Project Group - 06

- Members:
 - Vincent, Yang
 - Eric, Zhang
 - Shenshen, Sun
 - Shuai, Wang
- · Student numbers:
 - 5703646
 - 57026155704197
 - 5714532

Research Objective

Requires data modeling and quantitative research in Transport, Infrastructure & Logistics

In this project, we are very curious about the driving behavior of car drivers, so we model, optimize and analyze the vehicle following data from the ZTD data platform. We have chosen the following model algorithm and optimization algorithm as the goal of our course design. The car-following model algorithm adopts the intelligent driver model, and the optimization model chooses the genetic algorithm.

Contribution Statement

Be specific. Some of the tasks can be coding (expect everyone to do this), background research, conceptualisation, visualisation, data analysis, data modelling

Author Vincent Yang

Author Eric Zhang:

Author Shenshen Sun:

Author Shuai Wang:

1 IDM model

In this project, we will use the intelligent driver model with an explicit reaction time. Let's indicate the mathematical framework. We will fit the driving trajectory of a real car driver based on the intelligent driver model (IDM), Equation 1.

$$a_{\alpha}(t+\tau_{\alpha}) = a \left[1 - \left(\frac{v_{\alpha}(t)}{v_{0}} \right)^{4} - \left(\frac{s^{*}(v_{\alpha}(t), \Delta v_{\alpha}(t))}{s_{\alpha}(t)} \right)^{2} \right]$$
 (1)

where we control the vehicle's driving state by the vehicle's acceleration $a_a(t+\tau)$ at each moment t and τ_a denotes the driver's reaction time. v_0 denotes the free-flow speed of the vehicle and $S_a(t)$ denotes the distance difference of the vehicle. s* is a distance consisting of three parts, given by the **Equation 2**:

$$s^* \left(v_{\alpha}(t), \Delta v_{\alpha}(t) \right) = s_0 + v_{\alpha}(t) T + \frac{v_{\alpha}(t) \Delta v_{\alpha}(t)}{2\sqrt{ab}}$$
 (2)

s* can be interpreted as a reference distance, composed of a static and dynamic term. S_0 indicates the minimum parking distance, and the $v_a(t)T$ represents the speed of vehicle multiplied by the expected time headway. The third component represents a safety distance based on the speed difference $\Delta v_a(t)$, which indicates the distance a vehicle needs to travel without hitting the vehicle in front of it (without reaching b) during non-emergency braking. a is the maximum acceleration of the vehicle, b is the comfortable deceleration of the vehicle.

We modeled it according to the formula above, the file name is Intelligent Driver Model for assignment1.py.

2 Data Processing

https://zen-traffic-data.net/english/ (https://zen-traffic-data.net/english/)

The vehicle trajectory data selected in this assignment comes from the Zen Traffic Data platform (https://zen-traffic-data.net/ (https://zen-traffic-data.net/

The platform currently opens the track data of 3412 vehicles, We wrote a program(*Statistics information.py*) to count the number of rows in the raw data, and we also find the following time for every car(*find every car's time.py*), we got an average following time of 165.5 seconds. The data includes vehicle number, time, speed, lane,location, vehicle length and other information, it is worth noting that the vehicle length is rounded to 0.5 m. A portion of the Hanshin Expressway is shown in the figure below

To apply the car-following model, it is first necessary to find out information about the vehicles in front and behind. Since the original data (L001_F001_trajectory.csv) does not have the pairing information of the front and rear vehicles, we first need to pair the original data. We use the R language pairing program (find_leaders.R) given on the website to pair the vehicles and remove them. All vehicles with a vehicle length greater than 6.5 meters (Remove vehicles over 6.5 meters.py), got 1793 paired vehicle information (Paired_L001_F001_trajectory.csv).

COLUMN	TYPE	UNiT	DESCRIPTION	SAMPLE
vehicle_id	int		Vehicle ID	2341
datetime	string		Datetime	70216100
vehicle_type	int		 normal vehicle large vehicles (bus, truck, etc.) 	1
velocity	decimal	km/h	Velocity	63.1
. cc 1	*004		1: driving lane	
traffic_lane	int		2: passing lane 3: entrance lane	1
longtiude	decimal	degree	Longitude measured as WGS84 system	135.4598 9
latitude	decimal	degree	Latitude measured as WGS84 system	34.72099 2
kilopost	decimal	meter	Distance from starting point of the expressway	5070.7
vehicle_length	decimal	meter	Estimated vehicle length from image recognition Value is rounded to 0.5 [m].	5.5
detected_flag	int		 detected record by image recognition interpolated record 	1

We use kilopost as the vehicle location information, however, kilopost is calculated from the latitude and longitude of the rear center position of the vehicle, and the vehicle spacing S_{α} in the intelligent driver model is the distance from the rear of the previous vehicle to the front of the following vehicle, so the formula for calculating S_{α} in this assignment is shown in **Equation 3**.

$$s_{\alpha} = kp(\alpha - 1) - kp(\alpha) + length(\alpha)$$
 (3)

where α is the current vehicle, $\alpha-1$ is the previous vehicle, kp denotes kilopost, and length denotes vehicle length.

3 Genetic Algorithm

We need to calibrate the model parameters of 1793 vehicles based on the improved intelligent driver model.

To this end, we use a genetic algorithm($genetic\ algorithm.py$). We do so to fit the five parameters in the intelligent driver model, namely S_0, T, a, b, v_0 representing the driving behavior of the drivers. We use a library called geatpy, which has a built-in genetic algorithm kernel, and we need to set the parameters of the genetic algorithm.

The parameters are represented by a set of real numbers, and the quality of the model with these parameters by a value indicating the goodness of fit for the model with the parameter set. In this assignment, we chose to calculate the variation between the predicted car trajectory and the measured car trajectory as the root mean squared error between the measured position $y_{measured}(t)$ and predicted position $y_{IDM}(t)$, as indicated in **Equation 4**:

$$\min F(t) = \sum_{t}^{Time\ Interval} (y_measured(t) - y_predicted(t))^{2}$$
(4)

For generating a next generation, we used the elite retention method. The initial generation was randomly generated within the range of values of each parameter. The population size was 20 individuals.

After that, we choose to use the two-point crossover method for the recombination of the parameter set with a recombination probability of 0.7. We use the variation operator of breeder GA as the variation algorithm for the parameter set. We set the variation probability to 1/decision variable dimensions.

Since there are five decision variables in total, we set the variation probability to 0.2. We set the condition for the termination of the algorithm to reach 50 evolutionary generations

At the end, we do check the quality of the optimized result (see next subsection). Finally, we have to set a range for the calibration parameters to improve the calculation speed of the algorithm and to let the parameters fall within a reasonable interval, so we have to set a range for the five parameters to be calibrated, and the parameters are taken as follows.

```
S_0: 1 - 8m

T: 0.5 - 5s

a: 0.5 - 6m/s^2

b: 0.5 - 6m/s^2

v_0: 0 - 50m/s
```

Now we have the value of the objective function and also the travel time of each vehicle, so we can calculate the error of each vehicle, we choose to eliminate the vehicles with an error greater than 10, and finally we get the data of 1231 vehicles(*result.csv*), also It's the driver's driving habits.

Out[2]:

	s	т	аМах	bMax	v0	least square	id	length	type	leader_id	leader_type	front_length	group	times	error
0	7.068824	1.160274	1.119538	4.133713	21.872616	1445.437292	3454	4.0	1	2376	2	7.5	1	713	1.423819
1	2.700226	1.699020	2.104446	2.820480	21.620178	1686.100051	3502	4.5	1	2763	2	8.5	2	701	1.550896
2	2.095893	1.755600	1.314833	3.444540	47.499037	1819.653283	3423	4.5	1	2041	1	5.5	2	746	1.561798
3	2.353956	0.579338	4.653707	3.689097	41.827202	2315,541396	3419	4.0	1	2008	1	4.5	1	877	1.624899
4	7.196570	1.325065	1.201248	0.500000	22.195339	2419.537743	3450	4.0	1	2923	1	3.5	1	768	1.774948
1226	3.118927	1.582977	5.083557	1.203949	32.418823	113073.895500	145	3.5	1	143	1	4.0	1	1148	9.924536
1227	1.218109	2.281021	3.603653	4.311798	31.980896	153401.887700	865	3.5	1	862	1	4.5	1	1548	9.954739
1228	3.419281	1.898834	4.532684	5.868576	41.221619	178294.031400	1066	4.0	1	1065	1	3.5	1	1794	9.969128
1229	1.267029	1.875076	3.209045	0.974838	48.649597	160292.877100	987	4.5	1	985	2	11.5	2	1612	9.971824
1230	5.463654	1.319717	1.216370	3.205185	21.878052	111647.786400	751	4.0	1	749	2	7.0	1	1119	9.988724

1231 rows × 15 columns

4 Basic Analysis

4.1 First, visualize the results of the above data

4.2 Then, we want to know the number of front vehicles in different length types.

In [4]: # Each vehicle is marked with number = 1
df.insert(df.shape[1], 'number', 1)
df

hat.	141	

	s	Т	aMax	bMax	v 0	least square	id	length	type	eader_id	leader_type	front_length	group	times	error	number
0	7.068824	1.160274	1.119538	4.133713	21.872616	1445.437292	3454	4.0	1	2376	2	7.5	1	713	1.423819	1
1	2.700226	1.699020	2.104446	2.820480	21.620178	1686.100051	3502	4.5	1	2763	2	8.5	2	701	1.550896	1
2	2.095893	1.755600	1.314833	3.444540	47.499037	1819.653283	3423	4.5	1	2041	1	5.5	2	746	1.561798	1
3	2.353956	0.579338	4.653707	3.689097	41.827202	2315.541396	3419	4.0	1	2008	1	4.5	1	877	1.624899	1
4	7.196570	1.325065	1.201248	0.500000	22.195339	2419.537743	3450	4.0	1	2923	1	3.5	1	768	1.774948	1
1226	3.118927	1.582977	5.083557	1.203949	32.418823	113073.895500	145	3.5	1	143	1	4.0	1	1148	9.924536	1
1227	1.218109	2.281021	3.603653	4.311798	31.980896	153401.887700	865	3.5	1	862	1	4.5	1	1548	9.954739	1
1228	3.419281	1.898834	4.532684	5.868576	41.221619	178294.031400	1066	4.0	1	1065	1	3.5	1	1794	9.969128	1
1229	1.267029	1.875076	3.209045	0.974838	48.649597	160292.877100	987	4.5	1	985	2	11.5	2	1612	9.971824	1
1230	5.463654	1.319717	1.216370	3.205185	21.878052	111647.786400	751	4.0	1	749	2	7.0	1	1119	9.988724	1

1231 rows × 16 columns

```
In [5]: # Sorting vehicles of different lengths
df_4 = df.groupby("front_length").agg(("number": sum))
df_4
```

Out[5]:

ront_length	
3.0	172
3.5	245
4.0	399
4.5	219
5.0	19
5.5	18
6.0	9
6.5	25
7.0	11
7.5	10
8.0	10
8.5	12
9.0	15
9.5	5
10.0	4
10.5	6
11.0	15
11.5	21
12.0	10
12.5	2
13.0	2
13.5	2

number

```
In [6]: fig = px.bar(df_4, x=df_4.index, y="number", text_auto=True)
fig.update_traces(textposition = "outside")
fig.show()
```


4.3 Box figure on relationship between Expected Time Headway(T) and Front Car Length

In [7]: fig = px.box(df, x="front_length", y="T")
fig.show()

When the front vehicle length is between 3 and 6.5m, the expected time headway(T) is more stable, with values fluctuating between approximately 1.30 and 1.50.

When the front vehicle length is greater than 6.5m, the expected time headway(T) fluctuates greatly, indicating that the driver is unable to accurately determine the distance to the front vehicle.

4.4 Box figure on relationship between Expected Time Headway(T) and Car Length

In [8]: fig = px.box(df, x="length", y="T", color='length') fig. show()

A general trend can be drawn that the longer the length of the car the driver is driving, the expected time headway(T) becomes greater.

And according to the data results, when the car length is 5.5m, the expected time headway(T) is most unstable, with a large distribution range(1.27s to 3.12s).

4.5 Relationship between Expected Time Headway(T) and vehicle length

```
In [9]: # T(Expected Time Headway) and Length Figure
    fig = px.scatter(df, x="length", y="T", trendline="ols")

model = px.get_trendline_results(fig)
    alpha = model.iloc[0]["px_fit_results"].params[0]
    beta = model.iloc[0]["px_fit_results"].params[1]
    fig.data[0].name = 'data point'
    fig.data[0].showlegend = True
    fig.data[1].name = fig.data[1].name + 'y = ' + str(round(alpha, 2)) + ' + ' + str(round(beta, 2)) + 'x'
    fig.data[1].showlegend = True

fig.show()
```


According to the regression line, it can be seen that for every meter increase in the length of the car, the expected time teadway (T) increases by 0.2s.

4.6 Pick car No.45 and drow its trendline on acceleration

```
In [10]: file_path_45 = ".\IDMdata_for_45.csv"
    df_45 = pd.read_csv(file_path_45, delimiter=',')
a = []
for i in range(0, len(df_45), 20):
    a.append(i)
file_45 = df_45.iloc[a]
file_45
```

Out[10]:

		Unnamed: 0	Velocity Acceleration		front car position	following car position	time
_	0	5	22.083333	1.197868	5013.3	5054.8	0.5
	20	25	23.118247	-0.196055	4965.0	5009.5	2.5
	40	45	22.512502	-0.901774	4921.4	4962.5	4.5
	60	65	22.107790	-0.048463	4881.5	4918.0	6.5
	80	85	21.317817	-0.812781	4840.6	4875.8	8.5
	100	105	20.954422	-0.415862	4802.0	4830.4	10.5
	120	125	20.154522	-1.066362	4761.3	4790.4	12.5
	140	145	19.996274	0.007225	4721.4	4746.2	14.5
	160	165	20.508522	-0.002056	4679.4	4705.3	16.5
	180	185	20.378130	-0.234547	4639.4	4663.0	18.5
	200	205	20.468841	0.430020	4598.4	4621.9	20.5
	220	225	20.619558	-0.133235	4556.0	4580.9	22.5
	240	245	21.289919	-0.289163	4510.8	4534.8	24.5
	260	265	20.930060	-0.378803	4467.1	4489.3	26.5
	280	285	20.956666	0.336937	4421.5	4446.5	28.5
	300	305	21.440629	-0.240220	4380.0	4401.5	30.5
	320	325	20.671536	0.579729	4341.9	4360.4	32.5
	340	345	19,990073	-0.689199	4305.8	4322.9	34.5
	360	365	20.015200	0.164555	4264.3	4286.2	36.5
	380	385	20.163644	-0.174391	4221.3	4246.0	38.5
	400	405	20.850204	0.064595	4182.7	4205.1	40.5
	420	425	21,172419	1.055524	4137.6	4163.9	42.5
	440	445	20.392953	-1.962937	4097.7	4119.6	44.5
	460	465	19.917248	-0.239796	4058.6	4077.9	46.5
	480	485	19.819847	-0.507157	4018.8	4038.1	48.5
	500	505	19.890008	0.202378	3980.8	4000.0	50.5
	520	525	19.728980	-0.619193	3943.3	3962.9	52.5
	540	545	19.945782	-0.677604	3905.2	3925.9	54.5
	560 580	565 585	20.367219	-0.376969	3866.0 3828.8	3887.6	56.5 58.5
	600	605	19.984638 19.538223	-1.044514 -0.839123	3789.6	3854.8 3814.4	60.5
	620	625	20.364766	0.729353	3746.4	3775.0	62.5
	640	645	20.336822	-0.360694	3708.6	3735.7	64.5
	660	665	19.677632	0.469789			66.5
	680	685	19.077032	-0.211178	3669.6 3630.7	3696.3 3658.4	68.5
	700	705	18.189714		3598.1	3621.8	
	720	705	18.150366	1.006257 0.376834	3560.0	3589.0	70.5 72.5
			17.712193				
	740	745		0.132837	3525.4	3552.8	74.5
	760	765	17.738428 17.601073	-0.870324	3488.3 3446.7	3517.5 3479.1	76.5
	780 800	785 805		0.644647 -0.554021	3414.5	3436.6	78.5 80.5
			17.175957	0.159332			82.5
	820	825	16.321673 15.412308		3381.9	3403.3	
	840	845		1.769622	3358.8	3376.5	84.5
	860	865	15.894708	0.424552	3325.0	3345.5	86.5
	880	885	16.929529	-0.473399	3286.4	3311.7	88.5
	900	905	17.351491	0.402146	3250.0	3273.8	90.5
	920	925	18.667135	0.759388	3208.8	3238.9	92.5
	940	945	19.168155	-0.322739	3171.4	3196.5	94.5
	960	965	18.369076	-0.022981	3133.5	3160.0	96.5
	980	985	17.547516	-1.548931	3100.6	3120.7	98.5
	1000	1005	16.782025	-0.555282	3069.0	3087.5	100.5
1	1020	1025	16.282124	1.226687	3037.5	3058.0	102.5

In [11]: fig_45 = px.scatter(file_45, x='time', y="Acceleration", trendline="lowess", trendline_options=dict(frac=0.1)) fig_45.show()

4.7 Time and space map of car No.45 and its front car

```
In [12]: # Draw picture about time and space map of car No. 45 and its front car x=df_45['time'] y1=df_45['following car position'] y2=df_45['front car position']

plt. figure(figsize=(14,10))
11, =plt. plot(x, y1, linewidth=1)
12, =plt. plot(x, y2, linewidth=1)

font1 = {'family':'serif', 'color':'blue', 'size':20} font2 = {'family':'serif', 'color':'darkred', 'size':15}

plt. legend((11,12,), ['following car', 'front car']) plt. title("Time and space map of car No. 45 and its front car", fontdict=font1) plt. xlabel("time(s)", fontdict=font2) plt. ylabel("Position(m)", fontdict=font2)
# plt. show()
```

