NAME: SAISAOKHAM (50168989)

INSTRUCTOR: DR. WEI

RECITATION SESSION: R6

ASSIGNMENT: SIMULATION 4

DUE DATE: DEC 5TH 2016

Part 1: $\label{eq:BF} \text{BF} = 240, \text{IB} = 10\text{u}, \text{VCE} = 3\text{V}, \textit{I}_{\textit{c}} = 0.6\textit{mA} \text{ ,DC sweep}$

i. Find R_C, R_E and R_B, given:
$$I_c = 0.6mA$$
, which gives $\beta_{dc} = 124.6274$ at $V_{CE} = 3V$, $\beta_{dc} = 124.6274$, $V_{BE} = 0.7V$, $V_{cc} = 5V$, $V_{EE} = -5V$, $V_{CE} = 2V$, $V_E = -3V$, $V_C = 0V$.
$$R_C = \frac{V_{CC} - V_C}{I_C} = \frac{5 - 0}{0.0006} = 8333.33\Omega \qquad \qquad R_E = \frac{V_E - V_{EE}}{I_C} = \frac{(-3) - (-5)}{0.0006} = 3333.33\Omega$$

$$R_B = \frac{-V_B}{I_B} = \frac{0 - (V_{BE} + V_E)}{I_C/\beta_{dc}} = \frac{0 - (0.7 + (-3))}{0.0006/124.6274} = 477738.37\Omega$$

ii. Given β_{ac} = β_{dc} , R_{sig} = R_L = 10k Ω , V_T =25mV, calculate R_{in} , A_M , R_{ce} =0.

$$r_e = \left(\frac{\beta_{ac}}{\beta_{ac+1}}\right) \binom{V_T}{I_C} = \left(\frac{124.6274}{124.6274+1}\right) \binom{0.0250}{0.0006} = 41.335\Omega \qquad R_e = R_E \parallel R_{ce} = 3333.33 \parallel 0 = 0\Omega$$

$$[(\beta_{ac} + 1)(r_e + R_e)] = [(124.6274 + 1)(41.335\Omega + 0)] = 5192.809$$

$$R_{in} = R_B \parallel [(\beta_{ac} + 1)(r_e + R_e)] = 477738.3667 \parallel [5192.809] = 5136.97 \Omega$$

$$|A_M| = \left| -\frac{R_{in}}{R_{sig} + R_{in}} \times \frac{R_C \parallel R_L}{r_e + R_e} \right| = \left| -\frac{5136.97}{10000 + 5136.97} \times \frac{8333.33 \parallel 100000}{41.335\Omega + 0} \right| = 37.6237$$

iii. Expression for R_e when the emitter degeneration resistance (R_{ce}) is inserted with the reduction factor of the mid-band gain 0.8:

$$\begin{split} \frac{A_{M}(R_{e}\neq0)}{A_{M}(R_{e}=0)} &= 0.4 \text{ or } 0.8 \\ \frac{\left| -\frac{(\beta_{ac}+1)(r_{e}+R_{e})}{R_{sig}+(\beta_{ac}+1)(r_{e}+R_{e})} \times \frac{R_{C}\parallel R_{L}}{r_{e}+R_{e}} \right|}{\left| -\frac{(\beta_{ac}+1)(r_{e}+0)}{R_{sig}+(\beta_{ac}+1)(r_{e}+0)} \times \frac{R_{C}\parallel R_{L}}{r_{e}+0} \right|} = 0.8 \\ \frac{(\beta_{ac}+1)(r_{e}+R_{e})}{R_{sig}+(\beta_{ac}+1)(r_{e}+R_{e})} \times \frac{R_{C}\parallel R_{L}}{r_{e}+R_{e}} \times \frac{R_{sig}+(\beta_{ac}+1)(r_{e}+R_{e})}{(\beta_{ac}+1)(r_{e}+R_{e})} \times \frac{r_{e}+R_{e}}{R_{C}\parallel R_{L}} = 0.8 \\ \frac{(\beta_{ac}+1)(r_{e})+R_{sig}}{(\beta_{ac}+1)} - \frac{(\beta_{ac}+1)(r_{e})+R_{sig}}{0.4(\beta_{ac}+1)} = R_{e} \\ \frac{(\beta_{ac}+1)(r_{e})+R_{sig}}{(\beta_{ac}+1)} \left(1 - \frac{1}{0.8}\right) = R_{e} \\ \frac{(124.6274+1)(41.335\Omega)+10000}{(124.6274+1)} \left(1 - \frac{1}{0.8}\right) = R_{e} \\ R_{e} = 30.234\Omega \end{split}$$

Expression for R_e when the emitter degeneration resistance (R_{ce}) is inserted with the reduction factor of the mid-band gain 0.4:

$$\begin{split} &\frac{\left| -\frac{(\beta_{ac}+1)(r_e+R_e)}{R_{sig}+(\beta_{ac}+1)(r_e+R_e)} \times \frac{R_C \| R_L}{r_e+R_e} \right|}{\left| -\frac{(\beta_{ac}+1)(r_e+0)}{R_{sig}+(\beta_{ac}+1)(r_e+0)} \times \frac{R_C \| R_L}{r_e+0} \right|} = 0.4 \\ &\frac{(\beta_{ac}+1)(r_e+R_e)}{R_{sig}+(\beta_{ac}+1)(r_e+R_e)} \times \frac{R_C \| R_L}{r_e+R_e} \times \frac{R_{sig}+(\beta_{ac}+1)(r_e+R_e)}{(\beta_{ac}+1)(r_e+R_e)} \times \frac{r_e+R_e}{R_C \| R_L} = 0.4 \\ &\frac{(\beta_{ac}+1)(r_e)+R_{sig}}{(\beta_{ac}+1)} - \frac{(\beta_{ac}+1)(r_e)+R_{sig}}{0.4(\beta_{ac}+1)} = R_e \end{split}$$

$$\begin{split} \frac{(\beta_{ac}+1)(r_e)+R_{sig}}{(\beta_{ac}+1)} \left(1-\frac{1}{0.4}\right) &= R_e \\ \frac{(\beta_{ac}+1)(r_e)+R_{sig}}{(\beta_{ac}+1)} \left(1-\frac{1}{0.4}\right) &= R_e \\ \\ \frac{(124.627+1)(41.335\Omega)+10000}{(124.627+1)} \left(1-\frac{1}{0.4}\right) &= R_e \end{split}$$

R_{ce} values for the reduction factor of 0.8:

$$\begin{split} R_e &= R_E \parallel R_{ce} \\ 30.234 = \frac{R_E(R_{ce})}{R_E + R_{ce}} \\ 30.234(R_E + R_{ce}) &= R_E(R_{ce}) \\ 30.234(3333.33 + R_{ce}) &= 3333.33(R_{ce}) \\ 30.234(3333.33) &= 3333.33(R_{ce}) - 30.234R_{ce} \\ 100779.9 &= 3303.096R_{ce} \\ R_{ce} &= 30.511\Omega \end{split}$$

R_{ce} values for the reduction factor of 0.4:

$$\begin{split} R_e &= R_E \parallel R_{ce} \\ 181.403\Omega &= \frac{R_E(R_{ce})}{R_E + R_{ce}} \\ 181.403 & (R_E + R_{ce}) = R_E(R_{ce}) \\ 181.403 & (3333.33 + R_{ce}) = 3333.33(R_{ce}) \\ 181.403 & (3333.33) = 3333.33(R_{ce}) - 181.403 & R_{ce} \\ 604676.06 &= 3151.93R_{ce} \\ R_{ce} &= 191.84\Omega \end{split}$$

$R_{ce}(\Omega)$	$BW = f_H - f_L(\mathbf{dB})$
0	51.874
30.511	52.695292
191.84	55.67373

Discussion of the effect of Rce:

As the R_{ce} increase so does the dB bandwidth. Although, the R_{ce} values range from 0 to 30.511Ω to 191.84Ω , but the bandwidth for the corresponding R_{ce} seem to be in the same range. The bandwidth ranges from 51.87 to 52.69 to 55.67. The values don't seem to be increasing drastically although the value for the resistance for R_{ce} is changing drastically. Therefore, there seems to be no effect on the bandwidth by the value of resistance. If there is a relationship between the both, and then the only effect is that as the resistance value for R_{ce} increase the dB value for bandwidth increases as well.

Report the values of A_M and BW under each graph:

Rsig=RL=10k, C1=C2=C3=10u, R3=RE=3333.33, R6=RC=8333.33, R2=RB=477738.37, Rce=0

Results obtained from simulation:

Reduction Factor	$R_{ce}(\Omega)$	$A_{M}(dB)$	ΔA_{M}^{*}	$f_H(\mathbf{k}Hz)$	$f_L(Hz)$	$BW = f_H - f_L(\mathbf{k}H\mathbf{z})$
1	0	32.1209		154.128k	142.7342	153.985k
0.8	30.51	30.1140		186.1234k	116.4780	186.006k
0.4	191.84	24.1106		369.3370k	42.3623	369.312k

Part 2.

Circuit Schematic:

i. Find/Report f_H , f_L and A_M .

Hand calculation of W, Leff, R_D, R_S:

Given: $V_{DD}=3.3V,\ L_{ov}=0.08\mu m, k_n'=170.1\frac{\mu A}{V^2}, \lambda=0.1, V_{ov}=0.3V, L=0.6\mu m, P=1mW$

$$\begin{split} I_D &= \frac{P}{V_{DD}} = \frac{0.001}{3.3} = \boxed{3.03 \, E - 4A} \\ L_{eff} &= L - 2L_{ov} = 0.6 \mu m - 2(0.08 \mu m) = \boxed{0.44 \mu m} \\ V_{DS} &= \frac{V_{DD}}{3} = \frac{3.3}{3} = \boxed{1.1 \text{V}} \end{split}$$

$$\frac{W}{L_{eff}} = \frac{I_D}{\frac{1}{2}k_n'V_{ov}^2(1+\lambda V_{DS})}$$

$$W = \frac{I_D}{\frac{1}{2}k_n' V_{ov}^2 (1 + \lambda V_{DS})} \times L_{eff}$$

$$W = \frac{3.03E - 4}{\frac{1}{2}(170.1\mu)(0.3)^2(1 + (0.1)(1.1))}(0.44\mu m) = \boxed{15.8338\mu m}$$

 $\text{Given: } g_m = \frac{3mA}{V}, r_o = 22.2k\Omega, \ A_v = 12\frac{V}{V}, \ R_L = 50k\Omega, RG1 = 2M\Omega, RG2 = 1.6M\Omega, RG2 = 1.6M\Omega, RG1 = 2M\Omega, RG2 = 1.6M\Omega, RG2 = 1$

$$|A_{v}| = g_{m}(RD||R_{L}||r_{o})$$

$$|A_{v}| = g_{m} \left[\frac{1}{\frac{1}{R_{D}} + \frac{1}{R_{L}} + \frac{1}{r_{o}}}\right]$$

$$V_{o} = V_{DD} - I_{D}RD$$

$$V_{o} = 3.3 - 3.03 \times 10^{-4} (5405.405)$$

$$V_{o} = 1.662V$$

$$12 = (0.003) \left[\frac{1}{\frac{1}{R_{D}} + \frac{1}{50000} + \frac{1}{22200}}\right]$$

$$4000 = \left[\frac{1}{\frac{1}{R_{D}} + 6.5 \times 10^{-5}}\right]$$

$$R_{s} = \frac{V_{o} - \frac{V_{DD}}{3}}{I_{D}}$$

$$2 \times 10^{-4} - 6.5 \times 10^{-5} = \frac{1}{R_{D}}$$

$$1.85 \times 10^{-4} = \frac{1}{R_{D}}$$

$$R_{s} = \frac{1.662 - \frac{3.3}{3}}{3.03 \times 10^{-4}}$$

$$R_{s} = 1854.785\Omega$$

Parameter sweep with plots value i.e. .5 um NMOS with L=.6 um, W=15.83 um as figure below

	5-μm CMOS Process		0.5-μm CMOS Process		
	NMOS	PMOS	NMOS	PMOS	
LEVEL	1	1	1	1	
TOX	8.50e-08	8.50e-08	9.50e-09	9.50e-09	
UO	750	250	460	115	
LAMBDA	0.01	0.03	0.1	0.2	
GAMMA	1.4	0.65	0.5	0.45	
VTO	1	-1	0.7	-0.8	
PHI	0.7	0.65	0.8	0.75	
LD	7.00e-07	6.00e-07	8.00e-08	9.00e-08	
JS	1.00e-06	1.00e-06	1.00e-08	5.00e-09	
CJ	4.00e-04	1.80e-04	5.70e-04	9.30e-04	
MJ	0.5	0.5	0.5	0.5	
CJSW	8.00e-10	6.00e-10	1.20e-10	1.70e-10	
MJSW	0.5	0.5	0.4	0.35	
PB	0.7	0.7	0.9	0.9	
CGBO	2.00e-10	2.00e-10	3.80e-10	3.80e-10	
CGDO	4.00e-10	4.00e-10	4.00e-10	3.50e-10	
CGSO	4.00e-10	4.00e-10	4.00e-10	3.50e-10	

ii. Find and compare the Gain-Bandwidth product for circuits with C_S=10uF (this is CS with ac Rs=0) and C_S=0 (remove Cs: this is CS with ac Rs=RS).

GB (without R_s): $f_H * A_M = (187.4570M) (19.2105) = 3601.1426M$

GB (with R_s): $f_H * A_M = (501.4326M) (8.5184) = 4271.403460M$

- iii. Compare the simulated A_M with your hand calculation for C_S=10uF and C_S=0uF - see below for the formulas.
 - a. CS without R_S (R_S=0): $A_v = -g_m(R_D/|R_L/|r_o)$

$$|A_v| = g_m \left[\frac{1}{\frac{1}{R_D} + \frac{1}{R_L} + \frac{1}{r_o}} \right]$$

$$|A_v| = (0.003) \left[\frac{1}{\frac{1}{5405405} + \frac{1}{50k} + \frac{1}{222k}} \right] = 12 V/V$$

b. CS with Rs (neglecting ro): $A_{v}=-rac{g_{m}(R_{D}||R_{L})}{1+g_{m}R_{S}}$

$$\begin{split} \frac{R_D(R_L)}{R_D + R_L} &= \frac{5405.405(50000)}{5405.405 + 50000} = 4878.048\Omega \\ A_v &= -\frac{(0.003)(R_D||R_L)}{1 + (0.003)R_S} \\ A_v &= -\frac{(0.003)(4878.048)}{1 + (0.003)(1854.785)} \end{split}$$

$$A_{v} = -\frac{(0.003)(R_{D}||R_{L})}{1+(0.003)R_{S}}$$

$$A_v = -\frac{\frac{(0.003)(4878.048)}{(0.003)(4878.048)}}{\frac{1}{100003}(4878.048)}$$

$$A_v = -2.229 \, V/V$$

iv. For the CS amplifier with ac Rs=0 (Cs=10 μ F),

a. Calculate f_H and compare with simulated Bandwidth

$$\begin{split} &C_{in}\!=\!C_{gs}\!+\!C_{gd}(1\!+\!g_m\,R'_L)\\ &(Cgs=\!0.0697\;,\,Cgd=\!6.332\;E\!-\!15,\,gm=\!0.003\;,\,RL'=\!4000\;)\\ &C_{in}=\!0.0697\\ \\ &C_{gs}\!=\!(2/3)\;(W/L)\;C_{ox}+W\;CGSO\\ &(W\!=\!15.83\;um,\,L\!=\!0.6\;um,\,Cox=\!,\,Lov\;0.08\;um=\!,\,CGSO\!=\!Lov\;x\;Cox)\\ &Cgs=\!0.0697\\ \\ &C_{gd}\!=\!W\;^*\;CGDO\\ &(W\!=\!15.83\;um,\,CGDO\!=\!4\;E\!-\!10)\\ &C_{gd}\!=\!6.332\;E\!-\!15\\ \\ &RL'=\!RD\;|\,|\;RL\;|\,|\;rO\\ &(RL\!=\!50k\;,\,RD=\!5405.405\;Ohm\;,\,rO\!=\!22.2k\;Ohm\;)\\ &RL'=\!4000\;Ohm \end{split}$$

$$R'_{sig} = R_{sig} | | R_G$$

$$(R_{sig}=10k, R_{G}=888888.889)$$

$$R_{G}=R_{G1}||R_{G2}|$$

R_G=888888.889 Ohm

$$f_H=1/(2 pi \prod C_{in} R'_{sig})$$

$$(C_{in} = 0.0697, R'_{sig} = 9888.751)$$

$$f_H = 2.309 E-4 Hz$$

b. Calculate GB and compare with simulated GB.

$$G_B=f_H*A_M$$

$$(f_H = 2.309 E-4, A_M = -11.86)$$

$$A_{M}\text{=}(R_{G1}\,|\;|\;R_{G2})\;A_{v}/\;(R_{G1}\,|\;|\;\;R_{G2}) + R_{sig}\text{= -}R_{G}\,A_{v}/(R_{G}\,+R_{sig})$$

$$(R_G=888888.889, R_{sig}=10000, Av=12)$$

$$A_{M} = -11.86$$

$$A_v=gm[1/(1/R_D)+(1/R_L)+(1/r_0)]$$

(gm =0.003,
$$R_D$$
=5405.405, R_L =50000, r_0 =22200)

$$A_v=12 V/V$$

v. Find the maximum undistorted amplitude for circuits.

undistorted $V_{o,max}$ = 0.3V

Distorted $V_{o,max}$ = 0.4V

- vi. Compare the simulated result with your hand calculation: maximum upswing = $I_D(R_D | |R_L|)$; maximum downswing = $V_{DS} V_{ov}$; and the maximum swing before nonlinear distortion= $g_m R_L' * 0.1 V_{ov}$
 - a. *Max Downswing:* $\hat{v}_d = V_{DS} V_{ov} = 1.1 0.3 = 0.8 \text{V}$
 - b. max upswing $\hat{v}_d = I_D(R_D | |R_L| | r_o)$ (for CS amp with R_S, ignore r_o)

$$\hat{v}_d = I_D(R_D / |R_L| / r_o)$$

$$\hat{v}_d = I_D \left[\frac{1}{\frac{1}{R_D} + \frac{1}{R_L} + \frac{1}{r_o}} \right] = 0.2424 \text{m} \left[\frac{1}{\frac{1}{5405.405} + \frac{1}{50k} + \frac{1}{22.2k}} \right] = 0.9694 \, V \text{ (with } R_s)$$

$$\hat{v}_d = I_D \left[\frac{1}{\frac{1}{R_D} + \frac{1}{R_L}} \right] = 0.2424 \text{m} \left[\frac{1}{\frac{1}{5405.405} + \frac{1}{50k}} \right] = 1.1824 \text{ V (without Rs)}$$

c. max output swing $\hat{v}_d = g_m R_L' * 0.1 V_{ov}$ where, $R_L' = R_D / |R_L| / r_o$ for CS w/o R_S; and R_L' \approx R_D | |R_L neglecting r_o for CS w. R_S.

$$R_{L}' = R_{D} / |R_{L}| / r_{o} = \frac{1}{\frac{1}{R_{D}} + \frac{1}{R_{L}} + \frac{1}{r_{o}}} = \left[\frac{1}{\frac{1}{5405.405} + \frac{1}{50k} + \frac{1}{22.2k}} \right] = 2.5 \times 10^{-4} \Omega$$
 (without R_{s}

$$\hat{v}_d = g_m R_L^{\prime} * 0.1 V_{ov} = (0.003)(2 \times 10^{-4})(0.1)(0.3) = 1.8 \times 10^{-8} V$$
 (without R_s)

$$R_{L}' = R_{D} / / R_{L} = \frac{1}{\frac{1}{R_{D}} + \frac{1}{R_{I}}} = \left[\frac{1}{\frac{1}{5405.405} + \frac{1}{50k}} \right] = 2.05 \times 10^{-4} \Omega \text{ (with } R_{s})$$

$$\hat{v}_d = g_m R_L * 0.1 V_{ov} = (0.003)(2.05 \times 10^{-4})(0.1)(0.3) = 1.845 \times 10^{-8} V$$
 (with R_s)