CSci 79502: Machine Learning
Spring 2023

ML & DL for CPI & Binding Affinity

By: Roziena Badree & Mengriu Mao

Agenda

Slide #	<u>Topic</u>
3	Introductory Items
	Two Approaches (BACPI & ESM)
11	Approach # 1: BACPI Replication
16	Approach # 2: ESM
19	Models & Evaluations
23	Discussion of Results
26	Conclusion

What is the problem?

- The identification of compound-protein interactions (CPIs) is a crucial step in the process of drug discovery.
- The laboratory determination of CPIs is costly and time-consuming

 → as a result, computer science has become a promising and
 efficient alternative for predicting novel interactions between
 compounds and proteins on a large scale.

What are we aiming to do?

- Accurately predict if there is an interaction between the compound and protein (yes or no value called CPI)
- Accurately predict compound-protein binding affinity (a continuous value and the strength of the binding interaction)
- Compare the BACPI and ESM models
- Ultimately, guide model to focus on the effective sites of atoms and amino acids → increase the interpretability of the model

An Equal Breakdown of Work

	Roziena	Mary
Codes	/	/
Poster	1	/
Presentation	/	√
Report	1	✓

State-of-the-art & Related Work

- So far, we have only seen neural networks vs language models aka the Evolutionary Scale Model (ESM)
 - For neural networks, the best results so come from the BACPI model
 - Work done between School of Computer Science and Engineering in Hunan, Changsha, China and Old Dominion University in Norfolk, VA
 - The ESM model is a protein model trained on a masked language modeling objective \rightarrow has the largest database of protein so far
 - Work is being done by Cold Spring Harbor Lab in Long Island, NY and Facebook's/Meta's researchers

Two Approaches

The Datasets

CPI Interaction	Binding Affinity		
Human and C.elegans datasets containing positive and negative interactions	4 types of binding affinity so 4 datasets		
Positive interactions: Human = 3369 samples C.elegans = 4000 samples	 IC50 = 489,280 samples Ki = 144,525 samples Kd = 12,589 samples EC50 = 37,896 samples 		
Negative interactions: Human = 384,916 samples C.elegans = 88,261 samples	11=3,141		

What does each dataset look like?

- All datasets contain the simplified molecular-input line entry system (SMILES) data for the compounds
- Then, we have the amino acid sequences for the proteins
- Last, we have either the interaction data (0 for negative and 1 for positive) or the binding affinity (continuous)
- In one experiment, we feed this data into two different neural networks and in a second experiment, we feed this data into a language model to accurately generate the compound-protein representations

Figure: SMILES for ciprofloxacin

Graph Attention Network (GAT)

- GAT is used to process the compounds into an atom structure graph
 - Used RDKit to convert the SMILES format to graph representation (G = {V,E})
 - V is the set of vertices \rightarrow v represents the *i*th atom
 - \blacksquare E is the set of edges \rightarrow e is the chemical bond between the *i*th and *j*th atoms
 - Fed G and the randomly initialized embeddings of vertices into the GAT
 - Embeddings of both source & target nodes were considered to allow the weight to depend on more than just the number of neighbors → can capture anything like structure (attention function that allows a node to tend to some neighbors more than others) → attention scores calculated by using LeakyReLU activation function → weighted matrix

Took the message of the neighbors, which is their raw features multiplied by this matrix & scaled it using the normalized attention mechanism \rightarrow summed all scaled messages \rightarrow passed through a final non-linear activation function

Fingerprinting the Compound

- ECFPs are a class of topological fingerprints for molecular substructure characterization → describe the characteristics of substructures consisting of each atom and circular neighborhoods within a diameter range
 - We used RDKit (i.e. from rdkit import ...) to calculate the fingerprint of compounds and obtain a feature vector (the atom, adjacency, and radius analysis)

- CNN is used to process the proteins (extract local features and learn vector representations)
 - Hidden layers aka convolutional layers detected the patterns
 - Used a context window w to split the protein sequences into overlapping subsequences of amino acids (AAs) to improve prediction performance \rightarrow set w = 3 so that AAs can be split into diverse subsequences (i.e. MRPSG \rightarrow MRP, RPS, PSG) of set length of $3 \rightarrow$ regarded as AA residues
 - Translated all residues into randomly initialized embeddings → Updated them through several convolutional layers with a non-linear activation function (ReLU) → Obtained final output vector for all residues along the protein sequence

BACPI

- Produced attentions in both directions (atom to AA-reside and AA-residue to atom)
 - First, transformed atom features, fingerprint features, and residue features into a single layer-NN (LeakyReLu)
 - Took C (content matrix of compound), U (trainable parameter matrix), and P (content matrix of protein) and aligned them (use tanh and transpose the P matrix)
 - Result was a matrix showing the interaction strength between each atom and residue and vice versa → Calculated normalized attentions in both directions using a softmax function (containing concatenation ops) → Transformed result into a single-layer NN and then predicted final binding affinity by concatenating compound, fingerprint, and protein features, applying LeakyRelu, and flattening
 - Obtained both interaction and binding affinity

Evolutionary Scale Modeling (ESM)

Once again, used ECFPs or fingerprinting to represent the compound

- o Features were atom, adjacency, and radius analysis
- For the protein, implemented transformer pre-trained model (used ESM-2) for the training data → AAs arranged in a many combinations to form structures that carry function, the same way letters form words and sentences carry meaning
 - Obtained an atom-to-residue contact map of the compound and protein → Passed this through classification and regression models to predict interaction and affinity on the test data

How does ESM2 model from Meta work?

Figure: ESM2 model

 For the input, randomly dropped out amino acids → fed that into the transformer that learned how to predict the missing amino acids & gained insight into protein structure

Models & Evaluation

Models Used

- ESM
 - Supervised Models
 - Regression: Ridge Linear Regression, Lasso Linear Regression, SVM (Gaussian RBF), RF, & Multi-layer Perceptron
 - Classification: Linear Regression, Elastic Net Regression, Random Forest, Extra Trees, SVM, Gradient Boosted, GaussianNB, Multinomial NB, Logistic Regression, Perceptron, Multi-layer Perceptron, & KNN
 - Unsupervised Models for Classification: Affinity Propagation, KMeans,
 Outlier, & Spectral Clustering
 - Stochastic Gradient Descent
 - Deep Learning Comparison with BACPI

Evaluations

For CPI (looking for 0 or 1 values (i.e. classification))

- Used the RMSE values
 - Would also like to look at the confusion matrix, but the values returned are continuous.
 - What is the filter? For example: are all values greater than 0 indicative of an interaction (so mark as 1), even if the number is very small?
- For binding affinity (regression)
 - Used the RMSE values

Discussion of Results

CPI Predictions

C. elegans				
Model Name	RMSE			
Extra Trees	0.189474			
Random Forest	0.211261			
Gradient Boosted	0.273941			
SVM	0.297722			
Logistic Regression	0.322886			
KNN	0.360259953			
ElasticNet Regression	0.372044			
Multi-Layer Perceptron	0.407379			
GaussianNB	0.409982			
Local Outlier Factor	0.50318407			
MultinomialNB	0.518796			
Perceptron	0.705601			
Kmeans	0.777395731			
Linear Regression	1778409083			
Spectral Clustering	-			
Affinity Propagation	-			

Human				
Model Name	RMSE			
Extra Trees	0.228321			
Random Forest	0.242715			
SVM	0.291737			
Gradient Boosted	0.307586			
Logistic Regression	0.339053			
Linear Regression	0.363745			
ElasticNet Regression	0.372946			
KNN	0.385137992			
Perceptron	0.408501			
Multi-Layer Perceptron	0.408501			
MultinomialNB	0.455701			
Local Outlier Factor	0.496150446			
GaussianNB	0.777464			
Kmeans	0.834972822			
Spectral Clustering	-			
Affinity Propagation				

BACPI results are still pending because the codes are still running

Binding Affinity Predictions

Model Name	IC50	EC50	Ki	Kd
BACPI	0.74	0.78	0.8	1.08
Random Forest	0.792437	-	0.989753	1.184066
MLP Regressor	0.917291	-	1.083637	1.259279
Ridge Linear Regression	0.949984	4	3.034943	2.285426
Lasso Linear Regression	1.013284		1.422459	1.367706
Support Vector Machine (Gaussian RBF)	1.186531	- (1997)	1.198874	1.421241

<u>Note</u>: The results for the EC50 dataset are missing because the codes are still running.

Discussion of Results

- The ESM Extra Trees model was the best for predicting CPI interaction so far (still waiting on full BACPI results)
- The BACPI model outperforms the language processing models for binding affinity
 - We did not include molecular adjacency in the fingerprinting analysis
 of our compounds so a second run of the codes with molecular
 adjacency would most likely change our results (an initial run was
 done and codes were removed due to time constraints → RMSE
 values were slightly lower)

Challenges, Lessons Learned & Future Work

Challenges

- Each code takes an extremely long time to run (between 2 to 9 hours) → makes modifications very difficult
- A lot of research is needed to understand the computations used to generate each model and our time is limited

Lessons Learned

 \circ Start the written work sooner \to you don't realize the intricacy of the material until you need to explain it in writing

Future Work

- Run the affinity codes on the EC50 dataset
- Test ESM model with adjacency
- Test other ESM models
- Try ESM with a NN
- Try AlphaFold (more accurate than ESM but also much slower)

Thank you for listening.

Please let us know if you have any questions.

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

References

[1] Ferruz, Noelia & Hocker, Birte. (2022). Towards Controllable Protein design with Conditional Transformers.

[2] Karimi, M., Wu, D., Wang, Z., & Shen, Y. (2019). DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics (Oxford, England), 35(18), 3329–3338. https://doi.org/10.1093/bioinformatics/btz111.

[3] Min Li, Zhangli Lu, Yifan Wu, and YaoHang Li. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction. Bioinformatics, 38(7), March 2022, pp. 1995–2002, https://doi.org/10.1093/bioinformatics/btac035.

[4] Lin, Zeming, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, et al. "Evolutionary-Scale Prediction of Atomic Level Protein Structure with a Language Model." bioRxiv, 2022. https://doi.org/10.1101/2022.07.20.500902.

[5] Toutain, P. L.; Bousquet-Melou, A. (2002-12-14). Free Drug Fraction vs. Free Drug Concentration: A Matter of Frequent Confusion. Journal of Veterinary Pharmacology and Therapeutics. Wiley inc. 25 (6): 460-463. https://doi.org/10.1046/j.1365-2885.2002.00442.x.

[6] Whitford, David. 2013. Proteins: Structure and Function. J. Wiley & Sons.

