MCA/D-17 COMPUTER ORGANIZATION Paper: MCA-14-12

Time: Three Hours Maximum Marks: 80

Note: Attempt five questions including No. 1 which is compulsory. All questions carry equal marks.

Compulsory Question

- 1. Answer the following questions in brief:
 - (a) Explain the difference between positive edge triggered and positive level triggered D Latch with the help of truth tables.
 - (b) Distinguish between memory mapped and isolated I/O.
 - (c) Explain the terms with respect to floating point numbers: overflow, precision, NaN, normalization and biasing.
 - (d) What are pros and cons of write-through and write-back cache designs?

UNIT-I

- 2. (a) What is shift register? Design a 4-bit left shift register and explain its working with the help of its truth table.
 - (b) What is 4-variable K-map? Construct the K-map for the Boolean equation: w'x'y'z + w'xy' + wxy'z + wxy'z + wyz'.
- 3. (a) Design a 1-bit comparator circuit with propagated input and then use it to design 4-bit comparator circuit.
 - (b) What is sequential circuit? Explain the working of JK flip-flop.

UNIT-II

- 4. (a) What is ROM? Explain internal two-dimensional organization of 8*2 ROM chip.
 - (b) What is CPU? Explain the CPU organization with the help of its block diagram.

- 5. (a) Design a simple computer system with 16 bit address bus and 8 bit data bus which uses isolated I/O. It has 8K*8 RAM, 8K*8 ROM and bidirectional I/O device. Show the design with all required signals and logic.
 - (b) For $X = 1101 \ 1001 \ 0011 \ 1100$, show the results of the following operations; shr(X), cil(X), ashl(X), dshl(X).

UNIT-III

- 6. (a) Design data path for CPU registers AR, PC, DR, AC, IR for simple CPU with 6 bit address, 4 instructions and 64 byte memory.
 - (b) Design a microcoded control unit for simple CPU using horizontal microcode. Make your own assumptions needed for the design.
- 7. (a) Write the RTL code for floating point multiplication and division algorithm.
 - (b) Write short note on IEEE 754 floating point standard.

UNIT-IV

- 8. (a) Explain the direct mapping scheme used in cache memory. What are its limitations?
 - (b) What is virtual memory? Explain conversion of logical address into physical address using page table.
- 9. (a) Explain destination-initiated data transfer using handshaking with the help of suitable diagram.
 - (b) What is Daisy chaining method of prioritizing of interrupts? Explain its hardware implementation.