מבני נתונים ומבוא לאלגוריתמים

נושא 7

בעיית הבחירה Selection problem

בתוכנית

פרק 9 בספר הלימוד

נגדיר את בעיית הבחירה •

- נכיר פתרונות יעילים לבעיית הבחירה:
 - Random-Select האלגוריתם
 - Select האלגוריתם

<u>בעיית הבחירה</u>

<u>הגדרת הבעיה</u>

 $1 \le i \le n$ איברים, ואינדקס n איברים, קלט: קבוצה בת

?איבר או האיבר

. בסדר הממוין האיבר היבר היבר היבר הממוין. בסדר הממוין היבר היבר היבר היבר היבר הממוין.

<u>פתרונות לבעיה</u> (אלגוריתמים הפותרים אותה):

 $.\Box(n{\log}n)$ מיון והחזרת האיבר באינדקס i, בזמן •

Minimum(A) $\triangleright A$ is array

- 1. $min \leftarrow A[1]$
- 2. **for** $i \leftarrow 2$ **to** length[A]
- 3. **if** A[i] < min
- 4. $min \leftarrow A[i]$
- 5. **return** min

(מינימום) i=1 (מינימום) =1

(מקסימום) i=n

i=n-k ולמעשה גם עבור i=k או i=k ולמעשה

<u>שאלה</u>: כמה פעמים בממוצע מתבצעת שורה 4?

A[1..k] הוא A[1..k] יהיה המינימום של שהאיבר A[k] הוא

 $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = H_n - 1 = \Theta(\log n)$ סכום התוחלות של מספר הכניסות לשורה 4 הוא

<u>בעיית הבחירה</u>

• האם קיים פתרון ליניארי <u>לכל i</u>

למשל, האם ניתן למצוא את החציון בזמן לינארי? למשל (median) חציון חציון (median) חציון

נציג כעת שני אלגוריתמים:

- שפותר את הבעיה בזמן ליניארי <u>בממוצע</u> אבל לא במקרה הגרוע Random-Select ✓ זהו אלגוריתם רקורסיבי אקראי.
 - (אבל הוא מסובך...) Select ✓ שפותר את הבעיה בזמן ליניארי במקרה הגרוע (אבל הוא מסובך...) זהו אלגוריתם רקורסיבי דטרמיניסטי.

Random-Select

```
Random-Select (A, p, r, i)
1. if p = r
       return A[p]
3. q \leftarrow \text{Random-Partition}(A, p, r)
4. k \leftarrow q - p + 1
5. if i = k
      return A[q]
6.
       else if i < k
7.
                 return Random-Select (A, p, q-1, i)
8.
9.
            else return Random-Select (A, q+1, r, i-k)
                                                                    k \leftarrow q - p + 1
                                                                 ≤x
                                                                      ≤x
                                                                           \leq X
                                                                                \leq X
                                                                                     X
                                                                                          >X
                                                                                               >X
```

האלגוריתם מבצע חלוקה (עם ציר שנבחר אקראית) של המערך.

- אז סיימנו; אז בדיוק i, אז סיימנו; אם "יש מזל", ומספר האיברים אk בחלק השמאלי, כולל הציר, הוא בדיוק -
 - אז ממשיכים לחפש את האיבר ה- i < k אחרת, אם i < k
 - . אחרת, ממשיכים לחפש את האיבר ה(i-k) בצד ימין.

Random-Select

<u>הדגמה</u>

מחפשים את האיבר ה- 4

נניח שהציר שנבחר אקראית הוא 26.

תוצאת החלוקה:

מחפשים את האיבר ה- 4 בשמאל.

נניח שהציר הוא 15.

תוצאת החלוקה:

מחפשים את האיבר ה- 1= 4-3 בימין.

נניח שהציר הוא 18

20 18 25 20 4 5 6 7

18 20 25 20

תוצאת החלוקה:

עוצרים ומחזירים את 18.

Random-Select

<u>ניתוח זמנים</u>

$$T(n) = \Theta(n)$$

מקרה טוב: חלוקה אחת ואחריה עוצרים

מקרה גרוע: חלוקה ביחס 0:n-1 בכל שלב, והמשך הרקורסיה עם החלק הגדול.

$$T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$$

 $\Theta(n)$:ממוצע (הוכחה בספר הלימוד)

לסיכום, מצאנו לבעיית הבחירה פתרון ליניארי בממוצע, אך לא במקרה הגרוע.

מקרה פרטי - מציאת חציון

פאבוכיות אמן ליניארית בממוצע? שאלה: כיצד נמצא חציון של מערך בגודל n

Random-Select($A, 1, n, \lfloor \frac{n+1}{2} \rfloor$) -ל- נקרא ל

הרעיון לשיפור הוצע בשנת 1973, במאמר:

M. Blum, R.W. Floyd, V. Pratt, R. Rivest and R. Tarjan, "Time bounds for selection,"
 J. Comput. System Sci. 7 (1973) 448-461.

<u>הרעיון</u>: כדי לשפר את זמן הריצה, צריך לדאוג שהחלוקות יהיו מאוזנות יחסית.

- לא בהכרח ביחס 1:1, אבל כפי שנראה, לכל הגרוע ביחס 3:7 בערך.
- נראה שיטה לבחור את איבר הציר באופן "חכם" יותר, שיבטיח זאת.
- נשתמש בגרסה שונה מעט של חלוקה, שמקבלת איבר ציר ומחלקת לפיו. נקרא לגרסה זו Partition-With-Pivot.

<u>רעיון בחירת הציר:</u>

שיטת חציון החציונים.

הרעיון

מחלקים לחמישיות, ומוצאים חציון של כל חמישייה (למשל ע"י מיונה):

A ממציאי השיטה הוכיחו כי החציון של החציונים הללו (החציון של B) הוא איבר ציר טוב לחלוקת האם אתם מכירים שיטה יעילה למציאת חציון?

.Select(B,1,8,4) - לקרוא לקרוא ! Select ! ובדוגמה ! Select

A חציון החציונים שמצאנו (מסומן מסומן) הוא הציר לחלוקה של Random-Select ההמשך כמו

```
Select (A, p, r, i)
1. if p = r
       return A[p]
3. x \leftarrow \text{Choose-Pivot}(A, p, r)
4. q \leftarrow \text{Partition-With-Pivot}(A, p, r, x)
5. k \leftarrow q - p + 1
6. if i = k
7.
      return A[q]
   else if i < k
8.
9.
                return Select (A, p, q-1, i)
10.
           else return Select (A, q+1, r, i-k)
```

:האלגוריתם

Choose-Pivot (A, p, r)

- נמצא את החציון של כל חמישיית איברים רצופים (ועוד אולי השארית בסוף) למשל ע"י מיון כל קבוצה. .($\lceil n/5 \rceil$ גודלו (גודלו אלו למערך אלו נעתיק דעיונים אלו למערך אלו אלו נעתיק אלו למערך אלו אלו אלו אלו נעתיק
 - על Select ע"י הפעלת נמצא (חציון החציונים). נעשה את ע"י הפעלת של B על אונחזיר את נמצא ונחזיר את החציון של .2

<u>הדגמה</u>

מחפשים את האיבר ה- 4.

 $0.5 \geq B$ מציאת חציון החציונים מתבצעת ישירות ע"י מיון (ובלי רקורסיה), כיוון שגודלו של

x=25 של Partition-With-Pivot

Select(A, 1, 6, 4)

וממשיכים לחפש את האיבר ה- 4 בצד שמאל:

ביתוח זמנים – Select

ניתוח זמנים במקרה הגרוע

נניח לשם פשטות שכל האיברים שונים זה מזה.

לצורך הבהירות נסדר את החמישיות באיור הבא לפי גודל החציון שלהן, משמאל לימין

(כל חמישיה ממוינת מלמעלה למטה):

- x < x < -1בכל חמישייה שהחציון שלה גדול מהציר בכל חמישייה שהחציון שלה בדול מהציר
- x < x כמה חמישיות, מחציתם ש- x הוא החציון של חציוני החמישיות, מחציתם x עצמו. בעלת פחות מ- 5 איברים (אם ישנה), והחמישיה הכוללת את x עצמו.
 - . מכאן שיש ב- A לפחות $A 3(\lceil n/5 \rceil/2 \rceil 2) \geq 3n/10$ לפחות A 3

ביתוח זמנים – Select

x > 10 - 6 איברים איברים אופן דומה מראים שיש ב- A לפחות

במילים אחרות, גם בחלוקה הגרועה ביותר, בחלק הקטן לפחות 3n/10-6 איברים במילים אחרות, גם בחלוקה הגרועה ביותר, בחלק הקטן לפחות 7n/10+6 איברים.

- כלומר הבחירה ה"חכמה" של x כחציון החציונים מבטיחה שהחלוקה הגרועה ביותר האפשרית היא ביחס של 3:7 בערך.
 - ה"מחיר" ששילמנו מציאתו של x דורשת זמן: חלוקת המערך לחמישיות, מציאת ה"מחיר" המילמנו מציאתו. חציונים, וקריאה רקורסיבית.

ביתוח זמנים – Select

:(ChoosePivot) חישוב עלות מציאת חציון החציונים

- .(מדוע?). מציאת חציון של כל חמישייה דורשת $\Theta(1)$ זמן (מדוע?).
 - . סה"כ מציאת $\lceil n/5 \rceil$ חציונים דורשת אם כן $\Theta(n)$ זמן
- $\lfloor n/5 \rfloor$ על מערך בגודל Select לאחר מכן ישנה קריאה רקורסיבית ל

הנוסחה שמתארת את זמן הריצה הכולל של Select במקרה הגרוע היא אם כן:

$$T(n) = T(\lceil n/5 \rceil) + T(7n/10 + 6) + \Theta(n)$$
מציאת החציונים + חלוקה

ניתן להוכיח בשיטת ההצבה ש- $O(n) = \Theta(n) = \Theta(n)$ (פרטים בספר הלימוד, עמוד 159) ניתן גם לראות זאת ע"י הזנחת קבועים וערכי תקרה:

$$T(n) = T(n/5) + T(7n/10) + \Theta(n)$$

$$\alpha + \beta < 1$$

כלומר כעת בידינו אלגוריתם ליניארי במקרה הגרוע לפתרון בעיית הבחירה.

<u> סיבוכיות זיכרון – Select</u>

ומהי סיבוכיות הזיכרון הנוסף של Select?

ב: אות הזיכרון הנוסף של Select מתבטאות ב

- הקצאת מערכי החציונים
- עומק מחסנית הרקורסיה

עומק מחסנית הרקורסיה הוא <u>לוגריתמי</u> (מדוע?) ולכן זניח אסימפטוטית לעומת הקצאת מערכי החציונים, שגודלם <u>ליניארי</u> בגודל הקלט*.

נוסחת הנסיגה המתארת את סיבוכיות הזיכרון של Select נוסחת הנסיגה המתארת את סיבוכיות ביכרון של

$$S(n) = \max\{S(\lceil n/5 \rceil), S(7n/10 + 6)\} + \lceil n/5 \rceil$$

$$= S(7n/10 + 6) + \lceil n/5 \rceil$$

$$\Rightarrow S(n) = \Theta(n)$$

שאלה*

כיצד אפשר לוותר על הקצאת מערכי החציונים? מה סיבוכיות הזיכרון הנוסף עם שיפור כזה?

מקרה פרטי - מציאת חציון

n בסיבוכיות זמן ליניארית מערך בגודל n ביבוכיות זמן ליניארית

Select($A, 1, n, \lfloor \frac{n+1}{2} \rfloor$) -ל

<u>הערה</u>: אמנם סיבוכיות הזמן היא ליניארית, אבל הקבועים החבויים בה הם גדולים למדיי. לכן, מבחינה מעשית, לפעמים עדיף להשתמש ב- Random-Select, או אפילו למיין ולהחזיר את האיבר האמצעי.

<u>מיון מהיר הדטרמיניסטי</u>

תרגיל 9.3-3 מספר הלימוד

<u>פתרון:</u>

בכל שלב שבו צריך לבחור איבר ציר לחלוקה, הוא ייבחר כחציון של תת-המערך הרלוונטי, באמצעות קריאה ל- Select.

$$T(n) = 2T(n/2) + \Theta(n) = \Theta(n\log n)$$

Select + Partition

שאלות חזרה

- 1. כיצד ניתן למצוא את המינימום של מערך באמצעות קריאה ל- Select? ואת המקסימום? האם דרך זו יעילה מבחינה תיאורטית ומבחינה מעשית?
- 2. עבור אילו גדלים של מערכים Choose-Pivot לא צריכה לקרוא שוב ל- Select ? מה עושה Choose-Pivot במקרה זה ? Choose-Pivot
 - על מערך A בגודל Select נסו לעקוב אחר מהלך הקריאות הרקורסיביות של A
 - 2. את Partition-With-Pivot אפשר לממש ע"י קריאה ל- Partition אפשר לממש לי. כיצד

<u>תשובות לשאלות חזרה</u>

- 1. מינימום: Select(A, 1, n, n). מקסימום: Select(A, 1, n, 1). מבחינה תיאורטית, זמן הריצה בשני המקרים הוא ליניארי ב- n. אבל כפי שראינו, ניתן למצוא מינימום ומקסימום גם ללא שימוש ב- Select, ע"י מעבר פשוט על המערך. גם זה פתרן ליניארי, אבל עם קבועים קטנים בהרבה. לכן מבחינה מעשית הוא עדיף.
- 2. עבור מערך בגודל קטן מספיק (למשל 5 או קבוע אחר כלשהו), אפשר פשוט להחזיר את החציון שלו (ע"י מיון).
- Select -סערך החציונים B יהיה בגודל 7, ולכן מציאת החציון שלו תגרור קריאה נוספת ל- B יוחזר ללא C יחולק לחמישיות, וייווצר מערך חציונים נוסף C בגודל 2. החציון C של C יוחזר ללא B ימשיך Select -קריאות נוספות ל- Select, וישמש לחלוקה של C או במקרה הטוב יסתיים מייד). רק לאחר מציאת החציון בחלק שמאל או ימין של החלוקה של C, ואחרי חלוקת C נמשיך לחפש את האיבר ה- C של C הוא יוחזר וישמש לחלוקה של C, ואחרי חלוקת C נמיים מייד). של C בצד שמאל או ימין של החלוקה (או במקרה הטוב נסיים מייד).
 - .Partition -סחליפים בין x לבין האיבר במקום האחרון, ואז פשוט קוראים ל

תרגילים

תרגילים נוספים

. נגדיר איבר רוב במערך בגודל n כאיבר שמופיע יותר מ-n/2 פעמים.

הציעו אלגוריתם, שבהינתן מערך בגודל n מוצא איבר רוב, אם קיים כזה, ואחרת מודיע שלא קיים איבר רוב.

- בגודל n של איברים כלשהם. 2
- א. הראו אלגוריתם להדפסת $\left\lfloor \sqrt{n} \right\rfloor$ האיברים הקטנים במערך בסדר ממוין, בזמן ליניארי במקרה סווים. הגרוע. נמקו מדוע לא ניתן לפתור את הבעיה בזמן $\mathrm{o}(n)$.
- $\operatorname{Lo}(n\log n)$ ב. הוכיחו כי לא ניתן להדפיס את $\lfloor n/2 \rfloor$ האיברים הקטנים במערך בסדר ממוין, בזמן
 - 3. נתון מערך ובו m מספרים שונים זה מזה כלשהם. הציעו מבנה נתונים לביצוע הפעולות הבאות, תוך עמידה בדרישות סיבוכיות הזמן:
 - O(m) אתחול מבנה הנתונים ב-
- הוספת x למבנה בעת ביצוע הפעולה. n , $O(\log n)$ הוספת x למבנה בעת היברים x Insert(x)
 - O(1) הדפסת ערך החציון ב-Find-Mid
 - $O(\log n)$ הוצאת החציון מהמבנה Del-Mid

תארו תחילה מה מכיל המימוש שלכם, ואח"כ הסבירו כיצד מתבצעת כל פעולה ומדוע היא עומדת בדרישות הסיבוכיות.

<u>פתרון 1</u>

<u>ניסיון ראשון</u>

 $\Omega(n)$ - מיון כלשהו $\Omega(n\log n)$, ומעבר על המערך כדי לבדוק האם יש $\Omega(n\log n)$ איברים זהים

סה"כ: $\Omega(n\log n)$ (החסם ההדוק תלוי בבחירת המיון).

<u>ניסיון שני</u>

נשים לב שאם קיים איבר רוב, אז הוא החציון.

נמצא בעזרת SELECT את החציון, ואז נעבור על המערך ונספור כמה פעמים מופיע בו החציון. אם n/2 הוא מופיע יותר מ-n/2 פעמים נחזיר אותו. אחרת נודיע שאין איבר רוב.

 $\Theta(n)$ סיבוכיות:

<u>פתרון 2</u>

- Select $(A,\,1,\,n,\,\left\lfloor\sqrt{n}\,\right\rfloor)$ בגודלו: Select א. נפעיל את איבר ה- $\left\lfloor\sqrt{n}\,\right\rfloor$ ממוקמים בשמאל המערך. כעת $\left\lfloor\sqrt{n}\,\right\rfloor$ האיברים הקטנים של A ממוקמים בשמאל המערך. נמיין אותם בעזרת מיון בועות למשל.
 - $\Theta(n)+\Theta(\left\lfloor \sqrt{n}\, \right\rfloor^2)=\Theta(n)$ סיבוכיות הזמן היא: \circ 0 איברי המערך לכן לא ניתן לפתור את הבעיה בזמן \circ 1.
- ב. נניח בשלילה שניתן לעשות זאת. כלומר קיים אלגוריתם, נקרא לו Alg, שמדפיס את מחצית האיברים הקטנים של מערך נתון בסדר ממוין.
- (וזו כמובן סתירה לחסם התחתון למיון): אז ניתן גם למיין כל מערך מאורך n בזמן $o(n\log n)$ בזמן
- המקסימום, ולהוסיף לו מימין n פעמים "אינסוף" (מעשית, אפשר למצוא תחילה את בהינתן מערך הקלט, נוסיף לו מימין n פעמים ששווים למקסימום ועוד אחד). שלב זה רץ בזמן n
- . כעת נקרא לאלגוריתם Alg על המערך ה"מוכפל", ונקבל את איברי המערך המקורי ממוינים.

<u>פתרון 3</u>

L ערימת מינימום:

מבנה הנתונים:

S ערימת מקסימום של $\lceil n/2 \rceil$ האיברים הקטנים

מימוש הפעולות:

שתי הערימות Select למציאת החציון (כולל חלוקת האיברים סביבו). כעת, נבנה את שתי הערימות – Init הנ"ל משני חצאי המערך, בעזרת שתי קריאות ל- Build-Heap.

$$\Theta(m) + 2 \cdot \Theta(m/2) = \Theta(m)$$
 זמן:

 $\Theta(1)$:נחזיר את ערך השורש של S (כלומר את S[1]). זמן: - Find-Mid

אם |L|=|S| נמחק את השורש של L ונכניס אותו ל-S.

נפעל כמתואר לעיל. Lו= |S| +1 אם S אם השורש של - Del-Mid

 $\Theta(3\log(n/2)) = \Theta(\log n)$ זמן: שתי הפעולות האחרונות במקרה הגרוע