PLP-3 TOPIC 3—AND, OR & NOT

Demirbaş & Rechnitzer

AND, OR & NOT

NEGATION

Given P we can form a new statement with the opposite truth value.

It is not the case that P

DEFINITION:

The **negation** of a statement P is denoted $\sim P$.

- ullet When P is \emph{true} , the negation $\sim P$ is \emph{false} .
- ullet When P is *false*, the negation $\sim P$ is *true*.

The negation is also denoted !P and $\neg P$.

EXAMPLES AND A TABLE

- The negation of "It is tuesday" is "It is *not* Tuesday"
- ullet The negation of " $4\in A$ " is "4
 otin A"
- The negation of "4 is even" is "4 is not even" or better "4 is odd".

We can summarise what negation does to truth values via a truth table

$$egin{array}{cccccc} P & \sim P & \sim (\sim P) \ \hline ext{T} & ext{F} & ext{T} \ \hline ext{F} & ext{T} & ext{F} \ \hline \end{array}$$

Note

- ullet the double negation of P has the same truth value as P
- the law of the excluded middle: exactly one of P or $(\sim P)$ is true.

CONJUNCTION, AND, DISJUNCTION, & OR

We combine statements using and & or to make new statements.

The words "and", "or" have precise mathematical meanings

DEFINITION:

Let P and Q be statements.

- The disjunction of P and Q is "P or Q" and is denoted $P \vee Q$.
 - $P \vee Q$ is true when at least one of P,Q is true, else false.
- The conjunction of P and Q is "P and Q" and is denoted $P \wedge Q$.
 - $P \wedge Q$ is true when both P, Q are true, else false.

Note: *colloquial* use of "or" is often different from this *mathematical* "or"

EXAMPLES AND TABLES

Let P be "8 is even" and let Q be "15 is prime", then

- $P \lor Q$ is "8 is even or 15 is prime"
- $P \wedge Q$ is "8 is even and 15 is prime"

The first is true since P is true, the second is false since Q is false.

A truth table helps summarise:

P	Q	$P \lor Q$	$P \wedge Q$
Т	Т	Т	Т
Т	F	Т	F
F	Т	Т	F
F	F	F	F

INCLUSIVE AND EXCLUSIVE

Mathematical "or" or is inclusive — $P \lor Q$ is true when at least one statement is true.

Colloquial "or" is often exclusive — $P \times Q$ is true when exactly one statement is true.

Would you like chicken or beef for dinner?

P	Q	$P \lor Q$	$P \operatorname{xor} Q$
Т	Т	Т	F
Т	F	Т	T
F	Т	Т	T
F	F	F	F

For exclusive-or write "Exactly one of P or Q" or "P or Q but not both".