SE3332 Lab1

521021910197 高健翔

- . LR

1. 参数选择与运行时间

学习率	循环次数	运行时间 t/s	训练集结果	测试集结果
0.01	100000	5.979	0.952 <mark>5</mark>	0.92
0.01	10000	0.5852	0.925	0.885
0.01	1000	0.05813	0.675	0.65
0.02	100000	6.394	0.955	0.905
0.02	10000	0.6299	0.925	0.875
0.02	1000	0.06149	0.8775	0.8
0.005	100000	5.973	0.955	0.93
0.005	10000	0.6027	0.825	0.79
0.005	1000	0.05453	0.8775	0.81

2. 最终选择 rate=0.001 循环次数为 100000(其 loss 能够收敛,某些效果较好的参数 loss 的收敛性不太好)

Loss 值(每 100 次记录一个 loss)

训练集准确性: 0.9375 测试集准确性: 0.89 运行时间为: 6.1471s

3. W 初始值的影响—上面的实验 w 都是从 0 开始,下面令 w 的初始值处于随机状态

Rate 0.001 /	准确率 1 /	2	3	Average
epoch 100000	(train, test)			
(-0.001, 0.001)	(0.9375, 0.89)	(0.9375, 0.89)	(0.9375, 0.89)	(0.9375, 0.89)
(-0.01, 0.01)	(0.9475, 0.88)	(0.9475, 0.88)	(0.9375, 0.89)	(0.9442, 0.887)
(-0.1, 0.1)	(0.9475, 0.88)	(0.9375, 0.89)	(0.9475, 0.88)	(0.9442, 0.887)

对于训练次数足够大的情况,初始值的影响似乎并不是很大

\equiv . SVM

实验中发现当学习率设置稍大就会造成 loss 不收敛, 因此下面只显示学习率小的情况。

1. 参数选择与运行时间

学习率	循环次数	运行时间 t/s	训练集	测试集	
0.00001	1200	7.757	0.935	0.92	
0.00001	6000	32.21	0.9525	0.915	
0.00001	12000	63.21	0.96	0.915	
0.000005	<mark>1500</mark>	9.679	0.9425	0.925	
0.000005	7500	42.11	0.9525	0.92	
0.000005	15000	79.41	0.9525	0.905	

2. 选择测试集上效果最好的 学习率=0.000005 循环次数=1500 (每 100 次记录一个 loss)

事实上,当循环次数增加时,loss 仍然有收敛迹象,但是在测试集上效果却并不是很好,猜测出现了过拟合

\equiv . MLP use pytorch

1. 参数选择与运行时间

```
class MLP(torch.nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(MLP, self).__init__()

        self.linear1 = torch.nn.Linear(input_dim, hidden_dim)
        self.acv = torch.nn.Sigmoid()
        self.linear2 = torch.nn.Linear(hidden_dim, output_dim)

def forward(self, x):
        x = self.linear1(x)

        x = self.linear2(x)
        x = self.linear2(x)
        x = self.acv(x)
        return x
```

学习率	循环次数	隐藏层节	运行时间	训练集	测试集
		点数	t/s		
0.001	8000	64	29.83	0.9325	0.92
0.001	<mark>20000</mark>	<mark>64</mark>	73.84	0.9475	0.93
0.0001	20000	64	72.32	0.87	0.82
0.001	8000	10	21.69	0.8825	0.85
0.001	20000	10	55.94	0.94	0.905
0.0001	20000	10	54.10	0.805	0.77

2. 选取测试集效果最好的参数 学习率=0.001 循环次数=20000 隐藏层节点数=64

Loss(每 500 次记录一个 loss)

可以看出 loss 还是一直在收敛的

四.总结

1. LR与SVM的可视化比较(MLP涉及到节点数,故不在图像上绘制)

2. 简单分析

选取每一种方法中效果最好的进行比较(在表格中标红),可以发现在效果相似的情况下 LR 的时间效率最好,SVM 的较差

分析:逻辑回归算法相对简单,容易实现,计算成本低;但是只适用于线性数据,对于异常值比较敏感(本次数据集的最后一列对于线性回归的影响是很大的)

SVM: 在更高维的空间表现良好, 在非线性数据中, 也可以通过核技巧来处理; 但是对大规模数据集计算开销很大, 需要消耗较多资源

MLP: 具有高度可配置性,包括中间层的层数,神经元的数量等,可以适应不同的任务,可以使用 GPU 加速(实验的时候没有配置好);然而在小数据集中容易过拟合,且对于参数的选择比较困难