Template

Billy Wang

2025年9月3日

目录

1	写在	前面 2			
	1.1	基础模版 2			
	1.2	vimrc			
2	数据结构 3				
	2.1	zkw 线段树			
	2.2	珂朵莉树			
	2.3	FHQ-Treap			
	2.4	并查集			
	2.5	ST 表 5			
	2.6	树状数组 5			
	2.7	线段树			
3	数学				
	3.1	快速幂			
	3.2	高斯消元			
	3.3	筛法			
		3.3.1 埃式筛			
		3.3.2 线性筛			
	3.4	类欧几里得			
	3.5	递推组合数			
	3.6	矩阵快速幂			
4	图论	7			
	4.1	倍增			
	4.2	网络流			
		4.2.1 最大流			
		4.2.2 费用流			
	4.3	二分图最大匹配			
	4.4	Tarjan 强连通分量缩点			

	4.5	树直径	13
	4.6	树重心	13
	4.7	树链剖分	13
	4.8	最短路	13
		4.8.1 Floyd (最小环)	13
		4.8.2 Spfa (判负环)	13
		4.8.3 Dijkstra	13
	4.9	拓扑排序	13
	4.10	最小生成树	13
	4.11	欧拉路径/回路	13
	4.12	01 图黑白染色	13
5	字符	· :串	13
	5.1	KMP	13
	5.2	Trie 树	13
6	STL		13
		- - 算法库	-3 13

1 写在前面

1.1 基础模版

```
#include <bits/stdc++.h>
  using namespace std;
2
  typedef long long 11;
3
  #define OPFI(x) freopen(#x".in", "r", stdin);\
                   freopen(#x".out", "w", stdout)
  #define REP(i, a, b) for(int i=(a); i<=(b); ++i)
6
7
  #define REPd(i, a, b) for(int i=(a); i>=(b); --i)
  inline ll rd(){
8
       ll r=0, k=1; char c;
9
       while(!isdigit(c=getchar())) if(c=='-') k=-k;
10
       while(isdigit(c)) r=r*10+c-'0', c=getchar();
11
       return r*k;
12
   }
13
14
  int main(){
15
       return 0;
16 }
```

1.2 vimrc

```
syntax on
  set ts=4 et ai cin sw=4 nu sts=4 sm ru mouse=a title wim=list
   " im <F1> <esc>:w<CR>
  im <F5> <esc>:bel ter<CR>
   " nn <F1> :w<CR>
  nn <F5> :bel ter<CR>
6
7
  im <C-S> <esc>:w<CR>
8
  nn <C-S> :w<CR>
  set mp=gnumake
10
  com! Mk sil mak | uns redr! | cw
  nn <C-M> :Mk<CR>
12
13
       set shell=powershell
14
       set backspace=indent,eol,start
15
       set nocompatible
16
  " set sh=powershell bs=indent,eol,start nocp
```

2 数据结构

2.1 zkw 线段树

单点修区间查

```
1 | ll s[N<<2], a[N];
  int M;
2
3
  ll f(ll x, ll y){
4
       return x+y; // 改这
5
6
   }
7
   void build(){
8
9
       for(M=1; M<=n+1; M<<=1);</pre>
       REP(i, 1, n) s[i+M]=a[i];
10
       REPd(i, M-1, 1) s[i]=f(s[2*i], s[2*i+1]);
11
   }
12
13
   ll qrange(int l, int r, ll init){ // 根据 f 传 init
14
15
       ll res=init;
       for(l=l+M-1, r=r+M+1; l^r^1; l>>=1, r>>=1){
16
17
           if(~l&1) res=f(res, s[l^1]);
           if(r&1) res=f(res, s[r^1]);
18
19
20
       return res;
21
   }
22
   void edit(int x, ll v){
23
       for(s[x+=M]=v, x>>=1; x; x>>=1){
24
25
           s[x]=f(s[2*x], s[2*x+1]);
26
       }
27
   }
28
  11 qpoint(int x){
29
       return s[x+M];
30
31 }
```

2.2 珂朵莉树

1 | struct node{

```
int 1, r;
2
3
       mutable int v;
       bool operator<(const node& rhs) const { return l<rhs.l; }</pre>
4
   };
5
6
7
   set<node> odt;
   typedef set<node>::iterator iter;
8
10
   iter split(ll p){
       iter tmp=odt.lower_bound((node){p, 0, 0});
11
       if(tmp!=odt.end()&&tmp->l==p) return tmp;
12
13
       --tmp;
       int tl=tmp->1, tr=tmp->r, tv=tmp->v;
14
15
       odt.erase(tmp);
       odt.insert((node){tl, p-1, tv});
16
       return odt.insert((node){p, tr, tv}).first;
17
18
   }
19
20
   // 修改和查询注意 split 顺序
21 // iter itr=split(r+1), itl=split(l);
```

2.3 FHQ-Treap

以模版文艺平衡树为例

```
1 int n, m, clk, rt;
  struct node{
2
       int key, val, sz, tag, ls, rs;
3
4
   }t[N];
   int newnode(int k){ return t[++clk]=(node){k, rand(), 1, 0}, clk; }
5
   void down(int o){
6
7
       if(t[o].tag){
           t[t[o].ls].tag=1-t[t[o].ls].tag;
8
           t[t[o].rs].tag=1-t[t[o].rs].tag;
9
           swap(t[t[o].ls].ls, t[t[o].ls].rs);
10
           swap(t[t[o].rs].ls, t[t[o].rs].rs);
11
12
           t[o].tag=0;
       }
13
14
  void up(int o){ t[o].sz=t[t[o].ls].sz+t[t[o].rs].sz+1; }
16 void split(int o, int x, int &L, int &R){
```

```
17
       if(o==0) return L=R=0, void(); down(o);
       if(t[t[o].ls].sz+1>=x) R=o, split(t[o].ls, x, L, t[o].ls);
18
       else L=o, split(t[o].rs, x-t[t[o].ls].sz-1, t[o].rs, R);
19
       up(o);
20
21
   int merge(int L, int R){
22
       if(L==0||R==0) return L+R;
23
       if(t[L].val>t[R].val) return down(L), t[L].rs=merge(t[L].rs, R)
24
          , up(L), L;
       else return down(R), t[R].ls=merge(L, t[R].ls), up(R), R;
25
26 }
```

- 2.4 并查集
- 2.5 ST 表
- 2.6 树状数组
- 2.7 线段树
- 3 数学
- 3.1 快速幂

```
const 11 MOD=998244353; // 改模数
2
   ll qpow(ll a, ll x){
3
       ll res=1;
4
       a%=MOD;
5
       while(x){
6
7
           if(x&1) res=res*a%MOD;
           a=a*a%MOD, x>>=1;
8
9
       }
10
       return res;
   }
11
12
13 | ll inv(ll x){ return qpow(x, MOD-2); } // 模数为质数时
```

3.2 高斯消元

```
1 const int N=110;
2 ll n;
```

```
double a[N][N], b[N];
            void work(){
  4
  5
                             n=rd();
                             REP(i, 1, n){
  6
                                             REP(j, 1, n) a[i][j]=rd();
  7
                                             b[i]=rd();
  8
                             }
  9
                             REP(i, 1, n){
10
11
                                              int t=i;
                                              REP(j, i+1, n) if(abs(a[j][i])>1e-7&&(abs(a[t][i])>abs(a[j][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>1e-7&&(abs(a[t][i])>
12
                                                            ][i])||abs(a[t][i])<1e-7)) t=j;
                                             REP(j, i, n) swap(a[t][j], a[i][j]);
13
                                              if(abs(a[i][i])<1e-7){</pre>
14
                                                               puts("No Solution");
15
                                                               return 0;
16
17
                                              }
                                              swap(b[t], b[i]);
18
                                              double e=a[i][i];
19
                                             REP(j, i, n) a[i][j]/=e;
20
21
                                             b[i]/=e;
22
                                             REP(j, i+1, n){
                                                                double d=a[j][i];
23
                                                               REP(k, i, n) a[j][k]-=d*a[i][k];
24
                                                               b[j]-=d*b[i];
25
                                              }
26
                              }
27
                             REPd(i, n, 1) REP(j, 1, i-1) b[j]-=a[j][i]*b[i], a[j][i]=0;
28
29
                             // REP(i, 1, n) printf("%.2f\n", b[i]);
                             // b[1...n] 保存 Ax=b 的解
30
31 }
```

- 3.3 筛法
- 3.3.1 埃式筛
- 3.3.2 线性筛
- 3.4 类欧几里得
- 3.5 递推组合数
- 3.6 矩阵快速幂
- 4 图论
- 4.1 倍增

```
void dfs(int x, int fa){
       pa[x][0]=fa; dep[x]=dep[fa]+1;
2
       REP(i, 1, SP) pa[x][i]=pa[pa[x][i-1]][i-1];
3
       for(int& v:g[x]) if(v!=fa){
4
           dfs(v, x);
5
6
       }
7
   }
8
9
   int lca(int x, int y){
       if (dep[x]<dep[y]) swap(x, y);</pre>
10
       int t=dep[x]-dep[y];
11
12
       REP(i, 0, SP) if(t&(1<<i)) x=pa[x][i];</pre>
       REPd(i, SP-1, -1){
13
14
            int xx=pa[x][i], yy=pa[y][i];
            if (xx!=yy) x=xx, y=yy;
15
16
17
       return x==y?x:pa[x][0];
18 }
```

4.2 网络流

不是我写的,但是看着还好 其中 11 是我改的,不敢保证有没有漏改,但是过了洛谷模版题

4.2.1 最大流

```
constexpr ll INF = LLONG_MAX / 2;
```

```
struct E {
3
       int to; ll cp;
4
       E(int to, 11 cp): to(to), cp(cp) {}
5
6
   };
7
   struct Dinic {
8
       static const int M = 1E5 * 5;
9
       int m, s, t;
10
11
       vector<E> edges;
       vector<int> G[M];
12
       int d[M];
13
14
       int cur[M];
15
16
       void init(int n, int s, int t) {
17
            this->s = s; this->t = t;
            for (int i = 0; i <= n; i++) G[i].clear();</pre>
18
19
            edges.clear(); m = 0;
       }
20
21
22
       void addedge(int u, int v, ll cap) {
            edges.emplace_back(v, cap);
23
            edges.emplace_back(u, 0);
24
            G[u].push_back(m++);
25
            G[v].push_back(m++);
26
       }
27
28
       bool BFS() {
29
30
            memset(d, 0, sizeof d);
            queue<int> Q;
31
            Q.push(s); d[s] = 1;
32
            while (!Q.empty()) {
33
                int x = Q.front(); Q.pop();
34
                for (int& i: G[x]) {
35
                    E &e = edges[i];
36
                     if (!d[e.to] && e.cp > 0) {
37
                         d[e.to] = d[x] + 1;
38
                         Q.push(e.to);
39
40
                     }
41
                }
42
            }
```

```
return d[t];
43
        }
44
45
        11 DFS(int u, ll cp) {
46
            if (u == t || !cp) return cp;
47
            11 \text{ tmp} = \text{cp, f;}
48
            for (int& i = cur[u]; i < G[u].size(); i++) {</pre>
49
                 E& e = edges[G[u][i]];
50
                 if (d[u] + 1 == d[e.to]) {
51
                     f = DFS(e.to, min(cp, e.cp));
52
                     e.cp -= f;
53
                     edges[G[u][i] ^ 1].cp += f;
54
                     cp -= f;
55
                     if (!cp) break;
56
57
                 }
58
            }
59
            return tmp - cp;
        }
60
61
62
       ll go() {
            11 \text{ flow} = 0;
63
            while (BFS()) {
64
                 memset(cur, 0, sizeof cur);
65
                 flow += DFS(s, INF);
66
67
            }
            return flow;
68
69
        }
70 } DC;
   4.2.2 费用流
   constexpr ll INF = LLONG_MAX / 2;
1
2
   struct E {
3
        int from, to; ll cp, v;
4
5
       E(int f, int t, ll cp, ll v) : from(f), to(t), cp(cp), v(v) {}
6
   };
7
8
9 | struct MCMF {
```

```
static const int M = 1E5 * 5;
10
       int n, m, s, t;
11
12
       vector<E> edges;
       vector<int> G[M];
13
       bool inq[M];
14
       11 d[M], a[M];
15
       int p[M];
16
17
       void init(int _n, int _s, int _t) {
18
           n = _n; s = _s; t = _t;
19
           REP (i, 0, n + 1) G[i].clear();
20
           edges.clear(); m = 0;
21
       }
22
23
       void addedge(int from, int to, ll cap, ll cost) {
24
           edges.emplace back(from, to, cap, cost);
25
26
           edges.emplace_back(to, from, 0, -cost);
           G[from].push_back(m++);
27
           G[to].push_back(m++);
28
       }
29
30
       bool BellmanFord(ll &flow, ll &cost) {
31
           REP (i, 0, n + 1) d[i] = INF;
32
           memset(inq, 0, sizeof inq);
33
           d[s] = 0, a[s] = INF, inq[s] = true;
34
           queue<int> Q; Q.push(s);
35
           while (!Q.empty()) {
36
37
                int u = Q.front(); Q.pop();
                inq[u] = false;
38
                for (int& idx: G[u]) {
39
                    E &e = edges[idx];
40
                    if (e.cp && d[e.to] > d[u] + e.v) {
41
                        d[e.to] = d[u] + e.v;
42
                        p[e.to] = idx;
43
                        a[e.to] = min(a[u], e.cp);
44
                        if (!inq[e.to]) {
45
                             Q.push(e.to);
46
                             inq[e.to] = true;
47
48
                        }
49
                    }
```

```
}
50
            }
51
            if (d[t] == INF) return false;
52
            flow += a[t];
53
            cost += a[t] * d[t];
54
            int u = t;
55
            while (u != s) {
56
                 edges[p[u]].cp -= a[t];
57
                 edges[p[u] ^ 1].cp += a[t];
58
                 u = edges[p[u]].from;
59
            }
60
            return true;
61
        }
62
63
        pair<11, 11> go() {
64
            11 \text{ flow} = 0, \text{ cost} = 0;
65
            while (BellmanFord(flow, cost));
66
            return make_pair(flow, cost);
67
68
        }
   } MM;
69
```

4.3 二分图最大匹配

ps. 建单向图 (即只有左部指向右部的边)

```
struct MaxMatch {
2
       int n;
       vector<int> G[N];
3
       int vis[N], left[N], clk;
4
5
       void init(int n) {
6
           this->n = n;
7
           REP (i, 0, n + 1) G[i].clear();
8
           memset(left, -1, sizeof left);
9
           memset(vis, -1, sizeof vis);
10
       }
11
12
       bool dfs(int u) {
13
           for (int v: G[u])
14
                if (vis[v] != clk) {
15
                    vis[v] = clk;
16
```

```
if (left[v] == -1 || dfs(left[v])) {
17
                          left[v] = u;
18
19
                          return true;
                      }
20
                 }
21
            return false;
22
23
        }
24
        int match() {
25
            int ret = 0;
26
            for (clk = 0; clk <= n; ++clk)</pre>
27
                 if (dfs(clk)) ++ret;
28
            return ret;
29
30
        }
   } MM;
31
```

4.4 Tarjan 强连通分量缩点

```
int low[N], dfn[N], clk, B, bl[N];
  vector<int> bcc[N];
  void init() { B = clk = 0; memset(dfn, 0, sizeof dfn); }
3
   void tarjan(int u) {
       static int st[N], p;
5
       static bool in[N];
6
       dfn[u] = low[u] = ++clk;
7
       st[p++] = u; in[u] = true;
8
       for (int& v: G[u]) {
9
           if (!dfn[v]) {
10
               tarjan(v);
11
                low[u] = min(low[u], low[v]);
12
           } else if (in[v]) low[u] = min(low[u], dfn[v]);
13
       }
14
       if (dfn[u] == low[u]) {
15
           ++B;
16
           while (1) {
17
                int x = st[--p]; in[x] = false;
18
               bl[x] = B; bcc[B].push_back(x);
19
                if (x == u) break;
20
21
           }
22
       }
```

- 4.5 树直径
- 4.6 树重心
- 4.7 树链剖分
- 4.8 最短路
- 4.8.1 Floyd (最小环)
- 4.8.2 Spfa (判负环)
- 4.8.3 Dijkstra
- 4.9 拓扑排序
- 4.10 最小生成树
- 4.11 欧拉路径/回路
- 4.12 01 图黑白染色
- 5 字符串
- 5.1 KMP
- 5.2 Trie 树
- 6 STL
- 6.1 算法库

不修改序列的操作

批量操作

在标头 <algorithm> 定义

for_each

应用一元函数对象到范围中元素 (函数模板)

 $ranges::for_each (C++20)$

应用一元函数对象到范围中元素 (算法函数对象)

 $for_each_n (C++17)$

应用函数对象到序列的前 N 个元素 (函数模板)

 $ranges::for_each_n (C++20)$

应用函数对象到序列的前 N 个元素 (算法函数对象)

搜索操作

```
在标头 <algorithm> 定义
all of (C++11)
any_of (C++11)
none of (C++11)
  检查谓词是否对范围中所有、任一或无元素为 true (函数模板)
ranges::all_of (C++20)
ranges::any_of (C++20)
ranges::none_of(C++20)
  检查谓词是否对范围中所有、任一或无元素为 true (算法函数对象)
ranges::contains (C++23)
ranges::contains_subrange (C++23)
  检查范围是否包含给定元素或子范围 (算法函数对象)
find
find if
find_if_not(C++11)
  查找首个满足特定条件的元素 (函数模板)
ranges::find (C++20)
ranges::find_if (C++20)
ranges::find_if_not (C++20)
   查找首个满足特定条件的元素(算法函数对象)
ranges::find_last (C++23)
\verb"ranges::find_last_if" (C++23)
ranges::find_last_if_not (C++23)
   查找最后一个满足特定条件的元素(算法函数对象)
find_end
  查找元素序列在特定范围中最后一次出现(函数模板)
ranges::find_end (C++20)
  查找元素序列在特定范围中最后一次出现(算法函数对象)
find_first_of
  搜索一组元素中任一元素 (函数模板)
ranges::find_first_of (C++20)
  搜索一组元素中任一元素 (算法函数对象)
adjacent_find
   查找首对相同(或满足给定谓词)的相邻元素(函数模板)
ranges::adjacent_find (C++20)
  查找首对相同(或满足给定谓词)的相邻元素(算法函数对象)
count
count_if
  返回满足特定条件的元素数目(函数模板)
ranges::count (C++20)
```

ranges::count_if (C++20)

返回满足特定条件的元素数目(算法函数对象)

mismatch

查找两个范围的首个不同之处 (函数模板)

ranges::mismatch (C++20)

查找两个范围的首个不同之处(算法函数对象)

equal

判断两组元素是否相同(函数模板)

ranges::equal (C++20)

判断两组元素是否相同(算法函数对象)

search

搜索元素范围的首次出现(函数模板)

ranges::search (C++20)

搜索元素范围的首次出现(算法函数对象)

search_n

搜索元素在范围中首次连续若干次出现(函数模板)

 $ranges::search_n (C++20)$

搜索元素在范围中首次连续若干次出现 (算法函数对象)

ranges::starts_with (C++23)

检查一个范围是否始于另一范围 (算法函数对象)

 $ranges::ends_with (C++23)$

检查一个范围是否终于另一范围 (算法函数对象)