Transmission Expansion Planning by Quantum Annealing

Sergio López Baños 1,3 MSc Student

Dr. Álvaro Díaz Fernández 2 **Academic Supervisor**

Dr. Oriol Raventós Morera 3 **Industry Supervisor**

Source: Mckinsey Quantum Technology Monitor April 2023

A thesis submitted in fulfilment of the requirements for the degree of Master in Quantum Computing at Nebrija University.

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

| Contents>

- Motivation
- Statement of the problem
- Heuristic Methods
 - Simulated Annealing
 - Quantum Annealing
- Resolution of Small Network
- Hybrid Solver
- Benders' Decomposition algorithm
- Conclusions and Future Work

The estimated value at stake for QC in the four industries most likely to see impact first has now reached nearly \$1.3 trillion.

Source: Mckinsey Quantum Technology Monitor April 2023

Economic value + Incremental ++ Significant +++ Disruptive

Four industries	expected t	o see first	impact
-----------------	------------	-------------	--------

Value at stake with incremental impact of QC by 2035, \$ billion

Industry	Key segment for QC	2025-30	2030-35
Global energy	Oil and gas	+	++
and materials	Sustainable energy	+	+++
	Chemicals	++	+++
Life sciences	Pharmaceuticals	++	+++
Advanced industries	Automotive	++	++
	Aerospace and defense	+	++
	Advanced electronics	+	++
	Semiconductors	+	++
Finance	Financial services	++	+++
Telecom, media,	Telecom	+	++
and technology	Media	+	+
Travel, transport, and logistics	Logistics	+	++

The estimated value at stake for QC in the four industries most likely to see impact first has now reached nearly \$1.3 trillion.

Source: Mckinsey Quantum Technology Monitor April 2023

Four industries expected to see first impact

Value at stake with incremental impact of QC by 2035, \$ billion

Industry	Key segment for QC	2025-30	2030-35		
Global energy	Oil and gas	+	++		
and materials	Sustainable energy	+	+++		
	Chemicals	++	+++		
Life sciences	Pharmaceuticals	++	+++		
Advanced industries	Automotive	++	++		
	Aerospace and defense	+	++		
	Advanced electronics	+	++		
	Semiconductors	+	++		
Finance	Financial services	++	+++		
Telecom, media,	Telecom	+	++		
and technology	Media	+	+		
Travel, transport, and logistics	Logistics	+	++		

Economic value + Incremental ++ Significant +++ Disruptive

| Statement of the Problem>

Objective: distribute the energy across a network in the most effective way so that we minimize the energy loss.

Background: the smart grid provide data about the current status of the grid. There are predictions of **future scenarios** where the demand at each node is predicted and the network has to be able to fulfil the demand.

How: there are many ways of improving the efficiency of a network but we focus on the transmission expansion planning (TEP) problem. TEP aims at finding the optimal way of expanding the network by adding new lines between nodes.

Motivation: energy system models are getting larger and more complex due to the integration of decentralized weather-dependent renewable energy sources, intermittent loads, sector coupling and the increase of storage components.

| Statement of the Problem>

Symbol	Description	Type
N	Set of nodes of the network	Set
Н	Set of snapshots	Set
С	Set of candidate transmission lines	Set
C_k	Set of candidate transmission lines from all nodes to node k	Set
Е	Set of existing transmission lines	Set
E_k	Set of existing transmission lines from all nodes to node <i>k</i>	Set
x_{kl}	Transmission line from node k to l	Binary
$rac{f_{kl}^0}{ar{f}_{kl}^0}$	Power flow in existing line from node k to l	Integer
\bar{f}_{kl}^0	Maximum power flow in existing line from node k to l	Integer
f_{kl}^1	Power flow in candidate line from node k to l	Integer
\bar{f}_{kl}^1	Maximum power flow in candidate line from node k to l	Integer
r_k	Shedding load at node k	Integer
$d_k(h)$	Demand of node k at snapshot h	Integer
$g_k(h)$	Current generation at node k at snapshot h	Integer
\bar{g}_k	Maximum generation at node k	Integer
c_{kl}	Investment cost of transmission line from node k to l	Real
$c_k^{(\text{oc})}$	Annualised operational cost per MWh of generator g_k	Real
c_k	Cost of shedding load at node k	Real

Table 4.1: Description of variables involved in TEP problems.

Statement of the Problem>

$$\min_{\mathbf{x}, \mathbf{g}, \mathbf{r}, \mathbf{f}^0, \mathbf{f}^1} \quad \underbrace{\sum_{kl \in C} c_{kl} x_{kl}}_{\text{Investment cost}} + \underbrace{\sum_{h \in H} \sum_{k} c_{k}^{(\text{oc})} g_{k}(h)}_{\text{Operational cost}} + \underbrace{\sum_{h \in H} \sum_{k} r_{k}(h) c_{k}}_{\text{Load shedding cost}}$$

$$d_k(h) - \left(\sum_{l \in E_k} f_{kl}^0(h) + \sum_{l \in C_k} f_{kl}^1(h) + g_k(h) + r_k(h)\right) = 0, \quad \forall k \in N, h \in H,$$

$$|f_{kl}^0(h)| - \bar{f}_{kl}^0(h) \le 0$$
,

$$\forall kl \in E, h \in H,$$

$$\left|f_{kl}^{1}(h)\right|-\bar{f}_{kl}^{1}(h)x_{kl}\leq 0$$
,

$$\forall kl \in C, h \in H,$$

$$g_k(h)-\bar{g}_k(h)\leq 0$$
,

$$\forall k \in N, h \in H$$
,

$$r_k(h)-d_k(h)\leq 0,$$

$$\forall k \in N, h \in H$$
,

$$\mathbf{d},\mathbf{g},\mathbf{f}^0,\mathbf{f}^1\geq 0,$$

(Binary type)
$$x_{kl} \in \{0,1\}$$
,

$$\forall kl \in C$$
,

Heuristic Methods: | Simulated Annealing >

Objective function:

$$\min_{\vec{x}} f(\vec{x}) = \min_{\vec{x}} \sum_{v} \sum_{u} \sum_{i=0}^{i < n} D_{u,v} x_{v,i} x_{u,i+1},$$

Visit each node just once in the whole path:

$$\sum_{i=0}^{i< n} x_{u,i} = 1 \quad \forall \ u \in R,$$

Each stop of the tour has one node:

$$\sum_{u} x_{u,i} = 1 \quad \forall \ i \in P.$$

Constrains in cost function by Lagrange multipliers:

$$\min_{\vec{x}} f(\vec{x}) = \min_{\vec{x}} \sum_{v} \sum_{u} \sum_{i=0}^{i < n} D_{u,v} x_{v,i} x_{u,i+1}$$

$$-\sum_{i=0}^{i< n} \lambda_i \left(\sum_u x_{u,i} - 1\right)^2 - \sum_u \lambda_u \left(\sum_{i=0}^{i< n} x_{u,i} - 1\right)^2.$$

Travelling Salesman Problem

Heuristic Methods: | Quantum Annealing>

Interpolation of initial and final Hamiltonians:

Quoting Sarandy and Lidar:

The theorem posits, roughly, that if a state is an instantaneous eigenstate of a sufficiently slowly varying Hamiltonian at one time, then it will remain an eigenstate at later times, while its eigenenergy evolves continuously.

Eigenenergies as function of dimensionless time:

TEP: | Small Network>

Brownfield model: Network considering current transmission lines (solid lines) and candidate lines (dashed lines).

Greenfield model: Network considering just candidate lines (dashed lines).

TEP: | Small Network>

- Single demand at node 2.
- One time snapshot.
- Maximum capacity per generator 10 units of energy.

The demand cannot be fulfilled by its own generator and it requires to build at least one transmission line.

Symbol	Description	Value
$\mathbf{c} = [c_{12}, c_{13}, c_{23}]$	Investment cost	[10, 20, 30]
$\mathbf{c}^{\text{oc}} = [c_1^{\text{oc}}, c_2^{\text{oc}}, c_3^{\text{oc}}]$	Operational cost	[10, 5, 2]
$\mathbf{d} = [d_1, d_2, d_3]$	Demands	[0, 12, 0]
$\mathbf{\bar{g}} = [\bar{g}_1, \bar{g}_2, \bar{g}_3]$	Maximum capacity	[10, 10, 10]
$\mathbf{\bar{f}}^1 = [f_{12}^1, f_{13}^1, f_{23}^1]$	Maximum Power Flow in candidate line	[10, 10, 10]

Table 4.2: Investment cost, operational cost, demand, maximum capacity per generator and maximum power flow per candidate line for a three node network.

TEP: | Small Network>

Results:

	X_1_2	X_1_3	X_2_3	g_1	g_2	g_3	energy	is_feasible	is_satisfied	num_occurrences
9860	0	0	1	0	2	10	60.0	True	True	1
8980	0	0	1	0	3	9	63.0	True	True	1
8100	0	0	1	0	4	8	66.0	True	True	1
7220	0	0	1	0	5	7	69.0	True	True	1
9868	0	0	1	1	2	10	70.0	True	True	1

Indicates that the constraints are fulfilled.

The solution that minimizes the objective cost – which is the sum of investment cost and operational cost – decides to build the transmission line connecting node 3 and 2 (the most expensive one) and use the generator 3 to produce most of the required energy (the cheapest operational cost)

 $g_2 = 2$ $d_2 = 12$

Symbol	Description	value
$\mathbf{c} = [c_{12}, c_{13}, c_{23}]$	Investment cost	[10, 20, 30]
$\mathbf{c}^{\text{oc}} = [c_1^{\text{oc}}, c_2^{\text{oc}}, c_3^{\text{oc}}]$	Operational cost	[10, 5, 2]
$\mathbf{d} = [d_1, d_2, d_3]$	Demands	[0, 12, 0]
$\mathbf{\bar{g}} = [\bar{g}_1, \bar{g}_2, \bar{g}_3]$	Maximum capacity	[10, 10, 10]
$\mathbf{\bar{f}}^1 = [f_{12}^1, f_{13}^1, f_{23}^1]$	Maximum Power Flow in candidate line	[10, 10, 10]

Table 4.2: Investment cost, operational cost, demand, maximum capacity per generator and maximum power flow per candidate line for a three node network.

C----1--1

TEP: | Hybrid Solver>

LeapHybridCQMSampler

Main features:

- 20 min of free trial.
- Solve MILP problems.
- Cannot know how much quantum solver was involved in the resolution.

x ₁₂	x ₁₃	X ₂₃	f ₁₂	f ₁₃	f ₂₁	f ₂₃	f ₃₁	f ₃₂	g ₁	\mathbf{g}_2	g ₃	r ₁	r ₂	r ₃	Prices
0	0	1	0	0	0	10	0	0	0	2	10	0	0	0	60
1	1	0	0	10	10	0	0	0	0	2	10	0	0	0	60

Step 1: Initialization of Benders' decomposition t = 1Benders' iteration (4.9) $z^0 = -\infty$ Lower bound (4.10) $\bar{z}^0 = \infty$ Upper bound (4.11) $\alpha^0 = 0$ Load shedding and operational cost (4.12) $\Pi^0_{f^1_{i}} = 0 \quad \forall kl \in C$ Lagrange multipliers (4.13)

Step 2: Master problem solved by a quantum annealer

$$\min_{\mathbf{x}^t} \quad \underline{z}^t \tag{4.14a}$$

s.t.
$$\underline{z} \ge \sum_{kl \in C} c_{kl} x_{kl}^t + \alpha^{t-1} - \sum_{kl \in C} \Pi_{f_{kl}^{1}}^{t-1} \left(x_{kl}^t - x_{kl}^{t-1} \right),$$
 (4.14b)

$$x_{kl} \in \{0,1\}, \qquad \forall kl \in C. \tag{4.14c}$$

Step 3: Slave problem solved by a classical solver

$$\min_{\mathbf{g}, \mathbf{r}, \mathbf{f}^{0}, \mathbf{f}^{1}} \sum_{k} c_{k}^{(\text{oc})} g_{k} + \sum_{k} r_{k} c_{k} \tag{4.15a}$$
s.t.
$$d_{k} - \left(\sum_{l \in E_{k}} f_{kl}^{0} + \sum_{l \in C_{k}} f_{kl}^{1} + g_{k} + r_{k}\right) = 0, \forall k \in \mathbb{N}, \tag{4.15b}$$

$$|f_{kl}^{0}| - f_{kl}^{0} \leq 0, \qquad \forall kl \in E, \tag{4.15c}$$

$$|f_{kl}^{1}| - f_{kl}^{1} x_{kl}^{t} \leq 0, \qquad \forall kl \in C, \tag{4.15d}$$

$$g_{k} - \bar{g}_{k} \leq 0, \qquad \forall k \in \mathbb{N}, \tag{4.15e}$$

$$r_{k} - d_{k} \leq 0, \qquad \forall k \in \mathbb{N}. \tag{4.15f}$$

$$\bar{z}^{t} = \min\{\bar{z}^{t-1}, \sum_{kl \in C} c_{kl} x_{kl}^{t} + \alpha^{t}\} \qquad \text{Update upper bound} \tag{4.16}$$

Step 4: Stopping criterion

If $(\bar{z}^t - \underline{z}^t) / \bar{z}^t \le \epsilon$, then we found the (sub)-optimal solution, else t = t + 1 and we have to repeat the algorithm from step 2 until the stopping criterion is satisfied.

Benders' decomposition algorithm

Step 1: Initialization of Benders' decomposition

t = 1	Benders' iteration	(4.9)
$\underline{z}^0 = -\infty$	Lower bound	(4.10)
$\bar{z}^0 = \infty$	Upper bound	(4.11)
$\alpha^0 = 0$	Load shedding and operational cost	(4.12)
$\Pi^0_{f^1_{kl}} = 0 \forall kl \in C$	Lagrange multipliers	(4.13)

Step 2: Master problem solved by a quantum annealer

$$\min_{\mathbf{x}^{t}} \quad \underline{z}^{t} \tag{4.14a}$$
s.t. $\underline{z} \ge \sum_{kl \in C} c_{kl} x_{kl}^{t} + \alpha^{t-1} - \sum_{kl \in C} \Pi_{f_{kl}^{t}}^{t-1} \left(x_{kl}^{t} - x_{kl}^{t-1} \right), \tag{4.14b}$

$$x_{kl} \in \{0, 1\}, \qquad \forall kl \in C. \tag{4.14c}$$

Step 3: Slave problem solved by a classical solver

$$\min_{\mathbf{g}, \mathbf{r}, \mathbf{f}^{0}, \mathbf{f}^{1}} \sum_{k} c_{k}^{(\text{oc})} g_{k} + \sum_{k} r_{k} c_{k} \tag{4.15a}$$
s.t.
$$d_{k} - \left(\sum_{l \in E_{k}} f_{kl}^{1} + \sum_{l \in C_{k}} f_{kl}^{1} + g_{k} + r_{k}\right) = 0, \forall k \in \mathbb{N}, \tag{4.15b}$$

$$|f_{kl}^{0}| - \bar{f}_{kl}^{0} \le 0, \qquad \forall kl \in E, \tag{4.15c}$$

$$|f_{kl}^{1}| - f_{kl}^{1} x_{kl}^{t} \le 0, \qquad \forall kl \in C, \tag{4.15d}$$

$$g_{k} - \bar{g}_{k} \le 0, \qquad \forall k \in \mathbb{N}, \tag{4.15e}$$

$$r_{k} - d_{k} \le 0, \qquad \forall k \in \mathbb{N}. \tag{4.15f}$$

$$\bar{z}^{t} = \min{\{\bar{z}^{t-1}, \sum_{kl \in C} c_{kl} x_{kl}^{t} + \alpha^{t}\}} \qquad \text{Update upper bound} \tag{4.16}$$

Step 4: Stopping criterion

If $(\bar{z}^t - \underline{z}^t) / \bar{z}^t \le \epsilon$, then we found the (sub)-optimal solution, else t = t + 1 and we have to repeat the algorithm from step 2 until the stopping criterion is satisfied.

| Conclusions and Future Work>

PyPSA: this python package will read the raw data and produce the linear model files .lp

QUARK: this python package will reformulate the problem so that it can be sent to different quantum machines (hardware agnostic).

Benchmarking: once we have the interface to load the data and formulate the problem we can send it to different quantum machines and compare our hybrid quantum-classical method with those provide by companies such as D-Wave.

We expect that an specific hybrid quantumclassical model should work better than a general hybrid method. Furthermore, we will know exactly the amount of quantum solver employed.

Figure 6.1: Germany network generated with PyPSA for N cluster from eGo100 data.

Thank you for your time

QUANTUMatter2023 Conference: Poster presentation titled "Transmission Expansion Planning by Quantum Annealing".

