACTGCAG-TTATTTCCCCGCCTTCACATCCTG	Pst I
919	rorward	CGCGGATCCCATATG-TGCCAAAGCAAGAGCATC	BamHI-
	Dovorse	CCCGCTCGAG-CGGGCGGTATTCGGG	NdeI
920			XhoI
920	rorward	CGCGGATCCCATATG-CACCGCGTCTGGGTC	BamHI-
	Deverse	CCCGCTCGAG-ATGGTGCGAATGACCGA	NdeI
921			XhoI
921		AAAAAAGAATTC-TTGACGGAAATCCCCGTGAATCC	Eco RI
000		AAAAAACTGCAG-TCATTTCAAGGGCTGCATCTTCAT	Pst I
922	Forward.	CGC <u>GGATCCGCTAGC</u> -TGTACGGCGATGGAGGC	BamHI-
	_	CCCGCTCGAG-CAATCCCGGGCCGCC	NheI
022			XhoI
923	rorward	CGCGGATCCCATATG-TGTTACGCAATATTGTCCC	BamHI-
	Reverse	CCCGCTCGAG-GGACAAGGCGACGAAG	NheI
925		CGCGGATCCCATATG-AAACAAATGCTTTTAGCCG	XhoI
123	Torward	COCOGNICCCATATO-AAACAAATGCTTTTAGCCG	BamHI-
	Reverse	CCCGCTCGAG-GCCGTTGCATTTGATTTC	NdeI
926		CGCGGATCCCATATG-TGCGCGCAATTACCTC	XhoI
120	1 OI Wald	COCOCOCAATIACCIC	BamHI-
	Reverse	CCCGCTCGAG-TCTCGTGCGCCCG	NdeI
927		CGCGGATCCCATATG-TGCAGCCCCGCAGC	XhoI
		TOCHGCCCGCAGC	BamHI-
	Reverse	CCCGCTCGAG-GTTTTTTGCTGACGTAGT	NdeI XhoI
929a		AAAAAAGAATTC-CGCGGTTTGCTCAAAACAGGGCTGGG	Eco RI
	Reverse	AAAAAATCTAGA-TTAAGAAAGACGGAAACTACTGCC	Xba I
931	Forward	AAAAAAGAATTC-GCAACCCATGTTTTGATGGAAAC	Eco RI
		AAAAAACTGCAG-TTACTGCCCGACAACAACGCGACG	Pst I
935	Forward	AAAAAAGAATTC-	
		GCGGATGCGCCCGCGATTTTGGATGACAAGGC	Eco RI
	Reverse	AAAAAACTGCAG-TCAAAACCGCCAATCCGCCGACAC	Pst I
936	Forward	CGCGGATCCCATATG-GCCGCCGTCGGCGC	BamHI-
}			Ndel
		CCCGCTCGAG-GCGTTGGACGTAGTTTTG	XhoI
937	Forward	AAAAAAGAATTC-CCGGTTTACATTCAAACCGGCGCAAC	Eco RI
	Reverse	AAAAAACTGCAG-TTAAAATGTATGCTGTACGCCAAA	Pst I
939a	Forward	AAAAAAGAATTC-GGTTCGGCAGCTGTGATGAAACC	Eco RI
	Reverse	AAAAAACTGCAG-TTAACGCAAACCTTGGATAAAGTTGGC	Pst I
950	Forward	CGCGGATCCCATATG-GCCAACAAACCGGCAAG	BamHI-
	•		Ndel
	Reverse	CCCGCTCGAG-TTTAGAACCGCATTTGCC	XhoI
953	Forward	CGCGGATCCCATATG-GCCACCTACAAAGTGGAC	BamHI-
			
957	Forward	CGCGGATCCCATATG-TTTTGGCTGGGAACGGG	BamHI-
957		CCCGCTCGAG-TTGTTTGGCTGCCTCGAT	NdeI XhoI
		130,000,000	-ווווווס

	Deverce	CCCGCTCGAG-GTGAGAAAGGTCGCGC	NdeI
050			XhoI
930	rorwaru	CGCGGATCCCATATG-GCCGATGCCGTTGCG	BamHI-
	Reverse	GCCCAAGCTT-GGGTCGTTTGTTGCGTC	NdeI
959			HindIII
333	TOIWAIU	CGCGGATCCCATATG-CACCACGACGGACACG	BamHI-
	Reverse	CCCGCTCGAG-GTCGTCGCGGCGGGA	Ndel
961		CGCGGATCCCATATG-GCCACAAGCGACGACG	XhoI
701	1 OI Wald	COCOCATECCATATO-OCCACAAGCGACGACG	BamHI-
-	Reverse	CCCGCTCGAG-CCACTCGTAATTGACGC	NdeI
972		AAAAAGAATTC-	XhoI
	101,,,,,	TTGACTAACAGGGGGGGGGGGAAATTAAAAAC	Eco RI
	Reverse	AAAAAATCTAGA-TTAAAAATAATCATAATCTACATTTTG	Xba I
973	Forward	AAAAAAGAATTC-ATGGACGCGCACAACCGAAAAC	
	Reverse	AAAAAACTGCAG-TTACTTCACGCGGGTCGCCATCAGCGT	Eco RI
982	Forward	CGCGGATCCCATATG-GCAGCAAAAGACGTAC	Pst I
		TO SUIT OF SUI	BamHI-
	Reverse	CCCGCTCGAG-CATCATGCCGCCCATCC	NdeI XhoI
983		CGCGGATCCCATATG-TTAGCTGTTGCAACAACAC	Anoi BamHI-
			NdeI
	Reverse	CCCGCTCGAG-GAACCGGTAGCCTACG	XhoI
987	Forward	CGCGGATCCCATATG-CCCCCACTGGAAGAAC	BamHI-
ļ			NdeI
		CCCGCTCGAG-TAATAAACCTTCTATGGGC	XhoI
988	Forward	CGCGGATCCCATATG-TCTTTAAATTTACGGGAAAAAG	BamHI-
			NdeI
		GCCCAAGCTT-TGATTTGCCTTTCCGTTTT	HindIII
989	Forward	CCGGAATTCTACATATG-GTCCACGCATCCGGCTA	EcoRI-
	D	CCCCCTTCC A C TTTTC A A TTTTC	NdeI
000	Keverse	CCCGCTCGAG-TTTGAATTTGTAGGTGTATTGC	XhoI
990	rorward.	CGCGGATCCGCTAGC-TTCAGAGCTCAGCTT	BamHI-
	2 Pavarca	CCCCCTCCAC AAAGAGGGATTTTGAAGGA	NheI
ດດາ	Forward	CCCGCTCGAG-AAACAGCCATTTGAGCGA	XhoI
332	roiward	CGCGGATCCCATATG-GACGCGCCCGCCCG	BamHI-
	Reverse	CCCGCTCGAG-CCAAATGCCCAACCATTC	Ndel
993	Forward	CCCG <u>CTCGAG</u> -CCAAATGCCCAACCATTC CGC <u>GGATCCCATATG</u> -GCAATGCTGATTGAAATCA	
773	TOIWAIU	COCOMATCCCATATO-GCAATGCTGATTGAAATCA	BamHI-
	Reverse	CCCG <u>CTCGAG</u> -GAACACATCGCGCCCG	Ndel
996		CGCGGATCCCATATG-TGCGGCAGAAAATCCGC	XhoI
			BamHI-
•	Reverse	CCCG <u>CTCGAG</u> -TCTAAACCCCTGTTTTCTC	NdeI
997	Forward	CCGGAATTCTAGCTAGC-CGGCACGCCGACGTT	XhoI
		COONCOCCOACOTT	EcoRI- NheI
	Reverse	CCCG <u>CTCGAG</u> -GACGGCATCGCTCAGG	XhoI
			VIIOI

Underlined sequences indicate restriction recognition sites.

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 1>:
     g001.seg
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG GTGTCGGCGA ACGAGGTGTC
              CGGCAGGGCT TGCGCCCGGA TGGTGCTGGT CATCTGCCAG ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGC TCGGGTACGC ATACTTTACC GGTTTGGGCG
              ATTTTGCCGA GGTCGTTGCG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         151
              GCGGTTTTTC GGGTCGGTTT GTAACTCGGC GGCGCGGCGT TCGTCTTGTC
         201
         301 CCGTCTGAAG CGATGTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCGGCTTCAT CGGGCAGGTG GGACAATACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 2; ORF 001.ng>:
     g001.pep
              MLPQGKAARR VSANEVSGRA CARMVLVICQ TLPKRDTLNG SGTHTLPVWA
             ILPRSLRSKS TIITFSARFF GSVCNSAARR SSCPSPKIGA VPFIGSVLMV
          51
         101 PSEAMLRKSS GEKHSVHADC PASSGRWDNT A*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 3>:
    m001.seq
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
              CGGCASSCTT SS.GCTTGGA YGGTGCTGGT CATCTGCCAA ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
         151 ATTTTGCCGA GATCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         201 GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
              301 CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCCTCCGCAT CGGGCAGGTG GGACAAGACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 4; ORF 001>:
    m001.pep
              MLPQGKAARR MSANEVCGXL XAWXVLVICQ TLPKRDTLNG SGTHTVPVWA
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
             PSEPILRKSS GEKHSVHADC PSASGRWDKT A*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 5>:
    a001.seq
              ATGCTGCCGC AGGGGAAGGC GGCGCGGAGG ATGTCGGCGA ACGAGGTGTG
           1
              CGGCAAGGCT TGGGCTTGGA TGGTGCTGGT CATCTGCCAA ACGCTGCCGA
         101 AACGCGATAC TTTAAACGGT TCGGGTACGC ATACTGTGCC GGTTTGGGCG
         151 ATTTTGCCGA GGTCGTTACG CAGCAAATCG ACAATCATCA CGTTTTCGGC
         201 GCGGTTTTTC GGGTCTGCTT GCAACTCGGC GGCGCGGCGT TCGTCTTGTC
              CCGTCCGAAC CGATTTTGAG GAAGAGTTCG GGCGAGAAAC ACAGCGTCCA
         351 CGCGGATTGC CCTTGTGCAT CGGGCAGGTG GGACAAAACG GCATAG
This corresponds to the amino acid sequence <SEQ ID 6; ORF 001.a>:
    a001.pep
              MLPQGKAARR MSANEVCGKA WAWMVLVICQ TLPKRDTLNG SGTHTVPVWA
              ILPRSLRSKS TIITFSARFF GSACNSAARR SSCPSPKIGA VPFIGSVLMV
          51
             PSEPILRKSS GEKHSVHADC PCASGRWDKT A*
         101
    m001/a001
                96.2% identity over a 131 aa overlap
                                           30
                                                    40
                                                             50
                MLPQGKAARRMSANEVCGXLXAWXVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    m001.pep
                 111111111111111111
                                   MLPQGKAARRMSANEVCGKAWAWMVLVICQTLPKRDTLNGSGTHTVPVWAILPRSLRSKS
    a001.pep
```

	10	20	30	40	50	60
m001.pep	70 TIITFSARFFGSACN TIITFSARFFGSACN	111111111	1111111111		11111111111	111111
	70	80	90	100	110	120
	130					
m001.pep	PSASGRWDKTAX					
a001.pep	 PCASGRWDKTAX 130					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 001 shows 89.3% identity over a 131 aa overlap with a predicted ORF (ORF 001.ng) from N. gonorrhoeae:

m001/g001

m001.pep	10 MLPQGKAARRMSANI : MLPQGKAARRVSANI				1:1111111	111111
	10	20	30	40	50	60
m001.pep	70 TIITFSARFFGSACT TIITFSARFFGSVCN 70	11111111			: 111111111	111111
m001.pep	130 PSASGRWDKTAX :: : PASSGRWDNTAX 130					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 7>:

. 569					
1	ATGGTCGTAT	TCGTGGCTGA	AGGCGTATTC	GGTCGCGCTG	TTTTGGGTCA
51	CTTGGTATTG	CTCTTCGGTC	AGGGTGCGTT	TGAGTTCGGC	GTCACTCGGT
101	TTTTTATACG	TTGCCGCGTC	GAAGCCTTTG	CCTTGCGGTG	CGGCTTTGGT
151	TTTGCCCGGC	AGCGGTTCGT	CGGCTTTGCG	GATGTCGATG	TGGCAGTAGC
201	CGTTGGGGTT	TTTAATCAGG	TAGTCCTGAT	GGTATTCCTC	GGCGTCGTAG
251	AAGTTTTTCA	GCGGTTCGTT	TTCAACAACG	AGGGGCAGTT	GGTATTTTTG
301	CTGCTCGCGT	TTGAGGGCGG	CGGCGATGAC	GGCTTTTTCG	GCGGGGTCGG
351	TGTAGTACAC	GCCGCTGCGG	TATTGCGTGC	CGGTGTCGTT	ACCCTGTTTG
401	TTGAGGCTGG	TCGGATCAAC	GACGCGGAAA	TAATATTGCA	GGATGTCGTC
451	CAGgCTGagt	TTGTCGGCAT	CGTaggtcac	tTTGACGGTC	TCGGCATGAC
501	CCGTATGGCG	GTaggacact	tctTCgtanc	TcGGGtTTTC	CGTGttGCCG
551	TTGGCgttac	CGGATACCGC	gtcaACCACG	CCGTcgatgc	attagaAATa
601	ggCTTCCAAg	ccccaaaagc	agccgccggc	gaagtaaatg	atacccatat
651	tcatgattGC	TGa	3 3 335	yy-uaucy	gegeeegege

This corresponds to the amino acid sequence <SEQ ID 8; ORF 003.ng>: g003.pep

1 MVVFVAEGVF GRAVLGHLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGFG
51 FARQRFVGFA DVDVAVAVGV FNQVVLMVFL GVVEVFQRFV FNNEGQLVFL
101 LLAFEGGGDD GFFGGVGVVH AAAVLRAGVV TLFVEAGRIN DAEIILQDVV

- 151 QAEFVGIVGH FDGLGMTRMA VGHFFVRVFR VAVGVTGYRV NHAVDALEIG
- 201 FQAPKAAAGE VNGARVHDC

WO 99/57280

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 9>: m003.seq

```
ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
    CTTGsTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
 51
    TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGGG CGGTCTTGGT
151 TTTGCCCGGC AGCGGTTCGT CAGCKTTGCG GATGTCGATG TGGCAGTAGC
    CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
251 AAGTTTTLCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
    CTGCTCGCGT TTGAGGGCGk CGGCGATGAC GGCTTTTTCG kCGGGGTCGG
    TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
    TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
451
    TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC
```

501 CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG 551 TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA

GGCTTCCAAG CCCCAGAAGC AGCg.CCGGC GAGGTAAATG GTGCGCGTGT

651 TCATGATTTT TGA

This corresponds to the amino acid sequence <SEQ ID 10; ORF 003>:

```
m003.pep Length: 221
```

MVVFVAEGIF GRAVLGNLXL LFGQGAFEFG VTRFFIRCRV EAFALRGGLG

51 FARQREVSXA DVDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL

101 LLAFEGXGDD GFFXGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV

*AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI

201 GFQAPEAAXG EVNGARVHDF *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 11>: a003.seq

```
ATGGTCGTAT TCGTGGCTGA AGGCATATTC GGTCGCGCTG TTTTGGGTAA
 51 CTTGGTATTG CTCTTCGGTC AGGGTGCGTT TGAGTTCGGC GTCACTCGGT
101 TTTTTATACG TTGCCGCGTC GAAGCCTTTG CCTTGCGGTG CGGTCTTGGT
    TTTGCCCGGC AGCGGTTCGT CGGCTTTGCG GATATCGATG TGGCAGTAGC
201 CGTTGGGGTT TTTAATCAAG TAGTCCTGAT GGTATTCCTC GGCATCGTAG
251 AAGTTTTTCA GCGGCTCGTT TTCAACAACG AGGGGCAGTT GGTATTTTTG
301 CTGCTCGCGT TTGAGGGCGG CGGCGATGAC GGCTTTTTCG GCGGGGTCGG
    TGTAGTACAC GCCGCTGCGG TATTGCGTAC CGGTGTCGTT GCCCTGTTTG
351
401
    TTGAGGCTGG TCGGATCAAC GACGCGGAAG AAATATTGCA GGATGTCGTC
451 TAGGCTGAGT TTGTCGGCAT CGTAGGTCAC TTTGACGGTT TCGGCGTGGC
501 CCGTATGGCG GTAGGACACG TCTTCATAGC TCGGATTTTT CGTGTTGCCG
551
    TTGGCGTAGC CGGATACCGC GTCAACCACG CCGTCGATGC GTTGGAAATA
    GGCTTCCAAG CCCCAGAAGC AGCCGCCGGC GAGGTAGATG GTGCGCGTGT
601
651 TCATGATTTT TGA
```

This corresponds to the amino acid sequence <SEQ ID 12; ORF 003.a>: a003.pep

MVVFVAEGIF GRAVLGNLVL LFGQGAFEFG VTRFFIRCRV EAFALRCGLG 51 FARQRFVGFA DIDVAVAVGV FNQVVLMVFL GIVEVFQRLV FNNEGQLVFL LLAFEGGGDD GFFGGVGVVH AAAVLRTGVV ALFVEAGRIN DAEEILQDVV *AEFVGIVGH FDGFGVARMA VGHVFIARIF RVAVGVAGYR VNHAVDALEI 151 GFQAPEAAAG EVDGARVHDF *

95.9% identity over a 220 aa overlap m003/a003

	10	20	30	40	50	60
m003.pep	MVVFVAEGIFGRAV	LGNLXLLFGQ	GAFEFGVTRF	FIRCRVEAFA	I.RGGI.GEARO	עאסזעם
	1111111111111				Trooper Wil	ILL A DVW
	MANAGEMENT		111111111		11 111111	111.
a003	MVVFVAFGTFCDAVI	CNIUITECA	CA TE DOLLER		,, ,,,,,,,	111.
	MVVFVAEGIFGRAV	POMTATTER	GALELGVIKLI	· IRCRVEAFA	LRCGLGFARO	REVICED
	10	20				MI AGEN
	10	20	30	40	50	60

002	.70	80	90	100	110	120
m003.pep	DVDVAVAVGVFNQV	VLMVFLGIVE	EVFQRLVFNNI	GQLVFLLLAF	EGXGDDGFF	XGVGVVH
	1:111111111111	11111111		!	11 111111	11111
a003	DIDVAVAVGVFNQV	VLMVFLGIVE	EVFQRLVFNNE	GQLVFLLLAF	EGGGDDGFF	GGVGVVH
	70	80	90	100	110	120
	130	140	150	160	170	180
m003.pep	AAAVLRTGVVALFV	EAGRINDAE				UDI UTUKTUN
		1111111111				
a003	AAAVLRTGVVALFV	, , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		111111111	1111111
4000	120	DAGNINDALI				VETARIF
	130	140	150	160	170	180
	190	200	210	220		
m003.pep	RVAVGVAGYRVNHA					
		1111111111				
a003						
4003	RVAVGVAGYRVNHA		APEAAAGEVDO	ARVHDFX		
	190	200	210	220		

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 003 shows 88.6% identity over a 219 aa overlap with a predicted ORF (ORF 003.ng) from N. gonorrhoeae:

m003/g003

	10	20	30	40	50	60
m003.pep	MVVFVAEGIFGRAVL	GNLXLLFGQG	AFEFGVTRFE	TIRCRVEAFAI	RGGLGFAROR	FVSXA
	111111111111	[:	1111111111	1111111111	1 1:11111	H: 1
g003	MVVFVAEGVFGRAVL	GHLVLLFGQG	AFEFGVTRFE	IRCRVEAFAI	RCGFGFAROR	FVGFA
	10	20	30	40	50	60
			-			
	70	80	90	100	110	120
m003.pep	DVDVAVAVGVFNQVV	LMVFLGIVEV	FORLVFNNEC	QLVFLLLAFE	GXGDDGFFXG	VGVVH
			111:11111	1111111111	1 111111 1	11111
g003	DVDVAVAVGVFNQVV	LMVFLGVVEV	FORFVFNNEG	QLVFLLLAFE	GGGDDGFFGG	VGVVH
	70	80	90	100	110	120
	130	140	150	160	170	180
m003.pep	AAAVLRTGVVALFVE	AGRINDAEEI	LQDVVXAEFV	GIVGHFDGFG	VARMAVGHVF	IARIF
	1	11111111	11111 1111	11111111:1	:: [] [] []	: 1:1
g003	AAAVLRAGVVTLFVE	AGRINDAEII	LQDVVQAEFV	GIVGHFDGLG	MTRMAVGHFF	V-RVF
	130	140	150	160	170	180
	190	200	210	220		
m003.pep	RVAVGVAGYRVNHAVI			RVHDFX		
		1111111111		1111		
g003	RVAVGVTGYRVNHAVI	DALEIGFQAP	Kaaagevnga	RVHDC		
	190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 13>: g004.seq

1	ATGgtagAAC	GGCATATCCA	GCATTTGCGG	AACGGTCATC	TTCATTTGAT
51	GCGCCCATGC	CAACAagtga	gccaAAtgtT	CGGCGGCAGG	GCCTacgatT
101	TCCGCGCCGA	TAAagcggcc	gGTGgctTTT	tcqGCataca	ggcgcaTatg
151	gCCTTTGTTT	ACCAgcatca	cgcggctqcq	accttgaTTT	TTGAACGATA
201	CTTCGCCgaT	GACAAATTCG	TCGGCTTGGT	ATTGCGCGGC	AACCTGCGCG
251	TATTTCAAAC	CGACAAAGCC	GATTTGCgga	ctootaaACA	CCACCCCAAT
301	GGTgctgcgg	CGCAAACCGC	TGCCGATATt	caGataacaa	ccccccctta
351	ttgcccggca	atcttacctt	ggtcggcggc	ttcatGCAGC	AGGGGCagtt
401	ggttggacgc	gtcgcccgca	ataAAGATAT	GCGGAATact	GGTCTGCATG
451	gtCAGCGGAT	CGGCAACGGG	tacqccqcqc	acatetttaT	CGATATTGAT
501	GTTTTCCAAA	CCGATATtgT	CAACGTTCGG	ACGGCGACCT	ACGGCTGCCA


```
551 ACATATATC GGCAACAAT ACGCCTTTTT CGCCATCCTG CTCCCAATGG
601 ACTtctACAT TGCCGTCTGC GTCGAGTTTG ACCTCGGTTT TAGCATCCAG
651 ATGCAGTTTC AATtctTCTC CGAACACGGC TTTCGCCTCG TCTGAAACAA
701 CGGGGTCGGA AATGCCGCCG ATGATTCCGC CCAAACCGAA AATTTCAACT
751 TTCACACCCA AACGGTGCAA TGCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 14; ORF 004.ng>:

```
1 MVERHIQHLR NGHLHLMRPC QQVSQMFGGR AYDFRADKAA GGFFGIQAHM
51 AFVYQHAAA TLIFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHAN
101 GAAAQTAADI RVAAPRYCPA ILPWSAASCS RGSWLDASPA IKICGMLVCM
151 VSGSATGTPR ASLSILMFSK PILSTFGRRP TAANIYSATN TPFSPSCSQW
201 TSTLPSASSL TSVLASRCSF NSSPNTAFAS SETTGSEMPP MIPPKPKIST
251 FTPKRCNA*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 15>: m004.seq

```
ATGGTAGAAC GGCATATCCA GCATTTGCGG AACGGTCATC TTCATTTGAT
  1
     GTGCCCAAGC CAACAGGTGC GCCAAATGTT CGGCGGCAGG GCCTACGATT
 51
101 TCCGCGCCGA TAAAGCGGCC GGTGGCTTTT TCGGCATACA GGCGCATATG
151 GCCTTTGTTC ACCAGCATCA CGCGGCTGCG GCCTTGGTTT TTGAACGATA
201 CTTCGCCGAT GACAAATTCG TCGGCTTGGT ATTGCGCGGC AACCTGCGCG
251 TATTTCAGAC CGACAAAGCC GATTTGCGGA CTGGTAAACA CCACGCCGAT
301 GGTGCTGCGC CGCAAACCGC CGCCGATATT CGGGTAGCGG CCGCGTTATC
351 GCCGGCAATC TTGCCTTGGT CGGCAGCTTC ATGCAGCAGA GGCAGTTGGT
401 TGGACGCATC GCCTGCGATG AAGATATGCG GAATACTGGT CTGCATGGTC
451 AGCGGGTCGG CAACAGGTAC GCCGCGCGCA TCTTTTTCGA TATTGATATT
     TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCCACG GCTGCCAGCA
551 TATATTCGGC AACAAATACG CCTTTTTCGC CATCCTGCTC CCAATGGACT
601 TCTACATTGC CGTCTGCATC GAGTTTGACC TCGGTTTTAG CATCCAGATG
651 CAGTTTCAAT TCTTCGCCGA ACACGGCGTT CGCCTCGTCT GAAACGACGG
701 GGTCGGAAAT GCCGCCGATG ATTCCGCCCA AACCGAAAAT TTCAACTTTC
751 ACGCCCAAAC GGTGCAATGC CTGA
```

This corresponds to the amino acid sequence <SEQ ID 16; ORF 004>:

```
1 MVERHIQHLR NGHLHLMCPS QQVRQMFGGR AYDFRADKAA GGFFGIQAHM
51 AFVHQHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGKHHAD
101 GAAPQTAADI RVAAALSPAI LPWSAASCSR GSW<u>LDASPAM KICGILVCMV</u>
151 SGSATGTPRA SFSILIFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT
201 STLPSASSLT SVLASRCSFN SSPNTAFASS ETTGSEMPPM IPPKPKISTF
251 TPKRCNA*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>: a004.seq

1	ATGGTAGAAC	GGCATATCCA	GCATTTGCGG	AACGGTCATC	TTCATTTGAT
51	GTGCCCAAGC	CAACAGGTGC	GCCAAATGTT	CGGCGGCCGG	ACCTACGATT
101	TCTGCGCCGA	TGAAGCGGCC	GGTGGCTTTT	TCGGCATACA	GGCGCATATG
151	GCCTTTGTTT	ACCAGCATCA	CGCGGCTGCG	GCCTTGGTTT	TTGAACGATA
201	CTTCGCCGAT	GACAAATTCG	TCGGCTTGGT	ATTGCGCGGC	AACCTGCGCG
251	TATTTCAAAC	CGACAAAGCC	GATTTGCGGA	CTGGTGAACA	CTACGCCGAT
301	GGTGCTGCGG	CGCAAACCGC	CGCCGATATT	CGGGTAGCGG	CCGCGTTATC
351	GCCGGCAATC	TTGCCTTGGT	CGGCGGCTTC	ATGCAGCAGG	GGCAGTTGGT
401	TGGACGCGTC	GCCCGCAATA	AAGATATGCG	GAATACTGGT	CTGCATAGTC
451	AGCGGATCGG	CAACGGGTAC	GCCGCGCGCA	TCTTTTTCGA	TATTGATGTT
501	TTCCAAACCG	ATATTGTCAA	CGTTCGGACG	GCGGCCTACG	GCTGCCAGCA
551	TATATTCGGC	AACAAATACG	CCTTTTTCGC	CATCCTGCTC	CCAATGGACT
601	TCTACATTGC	CGTCTGCGTC	GAGTTTGGCC	TCGGTTTTAG	CATCCANATC
651	CAGTTTCAAT	TCTTCACCGA	ACACGGCTTT	CGCCTCGTCT	GAAACGACGG
701	GGTCGGAAAT	GCCGCCGATG	ATGCCACCCA	AACCGAAAAT	TTCAACTTTC
751	ACGCCCAAAC	GGTGCAATGC	CTGA		TORROTTIC

This corresponds to the amino acid sequence <SEQ ID 18; ORF 004.a>: a004.pep

- 1 MVERHIQHLR NGHLHLMCPS QQVRQMFGGR TYDFCADEAA GGFFGIQAHM
- 51 AFVYQHHAAA ALVFERYFAD DKFVGLVLRG NLRVFQTDKA DLRTGEHYAD
- 101 GAAAQTAADI RVAAALSPAI LPWSAASCSR GSWLDASPAI KICGILVCIV
- 151 SGSATGTPRA SFSILMFSKP ILSTFGRRPT AASIYSATNT PFSPSCSQWT 201 STLPSASSLA SVLASKCSFN SSPNTAFASS ETTGSEMPPM MPPKPKISTF
- 251 TPKRCNA*

94.9% identity over a 257 aa overlap m004/a004

m004.pep	10 20 30 MVERHIQHLRNGHLHLMCPSQQVRQMFGGRAY	141 11:41111111111111
m004.pep	70 80 90 ALVFERYFADDKFVGLVLRGNLRVFQTDKADI	1111:1:11111
m004.pep	130 140 150 LPWSAASCSRGSWLDASPAMKICGILVCMVSG	
m004.pep	190 200 210 AASIYSATNTPFSPSCSQWTSTLPSASSLTSV	
m004.pep	250 IPPKPKISTFTPKRCNAX : MPPKPKISTFTPKRCNAX 250	

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 004 shows 93.4% identity over a 258 aa overlap with a predicted ORF (ORF 004.ng) from N. gonorrhoeae:

m004/g004

		10	20	30	40	50	60
m004.pep	MVERHI	QHLRNGHL	ILMCPSQQVR	QMFGGRAYDF	RADKAAGGFF	GIQAHMAFVH	ааанно
	11111	11111111		!		1111111111	LILLER
g004	MVERHI	QHLRNGHL	ILMRPCQQVS	QMFGGRAYDF	RADKAAGGFF	GIQAHMAFVY	ОННААА
		10	20	30	40	50	60
		70					
			80	90	100	110	119
m004.pep	ALVFER	YFADDKFVO	LVLRGNLRV	FQTDKADLRT	GKHHADGAAP	QTAADIRVAA	A-T:SPA
	:1:11	1111111111	111111111				
g004	TLIFER	YFADDKFVO	LVLRGNLRV	יים.וחמאחינים	CKHUDNCDBB	QTAADIRVAA:	
		70	80	. Ar promitt			PRYCPA
		, 0	80	90	100	110	120
	120	130	140	150			
				150	160	170	179
m004.pep	TLPWSA	ASCSRGSWI	DASPAMKIC	GILVCMVSGS	ATGTPRASFS:	ILIFSKPILS	IFGRRP

g004	 LPW	SAASCSRGSW	LDASPAIKIC	: GMLVCMVSGS	: ATGTPRASLS	: ILMFSKPILS	TFGRRP
		130	140	150	160	170	180
	180	190	200	210	220	230	239
m004.pep	TAAS	IYSATNTPFS	PSCSQWTSTL	PSASSLTSVL	ASRCSFNSSP	NTAFASSETT	GSEMPP
	111:	111111111	*****	1111111111	11111111111	1111111111	
g004	TAAN	IYSATNTPFS	PSCSOWTSTL	PSASSLTSVL	ASRCSENSSP	NTAFASSETT	CCEMDD
•		190	200	210	220	230	240
				210	220	230	240
	240	250					
m004.pep	MIPP	KPKISTFTPK	RCNAX				
	1111	111111111	1111				
q004	MIPP	KPKISTFTPK	RCNA				
-		250	- -				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 19>: g005.seq

```
ATGGGGATGG ACAATATTGA TATGTTCATG CCTGAACAAG AGGAAATCCA
   1
  51 ATCAATGTGG AAAGAAATTT TACTGAATTA CGGTATTTTC CTGCTCGAAC
 101 TGCTTACCGT GTTCGGCGCA ATTGCGCTGA TTGTGTTGGC TATCGTACAG
 151 AGTAAGAAAC AGTCGGAAAG CGGCAGTGTC GTACTGACAG ATTTTTCGGA
     AAATTATAAA AAACAGCGGC AATCGTTTGA AACATTCTTT TTAAGCGAGG
 201
 251 AAGAGACAAA ACATCAGGAA AAAAAAGAAA AGAAAAAGGA AAAGGCGGAA
 301
     GCCAAAGCAG AGAAAAAGCG TTTGAAGGAG GGCGGGGAGA AATCTGCCGA
 351
     AACGCAAAAA TCCCGCCTTT TTGTGTTGGA TTTTGACGGC GATTTGTATG
 401
     CACACGCCGT AGAATCCTTG CGTCATGAGA TTACGGCGGT GCTTTTGATT
     GCCAAGCCTG AAGATGAGGT TCTGCTCAGA TTGGAAAGTC CGGGCGGCGT
 451
     GGTTCACGGT TACGGTTTGG CGGCTTCGCA GCTTAGGCGT TTGCGCGAAC
 501
 551 GCAATATTCC GCTGAccgtc gccgTCGATA AGGTCGCGGC AAGCGgcggc
     tatatgatgg cgtgtgtgGC GGATAAAATT GTTTCCGCtc cgtttgcggt
 601
 651 catcggttcg gtgggtgtgg tgGcggaagt gcCGAATATC CAccgCctGT
 701 TGAAAAAACA TGATATTGAT GTGGATGTGA TGACGGCGGG CGAATTTAAG
 751 CGCACGGTTA CTTTTATGGG TGAAAATACG GAAAAGGGCA AACAGAAATT
     CCGGCAGGAA CTGGAGGAAA CGCATCAGTT GTTCAAGCAG TTTGTCAGTG
 801
 851 AAAACCGCCC CGGGTTGGAT ATTGAAAAAA TAGCGACGGG CGAGCATTGG
 901 TTCGGCCGGC AGGCGTTGGC GTTGAACTTG ATTGACGAGA TTTCGACCAG
951 TGATGATTTG TTGTTGAAAG CGTTTGAAAA CAAACAGGtt aTCGAAGTGA
     AATATCAGGA GAAGCGAAGC CTGATCCAGC GCATTGGTTT GCAGGCGGAA
1051 GCTTCCGTTG AAAAGTTGTT TGCCAAACTT GTCAACCGGC GAGCGGATGT
1101 GATGTAG
```

This corresponds to the amino acid sequence <SEQ ID 20; ORF 005.ng>:

1 MGMDNIDMFM PEQEEIQSMW KEILLNYGIF LLELLTVFGA IALIVLAIVQ
51 SKKQSESGSV VLTDFSENYK KQRQSFETFF LSEEETKHQE KKEKKKEKAE
101 AKAEKKLKE GGEKSAETQK SRLFVLDFDG DLYAHAVESL RHEITAVLLI
151 AKPEDEVLLR LESPGGVVHG YGLAASQLRR LRERNIPLTV AVDKVAASGG
201 YMMACVADKI VSAPFAVIGS VGVVAEVPNI HRLLKKHDID VDVMTAGEFK
251 RTVTFMGENT EKGKQKFRQE LEETHQLFKQ FVSENRPGLD IEKIATGEHW
301 FGRQALALNL IDEISTSDDL LLKAFENKQV IEVKYQEKRS LIQRIGLQAE
351 ASVEKLFAKL VNRRADVM*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 21>: m005.seq

1	ATGGACAATA	TTGACATGTT	CATGCCTGAA	CAAGAGGAAA	ТССДДТСДДТ
51	GTGGAAAGAA	ATTTTACTGA	ATTACGGTAT	TTTCCTCCTC	GAACTGCTTA
101	CCGTGTTCGG	CGCAATTGCG	CTGATTGTGT	TGGCTATCGT	ACAGAGTAAG
151	AAACAGTCGG	Awagcggcag	TGTCGTACTG	ACGGATTTTT	CCCDDDDTTD
201	TAAAAAACAG	CGGCAATCGT	TTGAAGCATT	CTTTTTAAGC	GGGGAACACC
251	CACAACATCA	GGAAAAAGAG	GAAAAGAAAA	AGGAAAAGGC	GGAAGCCAAA

```
301 GCAGAGAAAA A.CGTTTGAA GGAGGGTGGG GAGAAATCTG CCGAAACGCA
    NAAATCACGC CTTTTTGTGT TGGANNNNN NNNNNNNNN NNNNNNNNN
    551 NNNNNNNNN NNNNNNNNN NNNNNNNNN NNGCGAGCGG CGGTTATATG
    ATGGCGTGTG TGGCGGATAA AATTGCTTCC GCTCCGTTTG CGATTGTCGG
651
    TTCGGTGGGT GTGGTGGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA
701 AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG
751 GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA
801 GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC
851 GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT
    CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA
901
951 TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC
1001 AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT
1051 GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGT A
1101
```

This corresponds to the amino acid sequence <SEQ ID 22; ORF 005>: m005.pep

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 23>: a005.seq

ATGGACAATA TTGACATGTT CATGCCTGAA CAAGAGGAAA TCCAATCAAT GTGGAAAGAA ATTTTACTGA ATTACGGTAT TTTCCTGCTC GAACTGCTTA 51 CCGTGTTCGG CGCAATTGCG CTGATTGTGT TGGCTATCGT ACAGAGTAAG 151 AAACAGTCGG AAAGCGGCAG TGTCGTACTG ACGGATTTTT CGGAAAATTA TAAAAAACAG CGGCAATCGT TTGAAGCATT CTTTTTAAGC GGGGAAGAGG CAAAACATCA GGAAAAAGAG GAAAAGAAAA AGGAAAAGGC GGAAGCCAAA 251 301 GCAGAGAAAA AGCGTTTGAA GGAGGGTGGG GAGAAATCTT CCGAAACGCA 351 AAAATCCCGC CTTTTTGTGT TGGATTTTGA CGGCGATTTG TATGCACACG 401 CCGTAGAATC CTTGCGTCAT GAGATTACGG CGGTGCTTTT GATTGCCAAG CCTGAAGATG AGGTTCTGCT TAGATTGGAA AGTCCGGGCG GCGTGGTTCA 451 501 CGGTTACGGT TTGGCGGCTT CGCAGCTTAG GCGTTTGCGC GAACGCAATA 551 TTCCGCTGAC CGTCGCCGTC GATAAGGTGG CGGCGAGCGG TGGTTATATG 601 ATGGCGTGTG TGGCGGATAA AATTGTTTCC GCTCCGTTTG CGATTGTCGG TTCGGTGGGT GTTGTAGCGG AAGTACCGAA TATCCACCGC CTGTTGAAAA 701 AACATGATAT TGATGTGGAT GTGATGACGG CGGGCGAATT TAAGCGCACG 751 GTTACTTTTA TGGGTGAAAA TACGGAAAAG GGCAAACAGA AATTCCGACA 801 GGAACTGGAG GAAACGCATC AGTTGTTCAA GCAGTTTGTC AGCGAGAACC GCCCTCAATT GGATATTGAG GAAGTGGCAA CGGGCGAGCA TTGGTTCGGT 851 901 CGGCAGGCGT TGGCGTTGAA CTTGATTGAC GAGATTTCGA CCAGTGATGA TTTGTTGTTG AAAGCGTTTG AAAACAAACA GGTTATCGAA GTGAAATATC AGGAGAAGCA AAGCCTGATC CAGCGCATTG GTTTGCAGGC GGAAGCTTCT 1051 GTTGAAAAGT TGTTTGCCAA ACTTGTCAAC CGGCGGGCGG ATGTGATGTA 1101

This corresponds to the amino acid sequence <SEQ ID 24; ORF 005.a>: a005.pep

1 MDNIDMFMPE QEEIQSMWKE ILLNYGIFLL ELLTVFGAIA LIVLAIVQSK
51 KQSESGSVVL TDFSENYKKQ RQSFEAFFLS GEEAKHQEKE EKKKEKAEAK
101 AEKKRLKEGG EKSSETQKSR LFVLDFDGDL YAHAVESLRH EITAVLLIAK
151 PEDEVLLRLE SPGGVVHGYG LAASQLRRLR ERNIPLTVAV DKVAASGGYM
201 MACVADKIVS APFAIVGSVG VVAEVPNIHR LLKKHDIDVD VMTAGEFKRT
251 VTFMGENTEK GKQKFRQELE ETHQLFKQFV SENRPQLDIE EVATGEHWFG

301 RQALALNLID EISTSDDLLL KAFENKQVIE VKYQEKQSLI QRIGLQAEAS 351 VEKLFAKLVN RRADVM*

m005/a005 79.2% identity over a 366 aa overlap

	10	20	30	40	50	60
m005.pep	MDNIDMFMPEQEE	IQSMWKEILL	NYGIFLLELL'	TVFGAIALIVI	LAIVQSKKQS	KSGSVVL
a005	MDNIDMEMBEORE	TODWINDTER	1111111111			111111
a003	MDNIDMFMPEQEE:	20	NACTE TEFT.			
	10	20	30	40	50	. 60
	70	80	90	100		
m005.pep	TDFSENYKKOROS				110	120
	111111111111		•	VEKWEWVWEVY	KLKEGGEKSA	AETXKSR
a005	TDFSENYKKOROS	FEAFFI.SGEE	ZKHOEKEEKKI I • I I I I I I I I I			
	70	80	90	100	110	
			30	100	110	120
	130	140	150	160	170	180
m005.pep	LFVLXXXXXXXXXX	XXXXXXXXX	XXXXXXXXXX	«XXXXXXXXXX	XXXXXXXXXX	777777 100
	1111	:				
a005	LFVLDFDGDLYAH	AVESLRHEIT	AVLLIAKPEDI	EVLLRLESPGG	VVHGYGT.AAS	C.TRR.TO
	130	140	150	160	170	180
					2,0	100
	190	200	210	220	230	240
m005.pep	XXXXXXXXXXXXXXX	KASGGYMMAC\	/ADKIASAPF/	IVGSVGVVAE	VPNIHRLLKE	CHOTOND
	:			[3133111111	111111
a005	ERNIPLTVAVDKV	AASGGYMMACI	/ADKIVSAPF/	AIVGSVGVVAE	VPNIHRLLKK	HDIDVD
	190	200	210	220	230	240
	0.50					
-005	250	260	270	280	290	300
m005.pep	VMTAGEFKRTVTFN	IGENTEKGKOF	KFRQELEETHO)LFKQFVSENR	PQLDIEEVAT	GEHWFG
a005	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(CD)(DD)(c)(c)		1111111111	111111111	11111
a005	VMTAGEFKRTVTFN 250	GENTEKGKOR 260	(EKQELEETH)	LFKQFVSENR		
	230	260	270	280	290	300
	310	320	330	340	250	
m005.pep	RQALALNLIDEIST		330 330	J4U EVOCITORIO	350	360
			HILLIIIIIII	SEVÖSPIÖKIG	LOALASVEKL	FAKLVN
a005	RQALALNLIDEIST	SDDIJJKAFF	NKOVIEVKVO		1111111111	11111
	310	320	330	240 340	JUAEASVEKL 350	
		020	330	240	350	360
m005.pep	RRADVMX					
	1111111					
a005	RRADVMX					

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 005 shows 77.0% identity over a 366 aa overlap with a predicted ORF (ORF 005.ng) from N. gonorrhoeae:

	10	20	30	40	50	
m005.pep	MDNIDMFMPEQEE	EIQSMWKEILL	NYGIFLLELL'	TVFGAIALIV	LAIVOSKKOS	SXSGSV
			*		111111111	1 1111
g005	MGMDNIDMFMPEQE	EIQSMWKEILL	NYGIFLLELL	TVFGAIALIV	LAIVOSKKOS	SESGSV
	10	20	30	40	50	60
	60 70	80	90	100	110	
m005.pep	VLTDFSENYKKOROS	FEAFFLSGEE	AQHQEKEEKKI	KEKAEAKAEK	KRLKEGGEKS	SAETXK
		11:111 11	::1111:11			1111
g005	VLTDFSENYKKQRQS	FETFFLSEEE'	TKHQEKKEKKI	KEKAEAKAEK	KRLKEGGEKS	AETOK
	70	80	90	100	110	120

m005.pep	120 130 SRLFVLXXXXXXX	140 XXXXXXXXXXX	150 XXXXXXXX	160 XXXXXXXXXX	170 XXXXXXXXX	xxxxx
g005	SRLFVLDFDGDLY	AHAVESLRHEIT 140	AVLLIAKPE 150	DEVLLRLESPO 160	GGVVHGYGLA 170	ASQLRR 180
m005.pep	180 190 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	11111111	11111:111	11::111111	111111111	11111
m005.pep g005	240 250 VDVMTAGEFKRTV	1111111111	11111111	11111111111	11 1111::1	
m005.pep	300 310 FGRQALALNLIDE 		11111111	1111:11111	11111111111	11111
m005.pep	360 VNRRADVMX VNRRADVMX				·	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 25>: g006.seq

```
1 ATGCTGCTGG TGCTGGaatt ttggttCGGC gtGtCGGCGG TGGGCatact
51 tgCGTTGTTT TTATGGCttt TGCCACGTTT TGCCGCCATC AGCGAAAACC
101 TGTATTTCCG CCTGAACAAC AGCTTGGAAC gcgACAACCA CTTTATCCGA
151 AAAGGCGACG AGCGGCAGCT GTACCGCCAT TACGGACTGG TTTCGCGCCT
201 GCGTGGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCG
251 CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
301 GGCTACGGCA GCGCGGGCA TATTTTATTCG GTCGGCACTT ATCTGTGGAT
351 GTTTGCCATG AGTTTGGACG ATGTGCCGCG ATTGGTCGAA CAATATTCCA
401 ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA
451 GCCGGAACTT GA
```

This corresponds to the amino acid sequence <SEQ ID 26; ORF 006.ng>: g006.pep

- 1 MLLVLEFWFG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
- 51 KGDERQLYRH YGLVSRLRVL ISNREAFGYL CVGAAMGILF GFAFVMMTLK
- 101 GYGSAGHIYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
- 151 AGT*

. • •

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 27>: m006.seq

1	ATGCTGCTGG	TGCTGGAATT	TTGGGTCGGC	GTGTCGGCGG	TGGGCATACT
51	TGCGTTGTTT	TTATGGCTTT	TGCCACGTTT	TGCCGCCATC	AGCGAAAACC
101	TGTATTTCCG	CCTGAACAAC	AGCTTGGAAC	GCGACAACCA	CTTTATCCGA
151	AAAGGCGACC	GGCGGCAGCT	GTACCGCCAT	TACGGACTGC	TTGCGCGCCT
201	GCGTGTGCTG	ATTTCCAACC	GCGAAGCCTT	CGGCTATCTC	TGCGTCGGCA
251	CGGCGATGGG	TATTTTGTTC	GGCTTTGCTT	TTGTGATGAT	GACGCTCAAA
301	GGCTACAGCA	GCGCGGGGCA	TGTCTATTCC	CTCCCCN CTT	AMOMOMOCAM

- 351 GTTTGCCATG AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA 401 ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGGAACG GAACATCAAA 451 GCCGGAACTTGA
- This corresponds to the amino acid sequence <SEQ ID 28; ORF 006>: m006.pep
 - 1 MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLNN SLERDNHFIR
 - 51 KGDRRQLYRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
 - 101 GYSSAGHVYS VGTYLWMFAM SLDDVPRLVE QYSNLKDIGQ RIEWSERNIK
 - 151 AGT*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 29>:

a006.seq

- ATGCTGCTGG TGCTGGAATT TTGGGTCGGC GTGTCGGCGG TGGGCATACT 51 TGCGTTGTTT TTATGGCTTT TGCCACGTTT TGCCGCCATC AGCGAAAACC
- 101 TGTATTTCCG CCTGAAGAAC AGCTTGGAAC GCGACAACCA CTTTATCCGA
- 151 AAAGGCGACG AGCGGCAGCT GGACCGCCAT TACGGACTGC TTGCGCGCCT
- GCGTGTGCTG ATTTCCAACC GCGAAGCCTT CGGCTATCTC TGCGTCGGCA
- 251 CGGCGATGGG TATTTTGTTC GGCTTTGCTT TTGTGATGAT GACGCTCAAA
- 301 GGCTACAGCA GCGCGGGGCA TGTCTATTCG GTCGGCACTT ATCTGTGGAT
- 351 GTTTGCCATA AGTTTGGACG ACGTGCCGCG ATTGGTCGAA CAATATTCCA
- 401 ATTTGAAAGA CATCGGACAA CGGATAGAGT GGTCGAAACG GAACATCAAA 451 GCCGGAACTT GA

This corresponds to the amino acid sequence <SEQ ID 30; ORF 006.a>: a006.pep

- 1 MLLVLEFWVG VSAVGILALF LWLLPRFAAI SENLYFRLKN SLERDNHFIR
- 51 KGDERQLDRH YGLLARLRVL ISNREAFGYL CVGTAMGILF GFAFVMMTLK
- GYSSAGHVYS VGTYLWMFAI SLDDVPRLVE QYSNLKDIGQ RIEWSKRNIK
- 151 AGT*

96.7% identity over a 153 aa overlap m006/a006

	10	20	30	40	50	60
m006.pep	MLLVLEFWVGVSAV	GILALFLWLI	PRFAAISENL	YFRLNNSLEF	DNHFIRKGDE	ROLYRH
	-		1111111111			
a006	MLLVLEFWVGVSAV	GILALFLWLI	PRFAAISENL	YERLKNSLER	DNHFTRKCDE	מפת זסקי
	10	- 20	30			
	10	. 20	30	40	50	60
	70	80	90	100	110	120
m006.pep	YGLLARLRVLISNR	EAFGYLCVGT	AMGTIFGFAF	WMMT KCVCC	y Chrystrem?	T TOWNS A
				I I I I I I I I I I I I I I I I I I I	AGIIVISVGII	LWITE AM
-006		<u> </u>		1111111111	111111111	11111:
a006 YGLLARLRVLISNREAFGYLCVGTAMGILFGFAFVMMTLKGYSSAGHVYSVGTYLWMFAI						LWMFAI
	70	80	90	100	110	120
						120
	130	140	150			
m006.pep	ST.DDVPRT.VEOVSM					
		1111111	1:1111111			
a006 SLDDVPRLVEQYSNLKDIGQRIEWSKRNIKAGTX						
	130	140	150			
	100		100			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 006 shows 95.4% identity over a 153 aa overlap with a predicted ORF (ORF 006.ng) from N. gonorrhoeae:

m006/g006

20 30 40 50 MLLVLEFWVGVSAVGILALFLWLLPRFAAISENLYFRLNNSLERDNHFIRKGDRRQLYRH m006.pep

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 31>:

```
1 ATGTGGAAAA TGTTGAAACA CATAGCCAAA ACCCACCGCA AGCGATTGAT
     TGGCACATTT TCCCCGGTCG GACTGGAAAA CCTTTTGATG CTGGGGTATC
 51
     CGGTGTTTGG CGGCTGGGCG ATTAATGCCG TGATTGCGGG GAGGGTGTGG
101
     CAGGCGTTGC TGTACGCTTT GGTTGTATTT TTGATGTGGC TGGTCGGTGC
151
     GGCACGGCGG ATTGCCGATA CGCGCACGTT TACGCGGATT TATACCGAAA
201
     TCGCCGTGCC GGTTGTGTTG GAACAACGGC AGCGGCAAGT CCCGCATTCA
251
     GCGGTAACTG CACGGGTTGC CCTGTCGCGT GAATTTGTCA GCTTTTTTGA
301
351
    AGAACACCTG CCGATTGCCG CGACATCCGT CGTATCCATA TTCGGCGCGT
     GCATCATGCT GCTGGTGCTG GAATTTTGGG TCGGCGTGTC GGCGGTGGGC
401
    ATACTTGCGT TGTTTTTATG GCTTTTGCCA CGTTTTGCCG CCATCAGCGA
4.51
     AAACCTGTAT TTCCGCCTGA ACAACAGCTT GGAACGCGAC AACCACTTTA
501
    TCCGAAAAGG CGACGAGCGG CAGCTGTACC GCCATTACGG ACTGGTTTCG
551
    CGCCTGCGTG TGCTGATTTC CAACCGCGAA GCCTTCGGCT ATCTCTGCGT
    CGGCGCGCG ATGGGTATTT TGTTCGGCTT TGCTTTTGTG ATGATGACGC
651
701
     TCAAAGGCTA CGGCAGCGCG GGGCATATTT ATTCGGTCGG CACTTATCTG
    TGGATGTTTG CCATGAGTTT GGACGATGTG CCGCGATTGG TCGAACAATA
751
    TTCCAATTTG AAAGACATCG GACAACGGAT AGAGTGGTCG GAACGGAACA
    TCAAAGCCGG AACTTGA
```

This corresponds to the amino acid sequence <SEQ ID 32; ORF 006-1.ng>: g006-1.pep

- 1 MWKMLKHIAK THRKRLIGTF SPVGLENLIM LGYPVFGGWA INAVIAGRVW
 51 QALLYALVVF LMWLVGAARR IADTRTFTRI YTEIAVPVVL EQRQRQVPHS
 101 AVTARVALSR EFVSFFEEHL PIAATSVVSI FGACIMLLVL EFWVGVSAVG
 151 ILALFLWLLP RFAAISENLY FRLNNSLERD NHFIRKGDER QLYRHYGLVS
 201 RLRVLISNRE AFGYLCVGAA MGILFGFAFV MMTLKGYGSA GHIYSVGTYL
 251 WMFAMSLDDV PRLVEQYSNL KDIGQRIEWS ERNIKAGT*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 33>: m006-1.seq

1	ATGTGGAAAA	TGTTGAAACA	CATAGCCCAA	ACCCACCGCA	AGCGATTGAT
51	TGGCACATTT	TCCCTGGTCG	GACTGGAAAA	CCTTTTGATG	CTGGTGTATC
101	CGGTGTTTGG	CGGCCGGGCG	ATCAATGCCG	TGATTGCGGG	GGAGGTGTGG
151	CAGGCGTTGC	TGTACGCTTT	GGTTGTGCTT	TTGATGTGGC	TEGTOGGTGC
201	GGTGCGGCGG	ATTGCCGATA	CGCGCACGTT	TACGCGGATT	TATACCGAAA
251	TCGCCGTGCC	GGTCGTGTTG	GAACAGCGGC	AGCGACAAGT	CCCGCATTCG
301	GCGGTAACTG	CGCGGGTTGC	CCTGTCGCGT	GAGTTTGTCA	GCTTTTTTCA
351	AGAACACCTG	CCGATTGCCG	CGACATCCGT	CGTATCCATA	TTCGGCGCGT
401	GCATCATGCT	GCTGGTGCTG	GAATTTTGGG	TCGGCGTGTC	GCCGCTGCCC
451	ATACTTGCGT	TGTTTTTATG	GCTTTTGCCA	CGTTTTGCCG	CCATCACCGA
501	AAACCTGTAT	TTCCGCCTGA	ACAACAGCTT	GGAACGCGAC	AACCACTTTA
551	TCCGAAAAGG	CGACCGGCGG	CAGCTGTACC	GCCATTACGG	ACTECTTECE
601	CGCCTGCGTG	TGCTGATTTC	CAACCGCGAA	GCCTTCGGCT	ATCTCTCCCT
				0001100001	W10101001

WO 99/57280

551

601

651

PCT/US99/09346

		•	
651			
651	CGGCACGGCG ATGGGTATTT	TGTTCGGCTT TGCTTTTGTC	ATGATGACGC
701 751	TCAAAGGCTA CAGCAGCGCG	GGGCATGTCT ATTCGGTCGC	CACTTATCTG
801	TGGATGTTTG CCATGAGTTT	GGACGACGTG CCGCGATTGC	TCGAACAATA
851	TTCCAATTTG AAAGACATCG TCAAAGCCGG AACTTGA	GACAACGGAT AGAGTGGTC	GAACGGAACA
This corresponds	to the amino acid seque	nce <seo 34:="" id="" orf<="" td=""><td>006-1>·</td></seo>	006-1>·
m006-1.pep	•	22 (22 0 ., 012	
1 1	MWKMLKHIAQ THRKRLIGTF	SLVGLENLLM LVYPVFGGRA	TNAVTAGEVW
51	QALLYALVVL LMWLVGAVRR	IADTRTFTRI YTEIAVPVVI	. EOROROVPHS
101	AVTARVALSR EFVSFFEEHL	PIAATSVVSI FGACIMILVI	. EFWVGVSAVG
151	ILALFLWLLP RFAAISENLY	FRLNNSLERD NHFIRKGORE	OLYRHYCLLA
201	RLRVLISNRE AFGYLCVGTA	MGILFGFAFV MMTLKGYSSA	GHVYSVGTYL
251 1	WMFAMSLDDV PRLVEQYSNL	KDIGQRIEWS ERNIKAGT*	
m006-1/g006-1	95.5% identity in 288	aa overlap	
	10 2	20 30 40	50 60
m006-1.pep	MWKMLKHIAQTHRKRLIGT	FSLVGLENLLMLVYPVFGGRA	INAVIAGEVWOALLVAT.VAT.
		'#	11111111111111111111
g006-1	MWKMLKHIAKTHRKRLIGI	FSPVGLENLLMLGYPVFGGWA	INAVIAGRVWOALLYALVVF
	10 2	20 30 40	
	20 .		
m006-1.pep		90 90 100	110 120
movo-1.pep	I I I I I I I I I I I I I I I I I I I	IYTEIAVPVVLEQRQRQVPHS	AVTARVALSREFVSFFEEHL
g006-1	I.MWI.VGAARRTADTRTETE		
5000 -	70 8	0 90 100	
	. •	90 100	110 120
	130 14		170 180
m006-1.pep	PIAATSVVSIFGACIMLLV	LEFWVGVSAVGILALFLWLLP	RFAATSENLYERINNSLEDD
005	11111111111111111111		11111111111111111111
g006-1	PIAATSVVSIFGACIMLLV	LEFWVGVSAVGILALFLWLLP	RFAAISENLYFRLNNSLERD
	130 14	0 150 160	170 180
	190 20	0 210 000	
m006-1.pep		0 210 220 ARLRVLISNREAFGYLCVGTA	230 240
	11111111:1111111111	:	MGILFGFAFVMMTLKGYSSA
g006-1	NHFIRKGDEROLYRHYGLV	SRLRVLISNREAFGYLCVGAA	MCTI ECEN FINAMEI VOVOCA
-	190 20	0 210 220	230 240
	•		230 240
	250 26		289
m006-1.pep	GHVYSVGTYLWMFAMSLDD	VPRLVEQYSNLKDIGQRIEWS	ERNIKAGTX
~006 1			11111111
g006-1	GHIISVGTILWMFAMSLDD	VPRLVEQYSNLKDIGQRIEWS	ERNIKAGTX
	250 26	0 270 280	
The following par	tial DNA sequence was	identified in N meningi	tidis < SEO ID 25\.
a006-1.seq	(partial)	and the state of t	······ \OLY 1D 33/.
	.AGCCAAAACC ACCGCAAGC	G ATTGATTGGC ACATTTTT	TC TGGTCGGACT
51	GGAAAACCTT TTGATGCTG	G TGTATCCGGT GTTTGGCG	C TGGGCGATTA
101	ATGCCGTGAT TGCGGGGCA	G GCGTGGCAGG CGTTGCTG	PA CCCTTTCCTT
151	GTGCTTTTGA TGTGGCTGG	T CGGTGCGGCG CGGCGGAT	TG CCGATACGCG
201	CACGTTTACG CGGATTTAT	A CCGAAATCGC CGTGCCGG	ኮ ሞ ርጥርጥጥርርአአር
251	AGCGGCAGCG GCAAGTCCC	G CATTCGGCGG TAACTGCG	CG GGTTGCCCCTG
301 351	TCGCGTGAGT TTGTCAGCT	T TTTTGAAGAA CACCTGCC	TTGCCGCCAC
351 4 01	TTTGGGTGGC COMCTOS	G GCGCGTGCAT CATGCTGC	rg gtgctggaat
451	TTGCCACGTC CGTGTCGGC	G GTGGGCATAC TTGCGTTG	TT TTTATGGCTT
501	CAGCTTGGAA CGCGACAAC	T CAGCGAAAAC CTGTATTTC C ACTTTATCCG AAAAGGCGA	CC GCCTGAAGAA
	COCONCANC	- POTITIVICO WAWAGGCG	AU GAGUGGCAGC

CAGCTTGGAA CGCGACAACC ACTTTATCCG AAAAGGCGAC GAGCGGCAGC TGGACCGCCA TTACGGACTG CTTGCGCGCC TGCGTGTGCT GATTTCCAAC

CGCGAAGCCT TCGGCTATCT CTGCGTCGGC ACGGCGATGG GTATTTTGTT

CGGCTTTGCT TTTGTGATGA TGACGCTCAA AGGCTACAGC AGCGCGGGGC

701 751 801	ATGTCTATTC GGTCG GACGTGCCGC GATTC ACGGATAGAG TGGTC	GGTCGA ACAATAT	TCC AATTTGAAAG	ACATCGGACA	
This corresponds	to the amino acid s	equence <seq< td=""><td>ID 36; ORF 00</td><td>5-1.a>:</td><td></td></seq<>	ID 36; ORF 00	5-1.a>:	
a006-1.pep	(partial)	•	•		
1 .	.SQNHRKRLIG TFFL	VGLENL LMLVYPVI	FGG WAINAVIAGO	AWOALLYALV	
51	VLLMWLVGAA RRIAI	DTRTFT RIYTEIA	VPV VLEOROROVP	HSAVTARVAL.	
101	SREFVSFFEE HLPI	AATSVV SIFGACI	MLL VLEFWVGVSA	VGILALFLWI.	
151	LPRFAAISEN LYFR	LKNSLE RDNHFIRI	KGD ERQLDRHYGL	LARLRVLISN	
201	REAFGYLCVG TAMG	ILFGFA FVMMTLK	GYS SAGHVYSVGT	YLWMFAISLD	
251	DVPRLVEQYS NLKD	IGQRIE WSKRNIKA	AGT *		
a006-1/m006-1	95.7% identity i		.ap		
		10 20	30	40	50
a006-1.pep	SONHRKI	RLIGTFFLVGLENLI	LMLVYPVFGGWAIN	AVIAGQAWQALL	YALVVL
m006-1	WHITE COURSE				
11-60011	MWKMLKHIAQTHRKI 10				
	10	20	30 40	50	60
	60	70 80	90	100	110
a006-1.pep	LMWLVGAARRIADTE	RTFTRIYTEIAVPV	/LEOROROVPHSAV	PARVAL SREEVS	PERHI.
				111111111111	111113
m006-1	LMWLVGAVRRIADTE	RTFTRIYTEIAVPVV	/LEQRQRQVPHSAV	PARVALSREFVS	FFEEHL
	70	80 9	90, 100	110	120
	120	130 140	150		
a006-1.pep	PIAATSVVSIFGACI		150	160	170
dood 11pcp			.GITHT::::::::	MAISENLYFRLK	NSLERD
m006-1	PIAATSVVSIFGACI	IMLLVLEFWVGVSAV	/GTI.AI.FI.WI.I.PRF:	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	[
	130	140 15		170	180
				2.0	100
	180	190 200	210	220	230
a006-1.pep	NHFIRKGDERQLDRF	HYGLLARLRVLISNE	REAFGYLCVGTAMG:	LFGFAFVMMTL	KGYSSA
m006-1					
M006-1	NHFIRKGDRRQLYRH				
	190	200 21	.0 220	230	240
	240	250 260	270	280	
a006-1.pep	GHVYSVGTYLWMFAI			IIKAGTX	
	- 111111111111111	111111111111	3111111111111111		
m006-1	GHVYSVGTYLWMFAM	(SLDDVPRLVEQYSN	ILKDIGQRIEWSER	IKAGTX	
	250	260 27	0 280		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 37>: g007.seq

- atgaACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGcgC
- 51 CGCcGCTTCT GCCGccgaca acAGCatcat gaCaAAAGGG CAAAAAGTGT
- 101 ACGAATCCAA CtGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC
- 151 ACTGCGtTTC CTccgctTTT CCggtcgGac tgtattatga acaAACCGCa
- 201 cgTCCtgctg cacagcatgg tcaaaggcAt cgacgggaca ttcaaagtgg
- 251 agcggcaaaa cctacgacgg atttatgCcc gcaaccgcca tcagcgATGC 301 GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA

This corresponds to the amino acid sequence <SEQ ID 38; ORF 007.ng>: g007.pep

- MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG
- TAFPPLFRSD CIMNKPHVLL HSMVKGIDGT FKVERQNLRR IYARNRHQRC 51
- 101 GHCRRRHLYH ERL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 39>:

```
m007.seg
               ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC
           1
           51
               CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
               ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCCGA AGGCCGCGGA
          101
          151 ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
               GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
          251
              AACGGCAAAA CCTACAACGG ATTCATGCCC GCAACCGCCA TCAGCGATGC
               GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
This corresponds to the amino acid sequence <SEQ ID 40; ORF 007>:
     m007.pep
               MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
           1
               TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARNRHQRC
           51
              GHCRRRHLYH ERL*
          101
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 41>:
     a007.seq
              ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC
           1
              CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT
           51
          101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCGA AGGCCGCGGA
          151 ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA
          201 GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTC.
              AACGGCAAAA CCTACAACGG ATTCATGCCC GCCACTGCCA TCAGCGATGC
          301 GGACATTGCC GCCGTCGCCA CTTATATCAT GAACGCCTTT GA
This corresponds to the amino acid sequence <SEQ ID 42; ORF 007.a>:
     a007.pep
              MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
              TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVXRQNLQR IHARHCHQRC
           51
              GHCRRRHLYH ERL*
            97.3% identity over a 113 aa overlap
m007/a007
                                            30
                                                     40
     m007.pep
                 {\tt MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD}
                 a007
                 {\tt MNTTRLPTALVLGCLCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD}
                         10
                                  20
                                            30
                                                     40
                                                               50
                         70
                                  80
                                            90
                                                    100
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARNRHQRCGHCRRRHLYHERLX
    m007.pep
                 a007
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARHCHQRCGHCRRRHLYHERLX
                         70
                                  80
                                            90
                                                    100
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 007 shows 86.7% identity over a 113 aa overlap with a predicted ORF (ORF 007.ng)
from N. gonorrhoeae:
    m007/g007
                                  20
                                            30
                                                     40
                 MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD
    m007.pep
                 q007
                 MNTTRLPTAFILCCLCAAASAADNSIMTKGQKVYESNCIACHGKKGEGRGTAFPPLFRSD
                                  20
                                           30
                                                     40
                                                              50
                                  80
                                           90
                                                    100
    m007.pep
                 FIMKKPQVLLHSMVKGINGTIKVXRQNLQRIHARNRHQRCGHCRRRHLYHERLX
```

CIMNKPHVLLHSMVKGIDGTFKVERQNLRRIYARNRHQRCGHCRRRHLYHERL g007 90 100 The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 43>: g007-1.seq (partial) 1 ATGAACACAA CCCGACTGCC GACCGCCTTC ATCTTGTGCT GCCTCTGCGC CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT ACGAATCCAA CTGCATCGCC TGCCACGGCA AGAAAGGGGA AGGGCGCGGC 151 ACTGCGTTTC CTCCGCTTTT CCGGTCGGAC TATATTATGA ACAAACCGCA CGTCCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA 251 ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG 301 351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAGGC AAAAAAAAC. This corresponds to the amino acid sequence <SEQ ID 44; ORF 007-1.ng>: g007-1.pep (partial) 1 MNTTRLPTAF ILCCLCAAAS AADNSIMTKG QKVYESNCIA CHGKKGEGRG TAFPPLFRSD YIMNKPHVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA DIAAVATYIM NAFDNGGGSV TEKDVKQAKG KKN... The following partial DNA sequence was identified in N. meningitidis <SEQ ID 45>: m007-1.seq1 ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCTTCTGCGC CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT 51 101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCCGA AGGCCGCGGA 151 ACCATGTTTC CGCCGCTCTA CCGCTCCGAC TTCATCATGA AAAAACCGCA 201 GGTGCTGCTG CACAGCATGG TCAAAGGCAT CAACGGTACA ATCAAAGTCA 251 ACGGCAAAAC CTACAACGGA TTCATGCCCG CAACCGCCAT CAGCGATGCG GACATTGCCG CCGTCGCCAC TTATATCATG AACGCCTTTG ACAACGGCGG 301 351 CGGAAGCGTT ACCGAAAAAG ACGTAAAACA GGCAAAAAGC AAAAAAAACT 401 AA This corresponds to the amino acid sequence <SEQ ID 46; ORF 007-1> m007-1.pep MNTTRLPTAL VLGCFCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG 51 TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA 101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKS KKN* m007-1 / g007-1 91.7% identity in 133 aa overlap 20 30 40 MNTTRLPTALVLGCFCAAASAADNSIMTKGQKVYESNCVACHGKKGEGRGTMFPPLYRSD m007-1.pep g007-1 MNTTRLPTAFILCCLCAAASAADNSIMTKGQKVYESNCIACHGKKGEGRGTAFPPLFRSD 10 20 30 40 80 90 100 110 120 m007-1.pep FIMKKPQVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV YIMNKPHVLLHSMVKGINGTIKVNGKTYNGFMPATAISDADIAAVATYIMNAFDNGGGSV q007-1 70 80 90 100 130 m007-1.pep TEKDVKOAKSKKNX q007-1 TEKDVKQAKGKKN 130 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 47>: a007-1.seg (partial) 1 ATGAACACAA CCCGACTGCC GACCGCCCTC GTCTTGGGCT GCCTCTGCGC 51 CGCCGCTTCT GCCGCCGACA ACAGCATCAT GACAAAAGGG CAAAAAGTGT 101 ACGAATCCAA CTGCGTCGCC TGCCACGGCA AAAAGGGCCGA AGGCCGCGGA

151	ACCATGTTTC	CGCCGCTCTA	CCGCTCCGAC	TTCATCATGA	AAAAACCGCA
201	GGTGCTGCTG	CACAGCATGG	TCAAAGGCAT	CAACGGTACA	ATCAAAGTCA
251	ACGGCAAAAC	CTACAACGGA	TTCATGCCCG	CCACTGCCAT	CAGCGATGCG
301	GACATTGCCG	CCGTCGCCAC	TTATATCATG	AACGCCTTTG	ACAACGGCGG
351	CGGAAGCGTT	ACCGAAAAAG	ACGTAAAACA	GGCAAAAAAC	AAAAAA

This corresponds to the amino acid sequence <SEQ ID 48; ORF 007-1.a>: a007-1.pep (partial)

- 1 MNTTRLPTAL VLGCLCAAAS AADNSIMTKG QKVYESNCVA CHGKKGEGRG
- 51 TMFPPLYRSD FIMKKPQVLL HSMVKGINGT IKVNGKTYNG FMPATAISDA 101 DIAAVATYIM NAFDNGGGSV TEKDVKQAKN KK..

m007-1/a007-1 98.5% identity in 132 aa overlap

007.1	10	20	30	40	50	60
m007-1.pep	MNTTRLPTALVLGCF	Caaasaadi	NSIMTKGQKVY	ESNCVACHGE	KGEGRGTMFP	PLYRSD
		[]]]			111111111111	
a007-1	MNTTRLPTALVLGCL	CAAASAADI	NSIMTKGQKVY	ESNCVACHGE	KGEGRGTMFP	PLYRSD
	10	20	30	40	50	60
	70	80	90	100	110	100
m007-1.pep	FIMKKPQVLLHSMVK				110	120
moor 1.pep					VATYIMNAFD	NGGGSV
-007 1					111111111	
a007-1	FIMKKPQVLLHSMVK	JINGTIKV I	NGKTYNGFMPA'	TAISDADIAA	VATYIMNAFD	NGGGSV
	70	80	90	100	110	120
	130					
m007-1.pep	TEKDVKOAKSKKNX					
	1111111111:11					
a007~1	TEKDVKOAKNKK					
a007-1	_					
	130					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 49>: g008.seq

```
ATGAACAACA GACATTTGC CGTCAtcgCC TTGGGCAGCA ACCTTGACAA
CCCCGCACAA CAAATacgcg gcgcattaga cgcgctctcg tcccatcctg
acatccggct tgaaCaggtt tcctcactgt aTatgaccgc acctgtcggt
tacgAcaaTC agcccgATTT CATCaatgcc gTCTgcaccg TTTCCACCAC
CtTGGACGGC ATTGcccTGC TTGCCgaACT CAAccgTATC GAAGCCGATT
CGGACGCGA aCGCAGTTTC CGCAATGCAC CGCGCACATT GGATTTGGAC
TTGACGGCAT CTCCAGCGAC GACCCCCGCC TTACCCTGCC
ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGCC TTGCCAGAAA
CGCATCGCCG GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
CCCTTGACAA
CGCATTTGACCAC
CGCAATGCAC GAACCCCCGCC TTACCCTGCC
CGAATTGTCA
AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGACA GGTAA
```

This corresponds to the amino acid sequence <SEQ ID 50; ORF 008.ng>: g008.pep

- 1 MNNRHFAVIA LGSNLDNPAQ QIRGALDALS SHPDIRLEQV SSLYMTAPVG 51 YDNQPDFINA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
- 101 IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKYGKVVELS
- 151 KRLGNQGIRL LPDR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 51>: m008.seq

ATGAACAACA	GACATTTTGC	CGTCATCGCC	CTGGGCAGTA	ATCTTGAAAA
CCCTGCTCAA	CAGGTACGCG	CCGCATTGGA	CACGCTGTCG	TCCCATCCTG
ACATCCGTCT	TAAACAGGCT	TCCTCACTGT	ATATGACCGC	GCCCGTCGGT
TACGACAATC	AGCCCGATTT	TGTCAATGCC	GTCTGCACCG	TTTCCACCAC
TCTGGACGGC	ATTGCCyTGC	TTGCCGAACT	CAACCGTATC	GAGGCTGATT
TCGGACGCGA	ACGCAGCTTC	CGCAACGCGC	CGCGCACATT	GRATTTCCAC
ATTATCGACT	TTGACGGCAT	CTCCAGCGAC	GACACsCGAC	TcACCtTGCC
	CCCTGCTCAA ACATCCGTCT TACGACAATC TCTGGACGGC TCGGACGCGA	CCCTGCTCAA CAGGTACGCG ACATCCGTCT TAAACAGGCT TACGACAATC AGCCCGATTT TCTGGACGGC ATTGCCYTGC TCGGACGCGA ACGCAGCTTC	CCCTGCTCAA CAGGTACGCG CCGCATTGGA ACATCCGTCT TAAACAGGCT TCCTCACTGT TACGACAATC AGCCCGATTT TGTCAATGCC TCTGGACGGC ATTGCCYTGC TTGCCGAACT TCGGACGCGA ACGCAGCTTC CGCAACGCGC	ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA CCCTGCTCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC TACGACAATC AGCCCGATTT TGTCAATGCC GTCTGCACCG TCTGGACGGC ATTGCCYTGC TTGCCGAACT CAACCGTATC TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT ATTATCGACT TTGACGGCAT CTCCAGCGAC GACACSCGAC

m008/g008

m008.pep

g008

10

20

40

MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA

 ${ t MNNRHFAVIALGS}$ ${ t NLDNPAQQIRGALDALSSHPDIRLEQVSSLYMTAPVGYDNQPDFINA$

50

60

```
351 GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATCCGCCCT TTGGCAGAAA
              TCCTCCCTGA TTTTGTTTTA GGAAAACACG GAAAGGTTGC CGAATTGTCA
          451 AAACGGYTGG GCAATCAAGG TATCCGTCTT TTACCGGACA GGTAATT
This corresponds to the amino acid sequence <SEQ ID 52; ORF 008>:
     m008.pep
              MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG
            1
              YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLXLD
           51
          101
              IIDFDGISSD DTRLTLPHPR AHERSFVIRP LAEILPDFVL GKHGKVAELS
              KRLGNQGIRL LPDR*
The following partial DNA sequence was identified in N. meningitidis<SEQ ID 53>:
     a008.seq
              ATGAACAACA GACATTTTGC CGTCATCGCC CTGGGCAGTA ATCTTGAAAA
              CCCTGCCCAA CAGGTACGCG CCGCATTGGA CACGCTGTCG TCCCATCCTG
           51
              ACATCCGTCT TAAACAGGCT TCCTCACTGT ATATGACCGC GCCCGTCGGT
          101
          151
              TACGACAATC AGCCCGATTT CGTCAATGCC GTCTGCACCG TTTCCACCAC
              CTTGGACGGC ATTGCCCTGC TTGCCGAACT CAACCGTATC GAAGCCGATT
          251
              TCGGACGCGA ACGCAGCTTC CGCAACGCGC CGCGCACATT GGATTTGGAC
              ATTATCGACT TTGACGGCAT CTCCAGCGAC GACCCCCGAC TCACCCTGCC
          301
          351
              GCATCCGCGC GCGCACGAAC GCAGTTTCGT CATACGCCCT TTGGCAGAAA
              TCCTCCCTGA TTTTATTTTG GGAAAACACG GAAAGGTTGC CGAATTGTCA
          451 AAACGGCTGG GCAATCAAGG CATCCGTCTT TTACCGGATA AGTAA
This corresponds to the amino acid sequence <SEQ ID 54; ORF 008.a>:
     a008.pep
              MNNRHFAVIA LGSNLENPAQ QVRAALDTLS SHPDIRLKQA SSLYMTAPVG
           51
              YDNQPDFVNA VCTVSTTLDG IALLAELNRI EADFGRERSF RNAPRTLDLD
              IIDFDGISSD DPRLTLPHPR AHERSFVIRP LAEILPDFIL GKHGKVAELS
              KRLGNQGIRL LPDK*
            97.6% identity over a 164 aa overlap
m008/a008
                                            30
                                                      40
     m008.pep
                 {\tt MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA}
                 MNNRHFAVIALGSNLENPAQQVRAALDTLSSHPDIRLKQASSLYMTAPVGYDNQPDFVNA
     a008
                                  20
                                            30
                         70
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                 VCTVSTTLDGIALLAELNRIEADFGRERSFRNAPRTLXLDIIDFDGISSDDTRLTLPHPR
     m008.pep
                 VCTVSTTLDGIALLAELNRIEADFGRERSFRNAPRTLDLDIIDFDGISSDDPRLTLPHPR
     a008
                         70
                                  80
                                            90
                                                    100
                                                              110
                                                                       120
                        130
                                 140
                                           150
                                                    160
                 AHERSFVIRPLAEILPDFVLGKHGKVAELSKRLGNQGIRLLPDRX
     m008.pep
                 a008
                 AHERSFVIRPLAEILPDFILGKHGKVAELSKRLGNQGIRLLPDKX
                        130
                                 140
                                           150
                                                    160
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 008 shows 92.7% identity over a 164 aa overlap with a predicted ORF (ORF008.ng)
from N. gonorrhoeae:
```


	10	20	30	40	50	60
m008.pep	70 VCTVSTTLDGIALL	80 AELNRIEADI	90 Greesernae	100 PRTIXI.DIIDE	110	120
	11111111111111	3111111111	11111111111	111 111111	111111111111111111111111111111111111111	1111111
g008	VCTVSTTLDGIALL 70	AELNRIEADI 80	GRERSFRNAE 90	RTLDLDIIDF 100		
	70	80	30	100	110	120
	130	140	150	160		
m008.pep	AHERSFVIRPLAEI	LPDFVLGKHO	KVAELSKRLO	NQGIRLLPDR	x	
	111111111111111	1111:111:1	11:111111	THEFT	1	
g008	AHERSFVIRPLAEI	LPDFILGKY	KVVELSKRLG	NOGIRLLPDR	X	
	130	140	150	160		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 55>: g009.seq

- 51 CGAACAAAAT ACCCATCGCC GCGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGAA ACCAGTCCGT AATGGCGGTA
- 151 CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTcg cGTTCCAAGC
- 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AaaaGCCATA A

This corresponds to the amino acid sequence <SEQ ID 56; ORF 009.ng>:

- 1 MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARNQSVMAV
- 51 QLPLVAFSDK VVVAFQAVVQ AEIQVFADGG KTWQKP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 57>:

m009.seq

WO 99/57280

- 51 CGAACAAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTA
- 151 CAGCTGCCGC CGGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
- 201 TGTTGTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AAAAGCCATA A

This corresponds to the amino acid sequence <SEQ ID 58; ORF 009>: m009.pep

- 1 MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV
- 51 QLPPVAFSDK VVVAFQAVVQ AEIQVFADGG KTWOKP*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 009 shows 97.7% identity over a 86 aa overlap with a predicted ORF (ORF 009.ng) from N. gonorrhoeae:

m009/q009

10 20 30 50 60 ${\tt MPRAAVAFERHHHKSKAEQNTHRRADAEIAEGFAVGNQHTQARKQSVMAVQLPPVAFSDK}$ m009.pep MPRAAVAFERHHHKSKAEQNTHRRADAEIAEGFAVGNQHTQARNQSVMAVQLPLVAFSDK g009 10 20 30 40 70 80 m009.pep **VVVAFQAVVQAEIQVFADGGKTWQKPX**


```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 59>: a009.seq
```

- 51 CGAACAAAAT ACCCATCGCC GTGCCGACGC AGAGATAGCC GAAGGCTTCG
- 101 CGGTTGGAAA TCAGCACACG CAGGCGCGCA AGCAGTCCGT AATGGCGGTC
- 151 CAGCTGCCGC TCGTCGCCTT TTCGGATAAA GTGGTTGTCG CGTTCCAAGC
- 201 TGTTCTTCAG GCGGAAATAC AGGTTTTCGC TGATGGCGGC AAAACGTGGC
- 251 AAAAGCCATA A

This corresponds to the amino acid sequence <SEQ ID 60; ORF 009.a>:

a009.pep

- 1 MPRAAVAFER HHHKSKAEQN THRRADAEIA EGFAVGNQHT QARKQSVMAV
- 51 QLPLVAFSDK VVVAFQAVLQ AEIQVFADGG KTWQKP*

m009/a009 97.7% identity over a 86 aa overlap

	10	20	30	40	50	60
m009.pep	MPRAAVAFERHHHK	SKAEQNTHRE	RADAEIAEGFA	VGNQHTQARK	QSVMAVQLP	VAFSDK
- 0.00	11111111111111	11111111	1111111111	1111111111	ППППП	$\Pi\Pi\Pi\Pi$
a009	MPRAAVAFERHHHK:				QSVMAVQLPI	VAFSDK
	10	20	30	40	50	60
	70	80				
m009.pep	VVVAFQAVVQAEIQ	VFADGGKTWC	KPX		•	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 61>:

```
ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGCGG
  1
     TGCAGGTTTA CGTGCAGCCC TCCAATTATC CAAATCCGGT TTGAATTGTG
  51
     CCGTTTTGTC TAAAGTGTTC CCGACCCGCT CGCATACCGT AGCGGCGCAG
 101
 151
     GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAGGACC GTTGGGACTG
      GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGCTGGGC GACCAAGATG
 201
     CGATTGAGTT TATGTGTCGC GCTGCGCCTG AAGCGGTGAT TGAGTTGGAA
 251
     CACATGGGTA TGCCTTTTGA CCGCGTTGAA AGCGGCAAAA TTTATCAGCG
     TCCTTTCGGC GGACATACTG CCGAACATGG TAAACGTGCG GTAGAACGTG
 351
     CATGTGCGGT TGCCGACCGT ACCGGTCATG CGATGTTGCA TACTTTGTAC
 401
     CAACAAAACG TCCGTGCCAA TACACAATTC TTTGTGGAAT GGACGGCGCA
 451
 501 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG
     AAATGGAAAC GGGCGAAGTT TATATTTTCC ACGCCAAGGC CGTGATGTTT
 551
 601 GCTACCGGTG GCGGCGGTCG TATTTATGCT TCTTCTACCA ATGCTTATAT
     GAATACCGGT GACGGTTTGG GCATTTGCGC CCGTGCGGGC ATTCCGTTGG
 651
 701 AAGATATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC GGGTGCGGGC
     GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAacgc
 801
     cgacggcgaA cgcTTTATGG AAcgctatgc GCcgACCGta aAagaCTTGG
 851
     CTTCTCGCga cgtGGTTTCA CgcgcGatgG CGatggaAAt ctatgaaggt
 901
     cgcggctgTG GtaaAAAcaA agaCCacgtC TTACTGAAAA TCGACcAtAt
     cggtGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA
1001
     TTCagtttgc cGGTATCGAT CCGATTAAAG ACCCGATTcc ggttgTGCCG
     ACTACCCACT ATATGATGGG CGGCATTCcg aCCAATTATC ACGGTGAAGT
1051
1101
     TGTTGTTCCG CAAGGCGACG AGTACGAAGT ACCTGTAAAA GGCCTGTATG
     CCGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGTTTGGGT
1201 ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga
```

This corresponds to the amino acid sequence <SEQ ID 62; ORF 010.ng>: g010.pep

401 TNSLLDLVVF RPTPR*

1	MGFPVRKFDA	VIVGGGGAGL	RAALQLSKSG	LNCAVLSKVF	PTRSHTVAAQ
51	GGISASLGNV	QEDRWDWHMY	DTVKGSDWLG	DQDAIEFMCR	AAPEAVIELE
101	HMGMPFDRVE	SGKIYQRPFG	GHTAEHGKRA	VERACAVADR	TGHAMLHTLY
151	QQNVRANTQF	FVEWTAQDLI	RDENGDVVGV	TAMEMETGEV	YIFHAKAVMF
201	ATGGGGRIYA	SSTNAYMNTG	DGLGICARAG	IPLEDMETWO	FHPTGVAGAG
251		GGILLNADGE	RFMERYAPTV	KDLASRDVVS	RAMAMETYEG
301	RGCGKNKDHV	LLKIDHIGAE	KIMEKLPGIR	EISIQFAGID	PIKDPIPVVP
351	TTHYMMGGIP	TNYHGEVVVP	OGDEYEVPVK	GLYAAGECAC	ASVHGANRIG

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>: m010.seq (PARTIAL)

```
..nTCCAATTAT CCAAATCCGG TCTGAATTGT GCCGTTTTGT CTAAAGTGTT
       CCCGACCCGT TCGCATACCG TAGCGGCGCA GGGCGGTATT TCCGCCTCTn
 51
       TGGGTAATGT GCAGGAAGAC CGTTGGGACT GGCACATGTA CGATACCGTG
101
151
       AAAGGTTCCG ACTGGTTGGG CGACCAAGAT GCGATTGAGT TTATGTGCCG
       CGCCGCGCCT GAAGCCGTAA TTGAGTTGGA ACACATGGGT ATGCCTTTTG
       ACCGTGTGGA AAGCGGTAAA ATTTATCAGC GTCCTTTCGG CGGCCATACT
251
       GCCGAACACG GTAAACGCGC GGTAGAACGC GYCTGTGCGG TTGCCGACCG
301
       TACAGGTCAT GCGATGCTGC ATACTTTGTA CCAACAAAAC GTCCGTGCCA
351
       ATACGCAATT CTTTGTGGAA TGGACGGCAC AAGATTTGAT TCGTGATGAA
401
       AACGGCGATG TCGTCGGCGT AACCGCCATG GAAATGGAAA CCGGCGAAGT
451
       TTATATTTC CACGCTAAAG CTGTGATGTT TGCTACCGGC GGCGGCGGTC
501
       GTATTTATGC GTCTTCTACC AATGCCTATA TGAATACCGG CGATGGTTTG
551
601
       GGTATTTGTG CGCGTGCAGG TATCCCGTTG GAAGACATGG AATTCTGGCA
       ATTCCAGCCG ACCGGCGTGG CGGGTGCGGG CGTGTTGATT ACCGAA....
651
```

This corresponds to the amino acid sequence <SEQ ID 64; ORF 010>:

m010.pep (PARTIAL)

- 1 ..XQLSKSGLNC AVLSKVFPTR SHTVAAQGGI SASXGNVQED RWDWHMYDTV 51 KGSDWLGDQD AIEFMCRAAP EAVIELEHMG MPFDRVESGK IYQRPFGGHT 101 AEHGKRAVER XCAVADRTGH AMLHTLYQQN VRANTQFFVE WTAQDLIRDE
- 151 NGDVVGVTAM EMETGEVYIF HAKAVMFATG GGGRIYASST NAYMNTGDGL
- 201 GICARAGIPL EDMEFWQFQP TGVAGAGVLI TE...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>:

a010.seq ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG 1 TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 51 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG 101 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG 201 GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA 251 301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG 351 401 CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG 501 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT 551 GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT 601 GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG 651 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC 701 751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG 801 851 CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT 901 951 CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG 1001 1051 ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG 1101 1151 CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG 1201 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA

1301	ATGCCGGCGA	ACTGACCCGC	CAACGTATCG	AGCGTTTGGA	CAATCAAACT
1351	GATGGTGAAA	ACGTTGATGC	ATTGCGCCGC	GAACTGCAAC	GCTCCGTACA
1401	ATTGCACGCC	GGCGTGTTCC	GTACTGATGA	GATTCTGAGC	AAAGGCGTTC
1451	GAGAAGTCAT	GGCGATTGCC	GAGCGTGTGA	AACGTACCGA	AATCAAAGAC
1501	AAGAGCAAAG	TGTGGAATAC	CGCGCGTATC	GAGGCTTTGG	AATTGGATAA
1551	CCTAATTGAA	GTGGCGAAAG	CGACTTTGGT	GTCTGCCGAA	GCACGTAAAG
1601	AATCACGCGG	TGCGCACGCT	TCAGACGACC	ATCCTGAGCG	CGATGATGAA
1651	AACTGGATGA	AACATACGCT	GTACCATTCA	GATGCCAATA	CCTTGTCCTA
1701	CAAACCGGTG	CACACCAAGC	CTTTGAGCGT	GGAATACATC	AAACCGGCCA
1751	AGCGCGTTTA				

This corresponds to the amino acid sequence <SEQ ID 66; ORF 010.a>:

```
a010.pep

1 MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ
51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE
101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY
151 QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF
201 ATGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG
251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG
301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP
351 TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG
401 TNSLLDLVVF GKAAGDSMIK FIKEQSDWKP LPANAGELTR QRIERLDNQT
451 DGENVDALRR ELQRSVQLHA GVFRTDEILS KGVREVMAIA ERVKRTEIKD
501 KSKVWNTARI EALELDNLIE VAKATLVSAE ARKESRGAHA SDDHPERDDE
551 NWMKHTLYHS DANTLSYKPV HTKPLSVEYI KPAKRVY*
```

m010/a010 98.7% identity over a 231 aa overlap

			10	20	30	
m010.pep		XQL	SKSGLNCAV	LSKVFPTRSH	TVAAQGGISA	SXGNV
		11	11111111	HILLIIII	111111111	1 111
a010	MGFPVRKFDAVIVGGG	GAGLRAXLQL		LSKVFPTRSH	TVAAQGGISA	SLGNV
	10	20	30	40	50	60
010	40 50	60	70	80	90	
m010.pep	QEDRWDWHMYDTVKGSI	DWLGDQDAIE	FMCRAAPEA	VIELEHMGMP	FDRVESGKIY	QRPFG
a010	OEDDWDWWWWWWWW	111111111	111111111		нинни	
a010	QEDRWDWHMYDTVKGSI 70	80 MTGDÖDVIE				
	70	80	90	100	110	120
	100 110	120	130	140		
m010.pep	GHTAEHGKRAVERXCA			140	150	D
шоготрор				ANIQEEVEWT.		DVVGV
a010	GHTAEHGKRAVERACA					DING
	130	140	150	160	170	180
				200	170	100
	160 170	180	190	200	210	
m010.pep	TAMEMETGEVYIFHAK	AVMFATGGGG	RIYASSTNA	YMNTGDGLGI		MEFWO
	- 111111111111111111	[] [] [] [] [] [] [] [] [] [] [] [] [] [11111111			
a010	TAMEMETGEVY1 FHAK	AVMFATGGGG	RIYASSTNA	YMNTGDGLGI	CARAGIPLED	MEFWO
	190	200	210	220	230	240
	220 230					•
m010.pep	FQPTGVAGAGVLITE					
- 010	1:1111111111111					
a010	FHPTGVAGAGVLITEGV					
	250	260	270	280	290	300

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 010 shows 98.7% identity over a 231 aa overlap with a predicted ORF (ORF 010.ng) from N. gonorrhoeae:

m010.pep/g010.pep

			10	20	30	
m010.pep				LSKVFP TRSH	TVAAQGGISA	SXGNV
010				1111111111		1 111
g010	MGFPVRKFDAVIVGG	GGAGLRAALQI	LSKSGLNCAV		TVAAQGGISA	SLGNV
	10	20	30	. 40	50	60
	40 50	60	70			
m010.pep			70	80	90	
moro.pcp	QEDRWDWHMYDTVKG	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SIMCKAAPEA	VIELEHMGMP	FDRVESGKIY	ORPFG
g010	QEDRWDWHMYDTVKG	T A COCOTATE	!			
9	70	80	90	VIELERMGMP.	FDRVESGKIY 110	
	. •		50	100	110	120
	100 110	120	130	140	150	
m010.pep	GHTAEHGKRAVERXC	AVADRTGHAMI		ANTOFFVEWT	AODI TRDENG	חעעכע
						TITLE
g010	GHTAEHGKRAVERAC	AVADRTGHAMI	LHTLYQQNVRA	ANTOFFVEWT	AODLIRDENG	DVVGV
	130	140	150	160	170	180
010	160 170	180	190	200	210	
m010.pep	TAMEMETGEVYIFHAI	KAVMFATGGGG	RIYASSTNA	YMNTGDGLGI	CARAGIPLED	MEFWQ
~010					FILLLEFILE	11111
g010	TAMEMETGEVYIFHAI 190	KAVMFATGGGG	RIYASSTNAY			
	190	200	210	220	230	240
	220 230					
m010.pep	FOPTGVAGAGVLITE					
	1:					
g010	FHPTGVAGAGVLITE	SVRGEGGILLN	IADGEREMERY	/APTWKN1.xc1	א א א א מיבות זח כ	PTVPC
-	250	260	270	280	290	300
			-·-		200	300

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 67>: g010-1.seq..

	4				
1	ATGGGTTTTC	CTGTTCGCAA	GTTTGATGCC	GTGATTGTCG	GCGGTGGCGG
51	TGCAGGTTTA	CGTGCAGCCC	TCCAATTATC	CAAATCCGGT	TTGAATTGTG
101	CCGTTTTGTC	TAAAGTGTTC	CCGACCCGCT	CGCATACCGT	AGCGGCGCAG
151	GGCGGTATTT	CCGCCTCTCT	GGGTAATGTG	CAGGAGGACC	GTTGGGACTG
201	GCACATGTAC	GATACCGTGA	AAGGTTCCGA	CTGGCTGGGC	GACCAAGATG
251	CGATTGAGTT	TATGTGTCGC	GCTGCGCCTG	AAGCGGTGAT	TGAGTTGGAA
301	CACATGGGTA	TGCCTTTTGA	CCGCGTTGAA	AGCGGCAAAA	TTTATCAGCG
351	TCCTTTCGGC	GGACATACTG	CCGAACATGG	TAAACGTGCG	GTAGAACGTG
401	CATGTGCGGT	TGCCGACCGT	ACCGGTCATG	CGATGTTGCA	TACTTTGTAC
451	CAACAAAACG	TCCGTGCCAA	TACACAATTC	TTTGTGGAAT	GGACGGCGCA
501	AGATTTGATT	CGTGATGAAA	ACGGCGATGT	CGTCGGCGTA	ACCGCCATGG
551	AAATGGAAAC	GGGCGAAGTT	TATATTTTCC	ACGCCAAGGC	CGTGATGTTT
601	GCTACCGGTG	GCGGCGGTCG	TATTTATGCT	TCTTCTACCA	ATGCTTATAT
651	GAATACCGGT	GACGGTTTGG	GCATTTGCGC	CCGTGCGGGC	ATTCCGTTGG
701	AAGATATGGA	ATTCTGGCAA	TTCCACCCGA	CCGGCGTGGC	GGGTGCGGGC
751	GTGTTGATTA	CCGAAGGCGT	ACGCGGCGAG	GGCGGTATTC	TGTTGAACGC
801	CGACGGCGAA	CGCTTTATGG	AACGCTATGC	GCCGACCGTA	AAAGACTTGG
851	CTTCTCGCGA	CGTGGTTTCA	CGCGCGATGG	CGATGGAAAT	CTATGAAGGT
901	CGCGGCTGTG	GTAAAAACAA	AGACCACGTC	TTACTGAAAA	TCGACCATAT
951	CGGTGCAGAA	AAAATTATGG	AAAAACTGCC	GGGCATCCGC	GAGATTTCCA
1001	TTCAGTTTGC	CGGTATCGAT	CCGATTAAAG	ACCCGATTCC	GGTTGTGCCG
1051	ACTACCCACT	ATATGATGGG	CGGCATTCCG	ACCAATTATC	ACCCTCAACT
1101	TGTTGTTCCG	CAAGGCGACG	AGTACGAAGT	ACCTGTAAAA	GGCCTGTATC
1151	CCGCAGGTGA	GTGCGCCTGT	GCTTCCGTAC	ACGGTGCGAA	CCGTTTGGGT

1201 ACGAACTCCC TGCTGGACTT GGTGGTGTTC cgcccaaccc cccggtga This corresponds to the amino acid sequence <SEQ ID 68; ORF 010-1.ng>: g010-1.pep 1 MGFPVRKFDA VIVGGGGAGL RAALQLSKSG LNCAVLSKVF PTRSHTVAAQ 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY QQNVRANTQF FVEWTAQDLI RDENGDVVGV TAMEMETGEV YIFHAKAVMF 201 ATGGGGRIYA SSTNAYMNTG DGLGICARAG IPLEDMEFWQ FHPTGVAGAG 251 VLITEGVRGE GGILLNADGE RFMERYAPTV KDLASRDVVS RAMAMEIYEG 301 RGCGKNKDHV LLKIDHIGAE KIMEKLPGIR EISIQFAGID PIKDPIPVVP 351 TTHYMMGGIP TNYHGE 401 TNSLLDLVVF RPTPR* TTHYMMGGIP TNYHGEVVVP QGDEYEVPVK GLYAAGECAC ASVHGANRLG g010-1 / P10444 sp|P10444|DHSA_ECOLI SUCCINATE DEHYDROGENASE FLAVOPROTEIN SUBUNIT gnl|PID|d1015210 (D90711) Succinate dehydrogenase, flavoprotein [Escherichia coli] gi|1786942 (AE000175) succinate dehydrogenase flavoprotein subunit [Escherichia coli] Length = 588 Score = 1073 (495.6 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169 Identities = 191/303 (63%), Positives = 238/303 (78%) 1 MGFPVRKFDAVIVXXXXXXXXXXXXXXXSKSGLNCAVLSKVFPTRSHTVAAQGGISASLGNV 60 Ouerv: M PVR+FDAV++ S+SG CA+LSKVFPTRSHTV+AQGGI+ +LGN 1 MKLPVREFDAVVIGAGGAGMRAALQISQSGQTCALLSKVFPTRSHTVSAQGGITVALGNT 60 Sbjct: 61 QEDRWDWHMYDTVKGSDWLGDQDAIEFMCRAAPEAVIELEHMGMPFDRVESGKIYQRPFG 120 Query: ED W+WHMYDTVKGSD++GDQDAIE+MC+ PEA++ELEHMG+PF R++ G+IYQRPFG 61 HEDNWEWHMYDTVKGSDYIGDQDAIEYMCKTGPEAILELEHMGLPFSRLDDGRIYQRPFG 120 Sbjct: Query: 121 GHTAEHGKRAVERACAVADRTGHAMLHTLYQQNVRANTQFFVEWTAQDLIRDENGDVVGV 180 R A ADRTGHA+LHTLYQQN++ +T F EW A DL+++++G VVG 121 GQSKNFGGEQAARTAAAADRTGHALLHTLYQQNLKNHTTIFSEWYALDLVKNQDGAVVGC 180 Sbict: 181 TAMEMETGEVYIFHAKAVMFATGGGGRIYASSTNAYMNTGDGLGICARAGIPLEDMEFWQ 240 Query: TA+ +ETGEV F A+A + ATGG GRIY S+TNA++NTGDG+G+ RAG+P++DME WQ Sbict: 181 TALCIETGEVVYFKARATVLATGGAGRIYQSTTNAHINTGDGVGMAIRAGVPVQDMEMWQ 240 241 FHPTGVAGAGVLITEGVRGEGGILLNADGERFMERYAPTVKDLASRDVVSRAMAMEIYEG 300 Ouerv: FHPTG+AGAGVL+TEG RGEGG LLN GERFMERYAP KDLA RDVV+R++ +EI EG 241 FHPTGIAGAGVLVTEGCRGEGGYLLNKHGERFMERYAPNAKDLAGRDVVARSIMIEIREG 300 Sbjct: 301 RGC 303 Ouerv: RGC 301 RGC 303 Sbjct:

309 HVLLKIDHIGAEKIMEKLPGIREISIQFAGXXXXXXXXXXXXTTHYMMGGIPTNYHGEVV 368 Query:

H LK+DH+G E + +LPGI E+S FA T HYMMGGIPT G+ + 310 HAKLKLDHLGKEVLESRLPGILELSRTFAHVDPVKEPIPVIPTCHYMMGGIPTKVTGQAL 369 Sbict:

369 VPQGDEYEVPVKGLYAAGECACASVHGANRLGTNSLLDLVVF 410 Ouerv: +V V GL+A GE AC SVHGANRLG NSLLDLVVF 370 TVNEKGEDVVVPGLFAVGEIACVSVHGANRLGGNSLLDLVVF 411 Shict:

Identities = 53/102 (51%), Positives = 62/102 (60%)

Score = 249 (115.0 bits), Expect = 6.7e-169, Sum P(2) = 6.7e-169

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 69>: m010-1.seg..

ATGGGTTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG 51 TGCAGGTTTA CGCGCAGCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAg 151 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG 201 251 CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA 301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG 351 TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG 401 CCTGTGCGGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC

451	CAACAAAACG	TCCGTGCCAA	TACGCAATTC	TTTGTGGAAT	GGACGGCACA
501	AGATTTGATT	CGTGATGAAA	ACGGCGATGT	CGTCGGCGTA	ACCGCCATGG
551	AAATGGAAAC	CGGCGAAGTT	TATATTTTCC	ACGCTAAAGC	TGTGATGTTT
601	GCTACCGGCG	GCGGCGGTCG	TATTTATGCG	TCTTCTACCA	ATGCCTATAT
651	GAATACCGGC	GATGGTTTGG	GTATTTGTGC	GCGTGCAGGT	ATCCCGTTGG
701	AAGACATGGA	ATTCTGGCAA	TTCCACCCGA	CCGGCGTGGC	GGGTGCGGGC
751	GTGTTGATTA	CCGAAGGCGT	ACGCGGCGAG	GGCGGTATTC	TGTTGAATGC
801	CGACGGCGAA	CGCTTTATGG	AACGCTATGC	GCCGACCGTA	AAAGACTTGG
851	CTTCTCGCGA	CGTTGTTTCC	CGCGCGATGG	CGATGGAAAT	CTACGAAGGT
901	CGCGGCTGCG		AGACCATGTC	TTACTGAAAA	TCGACCATAT
951	CGGCGCAGAA	AAAATTATGG	AAAAACTGCC	GGGCATCCGC	GAGATTTCCA
1001	TTCAGTTCGC	CGGTATCGAT	CCGATTAAAG	ACCCGATTCC	CGTTGTGCCG
1051	ACTACCCACT	ATATGATGGG	CGGCATTCCG	ACCAATTACC	ACGGCGAAGT
1101	TGTCGTTCCG	CAAGGTGAAG	ATTACGAAGT	GCCTGTAAAA	GGTCTGTATG
1151	CGGCAGGTGA	GTGCGCTTGT	GCTTCCGTAC	ACGGTGCGAA	CCGCTTGGGT
1201	ACCAACTCCC	TGTTGGACTT	GGTGGTATTC	GGTAAAGCTG	CCGGCGACAG
1251	CATGATTAAA	TTCATCAAAG	AGCAAAGCGA	CTGGAAACCT	TTGCCTGCTA
1301	ATGCAGGTGA	GTTGACCCGC	CAACGTATCG	AGCGTTTGGA	CAACCAAACC
1351	GATGGTGAAA	ACGTTGATGC	ATTGCGTCGC	GAACTGCAAC	GCTCTGTACA
1401	ACTGCACGCC	GGCGTGTTCC	GTACTGATGA	GATTCTGAGC	AAAGGCGTTC
1451	GAGAAGTCAT	GGCGATTGCC	GAGCGTGTGA	AACGTACCGA	AATCAAAGAC
1501	AAGAGCAAAG	TGTGGAATAC	CGCGCGTATC	GAGGCTTTGG	AATTGGATAA
1551	CCTGATTGAA	GTGGCGAAAG	CGACTTTGGT	GTCTGCCGAA	GCACGTAAAG
1601	AATCACGCGG	TGCGCACGCT	TCAGACGACC	ATCCTGAGCG	CGATGATGAA
1651	AACTGGATGA	AACATACGCT	GTACCATTCA	GATATCAATA	CCTTGTCCTA
1701	CAAACCGGTG	CACACCAAGC	CTTTGAGCGT	GGAATACATC	AAACCGGCCA
1751	AGCGCGTTTA	TTGATGA			

This corresponds to the amino acid sequence <SEQ ID 70; ORF 010-1>: m010-1.pep..

1	MGFPVRKFDA	VIVGGGGAGL	RAALQLSKSG	LNCAVLSKVF	PTRSHTVAAO
51	GGISASLGNV	QEDRWDWHMY	DTVKGSDWLG	DQDAIEFMCR	AAPEAVIELE
101	HMGMPFDRVE	SGKIYQRPFG	GHTAEHGKRA	VERACAVADR	TGHAMLHTLY
151	QQNVRANTQF	FVEWTAQDLI	RDENGDVVGV	TAMEMETGEV	YIFHAKAVME
201	ATGGGGRIYA	SSTNAYMNTG	DGLGICARAG	IPLEDMETWQ	FHPTGVAGAG
251	VLITEGVRGE	GGILLNADGE	RFMERYAPTV	KDLASRDVVS	RAMAMETYEG
301	RGCGKNKDHV	LLKIDHIGAE	KIMEKLPGIR	EISIQFAGID	PIKUDIDANA
351	TTHYMMGGIP	TNYHGEVVVP	OGEDYEVPVK	GLYAAGECAC	ASVHGANDIG
401	TNSLLDLVVF	GKAAGDSMIK	FIKEOSDWKP	LPANAGELTR	OBTEDIONOT
451	DGENVDALRR	ELORSVOLHA	GVFRTDETLS	KGVREVMAIA	EBAKDAEIKU GWIRWIDMÖI
501	KSKVWNTARI	EALELDNLIE	VAKATLVSAE	ARKESRGAHA	SUURDEDUUE
551	NWMKHTLYHS	DINTLSYKPV	HTKPLSVEYI	KPAKRVY*	ODDIII EKDDE

m010-1 / g010-1 99.5% identity in 410 aa overlap

	10	20	30	40	50	60
m010-1.pep	MGFPVRKFDAVIV	GGGGAGLRAAI	OLSKSGLNC	VLSKVEPTR	SHTVANOCCE	27 07 0777
	3111111111111				11111110	MOTIGE A
g010-1	MGFPVRKFDAVIV	CCCCACT.DAAT	OTERROTNE		·	111111
9 2	10	20				
	10	20	30	40	50	60
	70	80	90	100		
-010-1					110	120
m010-1.pep	QEDRWDWHMYDTV	KGSDMTGDÖDI	LIEFMCRAAPE	EAVIELEHMG	@fdrvescki	YQRPFG
	3441144441141		1111111111		11111111111	11111
g010-1	QEDRWDWHMYDTV	KGSDWLGDQDA	IEFMCRAAPE	AVIELEHMON	PFDRVKSCK	VORPEG
	70	80	90	100	110	120
	_			100	110	120
	130	140	150	1.50		
-010 1				160	170	180
m010-1.pep	GHTAEHGKRAVER	ACAVADRTGHA	мгнаглобии	rantoffvev	TAQDLIRDEN	GDVVGV
					11111111111	111111
g010-1	GHTAEHGKRAVER	ACAVADRTGHA	MLHTLYOON	RANTOFFUE	יייייייייייייייייייייייייייייייייייייי	TOTAL
_	130	140	150	160		
	100	140	130	190	170	180
	190	200	210	000		
m010-1.pep				220	230	240
moro-r.beb	TAMEMETGEVYIF	IAKAVMFATGG	ggri yasstn	IAYMNTGDGLG	icaragip <u>le</u>	DMEFWQ
		111111111111	11111111111	THILLIAM	нини	HIHLE
g010-1	TAMEMETGEVYIFE	iakavmfatgo	GGRIYASSTN	AYMNTCDGLC	ICARAGIPLE	DMEFWO

	190	200	210	220	230	240
	250	260	270	280	290	300
m010-1.pep	FHPTGVAGAGVLI	regvrgeggii	LINADGERFM	eryaptvkdli	ASRDVVSRAM	AMEIYEG
	11111111111111			1111111111		111111
g010-1	FHPTGVAGAGVLI	regvrgeggii	LINADGERFM	eryaptvkdli	ASRDVVSRAM	AMEIYEG
-	250	260	270	280	290	300
	310	320	330	340	350	360
m010-1.pep	RGCGKNKDHVLLK					
moro r.pop	1111111111111)	1111111
q010-1	RGCGKNKDHVLLK	IDHTGAEKTM	KT.PGTRETS	TOFACTORIKI	ינווווווווווי ינוייייסטעסדסו	
g010 1	310	320	330	340	350	360
	210	320	350	540	330	360
	370	380	390	400	410	420
m010-1.pep	TNYHGEVVVPQGEI	YEVPVKGLY1	AGECACASVI	HGANRLGTNSI	LDLVVFGKA	AGDSMIK
		:111111111	1111111111		111111	
g010-1	TNYHGEVVVPQGDI	EYEVPVKGLY	AGECACASVI	HGANRLGTNSI	LDLVVFRPT	PRX
	370	380	390	400	410	
	430	440	450	460	470	480
m010-1.pep	FIKEQSDWKPLPA	vageltrorii	RLDNQTDGE	NVDALRRELQI		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 71>: a010-1.seq..

1 ATGGGCTTTC CTGTTCGCAA GTTTGATGCC GTGATTGTCG GCGGTGGTGG TGCAGGTTTA CGCGCANCCC TCCAATTATC CAAATCCGGT CTGAATTGTG 101 CCGTTTTGTC TAAAGTGTTC CCGACCCGTT CGCATACCGT AGCGGCGCAG 151 GGCGGTATTT CCGCCTCTCT GGGTAATGTG CAGGAAGACC GTTGGGACTG. 201 GCACATGTAC GATACCGTGA AAGGTTCCGA CTGGTTGGGC GACCAAGATG 251 CGATTGAGTT TATGTGCCGC GCCGCGCCTG AAGCCGTAAT TGAGTTGGAA 301 CACATGGGTA TGCCTTTTGA CCGTGTGGAA AGCGGTAAAA TTTATCAGCG TCCTTTCGGC GGCCATACTG CCGAACACGG TAAACGCGCG GTAGAACGCG 351 401 CCTGTGCNGT TGCCGACCGT ACAGGTCATG CGATGCTGCA TACTTTGTAC 451 CAACAAAATG TCCGTGCCAA TACGCAATTC TTTGTGGAAT GGACGGCACA 501 AGATTTGATT CGTGATGAAA ACGGCGATGT CGTCGGCGTA ACCGCCATGG 551 AAATGGAAAC CGGCGAAGTT TATATTTTCC ACGCTAAAGC TGTGATGTTT 601 GCTACCGGCG GCGGCGGCCG TATTTATGCG TCTTCTACCA ATGCCTATAT GAATACCGGC GATGGTTTGG GTATTTGTGC GCGTGCAGGT ATCCCGTTGG 651 701 AAGACATGGA ATTCTGGCAA TTCCACCCGA CCGGCGTGGC AGGTGCGGGC 751 GTGTTGATTA CCGAAGGCGT ACGCGGCGAG GGCGGTATTC TGTTGAATGC 801 CGACGGCGAA CGCTTTATGG AACGCTATGC GCCGACCGTA AAAGACTTGG 851 CTTCTCGCGA CGTTGTTTCC CGCGCGATGG CGATGGAAAT CTACGAAGGT 901 CGCGGCTGCG GTAAAAACAA AGACCATGTC TTACTGAAAA TCGACCATAT 951 CGGCGCAGAA AAAATTATGG AAAAACTGCC GGGCATCCGC GAGATTTCCA 1001 TTCAGTTCGC CGGTATCGAT CCGATTAAAG ACCCGATTCC CGTTGTGCCG 1051 1101 ACTACCCACT ATATGATGGG CGGTATTCCG ACCAACTACC ATGGCGAAGT TGTCGTTCCT CAAGGCGACG AATACGAAGT GCCTGTAAAA GGTCTGTATG 1151 CGGCAGGTGA GTGCGCCTGT GCTTCCGTAC ACGGTGCGAA CCGCTTGGGT 1201 ACGAACTCCC TGCTGGACTT AGTGGTATTC GGTAAAGCTG CCGGCGACAG 1251 CATGATTAAA TTCATCAAAG AGCAAAGCGA CTGGAAACCT TTGCCTGCTA ATGCCGGCGA ACTGACCCGC CAACGTATCG AGCGTTTGGA CAATCAAACT 1351 GATGGTGAAA ACGTTGATGC ATTGCGCCGC GAACTGCAAC GCTCCGTACA 1401 ATTGCACGCC GGCGTGTTCC GTACTGATGA GATTCTGAGC AAAGGCGTTC 1451 GAGAAGTCAT GGCGATTGCC GAGCGTGTGA AACGTACCGA AATCAAAGAC AAGAGCAAAG TGTGGAATAC CGCGCGTATC GAGGCTTTGG AATTGGATAA 1501 1551 CCTAATTGAA GTGGCGAAAG CGACTTTGGT GTCTGCCGAA GCACGTAAAG AATCACGCGG TGCGCACGCT TCAGACGACC ATCCTGAGCG CGATGATGAA 1651 AACTGGATGA AACATACGCT GTACCATTCA GATGCCAATA CCTTGTCCTA 1701 CAAACCGGTG CACACCAAGC CTTTGAGCGT GGAATACATC AAACCGGCCA 1751 AGCGCGTTTA TTGA

This corresponds to the amino acid sequence <SEQ ID 72; ORF 010-1.a>: a010-1.pep..

- 1 MGFPVRKFDA VIVGGGGAGL RAXLQLSKSG LNCAVLSKVF PTRSHTVAAQ
- 51 GGISASLGNV QEDRWDWHMY DTVKGSDWLG DQDAIEFMCR AAPEAVIELE 101 HMGMPFDRVE SGKIYQRPFG GHTAEHGKRA VERACAVADR TGHAMLHTLY

151 201 251 301 351 401 451 501	QQNVRANTQF ATGGGGRIYA VLITEGVRGE RGCGKNKDHV TTHYMMGGIP TNSLLDLVVF DGENVDALRR KSKVWNTARI NWMKHTLYHS	SSTNAYMNTG GGILLNADGE LLKIDHIGAE TNYHGEVVVP GKAAGDSMIK ELQRSVQLHA EALELDNLIE	DGLGICARA RFMERYAPT KIMEKLPGI QGDEYEVPV FIKEQSDWK GVFRTDEIL VAKATLVSA	G IPLEDM V KDLASR R EISIQF K GLYAAG P LPANAG S KGVREV E ARKESR	EFWQ FHE DVVS RAM AGID PIM ECAC ASV ELTR QRI MAIA ERV GAHA SDE	PTGVAGAG MAMEIYEG KDPIPVVP MGANRLG ERLDNQT KRTEIKD
m010-1 / a010-1	99.3% ident:	ity in 587 a	a overlap			
a010-1.pep	10 MGFPVRKFDAVI MGFPVRKFDAVI	[]][]][]	1111111111	111111111		1111111
	10	20 .	30	40	50	60
a010-1.pep	70 QEDRWDWHMYDTY QEDRWDWHMYDTY		1111111111	111111111		HĨHH
	70	80	90	100	110	120
a010-1.pep	130 GHTAEHGKRAVER			11111111	ППППП	111111
m010-1	GHTAEHGKRAVER 130	140	150	160	170	180
a010-1.pep	190 TAMEMETGEVYII	200 FHAKAVMFATGGG	210 GGRIYASSTNA	220 YMNTGDGLGI	230 CARAGIPL	240 EDMEFWQ
m010-1	TAMEMETGEVYII	THAKAVMFATGGO	GRIYASSTNA	MNTGDGLG1	CARAGIPL	EDMEFWQ 240
	250	260	270	280	290	300
a010-1.pep	FHPTGVAGAGVLI				11111111	111111
41010-1	FHPTGVAGAGVLI 250	260	270	280	290	300
a010-1.pep	310 RGCGKNKDHVLLK	320 CIDHIGAEKIMER	330 CLPGIREISIQI	340 FAGIDPIKDP	350 PIPVVPTTHY	360 YMMGGIP
m010-1	RGCGKNKDHVLLK 310	CIDHIGAEKIMER 320	CLPGIREISIQI 330	AGIDPIKDP 340	IPVVPTTH: 350	MMGGIP 360
a010-1.pep	370 TNYHGEVVVPQGE	380 DEYEVPVKGLYAF	390 AGECACASVHGA	400 MRLGTNSLL	410 DLVVFGKA	420
m010-1	TNYHGEVVVPQGE	:			1111111111	
	370	380	390	400	410	420
a010-1.pep	430 FIKEQSDWKPLPA	440 NAGELTRORIER	450 RLDNQTDGENVI	460 DALRRELQRS	470 VQLHAGVFI	480 RTDEILS
m010-1				ALRRELQRS	VQLHAGVFI	RTDEILS
	490	500	510	460 520	470 530	480 540
a010-1.pep	KGVREVMAIAERV	KRTEIKDKSKVW	NTARIEALELI	NLIEVAKAT	LVSAEARKE	SRGAHA
m010-1	KGVREVMAIAERV 490	KRTEIKDKSKVW 500	NTARIBALELI 510	NLIEVAKAT 520	LVSAEARKE 530	SRGAHA 540
a010-1.pep	550 SDDHPERDDENWM	560 KHTLYHSDANTI	570 SYKPVHTKPLS	580 VEYIKPAKR	VYX	
		11111111111111111		111111111	111	

m010-1

SDDHPERDDENWMKHTLYHSDINTLSYKPVHTKPLSVEYIKPAKRVYX 560 570

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 73>:

192

q011.seg

- ATGAAGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA 51 101 GCCTGAAAAC CCGCCTTACC GAAGATATGA AAACCGCGAT GCGCGCCAAA 151 GATCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAATGCCG CCGTCAAACA 201 GTTTGAAGTA GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA 251 TCCTGACCAA AATGGTCAAA CAGCGCAAAG ACGGCGCGAA AATCTACACT 301 GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGACGT 351 GCTGCACCGC TACCTGCCGC AAATGCTCTC CGCCGGCGAA ATCCGCACCG 401 CCGTCGAAGC AGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG 451 GGCAAAGTGA TGGTCGTATT GAAAACCCGC CTCGCCGGCA AAGCCGATAT
- 501 GGGCGAAGTC AACAAAATCT TGAAAACCGt aCTGACCGCC tga

This corresponds to the amino acid sequence <SEQ ID 74; ORF 011.ng>: g011.pep

- MKTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKTRLT EDMKTAMRAK DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDGAKIYT 51
- 101 EAGRODLADK ENAEIDVLHR YLPOMLSAGE IRTAVEAAVA ETGAAGMADM
- 151 GKVMVVLKTR LAGKADMGEV NKILKTVLTA *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 75>: m011.seq (partial)

ATGAGGACAC ACCGCAAGAC CTGCTCTGCG GTGTGTTTTG CTTTTCAGAC 51 GGCATCGAAA CCCGCCGTTT CCATCCGACA TCCCAGCGAG GACATCATGA 101 GCCTGAAAAT CCGCCTTACC GAAGACATGA AAACCGCGAT GCGCGCCAAA 151 GACCAAGTTT CCCTCGGCAC CATCCGCCTC ATCAACGCCG CCGTCAAACA 201 GTTTGAAGTG GACGAACGCA CCGAAGCCGA CGATGCCAAA ATCACCGCCA 251 TCCTGACCAA AATGGTCAAA CAGCGAAAAG ACAGCGCGAA AATCTACACT GAAGCCGGCC GTCAGGATTT GGCAGACAAA GAAAACGCCG AAATCGAGGT 351 ACTGCACCGC TACCTTCCCC AAATGCTTTC CGCCGGCGAA ATCCGTACCG 401 AGGTCGAAGC TGCCGTTGCC GAAACCGGCG CGGCAGGTAT GGCGGATATG

451 GGTAAAGTCA TGGGGCTGCT GAAAACCCGC CTCGCAGGTA AAGCCGA...

This corresponds to the amino acid sequence <SEQ ID 76; ORF 011>:

m011.pep (partial)

- 1 MRTHRKTCSA VCFAFQTASK PAVSIRHPSE DIMSLKIRLT EDMKTAMRAK
- DQVSLGTIRL INAAVKQFEV DERTEADDAK ITAILTKMVK QRKDSAKIYT
- 101 EAGRQDLADK ENAEIEVLHR YLPQMLSAGE IRTEVEAAVA ETGAAGMADM
- GKVMGLLKTR LAGKA....

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 011 shows 95.8% identity over a 165 aa overlap with a predicted ORF (ORF 011.ng) from N. gonorrhoeae:

m011/g011

	10	20	30	40	50	60
m011.pep	MRTHRKTCSAVCFA	FQTASKPAVS	IRHPSEDIMS	LKIRLTEDMK	TAMRAKDOVS	LGTIRL
	1:1111111111	111111111	ППППП	11 1111111	ППППП	HHH
g011	MKTHRKTCSAVCFA	FQTASKPAVS	IRHPSEDIMS	LKTRLTEDMK	TAMRAKDOVS	LGTIRL
	10	20	30	40	50	60
	70	80	90	100	110	120
m011.pep	INAAVKQFEVDERTI	EADDAKITAI	LTKMVKQRKD	SAKIYTEAGR	QDLADKENAE	IEVLHR
g011				:111111111	1111111111	1.1111

	70	80	90	100	110	120
	130	140	150	160		
m011.pep	YLPQMLSAGEIRTE	EVEAAVAETG	aagmadmgkvn	IGLLKTRLAG	(A)	
		111111111	11111111111	: ! ! ! ! ! ! ! ! !	1	
g011	YLPOMLSAGEIRTA	VEAAVAETG	AAGMADMGKVM	IVVLKTRLAGI	CADMGEVNKII	KTVLTA
	130	140	150	160	170	180
g011	x .					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 77>:

```
ATGCTCGCCC GTCGCTATTT TTTCAATATC CAACCCGGGG CGGTTTTCAC
    TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGCCGGAAT
    TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
151 AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACa
201 gGcggTGGAT ATTCGgcact tccgCcacca cacccaccga accgatgacc
251
    gcaaacggaG CGGAAACAAT TTTATCCGCc acacacgcca tcatatagcc
301 gcCGCTTGCC GCGACCTTAT CGAcggcgac ggTCAGCGGA ATATTGCGTT
351 CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
401 CCGCCCGGAC TTTCCAATCT GAGCAGAACC TCATCTTCAG GCTTGGCAAT
451
    CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
501 ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
551 GCAGATTTCT CCCCGCCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
601 CGCCTTTTCC TTTTTCTTTT CTTTTTTTTC CTGATGTTTT GTCTCTTCCT
651 CGCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 78; ORF 012.ng>:

1 MLARRYFFNI QPGAVFTDKL LEQLMRFLQF LPEFLFALFR IFTHKSNRAL

51 KFARRHHIHI NIMFFQQAVD IRHFRHHTHR TDDRKRSGNN FIRHTRHHIA

101 AACRDLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS EQNLIFRLGN

151 QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPAL LQTLFLCFGF

201 RLFLFLFFFF LMFCLFLA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 79>: m012.seq

```
ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
   TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
51
101
   TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
151 AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
201 GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCCACCGA ACCGACAATC
251 GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC
   301
451
   nnnnnnnn nnnnnnnnc AACACAAAAA GGCGTGATTT nTGCGTTTCG
551
   GCAGATTTCT CCCCACCCTC CTTCAAACGT TTTTCcTCTG CTTTGGCTTC
   CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTGT GCCTCTTCCC
651 CGCTTAA
```

This corresponds to the amino acid sequence <SEQ ID 80; ORF 012>: m012.pep

- 1 MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
- 51 KFARRHHIHI NIMFFQQAVD IRYFRHHTHR TDNRKRSGSN FIRHTRHHIT
- 151 XXXXXXXXXX XXXXXXXXX XXXQHKKA*F XRFGRFLPTL LQTFFLCFGF
- 201 RLFLFLFFF LMLCLFPA*

WO 99/57280

from N. gonorrhoeae: m012/g012

```
The following partial DNA sequence was identified in N. meningitidis <SEO ID 81>:
     a012.seq
              ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
              TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
          51
          101
              TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
              AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
          151
          201
              GGCGGTGGAT ATTCGGTACT TCCGCTACAA CACCCACCGA ACCGACAATC
              GCAAACGGAG CGGAAACAAT TTTATCCGCC ACACACGCCA TCATATAACC
          251
          301
              ACCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
              CGCGCAAACG CCTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
          351
          401
              CCGCCCGGAC TTTCCAATCT AAGCAGAACC TCATCTTCAG GCTTGGCAAT
              CAAAAGCACC GCCGTAATCT CATGACGCAA GGATTCTACG GCGTGTGCAT
          451
              ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATTT TTGCGTTTCG
              GAAGATTTCT CCCCACCCTC CTTCAAACGC TTTTTCTCTG CTTTGGCTTC
         551
         601
              CGCCTTTTCC TTTTTCTTTT CCTCTTTTTC CTGATGTTTT GCCTCTTCCC
              CGCTTAA
         651
This corresponds to the amino acid sequence <SEQ ID 82; ORF 012.a>:
     a012.pep
              MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL
          51
              KFARRHHIHI NIMFFQQAVD IRYFRYNTHR TDNRKRSGNN FIRHTRHHIT
              TARRHLIDGD GQRNIAFAQT PKLRSRQTVT VNHAARTFQS KQNLIFRLGN
              QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF
         151
              RLFLFLFF LMFCLFPA*
            64.2% identity over a 218 aa overlap
m012/a012
                        10
                                 20
                                          30
                                                   40
                MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
    m012.pep
                 a012
                MLARCHFLNIQLRAVLADKLLEQLMRFLQFLSEFLFALFRIFTHKSNRALKFARRHHIHI
                        10
                                 20
                                          30
                                                   40
                                                            50
                                                                     60
                                 80
                                          90
                                                  100
                                                           110
                                                                    120
                m012.pep
                 a012
                NIMFFQQAVDIRYFRYNTHRTDNRKRSGNNFIRHTRHHITTARRHLIDGDGQRNIAFAQT
                        70
                                 80
                                          90
                                                  100
                                                           110
                                                                    120
                       130
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                m012.pep
                                                                 +111111
                 PKLRSRQTVTVNHAARTFQSKQNLIFRLGNQKHRRNLMTQGFYGVCIQIAVKIQHKKAGF
    a012
                       130
                                140
                                         150
                                                  160
                                                           170
                                                                    180
                       190
                                200
                                         210
                                                 219
                XRFGRFLPTLLQTFFLCFGFRLFLFLFLFLFLMLCLFPAX
    m012.pep
                 a012
                LRFGRFLPTLLQTLFLCFGFRLFLFLFLFFLMFCLFPAX
                                200
                                         210
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 012 shows 58.7% identity over a 218 aa overlap with a predicted ORF (ORF 012.ng)
```

	10	20	30	40	50	60
m012.pep	MLARCHFLNIQLRA	VLADKLLEQL	MRFLQFLSEF:	LFALFRIFTH	KSNRALKFAR	RHHIHI
	1111:1:111 1	1::111111	1111111 11	111111111		111111
g012	MLARRYFFNIQPGA	VFTDKLLEQL	MRFLQFLPEF:	LFALFRIFTH	KSNRALKFAR	RHHIHI

	10	20	30	40	50	60
	70	80	90	100	110	120
m012.pep	NIMFFQQAVDIRY	FRHHTHRTDNE	RKRSGSNFIR	TRHHITAAR	(XXXXXXXXXX	XXXXXX
			[[[]]]			:
g012	NIMFFQQAVDIRH!	FRHHTHRTDDF	RKRSGNNFIR	HTRHHIAAACI	RDLIDGDGQRN	NIAFAQT
	70	80	90	100	110	120
	130	140	150	160	170	180
m012.pep	XXXXXXXXXXXXXX	(XXXXXXXXXX	(XXXXXXXXXX	(XXXXXXXXXX	(XXXXXXXXX)	HKKAXF
	: :	:		:	1	
g012	PKLRSRQTVTVNH	AARTFQSEQNI	LIFRLGNQKH	RNLMTQGFY	SVCIQIAVKI	HKKAGF
	130	140	150	160	170	180
	190	200	210	210		
010				219		
m012.pep	XRFGRFLPTLLQT					
~010						
g012	LRFGRFLPALLQT			LILLAX		
	190	200	210			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 83>:

MO12-1.seq

1 ATGCTCGCCC GTTGCCACTT CCTCAATATC CAATTGAGGG CGGTTCTCGC
51 TGACAAACTG CTTGAACAAC TGATGCGTTT CCTCCAGTTC CTGTCGGAAT
101 TTCTGTTTGC CCTTTTCCGT ATTTTCACCC ATAAAAGTAA CCGTGCGCTT
151 AAATTCGCCC GCCGTCATCA CATCCACATC AATATCATGT TTTTTCAACA
201 GGCGGTGGAT ATTCGGTACT TCCGCCACCA CACCACCGA ACCGACAATC
251 GCAAACGGAG CGGAAGCAAT TTTATCCGCC ACACACGCCA TCATATAACC
301 GCCGCTCGCC GCCACCTTAT CGACGGCGAC GGTCAGCGGA ATATTGCGTT
351 CGCGCAAACG CYTAAGCTGC GAAGCCGCCA AACCGTAACC GTGAACCACG
401 CCGCCCGGAC TTTCCAATCT GAGCAGACC TCATCTTCAG GCTTGGCAAT
451 CAAAAGCACC GCCGTAATCT CATGACGCAA GGCGGGATT TTGCGTTTCG
501 ACAAATCGCC GTCAAAATCC AACACAAAAA GGCGGGATT TTGCGTTTCG
551 GCAGGTTTCC TTTTTCTTT CCTCTTTTTC CTGATGTTT GCCTCTTCCC
651 CGCTTAA

This corresponds to the amino acid sequence <SEQ ID 84; ORF 012-1>: m012-1.pep

1 MLARCHFLNI QLRAVLADKL LEQLMRFLQF LSEFLFALFR IFTHKSNRAL 51 KFARRHHIHI NIMFFQQAVD IRYFRHHTHR TDNRKRSGSN FIRHTRHHIT

101 AARRHLIDGD GQRNIAFAQT XKLRSRQTVT VNHAARTFQS EQNLIFRLGN 151 QKHRRNLMTQ GFYGVCIQIA VKIQHKKAGF LRFGRFLPTL LQTLFLCFGF

201 RLFLFLFLFF LMFCLFPA*

m012-1/g012 91.7% identity in 218 aa overlap

	10	20	30	40	50	60
m012-1.pep	MLARCHFLNIQLR	AVLADKLLEQI	MRFLQFLSEE	LFALFRIFTH	KSNRALKFA	RHHIHI
	1111 :1:111	11::1111111	1111111 11		111111111	
g012	MLARRYFFNIQPG	AVFTDKLLEQI	MRFLQFLPE	LFALFRIFTH	KSNRALKFAF	RHHIHI
	10	20	30	40	50	60
	70	80	90	100	110	120
m012-1.pep	NIMFFQQAVDIRY	FRHHTHRTDNR	KRSGSNFIRE	ITRHHITAARR	HLIDGDGQRN	IAFAQT
		111111111111111111111111111111111111111	1111:1111	111111:11	111111111	шш
g012	NIMFFQQAVDIRH	FRHHTHRTDDR	KRSGNNFIRH	ITRHHIAAACR	DLIDGDGQRN	IAFAQT
	70	80	90	100	110	120
	130	140	150	160	170	180
m012-1.pep	XKLRSRQTVTVNH	aartfoseonl	IFRLGNQKHP	RNLMTQGFYG	VCIQIAVKIÇ	HKKAGF
		11111111111	111111111		111111111	$\Pi\Pi\Pi\Pi$
g012	PKLRSRQTVTVNH	AARTFQSEQNL	I FRLGNQKHR	RNLMTQGFYG	VCIQIAVKIÇ	HKKAGF

g013.seq

			1 2 0	140	150	1.60	170	
			130	140	150	160	170	180
m012-1.pe	an '		190 PTLLQTLFL	200 CEGEDIE	210	219		
MO12-1.pe	•		: :					
g012			PALLQTLFL					
-		:	190	200	210			
The following p	aartial	I DNI A c	eauence v	vac iden	tified in A	I maninai	eidia ZCEO I	D 065.
a012-1.seq	Jailia	DIANS	equence v	vas iucii	unica mi A	. meningi	iiais \SEQ I	אכס ע (25
1	ATG	CTCGCCC	GTTGCCAC	TT CCTC	AATATC CA	ATTGAGGG	CGGTTCTCGC	
51	TGA	CAAACTG	CTTGAACA	AC TGAT	GCGTTT CC	TCCAGTTC	CTGTCGGAAT	
101	TTC:	rgtttgc	CCTTTTCC	GT ATTT	TCACCC AT	'AAAAGTAA	CCGTGCGCTT	
151 201	AAA'	PTCGCCC	GCCGTCAT	CA CATC	CACATC AA	TATCATGT	TTTTTCAACA	
251	GCA	BACGGAG	CGGAAACA	ים דירים יים מידי דירים	TCCCCC AC	ACACGCCA	ACCGACAATC TCATATAACC	
301	ACC	GCTCGCC	GCCACCTT	AT CGAC	GGCGAC GG	TCAGCGGA	ATATTGCGTT	
351	CGC	GCAAACG	CCTAAGCT	GC GAAG	CCGCCA AA	CCGTAACC	GTGAACCACG	
401	CCG	CCCGGAC	TTTCCAAT	CT AAGC	AGAACC TO	ATCTTCAG	GCTTGGCAAT	
451	CAA	AAGCACC	GCCGTAAT	CT CATG	ACGCAA GG	ATTCTACG	GCGTGTGCAT	
501 551	ACA	AATCGCC	GTCAAAAT(CC AACA	CAAAAA GG	CGGGATTT	TTGCGTTTCG CTTTGGCTTC	
601	CGCC	CTTTTCC	TTTTTCTT	TT CCTC	HANCEC II PTTTTC CT	CATCTTTT	GCCTCTTCCC	
651		TTAA		0010	01	001111	GCCTCTTCCC	
This correspond		he amin	o acid seq	uence <	SEQ ID 8	86; ORF 0	12-1.a>:	1
a012-1.pe							•	
1 51	MLAI	RCHFLNI	QLRAVLADI	KL LEQLI	MRFLQF LS	EFLFALFR	IFTHKSNRAL	
101	TARI	RHITDED	CORNIAFA	אם זאנים. אם זאנים	KINTHK TU SBOTVT VM	NKKRSGNN	FIRHTRHHIT KQNLIFRLGN	
151							LOTLFLCFGF	
201			LMFCLFPA				-2.5150101	
a012-1/m012-1	97.2	% identi	ty in 218	aa overl	.ap			
			_		•			
-012 1	\	ar a Douer	10	20	30	40	50	60
a012-1.p∈	ı qe	ALARCHFI 	PNIÖPKVATY	ADKTTEĞI	LMRFTGFTS	EFLFALFRI	FTHKSNRALKE	ARRHHIHI
m012~1	ı	1LARCHFI	NIOLRAVLA	ADKLLEO	LMRFLOFLS	EFT.FAT.FRT	FTHKSNRALKE	וווווווו
			10	20	30	40	50	60
	_		70	80	90	100	110	120
a012-1.pe	ı qe	ATWE LOOP	YADTKALKAL	NTHRTON	RKRSGNNFI	RHTRHHITT	'ARRHLIDGDGC	RNIAFAOT
m012-1	ı N	ITHEFOOA	VDTRYFRHI	THRTON	RKRSGSNET	 		ון ון ון ון ו
	•	11111 1 22	70	80	90	100	110	120
								120
			130	140	150	160	170	180
a012-1.pe	ep I	KLRSRQI	'VTVNHAAR'	rfoskoni	LIFRLGNOK	HRRNLMTQ	FYGVCIQIAVK	IQHKKAGF
m012-1	3	เมาเมา	ווווווווווו רקממאמטידיטיק	IIIIIIII PROSRONI	LITEDICMOR	ווווווווו		1111111
11012 1	•		30	140	150	160	170	180
010 1	_		190	200	210	219		
a012-1.pe		REGRELE	TLLQTLFLO	CFGFRLFI	LFLFLFFLM	FCLFPAX		
m012-1			TLLQTLFLC					
	•		90	200	210	LODIEMA		
The following p	artial	DNA s	equence w	as ident	ified in N	. gonorrh	oeae <seo i<="" td=""><td>D 87>:</td></seo>	D 87>:
g013.seq			-			5		· ·

1 aTgcctttga ccatgctgtg cagcaGGAcg tGCGGTTtgt tcataataca 51 gtCcgaccGG AAAagcggAG GAAaCGCAGT GCCGCGCCCT TCCCCTTTCT 101 TGCCGTGGCA GGCGATGCag tTGGATTCGT ACACTTTTTG CCCTTTtGtc

- 197
- 151 atgatGCTgt tgtcggCGGC AGAAGCgGCG GcgCAGAGGC AGCACAAGAT 201 GAAGGCGGTC GGCAGTCGGG TTGTGTtcat tGgcgTTTCC cctaatgttt
- 251 tgaaaccttg ttttttgatt Ttgcctttac ggggtgaaaa gtttttTtgg
- 301 cccaaatccg gaatttag

This corresponds to the amino acid sequence <SEQ ID 88; ORF 013.ng: g013.pep

- MPLTMLCSRT CGLFIIQSDR KSGGNAVPRP SPFLPWQAMQ LDSYTFCPFV 1
 - 51 MMLLSAAEAA AQRQHKMKAV GSRVVFIGVS PNVLKPCFLI LPLRGEKFFW
 - 101 PKSGI*

The following partial DNA sequence was identified in N. meningitidis <SEO ID 89>: m013.seq

- ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
- 51 GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
- 101 TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC
- 151 ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAAGC AGCCCAAGAC GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTCATGTTTG
- 251 AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT TTTGCCGAAT
- 301 CAGTAG

This corresponds to the amino acid sequence <SEQ ID 90; ORF 013>: m013.pep

- MPLTMLCSST CGFFMMKSER XSGGNMVPRP SPFLPWQATQ LDSYTFCPFV
- 51 MMLLSAAEAA AQKQPKTRAV GSRVVFIGVS FMFETLLLIL RSGXKIFLPN
- 101

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 91>:

- a013.seq
 - ATGCCTTTGA CCATGCTGTG CAGCAGCACC TGCGGTTTTT TCATGATGAA
 - GTCGGAGCGG TAGAGCGGCG GAAACATGGT TCCGCGGCCT TCGCCCTTTT
 - 101 TGCCGTGGCA GGCGACGCAG TTGGATTCGT ACACTTTTTG CCCTTTTGTC 151 ATGATGCTGT TGTCGGCGGC AGAAGCGGCG GCGCAGAGGC AGCCCAAGAC
 - 201 GAGGGCGGTC GGCAGTCGGG TTGTGTTCAT TGGTGTTTCC TTAATGTTTG
 - 251 AAACCTTGTT GTTGATTTTG CGTAGCGGGT GAAAGATTTT CTTGCCGAAT
 - 301 CGGTAG

This corresponds to the amino acid sequence <SEQ ID 92; ORF 013.a>:

- a013.pep
 - MPLTMLCSST CGFFMMKSER *SGGNMVPRP SPFLPWQATQ LDSYTFCPFV
 - 51 MMLLSAAEAA AQRQPKTRAV GSRVVFIGVS LMFETLLLIL RSG*KIFLPN
 - 101

97.0% identity over a 101 aa overlap m013/a013

	10	20	30	40	50	60
m013.pep	MPLTMLCSSTCGFF	MMKSERXSGG	NMVPRPSPFL	PWQATQLDSY	PFCPFVMMLL	SAAEAA
			1111111111	1111111111		HIHL
a013	MPLTMLCSSTCGFF	MMKSERXSGG	NMVPRPSPFL	PWQATQLDSY'	FCPFVMMLL	SAAEAA
	10	20	30	40	50	60
	70	80	90	100		
m013.pep	AQKQPKTRAVGSRV	VFIGVSFMFE	TLLLILRSGX	KIFLPNQX	1	
	11:1111111111	1111111:111	11111111111	111111:1		
a013	AQRQPKTRAVGSRV	VFIGVSLMFE	TLLLILRSGX	KIFLPNRX		
	70	80	90	100		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 013 shows 73.3% identity over a 101 aa overlap with a predicted ORF (ORF 013.ng) from N. gonorrhoeae:


```
m013/q013
```

WO 99/57280

```
10
                           20
                                   30
                                            40
                                                    50
m013.pep
           MPLTMLCSSTCGFFMMKSERXSGGNMVPRPSPFLPWQATQLDSYTFCPFVMMLLSAAEAA
           g013
           MPLTMLCSRTCGLFIIQSDRKSGGNAVPRPSPFLPWQAMQLDSYTFCPFVMMLLSAAEAA
                  10
                          20
                                   30
                                            40
                  70
                          80
                                    90
m013.pep
           AQKQPKTRAVGSRVVFIGVSF-MFETLLLILR-SGXKIFLPNQX
           11:1 | :11111111111 ::: :111
                                        1 1:1 1:
           AQRQHKMKAVGSRVVFIGVSPNVLKPCFLILPLRGEKFFWPKSGIX
g013
                  70
                          80
                                   90
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 93>:

g015.seq

```
ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
 1
51
    CATTTTGGTA TTCAACATCC GTTTTTTCCT ACTTTGGAAA AATCCAGAAA
101 AGCCCTTGGT CGGCTTTTGG AAAGCACTGC CCCACCTCAA CGACACGATG
151 CTGCTGTTTA CGGGATTGTG GCTGATGAAG ATTACCCATT TCTCCCCGTT
201 CAACGCGCCT TGGCTCGGCA CAAAAATCCT GCTCCTGTTC GCCTACATCG
251 CACTGGGCAT GGTAATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
301 ACCGTTTACC TGCTCGCTAT GTGTTGCATC GCCTGCATCG TTTACCTTGC
351 CAAAACCAAA GTCCTGCCAT TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 94; ORF 015.ng>: g015.pep

- 1 MQYLIVKYSH QIFVTITILV FNIRFFLLWK NPEKPLVGFW KALPHLNDTM
- 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLF AYIALGMVMM RARPRSTKFY
- 101 TVYLLAMCCI ACIVYLAKTK VLPF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 95>:

```
m015.seq
           (partial)
          ..AAAATCAGAA AAGCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA
      51
            CGACACCATG CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT
            TCTCCCCGTT CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC
     101
            GCCTATATCG CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC
     201
            CAAGTTCTAC ACCGTTTACC TGCTCGCCAT GTGTTGCGTC GCCTGCATCG
     251
            TTTACCTTGC CAAAACCAAA GTCCTGCCTT TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 96; ORF 015:

```
m015.pep (partial)
         ..KIRKALAGFW KALPHLNDTM LLFTGLWLMK ITHFSPFNAP WLGTKILLLL
     1
           AYIALGMMMM RARPRSTKFY TVYLLAMCCV ACIVYLAKTK VLPF*
```

The following partial DNA sequence was identified in N. meningitidis <SEO ID 97>: a015.seq

```
ATGCAGTATC TGATTGTCAA ATACAGCCAT CAAATCTTCG TTACCATCAC
 1
    CATTTTGGTA TTCAACATCC GTGTTTTCNT ACTTTGGAAA AATCCAGAAA
101 AGCCCTTGGC GGGCTTTTGG AAGGCACTGC CCCACCTTAA CGACACCATG
    CTGCTGTTTA CGGGATTGTG GCTGATGAAA ATTACCCATT TCTCCCCGTT
201 CAACGCGCCT TGGCTCGGTA CAAAAATCCT GCTTCTGCTC GCCTATATCG
    CATTGGGTAT GATGATGATG CGCGCCCGTC CGCGTTCGAC CAAGTTCTAC
301 ACCGTTTACC TGCTCGCCAT GTGTTGCCTC ACCTGCATCG TTTACCTTGC
351 CAAAACCAAA GTCCTGCCTT TCTGA
```

This corresponds to the amino acid sequence <SEQ ID 98; ORF 015.a>: a015.pep

- 1 MQYLIVKYSH QIFVTITILV FNIRVFXLWK NPEKPLAGFW KALPHLNDTM
- 51 LLFTGLWLMK ITHFSPFNAP WLGTKILLLL AYIALGMMMM RARPRSTKFY
- 101 TVYLLAMCCL TCIVYLAKTK VLPF*

m015/a015 96.7% identity over a 91 aa overlap

				10	20	30
m015.pep			KIR	(ALAGFWKALP	HLNDTMLLFI	GLWLMKITH
					[1][[][][][][][][][][][][][][][][][][][
a015	LIVKYSHQIFV	TITILVFNIR	VFXLWKNPE	(PLAGFWKALP	HLNDTMLLFT	GLWLMKITH
	10	20	30	40	50	60
	40	50	60	70	80	. 00
m015.pep	FSPFNAPWLGT					90
шото.рер	11111111111	1111111111		IIIIIIIIII		
a015	FSPFNAPWLGT	KILLLLAYIA	LGMMMMRARE	RSTKFYTVYL		
	70	80	90	100	110	120
m015.pep	FX					
	11					
a015	FX ·					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 015 shows 94.5% identity over a 91 aa overlap with a predicted ORF (ORF 015.ng) from N. gonorrhoeae:

m015/g015

				10	20	30
m015.pep			KIRKA	LAGFWKALPHL	NDTMLLFTG:	LWLMKITH
			- 1	1:	. [] [] [] [] []	
g015	LIVKYSHQIFVTI	TILVFNIRFF	LLWKNPEKP	LVGFWKALPHI	NDTMLLFTG	LWLMKITH
	10	20	30	40	50	60
	40	50	60	70	80	90
m015.pep	FSPFNAPWLGTKI	LLLLAYIALG	MMMRARPR	STKFYTVYLLA	MCCVACIVY	LAKTKVLP
		111:11111	1:111111	111111111111		
g015	FSPFNAPWLGTKI	LLLFAYIALG	MVMMRARPR	STKFYTVYLLA	MCCIACIVY?	LAKTKVLP
	70	80	90	100	110	120
m015.pep	FX					
• •	14					
g015	FX					
J						

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 99>: g018.seq

atgCAGCAGG GGCagttggt tggacggtc gcccgcaata AAGATATGCG
GAATgctggt CTGCATggtC AGCGGATCGG CAACGGGtac gccgcgcgg
tot tctttgTCGA TATTGATGTT TTCCAAACCG ATATtgTCAA CGTTCGGACG
GCGACCTACG GCTGCCAACA TATATTCGGC AACAAATACG CCTTTTTCGC
CATCCTGCTC CCAATGGACT tctACATTGC CGTCTGCGTC GAGTTTGACC
TCGGTTTTAG CATCCAGATG CAGTTTCAAT tctTCTCCG ACACGGCTTT
CGCCTCGTCT GA

This corresponds to the amino acid sequence <SEQ ID 100; ORF 018.ng>: g018.pep

- 1 MQQGQLVGRV ARNKDMRNAG LHGQRIGNGY AARVFVDIDV FQTDIVNVRT
- 51 ATYGCOHIFG NKYAFFAILL PMDFYIAVCV EFDLGFSIQM OFOFFSEHGF

101 RLV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 101>: m018.seg

moro.seq					
1	ATGCAGCAGA	GGCAGTTGGT	TGGACGCATC	GCCTGCGATG	AAGATATGCG
51	GAATACTGGT	CTGCATGGTC	AGCGGGTCGG	CAACAGGTAC	GCCGCGCGCA
101	TCTTTTTCGA	TATTGATATT	TTCCAAACCG	ATATTGTCAA	CGTTCGGACG
151	GCGGCCCACG	GCTGCCAGCA	TATATTCGGC	AACAAATACG	CCTTTTTCGC
201	CATCCTCCTC	CCAATGGACT	TOTACATTCC	COTOTOCATO	CACTIONCACO

CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCATC GAGTTTGACC

251 TCGGTTTTAG CATCCAGATG CAGTTTCAAT TCTTCGCCGA ACACGGCGTT

301 CGCCTCGTCT GA

This corresponds to the amino acid sequence <SEQ ID 102; ORF 018>: m018.pep

1 MQQRQLVGRI ACDEDMRNTG LHGQRVGNRY AARIFFDIDI FQTDIVNVRT 51 AAHGCQHIFG NKYAFFAILL PMDFYIAVCI EFDLGFSIQM QFQFFAEHGV

101 RLV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 103>:

a018.seq 1 ATGCAGCAGG GGCAGTTGGT TGGACGCGTC GCCCGCAATA AAGATATGCG 51 GAATACTGGT CTGCATAGTC AGCGGATCGG CAACGGGTAC GCCGCGCGCA 101 TCTTTTCGA TATTGATGTT TTCCAAACCG ATATTGTCAA CGTTCGGACG GCGGCCTACG GCTGCCAGCA TATATTCGGC AACAAATACG CCTTTTTCGC 201 CATCCTGCTC CCAATGGACT TCTACATTGC CGTCTGCGTC GAGTTTGGCC

251 TCGGTTTTAG CATCCAAATG CAGTTTCAAT TCTTCACCGA ACACGGCTTT

301 CGCCTCGTCT GA

This corresponds to the amino acid sequence <SEQ ID 104; ORF 018.a>:

a018.pep

1 MQQGQLVGRV ARNKDMRNTG LHSQRIGNGY AARIFFDIDV FQTDIVNVRT

51 AAYGCQHIFG NKYAFFAILL PMDFYIAVCV EFGLGFSIQM QFQFFTEHGF

101 RLV*

m018/a018 86.4% identity over a 103 aa overlap

	10	20	30	40	50	60
m018.pep	MQQRQLVGRIACDE	DMRNTGLHGQ	RVGNRYAAR	FFDIDIFQTD	IVNVRTAAHG	COHIFG
		111111111111111111111111111111111111111	1:11 1111	[]]]	111111111111111111111111111111111111111	TÎHH.
a018	MQQGQLVGRVARNK	DMRNTGLHSQ	RIGNGYAAR	FFDIDVFQTD	IVNVRTAAYG	COHIFG
	10	20	30	40	50	60
	70	80	90	100		
m018.pep	NKYAFFAILLPMDF	YIAVCIEFDL	GFSIQMQFQ	FAEHGVRLVX		
	11111111111111	11111:11 1	1111111111	11:11 1111		
a018	NKYAFFAILLPMDF	YIAVCVEFGL	GFSIQMQFQ	FTEHGFRLVX		
•	70	80	90	100		

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 018 shows 84.5% identity over a 103 as overlap with a predicted ORF (ORF 018.ng) from N. gonorrhoeae:

m018/g018

	10	20	30	40	50	60
m018.pep	MQQRQLVGRIAC	DEDMRNTGLHGQ	RVGNRYAARI	FFDIDIFQTD	IVNVRTAAHG	CQHIFG
. 01.0	111 11111:1	::[[]]:[]	1:11 1111:	1 111:111	111111111111111111111111111111111111111	ШШ
g018	MQQGQLVGRVAR	nkdmrnaglhgqi	RIGNGYAARV	FVDIDVFQTD	IVNVRTATYG	CQHIFG
	10	20	30	40	50	60

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 105>: g019.seq (partial)

```
1 ..ctgctggcgg coctggtgct tgccgcgtgt tcttcgACAA ACAcacTGCC
51 AGCCGGCAAG ACCCCGGCAG ACAATATAGA AActgcCgAC CTTTCGGCAA
101 GCGTTCCCAC ccgcCCTGCC GAACCGGAAG GAAAAACGCT GGCAGATTAC
151 GGCGGCTACC CGTCCGCACT GGATGCAGTG AAACAGAACA ACGATGCGGC
201 AGCCGCCGCC TATTTGGAAA ACgcaggaga cagCGcgatg gcGGAAAatg
251 tccgcaagga gtgGCTGa
```

This corresponds to the amino acid sequence <SEQ ID 106; ORF 019.ng>; g019.pep (partial)

- 1 ..LLAALVLAAC SSTNTLPAGK TPADNIETAD LSASVPTRPA EPEGKTLADY
- 51 GGYPSALDAV KQNNDAAAAA YLENAGDSAM AENVRKEWL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 107>: m019.seq (partial)

```
1 ATGTACCTAC CCTCTATGAA GCATTCCCTG CCGCTGCTGG CGGCCCTGGT
  51 GCTTGCCGCG TGTTCTTCGA CAAACACACT GCCAGCCGGC AAGACCCCGG
     CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCCGCCCT
 151 GCCGAACCCG AAAGAAAAAC GCTGGCAGAT TACGGCGGCT ACCCGTCCGC
 201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
 251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
 301 AAGTCTTTGG GCGCACGCAG ACAGTGGACG CTGTTTGCAC AGGAATACGC
 351 CAAACTCGAA CCGGCAGGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
 401 CGAGCCGCAA CGACTATACG CGTGCCGCTG AACTGGTCAA AAATACGGGC
 451 AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
 501 CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
551 GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
601 TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
 651 CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
701 TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
 751 GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
 801 CGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
851 ACGCCCGCGC CGCCTTGCGC GCCCGACGTT GGGACGAGCT GGCCTCCGTT
901 ATCTCGCATA TGCCCGAAAA ACTGCAAAAA AGCCCGACCT GGCTCTACTG
951 GCTGGCACGC AGCCGCCCC CAACGGGCAA CACGCAAGAG GCGGAAAAAC
1001 TTTACAAACA GGCGGCAGCG ACGGGCAGGA ATTTTTATGC GGTGCTGGCA
1051 GGGGAAGAAT TGGGTCGGAA AATCGATACG CGCAACAATG TGCCCGATGC
1101 CGGCAAAAAC AGCGTCCGCC GCATGGCGGA AGACGGTGCA GTCAAACGCG
1151 CACTGGTACT GTTCCAAAAC AGCCAATCTG CCGGTGATGC AAAAATGCGC
1201 CGTCAGGCTC AGGCGGAATG GCGTTTTGCC ACACGCGGCT TTGACGAAGA
1251 CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA
1301 TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
1351 CGCTATATTT CGCCGTTTAA AGACACGGTA ATCCGCCACG CGCAAAATGT
1401 TAATGTCGAT CCGGCTTGGG TTTATGGGCT GATTCGTCAG GAAAGCCGCT
1451 TCGTTATAGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
1501 ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC
1551 ACAACTTTAC ACCGCCGACG GG...
```

This corresponds to the amino acid sequence <SEQ ID 108; ORF 019>: m019.pep (partial)

1 MYLPSMKHSL PLLAALVLAA CSSTNTLPAG KTPADNIETA DLSASVPTRP


```
51 AEPERKTLAD YGGYPSALDA VKQKNDAAVA AYLENAGDSA MAENVRNEWL
101 KSLGARRQWT LFAQEYAKLE PAGRAQEVEC YADSSRNDYT RAAELVKNTG
151 KLPSGCTKLL EQAAASGLLD GNDAWRRVRG LLAGRQTTDA RNLAAALGSP
201 FDGGTQGSRE YALLNVIGKE ARKSPNAAAL LSEMESGLSL EQRSFAWGVL
251 GHYQSQNLNV PAALDYYGKV ADRRQLTDDQ IEWYARAALR ARRWDELASV
301 ISHMPEKLQK SPTWLYWLAR SRAATGNTQE AEKLYKQAAA TGRNFYAVLA
351 GEELGRKIDT RNNVPDAGKN SVRRMAEDGA VKRALVLFQN SQSAGDAKMR
401 RQAQAEWRFA TRGFDEDKLL TAAQTAFDHG FYDMAVNSAE RTDRKLNYTL
451 RYISPFKDTV IRHAQNVNVD PAWVYGLIRQ ESRFVIGAQS RVGAQGLMQV
501 MPATAREIAG KIGMDAAQLY TADG...
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 109>:

```
a019.seg
         ATGTACCCAC CCTCTCTGAA GCATTCCCTG CCGCTGCTGG TGGNCCTGGT
         GCTTGCCGCG TGTTCTTNGA CAAACACACT GTCAGCCGAC AAGACCCCGG
     101 CAGACAATAT AGAAACTGCC GACCTTTCGG CAAGCGTTCC CACCNGCCCT
     151 GCCGAACCCG AANGAAAAAC GTNGGCAGAT TACGGCGGCT ACCCGTCCGC
     201 ACTGGATGCA GTGAAACAGA AAAACGATGC CGCCGTCGCC GCCTATTTGG
    251 AAAACGCCGG CGACAGCGCG ATGGCGGAAA ATGTCCGCAA CGAGTGGCTG
     301 AAGTCTTTGG GCGCGCGCAG ACAGTGGACG CTGTNTGCAC ANGAATATGC
     351 NAAACTCGAA CCGGCANGGC GCGCCCAAGA AGTCGAATGC TACGCCGATT
     401 CGAGCCGCAA CGACTATACG CGTGCCGCCG AACTGGTCAA AAATACGGGC
     451 AAACTGCCTT CGGGCTGCAC CAAACTGTTG GAACAGGCAG CCGCATCCGG
     501 CTTGTTGGAC GGCAACGACG CCTGGAGGCG CGTGCGCGGA CTGCTGGCCG
     551 GCCGCCAAAC CACAGACGCA CGCAACCTTG CCGCCGCATT GGGCAGCCCG
     601
         TTTGACGGCG GTACACAAGG TTCGCGCGAA TATGCCCTGT TGAACGTCAT
     651
         CGGCAAAGAA GCACGCAAAT CGCCGAATGC CGCCGCCCTG CTGTCCGAAA
         TGGAAAGCGG TTTAAGCCTC GAACAACGCA GTTTCGCGTG GGGCGTATTG
    701
         GGGCATTATC AGTCGCAAAA CCTCAATGTG CCTGCCGCCT TGGACTATTA
    801
         NGGCAAGGTT GCCGACCGCC GCCAACTGAC CGACGACCAA ATCGAGTGGT
    851
         ACGCCCGCGC CGCNNTNNGC NNNCGNNGTT NGNANGANNT GGCNNCCGNN
         ANCNCGNNNN TGCNNGANAA ACNNNNNNAN AGNCNNANNT NGNTNNANTG
    901
         NNTGGCACGC AGCCGCCCG CNACGGGCAA CACGCAANAN GCGGANAAAC
   1001
         TNTACAAACA GGCGGCAGCA NCGGGCANGA ATTTTTATGC NGTGCTGNCN
   1051
         GGGGAAGAGT TGGGGCGCAN AATCGATACG CGCAACAATG TGCCCGATGC
         CGGCAAAANC AGCGTCCTCC GTATGGCGGA AGACGGCGCG ATTAAGCGCG
   1101
         CGCTGGTGCT GTTCCGAAAC AGCCGAACCG CCGGCGATGC GAAAATGCGC
         CGTCNGGCTC AGGCGGAATG GCGTTTCGCC ACACGCGGCT TCGATGAAGA
   1201
         CAAGCTGCTG ACCGCCGCG AAACCGCGTT CGACCACGGT TTTTACGATA
   1301
         TGGCGGTCAA CAGCGCGGAA CGCACCGACC GCAAACTCAA CTACACCTTG
         CGCTACATTT CGNNNNTNA NGACACGGTA ATCCGCCACG CGCAAAATGT
   1401
         TAATGTCGAT CCGGCGTGGG TTTACGGGCT GATTCGTCAG GAAAGCCGCT
         TCGTTATGGG CGCGCAATCC CGCGTAGGCG CGCAGGGGCT GATGCAGGTT
   1451
   1501
         ATGCCTGCCA CCGCGCGCA AATCGCCGGC AAAATCGGTA TGGATGCCGC
   1551 ACAACTTTAC ACCGCCGACG GCAATATCCG TATGGGGACG TGGTATATGG
   1601 CGGACACCAA ACGCCGCCTG CAAAACAACG AAGTCCTCGC CACCGCAGGC
   1651
         TATAACGCCG GTCCCGGCAG GGCGCCCCA TGGCAGGCGG ACACGCCCCT
         CGAAGGCGCG GTATATGCCG AAACCATCCC GTTTTCCGAA ACGCGCGACT
   1751 ATGTCAAAAA AGTGATGGCC AATGCCGCCT ACTACGCCTC CCTCTTCGGC
   1801 GCGCCGCACA TCCCGCTCAA ACAGCGTATG GGCATTGTCC CCGCCCGCTG
   1851 A
```

This corresponds to the amino acid sequence <SEQ ID 110; ORF 019.a>:

. F - F					
1	MYPPSLKHSL	PLLVXLVLAA	CSXTNTLSAD	KTPADNIETA	DLSASVPTXP
51	AEPEXKTXAD	YGGYPSALDA	VKQKNDAAVA	AYLENAGDSA	MAENVRNEWL
101	KSLGARRQWT	LXAXEYAKLE	PAXRAQEVEC	YADSSRNDYT	RAAELVKNTG
151	KLPSGCTKLL	EQAAASGLLD	GNDAWRRVRG	LLAGROTTDA	RNLAAALGSP
201		YALLNVIGKE			
251	GHYQSQNLNV	PAALDYXGKV	ADRRQLTDDQ	IEWYARAAXX	XXXXXXXXX
301	XXXXXXXXXX	XXXXXXXAR	SRAATGNTQX	AXKLYKQAAA	XGXNFYAVLX
351	GEELGRXIDT	RNNVPDAGKX	SVLRMAEDGA	IKRALVLFRN	SRTAGDAKMR
401					RTDRKLNYTI.

- 451 RYISXXXDTV IRHAQNVNVD PAWVYGLIRQ ESRFVMGAQS RVGAQGLMQV
- 501 MPATAREIAG KIGMDAAQLY TADGNIRMGT WYMADTKRRL QNNEVLATAG
- 551 YNAGPGRARR WQADTPLEGA VYAETIPFSE TRDYVKKVMA NAAYYASLFG 601 APHIPLKQRM GIVPAR*

88.9% identity over a 524 aa overlap m019/a019

m019.pep	10 20 30 40 50 60 MYLPSMKHSLPLLAALVLAACSSTNTLPAGKTPADNIETADLSASVPTRPAEPERKTLAD : :
m019.pep	70 80 90 100 110 120 YGGYPSALDAVKQKNDAAVAAYLENAGDSAMAENVRNEWLKSLGARRQWTLFAQEYAKLE
m019.pep	130 140 150 160 170 180 PAGRAQEVECYADSSRNDYTRAAELVKNTGKLPSGCTKLLEQAAASGLLDGNDAWRRVRG
m019.pep	190 200 210 220 230 240 LLAGRQTTDARNLAAALGSPFDGGTQGSREYALLNVIGKEARKSPNAAALLSEMESGLSL
m019.pep	250 260 270 280 290 300 EQRSFAWGVLGHYQSQNLNVPAALDYYGKVADRRQLTDDQIEWYARAALRARRWDELASV
m019.pep	310 320 330 340 350 360 ISHMPEKLQKSPTWLYWLARSRAATGNTQEAEKLYKQAAATGRNFYAVLAGEELGRKIDT :
m019.pep	370 380 390 400 410 420 RNNVPDAGKNSVRRMAEDGAVKRALVLFONSQSAGDAKMRRQAQAEWRFATRGFDEDKLL
m019.pep	430 440 450 460 470 480 TAAQTAFDHGFYDMAVNSAERTDRKLNYTLRYISPFKDTVIRHAQNVNVDPAWVYGLIRQ TAAQTAFDHGFYDMAVNSAERTDRKLNYTLRYISXXXDTVIRHAQNVNVDPAWVYGLIRQ 430 440 450 460 470 480
m019.pep	490 500 510 520 ESRFVIGAQSRVGAQGLMQVMPATAREIAGKIGMDAAQLYTADG :
a019	QNNEVLATAGYNAGPGRARRWQADTPLEGAVYAETIPFSETRDYVKKVMANAAYYASLFG 550 560 570 580 590 600

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 019 shows 95.5% identity over a 89 aa overlap with a predicted ORF (ORF 019.ng) from N. gonorrhoeae:

g019/m019

			10	20	30	40	49
g019.pep		LLA	ALVLAACSST	ntlpagktpai	DNIETADLSA	SVPTRPAEPEC	KTLAD
		1111		1111111111	[[[]]]	111111111	$\Pi\Pi\Pi$
m019	MYLPS	MKHSLPLLA <i>I</i>	ALVLAACSST	NTLPAGKTPAI	ONIETADLSA	SVPTRPAEPER	≀KTLAD
		10	20	30	40	50	60
			•				
	50	60	70	80	89		
g019.pep	YGGYP	SALDAVKQNI	IDAAAAAYLE	NAGDSAMAEN	VRKEWL		
					[]:[]		
m019	YGGYP	SALDAVKQKI	NDAAVAAYLE:	NAGDSAMAEN	VRNEWLKSLG	ARROWTLFAGE	YAKLE
		70	80	90	100	110	120

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 111>: g023.seq

- ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT 1 51 AATGCAGCGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT 101 TAGTGGTTCT ATTTGCCCTG CCTAAAGAAT ATCCGGCATG GCAGGCATTT
 - 151 TTTAGTCAAG CTTGGGTAAA AGTATTTACC CAAGTGAGCT TTATCGCCGT 201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
 - 251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT TGtctGGCTG
 - 301 GTCGGCTGCC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 112; ORF 023.ng>: g023.pep

- 1 MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFAL PKEYPAWOAF
- 51 FSQAWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL
- 101 VGCLVYSVKV IWG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>: m023.seq

- 1 ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GCGATTGGGT
 - 51 GATGCAACGT GCGACTGCGG TTATTATGTT GATTTATACC GTTGCACTTT
 - 101 TAGTGGTTCT ATTTTCCCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT
 - 151 TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT
 - 201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATCA
 - 251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTTTGGCTG
 - 301 GTCGGCTGTC TCGTGTATTC AGTTAAAGTG ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 114; ORF 023>: m023.pep

- 1 MVERKLTGAH YGLRDWVMQR ATAVIMLIYT VALLVVLFSL PKEYSAWOAF
 - 51 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYIKPFGVRL FLQVATIVWL
 - 101 VGCLVYSVKV IWG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 115>: a023.seq

- ATGGTAGAAC GTAAATTGAC CGGTGCCCAT TACGGTTTGC GGGATTGGGC
 - 51 GATGCAACGT GCGACCGCGG TTATTATGTT GATTTATACC GTTGCACTTT
 - 101 TAGTGGTTCT ATTTGCTCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT 151 TTTAGTCAAA CTTGGGTAAA AGTATTTACC CAAGTGAGCT TCATCGCCGT TAGTGGTTCT ATTTGCTCTG CCTAAAGAAT ATTCGGCATG GCAGGCATTT

- 201 ATTCTTGCAC GCTTGGGTGG GTATCCGCGA TTTGTGGATG GACTATATNA
- 251 AACCCTTCGG CGTGCGTTTG TTTTTGCAGG TTGCCACCAT CGTCTGGCTG
- 301 GTCGGCTGCT TGGTGTATTC AATTAAAGTA ATTTGGGGGT AA

This corresponds to the amino acid sequence <SEQ ID 116; ORF 023.a>:

- a023.pep
 - 1 MVERKLTGAH YGLRDWAMQR ATAVIMLIYT VALLVVLFAL PKEYSAWQAF 51 FSQTWVKVFT QVSFIAVFLH AWVGIRDLWM DYXKPFGVRL FLQVATIVWL
 - 101 VGCLVYSIKV IWG*

m023/a023 96.5% identity over a 113 aa overlap

	10	20	30	40	50	60
m023.pep	MVERKLTGAH	YGLRDWVMQI	RATAVIMLIY	TVALLVVLFSI	PKEYSAWQAFE	SQTWVKVFT
		1111111111	111111111	1111111111:1	111111111111	HILLIBE
a023	MVERKLTGAH	YGLRDWAMQI	RATAVIMLIY	TVALLVVLFAI	PKEYSAWQAFE	SQTWVKVFT
	10	20	0 3	0 40	50	60
	70	. 80	9	0 100	110	
m023.pep	QVSFIAVFLH	AWVGIRDLW	MDYIKPFGVR	LFLQVATIVWL	VGCLVYSVKVI	WGX
				11111111111	1111111:111	111
a023	QVSFIAVFLH	AWVGIRDLW	MDYXKPFGVR	LFLQVATIVWI	VGCLVYSIKVI	WGX
	70	8	9	0 100	110	

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 023 shows 97.3% identity over a 113 aa overlap with a predicted ORF (ORF 023.ng) from N. gonorrhoeae:

g023/m023

	10	20	30	40	50	60
g023.pep	MVERKLTGAHYGLR	DWVMQRATAV	IMLIYTVALI	VVLFALPKE	YPAWQAFFSQA	WVKVFT
		1111111111	1111111111	:	[[]]]]]:	111111
m023	MVERKLTGAHYGLR					
	10	20	30	40	50	60
	70	80	90	100	110	
g023.pep	QVSFIAVFLHAWVG	IRDLWMDYIK	PFGVRLFLQV	ATIVWLVGC	LVYSVKVIWGX	
		1111111111	1111111111			
m023	QVSFIAVFLHAWVG					
	70	80	90	100	110	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 117>: g025.seq

1	ATGTTGAAAC	AAAcgACACT	TTTGGCAGCT	TGTACCGCCG	TTGCCGCTCT
51	GTTGGGCGGT	TGcgCCACCC	AACAGCCTGC	TCCTGTCATT	GCAGGCAATT
101	CAGGTATGCA	GACCGTATCG	TCTGCGCCGG	TTTACAATCC	TTATGGCGCA
151		ATGCCGCTCC			
201	CGTGCAAact	gcgccggttT	ATTCGCCTCC	TGCTTATGTT	CCGCcgtCTG
251		${\tt TTCGGgtaca}$			
301	aacgCGGCGa	cgCataCTAT	TGTGCGTGGC	GACACgGtgt	acaACATTTc
351		CATATCTCTC			
401		GTTGAGCATC			
451	TATGCCGCAC	CGAAAACCGC	AGCCGTAGAA	AGCAGGCCCG	CCGTACCGGC
501	TGCCGCGCAA	ACCCCTGTGA	AACCCGCCGC	gcaACCGCCC	GTTCAGTCCG
551		TGCCGCGCCC			
601	GCGCCCGCCC				
651	CGGCGGCATT	GTTTGGCAGC	GTCCGACCCA	AGGTAAAGTG	GTTGCCGATT

1001 ATATCGCGTT CTGA

```
701 TCGGCGGCG CAACAAGGGT GTCGATATTG CCGGCAATGC CGGACAACCC
751 GTTTTGGCG CGGCTGACGG CAAAGTGGTT TATGCCGGTT CAGGTTTGAG
801 GGGATACGGA AACTTGGTCA TCATCCAGCA CAATTCCTCT TTCCTGACCG
851 CGTACGGGCA CAACCAAAAA TTGCTGGTCG GCGAAGGTCA GCAGGTCAAA
901 CGCGGTCAGC AGGTTGCTTT GATGGGTAAT ACCGATGCTT CCAGAACGCA
951 GCTTCATTTC GAGGTGCGTC AAAACGGCAA ACCGGTTAAC CCGAACAGCT
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 025.ng>: g025.pep

```
MLKQTTLLAA CTAVAALLGG CATQQPAPVI AGNSGMQTVS SAPVYNPYGA
TPYNAAPAAN DAPYVPPVQT APVYSPPAYV PPSAPAVSGT YVPSYAPVDI
101 NAATHTIVRG DTVYNISKRY HISQDDFRAW NGMTDNTLSI GQIVKVKPAG
151 YAAPKTAAVE SRPAVPAAAQ TPVKPAAQPP VQSAPQPAAP AAENKAVPAP
201 APAPQSPAAS PSGTRSVGGI VWQRPTQGKV VADFGGGNKG VDIAGNAGQP
251 VLAAADGKVV YAGSGLRGYG NLVIIQHNSS FLTAYGHNQK LLVGEGQQVK-
301 RGQQVALMGN TDASRTQLHF EVRQNGKPVN PNSYIAF*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>: m025.seq (partial)

```
..GTGCCGCCGG TGCAAAGCGC GCCGGTTTAT ACGCCTCCTG CTTATGTTCC
  1
        GCCGTCTGCA CCTGCCGTTT CGGGTACATA CGTTCCTTCT TACGCACCCG
 51
        TCGACATCAA CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC
 151
       AACATTTCCA AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA
        CGGCATGACC GACAATACGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC
 201
 251
        CGGCAGGATA TGCCGCACCG AAAGCCGCAG CCGTAAAAAG CAGGCCCGCC
 301
       GTACCGGCTG CCGCGCAACC GCCCGTACAG TCCGCACCCG TCGACATTAA
 351
       CGCGGCGACG CATACTATTG TGCGCGGCGA CACGGTGTAC AACATTTCCA
       AACGCTACCA TATCTCTCAA GACGATTTCC GTGCGTGGAA CGGCATGACC
 401
 451
        GACAATATGT TGAGCATCGG TCAGATTGTT AAAGTCAAAC CGGCAGGATA
501
       TGCCGCACCG AAAACCGCAG CCGTAGAAAG CAGGCCCGCC GTACCGGCTG
       CCGTGCAAAC CCCTGTGAAA CCCGCCGCG AACCGCCTGT GCAGTCCGCG
551
 601
       CCGCAACCTG CCGCGCCCGC TGCGGAAAAT AAAGCGGTTC CCGCGCCCGC
       CCCGCAATCT CCTGCCGCTT CGCCTTCCGG CACGCGTTCG GTCGGCGGCA
 651
 701
       TTGTTTGGCA GCGTCCGACG CAAGGTAAAG TGGTTGCCGA TTTCGGCGGC
       AACAACAAGG GTGTCGATAT TGCCGGTAAT GCGGGACAGC CCGTTTTGGC
 751
 801
       GGCGGCTGAC GGCAAAGTGG TTTATGCCGG TTCAGGTTTG AGGGGATACG
851
       GAAACTTGGT CATCATCCAG CATAATTCTT CTTTCCTGAC CGCATACGGG
901
       CACAACCAAA AATTGCTGGT CGGCGAGGGG CAGCAGGTCA AACGCGGTCA
       GCAGGTTGCT TTGATGGGCA ATACCGATGC TTCCAGAACG CAGCTTCATT
951
1001
       TCGAGGTGCG TCAAAACGGC AAACCGGTTA ACCCGAACAG CTATATCGCG
1051
       TTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 110; ORF 025>:

```
m025.pep (partial)

1 .VPPVQSAPVY TPPAYVPPSA PAVSGTYVPS YAPVDINAAT HTIVRGDTVY
51 NISKRYHISQ DDFRAWNGMT DNTLSIGQIV KVKPAGYAAP KAAAVKSRPA
101 VPAAAQPPVQ SAPVDINAAT HTIVRGDTVY NISKRYHISQ DDFRAWNGMT
151 DNMLSIGQIV KVKPAGYAAP KTAAVESRPA VPAAVQTPVK PAAQPPVQSA
201 PQPAAPAAEN KAVPAPAPQS PAASPSGTRS VGGIVWQRPT QGKVVADFGG
251 NNKGVDIAGN AGQPVLAAAD GKVVYAGSGL RGYGNLVIIQ HNSSFLTAYG
301 HNQKLLVGEG QQVKRGQQVA LMGNTDASRT QLHFEVRQNG KPVNPNSYIA
351 F*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>: a025.seq

- 1 ATGTTGACAC CAACAACACT TTAGGTAGCT TGTACCGCCC TTGCCGCTCA 51 GTTGGGCGGA TGCCCCACCC AACACCCTTC TCCTGTCATT GCAGGCAATT
- 101 CAGGTATGCA GACCGTACCG TCTGCGCCGG TTTACAATCC TTATGGCGCA

151	ACGCCGTACA ATGCCGCTCC TGCCGCCAAC GATGCGCCGT ATGTGCCGCC
201	GGTGCAAAGC GCGCCGGTTT ATANGCCTCC TGCTTATGTT CCGCCGTCTG
251	CACCTGCCGT TTCGGGTACA TACGTTCCTT CTTACGCANC CGTCGACATC
301	AACGCGGCGA CCCATACTAT TGTGCGCGGC GACACCGTGT ACAAGATTTC
351	CAAATGCTAC CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA
401	CCGACAATAC GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA
451	TATGCCGCAC CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC
501	TGCCGCGCAA CCGCTCGTAC AGTCCGCACC CGTCGACATC AACGCGGCGA
551	CGCATACTAT TGTGCGCGGC GACACGGTGT ACAACATTTC CAAACGCTAC
601	CATATCTCTC AAGACGATTT CCGTGCGTGG AACGGCATGA CCGACAATAC
651	GTTGAGCATC GGTCAGATTG TTAAAGTCAA ACCGGCAGGA TATGCCGCAC
701	CGAAAGCCGC AGCCGTAAAA AGCAGGCCCG CCGTACCGGC TGCCGTGCAA
751	ACCCCTGTGA AACCCGCCGC GCAACCGCCT GTGCAGTCCG CGCCGCAACC
801	TGCCGCGCCC GCTGCGGAAA ATAAAGCGGT TCCCGCGCCC GCCCCGCAAT
851	CTCCTGCCGC TTCGCCTTCC GGCACGCGTT CGGTCGGCGG CATTGTTTGG
901	CAGCGTCCGA CGCAAGGTAA AGTGGTTGCC GATTTCGGCG GCAACAACAA
951	GGGTGTCGAT ATTGCAGGAA ATGCGGGACA GCCCGTTTTG GCGGCGGCTG
1001	ACGGCAAAGT GGTTTATGCA GGTTCCGGTT TGAGGGGGATA CGGCAATTTG
1051	GTCATCATCC AGCATAATTC TTCCTTCCTG ACCGCATACG GGCACAACCA
1101	
1151	CTTTGATGGG CAATACCGAG GCTTCTAGAA CGCAGCTTCA TTTCGAGGTG
1201	CGGCAAAACG GCAAACCGGT TAATCCGAAC AGCTATATCG CGTTCTGA
This same and	a to the emine and requests SEO ID 110, ODE 005
•	s to the amino acid sequence <seq 025.a="" 112;="" id="" orf="">:</seq>
a025.pep	
. 1	MLTPTTL*VA CTALAAQLGG CPTQHPSPVI AGNSGMQTVP SAPVYNPYGA
51	TPYNAAPAAN DAPYVPPVQS APVYXPPAYV PPSAPAVSGT YVPSYAXVDI
101	
151	YAAPKAAAVK SRPAVPAAAQ PLVQSAPVDI NAATHTIVRG DTVYNISKRY
201	- · · · · · · · · · · · · · · · · · · ·
251 301	TPVKPAAQPP VQSAPQPAAP AAENKAVPAP APQSPAASPS GTRSVGGIVW
351 401	
401	RQNGKPVNPN SYIAF*
	RQNGKPVNPN SYIAF*
401	RONGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap
401 m025/a025	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30
401	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep	RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025 pep a025 m025 pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025 pep a025 m025 pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025 pep a025 m025 pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025 pep a025 m025 pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025.pep a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025.pep a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025.pep a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
m025/a025 m025.pep a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS
401 m025/a025 m025.pep a025 m025.pep a025 m025.pep a025 m025.pep a025	### RQNGKPVNPN SYIAF* 97.4% identity over a 351 aa overlap 10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS

a025	KAVPAPAPQSPA	ASPSGTRSV	GGIVWQRPTQ	GKVVADFGG1	NKGVDIAGNA	GOPVLAAAD
	280 ·	290	300	310	320	330
	280	290	300	310	320	330
m025.pep	GKVVYAGSGLRO	SYGNLVIIQHI	NSSFLTAYGH	INQKLLVGEG(QVKRGQQVAL	MGNTDASRT
						1111:1111
a025	GKVVYAGSGLR	SYGNLVIIQHI	NSSFLTAYGE	INQKLLVGEG	QVKRGQQVAL	MGNTEASRT
	340	350	360	370	380	390
	340	350				
m025.pep	QLHFEVRQNGKI	VNPNSYIAF	ζ			
	[[[[[[[[[[[[[[[[[[[[1			
a025	QLHFEVRQNGK	PVNPNSYIAF	{			
	400	410				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 025 shows 75.6% identity over a 353 aa overlap with a predicted ORF (ORF 025.ng) from N. gonorrhoeae:

m025/g025

m025.pep	10 20 30 VPPVQSAPVYTPPAYVPPSAPAVSGTYVPS : :
g025	GMQTVSSAPVYNPYGATPYNAAPAANDAPYVPPVQTAPVYSPPAYVPPSAPAVSGTYVPS 40 50 60 70 80 90
m025.pep	40 50 60 70 80 90 YAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMTDNTLSIGQIVKVKPAGYAAP
m025.pep	100 110 120 130 140 150 KAAAVKSRPAVPAAAQPPVQSAPVDINAATHTIVRGDTVYNISKRYHISQDDFRAWNGMT
m025.pep	160 170 180 190 200 210 DNMLSIGQIVKVKPAGYAAPKTAAVESRPAVPAAVQTPVKPAAQPPVQSAPQPAAPAAEN
m025.pep	220 230 240 250 260 KAVPAPAPQSPAASPSGTRSVGGIVWQRPTQGKVVADFGGNNKGVDIAGNAGQPVLAA
m025.pep g025	270 280 290 300 310 320 ADGKVVYAGSGLRGYGNLVIIQHNSSFLTAYGHNQKLLVGEGQQVKRGQQVALMGNTDAS
m025.pep	330 340 350 RTQLHFEVRQNGKPVNPNSYIAFX

RTQLHFEVRQNGKPVNPNSYIAFX 9025 320 330

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 113>: g031.seq

```
ATGGTGTCCC TCCGCTTCAG ATTCGGCAAC CACTTTAAAC GCCGACATTC
     TGACAATTTC CTTTTCCGCC AGCCAAATAT CATGCGTATC TTTCGGTTCG
     GGCTTGTTGG GCATGGCAAC CTTCAACAGC CGCGCCATCA CAGGAATCGT
101
     CGTTCCCTGA ATCAGCAGCG ACAGCACCAC CACGGCAAAC GCCACATCAA
201 ACAGCAGGTG CGAATTGGGA ACGCCCATCA CCAGCGGCAT CATCGCCAGC
     GAAATCGGTA CGGCTCCTCG CAAGCCCAAC CAACTGATAT ACGCCTTTTC
301 ACGCAGGCTG TAATTGAATT TCCACAAACC GCCGAACACT GCCAGCGGAC
351 GCGCGACCAG CATCAGGAAC GCCGCAATCG CCAAGGCTTC CGCCGCCCTG
401 TCCAACACGC CGGCGGGAGA AACCAGCAGA CCGAGCATGA CGAACAAAGT
451 TGCCTGCGCC AGCCAAGCCA AACCGTCCAT CACACGCAAA ACGTGTTCCG
501 TcgcACGGTT GCGCTGGTTA CCGACAATGA TGCCGGCAAG GTAAACCGCC
551 AAAAAGCCGC TGCCGCCTAT GGTATTGGTA AACGCAAACA CAAGCAGCCC
601 GCCCGACACA ATCATCAGCG CGTACAGACC TTCCGtacac acctccaatt
651 cccaatcaac gtcatagctg tctcccgtgt taaaatgttc ttcacttcag
     aatcccccc ttcttcccag cccgaaacct tcatgtgtta naccctgggg
701
751 tgccccaacg gatttagtaa cctcccaatg actctgcttg tcgcccctt
801 cgcccgcttt ctccttccgg gaaaacttgt tgtccccgtc ttacattaa
```

This corresponds to the amino acid sequence <SEQ ID 114; ORF 031.ng>: g031.pep

- MVSLRFRFGN HFKRRHSDNF LFRQPNIMRI FRFGLVGHGN LQQPRHHRNR
- 51 RSLNQQRQHH HGKRHIKQQV RIGNAHHQRH HRQRNRYGSS QAQPTDIRLF
- 101 TQAVIEFPQT AEHCQRTRDQ HQERRNRQGF RRPVQHAGGR NQOTEHDEOS
- 151 CLROPSQTVH HTONVFRRTV ALVTDNDAGK VNROKAAAAY GIGKRKHKOP 201 ARHNHORVQT FRTHLOFPIN VIAVSRVKMF FTSESPPSSQ PETFMCXTLG
- 251 CPNGFSNLPM TLLVAPFARF LLPGKLVVPV LH*

The following partial DNA sequence was identified in N. meningitidis <SEO ID 115>: m031.seq (partial)

- ...CGCCTGAAGC ACGGTGTCGG ACTGCATTTC TATTCGGCTA TACGCCTTTT 1 CACGCAGGCT GTAATTGAAT TTCCACAAAC CGCCGAACAC TGCCGACGGA
- 101 CGCGCGACCA GCATCAGGAA CGCCGCAATC GCCAAGGCTT CCGCCGCCCT GTCCAACACG TTGGCAGGAG AAACCAGCAG CAAAGGCATT CCCAAACGTG 151
- 201 CGGACAAAGT GGTCGAAACC ACGCTCAGAA ACAACAGTGC GCCACCCGGC
- 251 AG....

This corresponds to the amino acid sequence <SEQ ID 116; ORF 031>: m031.pep (partial)

...RLKHGVGLHF YSAIRLFTQA VIEFPQTAEH CRRTRDQHQE RRNRQGFRRP VQHVGRRNQQ QRHSQTCGQS GRNHAQKQQC ATRQ....

The following partial DNA sequence was identified in N. meningitidis <SEO ID 117>: a031.seq

- ATACGCCTTT TCACGCAGGC TGTAATTGAA TTTCCACAAA CCGCCGAACA
 - CTGCCGGCGG ACGCGCGACC AGCATCAGGA ACGCCGCAAT CGCCAAGGCT 51
 - 101 TCCGCCGCCC CGTCCAACAC GTTGGCAGGA GAAACCAGCA GCAAAGGCAT
 - 151 TCCCAAACGT GCGGACAAAG TGGTCGAAAC CACGCTCAGA AACAACAGTG
 - 201 CGCCACCCGG CAG

This corresponds to the amino acid sequence <SEQ ID 118; ORF 031.a>:

- a031.pep
 - IRLFTQAVIE FPQTAEHCRR TRDQHQERRN RQGFRRPVQH VGRRNQQQRH
 - 51 SQTCGQSGRN HAQKQQCATR Q

```
m031/a031 100.0% identity over a 71 aa overlap
```

	10	20	30	40	50	60
m031.pep	RLKHGVGLHFYSA	TRLFTQAVIEF	POTAEHCRRTRD	QHQERRNRQ	GFRRPVQHVGR	RNQQ
	1			111111111		1111
a031]	IRLFTQAVIEF	POTAEHCRRTRD	QHQERRNRQO	FRRPVQHVGR	RNQQ
		10	20	30	40	
	70	80				
m031.pep	QRHSQTCGQSGRN	HAQKQQCATRQ				
	1111111111111					
a031	QRHSQTCGQSGRNI	IAQKQQCATRQ				
	50 60	70				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 031 shows 60.0% identity over a 85 aa overlap with a predicted ORF (ORF 031.ng) from N. gonorrhoeae:

m031/g031

	•			10	20	30
m031.pep			R	LKHGVGLHFYS	SAIRLFTQAV	IEFPQTAEH
			l	::1: :		11111111
g031	NQQRQHHHGKRH	IKQQVRIGNA	нидринирог	NRYGSSQAQPT	DIRLFTQAV	IEFPOTAEH
	60	70	80	90	100	110
	40	50	60	70	80	
m031.pep	CRRTRDQHQERRI	NRQGFRRPVQ	HVGRRNQQQ	RHS-QTCGQS	RNHAQKQQC.	ATRO
	1:1111111111		1:1 1111	:1: 1:1 ::	: :::	: 1:
g031	CORTRDOHQERRI	NRQGFRRPVQ	HAGGRNQQT	EHDEQSCLRQ	SQTVHHTQN	VFRRTVALV
	120	130	140	150	160	170
g031	g031 TDNDAGKVNRQKAAAAYGIGKRKHKQPARHNHQRVQTFRTHLQFPINVIAVSRVKN				SRVKMFFTS	
•	180	190	200	210	220	230

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 119>: g032.seq

```
1
    ATGCGGCGAA ACGTGCCTGC CGTCGCCGTA TTGCGCCGCC CACGATTCGA
51
    GGCGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
101 AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
151 CAAGGCTTCC ACGCTTTTGC CGGTCAGCGG AACCTGACGC TGCTTGCGCC
201 CTTTGCCGGT AACGTGTACC CACGCTTCGT CCAAATATAC ATCATCTGCA
251 TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGCTC
301
    GAACAGCGCG TGGTCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
351 AATCCAACAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
    451
    CCCGCGTTTG ACCAGCCAGG CGCAATACTG CCGCCACGCC GACAGCTTGC
501
    GCGCCAGCGT CCGACCGTCC AAACCGCGCT GCGACAGCCG CCGCAACGCC
551
    GccgTAAAAT CGCGCCGCGA CAAGTCCTGC GGCACGCcgc ctgcaTCTTC
    AGACGGCATT TGTGCCAACA GTGCAAACAG TTCTTCCAAA TCGCGCCGGT
651
    ATGCCGCAAC CGTGTGCTCC GACTTGCCCT CGCGCACGAT GTTTTCCAAA
    TAAGCGTCAA AATacgccgC AAACccgTCC AAAACCATAA CCGTCCCACA
    CAAATATCAA AAAACCAGTG A
```

This corresponds to the amino acid sequence <SEQ ID 110; ORF 032.ng>: g032.pep

- 1 MRRNVPAVAV LRRPRFEAFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF
- 51 QGFHAFAGQR NLTLLAPFAG NVYPRFVQIY IICIQAVYLA HAQTAAVHQL


```
211
```

```
101 EQRVVAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGAHQ
              PAFDQPGAIL PPRRQLARQR PTVQTALRQP PQRRRKIAPR QVLRHAACIF
          201 RRHLCQQCKQ FFQIAPVCRN RVLRLALAHD VFQISVKIRR KPVQNHNRPT
          251 QISKNQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 111>:
     m032.seq
              ATGCGGCGAA ACGTGCmTGC mGTCGCCGTT kTGCGCCGCC CATTGCGCCA
           51 AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
          101 AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
          151 CAGGGCTTCC ACGCTTTTGC CGACCAGCGG CACCTGCCGC TgTT.GCGCC
          201 CTTTGCCGAT AACGTGTACC CACGCYTCGT CCAAATAGAC ATCATCTGCA
              TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
          251
              GAACAGGGCG TGGTCGCGGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
          301
          351 AATCCAGCAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
              GCCGCGCTTT ACCAGCCAAA CGCAATACTG CCGCCAAGAC GAAAGCTTGC
          451
              GAGCCAGCGT CCGTTCCCCC AAACCGCG...
This corresponds to the amino acid sequence <SEQ ID 112; ORF 032>:
              (partial)
     m032.pep
              MRRNVXAVAV XRRPLRQTFL DLALAQARAV PAGKQGFAVR CRLTQRQIVF
            1
              QGFHAFADQR HLPLXAPFAD NVYPRXVQID IICIQAVYLA HAQTAAVHQF
           51
          101 EQGVVAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGVHQ
          151 AALYOPNAIL PPRRKLASOR PFPOTA...
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 113>:
     a032.seq
              ATGCGGCGAA ACGTGCCTGC CGTCGCCGTT TTGCGCCGCC CATTGCGCCA
           51 AACGTTTTTG GATTTGGCGT TGGCTCAGGC GCGTGCCGTT CCTGCCGGTA
          101 AACAGGGCTT TGCCGTCCGA TGCCGTCTGA CGCAGCGGCA GATAGTTTTT
          151 CAGGGCTTCC ACGCTTTTGC CGGTCAGCGG AACCTGCCGC TGCTTGCGTC
          201
              CTTTGCCGGT AACGTGTACC CACGCCTCGT CCAAATATAC ATCATCTGCA
              TTCAAGCCGT GTATCTCGCT CACGCGCAAA CCGCTGCCGT ACATCAGTTC
          251
              GAACAGCGCG TGATCGCGCA CCGCCAGCGG GTCGCCGCCG TCCACGGGCA
          301
          351
              AATCCAGCAT CCGGTTCAGC CATTCCTGCG GCAGGGCTTT GGGTACGCGC
          401
              451 ACCGCGTTTG ACCAGCCAGG CGCAATACTG CCGCCAAGAC GACAGCTTGC
          501
              GCGCCAGCGT CCGCGCATTC AAACCGCGCT GCGACAGCCG CCGCAACGCC
          551 GCCGTAAAAT CGCGCTGCGA CAAGCCCTGC GGCACGCCGC CTGCATCTTC
              AGACGGCATT TGTGCCAACA GCGCAAACAG TTCTTCCAAA TCGCGCCGGT
          651 ATGCCGCCAC CGTGTGCTCC GACTTGCCCT CGCGCACGAT GTTTTCCAAA
              TAAGCGTCAA AATGCGCCGC AAACCCGTCC AAAACCATAA CCGCCCCACA
              CAAATATCAA AAAAACAGTG A
This corresponds to the amino acid sequence <SEQ ID 114; ORF 032.a>:
     a032.pep
              MRRNVPAVAV LRRPLRQTFL DLALAQARAV PAGKOGFAVR CRLTOROIVF
           51
              QGFHAFAGQR NLPLLASFAG NVYPRLVQIY IICIQAVYLA HAQTAAVHQF
          101 EQRVIAHRQR VAAVHGQIQH PVQPFLRQGF GYALGLLRRF DVGGRVGMQQ
              TAFDQPGAIL PPRRQLARQR PRIQTALRQP PQRRRKIALR QALRHAACIF
              RRHLCQQRKQ FFQIAPVCRH RVLRLALAHD VFQISVKMRR KPVQNHNRPT
          201
              QISKKQ*
          251
m032/a032
            88.1% identity over a 176 aa overlap
                                            30
                                                     40
                 MRRNVXAVAVXRRPLRQTFLDLALAQARAVPAGKQGFAVRCRLTQRQIVFQGFHAFADQR
     m032.pep
                 a032
                 {\tt MRRNVPAVAVLRRPLRQTFLDLALAQARAVPAGKQGFAVRCRLTQRQIVFQGFHAFAGQR}
```

20

30

40

50

	70	80	90	100	110	120
m032.pep	HLPLXAPFADNVYP	RXVQIDIIC	TQAHA1YVAQ	AAVHQFEQGV	VAHRQRVAA	VHGQIQH
	: ! !	1 111 1111			:11111111	шшіг
a032	NLPLLASFAGNVYP	RLVQIYIIC	TQAHA1YVAQ:	'AAVHQFEQRV	IAHRQRVAA	VHGQIQH
	70	80	90	100	110	120
	130	140	150	160	170	
m032.pep	PVQPFLRQGFGYAL	GLLRRFDVG	RVGVHQAALY	QPNAILPPRE	KLASORPFP	ATC
				ÎI:HIIII		111
a032	PVQPFLRQGFGYAL	GLLRRFDVG	RVGMQQTAFE	QPGAILPPRR	QLARORPRI	TALROP
	130	140	150	160	170	180
a032	PQRRRKIALRQALR	.HAACIFRRHI	CQQRKQFFQI	APVCRHRVLR	LALAHDVFO:	ISVKMRR
	190	200	210	220	230	240

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 032 shows 86.4% identity over a 176 aa overlap with a predicted ORF (ORF 032.ng) from N. gonorrhoeae:

m032/g032

	10	20	30	40	50	60
m032.pep	MRRNVXAVAVXRRP	LRQTFLDLAI	LAQARAVPAGK	QGFAVRCRLT	QRQIVFQGF	HAFADOR
	11111 1111 111	::[][][]		11111111111		1111 11
g032	MRRNVPAVAVLRRP	RFEAFLDLAI	AOARAVPAGK	OGFAVRCRL	OROTVFOGE	
,	10	20	30	40	50	60
	70	80	90	100	110	120
m032.pep	HLPLXAPFADNVYP	RXVQIDIIC	TQAVYLAHAQT	'AAVHQFEQGV	VAHRQRVAA	/HGOIOH
	:1 1 1111 1111	1 111 1111	шшші		HHĨIII	
g032	NLTLLAPFAGNVYP	RFVQIYIIC	CAVYLAHAOT	AAVHOLEORV	VAHRORVAA	
	70	80	90	100	110	120
	130	140	150	160	170	
m032.pep	PVQPFLRQGFGYAL	GLLRRFDVG	RVGVHQAALY	QPNAILPPRE	KLASORPFP	OTA
	11111111111111	111111111	111:11 1:	11:1111111		LLL
g032	PVQPFLRQGFGYAL	GLLRRFDVG	RVGAHQPAFD	OPGAILPPRE	OLARORPTV	TALROP
	130	140	150	160	170	180
g032	PQRRRKIAPRQVLR	HAACI FRRHI	CQQCKQFFQI	APVCRNRVLF	LALAHDVFO:	ISVKIRR
	190	200	210	220	230	240

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 115>: g033.seq

1	ATGGCGGCGG	CGGACAAACT	CTTGGGCGGC	GACCGCCGCA	GCGTCGCCAT
51	CATCGGAGAC	GGCGCGATGA	CGGCGGGGCA	GGCGTTTGAA	GCCTTGAATT
101	GCGCGGGCGA	TATGGATGTG	GATTTGCTGG	TCGTCCTCAA	CGACAACGAA
151	ATGTCGATTT	CCCCCAACGT	CGGCGCGTTG	CCCAAATATC	TTGCCAGCAA
201	CGTCGTGCGC	GATATGCACG	GACTGTTGAG	TACCGTCAAA	GCGCAAAcgg
251	GCAAGGTATT	AGACAAAATA	CCCGGCGCGA	TGGagtTTGC	CCAAAAAGTC
301	GAACAcaaaA	TCAAAACCCT	TGCCGAAGAA	GCCGAACACG	CCAAACAGTC
351	GCTGTCGCTG	TTTGAAAATT	TCGGCTTCCG	CTACACCGGC	CCCGTGGACG
401	GACACAACGT	CGAGAATCTG	GTGGACGTAT	TGAAAGACTT	GCGCAGCCGC
451	AAAGGCCCTC	AGTTGCTGCA	CGTCATCACC	AAAAAGGGCA	ACGGCTACAA
501	ACTCGCCGAA	AACGACCCcg	tcaAATACCA	CGCCGTCGCc	aACCTGCcta
551	AAGAAGGCGG	GGCGCAAATg	CCGTCTGAAA	AAGAACCCAA	GCCCGCCgCc
601	aaaccgACCT	ATACCCAAGT	ATTCGGCAAA	TGGCTGTGCG	ACCGGGCGGC
651	GGCAGATTCC	CGACTGGTTG	CGATTACCCC	CGCCATGCGC	GAGGGCAGCG


```
701 GACTGGTGGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
 751 ATCGCCGAGC AGCACGCCGT tacCTTTGCC GGCGGTTTGG CGTGCGAAGG
 801 CATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
 851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
      GTCGACCGTG CGGCATCGT CGGCGCGGAC GGTCCGACCC ATGCCGGCTT
 951 GTACGATTTG AGCTTCTTGC GCTGTGTGCC GAACATGATT GTTGCCGCGC
1001 CGAGCGATGA AAACGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCG
1051 GATGCGCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCGCC
1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
1151 GCGAAGGTGA GAAAACCGCC TTCatTGCCT TCGGCAGTAT GGTCGCCACC
1201 GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTt
1251
      cqtcaaacCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCAcq
      accGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCGGC
      GCGGTCTTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTTTTGCT
1351
      TTTGGGCGTT GCCGATACCG TAACCGAACA CGGCGATCCG AAAAAACTTT
1401
1451
      TGGACGATTT GGGTTTGAGT GCCGAAGCGG TGGAACGCCG GGTGCGCGAG
      TGGCTGCCGG ACCGTGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 116; ORF 033.ng>: g033.pep

```
1 MAAADKLLGG DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKEGGAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAT
401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGAGG
451 AVLEVLAKHG ICKPVLLLGV ADTVTEHGDP KKLLDDLGLS AEAVERRVRE
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 117>: m033.seq

ATGGCGGCGG CAGACAAACT CTTGGGCAGC GACCGCCGCA GCGTCGCCAT CATCGGCGAC GGCGCGATGA CGGCGGGGCA GGCGTTTGAA GCCTTGAATT GCGCaG.CGA TATGGATGTr GATTTGCTrG TCGTCCTCAA CGACAACGAA 101 151 ATGTCGATTT CCCCCAACGT CGGCGCGCTG CCGAAATACC TTGCCAGCAA 201 CGTCGTGCGC GATATGCACG GCCTGTTGAG TACCGTCAAA GCGCAAACGG 251 GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC 301 GAACACAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC 351 GCTGTCTTTG TTTGAAAACT TCGGCTTCCG CTACACCGGC CCCGTGGACG GACACAACGT CGAAAATCTG GTGGACGTAT TGAAAGACTT GCGCAGCCGC AAAGGCCCTC AGTTGCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA 501 ACTCGCCGAA AACGACCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA 551 AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC 601 AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC 651 GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG 701 GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC 751 ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG 801 GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG 851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTACCCGT TTTGTTTGCC 901 GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTCT 951 GTACGATTTG AGCTTTTTGC GCTGCGTGCC GAACATGATT GTCGCCGCGC 1001 CGAGCGATGA AAACGAATGC CGCCTGTTGC TTTCGACCTG CTATCAGGCA 1051 GACGCGCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGCCCC 1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC 1151 GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCC 1201 GCATTGGCGG TTGCCGAAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT 1251 CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG


```
1301 ACCGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCGGC
1351 GCGGTGCTGG AAGTATTGGC GAAACACGGC ATCTGCAAAC CCGTTTTGCT
1401 TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
1451 TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG
1501 TGGCTGTCGG ATCGGGATGC GGCAAATTAA
```

This corresponds to the amino acid sequence <SEQ ID 118; ORF 033>:

```
m033.pep
```

1501

```
MAAADKLLGS DRRSVAIIGD GAMTAGQAFE ALNCAXDMDV DLLVVLNDNE
S1 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLKDLRSR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
301 VDRAGIVGAD GPTHAGLYDL SFLRCVPNMI VAAPSDENEC RLLLSTCYQA
351 DAPAAVRYPR GTGTGAPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAP
401 ALAVAEKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGG
451 AVLEVLAKHG ICKPVLLLGV ADTVTGHGDP KKLLDDLGLS AEAVERRVRA
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 119>:

```
a033.seq
         ATGGCGGCGG CGGACAAACA GTTGGGCAGC GACCGCCGCA GCGTCGCCAT
      1
     51
         CATCGGCGAC GGCGCGATGA CGGCGGGTCA GGCGTTTGAA GCCTTGAACT
    101 GCGCGGCGA TATGGATGTG GATTTGCTGG TCGTCCTCAA CGACAACGAA
    151 ATGTCGATTT CCCCCAACGT CGGTGCGTTG CCCAAATACC TTGCCAGCAA
    201 CGTCGTGCGC GATATGCACG GACTGTTGAG TACCGTCAAA GCGCAAACGG
    251 GCAAGGTATT AGACAAAATA CCCGGCGCGA TGGAGTTTGC CCAAAAAGTC
    301 GAACATAAAA TCAAAACCCT TGCCGAAGAA GCCGAACACG CCAAACAGTC
    351 ACTGTCTTTG TTTGAAAACT TCGGCTTCCG CTATACCGGC CCCGTGGACG
    401 GACACAACGT CGAAAATCTG GTCGATGTAT TGGAAGACCT GCGCGGACGC
     451 AAAGGCCCGC AGCTTCTGCA CGTCATCACC AAAAAGGGCA ACGGCTACAA
    501 ACTCGCCGAA AACGATCCCG TCAAATACCA CGCCGTCGCC AACCTGCCTA
         AAGAAAGCGC GGCGCAAATG CCGTCTGAAA AAGAACCCAA GCCCGCCGCC
    601 AAACCGACCT ATACCCAAGT GTTCGGCAAA TGGCTGTGCG ACCGGGCGGC
    651 GGCAGATTCC CGACTGGTTG CGATTACCCC CGCCATGCGC GAGGGCAGCG
         GCTTGGTTGA GTTTGAACAA CGATTCCCCG ACCGCTATTT CGATGTCGGC
         ATCGCCGAGC AGCACGCCGT TACCTTTGCC GGCGGTTTGG CTTGCGAAGG
    801 GATGAAGCCC GTCGTGGCGA TTTATTCCAC CTTTTTACAA CGCGCCTACG
    851 ACCAACTGGT GCACGACATC GCCCTGCAAA ACCTGCCCGT TTTGTTTGCC
    901 GTCGACCGCG CGGGCATCGT CGGCGCGGAC GGCCCGACCC ATGCCGGTTT
         GTACGATTTA AGCTTTTTGC GCTGCATTCC GAATATGATT GTCGCCGCGC
   1001 CGAGCGATGA AAATGAATGC CGCCTGCTGC TTTCGACCTG CTATCAGGCA
   1051 GACGCCCCG CCGCCGTCCG CTATCCGCGC GGCACGGGTA CGGGCGTGCC
   1101 GGTTTCAGAC GGCATGGAAA CCGTGGAAAT CGGCAAGGGC ATTATCCGCC
         GCGAAGGTGA GAAAACCGCA TTCATTGCCT TCGGCAGTAT GGTCGCCCCT
   1151
   1201 GCATTGGCGG TCGCCGGAAA ACTGAACGCC ACCGTCGCCG ATATGCGCTT
   1251 CGTCAAACCG ATAGACGAAG AGTTGATTGT CCGCCTTGCC CGAAGCCACG
   1301 ACCGCATCGT TACCCTTGAA GAAAACGCCG AACAGGGCGG CGCAGGCAGC
   1351 GCGGTGCTGG AAGTGTTGGC GAAACACGGC ATCTGCAAAC CCGTCTTGCT
         TTTGGGCGTT GCCGATACCG TAACCGGACA CGGCGATCCG AAAAAACTTT
   1451
         TAGACGATTT GGGCTTGAGT GCCGAAGCGG TGGAACGGCG TGTGCGCGCG
```

This corresponds to the amino acid sequence <SEQ ID 120; ORF 033.a>:

TGGCTGTCGG ATCGGGATGC GGCAAATTAA

```
a033.pep

1 MAAADKQLGS DRRSVAIIGD GAMTAGQAFE ALNCAGDMDV DLLVVLNDNE
51 MSISPNVGAL PKYLASNVVR DMHGLLSTVK AQTGKVLDKI PGAMEFAQKV
101 EHKIKTLAEE AEHAKQSLSL FENFGFRYTG PVDGHNVENL VDVLEDLRGR
151 KGPQLLHVIT KKGNGYKLAE NDPVKYHAVA NLPKESAAQM PSEKEPKPAA
201 KPTYTQVFGK WLCDRAAADS RLVAITPAMR EGSGLVEFEQ RFPDRYFDVG
251 IAEQHAVTFA GGLACEGMKP VVAIYSTFLQ RAYDQLVHDI ALQNLPVLFA
```


- 301 VDRAGIVGAD GPTHAGLYDL SFLRCIPNMI VAAPSDENEC RLLLSTCYQA 351 DAPAAVRYPR GTGTGVPVSD GMETVEIGKG IIRREGEKTA FIAFGSMVAP
 401 ALAVAGKLNA TVADMRFVKP IDEELIVRLA RSHDRIVTLE ENAEQGGAGS
 451 AVLEVLAKHG ICKPVLLLGV ADTVTGHGDP KKLLDDLGLS AEAVERRVRA
 501 WLSDRDAAN*

98.4% identity over a 509 aa overlap m033/a033

m033.pep	10 20 30 40 50 60 MAAADKLLGSDRRSVAIIGDGAMTAGQAFEALNCAXDMDVDLLVVLNDNEMSISPNVGAL
m033.pep	70 80 90 100 110 120 PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL
m033.pep	130 140 150 160 170 180 FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA
m033.pep	190 200 210 220 230 240 NLPKESAAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ
m033.pep	250 260 270 280 290 300 RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA
m033.pep	310 320 330 340 350 360 VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR
m033.pep	370 380 390 400 410 420 GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVAPALAVAEKLNATVADMRFVKP
m033.pep	430 440 450 460 470 480 IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTGHGDP
m033.pep	490 500 510 KKLLDDLGLSAEAVERRVRAWLSDRDAANX

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 033 shows 98.4% identity over a 509 aa overlap with a predicted ORF (ORF 033.ng) from N. gonorrhoeae:

m033/g033

m033.pep	MAAADKLLGSDRRSVAIIGDGAMTAGQAFEALNCAXDMDVDLLVVLNDNEMSISPNVGAL	60
g033	MAAADKLLGGDRRSVAIIGDGAMTAGQAFEALNCAGDMDVDLLVVLNDNEMSISPNVGAL	60
m033.pep	PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL	120
g033	PKYLASNVVRDMHGLLSTVKAQTGKVLDKIPGAMEFAQKVEHKIKTLAEEAEHAKQSLSL	120
m033.pep	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
g033	FENFGFRYTGPVDGHNVENLVDVLKDLRSRKGPQLLHVITKKGNGYKLAENDPVKYHAVA	180
m033.pep	NLPKESAAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ	240
g033	NLPKEGGAQMPSEKEPKPAAKPTYTQVFGKWLCDRAAADSRLVAITPAMREGSGLVEFEQ	240
m033.pep	RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA	300
g033	RFPDRYFDVGIAEQHAVTFAGGLACEGMKPVVAIYSTFLQRAYDQLVHDIALQNLPVLFA	300
m033.pep	VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR	360
g033	VDRAGIVGADGPTHAGLYDLSFLRCVPNMIVAAPSDENECRLLLSTCYQADAPAAVRYPR	360
m033.pep	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVAPALAVAEKLNATVADMRFVKP	420
g033	GTGTGAPVSDGMETVEIGKGIIRREGEKTAFIAFGSMVATALAVAEKLNATVADMRFVKP	420
m033.pep	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTGHGDP	480
g033	IDEELIVRLARSHDRIVTLEENAEQGGAGGAVLEVLAKHGICKPVLLLGVADTVTEHGDP	480
m033.pep	KKLLDDLGLSAEAVERRVRAWLSDRDAANX 510	
g033	KKLLDDLGLSAEAVERRVREWLPDRDAANX 510	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 121>: g034.seq

1	ATGAGCCGTT	TATGGTTTTT	TGCCGTAAAA	AACATTATAA	TCCGCCTTAT
51	TTACCTATTG	CCCAAGGAGA	CACAAATGGC	ACTCGTATCC	ATGCGCCAAC
101				GCCTGCCCGC	
151	AACAACCTCG	AACAAATGCG	CGCCATTATG	GAAGCCGCCG	ACCAAGTCAA
201	CGCGCCCGTC	ATCGTACAGG	CGAGCGCAGG	TGCGCGCAAA	TACGcggGCG
251	CGCCGTTTTT	GCGCCACCTG	ATTCTGGCGG	CAGTCGAAGA	ATTTCCGCAC
301	ATCCCCGTCG	TGATGCACCA	AGACCACGGC	GCATCGCCCG	ACGTgtgCCA
351				GATGATGGAC	
401				AATACAACGT	
451	CGTACCGTCG	TCAACTTCTC	CCACGCCTGC	GGCGTGTCCG	TCGAAGGCGA
501				CGAAGCAGGC	
551	GAGTGGGCGC	GGCAGGCAAA	CTCTCACACG	ACCAAATGCT	CACCAGCGTT
601	GAAGATGCCG	TGCGTTTCGT	TAAAGATACC	GGCGTTGACG	CATTGGCGAT
651	TGCCGTCGGC	ACCAGCCACG	GCGCATACAA	ATTCACCCGT	CCGCCCACAG


```
•
```

```
701 GCGACGTATT GCGTATCGAC CGCATCAAGG AAATCCACCA AGCCCTGCCC
751 AATACACACA TCGTGATGCA CGGCCCCGCC TCCGTTCCGC AAGAALGGCT
801 GAAAGTCATC AACGAATACG GCGCAATAT CGGCGGAAACC TACGGCGTGC
851 CGGTTGAAGA AATCGTCGAA GGCATCAAAC ACGGCGTGCG CAAAGTCAAC
901 ATCGATACCG ACCTGCGCCT CGCTTCCACC GGCGCGGTAC GCCGCTACCT
951 TGCCGAAAAC CCGTCCGACT TTGATCCGCG CAAATACTTG GGCAAAACCA
1001 TTGAAGCGAT GAAGCAAATC TGCCTCGACC GTTATCTTGC GTTCGGTTGC
1051 GAAGGTCAGG CAGGCAAAAT CAAACCTGTT TCGTTGGAAA AAATGGCAAG
1101 CCGTTATGCC AAGGGCGAAT TGAACCAAAT CGTCAAATAA
```

This corresponds to the amino acid sequence <SEQ ID 122; ORF 034.ng>:

```
1MSRLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAENSYGLPAFNV51NNLEQMRAIMEAADQVNAPVIVQASAGARKYAGAPFLRHLILAAVEEFPH101IPVVMHQDHGASPDVCQRSIQLGFSSVMMDGSLLEDGKTPSSYEYNVNAT151RTVVNFSHACGVSVEGEIGVLGNLETGEAGEEDGVGAAGKLSHDQMLTSV201EDAVRFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRIDRIKEIHQALP251NTHIVMHGSSSVPQEWLKVINEYGGNIGETYGVPVEEIVEGIKHGVRKVN301IDTDLRLASTGAVRRYLAENPSDFDPRKYLGKTIEAMKQICLDRYLAFGC351EGQAGKIKPVSLEKMASRYAKGELNQIVK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 123>: m034.seq (partial)

```
1 ATGAGCTGTT TATGGTTTTT TGCTGTAAAA AACATTATAA TCCGCCTTAT
 51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATCC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA WACAGCTACG GCYTGCCGGC GTTCAACGTC
151 AACAACCTCG WACAGATGCG CGCCATCATG GAGGCTGCAG ACCAAGTCGA
201 CGCCCCCGTC ATCGTACAGG CGAGTGCCGG TGCGCGCAAA TATGCGGGTG
251 CGCCGTTTTT ACGCCACCTG ATTTTGGCGG CTGTCGAAGT ATTTCCACAC
301 ATCCCCGTCG TCATGCACCA AGACCACGGC GCATCACCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TCTCCTCTGT AATGATGGAC GGCTCGCTGA
401 TGGAAGACGG CAAAACCCCT TCTTCTTACG AATACAACGT CAACGCCACA
451 CGTACCGTGG TTAACTTCTC CCACGCTTGC GGCGTATCCG TTGAAGGCGA
501 AATCGGCGTA TTGGGCAACC TCGAAACCGG CGATGCAGGC GAAGAAGACG
551 GTGTAGGCGC AGTGGGCAAA CTTTCCCACG ACCAAATGCT GACCAGCGTC
601 GAAGATGCCG TATGTTTCGT TAAAGATACC GGCGTTGACG CATTGGCTAT
651 TGCCGTCGGC ACCAGCCACG GCGCATACAA ATTCACCCGT CCGCCCACAG
701 GCGATGTATT ACGTATCGAC CGCATCAAAG AAATCCACCA AGCCCTGCCC
751 AATACACACA TCGTGATGCA C...
```

This corresponds to the amino acid sequence <SEQ ID 124; ORF 034>: m034.pep (partial)

1 MSCLWFFAVK NIIIRLIYLL PKETOMALVS MRQLLDHAAE XSYGLPAFNV
51 NNLXQMRAIM EAADQVDAPV IVQASAGARK YAGAPFLRHL ILAAVEVFPH
101 IPVVMHQDHG ASPDVCQRSI QLGFSSVMMD GSLMEDGKTP SSYEYNVNAT
151 RTVVNFSHAC GVSVEGEIGV LGNLETGDAG EEDGVGAVGK LSHDQMLTSV
201 EDAVCFVKDT GVDALAIAVG TSHGAYKFTR PPTGDVLRID RIKEIHQALP
251 NTHIVMH...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 125>: a034.seq

```
1 ATGAGCCGTT TATGGTTTTT TGCCGCAAAA AACATTATAA TCCGCCTTAT
51 TTACCTATTG CCCAAGGAGA CACAAATGGC ACTCGTATCC ATGCGCCAAC
101 TGCTTGATCA TGCTGCCGAA AACAGCTACG GCCTGCCGCC GTTCAACGTC
151 AACAACCTCG AACAAATGGC CGCCATTATG GAAGCCGCCG ACCAAGTCAA
201 CGCGCCCGTC ATCGTACAGG CGAGCGCAGG TGCGCGCAAA TACGCGGGGC
251 CGCCGTTTTT GCGCCACCTG ATTTTGGCGG CTGTCGAAGA ATTTCCGCAC
301 ATCCCCGTCG TGATGCACCA AGACCACGGC GCATCGCCCG ACGTGTGCCA
351 ACGCTCCATC CAACTGGGCT TTTCCTCCGT GATGATGGAC GGCTCGCTGA
401 TGGAAGACCGC CAAAACCCCT TCTTCTTATG AATACAACGT CAACGGCCACC
```

451	CGTACCGTGG	TTAATTTCTC	CCACGCCTGC	GGCGTATCCG	TTGAAGGCGA
501	AATCGGCGTA	TTGGGCAACC	TCGAAACTGG	CGAAGCCGGC	GAAGAAGACG
551	GTGTAGGCGC	AGTGGGCAAA	CTTTCCCACG	ACCAAATGCT	CACCAGCGTC
601	GAAGATGCCG	TGCGTTTCGT	TAAAGATACC	GGCGTTGACG	CATTGGCGAT
651	TGCCGTCGGC	ACCAGCCACG	GCGCGTACAA	ATTCACCCGT	CCGCCCACAG
701	GCGACGTGTT	GCGTATCGAC	CGCATCAAAG	AAATCCACCA	AGCCCTGCCC
751	AATACACACA	TCGTGATGCA	CGGCTCCAGC	TCCGTTCCGC	AAGAATGGCT
801	GAAAGTCATC	AACGAATACG	GCGGCAATAT	CGGCGAAACC	TACGGCGTGC
851	CGGTTGAAGA	AATCGTCGAA	GGCATCAAAC	ACGGCGTGCG	TAAAGTCAAC
901	ATCGATACCG	ACTTGCGCCT	TGCTTCCACC	GGCGCGGTAC	GCCGCTACCT
951	TGCCGAAAAC	CCGTCCGACT	TCGATCCGCG	CAAATATTTG	AGCAAAACCA
1001	TTGAAGCGAT	GAAGCAAATC	TGCCTCGACC	GCTACCTCGC	GTTCGGTTGC
1051	GAAGGTCAGG	CAGGCAAAAT	CAAACCGGTT	TCCTTGGAAA	AAATGGCAAA
1101	CCGTTATGCC	AAGGGCGAAT	TGAACCAAAT	CGTCAAATAA	

This corresponds to the amino acid sequence <SEQ ID 126; ORF 034.a>:

a034.pep

1 MSRLWFFAAK NIIIRLIYLL PKETQMALVS MRQLLDHAAE NSYGLPAFNV
51 NNLEQMRAIM EAADQVNAPV IVQASAGARK YAGAPFLRHL ILAAVEEFPH
101 IPVVMHQDHG ASPDVCQRSI QLGFSSVMMD GSLMEDGKTP SSYEYNVNAT
151 RTVVNFSHAC GVSVEGEIGV LGNLETGEAG EEDGVGAVGK LSHDQMLTSV
201 EDAVRFVKDT GVDALAIAVG TSHGAYKFTR PPTGDVLRID RIKEIHQALP
251 NTHIVMHGSS SVPQEWLKVI NEYGGNIGET YGVPVEEIVE GIKHGVRKVN
301 IDTDLRLAST GAVRRYLAEN PSDFDPRKYL SKTIEAMKQI CLDRYLAFGC
351 EGQAGKIKPV SLEKMANRYA KGELNQIVK*

m034/a034 96.9% identity over a 257 aa overlap

	10	20	30	40	50	60
m034.pep	MSCLWFFAVKNIII	RLIYLLPKET	'QMALVSMRQL	LDHAAEXSYG	LPAFNVNNLX	QMRAIM
			11111111111	111111 111	141111111	111111
a034	MSRLWFFAAKNIII	RLIYLLPKET	QMALVSMRQL	LDHAAENSYG	LPAFNVNNLE	OMRAIM
	10	20	30	40	50	60
	70	80	90	100	110	120
m034.pep	EAADQVDAPVIVQA	SAGARKYAGA	PFLRHLILAA	VEVFPHIPVV	MHQDHGASPE	VCORSI
	1111111:1111111				1111111111	
a034	EAADQVNAPVIVQA	SAGARKYAGA	PFLRHLILAA	VEEFPHIPVV	MHQDHGASPI	VCORSI
	70	80	90	100	110	120
	130	140	150	160	170	180
m034.pep	QLGFSSVMMDGSLM	EDGKTPSSYE	YNVNATRTVV	NESHACGVSV	EGEIGVLGNI	
	[11]	1111111111	1111111111	1111111111	111111111	111:11
a034	QLGFSSVMMDGSLM	EDGKTPSSYE	YNVNATRTVV	NESHACGVSV	'EGEIGVLGNI	
	130	140	150	160	170	180
	190	200	210	220	230	240
m034.pep	EEDGVGAVGKLSHD	OMLTSVEDAV	CFVKDTGVDA	LAIAVGTSHG	AYKFTRPPTO	
• •	1111111111111111	[11111111111	111111111	111111111		111111
a034	EEDGVGAVGKLSHD	OMLTSVEDAV	REVKDTGVDA	LAIAVGTSHG	AYKETRPPTO	DVIRID
	190	200	210	220	230	240
	250					
m034.pep	RIKEIHOALPNTHI	VMH				
a034	RIKEIHQALPNTHI	VMHGSSSVPO	EWLKVINEYG	GNIGETYGVE	VEETVEGTKE	IGVRKVN
	250	260	270	280	290	300
				~~~	200	200

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 034 shows 96.5% identity over a 257 aa overlap with a predicted ORF (ORF 034.ng) from N. gonorrhoeae:



m034/g034		
m034.pep	MSCLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAEXSYGLPAFNVNNLXQMRAIM	60
g034	MSRLWFFAVKNIIIRLIYLLPKETQMALVSMRQLLDHAAENSYGLPAFNVNNLEQMRAIM	60
m034.pep	EAADQVDAPVIVQASAGARKYAGAPFLRHLILAAVEVFPHIPVVMHQDHGASPDVCQRSI	120
g034	EAADQVNAPVIVQASAGARKYAGAPFLRHLILAAVEEFPHIPVVMHQDHGASPDVCQRSI	120
m034.pep	QLGFSSVMMDGSLMEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGDAG	180
g034	QLGFSSVMMDGSLLEDGKTPSSYEYNVNATRTVVNFSHACGVSVEGEIGVLGNLETGEAG	180
m034.pep	EEDGVGAVGKLSHDQMLTSVEDAVCFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
g034	EEDGVGAAGKLSHDQMLTSVEDAVRFVKDTGVDALAIAVGTSHGAYKFTRPPTGDVLRID	240
m034.pep	RIKEIHQALPNTHIVMH	257
g034	RIKEIHQALPNTHIVMHGSSSVPQEWLKVINEYGGNIGETYGVPVEEIVEGIKHGVRKVN	300

## The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 127>: g036.seq

```
ATGCTGAAGC CGTGTTTGGT ATACAGTGCC TGTGCGGCGG cgttgcCTGC
    GCGGACTTCG AGCAGCAGGC GTTGCGTGCC TTCGGGCAGA TGTGCGTACC
101
    AATATTCGAG CAGGGCGGAC GCAACGCCCC GTCGGCGGCA TTCGGGCGCG
    GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT
151
201 AAAGGCGGCA ATCCTGCCGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG
    GCGAAACAAG CGCGGACTCA AATTGGCGTT GCGTCCACGC GGACGGGTTG
301
    CAGACGGTAT CGAGCGCGGC CAGTGCGGCG CAGTCGGACG GTGAGGCTGG
351
    GCGGATGTTC ATGTTCGTGC CTTCCGTTCC GCCTGTTCTT TGGCAGTCAG
401 GGCGATTTTG TTGCGGACGT AGAGCAGTTC GGCGTGTGCC GCGCCAGTTG
451
    CGGGATAGCC GCCGCCGAGG GCGAGCGCGA GAAAATCGGC GGCGGTCGGC
501 ATATCGGGTT TGCCTGAGAA GGGCGGACGG TTTTCCAGTG CGAACGCACT
551
    GCCGATGCCG TCTGAAAAGA CGTACCCCTC GGGGAGGGCA ATGTCTGCCG
601 CCCTACCGAC TTGATAATCG CTCAAACGGC GGCGGTTCAG CGTGTCGAAC
651 CACGCATAAA ACACTTCGCC CATACGCGCG TCCGCAGCGG CGAGTATGCA
701 GCTTTGCGGC GGCGGCAGCG AGGCGGCGGC ATCGAGCGTG GGGATGCCGA
751 TTAAAGGCGT GTCGAACGGC GTTGCCAAAC CTTGCGCCAC GCCGATGCCG
801 ATACGCAGTC CGGTAA
```

# This corresponds to the amino acid sequence <SEQ ID 128; ORF 036.ng>: g036.pep

1 MLKPCLVYSA CAAALPARTS SSRRCVPSGR CAYQYSSRAD ATPRRHSGA
51 VAIRCSSDSS GRFCQTIKAA ILPSFSARKT CSDGETSADS NWRCVHADGL
101 QTVSSAASAA QSDGEAGRMF MFVPSVPPVL WQSGRFCCGR RAVRRVPRQL
151 RDSRRGRAR ENRRRSAYRV CLRRADGFPV RTHCRCRLKR RTPRGGQCLP
201 PYRLDNRSNG GGSACRTTHK TLRPYARPQR RVCSFAAAAA RRRHRAWGCR
251 LKACRTALPN LAPRCRYAV R*

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 129>: m036.seq

ATGCTGAAGC CGTGCGCCGT GTACAGTGCC TGTGCGGCGG TGTTGCCTGC
ACGGACTTCG AGCAGCAGGC GTTGCGTGTC TTCGGGCAGA TGTGTGAACC
AATATTCGAG CAGGGCGGAC GCAATTCCTT GGCGGCGGCA TTCGGGCGCG
ST GTGCCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT
AAAGGCGGCA ATCCCG.CGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG
AAAGGCGCA TGCGGACTCA AATTGGCGTT GCGTCCATGC GGACGGGTTG
CAGACGGCAT CGAGTGCGGC CAGCTCCTCA CAATCGGCAC AAACGGCACG



```
351 GCGGATGTTC ACGGGCGCGC TCTCCGTTCG GCCTGTTCTT TGGCAGTCAG
401 GGCGATTTTG TTGCGGACGT AGAGCAAACC GGCGTGTGCG GCATGGACGG
451 CAGGATAACC GCCCTTGGCT GCCAATGCGA GAAAGTCGGC GGCAGTCGGC
501 ATATCCGGTC TGCCTGAGAA CGGCGGAGCT TCTTCCAGCG CGAACGCGCT
551 GCCTATGCCG TCTGAAAAGG CGCATCCCTC CGGCAGCCGG ATGTCTGCCG
601 CCCGCCCGAC CTGATAATCG CTCAAACGGT GGCAGTTCAG CGTATCGAAC
651 CATGCATAAA ACACTTCGCC CATACGAGCG TCCGTAGCGG CAAGGATGCA
701 GCTTTGCGGC GGCGGCAGCG AGGCGGCGGC ATCGAGCGAG GGTACGCCGA
751 TTAAGGGGGT ATCAAACGGC GTTGCCAAAC CCTGAGCTAC ACCGATGCCG
801 ATACGCAGTC CGGTAA
```

#### This corresponds to the amino acid sequence <SEQ ID 130; ORF 036>: m036.pep

- MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
- 51 VAIRCSSDSS GRFCQTIKAA IPXSFSARKT CSDGETSADS NWRCVHADGL
- 101 QTASSAASSS QSAQTARRMF TGALSVRPVL WQSGRFCCGR RANRRVRHGR
- 151 QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
  201 PARPDNRSNG GSSAYRTMHK TLRPYERP*R QGCSFAAAAA RRRHRARVRR
  251 LRGYQTALPN PELHRCRYAV R*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 131>:

```
a036.seq
         ATGCTGAAGC CGTGCGCCGT GTACAGTGCC TGTGCGGCGG TGTTGCCTGC
     51 ACGGACTTCG AGCAGCAGGC GTTGCGTGTC TTCGGGCAGA TGTGTGAACC
    101 AATATTCGAG CAGGGCGGAC GCAATTCCTT GGCGGCGGCA TTCGGGCGCG
    151 GTGGCAATCA GGTGCAGTTC GGATTCGTCG GGCAGGTTCT GCCAAACGAT
    201 AAAGGCGGCA ATCCCGCCGT CTTTTTCCGC AAGGAAAACC TGTTCGGACG
    251 GCGAAACCAG TGCGGACTCA AATTGGCGTT GCGTCCACGC GGACGGGTTG
    301 CAGACGGCAT CGAGCGCGGC GAGTGCGGCG CAATCGGCAT AAACGGCGCG
    351 GCGGATGTTC ACAGGCGCGC CCTCCGTTCC GCCTGTTCTT TGGCAGTCAA
    401 GGCGATTTTG TTGCGGACGT AGAGCAGCTC GGCGTGTGCC GCAGCGACGG
         CGGGAAAACC GCCTTCAGCC GCCAGATTGA GGAAGTCGGC GGCGGTCGGC
    451
    501 ATATCGGGTT TGCCTGAGAA GGGCGGACGG TTTTCCAGCG CGAACGCATT
    551 GCCGATGCCG TCTGAAAAGG CGCATCCTTC CGGCAGCCGG ATGTCTGCCG
    601 CCCGACCGAC CTGATAATCG CTCAAACGGC GGCGGTTCAG CGTGTCGAAC
    651 CATGCATAAA ACACTTCGCC CATACGTGCG TCCGCAGCGG CAAGGATGCA
    701 GCTTTGCGGC GGCGGCAGCG AGGCGGCGGC ATCGAGCGAG GGTACGCCGA
    751 TTAAAGGAGT ATCAAACGGC GTTGCCAAAC CTTGCGCCAC GCCGATGCCG
    801 ATACGCAGTC CCGTAA
```

### This corresponds to the amino acid sequence <SEQ ID 132; ORF 036.a>: a036.pep

MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA 51 VAIRCSSDSS GRFCQTIKAA IPPSFSARKT CSDGETSADS NWRCVHADGL

- 101 QTASSAASAA QSA*TARRMF TGAPSVPPVL WQSRRFCCGR RAARRVPORR 151 RENRLOPPD* GSRRRSAYRV CLRRADGFPA RTHCRCRLKR RILPAAGCLP
- PDRPDNRSNG GGSACRTMHK TLRPYVRPQR QGCSFAAAAA RRRHRARVRR
- 251 LKEYQTALPN LAPRRCRYAV P*

#### 85.6% identity over a 270 aa overlap m036/a036

	10	20	30	40	50	60
m036.pep	MLKPCAVYSACAA	VLPARTSSSRF	RCVSSGRCVNQ	YSSRADAIPW	RRHSGAVAI	RCSSDSS
a036	MLKPCAVYSACAA	VLPARTSSSRF	RCVSSGRCVNQ	YSSRADAIPW	RRHSGAVAII	RCSSDSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m036.pep	GRFCQTIKAAIPX	SFSARKTCSDG	SETSADSNWRC	VHADGLQTAS	SAASSSQSA	TARRME
		[		пини	1111::111	111111
a036	GRFCQTIKAAIPP	SFSARKTCSD	SETSADSNWRC	VHADGLQTAS	SAASAAQSAX	KTARRMF
	70	80	90	100	110	120

m036.pep	130 TGALSVRPVLWQSG				-	
a036	TGAPSVPPVLWQSR		:  ::   RRVPQRRRENF		:         RRSAYRVCLR	: :   RADGFPA
•	130	140	150	160	170	180
	190	200	210	220	230	240
m036.pep	RTRCLCRLKRRIPP.	AAGCLPPARE		YRTMHKTLRE	YERPXRQGC	SFAAAAA
a036	RTHCRCRLKRRILP.	AAGCLPPDRE		ACRTMHKTLRE	YVRPQRQGC:	IIIIIII SFAAAAA
	190	200	210	220	230	240
	250	260	270			
m036.pep	RRRHRARVRRLRGY	<del>-</del>				
a036			RCRYAVPX			
	250	260	270			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 036 shows 74.9% identity over a 271 aa overlap with a predicted ORF (ORF 036.ng) from N. gonorrhoeae:

m036/g036

WO 99/57280

	10	20	30	40	50	60
m036.pep	MLKPCAVYSACA	AVLPARTSSSRF	RCVSSGRCVNQ	YSSRADAIPV	RRHSGAVAIR	RCSSDSS
		1:1111111111		1111111	11111111111	111111
g036	MLKPCLVYSACA	AALPARTSSSRF	RCVPSGRCAYO	YSSRADATPE	RRHSGAVAIR	CSSDSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m036.pep	GRFCQTIKAAIP	XSFSARKTCSDG	SETSADSNWRC	VHADGLQTAS	SAASSSQSAQ	TARRMF
						1 111
g036	GRFCQTIKAAIL	PSFSARKTCSDG	SETSADSNWRC	VHADGLQTVS	SAASAAQSDG	EAGRME
	70	80	90	100	110	120
	130	140	150	160	170	180
m036.pep	TGALSVRPVLWQ	SGRFCCGRRANE	RVRHGRQDNR	PWLPMRESRE	QSAYPVCLRT	AELLPA
			11::1:1			1: :1:
g036	MFVPSVPPVLWQ	SGRFCCGRRAVE	RVPRQLRDSR	RRGRARENRE	RSAYRVCLRR	ADGFPV
	130	140	150	160	170	180
	190	200	210	220	230	240
m036.pep	RTRCLCRLKRRI	PPAAGCLPPARE	DNRSNGGSSA	YRTMHKTLRE	YERPXRQGCS	FAAAAA
		1:: 1111. 1	11111111:11			111111
g036	RTHCRCRLKRRT			CRTTHKTLRE	YARPQRRVCS	FAAAAA
	190	200	210	220	230	240
	250	260	270			
m036.pep	RRRHRARVRRLR	GYQTALPNPELH	IRCRYAVRX			
	111111 11:					
g036	RRRHRAWGCRLK		RCRYAVRX			
	250	260	270			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 133>: m036-1.seq

1.00	4				
1	ATGCTGAAGC	CGTGCGCCGT	GTACAGTGCC	TGTGCGGCGG	TGTTGCCTGC
51	ACGGACTTCG				
101	AATATTCGAG				
151	GTGGCAATCA	GGTGCAGTTC	GGATTCGTCG	GGCAGGTTCT	GCCAAACGAT
201	AAAGGCGGCA	ATCCCGCCGT	CTTTTTCCGC	AAGGAAAACC	TGTTCGGACG
251	GCGAAACCAG	TGCGGACTCA	AATTGGCGTT	GCGTCCATGC	GGACGGGTTG
301	CAGACGGCAT	CGAGTGCGGC	CAGCTCCTCA	CAATCGGCAC	AAACGGCACG

PCT/US99/09346



351	GCGGATGTTC	ACGGGCGCGC	TCTCCGTTCG	GCCTGTTCTT	TGGCAGTCAG
401	GGCGATTTTG	TTGCGGACGT	AGAGCAAACC	GGCGTGTGCG	GCATGGACGG
451	CAGGATAACC	GCCCTTGGCT	GCCAATGCGA	GAAAGTCGGC	GGCAGTCGGC
501	ATATCCGGTC	TGCCTGAGAA	CGGCGGAGCT	TCTTCCAGCG	CGAACGCGCT
551	GCCTATGCCG	TCTGAAAAGG	CGCATCCCTC	CGGCAGCCGG	ATGTCTGCCG

601 CCCGCCCGAC CTGATAATCG CTCAAACGGT GGCAGTTCAG CGTATCGAAC 651 CATGCATAAA ACACTTCGCC CATACGAGCG TCCGTAG

#### This corresponds to the amino acid sequence <SEQ ID 134; ORF 0036-1>: m036-1.pep

- 1 MLKPCAVYSA CAAVLPARTS SSRRCVSSGR CVNQYSSRAD AIPWRRHSGA
- 51 VAIRCSSDSS GRFCQTIKAA IPPSFSARKT CSDGETSADS NWRCVHADGL
- 101 QTASSAASSS QSAQTARRMF TGALSVRPVL WQSGRFCCGR RANRRVRHGR 151 QDNRPWLPMR ESRRQSAYPV CLRTAELLPA RTRCLCRLKR RIPPAAGCLP
- 201 PARPDNRSNG GSSAYRTMHK TLRPYERP*

### m036-1/g036 76.8% identity in 228 aa overlap

	10	20	30	40	50	60
m036-1.pep	MLKPCAVYSACAAV	LPARTSSSRR	CVSSGRCVNQ	YSSRADAIPW	RRHSGAVAIR	RCSSDSS
					1111111111	
g036	MLKPCLVYSACAAA	LPARTSSSRR	CVPSGRCAYQ	YSSRADATPR	RRHSGAVAIF	RCSSDSS
	10	20	30	40	50	60
	70	80	90	100	110	120
m036-1.pep	GRFCQTIKAAIPPS	FSARKTCSDG	ETSADSNWRC	VHADGLQTAS	SAASSSQSAQ	TARRMF
				11111111:1		1 111
g036	GRFCQTIKAAILPS		ETSADSNWRC	VHADGLQTVS	SAASAAQSDO	EAGRMF
	70	80	90	100	110	120
	130	140	150	160	170	180
m036-1.pep	TGALSVRPVLWQSG	RFCCGRRANR	RVRHGRQDNR	PWLPMRESRR	QSAYPVCLRI	AELLPA
			11 : :1:1	11:11		1: :1:
g036	MFVPSVPPVLWQSG		RVPRQLRDSR	RRGRARENRR	RSAYRVCLRF	RADGFPV
	130	140	150	160	170	180
	190	200	210	220	229	
m036-1.pep	RTRCLCRLKRRIPE	AAGCLPPARP	DNRSNGGSSA	YRTMHKTLRP	YERPX	
	11:1 111111 1	::	1111111:11	- 11 111111	1 11	
g036	RTHCRCRLKRRTPR	GGQCLPPYRL	DNRSNGGGSA	CRTTHKTLRP	YARPQRRVCS	FAAAAA
	190	200	210	220	230	240
g036	RRRHRAWGCRLKAC		RCRYAVRX			
	250	260	270			

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 135>: g038.seq

1	ATGACTGATT	TCCGCCAAGA	TTTCCTCAAA	TTCTCCCTCG	CCCAAAATGT
51	TTTGAAATTC	GGCGAATTTA	CCACCAAAGC	CGGACGGCGG	TCGCCCTATT
101	TCTTCAATGC	CGGCCTCTTC	AACGACGGCG	CGTCCACGCT	GCAACTGGCA
151	AAATTCTATG	CACAATCCAT	CATTGAAAGC	GGCATCCGAT	TCGATATGCT
201	GTTCGGCCCC	GCCTACAAAG	GCATTATTTT	GGCGGCGCA	ACCGCGATGA
251	TGCTGGCGGA	AAAAGGCGTG	AACGTCCCGT	TTGCCTACAA	CCGCAAAGAA
301	GCCAAAGACC	GCGGCGAAGG	CGGCGTGTTG	GTCGGCGCGC	CGCTTAAAGG
351	GCGCGTGCTG	ATTATCGACG	ACGTGATTTC	CGCCGGCACA	TCCGTACGCG
401	AATCAATCAA	ACTGATTGAA	GCGGAGGGTG	CAACCCCCGC	CGGTGTCGCC
451	ATCGCGCTCG	ACCGCATGGA	AAAAGGCACG	GGTAAATTGT	CCGCCGTTCA
501	GGAAGTGGAA	AAACAATACG	GCCTGCCCGT	CGCCCCCATC	GCCAGCCTGA
551	ACGATTTGTT	TATCCTGTTG	CAAAACAACC	CCGAATTCGG	ACAGTTCCTC
601	GAACCCGTCC	GCACCTACCG	CCGGCAGTAC	GGCGTAGAAT	AA

WO 99/57280

```
This corresponds to the amino acid sequence <SEQ ID 136; ORF 038.ng>:
      g038.pep
               MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGASTLOLA
               KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
            51
           101
               AKDRGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
           151 IALDRMEKGT GKLSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
           201 EPVRTYRRQY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 137>:
     m038.seq
               ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
               TTTGAAATTC GGCGAATTTA CCACCAAGGC AGGACGGCGG TCGCCCTATT
           51
          101 TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
          151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
          201 GTTCGGTCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
          251 TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
          301 GCCAAAGACC ACGGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
          351 GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
          401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCcGC CGGTGTCGCC
          451 ATCGCGCTCG ATCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
          501 GGAAGTGGAY AAACAATACG GKCTGCCCGT CGCCCCCATC GCCAGCCTGA
          551 ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
               GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 138; ORF 038>:
     m038.pep
               MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLQLA
           51 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
          101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
          151 IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
          201 EPVRAYRROY GVE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 139>:
     a038.seg
               ATGACCGATT TCCGCCAAGA TTTCCTCAAA TTCTCCCTCG CCCAAAATGT
            1
               TTTGAAATTC GGCGAATTCA CCACCAAAGC CGGACGGCGG TCGCCCTATT
          101 TCTTCAATGC CGGCCTCTTT AACGACGGCT TGTCCACGCT GCAACTGGCA
          151 AAATTTTACG CACAATCCAT CATTGAAAGC GGCATCCGAT TCGATATGCT
          201 GTTCGGCCCC GCCTACAAAG GCATTATTTT GGCGGCGGCA ACCGCGATGA
          251 TGCTGGCGGA AAAAGGCGTG AACGTCCCGT TTGCCTACAA CCGCAAAGAA
          301 GCCAAAGACC ACGGCGAAGG CGGCGTGTTG GTCGGCGCGC CGCTTAAAGG
               GCGCGTGCTG ATTATCGACG ACGTGATTTC CGCCGGCACA TCCGTACGCG
          351
          401 AATCGATCAA ACTGATTGAA GCGGAGGGTG CAACCCCCGC CGGTGTCGCC
          451 ATCGCGCTCG ACCGCATGGA AAAAGGCACG GGTGAATTGA GCGCGGTTCA
          501 GGAAGTGGAA AAACAATACG GCCTGCCCGT CGCCCCCATC GCCAGCCTGA
               ACGATTTGTT TATTCTGTTG CAAAACAACC CCGAATTCGG ACAGTTCCTC
          601 GAACCCGTCC GAGCCTACCG TCGGCAGTAC GGCGTAGAAT AA
This corresponds to the amino acid sequence <SEQ ID 140; ORF 038.a>:
     a038.pep
               MTDFRQDFLK FSLAQNVLKF GEFTTKAGRR SPYFFNAGLF NDGLSTLQLA
           51 KFYAQSIIES GIRFDMLFGP AYKGIILAAA TAMMLAEKGV NVPFAYNRKE
          101 AKDHGEGGVL VGAPLKGRVL IIDDVISAGT SVRESIKLIE AEGATPAGVA
          151
               IALDRMEKGT GELSAVQEVE KQYGLPVAPI ASLNDLFILL QNNPEFGQFL
          201 EPVRAYRROY GVE*
m038/a038
             100.0% identity over a 213 aa overlap
                          10
                                    20
                                              30
                                                        40
                                                                             60
     m038.pep
```

MTDFRQDFLKFSLAQNVLKFGEFTTKAGRRSPYFFNAGLFNDGLSTLQLAKFYAQSIIES

a038						 AQSIIES
	10	20	30	40	50	60
	70	80	90	100	110	120
m038.pep	GIRFDMLFGPAY	GIILAAATAMM	Laekgvnvpf <i>i</i>	aynrkeakdi	IGEGGVLVGA:	PLKGRVL
		311111111111		шшш	111111111	ШШП
a038	GIRFDMLFGPAY	GIILAAATAMM	LAEKGVNVPF	AYNRKEAKDE	IGEGGVLVGA	PLKGRVL
	70	80	90	100	110	120
	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVF	RESIKLIEAEGA	TPAGVAIALDE	RMEKGTGELS	AVQEVEKQY	GLPVAPI
	-11111111111111	11111111111	11111111111	1111111111	11111111	1111111
a038	IIDDVISAGTSVF	ESIKLIEAEGA	TPAGVAIALDE	RMEKGTGELS	AVQEVEKQY	GLPVAPI
	130	140	150	160	170	180
	190	200	210			
-020	ASLNDLFILLONN					
m038.pep	A2PNDPE TPPONI	PERGURLEPVR	AIRRQIGVEX			
	-	111111111111				
a038	ASLNDLFILLQNN	IPEFGQFLEPVR	AYRRQYGVEX			
	190	200	210			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

WO 99/57280

ORF 038 shows 98.1% identity over a 213 aa overlap with a predicted ORF (ORF 038.ng) from N. gonorrhoeae: m038/g038

	10	20	30	40	50	60
m038.pep	MTDFRQDFLKFSL	AQNVLKFGEFT	TKAGRRSPY	FFNAGLFNDGL	STLQLAKFY	AQSIIES
					111111111	1111111
g038	MTDFRQDFLKFSL	AQNVLKFGEFT	TKAGRRSPY	ffnaglfndga	STLQLAKFY	AQSIIES
	10	20	30	40	50	60
	70	80	90	100	110	120
m038.pep	GIRFDMLFGPAYK	GIILAAATAMM	ILAEKGVNVPI	FAYNRKEAKDH	GEGGVLVGA	PLKGRVL
			11111111			1111111
g038	GIRFDMLFGPAYK	GIILAAATAMM	ILAEKGVNVPI	FAYNRKEAKDR	.GEGGVLVGA	PLKGRVL
	70	80	90	100	110	120
	130	140	150	160	170	180
m038.pep	IIDDVISAGTSVR	ESIKLIEAEGA	TPAGVAIAL	DRMEKGTGELS	AVQEVEKQY	GLPVAPI
		11111111111				
g038	IIDDVISAGTSVR	ESIKLIEAEGA	TPAGVAIAL	DRMEKGTGKLS	AVQEVEKQY	GLPVAPI
	130	140	150	160	170	180
	190	200	210			
m038.pep	ASLNDLFILLQNN	PEFGQFLEPVF	(AYRRQYGVE)	K		
		111111111111	:111111111	l		
g038	ASLNDLFILLQNN	PEFGQFLEPVF	TYRRQYGVE	K		
	190	200	210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 141>: g039.seq

- 1 ATGCCGTCCG AACCACCTGC CGCTTCAGAC GGCATCAAAC CGACACACAC
- . 51 CGAGAAAACA TCATGCCCGC CTGTTTCTGT CCGCACTGCA AAACCCGCCT
- 101 CTGGGTCAAA GAAAcccagC TCAAcgtCgC ccaagGCTTC GTCGTCTgcc
  151 aaAAAtgcga agGGCTgttt aaAgccaaaG accAtctggc aaGcacGAAA
  201 gaacctatat tcaacgattg gcccgaagct gtttcgggat gTcaaaCTCG





```
251 TCcaccgcaT cggcacgcac gccattagca aGAaacagat gtcccgcgac
          301 gaaatCgccg atatcctcaa cggcggtaca acCCTGCACG ATACGCCGCC
          351 CGCAACCGCC GCTGCCGCac ctGCCGCCGC ACCGCaggTT TCCGTACCGC
          401 CCGCCCGTCA GGAAGGGCTC AACTGGACTA TTGCAACCCT GTTCGCACTT
          451 ATCGTCCTCA TTATGCAGCT TTCCTACCTC TTCATCCTAT GA
This corresponds to the amino acid sequence <SEQ ID 142; ORF 039.ng>:
     g039.pep
              MPSEPPAASD GIKPTHTEKT SCPPVSVRTA KPASGSKKPS STSPKASSSA
           51 KNAKGCLKPK TIWQARKNLY STIGPKLFRD VKLVHRIGTH AISKKOMSRD
          101 EIADILNGGT TLHDTPPATA AAAPAAAPQV SVPPARQEGL NWTIATLFAL
          151 IVLIMQLSYL FIL*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 143>:
     m039.seq
              ATGCCGTCCG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
           51 CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
          101 CTGGGTCAAA GAAACCCAAC TCAATGTCGC CGnnnnnnnn nnnnnnnnn
          201 nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnccc gaggctgttt
          251 CGGATGTCAA ACTCGTTCAC CGTATCGGCA CGCGCGCCAT CGGCAAGAAA
          301 CAGATTTCCC GTGACGAAAT CGCCGGCATC CTCAACGGCG GTACAACCCA
351 GCCCGATATT CCGCCCGCAA CCGCCGCCAC CCCTGCTGCC GCACCGCAGG
          401 TTACCGTACC GCCCGCCGCG CCCGCCCGTC AGGATGGGTT CAACTGGACG
          451 ATTGCAACCC TGTTTGCCCT TATCGTCCTC ATTATGCAGC TTTCCTACCT
          501 CGTCATCCTA TGA
This corresponds to the amino acid sequence <SEQ ID 144; ORF 039>:
     m039.pep
              MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPXXXXXX
              XXXXXXXXX XXXXXXXXX XXXXXXXXP EAVSDVKLVH RIGTRAIGKK
          101 QISRDEIAGI LNGGTTQPDI PPATAATPAA APQVTVPPAA PARQDGFNWT
          151 IATLFALIVL IMQLSYLVIL *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 145>:
     a039.seq
              ATGCCGTCTG AACCGCCTTA CGCCTCAGAC GGCATCAAAC CTGACACACA
           1
           51
              CGAGGAAATA CCATGCCCGC CTGTTTCTGC CCCCACTGCA AAACCCGTCT
          101 CTGGGTCAAA GAAACCCAAC TCAATGTCGC CCAAGGCTTC GTCGTCTGCC
          151 AAAAATGCGA AGGAATGTTT AAAGCCAAAG ACCATCTGGC AAGCACGAAA
          201 GAACCCATAT TCAACGATT. TGCCCGAAGC TGTTTCGGAT GTCAAACTCG
              TTCACCGCAT CGGCACGAGC GCCATCGGCA AGAAACAGAT TTCCCGTGAC
          301 GAAATCGCCG GCATCCTCAA CGGCGGCACA ACCCAGCCCG ATATTCCGCC
          351 CGCAACCGCC GCCACCCCTG CTGCCGCACC GCAGGTTACC GTACCGCCCG
              CCGCGCCCGC CCGTCAGGAT GGGTTCAACT GGACGATTGC AACCCTGTTT
              GCCCTTATCG TCCTCATTAT GCAGCTTTCC TACCTCGTCA TCCTATGA
This corresponds to the amino acid sequence <SEQ ID 146; ORF 039.a>:
     a039.pep
              MPSEPPYASD GIKPDTHEEI PCPPVSAPTA KPVSGSKKPN SMSPKASSSA
           1
           51
              KNAKECLKPK TIWQARKNPY STIXPEAVSD VKLVHRIGTS AIGKKOISRD
          101 EIAGILNGGT TQPDIPPATA ATPAAAPQVT VPPAAPARQD GFNWTIATLF
              ALIVLIMQLS YLVIL*
           79.4% identity over a 170 aa overlap
m039/a039
                                   20
                                            30
                                                      40
                                                                50
     m039.pep
                 a039
                 MPSEPPYASDGIKPDTHEEIPCPPVSAPTAKPVSGSKKPNSMSPKASSSAKNAKECLKPK
```

	10	20	30	40	50	60
m039.pep	70 XXXXXXXXXXXXXXX	80 XXXXPEAVS	90	100	110	120
moos.pcp	: : !	11111				IIIIIIIIII
a039	TIWOARKNPYSTIX-			rsaigkkoisi		NGGTTQPDI
	70	8	0 9	90 10	00	110
	130	140	150	160	170	
m039.pep	PPATAATPAAAPQVT	TVPPAAPARQ	DGFNWTIATI	LFALIVLIMQI	SYLVILX	
			[[[]]]	[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[	1111111	
a039	PPATAATPAAAPQVI				SYLVILX	
	120 130	14	0 15	50 16	i0	

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 039 shows 60.8% identity over a 171 aa overlap with a predicted ORF (ORF 039.ng) from N. gonorrhoeae:

m039/g039

	10	20	30	40	50	60
m039.pep	MPSEPPYASDGIKPD	THEEIPCPPV	SAPTAKPVSGS	KKPNSMSPX	XXXXXXXXX	XXXXX
g039	MPSEPPAASDGIKPT	HTEKTSCPPV	evrtakpasgs	KKPSSTSPK	ASSSAKNAK	3CLKPK
	10	20	30	40	50	60
	70	80	90	100	110	120
m039.pep	XXXXXXXXXXXXXX	XXXXPEAVSD	/KLVHRIGTRA	IGKKOISRD	EIAGILNGG	
	: :	:		1:   :		11
g039	TIWQARKNLYSTIG-	PKLFRD\	/KLVHRIGTHA	ISKKOMSRD	EIADILNGG	TLHDT
	70	80	90	100	110	)
	130	140	150	160	170	
m039.pep	PPATAAT-PAAAPQV	TVPPAAPARQI	OGFNWTIATLE	ALIVLIMQL	SYLVILX	
		:       :	:1:1111111	ШШП	111 111	
g039	PPATAAAAPAAAPQV	SVPPARQI	GLNWTIATLE	ALIVLIMOL	SYLFILX	
	120 130			50	160	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 147>: g040.seq

1			TGTCGCCCAC		
51	CATCCGCCAA	ATGCGCGGCA	CGACACTGGT	CGCCGGCATA	GAcggCCGCC
101			AATAAGCTCG		
151	TCGCAACTGG	GCATCCGACT	CGTCCTCATC	CACGGCGCGT	ACCACTTCCT
201	CGAccgCCTC	GCCGCCGCGC	AAGgccGCAC	GCCGCATTAT	TGCCGgggtt
251	tGCGCGTTAC	CGACGaAACc	tcGctcgGAC	AGGCGCAGCA	GtttGCCGGC
301	AccgTCCGCA	GCCGTTTTGA	agcCGCATTG	tgcggcagCG	tttcaggatt
351	cgcgCGCGCG	CCTTCCGTCC	CGCTCGTAtc	gggcaacttc	ctgacCGCCC
401	GTCcgatggg	cgtgattgac	ggaACCGata	tggaatacgc	gggggttatc
451	cgcaaaaccg	ACACCGCCGC	CCTCCGTTTC	CAACTCGACG	CGGGCAATAT
501	CGTCTGGATG	CCGCCGCTCG	GGCATTCCTA	CGGCGGCAAA	ACCTTCAATC
551	TCGATATGGT	GCAGGCCGCC	GCTTCCGTCG	CCGTCTCGCT	TCAGGCCGAA
601	AAACTCGTTT	ACCTGACCCT	TTCAGACGGC	ATTTCCCGCC	CCGACGGCAC
651	GCTCGCCGAA	ACCCTCTCGG	CACAGGAAGC	GCAATCGCTG	GCGGAACACG
701	CCGCCAGCGA	AACCCGACGA	CTGATTTCGT	CCGCCGTTGC	CGCGCTCGAA
751	GGCGGCGTGC	ATCGCGTCCA	AATCCTCAAC	GGGGCCGCCG	ACGGCAGCCT
801	GCTGCAAGAA	CTCTTCACCC	GCAACGGCAT	CGGCACGTCC	ATTGCCAAAG
851	AAGCCTTCGT	CTCCATCCGG	CAGGCGCACA	GCGGCGACAT	CCCGCACATC
901	GCCGCCCTCA	TCCGCCCGCT	GGAAGAACAG	GGCGTCCTAT	TGCACCGCAG
951	CCGCGAATAC	CTCGAAAACC	ACATTTCCGA	ATTTTCCATC	CTCGAACACG



```
1001 ACGGCGACCT GTACGGCTGT GCCGCACTCA AAACCTTTGC CGAAGCCGAT
1051 TGCGGCGAAA TCGCCTGCCT TGCCGTCTCG CCGCAGGCAC AGGACGGCGG
1101 CTACGGCGAA CGCCTGCTTG CCCACATTAT CGATAAGGCG CGCGGCATAG
1151 GCATAAGCAG GCTGTTCGCA CTGTCCACAA ATACCGGCGA ATGGTTTGCC
1201 GAACGCGGCT TTCAGACGGC ATCGGAAGAC GAGCTGCCCG AAACGCGGCG
1251 CAAAGACTAC CGCAGCAACG GACGAAACCC GCATATTCTG GTGCGTCGCC
1301 TGCACCGCTG A
```

## This corresponds to the amino acid sequence <SEQ ID 148; ORF 040.ng>: g040.pep

```
1 MNAPDSFVAH FREAAPYIRQ MRGTTLVAGI DGRLLEGGTL NKLAADIGLL
51 SQLGIRLVLI HGAYHFLDRL AAAQGRTPHY CRGLRVTDET SLGQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPMGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWM PPLGHSYGGK TFNLDMVQAA ASVAVSLQAE
201 KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAASETRR LISSAVAALE
251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
301 AALIRPLEEQ GVLLHRSREY LENHISEFSI LEHDGDLYGC AALKTFAEAD
351 CGEIACLAVS PQAQDGGYGE RLLAHIIDKA RGIGISRLFA LSTNTGEWFA
401 ERGFQTASED ELPETRRKDY RSNGRNPHIL VRRLHR*
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 149>: m040.seq

```
ATGAGCGCGC CCGACCTCTT TGTCGCCCAC TTCCGCGAAG CCGTCCCCTA
  51 CATCCGCCAA ATGCGCGGCA AAACGCTGGT CGCCGGCATA GACGACCGCC
     TGCTCGAAGG TGATACCTTA AACAAGCTCG CCGCCGACAT CGGGCTGTTG
 151 TCGCAACTGG GCATCAGGCT CGTCCTCATC CACGGCGCGC GCCACTTCCT
      CGACCGCCAC GCCGCCGCTC AAGGCCGCAC GCCGCATTAT TGCCGGGGCT
 251 TGCGCGTTAC CGACGAAACC TCGCTCGAAC AGGCGCAGCA GTTTGCCGGC
 301 ACCGTCCGCA GCCGTTTTGA AGCCGCATTG TGCGGCAGCG TTTCCGGGTT
 351 CGCGCGCGC CCTTCCGTCC CGCTCGTATC GGGCAACTTC CTGACCGCCC
      GTCCGATAGG TGTGATTGAC GGAACCGATA TGGAATACGC GGGCGTTATC
 451 CGCAAAACCG ACACCGCCGC CCTCCGTTTC CAACTCGACG CGGGCAATAT
 501 CGTCTGGCTG CCGCCGCTCG GACATTCCTA CAGCGGCAAG ACCTTCTATC
 551 TCGATATGCT TCAAACCGCC GCCTCCGCCG CCGTCTCGCT TCAGGCCGAA
 601 AAACTCGTTT ACCTGACCCT TTCAGACGGC ATTTCCCGCC CCGACGGCAC
 651 GCTCGCCGAA ACCCTCTCGG CACAGGAAGC GCAATCGCTG GCGGAACACG
 701 CCGGCGGCA AACGCGACGG CTGATTTCGT CCGCCGAACT CTTCACCCGC
 751 AACGGCATCG GCACGTCCAT TGCCAAAGAA GCCTTCGTCT CCATCCGGCA
 801 - rGCGCAywgG G.CGACATCC CGCACATCGC CGCCCTCATC CGCCCGCTGG
 851 AAGAACAGGG CATCCTGCTG CACCGCAs.c GCGAATACCT CGAAAACCAC
 901 ATTTCCGAAT TTTCCATCCT CGAACACGAC GGCAACCTGT ACGGTTGCGC
 951 CGCCCTGAAA ACCTTTGCCG AAGCCGATTG CGGCGAAATC GCCTGCCTTG
1001 CCGTCTCGCC GCag.cACAG GACGGCGGCT ACGGCGAACG CnTGCTTGCC
     CACATTATCG ATAAGGCGCG CGGCATAGGC ATAAGCAGGC TGTTCGCACT
1051
1101 GTCCACAAAT ACCGGCGAAT GGTTTGCCGA ACGCGGCTTT CAGACGGCAT
     CGGAAGACGA GTTGCCCGAA ACGCGGCGCA AAGACTACCG CAGCAACGGA
1201 CGGAACTCGC ATATTCTGGT ACGTCGCCTG CACCGCTGA
```

### This corresponds to the amino acid sequence <SEQ ID 150; ORF 040>:

```
m040.pep

1 MSAPDLFVAH FREAVPYIRQ MRGKTLVAGI DDRLLEGDTL NKLAADIGLL
51 SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFYLDMLQTA ASAAVSLQAE
201 KLVYLTLSDG ISRPDGTLAE TLSAQEAQSL AEHAGGQTRR LISSAELFTR
251 NGIGTSIAKE AFVSIRQAHX XDIPHIAALI RPLEEQGILL HRXREYLENH
301 ISEFSILEHD GNLYGCAALK TFAEADCGEI ACLAVSPQXQ DGGYGERXLA
351 HIIDKARGIG ISRLFALSTN TGEWFAERGF QTASEDELPE TRRKDYRSNG
401 RNSHILVRRL HR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 151>: a040.seq



1	ATGATCGTGC	CCGACCTCTT	TGTCGCCCAC	TTCCGCGAAG	CCGCCCCTA
51	CATCCGCCAA	ATGCGCGGCA	AAACGCTGGT	CGCCGGCATA	GACGACCGCC
101	TGCTCGAAGG	TGATACCTTA	AACAAGTTCG	CCGCCGACAT	CGGGCTTTTG
151	TCGCAACTGG	GCATCAGGCT	CGTCCTCATC	CACGGCGCGC	GCCACTTCCT
201	CGACCGCCAC	GCCGCCGCGC	AAGGCCGCAC	GCCGCATTAT	TGCCGGGGCT
251	TGCGCGTTAC	CGACGAAACC	TCGCTCGAAC	AGGCGCAGCA	GTTTGCCGGC
301	ACCGTCCGCA	GCCGTTTTGA	AGCCGCATTG	TGCGGCAGCG	TTTCCGGGTT
351	CGCGCGCGCG	CCTTCCGTCC	CGCTCGTATC	GGGCAACTTC	CTGACCGCCC
401	GTCCGATAGG	TGTGATTGAC	GGAACCGATA	TGGAATACGC	GGGCGTTATC
451	CGCAAAACCG	ACACCGCCGC	CCTCCGTTTC	CAACTCGACG	CGGGCAATAT
501	CGTCTGGCTG	CCGCCGCTCG	GACATTCCTA	CAGCGGCAAG	ACCTTCCATC
551	TCGATATGCT	TCAAACCGCC	GCCTCCGTCG	CCGTCTCGCT	TCAGGCCGAA
601	AAACTCGTTT	ACCTGACCCT	TTCAGACGGC	ATTTCCCGCC	CCGACGGCAC
651	GCTCGCCGTA	ACCCTCTCGG	CACAGGAAGC	GCAATCGCTG	GCGGAACACG
701	CCGGCGGCGA	AACGCGACGG	CTGATTTCGT	CCGCCGTTGC	CGCGCTCGAA
751	GGCGGCGTGC	ATCGCGTCCA	AATCCTCAAC	GGAGCCGCCG	ACGGCAGCCT
801	GCTGCAAGAA	CTCTTCACCC	GCAACGGCAT	CGGCACGTCC	ATTGCCAAAG
851	AAGCCTTCGT	CTCCATCCGG	CAGGCGCACA	GCGGCGACAT	CCCGCACATT
901	GCCGCCCTCA	TCCGCCCGCT	GGAAGAACAG	GGCATCCTGC	TGCACCGCAG
951	CCGCGAATAC	CTCGAAAACC	ACATTTCCGA	ATTTTCCATC	CTCGAACACG
1001	ACGGCAACCT	GTACGGTTGC	GCCGCCCTGA	AAACCTTTGC	CGAAGCCGAT
1051	TGCGGCGAAA	TCGCCTGCCT	TGCCGTCTCG	CCGCAGGCAC	AGGACGGCGG
1101	CTACGGCGAA	CGCCTGCTTG	CCCACATTAT	CGATAAGGCG	CGCGGCATAG
1151	GCATAAGCAG	GCTGTTCGCA	CTGTCCACAA	ATACCGGCGA	ATGGTTTGCC
1201	GAACGCGGCT	TTCAGACGGC	ATCGGAAGAC	GAGTTGCCCG	AAACGCGGCG
1251	CAAAGACTAC	CGCAGCAACG	GACGGAACTC	GCATATTCTG	GTGCGTCGCC
1301	TGCACCGCTG	A			

### This corresponds to the amino acid sequence <SEQ ID 152; ORF 040.a>:

a040.pep

1 MIVPDLFVAH FREAAPYIRQ MRGKTLVAGI DDRLLEGDTL NKFAADIGLL
51 SQLGIRLVLI HGARHFLDRH AAAQGRTPHY CRGLRVTDET SLEQAQQFAG
101 TVRSRFEAAL CGSVSGFARA PSVPLVSGNF LTARPIGVID GTDMEYAGVI
151 RKTDTAALRF QLDAGNIVWL PPLGHSYSGK TFHLDMLQTA ASVAVSLQAE
201 KLVYLTLSDG ISRPDGTLAV TLSAQEAQSL AEHAGGETRR LISSAVAALE
251 GGVHRVQILN GAADGSLLQE LFTRNGIGTS IAKEAFVSIR QAHSGDIPHI
301 AALIRPLEEQ GILLHRSREY LENHISEFSI LEHDGNLYGC AALKTFAEAD
351 CGEIACLAVS PQAQDGGYGE RLLAHIIDKA RGIGISRLFA LSTNTGEWFA
401 ERGFQTASED ELPETRRKDY RSNGRNSHIL VRRLHR*

#### m040/a040 91.5% identity in 436 aa overlap

m040.pep	10 MSAPDLFVAHFREAV	20	30	40	50	60
movo.pep	1 · I I I I I I I I I I I I I I	IIIIIIIII	TTANGIDAKT	TEGOLTINETA	MOIGEFESOF	CIKTATI
a040	MIVPDLFVAHFREAA	PYTROMRGE	יוווווווווווו מיז.עמבדחחםז.	11111111111111111111111111111111111111	ADTOLLEGI	
4010	10	· 20	30	40	801GEESQE	60
		20	50	40	30	60
	70	80	90	100	110	120
m040.pep	HGARHFLDRHAAAQG	RTPHYCRGI	RVTDETSLEQ	AQQFAGTVRS	RFEAALCGS	VSGFARA
		11111111	1111111111	1111111111	11111111	1111111
a040	HGARHFLDRHAAAQG	RTPHYCRGI	RVTDETSLEQ	AQQFAGTVRS	RFEAALCGS	VSGFARA
	70	80	90	100	110	120
	130	140	150	160	170	180
m040.pep	PSVPLVSGNFLTARP	IGVIDGTDN	<b>MEYAGVIRKTD</b>	TAALRFQLDA	GNIVWLPPL	GHSYSGK
		1111111111				111111
a040	PSVPLVSGNFLTARP			TAALRFQLDA	GNIVWLPPL	GHSYSGK
	130	140	150	160	170	180
	190	200	210			
-040		200	210	220	230	240
m040.pep	TFYLDMLQTAASAAV		LTLSDGISRP	DGTLAETLSA	QEAQSLAEH	AGGQTRR
-040			111111111	11111 1111	11111111	111:111
a040	TFHLDMLQTAASVAV	SLQAEKLVY	LTLSDGISRP	DGTLAVTLSA	QEAQSLAEH	AGGETRR

	190	200	210	220	230	240
m040.pep	LISSA		250 ELFTRI	260 NGIGTSIAKE	AFVSIRQAH	-
a040		GVHRVQILNGAAI 260	OGSLLQELFTRI 270	NGIGTSIAKE 280	AFVSIRQAH 290	SGDIPHI 300
0.40		290 300		320		
m040.pep	AALIRPLEEQG	ILLHRXREYLEN! 		SNLYGCAALK	TFAEADCGE:	IACLAVS
a040	AALIRPLEEQG 310	ILLHRSREYLENI 320	HISEFSILEHDO 330	SNLYGCAALK 340	TFAEADCGE: 350	IACLAVS 360
	340	350 . 360	370	380	390	)
m040.pep	PQXQDGGYGER	XLAHIIDKARGIO	GISRLFALSTN'		-	
a040	PQAQDGGYGER 370	LLAHIIDKARGIO 380	SISRLFALSTN 390	rgewfaergf 400	QTASEDELPI 410	ETRRKDY 420
m040.pep	400 RSNGRNSHILV           RSNGRNSHILV 430					

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 040 shows 88.3% identity over a 436 aa overlap with a predicted ORF (ORF 040.ng) from N. gonorrhoeae:

#### m040/g040

m040.pep	MSAPDLFVAHFREAVPYIRQMRGKTLVAGIDDRLLEGDTLNKLAADIGLLSQLGIRLVLI	60
g040	MNAPDSFVAHFREAAPYIRQMRGTTLVAGIDGRLLEGGTLNKLAADIGLLSQLGIRLVLI	60
m040.pep	HGARHFLDRHAAAQGRTPHYCRGLRVTDETSLEQAQQFAGTVRSRFEAALCGSVSGFARA	120
g040	HGAYHFLDRLAAAQGRTPHYCRGLRVTDETSLGQAQQFAGTVRSRFEAALCGSVSGFARA	120
m040.pep	PSVPLVSGNFLTARPIGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWLPPLGHSYSGK	180
g040	PSVPLVSGNFLTARPMGVIDGTDMEYAGVIRKTDTAALRFQLDAGNIVWMPPLGHSYGGK	180
m040.pep	TFYLDMLQTAASAAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAGGQTRR	240
g040	TFNLDMVQAAASVAVSLQAEKLVYLTLSDGISRPDGTLAETLSAQEAQSLAEHAASETRR	240
m040.pep	LISSAELFTRNGIGTSIAKEAFVSIRQAHXXDIPHI	276
g040		300
m040.pep	AALIRPLEEQGILLHRXREYLENHISEFSILEHDGNLYGCAALKTFAEADCGEIACLAVS	336
g040		360
m040.pep	PQXQDGGYGERXLAHIIDKARGIGISRLFALSTNTGEWFAERGFQTASEDELPETRRKDY	396
g040		420
m040.pep	RSNGRNSHILVRRLHRX 413	
g040		





#### The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 153>:

230

```
g041.seq
         ATGAGTTCGC CCAAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGCCT
     51
         GATTACCGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGTGCGCTGG
```

- TGTGCGAAGT ACCGCTGACC GATATGATCC GTTATCCGCT GCTGTCCGCC 101
- GGTTCAAGTT GGACGGACGA ATACGGCAAT CCGCAGAAAT ACGAAGCCTG
- 201 CAAACGCCGG CTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA TCGATTATCC GCCCGCACTC ATTACCACCA GCCTCAGCGA CGACCGCGTC
- 301 CATCCCGCCC ACGCGCTCAA ATTCTACGCC AAACTGCGCG AAACCTCGCC
- 351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
- 401 CCCAACGCGA ATCCGCCGAC AAACTCGCCT GCGTGTTGCT GTTTTTGAAA
- 451 GAATTTTTGG GATAA

### This corresponds to the amino acid sequence <SEO ID 154; ORF 041.ng>:

g041.pep

- MSSPKHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
- GSSWTDEYGN PQKYEACKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV 51
- HPAHALKFYA KLRETSPQSW LYSPDGGGHT GNGTQRESAD KLACVLLFLK
- 151 EFLG*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 155>:

m041.seq

- ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT 1 51 GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATC GGCGCGCTGG
- TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC
- 151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG
- CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA 251
- TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC
- 301 CATCCCGCCC ACGCGCTCAA GTTCTACGCC AAACTGCGCG AAACCTCCGC 351 GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA
- CCCAACGCGA ATCCGCCGAC GAACTCGCCT GCGTCTTGCT GTTTTTGAAA
- GAGTTTTTGG GCTAA

### This corresponds to the amino acid sequence <SEQ ID 156; ORF 041>:

m041.pep

- ISSPEHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
- 51 GSSWTDEYGN POKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
- 101 HPAHALKFYA KLRETSAQSW LYSPDGGGHT GNGTQRESAD ELACVLLFLK
- 151 EFLG*

### The following partial DNA sequence was identified in N. meningitidis <SEO ID 157>:

a041.seq

- 1 ATCAGTTCGC CCGAACACAT CGGCTTGCAG GGCGGCAGCA ACGGCGGACT GATTACTGCC GCCGCCTTCG TGCGCGAACC GCAAAGCATA GGCGCGCTGG
- 101 TGTGCGAAGT GCCGCTGACC GACATGATCC GTTATCCGCT GCTCTCCGCC
- 151 GGTTCAAGCT GGACAGACGA ATACGGCAAT CCGCAAAAAT ACGAAGTCTG
- 201 CAAACGCCGG TTGGGCGAAT TGTCGCCGTA TCACAATCTT TCAGACGGCA
- 251 TCGATTATCC GCCCGCGCTC ATTACCACCA GCCTGTCCGA CGATCGCGTC
- 301 CATCCCGCCC ACGCGCTCAA GTTCTACGCC AAACTGCGCG AAACCTCGCC 351
- GCAATCTTGG CTCTACTCGC CTGACGGCGG CGGCCATACC GGCAACGGCA 401 CGCAGCGCGA AGCCGCCGAC GAACTCGCCT GCGTGTTGCT GTTTTTGAAA
- 451 GAGTTTTTGG GCTAA

### This corresponds to the amino acid sequence <SEQ ID 158; ORF 041.a>:

a041.pep

- ISSPEHIGLQ GGSNGGLITA AAFVREPQSI GALVCEVPLT DMIRYPLLSA
- GSSWTDEYGN PQKYEVCKRR LGELSPYHNL SDGIDYPPAL ITTSLSDDRV
- HPAHALKFYA KLRETSPQSW LYSPDGGGHT GNGTQREAAD ELACVLLFLK

151 EFLG*

m041/a041	98.7% ider	itity over a 154	aa overlap
-----------	------------	------------------	------------

	10	20	30	40	50	60
m041.pep	ISSPEHIGLQGGSN(	GLITAAAF	VREPQSIGALVO	EVPLTDMIF	RYPLLSAGSSW	TDEYGN
	11111111111	шшш				HILLI
a041	ISSPEHIGLQGGSN	GGLITAAAF	VREPQSIGALVO	EVPLTDMIF	RYPLLSAGSSW	TDEYGN
	10	20	30	40	50	60
	70	80	90	100	110	120
m041.pep	PQKYEVCKRRLGEL:	SPYHNLSDG:	IDYPPALITTSI	SDDRVHPA	IALKFYAKLRE	TSAQSW
	1111111111111			11111111		11 111
a041	PQKYEVCKRRLGEL:	SPYHNLSDG	IDYPPALITTSI	SDDRVHPAF	ALKFYAKLRE	TSPOSW
	70	80	90	100	110	120
	130	140	150			
m041.pep	LYSPDGGGHTGNGT	RESADELA	CVLLFLKEFLGX			
		:  :	111111111111			
a041	LYSPDGGGHTGNGT(	REAADELA	CVLLFLKEFLGX			
	130	140	150			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 041 shows 96.8% identity over a 154 aa overlap with a predicted ORF (ORF 041.ng) from N. gonorrhoeae:

m041/g041

	10	20	30	40	50	60
m041.pep	ISSPEHIGLQGGSN	GGLITAAAFV	REPOSIGAL	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
	:111:11111111	1111111111	1111111111	пппппп	11111111111	111111
g041	MSSPKHIGLQGGSN	GGLITAAAFV	REPOSIGAL	CEVPLTDMIR	YPLLSAGSSW	TDEYGN
	10	20	30	40	50	60
	70	80	90	100	110	120
m041.pep	PQKYEVCKRRLGEL	SPYHNLSDGI	DYPPALITTS	SLSDDRVHPAH	ALKFYAKLRE	
	11111:11111111					
g041	PQKYEACKRRLGEL	SPYHNLSDGI	DYPPALITTS	SLSDDRVHPAH	ALKFYAKLRE	TSPQSW
	70	80	90	100	110	120
	130	140	150			
m041.pep	LYSPDGGGHTGNGT	QRESADELAC	VLLFLKEFLO	SX		
		11111111111	1111111111	H		
g041	LYSPDGGGHTGNGT	QRESADKLAC	VLLFLKEFLO	SX		
	130	140	150			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 159>: g041-1.seq

-ı.se	q				
1	ATGAAATCCT	ACCCCGACCC	CTACCGCCAT	TTTGAAAACC	TCGATTCCGC
51	CGAAACGCAA	AACTTCGCTG	CTGAAGCGAA	TGCCGAAACG	CGCGCGCGTT
101	TTTTAAACAA	CGACAAGGCG	CGCGCACTTT	CAGACGGCAT	TTTGAATCAA
151	ATGCAGGACA	CGCGGCAGAT	TCCGTTTTGT	CAGGAACACC	GCGCGCGGAT
201		CATCAGAATG			
251		GACCTACCGT			
301		ATTTCGATGA			
351	CGTGTCGCAC	TTGGTGGAGC	AGCCCAACCG	CGCGCTGCTG	ACTTTGAACA
401	AATCGGGCGG	CGATACGGCG	TATACGCTGG	AAGTGGATTT	GGAAGCAGGG
451	GAATTGGTAG	AGGGCGGTTT	TCACTTTCCG	GCAGGCAAAA	ACCATGTGTC
501	GTGGCGCGAT	GAAAACAGCG	TGTGGGTGTG	TCCGGCTTGG	GACGAACGCC
551	AGTTGACCGA	ATCGGGCTAT	CCGCGCGAAG	TGTGGCTGGT	GGAACGCGGC



```
601 AAGAGTTTCG AGGAAAGCCT GCCGGCGTAC CAAATCGATA AAGGCGCGAT
 651 GATGGTAAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT
     TGATTGAAGC GTCGGACGGT TTTTACACCA AGACGTATTT GCAGGTGTCG
 751 TCCGAAGGCG GGGCGAAACC GTTGAACCTG CCTAATGATT GCGATGTGGT
 801 CGGCTATCTG GCGGGACATC TTTTGCTGAC GCTGCGCAAG GACTGGCACC
 851 GCGCGAACCA AAGCTATCCG AGTGGCGCGT TGGTGGCGGT GAAACTGAAT
 901 CGGGGCGAAC TCGGGGCGGC GCAGCTTTTG TTTGCGCCCG ATGAAACGCA
     GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTGGTG GCAAGCCTGC
1001 TGGAGAATGT ACAAGGCCGT CTGAAAGCGT GGCGGTTTGC CGACAGCAAA
1051 TGGCAGGAAG CCGAGTTGCC GCACCTGCCC TCGGGCGCGT TGGAAATGAC
1101 CGACCAACCG TGGGGCGGCG ACGTGGTTTA TCTTGCCGCC AGCGATTTCA
     CCACGCCGCT GACGCTGTTT GCGCTGGATT TGAACGTGAT GGAACTGACC
1201 GTCATGCGCC TCCAGCCGCA GCAGTTTGTT TCAGACGGCA TCGAAGTGCG
1251 GCAGTTTTGG GCGGTGTCGT CCGACGGCGA ACGCATTCCT TATTTCCACG
1301 TCGGCAAAAA CGCCGCGCCC GACACGCCGA CCTTAGTCTA TGCTTACGGA
     GGTTTCGGCA TTCCTGAATT GCCGCATTAT CTGGGCAGCG TCGGCAAATA
1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCAAACATC CGCGGCGGCG
1451 GAGAATTCGG CCCGCGCTGG CATCAGGCGG CGCAGGGAAT CAGCAAACAC
1501 AAAAGCGTTG ATGATTTGTT GGCAGTCGTG CGTGATTTGT CCGAACGCGG
1551 CATGAGTTCG CCCAAACACA TCGGCTTGCA GGGCGGCAGC AACGGCGGCC
1601
     TGATTACCGC CGCCGCCTTC GTGCGCGAAC CGCAAAGCAT CGGTGCGCTG
1651 GTGTGCGAAG TACCGCTGAC CGATATGATC CGTTATCCGC TGCTGTCCGC
1701 CGGTTCAAGT TGGACGGACG AATACGGCAA TCCGCAGAAA TACGAAGCCT
1751 GCAAACGCCG GCTGGGCGAA TTGTCGCCGT ATCACAATCT TTCAGACGGC
1801 ATCGATTATC CGCCCGCACT CATTACCACC AGCCTCAGCG ACGACCGCGT
1851 CCATCCCGCC CACGCGCTCA AATTCTACGC CAAACTGCGC GAAACCTCGC
1901 CGCAATCTTG GCTCTACTCG CCTGACGGCG GCGGCCATAC CGGCAACGGC
1951 ACCCAACGCG AATCCGCCGA CAAACTCGCC TGCGTGTTGC TGTTTTTGAA
2001 AGAATTTTTG GGATAA
```

# This corresponds to the amino acid sequence <SEQ ID 160; ORF 041-1.ng>: g041-1.pep

```
MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLNNDKA RALSDGILNQ
51 MQDTRQIPFC QEHRARMYHF HQNAEYPKGV YRMCTAATYR SGYPEWKILF
101 SVADFDELLG DDVYLGGVSH LVEQPNRALL TLNKSGGDTA YTLEVDLEAG
151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW DERQLTESGY PREVWLVERG
201 KSFEESLPAY QIDKGAMMVN AWRYLDPQGS PIDLIEASDG FYTKTYLQVS
251 SEGGAKPLNL PNDCDVVGYL AGHLLITLRK DWHRANQSYP SGALVAVKLN
301 RGELGAAQLL FAPDETQALE SVETTKRFVV ASLLENVQGR LKAWRFADSK
351 WQEAELPHLP SGALEMTDQP WGGDVYLAA SDFTTPLTLF ALDLNVMELT
401 VMRLQPQQFV SDGIEVRQFW AVSSDGERIP YFHVGKNAAP DTPTLVYAYG
451 GFGIPELPHY LGSVGKYWLE EGNAFVLANI RGGGEFGPRW HQAAQGISKH
551 VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEACKRRLGE LSPYHNLSDG
601 IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSPQSWLYS PDGGGHTGNG
651 TQRESADKLA CVLLFLKEFL G*
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 161>: m041-1.seq

1 ATGAAATCCT ACCCCGACCC CTACCGCCAT TTTGAAAACC TCGATTCCGC 51 CGAAACGCAA AACTTCGCTG CTGAAGCGAA TGCCGAAACG CGCGCGCGTT 101 TTTTAGAAAA CGACAAGGCG CGCGCGCTTT CAGACGGCAT TTTGGCGCAG 151 TTGCAGGACA CGCGGCAGAT TCCGTTTTGT CAGGAACACC GCGCGCGGAT GTACCATTTC CATCAGGACG CGGAGTATCC GAAGGGCGTG TACCGCGTGT 251 GTACCGCGGC GACGTATCGT TCCGGCTATC CCGAGTGGAA AATCCTGTTT 301 TCGGTGGCGG ATTTCGACGA ATTGCTTGGC GACGATGTGT ATTTGGGCGG 351 CGTGTCGCAC TTGGTGGAAC AGCCCAACCG CGCGTTGTTA ACACTGAGCA 401 AATTGGGCAG CGATACGGCG TACACGCTGG AAGTGGATTT GGAAGCAGGG 451 GAGTTGGTCG AAGGCGGTTT TCACTTTCCG GCAGGCAAAA ACCATGTGTC 501 GTGGCGCGAT GAAAACAGCG TGTGGGTGTG TCCGGCTTGG AACGAACGCC 551 AGTTGACCCA ATCGGGCTAT CCGCGCGAAG TATGGCTGGT GGAACGCGGC 601 AAGAGTTTCG AGGAAAGCCT GCCTGTGTAT CAAATCGGCG AAGACGGCAT 651 GATGGTGAAC GCGTGGCGTT ATCTCGATCC GCAGGGTTCG CCGATTGATT 701 TGATTGAAGC GTCGGACGGT TTTTACACCA AAACCTATTT GCGGGTCTCA



751 GCCGAAGGCG AGGCGAAACC GTTAAACCTG CCCAACGATT GCGACGTGGT 801 CGGCTATCTG GCGGGGCATC TTTTGCTGAC GCTGCGCAAG GACTGGAACC 851 GCGCGAACCA AAGCTATCCG AGCGGCGCGC TGGTGGCGGT GAAGCTGAAT 901 CGGGGCGAAC TCGGGGCGGC GCAGCTTTTG TTTGCGCCCG ATGAAACGCA 951 GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTGGTG GCGAGCCTGT 1001 TGGAGAACGT ACAAGGCCGT CTGAAAGCAT GGCGGTTTGC CGACGGCAAA 1051 TGGCAGGAAG TCGAATTGCC GCGCCTGCCT TCGGGCGCGT TGGAAATGAC 1101 CGACCAACCT TGGGGCGGCG ACGTGGTTTA CCTTGCCGCC AGCGATTTCA 1151 CCACGCCGCT GACGCTGTTT GCGCTGGATT TGAACGTGAT GGAACTGACC 1201 GTCATGCGCC GCCAGCCGCA GCAGTTTGAT TCAGACGGCA TTAACGTGCA 1251 GCAGTTTTGG ACGACTTCGG CTGACGGCGA GCGCATTCCT TATTTCCACG 1301 TCGGCAAAAA CGCCGCGCCC GACATGCCGA CGCTGGTCTA TGCCTACGGC
1351 GGTTTCGGCA TTCCCGAATT GCCGCATTAT CTGGGCAGCA TTGGCAAATA 1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCGAACATC CGCGGCGGCG 1451 GCGAGTTCGG CCCGCGCTGG CATCAGGCGG CGCAGGGAAT CAGCAAACAT 1501 AAAAGCGTTG ATGATTTATT GGCAGTCGTG CGCGATTTGT CCGAACGCGG 1551 TATCAGTTCG CCCGAACACA TCGGCTTGCA GGGCGGCAGC AACGGCGGAC 1601 TGATTACTGC CGCCGCCTTC GTGCGCGAAC CGCAAAGCAT CGGCGCGCTG 1651 GTGTGCGAAG TGCCGCTGAC CGACATGATC CGTTATCCGC TGCTCTCCGC 1701 CGGTTCAAGC TGGACAGACG AATACGGCAA TCCGCAAAAA TACGAAGTCT 1751 GCAAACGCCG GTTGGGCGAA TTGTCGCCGT ATCACAATCT TTCAGACGGC 1801 ATCGATTATC CGCCCGCGCT CATTACCACC AGCCTGTCCG ACGATCGCGT 1851 CCATCCCGCC CACGCGCTCA AGTTCTACGC CAAACTGCGC GAAACCTCCG 1901 CGCAATCTTG GCTCTACTCG CCTGACGGCG GCGGCCATAC CGGCAACGGC 1951 ACCCAACGCG AATCCGCCGA CGAACTCGCC TGCGTCTTGC TGTTTTTGAA 2001 AGAGTTTTTG GGCTAA

### This corresponds to the amino acid sequence <SEQ ID 162; ORF 041-1>: m041-1.pep

```
1 MKSYPDPYRH FENLDSAETQ NFAAEANAET RARFLENDKA RALSDGILAO
 51 LODTROIPFC QEHRARMYHF HODAEYPKGV YRVCTAATYR SGYPEWKILF
101 SVADFDELLG DDVYLGGVSH LVEQPNRALL TLSKLGSDTA YTLEVDLEAG
151 ELVEGGFHFP AGKNHVSWRD ENSVWVCPAW NERQLTQSGY PREVWLVERG
201 KSFEESLPVY QIGEDGMMVN AWRYLDPQGS PIDLIEASDG FYTKTYLRVS
     AEGEAKPLNL PNDCDVVGYL AGHLLLTLRK DWNRANQSYP SGALVAVKLN
     RGELGAAQLL FAPDETQALE SVETTKRFVV ASLLENVQGR LKAWRFADGK
     WQEVELPRLP SGALEMTDQP WGGDVVYLAA SDFTTPLTLF ALDLNVMELT
     VMRRQPQQFD SDGINVQQFW TTSADGERIP YFHVGKNAAP DMPTLVYAYG
     GFGIPELPHY LGSIGKYWLE EGNAFVLANI RGGGEFGPRW HQAAQGISKH
451
     KSVDDLLAVV RDLSERGISS PEHIGLQGGS NGGLITAAAF VREPQSIGAL
     VCEVPLTDMI RYPLLSAGSS WTDEYGNPQK YEVCKRRLGE LSPYHNLSDG
551
     IDYPPALITT SLSDDRVHPA HALKFYAKLR ETSAQSWLYS PDGGGHTGNG
651 TQRESADELA CVLLFLKEFL G*
```

#### m041-1/g041-1 94.6% identity in 671 aa overlap

	10	20	30	40	50	60
m041-1.pep	MKSYPDPYRHFENL	DSAETQNFAA	<b>LEANAETRARE</b>	LENDKARAL	SDGILAQLQD'	TRQIPFC
•		1411111111		1:1111111		1111111
g041-1	MKSYPDPYRHFENL	DSAETQNFAA	<b>LEANAETRARE</b>	LNNDKARAL	SDGILNQMQD'	TRQIPFC
	10	20	30	40	50	60
	70	80	90	100	110	120
m041-1.pep	QEHRARMYHFHQDA	EYPKGVYRVO	TAATYRSGYF	EWKILFSVA	FDELLGDDV	YLGGVSH
		111111111111111111111111111111111111111		1111111111		1111111
g041-1	QEHRARMYHFHQNA	EYPKGVYRMO	CTAATYRSGYF	EWKILFSVA	FDELLGDDV	YLGGVSH
	70	80	90	100	110	120
	130	140	150	160	170	180
m041-1.pep	LVEQPNRALLTLSK	LGSDTAYTLE	VDLEAGELVE	GGFHFPAGK	HVSWRDENS	VWVCPAW
				1111111111	111111111	111111
g041-1	LVEQPNRALLTLNK		VDLEAGELVE	GGFHFPAGKN	HVSWRDENS	VWVCPAW
	130	140	150	160	170	180
	190	200	210	220	230	240
m041-1.pep	NERQLTQSGYPREV	WLVERGKSFE	ESLPVYQIGE	DGMMVNAWRY	LDPQGSPID	LIEASDG
	: [ [ ] [ ] : [ ] [ ] [ ] [ ]	1111111111	1111:111:	: [ ] ] [ ] [ ] [	111111111	

g041-1	DERQLTESGYPREVV 190	VLVERGKSFEI 200	ESLPAYQIDK 210	GAMMVNAWRY 220	LDPQGSPIDI 230	IEASDG 240
m041-1.pep	250 FYTKTYLRVSAEGEA					
g041-1	FYTKTYLQVSSEGGA 250					
m041-1.pep	310 RGELGAAQLLFAPDE					
g041-1	RGELGAAQLLFAPDE 310					
m041-1.pep	370 SGALEMTDQPWGGDV					
g041-1	SGALEMTDQPWGGDV 370	//////////////////////////////////////	PLTLFALDLI 390		QPQQFVSDGI 410	: :   EVRQFW 420
m041-1.pep	430 TTSADGERIPYFHVO					
g041-1	:: :             AVSSDGERIPYFHVO	KNAAPDTPTI 440	LVYAYGGFGI 450	: PELPHYLGSV 460	GKYWLEEGNA 470	 FVLANI 480
m041-1.pep	490 RGGGEFGPRWHQAAQ					
g041-1						
m041-1.pep	550 VREPQSIGALVCEVE	560 PLTDMIRYPL	570 LSAGSSWTDE	580 YGNPQKYEVC	590 KRRLGELSPY	600 HNLSDG
g041-1						
m041-1.pep	610 IDYPPALITTSLSDE	620 DRVHPAHALKI	630 FYAKLRETSA	640 QSWLYSPDGG	650 GHTGNGTQRE	660 SADELA
g041-1						III:II SADKLA 660
m041-1.pep	670 CVLLFLKEFLGX					
g041-1	CVLLFLKEFLGX 670					
m041-1/P55577 sp P55577 Y4NA_RHIS NGR234  Length = 72 Score = 370 bits Identities = 217/6	6 (940), Expect = e-	101				um sp.
		T + ++	+ L	LQ T +I	_	
Query: 62 EHRARMY-	HFHQDAEYPKGVYRVCTA +F QD + +G++R T	ATYRSGYPEWK +YRSG P+W+	ILFSVADFDEL: + V +	LGDDVYLGGVS G G	н 120	
Sbjct: 102 FARDGMID  Query: 121 LVEQPNRA  L N	LLTLSKLGSDTAYTLEVD	LEAGELVEGGF.		RDENSVWVCPA		
					••	

```
Sbjct: 162 LPPTSNLCLIRLSDGGKDADVVREFDIAKGEFVKEGFVLPEGKQSVTWVDENTIYVTREW 221
Query: 181 NERQLTQSGYPREVWLVERGKSFEESLPVYQ-----IGEDGMM--VNAWRYLDPQGSPI 232
                      +V+RG+S ++++ +++ E G++ ++
             ++T SGY
Sbjct: 222 TPGEVTSSGYAYVTKVVKRGQSLDQAVEIFRGQKKDVSAERGVLRDIDGKYVMDTSYRGL 281
Query: 233 DLIEASDGFYTKTYLRVSAEGEAKPLNLPNDCDVVGYLAGHLLLTLRKDWNRANQS-YPS 291
               FY + + L LP GY G + L+ DW A + + +
Sbjct: 282 DFFNTELAFYPNGH----PDTRKVVLPLPTTAVFSGYYKGQAIYWLKSDWTSAKGTVFHN 337
Query: 292 GALVAVKLNRGELGAAQL----LFAPDETQALESVETTKRFVVASLLENVQGRLKAWRFA 347 GA++A L A++ LF P+E Q++ TK +V S+L NV ++++ F
Sbjct: 338 GAIIAFDLKAALADPARVEPLVLFMPNEHQSVAGTTQTKNRLVLSILSNVTSEVRSFDFG 397
Query: 348 DGKWQEVELPRLPSGALEMTDQPWGGDVVYLAASDFTTPLTLFALDLNVMELTVMRRQPQ 407
                 +L + L +T D +++ + F P TLF D ++ +
Sbjct: 398 KGGWSSFKLALPENSTLSLTSSDDESDQLFVFSEGFLEPSTLFCADAATGQVEKITSTPA 457
Query: 408 QFDSDGINVQQFWTTSADGERIPYFHVGKNAAP---DMPTLVYAYGGFGIPELPHYLGSI 464
           +FD+ G+ QQFW TS DG ++PYF V +
                                               PT++YAYGGF IP P Y
Sbjct: 458 RFDAGGLQAQQFWATSKDGTKVPYFLVARKDVKLDGTNPTILYAYGGFQIPMQPSYSAVL 517
Query: 465 GKYWLEEGNAFVLANIRGGGEFGPRWHQAAQGISKHKSVDDLLAVVRDLSERGISSPEHI 524
          GK WLE+G A+ LANIRGGGEFGP+WH A ++ ++ DD AV +DL + ++S H+
Sbict: 518 GKLWLEKGGAYALANIRGGGEFGPKWHDAGLKTNRQRVYDDFQAVAQDLIAKKVTSTPHL 577
Query: 525 GLQGGSNGGLITAAAFVREPQSIGALVCEVPLTDMIRYPLLSAGSSWTDEYGNPQKYEVC 584
          G+ GGSNGGL+ ++ P A+V +VPL DM+ + +SAG+SW EYG+P
Sbjct: 578 GIMGGSNGGLLMGVQMIQRPDLWNAVVIQVPLLDMVNFTRMSAGASWQAEYGSPDD-PVE 636
Query: 585 KRRLGELSPYHNLSDGIDYPPALITTSLSDDRVHPAHALKFYAKLRETSAQSWLYSPDGG 644
             L +SPYHN+ G+ YP TS DDRV P HA K A +
Sbjct: 637 GAFLRSISPYHNVKAGVAYPEPFFETSTKDDRVGPVHARKMAALFEDMGLPFYYYENIEG 696
Query: 645 GHTGNGTQRESADELACVLLFL 666
                 +E A A +++
Sbjct: 697 GHAAAANLQEHARRYALEYIYM 718
```

# The following partial DNA sequence was identified in N. meningitidis <SEQ ID 163>: a041-1.seq

1 ATGAAATCCT ACCCCGACCC CTACCGCCAT TTTGAAAACC TCGATTCCGC 51 CGAAACGCAA AACTTCGCTG CTGAAGCGAA TGCCGAAACG CGCGCGCGTT 101 TTTTAAACAA CGACAAGGCA CGCGCATTGT CTGACGGCAT TTTGGCGCAG 151 TTGCAGGACA CGCGGCAAAT TCCGTTTTGT CAGGAACACC GCGCGCGGAT 201 GTACCATTTC CATCAAGATG CGGAATATCC GAAAGGCGTG TACCGCGTGT 251 GTACCGCGGC GACTTACCGT TCGGGCTATC CTGAGTGGAA AATCCTGTTT 301 TCGGTGGCGG ATTTCGACGA ATTGCTCGGT GACGATGTAT ATCTAGGCGG 351 CGTGTCGCAC CTGGTGGAAC AGCCCAACCG CGCGTTGTTA ACACTGAGCA 401 AATCGGGCGG CGATACCGCG TACACGCTGG AAGTGGATTT GGAAGCAGGG 451 GAGTTGGTAG AAGGCGGTTT TCACTTTCCG GCAGGCAAAA ACCATGTGTC 501 GTGGCGCGAT GAAAACAGCG TGTGGGTGTG TCCGGCTTGG GACGAACGCC 551 AGTTGACCGA ATCGGGCTAT CCGCGCGAGG TGTGGCTGGT GGAACGCGGC 601 AAGAGTTTCG AGGAAAGCCT GCCGGTGTAC CAAATTGCTG AAGACGGCAT 651 GATGGTGAAC GCGTGGCGTT ACCTCGATCC GCAGGGTTCG CCGATTGATT TGATTGAAGC GTCTGACGGT TTTTACACCA AAACCTATTT GCAGGTCTCA 701 751 GCCGAAGGCG AAGCGAAACC GTTAAACCTG CCCAACGATT GCGACGTAGT 801 CGGCTATCTG GCCGGACATC TTTTGCTGAC CTTGCGTAAA GACTGGCACC 851 GCGCGAACCA AAGCTATCCG AGTGGCGCAT TGGTAGCAGT AAAATTAAAC 901 CGCGGCGAAT TGGGCGCGGC GCAGCTTTTG TTTGCGCCCA ATGAAACGCA 951 GGCATTGGAA AGCGTGGAAA CGACCAAGCG TTTTGTCGTG GCGAGCCTGC TGGAAAACGT ACAGGGTCGT CTGAAAGCGT GGCGTTTTAC TGATGGCAAA 1001 1051 TGGCAGGAAA CCGAGTTGCC GCGCCTGCCT TCGGGCGCGT TGGAAATGAC 1101 CGACCAACCG TGGGGGGGCG ACGTAGTTTA CCTTGCCGCC AGCGATTTCA 1151 CCACGCCGCT GACGCTGTTT GCATTGGATT TGAACGTGAT GGAACTGACC 1201 GTCATGCGCC GCCAGCCGCA GCAGTTTGAT TCAGACGGCA TTAACGTGCA 1251 GCAGTTTTGG ACGACTTCGG CTGACGGCGA GCGCATTCCT TATTTCCACG 1301 TCGGCAAAAA CGCCGCGCCC GACATGCCGA CGCTGGTCTA TGCCTACGGC 1351 GGTTTCGGCA TTCCCGAATT GCCGCATTAT CTGGGCAGCA TTGGCAAATA 1401 TTGGCTGGAA GAGGGCAATG CCTTTGTATT GGCGAACATC CGCGGCGGCG

1451	GCGAGTTCGG	CCCGCGCTGG	CATCAGGCGG	CGCAGGGAAT	CAGCAAACAT
1501				AGCGATTTGT	
1551	TATCAGTTCG	CCCGAACACA	TCGGCTTGCA	GGGCGGCAGC	AACGGCGGAC
1601	TGATTACTGC	CGCCGCCTTC	GTGCGCGAAC	CGCAAAGCAT	AGGCGCGCTG
1651	GTGTGCGAAG	TGCCGCTGAC	CGACATGATC	CGTTATCCGC	TGCTCTCCGC
1701	CGGTTCAAGC	TGGACAGACG	AATACGGCAA	TCCGCAAAAA	TACGAAGTCT
1751	GCAAACGCCG	GTTGGGCGAA	TTGTCGCCGT	ATCACAATCT	TTCAGACGGC
1801	ATCGATTATC	CGCCCGCGCT	CATTACCACC	AGCCTGTCCG	ACGATCGCGT
1851	CCATCCCGCC	CACGCGCTCA	AGTTCTACGC	CAAACTGCGC	GAAACCTCGC
1901	CGCAATCTTG	GCTCTACTCG	CCTGACGGCG	GCGGCCATAC	CGGCAACGGC
1951	ACGCAGCGCG	AAGCCGCCGA	CGAACTCGCC	TGCGTGTTGC	TGTTTTTGAA
2001	AGAGTTTTTG	GGCTAA			

## This corresponds to the amino acid sequence <SEQ ID 164; ORF 041-1.a>:

1	MKSYPDPYRH	FENLDSAETQ	NFAAEANAET	RARFLNNDKA	RALSDGILAQ
51	LQDTRQIPFC	QEHRARMYHF	HQDAEYPKGV	YRVCTAATYR	SGYPEWKILF
101	SVADFDELLG	DDVYLGGVSH	LVEQPNRALL	TLSKSGGDTA	YTLEVDLEAG
151	ELVEGGFHFP	AGKNHVSWRD	ENSVWVCPAW	DERQLTESGY	PREVWLVERG
201	KSFEESLPVY	QIAEDGMMVN	AWRYLDPQGS	PIDLIEASDG	FYTKTYLQVS
251	AEGEAKPLNL	PNDCDVVGYL	AGHLLLTLRK	DWHRANQSYP	SGALVAVKLN
301	RGELGAAQLL	FAPNETQALE	SVETTKRFVV	ASLLENVQGR	LKAWRFTDGK
351	WQETELPRLP	SGALEMTDQP	WGGDVVYLAA	SDFTTPLTLF	ALDLNVMELT
401	VMRRQPQQFD	SDGINVQQFW	TTSADGERIP	YFHVGKNAAP	DMPTLVYAYG
451	GFGIPELPHY	LGSIGKYWLE	EGNAFVLANI	RGGGEFGPRW	HQAAQGISKH
501	KSVDDLLAVV	SDLSERGISS	PEHIGLQGGS	NGGLITAAAF	VREPQSIGAL
551	VCEVPLTDMI	RYPLLSAGSS	WTDEYGNPQK	YEVCKRRLGE	LSPYHNLSDG
601	IDYPPALITT	SLSDDRVHPA	HALKFYAKLR	ETSPQSWLYS	PDGGGHTGNG
651	TOPEDADELA	CULLET KEEL	G*		

#### a041-1/m041-1 97.9% identity in 671 aa overlap

	_		-			
	10	20	30	40	50	60
a041-1.pep	MKSYPDPYRHFENI	DSAETQNFA	<b>AEANAETRARE</b>	LNNDKARAL:	BDGILAQLQD	TRQIPFC
041 1			11111111111	1:1111111		$\Pi\Pi\Pi\Pi$
m041-1	MKSYPDPYRHFENI 10	DSAETQNFA. 20	AEANAETRARE 30			
	10	20	30	40	50	60
	70	80	90	100	110	120
a041-1.pep	QEHRARMYHFHQDA	EYPKGVYRV	CTAATYRSGYP	EWKILFSVA	FDELLGDDV	YLGGVSH
		111111111	[[]]	111111111		1111111
m041-1	QEHRARMYHFHQDA	EYPKGVYRV(	CTAATYRSGYP	PEWKILFSVA	FDELLGDDV	YLGGVSH
	70	80	90	100	110	120
-041 1	130	140	150	160	170	180
a041-1.pep	LVEQPNRALLTLSK	SGGDTAYTL	EVDLEAGELVE	GGFHFPAGKI	HVSWRDENS	VWVCPAW
m041 1				1111111111		
m041-1	LVEQPNRALLTLSK					
	130	140	150	160	170	180
	190	200	210	220	230	240
a041-1.pep	DERQLTESGYPREV					
avia zipop	:           :			ILLLLLLL	LDEQGSEID.	PIEWODE
m041-1	NERQLTQSGYPREV	WLVERGKSFI	EEST.PVYOTGE	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	/1.DPOCSDID	
	190	200	210	220	230	240
				220	230	240
	250	260	270	280	290	300
a041-1.pep	FYTKTYLQVSAEGE	AKPLNLPND	CDVVGYLAGHL	LLTLRKDWH	ANOSYPSGA:	LVAVKIN
	-	11111111		H1111111:1	333111111	111111
m041-1	FYTKTYLRVSAEGE	AKPLNLPNDO	CDVVGYLAGHL	LLTLRKDWNF	ANOSYPSGA	LVAVKIN
•	250	260	270	280	290	300
	310	320	330	340	350	360
a041-1.pep	RGELGAAQLLFAPN	ETQALESVET	TKRFVVASLL	ENVQGRLKAV	RFTDGKWQE	TELPRLP
-041 1	1111111111111111	11111111	!		TERMINE.	111111
m041-1	RGELGAAQLLFAPD	ETQALESVET	TKRFVVASLL	ENVQGRLKAW		<b>VELPRLP</b>
	310	320	330	340	350	360

a041-1.pep	370 SGALEMTDQPWGGDVV !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1111111111	1111111111	нини	1131111111	īī II
a041-1.pep m041-1	430 TTSADGERIPYFHVGK              TTSADGERIPYFHVGK 430	111111111111111111111111111111111111	1111111111	пинни	1111111111	HH
a041-1.pep	490 RGGGEFGPRWHQAAQG              RGGGEFGPRWHQAAQG 490	1111111111	1111 11111			1111
a041-1.pep m041-1	550 VREPQSIGALVCEVPL	1111111111			1111111111	ш
a041-1.pep m041-1	610 IDYPPALITTSLSDDR              IDYPPALITTSLSDDR 610	11111111111	1111111111111	1111111111	шіші	HH
a041-1.pep	670 CVLLFLKEFLGX           CVLLFLKEFLGX 670					

# The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 165>: g042.seq

ATGACGATGA	TTTGCTTGCG	CTTCCAagcG	TTCGTGCCGC	ATACCAGCGC
GTTATCCAAC	ACTTCCACGG	CAGCCGGCCC	TTCCTGCCCG	ATGGCGGCGG
TGCGGTCGAT	GATGAAAATC	CAGCCGGGGT	TTTTCTCTTT	GATGTATTCG
AAGGAAACGG	GCTGCCCGTG	CCCTTCGTTG	CGTAAAGATT	CGTCCACGGG
CGGCAGGCCG	ATGTCGCCGT	GTATCCAACT	TGCCAACCGC	GATTGCGTGC
ATTCAATTCC	GCCACGCGCG	CTTCCTTACC	GAAAATCCGC	GACAGGGTCT
TCTATGgtgG	TCGCGTTTTT	CGCCAACTGT	TCATACGCTT	CCGCACCCGG
CGGGCTCAAA	CAGCGTCCCC	ACCGTTGCCG	CCTTGTCAAA	TGCAGGCTGC
AAATAG				
	GTTATCCAAC TGCGGTCGAT AAGGAAACGG CGGCAGGCGG CGAAGGCGGA TTGCCTTTGG ATTCAATTCC CCATCTGCTT TCTATGGtgG CCCGCCGGTA CGGGCTCAAA	GTTATCCAAC ACTTCCACGG TGCGGTCGAT GATGAAAATC AAGGAAACGG GCTGCCCGTG CGGAGGCCGA CACCTTGTG TTGCCTTTGG cggCTTCGCG ATTCAATTCC GCCACGCGCG CCATCTGCTT CTCGCCGCTG TCTATGGtgG TCGCGTTTTT CCCGCCGGTA ATGACAAACT CGGGCTCAAA CAGCGTCCCC	GTTATCCAAC ACTTCCACGG CAGCCGGCCC TGCGGTCGAT GATGAAAATC CAGCCGGGGT AAGGAAACGG GCTGCCCGTG CCCTTCGTTG CGGAAGGCGG ATGTCGCG CTTTTGGGCG TTGCCTTTGG CGCCACGCGG CTTCCTTACC CCATCTGCTT CTCGCGCTG GTGCGGATAT TCTATGGtgG TCGCGTTTTT CGCCAACTGT CCCGCCGGTA ATGACAAACT GCGGATTGTG CGGGCTCAAA CAGCGTCCC ACCGTTGCCG	ATGACGATGA TTTGCTTGCG CTTCCAagcG TTCGTGCCGC GTTATCCAAC ACTTCCACGG CAGCCGGCCC TTCCTGCCCG TGCGGTCGAT GATGAAAATC CAGCCGGGGT TTTTCTTTT AAGGAAACGG GCTGCCCGTG CCCTTCGTTG CGTAAAGATT CGGCAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC CGAAGGCGGA CACCTTGTTG CCTGTAACCG ACAGCACCAG ATTCAATTCC GCCACGCGC CTTCCTTACC GAAAATCCGC CCATCTGCTT CTCGCCGCTG GTGCGGATAT TGCCGTTGTC TCTATGGTGG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCCGCCGGTA ATGACAAACT GCGGATTGTG GCGGTGCAGG CGGGCTCAAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA AAATAG

# This corresponds to the amino acid sequence <SEQ ID 166; ORF 042.ng>: g042.pep

1 MTMICLRFQA FVPHTSALSN TSTAAGPSCP MAAVRSMMKI QPGFFSLMYS
51 KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
101 LPLAASRFWA NSASICAFNS ATRASLPKIR DR<u>VSICFSPL</u> VRILPLSTVK
151 SMVVAFFANC SYASAPGPPV MTNCGLWRCR DSQSGSNSVP TVAALSNAGC
201 K*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 167>:





m042.seq	,	
1	ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC	
51	GTTATCCAmT ACTTCGACAG CCGcCGGCCy TTCyTGCCCG ATGGCGGCGG	
101	· · · · · · · · · · · · · · · · · · ·	
151	AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG	
201 251	CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC CGAAGGCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCGCGTCCT	
301	TTGCCTTTGG CGGCTTCGCG CGTTTGGGCG AACAGCGCGT CAATCTGCGC	
351		
401	CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA	
451		
501		
551	CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC	
601		
	•	
This correspond	Is to the amino acid sequence <seq 042="" 168;="" id="" orf="">:</seq>	
m042.pep		
i	MTMICLRFQA FVPRTSALSX TSTAAGXSCP MAAVRSMMKI QSGFFSLMYS	
51	KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP	
101	LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR	
151		
201	K*	
The following p	partial DNA sequence was identified in N. meningitidis <seq 169="" id="">:</seq>	
a042.seq	·	
1	ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC	
51		
101		
151		
201		
251 301		
351	CTTCAATTCC GCCGCGCGC CTTCCTTGCC GAAAATCCGC GCCAAGGTCT	
401	·	
451	TCTATGGTGG TCGCGTTTTT CGCCAACTGT TCATACGCTT CCGCGCCCGG	
501		
551	CGGGCTCGAA CAGCGTCCCC ACCGTTGCCG CCTTGTCAAA TGCAGGCTGC	
601	AAATAA	
This correspond	Is to the amino acid sequence <seq 042.a="" 170;="" id="" orf="">:</seq>	
a042.pep		
1	MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS	
51	KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP	
	LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR	
151 201	SMVVAFFANC SYASAPGPPV MTS*GL*RCR AS*SGSNSVP TVAALSNAGC K*	
201	K.	
m042/a042 9	9.0% identity over a 201 aa overlap	
m042/4042 /	2.070 Identity over a 201 an overlap	
	10 20 30 40 50 60	
m042.pep	10 20 30 40 50 60 MTMICLRFQAFVPRTSALSXTSTAAGXSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL	
a042	MTMICLRFQAFVPRTSALSNTSTAAGPSCPMAAVRSMMKIQSGFFSLMYSKETGCPCPSL	
	10 20 30 40 50 60	í
m040	70 80 90 100 110 120	
m042.pep	RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS	
a042	RKDSSTGGRPMSPCIQLANRDCVPKADTLLPVTDSTSPRPLPLAASRVWANSASICAFNS	
4414	70 80 90 100 110 120	

m042.pep

AARASLPKIRAKVSICFSPLVRILPLSTVRSMVVAFFANCSYASAPGPPVMTSXGLXRCR



		1111111111		[[[]]]	1111111111	111111
a042	AARASLPKIRAKVS	ICFSPLVRII	PLSTVRSMV	/AFFANCSYAS	SAPGPPVMTS	GLXRCR
	130	140	150	160	170	180
	190	200				
m042.pep	ASXSGSNSVPTVAA	LSNAGCKX				
	1111111111111	1111111				
a042	ASXSGSNSVPTVAA	LSNAGCKX				
	190	200				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 042 shows 93.0% identity over a 201 as overlap with a predicted ORF (ORF 042.ng) from N. gonorrhoeae:

m042/g042

	10	20	30	40	50	60
m042.pep	MTMICLRFQAFVPR	TSALSXTST <i>i</i>	AAGXSCPMAAV	RSMMKIQSG	FFSLMYSKETG	CPCPSL
		11111 1111		111111111111111111111111111111111111111		111111
g042	MTMICLRFQAFVPH	TSALSNTSTA	AAGPSCPMAAV	RSMMKIQPG	FSLMYSKETG	CPCPSL
-	10	20	30	40	50	60
	70	80	90	100	110	120
m042.pep	RKDSSTGGRPMSPC	IQLANRDCV	KADTLLPVTD	STSPRPLPLA	AASRVWANSAS	ICAFNS
	11111111111111	1111111111			1111 111111	111111
g042	RKDSSTGGRPMSPC	IQLANRDCVI	PKADTLLPVTD	STSPRPLPLA	ASRFWANSAS	ICAFNS
-	70	80	90	100	110	120
	130	140	150	160	170	180
m042.pep	AARASLPKIRAKVS	ICFSPLVRII	LPLSTVRSMVV	AFFANCSYAS	SAPGPPVMTSX	GLXRCR
	1:111111111:11	111111111	111111:111			11 111
g042	ATRASLPKIRDRVS	ICFSPLVRII	PLSTVKSMVV	AFFANCSYAS	SAPGPPVMTNC	
<b>y</b>	130	140	150	160	170	180
					2,0	100
	190	200				
m042.pep	ASXSGSNSVPTVAA	LSNAGCKX				
• •	1 11111111111	1111111				
g042	DSQSGSNSVPTVAA	LSNAGCKX				
•	190	200		•		

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 171>: m042-1.seq

ATGACGATGA TTTGCTTGCG CTTCCAAGCG TTCGTGCCGC GTACCAGCGC
51 GTTATCCAAT ACTTCGACAG CCGCCGGCCC TTCCTGCCCG ATGGCGGCGG
101 TACGGTCGAT GATGAAAATC CAATCGGGGT TTTTCTCTTT GATGTATTCG
151 AAGGAAACAG GCTGCCCGTG CCCCTCGTTG CGTAAAGATT CGTCTACAGG
201 CGGTAGGCCG ATGTCGCCGT GTATCCAACT TGCCAACCGC GACTGCGTGC
251 CGAAGCCGGA CACCTTGTTG CCCGTAACCG ACAGCACCAG CCCCGCGTCCT
301 TTGCCTTTGG CGGCTTCGCG CGTTTGGCG AACAGCGCGT CAATCTGCGC
351 CTCAATTCC GCCGCGCGG CTTCCTTGCC GAAAAATCCGC GCCAAGGTCT
401 CCATCTGCTT TTCGCCGCTG GTGCGGATAT TGCCGTTGTC CACCGTCAGA
451 TCTATGGTGG TCGCGTTTTT CGCTAACTGT TCATACGCTT CCGCGCCCGG
501 CCCGCCGGTA A

### This corresponds to the amino acid sequence <SEQ ID 172; ORF 042-1>:

m042-1.pep

- 1 MTMICLRFQA FVPRTSALSN TSTAAGPSCP MAAVRSMMKI QSGFFSLMYS
- 51 KETGCPCPSL RKDSSTGGRP MSPCIQLANR DCVPKADTLL PVTDSTSPRP
- 101 LPLAASRVWA NSASICAFNS AARASLPKIR AKVSICFSPL VRILPLSTVR
- 151 SMVVAFFANC SYASAPGPPV MTS*

m042-1/g042 95.4% identity in 173 aa overlap

m042-1.pep	10 MTMICLRFQAFVPRTS              MTMICLRFQAFVPHTS 10	111111111	ШШН	1111111 11	11111111111	111111
m042-1.pep g042	70 RKDSSTGGRPMSPCIQ                RKDSSTGGRPMSPCIQ 70	111111111			111 111111	
m042-1.pep g042	130 AARASLPKIRAKVSIC  :       :     ATRASLPKIRDRVSIC	1111111111	1111:111	11111111111	111111111:	
g042	DSQSGSNSVPTVAALS 190	NAGCKX 200				
The following par	tial DNA sequence v	was identifi	ed in N. n	neningitidis	<seq id<="" td=""><td>173&gt;:</td></seq>	173>:
1 A 51 G 101 T 151 A 201 C 251 C 301 T 351 C 401 C 451 T 501 C  This corresponds t a042-1.pep 1 M 51 K 101 L	TGACGATGA TTTGCTTG TTATCCAAT ACTTCGAC ACGGTCGAT GATGAAAA AGGAAACAG GCTGCCCG GGTAGGCCG ATGTCGCC GAAGGCGGA CACCTTGT TGCCTTTGG CGGCTTCG CATCTGCTT TCGCCGC CATCTGCTT TCGCCGCT CCGCCGGTA A  TO the amino acid sec TMICLRFQA FVPRTSAL ETGCPCPSL RKDSTGG PLAASRVWA NSASICAE MVVAFFANC SYASAPGE  100.0% ident	CAG CCGCCGC TC CAATCGC TG CCCCTAC TG CCCGTAC TG CCGTTATCCC TG CCGTTATCCC TG CTTCCTC TT CGCCAAC  Quence <se an="" td="" tstaagi="" tstaagi<=""><td>GCCC TTCC GGGT TTTT GTTG CGTA AACT TGCC ACCG ACAG GGCG AACA TGCC GAAA ATAT TGCC CTGT TCAT  EQ ID 174  PSCP MAAV LANR DCVP PKIR AKVS</td><td>TGCCCG ATGCTCTTT GATAAGATT CGTAACCGC GACCAG CCCGTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTTGTC CCGCTTGTC CCGCTTTGTC CCGCTTGTC CCGCTTGTC CCGCTTTGTCTTGTC CCGCTTTGTCTTCTTTGTCTTTGTCTTTTTCTTTTTTTT</td><td>GCGGCGG GTATTCG CTACAGG TGCGTGC GCGTCCT TCTGCGC AAGGTCT CGTCAGA CGCCCGG  -1.a&gt;: FFSLMYS DSTSPRP</td><td></td></se>	GCCC TTCC GGGT TTTT GTTG CGTA AACT TGCC ACCG ACAG GGCG AACA TGCC GAAA ATAT TGCC CTGT TCAT  EQ ID 174  PSCP MAAV LANR DCVP PKIR AKVS	TGCCCG ATGCTCTTT GATAAGATT CGTAACCGC GACCAG CCCGTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CACACGCTT CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTGTC CCGCTTTGTC CCGCTTGTC CCGCTTTGTC CCGCTTGTC CCGCTTGTC CCGCTTTGTCTTGTC CCGCTTTGTCTTCTTTGTCTTTGTCTTTTTCTTTTTTTT	GCGGCGG GTATTCG CTACAGG TGCGTGC GCGTCCT TCTGCGC AAGGTCT CGTCAGA CGCCCGG  -1.a>: FFSLMYS DSTSPRP	
m042-1.pep	10 MTMICLRFQAFVPRTS					
a042-1		SALSNTSTAAC 20	GPSCPMAAV 30		FSLMYSKETG 50	CPCPSL 60
m042-1.pep	70 RKDSSTGGRPMSPCIQ 					
a042-1	RKDSSTGGRPMSPCIQ 70	LANRDCVPKA 80	ADTLLPVTD 90	STSPRPLPLA 100	ASRVWANSAS 110	ICAFNS 120
m042-1.pep	130 AARASLPKIRAKVSIC			ПППППП		
a042-1	AARASLPKIRAKVSIC 130	FSPLVRILPI 140	LSTVRSMVV 150	AFFANCSYAS 160	APGPPVMTSX 170	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 175>:



```
q043.seq
         ATGGTTGTTT CAAATCAAAA TATCTATGCC GTCGGCCCAT CAGCACTTTT
         TCACATCCGA AGGCAAAAAT CCGTAATGCC GCCTGAACGC TTCgttgaAC
     51
     101
         CGTCCCGCGT ggcggtagcc gcAAAAGTGC ATcGCGGCTT GGATGGTGCT
     151 GCCCGATTCG ATGAGGGCga gcGCGTGTTC CAGCCGCAGG CGGCGCAGGC
     201 GTCCGGCGAC GGTTTCGCCG GTTTGCGCTT TGAAATAGCG TTTCAGGTAG
     251 CATTCGTTCA GCCCGACGCG GCGGGCGATT TCGGCGATGG TCAGCGGGCG
     301 GGCGAATTCG CTGTTCAAAA TATCGGCGGC TTCGTCTATG CGCCGGCGGC
     351 GGTAGCCGTT GTCGTGGCGG CGGAAGGTGA AGCGTAA
```

### This corresponds to the amino acid sequence <SEQ ID 176; ORF 043.ng>:

g043.pep

- MVVSNQNIYA VGPSALFHIR RQKSVMPPER FVEPSRVAVA AKVHRGLDGA
- ARFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQPDA AGDFGDGQRA 51
- 101 GEFAVONIGG FVYAPAAVAV VVAAEGEA*

### The following partial DNA sequence was identified in N. meningitidis <SEO ID 177>:

m043.seq					-
ī	ATGGTTGTTT	CAAATCAAAA	TATCTATGCC	GCCGGCCCCT	CAGCACTTCT
51	TCACATCCGA	AGGCAAAAAT	CCGTAATGCC	GTCTGAACGC	TTCGTTGAAC
101	CGTCCCGCGT	GGCGGTAGCC	GCAAAAGTGC	ATGGCGGCTT	GGACGGTGCT
151	GCCGGATTCG	ATGAGGGCGA	GCGCGTGTTC	CAGCCGCAGG	CGGCGCAgGC
201	ATCCGGCGAC	GGTTTCGCCG	GTTTGCGCTT	TGAAATAGCG	TTTCAGGTAG
251	CATTCGTTCA	GTCCGACGCG	GCGGGCGATT	TCGGCGATGG	TCAGCGGACG
301	GGCGAATTCG	TGTTGCAGGA	TGTCGGCGGC	TTCGTCTATG	CGCCGACGGC
351	GGTAACCGTT	GTCGTGGCGG	CGGAAGGTGA	AGCGCAATAA	

### This corresponds to the amino acid sequence <SEQ ID 178; ORF 043>:

m043.pep

- 1 MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA
- AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGORT
- 101 GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

Computer analysis of the amino acid sequences gave the following results: Homology with a predicted ORF from N. meningitidis menA with menB

ORF 043 shows 89.8% identity over a 128 aa overlap with a predicted ORF (ORF043.a) from N. gonorrhoeae:

m043/g043

	10	20	30	40	50	60
m043.pep	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVE	PSRVAVAAKVH	GGLDGAAGFI	EGERVF
	111111111111111111111111111111111111111	11:1111111	111 11111			
g043	MVVSNQNIYAVGPS	ALFHIRRQKS	VMPPERFVE	SRVAVAAKVH	RGLDGAARFI	EGERVF
	10	20	30	40	50	60
	70	80	90	100	110	120
m043.pep	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDI	GDGORTGEFV	LODVGGFVY	
	111111111111111	THEFT		111111:111:		
g043	QPQAAQASGDGFAG	LRFEIAFQVA				
	70	80	90	100	110	120
	130					
m043.pep	VVAAEGEAQX					
• •	11111111					
g043	VVAAEGEAXX					
	130					

#### The following partial DNA sequence was identified in N. meningitidis <SEO ID 179>: a043.seq

- ATGGTTGTTT CAAATCAAAA TATCTATGCC GCCGGCCCCT CAGCACTTCT
- 51 TCACATCCGA AGGCAAAAAT CCGTAATGCC GTCTGAACGC TTCGTTGAAC
- 101 CGTCCCGCGT GGCGGTAGCC GCAAAAGTGC ATGGCGGCTT GGACGGTGCT



- 151 GCCGGATTCG ATGAGGGCGA GCGCGTGTTC CAGCCGCAGG CGGCGCAGGC
  201 ATCCGGCGAC GGTTTCGCCG GTTTGCGCTT TGAAATAGCG TTTCAGGTAG
  251 CATTCGTTCA GTCCGACGCG GCGGGCGATT TCGGCGATGG TCAGCGGACGC
  301 GGCGAATTCG TGTTGCAGGA TGTCGGCGGC TTCGTCTATG CGCCGACGGC
  351 GGTAACCGTT GTCGTGGCGG CGGAAGGTGA AGCGCAATAA
- This corresponds to the amino acid sequence <SEQ ID 180; ORF 043.a>:

a043.pep

- 1 MVVSNQNIYA AGPSALLHIR RQKSVMPSER FVEPSRVAVA AKVHGGLDGA
- 51 AGFDEGERVF QPQAAQASGD GFAGLRFEIA FQVAFVQSDA AGDFGDGQRT
- 101 GEFVLQDVGG FVYAPTAVTV VVAAEGEAQ*

m043/a043 100.0% identity in 129 aa overlap

	10	20	30	40	50	60
m043.pep	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVEP	SRVAVAAKVH	GGLDGAAGF	EGERVF
		111111111111111111111111111111111111111	1111111111	111111111	1111111111	111111
a043	MVVSNQNIYAAGPS	ALLHIRRQKS	VMPSERFVEP	SRVAVAAKVH	GGLDGAAGFI	EGERVF
	10 .	20	30	40	50	60
	70	80	90	100	110	120
m043.pep	QPQAAQASGDGFAG	LRFEIAFQVA	.FVQSDAAGDF	GDGQRTGEFV	LQDVGGFVY	PTAVTV
	1111111111111	1111111111	111111111	1111111111	1111111111	$\Pi\Pi\Pi\Pi$
a043	QPQAAQASGDGFAG	LRFEIAFQVA	FVQSDAAGDF	GDGQRTGEFV	LQDVGGFVYA	PTAVTV
	70	80	90	100	110	120
	130				,	
m043.pep	VVAAEGEAQX					
F - F	111111111					
a043	VVAAEGEAQX					
	130					

### The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 181>: g044.seq

- 1 ATGCTGCCCG ACCAGAGCGT CGAGTTCTTG CCACAAGTCG TCGTTTTTGA
- 51 CGGGCTGTTT GGCGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
- 101 CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
- 151 GGTGCAGCGG CGTTTGAGCG ATTTCAGCCC TTCGATAACG GCGGTCAGCT
- 201 CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTCG
- 251 CGGCTGCCGT AGCGCATTAA

## This corresponds to the amino acid sequence <SEQ ID 182; ORF 044.ng>: g044.pep

- 1 MLPDQSVEFL PQVVVFDGLF GGGFPAVALP TVYPVFHAVF DVLRVGADDD
- 51 GAAAFERFOP FDNGGQLHAV VGGLRFAAEK FFFAAAVAH*

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 183>: m044.seq

- 1 ATGCCGTCCG ACTAGAGCGT CGAGTTCTTT CCAGAAGTCG TCGTTTTTGA
- 51 CGGGCTGTTT GGAGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
- 101 CAGTTTTCCA TGCCATTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
- 151 GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCAGTCAGTT
- 201 CCATGCGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
- 251 TGGCTACCGT AGCGCAYTAa

## This corresponds to the amino acid sequence <SEQ ID 184; ORF 044>: m044.pep

- 1 MPSDXSVEFF PEVVVFDGLF GGGFPAVALP TVYPVFHAIF DVLRVGADDD
- 51 GAAAFERFQS FDDGSQFHAV VGGLRFAAEK FFFVATVAH*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 185>: a044.seq

```
GTGCCGTCCG ACCAGCGCGT CGAGTTCTTT CCACAAGTCG TCGTTTTTGA CGGGCTGTTT GGCGGCGGTT TTCCAGCCGT TGCGCTTCCA ACCGTGTATC
1
```

- 51
- 101 CAGTTTTCCA TGCCGTTTTT GACGTATTGC GAGTCGGTGC AGATGATGAC
- 151 GGTGCAGCGG CGTTTGAGCG ATTTCAGTCC TTCGATGACG GCGGTCAGTT 201 CCATACGGTT GTTGGTGGTT TGCGCTTCGC CGCCGAAAAG TTCTTTTTCG
- 251 TGGCTGCCGT AGCGCATTAA

This corresponds to the amino acid sequence <SEQ ID 186; ORF 044.a>:

a044.pep

- VPSDQRVEFF PQVVVFDGLF GGGFPAVALP TVYPVFHAVF DVLRVGADDD
- GAAAFERFQS FDDGGQFHTV VGGLRFAAEK FFFVAAVAH* 51

91.0% identity over a 89 aa overlap m044/a044

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 044 shows 86.5% identity over a 89 aa overlap with a predicted ORF (ORF 044.ng) from N. gonorrhoeae:

m044/g044

	10	20	30	40	50	60
m044.pep	MPSDXSVEFFPEVV	VFDGLFGGGF	PAVALPTVYE	VFHAIFDVLR	VGADDDGAAA	FERFOS
	: :	11111111	1111111111	1111:1111		$\Pi\Pi\bar{\Pi}$
g044	MLPDQSVEFLPQVV					
	10	20	30	40	50	60
	70	80	90			
m044.pep	FDDGSQFHAVVGGL	RFAAEKFFFV	'ATVAHX			
	: : :	[]]]]]]	1:111			
g044	FDNGGQLHAVVGGL					
	70	80	۵n			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 187>: g046.seq

1	ATGTCGGCAA	TGCTGCGTCC	GACAAGCAGC	CCGCCGCgcc	gCGCCTGTAT
51	GATGACCATC	CGCACGCGGT	CGTCTGCAAA	ACGTAAAACC	TGCAATGCGC
101				CGGTAACGAG	
151	CTGATGGTTT	CGGTTATGCC	gaATATGGAA	AGGCTGCCGt	TTTCGTTGTT
201				TtcgctGGAA	
251				CGGCAACTTT	
301	ATGTTGGTTT	CGTCGCTGCG	GGagaGCGCG	AGcagcaagt	cggcatcttC
351	CgcgccggcG	Cgttataatg	tgAAGGGGGA	TGCGccgttg	ccgaAAACGG
401				GCAATGCTTT	
451	TCGATAAcgg	TTACGTCGTT	GTTGGTGATG	GCGGCAAGGT	TTTGCGCGAC



```
501 GGTAGAACCT ACCTGCCCGT TGCCTAAAAT GAGGATTTTC ACGGTATGGG
          551 TCGCCGGGTG A
This corresponds to the amino acid sequence <SEQ ID 188; ORF 046.ng>:
     g046.pep
               MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGOSIRP ASCSVTSCSG
           51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLOAT
          101 MLVSSLRESA SSKSASSAPA RYNVKGDAPL PKTVWTSRRL PVSCNAFSSM
          151 SITVTSLLVM AARFCATVEP TCPLPKMRIF TVWVAG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 189>:
     m046.seg
            1 ATGTCGGCAA TGCTGCGTCC GACAAGCAST CCGC.r.sGC gCGcCTGTAT
           51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
               CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
          151 CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
          201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGCG
          251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
          301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
          351 CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
          401 TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
          451 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
               GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
          551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 190; ORF 046>:
     m046.pep
            1 MSAMLRPTSX PXXRACMMTI RTRSSAKRKT CNAPGQSIRP ASCSVTSCSG
           51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
          101 MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
               SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 191>:
     a046.seq
               ATGTCGGCAA TGCTGCGTCC GACAAGCAGT CCGCCGCGCC GCGCCTGTAT
           51 GATGACCATC CGCACGCGGT CGTCTGCAAA ACGTAAAACC TGCAATGCGC
          101
               CCGGGCAGTC TATCAGGCCG GCAAGCTGTT CGGTAACGAG CTGTTCGGGG
          151 CTGATGGTTT CGGTTATGCC GAATATGGAA AGGCTGCCGT TTTCGTTGTT
          201 TTCGAGCTTG GGGCTGAGGT ATTCGAGGTA TTCGCTGGAA CGGACGCGCG
          251 CGATGCGGCC GGGGATGTTG AACAGGTCGG CGGCAACTTT GCAGGCGACG
          301 ATGTTGGTTT CGTCGCTGCG GGAGAGCGCG AGCAGCAAGT CGGCATCTTC
          351 CGCGCCGGCG CGTTCTAATG TGAAGGGGGA TGCGCCGTTG CCGAAAACGG
          401 TTTGGACATC GAGGCGGCTG CCTGTTTCCT GCAATGCTTT TTCGTCGATG
          451 TCGATAACGG TTACGTCGTT GTTGGGTATG GCGGCAAGGT TTTGTGCGAC
               GGTAGAACCT ACCTGTCCGT TGCCTAAAAT GAGGATTTTC ACGGTGTGGG
          551 TCGCCGAGTG A
This corresponds to the amino acid sequence <SEQ ID 192; ORF 046.a>:
     a046.pep
            1 MSAMLRPTSS PPRRACMMTI RTRSSAKRKT CNAPGOSIRP ASCSVTSCSG
           51 LMVSVMPNME RLPFSLFSSL GLRYSRYSLE RTRAMRPGML NRSAATLQAT
              MLVSSLRESA SSKSASSAPA RSNVKGDAPL PKTVWTSRRL PVSCNAFSSM
              SITVTSLLGM AARFCATVEP TCPLPKMRIF TVWVAE*
m046/a046
             98.4% identity over a 186 aa overlap
                          10
                                    20
                                                       40
                  {\tt MSAMLRPTSXPXXRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME}
     m046.pep
                  {\tt MSAMLRPTSSPPRRACMMTIRTRSSAKRKTCNAPGQSIRPASCSVTSCSGLMVSVMPNME}
     a046
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGLRY	SRYSLERTRA	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
		111111111	[[[]]]		1111111111	111111
a046	RLPFSLFSSLGLRY	SRYSLERTRAI	MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	ASSAPA
	70	80	90	100	110	120
`	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPKTV	WTSRRLPVSC	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
		11111111	111111111	111111111		ПППП
a046	RSNVKGDAPLPKTV	WISRRLPVSC	NAFSSMSITV	TSLLGMAARF	CATVEPTCPL	PKMRIF
	130	140	150	160	170	180
m046.pep	TVWVAEX	•				
	1111111					
a046	TVWVAEX					
40.0						

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 046 shows 97.3% identity over a 185 aa overlap with a predicted ORF (ORF 046.ng) from N. gonorrhoeae:

m046/g046

	10	20	30	40	50	60
m046.pep	MSAMLRPTSXPX	XRACMMTIRTRS	SAKRKTCNAI	PGQSIRPASCS	VTSCSGLMVS	SVMPNME
		-	111111111	[]]]]]		111111
g046	MSAMLRPTSSPP	RRACMMTIRTRS	SAKRKTCNAI	PGQSIRPASCS	VTSCSGLMVS	VMPNME
	10	20	30	40	50	60
	70	80	90	100	110	120
m046.pep	RLPFSLFSSLGL	RYSRYSLERTRA	MRPGMLNRS/	ATLQATMLVS	SLRESASSKS	BASSAPA
			11111111111		111111111	
g046	RLPFSLFSSLGL		MRPGMLNRSA	ATLQATMLVS	SLRESASSKS	SASSAPA
	70	80	90	100	110	120
	130	140	150	160	170	180
m046.pep	RSNVKGDAPLPK	TVWTSRRLPVSC	NAFSSMSIT	/TSLLGMAARF	CATVEPTCPI	PKMRIF
		1111111111111	1111111111		1111111111	
g046	RYNVKGDAPLPK					PKMRIF
	130	140	150	160	170	180
m046 202	TVWVAEX					
m046.pep	IVWVAEA					
<b>2016</b>	TVWVAGX					
g046	IVWVAGA					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 193>: g047.seq

1	ATGGTCATCA	TACAGGCGcg	gcGCGGCGGG	CTGCTTGTCG	GACGCAGCAT
51	TGCCGACATC	GCCCAAGATT	TGCCCGACGG	GGCCGACTGC	CAAATCTGCG
	CCGTTTACCG				
	ATCGAAGGCG				
201	GGTCATACCC	gaATTGCGCC	CCAAAGAAAC	CAGCACCCGC	CGCATCATGA
251	TTGCCGGCGG	CGGCAACATC	tgctACCGCC	TCGCCAAGCA	GCTCGAACAC



```
301 GCATAcaacG TCAAAATCAT CGAATGCCGG CCGCGCcgtg ccgaATGGAT
351 AGCCGAAAAC ctcgAcaaCA CCCTCGTCCT GCAAGGTTCG Gcaaccgacg
```

401 aAaccetget cgAcaacgaa tacatcgacg aaatcgaCGT ATTCTGCGCC

451 CTGACCAACG ACGACGAAAG CAACATTAtg tCCGCCCTTT TGGCGAAAAA 501 CCTcggcgCG AAGCgcgtca tcggCATCGT CAACCGCTCA AGCTACGTCG

551 ATTTGCTCGA AGGCAACAAA ATCGACATCG TCGTCTCCCC CCACCTCATC

601 ACCATCGGCT CGATACTCGC CCACATCCGG CGCGGCGACA TCGTTGCCGT 651 CCACCCCATC CGGCGCGCA CGGCGGAAGC CATCGAAGTC GTCGCGCACG

701 GCGACAAAA AACTTCCGCC ATCATCGGCA GGCGCATCAG CGGCATCAAA

751 TGGCCCGAAG GCTGCCACAT TGCCGCCGTC GTCCGCGCCG GAACCGGCGA

801 AACCATTATG GGACACCATA CCGAAACCGT CATCCAAGAC GGTGACCACA

TCATCTTTTT CGTCTCGCGC CGGCGCATCC TGAACGAACT GGAGAAACTC

901 ATCCAAGTCA AAATGGGCTT TTTCGGATAA

#### This corresponds to the amino acid sequence <SEQ ID 194; ORF 047.ng>: g047.pep

1 MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI

51 IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI CYRLAKOLEH

101 AYNVKIIECR PRRAEWIAEN LDNTLVLQGS ATDETLLDNE YIDEIDVFCA

151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK IDIVVSPHLI 201 TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK

TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK 251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL

301 IQVKMGFFG*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 195>: m047.seq

1 ATGGTCATCA TACAGGCGCG C..syGCGGA STGCTTGTCG GACGCAGCAT

51 TGCCGACATC GCCCAAGATT TGCCCGACGG GGCCGACTGC CAAATCTGCG CCGTTTACCG CAACAACCGC CTCATCGTCC CCGCGCCGCA AACCGTCATC

151 ATCGAAGGCG ACGAAATCCT ATTTGCCGCC GCCGCCGAAA ACATCGGCGC

201 GGTCATACCC GAATTGCGCC CCAAAGAAAC CCAAAGAAAC CAGCcCmgmm

251 GCATCATGAT TKCCGGCGGC GGCAACATCG GCTACCGTCT CGCCAAGCAG

301 CTCGAACACG CATACAACGT YAAAATCATC GAATGCCGGC CGCGCCGTGC

351 CGAATGGATA GCCGAAAACC TCGACAACAC CCTCGTCyTG CAAGGTTCGG

401 CAACCGACGA AACCCTGCTC GACAACGAAT ACATCGACGA AATCGACGTA

451 TTCTGCGCCC TGACCAACGA CGACGAAAGC AACATTATGT CCGCCCTTTT

501 GGCGAAAAAC CTCGGCGCGA AGCGCGTCAT CGGCATCGTC AACCGCTCAA 551 GCTACGTCGA TTTGCTCGAA GGCAACAAAA TCGACATCGT CGTCTCCCCC

601 CACCTCATCA CCATCGGCTC GATACTCGCC CACATCCGGC GCGGCGACAT

651 CGTTGCCGTC CACCCCATCC GGCGCGCAC GGCGGAAGCC ATCGAAGTCG

701 TCGCACACGG CGACAAAAA ACTTCCGCCA TCATCGGCAG GCGCATCAGC

751 GGCATCAAAT GGCCCGAAGG CTGCCACATT GCCGCCGTCG TCCGCGCCGG

801 AACCGGCGAA ACCATTATGG GACACCATAC CGAAACCGTC ATCCAAGACG

851 GCGACCACAT CATCTTTTC GTCTCGCGCC GGCGCATCCT GAACGAACTG

901 GAAAAACTCA TCCAGGTCAA AATGGGCTTT TTCGGATAA

### This corresponds to the amino acid sequence <SEO ID 196; ORF 047>:

m047.pep 1 MVIIQARXXG XLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI

51 IEGDEILFAA AAENIGAVIP ELRPKETQRN QPXXIMIXGG GNIGYRLAKQ

101 LEHAYNVKII ECRPRRAEWI AENLDNTLVL QGSATDETLL DNEYIDEIDV

151 FCALTNDDES NIMSALLAKN LGAKRVIGIV NRSSYVDLLE GNKIDIVVSP 201 HLITIGSILA HIRRGDIVAV HPIRRGTAEA IEVVAHGDKK TSAIIGRRIS

251 GIKWPEGCHI AAVVRAGTGE TIMGHHTETV IQDGDHIIFF VSRRRILNEL

301 EKLIOVKMGF FG*

#### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 197>: a047.seq

ATGGTCATCA TACAGGCGCG GCGCGGCGGA CTGCTTGTCG GACGCAGCAT



51	TGCCGACATC	GCCCAAGATT	TGCCCGACGG	GGCCGACTGC	CAAATCTGCG
101	CCGTTTACCG	CAACAACCGC	CTCATCGTCC	CCGCGCCGCA	AACCGTCATC
151	ATCGAAGGCG	ACGAAATCCT	ATTTGCCGCC	GCCGCCGAAA	ACATCGGCGC
201	GGTCATACCC	GAATTGCGCC	CCAAAGAAAC	CAGCACCCGC	CGCATCATGA
251	TTGCCGGCGG	CGGCAACATC	GGCTACCGTC	TCGCCAAGCA	GCTCGAACAC
301	GCATACAACG	TCAAAATCAT	CGAATGCCGG	CCGCGCCGTG	CCGAATGGAT
351	AGCCGAAAAC	CTCGACAACA	CCCTCGTCCT	GCAAGGTTCG	GCAACCGACG
401	AAACCCTGCT	CGACAACGAA	TACATCGACG	AAATCGACGT	ATTCTGCGCC
451	CTGACCAACG	ACGACGAAAG	CAACATTATG	TCCGCCCTTT	TGGCGAAAAA
501	CCTCGGCGCG	AAGCGCGTCA	TCGGCATCGT	CAACCGCTCA	AGCTACGTCG
551	ATTTGCTCGA	AGGCAACAAA	ATCGACATCG	TCGTCTCCCC	CCACCTCATC
601	ACCATCGGCT	CGATACTCGC	CCACATCCGG	CGCGGCGACA	TCGTTGCCGT
651	CCACCCCATC	CGGCGCGGCA	CGGCGGAAGC	CATCGAAGTC	GTCGCACACG
701	GCGACAAAAA	AACTTCCGCC	ATCATCGGCA	GGCGCATCAG	CGGCATCAAA
751	TGGCCCGAAG	GCTGCCACAT	TGCCGCCGTC	GTCCGCGCCG	GAACCGGCGA
801	AACCATTATG	GGACACCATA	CCGAAACCGT	CATCCAAGAC	GGCGACCACA
851	TCATCTTTTT	CGTCTCGCGC	CGGCGCATCC	TGAACGAACT	GGAAAAACTC
901	ATCCAAGTCA	AAATGGGCTT	TTTCGGATAA		

### This corresponds to the amino acid sequence <SEQ ID 198; ORF 047.a>:

.a047.pep

MVIIQARRGG LLVGRSIADI AQDLPDGADC QICAVYRNNR LIVPAPQTVI 51 IEGDEILFAA AAENIGAVIP ELRPKETSTR RIMIAGGGNI GYRLAKQLEH

101 AYNVKIIECR PRRAEWIAEN LDNTLVLQGS ATDETLLDNE YIDEIDVFCA 151 LTNDDESNIM SALLAKNLGA KRVIGIVNRS SYVDLLEGNK IDIVVSPHLI

201 TIGSILAHIR RGDIVAVHPI RRGTAEAIEV VAHGDKKTSA IIGRRISGIK 251 WPEGCHIAAV VRAGTGETIM GHHTETVIQD GDHIIFFVSR RRILNELEKL 301 IQVKMGFFG*

#### 96.5% identity over a 312 aa overlap m047/a047

m047.pep	10 MVIIQARXXGXLVG               MVIIQARRGGLLVG	ШППППП	тинітин	111111111	шинн	
m047.pep	70 AAENIGAVIPELRE	80	90	100	110	120
a047	AAENIGAVIPELRE 	111: : 1	H HIIII	нийнип		
	70 130	80 140	90 150	100 160	110 170	100
m047.pep	AENLDNTLVLQGSA	TDETLLDNEYI	DEIDVFCALT	NDDESNIMSAI	LLAKNLGAKE	
a047	AENLDNTLVLQGSA 120 130	TDETLLDNEYI 140	DEIDVFCALT 150	NDDESNIMSAI 160	LLAKNLGAKE 170	RVIGIV
m047.pep	190 NRSSYVDLLEGNKI	200 DIVVSPHLITI	210 GSILAHIRRG	220 DIVAVHPIRRO	230 GTAEAIEVVA	240 AHGDKK
a047						
	250	260	270	280	230	300
m047.pep	TSAIIGRRISGIKW					
a047	TSAIIGRRISGIKW 240 250					
m047.pep	310 EKLIQVKMGFFGX					



a047 EKLIQVKMGFFGX

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 047 shows 96.2% identity over a 312 aa overlap with a predicted ORF (ORF 047.ng) from N. gonorrhoeae:

#### m047/g045

m047.pep	MVIIQARXXGXLVGRSIADIAQDLPDGADCQICAVYRNNRLIVPAPQTVIIEGDEILFAA	60
g047	MVIIQARRGGLLVGRSIADIAQDLPDGADCQICAVYRNNRLIVPAPQTVIIEGDEILFAA	60
m047.pep	AAENIGAVIPELRPKETQRNQPXXIMIXGGGNIGYRLAKQLEHAYNVKIIECRPRRAEWI	120
g047	AAENIGAVIPELRPKETSTRRIMIAGGGNICYRLAKQLEHAYNVKIIECRPRRAEWI	117
m047.pep	AENLONTLVLQGSATDETLLDNEYIDEIDVFCALTNDDESNIMSALLAKNLGAKRVIGIV	180
g047	AENLDNTLVLQGSATDETLLDNEYIDEIDVFCALTNDDESNIMSALLAKNLGAKRVIGIV	177
m047.pep	NRSSYVDLLEGNKIDIVVSPHLITIGSILAHIRRGDIVAVHPIRRGTAEAIEVVAHGDKK	240
g047	NRSSYVDLLEGNKIDIVVSPHLITIGSILAHIRRGDIVAVHPIRRGTABAIEVVAHGDKK	237
m047.pep	TSAIIGRRISGIKWPEGCHIAAVVRAGTGETIMGHHTETVIQDGDHIIFFVSRRRILNEL	300
g047	TSAIIGRRISGIKWPEGCHIAAVVRAGTGETIMGHHTETVIQDGDHIIFFVSRRRILNEL	297
m047.pep	EKLIQVKMGFFGX 313	
g047	EKLIQVKMGFFGX 310	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 199>: g048.seq

```
1 ATGCTCGACA AAGGCGAGGA GTTGCCCGTC GATTTCACCA ACCGCCTGAT
51 TTACTACGTC ggcCCcgTCG ATCCGGTCGG CGATGAAGTC GTCGGTCCCG
101 CAGGTCCGAC CACAGCCACC CGCATGGACA AATTTACCCG CCAAATGCTC
151 AAACAAACCG GCCTCTTGGG CATGATCGGC AAATCCGagc gcgGcgcggc
201 cacctGCGAA GCcatCGCCG ACAACAAGGC CGTGTACCTC ATGGCAGTCG
251 GCGGCGCGGC ATACCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG
301 GCGTTCCCCG AATTGGGTAT GGAAGCCGTT TACGAATTTG AAGTCAAAGA
351 TATGCCCGTA ACCGTCGCCG TGGACAGCAA AGGCGAATCC ATCCACGCCA
401 CCGCCCCGCG CAAATGGCAG GCGAAAATCG GCATCATCCC CGTCGAGTCT
451 TGA
```

This corresponds to the amino acid sequence <SEQ ID 200; ORF 048.ng>: g048.pep

- 1 MLDKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTRQML
- 51 KQTGLLGMIG KSERGAATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL
- 101 AFPELGMEAV YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES
- 151 *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 201>: m048.seq

- 1 ATGCTCAACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT
  - 51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGATGAAGTC GTCGGTCCGG





401 CCGCCCGCG CAAATGGCAG GCGAAAATCG GCATCATCCC CGTCGAATCT

451 TGA

#### This corresponds to the amino acid sequence <SEQ ID 202; ORF 048>: m048.pep

MLNKGEELPV DFTNRLIYYV GPVDPVGDEV VGPAGPTTAT RMDKFTROML

51 EQTDLLGMIG KSERGVATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPRKWQ AKIGIIPVES

151

### The following partial DNA sequence was identified in N. meningitidis <SEQ ID 203>:

a048.seq ATGCTCGACA AAGGCGAAGA ATTGCCCGTC GATTTCACCA ACCGCCTGAT 1 51 TTACTACGTC GGCCCCGTCG ATCCGGTCGG CGACGAAATC GTCGGCCCAG 201 CACCTGCGAA GCCATCGCCG ACAACAAAGC CGTGTACCTC ATGGCAGTCG 251 GCGGCGCGC GTATCTCGTG GCAAAAGCCA TCAAATCTTC CAAAGTCTTG 301 GCGTTCCCCG AATTGGGCAT GGAAGCCATT TACGAATTTG AAGTCAAAGA 351 CATGCCCGTA ACCGTCGCCG TAGACAGCAA AGGCGAATCC ATCCACGCCA 401 CCGCCCCGCC CCAATGGCAG GCGAAAATCG GCATCATCCC CGTCAAATCT 451 TGA

### This corresponds to the amino acid sequence <SEQ ID 204; ORF 048.a>:

a048.pep

- MLDKGEELPV DFTNRLIYYV GPVDPVGDEI VGPAGPTTAT RMDKFTROML 1
- 51 EQTDLLGMIG KSERGAATCE AIADNKAVYL MAVGGAAYLV AKAIKSSKVL
- 101 AFPELGMEAI YEFEVKDMPV TVAVDSKGES IHATAPPQWQ AKIGIIPVKS

#### 96.0% identity over a 150 aa overlap m048/a048

	10	20	30	40	50	60
m048.pep	MLNKGEELPVDFTNR	LIYYVGPV	DPVGDEVVGPA	GPTTATRMDF	KFTRQMLEQTE	LLGMIG
		11111111		1111111111		HIIII
a048	MLDKGEELPVDFTNR	LIYYVGPV	DPVGDEIVGPA	GPTTATRMDE	FTROMLEQTO	LLGMIG
	10	20	30	40	50	60
	70	80	90	100	110	120
m048.pep	KSERGVATCEAIADN	<b>IKAVYLMA</b> V	GGAAYLVAKAI	KSSKVLAFPE	LGMEAIYEFE	VKDMPV
	11111:111111111	1111111	1111111111111	1111111111	1111111111	111111
a048	KSERGAATCEAIADN	KAVYLMAV	GGAAYLVAKAI	KSSKVLAFPE	LGMEAIYEFE	VKDMPV
	70	80	90	100	110	120
	130	140	150			
m048.pep	TVAVDSKGESIHATAPRKWOAKIGIIPVESX					
		1:1111	11111:11			
a048	TVAVDSKGESIHATAPPOWOAKIGIIPVKSX					
	130	140	150			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 048 shows 96.4% identity over a 150 aa overlap with a predicted ORF (ORF 048.ng) from N. gonorrhoeae:

WO 99/57280

m048/g048						
	10	20	30	40	50	60
m048.pep	MLNKGEELPVDFTN	RLIYYVGPVD	PVGDEVVGPA	GPTTATRMDK	FTROMLEQTO	LLGMIG
		11111111111	11111111111			111111
g048	MLDKGEELPVDFTN	RLIYYVGPVD	PVGDEVVGPA	GPTTATRMDK	FTROMLKOTO	LLGMIG
_	10	20	30	40	50	60
	70	80	90	100	110	120
m048.pep	KSERGVATCEAIAD	NKAVYLMAVO	GAAYLVAKAI	KSSKVLAFPE	LGMEAIYEFE	VKDMPV
		1111111111	1111111111	1111111111	1111:1111	111111
g048	KSERGAATCEAIAD	NKAVYLMAVO	GAAYLVAKAI	KSSKVLAFPE	LGMEAVYEFE	VKDMPV
	70	80	90	100	110	120
	130	140	150			
m048.pep	p TVAVDSKGESIHATAPRKWQAKIGIIPVESX					
		1111111111	1111111			
g048	TVAVDSKGESIHATAPRKWQAKIGIIPVESX					
	130	140	150			
	•					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 205>:

```
1 ATGCGGGCGC AGGCGTTTGA TCAACCGTTC GGTCAGCTCC TGTTCGGACA
51 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT
101 TGGACGGCCA TCAACGCCTC TTCCGCACCG CCTTCGCCGT TTTCCGCAAC
151 CCCGTCTGCC GCCGTACCGG ATTCTGCCGC ATCGGCGTTT TCCCCGCCCT
201 CAATCTGTGC GGTTTCAAAT TCGGCACTGT CTTTTTTGGC ATCGAACCGG
251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGGCACGGC TTTGCAGGGA
301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
351 CGACTTCCTC GCCGCAATCG GCAACGGCGC tGTTGTGTTC TTCCTGCCAT
```

This corresponds to the amino acid sequence <SEQ ID 206; ORF 049.ng>:

1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ DIDLDGHQRL FRTAFAVFRN

51 PVCRRTGFCR IGVFPALNLC GFKFGTVFFG IEPDSPPRFD VFFRNRHLQG

101 SLRVEPVFLK DDHRVGFDFL AAIGNGAVVF FLPFLQIRL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 207>:

```
m049.seq (partial)

1 ATGCGGGCGC AGGCGTTTGA TCAGCCGTTC GGTCAGCTCC TGTTCGGACA
51 GGCAGAACAC TTCGCGCCGG TTGACGGCTT TCGGGTTCAG GATATTGATT
101 TGGACGGCA TCAACGTTTC TTCCGCATCG TTTTCCCGAAAC
151 CGCCGGCTCA TTCGTGCCGG ATTCTGCCTC GTCGGCGTTT TCCCCGCTTT
201 CAATCTGTCC GGTTTCAAAT TCGACACTGT CTTTTTTGGT ATCAAACCGG
251 ATTCTCCGCC GCGATTCGAT GTGTTTTTCC GAAACCGACA TTTGCAGGGA
301 AGCCTGCGCG TTGAGCCAGT TTTCCTGAAG GACGATCATC GGGTCGGTTT
351 CGACTTCCTC GCCGCAATCG GCAACGGCGG CATTGTGTTC CTCCTGCCAT
401 TTTTTCAGAT ACGCCTT...
```

This corresponds to the amino acid sequence <SEQ ID 208; ORF 049>:

m049.pep (partial)

- 1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ DIDLDGHQRF FRIVFPVFRN
- 51 RRLIRAGFCL VGVFPAFNLS GFKFDTVFFG IKPDSPPRFD VFFRNRHLQG
- 101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL...

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 209>: a049.seq

1	ATGCGGGCGC	AGGCGTTTGA	TCAGCCGTTC	GGTCAGCTCC	TGTTCGGACA
51	GGCAGAACAC	TTCGCGCCGG	TTGACGGCTT	TCGGGTTCAG	AATATTGATT
101	TGGACGGGCA	TCAACGCTTC	TTCCGCACCG	CCTTCGCCGT	TTTCCGCAAC
151	CCCGTCTGCC	GCCGTACCCG	ATTCTGCCGC	ATCGGCGTTT	TCCCCGCCTT
201	CAATCTGTCC	GGTTTCAAAT	TCGGCACTGT	CTTTTTTGGC	ATCAAACCGG
251	ATTCTCCGCC	GCGATTCGAT	GTGTTTTTCC	GAAACCGACA	TTTGCAGGGA
301	AGCCTGCGCG	TTGAGCCAGT	TTTCCTGAAG	GACGATCATC	GGGTCGGTTT
351	CGACTTCCTC	GCCGCAATCG	GCAACGGCGG	CATTGTGTTC	CTCCTGCCAT
401	TTTTTCAGAT	ACGCCTT			

This corresponds to the amino acid sequence <SEQ ID 210; ORF 049.a>:

a049.pep

- 1 MRAQAFDQPF GQLLFGQAEH FAPVDGFRVQ NIDLDGHQRF FRTAFAVFRN
- 51 PVCRRTRFCR IGVFPAFNLS GFKFGTVFFG IKPDSPPRFD VFFRNRHLQG
- 101 SLRVEPVFLK DDHRVGFDFL AAIGNGGIVF LLPFFQIRL

m049/a049 90.6% identity over a 139 aa overlap

	10	20	30	40	50	60
m049.pep	MRAQAFDQPFGQLL	FGQAEHFAP	/DGFRVQDIDL	DGHQRFFRIV	FPVFRNRRL	IRAGFCL
		1111111111	11111111111	111111111111111111111111111111111111111	1 1111	1: 11
a049	MRAQAFDQPFGQLL	FGQAEHFAPV	DGFRVQNIDL	DGHQRFFRTA	FAVFRNPVC	RRTRFCR
	10	20	30	40	50	60
	70	80	90	100	110	120
m049.pep	VGVFPAFNLSGFKF	DTVFFGIKPD	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	RVGFDFL
	: 111111111111		1111111111	HILLIIII	1111111111	1111111
a049	IGVFPAFNLSGFKF	GTVFFGIKPD	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	RVGFDFL
	70	80	90	100	110	120
	130	139				
m049.pep	AAIGNGGIVFLLPF	FQIRL				
	1111111111111111	11111				
a049	AAIGNGGIVFLLPF	FOIRL				
	130					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 049 shows 86.3% identity over a 139 aa overlap with a predicted ORF (ORF 049.ng) from N. gonorrhoeae:

m049/g049

	10	20	30	40	50	60
m049.pep	MRAQAFDQPFGQLL	FGQAEHFAP'	VDGFRVQDIDL	DGHQRFFRIV	FPVFRNRRL	IRAGFCL
				11111:11:	1 1111	1:111
g049	MRAQAFDQPFGQLL	FGQAEHFAP	VDGFRVQDIDL:	DGHQRLFRTA	FAVFRNPVC	RRTGFCR
	10	20	30	40	50	60
	70	80	90	100	110	120
m049.pep	VGVFPAFNLSGFKF	DTVFFGIKP	OSPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	
	:     :			! !		
g049	IGVFPALNLCGFKF	GTVFFGIEP	SPPRFDVFFR	NRHLQGSLRV	EPVFLKDDH	RVGFDFL
	70	80	90	100	110	120
	130	139				
m049.pep	AAIGNGGIVFLLPF	FQIRL				
		:ĪП				
g049	AAIGNGAVVFFLPF	LQIRLX				
	130	140				

WO 99/57280

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 211>:
     g050.seg
               atgggcgCGG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGg
            1
               cacgcccGAA AAAGccgtgt TGATGGcaaA AGAATCCCTG ATGAGCCACA
           51
          101 TCGAcatCca aGaATTGCAG GAAAAAGCCG CGTccggggc ggaattgtcc
               accaccgaAG ccCTGCGCCT cGAACTCTTT GAAAAGGTCA ACGCGCTGGG
          151
          201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA CCCGACCCAT GCCGCCTCCA AACCGATTGC CATGATTCCC
          301 AACTGTGCcg ccacCCGcca cgtcgAATTT GAATTGGACG GCTCAGGtcc
          351 TGTCGAactc acgccGCcgc gtgtCGAAGA CTGA
This corresponds to the amino acid sequence <SEQ ID 212; ORF 050.ng>:
     g050.pep
               MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
               TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
          101 NCAATRHVEF ELDGSGPVEL TPPRVED*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 213>:
     m050.seq
               ATGGGCGCGG GCTGGTGTCC TCCCGGCATC TTGGGTATCG GCATCGGCGG
            1
               C..agCCgAA AAAGCCGTGC TGATGGCAAA AGAGTCCCTG ATGAGCCACA
           51
               TCGACATTCA AGAATTGCAG GAAAAGGCCG CGTCCGGCGC GGAATTGTCC
          101
          151 ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTGGG
          201 CATCGGCGCA CAAGGCTTGG GCGGACTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA TCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
          301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
          351 TGTCGAACTC ACGCCGCCGC GCGTCGAAGA TGGCCCGATT TGA
This corresponds to the amino acid sequence <SEQ ID 214; ORF 050>:
     m050.pep
            1
               MGAGWCPPGI LGIGIGGXAE KAVLMAKESL MSHIDIQELQ EKAASGAELS
               TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
           51
          101 NCAATRHVEF ELDGSGPVEL TPPRVEDGPI *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 215>:
     a050.seq
            1
               ATGGGCGCGG GCTGGTGTCC TCCCGGCATC TTGGGCATCG GCATCGGCGG
           51
               TACGCCCGAA AAAGCCGTGT TGATGGCGAA AGAATCCCTG ATGAGCCACA
          101 TCGACATCCA AGAATTGCAG GAAAAAGCCG CGTCCGGCGC GGAATTGTCC
          151 ACCACCGAAG CCCTGCGCCT CGAACTCTTT GAAAAAGTCA ACGCGCTAGG
          201 CATCGGCGCG CAAGGCTTGG GCGGTCTGAC CACCGTGTTG GACGTGAAAA
          251 TCCTCGATTA CCCGACCCAC GCCGCCTCCA AACCGATTGC CATGATTCCG
          301 AACTGCGCCG CCACCCGCCA CGTCGAATTT GAATTGGACG GCTCAGGCCC
          351 TGTCGAACTC ACGCCGCCGC GCGTCGAAGA CTGGCCC
This corresponds to the amino acid sequence <SEQ ID 216; ORF 050.a>:
     a050.pep
               MGAGWCPPGI LGIGIGGTPE KAVLMAKESL MSHIDIQELQ EKAASGAELS
               TTEALRLELF EKVNALGIGA QGLGGLTTVL DVKILDYPTH AASKPIAMIP
           51
          101 NCAATRHVEF ELDGSGPVEL TPPRVEDWP
             97.7% identity over a 129 aa overlap
m050/a050
                          10
                                    20
                                              30
                                                                 50
                                                                           60
     m050.pep
                  {\tt MGAGWCPPGILGIGIGGXAEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF}
                  a050
                  MGAGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELF
```

	10	20	30	40	50	60
	70	80	90	100	110	120
m050.pep	EKVNALGIGAQGL	GGLTTVLDVKI	LDYPTHAASK	(PIAMIPNCAA	TRHVEFELDO	SSGPVEL
	111111111111	[]]]]	HILLIAM	1111111111	1111111111	1111111
a050	EKVNALGIGAQGL	GGLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDO	SSGPVEL
	70	80	90	100	110	120
	130					
m050.pep	TPPRVEDGPIX					
a050	TPPRVEDWP					

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 050 shows 98.4% identity over a 127 aa overlap with a predicted ORF (ORF 050.ng) from N. gonorrhoeae: m050/g050

	10	20	30	40	50	60
m050.pep	MGAGWCPPGILGIG	IGGXAEKAVL	MAKESLMSHI	DIQELQEKAA	SGAELSTTE	LRLELF
		:	1111111111	1111111111	111111111	
g050	MGAGWCPPGILGIG	IGGTPEKAVL	MAKESLMSHI	DIQELQEKAA	SGAELSTTE	LRLELF
	10	20	30	40	50	60
	•					
	70	80	90	100	110	120
m050.pep	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDO	SGPVEL
		111111111		11111111111	1111111111	111111
g050	EKVNALGIGAQGLG	GLTTVLDVKI	LDYPTHAASK	PIAMIPNCAA	TRHVEFELDO	SGPVEL
	70	80	90	100	110	120
	130					
m050.pep	TPPRVEDGPIX					
g050	TPPRVEDX					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 217>: g050-1.seq

1	ATGACCGTTA	TCAAGCAAGA	AGACTTTATT	CAAAGTATCT	GCGATGCCTT
51	CCAATTCATC	AGCTACTACC	ATCCAAAAGA	CTACATCGAC	GCGCTTTATA
101	AGGCGTGGCA	GAAGGAAGAA	AATCCCGCCG	CCAAAGACGC	GATGACGCAG
151	ATTTTGGTCA	ACAGCCGTAT	GTGTGCCGAA	AACAACCGCC	CCATCTGCCA
201	AGACACAGGT	ATCGCAACCG	TCTTCCTCAA	AGTCGGTATG	GATGTGCAAT
251	GGGATGCGGA	CATGAGCGTG	GAAAAGATGG	TTAACGAAGG	CGTACGCCGC
301	GCCTACACTT	GGGAAGGCAA	CACCCTGCGC	GCTTCCGTCC	TCGCCGATCC
351	GGCCGGCAAA	CGCCAAAACA	CCAAAGACAA	CACCCCCCCC	GTCATCCACA
401	TGAGCATCGT	GCCGGGCGGT	AAAGTCGAAG	TAACCTGCGC	GGCAAAAGGC
451		AAAACAAATC			
501		TGGGTATTGA			
551		CATCTTGGGC			
601	GTGTTGATGG	cgaAAGAATC	CCTGATGAGC	CACATCGACA	TCCAAGAATT
651		GCCGCGTCCG			
701	GCCTCGAACT	CTTTGAAAAG	GTCAACGCGC	TGGGCATCGG	CGCGCAAGGC
751	TTGGGCGGTC	TGACCACCGT	GTTGGACGTG	AAAATCCTCG	ATTACCCGAC
801	CCATGCCGCC	TCCAAACCGA	TTGCCATGAT	TCCCAACTGT	GCCGCCACCC
851	GCCACGTCGA	ATTTGAATTG	GACGGCTCAG	GTCCTGTCGA	ACTCACGCCG
901		AAGACTGACC			
951		GTCGATAAGC			
1001		ATTGCTGTTG			
1051		GCCTCGTCAA			
1101		AACCGCCTGA			
1151		CGTCGGTCCC			
1201	AAATTTACCC	GCCAAATGCT	CAAACAAACC	GGCCTCTTGG	GCATGATCGG



```
1251 CAAATCCGAG CGCGGCGCGG CCACCTGCGA AGCCATCGCC GACAACAAGG
    1301 CCGTGTACCT CATGCAGTC GGCGGCGCG CATACCTCGT GGCAAAGCC
    1351 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGTA TGGAAGCCGT
    1401 TTACGAATTT GAAGTCAAAG ATATGCCCGT AACCGTCGCC GTGGACAGCA
    1451 AAGGCGAATC CATCCACGCC ACCGCCCCGC GCAAATGGCA GGCGAAAATC
    1501 GGCATCATCC CCGTCGAGTC TTGA
This corresponds to the amino acid sequence <SEQ ID 218; ORF 050-1.ng>;
g050-1.pep
       1 MTVIKQEDFI QSICDAFQFI SYYHPKDYID ALYKAWQKEE NPAAKDAMTQ
      51 ILVNSRMCAE NNRPICQDTG IATVFLKVGM DVQWDADMSV EKMVNEGVRR
     101 AYTWEGNTLR ASVLADPAGK RONTKONTPA VIHMSIVPGG KVEVTCAAKG
     151 GGSENKSKLA MLNPSDNIVD WVLKTIPTMG AGWCPPGILG IGIGGTPEKA
     201 VLMAKESLMS HIDIQELQEK AASGAELSTT EALRLELFEK VNALGIGAQG
     251 LGGLTTVLDV KILDYPTHAA SKPIAMIPNC AATRHVEFEL DGSGPVELTP
     301 PRVED*PDLT YSPDNGKRVD VDKLTKEEVA SWKTGDVLLL NGKILTGRDA
     351 AHKRLVNMLD KGEELPVDFT NRLIYYVGPV DPVGDEVVGP AGPTTATRMD
          KFTROMLKOT GLLGMIGKSE RGAATCEAIA DNKAVYLMAV GGAAYLVAKA
     451 IKSSKVLAFP ELGMEAVYEF EVKDMPVTVA VDSKGESIHA TAPRKWOAKI
     501 GIIPVES*
g050-1/p14407
 sp|P14407|FUMB_ECOLI FUMARATE HYDRATASE CLASS I, ANAEROBIC (FUMARASE)
>gi|280063|pir|B44511 fumarate hydratase (EC 4.2.1.2) fumB, iron-dependent - Escherichia coli
>gi|146048 (M27058) anaerobic class I fumarase (EC 4.2.1.2) [Escherichia coli] Length = 548
 Score = 172 bits (432), Expect = 4e-42
 Identities = 138/488 (28%), Positives = 216/488 (43%), Gaps = 22/488 (4%)
Query: 11 QSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAENNRPICQDTG 70 Q+ DA + H K L+ E + K Q L NS + A+ P CQDTG
Sbjct: 53 QAFHDASFMLRPAHQKQVAAILHDPEASEND---KYVALQFLRNSEIAAKGVLPTCODTG 109
Query: 71 IATVFLKVGMDVQWDADMSVEKMVNEGVRRAYTWEGNTLRASVLADPAGKRQNTKDNTPA 130
            A + KGVW E+ +++GV Y E N + A K N T N P A
Sbjct: 110 TAIIVGKKGQRV-WTGGGD-EETLSKGVYNTYI-EDNLRYSQNAALDMYKEVNTGTNLPA 166
Query: 131 VIHMSIVPGGKVEVTCAAKGGGSENKSKL----AMLNPSDNIVDWVLKTIPTMGAGWCP 185
I + V G + + C AKGGGS NK+ L A+L P + +++++ T+G CP
Sbjct: 167 QIDLYAVDGDEYKFLCVAKGGGSANKTYLYQETKALLTPG-KLKNFLVEKMRTLGTAACP 225
Query: 186 PXXXXXXXXTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEKVNXXX 245
P T + L + +H EL + + L EL E+
Sbjct: 226 PYHIAFVIGGTSAETNLKTVKLASAHY-YDELPTEGNEHGQAFRDVQLEQELLEEAQKLG 284
Query: 246 XXXXXXXXXTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSG----PVELTPP 301
                         D++++ P H AS P+ M +C+A R+++ +++ G +E P
Sbjct: 285 LGAQFGGKYFAH-DIRVIRLPRHGASCPVGMGVSCSADRNIKAKINREGIWIEKLEHNPG 343
uery: 302 RVEDXPDLTYSPDNGKRVDVDKLTKE---EVASWKTGDVLLLNGKILTGRDAAHKRLVNM 358
                            +VD+++ KE +++ +
                                                  L L G I+ GRD AH +L +
Sbjct: 344 QYIPQELRQAGEGEAVKVDLNRPMKEILAQLSQYPVSTRLSLTGTIIVGRDIAHAKLKEL 403
Query: 359 LDKGEELPVDFTNRLIYYXXXXXXXXXXXXXXXXXXTTATRMDKFTRQMLKQTGLLGMIGK 418
           +D G+ELP + IYY
                                                TTA RMD + + G + M+ K
Sbjct: 404 IDAGKELPQYIKDHPIYYAGPAKTPAGYPSGSLGPTTAGRMDSYVDLLOSHGGSMIMLAK 463
Query: 419 SERGAATCEAIADNKAVYLMAVGG-AAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPV 477
             R +A + YL ++GG AA L ++IK + +A+PELGMEA+++ EV+D P
Sbjct: 464 GNRSQQVTDACHKHGGFYLGSIGGPAAVLAQQSIKHLECVAYPELGMEAIWKIEVEDFPA 523
```

## The following partial DNA sequence was identified in N. meningitidis <SEQ ID 219>: m050-1.seq

1 ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT

Query: 478 TVAVDSKG 485

Sbjct: 524 FILVDDKG 531

+ VD KG

- 51 CCAATTCATC AGCTACTATC ATCCCAAAGA CTACATCGAC GCGCTTTATA
- 101 AGGCGTGGCA GAAGGAAGAA AATCCTGCCG CCAAAGACGC GATGACGCAG
- 151 ATTTTGGTCA ACAGCCGTAT GTGTGCGGAA AACAACCGCC CCATCTGCCA
- 201 AGACACAGGT ATCGCAACCG TCTTCCTCAA AGTCGGTATG AACGTCCAAT
- 251 GGGATGCGGA CATGAGCGTG GAAGAGATGG TTAACGAAGG CGTACGCCGC

```
301 GCCTACACTT GGGAAGGCAA TACGCTGCGC GCTTCCGTCC TCGCCGATCC
 351 GGCCGGCAAA CGCCAAAACA CCAAAGACAA CACCCCCGCC GTCATCCATA
     TGAGCATCGT GCCGGGCGGT AAAGTCGAAG TAACCTGCGC GGCAAAAGGC
 451 GGCGGCTCTG AAAACAAATC CAAACTCGCC ATGCTCAATC CTTCCGACAA
 501 CATCGTCGAT TGGGTATTGA AAACCATCCC GACCATGGGC GCGGGCTGGT
 551 GTCCTCCGG CATCTTGGGT ATCGGCATCG GCGGCACGCC CGAAAAAGCC
 601 GTGCTGATGG CAAAAGAGTC CCTGATGAGC CACATCGACA TTCAAGAATT
 651
     GCAGGAAAAG GCCGCGTCCG GCGCGGAATT GTCCACCACC GAAGCCCTGC
 701
     GCCTCGAACT CTTTGAAAAA GTCAACGCGC TGGGCATCGG CGCACAAGGC
      TTGGGCGGAC TGACCACCGT GTTGGACGTG AAAATCCTCG ATTATCCGAC
     CCACGCCGCC TCCAAACCGA TTGCCATGAT TCCGAACTGC GCCGCCACCC
     GCCACGTCGA ATTTGAATTG GACGGCTCAG GCCCTGTCGA ACTCACGCCG
 851
     CCGCGCGTCG AAGACTGGCC CGATTTGACT TACAGCCCCG ACAACGGCAA
 901
     ACGCGTCGAT GTCGACAAGC TGACCAAAGA AGAAGTGGCA AGCTGGAAAA
 951
1001
     CCGGCGACGT ATTGCTGTTG AACGGCAAAA TCCTCACCGG CCGCGATGCC
1051
     GCACACAAAC GCCTCGTCGA TATGCTCAAC AAAGGCGAAG AATTGCCCGT
     CGATTTCACC AACCGCCTGA TTTACTACGT CGGCCCCGTC GATCCGGTCG
1101
1151 GCGATGAAGT CGTCGGTCCG GCAGGTCCGA CCACAGCCAC CCGCATGGAC
1201 AAATTCACCC GCCAAATGCT CGAACAAACC GACCTCTTGG GCATGATCGG
1251 CAAATCCGAG CGCGGCGTGG CCACCTGCGA AGCCATCGCC GACAACAAAG
1301 CCGTGTACCT CATGGCAGTC GGCGGCGCGG CGTATCTCGT GGCAAAAGCC
1351 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGCA TGGAAGCCAT
1401 TTACGAATTT GAAGTCAAAG ACATGCCCGT AACCGTCGCC GTAGATAGCA
1451
     AAGGCGAATC CATCCACGCC ACCGCCCCGC GCAAATGGCA GGCGAAAATC
1501 GGCATCATCC CCGTCGAATC TTGA
```

### This corresponds to the amino acid sequence <SEQ ID 220; ORF 050-1>: m050-1.pep

ī	MTVIKQEDFI	QSICDAFQFI	SYYHPKDYID	ALYKAWQKEE	NPAAKDAMTQ
51	ILVNSRMCAE	NNRPICQDTG	IATVFLKVGM	NVQWDADMSV	EEMVNEGVRR
101	AYTWEGNTLR	ASVLADPAGK	RQNTKDNTPA	VIHMSIVPGG	KVEVTCAAKG
151	GGSENKSKLA	MLNPSDNIVD	WVLKTIPTMG	AGWCPPGILG	IGIGGTPEKA
201	VLMAKESLMS	HIDIQELQEK	AASGAELSTT	EALRLELFEK	VNALGIGAQG
251	LGGLTTVLDV	KILDYPTHAA	SKPIAMIPNC	AATRHVEFEL	DGSGPVELTP
301	PRVEDWPDLT	YSPDNGKRVD	VDKLTKEEVA	SWKTGDVLLL	NGKILTGRDA
351	AHKRLVDMLN	KGEELPVDFT	NRLIYYVGPV	DPVGDEVVGP	AGPTTATRMD
401	KFTRQMLEQT	DLLGMIGKSE	RGVATCEAIA	DNKAVYLMAV	GGAAYLVAKA
451	IKSSKVLAFP	ELGMEAIYEF	EVKDMPVTVA	VDSKGESIHA	TAPRKWQAKI
501	GIIPVES*				

m050-1/g050-1 98.2% identity in 507 aa overlap

	10	20	30	40	50	60
m050-1.pep	MTVIKQEDFIQSICDA	_	-			
-0F0 1						
g050-1	MTVIKQEDFIQSICDA	_	-			
	10	20	30	40	50	60
	70	80	90	100	110	120
m050-1.pep	NNRPICODTGIATVFL	KVGMNVQWDAI	DMSVEEMVNE	VRRAYTWEGN	TLRASVLADE	AGK
• •		1111:1111		111111111111	пинини	111.
g050-1	NNRPICODTGIATVFL	KVGMDVQWDAI	DMSVEKMVNEC	VRRAYTWEGN	TLRASVLADE	AGK
-	70 .	80	90	100	110	120
	130	140	150	160	170	180
m050-1.pep	RONTKONTPAVIHMSI	VPGGKVEVTC	<b>AAKGGGSENKS</b>	KLAMLNPSDN	IIVDWVLKTIE	TMG
• •	11111111111111111	111111111	111111111111	11111111111	1111111111	111
g050-1	RQNTKDNTPAVIHMSI	VPGGKVEVTC	AAKGGGSENKS	KLAMLNPSDN	IVDWVLKTIF	TMG
-	130	140	150	160	170	180
	190	200	210	220	230	240
m050-1.pep	AGWCPPGILGIGIGGT	PEKAVLMAKES	SLMSHIDIQEI	LQEKAASGAEI	STTEALRLEI	FEK
	1111111111111111	1111111111	11111111111	шини	1111111111	111
g050-1	AGWCPPGILGIGIGGT	PEKAVLMAKE!	SLMSHIDIQEI	.Qekaasgaei	STTEALRLEI	FEK
	190	200	210	220	230	240
	250	260	270	280	290	300
m050-1.pep	VNALGIGAQGLGGLTT	VLDVKILDYP'	<b>CHAASKPIAM</b> I	PNCAATRHVE	FELDGSGPVE	LTP
				1111111111	анинин	111
g050-1	VNALGIGAQGLGGLTT				FELDGSGPVE	LTP
	250	260	270	280	290	300

PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLN		310 320 330 340 350 360
PRVEDXPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVNMLD 310 320 330 340 350 360 360 370 380 390 400 410 420 420 420 420 420 420 420 420 420 42	m050-1.pep	PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLN
310 320 330 340 350 360  370 380 390 400 410 420  m050-1.pep		11111
370 380 390 400 410 420 m050-1.pep KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE	g050-1	
M050-1.pep   KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE		310 320 330 340 350 360
M050-1.pep   KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE		
g050-1 KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIGKSE 370 380 390 400 410 420  430 440 450 460 470 480  m050-1.pep RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA   :		370 380 390 400 410 420
g050-1       KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIGKSE         370       380       390       400       410       420         430       440       450       460       470       480         m050-1.pep       RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA    :	m050-1.pep	KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
370 380 390 400 410 420  430 440 450 460 470 480  m050-1.pep RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA		
### ##################################	g050-1	KGEELPVDFTNRLIYYVGPVDPVGDEVVGPAGPTTATRMDKFTRQMLKQTGLLGMIGKSE
m050-1.pep RGVATCEATADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA   :		370 380 390 400 410 420
m050-1.pep RGVATCEATADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA   :		
:		430 440 450 460 470 480
g050-1 RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPVTVA 430 440 450 460 470 480 490 500	m050-1.pep	RGVATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA
430 440 450· 460 470 480 490 500	• -	-11:11:11:11:11:11:11:11:11:11:11:11:11:
490 500	g050-1	RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAVYEFEVKDMPVTVA
	-	430 440 450 460 470 480
m050-1.pep VDSKGESIHATAPRKWQAKIGIIPVESX		490 500
	m050-1.pep	VDSKGESIHATAPRKWQAKIGIIPVESX
3111111111111111111111111111	• •	
q050-1 VDSKGESIHATAPRKWQAKIGIIPVESX	g050-1	VDSKGESIHATAPRKWOAKIGIIPVESX
490 500	<b>J</b>	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 221>: a050-1.seq

```
ATGACCGTCA TCAAACAGGA AGACTTTATC CAAAGCATTT GCGATGCCTT
     CCAATTCATC AGCTACTACC ATCCCAAAGA CTACATCGAC GCGCTTTATA
     AGGCGTGGCA GAAGGAAGAA AACCCCGCCG CCAAAGACGC GATGACGCAG
 151 ATTTTGGTCA ACAGCCGCAT GTGTGCCGAA AACAACCGCC CCATCTGCCA
201 AGATACCGGT ATCGCGACCG TGTTTTTGAA AGTCGGTATG GATGTGCAAT
     GGGATGCAGA CATGAGCGTC GAAGAGATGG TTAACGAAGG CGTGCGCCGC
 251
     GCCTACACTT GGGAAGGCAA TACGCTGCGC GCTTCCGTTC TCGCCGACCC
 351
     CGCCGGCAAA CGCCAAAATA CCAAAGACAA CACGCCCGCC GTCATCCATA
 401
     TGAGCATCGT GCCGGGCGAC AAAGTCGAAG TAACCTGCGC GGCAAAAGGC
     GGCGGTTCTG AAAACAAATC CAAACTCGCC ATGCTCAACC CTTCCGACAA
     CATCGTCGAT TGGGTATTGA AAACCATTCC GACCATGGGC GCGGGCTGGT
     GTCCTCCCGG CATCTTGGGC ATCGGCATCG GCGGTACGCC CGAAAAAGCC
 551
     GTGTTGATGG CGAAAGAATC CCTGATGAGC CACATCGACA TCCAAGAATT
 601
     GCAGGAAAAA GCCGCGTCCG GCGCGGAATT GTCCACCACC GAAGCCCTGC
 651
     GCCTCGAACT CTTTGAAAAA GTCAACGCGC TAGGCATCGG CGCGCAAGGC
 701
751
     TTGGGCGGTC TGACCACCGT GTTGGACGTG AAAATCCTCG ATTACCCGAC
 801
     CCACGCCGCC TCCAAACCGA TTGCCATGAT TCCGAACTGC GCCGCCACCC
 851
     GCCACGTCGA ATTTGAATTG GACGGCTCAG GCCCTGTCGA ACTCACGCCG
     CCGCGCGTCG AAGACTGGCC CGATTTGACT TACAGCCCCG ACAACGGCAA
 951
     ACGCGTCGAT GTCGACAAGC TGACCAAAGA AGAAGTGGCA AGCTGGAAAA
1001
     CCGGCGACGT ATTGCTGTTG AACGGCAAAA TCCTCACCGG CCGCGATGCC
     GCACACAAAC GCCTCGTCGA TATGCTCGAC AAAGGCGAAG AATTGCCCGT
1051
1101
     CGATTTCACC AACCGCCTGA TTTACTACGT CGGCCCCGTC GATCCGGTCG
1151
     GCGACGAAAT CGTCGGCCCA GCAGGTCCGA CCACCGCCAC CCGCATGGAC
1201
     AAATTCACCC GCCAAATGCT CGAACAAACC GACCTCTTGG GCATGATCGG
     CAAATCCGAG CGCGGCGCG CCACCTGCGA AGCCATCGCC GACAACAAAG
1301
     CCGTGTACCT CATGGCAGTC GGCGGCGCGG CGTATCTCGT GGCAAAAGCC
1351 ATCAAATCTT CCAAAGTCTT GGCGTTCCCC GAATTGGGCA TGGAAGCCAT
     TTACGAATTT GAAGTCAAAG ACATGCCCGT AACCGTCGCC GTAGACAGCA
1401
1451 AAGGCGAATC CATCCACGCC ACCGCCCCGC CCCAATGGCA GGCGAAAATC
1501 GGCATCATCC CCGTCAAATC TTGA
```

This corresponds to the amino acid sequence <SEQ ID 222; ORF 050-1.a>:

Ī	. T · bel	P				
	1	MTVIKQEDFI	QSICDAFQFI	SYYHPKDYID	ALYKAWQKEE	NPAAKDAMTQ
	51	ILVNSRMCAE	NNRPICQDTG	IATVFLKVGM	DVQWDADMSV	EEMVNEGVRR
	101	AYTWEGNTLR	ASVLADPAGK	RQNTKDNTPA	VIHMSIVPGD	KVEVTCAAKG
	151	GGSENKSKLA	MLNPSDNIVD	WVLKTIPTMG	AGWCPPGILG	IGIGGTPEKA
	201	VLMAKESLMS	HIDIQELQEK	AASGAELSTT	EALRLELFEK	VNALGIGAQG
	251	LGGLTTVLDV	KILDYPTHAA	SKPIAMIPNC	AATRHVEFEL	DGSGPVELTP
	301	PRVEDWPDLT	YSPDNGKRVD	VDKLTKEEVA	SWKTGDVLLL	NGKILTGRDA
	351	AHKRLVDMLD	KGEELPVDFT	NRLIYYVGPV	DPVGDEIVGP	AGPTTATRMD
	401	KFTRQMLEQT	DLLGMIGKSE	RGAATCEAIA	DNKAVYLMAV	<b>GGAAYLVAKA</b>
	451	IKSSKVLAFP	ELGMEAIYEF	EVKDMPVTVA	VDSKGESIHA	TAPPQWQAKI
	501	GIIPVKS*				

a050-1/m050	-1 98.4% identity in 507 aa overlap
a050-1.pep m050-1	10 20 30 40 50 60 MTVIKQEDFIQSICDAFQFISYYHPKDYIDALYKAWQKEENPAAKDAMTQILVNSRMCAE
a050-1.pep	70 80 90 100 110 120 NNRPICQDTGIATVFLKVGMDVQWDADMSVEEMVNEGVRRAYTWEGNTLRASVLADPAGK
a050-1.pep	130 140 150 160 170 180 RONTKDNTPAVIHMSIVPGDKVEVTCAAKGGGSENKSKLAMLNPSDNIVDWVLKTIPTMG
a050-1.pep	190 200 210 220 230 240 AGWCPPGILGIGIGGTPEKAVLMAKESLMSHIDIQELQEKAASGAELSTTEALRLELFEK
a050-1.pep	250 · 260 270 280 290 300 VNALGIGAQGLGGLTTVLDVKILDYPTHAASKPIAMIPNCAATRHVEFELDGSGPVELTP
a050-1.pep	310 320 330 340 350 360 PRVEDWPDLTYSPDNGKRVDVDKLTKEEVASWKTGDVLLLNGKILTGRDAAHKRLVDMLD
a050-1.pep	370 380 390 400 410 420 KGEELPVDFTNRLIYYVGPVDPVGDEIVGPAGPTTATRMDKFTRQMLEQTDLLGMIGKSE
a050-1.pep m050-1	430 440 450 460 470 480 RGAATCEAIADNKAVYLMAVGGAAYLVAKAIKSSKVLAFPELGMEAIYEFEVKDMPVTVA II:
a050-1.pep m050-1	490 500  VDSKGESIHATAPPQWQAKIGIIPVKSX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 223>: g052.seq

- 1 ATGGCTTTGG TGGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG
- 51 CTGCGAGCCG ACGGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC 101 CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCGCCC
- 151 AAGGGGTTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC
- 201 GGCGGCTTTC CATTCATTTA TATCAGTCGG CGACACGCGG CTCACTCCGA
- 251 TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC
- 301 AGGCTGCGGC TGGAAACCAC ATGGTCGCCC GCCTGCAGGA AGGTGAAAAA
- 351 CGCCGCCTGA

This corresponds to the amino acid sequence <SEQ ID 224; ORF 052.ng>: g052.pep





1 MALVAEETEI SAPCFKGCEP TGDSRLLSTT KSAPMPCANS AKASKSATSP 51 KGLDGVSKNS SLVLALTAAF HSFISVGDTR LTPMPNLVTM LLIKPTVVPN 101 RLRLETTWSP ACRKVKNAA* The following partial DNA sequence was identified in N. meningitidis <SEO ID 225>: m052.seq ATGGCTTTGG TGGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG CTGCGAGCCG ACGGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC 51 101 CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCGCCC 151 AAGGGGTTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC GGCGGCTTTC CATTCATTTA TATCAGTCGG CGACACGCGG CTCACTCCGA 251 TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC 301 AGGCTGCGGC TGGAAACCAC ATGGTCGCCC GCCTGCAGGA AGGTGAAAAA 351 CGCCGCCTGA This corresponds to the amino acid sequence <SEQ ID 226; ORF 052>: m052.pep 1 MALVAEETEI SAPCFKGCEP TGDSRLLSTT KSAPMPCANS AKASKSATSP 51 KGLDGVSKNS SLVLALTAAF HSFISVGDTR LTPMPNLVTM LLIKPTVVPN 101 RLRLETTWSP ACRKVKNAA* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 227>: a052.seq ATGGCTTTGG TCGCGGAGGA AACGGAAATA TCCGCGCCGT GTTTCAAAGG 51 CTGAGAGCCG ACAGGCGACA GCAGGCTGTT GTCCACCACC AAGAGCGCGC 101 CGATGCCGTG CGCCAATTCC GCCAAGGCTT CCAAGTCGGC CACTTCTCCC 151 AAGGGATTGG ACGGCGTTTC CAAAAACAGC AGTTTGGTGT TGGCTTTGAC 201 GGCGGCTTTC CATTCGTTTA TATCAGTCGG CGACACGTGA CTCACTTCGA TGCCGAATTT GGTAACGATG TTATTGATAA AGCCGACGGT CGTGCCGAAC 301 AGGCTGCGGC TGGAAATCAC ATGGTCGCCC GCCTGCAAAA AGGTGAAAAA 351 CGCCGCCTGA This corresponds to the amino acid sequence <SEQ ID 228; ORF 052.a>: a052.pep MALVAEETEI SAPCFKG*EP TGDSRLLSTT KSAPMPCANS AKASKSATSP KGLDGVSKNS SLVLALTAAF HSFISVGDT* LTSMPNLVTM LLIKPTVVPN 51 101 RLRLEITWSP ACKKVKNAA* 95.8% identity over a 119 aa overlap m052/a052 20 30 40 50 m052.pep MALVAEETEISAPCFKGCEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS a052 MALVAEETE I SAPCFKGXEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS 10 20 30 40 50 60 80 90 100 110 120

258

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 052 shows 95.8% identity over a 119 as overlap with a predicted ORF (ORF 052.ng) from N. gonorrhoeae:

80

m052/g052

70

m052.pep

a052

30 40 MALVAEETEISAPCFKGCEPTGDSRLLSTTKSAPMPCANSAKASKSATSPKGLDGVSKNS m052.pep 

SLVLALTAAFHSFISVGDTRLTPMPNLVTMLLIKPTVVPNRLRLETTWSPACRKVKNAAX 

SLVLALTAAFHSFISVGDTXLTSMPNLVTMLLIKPTVVPNRLRLEITWSPACKKVKNAAX

100

110

g052	MALVAEE	TEISAPCFKG	CEPTGDSRLLS	TTKSAPMPCA	NSAKASKSAT	SPKGLDGVSKNS
•		10	20	30 -	40	50 60
						10 100
-052 202	CTUINIT	70 Abrucetovci				10 120 SPACKKVKNAAX
m052.pep						:
g052						SPACRKVKNAAX
<b>3</b>		70	80	90 1	00 1	10 120
The following p	ortiol DNIA	eamence w	ne identified	in M gono	rhogga < S	EO ID 220>.
g073.seq	aitiai DNA s	sequence wa	as identified	III IV. gonor	moede \S.	EQ 1D 223~.
g0/3.8eq	ATGTGTATGC	CATACGCAA'	T AAGGGTTTC	A GACGGCAT	CT GCCGCAT	TT
51			A CACGCAATC			
101	AATCGTCAAT	CAAATCGCC	A ACATATTCC	A AACCGACC	GA CAGGCGC	ACC
151	AGTCCGGGGC	GGatacCGG	C GGCGAGTTT	T TCTTCGGG	CT GCATCCT	GCC
	GTGCGTGGTT					
251			T TCCACGACT			
301 351			C GATGCCGCC T CGGGCAATC		CT GTTTGCG	GAT
This correspond					F 073 na>	•
q073.pep	is to the anni	io acid sequ	ielice -SEQ	1D 230, OR	d 0/3.11g/	•
gu/s.pep 1	MCMPYATRVS	DGICRIFPP	M PSETRNORA	S ACFKSSIK	SP TYSKPTD	RRT
51			V VHGLVMVER			
101			A CGWSGNPV*			
The following p	artial DNA	sequence wa	as identified	in N. menir	igitidis <si< td=""><td>EQ ID 231&gt;:</td></si<>	EQ ID 231>:
m073.seq		•			_	•
1			T AAGGGTTTC			
51			C AGCGTGCGA			
101			C AAACCGACC			
151 201			T TTCTTCGGG G TCGAGCGCA			
251			G TCCACAACT			
301			C GATGCCGCC			
351	AAGCGCCGCC	TGAGGATGG	T CGGACAATC	C GGTGTAG		
This correspond	ls to the ami	no acid sequ	ence <seq< td=""><td>ID 232; OF</td><td>LF 073&gt;:</td><td></td></seq<>	ID 232; OF	LF 073>:	
m073.pep		-	`			
1			E TRNQRASAC			
51			G WVMVERTSP		TP STTFHAA	SXS
101	ATSKPMTMPP	PFCCLRISA	A XGWSDNPV*			
The following p	partial DNA	sequence wa	as identified	in N. menii	igitidis <si< td=""><td>EQ ID 233&gt;:</td></si<>	EQ ID 233>:
a073.seq		m				
	GTATGT CATA CCGATG CCGT					
	GTCAAT CAAA					
	CGGGGC GGAT					
	GTGGTT GTCC					
	GGTACG GGAG					
	GGTCGG CGAC					
551 1116		22001 01100			~-4#1	
This correspond	ls to the ami	no acid sequ	ience <seq< td=""><td>ID 234; OF</td><td>RF 073.a&gt;:</td><td></td></seq<>	ID 234; OF	RF 073.a>:	
a073.pep		•	`			
	YKIRVS DGIC					
	MLAASF SSGC			LAVREKS ST	PSTTFHAA	
101 AWSA	TSKPMT MPPP	rcchki SSA	-GWSGNP V*			

m073/a073 92.3% identity over a 130 aa overlap



		10	20	30	40	50	
m073.pep	MCMPYKIR	VSDGICC	PMPSETI	RNQRASACFKS	SIKSPTYSKP	TDRRTNPGRM	LAASF
	11 1111	111111	11111:1			111111111	11111
a073	TCMSYKIR	VSDGICG	VFPPMPSEX	RNQRASACFKS	SIKSPTYSKP	TDRRTNPGRM	LAASF
		10	20	30	40	50	60
	60	70	80	90	100	110	
m073.pep	SSGCILPC	VVVHGWV	MVERTSPRLA	VREKSSTPST	FHAASXSAT	SKPMTMPPPF	CCLRI
	1111111	1111111			11111: 111	111111111	11111
a073	SSGCILPC	VVVHGWV	MVERTSPRL <i>i</i>	VREKSSTPST	FHAAAWSAT	SKPMTMPPPF	CCLRI
		70	80	90	100	110	120
	120	129					
m073.pep	SAAXGWSD	NPVX					
• •	1:11111	HH					
a073	SSAXGWSG	NPVX					
	1	30					

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 073 shows 87.0% identity over a 131 aa overlap with a predicted ORF (ORF 073.ng) from *N. gonorrhoeae*:

m073/g073

	10	20	30	40	50	
m073.pep	MCMPYKIRVSDGIC	CPMPSETRN	QRASACFKSS:	I KSPTYSKPTI	DRRTNPGRMLA	ASF
		1111111	[[[]]]		[[[:]]: ]	111
g073	MCMPYAIRVSDGIC	RIFPPMPSETRN	DRASACFKSS:	IKSPTYSKPTI	DRRTSPGRIPA	ASF
_	10	20	30	40	50	60
	60 70	80	90	100	110	
m073.pep	SSGCILPCVVVHGW	VMVERTSPRLAVI	REKSSTPSTT	FHAASXSATSI	<b>CPMTMPPPFCC</b>	LRI
			[[[]]	:		111
g073	SSGCILPCVVVHGL	VMVERTSPRLAVI	REKSSTT	FHAAAWSATSI	CPMTMPPPFCC	LRI
	70	80	90	100	110	
	120 129					
m073.pep	SAAXGWSDNPVX					
	:					
g073	SSACGWSGNPVX					
_	120					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 235>: g075.seq

```
ATGCCGCCTT ACTTCATCAC CCTCTTAACG ATGGAAAATA CAAAAAGCGC
GGCGAAAACG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
CGGCTTCCAA AGCGTTTTTT GCCGTTTTCGG GCAACGCTGC GTTTGCCTGT
GCCGCCAAAG CCAGCGGGGC GGCTGTTACA ACAGCCAGTT TTGCGCCGTA
TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTT ACGAAATTTT
TAAAAAAATG TGTTTGCGGG CTTTGTGAAG GTTTTAGAGA CCGCCTGCCG
GGCCTCTTAA ACTTAATCTT CTTTTCGTA GAATCCGAAA ATTACAAATT
CCCCGCCTAT CTCTTCCAAT GCCGAGCTAA AAGCGTCTTC ATAGCTGTCA
```

This corresponds to the amino acid sequence <SEQ ID 236; ORF 075.ng>: g075.pep

- 1 MPPYFITLLT MENTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNAAFAC
- 51 AAKASGAAVT TASFAPYLRQ VLINFMIFSF TKFLKKCVCG LCEGFRDRLP
- 101 GLLNLIFFFV ESENYKFPAY LFQCRAKSVF IAVIFTG*



The following partial DNA sequence was identified in N. meningitidis <SEQ ID 237>: m075.seq

261

- 1 ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAATA CAAAAAGCGC
  - 51 GGCGAAAATG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
  - 101 CGGCTTCCAA AGCGTTTTTT GCCGTATCGG GCAACGTTGC ATTTGCATGT
  - 151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
    201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTC AAAAAGTGTT
  - 251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
  - 301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT
  - 351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA
  - 401 TTGGTGATTA A

This corresponds to the amino acid sequence <SEQ ID 238; ORF 075>: m075.pep

- 1 MPSYFITLLT MENTKSAAKM PTTIQPASIP SAFAASKAFF AVSGNVAFAC
- 51 AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
- 101 SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N. gonorrhoeae

ORF 075 shows 65.7% identity over a 137 as overlap with a predicted ORF (ORF 075.ng) from N. gonorrhoeae:

m075/g075

	10	20	30	40	50	60
m075.pep	MPSYFITLLTMENT	KSAAKMPT1	TIQPASIPSAFAA	SKAFFAVSGN	VAFACAAKA	RGAAVT
			нинин		:11111111	11111
g075	MPPYFITLLTMENT	KSAAKTPTT	IQPASIPSAFAA	SKAFFAVSGN	AAFACAAKA	SGAAVT
	10	20	30	40	50	60
	70	80	90	100	110	ı
m075.pep	TASFAPYLRQVLIN	FMIFSF	-KKCLAVMDGAF	FRRPPNIRKS	VFQKSEYDK	FVLVAD
			111: : :1	::::	:    ::	:: +
g075	TASFAPYLRQVLIN	FMIFSFTKI	LKKCVCGLCEGF	RDRLPGLLNL	IFFFVESEN	YKFPAY
_	70	80	90	100	110	120
	120 130					
m075.pep	FFQTCVNRFFEVVE:	IIGIGDX				
	:   ::   :	:				
g075	LFQCRAKSVFIAVI	FTGX				
	130					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 239>: a075.seq

- 1 ATGCCGTCTT ACTTCATCAC TCTCTTAACG ATGGAAAAGA CAAAAAGCGC
- 51 GGCGAAAACG CCCACTACAA TCCAACCGGC TTCCATACCG TCCGCTTTTG
- 101 CGGCTTCCAA AGCGTTTTTT GCTGTATCGG GCAACGTTGC ATTTGCATGT
- 151 GCGGCCAAAG CCAGGGGAGC AGCTGTTACA ACAGCCAGTT TTGCGCCGTA
- 201 TTTACGGCAG GTGTTAATAA ATTTCATGAT ATTTTCCTTC AAAAAGTGTT
- 251 TGGCGGTAAT GGATGGAGCG TTTTTCAGAC GACCGCCGAA CATCCGAAAA
- 301 TCAGTCTTTC AAAAATCCGA ATACGACAAA TTCGTATTGG TTGCCGATTT
  351 CTTCCAAACC TGCGTTAATC GCTTCTTCGA AGTCGTAGAA ATAATCGGCA
- 401 TTGGTGATTA A

This corresponds to the amino acid sequence <SEQ ID 240; ORF 075.a>: a075.pep

- 1 MPSYFITLLT MEKTKSAAKT PTTIQPASIP SAFAASKAFF AVSGNVAFAC
  - 51 AAKARGAAVT TASFAPYLRQ VLINFMIFSF KKCLAVMDGA FFRRPPNIRK
  - 101 SVFQKSEYDK FVLVADFFQT CVNRFFEVVE IIGIGD*

```
98.5% identity over a 136 aa overlap
m075/a075
                    10
                                       30
                                                 40
                                                           50
            MPSYFITLLTMENTKSAAKMPTTIOPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
m075.pep
            MPSYFITLLTMEKTKSAAKTPTTIQPASIPSAFAASKAFFAVSGNVAFACAAKARGAAVT
a075
                                                           50
                    10
                              20
                                       30
                                                 40
                                                                    60
                    70
                              80
                                       90
                                                100
            TASFAPYLROVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFOKSEYDKFVLVADFFOT
m075.pep
            TASFAPYLRQVLINFMIFSFKKCLAVMDGAFFRRPPNIRKSVFQKSEYDKFVLVADFFQT
a075
                              80
                                       90
                                                100
                                                         110
                   130
            CVNRFFEVVEIIGIGDX
m075.pep
            1111111111111111
            CVNRFFEVVEIIGIGDX
a075
                   130
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 241>:
     g080.seq
              ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
             CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
          51
         101
              CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
          151
              TCCGATAAGA AGGCATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
              TATTTTGAGG ACGGACATCA ATGGCGCACA GGAAGCCTAC CGCCGGTATC
          201
          251 CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA TACGGTTGAG
          301 GTCGTCCTGA CCGAGCGCAA GCCGGTTGCA CGTTGGGGCG ACCATGCCTT
              GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
          401 TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
          451 TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
              GATGACCTAT ACGGCACGTT CGGCGTGGAA TGTCGTTTTG GACAACGGCA
              TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
          551
          601 ACCGAAGCGT GGCAGCATCT gttgcGTAAG AATAAAAATC GGTTATCCTA
              TGTGGATATG Aggtataagg acggatttTC agtcccccat gctCCCGACG
              GTTTACCCGA AAAAGAATcc gAAGAATatt gggaacaggt ttgggacata
              ttacggcctg gcgtcggaaa cggttcgacg caaatttcaa tcagttatAA
              GGGCAGacga acaatggaac AGcagtaa
This corresponds to the amino acid sequence <SEO ID 242; ORF 080.ng>:
     g080.pep
              MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
              SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
          51
              VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
          101
              YDEFSTVLAK QGLGIKEMTY TARSAWNVVL DNGITVRLGR ENEMKRLRLF
              TEAWQHLLRK NKNRLSYVDM RYKDGFSVPH APDGLPEKES EEYWEQVWDI
          251 LRPGVGNGST QISISYKGRR TMEQQ*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 243>:
     m080.seq
              ATGTGGGATA ATGCCGAAGC GATGGAACGG CTGACGCGCT GGCTGCTTGT
           1
           51 CATGATGGCG ATGCTGCTTG CTGCGTCCGG GCTGGTTTGG TTTTACAATT
          101 CGAATCATCT GCCCGTCAAG CAGGTGTCGC TGAAGGGCAA CCTGGTTTAT
          151 TCCGATAAGA AGACATTGGG CAGTTTGGCG AAAGAATACA TCCATGGGAA
          201 TATTTTGAGG ACGGACATCA ATGGCGCACA GGAGGCCTAC CGCCGGTATC
          251 CGTGGATTGC GTCGGTCATG GTGCGCCGCC GTTTTCCCGA CACGGTTGAG
              GTCGTCCTGA CCGAGCGCAA GCCGGTCGCG CGTTGGGGCG ACCATGCCTT
          351 GGTGGACGGC GAAGGCAATG TTTTTGAAGC CCGCTTGGAC AGACCCGGAA
              TGCCGGTATT CAGAGGCGCG GAAGGAACGT CTGCCGAAAT GCTCCGCCGT
              TATGACGAAT TTTCGACTGT TTTGGCAAAA CAGGGTTTGG GCATCAAAGA
          501 GATGACCTAT ACGGCACGTT CGGCGTGGAT TGTCGTTTTG GACAACGGCA
```

551 TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT



- 601 ACCGAAGCGT GGCAGCATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA

- 651 TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTTCCGACG
- 701 GTTTACCCGA AAAAGAATCC GAAGAATAG

This corresponds to the amino acid sequence <SEQ ID 2441; ORF 080>:

m080.pep

- MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
- 51 SDKKTLGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
- 101 VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
- 151 YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF 201 TEAWQHLLRK NKNRLSYVDM RYKDGFSVRY ASDGLPEKES EE*

Computer analysis of this amino acid sequence gave the following results:

#### Homology with a predicted ORF from N. gonorrhoeae

ORF 080 shows 97.9% identity over a 242 aa overlap with a predicted ORF (ORF 080.ng) from N. gonorrhoeae:

m080/g080

m080.pep	10 MWDNAEAMERLTRWL             MWDNAEAMERLTRWL 10	1111111111	ШНИ	ШШЙШ		1:11111
m080.pep	70 KEYIHGNILRTDING            KEYIHGNILRTDING 70	80 AQEAYRRYP         AQEAYRRYP 80	ШПППП	100 FPDTVEVVLT           FPDTVEVVLT	ШНПП	120 DHALVDG        DHALVDG 120
m080.pep	130 EGNVFEARLDRPGMP           EGNVFEARLDRPGMP 130	111111111111111111111111111111111111111	11111111111	$\Pi \Pi \Pi \Pi \Pi \Pi$		
m080.pep	190 DNGITVRLGRENEMK           DNGITVRLGRENEMK 190	$\Pi\Pi\Pi\Pi\Pi\Pi$	111111111111111111111111111111111111111	11111111111	1111:11	
m080.pep	EEX 	GNGSTQISI 260	SYKGRRTMEQ 270	ŌΧ		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 245>: a080.seq

. – – 3					
1	ATGTGGGATA	ATGCCGAAGC	GATGGAACGG	CTGACGCGCT	GGCTGCTTGT
51	CATGATGGCG	ATGCTGCTTG	CTGCGTCCGG	GCTGGTTTGG	TTTTACAATT
101	CGAATCATCT	GCCCGTCAAG	CAGGTGTCGC	TGAAGGGCAA	CCTAGTTTAT
151	TCCGATAAGA	AAGCATTGGG	CAGTTTGGCG	AAAGAATACA	TCCATGGGAA
201	TATTTTGAGG	ACGGACATCA	ATGGCGCACA	GGAGGCCTAC	CGCCGGTATC
251	CGTGGATTGC	GTCGGTCATG	GTGCGCCGCC	<b>GTTTTCCCGA</b>	CACGGTTGAG
301	GTCGTCCTGA	CCGAGCGCAA	GCCGGTCGCG	CGTTGGGGCG	ACCATGCCTT
351	GGTGGACGGC	GAAGGCAATG	TTTTTGAAGC	CCGTTTGGAC	AGACCCGGAA
401	TGCCGGTATT	CAGAGGCGCG	GAAGGAACGT	CTGCCGAAAT	GCTCCGCCGT
451	TATGACGAAT	TTTCGACTGT	TTTGGCAAAA	CAGGGTTTGG	GCATCAAAGA
501	GATGACCTAT	ACGGCACGTT	CGGCGTGGAT	TGTCGTTTTG	GACAACGGCA



- 551 TCACCGTCAG GCTCGGACGG GAAAACGAGA TGAAACGCCT CCGGCTTTTT
- 601 ACCGAAGCGT GGCAACATCT GTTGCGTAAA AATAAAAATC GGTTATCCTA
- 651 TGTGGATATG AGGTATAAGG ACGGATTTTC AGTCCGCTAT GCTCCCGACG
- 701 GTTTACCCGA AAAAGAATCC GAAGAATAG

# This corresponds to the amino acid sequence <SEQ ID 246; ORF 080.a>: a080.pep

- 1 MWDNAEAMER LTRWLLVMMA MLLAASGLVW FYNSNHLPVK QVSLKGNLVY
- 51 SDKKALGSLA KEYIHGNILR TDINGAQEAY RRYPWIASVM VRRRFPDTVE
- 101 VVLTERKPVA RWGDHALVDG EGNVFEARLD RPGMPVFRGA EGTSAEMLRR
- 151 YDEFSTVLAK QGLGIKEMTY TARSAWIVVL DNGITVRLGR ENEMKRLRLF
- 201 TEAWQHLLRK NKNRLSYVDM RYKDGFSVRY APDGLPEKES EE*

#### m080/a080 99.2% identity over a 242 aa overlap

m080.pep	10 MWDNAEAMERLTRWI                MWDNAEAMERLTRWI	$\Pi\Pi\Pi\Pi\Pi\Pi$	1111111111	нийш	тиннін	:11111
4000	10	20	30	40	50	60
	70	80	90	100	110	120
m080.pep	KEYIHGNILRTDING	AQEAYRRYP	WIASVMVRRR	FPDTVEVVLI	'ERKPVARWGI	
000			11111111111			
a080	KEYIHGNILRTDING	AUŁAYRKYP 80	WIASVMVRRR 90	100	EKKPVARWGI 110	
	70	80	30	100	110	120
	130	140	150	160	170	180
m080.pep	EGNVFEARLDRPGME	VFRGAEGTS	AEMLRRYDEF	STVLAKQGLG	SIKEMTYTARS	AWIVVL
		1111111111	1111111111	11111111111	11111111	
a080	EGNVFEARLDRPGME			_		AWIVVL
	130	140	150	160	170	180
	190	200	210	220	230	240
-000	DNGITVRLGRENEM					240
m080.pep	UNGIIVKLGKENEM	KUKUPIEAW	TIIIIIIIII Outekvuvuk	TOIADMKIVE	JIIIIII	PLEVED
a080	DNGITVRLGRENEM	HILLILLI WARTELET	OHT.T.RKNKNR	I.SYVDMRYKI	CESVEVAPO	T.PEKES
~~~			E		OL O . MINI DO	
	190	200	210	220	230	240

m080.pep EEX

a080 EEX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 247>:

1 ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT 51 GCCGTCTGAA AACAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGATA 101 TTCGGGAAGG CGATGTGTTT TTCGCATTGG CGGGCGGGCG GTTTGACGCG 151 CATGATTTTG TTGGAGGCGT ATTGTCTGCG GGCGCGGCGG CGGTTGTGGT 201 TTCGCGCGAA GATTGCGCGG CTTTGGGCGG CGCGTTGAAA GTCGATGACA 251 CGCTTGCCGC GTTGCAAACG TTGGCGAAGG CGTGGCGCGA TAATGTGAAC 301 CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA 351 GATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTTTCGG 401 CGACGGCAGG CAACTTCAAC AACCACAtcg gaTTGCCGCT GACTTTATTG 451 AAATtaaAcg aAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA 501 TTTTGGcgaa ctggcggtTt taacgcaaaT CGCCAAACCC GATGCCGCTT 551 TGGtcaACAA CGCCCTGCGC GCCCATGTCG GATGCGGTTt cgacggagtg 601 GGCGATATTG CCAAAGcgaa aagcGAGATT TatgcagGct tATGTTCAGA 651 CGGCATGGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA 701 CGGCAACGTT TAATTTGAAT ACGTGCACTT TCGGCGTCGA TAGCGGCGAT 751 GTCCGCGCGG AAAATATCGT GCTGAAACCT TTGTCGTGCG AATTTGATTT


```
801 GGTGTGCGGC GACGAGCGCA CTGCCGTGGT GCTGCCTGTT CCCGGCCGCC
          851 ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCCGGT
          901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG CAAGGCTTCA GCAACATCAA
          951 AGGCCGTCTG AACGTCAAAG CCGGCATCAA GGGCGCAACC CTGATTGACG
         1001 ATACTTATAA TGCGAATCCC GACAGTATGA AAGCCGCGGT TGACGTGTTG
1051 GCGCGTATGC CTGCGCCGCG CATTTTCGTG ATGGGCGATA TGGGCGAACT
         1101 GGGCGAGGAC GAAGCCGCCG CCATGCACGC CGAagtcgGC GCGTACGCCC
         1151 GCGACCAAGG CATCGAAGCG GCTTATTTTG TCGGCGACAA CAGCGTCGAA
         1201 GCGGcggaAA AATTTGGCGC GGACGGTTTG TGGTTCGCCG CCAAAGACCC
         1251 GTTGATTCAA GTGTTGAGCC ACGATTTGCC CGAACGCGCC ACCGTGTTGG
         1301 TGAAAGGTTC GCGCTTTATG CAGAtggAAG AAGTGGTCGA GGCATTGGAG
         1351 GATAAGTga
This corresponds to the amino acid sequence <SEQ ID 248; ORF 081.ng>:
     q081.pep
            1 MKPLDLNFIC QALKLPMPSE NKPVSRIVTD SRDIREGDVF FALAGGRFDA
           51 HDFVGGVLSA GAAAVVVSRE DCAALGGALK VDDTLAALQT LAKAWRDNVN
               PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVSATAGNFN NHIGLPLTLL
          151 KLNEKHRYAV IEMGMNHFGE LAVLTQIAKP DAALVNNALR AHVGCGFDGV
          201 GDIAKAKSEI YAGLCSDGMA LIPQEDANMA VFKTATFNLN TCTFGVDSGD
          251 VRAENIVLKP LSCEFDLVCG DERTAVVLPV PGRHNVHNAA AAAALALAAG
          301 LSLNDVAEGL QGFSNIKGRL NVKAGIKGAT LIDDTYNANP DSMKAAVDVL
          351 ARMPAPRIFV MGDMGELGED EAAAMHAEVG AYARDQGIEA AYFVGDNSVE
          401 AAEKFGADGL WFAAKDPLIQ VLSHDLPERA TVLVKGSRFM QMEEVVEALE
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 249>:
     m081.seq
               ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
               GCCGTCTGAA AGCAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGACA
          101 TCCGCGCGGG CGATGTGTTT TTCGCATTGG CGGGCGAGCG GTTTGACGCG
          151 CATGATTTTG TTGAAGACGT ATTGGCTGCT GGTGCGGCGG CGGTTGTGGT
          201 TTCGCGCGAA GATTGTGCTG CAATGGATGG CGCGTTGAAA GTCGATGACA
          251 CGCTTGCCGC ATTGCAAACG CTGGCAAAGG CGTGGCGTGA AAATGTGAAT
          301 CCGTTTGTGT TCGGCATTAC CGGTTCGGGC GGCAAGACGA CGGTGAAGGA
          351 AATGCTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATGAT GCCGTGTTGG
          401 CGACGGCAGG CAACTTCAAC AACCATATCG GATTGCCGCT GACTTTGTTG
          451 AAGTTAAACG AAAAACACCG CTATGCCGTG ATTGAAATGG GCATGAACCA
          501 TTTCGGCGAA CTGGCGGTTT TAACGCAMAT CGCCAAACCA AATGCCGCAT
          551 TGGTCAACAA CGCCATGCGC GCCCATGTCG GCTGCGGTTT CGACGGAGTG
          601 GGCGATATTG CCAAAGCGAA AAGCGAGATT TACCAAGGTT TATGTTCAGA
          651 CGGCATTGCA CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
          701 CGGCAACGCT TAATTTGAAT ACGCGCACTT TCGGCATCGA TAGCGGCGAT
          751 GTTCACGCGG AAAATATTGT GCTGAAACCG TTGTCGTGCG AATTTGATTT
          801 GGTGTGCGGC GATGAGCGCG CCGCCGTGGT GCTGCCTGTT CCCGGCCGCC
          851 ACAATGTCCA CAACGCCGCC GCTGCCGCCG CGCTGGCTTT GGCTGCGGGT
          901 TTGAGTTTGA ACGATGTGGC GGAAGGTTTG AAAGGCTTCA GCAATATCAA
          951 AGGCCGTCTG AACGTCAAAT CCGGAATCAA GGGCGCAACC CTGATTGACG
         1001 ATACTTATAA TGCGAACCCT GACAGCATGA AAGCTGCGAT TGACGTGTTG
         1051 GCGCGTATGC CTGCGCCGCG TATTTTCGTG ATGGGCGATA TGGGCGAACT
         1101 GGGCGAACTG GGCGAGGACG AAGCCGCCGC TATGCACGCC GAAGTCGGCG
         1151 CGTATGCCCG CGACCAAGGC ATCGAAGCGG CTTATTTTGT CGGCGACAAC
         1201 AGCGTCGAAG CGGCGGAAAA ATTTGGCGCG GACGGTTTGT GGTTCGCCGC
         1251 CAAAGACCCG TTGATTCAAG TGTTGCGCCA CGATTTGCCC GAACGCGCCA
         1301 CCGTGTTGGT GAAAGGTTCG CGCTTTATGC AGATGGAAGA AGTGGTCGAG
         1351 GCATTGGAGG ATAAGTGA
This corresponds to the amino acid sequence <SEQ ID 250; ORF 081>:
     m081.pep
              MKPLDLNFIC QALKLPMPSE SKPVSRIVTD SRDIRAGDVF FALAGERFDA
           51 HDFVEDVLAA GAAAVVVSRE DCAAMDGALK VDDTLAALQT LAKAWRENVN
          101 PFVFGITGSG GKTTVKEMLA AVLRRRFGDD AVLATAGNFN NHIGLPLTLL
```

151 KLNEKHRYAV IEMGMNHFGE LAVLTXIAKP NAALVNNAMR AHVGCGFDGV

- 201 GDIAKAKSEI YQGLCSDGIA LIPQEDANMA VFKTATLNLN TRTFGIDSGD
- 251 VHAENIVLKP LSCEFDLVCG DERAAVVLPV PGRHNVHNAA AAAALALAAG
- 301 LSLNDVAEGL KGFSNIKGRL NVKSGIKGAT LIDDTYNANP DSMKAAIDVL
- 351 ARMPAPRIFV MGDMGELGEL GEDEAAAMHA EVGAYARDQG IEAAYFVGDN
- 401 SVEAAEKFGA DGLWFAAKDP LIQVLRHDLP ERATVLVKGS RFMQMEEVVE 451 ALEDK*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 081 shows 94.1% identity over a 455 aa overlap with a predicted ORF (ORF 081.ng) from N. gonorrhoeae:

m081/g081

m081.pep	10 MKPLDLNFICQALKLI MKPLDLNFICQALKLI			111111111	11111111	:
9001	10	20	30	40	50	60
m081.pep	70 GAAAVVVSREDCAAMI					
g081	GAAAVVVSREDCAALO 70	GALKVDDTLA 80	ALQTLAKAWR 90	DNVNPFVFGI 100	TGSGGKTTVK 110	TEMLA 120
m081.pep	130 AVLRRRFGDDAVLATA	140 AGNFNNHIGLE	150 PLTLLKLNEKH	160 RYAVIEMGMN	170 HFGELAVLTX	180 KIAKP
g081	AVLRRRFGDDAVSATA	AGNFNNHIGLE 140	LTLLKLNEKH	RYAVIEMGMN 160	HFGELAVLTO	IAKP 180
m081.pep	190 NAALVNNAMRAHVGCO					
g081	: : DAALVNNALRAHVGCO 190					
m081.pep	250 TRTFGIDSGDVHAENI					
g081	TCTFGVDSGDVRAENI 250					
m081.pep	310 LSLNDVAEGLKGFSNI		1111111111	1111111111	:	
g081	LSLNDVAEGLQGFSNI 310	KGRLNVKAGI 320	KGATLIDDTY 330	NANPDSMKAA 340	VDVLARMPAP 350	PRIFV 360
m081.pep	370 MGDMGELGELGEDEAA	380 AAMHAEVGAYA				
g081	MGDMGELGEDEA					
m081.pep	430 LIQVLRHDLPERATVI		1111111111			
g081	LIQVLSHDLPERATVI 420 430	JVKGSRFMQME 440	EVVEALEDKX 450			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 251>: a081.seq

```
ATGAAACCAC TGGACCTAAA TTTCATCTGC CAAGCCCTCA AGCTTCCGAT
  51
      GCCGTCTGAA AGCAAACCCG TGTCGCGCAT CGTAACCGAC AGCCGCGACA
      TCCGCGCGGG CGATGTGTT TTCGCATTGG CGGGCGGGCG GTTTGATGCG
 101
      CATGATTTTG TTGAAGACGT ATTGGCTGCG GGTGCGGCGG CGGTTGTGGT
     TTCGCGCGAA GATTGCGTTG CAATGGATGG CGCGTTGAAA GTCGATGACA
 201
      CGCTTACCGC GTTGCAAATG TTGGCGAAGG CGTGGCGCGA GAATGTGAAC
 251
      CCGTTTGTGT TCGGTATTAC CGGCTCGGGC GGCAAGACGA CGGTGAAGGA
 301
     AATGTTGGCT GCGGTATTGC GCCGCCGTTT CGGCGATAAT GCCGTTTTGG
 351
      CGACGGCAGG CAACTTCAAC AACCACATCG GATTGCCGTT GACTTTGTTG
 401
 451
     AAATTAAACG AAAAACACCG CTATGCCGTG ATTGAAATGG GTATGAACCA
      TTTTGGCGAA CTGGCGGTTT TGACACAAAT CGCCAAACCC GATGCCGCAT
 501
      TGGTCAACAA CGCCATGCGC GCCCATGTCG GCTGCGGTTT CGACGGAGTG
 551
 601
      GGCGATATTG CCAAAGCGAA AAGCGAGATT TATCAAGGCT TATGTTCAGA
     CGGCATGGCG CTGATTCCTC AAGAAGATGC CAATATGGCT GTCTTCAAAA
 651
 701
      CGGCAACGCT TAATTTGAAT ACGCGCACTT TCGGCATCGA TAGCGGCGAT
     GTCCACGCGG AAAATATCGT GCTGAAACCG TTGTCGTGCG AATTTGATTT
 751
      GGTGTGCGGC AACGAGTGCG CAGCCGTGGT TCTGCCCGTT CCCGGCCGCC
 851 ACAATGTCCA CAACGCCGCC GCCGCCGCCG CGCTGTCTTT GGCTGCAGGT
     TTGAGTTTGA ACGATGTGGC GGAAGGTTTG AAAGGCTTCA GCAATATCAA
 901
 951 AGGCCGTCTG AACGTCAAAT CCGGAATCAA GGGCGCAACC CTGATTGACG
1001 ATACTTATAA TGCGAACCCT GACAGCATGA AAGCTGCGGT TGACGTGTTG
1051
     GCGCGTATGC CTGCGCCGCG TATTTTCGTG ATGGGCGATA TGGGCGAACT
1101
      GGGTGAGGAC GAAGCCGCCG CCATGCACGC CGAAGTCGGC GCGTACGCCC
      GCGACCAAGG CATCGAAGCG GCTTATTTTG TCGGCGACAA CAGCGTCGAA
1151
1201
     GCGGCGGAAA AATTTGGCGC GGACGGTTTG TGGTTCGCCG CCAAAGACCC
     GTTGATTCAA GTGTTGCGCC ACGATTTGCC CGAACGCGCC ACCGTGTTGG
1251
     TGAAAGGTTC GCGCTTTATG CAGATGGAAG AAGTGGTCGA GGCATTGGAG
1301
1351
      GATAAGTGA
```

This corresponds to the amino acid sequence <SEQ ID 252; ORF 081.a>: a081.pep

1	MKPLDLNFIC	QALKLPMPSE	SKPVSRIVTD	SRDIRAGDVF	FALAGGRFDA
51	HDFVEDVLAA	GAAAVVVSRE	DCVAMDGALK	VDDTLTALQM	LAKAWRENVN
101	PFVFGITGSG	GKTTVKEMLA	AVLRRRFGDN	AVLATAGNEN	NHIGLPLTLL
151	KLNEKHRYAV	IEMGMNHFGE	LAVLTQIAKP	DAALVNNAMR	AHVGCGFDGV
201	GDIAKAKSEI	YQGLCSDGMA	LIPQEDANMA	VFKTATLNLN	TRTFGIDSGD
251	VHAENIVLKP	LSCEFDLVCG	NECAAVVLPV	PGRHNVHNAA	AAAALSLAAG
301	LSLNDVAEGL	KGFSNIKGRL	NVKSGIKGAT	LIDDTYNANP	DSMKAAVDVL
351	ARMPAPRIFV	MGDMGELGED	EAAAMHAEVG	AYARDQGIEA	AYFVGDNSVE
401	AAEKFGADGL	WFAAKDPLIQ	VLRHDLPERA	TVLVKGSRFM	QMEEVVEALE
451	DK*				

m081/a081 96.7% identity over a 455 aa overlap

	10	20	30	40	50	60
m081.pep	MKPLDLNFICQALK	LPMPSESKPV	SRIVTDSRDI	RAGDVFFALA	GERFDAHDF	VEDVLAA
	-11111111111111111111111111111111111111	1111111111	11111111111		1 1111111	нин
a081	MKPLDLNFICQALK	LPMPSESKPV	SRIVTDSRDI	RAGDVFFALA	GGRFDAHDF	VEDVLAA
	10	20	30	40	50	60
	70	80	90	100	110	120
m081.pep	GAAAVVVSREDCAA	MDGALKVDDT	LAALQTLAKA	WRENVNPFVF	GITGSGGKT'	TVKEMLA
	-11111111111111111111111111111111111111	11111111111	1:111 1111		111111111	1111111
a081	GAAAVVVSREDCVA	MDGALKVDDT	LTALQMLAKA	AWRENVNPFVF	GITGSGGKT'	TVKEMLA
	70	80	90	100	110	120
	130	140	150	160	170	180
m081.pep	AVLRRRFGDDAVLA	TAGNFNNHIG	LPLTLLKLNE	KHRYAVIEMG	MNHFGELAV!	LTXIAKP
		HIHIIII	1111111111	111111111	111111111	11111
a081	AVLRRRFGDNAVLA	TAGNFNNHIG	LPLTLLKLNE	KHRYAVIEMG	MNHFGELAVI	LTQIAKP

			•			
	130	140	150	160	170	180
	130	140	130	100	170	180
m081.pep	190 NAALVNNAMRAHV	200 GCGFDGVGDTA	210 AKAKSETYOGLO	220 SDGTALTPOE	230 DANMAVEKTAT	240 I.NI.N
	:::::::::::::::::::::::::::::::::::::::	111111111111		111:1111		1111
a081	DAALVNNAMRAHV					
	190	200	210	220	230	240
	250	260	270	280	290	300
m081.pep	TRTFGIDSGDVHA					
a081	TRTFGIDSGDVHA					
	250	260	270	280	290	300
	310	320	. 330	340	350	360
m081.pep	LSLNDVAEGLKGE					
a081	LSLNDVAEGLKGE					
4001	310	320	330	340	350	360
	370	380	390	400	410	420
m081.pep	MGDMGELGELGED					
			шини			
a081	MGDMGELGEE		AYARDQGIEAAY 390	FVGDNSVEAAI 400	EKFGADGLWFA 410	AKDP
	570	300	3,0	400	410	
	430	440	450			,
m081.pep	LIQVLRHDLPERA	-	•			
a081	LIQVLRHDLPERA					
	420 430	440	450			
Th - C-11i			. : : : : : : : : : : : : : : : : : : :	. 37	-070 0	TD 050:
_	partial DNA s	equence was	s identified in	n N. gonorrh	oeae <seq< td=""><td>ID 253>:</td></seq<>	ID 253>:
g082.sec	ā	-	identified in	•	`	
g082.sec	ACGGCGGCGC	TGAAGTTGCC AATACCGCAG	TGCCGTCGCC CCAGCATCTC	GAAACGGCAT CTTCACCGTC	CATCGCCGAA GTCTTGCCGC	
g082.sec 5 5 10	A TGTGGTTGT A CGGCGCGCC CCGAACCGGT	TGAAGTTGCC AATACCGCAG AATGCCGAAC	TGCCGTCGCC CCAGCATCTC ACAAACGGGT	GAAACGGCAT CTTCACCGTC TCACATTATC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC	
g082.sec 5: 10: 15:	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC	
g082.sec 5 5 10	A TGTGGTTGT A CGGCGGCGC CCGAACCGGT TTCGCCAACG GCCCAAAGCC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT	TGCCGTCGCC CCAGCATCTC ACAAACGGGT	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCCG	
g082.sec 5: 10: 15: 20:	A TGTGGTTGT A CGGCGGCGC CCGAACCGGT TTCGCCAACG GCCCAAAGCC CGGCCAAAGCC CGGCCAAAGCC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCCGC	
g082.sec 5 5 10 15 20 25 30 35	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG GCCCAAAGCC CAGACAATAC AATGCGAAAA GCGCGACACG	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT CGGAAGCTTG	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCCGCC	
g082.sec 5 5 10 15 20 25 30 35 40	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCC CCGAACCCC ACGCCAAAGCC ACGCCAAAAA ACGCCAAAAA ACGCGAAAAA ACGCGACACCC ACGCGACACCC ACGCGACACCC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT CGGAAGCTTG	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCCCGCC CGGTTACGAT AGGGCTTGGC	
g082.sec 5 10 15 20 25 30 35 40 45	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACAGC CCGAACACC ACGCCAAAGCC ACGCCAAAAA CCGCGACACAAA ACGCGACACAC ACGCGACACC ACGCGACACC ACGCGACACACC ACGCGACACAC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT CATCGGTAGC	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT CGGAAGCTTG TTGCTTTCGT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCCCGCC CGGTTACGAT AGGGCTTGGC TAATATTCGG	
g082.sec 5: 10: 15: 20: 25: 30: 35: 40: 45: 50:	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCC CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGGCGACACC AGATGAAATT CGCGGCGACACC AGATGAAATT CGCGGCGGACACC AGATGAAATT	TGAAGTTGCC AATACCGCAAC AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT CATCGGTAGC AGATTATTTT	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TCGCAAGCTTG TTGCTTTCGT TTTATCGCCT TTCGGCATTT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCCCGCC CGGTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACAGC CCGAACACC ACGCCAAAGCC ACGCCAAAAA CCGCGACACAAA ACGCGACACAC ACGCGACACC ACGCGACACC ACGCGACACACC ACGCGACACAC	TGAAGTTGCC AATACCGCAAC AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT CATCGGTAGC AGATTATTTT TAGACGTATT	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TCGCGGCTTT TTGCTTTCGT TTTATCGCCT TTGCCTTTTC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCCGT AATGCGAAAA AATGCGAAAA CGGCGGACACG AGATGAAATT CGGGCGGACAC AGATGAAATT CGGGCGGACA CGGCGGGACA CGGCGGGACA CGGCGGGGGCACACG CGCCGGGGGCACACG CGGCGGGGGCACACG CGCCCGGCACAC	TGAAGTTGCC AATACCGCAAC AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT CATCGGTAGC AGATTATTTT TAGACGTATT TCGTCGGACT ATCGGGGACA	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT GTCTGTCGAT TTCCCCCAAA	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCT TTGGCATTT TTGCCTTTTC AAAGGCAAGG AATCATAGCC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGGC	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACAGC CCGAACAGC AATGCGAAAA CCGGCGACACG AGATGAAAAT CGGGCGACACG AGATGAAATT CGGGCGGACAC CGGCGGGACA CGGCGGGGGCACACG AGATGAAACAC CGGCGCGGGGCACACACG CGCCCGGCACACACCG AACTCGTCGG	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TAGACGTATT TCGTCGGACT ATCGGGGACA TTTCGATACC	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT GTCTGTCGAT TTCCCCCAAA CGTCCCAACTG	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCT TTTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGGC GTAA	
g082.sec 5: 10: 15: 20: 25: 30: 35: 40: 45: 50: 55: 60: 65: 70: This correspon	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGACAC AGATGAAATT CGCGCGGCACAC CGCCCGGCAC AACTCGTCGG ACGTGCGCGCAC AACTCGTCGG ACGCGCCGCAC ACCTCGTCGC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TAGACGTATT TCGTCGGACT ATCGGGGACA TTTCGATACC	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT GTCTGTCGAT TTCCCCCAAA CGTCCCAACTG	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCT TTTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGGC GTAA	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGACAC CGCGCGGACA CGCCCGGCACAC AACTCGTCGG AACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGCACAC CGCGCGCACACACCACAC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TAGACGTATT TCGTCGGACT ATCGGGGACA TTTCGATACC o acid seque	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT TTCCCCCAAA CGTCCCAACTG CGTCCAACTG CTCCCAACTG CTCCCAACTG CTCCCAACTG CTCCCAACTG CTCCCAACTG CTCCCAACTG CTCCCAACTG CTCCAACTG CTC	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TCGCGATTTCGT TTTATCGCT TTTATCGCATTT TTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC) 254; ORF	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>:	
g082.sec 5: 10: 15: 20: 25: 30: 35: 40: 45: 50: 55: 60: 65: 70: This correspor	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGT CAGACAATAC AATGCGAAAA CGCGGACACG AGATGAAATT CGCGGCGGACAC CGCGGGACAC CGCCGGGACAC CGCCCGGCAC AACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACCGCCGGCAC ACCTCGTCGG ACCTCGGCGGG ACCTCGTCGG ACCTCGGCGGGG ACCTCGGCGGGG ACCTCGGCGGGG ACCTCGGCGGGGG ACCTCGGCGGGGG ACCTCGGCGGGGGGGG ACCTCGGCGGGGGGGGGG	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TAGACGTATT TCGTCGGACT ATCGGGGACA TTTCGATACC o acid seque	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT GTCTGTCGAT TTCCCCCAAA CGTCCAACTG INCE <seq ii<="" td=""><td>GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCT TTTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC D 254; ORF VLPPEPVMPN</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGGC GTAA 082.ng>: TNGFTLSRHA</td><td></td></seq>	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCT TTTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC D 254; ORF VLPPEPVMPN	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGGC GTAA 082.ng>: TNGFTLSRHA	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGACAC CGCGCGGACA CGCCCGGCACAC AACTCGTCGG AACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGCACAC CGCGCGCACACACCACAC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TCGTCGGACT ATCGGGGACA TTTCGATACC o acid seque ETASSPKRRR SSTFNAPPKA	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT TTCCCCCAAA CGTCCAACTG TTCCCCCAAA CGTCCAACTG TCCCCAACTG TCCCCAACTG TCCCCAACTG TCCCCAACTG TCCCCAACTG TCCCCAACTG TCCCCAACTG TCCCCCAAA CGTCCAACTG TCCCCAACTG TCCCCAACTG TCCCCCAAA	GAAACGGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TCGCTTTCGT TTTATCGCCT TTTGCCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC D 254; ORF VLPPEPVMPN AAPADNTPPT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGACACG AGATGAAATT CGCGCGGCACA CGCCCGGCAC AACTCGTCGG AACTCGTCGG AACTCGTCGG AACTCGTCGG ACTCGTCGG AACTCGTCGG ACTCGTCGG ACTCGGCGG ACTCGTCGG ACTCGGCGGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGGG ACTCGTCGG ACTCGTCGGG ACTCGTCGGG ACTCGTCGGG ACTCGTCGG ACTCGTCGGG ACTCGTCG	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TCGTCGGACT ATCGGGACT ATCGGGACA TTTCGATACC o acid seque ETASSPKRRR SSTFNAPPKA SRLSVTMRDT FIACFAVVKH	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTT CCCATTCTCA TTTAGCCGAT TTCCCCCAAA CGTCCAACTG INCE <seq aqssrettta="" glfsdgigsl="" ii="" ntaasisftv="" rlfshshsaf<="" td=""><td>GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCTTT TTGGCATTT TTGCCTTTTC AAAGCAAGG AATCATAGCC CCGAATCCGC) 254; ORF VLPPEPVMPN AAPADNTPPT RAWOMKFRSS FLYVSFFRRI</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP</td><td></td></seq>	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCTTT TTGGCATTT TTGCCTTTTC AAAGCAAGG AATCATAGCC CCGAATCCGC) 254; ORF VLPPEPVMPN AAPADNTPPT RAWOMKFRSS FLYVSFFRRI	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGACACG AGATGAAATT CGCGCGGCACACG AGATGAAATT CGCGCGGGACA CGCCCGGCAC AACTCGTCGG AACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGG ACTCGTCGGG	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TCGTCGGACT ATCGGGGACA TTTCGATACC o acid seque ETASSPKRRR SSTFNAPPKA SRLSVTMRDT FIACFAVVKH KGKVIAFARH	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT TTCCCCCAAA CGTCCAACTG INCE <seq aqssrettta="" glfsdgigsl="" igdippkiia<="" ii="" ntaasisftv="" rlfshshsaf="" td=""><td>GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT TCGCTGTTTCGTTTC</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTACGAT AGGCTTGCCT TTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA*</td><td></td></seq>	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT TCGCTGTTTCGTTTC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTACGAT AGGCTTGCCT TTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA*	
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGCACAC CGCCCGGCACACC AACTCGTCGG ACTCGTCGG ACTCGTCGG TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TCGTCGGACT ATCGGGGACA TTTCGATACC o acid seque ETASSPKRRR SSTFNAPPKA SRLSVTMRDT FIACFAVVKH KGKVIAFARH	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTTT CCCATTCTCA TTTAGCCGAT TTCCCCCAAA CGTCCAACTG INCE <seq aqssrettta="" glfsdgigsl="" igdippkiia<="" ii="" ntaasisftv="" rlfshshsaf="" td=""><td>GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT TCGCTGTTTCGTTTC</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTACGAT AGGCTTGCCT TTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA*</td><td></td></seq>	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGC CGTCAAACCG TCGCGGCTGT TCGCTGTTTCGTTTC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTACGAT AGGCTTGCCT TTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA*		
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGACAC CGCCCGGACA CGCCCGGCAC AACTCGTCG AACTCGTCG ACTCGTCG ACTCGTCG ACTCGTCG ACTCGTCGC ACTCGCCCGC ACTCGTCGC ACTCGCCGCC ACTCGTCGC ACTCGTCGC ACTCGTCGC ACTCGTCGC ACTCGTCGC ACTCGTCGCC ACTCGCCCCGCC ACTCGCCCCC ACTCGCCCCC ACTCGCCCCC ACTCGCCCCC ACTCG	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TCGTCGGACT ATCGGGGACA TTTCGATACC o acid seque ETASSPKRRR SSTFNAPPKA SRLSVTMRDT FIACFAVVKH KGKVIAFARH equence was	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GCCTGATTTT CCCATTCTCA TTTAGCCGAT TTCCCCCAAA CGTCCAACTG INCE <seq aqssrettta="" glfsdgigsl="" igdippkiia<="" ii="" ntaasisftv="" rlfshshsaf="" td=""><td>GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TCGCTTTCGT TTTATCGCTT TTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC O 254; ORF VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGCC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA* tidis <seq< td=""><td>ID 255>:</td></seq<></td></seq>	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TCGCTTTCGT TTTATCGCTT TTGCTTTTC AAAGGCAAGG AATCATAGCC CCGAATCCGC O 254; ORF VLPPEPVMPN AAPADNTPPT RAWQMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGGC TAATATTCGG GTTTTGCTGT TTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGCC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA* tidis <seq< td=""><td>ID 255>:</td></seq<>	ID 255>:
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGGT CAGACAATAC AATGCGAAAA CGCGCGACACG AGATGAAATT CGCGCGGCACA CGGCGGCACAC CGGCGGCACAC CGCCCGGCAC CACCCCGGCAC CACCCCGCAC CACCCCGGCAC CACCCCCGCAC CACCCCCGCAC CACCCCCCCC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT CATCGGTAGC AGATTATTT TAGACGTATT TCGTCGGACT ATCGGGACA TTTCGATACC o acid seque ETASSPKRRR SSTFNAPPKA SRLSVTMRDT FIACFAVVKH KGKVIAFARH equence was	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTT CCCATTCTCA TTTAGCCGAT TTCCCCAAA CGTCCAACTG INCE <seq aqssrettta="" gigcgtcgcc<="" glfsdgigsl="" igdippkiia="" ii="" ntaasisftv="" rlfshshsaf="" td=""><td>GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCTTT TTGGCATTT CACAACCGCC O254; ORF VLPPEPVMPN AAPADNTPPT RAWOMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi AACACGGCAT</td><td>CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTTACGAT AGGCTTGCC TTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA* tidis <seq catcgccgaa<="" td=""><td>ID 255>:</td></seq></td></seq>	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCTTT TTGGCATTT CACAACCGCC O254; ORF VLPPEPVMPN AAPADNTPPT RAWOMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi AACACGGCAT	CATCGCCGAA GTCTTGCCGC GCGCCACGCC TCAACGCGCC GCCGCCCGCC CCGGCTTACGAT AGGCTTGCC TTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA KSCASNRPPA GFIFAFVNIR FSRFAFSRIP RPTAESA* tidis <seq catcgccgaa<="" td=""><td>ID 255>:</td></seq>	ID 255>:
g082.sec	ATGTGGTTGT ACGGCGGCGC CCGAACCGGT TTCGCCAACG CCGAACCGGT CCGAACCGGT CCGAACCGGT CCGAACAACC CCGAACAAAA CCGCGGACACG AGATGAAAAT CGCGCGGACACACACACACACACACACACACACACACAC	TGAAGTTGCC AATACCGCAG AATGCCGAAC TTTGCAACGC GCGCAATCTT GCCTCCAACA ACACATCGCC GGTTTGTTT TAGGTCCAGT TAGGTCCAGT TAGACGTAT TCGTCGGACT ATCGGGACA ATTCGATACC O acid seque ETASSPKRRR SSTFNAPPKA SRLSVTMRDT FIACFAVVKH KGKVIAFARH equence was TGAAGTTGCC AATACCGCAG AATACCGCAG AATGCCGAAC	TGCCGTCGCC CCAGCATCTC ACAAACGGGT GGCAAGCGTG CGCGCGAAAC AAATCATGCG TTCCCGAATA CAGACGGCAT GGTTTCATAT GGCTGATTT CCCATTCTCA TTTAGCCGAT TTCCCCCAAA CGTCCAACTG INCE < SEQ II NTAASISFTV AQSSRETTTA GLFSDGIGSL RLFSHSHSAF IGDIPPKIIA GIGCGTCGCC CCAGCATTTC	GAAACGCAT CTTCACCGTC TCACATTATC TCATCGACTT CACAACCGCC CGTCAAACCG TCGCGGCTGT TTGCTTTCGT TTTATCGCCT TTTGCCTTTT TTGCCTTTTC AAAGGCAAG AATCATAGCC CCGAATCCGC VLPPEPVMPN AAPADNTPPT RAWOMKFRSS FLYVSFFRRI VIGQLVGFDT N. meningi AACACGGCAT CTTCACCGTC TCACATTTTC	CATCGCCGAA GTCTTGCCGC GCGCCACGCC GCGCCCGCC GCCGCCCGCC CCGCTTACGAT AGGGCTTGCC TAATATTCGG GTTTTCTGTACG CCGCATACCA TTATTGCCTT GTCATCGGGC GTAA 082.ng>: TNGFTLSRHA KSCASNRPPA KSCASNRPPA KSCASNRPPA KSCASNRPPA KSCASNRPPA CFIFAFVNIR FSRFAFSRIP RPTAESA* tidis < SEQ CATCGCCGAA GTCTTGCCGC ACGCCACGCC	ID 255>:

201	ATCCATTGCA	GCACAATCTT	CGCGCGAAAC	CACAACCGCC	GCCGCACCAG
251	CAGCCAATAC	GTCTTCAACA	AAATCATGCG	CGTCAAACCG	CTCGCCCGCC
301	AATGCGAAAA	ACACATCGCC	CGCGCGGATG	TCGCGGCTGT	CGGTTACGAT
351	GCGCGACACG	GGTTTGCTTT	CAGACGGCAT	CGGAAGCTTG	AGGGCTTGGC
401	AGATGAAATT	TAGGTCCAGT	GGTTTCATAT	TTACTTTCGT	TAATATTCGG
451	GCGGCGGACA	CATCGGTAGC	GGCTGATTTT	TTTATCGCCT	GTTTTGCTGT
501	GGTAAAACAC	AGATTATTTT	CCCATTCTCA	TTCGGsATTT	TTTCTGTACG
551	TATCATTTTT	TAGACGTATT	TTTAGTCGAT	TTGCCTTTTC	CCGCATACCA
601	CGGCGCGGG	TCGTCGGGCA	GTCCGTCGAT	AAAGGCAAGG	TTATTGCCTT
651	CGCCCTGCAC	ATCGGGAACA	TTCCCCCAAA	AATCATAGCC	GTCATCGGGC
701	AACTCGTCGG	TTTCGATACC	CGTCCAACTG	CCGAATCCGC	GTAA

This corresponds to the amino acid sequence <SEQ ID 256; ORF 082>:

m082.pep

- 1 MXLLKLPAVA NTASSPKRRR NTAASISFTV VLPPEPVMPN TNGFTFSRHA
- 51 FASVCNAASV SSTFNAPSIA AQSSRETTTA AAPAANTSST KSCASNRSPA
- 101 NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWQMKFRSS GFIFTFVNIR 151 AADTSVAADF FIACFAVVKH RLFSHSHSXF FLYVSFFRRI FSRFAFSRIP 201 RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 082 shows 92.7% identity over a 247 aa overlap with a predicted ORF (ORF 082.ng) from N. gonorrhoeae:

m082/g082

	10	20	30	40	50	60
m082.pep	MXLLKLPAVANTA	SSPKRRRNTAA	SISFTVVLPI	PEPVMPNTNGE	TFSRHAFAS	VCNAASV
			1111111111			
g082	MWLLKLPAVAETA	SSPKRRRNTAA	SISFTVVLP	PEPVMPNTNGE	TLSRHAFAN	VCNAASV
	10	20	30	40	50	60
	70	80	90	100	110	120
m082.pep	SSTFNAPSIAAQS	SRETTTAAAPA	ANTSSTKSCA	asnrspanakn	TSPARMSRL:	SVTMRDT
		1111111111			: :	
g082	SSTFNAPPKAAQS		DNTPPTKSCA	ASNRPPANAKI	TSPSRISRL	SVTMRDT
	70	80	90	100	110	120
	130	140	150	160	170	180
m082.pep	GLLSDGIGSLRAW	OMKFRSSGFIF	TFVNIRAADI	rsvaadffiac	FAVVKHRLF	SHSHSXF
			:			
g082	GLFSDGIGSLRAW					SHSHSAF
	130	140	150	160	170	180
	190	200	210	220	230	240
m082.pep	FLYVSFFRRIFSR	FAFSRIPRRGV	VGOSVDKGK	VIAFALHIGN]	PPKIIAVIG	OLVGFDT
		<u> </u>				
g082	FLYVSFFRRIFSR					_
	190	200	210	220	230	240
m002 mom	RPTAESAX					
m082.pep	KPIAESAX					
g082	RPTAESAX					
9002	KEIMESAK					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 257>: a082.seq

- 1 ATGTGGTTGT TGAAGTTGCC TGCCGTCGCC AAAACGGCAT TATCGCCGAA
- 51 ACGGCGGCG AATACCGCAG CCAACATTTC CTTCACCGTC GTCTTGCCGC

WO 99/57280

101		
	CCGAGCCGGT AATACCGAAC ACAAACGGGT TCACATTCTC GCGCCACGCC	
151	TTCGCCAACA TTTGCAACGC GGTAAGCGTG TCATCGACTT TCAACGCGCC	
	ATCCATTGCA ACGCAATCTT CGCGCGAAAC CACAACCGCC GCCGCACCCG	
201		
251	CAGCCAATAC GTCTTCAACA AAATCATGCG CATCAAACCG CCCGCCCGCC	
301	AATGCGAAAA ACACATCGCC CGCGCGGATG TCGCGGCTGT CGGTTACGAT	
351	GCGCGACACG GGTTTGCTTT CAGACGGCAT CGGAAGCTTG AGGGCTTGGC	
401	AGATGAAATT TAGGTCCAGT GGTTTCATAT TTACTTTCGT TAATATTCGG	
451	GCGGCGGACA CATCGGTAGC GGCTGATTTT TTTATCGCCT GTTTTGCTGT	
501	GGTAAAACAC AGATTATTTT CCCATTCTCA TTCGGCATTT TTTCTGTACG	
551	TATCATTTTT TAGACGTATT TTTAGTCGAT TTGCCTTTTC CCGCATACCA	
601	CGGCGCGGGG TCGTCGGCA GTCCGTCGAT AAAGGCAAGG TTATTGCCTT	
651	CGCCCTGCAC ATCGGGAACA TTCCCCCAAA AATCATAGCC GTCATCGGGC	
701	AACTCGTCGG TTTCGATACC CGTCCAACTG CCGAATCCGC GTAA	
This corres	sponds to the amino acid sequence <seq 082.a="" 258;="" id="" orf="">:</seq>	
	1	
a082.pep		
1	MWLLKLPAVA KTALSPKRRR NTAANISFTV VLPPEPVIPN TNGFTFSRHA	
51	FANICNAVSV SSTFNAPSIA TQSSRETTTA AAPAANTSST KSCASNRPPA	
101	NAKNTSPARM SRLSVTMRDT GLLSDGIGSL RAWOMKFRSS GFIFTFVNIR	
151	AADTSVAADF FIACFAVVKH RLFSHSHSAF FLYVSFFRRI FSRFAFSRIP	
	RRGVVGOSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDT RPTAESA*	
201	RRGVVGQSVD KGKVIAFALH IGNIPPKIIA VIGQLVGFDI KPTAESA.	
m082/a082	95.5% identity over a 247 aa overlap	
	•	
	10 20 30 40 50 60	
m082.pep	MXLLKLPAVANTASSPKRRRNTAASISFTVVLPPEPVMPNTNGFTFSRHAFASVCNAASV	
a082	MWLLKLPAVAKTALSPKRRRNTAANISFTVVLPPEPVIPNTNGFTFSRHAFANICNAVSV	
	10 20 30 40 50 60	
	70 00 100 100 100	
	70 80 90 100 110 120	
m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep		
m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT :	
a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT :	
a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082 m082.pep a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082 m082.pep a082	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082 m082.pep a082 The follow	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082 m082.pep a082 The follow	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082 m082.pep a082 The follow	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082 m082.pep a082 The follow	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	
m082.pep a082 m082.pep a082 m082.pep a082 The follow	SSTFNAPSIAAQSSRETTTAAAPAANTSSTKSCASNRSPANAKNTSPARMSRLSVTMRDT	

151 GCTTTGGCTT CGGTTGTATT TTTATTATTA TTGGCACGCG GCTTCCCGCG
201 CGTTTCTTCA GTTGTTTTAC TGATTTACGT CGGCACAACC GCCCTATATT
251 TGCCGGTCGG CTGGCTGTAT GGTGCGCTT CTTATCAGAT AGTCGGTTCG
301 ATATTGGAAA GCAATCCTGC CGAGGCGCGT GAATTTGTCG GCAATCTTCC
351 CGGGTCGCTT TATTTTGTGC AGGCATTATT TTTCATTTTT GGCTTGACAG


```
401 TTTGGAAATA TTGTGTATCT GTGGGGGTAT TTGCTGACGT AAAAAACTAT
          451 AAACGTCGCA GCAAAATATG GCTGACCATA TTATTGACTT TGATTTTGTC
               CTGCGCGGTG ATGGAGAAAA TCGccggcga taaAGATTGG CGAGaacctg
               atgccggcct gttgttgaat ATTTTcgacc tgtattaCga cttggctttc
               cgcgccggca cAATATGCCG CCAAGCGCGC CCAcattttg gaagCagcaa
               aaaaagcgtC AACATGGCAt atccgccaac ttgcgcccaa gTAtaa
This corresponds to the amino acid sequence <SEQ ID 260; ORF 084.ng>:
     g084.pep
               MKQSARIKNM DQTLKNTLGI CALLAFCFGA AIASGYHLEY EYGYRYSAVG
           1
               ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYQIVGS
           51
          101 ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS VGVFADVKNY
               KRRSKIWLTI LLTLILSCAV MEKIAGDKDW REPDAGLLLN IFDLYYDLAF
               RAGTICROAR PHFGSSKKSV NMAYPPTCAO V*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 261>:
     m084.seq
               ATGAAACAAT CCGCCcGAAT AAAa.ATATG AATCAGACAT TACTTTATAC
            1
           51 ATTGGGCATT TGCGCGCTTT TAACCTTTnn nnnnnnnnn nnnnnnnnn
               nnnntatca cccngaatat gaatacggct accgttattc tgccgtgggt
          101
               GCTTTGGCTT CGGTTGTATT TTTATTATTA TTGGCACGCG GTTTCCCGCG
               CGTTTCTTCA GTTGTTTTAC TGATTTACGT CGGCACAACC GCCCTATATT
          251 TGCCGGTCGG CTGGCTGTAT GGTGCGCCGT CTTATCAGAT AGTCGGTTCG
          301 ATATTGGAAA GCAATCCTGC CGAGGCGCGT GAATTTGTCG GCAATCTTCC
          351 CGGGTCGCTT TATTTTGTGC AGGCATTATT TTTCATTTTT GGCTTGACAG
          401 TTTGGAAATA TTGTGTATCG GGGGGGGTAT TTGCTGACGT AAAAAACTAT
          451 AAACGCCGCA GCAAAATATG GCTGACTATA TTATTGACTT TGATTTTGTC
          501 CTGCGCGGTG ATGGATAAAA TCGCCAGCGA TAAAGATTTG CGAGAACCTG
               ATGCCGGCCT GTTGTTGAAT ATTTTCGACC TGTATTACGA TTTGGCT.TC
               CGCGCCGGCA CAATATGCCG CCAAGCGCGC CCACATTTTG GAAGCAGCAA
          651 AAAAAGCGTC AACATGGCAT ATCCGTCATG TTGCGCCCAA GTATAA
This corresponds to the amino acid sequence <SEQ ID 262; ORF 084>:
     m084.pep
           1
               MKQSARIKXM NQTLLYTLGI CALLTFXXXX XXXXXYHPEY EYGYRYSAVG
           51 ALASVVFLLL LARGFPRVSS VVLLIYVGTT ALYLPVGWLY GAPSYOIVGS
          101 ILESNPAEAR EFVGNLPGSL YFVQALFFIF GLTVWKYCVS GGVFADVKNY
```

151 KRRSKIWLTI LLTLILSCAV MDKIASDKDL REPDAGLLLN IFDLYYDLAX 201 RAGTICRQAR PHFGSSKKSV NMAYPSCCAQ V*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 084 shows 90.5% identity over a 231 aa overlap with a predicted ORF (ORF 084.ng) from N. gonorrhoeae:

m084/g084

WO 99/57280

a084

		180	190				220
m084	.pep					SKKSVNMAYPS	CCAQVX
			11111111111		1111111		11111
g084						KKSVNMAYPP	
9009	•						
		19	0 20	0 2	10	220	230
						•	
701 C. 11		1 DNI 4		:	: NT		CEO ID 1615
Ine follow	ving partia	II DNA sec	luence was	identified	in IV. me	eningiiiais <	SEQ ID 263>:
a084.seq							
ī	ATGAAACA	AT CCGCCC	GAAT AAAAA	ATATG GAT	CAGACAT	TAAAAAATAC	
51						GCCATCGCAT	
						TGCCGTGGGT	
101							
151						GTTTCCCGCG	
201						GCCCTATATT	
251						AGTCGGTTCG	
301	ATATTGGA	AA GCAATC	CTGC CGAGG	CGCGT GAA'	TTTGTCG	GCAATCTTCC	
351						GGCTTGACAG	
401						AAAAAACTAT	
451						TGATTTTGTC	
501						CGAGAACCTG	
551						TTTGGCTTCC	
601						GAAGCAGCAA	
651	AAAAAGCG	TC AACATG	GCAT ATCCG	TCATG TTG	CGCCCAA	GTATAA	
This corre	enonds to	the amino	acid seque	nce <seo< td=""><td>ID 264.</td><td>ORF 084.a></td><td>,.</td></seo<>	ID 264.	ORF 084.a>	,.
	sponds to	tiio aiiiiio	acia soque	nee bro	10 204,	010 004.0	•
a084.pep							
1						EYGYRYSAVG	
51	ALASVVFL	LL LARGFP	RVSS VVLLI	YVGTT ALY	LPVGWLY	GAPSYQIVGS	
101	ILESNPAE	AR EFVGNL	PGSL YFVQA	LFFIF GLT	VWRYCVS	GGVFADVKNY	
151	KRRSKIWL	TI LLTLIL:	CAV MDKIA	SDKDL REP	DAGLLLN	IFDLYYDLAS	
201			KKSV NMAYP				
202	erzene			2001.Q 1			
	02.20	/ : 4 4:4	221				
m084/a084	92.27	o identity (ver a 231 a	ia overiap			
		10	20	30	40	50	60
m084.pep	MKOSA	RIKXMNOTL	LYTLGICALL			YGYRYSAVGAI	
		111 1:111					
a084						YGYRYSAVGAI	.
a004	MCQM						
		10	20	30	40	50	60
		70	80	90	100	110	120
m084.pep	LARGE	PRVSSVVLL:	LYVGTTALYL	PVGWLYGAP:	SYQIVGSI	LESNPAEAREI	VGNLPGSL
	11111	111111111		111111111	11111111	1111111111	11111111
a084						LESNPAEAREI	
		70	80	90	100	110	120
		,,	00	50	100	110	120
		130	140	150	1.60	170	100
	VIII.03	130		150	160	170	180
m084.pep						LTLILSCAVMI	
						11111111111	
a084	YFVQA	LFFIFGLTV	VRYCVSGGVF	ADVKNYKRR:	SKIWLTIL	LTLILSCAVMI	KIASDKDL
		130	140	150	160	170	180
		190	200	210	220	230	
m084.pep	REPDA					MAYPSCCAQV	,
						I I I I I I I I I I I I I I I I I I I	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 265>: g085.seq

1 ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGT TGAAAGATAA

-
51 GGCAAAAGGC GTGTTCCTGA TCGGCGTCGA TGCGCCGCAA ATCCGCCGCG
101 ATTTGGACGG CTGCGGCTTG AACCTGACCG ACTGCGTCAC TTTGGAAGAG
151 GCGGTTCAGA CGGCATACGC CCAAGCCGAA GCGGGCGATA TTGTCTTGCT
201 CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT
251 CGGAAGTGTT tatCGAAGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <seq 085.ng="" 266;="" id="" orf="">:</seq>
g085.pep
1 MGKGQDFTPL RDALKDKAKG VFLIGVDAPQ IRRDLDGCGL NLTDCVTLEE
51 AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL*
The following partial DNA sequence was identified in N. meningitidis <seq 267="" id="">:</seq>
m085.seq 1 ATGGGTAAAG GGCAGGACTT CACGCCCCTG CGCGATGCAC TGGTAGGCAA
51 GGCAAAAGGC GTGTTCTTGA TTGGTGTCGA TGCGCCGCAA ATCCGCCGCG
101 ATTTGGACGG CTGCGGCTTG AATATGACCG ACTGCGCCAC TTTGGGAGAA
151 GCCGTTCAGA CGGCATATGC CCAAGCCGAA GCAGGCGATA TTGTGTTGCT
201 CAGCCCCGCC TGCGCGAGCT TTGATATGTT CAAAGGCTAC GCGCACCGTT
251 CGGAAGTGTT TATCGAAGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <seq 085="" 268;="" id="" orf="">: m085.pep</seq>
1 MGKGQDFTPL RDALVGKAKG VFLIGVDAPQ IRRDLDGCGL NMTDCATLGE 51 AVQTAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIEA FKAL*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 085 shows 94.7% identity over a 94 aa overlap with a predicted ORF (ORF 085.ng)
from N. gonorrhoeae:
m085/g085
10 20 30 40 50 60
m085.pep MGKGQDFTPLRDALVGKAKGVFLIGVDAPQIRRDLDGCGLNMTDCATLGEAVQTAYAQAE
g085 MGKGQDFTPLRDALKDKAKGVFLIGVDAPQIRRDLDGCGLNLTDCVTLEEAVQTAYAQAE
10 20 30 40 50 60
70 80 90
70 80 90 m085.pep AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
g085 AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
70 80 90
The following mential DNA accounts were identified in M
The following partial DNA sequence was identified in N. meningitidis <seq 269="" id="">:</seq>
a085.seq 1 ATGGGCAAAG GGCAGGACTT CACGCCCCTG CGCGACGCGC TTGCCGGCAA
51 GGCAAAAGGC GTGTTCCTGA TCGGTGTCGA TGCGCCGCAA ATCCGCCGCG
101 ATTTGGACGG CTGCGATCTG AATATGACCG ACTGCGCCAC TTTGGAAGAA
151 GCGGTTCAGA AGGCATATGC CCAAGCCGAA GCGGGCGATA TCGTGCTGCT
201 CAGCCCCGCC TGCGCGAGTT TCGATATGTT TAAAGGCTAC GCGCACCGTT
251 CGGAAGTGTT TATCGGGGCG TTTAAGGCTT TGTGA
This corresponds to the amino acid sequence <seq 085.a="" 270;="" id="" orf="">:</seq>
a085.pep
1 MGKGQDFTPL RDALAGKAKG VFLIGVDAPQ IRRDLDGCDL NMTDCATLEE 51 AVQKAYAQAE AGDIVLLSPA CASFDMFKGY AHRSEVFIGA FKAL*
31 AVQUATAÇAD AGDIVEDSTA CASIDMINGI ANASEVIIGA ENAL-

```
MGKGQDFTPLRDALAGKAKGVFLIGVDAPQIRRDLDGCDLNMTDCATLEEAVQKAYAQAE
a085
                    10
                              20
                                        30
                              80
                    70
            AGDIVLLSPACASFDMFKGYAHRSEVFIEAFKALX
m085.pep
            a085
            AGDIVLLSPACASFDMFKGYAHRSEVFIGAFKALX
                    70
                              80
                                        90
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 271>:
     g086.seq
              ATGGTGGTGC TGATGACGGC GTTCGGCCTG CTGATGATTT ATTCGGCTTC
              TGTGTATTTG GCATCGAAGG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
           51
              GGCAGGCGGG GTTCGTCGTT GCCGGCCTTA TAGCGAGCGG TTTTTTATGG
          101
              TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
          151
              CTTATCCGGC CTGTTGCTGG TAGCCGTATT GATTGCCGGG CGCGAAATCA
          251 ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
          301 GAGCTGTTCA AGCTGGCAGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
          351 CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
          401 GGCGGGGAC GGCCAACCTG ATTATGTCCG CCACCAATCC GCAGGCACGT
          451 CGTGAAACAT TAGAAATGTA CGGCCGTTTC CGGGCGATCA TCCTGCCGAT
              TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
              GTTCGTTTGT CGTCATTACC GTCATTACCG TTGGAATGCT GTTTCTGGCA
          601
              GGATTGCCGT GGAAATATTT TTTTGTCCTG GTAGGCAGCG TCTTGGGTGG
          651 GATGGTGCTG ATGATTACCG CCGCTCCCTA CCGTGTGCAG CGGGTAGTGG
         701 CATTTTGGA CCCGTGGAAA GACCCGCAGG GTGCCGGCTA CCAGCTTACC
          751 CACTCTCTGA TGGCAATCGG GCGCGGAGAG TGGTTCGGTA TGGGTTTGGG
          801 TGCGAGTTTG AGCAAACGCG GCTTTCTGCC GGAAGCGCAT ACCGATTTTA
          851 TTTTTGCCAT CATCGCTGAA GAATTCGGCT TCTTCGGGAT GTGCGTGCTG
          901 ATATTCTGTT ACGGCTGGCT GGTGGTGCGG GCGTTTTCCA TCGGCAAGCA
              GTCGCGCGAT TTGGGtttgA CTTTCAACGC CTATATCGCT TCGGGTATCG
         1001 GCATTTGGAT CGGTATCCAA AGTTTCTTCA ATATCGGTGT GAACATCGGT
         1051 GCTTTGCCGA CCAAAGGTCT GACGCtgCcg tTGATGTCCT ATGGcggTTC
         1101 GTCAGTCTTT TTCATGCTGA TCAGCATGAT GCTGCTGTTG CGTATCGATT
         1151 ATGAAAACCG CCAGAAAATG CGCGGTTACC GGGTGGAGTA AA
This corresponds to the amino acid sequence <SEQ ID 272; ORF 086.ng>:
     g086.pep
              MVVLMTAFGL LMIYSASVYL ASKEGGDOFF YLTROAGFVV AGLIASGFLW
              FLCRMRTWRR LVPWIFALSG LLLVAVLIAG REINGATRWI PLGPLNFQPT
          101 ELFKLAVILY LASLFTRREE VLRSMESLGW QSIWRGTANL IMSATNPQAR
          151 RETLEMYGRF RAILLPIMLV AFGLVLIMVQ PDFGSFVVIT VITVGMLFLA
              GLPWKYFFVL VGSVLGGMVL MITAAPYRVQ RVVAFLDPWK DPQGAGYQLT
          251 HSLMAIGRGE WFGMGLGASL SKRGFLPEAH TDFIFAIIAE EFGFFGMCVL
          301 IFCYGWLVVR AFSIGKQSRD LGLTFNAYIA SGIGIWIGIQ SFFNIGVNIG
          351 ALPTKGLTLP LMSYGGSSVF FMLISMMLLL RIDYENRQKM RGYRVE*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 273>:
     m086.seq
              ATGGTGGTGC TGATGACGGC GTTCAGCCTG CTGATGATTT ATTCGGCTTC
              TGTGTATTTG GCATCAAAAG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
           51
              GACAGGCGGG GTTCGTCGTT GCCGGCTTGA TAGCGAGCGG TTTGTTATGG
          151 TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
          201 CCTATCCGGC CTGTTGCTGG TAGTCGTATT GATTGCCGGG CGCGAAATCA
              ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
          301
              GAGCTGTTCA AGCLGGCGGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
         351 CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
         401 GGCGGGGAC GGCCAATCTG ATCATGTCCG CCACCAATCC GCAGrCACGT
          451 CGTGAAACAT TAGAAATGTA CGGCCGTwTC CGGGCGATCA TCCTGCCGAT
         501 TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
```

551	GTTCGTTTGT	CGTCATTACC	GTCATTGCCG	TTGGAATGCT	GTTTTTGGCA
601	GGATTGCCGT	GGAAATATTT	TTTCGTCCTG	GTAGGCAGCG	TCTTGGGCGG
651	GATGGTGCTG	ATGATTACCG	CCGCTCCCTA	CCGTGTGCAG	CGGGTAGTGG
701	CATTTTTGGA	CCCGTGGAAA	GACCCGCAGG	GTGCCGGCTA	CCAGCTTACC
751	CACTCTCTGA	TGGCAATCGG	GCGCGGAGAG	TGGTTCGGTA	TGGGTTTGGG
801	TGCGAGTTTG	AGCAAACGCG	GCTTTCTGCC	GGAAGCGCAT	ACCGATTTTA
851	TTTTTGCCAT	CATCGCCGAA	GAATTCGGTT	TCTTCGGTAT	GTGCGTGCTG
901	ATATTCTGTT	ACGGCTGGCT	GGTGGTGCGG	${\tt GCGTTTTCCA}$	TCGGCAAGCA
951	GTCGCGCGAT	TTGGGTTTGA	CTTTCAACGC	CTATATCGCT	TCGGGTATCG
1001	GCATTTGGAT	CGGkrTCCAA	${\bf AGTTTCTTCA}$	ATATCGGTGT	GAACATCGGT
1051	GCTTTGCCGA	mCAAAgGyCT	GACGCyGCCG	Tg.AtGTCCw	ATGGCGGTTC
1101	GTCAGTCTTT	TTCATGCTGA	TCAGCATGAT	GCTGCTGTkG	CGTATAGATT
1151	ATGAAAACCG	CCGGAAAATG	CGCGGTTATC	GGGTGGAGTA	A

This corresponds to the amino acid sequence <SEQ ID 274; ORF 086>:

m086.pep

1 MVVLMTAFSL LMIYSASVYL ASKEGGDQFF YLTRQAGFVV AGLIASGLLW
51 FLCRMRTWRR LVPWIFALSG LLLVVVLIAG REINGATRWI PLGPLNFQPT
101 ELFKLAVILY LASLFTRREE VLRSMESLGW QSIWRGTANL IMSATNPQXR
151 RETLEMYGRX RAIILPIMLV AFGLVLIMVQ PDFGSFVVIT VIAVGMLFLA
201 GLPWKYFFVL VGSVLGGMVL MITAAPYRVQ RVVAFLDPWK DPQGAGYQLT
251 HSLMAIGRGE WFGMGLGASL SKRGFLPEAH TDFIFAIIAE EFGFFGMCVL
301 IFCYGWLVVR AFSIGKQSRD LGLTFNAYIA SGIGIWIGXQ SFFNIGVNIG
351 ALPXKGLTXP XMSXGGSSVF FMLISMMLLX RIDYENRRKM RGYRVE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 086 shows 96.7% identity over a 396 aa overlap with a predicted ORF (ORF 086.ng) from N. gonorrhoeae:

m086/g086

	10	20	30	40	50	60
m086.pep	MVVLMTAFSLLMIYS	ASVYLASKE	GGDQFFYLTR	QAGFVVAGLI	ASGLLWFLCR	MRTWRR
	11111111:11111	111111111	11111111		111:11111	111111
g086	MVVLMTAFGLLMIYS	ASVYLASKE	GGDOFFYTTR	OAGEVVAGIT	ASCEL WELCE	מקשידיםM
9000	10	20	30	40	50	60
	10	20	50	10	50	00
	70	80	90	100	110	100
					110	120
m086.pep	LVPWIFALSGLLLVV		GATRWIPLGP	LNFQPTELFK	LAVILYLASL	FTRREE
		, , , , , , , , , ,			111111111	111111
g086	LVPWIFALSGLLLVA					FTRREE
	70	80	90	100	110	120
	130	140	150	160	170	180
m086.pep	VLRSMESLGWQSIWR	GTANLIMSA	TNPQXRRETL	EMYGRXRAII:	LPIMLVAFGL	VLIMVO
- •			1111 11111	11111 1111	1111111111	ШШ
g086	VLRSMESLGWQSIWR	GTANLIMSA	TNPOARRETL	EMYGRFRAII	LPIMIVAFGI	
3	130	140	150	160	170	180
	200		130	100	2,0	100
	190	200	210	220	230	240
m086.pep	PDFGSFVVITVIAVO					
mood.pep	III tillilli.	HILLIGHEW	1111111111	TGGMATMITI	HPIRVQRVVA	LLLPWK
- 006		11111111			<u> </u>	11111
g086	PDFGSFVVITVITVG				_	
	190	200	210	220	230	240
	250	260	270	280	290	300
m086.pep	DPQGAGYQLTHSLMA	IGRGEWFGM	GLGASLSKRG	FLPEAHTDFI:	FAIIAEEFGF	'FGMCVL
		11111111	11111111	111111111	[111111
g086	DPQGAGYQLTHSLMA	IGRGEWFGM	GLGASLSKRG	FLPEAHTDFI:	FAIIAEEFGF	
	· 250	260	270	280	290	300
	310	320	330	340	350	360
				310	220	300

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 275>: a086.seq

```
ATGGTGGTGC TGATGACGGC GTTCAGCCTG CTGATGATTT ATTCGGCTTC
  1
     TGTGTATTTG GCATCAAAAG AAGGCGGCGA TCAGTTTTTC TATTTGACCA
  51
     GACAGGCGGG GTTCGTCGTT GCCGGCTTGA TAGCGAGCGG TTTGTTATGG
101
     TTTCTTTGCA GGATGAGGAC ATGGCGGCGG CTTGTGCCGT GGATTTTTGC
     CCTATCCGGC CTGTTGCTGG TAGTCGTATT GATTGCCGGG CGCGAAATCA
     ATGGCGCGAC CCGTTGGATA CCTTTGGGTC CGTTGAATTT CCAGCCGACC
301 GAGCTGTTCA AGCTGGCGGT CATCCTTTAT TTGGCAAGCC TGTTCACGCG
     CCGTGAAGAA GTGTTGCGCA GCATGGAAAG TTTGGGTTGG CAGTCGATTT
401 GGCGGGGAC GGCCAATCTG ATCATGTCCG CCACCAATCC GCAGGCACGT
     CGTGAAACAT TAGAAATGTA CGGCCGTTTC CGGGCGATCA TCCTGCCGAT
 451
     TATGCTGGTG GCGTTCGGTT TGGTGCTGAT AATGGTACAG CCGGATTTCG
501
     GTTCGTTTGT CGTCATTACC GTCATTGCCG TTGGAATGCT GTTTTTGGCA
     GGATTGCCGT GGAAATATTT TTTCGTCCTG GTAGGCAGCG TCTTGGGCGG
 601
 651
     GATGGTGCTG ATGATTACCG CCGCTCCCTA CCGTGTGCAG CGGGTAGTGG
     CATTTTGGA CCCGTGGAAA GACCCGCAGG GTGCCGGCTA CCAGCTTACC
701
     CACTCTCTGA TGGCAATCGG GCGCGGAGAG TGGTTCGGTA TGGGTTTGGG
801 TGCGAGTTTG AGCAAACGCG GCTTTCTGCC GGAAGCGCAT ACCGATTTTA
     TTTTTGCCAT CATCGCCGAA GAATTCGGTT TCTTCGGTAT GTGCGTGCTG
851
901 ATATTCTGTT ACGGCTGGCT GGTGGTGCGG GCGTTTTCCA TCGGCAAGCA
951 GTCGCGCGAT TTGGGTTTGA CTTTCAACGC CTATATCGCT TCGGGTATCG
1001 GCATTTGGAT CGGTATCCAA AGTTTCTTCA ATATCGGTGT GAACATCGGT
     GCTTTGCCGA CCAAAGGTCT GACGCTGCCG TTGATGTCCT ATGGCGGTTC
1101 GTCAGTCTTT TTCATGCTGA TCAGCATGAT GCTGCTGTTG CGTATAGATT
1151 ATGAAAACCG CCGGAAAATG CGCGGTTACC GGGTGGAGTA A
```

This corresponds to the amino acid sequence <SEQ ID 276; ORF 086.a>: a086.pep

1	MVVLMTAFSL	LMIYSASVYL	ASKEGGDQFF	YLTRQAGFVV	AGLIASGLLW
51	FLCRMRTWRR	LVPWIFALSG	LLLVVVLIAG	REINGATRWI	PLGPLNFQPT
101	ELFKLAVILY	LASLFTRREE	VLRSMESLGW	QSIWRGTANL	IMSATNPQAR
151	RETLEMYGRF	RAIILPIMLV	AFGLVLIMV Q	PDFGSFVVIT	VIAVGMLFLA
201	GLPWKYFFVL	VGSVLGGMVL	MITAAPYRVQ	RVVAFLDPWK	DPQGAGYQLT
251	HSLMAIGRGE	WFGMGLGASL	SKRGFLPEAH	TDFIFAIIAE	EFGFFGMCVL
301	IFCYGWLVVR	AFSIGKQSRD	LGLTFNAYIA	SGIGIWIGIQ	SFFNIGVNIG
351	ALPTKGLTLP	LMSYGGSSVF	FMLISMMLLL	RIDYENRRKM	RGYRVE*

m086/a086 98.0% identity over a 396 aa overlap

	10	20	30	40	50	60
m086.pep	MVVLMTAFSLLMI					
			[[[]]]	1111111111	1111111111	111111
a086	MVVLMTAFSLLMI	YSASVYLASKI	EGGDQFFYLTR	QAGFVVAGLI	ASGLLWFLCF	MRTWRR
	10	20	30	40	50	60
	70	80	90	100	110	120
m086.pep	LVPWIFALSGLLL	VVVLIAGREI	NGATRWIPLGP	LNFQPTELFK	LAVILYLASI	FTRREE
			11111111111	11111111111	1111111111	111111
a086	LVPWIFALSGLLL	.VVVLIAGREI	NGATRWIPLGP	LNFQPTELFK	LAVILYLASI	FTRREE

	70	80	90	100	110	120
	130	140	150	160	170	180
m086.pep	VLRSMESLGWQSIW	RGTANLIMSA	TNPQXRRET	LEMYGRXRAII	LPIMLVAFG	LVLIMVQ
a086	VLRSMESLGWQSIW					_
	130	140	150	160	170	180
	190	200	210	220	230	240
m086.pep	PDFGSFVVITVIAV	GMLFLAGLPW	KYFFVLVGS	VLGGMVLMITA	APYRVQRVV	AFLDPWK
• •	111111111111111111111111111111111111111	11111111111	111111111	111111111111	ППППП	HILLIE
a086	PDFGSFVVITVIAV	GMLFLAGLPW	KYFFVLVGS	VLGGMVLMITA	APYRVQRVV <i>I</i>	AFLDPWK
	190	200	210	220	230	240
	250	260	. 270	280	290	300
m086.pep	DPQGAGYQLTHSLM				FAI IAEE FG	FFGMCVL
	- 1					111111
a086	DPQGAGYQLTHSLM					
	250	260	270	280	290	300
	21.0	200	220	240	250	
	310	320	330	340	350	360
m086.pep	IFCYGWLVVRAF\$I			_	I I I I I I I I I I I I I I I I I I I	
a086	IFCYGWLVVRAFSI					
a000	310	320	330	340	350	360
	310	320	. 330	340	350	360
	370	380	390			
m086.pep	XMSXGGSSVFFMLI			RVEX		
o o . pop			111111111	1111		
a086	LMSYGGSSVFFMLI	SMMLLLRIDY	ENRRKMRGYI	RVEX		
	370	380	390			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 277>: 9087.seq

1 ATGGCCGTA AAACCTTTAT GCTGATGGCG GGCGGAACGG GCGGACACAT 51 TTTCCCAGCT CTGGCTGTGG CGGATTCATT GCGCGTGCGC GGTCATCATG 101 TAATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGCAT CGTGCCGCAA 151 TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGAATAC GCGGCAACGG 201 CATCAAACGC AAGCTGATGC TTCCGTTTAC TCTGTACAAA ACCGTCCGCG 251 AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC 301 GGCGGTTTTG TTACCTTTCC CGGCGGTCTG GCGGCGAAAC TCTTGGGCGT 351 GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGCTTG TCCAACCGCC 401 AccTGTCGCg ctGGGCGAAA CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC 451 AGCCACGAAG GCGGTTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA 501 CCTGCCCGTG CCTGCCGAAC GCTTCCAAGG GCGCGAAGGC CGTCTGAAAA 551 TTTTGGTGGT CGGCGGCAGT TTGGGTGCGG ACGTTTTGAA CAAAACCGTA 601 CCGCAGGCGT TGGCACTGCT GCCTGAAGAG GTGCGCCCGC AGATGTACCA 651 CCAGTCGGGG CGTAACAAGC TGGGCAATCT TCAGGCGGAT TATGACGCGT 701 TGGGCGTGAA AGCGGAATGC GTGGAATTTA TTACCGACAT GGTGTCCGCC 751 TACCGTGATG CCGATTTGGT GATTTGCCGT GCCGGCGCGC TGACGATTGC 801 CGAGTTGACG GCGGCGGGC TGGGCGCGTT GTTAGTGCCG TATCCTCACG 851 CCGTTGATGA CCATCAAACC GCCAACGCGC GTTTCATGGT GCAGGCAGAA 901 GCGGGGCTGC TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA 951 AATCCTCGGC AGCCTCAACC GCGAAAAATG CCTCAAATGG GCGGAAAACG 1001 CCCGTACGTT GGCATTGCCG CACAGCGCGG ATGACGTTGC CGAAGCCGCG 1051 ATTGCGTGTG CGGCGTAAA

This corresponds to the amino acid sequence <SEQ ID 278; ORF 087.ng>: g087.pep

- 1 MGGKTFMLMA GGTGGHIFPA LAVADSLRVR GHHVIWLGSK DSMEERIVPQ 51 YGIRLETLAI KGIRGNGIKR KLMLPFTLYK TVREAQRIIR KHRVECVIGF
- 101 GGFVTFPGGL AAKLLGVPIV IHEQNAVAGL SNRHLSRWAK RVLYAFPKAF
- 151 SHEGGLVGNP VRADISNLPV PAERFQGREG RLKILVVGGS LGADVLNKTV


```
278
          201 POALALLPEE VRPOMYHOSG RNKLGNLOAD YDALGVKAEC VEFITDMVSA
          251 YRDADLVICR AGALTIAELT AAGLGALLVP YPHAVDDHQT ANARFMVQAE
          301 AGLLLPQTQL TAEKLAEILG SLNREKCLKW AENARTLALP HSADDVAEAA
          351 IACAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 279>:
     m087.seq
              ATGGGCGGTA AAACCTTTAT GCTGAWKKCG GGCGGAACGG GCGGACATAT
           1
          51 TTTCCCCGCG CTGGCGGTGG CGGATTCATT GCGCGCGCGC GGCCATCATG
          101
              TGATTTGGCT GGGCAGCAAG GATTCGATGG AAGAGCGTAT CGTGCCGCAA
              TACGGCATAC GCTTGGAAAC GCTGGCGATT AAAGGCGTGC GCGGCAACGG
          201 CATCAAACGC AAACTGATGC TGCCGGTTAC TTTGTATCAA ACCGTCCGCG
          251 AAGCGCAGCG GATTATCCGC AAACACCGTG TCGAGTGCGT CATCGGCTTC
          301 GGCGGCTTCG TTACCTTCCC CGGCGGTTTG GCGGCGAAGC TATTAYGCGT
          351 GCCGATTGTG ATTCACGAGC AAAACGCCGT GGCAGGTTTG TCCAACCGCC
          401 ACCTGTCGCG CTGGGCGAAG CGGGTGTTGT ACGCTTTTCC GAAAGCGTTC
          451 AGCCACGAAG GCGGCTTGGT CGGCAACCCC GTCCGCGCCG ATATTAGCAA
          501 CCTGCCCGTG CCTGCCGAAC GCTTCCAAGG GCGTGAAGGC CGTCTGAAAA
          551 TTTTGGTGGT CGGCGGCAGT TTGGGCGCGG ACGTTTTGAA CAAAACCGTA
          601 CCGCATGCAT TGGCTTTGCT GCCCGACAAT GCGCGTCCGC ATATGTACCA
          651 CCAATCGGGA CGGGGCAAGC TGGGCATCTT GCAGGCGnnn nnnnnnnnn
          751 nnngcgggat tgggtgcgtt gttagtgccg tatcctcacg cggttgacga
          801 TCACCAAACC GCCAACGCGC GTTTTATGGT GCAGGCGGAG GCGGGATTGC
          851 TGTTGCCGCA AACCCAGTTG ACGGCGGAAA AACTCGCCGA GATTCTCGGC
          901 GGCTTAAACC GCGAAAAATG CCTCAAATGG GCAGAAAACG CCCGTACGTT
          951 GGCACTGCCG CACAGTGCGG ACGACGTGGC GGAAGCCGCG ATTGCGTGTG
        1001 CGGCGTAA
This corresponds to the amino acid sequence <SEQ ID 280; ORF 087>:
     m087.pep
           1
              MGGKTFMLXX GGTGGHIFPA LAVADSLRAR GHHVIWLGSK DSMEERIVPO
          51 YGIRLETLAI KGVRGNGIKR KLMLPVTLYQ TVREAQRIIR KHRVECVIGF
          101 GGFVTFPGGL AAKLLXVPIV IHEQNAVAGL SNRHLSRWAK RVLYAFPKAF
          151 SHEGGLVGNP VRADISNLPV PAERFQGREG RLKILVVGGS LGADVLNKTV
          201 PHALALLPDN ARPHMYHQSG RGKLGILQAX XXXXXXXXX XXXXXXXXX
          251 XAGLGALLVP YPHAVDDHQT ANARFMVQAE AGLLLPQTQL TAEKLAEILG
              GLNREKCLKW AENARTLALP HSADDVAEAA IACAA*
Computer analysis of this amino acid sequence gave the following results:
ORF 087 shows 83.9% identity over a 355 aa overlap with a predicted ORF (ORF 087.ng)
```

Homology with a predicted ORF from N. gonorrhoeae

from N. gonorrhoeae: m087/q087

	10	20	30	40	50	60
m087.pep	MGGKTFMLXXGGTG	GHI FPALAVA	DSLRARGHHV:	IWLGSKDSME	ERIVPQYGIR	LETLAI
		[1111:1111		111111111	111111
g087	MGGKTFMLMAGGTG	GHIFPALAVA	DSLRVRGHHV:	IWLGSKDSME	ERIVPQYGIR	LETLAI
	10	20	30	40	50	60
	70	80	90	100	110	120
m087.pep	KGVRGNGIKRKLML:					
moo, .pcp	11.11111111111			LILLLILLI	TERGGLAAKL	TIVABIA
-005	11:11111111111			11111111	1111111111	1 1111
g087	KGIRGNGIKRKLML			ECVIGFGGFV	TFPGGLAAKI	LGVPIV
	70	80	90	100	110	120
	130	140	150	160	170	180
m087.pep	IHEQNAVAGLSNRH	LSRWAKRVLY	AFPKAFSHEG(GLVGNPVRAD	ISNLPVPAER	FOGREG
		[[[]]	11111111111		[]]]	TÎHH.
g087	IHEQNAVAGLSNRH	LSRWAKRVLY	AFPKAFSHEG(GLVGNPVRAD	ISNLPVPAER	FOGREG
	130	140	150	160	170	180

m087.pep	70 KGVRGNGIKRKLMLP KGVRGNGIKRKLMLP 70 -		:111111111	шшш	ПППП	Ш
m087.pep	130 IHEQNAVAGLSNRHLIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	пиннии	111111111	1111111111	ппппп	1111
m087.pep	190 RLKILVVGGSLGADV RLKILVVGGSLGADV 190	111111:1111	11111111:11	11111111	ŧĨΤ	
m087.pep	XXVEFITDMVSAYRDAD	XXXX : LVICRAGALTI 260	: 11111	1111111111	ППППП	ΗĨΗ
m087.pep	290 AGLLLPQTQLTAEKL AGLLLPQTQLTAEKL 310	пінніш	1111111111	ШППП	1111111111	

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 283>: g088.seq

o.seq					
1	ATGTTTTTAT	GGCTCGCACA	TTTCAGCAAC	TGGTTAACCG	GTCTGAATAT
51	TTTTCAATAC	ACCACATTCC	GCGCCGTTAT	GGCGGCGTTG	ACCGCCTTGG
101	CGTTTTCCCT	GATGTTCGGC	CCGTGGACGA	TACGCAGGCT	GACCGCGCTC
151	AAATGCGGGC	AGGCAGTGCG	TACCGACGGC	CCGCAAACCC	ACCTCGTCAA
201	AAACGGCACG	CCGACGATGG	GCGGTTCGCT	GATTCTGACC	GCCATTACCG
251	TGTCCACCCT	${\tt GTTGTGGGGC}$	AACTGGGCGA	ACCCGTATAT	CTGGATTCTC
301	TTGGGCGTAC	TGCTTGCCAC	CGGTGCGCTC	GGTTTTTACG	ACGACTGGCG
351	CAAAGTCGTT	TATAAAGACC	CCAACGGCGT	GTCCGCCAAA	TTCAAAATGG
401	TGTGGCAGTC	AAGCGTTGCC	GTTatcgcCG	GTttggcaTT	GTTTTACctt
451	gCcgcCAATT	CCGCCAACAA	TATTTTGATT	GTCCCGtttT	TCAAACAAAT
501	CGCCCTGCCG	${\tt CTGGGCGTGG}$	TCGGCTTttt	gGtgttgTCT	TACCTGACCA
551	TCGTCGGCAC	ATCCAACGCC	GTCAACCTCA	CcgaCGGCTT	GGACGGCCTT
601	GCCGCcttcc	cgttcgtcct	cgttgccgcC	GGGCTCGCCA	ttttcgccTA
651	CGTCAGCGGA	CACTACCAAT	TTTCCCAATA	CCTCCAGCTT	CCCTATGTCG
701	CCGGCGCGAA	CGAAGTCGCT	ATATTCTGCA	CCGCCATGTG	CGGCGCGTGC
751	CTCGGATTTT	TGTGGTTCAA	CGCCTATCCC	GCGCAAGTCT	TTATGGGCGA
801	TGTCGGCGCG	CTGGCATTGG	GTGCCGCGCT	CGGTaccGtt	gCCGTcaTcg
851	tCCGCCAAGA	ATTTGTcctc	gtcattaTGG	GCGGTCTGTT	cgtcgtagaa
901				TACAAGAAAA	
951	CATCTTcCTg	acgGcaccga	ttcatcacca	ttaCCaactt	cgatgCTGGa
1001	aagaaacgca	agtcgtcgtc	CGTTtCTGGA	TTAtTAccat	cgtcgtggtt
1051	tTgataggtt	tGagtacccT	caAAattcgc	ggaaactatg	CCGTCCGAAC
1101	ACCTTTCAGA	CGGCATTTGA	ACGCGCAATA	A	
COTTE	enande to the	hine acid	centience <	SEO ID 284.	ODE ARR na

This corresponds to the amino acid sequence <SEQ ID 284; ORF 088.ng>: g088.pep

- 1 MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
- 51 KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
 101 LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA VIAGLALFYL
 151 AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL


```
201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
   251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
   301 AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
    351 LIGLSTLKIR GNYAVRTPFR RHLNAQ*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 285>:
m088.seq
       ATGTTTTTAT GGCTCGCACA TTTCAGCANC TGGTTAACCG GTCTGAATnn
     1
       51
       101
       nnnnnnnn nnnggcgtgg tcggcttttt ggtgttgtct tacctgacca
       TCGTCGGCAC ATCCAATGCC GTCAACCTCA CCGACGGCTT GGACGGCCTT
   601 GCGACCTTCC CCGTCGTCCT CGTTGCCGCC GGCCTCGCCA TCTTCGCCTA
   651 TGCCAGCGGC CACTCACAAT TTGCCCAATA CCTGCAATTA CCTTACGTTG
   701 CCGGCGCAAA CGAAGTGGTG ATTTTCTGTA CCGCCATGTG CGGCGCGTGC
   751 CTCGGTTTCT TGTGGTTTAA CGCCTATCCC GCGCAAGTCT TTATGGGCGA
   801 TGTCGGTGCA TTGGCATTGG GTGCCGCGCT CGGTACCGTC GCCGTTATCG
   851 TCCGCCAAGA GTTTGTCCTC GTCATTATGG GCGGATTATT TGTCGTAGAA
       GCCGTATCCG TTATGCTTCA GGTTGGCTGG TATAAGAAAA CCAAAAAACG
    951 CATCTTCCTG ATGGCGCCCA TCCATCACCA CTACGAACAA AAAGGCTGGA
   1001 AAGAAACCCA AGTCGTCGTC CGCTTTTGGA TTATTACCAT CGTCTTGGTG
   1051 TTGATCGGTT TGAGTACCCT CAAAATCCGC TGAACCTATG CCGTCTGAAC
   1101 ATCTTTCAGA CGGCATTTGA ACGCGCAATA A
     1 MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
    51 KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
    101 LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA VIAGLALFYL
   151 AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
   201 AAFPFVLVAA GLAIFAYVSG HYQFSQYLQL PYVAGANEVA IFCTAMCGAC
    251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    301 AVSVMLHVGW YKKTKKRIFL TAPIHHHYQL RCWKETQVVV RFWIITIVVV
    351 LIGLSTLKIR GNYAVRTPFR RHLNAQ*
This corresponds to the amino acid sequence <SEQ ID 286; ORF 088>:
m088.pep
       MFLWLAHFSX WLTGLNXXXX XXXXXXXXXX XXXXXXXXX XXXXXXXXX
       151 XXXXXXXXX XXXXXXXXX XGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
    201 ATFPVVLVAA GLAIFAYASG HSQFAQYLQL PYVAGANEVV IFCTAMCGAC
    251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
    301 AVSVMLQVGW YKKTKKRIFL MAPIHHHYEQ KGWKETQVVV RFWIITIVLV
    351 LIGLSTLKIR XTYAVXTSFR RHLNAQ*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 088 shows 91.7% identity over a 205 aa overlap with a predicted ORF (ORF 088.ng)
from N. gonorrhoeae:
m088/q088
                                       10
                                               20
m088.pep
                                 GVVGFLVLSYLTIVGTSNAVNLTDGLDGLA
```

 ${\tt IAGLALFYLAANSANNILIVPFFKQIALPLGVVGFLVLSYLTIVGTSNAVNLTDGLDGLA}$

180

190

200

150 160 170


```
m088.pep
         TFPVVLVAAGLAI FAYASGHSQFAQYLQLPYVAGANEVVI FCTAMCGACLGFLWFNAYPA
         AFPFVLVAAGLAI FAYVSGHYQFSQYLQLPYVAGANEVAI FCTAMCGACLGFLWFNAYPA
g088
                             230
               100
                              120
                                     130
                      110
                                             140
                                                    150
         QVFMGDVGALALGAALGTVAVIVRQEFVLVIMGGLFVVEAVSVMLQVGWYKKTKKRIFLM
m088.pep
          g088
         QVFMGDVGALALGAALGTVAVIVRQEFVLVIMGGLFVVEAVSVMLHVGWYKKTKKRIFLT
              270
                                            310
                     280
                             290
                                    300
               160
                      170
                              180
                                     190
                                             200
         APIHHHYEQKGWKETQVVVRFWIITIVLVLIGLSTLKIRXTYAVXTSFRRHLNAQX
m088.pep
          APIHHHYQLRCWKETQVVVRFWIITIVVVLIGLSTLKIRGNYAVRTPFRRHLNAOX
g088
              330
                     340
                             350
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 287>: a088.seq

1	ATGTTTTTAT	GGCTCGCACA	TTTCAGCAAC	TGGTTAACCG	GTCTGAATAT
51	TTTTCAATAC	ACCACATTCC	GCGCCGTCAT	GGCGGCGTTG	ACCGCCTTGG
101	CGTTTTCCCT	GATGTTCGGC	CCGTGGACGA	TACGCAGGCT	GACCGCGCTC
151	AAATGCGGGC	AGGCAGTGCG	TACCGACGGT	CCGCAAACCC	ACCTCGTCAA
201	AAACGGCACG	CCGACGATGG	GCGGTTCGCT	GATTCTGACC	GCCATTACCG
251	TGTCCACCCT	GTTGTGGGGC	AACTGGGCAA	ACCCGTATAT	CTGGATTCTC
301	TTGGGCGTAT	TGCTCGCCAC	GGGCGCACTC	GGTTTTTACG	ACGACTGGCG
351	CAAAGTCGTC	TATAAAGACC	CCAACGGCGT	GTCCGCCAAA	TTCAAAATGG
401	TGTGGCAGTC	AAGCGTTGCC	ATTATCGCCG	GTTTGGCATT	GTTTTACCTT
451	GCCGCCAATT	CCGCCAACAA	TATTTTGATT	GTCCCGTTCT	TCAAACAAAT
501	CGCCCTGCCG	CTGGGCGTGG	TCGGCTTTTT	GGTGTTGTCT	TACCTGACCA
551	TCGTCGGCAC	ATCCAATGCC	GTCAACCTCA	CCGACGGCTT	GGACGGCCTT
601	GCGACCTTCC	CCGTCGTCCT	CGTTGCCGCC	GGCCTCGCCA	TCTTCGCCTA
651	TGCCAGCGGC	CACTCACAAT	TTGCCCAATA	CCTGCAATTA	CCTTACGTTG
701	CCGGCGCAAA	CGAAGTGGTG	ATTTTCTGTA	CCGCCATGTG	CGGCGCGTGC
751	CTCGGTTTCT	TGTGGTTTAA	CGCCTATCCC	GCGCAAGTCT	TTATGGGCGA
801	TGTCGGTGCA	TTGGCATTGG	GTGCCGCGCT	CGGTACCGTC	GCCGTCATCG
851	TCCGCCAAGA	GTTTGTCCTC	GTCATTATGG	GCGGATTATT	TGTCGTAGAA
901	GCCGTATCCG	TTATGCTTCA	GGTCGGCTGG	TATAAGAAAA	CCAAAAAACG
951	CATCTTCCTG	ATGGCGCCCA	TCCATCACCA	CTACGAACAA	AAAGGCTGGA
1001	AAGAAACCCA	AGTCGTCGTC	CGCTTTTGGA	TTATTACCAT	CGTCTTGGTG
1051	TTGATCGGTT	TGAGTACCCT	CAAAATCCGC	TGAACCTATG	CCGTCTGAAC
1101	ACCTTTCAGA	CGGCATTTGA	ACGCGCAATA	A	

This corresponds to the amino acid sequence <SEQ ID 288; ORF 088.a>: a088.pep

- 1 MFLWLAHFSN WLTGLNIFQY TTFRAVMAAL TALAFSLMFG PWTIRRLTAL
 51 KCGQAVRTDG PQTHLVKNGT PTMGGSLILT AITVSTLLWG NWANPYIWIL
 101 LGVLLATGAL GFYDDWRKVV YKDPNGVSAK FKMVWQSSVA IIAGLALFYL
 151 AANSANNILI VPFFKQIALP LGVVGFLVLS YLTIVGTSNA VNLTDGLDGL
 201 ATFPVVLVAA GLAIFAYASG HSQFAQYLQL PYVAGANEVV IFCTAMCGAC
 251 LGFLWFNAYP AQVFMGDVGA LALGAALGTV AVIVRQEFVL VIMGGLFVVE
 301 AVSVMLQVGW YKKTKKRIFL MAPIHHHYEQ KGWKETQVVV RFWIITIVLV
- 351 LIGLSTLKIR *TYAV*TPFR RHLNAQ*

m088/a088 99.5% identity over a 205 aa overlap

	150	160	170	180	190	200
m088.pep	XXXXXXXXXXX	XXXXXXXXXX	XXXXXXXXGVV	GFLVLSYLT:	VGTSNAVNLT	DGLDGLA
a088	IAGLALFYLAAN	SANNILIVPF	FKOIALPLGVV	GFLVLSYLT1	VGTSNAVNI.T	DGLDGLA

	150	160	170	180	190	200
	210	220	230	240	250	260
m088.pep	TFPVVLVAAGLAIF.	AYASGHSQF:	AQYLQLPYVAG	ANEVVIFCT	AMCGACLGFI	WFNAYPA
	111111111111111111111111111111111111111		11111111111	111111111	11111111111	111111
a088	TFPVVLVAAGLAIF.	AYASGHSQF.	AQYLQLPYVAG	ANEVVIFCT	AMCGACLGFI	WFNAYPA
	210	220	. 230	240	250	260
	270	280	290	300	310	320
m088.pep	QVFMGDVGALALGA	ALGTVAVIV	RQEFVLVIMGG	LFVVEAVSV	MLQVGWYKKI	KKRIFLM
		шниш	11111111111	пини	1111111111	HIHIII
a088	QVFMGDVGALALGA	ALGTVAVIV	RQEFVLVIMGG	SLFVVEAVSV	MLQVGWYKKT	KKRIFLM
	270	280	290	300	310	320
	330	340	. 350	360	370	
m088.pep	APIHHHYEOKGWKE				• • •	XOAL
mooo.pcp				111111111		111
a088	APIHHHYEOKGWKE	TOVVVRFWI	ITIVLVLIGLS	TLKTRXTYA	VXTPFRRHLN	XOAL
4000	330	340	350	360	370	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 289>: g089.seq

- 1 ATGCCGCCCA AAATCACGAA GAGCGGGTTT TGCAAACCGG CAATCGCGGC
 - 51 GGCGGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATG AATACCACGC
- CGTTTTTCTC GCCGATTTTT TCCACACGGT GCGGCAAGCC TTGGAAGGTT
- 151 TTGACGTGTT CCAGCAATGC TTCGCGCGGC AAACCGACGG CCTCGCACAA
- 201 AGCCACGGCA GCCATAACGT TGGCGGCGTT GTGCAAACCT TGCAGCGGGA
- 251 TGTCTTGCGT AGAAATCAAA TCTTCATTGC CTTGTTTTAA ACAGCCCGTC
- 301 CCGCGTTCCA ACCAAAAATC GGCTTCGTGT TCCAAGGAAA ACCGTTTCAC
- 351 TTCACGCCCT GCCCGTTTCA TGGCGCGGCA GAACACGTCG TCCGCATTCA
- 401 AAACCTGCAC TCCATCGCCA CGGAAAATCT CGGCTTTGGT ATGCGCGTAG

This corresponds to the amino acid sequence <SEQ ID 290; ORF 089.ng>: g089.pep

- MPPKITKSGF CKPAIAAAVA PTFVPLLSSM NTTPFFSPIF STRCGKPWKV 1
- 51 LTCSSNASRG KPTASHKATA AITLAALCKP CSGMSCVEIK SSLPCFKOPV
- 101 PRSNQKSASC SKENRFTSRP ARFMARQNTS SAFKTCTPSP RKISALVCA*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 291>: m089.seq

- ATGCCGCCCA AAATCACKAW GAGCGGATTT TGCAAACCGG CAATCGCGGC
- GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA AACACCACGC
- 101 CGTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC TTGGAAGGTT
- 151 TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG CCTCACACAA
- 201 AGCCACKGCA GCCATGACGT TAGCGGCGTT GTGCAKACCT TGCAACGGWA
- 251 TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG GCGGCCTGTC
- 301 TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA ACCATTTTAC
- 351 CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG TCCGCATTCA
- 401 AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT ATGCGCATAG

This corresponds to the amino acid sequence <SEQ ID 292; ORF 089>:

m089.pep

- 1 MPPKITXSGF CKPAIAAAVA PTFVPLLSSI NTTPFFSPIF STRCGRPWKV
- LTCSSNASRD KPMASHKATA AMTLAALCXP CNGMSCVTIK SSLPCFRRPV
- 101 SRSNQKSASC SNENHFTSRP ARFIARQNAS SAFKTCTPSP RKILALVCA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 089 shows 88.6% identity over a 149 aa overlap with a predicted ORF (ORF 089.ng) from N. gonorrhoeae:

m089/g089

60

30

40

50

20

10

m089	.pep	MPPKITXSGFCKP	AIAAAVAPTFV	PLLSSINTTPF	FSPIFSTRCGR	PWKVLTCSS	NASRD
	. p . p			11111:1111			
g089	1	MPPKITKSGFCKP	AIAAAVAPTFV	PLLSSMNTTPF	FSPI FSTRCGK	PWKVLTCSS	NASRG
_		10	20	30	40	50	60
		70	80	90	100	110	120
m089	.pep	KPMASHKATAAMT			-		
					1::		
g089	'	KPTASHKATAAIT					
		70	80	90	100	110	120
		120	140	150			
		130 ARFIARQNASSAF		150			
moss		ARFIARQNASSAF 					
q089		: : ARFMARONTSSAF					
guas		ARFMARQNISSAF 130	140	150			
		130	140	150			
The follow	ving nartia	l DNA sequen	ce was ident	ified in N. m	eningitidis <	SEO ID 2	93>:
a089.seq	, mg par m						
1	ATGCCGCC'	ra aaatcacgaa	GAGCGGATTT	TGCAAACCGG	CAATCGCGGC		
51		CA CCGACGTTCG					
101		C GCCGATTTT					
151	TTGACGTG	TT CGAGCAATGC	TTCGCGCGGC	AAACCGACGG	CTTCGCACAA	•	
201		CA GCCATCACGT					
251		ST GGCAATCAAA					
301		CA ACCAAAAATC					
351		CG GCGCGCTTCA					
401	AAACCTGC	AC ACCGTCGCCA	CGGAAAATCT	TGGCTTTGGT	ATGCGCGTAG		
This corresponds to the amino acid sequence <seq 089.a="" 294;="" id="" orf="">:</seq>							
a089.pep	spones to			(,	,	•	
1	MPPKITKS	GF CKPAIAAAVA	PTFVPLLSSM	NTTPFFSPIF	STRCGRP*KV		
51		RG KPTASHKATA					
101		SY SNENHFTSRP					
	_						
m089/a089 91.9% identity over a 149 aa overlap							

m089.pep	10 MPPKITXSGFCKPA	20 IAAAVAPTFV 	30 PLLSSINTTE	40 PFFSPIFSTRC	50 GRPWKVLTCS	60 SNASRD	
a089	MPPKITKSGFCKPA	IAAAVAPTFV	PLLSSMNTTF	FFSPIFSTRC	GRPXKVLTCS	SNASRG	
	10	20	30	40	50	60	
	70	80	90	100	110	120	
m089.pep	KPMASHKATAAMTL	AALCXPCNGM	SCVTIKSSLE	CFRRPVSRSN	QKSASCSNEN	HFTSRP	
	-	:111 11:1:	111:11111	1111111111	11111 1111	111111	
a089	KPTASHKATAAITL	VALCKPCSGI	SCVAIKSSLE	CFRRPVSRSN	QKSASYSNEN	IHFTSRP	
	70	80	90	100	110	120	
	130	140	150				
m089.pep	ARFIARONASSAFKTCTPSPRKILALVCAX						
_ •							
a089	ARFIARQNASSAFK	TCTPSPRKIL	ALVCAX				
	130	140	150				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 295>: g090.seq

1 ATGCGCGTAG TCGAGCAAAT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA

g090


```
51 TGTTCATCAC CGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT
          101 TGGAAGCTGG AAAGCTCcca CACCCACACG TCCGCCTTTT TGCCTTCgcg
          151 ctqCAATtct gcctccaaga cgggcgtacc gatATTGCCC GCAATGAcgg
          201 tatccagccc gcacttgatg CAGAGatagc ggaccaggct ggttaccgTG
          251 GTTttqccqt tqctqCcqqt aatcqCaatc accttqtcqC CGCGGCGGtt
              cAcaaTGTCc gccaGCAATt ggATGTCGCC TAgCACGCGC .ccgccgTTT
          351
              TGCttga
This corresponds to the amino acid sequence <SEQ ID 296; ORF 090.ng>:
     g090.pep
              MRVVEQIVVA VEMVFGNVHH RRRSRAQAFG VFQLEAGKLP HPHVRLFAFA
              LQFCLQDGRT DIARNDGIQP ALDAEIADQA GYRGFAVAAG NRNHLVAAAV
          101 HNVRQQLDVA XHAXRRFA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 297>:
     m090.seq
               ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
           1
              TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT
           51
          101 TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
          151 CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG
          201 TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG
          251 GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT
          301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT . CCGCCGTTT
               TGCTTGA
This corresponds to the amino acid sequence <SEQ ID 298; ORF 090>:
     m090.pep
            1 MRIVEQVVVA VEMVFGNVQH RRRSRTQAFG VFQLEAGKLQ HPHVRLFAFA
              LPFRLQNRRA DIARDNGIQP ALDTEIADQA RYRGFAVAAG NRNYLVVPAV
          101 HNVRQQFDVA QHAXRRFA*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 090 shows 83.9% identity over a 118 aa overlap with a predicted ORF (ORF 090.ng)
from N. gonorrhoeae:
     m090/g090
                                    20
                                             30
                                                       40
                  {\tt MRIVEQVVVAVEMVFGNVQHRRRSRTQAFGVFQLEAGKLQHPHVRLFAFALPFRLQNRRA}
     m090.pep
                  MRVVEQIVVAVEMVFGNVHHRRRSRAQAFGVFQLEAGKLPHPHVRLFAFALQFCLQDGRT
     g090
                          10
                                    20
                                             30
                                                       40
                                                                 50
                                                                           60
                          70
                                    80
                                             90
                                                      100
                                                                110
                                                                         119
     m090.pep
                  DIARDNGIQPALDTEIADQARYRGFAVAAGNRNYLVVPAVHNVRQQFDVAQHAXRRFAX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 299>: a090.seq

80

90

100

110

```
1 ATGCGCGTAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
51 TGTTCAGCAC TGTCGCCGCA GTCGGGCGCA GGCTTTCGGT GTTTTCCAGT
101 TGGAAACTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
151 CTGCAATTCC GCCTCCAAAA CCGGCGCCC GATATTGCCC GCGATAACGG
201 TATCCAGCCC ACACTTGATG CAGAGATAGC CGACCAGGCT CGTTACCGTG
251 GTTTTGCCGT TGCTGCCGGT AATCGCAATC ACCTTGTCGC CGCGCGGTT
301 CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT C.CGCCGTTT
351 CGCTTAA
```

70

This corresponds to the amino acid sequence <SEQ ID 300; ORF 090.a>:

a090.pep

1 MRVVEQVVVA VEMVFGNVQH CRRSRAQAFG VFQLETGKLQ HPHVRLFAFA
51 LQFRLQNRRA DIARDNGIQP TLDAEIADQA RYRGFAVAAG NRNHLVAAAV
101 HNVRQQFDVA QHAXRRFA*

m09/a090

91.5% identity over a 117 aa overlap

10 20 30 40 50

60 MRIVEQVVVAVEMVFGNVQHRRRSRTQAFGVFQLEAGKLQHPHVRLFAFALPFRLQNRRA m090.pep MRVVEQVVVAVEMVFGNVQHCRRSRAQAFGVFQLETGKLQHPHVRLFAFALQFRLQNRRA a090 10 20 30 40 50 60 70 90 100 80 110 119 DIARDNGIQPALDTEIADQARYRGFAVAAGNRNYLVVPAVHNVRQQFDVAQHAXRRFAX m090.pep DIARDNGIQPTLDAEIADQARYRGFAVAAGNRNHLVAAAVHNVRQQFDVAQHAXRRFAX 2090 70 80 90 100

The following partial DNA sequence was identified in N. gonorrhoeae g090-1.seq This sequence contains multiple stop codons (not shown)

This corresponds to the amino acid sequence < ORF 090-1.ng>: g090-1.pep (not shown)

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 2>: m090-1.seq

```
1 ATGACGGCGT TTGCATTTCA GACGGCATCA CAAAGCCTTA AACGCTTCGA
     TAAACACTTC CGAACGGTGC GCGTAGCCTT TGAACATATC AAAGCTCGCG
  51
     CAGGCGGGC TGAGCAACAC AATATCGCCT GCTTCGGCTT GGGCATATGC
101
151
     CGTCTGAACG GCTTCTCCCA AAGTGGCGCA GTCGGTCATA TTCAAGCCGC
201 AGCCGTCCAA ATCGCGGCGG ATTTGCGGCG CATCGACACC AATCAAGAAC
     ACGCCTTTTG CCTTGCCTAC CAGTGCATCG CGCAGGGGCG TGAAGTCCTG
251
     CCCTTTACCC ATGCCGCCCA AAATCACGAA GAGCGGATTT TGCAAACCGG
301
     CAATCGCGGC GGCAGTCGCG CCGACATTCG TGCCTTTGCT GTCGTCGATA
 401
     AACACCACGC CGTTTTTCTC GCCGATTTTT TCCACGCGGT GCGGCAGGCC
     TTGGAAGGTT TTGACGTGTT CGAGCAATGC TTCGCGCGAC AAACCGATGG
 451
 501
     CCTCACACAA AGCCACGGCA GCCATGACGT TAGCGGCGTT GTGCAGACCT
     TGCAACGGAA TGTCTTGCGT GACAATCAAA TCTTCATTGC CTTGTTTCAG
 551
     GCGGCCTGTC TCGCGTTCCA ACCAGAAATC AGCTTCGTGT TCCAACGAAA
 601
 651
     ACCATTTAC CTCGCGCCCG GCACGCTTCA TCGCGCGGCA GAACGCATCG
 701
     TCCGCATTCA AAACCTGCAC GCCGTCGCCA CGGAAAATCT TGGCTTTGGT
 751
     ATGCGCATAG TCGAGCAAGT CGTCGTAGCG GTCGAGATGG TCTTCGGAAA
     TGTTCAGCAC CGTCGCCGCA GTCGGACGCA GGCTTTCGGT GTTTTCCAGT
     TGGAAGCTGG AAAGCTCCAA CACCCACACG TCCGCCTTTT TGCCTTCGCG
 851
     CTGCCATTCC GCCTCCAAAA CCGGCGTGCC GATATTGCCC GCGATAACGG
901
     TATCCAGCCC GCACTTGATA CAGAGATAGC CGACCAGGCT CGTTACCGTG
951
1001
     GTTTTGCCGT TGCTGCCGGT AATCGCAATT ACCTTGTCGT CCCGGCGGTT
1051
     CACAATGTCC GCCAGCAATT CGATGTCGCC CAACACGCGT CCGCCGTTTT
     GCTTGAACGC CTCAATATCC GGCTGCCGCT CGCTGATGCC GGGACTGAGA
     GCCAGAATAT CGAAACCGTT GTCCAGCGCA TCTTTCAGAC GGCCCGTGTA
1151
     AAACACCAAC CCGTCAAACA TCTTACCGAT TTGCGACACG CGTTCCGGCT
1201
1251
     TCAGCTCCGC ATCATACGCA GCAACCTCCG CGCCGTTTTT GCGCAGGTAG
     GCAATCATGG AAATACCCGT ACCGCCGAGT CCGGCGACGA GGATTTTTTT
1301
     GTTTTGAAAA GTCATTTTGG TTTGTCCTAA
```

This corresponds to the amino acid sequence <SEQ ID 3; ORF 090-1>: m090-1.pep

- 1 MTAFAFQTAS QSLKRFDKHF RTVRVAFEHI KARAGGAEQH NIACFGLGIC
 51 RLNGFSQSGA VCHIQAAAVQ IAADLRRIDT NQEHAFCLAY QCIAQGREVL
 101 PFTHAAQNHE ERILQTGNRG GSRADIRAFA VVDKHHAVFL ADFFHAVRQA
 151 LEGFDVFEQC FARQTDGLTQ SHGSHDVSGV VQTLQRNVLR DNQIFIALFQ
 201 AACLAFQPEI SFVFQRKFFY LAFGTLHRAA ERIVRIQNLH AVATENLGFG
 251 MRIVEQUVVA VEMVFGNVQH RRRSRTQAFG VFQLEAGKLQ HPHVRLFAFA
 101 LPFRLQNRAA DIARDNGIQP ALDTEIADQA RYRGFAVAAG NRNYLVVPAV
 102 HNVRQQFDVA CHASAVLLER LNIRLPLADA GTESQNIETV VQRIFGTARV
 103 KHQPVKHLTD LRHAFRLQLR IIRSNLRAVF AQVGNHGNTR TAESGDEDFF
- 451 VLKSHFGLS*

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 303>: g091.seq ATGGAAATAC CCGTGCCGCC AAGTCCGGCG ACGAGGATTT TTTTGTTTGA 1 51 AAGTCATTTT GGTTTTGTCC TAAAACAAAT CATATTGGGC AGGAGACGTC 101 CGCCCTTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCCG ATTAATAACC 151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCT GTTTTGGTCT CCGTTTTGAC 201 AAGCCTTGCC AAGCCATTGT TGAGCGAGCG CAAGGTCTTG GCGCACGCCG 251 CGTCCATCGT AATACATCAA GCCCAAATTG TATTGGGCTT GGGCATCCCC TTGTTCTGA This corresponds to the amino acid sequence <SEQ ID 304; ORF 091.ng>: g091.pep MEIPVPPSPA TRIFLFESHF GFVLKQIILG RRRPPLPKPL SDGIASRLIT 1 RLQALVIVAA VLVSVLTSLA KPLLSERKVL AHAASIVIHQ AQIVLGLGIP 51 101 LF* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 305>: m091.seq 1 ATGGAAATAC CCGTACCGCC GAGTCCGGCG ACGAGGATTT TTTTGTTTGA AAAGTCATTT TGGTTTGTCC TAAAACAAAT CATATTGAGC AGGAGATGTC 51 101 CGCCCCTGCC CAAGCCGCTT TCAGACGGCA TCGCGAGCTG TTCAATAACC 151 CGCCTTCAGG CGTTGGTCAT TGTCGCAGCC GTCTTGGTCT CCGTTTTGAC 201 AAGCCTTGCC AAACCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG 251 CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGCTT GGGCTACCCC 301 CTGCGC... This corresponds to the amino acid sequence <SEQ ID 306; ORF 091>: m091.pep 1 MEIPVPPSPA TRIFLFEKSF WFVLKQIILS RRCPPLPKPL SDGIASCSIT 51 RLQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLGLGYP Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 091 shows 84.2% identity over a 101 as overlap with a predicted ORF (ORF 091,ng) from N. gonorrhoeae: m091/g091 10 20 30 40 50 60 m091.pep MEIPVPPSPATRIFLFEKSFWFVLKQIILSRRCPPLPKPLSDGIASCSITRLOALVIVAA q091 MEIPVPPSPATRIFLFESHFGFVLKQIILGRRRPPLPKPLSDGIASRLITRLQALVIVAA 10 20 30 40 50 60 70 80 90 m091.pep VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLGLGYPLR g091 VLVSVLTSLAKPLLSERKVLAHAASIVIHQAQIVLGLGIPLFX 80 70 90 100

The following partial DNA sequence was identified in N. meningiditis <SEQ ID 307>: a091.seq

- 201 AAGCCTTGCC AAGCCATTCT TGTGCAAGGG CGCGGTCTTG GCGCACGCCG
 251 CGTCTTTCGG CATACATCAC GCCCAAATTG TTTTGGGC

```
This corresponds to the amino acid sequence <SEQ ID 308; ORF 091.a>: a091.pep
```

- 1 MEIPVPPSPA TRIFLFWKSF WFVLKQIILS RGCLILLKPL SDGIASCSIT
- 51 RFQALVIVAA VLVSVLTSLA KPFLCKGAVL AHAASFGIHH AQIVLG

m091/a091 93.8% identity over a 96 aa overlap

70 80 90 100

m091.pep

VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLGLGYPLR

a091

VLVSVLTSLAKPFLCKGAVLAHAASFGIHHAQIVLG 70 80 90

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 309>: 9092.seq

ATGTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGTGCGC 51 AAACGGTCAG ACCTTTAAAA TAACGCCTTT ACGCACTAAA AACCAACCGG 101 AACGCAACAT TATGATGAAA AATCGAGTAA GCAACATCCA TTTTGTCGGT 151 ATCGGCGGCG TCGGCATGAG CGGTATCGCC GAAGTCTTGC ACAATTTGGG 201 CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT 251 TGAGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC AGAACACGTT 301 AACGGTgcgg ATGTCGTCGT TGCCTCTACC GCCGTCAAGA AAGAAaatcC CGAAGTtgtc gcTGCGTTGG AGCGGCAAAT TCCCGTTATT CCGCGCGCCCT 351 401 TGATGCTGGC AGAGCTGATG CGCTTCCGTG ACGgcatcgc cattgccggT 451 ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC 501 GGCAGGACTC GACCCCACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG 551 GCACCAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC 601 GAATCCGATG CCTCTTTCCT ACATCTGACC CCGATTATGT CCGTCGTTAC 651 CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC 701 TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA 751 GCCTTTTTGT GTGTTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT 801 GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG 851 CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT 901 CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC 951 CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGC gtgqcGCTqq 1001 aagtcGgCGC ATcggttgAA GCGAtcCAAA AaggCTTGCT CGGCTTTGAA 1051 GGCGTCGGCC GCCGCTTCCA AAAATAcggc gacatCAagt tgccaaacgg 1101 cggGaccgCT TTgctGGTGG ACGATTAcgg ACACCACCCC GTCGAAATGG 1151 CGGcaacct tgccgcTGCA CGCGGCGCGT ATCCGGAAAA acgtTTGGTG 1201 CtcgCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA 1251 CTTTACCAAA GTACTCAATA CCGTTGatgC GCTGGTACTG ACCGAAGTTT 1301 AtgccgccgG CGAAGAGCCG GTTGCCGCCG CCGactcCCG CGCCTTGGCG 1351 CGTGCTATCC GCGTATTGGG CAAACTTGAG CCGATTTACT GCGAAAatgt 1401 cgccgACCTG CCGCAAATGC TGATGAATGT TTTACAGGAT Ggcgatgttg tgttgAATAT GggTgcggga agcatcaacc gcgttccttc cgcgctgttg 1501 gaattgtcga AACAGAtttg A

This corresponds to the amino acid sequence <SEQ ID 310; ORF 092.ng>: g092.pep

- 1 MFFISIRYIF VRKLWCANGQ TFKITPLRTK NQPERNIMMK NRVSNIHFVG 51 IGGVGMSGIA EVLHNLGFKV SGSDQARNAA TEHLSSLGIQ VYPGHTAEHV 101 NGADVVVAST AVKKENPEVV AALERQIPVI PRALMLAELM RFRDGIAIAG
- 151 THGKTTTTSL TASILGAAGL DPTFVIGGKL NAAGTNARLG KGEYIVAEAD
- 201 ESDASFLHLT PIMSVVTNID EDHMDTYGHS VEKLHQAFID FIHRMPFYGK


```
289
          251 AFLCVDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
          301 OMKGHEQGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIQKGLLGFE
          351 GVGRRFQKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYPEKRLV
          401 LAFQPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP VAAADSRALA
          451
               RAIRVLGKLE PIYCENVADL PQMLMNVLQD GDVVLNMGAG SINRVPSALL
              ELSKQI*
          501
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 311>:
     m092.seq
              ATGTTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGCGCGC
            1
               AAACGGTCAG CCCTTTAAAA TAACGCCTTT ACGCATCGAA AATCCACCGG
           51
          101 AACGCAACAT TATGATGAAA AATCGAGTTA CCAACATCCA TTTTGTCGGT
          151 ATCGGCGGCG TCGGCATGAG CGGCATCGCC GAAGTCTTGC ACAATTTGGG
          201 CTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT
          251 TGGGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC CGAACACGTT
          301 AACGGTGCGG ATGTCGTCGT TACCTCTACC GCCGTCAAAA AAGAAAATCC
          351 CGAAGTTGTC GCTGCGTTGG AGCAGCAAAT TCCCGTTATT CCGCGCGCCC
               TGATGTTGGC GGAGTTGATG CGCTTCCGTG ACGGCATCGC CATTGCCGGC
          401
               ACGCACGGCA AAACCACGAC CACCAGCCTG ACCGCCTCCA TCCTCGGCGC
          501 GGCAGGACTT GACCCGACTT TCGTTATCGG CGGCAAACTC AACGCCGCAG
          551 GCACTAACGC CCGCTTGGGC AAAGGCGAAT ACATCGTTGC CGAAGCCGAC
          601 GAGTCGGATG CATCCTTTCT GCACCTGACA CCGATTATGT CCGTCGTTAC
          651 CAATATCGAC GAAGACCATA TGGATACCTA CGGGCACAGC GTCGAAAAAC
          701 TGCATCAGGC GTTTATCGAT TTCATCCACC GTATGCCCTT CTACGGCAAA
          751 GCCTTTTGT GTATTGACAG CGAACACGTC CGCGCGATTT TGCCCAAAGT
               GAGCAAACCT TATGCTACTT ACGGTTTGGA CGATACCGCC GACATCTACG
          801
               CCACCGACAT CGAAAACGTC GGCGCGCAAA TGAAATTCAC CGTCCATGTT
          851
          901 CAAATGAAAG GACATGAGCA GGGGTCGTTT GAAGTCGTGC TGAATATGCC
          951 CGGCAGACAC AACGTGCTGA ACGCATTGGC AGCCATCGGC GTGGCGCTGG
         1001 AAGTCGGCGC ATCGGTTGAA GCGATCCAAA AAGGCTTGCT CGGCTTTGAA
         1051 GGCGTCGGCC GCCGCTTCCA AAAATACGGC GACATCAAGT TGCCAAACGG
         1101 CGGGACCGCG CTCTTGGTGG ACGACTACGG ACACCACCCC GTCGAAATGG
               CGGCGACCCT TGCCGCCGCA CGCGGCGCGT ATCTGGAAAA ACGTTTGGTA
         1151
               CTCGCCTTCC AGCCGCACCG CTATACCCGC ACGCGCGATT TGTTTGAAGA
               CTTTACCAAA GTCCTCAATA CCGTTGACGC GCTGGTGCTG ACCGAAGTTT
         1251
         1301 ATGCCGCCGG TGAAGAGCCG ATTGCCGCCG CCGATTCCCG CGCTCTTGCC
         1351 CGCGCCATCC GCGTGTTGGG CAAACTCGAG CCGATTTACT GCGAAAACGT
```

This corresponds to the amino acid sequence <SEQ ID 312; ORF 092>: m092.pep

GCATTGTCGA AACAGATTTG A

1 MFFISIRYIF VRKLWRANGQ PFKITPLRIE NPPERNIMMK NRVTNIHFVG
51 IGGVGMSGIA EVLHNLGFKV SGSDQARNAA TEHLGSLGIQ VYPGHTAEHV
101 NGADVVVTST AVKKENPEVV AALEQQIPVI PRALMLAELM RFRDGIAIAG
151 THGKTTTTSL TASILGAAGL DPTFVIGGKL NAAGTNARLG KGEYIVAEAD
201 ESDASFLHLT PIMSVVTNID EDHMDTYGHS VEKLHQAFID FIHRMPFYGK
251 AFLCIDSEHV RAILPKVSKP YATYGLDDTA DIYATDIENV GAQMKFTVHV
301 QMKGHEQGSF EVVLNMPGRH NVLNALAAIG VALEVGASVE AIQKGLLGFE
351 GVGRRFQKYG DIKLPNGGTA LLVDDYGHHP VEMAATLAAA RGAYLEKRLV
401 LAFQPHRYTR TRDLFEDFTK VLNTVDALVL TEVYAAGEEP IAAADSRALA
451 RAIRVLGKLE PIYCENVADL PEMLLNVLQD GDIVLNMGAG SINRVPAALL
501 ALSKQI*

1401 TGCCGATCTG CCCGAAATGC TGTTGAACGT TTTGCAGGAC GGCGACATCG
1451 TGTTGAATAT GGGCGCGGGA AGCATCAACC GCGTCCCCGC CGCGCTGCTG

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 092 shows 96.6% identity over a 506 as overlap with a predicted ORF (ORF 092.ng) from N. gonorrhoeae:

m092/g092

10 20 30 40 50 60 m092.pep MFFISIRYIFVRKLWRANGQPFKITPLRIENPPERNIMMKNRVTNIHFVGIGGVGMSGIA

g092						
	10		30	40	50	80
	70 EVLHNLGFKVSGSDQAF	80	90	100	110	120
m092.pep						
g092	EVLHNLGFKVSGSDQAF		LGIQVYPGHT.			
	70	80	90	100	110	120
	130	140	150	160	170	180
m092.pep	AALEQQIPVIPRALMLA					
g092	AALERQIPVIPRALMLA	ELMRFRDGI		TTSLTASILG		
	130	140	150	160	170	180
	190	200	210	220	230	240
m092.pep	NAAGTNARLGKGEYIVA					
g092						
5 *	190	200	210	220	230	240
	250	260	270	280	290	300
m092.pep	FIHRMPFYGKAFLCIDS	SEHVRAILPK	VSKPYATYGL	DDTADIYATD	IENVGAQMKF	'TVHV
~092	: FIHRMPFYGKAFLCVDS					
g092	250	260	270	280	290	300
	210	320	330	340	350	360
m092.pep	310 QMKGHEQGSFEVVLNMI					
- 000		11111111	11111111	[[]]]	1111111111	$\Pi\Pi$
g092	QMKGHEQGSFEVVLNMI 310	320	AAIGVALEVG. 330	ASVEATQKGL 340	JGFEGVGRRF	QKYG 360
m092.pep	370 DIKLPNGGTALLVDDYG	380 SHHPVEMAAT	390 LAAARGAYLE	400 KRLVLAFOPH	410 RYTRTRDLFE	420 DFTK
g092	DIKLPNGGTALLVDDYG	SHHPVEMAATI 380	LAAARGAYPE 390	KRLVLAFQPH 400	RYTRTRDLFE 410	DFTK 420
m092.pep	430 VLNTVDALVLTEVYAAG	440 REEDTAAADSI	450 Patapatevi	460 GKT.EDIVCEN	470 Vant demilin	480
osz.pop						
g092	VLNTVDALVLTEVYAAC	GEEPVAAADSI 440	RALARAIRVL 450		_	_
	430	270	430	460	470	480
m092 non	490 GDIVLNMGAGSINRVPA	500	v			
m092.pep						
g092	GDVVLNMGAGSINRVPS	_	X			
	490	500				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 313>: a092.seq

- 1 ATGTTTTTTA TTTCAATCCG CTATATATTT GTCAGAAAAC TATGGCGCGC
- 51 AAACGGTCAG CCCTTTAAAA TAACGCCTTT ACGCATCGAA AATCCACCGG 101 AACGCAACAT TATGATGAAA AATCGAGTGA CCAACATCCA TTTTGTCGGT
- 151 ATCGGCGGCG TCGGCATGAG CGGTATCGCC GAAGTCTTGC ACAATTTGGG
- 201 TTTTAAAGTT TCCGGTTCGG ATCAGGCGCG AAATGCCGCT ACCGAGCATT
 251 TGGGCAGCCT GGGCATTCAA GTTTATCCCG GCCATACCGC AGAACACGTT

301	AACGGTGCGG	ATGTCGTCGT	TACCTCTACC	GCCGTCAAAA	AAGAAAATCC
351	CGAAGTTGTC	GCTGCGTTGG	AGCAGCAAAT	TCCCGTTATT	CCGCGCGCCC
401	TGATGTTGGC	GGAGTTGATG	CGCTTCCGTG	ACGGCATCGC	CATTGCCGGC
451	ACGCACGGCA	AAACCACGAC	CACCAGCCTG	ACCGCCTCCA	TCCTCGGCGC
501	GGCAGGACTT	GACCCGACTT	TCGTTATCGG	CGGCAAACTC	AACGCCGCAG
551	GCACCAACGC	CCGCTTGGGC	AAAGGCGAAT	ACATCGTTGC	CGAAGCCGAC
601	GAGTCGGATG	CATCCTTTCT	GCACCTGACA	CCGATTATGT	CCGTCGTTAC
651	CAATATCGAC	GAAGACCATA	TGGATACCTA	CGGGCACAGT	GTTGAGAAGC
701	TGCATCAGGC	GTTTATCGAT	TTCATCCACC	GTATGCCCTT	CTACGGCAAA
751	GCCTTTTTGT	GTATTGACAG	CGAACACGTC	CGCGCGATTT	TGCCCAAAGT
801	GAGCAAACCT	TATGCTACTT	ACGGTTTGGA	CGATACCGCC	GACATCTACG
851	CCACCGACAT	CGAAAACGTC	GGCGCGCAAA	TGAAATTCAC	CGTCCATGTT
901	CAAATGAAAG	GACATGAGCA	GGGGTCGTTT	GAAGTCGTGC	TGAATATGCC
951	CGGCAGACAC	AACGTGCTGA	ACGCATTGGC	AGCCATCGGC	GTGGCGCTGG
1001	AAGTCGGCGC	ATCGGTTGAA	GCGATCCAAA	AAGGCTTGCT	CGGCTTTGAA
1051	GGTGTCGGCC	GCCGCTTCCA	AAAATACGGC	GACATCAAGT	TGCCAAACGG
1101	TGGAACCGCG	CTCTTGGTGG	ACGACTACGG	ACACCACCCC	GTCGAAATGG
1151	CGGCGACCCT	TTCCGCCGCA	CGCGGCGCGT	ATCCGGAAAA	ACGTTTGGTA
1201	CTCGCCTTCC	AGCCGCACCG	CTATACCCGC	ACGCGCGATT	TGTTTGAAGA
1251	CTTTACCAAA	GTCCTCAATA	CCGTTGACGC	GCTGGTGCTG	ACCGAAGTTT
1301	ATGCCGCCGG	TGAAGAGCCG	ATTGCCGCCG	CTGATTCCCG	CGCTCTTGCC
1351	CGCGCCATCC	GCGTGTTGGG	CAAACTCGAG	CCGATTTACT	GCGAAAACGT
1401	TGCCGATCTG	CCCGAAATGC	TGTTGAACGT	TTTGCAGGAC	GGCGACATCG
1451	TGTTGAATAT	GGGTGCGGGA	AGCATCAACC	GCGTCCCCGC	CGCGCTGCTG
1501	GAATTGTCGA	AACAGATTTG	A		

This corresponds to the amino acid sequence <SEQ ID 314; ORF 092.a>: a092.pep

1	MFFISIRYIF	VRKLWRANGQ	PFKITPLRIE	NPPERNIMMK	NRVTNIHFVG
51	IGGVGMSGIA	EVLHNLGFKV	SGSDQARNAA	TEHLGSLGIQ	VYPGHTAEHV
101	NGADVVVTST	AVKKENPEVV	AALEQQIPVI	PRALMLAELM	RFRDGIAIAG
151	THGKTTTTSL	TASILGAAGL	DPTFVIGGKL	NAAGTNARLG	KGEYIVAEAD
201	ESDASFLHLT	PIMSVVTNID	EDHMDTYGHS	VEKLHQAFID	FIHRMPFYGK
251		RAILPKVSKP			
301	QMKGHEQGSF	EVVLNMPGRH	NVLNALAAIG	VALEVGASVE	AIQKGLLGFE
351	GVGRRFQKYG	DIKLPNGGTA	LLVDDYGHHP	VEMAATLSAA	RGAYPEKRLV
401	LAFQPHRYTR	TRDLFEDFTK	VLNTVDALVL	TEVYAAGEEP	IAAADSRALA
451	RAIRVLGKLE	PIYCENVADL	PEMLLNVLQD	GDIVLNMGAG	SINRVPAALL
501	ELSKOT*				

m092/a092 99.4% identity over a 506 aa overlap

m092.pep	10 MFFISIRYIFVRKLWF	20 ANGQPFKITE	30 LRIENPPERN	40 IIMMKNRVTNI	50 HFVGIGGVGMS	60 GIA
a092	MFFISIRYIFVRKLWF	ANGQPFKITE	LRIENPPERN	IMMKNRVTNI	HFVGIGGVGMS	GIA
	10	20	30	40	50	60
	70	80	90	100	110	120
m092.pep	EVLHNLGFKVSGSDQA	RNAATEHLGS	LGIQVYPGHT	'AEHVNGADVV	VTSTAVKKENE	EVV
			11111111111	111111111	11111111111	111
a092	EVLHNLGFKVSGSDQA				VTSTAVKKENE	EVV
	70	80	90	100	110	120
	130	140	150	160	170	180
m092.pep	AALEQQIPVIPRALMI	AELMRFRDGI				
		1111111111	1111111111	1111111111		111
a092	AALEQQIPVIPRALMI	AELMRFRDGI	AIAGTHGKTT	TTSLTASILG	AAGLDPTFVIC	
	130	140	150	160	170	180
	190	200	210	220	230	240
m092.pep	NAAGTNARLGKGEYIV	'AEADESDASF	LHLTPIMSVV	TNIDEDHMDT		
		111111111111111111111111111111111111111	1111111111	1111111111	ниний	111
a092	NAAGTNARLGKGEYIV	AEADESDASF	LHLTPIMSVV	TNIDEDHMDT	YGHSVEKLHQA	FID

	190	200	210	220	230	240
m092.pep	250 FIHRMPFYGKAFLCID	260 SEHVRAILPK 			290 IENVGAQMKF 	
a092	FIHRMPFYGKAFLCID 250	SEHVRAILPK 260	VSKPYATYGLI 270	DDTADIYATD 280	IENVGAQMKF 290	300
m092.pep	310 QMKGHEQGSFEVVLNM QMKGHEQGSFEVVLNM 310	1111111111	шшш	1111111111	шшш	ĪШ
m092.pep	370 DIKLPNGGTALLVDDY	380 .	390 LAAARGAYLE	400 KRLVLAFQPHI	410	420 DFTK
a092	DIKLPNGGTALLVDDY 370	380	390	400	410	420
m092.pep	430 VLNTVDALVLTEVYAA IIIIIIIIIIIIIIIIIV VLNTVDALVLTEVYAA 430	HILLITT	1111111111		шшші	Ш
m092.pep	490 GDIVLNMGAGSINRVE 	ши шіі	l .			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 315>: g093.seq

```
aTGCAGAATt ttgGCAAAGT ggccgtATTG ATGGGtggtT TTTCCAGCGA
 51 ACGAGABATC TCGCTGGACA GCGGTACCGC CATTTTGAAC GCCTTAAAAA
101 GCAAAGGCAT AGACGCATAC GCCTTCGACC CTAAGGAAAC GCCGTTATCC
    GAACTGAAGG AGCGGGGCTT TCAGACGGCA TTCAACATCC TTCACGGTAC
201 TTACGGCGAA GACGGGGCTG TTCAGGGTGC ATTGGAACTG TTGGGCATTC
251 CCTATACCGG CAGCGGTGTC GCCGCCTCCG CCATCGGCAT GGACAAATAC
301 CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTACCCGTTC CCGAGTTCGC
351 CGTACTGTAC GATGATACCG ATTTCGATGC CGTCGAAGAA AAATTGGGTC
401 TGCCGATGTT TGTGAAGCCG GCGGCCGAAG GCAGCAGCgt cggcgtggta
451 aAAGTCAAAG AAAaaggccg TCTGAAAAGC GTTtacgaag aatTGAaaCA
501 CCTTcagggg cgaAAtcatt gccgAacgTT TTATCGGCGG CGGCGAATAT
551 TCCTGCCCCG TCCTGAACGG CAAAGGGCTG CCCGGCATAC ACATCATCCC
601 CGCAACCGAG TTTTACGACt acgaagccaa GtacaaCCGA GACGAcacca
651 tttaTCAATG TCCTTCGGAA GATTTGACCG AAGCCGAAGA AAGCCTGATG
701 CGCGAACTGG CGGTTCGCGG CGCACAGGCA ATCGGTGCGG AAGGCTGCGT
751 GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA
801 TCAACACCCT GCCCGGTATG ACCGGCCATA G
```

This corresponds to the amino acid sequence <SEQ ID 316; ORF 093.ng>: g093.pep

- MQNFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS 1 51 ELKERGFQTA FNILHGTYGE DGAVQGALEL LGIPYTGSGV AASAIGMDKY

 - 101 RCKLIWQALG LPVPEFAVLY DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV
 - 151 KVKEKGRLKS VYEELKHLQG RNHCRTFYRR RRIFLPRPER QRAARHTHHP
 - 201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RTGNRCGRLR
 - 251 ARRFPQRYRR QTLSVGNQHP ARYDRP*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 317>: m093.seg

This corresponds to the amino acid sequence <SEQ ID 318; ORF 093>:

m093.pep

MONFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS

51 ELKAQGFQTA FNILHGTYGX DGAVQGALEL LGIPYTGSGV AASAIGMDKY

101 RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV

151 KVKGKGRLKS VYEELKHLQX RNHCRTFYRR RRIFLPRPER QRAARHTHHS

201 RNRVLRLRSQ VQPRRHHLSM SFGRFDRSRR KPDARTGGSR RAGNRCGRLR 251 ARRFPQRYRR QTLSVGNQHP ARYDEP*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 093 shows 96.7% identity over a 276 aa overlap with a predicted ORF (ORF 093.ng) from N. gonorrhoeae:

m093/g093

	10	20	30	40	50	60
m093.pep	MQNFGKVAVLMGGFS	SEREISLDS	GTAILNALKS	KGIDAYAFDI	PKETPLSELKA	QGFQTA
		111111111	1111111111	1111111111		:11111
g093	MQNFGKVAVLMGGFS	SEREISLDS	GTAILNALKS	KGIDAYAFDI	KETPLSELKE	RGFQTA
	10	20	30	40	50	60
	70	80	90	100	110	120
m093.pep	FNI LHGTYGXDGAVQ	GALELLGIP	YTGSGVAASA	IGMDKYRCKI	LIWQALGLPVE	EFAVLH
		111111111	1111111111	1111111111		11111:
g093	FNILHGTYGEDGAVQ	GALELLGIP	YTGSGVAASA	IGMDKYRCKI	JIWQALGLPVP	EFAVLY
	70	80	90	100	110	120
	130	140	150	160	170	180
m093.pep	DDTDFDAVEEKLGLP	MFVKPAAEG	SSVGVVKVKG	KGRLKSVYEI	LKHLQXRNHC	RTFYRR
		11111111		1111111111		111111
g093	DDTDFDAVEEKLGLP	MFVKPAAEG	SSVGVVKVKE	KGRLKSVYE	LKHLQGRNHC	RTFYRR
	130	140	150	160	170	180
	190	200	210	220	230	240
m093.pep	RRIFLPRPERQRAAR	HTHHSRNRV	LRLRSQVQPR	RHHLSMSFGF	RFDRSRRKPDA	RTGGSR
		1111 1111				111111
g093	RRIFLPRPERQRAAR	HTHHPRNRV	LRLRSQVQPR	RHHLSMSFGF	RFDRSRRKPDA	RTGGSR
	190	200	210	220	230	240
	250	260	270		,	
m093.pep	RAGNRCGRLRARRFP	QRYRRQTLS	VGNQHPARYD:	EPX		
	:	}		:		
g093	RTGNRCGRLRARRFP		VGNQHPARYD:	RPX		
	250	260	270			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 319>: a093.seg ATGCAGAATT TTGGCAAAGT GGCCGTATTG ATGGGCGGTT TTTCCAGCGA 51 ACGAGAAATC TCGCTGGACA GCGGCACCGC CATTTTGAAT GCTTTAAAAA GCAAAGGCAT AGACGCATAC GCCTTCGATC CCAAGGAAAC CCCATTGTCT 151 GAATTGAAGG CACAAGGTTT TCAGACGGCA TTCAACATCC TTCACGGTAC 201 TTACGGCGAA GACGGGGCTG TTCAGGGTGC ATTGGAACTG TTGGGCATTC 251 CCTATACCGG CAGCGGTGTC GCCGCATCCG CCATCGGCAT GGACAAATAC CGCTGCAAAC TGATTTGGCA GGCATTGGGA TTGCCCGTTC CCGAGTTCGC CGTCCTGCAC GACGACACTG ATTTCGATGC CGTCGAAGAA AAATTGGGCC 351 TGCCGATGTT TGTGAAACCG GCGGCCGAAG GCAGCAGCGT AGGCGTGGTA AAAGTCAAAG GAAAAGGCCG TCTGAAAAGC GTTTACGAAG AATTGAAACA 451 CTTTCAGGG. CGAAATCATT GCCGAACGGT TTATCGGCGG CGGCGAATAT TCCTGCCCTG TGTTGAACGG CAAAGGCCTG CCCGGCATAC ACATCATCCC 601 CGCGACCGAG TTTTATGACT ACGAAGCCAA GTACAACCGC AACGACACCA 651 TTTATCAATG TCCTTCGGAA GATCTGACCG AAGCCGAAGA AAGCCTGATG CGCGAACTGG CGGTTCGCGG CGCGCAGGCA ATCGGTGCGG AAGGCTGCGT GCGCGTCGAT TTCCTCAAAG ATACCGACGG CAAACTCTAT CTGTTGGAAA TCAACACCCT GCCCGGTATG ACCGGCCATA G This corresponds to the amino acid sequence <SEQ ID 320; ORF 093.a>: a093.pep MONFGKVAVL MGGFSSEREI SLDSGTAILN ALKSKGIDAY AFDPKETPLS 1 ELKAOGFOTA FNILHGTYGE DGAVOGALEL LGIPYTGSGV AASAIGMDKY 51 RCKLIWQALG LPVPEFAVLH DDTDFDAVEE KLGLPMFVKP AAEGSSVGVV KVKGKGRLKS VYEELKHFOX RNHCRTVYRR RRIFLPCVER QRPARHTHHP RDRVL*LRSQ VQPQRHHLSM SFGRSDRSRR KPDARTGGSR RAGNRCGRLR ARRFPORYRR QTLSVGNQHP ARYDRP* 95.7% identity over a 276 aa overlap m093/a093 30 40 50 MONFGKVAVLMGGFSSEREISLDSGTAILNALKSKGIDAYAFDPKETPLSELKAQGFQTA m093.pep a093 MONFGKVAVLMGGFSSEREISLDSGTAILNALKSKGIDAYAFDPKETPLSELKAOGFOTA 10 20 30 40 50 60 70 80 90 100 110 FNILHGTYGXDGAVQGALELLGIPYTGSGVAASAIGMDKYRCKLIWQALGLPVPEFAVLH m093.pep a093 FNILHGTYGEDGAVQGALELLGIPYTGSGVAASAIGMDKYRCKLIWQALGLPVPEFAVLH 70 80 90 100 120 140 160 150 DDTDFDAVEEKLGLPMFVKPAAEGSSVGVVKVKGKGRLKSVYEELKHLOXRNHCRTFYRR m093.pep DDTDFDAVEEKLGLPMFVKPAAEGSSVGVVKVKGKGRLKSVYEELKHFQXRNHCRTVYRR a093 140 150 160 190 200 210 220 230 ${\tt RRIFLPRPERQRAARHTHHSRNRVLRLRSQVQPRRHHLSMSFGRFDRSRRKPDARTGGSR}$ m093.pep a093 ${\tt RRIFLPCVERQRPARHTHHPRDRVLXLRSQVQPQRHHLSMSFGRSDRSRRKPDARTGGSR}$ 190 200 210 230 240 250 . 260 RAGNRCGRLRARRFPQRYRRQTLSVGNQHPARYDEPX m093.pep

RAGNRCGRLRARRFPQRYRRQTLSVGNQHPARYDRPX

260

a093

294

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 321>:
          g094.seq
                           ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT
                      1
                    51 GCCGCCGATA ACGAAAGTGG GGTCGAGTCC TGCCGCGCCG AGGATGGAGG
                  101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTAccggc aatggcgatg
                  151 CCGTCACGGA AGCGCATCAG CTCTGCCAGC ATCAAGGCGC GCGGAATAAC
                  201 GGGAATTTGC CGCTCCAACG CAgcgacaAC TTCGGgattT TCTTTCTTGA
                           CGGCGGTAGA GGCAACGACG ACATCCQCAC CGTTAACGTG TTCTGCGGTA
                           TGGCCGGGAT AA
This corresponds to the amino acid sequence <SEQ ID 322; ORF 094.ng>:
         g094.pep
                            MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
                      1
                    51
                           PSRKRISSAS IKARGITGIC RSNAATTSGF SFLTAVEATT TSAPLTCSAV
                  101
                           WPG*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 323>:
         m094.seq
                           ATGTATTCGC CTTTGCCCAA GCGGGCGTTA GTGCCTGCGG CGTTGAGTTT
                    51 GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCGCCG AGGATGGAGG
                  101 CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG
                  151 CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC
                  201 GGGAATTTGC TGCTCCAACG CAGCGACAAC TTCGGGATTT TCTTTTTTGA
                  251 CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCGGCGGTA
                  301 TGGCCGGGAT AA
This corresponds to the amino acid sequence <SEQ ID 324; ORF 094>:
         m094.pep
                           MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM
                      1
                           PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV
                    51
                            WPG*
                   101
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 094 shows 95.1% identity over a 103 aa overlap with a predicted ORF (ORF 094.ng)
from N. gonorrhoeae:
         m094/g094
                                                                   20
                                                                                     30
                                                10
                                                                                                       40
                                                                                                                          50
          m094.pep
                                 MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN
                                  MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRISSAS
          q094
                                                10
                                                                  20
                                                                                     30
                                                                                                       40
                                                                                                                          50
                                                                                                                                            60
                                                70
                                                                   80
                                                                                     90
                                                                                                     100
                                 IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX
          m094.pep
                                  1: [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ | ] | [ ] | [ | ] | [ | ] | [ ] | [ | ] | [ ] | [ | ] | [ ] | [ | ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] | [ ] 
          q094
                                  IKARGITGICRSNAATTSGFSFLTAVEATTTSAPLTCSAVWPGX
                                                70
                                                                  80
                                                                                     90
                                                                                                     100
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 325>:
a094.seq
                  ATGTATTCGC CTTTGCCCAA GCGGGCGTTG GTGCCTGCGG CGTTGAGTTT
                  GCCGCCGATA ACGAAAGTCG GGTCAAGTCC TGCCGCGCCG AGGATGGAGG
           51
         101
                  CGGTCAGGCT GGTGGTCGTG GTTTTGCCGT GCGTGCCGGC AATGGCGATG
         151 CCGTCACGGA AGCGCATCAA CTCCGCCAAC ATCAGGGCGC GCGGAATAAC
                  GGGAATTTGC TGCTCCAACG CAGCGACAAC TTCGGGATTT TCTTTTTTGA
         201
                  CGGCGGTAGA GGTAACGACG ACATCCGCAC CGTTAACGTG TTCTGCGGTA
         251
                  TGGCCGGGAT AA
```

This corresponds to the amino acid sequence <SEO ID 326; ORF 094.a>:

PCT/US99/09346

a094.pep MYSPLPKRAL VPAALSLPPI TKVGSSPAAP RMEAVRLVVV VLPCVPAMAM 1 PSRKRINSAN IRARGITGIC CSNAATTSGF SFLTAVEVTT TSAPLTCSAV 51 101 WPG* 100.0% identity over a 103 aa overlap m094/a09420 30 40 50 60 MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN m094.pep a094 MYSPLPKRALVPAALSLPPITKVGSSPAAPRMEAVRLVVVVLPCVPAMAMPSRKRINSAN 10 20 30 40 70 80 90 IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX m094.pep a094 IRARGITGICCSNAATTSGFSFLTAVEVTTTSAPLTCSAVWPGX 80 70 90 The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 327>: g095.seg 1 ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT 51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA 101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC 151 AACACACAAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA 201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG 251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGGGTCA GTGTAGGAAA 301 GAGGCATCGG ATCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG 351 CGGGCGTTGG TGCCTGCGGC GTTGA This corresponds to the amino acid sequence <SEQ ID 328; ORF 095.ng>: g095.pep MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV 1 51 NTQKGFAVEG HTVDEIDKRL MQFFDAVPVG IHMVFVDIGN DGHNRGQCRK 101 EASDRRLROR CIRLCPSGRW CLRR* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 329>: m095.seq ATGTCCTTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT 1 51 TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA 101 GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC 151 AATACACAAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA 201 TAAACGCCTG ATGCAGTTTT TCGACGCTGT GCCCGTAGGT ATCCATATGG 251 TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGTGTCA GTGCAGAAAG 301 GATGCATCCG ACCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG 351 CGGGCGTTAG TGCCTGCGGC GTTGA This corresponds to the amino acid sequence <SEQ ID 330; ORF 095>: m095.pep MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV 51 NTQKGFAVEG HTVDEIDKRL MQFFDAVPVG IHMVFVDIGN DGHNRCQCRK 101 DASDRRLRQR CIRLCPSGRX CLRR* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 095 shows 97.6% identity over a 124 aa overlap with a predicted ORF (ORF 095.ng) from N. gonorrhoeae: m095/g095 10 20 30 40 50 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG m095.pep

296

g095	MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG 10 20 30 40 50 60
m095.pep g095	70 80 90 100 110 120 HTVDEIDKRLMQFFDAVPVGIHMVFVDIGNDGHNRCQCRKDASDRRLRQRCIRLCPSGRX
m095.pep	CLRRX CLRRX
-	ATGTCCTTC ATTTGAACAT GGACGGTGAA TTTCATTTGC GCGCCGACGT TTTCGATGTC GGTGGCGTAG ATGTCGGCGG TATCGTCCAA ACCGTAAGTA GCATAAGGTT TGCTCACTTT GGGCAAAATC GCGCGGACGT GTTCGCTGTC AATACACAAA AAGGCTTTGC CGTAGAAGGG CATACGGTGG ATGAAATCGA TAAACGCCTG ATGCAGCTTC TCAACACTGT GCCCGTAGGT ATCCATATGG TCTTCGTCGA TATTGGTAAC GACGGACATA ATCGGTGTCA GTGCAGAAAG GATGCATCCG ACCGTCGGCT TCGGCAACGA TGTATTCGCC TTTGCCCAAG CGGGCGTTGG TGCCTGCGGC GTTGA
This correspond	s to the amino acid sequence <seq 095.a="" 332;="" id="" orf="">:</seq>
1 51 101	MSFHLNMDGE FHLRADVFDV GGVDVGGIVQ TVSSIRFAHF GQNRADVFAV NTQKGFAVEG HTVDEIDKRL MQLLNTVPVG IHMVFVDIGN DGHNRCQCRK DASDRRLRQR CIRLCPSGRW CLRR*
m095/a095	96.0% identity in 124 aa overlap
m095.pep a095	10 20 30 40 50 60 MSFHLNMDGEFHLRADVFDVGGVDVGGIVQTVSSIRFAHFGQNRADVFAVNTQKGFAVEG
m095.pep a095	70 80 90 100 110 120 HTVDEIDKRLMQFFDAVPVGIHMVFVDIGNDGHNRCQCRKDASDRRLRQRCIRLCPSGRX ::::
m095.pep a095	CLRRX CLRRX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID

333>:

g09	96.seq					
	1	ATGGCCGGTC	ATACCGGGCA	GGGTGTTGAT	TTCCAACAGA	TAGAGTTTGC
	51	CGTCGGTATC	TTTGAGGAAA	TCGACGCGCA	CGCAGCCTTC	CGCACCGATT
	101	GCCTGTGCGC	CGCGAACCGC	CAGTTCGCGC	ATCAGGCTTT	CTTCGGCTTC
	151	GGTCAAATCT	TCCGAAGGAC	ATTGAtaaat	ggtgTCGTCT	CGGttgtaCt

- 201 tggcttcgta gTCGTAAAAC TCGGTTGCGG GGATGATGTG TATGCCGGGC
- 251 AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
- 301 AcgtTcggca atgaTTtcgc ccctgAAGGT GttTCAattc ttcgtaAACG 351 CTTTTCAGAc ggccttTTC TTTGA

This corresponds to the amino acid sequence <SEQ ID 334; ORF 096.ng>:

- MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLCAANR QFAHQAFFGF 1
- GQIFRRTLIN GVVSVVLGFV VVKLGCGDDV YAGQPFAVQD GAGIFAAADK 51
- TFGNDFAPEG VSILRKRFSD GLFL*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 335>:

m096.seq

- ATGGCTCGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC 1 51 CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
- 101 GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
- 151 GGTCAAATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTCG CGGTTGTACT
- 201 TGGCTTCGTA GTCGTAAAAC TCGGTTGCGG GAATGATGTG TATGCCGGGC
- 251 AGCCCTTTGC CGTTCAGGAC GGGGCAGGAA TATTCGCCGC CGCCGATAAA
 301 ACGTTCGGCA ATGATTTCGC CC.TGAAGGT GTTTCAATTC TTCGTAAACG
- 351 CTTTTCAGAC GGCCTTTTCC TTTGA

This corresponds to the amino acid sequence <SEQ ID 336; ORF 096>:

m096.pep

- 1 MARHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLRAANR QFAHQAFFGF
- GQIFRRTLIN GVVAVVLGFV VVKLGCGNDV YAGQPFAVQD GAGIFAAADK 51
- 101 TFGNDFAXEG VSILRKRFSD GLFL*

m096/g096 96.0% identity in 124 aa overlap

	10	20	30	40	50	60
m096.pep	MARHTGQGVDFQQI	EFAVGIFEEI:	DAHAAFRTDO	CLRAANRQFAH	iqaffgfgqi e	RRTLIN
	11 11111111111		111111111		1111111111	111111
g096	MAGHTGQGVDFQQI:	EFAVGIFEEI:	DAHAAFRTDO	CLCAANRQFAH	QAFFGFGQI F	RRTLIN
	10	20	30	40	50	60
	70	80	90	100	110	120
m096.pep	GVVAVVLGFVVVKL	GCGNDVYAGQ	PFAVQDGAG1	FAAADKTFGN	DFAXEGVSII	RKRFSD

g096 ${\tt GVVSVVLGFVVVKLGCGDDVYAGQPFAVQDGAGIFAAADKTFGNDFAPEGVSILRKRFSD}$ 80 90 100 110

m096.pep GLFLX 11111 g096 GLFLX

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 337>:

a096.seq

- 1 ATGGCCGGTC ATACCGGGCA GGGTGTTGAT TTCCAACAGA TAGAGTTTGC 51 CGTCGGTATC TTTGAGGAAA TCGACGCGCA CGCAGCCTTC CGCACCGATT
- 101 GCCTGCGCGC CGCGAACCGC CAGTTCGCGC ATCAGGCTTT CTTCGGCTTC
- 151 GGTCAGATCT TCCGAAGGAC ATTGATAAAT GGTGTCGTTG CGGTTGTACT
- 201 TGGCTTCGTA GTCATAAAAC TCGGTCGCGG GGATGATGTG TATGCCGGGC
- 251 AGGCCTTTGC CGTTCAACAC AGGGCAGGAA TATTCGCCGC CGCCGATAAA
- CCGTTCGGCA ATGATTTCGC CCT.GAAAGT GTTTCAATTC TTCGTAAACG
- 351 CTTTTCAGAC GGCCTTTTCC TTTGA

This corresponds to the amino acid sequence <SEQ ID 338; ORF 096.ng>: a096.pep

1 MAGHTGQGVD FQQIEFAVGI FEEIDAHAAF RTDCLRAANR OFAHOAFFGF

WO 99/57280

```
51 GOIFRRTLIN GVVAVVLGFV VIKLGRGDDV YAGQAFAVQH RAGIFAAADK
          101 PFGNDFAXES VSILRKRFSD GLFL*
m096/a096
              92.7% identity in 124 aa overlap
                 MARHTGOGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
     m096.pep
                 a096
                 MAGHTGQGVDFQQIEFAVGIFEEIDAHAAFRTDCLRAANRQFAHQAFFGFGQIFRRTLIN
                                  20
                                            30
                                                     40
                         70
                                   80
                                            90
                                                     100
                                                              110
                                                                        120
     m096.pep
                 GVVAVVLGFVVVKLGCGNDVYAGQPFAVQDGAGIFAAADKTFGNDFAXEGVSILRKRFSD
                 a096
                 GVVAVVLGFVVIKLGRGDDVYAGQAFAVQHRAGIFAAADKPFGNDFAXESVSILRKRFSD
                         70
                                  80
                                            90
                                                    100
                                                              110
                                                                        120
     m096.pep
                 GLFLX
                 11111
     a096
                 GLFLX
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 339>:
     g097.seq
              ATGGATATTT CAAAACAAAC ATTGCTGGAT AGGGTTTTTA ACCTGAAGGC
           51 AAACGGTACG ACGGTACGTA CCGAGTTGAT GGCGGGTTTG ACGACCTTTT
          101 TGACGATGTG CTACATCGTT ATCGTCAATC CCCTGATTTT GGGCGAGACC
          151 GGAATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CATCCGCCAT
          201 CGGCTGTTTT GTCATGGGTT TTATCGGCAA CTATCCGATT GCGCTTGCCC
          251 CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG
          301 GGCGTGCCTT GGCAGGTGGC GTTGGGTGCG GTGTTCATTT CCGGTCTGAT
              TTTCATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC
          401 TGCCTATGGG TTTGAAAATG TCGATTGCCG CCGGTATCGG TTTGTTTTTG
          451 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC
          501 CTTGGTCGGC TTGGGCGATA TTCATCAGCC CAGCGCACTG TTGGCATTGT
          551 TCGGTTTTGT CATGGTGGTC GTATTGGGGT ATTTCCGCGT TCAAGGCGCA
          601 ATCATCATCA CCATTCTGAC GATTACCGTC ATTGCCAGCC TGATGGGTTT
          651 GAACGAGTTT CACGGCGTGG TCGGCGAAGT ACCGGGCATT GCGCCGACCT
              TTATGCAGAT GGATTTTAAA GGTCTGTTTA CCGTCAGCAT GGTCAGCGTG
          751 ATTTTCGTCT TCTTCTTGGT CGATTTGTTC GACAGTACCG GAACGCTGGT
          801 CGGCGTATCC CACCGTGCCG GACTGCTGGT GGACGGTAAG CTGCCCCGCC
          851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT
          901 TTGGGTACTT CTTCAACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC
          951 GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC
         1001 TGGCGTGTCT GATGTTCTCC CCATTGGCGA AAAGTGTTCC GGTATTTGCC
         1051 ACCGCGCCCG CACTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG
              GGACATTGAT TGGGACGATA TGACTGAAGC CGCGCCCGCG TTCCTGACCA
         1151 TTGTCTTCAT GCCGTTTACC TATTCGATTG CAGACGGCAT CGCCTTCGGC
         1201 TTCATCAGCT ATGCCGTGGT CAAACTTTTG TGTCGCCGGA CTGGGGACGT
         1251 GCCGCCTATG GTATGGGTTG TTGCCGTATT GTGGGCATTG AAATTCTGGT
         1301 ATTTGGGCTG A
This corresponds to the amino acid sequence <SEQ ID 340; ORF 097.ng>:
     g097.pep
           1
              MDISKQTLLD RVFNLKANGT TVRTELMAGL TTFLTMCYIV IVNPLILGET
           51 GMDMGAVFVA TCIASAIGCF VMGFIGNYPI ALAPGMGLNA YFTFAVVKGM
          101 GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL
          151
              ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFVMVV VLGYFRVQGA
               IIITILTITV IASLMGLNEF HGVVGEVPGI APTFMQMDFK GLFTVSMVSV
          251
               IFVFFLVDLF DSTGTLVGVS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA
              LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPVFA
          301
```

TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG

WO 99/57280

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 341>:

m097.seq

1 ATGGACACTT CAAAACAAAC ACTGTTGGAC GGGATTTTTA AGCTGAAGGC
51 AAACGGTACK ACGGTGCGTA CCGAGTTGAT GGCGGGTTTG ACAACTTTTT
101 TGACGATGTG CTACATCGTT ATCGTCAACC CTCyGATTTT GGGCGAGACC
151 GGCATGGATA TGGGGGCGGT ATTCGTCGCT ACCTGTATCG CGTCTGCCAT

201 CGGCTGTTTT GTTATGGGTT TTGTCGGCAA CTATCCGATT GCACTCGCAC
251 CGGGGATGGG GCTGAATGCC TATTTCACCT TTGCCGTCGT TAAGGGTATG
301 GGCGTGCCTT GGCAGGTTGC GTTGGGTGCG GTGTTCATCT CCGGTCTGAT
351 TTTTATCCTG TTCAGCTTTT TTAAAGTCAG GGAAATGCTG GTCAACGCAC
401 TGCCTATGGG TTTGAAAATG TCGATTGCTG CCGGTATCGG TTTGTTTTTG
451 GCACTGATTT CCCTGAAAGG CGCAGGCATT ATCGTTGCCA ATCCGGCAAC
501 CTTGGTCGGT TTGGGCGATA TTCATCAGCC GTCCGCGTTG TTGGCATTGT

551 TCGGTTTTGC TATGGTGGTC GTATTGGGAC ATTTCCGCGT TCAAGGCGCA
601 ATCATCATCA CCATCTTGAC CATTACCGTC ATTGCCAGCC TGATGGGTTT
651 GAATGAATTT CACGGCATCA TCGGCGAAGT ACCGAGCATT GCGCCGACTT

701 TTATGCAGAT GGATTTTGAA GGCCTGTTTA CCGTCAGCAT GGTCAGTGTG
751 ATTTTCGTCT TCTTCTTGGT CGATCTATTT GACAGTACCG GAACGCTGGT
801 CGGCATATCC CACCGTGCCG GGCTGCTGGT GGACGGTAAG CTGCCCCGCC

851 TGAAACGCGC ACTGCTTGCA GACTCTACCG CCATTGTGGC AGGTGCGGCT 901 TTGGGTACTT CTTCCACCAC GCCTTATGTG GAAAGCGCGG CGGGCGTATC 951 GGCAGGCGGA CGGACCGGCC TGACGGCGGT TACCGTCGGC GTATTGATGC

1001 TCGCCTGCCT GATGTTTTCA CCTTTGGCGA AAAGTGTTCC CGCTTTTGCC
1051 ACCGCGCCCG CCCTGCTTTA TGTCGGCACG CAGATGCTCC GCAGTGCGAG

1101 GGATATTGAT TGGGACGATA TGACGGAAGC CGCACCTGCG TTCCTGACCA
1151 TTGTTTTCAT GCCGTTTACT TATTCGATTG CAGACGGCAT CGCTTTCGGC
1201 TTCATCAGTT ATGCCGTGGT TAAACTTTTA TGCCGCCGCA CCAAAGACGT

1201 TTCATCAGTT ATGCCGTGGT TAAACTTTTA TGCCGCCGCA CCAAAGACGT
1251 TCCGCCTATG GTATGGATTG TTGCCGTATT GTGGGCACTG AAATTCTGGT

1301 ATTTGGGCTG A

This corresponds to the amino acid sequence <SEQ ID 342; ORF 097>:

m097.pep

1 MDTSKQTLLD GIFKLKANGT TVRTELMAGL TTFLTMCYIV IVNPXILGET

51 GMDMGAVFVA TCIASAIGCF VMGFVGNYPI ALAPGMGLNA YFTFAVVKGM

101 GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL 151 ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFAMVV VLGHFRVQGA

201 IIITILTITV IASLMGLNEF HGIIGEVPSI APTFMQMDFE GLFTVSMVSV

251 IFVFFLVDLF DSTGTLVGIS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA
301 LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPAFA

351 TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG

401 FISYAVVKLL CRRTKDVPPM VWIVAVLWAL KFWYLG*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 097 shows 96.3% identity over a 436 as overlap with a predicted ORF (ORF 097.ng) from N. gonorrhoeae:

m097/g097

	10	20	30	40	50	60
m097.pep	MDTSKQTLLDGIFK	LKANGTTVRI	ELMAGLTTFI	TMCYIVIVNE	XILGETGMDM	IGAVFVA
	- : :	1111111111	1111111111		111111111	HHHH
g097	MDISKQTLLDRVFN	LKANGTTVRI	ELMAGLTTFI	TMCYIVIVNE	LILGETGMDM	IGAVFVA
	10	20	30	40	50	60
	70	80	90	100	110	120
m097.pep	TCIASAIGCFVMGF					
		:	111111111	111111111	1111111111	111111
g097	TCIASAIGCFVMGF	IGNYPIALA	GMGLNAYFTE	AVVKGMGVPW	QVALGAVFIS	GLIFIL
	70	80	90	100	110	120
	130	140	150	160	170	180

m097.pep	FSFFKVREMLVNALPM	GLKMSIAAGI	GLFLALISLK	GAGIIVANPA	TLVGLGDIHQ	PSAL
•		1111111111			<u> </u>	1111
g097	FSFFKVREMLVNALPM		GLFLALISLK 150	GAGIIVANPA 160	TLVGLGDIHQ: 170	PSAL 180
	130	140	150	160	170	180
	190	200	210	220	230	240
m097.pep	LALFGFAMVVVLGHFR	VQGAIIITIL	TITVIASLMG	LNEFHGIIGE	VPSIAPTFMQI	MDFE
• •	111111:1111:11	11111111111	1111111111	111111::11	11:111111	:
g097	LALFGFVMVVVLGYFR	VQGAIIITIL	TITVIASLMG	LNEFHGVVGE	VPGIAPTFMQI	MDFK
	190	200	210	220	230	240
	250	260	270	280	290	300
m097.pep	GLFTVSMVSVIFVFFL	VDLFDSTGTL		VDGKLPRLKR	ALLADSTAIV	
		11111111	:		11111111	1111
g097			VGVSHRAGLL			
	250	260	270	280	290	300
	310	320	330	340	350	360
m097.pep	LGTSSTTPYVESAAGV					
mos/.pep	11111111111111111	1111111111			1:1111111	1111
g097	LGTSSTTPYVESAAGV	SAGGRTGLTA	VTVGVLMLAC	LMFSPLAKSV	PVFATAPALL	YVGT
9057	310	320	330	340	350	360
	370	380	390	400	410	420
m097.pep	QMLRSARDIDWDDMTE	AAPAFLTIVE	MPFTYSIADG	IAFGFISYAV	VKLLCRRTKD	VPPM
		11111111111	1111111111	1111111111	1111111	
g097	QMLRSARDIDWDDMTE	AAPAFLTIVE	MPFTYSIADG	IAFGFISYAV	VKLLCRRTGD	VPPM
	370	380	390	400	410	420
						•
	430					
m097.pep	VWIVAVLWALKFWYLG	iX.				
-007	:	 V				
g097	VWVVAVLWALKFWYLG	· A				
	430					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 343> a097.seq

1	ATGGACACTT	CAAAACAAAC	ACTGTTGGAC	GGGATTTTTA	AGCTGAAGGC
51	AAACGGTACG	ACGGTGCGTA	CCGAGTTGAT	GGCGGGTTTG	ACAACTTTTT
101	TGACGATGTG	CTACATCGTT	ATCGTCAACC	CTCTGATTTT	GGGCGAGACC
151	GGCATGGATA	TGGGGGCGGT	ATTCGTCGCT	ACCTGTATCG	CGTCTGCCAT
201	CGGCTGTTTT	GTTATGGGTT	TTGTCGGCAA	CTATCCGATT	GCACTCGCAC
251	CGGGGATGGG	GCTGAATGCC	TATTTCACCT	TTGCCGTCGT	TAAGGGTATG
301	GGCGTGCCTT	GGCAGGTTGC	GTTGGGTGCG	GTGTTCATCT	CCGGTCTGAT
351	TTTCATCCTG	TTCAGCTTTT	TTAAAGTCAG	GGAAATGCTG	GTCAACGCAC
401	TGCCTATGGG	TTTGAAAATG	TCGATTGCTG	CCGGTATCGG	TTTGTTTTTG
451	GCACTGATTT	CCCTGAAAGG	CGCAGGCATT	ATCGTTGCCA	ATCCGGCAAC
501	CTTGGTCGGC	TTGGGCGATA	TTCATCAGCC	GTCCGCGTTG	TTGGCACTGT
551	TCGGTTTTGC	CATGGTGGTC	GTATTGGGAC	ATTTCCGCGT	TCAAGGCGCA
601	ATCATCATCA	CCATTTTGAC	GATTACCGTC	ATTGCCAGCC	TGATGGGTTT
651	GAACGAATTT	CACGGCATCA	TCGGCGAAGT	GCCGAGCATT	GCGCCGACTT
701	TTATGCAGAT	GGATTTTAAA	GGGTTGTTTA	CCGTCAGCAT	GGTCAGCGTG
751	ATTTTCGTCT	TTTTCCTAGT	CGATCTGTTC	GACAGTACCG	GAACACTGGT
801	CGGTGTATCG	CATCGTGCCG	GACTGCTGGT	GGACGGTAAG	CTGCCCCGCC
851	TGAAACGCGC	ACTGCTTGCA	GACTCTACCG	CTATTGTGGC	AGGTGCGGCT
901	TTGGGTACTT	CTTCAACCAC	GCCTTATGTG	GAAAGTGCGG	CGGGCGTATC
951	GGCAGGCGGG	CGGACAGGTC	TGACGGCGGT	TACCGTCGGC	GTATTGATGC
1001	TCGCCTGCCT	GATGTTTTCA	CCTTTGGCGA	AAAGTGTTCC	CGCTTTTGCC
1051	ACCGCGCCCG	CCCTGCTTTA	TGTCGGCACG	CAGATGCTCC	GCAGTGCGAG
1101	GGACATCGAT	TGGGACGATA	TGACGGAAGC	CGCACCCGCA	TTCCTGACCA
1151	TTGTCTTCAT	GCCGTTTACC	TATTCGATTG	CAGACGGCAT	CGCTTTCGGC
1201	TTCATCAGTT	ATGCCGTGGT	TAAACTTTTA	TGCCGCCGCA	CCAAAGACGT
1251	TCCGCCTATG	GTATGGATTG	TTGCCGTATT	GTGGGCACTG	AAATTCTGGT

1301 ATTTGGGCTG A

This corresponds to the amino acid sequence <SEQ ID 344; ORF 097.a>: a097.pep

- 1 MDTSKQTLLD GIFKLKANGT TVRTELMAGL TTFLTMCYIV IVNPLILGET

- 51 GMDMGAVFVA TCIASAIGCF VMGFVGNYPI ALAPGMGLNA YFTFAVVKGM
 101 GVPWQVALGA VFISGLIFIL FSFFKVREML VNALPMGLKM SIAAGIGLFL
 151 ALISLKGAGI IVANPATLVG LGDIHQPSAL LALFGFAMVV VLGHFRVQGA
- 201 IIITILTITV IASLMGLNEF HGIIGEVPSI APTFMQMDFK GLFTVSMVSV
- 251 IFVFFLVDLF DSTGTLVGVS HRAGLLVDGK LPRLKRALLA DSTAIVAGAA
 301 LGTSSTTPYV ESAAGVSAGG RTGLTAVTVG VLMLACLMFS PLAKSVPAFA
 351 TAPALLYVGT QMLRSARDID WDDMTEAAPA FLTIVFMPFT YSIADGIAFG
- 401 FISYAVVKLL CRRTKDVPPM VWIVAVLWAL KFWYLG*

99.3% identity in 436 aa overlap m097/a097

	10	20	30	40	50	60
m097.pep	MDTSKQTLLDGIFK					
007						
a097	MDTSKQTLLDGIFK 10	LKANGTTVKI 20	30	40	LILGETGMD! 50	MGAVIVA 60
	10	20	30	30	30	80
	70	80	90	100	110	120
m097.pep	TCIASAIGCFVMGF					
				111111111	11111111	
a097	TCIASAIGCFVMGF	VGNYPIALAI 80				
	70	80	90	100	110	120
	130	140	150	160	170	180
m097.pep	FSFFKVREMLVNAL	PMGLKMSIA/	AGIGLFLALIS	LKGAGIIVAN	PATLVGLGD.	
	[]]]]]]]]]					
a097	FSFFKVREMLVNAL	PMGLKMSIA/	AGIGLFLALIS	LKGAGIIVAN	PATLVGLGD:	IHQPSAL
	130	140	150	160	170	180
	190	200	210	220	020	0.40
m097.pep	LALFGFAMVVVLGH	200 EDVOCATITY	210	220	230	240
mos/.pep						
a097	LALFGFAMVVVLGH					
	190	200	210	220	230	240
	250	260	270	280	290	300
m097.pep	GLFTVSMVSVIFVF					
-007						
a097	250	260	270	LLVDGKLPKL	KKALLADSTI 290	AIVAGAA 300
	250	200	210	200	230	300
	310	320	330	340	350	360
m097.pep	LGTSSTTPYVESAA					
a097	LGTSSTTPYVESAA					
	310	320	330	340	350	360
	370	380	390	400	410	420
m097.pep	OMLRSARDIDWDDM					
a097	QMLRSARDIDWDDM	TEAAPAFLT:	IVFMPFTYSI <i>P</i>	DGIAFGFISY	'AVVKLLCRR'	TKDVPPM
	370	380	390	400	410	420
	420					
-0.00	430					

VWIVAVLWALKFWYLGX m097.pep 11111111111111111

VWIVAVLWALKFWYLGX a097

430

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 345>: g098.seg ATGACCGCCG ACGGTCTCTT CGTCGCTTTC AACTTCAATA CGTTTGCCGT 1 51 TGTGCGAATA TTGATACCAG TACAGCAGGA TGCTGCCCAG GCTGGCGATC 101 AGTTTGTCGG CGATGTCGCG CGCTTCGCTG TCGGGATGGC TTTCGCGTTC 151 GGGATGAACG CAGCCGAGCA TGGACACGCC GGTACGCATC ACGTCCATCG 201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC 251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT GTTGGGCAGA TGGCCGTGAA TCAGCAAGTG TGCGACTTCT TCAAACTCGC 351 ATTTTTGTGC CAAATTAGAA TGTCGTAA This corresponds to the amino acid sequence <SEQ ID 346; ORF 098.ng>: q098.pep 1 MTADGLFVAF NFNTFAVVRI LIPVQQDAAQ AGDQFVGDVA RFAVGMAFAF GMNAAEHGHA GTHHVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF 51 101 VGQMAVNQQV CDFFKLAFLC QIRMS* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 347>: m098.seq ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT 51 TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC 101 AGTTTGTCGG CGATGTCGCG CGCTTCACTT TCCGGATGGC TTTCACGTTC AGGATGAACG CAGCCCAGCA TGGATACGCC GGTACGCATT ACGTCCATCG 201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC 251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT 301 GTTGGGCAGA TGGCCGTGAA TCAGCAGGTG GGCGACTTCT TCAAACTCGC 351 ATTTTTGTGC CAAATCAGAA TGTCGTAA This corresponds to the amino acid sequence <SEQ ID 348; ORF 098>: m098.pep MTADGLFVAF NLNAFAVVRI LIPVQEDAAE AGDQFVGDVA RFTFRMAFTF RMNAAQHGYA GTHYVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF VGQMAVNQQV GDFFKLAFLC QIRMS* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 098 shows 89.6% identity over a 125 aa overlap with a predicted ORF (ORF 098.ng) from N. gonorrhoeae: m098/g098 10 20 30 40 MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA m098.pep g098 MTADGLFVAFNFNTFAVVRILIPVQQDAAQAGDQFVGDVARFAVGMAFAFGMNAAEHGHA 10 20 30 40 50 80 90 100 m098.pep GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC g098 GTHHVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVCDFFKLAFLC 70 80 90 100 m098.pep OIRMSX 111111 g098 **OIRMSX**

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 349>: a098.seq

- 1 ATGACCGCCG ATGGTCTCTT CGTCGCTTTC AACCTCAATG CGTTTGCCGT
- 51 TGTGCGAATA TTGATACCAG TACAAGAGGA TGCTGCCGAG GCTGGCGATC

```
101 AGTTTGTCGG CGATGTCGCG CGCTTCACTT TCCGGATGGC TTTCACGTTC
151 AGGATGAACG CAGCCCAGCA TGGATACGCC GGTACGCATT ACGTCCATCG
201 GATGGGTATG TGCAGGCAGG CTTTCCAAAA CTTTAATCAC ACGGATAGGC
251 AGGCCGCGCA TGGATTTGAG CTTGGTTTTA TAAGCGGCCA GCTCGAATTT
301 GTTGGGCAGA TGGCCGTGAA TCAGCAGGTG GGCGACTTCT TCAAACTCGC
351 ATTTTTGTGC CAAATCAGAA TGTCGTAA

This corresponds to the amino acid sequence <SEQ ID 350; ORF 098.a>:
a098.pep

1 MTADGLFVAF NLNAFAVVRI LIPVQEDAAE AGDQFVGDVA RFTFRMAFTF
51 RMNAAQHGYA GTHYVHRMGM CRQAFQNFNH TDRQAAHGFE LGFISGQLEF
101 VGQMAVNQQV GDFFKLAFLC QIRMS*

m098/a098

100.0% identity in 125 aa overlap
```

20 30 10 40 MTADGLFVAFNLNAFAVVRILIPVOEDAAEAGDOFVGDVARFTFRMAFTFRMNAAOHGYA m098.pep a098 MTADGLFVAFNLNAFAVVRILIPVQEDAAEAGDQFVGDVARFTFRMAFTFRMNAAQHGYA 20 30 40 70 80 90 100 110 GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC m098.pep GTHYVHRMGMCRQAFQNFNHTDRQAAHGFELGFISGQLEFVGQMAVNQQVGDFFKLAFLC a098 80 90 100 110

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 351>: g099.seq

ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTGGA 51 GCTGACGGGC AAACGGCAGG CGGGCATTAC TGCCACAGAC ATCGTGTTGG 101 CACTGACCGA ATTCTTGCGT AAAGAGCGCG TGGTCGGGGC GTTTGTCGAA 151 TTTTTCGGCG AGGGCGCGAG AAGCCTGTCT ATCGGCGACC GCGCGACCAT TTCCAACATG ACGCCGGAGT TCGGCGCGAC TGCCGCCATG TTCGCCATCG 251 ACGCGCAAAC TATTGATTAT TTGAAACTGA CCGGACGTGA CGACGCGCAG 301 GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTAT GGGCAGGTGG 351 CTTGAAAACC GCCGTTTATC CGCGCGTTTT GAAATTTGAT TTGAGCAGCG 401 TAACGCGCAA TATGGCAGGC CCGAGCAACC CGCACGCGCG TTTTGCCACC 451 GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCAGA 501 CGGCCAAATG CCTGACGGTG CAGTGATTAT TGCCGCGATT ACTTCGTGTA CCAATACTTC CAACCCGCGC AACGTTGTCG CCGCCGCACT GTTGGCACGC AATGCCAACC GCCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT TGCCCCGGGT TCAAAAGTAG CCGGAATCTA TTTGAAAGAA GCAGGCTTGT 651 701 TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCATGTACC 751 ACCTGTAACG GCATGAGCGG CGCGCTCGAC CCGAAAATCC AACAAGAAAT 801 CATCGACCGC GAtttgtacg cCACCGCCGT ATTGTCAGGC AACCGCAACT 851 TCGACGGCCG TATCCATCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT 901 CCTTTGGTCG TTGCCTACGC ATTGGCAGGT AGCATCCGTT TCGATATTGA AAACGACGTA CTCGGCGTTG CAGACGGCCG CGAAATCCGC CTGAAAGATA 1001 TCTGGCCGAC AGACGAAGAA ATCGATGCCA TCGTTGCCGA ATATGTGAAA 1051 CCGCAACAAT TCCGCGACAT TTATATCCCG ATGTCCGACA CCGGCACAGC 1101 GCAAAAAGCA CCAAGCCCGC TGTACGACTG GCGACCGATG TCCACCTACA 1151 TCCGCCGTCC GCCCTATTGG GAAGGCGCAC TGGCAGGGGA ACGTACATTA 1201 AGAGGTATGC GTCCGCCGGC GATTTTGCCC GACAACATCA CCACCGACCA 1251 CATCTCgcca tCCAATGCGA TTTTGGCCGG cagTGCcgca ggtgaATATT

WO 99/57280


```
1301 TGGCGAAAAT GGGTTTGCCT GAAGAAGACT TCAACTCTTA CGCAACCCAC
               CGCGGCGACC ACTTGACCGC CCAACGCGCA ACCTTCGCCA ATCCGAAACT
               GTTTAACGAA ATGGTGAGAA ACGAAGACGG CAGCGTACGC CAAGGTtcgt
         1451
               tggcacgcgT tgaacCAGAA GGCCAAACCA TGCGCATGTG GGAAGCCATC
         1501 GAAACCTATA TGAACCGCAA ACAGCCGCTT ATCATCATTG CCGGTGCGGA
         1551 CTATGGTCAA GGCTCAAGCC GCGACTGGGC GGCGAAGGGC GTGCGGCTGG
         1601 CGGGTGTGGA AGCCATCGCC GCCGAAGGTT TCGAGCGCAT CCACCGCACC
         1651 AACCTCATCG GCATGGGCGT CTTGCCGCTG CAATTCAAAC CCGGCACCAA
         1701 CCGCCATACC CTGCAACTGG ACGGTACGGA AACCTACGAC GTTGTCGGCG
         1751 AACGCACACC GCGCTGCGGC CTGACCCTCG TGATTCACCG TAAAAACGGA
               GAAACCGTCG AAGTTCCGGT TACCTGCCGC CCCGATACCG CAGAAGAAGC
         1851 ATTGGTATAT GAAGCCGGCG GCGTATTGCA ACGGTTTGCA CAGGACTTTT
         1901 TGGAAGGGAA CGCGGCTTAG
This corresponds to the amino acid sequence <SEQ ID 352; ORF 099.ng>:
     g099.pep
               MLGRASMMRL PDIVGVELTG KRQAGITATD IVLALTEFLR KERVVGAFVE
           51 FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDAOTIDY LKLTGRDDAO
          101 VKLVETYAKT AGLWAGGLKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT
          151 ADLAAKGLAK PYEEPSDGQM PDGAVIIAAI TSCTNTSNPR NVVAAALLAR
          201 NANRLGLKRK PWVKSSFAPG SKVAGIYLKE AGLLPEMEKL GFGIVAFACT
              TCNGMSGALD PKIQQEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP
          251
               PLVVAYALAG SIRFDIENDV LGVADGREIR LKDIWPTDEE IDAIVAEYVK
          301
               PQQFRDIYIP MSDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
          401 RGMRPPAILP DNITTDHISP SNAILAGSAA GEYLAKMGLP EEDFNSYATH
          451 RGDHLTAQRA TFANPKLFNE MVRNEDGSVR QGSLARVEPE GQTMRMWEAI
          501 ETYMNRKOPL IIIAGADYGO GSSRDWAAKG VRLAGVEAIA AEGFERIHRT
          551 NLIGMGVLPL QFKPGTNRHT LQLDGTETYD VVGERTPRCG LTLVIHRKNG
          601 ETVEVPVTCR PDTAEEALVY EAGGVLQRFA QDFLEGNAA*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 353>:
     m099.seq
              ATGCTGGGAC GCGCGTCCAT GATGCGCCTG CCCGATATTG TCGGCGTTGA
           51 GCTGAACGGC AAACGGCAGG CGGGCATTAC GGCGACGGAT ATTGTGTTGG
              CACTGACCGA GTTTCTGCGC AAAGAACGCG TGGTCGGGGC GTTTGTCGAA
               TTCTTCGGCG AGGGCGCGAG AAGCCTGTCT ATCGGCGACC GCGCGACCAT
               TTCCAACATG ACGCCGGAGT TCGGCGCGAC TGCCGCGATG TTCGCTATTG
          251 ATGAGCAAAC CATTGATTAT TTGAAACTGA CCGGACGCGA CGACGCGCAG
          301 GTGAAATTGG TGGAAACCTA CGCCAAAACC GCAGGCTTGT GGGCAGATGC
          351 CTTGAAAACC GCCGTTTATC CTCGCGTTTT GAAATTTGAT TTGAGCAGCG
          401 TAACGCGCAA TATGGCAGGC CCAAGTAACC CGCATGCCCG TTTTGCGACC
          451 GCCGATTTGG CGGCGAAAGG GCTGGCGAAG CCTTACGAAG AGCCTTCGGA
               CGGCCAAATG CCCGACGGCT CGGTCATCAT CGCCGCGATT ACCAGTTGCA
              CCAACACTTC CAACCCGCGC AACGTTGTTG CCGCCGCGCT CTTGGCACGC
          601 AATGCCAACC GTCTCGGCTT GAAACGCAAA CCTTGGGTGA AATCTTCGTT
          651 TGCCCCGGGT TCAAAAGTAG CCGAAATCTA TTTGAAAGAA GCGGGCCTGT
          701 TGCCCGAAAT GGAAAAACTC GGCTTCGGTA TCGTCGCCTT CGCCTGCACC
          751 ACCTGCAACG GCATGAGTGG CGCGCTGGAT CCGAAAATCC AGAAAGAAAT
          801 CATCGACCGC GATTTGTACG CCACCGCCGT ATTATCAGGC AACCGCAACT
          851 TCGACGGCCG TATCCACCCG TATGCGAAAC AGGCTTTCCT CGCTTCGCCT
               CCGTTGGTCG TTGCCTACGC GCTGGCAGGC AGTATCCGTT TCGATATTGA
          951 AAACGACGTA CTCGGCGTTG CAGACGGCAA GGAAATCCGC CTGAAAGACA
         1001 TTTGGCCTGC CGATGAAGAA ATCGATGCCG TCGTTGCCGA ATATGTGAAA
         1051 CCGCAGCAGT TCCGCGATGT GTATGTACCG ATGTTCGACA CCGGCACAGC
         1101 GCAAAAAGCA CCCAGTCCGC TGTACGATTG GCGTCCGATG TCCACCTACA
         1151 TCCGCCGTCC GCCTTACTGG GAAGGCGCGC TGGCAGGGGA ACGCACATTA
         1201 AGAGGTATGC GTCCGCTGGC GATTTTGCCC GACAACATCA CCACCGACCA
               CCTCTCGCCG TCCAATGCGA TTTTGGCCGT CAGTGCCGCA GGCGAGTATT
         1301 TGGCGAAAAT GGGTTTGCCT GAAGAAGACT TCAACTCTTA CGCAACCCAC
         1351 CGCGGCGACC ACTTGACCGC CCAACGCGCT ACCTTCGCCA ATCCGAAACT
         1401 GTTTAACGAA ATGGTGAAAA ACGAAGACGG CAGCGTGCGC CAAGGCTCGT
         1451 TCGCCCGCGT CGAACCCGAA GGCGAAACCA TGCGCATGTG GGAAGCCATC
         1501 GAAACCTATA TGAACCGCAA ACAGCCGCTC ATCATCATTG CCGGTGCGGA
```

1551	CTATGGTCAA	GGCTCAAGCC	GCGACTGGGC	TGCAAAAGGC	GTACGCCTCG
1601	CCGGCGTAGA	AGCGATTGTT	GCCGAAGGCT	TCGAGCGTAT	CCACCGCACC
1651	AACCTTATCG	GCATGGGCGT	GTTGCCGCTG	CAGTTCAAAC	CCGACACCAA
1701	CCGCCATACC	CTGCAACTGG	ACGGTACGGA	AACCTACGAC	GTGGTCGGCG
1751	AACGCACACC	GCGCTGCGAC	CTGACCCTCG	TGATTCACCG	TAAAAACGGC
1801	GAAACCGTTG	AAGTTCCCGT	TACCTGCTGC	CTCGATACTG	CAGAAGAAGT
1851	ATTGGTATAT	GAAGCCGGCG	GCGTGTTGCA	ACGGTTTGCA	CAGGATTTTT
1901	TGGAAGGGAA	CGCGGCTTAG			

This corresponds to the amino acid sequence <SEQ ID 354; ORF 099>:

m099.pep

1 MLGRASMRRL PDIVGVELNG KRQAGITATD IVLALTEFLR KERVVGAFVE
51 FFGEGARSLS IGDRATISNM TPEFGATAAM FAIDEQTIDY LKLTGRDDAQ
101 VKLVETYAKT AGLWADALKT AVYPRVLKFD LSSVTRNMAG PSNPHARFAT
151 ADLAAKGLAK PYEEPSDGQM PDGSVIIAAI TSCTNTSNPR NVVAAALLAR
201 NANRLGLKRK PWVKSSFAPG SKVAEIYLKE AGLLPEMEKL GFGIVAFACT
251 TCNGMSGALD PKIQKEIIDR DLYATAVLSG NRNFDGRIHP YAKQAFLASP
301 PLVVAYALAG SIRFDIENDV LGVADGKEIR LKDIWPADEE IDAVVAEYVK
351 PQQFRDVYVP MFDTGTAQKA PSPLYDWRPM STYIRRPPYW EGALAGERTL
401 RGMRPLAILP DNITTDHLSP SNAILAVSAA GEYLAKMGLP EEDFNSYATH
451 RGDHLTAQRA TFANPKLFNE MVKNEDGSVR QGSFARVEPE GETMRMWEAI
501 ETYMNRKQPL IIIAGADYGQ GSSRDWAAKG VRLAGVEAIV AEGFERIHRT
551 NLIGMGVLPL QFKPDTNRHT LQLDGTETYD VVGERTPRCD LTLVIHRKNG

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 099 shows 96.2% identity over a 639 aa overlap with a predicted ORF (ORF 099.ng) from N. gonorrhoeae:

m099/g099

	10	20	30	40	50	60
m099.pep	MLGRASMMRLPDIVO	EVELNGKRQA	GITATDIVLA	LTEFLRKERV	VGAFVEFFGE	GARSLS
		1111:111			1111111111	HHHH
g099	MLGRASMMRLPDIVO	VELTGKROA	GITATDIVLA	LTEFLRKERV	VGAFVEFFGE	GARSLS
	10	20	30	40	50	60
	70	80	90	100	110	120
m099.pep	IGDRATISNMTPEFO	ATAAMFAID	EQTIDYLKLT	GRDDAOVKLV	ETYAKTAGLW	
				ШПІШ		1:11
g099	IGDRATISNMTPEFO	ATAAMFAID	AQTIDYLKLT	GRDDAOVKLV	ETYAKTAGLW	
_	70	80	90	100	110	120
	130	140	150	160	170	180
m099.pep	AVYPRVLKFDLSSVT	RNMAGPSNP	HARFATADLA	AKGLAKPYEE		
		111111111			111111111	111111
g099	AVYPRVLKFDLSSVI	RNMAGPSNP	HARFATADLA	AKGI AKPYEE	PSDGOMPDGA PSDGOMPDGA	
3	130	140	150	160	170	180
					-,,	100
	190	200	210	220	230	240
m099.pep	TSCTNTSNPRNVVA	ALLARNANRI				
		11111111				
g099	TSCTNTSNPRNVVA	ALLARNANRI	LGLKRKPWVK	SSFAPGSKVA	GTYLKEAGLL	DEMEKT.
5 · ·	190	200	210	220	230	240
				220	230	240
	250	260	270	280	290	300
m099.pep	GFGIVAFACTTCNGM					
				111111111		
g099	GFGIVAFACTTCNGM			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
J	250	260	270	280	290	
		200	2,0	200	290	300
	310	320	330	340	350	7.60
	540	320	330	340	350	360

m099.pep	PLVVAYALAGSIF		ADGKEIRLKD:			
g099	PLVVAYALAGSIF 310	RFDIENDVLGVA 320	ADGREIRLKD: 330	IWPTDEEIDAI 340	IVAEYVKPQQ: 350	FRDIYIP 360
m099.pep	370 MFDTGTAQKAPSE	380 PLYDWRPMSTY	390 IRRPPYWEGAI	400 LAGERTLRGMI	410 RPLAILPDNI	420 TTDHLSP
g099	 MSDTGTAQKAPSE	 !LYDWRPMSTY	 RRPPYWEGAI	 LAGERTLRGMI	 RPPAILPDNI:	: TTDHISP
	370	380	390	400	410	420
-000	430	440	450	460	470	480
m099.pep	SNAILAVSAAGEY	TAKMGLPEED	INSYATHRODI	HLTAQRATFAI	NPKLFNEMVKI :	NEDGSVR
g099	SNAILAGSAAGEY	LAKMGLPEEDI 440	FNSYATHRGDI 450	ILTAORATFAN 460	IPKLFNEMVRI 470	NEDGSVR 480
m099.pep	490 QGSFARVEPEGET	500 MRMWEAIETYN	510 MNRKQPLIII	520 AGADYGQGSSI	530 RDWAAKGVRL	540 AGVEAIV
g099	: : QGSLARVEPEGQT	,,,,,,,,,,,,		AGADYGOGSSI	<i>.</i>	: AGVEATA
5	490	500	510	520	530	540
	550	560	570	580	590	600
m099.pep	AEGFERIHRTNLI	:GMGVLPLQFKI		OGTETYDVVGI	ERTPRCDLTL	VIHRKNG
g099	AEGFERIHRTNLI 550	GMGVLPLQFKI	PGTNRHTLQLI 570			•
				580	590 ,	600
m099.pep	610 ETVEVPVTCCLDI	620 AEEVLVYEAGO	630 SVLORFAODFI	640 LEGNAAX		
	 ETVEVPVTCRPDT	111:111111	Шішіш			
g099	610	620	630	640		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 355>: a099.seq

1	ATGCTGGGAC	GCGCGTCCAT	GATGCGCCTG	CCCGATATTG	TCGGCGTTGA
51	GCTGAACGGC	AAACGGAAGG	CGGGCATTAC	GGCGACGGAT	ATTGTGTTGG
101	CACTGACCGA	GTTTCTGCGC	AAAGAACGCG	TGGTCGGGGC	GTTTGTCGAA
151	TTCTTCGGCG	AGGGCGCGAG	AAGCCTGTCT	ATCGGCGACC	GCGCGACCAT
201	TTCCAACATG	ACGCCGGAGT	TCGGCGCGAC	TGCCGCGATG	TTCGCTATTG
251	ATGAGCAAAC	CATTGATTAT	TTGAAACTGA	CCGGACGCGA	CGACGCGCAG
301	GTGAAATTGG	TGGAAACCTA	CGCCAAAACC	GCAGGCTTGT	GGGCAGATGC
351	CTTGAAAACC	GCCGTTTATC	CGCGCGTTTT	GAAATTTGAT	TTGAGCAGCG
401	TAACGCGCAA	TATGGCAGGC	CCGAGCAACC	CGCACGCGCG	TTTTGCGACC
451	GCCGATTTGG	CCGGCAAAGG	CTTGGCTAAA	CCTTACGAAG	AGCCTTCAGA
501	CGGCCAAATG	CCTGACGGTG	CAGTGATTAT	TGCCGCGATT	ACTTCCTGTA
551	CCAATACTTC	CAATCCGCGC	AACGTTGTCG	CCGCCGCGCT	GTTGGCACGC
601	AATGCCAACC	GCCTCGGCTT	GCAACGCAAA	CCTTGGGTGA	AATCTTCGTT
651	TGCCCCGGGT	TCAAAAGTAG	CCGAAATCTA	TTTGAAAGAA	GCAGATCTGC
701	TGCCCGAAAT	GGAAAAACTC	GGCTTCGGTA	TCGTTGCCTT	CGCATGTACC
751	ACCTGTAACG	GCATGAGCGG	CGCGCTGGAT	CCGAAAATCC	AGAAAGAAAT
801	CATCGACCGC	GATTTGTACG	CCACCGCCGT	ATTGTCAGGC	AACCGCAACT
851	TTGACGGCCG	TATCCATCCG	TATGCGAAAC	AGGCTTTCCT	CGCTTCGCCT
901	CCGTTGGTCG	TTGCCTACGC	GCTGGCAGGC	AGCATCCGTT	TCGATATTGA
951	AAACGACGTA	CTCGGCGTTG	CAGACGGCAA	AGAAATCCGC	CTGAAAGACA
1001	TTTGGCCTAC	CGATGAAGAA	ATCGATGCCA	TCGTTGCCGA	ATATGTGAAA
1051	CCGCAGCAAT	TTCGCGACGT	TTATATCCCG	ATGTTCGACA	CCGGCACAGC
1101	GCAAAAAGCA	CCAAGCCCGC	TGTACGACTG	GCGTCCAATG	TCTACCTATA
1151	TCCGCCGCCC	ACCTTACTGG	GAAGGCGCAC	TGGCAGGGGA	ACGCACATTA
1201	AGCGGTATGC	GTCCGCTGGC	GATTTTGCCC	GACAACATCA	CCACCGACCA

			•					
1251	TCTCTCGCCA	TCCAATGCGA	TTTTGGCAAG	CAGTGCCGCA	GGCGAATATT			
1301	TGGCAAAAAT	GGGTTTGCCT	GAAGAAGACT	TCAACTCTTA	CGCAACCCAC			
1351	CGTGGCGACC	ACTTGACCGC	CCAACGCGCA	ACCTTCGCCA	ATCCGAAACT			
1401	GTTTAACGAA	ATGGTGAGAA	ACGAAGACGG	CAGCGTACGC	CAAGGTTCGC			
1451	TGGCACGCGT	TGAACCCGAA	GGCCAAACCA	TGCGCATGTG	GGAAGCCATC			
1501	GAAACCTATA	TGAACCGCAA	ACAGCCGCTC	ATCATCATTG	CCGGCGCGGA			
1551	CTACGGTCAA	GGCTCAAGCC	GCGACTGGGC	TGCAAAAGGC	GTACGCCTCG			
1601	CCGGCGTGGA	AGCGATTGTT	GCCGAAGGCT	TCGAGCGTAT	CCACCGCACC			
1651	AACTTGATCG	GTATGGGCGT	GTTGCCGCTG	CAGTTCAAAC	CGGGTACCAA			
1701	CCGCCACACC	CTGCAACTGG	ACGGTACGGA	AACCTACGAC	GTTGTCGGCG			
1751	AACGCACACC	GCGCTGCGAC	CTGACCCTTG	TGATTCACCG	TAAAAACGGC			
1801	GAGACCGTCG	AAGTCCCCAT	TACCTGCCGC	CTCGATACCG	CAGAAGAAGT			
1851	GTTGGTATAT	GAAGCCGGTG	GCGTATTGCA	ACGGTTTGCA	CAGGATTTTT			
1901	TGGAAGGGAA	CÉCGGCTTAG						
snonds	sponds to the amino acid sequence <seo 099="" 356:="" a="" id="" orf="">:</seo>							

This corresponds to the amino acid sequence <SEQ ID 356; ORF 099.a>: a099.pep

1	MLGRASMMRL	PDIVGVELNG	KRKAGITATD	IVLALTEFLR	KERVVGAFVE
51	FFGEGARSLS	IGDRATISNM	TPEFGATAAM	FAIDEQTIDY	LKLTGRDDAQ
101	VKLVETYAKT	AGLWADALKT	AVYPRVLKFD	LSSVTRNMAG	PSNPHARFAT
151	ADLAGKGLAK	PYEEPSDGQM	PDGAVIIAAI	TSCTNTSNPR	NVVAAALLAR
201	NANRLGLQRK	PWVKSSFAPG	SKVAEIYLKE	ADLLPEMEKL	GFGIVAFACT
251	TCNGMSGALD	PKIQKEIIDR	DLYATAVLSG	NRNFDGRIHP	YAKQAFLASP
301	PLVVAYALAG	SIRFDIENDV	LGVADGKEIR	LKDIWPTDEE	IDAIVAEYVK
351	PQQFRDVYIP	MFDTGTAQKA	PSPLYDWRPM	STYIRRPPYW	EGALAGERTL
401	SGMRPLAILP	DNITTDHLSP	SNAILASSAA	GEYLAKMGLP	EEDFNSYATH
451	RGDHLTAQRA	TFANPKLFNE	MVRNEDGSVR	QGSLARVEPE	GQTMRMWEAI
501	ETYMNRKQPL	IIIAGADYGQ	GSSRDWAAKG	VRLAGVEAIV	AEGFERIHRT
551	NLIGMGVLPL	QFKPGTNRHT	LQLDGTETYD	VVGERTPRCD	LTLVIHRKNG
601	ETVEVPITCR	LDTAEEVLVY	EAGGVLORFA	ODFLEGNAA*	

m099/a099 97.5% identity in 639 aa overlap

	10	20	30	40	50	60
m099.pep	MLGRASMMRLPDIV	'GVELNGKRQA	GITATDIVLA	LTEFLRKERV	VGAFVEFFGI	EGARSLS
		111111111111111111111111111111111111111	1111111111	11111111111	111111111	
a099	MLGRASMMRLPDIV	GVELNGKRKA	GITATDIVLA	LTEFLRKERV	VGAFVEFFGI	GARSLS
	10	20	30	40	50 ·	60
	70	80	90	100	110	120
m099.pep	IGDRATISNMTPEF	GATAAMFAID	EQTIDYLKLT	GRDDAQVKLV	ETYAKTAGL	VADALKT
		11111111111		1111111111	111111111	
a099	IGDRATISNMTPEF	GATAAMFAID	EQTIDYLKLT	GRDDAQVKLV	ETYAKTAGL	VADALKT
	70	80	90	100	110	120
	130	140	150	160	170	180
m099.pep	AVYPRVLKFDLSSV	TRNMAGPSNP	HARFATADLA	AKGLAKPYEE	PSDGOMPDGS	IAAIIV
		1111111111	1111111111	:11111111		
a099	AVYPRVLKFDLSSV					
	130	140	150	160	170	180
	190	200	210	220	230	240
m099.pep	TSCTNTSNPRNVVA	AALLARNANR	LGLKRKPWVK	SSFAPGSKVA	ETYLKEAGLI	
• •						
a099	TSCTNTSNPRNVVA					
	190	200	210	220	230	240
					200	210
	250	260	270	280	290	300
m099.pep	GFGIVAFACTTCNG	MSGALDPKIC				
		111111111		1111111111		SULTIVOL
a099	GFGIVAFACTTCNG	MSGALDPKIC	KETTDRDI.YA	TAVI.SGNRNE	'DGRTHPYAK	ווווווו
	250	260	270	280	290	300
			2.0	200	2.70	300
	310	320	330	340	350	360
m099.pep	PLVVAYALAGSIRF					700C
				ADDDIIDAY	AND I AND AND	MUNIVE

a099						
	370	380	390	400	410	420
m099.pep	MFDTGTAQKAPSPLY	DWRPMSTYIF	RPPYWEGAL	AGERTLRGMR	PLAILPDNIT	TTDHLSP
a099	MFDTGTAQKAPSPLY					
	370	380	390	400	410	420
	430	440	450	460	470	480
m099.pep	SNAILAVSAAGEYLA					
moss.pep				_	111111111	
a099	SNAILASSAAGEYLA					
4000	430	440	450	460	470	480
	490	500	510	520	530	540
m099.pep	QGSFARVEPEGETMR	MWEAIETYMN	RKQPLIIIA	GADYGQGSSR	.DWAAKGVRL	AGVEAIV
a099	QGSLARVEPEGQTMR				.DWAAKGVRL	AGVEAIV
	490	500	510	520	530	540
	550	560	570	580	500	
m099.pep	AEGFERIHRTNLIGM				590	600
mo99.pep						IIIIIII
a099	AEGFERIHRTNLIGM					
4055	550	560	570	580	590	600
					050	000
	610	620	630	640		
m099.pep	ETVEVPVTCCLDTAE	EVLVYEAGGV	LQRFAQDFLI	EGNAAX		
		111111111		11111		
a099	ETVEVPITCRLDTAE	EVLVYEAGGV	LQRFAQDFL	EGNAAX		
	610	620	630	640		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 357>: g102.seq

1	AtgtCCGCCA	AAactccgtc	gctcttcggc	ggcgcgatga	Ttatcgccgg
51	gaaggttatc	ggcgcAGgta	tgttccccaa	ccccaccgcc	aacttggggg
101	acgggttaat	aggctcgctg	attgtgctgc	tgtacacctg	gtttccattc
151	tcctccggcg	ccctcatgat	tttggaagtc	aacacccata	acCCccgagg
201	ggcaAGtttt	gacaccATGg	tcAAagacct	gctcgGaCGc	ggctggaaca
251	tcatcaacgg	catcgccgtc	gctttggTCc	tatacggctc	gacctacgcg
301	tacattttag	tcggcggtga	cctGACCGCC	AAAGGCAtcg	GCAgCGCAGT
351	AGGCGGCAAA	ATTTCgctca	CCGTCGGACA	actcgtcttc	tTCGGCATCC
401	TCGCCTTTTG	CGTATGGGCA	TCCGCACGCT	TGGTCGACCG	CTTTACCGGC
451	GTCCTCATCG	GCGGCATGGT	ATTAACCTTT	ATTTGGGCAA	CCGGCGGCCT
501	GGTTGCCGAT	GCCAAACCGT	CCGTCCTCTT	CGACACCCAA	GCCCCCGTCG
551	GCACCGGCTA	CTGGATTTAC	GCCGCCACCG	CCCTGCCCGT	CTGCCTCGCT
601	TCCTTCGGCT	TCCACGGCAA	CGTTTCCAGC	CTGCTCAAAT	ACTTTAAAGG
651	CGACGcgcCc	aaagtGgCGA	aATCcatctg	gGcaggtaca	ttggTTGCCt
701	tggtaattta	cgtccTCTgg	caaaccgcca	tCcaaagcaa	ccTGCcgcgc
751	aacgagttcg	cCCCcgtgat	tgccgccgag	aggcaactCT	CCGTCCTgaa
801	tgaaacccTG	tccaaattcg	cccaaaccgg	cgatatggat	aAaatattgt
851	ccctatttcc	ctacatggca	atcgccacct	cctttttagg	cgTAACctta
901	ggcctgtttg	acaacatcgc	cgacatcttc	aaatggaacg	acagtatgtc
951	cgggcggggc	accaaaaccg	tcgcgctgaa	cttcctgccg	CCCCtgattt
1001	cctggctgct	cctccccacc	ggcttcttta	ccgccattgg	tgcgtccggc
1051	ctggcggcaa	ccgtctggga	ccaagGcatc	atccccgcca	tgctgctcta
1101	cgtttccccc	caaaaaattG	gcGcaggcaa	gacttataAa	gtttaCGGCG
1151	gcttgtggct	gatgttagtc	ttccttttcg	gcatcgccaa	catcgccgca
1201	CAGGTATTGA	GccaAatgGa	ACtcgtCccc	GTATTTAAAG	GATAA

This corresponds to the amino acid sequence <SEQ ID 358; ORF 102.ng>: g102.pep


```
1 MSAKTPSLFG GAMIIAGKVI GAGMFPNPTA NLGDGLIGSL IVLLYTWFPF
51 SSGALMILEV NTHNPRGASF DTMVKDLLGR GWNIINGIAV ALVLYGSTYA
101 YILVGGDLTA KGIGSAVGGK ISLTVGQLVF FGILAFCVWA SARLVDRFTG
151 VLIGGMVLTF IWATGGLVAD AKPSVLFDTQ APVGTGYWIY AATALPVCLA
201 SFGFHGNVSS LLKYFKGDAP KVAKSIWAGT LVALVIYVLW QTAIQSNLPR
251 NEFAPVIAAE RQLSVLNETL SKFAQTGDMD KILSLFPYMA IATSFLGVTL
301 GLFDNIADIF KWNDSMSGRG TKTVALNFLP PLISWLLLPT GFFTAIGASG
351 LAATVWDQGI IPAMLLYVSP QKIGAGKTYK VYGGLWLMLV FLFGIANIAA
401 QVLSQMELVP VFKG*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 359>: m102.seq

310

```
ATGCCCAACA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
      CACGGTCATC GGCGCAGGCA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
  51
101 TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCTATG
 151 CTTTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCATT ATCCGCACGG
 201 CGCAAGTTTC GACACGATGG TCAAAGACCT GCTCGGACGC GGCTGGAACA
 251 TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT
 301 TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC
 351 AGGCGGCGAC GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATCC
 401 TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG CTTCACCGGC
 451 GTCCTTATCG GCGGCATGGT ATTGACCTTT ATTTGGGCGG CCGGCGGGCT
 501 GATTGCCGAT GCCAAGCCGT CCGTCCTCTT CGATACCCAA GCCCCCGCCG
 551 GCACAAACTA CTGGATTTAC GCCGCCACCG CCCTGCCCGT CTGCCTCGCT
 601 TCCTTCGGCT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG
 651 CGACGCGCCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC
 701 TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAAGGCAA CCTGCCGCGC
 751 AACGAGTTCG CCCCCGTCAT CGCCGCCGAA GGGCAAGTCT CCGTCCTCAT
801 CGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT
851 CCCTGTTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC
 901 GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCATCTC
951 CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCC CTGATTTCCT
1001 GCCTGCTCTT CCCCACCGGC TTCGTTACCG CCATCGGCTA CGTCGGCCTG
1051 GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TCTACCGTTC
1101 GCGCAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT
1151 GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCGTCAACAT CGCCGCACAG
1201 GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA
```

This corresponds to the amino acid sequence <SEQ ID 360; ORF 102>: m102.pep..

1 MPNKTPSLFG GAMIIAGTVI GAGMLANPTA TSGVWFTGSL AVLLYTWFSM
51 LSSGLMILEV NTHYPHGASF DTMVKDLLGR GWNIINGIAV AFVLYLLTYA
101 YIFVGGDLTA KGLGSAAGGD VSLTVGQLVF FGILAFCVWA SARLVDRFTG
151 VLIGGMVLTF IWAAGGLIAD AKPSVLFDTQ APAGTNYWIY AATALPVCLA
201 SFGFHGNVSS LLKYFKGDAP KVAKSIWTGT LIALVIYVLW QTAIQGNLPR
251 NEFAPVIAAE GQVSVLIETL SKFAQTGNMD KILSLFSYMA IATSFLGVTL
301 GLFDYIADIF KWNDSISGRT KTAALTFLPP LISCLLFPTG FVTAIGYVGL
351 AATVWTGIIP AMLLYRSRKK FGAGKTYKVY GGLWLMVWVF LFGIVNIAAQ
401 VLSQMELVPV FKG*

m102/g102 86.0% identity in 415 aa overlap

	10	20	30	40	50	60
m102.pep	MPNKTPSLFGGAMI					
	1 111111111111	!!!				$\Pi\Pi\Pi\Pi$
g102	MSAKTPSLFGGAMI					LMILEV
	10	20	30	40	50	60
	70	80	90	100	110	120
m102 man	-					
m102.pep	NTHYPHGASFDTMV					
			11111111111111		111111111:1	
g102	NTHNPRGASFDTMV			GSTYAYIL	VGGDLTAKGIG	SAVGGK
	70	80	90	100	110	120
	130	140	150	160	170	180
m102.pep	VSLTVGQLVFFGIL	afcvwasarl	VDRFTGVLIGG	MVLTFIWA	AGGLIADAKPS	VLFDTQ
	:::::::::::::::::::::::::::::::::::::::	1111111111			:111:111111	111111
g102	ISLTVGQLVFFGIL	AFCVWASARL	VDRFTGVLIGG	MVLTFIWA	TGGLVADAKPS	VLFDTO
	130	140	150	160	170	180
	190	200	210	220	230	240
m102.pep	APAGTNYWIYAATA	LPVCLASFGF		KGDAPKVA		

g102	: : APVGTGYWIYAAT 190		IIIIIIIII IGNVSSLLKY 210		: : SIWAGTLVAL 230	
	250	260	270	280	290	300
m102.pep	QTAIQGNLPRNER	PAPVIAAEGQVSV	LIETLSKFA	QTGNMDKILS:	LFSYMAIATS	FLGVTL
• •		1111111 1:11	1.1111111	111:1111	11 1111111	HIIII
g102	QTAIQSNLPRNE	TAPVIAAERQLS	LNETLSKFA	QTGDMDKILS:	LFPYMAIATS	FLGVTL
-	250	260	270	280	290	300
	310	320	330	340	350	
m102.pep	GLFDYIADIFKWN	IDSISGR-TKTA/	LTFLPPLIS	CLLFPTGFVT	AIGYVGLAAT	'VWT-GI
		11:111 111:1	1:111111	11:111 1	HT 11111	11 11
g102	GLFDNIADIFKWN	IDSMSGRGTKTV <i>I</i>	LNFLPPLIS	WLLLPTGFFT	AIGASGLAAT	VWDQGI
	310	320	330	340	350	360
	360 370	380	. 390	400	410	
-102	IPAMLLYRSRKK					CV
m102.pep					1111111111	11
-100	IPAMLLYVSPOK			, , , . ,	COMETUDUEN	1 I
g102	_			-		.GA
	370	380	390	400	410	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 361>: a102.seq

```
ATGCCCACCA AAACCCCTTC ACTGTTCGGC GGCGCGATGA TTATCGCCGG
     CACGNTCATC GGCGCAGGTA TGCTCGCCAA CCCGACCGCC ACATCCGGCG
101 TATGGTTTAC CGGCTCGCTG GCCGTGTTGC TGTACACCTG GTTTTCCATG
151 CTCTCCAGCG GCCTGATGAT TTTGGAAGTC AACACCCACT ACCCCCACGG
201 CGCGANCTTC GACACCATGG TTAAAGACCT GCTCGGACGG AGCTGGAACA
     TCATCAACGG CATCGCCGTC GCCTTCGTTT TATACCTGCT TACTTACGCT
     TATATCTTCG TCGGCGGCGA CCTGACCGCC AAAGGCTTAG GCAGCGCGGC
301
351 AGGCGGCAAT GTTTCACTCA CCGTCGGACA ACTCGTCTTC TTCGGCATTC
401 TCGCCTTTTG CGTATGGGCA TCCGCACGCT TGGTCGACCG ATTCACCAGC
 451 GTCCTCATCG GCGGCATGGT ATTAACCTTT ATTTGGGCAA CCGGCGGCCT
501 GATTGCCGAT GCCAAACTGC CCGTCCTCTT CGACACCCAA GCCCCTACCG
551 GCACCAACTA CTGGATTTAT GTCGCCACCG CCCTGCCCGT CTGCCTTGCG
 601 TCATTCGGTT TCCACGGCAA CGTCTCCAGC CTGCTCAAAT ACTTTAAAGG
 651 CGACGCGCCC AAAGTGGCTA AATCCATCTG GACGGGCACA CTGATTGCGC
701
     TGGTAATTTA CGTCCTCTGG CAAACCGCCA TCCAANGCAA CCTGCCGCGC
751 AACGAGTTCG CCCCCGTGAT TGCCGCCGAA GGGCAAGTCT CCGTCNTGAT
801 TGAAACCCTG TCCAAATTCG CCCAAACCGG CAATATGGAC AAAATATTGT
     CCCTGTTTTC CTATATGGCG ATCGCCACCT CGTTTTTAGG CGTAACGCTC
851
901 GGACTCTTCG ACTACATCGC CGACATCTTC AAATGGAACG ACAGCGTGTC
951 CGGCCGCACC AAAACCGCCG CGCTGACCTT CCTGCCGCCT NTAATTTCCT
1001 GCCTGCTCTT CCCCACCGGC TTTGTTACCG CCATCGGNTA CGTCGGCCTG
1051 GCGGCAACCG TCTGGACAGG CATCATCCCC GCCATGCTGC TNTACCGTTC
1101
     GCGCAAAAAA TTCGGCGCAG GCAAAACCTA TAAAGTTTAC GGCGGCTTGT
1151
     GGCTGATGGT TTGGGTCTTC CTTTTCGGCA TCNTCAACAT CGCCGCACAN
     GTATTGAGCC AAATGGAACT CGTCCCCGTA TTTAAAGGAT AA
1202
```

This corresponds to the amino acid sequence <SEQ ID 362; ORF 102.a>: a102.pep

```
1 MPTKTPSLFG GAMIIAGTXI GAGMLANPTA TSGVWFTGSL AVLLYTWFSM
51 LSSGLMILEV NTHYPHGAXF DTMVKDLLGR SWNIINGIAV AFVLYLLTYA
101 YIFVGGDLTA KGLGSAAGGN VSLTVGQLVF FGILAFCVWA SARLVDRFTS
151 VLIGGMVLTF IWATGGLIAD AKLPVLFDTQ APTGTNYWIY VATALPVCLA
201 SFGFHGNVSS LLKYFKGDAP KVAKSIWTGT LIALVIYVLW QTAIQXNLPR
251 NEFAPVIAAE GQVSVXIETL SKFAQTGNMD KILSLFSYMA IATSFLGVTL
301 GLFDYIADIF KWNDSVSGRT KTAALTFLPP XISCLLFPTG FVTAIGYVGL
351 AATVWTGIIP AMLLYRSRKK FGAGKTYKVY GGLWLMVWVF LFGIXNIAAX
401 VLSQMELVPV FKG*
```

m102 / a102 95.9% identity in 413 aa overlap

m102.pep	10 MPNKTPSLFGGAMII : MPTKTPSLFGGAMII 10	н нш	1111111111	1111111111	1111111111	ШШ
m102.pep	70 NTHYPHGASFDTMVKI NTHYPHGAXFDTMVKI 70	11111:111	1111111111	1111111111	шшш	111111:
m102.pep	130 VSLTVGQLVFFGILAI VSLTVGQLVFFGILAI 130	111111111	1111:1111	111111111111111111111111111111111111111	11111111	HHHĨ
m102.pep	190 APAGTNYWIYAATALI : : APTGTNYWIYVATALI 190	111111111	1111111111	1111111111	шіш	111111
m102.pep	250 QTAIQGNLPRNEFAPY QTAIQXNLPRNEFAPY 250	ШШП	1 1111111		1111111111	1111111
m102.pep	310 GLFDYIADIFKWNDS: GLFDYIADIFKWNDSV	:	111111 111	1111111111	1111111111	
m102.pep a102 370	370 AMLLYRSRKKFGAGK AMLLYRSRKKFGAGK 380 390 4	ШШШ		1111 1111	111111111	i

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 363>: g105.seq

1	Atgtccgcag	aaaCATACAc	acAAAtcggc	tGGgtaggct	taggGcaaat
51	gGgtctgcct	atgGTAACGC	GGCTCTTGGA	CGGCGGCATC	GAAGTCGGCG
101	TATACAACCG	CTCGCCCGAC	AAAACTGCCC	CCATCTCcgc	CAAAGGAGCA
151	AAAGTTTACG	GCagcACCGC	CGAACTCGTC	CGCGCCTGCC	CCGTCATTTT
201	CCTGATGGTT	TCCGACTATG	CCGCCGTGTG	CGACATCCTG	AACGGAGTCC
251	GCGACGGATT	GGCCGGCAAA	ATCATCGTCA	ACATGAGCAC	CATCTCCCCG
301	ACCGAAAACC	TCGCCGTCAA	AGCACTTGTC	GAAGCCGCAG	GCGGACAGTT
351	TGCCGAAGCA	CCCGTTTCCG	GATCGGTCGG	ACCCGCCACC	AACGGCACAC
401	TGCTGATTCT	${\tt GTTCGGCGGC}$	AGCGAAGCCG	TTTTAAACCC	GCTGCAAAAA
451	ATATTTTCCC	TTGTCGGCAA	AAAAACCTTC	CATTTCGGCG	ATGTCGGCAA
501	AGGCTCGGGC	GCGAAACTCG	TCTTGAACTC	GCTCTTAGGC	ATTTTCGGCG
551	AAGCGTACAG	CGAAGCGATG	CTGATGGCGC	GGCAGTTCGG	CATCGATACC
601	GACACCATCG	TCGAAGCCAT	CGGCGGCTCG	GCAATGGACT	CGCCTATGTT
651	TCAAACAAAA	AAATCACTAT	GGGCAAACCG	TGAGTTCCCC	CCTGCCTTTG
701	CACTCAAACA	CGCTTCCAAA	GACCTTAACC	TCGccgtcAA	AGAGCTTGAA
751	CAGGCAGGCA	ACACCCTGCC	CGCCGTCGAA	ACCGTTGCTG	CCAGCTACCG
801	CAAAGCAGTT	GAAGCCGGCT	ACGGCGAACA	GGACGTTTCC	GGCGTTTACC
851	TGAAATTGGC	AGAACACTGA			

```
This corresponds to the amino acid sequence <SEQ ID 364; ORF 105.ng>:
     g105.pep
              MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
           1
           51 KVYGSTAELV RACPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
              TENLAVKALV EAAGGOFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLOK
          151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
         201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
         251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 365>:
     m105.seq
              ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGaTAGGCT TAGGGCAAAT
           1
           51
              GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGCATC GAAGTCGGCG
              TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
          101
         151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
         201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
         251 GCGACGGATT GGCCGGCAAM ATCATCGTCA ACATGAGCAC CATCTCCCCG
         301 ACCGAAAaGC TCGCCGTCAA AGCACTTGTC GAAGCGCAGm GaCAGTTTGC
         351 CGAAGCACCC GTTTCCGGAT CGGTCGGGCC CGCCACCAAC GGCACGCTGC
         401 TGATTCTGTT CGGCGGCAGC GAACCGtTTT AAACCCGCTG CAAAAAATAT
              TTTCCCTCGT CGGCAAAAA ACCTTCCATT TCGGCGATGT CGGCAAAGGT
              TCGGGCGCGA AACTCGTCTT GAACTCGCTC TTGGGCATTT TCGGCGAaCG
              TACAGCGAAS GMTgCTGATG GCGCGGCAGT TCGGCATCGA TACCGACACC
         601 ATCGTCGAAG CCATCGGSGA CTCGGCAATG GACTCGCCCA TGTTCCAAAC
         651 CAAAAAATCC CTGTGGGCAA ACCGCGAATT CCCGMCCGMC TTCGCCCTCA
         701 AACACGCCTC CAAAGACCTC AACCTCGCCG TCAAAGAGCT TGAACAGGCA
         751 GGCAACACCC TGCCCGCCGT CGAAACCGTT GCTGCCAGCT ACCGCAAAGC
              AGTCGAAGCC GGCTACGGGA CACAGGACGT TTCCGGCGTT TACCTGAAAC
              TGGCAGAACA CTGA
This corresponds to the amino acid sequence <SEQ ID 366; ORF 105>:
     m105.pep
              MSANEYAQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
              KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGX IIVNMSTISP
          51
         101
              TEKLAVKALV EAQRQFAEAP VSGSVGPATN GTLLILFGGS EPFXTRCKKY
         151 FPSSAKKPSI SAMSAKVRAR NSSXTRSWAF SANVQRXXLM ARQFGIDTDT
         201 IVEAIGDSAM DSPMFQTKKS LWANREFPXX FALKHASKDL NLAVKELEOA
              GNTLPAVETV AASYRKAVEA GYGTQDVSGV YLKLAEH
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 105 shows 79.9% identity over a 289 aa overlap with a predicted ORF (ORF 105.ng)
from N. gonorrhoeae:
     m105/g105
                                   20
                                            30
                                                      40
                 MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
     g105.pep
                 m105
                 MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
                         10
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                                   80
                                            90
                                                     100
                 RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
     q105.pep
                    11111
     m105
                 RDYPVIFLMVSDYAAVCDILNGVRDGLAGXIIVNMSTISPTEKLAVKALVEAOR-OFAEA
                         70
                                  80
                                            90
                                                    100
                                  140
                                           150
                                                    160
                                                              170
                                                                        180
     g105.pep
                 PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
                 1:
                 PVSGSVGPATNGTLLILFGGSEPFXTRCKKYFPSSAKKP-SISAMSAKVRARNSSXTRSW
     m105
```

130

140

150

160

170

g105. ₁	pep	: :	EAMLMARQFGI	DTDTIVEAL			1111 1111	
m105		AFSANVQI 180	RXXLMARQFGI 190	DTDTIVEAL 200	GDSAMDSPMI 210	FQTKKSLWAN 220	REFPXXFALI 230	CHASK
g105.p	205		250 2 ELEQAGNTLPA		270 Kaneagyara		289	
9103.	beb							
m105			ELEQAGNTLPA					
		240	250	260	270	280		
The following	ng pa	artial DNA s	equence wa	s identified	l in N. men	ingitidis <	SEQ ID 36	57>:
a105.seq	1	ATGTCCGCAA	ACGAATACAC	ACAAATCG	GC TGGATAC	GCT TAGGG	САААТ	
	51	GGGTCTGCCT						
	101	TATACAACCG						
	151	AAAGTTTACG						
	201 251	CCTGATGGTT GCGACGGATT						
	301	ACCGAAAACC						
	351	TGCCGAAGCA						
4	101	${\tt TGCTGATTCT}$						
	151	ATATTTTCCC						
	501	AGGTTCGGGC						
	551 501	AAGCGTACAG GACACCATCG						
	551	CCAAACCAAA						
7	701	CCCTCAAACA						
	751	CAGGCAGGCA						
	301	CAAAGCAGTC			CA GGACGTI	TCC GGCGT	TTACC	
This corresp	351	TGAAATTGGC			т 260. С	NDE 105 ex		
_	Onas	s to the amin	o acid seque		308, رمان	IKF 103.a	••	
a105.pep	1	MSANEYTQIG	WTGI GOMGI P	MUTRITOC	T PUCUVNE	אמתש ממפי	CAVCA	
	51	KVYGNTAELV						
1	101	TENLAVKALV						
	151	${\tt IFSLVGKKTF}$						
	201	DTIVEAIGGS					VKELE	
	251	QAGNTLPAVE	TVAASYRKAV	EAGYGEQD	VS GVYLKLA	ÆH*		
m105/a105		96.5% iden	tity in 2	89 aa ove	erlap			
			10					
m105.p	en	MSANEYA	10 OIGWIGLGQMG	20 1.PMVTR1.1.D	30 CCTEVCVVNE	40 פדם גיישום פ	50 arcarinchi	60
M100.F	oc _P							
a105		MSANEYT	 IGWIGLGQMG	LPMVTRLLD	GIEVGVYNF	SPDKTAPIS	AKGAKVYGNT	AELV
				20	30	40	50	60
			70	80	90	100	110	110
m105.r	gep	RDYPVTFI	MVSDYAAVCD			100 יבאראוו.אע	110	119
	- CF	1111111					11111111	ZEALA
a105		RDYPVIFI	MVSDYAAVCD	ILNGVRDGL	AGKIIVNMST	ISPTENLAV	KALVEAAGGC)FAEA
			70	80	90	100	110	120
		120	130	140	150	160	170	179
m105.p	рер		PATNGTLLILF			KTFHFGDVG	KGSGAKLVIN	ISLLG
		11111111	1111111111	111111111		111111111	1111111111	1111
a105		PVSGSVG	PATNGTLLILF	GGSEAVLNP	LQKIFSLVGK	KTFHFGDVG	KGSGAKLVLN	ISLL G
			.30 1	40	150	160	170	180
		180	190	200	210	220	230	

m105.pep	IFGDV-(QRXMLMARÇ	FGIDTDTIVE	EAIGDSAMDS	PMFQTKKSLW <i>i</i>	NREFPXAF	ALKHASK
	111::::	::	1111111111	1111 111111	11111111111		
a105	IFGEAY:	SEAMLMARC	FGIDTDTIVE	EAIGGSAMDSI	PMFQTKKSLWA	NREFPPAFA	ALKHASK
		190	200	210	220	230	240
	240	250	260	270	280		
m105.pep	DLNLAVE	KELEQAGNI	LPAVETVAAS	SYRKAVEAGY	SEQDVSGVYLI	KLAEHX	
	111111		1111111111			11111	
a105	DLNLAVE	KELEQAGNI	LPAVETVAAS	SYRKAVEAGY	SEQDVSGVYLI	KLAEHX	
		250	260	270	280	290	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 369>: g105-1.seq

```
1 ATGTCCGCAG AAACATACAC ACAAATCGGC TGGGTAGGCT TAGGGCAAAT
    GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
 51
101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGAGCA
151 AAAGTTTACG GCAGCACCGC CGAACTCGTC CGCGCCTGCC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
    TGCCGAAGCA CCCGTTTCCG GATCGGTCGG ACCCGCCACC AACGGCACAC
351
401 TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTCCC TTGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501 AGGCTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTAGGC ATTTTCGGCG
551 AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
    GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCTATGTT
601
651 TCAAACAAAA AAATCACTAT GGGCAAACCG TGAGTTCCCC CCTGCCTTTG
701 CACTCAAACA CGCTTCCAAA GACCTTAACC TCGCCGTCAA AGAGCTTGAA
751 CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
    CAAAGCAGTT GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
    TGAAATTGGC AGAACACTGA
```

This corresponds to the amino acid sequence <SEQ ID 370; ORF 105-1.ng>: g105-1.pep

```
1 MSAETYTQIG WVGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
51 KVYGSTAELV RACP<u>VIFLMV SDYAAVCDIL</u> NGVRDGLAGK IIVNMSTISP
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
201 DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
```

251 QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 371>: m105-1.seq

```
1 ATGTCCGCAA ACGAATACGC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
 51 GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
351
    TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
401 TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
451 ATATTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
501 AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG
551 AAGCGTACAG CGAANCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
601 GACACCATCG TCGAAGCCAT CGGsGACTCG GCAATGGACT CGCCCATGTT
651 CCAAACCAAA AAATCCCTGT GGGCAAACCG CGAATTCCCG CCCGCCTTCG
701 CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA
    CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
    CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
    TGAAACTGGC AGAACACTGA
```

This corresponds to the amino acid sequence <SEQ ID 372; ORF 105-1>: m105-1.pep

- 1 MSANEYAQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
- 51 KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP

a105-1.pep

316

```
101 TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
    151 IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEXM LMARQFGIDT
    201
        DTIVEAIGDS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
        QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
m105-1/q105-1 96.9% identity in 289 aa overlap
                            20
                                     30
           MSANEYAQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV
m105-1.pep
            g105-1
           MSAETYTQIGWVGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGSTAELV
                                              40
                                             100
                   70
                            80
                                     90
                                                      110
                                                               120
           RDYPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
m105-1.pep
              g105-1
           RACPVIFLMVSDYAAVCDILNGVRDGLAGKIIVNMSTISPTENLAVKALVEAAGGQFAEA
                   70
                            80
                                     90
                                             100
                                                      110
                                    150
           PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG
m105-1.pep
           a105-1
           {\tt PVSGSVGPATNGTLLILFGGSEAVLNPLQKIFSLVGKKTFHFGDVGKGSGAKLVLNSLLG}
                  130
                           140
                                    150
                                             160
                                                      170
                  190
           IFGEAYSEXMLMARQFGIDTDTIVEAIGDSAMDSPMFQTKKSLWANREFPPAFALKHASK
m105-1.pep
           g105-1
                  190
                           200
                                    210
                                             220
                                                      230
                                    270
                  250
                           260
                                             280
           DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
m105-1.pep
           g105-1
           DLNLAVKELEQAGNTLPAVETVAASYRKAVEAGYGEQDVSGVYLKLAEHX
                  250
                           260
                                    270
                                             280
                                                      290
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 373>:
a105-1.seq
      1 ATGTCCGCAA ACGAATACAC ACAAATCGGC TGGATAGGCT TAGGGCAAAT
     51 GGGTCTGCCT ATGGTAACGC GGCTCTTGGA CGGCGGCATC GAAGTCGGCG
    101 TATACAACCG CTCGCCCGAC AAAACTGCCC CCATCTCCGC CAAAGGCGCA
    151 AAAGTTTACG GCAACACCGC CGAACTCGTC CGCGACTATC CCGTCATTTT
    201 CCTGATGGTT TCCGACTATG CCGCCGTGTG CGACATCCTG AACGGAGTCC
    251 GCGACGGATT GGCCGGCAAA ATCATCGTCA ACATGAGCAC CATCTCCCCG
    301 ACCGAAAACC TCGCCGTCAA AGCACTTGTC GAAGCCGCAG GCGGACAGTT
        TGCCGAAGCA CCCGTTTCCG GATCGGTCGG GCCCGCCACC AACGGCACGC
    351
        TGCTGATTCT GTTCGGCGGC AGCGAAGCCG TTTTAAACCC GCTGCAAAAA
    401
    451
        ATATTTCCC TCGTCGGCAA AAAAACCTTC CATTTCGGCG ATGTCGGCAA
    501
        AGGTTCGGGC GCGAAACTCG TCTTGAACTC GCTCTTGGGC ATTTTCGGCG
    551
        AAGCGTACAG CGAAGCGATG CTGATGGCGC GGCAGTTCGG CATCGATACC
        GACACCATCG TCGAAGCCAT CGGCGGCTCG GCAATGGACT CGCCCATGTT
    651
        CCARACCARA ARATCCCTGT GGGCARACCG CGRATTCCCA CCCGCCTTCG
    701 CCCTCAAACA CGCCTCCAAA GACCTCAACC TCGCCGTCAA AGAGCTTGAA
        CAGGCAGGCA ACACCCTGCC CGCCGTCGAA ACCGTTGCTG CCAGCTACCG
    751
    801
        CAAAGCAGTC GAAGCCGGCT ACGGCGAACA GGACGTTTCC GGCGTTTACC
    851 TGAAATTGGC AGAACACTGA
This corresponds to the amino acid sequence <SEQ ID 374; ORF 105-1.a>:
a105-1.pep
        MSANEYTQIG WIGLGQMGLP MVTRLLDGGI EVGVYNRSPD KTAPISAKGA
     51
        KVYGNTAELV RDYPVIFLMV SDYAAVCDIL NGVRDGLAGK IIVNMSTISP
        TENLAVKALV EAAGGQFAEA PVSGSVGPAT NGTLLILFGG SEAVLNPLQK
    151
        IFSLVGKKTF HFGDVGKGSG AKLVLNSLLG IFGEAYSEAM LMARQFGIDT
        DTIVEAIGGS AMDSPMFQTK KSLWANREFP PAFALKHASK DLNLAVKELE
        QAGNTLPAVE TVAASYRKAV EAGYGEQDVS GVYLKLAEH*
a105-1/m105-1
               99.0% identity in 289 aa overlap
```

MSANEYTQIGWIGLGQMGLPMVTRLLDGGIEVGVYNRSPDKTAPISAKGAKVYGNTAELV

m105-1	MSANEYAQIGWIGL	GQMGLPMVTR	LLDGGIEVG	VYNRSPDKTAP	ISAKGAKVY(GNTAELV
	10	20	30	40	50	60
	70	80	90	100	110	120
a105-1.pep	RDYPVIFLMVSDYA					
	1111111111111111	111111111111111111111111111111111111111	111111111	11111111111	111111111	1111111
m105-1	RDYPVIFLMVSDYA			NMSTISPTENL		GGQFAEA
	70	80	90	100	110	120
	130	140	150	160	170	180
a105-1.pep	PVSGSVGPATNGTL					
aros r.pcp	11111111111111				111111111	
m105-1	PVSGSVGPATNGTL	LILFGGSEAV	LNPLQKIFS	LVGKKTFHFGD	VGKGSGAKL	VLNSLLG
	130	140	150	160	170	180
	100	200	210	220	220	040
010E 1 mon	190 IFGEAYSEAMLMAR	200	210 Extersion	220 SDMFOTEVET W	230	240
a105-1.pep					11111111	IIIIIII
m105-1	IFGEAYSEXMLMAR			SPMFOTKKSLW	ANREFPPAF	· · · · · ·
	190	200	210	220	230	240
	250	260	270	280	290	
a105-1.pep	DLNLAVKELEQAGN	TLPAVETVAA	SYRKAVEAG	YGEQDVSGVYL	KLAEHX	
m105-1	DLNLAVKELEOAGN	1 4407747444	SABKVALE		 	
mio i	250	260	270	280	290	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 375>: g107.seq

```
ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGGTTG CCGATGCCAA
51 ACCGTCCGTC CTCTTCGACA CCCAAGCCCC CGTCGGCACC GGCTACTGGA
101 TTTACGCCGC CACCGCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC
151 GGCAACGTTT CCAGCCTGCT CAAATACTTT AAAGGCGACG cgcCcaaagt
201 GgCGAaATCC atctggGcag gtacattggT TGCCttggta atttacgtcc
251 TCTggcaaac cgccatCcaa agcaaccTGC cgcgcaacga gttcgcCCCc
301 gtgattgccg ccgagaggca actCTCCGTC CTgaatgaaa cccTGtccaa
351 attcgcccaa accggcgata tggataAaat attgtcccta tttccctaca
401 tggcaatcgc cacctcctt ttaggcgTAA Ccttaggcct gtttgacaac
451 atcgccggac atcttcaaat ggaacgacag tatgtccggg cggcaccaaa
501 accgtcgcgc tga
```

This corresponds to the amino acid sequence <SEQ ID 376; ORF 107.ng>:

- 1 MVLTFIWATG GLVADAKPSV LFDTQAPVGT GYWIYAATAL PVCLASFGFH
- 51 GNVSSLLKYF KGDAPKVAKS IWAGTLVALV IYVLWQTAIQ SNLPRNEFAP
- 101 VIAAERQLSV LNETLSKFAQ TGDMDKILSL FPYMAIATSF LGVTLGLFDN
- 151 IAGHLOMERO YVRAAPKPSR *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 377>: m107.seq

- 1 ATGGTATTGA CCTTTATTTG GGCGGCCGGC GGGCTGATTG CCGATGCCAA
 51 GCCGTCCGTC CTCTTCGATA CCCAAGCCCC CGCCGGCACA AACTACTGGA
 101 TTTACGCCGS CACCGCCTG CCCGTCTGCC TCGCTTCCTT CGGCTTCCAC
 151 GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT
 201 GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC
 251 TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC
 301 GTCATCGCCG CCGAAGGGCA AGTCTCCGTC CTCATCGAAA CCCTGTCCAA
 351 ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA
 401 TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC
 451 ATCGCCCATC TTCAAATGGA ACGACAGCAT CTCCGGQCCG CACCAAAACC
- 501 GCCGCGCTGA

 This corresponds to the amino acid sequence <SEQ ID 378; ORF 107>:
 - 1 MVLTFIWAAG GLIADAKPSV LFDTQAPAGT NYWIYAXTAL PVCLASFGFH
 - 51 GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP

VIAAEGQVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY

```
151 IAHLQMERQH LRAAPKPPR*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 107 shows 89.4% identity over a 170 aa overlap with a predicted ORF (ORF 107.ng)
from N. gonorrhoeae:
    m107/g107
                                                    40
                                                             50
                                                                      60
                 MVLTFIWAAGGLIADAKPSVLFDTQAPAGTNYWIYAXTALPVCLASFGFHGNVSSLLKYF
    m107.pep
                 MVLTFIWATGGLVADAKPSVLFDTQAPVGTGYWIYAATALPVCLASFGFHGNVSSLLKYF
    g107
                                 20
                                           30
                                                    40
                        70
                                 80
                                           90
                                                   100
                                                            110
                 KGDAPKVAKSIWTGTLIALVIYVLWQTAIQGNLPRNEFAPVIAAEGQVSVLIETLSKFAQ
    m107.pep
                 KGDAPKVAKSIWAGTLVALVIYVLWQTAIQSNLPRNEFAPVIAAERQLSVLNETLSKFAQ
    g107
                        70
                                 80
                                           90
                                                   100
                                                            110
                       130
                                 140
                                          150
                                                    160
                                                             170
                 TGNMDKILSLFSYMAIATSFLGVTLGLFDYIA-HLQMERQHLRAAPKPPR
    m107.pep
                 TGDMDKILSLFPYMAIATSFLGVTLGLFDNIAGHLQMERQYVRAAPKPSR
    g107
                       130
                                140
                                          150
                                                   160
                                                            170
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 379>:
a107.seq
              ATGGTATTAA CCTTTATTTG GGCAACCGGC GGCCTGATTG CCGATGCCAA
          51
              ACTGCCCGTC CTCTTCGACA CCCAAGCCCC TACCGGCACC AACTACTGGA
         101
              TTTATGTCGC CACCGCCCTG CCCGTCTGCC TTGCGTCATT CGGTTTCCAC
         151
              GGCAACGTCT CCAGCCTGCT CAAATACTTT AAAGGCGACG CGCCCAAAGT
         201
              GGCTAAATCC ATCTGGACGG GCACACTGAT TGCGCTGGTA ATTTACGTCC
         251
              TCTGGCAAAC CGCCATCCAA GGCAACCTGC CGCGCAACGA GTTCGCCCCC
              GTGATTGCCG CCGAAGGGCA AGTCTCCGTC CTGATTGAAA CCCTGTCCAA
         301
         351
              ATTCGCCCAA ACCGGCAATA TGGACAAAAT ATTGTCCCTG TTTTCCTATA
              TGGCGATCGC CACCTCGTTT TTAGGCGTAA CGCTCGGACT CTTCGACTAC
         401
              ATCGCCGACA TCTTCAAATG GAACGACAGC GTGTCCGGCC GCACCAAAAC
         501 CGCCGCGCTG ACCTTCCTGC CGCCTCTAAT TTCCTGCCTG CTCTTCCCCA
              CCGGCTTTGT TACCGCCATC GGCTACGTCG GCCTGGCGGC AACCGTCTGG
             ACAGGCATCA TCCCCGCCAT GCTGCTCTAC CGTTCGCGCA AAAAATTCGG
         601
              CGCAGGCAAA ACCTATAAAG TTTACGGCGG CTTGTGGCTG ATGGTTTGGG
         701
             TCTTCCTTTT CGGCATCGTC AACATCGCCG CACAGGTATT GAGCCAAATG
              GAACTCGTCC CCGTATTTAA AGGATAA
This corresponds to the amino acid sequence <SEQ ID 380; ORF 107.a>:
a107.pep
           1 MVLTFIWATG GLIADAKLPV LFDTQAPTGT NYWIYVATAL PVCLASFGFH
              GNVSSLLKYF KGDAPKVAKS IWTGTLIALV IYVLWQTAIQ GNLPRNEFAP
              VIAAEGQVSV LIETLSKFAQ TGNMDKILSL FSYMAIATSF LGVTLGLFDY
         101
              IADIFKWNDS VSGRTKTAAL TFLPPLISCL LFPTGFVTAI GYVGLAATVW
         201
              TGIIPAMLLY RSRKKFGAGK TYKVYGGLWL MVWVFLFGIV NIAAQVLSQM
              ELVPVFKG*
m107/a107
             94.8% identity in 154 aa overlap
                                 20
                                                    40
                                                             50
                                                                      60
                 MVLTFIWAAGGĻIADAKPSVLFDTQAPAGTNYWIYAXTALPVCLASFGFHGNVSSLLKYF
    m107.pep
                 a107
                 MVLTFIWATGGLIADAKLPVLFDTQAPTGTNYWIYVATALPVCLASFGFHGNVSSLLKYF
                        10
                                 20
                                           30
                                                    40
```

WO 99/57280

	70	80	90	100	110	120
m107.pep	KGDAPKVAKSIWTG	TLIALVIYVI	WQTAIQGNL	PRNEFAPVIA	'EGQVSVLIE	TLSKFAQ
		1111111111	4111111111	E		111111
a107	KGDAPKVAKSIWTG	TLIALVIYVI	WQTAIQGNL	PRNEFAPVIA	LEGQVSVLIE:	rlskfaq
	70	80	90	100	110	120
	130	140	150	160	170	
m107.pep	TGNMDKILSLFSYM	AIATSFLGVI	LGLFDYIAHI	LOMERQHLRAA	APKPPRX	
	131111111111111	THURST	111111111:	}		
a107	TGNMDKILSLFSYM	AIATSFLGVI	LGLFDYIAD	FKWNDSVSGF	RTKTAALTFL!	PPLISCL
	130	140	150	160	170	180
a107	LFPTGFVTAIGYVG	LAATVWTGII	PAMLLYRSRE	KFGAGKTYKV	YGGLWLMVW	VFLFGIV
	190	200	210	220	230	240

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 381>: g108.seq

This corresponds to the amino acid sequence <SEQ ID 382; ORF 108.ng>: g108.pep

- 1 MLPGFNRIFK RFAPTLGTAH KTPPFALSRT GRLIRSYRHK RRGFNRKGIE 51 MNKTLSILPA AILLGGCAAG GNTFGSLDGG TGMGGSIVKM TVESQCRAEL 101 DRRSEWRLTA LAMSAEKQAE WENKICGCAT EEAPNQLTGN DVMQMLNQST
- 151 RNQALAALTV KTVSACFKRL YR*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 383>: m108.seq

- ATGTTGCCGG GCTTCAACCG GATATTCAAA CGGTTTGTTC CAACACTCGG
 51 AACGGCGCAT AAAACGCCGC CCTTCGCGTT ATCCCGAACG GGGCGGCTAA
 101 TCAGATTCTA TCGCCATAAA AGGCGGGGTT TCAACCGAAA AGGAATTGAG
 151 ATGAATAAAA CCTTGTCTAT TTTGCCGGTG GCAATCTTAC TCGGCGGCTG
 201 CGCCGCCGGA GGCGGTAACA CATTCGGCAG CTTAGACGGT GGCACAGGCA
 251 TGGGCGGCAG CATCGTCAAA ATGGCGGTTG GGAGCCAATG CCGTGCGGAA
 301 TTGGACAAAC GCAGCGAATG GCGTTTGACC GCGCTGGCGA TGAGTGCCGA
 351 AAAACAGGCG GAGTGGGAAA ACAAGATTTG CGCTTGCGTC GCCCAAGAAG
 401 CACCCGAACG GATGACCGGC AACGATGTGA TGCAGATGCT GGCTCCGTCC
 451 ACGCGCAATC AGGCACTTGC CGCCCTGACC GCCAAAACGG TTTCCGCCTG
- 501 CTTCAAACAC CTGTACCGCT AA
 This corresponds to the amino acid sequence <SEQ ID 384; ORF 108>:
 m108.pep
 - 1 MLPGFNRIFK RFVPTLGTAH KTPPFALSRT GRLIRFYRHK RRGFNRKGIE
 - 51 MNKTLSILPV AILLGGCAAG GGNTFGSLDG GTGMGGSIVK MAVGSQCRAE
 - 101 LDKRSEWRLT ALAMSAEKQA EWENKICACV AQEAPERMTG NDVMQMLAPS
 - 151 TRNQALAALT AKTVSACFKH LYR*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 108 shows 89.6% identity over a 173 aa overlap with a predicted ORF (ORF 108.ng) from N. gonorrhoeae:

m108/g108

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 387>:


```
g109.seq
      1 ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC
     51 AGCCGGTATT GATCGTAGGC GTATGCTTAC CGCTTTTGGA AGCGGGCATG
    101 GAAATGACGC GCAAAGGCAA AACCACCCAA TCCGCCGCCA TCGTGGTGTT
    151 CTCTTCCGTC TGGTCAATCC GGTTTTCGGC TGGGCGTTGA CGATGCTGTT
    201 GGATAATTTG GGCTTAATCG GCTGCAAAGA ACGCAGCGCG CAATTAGGTT
    251 TTGTCGGACG AGTATTGATA CCCGCAGTAG GTTTCTTAAT CTTGTGTGTG
        GCGATGGGTG CGGTCGGGAT GCTGCCCGGT ATCCCTCCGT TTTTGGAGCA
    351 GTTCAAATCT TTGGGCTAG
This corresponds to the amino acid sequence <SEQ ID 388; ORF 109.ng>:
g109.pep
         MYYRRVVGLS DGLGDLAAGI DRRRMLTAFG SGHGNDAQRQ NHPIRRHRGV
         LFRLVNPVFG WALTMLLDNL GLIGCKERSA QLGFVGRVLI PAVGFLILCV
     101 AMGAVGMLPG IPPFLEQFKS LG
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 389>:
m109.seq
         ATGTATTATC GCCGGGTTAT GGGGCTATCC GATGGACTTG GCGATTTGGC
      1
     51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG
     101 GAAGCGGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC
     151 CATCGTGGTG TTCTCTTCCG CCTTGTCAAT CCGGTTTTCG GCTGGGCGTT
     201 GACGATGCTG TTGGATAATT TGGGCTTAAT CGGCTGCAAA GAGCGCAGTG
     251 CGCAATTAGG TTTCGCCGGA CGCGTGTTGA TACCCGCAGT AGGTTTCTTG
     301 ATCTTGTGTG TGGCGATGGG TGCGGTCGGG ATGCTGCCCG GTATCCCGCC
     351 GTTTTTGGAA CACTTCAAAT CTTTGGGCTA G
This corresponds to the amino acid sequence <SEQ ID 4; ORF 109>:
m109.pep
      1 MYYRRVMGLS DGLGDLAAGI ERSLGRRRIL TAFGSGHGND AQRQNHPIRR
      51 HRGVLFRLVN PVFGWALTML LDNLGLIGCK ERSAQLGFAG RVLIPAVGFL
     101 ILCVAMGAVG MLPGIPPFLE HFKSLG*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 109 shows 92.9% identity over a 126 aa overlap with a predicted ORF (ORF 109.ng)
from N. gonorrhoeae:
m109/g109
                              20
                                       30
                                                 40
            MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
m109.pep
             q109
            MYYRRVVGLSDGLGDLAAGIDR----RRMLTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN
                    10
                              20
                                           30
                                                     40
                                                              50
                    70
                              80
                                       90
                                                100
                                                         110
             {\tt PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE}
m109.pep
             PVFGWALTMLLDNLGLIGCKERSAQLGFVGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
g109
                                  80
              60
                                           90
m109.pep
            HFKSLGX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 391>: a109.seg

:11111

QFKSLGX 120

g109

- ATGTATTATC GCCGGGTTGT GGGGCTATCC GATGGACTTG GCGATTTGGC
- 51 AGCCGGTATT GAGCGTAGCC TTGGTCGTAG GCGTATACTT ACCGCTTTTG
- GAAGCGGGCA TGGAAATGAC GCGCAAAGGC AAAACCACCC AATCCGCCGC
- 151 CACCGTGGTG TTCTCTTCCG CTTGGTCAAT CCGGTTTTCG GCTGGGCGTT

WO 99/57280

PCT/US99/09346

	·
201 251 301 351	ATCTTGTGTG TGGCGATGGG TGCGGTCGGG ATGCTGCCCG GTATCCCGCC
This correspond	ds to the amino acid sequence <seq 109="" 392;="" id="" orf="">:</seq>
1 51 101	
m109/a109	97.6% identity in 126 aa overlap
m109.pep	10 20 30 40 50 60 MYYRRVMGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN :
a109	MYYRRVVGLSDGLGDLAAGIERSLGRRRILTAFGSGHGNDAQRQNHPIRRHRGVLFRLVN 10 20 30 40 50 60
m109.pep	70 80 90 100 110 120 PVFGWALTMLLDNLGLIGCKERSAQLGFAGRVLIPAVGFLILCVAMGAVGMLPGIPPFLE
a109	PVFGWALTMLLDNLGLIGCKERSAQLGFTGRVLIPVVGFLILCVAMGAVGMLPGIPPFLE 70 80 90 100 110 120
m109.pep	HFKSLGX
a109	HFKSLGX
The following p	partial DNA sequence was identified in N. gonorrhoeae <seq 393="" id="">:</seq>
giii.seq 1	ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
51	CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGaacaaacC GCGCAaaccg
101	TTACCCTGCA AGGCGAAACG ATGGGTACGA CCLATACCGT CAAATACCTT
151	
201	TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGLCCACC TACCAGACCG
251	ATTCCGAAAT CAGCCGGTTt atacagacan atgctggaga gctcttcgcg
301	• • • • • • • •
351	geetatetea teggegetet ga
This correspond	ls to the amino acid sequence <seq 111.ng="" 394;="" id="" orf="">:</seq>
glll.pep	1
	MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51	SNNRDKLPSP AKIQKRIDDA LKEVNRQMST YQTDSEISRF IQTAGELFAH
101	ASITDSAEDC LPNTPISSAL *
The following r	partial DNA sequence was identified in N. meningitidis <seq 395="" id="">:</seq>
mlll.seq	·
1	ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT TGATATTTGC
51	
101	
151	
	CGATGACGCG CTTAAAGAAk TCAACCGGYA GATGTCCACC TATCAGCCCG
	ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
	ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC GCCTGAACCG
351	CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
	ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
	AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
551	


```
601 CTGGAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
651 GCACGGCAAA GGCAAAAACG CGCGCGCGA ACCGTGGCGC ATCGGTATCG
701 AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
751 AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
801 TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
851 CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
901 ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 396; ORF 111>:

m111.pep

MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYXVKYL
SINRDKLPSP AEIXKRIDDA LKEXNRXMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQTIVPL
251 NNRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
351 R*

ORF 111 shows 88.7% identity over a 97 aa overlap with a predicted ORF (ORF 111.ng) from N. gonorrhoeae:

mlll.pep/glll.pep

```
10
                          20
                                  30
                                           40
                                                    50
                                                            60
           MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYXVKYLSNNRDKLPSP
m111.pep
           g111
           MPSETRLPNLIRALIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP
                  10
                          20
                                  30
                                           40
                                                    50
                                                            60
                  70
                          80
                                  90
                                          100
           AEIXKRIDDALKEXNRXMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVRLNRLTH
m111.pep
           AKIQKRIDDALKEVNRQMSTYQTDSEISRFIQTXAGELFAXHAXSITDSAEDCLPNTPIS
g111
                  70
                          80
                                  90
                                          100
                                                   110
                 130
                                  150
                                          160
                         140
                                                   170
                                                           180
m111.pep
           GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK
g111
           SALX
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 397>: a111.seq

1	ATGCCGTCTG	AAACACGCCT	GCCGAACTTT	ATCCGCACCT	TGATATTTGC
51	CCTGAGTTTT	ATCTTCCTGA	ACGCCTGTTC	GGAACAAACC	GCGCAAACCG
101	TTACCCTGCA	AGGTGAAACG	ATGGGCACGA	CCTATACCGT	CAAATACCTT
151	TCAAATAATC	GGGACAAACT	CCCCTCACCT	GCCGAAATAC	AAAAGCGCAT
201	CGATGACGCG	CTTAAAGAAG	TCAACCGGCA	GATGTCCACC	TATCAGCCCG
251	ACTCCGAAAT	CAGCCGGTTC	AACCAACACA	CAGCCGGCAA	GCCCCTCCGC
301	ATTTCAAGCG	ACTTCGCACA	CGTTACTGCC	GAAGCCGTCC	ACCTGAACCG
351	CCTGACACAC	GGCGCGCTGG	ACGTAACCGT	CGGCCCCTTG	GTCAACCTTT
401	GGGGATTCGG	CCCCGACAAA	TCCGTTACCC	GTGAACCGTC	GCCGGAACAA
451	ATCAAACAAG	CAGCATCTTA	TACGGGCATA	GACAAAATCA	TTTTGAAACA
501	AGGCAAAGAT	TACGCTTCCT	TGAGCAAAAC	CCACCCCAAG	GCCTATTTGG
551	ATTTATCTTC	GATTGCCAAA	GGCTTCGGCG	TTGATAAAGT	TGCGGGCGAA
601	CTGGAAAAAT	ACGGCATTCA	AAATTATCTG	GTCGAAATCG	GCGGCGAGTT
651	GCACGGCAAA	GGCAAAAACG	CGCGCGGCGA	ACCTTGGCGC	ATCGGCATCG
701	AACAGCCCAA	CATCGTCCAA	GGCGGCAATA	CGCAGATTAT	CGTCCCGCTG
751	AACAACCGTT	CGCTTGCCAC	TTCCGGCGAT	TACCGTATTT	TCCACGTCGA

801 851 901 951 1001	TAAAAGCGGC AAACGCCTCTCCCATCAGCCA CAACCTCGCCAACGGCGACG GCTTGTCCACCATAAAGGCGG CTACCGCACCATAAAGGCGG CTACCGCACCAAAAGGCGGC CTACCGCACCAAAAGGCGGC CTACCGCACCAAAAGGCGGC CTACCGCACCAAAAGGCGGC CTACCGCACCAAAAAGGCGG CTACCGCACCAAAAAGGC	TCCATCAGCG TAGGATTATTC CAAAAACTCGC T	TGGTCGCAGA GTATTGGGCG TGTTTTCCTG	CAGTGCGATG AAACCGAAGC ATTGTCAGGG	
1051	CGCTAA	<ceo id<="" td=""><td>200. ODE</td><td>111 👟</td><td></td></ceo>	200. ODE	111 👟	
•	ls to the amino acid sequ		396, OKF	111.a/.	
alll.pep	Whaten the The Third		NORTH OCCU	NORMAL PROPERTY.	
1 51	MPSETRLPNF IRTLIFALSE SNNRDKLPSP AEIOKRIDDA				
101	ISSDFAHVTA EAVHLNRLTH	_	-	_	
151	IKQAASYTGI DKIILKQGKI				
201	LEKYGIQNYL VEIGGELHGE				
251	NNRSLATSGD YRIFHVDKSG				
301	TADGLSTGLF VLGETEALKI				
351	R*	ABREREATE .	IVNDNGGINI	MIDSELEKTE	
331	K				
ml11/al11 9/	7.7% identity in 351	aa overiap			
	••	20	4.0		
	10	20 30	40	50	60
mlll.pep	MPSETRLPNFIRVLIFAL				
-111	MDCCTOI DMCTOTITENI	CETEINACCEOM		アルカイン さんりょうしん しんりんしん	T DCD
al11	MPSETRLPNFIRTLIFAI				
a111	MPSETRLPNFIRTLIFAI 10	SFIFLNACSEQTA 20 30	AQTVTLQGETN 40	IGTTYTVKYLSNNRDK , 50	LPSP 60
a111	10	20 30	40	, 50	60
	10 70	20308090	100	50 110	60 120
mlll.pep	10 70 AEIXKRIDDALKEXNRXM	20 30 80 90 ISTYQPDSEISRFI	40 100 NQHTAGKPLRI	50 110 SSDFAHVTAEAVRLN	60 120 RLTH
m111.pep	10 70 AEIXKRIDDALKEXNRXM 	20 30 80 90 #STYQPDSEISRF1	40 100 NOHTAGKPLRI	50 110 SSDFAHVTAEAVRLN	60 120 RLTH
	10 70 AEIXKRIDDALKEXNRXM	20 30 80 90 #STYQPDSEISRF1	40 100 NOHTAGKPLRI	50 110 SSDFAHVTAEAVRLN	60 120 RLTH
m111.pep	10 70 AEIXKRIDDALKEXNRXN AEIQKRIDDALKEVNRQN	20 30 80 90 STYQPDSEISRFI	40 100 NOHTAGKPLRI NOHTAGKPLRI	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN	120 RLTH
m111.pep	10 70 AEIXKRIDDALKEXNRXM AEIQKRIDDALKEVNRQM 70	20 30 80 90 STYQPDSEISRFI	40 100 NOHTAGKPLRI NOHTAGKPLRI	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN	120 RLTH
m111.pep	10 70 AEIXKRIDDALKEXNRXM AEIQKRIDDALKEVNRQM 70	20 30 80 90 STYQPDSEISRFI STYQPDSEISRFI 80 90 40 150	40 100 NQHTAGKPLRI NQHTAGKPLRI 100	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170	120 RLTH RLTH 120
m111.pep a111 m111.pep	10 70 AEIXKRIDDALKEXNRXM AEIQKRIDDALKEVNRQM 70 130 GALDVTVGPLVNLWGFGE	20 30 80 90 ISTYOPDSEISRFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 100 NQHTAGKPLRI IIIIIIIII NQHTAGKPLRI 100 160 IKQAASYTGII	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 OKIILKQGKDYASLSK	120 RLTH RLTH 120 180 THPK
m111.pep	10 70 AEIXKRIDDALKEXNRXM	20 30 80 90 ISTYOPDSEISRFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 100 NQHTAGKPLRI NQHTAGKPLRI 100 160 IKQAASYTGII	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 KIILKQGKDYASLSK KIILKQGKDYASLSK	120 RLTH RLTH 120 180 THPK
m111.pep a111 m111.pep	10 70 AEIXKRIDDALKEXNRXM	20 30 80 90 ISTYOPDSEISRFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 100 NQHTAGKPLRI IIIIIIIII NQHTAGKPLRI 100 160 IKQAASYTGII	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 OKIILKQGKDYASLSK	120 RLTH RLTH 120 180 THPK
m111.pep a111 m111.pep	10 70 AEIXKRIDDALKEXNRXM	20 30 80 90 STYQPDSEISRFI STYQPDSEISRFI 80 90 40 150 PDKSVTREPSPEQ:	40 100 NQHTAGKPLRI NQHTAGKPLRI 100 160 IKQAASYTGII	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 KIILKQGKDYASLSK KIILKQGKDYASLSK	120 RLTH RLTH 120 180 PHPK PHPK
m111.pep a111 m111.pep a111	10 70 AEIXKRIDDALKEXNRXM AEIQKRIDDALKEVNRQM 70 130 130 GALDVTVGPLVNLWGFGE GALDVTVGPLVNLWGFGE 130 1	20 30 80 90 STYQPDSEISRFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 100 NQHTAGKPLRI NQHTAGKPLRI 100 160 IKQAASYTGII IKQAASYTGII	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 KIILKQGKDYASLSK KIILKQGKDYASLSK 170 230	120 RLTH RLTH 120 180 FHPK FHPK 180
m111.pep a111 m111.pep	10 70 AEIXKRIDDALKEXNRXM AEIQKRIDDALKEVNRQM 70 130 130 GALDVTVGPLVNLWGFGE GALDVTVGPLVNLWGFGE 130 1 190 2 AYLDLSSIAKGFGVDKVP	20 30 80 90 STYQPDSEISRFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 100 NQHTAGKPLRI NQHTAGKPLRI 100 160 IKQAASYTGII IKQAASYTGII 160 220 VEIGGELHGKO	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 KIILKQGKDYASLSK 1111 KKILKQGKDYASLSK 170 230 KNARGEPWRIGIEQP	120 RLTH RLTH 120 180 PHPK PHPK 180 240 NIVQ
m111.pep all1 m111.pep all1 m111.pep	10 70 AEIXKRIDDALKEXNRXM	20 30 80 90 STYQPDSEISRFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 100 NQHTAGKPLRI NQHTAGKPLRI 100 160 IKQAASYTGII IKQAASYTGII 160 220 VEIGGELHGKG	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 KIILKQGKDYASLSK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 RLTH RLTH 120 180 PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK
m111.pep a111 m111.pep a111	70 AEIXKRIDDALKEXNRXM	20 30 80 90 STYQPDSEISRFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	40 100 NQHTAGKPLRI NQHTAGKPLRI 100 160 IKQAASYTGII IKQAASYTGII 160 220 VEIGGELHGKG	50 110 SSDFAHVTAEAVRLN SSDFAHVTAEAVHLN 110 170 KIILKQGKDYASLSK IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120 RLTH RLTH 120 180 PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK PHPK

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 399>: g111-1.seq

260

260

320

320

270

270

330

330

TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX

TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX

GGNTQIIVPLNNRSLATSGDYRIFHVDKNGKRLSHIINPNNKRPISHNLASISVVADSAM

280

280

340

340

290

350

- 1 ATGCCGTCTG AAACACGCCT GCCGAACCTT ATCCGCGCCT TGATATTTGC
- 51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAaCCG

250

250

310

mll1.pep

m111.pep

a111

a111

- 101 TTACCCTGCA AGGCGAAACG ATGGGTACGA CCTATACCGT CAAATACCTT
- 151 TCAAATAATC GGGACAAACT CCCCTCCCCT GCCAAAATAC AAAAGCGCAT
- 201 TGATGATGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TACCAGACCG


```
251 ATTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
 301 ATTTCAAGCG ATTTCGCACA CGTTACCGCC GAAGCCGTCC GCCTGAACCG
 351 CCTGACTCAC GGCGCACTGG ACGTAACCGT CGGCCCTTTG GTCAACCTTT
 401 GGGGGTTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
 451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGCAACA
 501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAA GCCTATTTGG
 551 ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
 601 CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCggcGAGTT
 651 GCACGGCAAA GGCAAAAATG CGCACGGCGA ACCGTGGCGC ATCGGTATAG
 701 AGCAACCCAA TATcatccaa ggcggcaata cgcAGattat cgtcccgctg
 751 aaCaaccgtt cgcttgccac ttccggcgAT taccgtaTTT tccacgtcgA
     TAAAAACGGC Aaacgccttt cccacATCAT CAATCCCAAC AACAAACGAC
 801
 851 CCATCAGCCA CAACCTCGCC tcCATCAGCG TGGTCTCAGA CAGTGCAATG
 901 ACGGCGGACG GTTTATCCAC AGGATTATTT GTTTTAGGCG AAACCGAAGC
951 CTTAAGGCTG GCAGAACAAG AAAAACTCGC TGTTTTCCTA ATTGTCCGGG
1001 ATAAGGACGG CTACCGCACC GCCATGTCTT CCGAATTTGC CAAGCTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 400; ORF 111-1.ng>: g111-1.pep

```
1 MPSETRLPNL IRALIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AKIQKRIDDA LKEVNRQMST YQTDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRITH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILQQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
161 LEKYGIQNYL VEIGGELHGK GKNAHGEPWR IGIEQPNIIQ GGNTQIIVPL
162 NRRSLATSGD YRIFHVDKNG KRLSHIINPN NKRISHNLA SISVVSDSAM
163 TADGLSTGLF VLGETEALRL AEQEKLAVFL IVRDKDGYRT AMSSEFAKLL
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 401>: m111-1.seq

```
1 ATGCCGTCTG AAACACGCCT GCCGAACTTT ATCCGCGTCT TGATATTTGC
  51 CCTGGGTTTC ATCTTCCTGA ACGCCTGTTC GGAACAAACC GCGCAAACCG
     TTACCCTGCA AGGCGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
 101
 151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAACGCAT
 201 CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
 251 ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
 301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC GCCTGAACCG
 351
     CCTGACACAC GGCGCGCTGG ACGTAACCGT CGGCCCCTTG GTCAACCTTT
     GGGGATTCGG CCCCGACAAA TCCGTTACCC GTGAACCGTC GCCGGAACAA
 451 ATCAAACAGG CGGCATCTTA TACGGGCATA GACAAAATCA TTTTGAAACA
 501 AGGCAAAGAT TACGCTTCCT TGAGCAAAAC CCACCCCAAG GCCTATTTGG
     ATTTATCTTC GATTGCCAAA GGCTTCGGCG TTGATAAAGT TGCGGGCGAA
 551
     CTGGAAAAAT ACGGCATTCA AAATTATCTG GTCGAAATCG GCGGCGAGTT
 601
 651 GCACGGCAAA GGCAAAAACG CGCGCGGCGA ACCGTGGCGC ATCGGTATCG
 701 AGCAGCCCAA TATCGTCCAA GGCGGCAATA CGCAGATTAT CGTCCCGCTG
     AACAACCGTT CGCTTGCCAC TTCCGGCGAT TACCGTATTT TCCACGTCGA
     TAAAAACGGC AAACGCCTCT CCCATATCAT CAACCCGAAC AACAAACGAC
 801
     CCATCAGCCA CAACCTCGCC TCCATCAGCG TGGTCGCAGA CAGTGCGATG
     ACGGCGGACG GCTTGTCCAC AGGATTATTC GTATTGGGCG AAACCGAAGC
 951 CTTAAAGCTG GCAGAGCGCG AAAAACTCGC TGTTTTCCTG ATTGTCAGGG
1001 ATAAAGGCGG CTACCGCACC GCCATGTCTT CCGAATTTGA AAAACTGCTC
1051 CGCTAA
```

This corresponds to the amino acid sequence <SEQ ID 402; ORF 111-1>: m111-1.pep

```
MPSETRLPNF IRVLIFALGF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVRLNRLTH GALDVTUGPL VLLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKIILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
161 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
162 NRSLATSGD YRIFHVDKNG KRLSHIINPN NKRPISHNLA SISVVADSAM
163 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL
```

m111-1/g111-1 96.6% identity in 351 aa overlap

	10	20	30	40	50	60	
m111-1.pep	70 AEIQKRIDDALKEV	80 NROMSTYOPDS	90 SEISRFNQH	100 FAGKPLRISSD	110 FAHVTAEAVR	120 LNRLTH	
g111-1	: AKIQKRIDDALKEV 70						
-111 1 man	130 GALDVTVGPLVNLW	140	150	160	170	180 .	
m111-1.pep g111-1			 EPSPEQIKQ		: LQQGKDYASL	 SKTHPK	
	130 190	140 200	150 210	160 220	170 230	180 240	
m111-1.pep g111-1	AYLDLSSIAKGFGV 	иннии	нінны	шшшш	:111111111	1111:1	
y+11 1	190	200	210	220	230	240	
m111-1.pep	250 GGNTQIIVPLNNRS						
g111-1	GGNTQIIVPLNNRS 250						
m111-1.pep	310 TADGLSTGLFVLGE						
g111-1							
hypothetica lipoprotein Score = 3	50 OJL_HAEIN HYPOTH 1 protein HI0172 , putative [Haem 49 bits (885), E = 177/328 (53%)	- Haemophi ophilus inf xpect = 2e-	lus influ luenzae 1 95	uenzae (stra Rd] Length	ain Rd KW2 - 346	0) >gi 15731	
	LNACSEQTAQTVTLQG L AC ++T + ++L G	+TMGTTY VKY	(L +	S + + I+	TK+ N W	STY+	
-	LAACQKET-KVISLSG PDSEISRFNQHT-AGK						
-	-	P+ IS+DFA V	AEA+RLN	++T GALDVTV	GP+VNLWGFG	P+K	
Query: 142	VTREPSPEQIKQAASY ++P+PEQ+ + ++			THPKAYLDLSS: P+ Y+DLSS:			
_	PEKQPTPEQLAERQAW				_		
	EKYGIQNYLVEIGGEL E+ QNY+VEIGGE+ EQLNAQNYMVEIGGEI	KGKN G+F	PW+I IE+P	+ +-	+ LNN +A+	SGDY	
Query: 262	RIFHVDKNGKRLSHII	NPNNKRPISHN	ILASISVVAI	DSAMTADGLST(GLFVLGETEA	LKLA 321	
	RI+ ++NGKR +H I RIY-FEENGKRFAHEI			++MTADGLST(TSMTADGLST(
		+ T SS F+F	(L				
-	EKNNLAVYLIIRTDNG			tified in N		: <i>d:-</i>	D 4025
a111-1.seq	ing partial DNA				_	uis >SEQ I	IJ 4U3 ≥;
	CTGAGTTTT ATCTTC						

- 51 CCTGACTTTT ATCTTCCTGA ACGCCTGTTC GGAACAACC GCGCAAACCG
 101 TTACCCTGCA AGGTGAAACG ATGGGCACGA CCTATACCGT CAAATACCTT
 151 TCAAATAATC GGGACAAACT CCCCTCACCT GCCGAAATAC AAAAGCGCAT
 201 CGATGACGCG CTTAAAGAAG TCAACCGGCA GATGTCCACC TATCAGCCCG
 251 ACTCCGAAAT CAGCCGGTTC AACCAACACA CAGCCGGCAA GCCCCTCCGC
 301 ATTTCAAGCG ACTTCGCACA CGTTACTGCC GAAGCCGTCC ACCTGAACCG

351	CCTGACACAC	GGCGCGCTGG	ACGTAACCGT	CGGCCCCTTG	GTCAACCTTT
401	GGGGATTCGG	CCCCGACAAA	TCCGTTACCC	GTGAACCGTC	GCCGGAACAA
451	ATCAAACAAG	CAGCATCTTA	TACGGGCATA	GACAAAATCA	TTTTGAAACA
501	AGGCAAAGAT	TACGCTTCCT	TGAGCAAAAC	CCACCCCAAG	GCCTATTTGG
551	ATTTATCTTC	GATTGCCAAA	GGCTTCGGCG	TTGATAAAGT	TGCGGGCGAA
601	CTGGAAAAAT	ACGGCATTCA	AAATTATCTG	GTCGAAATCG	GCGGCGAGTT
651	GCACGGCAAA	GGCAAAAACG	CGCGCGGCGA	ACCTTGGCGC	ATCGGCATCG
701	AACAGCCCAA	CATCGTCCAA	GGCGGCAATA	CGCAGATTAT	CGTCCCGCTG
751	AACAACCGTT	CGCTTGCCAC	TTCCGGCGAT	TACCGTATTT	TCCACGTCGA
801	TAAAAGCGGC	AAACGCCTCT	CCCATATCAT	TAATCCGAAC	AACAAACGAC
851	CCATCAGCCA	CAACCTCGCC	TCCATCAGCG	TGGTCGCAGA	CAGTGCGATG
901		GCTTGTCCAC			
951	CTTAAAGCTG	GCAGAGCGCG	AAAAACTCGC	TGTTTTCCTG	ATTGTCAGGG
1001	ATAAAGGCGG	CTACCGCACC	GCCATGTCTT	CCGAATTTGA	AAAACTGCTC
1051	CGCTAA				

This corresponds to the amino acid sequence <SEQ ID 404; ORF 111-1.a>: a111-1.pep

1 MPSETRLPNF IRTLIFALSF IFLNACSEQT AQTVTLQGET MGTTYTVKYL
51 SNNRDKLPSP AEIQKRIDDA LKEVNRQMST YQPDSEISRF NQHTAGKPLR
101 ISSDFAHVTA EAVHLNRLTH GALDVTVGPL VNLWGFGPDK SVTREPSPEQ
151 IKQAASYTGI DKILKQGKD YASLSKTHPK AYLDLSSIAK GFGVDKVAGE
201 LEKYGIQNYL VEIGGELHGK GKNARGEPWR IGIEQPNIVQ GGNTQIIVPL
251 NNRSLATSGD YRIFHVDKSG KRLSHILNPN NKPJISHNLA SISVVADSAM
301 TADGLSTGLF VLGETEALKL AEREKLAVFL IVRDKGGYRT AMSSEFEKLL

all1-1/ml11-1 98.9% identity in 351 aa overlap

MPSETRLPNFIRTLIFALSFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP all1-1.pep m111-1 MPSETRLPNFIRVLIFALGFIFLNACSEQTAQTVTLQGETMGTTYTVKYLSNNRDKLPSP al11-1.pep AEIQKRIDDALKEVNRQMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVHLNRLTH m111-1 AEIQKRIDDALKEVNRQMSTYQPDSEISRFNQHTAGKPLRISSDFAHVTAEAVRLNRLTH GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK a111-1.pep m111-1 GALDVTVGPLVNLWGFGPDKSVTREPSPEQIKQAASYTGIDKIILKQGKDYASLSKTHPK AYLDLSSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNARGEPWRIGIEQPNIVQ all1-1.pep m111-1 AYLDLSSIAKGFGVDKVAGELEKYGIQNYLVEIGGELHGKGKNARGEPWRIGIEQPNIVQ a111-1.pep GGNTQIIVPLNNRSLATSGDYRIFHVDKSGKRLSHIINPNNKRPISHNLASISVVADSAM m111-1GGNTQIIVPLNNRSLATSGDYRIFHVDKNGKRLSHIINPNNKRPISHNLASISVVADSAM TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX a111-1.pep ************************************** m111-1 TADGLSTGLFVLGETEALKLAEREKLAVFLIVRDKGGYRTAMSSEFEKLLRX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 405>: g114.seq

- 1 ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCAGCAGG AATGCAGCAA
- 51 GACTTTTTA TGTCCGCCGG GCGGGACGAG TATGGGGCGG TCAATGTCGG

```
101 TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTCGAA
         151 TACGGTCAAA GCGGCTATTT TACCAGAGCC GCCGAATGTA AAACAGGGTG
         201 TCAGGGCATC AGCCCGAGCT GCCTGAACGA ACGGACGGTT TGCGAGGTAA
         251 CGATAAAATG GTCGAGCAGC GAAACATCAA CCAGCGACAT GGCCTGTGCC
         301 AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAAGGTTCAG GCGAGCCGCC
              CGGATGGTTG TGCGCGATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
              GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 406; ORF 114.ng>:
    g114.pep
              MASITSPLHG AQQECSKTFL CPPGGTSMGR SMSVTVGLFC VSINLTISVE
              YGQSGYFTRA AECKTGCQGI SPSCLNERTV CEVTIKWSSS ETSTSDMACA
         101 SRLVNMMSSC EGSGEPPGWL CAIIRLSAYS SNASLTISRM *
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 407>:
    m114.seq
              ATGGCTTCCA TCACTTCGCC GCTGCACGGG GCGCACAGAG AATGCAGCAA
           1
          51 GACTTTTTA TGTCCACCGG GCGGGACGAG TATAGGGCGG TCAATGTCGG
         101 TAACGGTAGG TTTGTTTTGT GTTTCCATTA ACTTAACAAT ATCTGTTGAA
         151 TACGGTTGAA GCGGCTATTT TATCAGAGCC GCCGCATGTA AAACAGAGTG
         201 TCAGGGCATC AACCCGAGCT GTCTGAACGA ACAGACGCTT TGCGAKGTAA
         251 CGATAAAATG GTCGAGCAGC GACACATCGA CCAGCGACAT TGCCTGTGCC
              AGCCGCCTTG TGAACATGAT GTCTTCCTGC GAArGTTCsG GCGAGCCGcC
         351 CGGATGGTTG TGCGCAATAA TCAGGCTGTC GGCATATTCG TCCAATGCCA
         401 GTTTGACGAT TTCGCGGATG TAA
This corresponds to the amino acid sequence <SEQ ID 408; ORF 114>:
    m114.pep
              MASITSPLHG AHRECSKTFL CPPGGTSIGR SMSVTVGLFC VSINLTISVE
          51 YGXSGYFIRA AACKTECQGI NPSCLNEQTL CXVTIKWSSS DTSTSDIACA
         101 SRLVNMMSSC EXSGEPPGWL CAIIRLSAYS SNASLTISRM *
    m114/g114
               90.0% identity over a 140 aa overlap
                        10
                                 20
                                           30
                                                    40
                 MASITSPLHGAHRECSKTFLCPPGGTSIGRSMSVTVGLFCVSINLTISVEYGXSGYFIRA
    m114.pep
                 g114
                 MASITSPLHGAQQECSKTFLCPPGGTSMGRSMSVTVGLFCVSINLTISVEYGQSGYFTRA
                        10
                                  20
                                           30
                                                    40
                                                                       60
                         70
                                  80
                                           90
                                                   100
                                                             110
                                                                      120
    m114.pep
                 AACKTECQGINPSCLNEQTLCXVTIKWSSSDTSTSDIACASRLVNMMSSCEXSGEPPGWL
                 AECKTGCQGISPSCLNERTVCEVTIKWSSSETSTSDMACASRLVNMMSSCEGSGEPPGWL
    a114
                        70
                                  80
                                           90
                                                   100
                                                            110
                                                                      120
                       130
                                 140
    m114.pep
                 CAIIRLSAYSSNASLTISRMX
                 CAIIRLSAYSSNASLTISRMX
    g114
                       130
                                 140
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 409>: a114.seq

1	ATGCCGGAGG	CAAGCATCGC	CTCCATCACT	TCGCCGCTGC	ACGGGGCGCA
51	ACAGGAATGC	AGCAAGACTT	TTTTATGTCC	GCCGGGCGGG	ACGAGTATGG
101	GGCGGTCAAT	GTCGGTAACG	GTAGGTTTGT	TTTGTGTTTC	CATTAACTTA
151	ACGATATCTG	TCGAATACGG	TTGAAGCGGC	TATTTTATCA	GAGCCGCCGC
201	ATGTAAAACA	GGGTGTCAGG	GCATCAGCCC	GAGCTGCCTG	AACGAACGGA
251	CGGTTTGCGC				
301	GACATTGCCT	GTGCCAGCCG.	CCTTGTGAAC	ATGATGTCTT	CCTGCGAAGG
351	TTCGGGCGAG	CCGCCCGGAT	GGTTGTGCGC	GATAATCAGG	CTGTCGGCAT
401	ATTCGTCCAA	TGCCAGTTTG	ACAATTTCAC	GGATGTAA	

This corresponds to the amino acid sequence <SEQ ID 410; ORF 114.a>: a114.pep

- 1 MPEASIASIT SPLHGAQQEC SKTFLCPPGG TSMGRSM<u>SVT VGLFCVSINL</u> 51 <u>TISV</u>EYG*SG YFIRAAACKT GCQGISPSCL NERTVCAVTI KWSSSDTSTS
- 101 DIACASRLVN MMSSCEGSGE PPGWLCAIIR LSAYSSNASL TISRM*

m114/a114 92.9% identity in 140 aa overlap

		10	20	30	40	50
m114.pep	MASIT	SPLHGAHREC	SKTFLCPPGG	TSIGRSMSVT	VGLFCVSINL	TISVEYGXSG
	:1111	1111111::11	11111111111	11:111111	1111111111	111111111
a114	MPEASIASIT	SPLHGAQQEC	SKTFLCPPGG	TSMGRSMSVI	'VGLFCVSINL	TISVEYGXSG
	10	20	30	40	50	60
	60		0.0	00		
	60	70	80	90	100	110
m114.pep	YFIRAAACKT	ECQGINPSCL	NEQTLCXVT1	KWSSSDTSTS	DIACASRLVN	MMSSCEXSGE
			11:1:1 111	111111111	1111111111	
a114	YFIRAAACKT	GCQGISPSCI	NERTVCAVTI	KWSSSDTSTS	DIACASRLVN	MMSSCEGSGE
	70	80	90	100	110	120
	120	130	140			
ml14.pep	PPGWLCAIIR					
mara.pcp	1111111111	1111111111	111111			
-114	DDCWI CATED	1	TCDMV			
a114	PPGWLCAIIR					
	130	140)			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 411>: g117.seq

atggtcgacg aactcgacCT GCTGCCCGAT GCCGTCGCCG CCACCCTGCT 1 TGCCGACATC GGACGCTACG TCCCCGATTG GAACCTATTG GTTTCCGAGC 51 GCTGCAACAG CACCGTCGCC GAGCTGGTCA AAGGTGtgga CGAAGTGCAG 151 AAACTTACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG 201 CGCACAGCAA GCGGAAACCA TGCGGAAAAT GCTGCTGGCg atggttaccg 251 Acatccgcgt cgtaTTAATC AAACTGGCGA TGCGTacgcg caccCTGcta 301 ttTTtaaGCA ACGCCCCCGA CAGCCCTGAA AAACgcgccG TCgccaaAqa 351 aaccetcgac atettcgccc cgctcgccaa ccgcttgggc gtgtggcagc 401 TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA 501 ATACATCGAA AACTTCCTCG ATATCCTGCG TACGGAACTC AAAAAATACA 551 ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC 601 AAAAAAATGG TGAAGAAAAA ACTCAGCTTC GACGGCCTGT TCGACATCCG 651 CGCCGTGCGG ATTCTGGTCG ATACCGTCCC CGaGTGTTAC ACCACGCTGG 701 gcaTCGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGagtt CGAcgactAC 751 ATCGCCAACC CCAAAGgcaA CGgttATAAA AGtTTGCACA CCGTCATCGT 801 cggcccGGAa gacaaaggtg tggaaGtgCA AATCCGCACC TTCGAtatGC 851 accAATTCaa CgaatTcggT gtcgccgCCC ACTGGCGtta caaagaaggc 901 ggcaaaggcg attccGCCtA cgaacaaAAA ATcgccTggt TGCgccaACT 951 CTTGGACTGG CGCGAAAATA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG 1001 CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG 1051 CACGGCAAAG TCCTCTCTCT GCCAACGGGC GCAACCCCCA TCGACTTCGC 1101 CTACGCCCTG CACAGCAGCA TCGGCGACCG CTGCCGGGGC GCGAAAGTCG 1151 AaggGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGCGTC 1201 GAAATcatta cCGCcaaAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA 1251 AGGCtgGGtc aAATCCGGCA AGGCCATCGG caaAATCCGC GCCTAcatCC 1301 GCCAGcaaAa cgCcgaCACC GTGCGCGAAG AAGGCCGTGT CCAACTCGAC 1351 AAGCAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTgccqa 1401 aaATCTCGGC tacaaAAAGC cagaagacct ctacacCGCc qtcqqacaaq 1451 gcgaaatttc caaccgcgcc atCcaaaaag cctgcggcac GCTgaacgaa 1501 CCGCCCCCG TGCCCGTCAG CGCAACCACC ATCGTCAAAC AGTCCAAAAT

```
1551 CAAAAAAGGT GGCAAAACCG GCGTGCTCAT CGACGGCGAA GACGGCTTGA
1601 TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGATATTGCC
     GGCTTCGTTA CCCGCGAGCG CGGCATTTCC GTCCACCGCA AAACCTGCCC
1651
     CTCTTTCCGA CACCTTGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
1701
1751 GTTGGGCGGC GTTGCAGGAA GGGCAAGTGT TCGCCGTCGA TATCGAAATC
1801 CGCGCCCAAG ACCGCTCCGG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
1851 CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
1901 AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGtCAA CGacCTCCCG
1951 CGCGTCCTCG CCGGCCTCGG CGATGTCAAA GGCGTATTGA GCGTTACCCG
2001 GCTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 412; ORF 117.ng>: g117.pep

```
1 MVDELDLLPD AVAATLLADI GRYVPDWNLL VSERCNSTVA ELVKGVDEVQ
51 KLTHFARVDS LATPEERAQQ AETMRKMLLA MVTDIRVVLI KLAMRTRTLL
    FLSNAPDSPE KRAVAKETLD IFAPLANRLG VWQLKWQLED LGFRHQEPEK
    YREIALLLDE KRTERLEYIE NFLDILRTEL KKYNIHFEVA GRPKHIYSIY
201 KKMVKKKLSF DGLFDIRAVR ILVDTVPECY TTLGIVHSLW QPIPGEFDDY
251 IANPKGNGYK SLHTVIVGPE DKGVEVQIRT FDMHQFNEFG VAAHWRYKEG
301 GKGDSAYEQK IAWLRQLLDW RENMAESGKE DLAAAFKTEL FNDTIYVLTP
351 HGKVLSLPTG ATPIDFAYAL HSSIGDRCRG AKVEGQIVPL STPLENGQRV
401 EIITAKEGHP SVNWLYEGWV KSGKAIGKIR AYIRQQNADT VREEGRVQLD
451 KQLAKLTPKP NLQELAENLG YKKPEDLYTA VGQGEISNRA IQKACGTLNE
    PPPVPVSATT IVKQSKIKKG GKTGVLIDGE DGLMTTLAKC CKPAPPDDIA
551 GFVTRERGIS VHRKTCPSFR HLAEHAPEKV LDASWAALQE GQVFAVDIEI
601 RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVNDLP
651 RVLAGLGDVK GVLSVTRL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 413>: m117.seq (partial)

```
..GTGAAACTCA AGAAATACAA TGTCCATTTC GAAGTCGCCG GCCGCCCGAA
  1
        ACACATCTAC TCCATTTACA AAAAAATGGT GAAGAAAAAA CTCAGCTTCG
 51
        ACGGCCTCTT TGACATCCGC GCCGTGCGAA TTCTGGTTGA TACCGTCCCC
 101
 151
        GAGTGTTACA CCACGCTGGG TATCGTCCAC AGCCTCTGGC AGCCCATTCC
        CGGCGAGTTC GACGACTACA TCGCCAATCC CAAAGGCAAC GGCTATAAAA
 201
 251
        GTTTGCACAC CGTCATCGTC GGCCCGGAAG ACAAAGGCGT GGAAGTACAA
 301
        ATCCGCACCT TCGATATGCA CCAATTCAAC GAATTCGGTG TCGCCGCCCA
        CTGGCGTTAC AAAGAGGGCG GCAAGGGCGA TTCCGCCTAC GAACAGAAAA
 351
        TCGCCTGGTT GCGCCAACTC TTGGACTGGC GCGAAAACAT GGCGGAAAGC
 401
 451
        GGCAAGGAAG ACCTCGCCGC CGCCTTCAAA ACCGAGCTTT TCAACGACAC
 501
        GATTTATGTT TTGACCCCGC ACGGCAAAGT CCTCTCCCTG CCCACGGGCG
        CGACCCCAT CGACTTCGCC TACGCCCTGC ACAGCAGCAT CGGCGACCGT
 551
 601
        TGCCGCGGTG CGAAAGTCGA AGGGCAGATT GTGCCGCTGT CCACCCCGCT
        CGAAAACGGA CAGCGCGTCG AAATCATTAC CGCCAAAGAA GGGCATCCTT
 651
 701
        CCGTCAACTG GCTTTACGAA GGCTGGGTCA AATCCAACAA GGCAATCGGC
 751
        AAAATCCGCG CCTACATCCG CCAGCAAAAC GCCGACACCG TGCGCGAAGA
 801
        AGGCCGCGTC CAACTCGACA AACAGCTTGC CAAACTCACG CCCAAACCCA
 851
        ACCTGCAAGA GCTTGCCGAA AATCTCGGCT ACAAAAAGCC AGAAGACCTC
        TACACCGCCG TCGGACAAGG CGAAATTTCC AACCGCGCCA TCCAAAAAGC
 901
 951
        CTGCGGCACG CTGAACGAAC CGCCGCCCGT ACCCGTCAGC GAAACCACCA
1001
        TCGTCAAACA GTCCAAAATC AAAAAAGGCG GCAAAAACGG CGTGCTCATC
        GACGGCGAAG ACGGTCTGAT GACCACGCTT GCCAAATGCT GCAAACCCGC
1051
        GCCGCCCGAC GATATTATCG GCTTCGTTAC CCGCGAGCGC GGCATTTCAG
1101
        TGCACCGCAA AWYYTKCYCG TCTTTCCAAC ACCTCGCCGA ACACGCGCCC
1151
1201
        GAWAAAGTGC TGGACGCAAG CTGGGCGGCA TTGCAGGAAG GACAAGTATT
        CGCCGTCGAT ATCGAAATCC GCGCCCAAGA CCGCTCCGGG CTTTTGCGCG
1251
        ACGTATCCGA CGCGCTCGCC CGCCACAAAC TCAACGTTAC CGCCGTGCAA
1301
        ACCCAGTCCC GCGACTTGGA AGCCAGCATG AGGTTCACGC TCGAAGTCAA
1351
        ACAAGTCAAC GACCTCCCGC GCGTCCTCGC CAGCCTCGGC GACGTCAAAG
1401
        GCGTATTGAG CGTTACCCGG CTTTAA
1451
```

This corresponds to the amino acid sequence <SEQ ID 414; ORF 117>: mll7.pep (partial)

1	VKLKKYNVHF	EVAGRPKHIY	SIYKKMVKKK	LSFDGLFDIR	AVRILVDTVP
51	ECYTTLGIVH	SLWQPIPGEF	DDYIANPKGN	GYKSLHTVIV	GPEDKGVEVQ
101	IRTFDMHQFN	EFGVAAHWRY	KEGGKGDSAY	EQKIAWLRQL	LDWRENMAES
151	GKEDLAAAFK	TELFNDTIYV	LTPHGKVLSL	PTGATPIDFA	YALHSSIGDR
201	CRGAKVEGQI	VPLSTPLENG	QRVEIITAKE	GHPSVNWLYE	GWVKSNKAIG
251	KIRAYIRQQN	ADTVREEGRV	QLDKQLAKLT	PKPNLQELAE	NLGYKKPEDL
301	YTAVGQGEIS	NRAIQKACGT	LNEPPPVPVS	ETTIVKQSKI	KKGGKNGVLI
351	DGEDGLMTTL	AKCCKPAPPD	DIIGFVTRER	GISVHRKXXX	SFQHLAEHAP
401	XKVLDASWAA	LQEGQVFAVD	IEIRAQDRSG	LLRDVSDALA	RHKLNVTAVQ
451	TOSRDLEASM	RFTLEVKQVN	DLPRVLASLG	DVKGVLSVTR	L*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 117 shows 97.6% identity over a 490 aa overlap with a predicted ORF (ORF 117.ng) from *N. gonorrhoeae:* m117/g117

					10	20	30
m117.pep					YNVHFEVAGR	PKHIYSIYK	KMVKKKL
117	PUVDET	arr never	מומדעם נספי		:		
g117	150	160	170	LDILRTELKK 180	INIHFEVAGR 190	200	CMVKKKL
mll7.pep	epoct pr	40	50 ייייעסטייטייט	60 LGIVHSLWQP:	70 	80	90
mii/.pep							
g117	SFDGLFI	DIRAVRILV	DTVPECYTT	LGIVHSLWQP:	IPGEFDDYIA	NPKGNGYKSI	
	210	220	230	240	250	260	
	1	.00	110	120	130	140	150
m117.pep				AHWRYKEGGK	_	_	_
g117				 AHWRYKEGGK			
9117	270	280	290	300	310	320	DOZIMINIZ
m117.pep	-	L60 AFKTELFNI	170 TTVVI.TPRG	180 KVLSLPTGAT	190 PTDFAVALUS	200	210
mii/.pcp							
g117	KEDLAAA	AFKTELFNI	TIYVLTPHG	KVLSLPTGAT	PIDFAYALHS	SIGDRCRGA	
	330	340	350	360	370	380	
		220	230	240	250	260	270
m117.pep				NWLYEGWVKS			
g117				 			
5	390	400	410	420	430	440	
		280	290	300	310	320	220
m117.pep	_			KPEDLYTAVG			330 PPVPVSE
				$\Pi\Pi\Pi\Pi\Pi\Pi$	ШШШ		
g117	LDKQLAI 450	CLTPKPNLC 460	ELAENLGYK 470	KPEDLYTAVG 480	QGEISNRAIQ 490	KACGTLNEPI 500	PPVPVSA
	450	400	170	400	450	300	
		340	350	360	370	380	390
m117.pep				LMTTLAKCCK		VTRERGISVI	
g117	TTIVKQS	KIKKGGK	GVLIDGEDG	LMTTLAKCCK	PAPPDDIAGF	VTRERGISVE	HRKTCPS
	510	520	530	540	550	560	
	4	100	410	420	430	440	450
m117.pep	FQHLAE	łapxkvld <i>i</i>	ASWAALQEGQ	VFAVDIEIRA			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 415>: a117.seq

```
1 ATGGTTCATG AACTCGACCT GCTCCCCGAT GCCGTCGCCG CCACCCTGCT
     TGCCGACATC GGACGCTACG TCCCCGACTG GAACCTATTG GTTTCCGAAC
 51
      GCTGCAACAG TACCGTCGCC GAGCTGGTCA AAGGTGTGGA CGAAGTGCAG
101
     AAACTCACCC ACTTCGCCCG GGTGGACAGC CTCGCCACGC CGGAAGAACG
151
     CGCCCAGCAG GCAGAAACTA TGCGGAAAAT GCTGCTGGCG ATGGTTACCG
     ACATCCGCGT CGTGTTAATC AAACTGGCGA TGCGTACGCG CACCCTGCAA
 301
     TTTTTAAGCA ACGCCCCCGA CAGCCCCGAA AAACGCGCCG TCGCCAAAGA
     AACCCTCGAC ATCTTCGCCC CGCTCGCCAA CCGTTTGGGC GTGTGGCAGC
351
     TCAAATGGCA GCTCGAAGAT TTGGGCTTCC GCCATCAAGA ACCCGAAAAA
401
     TACCGCGAAA TCGCCCTGCT TTTGGACGAA AAACGCACCG AACGCCTCGA
 501
     ATACATCGAA AACTTCCTTA ATATCCTGCG TACGGAACTC AAAAAATACA
     ATATCCACTT TGAAGTCGCC GGCCGTCCGA AACACATCTA CTCCATTTAC
     AAAAAAATGG TGAAGAAAAA ACTCAGCTTC GACGGGTTGT TCGACATCCG
 601
      CGCCGTGCGG ATTCTGGTTG ATACCGTCCC CGAGTGTTAC ACCACACTGG
      GCATTGTCCA CAGCCTCTGG CAGCCCATTC CCGGCGAGTT CGACGACTAC
701
      ATCGCCAACC CGAAAGGCAA CGGCTATAAA AGTTTGCACA CCGTCATCGT
     CGGCCCGGAA GACAAAGGCG TGGAAGTGCA AATCCGCACC TTCGATATGC
801
     ACCAATTCAA CGAATTCGGT GTCGCCGCGC ACTGGCGTTA CAAAGAGGGC
851
     GGCAAAGGCG ATTCCGCCTA CGAACAAAAA ATCGCCTGGT TACGCCAACT
 901
      TTTGGACTGG CGCGAAAACA TGGCGGAAAG CGGCAAGGAA GACCTCGCCG
     CCGCCTTCAA AACCGAGCTT TTCAACGACA CGATTTATGT TTTGACCCCG
1001
1051
      CACGGCAAAG TCCTCTCCCT GCCCACAGGC GCGACCCCCA TCGACTTCGC
     CTACGCCCTG CACAGCAGCA TCGGCGACCG TTGCCGCGGT GCGAAAGTCG
1101
1151
     AAGGGCAGAT TGTGCCGCTG TCCACCCCGC TCGAAAACGG ACAGCGTGTC
1201
     GAAATCATTA CCGCCAAAGA AGGGCATCCT TCCGTCAACT GGCTTTACGA
1251 AGGCTGGGTC AAATCCAACA AGGCAATCGG CAAAATCCGC GCCTACATCC
1301
     GCCAGCAAAA CGCCGACACC GTGCGCGAAG AAGGCCGCGT CCAACTCGAC
1351
     AAACAGCTTG CCAAACTCAC GCCCAAACCC AACCTGCAAG AGCTTGCCGA
     AAATCTCGGC TACAAAAAGC CAGAAGACCT CTACACCGCC GTCGGACAAG
1401
     GCGAAATTTC CAACCGCGCC ATCCAAAAAG CCTGCGGCAC GCTGAACGAA
1451
1501
     CCGCCGCCCG TACCCGTCAG CGAAACCACC ATCGTCAAAC AGTCCAAAAT
1551
     CAAAAAAGGC GGCAAAAACG GCGTGCTCAT CGACGGCGAA GACGGTCTGA
1601
     TGACCACGCT TGCCAAATGC TGCAAACCCG CGCCGCCCGA CGACATTGTC
1651 GGCTTCGTTA CCCGCGATCG CGGCATTTCG GTACACCGCA AAACCTGCCC
1701 CTCTTTCCGA CACCTCGCCG AACACGCGCC CGAAAAAGTA CTGGACGCAA
1751 GTTGGGCGGC GTTGCAGGAA GGACAAGTGT TCGCCGTCGA TATCGAAATC
      CGCGCCCAAG ACCGCTCCGG GCTTTTGCGC GACGTATCCG ACGCGCTCGC
     CCGCCACAAA CTCAACGTTA CCGCCGTGCA AACCCAGTCC CGCGACTTGG
1851
     AAGCCAGCAT GAGGTTCACG CTCGAAGTCA AACAAGTTAC CGACCTCCCA
1951
     CGCGTCCTCG CCAGCCTCGG CGACGTCAAA GGCGTATTGA GCGTTACCCG
     GCTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 416; ORF 117.a>: a117.pep

1 MVHELDLLPD AVAATLLADI GRYVPDWNLL VSERCNSTVA ELVKGVDEVQ
51 KLTHFARVDS LATPEERAQQ AETMRKMLLA MVTDIRVVLI KLAMRTRTLQ
101 FLSNAPDSPE KRAVAKETLD IFAPLANRLG VWQLKWQLED LGFRHQEPEK
151 YREIALLLDE KRTERLEYIE NFLNILRTEL KKYNIHFEVA GRPKHIYSIY
201 KKMVKKKLSF DGLFDIRAVR ILVDTVPECY TTLGIVHSLW QPIPGEFDDY
251 IANPKGNGYK SLHTVIVGPE DKGVEVQIRT FDMHQFNEFG VAAHWRYKEG
301 GKGDSAYEQK IAWLRQLLDW RENMAESGKE DLAAAFKTEL FNDTIYVLTP
351 HGKVLSLPTG ATPIDFAYAL HSSIGDRCRG AKVEGQIVPL STPLENGQRV

401 451 501 551 601 651	EIITAKEGHP SVNWLYEGWV KSNKAIGKIR AYIRQQNADT VREEGRVQLD KQLAKLTPKP NLQELAENLG YKKPEDLYTA VGQGEISNRA IQKACGTLNE PPPVPVSETT IVKQSKIKKG GKNGVLIDGE DGLMTTLAKC CKPAPPDDIV GFVTRDRGIS VHRKTCPSFR HLAEHAPEKV LDASWAALQE GQVFAVDIEI RAQDRSGLLR DVSDALARHK LNVTAVQTQS RDLEASMRFT LEVKQVTDLP RVLASLGDVK GVLSVTRL*
m117/a117	98.0% identity in 490 aa overlap
m117.pep	10 20 30 VKLKKYNVHFEVAGRPKHIYSIYKKMVKKKL : :
m117.pep	40 50 60 70 80 90 SFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVG
m117.pep a117	100 110 120 130 140 150 PEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESG
m117.pep a117	160 170 180 190 200 210 KEDLAAAFKTELFNDTIYVLTPHGKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIV
m117.pep	220 230 240 250 260 270 PLSTPLENGQRVEIITAKEGHPSVNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQ
m117.pep	280 290 300 310 320 330 LDKQLAKLTPKPNLQELAENLGYKKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m117.pep	340 350 360 370 380 390 TTIVKQSKIKKGGKNGVLIDGEDGLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKXXXS
m117.pep	400 410 420 430 440 450 FQHLAEHAPXKVLDASWAALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQT :
m117.pep	460 470 480 490 QSRDLEASMRFTLEVKQVNDLPRVLASLGDVKGVLSVTRLX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 417>: g117-1.seq

```
ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CCCTGCAAGA
  1
  51
     ATTGCGCGAA TGGTTCGACA GCTACTGCGC CGCTCTGCCG GACAACGATA
 101
     AAAACCTCAT CGGTACCGCA TGGTCGCTGG CGCAGGAACA TTATCCTGCC
     GATGCCGCCA CGCCGTATGG CGAGCCGCTG CCCGACCACT TCCTCGGCGC
 151
 201 GGCGCAAATG GTCGACGAAC TCGACCTGCT GCCCGATGCC GTCGCCGCCA
     CCCTGCTTGC CGACATCGGA CGCTACGTCC CCGATTGGAA CCTATTGGTT
 251
     TCCGAGCGCT GCAACAGCAC CGTCGCCGAG CTGGTCAAAG GTGTGGACGA
 301
 351
     AGTGCAGAAA CTTACCCACT TCGCCCGGGT GGACAGCCTC GCCACGCCGG
 401
     AAGAACGCGC ACAGCAAGCG GAAACCATGC GGAAAATGCT GCTGGCGATG
      GTTACCGACA TCCGCGTCGT ATTAATCAAA CTGGCGATGC GTACGCGCAC
     CCTGCAATTT TTAAGCAACG CCCCGACAG CCCTGAAAAA CGCGCCGTCG
 501
     CCAAAGAAAC CCTCGACATC TTCGCCCCGC TCGCCAACCG CTTGGGCGTG
 551
     TGGCAGCTCA AATGGCAGCT CGAAGATTTG GGCTTCCGCC ATCAAGAACC
 601
     CGAAAAATAC CGCGAAATCG CCCTGCTTTT GGACGAAAAA CGCACCGAAC
 651
     GCCTCGAATA CATCGAAAAC TTCCTCGATA TCCTGCGTAC GGAACTCAAA
 701
 751
     AAATACAATA TCCACTTTGA AGTCGCCGGC CGTCCGAAAC ACATCTACTC
 801
     CATTTACAAA AAAATGGTGA AGAAAAAACT CAGCTTCGAC GGCCTGTTCG
 851
     ACATCCGCGC CGTGCGGATT CTGGTCGATA CCGTCCCCGA GTGTTACACC
 901 ACGCTGGGCA TCGTCCACAG CCTCTGGCAG CCCATTCCCG GCGagttCGA
     cgactACATC GCCAACCCCA AAGgcaACGg ttATAAAAGt TTGCACACCG
 951
1001
     TCATCGTcgg cccGGAagaa aaaggtgtgg aagtgcAAAT CCGCACCTTC
     GATATGCacc AATTCaaCga ATTCGGTGTC GCCGCCCACT GGCGTTACAA
1051
     AGAAGGCGGC AAAGGCGATT CCGCCTACGA ACAAAAATC GCCTGGTTGC
1101
1151
     GCCAACTCTT GGACTGGCGC GAAAATATGG CGGAAAGCGG CAAGGAAGAC
1201
      CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
     GACCCCGCAC GGCAAAGTCC TCTCTCTGCC AACGGGCGCA ACCCCCATCG
1251
1301
     ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGCTG CCGGGGCGCG
     AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
1351
      GCGCGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1401
     TTTACGAAGG CTGGGTCAAA TCCGGCAAGG CCATCGGCAA AATCCGCGCC
1451
1501
     TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGTGTCCA
1551
     ACTCGACAAG CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
     TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1601
1651
     GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
     GAACGAACCG CCGCCCGTGC CCGTCAGCGC AACCACCATC GTCAAACAGT
1701
     CCAAAATCAA AAAAGGTGGC AAAACCGGCG TGCTCATCGA CGGCGAAGAC
1751
     GGCTTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
1801
1851
     TATTGCCGGC TTCGTTACCC GCGAGCGCGG CATTTCCGTC CACCGCAAAA
1901
     CCTGCCCCTC TTTCCGACAC CTTGCCGAAC ACGCGCCCGA AAAAGTACTG
     GACGCAAGTT GGGCGGCGTT GCAGGAAGGG CAAGTGTTCG CCGTCGATAT
1951
2001
     CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
2051 CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
     GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTCAACGA
2101
      CCTCCCGCGC GTCCTCGCCG GCCTCGGCGA TGTCAAAGGC GTATTGAGCG
2151
2201 TTACCCGGCT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 418; ORF 117-1.ng>: g117-1.pep

```
MTAISPIQDT QSATLQELRE WFDSYCAALP DNDKNLIGTA WSLAQEHYPA
 1
 51
     DAATPYGEPL PDHFLGAAQM VDELDLLPDA VAATLLADIG RYVPDWNLLV
101
    SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM
    VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV
     WQLKWQLEDL GFRHQEPEKY REIALLLDEK RTERLEYIEN FLDILRTELK
    KYNIHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT
251
    TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPEE KGVEVQIRTF
301
351
    DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED
401
    LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA
451
     KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SGKAIGKIRA
     YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV
501
551
     GQGEISNRAI QKACGTLNEP PPVPVSATTI VKQSKIKKGG KTGVLIDGED
601
    GLMTTLAKCC KPAPPDDIAG FVTRERGISV HRKTCPSFRH LAEHAPEKVL
    DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR
651
    DLEASMRFTL EVKQVNDLPR VLAGLGDVKG VLSVTRL*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 419>: m117-1.seq

1 ATGACCGCCA TCAGCCCGAT TCAAGACACG CAAAGCGCGA CTCTGCAAGA

This corresponds to the amino acid sequence <SEQ ID 420; ORF 117-1>: m117-1.pep

1	MTAISPIQDT	QSATLQELRE	WFDSYCAALP	DNDKNLIGTA	WLLAQEHYPA
51	DAATPYGEPL	PDHFLGAAQM	VHELDLLPDA	VAATLLADIG	RYVPDWNLLV
101	SERCNSTVAE	LVKGVDEVQK	LTHFARVDSL	ATPEERAQQA	ETMRKMLLAM
151	VTDIRVVLIK	LAMRTRTLQF	LSNAPDSPEK	RAVAKETLDI	FAPLANRLGV
201	WOLKWOLEDL	GFRHQKPEKY	REIALLLDEK	RTERLEYIEN	FLNILRGELK
251	KYNVHFEVAG	RPKHIYSIYK	KMVKKKLSFD	GLFDIRAVRI	LVDTVPECYT
301	TLGIVHSLWQ	PIPGEFDDYI	ANPKGNGYKS	LHTVIVGPED	KGVEVQIRTF
351	DMHQFNEFGV	AAHWRYKEGG	KGDSAYEQKI	AWLRQLLDWR	ENMAESGKED
401	LAAAFKTELF	NDTIYVLTPH	GKVLSLPTGA	TPIDFAYALH	SSIGDRCRGA
451	KVEGQIVPLS	TPLENGQRVE	IITAKEGHPS	VNWLYEGWVK	SNKAIGKIRA
501	YIRQQNADTV	REEGRVQLDK	QLAKLTPKPN	LQELAENLGY	KKPEDLYTAV
551	GQGEISNRAI	QKACGTLNEP	PPVPVSETTI	VKQSKIKKGG	KNGVLIDGED
601	GLMTTLAKCC	KPAPPDDIIG	FVTRERGISV	HRKTCPSFQH	LAEHAPEKVL
651	DASWAALQEG	QVFAVDIEIR	AQDRSGLLRD	VSDALARHKL	NVTAVQTQSR
701	DLEASMRETL	EVKOVNDLPR	VLASLGDVKG	VI.SVTRI.*	

ml17-1/gl17-1 98.2% identity in 737 aa overlap

	10	20	30	40	50	60
m117-1.pep	MTAISPIQDTQSAT	LQELREWFDS	YCAALPDNDK	NLIGTAWLLA	QEHYPADAAT	PYGEPL
		1111111111	11111111111	111111111111111111111111111111111111111	11111111111	111111
g117-1	MTAISPIQDTQSAT	LQELREWFDS	YCAALPDNDK	NLIGTAWSLA	QEHYPADAAT	PYGEPL
	10	20	30	40	50	60
	70	80	90	100	110	120

ml17-1.pep gl17-1	PDHFLGAAQMVHELDLLPDAVAATLLADIGRYVPDWNLLVSERCNSTVAELVKGVDEVQK
m117-1.pep	130 140 150 160 170 180 LTHFARVDSLATPEERAQQAETMRKMLLAMVTDIRVVLIKLAMRTRTLQFLSNAPDSPEK
m117-1.pep	190 200 210 220 230 240 RAVAKETLDI FAPLANRLGVWQLKWQLEDLGFRHQKPEKYREI ALLLDEKRTERLEYTEN
m117-1.pep g117-1	250 260 270 280 290 300 FLNILRGELKKYNVHFEVAGRPKHIYSIYKKMVKKLSFDGLFDIRAVRILVDTVPECYT : :
m117-1.pep g117-1	310 320 330 340 350 360 TLGIVHSLWQPIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGV !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ml17-1.pep g117-1	370 380 390 400 410 420 AAHWRYKEGGKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPH
m117-1.pep	430 440 450 460 470 480 GKVLSLPTGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPS
m117-1.pep	490 500 510 520 530 540 VNWLYEGWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKLTPKPNLQELAENLGY
m117-1.pep	550 560 570 580 590 600 KKPEDLYTAVGQGEISNRAIQKACGTLNEPPPVPVSETTIVKQSKIKKGGKNGVLIDGED
m117-1.pep	610 620 630 640 650 660 GLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASWAALQEG
m117-1.pep	670 680 690 700 710 720 QVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQSRDLEASMRFTLEVKQVNDLPR
m117-1.pep g117-1	730 VLASLGDVKGVLSVTRLX : VLAGLGDVKGVLSVTRLX 730

m117-1/RelA

```
sp|p55133|RELA_VIBSS GTP PYROPHOSPHOKINASE (ATP:GTP 3'-PYROPHOSPHOTRANSFERASE) (PPGPP
SYNTHETASE I) >gi|537617 (U13769) ppGpp synthetase I [Vibrio sp.] Length = 744
 Score = 536 bits (1366), Expect = e-151
 Identities = 288/685 (42%), Positives = 432/685 (63%), Gaps = 31/685 (4%)
Query: 74 LDLLPDAVAATLLADI---GRYVPDWNLLVSERCNSTVAELVKGVDEVQKLTHFARVDSL 130
L + D + A LL + G Y D + E + T+ LV+GV+++ ++ ++ S
Sbjct: 68 LSMDADTLIAALLYPLVEGGCYSTD---ALKEEYSGTILHLVQGVEQMCAIS---QLKST 121
Query: 131 ATPEERAQQAETMRKMLLAMVTDIRVVLIKLAMRTRTLQFLSNAPDSPEKRAVAKETLDI 190
              +A Q + +R+MLL+MV D R V+IKLA R L+ + + PD +RA A+E +I
Sbict: 122 AEETAQAAQVDNIRRMLLSMVDDFRCVVIKLAERICNLREVKDQPDEV-RRAAAQECANI 180
Query: 191 FAPLANRLGVWQLKWQLEDLGFRHQKPEKYREIALLLDEKRTERLEYIENFLNILRGELK 250
           +APLANRLG+ QLKW++ED FR+Q P+ Y++IA L E+R +R +YI +F++ L
Sbjct: 181 YAPLANRLGIGQLKWEIEDYAFRYQHPDTYKQIAKQLSERRIDREDYITHFVDDLSDAMK 240
Query: 251 KYNVHFEVAGRPKHIYSIYKKMVKKKLSFDGLFDIRAVRILVDTVPECYTTLGIVHSLWQ 310
             N+ EV GRPKHIYSI++KM KK L FD LFD+RAVRI+ + + +CY LG+VH+ ++
Sbjct: 241 ASNIRAEVQGRPKHIYSIWRKMQKKSLEFDELFDVRAVRIVAEELQDCYAALGVVHTKYR 300
Query: 311 PIPGEFDDYIANPKGNGYKSLHTVIVGPEDKGVEVQIRTFDMHQFNEFGVAAHWRYKEG- 369
            +P EFDDY+ANPK NGY+S+HTV++GPE K +E+QIRT MH+ +E GVAAHW+YKEG
Sbjct: 301 HLPKEFDDYVANPKPNGYQSIHTVVLGPEGKTIEIQIRTKQMHEESELGVAAHWKYKEGT 360
Query: 370 --GKGDSAYEQKIAWLRQLLDWRENMAESGKEDLAAAFKTELFNDTIYVLTPHGKVLSLP 427
             G SAY++KI WLR+LL W+E M++SG ++ ++++F+D +Y TP G V+ LP
Sbjct: 361 ASGGAQSAYDEKINWLRKLLAWQEEMSDSG--EMLDELRSQVFDDRVYAFTPKGDVVDLP 418
Query: 428 TGATPIDFAYALHSSIGDRCRGAKVEGQIVPLSTPLENGQRVEIITAKEGHPSVNWLYE- 486
           + ATP+DFAY +HS +G RC GAKVEG+IVP + L+ G +VEIIT KE +PS +WL
Sbjct: 419 SNATPLDFAYHIHSEVGHRCIGAKVEGRIVPFTYHLQMGDQVEIITQKEPNPSRDWLNPN 478
Query: 487 -GWVKSNKAIGKIRAYIRQQNADTVREEGRVQLDKQLAKL--TPKPNLQELAENLGYKKP 543
                                      G+ L+ +L K+ T K
            G+V S++A K+ A+ R+Q+ D
Sbjct: 479 LGFVTSSRARAKVHAWFRKQDRDKNIIAGKEILEAELVKIHATLKDAQYYAAKRFNVKSP 538
Query: 544 EDLYTAVGQGEIS-NRAIQKACGTLNEPPPVPVSETTIVKQSKI-----KKGGKNGV 594
           E+LY +G G++ N+ I +N+P + + K S+
Sbjct: 539 EELYAGIGSGDLRINQVINHINALVNKPTAEEEDQQLLEKLSEASNKQATSHKKPQRDAV 598
Query: 595 LIDGEDGLMTTLAKCCKPAPPDDIIGFVTRERGISVHRKTCPSFQHLAEHAPEKVLDASW 654
           +++G D LMT LA+CC+P P DDI GFVT+ RGISVHR C + L HAPE+++D W
Sbjct: 599 VVEGVDNLMTHLARCCQPIPGDDIQGFVTQGRGISVHRMDCEQLEELRHHAPERIIDTVW 658
Query: 655 AALQEGQVFAVDIEIRAQDRSGLLRDVSDALARHKLNVTAVQTQ--SRDLEASMRFTLEV 712
                G + + + + A +R+GLL+++++ L K+ V ++++ + + M F LE+
Sbjct: 659 GGGFVGN-YTITVRVTASERNGLLKELTNTLMNEKVKVAGMKSRVDYKKQMSIMDFELEL 717
Query: 713 KQVNDLPRVLASLGDVKGVLSVTRL 737
             + L RVL + VK V
Sbjct: 718 TDLEVLGRVLKRIEQVKDVAEAKRL 742
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 421>: a117-1.seg

-т.	860	1				
	1	ATGACCGCCA	TCAGCCCGAT	TCAAGACACG	CAAAGCGCGA	CTCTGCAAGA
5	1	ATTGCGCGAA	TGGTTCGACA	GCTACTGCAC	CGCGCTGCCG	AACAACGATA
10	1	AAAAACTTGT	CTTAGCCGCC	CGTTCGCTGG	CGGAAGCACA	TTACCCCGCC
15	1	GATGCCGCCA	CGCCGTATGG	CGAACCGCTG	CCCGACCACT	TCCTCGGCGC
20	1	GGCGCAAATG	GTTCATGAAC	TCGACCTGCT	CCCCGATGCC	GTCGCCGCCA
25	1	CCCTGCTTGC	CGACATCGGA	CGCTACGTCC	CCGACTGGAA	CCTATTGGTT
30	1	TCCGAACGCT	GCAACAGTAC	CGTCGCCGAG	CTGGTCAAAG	GTGTGGACGA
35	1	AGTGCAGAAA	CTCACCCACT	TCGCCCGGGT	GGACAGCCTC	GCCACGCCGG
40	1	AAGAACGCGC	CCAGCAGGCA	GAAACTATGC	GGAAAATGCT	GCTGGCGATG
45	1	GTTACCGACA	TCCGCGTCGT	GTTAATCAAA	CTGGCGATGC	GTACGCGCAC
50	1	CCTGCAATTT	TTAAGCAACG	CCCCGACAG	CCCCGAAAAA	CGCGCCGTCG
55	_	CCAAAGAAAC	CCTCGACATC	TTCGCCCCGC	TCGCCAACCG	TTTGGGCGTG
60	1	TGGCAGCTCA	AATGGCAGCT	CGAAGATTTG	GGCTTCCGCC	ATCAAGAACC
65	1	CGAAAAATAC	CGCGAAATCG	CCCTGCTTTT	GGACGAAAAA	CGCACCGAAC
70	_	GCCTCGAATA	CATCGAAAAC	TTCCTTAATA	TCCTGCGTAC	GGAACTCAAA
75	1	AAATACAATA	TCCACTTTGA	AGTCGCCGGC	CGTCCGAAAC	ACATCTACTC
80	1	CATTTACAAA	AAAATGGTGA	AGAAAAAACT	CAGCTTCGAC	GGGTTGTTCG

```
851 ACATCCGCGC CGTGCGGATT CTGGTTGATA CCGTCCCCGA GTGTTACACC
 901
     ACACTGGGCA TTGTCCACAG CCTCTGGCAG CCCATTCCCG GCGAGTTCGA
      CGACTACATC GCCAACCCGA AAGGCAACGG CTATAAAAGT TTGCACACCG
 951
     TCATCGTCGG CCCGGAAGAC AAAGGCGTGG AAGTGCAAAT CCGCACCTTC
1001
     GATATGCACC AATTCAACGA ATTCGGTGTC GCCGCGCACT GGCGTTACAA
1051
1101 AGAGGGCGGC AAAGGCGATT CCGCCTACGA ACAAAAAATC GCCTGGTTAC
     GCCAACTTTT GGACTGGCGC GAAAACATGG CGGAAAGCGG CAAGGAAGAC
1151
1201 CTCGCCGCCG CCTTCAAAAC CGAGCTTTTC AACGACACGA TTTATGTTTT
1251
     GACCCCGCAC GGCAAAGTCC TCTCCCTGCC CACAGGCGCG ACCCCCATCG
1301
     ACTTCGCCTA CGCCCTGCAC AGCAGCATCG GCGACCGTTG CCGCGGTGCG
1351 AAAGTCGAAG GGCAGATTGT GCCGCTGTCC ACCCCGCTCG AAAACGGACA
     GCGTGTCGAA ATCATTACCG CCAAAGAAGG GCATCCTTCC GTCAACTGGC
1401
     TTTACGAAGG CTGGGTCAAA TCCAACAAGG CAATCGGCAA AATCCGCGCC
1451
     TACATCCGCC AGCAAAACGC CGACACCGTG CGCGAAGAAG GCCGCGTCCA
1501
     ACTCGACAAA CAGCTTGCCA AACTCACGCC CAAACCCAAC CTGCAAGAGC
1551
     TTGCCGAAAA TCTCGGCTAC AAAAAGCCAG AAGACCTCTA CACCGCCGTC
1601
      GGACAAGGCG AAATTTCCAA CCGCGCCATC CAAAAAGCCT GCGGCACGCT
1651
     GAACGAACCG CCGCCCGTAC CCGTCAGCGA AACCACCATC GTCAAACAGT
1701
     CCAAAATCAA AAAAGGCGGC AAAAACGGCG TGCTCATCGA CGGCGAAGAC
1751
    GGTCTGATGA CCACGCTTGC CAAATGCTGC AAACCCGCGC CGCCCGACGA
1801
     CATTGTCGGC TTCGTTACCC GCGATCGCGG CATTTCGGTA CACCGCAAAA
1851
     CCTGCCCCTC TTTCCGACAC CTCGCCGAAC ACGCGCCCGA AAAAGTACTG
1901
     GACGCAAGTT GGGCGGCGTT GCAGGAAGGA CAAGTGTTCG CCGTCGATAT
1951
2001
     CGAAATCCGC GCCCAAGACC GCTCCGGGCT TTTGCGCGAC GTATCCGACG
     CGCTCGCCCG CCACAAACTC AACGTTACCG CCGTGCAAAC CCAGTCCCGC
     GACTTGGAAG CCAGCATGAG GTTCACGCTC GAAGTCAAAC AAGTTACCGA
2101
    CCTCCCACGC GTCCTCGCCA GCCTCGGCGA CGTCAAAGGC GTATTGAGCG
2151
2201 TTACCCGGCT TTAA
```

This corresponds to the amino acid sequence <SEQ ID 422; ORF 117-1.a>: a117-1.pep

1 MTAISPIQDT QSATLQELRE WFDSYCTALP NNDKKLVLAA RSLAEAHYPA 51 DAATPYGEPL PDHFLGAAOM VHELDLLPDA VAATLLADIG RYVPDWNLLV 101 SERCNSTVAE LVKGVDEVQK LTHFARVDSL ATPEERAQQA ETMRKMLLAM VTDIRVVLIK LAMRTRTLQF LSNAPDSPEK RAVAKETLDI FAPLANRLGV 151 201 WQLKWQLEDL GFRHQEPEKY REIALLLDEK RTERLEYIEN FLNILRTELK KYNIHFEVAG RPKHIYSIYK KMVKKKLSFD GLFDIRAVRI LVDTVPECYT 251 TLGIVHSLWQ PIPGEFDDYI ANPKGNGYKS LHTVIVGPED KGVEVQIRTF 301 DMHQFNEFGV AAHWRYKEGG KGDSAYEQKI AWLRQLLDWR ENMAESGKED 351 LAAAFKTELF NDTIYVLTPH GKVLSLPTGA TPIDFAYALH SSIGDRCRGA 401 451 KVEGQIVPLS TPLENGQRVE IITAKEGHPS VNWLYEGWVK SNKAIGKIRA 501 YIRQQNADTV REEGRVQLDK QLAKLTPKPN LQELAENLGY KKPEDLYTAV GOGEISNRAI QKACGTLNEP PPVPVSETTI VKQSKIKKGG KNGVLIDGED GLMTTLAKCC KPAPPDDIVG FVTRDRGISV HRKTCPSFRH LAEHAPEKVL DASWAALQEG QVFAVDIEIR AQDRSGLLRD VSDALARHKL NVTAVQTQSR 651 DLEASMRFTL EVKQVTDLPR VLASLGDVKG VLSVTRL*

a117-1/m117-1 97.7% identity in 737 aa overlap

	10	20	30	40	50	60
m117-1.pep	MTAISPIQDTQSAT				QEHYPADAAT	PYGEPL
		1111111111	11:111:111	:1::1	: 11111111	111111
a117-1	MTAISPIQDTQSAT	LQELREWFDS	YCTALPNNDK	KLVLAARSLA	EAHYPADAAT	PYGEPL
	10	20	30	40	50	60
	70	80	90	100	110	120
m117-1.pep	PDHFLGAAQMVHEL	DLLPDAVAAT	LLADIGRYVP	DWNLLVSERO	NSTVAELVKG	VDEVQK
	111111111111111111111111111111111111111	111111111111111111111111111111111111111	11111111111	1113111111	THEFT	HILLE
a117-1	PDHFLGAAQMVHEL	DLLPDAVAAT	LLADIGRYVE	DWNLLVSER	NSTVAELVKG	VDEVOK
	70	80	90	100	110	120
	130	140	150	160	170	180
m117-1.pep	LTHFARVDSLATPE	ERAQQAETMR	KMLLAMVTDI	RVVLI KLAMI	TRTLOFLSNA	PDSPEK
	411111111111111		1111111111		3111111111111	11111
a117-1		1111111111				
G111_7						
a111-1	LTHFARVDSLATPE		KMLLAMVTDI	RVVLIKLAMI	RTRTLOFLSNA	PDSPEK
d111-1		ERAQQAETMR				
a11/-1	LTHFARVDSLATPE	ERAQQAETMR	KMLLAMVTDI	RVVLIKLAMI	RTRTLOFLSNA	PDSPEK
m117-1.pep	LTHFARVDSLATPE 130	ERAQQAETMR 140 200	KMLLAMVTDI 150 210	RVVLIKLAM 160 220	RTRTLOFLSNA 170 230	180 240
	LTHFARVDSLATPE 130 190	ERAQQAETMR 140 200	KMLLAMVTDI 150 210	RVVLIKLAMF 160 220 QKPEKYREIA	RTRTLOFLSNA 170 230	180 240
	LTHFARVDSLATPE 130 190 RAVAKETLDIFAPL	ERAQQAETMR 140 200 ANRLGVWQLK	KMLLAMVTDI 150 210 WQLEDLGFRH	RVVLIKLAMI 160 220 QKPEKYREII	RTRTLOFLSNA 170 230 ALLLDEKRTER	PDSPEK 180 240 LEYIEN
m117-1.pep	LTHFARVDSLATPE 130 190	ERAQQAETMR 140 200 ANRLGVWQLK	KMLLAMVTDI 150 210 WQLEDLGFRH	RVVLIKLAMI 160 220 QKPEKYREII	RTRTLOFLSNA 170 230 ALLLDEKRTER	PDSPEK 180 240 LEYIEN

m117-1.pep	250 FLNILRGELKKYNVHFF	[[]]		11111111111	11111111111	1111
m117-1.pep	310 TLGIVHSLWQPIPGEFI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	111111111111	11111111111	ниний	шшін	111
ml17-1.pep	370 AAHWRYKEGGKGDSAYE	F	[11][1][1][]	1111111111		
ml17-1.pep	430 GKVLSLPTGATPIDFAY	1111111111	1111111111	шшш	<u>Гинини</u>	
m117-1.pep	490 VNWLYEGWVKSNKAIGH IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	11111111		шшш	шшішы	111
ml17-1.pep	550 KKPEDLYTAVGQGEISE	ETELLIFE	[[]]]			111
m117-1.pep	610 GLMTTLAKCCKPAPPDI GLMTTLAKCCKPAPPDI 610	: : :		11:1111111	11111111111	ПH
m117-1.pep	670 QVFAVDIEIRAQDRSGI QVFAVDIEIRAQDRSGI 670	EFFEEDOM	шшші	1111111111	111111111111111111	Ш
ml17-1.pep	730 VLASLGDVKGVLSVTRI IIIIIIIIIIIIIIIIIIVLASLGDVKGVLSVTRI 730	П				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 423>:

g118.seq

- 1 ATGTGCGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA
 - 51 TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
- 101 ATGAAGAATA TTGGAAGCTG GAGAATGATT TAATCGAGGT TAGGAGAAAA
- 151 TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC
- 201 CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG
- 251 CTTCCCCTTG GTTGCCTGAT AGCGTGGGAA TTCATGAACG TTATGAAAGA
- 301 TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
- 351 GCGATTTGAT TATTACAaCA AAAAATAG

This corresponds to the amino acid sequence <SEQ ID 424; ORF 118.ng>: g118.pep

- 1 MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRRK 51 YPYPMDIPRD <u>IVIGIGTIID FLMVPNWE</u>LF EIKASPWLPD SVGIHERYER 101 FTTMLRYIFT EKDIVNVRFD YYNKK*


```
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 425>:
     m118.seq
              ATGTGTGAGT TCAAGGATAT TATAAGAAAC GTTCCTTATT TTGAGGGGTA
           51 TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
          101 ATGAAGAATA TTGGAAGTTG GAGAATGATT TAATCGAGGT TAGAAAAAAA
          151 TATCCTTATC CGATGGACAT ACCAAGATAT GTTGTCATTG GAATCGGTAC
         201 CATTATTGAT TTCTTAATGG TTCCAAATTG GAAACTTTTT GAAATTAAAG
251 CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
              TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
          351 GCGATTTGAT TATTACAACA AAAAATAG
This corresponds to the amino acid sequence <SEQ ID 426; ORF 118>:
     m118.pep
            1 MCEFKDIIRN VPYFEGYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
              YPYPMDIPRY VVIGIGTIID FLMVPNWKLF EIKASPWLPD SVGIHERYER
          101 FTTMLRYIFT EKDIVNVRFD YYNKK*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 118 shows 92.8% identity over a 125 aa overlap with a predicted ORF (ORF 118.ng)
from N. gonorrhoeae:
     m118/q118
                         10
                                   20
                                            30
                                                      40
                 MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
     m118.pep
                  MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRRKYPYPMDIPRD
     a118
                         10
                                   20
                                            30
                                                      40
                                                                50
                         70
                                   80
                                            90
                                                     100
                                                               110
                                                                         120
                 VVIGIGTIIDFLMVPNWKLFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
     m118.pep
                  g118
                  IVIGIGTIIDFLMVPNWELFEIKASPWLPDSVGIHERYERFTTMLRYIFTEKDIVNVRFD
                                   80
                                            90
                                                     100
                         70
                  YYNKKX
     m118.pep
                  111111
     q118
                  YYNKKX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 427>:
a118.seq
              ATGTGTGAGT TCAAGGATTT TAGAAGAAAC ATCCCTTGTT TTGAAGAGTA
           51 TGACGAAAAT TCATTTATTG GCAAATGGTA TGATGACGGG GTGTGGGATG
          101 ATGAAGAATA TTGGAAATTG GAGAATGATT TAATCGAGGT TAGAAAAAA
          151 TATCCTTATC CGATGGATAT ACCAAGGGAT ATTGTGATTG GAATCGGTAC
               CATTATTGAT TTTTTAATGG TTCCAAATTG GGAGCTTTTT GAAATTAAAG
          201
          251 CTTCCCCTTG GTTGCCTGAT AGTGTGGGAA TTCATGAACG TTATGAAAGA
          301 TTCACAACGA TGCTCCGTTA TATTTTTACC GAGAAAGACA TAGTCAACGT
          351 GCGATTTGAT TATTACAACA AAAAATAG
This corresponds to the amino acid sequence <SEQ ID 428; ORF 118.a>:
a118.pep
            1 MCEFKDFRRN IPCFEEYDEN SFIGKWYDDG VWDDEEYWKL ENDLIEVRKK
               YPYPMDIPRD IVIGIGTIID FLMVPNWELF EIKASPWLPD SVGIHERYER
          101 FTTMLRYIFT EKDIVNVRFD YYNKK*
m118/a118
              93.6% identity in 125 aa overlap
                                   20
                 MCEFKDIIRNVPYFEGYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRY
     ml18.pep
                  a118
                 MCEFKDFRRNIPCFEEYDENSFIGKWYDDGVWDDEEYWKLENDLIEVRKKYPYPMDIPRD
                         10
                                   20
                                            30
                                                      40
```

110	WITCICM		80 9:		
m118.pep					FTTMLRYIFTEKDIVNVRF:
a118					FTTMLRYIFTEKDIVNVRF:
			80 9		110 120
ml18.pep	YYNKKX				
a118					
a116	YYNKKX				
The following p	artial DNA s	equence was	s identified in	n <i>N. gonorrh</i>	oeae <seq 429="" id="">:</seq>
g120.seq		•		J	
1	ATGATGAAGA	CTTTTAAAAA	TATATTTTCC	GCCGCCATTT	TGTCCGCCGC
51	CCTGCCGTGC	GCGTATGCGG	CAAGGCTACC	CCAATCCGCC	GTGCTGCACT
101					ACGCAGCGGC
151					ACAATATCCG
201					CCTGCCTACT
251					ATTCGCCGAC
301					AGCAAAGCCC
351 401					GCAAATGACG
401 451					ACTTTATTCC Taggcggcgt
501					GATACGGTAA
551					AATCGGCTAT
601					TGCAGATCAA
651	CGGACAGGCC				
This correspond	ls to the amin	o acid seque	nce <seo ii<="" td=""><td>D 430: ORF</td><td>120.ng></td></seo>	D 430: ORF	120.ng>
g120.pep			2242	, 010	
1	MMKTFKNIFS	AAILSAALPC	AYAARLPOSA	VLHYSGSYGI	PATMTFERSG
51	NAYKIVSTIK				
101					
151	VGGLNKAGTG			DTVTYFFAPS	LNNIPAQIGY
201	TDDGKTYTLK	LKSVQINGQA	AKP*		
The following p	artial DNA so	equence was	identified in	n <i>N. meningi</i>	tidis <seq 431="" id="">:</seq>
m120.seq		_		J	
1	ATGATGAAGA				
51	CCTGCCGTGC				
101					
151	AATGCTTACA				
201	TTTCGAGTCC				
251 301					ATTCGCCGAC
351	GGCAGCGTAA				GCAAATGACG
401					
451					
501					GATGCGGTAA
551					
601		GCAAAACCTA	TACGCTGAAA	CTCAAATCGG	TGCAGATCAA
651	CGGCCAGGCA				
This correspond	ls to the amin	o acid seque	nce <seo ii<="" td=""><td>D 432: ORF</td><td>120>:</td></seo>	D 432: ORF	120>:
m120.pep		•	\	,	
ī	MMKTFKNIFS	AAILSAALPC	<u>AYA</u> AGLPQSA	VLXYSGSYGI	PATMTFERSG
51	NAYKIVSTIK	VPLYNIRFES	GGTVVGNTLH	PTYYRDIRRG	KLYAEAKFAD
101					
151	VGGLNKAGTG	KYSIGGVETE	WKABABBBB	DAVMVEENDO	LMMTDAOTCV

151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY

201 TDDGKTYTLK LKSVQINGQA AKP

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

ORF 120 shows 97.3% identity over a 223 as overlap with a predicted ORF (ORF 120.ng) from N. gonorrhoeae:

m120/g120

	10	20	30	40	50	60
m120.pep	MMKTFKNIFSAAIL	SAALPCAYAA	GLPOSAVLXY	SGSYGIPATM	TFERSGNAYK	IVSTIK
			-1111111	1111111111	1111111111	
g120	MMKTFKNIFSAAIL		_		TFERSGNAYK	IVSTIK
	10	20	30	40	50	60
						
છ	70	.80	90	100	110	120
m120.pep	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSVT	YGKAGESKTE	QSPKAM
	_		:	111111111	11111111	
g120	VPLYNIRFESGGTV	VGNTLHPAYY	KDIRRGKLYA	LEAKFADGSVT	YGKAGESKTE	QSPKAM
	70	80	90	100	110	120
	130	140	150	160	170	180
m120.pep	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
				1111111111	11111111111	
g120	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
	130	140	150	160	170	180
	190	200	210	220	•	
m120.pep	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKP		
	1:1 111111111	1111111111	1111111111	THITH		
g120	DTVTYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	OINGOAAKPX		•
-	190	200	210	220		
		-				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 433>: a120.seq

```
ATGATGAAGA CTTTTAAAAA TATATTTTCC GCCGCCATTT TGTCCGCCGC
 51 CCTGCCGTGC GCGTATGCGG CAGGGCTGCC CCAATCCGCC GTGCTGCACT
101 ATTCCGGCAG CTACGGCATT CCCGCCACGA TGACATTTGA ACGCAGCGGC
151 AATGCTTACA AAATCGTTTC GACGATTAAA GTGCCGCTAT ACAATATCCG
    TTTCGAGTCC GGCGGTACGG TTGTCGGCAA TACCCTGCAC CCTACCTACT
251 ATAGAGACAT ACGCAGGGGC AAACTGTATG CGGAAGCCAA ATTCGCCGAC
301 GGCAGCGTAA CCTACGGCAA AGCGGGCGAG AGCAAAACCG AGCAAAGCCC
351 CAAGGCTATG GATTTGTTCA CGCTTGCCTG GCAGTTGGCG GCAAATGACG
    CGAAACTCCC CCCGGGGCTG AAAATCACCA ACGGCAAAAA ACTTTATTCC
451 GTCGGCGGTT TGAATAAGGC GGGTACAGGA AAATACAGCA TAGGCGGCGT
501 GGAAACCGAA GTCGTCAAAT ATCGGGTGCG GCGCGGCGAC GATGCGGTAA
551
    TGTATTTCTT CGCACCGTCC CTGAACAATA TTCCGGCACA AATCGGCTAT
    ACCGACGACG GCAAAACCTA TACGCTGAAA CTCAAATCGG TGCAGATCAA
651
    CGGCCAGGCA GCCAAACCGT AA
```

This corresponds to the amino acid sequence <SEQ ID 434; ORF 120.a>: a120.pep

- 1 MMKTFKNIFS AAILSAALPC AYAAGLPQSA VLHYSGSYGI PATMTFERSG 51 NAYKIVSTIK VPLYNIRFES GGTVVGNTLH PTYYRDIRRG KLYAEAKFAD 101 GSVTYGKAGE SKTEQSPKAM DLFTLAWQLA ANDAKLPPGL KITNGKKLYS
- 151 VGGLNKAGTG KYSIGGVETE VVKYRVRRGD DAVMYFFAPS LNNIPAQIGY
- 201 TDDGKTYTLK LKSVQINGQA AKP*

m120/a120 99.6% identity in 223 aa overlap

	10	20	30	40	50	60
m120.pep	MMKT FKNI FSAA 1	ILSAALPCAYAA	GLPQSAVLXY	SGSYGIPATM	FERSGNAYK:	IVSTIK
						111111
a120	MMKTFKNIFSAAI	LSAALPCAYAA	GLPQSAVLHY:	SGSYGIPATM	FERSGNAYK	IVSTIK

	10	20	30	40	50	60
	70	80	90	100	110	120
m120.pep	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSV1	YGKAGESKTE	QSPKAM
		1111111111	1111111111111	1111111111	1111111111	111111
a120	VPLYNIRFESGGTV	VGNTLHPTYY	RDIRRGKLYA	EAKFADGSVI	YGKAGESKTE	QSPKAM
	70	80	90	100	110	120
	130	140	150	160	170	180
m120.pep	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	NKAGTGKYSI	GGVETEVVKY	RVRRGD
		11111111111	1111111111	1111111111	1111111111	11111
a120	DLFTLAWQLAANDA	KLPPGLKITN	GKKLYSVGGL	nkagtgkysi	GGVETEVVKY	RVRRGD
	130	140	150	160	170	180
	190	200	210	220		
m120.pep	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKPX		
		1111111111	1111111111	[[]]		
a120	DAVMYFFAPSLNNI	PAQIGYTDDG	KTYTLKLKSV	QINGQAAKPX		
	190	200	210	220		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 435>: g121.seq

1	ATGGAAACAC	AGCTTTACAT	CGGCATTATG	TCGGGAACCA	GTATGGACGG
51	GGCGGATGCC	GTGCTGGTAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
101	AAGGGCACGC	CTTTACCCCC	TACCCTGACC	GGTTGCGCCG	CAAATTGCTG
151	GATTTGCAGG	ACACAGGCAC	AGACGAACTG	CACCGCAGCA	GGATGTTGTC
201	GCAAGAACTC	AGCCGCCTGT	ACGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
251	GTCAAAACCT	CGCTCCGTGC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
301	ACCGTCCGAC	ACGCGCCGGA	ACACGGTtac	AGCATACAGC	TTGCCGATTT
351	GCCGCTGCTG	GCGGAACTGa	cgcggatttT	TACCGTCggc	gacttcCGCA
401	GCCGCGACCT	TGCTGCCGGC	GGacaAGGTG	CGCCGCTCGT	CCCCGCCTTT
451	CACGAAGCCC	TGTTCCGCGA	TGACAGGGAA	ACACGCGTGG	TACTGAACAT
501			GCGTACTCCC		
551	GCTTCGACAC	AGGGCCGGGC	AATATGCTGA	TGGAcgcgtg	gacgcaggca
601			CAAAAacggt		
651			gcaggctGCT		
701	AACCCcaccc	aaAAAGCACG	GGgcGCGaac	TgtttgcccT	AAattggctc
751	gaaacctAcc	ttgacggcgg	cgaaaaccga	tacgacgtat	tgcggacgct
801			ccgTttggga		
851	CAGATGCCCG	TCAAATGTAC	ATTTGCGGCG	GCGGCATCCG	CAATCCTGTT
901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
951	CACCGCCGAA	CTGAACCTCG	ATCCTCAATG	GGTGGAGGCG	gccgCATTtg
1001	cgtggttggC	GGCGTGTTGG	ATTAACCGCA	TTCCCGGTAG	TCCGCACAAA
1051	GCGACCGGCG	CATCCAAACC	GTGTATTCTG	GGCGCGGGAT	ATTATTATTG
1101	A				

This corresponds to the amino acid sequence <SEQ ID 436; ORF 121.ng>: g121.pep

1 METQLYIGIM SGTSMDGADA VLVRMDGGKW LGAEGHAFTP YPDRLRRKLL
51 DLQDTGTDEL HRSRMLSQEL SRLYAQTAAE LLCSQNLAPC DITALGCHGQ
101 TVRHAPEHGY SIQLADLPLL AELTRIFTVG DFRSRDLAAG GQGAPLVPAF
151 HEALFRDDRE TRVVLNIGGI ANISVLPPGA PAFGFDTGPG NMLMDAWTQA
201 HWQLPYDKNG AKAAQGNILP QLLGRLLAHP YFSQPHPKST GRELFALNWL
251 ETYLDGGENR YDVLRTLSRF TAQTVWDAVS HAAADARQMY ICGGGIRNPV
301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWLAACW INRIPGSPHK
351 ATGASKPCIL GAGYYY*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 437>: m121.seq

- 1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG 51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
- 101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG

151 GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC 201 GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA 251 GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT 351 GCCGCTGCTG GCGxxxxxx xxxxxxxxx xxxxxxxx xxxxxxxx 501 551 601 XXXXXCAGC TTCCTTACGA CAAAAACGGT GCAAAGTCGG CACAAGGCAA 651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC 701 AACGCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCAT AAATTGGCTC 751 GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT 801 TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG 851 CAGATGCCCG TCAAATGTAC ATTTGCGACG GCGGCATCCG CAATCCTGTT 901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG 951 CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGNATTTG 1001 CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA 1051 GCAACCGGCG CATCCAAACC GTGTATTCTG AnCGCGGGAT ATTATTATTG 1101 A

This corresponds to the amino acid sequence <SEQ ID 438; ORF 121>: m121.pep

Computer analysis of the amino acid sequences gave the following results:

Homology with a predicted ORF from N. meningitidis menA with menB

ORF 121 shows 73.5% identity over a 366 aa overlap with a predicted ORF (ORF121.ng) from N. gonorrhoeae:

m121/g121

10 20 30	40	50	60
m121.pep METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAE	GHAFTPYPG	RLRRQLLDLQ	DTGADEL
	11111111	1111:1111	111:111
g121 METQLYIGIMSGTSMDGADAVLVRMDGGKWLGAE	GHAFTPYPD	RLRRKLLDLQ	DTGTDEL
. 10 20 30	40	50	60
70 80 90	100	110	120
m121.pep HRSRILSQELSRLYAQTAAELLCSQNLAPSDITA	LGCHGQTVR	HAPEHGYSIQ	LADLPLL
	111111111	111111111	111111
g121 HRSRMLSQELSRLYAQTAAELLCSQNLAPCDITA	LGCHGQTVR	HAPEHGYSIQ	LADLPLL
70 80 90	100	110	120
130 140 150	160	170	180
m121.pep AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXX	XXXXXXXXX	XXXXXX
: :	:		
g121 AELTRIFTVGDFRSRDLAAGGQGAPLVPAFHEAL	FRDDRETRV	VLNIGGIANI	SVLPPGA
130 140 150	160	170	180
190 200 210	220	230	240
m121.pep XXXXXXXXXXXXXXXXXXXXQLPYDKNGAKSA	QGNILPQLL	DRLLAHPYFA	QRHPKST
: : !!!!!!!!:!		11111111:	1 11111
g121 PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAA	QGNILPQLL	GRLLAHPYFS	QPHPKST
190 200 210	220	230	240
250 260 270	280	290	300
m121.pep GRELFAINWLETYLDGGENRYDVLRTLSRFTAQT	VCDAVSHAA	ADARQMYICD	GGIRNPV
£{{{}}};{{}};{{}};{{}};{{}};{{}};{{}};{		11111111	HILLE
g121 GRELFALNWLETYLDGGENRYDVLRTLSRFTAQT	VWDAVSHAA	ADARQMYICG	GGIRNPV
250 260 270	280	290	300

	310	320	330	340	350	360
m121.pep	LMADLAECFGTRVS	SLHSTADLNLD	PQWVEAAXFA	WLAACWINE	i Pgsphkatga	SKPCIL
_	111111111111111	111111111111	4111111 B		[]]]]]	HHHH
g121	LMADLAECFGTRVS	SLHSTAELNLD	PQWVEAAAFA	WLAACWINR	PGSPHKATGA	SKPCIL
	310	320	330	340	350	360
ml21.pep	XAGYYYX 					
g121	GAGYYYX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 439>:

```
al21.seq
         ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
     51 GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
    101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CAAATTGCTG
    151 GATTTGCAGG ACACAGGCGC GGACGAACTG CACCGCAGCA GGATGTTGTC
    201 GCAAGAACTC AGCCGCCTGT ACGCGCAAAC CGCCGCCGAA CTGCTGTGCA
    251 GTCAAAACCT CGCGCCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
    301 ACCGTCAGAC ACGCGCCGGA ACACAGTTAC AGCGTACAGC TTGCCGATTT
    351 GCCGCTGCTG GCGGAACGGA CTCAGATTTT TACCGTCGGC GACTTCCGCA
    401 GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCGCTCGT CCCCGCCTTT
    451 CACGAAGCCC TGTTCCGCGA CGACAGGGAA ACACGCGCGG TACTGAACAT
    501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
    551
         GCTTCGACAC AGGACCGGGC AATATGCTGA TGGACGCGTG GATGCAGGCA
    601 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
     651 CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
    701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
         GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
    801 TTCCCGATTC ACCGCGCAAA CCGTTTTCGA CGCCGTCTCA CACGCAGCGG
    851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
    901 TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
    951
         CACCGCCGAA CTGAACCTCG ATCCGCAATG GGTAGAAGCC GCCGCGTTCG
   1001 CATGGATGGC GGCGTGTTGG GTCAACCGCA TTCCCGGTAG TCCGCACAAA
   1051 GCAACCGGCG CATCCAAACC GTGTATTCTG GGCGCGGGAT ATTATTATTG
   1101 A
```

This corresponds to the amino acid sequence <SEQ ID 440; ORF 121.a>:

a121.pep					
1	METQLYIGIM	SGTSMDGADA	VLIRMDGGKW	LGAEGHAFTP	YPGRLRRKLL
51	DLQDTGADEL	HRSRMLSQEL	SRLYAQTAAE	LLCSQNLAPS	DITALGCHGQ
101	TVRHAPEHSY	SVQLADLPLL	AERTQIFTVG	DFRSRDLAAG	GQGAPLVPAF
151	HEALFRODRE	TRAVLNIGGI	ANISVLPPDA	PAFGFDTGPG	NMLMDAWMQA
201	HWQLPYDKNG	AKAAQGNILP	QLLDRLLAHP	YFAQPHPKST	GRELFALNWL
251	ETYLDGGENR	YDVLRTLSRF	TAQTVFDAVS	HAAADARQMY	ICGGGIRNPV
301	LMADLAECFG	TRVSLHSTAE	LNLDPQWVEA	AAFAWMAACW	VNRIPGSPHK
351	ATGASKPCIL	GAGYYY*			

m121/a121 74.0% identity in 366 aa overlap

	10	20	30	40	50	60
m121.pep	METQLYIGIMSGTS	MDGADAVLIR	MDGGKWLGAE	GHAFTPYPGF	LRRQLLDLQD	TGADEL
	11111111111111	1111111111	1111111111	111111111	111:11111	$\Pi\Pi\Pi\Pi$
a121	METQLYIGIMSGTS	MDGADAVLIR	MDGGKWLGAE	GHAFTPYPGR	LRRKLLDLQD	TGADEL
	10	20	30	40	50	60
	70	80	90	100	110	100
101						120
m121.pep	HRSRILSQELSRLY					
a121	HRSRMLSQELSRLY	AQTAAELLCS	QNLAPSDITA	LGCHGQTVRH	APEHSYSVQL	ADLPLL
	70	80	90	100	110	120

m121.pep	130 AXXXXXXXXXXXXX	140 XXXXXXXXXX	150 XXXXXXXXX	160 XXXXXXXXXX	170 XXXXXXXXX	180 XXXXXX
a121	: : AERTQIFTVGDFRS	SRDLAAGGQGA 140	PLVPAFHEA	: LFRDDRETRAV 160	LNIGGIANI 170	SVLPPDA 180
m121 non	190 xxxxxxxxxxxx	200	210	220	230	240
m121.pep	:					-
a121	PAFGFDTGPGNMLN					
	190	200	210	220	230	240
	250	260	270	280	290	300
m121.pep	GRELFAINWLETYI		RTLSRFTAQ	TVCDAVSHAAA	DAROMYICD	
a121	: GRELFALNWLETYI			II IIIIIII TVFDAVSHAAA	IIIIIIII DAROMYICG	GGTRNPV
	250	260	270	280	290	300
	310	320	330	340	350	360
m121.pep	LMADLAECFGTRVS	SLHSTADLNLD	POWVEAAXF		PGSPHKATG	
	111111111111111111111111111111111111111			11:1111:111		
a121	LMADLAECFGTRVS 310	320	PQWVEAAAF7 330	AWMAACWVNR1 340	PGSPHKATG 350	ASKPCIL 360
	010	020	330	3.0	330	300
m121.pep	XAGYYYX					
a121	 GAGYYYX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 441>: m121-1.seq

```
1 ATGGAAACAC AGCTTTACAT CGGCATCATG TCGGGAACCA GCATGGACGG
     GGCGGATGCC GTACTGATAC GGATGGACGG CGGCAAATGG CTGGGCGCGG
101 AAGGGCACGC CTTTACCCCC TACCCCGGCA GGTTACGCCG CCAATTGCTG
151 GATTTGCAGG ACACAGGCGC AGACGAACTG CACCGCAGCA GGATTTTGTC
201 GCAAGAACTC AGCCGCCTAT ATGCGCAAAC CGCCGCCGAA CTGCTGTGCA
251 GTCAAAACCT CGCACCGTCC GACATTACCG CCCTCGGCTG CCACGGGCAA
301 ACCGTCCGAC ACGCGCCGGA ACACGGTTAC AGCATACAGC TTGCCGATTT
351
     GCCGCTGCTG GCGGAACGGA CGCGGATTTT TACCGTCGGC GACTTCCGCA
401 GCCGCGACCT TGCGGCCGGC GGACAAGGCG CGCCACTCGT CCCCGCCTTT
451 CACGAAGCCC TGTTCCGCGA CAACAGGGAA ACACGCGCGG TACTGAACAT
501 CGGCGGGATT GCCAACATCA GCGTACTCCC CCCCGACGCA CCCGCCTTCG
551 GCTTCGACAC AGGGCCGGGC AATATGCTGA TGGACGCGTG GACGCAGGCA
 601 CACTGGCAGC TTCCTTACGA CAAAAACGGT GCAAAGGCGG CACAAGGCAA
     CATATTGCCG CAACTGCTCG ACAGGCTGCT CGCCCACCCG TATTTCGCAC
701 AACCCCACCC TAAAAGCACG GGGCGCGAAC TGTTTGCCCT AAATTGGCTC
751 GAAACCTACC TTGACGGCGG CGAAAACCGA TACGACGTAT TGCGGACGCT
801 TTCCCGTTTT ACCGCGCAAA CCGTTTGCGA CGCCGTCTCA CACGCAGCGG
851 CAGATGCCCG TCAAATGTAC ATTTGCGGCG GCGGCATCCG CAATCCTGTT
901
     TTAATGGCGG ATTTGGCAGA ATGTTTCGGC ACACGCGTTT CCCTGCACAG
951 CACCGCCGAC CTGAACCTCG ATCCGCAATG GGTGGAAGCC GCCGNATTTG
1001
     CGTGGTTGGC GGCGTGTTGG ATTAATCGCA TTCCCGGTAG TCCGCACAAA
1051 GCAACCGGCG CATCCAAACC GTGTATTCTG ANCGCGGGAT ATTATTATTG
1101 A
```

This corresponds to the amino acid sequence <SEQ ID 442; ORF 121-1>: m121-1.pep

- 1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRQLL
 51 DLQDTGADEL HRSRILSQEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
 101 TVRHAPEHGY SIQLADLPLL AERTRIFTVG DFRSRDLAAG GQGAPLVPAF
 151 HEALFRDNRE TRAVLNIGGI ANISVLPPDA PAFGFDTGPG NMLMDAWTQA
 161 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
 162 ETYLDGGENR YDVLRTLSRF TAQTVCDAVS HAAADARQMY ICGGGIRNPV
 163 LMADLAECFG TRVSLHSTAD LNLDPQWVEA AXFAWLAACW INRIPGSPHK
- 351 ATGASKPCIL XAGYYY*

m121-1/g121 95.6% identity in 366 aa overlap

10 20 30 40 50 60

m121-1.pep	METQLYIGIMSGTS					
g121	METQLYIGIMSGTS					
m121-1.pep	70 HRSRILSQELSRLY/					
g121	HRSRMLSQELSRLY/					
m121-1.pep	130 AERTRIFTVGDFRSI AELTRIFTVGDFRSI 130	пінши	шиниш	111:1111:1	1111111111	111111
m121-1.pep	190 PAFGFDTGPGNMLMI PAFGFDTGPGNMLMI 190	шіші		ĪHHHĪH	ппппп	1111111
m121-1.pep	250 GRELFALNWLETYLI 	1111111111	HILLIANÎE	1.11111111	шінн	1111111
m121-1.pep	310 LMADLAECFGTRVSI LMADLAECFGTRVSI 310	шинн	ійнні н	11111111111	THEFT	
m121-1.pep g121	XAGYYYX GAGYYYX				÷	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 443>: a121-1.seq

_		1				
	1	ATGGAAACAC	AGCTTTACAT	CGGCATCATG	TCGGGAACCA	GCATGGACGG
	51	GGCGGATGCC	GTACTGATAC	GGATGGACGG	CGGCAAATGG	CTGGGCGCGG
	101	AAGGGCACGC	CTTTACCCCC	TACCCCGGCA	GGTTACGCCG	CAAATTGCTG
	151	GATTTGCAGG	ACACAGGCGC	GGACGAACTG	CACCGCAGCA	GGATGTTGTC
	201	GCAAGAACTC	AGCCGCCTGT	ACGCGCAAAC	CGCCGCCGAA	CTGCTGTGCA
	251	GTCAAAACCT	CGCGCCGTCC	GACATTACCG	CCCTCGGCTG	CCACGGGCAA
	301	ACCGTCAGAC	ACGCGCCGGA	ACACAGTTAC	AGCGTACAGC	TTGCCGATTT
	351	GCCGCTGCTG	GCGGAACGGA	CTCAGATTTT	TACCGTCGGC	GACTTCCGCA
	401	GCCGCGACCT	TGCGGCCGGC	GGACAAGGCG	CGCCGCTCGT	CCCCGCCTTT
	451	CACGAAGCCC	TGTTCCGCGA	CGACAGGGAA	ACACGCGCGG	TACTGAACAT
	501	CGGCGGGATT	GCCAACATCA	GCGTACTCCC	CCCCGACGCA	CCCGCCTTCG
	551	GCTTCGACAC	AGGACCGGGC	AATATGCTGA	TGGACGCGTG	GATGCAGGCA
	601	CACTGGCAGC	TTCCTTACGA	CAAAAACGGT	GCAAAGGCGG	CACAAGGCAA
	651	CATATTGCCG	CAACTGCTCG	ACAGGCTGCT	CGCCCACCCG	TATTTCGCAC
	701	AACCCCACCC	TAAAAGCACG	GGGCGCGAAC	TGTTTGCCCT	AAATTGGCTC
	751	GAAACCTACC	TTGACGGCGG	CGAAAACCGA	TACGACGTAT	TGCGGACGCT
	801	TTCCCGATTC	ACCGCGCAAA	CCGTTTTCGA	CGCCGTCTCA	CACGCAGCGG
	851	CAGATGCCCG	TCAAATGTAC	ATTTGCGGCG	GCGGCATCCG	CAATCCTGTT
	901	TTAATGGCGG	ATTTGGCAGA	ATGTTTCGGC	ACACGCGTTT	CCCTGCACAG
	951	CACCGCCGAA	CTGAACCTCG	ATCCGCAATG	GGTAGAAGCC	GCCGCGTTCG
1	1001	CATGGATGGC	GGCGTGTTGG	GTCAACCGCA	TTCCCGGTAG	TCCGCACAAA
1	1051	GCAACCGGCG	CATCCAAACC	GTGTATTCTG	GGCGCGGGAT	ATTATTATTG
	101	•				

This corresponds to the amino acid sequence <SEQ ID 444; ORF 121-1.a>: a121-1.pep

- 1 METQLYIGIM SGTSMDGADA VLIRMDGGKW LGAEGHAFTP YPGRLRRKLL
 51 DLQDTGADEL HRSRMLSOEL SRLYAQTAAE LLCSQNLAPS DITALGCHGQ
 101 TVRHAPEHSY SVQLADLPLL AERTQIFTVG DFRSRDLAAG GQGAPLVPAF
 151 HEALFRDDRE TRAVLNIGGI ANISVLPPDA PAFGFDTGFG NMLMDAWMQA

```
201 HWQLPYDKNG AKAAQGNILP QLLDRLLAHP YFAQPHPKST GRELFALNWL
```

- 251 ETYLDGGENR YDVLRTLSRF TAQTVFDAVS HAAADARQMY ICGGGIRNPV
- 301 LMADLAECFG TRVSLHSTAE LNLDPQWVEA AAFAWMAACW VNRIPGSPHK
- 351 ATGASKPCIL GAGYYY*

m121-1/a121-1 96.4% identity in 366 aa overlap

m121-1/ a121-	1 30.46 Identity In 300 da Overrap
m121-1.pep	10 20 30 40 50 60 METQLYIGIMSGTSMDGADAVLIRMDGGKWLGAEGHAFTPYPGRLRRQLLDLQDTGADEL
a121-1	
	70 80 90 100 110 120
m121-1.pep	HRSRILSQELSRLYAQTAAELLCSQNLAPSDITALGCHGQTVRHAPEHGYSIQLADLPLL
a121-1	
	130 140 150 160 170 180
m121-1.pep	AERTRIFTVGDFRSRDLAAGGQGAPLVPAFHEALFRDNRETRAVLNIGGIANISVLPPDA
a121-1	:
	130 140 150 160 170 180
m121-1.pep	190 200 210 220 230 240 PAFGFDTGPGNMLMDAWTQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST
a121-1	PAFGFDTGPGNMLMDAWMQAHWQLPYDKNGAKAAQGNILPQLLDRLLAHPYFAQPHPKST 190 200 210 220 230 240
	250 260 270 280 290 300
m121-1.pep	GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVCDAVSHAAADARQMYICGGGIRNPV
a121-1	GRELFALNWLETYLDGGENRYDVLRTLSRFTAQTVFDAVSHAAADARQMYICGGGIRNPV 250 260 270 280 290 300
m121-1.pep	310 320 330 340 350 360 LMADLAECFGTRVSLHSTADLNLDPOWVEAAXFAWLAACWINRIPGSPHKATGASKPCIL
a121	
4121	310 320 330 340 350 360
m121-1.pep	XAGYYYX
a121	GAGYYYX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 445>: g122.seq

```
ATGGCTTTAC TGAGCATCCG CAAGCTGCAC AAACAATACG GCAGCGTAAC
51 CGCCATCCAA TCCTTAGACT TGGACTTGGA AAAAGGCGAA GtcatCGTAC
101 TGCTGGGCCC gTccggctgc ggCAAATCCA CCCTcctgcg ctgcgtcaaC
    GGTTTGGAGC CGCACCAagg cgGCAGCATC GTGATGGACG GTgtcgGCGA
151
201 ATTCggcAAA GACGTTTCCT GGCAAACCGC CCGGCAAAAa gtcggtatgg
251 tctttcaaag taacgAactg Tttgcccaca tgaccgtcat cgAaaacatc
301 ttcttAggcC CGGTAAagga aCAAAAcCgc gaccgtgccg aagcaGAGGC
    gCAAGCCGGC AAactGttgg aacgcgTCGG actgctAGAC CGCAAAAACG
401 CCTATCCGCG CGAACTTTCC GGCGGTCAGA AACAGCGCAT CGCCATTGTC
451 CGCGCCCTGT GCCTGAATCC GGAAGTCATC CTGCTGGACG AAATCACCGC
501 CGCACTTGAC CCCGAAATGG TGCGCGAAGT CTTGGAAGTG GTTTTGGAAC
551 TCGCCCGCGA AGGGATGAGT ATGCTCATCG TAACCCACGA AATGGGGTTC
601 GCACGCAAAG TTGCCGACCG CATCGTCTTT ATGGACAAAG GCGGCATCGT
651 CGAATCGTCC GACCCCGAAA CCTTTTTTC CGCACCAAAA AGCGAACGCG
    CCCGCCAATT TCTGGCAGGT ATGGACTACT GA
```

This corresponds to the amino acid sequence <SEQ ID 446; ORF 122.ng>:

180 190 200 210 220 230 250 TRRFLSQIQSTKIX m122.pep :1:11: ARQFLAGMDYX g122 240 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 449>: a122.seg GTTGTCATGA TTAAAATCCG CAATATCCAT AAGACCTTCG GCAAAAATAC 1 51 CATTTTGCGC GGCATCAATT TGGATGTGTG CAAAGGGCAG GTGGTCGTCA TCCTCGGGCC TTCCGGCTCA GGCAAAACGA CGTTTCTGCG ATGCCTAAAC 101 151 GCGTTGGAAA TGCCCGAAGA CGGACAAATC GAGTTCGACA ACGAGCGACC GCTGAAAATC GATTTTCTA AAAAACCAAG CAAACACGAT ATTTTGGCAC 201 251 TGCGCCGCAA ATCAGGCATG GTGTTTCAAC AATACAACCT CTTTCCGCAC AAAACCGCCT TGGAAAACGT GATGGAAGGA CCGGTTGCCG TACAGGGCAA 301 351 GCCTGCCGCC CAAGCGCGCG AAGAGGCTCT GAAACTGCTG GAAAAAGTCG 401 GCTTGGGCGA CAAAGTGGAT TTGTATCCCT ACCAGCTTTC CGGCGGTCAG CAGCAGCGCG TCGGCATTGC CCGAGCATTG GCGATTCAGC CCGAGCTGAT 451 GTTGTTTGAC GAACCCACTT CCGCGCTTGA CCCCGAGTTG GTGCAAGACG 501 551 TGTTGAACGC CATGAAGGAA TTGGCGCGGG AAGGTTGGAC GATGGTCGTC 601 GTTACCCACG AAATCAAGTT CGCGCTGGAA GTTGCCACGA CCGTTGTCGT GATGGACGGC GGCGTTATCG TAGAGCAGGG CAGCCCGAAA GAGTTGTTCG 651 701 ACCACCCCAA ACACGAACGG ACGCGGAGAT TTTTAAGCCA AATCCAATCT ACCAAGATTT GA This corresponds to the amino acid sequence <SEQ ID 450; ORF 122.a>: a122.pep VVMIKIRNIH KTFGKNTILR GINLDVCKGQ VVVILGPSGS GKTTFLRCLN ALEMPEDGOI EFDNERPLKI DFSKKPSKHD ILALRRKSGM VFOOYNLFPH 51 101 KTALENVMEG PVAVQGKPAA QAREEALKLL EKVGLGDKVD LYPYQLSGGQ 151 QQRVGIARAL AIQPELMLFD EPTSALDPEL VQDVLNAMKE LAREGWTMVV VTHEIKFALE VATTVVVMDG GVIVEQGSPK ELFDHPKHER TRRFLSQIQS 201 251 TKI* m122/a122 96.0% identity in 253 aa overlap 10 20 30 40 50 60 m122.pep VVMIKIRNIHKTFGENTILRGIDLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGOI a122 VVMIKIRNIHKTFGKNTILRGINLDVCKGQVVVILGPSGSGKTTFLRCLNALEMPEDGQI 10 20 30 50 40 60 70 80 90 100 110 EFDNERPLKIDFSKKPSKHDILALRRKSXMVFQQYNLFPHKTALENVMEGPVAVQGKPAA m122.pep a122 EFDNERPLKIDFSKKPSKHDILALRRKSGMVFQQYNLFPHKTALENVMEGPVAVQGKPAA 70 80 90 100 110 140 150 160 QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL m122.pep QAREEALKLLEKVGLGDKVDLYPYQLSGGQQQRVGIARALAIQPELMLFDEPTSALDPEL a122 130 140 150 160 170 190 200 210 220 230 m122.pep VQDVLDXMKELAQEGWTMVVVTHEIKFALEVATTXVVMDXGVIVEQGSPQDLFDHPKHER VQDVLNAMKELAREGWTMVVVTHEIKFALEVATTVVVMDGGVIVEQGSPKELFDHPKHER a122 190 200 210 220 230 250

m122.pep

TRRFLSQIQSTKIX

al22 TRRFLSQIQSTKIX 250

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 451>: g122-1.seq

```
1 ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACCATTTT
    GCGCGGCATC GATTTGGATG TGGGCAAAGG GCAGGTGGTC GTCATCCTCG
 51
     GGCCTTCCGG CTCGGGTAAA ACAACATTTC TGCGCTGCCT AAACGCGTTG
101
     GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGCGC GGCCGTTACG
151
201
    CATTGATTTT TCCAAAAAA CAAGCAAACA CGATATTTTG GCACTGCGCC
     GCAAGTCCGG AATGGTATTC CAACAATACA ACCTCTTCCC GCATAAAACC
301 GTGTTGGAAA ACGTGATGGA AGGGCCGGTT GCCGTACAGG GCAAGCCTGC
351 CGCCCAAGCG CGCGAAGAGG CTTTGAAACT GCTGGAAAAA GTCGGCTTGG
401 GCGATAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG
451 CGTGTCGGTA TCGCCCGCGC ACTGGCGATT CAGCCTGAAT TGATGCTGTT
501 TGACGAACCC ACTTCCGCGC TGGACCCCGA GTTGGTGCAA GACGTGTTGG
551 ACGCCATGAA GGAATTGGCG CGGGAAGGTT GGACGATGGT CGTCGTTACC
601
    CACGAAATCA AGTTCACGCT GGAAGTTGCC ACGAACGTCG TCGTGATGGA
     CGGCGGCGTT ATCGTAGAGC AGGGCAGCCC GAAAGAGTTG TTCGACCACC
     TCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTGCCAAG
```

This corresponds to the amino acid sequence <SEQ ID 452; ORF 122-1.ng>: g122-1.pep

- 1 MIKIRNIHKT FGENTILRGI DLDVGKGQVV VILGPSGSGK TTFLRCLNAL
- 51 EMPEDGQIEF DNARPLRIDF SKKTSKHDIL ALRRKSGMVF QQYNLFPHKT
- 101 VLENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ
- 151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDAMKELA REGWTMVVVT 201 HEIKFTLEVA TNVVVMDGGV IVEQGSPKEL FDHLKHERTR RFLSQIQSAK
- 251 I

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 453>: m122-1.seq

```
ATGATTAAAA TCCGCAATAT CCATAAGACC TTTGGCGAAA ACACTATTTT
 1
     GCGCGGCATC GATTTGGATG TGTGCAAAGG GCAGGTGGTC GTCATCCTCG
 51
    GGCCTTCCGG CTCAGGCAAA ACGACGTTTC TGCGATGCCT AAACGCGTTG
101
151
    GAAATGCCCG AAGACGGACA AATCGAGTTC GACAACGAGC GACCGCTGAA
201 AATCGATTTT TCTAAAAAAC CAAGCAAACA CGATATTTTG GCACTGCGCC
    GCAAATCAGG CATGGTGTTT CAACAATACA ACCTCTTTCC GCACAAAACC
301 GCCTTGGAAA ACGTAATGGA AGGACCGGTT GCCGTACAGG GCAAGCCTGC
    CGCCCAAGCG CGCGAAGAGG CTCTGAAACT GCTGGAAAAA GTCGGCTTGG
351
401 GCGACAAAGT GGATTTGTAT CCCTACCAGC TTTCCGGCGG TCAGCAGCAG
    CGCGTCGGCA TTGCCCGCGC ATTGGCGATT CAGCCTGAAC TGATGCTGTT
451
501 TGACGAACCG ACTTCCGCGC TCGATCCTGA ATTGGTGCAA GATGTTTTGG
551 ATACCATGAA GGAATTGGCG CAAGAAGGCT GGACCATGGT TGTCGTTACG
    CATGAAATCA AGTTCGCCTT AGAAGTGGCA ACCACCGTCG TCGTGATGGA
601
651 CGGCGGCGTT ATTGTCGAAC AAGGCAGCCC GCAAGATTTG TTCGACCACC
    CCAAACACGA ACGGACGCGG AGATTTTTAA GCCAAATCCA ATCTACCAAG
751 ATTTGA
```

This corresponds to the amino acid sequence <SEQ ID 454; ORF 122-1>: m122-1.pep

- 1 MIKIRNIHKT FGENTILRGI DLDVCKGQVV VILGPSGSGK TTFLRCLNAL
- 51 EMPEDGQIEF DNERPLKIDF SKKPSKHDIL ALRRKSGMVF QQYNLFPHKT
- 101 ALENVMEGPV AVQGKPAAQA REEALKLLEK VGLGDKVDLY PYQLSGGQQQ
- 151 RVGIARALAI QPELMLFDEP TSALDPELVQ DVLDTMKELA QEGWTMVVVT
- 201 HEIKFALEVA TTVVVMDGGV IVEQGSPQDL FDHPKHERTR RFLSQIQSTK
- 251 I*

m122-1/g122-1 94.8% identity in 251 aa overlap

PCT/US99/09346

2	_	1
٦,	. つ	1

		•			
	10	20 30	40	50	60
m122-1.pep	70 DNERPLKIDFSKKPSKH : ! DNARPLRIDFSKKTSKH 70	11:1:1:11	111111111111111111111111111111111111111	шшшш	1111
m122-1.pep	REEALKLLEKVGLGDKV 	11331111111111	[[[[[]]]]]	ШИННИ	1111
m122-1.pep g122-1	DVLDTMKELAQEGWTMV : DVLDAMKELAREGWTMV	111111111111111111111111111111111111111	11111111111111	нани п	1111
m122-1.pep g122-1	250 RFLSQIQSTKIX : RFLSQIQSAKIX 250				
	ng partial DNA se	quence was ider	tified in N. 1	neningitidi	s <seq 455="" id="">:</seq>
51 GC0 101 GG 151 GA 201 AA 251 GC 301 GC0 351 CG 401 GC0 451 CG6 501 TG 601 CA 651 CG7 701 CC. 751 AT	GATTAAAA TCCGCAATA GCGGCATC AATTTGGAT CCTTCCGG CTCAGGCAA AATGCCCG AAGACGGAC TCGATTTT TCTAAAAAA AAATCAGG CATGGTGTT CTTGGAAA ACGTGATGG GCAAAGG GGAATTGTA CGTCGGCA TTGCCCGAG ACGAACCC ACTTCCGCG GCCATGAA GGAATTGGC CGAAATCA GGAATTGGC CGAAATCA AGTTCGCGC GCGGCGTT ATCGTAGAG AAACACGA ACGGACGCG	G TGTGCAAAGG GCA A ACGACGTTTC TGC A AATCGAGTTTC GAC C CAAGCAAACA CGA T CAACAATACA ACC A AGGACCGGTT GCC G CTCTGAAACT GCT T CCCTACCAGC TTT C CATTGGCGATT CAG C TTGACCCCGA GTT G CGGGAAGGTT GGA T GGAAGTTGCC ACG C AGGGCAGCCC GAA G AGATTTTTAA GCC	GGTGGTC GTCAT GATGCCT AAACC AACGAGC GACC TTATTTTG GCACT TCTTTCC GCACT GTACAGG GCAAC GGAAAAA GTCGC CCCGGGG TCAGC CCCGAGC TGATC GGTGCAA GACCT CGATGGT CGTCC ACCGTTG TCGTC ACAGTCCA ATCTA	CCCTCG GGGTTG GGGGC AAAACC GCCTGC GCCTGG CAGCAG GCTTGG CAGCAG GTTGTT GGTTGA GTTACC GATGGA ACCACC ACCAAG	
a122-1.pep 1 MI 51 EM 101 AL 151 RV	conds to the amino kirnihkt fgkntilrg pedgqief dnerplkid envmegpv avqckpaqq giaralai qpelmlfde ikfaleva ttvvvmdgg	I NLDVCKGQVV VIL F SKKPSKHDIL ALR A REEALKLLEK VGL P TSALDPELVQ DVL	GPSGSGK TTFLE RKSGMVF QQYNI GDKVDLY PYQLS NAMKELA REGWI	RCLNAL LFPHKT GGGQQQ TMVVVT	?-1.a>:
a122-1/m122-	1 97.2% identit	y in 251 aa over	lap		
a122-1.pep	10 MIKIRNIHKTFGKNTIL MIKIRNIHKTFGENTIL 10	111:111111111111	1111111111111	шшші	Ī
a122-1.pep m122-1	70 DNERPLKIDFSKKPSKH			MEGPVAVQGKP 110	HŢ
a122-1.pep m122-1	130 REEALKLLEKVGLGDKV		HILLIAN		LITE

PCT/US99/09346

	130	140	150	160	170	180
	190	200	210	220	230	240
a122-1.pep	DVLNAMKELAREGW'	rmvvvthei	KFALEVATTVV	VMDGGVIVE	OGSPKELFDHI	KHERTR
	111::11111:111	11111111	11111111111	нинии		
m122-1	DVLDTMKELAQEGW:	PMVVVTHEI	KFALEVATTVV	VMDGGVIVE	QGSPQDLFDHI	KHERTR
	190	200	210	220	230	240
	250					
a122-1.pep	RFLSQIQSTKIX					
m122-1	RFLSOIOSTKIX					
111122 1	250					
	230					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 457>:

```
q125.seq
         ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGGT
         TTGGTTCGGC GCGCCGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
      51
     101
         TCGCCCCCTT GGGCTGGCAG CGCGGTCTGG CGGCCCTGCT TTTGGGTCAT
    151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
    201 CGGACGCAGC TCGATGGAAA GTGTGCGCCT GTCGTTCGGC AAATGCGGTT
    251 CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
    301 GTGATGATTT ACGTCGGCGC AacggTCAGC TCCGCTTTGG GCAAAGTGTT
    351 GTGGGACggc gaATCCTTTG TCTGGTGGGC ATTGGCAAAC GGCGCACTGA
    401
         TCGTGCTGTG GCTGGTTTTC GGCGCACGCA GAACGGGCGG GCTGAAAACC
         GTTTCGATGC TGCTGATGCT GCTTGCCGTG TTGTGGTTGA GCGTCGAAGT
         GTTCGCTTCG TCCGGCACAA ACGCCGCGCC CGCCGTTTCA GACGGCATGA
    501
    551 CCTTCGGAAC GGCAGTCGAA CTGTCCGCCG TCATGCCGCT TTCCTGGCTG
    601 CCGCTGGCCG CCGACTACAC GCGCCAAGCA CGCCGCCCGT TTGCGGCAAC
    651 CCTGACGGCA ACGCTCGCCT ATACGCTGAC GGGCTGCTGG ATGTATGCCT
    701 TGGGTTTGGC GGCGGCTCTG TTTACCGGAG AAACCGACGT GGCGAAAATC
    751 CTGTTGGGCG CGGGCTTGGG CATAACGGGC ATTCTGGCAG TCGTCCTCTC
    801 CACCGTTACC ACAACGTTTC TCGATACCTA TTCCGCCGGC GCGAGTGCGA
         ACAACATTTC CGCGCGTTTT GCGGAAATAC CCGTCGCTGT CGGCGTTACC
    901 CTGatccgca ccgtgcttgc cgtcatgctg cccgttaccg aatataaaaa
    951 cttcctgctg cttatccgct cggtatttgg gccgatggcg ggtggttttg
    1001 attgccgaCT TTTttgtctt AAAACGGCGT GA
```

This corresponds to the amino acid sequence <SEQ ID 458; ORF 125.ng>:

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 459>:

```
m125.seq
      1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCTCCGCCA TCGGGCTGAT
         TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACGCTGC
     51
    101
         TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTACT TTTGGGTCAT
    151 GCCGTCGGCG GCGCGCTGTT TTTTGCGGCG GCGTATATCG GCGCACTGAC
    201 CGGACGCAGC TCGATGGAAA GCGTGCGCCT GTCGTTCGGC AAACGCGGTT
         CAGTGCTGTT TTCCGTGGCG AATATGCTGC AACTGGCCGG CTGGACGGCG
    301 GTGATGATTT ACGCCGGCGC AACGGTCAGC TCCGCTTTGG GCAAAGTGTT
    351 GTGGGACGGC GAATCTTTG TCTGGTGGGC ATTGGCAAAC GGCGCGCTGA
         TTGTGCTGTG GCTGGTTTTC GGCGCACGCA AAACAGGCGG GCTGAAAACC
         GTTTCGATGC TGCTGATGCT GTTGGCGGTT CTGTGGCTGA GTGCCGAAGT
    451
    501 CTTTTCCACG GCAGGCAGCA CCGCCGCACA GGTTTCAGAC GGCATGAGTT
    551 TCGGAACGGC AGTCGAGCTG TCCGCCGTGA TGCCGCTTTC CTGGCTGCCG
    601 CTTGCCGCCG ACTACACGCG CCACGCGCGC CGCCCGTTTG CGGCAACCCT
    651 GACGGCAACG CTCGCCTACA CGCTGACCGG CTGCTGGATG TATGCCTTGG
    701 GTTTGGCAGC GGCGTTGTTC ACCGGAGAAA CCGACGTGGC AAAAATCCTG
         CTGGGCGCAr GTTTGGGTGC GGCAGGCATT TTGGCGGTCG TCCTCTCCAC
    801 CGTTACCACA ACGTTTCTCG ATGCCTATTC CGCCGGCGCG AGTGCGAACA
```

- 851 ACATTTCCGC GCGTTTTGCG GAAACACCCG TCGCTGTCrG CGTTACCCTG 901 ATCGGCACGG TACTTGCCGT CATGCTGCCC GTTACCGAAT ATGAAAACTT
- 951 CCTGCTGCTT ATCGGCTCGG TATTTGCGCC GATGGCGGGC GGTTTTGATT
- 1001 GCCGACTTTT TCGTCTTGAA ACGGCGTGA

This corresponds to the amino acid sequence <SEQ ID 460; ORF 125>:

- m125.pep
 - 1 MSGNASSPSS SSAIGLIWFG AAVSIAEIST GTLLAPLGWQ RGLAALLLGH
 - 51 AVGGALFFAA AYIGALTGRS SMESVRLSFG KRGSVLFSVA NMLQLAGWTA
 - 101 VMIYAGATVS SALGKVLWDG ESFVWWALAN GALIVLWLVF GARKTGGLKT
 - 151 VSMLLMLLAV LWLSAEVFST AGSTAAQVSD GMSFGTAVEL SAVMPLSWLP
 - 201 LAADYTRHAR RPFAATLTAT LAYTLTGCWM YALGLAAALF TGETDVAKIL
 - 251 LGAXLGAAGI LAVVLSTVTT TFLDAYSAGA SANNISARFA ETPVAVXVTL
 - 301 IGTVLAVMLP VTEYENFLLL IGSVFAPMAG GFDCRLFRLE TA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 125 shows 92.1% identity over a 343 aa overlap with a predicted ORF (ORF 125.ng) from N. gonorrhoeae:

m125/g125

m125.pep	MSGNA	10 .SSPSSSA1	20 GLIWFGAAVS	30	40	50	60
	11111	1111111:11	11:1111111	1111111111	1111111111	1111111111	$\Pi\Pi\Pi\Pi$
g125	MSGNA		GLVWFGAAVS				
		10	20	30	40	50	60
		70	80	90	100	110	120
m125.pep		LTGRSSMES	VRLSFGKRGS	VLFSVANMLQ	LAGWTAVMIY	'AGATVSSALC	KVLWDG.
	1111	11111111	1111111 11	111111111	, , , , , , , , , ,	:	$\Pi\Pi\Pi$
g125	AYIGA		VRLSFGKCGS				
		70	80	90	100	110	120
		130	140	150	160	170	179
m125.pep	ESFVW	WALANGAL I	VLWLVFGARK	TGGLKTVSML	LMLLAVLWLS	AEVFSTAGST	'AAQ-VS
	1111	11111111	1111111:	1111111111	11111111111	: ::: ::	11 11
g125	ESFVW		VLWLVFGARR			VEVFASSGTN	IAAPAVS
		130	140	150	160	170	180
	180	190	200	210	220	230	239
m125.pep			MPLSWLPLAA				
	111:1		111111111	1111:1111			
g125							4 4 1 1 1 1
	DGMTF	'GTAVELSAV	MPLSWLPLAA	DYTROARRPF	AATLTATLAY	TLTGCWMYAL	GLAAAL
3	DGMTF	GTAVELSAV 190	MPLSWLPLAA 200	DYTRQARRPF 210	AATLTATLAY 220	TLTGCWMYAI 230	GLAAAL 240
_		190	200	210	220	230	240
-	240	190 250	200 260	210 270	220 280	230 290	240 299
m125.pep	240	190 250	200	210 270	220 280	230 290	240 299 VAVXVT
m125.pep	240 FTGET	190 250 DVAKILLGA	200 260 :	210 270 VLSTVTTTFL	220 280 DAYSAGASAN :	230 290 NISARFAETE	240 299 VAVXVT
-	240 FTGET	190 250 DVAKILLGA	200 260	210 270 VLSTVTTTFL	220 280 DAYSAGASAN :	230 290 NISARFAETE	240 299 VAVXVT
m125.pep	240 FTGET FTGET	190 250 DVAKILLGA DVAKILLGA 250	200 260 XLGAAGILAV : GLGITGILAV 260	210 270 VLSTVTTTFL VLSTVTTTFL 270	220 280 DAYSAGASAN : DTYSAGASAN 280	230 290 NISARFAETF NISARFAEIF	240 299 VAVXVT VAVGVT
m125.pep g125	240 FTGET FTGET	250 DVAKILLGA DVAKILLGA 250 310	200 260 XLGAAGILAV : GLGITGILAV 260 320	210 270 VLSTVTTTFL VLSTVTTTFL 270 330	220 280 DAYSAGASAN : DTYSAGASAN 280 340	230 290 NISARFAETF NISARFAEIF 290	240 299 VAVXVT VAVGVT
m125.pep	240 FTGET FTGET	250 DVAKILLGA DVAKILLGA 250 310	200 260 XLGAAGILAV : GLGITGILAV 260	210 270 VLSTVTTTFL VLSTVTTTFL 270 330	220 280 DAYSAGASAN : DTYSAGASAN 280 340	230 290 NISARFAETF NISARFAEIF 290	240 299 VAVXVT VAVGVT
m125.pep g125	240 FTGET FTGET 300 LIGTV 	250 DVAKILLGA DVAKILLGA 250 310 LAVMLPVTE	200 260 XLGAAGILAV : GLGITGILAV 260 320	210 270 VLSTVTTTFL VLSTVTTTFL 270 330 VFAPMAGGFD	220 280 DAYSAGASAN : DTYSAGASAN 280 340 CRLFRLETAX	230 290 NISARFAETF NISARFAEIF 290	240 299 VAVXVT VAVGVT

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 461>: a125.seq

- 1 ATGTCGGGCA ATGCCTCCTC TCCTTCATCT TCCGCCGCCA TCGGGCTGAT
- 51 TTGGTTCGGC GCGGCGGTAT CGATTGCCGA AATCAGCACG GGTACACTGC
- 101 TTGCGCCTTT GGGCTGGCAG CGCGGTCTGG CGGCTCTGCT TTTGGGTCAT

151	GCCGTCGGCG GCGCG	CTGTT TTTTGCGG	CG GCGTATATCG	GCGCACTGAC
201	CGGACGCAGC TCGAT	GGAAA GCGTGCGC	CT GTCGTTCGGC	AAACGCGGTT
251	CAGTGCTGTT TTCCG			
301	GTGATGATTT ACGCC			
351	GTGGGACGGC GAATC			
401	TTGTGCTGTG GCTGG			
451	GTTTCGATGC TGCTG			
501	CTTTTCCACG GCAGG			
551	TCGGAACGGC AGTCG			
601	CTGGCCGCCG ACTAC	ACGCG CCACGCGC	GC CGCCCGTTTG	CGGCAACCCT
651	GACGGCAACG CTCGC	CTACA CGCTGACC	GG CTGCTGGATG	TATGCCTTGG
701	GTTTGGCAGC GGCGT	TGTTC ACCGGAGA	AA CCGACGTGGC	AAAAATCCTG
751	CTGGGCGCAG GTTTG	GGTGC GGCAGGCA	TT TTGGCGGTCG	TCCTGTCGAC
801	CGTTACCACC ACTTT	TCTCG ATGCCTAC	TC CGCCGGCGTA	AGTGCCAACA
851	ATATTTCCGC CAAAC			
901	GTCGGCACAC TGCTT			-
951	CCTGCTGCTT ATCGG			
	GCCGACTTTT TCGTC			GGIIIIGAII
1001	GCCGACTITI TCGTC	TIGAM ACGCCGIG	n	
				
This correspond	s to the amino acid	sequence <sec< td=""><td>) ID 462; ORF</td><td>125.a>:</td></sec<>) ID 462; ORF	125.a>:
al25.pep				
1	MSGNASSPSS SAAIG	LIWFG AAVSIAEI	ST GTLLAPLGWO	RGLAALLIGH
51	AVGGALFFAA AYIGA			
101	VMIYAGATVS SALGK			
	VSMLLMLLAV LWLSA			
151				
201	LAADYTRHAR RPFAA			
251	LGAGLGAAGI LAVVL			
301	VGTLLAVLLP VTEYE	NFLLL IGSVFAPM	AX GFDCRLFRLE	TA*
m125/a125 95	.6% identity in 342	_	20	
445	10	20	30 40	50 60
m125.pep	MCCNACCDCCCA	IIGLIWFGAAVSIAE	ISTGTLLAPIGWO	RGLAALLLGHAVGGALFFAA
		111111111111111111111111111111111111111	11111111111111	[[[]]]
a125		111111111111111111111111111111111111111	11111111111111	
		111111111111111111111111111111111111111	11111111111111	[[[]]]
a125				
a125 m125.pep				
a125				
a125 m125.pep				
a125 m125.pep		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
a125 m125.pep a125	HIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHI			
a125 m125.pep	HIHIHIHIHI MSGNASSPSSSAA 10 70 AYIGALTGRSSME HIHIHIHIHI AYIGALTGRSSME 70 130 ESFVWWALANGAL	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
m125.pep a125 m125.pep	HIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHIHI			
a125 m125.pep a125				
m125.pep a125 m125.pep				
m125.pep a125 m125.pep				
m125.pep a125 m125.pep				
m125.pep a125 m125.pep a125	MSGNASSPSSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME 70 130 ESFVWWALANGAL ESFVWWALANGAL 130 190	80 SVRLSFGKRGSVLF 111111111111111111111111111111111111		
m125.pep a125 m125.pep	MSGNASSPSSAA 10 70 AYIGALTGRSME AYIGALTGRSME 70 130 ESFVWWALANGAL ESFVWWALANGAL 130 190 GMSFGTAVELSAV	80 SVRLSFGKRGSVLF 111111111111111111111111111111111111		
m125.pep a125 m125.pep a125	MSGNASSPSSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME AYIGALTGRSSME ESFVWWALANGAL ESFVWWALANGAL GMSFGTAVELSAV			
m125.pep a125 m125.pep a125	MSGNASSPSSSAA 10 70 AYIGALTGRSSME			
m125.pep a125 m125.pep a125	MSGNASSPSSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME AYIGALTGRSSME ESFVWWALANGAL ESFVWWALANGAL GMSFGTAVELSAV			
m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			
m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME 70 130 ESFVWWALANGAL ESFVWWALANGAL GMSFGTAVELSAV GMSFGTAVELSAV 190 250	80 SVRLSFGKRGSVLF SVRLSFGKRGSVLF SVRLSFGKRGSVLF 80 140 IVLWLVFGARKTGG IVLWLVFGARKTGG 140 200 MPLSWLPLAADYTR MPLSWLPLAADYTR 200 260		
m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME AYIGALTGRSSME ESFVWWALANGAL ESFVWWALANGAL 130 190 GMSFGTAVELSAV GMSFGTAVELSAV 190 250 TGETDVAKILLGA			
m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME AYIGALTGRSSME ESFVWWALANGAL ESFVWWALANGAL 130 190 GMSFGTAVELSAV GMSFGTAVELSAV 190 250 TGETDVAKILLGA			
m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME AYIGALTGRSSME ESFVWWALANGAL ESFVWWALANGAL GMSFGTAVELSAV GMSFGTAVELSAV 90 250 TGETDVAKILLGA			
m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME AYIGALTGRSSME AYIGALTGRSSME ESFVWWALANGAL ESFVWWALANGAL 130 190 GMSFGTAVELSAV GMSFGTAVELSAV 190 250 TGETDVAKILLGA			
m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME			
m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME			
m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME			
m125.pep a125 m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME			
m125.pep a125 m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME			
m125.pep a125 m125.pep a125 m125.pep a125 m125.pep a125	MSGNASSPSSAA 10 70 AYIGALTGRSSME			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 463>: g126.seq

```
AtgccgtcTG AAaccCcaaa ggcACGCCGC CGGCTTTCAG ACGGCATCGC
    GTCCGACAAC CATACCAAAG AATCCATCAT GCTCACCCtq tacqqcGAAA
101 CTTTCCCTTC GCGGCTGCTg ctcggcacgG cggcctacCC GACCCCTGAA
151 ATCCTCAAAC AATCCGTCCG AACCGCCCGG CCCGCGATGA ttaccGTCTC
    GCTGCGCCGC ACGGGATGCG GCGGCGAGGC GCACGGTCAG GGGTTTTGGT
251 CGCTGCTTCA AGAAACCGGC GTTCCCGTCC TGCCGAACAC GGCAGGCTGC
301 CAAAGCGTGC AGGAAGCGGT. AACGACGGCG CAAATGGCGC GCGAAGTGTT
     TGAAACCGAT TGGATAAAAT TGGAACTCAT CGGCGACGAC GACACCTTGC
    AGCCGGACGT GTTCCAACTC GTCGAAGCGG CGGAAATCCT GATTAAAGAC
401
451 GGCTTCAAAG TGCTGCCTTA TTGCACCGAA GACCTGATTG CCTGCCGCCG
501 CCTGCTCGAT GCGGGCTGTC AGGCGTTGAT GCCGTGGGCG GCTCCCATCG
551 GCACGGGTTT GGGGGCGGTT CACGCCTATG CGCTCAAAAT CCTGCGCGAA
601 CGCCTGCCCG ACACGCCGCT GATTATCGAC GCGGGCTTGG GTTTGCCTTC
651 CCAAGCGGCA CAAGTGATGG AATGGGGTTT TGACGGCGTA TTGTTAAACA
701 CCGCCGTTTC CCGCAGCGGC GACCCCGTCA ACATGGCGCG CGCCTTCGCA
    CTCGCCGTCG AATCCGGACG GCTGGCATTT GAAGCCGGGC CGGTCGAAGC
801
    GCGAACCAAA GCCCAAGCCA GCACGCCGAC AGTCGGACAA CCGTTTTGGC
851 ATTCGGCGGA ATATTGA
```

This corresponds to the amino acid sequence <SEQ ID 464; ORF 126.ng>: g126.pep

```
MPSETPKARR RLSDGIASDN HTKESIMLTL YGETFPSRLL LGTAAYPTPE
51
    ILKQSVRTAR PAMITVSLRR TGCGGEAHGQ GFWSLLQETG VPVLPNTAGC
    QSVQEAVTTA QMAREVFETD WIKLELIGDD DTLQPDVFQL VEAAEILIKD
101
151 GFKVLPYCTE DLIACRRLLD AGCQALMPWA APIGTGLGAV HAYALKILRE
201 RLPDTPLIID AGLGLPSQAA QVMEWGFDGV LLNTAVSRSG DPVNMARAFA
251 LAVESGRLAF EAGPVEARTK AQASTPTVGQ PFWHSAEY*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 465>:

```
m126.seq
         (partial)
          ..CACTATACAA AGGAACCCAT TATGCTCACC CTATACGGCG AAACTTTCCC
       1
      51
            CTCGCGGCTG CTGCTCGGCA CGGCTGCCTA CCCGACCCCC GAAATCCTCA
     101
            AACAATCCAT CCAAACCGCC CAGCCTGCGA TGATTACCGT CTCGCTGCGC
     151
            CGCGCGGGAA GCGGCGCGA GGCGCACGGT CAGGGGTTTT GGTCGCTGCT
            TCAAGAAACC GGCGTTCCCG TCCTGCCGAA CACGGCAGGC TGCCAAAGCG
     201
     251
            TGCAGGAAGC GGTAACGACG GCGCAAATGG CGCGCGAAGT GTTTGAAACC
     301
            GATTGGATAA AATTGGAACT CATCGGAGAT GACGACACCT TGCAGCCGGA
     351
            TGTGTTCCAG CTTGTCGAAG CGGCGGAAAT CCTGATTAAA GACGGCTTCA
     401
            AAGTGCTGCC TTATTGCACC GAAGACCTGA TTGCCTGCCG CCGCCTGCTC
     451
            GACGCGGGCT GTCAGGCGTT GATGCCGTGG GCGGCCCCGA TCGGCACGGG
            TTTGGGCGCG GTTCACGCCT ACGCGTTGAA CGTCCTGCGC GAACGCCTGC
     501
     551
            CCGACACGCC GCTGATTATC GACGCGGGCT TGGGTTTGCC CTCACAGGCG
            GCACAAGTGA TGGAATGGGG CTTTGACGGC GTGCTTTTGA ATACTGCCGT
     601
     651
            TTCCCGCAGC GGCGATCCGG TCAATATGGC ACGCGCCTTC GCACTCGCCG
     701
            TCGAATCCGG ACGCTGGCA TTTGAAGCCG GACCGGTCGA AGCACGCGAC
            AAAGCGCAAG CCAGCACGCC GACAGTCGGA CAACCGTTTT GGCATTCGGC
     751
            GGAATATTGA
     801
```

This corresponds to the amino acid sequence <SEQ ID 466; ORF 126>: m126.pep (partial)

- .. HYTKEPIMLT LYGETFPSRL LLGTAAYPTP EILKQSIQTA QPAMITVSLR 1
- RAGSGGEAHG QGFWSLLQET GVPVLPNTAG CQSVQEAVTT AQMAREVFET

101	DWIKLELIGD	DDTLQPDVFQ	LVEAAEILIK	DGFKVLPYCT	EDLIACRRLL
151	DAGCQALMPW	AAPIGTGLGA	VHAYALNVLR	ERLPDTPLII	DAGLGLPSQA
201	AQVMEWGFDG	VLLNTAVSRS	GDPVNMARAF	ALAVESGRLA	FEAGPVEARD
251	KACASTPTVG	OPEWHSAEY*			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 126 shows 95.9% identity over a 269 aa overlap with a predicted ORF (ORF 126.ng) from N. gonorrhoeae: m126/g126

			10	20	30	40
m126.pep		· HYTK	EPIMLTLYGE	TFPSRLLLGT	AAYPTPEILK	QSIQTAQ
		:: 1	1 11111111	111111111		11::11:
g126	MPSETPKARRRLSI	OGIASDNHTK	ESIMLTLYGE'	TFPSRLLLGT	AAYPTPEILK	OSVRTAR
•	10	20	30	40	50	- 60
	50	60	70	80	90	100
m126.pep	PAMITVSLRRAGS	GEAHGOGFW	SLLOETGVPV	LPNTAGCOSV		
			1111111111			1111111
g126	PAMITVSLRRTGC	GEAHGOGFW	SLLOETGVPV	LILILILII LDNTAGCOSV	ΙΙΙΙΙΙΙΙΙΙ ΟΕΔΙΜΉΤΑΟΜΑ	וווווו
9-20	70	80	90	100	110	120
	, •	00	50	100	110	120
	110	120	130	140	150	1.60
m136 non	WIKLELIGDDDTL					160
m126.pep	MIKTERIGODOID	1111111111 Jedaečnacy	MEILIKDGEK	APACIEDET	ACRREEDAGO	
-100			1111111111		111111111	
g126	WIKLELIGDDDTL					-
	130	140	150	160	170	180
					•	
	170	180	190	200	210	220
m126.pep	APIGTGLGAVHAY	ALNVLRERLP	DTPLIIDAGL	GLPSQAAQVM	EWGFDGVLLN	TAVSRSG
		::		[]]]	11111111	1111111
g126	APIGTGLGAVHAY/	ALKILRERLP	DTPLIIDAGL	GLPSQAAQVM	EWGFDGVLLN	TAVSRSG
	190	200	210	220	230	240
	230	240	250	260	270	
m126.pep	DPVNMARAFALAVI	ESGRLAFEAG	PVEARDKAQA	STPTVGQPFW	HSAEYX	
		111111111	THEFT HITE	011111111	111111	
g126	DPVNMARAFALAVI	SGRLAFEAG	PVEARTKAOA	STPTVGOPFW	HSAEYX	
-	250	260	270	280		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 467>: a126.seq

6.seq					
1	TTGTTAATCC	ACTATACAAA	GGAACCCATT	ATGCTCACCC	TGTACAGCGA
51	AACTTTCCCT	TCGCGGCTGC	TGCTCGGCAC	AGCCGCCTAC	CCGACCCCTG
101	AAATCCTCAA	ACAATCCGTC	CGAACCGCCC	GGCCCGCGAT	GATTACCGTC
151	TCGCTGCGCC	GCGCGGGATG	CGGCGGCGAG	GCGCACGGTC	AGGGGTTTTG
201	GTCGCTGCTT	CAAGAAACCG	GCGTTCCCGT	CCTGCCGAAC	ACGGCAGGCT
251	GCCAAAGCGT	GCAGGAAGCG	GTAACGACGG	CGCAAATGGC	GCGCGAAGTG
301	TTTGAAACCG	ATTGGATTAA	ACTCGAACTC	ATCGGCGACG	ACGACACCTT
351	GCAGCCGGAT	GTGTTCCAAC	TTGTCGAAGC	GGCGGAAATC	CTGATTAAAG
401	ACGGCTTCAA	AGTGCTGCCT	TATTGCACCG	AAGACCTGAT	TGCCTGCCGC
451	CGCCTGCTCG	ACGCGGGCTG	TCAGGCGTTG	ATGCCGTGGG	CGGCCCCGAT
501	CGGCACGGGT	TTGGGCGCGG	TTCACGCCTA	CGCGTTGAAC	GTCCTGCGCG
551	AACGCCTGCC	CGACACGCCG	CTGATTATCG	ACGCGGGCTT	GGGTTTGCCC
601	TCACAGGCGG	CACAAGTGAT	GGAATGGGGC	TTTGACGGCG	TGCTTTTGAA
651	TACTGCCGTT	TCCCGCAGCG	GCGATCCGGT	CAATATGGCA	CGCGCCTTCG
701	CACTCGCCGT	CGAATCCGGA	CGGCTGGCAT	TTGAAGCCGG	ACCGGTCGAA
751	GCACGCGACA	AAGCGCAAGC	CAGCACGCCG	ACAGTCGGAC	AACCGTTTTG
801	GCATTCGGCG	GAATATTGA			

This corresponds to the amino acid sequence <SEQ ID 468; ORF 126.a>:

```
al26.pep
            LLIHYTKEPI MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV
            SLRRAGCGGE AHGOGFWSLL QETGVPVLPN TAGCOSVOEA VTTAOMAREV
         51
            FETDWIKLEL IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR
        101
        151 RLLDAGCQAL MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP
            SQAAQVMEWG FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE
        201
        251 ARDKAQASTP TVGQPFWHSA EY*
m126/a126 98.1% identity in 269 aa overlap
                                                 40
                 HYTKEPIMLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGE
    m126.pep
                 a126
               LLIHYTKEPIMLTLYSETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRAGCGGE
                     10
                              20
                                      30
                                              40
                60
                        70
                                80
                                        90
                                                100
                                                        110
    m126.pep
               AHGQGFWSLLQETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPD
               a126
               AHGQGFWSLLQETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPD
                     70
                              80
                                      90
                                             100
                                                      110
                                                              120
                       130
                               140
                                        150
                                                160
               VFQLVEAAEILIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALN
    m126.pep
               VFQLVEAAEILIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALN
    a126
                     130
                             140
                                     150
                                             160
                                                      170
                                                              180
               180
                       190
                               200
                                        210
                                                220
                                                        230
    m126.pep
               VLRERLPDTPLIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESG
               a126
               VLRERLPDTPLIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESG
                     190
                             200
                                     210
                                             220
               240
                       250
                               260
               RLAFEAGPVEARDKAQASTPTVGQPFWHSAEYX
    m126.pep
               a126
               RLAFEAGPVEARDKAQASTPTVGQPFWHSAEYX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 469>: g126-1.seq

260

1	ATGCTCACCC	TGTACGGCGA	AACTTTCCCT	TCGCGGCTGC	TGCTCGGCAC
51	GGCCGCCTAC	CCGACCCCTG	AAATCCTCAA	ACAATCCGTC	CGAACCGCCC
101	GGCCCGCGAT	GATTACCGTC	TCGCTGCGCC	GCACGGGATG	CGGCGGCGAG
151	GCGCACGGTC	AGGGGTTTTG	GTCGCTGCTT	CAAGAAACCG	GCGTTCCCGT
201	CCTGCCGAAC	ACGGCAGGCT	GCCAAAGCGT	GCAGGAAGCG	GTAACGACGG
251	CGCAAATGGC	GCGCGAAGTG	TTTGAAACCG	ATTGGATAAA	ATTGGAACTC
301	ATCGGCGACG	ACGACACCTT	GCAGCCGGAC	GTGTTCCAAC	TCGTCGAAGC
351	GGCGGAAATC	CTGATTAAAG	ACGGCTTCAA	AGTGCTGCCT	TATTGCACCG
401	AAGACCTGAT	TGCCTGCCGC	CGCCTGCTCG	ATGCGGGCTG	TCAGGCGTTG
451	ATGCCGTGGG	CGGCTCCCAT	CGGCACGGGT	TTGGGGGCGG	TTCACGCCTA
501	TGCGCTCAAA	ATCCTGCGCG	AACGCCTGCC	CGACACGCCG	CTGATTATCG
551	ACGCGGGCTT	GGGTTTGCCT	TCCCAAGCGG	CACAAGTGAT	GGAATGGGGT
601	TTTGACGGCG	TATTGTTAAA	CACCGCCGTT	TCCCGCAGCG	GCGACCCCGT
651	CAACATGGCG	CGCGCCTTCG	CACTCGCCGT	CGAATCCGGA	CGGCTGGCAT
701	TTGAAGCCGG	GCCGGTCGAA	GCGCGAACCA	AAGCCCAAGC	CAGCACGCCG
751	ACAGTCGGAC	AACCGTTTTG	GCATTCGGCG	GAATATTGA	

250

This corresponds to the amino acid sequence <SEQ ID 470; ORF 126-1.ng>: g126-1.pep

1 MLTLYGETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRTGCGGE

- 51 AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL 101 151 MPWAAPIGTG LGAVHAYALK ILRERLPDTP LIIDAGLGLP SOAAOVMEWG 201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARTKAQASTP 251 TVGOPFWHSA EY*
- The following partial DNA sequence was identified in N. meningitidis <SEQ ID 471>:
 - 1 ATGCTCACCC TATACGGCGA AACTTTCCCC TCGCGGCTGC TGCTCGGCAC 51 GGCTGCCTAC CCGACCCCCG AAATCCTCAA ACAATCCATC CAAACCGCCC AGCCTGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGAAG CGGCGGCGAG 101 GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT 151 201 CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATAAA ATTGGAACTC ATCGGAGATG ACGACACCTT GCAGCCGGAT GTGTTCCAGC TTGTCGAAGC GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG 351 AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG 401 451 ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA 501 CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
 551 ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT 601 651 CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT 701 TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA
- This corresponds to the amino acid sequence <SEQ ID 5; ORF 126-1>: m126-1.pep
 - 1 MLTLYGETFP SRLLLGTAAY PTPEILKQSI QTAQPAMITV SLRRAGSGGE 51 AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL

 - 101 IGDDDTLQPD VFQLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCQAL
 - 151 MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG
 - 201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP
 - 251 TVGOPFWHSA EY*
- m126-1/g126-1 96.9% identity in 262 aa overlap
- 20 10 30 40 MLTLYGETFPSRLLLGTAAYPTPEILKQSIQTAQPAMITVSLRRAGSGGEAHGQGFWSLL m126-1.pep a126-1 MLTLYGETFPSRLLLGTAAYPTPEILKQSVRTARPAMITVSLRRTGCGGEAHGQGFWSLL 20 30 40
- 70 80 90 100 110 120 QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI m126-1.pep g126-1 QETGVPVLPNTAGCQSVQEAVTTAQMAREVFETDWIKLELIGDDDTLQPDVFQLVEAAEI 70 80 90 100
- 160 m126-1.pep LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALNVLRERLPDTP LIKDGFKVLPYCTEDLIACRRLLDAGCQALMPWAAPIGTGLGAVHAYALKILRERLPDTP a126-1
- 130 140 150 160 170 200 210 220
- m126-1.pep LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE LIIDAGLGLPSQAAQVMEWGFDGVLLNTAVSRSGDPVNMARAFALAVESGRLAFEAGPVE g126-1 190 200 210 220 230
- 250 260 ARDKAQASTPTVGQPFWHSAEYX m126-1.pep 11 11:11:11:11:11:11:11 g126-1 ARTKAQASTPTVGQPFWHSAEYX
- The following partial DNA sequence was identified in N. meningitidis <SEO ID 473>: a126-1.seq
 - 1 ATGCTCACCC TGTACAGCGA AACTTTCCCT TCGCGGCTGC TGCTCGGCAC
 - AGCCGCCTAC CCGACCCCTG AAATCCTCAA ACAATCCGTC CGAACCGCCC
 - 101 GGCCCGCGAT GATTACCGTC TCGCTGCGCC GCGCGGGATG CGGCGGCGAG

```
151 GCGCACGGTC AGGGGTTTTG GTCGCTGCTT CAAGAAACCG GCGTTCCCGT
     CCTGCCGAAC ACGGCAGGCT GCCAAAGCGT GCAGGAAGCG GTAACGACGG
201
251
    CGCAAATGGC GCGCGAAGTG TTTGAAACCG ATTGGATTAA ACTCGAACTC
301 ATCGGCGACG ACGACACCTT GCAGCCGGAT GTGTTCCAAC TTGTCGAAGC
351 GGCGGAAATC CTGATTAAAG ACGGCTTCAA AGTGCTGCCT TATTGCACCG
401 AAGACCTGAT TGCCTGCCGC CGCCTGCTCG ACGCGGGCTG TCAGGCGTTG
     ATGCCGTGGG CGGCCCCGAT CGGCACGGGT TTGGGCGCGG TTCACGCCTA
451
501 CGCGTTGAAC GTCCTGCGCG AACGCCTGCC CGACACGCCG CTGATTATCG
    ACGCGGGCTT GGGTTTGCCC TCACAGGCGG CACAAGTGAT GGAATGGGGC
551
    TTTGACGGCG TGCTTTTGAA TACTGCCGTT TCCCGCAGCG GCGATCCGGT
601
651 CAATATGGCA CGCGCCTTCG CACTCGCCGT CGAATCCGGA CGGCTGGCAT
701 TTGAAGCCGG ACCGGTCGAA GCACGCGACA AAGCGCAAGC CAGCACGCCG
751 ACAGTCGGAC AACCGTTTTG GCATTCGGCG GAATATTGA
```

This corresponds to the amino acid sequence <SEQ ID 474; ORF 126-1.a>: a126-1.pep

- 1 MLTLYSETFP SRLLLGTAAY PTPEILKQSV RTARPAMITV SLRRAGCGGE
- AHGQGFWSLL QETGVPVLPN TAGCQSVQEA VTTAQMAREV FETDWIKLEL 51 IGDDDTLOPD VFOLVEAAEI LIKDGFKVLP YCTEDLIACR RLLDAGCOAL 101
- 151 MPWAAPIGTG LGAVHAYALN VLRERLPDTP LIIDAGLGLP SQAAQVMEWG
- 201 FDGVLLNTAV SRSGDPVNMA RAFALAVESG RLAFEAGPVE ARDKAQASTP
- 251 TVGQPFWHSA EY*

m126-1

WO 99/57280

a126-1/m126-1 98.1% identity in 262 aa overlap

ARDKAQASTPTVGQPFWHSAEYX

	10	20	30	40	50	60
a126-1.pep	MLTLYSETFPSRLL	LGTAAYPTPI	EILKQSVRTAI	RPAMITVSLRR	AGCGGEAHG	GFWSLL
		111111111	1111111::11:	:1111111111	11 1111111	111111
m126-1	MLTLYGETFPSRLL	LGTAAYPTPI	EILKQSIQTA	DPAMITVSLRR	AGSGGEAHG	GFWSLL
	10	20	30	40	50	60
	70	80	90	100	110	120
a126-1.pep	QETGVPVLPNTAGO	QSVQEAVTT	aqmarevfeti	OWIKLELIGDD	DTLQPDVFQI	VEAAEI
			[[]]]		нинии	111111
m126-1	QETGVPVLPNTAGO	QSVQEAVTT	AQMAREVFETI	OWIKLELIGDD	DTLQPDVFQI	VEAAEI
	70	80	90	100	110	120
	130	140	150	160	170	180
a126-1.pep	LIKDGFKVLPYCTE	DLIACRRLLI	DAGCQALMPWA	AAPIGTGLGAV	HAYALNVLRE	CRLPDTP
		1111111111		1111111111111	11111111111	
m126-1	LIKDGFKVLPYCTE	DLIACRRLL	DAGCQALMPW	AAPIGTGLGAV	HAYALNVLRE	CRLPDTP
	130	140	150	160	170	180
	190	200	210	220	230	240
a126-1.pep	LIIDAGLGLPSQAA	QVMEWGFDG	VLLNTAVSRSO	GDPVNMARAFA	LAVESGRLA	FEAGPVE
			[1111111111		######################################	111111
m126-1	LIIDAGLGLPSQAA	QVMEWGFDG	VLLNTAVSRS	GDPVNMARAFA	LAVESGRLAE	EAGPVE
	190	200	210	220	230	240
	250 ⁻	260				
a126-1.pep	ARDKAQASTPTVGQ	PFWHSAEYX				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 475>: g127.seq

ATGGAAATAT GGAATATGTT GAACACTTGG CCCGATGCCG TCCCGATACG 51 CGCGGAGGCG GCCGAATCCG TGGCGGCGGT CGCGGCTTTG CTGCTGGCGC 101 GCGCCCTTCT GTTGAATATC CACTTCAGAC GGCATCCGGA TTTCGGCATC 151 GAAAGCAAGC GGCGGTTTTT GGTTGCCAGC CGCAATATAA CGCTGCTTTT 201 GGTGCTGTTT TCGCTGGCAT TTATCTGGTC GGCGCAAATT CAAACGCTGG 251 CTTTGTCGAT GTTTGCGGTG GCGGCGGCGG TCGTCGTGGC GACAAAGAA 301 CTGATTATGT GTCTGTCGGG CAGTATTTTA aggtctGCCA CCCAGCAATA 351 CTCGGTCGGC GACTATATCG AAATCAACGG CCTGCGCGGG CGCGTGGTCG 401 ACATCAATCT GTTGAACACG CTGATGATGC AGGTCGGTCC GAACCCCTTG 451 GTCGGACAGC TTGCGGGAAC CACCGTTTCT TTCCCCAACA GCCTGTTGTT 501 GAGCCACCCC GTGCGCCGCG ACAATATTTT GGGCGACTAT GTCATCCATA

```
551 CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
          601 CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
          651 TCAGCGGTAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
          701 CCGCCAGGCC GCGCGTTACC CGCGTACCGT ACGACGACAA GGCATACCGC
          751 ATCATCGTCC GCTTCGCCTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
              GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCATC
          851
              CCGCCGgctc cgAAACACTT TAA
This corresponds to the amino acid sequence <SEQ ID 476; ORF 127.ng>:
     g127.pep
              MEIWNMLNTW PDAVPIRAEA AESVAAVAAL LLARALLLNI HFRRHPDFGI
           51 ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
          101 LIMCLSGSIL RSATQQYSVG DYIEINGLRG RVVDINLLNT LMMQVGPNPL
          151
              VGQLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
              RLKAVLEPLC APYIPAIQRY LENVQAEKLF ITPAARPRVT RVPYDDKAYR
          251 IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
The following partial DNA sequence was identified in N. meningitidis <SEO ID 477>:
     m127.seq
              ATGGAAATAT GGAATATGTT GGACACTTGG CTCGGTGCCG TCCCGATACG
           51 TGCGGAGGCG GTCGAATCCG TGGCGGCGGT TGCGGCTTTG CTGCTGGCGC
          101
              GCGCCCTTCT GTTGAATATC CACTTCAAAC GGCATCCGGA TTTCGGCATC
          151
              GAAAGCAAGC GGCGGTTTTT GGTTGCCAGC CGCAATATAA CGCTGCTTTT
          201
              GGTGCTGTTT TCGCTGGCAT TTATCTGGTC GGCGCAAATC CAAACGCTGG
              CTTTGTCGAT GTTTGCGGTG GCGGCGGCGG TCGTCGTGGC GACGAAGGAA
          251
              CTGATTATGT GTCTGTCGGG CAGTATTTTA AGGTCTGCCA CCCAGCAATA
          301
              CTCGGTCGGC GACTATATCG AAATCAACGG CCTGCGCGGG CGCGTGGTCG
          401 ACATCAACCT GTTGAACACG CTGATGATGC AGGTCGGTCC GAACCCCTTG
          451
              GTCGGACAGC TTGCGGGAAC CACCGTTTCT TTCCCCAACA GCCTGTTGTT
              GAGCCACCCC GTGCGCCGCG ACAATATTTT GGGCGACTAT GTCATCCATA
              CGGTCGAAAT CCCCGTTCCC ATCCATTTGG ATTCGGATGA AGCCGTATGC
          601 CGTCTGAAAG CCGTACTCGA GCCCTTGTGC GCGCCCTACA TCCCCGCCAT
              CCAACGGSAT TTGGAAAACG TGCAGGCGGA AAAACTGTTT ATCACGCCCG
          651
          701 CCGCCAGACC GCGCGTTACC CGCGTGCCGT ACGATGACAA GGCATACCGC
          751 ATCATCGTCC GCTTCGCTTC CCCCGTTTCA AAGCGGCTGG AAATCCAACA
          801 GGCGGTTATG GACGAATTTT TGCGCGTACA ATACCGCCTG TTAAATCACC
              CCGCCGGCTC CGAAACACTT TAA
This corresponds to the amino acid sequence <SEO ID 478; ORF 127>:
     m127.pep
            1 MEIWNMLDTW LGAVPIRAEA VESVAAVAAL LLARALLLNI HFKRHPDFGI
           51 ESKRRFLVAS RNITLLLVLF SLAFIWSAQI QTLALSMFAV AAAVVVATKE
          101 LIMCLSGSIL RSATQQYSVG DYIEINGLRG RVVDINLLNT LMMQVGPNPL
          151 VGQLAGTTVS FPNSLLLSHP VRRDNILGDY VIHTVEIPVP IHLDSDEAVC
          201 RLKAVLEPLC APYIPAIQRX LENVQAEKLF ITPAARPRVT RVPYDDKAYR
          251 IIVRFASPVS KRLEIQQAVM DEFLRVQYRL LNHPAGSETL *
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 127 shows 97.9% identity over a 290 aa overlap with a predicted ORF (ORF 127.ng)
from N. gonorrhoeae:
     m127/g127
                         10
                                   20
                                            30
                                                      40
                                                                          60
     m127.pep
                 MEIWNMLDTWLGAVPIRAEAVESVAAVAALLLARALLLNIHFKRHPDFGIESKRRFLVAS
                  MEIWNMLNTWPDAVPIRAEAAESVAAVAALLLARALLLNIHFRRHPDFGIESKRRFLVAS
     q127
                         10
                                   20
                                            30
                                                      40
                                                                50
                                            90
                                                     100
                                                               110
                 RNITLLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQQYSVG
     m127.pep
                 g127
                 RNITLLLVLFSLAFIWSAQIQTLALSMFAVAAAVVVATKELIMCLSGSILRSATQQYSVG
```

		•				
	70	80	90	100	110	120
		1.40	150	1.60	100	
177 man	130	140	150	160	170	180
m127.pep	DYIEINGLRGRVVDINL				LLLSHPVKKU.	NILGUI
g127	DYIEINGLRGRVVDINL					NTLCDV
9127	130	140	150	160	170	180
	230				2.0	,
	190	200	210	220	230	240
m127.pep	VIHTVEIPVPIHLDSDE	EAVCRLKAVI	EPLCAPYIP	AIQRXLENV	'QAEKLFITPA	ARPRVT
	[]]]]]]]]]]		1111111111	1111 1111	1111111111	
g127	VIHTVEIPVPIHLDSDE	EAVCRLKAVI	EPLCAPYIP	AIQRYLENV	QAEKLFITPA	ARPRVT
	190	200	210	220	230	240
	250	260	270	280	290	
m127.pep	RVPYDDKAYRIIVRFAS		·			
g127	RVPYDDKAYRIIVRFAS	260	ДАУМДЕРЬК 270			
	250	260	270	280	290	
Th - 6-11	antial DNIA common w	os identifi	adim M	والمراكبة المراكبية	- CEO ID	170>.
	artial DNA sequence w	as identiii	ea in N. m	eningitiais	2 <2EQ ID 2	+/9 <i>></i> :
a127.seq		m 001010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	maaaa maa		
1 51	ATGGAAATAT GGAATATGT TGCGGAGGCG GTCGAATCC					
101	GCGCCCTTCT GTTGAATAT				-	
151	GAAAGCAAGC GGCGGTTTT					
201	GGTGCTGTTT TCGCTGGCA					
251	CTTTGTCGAT GTTTGCGGT	rg gcggcgg	CGG TCGTC	GTGGC GAC	GAAGGAA	
301	CTGATTATGT GTCTGTCGG					
351	CTCGGTCGGC GACTATATC					
401	ACATCAACCT GTTGAACAC					
451	GTCGGACAGC TTGCGGGAA					
501 551	GAGCCACCC GTGCGCCGC CGGTCGAAAT CCCGGTTCC					
601	CGTCTGAAAG CCGTACTCG					
651	CCAACGCAT TTGGAAAAC					
701	CCGCCAAACC GCGCGTTAC					
751	ATCATCGTCC GCTTCGCCT	CCCCGTI	TCA AAGCG	GCTGG AAA	TCCAACA	
801	GGCGGTTATG GACGAATTT		ACA ATACC	GCCTG TTA	AATTACC	
851	CCGCCGGCTC CGAAACACT	AAT T				
		-OT	O ID 400	ODE 105		
	s to the amino acid sequ	uence <se< td=""><td>EQ ID 480;</td><td>ORF 127</td><td>.a>:</td><td></td></se<>	EQ ID 480;	ORF 127	.a>:	
a127.pep						
1	MEIWNMLDTW LGAVPIRAE					
51 101	ESKRRFLVAS RNITLLLVI LIMCLSGSIL RSATQQYSV					
151	VGQLAGTTVS FPNSLLLSH					
201	RLKAVLEPLC APYIPAIQE					
251	IIVRFASPVS KRLEIQQAV					
m127/a127 98	3.6% identity in 290 aa o	overlap				
	10	20	30	40	50	60
m127.pep	MEIWNMLDTWLGAVPIF					
	1111111111111111					
a127	MEIWNMLDTWLGAVPIF					
	10	20	30	40	50	60
	70	80	90	100	110	120
m127.pep	RNITLLLVLFSLAFIWS					
					1111111111	771010
a127	RNITLLLVLFSLAFIWS	SAQIQTLALS	MFAVAAAVV	VATKELIMO	LSGSILRSAT	QQYSVG
	70	80	90	100	110	120

	130	140	150	160	170	180
m127.pep	DYIEINGLRGRVVD	INLLNTLMMQ	VGPNPLVGQI	AGTTVSFPNS	LLLSHPVRRE	NILGDY
		1111111111			1111111111	HHHH
a127	DYIEINGLRGRVVD	INLLNTLMMQ	VGPNPLVGQI	AGTTVSFPNS	LLLSHPVRRE	NILGDY
	130	140	150	160	170	180
	190	200	210	220	230	240
m127.pep	VIHTVEIPVPIHLD	SDEAVCRLKA	VLEPLCAPYI	PAIQRXLENV	QAEKLFITPA	ARPRVT
		1111111111	1111111111	11111 1111	11111111111	1:1111
a127	VIHTVEIPVPIHLD	SDEAVCRLKA	VLEPLCAPYI	PAIQRHLENV	QAEKLFITPA	AKPRVT
	190	200	210	220	230	240
	250	260	270	280	290	
m127.pep	RVPYDDKAYRIIVR	FASPVSKRLE	IQQAVMDEFI	RVQYRLLNHP.	AGSETLX	
			11111111111	111111111111111111111111111111111111111	111111	
a127	RVPYDDKAYRIIVR	FASPVSKRLE	IQQAVMDEFI	RVQYRLLNYP.	AGSETLX	
	250	260	270	280	290	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 481>: g128.seq

1 atgattgaca acgCActgct ccacttgggc gaagaaccCC GTTTTaatca aatccaaacc gaagACAtca AACCCGCCGT CCAAACCGCC ATCGCCGAAG 51 CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG 101 151 AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG 201 CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC 251 GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC 351 CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA 401 GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG 501 CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC 551 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC 601 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA 801 AACCGccaaa cTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC 901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA 951 1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC 1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG CGCGTGGATG AACGACtaca AAGGCCGCCG CCGCTTTGCC GACGGCaCGC 1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA 1351 AacCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG TGTCCGGCAT CAAcggcgtA GAATGGGACG CGGTCGAACT GCCCAGCCAG TTTATGGAAA ACTTCGTTTG GGAATACAAT GTATTGGCAC AAATGTCCGC CCACGAAGAA ACCGGCGAGC CCCTGCCGAA AGAACTCTTC GACAAAATGC 1551 1601 TCGCCGCCAA AAACTTCCAG CGCGGTATGT TCCTCGTCCG GCAAATGGAG TTCGCCCTCT TCGATATGAT GATTTACAGT GAAAGCGACG AATGCCGTCT 1651 GAAAAACTGG CAGCAGGTTT TAGACAGCGT GCGCAAAGAA GTcGCCGTCA 1701 TCCAACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCacatctTC 1801 GCcggcGGCT ATTCCGCAGG CTATTACAGC TACGCATGGG CCGAAGTCCt CAGCACCGAT GCCTACGCCG CCTTTGAAGA AAGCGACGac gtcGCCGCCA CAGGCAAACG CTTCTGGCAA GAAAtccttg ccgtcggcgg ctCCCGCAGC 1951 gcgGCGGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC

```
2001 ACTGCTGCGC CAaagcggtT TCGACAACGC gGCttgA
This corresponds to the amino acid sequence <SEQ ID 482; ORF 128.ng>:
     g128.pep
               MIDNALLHLG EEPRFNOIOT EDIKPAVOTA IAEARGOIAA VKAOTHTGWA
           51 NTVERLTGIT ERVGRIWGVV SHLNSVVDTP ELRAVYNELM PEITVFFTEI
          101 GQDIELYNRF KTIKNSPEFA TLSPAQKTKL DHDLRDFVLS GAELPPERQA
          151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
          201 AAQSEGKTGY KIGLQIPHYL AVIQYAGNRE LREQIYRAYV TRASELSNDG
          251 KFDNTANIDR TLENALKTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
          301 ARRAKPYAEK DLAEVKAFAR EHLGLADPQP WDLSYAGEKL REAKYAFSET
          351 EVKKYFPVGK VLAGLFAQIK KLYGIGFAEK TVPVWHKDVR YFELQQNGKT
          401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFA DGTLQLPTAY LVCNFAPPVG
          451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
          501 FMENFVWEYN VLAQMSAHEE TGEPLPKELF DKMLAAKNFQ RGMFLVRQME
          551 FALFDMMIYS ESDECRLKNW QQVLDSVRKE VAVIQPPEYN RFANSFGHIF
          601 AGGYSAGYYS YAWAEVLSTD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
          651 AAESFKAFRG REPSIDALLR QSGFDNAA*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 483>:
     m128.seq (partial)
               ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
              AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
          101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
          151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
          201 GGGCGTGGTG TCGCACCTCA ACTGCGTCGC CGACACGCCC GAACTGCGCG
          251 CCGTCTATAA CGAACTGATG CCCGAAATCA CCGTCTTCTT CACCGAAATC
          301 GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
          351 CGAATTCGAC ACCCTCTCCC CCGCACAAAA AACCAAACTC AACCAC
               TACGCCAGCG AAAAACTGCG CGAAGCCAAA TACGCGTTCA GCGAAACCGA
           51 WGTCAAAAAA TAYTTCCCYG TCGGCAAWGT ATTAAACGGA CTGTTCGCCC
          101 AAMTCAAAAA ACTMTACGGC ATCGGATTTA CCGAAAAAAC yGTCCCCGTC
          151 TGGCACAAAG ACGTGCGCTA TTKTGAATTG CAACAAAACG GCGAAMCCAT
          201 AGGCGGCGTT TATATGGATT TGTACGCACG CGAAGGCAAA CGCGGCGGCG
          251 CGTGGATGAA CGACTACAAA GGCCGCCGCC GTTTTTCAGA CGGCACGCTG
          301 CAAYTGCCCA CCGCCTACCT CGTCTGCAAC TTCGCCCCAC CCGTCGGCGG
          351 CAGGGAAGCC CGCyTGAGCC ACGACGAAAT CCTCATCCTC TTCCACGAAA
          401 CCGGACACGG GCTGCACCAC CTGCTTACCC AAGTGGACGA ACTGGGCGTA
          451 TCCGGCATCA ACGGCGTAKA ATGGGACGCG GTCGAACTGC CCAGCCAGTT
          501 TATGGAAAAT TTCGTTTGGG AATACAATGT CTTGGCACAA mTGTCAGCCC
          551 ACGAAGAAAC CGGcgTTCCC yTGCCGAAAG AACTCTTsGA CAAAwTGCTC
          601 GCCGCCAAAA ACTTCCAAsG CGGCATGTTC yTsGTCCGGC AAWTGGAGTT
          651 CGCCCTCTTT GATATGATGA TTTACAGCGA AGACGACGAA GGCCGTCTGA
          701 AAAACTGGCA ACAGGTTTTA GACAGCGTGC GCAAAAAAGT CGCCGTCATC
          751 CAGCCGCCCG AATACAACCG CTTCGCCTTG AGCTTCGGCC ACATCTTCGC
          801 AGGCGGCTAT TCCGCAGCTn ATTACAGCTA CGCGTGGGCG GAAGTATTGA
          851 GCGCGGACGC ATACGCCGCC TTTGAAGAAA GCGACGATGT CGCCGCCACA
          901 GGCAAACGCT TTTGGCAGGA AATCCTCGCC GTCGGGGNAT CGCGCAGCGG
          951 nGCAGAATCC TTCAAAGCCT TCCGCGGCCG CGAACCGAGC ATAGACGCAC
         1001 TCTTGCGCCA CAGCGGTTTC GACAACGCGG TCTGA
This corresponds to the amino acid sequence <SEQ ID 484; ORF 128>:
     m128.pep
                (partial)
            1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAOTHTGWA
           51 NTVEPLTGIT ERVGRIWGVV SHLNCVADTP ELRAVYNELM PEITVFFTEI
          101 GODIELYNRF KTIKNSPEFD TLSPAOKTKL NH
     //
            1 YASEKLREAK YAFSETXVKK YFPVGXVLNG LFAQXKKLYG IGFTEKTVPV
           51 WHKDVRYXEL QQNGEXIGGV YMDLYAREGK RGGAWMNDYK GRRRFSDGTL
          101 QLPTAYLVCN FAPPVGGREA RLSHDEILIL FHETGHGLHH LLTQVDELGV
          151 SGINGVXWDA VELPSQFMEN FVWEYNVLAO XSAHEETGVP LPKELXDKXL
          201 AAKNFQXGMF XVRQXEFALF DMMIYSEDDE GRLKNWQQVL DSVRKKVAVI
          251 QPPEYNRFAL SFGHIFAGGY SAAXYSYAWA EVLSADAYAA FEESDDVAAT
```

301 GKRFWQEILA VGXSRSGAES FKAFRGREPS IDALLRHSGF DNAV* Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 128 shows 91.7% identity over a 475 aa overlap with a predicted ORF (ORF 128.ng) from N. gonorrhoeae: m128/g128

	10	20	30	40	50	60
g128.pep	MIDNALLHLGEER					
m128	 MTDNALLHLGEEF					
20	10	20	30	40	50	60
	70	80	90	100	110	120
g128.pep	ERVGRIWGVVSHI					
m128	ERVGRIWGVVSHI					
	70	80	90	100	110	120
-120	130 TLSPAQKTKLDHI	140	150	160	170	180
g128.pep		DENF VISGAE	DFFERQAELA	VTÖ I EGYÖT!	SAKE SÜNVEDE	AIDAFGII
m128	TLSPAQKTKLNH					
	130					
	//					
a120 non				340 EVI.DENVVNI	350 SETEVKKYFI	360
g128.pep						
m128					SETXVKKYFI	
				10	20	30
	2.00	200			4.7.0	
0128 nen	370 LFAQIKKLYGIGF			400 GKTT GCWYM	410 M.VADECKDC	420 20 MMM 10 V V
g128.pep						
m128	LFAQXKKLYGIGE					
	40	50	60	70	80	90
	420	440	450	460	450	400
g128.pep	430 GRRRFADGTLQLF			460 HDELLTLEH	470 етсистинт.т.	480
3·F-F			:	11111 111		
m128	GRRRFSDGTLQLE		PVGGREARLS			
	100	110	120	130	140	150
	490	500	510	520	530	540
g128.pep	SGINGVEWDAVEL					
5 - 1						
m128	SGINGVXWDAVEL					-
	160	170	180	190	200	210
	550	560	570	580	590	600
g128.pep	LVRQMEFALFDMM	IYSESDECRL	KNWQQVLDSV	RKEVAVIQPI	PEYNRFANSF	HI FAGGY
		:		:		
m128	XVRQXEFALFDMM					
	220	230	240	250	260	270
	610	620	630	640	650	660
g128.pep	SAGYYSYAWAEVI	STDAYAAFEE	SDDVAATGKR	FWQEILAVG	SRSAAESFK	FRGREPS
100	:	:				
m128	SAAXYSYAWAEVI 280	SADAYAAFEE: 290	SDDVAATGKR 300			
	280	290	300	310	320	330

670 679
g128.pep IDALLRQSGFDNAAX
|||||:||||:
m128 IDALLRHSGFDNAVX
340

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 485>:

```
a128.seq
          ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
      51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATTGCCGAAG
     101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
          AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
     201 GGGCGTGGTG TCGCACCTCA ACTCCGTCAC CGACACGCCC GAACTGCGCG
          CCGCCTACAA TGAATTAATG CCCGAAATTA CCGTCTTCTT CACCGAAATC
          GGACAAGACA TCGAGCTGTA CAACCGCTTC AAAACCATCA AAAACTCCCC
     301
     351
          CGAGTTCGAC ACCCTCTCCC ACGCGCAAAA AACCAAACTC AACCACGATC
          TGCGCGATTT CGTCCTCAGC GGCGCGGAAC TGCCGCCCGA ACAGCAGGCA
     401
          GAATTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
     451
     501 CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
         CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCT
     551
         GCCGCGCAAA GCGAAGGCAA AACAGGCTAC AAAATCGGTT TGCAGATTCC
     601
     651 GCACTACCTC GCCGTCATCC AATACGCCGA CAACCGCAAA CTGCGCGAAC
     701 AAATCTACCG CGCCTACGTT ACCCGCGCCA GCGAGCTTTC AGACGACGGC
     751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCCCTGCA
     801 AACCGCCAAA CTGCTCGGCT TCAAAAACTA CGCCGAATTG TCGCTGGCAA
     851 CCAAAATGGC GGACACCCCC GAACAAGTTT TAAACTTCCT GCACGACCTC
     901 GCCCGCCGCG CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
     951 CTTCGCCCGC GAAAGCCTCG GCCTCGCCGA TTTGCAACCG TGGGACTTGG
    1001
         GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
    1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTATTAAACG GACTGTTCGC
    1101 CCAAATCAAA AAACTCTACG GCATCGGATT TACCGAAAAA ACCGTCCCCG
    1151 TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCGAAACC
    1201 ATAGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
    1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGTTTTTCA GACGGCACGC
    1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCACCCC GCCCGTCGGC
    1351 GGCAAAGAAG CCCGCTTGAG CCATGACGAA ATCCTCACCC TCTTCCACGA
    1401 AACCGGACAC GGCCTGCACC ACCTGCTTAC CCAAGTCGAC GAACTGGGCG
    1451 TATCCGGCAT CAACGGCGTA GAATGGGACG CAGTCGAACT GCCCAGTCAG
    1501 TTTATGGAAA ATTTCGTTTG GGAATACAAT GTCTTGGCGC AAATGTCCGC
    1551 CCACGAAGAA ACCGGCGTTC CCCTGCCGAA AGAACTCTTC GACAAAATGC
    1601 TCGCCGCCAA AAACTTCCAA CGCGGAATGT TCCTCGTCCG CCAAATGGAG
1651 TTCGCCCTCT TTGATATGAT GATTTACAGC GAAGACGACG AAGGCCGTCT
    1701 GAAAAACTGG CAACAGGTTT TAGACAGCGT GCGCAAAGAA GTCGCCGTCG
    1751 TCCGACCGCC CGAATACAAC CGCTTCGCCA ACAGCTTCGG CCACATCTTC
    1801 GCAGGCGGCT ATTCCGCAGG CTATTACAGC TACGCGTGGG CGGAAGTATT
          GAGCGCGGAC GCATACGCCG CCTTTGAAGA AAGCGACGAT GTCGCCGCCA
    1901 CAGGCAAACG CTTTTGGCAG GAAATCCTCG CCGTCGGCGG ATCGCGCAGC
          GCGGCAGAAT CCTTCAAAGC CTTCCGCGGA CGCGAACCGA GCATAGACGC
    2001
         ACTCTTGCGC CACAGCGGCT TCGACAACGC GGCTTGA
```

This corresponds to the amino acid sequence <SEQ ID 486; ORF 128.a>: a128.pep

1 MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETGH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMENFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFO RGMFLVROME

- 551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
- 601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
- 651 AAESFKAFRG REPSIDALLR HSGFDNAA*

m128/a128 66.09	% identity in 677 a	a overlap				
	10	20	30	40	50	60
m128.pep	MTDNALLHLGEEPRE					
a128	MTDNALLHLGEEPRI	FDQIKTEDI	KPALQTAIAEAF	REQIAAIKAQ	THTGWANTVE	PLTGIT
	10	20	30	40	50	60

	70	80	90	100	110	120
m128.pep	ERVGRIWGVVSHL	NCVADTPELRA	VYNELMPEIT	VFFTEIGQDI	ELYNRFKTI	KNSPEFD
		:	:1111111111	11111111111	HIMILI	1111111
a128	ERVGRIWGVVSHL	ISVTDTPELRA	AYNELMPEIT	VFFTEIGQDI	ELYNRFKTI	KNSPEFD
	70	80	90	100	110	120

	130
m128.pep	TLSPAQKTKLNH

a128	TLSHAQKTKLNHDI	RDFVLSGAE	LPPEQQAELAI	KLQTEGAQLS!	AKFSQNVLDAT	PDAFGIY
	130	140	150	160	170	180

m128.pep	

a128	FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQ					
	190	200	210	220	230	240

m128.pep	 -

a128	TRASELSDDGKFDNTANIDRTLENALQTAKLLGFKNYAELSLATKMADTPEQVLNFI							
	250	260	270	280	290	300		

				140	150	
m128.pep				YASEKLREAKY	AFSETXVKK	/FPVGX
				11:1111111		
a128	ARRAKPYAEKDLA	evkafaresl(GLADLQPWDLG	YAGEKLREAKY	'AFSETEVKK'	FPVGK
	310	320	330	340	350	360

	160	170	180	190	200	210
m128.pep						IDLYAREGKRGGAWM
	11111		11111111111	11111 1111	111:111111	
a128	VLNGL	PAQIKKLYGIG	FTEKTVPVWH	KDVRYFELOO:	NGETIGGVYM	IDLYAREGKRGGAWM

	220	230	240	250	260	270	
m128.pep	NDYKGR	RRFSDGTLQ:	LPTAYLVCNI	FAPPVGGREAR	LSHDEILILE	HETGHGLHH	LLTOVD
				1:11111:111			
a128	NDYKGR	RRFSDGTLQ	LPTAYLVCNI	FTPPVGGKEAR	LSHDEILTLE	HETGHGLHH	LLTOVD
		430	440	450	460	470	480

	280	290	300	310	320	330	
m128.pep	ELGVSG	INGVXWDAV	ELPSQFMENF	/WEYNVLAQXS	AHEETGVPLE	KELXDKXLAA	KNFO
	111111	1111 1111	1111111111	[] [] [] [] [] [] [] [] [] [] [] [] [] [1111111111	111 11 111	HTĨ
a128	ELGVSG	INGVEWDAV	ELPSQFMENF	/WEYNVLAQMS	AHEETGVPLE	KELFDKMLAA	NFO
		400	500	E10	C 2 2	530	

		400	500	310	320	550	540
	340	350	360	370	380	390	
m128.pep	XGMFX	VRQXEFALF	DMMIYSEDDE	GRLKNWQQVLI	SVRKKVAVI	QPPEYNRFAL	SFGHIF
- 100	111		1111111111	THEFT !	1111:111:	:1111111	111111
a128	RGMFL	VRQMEFALFI 550		GRLKNWQQVLI			
		550	560	570	580	590	600

	400	410	420	430	440	450	
m128.pep	AGGYS#	AXYSYAWA	EVLSADAYA	AFEESDDVAATG	KRFWQEILAV	GXSRSGAES	FKAFRG
	11111	: 111111			11111111111	1 111:111	HHH
a128	AGGYSA	GYYSYAWA	EVLSADAYA <i>I</i>	AFEESDDVAATG	KRFWQEILAV	GGSRSAAES	FKAFRG
		610	620	630	640	650	660
	460	470					
m128.pep	REPSIC	ALLRHSGF	DNAVX				
	111111	11111111	111:				
a128	REPSID	ALLRHSGF	DNAAX				
		670					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 487>: g128-1.seq (partial)

```
1 ATGATTGACA ACGCACTGCT CCACTTGGGC GAAGAACCCC GTTTTAATCA
  51 AATCAAAACC GAAGACATCA AACCCGCCGT CCAAACCGCC ATCGCCGAAG
     CGCGCGGACA AATCGCCGCC GTCAAAGCGC AAACGCACAC CGGCTGGGCG
 101
 151
     AACACCGTCG AGCGTCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG
 201 GGGCGTCGTG TCCCATCTCA ACTCCGTCGT CGACACGCCC GAACTGCGCG
     CCGTCTATAA CGAACTGATG CCTGAAATCA CCGTCTTCTT CACCGAAATC
 251
     GGACAAGACA TCGAACTGTA CAACCGCTTC AAAACCATCA AAAATTCCCC
 301
     CGAATTTGCA ACGCTTTCCC CCGCACAAAA AACCAAGCTC GATCACGACC
 351
 401
     TGCGCGATTT CGTATTGAGC GGCGCGGAAC TGCCGCCCGA ACGGCAGGCA
 451
     GAACTGGCAA AACTGCAAAC CGAAGGCGCG CAACTTTCCG CCAAATTCTC
     CCAAAACGTC CTAGACGCGA CCGACGCGTT CGGCATTTAC TTTGACGATG
     CCGCACCGCT TGCCGGCATT CCCGAAGACG CGCTCGCCAT GTTTGCCGCC
 551
 601 GCCGCGCAAA GCGAAGGCAA AACAGGTTAC AAAATCGGCT TGCAGATTCC
 651 GCACTACCTT GCCGTTATCC AATACGCCGG CAACCGCGAA CTGCGCGAAC
 701 AAATCTACCG CGCCTACGTT ACCCGTGCCA GCGAACTTTC AAACGACGGC
 751 AAATTCGACA ACACCGCCAA CATCGACCGC ACGCTCGAAA ACGCATTGAA
 801 AACCGCCAAA CTGCTCGGCT TTAAAAATTA CGCCGAATTG TCGCTGGCAA
 851 CCAAAATGGC GGACACGCCC GAACAGGTTT TAAACTTCCT GCACGACCTC
 901 GCCCGCCGC CCAAACCCTA CGCCGAAAAA GACCTCGCCG AAGTCAAAGC
 951 CTTCGCCCGC GAACACCTCG GTCTCGCCGA CCCGCAGCCG TGGGACTTGA
1001 GCTACGCCGG CGAAAAACTG CGCGAAGCCA AATACGCATT CAGCGAAACC
1051 GAAGTCAAAA AATACTTCCC CGTCGGCAAA GTTCTGGCAG GCCTGTTCGC
1101 CCAAATCAAA AAACTCTACG GCATCGGATT CGCCGAAAAA ACCGTTCCCG
     TCTGGCACAA AGACGTGCGC TATTTTGAAT TGCAACAAAA CGGCAAAACC
1201 ATCGGCGGCG TTTATATGGA TTTGTACGCA CGCGAAGGCA AACGCGGCGG
1251 CGCGTGGATG AACGACTACA AAGGCCGCCG CCGCTTTGCC GACGGCACGC
1301 TGCAACTGCC CACCGCCTAC CTCGTCTGCA ACTTCGCCCC GCCCGTCGGC
1351 GGCAAAGAAG CGCGTTTAAG CCACGACGAA ATCCTCACCC TCTTCCACGA
1401 AACCGGCCAC GGACTGCACC ACCTGCTTAC CCAAGTGGAC GAACTGGGCG
1451 TGTCCGGCAT CAACGGCGTA AAA
```

This corresponds to the amino acid sequence <SEQ ID 488; ORF 128-1.ng>: g128-1.pep (partial)

1 MIDNALLHLG EEPRFNQIKT EDIKPAVQTA IAEARGQIAA VKAQTHTGWA

```
TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 489>: m128-1.seq

- 1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA
- 51 AATCAAAACC GAAGACATCA AACCCGCCCT GCAAACCGCC ATCGCCGAAG
- 101 CGCGCGAACA AATCGCCGCC ATCAAAGCCC AAACGCACAC CGGCTGGGCA
- 151 AACACTGTCG AACCCCTGAC CGGCATCACC GAACGCGTCG GCAGGATTTG

This corresponds to the amino acid sequence <SEQ ID 490; ORF 128-1>: m128-1.pep.

```
1 MTDNALLHLG EBPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVADTP ELRAVYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSPAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSESKTGY KIGLQIPHYL AVIQYADNRE LREQIYRAYV TRASELSDDG
151 KFDNTANIDR TLANALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLNLADLQP WDLGYASEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFAPPVG
451 GREARLSHDE ILILFHETCH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
551 FMENFVWEYN VLAQMSAHEE TGVPLYKELF DKMLAAKNFQ RGMFLVRQME
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKK VAVIQPPEYN RFALSFGHIF
651 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
```

m128-1/g128-1 94.5% identity in 491 aa overlap

	10	20	30	40	50	60
g128-1.pep	MIDNALLHLGEEPR					
		[:]]]]]]	111:111111	[1111111111	11111
m128-1	MTDNALLHLGEEPRI	FDQIKTEDI	(PALQTAIAEA)	REQIAAIKA	THTGWANTVE	PLTGIT
	10	20	30	40	50	60
	70	80	90	100	110	120
g128-1.pep	ERVGRIWGVVSHLNS					ONSPEFA
		:		[[[[]]]	1111111111	ШП
m128-1	ERVGRIWGVVSHLNS	SVADTPELRA	VYNELMPEIT	VFFTEIGQDI	ELYNRFKTI	NSPEFD
	70	80	90	100	110	120

g128-1.pep m128-1	130 140 150 160 170 TLSPAQKTKLDHDLRDFVLSGAELPPERQAELAKLQTEGAQLSAKFSQNVLDI : TLSPAQKTKLNHDLRDFVLSGAELPPEQQAELAKLQTEGAQLSAKFSQNVLDI 130 140 150 160 170	11111111
g128-1.pep m128-1	190 200 210 220 230 FDDAAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYAGNRELRI	ШШП
g128-1.pep	250 260 270 280 290 TRASELSNDGKFDNTANIDRTLENALKTAKLLGFKNYAELSLATKMADTPEQ : TRASELSDDGKFDNTANIDRTLANALQTAKLLGPKNYAELSLATKMADTPEQ 250 260 270 280 290	111111
g128-1.pep	310 320 330 340 350 ARRAKPYAEKDLAEVKAFAREHLGLADPOPWDLSYAGEKLREAKYAFSETEVI	1111111
g128-1.pep	370 380 390 400 410 VLAGLFAQIKKLYGIGFAEKTVPVWHKDVRYFELQQNGKTIGGVYMDLYAREC	ШШП
g128-1.pep	430 440 450 460 470 NDYKGRRFADGTLQLPTAYLVCNFAPPVGGKEARLSHDEILTLFHETGHGLE :	
g128-1.pep m128-1	490 ELGVSGINGVK ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKN 490 500 510 520 530	1LAAKNFQ 540

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 491>: a128-1.seq

1 ATGACTGACA ACGCACTGCT CCATTTGGGC GAAGAACCCC GTTTTGATCA

1	ATGACTGACA	ACGCACTGCT	CCATTTGGGC	GAAGAACCCC	GTTTTGATCA
51	AATCAAAACC	GAAGACATCA	AACCCGCCCT	GCAAACCGCC	ATTGCCGAAG
101	CGCGCGAACA	AATCGCCGCC	ATCAAAGCCC	AAACGCACAC	CGGCTGGGCA
151	AACACTGTCG	AACCCCTGAC	CGGCATCACC	GAACGCGTCG	GCAGGATTTG
201	GGGCGTGGTG	TCGCACCTCA	ACTCCGTCAC	CGACACGCCC	GAACTGCGCG
251	CCGCCTACAA	TGAATTAATG	CCCGAAATTA	CCGTCTTCTT	CACCGAAATC
301	GGACAAGACA	TCGAGCTGTA	CAACCGCTTC	AAAACCATCA	AAAACTCCCC
351	CGAGTTCGAC	ACCCTCTCCC	ACGCGCAAAA	AACCAAACTC	AACCACGATC
401	TGCGCGATTT	CGTCCTCAGC	GGCGCGGAAC	TGCCGCCCGA	ACAGCAGGCA
451	GAATTGGCAA	AACTGCAAAC	CGAAGGCGCG	CAACTTTCCG	CCAAATTCTC
501	CCAAAACGTC	CTAGACGCGA	CCGACGCGTT	CGGCATTTAC	TTTGACGATG
551	CCGCACCGCT	TGCCGGCATT	CCCGAAGACG	CGCTCGCCAT	GTTTGCCGCT
601	GCCGCGCAAA	GCGAAGGCAA	AACAGGCTAC	AAAATCGGTT	TGCAGATTCC
651	GCACTACCTC	GCCGTCATCC	AATACGCCGA	CAACCGCAAA	CTGCGCGAAC
701		CGCCTACGTT			
751		ACACCGCCAA			
801		CTGCTCGGCT			
851		GGACACCCCC			
901		CCAAACCCTA			
951		GAAAGCCTCG			
1001		CGAAAAACTG			
1051		AATACTTCCC			
1101		AAACTCTACG			
1151		AGACGTGCGC			
1201	ATAGGCGGCG	TTTATATGGA	TTTGTACGCA	CGCGAAGGCA	AACGCGGCGG

1251	CGCGTGGATG	AACGACTACA	AAGGCCGCCG	CCGTTTTTCA	GACGGCACGC
1301	TGCAACTGCC	CACCGCCTAC	CTCGTCTGCA	ACTTCACCCC	GCCCGTCGGC
1351	GGCAAAGAAG	CCCGCTTGAG	CCATGACGAA	ATCCTCACCC	TCTTCCACGA
1401	AACCGGACAC	GGCCTGCACC	ACCTGCTTAC	CCAAGTCGAC	GAACTGGGCG
1451	TATCCGGCAT	CAACGGCGTA	GAATGGGACG	CAGTCGAACT	GCCCAGTCAG
1501	TTTATGGAAA	ATTTCGTTTG	GGAATACAAT	GTCTTGGCGC	AAATGTCCGC
1551	CCACGAAGAA	ACCGGCGTTC	CCCTGCCGAA	AGAACTCTTC	GACAAAATGC
1601	TCGCCGCCAA	AAACTTCCAA	CGCGGAATGT	TCCTCGTCCG	CCAAATGGAG
1651	TTCGCCCTCT	TTGATATGAT	GATTTACAGC	GAAGACGACG	AAGGCCGTCT
1701	GAAAAACTGG	CAACAGGTTT	TAGACAGCGT	GCGCAAAGAA	GTCGCCGTCG
1751	TCCGACCGCC	CGAATACAAC	CGCTTCGCCA	ACAGCTTCGG	CCACATCTTC
1801	GCAGGCGGCT	ATTCCGCAGG	CTATTACAGC	TACGCGTGGG	CGGAAGTATT
1851	GAGCGCGGAC	GCATACGCCG	CCTTTGAAGA	AAGCGACGAT	GTCGCCGCCA
1901	CAGGCAAACG	CTTTTGGCAG	GAAATCCTCG	CCGTCGGCGG	ATCGCGCAGC
1951	GCGGCAGAAT	CCTTCAAAGC	CTTCCGCGGA	CGCGAACCGA	GCATAGACGC
2001	ACTCTTGCGC	CACAGCGGCT	TCGACAACGC	GGCTTGA	

This corresponds to the amino acid sequence <SEQ ID 492; ORF 128-1.a>: a128-1.pep

```
MTDNALLHLG EEPRFDQIKT EDIKPALQTA IAEAREQIAA IKAQTHTGWA
51 NTVEPLTGIT ERVGRIWGVV SHLNSVTDTP ELRAAYNELM PEITVFFTEI
101 GQDIELYNRF KTIKNSPEFD TLSHAQKTKL NHDLRDFVLS GAELPPEQQA
151 ELAKLQTEGA QLSAKFSQNV LDATDAFGIY FDDAAPLAGI PEDALAMFAA
201 AAQSEGKTGY KIGLQIPHYL AVIQYADNRK LREQIYRAYV TRASELSDDG
251 KFDNTANIDR TLENALQTAK LLGFKNYAEL SLATKMADTP EQVLNFLHDL
301 ARRAKPYAEK DLAEVKAFAR ESLGLADLQP WDLGYAGEKL REAKYAFSET
351 EVKKYFPVGK VLNGLFAQIK KLYGIGFTEK TVPVWHKDVR YFELQQNGET
401 IGGVYMDLYA REGKRGGAWM NDYKGRRRFS DGTLQLPTAY LVCNFTPPVG
451 GKEARLSHDE ILTLFHETCH GLHHLLTQVD ELGVSGINGV EWDAVELPSQ
501 FMLFFVWEYN VLAQMSAHEE TGVPLPKELF DKMLAAKNFQ RGMFLVRQME
551 FALFDMMIYS EDDEGRLKNW QQVLDSVRKE VAVVRPPEYN RFANSFGHIF
601 AGGYSAGYYS YAWAEVLSAD AYAAFEESDD VAATGKRFWQ EILAVGGSRS
```

m128-1/a128-1 97.8% identity in 677 aa overlap

al28-1.pep	10 MTDNALLHLGEEPR: MTDNALLHLGEEPR: 10	Пінні	111111111111111111111111111111111111111	Пінніі	ШШШ	
a128-1.pep	70 ERVGRIWGVVSHLN: ERVGRIWGVVSHLN: 70	:	:11111111	ШШІЙ	111111111	
a128-1.pep m128-1	130 TLSHAQKTKLNHDLI TLSPAQKTKLNHDLI 130		11111111111	111111111111	111111111	
a128-1.pep	190 FDDAAPLAGIPEDAI FDDAAPLAGIPEDAI 190	[]]]	1:11111111	ШИНП	11111:111	IIIIIII
a128-1.pep	250 TRASELSDDGKFDN' TRASELSDDGKFDN' 250	[[[[[[]	11111111111	11111111111	111111111	
al28-1.pep	310 ARRAKPYAEKDLAEV	320 /KAFARESLG	330 LADLQPWDLG	340 YAGEKLREAK :	350 YAFSETEVK!	360 CYFPVGK

m128-1	ARRAKPYAEKDLAEVKAFARESLNLADLQPWDLGYASEKLREAKYAFSETEVKKYFPVGK 310 320 330 340 350 360
a128-1.pep	370 380 390 400 410 420 VLNGLFAQIKKLYGIGFTEKTVPVWHKDVRYFELQQNGETIGGVYMDLYAREGKRGGAWM
al28-1.pep	430 440 450 460 470 480 NDYKGRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEILTLFHETGHGLHHLLTQVD
a128-1.pep	490 500 510 520 530 540 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ
al28-1.pep	550 560 570 580 590 600 RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF
al28-1.pep	610 620 630 640 650 660 AGGYSAGYYSYAWAEVLSADAYAAFEESDDVAATGKRFWQEILAVGGSRSAAESFKAFRG
al28-1.pep ml28-1	670 679 REPSIDALLRHSGFDNAAX REPSIDALLRHSGFDNAVX 670
- Haemophilu >gi 1573174 Score = 59	373 3PDA_HAEIN OLIGOPEPTIDASE A >gi 1075082 pir C64055 oligopeptidase A (prlC) homologus influenzae (strain Rd KW20) (U32706) oligopeptidase A (prlC) [Haemophilus influenzae Rd] Length = 681 3D bits (1507), Expect = e-168 = 309/677 (45%), Positives = 415/677 (60%), Gaps = 4/677 (0%)
N	VALLHLGEEPRFDQIKTEDIKPALQTXXXXXXXXXXXXXXTHTGWANTVEPLTGITERV 63 V LL++ P F QIK E 1+PA++ H W N + PLT +R+ VPLLNIQGLPPFSQIKPBHIRPAVEKLIQDCRNTIEQVLKQPHFTWENFILPLTETNDRL 64
•	GRIWGVVSHLNSVTDTPELRAAYNELMPEITVFFTEIGQDIELYNRFKTIKNSPEPDTLS 123 R W VSHLNSV ++ ELR AY +P ++ + T +GQ LYN + +KNS EF S NRAWSPVSHLNSVKNSTELREAYQTCLPLLSEYSTWVGQHKGLYNAYLALKNSAEFADYS 124
-	łaqktklnhdlrdfvlsgaelppeqqablaklqtegaqlsakfsqnvldatdafgiyfdd 183 aqk + + lrdf lsg l e+q ++ ++l+++fs nvldat + ++ laqkkaienslrdfelsgiglseekqqrygeivarlselnsqfsnnvldatmgweklien 184
_	AAPLAGIPEDALAMFAAAAQSEGKTGYKIGLQIPHYLAVIQYADNRKLREQIYRAYVTRA 243 A LAG+PE AL
S	BELSDD-GKFDNTANIDRTLENALQTAKLLGFKNYABLSLATKMADTPEQVLNFLHDLAR 302 BE + GK+DN+ ++ L ++ AKLLGF Y ELSLATKMA+ P+QVL+FL LA BEQGPNAGKWDNSKVMEEILTLRVELAKLLGFNTYTELSLATKMAENPQQVLDFLDHLAE 304
F	RAKPYAEKDLAEVKAFARESLGLADLQPWDLGYAGEKLREAKYAFSETEVKKYFPVGKVL 362 RAKP EK+L E+K + + G+ +L PWD+G+ EK ++ YA ++ E++ YFP +V+ RAKPQGEKELQELKGYCEKEFGVTELAPWDIGFYSEKQKQHLYAINDEELRPYFPENRVI 364


```
Query: 363 NGLFAQIKKLYGIGFTE-KTVPVWHKDVRYFEL-QQNGETIGGVYMDLYAREGKRGGAWM 420
           +GLF IK+++ I E K V WHKDVR+F+L +N + G Y+DLYARE KRGGAWM
Sbjct: 365 SGLFELIKRIFNIRAVERKGVDTWHKDVRFFDLIDENDQLRGSFYLDLYAREHKRGGAWM 424
Query: 421 NDYKGRRRFSDGTLQLPTAYLVCNFTPPVGGKEARLSHDEIXXXXXXXXXXXXXXXXXXXXQVD 480
           +D GR+R DG+++ P AYL CNF P+G K A +H+E+
Sbjct: 425 DDCIGRKRKLDGSIETPVAYLTCNFNAPIGNKPALFTHNEVTTLFHEFGHGIHHMLTQID 484
Query: 481 ELGVSGINGVEWDAVELPSQFMENFVWEYNVLAQMSAHEETGVPLPKELFDKMLAAKNFQ 540
             V+GINGV WDAVELPSQFMEN+ WE LA +S H ETG PLPKE ++L AKNFO
Sbjct: 485 VSDVAGINGVPWDAVELPSQFMENWCWEEEALAFISGHYETGEPLPKEKLTQLLKAKNFQ 544
Query: 541 RGMFLVRQMEFALFDMMIYSEDDEGRLKNWQQVLDSVRKEVAVVRPPEYNRFANSFGHIF 600
            MF++RQ+EF +FD ++ D + L SV+ +VAV++ ++ R +SF HIF
Sbjct: 545 AAMFILRQLEFGIFDFRLHHTFDAEKTNQILDTLKSVKSQVAVIKGVDWARAPHSFSHIF 604
Ouery: 601 XXXXXXXXXXXXXXAEVLSADAYAAFEESDDV-AATGKRFWQEILAVGGSRSAAESFKAFR 659
                      WAEVLSADAY+ FEE
                                           TGK F EIL GGS
                                                              E FK FR
Sbjct: 605 AGGYAAGYYSYLWAEVLSADAYSRFEEEGIFNPITGKSFLDEILTRGGSEEPMELFKRFR 664
Query: 660 GREPSIDALLRHSGFDN 676
          GREP +DALLRH G N
Sbjct: 665 GREPQLDALLRHKGIMN 681
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 493>: g129.seq

```
1 ATGCTTTCAC CTCCTCGGCG TAAAACGGCG GCACATCAAT CAAGCCGTCT
51 TTCATTTGCG TGCGGAAAAA ATGCGGCGTG TTGCCGTGAT CAAAATCAAT
101 ATCGTGCAGC ATCCAGCCCA AATCGCGGTT TGCCTCGCTT TCCGATAACG
151 CCGACGGCGG CAGCGGTTCA CCCTTATCCG CGCTTTCGCC ATTTGCCCTT
201 TCAGGCTGCG GGCATAGGGG CGGAACAGGC GGCGGTCGAA TCCTGTTTCA
251 TCCGGACAAA CGCGTTGCA GTCGGAAAAT CCGGCCGGCC GTGTCAAATA
301 ATGCGTTACT TTGGCCGGT CTTGTCCTTT GTAAGCGGCG GTCTTTTTTT
351 GCGCGCCATC CGCATCTGTT TGGGCGCATG GCAAACGGCG GCTGCCGTAC
401 AATCAAAATG TTTGGCGATT TCATGCAGAC AGGCATCCGG ATGCCCCCG
451 ACATATCGAG CCGGTTTTTG CCTATCCGAT TTGGCGGCAT TTAGGCCGGT
```

This corresponds to the amino acid sequence <SEQ ID 494; ORF 129.ng>: g129.pep

- 1 MLSPPRRKTA AHQSSRLSFA CGKNAACCRD QNQYRAASSP NRGLPRFPIT
 - 51 PTAAAVHPYP RFRHLPFQAA GIGAEQAAVE SCFIRTNALA VGKSGRPCQI
 - 101 MRYFGRVLSF VSGGLFLRAI RICLGAWQTA AAVQSKCLAI SCRQASGCRP
 - 151 TYRAGFCLSD LAAFRPVT*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 495>: m129.seq (partial)

- 1 ..TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA
- 51 ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG
- 101 GAAAATTCGG CCGGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG
- 151 TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG
- 201 TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT
- 251 GCAGATAGGC ATCCGGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA
- 301 TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA

This corresponds to the amino acid sequence <SEQ ID 496; ORF 129>:

- m129.pep (partial)
 - 1 ..YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGRLC QIMRYFGRVL
 - 51 FFVSGGLFLR VIPICLSAXQ MVAAVQSKCL AISCRXASGC CPTYXAGFCL
 - 101 SDLTAFRPVT *

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 129 shows 79.1% identity over a 110 aa overlap with a predicted ORF (ORF 129.ng) from N. gonorrhoeae:

m129/g129

					10	20	30
m129.pep				YLRFH	YLPFQAAGIG	TEQVAVKSCF	IQINT
				:	:	: : :	: :
g129	RDQNQYR	AASSPNRG	LPRFPITPTA	AVHPYPRFR	HLPFQAAGIG.	AEQAAVESCF	IRTNA
	30	40	50	60	70	80	
		40	50	60	70	80	90
m129.pep	LVVGKFG	RLCQIMRY	FGRVLFFVSG	SLFLRVIPIC	LSAXQMVAAV	OSKCLAISCR	XASGC
	1:111-1	1 111111	[][][1:1 1:11		1111
g129	LAVGKSG	RPCQIMRY	FGRVLSFVSG	SLFLRAIRIC	LGAWQTAAAV	QSKCLAISCR	QASGC
	90	100	110	120	130	140	
		100	110		•		
m129.pep		FCLSDLTA					
mrzs.pep	III II	IIIIIIII					
q129	RPTYRAG	FCLSDLAA	FRPVTX				
3	150	160					

The following partial DNA sequence was identified in N. meningitidis <SEO ID 497>:

a129.seq (partial)

- TATCTGCGCT TTCACTATTT GCCCTTTCAG GCTGCGGGCA TAGGGACGGA
- 51 ACAGGTAGCG GTCAAATCCT GTTTCATCCA AATAAACACG TTGGTAGTCG
- 101 GAAAATTCGG CCAGCTGTGT CAAATAATGC GTTACTTTGG CCGGGTCTTG
- 151 TTCTTTGTAA GTGGTGGTCT TTTTTTGCGC GTTATCCCCA TCTGTTTGAG
- 201 TGCATAGCAA ATGGTGGCTG CCGTACAATC AAAATGTTTG GCGATTTCAT
 251 GCAGATAGGC ATCCTGGTGT TGCCCAACAT ATTGAGCCGG TTTTTGCCTA
- 301 TCCGATTTGA CGGCATTTAG ACCGGTAACT TGA

This corresponds to the amino acid sequence <SEQ ID 498; ORF 129.a>:

- a129.pep (partial)
 - 1 YLRFHYLPFQ AAGIGTEQVA VKSCFIQINT LVVGKFGQLC QIMRYFGRVL
 51 FFVSGGLFLR VIPICLSA*Q MVAAVQSKCL AISCR*ASWC CPTY*AGFCL
 101 SDLTAFRPVT *

m129/a129 98.2% identity in 110 aa overlap

	10	20	30	40	50	60
m129.pep	YLRFHYLPFQAAGI(STEQVAVKSO	FIQINTLVVG	KFGRLCQIM	RYFGRVLFFVS	GLFLR
		ШШШП	1111111111	111:111		11111
a129	YLRFHYLPFQAAGI	STEQVAVKSO	FIQINTLVVG	KFGQLCQIM	RYFGRVLFFVS	GLFLR
	10	20	30	40	50	60
	70	80	90	100	110	
	. •				110	
m129.pep	VIPICLSAXQMVAA	/QSKCLAISC	RXASGCCPTY	XAGFCLSDL?	TAFRPVTX	
	1 [1] [1 1 1 1 1 1 1 1 1 1	[]]]]]]	1111 11111	HIHIHI		
a129	VIPICLSAXQMVAA	/QSKCLAISC	RXASWCCPTY	XAGFCLSDL'	TAFRPVTX	
	70	80	90	100	110	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 499>: g130.seq

- 1 ATGAAACAAC TCCGCGACAA CAAAGCCCAA GGCTCTGCAC TGTTTACCCT
- 51 TGTGAGCGGT ATCGTTATTG TTATTGCAGT CCTTTATTTC CTGATTAAGC
- 101 TGGCGGCAG TGGATCGTTC GGCGATGTCG ATGCCACTAC GGAAGCGGCA
- 151 ACGCAGACCC GCATCCAGCC TGTCGGACAA TTGACGATGG GTGACGGCAT
- 201 CCCCGTCGGC GAACGCCAAG GCGAACAGAT TTTCGGCAAA ATCTGTATCC


```
251 AATGCCACGC GGCGGACAGC AATGTGCCGA ACGCTCCGAA ACTGGAACAC
         301 AACGGCGACT GGGCGCCGCG TATCGCGCAA GGCTTCGATA CCTTGTTCCA
          351 ACACGCGCTG AACGGCTTTA ACGCCATGCC TGCCAAAGGC GGTGCGGCAG
          401 ACCTGACCGA TCAGGAACTC AAACGGGCGA TTACCTACAT GGCGAATAAA
          451 AGCGGCGGTT CTTTCCCGAA TCCTGATGAG GCTGCGCCTG CCGACAATGC
          501 CGCTTCAGGA ACAGCTTCTG CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG
              CGAAGGCAGA AGACAAGGGT GCGGCAGCCC CTGCGGTCGG CGTTGACGGT
          601 AAAAAAGTCT TCGAAGCAAC CTGTCAGGTG TGCCACGGCG GTTCGATTCC
          651 CGGTATTCCC GGCATAGGCA AAAAAGACGA TTGGGCACCG CGTATCAAAA
          701 AAGGCAAAGA AACCTTGCAC AAACATGCCC TTGAAGGCTT TAACGCGATG
          751 CCGGCCAAAG GCGGCAATGC AGGTTTGAGC GATGACGAAG TCAAAGCGGC
          801 TGTTGACTAT ATGGCAAACC AATCCGGTGC AAAATTCTAA
This corresponds to the amino acid sequence <SEQ ID 500; ORF 130.ng>:
     g130.pep
            1 MKQLRDNKAQ GSALFTLVSG IVIVIAVLYF LIKLAGSGSF GDVDATTEAA
              TOTRIOPVGQ LTMGDGIPVG ERQGEQIFGK ICIQCHAADS NVPNAPKLEH
           51
          101 NGDWAPRIAQ GFDTLFQHAL NGFNAMPAKG GAADLTDQEL KRAITYMANK
          151 SGGSFPNPDE AAPADNAASG TASAPADSAA PAEAKAEDKG AAAPAVGVDG
              KKVFEATCOV CHGGSIPGIP GIGKKDDWAP RIKKGKETLH KHALEGFNAM
          251 PAKGGNAGLS DDEVKAAVDY MANQSGAKF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 501>:
     m130.seg (partial)
               ...GGCGAACAGA TTTTCGGCAA AATCTGTATC CAATGCCACG CGGCGGACAG
                 CAATGTGCCG AACGCTCCGA AACTGGAACA CAACGGCGAT TrGGCACCGC
           51
                 GTATCGGCAA GGCTTCGATA CCTTGTTCCA ACACGCGCTG AACGGCTTTA
          101
          151
                 ACGCCATGCC TGCAAAAGGC GGTGCGGCAG ACCTGACCGA TCAGGAACTT
                 AAACGGGCGA TTACTTACAT GGCGAACAAA AGCGGCGGTT CTTTCCCGAA
          201
                 TCCTGATGAG GCTGCGCCTG CCGACAATGC CGCTTCAGGA ACAGCTTCTG
          251
                 CTCCTGCCGA TAGTGCAGCT CCGGCAGAAG CGAAGGCAGA AGACAAGGGT
          301
                 GCGGCACCCC TGCGGTCGGC GTTGACGGTA AAAAAGTCTT CGAAGCAACC
          351
                 TGTCAGGTGT GCCACGGCGG TTCGATTCCC GGTATTCCCG GCATAGGCAA
          401
                 AAAAGACGAT TGGGCACCGC GTATCAAAAA AGGCAAAGAA ACCTTGCACA
          451
                 AACACGCCCT TGAAGGCTTT AACGCGATGC CTGCCAAArG CGGCAATGCA
          501
                 GGTTTGAGCG ATGACGAAGT CAAAGCGGCT GTTGACTATA TGGCAAACCA
          551
                 ATCCGGTGCA AAATTCTAA
          601
This corresponds to the amino acid sequence <SEQ ID 502; ORF 130>:
     m130.pep
               ..GEQIFGKICI QCHAADSNVP NAPKLEHNGD XAPRIQGFDT LFQHALNGFN
                 AMPAKGGAAD LTDOELKRAI TYMANKSGGS FPNPDEAAPA DNAASGTASA
           51
                 PADSAAPAEA KAEDKGAAPA VGVDGKKVFE ATCQVCHGGS IPGIPGIGKK
          101
                 DDWAPRIKKG KETLHKHALE GFNAMPAKXG NAGLSDDEVK AAVDYMANQS
                 GAKF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 130 shows 98.1% identity over a 206 aa overlap with a predicted ORF (ORF 130.ng)
from N. gonorrhoeae:
     m130/g130
                                               GEQIFGKICIQCHAADSNVPNAPKLEHNGD
     m130.pep
                                               g130
                  DATTEAATQTRIQPVGQLTMGDGIPVGERQGEQIFGKICIQCHAADSNVPNAPKLEHNGD
                       50
                                 60
                                          70
                                                    80
                                                              90
                                    50
                                              60
                                                        70
                                                                  80
                  XAPRI-QGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAITYMANKSGGSFPNPDEAAP
     m130.pep
                   WAPR I AQGFDTLFQHALNGFNAMPAKGGAADLTDQELKRAI TYMANKSGGSFPNPDEAAP
     g130
                                         130
                                                   140
                                                             150
```

375

	90 100	110	120 130	
m130.pep				EATCOVCHGGSIPGIPGIG
g130		AAPAEAKAEDKGAA 80 190	APAVGVDGKKVFI 200	EATCQVCHGGSIPGIPGIG
	170 1	80 190	200	210 220
	150 160	170	180 190	0 200
m130.pep			_	V 200 KAAVDYMANQSGAKFX
mrso.pep				
g130				KAAVDYMANOSGAKFX
9100		40 250	260	270 280
	250 2		200	2,0 200
The following n	artial DNA sequence	was identified i	n N meningiti	idis <seo 503="" id="">:</seo>
a130.seq	antial D1471 Sequence	was identified i	ii iv. memngin	.u.s \BEQ 1D 303>.
arso.seq	ATGAAACAAC TCCGCGA	CAA CAAAGCCCAA	GGCTCTGCAC	ア GTTTACCCT
51	TGTGAGCGGT ATCGTTA			
101	TGGCGGGCAG CGGCTCG	TTC GGCGATGTCG	ATGCCACTAC (GGAAGCAGCA
151	ACGCAGACCC GTATCCA			
201	CCCCGTCGGC GAACGCC	AAG GCGAACAGAT	TTTCGGCAAA A	ATCTGTATCC
251	AATGCCACGC GGCGGAC	AGC AATGTGCCGA	ACGCTCCGAA A	ACTGGAACAC
301	AACGGCGATT GGGCGCC	GCG TATCGCGCAA	GGCTTCGATA	CCTTGTTCCA
351	ACACGCGCTG AACGGCT			
401	ACCTGACCGA TCAGGAA			
451	AGCGGCGGTT CTTTCCC			
501	CGCTTCAGGA ACAGCTT			
551	CGAAGGCAGA AGACAAG			
601	AAAAAAGTCT TCGAAGC			
651	CGGTATTCCC GGCATAG			
701 751	AAGGCAAAGA AACCTTG			
801	CCTGCCAAAG GCGGCAA TGTTGACTAT ATGGCAA			CAAAGCGGC
001	TOTTGACTAT ATGGCAA	ncc Anicoddidc	MANITOTAL	
This correspond	s to the amino acid se	guence <seo i<="" td=""><td>D 504: ORF 1</td><td>30 a>·</td></seo>	D 504: ORF 1	30 a>·
al30.pep		danion prof i	<i>D</i> 50 1, Old 1	30.4 .
arso.pep 1	MKQLRDNKAQ GSALFTL	UCC TUTUTAUIVE	ITWINCECEE (CDIII Amme a a
51	TQTRIQPVGQ LTMGDGI	PVG EROGEOTECK	TCTOCHAADS N	ANDNY DRI ER
101	NGDWAPRIAQ GFDTLFQ	HAT. NGFNAMPAKG	GAVDITDOEL I	KBD TTVMANK
151	SGGSFPNPDE AAPADNA			
201	KKVFEATCQV CHGGSIP			
251	PAKGGNAGLS DDEVKAA			
		_		
m130/a130 97	.6% identity in 206 as	a overlap		
	•	•	10	20 30
m130.pep			GEQIFGKICIO	CHAADSNVPNAPKLEHNGD
				[1] [[[[[[[[[[[[[[[[[[
a130	DATTEAATQTRIQPV	GQLTMGDGIPVGER	QGEQIFGKICIQO	CHAADSNVPNAPKLEHNGD
	50	60 70	80	90 100
	40		60 70	80 89
m130.pep	XAPRI-QGFDTLFQH	alngfnampakgga	ADLTDQELKRAIT	TYMANKSGGSFPNPDEAAP
a130			:	
a130		20 130	140	
	110	20 130	140	150 160
	90 100	110	120 130	0 140
m130.pep	ADNAASGTASAPADS	aapaeakaedkgaa	-PAVGVDGKKVFI	EATCOVCHGGSIPGIPGIG
- ·	11111111111111			111111111111111111
a130	ADNAASGTASAPADS.	AAPAEAKAEDKGAA	APAVGVDGKKVF	EATCOVCHGGSIPGIPGIG
		80 190	200	210 220
	150	120		_
m120	150 160		180 190	
m130.pep	VVDDMWLKTKKCKEL	LITAHALEGENAMPA	NAGNAGLSDDEVI	KAAVDYMANQSGAKFX

WO 99/57280

a130 KKDDWAPRIKKGKETLHKHALEGFNAMPAKGGNAGLSDDEVKAAVDYMANQSGAKFX 260 240 250 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 505>: 1 ATGGAAGCCT TCAAAACCCT AATTTGGATT ATTAATATTA TTTCCGCTTT 51 GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG 101 GCGCGACCTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT 151 GCCGGCAACG CCAACTTcct CAgccGCTCG AccGccGTTG CAGCAACAtt 201 tttcttTGca acctgcAtgg gctatggTgt atattcacac CCACACGACA 251 AAACACGGTT TGGACTtcag caacataCGA CAGACTCAGC AagcACCCAA 301 ACCCGTAAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT 351 AACagtTTTT CAAATgccga caTGgtga This corresponds to the amino acid sequence <SEQ ID 506; ORF 132.ng>: g132.pep MEAFKTLIWI INIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS 51 AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLQ QHTTDSASTQ 101 TRKQYRTFCP CSSAAEITVF QMPTW* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 507>: m132.seq (partial) 1 ATGGAACCCT TCAAAACCTT AATTTGGATT GTTAATTTAA TTTCCGCTTT 51 GGCCGTCTTC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG 101 GCGCGACTTT CGGA... This corresponds to the amino acid sequence <SEQ ID 508; ORF 132>: m132.pep (partial) MEPFKTLIWI VNLISALAVF VLVLLQHGKG ADAGATFG... Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 132 shows 89.5% identity over a 38 aa overlap with a predicted ORF (ORF 132.ng) from N. gonorrhoeae: m132/g132 10 20 30 MEPFKTLIWIVNLISALAVFVLVLLOHGKGADAGATFG m132.pep g132 MEAFKTLIWIINIISALAVIVLVLLQHGKGADAGATFGSGSGSAQGVFGSAGNANFLSRS 10 20 30 40 50 The following partial DNA sequence was identified in N. meningitidis <SEO ID 509>: a132.seq 1 ATGGAAGCCT TCAAAACCCT AATTTGGATT GTTAATATAA TTTCCGCTTT 51 GGCCGTCATC GTGTTAGTAT TGCTCCAACA CGGCAAAGGC GCGGATGCCG 101 GCGCGACTTT CGGATCGGGA AGCGGCAGCG CGCAAGGCGT ATTCGGCTCT 151 GCCGGCAACG CTAACTTCCT CAGCCGCTCG ACCGCCGTTG CAGCAACATT 201 TTTCTTTGCA ACCTGCATGG GCTATGGTGT ATATTCACAC CCACACGACA 251 AAACACGGTT TGGACTTCAG CAACGTACAA CAAACTCAGC AAGCACCCAA 301 ACCCGTAAGC AATACCGAAC CTTCTGCCCC TGTTCCTCAG CAGCAGAAAT 351 AACAGTTTTT CAAATGCCGA CATGGTGA This corresponds to the amino acid sequence <SEQ ID 510; ORF 132.a>: al32.pep MEAFKTLIWI VNIISALAVI VLVLLQHGKG ADAGATFGSG SGSAQGVFGS AGNANFLSRS TAVAATFFFA TCMGYGVYSH PHDKTRFGLO ORTTNSASTO 101 TRKQYRTFCP CSSAAEITVF QMPTW* m132/a132 92.1% identity in 38 aa overlap

378

```
10
                                    20
                  MEPFKTLIWIVNLISALAVFVLVLLQHGKGADAGATFG
     m132.pep
                  a132
                  MEAFKTLIWIVNIISALAVIVLVLLQHGKGADAGATFGSGSGSAQGVFGSAGNANFLSRS
                                    20
                                              30
                                                        40
                                                                  50
                                                                            60
                          10
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 511>:
     g134.seq
               ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT
               CATCTCCCAC CCCGATGCGG GTAAAACCAC GCTGACCGAA AAACTGCTGC
           51
               TGTTTTCGGG CGCGATTCAA AGCGCAGGCA CGGTGAAAGG TAAGAAAACC
          101
          151 GGCAAATTCG CCACCTCCGA CTGGATGGAC ATCGAGAAGC AGCGCGGCAT
               TTCCGTGGCA TCAAGCGTGA TGCAGTTCGA CTACAAAGAC CACACCGTCA
               ACCTCTTGGA CACGCCGGGA CACCAAGACT TCTCCGAAGA CACCTACCGC
               GTTTTAACCG CAGTGGACAG CGCCTTGATG GTCATCGACG CGGCAAAAGG
          351
               CGTGGAAGCG CAAACCATCA AACTCTTGAA CGTCTGCCGC CTGCGCGATA
               CGCCGATTGT TACCTTCATG AACAAATACG ACCGCGAAGT GCGCGATTCT
          401
               TTGGAACTCT TGGACGAAGT GGAAGACATC CTGCAAATCC GCTGCGCGCC
               CGTTACCTGG CCGATCGGTA TGGGCAAAAA CTTCAAGGGC GTGTACCACA
          501
               TCCTGAACGA CGAAATCTAT CTCTTTGAAG CGGGCGGCGA ACGCCTGCCG
          551
               CACGAGTTCG ACATCATCAA AGGCATAAAC AATCCCGAAT TGGAACAACG
               CTTTCCGTTG GAAATCCAGC AGTTGCGCGA CGAAATCGAA TTGGTGCAGG
          651
               CGGCTTCCAA CGAATTTAAT CTCGacgaAT TTCTCGccgG CGAACTCACG
          701
          751
               CCAGTGTTCT TCGGCTCTGC GATTAACAAC TTCGGCATTC AGGAAATCCT
               CAATTCATTG ATTGACTGGG CACCCGCACC GAAACCGCGC GACGCGACCA
               TGCGCATGGT CGGGCCGGAC GAGCCGAAAT TTTCCGGATT TATCTTTAAA
          851
          901
              ATCCAAGCCA ATATGGACCC GAAACACCGC GACCGTATCG CCTTCTTGCG
               CGTCTGCTCC GGTAAATTCG AGCGCGGCAT GAAGATGAAA CACCTGCGTA
               TCAACCGCGA AATCGCCGCC TCCAGCGTAG TAACCTTCAT GTCGCACGAC
               CGCGAACTGG CGGAAGAAGC CTACGCCGGC GACATCATCG GCATCCCGAA
         1051
               CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGG
         1101
         1151
               CGTTTACCGG CATCCCATTC TTCGCGCCCG AACTGTTCCG CAGCGTCCGC
         1201 ATCAAAAACC CGCTGAAAAT CAAACAACTG CAAAAAGGTT TGCAACAACT
               CGGCGAAGAA GGTGCGGTTC AAGTATTCAA ACCGATGAGC GGCGCGGATT
         1251
         1301 TGATTTTGGG TGCGGTCGGC GTGTTGCAGT TTGAAGTCGT AACCTCACGC
         1351 CTCGCCAACG AATACGGCGT GGAAGCCGTG TTCGACAGCG CATCCATCTG
         1401 GTCGGCGCG TGGGTATCGT GCGACGACAA GAAAAAACTG GCGGAATTTG
         1451 AAAAAGCCAA CGCAGGCAAC CTCGCCATCG ACGCAGGCGG CAACCTCGCC
               TACCTCGCCC CCAACCGCGT GAATTTGGGG TTGACGCAAG AACGCTGGCC
               GGACATCGTG TTCCACGAAA CGCGCGAACA TTCGGTCAAA CTCTAA
This corresponds to the amino acid sequence <SEQ ID 512; ORF 134.ng>:
     g134.pep
               MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIO SAGTVKGKKT
            1
               GKFATSDWMD IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR
               VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS
          101
          151 LELLDEVEDI LQIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP
          201 HEFDIIKGIN NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT
               PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATMRMVGPD EPKFSGFIFK
          301 IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD
          351
               RELAEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR
               IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR
               LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA
          451
          501 YLAPNRVNLG LTQERWPDIV FHETREHSVK L*
The following partial DNA sequence was identified in N. meningitidis <SEO ID 513>:
     m134.seq
```

ATGTCCCAAG AAATCCTCGA CCAAGTGCGC CGCCGCCGCA CGTTTGCCAT

CATCTCCCAC CCTGACGCAG GTAAAACCAC GTTGACTGAA AAACTCTTGC

101 TGTTTTCGGG CGCGATTCAG AGCGCGGGTA CGGTAAAAGG CAAGAAAACC 151 GGCAAATTCG CCACTTCCGA CTGGATGGAA ATCGAGAAGC AGCGCGGCAT

1

51

201 TTCCGTGGCA TCAAGTGTGA TGCAGTTCGA TTACAAAGAC CACACCGTCA 251 ACCTCTTGGA CACGCCGGGA CACCAAGACT TCTCCGAAGA CACCTACCGC 301 GTTTTAACCG CCGTGGACAG CGCATTAATG GTCATCGACG CGGCAAAAGG CGTGGAAGCG CAAACCATCA AGCTCTTAAA CGTCTGCCGC CTGCGCGATA CACCGATTGT TACGTTTATG AACAAATACG ACCGCGAAGT GCGCGATTCC 451 CTGGAACTTT TGGACGAAGT GGAAAACATT TTAAAAATCC GCTGCGCGCC 501 CGTTACCTGG CCGATCGGTA TGGGCAAAAA CTTCAAGGGC GTGTACCACA 551 TCCTGAACGA TGAAATTTAT CTCTTTGAAG CTGGCGGCGA ACGCCTGCCG 601 CACGAGTTCG ACATCATCAA AGGCATCGAT AATCCTGAAT TGGAACAACG 651 CTTTCCGTTG GAAATCCAGC AGTTGCGCGA CGAAATCGAA TTGGTGCAGG 701 CGGCTTCCAA CGAGTTTAAT CTCGACGAAT TCCTCGCCGG CGAACTCACG 751 CCCGTATTCT TCGGCTCTGC GATTAACAAC TTCGGTATTC AGGAAATCCT CAATTCATTG ATTGACTGGG CGCCCGCGCC GAAACCGCGC GACGCGACCG TACGTATGGT CGAGCCGGAC GAGCCGAAGT TTTCCGGATT TATCTTCAAA 851 901 ATCCAAGCCA ATATGGACCC GAAACACCGC GACCGTATTG CCTTCTTGCG 951 CGTCTGCTCC GGCAAATTCG AGCGCGGCAT GAAGATGAAA CACCTGCGTA 1001 TCAACCGCGA AATCGCCGCC TCCAGCGTGG TTACCTTCAT GTCGCACGAC 1051 CGCGAGCTGG TTGAAGAAGC CTACGCCGGC GACATTATCG GCATCCCGAA 1101 CCACGGCAAC ATCCAAATCG GCGACAGCTT CTCCGAAGGC GAACAACTGG 1151 CGTTCACCGG CATCCCATTC TTCGCACCCG AACTGTTCCG CAGCGTACGC 1201 ATCAAAAACC CGCTGAAAAT CAAACAACTG CAAAAAGGCT TGCAACAGCT 1251 CGGCGAAGAA GGCGCGGTGC AGGTGTTCAA ACCGATGAGC GGCGCGGATT 1301 TGATTTTGGG CGCGGTCGGC GTGTTGCAGT TTGAAGTCGT TACCTCGCGC 1351 CTCGCCAACG AATACGGCGT AGAAGCCGTG TTCGACAGCG CATCCATCTG 1401 GTCGGCGCGC TGGGTATCGT GCGACGACAA GAAAAAACTG GCTGAATTTG 1451 AAAAAGCCAA CGCGGGCAAC CTCGCCATCG ACGCAGGCGG CAACCTCGCC 1501 TACCTCGCCC CCAACCGCGT GAATTTGGGA CTCACGCAAG AACGTTGGCC GGACATCGTG TTCCACGAAA CACGCGAACA TTCGGTCAAA CTGTAA

379

This corresponds to the amino acid sequence <SEQ ID 514; ORF 134>:

m134.pep

1 MSQEILDQVR RRRTFAIISH PDAGKTTLTE KLLLFSGAIQ SAGTVKGKKT GKFATSDWME IEKQRGISVA SSVMQFDYKD HTVNLLDTPG HQDFSEDTYR 101 VLTAVDSALM VIDAAKGVEA QTIKLLNVCR LRDTPIVTFM NKYDREVRDS 151 LELLDEVENI LKIRCAPVTW PIGMGKNFKG VYHILNDEIY LFEAGGERLP 201 HEFDIIKGID NPELEQRFPL EIQQLRDEIE LVQAASNEFN LDEFLAGELT 251 PVFFGSAINN FGIQEILNSL IDWAPAPKPR DATVRMVEPD EPKFSGFIFK 301 IQANMDPKHR DRIAFLRVCS GKFERGMKMK HLRINREIAA SSVVTFMSHD 351 RELVEEAYAG DIIGIPNHGN IQIGDSFSEG EQLAFTGIPF FAPELFRSVR 401 IKNPLKIKQL QKGLQQLGEE GAVQVFKPMS GADLILGAVG VLQFEVVTSR LANEYGVEAV FDSASIWSAR WVSCDDKKKL AEFEKANAGN LAIDAGGNLA 501 YLAPNRVNLG LTQERWPDIV FHETREHSVK L*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 134 shows 98.7% identity over a 531 aa overlap with a predicted ORF (ORF 134.ng) from N. gonorrhoeae:

m134/g134

	10	20	30	40	50	60
m134.pep	MSQEILDQVRRRRT	FAIISHPDAC	KTTLTEKLLL	FSGAIQSAGT	VKGKKTGKF#	TSDWME
				11111111111	1111111111	:
g134	MSQEILDQVRRRRT	FAIISHPDAC	SKTTLTEKLLL	FSGAIQSAGT	VKGKKTGKFA	TSDWMD
	10	20	30	40	50	60
	70	80	90	100	110	120
m134.pep	IEKQRGISVASSVM	QFDYKDHTVI	ILLDTPGHQDF	SEDTYRVLTA	VDSALMVIDA	AKGVEA
					1111111111	111111
g134	IEKQRGISVASSVM	QFDYKDHTVN	ILLDTPGHQDF	SEDTYRVLTA	VDSALMVIDA	AKGVEA
	70	80	90	100	110	120
	130	140	150	160	170	180

m134.pep	QTIKLLNVCRLRDTP					GKNFKG
g134						ACKNIEKC
9134	130	140	150	160	170	180
	190	200	210	220	230	240
m134.pep	VYHILNDEIYLFEAG					
q134						
9154	190	200	210	220	230	240
	250	260	270	280	290	300
m134.pep	LDEFLAGELTPVFFG	_				SGFIFK
g134					,,, ,,,,,,	79GETEK
9134	250	260	270	280	290	300
	310	320	330	340	350	360
m134.pep	IQANMDPKHRDRIAF	LRVCSGKFE		NREIAASSVV	TFMSHDRELV	/EEAYAG
_	<u> </u>			1111111111	<u> </u>	:
g134	IQANMDPKHRDRIAF 310	LRVCSGKFE 320	RGMKMKHLRI 330	NREIAASSVV 340	TFMSHDREL/ 350	XEEAYAG 360
	310	320	330	340	330	360
	370	380	390	400	410	420
m134.pep	DIIGIPNHGNIQIGD					
-124						
g134	. 370	380	390	400	410	420
	430	440	450	460	470	480
m134.pep	GAVQVFKPMSGADLI		'EVVTSRLANE 		SIWSARWVS	DDKKKL
g134					 	ווווון ו
9134	430	440	450	460	470	480
	490	500	510	520	530	
m134.pep	AEFEKANAGNLAIDA					
g134	AEFEKANAGNLAIDA		-			
	490	500	510	520	530	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 515>: a134.seq

34.seq		•			
1	ATGTCCCAAG	AAATCCTCGA	CCAAGTGCGC	CGCCGCCGCA	CGTTTGCCAT
51	CATCTCCCAC	CCTGACGCAG	GTAAAACCAC	GTTGACTGAA	AAACTCTTGC
101	TGTTTTCAGG	TGCGATTCAA	AGCGCGGGTA	CGGTAAAAGG	CAAGAAAACC
151	GGCAAATTCG	CCACCTCCGA	CTGGATGGAC	ATCGAGAAGC	AGCGCGGCAT
201	TTCCGTGGCA	TCAAGCGTGA	TGCAGTTCGA	CTATAAAGAC	CACACCGTCA
251	ACCTTTTGGA	CACGCCGGGA	CACCAAGACT	TCTCCGAAGA	CACCTACCGC
301	GTTTTGACCG	CCGTCGATAG	TGCCTTGATG	GTCATCGACG	CGGCAAAAGG
351	CGTGGAAGCG	CAAACCATCA	AACTCTTGAA	CGTCTGCCGC	CTGCGCAATA
401	CGCCGATTGT	TACGTTCATG	AACAAATACG	ACCGCGAAGT	GCGCGATTCC
451	CTGGAATTGC	TGGACGAAGT	GGAAAACATC	CTGCAAATCC	GCTGCGCGCC
501	CGTAACCTGG	CCGATCGGCA	TGGGCAAAAA	CTTCAAAGGC	GTGTACCACA
551	TCCTGAACGA	CGAAATCTAT	CTCTTTGAAG	CGGGCGGCGA	ACGCTTGCCG
601	CACGAGTTCG	ACATCATCAA	AGGCATCGAT	AATCCCGAAT	TGGAACAACG
651	CTTTCCGTTA	GAAATACAGC	AGTTGCGCGA	CGAAATCGAA	TTGGTGCAGG
701	CGGCTTCCAA	CGAGTTCAAT	CTCGACGAAT	TCCTCGCCGG	CGAACTCACG
751	CCCGTATTCT	TCGGCTCTGC	GATTAACAAC	TTCGGTATTC	AGGAAATCCT
801	CAATTCATTG	ATTGAATGGG	CGCCCGCGCC	GAAACCACGC	GATGCGACCG
851	TGCGTATGGT	CGAGCCGGAC	GAGCCGAAGT	TTTCCGGATT	TATCTTCAAA
901	ATCCAAGCCA	ATATGGACCC	GAAACACCGC	GACCGTATTG	CCTTCTTGCG

951	CGTCTGCTCC	GGCAAATTCG	AGCGCGGCAT	GAAAATGAAA	CACCTGCGTA	
1001					GTCCCACGAC	
1051					GTATCCCAAA	
1101					GAACAACTGA	
					CAGCGTTCGC	
1151						
1201				CAAAAAGGTT		
1251				ACCAATGAGC		
1301	TGATTTTGGG	CGCGGTCGGC	GTGTTGCAGT	TTGAAGTCGT	TACCTCGCGC	
1351	CTTGCCAACG	AATACGGCGT	GGAAGCCGTG	TTCGACAACG	CATCCATCTG	
1401	GTCGGCGCGC	TGGGTATCGT	GCGACGACAA	GAAAAAACTG	GCGGAATTTG	
1451	AAAAAGCCAA	CGCGGGCAAC	CTCGCCATCG	ACGCGGGCGG	CAACCTCGCC	
1501				CTCACGCAAG		
1551				TTCGGTCAAA		
1331	GONCHICGIG	TTOORCOIRE	COCOCOTICOTI	Troourchen	CITIM	
m1 '		:4	<ceo ii<="" td=""><td>D 616. ODE</td><td>104 -> .</td><td></td></ceo>	D 616. ODE	104 -> .	
This correspond	is to the amin	o acia seque	nce < SEQ II	D 316; OKF	134.a>:	
a134.pep						
1	MSOEILDOVR	RRRTFAIISH	PDAGKTTLTE	KLLLFSGAIQ	SAGTVKGKKT	
51	GKFATSDWMD	TEKORGISVA	SSVMOFDYKD	HTVNLLDTPG	HODESEDTYR	
101		_	-	LRNTPIVTFM	-	
			_	VYHILNDEIY		
151						
201				LVQAASNEFN		
251					EPKFSGFIFK	
301				HLRINREIAA		
351	RELVEEAYAG	DIIGIPNHGN	IQIGDSFSEG	EQLTFTGIPF	FAPELFRSVR	
401	IKNPLKIKQL	QKGLQQLGEE	GAVQVFKPMS	GADLILGAVG	VLQFEVVTSR	
451	LANEYGVEAV	FDNASIWSAR	WVSCDDKKKL	AEFEKANAGN	LAIDAGGNLA	
501			FHETREHSVK			
301		2102		-		
124/c124 09	00/ identitu	in 521 ac av	owlon			
m134/a134 98	3.9% identity		-			
			20 30		50	· 60
m134.pep	MSQEILDO	OVRRRRTFAII	SHPDAGKTTLT	EKLLLFSGAIQ	SAGTVKGKKTG	KFATSDWME
mro4.pcp						
штэчтрер					11111111111	1111111:
	1111111			1111111111		
a134	1111111				SAGTVKGKKTG	KFATSDWMD
	1111111					
	1111111				SAGTVKGKKTGF 50	KFATSDWMD 60
a134	 MSQEILD(IIIIIIIIIIIIIEKLLLFSGAIQS 0 40	SAGTVKGKKTGF 50 110	(FATSDWMD 60 120
	 MSQEILDO IEKQRGIS				SAGTVKGKKTGF 50 110 VLTAVDSALMVI	KFATSDWMD 60 120 DAAKGVEA
a134 m134.pep	 MSQEILDQ EKQRGIS				SAGTVKGKKTGF 50 110 VLTAVDSALMVI	KFATSDWMD 60 120 IDAAKGVEA
a134	 MSQEILDQ EKQRGIS				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI	KFATSDWMD 60 120 DAAKGVEA DAAKGVEA
a134 m134.pep	 MSQEILDQ EKQRGIS				SAGTVKGKKTGF 50 110 VLTAVDSALMVI	KFATSDWMD 60 120 IDAAKGVEA
a134 m134.pep	 MSQEILDQ EKQRGIS				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI	KFATSDWMD 60 120 DAAKGVEA DAAKGVEA
a134 m134.pep	HIIIIII MSQEILDO IEKQRGIS HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI	KFATSDWMD 60 120 DAAKGVEA DAAKGVEA
a134 m134.pep a134	HIIIIII MSQEILDQ IEKQRGIS HIIIIIII IEKQRGIS				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110	KFATSDWMD 60 120 DAAKGVEA IIIIIIII DAAKGVEA 120
a134 m134.pep	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRČAPVTWPI	KFATSDWMD 60 120 DAAKGVEA DAAKGVEA 120 180
a134 m134.pep a134 m134.pep	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI IIIIIIIIII VLTAVDSALMVI 110 170 LKIRČAPVTWPI	TEATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GGMGKNFKG
a134 m134.pep a134	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI	TEMESTER TO THE TEMESTER TO TH
a134 m134.pep a134 m134.pep	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI IIIIIIIIII VLTAVDSALMVI 110 170 LKIRČAPVTWPI	TEATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GGMGKNFKG
a134 m134.pep a134 m134.pep	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI : LQIRCAPVTWPI	TATSDWMD 60 120 DAAKGVEA IIIIIII DAAKGVEA 120 180 GMGKNFKG IIIIIIII
m134.pep a134 m134.pep a134	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRČAPVTWPI : LQIRCAPVTWPI 170 230	TATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180
a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS QTIKLLNY OTIKLLNY VYHILNDE				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRČAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV	KFATSDWMD 60 120 IDAAKGVEA 1111111 IDAAKGVEA 120 180 IGMGKNFKG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m134.pep a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI IIIIIIIIII 170 LKIRČAPVTWPI I:IIIIIIIIII LQIRCAPVTWPI 170 230 EIQQLRDEIELV	TATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN
m134.pep a134 m134.pep a134	IEKQRGIS IEKQRGIS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRČAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV	TATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN
m134.pep a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS IIIIIII IEKQRGIS QTIKLLNY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI IIIIIIIIII 170 LKIRČAPVTWPI I:IIIIIIIIII LQIRCAPVTWPI 170 230 EIQQLRDEIELV	TATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN
m134.pep a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS IIIIIII IEKQRGIS QTIKLLNY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRČAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV	TATSDWMD 60 120 IDAAKGVEA 1111111 IDAAKGVEA 120 180 IGMGKNFKG 1111111 IGMGKNFKG 180 240 VQAASNEFN
m134.pep a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNV IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI - LQIRCAPVTWPI 170 230 EIQQLRDEIELV	TATSDWMD 60 120 DAAKGVEA IIIIIIII DAAKGVEA 120 180 GMGKNFKG IIIIIIIII GMGKNFKG 180 240 VQAASNEFN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
m134.pep a134 m134.pep a134 m134.pep a134	IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNV IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 290	TATSDWMD 60 120 DAAKGVEA 1111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN 111111111 VQAASNEFN 240 300
m134.pep a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNV IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV 1230 290 DATVRMVEPDEE	TATSDWMD 60 120 DAAKGVEA 1111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 VQAASNEFN 11111111 VQAASNEFN 240 240 PKFSGFIFK
m134.pep a134 m134.pep a134 m134.pep a134	IEKQRGIS IEKQRGIS QTIKLLNV QTIKLLNV VYHILNDE VYHILNDE				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 290 DATVRMVEPDEE	TATSDWMD 60 120 1DAAKGVEA 11111111 1DAAKGVEA 120 180 1GMGKNFKG 11111111 1GMGKNFKG 180 7QAASNEFN 240 7QAASNEFN 240 300 PKFSGF1FK
m134.pep a134 m134.pep a134 m134.pep a134	I I I I I I I I I I I I I I I I I I I				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI	TATSDWMD 60 120 DAAKGVEA 1111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 VQAASNEFN 11111111 VQAASNEFN 240 300 PKFSGFIFK
m134.pep a134 m134.pep a134 m134.pep a134	I I I I I I I I I I I I I I I I I I I				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 290 DATVRMVEPDEE	TATSDWMD 60 120 1DAAKGVEA 11111111 1DAAKGVEA 120 180 1GMGKNFKG 11111111 1GMGKNFKG 180 7QAASNEFN 240 7QAASNEFN 240 300 PKFSGF1FK
m134.pep a134 m134.pep a134 m134.pep a134	IEKQRGIS IEKQRGIS IIIIIII IEKQRGIS IIIIIIII QTIKLLNY IIIIIIIIIII QTIKLLNY VYHILNDE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 110 170 LKIRCAPVTWPI : LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 290 DATVRMVEPDEE	TATSDWMD 60 120 IDAAKGVEA 1111111 IDAAKGVEA 120 180 IGMGKNFKG 1111111 IGMGKNFKG 180 VQAASNEFN 240 VQAASNEFN 240 PKFSGFIFK 1111111 PKFSGFIFK 300
m134.pep a134 m134.pep a134 m134.pep a134 m134.pep a134	IEKQRGIS IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI IIIIIIIIIII VLTAVDSALMVI 110 170 LKIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV EIQQLRDEIELV 230 290 DATVRMVEPDEE 111111111111111111111111111111111	TATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN 241 VQAASNEFN 240 PKFSGFIFK 300 360
m134.pep a134 m134.pep a134 m134.pep a134	IEKQRGIS IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 170 LKIRCAPVTWPI - LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 DATVRMVEPDEF DATVRMVEPDEF 290 350 SSVVTFMSHDRE	TATSDWMD 60 120 DAAKGVEA IIIIIIII DAAKGVEA 120 180 GMGKNFKG IIIIIIII GMGKNFKG 180 240 VQAASNEFN 241 VQAASNEFN 240 PKFSGFIFK 300 CLVEEAYAG
m134.pep a134 m134.pep a134 m134.pep a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 170 LKIRCAPVTWPI - LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 290 DATVRMVEPDEF DATVRMVEPDEF DATVRMVEPDEF	TATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN 11111111 VQAASNEFN 240 PKFSGFIFK 300 CLVEEAYAG
m134.pep a134 m134.pep a134 m134.pep a134 m134.pep a134	IEKQRGIS IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 170 LKIRCAPVTWPI - LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 DATVRMVEPDEF DATVRMVEPDEF 290 350 SSVVTFMSHDRE	TATSDWMD 60 120 DAAKGVEA 11111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN 11111111 VQAASNEFN 240 PKFSGFIFK 300 CLVEEAYAG
m134.pep a134 m134.pep a134 m134.pep a134 m134.pep a134 m134.pep	IEKQRGIS IEKQRGIS IEKQRGIS IEKQRGIS QTIKLLNY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				SAGTVKGKKTGF 50 110 VLTAVDSALMVI VLTAVDSALMVI 170 LKIRCAPVTWPI - LQIRCAPVTWPI 170 230 EIQQLRDEIELV EIQQLRDEIELV 230 290 DATVRMVEPDEF DATVRMVEPDEF DATVRMVEPDEF	TATSDWMD 60 120 DAAKGVEA 1111111 DAAKGVEA 120 180 GMGKNFKG 11111111 GMGKNFKG 180 240 VQAASNEFN 11111111 VQAASNEFN 240 PKFSGFIFK 300 CLVEEAYAG

382

	370	380	390	400	410	420
m134.pep	DIIGIPNHGNIQIGI	DSFSEGEQLA	FTGIPFFAPE	LFRSVRIKNPI	LKIKQLQKGL	QQLGEE
	11111111111111111	111111111:	11111111111			111111
a134	DIIGIPNHGNIQIG	SFSEGEQLT	FTGIPFFAPE	LFRSVRIKNP	LKIKQLQKGL	QQLGEE
	370	380	390	400	410	420
	430	440	450	460	470	480
m134.pep	GAVOVFKPMSGADL					
штотор				11111111:1		111111
a134	GAVOVFKPMSGADL	LGAVGVLQF	EVVTSRLANE			DDKKKL
	430	440	450	460	470	480
	490	500	510	520	530	
m124 non	AEFEKANAGNLAIDA					
m134.pep	AEFERANAGNEAIDA	SGGNEATEAE		THE DIVERSE	IIIIIIII	
-124	AEFEKANAGNLAIDA		יין ווווווווווווווווווווווווווווווווווו			
a134	490	500	510	520	530	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 517>: g135.seq

```
ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCG
    TTCGGAcgGC AGCCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC
51
101
    TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
151 GCGGTTGCTG CAGGGTTCGG CGCGCTGGGT TTCAAAAAAC GTCCGGTCAA
201 AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC
301 CTGCTCAGCC GTGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
    CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCGATTCCC ATCATCAATG
401 AAAACGACAC GGTTTCGGTT GAGGAGTTGA AAATCGGCGA CAACGACACA
451 TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT
501 GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG
551 CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG
601 GCGGGCGGCT CGGGTTCGGC AAACGGCACG GGCGGTATGC TGACCAAAAT
651 CAAAGCGGCA ACCATCGCCG CCGAATCCGG CGTACCGGTG TATATCTGTT
701 CCTCACTCAA ACCCGATTCA TTGGCCGAAG CCGCCGAACA TCAGGCGGAC
    GGCTCGTTTT TCGTcccCcg tgCCAAAGGT TTGCGGACAC AGAAGCAATG
801 GctggCGTTC TATTCcgaaa gcggGGgcag cgttTAtgtg gacgaaagtg
851 cggaacacgc tTtgtccgaa caagggaaag cctgCTGA
```

This corresponds to the amino acid sequence <SEQ ID 518; ORF 135.ng>: g135.pep

1 MKYKRIVFKV GTSSITRSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG
51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI
101 LLSRADFADK RRYQNAGGAL SVLLQRRAIP IINENDTVSV EELKIGDNDT
151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM
201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDS LAEAAEHQAD

251 GSFFVPRAKG LRTQKQWLAF YSESGGSVYV DESAEHALSE QGKAC*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 519>: m135.seq

1 ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA
51 TTCGGACGGC AGTCTCTCGC GCGGCAAAAT CCAAACCATC ACCTGCCAGC
101 TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC
151 GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAAC GTCCGGTCAA
201 AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG
251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCGCAAATC
301 CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG
351 CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCCGTCCCC ATCATCAATG
401 AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA
451 TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT

WO 99/57280

501	GACCGACATA	GACGGTCTTT	ACACGGGCAA	CCCGAACAGC	AATCCCGATG
551	CCGTACGGCT	GGACAAAATC	GAACACATCA	ACCATGAAAT	CATCGAAATG
601	GCGGGCGGCT	CGGGTTCGGC	AAACGGCACG	GGCGGTATGC	TGACCAAAAT
651	CAAAGCGGCA	ACCATCGCCG	CCGAATCCGG	CGTACCGGTG	TATATCTGTT
701	CCTCGCTCAA	ACCCGATGCA	CTTGCCGAAG	CTGCCGAACA	TCAGGCGGAC
751	GGCTCGTTTT	TCGTCCCCCG	TGCCAAAGGT	TTGCGGACGC	AGAAGCAATG
801	GCTGGCGTTC	TATTCCGAAA	GCCGGGGCAG	CGTTTATGTG	GACGAAGGTG
851	CGGAACACGC	TTTGTCCGAA	CAGGGGAAAA	GCCTGCTGAT	GTCGGGCATT
901	GCCGGAATCG	AAGGGCATTT	TTCCCGTATG	GACACCGTAA	CCGTGTACAG
951	CAAGGCAACC	AAACAGCCCC	TGGGCAAAGG	GCGCGTCCTG	TTCGGCTCTG
1001	CCGCCGCCGA	AGACCTGCTC	AAATCGCGTA	AGGCGAAAGG	CGTGTTCATC
1051	CATCGGGACG	ACTGGATTTC	CATCACGCCC	GAAATACGCC	TGCTTCTGAC
1101	<u> </u>				

This corresponds to the amino acid sequence <SEQ ID 520; ORF 135>:

m135.pep

1 MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TCQLAALHHA GHE<u>LVLVSSG</u>
51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI
101 LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT
151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM
201 AGGSGSANGT GGMLTKIKAA TIAAESGVPV YICSSLKPDA LAEAAEHQAD
251 GSFFVPRAKG LRTQKQWLAF YSESRGSVYV DEGAEHALSE QGKSLLMSGI
301 AGIEGHFSRM DTVTVYSKAT KQPLGKGRVL FGSAAAEDLL KSRKAKGVFI
351 HRDDWISITP EIRLLTEF*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 135 shows 97.6% identity over a 294 aa overlap with a predicted ORF (ORF 135.ng) from N. gonorrhoeae:

m135/g135

	10	20	30	40	50	60
m135.pep	MKYKRIVFKVGTSS	ITHSDGSLSR	GKIQTITCQI	LAALHHAGHEL	VLVSSGAVAA	GFGALG
		11:111111		111111111111	1111111111	111111
g135	MKYKRIVFKVGTSS	ITRSDGSLSR	GKIQTITRQI	LAALHHAGHEL	VLVSSGAVAA	GFGALG
	10	20	30	40	50	60
	70	80	90	100	110	120
m135.pep	FKKRPVKIADKQAS	AAVGQGLLME	EYTANLSSDO	GIVSAQILLSR	ADFADKRRYQ	NAGGAL
		11111111111				111111
g135	FKKRPVKIADKQAS	AAVGQGLLME	EYTANLSSDO	GIVSAQILLSR	ADFADKRRYO	
	70	80	90	100	110	120
	130	140	150	160	170	180
m135.pep	SVLLQRRAVPIINE	NDTVSVEELK	GDNDTLSA	QVAAMIQADLL	VLLTDIDGLY	TGNPNS
					1111111111	111111
g135	SVLLQRRAIPIINE	NDTVSVEELK	IGDNDTLSA	QVAAMIQADLL	VLLTDIDGLY	TGNPNS
	130	140	150	160	170	180
	190	200	210	220	230	240
m135.pep	NPDAVRLDKIEHIN	HEIIEMAGGS	GSANGTGGMI	LTKIKAATIAA	ESGVPVYICS	SLKPDA
		1111111111			1111111111	11111:
g135	NPDAVRLDKIEHIN	HEIIEMAGGS	GSANGTGGMI	LTKIKAATIAA	ESGVPVYICS	SLKPDS
	190	200	210	220	230	240
	250	260	270	280	290	300
ml35.pep	LAEAAEHQADGSFF	VPRAKGLRTQ	KQWLAFYSES	SRGSVYVDEGA	EHALSEQGKS	LLMSGI
		1111111111	111111111		111111111:	
g135	LAEAAEHQADGSFF	VPRAKGLRTQ	KQWLAFYSES	SGGSVYVDESA	EHALSEQGKA	CX
	250	260	270	280	290	
	310	320	330	340	350	360

m135.pep

190

200

a135

AGIEGHFSRMDTVTVYSKATKOPLGKGRVLFGSAAAEDLLKSRKAKGVFIHRDDWISITP m135.pep The following partial DNA sequence was identified in N. meningitidis <SEQ ID 521>: a135.seq ATGAAATACA AAAGAATCGT ATTTAAAGTC GGCACATCTT CGATTACCCA 1 TTCGGACGGC AGTCTCTCGC GCGGCAAAAT CCAAACCATC ACCCGCCAGC TTGCCGCATT GCATCATGCG GGACACGAGC TGGTCTTGGT GTCTTCCGGC 101 GCGGTTGCGG CAGGGTTCGG TGCGCTGGGT TTCAAAAAAC GTCCGGTCAA 201 AATCGCCGAC AAACAGGCTT CCGCCGCCGT CGGGCAGGGG CTGCTGATGG 251 AAGAATATAC GGCAAACCTG TCTTCAGACG GCATCGTGTC CGCACAAATC 301 CTGCTCAGCC GCGCCGACTT TGCCGACAAA CGCCGCTACC AAAATGCCGG 351 CGGCGCACTT TCCGTGCTGC TGCAACGCCG CGCCGTCCCC ATCATCAATG
401 AAAACGATAC GGTTTCGGTT GAGGAATTGA AAATCGGCGA CAACGACACA 451 TTGAGTGCGC AAGTGGCGGC GATGATACAG GCAGACCTCT TGGTGCTGCT 501 GACCGACATA GACGGTCTTT ACACCGGCAA CCCGAACAGC AATCCCGATG 551 CCGTACGGCT GGACAAAATC GAACACATCA ACCATGAAAT CATCGAAATG GCGGGCGGCT CGGGTTCGGC AAACGGCACA GGCGGTATGC TGACTAAAAT 601 651 CAAAGCGGCG ACGATTGCGA CCGAGTCCGG CGTACCGGTC TATATCTGTT 701 CCTCGCTCAA ACCCGATGCA CTTGCCGAAG CGGCAGATAA TCAGGCGGAC GGCTCGTTTT TCGTCCCCCG TGCCAAAGGT TTGCGGACGC AGAAGCAATG 751 GCTGGCGTTC TATTCCGAAA GCAGGGGCGG CGTTTATGTG GACGAAGGTG CGGAACACGC TTTGTCCGAA CAGGGAAAAA GCCTGCTGAT GTCGGGCATT 851 GCCGGAATCG AAGGGCATTT TTCCCGTATG GACACCGTAA CCGTGTACAG CAAGGCAACC AAACAGCCTT TGGGCAAAGG GCGAGTCCTG TTCGGCTCTG 951 CCGCCGCCGA AGACCTGCTC AAATTGCGTA AGGCGAAAGG CGTGTTCATC 1001 CATCGGGACG ACTGGATTTC CATCACGCCC GAAATACGCC TGCTTCTGAC 1051 CGAATTTTAG 1101 This corresponds to the amino acid sequence <SEQ ID 522; ORF 135.a>: a135.pep MKYKRIVFKV GTSSITHSDG SLSRGKIQTI TRQLAALHHA GHELVLVSSG 51 AVAAGFGALG FKKRPVKIAD KQASAAVGQG LLMEEYTANL SSDGIVSAQI 101 LLSRADFADK RRYQNAGGAL SVLLQRRAVP IINENDTVSV EELKIGDNDT 151 LSAQVAAMIQ ADLLVLLTDI DGLYTGNPNS NPDAVRLDKI EHINHEIIEM AGGSGSANGT GGMLTKIKAA TIATESGVPV YICSSLKPDA LAEAADNQAD GSFFVPRAKG LRTQKQWLAF YSESRGGVYV DEGAEHALSE QGKSLLMSGI 301 AGIEGHFSRM DTVTVYSKAT KQPLGKGRVL FGSAAAEDLL KLRKAKGVFI HRDDWISITP EIRLLLTEF* m135/a135 98.4% identity in 369 aa overlap 10 MKYKRIVFKVGTSSITHSDGSLSRGKIQTITCQLAALHHAGHELVLVSSGAVAAGFGALG m135.pep MKYKRIVFKVGTSSITHSDGSLSRGKIQTITRQLAALHHAGHELVLVSSGAVAAGFGALG a135 30 40 50 90 100 110 120 FKKRPVKIADKQASAAVGQGLLMEEYTANLSSDGIVSAQILLSRADFADKRRYONAGGAL m135.pep a135 FKKRPVKIADKQASAAVGQGLLMEEYTANLSSDGIVSAQILLSRADFADKRRYQNAGGAL 70 80 90 110 120 150 160 SVLLQRRAVPIINENDTVSVEELKIGDNDTLSAQVAAMIQADLLVLLTDIDGLYTGNPNS m135.pep SVLLQRRAVPIINENDTVSVEELKIGDNDTLSAQVAAMIQADLLVLLTDIDGLYTGNPNS a135 130 140 150 160 170 180 190 200 210 220 230

NPDAVRLDKIEHINHEIIEMAGGSGSANGTGGMLTKIKAATIAAESGVPVYICSSLKPDA

NPDAVRLDKIEHINHEIIEMAGGSGSANGTGGMLTKIKAATIATESGVPVYICSSLKPDA

220

230

210

WO 99/57280

385

m135.pep	250 LAEAAEHQADGSFE	260 VPRAKGLRT(. .	280 SRGSVYVDEGA		300 SLLMSGI
a135	LAEAADNQADGSFE	VPRAKGLRT(KOWLAFYSE	SRGGVYVDEGA	EHALSEQGK:	SLLMSGI
	250	260	270	280	290	300
	310	320	330	340	350	360
m135.pep	AGIEGHFSRMDTVI	VYSKATKQPI	LGKGRVLFGS	AAAEDLLK SRK	AKGVFIHRD	DWISITP
		1		111111111111		
a135	AGIEGHFSRMDTVI					
	310	320	330	340	350	360
	370					
m135.pep	EIRLLLTEFX					
	111111111					
.a135	EIRLLLTEFX					
	370					

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 523>:
```

```
g136.seq
         ATGGAAATCC GGTTTCAGAC AGCATTTTTA CGTTTGGTTC AGatgaAAAC
      1
      51
         AAACGCTtca aTTCTtaccg caACACGCCT TGTATTTCCT GccgCTGCCG
         CACGGACAGG GATCGTTCCT GCCGgtTTTT TCCCCTTCCC TGCGGACGGT
     101
         TTGCGGTTTG TTGATGACCG CCTGCCAGTA GCGGTAGATG TCtgccagcg
     151
     201 cgTAAGGCag tTCGGAcgca agttccgcca gctcgccttc ggTGAATTGC
     251 AGgcggataa cgccgtttTC CTCTTCGTCg taaatgccgc ccactgccat
     301 cacgGGGTAA AACAGCTCTT CAAACGCTTC ATCATCGGCG GCTTCAAACC
     351 AATCGGTCGG CACAATGTCC AAACCGTAAA GATAGGCGTT GCACCAAGTG
         TAAAAATCGC TGCCGCCCTC GCCGTCGTCG TAGAGCCACA AATCGGGCAG
         CTTTTTATCC GACATCGCGG CGGTTGTTTC CATCGCCATT GCCAAAACCA
     501 GCCGTTCGAT TTCGGAACGT TCGGCGGCGG TAAATTGCGA TTCGTCGCCC
     551 AACACTTCGG GCAGCCAGTC GAGCGGTGCC AATTTGTCCG GCCCGCTCAA
     601 CAGCGCCGTC ATAAAACCTT GAACCTCGTC GCAACGCATC GTGTTGCCTT
     651 GTTCGCTTTT GGCATCCAAT AA
```

This corresponds to the amino acid sequence <SEQ ID 524; ORF 136.ng>: g136.pep

```
1 MEIRFQTAFL RLVQMKTNAS ILTATRLVFP AAAARTGIVP AGFFPFPADG
51 LRFVDDRLPV AVDVCQRVRQ FGRKFRQLAF GELQADNAVF LFVVNAAHCH
101 HGVKQLFKRF IIGGFKPIGR HNVQTVKIGV APSVKIAAAL AVVVEPQIGQ
151 LFIRHRGGCF HRHCQNQPFD FGTFGGGKLR FVAQHFGQPV ERCQFVRPAQ
201 QRRHKTLNLV ATHRVALFAF GIQ*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 525>: m136.seq

```
ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC
 1
51
    CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG
101
    CGGACGGTTT GCGGTTTGTT GATGACTGCC TGCCAGTAGC GGTAGATATC
151 CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG
201 TGAATTGCAG ACGGATAGCG CCGTTTTCCT CTTCGTCGTA AATACCGCCC
251 AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC
301 TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC
351 ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA
401
    TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC
    CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT
501 CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC
551 CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT
601 GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG
651 ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CAAATGGGTT
701 TTGCGCCCTA TTATCGCCGC AATGCCGTCT GA
```

This corresponds to the amino acid sequence <SEQ ID 526; ORF 136>:

```
m136.pep
              METNASILTA TRLVFSAAAA RTGIVPACFF AFPADGLRFV DDCLPVAVDI
          51 RQCIRQLGFQ FRQLAFCELQ TDSAVFLFVV NTAQCHDGIK QLFKRFIIDG
         101 FKPIGRHNIQ TVKISIAPCV KIAAAVFVFI QPQIGQFFIR HRGGCFHRHC
              QNQPFDFGTF GGGKLRFVAQ HFGQPVERCQ FVRPAQQRRH KTLNLVATHR
         201 VALFAFGIQQ FAQPPFGCFG KFSGIHHFPF QMGFAPYYRR NAV*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 136 shows 85.6% identity over a 209 as overlap with a predicted ORF (ORF 136.ng)
from N. gonorrhoeae:
     m136/g136
                                     10
                                               20
                                                        30
                                                                  40
     m136.pep
                              METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRFVDDCLPV
                              MEIRFQTAFLRLVQMKTNASILTATRLVFPAAAARTGIVPAGFFPFPADGLRFVDDRLPV
     g136
                                  20
                                           30
                                                     40
                                                              50
                   50
                            60
                                      70
                                               80
                                                        90
                                                                 100
                 AVDIRQCIRQLGFQFRQLAFCELQTDSAVFLFVVNTAQCHDGIKQLFKRFIIDGFKPIGR
    m136.pep
                 g136
                 AVDVCQRVRQFGRKFRQLAFGELQADNAVFLFVVNAAHCHHGVKQLFKRF11GGFKP1GR
                         70
                                  80
                                           90
                                                   100
                                                             110
                  110
                           120
                                    130
                                              140
                                                       150
                                                                 160
     m136.pep
                 HNIQTVKISIAPCVKIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLR
                 {\tt HNVQTVKIGVAPSVKIAAALAVVVEPQIGQLFIRHRGGCFHRHCQNQPFDFGTFGGGKLR}
    g136
                       130
                                 140
                                          150
                                                   160
                                                             170
                                                                      180
                  170
                           180
                                    190
                                              200
                                                       210
                                                                 220
                 FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIH
    m136.pep
                 g136
                 FVAQHFGQPVERCQFVRPAQQRRHKTLNLVATHRVALFAFGIQX
                       190
                                 200
                                          210
                  230
                           240
    m136.pep
                 HFPFQMGFAPYYRRNAVX
The following partial DNA sequence was identified in N. meningitidis <SEO ID 527>:
     al36.seq
              ATGGAAACAA ACGCTTCAAT TCTTACCGCA ACACGCCTTG TATTTTCTGC
           1
          51
              CGCTGCCGCA CGGACAGGGA TCGTTCCTGC CTGTTTTTTC GCCTTCCCTG
         101 CGGACGGTTT GCGGCTTGTT GATGACCGCC TGCCAGTAGC GGTAGATATC
              CGCCAATGCA TAAGGCAACT CGGATTCCAG TTCCGCCAGC TCGCCTTCTG
         151
              TGAATTGCAG ACGGATAGTG CCGTTGTCCT CTTCGTCGTA AATACCGCCC
         201
              AATGCCATGA TGGGATAAAA CAACTCTTCA AACGCTTCAT CATCGACGGC
         251
              TTCAAACCAA TCGGTCGGCA CAATATCCAA ACCGTAAAGA TAAGCATTGC
              ACCATGTGTA AAAATCGCTG CCGCCGTCTT CGTTTTCATA CAGCCACAAA
         351
         401
              TCGGGCAGTT TTTTATCCGA CATCGCGGCG GTTGTTTCCA TCGCCATTGC
              CAAAACCAGC CGTTCGATTT CGGAACGTTC GGCGGCGGTA AATTGCGATT
         451
         501
              CGTCGCCCAA CACTTCGGGC AGCCAGTCGA GCGGTGTCAA TTTGTCCGGC
         551 CCGCTCAACA GCGCCGTCAT AAAACCTTGA ACCTCGTCGC AACGCATCGT
         601
              GTTGCCTTGT TCGCTTTTGG CATCCAACAA TTCGCTCAAC CGCCGTTTGG
         651 ATGCTTCGGT AAATTTTCGG GAATCCATCA TTTTCCTTTT CCAATGGGTT
         701
              TTGCGCCCTA TTATAGTGGA TTAAATTTAA ATCAGGACAA GGCGACGAAG
         751
              CCGCAGACAG TACAAATAGT ACGGCAAGGC GAGGCAACGC CGTACTGGTT
         801
              TAAATTTAAT CCACTATATC GCCGCAATGC CGTCTGA
```

This corresponds to the amino acid sequence <SEQ ID 528; ORF 136.a>: a136.pep

```
METNASILTA TRLVFSAAAA RTGIVPACFF AFPADGLRLV DDRLPVAVDI
             RQCIRQLGFQ FRQLAFCELQ TDSAVVLFVV NTAQCHDGIK QLFKRFIIDG
         51
         101
             FKPIGRHNIQ TVKISIAPCV KIAAAVFVFI QPQIGQFFIR HRGGCFHRHC
         151
             QNQPFDFGTF GGGKLRFVAQ HFGQPVERCQ FVRPAQQRRH KTLNLVATHR
             VALFAFGIQQ FAQPPFGCFG KFSGIHHFPF PMGFAPYYSG LNLNQDKATK
         201
         251
             PQTVQIVRQG EATPYWFKFN PLYRRNAV*
m136/a136 98.3% identity in 238 aa overlap
                      10
                               20
                                        30
                                                40
               METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRFVDDCLPVAVDIRQCIRQLGFQ
    m136.pep
                METNASILTATRLVFSAAAARTGIVPACFFAFPADGLRLVDDRLPVAVDIRQCIRQLGFQ
    a136
                               20
                                        30
                                                40
                                                         50
                      70
                              . 80
                                        90
                                               100
                                                        110
                                                                 120
                FRQLAFCELQTDSAVFLFVVNTAQCHDGIKQLFKRFIIDGFKPIGRHNIQTVKISIAPCV
    m136.pep
                {\tt FRQLAFCELQTDSAVVLFVVNTAQCHDGIKQLFKRFIIDGFKPIGRHNIQTVKISIAPCV}
    a136
                      70
                               80
                                       90
                                               100
                      130
                              140
                                       150
                                               160
                                                        170
                                                                 180
               {\tt KIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLRFVAQHFGQPVERCQ}
    m136.pep
                a136
               KIAAAVFVFIQPQIGQFFIRHRGGCFHRHCQNQPFDFGTFGGGKLRFVAQHFGQPVERCO
                     130
                              140
                                       150
                                               160
                                                        170
                                                                 180
                     190
                              200
                                       210
                                               220
                                                        230
                                                                 240
    m136.pep
               {\tt FVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIHHFPFQMGFAPYYRR}
               a136
               FVRPAQQRRHKTLNLVATHRVALFAFGIQQFAQPPFGCFGKFSGIHHFPFPMGFAPYYSG
                     190
                              200
                                       210
                                               220
    m136.pep
               NAVX
    a136
               LNLNQDKATKPQTVQIVRQGEATPYWFKFNPLYRRNAVX
                      250
                              260
                                       270
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 529>: g137.seq

1				CTCATCAGTA	
51	TGCCGTCCGC	TGGTATGCCT	TAAGCTACAT	CCTCGGATTT	ATTCTTTTTA
101	CCTTTCTCGG	CAGAAGGCGC	ATCGCGCAAG	GCTTGTCCGT	TTTTACCAAA
151	GAATCGCTCG	ACGACTTCCT	GACATGGGGC	ATTTTGGGCG	TGATTTTGGG
201	CGGACGCTTG	GGCTATGTCC	TGTTTTACAA	ATTCTCCGAC	TACCTCGCCC
251	ATCCGCTTGA	TATTTTCAAG	GTATGGGAAG	GCGGAATGTC	GTTCCACGGC
301	GGCTTTTTGG	GTGTAGTTAT	TGCCATATGG	TTGTTCAGCC	GCAAGCACGG
351	CATCGGCTTC	CTCAAACTGA	TGGACACGGT	CGCGCCGCTC	GTTCCGCTGG
401	GTCTCGCTTC	GGGACGTATC	GGCAACTTTA	TCAACGGCGA	ACTTTGGGGA
451	CGCATTACCG	ACATTAACGC	ATTTTGGGCA	ATGGGCTTCC	CGCAAGCGCA
501	TTACGAAGAT	GCCGAAGCCG	CCGCGCACAA	TCCGCTTTGG	GCAGAATGGC
551	TGCAACAATA	CGGTATGCTG	CCGCGTCATC	CCTCGCAGCT	TTATCAGTTT
601	GCCCTTGAAG	GCATCTGCCT	GTTCGCCGTC	GTTTGGCTGT	TTTCCAAAAA
651	ACCGCGCCCG	ACCGGGCAGA	CTGCCGCGCT	TTTTCTCGGC	GGCTACGGCG
701	TGTTCCGCTT	TATTGCCGAA	TTTGCGCGCC	AACCCGACGA	CTATCTCGGG
751	CTGCTGACCT	TGGGGCTGTC	GATGGGGCAA	TGGTTGAGCG	TCCCGATGAT
801	TGTTTTGGGT	ATCGTCGGCT	TTGTCCGGTT	CGGCATGAAA	AAACAGCACT
851	GA				

This corresponds to the amino acid sequence <SEQ ID 530; ORF 137.ng>: g137.pep

1	MIIHHQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
51	ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
101	GFLGVVIAIW LFSRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
151	RITDINAFWA MGFPQAHYED AEAAAHNPLW AEWLQQYGML PRHPSQLYQF
201	ALEGICLFAV VWLFSKKPRP TGQTAALFLG GYGVFRFIAE FARQPDDYLG
251	LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
The following p	artial DNA sequence was identified in N. meningitidis <seq 531="" id="">:</seq>
m137.seq	
1	ATGATTACCC ATCCCCAATT CGATCCCGTC CTTATCAGTA TCGGCCCGCT
51	TGCCGTCCGC TGGTATGCCC TAAGCTACAT CCTCGGATTT ATTCTTTTA
101	CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
151 201	GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TAATTTTGGG CGGGCGTTTG GGTTACGTCC TGTTTTACAA GTTTTCCGAC TACCTCGCCC
251	ATCCGCTTGA TATTTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
301	GGCTTTTTGG GTGTAGTTAT TGCCATACGG TTGTTCGGCC GCAAACACGG
351	CATCGGCTTC CTCAAACTGA TGGATACGGT CGCACCGCTC GTTCCGCTGG
401	GTCTCGCTTC GGGACGTATC GGCAACTTCA TCAACGGCGA ACTTTGGGGA
451	CGCGTTACCG ACATCAACGC ATTTTGGGCA ATGGGCTTCC CGCAGGCGCG
501	TTACGAAGAT GCCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
551	TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
601	GCACTTGAAG GCATCTGCCT GTTCACCGTC ATTTGGCTGT TCTCTAAAAA
651	ACAGCGGTCG ACCGGACAAG TCGCCTCGCT CTTCCTCGGC GGCTACGGCA
701	TATTCCGCTT CATTGCCGAA TTCGCACGCC AACCCGACGA CTATCTCGGG
751	CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
801 851	TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT GA
	s to the amino acid sequence <seq 137="" 532;="" id="" orf="">:</seq>
	is to the annito acid sequence \SEQ ID 332, ORF 137%.
m137.pep	MITHPOFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
	ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
	GFLGVVIAIR LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
	RVTDINAFWA MGFPQARYED AEAAAHNPLW AEWLQQYGML PRHPSQLYQF
201	ALEGICLFTV IWLFSKKQRS TGQVASLFLG GYGIFRFIAE FARQPDDYLG
251	LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
Computer analy	sis of this amino acid sequence gave the following results:
	a predicted ORF from N. gonorrhoeae
	395.4% identity over a 283 aa overlap with a predicted ORF (ORF 137.ng)
from N. gonorri	
m137/g137	
	10 00 00 00 00
m137 man	10 20 30 40 50 60 MITHPOFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAOGLSVFTKESLDDFLTWG
m137.pep	
g137	MIIHHQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
940.	10 20 30 40 50 60
	70 80 90 100 110 120
m137.pep	ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKHGIGF
g137	ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIWLFSRKHGIGF
	70 80 90 100 110 120
	120 140 150 160 150
m137	130 140 150 160 170 180 LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDAEAAAHNPLW
m137.pep	LRIMITVAPINTIAGEAGATINTELWGRYTDINAFWAMGFPQARYEDAEAAANPLW
g137	
340.	130 140 150 160 170 180
	190 200 210 220 230 240
m137.pep	${\tt AEWLQQYGMLPRHPSQLYQFALEGICLFTVIWLFSKKQRSTGQVASLFLGGYGIFRFIAE}$

g137	
m137.pep g137	250 260 270 280 FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX
The following p	partial DNA sequence was identified in N. meningitidis <seq 533="" id="">:</seq>
1	ATGATTACCC ATCCCCAATT CGACCCCGTC CTTATCAGTA TCGGCCCGCT
51	TGCCGTCCGC TGGTATGCCC TAAGCTACAT CCTCGGATTT ATTCTTTTTA
101	CCTTTCTCGG CAGAAGGCGC ATCGCGCAAG GCTTGTCCGT TTTTACCAAA
151	GAATCGCTCG ACGACTTCCT GACATGGGGC ATTTTGGGCG TAATTTTGGG
201	CGGGCGTTTG GGTTACGTCC TGTTTTACAA GTTTTCCGAC TACCTCGCCC
251	ATCCGCTTGA TATTTCAAG GTATGGGAAG GCGGAATGTC GTTCCACGGC
301	GGCTTTTTGG GTGTAGTTAT TGCCATATGG TTGTTCGGTC GCAAACACGG
351	CATCGGCTTC CTCAAACTGA TGGACACGGT CGCACCGCTC GTTCCACTGG
401	GTCTCGCTTC GGGACGTATC GGCAACTTCA TCAACGGCGA ACTTTGGGGA
451	CGCGTTACCG ACATCAACGC ATTTTGGGCA ATGGGCTTCC CGCAGGCGCG
501	TTACGAAGAC CTCGAAGCCG CCGCGCACAA TCCGCTTTGG GCAGAATGGC
551	TGCAACAATA CGGTATGCTG CCGCGTCATC CCTCGCAGCT TTATCAGTTT
601	GCACTTGAAG GCATCTGCCT GTTCGCCGTC GTTTGGCTGT TCTCTAAAAA
651	ACAGCGGCCG ACCGGACAAG TCGCCTCACT CTTCCTCGGC GGCTACGGCA
701	TATTCCGCTT CATTGCCGAA TTTGCACGCC AACCCGACGA CTATCTCGGG
751	CTGCTGACCT TGGGGCTGTC GATGGGGCAA TGGTTGAGCG TCCCGATGAT
801	TGTTTTGGGT ATCGTCGGCT TTGTCCGGTT CGGCATGAAA AAACAGCACT
. 851	GA
This correspond	Is to the amino acid sequence <seq 137.a="" 534;="" id="" orf="">:</seq>
a137.pep	MITHPQFDPV LISIGPLAVR WYALSYILGF ILFTFLGRRR IAQGLSVFTK
51	ESLDDFLTWG ILGVILGGRL GYVLFYKFSD YLAHPLDIFK VWEGGMSFHG
101	GFLGVVIAIW LFGRKHGIGF LKLMDTVAPL VPLGLASGRI GNFINGELWG
151	RVTDINAFWA MGFPQARYED LEAAAHNPLW AEWLQQYGML PRHPSQLYOF
201	ALEGICLFAV VWLFSKKQRP TGQVASLFLG GYGIFRFIAE FARQPDDYLG
251	LLTLGLSMGQ WLSVPMIVLG IVGFVRFGMK KQH*
m137/a137 98	3.2% identity in 283 aa overlap
	10 20 30 40 50 60
m137.pep	MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
• • •	
a137	MITHPQFDPVLISIGPLAVRWYALSYILGFILFTFLGRRRIAQGLSVFTKESLDDFLTWG
	10 20 30 40 50 60
	70 80 90 100 110 120
m137.pep	ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIRLFGRKHGIGF
mis/.pep	
a137	ILGVILGGRLGYVLFYKFSDYLAHPLDIFKVWEGGMSFHGGFLGVVIAIWLFGRKHGIGF
	70 80 90 100 110 120
	120
	130 140 150 160 170 180
m137.pep	LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDAEAAAHNPLW
- •	
a137	LKLMDTVAPLVPLGLASGRIGNFINGELWGRVTDINAFWAMGFPQARYEDLEAAAHNPLW
	130 140 150 160 170 180
	190 200 210 220 230 240
m137.pep	AEWLQQYGMLPRHPSQLYQFALEGICLFTVIWLFSKKQRSTGQVASLFLGGYGIFRFIAE
-107	
a137	AEWLQQYGMLPRHPSQLYQFALEGICLFAVVWLFSKKQRPTGQVASLFLGGYGIFRFIAE

390

190 200 210 220 230 240 250 260 270 FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX m137.pep a137 FARQPDDYLGLLTLGLSMGQWLSVPMIVLGIVGFVRFGMKKQHX 250 260 270 280

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 535>: g138.seq
```

```
ATGGAGTTTG AAAACATTAT TTCCGCCGCc gaCAAGGCGC GTATCCTTGC
     CGAAGCACTG CCTTACAtcc gccgGTTTTC CGGTTCGGTC GCCGTCATCA
 51
     AGTATGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
101
     CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
151
     CGGCGGCGGG CCGCAGATCA ATGCGATGCT TGAAAAAGTC GGCAAAAAGG
251 GCGAATTTGT CCAAGGAATG CGCGTTACCG ACAAAGAGAC GATGGATATT
    GTCGAAATGG TATTGGGCGG GCACGTCAAC AAGGAAATCG TGTCGATGAT
301
     TAACACATAT GGAGGGCACG CGGTCGGCGT GAGCGGGCGC GACGACCATT
351
     TCATTAAGGC GAAGAAACTT TTGGTCGATA CGCCCGAACA GAATAGCGTG
     GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA
451
    AGGGCTGATA GAACGCGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
501
    GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT GGCAGGCAAA
551
    TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAAtatcqc
     cgGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC acgCCGAAAC
701 GGATTGATGG GCTGATTGCC GACGGCACGC TGTATGGCGG TATGCTGCCG
     AAAATCGCTT CTGCGGTCGA AGCCGCCGtc aACGGTGTGA AAGCCACGCA
751
     CATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG
     ATGCCGGTAT CGGGTCGATG ATTTTAGGCA GAGGGGAAGA TGCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 536; ORF 138.ng>: g138.pep

- 1 MEFENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA 51 RD<u>VVLLKLVG IHPVIVHGG</u>G PQINAMLEKV GKKGEFVQGM RVTDKETMDI
- 101 VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LVDTPEQNSV 151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
- 201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDGLIA DGTLYGGMLP
- 251 KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGRGEDA*

The following partial DNA sequence was identified in *N. meningitidis* <SEQ ID 537>: m138.seq

- 1 ATGGAGTCTG AAAACATTAT TTCCGCCGCC GACAAGGCGC GTATCCTTGC
 51 CGAAGCGCTG CCTTACATCC GCCGGTTTTC CGGTTCGGTC GCCGTCATCA
 101 AATACGGCGG CAACGCGATG ACCGAACCTG CCTTGAAAGA AGGGTTTGCC
 151 CGCGATGTCG TGCTGCTGAA GCTGGTCGGC ATTCATCCCG TCATCGTTCA
 201 CGGCGGCGG CCGCAGATCA ATGCGATGCT TGAAAAAGGC GATGGATATT
 301 GTCGAAATGG TGTTGGGCGG GCATGTCAAT AAAGAAATCG TGTCGATGAT
- 351 TAACACATAT GGCGGACACG CGGTCGGCGT AAGCGGACGC GACGACCATT
 401 TCATTAAGGC GAAGAAACTT TTGATCGATA CGCCCGAACA GAATGGCGTG
- 451 GACATCGGAC AGGTCGGTAC GGTGGAAAGC ATCGATACCG GTTTGGTTAA 501 AGGGCTGATA GAACGTGGCT GCATTCCCGT CGTCGCCCCC GTCGGCGTAG
- 551 GTGAAAAAGG CGAAGCGTTC AACATCAACG CCGATTTGGT AGCAGGCAAA 601 TTGGCGGAAG AATTGAACGC CGAAAAACTC TTGATGATGA CGAATATCGC
- 651 CGGTGTGATG GACAAAACGG GCAATCTGCT GACCAAACTC ACGCCGAAAC
 701 GGATTGATGA ACTGATTGCC GACGGCACGC TGTATGCCGG TATGCTGCCG
- 751 AAAATCGCTT CTGCGGTCGA AGCCGCCGTC AACGGTGTGA AAGCCACGCA
- 801 TATCATCGAC GGCAGGTTGC CCAACGCGCT TTTGCTGGAA ATCTTTACCG 851 ATGCCGGTAT CGGTTCGATG ATTTTGGGCG GTGGGGAAGA TGCCTGA

This corresponds to the amino acid sequence <SEQ ID 538; ORF 138>: m138.pep

1 MESENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA

- 51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKEAMDI 101 VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEONGV
- 151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
- 201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDELIA DGTLYGGMLP
- 251 KIASAVEAAV NGVKATHIID GRLPNALLLE IFTDAGIGSM ILGGGEDA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 138 shows 98.0% identity over a 298 as overlap with a predicted ORF (ORF 138.ng) from N. gonorrhoeae: m138/g138

```
20
                                30
                                        40
                                                       60
m138.pep
          MESENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
          MEFENIISAADKARILAEALPYIRRFSGSVAVIKYGGNAMTEPALKEGFARDVVLLKLVG
g138
                10
                        20
                                30
                                        40
                                               50
                                                       60
                70
                        80
                                90
                                       100
                                               110
          IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKEAMDIVEMVLGGHVNKEIVSMINTY
m138.pep
          g138
          IHPVIVHGGGPQINAMLEKVGKKGEFVQGMRVTDKETMDIVEMVLGGHVNKEIVSMINTY
                70
                        80
                                90
                                       100
                                               110
               130
                       140
                               150
                                       160
                                               170
                                                      180
          GGHAVGVSGRDDHFIKAKKLLIDTPEQNGVDIGQVGTVESIDTGLVKGLIERGCIPVVAP
m138.pep
          g138
          GGHAVGVSGRDDHF1KAKKLLVDTPEQNSVD1GQVGTVES1DTGLVKGL1ERGC1PVVAP
               130
                       140
                               150
                                       160
                                               170
                                                      180
               190
                       200
                               210
                                       220
                                               230
                                                       240
m138.pep
          VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDELIA
          VGVGEKGEAFNINADLVAGKLAEELNAEKLLMMTNIAGVMDKTGNLLTKLTPKRIDGLIA
g138
               190
                       200
                               210
                                       220
                                               230
                                                      240
               250
                       260
                               270
                                       280
                                               290
          {\tt DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRLPNALLLEIFTDAGIGSMILGGGEDAX}
m138.pep
          DGTLYGGMLPKIASAVEAAVNGVKATHIIDGRLPNALLLEIFTDAGIGSMILGRGEDAX
g138
               250
                       260
                               270
                                       280
                                               290
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 539>: a138.seq

. seq					
1	ATGGAGTCTG	AAAACATTAT	TTCCGCCGCC	GACAAGGCGC	GTATCCTTGC
51	CGAAGCGCTG	CCTTACATCC	GCCGGTTTTC	CGGTTCGGTC	GCCGTCATCA
101	AATACGGCGG	CAACGCGATG	ACCGAACCTG	CCTTGAAAGA	AGGGTTTGCC
151	CGCGATGTCG	TGCTGCTGAA	GCTGGTCGGC	ATTCATCCCG	TCATCGTTCA
201	CGGCGGCGGG	CCGCAGATCA	ATGCGATGCT	TGAAAAAGTC	GGCAAAAAGG
251	GTGAGTTTGT	CCAAGGAATG	CGCGTTACCG	ACAAAGAGGC	GATGGATATT
301	GTCGAAATGG	TGTTGGGCGG	GCATGTCAAT	AAAGAAATCG	TGTCGATGAT
351	TAACACATAT	GGCGGACACG	CGGTCGGCGT	AAGCGGACGC	GACGACCATT
401	TCATTAAGGC	GAAGAAACTT	TTGATCGATA	CGCCCGAACA	GAATGGCGTG
451	GACATCGGAC	AGGTCGGTAC	GGTGGAAAGC	ATCGATACCG	GTTTGGTTAA
501	AGGGCTGATA	GAACGTGGCT	GCATTCCCGT	CGTCGCCCCC	GTCGGCGTAG
551	GTGAAAAAGG	CGAAGCGTTC	AACATCAACG	CCGATTTGGT	AGCAGGCAAA
601	TTGGCGGAAG	AATTGAACGC	CGAAAAACTC	TTGATGATGA	CGAATATCGC
651	CGGTGTGATG	GACAAAACGG	GCAATCTGCT	GACCAAACTC	ACGCCGAAAC
701	GGATTGATGA	ACTGATTGCC	GACGGCACGC	TGTATGGCGG	TATGCTGCCG
751	AAAATCGCTT	CTGCGGTCGA	AGCCGCCGTC	AACGGCGTGA	AAGCCACGCA
801	TATCATCGAC	GGCAGGGTGC	CCAACGCGCT	TTTGCTGGAA	ATCTTTACCG
851	ATGCCGGTAT	CGGTTCGATG	ATTTTGGGCG	GTGGGGAAGA	TGCCTGA

This corresponds to the amino acid sequence <SEQ ID 540; ORF 138.a>:

a138.pep

- MESENIISAA DKARILAEAL PYIRRFSGSV AVIKYGGNAM TEPALKEGFA
- 51 RDVVLLKLVG IHPVIVHGGG PQINAMLEKV GKKGEFVQGM RVTDKEAMDI
- VEMVLGGHVN KEIVSMINTY GGHAVGVSGR DDHFIKAKKL LIDTPEQNGV
- 151 DIGQVGTVES IDTGLVKGLI ERGCIPVVAP VGVGEKGEAF NINADLVAGK
- 201 LAEELNAEKL LMMTNIAGVM DKTGNLLTKL TPKRIDELIA DGTLYGGMLP 251 KIASAVEAAV NGVKATHIID GRVPNALLLE IFTDAGIGSM ILGGGEDA*

m138/a138 99.7% identity in 298 aa overlap

JU/4130 77.17	o lucituity in 290 a	a overtap	,			
	10	20	30	40	50	60
m138.pep	MESENIISAADKARI					
	_ 1111111111111111				111111111	
a138	MESENIISAADKARI				LKEGFARDV	/LLKLVG
	10	20	30	40	50	60
	70	0.0				
m120 man	70	80	90	100	110	120
m138.pep	IHPVIVHGGGPQINA					
a138	TURVIVUCCCROTAN					
a130	IHPVIVHGGGPQINA 70	80	90	LEAMDIVEMV 100	LGGHVNKEIV	
	, ,	80	90	100	110	120
	130	140	150	160	170	180
m138.pep	GGHAVGVSGRDDHFI					
	111111111111111111111111111111111111111	1111111				
a138	GGHAVGVSGRDDHFI					
	130	140	150	160	170	180
	190	200	210	220	230	240
m138.pep	VGVGEKGEAFNINAD	LVAGKLAE	ELNAEKLLMMTI	NIAGVMDKTG	NLLTKLTPKE	RIDELIA
		1111111			111111111	
a138	VGVGEKGEAFNINAD					RIDELIA
	190	200	210	220	230	240
	050	260				
m138.pep	250	260	270	280	290	299
wr20.beb	DGTLYGGMLPKIASA					
a138	DGTLYGGMLPKIASA				111111111	
4100	250	260	270	280	AGIGSMILGG 290	GEDAX
	230	200	210	200	290	

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 541>: q139.seq

- 1 ATGCGAACCA CCTCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT
 - 51 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAggc ggcggcggag
 - GCGCACTTC TGCTCCCGAC TTTAATGCAG GCGGCACCGG TATCGGCAGC
 - 151 AACAGCAGGG CAACGATAGC GGAATCAGCA GCAGTATCTT ACGCCGGTAT
 - 201 AAAAAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG
 - 251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAAAGCCCC CCGAATCTGC
 - 301 ATACCGGAGA CTTTTCAAAC CCAAATGACC AATATTAAGA ATATGATCAA
 - 351 CCTCAAACCT GCAATTGAAG CAGGCTATAC AGGACGCGGG GTAGAGGTAG
 - 401 GTATCGTCGA TACAGGCGAA TCCGTCGGCA GCATATCCTT TCCCGAACTG
 - TATGGCAGAA AAGAACACGG CTATAACGAA AATTACAAAA ACAAATTACA
 - 501 AAAACTATAC GGCGTATATG CGGAAGGAAG CGCCTGA

This corresponds to the amino acid sequence <SEQ ID 542; ORF 138.ng>: g139.pep

- MRTTSTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS
- 51 NSRATIAESA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKIKAPRIC
- 101 IPETFQTQMT NIKNMINLKP AIEAGYTGRG VEVGIVDTGE SVGSISFPEL
- 151 YGRKEHGYNE NYKNKLQKLY GVYAEGSA*

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 543>:

m139.seq

1 ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGACTGCCAT

393

- 51 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG
- 101 GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGTACCGG TATCGGCAGC
- 151 AACAGCAGAG CAACAACAGC GAAATCAGCA GCAGTATCTT ACGCCGGTAT
- 201 CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG 251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCCGAATC
- 301 TGCATACCGG AGACTTTCCA AACCCAAATG ACGCATLACA AGAATTTGAT
- CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG
- 401 TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA
- 451 CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTACG AAAAACTATA
- 501 CGGCGTATAT GCGGAAGGAA GCGCCTGA

This corresponds to the amino acid sequence <SEQ ID 544; ORF 138>:

m139.pep

- MRTTPTFPTK TFKPTAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS 1
- 51 NSRATTAKSA AVSYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI
- 101 CIPETFQTQM THYKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE
- 151 LYGRKEHGYN ENYEKLYGVY AEGSA*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N.gonorrhoeae

ORF 138 shows 92.2% identity over a 179 aa overlap with a predicted ORF (ORF 138.ng) from N. gonorrhoeae:

m139/g139

		10	20	30	40	50	60
m139.pep	MRTT	?TFPTKTFKP'	TAMALAVATI	LSACLGGGGG	GTSAPDFNAG	GTGIGSNSRAT	
	1111	111111111	:			[]]]	:
g139	MRTT	STFPTKTFKP	AAMALAVATI	LSACLGGGGG	GTSAPDFNAG	GTGIGSNSRAT	CIAESA
		10	20	30	40	50	60
		70	20				
		70	80	90	100	110	120
m139.pep	AVSY	AGI KNEMCKDI	RSMLCAGRDD	VAVTDRDAKI	NAPPRICIPE:	rfqtqmthykd	JLINLK
	1111		111111111	1111111111	:11 1111111	[]]]]]	:
g139	AVSY	AGIKNEMCKD	RSMLCAGRDD	VAVTDRDAKI	KAP-RICIPE	TFQTQMTN1K	MINLK
		70	80	90	100	110	
		130	140	150	160	170	
m139.pep	PAIE	AGYTGRGVEV	GIVDTGESVG	SISFPELYGR	KEHGYNENY -	EKLYGVY <i>I</i>	LEGSAX
	1111		[] [[[[[[[[[[[[[[[[[[11111111111	111111111	: [] [] [] [
g139	PAIE	AGYTGRGVEV	GIVDTGESVO	SISFPELYGR	KEHGYNENYK	NKTÖKTÄGAÄY	AEGSAX
	120	130	140	150	160	170	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 545>:

al39.seq

- 1 ATGCGAACGA CCCCAACCTT CCCTACAAAA ACTTTCAAAC CGGCTGCCAT 51 GGCGTTAGCT GTTGCAACAA CACTTTCTGC CTGCTTAGGC GGCGGCGGAG
 - 101 GCGGCACTTC TGCGCCCGAC TTCAATGCAG GCGGCACCGG TATCGGCAGC
 - 151 AACAGCAGGG CAACAACAGC GAAATCAGCA GCAATATCTT ACGCCGGTAT
 - 201 CAAGAACGAA ATGTGCAAAG ACAGAAGCAT GCTCTGTGCC GGTCGGGATG
 - 251 ACGTTGCGGT TACAGACAGG GATGCCAAAA TCAATGCCCC CCCCGAATC
 - 301 TGCATACCGG AGACTTTACA AACCCAAATG ACGCAT.ACA AGAATTTGAT
 - 351 CAACCTCAAA CCTGCAATTG AAGCAGGCTA TACAGGACGC GGGGTAGAGG 401 TAGGTATCGT CGACACAGGC GAATCCGTCG GCAGCATATC CTTTCCCGAA
 - CTGTATGGCA GAAAAGAACA CGGCTATAAC GAAAATTAC. AAAAACTATA 451
 - CGGCGTATAT GCGGAAGGAA GCGCCTGA

This corresponds to the amino acid sequence <SEQ ID 546; ORF 139.a>: a139.pep

MRTTPTFPTK TFKPAAMALA VATTLSACLG GGGGGTSAPD FNAGGTGIGS

- 51 NSRATTAKSA AISYAGIKNE MCKDRSMLCA GRDDVAVTDR DAKINAPPRI
- 101 CIPETLQTQM THXKNLINLK PAIEAGYTGR GVEVGIVDTG ESVGSISFPE
- 151 LYGRKEHGYN ENYXKLYGVY AEGSA*

m139/a139 97.1% identity in 175 aa overlap

	-					
	10	20	30	40	50	60
m139.pep	MRTTPTFPTKTF	KPTAMALAVATI	LSACLGGGG	GTSAPDFNAG	GTGIGSNSR	ATTAKSA
	1111111111111	11:111111111			11111111	1111111
a139	MRTTPTFPTKTF	KPAAMALAVATI	LSACLGGGG	GTSAPDFNAG	GTGIGSNSR	ATTAKSA
	10	20	30	40	50	60
	70	80	90	100	110	120
m139.pep	AVSYAGIKNEMO					
M2031POP	1:1111111111					1111111
a139	AISYAGIKNEMO	KDRSMLCAGRDI	OVAVTDRDAK	NAPPRICIPE	TLOTOMTHX	KNLINLK
	70	80	90	100	110	120
	130	140	150	160	170	
m139.pep	PAIEAGYTGRGV					SAX
• •	1111111111111	111111111111			111111111	111
a139	PAIEAGYTGRGV	EVGIVDTGESVO	SISFPELYG	RKEHGYNENYX	KLYGVYAEG	SAX
	130	140	150	160	170	

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 547>: g140.seq

1 Atgtcggcac gCGGCAAGGG GGCAGgctat ctcAACAGTA CCGGACGACa TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA 101 AAAATATCAA AACCGACGGC GGTCTGCTGG CTTCCCTCGA CAGCGTCGAA 151 AAAACAGCGG GCAGTGAAGG CGACACGCCG TCCTATTATG TCCGTCGCGG 201 CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC 251 TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC 301 GAGCTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC GGTCGCCGAC CGCACAGATA TGCCGGGCAT CCGCCTACGG CGCACAACTT TCCGCACAGC GGCAGCCGTA CAGCATGCGA ATACCGCCGA CGGCGTACGC aTCTTcaaCA GTCTCGCCGC TAccgTCTAt GccgACAGTG CCGCCGCCCA TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC 551 ACAACGGTAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA 601 ACGTGGGAAC AGGGCGGTGT CGAAGGCAAA ATGCGCGGCA GTACCCAAAC 651 TATCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC 701 TGGGCATAGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC 751 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGTGG GCGATATCGG 801 CTATCTCAAA GGCCTGTTCT CctaCGGACG CTACAAAAAC AGCATCAGCC 851 GCAGCACCGG TGCGGATGAA TATGCGGAAG GCAGCGTCAA CGGCACGCTG 901 ATGCAGCTGG GCGCACTGGG TGGTGTCAAC GTTCCGTTTG CCGCAACGGG 951 AGATTTGACG GTTGAAGGCG GTCTGCGCCA CGACCTGCTC AAACAGGATG 1001 CATTCGCCGA AAAAGGCagt GCTTTGGGCT GGAGCGGCAA CAGCCTCACT 1051 GAAGGCACAC TGGTCGGACT CGCGGGTCTG AAACTGTCGC AACCCTTGAG 1101 CGATAAAGCC GTCCTGTCTG CGACGGCGGG CGTGGAACGC GACCTGAACG 1151 GACGCGACTA CGCGGTAACG GGCGGCTTTA CCGGCGCGGC TGCAGCAACC 1201 GGCAAGACGG GTGCACGCAA TATGCCGCAC ACCCGCCGGG TTGCCGGTCT 1251 GGGGGTGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA 1301 GCTACACCGG TTCCAAACAG TACGGCAACC ACAGCGGACA AATCGGCGTA 1351 GGCTACCGGT TCTGA

This corresponds to the amino acid sequence <SEQ ID 548; ORF 140.ng>: g140.pep

1 MSARGKGAGY LNSTGRHVPF LSAAKIGQDY SFFKNIKTDG GLLASLDSVE
51 KTAGSEGDTP SYYVRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
101 ELDASESSAT PETVETAVAD RTDMPGIRLR RTTFRTAAAV QHANTADGVR
151 IFNSLAATVY ADSAAAHADM QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
201 TWEQGGVEGK MRGSTQTIGI AAKTGENTTA AATLGIGRST WSENSANAKT

395


```
251 DSISLFAGIR HDVGDIGYLK GLFSYGRYKN SISRSTGADE YAEGSVNGTL
          301 MQLGALGGVN VPFAATGDLT VEGGLRHDLL KODAFAEKGS ALGWSGNSLT
          351 EGTLVGLAGL KLSQPLSDKA VLSATAGVER DLNGRDYAVT GGFTGAAAAT
          401 GKTGARNMPH TRRVAGLGVD VEFGNGWNGL ARYSYTGSKQ YGNHSGQIGV
          451 GYRF*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 549>:
     m140.seq
              ATGTCGGCAC GCGGCAAGGG GGCAGGCTAT CTCAACAGTA CCGGACGACG
           51 TGTTCCCTTC CTGAGTGCCG CCAAAATCGG GCAGGATTAT TCTTTCTTCA
          101 CAAACATCGA AACCGACGGC GGCCTGCTGG CTTCCCTCGA CAGCGTCGAA
              AAAACAGCGG GCAGTGAAGG CGACACGCTG TCCTATTATG TCCGTCGCGG
               CAATGCGGCA CGGACTGCTT CGGCAGCGGC ACATTCCGCG CCCGCCGGTC
          201
          251
              TGAAACACGC CGTAGAACAG GGCGGCAGCA ATCTGGAAAA CCTGATGGTC
              GAACTGGATG CCTCCGAATC ATCCGCAACA CCCGAGACGG TTGAAACTGC
          301
          351 GGCAGCCGAC CGCACAGATA TGCCGGGCAT CCGCCCCTAC GGCGCAACTT
          401 TCCGCGCAGC GGCAGCCGTA CAGCATGCGA ATGCCGCCGA CGGTGTACGC
          451 ATCTTCAACA GTCTCGCCGC TACCGTCTAT GCCGACAGTA CCGCCGCCCA
          501 TGCCGATATG CAGGGACGCC GCCTGAAAGC CGTATCGGAC GGGTTGGACC
          551 ACAACGGCAC GGGTCTGCGC GTCATCGCGC AAACCCAACA GGACGGTGGA
              ACGTGGGAAC AGGGCGGTGT TGAAGGCAAA ATGCGCGGCA GTACCCAAAC
          651
              CGTCGGCATT GCCGCGAAAA CCGGCGAAAA TACGACAGCA GCCGCCACAC
          701 TGGGCATGGG ACGCAGCACA TGGAGCGAAA ACAGTGCAAA TGCAAAAACC
          751 GACAGCATTA GTCTGTTTGC AGGCATACGG CACGATGCGG GCGATATCGG
          801 CTATCTCAAA GGCCTGTTCT CCTACGGACG CTACAAAAAC AGCATCAGCC
          851 GCAGCACCGG TGCGGACGAA CATGCGGAAG GCAGCGTCAA CGGCACGCTG
          901 ATGCAGCTGG GCGCACTGGG CGGTGTCAAC GTTCCGTTTG CCGCAACGGG
          951 AGATTTGACG GTCGAAGGCG GTCTGCGCTA CGACCTGCTC AAACAGGATG
         1001
              CATTCGCCGA AAAAGGCAGT GCTTTGGGCT GGAGCGGCAA CAGCCTCACT
         1051 GAAGGCACGC TGGTCGGACT CGCGGGTCTG AAGCTGTCGC AACCCTTGAG
         1101 CGATAAAGCC GTCCTGTTTG CAACGGCGGG CGTGGAACGC GACCTGAACG
         1151 GACGCGACTA CACGGTAACG GGCGGCTTTA CCGGCGCGAC TGCAGCAACC
         1201 GGCAAGACGG GGGCACGCAA TATGCCGCAC ACCCGTCTGG TTGCCGGCCT
         1251 GGGCGCGGAT GTCGAATTCG GCAACGGCTG GAACGGCTTG GCACGTTACA
         1301 GCTACGCCGG TTCCAAACAG TACGGCAACC ACAGCGGACG AGTCGGCGTA
              GGCTACCGGT TCTGA
This corresponds to the amino acid sequence <SEQ ID 550; ORF 140>:
     m140.pep
              MSARGKGAGY LNSTGRRVPF LSAAKIGODY SFFTNIETDG GLLASLDSVE
              KTAGSEGDTL SYYVRRGNAA RTASAAAHSA PAGLKHAVEQ GGSNLENLMV
          101 ELDASESSAT PETVETAAAD RTDMPGIRPY GATFRAAAAV QHANAADGVR
          151 IFNSLAATVY ADSTAAHADM QGRRLKAVSD GLDHNGTGLR VIAQTQQDGG
          201 TWEQGGVEGK MRGSTQTVGI AAKTGENTTA AATLGMGRST WSENSANAKT
          251 DSISLFAGIR HDAGDIGYLK GLFSYGRYKN SISRSTGADE HAEGSVNGTL
          301 MQLGALGGVN VPFAATGDLT VEGGLRYDLL KQDAFAEKGS ALGWSGNSLT
          351 EGTLVGLAGL KLSQPLSDKA VLFATAGVER DLNGRDYTVT GGFTGATAAT
              GKTGARNMPH TRLVAGLGAD VEFGNGWNGL ARYSYAGSKQ YGNHSGRVGV
              GYRF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 140 shows 94.5% identity over a 454 aa overlap with a predicted ORF (ORF 140.ng)
from N. gonorrhoeae:
     m140/g140
                          10
                                   20
                                             30
                                                       40
                                                                 50
                                                                           60
     m140.pep
                  MSARGKGAGYLNSTGRRVPFLSAAKIGQDYSFFTNIETDGGLLASLDSVEKTAGSEGDTL
                  MSARGKGAGYLNSTGRHVPFLSAAKIGQDYSFFKNIKTDGGLLASLDSVEKTAGSEGDTP
     q140
                          10
                                   20
                                             30
                                                      40
                                                                 50
                                                                           60
                          70
                                   80
                                                      100
                                             90
                                                                110
                                                                          120
```

m140.pep	SYYVRRGNAARTASA					/ETAAAD
g140						:
9140	70	AANSAPAGL 80	MAVEQGGSN. 90	LENLMVELDA 100	SESSATPETV 110	/ETAVAD
m140 man	130	140	150	160	170	180
m140.pep	RTDMPGIRPYGATFR		: :			
g140	RTDMPGIRLRRTTFR	TAAAVOHAN'	TADGVRIFNS	LAATVYADSA	aahadmogrf	RLKAVSD
	130	140	150	160	170	180
	190	200	210	220	230	240
m140.pep	GLDHNGTGLRVIAQT					
_		111111111	111111111			:
g140	GLDHNGTGLRVIAQT					
	190	200	210	220	230	240
	250	260	270	280	290	300
m140.pep	WSENSANAKTDSISL					
g140					: GTCADEVAEC	
5	250	260	270	280	290	300
m140.pep	310	320	330	340	350	360
mr40.beb	MQLGALGGVNVPFAA					 'ΛΩΤ'ΨΩΤ'
g140	MOLGALGGVNVPFAA					VGLAGL
	310	320	330	340	350	360
	370	380	390	400	410	420
m140.pep	KLSQPLSDKAVLFAT					
-140						
g140	KLSQPLSDKAVLSAT 370	AGVERDLNGI 380	RDYAVTGGFT(390	GAAAATGKTG 400	ARNMPHTRRV 410	/AGLGVD 420
		500	330	400	410	420
	430	440	450			
m140.pep	VEFGNGWNGLARYSY					
g140	VEFGNGWNGLARYSY					
_	430	440	450			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 551>: a140.seq

• • •	q					
	1	ATGTCGGCAG	GCGGTAAGGG	GGCAGGCTAT	CTCAACCGTA	CCGGACAACG
	51	TGTTCCCTTC	CTGAGTGCCG	CCAAAATCGG	GCGGGATTAT	TCTTTCTTCA
1	101	CAAACATCGA	AACCGACGGC	GGTCTGCTGG	CTTCCCTCGA	CAGCGTCGAA
1	151	AAAACAGCGG	GTAGTGAAGG	CGACACGCTG	TCCTATTATG	TCCGTCGCGG
2	201	CAATGCGGCA	CGGACTGCTT	CGGCAGCGGC	ACATTCCGCG	CCCGCCGGTC
2	251	TGAAACACGC	CGTAGAACAG	GGCGGCAGCA	ATCTGGAAAA	CCTGATGGTC
3	301	GAACTGGATG	CCTCCGAATC	ATCCGCAACA	CCCGAGACGG	TTGAAACTGC
3	351	GGCCGCCGAC	CGCACAGATA	TGCCGGGCAT	CCGCCCCTAC	GGCGCAACTT
4	101	TCCGCGCAGC	GGCAGCCGTA	CAGCATGCGA	ATGCCGCCGA	CGGTGTACGC
4	151	ATCTTCAACA	ATCTCGCCGC	TACCGTCTAT	GCCGACAGTA	CCGCCGCCCA
_	501				CGTATCGGAC	
-	551				AAACCCAACA	
	501				ATGCGCGGCA	
	551				TACGACAGCA	
	701				ACAGTGCAAA	
	751	GACAGCATTA			CACGATGCGG	
-	301	CTATCTCAAA			CTACAAAAAC	
_	351	GCAGCACCGG			GCAGCGTCAA	
9	901	ATGCAGCTGG	GCGCACTGGG	CGGTGTCAAC	GTTCCGTTTG	CCGCAACGGG

397

951	AGATTTGACG	GTCGAAGGCG	GTCTGCGCTA	CGACCTGCTC	AAACAGGATG
1001	CATTCGCCGA	AAAAGGCAGT	GCTTTGGGCT	GGAGCGGCAA	CAGCATCACT
1051	GAAGGCACAC	TGGTCGGACT	CGCGGGTCTG	AAGCTGTCGC	AACCCTTGAG
1101	CGATAAAGCC	GTCCTGTTTG	CAACGGCGGG	CGTGGAACGC	GACCTGAACG
1151	GACGCGACTA	CACGGTAACG	GGCGGCTTTA	CCGGCGCGAC	TGCAGCAACC
1201	GGCAAGACGG	GGGCACGCAA	TATGCCGCAC	ACCCGCCTGG	TTGCCGGTCT
1251	GGGCGCGGAT	GTCGAATTCG	GCAACGGCTG	GAACGGCTTG	GCACGTTACA
1301	GCTACGCCGG	TTCCAAACAG	TACGGCAACC	ACAGCGGACG	AGTCGGCGTA
1351	GGCTACCGGT	TCTGA			
espond	s to the amin	o acid seque	nce <seo ii<="" td=""><td>O 552: ORF</td><td>140.a>:</td></seo>	O 552: ORF	140.a>:
).pep		•		, -	
1	MSAGGKGAGY	LNRTGQRVPF	LSAAKIGRDY	SFFTNIETDG	GLLASLDSVE

This corres a140

.pep					
1	MSAGGKGAGY	LNRTGQRVPF	LSAAKIGRDY	SFFTNIETDG	GLLASLDSVE
51	KTAGSEGDTL	SYYVRRGNAA	RTASAAAHSA	PAGLKHAVEQ	GGSNLENLMV
101	ELDASESSAT	PETVETAAAD	RTDMPGIRPY	GATFRAAAAV	QHANAADGVR
151	IFNNLAATVY	ADSTAAHADM	QGRRLKAVSD	GLDHNATGLR	VIAQTQQDGG
201	TWEQGGVEGK	MRGSTQTVGI	AAKTGENTTA	AATLGMGHST	WSENSANAKT
251	DSISLFAGIR	HDAGDIGYLK	GLFSYGRYKN	SISRSTGADE	HAEGSVNGTL
301	MQLGALGGVN	VPFAATGDLT	VEGGLRYDLL	KQDAFAEKGS	ALGWSGNSIT
351	EGTLVGLAGL	KLSQPLSDKA	VLFATAGVER	DLNGRDYTVT	GGFTGATAAT
401	GKTGARNMPH	TRLVAGLGAD	VEFGNGWNGL	ARYSYAGSKQ	YGNHSGRVGV
451	GYRF*				

m140/a140 98.2% identity in 454 aa overlap

10/41-10	70.27	o identity	מס דעד ווו	Overlap				
			10	20	30	40	50	60
m140.p	ер	MSARGKO	AGYLNSTGE	RVPFLSAAKI	GQDYSFFTNI	ETDGGLLASL	DSVEKTAGSE	GDTI.
-	-				1:1111111			
a140		MSAGGKG	AGYINRTGO	RVPFI.SAAKT	GRDYSFFTNI	ETDECLIASI	DSVEKTAGSE	CDTI
		1101100110	10	20	30	40	50	60
			10	20	30	40	30	60
			70 .	80	90	100		
140		CHAMBE					110	120
m140.p	ер	STIVERG	NAARTASAA	AHSAPAGLKE	IAVEQGGSNLE	NLMVELDASE	SSATPETVET	AAAD
		111111			111111111	1111111111		$\Pi\Pi\Pi$
a140		SYYVRRG			IAVEQGGSNLE		SSATPETVET	AAAD
			70	80	90	100	110	120
			130	140	150	160	170	180
m140.p	ep	RTDMPGI	RPYGATFRA	AAAVQHANAA	ADGVRIFNSLA	ATVYADSTAA	HADMOGRRLK	AVSD
_	-	1111111	111111111	THEFT	11111111:11	11111111111	111111111	1111
a140		RTDMPGI	RPYGATERA	AAAVOHANAA	DGVRIFNNLA	ATVYADSTAA	HADMOGRRIK	CAVAD
			130	140	150	160	170	180
				0	100	100	170	100
			190	200	210	220	230	240
m140.p	00	CI DUNCT			VEGKMRGSTQ			
mr40.p	€Þ.	GEDRINGI	GTKATHÖL	SÕDGG I MEÕGG	VEGNMRGSTQ	TVGIAAKTGE	NTTAAATLGM	GRST
a140				111111111		111111111	1111111111	1:11
a140					VEGKMRGSTQ			
			190	200	210	220	230	240
			250	260	270	280	290	300
m140.p	ep	WSENSAN	AKTDSISLE	'AGIRHDAGDI	GYLKGLFSYG	RYKNSISRST	GADEHAEGSV	NGTL
			11111111	3111111111	111111111		11111111111	$\Pi\Pi\Pi$
a140		WSENSAN	AKTDSISLE	AGIRHDAGDI	GYLKGLFSYG	RYKNSISRST	GADEHAEGSV	NGTL
			250	260	270	280	290	300
			310	320	330	340	350	360
m140.p	сэ	MOLGALG	GVNVPFAAT	GDLTVEGGLR	YDLLKQDAFA			
				1111111111	11111111111		11.1111111	LILL
a140		MOLGALG	CVNVPFAAT	CDITVEGGE	YDLLKQDAFA	TITTE CHECK	• 	1111
			310	320	330	340		
			310	320	330	340	350	360
		•	370	380	200	100	440	
m140 =					390	400	410	420
m140.p	eb	VESOFES	DKAVLFATA	GVERDLNGRD	YTVTGGFTGA	TAATGKTGAR	NMPHTRLVAG	LGAD
-140		111111			инини	! ! ! ! ! ! ! ! ! ! !		$\Pi\Pi$
a140		KLSQPLS	DKAVLFATA	GVERDLNGRD	YTVTGGFTGA	TAATGKTGAR	NMPHTRLVAG	LGAD

370 380 390 400 410 420 430 440 450 VEFGNGWNGLARYSYAGSKOYGNHSGRVGVGYRFX m140.pep VEFGNGWNGLARYSYAGSKQYGNHSGRVGVGYRFX a140 430 440

```
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 553>: g141.seq

1 atgagettea aAAccgATGC CGAAACCGCC CAATCCTCCA CCATGCGCCC
51 GATTGCGGAA ATTGCCGCCA AGCTGGGTTT GAACGTTGAC AACATTGAGC
101 CTTACGGTCA TTACAAAGCC AAAATCAATC CTGCCGAAGC GTTCAAGCTG
151 CCGCAAAAAC AAGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
201 GGCGGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCATTGC
```

GCCATATCGG CAAAGACTCT GTGATTGCTT TGCGCGAGCC TTCTTTGGGT 251 CCGGTGTTCG GCGTGAAAGG CGGCGCGGCA GGCGGCGGCT ACGCGCAAGT 351 TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGCGAC TTCCACGCCA 401 TCGGTGCGCC GAATAACCTC CTCGCCGCCA TGCTCGACAA CCATATCTAC CAAGGTAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT 451 GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGTATGGGCA 501 551 AGCCTGTtga cggCGTGATG CGtcccGACG GCTTCGACAT CACCGTCGCC TCCGAAGTGa tggcgGTATT CTGCCTTGCC AAAGACATCA GCGATTTGAA 601 AGAGCGTTtt gGCAATATTC TCGTCGCCTA CGCCAAAGAC GGCAGCCCCG 701 TTTACGCCAA AGATTTGAAG GCACACGGCG CGATGGCGGC ATTGCTAAAA GATGCGATTA AGCCCAATTT GGTGCAAACC ATCGAAGGCA CTCCGGCCTT 751 801 TGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTTA 851 CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA 901 GGCTTCGGCG CGGACTTGGG TGCGGAAAAA TTCTGCGACA TCAAATGCCG CCTTGCCGGT TTGAAACCTG ATGCGGCAGT CGTCGTGGCG ACTGTCCGCG 951 CCCTGAAATA CAACGGCGGC GTGGAACGCG CCAACCTTGG TGAAGAAAAC CTCGAAGCCT TGGCAAAAGG TTTGCCCAAC CTGTTGAAAC ACATTTCCAA 1101 CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG TGTCCGACTC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA 1151 CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GCGGCGCGGG 1251 CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA TGCCATCGAC AACCAACCTA 1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC

CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA TGCCATCGAC AACCAACCTA
TAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
TAGTCGATTG CCCAAAAAGT GTACGGCGC GAAGATGTCG ATTTCAGCGC
GGAAGCGTCT GCCGAAATCG CCTCGCTGGA AAAACTGGGC TTGGACAAAA
TGCCGATCTG CATGGCGAAA ACCCAATATT CATTGAGCGA CAACGCCAAA
TGCCGATCTG CCCCGAAGG CTTCCGCATC GCCGTACGCG GTATCACTGT
TCCGCCGGC GCGGGCTTCA TCGTTGCGTT GTGCGGCAAT ATGATGAAAA

TGCCGGGCCT GCCGAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGAA

1651 CACGGCGTGA TTCACGGCTT GTTCTGA
This corresponds to the amino acid sequence <SEQ ID 554; ORF 141.ng>:
g141.pep

MSFKTDAETA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG 101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY OGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA 151 201 SEVMAVFCLA KDISDLKERF GNILVAYAKD GSPVYAKDLK AHGAMAALLK 251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA 301 GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN LEALAKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDSDAE LAMIEKACAE HGVEVSLTEV WGKGGAGGAD LARKVVNAID NQPNNFGFAY DVELGIKDKI 401 451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK LLGCPEGFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDE 551 HGVIHGLF*

The following partial DNA sequence was identified in N.meningitidis <SEQ ID 555>:

```
m141.sea
       1
         ATGAGCTTCA AAACCGATGC CGAAATCGCC CAATCCTCCA CCATGCGCCC
      51 GATTGGCGAA ATTGCCGCCA AGCTTGGTCT GAATGCCGAC AACATTGAGC
     101 CTTACGGTCA TTACAAGGCG AAAATCAATC CTGCCGAAGC GTTCAAACTG
     151 CCGCAAAAC AGGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC
     201 GGCGGCGAA GGCAAAACCA CCGTAACCAT CGGTTTGGCG GACGCGTTGC
     251
          GCCACATCGG CAAAGATGCC GTGATTGCCC TGCGCGAACC TTCTCTGGGG
     301
          CCGGTGTTCG GCGTGAAAGG CGGCGCGCA GGCGGCGGCT ATGCCCAAGT
     351
          TTTGCCGATG GAAGACATCA ACCTGCACTT CACCGGAGAT TTTCACGCCA
     401
          TCGGTGCGGC AAATAATCTG CTTGCCGCGA TGCTCGACAA CCATATCTAC
     451
          CAAGGCAACG AGTTGAACAT CGACCCCAAA CGCGTGCTGT GGCGGCGCGT
          GGTCGATATG AACGACCGCC AGTTGCGCAA CATCATCGAC GGCATGGGTA
          AACCCGTTGA CGGCGTGATG CGTCCTGACG GTTTCGATAT TACCGTTGCT
     601
          TCCGAAGTGA TGGCGGTATT CTGTCTTGCC AAAGACATCA GCGATTTGAA
     651
          AGAGCGTTTG GGCAACATCC TTGTCGCCTA CGCCAAAGAC GGCAGCCCCG
     701
          TTTACGCCAA AGATTTGAAA GCGAATGGCG CGATGGCGGC ATTGCTTAAA
     751
          GATGCGATTA AGCCCAACTT GGTGCAAACC ATCGAAGGCA CGCCCGCCTT
     801
          CGTACACGGC GGCCCGTTCG CCAACATCGC CCACGGCTGC AACTCCGTAA
         CCGCAACCCG TCTGGCGAAA CACCTTGCCG ATTACGCCGT AACCGAAGCA
     851
     901 GGCTTCGGCG CGGACTTGGG CGCGGAAAAA TTCTGCGACA TCAAATGCCG
          CCTTGCCGGT TTGAAACCTG ATGCGGCTGT TGTCGTGGCG ACTGTCCGCG
    1001 CGTTGAAATA TAACGGCGGC GTGGAACGCG CCAACCTCGG CGAAGAAAAT
    1051 TTAGACGCTT TGGAAAAAGG TTTGCCCAAC CTGCTGAAAC ACATTTCCAA
          CCTGAAAAAC GTATTCGGAC TGCCCGTCGT CGTTGCGCTC AACCGCTTCG
    1101
          TGTCCGACGC CGATGCCGAG TTGGCGATGA TTGAAAAAGC CTGTGCCGAA
    1201
          CACGGCGTTG AAGTTTCCCT GACCGAAGTG TGGGGCAAAG GTGGTGCGGG
    1251 CGGCGCGGAT TTGGCGCGCA AAGTCGTCAA CGCCATTGAA AGTCAAACCA
    1301 ATAACTTCGG TTTCGCCTAC GATGTCGAGT TGGGCATCAA AGACAAAATC
    1351 CGTGCGATTG CCCAAAAAGT GTACGGCGCG GAAGATGTTG ATTTCAGCGC
    1401 GGAAGCGTCT GCCGAAATCG CTTCACTGGA AAAACTGGGC TTGGACAAAA
    1451 TGCCGATCTG CATGGCGAAA ACCCAATACT CTTTGAGCGA CAACGCCAAA
          CTGTTGGGCT GCCCCGAAGA CTTCCGCATC GCCGTGCGCG GCATCACCGT
    1551
          TTCCGCAGGC GCAGGTTTCA TCGTCGCCCT GTGCGGCAAC ATGATGAAAA
          TGCCCGGCCT GCCCAAAGTT CCGGCTGCCG AGAAAATCGA TGTGGACGCA
          GAAGGCGTGA TTCACGGCTT GTTCTGA
This corresponds to the amino acid sequence <SEO ID 556; ORF 141>:
m141.pep
      1
         MSFKTDAEIA QSSTMRPIGE IAAKLGLNAD NIEPYGHYKA KINPAEAFKL
      51 PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDA VIALREPSLG
          PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
     101
     151
          QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMGKPVDGVM RPDGFDITVA
          SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
     201
     251
          DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATRLAK HLADYAVTEA
     301
          GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
     351 LDALEKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDADAE LAMIEKAÇAE
     401 HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
     451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
     501 LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA
     551 EGVIHGLF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 141 shows 97.5% identity over a 558 aa overlap with a predicted ORF (ORF 141.ng)
from N. gonorrhoeae:
m141/g141
                     10
                              20
                                        30
                                                  40
            MSFKTDAEIAQSSTMRPIGEIAAKLGLNADNIEPYGHYKAKINPAEAFKLPQKQGRLILV
m141.pep
             g141
            MSFKTDAETAQSSTMRPIGEIAAKLGLNVDNIEPYGHYKAKINPAEAFKLPQKQGRLILV
                    10
                              20
                                        30
```

m141.pep	70 TAINPTPAGEGKTTV	80 TIGLADALRHI	90 GKDAVIALRE	100 PSLGPVFGVK	110	120 OVI.PM
		1111111111		11111111111		
g141	TAINPTPAGEGKTTV 70	TIGLADALRHI 80	90	100	GGAAGGGYAQ 110	120
m141.pep	130 EDINLHFTGDFHAIG 	140 AANNLLAAMLI	150 NHIYQGNELN	160 IDPKRVLWRR	170 VVDMNDRQLR	180 NIID
g 14 1	EDINLHFTGDFHAIG	AANNLLAAMLI 140	NHIYQGNELN 150	IDPKRVLWRR	VVDMNDRQLR	NIID 180
ml41.pep	190 GMGKPVDGVMRPDGF1					
g141						
m141.pep	250 ANGAMAALLKDAIKPI	260 NLVQTIEGTP#	270 AFVHGGPFANI	280 AHGCNSVTAT	290 RLAKHLADYA	300 VTEA
g141	: AHGAMAALLKDAIKPI 250	[1111111111		11111111111	HH
m141 non	310	320	330	340	350	360
m141.pep	GFGADLGAEKFCDIKO GFGADLGAEKFCDIKO		 .VVVATVRALK	1111111111	11111:11 1	1111
	310 370	320 380	330	340 400	350 410	360 420
m141.pep	LLKHISNLKNVFGLP	VVVALNRFVSD	ADAELAMIEK	ACAEHGVEVS	LTEVWGKGGA	GGAD
g141	LLKHISNLKNVFGLP	VVVALNRFVSE 380	SDAELAMIEK 390	ACAEHGVEVS 400	LTEVWGKGGA 410	GGAD 420
ml41.pep	430 LARKVVNAIESQTNNI	440 FGFAYDVELGI	450 KDKIRAIAOK	460 VYGAEDVDFS	470 AEASAEIASL	480 EKLG
g141	LARKVVNAIDNQPNNI 430	FGFAYDVELGI 440	KDKIRAIAQK 450	VYGAEDVDFS 460	AEASAEIASL 470	EKLG 480
m141.pep	490 LDKMPICMAKTQYSLS					
g141		 SDNAKLLGCPE 500	 GFRIAVRGIT 510	 VSAGAGFIVA 520	 LCGNMMKMPG 530	 LPKV 540
m141.pep	550 PAAEKIDVDAEGVIHO	1111				
-	550					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 557>: al41.seq

- 1 ATGAGTTTCA AAACCGATGC CGAAATCGCC CAATCCTCCA CCATGCGCCC
- 51 GATTGGCGAA ATTGCCGCCA AGCTGGGTTT GAACGTTGAC AACATTGAGC
- 101 CTTACGGTCA TTACAAAGCC AAAATCAATC CTGCCGAAGC GTTCAAACTG
 151 CCGCAAAAAC AGGGCAGGCT GATTTTGGTT ACCGCCATCA ACCCGACTCC

This corresponds to the amino acid sequence <SEQ ID 558; ORF 141.a>:

a141.pep

1 MSFKTDAEIA QSSTMRPIGE IAAKLGLNVD NIEPYGHYKA KINPAEAFKL
51 PQKQGRLILV TAINPTPAGE GKTTVTIGLA DALRHIGKDS VIALREPSLG
101 PVFGVKGGAA GGGYAQVLPM EDINLHFTGD FHAIGAANNL LAAMLDNHIY
151 QGNELNIDPK RVLWRRVVDM NDRQLRNIID GMCKPVDGVM RPDGFDITVA
201 SEVMAVFCLA KDISDLKERL GNILVAYAKD GSPVYAKDLK ANGAMAALLK
251 DAIKPNLVQT IEGTPAFVHG GPFANIAHGC NSVTATLAK HLADYAVTEA
301 GFGADLGAEK FCDIKCRLAG LKPDAAVVVA TVRALKYNGG VERANLGEEN
351 LDALEKGLPN LLKHISNLKN VFGLPVVVAL NRFVSDSDAE LAMIEKACAE
401 HGVEVSLTEV WGKGGAGGAD LARKVVNAIE SQTNNFGFAY DVELGIKDKI
451 RAIAQKVYGA EDVDFSAEAS AEIASLEKLG LDKMPICMAK TQYSLSDNAK
501 LLGCPEDFRI AVRGITVSAG AGFIVALCGN MMKMPGLPKV PAAEKIDVDA
551 EGVIHGLF*

m141/a141 99.5% identity in 558 aa overlap

	10	20	30	40	50	60
m141.pep	MSFKTDAEIAQSST	MRPIGETAAF	KLGLNADNIEP	YGHYKAKINP	AEAFKLPQK	QGRLILV
		1111111111		11111111111	HIIIIIII	1111111
a141	MSFKTDAEIAQSST	MRPIGEIAAF	KLGLNVDNIEP	YGHYKAKINP	AEAFKLPOK	QGRLILV
	10	20	30	40	50	60
	70	80	90	100	110	120
m141.pep	TAINPTPAGEGKTT	VTIGLADALE	RHIGKDAVIAL	REPSLGPVFG	VKGGAAGGG	YAQVLPM
	1111111111111111	111111111	11111:1111	11111111111	111111111	ПППП
a141	TAINPTPAGEGKTT	'VTIGLADALF	RHIGKDSVIAL	REPSLGPVFG	VKGGAAGGG	YAQVLPM
	70	80	90	100	110	120
	130	140	150	160	170	180
m141.pep	EDINLHFTGDFHAI	GAANNLLAAN	ILDNHIYQGNE	LNIDPKRVLW	RRVVDMNDR	OLRNIID
		311111111	ШНАПП	111111111	111111111	111111
a141	EDINLHFTGDFHAI	GAANNLLAAN	ILDNHIYQGNE	LNIDPKRVLW	RRVVDMNDR	DLRNIID
	130	140	150	160	170	180

	190	200	210	220	230	240
m141.pep	GMGKPVDGVMRPDGFD					
a141	GMGKPVDGVMRPDGFD					
411	190	200	210	220	230	240
	250	260	270	280	290	300
m141.pep	ANGAMAALLKDAIKPN					
a141	ANGAMAALLKDAIKPN					
	250	260	270	280	290	300
	310	320	330	340 .	350	360
m141.pep	GFGADLGAEKFCDIKC					
	1111111111111111					
a141	GFGADLGAEKFCDIKC	RLAGLKPDAA	VVVATVRALK	YNGGVERANI	GEENLDALER	GLPN
	310	320	330	340	350	360
	370	380	390	400	410	420
m141.pep	LLKHISNLKNVFGLPV					
. 1 41	111111111111111					
a141	LLKHISNLKNVFGLPV					
	370	380	390	400	410	420
	430	440	450	460	470	480
m141.pep	LARKVVNAIESQTNNF					
a141	LARKVVNAIESQTNNF					
	430	440	450	460	470	480
* * *	490	500	510	520	530	540
m141.pep	LDKMPICMAKTQYSLS					
a141			11111111111		1111111111	
d141	LDKMPICMAKTQYSLS 490	500	510	VSAGAGEIVA 520	LCGNMMKMPG 530	
	430	500	310	320	230	540
	550	559				
m141.pep	PAAEKIDVDAEGVIHG					
		111				
a141	PAAEKIDVDAEGVIHG	LFX				
	550					

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 559>: g142.seq

- 1 ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
- 51 ACGCGCCTTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAAATATGG
- 101 TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
- 151 GGCAACATCC TGATGTTCGT CCGCCAGCAT ATTGATGCAG AG9CTGCCGT
- 201 TTTCCGACAG GATcggaATG AttcgCGCAC TCCGGTTTAT GCACAGCATC
- 251 ACGGTCGGCG GCTCGTCGGT AACCGGCGCA ACCGCCGTCA TTGTAATGCC
- 301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCAC
- 351 AGGATGCCAT CGCATCACGG AACGAAGTTT GAAAAGTTTT CTGCAAATCC 401 GCCATTTTC CCCTTTAAAC CGTCCCCTAT ATAAGAATGC TGCACACAAG
- 451 GCATCCCCCC ATGTGCAGCA GTTCTGA

This corresponds to the amino acid sequence <SEQ ID 560; ORF 142.ng>: g142.pep

- 1 MRADFMFADN MPVQVRQRAF YFKLSRFAAM PNMVGKPLFG RQAGQPGKMF
- 51 GNILMFVRQH IDAEAAVFRQ DRNDSRTPVY AQHHGRRLVG NRRNRRHCNA
- 101 VTPCRTVCRD DMNACRTGCH RITERSLKSF LQIRHFSPLN RPLYKNAAHK
- 151 ASPHVQQF*

403


```
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 561>:
     m142.seq
               ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
           51
               ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
          101
              TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
              GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
          201 TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
          251 ACGGTCGGCG GCTCGTCGGT AACCGGCGGCG ACCGCCGTCA TTGTAATGCC
          301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCGC
          351 AAGATGCCAT CGCATCACGG AACGAAGTTT GAAAATTTTT CTGCAAATCC
              GCCATTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG
              GCATCCCCC ATGTGCAGCA GTTTTGA
This corresponds to the amino acid sequence <SEQ ID 562; ORF 142>:
     m142.pep
              MRADFMFADN MPVQVRQRAL YFKLSRFAAM PDVVGKPLFG RQAGQPGKMF
              GNILMFVRQR IDAEAAVFRQ DRNDSRTPVD AQHHGRRLVG NRRDRRHCNA
              VTPCRTVCRD DMNACRARCH RITERSLKIF LQIRHFSPLN CPLYKNAAHK
          151 ASPHVQQF*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 142 shows 93.7% identity over a 158 aa overlap with a predicted ORF (ORF 142.ng)
from N. gonorrhoeae:
     m142/g142
                         10
                                   20
                                            30
                                                      40
                                                                50
                                                                         60
     m142.pep
                 {\tt MRADFMFADNMPVQVRQRALYFKLSRFAAMPDVVGKPLFGRQAGQPGKMFGNILMFVRQR}
                 g142
                 MRADFMFADNMPVQVRQRAFYFKLSRFAAMPNMVGKPLFGRQAGQPGKMFGNILMFVRQH
                         10
                                  20
                                                      40
                                                               50
                                                                         60
                                  80
                                            90
                                                     100
                                                               110
                                                                        120
                 IDAEAAVFRQDRNDSRTPVDAQHHGRRLVGNRRDRRHCNAVTPCRTVCRDDMNACRARCH
     ml42.pep
                 g142
                 {\tt IDAEAAVFRQDRNDSRTPVYAQHHGRRLVGNRRNRRHCNAVTPCRTVCRDDMNACRTGCH}
                         70
                                  80
                                            90
                                                     100
                                                              110
                                                                        120
                        130
                                  140
                                           150
                 RITERSLKIFLQIRHFSPLNCPLYKNAAHKASPHVQQFX
     m142.pep
                 RITERSLKSFLQIRHFSPLNRPLYKNAAHKASPHVQQFX
    g142
                        130
                                  140
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 563>:
     a142.seq
              ATGCGTGCCG ATTTCATGTT TGCCGACAAT ATGCCCGTGC AGGTGCGCCA
              ACGCGCCCTC TATTTCAAGT TGTCCCGTTT TGCCGCGATG CCAGATGTGG
          101 TAGGCAAACC GCTCTTCGGG CGACAGGCCG GTCAGCCCGG CAAAATGTTC
              GGCAACATCC TGATGTTCGT CCGCCAGCGT ATTGATGCAG AGGCTGCCGT
          151
         201 TTTCCGACAG GATCGGAATG ATTCGCGCAC TCCGGTTGAT GCACAGCATC
         251 ACGGTCGGCG GCTCGTCCGT AACCGGCGCA ACCGCCGTCA TTGTAATGCC
          301 GTAACGCCCT GCCGCACCGT CTGTCGTGAT GACATGAACG CCTGCCGCAC
              AGGATGCCAT CGCATCACGG AACGAAGTTT GAAAAGTTTT CTGCAAATCC
          351
          401 GCCATTTTC CCCTTTAAAC TGTCCCCTAT ATAAGAATGC TGCACACAAG
          451 GCACCCCCA TGTGCAGCAG TTCTGATTCA AAAAGCCGTC GGTCGGACAT
         501 TTCCGCGCGT TACGGCGTAT TACGAGTTCA ACGCATCCTC GATTTTGGCA
              AGTTCTGCCA ACAGGTCTTT AAGCAGCAGC ATTTTCTCGC GGCCCAGCAC
         601
              TTCCTCGATA GCGTCGTAAC GCTCGTCCAC TTCTTCGCCG ATTTCCTCAT
         651 ACAGCTTCTC GCCCTCGGCA GTCAGCTTCA GAAAAACACG TCGTTGGTCG
              TTGGAAGGTT TCAGGCGGAC AACCAAACCC GCTTTTTCAA GGCGGGTCAG
              GATACCGGTC AGGCTGGGGC GCAAAATGCA CGCCTGATTC GCCAAATCTT
```

801 851 901	GAAAGTCCAG TGATCGGTAA GGCTTCCCTT	TATTCGCCTG	ATTCAGAATA	GGCCTGAATT	GGGTCATCAG	
This correspond	s to the amin	o acid seque	nce <seq ii<="" td=""><td>D 564; ORF</td><td>142.a>:</td><td></td></seq>	D 564; ORF	142.a>:	
a142.pep						
1	MRADEMFADN	MPVQVRQRAL	YFKLSRFAAM	PDVVGKPLFG	RQAGQPGKMF	
51	GNILMFVRQR	IDAEAAVFRQ	DRNDSRTPVD	AQHHGRRLVR	NRRNRRHCNA	
101	VTPCRTVCRD	DMNACRTGCH	RITERSLKSF	LQIRHFSPLN	CPLYKNAAHK	
151	APPMCSSSDS	KSRRSDISAR	YGVLRVQRIL	DFGKFCQQVF	KOOHFLAAOH	
201	FLDS <u>VVT</u> LVH	FFADFLIQLL	ALGSQLQKNT	SLVVGRFOAD	NOTRFFKAGO	
251	DTGQAGAQNA	RLIRQILKVQ	RAVFROKTON	PPLLIGNIRL	IONRPELGHO	
301	GFPCLYQTDI	DRRMF*				
m142/a142 96	.1% identity i	in 153 aa ov	erlap			
			20 30	40	50 60	
m142.pep	MRADFMFA				QAGQPGKMFGNILMFVRQI	,
• •	[1][[][•
a142	MRADEMEA	DNMPVOVRORA	AT.YFKT.SRFAAN	ווווווווווווו	:QAGQPGKMFGNILMFVRQ	
		10 2	20 30) 40		
		_,	.0 50	, 40	50 60)
		70 s	30 90	100	110 120	
m142.pep					TPCRTVCRDDMNACRARCH	,
• •	1111111			HILLIIII		
a142	IDAEAAVE	RODRNDSRTPV	/UVUHHGDD1///D			
		70 R	90 90	100		
		. •	.0	100	110 120	,
	1	30 14	0 150	159		
m142.pep			NCPLYKNAAHK			
• •						
a142	RITERSLK	SFLOIRHESPI	NCPLYKNAAHK	JADDMCGGGDGR	SRRSDISARYGVLRVQRII	
	1:	30 14	0 150		170 180	
			100	100	170 180	,
a142	DFGKFCOO	VFKOOHFLAAC	HFLDSVVTT.VH	FFADELTOLLA	LGSQLQKNTSLVVGRFQAD	
	1	90 20	0 210		230 240	
		20	210	220	230 240	,

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 565>: g143.seq

3.seq				-	`
1	ATGTTGAGCT	TCGGCTATCT	CGGCGTTCAG	ACGGCCTTTA	CCCTGCAAAG
51	CTCGCAGATG	AGCCGCATTT			CCGCACAATT
101	TGGGCTGGTT		CCGCCGCTGG	CGGGGATGCT	GGTTCAGCCG
151	ATAGTGGGCT	ACTACTCAGA	CCGCACTTGG	AAGCCGCGCT	TGGGCGGCCG
201	CCGCCTGCCG	TATCTGCTTT	ACGGCACGCT	GATTGCGGTC	ATCGTGATGA
251	TTTTGATGCC	GAACTCGGGC	AGCTTCGGTT	TCGGCTATGC	GTCGCTGGCG
301	GCCTTGTCGT	TCGGCGCGCT	GATGATTGCG	CTGTTGGACG	TGTCGTCGAA
351	TATGGCGATG	CAGCCGTTTA	AGATGATGGT	CGGCGATATG	GTCAACGAGG
401	AGCAGAAAAG	CTACGCCTAC	GGGATTCAAA	GTTTCTTAGC	GAATACGGAC
451	GCGGTTGTGG		GCCGTTTGTG	TTcgcgtata	TCGGTTTGGC
501	GAACACTGCC	GAGAAAGGCG	TTGTGCCACA	AACCGTGGTC	GTAGCATTCT
551	ATGTGGGTGC	GGCGTTACTG	ATTATTACCA	GTGCGTTCAC	AATCTCCAAA
601	GTCAAAGAAT	ACGACCCGGA	AACCTACGCC	CGTTACCACG	GCATCGATGT
651	CGCCGCGAAT	CAGGAAAAAG	CCAACTGGTT	CGAACTCTTA	AAAACCGCGC
701	CTAAAGTGTT	TTGGACGGTT	ACTCCGGTAC	AGTTTTTCTG	CTGGTTCGCC
751	TTCCGGTATA	TGTGGACTTA	CTCGGCAGGC	GCGATTGCAG	AAAACGTCTG
801		GATGCGTCTT			GGCAACCGGT
851	ACGGCGTTTT		TAGTCGGTTG		TTGTTCGTTT
901	ATTCTGGCAA	AAGTACCGAA			ATTTCGGCTG
951	TTTGGCTTTG		GTTTCTTCTC		ATCTACAATC
1001	AATACGCACT		TATATCTTAA	TCGGCATCGC	TTGGGCGGGC
1051	ATTATCACTT	ATCCGCTGAC	GATTGTGGCC	AACGCTTTGT	CGGGCAAACA
1101	CATGGATACT	TATTTGGGCC	TGTttaacgg	ctctgtCTGT	ATGCcgcaaa
1151	tcgTcgctTC	GctgttgAGT	TTCGTGCTTT	TCCCGATGCT	GGGCGGCCAT


```
1201 CAGGCAACCA TGTTCTTGGT TGCAGGCGCA GTCTTGCTGC TGGGAGCCTT
1251 CTCAGTCTGT CTGATTAAAG AGATCCACGG CGGGGTTTGA
```

This corresponds to the amino acid sequence <SEQ ID 566; ORF 143.ng>:

g143.pep

WO 99/57280

- MLSFGYLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVQP 51
- IVGYYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA
- 101 ALSFGALMIA LLDVSSNMAM OPFKMMVGDM VNEEQKSYAY GIQSFLANTD
- AVVAAILPFV FAYIGLANTA EKGVVPQTVV VAFYVGAALL IITSAFTISK 151
- VKEYDPETYA RYHGIDVAAN QEKANWFELL KTAPKVFWTV TPVQFFCWFA
- 251 FRYMWTYSAG AIAENVWHTT DASSVGHQEA GNRYGVLAAV *SVAAVICSF
- 301 ILAKVPNKYH KAGYFGCLAL GALGFFSIFF IYNQYALILS YILIGIAWAG 351 IITYPLTIVA NALSGKHMDT YLGLFNGSVC MPQIVASLLS FVLFPMLGGH
- 401 QATMFLVAGA VLLLGAFSVC LIKEIHGGV*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 567>:

m143.seq

- ATGCTCAGTT TCGGCTTTCT CGGCGTTCAG ACGGCCTTTA CCCTGCAAAG 1 CTCGCAAATG AGCCGCATTT TTCAAACGCT AGGCGCAGAC CCGCACAATT 51 101 TGGGCTGGTT TTTCATCCTG CCGCCGCTGG CGGGGATGCT GGTGCAGCCG 151 ATTGTCGGCC ATTACTCCGA CCGCACTTGG AAGCCGCGTT TGGGCGGCCG CCGTCTGCCG TATCTGCTTT ATGGCACGCT GATTGCGGTT ATTGTGATGA 251 TTTTGATGCC GAACTCGGGC AGCTTCGGTT TCGGCTATGC GTCGCTGGCG 301 GCTTTGTCGT TCGGCGCGCT GATGATTGCG CTGTTAGACG TGTCGTCAAA 351 TATGGCGATG CAGCCGTTTA AGATGATGGT CGGCGACATG GTCAACGAGG AGCAGAAAGG CTACGCCTAC GGGATTCAAA GTTTCTTAGC AAATACGGGC 451 GCGGTCGTGG CGGCGATTCT GCCGTTTGTG TTTGCGTATA TCGGTTTGGC 501 GAACACCGCC GAGAAAGGCG TTGTGCCGCA GACCGTGGTC GTGGCGTTTT 551 ATGTGGGTGC GGCGTTGCTG GTGATTACCA GCGCGTTCAC GATTTTCAAA GTGAAGGAAT ACGATCCGGA AACCTACGCC CGTTACCACG GCATCGATGT 651 CGCCGCGAAT CAGGAAAAAG CCAACTGGAT CGAACTCTTG AAAACCGCGC 701 CTAAGGCGTT TTGGACGGTT ACTTTGGTGC AATTCTTCTG CTGGTTCGCC 751 TTCCAATATA TGTGGACTTA CTCGGCAGGC GCGATTGCGG AAAACGTCTG 801 GCACACCACC GATGCGTCTT CCGTAGGTTA TCAGGAGGCG GGTAACTGGT 851 ACGGCGTTTT GGCGGCGGTG CAGTCGGTTG CGGCGGTGAT TTGTTCGTTT GCACACCACC GATGCGTCTT CCGTAGGTTA TCAGGAGGCG GGTAACTGGT 901 GTATTGGCGA AAGTGCCGAA TAAATACCAT AAGGCGGGTT ATTTCGGCTG 951 TTTGGCTTTG GGCGCGCTCG GCTTTTTCTC CGTTTTCTTC ATCGGCAACC 1001 AATACGCGCT GGTGTTGTCT TATACCTTAA TCGGCATCGC TTGGGCGGGC 1051 ATTATCACTT ATCCGCTGAC GATTGTGACC AACGCCTTGT CGGGCAAGCA TATGGGCACT TACTTGGGCT TGTTTAACGG CTCTATCTGT ATGCCTCAAA 1151 TCGTCGCTTC GCTGTTGAGT TTCGTGCTTT TCCCTATGCT GGGCGGCTTG CAGGCCACTA TGTTCTTGGT AGGGGGCGTC GTCCTGCTGC TGGGCGCGTT 1251 TTCCGTGTTC CTGATTAAAG AAACACACGG CGGGGTTTGA
- This corresponds to the amino acid sequence <SEQ ID 568; ORF 143>:

m143.pep

- 1 MLSFGFLGVQ TAFTLQSSQM SRIFQTLGAD PHNLGWFFIL PPLAGMLVQP 51 IVGHYSDRTW KPRLGGRRLP YLLYGTLIAV IVMILMPNSG SFGFGYASLA
- ALSFGALMIA LLDVSSNMAM QPFKMMVGDM VNEEQKGYAY GIQSFLANTG
- AVVAAILPFV FAYIGLANTA EKGVVPQTVV VAFYVGAALL VITSAFTIFK 151
- VKEYDPETYA RYHGIDVAAN QEKANWIELL KTAPKAFWTV TLVQFFCWFA
- FQYMWTYSAG AIAENVWHTT DASSVGYQEA GNWYGVLAAV QSVAAVICSF
- VLAKVPNKYH KAGYFGCLAL GALGFFSVFF IGNQYALVLS YTLIGIAWAG 301 IITYPLTIVT NALSGKHMGT YLGLFNGSIC MPQIVASLLS FVLFPMLGGL
- QATMFLVGGV VLLLGAFSVF LIKETHGGV*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m143 / g143 93.9% identity in 429 aa overlap

10 20 30 40 50

60

-142	MI CECEI CUOMA EMI	OCCOMED T FOR	I CADDINI CH	CETT DDI ACM	TUODTUCUVE	DDMM
m143.pep	MLSFGFLGVQTAFTL				_	
g143	MLSFGYLGVQTAFTL				-	
	10	20	30	40	50	60
	70	80	90	100	110	120
m143.pep	KPRLGGRRLPYLLYG					
-1.42						
g143	70	80	PNSGSEGEGI. 90	ASLAALSEGA 100	LMIALLDVSS 110	120
	130	140	150	160	170	180
m143.pep	QPFKMMVGDMVNEEQI	_				_
· q143	QPFKMMVGDMVNEEQ					
J	130	140	150	160	170	180
	190	200	210	220	230	240
m143.pep	VAFYVGAALLVITSA					
mz 101pop				-		
g143	VAFYVGAALLIITSA			_		
	190	200	210	220	230	240
	250	260	270	280	290	300
m143.pep	TLVQFFCWFAFQYMW'					
-1.40						
g143	TPVQFFCWFAFRYMW 250	rysagalaenv 260	WHTTDASSVG 270	HQEAGNRYGV 280	LAAVXSVAAV 290	300
	230	200	270	200	250	300
	310	320	330	340	350	360
m143.pep	VLAKVPNKYHKAGYF					
g143	:					
91.0	310	320	330	340	350	360
	274					
m143.pep	370 NALSGKHMGTYLGLF	380	390	400	410	420
mr43.pep	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			_		
g143	NALSGKHMDTYLGLF					
	370	380	390	400	410	420
	430					
m143.pep	LIKETHGGVX	·				
-142						
g143	LIKEIHGGVX 430					
	350					
following parti	al DNA sequence	was identifi	ad in N ma	ninaitidia c	CEO ID 56	0>-

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 569>:

01		•			
a143.seq					
1	ATGCTCAGTT	TCGGCTTTCT	CGGCGTTCAG	ACGGCCTTTA	CCCTGCAAAG
51	CTCGCAGATG	AGCCGCATCT	TCCAGACGCT	CGGTGCCGAT	CCGCACAGCC
101	TCGGCTGGTT	CTTTATCCTG	CCGCCGCTGG	CGGGGATGCT	GGTGCAGCCG
151	ATTGTCGGCC	ATTACTCCGA	CCGCACTTGG	AAGCCGCGTT	TGGGCGGCCG
201	CCGTCTGCCG	TATCTGCTTT	ATGGCACGCT	GATTGCGGTT	ATTGTGATGA
251	TTTTGATGCC	GAACTCGGGC	AGCTTCGGTT	TCGGCTATGC	GTCGCTGGCG
301	GCTTTGTCGT	TCGGCGCGCT	GATGATTGCG	CTGTTAGACG	TGTCGTCAAA
351	TATGGCGATG	CAGCCGTTTA	AGATGATGGT	CGGCGACATG	GTCAACGAGG
401	AGCAGAAAGG	CTACGCCTAC	GGGATTCAAA	GTTTCTTAGC	GAATACGGGC
451	GCGGTCGTGG	CGGCGATTCT	GCCGTTTGTG	TTTGCGTATA	TCGGTTTGGC
501	GAACACCGCC	GAGAAAGGCG	TTGTGCCGCA	GACCGTGGTC	GTGGCGTTTT
551	ATGTGGGTGC	GGCGTTGCTG	GTGATTACCA	GCGCGTTCAC	GATTTTCAAA
601	GTGAAGGAAT	ACAATCCGGA	AACCTACGCC	CGTTACCACG	GCATCGATGT
651		CAGGAAAAAG			
701	CTAAGGCGTT	TTGGACGGTT	ACTTTGGTGC	AATTCTTCTG	CTGGTTCGCC

PCT/US99/09346

WO 99/57280

751	TTCCAATATA	TGTGGACTTA	CTCGGCAGGC	GCGATTGCGG	AAAACGTCTG	
801	GCACACCACC	GATGCGTCTT	CCGTAGGTTA	TCAGGAGGCG	GGTAACTGGT	
851	ACGGCGTTTT	GGCGGCGGTG	CAGTCGGTTG	CGGCGGTGAT	TTGTTCGTTT	
901	GTATTGGCGA	AAGTGCCGAA	TAAATACCAT	AAGGCGGGTT	ATTTCGGCTG	
951	TTTGGCTTTG	GGCGCGCTCG	GCTTTTTCTC	CGTTTTCTTC	ATCGGCAACC	
1001	AATACGCGCT					
1051	ATTATCACTT					
1101				CTCTATCTGT		
1151				TCCCTATGCT		
1201	CAGGCCACTA					
. 1251					166666611	
. 1231	TICCGIGITC	CIGATIAAAG	AAACACACGG	CGGGGTTTGA		
		• •	-CEO E	D 680 ODE	1.40	
This correspond	is to the amin	o acid seque	ence <seq i<="" td=""><td>D 570; OKF</td><td>143.a>:</td><td></td></seq>	D 570; OKF	143.a>:	
al43.pep						
1	MLSFGFLGVQ	TAFTLQSSQM	SRIFQTLGAD	PHSLGWFFIL	PPLAGMLVQP	
51	IVGHYSDRTW	KPRLGGRRLP	YLLYGTLIAV	IVMILMPNSG	SFGFGYASLA	
101				VNEEQKGYAY		
151				VAFYVGAALL		
201				KTAPKAFWTV		
251				GNWYGVLAAV		
301				IGNQYALVLS		
351				MPQIVASLLS		
				MEGIANOPPS	EATE SWINGER	
401	QATMF <u>LVGGV</u>	VLLLGARSVE	LIKETHGGV*			
-142/-143	00 59 44		420	1		
m143/a143	99.5% 10	entity in	429 aa over	тар		
		10	20 2	0 40	50	60
1.12	MT CECET C		20 3			
m143.pep					PPLAGMLVQPIV	
					1111111111	
a143	MLSFGFLG				PPLAGMLVQPIV	
		10	20 3	0 40	50	60
				_		
			80 9		110	120
m143.pep		RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA	ALSFGALMIALI	DVSSNMAM
m143.pep		RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA		DVSSNMAM
m143.pep a143	[111111]	RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA 	ALSFGALMIALI	MAMICSVOL
• •	[111111]	RLPYLLYGTLI RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA	alsfgalmiali	MAMICSVOL
• •	 KPRLGGRE	RLPYLLYGTLI RLPYLLYGTLI 70	AVIVMILMPNS AVIVMILMPNS 80 9	GSFGFGYASLA GSFGFGYASLA 0 100	ALSFGALMIALI ALSFGALMIALI 110	DVSSNMAM
a143	 KPRLGGRE	RLPYLLYGTLI	AVIVMILMPNS 	GSFGFGYASLA GSFGFGYASLA 0 100	ALSFGALMIALI ALSFGALMIALI 110	DVSSNMAM DVSSNMAM 120
• •	 KPRLGGRE	RLPYLLYGTLI	AVIVMILMPNS 	GSFGFGYASLA GSFGFGYASLA 0 100	ALSFGALMIALI ALSFGALMIALI 110	DVSSNMAM DVSSNMAM 120
a143	 KPRLGGRE QPFKMMVO	RLPYLLYGTLI RLPYLLYGTLI 70 30 1 SDMVNEEQKGY	AVIVMILMPNS AVIVMILMPNS 80 9 40 15 AYGIQSFLANT	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV	ALSFGALMIALI ALSFGALMIALI 110	DVSSNMAM DVSSNMAM DVSSNMAM 120 180
a143	 KPRLGGRE DPFKMMVC 	RLPYLLYGTLI RLPYLLYGTLI 0 70 L30 1 EDMVNEEQKGY	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV	ALSFGALMIALI ALSFGALMIALI 110 170 FAYIGLANTAEF	DVSSNMAM DVSSNMAM 20 180 GGVVPQTVV
a143 m143.pep	 KPRLGGRE QPFKMMVC QPFKMMVC	RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV	ALSFGALMIALI	DVSSNMAM DVSSNMAM 20 180 GGVVPQTVV
a143 m143.pep	 KPRLGGRE QPFKMMVC QPFKMMVC	RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV	ALSFGALMIALI	DVSSNMAM DVSSNMAM 20 180 GGVVPQTVV
a143 m143.pep		RLPYLLYGTLI RLPYLLYGTLI 0 0 1 1 1 1 1 1 1 1	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160	ALSFGALMIALI	DVSSNMAM DVSSNMAM 20 180 GGVVPQTVV
a143 m143.pep	 KPRLGGRE QPFKMAVO QPFKMMVO	RLPYLLYGTLI RLPYLLYGTLI 70 L30 1 EDMVNEEQKGY EDMVNEEQKGY L30 1	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV (GVVPQTVV 180 240
m143.pep	 KPRLGGRE QPFKMMVC QPFKMMVC 1 VAFYVGAZ	RLPYLLYGTLI RLPYLLYGTLI 70 L30 1 EDMVNEEQKGY EDMVNEEQKGY L30 1	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV GVVPQTVV 180 240 CAPKAFWTV
m143.pep		RLPYLLYGTLI RLPYLLYGTLI 70 L30 1 EDMVNEEQKGY EDMVNEEQKGY EDMVNEEQKGY L30 1 L90 2 ALLVITSAFTI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 GGVVPQTVV GGVVPQTVV 180 240 PAPKAFWTV
m143.pep a143 m143.pep		RLPYLLYGTLI RLPYLLYGTLI 70 130 1 GDMVNEEQKGY GDMVNEEQKGY 130 1 L90 2 ALLVITSAFTI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 GGVVPQTVV GGVVPQTVV 180 240 PAPKAFWTV
m143.pep a143 m143.pep		RLPYLLYGTLI RLPYLLYGTLI 70 130 1 GDMVNEEQKGY GDMVNEEQKGY 130 1 130 1 L90 2 ALLVITSAFTI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 GGVVPQTVV KGVVPQTVV 180 240 PAPKAFWTV FAPKAFWTV
m143.pep a143 m143.pep		RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220	ALSFGALMIALI ALSFGALMIALI 110 170 FAYIGLANTAEF FAYIGLANTAEF 170 230 QEKANWIELLKT	DVSSNMAM DVSSNMAM 120 180 GGVVPQTVV KGVVPQTVV 180 240 PAPKAFWTV FAPKAFWTV
m143.pep a143 m143.pep a143		RLPYLLYGTLI RLPYLLYGTLI 70 L30 1 EDMVNEEQKGY EDMVNEEQKGY ALLVITSAFTI ALLVITSAFTI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220	ALSFGALMIALI ALSFGALMIALI 110 170 FAYIGLANTAEF FAYIGLANTAEF 170 230 QEKANWIELLKT QEKANWIELLKT 230 290	DVSSNMAM DVSSNMAM 120 180 GGVVPQTVV GGVVPQTVV 180 240 TAPKAFWTV TAPKAFWTV 240 300
m143.pep a143 m143.pep	CAFYVGAA	RLPYLLYGTLI RLPYLLYGTLI 70 L30 1 EDMVNEEQKGY EDMVNEEQKGY L30 1 L90 2 ALLVITSAFTI ALLVITSAFTI L90 2 EALLVITSAFTI L90 2 EALLVITSAFTI L90 2	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 GGVVPQTVV GGVVPQTVV 180 240 TAPKAFWTV TAPKAFWTV 240 300 GVAAVICSF
m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFCV	RLPYLLYGTLI RLPYLLYGTLI 70 130 1 SDMVNEEQKGY SDMVNEEQKGY 130 1 L90 2 ALLVITSAFTI ALLVITSAFTI 190 2 WFAFQYMWTYS	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV GVVPQTVV 180 240 CAPKAFWTV CAPKAFWTV 240 300 SVAAVICSF
m143.pep a143 m143.pep a143	CAFYVGAA TLVQFFCV TLVQFFCV TLVQFFCV TLVQFFCV TLVQFFCV TLVQFFCV	RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA	ALSFGALMIALI ALSFGALMIALI 110 170 FAYIGLANTAEN FAYIGLANTAEN 170 230 OEKANWIELLKY 230 QEKANWIELLKY 230 GNWYGVLAAVQS	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV GVVPQTVV 180 CAPKAFWTV CAPKAFWTV 240 300 SVAAVICSF
m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFCV TLVQFFCV TLVQFFCV TLVQFFCV TLVQFFCV TLVQFFCV	RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA	ALSFGALMIALI ALSFGALMIALI 110 170 FAYIGLANTAEN FAYIGLANTAEN 170 230 OEKANWIELLKY 230 QEKANWIELLKY 230 GNWYGVLAAVQS	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV GVVPQTVV 180 240 CAPKAFWTV CAPKAFWTV 240 300 SVAAVICSF
m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFC	RLPYLLYGTLI 70 130	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV GVVPQTVV 180 CAPKAFWTV CAPKAFWTV 240 300 SVAAVICSF
a143 m143.pep a143 m143.pep a143 m143.pep a143	CAFYVGAA TLVQFFCV TLVQFFCV TLVQFFCV	RLPYLLYGTLI 70 130	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA 0 280 0 340	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 GGVVPQTVV GGVVPQTVV 180 240 TAPKAFWTV TAPKAFWTV 240 SVAAVICSF SVAAVICSF SVAAVICSF 300 360
m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFCV TLVQFFCV TLVQFFCV VLAKVPNI	RLPYLLYGTLI RLPYLLYGTLI RLPYLLYGTLI 70 130	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA 0 280 0 340 FIGNQYALVLS	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV IRO CGVVPQTVV CGVVPQTVV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV CAPKAFWTV
m143.pep a143 m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFCV TLVQFFCV VLAKVPNI	RLPYLLYGTLI RLPYLLYGTLI RLPYLLYGTLI 70 130	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA 0 280 0 340 FIGNQYALVLS	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV (GVVPQTVV 180 240 (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV
a143 m143.pep a143 m143.pep a143 m143.pep a143	CAFYVGAA TLVQFFCV TLVQFFCV TLVQFFCV VLAKVPNI VLAKVPNI VLAKVPNI VLAKVPNI VLAKVPNI	RLPYLLYGTLI 70 30	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA 0 280 0 340 FIGNQYALVLS	ALSFGALMIALI ALSFGALMIALI 110 170 FAYIGLANTAEF FAYIGLANTAEF 170 230 QEKANWIELLKT 230 QEKANWIELLKT 230 GNWYGVLAAVQS 1 GNWYGVLAAVQS 290 350 YTLIGIAWAGII YTLIGIAWAGII	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV (GVVPQTVV 180 240 (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV
m143.pep a143 m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFCV TLVQFFCV TLVQFFCV VLAKVPNI VLAKVPNI VLAKVPNI VLAKVPNI VLAKVPNI	RLPYLLYGTLI RLPYLLYGTLI RLPYLLYGTLI TO RO RO RO RO RO RO RO RO RO R	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA 0 280 0 340 FFIGNQYALVLS	ALSFGALMIALI ALSFGALMIALI 110 170 FAYIGLANTAEF FAYIGLANTAEF 170 230 QEKANWIELLKT 230 QEKANWIELLKT 230 GNWYGVLAAVQS 1 GNWYGVLAAVQS 290 350 YTLIGIAWAGII YTLIGIAWAGII	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV (GVVPQTVV 180 240 (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV (APKAFWTV
m143.pep a143 m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFCV TLVQFFCV VLAKVPNI VLAKVPNI VLAKVPNI	RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA 0 280 FIGNQYALVLS FIGNQYALVLS 0 340	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV GVVPQTVV 180 240 (TAPKAFWTV PAPKAFWTV 240 SVAAVICSF SVAAVICSF SVAAVICSF SVAAVICSF 300 TYPLTIVT ITYPLTIVT 360
m143.pep a143 m143.pep a143 m143.pep a143 m143.pep	CAFYVGAA TLVQFFCV TLVQFFCV VLAKVPNI VLAKVPNI VLAKVPNI	RLPYLLYGTLI	AVIVMILMPNS	GSFGFGYASLA GSFGFGYASLA 0 100 0 160 GAVVAAILPFV GAVVAAILPFV 0 160 0 220 ARYHGIDVAAN ARYHGIDVAAN 0 220 0 280 TDASSVGYQEA TDASSVGYQEA 0 280 FIGNQYALVLS FIGNQYALVLS 0 340 0 400	ALSFGALMIALI	DVSSNMAM DVSSNMAM 120 180 (GVVPQTVV GVVPQTVV 180 240 TAPKAFWTV TAPKAFWTV 240 300 SVAAVICSF SVAAVICSF SVAAVICSF SVAAVICSF 300 420

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 571>:

```
g144.seq
         ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGGGC
          CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGTGC GTCTTCGTGC
      51
         TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
     101
          CGCGAAAACC CCGTGGTGTC GTTCGACGAT GCGGCTTCCT ATGCGGACAA
     151
         TCCGTTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
     201
         GTGCGGCGTT CGACATCAAC GGTAGGACTT ACCGCGTGGA GGCCAACGAA
     251
         GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCcgtTT
     351 CAACGCGGTG GCGGCAGACG GccgacggTt atCCCAACGA TTTGGatatT
         TCctaccgCT TGGACGAGGA CGGCCGGCTT ACCGTtaccT ATCGCGCCAC
     451 CGCqctCGGC GACACGGTGT TCGACCCGAC GCTGCACATT TACTGGCGGC
          TGGACGCGGG CCTGCACGAT GCGGTTCTGC ATATTCCGCA GGGCGGACAT
     551 ATTCCGGCCG ATGCCGAAAA ACTGCCCGTC TTAACGGTTT CAGACGGCCT
         CGAAGTATTT GA
```

This corresponds to the amino acid sequence <SEQ ID 572; ORF 144.ng>:

```
144.pep
1 MSDTPATRDF GLIDGRAVTG YVLSNRRGTC VFVLDLGGIV QEFSVLADGV
51 RENPVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
101 GRNALHGGSH GLAVTRFNAV AADGRRLSQR FGYFLPLGRG RPAYRYLSRH
151 RARRHGVRPD AAHLLAAGRG PARCGSAYSA GRTYSGRCRK TARLNGFRRP
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 573>:

```
m144.seq
         ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGTCTGATCG ACGGGCGTGC
      51 CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC
     101 TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
          CGCGAAAACC TCGTGGTGTC GTTCGATGAT GCGGCTTCCT ATGCGGACAA
     151
          TCCGTTTCAG ATTAACAAAC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
     201
          GTGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA
     251
          GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT
         CAACGCGGTG GCGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTGg
     351
          CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA
     401
         CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC
     451
          TCGGCGACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC
          GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATGCC
     551
          GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG
          TATTTGA
     651
```

This corresponds to the amino acid sequence <SEQ ID 574; ORF 144>:

```
m144.pep

1 MSDTPATRDF GLIDGRAVTG YVLSNRRGTR VCVLDLGGIV QEFSVLADGV
51 RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
101 GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLATVGRRL SQRFGFGYFL
151 PLGRGRPAYR YLSRHRARRH GVRPDAAHLL AAGRGPARCG SAYSAGRTYA
201 GRCRKTARLN GFRRPRSI*
```

Computer analysis of this amino acid sequence gave the following results:

Homology with	a predicted ORF from N. gonorrhoeae
m144 / gl4	44 91.3% identity in 218 aa overlap
m144.pep	10 20 30 40 50 60 MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD
• -	
g144	MSDTPATRDFGLIDGRAVTGYVLSNRRGTCVFVLDLGGIVQEFSVLADGVRENPVVSFDD 10 20 30 40 50 60
	70 80 90 100 110 120
m144.pep	AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV
g144	AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV 70 80 90 100 110 120
	130 140 150 160 170 180
m144.pep	AADGRSVVLRSRLATVGRRLSQRFGFGYFLPLGRGRPAYRYLSRHRARRHGVRPDAAHLL
g144	
	130 140 150 160
m144.pep	190 200 210 219 AAGRGPARCGSAYSAGRTYAGRCRKTARLNGFRRPRSIX
g144	
	170 180 190 200
	artial DNA sequence was identified in N. meningitidis <seq 575="" id="">:</seq>
a144.seq 1	ATGAGCGATA CCCCCGCTAC CCGCGATTTC GGCCTGATCG ACGGGCGTGC
51	CGTAACCGGC TATGTGCTGT CCAACCGGCG TGGTACGCGT GTCTGCGTGC
101	TGGACTTGGG CGGGATTGTG CAGGAATTTT CCGTTTTGGC AGACGGCGTG
151	CGCGAAAACC TCGTGGTGTC GTTCGACGAT GCGGCTTCCT ATGCGGACAA
201	TCCGTTTCAG ATTAACAAGC AGATAGGGCG CGTGGCCGGA CGCATCCGCG
251 301	GTGCGGCGTT CGACATCAAC GGCAGGACTT ACCGCGTGGA GGCCAACGAA
351	GGCAGGAACG CGCTGCACGG CGGTTCGCAC GGGCTGGCCG TTACCCGTTT CAACGCGGTG GCGCAGACG GCCGTTCGGT GGTGCTGCGC AGCCGCCTG.
401	CAACAGTCGG CCGACGGTTA TCCCAACGAT TTGGATTTGG ATATTTCCTA
451	CCGCTTGGAC GAGGACGACC GGCTTACCGT TACCTATCGC GCCACCGCGC
501	TCGGCGACAC GGTGTTCGAC CCGACGCTGC ACATTTACTG GCGGCTGGAC
551	GCGGGCCTGC ACGATGCGGT TCTGCATATT CCGCAGGGCG GACATATTCC
601 651	GGCCGATGCC GAAAAACTGC CCGTCTCAAC GGTTTCAGAC GACCTCGAAG TATTTGA
This corresponds	s to the amino acid sequence <seq 144.a="" 576;="" id="" orf="">:</seq>
al44.pep	s to the allino acid sequence \SEQ ID 570, ORT 144.42.
1	MSDTPATRDF GLIDGRAVTG YVLSNRRGTR VCVLDLGGIV QEFSVLADGV
51	RENLVVSFDD AASYADNPFQ INKQIGRVAG RIRGAAFDIN GRTYRVEANE
101	GRNALHGGSH GLAVTRFNAV AADGRSVVLR SRLXTVGRRL SQRFGFGYFL
151	
201	
m144/a144	99.1% identity in 218 aa overlap
_444	10 20 30 40 50 60
m144.pep	MSDTPATRDFGLIDGRAVTGYVLSNRRGTRVCVLDLGGIVQEFSVLADGVRENLVVSFDD
a144	
4711	10 20 30 40 50 60
	70 80 90 100 110 120
ml44.pep	AASYADNPFQINKQIGRVAGRIRGAAFDINGRTYRVEANEGRNALHGGSHGLAVTRFNAV

a144	aasyadnp	FQINKQIGRV		NGRTYRVEANE	GRNALHGGSHGLAVTRFNAV 110 120
•	1	.30 1	40 15	0 160	170 100
m144.pep					170 180 YLSRHRARRHGVRPDAAHLL
штирор	11111111		HILLIHIII		
a144	AADGRSVV	LRSRLXTVGR	RLSORFGFGYF	LPLGRGRPAYR	YLSRHRARRHGVRPDAAHLL
			40 15		
			00 21		
m144.pep			YAGRCRKTARL		
-144			1:11111111		
a144			YSGRCRKTARL		
	1	.90 20	00 21	U	
The following n	artial DNA se	onience wa	identified i	n M. governi	noeae <seq 577="" id="">:</seq>
q146.seq	attial DIVA SC	equence was	s identified i	u w. gonorra	ioede SEQ ID 3/1>:
g146.seq	ATGAAGCAAA	型でででででででで	CCDDCDCCAC	CMCCMC N MMC	1001001011
51	AGTCGAACAA	TOCCCOCTCCG	TCCATTTCCAG	GTCGTCATTG	ACCACGACAA
101	CTTTGGATAa	CHTCCCCACT	CTCCCTCCCC	CCCcc+TTCA	CCCCCCCCCCC
151	AAGCACGTCG	ADDCDACCC	GICCGICCCG	COCCCCTIGA	CCTTCCCCCA
201	GCGCGTTGCG	AACCTCCCC	GCGCCCTCAA	CCTCCATTTC	CAAAATCACC
251	TCATAGCCTG	CCCCCCAA	CGCATTCACG	CCCTCCCTCC	TTCTCCCCTA
301	ATAGTTGCCG	AATACGTCTG	CGTATTCCAA	AAAAGCCTCC	TGCGCGATAA
351	GCGATTCAAA	CTCTTCTTTG	GAAACAAAGT	GATAATGTAC	GCCGTTTGCT
401	TCGCCTTCAC	GCGGCGGCG	CGTCGTATGC	GACACGGAAA	CGCGCAAACC
451	GTTATGGTTT	GCCAACAGCC	GCGACACCAG	CGTGGTTTTG	CCCGTGCCGG
501	AAGCGGCCGA .	AATGATAAAG	ATGTTGCCTT	TTCGATAAGC	GGACATATTT
551	TTTACCTGTA	TATTTTCCAA	CCGATTGTAT	CACAACGGAC	ACCCTATTTC
601	ATATTTGCCG	ATGCCCATAT	TTTGCCGCTA	TTGTTTTGA	
This correspond	s to the amino	o acid seque	nce <seq ii<="" td=""><td>D 578; ORF</td><td>146.ng>:</td></seq>	D 578; ORF	146.ng>:
g146.pep		_	_		•
1	MKQIPLRLLQ	VVIDHDKVEQ	YGLFDFMPCL	RQPPLDNFPT	VRPAPFEARG
51	KHVERRRQDK				
101	IVAEYVCVFQ	KSLLRDKRFK	LFFGNKVIMY	AVCFAFTRRA	RRMRHGNAQT
151	VMVCQQPRHQ		NDKDVAFSIS	GHIFYLYIFQ	PIVSQRTPYF
201	IFADAHILPL	LF*			
The following n	ortical DNIA co		. : 4 4 : - 4 : -	- NT	W. J. SEEO ID 5705
	artial DIVA SC	quence was	identined n	1 IV. meningi	tidis <seq 579="" id="">:</seq>
m146.seq					
	ATGGCGCAAA	TCCTCCTCCG	CTCGCGCCAA	GTCGTCATTG	ACCACGACAA
31 101	AGTCAAACAA	TACGGACTGC	TCGATTTCAT	GCCTTGCCTT	CGACAGCCTC
151	CTTTGGATAA AAGTACGTCG	DADCARCOCC	GCACCAMAAA	COTCCGTTGA	GGUGUGUGGG
	GCGCGTCGCG	AAAGAAGGCG	GCGCCCTCAA	CCTCCATTTC	CARAMERCO
251	TCATAGCCTG	CCGCCGCCAA	CCCATTCACA	CCCTCCCCCC	CHARAICACG
301	ATAGTTGCCA	AATACGTCGG	CGTATTCCAA	AAAAGCTTCC	TGCGCGATAA
	GCGACTCAAA	CTCTTCTTTG	GAAACAAAGT	GATAATGTAC	GCCGTTTGCT
401	TCGCCTTCAC	GCGGCGGCG	CGTCGTGTGC	GACACGGAAA	CGCGCAAACC
451	GTTATGGTTT	GCCAACAGCC	GCGACACCAG	CGTGGTTTTG	CCCGTGCCGG
501	AAGCGGCCGA	AATGATAAAG	ATGTTGCCTT	TTCGATAAGC	GGACATATTT
551	TTTACCTGTA	TATTTTCCAG	CCGATTGTAT	CACAATGGAC	ACCCAGTTTC
601	CTATTTGCCG	ATGCCCATAT	TTTGCCGCTA	TTGTTTTGA	
This correspond	s to the amino	acid seque	nce <seq ii<="" td=""><td>D 580; ORF</td><td>146>:</td></seq>	D 580; ORF	146>:
m146.pep		_	_	-	
ĺ	MAQILLRSRQ '	VVIDHDKVKQ	YGLLDFMPCL	RQPPLDNFPT	VRPASVEARG
51	KYVERRRQDK 1	DADGFGQRVA	NLRRALNVDF	QNHVIACRRQ	RIHTLRACAV
101	IVAKYVGVFQ	KSFLRDKRLK	LFFGNKVIMY	AVCFAFTRRA	RRVRHGNAOT
151	VMVCQQPRHQ I		NDKDVAFSIS	GHIFYLYIFQ	PIVSQWTPSF
201	LFADAHILPL 1	L. ≖			

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m146 / g14	16 90.1% i	dentity in	212 a	a overlap			
		10	20	30	40	50	60
m146.pep	MAQILLR					PASVEARGKYVE	
	1 11 11	11111111	1:1111	:111111111111			111111
g146	MKQIPLR					PAPFEARGKHVE	_
		10	20	30	40	50	60
		70	80	90	100	110	120
m146.pep	DADGFGQ					KYVGVFQKSFL	
	1:1:1-1	1111111111	ШН	111111111111111111111111111111111111111	ШШП	1:11 111111:1	1111:1
g146	DTDSFRQ					EYVCVFQKSLL	
		70	80	90	100	110	120
		130	140	150	160	170	180
m146.pep	LFFGNKV					FARAGSGRNDKD	
	1111111	11111111111	11111:	111111111111			HHHH
g146						TARAGSGRNDKD	
		130	140	150	160	170	180
		190	200	210			
m146.pep		IFQPIVSQWT					
		$\Pi \Pi \Pi \Pi \Pi \Pi \Pi$					
g146		IFQPIVSQRT					
		190	200	210			
The following pa	rtial DNA s	sequence w	as iden	tified in N m	aninaitid	is <seo id<="" td=""><td>521∖.</td></seo>	5 21∖.
al46.seg	a 1.1.0.1 D1 42 1 C	soquence w	as Ideli	uiicu iii iv. <i>m</i>	eningiiiu	a SEQ ID.	J01~.
	ATGGCGCAAA	TCCTCCTCC	G CCCG	CGCCAA GTCAT	יכאיייה אכ	CACGACAA	
				TTTCAT GCCTT			
101	CTTTGGATAA	CTTCCCGAC	T GTCC	GTCCCG CGTC	GTTGA GA	CGCGCAGC	
151	AAGCACATCG	AAAGACGGC	G GCAG	GATAAA GATGO	CCGACG GC	TTCGGGCA	
				CCTGAA CGTC			
251 301	TCATAACCTG	CCGCCGCCA	A CGCA	TTCACA CCCTC	CCGCGC TI	'GTGCCGTA	
351	CCCDCTCDDD	CTCTTCTT	G CGTA	TTCCAA AAAAG CAAAGT GATAA	SCCTCC TG	CGCGATAA	
	TCGCCTTCAC	GCGGCGGAC	G CGTC	GTGTGC GACAC	GGAAA CO	CGITIGCI	
451	GTTATGGTTT	GCCAACAGC	C GCGA	CACCAG CGTGG	STTTTG CC	CCGTGCCGG	
501	AAGCGGCCGA	AATGATAAA	G ATGT	IGCCTT TTCGA	TAAGC GG	SACATATTT	
551	TTTACCTGTA	TATTTTCCA	G CCGA	TTGTAT CACA	ACGGAC AC	CCGGTTTC	
601	CTATTTGCCG	ATGCCCATA	T TTTG	CCGCTA TTGTT	TTGA		
This corresponds	to the amir	no acid sear	ience <	SEO ID 582	ODE 14	6 0>.	
al46.pep	o to the airin	io acid sequ	iciice >	3EQ ID 362	, OKF 14	0.a/.	
	MACILLRPRO	VIIDHDKIE	O YGLE	DFMPCL ROPPI	מע ייסיואר.	DACUETDO	
				ALNVDF QNHVI			
101	IVAEHVRVFQ	KSLLRDKRL	K LFFG	NKVIMY AVCFA	AFTRRT RE	RVRHGNAQT	
151			R NDKD	VAFSIS GHIFY	LYIFQ PI	VSQRTPGF	
201	LFADAHILPL	LF*					
m146/a146	90 6% i	dentity in	212 2	a orrow1 an			
M210/0140	30.08 1	dentity in	212 a	a Overrap			
		10	20	30	40	50	60
m146.pep	MAQILLR	SRQVVIDHDK	VKQYGL	LDFMPCLRQPPI	JONFPTVRE	PASVEARGKYVE	RRRODK
-146	1111111	:	::	: [[[[[[[[[[[[[[[[[[[ПППП	1111:1:1::1	111111
a146	MAQILLR	PRQVIIDHDK 10	IEQYGL 20			PASVETRSKHIE	
			20	30	40	50	60
		70	80	90	100	110	120

m146.pep	DADGFGQRVANLRRALNV		IHTLRACAVIVAK		
a146	DADGFGORISNLSRALNV				
	70	80 90	100	110	120
	130 1	40 150	160	170	180
m146.pep	LFFGNKVIMYAVCFAFTR	RARRVRHGNAQTVI	MVCQQPRHQRGFAI	RAGSGRNDK	DVAFSIS
	111111111111111111	1:11111111111	ининини.	11111111	
a146	LFFGNKVIMYAVCFAFTR	RTRRVRHGNAQTVI	MVCQQPRHQRGFAI	RAGSGRNDK	DVAFSIS
	130 1	40 150	160	170	180
	190 2	00 210			
m146.pep	GHIFYLYIFQPIVSQWTP	SFLFADAHILPLL	FX		
	11111111111111111	: [] [] [] [] []	I,I		
a146	GHIFYLYIFQPIVSQRTP	GFLFADAHILPLL	FX		
	190 2	00 210			

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 583>:

```
g147.seq
         (partial)
          ..ATGCGACGAG AAGCCAAAAT GGCACAAATC ACACTCAAAC CCATTGTTTT
            ATCAATTCTT TTAATCAACA CACCCCTCCT CGCCCAAGCG CATGAAACTG
            AGCAATCGGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG
     101
            CGCGCGACTT CGGGGCTGCT GCACACTTCG ACCGCCTCCG ACAAAATCAT
            CTCCGGCGAT ACTTTGCGCC AAAAAGCCGT CAACTTGGGC GACGCTTTGG
     201
     251
            ACGGCGTACC GGGCATCCAC GCTTCGCAAT ACGGCGGCGG CGCATCCGCT
            CCCGTTATTC GCGGTCAAAC GGGCAGACGG ATTAAAGTAT TGAACCATCA
     301
     351
            CGGCGAAACG GGCGATATGG CGGACTTTTC TCCCGATCAC GCCATTATGG
            TAGATACCGC CTTGTCGCAA CAGGTTGAAA TCCTGCGCGG GCCGGTTACG
     401
     451
            CTCTTGTACA GCTCGGgcaa tgtggccgGG GCTGGtcaat gttgccgatg
     501
            gAAAAAtccc ccaaaaAAtg cc..
```

This corresponds to the amino acid sequence <SEQ ID 584; ORF 147.ng>:

```
g147.pep (partial)

1 ..mrreakmaqi tlkpivlsil lintpilaqa heteqsvgle tvsvvgksrp
51 RATSGLIHTS TASDKIISGD TLRQKAVNLG DALDGVPGIH ASQYGGGASA
101 PVIRGQTGRR IKVLNHHGET GDMADFSPDH AIMVDTALSQ QVEILRGPVT
151 LLYSSGNVAG AGQCCRWKNP PKNA..
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 585>:

m147.seq	(partial)				
1	CCGCATAAAA	CTGAGCAATC	GGTGGATTTG	GAAACGGTCA	GCGTCGTCGG
51	CAAAAGCCGT	CCGCGCGCCA	CGTCGGGGCT	GTTGCACACT	TCGACCGCCT
101	CCGACAAAAT	CATCTCCGGC	GATACCTTGC	GCCAAAAAGC	CGTCAACTTG
151	GGCGACGCTT	TAGACGGCGT	ACCGGGCATC	CACGCTTCGC	AATACGGCGG
201	CGGCGCGTCT	GCTCCCGTCA	TTCGCGGTCA	AACAGGCAGG	CGGATTAAAG
251	TGTTGAACCA	TCACGGCGAA	ACAGGCGATA	TGGCGGATTT	TTCGCCCGAT
301	CACGCCATTA	TGGTAGATAC	CGCCTTGTCG	CAACAGGTCG	AAATCCTGCG
351	CGGGCCGGTT	ACGCTCTTGT	ACAGCTCGGG	CAATGTGGCG	GGGCTGGTCG
401	ATGTTGCCGA	TGGCAAAATC	CCCGAAAAA	TGCCTGAAAA	CGGCGTATCG
451	GGCGAACTCG	GATTGCGTTT	GAGCAGCGGC	AATCTGGAAA	AACTCACGTC
501	CGGCGGCATC	AATATCGGTT	TGGGCAAAAA	CTTTGTATTG	CACACGGAAG
551	GGCTGTACCG	CAAATCGGGG	GATTACGCCG	TACCGCGTTA	CCGCAATCTG
601	AAACGCCTGC	CCGACAGCCA	CGCCGATTCG	CAAACGGGCA	GCATCGGGCT
651	GTCTTGGGTT	GGCGAAAAAG	GTTTTATCGG	CGTAGCGTAC	AGCGACCGTC
701	GCGACCAATA	TGGTCTGCCT	GCCCACAGCC	ACGAATACGA	TGATTGCCAC
751	GCCGACATCA	TCTGGCAAAA	GAGCTTGATT	AACAAACGCT	ATTTACAGCT
801	TTATCCGCAC	CTGTTGACCG	AAGAAGACAT	CGATTACGAC	AATCCGGGCT
851	TGAGCTGCGG	CTTCCACGAC	GACGATAATG	CACACGCACA	CACCCACAGC
901	GGCAGACCGT	GGATAGACCT	GCGCAACAAA	CGCTACGAAC	TCCGTGCCGA
951	ATGGAAGCAA	CCGTTCCCCG	GTTTTGAAGC	CCTGCGCGTA	CACCTGAACC
1001	GCAACGACTA	CCGCCACGAC	GAAAAAGCAG	GCGATGCAGT	CGAAAACTTT
1051	TTTAACAACC	AAACGCAAAA	CGCCCGCATC	GAGTTGCGCC	ACCAACCCAT

1101	AGGTCGTCTG	AAAGGCAGCT	GGGGCGTGCA	ATATTTACAA	CAAAAATCCA
1151	GTGCTTTATC	TGCCATATCC	GAAGCGGTTA	AACAACCGAT	GCTGCTTGAC
1201	AACAAAGTGC	AACATTACAG	CTTTTTCGGT	GTAGAACAGG	CAAACTGGGA
1251	CAACTTCACG	CTTGAAGGAG	GCGTACGCGT	GGAAAAACAA	AAAGCCTCCA
1301	TTCAGTACGA	CAAAGCATTG	ATTGATCGGG	AAAACTACTA	CAACCACCCC
1351	CTGCCCGACC	TCGGCGCGCA	CCGCCAAACC	GCCCGCTCAT	TCGCACTTTC
1401	GGGCAACTGG	TATTTCACGC	CACAACACAA	ACTCAGCCTG	ACCGCCTCCC
1451	ATCAGGAACG	CCTGCCGTCA	ACGCAAGAGC	TGTACGCACA	
1501	GTCGCCACCA			AAACACCTCA	
1551	TTCCAACAAT	ATCGAACTCG	CGCTGGGCTA	CGAAGGCGAC	CGCTGGCAAT
1601	ACAATCTGGC	ACTCTACCGC	AACCGCTTCG	GTAACTACAT	TTACGCCCAA
1651	ACCTTAAACG	ACGGACGCGG	CCCCAAATCC	ATCGAAGACG	ACAGCGAAAT
1701	GAAGCTCGTG	CGCTACAACC	AATCCGGCGC	CGACTTCTAC	GGCGCGGAAG
1751	GCGAAATCTA	CTTCAAACCG	ACACCGCGCT	ACCGCATCGG	CGTTTCCGGC
1801	GACTATGTAC	GAGGCCGTCT	GAAAAACCTG	CCTTCCCTAC	CCGGCAGAGA
1851	AGATGCCTAC	GGCAACCGTC	CTTTCATCGC	ACAGGACGAC	CAAAATGCCC
1901	CCCGTGTTCC	GGCTGCGCGC	CTCGGCTTCC	ACCTGAAAGC	CTCGCTGACC
1951	GACCGTATCG	ATGCCAATTT	GGACTACTAC	CGCGTGTTCG	CCCAAAACAA
2001	ACTCGCCCGC	TACGAAACGC	GCACGCCCGG	ACACCATATG	CTCAACCTCG
2051	GCGCAAACTA	CCGCCGCAAT	ACGCGCTATG	GCGAGTGGAA	TTGGTACGTC
2101	AAAGCCGACA	ACCTGCTCAA	CCAATCCGTT	TACGCCCACA	GCAGCTTTCT
2151	CTCTGATACG	CCGCAAATGG	GCCGCAGCTT	TACCGGCGGC	GTGAACGTGA
2201	AGTTTTAA				

This corresponds to the amino acid sequence <SEQ ID 586; ORF 147>:

.47 . pep	(partial)		•	·	
1	PHKTEQSVDL	ETVSVVGKSR	PRATSGLLHT	STASDKIISG	DTLROKAVNI
51	GDALDGVPGI	HASQYGGGAS	APVIRGQTGR	RIKVLNHHGE	TGDMADFSPD
101	HAIMVDTALS	QQVEILRGPV	TLLYSSGNVA	GLVDVADGKI	PEKMPENGVS
151	GELGLRLSSG	NLEKLTSGGI	NIGLGKNEVL	HTEGLYRKSG	DYAVPRYRNL
201	KRLPDSHADS	QTGSIGLSWV	GEKGFIGVAY	SDRRDQYGLP	AHSHEYDDCH
251	ADIIWQKSLI	NKRYLQLYPH	LLTEEDIDYD	NPGLSCGFHD	DDNAHAHTHS
301	GRPWIDLRNK	RYELRAEWKQ	PFPGFEALRV	HLNRNDYRHD	EKAGDAVENF
351	FNNQTQNARI	ELRHQPIGRL	KGSWGVQYLQ	QKSSALSAIS	EAVKOPMLLD
401	nkvohysffg	VEQANWDNFT	LEGGVRVEKQ	KASIQYDKAL	IDRENYYNHP
451	LPDLGAHRQT	ARSFALSGNW	YFTPQHKLSL	TASHQERLPS	TOELYAHGKH
501	VATNTFEVGN	KHLNKERSNN	IELALGYEGD	RWQYNLALYR	NRFGNYIYAO
551	TLNDGRGPKS	IEDDSEMKLV	RYNQSGADFY	GAEGEIYFKP	TPRYRIGVSG
601	DYVRGRLKNL	PSLPGREDAY	GNRPFIAQDD	QNAPRVPAAR	LGFHLKASLT
651	DRIDANLDYY	RVFAQNKLAR	YETRTPGHHM	LNLGANYRRN	TRYGEWNWYV
701	KADNLLNQSV	YAHSSFLSDT	POMGRSFTGG	VNVKF*	

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m147 / g147 92.3% identity in 142 aa overlap

				10	20	30
m147.pep			PHKT	EQSVDLETVS	VGKSRPRAT:	
					1111111111	
g147	MRREAKMAQITLK	PIVLSILLIN	TPLLAQAHET	EQSVGLETVS	VGKSRPRAT:	SGLLHTS
	10	20	30	40	50	60
	40	50	60	70	80	90
m147.pep	TASDKIISGDTLR(CKAVNLGDAL	DGVPGIHASO	YGGGASAPVII	RGOTGRRIKV	LNHHGET
		1111111111	шшші	1111111111		111111
g147	TASDKIISGDTLR	CKAVNLGDAL	DGVPGIHASO	YGGGASAPVII	RGOTGRRIKV	NHHGET
	70	80	90	100	110	120
	100	110	120	130	140	150
m147.pep	GDMADFSPDHAIM	/DTALSQQVE	ILRGPVTLLY:	SSGNVAGLVDV	/ADGKIPEKM!	PENGVSG
	11111111111111111		111111111		1 1 1	
g147	GDMADFSPDHAIM	DTALSQQVE:	ILRGPVTLLY	SSGNVAGAGQO	CRWKNPPKNI	A

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 587>:

al47.seq ATGCGACGAG AAGCCAAAAT GGCACAAACT ACACTCAAAC CCATTGTTTT 51 ATCAATTCTT TTAATCAACA CACCCCTCCT CTCCCAAGCG CATGGAACTG 101 AGCAATCAGT GGGCTTGGAA ACGGTCAGCG TCGTCGGCAA AAGCCGTCCG 151 CGCGCCACTT CGGGGCTGCT GCACACTTCT ACCGCCTCCG ACAAAATCAT CAGCGGCGAC ACCTTGCGAC AAAAAGCCGT CAACTTGGGT GATGCTTTAG 251 ACGGCGTACC GGGCATTCAT GCCTCGCAAT ACGGCGGCGG CGCATCCGCT 301 CCCGTTATTC GCGGTCAAAC AGGCAGACGG ATTAAAGTGT TGAACCATCA 351 CGGCGAAACG GGCGACATGG CGGACTTCTC TCCAGACCAT GCAATCATGG TGGACAGCGC CTTGTCGCAA CAGGTCGAAA TCCTGCGCGG TCCGGTTACG 451 CTCTTGTACA GCTCGGGCAA TGTGGCGGGG CTGGTCGATG TTGCCGATGG 501 CAAAATCCCC GAAAAAATGC CTGAAAACGG CGTATCGGGC GAACTCGGAT 551 TGCGTTTGAG CAGCGGCAAT CTGGAAAAAC TCACGTCCGG CGGCATCAAT 601 ATCGGTTTGG GCAAAAACTT TGTATTGCAC ACGGAAGGGC TGTACCGCAA 651 ATCGGGGGAT TACGCCGTAC CGCGTTACCG CAATCTGAAA CGCCTGCCCG 701 ACAGCCACGC CGATTCGCAA ACGGGCAGCA TCGGGCTGTC TTGGGTTGGC 751 GAAAAAGGCT TTATCGGCGC AGCATACAGC GACCGTCGCG ACCAATATGG 801 TCTGCCTGCC CACAGCCACG AATACGATGA TTGCCACGCC GACATCATCT GGCAAAAGAG TTTGATTAAC AAACGCTATT TGCAGCTTTA TCCGCACCTG 901 TTGACCGAAG AAGACATCGA TTACGACAAT CCGGGCTTGA GCTGCGGCTT 951 TCACGACGAC GATGATGCAC ACGCCCATGC CCACAACGGC AAACCTTGGA 1001 TAGACCTGCG CAACAAACGC TACGAACTCC GCGCCGAATG GAAGCAACCG 1051 TTCCCCGGTT TTGAAGCCCT GCGCGTACAC CTGAACCGCA ACGACTACCG 1101 CCACGACGAA AAAGCAGGCG ATGCAGTAGA AAACTTTTTT AACAACCAAA 1151 CGCAAAACGC CCGTATCGAG TTGCGCCACC AACCCATAGG CCGTCTGAAA 1201 GGCAGCTGGG GCGTGCAATA TTTGGGACAA AAATCCAGTG CTTTATCTGC 1251 CACATCCGAA GCGGTCAAAC AACCGATGCT GCTTGACAAT AAAGTGCAAC 1301 ATTACAGCTT TTTCGGTGTA GAACAGGCAA ACTGGGACAA CTTCACGCTT 1351 GAAGGCGGCG TACGCGTGGA AAAACAAAAA GCCTCCATCC GCTACGACAA 1401 AGCATTGATT GATCGGGAAA ACTACTACAA CCATCCCCTG CCCGACCTCG 1451 GCGCGCACCG CCAAACCGCC CGCTCATTCG CACTTTCGGG CAACTGGTAT 1501 TTCACGCCAC AACACAAACT CAGCCTGACC GCCTCCCATC AGGAACGCCT 1551 GCCGTCAACG CAAGAGCTGT ACGCACACGG CAAACACGTC GCCACCAACA 1601 CCTTTGAAGT CGGCAACAAA CACCTCAACA AAGAGCGTTC CAACAATATC 1651 GAACTCGCGC TGGGCTACGA AGGCGACCGC TGGCAATACA ATCTGGCACT 1701 CTACCGCAAC CGCTTCGGCA ACTACATTTA CGCCCAAACC TTAAACGACG 1751 GACGCGGCCC CAAATCCATC GAAGACGACA GCGAAATGAA GCTCGTGCGC 1801 TACAACCAAT CCGGTGCGGA CTTCTACGGC GCGGAAGGCG AAATCTACTT 1851 CAAACCGACA CCGCGCTACC GCATCGGCGT TTCCGGCGAC TATGTACGAG
1901 GCCGTCTGAA AAACCTGCCT TCCCTACCCG GCAGGGAAGA CGCCTACGGC 1951 AACCGCCCAC TCATTGCCCA AGCCGACCAA AACGCCCCTC GCGTTCCGGC 2001 TGCGCGCCTC GGCGTCCACC TGAAAGCCTC GCTGACCGAC CGCATCGATG 2051 CCAATTTGGA CTACTACCGC GTGTTCGCCC AAAACAAACT CGCCCGCTAC 2101 GAAACGCGCA CGCCCGGACA CCATATGCTC AACCTCGGCG CAAACTACCG 2151 CCGCAATACG CGCTATGGCG AGTGGAATTG GTACGTCAAA GCCGACAACC 2201 TGCTCAACCA ATCCGTTTAC GCCCACAGCA GCTTCCTCT TGATACGCCG 2251 CAAATGGGCC GCAGCTTTAC CGGCGGCGTG AACGTGAAGT TTTAA

This corresponds to the amino acid sequence <SEQ ID 588; ORF 147.a>:

1 MRREAKMAQT TLKPIVLSIL LINTPLLSQA HGTEQSVGLE TVSVVGKSRP
51 RATSGLLHTS TASDKIISGD TLRQKAVNLG DALDGVPGIH ASQYGGGASA
101 PVIRGQTGRR IKVLNHHGET GDMADFSPDH AIMVDSALSQ QVEILRGPVT
151 LLYSSGNVAG LVDVADGKIP EKMPENGVSG ELGLRLSSGN LEKLTSGGIN
201 IGLGKNFVLH TEGLYRKSGD YAVPRYRNLK RLPDSHADSQ TGSIGLSWVG
251 EKGFIGAAYS DRRDQYGLPA HSHEYDDCHA DIIWQKSLIN KYLQLYPHL
301 LTEEDIDYDN PGLSCGFHDD DDAHAHAHNG KPWIDLRNKR YELRAEWKQP
351 FPGFFEALRVH LNRNDYRHDE KAGDAVENFF NNQTQNARIE LRHQPIGRLK
401 GSWGVQYLGQ KSSALSATSE AVKQPMLLDN KVQHYSFFGV EQANWDNFTL
451 EGGVRVEKQK ASIRYDKALI DRENYYNHPL PDLGAHRQTA RSFALSGNWY
501 FTPQHKLSLT ASHQERLPST QELYAHGKHV ATNTFEVGNK HLNKERSNNI
551 ELALGYEGDR WQYNLALYRN RFGNYIYAQT LNDGRGPKSI EDDSEMKLVR

601 651 701 751	YNQSGADFYG AEGEIYFKPT PRYRIGVSGD YVRGRLKNLP SLPGREDAYG NRPLIAQADQ NAPRVPAARL GVHLKASLTD RIDANLDYYR VFAQNKLARY ETRTPGHHML NLGANYRRNT RYGEWNWYVK ADNLLNQSVY AHSSFLSDTP QMGRSFTGGV NVK <u>F</u> *
m147/a147	98.1% identity in 734 aa overlap
m147.pep	10 20 30 PHKTEQSVDLETVSVVGKSRPRATSGLLHTS ! !!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	10 20 30 40 50 60
m147.pep	40 50 60 70 80 90 TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET
a147	TASDKIISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRGQTGRRIKVLNHHGET 70 80 90 100 110 120
m147.pep	100 110 120 130 140 150 GDMADFSPDHAIMVDTALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG
a147	GDMADFSPDHAIMVDSALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSG 130 140 150 160 170 180
m147.pep	160 170 180 190 200 210 ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ
a147	ELGLRLSSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQ 190 200 210 220 230 240
m147.pep	220 230 240 250 260 270 TGSIGLSWVGEKGFIGVAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL
a147	TGSIGLSWVGEKGFIGAAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHL 250 260 270 280 290 300
m147.pep	280 290 300 310 320 330 LTEEDIDYDNPGLSCGFHDDDNAHAHTHSGRPWIDLRNKRYELRAEWKQPFPGFEALRVH
a147	
m147.pep	340 350 360 370 380 390 LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLQQKSSALSAISE
a147	LNRNDYRHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLGQKSSALSATSE 370 380 390 400 410 420
m147.pep	400 410 420 430 440 450 AVKQPMLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPL
a147	
m147.pep	460 470 480 490 500 510 PDLGAHRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNK
a147	
ml47.pep	520 530 540 550 560 570 HLNKERSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVR
a147	

	550	560	570	580	590	600
	580	590	600	610	620	630
m147.pep	YNQSGADFYGAEG	EIYFKPTPRY	RIGVSGDYVRO	GRLKNLPSLP	GREDAYGNRPI	FIAQDDQ :
a147	YNQSGADFYGAEG					LIAQADQ
	610	620	630	640	650	660
	640	650	660	670	680	690
ml47.pep	NAPRVPAARLGFH	LKASLTDRID	ANLDYYRVFA(ONKLARYETR!	r PGHHMLNLG	ANYRRNT
a147	NAPRVPAARLGVH	LKASLTDRID	IIIIIIIII ANLDYYRVFA(ONKLARYETR'		ANYRRNT
	670	680	690	700	710	720
	700	710	720	730		
m147.pep	RYGEWNWYVKADN	LLNQSVYAHS	SFLSDTPQMGI	RSFTGGVNVK	FΧ	
			11111111	111111111	11	
a147	RYGEWNWYVKADN		- -		FX	
	730	740	750	760		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 589>:

g148.seq		•			
1	ATGGCGTTAA	AAACATCAAA	CTTGGAACAC	GCAATGctgg	ttcaTCCCGA
51	AgctATgagt	gtcggcgCGC	TTGccgAcaa	AATCCGCAAA	AtcgaAAact
101	gGCCGCAAAA	AGgcaTCTTA	TTCCACGACA	TCACGCCCGT	CCTGCAAAGT
151	GCGGAATACT	TCCGCCTTTT	GGTCGATTTG	CTGGTTTACC	GCTATATGGA
201	TCAGAAAATC	GACATCGTTG	CCGGCTTGGA	CGCGCGCGC	TTCATTATCG
251	GCGCGGCACT	CGCCTACCAG	CTCAaCGtcg	gctTCGTCCC	CATCCGCAAA
301	AAAGGCAAGC	TGCCTTTTGA	AACCGTATCG	CAAAGCTAcg	cgcTCGAATA
351	CGGGGAAGCT	GCGGTGGAAA	TCCACACCGa	tgccgTCAAA	CCCGGTTCGC
401	GCGTCCTGCT	GGTCGATGAT	TTGGTTGCCA	CGGGCGCAC	AATGCTTGCC
451	GGGCTGGAAC	TGATCCGCAA	ACTCGGCGGG	GAAATTGTCG	AAgccgccgC
501	CATTTTGGAA	TTTACCGACC	TTCAAGGCGG	CAAGAATATC	CGCGCAAGTG
551	GCGCGCCCTT	ATTTACCCTG	CTTCAAAACG	AAGGCTGCAT	GAAAGGCTGA

This corresponds to the amino acid sequence <SEQ ID 590; ORF 148.ng>: g148.pep

1	MALKTSNLEH	AMLVHPEAMS	VGALADKIRK	IENWPQKGIL	FHDITPVLQS
51	AEYFRLLVDL	LVYRYMDQKI	DIVAGLDARG	FIIGAALAYQ	LNVGFVPIRK
101	KGKLPFETVS	QSYALEYGEA	AVEIHTDAVK	PGSRVLLVDD	LVATGGTMLA
151	GLELIRKLGG	EIVEAAAILE	FTDLOGGKNI	RASGAPLFTL	LONEGCMKG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 591>:

m148.seq					
1	ATGGCGTTAA	AAACATCAAA	CTTGGAACAC	GCAATGCTGG	TTCATCCCGA
51	AGCTATGAGT	GTCGGCGCGC	TTGCCGACAA	AATCCGCAAA	ATCGAAAACT
101	GGCCGCAAAA	AGGCATCTTA	TTCCACGACA	TCACGCCCGT	CCTTCAAAGC
151	GCGGAATACT	TCCGCCTTTT	GGTTGATTTA	TTGGTTTACC	GCTATATGGA
201	TCAGAAAATC	GACATCGTTG	CCGGTTTGGA	CGCGCGCGGC	TTCATTATCG
251	GCGCGGCACT	CGCCTACCAG	CTCAACGTCG	GTTTCGTCCC	CATCCGCAAA
301	AAAGGCAAGC	TGCCTTTTGA	AACCGTATCG	CAAAGCTACG	CGCTCGAATA
351	CGGGGAAGCT	GCGGTGGAAA	TCCACACCGA	TGCCGTCAAA	CTCGGTTCGC
401	GCGTGCTGCT	GGTCGATGAT	TTGATTGCCA	CGGGCGGCAC	GATGCTTGCC
451	GGACTGGAAC	TGATCCGCAA	ACTCGGCGGA	GAAATTGTCG	AAGCCGCCGC
501	CATTTTGGAA	TTTACCGACC	TTCAAGGCGG	CAAGAATATC	CGTGCAAGCG
551	GCGCGCCCTT	ATTTACCCTG	CTTCAAAACG	AAGGCTGTAT	GAAGGGCTGA

This corresponds to the amino acid sequence <SEQ ID 592; ORF 148>:

- m148.pep

 1 MALKTSNLEH AMLVHPEAMS VGALADKIRK IENWPOKGIL FHDITPVLQS
 51 AEYFRLLVDL LVYRYMDOKI DIVAGLDARG FIIGAALAYO LNVGFVPIRK

- 101 KGKLPFETVS QSYALEYGEA AVEIHTDAVK LGSRVLLVDD LIATGGTMLA
- GLELIRKLGG EIVEAAAILE FTDLQGGKNI RASGAPLFTL LQNEGCMKG*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m148 /	a148	99.0%	identity	in	199	aa	overlan

	10	20	30	40	50	60
m148.pep	MALKTSNLEHAMLV	'HPEAMSVGAI	ADKIRKIENW	PQKGILFHDI	TPVLQSAEYE	RLLVDL
		11111111111		3111111111	1111111111	$\Pi\Pi\Pi\Pi$
g148	MALKTSNLEHAMLV	'HPEAMSVGAI	ADKIRKIENW	PQKGILFHDI	TPVLQSAEYE	RLLVDL
	10	20	30	40	50	60
		1.				
	70	80	90	100	110	120
m148.pep	LVYRYMDQKIDIVA	GLDARGFIIG	BAALAYQLNVG	FVPIRKKGKL	PFETVSQSY	LEYGEA
		111111111		111111111	1111111111	11111
g148	LVYRYMDQKIDIVA	GLDARGFIIG	SAALAYQLNVG	FVPIRKKGKL	PFETVSQSY	LEYGEA
	70	80	90	100	110	120
	130	140	150	160	170	180
m148.pep	AVEIHTDAVKLGSR	VLLVDDLIAT	GGTMLAGLEL	IRKLGGEIVE	AAAILEFTDI	LQGGKNI
				1111111111	1111111111	111111
g148	AVEIHTDAVKPGSR	VLLVDDLVAT	GGTMLAGLEL	IRKLGGEIVE	AAAILEFTDI	LQGGKNI
	130	140	150	160	170	180
	190	. 200				
m148.pep	RASGAPLFTLLQNE	GCMKGX				
		111111				
g148	RASGAPLFTLLQNE	GCMKGX				
	190	200				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 593>:

```
a148.seq
         ATGGCGTTAA AAACATCAAA CTTGGAACAC GCAATGCTGG TTCATCCCGA
     51 AGCTATGAGT GTCGGTGCGC TTGCCGACAA AATCCGCAAA ATCGAAAACT
    101 GGCCGCAAAA AGGCATCTTA TTCCACGACA TCACGCCCGT CCTGCAAAGC
    151 GCGGAATACT TCCGACTTTT GGTTGATTTA TTGGTTTACC GCTATATGGA
    201 TCAGAAAATC GACATCGTTG CCGGTTTGGA CGCGCGCGC TTCATTATCG
    251 GCGCGGCACT CGCCTACCAG CTCAACGTCG GTTTCGTCCC CATCCGCAAA
    301 AAAGGCAAGC TGCCTTTTGA AACCGTATCG CAAAGCTACG CGCTCGAATA
    351 CGGGGAAGCT GCGGTGGAAA TCCACACCGA TGCCGTCAAA CTCGGTTCGC
    401 GCGTGCTGCT GGTCGATGAT TTGGTTGCCA CGGGCGGCAC GATGCTTGCC
    451 GGACTGGAGC TGATCCGCAA ACTCGGCGGG GAAATTGTCG AAGCCGCCGC
    501 CATTTTGGAA TTTACCGACC TTCAAGGCGG CAAGAATATC CGTGCAAGCG
    551 GCGCGCCCTT ATTTACCCTG CTTCAAAACG AAGGCTGTAT GAAGGGCTGA
```

This c

corresponds	s to the amino	o acid seque	nce <seq i<="" th=""><th>D 594; ORF</th><th>148.a>:</th><th></th></seq>	D 594; ORF	148.a>:	
al48.pep						
1	MALKTSNLEH .	AMLVHPEAMS	VGALADKIRK	IENWPQKGII	FHDITPVLQ	3
51	AEYFRLLVDL	LVYRYMDQKI	DIVAGLDARG	FIIGAALAYO	LNVGFVPIR	K
101	KGKLPFETVS	_				
151	GLELIRKLGG	EIVEAAAILE	FTDLQGGKNI	RASGAPLFTI	LQNEGCMKG	k
m148/a148	99.5% id	entity in 1	199 aa over	lap		
		10 2	20 3	0 40	50	60
m148.pep	MALKTSNL	EHAMLVHPEA N	1SVGALADKIR	KIENWPQKGII	FHDITPVLQS	AEYFRLLVDL
	1111111			11111111111		111111111
a148	MALKTSNL	EHAMLVHPEAN	1SVGALADKIR	KIENWPQKGII	FHDITPVLQS	AEYFRLLVDL
		10 2	20 3	0 40	50	60
		70 8	30 9	0 100	110	120

m148.pep	LVYRYMDQKIDIVAC		GAALAYQLNVO			ALEYGEA
a148	LVYRYMDQKIDIVAG					ALEYGEA
	70	80	90 ्	100	110	120
	130	140	150	160	170	180
m148.pep	AVEIHTDAVKLGSRV	LLVDDLIA	TGGTMLAGLEI	IRKLGGEIVE	AAAILEFTD	LQGGKNI
	111111111111	111111:1	1111111111111	$\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}$	11111111111	1111111
a148	AVEIHTDAVKLGSRV	LLVDDLVA	TGGTMLAGLEI	IRKLGGEIVE	AAAILEFTD	LOGGKNI
•	130	140	150	160	170	180
	190	200				
m148.pep	RASGAPLFTLLQNEG	CMKGX				
,		HHH				
a148	RASGAPLETLLONEG	CMKGX				
	190	200	•			

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 595>: g149.seq

```
ATGTTGATTG ACAACAATGT CCGCCATTAC AGCTTTTTCG GTGTAGAACA
  1
 51 GGCAAATTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC
 101 AAAAAGCCTC CATCCGGTAC GACAAAGCAT TGATTGATCG AGAAAACTAC
 151 TACAACCAGC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC
 201 GTTCGCACTT TCGGGCAACT GGTATTTCAC GCCACACCAC AAACTCAGCC
 251 TGACCGCCTC CCATCAGGAa cgCCTGCCGT CAACGCaagA actGtACgca
 301 cacggcAAGC ACGtcgccac CAACACCTTT GAagtcggca acaaACACCT
351 CAACAAAGaG CgttccaacA atatcgaACT CGCGCTGGgc tAcaaaggcg
 401 accGCTGGCA ATACAATCTG GCAGCCTACC GCAACCGALT CGGCAACTAC
 451 ATTTACGCCC AAACCTTAaa cgacggacgC GGCCCCAAAT CCATCgaaga
501 cgacagcgaA ATGaagcTCG TGCGCTACAA CCAATCCGGT GCCGACTTCT
551 ACGGCGCGA aggcGaaatc tACTTcaaaC CGAcACCGCG CTACCGCATC
601 GGTGTTTCCG GCGACTatgt acgaggccgT CTGAAAAACC TGCCGTCCCT
651 ACCCGGCAGG gaagatccCT AcggcAAACG TCccttcaTC GCACAAGCCG
701 ACCAAAACGC CCCCCGCATT ccggctGCGC GCCTCGGCTT CCACCTGAAA
751 ACCTCGCTAA CCGACCGTAT CGATGCCAAT TTGGACTACT ACCGCGTGTT
     CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGTACGCCC GGACACCATA
851 TGCTCAACCT CGGTGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG
901 AATTGGTACG TCAAAGCCGA CAACCTGCtc aACcaatCcg tTTACGCCCa
951 CAGCAGCTTC CTCTCTGATA CGCCGCAAAt gGGCCGCAGC TTtgccgGCg
1001 gcgtaAACGT GaAGTTttaA
```

This corresponds to the amino acid sequence <SEQ ID 596; ORF 149.ng>: g149.pep

- 1 MLIDNNVRHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY 51 YNQPLPDLGA HRQTARSFAL SGNWYFTPHH KLSLTASHQE RLPSTQELYA 101 HGKHVATNTF EVGNKHLNKE RSNNIELALG YKGDRWQYNL AAYRNRFGNY 151 IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI 201 GVSGDYVRGR LKNLPSLPGR EDPYGKRPFI AQADQNAPRI PAARLGFHLK
- 251 TSLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW 301 NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FAGGVNVKF*

The following partial DNA sequence was identified in *N.meningitidis* <SEQ ID 597>: m149.seq

1 ATGCTGCTTG ACAACAAGT GCAACATTAC AGCTTTTCG GTGTAGAACA
51 GGCAAACTGG GACAACTTCA CGCTTGAAGG AGGCGTACGC GTGGAAAAAC
101 AAAAAGCCTC CATTCAGTAC GACAAAGCAT TGATTGATCG GGAAAACTAC
151 TACAACCACC CCCTGCCCGA CCTCGGCGCG CACCGCCCAAA CCGCCCGCTC
201 ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC
251 TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA
301 CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAACACCT
351 CAACAAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG
401 ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGTAACTAC

	•	
451	ADDITION OF THE CONTRACT OF TH	
451 501	ATTTACGCCC AAACCTTAAA CGACGGACGC GGCCCCAAAT CCATCGAAGA CGACAGCGAA ATGAAGCTCG TGCGCTACAA CCAATCCGGC GCCGACTTCT	
551	ACGGCGCGGA AGGCGAAATC TACTTCAAAC CGACACCGCG CTACCGCATC	
601	GGCGTTTCCG GCGACTATGT ACGAGGCCGT CTGAAAAAACC TGCCTTCCCT	
651	ACCCGGCAGA GAAGATGCCT ACGGCAACCG TCCTTTCATC GCACAGGACG	
701	ACCAAAATGC CCCCCGTGTT CCGGCTGCGC GCCTCGGCTT CCACCTGAAA	
751	GCCTCGCTGA CCGACCGTAT CGATGCCAAT TTGGACTACT ACCGCGTGTT	
801	CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGCACGCCC GGACACCATA	
851	TGCTCAACCT CGGCGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG	
901	AATTGGTACG TCAAAGCCGA CAACCTGCTC AACCAATCCG TTTACGCCCA	
951	CAGCAGCTTT CTCTCTGATA CGCCGCAAAT GGGCCGCAGC TTTACCGGCG	
1001	GCGTGAACGT GAAGTTTTAA	
	sponds to the amino acid sequence <seq 149="" 598;="" id="" orf="">:</seq>	
m149.pep	sponds to the allino acid sequence SEQ ID 390, ORI 1492.	
1	MLLDNKVQHY SFFGVEQANW DNFTLEGGVR VEKQKASIQY DKALIDRENY	
51	YNHPLPDLGA HRQTARSFAL SGNWYFTPQH KLSLTASHQE RLPSTQELYA	
101	HGKHVATNTF EVGNKHLNKE RSNNIELALG YEGDRWQYNL ALYRNRFGNY	
151	IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI	
201	GVSGDYVRGR LKNLPSLPGR EDAYGNRPFI AODDONAPRV PAARLGFHLK	
251	ASLITORIDAN LDYYRVFAQN KLARYETRIP GHHMLNLGAN YRRNTRYGEW	
301	NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FTGGVNVKF*	
	analysis of this amino acid sequence gave the following results:	
_	• •	
	with a predicted ORF from N.gonorrhoeae	
	shows 95.9% identity over a 339 aa overlap with a predicted ORF (ORF 1	49.ng)
from N. go	onorrhoeae:	
m149/g149		
	10 20 30 40 50 60	
m149.pep	MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPLPDLGA	
]]:]]:[:[:]:[:]:[:]:[::::::::::::::::::	
g149	MLIDNNVRHYSFFGVEQANWDNFTLEGGVRVEKQKASIRYDKALIDRENYYNQPLPDLGA	
	10 20 30 40 50 60	
	70 90 00 100 110 100	
m149 nen	70 80 90 100 110 120	
m149.pep	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	
	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	
m149.pep	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	
	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	
	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	
g149	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	
	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	
g149	HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE	

ml49.pep

ml49.pep

m149.pep

g149

g149

NWYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX

PAARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW

PAARLGFHLKTSLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW

 ${\tt ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRV}$

m149.pep

NWYVKADNLLNQSVYAHSSFLSDTPQMGRSFAGGVNVKFX g149 320 330 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 599>: al49.seq ATGCTGCTTG ACAATAAAGT GCAACATTAC AGCTTTTTCG GTGTAGAACA GGCAAACTGG GACAACTTCA CGCTTGAAGG CGGCGTACGC GTGGAAAAAC 101 AAAAAGCCTC CATCCGCTAC GACAAAGCAT TGATTGATCG GGAAAACTAC 151 TACAACCATC CCCTGCCCGA CCTCGGCGCG CACCGCCAAA CCGCCCGCTC ATTCGCACTT TCGGGCAACT GGTATTTCAC GCCACAACAC AAACTCAGCC 201 TGACCGCCTC CCATCAGGAA CGCCTGCCGT CAACGCAAGA GCTGTACGCA 251 CACGGCAAAC ACGTCGCCAC CAACACCTTT GAAGTCGGCA ACAAACACCT CAACAAAGAG CGTTCCAACA ATATCGAACT CGCGCTGGGC TACGAAGGCG ACCGCTGGCA ATACAATCTG GCACTCTACC GCAACCGCTT CGGCAACTAC 451 ATTTACGCCC AAACCTTAAA CGACGGACGC GGCCCCAAAT CCATCGAAGA 501 CGACAGCGAA ATGAAGCTCG TGCGCTACAA CCAATCCGGT GCGGACTTCT 551 ACGGCGCGGA AGGCGAAATC TACTTCAAAC CGACACCGCG CTACCGCATC 601 GGCGTTTCCG GCGACTATGT ACGAGGCCGT CTGAAAAACC TGCCTTCCCT 651 ACCCGGCAGG GAAGACGCCT ACGGCAACCG CCCACTCATT GCCCAAGCCG 701 ACCAAAACGC CCCTCGCGTT CCGGCTGCGC GCCTCGGCGT CCACCTGAAA 751 GCCTCGCTGA CCGACCGCAT CGATGCCAAT TTGGACTACT ACCGCGTGTT CGCCCAAAAC AAACTCGCCC GCTACGAAAC GCGCACGCCC GGACACCATA 801 TGCTCAACCT CGGCGCAAAC TACCGCCGCA ATACGCGCTA TGGCGAGTGG 851 AATTGGTACG TCAAAGCCGA CAACCTGCTC AACCAATCCG TTTACGCCCA 901 951 CAGCAGCTTC CTCTCTGATA CGCCGCAAAT GGGCCGCAGC TTTACCGGCG 1001 GCGTGAACGT GAAGTTTTAA This corresponds to the amino acid sequence <SEQ ID 600; ORF 149.a>: a149.pep MLLDNKVQHY SFFGVEQANW DNFTLEGGVR VEKQKASIRY DKALIDRENY YNHPLPDLGA HRQTARSFAL SGNWYFTPQH KLSLTASHQE RLPSTQELYA 51 HGKHVATNTF EVGNKHLNKE RSNNIELALG YEGDRWQYNL ALYRNRFGNY 151 IYAQTLNDGR GPKSIEDDSE MKLVRYNQSG ADFYGAEGEI YFKPTPRYRI GVSGDYVRGR LKNLPSLPGR EDAYGNRPLI AQADQNAPRV PAARLGVHLK 251 ASLTDRIDAN LDYYRVFAQN KLARYETRTP GHHMLNLGAN YRRNTRYGEW NWYVKADNLL NQSVYAHSSF LSDTPQMGRS FTGGVNVKF* m149/a149 98.8% identity in 339 aa overlap 30 40 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIQYDKALIDRENYYNHPLPDLGA m149.pep a149 MLLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIRYDKALIDRENYYNHPLPDLGA 20 30 40 50 80 90 100 110 120 HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE m149.pep a149 HRQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKE 70 80 90 100 110 120 140 150 160 170 m149.pep RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNOSG RSNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSG a149 130 140 150 160 170 180 190 200 210 220 230 ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRV m149.pep ADFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRV a149 190 200 210 220 230 240 260 270 280 290 300

PAARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEW

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 601>: g149-1.seq

```
1 ATGGCACAAA TCACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
  51 CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGGCTTGG
 101 AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCGAC TTCGGGGCTG
 151 CTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACTTTGCG
 201 CCAAAAAGCC GTCAACTTGG GCGACGCTTT GGACGGCGTA CCGGGCATCC
 251 ACGCTTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
 301 ACGGGCAGAC GGATTAAAGT ATTGAACCAT CACGGCGAAA CGGGCGATAT
 351 GGCGGACTTT TCTCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
 401 AACAGGTTGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
 451 AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGAAAAATCC CCGAAAAAAT
      GCCTGAAAAC GGCGTATCGG GCGaagccgG ATTGCGTTTG AGCAGCGGCA
 551 ATTTAGAAAA ACTGACATCC GCAGGCATCA ATATCGGACT GGGCAAAAAC
      TTCGTGCTGC ATACCGAAGG CTTGTACCGC AAATCGGGCG ATTACGCCGT
 601
 651 ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAT GCCGATTCGC
 701 AAACGGGCAG CATCGGGCTG TCTTGGGTGG GCGAAAAAGG CTTTATCGGC
      GCAGCATACA GCGACCGTCG CGACCGCTAC GGCCTGCCTG CCCACAGCCA
      CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATCA
 851 ACAAACGCTA TTTGCAGCTT TATCCGCACT TGTTGACCGA AGAAGACATC
 901 GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG GCGACGGTGC
 951 ACACGCACAC ACCCACAACG GCAAACCGTG GATAGACCTG CGCAACAAAC
1001 GCTACGAACT CCGCGCCGAA TGGAAGCAGC CATTCCCCGG TTTTGAAGCC
1051 CTGCGCGTAC ATCTGAACCG CAATGACTAC CACCACGACG AAAAAGCAGG
1101 CGATGCAGTA GAAAACTTCT TCAACAACAA AACACACAAC GCCCGTATCG
1151 AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
1201 TATTTGGGAC AAAAATCCAG CGCGCTTTCC GCCATTCCCG AAACCGTCCA
1251 ACAACCGATG TTGATTGACA ACAATGTCCG CCATTACAGC TTTTTCGGTG
1301 TAGAACAGGC AAATTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
1351 GAAAAACAAA AAGCCTCCAT CCGGTACGAC AAAGCATTGA TTGATCGAGA
1401 AAACTACTAC AACCAGCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1451 CCCGCTCGTT CGCACTTCG GGCAACTGGT ATTTCACGCC ACACCACAAA
1501 CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAACT
1551 GTACGCACAC GGCAAGCACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
1651 GAAGGCGACC GCTGGCAATA CAATCTGGCA GCCTACCGCA ACCGATTCGG
1701 CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1751 TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCC
1801 GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1851 CCGCATCGGT GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1901 CGTCCCTACC CGGCAGGGAA GATCCCTACG GCAAACGTCC CTTCATCGCA
1951 CAAGCCGACC AAAACGCCCC CCGCATTCCG GCTGCGCGCC TCGGCTTCCA
2001 CCTGAAAACC TCGCTAACCG ACCGTATCGA TGCCAATTTG GACTACTACC
2051 GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG TACGCCCGGA
2101 CACCATATGC TCAACCTCGG TGCAAACTAC CGCCGCAATA CGCGCTATGG
2151 CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2201 ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2251 ACCGGCGGCG TAAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 602; ORF 149-1.ng>: g149-1.pep

- 1 MAQITLKPIV LSILLINTPL LAQAHETEQS VGLETVSVVG KSRPRATSGL 51 LHTSTASDKI ISGDTLRQKA VNLGDALDGV PGIHASQYGG GASAPVIRGQ 101 TGRRIKVLNH HGETGDMADF SPDHAIMVDT ALSQQVEILR GPVTLLYSSG 151 NVAGLVDVAD GKIPEKMPEN GVSGEAGLRL SSGNLEKLTS AGINIGLGKN
- 201 FVLHTEGLYR KSGDYAVPRY RNLKRLPDSH ADSQTGSIGL SWVGEKGFIG
 251 AAYSDRRDRY GLPAHSHEYD DCHADIIWQK SLINKRYLQL YPHLLTEGDI
 301 DYDNPGLSCG FHDGDGAHAH THNGKPWIDL RNKRYELRAE WKQPFPGFEA

```
351 LRVHLNRNDY HHDEKAGDAV ENFFNNKTHN ARIELRHOPI GRLKGSWGVQ
401 YLGQKSSALS AIPETVQQPM LIDNNVRHYS FFGVEQANWD NFTLEGGVRV
451 EKCKASIRYD KALIDRENYY NQPLPDLGAH RQTARSFALS GNWYFTPHHK
501 LSLTASHQER LPSTQELYAH GKHVATNTFE VGNKHLNKER SNNELALGY
551 EGDRWQYNLA AYRNFFGNYI YAQTLNDGRG PKSIEDDSEM KLVRYNQSGA
601 DFYGAEGEIY FKPTPRYRIG VSGDYVRGRL KNLPSLPGRE DPYGKRPFIA
651 QADQNAPRIP AARLGFHLKT SLTDRIDANL DYYRVFAQNK LARYETRTPG
701 HHMLNLGANY RRNTRYGEWN WYVKADNLLN QSVYAHSSFL SDTPQMGRSF
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 603>: m149-1.seq

```
1 ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
  51 CACACCCCTC CTCGCCCAAG CGCATGAAAC TGAGCAATCG GTGGATTTGG
 101 AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCCAC GTCGGGGCTG
 151 TTGCACACTT CGACCGCCTC CGACAAAATC ATCTCCGGCG ATACCTTGCG
 201 CCAAAAAGCC GTCAACTTGG GCGACGCTTT AGACGGCGTA CCGGGCATCC
 251 ACGCTTCGCA ATACGGCGGC GGCGCGTCTG CTCCCGTCAT TCGCGGTCAA
 301 ACAGGCAGGC GGATTAAAGT GTTGAACCAT CACGGCGAAA CAGGCGATAT
 351 GGCGGATTTT TCGCCCGATC ACGCCATTAT GGTAGATACC GCCTTGTCGC
 401 AACAGGTCGA AATCCTGCGC GGGCCGGTTA CGCTCTTGTA CAGCTCGGGC
 451 AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
 501 GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
 551 ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
 601 TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
 651 ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
 701 AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG TTTTATCGGC
 751 GTAGCGTACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
 801 CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGCTTGATTA
 851 ACAAACGCTA TTTACAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
 901 GATTACGACA ATCCGGGCTT GAGCTGCGGC TTCCACGACG ACGATAATGC
 951 ACACGCACAC ACCCACAGCG GCAGACCGTG GATAGACCTG CGCAACAAAC
1001 GCTACGAACT CCGTGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
1051 CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
1101 CGATGCAGTC GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGCATCG
1151 AGTTGCGCCA CCAACCCATA GGTCGTCTGA AAGGCAGCTG GGGCGTGCAA
1201 TATTTACAAC AAAAATCCAG TGCTTTATCT GCCATATCCG AAGCGGTTAA
1251 ACAACCGATG CTGCTTGACA ACAAAGTGCA ACATTACAGC TTTTTCGGTG
1301
     TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGAGG CGTACGCGTG
1351
     GAAAAACAAA AAGCCTCCAT TCAGTACGAC AAAGCATTGA TTGATCGGGA
1401 AAACTACTAC AACCACCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
1451 CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1501 CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1551 GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
1651 GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
1701
     TAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1751 TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGCGCC
1801 GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
1851 CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
1901 CTTCCCTACC CGGCAGAGAA GATGCCTACG GCAACCGTCC TTTCATCGCA
1951 CAGGACGACC AAAATGCCCC CCGTGTTCCG GCTGCGCGCC TCGGCTTCCA
2001 CCTGAAAGCC TCGCTGACCG ACCGTATCGA TGCCAATTTG GACTACTACC
2051 GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
2101 CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
2151
     CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
2201 ACGCCCACAG CAGCTTTCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
2251 ACCGGCGGCG TGAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 604; ORF 149-1>: m149-1.pep

1 MAQTTLKPIV LSILLINTPL LAQAHETEQS VDLETVSVVG KSRPRATSGL
51 LHTSTASDKI ISGDTLRQKA VNLGDALDGV PGIHASQYGG GASAPVIRGQ
101 TGRRIKVLNH HGETGDMADF SPDHAIMVDT ALSQQVEILR GPVTLLYSSG
151 NVAGLVDVAD GKIPEKMPEN GVSGELGLRL SSGNLEKLTS GGINIGLGKN
201 FVLHTEGLYR KSGDYAVPRY RNLKRLPDSH ADSQTGSIGL SWVGEKGFIG
251 VAYSDRRDQY GLPAHSHEYD DCHADIIWQK SLINKRYLQL YPHLLTEEDI
301 DYDNPGLSCG FHDDDNAHAH THSGRPWIDL RNKRYELRAE WKQFFPGFEA
351 LRVHLNRNDY RHDEKAGDAV ENFFNNQTQN ARIELRHQPI GRLKGSWGVQ
401 YLQQKSSALS AISEAVKQPM LLDNKVQHYS FFGVEQANWD NFTLEGGVRV
451 EKQKASIQYD KALIDRENYY NHPLPDLGAH RQTARSFALS GNWYFTPQHK
501 LSLTASHQER LPSTQELYAH GKHVATNTFE VGNKHLNKER SNNIELALGY

551	EGDRWQYNLA	LYRNRFGNYI	YAQTLNDGRG	PKSIEDDSEM	KLVRYNQSGA

601 DFYGAEGEIY FKPTPRYRIG VSGDYVRGRL KNLPSLPGRE DAYGNRPFIA 651 QDDQNAPRVP AARLGFHLKA SLTDRIDANL DYYRVFAQNK LARYETRTPG 701 HHMLNLGANY RRNTRYGEWN WYVKADNLLN QSVYAHSSFL SDTPQMGRSF

751 TGGVNVKF*

m149-1/g149-1 96.2% identity in 758 aa overlap

m143-1/G143-	1 96.28 identit	ry in /58	aa overiap			
	10	20	30	40	50	60
m149-1.pep	MAQTTLKPIVLSILLIN					
g149-1						
-	10	20	30	40	50	60
	70	80	90	100	110	120
m149-1.pep	ISGDTLRQKAVNLGDAI					
-1.40-1	- 1111111111111111		1111111111	11111111111	11111111111	1111
g149-1	ISGDTLRQKAVNLGDAI 70	80 PDGAEGIHW2	QIGGGASAPV 90	IRGQIGRRIK 100	VLNHHGETGD	120
m149-1.pep	130 SPDHAIMVDTALSQQVE	140 ELLEGPUTLL	150 YSSGNVAGI.V	160 DVADGKI PEK	170 MDENGVSGEL	180
mais aipop		1111111111	ШШШ	ШПППП	111111111	1111
g149-1	SPDHAIMVDTALSQQVE	EILRGPVTLL 140				
	130	140	150	160	170	180
	190	200	210	220	230	240
m149-1.pep	SSGNLEKLTSGGINIGI					
g149-1.	SSGNLEKLTSAGINIGI	GKNFVLHTE	GLYRKSGDYA			
	190	200	210	220	230	240
	250	260	270	280	290	300
m149-1.pep	SWVGEKGFIGVAYSDRF					
g149-1						
•	250	260	270	280	290	300
	310	320	330	340	350	360
m149-1.pep	DYDNPGLSCGFHDDDNA					
~140.1	DADADCE GCCDADCDC					
g149-1	DYDNPGLSCGFHDGDGA 310	320	330	S40	GFEALRVHLNI 350	360
	270					
m149-1.pep	370 RHDEKAGDAVENFFNNO	380 TONARTELRI	390 HOPTGRLKGS	400 WGVOYTOOKS	410 Salsatseavi	420 KOPM
	:	1:1111111	111111111	111111 131	111111 1:1	:111
g149-1	HHDEKAGDAVENFFNNK 370	THNARIELRI 380	HQPIGRLKGS 390	WGVQYLGQKS 400	SALSAIPETV	QQPM 420
	370	300	330	400	410	420
m140-1 non	430	440	450	460	470	480
m149-1.pep	LLDNKVQHYSFFGVEQA					
g149-1	LIDNNVRHYSFFGVEQA	NWDNFTLEG	GVRVEKQKAS	IRYDKALIDR	ENYYNQPLPD:	LGAH
	430	440	450	460	470	480
	490	500	510	520	530	540
m149-1.pep	RQTARSFALSGNWYFTE	POHKLSLTASI	HQERLPSTQE	LYAHGKHVAT	NTFEVGNKHL	NKER
g149-1	ROTARSFALSGNWYFTF	PHHKLSLTASI	HQERLPSTQE:	LYAHGKHVAT:	NTFEVGNKHL!	NKER
	490		510			
	550	560	570	580	590	600
m149-1.pep	SNNIELALGYEGDRWQY	NLALYRNRF	GNYIYAQTLN	DGRGPKSIED	DSEMKLVRYN	QSGA
g149-1		 'NLAAYRNRFY	 GNYTYAOTLA	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
	550	560	570	580	590	600
	610	620	630	640	650	660
m149-1.pep	DFYGAEGELYFKPTPRY	RIGVSGDYV	RGRLKNLPSL	PGREDAYGNR	PFIAQDDQNA	PRVP
g149-1		1111111111		11111 11:1	11111 11111	11:1
3 t	610	620	630	PGREDPYGKR: 640	PFIAQADQNAI 650	660
					*	-

670 680 690 700 710 AARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN m149-1.pep a149-1 AARLGFHLKTSLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN 670 700 710 740 750 m149-1.pep WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX a149-1 WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX 730 740 750

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 605>: a149-1.seq

```
1 ATGGCACAAA CTACACTCAA ACCCATTGTT TTATCAATTC TTTTAATCAA
     CACACCCCTC CTCTCCCAAG CGCATGGAAC TGAGCAATCA GTGGGCTTGG
  51
 101
      AAACGGTCAG CGTCGTCGGC AAAAGCCGTC CGCGCGCCAC TTCGGGGCTG
 151
      CTGCACACTT CTACCGCCTC CGACAAAATC ATCAGCGGCG ACACCTTGCG
 201
     ACAAAAAGCC GTCAACTTGG GTGATGCTTT AGACGGCGTA CCGGGCATTC
     ATGCCTCGCA ATACGGCGGC GGCGCATCCG CTCCCGTTAT TCGCGGTCAA
 251
 301
      ACAGGCAGAC GGATTAAAGT GTTGAACCAT CACGGCGAAA CGGGCGACAT
      GGCGGACTTC TCTCCAGACC ATGCAATCAT GGTGGACAGC GCCTTGTCGC
      AACAGGTCGA AATCCTGCGC GGTCCGGTTA CGCTCTTGTA CAGCTCGGGC
      AATGTGGCGG GGCTGGTCGA TGTTGCCGAT GGCAAAATCC CCGAAAAAAT
 451
 501
      GCCTGAAAAC GGCGTATCGG GCGAACTCGG ATTGCGTTTG AGCAGCGGCA
      ATCTGGAAAA ACTCACGTCC GGCGGCATCA ATATCGGTTT GGGCAAAAAC
 551
 601
      TTTGTATTGC ACACGGAAGG GCTGTACCGC AAATCGGGGG ATTACGCCGT
      ACCGCGTTAC CGCAATCTGA AACGCCTGCC CGACAGCCAC GCCGATTCGC
 651
      AAACGGGCAG CATCGGGCTG TCTTGGGTTG GCGAAAAAGG CTTTATCGGC
      GCAGCATACA GCGACCGTCG CGACCAATAT GGTCTGCCTG CCCACAGCCA
 751
      CGAATACGAT GATTGCCACG CCGACATCAT CTGGCAAAAG AGTTTGATTA
 801
 851
      ACAAACGCTA TTTGCAGCTT TATCCGCACC TGTTGACCGA AGAAGACATC
      GATTACGACA ATCCGGGCTT GAGCTGCGGC TTTCACGACG ACGATGATGC
 901
 951
      ACACGCCCAT GCCCACAACG GCAAACCTTG GATAGACCTG CGCAACAAAC
1001
      GCTACGAACT CCGCGCCGAA TGGAAGCAAC CGTTCCCCGG TTTTGAAGCC
1051
      CTGCGCGTAC ACCTGAACCG CAACGACTAC CGCCACGACG AAAAAGCAGG
      CGATGCAGTA GAAAACTTTT TTAACAACCA AACGCAAAAC GCCCGTATCG
1101
1151
      AGTTGCGCCA CCAACCCATA GGCCGTCTGA AAGGCAGCTG GGGCGTGCAA
      TATTTGGGAC AAAAATCCAG TGCTTTATCT GCCACATCCG AAGCGGTCAA
1201
1251
     ACAACCGATG CTGCTTGACA ATAAAGTGCA ACATTACAGC TTTTTCGGTG
1301
     TAGAACAGGC AAACTGGGAC AACTTCACGC TTGAAGGCGG CGTACGCGTG
     GAAAAACAAA AAGCCTCCAT CCGCTACGAC AAAGCATTGA TTGATCGGGA
1351
1401
      AAACTACTAC AACCATCCCC TGCCCGACCT CGGCGCGCAC CGCCAAACCG
     CCCGCTCATT CGCACTTTCG GGCAACTGGT ATTTCACGCC ACAACACAAA
1451
     CTCAGCCTGA CCGCCTCCCA TCAGGAACGC CTGCCGTCAA CGCAAGAGCT
1501
1551
     GTACGCACAC GGCAAACACG TCGCCACCAA CACCTTTGAA GTCGGCAACA
1601 AACACCTCAA CAAAGAGCGT TCCAACAATA TCGAACTCGC GCTGGGCTAC
     GAAGGCGACC GCTGGCAATA CAATCTGGCA CTCTACCGCA ACCGCTTCGG
1651
1701 CAACTACATT TACGCCCAAA CCTTAAACGA CGGACGCGGC CCCAAATCCA
1751
     TCGAAGACGA CAGCGAAATG AAGCTCGTGC GCTACAACCA ATCCGGTGCG
1801
     GACTTCTACG GCGCGGAAGG CGAAATCTAC TTCAAACCGA CACCGCGCTA
     CCGCATCGGC GTTTCCGGCG ACTATGTACG AGGCCGTCTG AAAAACCTGC
     CTTCCCTACC CGGCAGGGAA GACGCCTACG GCAACCGCCC ACTCATTGCC
1901
1951 CAAGCCGACC AAAACGCCCC TCGCGTTCCG GCTGCGCGCC TCGGCGTCCA
2001
     CCTGAAAGCC TCGCTGACCG ACCGCATCGA TGCCAATTTG GACTACTACC
     GCGTGTTCGC CCAAAACAAA CTCGCCCGCT ACGAAACGCG CACGCCCGGA
2051
2101
     CACCATATGC TCAACCTCGG CGCAAACTAC CGCCGCAATA CGCGCTATGG
      CGAGTGGAAT TGGTACGTCA AAGCCGACAA CCTGCTCAAC CAATCCGTTT
     ACGCCCACAG CAGCTTCCTC TCTGATACGC CGCAAATGGG CCGCAGCTTT
     ACCGGCGGCG TGAACGTGAA GTTTTAA
```

This corresponds to the amino acid sequence <SEQ ID 606; ORF 149-1.a>: a149-1.pep

1 MAQTTLKPIV LSILLINTPL LSQAHGTEQS VGLETVSVVG KSRPRATSGL
51 LHTSTASDKI ISGDTLRQKA VNLGDALDGV PGIHASQYGG GASAPVIRGQ
101 TGRRIKVLNH HGETGDMADF SPDHAIMVDS ALSQQVEILR GPVTLLYSSG
151 NVAGLVDVAD GKIPEKMPEN GVSGELGLRL SSGNLEKLTS GGINIGLGKN
151 FVLHTEGLYR KSGDYAVPRY RNLKRLPDSH ADSQTGSIGL SWCGEKGFIG
152 AAYSDRRDQY GLPAHSHEYD DCHADIIWQK SLINKRYLQL YPHLLTEEDI
15301 DYDNPGLSCG FHDDDDAHAH AHNGKPWIDL RNKRYELRAE WKQPFPGFEA

401 Y: 451 E: 501 L: 551 E: 601 D: 651 Q: 701 H:	RVHLNRNDY RHDEKAGDAV ENFFNNQTQN ARIELRHQPI GRLKGSWGVQ LGQKSSALS ATSEAVKQPM LLDNKVQHYS FFGVEQANWD NFTLEGGVRV KALIDRENYY NHPLPDLGAH RQTARSFALS GNWYFTPQHK SLTASHQER LPSTQELYAH GKHVATNTFE VGNKKLNKER SNNIELALGY GDRWQYNLA LYRNRFGNYI YAQTLNDGRG PKSIEDDSEM KLVRYNQSGA FYGAEGEIY FKPTPRYRIG VSGDYVRGRL KNLPSLPGRE DAYGRRPLIA ADQNAPRVP AARLGVHLKA SLTDRIDANL DYYRVFAQNK LARYETRTPG HMLNLGANY RRNTRYGEWN WYVKADNLLN QSVYAHSSFL SDTPQMGRSF GGVNVKF*
a149-1/m149	-1 98.0% identity in 758 aa overlap
a149-1.pep m149-1	10 20 30 40 50 60 MAQTTLKPIVLSILLINTPLLSQAHGTEQSVGLETVSVVGKSRPRATSGLLHTSTASDKI
a149-1.pep m149-1	70 80 90 100 110 120 ISGDTLRQKAVNLGDALDGVPGIHASQYGGGASAPVIRQCTGRRIKVLNHHGETGDMADF
a149-1.pep m149-1	130 140 150 160 170 180 SPDHAIMVDSALSQQVEILRGPVTLLYSSGNVAGLVDVADGKIPEKMPENGVSGELGLRL
a149-1.pep	190 200 210 220 230 240 SSGNLEKLTSGGINIGLGKNFVLHTEGLYRKSGDYAVPRYRNLKRLPDSHADSQTGSIGL
a149-1.pep	250 260 270 280 290 300 SWVGEKGFIGAAYSDRRDQYGLPAHSHEYDDCHADIIWQKSLINKRYLQLYPHLLTEEDI
a149-1.pep	310 320 330 340 350 360 DYDNPGLSCGFHDDDDAHAHAHGKPWIDLRNKRYELRAEWKQPFPGFEALRVHLNRNDY
a149-1.pep	370 380 390 400 410 420 RHDEKAGDAVENFFNNQTQNARIELRHQPIGRLKGSWGVQYLGQKSSALSATSEAVKQPM
a149-1.pep m149-1	430 440 450 460 470 480 LLDNKVQHYSFFGVEQANWDNFTLEGGVRVEKQKASIRYDKALIDRENYYNHPLPDLGAH
a149-1.pep	490 500 510 520 530 540 RQTARSFALSGNWYFTPQHKLSLTASHQERLPSTQELYAHGKHVATNTFEVGNKHLNKER
a149-1.pep	550 560 570 580 590 600 SNNIELALGYEGDRWQYNLALYRNRFGNYIYAQTLNDGRGPKSIEDDSEMKLVRYNQSGA

```
a149-1.pep
            DFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPLIAQADQNAPRVP
            m149-1
            DFYGAEGEIYFKPTPRYRIGVSGDYVRGRLKNLPSLPGREDAYGNRPFIAQDDQNAPRVP
                  610
                          620
                                   630
                                            640
                                                     650
                  670
                          680
                                   690
                                            700
                                                     710
a149-1.pep
           AARLGVHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
            m149-1
           AARLGFHLKASLTDRIDANLDYYRVFAQNKLARYETRTPGHHMLNLGANYRRNTRYGEWN
                          680
                                   690
                                            700
                                                     710
                  730
                          740
                                   750
                                           759
           WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
a149-1.pep
            m149-1
           WYVKADNLLNQSVYAHSSFLSDTPQMGRSFTGGVNVKFX
The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 607>:
          (partial)
g150.seq
          ..TACTGCAAGG CAGACCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT
       1
      51
            CACCGCCCGC CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA
     101
            GCGGTTCGGA TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT
     151
            GACAACGATC CGGCACTGGT CGGGGAAATC CTAGACCTGC TCGGCATCAA
     201
            TCCGGCAACG GAAATACAGG CGGGCGGAAA AACCCTGCCG GTTGCCTCCG
            CACTGTTATC CCATTTCGAA CTCACGCAAA ACACCCCCGC CTTTGTCAAA
     251
     301
            GGCTATGCCA CGTTCGCCGA TAATGACGAA CTCGACCGTA TTGCTGCCGA
     351
            CAACGCCGTT TTGCAAGGCT TTGTGCAAAG CACGCCGATT GCCGGTGTGC
     401
            TGCACCGCTT CCCGGCAAAA CTGACGGCGG AACAATTCGC CGGCCTGCTG
     451
            CGCCCGCTTG CGCCGCGCCT GTATTCGATT TCCTCGTCGC AGGCGGAAGC
            GGGGGACGAA GTGCACCTGA CCGTCGGCGC AGTGCGTTTC GAACACGAAG
     501
     551
            GGCGCGCCAG GGCGGGCGGC GCATCGGGTT TCTTTGCCGA CCGGCTGGAA
     601
            GAGGACGGCA CGGTGCGCGT GTTTGCGGAA CGCAACGACG GCTTCAGGCT
            GCCCGAAGAC AGCCGCAAGC CGATTGTGAT GATCGGCTCC GGTACCGGCG
     651
     701
            TCGCACCGTT CCGCGCCTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA
     751
            GGCAGAAACT GGCTGATTTT CGGCAATCCG CATTTTGCCG CCGACTTCCT
            CTATCAGACC GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGAT
     801
     851
            ATGACTTCGC CTGGTCGCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC
     901
            AAAATCCGCG AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC
            GCATATCTAT GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GAAGTGGAAG
     951
            CCGCCTTGCT GGATGTGATT ATCGGGGCAG GGCATTCGGA CGAAGACGGC
    1001
    1051
            GCAGAAGGAT ATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA
    1101
            TGTTTATTGA
This corresponds to the amino acid sequence <SEQ ID 608; ORF 150.ng>:
g150.pep
          (partial)
       1
          ..YCKADPFPAA LLANQKITAR QSDKDVRHIE IDLSGSDLHY LPGDALGVWF
     51
           DNDPALVGEI LDLLGINPAT EIQAGGKTLP VASALLSHFE LTQNTPAFVK
           GYATFADNDE LDRIAADNAV LQGFVQSTPI AGVLHRFPAK LTAEQFAGLL
     101
            RPLAPRLYSI SSSQAEAGDE VHLTVGAVRF EHEGRARAGG ASGFFADRLE
     151
            EDGTVRVFAE RNDGFRLPED SRKPIVMIGS GTGVAPFRAF VQQRAAENAE
     201
     251
           GRNWLIFGNP HFAADFLYQT EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD
            KIREQAEGLW QWLQEGAHIY VCGDAAKMAK EVEAALLDVI IGAGHSDEDG
     301
     351
            AEGYLDMLRE EKRYQRDVY*
The following partial DNA sequence was identified in N.meningitidis <SEQ ID 609>:
m150.вед
         ATGCAGAACA CAAATCCGCC ATTACCGCCT CTGCCGCCCG AAATCACGCA
      1
         GCTCCTGTCG GGGCTGGACG CGGCACAATG GGCGTGGCTG TCCGGCTACG
     101 CTTGGGCAAA AGCAGGAAAC GGGGCATCTG CAGGACTGCC CGCGCTTCAG
    151 ACGGCATTGC CGGCGGCAGA ACCTTTTTCC GTAACCGTCC TTTCCGCCTC
    201 GCAAACCGGC AATGCGAAAT CCGTTGCCGA CAAAGCGGCG GACAGCCTGG
    251 AAGCCGCCGG CATCCAAGTC AGTCGCGCCG AACTGAAAGA CTATAAGGCG
    301 AAAAACATCG CCGGCGAACG CCGCCTGCTG CTGGTTACCT CCACCCAAGG
         CGAAGGCGAA CCGCCGAAAG AAGCCGTCGT GCTGCACAAA CTGCTGAACG
    401 GCAAAAAGC CCCGAAATTG GACAAACTCC AATTTGCCGT ACTGGGTTTG
```

				•				
. 4	151 GG	CGACAGTT	CCTATCCGAA	ጥጥርጥርጥር አ ር	GCAGGTAAAG	እ ጥጥጥር አርርር		
			GAATTGGGCG					
	551 AT	TTGGACTT	TACCGCCTCC	GCAAACGCCT	GGACAGATAA	TATCGCCGCA		
6	501 CT	CTTAAAAG	AAGAAGCCGC	AAAAAACCGG	GCAACGCCCG	CGCCGCAGAC		
6	551 AA	CGCCCCC	GCCGGCCTTC	AGACGGCACC	GGATGGCAGG	TACTGCAAGG		
7			TCCCGCCGCC					
7			AAGACGTGCG					
8			CTCCCGGGCG					
8	351 CG	GCACTGGT	CAGGGAAATC	CTAGACCTGC	TCGGCATCGA	TCCGGCAACG		
9	901 GA	AATACAGG	CGGGCGGAAA	GATGATGCCG	GTTGCGCGCG	CACTTTCATC		
9			CTCACGCAAA					
10	001 CG	TTCGCCCA	TTATGAAGAA	CTCGATAAAA	TCATTGCCGA	TAACGCCGTT		
10			TCGTGCAAAA					
11	101 CC	CGGCAAGC	CTGACGGCAG	AACAATTCAT	CCGTTTACTG	CGTCCGCTTG		
11			GTATTCGATT					
12	201 GT	GCATTTAA	CTGTCGGCGT	GGTTCGTTTT	GAACACGAAG	GCCGCGCCAG		
12			GCATCGGGTT					
13	01 CG	GTGCGCGT	GTTTGTGGAA	CGCAACGACG	GCTTCAGGCT	GCCCGAAGAC		
13	51 AG	CCGCAAGC	CGATTGTGAT	GATCGGCTCG	GGCACCGGCG	TCGCACCGTT		
14	101 CC	GCGCTTTC	GTCCAACAAC	GTGCCGCAGA	AAATGCGGAA	GGCAAAAACT		
14	51 GG	CTGATTTT	CGGCAATCCG	CATTTTGCCC	GTGATTTTCT	CTATCAAACC		
15			AGTTTGCCAA					
15	51 CT	GGTCCCGC	GATCAGGAAG	AAAAAATCTA	TGTGCAGGAC	AAAATCCGCG		
	01 AA	CAGGCGGA	AGGACTTTGG	CAATGGCTGC	AGGAAGGCGC	GCATATCTAT		
16	51 GT	GTGCGGCG	ATGCGGCAAA	AATGGCAAAA	GACGTGGAAG	CCGCCTTGCT		
17	'01 GG	ATGTGATT	ATCGGGGCAG	GACATTTGGA	CGAAGAGGGC	GCAGAAGAAT		
17	'51 AT	TTGGATAT	GCTGCGCGAA	GAAAAACGCT	ATCAGCGTGA	TGTTTATTGA		
This co	orrespo	nds to the	amino acid	sequence <s< td=""><td>EO ID 610:</td><td>ORF 150>:</td><td></td><td></td></s<>	EO ID 610:	ORF 150>:		
m150.p				1	_ (,			
•	-	NTNPPLPP	LPPEITQLLS	GLDAAOWAWL	SGYAWAKAGN	GASAGI PALO		
	51 TA	LPAAEPFS	VTVLSASQTG	NAKSVADKAA	DSLEAAGIOV	SRAELKDYKA		
1	.01 KN	IAGERRLL	LVTSTQGEGE	PPKEAVVLHK	LLNGKKAPKL	DKLOFAVLGL		
1			AGKDFDRRFE					
2			ATPAPQTTPP					
2	51 QS	DKDVRHIE	IDLSGSDLHY	LPGDALGVWF	DNDPALVREI	LDLLGIDPAT		
3	01 EI	QAGGKMMP	VARALSSHFE	LTQNTPAFVK	GYAAFAHYEE	LDKIIADNAV		
3	51 LQ	DFVQNTPI	VDVLHRFPAS	LTAEOFIRLL	RPLAPRLYSI	SSAOAEVGDE		
4	01 VH	LTVGVVRF	EHEGRARTGG	ASGFLADRLE	EDGTVRVFVE	RNDGFRLPED		
4	51 SR	KPIVMIGS	GTGVAPFRAF	VQQRAAENAE	GKNWLIFGNP	HFARDFLYOT		
5	01 EW	QQFAKDGF	LHRYDFAWSR	DQEEKIYVQD	KIREOAEGLW	OWLOEGAHIY		
5	51 VC	GDAAKMAK	DVEAALLDVI	IGAGHLDEEG	AEEYLDMLRE	EKRYORDVY*		
Compu	uter ana	llysis of t	his amino ac	id sequence	gave the foll	owing result	· ·	
			cted ORF fro			owing result	S.	
			identity ove	r a 369 aa ov	erlap with a	predicted O	RF (ORF 1	50.ng)
from N	I. gono	rrhoeae:				_	·	•
	n150/g1							
			210	220	230	240	250	260
m	n150.pe	p LL	KEEAAKNRATP/	APQTTPPAGLQT	TAPDGRYCKAAI	PFPAALLANOK	ITAROSDKDV	RHIE
					1111	шшшіг	111111111	1111
g	₁ 150				YCKADI	FPAALLANQK:	ITARQSDKDV	RHIE
						10	20	30
			4 – -					
	7.50		270	280	290	300	310	320
m	150.pe	p ID	LSGSDLHYLPGI	ALGVWFDNDP	ALVREILDLLG	DPATEIQAGGI	KMMPVARALS	SHFE
~	150	11			111		1:111	
g	1130	ID.	LSGSDLHYLPGI 40	MICONDPA 50	ATAGEITD F FG]			
			40	50	60	70	80	90
			330	340	350	360	370	300
m	150.pe	p LT	ONTPAFVKGYA <i>F</i>		ADNAVI.ODEVO	υσυ τυπυτατης Ιαμιτυπυτατης	- 370 でPAST.TATAT	380 TRII
						C. TETADA PURI		יויועדי

g150	I TONTEN ETECANTEN	: :		: :	:	11
g130	LTQNTPAFVKGYATFA 100	110	120	130	140	150
•	390	400	410	420	430	440
m150.pep	RPLAPRLYSISSAQAE	VGDEVHLTVG	VVRFEHEGRA	RTGGASGFLA		
q150		-,,,,,,,,,,		: : RAGGASGFFA	 DRLEEDGTVR	: VFAE
,	160	170	180	190	200	210
	450	460	470	480	490	500
m150.pep	RNDGFRLPEDSRKPIV	MIGSGTGVAP	FRAFVOQRAA		FGNPHFARDF	–
g150	RNDGFRLPEDSRKPIV	HITTHITT MIGSGTGVAP	FRAFVQQRAA	: ENAEGRNWLI	FGNPHFAADF	 TQYL
	220	230	240	250	260	270
	510	520	530	540	550	560
m150.pep	EWQQFAKDGFLHRYDE	'AWSRDQEEKI	YVQDKIREQA	EGLWQWLQEG	AHIYVCGDAA	KMAK
g150	EWQQFAKDGFLHRYDE					
	280	290	300	310	320	330
	570	580	590	600		
m150.pep	DVEAALLDVIIGAGHI	DEEGAEEYLD	MLREEKRYQR	IDVYX		
g150	EVEAALLDVIIGAGHS					
	340	350	360	370		

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 611>: a150.seq

ATGCAGAACA CAAATCCGCC ATTACCGCCT ATGCCGCCCG AAATCACGCA GCTCCTGTCG GGGCTGGACG CGGCACAATG GGCGTGGCTG TCCGGCTACG 51 CTTGGGCAAA AGCAGGAAAC GGGGCATCTG CAGGACTGCC CGCGCTTCAG 151 ACGGCATTGC CGACGGCAGA ACCTTTTCC GTAACCGTCC TTTCCGCCTC GCAAACCGGC AATGCGAAAT CCGTTGCCGA CAAAGCGGCG GACAGCCTGG AAGCCGCCGG CATCCAAGTC AGTCGCGCCG AACTGAAAGA CTATAAGGCG 301 AAAAACATCG CCGGCGAACG CCGCCTGCTG CTGGTTACCT CCACCCAAGG 351 CGAAGGCGAA CCGCCGGAAG AAGCCGTCGT GCTGCACAAA CTGCTGAACG GCAAAAAAGC CCCGAAATTG GACAAACTCC AATTTGCCGT ACTGGGTTTG 401 451 GGCGACAGCT CCTATCCGAA TTTCTGCCGG GCGGGCAAAG ATTTCGACAA 501 ACGTTTTGAA GAATTGGGCG CAAAACGCCT GCTCGAACGC GTTGATGCGG 551 ATTTGGACTT TGCCGCCGCC GCAGACGGAT GGACAGATAA TATCGCCGCA 601 CTCTTAAAAG AAGAAGCCGC AAAAAACCGG GCAACGCCCG CGCCGCAGAC 651 AACGCCCCC GCCGGCCTTC AGACGGCACC GGATGGCAGG TACTGCAAGG 701 CAGACCCCTT TCCCGCCGCC CTGCTGGCCA ATCAGAAAAT CACCGCCCGC 751 CAATCCGATA AAGACGTGCG CCACATCGAA ATCGATTTGA GCGGTTCGGA 801 TTTGCACTAC CTCCCGGGCG ACGCGCTCGG CGTTTGGTTT GACAACGATC 851 CGGCACTGGT CAGGGAAATC CTAGACCTGC TCGGCATCGA TCAGGCAACG 901 GAAATACAGG CGGGCGGAAA AACCCTGCCG GTTGCCTCCG CACTGTTATC CCATTTGAA CTCACGCAAA ACACCCCCGC CTTTGTCAAA GGCTATGCCC 1001 CGTTCGCCGA TGATGACGAA CTCGACCGTA TTGCTGCCGA CAACGCCGTT 1051 TTGCAAGGCT TTGTGCAAAG CACGCCGATT GCCGATGTGC TGCACCGCTT 1101 CCCGGCAAAA CTGACAGCGG AACAATTCGC CGGCCTACTG CGCCCGCTTG CGCCGCGCCT GTATTCGATT TCCTCGTCGC AGGCGGAAGT GGGGGACGAA 1201 GTGCACCTGA CCGTCGGCGC GGTGCGTTTC GAACACGAAG GGCGCGCCAG GGCGGCGGC GCATCGGGTT TCCTTGCCGA CCGGCTGGAA GAGGACGGCA 1301 CGGTGCGCGT GTTTGTGGAA CGCAACGACG GCTTCAGGCT GCCCGAAGAC AGCCGCAAGC CGATTGTGAT GATCGGCTCG GGCACCGGCG TCGCACCGTT 1401 CCGCGCTTTC GTCCAACAAC GTGCCGCAGA AAATGCGGAA GGCAAAAACT 1451 GGCTGTTTTT CGGCAATCCG CATTTTGCCC GTGATTTTCT CTATCAAACC 1501 GAATGGCAGC AGTTTGCCAA AGACGGCTTC CTGCACAGAT ACGATTTCGC CTGGTCGCGC GATCAGGAAG AAAAAATCTA TGTGCAGGAC AAAATCCGCG 1601 AACAGGCGGA AGGACTTTGG CAATGGCTGC AGGAAGGCGC GCATATCTAT 1651 GTGTGCGGCG ATGCGGCAAA AATGGCAAAA GACGTGGAAG CCGCCTTGCT

	•								
1701 1751	GGATGTGATT ATCGGGGCAG GACATTTGGA CGAAGAGGGC GCAGAAGAAATTTGGATAT GCTGCGCGAA GAAAAACGCT ATCAGCGTGA TGTTTATTG	AT GA							
This corresponds to the amino acid sequence <seq 150.a="" 612;="" id="" orf="">:</seq>									
al50.pep	WANNIEDT DD. WEDT TOLLO.								
1 51	MONTNPPLPP MPPEITQLLS GLDAAQWAWL SGYAWAKAGN GASAGLPA	ΓŌ							
101	TALPTAEPFS VTVLSASQTG NAKSVADKAA DSLEAAGIQV SRAELKDY KNIAGERRLL LVTSTQGEGE PPEEAVVLHK LLNGKKAPKL DKLQFAVL	KA							
151	GDSSYPNFCR AGKDFDKRFE ELGAKRLLER VDADLDFAAA ADGWTDNI	ران ران							
201	LLKEEAAKNR ATPAPQTTPP AGLQTAPDGR YCKADPFPAA LLANQKIT	AA D							
251	QSDKDVRHIE IDLSGSDLHY LPGDALGVWF DNDPALVREI LDLLGIDQ	nu. Nur							
301	EIQAGGKTLP VASALLSHFE LTQNTPAFVK GYAPFADDDE LDRIAADNA	AV							
351	LQGFVQSTPI ADVLHRFPAK LTAEQFAGLL RPLAPRLYSI SSSQAEVGI	DE.							
401	VHLTVGAVRF EHEGRARAGG ASGFLADRLE EDGTVRVFVE RNDGFRLPI	ΞD							
451	SRKPIVMIGS GTGVAPFRAF VQQRAAENAE GKNWLFFGNP HFARDFLY								
501	EWQQFAKDGF LHRYDFAWSR DQEEKIYVQD KIREQAEGLW QWLQEGAH	ΙY							
551	VCGDAAKMAK DVEAALLDVI IGAGHLDEEG AEEYLDMLRE EKRYQRDV	<u>Y</u> *							
m150/a150 94.8% iden	m150/a150 94.8% identity in 599 aa overlap								
-1E0	10 20 30 40 50	60							
m150.pep	MQNTNPPLPPLPPEITQLLSGLDAAQWAWLSGYAWAKAGNGASAGLPALQTALPAAE	PFS							
a150	MQNTNPPLPPMPPEITQLLSGLDAAQWAWLSGYAWAKAGNGASAGLPALQTALPTAE	PES							
	10 20 30 40 50	60							
	70								
m150.pep	70 80 90 100 110 VTVLSASQTGNAKSVADKAADSLEAAGIQVSRAELKDYKAKNIAGERRLLLVTSTQG	120							
mroo.pep		EGE							
a150	VTVLSASQTGNAKSVADKAADSLEAAGIQVSRAELKDYKAKNIAGERRLLLVTSTQG	EGE							
		120							
	130 140 150 160 170								
m150.pep	130 140 150 160 170 PPKEAVVLHKLLNGKKAPKLDKLQFAVLGLGDSSYPNFCQAGKDFDRRFEELGAKRL	180							
		111							
a150	PPEEAVVLHKLLNGKKAPKLDKLQFAVLGLGDSSYPNFCRAGKDFDKRFEELGAKRL	LER							
	130 140 150 160 170	180							
	190 200 210 220 230	240							
m150.pep	VDADLDFTASANAWTDNIAALLKEEAAKNRATPAPQTTPPAGLQTAPDGRYCKAAPF	PAA							
		111							
a150	VDADLDFAAAADGWTDNIAALLKEEAAKNRATPAPQTTPPAGLQTAPDGRYCKADPF								
	190 200 210 220 230	240							
	250 260 270 280 290	300							
m150.pep	LLANQKITARQSDKDVRHIEIDLSGSDLHYLPGDALGVWFDNDPALVREILDLLGID	PAT							
450	111111111111111111111111111111111111111	1.1							
a150	LLANQKITARQSDKDVRHIEIDLSGSDLHYLPGDALGVWFDNDPALVREILDLLGID(250 260 270 280 290								
	250 260 270 280 290 :	300							
	310 320 330 340 350	360							
m150.pep	EIQAGGKMMPVARALSSHFELTQNTPAFVKGYAAFAHYEELDKIIADNAVLQDFVQN	T PI							
a150	: :	Ш							
a130	EIQAGGKTLPVASALLSHFELTQNTPAFVKGYAPFADDDELDRIAADNAVLQGFVQS 310 320 330 340 350	TPI 360							
	520 530 540 550 5	360							
	370 380 390 400 410	420							
m150.pep	VDVLHRFPASLTAEQFIRLLRPLAPRLYSISSAQAEVGDEVHLTVGVVRFEHEGRAR	rgg							
a150	:	:							
		420							
	•••								
-160	430 440 450 460 470	480							
m150.pep	ASGFLADRLEEDGTVRVFVERNDGFRLPEDSRKPIVMIGSGTGVAPFRAFVQQRAAEI	IAE							
a150	ASGFLADRLEEDGTVRVFVERNDGFRLPEDSRKPIVMIGSGTGVAPFRAFVQQRAAEN	ווו שמט							
		180							
m150.pep	490 500 510 520 530 5KNWLIFGNPHFARDFLYQTEWQQFAKDGFLHRYDFAWSRDQEEKIYVQDKIREQAEC	540							
		ĿΨ							

a150	GKNWLFFGNPHFAR	DFLYQTEWQQ	FAKDGFLHRY	DFAWSRDQEE	KIYVQDKIR	EQAEGLW
	490	500	510	520	530	540
	550	560	570	580	590	600
m150.pep	QWLQEGAHIYVCGD	AAKMAKDVEA	ALLDVIIGAG	HLDEEGAEEY	LDMLREEKR	YQRDVYX
	11111111111111	11111111111	1111111111	HIHIIII	1111111111	1111111
a150	QWLQEGAHIYVCGD	AAKMAKDVEA	ALLDVIIGAG	HLDEEGAEEY	LDMLREEKR	YQRDVYX
	550	560	570	580	590	600

430

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 613>:

```
g151.seq
         ATGAAACAAA TCCGCAACAT CGCCATCATC GCACACGTCG ACCACGGCAA
      51 AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
     101
         ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
          CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTG
     151
     201
         CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
         TGGAGCGCGT TTTGGGGATG GTGGATTGCG TCGTCTTGTT GGTGGACGCA
     251
         CAGGAAGGTC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
         TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAACCGTCCG
     401 CCCGTCCGAG CTGGGTTATC GACCAGACTT TCGAGTTGTT CGACAACTTG
         GGTGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGTTT
     451
     501
         GAGCGGCTTT GCCAAGCTGG AAGAAAccga CGAGAGCAGC GATATGCGCC
         CGCtgttcgA CACCATCCTA AAATACAcgc ctgCACCGAG CGGCAGCGCG
     601
         GACGAGCCGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
         CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
     651
     701 AAACCGTTGC CGTGATGAAC CACGAGCAGC AAATCGCCCA AGGCCGCATC
     751 AACCAGCTTT TGGGTTTCAA AGGCTTGGAA CGCGTGCCGC TTGAAGAAGC
     801 CGAAGCCGGC GACATTGTGA TTATTTCCGG TATCGAAGAC ATCGGCATCG
         GCGTAACCAT CACCGACAAA GACAACCCCA AAGGCCTGCC GATGTTGAGC
     851
          GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTAAACA CCAGCCCGCT
     951
         CGCAGGTACA GAAGGCAAAT TCGTGACCAG CCGCCAAATC CGCGACCGCC
         TGCAAAAGA ATTGCTGACC AACGTTGCCC TGCGCGTGGA AGACACCGCC
    1001
         GatgCCGACG TGTTCCGCGT ATCcgGGCGC GGCGAACTGC ACCTGACGAT
    1051
    1101 TTTGCTGGAA AATATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAGC
    1151 CGCGCGTCGT GTACCGAGAC ATCGACGGTC AAAAATGCGA ACCTTATGAA
         AACCTGACTG TGGACGTACC CGaCGaCAAC CAAGGCGCGG TAATGGAAGA
    1201
    1251
         ACTCGGCCGC CGCCGTGGCG AACTGACCAA TATGGAAAGC GACGGCAACG
    1301
          GacgCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
         CAAGGCGAAT TCATGACCCT GACGCGCGGC GTCGGGCTGA TGAGCCaCGT
    1351
    1401
         GTTcgacgac tacgcgcccg tcaAACCCGA TATGCCCGGC CGCCACAACG
          GCGTactgqt GtcccaAGAG CAGGGCGAGG CGGTTGCTTA CGCCTTGTGG
    1501 AATCTTGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
    1551 CGAAGGTATG ATTATCGGCA TCCACAGCCG CGACAACGAT TTGGTGGTCA
    1601
         ACCCGCTCAA AGGCAAAAAA CTCACCAATA TCCGTGCCAG CGGTACCGAC
          GAAGCGGTGC GCCTGACCAC GCCGATCAAA CTGACGCTGG AAGGCGCGGT
    1701 CGAGTTTATC GACGATGACG AGCTGGTGGA AATCACGCCG CAAtccatcc
         gcctgcgcat gcgttacctG AGCGaattgg aacgccgccg tcaTTTTAAA
    1801 AagctgGATT AA
```

This corresponds to the amino acid sequence <SEQ ID 614; ORF 151.ng>: g151.pep

1	MKQIRNIAII	AHVDHGKTTL	VDQLLRQSGT	FRANQQVDER	VMDSNDLEKE
51	RGITILAKNT	AIDYEGCHIN	IVDTPGHADF	GGEVERVLGM	VDCVVLLVDA
101	QEGPMPQTRF	VTKKALALGL	KPIVVINKID	KPSARPSWVI	DOTFELFONL
151	GATDEQLDFP	IVYASGLSGF	AKLEETDESS	DMRPLFDTIL	KYTPAPSGSA
201	DEPLQLQISQ	LDYDNYTGRL	GIGRILNGRI	KPGQTVAVMN	HEQQIAQGRI
251	NQLLGFKGLE	RVPLEEAEAG	DIVIISGIED	<u>IGIGVTIT</u> DK	DNPKGLPMLS
301	VDEPTLTMDF	MVNTSPLAGT	EGKFVTSRQI	RDRLQKELLT	NVALRVEDTA
351	DADVFRVSGR	GELHLTILLE	NMRREGYELA	VGKPRVVYRD	IDGQKCEPYE
401	NLTVDVPDDN	QGAVMEELGR	RRGELTNMES	DGNGRTRLEY	HIPARGLIGF
451	QGEFMTLTRG	VGLMSHVFDD	YAPVKPDMPG	RHNGVLVSOE	OGEAVAYALW

```
501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
    551 EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRMRYL SELERRRHFK
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 615>:
         ATGAAACAAA TCCGCAACAT CGCCATCATC GCCCACGTCG ACCACGGCAA
     51 AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
    101 ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
    151 CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTA
    201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
    251 TAGAGCGCGT TTTGGGGATG GTGGACTGCG TCGTCTTGTT GGTGGACGCG
    301 CAGGAAGGCC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
    351 TTTGGGGCTG AAACCGATTG TCGTCATCAA CAAAATCGAC AAGCCGTCCG
    401 CTCGTCCGAG CTGGGTTATC GACCAAACTT TCGAGCTGTT CGACAACTTG
    451 GGCGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTACG CTTCAGGGTT
    501 GAGCGGTTTC GCCAAATTGG AAGAAACCGA CGAGAGCAAC GACATGCGTC
    551 CGCTGTTCGA TACTATCTTA AAATATACGC CTGCACCGAG CGGCAGCGCG
    601 GACGAAACGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
    651 CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGCATC AAACCCGGCC
     701 AAACCGTTGC CGTCATGAAC CACGATCAGC AAATCGCCCA AGGCCGCATC
     751 AACCAGCTTT TGGGTTTCAA AGGTTTGGAA CGCGTGCCGC TTGAAGAAGC
     801 CGAAGCCGGC GACATCGTGA TTATTTCCGG TATCGAAGAC ATCGGTATCG
     851 GCGTAACCAT CACCGACAAA GACAATCCCA AAGGCCTACC GATGTTGAGC
     901 GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTCAACA CCAGCCCGCT
     951 GGCGGGTACG GAAGGCAAAT TCGTAACCAG CCGCCAAATC CGCGACCGCC
    1001 TGCAAAAAGA ATTGCTGACC AACGTCGCCC TGCGCGTGGA AGATACCGCC
    1051 GATGCCGACG TGTTCCGCGT ATCCGGGCGC GGCGAGCTGC ACCTGACCAT
    1101 TTTGCTGGAA AACATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAAC
    1151 CGCGCGTCGT GTACCGCGAC ATCGACGGTC AAAAATGCGA ACCGTATGAA
    1201 AACCTGACCG TGGATGTACC CGACGACAAC CAAGGCGCGG TAATGGAAGA
    1251 ACTCGGCCGC CGCCGTGGCG AACTGACTAA TATGGAAAGC GACGGCAACG
         GACGCACCCG CCTCGAATAC CATATTCCAG CGCGCGGCTT GATCGGTTTC
    1351 CAAGGCGAAT TTATGACCCT GACGCGCGGG GTCGGGCTGA TGAGCCACGT
    1401 GTTCGACGAT TACGCGCCCG TCAAACCCGA TATGCCCGGC CGCCACAACG
    1451 GCGTGCTGGT GTCCCAAGAG CAGGGCGAGG CAGTCGCTTA CGCCTTGTGG
    1501 AATCTGGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
    1551 CGAAGGCATG ATTATCGGCA TCCACAGTCG CGACAACGAT TTGGTGGTCA
    1601 ACCCGCTCAA AGGCAAAAAA CTTACCAACA TCCGTGCCAG CGGTACCGAC
    1651 GAAGCCGTTC GCCTGACCAC GCCAATCAAG CTGACGCTGG AAGGTGCGGT
    1701 TGAGTTTATC GACGATGACG AACTCGTTGA AATCACGCCG CAATCCATCC
    1751 GTCTGCGCAA GCGTTACTTG AGCGAATTGG AACGCCGCCG CCACTTTAAA
    1801 AAGCTGGATT GA
This corresponds to the amino acid sequence <SEQ ID 616; ORF 151>:
m151.pep
      1 MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE
      51 RGITILAKNT AIDYEGYHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA
     101 QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL
     151 GATDEQLDFP IVYASGLSGF AKLEETDESN DMRPLFDTIL KYTPAPSGSA
     201 DETLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQTVAVMN HDQQIAQGRI
     251 NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS
     301 VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA
     351 DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE
     401 NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF
     451 QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSQE QGEAVAYALW
```

Computer analysis of this amino acid sequence gave the following results:

501 NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD 551 EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRKRYL SELERRRHFK

Homology with a predicted ORF from N.gonorrhoeae ORF 151 shows 99.2% identity over a 603 aa overlap with a predicted ORF (ORF 151.ng) from N. gonorrhoeae:
m151/g151

m151.pep	10 20 30 40 50 60 MKQIRNIAIIAHVDHGKTTLVDQLLRQSGTFRANQQVDERVMDSNDLEKERGITILAKNT
m151.pep	70 80 90 100 110 120 AIDYEGYHINIVDTPGHADFGGEVERVLGMVDCVVLLVDAQEGPMPQTRFVTKKALALGL
m151.pep	130 140 150 160 170 180 KPIVVINKIDKPSARPSWVIDQTFELFDNLGATDEQLDFPIVYASGLSGFAKLEETDESN
m151.pep	190 200 210 220 230 240 DMRPLFDTILKYTPAPSGSADETLQLQISQLDYDNYTGRLGIGRILNGRIKPGQTVAVMN
m151.pep	250 260 270 280 290 300 HDQQIAQGRINQLLGFKGLERVPLEEAEAGDIVIISGIEDIGIGVTITDKDNPKGLPMLS :
m151.pep	310 320 330 340 350 360 VDEPTLTMDFMVNTSPLAGTEGKFVTSRQIRDRLQKELLTNVALRVEDTADADVFRVSGR
m151.pep	370 380 390 400 410 420 GELHLTILLENMRREGYELAVGKPRVVYRDIDGQKCEPYENLTVDVPDDNQGAVMEELGR
m151.pep	430 440 450 460 470 480 RRGELTNMESDGNGRTRLEYHIPARGLIGFQGEFMTLTRGVGLMSHVFDDYAPVKPDMPG
m151.pep	490 500 510 520 530 540 RHNGVLVSQEQGEAVAYALWNLEDRGRMFVSPNDKIYEGMIIGIHSRDNDLVVNPLKGKK
m151.pep	550 560 570 580 590 600 LTNIRASGTDEAVRLTTPIKLTLEGAVEFIDDDELVEITPQSIRLRKRYLSELERRHFK

WO 99/57280

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 617>:

```
a151.seq
          ATGAAACAAA TCCGCAACAT CGCCATCATC GCCCACGTCG ACCACGGCAA
      51
         AACCACATTG GTCGACCAAC TGCTGCGCCA ATCCGGCACA TTCCGCGCCA
         ACCAGCAGGT TGACGAGCGC GTGATGGACA GCAACGACCT TGAAAAAGAA
     101
          CGCGGCATCA CCATCCTCGC CAAAAACACC GCCATCGATT ACGAAGGCTA
     201 CCACATCAAT ATCGTCGACA CGCCGGGACA CGCCGACTTC GGCGGCGAAG
     251 TAGAGCGAGT TTTGGGGATG GTGGACTGCG TCGTCTTGTT GGTGGACGCG
     301
         CAGGAAGGCC CGATGCCGCA AACCCGTTTC GTGACCAAAA AAGCCTTGGC
     351
         TTTGGGGCTG AAACCGATTG TCGTCATCAA TAAAATCGAC AAACCGTCCG
         CCCGTCCGAG CTGGGTCATC GACCAAACTT TCGAGCTGTT CGACAACTTG
     401
     451
         GGCGCGACCG ACGAGCAGTT GGATTTCCCG ATTGTTTATG CTTCCGGTCT
         GTCCGGTTTC GCCAAATTGG AAGAAACCGA CGAGAGCAAC GACATGCGTC
     501
     551
         CGCTGTTCGA TACTATCTTA AAATATACGC CTGCACCGAG CGGCAGCGCG
         GACGAAACGC TGCAACTGCA AATTTCCCAA CTCGACTACG ACAACTACAC
     601
         CGGCCGCCTC GGTATCGGTC GTATCTTGAA CGGACGTATC AAGCCCGGTC
     651
         AAGTTGTTGC CGTCATGAAC CACGATCAAC AAATCGCCCA AGGCCGCATC
     701
         AACCAGCTTT TGGGTTTCAA AGGTTTAGAA CGCGTGCCGC TTGAAGAAGC
     751
    801
         CGAAGCCGGC GACATCGTGA TTATTTCCGG TATTGAAGAC ATCGGCATCG
         GCGTAACCAT CACCGACAAA GACAACCCCA AAGGCCTGCC GATGTTGAGC
    851
     901
         GTGGACGAAC CGACGCTGAC GATGGACTTT ATGGTCAACA CCAGCCCGTT
         GGCAGGTACG GAAGGCAAAT TCGTAACCAG CCGCCAAATC CGCGACCGCC
    951
   1001
         TGCAAAAAGA ATTGCTGACC AACGTCGCCC TGCGCGTGGA AGATACCGCC
         GATGCCGACG TGTTCCGCGT ATCCGGGCGC GGCGAGCTGC ACCTGACCAT
   1051
         TTTGCTGGAA AACATGCGCC GCGAAGGCTA CGAACTCGCC GTCGGCAAAC
   1101
         CGCGCGTCGT GTACCGCGAC ATCGACGGTC AAAAATGCGA ACCGTATGAA
   1151
   1201
         AACCTGACCG TGGACGTACC CGACGACAAC CAAGGCGCGG TAATGGAAGA
         ACTCGGCCGC CGCCGTGGCG AACTGACTAA TATGGAAAGC GACGGCAACG
   1251
   1301 GACGCACCG CCTCGAATAC CATATTCCAG CGCGGGCTT GATCGGCTTC
   1351 CAAGGCGAAT TTATGACCCT GACGCGCGGG GTCGGGCTGA TGAGCCACGT
         GTTCGACGAT TACGCGCCCG TCAAACCCGA TATGCCTGGC CGCCACAACG
   1401
   1451 GCGTGCTGGT GTCCCAAGAG CAGGGCGAGG CAGTCGCTTA CGCCTTGTGG
   1501 AATCTGGAAG ACCGCGGCCG TATGTTCGTA TCGCCCAACG ACAAAATCTA
   1551 CGAAGGTATG ATTATCGGCA TCCACAGTCG CGACAACGAT TTGGTGGTCA
         ACCCGCTCAA AGGCAAAAAA CTTACCAACA TCCGTGCCAG CGGTACCGAC
   1601
   1651
         GAAGCCGTTC GCCTGACCAC GCCGATTAAG CTGACGCTGG AAGGTGCGGT
   1701
         CGAGTTTATC GACGATGATG AGCTGGTAGA AATCACGCCG CAATCCATCC
   1751
         GTCTGCGCAA GCGTTACTTG AGCGAATTGG AACGCCGCCG CCATTTCAAA
   1801 AAGCTAGATT GA
```

This corresponds to the amino acid sequence <SEQ ID 618; ORF 151.a>:

```
al51.pep
         MKQIRNIAII AHVDHGKTTL VDQLLRQSGT FRANQQVDER VMDSNDLEKE
         RGITILAKNT AIDYEGYHIN IVDTPGHADF GGEVERVLGM VDCVVLLVDA
     101
         QEGPMPQTRF VTKKALALGL KPIVVINKID KPSARPSWVI DQTFELFDNL
         GATDEQLDFP IVYASGLSGF AKLEETDESN DMRPLFDTIL KYTPAPSGSA
     151
         DETLQLQISQ LDYDNYTGRL GIGRILNGRI KPGQVVAVMN HDQQIAQGRI
     201
     251
         NQLLGFKGLE RVPLEEAEAG DIVIISGIED IGIGVTITDK DNPKGLPMLS
     301
         VDEPTLTMDF MVNTSPLAGT EGKFVTSRQI RDRLQKELLT NVALRVEDTA
         DADVFRVSGR GELHLTILLE NMRREGYELA VGKPRVVYRD IDGQKCEPYE
     351
     401
         NLTVDVPDDN QGAVMEELGR RRGELTNMES DGNGRTRLEY HIPARGLIGF
         QGEFMTLTRG VGLMSHVFDD YAPVKPDMPG RHNGVLVSQE QGEAVAYALW
     451
         NLEDRGRMFV SPNDKIYEGM IIGIHSRDND LVVNPLKGKK LTNIRASGTD
         EAVRLTTPIK LTLEGAVEFI DDDELVEITP QSIRLRKRYL SELERRRHFK
     551
     601
         KLD*
```

m151/a151 99.8% identity in 603 aa overlap

10 20 30 40 50 60

m151.pep	MKQIRNIAIIAHVDHGKTTLVDQLLRQSGTFRANQQVDERVMDSNDLEKERGITILAKNT
m151.pep	70 80 90 100 110 120 AIDYEGYHINIVDTPGHADFGGEVERVLGMVDCVVLLVDAQEGPMPQTRFVTKKALALGL
m151.pep	130 140 150 160 170 180 KPIVVINKIDKPSARPSWVIDQTFELFDNLGATDEQLDFPIVYASGLSGFAKLEETDESN
m151.pep	190 200 210 220 230 240 DMRPLFDTILKYTPAPSGSADETLQLQISQLDYDNYTGRLGIGRILNGRIKPGQTVAVMN
m151.pep	250 260 270 280 290 300 HDQQIAQGRINQLLGFKGLERVPLEEAEAGDIVIISGIEDIGIGVTITDKDNPKGLPMLS
m151.pep	310 320 330 340 350 360 VDEPTLTMDFMVNTSPLAGTEGKFVTSRQIRDRLQKELLTNVALRVEDTADADVFRVSGR
m151.pep	370 380 390 400 410 420 GELHLTILLENMRREGYELAVGKPRVVYRDIDGQKCEPYENLTVDVPDDNQGAVMEELGR
m151.pep	430 440 450 460 470 480 RRGELTNMESDGNGRTRLEYHIPARGLIGFQGEFMTLTRGVGLMSHVFDDYAPVKPDMPG
m151.pep	490 500 510 520 530 540 RHNGVLVSQEQGEAVAYALWNLEDRGRMFVSPNDKIYEGMIIGIHSRDNDLVVNPLKGKK
m151.pep	550 560 570 580 590 600 LTNIRASGTDEAVRLTTPIKLTLEGAVEFIDDDELVEITPQSIRLRKRYLSELERRHFK
m151.pep	KLDX KLDX

The following partial DNA sequence was identified in N.gonorrhoeae <SEQ ID 619>: g152.seq

- 1 ATGAAAAaca aAACCaaagt ctgGGacttc cCcacccgcc ttTTCCactG
- 51 GctgcttgCC gCATCCctgc CCTTTATGTG gtatagCGCA AAAGCCGGCG
 101 GcgataTGCT GcaatgGCAC ACGCGCGTCG GGCTGCTCGT CCTTTTCCTG

```
151 CTCGTATTCC GCCTCTGCTG GGGCATTTGG GGCAGCGATA CCGCCCGTTT
    201 CTCccgTtTC GTCCGAGGTT GGGCAGGTAT ACGCGGCTAT CTGAAAAAcg
    251 gCATTCCCGA ACAtatcCAG CCCGGACACA ACCCCTTGGG CGCACTgatg
    301 gtcGTTGCGC TTTTGgccgc cgtcTCATTT CAagtcggcA CGGGGCTTTT
    351 Tgccgccaat gaaaacacct tcagcaCCAa cggctacctc aaccatttgq
    401 tttccgaaca tacgGGCAGC CTTATACGGA AAATCCACCT CAACTTTTTC
    451 AAGCTGCTCG CCGTTTTTTC CGCAGTCCAC ATCGCCGCCG TCGCCGCATA
         CCGCATATTC AAAAAGAAAA ACCTCGTCCG CCCGATGATA ACCGGCTTCA
    551 AATACATCGA AGGCAAAACC TCAATCCGCT TTGCCGGCAA AGCCGCGCTT
    601 GCCGCCGCAT TATCGGTTGC CGCGCTTGCC GCAGCCGCCA TCCTGCTCCT
    651 GTCCTGA
This corresponds to the amino acid sequence <SEO ID 620; ORF 152.ng>:
g152.pep
         MKNKTKVWDF PTRLFHWLLA ASLPFMWYSA KAGGDMLQWH TRVGLLVLFL
     51 LVFRLCWGIW GSDTARFSRF VRGWAGIRGY LKNGIPEHIQ PGHNPLGALM
    101 VVALLAAVSF QVGTGLFAAN ENTFSTNGYL NHLVSEHTGS LIRKIHLNFF
    151 KLLAVFSAVH IAAVAAYRIF KKKNLVRPMI TGFKYIEGKT SIRFAGKAAL
         AAALSVAALA AAAILLLS*
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 621>:
m152.seq
         ATGAAAACA AAACCAAAGT CTGGGACCTC CCCACCCGCC TTTTCCACTG
     51 GCTGCTTGCC GCGTCCCTGC CCTTTATGTG GTATAGCGCG AAAGCCGGCG
    101 GCGATATGCT GCAATGGCAC ACGCGCGTCG GGCTGTTCGT CCTTTTCCTG
         CTCGTATTTC GCCTCTGCTG GGGCATTTGG GGCAGCGATA CCGCCCGTTT
    151
    201
         TTCCCGTTTC GTCCAAGGCT GGGCAGGCAT ACGCGGCTAT CTGAAAAACG
    251 GTATTCCCGA ACACATCCAG CCCGGACACA ACCCCTTGGG CGCACTGATG
    301 GTCGTTGCGC TTTTGGCCGC CGTGTCCTTC CAAGTCGGCA CCGGGCTTTT
    351 TGCCGCCGAT GAAAACACCT TCAGCACCAA CGGCTACCTC AACCATTTGG
    401 TTTCCGAACA TACGGGCAGC CTTATGCGGA AAATCCACCT CAACTTTTTC
    451 AAGCTGCTCG CCGTTTTTC TGCAATCCAC ATCGCCGCCG TCGCCGCATA
    501 CCGCGTATTC AAAAAGAAAA ACCTCATCCT CCCGATGATA ACCGGCTTCA
    551 AATACATCGA AGGCAAAACC TCAATCCGCT TTGCAGGCAA AGCCGCGCTT
    601 GCCGCCGCAT TATCGGTTGC CTCGCTTGCC GCAGCCGCCA TCCTGCTCCT
    651 GTCCTGA
This corresponds to the amino acid sequence <SEQ ID 622; ORF 152>:
m152.pep
         MKNKTKVWDL PTRLFHWLLA ASLPFMWYSA KAGGDMLOWH TRVGLFVLFL
     51 LVFRLCWGIW GSDTARFSRF VQGWAGIRGY LKNGIPEHIQ PGHNPLGALM
         VVALLAAVSF QVGTGLFAAD ENTFSTNGYL NHLVSEHTGS LMRKIHLNFF
    151 KLLAVFSAIH IAAVAAYRVF KKKNLILPMI TGFKYIEGKT SIRFAGKAAL
    201 AAALSVASLA AAAILLLS*
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N.gonorrhoeae
ORF 152 shows 95.4% identity over a 218 aa overlap with a predicted ORF (ORF 152.ng)
from N. gonorrhoeae:
m152/g152
                              20
                                       30
                                                 40
                                                                    60
m152.pep
            MKNKTKVWDLPTRLFHWLLAASLPFMWYSAKAGGDMLQWHTRVGLFVLFLLVFRLCWGIW
            MKNKTKVWDFPTRLFHWLLAASLPFMWYSAKAGGDMLQWHTRVGLLVLFLLVFRLCWGIW
g152
                    1.0
                              20
                                                 40
                                                           50
                                                                    60
                              80
                                       90
                                                100
m152.pep
            GSDTARFSRFVQGWAGIRGYLKNGIPEHIOPGHNPLGALMVVALLAAVSFOVGTGLFAAD
            q152
            GSDTARFSRFVRGWAGIRGYLKNGIPEHIQPGHNPLGALMVVALLAAVSFQVGTGLFAAN
                              80
                                       90
                                                100
```

PCT/US99/09346

WO 99/57280

		•				
	130	140	150	160	170	180
m152.pep	ENTFSTNGYLNHI					
g152	ENTFSTNGYLNHI					RPMI ·
	130	140	150	160	170	180
	190	200	210	210		
m152.pep	TGFKYIEGKTSI			219 ex		
g152	TGFKYIEGKTSI					
_	190	200	210			
The following	partial DNA s	equence was	s identified in	n <i>N. meningi</i>	itidis <seq< td=""><td>ID 623>:</td></seq<>	ID 623>:
a152.se	•					
		AAACCAAAGT				
10:	GCTGCTTGCC	GCATCCCTAC				
	CTCGTATTCC	GCCTCTGCTG	GGGCATTTGG	GGCTGTTTAT	CCCTTTTCCTG	! !
20:		GTCCGCGGAT				
25		ACACGTCCAA				
30:	1 GTCGTTGCGC	TTTTGGCCGC	CGTGTCGTTC	CAAGTCGGCA	CAGGGCTTTT	
35:		GTAAACACCT				
40:						
45		CCGTTTTTTC				
50: 55:		AAAAAGAAAA				
60:	E AMIACAICGA	AGGCAAAACC TATCGGTTGC	CCCCCTTCCC	TTGCCGGCAA	AGCCGCGCTT	•
65:		TATEGGTIGE	CGCGCTTGCC	GCAGCCGCCA	rccrecrecr	
This correspon	nds to the amin	o acid seque	nce <seq i<="" td=""><td>D 624; ORF</td><td>152.a>:</td><td>•</td></seq>	D 624; ORF	152.a>:	•
a152.pe		•		, , = ==		
		PTRLFHWLLA	ASLPFMWYSA	KTGGDMLQWH	TRVGLFILFL	1
5:	LVFRLCWGIW	GSDTARFSRF	VRGWSGIREY	MKNGIPEHVQ	PGHNPLGALM	Ī
10:		<u>QV</u> GTGLFAAD				
15:		IAXVAAYRVF	KKKNLVLPMI	TGFKYIEGKT	SIRFAGKAAL	!
20:	AAALSVAALA	AAAILLLS*				
m152/a152	94.0% identity	in 218 aa ov	erlan			
	, 0 14011111		20 3	0 40	50	60
m152.pe	MKNKTKV	WDLPTRLFHWL				
• •	1111111	11:1111111				111111111
a152		WDFPTRLFHWL				
		10	20 3	0 40	50	60
		50				
m1E2 max	CCDMADE			0 100		120
m152.pe		SRFVQGWAGIRO	SILKNGIPEHI	ORGHN B LGA TW	VVALLAAVSEQ	VGTGLFAAD
a152	GSDTARF:	SRFVRGWSGIR	TITLITET PEHV	ІІІІІІІІІІІ Орсиирталтм		ווווווווווו
	00211111		80 9			120
			40 15			180
m152.pe		GYLNHLVSEHT				
a152			111111111111			
a152		GYLNHLVSEHTO	40 15			KKNLVLPMI 180
	•	150 1.	10	0 160	170	180
	;	190 20	00 21	0 219		
m152.pe		GKTSIRFAGKA	ALAAALSVASL	AAAAILLLSX		
	11111111	1111111111		111111111		
a152		GKTSIRFAGKA				
	:	190 20	00 - 21	υ		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 625>:

```
atggggtttg cttaCAgtat gacgtatatc gaggtCGGGa taccggaggc
  1
 51 ggcatccgtc ctttCgctGC CCGAGATgat gcgcctgatG GTGTTtCagg
     attATGGTTT TttggcCGAA GTGATGTTTG TGctgaCTTT cGGCGcgcCG
 101
 151 GTTCTGTTtC TGCTGCTGTG CCTGTATGTC TATGCCGCGC TGATACGGAA
 201 ACAGGCGTAT CCTGCGCTGC GTTTGGCAAC GCGTGTGATG GTGCGCTTGA
 251 GGCAGGCGAT GATGGTGGAT GTGTTTTTTG TTTCCACTCT GGTGGCGTAT
 301 ATCAAGCTCT CGTCTGTGGC AAAGGTTCGC TTCGGGCCGG CGTTTTATCT
 351 GATGTTCGCG CTGTCGGTTA TGCTGATTCG GACTTCGGTA TCGGTTCCCC
 401 AGCATTGGGT GTATTTCCAA ATCGGGCGGC TGACGGGGAA TAATGCGGTT
 451 CAGACGGCAT CGGAAGGCAA AACCTGTTGC AGCCGCTGCC TGTATTTCcg
 501 cgacAGTgcc gaatccCCCT GCGGGGTGTg cgGCGcggaA CTgtacggcg
 551 gacggccgaa aagtCTGAGt atttCgtCGG CGTTTCTgac ggcggcggTT
 601 GTTTTGTATT TCCctgCcaa TATCctgccg attaTGAttt cgtccAATCc
 651 tgccgccacg GAGGcCAACA CCATCTTTAG CGGCATCGCT TATATGTGGG
 701 ACGAGGGGA CAGGCTGATT GCGGCGGTTA TTTTCAGCGC GAGTATTTTG
 751 GTGCCGGTGC TGAAGATTGC GGCAATGTCG GTTTTGATTG CGGCGGCACG
 801 GTTCGCTTTG CCGGCGGGCG CAAAGAAATT GTCGCACCTC tacCGCATCA
 851
     CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT
 901 TTGATGTGTT CGTTCCacaC TTATGCCGCG CGCGTCATTC CGGGCAGTGC
 951 GGCAGTCTAT TTCTGCCTGG TCGTGATTTT GACGATGCTG TCCGCCTATT
1001 ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGGCATTGCT
1051 TTCAACGAAA CGGAAAAATA TGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 626; ORF 153.ng>: g153.pep

```
1 MGFAYSMTYI BVGIPEAASV LSLPEMMRLM VFQDYGFLAE VMFVLTFGAP
51 VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY
101 IKLSSVAKVR FGPAFYLMFA LSVMLIRTSV SVPQHWVYFQ IGRITGNNAV
151 QTASEGKTCC SRCLYFRSA ESPCGVCGAE LYGGRPKSLS ISSAFLTAAV
201 VLYFPANILP IMISSNPAAT EANTIFSGIA YMWDEGDRLI AAVIFSASIL
251 VPVLKIAAMS VLIAAARFAL PAGAKKLSHL YRITEAVGRW SMIDIFVIII
301 LMCSFHTYAA RVIPGSAAVY FCLVVILTML SAYYFDFRLL WDKRASDGIA
```

351 FNETEKYD*

WO 99/57280

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 627>: m153.seq

```
1 ATGGCGTTTG CTTACGGTAT GACGTATATC GAGGTCGGGA TACCGGGTGC
 51 GGCATCCGTC CTTTCGCTGC CCGAGATGAT GCGCCTGATG GTGTTTCAGG
101 ATTATGGTTT TTTGGCCGAA GTGATGTTTG TGCTGACTTT CGGCGCGCCG
151
     GTTCTGTTTC TGCTGCTGTG CCTGTATGTC TATGCCGCGC TGATACGGAA
201 ACAGGCGTAT CCTGCGCTGC GTTTGGCAAC GCGTGTGATG GTGCGCTTGA
251
     GACAGGCGAT GATGGTGGAT GTGTTTTTTG TTTCCACTTT GGTGGCGTAT
     ATCAAGCTCT CGTCTGTGGC AGAGGTTCGC TTCGGGCCGG CGTTTTATCT
351 GATGTTCGCG CTGTCAGTTA TGCTGATTCG GACTTCGGTA TCGGTTCCCC
401 AGCATTGGGT GTATTTCAA ATCGGGCGGC TGACGGGGGA TAATGCGGTT
451
     CAGACGGCAT CGGAAGGTAA AACCTGTTGC AGCCGCTGCC TGTATTTCCG
501 CGACAGTGCC GAATCCCCCT GCGGCGTGTG CGGTGCGGAA CTGTACCGCC
 551 GACGGCCGAA AAGTCTGAGT ATTTCGTCGG CGTTTCTGAC GGCGGCGGTT
     ATTTTGTATT TCCCTGCCAA TATCCTGCCG ATTATGATTT CGTCCAATCC
 601
651 TGCCGCCACG GAGGTCAATA CCATCCTTAA CGGCATCGCT TATATGTGGG
 701 ACGAGGGCGA CAGGCTGATT GCGGCGGTTA TTTTCAGCGC GAGTATTTTG
     GTGCCGGTAC TGAAGATTGC GGCAATGTCG GTTTTGATTG CGTCCGCCCG
 751
 801 CTTCGCTTTG CCAACGGGTG CAAAGAAATT GTCGCACCTC TACCGCATCA
 851 CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT
     TTGATGTGTT CGTTCCACAC TTATGCCGCG CGCGTCATTC CGGGCAGTGC
 901
951 GGCAGTCTAT TTCTGCCTGG TCGTGATTCT GACGATGCTG TCCGCCTATT
1001 ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGGCATTGCT
     TTCAATGAAA CGGAAAAACA TGACTGA
```

This corresponds to the amino acid sequence <SEQ ID 628; ORF 153>: m153.pep

- 1 MAFAYGMTYI EVGIPGAASV LSLPEMMRLM VFQDYGFLAE VMFVLTPGAP
- 51 VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY

m153

	•				
101	IKLSSVAEVE	FGPAFYLMF	A LSVMLIRTSV	SVPQHWVYFQ	IGRLTGDNAV
151	QTASEGKTCO	SRCLYFRDS	A ESPCGVCGAE	LYRRRPKSLS	ISSAFLTAAV
201	ILYFPANIL	IMISSNPAA	r Evntilngia	YMWDEGDRLI	AAVIFSASIL
251	VPVLKIAAMS	VLIASARFA	L PTGAKKLSHL	YRITEAVGRW	SMIDIFVIII
301	LMCSFHTYA	RVIPGSAAV	FCLVVILTML	SAYYFDPRLL	WDKRASDGIA
351	FNETEKHD*				
/ g1!	53 96.1% i	dentity in	358 aa over	lap	
		10	20 3	0 40	50

	1.0					
	10	20	30	40	50	60
m153.pep	MAFAYGMTYIEVG:					
g153	MGFAYSMTYIEVG:	PEAASVLSLI	PEMMRLMVFQI	YGFLAEVMF	VLTFGAPVLF:	LLLCLYV
	10	20	30	40	50	60
	70	80	90	100	110	120
m153.pep	YAALIRKQAYPALI					
mrss.pcp						
-153			,,,,,,,,,,,,		:	
g153	YAALIRKQAYPALI		-			
	70	80	90	100	110	120
	130	140	150	160	170	180
m153.pep	LSVMLIRTSVSVP(HWVYFQIGRI	LTGDNAVQTAS	EGKTCCSRC	LYFRDSAESP	CGVCGAE
• -			HEITH ÎTH	1111111111	111111111	шш
g153	LSVMLIRTSVSVP					
3-00	130	140	150	160	170	180
	130	140	130	160	170	100
	100					
	190	200	210	220	230	240
m153.pep	LYRRRPKSLSISSA		PANILPIMIS	SNPAATEVN'	rilngiaymw	
					::	$\Pi\Pi\Pi\Pi\Pi$
g153	LYGGRPKSLSISS	AFLTAAVVLYI	PANILPIMIS	SNPAATEAN'	rifsgiaymw	DEGDRLI
	190	200	210	220	230	240
	250	260	270	280	290	300
m153.pep	AAVIFSASILVPVI					
wrs. beb	ANVIEGNSIEVE VI				LEAVGRWSMI	
			:		1111111111	
g153	AAVIFSASILVPVI					
	250	260	270	280	290	300
	310	320	330	340	350	359
m153.pep	LMCSFHTYAARVII	GSAAVYFCLV	VILTMLSAYY	FDPRLLWDKI	RASDGIAFNE'	TEKHDX
	[1] [1] [1] [1] [1]	шиний				111:11
q153	LMCSFHTYAARVII	CSAAVYFCL	/VILTMLSAYY	וארש.ז.זפסחשי	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	יוייון דרעאשי
J	310	320	330	340	350	- PILIDA

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 629>: a153.seq

.seq					
1	ATGGCGTTTG	CTTACGGTAT	GACGTATATC	GAGGTCGGGA	TACCGGGTGC
51	GGCATCCGTC	CTTTCGCTGC	CCGAGATGAT	GCGCCTGATG	GTGTTTCAGG
101	ATTATGGTTT	TTTGGCCGAA	GTGATGTTTG	TGCTGACCTT	CGGCGCGCCG
151	GTTCTGTTTC	TGCTGCTGTG	CCTGTATGTC	TATGCCGCGC	TGATACGGAA
201	ACAGGCGTAT	CCTGCGCTGC	GTTTGGCAAC	GCGTGTGATG	GTGCGCTTGA
251	GACAGGCGAT	GATGGTGGAT	GTGTTTTTTG	TTTCCACTTT	GGTGGCGTAT
301	ATCAAGCTCT	CGTCTGTGGC	AGAGGTTCGC	TTCGGATCGG	CGTTTTATCT
351	GATGTTCGCG	CTGTCGGTTA	TGCTGATTCG	GACTTCGGTA	TCGGTTCCCC
401	AGCATTGGGT	GTATTTTCAA	ATCGGGCGGC	TGACGGGGGA	TAATGCGGTT
451	CAGACGGCAT	CGGAAGGTAA	AACCTGTTGC	AGCCGCTGCC	TGTATTTCCG
501	CGACAGTGCC	GAATCCCCCT	GCGGCGTGTG	CGGTGCGGAA	CTGTACCGCC
551		AAGTCTGAGT	ATTTCGTCGG	CGTTTCTGAC	GGCGGCGGTT
601	ATTTTGTATT	TCCCTGCCAA	TATCCTGCCG	ATTATGATTT	CGTCCAATCC
651	TGCCGCCACG	GAGGTCAATA	CCATCCTTAA	CGGCATCGCT	TATATGTGGG
701	ACGAGGGCGA	CAGGCTGATT	GCGGCGGTTA	TTTTCAGCGC	GAGTATTTTG
751	GTGCCGGTAC	TGAAGATTGC	GGCAATGTCG	GTTTTGATTG	CGTCCGCCCG
801	CTTCGCTTTG	CCAACGGGTG	CAAAGAAATT	GTCGCACCTC	TACCGCATCA

WO 99/57280

851 901 951 1001 1051	CCGAAGCGGT CGGCCGCTGG TCGATGATTG ATATTTTTGT GATTATTATT TTGATGTGTT CGTTCCACAC TTATGCCGCG CGCGTCATTC CGGGCAGTGC GGCAGTCTAT TTCTGCCTGG TCGTGATTCT GACGATGCTG TCCGCCTATT ATTTCGACCC GCGCCTGCTT TGGGACAAAC GCGCTTCAGA CGGCATTGCT TTCAATGAAA CGGAAAAACA TGACTGA	
	Is to the amino acid sequence <seq 153.a="" 630;="" id="" orf="">:</seq>	
a153.pep		
1 51	MAFAYGMTYI EVGIPGAASV LSLPEMMRLM VFQDYGFLAE VMFVLTFGAP VLFLLLCLYV YAALIRKQAY PALRLATRVM VRLRQAMMVD VFFVSTLVAY	
101	IKLSSVAEVR FGSAFYLMFA LSVMLIRTSV SVPQHWVYFQ IGRLTGDNAV	
151	QTASEGKTCC SRCLYFRDSA ESPCGVCGAE LYRRRPKSLS ISSAFLTAAV	
201 251	ILYFPANILP IMISSNPAAT EVNTILNGIA YMWDEGDRLI AAVIFSASIL VPVLKIAAMS VLIASARFAL PTGAKKLSHL YRITEAVGRW SMIDIFVIII	
301	LMCSFHTYAA RVIPGSAAVY FCLVVILTML SAYYFDPRLL WDKRASDGIA	
351	FNETEKHD*	
m153/a153 99	9.7% identity in 358 aa overlap	
111135/4133 77	10 20 30 40 50	60
m153.pep	MAFAYGMTYIEVGIPGAASVLSLPEMMRLMVFQDYGFLAEVMFVLTFGAPVLFLLLCI	LYV
.150		Н
a153	MAFAYGMTYIEVGIPGAASVLSLPEMMRLMVFQDYGFLAEVMFVLTFGAPVLFLLLCI 10 20 30 40 50	60 7YV
		00
152		120
m153.pep	YAALIRKQAYPALRLATRVMVRLRQAMMVDVFFVSTLVAYIKLSSVAEVRFGPAFYLM	IFA
a153	YAALIRKQAYPALRLATRVMVRLRQAMMVDVFFVSTLVAYIKLSSVAEVRFGSAFYLM	IFA
		20
	130 140 150 160 170 1	.80
m153.pep	LSVMLIRTSVSVPQHWVYFQIGRLTGDNAVQTASEGKTCCSRCLYFRDSAESPCGVCG	AE
a153	I SUMI I DESUGNADO MENOR DE LA CONTRACTOR	
a155	LSVMLIRTSVSVPQHWVYFQIGRLTGDNAVQTASEGKTCCSRCLYFRDSAESPCGVCG 130 140 150 160 170 1	BAE
m153.pep		240
mros.pep	LYRRRPKSLSISSAFLTAAVILYFPANILPIMISSNPAATEVNTILNGIAYMWDEGDF	RLI
a153	LYRRPKSLSISSAFLTAAVILYFPANILPIMISSNPAATEVNTILNGIAYMWDEGDF	RLI
		240
	250 260 270 280 290	300
m153.pep	AAVIFSASILVPVLKIAAMSVLIASARFALPTGAKKLSHLYRITEAVGRWSMIDIFV]	III
a153		
a155	AAVIFSASILVPVLKIAAMSVLIASARFALPTGAKKLSHLYRITEAVGRWSMIDIFVI 250 260 270 280 290	300
		,00
m153	310 320 330 340 350 35	
m153.pep	LMCSFHTYAARVIPGSAAVYFCLVVILTMLSAYYFDPRLLWDKRASDGIAFNETEKHI	X
a153	LMCSFHTYAARVIPGSAAVYFCLVVILTMLSAYYFDPRLLWDKRASDGIAFNETEKHI	X
	310 320 330 340 350	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 631>: g154.seq

1	ATGACTGACA	ACAGCCCTCC	TCCAAACGGA	CACGCTCAAG	CACGCGTCCG
51	CAAAAACAAC	accttcctCT	CCGCCGTCTG	GCTGGTCCCG	CTGATCGCGC
101	TGATTGCCGG	CGGCTGGCTT	TGGGTTAAGG	AAATCCGCAA	CAGGGGGCCT
151	GTGGTTACGC	TCTTGATGGA	CAGCGCGGAA	GGCATCGAAG	TCAACAATAC
201	GGTCATTAAG	GTATTGAGCA	TCGATGTCGG	ACGCGTTACC	CGAATCAAAC
251	TGCGCGACGA	CCAAAAAGGC	GTGGAAGTTA	CTGCCCAACT	CAATGCGGAC
301	GTATCCGGCC	TCATCCGCAG	CGATACCCAG	TTTTGGGTGG	TCAAGCCGCG
351	TATCCACCAA	ACCCCCCC+ NA	CCCCMMMAGG	ma acamaamm	maaaammaa-

PCT/US99/09346


```
401 ACATCGCTTT TACACCCGGC AAAAGCGGCG AGGCAAAAGA CGTGTTCCAA
     GTGCAGGACA TTCCGCCCGT TACCGCCATC GGGCAAAqcq GGCTGCGCTT
     GAATTTGATT GGTAAAAACG AccgCATCCT CAACGTcaaC AGCCCTGTTT
 501
     TGTATGAAAA CTTTATGGTC GGGCAAATCG AAAGCGCGCA TTTCGACCCG
 551
     TCCGACCAAA GCGTGCATTA CACCATCTTC ATCCAAAGCC CCAACGACAA
     ACTGATTCAT TCCGCCAGCC GTTTTTGGCT GGAAAGCGGC ATCAATATCG
 651
 701
     AAACCACAGG CAGCGGCATC AAACTCAATT CCGCCCCTCT GCCTGCCCTG
     CTGTCAGGCG CGATTTCATT TGATTCGCCG AAAACCAAAA ACAGTAAAAA
     CGTCAAAAGC GAGGACAGCT TCACGCTTTA CGACAGCCGC AGCGAAATCG
 801
851
     CCAACCTGCC TGACGACCGC TCGCTGTACT ACACCGCGTT TTTCAAACAA
 901
     TCCGTGCGCG GACTGACCGT cggTTCGCCT GTcgaATACA AAGGGCtgaA
     TGTcggCATG GTTTCCGATG TCCCTTATTT TGACCGCAAt gacagCCTGC
951
1001 ACCtgtTTGA aaacggctgg aTTcccGtac gCATCCGCAT cgagccTTCC
     CGTTTGGAAA TCAATGCCGA CGAGCAAAGC AAAGAGCATT GGAAACAACA
     ATTCCAGACG GCCTTAAACA AAGGCCTGAC CGCCACCATC TCCAGCAACA
1101
1151
     ACCTGCTGAC CGGCGGCAAA ATGATTGAGT TGAACGATCA GCCTTCCGCC
     TCGCCCAAGC TGCGACCGCA TACCGTTTAT GCAGGCGATA CCGTCATCGC
     CACACGGGC GGCGGTTTGG ATGACTTGCA GGTCAAATTG GCGGATTTGC
1251
1301
     TGGACaaatT CAACAATCTG CCATTggata aAACCGTTGC CGAATTGAAC
1351
     GGCTCGCTCG CCGAACTCAA GTCCGCACTC AAATCCGCCA ATGCCGCCCT
     AAGCTCCATT GacaAACTGG TCGgcaaTCC GCAGACGCAA AACATCCCGA
1401
1451 ACGAACTGAA CCAAACTCTG AAAGAGTTGC GCATAACCCT GCAAGGCGTA
1501 TCGcctCAAT CGCCTATCTa cgGAgacgta caAAATAcgc tgCaAAGTTT
     GGACAAAACC TTAAAagacg TtcaACCCGT CATTAACACT TTGAaAGAAa
1551
1601 aacCCaaCgc actGATTTtc aacaACAGCA GCAAAGAccc tATCCCGAAA
     GGAAGCCGAT AA
```

This corresponds to the amino acid sequence <SEQ ID 632; ORF 154.ng>: g154.pep

```
1 MTDNSPPPNG HAQARVRKNN T<u>FLSAVWLVP LIALIAGG</u>WL WVKEIRNRGP
51 VVTILMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDQKG VEVTAQLNAD
101 VSGLIRSDTQ FWVVKPRIDQ SGVTGLGTLL SGSYIAFTFG KSGEAKDVFQ
151 VQDIPPVTAI GQSGLRLNLI GKNDRILNVN SPVLYENFMV GQIESAHFDP
201 SDQSVHYTIF IQSPNDKLIH SASRFWLESG INIETTGSGI KLNSAPLPAL
251 LSGAISFDSP KTKNSKNVKS EDSFTLYDSR SEIANLPDDR SLYYTAFFKQ
301 SVRGLTVGSP VEYKGLNVGM VSDVPYFDRN DSLHLFENGW IPVRIRIEPS
351 RLEINADEQS KEHWKQQFQT ALNKGLTATI SSNNLLTGGK MIELNDQPSA
401 SPKLRPHTVY AGDTVIATRG GGLDDLQVKL ADLLDKFNNL PLDKTVAELN
451 GSLAELKSAL KSANAALSSI DKLVGNPQTQ NIPNELNQTL KELRITLQGV
501 SPQSPIYGDV QNTLQSLDKT LKDVQPVINT LKEKPNALIF NNSSKDPIPK
551 GSR*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 633>: m154.seq

ATGACTGACA ACAGCCCTCC TCCAAACGGA CACGCCCAAG CACGCGTCCG 51 CAAAAACAAC ACCTTCCTCT CTGCCGTCTG GCTGGTTCCG CTGATCGCGC 101 TGATTGCCGG CGGCTGGCTT TGGGTTAAGG AAATCCGCAA CAGGGGGCCT 151 GTGGTTACGC TCTTGATGGA CAGCGCGGAA GGCATTGAGG TCAACAATAC 201 GGTCATCAAA GTATTGAGCA TCGATGTCGG ACGCGTTACC CGAATCAAAC 251 TGCGCGACGA CCAAAAAGGC GTGGAAGTAA CCGCCCAACT CAATGCGGAC GTATCCGGCC TCATCCGCAG CGATACCCAG TTTTGGGTGG TCAAGCCGCG TATCGACCAA AGCGGCGTAA CCGGTTTGGG TACGCTGCTT TCGGGTTCGT 401 ACATCGCCTT TACACCCGGC AAAAGCGACG AGGCAAAAGA CGTGTTCCAA 451 GTGCAGGACA TTCCGCCCGT TACCGCCATC GGGCAAAGCG GGCTGCGCTT GAATTTGATT GGTAAAAACG ACCGCATCCT CAACGTCAAC AGCCCTGTTT TGTATGAAAA TTTTATGGTC GGGCAAGTCG AAAGCGCGCA TTTCGACCCG 551 601 TCCGACCAAA GCGTGCATTA CACCATCTTC ATCCAAAGCC CCAACGACAA 651 ACTGATTCAT TCCGCCAGCC GTTTTTGGCT GGAAAGCGGC ATCAATATCG AAACCACAGG CAGCGGCATC AAACTCAATT CCGCCCCTCT GCCTGCCCTG 701 751 CTGTCGGGCG CGATTTCATT TGATTCGCCG AAAACCAAAA ACAGTAAAAA 801 CGTCAAAAGC GAAGACAGCT TCACGCTTTA CGACAGCCGC AGCGAAGTCG 851 CCAACCTGCC TGACGACCGC TCGCTGTACT ACACCGCGTT TTTCAAACAA 901 TCCGTGCGCG GCCTGACCGT CGGTTCGCCC GTCGAGTACA AAGGGCTGAA 951 TGTCGGCGTG GTTTCCGACG TTCCTTATTT CGACCGCAAC GACAGCCTGC 1001 ACCTGTTTGA AAACGGCTGG ATACCCGTAC GCATCCGCAT TGAACCTTCC CGTTTGGAAA TCAATGCCGA CGAACAAGC AAAGAACATT GGAAACAACA 1051 1101 ATTTCAGACG GCCTTAAACA AAGGCCTGAC CGCCACCATC TCCAGCAACA 1151 ACCTGCTGAC CGGAAGCAAA ATGATTGAGT TGAACGATCA GCCTTCCGCA

1201	TCACCTAAGC TGCGACCGCA TACCGTTTAT GCAGGCGATA CCGTTATCGC
1251	GACCCAGGGC GGCGGTTTGG ACGATTTGCA GGTCAAATTG GCGGATTTGC
1301	
1351	GGTTCGCTTG CCGAGCTCAA ATCCACACTC AAATCTGCCA ATGCCGCCCT
1401	AAGCTCCATC GACAAACTGG TCGGCAAACC GCAGACACAA AACATTCCGA
1451	ACGAACTGAA CCAAACCCTG AAAGAGTTGC GCACAACCCT GCAAGGCGTA
1501	TCGCCGCAAT CGCCTATCTA CGGCGACGTA CAAAATACGC TGCAAAGTTT
1551	GGACAAAACT TTAAAAGACG TTCAACCCGT GATTAATACT TTGAAAGAAA
1601	
1651	GGAAGCCGAT AA
This corn	responds to the amino acid sequence <seq 154.a="" 634="" id="" orf="">:</seq>
	responds to the annio acid sequence 15EQ ID 054 OIC 154.a/.
m154.pep	•
1	MTDNSPPPNG HAQARVRKNN TFLSAVWLVP LIALIAGGWL WVKEIRNRGP
51	VVTLLMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDOKG VEVTAOLNAD
101	VSGLIRSDTQ FWVVKPRIDQ SGVTGLGTLL SGSYIAFTPG KSDEAKDVFQ
151	VQDIPPVTAI GQSGLRLNLI GKNDRILNVN SPVLYENPMV GQVESAHFDP
201	SDQSVHYTIF IQSPNDKLIH SASRFWLESG INIETTGSGI KLNSAPLPAL
251	LSGAISFDSP KTKNSKNVKS EDSFTLYDSR SEVANLPDDR SLYYTAFFKQ
301	SVRGLTVGSP VEYKGLNVGV VSDVPYFDRN DSLHLFENGW IPVRIRIEPS
351	RLEINADEQS KEHWKQQFQT ALNKGLTATI SSNNLLTGSK MIELNDQPSA
401	SPKLRPHTVY AGDTVIATQG GGLDDLQVKL ADLLDKFDKL PLDKTVAKLN
	SPALEFITY ADDITING GGLDDDQVKL ADDLDKFDKL PLDKTVAKLN
451	GSLAELKSTL KSANAALSSI DKLVGKPQTQ NIPNELNQTL KELRTTLQGV
501	SPQSPIYGDV QNTLQSLDKT LKDVQPVINT LKEKPNALIF NSSSKDPIPK
551	GSR*
m1E4 / ~1	154 07 09 identity in 553 as small-
mra4 / dr	154 97.8% identity in 553 aa overlap
	10 20 30 40 50 60
m154.pep	MTDNSPPPNGHAQARVRKNNTFLSAVWLVPLIALIAGGWLWVKEIRNRGPVVTLLMDSAE
~1.54	
g154	MTDNSPPPNGHAQARVRKNNTFLSAVWLVPLIALIAGGWLWVKEIRNRGPVVTLLMDSAE
	10 20 30 40 50 60
	70 80 90 100 110 120
m154.pep	GIEVNNTVIKVLSIDVGRVTRIKLRDDQKGVEVTAQLNADVSGLIRSDTQFWVVKPRIDQ
zs r. pcp	11111111111111111111111111111111111111
g154	GIEVNNTVIKVLSIDVGRVTRIKLRDDQKGVEVTAQLNADVSGLIRSDTQFWVVKPRIDQ
	70 80 90 100 110 120
	130 140 150 160 170 180
m154.pep	
mraa.beb	SGVTGLGTLLSGSYIAFTPGKSDEAKDVFQVQDIPPVTAIGQSGLRLNLIGKNDRILNVN
g154	SGVTGLGTLLSGSY1AFTPGKSGEAKDVFQVQD1PPVTAIGQSGLRLNLIGKNDRILNVN
	130 140 150 160 170 180
	190 200 210 220 230 240
m154.pep	
mrs4.pep	SPVLYENFMVGQVESAHFDPSDQSVHYTIFIQSPNDKLIHSASRFWLESGINIETTGSGI
g154	SPVLYENFMVGQIESAHFDPSDQSVHYTIFIQSPNDKLIHSASRFWLESGINIETTGSGI
	190 200 210 220 230 240
	250 260 270 280 290 300
m1 F.4	
m154.pep	KLNSAPLPALLSGAISFDSPKTKNSKNVKSEDSFTLYDSRSEVANLPDDRSLYYTAPFKQ
g154	KLNSAPLPALLSGAISFDSPKTKNSKNVKSEDSFTLYDSRSEIANLPDDRSLYYTAFFKQ
	250 260 270 280 290 300
	310 320 330 340 350 360
m154.pep	SVRGLTVGSPVEYKGLNVGVVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS
	111111111111111111111111111111111111111
g154	1 1 1 1 1 1 1 1 1 1
	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS
	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS 310 320 330 340 350 360
	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS 310 320 330 340 350 360
-354	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS 310 320 330 340 350 360 370 380 390 400 410 420
m154.pep	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS 310 320 330 340 350 360 370 380 390 400 410 420 KEHWKQQFQTALNKGLTATISSNNLLTGSKMIBLNDQPSASPKLRPHTVYAGDTVIATOG
m154.pep	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLETNADEQS 310 320 330 340 350 360 370 380 390 400 410 420 KEHWKQQFQTALNKGLTATISSNNLLTGSKMIBLNDQPSASPKLRPHTVYAGDTVIATQG
m154.pep	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLETNADEQS 310 320 330 340 350 360 370 380 390 400 410 420 KEHWKQQFQTALNKGLTATISSNNLLTGSKMIBLNDQPSASPKLRPHTVYAGDTVIATQG
	SVRGLTVGSPVEYKGLNVGMVSDVPYFDRNDSLHLFENGWIPVRIRIEPSRLEINADEQS 310 320 330 340 350 360 370 380 390 400 410 420 KEHWKQQFQTALNKGLTATISSNNLLTGSKMIBLNDQPSASPKLRPHTVYAGDTVIATOG

WO 99/57280

370	380	390	400	410	420
430	440	450	460	470	480
DDLQVKLADLL	DKFDKLPLDK	TVAELNGSL	BLKSTLKSAN	AALSSIDKL	/GKPQTQ
11111111111	111::1111				11:111
DDLQVKLADLL	DKFNNLPLDK	TVAELNGSL	ELKSALKSAN	AALSSIDKL	GNPQTQ
430	440	450	460	470	480
490	500	510	520	530	540
nelnotlkelr	TTLQGVSPQS	PIYGDVQNTI	QSLDKTLKDV	QPVINTLKE	(PNALIF
11111111111		1111111111	шинш		
nelnotlkelr:	ITLQGVSPQS	PIYGDVQNTI	QSLDKTLKDV	QPVINTLKE	(PNALIF
490	500	510	520	530	540
550					
111111111111		•			
SKDPIPKGSRX					
550					
	430 DDLQVKLADLL DDLQVKLADLL 430 490 NELNQTLKELR NELNQTLKELR 490 550 SKDPIPKGSRX	430 440 DDLQVKLADLLDKFDKLPLDK :: DDLQVKLADLLDKFNNLPLDK 430 440 490 500 NELNQTLKELRTTLQGVSPQS NELNQTLKELRITLQGVSPQS 490 500 550 SKDPIPKGSRX	430 440 450 DDLQVKLADLLDKFDKLPLDKTVABLNGSLF	430 440 450 460 DDLQVKLADLLDKFDKLPLDKTVABLNGSLABLKSTLKSAN	430 440 450 460 470 DDLQVKLADLLDKPDKLPLDKTVAELNGSLABLKSTLKSANAALSSIDKLY

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 635>: a154.seq

ATGACTGACA ACAGCCCTCC TCCAAACGGA CACGCCCAAG CACGCGTCCG 51 CAAAAACAAC ACCTTCCTCT CTGCCGTCTG GCTGGTTCCG CTGATCGCGC TGATTGCCGG CGGCTGGCTT TGGGTTAAGG AAATCCGCAA CAGGGGGCCT 151 GTGGTTACGC TCTTGATGGA CAGCGCGGAA GGCATTGAGG TCAACAATAC GGTCATCAAA GTATTGAGCA TCGATGTCGG ACGCGTTACC CGAATCAAAC 251 TGCGCGACGA CCAAAAAGGC GTGGAAGTAA CCGCCCAACT CAATGCGGAC 301 GTATCCGGCC TCATCCGCAG CGATACCCAG TTTTGGGTGG TCAAGCCGCG 351 TATCGACCAA AGCGGCGTAA CCGGTTTGGG TACGCTGCTT TCGGGTTCGT ACATCGCCTT TACACCCGGC AAAAGCGACG AGGCAAAAGA CGTGTTCCAA 451 GTGCAGGACA TTCCGCCCGT TACCGCCATC GGGCAAAGCG GGCTGCGCTT 501 GAATTTGATT GGTAAAAACG ACCGCATCCT CAACGTCAAC AGCCCTGTTT TGTATGAAAA CTTTATGGTC GGGCAAGTCG AAAGCGCGCA TTTCGACCCG TCCGACCAAA GCGTGCATTA CACCATCTTC ATCCAAAGCC CCAACGACAA 651 ACTGATTCAT TCCGCCAGCC GTTTCTGGCT GGAAAGCGGC ATCAATATCG 701 AAACCACAGG CAGCGGCATC AAACTCAATT CCGCCCCTCT GCCTGCCCTG 751 CTGTCGGGCG CGATTTCATT TGATTCGCCG AAAACCAAAA ACAGTAAAAA CGTCAAAAGC GAAGACAGCT TCACGCTTTA CGACAGCCGC AGCGAAGTCG 851 CCAACCTGCC TGATGACCGT TCGCTGTACT ACACCGCGTT TTTCAAACAA 901 TCCGTGCGCG GACTGACCGT CGGTTCGCCT GTCGAGTACA AAGGGCTGAA 951 TGTCGGCGTG GTTTCCGATG TTCCTTATTT CGACCGCAAC GACAGCCTGC 1001 ACCTGTTTGA AAACGGCTGG ATTCCCGTAC GCATCCGTAT TGAGCCTTCC 1051 CGTTTGGAAA TCAATGCCGA CGAACAAGC AAAGAACATT GGAAACAACA 1101 ATTTCAGACG GCCTTAAACA AAGGCCTGAC CGCCACCATC TCCAGCAACA 1151 ACCTGCTGAC CGGCAGCAAA ATGATTGAGT TGAACGATCA GCCTTCCGCC 1201 TCGCCCAAGC TGCGACCGCA TACCGTTTAT GCAGGCGATA CCGTTATCGC
1251 GACCCAGGC GGCGGTTTGG ACGATTTGCA GGTCAAATTG GCGGATTTGC GACCCAGGGC GGCGGTTTGG ACGATTTGCA GGTCAAATTG GCGGATTTGC 1301 TGGACAAGTT CGACAAACTG CCTTTAGATA AGACGGTTGC CGAATTGAAC 1351 GGTTCGCTTG CCGAGCTCAA ATCCACACTC AAATCTGCCA ATGCCGCCCT 1401 AAGCTCCATC GACAAACTGG TCGGCAAACC GCAGACACAA AACATTCCGA 1451 ACGAACTGAA CCAAACCCTG AAAGAGTTGC GCACAACCCT GCAAGGCGTA 1501 TCGCCTCAAT CGCCTATCTA CGGCGACGTA CAAAATACGC TGCAAAGTTT GGACAAAACC TTAAAAGACG TTCAACCCGT CATTAACACT TTGAAAGAAA 1601 AACCCAACGC GCTGATTTTC AACAGCAGCA GCAAAGACCC TATCCCGAAA 1651 GGAAGCCGAT AA

This corresponds to the amino acid sequence <SEQ ID 636; ORF 154.a>: a154.pep

- 1 MTDNSPPPNG HAQARVRKNN TFLSAVWLVP LIALIAGGWL WVKEIRNRGP
 - 51 VVTLLMDSAE GIEVNNTVIK VLSIDVGRVT RIKLRDDOKG VEVTAOLNAD
 - 101 VSGLIRSDTQ FWVVKPRIDQ SGVTGLGTLL SGSYIAFTPG KSDEAKDVFQ

151	VQDIPPVTAI	GQSGLRLNLI	GKNDRILNVN	SPVLYENFMV	GQVESAHFDP			
201	SDQSVHYTIF	IQSPNDKLIH	SASRFWLESG	INIETTGSGI	KLNSAPLPAL			
251	LSGAISFDSP	KTKNSKNVKS	EDSFTLYDSR	SEVANLPDDR	SLYYTAFFKQ			
301	SVRGLTVGSP	VEYKGLNVGV	VSDVPYFDRN	DSLHLFENGW	IPVRIRIEPS			
351	RLEINADEQS	KEHWKQQFQT	ALNKGLTATI	SSNNLLTGSK	MIELNDQPSA			
401	SPKLRPHTVY	AGDTVIATQG	GGLDDLQVKL	ADLLDKFDKL	PLDKTVAELN			
451		KSANAALSSI						
501	SPQSPIYGDV	QNTLQSLDKT	LKDVQPVINT	LKEKPNALIF	NSSSKDPIPK			
551	GSR*							
l 10	100.0% identity in 553 aa overlap							
	•	10	20 3	0 40	50			
nen	MTDNSPPI	MCHVVVDIA	INTEL CRIMITIE	DI TAT TACCUI	MINETONDCOM			

551 G	SSR*					
m154/a154 100.	0% identity in 553	aa overlap				
	10	20	30	40	50	60
m154.pep	MTDNSPPPNGHAQAR	VRKNNTFLS:	AVWLVPLIAL	IAGGWLWVKE	IRNRGPVVTL	LMDSAE
a154		TITTITITE VRKNNTFLS	AVWLVPLIAL	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	TRNRGPVVTI.	TWDSDE
•	10	20	30	40	50	60
	70	80	90	100	110	
m154.pep	GIEVNNTVIKVLSID			100 AOLNADVSGL	110 IRSDTOFWVV	120 KPRIDO
	11111111111111111	ШШШ		11111111	1111111111	THIT
a154	GIEVNNTVIKVLSID	VGRVTRIKLI 80	RDDQKGVEVT 90	AQLNADVSGL 100	IRSDTQFWVV 110	KPRIDQ 120
	,,	00	50	100	110	120
154	130	140	150	160	170	180
m154.pep	SGVTGLGTLLSGSYI	AFTPGKSDE?	AKDVFQVQDI.	PPVTAIGQSG:	LRLNLIGKND	RILNVN
a154	SGVTGLGTLLSGSYI	AFTPGKSDE/	AKDVFQVQDI	PPVTAIGQSG:	LRLNLIGKND	RILNVN
	130	140	150	160	170	180
	190	200	210	220	230	240
m154.pep	SPVLYENFMVGQVES	AHFDPSDQS1	/HYTIFIQSPI	NDKLIHSASR	FWLESGINIE	TTGSGI
a154			/HVTTETOGD		HIIIIIIII	IIIIII
	190	200	210	220	230	240
	250	0.60				
m154.pep	250 KLNSAPLPALLSGAI	260 SEDSPKTKNS	270 KNVKSEDSF	280 PLYDSRSEVA	290 NT.PRANDEST.VV	300 TAFEKO
	1111111111111111	111111111			1111111111	11111
a154	KLNSAPLPALLSGAI: 250	SFDSPKTKNS 260	SKNVKSEDSF 270	TLYDSRSEVAI 280		
	250	200	270	280	290	300
m154 mam	310	320	330	340	350	360
m154.pep	SVRGLTVGSPVEYKG	LNVGVVSDVI	?YFDRNDSLH] 	LFENGWIPVR:	[RIEPSRLE]	NADEQS
a154	SVRGLTVGSPVEYKG	LNVGVVSDV	PYFDRNDSLHI	LFENGWIPVR:	IRIEPSRLEI	NADEQS
	310	320	330	340	350	360
	370	380	390	400	410	420
m154.pep	KEHWKQQFQTALNKGI	LTATISSNNI	LTGSKMIEL	NDQPSASPKLI	RPHTVYAGDT	VIATQG
a154			LTGSKMIELA			VIATOG
	370	380	390	400	410	420
	430	440	450	460	470	400
m154.pep	GGLDDLQVKLADLLD			460 ELKSTLKSANA	470 AALSSIDKLV	480 GKPOTO
-154		[[]]				ППП
a154	GGLDDLQVKLADLLDE 430	KEDKLPLDKT 440	VAELNGSLAE 450	ELKSTLKSANA 460	AALSSIDKLV 470	GKPQTQ 480
					310	700
m154.pep	490 NIPNELNQTLKELRTI	500 TLOGVSPOSE	510 ETVEDVONTI	520	530	540
		[[[]]]	111111111			111111
a154	NIPNELNQTLKELRTI	TLQGVSPQS F	PIYGDVQNTLO	SLDKTLKDV	QPVINTLKEK!	PNALIF
	490	500	510	520	530	540

550
m154.pep NSSSKDPIPKGSRX
|||||||||||||
a154 NSSSKDPIPKGSRX
550

WO 99/57280

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 637>:

```
g155.seq
         atGAAaatcg GtatcCCACG CGAGTCAtta tcCGGCGAAA cccgcgtagc
         ctgcAcgccc gCCACCGTTG CCctgctggg caAactAGGC TTTGAAACCG
      51
         TTGtcgaAAG CGGTGCAggt TTGGCGGCAA GTTTggaCGA TGCCGCTTAC
    151 CAAACAGCAG GCGCAACCGT TGCCGACAAA GCGGCGGTTT GGGCCTGCCC
         TTTAATTTAT AAGGTCAACG CGCCGTCCGA AGGCGAGCTG CCGCTGCTCA
    251 AAGAAGGTCA AACCATCGTC AGCTTCCTGT GGCCGCGCCA AAACGAGGCT
         TTGGTCGAGG CCTTGCGCGC CAAGAAAGTC AACGCGCTGG CGATGGACAT
    351 GGTTCCCCGC ATTTCCCGCG CTCAGGCCTT GGACGCTTTG TCTTCAATGG
     401
         CAAACATCAG CGGCTACCGC GCCGTGATTG AAGCCGCCAA CGCCTTCGGC
     451
         CGTTTCTTCA CCGGTCAAAT CACTGCCGCC GGCAAAGTGC CGCCTGCGCA
    501 GGTTTTGGTG ATTGGCGCCG GTGTGGCGGG TTTGGCGGCA ATCGGTACGG
    551
         CAAATTCGCT CGGCGCAGTG GTGCGCGCGT TCGATACCCG CTTGGAAGTG
         GCGGAACAAA TCGAATCGAT GGGCGGTAAG TTcctGAAAC TCGACTTCCT
    601
    651 GCAAGAATCG GGCGGCAGCG GAGACGGCTA CGCCAAAGTG ATGAGCGACG
    701 AATTTATCGC CGCCGAAATG AAGCTCTTTG CCGAACAGGC GAAAGAAGTG
    751 GACATCATCA TCACCACCGC CGCCATTCCG GGCAAACCCG CTCCCAAGCT
    801 GATTACCAAA GAAATGGTGG AAAGCATGAA ATCCGGATCC GTCATCGTCG
         ATTTGGCGGC GACGGGCGC AACTGCGAAC TCACCCGACC GGGCGAATTG
         TCCGTAACCG GCAACGGCGT GAAAATCATC GGCTACACCG ACATGGCAAA
    901
         CCGCCTTGCC GGACAGTCTT CCCAGCTTTA CGCCACCAAC TTGGTGAACC
    1001 TGACCAAGCT GTTAAGCCCG AACAAAGAcg gcgaAATCAC GCTGGACTTC
         GAAGacgtGA TTATCCGCAA TATGACCGTT ACCCGcgacg gcgaaATCAC
   1101 CTTCCCGCCT CCGccgaTTc aggtTTCcgc ccggccgCAG CAAAcgccgt
    1151 ctgaAAAagc cgcGCCTGCC GCCAagcccg AgccGaaacc tgttCCcctg
   1201 tggaAAAaac tcgCGCCCGC CGCcatcgCC GCCGTATTGG tgctgtgGgt
    1251
         cggCgcggtc gcacccgcag CATTCTTGAA CCACTTTATC GTCTTCGTCC
         TCGCCTGCGT CATCGGCTAC CATGTCGTTT GgaacgTCAG CCACTCGCTG
   1301
   1351 CACACACCGC TGAtgtcggt aaccaaCgcc atctccGGCA tcatggtcgt
   1401 cggCGCGCTG CTGCAAATCG GTCAGGGcaa cqqcttcqtT TCqctGCTGT
   1451 CGTTTGTTGC CATCCTGATT GCCGGCATCA ATATCTTCGG CGGCTTTGCG
   1501 GTTACACGGC GTATGCTGAA TATGTTTAAG AAAGGGTAA
```

This corresponds to the amino acid sequence <SEQ ID 638; ORF 155.ng>:

```
9155.pep

1 MKIGIPRESL SGETRVACTP ATVALLGKLG FETVVESGAG LAASLDDAAY
51 QTAGATVADK AAVWACPLIY KVNAPSEGEL PLLKEGQTIV SFLWPRQNEA
101 LVEALRAKKV NALAMDMVPR ISRAQALDAL SSMANISGYR AVIEAANAFG
151 RFFTGQITAA GKVPPAQVLV IGAGVAGLAA IGTANSLGAV VRAFDTRLEV
201 AEQIESMGGK FLKLDFLQES GGSGDGYAKV MSDEFIAAEM KLFAEQAKEV
251 DIIITTAAIP GKPAPKLITK EMVESMKSGS VIVDLAATGG NCELTRPGEL
301 SVTGNGVKII GYTDMANRLA GQSSQLYATN LVNLTKLLSP NKDGEITLDF
351 EDVIIRNMTV TRDGEITFPP PPIQVSARPQ QTPSEKAAPA AKPEPKPVPL
401 WKKLAPAAIA AVLVLWVGAV APAAFLNHFI VFVLACVIGY HVVWNVSHSL
451 HTPLMSVTNA ISGIMVVGAL
501 VTRRMLNMFK KG*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 639>:

```
m155.seq

1 ATGAAAATCG GTATCCCACG CGAGTCATTA TCCGGCGAAA CCCGCGTCGC
51 CTGTACGCCC GCCACCGTCG CCCTGCTGGG CAAACTGGGC TTTGAAACCG
101 TTGTCGAAAG CGGTGCAGGT TTGGCGGCAA GTTTGGACGA TGCCGCTTAC
151 CAAACAGCAG GCGCAACCGT TGCCGACAAA GCGGCGGTTT GGGTCTGCCC
201 TTTGATTTAT AAGGTCAACG CGCCGTCCGA ACAGGAACTG CCGCTTTTGA
251 ACGAAGGTCA AACCATCGTC AGCTTCCTGT GGCCGCGCCA AAACGAGGCT
```

445

301	TTGGTCGAAG	CCTTGCGCGC	CAAGAAAGTG	AACGCGCTGG	CGATGGATAT
351	GGTGCCCCGC	ATTTCGCGCG	CGCAGGCTTT	GGACGCTTTG	TCTTCGATGG
401	CAAACATCAG	CGGCTACCGC	GCCGTAATTG	AAGCCGCCAA	CGCCTTCGGC
451	CGTTTCTTCA	CCGGTCAAAT	TACCGCCGCC	GGCAAAGTGC	CGCCCGCGCA
501	GGTTTTGGTG	ATTGGTGCAG	GTGTGGCAGG	TTTGGCGGCG	ATCGGTACGG
551	CAAACTCGCT	CGGCGCAGTG	GTACGCGCGT	TCGATACCCG	CTTGGAAGTG
601	GCGGAACAAA	TCGAATCGAT	GGGCGGCAAG	TTCCTGAAAC	TCGACTTCCC
651	ACAAGAATCG	GGCGGCAGCG	GAGACGGCTA	CGCCAAAGTG	ATGAGCGACG
701	AATTTATCGC	AGCCGAGATG	AAGCTCTTTG	CCGAGCAGGC	GAAAGAAGTG
751	GACATCATCA	TCACCACCGC	CGCCATTCCG	GGCAAACCCG	CGCCCAAGCT
801	GATTACCAAA	GAAATGGTGG	AAAGCATGAA	ATCCGGCTCC	GTCATCGTCG
851	ATTTGGCGGC	GGCGACGGGC	GGCAACTGCG	AACTCACCCG	CCCGGGCGAA
901	TTGTCCGTAA	CCGGCAACGG	CGTGAAAATC	ATCGGCTACA	CCGACATGGC
951	AAACCGCCTT	GCCGGACAGT	CTTCCCAGCT	TTACGCCACC	AACTTGGTCA
1001	ACCTGACCAA	GCTGTTAAGC	CCGAACAAAG	ACGGCGAAAT	CACGTTGGAC
1051	TTCGAAGACG	TGATTATCCG	CAACATGACC	GTTACCCACG	ACGGCGAAAT
1101	CACCTTCCCG	CCTCCGCCGA	TTCAAGTTTC	CGCCCAGCCG	CAGCAAACGC
1151	CGTCTGAAAA	AGCCGTGCCT	GCCGCCAAGC	CCGAGCCAAA	ACCCGTTCCC
1201	CTGTGGAAAA	AACTCGCGCC	CGCCGTCATC	GCCGCCGTCT	TGGTACTGTG
1251	GGTCGGCGCG	GTCGCACCCG	CAGCATTCCT	GAACCACTTT	ATCGTGTTCG
1301		CGTCATCGGC			
1351	CTGCACACAC	CGCTGATGTC	GGTAACCAAC	GCCATCTCCG	GCATCATCGT
1401	CGTCGGCGCG	CTGCTGCAAA	TCGGTCAGGG	CAACGGCTTC	GTTTCGCTGC
1451	TGTCGTTTGT	TGCCATCCTG	ATTGCCGGCA	TCAACATCTT	CGGCGGCTTT
1501	GCGGTAACAC	GGCGTATGCT	GAATATGTTT	AAGAAAGGGT	AA

This corresponds to the amino acid sequence <SEQ ID 640; ORF 155>:

pep.					
1	MKIGIPRESL	SGETRVACTP	ATVALLGKLG	FETVVESGAG	LAASLDDAAY
51	QTAGATVADK	AAVWVCPLIY	KVNAPSEQEL	PLLNEGQTIV	SFLWPRQNEA
101	LVEALRAKKV	NALAMDMVPR	ISRAQALDAL	SSMANISGYR	AVIEAANAFG
151	RFFTGQITAA	GKVPPAQVLV	IGAGVAGLAA	IGTANSLGAV	VRAFDTRLEV
201	AEQIESMGGK	FLKLDFPQES	GGSGDGYAKV	MSDEFIAAEM	KLFAEQAKEV
251	DIIITTAAIP	GKPAPKLITK	EMVESMKSGS	VIVDLAAATG	GNCELTRPGE
301	LSVTGNGVKI	IGYTDMANRL	AGQSSQLYAT	NLVNLTKLLS	PNKDGEITLD
351	FEDVIIRNMT	VTHDGEITFP	PPPIQVSAQP	QQTPSEKAVP	AAKPEPKPVP
401	LWKKLAPAVI	AAVLVLWVGA	VAPAAFLNHF	IVFVLACVIG	YYVVWNVSHS
451	LHTPLMSVTN	AISGIIVVGA	LLQIGQGNGF	VSLLSFVAIL	IAGINIFGGE
501	AVTRRMLNMF				

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 155 shows 97.9% identity over a 513 aa overlap with a predicted ORF (ORF 155.ng) from N. gonorrhoeae:

m155 / g155	97.9% identity	in 513 aa	overlap			
	10	20	30	40	50	60
m155.pep	MKIGIPRESLSGET	RVACTPATV	ALLGKLGFETV	VESGAGLAAS	LDDAAYQTAG	GATVADK
		[] [] [] [] [] []			HIIIIIII	1111111
g155	MKIGIPRESLSGET	RVACTPATV	ALLGKLGFETV	VESGAGLAAS	LDDAAYQTA	GATVADK
	10	20	30	40	50	60
	70	80	90	100	110	120
m155.pep	AAVWVCPLIYKVNA	PSEQELPLL	NEGQTIVSFLW	PRQNEALVEA	LRAKKVNAL	AMDMVPR
				\mathbf{H}	HILLIII	
g155	AAVWACPLIYKVNA	PSEGELPLL	ŒGQTIVSFLW	PRQNEALVEA	LRAKKVNAL	AMDMVPR
	70	80	90	100	110	120
	130	140	150	160	170	180
m155.pep	ISRAQALDALSSMA	NISGYRAVIE	BAANAFGREET	GQITAAGKVP:	PAQVLVIGA	GVAGLAA
		[] [] [] [] [] []			111111111	
g155	ISRAQALDALSSMA	NISGYRAVIE	EAANAFGRFFT	GQITAAGKVP:	PAQVLVIGA	SVAGLAA

		130	140	150	160	170	180
m155.pep				210 MGGKFLKLDE			
g155				 SMGGKFLKLDE 210			
m155.pep				270 KLITKEMVESM			
g155							
m155.pep				330 OLYATNLVNLI			
g155				 LINVLNTAYLI 330			
m155.pep	VTHDGE	370 SITFPPPPIQV	380 SAOPOOTPSE	390 Kavpaakpee	400 KPVPLWKKLA	410 APAVIAAVLV	420 LWVGA
g155	11:11	11111111	11:1111111	: :KAAPAAKPEE 390	1111111111	111:1111	11111
m155.pep	VAPAN	430	440	450 IVSHSLHTPLM	460	470	480
g155	111111	1111111111	1111:1111		: SVTNAISGIN		THH
	• • •	490	500	510	460	470	
m155.pep	 VSLLSF		FGGFAVTRRM FGGFAVTRRM	 LNMFKKGX			
	480	490	500	510			

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 641>: a155.seq

oo.seq					
1	ATGAAAATCG	GTATCCCACG	TGAGTCATTA	TCCGGCGAAA	CCCGCGTCGC
51	CTGTACGCCC	GCCACCGTCG	CCCTGCTGGG	CAAACTGGGC	TTTGAAACCG
101	TTGTCGAAAG	CGGCGCAGGT	TTGGCGGCAA	GTTTGGACGA	TGCCGCTTAC
151	CAAGCAGCAG	GCGCAACCGT	TGCCGACAAA	GCAGCGGTTT	GGGCATACCC
201	TTTAATTTAT	AAGGTTAACG	CGCCGTCCGA	AGACGAGCTG	CCGCTGCTCA
251	AAGAAGGACA	GACCATCGTC	AGCTTCCTGT	GGCCGCGCCA	AAACGAGGCT
301	TTGGTCGAAG	CCTTGCGCGC	CAAGAAAGTG	AACGCGCTGG	CAATGGACAT
351	GGTGCCCCGC	ATTTCGCGCG	CGCAGGCTTT	GGACGNTTTG	TCTTNGATGG
401	CAAACATCAG	CGGCTACCGC	GCCGTGATTG	AAGCCGCCAA	CGCCTTCGGC
451	CGTTTNTTCA	CCGGCCAAAT	TACTGCCGCA	GGCAAAGTGC	CGCCCGCGCA
501	GGTTTTGGTG	ATTGGTGCAG	GTGTGGCAGG	TTTGGCGGCG	ATCGGTACGG
551	CAAACTCGCT	CGGCGCAGTG	GTACGCGTGT	TCGATACCCG	CCTG.AAGTG
601	GCGGAACAAT	TAGAATCGAT	GGGCGGCAAG	TTCCTGAAAC	TCGACTTCCC
651	GCAAGAATCG	GGCGGCAGCG	GCGACGGCTA	CGCCAAAGTG	ATGAGCGACG
701	AATTTATCGC	CGCCGAGATG	AAGCTTTTTG	CCGAGCAGGC	GAAAGAAGTG
751	GACATCATCA	TCACCACCGC	CGCCATTCCG	GGCAAACCCG	CGCCCAAGCN
801	NNTNANCAAA	GAAATGGTCG	AAAGCATGAA	ACCCGGCTCC	GTCATCGTCG
851	ATTTGGCGGC	GGCGACGGGC	GGCAACTGCG	AACTCACCAA	ACAGGGCGAA
901	TTGTTCGTAA	CCGGCAACGG	CGTGAAAATC	ATCGGCTACA	CCGACATGGC
951		GCCGGACAGT		TTACGCCACC	AACTTGGTCA
1001		GCTGTTAAGC		ACGGCGAAAT	CACGCTGGAC
1051		TGATTATCCG			
1101		CCTCCGCCGA			
1151	CGTCTGAAAA	AGCCGCGCCT	GCCGCCAAGC	CCGAACCGAA	ACCCGTTCCC

1201	CTGTGGAAAA AACTCGCGCC CGCCNTNATC GCCGCCGTGT TGGTACTGTG
1251	GGTCGGCGCG GTCGCACCCG CAGCATTCCT GAACCACTTT ATCGTCTTCG
1301	
1351	
	CGTCGGCGCG CTGCTGCAAA TCGGTCAGGG CAACGGCTTC GTTTCGCTGC
1451	
1501	TTTGTAACGC GGCGGATGCT GAATATGTTT AGGAAAGGGT AA
This correspond	ds to the amino acid sequence <seq 155.a="" 642;="" id="" orf="">:</seq>
a155.pep	
1	
51	
101	LVEALRAKKV NALAMDMVPR ISRAQALDXL SXMANISGYR AVIEAANAFG
151	
201	AEQLESMGGK FLKLDFPQES GGSGDGYAKV MSDEFIAAEM KLFAEQAKEV
251	
301	
351	
401	
451	
501	
m155/a155	95.3% identity in 513 aa overlap
	10 20 30 40 50 60
m155.pep	MKIGIPRESLSGETRVACTPATVALLGKLGFETVVESGAGLAASLDDAAYQTAGATVADK
mrss.pcp	
-155	WIGH DOLONG CONTROL OF THE CONTROL O
a155	MKIGIPRESLSGETRVACTPATVALLGKLGFETVVESGAGLAASLDDAAYQAAGATVADK
	10 20 30 40 50 60
	70 80 90 100 110 120
m155.pep	AAVWVCPLIYKVNAPSEQELPLLNEGQTIVSFLWPRQNEALVEALRAKKVNALAMDMVPR
a155	AAVWAYPLIYKVNAPSEDELPLLKEGQTIVSFLWPRQNEALVEALRAKKVNALAMDMVPR
	70 80 90 100 110 120
	130 140 150 160 170 180
m155.pep	ISRAQALDALSSMANISGYRAVIEAANAFGRFFTGQITAAGKVPPAQVLVIGAGVAGLAA
a155	ISRAQALDXLSXMANISGYRAVIEAANAFGRXFTGQITAAGKVPPAQVLVIGAGVAGLAA
	130 140 150 160 170 180
	190 200 210 220 230 240
m155.pep	IGTANSLGAVVRAFDTRLEVAEQIESMGGKFLKLDFPQESGGSGDGYAKVMSDEFIAAEM
a155	IGTANSLGAVVRVFDTRLXVAEQLESMGGKFLKLDFPQESGGSGDGYAKVMSDEFIAAEM
	190 200 210 220 230 240
	270 240 220 230 240
	250 260 270 280 290 300
m155.pep	KLFAEQAKEVDIIITTAAIPGKPAPKLITKEMVESMKSGSVIVDLAAATGGNCELTRPGE
zoo.pop	
a155	KLFAEQAKEVDIIITTAAIPGKPAPKXXXKEMVESMKPGSVIVDLAAATGGNCELTKQGE
a155	***
	250 260 270 280 290 300
	310 320 330 340 350 360
m155.pep	
mroo.beb	LSVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNMT
-155	1 1111111111111111111111111111111111111
a155	LFVTGNGVKIIGYTDMANRLAGQSSQLYATNLVNLTKLLSPNKDGEITLDFEDVIIRNMT
	310 320 330 340 350 360
	000
	370 380 390 400 410 420
m155.pep	VTHDGEITFPPPPIQVSAQPQQTPSEKAVPAAKPEPKPVPLWKKLAPAVIAAVLVLWVGA
-155	
a155	VTRDGEITFPPPPIQVSAQPQQTPSEKAAPAAKPEPKPVPLWKKLAPAXIAAVLVLWVGA
	370 380 390 400 410 420

	430	440	450	460	470	480
m155.pep	VAPAAFLNHFIVFV	LACVIGYYV	VWNVSHSLHTE	LMSVTNAISG	IIVVGALLQ:	IGQGNGF
•	1111111111111	111111111	1111111111	11111111111	ШШШ	111111
a155	VAPAAFLNHFIVFV	LACVIGYYV	VWNVSHSLHTE	LMSVTNAISG	IIVVGALLQ:	IGQGNGF
	430	440	450	460	470	480
	490	500	510			
m155.pep	VSLLSFVAILIAGI	NIFGGFAVTI	RRMLNMFKKGX			
		111111 11	11111111:111			
a155	VSLLSFVAILIASI	NIFGGFFVTI	RRMLNMFRKGX	3		
	490	500	510			
	•					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 643>:

```
g156.seq

1 ATGACTTTCG CCTATTGGTG CATTCTGATT GCCTCCTAT TGCCGCTTTT
51 TTGTGCGGCG TATGCCAAAA AAGCGGGCGG ATTCCGGTTT AAAGACAACC
101 ACAATCCTCG CGGTTTTCTG GCACATACGC AAGGCGCAGC CGCCCGTGCC
151 CACGCCGCC AGCAAAACGG TTTTGAAGCC TTTGCACCGT TTGCCGCCGC
201 CGTTTTGACG GCACACGCAA CCGGCAATGC CGGACAAGCA ACCGTCAACA
251 CGCTTGCCGG ATTGTTCATC CTGTTCCGCC TCGCCTTTAT CTGGTGCTAC
301 ATCGCAGACA AAGCAGCATT GCGCTCGCTG ATGTGGGCGG GCGGATTTGC
```

351 CTGCACCGTC GGACTGTTTG TCGCGGCTGC TTGA
This corresponds to the amino acid sequence <SEQ ID 644; ORF 156.ng>:

g156.pep

WO 99/57280

1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA

51 HAAQQNGFEA FAPFAAAVLT AHATGNAGQA TVNTLAGLFI LFRLAFIWCY

101 <u>IADKAALRSL MWAGGFACTV GLFVAAA</u>*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 645>:

m156.seq

1 ATGACTTCG CCTATTGGTG TATTCTGATT GCCTCTAT TGCCGCTTTT
51 TTGTGCGGCG TATGCCAAAA AAGCGGGCGG ATTCCGGTTT AAAGACAACC
101 ACAATCCGCG CGGTTTTCTA GCGCACACGC AAGGCGCAGC CGCCCGTGCC
151 CACGCCGCAC AGCAAAACACG TTTTGAAGCC TTTGCCACCGT TTGCCGCCGC
201 CGTTTTGACG GCACACGCAA CCGGCAATCG ACCATCAACA
251 CGCTTGCCTG CCTGTTCATC CTGTTCCGCC TCGCCTTTAT CTGGTGCTAT
301 ATCGCCGACA AAGCCGCTAT GCGCTCACTG ATGTGGGCAG GCGGATTTGC
351 CTGCACCGTC GGGCTGTTTG TCGCGCTGC TTGA

This corresponds to the amino acid sequence <SEQ ID 646; ORF 156>:

m156.pep

1 MTFAYWCILI ACLLPLFCAA YAKKAGGFRF KDNHNPRGFL AHTQGAAARA

51 HAAQQNGFEA FAPFAAAVLT AHATGNAAQS TINTLACLFI LFRLAFIWCY

101 IADKAAMRSL MWAGGFACTV GLFVAAA*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m156 / g156 96.1% identity in 127 aa overlap

	10	20	30	40	50	60
m156.pep	MTFAYWCILIACLL	PLFCAAYAKK	AGGFRFKDNH	NPRGFLAHTO	GAAARAHAAO	ONGFEA
	111111111111111					
g156	MTFAYWCILIACLL	PLFCAAYAKK	AGGFRFKDNH	NPRGFLAHTO	GAAARAHAAO	ONGFEA
	10	20	30	40	50	60
	70	80	90	100	110	120
m156.pep	FAPFAAAVLTAHAT	GNAAQSTINT	LACLFILFRL	AFIWCYIADK	AAMRSLMWAG	GFACTV
	1111111111111	111:1:1:11	11 1111111	11111111111	11:1111111	HIHL

g156	FAPFAAAVLTAHATGNAGQATVNTLAGLFILFRLAFIWCYIADKAALRSLMWAGGFACTV					
	70	80	90	100	110	120
m156.pep	GLFVAAAX					

g156 GLFVAAAX

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 647>:

a156.seq					
1	ATGACTTTCG	CCTATTGGTG	TATTCTGATT	GCCTACCTAT	TGCCGCTTTT
51	TTGTGCGGCG	TATGCCAAAA	AAGCGGGCGG	ATTCCGGTTT	AAAGACAACC
101	ACAATCCGCG	CGATTTTCTG	GCGCGCACGC	AAGGCACAGC	CGCCCGTGCC
151	CACGCCGCGC	AGCAAAACGG	TTTTGAAGCC	TTTGCACCGT	TTGCAGCCGC
201	CGTTTTGACG	GCACACGCAA	CCGGCAATGC	CGGACAAGCA	ACCGTCAACA
251	CGCTTGCCGG	CCTGTTCATC	CTGTTCCGCC	TCGCCTTTAT	CTGGTGCTAC
301	ATCGCAGACA	AAGCAGCATT	ACGCTCGCTG	ATGTGGGTGG	GCGGATTTGT
351	CTGCACCGTC	GGGCTGTTTG	TCGTGGCTGC	TTGA	

This corresponds to the amino acid sequence <SEQ ID 648; ORF 156.a>:

```
a156.pep
        MTFAYWCILI AYLLPLFCAA YAKKAGGFRF KDNHNPRDFL ARTQGTAARA
     51
        HAAQQNGFEA FAPFAAAVLT AHATGNAGQA TVNTLAGLFI LFRLAFIWCY
    101 IADKAALRSL MWVGGFVCTV GLFVVAA*
m156/a156
           90.6% identity in 127 aa overlap
                  10
                          20
                                  30
                                           40
                                                   50
                                                            60
m156.pep
           MTFAYWCILIACLLPLFCAAYAKKAGGFRFKDNHNPRGFLAHTQGAAARAHAAQQNGFEA
           MTFAYWCILIAYLLPLFCAAYAKKAGGFRFKDNHNPRDFLARTQGTAARAHAAQQNGFEA
a156
                 10
                          20
                                  30
                                           40
                                                   50
                          80
                                  90
                                          100
                                                  110
m156.pep
           FAPFAAAVLTAHATGNAAQSTINTLACLFILFRLAFIWCYIADKAAMRSLMWAGGFACTV
           a156
           FAPFAAAVLTAHATGNAGQATVNTLAGLFILFRLAFIWCYIADKAALRSLMWVGGFVCTV
                 70
                          80
                                  90
                                          100
           GLFVAAAX
m156.pep
           1111:111
           GLFVVAAX
a156
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 649>: q157.seq

.seq					
1	atgaggaacg	aggAAAAACg	cgccctgcgc	cgcgaattgC	gCgGgcggcg
51	ttcgcAAATg	GGgcgagacg	tGCGggCGGC	GGCGgCgatA	Aaaatcaacc
101	gcctgctcaa	aCGTtatatc	AAGCGCggtc	gGaAaatcgG	CGTGTATTgg
151	CCGATGGGCA	AGGAATTGcg	TTTGGGCGgc	tTtgtcCGCG	CGGCGCAAAA
201	ACGCgGCGCA	AAactctatc	tgccttATAT	CGAACCGCAC	ACGCGGCGGA
251	TGTGGTTTAC	GCCGTATCCT	GAACGCGGAA	TGGAACGGGA	ACGCAAGCGC
301	GGTAGGGCGA	AGCTGCATGT	CCCTCAGTTT	GCAGGGCGCA	AAATCCGCGT
351	GCACGGTTTG	TCGGTATTGC	TCGTCCCGCT	TGTCGGCATA	GACCGCGAAG
401	GCTACCGTTT	GGGGCAGGCA	GGCGGCTATT	ACGATGCGAC	GCTTTCGGCG
451	ATGAAATACC	GTTTGCAGGC	GAAAACCGTG	GGCGTGGGCT	TTGCCTGCCA
501	GTTGGTGGAC	AGGCTCCCAC	GCGAGGCGCA	CGACCTGCCG	CTGGACGGTT
551	TTGTATCGGA	AGCGGGGATA	ተ ጥርጥርጥጥጥጥ	ΔG	

```
This corresponds to the amino acid sequence <SEQ ID 650; ORF 157.ng>:
```

g157.pep

- 1 MRNEEKRALR RELRGRRSQM GRDVRAAAAI KINRLLKRYI KRGRKIGVYW
- 51 PMGKELRLGG FVRAAQKRGA KLYLPYIEPH TRRMWFTPYP ERGMERERKR
- 101 GRAKLHVPQF AGRKIRVHGL SVLLVPLVGI DREGYRLGQA GGYYDATLSA
- 151 MKYRLQAKTV GVGFACQLVD RLPREAHDLP LDGFVSEAGI LCF*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 651>:

m157.seq

- 1 ATGAGGAACG AGGAAAAACG CGCCCTGCGC CGCGAATTGC GCGGGCGGCG
 51 TTCGCAAATG GGGCGGACG TGCGGGCGGC GGCAACGGTA AAAATCAACC
- 101 ACCTGCTCAA ACGTTATATT AAAAAAGGGC GGAAAATCGG CGTGTATTGG
- 151 CCGATGGGCA AGGAATTGCG TTTGGACGGC TTTGTCCGCG CGGCGCAAAA
 201 ACGCGGTGCG GAACTCTACC TGCCTTATAT CGAACCGCGT TCGCGGCGGA
- 251 ACGCGGTGCG GAACTCTACC TGCCTTATAT CGAACCGCGT TCGCGGCGGA
 251 TGTGGTTTAC GCCGTATCCT GCCGATGGAG TAAAACAAGA ACGCAAGCGC
- 301 GGTAGGGCGA AGCTGCATGT CCCTCAGTTT GCAGGTCGGA AAAAGCGTGT
- 351 GCATGATTTG AACCTCCTGC TTGTGCCAGT GGTCGGTATG GACAGGCTGG
- 401 GCTACCGCTT GGGACAGGCA GGCGGCTATT ACGATGCGAC GCTTTCAGCG 451 ATGAAATACC GTTTGCAGGC AAAAACCGTG GGCGTGGGCT TTGCCTGCCA
- 501 GTTGGTGGAC AGGCTGCCGG TCGAGGCGCA CGACCGGTCT TTGGACGGTT
- 551 TTGTGTCGGA GGCGGGGATA TTGTGTTTTT AG

This corresponds to the amino acid sequence <SEQ ID 652; ORF 157>:

m157.pep

- 1 MRNEEKRALR RELRGRRSQM GRDVRAAATV KINHLLKRYI KKGRKIGVYW
- 51 PMGKELRLDG FVRAAQKRGA ELYLPYIEPR SRRMWFTPYP ADGVKQERKR
- 101 GRAKLHVPQF AGRKKRVHDL NLLLVPVVGM DRLGYRLGQA GGYYDATLSA
- 151 MKYRLQAKTV GVGFACQLVD RLPVEAHDRS LDGFVSEAGI LCF*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m157 / g157 88.1% identity in 193 aa overlap

10 20 30 40 50	60
m157.pep MRNEEKRALRRELRGRRSQMGRDVRAAATVKINHLLKRYIKKGRKIGVYWPMGKELI	RLDG
3	1 1
g157 MRNEEKRALRRELRGRRSQMGRDVRAAAAIKINRLLKRYIKRGRKIGVYWPMGKELI	ווו
10 20 30 40 50	60
70	
70 80 90 100 110	120
m157.pep FVRAAQKRGAELYLPYIEPRSRRMWFTPYPADGVKQERKRGRAKLHVPQFAGRKKR	/HDL
	11 1
g157 FVRAAQKRGAKLYLPYIEPHTRRMWFTPYPERGMERERKRGRAKLHVPOFAGRKIR	/HGL
70 80 90 100 110	120
100 110	
130 140 150 160 170	180
m157.pep NLLLVPVVGMDRLGYRLGQAGGYYDATLSAMKYRLQAKTVGVGFACQLVDRLPVEAJ	
**** ** ** ** *************************	• •
g157 SVLLVPLVGIDREGYRLGQAGGYYDATLSAMKYRLQAKTVGVGFACQLVDRLPREA	IDLP
130 140 150 160 170	180
190	
m157.pep LDGFVSEAGILCFX	
11111111111111	
g157 LDGFVSEAGILCFX	
190	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 653>:

a157.seq

- 1 ATGAGGAACG AGGAAAAACA CGCCTTGCGC CGAGAGTTGC GCCGCGCCCG
- 51 CGCGCAGATG GGGCATCAAG GGCGGTTGGC GGCGGGGCAA ACGATTAACC

101	GCCTGCTCAA ACGTTATATC AAGCGTGGTC GGAAAATCGG CGTGTATTGG	
151	CCGATGGGCA AGGAATTGCG TTTGGACGGC TTTGTCCGCG CGGCGCAAAA	
201	ACGCGGTGCA AAACTTTATC TGCCTTATAT CGAACCGCGT TCGCGGCGGA	
251	TGTGGTTTAC GCCGTATCCT GAAAGCGGAA TGGAACGGGA GCGCATACGG	
301	GGCAGGGCGA AGTTGAACGT GCCGCAGTTT GCAGGGCGCA AAATCCGCGT	
351	GCACGGTTTG TCGGTATTGC TCGTCCCGCT TGTCGGCATA GACCGCGAGG	
401	GCTACCGCTT AGGACAGGCA GGCGGCTATT ACGATGCGAC GCTTGCGGCG	
451 501	ATGAAATACC GTTTGCAGGC AAAAACCGTG GGCGTGGGCT TTGCCTGCCA GTTTGTGGAC AGGCTGCCGC GCGAACCGCA CGATCTGCTG CTGGACGGTT	
551	TTGTGTCGGA GGCGGGGATA TTGTGCTTTT AG	
331	TIGIGIOGGA GOCGGGGATA TIGIGCTITI AG	
This correspond	ls to the amino acid sequence <seq 157.a="" 654;="" id="" orf="">:</seq>	
a157.pep	is to the anniho acid sequence DEQ ID 034, Old 137.az.	
2157.pap	MRNEEKHALR RELRRARAOM GHOGRLAAGO TINRLLKRYI KRGRKIGVYW	
51	PMGKELRLDG FVRAAOKRGA KLYLPYIEPR SRRMWFTPYP ESGMERERIR	
101	GRAKLNVPQF AGRKIRVHGL SVLLVPLVGI DREGYRLGQA GGYYDATLAA	
151	MKYRLQAKTV GVGFACQFVD RLPREPHDLL LDGFVSEAGI LCF*	
m157/a157	82.4% identity in 193 aa overlap	
	10 20 30 40 50 6	0
m157.pep	MRNEEKRALRRELRGRRSQMGRDVRAAATVKINHLLKRYIKKGRKIGVYWPMGKELRLD	_
a157	MRNEEKHALRRELRRARAQMGHQGRLAAGQTINRLLKRYIKRGRKIGVYWPMGKELRLD	
	10 20 30 40 50 6	J
	70 80 90 100 110 12	Λ
m157.pep	FVRAAOKRGAELYLPYIEPRSRRMWFTPYPADGVKOERKRGRAKLHVPOFAGRKKRVHD	_
mropop		
a157	FVRAAOKRGAKLYLPYIEPRSRRMWFTPYPESGMERERIRGRAKLNVPOFAGRKIRVHG	
	70 80 90 100 110 12	0
	130 140 150 160 170 18	-
m157.pep		S
4.55		
a157	SVLLVPLVGIDREGYRLGQAGGYYDATLAAMKYRLQAKTVGVGFACQFVDRLPREPHDL	
	130 140 150 160 170 18	IJ
	190	
m157.pep	LDGFVSEAGILCFX	
zopop	111111111111	
a157	LDGFVSEAGILCFX	
	190	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 655>: g158.seq

158.seq					
1	ATGAAAACCA	ATTCAGAAGA	ACTGACCGTA	TTTGTTCAAG	TGGTGGAAAG
51	CGGCAGCTTC	AGCCGTGCGG	CGgagcAGTT	GGAGAtggCA	AATTCTGCCG
101	TAAGCCGCAT	CGTCAAACGG	CTGGAGGAAA	AGTTGGGCGT	GAAcCTGCtc
151	aACCGCACCA	CGCGGCAACT	CAATCTGACG	GAAGAAGGCG	CGCAATATTT
201	CCGCCGCGCG	CAGAGAATCC	TGCAAGAAAT	GGCAGCGGCG	GAAACCGAAA
251	TGCTGGCAGT	GCACGAAGTA	CCGCAAGGCG	TGTTGCGCGT	GGATTCCGCG
301	ATGCcgatgg	TGCTGCATCT	GCTGGCGCCG	CTGGCAGCAA	AATTCAACGA
351	ACGCTATCCG	CATATCcgaC	TTTCGCTCGT	TTCTTCCGAa	ggctatatca
401		Acgcaaagtc			
451	GATTCCGGGC	TGCGTGCACG	CCATCTGTTT	GACAGCCACT	TCCGCGtagt
501	cgCCAGTCCT	GAATATTTAG	CAAAACACGG	CACGCCACAA	TCTGCAGAAG
551	atcTTGCCAA	CCATCAATGT	TTAGGCTTCA	CAGAACCCGG	TTCTCTAAAT
601	ACATGGGCGG	TTTTAGAtgC	GCAGGGAAAT	CCCTATAAAA	TTTCACCGCA
651	CTTTACCGCC	AGCAGCGGTG	AAATCTTACG	CTCGTTGTGC	CTTTCAAGtt
701	gCGGTATTGC	TTGCTTATCA	GATTTTTTGG	TTGACAACGA	CATCACTGAA
751	GGAAAGTTAA	TTCCcctatt	cgCCGAACAA	ACCTCCAATA	AAACACACCC

801	CTTTAATGCT	GTTTATTACA	GCGATAAAGC	CGTCAACCTC	CGCTTACGCG
851				GAAAAAATAT	
901	AATACCAAAT	AA			
					•
This correspon	ds to the amin	o acid seque	nce <seo ii<="" td=""><td>D 656: ORF</td><td>158.ng>·</td></seo>	D 656: ORF	158.ng>·
g158.pep		o dola boque	522	<i>5</i> 050, 014	150.115
g155.pcp 1		FVOVVESGSF	SRAAFOLEMA	NSAVSRIVKR	LEEKLGUNI.I.
51					
101	MPMVLHLLAP	LAAKFNERYP	HIRLSLVSSE	GYINLIERKV	DIALRAGELD
151	DSGLRARHLF	DSHFRVVASP	EYLAKHGTPQ	SAEDLANHQC	LGFTEPGSLN
201	TWAVLDAQGN	PYKISPHFTA	SSGEILRSLC	LSSCGIACLS	DFLVDNDITE
251				RLRVFLDFLV	
301	NTK*				
	• • • • • • • • • • • • • • • • • • • •				•
The following	partial DNA so	equence was	identified in	n N. meningi	tidis <seq 657="" id="">:</seq>
m158.seq	- '	•		3	
i		ATTCAGAAGA	ACTGACCGTA	TTTGTTCAAG	TGGTGGAAAG
51				GGCGATGGCA	
101				AGTTGGGTGT	
151		CGCGGCAACT	CAGTCTGACG	GAAGAAGGCG	CGCAATATTT
201	CCGCCGCGCG	CAGAGAATCC	TGCAAGAAAT	GGCAGCGGCG	GAAACCGAAA
251				TGTTGAGCGT	
301				CTGGCAGCAA	
351		CATATCCGAC	TTTCGCTCGT	TTCTTCCGAA	GGCTATATCA
401					
451				GACAGCCGCT	
501				CACGCCGCAA	
551				CCGAACCCGG	
601	COMMON CCCCC	TTTTAGATGC	GCAGGGAAAT	CCCTATAAGA	TTTCACCGCA
651 701	CCCCTATTCT	MUCCUUNTON	CAMMMMMMCC	CTCGTTGTGC TTGACAACGA	CTTTCAGGTT
751 751				ACCTCCGATA	
801				CGTCAATCTC	
851				GAAACAATCT	
				0.44.0.41.01	01010011121
This correspon	da ta tha amin	a aaid aaaya	naa ZCEO II	D 660. ODE	160~.
-		o acid seque	ince -SEQ ii	U 038, OKF	130/.
m158.pep		ENOUNDOCCE	CD2250721/2		
1 51		FECACVERRA	SRAAEQLAMA	NSAVSRIVKR	LEEKLGVNLL
101		LEGAQIEKKA	OKILORMAAA	CYTHITEDEN	POGVLSVDSA
151					
201					
251		TSDKTHPFNA	VYYSDKAVNL	BLRVFLDFLV	EELGNNLCG*
					2220200
Computer anal	voic of this om	ina aaid aaa		ha fallania	
Computer attai	ysis of this am	imo acid seq	uence gave t	ne ionowing	g results:
Homology wit	n a predicted C	ORF from N.	gonorrhoea	<u>e</u>	
m158 / g	158 94.3% id	dentity in 2	297 aa over	lap	
		_		•	
			20 30		50 60
m158.pep	MKTNSEEI	TVFVQVVESG	SFSRAAEQLAM	ANSAVSRIVKR	LEEKLGVNLLNRTTRQLSLT
	шшш				ининийн
g158	MKTNSEEI				LEEKLGVNLLNRTTRQLNLT
		10 2	20 30	0 40	50 60
		70	20 21		
m158.pep	またしょしん ひかか		30 90		110 120
mrse.beb	EEGAQ117	/VM/KTT/GRMV/	AABIBMLAVHE.	TEOGATZADZU	MPMVLHLLAPLAAKFNERYP
g158	FEGVOAL	▗▗▗▗▗▗ ▗▗▄▄▄▗▗▗ ▗▄▄▄▄▗▗▗▄▄		:	
9100	PROUNTER		30 90		110 120
		•	J	_ 100	110 120

	100
m158.pep	130 140 150 160 170 180 HIRLSLVSSEGYINLIERKVDIALRAGELDDSGLRARHLFDSRFRVIASPEYLAKHGTPO
miso.pep	
g158	HIRLSLVSSEGYINLIERKVDIALRAGELDDSGLRARHLFDSHFRVVASPEYLAKHGTPQ
	130 140 150 160 170 180
	190 200 210 220 230 240
m158.pep	STEELAGHQCLGFTEPGSLNTWAVLDAQGNPYKISPHFTASSGEILRSLCLSGCGIVCLS
	1:
g158	SAEDLANHQCLGFTEPGSLNTWAVLDAQGNPYKISPHFTASSGEILRSLCLSSCGIACLS
	190 200 210 220 230 240
	250 260 270 280 290 300
m158.pep	DFLVDNDIAEGKLIPLLAEQTSDKTHPFNAVYYSDKAVNLRLRVFLDFLVEELGNNLCGX
g158	DEL VINITARCAL I DI PAROMONIMI DENIMANA CONSTRUITA DAL PARI DEL MANO CONSTRUITA
g136	DFLVDNDITEGKLIPLFAEQTSNKTHPFNAVYYSDKAVNLRLRVFLDFLVKELGKNMNRT 250 260 270 280 290 300
g158	NTKX
The Callessian	and a DNIA common manufaction in N 1 1211 ACRO TO COM
alsa.seq	partial DNA sequence was identified in N. meningitidis <seq 659="" id="">:</seq>
arse.seq	ATGAAAACCA ATTCAGAAGA ACTGACCGTA TTTGTTCAAG TGGTGGAAAG
51	
101	
151	AACCGCACCA CGCGGCAACT CAGTCTGACG GAAGAAGGCG CGCAATATTT
201	
251	TGCTGGCAGT GCACGAAATA CCGCAAGGCG TGTTGCGCGT GGATTCCGCG
301	
351	ACGCTATCCG CATATCCGAC TTTCGCTCGT TTCTTCCGAA GGCTATATCA
401	
451 501	GATTCCGGGC TGCGTGCACG CCATCTGTTT GACAGCCGCT TCCGCGTAAT CGCCAGTCCT GAATACCTGG CAAAACACGG CACGCCGCAA TCTACAGAAG
551	AGCTTGCCGG CCACCAATGT TTAGGCTTCA CCGAACCCGG TTCTCTAAAT
601	ACATGGGCGG TTTTAGATGC GCAGGGAAAT CCCTATAAGA TTTCACCGCA
651	
701	
751	
801	CTTTAATGCT GTTTATTACA GCGATAAAGC CGTCAACCTC CGCTTACGCG
851	TATTTTTGGA TTTTTTAGTG GAGGAACTGG GAAACAATCT CTGTGGATAA
mı.	1 + 1 + 1 + 11 + 200 to 200 oppose
i nis correspond	ds to the amino acid sequence <seq 158.a="" 660;="" id="" orf="">:</seq>
a158.pep	•
1	MKTNSEELTV FVQVVESGSF SRAAEQLAMA NSAVSRIVKR LEEKLGVNLL
51	NRTTRQLSLT EEGAQYFRRA QRILQEMAAA ETEMLAVHEI PQGVLRVDSA
101	MPMVLHLLAP LAAKFNERYP HIRLSLVSSE GYINLIERKV DIALRAGELD
151	
201 251	
251	GKLIPLLAEQ TSNKTHPFNA VYYSDKAVNL RLRVFLDFLV EELGNNLCG*
m158/a158	99.0% identity in 299 aa overlap
·	
	10 20 30 40 50 60
m158.pep	MKTNSEELTVFVQVVESGSFSRAAEQLAMANSAVSRIVKRLEEKLGVNLLNRTTRQLSLT
-150	
a158	MKTNSEELTVFVQVVESGSFSRAAEQLAMANSAVSRIVKRLEEKLGVNLLNRTTRQLSLT 10 20 30 40 50 60
	10 20 30 40 50 60
	70 80 90 100 110 120
m158.pep	EEGAQYFRRAQRILQEMAAAETEMLAVHEIPQGVLSVDSAMPMVLHLLAPLAAKFNERYP
	111111111111111111111111111111111111111
a158	EEGAQYFRRAQRILQEMAAAETEMLAVHEIPQGVLRVDSAMPMVLHLLAPLAAKFNERYP
	70 80 90 100 110 120

m158.pep	130 HIRLSLVSSEGYIN	140 LIERKVDIAL	150 RAGELDDSGL	160 RARHLFDSRF	170 RVIASPEYLA	180 AKHGTPQ
a158	HIRLSLVSSEGYIN	LIERKVDIAL	RAGELDDSGL	RARHLFDSRF	RVIASPEYLA	KHGTPQ
	130	140	150	160	170	180
	190	200	210	220	230	240
m158.pep	STEELAGHQCLGFT	EPGSLNTWAV	LDAQGNPYKI	SPHFTASSGE	ILRSLCLSGO	GIVCLS
a158	STEELAGHQCLGFT	 EPGSLNTWAV	IIIIIIIIII LDAQGNPYKI	SPHFTASSGE	ILRSLCLSGO	GIACLS
	190	200	210	220	230	240
	250	260	270	280	290	300
m158.pep	DFLVDNDIAEGKLI				FLDFLVEELG	
a158						IIIIIIII
	250	260	270	280	290	300

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 661>:

```
g160.seq
      1
         ATGGAcattc tgGACAAact ggtcgatCTC GCccaATTGA CGGGCAGTGC
         GGATGTGCAG TgcctTTTGG GCGGACAATG gcATGaaacc TTGCAACGCG
     51
    101 AAGGGCTGGT ACACATTGTT ACGGCGGGCA GCGGTTATCT CTGCATCGAC
    151 GGCGAAACTT CCCCGCGTCC GGTCGGCACG GGCGATATTG TATTTTTCCC
    201 GCGCGGCTTG GGTCATGTGT TGAGCCACGA CGGAAAATAC GGAGAAAGTT
    251
         TACAACCGGA CATACGACAA AACGGCACAT TTATGGTCAA ACAGTGCGGC
    301 AACGGGCTGG ATATGAGCCT GTTTTGCGCC CGTTTCCGCT ACGACACCCA
    351 CGCCGATTTG ATGAACGGGC TGCCGGAAAC CGTTTTTCTG AACATTGCCC
    401 ATCCAAGTTT GCAGTATGTG GTTTCAATGC TGCAACTGGA AAGCGAAAAA
    451 CCTTTGACGG GGACGGTTTC CGTGGTCAAC GCATTACCGT CCGTCCTGCT
    501 GGTGCTTATC CTGCGCGCCT ATCTCGAACA GGATAAGGAT GTCGAACTCT
    551 CGGGCGTATT GAAAGGTTGG CAGGACAAAC GTTTGGGACA TTTGATCCAA
    601 AAGGTGATAG ACAAACCGGA AGACGAATGG AATATTGACA AAATGGTTGC
         CGCCGCCAAT ATGTCGCGCG CGCAACTGAT GCGCCGCTTC AAAAGCCAAG
    701 TCGGACTCAG CCCGCACGCC TTTGTGAACC ATATCCGCCT GCAAAAAGGC
         GCATTGCTGC TGAAGAAAAC CCCGGATTCG GTTTTGGAGG TCGCGCTGTC
    801 GGTGGGCTTT CAGTCGGAAA CGCATTTCGG CAAGGCGTTC AAACGGCAAT
    851 ATCACGTTTC GCCGGGGCAA TACCGGAAAG AAGGCGGGCA AAAATAA
```

This corresponds to the amino acid sequence < SEQ ID 662; ORF 160.ng>:

```
g160.pep

1 MDILDKLVDL AQLTGSADVQ CLLGGQWHET LQREGLVHIV TAGSGYLCID
51 GETSPRPVGT GDIVFFPRGL GHVLSHDGKY GESLQPDIRQ NGTFMVKQCG
101 NGLDMSLFCA RFRYDTHADL MNGLPETVFL NIAHPSLQYV VSMLQLESEK
151 PLTGTVSVVN ALPSVLLVLI LRAYLEQDKD VELSGVLKGW QDKRLGHLIQ
201 KVIDKPEDEW NIDKMVAAAN MSRAQLMRRF KSQVGLSPHA FVNHIRLQKG
251 ALLLKKTPDS VLEVALSVGF QSETHFGKAF KRQYHVSPGQ YRKEGGQK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 663>: m160.seq

160.seq					
1	ATGGACATTC	TGGACAAACT	GGTCGATTTC	GCCCAATTGA	CGGGCAGTGT
51	GGATGTGCAG	TGCCTTTTGG	GCGGACAATG	GTCGGTACGG	CATGAAACCT
101	TGCAACGCGA	AGGATTGGTA	CACATTGTTA	CATCGGGCAG	CGGCTATCTC
151	TGCATCGACG	GCGAAACTTC	CCCGCGTCCG	GTCAGTACAG	GGGATATTGT
201	ATTTTTCCCG	CGCGGCTTGG	GTCATGTGTT	GAGCCACGAC	GGAAAATGCG
251	GAGAAAGTTT	ACAACCGGAT	ATGCGGCAGC	ACGGTGCGTT	TACGGTCAAG
301	CAGTGCGGCA	ACGGACAGGA	TATGAGCCTG	TTTTGCGCCC	GTTTCCGCTA
351	CGACACCCAC	GCCGATTTGA	TGAACGGGCT	GCCTGAAACC	GTTTTTCTGA
401	ACATTGCCCA	TCCGAGTTTA	CAGTATGTGG	TTTCAATGCT	GCAACTGGAA
451	AGCAAAAAAC	CTTTGACGGG	GACGGTTTCC	ATGGTCAACG	CATTGTCGTC

501	CGTCCTGCTG	GTGCTTATCC	TGCGCGCCTA	TCTCGAACAG	GATAAGGATG
551	TCGAACTCTC	GGGCGTATTG	AAAGGTTGGC	AGGACAAACG	TTTGGGACAT
601	TTAATCCAAA	AGGTGATAGA	CAAACCGGAA	GACGAATGGA	ATGTCGACAA
651	AATGGTGGCG	GCTGCCAATA	TGTCGCGCGC	GCAACTGATG	CGCCGTTTCA
701	AAAGCCGGGT	CGGACTCAGC	CCGCACGCCT	TTGTGAACCA	TATCCGCCTG
751	CAAAAAGGCG	CGTTGCTGCT	GAAAAAAAAC	CCGGATTCGG	TTTTGTCGGT
801	CGCACTGTCG	GTAGGCTTTC	AGTCGGAAAC	GCACTTCGGC	AAGGCGTTCA
851	AACGGCAATA	TCACGTTTCG	CCGGGTCAAT	ACCGGAAAGA	AggCGGGCAA
901	AAATAA				

This corresponds to the amino acid sequence <SEQ ID 664; ORF 160>:

m160.pep

1 MDILDKLVDF AQLTGSVDVQ CLLGGQWSVR HETLQREGLV HIVTSGSGYL
51 CIDGETSPRP VSTGDIVFFP RGLGHVLSHD GKCGESLQPD MRQHGAFTVK
101 QCGNGQDMSL FCARFRYDTH ADLMNGLPET VFLNIAHPSL QYVVSMLQLE
151 SKKPLTGTVS MVNALSSVLL VLILRAYLEQ DKDVELSGVL KGWQDKRLGH
201 LIQKVIDKPE DEWNVDKMVA AANMSRAQLM RRFKSRVGLS PHAFVNHIRL
251 QKGALLLKKN PDSVLSVALS VGFQSETHFG KAFKRQYHVS PGQYRKEGGQ
301 K*

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m160 / g160 93.4% identity in 301 aa overlap

m160.pep	10 MDILDKLVDFAQLTG MDILDKLVDLAQLTG 10	1:111111111	1111111	11111111:	111111111	11111
m160.pep	70 VSTGDIVFFPRGLGH 1: VGTGDIVFFPRGLGH 60 70	1111111 11111	11:11:1:1		111111111	HHH
m160.pep	130 ADLMNGLPETVFLNI	AHPSLQYVVSMLQ	111:111	111:111	$\Pi\Pi\Pi\Pi\Pi\Pi$	11111
m160.pep (190 DKDVELSGVLKGWQD DKDVELSGVLKGWQD 180 190	KRLGHLIQKVIDK	1111111:11	111111111		:
m160.pep	250 PHAFVNHIRLQKGAL PHAFVNHIRLQKGAL 240 250	LLKKNPDSVLSVA	111111111	11111111		ШΠ
m160.pep	KX KX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 665>: a160.seq

- 1 ATGGACATTC TGGACAAACT GGTCGATTTC GCCCAATTGA CGGGCAGTGT
- 51 GGATGTGCAG TGCCTTTTGG GCGGACAATG GTCGGTACGG CATGAAACCT

1	01	TGCAACGCGA	AGGATTGGTA	CACATTGTTA	CATCGGGCAG	CGGCTATCTC
1	51	TGCATCGACG	GCGAAACTTC	CCCGCGTCCG	GTCAGTACAG	GGGATATTGT
2	01	ATTTTTCCCG	CGCGGCTTGG	GTCATGTGTT	GAGCCACGAC	GGAAAATGCG
2	51	GAGAAAGTTT	ACAACCGGAT	ATGCGGCAGC	ACGGTGCGTT	TACGGTCAAG
3	01	CAGTGCGGCA	ACGGACAGGA	TATGAGCCTG	TTTTGCGCCC	GTTTCCGCTA
3.	51	CGACACCCAC	GCCGATTTGA	TGAACGGGCT	GCCTGAAACC	GTTTTTCTGA
4	01	ACATTGCCCA	TCCGAGTTTA	CAGTATGTGG	TTTCAATGCT	GCAACTGGAA
4	51	AGCAAAAAAC	CTTTGACGGG	GACGGTTTCC	ATGGTCAACG	CATTGTCGTC
50	01	CGTCCTGCTG	GTGCTTATCC	TGCGCGCCTA	TCTCGAACAG	GATAAGGATG
5	51	TCGAACTCTC	GGGCGTATTG	AAAGGTTGGC	AGGACAAACG	TTTGGGACAT
60	01	TTAATCCAAA	AGGTGATAGA	CAAACCGGAA	GACGAATGGA	ATGTCGACAA
6	51	AATGGTGGCG	GCTGCCAATA	TGTCGCGCGC	GCAACTGATG	CGCCGTTTCA
70	01	AAAGCCGGGT	CGGACTCAGC	CCGCACGCCT	TTGTGAACCA	TATCCGCCTG
7	51	CAAAAAGGCG	CGTTGCTGCT	GAAAAAAAC	CCGGATTCGG	TTTTGTCGGT
80	01	CGCACTGTCG	GTAGGCTTTC	AGTCGGAAAC	GCACTTCGGC	AAGGCGTTCA
8	51	AACGGCAATA	TCACGTTTCG	CCGGGTCAAT	ACCGGAAAGA	AGGCGGGCAA
9(01	AAATAA				

456

This corresponds to the amino acid sequence <SEQ ID 666; ORF 160.a>:

a160.pep

MDILDKLVDF AQLTGSVDVQ CLLGGQWSVR HETLQREGLV HIVTSGSGYL

51 CIDGETSPRP VSTGDIVFFP RGLGHVLSHD GKCGESLQPD MRQHGAFTVK

101 QCGNGQDMSL FCARFRYDTH ADLMNGLPET VFLNIAHPSL QYVVSMLQLE

151 SKKPLTGTVS MVNALSSVLL VLILRAYLEQ DKDVELSGVL KGWQDKRLGH 201 LIQKVIDKPE DEWNVDKMVA AANMSRAQLM RRFKSRVGLS PHAFVNHIRL 251 QKGALLLKKN PDSVLSVALS VGFQSETHFG KAFKRQYHVS PGQYRKEGGQ

301 K*

m160/a160100.0% identity in 301 aa overlap

	10	20	30	40	50	60
m160.pep	MDILDKLVDFAQ					GETSPRP
		· · · · · · · · · · · · · ·			<i></i>	111111
a160	MDILDKLVDFAQI	LTGSVDVQCLLC	GGQWSVRHETI	LQREGLVHIV	TSGSGYLCID	GETSPRP
	10	20	30	40	- 50	60
	70	80	90	100	110	120
m160.pep	VSTGDIVFFPRG	LGHVLSHDGKC	GESLQPDMRQF	HGAFTVKQCGI	NGQDMSLFCA	RFRYDTH
			11111111111	111111111	111111111	HILLIII
a160	VSTGDIVFFPRG1	GHVLSHDGKC	GESLQPDMRQF	HGAFTVKQCGI	NGQDMSLFCA	RFRYDTH
	70	80	90	100	110	120
	130	140	150	160	170	180
m160.pep	ADLMNGLPETVF	LNIAHPSLQYV	/SMLQLESKK	PLTGTVSMVN	ALSSVLLVLI	LRAYLEO
a160	ADLMNGLPETVFI					
	130	140	150	160	170	180
	190	200	210	220	230	240
m160.pep	DKDVELSGVLKG	VODKRLGHLION	KVIDKPEDEWN	VDKMVAAANI	MSRAOLMRRF	
	11111111111111					
a160	DKDVELSGVLKG					
	190	200	210	220	230	240
	250	260	270	280	290	300
m160.pep	PHAFVNHIRLOKO	SALLLKKNPDSV	LSVALSVGFO			
a160	PHAFVNHIRLOK	ALLIKKNPDSV				
	250	260	270	280	290	300
			2.0	230	230	300

m160.pep KX

11 a160 ΚX

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 667>:

```
g161.seq
         ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC
      1
      51
         GGCGGCCTGC TTCACCGTTA TGAACGTATT GATTAAAGAG GCATCGGCAA
     101 AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA
     151 ACCGTTACGC TCGGTGCTGC CGCCGTATTG CGGCGCGACA CCTTCCGCAC
     201 GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGCGA
     251
         TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGAC AACCGGCGTT
     301 ACCCTGAGTT ACACCTCGTC GATTTTTttg GCGGTATTTT CCTTCCTGAT
     351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT
     401 TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA
     451 CCGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG GCTGGGCGTA
         TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG
     551 TGTTTTACCT TTCCGCAACC GGCGTGGCGA TGTCGTCggt ttgggcgacg
     601 Ctgaccggct ggCACAcccT GTCCTTTcca tcggcagttt ATCtgtCGGG
     651 CATCGGCGTG tccgcgCtgA TTGCCCAaCT GtcgatgAcg cGCGcctaca
         aaGTCGGCGA CAAATTCACG GTTGCCTCGC tttcctaTAt gaccgtcGTC
     751
         TTTTCCGCCC TGTCTGCCGC ATTTTTTCTg ggcgaagagc ttttctggCA
     801 GGAAATACTC GGTATGTGCA TCATTATCCT CAGCGGCATT TTGAGCAGCA
     851 TCCGCCCCAT TGCCTTCAAA CAGCGGCTGC AAGCCCTCTT CCGCCAAAGA
```

This corresponds to the amino acid sequence <SEQ ID 668; ORF 161.ng>:

```
g161.pep

1 MDTAKKDILG SGWMLVAAAC FTVMNVLIKE ASAKFALGSG ELVFWRMLFS
51 TVTLGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLTTGV
101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE
151 PAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSAT GVAMSSVWAT
201 LTGWHTLSFP SAVYLSGIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV
251 FSALSAAFFL GEELFWQEIL GMCIILLSGI LSSIRPIAFK QRLQALFRQR
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 669>:

```
m161.seq
         ATGGATACCG CAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC
         GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG GCATCGGCAA
     101 AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA
     151 ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA mCTTCCGCAC
         GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGCGA
     251
         TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC CACTGGCGTT
         ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT CCTTCCTGAT
     351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT
         TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA
     451 ACGGCGCAC TCGCCGGGCT GGCGGGCGC GCGATGTCCG GCTGGGCGTA
         TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG
     551 TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCGTCGGT TTGGGCGACG
     601 CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT ATCTGTCGTG
     651 CATCGGCGTG TCCGCGCTGA TTGCCCAACT GTCGATGACG CGCGCCTACA
     701 AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT GACCGTCGTT
     751 TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GGCGAAGAGC TTTTCTGGCA
         GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT TTGAGCAGCA
     801
     851
         TCCGCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT CCGCCAAAGA
     901
```

This corresponds to the amino acid sequence <SEQ ID 670; ORF 161>:

```
m161.pep

1 MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG ELVFWRMLFS
51 TVALGAAAVL RRDXFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLATGV
101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE
```


- 151 TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT GVAMSSVWAT
- 201 LTGWHTLSFP SAVYLSCIGV SALIAOLSMT RAYKVGDKFT VASLSYMTVV
- 251 FSALSAAFFL GEELFWQEIL GMCIIILSGI LSSIRPTAFK QRLQSLFRQR

301 +

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m161 / g161 97.0% identity in 300 aa overlap

			•			
	10	20	30	40	50	60
m161.pep	MDTAKKDILGSGWM					
g161					:	
9101	10	20	30	ALGSGELVE 40	WRMLFSTVT	LGAAAVL 60
		20	30	40	30	80
	70	80	90	100	110	120
m161.pep	RRDXFRTPHWKNHL	vrsmvgtgam	LLLFYAVTHL	PLATGVTLSY	TSSIFLAVE:	SFLILKE
g161				11:111111		
grer	RRDTFRTPHWKNHLM	NKSMVGTGAM 80	DLLFYAVTHL	PLTTGVTLSY 100		
	70	80	90	100	110	120
	130	140	150	160	170	180
m161.pep	RISVYTQAVLLLGF	AGVVLLLNPS	FRSGQETAAL	AGLAGGAMSG	WAYLKVRELS	SLAGEPG
	_		111111 111			111111
g161	RISVYTQAVLLLGFA	AGVVLLLNPS				SLAGEPG
	130	140	150	160	170	180
	190	200	210	220	230	240
m161.pep	WRVVFYLSVTGVAMS					74U 740 740 740
• •	111111111:11111					
g161	WRVVFYLSATGVAMS	SVWATLTGW	HTLSFPSAVYI	LSGIGVSALI	AQLSMTRAY	KVGDKFT
	190	200	210	220	230	240
	250	260	070			
m161.pep	VASLSYMTVVFSALS		270	280	290	300
маттрер	111111111111111	IIIIIIIII	IIIIIIIIIIIII	11111111111 1 11 26112211	RPTAFKQKL(
g161	VASLSYMTVVFSALS	AAFFLGEEL:	FWOEILGMCII	(ILSGILSST)	HILLILLI RPTAFKORT.	DAT.FROR
	250	260	270	280	290	300
m161.pep	X					
q161	X					·
3- 	••					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 671>:

al61.seq ATGGATACCG CAAAAAAAGA CATTTTAGGA TCGGGCTGGA TGCTGGTGGC 1 51 GGCGGCCTGC TTTACCATTA TGAACGTATT GATTAAAGAG GCATCGGCAA AATTTGCCCT CGGCAGCGGC GAATTGGTCT TTTGGCGCAT GCTGTTTTCA 101 151 ACCGTTGCGC TCGGGGCTGC CGCCGTATTG CGTCGGGACA CCTTCCGCAC GCCCCATTGG AAAAACCACT TAAACCGCAG TATGGTCGGG ACGGGGGCGA 251 TGCTGCTGCT GTTTTACGCG GTAACGCATC TGCCTTTGGC CACCGGCGTT ACCCTGAGTT ACACCTCGTC GATTTTTTTG GCGGTATTTT CCTTCCTGAT 301 351 TTTGAAAGAA CGGATTTCCG TTTACACGCA GGCGGTGCTG CTCCTTGGTT TTGCCGGCGT GGTATTGCTG CTTAATCCCT CGTTCCGCAG CGGTCAGGAA 451 ACGGCGGCAC TCGCCGGGCT GGCGGGCGGC GCGATGTCCG GCTGGGCGTA 501 TTTGAAAGTG CGCGAACTGT CTTTGGCGGG CGAACCCGGC TGGCGCGTCG 551 TGTTTTACCT TTCCGTGACA GGTGTGGCGA TGTCATCGGT TTGGGCGACG 601 CTGACCGGCT GGCACACCCT GTCCTTTCCA TCGGCAGTTT ATCTGTCGTG 651 CATCGGCGTG TCCGCGCTGA TTGCCCAACT GTCGATGACG CGCGCCTACA 701 AAGTCGGCGA CAAATTCACG GTTGCCTCGC TTTCCTATAT GACCGTCGTT
751 TTTTCCGCTC TGTCTGCCGC ATTTTTTCTG GCCGAAGAGC TTTTCTGGCA 801 GGAAATACTC GGTATGTGCA TCATCATCCT CAGCGGTATT TTGAGCAGCA

851 TCCGCCCCAC TGCCTTCAAA CAGCGGCTGC AATCCCTGTT CCGCCAAAGA

459

This corresponds to the amino acid sequence <SEQ ID 672; ORF 161.a>:

a161

- MDTAKKDILG SGWMLVAAAC FTIMNVLIKE ASAKFALGSG ELVFWRMLFS
- TVALGAAAVL RRDTFRTPHW KNHLNRSMVG TGAMLLLFYA VTHLPLATGV
 101 TLSYTSSIFL AVFSFLILKE RISVYTQAVL LLGFAGVVLL LNPSFRSGQE
- 151 TAALAGLAGG AMSGWAYLKV RELSLAGEPG WRVVFYLSVT GVAMSSVWAT
- 201 LTGWHTLSFP SAVYLSCIGV SALIAQLSMT RAYKVGDKFT VASLSYMTVV
- 251 FSALSAAFFL AEELFWQEIL GMCIIILSGI LSSIRPTAFK QRLQSLFRQR
- 301

m161/a16199.3% identity in 300 aa overlap

		•				
	10	20	30	40	50	60
m161.pep	MDTAKKDILGSGWML	VAAACFTIM	NVLIKEASAKE	PALGSGELVF	VRMLFSTVAI	GAAAVL
				1111111111		
a161	MDTAKKDILGSGWML	VAAACFTIM	VLIKEASAKE	ALGSGELVFV	VRMLFSTVAI	GAAAVL
	10	20	30	40	50	60
	70	80	90	100	110	120
m161.pep	RRDXFRTPHWKNHLN	RSMVGTGAMI	LLLFYAVTHLE	PLATGVTLSY	SSIFLAVES	FLILKE
a161	RRDTFRTPHWKNHLN					
	70	80	90	100	110	120
					•	
	130	140	150	160	170	180
m161.pep	RISVYTQAVLLLGFA					
a161	RISVYTQAVLLLGFA					
	130	140	150	160	170	180
	190	200	210	220	230	240
m161.pep	WRVVFYLSVTGVAMS	SVWATLTGWI	ITLSFPSAVYL		~	
		1111111111				
a161	WRVVFYLSVTGVAMS					
	190	200	210	220	230	240
	050	0.50				
161	250	260	270	280	290	300
m161.pep	VASLSYMTVVFSALS					
a161					11111111	
albi	VASLSYMTVVFSALS					
	250	260	270	280	290	300
m161.pep	x					
wror.heh	Λ.					

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 673>: g163.

seq					
1		TGACGACTTT			
51	TTTAACCGTG	CCGGATCAGG	TGCAGATGTG	gctCGACCGG	GCAAAAGAAG
101		CGAGTTCAGC			
151		tgctGATACT			
201		GAAGATGTGC			
251	TGCTGTTTGC	GGCCGGGATG	GGCGTGGGCC	TGATGTTTTT	CGGCGTGGCA
301	GAGCCGTTGA	TGCATTATTT	TTCGGACATT	ACGGTCGGCG	CGCCGGAACA
351	CAGGCAGCAG	CAGGCATTGC	TGCACACGGT	GTTCCATTGG	GGCGTTCACG
401	CCTGGTCGGT	GTACGGTACG	ATTGCATTGG	CTTTGGCTTA	TTTCGGTTTC

This corresponds to the amino acid sequence <SEQ ID 674; ORF 163.ng>:

g163.pep MVILTTLFFV CVLVVLVLTV PDQVQMWLDR AKEVIFTEFS WFYVLTFSIF 51 LGFLLILSVS GLGNIRLGRD EDVPEFGFLS WLAMLFAAGM GVGLMFFGVA EPLMHYFSDI TVGAPEHRQQ QALLHTVFHW GVHAWSVYGT IALALAYFGF RYKLPLALRS CFYPLLKEKI SGRFGDAIDI MALLATFFGI ITTLGFGASO 201 LGAGLQEMGW IAENSFGVQV LIIAAVMSLA VVSAISGVGK GVKVLSELNL 251 GLAFLLLFFV LAADPTVYLL SAFGDNIGNY LGNLVRLSLK TYAYEREHKP 301 WFESWTVLYW AWWCSWAPFV GLFIARISKG RTIREFVFGV LLIPGLFGVL WFTVFGNTAI WLNDGVAGGM LEKMTSSPET LLFKFFNYLP LPELTSIVSL 351 401 LVISLFFVTS ADSGIYVLNN ITSRDKGLSA PRWQAVMWGV LMSAVAVLLM 451 RSGGLGNLQS MTLIVSLPFA LLMLIMCFSL WKGLSADKKY FETRVNPTSV 501 FWTGGKWKER LVRIMSQTQE QDILKFLKHT ASPAMHELQR ELSEEYGLSV RVDKMFHQDE PAIEFVIRKE TMRDFMYGIK SVGQDVSDQL INDGKLPHIR HQTTYKPYAY FFDGRVGYDV QYMNKDELIA DILKNYERYL MLLDDVGQEL MAHEOVELAE *

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 675>:

m163.seq ATGGTTATTT TGACGACTTT GTTTTTTGTG TGTTTTTGG TGGTATTGGT 1 51 TTTAACCGTG CCGGATCAGG TGCAGATGTG GCTCGATCGG GCAAAAGAAG TCATTTTAC CGAGTTCAGC TGGTTTTATG TTTTAACGTT TTCCATTTTT 101 151 CTGGGTTTCC TGCTGATACT CTCGGTCAGC AGTTTGGGAA ACATCAGGCT 201 CGGACGGGAT GAAGATGTGC CGGAATTCGG CTTCCTGTCG TGGCTGGCGA TGCTGTTTGC GGCCGGGATG GGCGTGGGTC TGATGTTTTT CGGCGTGGCA 251 301 GAGCCGTTGA TGCATTATTT TTCGGACATT ACGGCCGGCA CGCCGGAACA 351 CAGGCAGCAG CAGGCATTGC TGCACACGGT GTTCCATTGG GGCGTTCACG 401 CTTGGTCGGT GTACGGTACG ATTGCATTGG CTTTGGCTTA TTTCGGTTTC 451 CGCTACAAGC TGCCGCTTGC CCTGCGTTCT TGTTTTTACC CCCTGTTGAA 501 AGAAAAATT TCCGGAAGGT TCGGCGATGC CATTGATATT ATGGCGTTGC TTGCTACTTT TTTCGGCATC ATCACCACAT TGGGGTTCGG GGCTTCGCAA CTGGGCGCCG GATTGCAGGA AATGGGCTGG ATTGCCGAAA ACAGCTTCAG

1851 GTACGATGTG CAGTATATGA ACAAGGACGA GCTGATTGCC GACATTTTGA 1901 AAAACTACGA ACGTTATTTG ATGTTGTTGG ATGATGTCGG TCAGGAACTG

This corresponds to the amino acid sequence <SEQ ID 676; ORF 163>:

1951 ATGGCGCACG AGCAGGTGGA ATTGGCAGAG TAA

m163.pep MVILTTLFFV CVLVVLVLTV PDQVQMWLDR AKEVIFTEFS WFYVLTFSIF LGFLLILSVS SLGNIRLGRD EDVPEFGFLS WLAMLFAAGM GVGLMFFGVA 101 EPLMHYFSDI TAGTPEHRQQ QALLHTVFHW GVHAWSVYGT IALALAYFGF RYKLPLALRS CFYPLLKEKI SGRFGDAIDI MALLATFFGI ITTLGFGASQ 201 LGAGLQEMGW IAENSFSVQV LIIAAVMSLA VVSAISGVGK GVKVLSELNL GLAFLLLFFV LAAGPTVYLL SAFGDNIGNY LGNLVRLSFK TYAYEREHKP WFESWTVLYW AWWCSWAPFV GLFIARISKG RTIREFVFGV LLIPGLFGVL WFTVFGNTAI WLNDGVAGGM LEKMTSSPET LLFKFFNYLP LPELTSIVSL LVISLFFVTS ADSGIYVLNN ITSRDKGLSA PRWQAVMWGV LMSAVAVLLM. 401 RSGGLGNLQS MTLIVSLPFA LLMLIMCFSL WKGLSADKKY FETRVNPTSV FWTGGKWKER LVQIMSQTQE QDILKFLKQT ASPAMHELQR ELSEEYGLSV RVDKMFHRDE PAIEFVIRKE TMRDFMYGIK SVGQDVSDQL INDGKLPHIR HQTTYKPYAY FFDGRVGYDV QYMNKDELIA DILKNYERYL MLLDDVGQEL 601 MAHEQVELAE *

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m163 / g163 98.6% identity in 660 aa overlap

	10	20	30	40	50	60
m163.pep	MVILTTLFFVCV	LVVLVLTVPD	QVQMWLDRAKE'	VIFTEFSWFY	VLTFSIFLGF:	LLILSVS
			ШППППП		111111111	ШШШ
g163	MVILTTLFFVCV	LVVLVLTVPD	QVQMWLDRAKE'	VIFTEFSWFY	VLTFSIFLGF:	LLILSVS
	10	20	30	40	50	60
	70	80	90	100	110	120
m163.pep	SLGNIRLGRDED					
	: ! ! ! ! ! ! ! ! ! ! ! !			111111111	11111111111111	: [] [] []
g163	GLGNIRLGRDED	VPEFGFLSWL	AMLFAAGMGVG:	LMFFGVAEPLI	MHYFSDITVG	APEHROO
	70	80	90	100	110	120
	130	140	150	160	170	180

m163.pep	QALLHTVFHWGVHAWSVYGTIALALAYFGFRYKLPLALRSCFYPLLKEKISGRFGDAIDI
9200	130 140 150 160 170 180
m163.pep	190 200 210 220 230 240 MALLATFFGIITTLGFGASQLGAGLQEMGWIAENSFSVQVLIIAAVMSLAVVSAISGVGK
g163	MALLATFFGIITTLGFGASQLGAGLQEMGWIAENSFGVQVLIIAAVMSLAVVSAISGVGK 190 200 210 220 230 240
m163.pep	250 260 270 280 290 300 GVKVLSELNLGLAFLLLFFVLAAGPTVYLLSAFGDNIGNYLGNLVRLSFKTYAYEREHKP
g163	GVKVLSELNLGLAFLLLFFVLAADPTVYLLSAFGDNIGNYLGNLVRLSLKTYAYEREHKF 250 260 270 280 290 300
m163.pep	310 320 330 340 350 360 WFESWTVLYWAWWCSWAPFVGLFIARISKGRTIREFVFGVLLIPGLFGVLWFTVFGNTAI
g163	
m163.pep	370 380 390 400 410 420 WLNDGVAGGMLEKMTSSPETLLFKFFNYLPLPELTSIVSLLVISLFFVTSADSGIYVLNN
g163	
m163.pep	430 440 450 460 470 480 ITSRDKGLSAPRWQAVMWGVLMSAVAVLLMRSGGLGNLQSMTLIVSLPFALLMLIMCFSL
g163	
m163.pep	490 500 510 520 530 540 WKGLSADKKYFETRVNPTSVFWTGGKWKERLVQIMSQTQEQDILKFLKQTASPAMHELQR
g163	
m163.pep	550 560 570 580 590 600 ELSEEYGLSVRVDKMFHRDEPAIEFVIRKETMRDFMYGIKSVGQDVSDQLINDGKLPHIR
g163	
m163.pep	610 620 630 640 650 660 HQTTYKPYAYFFDGRVGYDVQYMNKDELIADILKNYERYLMLLDDVGQELMAHEQVELAE
g163	
m163.pep	x
g163	x x

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 677>: a163.seq

- 1 ATGGTTATTT TGACGACTTT GTTTTTTGTG TGTGTTTTGG TGGTATTGGT
- 51 TTTAACCGTG CCGGATCAGG TGCAGATGTG GCTCGATCGG GCAAAAGAAG
 101 TCATTTTTAC CGAGTTCAGC TGGTTTTATG TTTTAACGTT TTCCATTTTT
 151 CTGGGTTTCC TGCTGATACT CTCGGTCAGC AGTTTGGGAA ACATCAGGCT

			•		
201	CGGACGGGAT	GAAGATGTGC	CGGAATTCGG	CTTCCTGTCG	TGGCTGGCGA
251	TGCTGTTTGC	GGCCGGGATG	GGCGTGGGTC	TGATGTTTTT	CGGCGTGGCA
301	GAGCCGTTGA	TGCATTATTT	TTCGGACATT	ACGGCCGGCA	CGCCGGAACA
351	CAGGCAGCAG	CAGGCATTGC	TGCACACGGT	GTTCCATTGG	GGCGTTCACG
401	CTTGGTCGGT	GTACGGTACG	ATTGCATTGG	CTTTGGCTTA	TTTCGGTTTC
451	CGCTACAAGC	TGCCGCTTGC	CCTGCGTTCT	TGTTTTTACC	CCCTGTTGAA
501	AGAAAAAATT	TCCGGAAGGT	TCGGCGATGC	CATTGATATT	ATGGCGTTGC
551	TTGCTACTTT	TTTCGGCATC	ATCACCACAT	TGGGGTTCGG	GGCTTCGCAA
601	CTGGGCGCCG	GATTGCAGGA	AATAGGCTGG	ATTGCCGAAA	ACAGCTTCAG
651	CGTGCAGGTT	TTGATTATCG	CCGCCGTCAT	GTCCCTCGCC	GTCGTTTCGG
.701	CAATATCCGG	CGTGGGGAAG	GGTGTGAAGG	TGTTGAGCGA	GTTGAACCTG
751	GGTCTTGCGT	TTTTGCTGCT	GTTTTTTGTT	TTGGCGGCGG	GTCCCACTGT
801	TTACCTGTTG	TCGGCATTCG	GCGACAACAT	AGGGAACTAC	CTCGGAAATC
851	TGGTGCGCCT	CAGTTTTAAA	ACTTATGCGT	ACGAACGGGA	ACACAAGCCG
901	TGGTTTGAAT	CTTGGACGGT	GCTTTATTGG	GCGTGGTGGT	GTTCTTGGGC
951	GCCGTTTGTG	GGTTTGTTTA	TCGCGCGCAT	TTCAAAGGGG	CGCACCATCC
1001	GCGAGTTTGT	CTTCGGGGTT	TTGCTCATCC	CCGGCCTGTT	CGGCGTTTTG
1051	TGGTTTACCG	TCTTCGGCAA	TACGGCGATT	TGGCTGAATG	ACGGGGTTGC
1101	GGGGGGAGTG	CTCGAAAAGA	TGACCTCCTC	TCCGGAAACG	CTGCTTTTTA
1151	AATTCTTTAA	TTACCTCCCC	CTGCCCGAAT	TGACGAGCAT	CGTCAGCCTG
1201	CTGGTCATTT	CTCTGTTTTT	TGTAACTTCT	GCCGATTCCG	GGATTTATGT
1251	CCTGAACAAT	ATTACCTCTC	GGGACAAAGG	CTTGAGCGCG	CCACGGTGGC
1301	AGGCGGTTAT	GTGGGGCGTG	CTGATGTCTG	CCGTTGCCGT	TTTGCTGATG
1351	CGCTCGGGCG	GACTCGGCAA	CCTGCAGTCT	ATGACCCTGA	TTGTTTCCCT
1401	GCCGTTTGCC	CTGCTGATGC	TGATAATGTG	TTTCAGCCTG	TGGAAAGGAT
1451	TGAGTGCGGA	TAAGAAATAT	TTTGAGACCC	GGGTTAACCC	TACCAGTGTA
1501	TTTTGGACGG	GCGGCAAGTG	GAAAGAACGG	CTGGTGCAGA	TAATGAGCCA
1551	GACGCAGGAG	CAGGATATTT	TAAAATTCCT	CAAACATACC	GCATCGCCCG
1601	CTATGCACGA	GTTACAACGG	GAGCTTTCGG	AAGAATACGG	CTTGAGCGTC
1651	CGGGTCGATA	AGATGTTTCA	TCAGGACGAG	CCCGCAATCG	AGTTCGTCAT
1701	TCGGAAAGAG	ACGATGCGCG	ATTTTATGTA	CGGGATTAAG	TCTGTCGGGC
1751	AGGATGTATC	CGACCAGTTG	ATTAACGACG	GCAAGCTGCC	GCATATCCGG
1801	CATCAGACAA	CTTACAAACC	CTACGCTTAT	TTTTTCGACG	GGCGCGTCGG
1851	GTACGATGTG	CAGTATATGA	ACAAGGACGA	GCTGATTGCC	GACATTTTGA
1901	AAAACTACGA		ATGTTGTTGG	ATGATGTCGG	TCAGGAACTG
1951	ATGGCGCACG	AGCAGGTGGA	ATTGGCAGAG	TAA	

This corresponds to the amino acid sequence <SEQ ID 678; ORF 163.a>:

```
a163.pep

1 MVILTTLFFV CVLVVLVITV PDQVQMWLDR AKEVIFTEFS WFYVLTFSIF
51 LGFLLILSVS SLGNIRLGRD EDVPEFGFLS WLAMLFAAGM GVGLMFFGVA
101 EPLMHYFSDI TAGTPEHRQQ QALLHTVFHW GVHAWSVYGT IALALAYFGF
151 RYKLPLALRS CFYPLLKEKI SGRFGDAIDI MALLATFFGI ITTLGFGASQ
201 LGAGLQEIGW IAENSFSVQV LIIAAVMSLA VVSAISGVGK GVKVLSELNL
251 GLAFLLLFFV LAAGPTVYLL SAFGDNIGNY LGNLVRLSFK TYAYEREHKP
301 WFESWTVLYW AWWCSWAPFV GLFIARISKG RTIREFVFGV LLIPGLFGVL
351 WFTVFGNTAI WLNDGVAGGV LEKMTSSPET LLFKFFNYLP LPELTSIVSL
401 LVISLFFVTS ADSGIVVLNN ITSRDKGLSA PRWQAVMWGV LMSAVAVLLM
451 RSGGLGNLQS MTLIVSLPFA LLMLIMCFSL WKGLSADKKY FETRVNPTSV
501 FWTGGKWKER LVQIMSQTQE QDILKFLKHT ASPAMHELQR ELSEEYGLSV
551 RVDKMFHQDE PALEFVIRKE TMRDFMYGIK SVGQDVSDQL INDGKLPHIR
601 HQTTYKPYAY FFDGRVGYDV QYMNKDELIA DILKNYERYL MLLDDVGQEL
```

m163/a163 99.4% identity in 660 aa overlap

	10	20	30	40	50	60
m163.pep	MVILTTLFFVCVLV	VLVLTVPDQV	QMWLDRAKEV	/IFTEFSWFYV	LTFSIFLGFI	LILSVS
			111111111111111111111111111111111111	1111111111	1111111111	HIHI
a163	MVILTTLFFVCVLV	JLVLTVPDQV	QMWLDRAKE V	/IFTEFSWFYV	LTFSIFLGFI	LILSVS
	10	20	30	40	50	60
	70	80	90	100	110	100
-1.62	• •					120
m163.pep	SLGNIRLGRDEDVP	EFGFLSWLAM	LFAAGMGVGL	MFFGVAEPLM	HYFSDITAGT	PEHRQQ

	•
a163	SLGNIRLGRDEDVPEFGFLSWLAMLFAAGMGVGLMFFGVAEPLMHYFSDITAGTPEHRQQ
	70 80 90 100 110 120
m162 man	130 140 150 160 170 180
m163.pep	QALLHTVFHWGVHAWSVYGTIALALAYFGFRYKLPLALRSCFYPLLKEKISGRFGDAIDI
a163	QALLHTVFHWGVHAWSVYGTIALALAYFGFRYKLPLALRSCFYPLLKEKISGRFGDAIDI
4200	130 140 150 160 170 180
	190 200 210 220 230 240
m163.pep	MALLATFFGIITTLGFGASQLGAGLQEMGWIAENSFSVQVLIIAAVMSLAVVSAISGVGK
-1.60	
a163	190 200 210 220 230 240
	190 200 210 220 230 240
	250 260 270 280 290 300
m163.pep	GVKVLSELNLGLAFLLLFFVLAAGPTVYLLSAFGDNIGNYLGNLVRLSFKTYAYEREHKP
a163	GVKVLSELNLGLAFLLLFFVLAAGPTVYLLSAFGDNIGNYLGNLVRLSFKTYAYEREHKP
	250 260 270 280 290 300
	310 320 330 340 350 360
m163.pep	310 320 330 340 350 360 WFESWTVLYWAWWCSWAPFVGLFIARISKGRTIREFVFGVLLIPGLFGVLWFTVFGNTAI
mros.pep	
a163	WFESWTVLYWAWWCSWAPFVGLFIARISKGRTIREFVFGVLLIPGLFGVLWFTVFGNTAI
	310 320 330 340 350 360
	·
	370 380 390 400 410 420
m163.pep	WLNDGVAGGMLEKMTSSPETLLFKFFNYLPLPELTSIVSLLVISLFFVTSADSGIYVLNN
a163	
a103	370 380 390 400 410 420
	370 300 330 400 410 420
	430 440 450 460 470 480
m163.pep	ITSRDKGLSAPRWQAVMWGVLMSAVAVLLMRSGGLGNLQSMTLIVSLPFALLMLIMCFSL
a163	ITSRDKGLSAPRWQAVMWGVLMSAVAVLLMRSGGLGNLQSMTLIVSLPFALLMLIMCFSL
	430 440 450 460 470 480
	490 500 510 520 530 540
m163.pep	WKGLSADKKYFETRVNPTSVFWTGGKWKERLVQIMSQTQEQDILKFLKQTASPAMHELQR
a163	WKGLSADKKYFETRVNPTSVFWTGGKWKERLVQIMSQTQEQDILKFLKHTASPAMHELQR
	490 500 510 520 530 540
	550 FG0 F70 F00 F00 F00
m163 non	550 560 570 580 590 600
m163.pep	ELSEEYGLSVRVDKMFHRDEPAIEFVIRKETMRDFMYGIKSVGQDVSDQLINDGKLPHIR
a163	ELSEEYGLSVRVDKMFHQDEPAIEFVIRKETMRDFMYGIKSVGQDVSDQLINDGKLPHIR
	550 560 570 580 590 600
1.60	610 620 630 640 650 660
m163.pep	HQTTYKPYAYFFDGRVGYDVQYMNKDELIADILKNYERYLMLLDDVGQELMAHEQVELAE
a163	
#T03	610 620 630 640 650 660
	020 020 030 030 000
m163.pep	X
a163	Х

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 679>: g164.seq (partial)

465

```
..ATGAACACAT TTTTGAAAAA CAGCGAATAC GCGTATATCC TGAACGACTG
  1
51
        CAAGGCGCGC TTCCTGTTCG CCTCGGCCGG CCTGTCAAAA GAATTGGCGG
 101
        GCCTGAAGGC GCAAACGCCC GTCGAAAAAA TCATTTGGAC GGACAAAAGC
        CGGCCGGCCG GCGAAACGGC GGAAGGCGAT GCCTTTTTTG AAAACGTGCG
        CCGCTTCCCC GAAAAACCCG ACTTGGGCCG CCAACCCCGG ATAAATGATT
 201
 251
        TGGCACACAT CATCTACACC TCCGGCACGA CGGGGCATCC CAAAGGCGCG
 301
        CTAATCAGTT ACGCCAACCT GTTCGCCAAC CTGAACGGCA TCGAACGCAT
        CTTtaaAATT TCCAAACGCG ACCGCTTTAT CGTTTTCctg ccgatgTTCC
 351
 401
        ACAGCTTCAC GCTGACGGCT ATGGTGCTGC TGCCGATTTA TATGGCGTGT
 451
        TCGATTATTT TGGTCAAAtc cgttttCCCc ttttccaacG TTTTGAAACA
 501
        GGCCCTGCTC AAACGCGCAA CCGTGTTTTT GGGCGTACCC GCGATTTACA
 551
        CCGCGATGAG CAAGGCAAAA ATCCCTTGGT ATTTCAGATG GTTCAACCGC
        ATCCGCCTGT TTATCAGCGG CGGCGCGCCT TTGGCGGAAC AAACCATCCT
 601
        CGATTTTAAA GCCAAGTTCC CCCGCGCCAA ATTGCTGGAA GGCTACGGAC
 651
 701
        TGAGCGAAGC CTCGCCCGTC GTCGCCGTCA ATACGCCCGA ACGGCAAAAA
 751
        GCCCGCAGCG TCGGCATCCC CCTGCCCGGT TTGGAAGCCA AAGCCGTCGA
        TGAAGAATTG GTCGAAGTGC CGCGCGGCGA AGTGGGCGAA CTGATCGTCA
 801
        GGGGCGGTTC GGTGATGCGG GGCTACCTCA ATATGCCTGC CGCCACCGAT
 851
 901
        GAAACCATCG TCAACGGCTG GTTGAAAACG GGCGATTTCG TTACCATAGA
 951
        CGAGGACGGC TTTATCTTTA TCGTCGACCG CAAAAAAGAT TTGATTATTT
        CCAAAGGTCA AAACGTCTAT CCGCGCGAGA TCGAAGAAGA AATCCACAAA
1001
1051
        CTCGATGCCG TCGAAGCCGC CGCCGTCATC GGCGTGAAAG ACCGTTATGC
        CGACGAGGAA ATCGTCGCCT TCGTCCAATT GAAGGAAGGT ATGGATTTGG
1101
1151
        GCGAGGACGA aatccgccgc caccTGCGTA CCGTGCTGGC AAATTTCAAA
1201
        ATCCCCAAAC AGATCCACTT TAAAGACGGG CTGCCGCGCA ACGCTACGGG
1251
        CAAAGTATTG AAACGGGTGC TGAAGGAGCA GTTTGAAGGA AACAAATGA
```

This corresponds to the amino acid sequence <SEQ ID 680; ORF 164.ng>:

```
g164.pep
          (partial)
          ..MNTFLKNSEY AYILNDCKAR FLFASAGLSK ELAGLKAOTP VEKIIWTDKS
      51
            RPAGETAEGD AFFENVRRFP EKPDLGRQPR INDLAHIIYT SGTTGHPKGA
            LISYANLFAN LNGIERIFKI SKRDRFIVFL PMFHSFTL<u>TA MVLLPIYMAC</u>
     101
            SIILVKSVFP FSNVLKQALL KRATVFLGVP AIYTAMSKAK IPWYFRWFNR
     151
            IRLFISGGAP LAEQTILDFK AKFPRAKLLE GYGLSEASPV VAVNTPERQK
     251
            ARSVGIPLPG LEAKAVDEEL VEVPRGEVGE LIVRGGSVMR GYLNMPAATD
            ETIVNGWLKT GDFVTIDEDG FIFIVDRKKD LIISKGQNVY PREIEEEIHK
     301
     351
            LDAVEAAAVI GVKDRYADEE IVAFVQLKEG MDLGEDEIRR HLRTVLANFK
     401
            IPKQIHFKDG LPRNATGKVL KRVLKEQFEG NK*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 681>:

m164.seg ATGAACCGGA CTTATGCCAA TTTCTACGAA ATGCTCGCCG CCGCCTGCCG CAAAAACGGA AACGGCACGG CAGTGTTCGA CGGCAAGGAA AAAACCGCCT 101 ACCGCGCGCT CAAGCAGGAG GCCGAAGCCG TCGCGGCGTA TCTGCAAAAT 151 ATCGGCGTGA AGTTCGGCGA CACGGTCGCG CTGGCGGTTT CCAATTCCAC AGAATTTATT ACCGCCTATT TCGCCATCTC CGCCATCGGC GCGGTCGCCG TACCGATGAA CACATTTTTG AAAAACAGCG AATACGCGTA TATCCTGAAC 251 301 GACTGCAAGG CGCGCTTCCT GTTCGCCTCG GCCGGCCTGT CAAAAGAATT GGCGGGCTTG AAGGCGCAAA CGCCCGTCGA AAAAATCATT TGGACGGACA 401 AAAGCCGTCC GACCGGCGAA ACGGCGGAAG GCGATGCCTT TTTTGAAGAC GTGCGCCGCT TCCCCGAAAA ACCCGACTTG GGCCGCCAAC CCCGGATAAA 451 501 TGATTTGGCA CACATCATCT ACACCTCCGG CACGACGGGG CATCCCAAAG GCGCGCTAAT CAGTTACGCC AACCTGTTCG CCAACCTGAA CGGCATCGAA 601 CGCATCTTTA AAATTTCCAA GCGCGACCGC TTTATCGTTT TCCTGCCGAT GTTCCACAGC TTCACGCTGA CGGCTATGGT GCTGCTGCCG ATTTATATGG 651 701 CGTGTTCGAT TATTTTGGTC AAATCCGTTT TTCCGTTTTC CAACGTTTTG 751 AAACAGACAC TGCTCAAACG CGCGACCGTG TTTTTGGGCG TACCCGCGAT 801 TTACACCGCG ATGAGCAAGG CGAAAATCCC TTGGTATTTC AGATGGTTCA 851 ACCGCATTCG CCTGTTTATC AGCGGCGGCG CGCCTTTGGC GGAACAAACC 901 ATCCTCGATT TCAAAGCCAA GTTCCCCCGC GCCAAATTGC TGGAAGGCTA

951	CGGACTGAGC	GAAGCCTCTC	CCGTCGTCGC	CGTCAATACG	CCCGAGAGGC
1001	AAAAAGCCCG	CAGCGTCGGC	ATCCCCCTGC	CCGGTTTGGA	AGCCAAAGCC
1051	GTCGATGAAG	AATTGGTCGA	AGTGCCGCGC	GGCGAAGTGG	GCGAACTGAT
1101	CGTCAGGGGC	GGTTCGGTGA	TGCGGGGCTA	CCTCAATATG	CCTGCCGCCA
1151	CCGATGAAAC	CATCGTCAAC	GGCTGGTTGA	AAACGGGCGA	TTTCGTTACC
1201	ATAGACGAAG	ACGGCTTTAT	CTTTATCGTC	GACCGCAAAA	AAGATTTGAT
1251	TATTTCCAAA	GGTCAAAATG	TCTATCCGCG	CGAGATTGAA	GAAGAAATCT
1301	ACAAACTCGA	TGCCGTCGAA	GCCGCCGCCG	TCATCGGCGT	GAAAGACCGT
1351	TATGCCGACG	AGGAAATCGT	CGCCTTCGTC	CAATTGAAGG	AAGGTATGGA
1401	TTTGGGCGAG	AACGAAATCC	GCCGCCACCT	GCGTACCGTG	CTGGCAAATT
1451	TCAAAATCCC	CAAACAAATC	CACTTTAAAG	ACGGGCTGCC	GCGCAACGCT
1501	ACGGGCAAGG	TATTGAAACG	GGTGTTGAAG	GAGCAGTTTG	ACGGAAACAA
1551	ΛΤΙCΑ				

This corresponds to the amino acid sequence <SEQ ID 682; ORF 164>:

54.pep					
1	MNRTYANFYE	MLAAACRKNG	NGTAVFDGKE	KTAYRALKQE	AEAVAAYLQN
51	IGVKFGDTVA	LAVSNSTEFI	TAYFAISAIG	AVAVPMNTFL	KNSEYAYILN
101	DCKARFLFAS	AGLSKELAGL	KAQTPVEKII	WTDKSRPTGE	TAEGDAFFED
151	VRRFPEKPDL	GRQPRINDLA	HIIYTSGTTG	HPKGALISYA	NLFANLNGIE
201	RIFKISKRDR	FIVFLPMFHS	FTLTAMVLLP	IYMACSIILV	KSVFPFSNVL
251	KQTLLKRATV	FLGVPAIYTA	MSKAKIPWYF	RWFNRIRLFI	SGGAPLAEQT
301	ILDFKAKFPR	AKLLEGYGLS	EASPVVAVNT	PERQKARSVG	IPLPGLEAKA
351	VDEELVEVPR	GEVGELIVRG	GSVMRGYLNM	PAATDETIVN	GWLKTGDFVT
401	IDEDGFIFIV	DRKKDLIISK	GQNVYPREIE	EEIYKLDAVE	AAAVIGVKDR
451	YADEEIVAFV	QLKEGMDLGE	NEIRRHLRTV	LANFKIPKQI	HFKDGLPRNA
501	TGKVLKRVLK	EOFDGNK*			

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae m164 / g164 98.6% identity in 432 aa overlap

	60	70	80	90	100	110
m164.pep	GDTVALAVSN	STEFITAYFAI	SAIGAVAV	PMNTFLKNSI	EYAYILNDCK	ARFLFASAGLSK
					1111111111	1111111111
g164						ARFLFASAGLSK
				:	10 2	20 30
	100	120				
m164 man	120	130	140	150	160	170
m164.pep	ELAGLKAQTP				-	PRINDLAHIIYT
q164	FINCIENOUD			: 		
9104	40	VERTIWIDESE 50			_	SO 90
	40	30	C	10	,,	30 90
	180	190	200	210	220	230
m164.pep						TAMVLLPIYMAC
	1111111111		1111111	111111111		
q164	SGTTGHPKGA	LISYANLFANI	NGIERIFK	ISKRDRFIV	FLPMFHSFTLT	PAMVLLPIYMAC
•	100	110	12			40 150
	240	250	260	270	280	290
m164.pep	SIILVKSVFP	FSNVLKQTLLK	TRATVFLGV	'PAIYTAMSK	aki pwyfrwfi	NRIRLFISGGAP
		11111111:111				11111111111
g164						NRIRLFISGGAP
	160	170	18	19	90 20	00 210
.1.64	300	310	320	330	340	350
m164.pep						PGLEAKAVDEEL
~1.64		, , , , , , , , , , ,				
g164	LAEQTILDEK 220					PGLEAKAVDEEL
	220	230	24	.0 25	50 26	50 270
	360	370	380	390	400	410
	300	370	300	390	400	410


```
m164.pep
          VEVPRGEVGELIVRGGSVMRGYLNMPAATDETIVNGWLKTGDFVTIDEDGFIFIVDRKKD
          VEVPRGEVGELIVRGGSVMRGYLNMPAATDETIVNGWLKTGDFVTIDEDGF1FIVDRKKD
g164
               280
                       290
                               300
                                       310
                                                      330
            420
                   430
                           440
                                   450
                                           460
                                                  470
          \verb|LIISKGQNVYPREIEEEIYKLDAVEAAAVIGVKDRYADEEIVAFVQLKEGMDLGENEIRR|
m164.pep
          q164
          LIISKGQNVYPREIEEEIHKLDAVEAAAVIGVKDRYADEEIVAFVQLKEGMDLGEDEIRR
                340
                       350
                               360
                                       370
                                              380
                                                      390
            480
                   490
                           500
                                   510
          HLRTVLANFKIPKQIHFKDGLPRNATGKVLKRVLKEQFDGNKX
m164.pep
          g164
          HLRTVLANFKIPKQIHFKDGLPRNATGKVLKRVLKEQFEGNKX
                400
                       410
                               420
                                       430
```

467

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 683>:

```
al64.seq
         ATGAACCGGA CTTATGCCAA TTTCTACGAA ATGCTGACCG CCGCCTGCCG
          CAAAAACGGC AACGGCACGG CAGTGTTCGA CGGCAAGGAA AAAACCGCCT
         ACCGCGCGCT CAAGCAGGAA GCCGAAGCCG TTGCGGCGTA TCTGCAAAAT
     101
         ATCGGCGTGA AGTTCGGCGA CACGGTCGCG CTGGCGGTTT CCAATTCCAC
     201
         GGAATTTATT ACCGCCTATT TCGCCGTATC CGCCATCGGC GCGGTTGCCG
         TACCGATGAA CACATTTTG AAAAACAGCG AATACGCGTA TATCCTGAAC
     251
     301
         GACTGCAAGG CGCGCTTCCT GTTCGCCTCG GCCGGCCTGT CAAAAGAATT
     351
         GGCGGGCTTG AAGGCGCAAA CGCCCGTCGA AAAAATCATT TGGACGGGCC
     401
         AAAGCCGTCC GGACGGCGAA ATGGCGGAAG GCGATGCCTT TTTTGAAGAC
          GTGCGCCGCT TCCCCGAAAA ACCCGACTTG GGCCGCCAAC CCCGGATAAA
     451
     501
         TGATTTGGCA CACATCATCT ACACCTCCGG CACGACGGGG CATCCCAAAG
         GTGCGCTAAT CAGCTACGCC AACCTGTTCG CCAACCTGAA CGGCATCGAA
     551
     601
         CGCATCTTTA AAATCTCCAA GCGCGACCGC TTTATCGTTT TCCTGCCGAT
     651
         GTTCCACAGC TTCACGCTGA CGGCTATGGT GCTGCTGCCG ATTTATATGG
         CGTGTTCGAT TATTTTGGTC AAATCCGTTT TCCCCTTTTC CAACGTTTTG
    701
    751
         AAACAGGCAC TGCTCAAACG CGCGACCGTG TTTTTGGGCG TGCCCGCGAT
    801
         TTACACCGCG ATGAGCAAGA CGAAAATCCC TTGGTATTTC AGATGGTTCA
    851
         ACCGCATCCG CCTGTTTATC AGCGGCGGAG CACCTTTGGC GGAACAAACC
    901
         ATCCTCGATT TCAAAGCCAA GTTCCCCCGC GCCAAATTGC TGGAAGGCTA
         CGGACTGAGC GAAGCCTCGC CCGTCGTCGC CGTCAATACG CCCGAGAGGC
    951
   1001
         AAAAAGCCCG CAGCGTCGGC ATCCCCCTGC CCGGTTTGGA AGTCAAAGCC
   1051
         GTCGATGAAG AATTGGTCGA AGTGCCGCGC GGCGAAGTGG GCGAACTGAT
   1101
         CGTCAGGGGC GGTTCGGTGA TGCGGGGCTA CCTCAATATG CCTGCCGCCA
   1151
         CCGATGAAAC CATCGTCAAC GGCTGGTTGA AAACGGGCGA TTTCGTTACC
         ATAGACGAAG ACGGCTTTAT CTTTATCGTC GACCGCAAAA AAGATTTGAT
   1201
         TATTTCCAAA GGTCAAAATG TCTATCCGCG CGAAATCGAA GAAGAAATCT
   1251
   1301
         ACAAACTCGA TGCCGTCGAA GCCGCCGCCG TCATCGGCGT GAAAGACCGT
   1351
         TATGCCGACG AGGAAATCGT CGCCTTCGTC CAATTGAAGG AAGGTATGGA
         TTTGGGCGAG AACGAAATCC GCCGCCACCT GCGTACCGTG CTGGCAAATT
   1401
   1451
         TCAAAATCCC CAAACAAATC CACTTTAAAG ACGGGCTGCC GCGCAACGCT
         ACGGGCAAGG TATTGAAACG GGTGTTGAAG GAGCAGTTTG ACGGAAACAA
   1501
   1551
         ATGA
```

This corresponds to the amino acid sequence <SEQ ID 684; ORF 164.a>:

.pep					
1	MNRTYANFYE	MLTAACRKNG	NGTAVFDGKE	KTAYRALKQE	AEAVAAYLON
51	IGVKFGDTVA	LAVSNSTEFI	TAYFAVSAIG	AVAVPMNTFL	KNSEYAYILN
101				WTGQSRPDGE	
151	VRRFPEKPDL	GROPRINDLA	HIIYTSGTTG	HPKGALISYA	NLFANLNGIE
201	RIFKISKRDR	FIVFLPMFHS	FTLTAMVLLP	IYMACSIILV	KSVFPFSNVL
251	KQALLKRATV	FLGVPAIYTA	MSKTKIPWYF	RWFNRIRLFI	SGGAPLAEQT
301	ILDFKAKFPR	AKLLEGYGLS	EASPVVAVNT	PERQKARSVG	IPLPGLEVKA
351	VDEELVEVPR	GEVGELIVRG	GSVMRGYLNM	PAATDETIVN	GWLKTGDFVT
401	IDEDGFIFIV	DRKKDLIISK	GONVYPREIE	EEIYKLDAVE	AAAVIGVKDR
451	YADEEIVAFV	QLKEGMDLGE	NEIRRHLRTV	LANFKIPKOT	HEKDGI.PRNA

501 TGKVLKRVLK EQFDGNK*

m164/a16498.3% identity in 517 aa overlap

m164.pep	10 MNRTYANFYEMLAA	20 AACRKNGNGT	30 AVFDGKEKTA	40 YRALKQEAEA	50 VAAYLQNIGV	60 KFGDTVA
a164			AVFDGKEKTA 30	 YRALKQEAEA 40	 VAAYLQNIGV 50	KFGDTVA
	70	80				60
m164.pep	LAVSNSTEFITAY	FAISAIGAVA	90 VPMNTFLKNS	100 EYAYILNDCK	110 ARFLFASAGL	120 SKELAGL
a164		AVSAIGAVA 80	VPMNTFLKNS 90	EYAYILNDCK 100	ARFLFASAGL 110	SKELAGL 120
	130	140	150	160	170	180
m164.pep	KAQTPVEKIIWTD	(SRPTGETAE	GDAFFEDVRR	FPEKPDLGRQ	PRINDLAHII	YTSGTTG
a164	KAQTPVEKIIWTGQ	SRPDGEMAE	GDAFFEDVRR 150	FPEKPDLGRQ 160	PRINDLAHII 170	YTSGTTG 180
	190	200	210	220	230	240
m164.pep	HPKGALISYANLFA	NLNGIERIF	KISKRDRFIV	FLPMFHSFTL	TAMVLLPIYM	ACSIILV
a164	HPKGALISYANLFA	NLNGIERIF 200	KISKRDRFIV 210	FLPMFHSFTL	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ACSIILV 240
	250	260	270	280	290	300
m164.pep	KSVFPFSNVLKQTI	LKRATVFLG	VPAIYTAMSK.	AKI PWYFRWF	NRIRLFISGG	APLAEOT
a164	KSVFPFSNVLKQAI 250	LKRATVFLG 260	VPAIYTAMSK 270	TKIPWYFRWF1	NRIRLFISGG	APLAEQT 300
	310	320	330	340	350	360
m164.pep	ILDFKAKFPRAKLI	EGYGLSEAS	PVVAVNTPER	QKARSVGIPL	PGLEAKAVDE	ELVEVPR
a164	ILDFKAKFPRAKLI 310	EGYGLSEAS 320	PVVAVNTPER	QKARSVGIPL	PGLEVKAVDE	ELVEVPR 360
	370	380	390	400	410	420
m164.pep	GEVGELIVRGGSVM	RGYLNMPAA	TDETIVNGWL	KTGDFVTIDE	DGFIFIVDRK	KDLIISK
a164	GEVGELIVRGGSVM 370	RGYLNMPAA 380	TDETIVNGWL	KTGDFVTIDE	OGFIFIVDRK	KDLIISK 420
	430	440	450	460	470	480
m164.pep	GQNVYPREIEEEIY	1111111111	HILLIHIE	1111111111		
a164	GQNVYPREIEEEIY 430	KLDAVEAAA 440	VIGVKDRYAD: 450	EEIVAFVQLKI 460	EGMDLGENEII 470	RRHLRTV 480
-164	490	500	510			
m164.pep a164	LANFKIPKQIHFKD	HHHHHH	111111111	11111		
a104	LANFKIPKQIHFKE 490	500	VLKRVLKEQF 510	DGNKX		

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 685>: g165.seq
1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC


```
51 GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
101 TGATTGAACG CTTGGAagat gTGGCGTTGG AATCGTCAAA cGCGTGGAAC
151 AACGCCGgca CGGGGCATTC CGCGCTGTGC GAATTGAACT AtgcgccGCT
201 GGGtgcggac ggcgtcatCA ATCCGGCGCg cgCCCTGAAT ATTGCCGAAC
     AGTTTCATGT CAGCCGCCAG TTTTGGGCga cgctgGTCGC GGAAGGCAAG
     TTGGAagaCA ATTCCTTCAT CAATGCcgtg ccgcatatGT Ctttggtgat
351 qAacgaagac cactqCCgtt acCTGCAAAA ACGCTATGAT GTGTTTAAAA
     CGCAGAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
     TCCGATTGGG CtccgCTGAT TATGCGCGGC CGGgacgaaA ACCAACCCGT
501 CGCCGCCAAC TATTCCGCCG Aaggcacgga tgtcgATTTC GGACGGCTGA
551 CGCGCCAGAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
 601 AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
 651 CAAAACCGCC GATACCCGCA ACCCAGACTG GCAGCTCACC CTCCGCACCC
     GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CACTGACCCT GCTGCAAAAA
     TCCGGCATCC CCGAAGGCAA AGGCTACGGC GGCTTACCCG TGTCCGGCCT
801 GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
     TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
     GACACACGCA ACGTAGACGG CAAACGACAC CTTATGTTCG GTCCTTACGC
951 AGGTTTCCGT TCCAACTTCC TCAAGCAAGG CTCGTTTATG GATTTGCCGC
1001 TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGCGCGC CGGCTGGGCG
1051 AATATGCCGC TGACCAAATA CcTGCTGGgC gAaTTGCgtt aa
```

This corresponds to the amino acid sequence <SEQ ID 686; ORF 165.ng>:

351 NMPLTKYLLG ELR*

```
g165.pep

1 MAEATDVVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTGHSALC ELNYAPLGAD GVINPARALN IAEQFHVSRQ FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCRYLQKRYD VFKTQKLFEN MEFSTDRNKI
151 SDWAPLIMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
201 NRHVEDIKRE SDGAWVLKTA DTRNPDWQLT LRTRFLFLGA GGGALTLLQK
251 SGIPEGKGYG GLPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL
301 DTRNVDGKRH LMFGPYAGFR SNFLKQGSFM DLPLSIHMDN LYPMLRAGWA
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 687>:

```
m165.seq (partial)
      1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC
         GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
    101 TGATTGAACG CTTGGAAGAT GTGGCGTTGG AATCGTCAAA CGCGTGGAAC
    151 AACGCCGGCA CGGGGCATTC CGCGCTGTGC GAATTGAACT ATGCGCCGTT
    201 GGGTGCAAAT GGGATTATCG ATCCGGCGCG CGCCCTCAAT ATTGCCGAAC
         AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGCTGGTCGC GGAAGGCAAG
    301 TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT
    351 GAATGAAGAC CATTGTTCTT ATCTTCAAAA ACGTTATGAC GCGTTTAAAA
     401 CCCAAAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
         TCCGATTGGG CTCCGCTGAT GATGCGCGGC CGGGACGAAA ACCAACCCGT
    501 CGCCGCCAAC TACTCCGCCG AAGGTACGGA TGTCGATTTC GGACGGCTGA
    551 CGCGCCAAAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
     601 AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
     651 CAAAACCGCC GATACCCGCA ACCCCGACGG GCAGCTCACC CTCCGTACCC
    701 GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CGCTGACCCT GCTGCAAAAA
    751 TCCGGCATCC CCGAAGGCAA AGGCTACGGC GGCTTCCCCG TGTCCGGCCT
    801 GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
    851 TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
    901 GACACACGCA ACGTGGACGG CAAACGCCAC CTTATGTTCG GCCCTTACGC
    951 AGGCTTCCGT TCCAACTTCC TCAAGCAAGG CTCGCTTATG GATTTGCCGC
    1001 TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGTGCGC CGGCTGGGCG
    1051 AATATGCCGC TGACCAAA...
```

This corresponds to the amino acid sequence <SEQ ID 688; ORF 165>:

```
### 165.pep (partial)

1 MAEATDVVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTGHSALC ELNYAPLGAN GIIDPARALN IAEQFHVSRQ FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCSYLQKRYD AFKTQKLFEN MEFSTDRNKI
151 SDWAPLMMRG RDENQFVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
```


201 NRHVEDIKRE SDGAWVLKTA DTRNPDGQLT LRTRFLFLGA GGGALTLLQK

470

- 251 SGIPEGKGYG GFPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL
- 301 DTRNVDGKRH LMFGPYAGFR SNFLKQGSLM DLPLSIHMDN LYPMLCAGWA
- 351 NMPLTK...

Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae

m165 / g165 97.2% identity in 356 aa overlap

	10	20	30	40	50	60
m165.pep	MAEATDVVLVGGGIN	ISATLGVLLK	ELEPSWEITI	LIERLEDVALE	SSNAWNNAG	FGHSALC
			1111111111		11111111111	
g165	MAEATDVVLVGGGIM	ISATLGVLLK	ELEPSWEITI	LIERLEDVALE	SSNAWNNAG	TGHSALC
	10	20	30	40	50	60
			•			
	70	80	90	100	110	120
m165.pep	ELNYAPLGANGIIDE	PARALNIAEQ	FHVSRQFWAT	LVAEGKLEDN	SFINAVPHMS	SLVMNED
" -						
q165	ELNYAPLGADGVINE					
•	70	80	90	100	110	120
•			• •			
	130	140	150	160	170	180
m165.pep	HCSYLQKRYDAFKTQ	KLFENMEFS	TDRNKISDWA			
	11 1111111:111					
g165	HCRYLOKRYDVFKT					
3	130	140	150	160	170	180
	250	140	150	100	170	100
	190	200	210	220	230	240
m165.pep	GRLTRQMVKYLQGKG					
mroo.pep						
g165						
9103	GRLTRQMVKYLQGKG 190	200	210		230	
	190	200	210	220	230	240
	250	260	070	000	000	200
-166			270	280	290	300
m165.pep	GGGALTLLQKSGIPE	GKGYGGFPV	SGLFFRNSNE	ETAEQHNAKV	YGQASVGAPI	PMSVPHL
1.65						
g165	GGGALTLLQKSGIPE					
	250	260	270	280	290	300
	310	320	330	340	350	
m165.pep	DTRNVDGKRHLMFGE					LTK
g165	DTRNVDGKRHLMFGE	PYAGFRSNFL	KQGSFMDLPI	SIHMONLYPM	ILRAGWANMPI	TKYLLG
	310	320	330	340	350	360
g165	ELRX					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 689>:

a165.seq					
1	ATGGCTGAAG	CGACAGACGT	TGTCTTGGTG	GGCGGCGGCA	TTATGAGCGC
51	GACTTTGGGC	GTTTTGCTCA	AAGAACTCGA	ACCGTCTTGG	GAAATCACCC
101	TGATTGAACG	CTTGGAAGAT	GTGGCGTTGG	AATCGTCAAA	CGCGTGGAAC
151	AACGCCGGCA	CGGGGCATTC	CGCGCTGTGC	GAATTGAACT	ATGCGCCGTT
201	GGGTGCAAAT	GGGATTATCG	ATCCGGCGCG	CGCCCTCAAT	ATTGCCGAAC
251	AGTTTCATGT	CAGCCGCCAG	TTTTGGGCGA	CGTTGGTCGC	GGAAGGCAAG
301	TTGGAAGACA	ATTCCTTCAT	CAATGCCGTG	CCGCATATGT	CTTTGGTGAT
351	GAATGAAGAC	CATTGTTCTT	ATCTTCAAAA	ACGTTATGAC	GCGTTTAAAA
401	CCCAAAAACT	TTTTGAAAAT	ATGGAATTTT	CCACCGATCG	.GAACAAAATT
451	TCCGATTGGG	CTCCGCTGAT	GATGCGCGGC	CGGGACGAAA	ACCAACCCGT
501	CGCCGCCAAC	TACTCCGCCG	AAGGCACGGA	TGTCGATTTC	GGACGGCTGA
551	CGCGCCAAAT	GGTGAAATAT	TTGCAGGGCA	AGGGCGTAAA	AACCGAGTTC

601	AACCGCCACG	TCGAAGACAT	CAAACGCGAA	TCCGACGGCG	CGTGGGTGCT
651	CAAAACCGCC	GATACCCGCA	ACCCCGACGG	GCAGCTCACC	CTCCGTACCC
701	GCTTCCTCTT	CCTCGGCGCG	GGCGGCGGCG	CGCTGACCCT	GCTGCAAAAA
751	TCCGGCATCC	CCGAAGGCAA	AGGCTACGGT	GGCTTTCCCG	TGTCCGGCCT
801	GTTCTTCCGC	AACAGCAACC	CCGAAACCGC	CGAACAACAC	AACGCCAAAG
851	TGTACGGGCA	GGCTTCCGTC	GGCGCGCCGC	CGATGTCCGT	CCCGCACCTC
901	GACACACGCA	ACGTGGACGG	CAAACGCCAC	CTTATGTTCG	GCCCTTACGC
951	AGGCTTCCGT	TCCAACTTCC	TCAAGCAAGG	CTCACTTATG	GATTTGCCGC
1001	TGTCCATCCA	TATGGACAAC	CTCTATCCTA	TGCTGCGCGC	CGGCTGGGCG
1051	AATATGCCGC	TGACCAAATA	CCTGCTGGGC	GAATTGCGTA	AAACCAAAGA
1101	AGAACGCTTC	GCCTCCCTGC	TGGAATACTA	CCCCGAGGCA	AACCCCGACG
1151	ACTGGGAACT	CATCACCGCA	GGGCAACGCG	TTCAAATCAT	TAAAAAAGAC
1201	TCCGAAAAAG	GCGGCGTGTT	GCAGTTTGGT	ACGGAGATTG	TCGCACACGC
1251	CGACGGCTCG	CTCGCCGCAT	TGCTGGGCGC	GTCGCCGGGC	GCATCGACCG
1301	CCGTGCCGCT	GATGATCCGG	CTGATGCACC	AATGCTTCCC	CGAACGCACC
1351	CCGTCTTGGG	AAGGCCGTCT	GAAAGAGCTG	GTACCGGGTT	ACGGCATCAA
1401	GTTGAACGAA	AACCCCGAAA	GGGCGGATGA	AATTATCGCC	TATACCGCGA
1451	AAGTGTTGGA	TATTTAA			

This corresponds to the amino acid sequence <SEQ ID 690; ORF 165.a>:

a165.pep

1 MAEATDVVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTGHSALC ELNYAPLGAN GIIDPARALN IAEQFHVSRQ FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCSYLQKRYD AFKTQKLFEN MEFSTDRNKI
151 SDWAPLMMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
201 NRHVEDIKRE SDGAWVLKTA DTRNPDGQLT LRTRFLFLGA GGGALTLLQK
251 SGIPEGKGYG GFPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL
301 DTRNVDGKRH LMFGPYAGFR SNFLKQGSLM DLPLSIHMDN LYPMLRAGWA
351 NMPLTKYLLG ELRKTKEERF ASLLEYYFEA NPDDWELITA GQRVQIIKKD
401 SEKGGVLQFG TEIVAHADGS LAALLGASPG ASTAVPLMIR LMHQCFPERT
451 PSWEGRLKEL VPGYGIKLNE NPERADEIIA YTAKVLDI*

m165/a165 99.7% identity in 356 aa overlap

	. 10	20	30	40	50	60
m165.pep	MAEATDVVLVGGG	IMSATLGVLL	KELEPSWEITI	LIERLEDVALE	SSNAWNNAG	GHSALC
		11111111111		[[]]		
a165	MAEATDVVLVGGG	IMSATLGVLL	KELEPSWEITI	LIERLEDVALE	SSNAWNNAG	GHSALC
	10	20	30	40	50	60
	70	80	90	100	110	120
m165.pep	ELNYAPLGANGII	DPARALNIAE	OFHVSRQFWAT	PLVAEGKLEDN	SFINAVPHMS	SLVMNED
		111111111111	11111111111		. ППППППП	
a165	ELNYAPLGANGII	DPARALNIAE(OFHVSRQFWAT	PLVAEGKLEDN	ISFINAVPHMS	SLVMNED
	70	80	90	100	110	120
			•			
	130	140	150	160	170	180
m165.pep	HCSYLQKRYDAFK	TQKLFENMEFS	STDRNKISDW <i>I</i>	APLMMRGRDEN	IQPVAANYSA	EGTDVDF
	11111111111			<i></i>		
a165	HCSYLQKRYDAFK			APLMMRGRDEN	iqpvaanysai	EGTDVDF
	130	140	150	160	170	180
	190	200	210	220	230	240
m165.pep	GRLTRQMVKYLQG					
	111111111111			1111111111		
a165	GRLTRQMVKYLQG				_	
	190	200	210	220	230	240
	252					
	250	260	270	280	290	300
m165.pep	GGGALTLLQKSGI					
-165	11111111111111			<u> </u>		
a165	GGGALTLLQKSGI					
	250	260	270	280	290	300

WO 99/57280

310 320 330 340 350 m165.pep DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLCAGWANMPLTK a165 DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLRAGWANMPLTKYLLG 310 320 330 340 ELRKTKEERFASLLEYYPEANPDDWELITAGQRVQIIKKDSEKGGVLQFGTEIVAHADGS a165 390 400

472

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 691>: g165-1.seq

```
1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC
  51 GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
 101 TGATTGAACG CTTGGAagat gTGGCGTTGG AATCGTCAAA cGCGTGGAAC
 151 AACGCCGgca CGGGGCATTC CGCGCTGTGC GAATTGAACT AtgcgccGCT
 201 GGGtgcggac ggcgtcatCA ATCCGGCGCg cgCCCTGAAT ATTGCCGAAC
 251 AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGCtggTCGC GGAAGGCAAG
 301
     TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT
 351 GAACGAAGAC CACTGCCGTT ACCTGCAAAA ACGCTATGAT GTGTTTAAAA
     CGCAGAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
 451 TCCGATTGGG CtccgCTGAT TATGCGCGGC CGGGACGAAA ACCAACCCGT
 501 CGCCGCCAAC TATTCCGCCG AAGGCACGGA TGTCGATTTC GGACGGCTGA
 551 CGCGCCAGAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
 601 AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
 651
     CAAAACCGCC GATACCCGCA ACCCAGACTG GCAGCTCACC CTCCGCACCC
 701
     GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CACTGACCCT GCTGCAAAAA
     TCCGGCATCC CCGAAGGCAA AGGCTACGGC GGCTTACCCG TGTCCGGCCT
 751
     GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
     TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
 851
 901 GACACACGCA ACGTAGACGG CAAACGACAC CTTATGTTCG GTCCTTACGC
 951 AGGTTTCCGT TCCAACTTCC TCAAGCAAGG CTCGTTTATG GATTTGCCGC
1001 TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGCGCGC CGGCTGGGCG
1051 AATATGCCGC TGACCAAATA CCTGCTGGGC GAATTGCGTA AAACCAAAGA
1101 AGAACGCTtt gCCTCCCTGC TGgaatacta cccGaggcag acccGACGAc
1151 tggtactcat cacgcaggnc acGCGTcata tcattanata tgactCgaaa
     ctgcgcgtgc tgcagttgta cgagattgtg ccaCGCGacg ctcgctcgcg
1251 cattctggag cgtcgcggcg catcacgctn tgcgctgata tccgctgatg
1301 acactgctcc gaGCGcgccc gtcttggaaa gtgtctga
```

This corresponds to the amino acid sequence <SEQ ID 692; ORF 165-1.ng>: g165-1.pep

```
1 MAEATDVVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
51 NAGTGHSALC ELNYAPLGAD GVINPARALN IAEQFHVSRQ FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCRYLQKRYD VFKTQKLFEN MEFSTDRNKI
151 SDWAPLIMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
201 NRHVEDIKRE SDGAWVLKTA DTRNPDWQLT LRTRFLFLGA GGGALTLLQK
251 SGIPEGKGYG GLPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL
301 DTRNVDGKRH LMFGPYAGFR SNFLKQGSFM DLPLSIHMDN LYPMLRAGWA
351 NMPLTKYLLG ELRKTKEERF ASLLEYYPRQ TRRLVLLITQX TRHILXYDSK
401 LRVLQLYEIV PRDARSRILE RRGASRXALI SADDTAPSAP VLESV*
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 693>: m165-1.seq

	1	ATGGCTGAAG	CGACAGACGT	TGTCTTGGTG	GGCGGCGGCA	TTATGAGCGC
	51	GACTTTGGGC	GTTTTGCTCA	AAGAACTCGA	ACCGTCTTGG	GAAATCACCC
:	101	TGATTGAACG	CTTGGAAGAT	GTGGCGTTGG	AATCGTCAAA	CGCGTGGAAC
:	151	AACGCCGGCA	CGGGGCATTC	CGCGCTGTGC	GAATTGAACT	ATGCGCCGTT
:	201	GGGTGCAAAT	GGGATTATCG	ATCCGGCGCG	CGCCCTCAAT	ATTGCCGAAC
:	251	AGTTTCATGT	CAGCCGCCAG	TTTTGGGCGA	CGCTGGTCGC	GGAAGGCAAG
:	301	TTGGAAGACA	ATTCCTTCAT	CAATGCCGTG	CCGCATATGT	CTTTGGTGAT
;	351	GAATGAAGAC	CATTGTTCTT	ATCTTCAAAA	ACGTTATGAC	GCGTTTAAAA
•	401	CCCAAAAACT	TTTTGAAAAT	ATGGAATTTT	CCACCGATCG	GAACAAAATT
4	451	TCCGATTGGG	CTCCGCTGAT	GATGCGCGGC	CGGGACGAAA	ACCAACCCGT
:	501	CGCCGCCAAC	TACTCCGCCG	AAGGTACGGA	TGTCGATTTC	GGACGGCTGA
:	551	CGCGCCAAAT	GGTGAAATAT	TTGCAGGGCA	AGGGCGTAAA	AACCGAGTTC
(601	AACCGCCACG	TCGAAGACAT	CAAACGCGAA	TCCGACGGCG	CGTGGGTGCT
•	651	CAAAACCGCC	GATACCCGCA	ACCCCGACGG	GCAGCTCACC	CTCCGTACCC
-	701	GCTTCCTCTT	CCTCGGCGCG	GGCGGCGGCG	CGCTGACCCT	GCTGCAAAAA
-	751	TCCGGCATCC	CCGAAGGCAA	AGGCTACGGC	GGCTTCCCCG	TGTCCGGCCT
8	301	GTTCTTCCGC	AACAGCAACC	CCGAAACCGC	CGAACAACAC	AACGCCAAAG

•

473

851	TGTACGGGCA	GGCTTCCGTC	GGCGCGCCG	C CGATGTCCGT	CCCCCACCTC
901				C CTTATGTTCG	
951				G CTCGCTTATG	
1001				A TGCTGTGCGC	
1051				C GAATTGCGTA	
1101				A CCCCGAGGCA	
1151					
				G TCCAAATCAT	
1201				r acggagattg	
1251				C GTCGCCGGGC	
1301				C AATGCTTCCC	
1351				G GTACCGGGTT	
1401			GGGCGGATG	A AATTATCGCC	TATACCGCGA
1451	AAGTATTGGA	TATTTAA			
This corre	esponds to	the amino a	acid seque	nce <seo i<="" td=""><td>D 694; ORF 165-1></td></seo>	D 694; ORF 165-1>
m165-1.per			•	`	,
1		CCCTMSATIC	VI.I.KET.EDG	W EITLIERLED	VAI ESSNAWN
51	MACTCHEALC	FINADICAN	CIIDDADAI	N IAEQFHVSRQ	VALESSNAWN
101					
151				D AFKTQKLFEN	
				F GRLTROMVKY	
201				T LRTRFLFLGA	
251				H NAKVYGQASV	
301				M DLPLSIHMDN	
351				A NPDDWELITA	
401				G ASTAVPLMIR	LMHQCFPERA
451	PSWEDRLKEL	VPGYGIKLNE	NPERADEII	A YTAKVLDI*	
m165-1/g16	5 5-1 89.	7% identity	in 428 aa	overlap	
				30 40	50 60
m165-1.pep					VALESSNAWNNAGTGHSALC
	111111		шинш	1111111111111	11111111111111111111111
g165-1	MAEATDV	/LVGGGIMSAT	LGVLLKELEP	SWEITLIERLED	VALESSNAWNNAGTGHSALC
				30 40	50 60
		70 1	30	90 100	110 120
m165-1.pep	ELNYAPLO	SANGIIDPARA			LEDNSFINAVPHMSLVMNED
g165-1	ELNYAPLO	ADGVINPARA	NTAFORHUSI	ROFWATLVAEGK	LEDNSFINAVPHMSLVMNED
9200 1	201.111.21			90 100	110 120
		,,		100	110 120
		130 14	10 1	50 160	170 180
m165-1.pep					RDENQPVAANYSAEGTDVDF
mroo r.pep					
g165-1					
9105-1					RDENQPVAANYSAEGTDVDF
	•	130 14	10 1:	50 160	170 180
		190 20	00 2:	10 000	222
m165_1 non				10 220	230 240
m165-1.pep					DTRNPDGQLTLRTRFLFLGA
~1 CE 1					
g165-1					DTRNPDWQLTLRTRFLFLGA
		190 20	00 2:	10 220	230 240
				70 280	290 300
m165-1.pep	GGGALTLI	LOKSGIPEGKG	GGFPVSGLF	frnsnpetaeqh	nakvygqasvgappmsvphl
	1111111		:		11311111111111111111111111
g165-1					NAKVYGQASVGAPPMSVPHL
	2	250 26	50 2 ⁻	70 280	290 300
				30 340	
m165-1.pep	DTRNVDG	KRHLMFGPYAGI	FRSNFLKQGS	LMDLPLSIHMDN	LYPMLCAGWANMPLTKYLLG
	11111111			:11111111111	
g165-1	DTRNVDG	KRHLMFGPYAGI	FRSNFLKQGS	FMDLPLSIHMDN	LYPMLRAGWANMPLTKYLLG
		310 32	20 3:	30 340	350 360
		370 38		90 400	410 420
m165-1.pep	ELRKTKE	ERFASLLEYYPI	EANPDDWELI'		SEKGGVLQFGTEIVAHADGS
	1111111		:: 11	1 11:11	[
g165-1					S-KLRVLQLYEIVPRDARSR
					400 410
				•	
	4	130 44	10 45	50 460	470 480
		-	-		1.5 400

```
474
m165-1.pep
             LAALLGASPGASTAVPLMIRLMHQCFPERAPSWEDRLKELVPGYGIKLNENPERADEIIA
             ILERRGASRXALISADDTAPSAPVLESVX
a165-1
             420
                      430
                                 440
The following partial DNA sequence was identified in N. meningitidis <SEO ID 695>:
      1 ATGGCTGAAG CGACAGACGT TGTCTTGGTG GGCGGCGGCA TTATGAGCGC
      51 GACTTTGGGC GTTTTGCTCA AAGAACTCGA ACCGTCTTGG GAAATCACCC
     101 TGATTGAACG CTTGGAAGAT GTGGCGTTGG AATCGTCAAA CGCGTGGAAC
     151 AACGCCGGCA CGGGGCATTC CGCGCTGTGC GAATTGAACT ATGCGCCGTT
     201 GGGTGCAAAT GGGATTATCG ATCCGGCGCG CGCCCTCAAT ATTGCCGAAC
     251 AGTTTCATGT CAGCCGCCAG TTTTGGGCGA CGTTGGTCGC GGAAGGCAAG
     301 TTGGAAGACA ATTCCTTCAT CAATGCCGTG CCGCATATGT CTTTGGTGAT
     351 GAATGAAGAC CATTGTTCTT ATCTTCAAAA ACGTTATGAC GCGTTTAAAA
     401 CCCAAAAACT TTTTGAAAAT ATGGAATTTT CCACCGATCG GAACAAAATT
         TCCGATTGGG CTCCGCTGAT GATGCGCGGC CGGGACGAAA ACCAACCCGT
     451
     501 CGCCGCCAAC TACTCCGCCG AAGGCACGGA TGTCGATTTC GGACGGCTGA
     551 CGCGCCAAAT GGTGAAATAT TTGCAGGGCA AGGGCGTAAA AACCGAGTTC
     601 AACCGCCACG TCGAAGACAT CAAACGCGAA TCCGACGGCG CGTGGGTGCT
     651
         CAAAACCGCC GATACCCGCA ACCCCGACGG GCAGCTCACC CTCCGTACCC
     701 GCTTCCTCTT CCTCGGCGCG GGCGGCGGCG CGCTGACCCT GCTGCAAAAA
     751
         TCCGGCATCC CCGAAGGCAA AGGCTACGGT GGCTTTCCCG TGTCCGGCCT
         GTTCTTCCGC AACAGCAACC CCGAAACCGC CGAACAACAC AACGCCAAAG
         TGTACGGGCA GGCTTCCGTC GGCGCGCCGC CGATGTCCGT CCCGCACCTC
    .901
         GACACACGCA ACGTGGACGG CAAACGCCAC CTTATGTTCG GCCCTTACGC
         AGGCTTCCGT TCCAACTTCC TCAAGCAAGG CTCACTTATG GATTTGCCGC
     951
         TGTCCATCCA TATGGACAAC CTCTATCCTA TGCTGCGCGC CGGCTGGGCG
    1001
    1051
         AATATGCCGC TGACCAAATA CCTGCTGGGC GAATTGCGTA AAACCAAAGA
    1101
         AGAACGCTTC GCCTCCCTGC TGGAATACTA CCCCGAGGCA AACCCCGACG
         ACTGGGAACT CATCACCGCA GGGCAACGCG TTCAAATCAT TAAAAAAGAC
    1151
         TCCGAAAAAG GCGGCGTGTT GCAGTTTGGT ACGGAGATTG TCGCACACGC
         CGACGGCTCG CTCGCCGCAT TGCTGGGCGC GTCGCCGGGC GCATCGACCG
    1251
    1301 CCGTGCCGCT GATGATCCGG CTGATGCACC AATGCTTCCC CGAACGCACC
    1351 CCGTCTTGGG AAGGCCGTCT GAAAGAGCTG GTACCGGGTT ACGGCATCAA
    1401 GTTGAACGAA AACCCCGAAA GGGCGGATGA AATTATCGCC TATACCGCGA
    1451 AAGTGTTGGA TATTTAA
This corresponds to the amino acid sequence <SEO ID 696; ORF 165-1.a>:
a165-1.pep
         MAEATDVVLV GGGIMSATLG VLLKELEPSW EITLIERLED VALESSNAWN
```

```
NAGTGHSALC ELNYAPLGAN GIIDPARALN IAEOFHVSRO FWATLVAEGK
101 LEDNSFINAV PHMSLVMNED HCSYLQKRYD AFKTOKLFEN MEFSTDRNKI
    SDWAPLMMRG RDENQPVAAN YSAEGTDVDF GRLTRQMVKY LQGKGVKTEF
    NRHVEDIKRE SDGAWVLKTA DTRNPDGQLT LRTRFLFLGA GGGALTLLQK
    SGIPEGKGYG GFPVSGLFFR NSNPETAEQH NAKVYGQASV GAPPMSVPHL
    DTRNVDGKRH LMFGPYAGFR SNFLKQGSLM DLPLSIHMDN LYPMLRAGWA
    NMPLTKYLLG ELRKTKEERF ASLLEYYPEA NPDDWELITA GORVOIIKKD
    SEKGGVLQFG TEIVAHADGS LAALLGASPG ASTAVPLMIR LMHQCFPERT
451 PSWEGRLKEL VPGYGIKLNE NPERADEIIA YTAKVLDI*
```

a165-1/m165-1 99.4% identity in 488 aa overlap

	10	20	30	40	50	60
a165-1.pep	MAEATDVVLVGGG1	MSATLGVLL	KELEPSWEITI	LIERLEDVALE	SSNAWNNAG	TCHSALC
• •		1111111111				
-165 1	11111111111111111111111111111111111111					
m165-1	MAEATDVVLVGGG1		KELEPSWEITI	LIERLEDVALE	SSNAWNNAG:	FGHSALC
	10	20	30	40	50	60
	70	80	90	100	110	120
a165-1.pep	ELNYAPLGANGIII					
4105 1.pcp						
m165-1	ELNYAPLGANGIII	PARALNIAE(PHVSRQFWA	LVAEGKLEDN	SFINAVPHMS	SLVMNED
	70	80	90	100	110	120
	130	140	150	160	170	180
a165-1.pep	HCSYLQKRYDAFKT	QKLFENMEFS	TORNKISOWA	PLMMRGRDEN	OPVAANYSAI	EGTDVDF
- -		ĪПППП				
m165-1			·	D. 1		
	HCSYLQKRYDAFKT				QPVAANYSAI	EGTDVDF
	130	140	150	160	170	180
	190	200	210	220	230	240
					230	240

a165-1.pep	GRLTRQMVKYLQGKGVKTEFNRHVEDIKRESDGAWVLKTADTRNPDGQLTLRTRFLFLGA
m165-1	
a165-1.pep	250 260 270 280 290 300 GGGALTLLQKSGIPEGKGYGGFPVSGLFFRNSNPETAEQHNAKVYGQASVGAPPMSVPHL
m165-1	
-165 1	310 320 330 340 350 360
a165-1.pep	DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLRAGWANMPLTKYLLG
m165-1	DTRNVDGKRHLMFGPYAGFRSNFLKQGSLMDLPLSIHMDNLYPMLCAGWANMPLTKYLLG
	310 320 330 340 350 360
a165-1.pep	370 380 390 400 410 420 ELRKTKEERFASLLEYYPEANPDDWELITAGQRVQIIKKDSEKGGVLQFGTEIVAHADGS
m165-1	
MIOJ-I	370 380 390 400 410 420
-165 1	430 440 450 460 470 480
a165-1.pep	LAALLGASPGASTAVPLMIRLMHQCFPERTPSWEGRLKELVPGYGIKLNENPERADEIIA
m165-1	LAALLGASPGASTAVPLMIRLMHQCFPERAPSWEDRLKELVPGYGIKLNENPERADEIIA
	430 440 450 460 470 480
a165-1.pep	489 YTAKVLDIX
m165-1	YTAKVLDIX
M1051	IINVADOLY
2165-1/2320	· ·
>gi 1736851 P33940] [Esc to 490 resid identical to ACCESSION: U Score = 45	NOTIFIED BY THE PROPERTY OF TH
sp[P33940]: >gi[1736851] P33940] [Esc to 490 resic identical to ACCESSION: t Score = 45 Identities Query: 3	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372\$5; similar to [SwissProt Accession Number cherichia coli] >gi 1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct of GB: ECOHU49_33 [000008 (490 aa) but contains 58 additional N-term resi Length = 548 [08 bits (1167), Expect = e-128 [08 233/490 (47\$), Positives = 303/490 (61\$), Gaps = 5/490 (1\$) [08 233/490 (47\$)]
sp[P33940]? >gi[1736851] P33940] [Esc to 490 resic identical tc ACCESSION: t Score = 45 Identities Query: 3	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli) >gi 1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct oGB: ECOHU49_33 [300008 (490 aa) but contains 58 additional N-term resi Length = 548 [38 bits (1167), Expect = e-128
sp P33940 S >gi 1736851 P33940 [Esc to 490 residintical to ACCESSION: to Score = 45 Identities Query: 3 F Sbjct: 30 C	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli] >gil 788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct ogb: ECOHU49_33 100008 (490 aa) but contains 58 additional N-term resi Length = 548 108 bits (1167), Expect = e-128 108 = 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) 108 CATDVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALCEL 62 109 TDV+L+GGGIMSATLG L+ELEP W +T++ERLE VA ESSN WNNAGTGHSAL EL 109 TDV+L+GGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89 100 PCT TDV+L+GGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89
sp[P33940]? >gi[1736851] P33940] [Esc to 490 resic identical tc ACCESSION: t Score = 45 Identities Query: 3 E Sbjct: 30 Query: 63 M	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli) >gi 1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct og GB: ECOHU49_33 [MO008 (490 aa) but contains 58 additional N-term resi Length = 548 [Main Bar
sp[P33940]; >gi[1736851] P33940] [Esc to 490 resic identical tc ACCESSION: t Score = 45 Identities Query: 3 E Sbjct: 30 Query: 63 M Sbjct: 90 M	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli] >gi 1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct ogb: ECOHU49_33 [MO0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58 additional N-term resi Length = 548 [Mo0008 (490 aa) but contains 58
sp[P33940]; >gi[1736851] P33940] [Esc to 490 resic identical tc ACCESSION: t Score = 45 Identities Query: 3 E Sbjct: 30 Query: 63 M Sbjct: 90 M Query: 122 Q Sbjct: 150 M	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli] >gil1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dies of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct of GB: ECOHU49_33 [00008 (490 aa) but contains 58 additional N-term resi Length = 548 [08 bits (1167), Expect = e-128] [08 ab bits (1167), Expect = e-128] [09 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [04 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [05 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [06 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [07 ac 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [0
sp P33940 S >gi 1736851 P33940 [Esc to 490 residing to the second s	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli] >gil1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct og GB: ECOHU49_33 [00008 (490 aa) but contains 58 additional N-term resi Length = 548 [08 bits (1167), Expect = e-128 [08 a bits (1167), Expect = e-128 [09 a bits (1167), Positives = 303/490 (61%), Gaps = 5/490 (1%) [08 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [00 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128 [09 a bits (1167), Expect = e-128
sp P33940 S >gi 1736851 P33940 [Esc to 490 residing to the second s	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION [gnl PID d1016718 (D90850) ORF_ID:o372#5; similar to [SwissProt Accession Number cherichia coli] >gil1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct of GB: ECOHU49_33 [00008 (490 aa) but contains 58 additional N-term resi Length = 548 [08 bits (1167), Expect = e-128 [08 = 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) [08 CATDVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALCEL 62 [09 TOV+L+GGGIMSATLG L+ELEP W +T++ERLE VA ESSN WNNAGTGHSALCEL 62 [19 TOV+L+GGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89 [19 A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [10 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [11 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [12 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [13 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [14 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [15 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [16 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [17 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [17 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [18 P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ [19 P A+G I +A+ I E F +SRQFWA V G L SFIN
sp[P33940]: >gi[1736851] P33940] [Esc to 490 resic identical tc ACCESSION: t Score = 45 Identities Query: 3	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION Ignl[PID d1016718 (D90850) ORF_ID:0372#5; similar to [SwissProt Accession Number cherichia coli] >gil[788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct identical by the contains 58 additional N-term resi Length = 548 (167), Expect = e-128 (167), Expect = e-128 (167), Expect = e-128 (167), Expect = e-128 (167), Expect = a03/490 (61%), Gaps = 5/490 (1%) CATOVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALCEL 62 (167) CATOVVLVGGGIMSATLG L+ELEP W +T++ERLE VA ESSN WNNAGTGHSALCEL 89 (170) CATOVVLLIGGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89 (170) CATOVVLVGGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89 (170) CATOVVLVGGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESVGAPPMSVPHH
sp P33940 2 >gi 1736851 P33940 [Esc to 490 resic identical tc ACCESSION: U Score = 45 Identities Query: 3	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION gnl[PID d1016718 (D90850) ORF ID:0372#5; similar to [SwissProt Accession Number cherichia coli) >gil1788539 (AE000310) f548; This 548 aa ORF is 100 pct identical thus of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct comparison of the coling of the contains 58 additional N-term resi Length = 548 comparison of the coling of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains to contains the contains contains 58 additional N-term resi Length = 548 comparison of the contains 58 additional N-term resi Length = 548 comparison of the contains con
sp[P33940]: >gi[1736851] P33940] [Esc to 490 resic identical tc ACCESSION: t Score = 45 Identities Query: 3	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION gnl[PID](d1016718 (D90850) ORF_ID:0372#5; similar to [SwissProt Accession Number cherichia coli] >gil1788539 (AE000310) f548; this 548 aa ORF is 100 pct identical thus of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct close; ECOHU49_33 000008 (490 aa) but contains 58 additional N-term resi Length = 548 88 bits (1167), Expect = e-128 = 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) CATDVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALCEL 62 TDV+L+GGGIMSATLG L+ELEP W +T++ERLE VA ESSN WNNAGTGHSALCEL 62 ETDV+L+GGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89 NYAPLGANGIIDPARALNIAEQFHVSRQFWATLVAEGKLED-NSFINAVPHMSLVMNEDH 121 NY P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ INTPQNADGSISIEKAVAINEAFQISRQFWAHQVERGVLRTPRSFINTVPHMSFVWGEDN 149 CSYLQKRYDAFKTQKLFENMEFSTDRNKISDWAPLMMRGRDENQPVAANYSAEGTDVDFG 181 ++L+ RY A + LF M +S D +I +WAPL+M GRD Q VAA + GTDV++C ONFLRARYAALQQSSLFRGMRYSEDHAQIKEWAPLVMEGRDPQQKVAATRTEIGTDVNYG 209 LLTRQMVKYLQGKG-VKTEFNRHVEDIKRESDGAWVLKTADTRNPDGQLTXXXXXXXXXX 240 +TRQ+ LQ K + V +KR D W + AD +N Q CITRQLIASLQKKSNFSLQLSSEVRALKRNDDNTWTVTVADLKNGTAQ-NIRAKFVFIGA 268 CXXXXXXXQKSGIPEGKGYGGFPVSGLFFRNSNPETAEQHNAKVYGQASVGAPPMSVPHL 300 Q+SGIPE K Y GFPV G F + NP+ H AKVYG+ASVGAPPMSVPHL 300 Q+SGIPE K Y GFPV G F + NP+ H AKVYG+ASVGAPPMSVPHL 328 CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
sp P33940 2 >gi 1736851 P33940 [Esc to 490 resic identical tc ACCESSION: [Content of the content	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION gnl[PID d1016718 (D90850) ORF_ID:0372#5; similar to [SwissProt Accession Number cherichia coli) >gil[788539 (AE000310) f548; This 548 aa ORF is 100 pct identical dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct dues of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct do GB: ECOHU49 33 100008 (490 aa) but contains 58 aditional N-term resi Length = 548 188 bits (1167), Expect = e-128 = 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) CATOVULVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALCEL 62 **TDV+L+GGGIMSATLG L+ELEP W +T++ERLE VA ESSN WNNAGTGHSALCEL 62 **TDV+L+GGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89 INAPLGANGIIDPARALNIAEQFHVSRQFWATLVAEGKLED-NSFINAVPHMSLVMNEDH 121 IN P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ INTPONADGSISIEKAVAINEAFQISRQFWAHQVERGVLRTPRSFINTVPHMSFVWGEDN 149 ESYLQKRYDAFKTOKLFENMEFSTDRNKISDWAPLMMRGRDENQPVAANYSAEGTDVDFG 181 ++L+ RY A + LF M +S D +I +WAPL+M GRD Q VAA + GTDV++G INFLRARYAALQQSSLFRGMRYSEDHAQIKEWAPLVMEGRDPQQKVAATRTEIGTDVNYG 209 LLTRQMVKYLQGKG-VKTEFNRHVEDIKRESDGAWLKTADTRNPDGQLTXXXXXXXXXXX 240 +TRQ++ LQ K + V +KR D W + AD +N Q ETTRQLIASLQKKSNFSLQLSSEVRALKRNDDNTWTVTVADLKNGTAQ-NIRAKFVFIGA 268 EXXXXXXXXQKSGIPEGKGYGGFFVSGLFFRNSNPETAEQHNAKVYQQASVGAPPMSVPH1 300 Q+SGIPE K Y GFPV G F + NP+ H AKVYG+ASVGAPPMSVPH1 308 **CTRNVDGKRHLMFGPYAGFFSNFLKQGSLMDLPLSIHMDNLYPMLRAGWANMPLTKYLLG 360 **TR +DGKR +++FGP+A F + FLK GSL DL S N+ PM+ G N L KYL+ **TRRVLDGKRVVLFGFFATFSTKFLKNGSLWDLMSSTTTSNVMPMMHVGLDNFDLVKYLVS 388
sp[P33940]: >gi[1736851] P33940] [Esc to 490 resic identical tc ACCESSION: t Score = 45 Identities Query: 3	COJH_ECOLI HYPOTHETICAL 60.2 KD PROTEIN IN ECO-ALKB INTERGENIC REGION gnl[PID](d1016718 (D90850) ORF_ID:0372#5; similar to [SwissProt Accession Number cherichia coli] >gil1788539 (AE000310) f548; this 548 aa ORF is 100 pct identical thus of YOJH_ECOLI SW: P33940 (492 aa) but contains 56 additional N-ter aa; 100 pct close; ECOHU49_33 000008 (490 aa) but contains 58 additional N-term resi Length = 548 88 bits (1167), Expect = e-128 = 233/490 (47%), Positives = 303/490 (61%), Gaps = 5/490 (1%) CATDVVLVGGGIMSATLGVLLKELEPSWEITLIERLEDVALESSNAWNNAGTGHSALCEL 62 TDV+L+GGGIMSATLG L+ELEP W +T++ERLE VA ESSN WNNAGTGHSALCEL 62 ETDV+L+GGGIMSATLGTYLRELEPEWSMTMVERLEGVAQESSNGWNNAGTGHSALMEL 89 NYAPLGANGIIDPARALNIAEQFHVSRQFWATLVAEGKLED-NSFINAVPHMSLVMNEDH 121 NY P A+G I +A+ I E F +SRQFWA V G L SFIN VPHMS V ED+ INTPQNADGSISIEKAVAINEAFQISRQFWAHQVERGVLRTPRSFINTVPHMSFVWGEDN 149 CSYLQKRYDAFKTQKLFENMEFSTDRNKISDWAPLMMRGRDENQPVAANYSAEGTDVDFG 181 ++L+ RY A + LF M +S D +I +WAPL+M GRD Q VAA + GTDV++C ONFLRARYAALQQSSLFRGMRYSEDHAQIKEWAPLVMEGRDPQQKVAATRTEIGTDVNYG 209 LLTRQMVKYLQGKG-VKTEFNRHVEDIKRESDGAWVLKTADTRNPDGQLTXXXXXXXXXX 240 +TRQ+ LQ K + V +KR D W + AD +N Q CITRQLIASLQKKSNFSLQLSSEVRALKRNDDNTWTVTVADLKNGTAQ-NIRAKFVFIGA 268 CXXXXXXXQKSGIPEGKGYGGFPVSGLFFRNSNPETAEQHNAKVYGQASVGAPPMSVPHL 300 Q+SGIPE K Y GFPV G F + NP+ H AKVYG+ASVGAPPMSVPHL 300 Q+SGIPE K Y GFPV G F + NP+ H AKVYG+ASVGAPPMSVPHL 328 CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Query: 421 XXXXXXXXXXXXXXVPLMIRLMHQCFPER--TPSWEGRLKELVPGYGIKLNENPERADEI 478

WO 99/57280

```
P+M+ L+ + F +R +P W+ LK +VP YG KLN + .
Sbjct: 449 IAALLGASPGASTAAPIMLNLLEKVFGDRVSSPQWQATLKAIVPSYGRKLNGDVAATERE 508
Query: 479 IAYTAKVLDI 488
          + YT++VL +
Sbjct: 509 LQYTSEVLGL 518
The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 697>:
     g204.seq
               atggcggcgg cggaaataaa acgccccctc gctgtcgatt tccagcacat
           51
               agegteegtt etgeaeggeg geatageege ttttgeetge etgatagggt
          101
              tgcagggcgg aatgcgaaat caggtaatca gtcagtttgc cgccgtcttc
          151 ggcgatattg cccaccagtt tggcaaacaa ggtatggcac acgccgtttt
          201 ccgcccagcc cgaaggcgcg tcctttccgt cggtttccat acatttgccg
          251 acgacggett ccaagtegtt gggatgettt ccggtcagec ggacggegtt
          301 ttgttccggc aagcetttaa tcggataact gatttgtttt ttgccgtcgt
          351 tggttttgcc ttcgctactt tgtcccaaag ccaaaccggc aatcgccgta
          401 ttgtcgatgt atttgacttt gaaaaccggt ttcggcgcgc tttgtgccgc
          451 attttgcggc tgttccgccg tattttcgga tttgccgcag gcggcaagca
          501 gcaggcagcc gcccaacacg gcaaaaggta ttttcagcat tccgcactcc
               tgatggtttc aaaatgccgt ctgaaatgcc gtctgaaacg tggcaggcgg
          601 aggtteggac ggcattgggt ttattteaac gggeggatge egacegeate
          651 gcgtacttta tccaacaatt cgcgcgcttc tttgcgcgct ttttgcgcgc
          701 ctgcctgcaa aatctcttcg atttgcgaag gattagaggt caatgcgttg
This corresponds to the amino acid sequence <SEQ ID 698; ORF 204.ng>:
     g204.pep
               MAAAEIKRPL AVDFQHIASV LHGGIAAFAC LIGLQGGMRN QVISQFAAVF
           51 GDIAHQFGKQ GMAHAVFRPA RRRVLSVGFH TFADDGFQVV GMLSGQPDGV
          101 LFRQAFNRIT DLFFAVVGFA FATLSQSQTG NRRIVDVFDF ENRFRRALCR
          151 ILRLFRRIFG FAAGGKQQAA AQHGKRYFQH SALLMVSKCR LKCRLKRGRR
          201 RFGRHWVYFN GRMPTASRTL SNNSRASLRA FCAPACKISS ICEGLEVNAL
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 699>:
     m204.seq
               ATGGCGGCGG CGGAAATAAA ACGCCCCTTC GCTGTCGATT TCCAGCACAT
               AGCGTCCGTT CTGCACGGCG GCATAGCCGC TTTTGCCTGC CTGATAGGGT
          101 TGCAGGGCGG CATGCGAAAC TAGGTAATCC GTCAGTTTGC CGCCGTCTTC
          151 GGCGATATTG CCCACCAGTT TGGCAAACAA GGTATGGCAC ACGCCGTTTT
          201 CTGCCCAACC TGCCGGACTG TCCTTATCAT CGGTTTCCAT ACATTTGCCG
          251 CTGACGGCTT CCAAGTCGCC GGGATGCTTG CCGATCAGTC GGATAACATT
          301 TTGTTCCGGC AAGCCTTTAA TCGGATAACT GATTTGTTTT TTGCCGTCGT
          351 TGGTTTTGCC TTCGCTGCTT TGTCCCAAAT CCAAACCGGC AATCGCCGTA
               TTGTCGATAT ATATGACTTT GAAAACCGGT TTCGGCGCGC TTTGTACCGC
          451 GTTTTGCGGC TGTACCGCCG TATTTWCGGA TTTGCCGCaC GGCaArGCAG
          501 CAGGCAGCCG CCCAATACGG CAAAArAwGT wTTCAGCATT CCACAyTCCT
          551 GATGGTTTCA AAATGCCGTC TGAAACGCGG CAGGCGGAGG TTCGGACGGC
          601 ATCGGGTTCA TTTCAACGGG CGGATGCCGA CCGCATCGGT ACTTTGTCCA
          651 ATAATTCGCG TGCTTCTTTA CGCGCTTTCG CCGCGCCTGC CTGCAAAATC
          701 TCTTCGATTT GCGAAGGGTC GGCGGTCAGC TCGTTGTAG
This corresponds to the amino acid sequence <SEQ ID 700; ORF 204>:
     m204.pep
               MAAAEIKRPF AVDFQHIASV LHGGIAAFAC LIGLOGGMRN *VIROFAAVF
           51 GDIAHQFGKQ GMAHAVFCPT CRTVLIIGFH TFAADGFQVA GMLADQSDNI
               LFRQAFNRIT DLFFAVVGFA FAALSQIQTG NRRIVDIYDF ENRFRRALYR
          151 VLRLYRRIXG FAATAXQQAA AQYGKXXXQH STXLMVSKCR LKRGRRRFGR
          201 HRVHFNGRMP TASGTLSNNS RASLRAFAAP ACKISSICEG SAVSSL*
Computer analysis of this amino acid sequence gave the following results:
```

Homology with a predicted ORF from N. gonorrhoeae

ORF 204 shows 82.0% identity over a 250 aa overlap with a predicted ORF (ORF 204.ng) from N. gonorrhoeae:

m204/g204

m204.pep	10 MAAAEIKRPFAVDFO		HHHHHH			111111
9204	MAAAEIKRPLAVDFQ 10	20	30	40	50	HQFGKQ 60
m204.pep	70 GMAHAVFCPTCRTVI : GMAHAVFRPARRRVI	:111111	: :	Î 1::111Î1	ШНПП	111111
	70	80	90	100	110	120
m204.pep	130 FAALSQIQTGNRRIV :	140 DIYDFENRFR ::	150 RALYRVLRLY : :		170 XQQAAAQYG :	
g204	FATLSQSQTGNRRIV 130	DVFDFENRFR 140	RALCRILRLF 150	RRIFGFAAGG 160	KQQAAAQHG 170	KRYFQH 180
m204.pep	190 STXLMVSKCRLK : SALLMVSKCRLKCRL	111111111	210 RVHFNGRMPT : WVVENGRMRT	11 1111111	1111111111	ACKISS
3	190	200	210	220	230	240
m204.pep	240 ICEGSAVSSLX ::					
g204	ICEGLEVNAL 250					

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 701>: a204.seq

1	ATGGCGGCGG	CGGAAATAAA	ACGCCCCCTC	GCTGTCGATT	TCCAGCACAT
51	AGCGTCCGTT	CTGCACGGCG	GCATAGCCGC	TTTTGCCTGC	CTGATAGGGT
101	TGCAGGGCGG	AATGCGAAAT	CAGGTAATCC	GTCAGTTTGC	CGCCGTCTTC
151	GGCGATATTG	CCCACCAGTT	TGGCAAACAA	GGTATGGCAC	ACGCCGTTTG
201	CCGCCCAGCC	CGAAGGCGCG	CCCTTTCCGT	CGGTTTCCAT	ACATTTGCCG
251	ACGACGGCTT			CCGGTCAGCC	
301		AAGCCTTT			
351			• • • • • • • • • •		
401		• • • • • • • • • • • • • • • • • • • •			
451					
501		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		
551				AAGAG	GTTCGGACGG
601	CATTGGGTTT	ATTTCAACGG	GCGGATACCG	ACCGCATCAC	GTACTTTGCC
651	CAATAATTCG	CGTGCTTCTT	TACGCGCTTT	TTGCGCGCCT	GCCTGCAAAA
701	TCTCTTCGAT	TTGCGAAGGG	TCGGCGGTCA	GCTCGTTGTA	G

This corresponds to the amino acid sequence <SEQ ID 702; ORF 204.a>: a204.pep

1	MAAAEIKRPL	AVDFQHIASV	LHGGIAAFAC	LIGLQGGMRN	OVIROFAAVF
51	GDIAHQFGKQ	GMAHAVCRPA	RRRALSVGFH	TFADDGFQVV	GMLAGOPDDV
	LFRQAF				
151					KRFGR
201	HWVYFNGRIP	TASETI PNNS	RASTRAFCAR	ACKISSICEC	CAMCCT +

```
m204/a204 54.5% identity in 246 aa overlap
                              20
                      10
                                      30
               MAAAEIKRPFAVDFQHIASVLHGGIAAFACLIGLQGGMRNXVIRQFAAVFGDIAHQFGKQ
    m204.pep
               a204
               MAAAEIKRPLAVDFQHIASVLHGGIAAFACLIGLQGGMRNQVIRQFAAVFGDIAHQFGKQ
                                      30
                                              40
                              80
                                      90
                                             100
                                                              120
               GMAHAVFCPTCRTVLIIGFHTFAADGFQVAGMLADQSDNILFRQAFNRITDLFFAVVGFA
    m204.pep
               a204
               GMAHAVCRPARRALSVGFHTFADDGFQVVGMLAGQPDDVLFRQAF
                      70
                              80
                     130
                             140
                                     150
                                             160
                                                     170
                                                              180
               FAALSQIQTGNRRIVDIYDFENRFRRALYRVLRLYRRIXGFAATAXQQAAAQYGKXXXQH
    m204.pep
    a204
                     190
                             200
                                     210
                                                     230
    m204.pep
               STXLMVSKCRLKRGRRRFGRHRVHFNGRMPTASGTLSNNSRASLRAFAAPACKISSICEG
                           a204
                           -KRFGRHWVYFNGRIPTASRTLPNNSRASLRAFCAPACKISSICEG
                            110
                                    120
                                            130
                                                    140
    m204.pep
               SAVSSLX
               1111111
    a204
               SAVSSLX
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 703>: g205.seq

```
atgctgaaaa taccttttgc cgtgttgggc ggctgcctgc tgcttgccgc
    ctgcggcaaa tccgaaaata cggcggaaca gccgcaaaat gcggcacaaa
101 gcgcgccgaa accggttttc aaagtcaaat acatcgacaa tacggcgatt
151 gccggtttgg ctttgggaca aagtagcgaa ggcaaaacca acgacggcaa
201 aaaacaaatc agttatccga ttaaaggctt gccggaacaa aacgccgtcc
251 ggctgaccgg aaagcatccc aacgacttgg aagccgtcgt cggcaaatgt
301 atggaaaccg acggaaagga cgcgccttcg ggctgggcgg aaaacggcgt
351 gtgccatacc ttgtttgcca aactggtggg caatatcgcc gaagacggcg
401 gcaaactgac tgattacctg atttcgcatt ccgccctgca accctatcag
451 gcaggcaaaa gcggctatgc cgccgtgcag aacggacgct atgtgctgga
501 aatcgacagc gaggggggt tttatttccg ccgccgccat tattga
```

This corresponds to the amino acid sequence <SEQ ID 704; ORF 205.ng>: g205.pep

- MLKIPFAVLG GCLLLAACGK SENTAEQPQN AAQSAPKPVF KVKYIDNTAI AGLALGQSSE GKTNDGKKQI SYPIKGLPEQ NAVRLTGKHP NDLEAVVGKC 51
- METDGKDAPS GWAENGVCHT LFAKLVGNIA EDGGKLTDYL ISHSALQPYQ
- AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 705>: m205.seg

ATGCTGAAWA CWTYTTTTGC CGTATTGGGC GGCTGCCTGC TGCYTLGCCG tGCGGCAAAT CCGWAAATAC GGCGGTACAG CCGCAAAACG CGGTACAAAG 101 CGCGCCGAAA CCGGTTTTCA AAGTCATATA TATCGACAAT ACGGCGATTG 151 CCGGTTTGGA TTTGGGACAA AGCAGCGAAG GCAAAACCAA CGACGGCAAA 201 AAACAAATCA GTTATCCGAT TAAAGGCTTG CCGGAACAAA ATGTTATCCG 251 ACTGATCGGC AAGCATCCCG GCGACTTGGA AGCCGTCAGC GGCAAATGTA TGGAAACCGA TGATAAGGAC AGTCCGGCAG GTTGGGCAGA AAACGGCGTG TGCCATACCT TGTTTGCCAA ACTGGTGGGC AATATCGCCG AAGACGGCGG 351 401 CAAACTGACG GATTACCTAG TTTCGCATGC CGCCCTGCAA CCCTATCAGG CAGGCAAAAG CGGCTATGCC GCCGTGCAGA ACGGACGCTA TGTGCTGGAA 501 ATCGACAGCG AAGGGGCGTT TTATTTCCGC CGCCGCCATT ATTGA

This corresponds to the amino acid sequence <SEQ ID 706; ORF 205>: m205.pep MLXTXFAVLG GCLLXCRCGK SXNTAVQPQN AVQSAPKPVF KVIYIDNTAI 1 AGLDLGQSSE GKTNDGKKQI SYPIKGLPEQ NVIRLIGKHP GDLEAVSGKC 51 METDDKDSPA GWAENGVCHT LFAKLVGNIA EDGGKLTDYL VSHAALOPYO 151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 205 shows 88.4% identity over a 181 aa overlap with a predicted ORF (ORF 205.ng) from N. gonorrhoeae: m205/g205 10 20 30 40 50 60 m205.pep MLXTXFAVLGGCLLXCRCGKSXNTAVQPQNAVQSAPKPVFKVIYIDNTAIAGLDLGQSSE MLKIPFAVLGGCLLLAACGKSENTAEQPQNAAQSAPKPVFKVKYIDNTAIAGLALGQSSE q205 20 30 40 50 60 70 ឧ೧ 90 100 110 GKTNDGKKQISYPIKGLPEQNVIRLIGKHPGDLEAVSGKCMETDDKDSPAGWAENGVCHT m205.pep g205 GKTNDGKKQISYPIKGLPEQNAVRLTGKHPNDLEAVVGKCMETDGKDAPSGWAENGVCHT 70 80 90 100 110 130 140 150 160 170 LFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQNGRYVLEIDSEGAFYFRRRH m205.pep g205 $\verb|LFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQNGRYVLEIDSEGAFYFRRRH$ 130 140 150 160 170 180 m205.pep ΥX g205 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 707>: a205.seq (partial) TCCGAACCTC TTAAAGGCTT GCCGGAACAA AACGTCGTCC GGCTGACCGG 1 CAAGCATCCC AACGACTTGG AAGCCGTCGT CGGCAAATGT ATGGAAACCG 101 ACGGAAAGGG CGCGCCTTCG GGCTGGGCGG CAAACGGCGT GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC GAAGACGGCG GCAAACTGAC 201 GGATTACCTG ATTTCGCATT CCGCCCTGCA ACCCTATCAG GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT ATGTGCTGGA AATCGACAGC 251 GAGGGGGCGT TTTATTTCCG CCGCCGCCAT TATTGA This corresponds to the amino acid sequence <SEQ ID 708; ORF 205.a>: a205.pep (partial) SEPLKGLPEQ NVVRLTGKHP NDLEAVVGKC METDGKGAPS GWAANGVCHT LFAKLVGNIA EDGGKLTDYL ISHSALQPYQ AGKSGYAAVQ NGRYVLEIDS 101 EGAFYFRRRH Y* m205/a205 88.3% identity in 111 aa overlap 50 60 70 80 100 KVIYIDNTAIAGLDLGQSSEGKTNDGKKQISYPIKGLPEQNVIRLIGKHPGDLEAVSGKC m205.pep 1 1:111111111:11 1111:11111 111 a205 SEPLKGLPEQNVVRLTGKHPNDLEAVVGKC 10 20 30 110 120 140 150 METDDKDSPAGWAENGVCHTLFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQ m205.pep

a205 METDGKGAPSGWAANGVCHTLFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQ 40 50 60 70 80 90 170 NGRYVLEIDSEGAFYFRRRHYX m205.pep a205 NGRYVLEIDSEGAFYFRRRHYX 100 110 The following partial DNA sequence was identified in N. gonorrhoeae <SEO ID 709>: g205-1.seq (partial) 1 ATGCTGAAAA TAcCTTTTGC CGTGTTGGGC GGCTGCCTGC TGCTTGCCGC 51 CTGCGGCAAA TCCGAAAATA CGGCGGAACA GCCGCAAAAT GCGGCACAAA 101 GCGCGCCGAA ACCGGTTTTC AAAGTCAAAT ACATCGACAA TACGGCGATT 151 GCCGGTTTGG CTTTGGGACA AAGTAGCGAA GGCAAAACCA ACGACGGCAA 201 AAAACAAATC AGTTATCCGA TTAAAGGCTT GCCGGAACAA AACGCCGTCC 251 GGCTGACCGG AAAGCATCCC AACGACTTGG AAGCCGTCGT CGGCAAATGT 301 ATGGAAACCG ACGGAAAGGA CGCGCCTTCG GGCTGGGCGG AAAACGGCGT 351 GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC GAAGACGGCG 401 GCAAACTGAC TGATTACCTG ATTTCGCATT CCGCCCTGCA ACCCTATCAG 451 GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT ATGTGCTGGA 501 AATCGACAGC GAGGGGGCGT TTTA This corresponds to the amino acid sequence <SEO ID 710; ORF 205-1.ng>: g205-1.pep (partial). 1 MLKIPFAVLG GCLLLAACGK SENTAEQPQN AAQSAPKPVF KVKYIDNTAI 51 AGLALGOSSE GKTNDGKKQI SYPIKGLPEQ NAVRLTGKHP NDLEAVVGKC 101 METDGKDAPS GWAENGVCHT LFAKLVGNIA EDGGKLTDYL ISHSALQPYQ 151 AGKSGYAAVQ NGRYVLEIDS EGAF The following partial DNA sequence was identified in N. meningitidis <SEQ ID 711>: m205-1.seq.. 1 ATGCTGAAAA CATCTTTTGC CGTATTGGGC GGCTGCCTGC TGCTTGCCGC 51 CTGCGGCAAA TCCGAAAATA CGGCGGAACA GCCGCAAAAC GCGGTACAAA 101 GCGCGCCGAA ACCGGTTTTC AAAGTCAAAT ATATCGACAA TACGGCGATT 151 GCCGGTTTGG ATTTGGGACA AAGCAGCGAA GGCAAAACCA ACGACGGCAA 201 AAAACAAATC AGTTATCCGA TTAAAGGCTT GCCGGAACAA AATGTTATCC 251 GACTGATCGG CAAGCATCCC GGCGACTTGG AAGCCGTCAG CGGCAAATGT 301 ATGGAAACCG ATGATAAGGA CAGTCCGGCA GGTTGGGCAG AAAACGGCGT 351 GTGCCATACC TTGTTTGCCA AACTGGTGGG CAATATCGCC GAAGACGGCG 401 GCAAACTGAC GGATTACCTA GTTTCGCATG CCGCCCTGCA ACCCTATCAG 451 GCAGGCAAAA GCGGCTATGC CGCCGTGCAG AACGGACGCT ATGTGCTGGA 501 AATCGACAGC GAAGGGGCGT TTTATTTCCG CCGCCGCCAT TATTGA This corresponds to the amino acid sequence <SEQ ID 712; ORF 205-1>: m205-1.pep 1 MLKTSFAVLG GCLLLAACGK SENTAEQPQN AVQSAPKPVF KVKYIDNTAI 51 AGLDLGQSSE GKTNDGKKQI SYPIKGLPEQ NVIRLIGKHP GDLEAVSGKC

101 METDDKDSPA GWAENGVCHT LFAKLVGNIA EDGGKLTDYL VSHAALQPYO

30

MLKIPFAVLGGCLLLAACGKSENTAEQPQNAAQSAPKPVFKVKYIDNTAIAGLALGQSSE

MLKTSFAVLGGCLLLAACGKSENTAEQPQNAVQSAPKPVFKVKYIDNTAIAGLDLGQSSE

30

90

GKTNDGKKQISYPIKGLPEQNAVRLTGKHPNDLEAVVGKCMETDGKDAPSGWAENGVCHT

GKTNDGKKQISYPIKGLPEQNVIRLIGKHPGDLEAVSGKCMETDDKDSPAGWAENGVCHT

40

40

100

50

50

110

120

92.0% identity in 174 aa overlap

20

20

80

151 AGKSGYAAVQ NGRYVLEIDS EGAFYFRRRH Y*

10

10

70

m205-1/g205-1

g205-1.pep

g205-1.pep

m205-1

m205-1

481

```
70
                                             100
                                                      110
                                                               120
                  130
                           140
                                    150
                                             160
                                                      170
            LFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQNGRYVLEIDSEGAF
            LFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQNGRYVLEIDSEGAFYFRRRH
m205-1
                           140
                  130
                                    150
m205-1
           ΥX
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 713>:
a205-1.seq (partial)
      1 CCTCTTAAAG GCTTGCCGGA ACAAAACGTC GTCCGGCTGA CCGGCAAGCA
     51 TCCCAACGAC TTGGAAGCCG TCGTCGGCAA ATGTATGGAA ACCGACGGAA
    101 AGGGCGCGCC TTCGGGCTGG GCGGCAAACG GCGTGTGCCA TACCTTGTTT
    151 GCCAAACTGG TGGGCAATAT CGCCGAAGAC GGCGGCAAAC TGACGGATTA
    201 CCTGATTTCG CATTCCGCCC TGCAACCCTA TCAGGCAGGC AAAAGCGGCT
    251 ATGCCGCCGT GCAGAACGGA CGCTATGTGC TGGAAATCGA CAGCGAGGGG
    301 GCGTTTTATT TCCGCCGCCG CCATTATTGA
This corresponds to the amino acid sequence <SEQ ID 714; ORF 205-1.a>:
a205-1.pep (partial)
      1 PLKGLPEQNV VRLTGKHPND LEAVVGKCME TDGKGAPSGW AANGVCHTLF
     51 AKLVGNIAED GGKLTDYLIS HSALQPYQAG KSGYAAVQNG RYVLEIDSEG
    101 AFYFRRRHY*
m205-1/a205-1
                  89.0% identity in 109 aa overlap
                                            80
           KYIDNTAIAGLDLGQSSEGKTNDGKKQISYPIKGLPEQNVIRLIGKHPGDLEAVSGKCME
m205-1.pep
                                       a205-1
                                       PLKGLPEONVVRLTGKHPNDLBAVVGKCME
                                              10
                                                       20
                         120
                                  130
                                           140
                                                    150
           TDDKDSPAGWAENGVCHTLFAKLVGNIAEDGGKLTDYLVSHAALQPYQAGKSGYAAVQNG
m205-1.pep
            TDGKGAPSGWAANGVCHTLFAKLVGNIAEDGGKLTDYLISHSALQPYQAGKSGYAAVQNG
a205-1
                            50
                                     60
                                              70
                                                       80
                170
                         180
m205-1.pep
           RYVLEIDSEGAFYFRRRHYX
           111111111111111111111
a205-1
           RYVLBIDSEGAFYFRRRHYX
                  100
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 715>:
     g206.seq
               atgttttccc ccgacaaaac ccttttcctc tgtctcggcg cactgctcct
           51 cgcctcatgc ggcacgacct ccggcaaaca ccgccaaccg aaacccaaac
               agacagteeg geaaateeaa geegteegea teageeacat eggeegeaca
               caaggetege aggaacteat getecacage eteggactea teggeacgee
          151
          201
               ctacaaatgg ggcggcagca gcaccgcaac cggcttcgac tgcagcggca
          251
               tgattcaatt ggtttacaaa aacgccctca acgtcaagct gccgcgcacc
               gcccgcgaca tggcggcggc aagccgcaaa atccccgaca gccgcctcaa
```

This corresponds to the amino acid sequence <SEQ ID 716; ORF 206.ng>: g206.pep

501 ctaccttgga gcgcatacgt tttttacaga atga

351

MFSPDKTLFL CLGALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIGRT

ggccggcgac atcgtattct tcaacaccgg cggcgcacac cgctactcac acgtcggact ctacatcggc aacggcgaat tcatccatgc ccccggcagc 451 ggcaaaacca tcaaaaccga aaaactetee acacegtttt acgccaaaaa

- 51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQLVYK NALNVKLPRT
- 101 ARDMAAASRK IPDSRLKAGD IVFFNTGGAH RYSHVGLYIG NGEFIHAPGS
- 151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 717>: m206.seq

- 1 ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
- 51 CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
- 101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
- 151 CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
- 201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
- 251 TGATTCAATT CGTTTACAAr AACGCCCTCA ACGTCAAGCT GCCGCGCACC
- 301 GCCCGCGACA TGGCGGCGGC AAGCCGSAAA ATCCCCGACA GCCGCYTCAA
- 351 GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
- 401 ACGTCGGACT CTACATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC
- 451 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
- 501 CTACCTCGGC GCACATACTT TTTTTACAGA ATGA

This corresponds to the amino acid sequence <SEQ ID 718; ORF 206>: m206.pep..

- 1 MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT
- 51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
- 101 ARDMAAASRK IPDSRXKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
- 151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 206 shows 96.0% identity over a 177 aa overlap with a predicted ORF (ORF 206.ng) from N. gonorrhoeae:

m206/q206

	10	20	30	40	50	60
m206.pep	MFPPDKTLFLCLSA	LLLASCGTTS	GKHROPKPKO	TVROIOAVRI	SHIDRTOGSO	ELMLHS
		1111111111	44111111111	$\Pi \Pi \Pi \Pi \Pi \Pi$		
g206	MFSPDKTLFLCLGA	LLLASCGTTS	GKHRQPKPKQ	TVRQIQAVRI	SHIGRTQGSQ	ELMLHS
	10	20	30	40	50	60
	70	80	90	100	110	120
m206.pep	LGLIGTPYKWGGSS'	TATGFDCSGM	IOFVYKNALN	VKLPRTARDM	AAASRKIPDS	
			11:1111111	11111111111		1 1111
g206	LGLIGTPYKWGGSS'	TATGFDCSGM	IIQLVYKNALN	VKLPRTARDM	AAASRKIPDS	RLKAGD
	70	80	90	100	110	120
	130	140	150	160	170	
m206.pep	LVFFNTGGAHRYSH	VGLYIGNGEF	'IHAPSSGKTI	KTEKLSTPFY	AKNYLGAHTE	FTEX
	:		1111:1111	1111111111	HHHHHH	111
g206	IVFFNTGGAHRYSH	VGLYIGNGEF	'IHAPGSGKTI	KTEKLSTPFY	AKNYLGAHTE	FTE
	130	140	150	160	170	

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 719>:

a206.seq

- 1 ATGTTTCCCC CCGACAAAAC CCTTTTCCTC TGTCTCAGCG CACTGCTCCT
 51 CGCCTCATGC GGCACGACCT CCGGCAAACA CCGCCAACCG AAACCCAAAC
 - 101 AGACAGTCCG GCAAATCCAA GCCGTCCGCA TCAGCCACAT CGACCGCACA
 - 151 CAAGGCTCGC AGGAACTCAT GCTCCACAGC CTCGGACTCA TCGGCACGCC
 - 201 CTACAAATGG GGCGGCAGCA GCACCGCAAC CGGCTTCGAT TGCAGCGGCA
 - 251 TGATTCAATT CGTTTACAAA AACGCCCTCA ACGTCAAGCT GCCGCGCACC
 - 301 GCCCGCGACA TGGCGGCGGC AAGCCGCAAA ATCCCCGACA GCCGCCTTAA
 - 351 GGCCGGCGAC CTCGTATTCT TCAACACCGG CGGCGCACAC CGCTACTCAC
 - 401 ACGTCGGACT CTATATCGGC AACGGCGAAT TCATCCATGC CCCCAGCAGC 451 GGCAAAACCA TCAAAACCGA AAAACTCTCC ACACCGTTTT ACGCCAAAAA
 - 501 CTACCTCGGC GCACATACTT TCTTTACAGA ATGA

a206.pep

1 MFPPDKTLFL CLSALLLASC GTTSGKHRQP KPKQTVRQIQ AVRISHIDRT

- 51 QGSQELMLHS LGLIGTPYKW GGSSTATGFD CSGMIQFVYK NALNVKLPRT
- 101 ARDMAAASRK IPDSRLKAGD LVFFNTGGAH RYSHVGLYIG NGEFIHAPSS
- 151 GKTIKTEKLS TPFYAKNYLG AHTFFTE*

m206/a206 99.4% identity in 177 aa overlap

```
10
                       20
                               30
                                      40
                                              50
         MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTQGSQELMLHS
m206.pep
          a206
          MFPPDKTLFLCLSALLLASCGTTSGKHRQPKPKQTVRQIQAVRISHIDRTOGSOELMLHS
                10
                       20
                               30
                                      40
                                              50
                70
                       80
                               90
                                      100
                                                     120
          LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRXKAGD
m206.pep
          a206
          LGLIGTPYKWGGSSTATGFDCSGMIQFVYKNALNVKLPRTARDMAAASRKIPDSRLKAGD
                70
                       80
                               90
                                      100
               130
                      140
                              150
                                      160
m206.pep
          LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX
          a206
         LVFFNTGGAHRYSHVGLYIGNGEFIHAPSSGKTIKTEKLSTPFYAKNYLGAHTFFTEX
               130
                      140
                              150
                                     160
                                             170
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 721>:

```
g209.seg
          atgctgcggc atttaggaaa cgacttcgcc ttgggcgcgt tgtttttcga
      51
          tgctgcggtt gatgtgccac tgctgggcga tggtcaggag gttgttgacc
          acccagtaga gaaccaaacc ggcagggaag aagaagaaca tgacggagaa
     101
     151
          aaccaacggc atgattttca tcattttcgc ctgcatcggg tcggtcggcg
     201
          gcgggttcag ataggtttgg gcgaacatcg ttgccgccat aatgatgggc
     251
         aggatgtagt aggggtcggc gcggctgagg tcggtaatcc agcccagcca
          aggtgcctgg cgcaattcta cggaggcgaa caatgcccag tacaagccga
     301
     351
          tgaagacggg gatttgcaac agcataggca gacagccgcc cagcgggttg
         atttcctcgt cttcgaaaag ctgcatcatc gcttgctgtt gcgccatacg
     451
          gtcgtcgccg tatttttctt tgatggtctg cagttcgggt gcggcggcac
     501
          gcattttcgc catcgaacgg taggaggcgt tggtcaatgg atacagtacg
          gctttgacga tgatggtcaa aacgacgatt gcccagcccc agttgccgat
     551
     601 aatgttgtgc agttggttca ggagccagaa gagcggcgat gcgaaccagt
     651 gtactttacc gtagtctttt gccagttgca ggttgtcggc gatgtttgcg
         ataacggatg tggtttgcgg accggcatac aggttgaccg ccattttcgg
     751
         ttttggcccc cgggttggga tagcggttaa
```

This corresponds to the amino acid sequence <SEQ ID 722; ORF 209.ng>:

g209.pep

1 MLRHLGNDFA LGALFFDAAV DVPLLGDGQE VVDHPVENQT GREEEEHDGE
51 NQRHDFHHFR LHRVGRRRVQ IGLGEHRCRH NDGQDVVGVG AAEVGNPAQP

101 RCLAQFYGGE QCPVQADEDG DLQQHRQTAA QRVDFLVFEK LHHRLLRHT 151 VVAVFFFDGL QFGCGGTHFR HRTVGGVGQW IQYGFDDDGQ NDDCPAPVAD

201 NVVQLVQEPE ERRCEPVYFT VVFCQLQVVG DVCDNGCGLR TGIQVDRHFR

251 FWPPGWDSG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 723>: m209.seq

1 ATGCTGCGGC ATTTAGGAAA CGACTTCGCC TTGGGGCGTT GTTTTTCGAT 51 GCTGCGGTTG ATGTGCCATT GCTGGGCGAT GGTCAGGAGG TTGTTGACTA

- 101 CCCAGTACAA TACCAGACCG GCAGGGAAGA AGAAGAACAT GACGGAGAAA
- 151 ACCAACGGCA TGATTTTCAT CATTTTCGCC TGCATCGGGT CGGTCGGCGG 201 CGGGTTCAGA TAAGTTTGGG CGAACATCGT TGCCGCCATA ATGATGGGCA 251 GGATGTAGTA GGGGTCGGCG CGGCTGAGGT CGGTAATCCA ACCCAGCCAA


```
301 GGTGCCTGGC GCAATTCTAC GGAGGCGAAC AATGCCCAAT ACAATCCGAT
351 GAAGACGGGG ATTTGCAACA GCATAGGCAG GCAGCCGCCC AGCGGGTTGA
401 TTTTCTCGTC TGTGTAAAGC TGCATCATCG CCTGTTGTTG CGCCATACGG
451 TCGTCGCCGT ATTTCTCTTT GATGGCTTGC AGTTTGGGTG CGGCGGCACG
501 CATTTTCGCC ATAGAGCGGT AAGAGGCGTT GGTCAATGGA TACAGTACGG
551 CTTTGACGAT GATGGTTAAA ACGATAATCG CCCAGCCCCA GTTGCCGATG
601 ATGTTGTGCA GTTGGTTCAG GAGCCAGAAG AGCGGGAGG CGAACCAGTG
651 TACTTTGCCG TAGTCTTTGG CCAGTTGCAG GTTTCTGGCG ATGTTTGCGA
701 TGACGGATGT GGTCTCGGG GCTAAAAGCA CGCTGACGCT GGTGCTGTAC
801 AGCTTGTCGT TGCGCGCTTT GATGTCAGTG GCTGCTGCGC
851 AACGCTTTGT CTGCCTTTAG GTTGGAGAAT CCAGGTGGAC ATGAAGTGGT
901 GTTCAATCAT GCCGAGCCAG CCGGTCGGG TTTTGCGAAA AGCTGACTTT
1001 TTGGAAGTTG CCTTCAGGGG TATAAA
```

This corresponds to the amino acid sequence <SEQ ID 724; ORF 209>:

m209.pep

1 MLRHLGNDFA LGALFFDAAV DVPLLGDGQE VVDYPVQYQT GREEEHDGE
51 NQRHDFHHFR LHRVGRRRVQ ISLGEHRCHH NDGQDVVGVG AAEVGNPTQP
101 RCLAQFYGGE QCPIQSDEDG DLQQHRQAAA QRVDFLVCVK LHHRLLRHT
151 VVAVFLFDGL QFGCGGTHFR HRAVRGVGQW IQYGFDDDG* NDNRPAPVAD
201 DVVQLVQEPE ERGGEPVYFA VVFGQLQVVG DVCDDGCGLR AGVEVDGGFG
251 FAPFWMAAKG TLTLVLYSLS LRRLMSMLHS PAAQTLCLPL GWRIQVDMKW
301 CSIMPSQPVG VLRMYSASDL PDLASSSKSE KLTFWKLPSG V*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 209 shows 88.5% identity over a 253 aa overlap with a predicted ORF (ORF 209.ng) from N. gonorrhoeae:

m209/g209

m209.pep	10 MLRHLGNDFALGALFF	20 DAAVDVPLL			50 EHDGENQRHI	60 DFHHFR
g209	MLRHLGNDFALGALFF				IIIIIIIIII EHDGENQRHI 50	DFHHFR 60
	70	80	90	100	110	100
m209.pep	LHRVGRRRVQISLGEH					120 QSDEDG
g209		RCRHNDGOD	 VVGVGAAEVG			
_	70	80	90	100	110	120
	130	140	150	160	170	180
m209.pep	DLQQHRQAAAQRVDFL			LFDGLQFGCG	GTHFRHRAVE	
g209	DLQQHRQTAAQRVDFL			: FFDGLQFGCG		 GGVGQW
	130	140	150	160	170	180
	190	200	210	220	230	240
m209.pep	IQYGFDDDGXNDNRPA				LOVVGDVCDI	OGCGLR
g209	IQYGFDDDGQNDDCPA	: !!PVADNVVOL		: 		: NGCGT.B
	190	200	210	220	230	240
	250	260	270	280	290	299
m209.pep	AGVEVDGGFGF-APFW	MAAKGTLTL	VLYSLSLRRL	MSMLHSPAAQ'	rlclplgwri	IQVDMK
g209	TGIQVDRHFRFWPPGW 250	DSG				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 725>: a209.seq

1 ATGCTGCGGC ATTTAGGAAA CGACTTCGCC TTGGGCGCGT TGTTTTTCGA

This corresponds to the amino acid sequence <SEQ ID 726; ORF 209.a>:

a209.pep					
1	MLRHLGNDFA	LGALFFDAAV	DVPLLGDGQE	VVDHPVQYQT	GREEEEHDGE
51	NORHDFHHFR	LHRVGRRRVQ	IGLGEHRCRH	NDGQDVVGVG	AAEVGNPTQP
101	RCLAQFYGGE	QCPIQSDEDG	DLQQHRQAAA	QRVDFLVCVK	LHHGLLLRHT
151	VVAVFLFDGL	QFGRGGTHFR	HRTVRGVGQW	IQYGFDDDG*	NDNRPAPVAD
201	DVVQLVQKPK	EGGGEPVYFA	VVFGQLQVVG	DVCDNGCGLW	AGVEVDGGFG
251	FAPFWIAAKG	TLTLVLYSLS	LRRLMSIRQS	PAAQTLCPPL	GWRIQVDMKW
301	CSIMPSQPVG	VLRMYSASDL	PDLASSSKSE	KLTFWKLPSG	V*

m209/a209 95.6% identity in 341 aa overlap

	10	20	30	40	50	60
m209.pep	MLRHLGNDFALGAL	FFDAAVDVPI	LGDGQEVVDY	PVQYQTGREE	EEHDGENQRE	IDFHHFR
	11111111111111	1111111111	111111111:		пинийн	HIIII
a209	MLRHLGNDFALGAL					
	10	20	30	40	50	60
	70	80	90	100	110	120
m209.pep	LHRVGRRRVQISLG	EHRCRHNDGO	DVVGVGAAEV	GNPTQPRCLA	QFYGGEQCPI	QSDEDG
	- 1111111111111111111111111111111111111	1111111111	11111111111		HHIIIIII	Î I I I I I
a209	LHRVGRRRVQIGLG					
	70	80	90	100	110	120
	130	140	150	160	170	180
m209.pep	DLQQHRQAAAQRVD	FLVCVKLHHF	LLLRHTVVAV	/FLFDGLOFGC	GGTHFRHRAV	RGVGOW
a209	DLQQHRQAAAQRVD					
	130	140	150	160	170	180
				200	2.0	100
	190	200	210	220	230	240
m209.pep	IQYGFDDDGXNDNR	PAPVADDVVC	LVOEPEERGO	EPVYFAVVFO		
	11111111111111					
a209	IQYGFDDDGXNDNR					
	190	200	210	220	230	240
•	150	200	210	220	230	240
	250	260	270	280	290	300
m209.pep	AGVEVDGGFGFAPF	WMAAKGTLTI				
• •	111111111111111	1:1111111			111 11111	
a209	AGVEVDGGFGFAPF	WIAAKGTI.TI	VLYSLSLRRI	MSTROSPAAC	TT.CPPT.GWRT	UMMUM
	250	260	270	280	290	300
					2,70	500
	310	320	330	340		
m209.pep	CSIMPSQPVGVLRM	YSASDLPDLA	SSSKSEKLTE	WKLPSGVX		

a209

486

CSIMPSQPVGVLRMYSASDLPDLASSSKSEKLTFWKLPSGVX

310 320 330 340 The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 727>: g211.seq atgttgcgga ttgctgctgc caatcagttg ggcggtcgaa atggtgcggc 1 51 ggtgggaaac ggggtcgata agtttgggcg tggtgctgat aatcaggttg 101 agtttttgga aggaaacctg attgtagtcg gcgcgtccgg gcgtgccgct 151 gtaacggtag ccgtggcgca attcgagcgt gcgtttgttg tccttcagcg agaagttacc ttctttggcg aagatgatgt tgtcgccgcc gtttttgtcc 251 tgttcgcgca ggaacaggtt tttcatgatg ccggattcgg tgtcaaaggt 301 ttcgacgaaa taaaccctgc cgttgcgctt gcccaagtta ttgaactcgc 351 cggcttccac caaagacaat tcctgcttct gcttcaaaat ttcggcatat 401 tcgcggctgc gcagctctgc ccacggtatc acccaaagct gcatgacggc 451 aatcaggatg gcaaacggca cggcaaactg catgacgggg cgtatccact 501 gtttcaacgc caatccgcag gatag This corresponds to the amino acid sequence <SEO ID 728; ORF 211.ng>: g211.pep 1 MLRIAAANQL GGRNGAAVGN GVDKFGRGAD NQVEFLEGNL IVVGASGRAA 51 VTVAVAQFER AFVVLQREVT FFGEDDVVAA VFVLFAQEQV FHDAGFGVKG 101 FDEINPAVAL AQVIELAGFH QRQFLLLLQN FGIFAAAQLC PRYHPKLHDG NQDGKRHGKL HDGAYPLFQR QSAG* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 729>: m211.seq 1 ATGTTGCGGG TTGCTGCTGC CAATCAGTTG GGCGGTCGGA ATGGTACGGC GGTGGGAAAC GGGGTCGATG AGTTTGGGCG TGGTGCTGAT AATCAGGTTG 101 AGTTTTTGGA AGGAAACCTG ATTGTAGTCG GCGCGTCCGG GCGTGCCGCT 151 GTAACGGTAG CCGTGGCGCA ATTCGAGCGT GCGTTTGTTG TCGTTCAGCG 201 AGAAGTTACC TTCTTTGGCG AAGATGATGT TGTCGCCGCC GTTTTTGTCC 251 TGTTCGCGCA GGAACAGGTT TTTCATGATG CCGGATTCGG TATCGAAGGT 301 TTCGACAAAA TAAACCCTGC CGTTGCGCTT GCCCAAACTG TTGAACTCGC 351 CTGCCTCCAC CAAAGACAAT TCCTGCTTCT GCTTCAGGAT TTCAGCGTAT 401 TCGCGGCTGC GTAGCTCTGC CCACGGTATC ACCCAAAGCT GCATGACGGC 451 AACCAAAACG GCAAACGGCA CGGCAAACTG CATCACCGGG CGTATCCATT GTTTCAATGC CAATCCGCAG GATAG This corresponds to the amino acid sequence <SEQ ID 730; ORF 211>: m211.pep MLRVAAANQL GGRNGTAVGN GVDEFGRGAD NQVEFLEGNL IVVGASGRAA VTVAVAQFER AFVVVQREVT FFGEDDVVAA VFVLFAQEQV FHDAGFGIEG 51 FDKINPAVAL AQTVELACLH QRQFLLLLQD FSVFAAAXLC PRYHPKLHDG 151 NONGKRHGKL HHRAYPLFOC OSAG* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 211 shows 89.1% identity over a 174 aa overlap with a predicted ORF (ORF 211.ng) from N. gonorrhoeae: m211/g211 20 30 40 MLRVAAANQLGGRNGTAVGNGVDEFGRGADNQVEFLEGNLIVVGASGRAAVTVAVAOFER m211.pep g211 MLRIAAANQLGGRNGAAVGNGVDKFGRGADNQVEFLEGNLIVVGASGRAAVTVAVAQFER 10 20 30 40 50 80 90 100 110 120 ${\tt AFVVVQREVTFFGEDDVVAAVFVLFAQEQVFHDAGFGIEGFDKINPAVALAQTVELACLH}$ m211.pep

g211

g211

m211.pep

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 731>:

l.seq					
1	ATGTTGCGGG	TTGCTGCTGC	CAATCAGTTG	GGCGGTCGGA	ATGGTACGGC
51	GGTGGGAAAC	GGGGTCGATG	AGTTTGGGCG	TGGTGCTGAT	AATCAGGTTG
101	AGTTTTTGGA	AGGAAACCTG	ATTGTAGTCG	GCGCGTCCGG	GCGTGCCGCT
151	GTAACGGTAG	CCGTGGCGCA	ATTCGAGCGT	GCGTTTGTTG	TCGTTCAGCG
201	AGAAGTTACT	TTCTTTGGCG	AAGATGATGT	TGTCGCCGCC	GTTTTTGTCC
251	TGTTCGCGCA	GGAACAGGTT	TTTCATGATG	CCGGATTCGG	TATCGAAGGT
301	TTCGACAAAA	TAAACCCTGC	CGTTGCGCTT	GCCCAAACTG	TTGAACCCGC
351	CTGCCTCCAC	CAAAGACAAT	TCCTGCTTCT	GCTTCAGGAT	TTCAGCGTAT
401	TCGCGGCTGC	GTAGCTCTGC	CCACGGTATC	ACCCAAAGCT	GCATGACGGC
451	AACCAAAACG	GCAAACGGCA	CGGCAAACTG	CATCACCGGG	CGTATCCATT
501	GTTTCAATGC	CAATCCGCAG	GATAG		

This corresponds to the amino acid sequence <SEQ ID 732; ORF 211.a>:

- 1 MLRVAAANQL GGRNGTAVGN GVDEFGRGAD NQVEFLEGNL IVVGASGRAA
- 51 VTVAVAQFER AFVVVQREVT FFGEDDVVAA VFVLFAQEQV FHDAGFGIEG
- 101 FDKINPAVAL AQTVEPACLH QRQFLLLLQD FSVFAAA*LC PRYHPKLHDG
- 151 NQNGKRHGKL HHRAYPLFQC QSAG*

m211/a211 99.4% identity in 174 aa overlap

	10	20	30	40	50	60
m211.pep	MLRVAAANQLGGRN	GTAVGNGVDE	FGRGADNQVI	EFLEGNLIVVO	SASGRAAVTV <i>I</i>	VAQFER
					ппппп	ШШ
a211	MLRVAAANQLGGRN	STAVGNGVDE	FGRGADNQVI	EFLEGNLIVVO	SASGRAAVTVA	VAQFER
	10	20	30	40	50	60
	70	80	90	100	110	120
m211.pep	AFVVVQREVTFFGEI	DDVVAAVFVL	FAQEQVFHDA	AGFGIEGFDKI	/TQALAQTV	/ELACLH
		1111111111	1111111111	11111111111		11111
a211	AFVVVQREVTFFGEI	DDVVAAVFVL	FAQEQVFHDA	AGFGIEGFDKI	NPAVALAQTV	EPACLH
	70	80	90	100	110	120
	130	140	150	160	170	
m211.pep	QRQFLLLLQDFSVF	AAAXLCPRYH	PKLHDGNQNO	SKRHGKLHHR <i>A</i>	YPLFQCQSAG	X
	1111111111111111	1111111111	111111111		шыййн	1
a211	QRQFLLLLQDFSVF	AAAXLCPRYH	PKLHDGNQNO	SKRHGKLHHRA	YPLFQCQSAG	X
	130	140	150	160	170	

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 733>: g212.seq (partial)

1 atggacaatc tcgtatgga cggcattccc gacatccgca cactcgacca
51 aaccatccgc aaacacgcac acccgctcaa cctgattgtc tgcctccccg
101 ataatcagat tcccgatttt caaaccgcac aagatgcttc ggactcggaa
151 tgccgtctga agcaccgttt ggatcaggca acccagtgcc tccagttcga
201 cagcatcaac ctcatcgaac acatcctgcc cgatgtccgc ttctggctgg
251 ttcccccttc acgcacccgc cgcctgcacg aacacttcca ccacatttcc
301 tggcagaccg aagccatccc gcaaaccgaa agcaagtccg acaaaccctg
351 gtttgcactt ccacaaacat ccgaacggaa aaaaccggaa cacgtcctcg


```
401 tcatcggtgc aggcattgcc ggcgcatcga ccgcccacgc cttagcatca
 451 cacggcattt ccgttaccgt attggaagcc cgaaaagccg ctcaagccgc
 501 cagcggcaac cggcaagggc tgctttacgc caaaatctcg ccgcacgaca
 551 ccggacagac cgaactgctg cttgccggct acggctacac caaacgcctg
 601 ctcggacaca tcctgcccga ctccgacact tggggcggca acggcatcat
 651 ccacctcaat tacagccgca ccgaacaaca acgcaatcac gaattgggtt
 701 tgcaaaaaca ccataaccac ctctaccgca gcatcacgtc tgcagaagcc
     gaaaaaatcg ccggcatccc gctgaacacg ccctacgccg aaccattatg
 801 cggactctac tggcaacacg gcgtatggct caatccgccc gcattcgtcc
 851 gcaccctcct cagccatccg ctgatcgaac tatatgaaaa cacaacgtta
 901 accggcattt cccacgacgg agaaaagtgg attgcaagca cgccaaacgg
 951 cacatttacc gccacacaca tcatctactg caccggcgcg cacagcccct
1001 gcctgcccga aaccaacctc gccgccctac ccctcaggca aatacgcgga
1051 caaaccggcc tcacaccgtc caccccgttt tccgaacaac tgcgttgcgc
1101 cgtttcaggc gaaagctaca tcagcccgtc gtggcacgga ctgcactgct
1151 acggcgcgag ttttattccc aacagcagca ataccggatg gaacgaagcc
1201 gaagaagcct caaaccgcca agcattggca caccttaacc ccgcccttgc
1251 cgaatcattg ttt...
```

This corresponds to the amino acid sequence <SEQ ID 734; ORF 212.ng>:

401 EEASNRQALA HLNPALAESL F...

```
g212.pep (partial)
```

```
1 MDNLVWDGIP DIRTLDQTIR KHAHPLNLIV CLPDNQIPDF QTAQDASDSE
51 CRLKHRLDQA TQCLQFDSIN LIEHILPDVR FWLVPPSRTR RLHEHFHHIS
101 WQTEAIPQTE SKSDKPWFAL PQTSERKKPE HVLVIGAGIA GASTAHALAS
151 HGISVTVLEA RKAAQAASGN RQGLLYAKIS PHDTGQTELL LAGYGYTKRL
201 LGHILPDSDT WGGNGIIHLN YSRTEQQRNH ELGLQKHHNH LYRSITSAEA
251 EKIAGIPLNT PYAEPLCGLY WQHGVWLNPP AFVRTLLSHP LIELYENTTL
301 TGISHDGEKW IASTPNGTFT ATHIIYCTGA HSPCLPETNL AALPLRQIRG
351 QTGLTPSTPF SEQLRCAVSG ESYISPSWHG LHCYGASFIP NSSNTGWNEA
```

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 735>: m212.seq

1 ATGGACAATC TCGTATGGGA CGGCATTCCC GACATCCGCA CACTCGACCA 51 AGCCATCCGC AAACACGCAC CCCCGCTCAA CCTGATTATC TGCCTCCCCG 101 ATAATCAGAT TCCCGATTTT CAAACCGCAC AAGATGCTTC GGACGCGGAA 151 TGCCGTCTGA AGCACCGTTT GGATCAGGCA ATGCAGTGCC TCCAGTTCGA 201 CAGCATCAAC CTCATCGAAC ACATCCTGCC CGATGTCCGC TTCTGGCTGG 251 TTCCCCCTTC ACGCACCCAC CACCTGCACG AACATTTCCA CCACATTTCC 301 TGGCAGACCG AAGCCATCCC GCAAACCGAA AGCAAGCCCG ACAAACCCTG 351 GTTTGCACTT CCACAAACAT CCGAACGGCA AAAACCGGAA CACATCCTCG 401 TTATCGGCGC GGGCATATCC GGCGCGGCAA CCGCCCACGC CTTAGCATCA 451 CACGGCATTT CCGTTACCGT ATTGGAAGCC CGAAAAGCCG CCCAAGCCGC 501 CAGCGGCAAC CGCCAAGGGC TGCTCTACGC CAAAATCTCG CCGCACGACA 551 CCGAACAGAC CGAACTTTTG CTTGCCGGCT ACGGCTACAC CAAACGCCTG 601 CTCGGACACA TCCTGCCCGA ATCCGAAACC TGGGGCGGCA ACGGCATCAT 651 CCACCTCAAT TACAGCCGCA CCGAACAACA ACGCAATCAC GAATTGGGTT
701 TGCAAAAACA CCATAACCAC CTCTACCGCA GCATCACATC TGCAGAAGCC 751 GAAAAAATCG CCGGTATCCC ACTGTCCGTC CCATACGACC ACCCTTCATG 801 CGGACTCTAC TGGCAACACG GCGTATGGCT CAATCCACCC GCATTCGTCC 851 GCACCCTCCT CAACCATCCG CTCATTGGAC TACACGAAGA CACACCCTTG 901 ACCGACATTT CCCACGACGG GGAAAAGTGG ATTGCAAGCA CGCCAAACGG 951 CACATTTACC GCCACACAC TCATCTACTG CACCGGTGCG AACAGCCCCT 1001 ACCTACCCGA AACCAACCTC GCCGCCCTGC CTCTCAGGCA AATACGCGGA CAAACCGGCC TCACACCGTC CACCCCGTTT TCCGAACAAC TGCGTTGCGC 1051 1101 CGTTTCAGGC GAAAGCTACA TCAGCCCGTC GTGGCACGGA CTGCACTGCT 1151 ACGGCGCGAG TTTTATTCCC AACAGCAGCC ATACCGGATG GAACGAAGCC 1201 GAAGAAGCCT CAAACCGCCA AGCATTGGCA CACCTTAACC CCGCCCTTTC 1251 CGAATCATTG TTTGCCGCCA ACCCAAACCC CCAAAAACAC CAAGGGCACG 1301 CCGCCATACG CTGCGACAGC CCCGACCACC TTCCCCTAGT CGGCGCACTC 1351 GGCGACATTG CCGCCATGCG GCAGACCTAC ACCAAACTCG CGCTGGACAA 1401 AAACTACCGC ATCGACACCC CATGCCCATA CCTGCCTAAT GCCTACGTCA

1451 ACACCGCGCA CGGCACCCGC GGACTCGCCA CCGCCCCCAT CTGCGCCGCC

- 1501 GmCAwTGCAG CCCAAATCST AGGCYTGCCC CATCCCTTTT YACAACGCCT
- 1551 gCGCCACGCC cTACACCCCA ACCGCACCAT CATCCGCGCC ATCGTCAGAA
- 1601 GGAAGGATCT AACCCCTTAA

This corresponds to the amino acid sequence <SEQ ID 736; ORF 212>:

- m212.pep
 - MDNLVWDGIP DIRTLDQAIR KHAPPLNLII CLPDNQIPDF QTAQDASDAE
 - 51 CRLKHRLDQA MQCLQFDSIN LIEHILPDVR FWLVPPSRTH HLHEHFHHIS
 - 101 WQTEAIPQTE SKPDKPWFAL PQTSERQKPE HILVIGAGIS GAATAHALAS
 - 151 HGISVTVLEA RKAAQAASGN RQGLLYAKIS PHDTEQTELL LAGYGYTKRL
 - 201 LGHILPESET WGGNGIIHLN YSRTEQQRNH ELGLQKHHNH LYRSITSAEA
 - 251 EKIAGIPLSV PYDHPSCGLY WQHGVWLNPP AFVRTLLNHP LIGLHEDTPL
 - 301 TDISHDGEKW IASTPNGTFT ATHIIYCTGA NSPYLPETNL AALPLRQIRG
 - 351 QTGLTPSTPF SEQLRCAVSG ESYISPSWHG LHCYGASFIP NSSHTGWNEA 401 EEASNRQALA HLNPALSESL FAANPNPQKH QGHAAIRCDS PDHLPLVGAL

 - 451 GDIAAMRQTY TKLALDKNYR IDTPCPYLPN AYVNTAHGTR GLATAPICAA
 - 501 XXAAQIXGLP HPFXQRLRHA LHPNRTIIRA IVRRKDLTP*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 212 shows 92.9% identity over a 421 aa overlap with a predicted ORF (ORF 212.ng) from N. gonorrhoeae:

m212/g212

	10	20	30	40	50	60
m212.pep	MDNLVWDGIPDIRT:	LDQAIRKHAI	PPLNLICLPE	NQIPDFQTA	DASDAECRLE	CHRLDOA
		111:1111	11111:111			
g212	MDNLVWDGIPDIRT					AUDI ION
J	10	20	30	40	50	60
	10	20	30	40	50	60
	70					
		80	90	100	110	120
m212.pep	MQCLQFDSINLIEH:	LPDVRFWL	/PPSRTHHLHE	HFHHISWQTI	EAIPQTESKPI	KPWFAL
		:				
g212	TQCLQFDSINLIEH:	LPDVRFWLV	PPSRTRRLHE	HFHHISWOTE	AIPOTESKSI	KPWFAL
	. 70	80	90	100	110	120
						120
	130	140	150	160	170	180
m212.pep						
mzız.pep	POTSEROKPEHILV	IGAGISGAA'	AHALASHGIS	VIVLEARKA	QAASGNRQGI	LYAKIS
				11111111		
g212	PQTSERKKPEHVLV			VTVLEARKA	AQAASGNRQGI	LYAKIS
	130	140	150	160	170	180
	190	200	210	220	230	240
m212.pep	PHDTEQTELLLAGY	SYTKRLLGH1	LPESETWCCN			חאחחאח
	1111 111111111					
g212	DUDTCOTELLIACY					11111
9212	PHDTGQTELLLAGY					
	190	200	210	220	230	240
	250	260	270	280	290	300
m212.pep	LYRSITSAEAEKIA	SIPLSVPYDE	IPSCGLYWQHG	VWLNPPAFVE	TLLNHPLIGI	HEDTPL
		1111::11:		$H \cap H \cap H$:1:1
g212	LYRSITSAEAEKIA		PLCGLYWORG	יייי על פלועי אינייי	ו ווייווו זקד.ז.לטטד.זידי	
_	250	260	270	280	290	300
		200	270	200	250	300
	310	320	222			
m010			330	340	350	360
m212.pep	TDISHDGEKWIASTI					
				111111111	111111111	
g212	TGISHDGEKWIASTI	PNGTFTATHI	IYCTGAHSPC	LPETNLAALI	LRQIRGQTGI	TPSTPF
	310	320	330	340	350	360
	370	380	390	400	410	420
m212.pep	SEQLRCAVSGESYIS					94U
			DECEMBER	- GMNCACEAS	NYCALIANDNE	MUSEST

480

a212

```
g212
                  SEQLRCAVSGESYISPSWHGLHCYGASFIPNSSNTGWNEAEEASNROALAHLNPALAESL
                        370
                                  380
                                            390
                                                      400
                                                               410
                        430
                                  440
                                            450
                                                      460
                                                               470
                  FAANPNPQKHQGHAAIRCDSPDHLPLVGALGDIAAMRQTYTKLALDKNYRIDTPCPYLPN
     m212.pep
     g212
The following partial DNA sequence was identified in N. meningitidis <SEO ID 737>;
     a212.seq
              ATGGACAATC TCGCATGGAA CGGCATTCCC GACATCCGCA CACTCGACCA
              AACCATCCGC AAACACGCAC ACCCGCTCAA CCTGATTGTC TGCCTCCCCG
              ATAATCAGAT TCCCAATTTT CAAACCGCAC AAGATGCTTC GGACGCGGAA
          101
              TGCCGTCTGA AGCACCGTTT GGATCAGGCA ACCCAGTGCC TCCAGTTCGA
          201
              CAGCATCAAC CTGATTGAAC ACATCCTGCC CGATGTCCGC TTCTGGCTGG
          251
               TTCCCCCTTC ACGCACCCGC CGCCTGCACG AACACTTCCA CCACATTTCC
              TGGCAGACCG AAGCCATCCC GCAAACCGAA AGTAAGCCCG ACAAACCCTG
          301
              GTTTGCACTT CCACAAACAT CCGAACGGCA AAAACCGGAA CACATCCTCG
          401
              TTATCGGAGC GGGCATATCC GGCGCGGCAA CCGCCCACGC CTTAGCATCA
          451
              TACGGCATTT CCGTTACCGT ATTGGAAGCC CGAAAAGCCG CCCAAGCCGC
          501
              CAGCGGCAAC CGCCAAGGGC TGCTCTACGC CAAAATCTCG CCGCACGACA
              CCGAACAAAC CGAACTGCTG CTTGCCGGCT ACGGCTACAC CAAACGCCTG
          551
          601
              CTCGGACATA TCCTGCCCGA ATCCGAAACC TGGGGCGGCA ACGGCATCAT
              CCACCTCAAT TACAGCCGCA CCGAACAACA ACGCAATCAC GAATTGGGTT
          651
          701
              TGCAAAAACA CCATAACCAC CTCTACCGCA GCATCACGCA GGCAGAAGCC
              GAAAAAATCG CCGGCATCCC TCTGAACACG CCCTACGCCG AACCATTATG
          751
          801 CGGACTGTTT TGGCAGTACG GCGTATGGCT CAATCCTCCC ACATTCGTCC
              GCGCCCTCCT CAGCCATCCG CTCATTGGAC TACACGAAGA CACACCGTTA
          851
          901
              ACCGACATTT CCCACGACGG GGAAAAGTGG ATTGCAAGCA CGCCAAACGG
          951 CACATTTACC GCCACACAC TCATCTACTG CACCGGTGCG AACAGCCCCT
              ACCTACCCGA AACCAACCTC GCCACCCTGC CCCTCAGGCA AATACGCGGA
         1051
              CAAACCGGCC TCACACCGTC CACCCCGTTT TCCGAACAAC TGCGTTGCGC
              CGTTTCAGGC GAAAGCTACA TCAGCCCGTC GTGGCACGGA CTGCACTGCT
         1101
        1151 ACGGCGCGAG TTTTATTCCC AACAGCAGCC ATACCGGATG GAACGAAGCC
         1201 GAAGAAGCCT CAAACCGCCA AGCATTGGCA CACCTTAACC CCGCCCTTTC
         1251 CGAATCATTG TTTGCCGCCA ACCCAAACCC CCAAAAACAC CAAGGGCACG
              CCGCCATACG CTGCGACAGC CCCGACCACC TTCCCCTAGT CGGCGCACTC
         1301
        1351 GGCGACATTG CCGCTATGCA ACAAACTTAC GCCAAACTCG CGCTGGACAA
        1401 AAACTATCGC ATCGATGCCC CCTGCCCGTA CCTGCCCAAT GCCTACGCCA
        1451
              ACACCGCCCA CGGCACACGC GGGCTTGCCA CCGCCCCCAT CTGCGCCGCC
              GCCGTTGCAG CCGAAATCCT AGGCTTGCCC CATCCCCTCT CAAAACGCCT
        1501
             GCGCCACGCC CTACACCCCA ACCGCGCCAT CATCCGCGCC ATCGTCAGAA
        1551
        1601 GGAAGGATCT AACCCCTTAA
This corresponds to the amino acid sequence <SEQ ID 738; ORF 212.a>:
     a212.pep
              MDNLAWNGIP DIRTLDQTIR KHAHPLNLIV CLPDNQIPNF QTAQDASDAE
              CRLKHRLDQA TQCLQFDSIN LIEHILPDVR FWLVPPSRTR RLHEHFHHIS
              WQTEAIPQTE SKPDKPWFAL PQTSERQKPE HILVIGAGIS GAATAHALAS
          101
              YGISVTVLEA RKAAQAASGN RQGLLYAKIS PHDTEQTELL LAGYGYTKRL
              LGHILPESET WGGNGIIHLN YSRTEQQRNH ELGLQKHHNH LYRSITQAEA
          201
              EKIAGIPLNT PYAEPLCGLF WQYGVWLNPP TFVRALLSHP LIGLHEDTPL
          251
              TDISHDGEKW IASTPNGTFT ATHILYCTGA NSPYLPETNL ATLPLRQIRG
          301
              QTGLTPSTPF SEQLRCAVSG ESYISPSWHG LHCYGASFIP NSSHTGWNEA
          401 EEASNRQALA HLNPALSESL FAANPNPQKH QGHAAIRCDS PDHLPLVGAL
              GDIAAMQQTY AKLALDKNYR IDAPCPYLPN AYANTAHGTR GLATAPICAA
              AVAAEILGLP HPLSKRLRHA LHPNRAIIRA IVRRKDLTP*
m212/a212 93.7% identity in 539 aa overlap
                       10
                               20
                                        30
                                                 40
                                                         50
     m212.pep
                MDNLVWDGIPDIRTLDQAIRKHAPPLNLIICLPDNQIPDFQTAQDASDAECRLKHRLDQA
```

MDNLAWNGIPDIRTLDQTIRKHAHPLNLIVCLPDNQIPNFQTAQDASDAECRLKHRLDQA

	10	20	30	40	50	60
	70	80	90	100	110	120
m212.pep	MQCLQFDSINLIEH					
-010	1111111111111		11111::111	13111111111	1111111111	
a212	TQCLQFDSINLIEH	80 TPDAKEMPA	PPSRTRRLHE 90	EHFHHISWQTE 100	AIPQTESKPI 110	DKPWFAL 120
	, ,	00	30	100	110	120
	130	140	150	160	170	180
m212.pep	POTSEROKPEHILV					
a212	POWSED ON DEATH A					
a212	PQTSERQKPEHILV	140	AHALASYGIS 150	VTVLEARKAA 160	QAASGNRQGI 170	LLYAKIS 180
	150	110	130	100	170	100
	190	200	210	220	230	240
m212.pep	PHDTEQTELLLAGY	GYTKRLLGHI	LPESETWGGN	GIIHLNYSRT	EQQRNHELGI	гокниин
a212	DUDTECTELLIACY				111111111	
d212	PHDTEQTELLLAGY	200	210	220	230	LQKHHNH 240
	150	200	210	220	230	240
	250	260	270	280	290	300
m212.pep	LYRSITSAEAEKIA					
a212		:: :	: :		: :	
d212	LYRSITQAEAEKIA	260	270	Z80	ALLSHPLIGI 290	SHEDTPL 300
	200	200	2.0	200	230	300
	310	320	330	340	350	360
m212.pep	TDISHDGEKWIAST	PNGTFTATHI	IYCTGANSPY	(LPETNLAALP	LRQIRGQTGI	TPSTPF
a212			1111111111		111111111	11111
d212	TDISHDGEKWIAST	320	1 YCTGANSPY 330	CLPETNLATLP.	LKQ1 KGQTGI 350	TPSTPF 360
	020	020	330	340	330	300
	. 370	380	390	400	410	420
m212.pep	SEOLRCAVSGESYI	SPSWHGLHCY	GASFIPNSSH	ITGWNEAEEAS	NRQALAHLNI	PALSESL
a212	SEQLRCAVSGESYI		CASETDNESS	INCENSES EES C	1111111111	
8212	370	380	390	400	NKQALAHLNI 410	420
			000	100	410	420
	430	440	450	460	470	480
m212.pep	FAANPNPQKHQGHA					
a212	FAANPNPQKHQGHA					CDVIDY
6212	430	440	450	460	470	480
			•••		110	400
	490	500	510	520	530	540
m212.pep	AYVNTAHGTRGLAT	APICAAXXAA	OIXGLPHPFX	CORLRHALHPN	RTIIRAIVRF	KDLTPX
a212	:		: : Ell'Gleupte	:	: BATTDATUDE	יימש זמשי
ULIL	490	500	510	520	KALIKALVER 530	SKOLTPX 540
					330	340

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 739>: g214.seq

atgatacaaa agatatgtaa gctatttgtt ttaattgtaa tttttgcaac ttctcccgct tttgcccttc aaagcgacag cagacggccc atccaaatcg aggcaatgtca aggttcgctc gatcaagcca accaaaggac cacatttagc ggcaatgtca tcatcagaca gggtacgctc aacatttccg cctcgtgtgt caacgtcaca cgcggcaggc aaaggcggcg aatccgtgag ggcggaaggt tcgcccgtcc gcttcagcca aacgttggac gggggcaaag ggacggtgcg cggtcaggca aacaacgtta cctattcctc cgcaggaagc actgtcgttc tgaccggcaa tgccaaagtg cagcggcgg gcgacgttgc cgaaggtgcg accggcag tgcaaacgcaa tgccaaagtg cagcggcgg gcgacgttgc cgaaggtgcg gcaatcggcg gcgaaatcgg cggaaatcgg cttccaaaac cggcaggtc agcgtcgca accgcaca accggagtc tataccatca accgcagcac tccagcaca aaaccgaa aaaccgaat aaccccgatg ccgtctgaaa tcggaaacgca gttcagacg catttgccga ccgaaatgcc gagaaggat tatatga

This corresponds to the amino acid sequence <SEQ ID 740; ORF 214.ng>: g214.pep

251

```
1 MIQKICKLFV LIVIFATSPA FALOSDSRRP IQIEADOGSL DOANORTTFS
           51 GNVIIRQGTL NISASCVNVT RGRQRRRIRE GGRFARPLQP NVGRGQRDGA
          101 RSGKQRYLFL RRKHCRSDRQ CQSAARRRRC RRCGHYLQHQ NRSLYHQRQH
          151 EIGCEIRFQN RQGQRRHPAF KHTKNRITPM PSETETQFRR HLPTEMPRRD
          201 Y
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 741>:
     m214.seq
              (partial)
              ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
           51 GTCCCCCGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
          101 AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC
              GGAAACGTCG TCATCAGACA GGGTACGCTC AATATTTCCG CCGCCCGCGT
          151
              CAATGTTACA CGCGGCGCA AAGGCGGCGA ATCCGTGAGG GCGGAAGGTT
          201
          251 CGCCAGTCCG CTTCAGCCAG ACATTGGACG GCGGCAAAGG CACGGTGCGC
          301 GGACAGGCAA ACAACGTTGC TTATTCATCT GCAGGCAGCA CCGTAGTCTT
          351 AACCGGTAAT GCCAAAGTAC AGCGCGGCGG CGATGTCGCC GAAGGTGCGG
          401 TGATTACATA CAACACCAAA ACCGAAGTCT ATACCATCAG CGGCAGCACA
          451 AAATT...
This corresponds to the amino acid sequence <SEQ ID 742; ORF 214>:
     m214.pep
              (partial)
              MIQKICKLFV LIAFFSASPA FALQSDSRQP IQIEADQGSL DQANQSTTFS
              GNVVIRQGTL NISAARVNVT RGRQRRRIRE GGRFASPLOP DIGRRORHGA
          101 RTGKQRCLFI CRQHRSLNR* CQSTARRRCR RRCGDYIQHQ NRSLYHQRQH
          151 KI...
Computer analysis of this amino acid sequence gave the following results:
Homology with a predicted ORF from N. gonorrhoeae
ORF 214 shows 80.3% identity over a 152 aa overlap with a predicted ORF (ORF 214.ng)
from N. gonorrhoeae:
     m214/g214
                                            30
                                                      40
                 \verb|MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL|\\
     m214.pep
                 MIQKICKLFVLIVIFATSPAFALQSDSRRPIQIEADQGSLDQANQRTTFSGNVIIRQGTL
     g214
                                   20
                                            30
                                                      40
                                                               50
                                                                         60
                         70
                                   80
                                            90
                                                     100
                 NISAARVNVTRGRQRRRIREGGRFASPLQPDIGRRQRHGARTGKQRCLFICRQHRSLNRX
     m214.pep
                 q214
                 {\tt NISASCVNVTRGRQRRRIREGGRFARPLQPNVGRGQRDGARSGKQRYLFLRRKHCRSDRQ}
                         70
                                   80
                                            90
                                                     100
                                                              110
                        130
                                  140
                 CQSTARRRCRRCGDYIQHQNRSLYHQRQHKI
    m214.pep
                 q214
                 CQSAARRRCCRCGHYLQHQNRSLYHQRQHEIGCEIRFONROGORRHPAFKHTKNRITPM
                        130
                                  140
                                           150
                                                     160
    g214
                 PSETETOFRRHLPTEMPRRDY
                        190
                                  200
The following partial DNA sequence was identified in N. meningitidis <SEQ ID 743>:
    a214.seq
              ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
          51
              GTCCCCCGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
              AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC
         101
         151
              GGAAACGTCG TCATCAGACA GGGTACGCTC AATATTTCCG CCGCCCGCGT
```

CAATGTTACA CGCGGC.GGC AAAGGCGGCG AATCCGTGAG GGCGGAAGGT TCGCCAGTCC GCTTCAGCCA GACATTGGAC GGCGGCAAAG GCACGGTGCG

CGGACAGGCA AACAACGTTG CTTATTCATC TGCAGGCAGC ACCGTAGTCT

351	TAACCGGTAA	TGCCAAAGTA	CAGCGCGGCG	GCGATGTCGC	CGAAGGTGCG
401	GTGATTACAT	ACAACACCAA	AACCGAAGTC	TATACCATCA	GCGGCAGCAC
451	AAAATCCGGC	GCAAAATCCG	CTTCCAAATC	CGGCAGGGTC	AGCGTCGTTA
501	TCCAGCCTTC	GAGTACGCAA	AAATCCGAAT	AATCCCAATG	CCGTCTGAAA
551.	CATAAACCTG	GTTCGGACGG	CATTTGCCGA	CCGAAATATT	GAAGAGATAT
601	TTATGA				

This corresponds to the amino acid sequence <SEQ ID 744; ORF 214.a>:

```
a214.pep

1 MIQKICKLFV LIAFFSASPA FALQSDSRQP IQIEADQGSL DQANQSTTFS
51 GNVVIRQGTL NISAARVNVT RGXQRRRIRE GGRFASPLQP DIGRRQRHGA
101 RTGKQRCLFI CRQHRSLNR* CQSTARRCR RRCGDYIQHQ NRSLYHQRQH
151 KIRRKIRFQI RQGQRRYPAF EYAKIRIIPM PSET*TWFGR HLPTEILKRY
201 L*
```

m214/a214 99.3% identity in 152 aa overlap

	•					
	10	20	30	- 40	50	60
m214.pep	MIQKICKLFVLIAF	FSASPAFALQ	SDSRQPIQIE	ADQGSLDQAN	QSTTFSGNVV	IROGTL
	- 111111111111111	1111111111	11111111111	1111111111	1111111111	11111
a214	MIQKICKLFVLIAF	'FSASPAFALQ	SDSRQPIQIE	ADOGSLDQAN	OSTTFSGNVV	IROGTL
	10	20	30	40	50	60
	70	80	90	100	110	120
m214.pep	NISAARVNVTRGRO	RRRIREGGRF	ASPLOPDIGR	RORHGARTGK	ORCLFICROR	
	111111111111111111	1111111111	потоп	тинни		111111
a214	NISAARVNVTRGXQ	RRRIREGGRE	ASPLQPDIGR	RORHGARTGK	ORCLFICROH	RSLNRX
	70	80	90	100	110	120
	130	140	150			
m214.pep	COSTARRRCRRRCG	DYIOHONRSL				
• •	1111111111111					
a214	COSTARRRCRRRCG	DYIOHONRSL	YHOROHKIRR	KIRFOIROGO	RRYPAFEYAK	TRTTPM
	130	140	150	160	170	180
a214	PSETXTWFGRHLPT	EILKRYLX				
	190	200				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 745>: g214-1.seq

```
ATGATACAAA AGATATGTAA GCTATTTGTT TTAATTGTAA TTTTTGCAAC

51 TTCTCCCGCT TTTGCCCTTC AAAGCGACAG CAGACGGCCC ATCCAAATCG

101 AAGCCGACCA AGGTTCGGTC GATCAAGCCA ACCAAAGTAC CACATTTAGC

151 GGCAATGTCA TCATCAGACA GGGTACGCTC AACATTTCCG CCTCGCGCGT

201 CAACGTCACA CGCGGCGCA AAGGGGGGCA ATCCGTAGGG GCGGAAGGTT

251 CGCCCGTCCG CTTCAGCCAA ACGTTGGACG GGGGCAAAGG GACGGTGCGC

301 GGTCAGGCAA ACAACGTTAC CTATTCCTCC GCAGGAAGCA CCGTCGTCT

351 GACCGGCAAT GCCAAAACTGC AGCGCGGCGG CGACGTTGCC GAAGGTGCGG

401 TCATTACCTA CAACACCAAA ACCGAAGTCT ATACCATCAA CGGCAGCACG

451 AAATCGGGTG CGAAATCCGC TTCCAAAACC GGCAGGGTCA GCGTCGTCAT

501 CCAGCCTTCA AGCACACAAA AAACCGAATA A
```

This corresponds to the amino acid sequence <SEQ ID 746; ORF 214-1.ng>: g214-1.pep

- 1 MIQKICKLFV LIVIFATSPA FALQSDSRRP IQIEADQGSL DQANQSTTFS
 51 GNVIIRQGTL NISASRVNVT RGGKGGESVR AEGSPVRFSQ TLDGGKGTVR
 101 GQANNVTYSS AGSTVVLTGN AKVQRGGDVA EGAVITYNTK TEVYTINGST
- 151 KSGAKSASKT GRVSVVIQPS STQKTE*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 747>: m214-1.seq

- 1 ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
 51 GTCCCCCGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
- 101 AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC
 151 GGAAACGTCG TCATCAGACA GGGTACGCTC AATATTTCCG CCGCCCGCGT


```
201 CAATGTTACA CGCGGCGGCA AAGGCGGCGA ATCCGTGAGG GCGGAAGGTT
251 CGCCAGTCCG CTTCAGCCAG ACATTGGACG GCGGCAAAGG CACGGTGCGC
301 GGACAGGCAA ACAACGTTGC TTATTCATCT GCAGGCAGCA CCGTAGTCTT
351 AACCGGTAAT GCCAAAGTAC AGCGCGGCGG CGATGTCGCC GAAGGTGCGG
401 TGATTACATA CAACACCAAA ACCGAAGTCT ATACCATCAG CGGCAGCACA
451 AAATCCGGCG CAAAATCCGC TTCCAAATCC GGCAGGGTCA GCGTCGTTAT
501 CCAGCCTTCG AGTACGCAAA AATCCGAATA A

This corresponds to the amino acid sequence <SEQ ID 748; ORF 214-1>:
m214-1.pep

1 MIQKICKLFV LIAFFSASPA FALQSDSRQP IQIEADQGSL DQANQSTTFS
51 GNVVIRQGTL NISAARVNVT RGGRGGESVR AEGSPVRFSQ TLDGGRGTVR
101 GQANNVAYSS AGSTVVLTGN AKVQRGGDVA EGAVITYNTK TEVYTISGST
```

m214-1/g214-1 93.8% identity in 176 aa overlap

151 KSGAKSASKS GRVSVVIQPS STQKSE*

```
10
                       20
                              30
                                      40
m214-1.pep
         MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL
          g214-1
          MIQKICKLFVLIVIFATSPAFALQSDSRRPIQIEADQGSLDQANQSTTFSGNVIIRQGTL
                       20
                              30
                                      40
                                             50
                       80
                              90
m214-1.pep
         NISAARVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGN
          g214-1
          NISASRVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVTYSSAGSTVVLTGN
               70
                       80
                                     100
                                            110
              130
                      140
                             150
                                     160
                                            170
         AKVQRGGDVAEGAVITYNTKTEVYTISGSTKSGAKSASKSGRVSVVIQPSSTQKSEX
m214-1.pep
          g214-1
         AKVQRGGDVAEGAVITYNTKTEVYTINGSTKSGAKSASKTGRVSVVIQPSSTQKTEX
              130
                      140
                             150
```

g214-1/p38685

sp|P38685|YHBN_ECOLI 17.3 KD PROTEIN IN MURA-RPON INTERGENIC REGION PRECURSOR (ORF185)
>gi|551336 (U12684) orf185 [Escherichia coli] >gi|606139 (U18997) ORF o185 [Escherichia coli]
>gi|1789592 (AE000399) orf, hypothetical protein [Escherichia coli] Length = 185
Score = 97.1 bits (238), Expect = 6e-20
Identities = 57/126 (45%), Positives = 74/126 (58%), Gaps = 3/126 (2%)

Query: 19 PAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTLNISAARVNVTR--GGKGG 76
PAFA+ D+ QPI IE+DQ SLD TF+GNV++ QGT+ I+A +V VTR G +G

PAFA+ D+ QPI IE+DQ SLD TF+GNV++ QGT+ I+A +V VTR G +G Sbjct: 24 PAFAVTGDTDQPIHIESDQQSLDMQGNVVTFTGNVIVTQGTIKINADKVVVTRPGGEQGK 83

Query: 77 ESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGNAKVQRGGDVAEGAVIT 136 E + G P F Q D GK V G A+ + Y A VVLTGNA +Q+ +G IT

Sbjct: 84 EVIDGYGKPATFYQMQDNGK-PVEGHASQMHYELAKDFVVLTGNAYLQQVDSNIKGDKIT 142

Query: 137 YNTKTE 142 Y K + Sbjct: 143 YLVKEQ 148

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 749>: a214-1.seq

1 ATGATACAAA AGATATGTAA GCTATTTGTT TTAATAGCAT TTTTTTCGGC
51 GTCCCCGGCT TTTGCCCTTC AAAGCGACAG CAGGCAGCCT ATTCAGATTG
101 AGGCCGACCA AGGTTCGCTC GATCAAGCCA ACCAAAGCAC CACATTCAGC
151 GGAAACGTCG TCATCAGACA GGGTACGCTC AATAGTTCCG CCGCCCGGT
201 CAATGTTACA CGCGGCGGCA AAGGCGGCGA ATCCCTGAGG GCGGAAGGTC
251 CGCCAGTCCG CTTCAGCCAG ACATTGGACG GCGGCAAAGG CACGGTGCGC
301 GGACAGGCAA ACAACGTTGC TTATTCATCT GCAGGCAGCA CCGTAGTCTT
AACCGGTAAT GCCAAAGTAC AGCGCGGCGG CGATGTCGC GAAGGTCCGG
451 AAATCCGGCG CAAAATCCGC TTCCAAATCC GGCAGGCTCA
451 AAATCCGGCG CAAAATCCGC TTCCAAATCC GGCAGGGTCA GCGTCGTTAT
501 CCAGCCTTCG AGTACGCAAA AACTCCAAATA A

This corresponds to the amino acid sequence <SEQ ID 750; ORF 214-1.a>: a214-1.pep

1 MIQKICKLFV LIAFFSASPA FALQSDSRQP IQIEADQGSL DOANOSTTFS


```
51 GNVVIRGGTL NISAARVNVT RGGKGGESVR AEGSPVRFSQ TLDGGKGTVR
101 GQANNVAYSS AGSTVVLTGN AKVQRGGDVA EGAVITYNTK TEVYTISGST
```

151 KSGAKSASKS GRVSVVIQPS STQKSE*

a214-1/m214-1 100.0% identity in 176 aa overlap

```
40
                                              50
          MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL
a214-1.pep
          m214-1
          MIQKICKLFVLIAFFSASPAFALQSDSRQPIQIEADQGSLDQANQSTTFSGNVVIRQGTL
                10
                       20
                               30
                                      40
                70
                       80
                               90
                                     100
                                             110
          NISAARVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGN
a214-1.pep
          NISAARVNVTRGGKGGESVRAEGSPVRFSQTLDGGKGTVRGQANNVAYSSAGSTVVLTGN
m214-1
                       80
                               90
                                     100
                                             110
               130
                                             170
                       140
                              150
                                      160
          AKVQRGGDVAEGAVITYNTKTEVYTISGSTKSGAKSASKSGRVSVVIQPSSTQKSEX
a214-1.pep
          m214-1
          AKVQRGGDVAEGAVITYNTKTEVYTISGSTKSGAKSASKSGRVSVVIQPSSTQKSEX
               130
                      140
                              150
                                     160
```

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 751>: 9215.seq

```
1 atgaaagtaa gatggcggta cggaattgcg ttcccattga tattggcggt
51 tgccttgggc agcctgtcgg catggttggg ccgtatcagc gaagtcgaaa
101 tcgaggaagt caggctcaat cccgacgaac ctcaatacac aatggacggc
151 ttggacggaa ggcggtttga cgaacaggga tacttgaaag aacatttgag
201 cgcgaaaggt gcgaaacagt ttcccgaaaa cagcgacatc cattttgatt
251 cgccgcatct cgtgttcttc caagaaggca ggctgttgta cgaagtcggc
301 agcgatgaag ccgtttacca taccgaaaac aaacaggttc tttttaaaaa
351 caacgttgtg ctgaccaaaa ccgccgacgg caggcggcag gcgggtaaag
401 tcgaaaccga aaaactgcac gtcgataccg aatctcaata tgcccaaacc
451 gatacgcctg tcagtttcca atatggcgcg tcgcacggtc aggcggcgg
501 tatgacctac aaccacaaa caggcatgtt gaacttctca tctaaagtga
551 aagccgcgat ttatgataca aaagatatgt aa
```

This corresponds to the amino acid sequence <SEQ ID 752; ORF 215.ng>: g215.pep

1 MKVRWRYGIA FPLILAVALG SLSAWLGRIS EVEIEEVRLN PDEPQYTMDG 51 LDGRRFDEQG YLKEHLSAKG AKQFPENSDI HFDSPHLVFF QEGRLLYEVG 101 SDEAVYHTEN KQVLFKNNVV LTKTADGRRQ AGKVETEKLH VDTESQYAQT

151 DTPVSFQYGA SHGQAGGMTY NHKTGMLNFS SKVKAAIYDT KDM* The following partial DNA sequence was identified in N. meningitidis <SEQ ID 753>: m215.seq (partial)

.. AGCCTGTCGG CATGGTTGGG TCGTATCAGC GAAGTCGAGA TTGAAGAAGT 1 51 CAGGCTCAAT CCCGACGAAC CGCAATACAC AATGGACAGC TTGGACGGCA GGCGGTTTGA CGAACAGGGA TACTTGAAAG AACATTTGAG CGCGAAGGGC 101 151 GCGAAACAGT TTCCGGAAAG CAGCGACATC CATTTTGATT CGCCGCATCT 201 CGTGTTCTTC CAAGAAGGCA GGTTGTTGTA CGAAGTCGGC AGCGACGAAG CCGTTTACCA TACCGAAAAC AAACAGGTTC TTTTTAAAAA CAACGTTGTG 251 CTGACCAAAA CCGCCGACGG CAAACGGCAG GCGGGTAAAG TTGAAGCCGA 301 AAAGCTGCAC GTCGATACCG AATCTCAATA TGCCCAAACC GATACGCCTG 351 401 CAGTTTCCA ATATGGTGCA TCGCACGGTC AGGCGGGCGG CATGACTTAC GACCACAWWA CAGGCATGTT GAACTTCTCA TCTAAAGTGA AAGCCACGAT 451

501 TTATGATACA AAAGATATGT AA

This corresponds to the amino acid sequence <SEQ ID 754; ORF 215>:

m215.pep (partial)

1 .SLSAWLGRIS EVEIEEVRLN PDEPQYTMDS LDGRRFDEQG YLKEHLSAKG
51 AKQFPESSDI HFDSPHLVFF QEGRLLYEVG SDEAVYHTEN KQVLFKNNVV
101 LTKTADGKRQ AGKVEAEKLH VDTESQYAQT DTPVSFQYGA SHGOAGGMTY

m215.pep

DHXTGMLNFS SKVKATIYDT KDM* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 215 shows 96.0% identity over a 173 as overlap with a predicted ORF (ORF 215.ng) from N. gonorrhoeae: m215/g215 30 10 20 40 SLSAWLGRISEVEIEEVRLNPDEPQYTMDSLDGRRFDEQG m215.pep ${\tt MKVRWRYGIAFPLILAVALGSLSAWLGRISEVEIEEVRLNPDEPQYTMDGLDGRRFDEQG}$ g215 10 20 50 60 30 40 50 60 70 80 90 100 YLKEHLSAKGAKQFPESSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV m215.pep g215 YLKEHLSAKGAKQFPENSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV 70 80 90 100 110 120 110 120 130 140 150 160 m215.pep $\verb|LTKTADGKRQAGKVEAEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYDHXTGMLNFS|$ LTKTADGRRQAGKVETEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYNHKTGMLNFS g215 140 150 160 170 170 m215.pep SKVKATIYDTKDMX 1111:11111 g215 SKVKAAIYDTKDM 190 The following partial DNA sequence was identified in N. meningitidis <SEO ID 755>: a215.seg ATGAAAGTAA GATGGCGGTA CGGAATTGCG TTCCCATTGA TATTGGCGGT 51 TGCCTTGGGC AGCCTGTCGG CATGGTTGGG ACGCATCAGC GAAGTCGAGA 101 TTGAAGAAGT CAGGCTCAAT CCCGACGAAC CGCAATACAC AATGGACGGA 151 TTGGATGGCA GGCGGTTTGA CGAACAGGGA TACTTGAAAG AACATTTGAG TTCGAAGGC GCGAAACAGT TTCCCGAAAG CAGCGACATT CATTTCGACT 251 CACCGCATCT CGTGTTCTTC CAAGAAGGCA GGTTGTTGTA CGAAGTCGGC AGCGATGAAG CCGTTTACCA TACCGAAAAC AAACAGGTTC TTTTTAAAAA 301 CAACGTTGTG CTGACCAAAA CCGCCGACGG CAAACGGCAG GCGGGTAAAG 351 TTGAAGCCGA AAAGCTGCAC GTCGATACCG AATCTCAATA TGCCCAAACC 451 GATACGCCTG TCAGTTTCCA ATATGGTGCA TCGCACGGTC AGGCGGGCGG 501 CATGACTTAC GACCACAAAA CAGGCATGTT GAACTTCTCA TCTAAAGTGA AAGCCACGAT TTATGATACA AAAGATATGT AA This corresponds to the amino acid sequence <SEQ ID 756; ORF 215.a>: a215.pep MKVRWRYGIA FPLILAVALG SLSAWLGRIS EVEIEEVRLN PDEPQYTMDG 51 LDGRRFDEOG YLKEHLSSKG AKOFPESSDI HFDSPHLVFF OEGRLLYEVG SDEAVYHTEN KQVLFKNNVV LTKTADGKRQ AGKVEAEKLH VDTESQYAQT DTPVSFQYGA SHGQAGGMTY DHKTGMLNFS SKVKATIYDT KDM* m215/a215 98.3% identity in 173 aa overlap 20 30 m215.pep SLSAWLGRISEVEIEEVRLNPDEPQYTMDSLDGRRFDEQG MKVRWRYGIAFPLILAVALGSLSAWLGRISEVEIEEVRLNPDEPQYTMDGLDGRRFDEQG a215 10 20 50 60

70

YLKEHLSAKGAKQFPESSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV

80

90

100


```
a215
          YLKEHLSSKGAKQFPESSDIHFDSPHLVFFQEGRLLYEVGSDEAVYHTENKQVLFKNNVV
                70
                       80
                               90
                                      100
                                             110
               110
                      120
                              130
                                      140
          LTKTADGKRQAGKVEAEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYDHXTGMLNFS
m215.pep
          {\tt LTKTADGKRQAGKVEAEKLHVDTESQYAQTDTPVSFQYGASHGQAGGMTYDHKTGMLNFS}
a215
               130
                       140
                              150
                                      160
               170
          SKVKATIYDTKDMX
m215.pep
          11111111111111
a215
          SKVKATIYDTKDMX
               190
```

```
The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 757>: g216.seq (partial)
```

```
..atgatatoga tttogagoto ggtaccoago gaogaaatoa cogocatoat
 1
 51
       coccgcacte aaacgcaaag acattaccct cgtctgcatc accgcccqcc
101
       ccgattcaac catggegege catgeegata tecacateae egeategett
151
       togcaagaag cotgooogtt ggggottgoo cogaccacca gcaccaccgo
201
       cgttatggct ttgggcgacg cgttggcggt cgtcctgctg cgcgcccgcg
251
       cgttcacgcc cgacgacttc gccttgatcc accctgccgg cagcctcggc
301
       aaacgcctgc ttttgcgcgt tgccgacatt atgcacaaag gcggcggcct
       gcccgccgtc cgactcggca cgcccttgaa aggagccatc gtcagcatga
351
       gcgagaaagg tttgggcatg tgggcgggaa cggacgggca aaggctgtct
401
451
       gaaaggcctt tttactga
```

This corresponds to the amino acid sequence <SEQ ID 758; ORF 216.ng>: g216.pep (partial)

1 ..MISISSSVPS DEITAIIPAL KRKDITLVCI TARPDSTMAR HADIHITASV 51 SQEACPLGLA PTTSTTAVMA LGDALAVVLL RARAFTPDDF ALIHPAGSLG 101 KRLLLRVADI MHKGGGLPAV RLGTPLKGAI VSMSEKGLGM WAGTDGQRLS 151 ERPFY*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 759>: m216.seq

ATGGCAATGG CAGAAAACGG AAAATATCTC GACTGGGCAC GCGAAGTGTT 51 GCACGCCGAA GCGGAAGGCT TGCGCGAAAT TGCAGCGGAA TTGBACAAAA 101 ACTTCGTCCT TGCGGCAGAC GCGTTGTTGC ACTGCAAGGG CAGGGTCGTT 151 ATCACGGGCA TGGTCAAGTC GGGACATATC GGGCGCAAAA TGGCGGCAAC 201 TATGGCCTCG ACCGGCACGC CTGCGTTTTT CGTCCACCCT GCGGAAGCGG CACACGGCGA TTTGGGTATG ATTGTGGACA rCGACGTGGT CGTCGCGATT 251 301 TCCAATTCCG GCGAAAGCGA CGAAATCGCC GCCATCATCC CCGCACTCAA 351 ACGCAAAGAC ATCACGCTTG TCTGCATCAC CGCCCGCCCC GATTCAACCA 401 TGGCGCGCCA TGCCGACATC CACATCACGG CGTCGGTTTC CAAAGAAGCC 451 TGCCCGCTGG GGCTTGCCCC GACCACCAGC ACCACCGCCG TCATGGCTTT 501 GGGCGATGCG TTGGCGGTCG TCCLGCTGCG CgcACGCGCG TTCACGCCCG 551 ACGATTTCGC CTTGAGCCAT CCTGCCGGCA GCCTCGGCAA ACGCCTACTT TTGCGCGTTG CCGACATTAT GCACAAAGGC GGCGGCCTGC CTGCCGTCCG 601 651 ACTCGGCACG CCCTTGAAAG AAGCCATCGT CAGCATGAGT GAAAAAGGGC 701 TGGGCATGTT GGCGGTAACG GACGGGCAAG GCCGTCTGAA AGGCGTATTC 751 ACCGACGGCG ATTTGCGCCG CCTGTTTCAA GAATGCGACA ATTTTACCGG 801 TCTTTCGATA GACGAAGTCA TGCATACGCA TCCTAAAACC ATCTCCGCCG 851 AACGTCTCGC CACCGAAGCC CTGAAAGTCA TGCAGGCAAA CCATGTGAAC GGGCTTCTGG TTACCGATGC AGATGGCGTG CTGATCGGCG CGCTGAATAT

951 GCACGACCTG CTGGCGGCAC GGATTGTATA G
This corresponds to the amino acid sequence <SEQ ID 760; ORF 216>:
m216.pep

1 MAMAENGKYL DWAREVLHAE AEGLREIAAE LXKNFVLAAD ALLHCKGRVV

251

51 ITGMVKSGHI GRKMAATMAS TGTPAFFVHP AEAAHGDLGM IVDXDVVVAI SNSGESDEIA AIIPALKRKD ITLVCITARP DSTMARHADI HITASVSKEA CPLGLAPTTS TTAVMALGDA LAVVLLRARA FTPDDFALSH PAGSLGKRLL 201 LRVADIMHKG GGLPAVRLGT PLKEAIVSMS EKGLGMLAVT DGQGRLKGVF 251 TDGDLRRLFQ ECDNFTGLSI DEVMHTHPKT ISAERLATEA LKVMQANHVN 301 GLLVTDADGV LIGALNMHDL LAARIV* Computer analysis of this amino acid sequence gave the following results: Homology with a predicted ORF from N. gonorrhoeae ORF 216 shows 91.8% identity over a 147 aa overlap with a predicted ORF (ORF 216.ng) from N. gonorrhoeae: m216/g216 70 80 100 110 120 TMASTGTPAFFVHPAEAAHGDLGMIVDXDVVVAISNSGESDEIAAIIPALKRKDITLVCI m216.pep g216 MISISSSVPSDEITAIIPALKRKDITLVCI 10 20 130 140 150 160 170 TARPDSTMARHADIHITASVSKEACPLGLAPTTSTTAVMALGDALAVVLLRARAFTPDDF m216.pep q216 TARPDSTMARHADIHITASVSQEACPLGLAPTTSTTAVMALGDALAVVLLRARAFTPDDF 40 50 60 70 80 190 200 210 220 230 240 ${ t ALSHPAGSLGKRLLLRVADIMHKGGGLPAVRLGTPLKEAIVSMSEKGLGMLAVTDGQGRL}$ m216.pep ALIHPAGSLGKRLLLRVADIMHKGGGLPAVRLGTPLKGAIVSMSEKGLGMWAGTDGQRLS g216 100 110 120 130 140 150 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 761>: a216.seq ATGGCGATGG CAGGAAACGA AAAATATCTT GATTGGGCAC GCGAAGTGTT GCACACCGAA GCGGAAGGCT TGCGCGAAAT TGCGGCGGAT TTGGACGAAA 51 101 ACTTCGCCCT TGCGGCGGAC GCGTTGTTGC ACTGCAAAGG CAGGGTCGTT ATCACGGGCA TGGGCAAGTC GGGACATATC GGGCGCAAAA TGGCGGCAAC 201 CATGGCCTCG ACCGGCACGC CCGCGTTTTT CGTCCACCCT GCGGAAGCGG CACACGGCGA TTTGGGCATG ATTGTGGACA ACGACGTGGT CGTCGCGATT 251 301 TCCAATTCCG GTGAAAGCGA CGAAATCGCC GCCATCATCC CCGCGCTCAA ACGCAAAGAT ATCACGCTTG TCTGCATCAC CGCCCGCCCC GATTCAACCA 401 TGGCGCGCCA TGCCGACATC CACATCACGG CGTCGGTTTC CAAAGAAGCC TGCCCGCTGG GGCTTGCCCC GACCACCAGC ACCACCGCCG TTATGGCTTT 451 501 GGGCGATGCG TTGGCGGTTG TCCTGCTGCG CGCCCGCGCG TTCACGCCCG ACGACTTCGC CTTGAGCCAC CCTGCCGGCA GCCTCGGCAA ACGCCTACTT 551 601 TTGCGCGTTG CCGACATTAT GCACAAAGGC GGCGGCCTGC CTGCCGTCCG ACTCGGCACG CCCTTGAAAG AAGCCATCGT CAGCATGAGT GAAAAAGGGC 651 TGGGCATGTT GGCGGTAACG GACGGGCAAG GCCGTCTGAA AGGCGTATTC 701 ACCGACGGCG ATTTGCGCCG CCTGTTTCAA GAATGCGACA ATTTTACCGG 751 801 TCTTTCGATA GACGAAGTCA TGCATACGCA TCCTAAAACC ATCTCCGCCG AACGTCTCGC CACCGAAGCC CTGAAAGTCA TGCAGGCAAA CCATGTGAAC 851 GGGCTTCTGG TTACCGATGC AGATGGCGTG CTGATCGGCG CGCTGAATAT 901 GCACGACCTT TTGGCGGCGC GGATTGTATA G This corresponds to the amino acid sequence <SEQ ID 762; ORF 216.a>: a216.pep MAMAGNEKYL DWAREVLHTE AEGLREIAAD LDENFALAAD ALLHCKGRVV ITGMGKSGHI GRKMAATMAS TGTPAFFVHP AEAAHGDLGM IVDNDVVVAI 51 SNSGESDEIA AIIPALKRKD ITLVCITARP DSTMARHADI HITASVSKEA 101 CPLGLAPTTS TTAVMALGDA LAVVLLRARA FTPDDFALSH PAGSLGKRLL LRVADIMHKG GGLPAVRLGT PLKEAIVSMS EKGLGMLAVT DGQGRLKGVF

TDGDLRRLFQ ECDNFTGLSI DEVMHTHPKT ISAERLATEA LKVMQANHVN

301 GLLVTDADGV LIGALNMHDL LAARIV*

m216/a216 97.2% identity in 326 aa overlap

10,000	70 10011Mity 111 520	aa o . crap				
	10	20	30	40	50	60
m216.pep	MAMAENGKYLDWAF	REVLHAEAEG	LREIAAELXKN	IFVLAADALL I	CKGRVVITG	MVKSGHI
	1111 1 1111111	1111:1111	111111111111111111111111111111111111111	1:1311111	нинни	1 11111
a216	MAMAGNEKYLDWAF	REVLHTEAEG	LREIAADLDEN	FALAADALLI	CKGRVVITG	MGKSGHI
	10	20	30	40	50	60
	70	80	90	100	. 110	120
m216.pep	GRKMAATMASTGTE	PAFFVHPAEA				
a216	GRKMAATMASTGTE					
	70	80	90	100	110	120
			30	100	110	120
	130	140	150	160	170	180
m216.pep	ITLVCITARPDSTM					
Maro i pop	1111111111111					
a216	ITLVCITARPDSTM					
uziv	130	140	150	160	170	180
	130	140	130	100	170	100
	190	200	210	220	230	240
m216.pep	FTPDDFALSHPAGS					
mero.pep						
a216						
0210	190	200	210			
	190	200	210	220	230	240
	250	260	270	000		200
m216.pep			270	280	290	300
mzro.pep	DGQGRLKGVFTDGD					
a216						
a210	250	260				
	250	260	270	280	290	300
	310	320				
m216 mam		320				
m216.pep	GLLVTDADGVLIGA					
-016						
a216	GLLVTDADGVLIGA		RIVX			
	310	320				

The following partial DNA sequence was identified in N. gonorrhoeae <SEQ ID 763>: g217.seq

- 1 atggcggatg acggtttgtt gcggcaactg tccgaaaaac ccagccaaag
 51 tgctctttc ctgccatttg acccattcgt tttcgaggtt ttggactgcc
 101 ttttggtcat cgggcccggc ttgaaacaat gtttcaagca aatcccggca
 151 acgcgccacc cattcgccga ccgtcgcagg ttgccgcat atccgggcaa
 201 tatccgacag ggtttcgagg aaggcggcaa aacgtccgaa catggcggtt
 251 tgattcacgt cggcatacca cgcgctgaca tcctgccaca tcgggttgcc
 301 gccttcgggc agcatccagc ccaatatcaa acggtctgcc gcctgcttcc
 351 aggtaaacag ctgatccgtg ccgacgcga tttcccgtc caatccccaa
 401 tggacgttca aatcggcaa caatacggcgc agtttccaaa aggcggagca
 451 ggtcagtccg aaacggcgca acacgggcgc ggtttccaaa aggcggagca
 501 ctttgccgac ttcaaaacgg ctttccagca ggtcggacac gcactccaac
 551 gcataaaaaa acggttgccg gcggctgatt ttcacgtccg aaacggaata
 601 cggcaatgcc tgcgcgcgg gttgcgctg tccgaacacg gcttccataa
 651 aaggcgtata gggttcgata ttcggggtta a
- This corresponds to the amino acid sequence <SEQ ID 764; ORF 217.ng>: g217.pep..
 - 1 MADDGLLRQL SEKPSQSALF LPFDPFVFEV LDCLLVIGPG LKQCFKQIPA
 - 51 TRHPFADRRR LPPYPGNIRQ GFEEGGKTSE HGGLIHVGIP RADILPHRVA
 - 101 AFGQHPAQYH TVCRLLPGKQ LIRAAAHFSV QSPMDVQIGN HIVQKRQIVP
 - 151 GQSETAQHGR GFQKREHFAD FKTAFQQVGH ALQRIKKRLP AADFHVRNGI

201 ROCLRAGLRL SEHGFHKRRI GFDIRG*

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 765>: m217.seq

- 1 ATGGCGGATG ACGGTGTGCG GCGGCAACTG TCCGGAAAAT TGCGCCAATT
- 51 CGGTTTCCGC CTrccattg acccattcgt tttcaaggtt ttggactgac
- 101 TTTTGGTCAT CGGCTTCAGC TTGGAACAAT GTTTCAAGCA AATCCCGGCA
- 151 ACGCGCCACC CATTCGCCGA CCGTTGCGGG CTGCCGCCAT ATCCGTACAA
- 201 TATCCGTCAG GGTTTCGAGG AAGGCGGCAA AACGTCCGAA CATGGCGGTT
 251 TGATTCACGT CGGCATACCA CGCGCTGACA TCCTGCCACA TCGGATTGCC
- 301 GCCTTTGGGC AGCATCCAGC CCAATATCAT GCGTTCTACC GCCTGCTTCC
- 351 AGGTGAACAG CTGATCCGTG CCGCCGCGCA TTTCTCCGTC CAAACCCCAG
- 401 TGGACGTTCA AATCGGCAAC CATGTCGTGC AAAAGCGGTA AATCGTCCTC
- 451 AGTCAGTCCG AAACGGCGCA ACACGGGCGC GGTTTCTAAA AGCACAAGCA
- 501 CTTTATCGAC TTCAAATCGG CTTTCCAACA AGTCGAACAG GCATGACAAA
- 551 GCATGAAACA GCGGTTGGCG GCGGCTGATT TTCACGTCTG ACACGGAATA
- 601 CGGCAATGCC TGCGCACCGG GCTGCGCCTG TCCGAACACG GCTTCGATAA
- 651 AAGGCGTATA GGATTCGATA TTCGGGGTTA A

This corresponds to the amino acid sequence <SEQ ID 766; ORF 217>: m217.pep

- 1 MADDGVRRQL SGKLRQFGFR LPFDPFVFKV LDXLLVIGFS LEQCFKQIPA
- 51 TRHPFADRCG LPPYPYNIRQ GFEEGGKTSE HGGLIHVGIP RADILPHRIA
- 101 AFGQHPAQYH AFYRLLPGEQ LIRAAAHFSV QTPVDVQIGN HVVQKRXIVL
- 151 SQSETAQHGR GFXKHKHFID FKSAFQQVEQ AXQSMKQRLA AADFHVXHGI
- 201 RQCLRTGLRL SEHGFDKRRI GFDIRG*

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. gonorrhoeae

ORF 217 shows 80.5% identity over a 226 aa overlap with a predicted ORF (ORF 217.ng) from N. gonorrhoeae:
m217/g217

	10	20	30	40	50	60		
m217.pep	MADDGVRRQLSGKLR	OFGFRLPFI	PFVFKVLDXL	LVIGFSLEQC	FKQIPATRHP	FADRCG		
		1 ::		1111 :1:11	111111111	HH		
g217	MADDGLLRQLSEKPS	QSALFLPFI	PFVFEVLDCL	LVIGPGLKQC	FKQIPATRHP	FADRRR		
	10	20	30	40	50	60		
	70	80	90	100	110	120		
m217.pep	LPPYPYNIRQGFEEG	GKTSEHGGI	IHVGI PRADI	LPHRIAAFGQ	HPAQYHAFYR	LLPGEQ		
	- 11111 11111111			1111:1111	111111: 1	1111:1		
g217	LPPYPGNIRQGFEEG	GKTSEHGGI	JIHVGIPRADI	LPHRVAAFGQ	HPAQYHTVCR	LLPGKQ		
	70	80	90	100	110	120		
	130	140	150	160	170	180		
m217.pep	LIRAAAHFSVQTPVD	VQIGNHVVQ	KRXIVLSQSE	TAQHGRGFXK	HKHFIDFKSA	FQQVEQ		
					::[[][][][]	1111:		
g217	LIRAAAHFSVQSPMD	VQIGNHIVÇ	KRQIVPGQSE	TAQHGRGFQK	REHFADFKTA	FQQVGH		
	130	140	150	160	170	180		
	190	200	210	220				
m217.pep	AXQSMKQRLAAADFHVXHGIRQCLRTGLRLSEHGFDKRRIGFDIRGX							
		:		1 11111111	11			
g217	ALQRIKKRLPAADFHVRNGIRQCLRAGLRLSEHGFHKRRIGFDIRG							
	190	200	210	220				

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 767>: a217.seq

- 1 GTGGCGGATG ACGGTGTGCA GCGGCAACTG TCCGGAAAAT TGCGCCAATT
 - 51 CGGTTTCCGC CTGCCATTTG ACCCATTCGT TTTCGAGGCT TTGGACTGCC
 - 101 TTTTGGTCAT CGCCTTCGAC TTGGAACAAT GTTTCAAGCA AATCCCGGCA
 - 151 ACGCGCCACC CATTCGTCAA CCGTCGCAGG TTGCCGCCAT ATCCGTACAA