GPS and beacon based navigation

 Global positioning system (GPS) – chapter 4.1.5.1

Ground-Based Active and Passive Beacons

- Elegant way to solve the localization problem in mobile robotics
- Beacons are signaling guiding devices with a precisely known position
- Beacon base navigation is used since the humans started to travel
 - Natural beacons (landmarks) like stars, mountains or the sun
 - Artificial beacons like lighthouses
- The recently introduced Global Positioning System (GPS) revolutionized modern navigation technology
 - Already one of the key sensors for outdoor mobile robotics
 - For indoor robots GPS is not applicable,
- Major drawback with the use of beacons in indoor:
 - Beacons require changes in the environment
 -> costly.
 - Limit flexibility and adaptability to changing environments.

© R. Siewart, I. Nourbakhsh

Triangulation

$$l = \frac{d}{\tan \alpha} + \frac{d}{\tan \beta}$$

$$d = \frac{l}{\frac{1}{\tan \alpha} + \frac{1}{\tan \beta}}$$

$$or$$

$$d = \frac{l \sin \alpha \sin \beta}{\sin(\alpha + \beta)}$$

Triangulation

- Homing beacons
 - Position by
 - Measuring angles, i.e. intersection of lines.
 - Lighthouse
- Synchronized beacons
 - Position by
 - Signal time difference (phase)
 - Signal arrive time (require accurate clock)
 - GPS

Position of beacons are known!

Triangulation – homing beacons

- Case A
 - Multiple possible locations with two beacons
 - Distance not measured
 - Possible locations are on an arc
 - Local coordinates

Triangulation – homing beacons

- Case B
 - Unique position if orientation (global) is known
 - Orientation known if:
 - · Sensor used
 - Compass (absolute)
 - Odometry (relative, drift)
 - If possible to measure distance (not in this example)

Triangulation – homing beacons

- Case C
 - Unique with three beacons, i.e. different angles

Trilateration - Synchronized beacons

- A method for determine the intersections of three sphere surfaces given centers and radii of the spares
- Used by GPS
 - Synchronized beacons!
 - Radii = time of flight = distance

Trilateration - Example

$$x = \frac{r_1^2 - r_2^2 + d^2}{2d}$$

$$y = \frac{r_1^2 - r_3^2 + i^2 + j^2}{2j} - \frac{i}{j}x$$

$$P_1 = (0,0)$$

$$P_2 = (10,0)$$

$$P_3 = (10,10)$$

$$r_1 = r_2 = r_3 = \sqrt{50}$$

$$\Rightarrow B = (5,5)$$

Global Positioning System (GPS) (1)

- Developed for military use
- Recently it became accessible for commercial applications
- 24 satellites (including three spares) orbiting the earth every 12 hours at a height of 20.190 km.
- Four satellites are located in each of six planes inclined 55 degrees with respect to the plane of the earth's equators
- Location of any GPS receiver is determined through a time of flight measurement

Technical challenges:

- Time synchronization between the individual satellites and the GPS receiver
- Real time update of the exact location of the satellites
- Precise measurement of the time of flight
- Interferences with other signals

© R. Siewart, I. Nourbakhsh

Global Positioning System (GPS) (3)

- Time synchronization:
 - atomic clocks on each satellite
 - monitoring them from different ground stations.
- Ultra-precision time synchronization is extremely important
 - electromagnetic radiation propagates at light speed,
- Roughly 0.3 m per nanosecond.
 - position accuracy proportional to precision of time measurement.
- Real time update of the exact location of the satellites:
 - monitoring the satellites from a number of widely distributed ground stations
 - master station analyses all the measurements and transmits the actual position to each of the satellites
- · Exact measurement of the time of flight
 - the receiver correlates a pseudocode with the same code coming from the satellite
 - The delay time for best correlation represents the time of flight.
 - quartz clock on the GPS receivers are not very precise
 - the range measurement with four satellite
 - allows to identify the three values (x, y, z) for the position and the clock correction ΔT
- Recent commercial GPS receiver devices allows position accuracies down to a couple meters. RTK-GPS -> centimeters

© R. Siewart, I. Nourbakhsh

$GPS - (Lon, Lat) \iff (X, Y)$

- Assumes flat world, i.e. approximate to calculate position in x and y. All positions lies on the same height above ground, i.e. z is constant in the area.
- Origin = Greenwich and the Equator
- Use conversion tables or calculate exact values for a defined height above ground

GPS - Applications

 Human navigation – "treasure hunt"

Navigation: ship, car, airplanes

Images from http://www.fotosearch.com

© O. Bengtsson

