

TSMC PDK RF Flow Guide:

A Low-Noise Amplifier (LNA) Design Flow Example of TSMC CRN90LP Process Design Kits (PDK)

DSDAD

Ver 0.2a

Copyright 2006, Taiwan Semiconductor Manufacturing Company, Ltd. All Rights Reserved. No part of this publication may be reproduced in whole or in part by any means without prior written consent.

Confidential Security C

DISCLAIMER

The information contained herein is provided by TSMC on an "AS IS" basis without any warranty, and TSMC has no obligation to support or otherwise maintain the information. TSMC disclaims any representation that the information does not infringe any intellectual property rights or proprietary rights of any third parties. There are no other warranties given by TSMC, whether express, implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose.

STATEMENT OF USE

This information contains confidential and proprietary information of TSMC. No part of this information may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of TSMC. This information was prepared for informational purpose and is for use by TSMC's customers only. TSMC reserves the right to make changes in the information at any time and without notice.

Contents

- Chapter 1 : Introduction
- Chapter 2 : Schematic Capture
- Chapter 3 : Pre-layout Simulation
- Chapter 4 : Layout Creation
- Chapter 5 : Physical Verification
- Chapter 6 : Post-layout Simulaion

Contents

- Chapter 1 : Introduction
- Chapter 2 : Schematic Capture
- Chapter 3 : Pre-layout Simulation
- Chapter 4 : Layout Creation
- Chapter 5 : Physical Verification
- Chapter 6 : Post-layout Simulaion

Introduction

The major purpose of this user guide is to introduce the basic usage of a TSMC's PDK for those users who are completely new to TSMC PDK or never use TSMC's PDKs before as a reference. To ease the overall introduction, we use a simple LNA design as an example to go through the whole design flow: starting from the schematic capture and ending at the physical verification and post-layout simulation. We divide the whole flow into several phases below:

Schematic Capture

- Environment setup
- Creating a library, design, symbol and test fixture

Pre-layout Simulation

- Using Spectre simulator
- LNA performance, corner, Monte Carlo

Layout Creation

- Schematic-drive-layout
- Components placement
- Manual routing

Physical Verification

- Assura flow
- Calibre flow

Post-layout Simulation

- Assura flow
- Calibre flow

Contents

- Chapter 1 : Introduction
- Chapter 2 : Schematic Capture
- Chapter 3 : Pre-layout Simulation
- Chapter 4 : Layout Creation
- Chapter 5 : Physical Verification
- Chapter 6 : Post-layout Simulaion

Schematic Capture

After you have finished the installation of the TSMC's PDK, we will start to create a new design based on the installed PDK

- Environment setup
- Creating a library
- Creating a design
- Creating a symbol
- Creating a test fixture

Environment setup

Before we start to create a new design, some environment setups should be done. First, we have to set the environment variable of "CDS_Netlisting_Mode" to "Analog". This can be archived by the following UNIX command:

setenv CDS_Netlisting_Mode "Analog"

Then, go to the demo directory and enter Cadence environment by:

% cd <pdk_install_directory> /RF_flow % icfb &

Note:

- 1. The installation procedures of the TSMC's PDK can be found in the document of "TSMC PDK reference manual" released along with the corresponding PDK.
- 2. The <pdk_install_directory> is referred to the path where the TSMC's PDK was installed.

Creating a library

After completing the environment setup, we can start to create a new library.

2. In the Attach Design Library to Technology File form, select "tsmcN90rf", then click OK.

Creating a Schematic Cellview

- 1. In the CIW or Library Manger, select File->New->Cellview.
- 2.Set up the Create New File as follows:

3. Click OK when done.

Adding Components to a Schematic

Build the lna_raw schematic shown below:

- 1. In the *LNA_raw* schematic window, click the **Instance** fixed menu icon to display the Add Instance form.
- 2. Make sure that the View Name field in the form is set to symbol. You will update the Library Name, Cell Name, and the property values given in the table as you place each component.
- 3. After you complete the Add Instance form, move your cursor to the schematic window and click **left** to place a component.

Another way to fill in the Add Instance form is to click on the **Browse** button. This button opens up a Library Browser from which you can select components to place your **left** mouse button.

Omd	Stretc	h		Sel:		IOSO ⁶	Sc	hen	natio	: Ed	itin	g: Ir	na_l	ib L	NA.	_ra\	N S	che	ma	atic				- 2
	Design					Chool	, Oh	004	Ontic															Н
	Design	winu	iuw	Euit	Muu	Cileci	K SII	eei	Opuc	1112														
3																								
3																								
2													1											
2											6	oiraLe	<u> </u>					sin_rf″						
												v		gnd!	ol_etc			_1p5_						
À												n	et 1	w=6u rad=1	50u	.		nu_do:	329	= = =	1			
%														lay:9 m:1				"mimic and	8/1-3		\Diamond			
												nmos		M1 "proof	e ef"			¥		Ħ.		out		
				gc [· —							ygo	et1	totali netØ2.	=169 5	.000	ØØu	ž.		ο .				
1							pte ptd					nett	23	ir=169 nr=32 mr1	'n		1							
#							spiral_		ietØ12			nmos neti	irf 123	Ma Inmos	_rf"		aa.							
- Amm				in			10 E	W		0 T -		net@12		natØ15	-100	ששעה	020							
_							al_std	g.		β		net		nr=32 m:1										
							"spir	į	100															
*												oiraLe . net2		"apir	al_etd									
													1d!	ind=4 w=6u	138.7	94p								
\supset														nr=1. lay:9	50 u									
													: 1	m:1 gnd		: †								
													4											
<u></u>	ouse L	. 70.5	1003	dn+	Λ.					1	u.v.	useP	onII-	Λ				D	D.	tate	00			

Library Name	Cell Name	Properties/comments
tsmcN90rf	nmos_rf	For M0: Model = "nmos_rf", wr=5u, lr=100n, nr=32,m=1
tsmcN90rf	nmos_rf	For M1: Model = "nmos_rf", wr=5u, lr=100n, nr=32,m=1
tsmcN90rf	spiral_std	For L1 : Model = "spiral_std", w=6u, rad=30u, nr=1.5, lay=9, m=1
tsmcN90rf	spiral_std	For L3 : Model = "spiral_std", w= 6u, rad=35u, nr=4.5, lay=9, m=1
tsmcN90rf	spiral_std	For L4 : Model = "spiral_std", w= 6u, rad=50u, nr=3.5, lay=9, m=1
tsmcN90rf	mimcap_um	For C2 : Model= "mimcap_um_1p5_sin_rf", lt =11u, wt=10u, m=1

If you place a component with wrong parameter values, you can use the Edit->Properties->Objects command to change the parameters.

The properties of M0, M1, C2, L1, L3 and L4 should be made sure as follows:

_	Edit Obie	ct Propert	ies				
OK Cancel Apply D	efaults Previ			Help			
Apply To only current instance Show system ■ user ■ CDF							
Browse	Reset Insta	ınce Labels Di	splay				
Property		Value		Display			
Library Name	tsmcN9Orf			off —			
Cell Name	spiral_std	spiral_stď					
View Name	symbolį	symboli					
Instance Name	LL	LIĽ					
	Add	Delete	Modify				
CDF Parameter		Value		Display			
Model name	spiral_	std		off —			
Approx. inductance(H)	438.794	рН		off —			
TopMetal	9 —	9 —					
Inductor_Width_(M)	6u —	6u —					
Inner_Radius(M)	30u M <u>ř</u>	30u M <u></u>					
Number_Of_Turns	1.5	1.5					
multiplier	1 <u>i</u>			off —			
Hard_constrain				off —			

_		Edit Obje	ct Properti	es		
OK Car	ncel Apply D	efaults Previo	ous Next		Help	
Apply To only current instance Show system ■ user ■ CDF						
	Browse	Reset Insta	nce Labels Dis	play		
Pr	operty		Value		Display	
Lil	orary Name	tsmcN9Orf			off 🖂	
Ce	II Name	spiral_std	value —			
Vic	ew Name	symbol	off —			
In	stance Name	ГЗ		off —		
		Add	Delete	Modify		
CI)F Parameter		Value		Display	
Model nam	8	spiral_	std		off —	
Aμρτοx. in	luctance(H)	2.873n	Н		off —	
TopMetal		9 —	off —			
Inductor_W	/idth_(M)	6u —	off —			
Inner_Radi	us(M)	35.0u M	off 🗆			
Number_O	f_Turns	4.5	off 🗆			
multiplier		1 <u>1</u>			off 🗆	
Hard_cons	train				off —	

_		Edit C	Object I	Propert	ies			
OK Can	cel Apply	Defaults	Previous	Next		Help		
Apply To only current instance Show system ■ user ■ CDF								
	Browse	Reset	Instance	Labels Di	splay			
Pro	perty			Value		Display		
Library Name		tsmcN90]rf			off 🗆		
Ce	II Name	spiral	spiral_stď					
Vie	symbol	symboli						
ins	tance Name	L4	L4					
		Add		Delete	Modify			
CD	F Paramete	r		Value		Display		
Model nam	8	spi	ral_std			off =		
Approx. int	uctance(H)	2.5	4584n H			off —		
TopMetal		9 _				off =		
Inductor_Width_(M)				off —				
Inner_Radius(M)			M <u></u>	off —				
Number_Of	_Turns	3.5	Í.			off —		
multiplier		1 <u>*</u>				off —		
Hard_const	train	-				off —		

L1 L3 L4

After entering components, add vdd, gnd,(from analogLib) Pins and wires to the schematic as follows:

Creating a symbol

After completing the creation of schematic-capture, we have to create its corresponding symbol for the subsequence simulation steps.

- 1. In the *LNA_raw* schematic window, select Design->Create Cellview->From Cellviw
- 2. Setup the Cellview From Cellview window as follows:

3. Click OK then the symbol view is created.

The symbo view

Creating a test fixture

The final step before we start the simulation is to create a test fixture for our design. The creation of test fixture is similar to the creation of a design. Furthermore, you also have to prepare the component table shown below to build the test fixture schematic. Generally, a test fixture will consist of the following components: a core design (the LNA_raw in our case), DC voltage source, ground, vdd, port, DC blocking capacitor and RF choke inductor. The test fixture that we used for our design namely "LNA_test_bench" is shown below:

Library Name	Cell Name	Properties/comments
analogLib	vdd	
analogLib	gnd	
analogLib	vdc	For vin : DC voltage =0.68 V
analogLib	vdc	For vgc : DC voltage =1.2 V
analogLib	vdc	For vdd : DC voltage =1.2 V
analogLib	port	For PORT0 : Resistance = 50 ohm
analogLib	port	For PORT1 : Resistance = 50 ohm
analogLib	ind	For L2 : L= 1m H
analogLib	cap	For C1 : C=1u F
lna_lib	LNA_raw	core design

Component table

LNA test bench

Contents

- Chapter 1 : Introduction
- Chapter 2 : Schematic Capture
- Chapter 3 : Pre-layout Simulation
- Chapter 4 : Layout Creation
- Chapter 5 : Physical Verification
- Chapter 6 : Post-layout Simulaion

Pre-layout Simulation

After completing schematic capture, we have to verify the electrical performance and the functionality of our design using a simulation tool. In this chapter, we will use Spectre as simulators.

- Using Spectre simulator
- LNA performance
- Corner simulation
- Monte Carlo (process) simulation

In this section, we will start to simulate our design with spectre simulator under Analog Artist environment. The simulation steps of Spectre simulator are listed below:

1. Open Analog Artist window

This can be archived by "Tools->Analog environment" in the menu banner of "LNA_test_bench" schematic view

2. Select Simulator

In the Analog Artist window, select Setup->Simulator/Directory/Host.

Set Simulator to **spectre** and specify the "Project Directory"

3. Model Library Setup

In the Analog Artist window, select Setup->Model Library.

In this case, below three section should be enabled crn90lp.scs tt_rfmos crn90lp.scs tt_rfind crn90lp.scs tt rfmim

4. Select analysis type and fill in parameters for simulation

In the Analog Artist window, there are many analysis options that you can choose. Since we want to analysis the Sparameter of our design, we choose the spanalysis for our design. Some designers may want to see the OP point and they can also include the DC op point analysis

5. Setup of sp analysis	Choosing Analyses — Cadence® Analog Desig
In the Analysis section, select sp.	OK Cancel Defaults Apply Analysis tran dc ac noise xf sens dcmatch stb pz envlp pss pac pnoise pxf psp qpss qpac qpnoise qpxf qpsp
In the S-parameter Analysis section, click on the Select button, and select the ports of interest in schematic: PORT0 and PORT1 are selected in this case. Set the Sweep Variable to Frequency	S-Parameter Analysis Ports Select Clear /PORTO /PORTI Sweep Variable Frequency Design Variable Temperature Component Parameter Model Parameter
Set Start to 2G and stop to 8G Set the sweep type to Linear with Step Size set to 0.05G	Sweep Range Start-Stop Center-Span Sweep Type Linear Number of Steps Start O.056
Set yes to do noise simulation and select PORT1 as output port and PORT0 as input port in this case	Add Specific Points Do Noise Output port /PORTI Select yes Input port /PORTI Select
Turn on the Enabled field	Enabled ■ Options

6. Run simulation

To start the simulation, you can click "simulation->netlist and run" from the Analog Artist menu banner.

```
/dsdhome/jfkuan/simulation/LNA_test_bench/spectre/
// Generated for: spectre
 // Generated on: Feb 23 00:33:57 2006
 // Design library name: lna_lib
// Design cell name: LNA test bench
 // Design view name: schematic
simulator lang=spectre
global 0 vdd!
include "/dsdhome/jfkuan/PDK/N90/tsmcN90rf/../models/crn90lp.scs" secti
include "/dsdhome/jfkuan/PDK/N90/tsmcN90rf/../models/crn90lp.scs" secti
include "/dsdhome/jfkuan/PDK/N90/tsmcN90rf/../models/crn90lp.scs" secti
// Library name: lna_lib
// Cell name: LNA_raw
 // View name: schematic
subckt LNA_raw in out vgc
    C2 (net1 out 0) mimcap um_1p5_sin_rf lt=11.0u wt=10u m=1
L1 (net015 0 0) spiral_std w=6u rad=30u nr=1.5 lay=9 m=1
    L3 (in net012 0) spiral_std w=6u rad=35.0u nr=4.5 lay=9 m=1
L4 (vdd! net1 0) spiral_std w=6u rad=50.u nr=3.5 lay=9 m=1
M1 (net1 vgc net023 net023) nmos_rf lr=100n vr=5u nr=32 m=1
    MO (net023 net012 net015 net015) nmos_rf lr=100n wr=5u nr=32 m=1
ends LNA_raw
// End of subcircuit definition
 // Library name: lna lib
// Cell name: LNA test bench
// View name: schematic
Il (net9 net5 net07) LNA raw
¥2 (net07 0) vsource dc=1.2 type=dc
V0 (vdd! 0) vsource dc=1.2 type=dc
V1 (net3 0) vsource dc=680.0m type=dc
PORT1 (net5 0) port r=50 type=sine
PORTO (net11 0) port r=50 type=sine
L2 (net3 net9) inductor 1=1m
C1 (net9 net11) capacitor c=1u
simulatorOptions options reltol=1e-3 vabstol=1e-6 iabstol=1e-12 temp=27
    tnom=27 scalem=1.0 scale=1.0 qmin=1e-12 rforce=1 maxnotes=5 maxwarn
     digits=5 cols=80 pivrel=1e-3 ckptclock=1800 \
    sensfile="../psf/sens.output"
dcOp dc write="spectre.dc" maxiters=150 maxsteps=10000 annotate=status
dcOpInfo info what=oppoint where=rawfile
sp sp ports=[PORTO PORT1] start=2G stop=8G step=0.05G donoise=yes \
     oprobe=PORT1 iprobe=PORT0 annotate=status
 modelParameter info what=models where=rawfile
element info what=inst where=rawfile
outputParameter info what=output where=rawfile
designParamVals info what=parameters where=rawfile
saveOptions options save=allpub
```

```
/dsdhome/jfkuan/simulation/LNA_test_bench/spectre
    temp = 27 C
    tnom = 27 C
    tempeffects = all
    qmin = 1 pS
Convergence achieved in 5 iterations.
Total time required for dc analysis 'dcOp' was 10 ms.
dcOpInfo: writing operating point information to rawfile.
****************
S-Parameter Analysis 'sp': freq = (2 GHz -> 8 GHz)
***********************************
                                                        (833 m%)
    sp: freq = 2.15 GHz
                           (2.5 \%), step = 50 MHz
    sp: freq = 2.45 GHz
                           (7.5 \%), step = 50 MHz
                                                        (833 m%)
    sp: freq = 2.75 GHz
                          (12.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 3.05 GHz
                          (17.5 %), step = 50 MHz
                                                        (833 m%)
                          (22.5 \%), step = 50 MHz
    sp: freq = 3.35 GHz
                                                        (833 m%)
    sp: freq = 3.65 GHz
                          (27.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 3.95 GHz
                          (32.5 %), step = 50 MHz
                                                        (833 m%)
   sp: freq = 4.25 GHz
                          (37.5 %), step = 50 MHz
                                                        (833 m%)
   sp: freq = 4.55 GHz
                          (42.5 \%), step = 50 MHz
                                                        (833 m%)
   sp: freq = 4.85 GHz
                          (47.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 5.15 GHz
                          (52.5 %), step = 50 MHz
                                                        (833 m%)
   sp: freq = 5.45 GHz
                          (57.5 %), step = 50 MHz
                                                        (833 m%)
   sp: freq = 5.75 GHz
                          (62.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 6.05 GHz
                          (67.5 %), step = 50 MHz
                                                        (833 m%)
   sp: freq = 6.35 GHz
                          (72.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 6.65 GHz
                          (77.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 6.95 GHz
                          (82.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 7.25 GHz
                         (87.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 7.55 GHz
                         (92.5 %), step = 50 MHz
                                                        (833 m%)
    sp: freq = 7.85 GHz (97.5 %), step = 50 MHz
                                                        (833 m%)
Accumulated DC solution time = 0 s.
Intrinsic sp analysis time = 30 ms.
Total time required for sp analysis 'sp' was 30 ms.
modelParameter: writing model parameter values to rawfile.
element: writing instance parameter values to rawfile.
outputParameter: writing output parameter values to rawfile.
designParamVals: writing netlist parameters to rawfile.
Aggregate audit (12:33:59 AM, Thur Feb 23, 2006):
Time used: CPU = 544 ms, elapsed = 15 s, util. = 3.63%.
Virtual memory used = 4.78 Mbytes.
spectre completes with O errors, O warnings, and O notices.
```

LNA performance

After running simulation, we can see the result and performance of our design from Results->Direct Plot->Main Form...:

Status:successful.			T=27 C Simulator: spectr	
Session Setup Analyses Variables Out				Help
Design	Analy	Not Outputs		Z.
# m		Direct Plot	Main Form	ž
Library lna_lib # Type		Print	Transient Signar	□ AC □ TRAN
Cell LNA test bench	26 86	Annotate	Transient Mens DC	⊐ DC
View schematic 2 dc	· ·	Circuit Conditions	Transient Son	111
view schemacic		Save Select	Transient Difference	XYZ
Design Variables	Outes	Delete	AC Magnitude	(III)
# Name Value # Name/Si		Printing/Plotting Options	AC dB10	<u> </u>
# Name value # Name/31	gital/Expl	Tillung/Flocung Options	AC dB20	3/
			AC Phase	_
			AC Magnitude & Phase	8
			AC Gain & Phase	_
			Equivalent Output Noise Equivalent Input Noise	
			Squared Output Noise	,
> Results in /dsdhome/jfkuan/simulation/LN	A_test_bench/spect	tre/schematic	Squared Input Noise	$ \sim $
			Noise Figure	
			DC	

LNA performance

By setting Direct Plot Form shown below, we can see the S-parameter of our LNA design.

S-parameter

S11	S12
S21	S22

In this plot, "Plot type" is set to "Polar" on S12 and S21

LNA performance

By setting Direct Plot Form shown below, we can see the dB format S-parameter of our LNA design.

S21 = 19.6 dB @5.6GHz S11 = -20.02dB @5.6GHz S22 = -24.94 dB @5.6GHz

LNA Performance

By setting Direct Plot Form shown below, we can see the source stability circles of our LNA design.

Source stability circle from 2GHz to 8GHz

LNA Performance

By setting Direct Plot Form shown below, we can see the load stability circles of our LNA design.

Load stability circle from 2GHz to 8GHz

LNA Performance

By setting Direct Plot Form shown below, we can see the Noise Figure of our LNA design.

Direct Plot Form						
OK Cancel Help						
Plot Mode						
Analysis						
⑥ sp						
Function						
○SP ○ZP ○YP ○HP						
○ GD ○ VSW2 → rirmin ○ Gmin						
○Rn ○r ● NF ○Kf						
○B1f ○GT →CA ○GP						
◯ Gmax ◯ Gmsg ◯ Gumx						
◯ZM ◯NC ◯GAC						
○ GPC ○ LSB ○ SSB						
Description: Noise Figure						
Modifier						
◯ Magni ude						
Add To Outputs Plot						
> Press plot button on this form						

NF = 1.72 dB @5.6GHz

LNA performance summary

Sepcification	Simulation value
Center frequency	"5.6 GHz"
Gain	"19.6 dB"
Input return loss	"-20 dB"
Output return loss	"-24.9 dB"
Noise figure	"1.72 dB"
3dB bandwidth	">1.5 GHz"
Supply voltage	"1.2 V"
Supply current	"16.45 mA"

Corner simulation

In addition to cover the typical case, we may sometime want to simulate our design to cover the process variations in different corners. This can let us know whether the circuit performance specifications will still meet even when the process variation shift to different corner. Furthermore, this can also improve the product yield of our design. In our case, we simulate our design in three different corners: the typical case, the fast_best case (all devices in FF) and slow_worst (all devices in SS) case. By loading the well-defined PCF file released along with TSMC's PDK, you can find the corner analysis window shown below:

well-defined PCF file

Loading PCF file for corner analysis

Corner simulation

After finished the corner analysis, the s-parameters simulation results in different corners are shown below:

S 11	S12
S21	S22

Red: TT Pink: FF

Yellow: SS

Monte Carlo simulation

By setting statistical analysis shown below, we can see the Monte Carlo results.

— Analog Statistical Analysis						
Status: Ready	/			Simulator: sp	ectre 4	
Session Outputs Simulation Results					Help	
Analysis Setup						
Number of Run:	s	100				
Ptouting Dum #		1				
Starting Run #						
Analysis Variati	ion	Process Only	y —			
Swept Paramet	ter	None —	1			
Owept I didness:						
Append to Prev	ious Scala	r Data				
		r Data : to Allow Family	_			
			_			
			Plots 🗆			
Save Data Bet		to Allow Family Outpo	Plots 🗆	Data Type	Autoplot	
Save Data Betw * Name	ween Runs Expressio	on/Signal	Plots Uts	. scalar	Autoplot	
# Name 1 gain 2 input_rtl	Expression	Output On/Signal Sp (2 1 ?resul) (sp (1 1 ?resul)	Plots	. scalar . scalar	yes yes	
# Name 1 gain 2 input_rtl 3 NF	Expression value (db.	on/Signal	r Plots	. scalar . scalar . scalar	yes	

Add

Delete

Change

Clear

Get Expression

Calculator...

S11	S12
S21	S22

Monte Carlo simulation

We can translate the Monte Carlo results into histogram by setting frequency to 5.6G:

Gain	S11
NF	S22

With Density Estimator enabled (green line)

Monte Carlo simulation

Below are the specification limits results of the gain set by limits and sigma, respectively.

Contents

- Chapter 1 : Introduction
- Chapter 2 : Schematic Capture
- Chapter 3 : Pre-layout Simulation
- Chapter 4 : Layout Creation
- Chapter 5 : Physical Verification
- Chapter 6 : Post-layout Simulaion

Layout Creation

After completed the pre-layout simulation and make sure the functionality and the circuit performance are all correct and in the design specifications, we can now start to create the corresponding layout for our design. The layout creation procedures are partitioned into three parts: "Schematic-Driven-Layout", "Components Placement" and "Manual route".

- Schematic-driven-layout
- Components placement
- Manual routing

Schematic-drive-layout

Confidential Security C

Steps for Schematic-Driven-Layout method:

- 1. Open the schematic view of our design
- 2. From the schematic menu select "Tools -> Design Synthesis -> Layout XL"
- 3. After selecting this option, a small dialog box will first open to let users select the cell name and view name for the layout. Upon finished the selection of the cell name and view name, a Virtuoso XL layout window popup for layout generation
- 4. From the Virtuoso XL layout menu, select "Design -> Gen from source ..."
- 5. A layout generation options window appeared and prompts users to setup the pin layers, pin width, pin height, boundary layer ...and so on for layout generation.
- 6. After finished the selection of above information, some rectangles that represent the components (transistor, inductor, capacitor and I/O pins will show up in the bottom of the layout window.

Components placement

The next step is to do the device placement. The only one thing that you need to do is to place all the components and I/O pins in the layout window into the design area (cell boundary). You can use **Edit->Place As In Schematic** as your first placement reference. By selecting devices/IO pins and dragging them to proper locations inside the design area, we can complete the component placement. During the device movement and placement, the lines represent the connections of select object to other objects will show up. This can help you to decide where to properly locate the selected object.

Manual routing

For RFIC design, most designer prefer manual routing by themselves because the performance is layout-dependant. Different routing may cause different parasitics. Below is an layout example of the LNA_raw design.

Contents

- Chapter 1 : Introduction
- Chapter 2 : Schematic Capture
- Chapter 3 : Pre-layout Simulation
- Chapter 4 : Layout Creation
- Chapter 5 : Physical Verification
- Chapter 6 : Post-layout Simulaion

Physical Verification

After the layout creation is completed, we have to start the physical verification to make sure this layout is DRC free and each device in the layout is completely match to its corresponding component in original schematic. After that, the parasitic extraction is necessary for post-layout simulation to make sure our design still work well after taking the parasitic R & C effects into account. Generally, the physical verification procedures can be divided into three parts: the design rule check (DRC), layout V.S. schematic check (LVS) and parasitic extraction (RCX or PEX). Furthermore, based on the differences in running methods and supported tools, they can be classified into different flows. TSMC's PDK supports varied kinds of decks to be used for different kinds of flows. In this application note, Assura DFII flow and Calibre GUI flow are demonstrated. In real design, users only need to choose one of these physical verification flows and have no need to go through all the flows.

Assura DFII Flow

- DRC
- LVS
- RCX

Calibre GUI Flow

- DRC
- LVS
- PEX

Assura DRC Flow

Currently TSMC has not supported Assura RF drc deck yet. You can refer the procedure of Calibri drc flow.

Assura LVS Flow

After the layout has no DRC violations (DRC free), the next step is to run the LVS check to make sure the layout is totally match to the schematic.

- 1. Click "Assura->Run LVS..." in layout window to invoke Assura LVS graphic user interface.
- 2. Fill in the "Assura run directory" and select the "Technology" field to "assura_tech" in Assura LVS window. You can also set the Assura LVS switches and other parameters if needed. In this case, we set the CAP_1P5 switch.
- 3. Click "OK" to run the Assura LVS and see the result. If the layout isn't matched to schematic, you have to manually re-edit the layout and re-run the LVS check to make the LVS result matched.

	1 1 .	Run Assura		
OK Cancel Appl	y Defaults Load S	tate Save State	View RSF	Hel
Schematic Design S	ource DFII —	Use Existing	Netlist	Netlisting Options
Library lna_libi	Cell	NA_raw <u>i</u>	View schematic	Browse
Layout Design Sour	ce DFII —	Use Existing	Extracted Netlist	٦
Library Ina_libi	Cell	NA_rawi	View layouti	Browse
Run Name I	Run	Directory . /myR	ur <u>i</u>	
Run Location	local —			
View Rules Files	■ Technology	assura_tech =	Rule Se	t default
⊥ Extract Rides	/jfkuan/PDK/N90/	Assura/lvs_rcx/e	xtract.rul	View Reload
☐ Compare Rides	dsdhome/jfkuan/P	DK/N90/Assura/lv	s_rcx/compare.rul	View
Switch Names	CAP_1PS			Set Switches
■ Binding File(s)	/dsdhome/jfkuan/	PDK/N90/Assura/l	vs_rcx/auLvs.binď	View Edit
☐ RSF Include				View
Variable	Value	Default	Description	
None —	Ĭ.			
View avParameters	■ Modify	avParameters	1 avPara	meter is set.
?avrpt t				
View av CompareRul	es I Modify a	av Compare Rules	No av Coi	mpare rules are set.

Assura LVS Flow

At this case, after running LVS, the result shows "Schematic and Layout Match"

Assura RCX Flow

When the layout is DRC free and LVS clean, the next step is to perform the RC extraction. This step is to prepare the layout extracted netlist for post-layout simulation.

- 1. Click "Assura->Run RCX..." in layout window to invoke Assura RCX graphic user interface.
- 2. Select "Output" to "Extracted View" in "setup" folder of Assura RCX window to output extract result to "av extracted" view.

Assura RCX Flow

- 3. In the "Extraction" folder of Assura RCX window, select the "extraction mode" to "C only" (if you want to extract only C), set the "Name space" to "Schematic Names" and fill in the "Ref Node" (here we use "gnd!").
- 4. Click "OK" to start the Assura RC extraction. After the RC extraction is completed, a new view ("av_extracted" view) which contains not only the original components but also the parasitic devices will be generated and then can be used for post-layout simulation.

Assura RCX Flow

The av-extracted view by C-only mode is showed below:

Original layout

Av-extracted view by C-only mode

Calibre DRC Flow

Confidential Security C

Calibre GUI mode flow is working under Cadence Virtuoso environment and its DRC verification procedures are listed below:

- 1. Click "Calibre->Run DRC" in layout window to invoke Calibre DRC graphic user interface.
- 2. Specify the "Calibre-DRC rules file" and the "Primary cell" in Calibre interactive-DRC window. If you need to change some DRC switches, you have to edit the Calibre DRC deck first.
- 3. Click "Run DRC" button to start the Calibre DRC verification and check the result in RVE.
- 4. If the layout isn't DRC free, you have to re-edit the layout and re-run the DRC check to make it DRC free

Calibre DRC Flow

We have disabled the "**fullchip**" option in the rule file because this case is just for a demonstration.

After running calibre drc, the results show that the layout is drc clean except some density rule.

Calibre LVS Flow

After the layout has no DRC violations, the next step is to run the LVS check to make sure the layout is completely match to the schematic.

- 1. If the "source_added" file (empty sub-circuit file) is provided along with the LVS deck, you have to specify this file as an include file for netlist export by click "Calibre->Setup->Netlist Export...".
- 2. Click "Calibre->Run LVS" in layout window to invoke Calibre LVS graphic user interface.

Calibre LVS Flow

- 3. Specify the "Calibre-LVS rules file", working directory and "Primary cell" in Calibre LVS window. If you need to change some LVS switches, you have to edit the Calibre LVS deck first.
- 4. Click "OK" to run the Calibre GUI LVS and see the result. If the layout isn't matched to schematic, you have to fix the layout and re-run the LVS check to make the LVS result matched.

Calibre LVS Flow

Below is the LVS result that shows good match between layout and schematic

LVS Report File - LNA_raw.lvs.report File Edit Options Windows REPORT FILE NAME: LNA raw.lvs.report LAYOUT NAME: LNA raw.sp ('LNA raw') SOURCE NAME: LNA raw. src. net ('LNA raw') /dsdhome/jfkuan/PDK/N90/Calibre/lvs/ calibre.lvs RULE FILE: Tue Feb 21 20:18:56 2006 CREATION TIME: CURRENT DIRECTORY: /dsdhome/jfkuan/PDK/N90/Calibre/lvs USER NAME: jfkuan v2005.4 8.13 Fri Nov 18 00:56:59 PST 2005 CALIBRE VERSION: OVERALL COMPARISON RESULTS ################## CORRECT ******* ****************** CELL SUMMARY Result Layout Source Edit Row 1 Col 1

When the layout is verified to be DRC free and LVS clean, the next step is to perform the RC extraction.

Before running PEX flow

Since all of the parasitics in the P-cell have been accounted by RF PDK device model. The extraction tool must not extract parsitics inside the specified devices to avoid double counting. The following steps should be taken to run pre-characterized device (PCD) flow:

1. Add following statements in your LVS rule file:

SOURCE CASE YES

LVS COMPARE CASE NAMES

- 2. Add *PEX IDEAL XCELL YES* in your PEX rule file.
- 3. Prepare h-cell file as follows:

In addition to directly obtain the ascii extracted netlist file from Calibre GUI mode extraction, you can also choose to obtain an extracted view 'calibre-view' which is somewhat like the Assura av_extracted view. In this calibre-view, you can see not only the original components and but also the parasitic devices and their connectivity. Furthermore, this calibre-view can also be used in Cadence Analog Artist environment for post-layout simulation.

- 1. Click "Calibre->Run PEX" in layout window to invoke Calibre PEX graphic user interface.
- 2. Specify the "Calibre-PEX rules file", working directory and "Top cell" in Calibre RCX window. If you need to change some RCX switches, you have to edit the Calibre RCX deck first.

3. Enable "Use LVS H-Cells file" in" Inputs->H-Cells". Specify the H-cell file name and PEX x-Cell file name which is the h-cell file that we created before.

4. Select the "Outputs", set the "Extraction Type" to "Gate Level". Specify the output format to be "CALIBREVIEW" and "Use Names From" to be "SCHEMATIC".

Select which extraction type you want to run.
(no parasitic, C+CC, R, R+C, R+C+CC)

- 4. Click "OK" to run the Calibre GUI RC extraction. After the extraction run is completed, a calibre view setup window pops up. Specify the "Cellmap File", "Magnify symbols by".
- 5. Click "OK" in the Calibre view setup window to create the Calibre view.

Contents

- Chapter 1 : Introduction
- Chapter 2 : Schematic Capture
- Chapter 3 : Pre-layout Simulation
- Chapter 4 : Layout Creation
- Chapter 5 : Physical Verification
- Chapter 6 : Post-layout Simulaion

When you accomplished the physical verification, the last step to tape-out is to perform the post-layout simulation on the extracted netlist/view. During the post-layout simulation, not only the original components but also the parasitic R & C (depends on what you have extracted in RCX stage) of the interconnections are taken into consideration. Therefore, we can say that the post-layout simulation result is much closer to the real silicon measurement data than the original pre-layout simulation result. Furthermore, base on the difference of RC extraction flows you chose you would run your post-layout simulation in different ways.

- Assura RCX extracted view
 - C-only mode
 - RC mode
- Calibre XRC extracted view
 - C+CC mode
 - R+C+CC mode

- Creating a Configuration file for Post-layout simulation
- 1. In the CIW or Library Manager, select File->New->Cellview.
- 2. Set up the Create New File form as follows:

- 3. At the top the form enter the view to "schematic", and at the bottom, click on the "Use Template...".
- 4. The Use Template form opens; cycle the Name to spectre and click OK then the "New Configuration" form is like below:

New Configuration Top Cell Library: Ina_lib Cell: LNA test bench Browse... Make sure that you change the Library List: Ina_lib default name to "lna_lib" View List: • spectre croce_sch cmos.sch schematic veriloga ahdl Stop List: spectre -Description Default template for spectre Please remember to replace Top Cell Library, Cell, and View fields with the actual names used by your design. Help

5. Edit the hierarchy for the design: Change the "View to Use" to which you want at "LNA_raw" cell and save the file.

− Cad	lence? hierarchy e	ditor: (Ina_lib LNA_	test_bench config	_assura_c)
File Edit Vi	ew			Plug-ins Help
	M m n n 191			
Top Cell		W 16- USB 1-1		
Top Cen				
Library: Ina_	lib Cell:	LNA_test_bench	View: schematic	Open
Global Bindin	gs			
Library List:	lna_lib			
View List:	spectre cmos sch cmos	sch schematic veriloga al	ndl	
Stop List:	spectre			
Cell Bindings				
Library	Cell	View Found	View to Use	Inherited View List
analogLib	сар	spectre		spectre cmos_sch cm
analogLib	ind	spectre		spectre cmos_sch cm
analogLib	pcapacitor	spectre		spectre cmos_sch cm
analogLib	port	spectre		spectre cmos_sch cm
analogLib	vdc	spectre		spectre cmos_sch cm
lna_lib	LNA_raw	av_extracted	av_extracted	spectre cmos_sch cm
lna_lib	LNA_test_bench	schematic		spectre cmos_sch cm
tsmcN90rf	mimcap_um	spectre		spectre cmos_sch cm
tsmcN90rf	nmos_rf	spectre		spectre cmos_sch cm
tsmcN90rf spiral_std spectre spectre spectre cmos_sch cm				
Messages				
of file /dsdl Attempting to I	nome/jfkuan/PDK/N90/cds lock configuration (Ina_lib	me/jfkuan/PDK/N90/jfk is a s.lib LNA_test_bench config_a est_bench config_assura_	ssura_c).	t line number 10
Doody			· ·	OFF N CDD4

You can change the view that you have created by extraction tool.

Run post-layout simulation with extracted view

Now, you can run post-layout simulation by changing design setup to configuration created previously. You can output the netlist to make sure a correct view is used for post-layout simulation.

You can change the design setup by clicking this icon.

```
/dsdhome/jfkuan/simulation/LNA_test_bench/spectre
File
                                                                   Help
// Generated for: spectre
// Generated on: Feb 23 14:04:50 2006
// Design library name: lna lib
// Design cell name: LNA_test_bench
// Design view name: config assura c
simulator lang=spectre
global 0 vdd!
include "/dsdhome/jfkuan/PDK/N90/tsmcN90rf/../models/crn90lp.scs" sect
include "/dsdhome/jfkuan/PDK/N90/tsmcN90rf/../models/crn90lp.scs" sect
include " dddnome jrkeam/PDK/N90/tsmcN90rf/../models/crn90lp.scs" sect
// Library name: lna_lib
// Cell name: LNA raw
// View name: av_extracted
// Inherited view list. spectre cmos_sch cmos.sch schematic veriloga
subckt LNA_raw in out vgc
    MO (net023 net012 net015 net015) nmos rf lr=1e-07 wr=5e-06 nr=32 m
    M1 (net1 vgc net023 net023) nmos_rf lr=1e-07 wr=5e-06 nr=32 m=1
    L4 (vdd! net1 0) spiral_std w=6e-06 rad=5e-05 nr=3.5 lay=9 m=1
L3 (in net012 0) spiral_std w=6e-06 rad=3.5e-05 nr=4.5 lay=9 m=1
    L1 (net015 0 0) spiral std w=6e-06 rad=3e-05 nr=1.5 lay=9 m=1
    C2 (net1 out 0) mimcap_um_1p5_sin_rf lt=1.1e-05 wt=1e-05 m=1 c2315 (\#7cL1\|avC410 0) capacitor c=8.943e-16
    c2339 (\#7cL1\|avC422 0) capacitor c=8.943e-16
    c2363 (\#7cL1\|avC434 0) capacitor c=8.943e-16
    c2393 (\#7cL1\|avC449 0) capacitor c=8.943e-16
    c2415 (\#7cL1\|avC460 0) capacitor c=8.943e-16
    c2437 (\#7cL1\|avC471 0) capacitor c=8.943e-16
    c3095 (\#7cL3\|avS5966 0) capacitor c=1.635e-15
    c3096 (\#7cL3\|avS5967 0) capacitor c=1.744e-15
    c3099 (\#7cL3\|avS5970 0) capacitor c=1.744e-15
    c3100 (\#7cL3\|avS5971 0) capacitor c=1.744e-15
    c3237 (\#7cL3\|avS6108 0) capacitor c=1.22e-15
    c3530 (\#7cL3\|avS6402 0) capacitor c=2.096e-15
    c3531 (\#7cL3\|avS6403 0) capacitor c=2.225e-15
    c3546 (\#7cL3\|avS6418 0) capacitor c=2.225e-15
    c3547 (\#7cL3\|avS6419 0) capacitor c=2.225e-15
    c3723 (\#7cL3\|avS6595 0) capacitor c=1.593e-15
    c3923 (\#7cL3\|avS6795 0) capacitor c=1.891e-15
    c3924 (\#7cL3\|avS6796 0) capacitor c=1.966e-15
    c3939 (\#7cL3\|avS6811 0) capacitor c=1.966e-15
    c3940 (\#7cL3\|avS6812 0) capacitor c=1.966e-15
    c4116 (\#7cL3\|avS6988 0) capacitor c=1.593e-15
    c4316 (\#7cL3\|avS7188 0) capacitor c=1.891e-15
    c4317 (\#7cL3\|avS7189 0) capacitor c=1.966e-15
    c4332 (\#7cL3\|av$7204 0) capacitor c=1.966e-15
```

Post-layout Simulation Result

After completing the post-layout simulation. We will check the result between different RC extraction methods.

- Assura RCX extracted view
 - Assura C-only mode v.s. Pre-layout simulation
 - Assura RC mode v.s. Pre-layout simulation
- Calibre XRC extracted view
 - Calibre C+CC mode v.s. Pre-layout simulation
 - Calibre R+C+CC mode v.s. Pre-layout simulation
- Comparison
 - Assura C-only mode v.s. Calibre C+CC mode
 - Calibre C+CC mode v.s. Calibre R+C+CC mode
 - Assura RC mode v.s. Calibre R+C+CC mode

Assura C-only mode v.s. Pre-layout simulation

Red: Pre-layout simulation Yellow: Assura C-only mode

S11	S12
S21	S22

S-paramter (20dB)

Assura C-only mode v.s. Pre-layout simulation

Red: Pre-layout simulation Yellow: Assura C-only mode

S 11	S12
S21	S22

S-paramter

Assura C-only mode v.s. Pre-layout simulation

Red: Pre-layout simulation Yellow: Assura C-only mode

Noise Figure

Assura RC mode v.s. Pre-layout simulation

Red : Pre-layout simulation Purple : Assura RC mode

S11	S12
S21	S22

S-paramter (20dB)

Calibre C+CC mode v.s. Pre-layout simulation

Red: Pre-layout simulation Pink: Calibre C+CC mode

S11	S12
S21	S22

S-paramter (20dB)

Calibre C+CC mode v.s. Pre-layout simulation

Red: Pre-layout simulation Pink: Calibre C+CC mode

S11	S12
S21	S22

S-paramter

Calibre C+CC mode v.s. Pre-layout simulation

Red: Pre-layout simulation

Pink : Calibre C+CC mode

Noise Figure

Calibre R+C+CC mode v.s. Pre-layout simulation

Red : Pre-layout simulation Blue : Calibre R+C+CC mode

S 11	S12	
S21	S22	

S-paramter (20dB)

Calibre R+C+CC mode v.s. Pre-layout simulation Confidential

Red: Pre-layout simulation Blue: Calibre R+C+CC mode

S11	S12
S21	S22

S-paramter

Calibre R+C+CC mode v.s. Pre-layout simulation confidential

Red: Pre-layout simulation Blue: Calibre R+C+CC mode

Noise Figure

Assura C-only mode v.s. Calibre C+CC mode

Yellow: Assuua C-only mode Pink: Calibre C+CC mode

S 11	S12
S21	S22

S-paramter (20dB)

Assura C-only mode v.s. Calibre C+CC mode

Yellow: Assuua C-only mode Pink: Calibre C+CC mode

S 11	S12
S21	S22

S-paramter

Assura C-only mode v.s. Calibre C+CC mode

Yellow: Assuua C-only mode Pink: Calibre C+CC mode

Noise Figure

Calibre C+CC mode v.s. Calibre R+C+CC mode

Pink : Calibre C+CC mode

Blue : Calibre R+C+CC mode

S 11	S12
S21	S22

S-paramter (20dB)

Calibre C+CC mode v.s. Calibre R+C+CC mode

Pink : Calibre C+CC mode

Blue : Calibre R+C+CC mode

S11	S12
S21	S22

S-paramter

Calibre C+CC mode v.s. Calibre R+C+CC mode

Pink : Calibre C+CC mode

Blue : Calibre R+C+CC mode

Noise Figure

Assura RC mode v.s. Calibre R+C+CC mode

Red: Pre-layout simulation

Blue : Calibre R+C+CC mode

Purple : Assura RC mode

S11	S12
S21	S22

S-paramter (20dB)

Assura RC mode v.s. Calibre R+C+CC mode

Blue: Calibre R+C+CC mode Purple : Assura RC mode

Noise Figure

This slide is intentionally left blank