SalTox-v1.0.

Overview: The software provides a native interface for toxicity prediction towards salmon species, enabling users to obtain toxicity predictions based on the developed q-RASAR model.

System requirement for using the software

- 1. The user must download and install Python on their system before running the software.
- 2. There is a 'dependencies' file. Run one time that file in Python.

Input file specifications

The tool takes an input file having .xlsx extension containing the required set of descriptors for the query or the external set compounds to compute the median lethal toxicity of salmon species in terms of pLC_{50} .

The query or the external set file should contain the compound number (No.) in the first column and the descriptors in the subsequent columns. The user needs to maintain the same order of descriptors as shown in the figure. The two-dimensional (2D) descriptors can be computed using alvaDesc software and the RASAR descriptors can be computed from RASAR-Desc-Calc-v3.0.3 software [1] with the optimized hyper-parameters being Gaussian kernel setting with the number of similar training compounds = 10 and σ = 2.

No.	NsssCH	B02[S-S]	B03[N-O]	LOGP99	SD similarity(GK)	sm2(GK)[Banerjee-Roy similarity coefficient 2]
6	0	1	0	3.560179975	0.388991894	1.094936372
11	1	0	0	5.205899909	0.007099755	-0.005757834
19	1	0	1	3.7685	0.191715726	-0.172658069
27	2	0	0	5.152000062	0.034311931	-0.009689839
30	0	0	0	3.050399914	0.004711994	0.002229657
32	2	0	1	3.04230006	0.135464333	-0.183283849
36	0	0	0	3.258499935	0.004974554	-0.001973026
40	1	0	1	3.164120018	0.205697059	-0.357293434
42	0	0	0	4.685300022	0.015104309	0.010604833
48	0	0	0	5.988619976	0.045316832	0.043347932
50	1	0	0	2.905700013	0.013943681	-0.000694213

Output file

An excel (.xlsx) sheet named "**Predictions.xlsx**" is generated representing the predicted values of pLC₅₀, as shown in the following figure.

IDs	Predictions		
6	6.127036205		
11	6.284763541		
19	5.921983046		
27	6.558634675		
30	5.031038009		
32	6.125011634		
36	5.112346317		
40	5.429350028		
42	5.694107835		
48	6.194715686		
50	5.314862536		
51	4.629338596		

Reference

 $1.\ \underline{https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home}$