$\begin{array}{ll} \alpha,\,\beta & \text{type variables} \\ n,\,m,\,i,\,j & \text{index variables} \end{array}$

```
positive variable
                                     \alpha^+
                                                                            negative variable
                                                                            substitution
                                      P/a+

\begin{array}{ccc}
N/a - \\
\overrightarrow{P}/\overrightarrow{\alpha^{+}} \\
\overrightarrow{N}/\overrightarrow{\alpha^{-}} \\
\overrightarrow{\alpha^{+}}/\alpha^{+}
\end{array}

                                     vars_1/vars_2
                                                                                 concatenate
                                                                            entry of a unification solution
e
                                     \widehat{\alpha}^+:\approx P
                                     \widehat{\alpha}^-:\approx N
                                      \widehat{\alpha}^+:\geqslant P
\hat{\sigma}
                                                                            unification solution (substitution)
                                                                                 concatenate
                                      (\hat{\sigma})
                                                                  S
                                     \hat{\sigma}_1 \& \hat{\sigma}_2
                                                                  Μ
P, Q
                                                                            positive types
                                     a+
                                      \downarrow N
                                      \exists \alpha^-.P
                                      [\sigma]P
                                                                  Μ
N, M
                                                                            negative types
                                     a-
                                     \uparrow P
                                     \forall \alpha^+.N
                                      [\sigma]N
                                                                  Μ
```

\rightarrow \rightarrow				
α , β .	::=			positive variable list empty list
	j	α^+		a variable
$\overrightarrow{\alpha^+}, \overrightarrow{\beta^+}$		$\overrightarrow{\alpha^+}_i$		concatenate lists
$\overrightarrow{\alpha}^-, \overrightarrow{\beta}^-$::=			negative variables
				empty list a variable
	- 1	$\stackrel{\alpha}{\longrightarrow} i$		
		$\alpha^-{}_i$		concatenate lists
P, Q	::=	α^{+} $\downarrow N$ $\exists \alpha^{-}.P$ $[\sigma]P$ $[\mu]P$ $P_{1} \vee P_{2}$		multi-quantified positive types
	į	$\exists \alpha^{-}.P$		$P \neq \exists \dots$
		$[\sigma]P$	M M	
		$P_1 \lor P_2$	М	
,		α^{-}		quantities are given by Post
		$\uparrow P$ $P \rightarrow N$		
		$\forall \alpha^+.N$		$N \neq \forall \dots$
	j	$[\sigma]N$	М	
		$[\mu]N$	М	
\overrightarrow{P}	::=			multi-quantified negative types $N \neq \forall \dots$ list of positive types empty list
	ļ			empty list
		$\frac{P}{\overrightarrow{P}_i}{}^i$		a singel type
		P_i		concatenate lists
\overrightarrow{N}	::=			list of negative types
		N 7		empty list
	- 1	$\frac{N}{\overrightarrow{N}_i}^i$		a singel type
		N_i		concatenate lists
Γ	::=			declarative type context
		· nare		empty context
		$\underset{\alpha^+}{\overset{vars}{\longrightarrow}}$		list of variables
	İ	$\stackrel{\alpha}{\longrightarrow}$		list of variables
	i	$\overrightarrow{\alpha^+}$ $\overrightarrow{\alpha^-}$ $\overline{\Gamma_i}^i$		concatenate contexts
		$\begin{array}{c} (\Gamma) \\ \Gamma_1 \cup \Gamma_2 \end{array}$	S	
\vec{lpha}	::=			ordered positive or negative variables
				empty set
		$\overset{\longrightarrow}{\alpha^+}$		list of variables
		α^{-}		list of variables

		$\overrightarrow{\alpha}_1 \setminus \overrightarrow{\alpha}_2 \ \overrightarrow{\overline{\alpha}_i}^i \ (\overrightarrow{\alpha})$	S	setminus concatenate contexts parenthesis
vars	::=	$ \emptyset $ fv P fv N fv P fv N $vars_1 \cap vars_2$ $vars_1 \cup vars_2$ $vars_1 \setminus vars_2$ mv P mv N uv N uv P $(vars)$ Γ $\overrightarrow{\alpha}$	S	set of variables empty set free variables free variables free variables free variables set intersection set union set complement movable variables movable variables unification variables unification variables parenthesis context ordered list of variables
μ	::= 	$\begin{array}{c} \vdots \\ \widetilde{\alpha}_{1}^{+} \mapsto \widetilde{\alpha}_{2}^{+} \\ \widetilde{\alpha}_{1}^{-} \mapsto \widetilde{\alpha}_{2}^{-} \\ \mu_{1} \cup \mu_{2} \\ \overline{\mu_{i}}^{i} \\ \mu _{vars} \end{array}$	M M	empty moving Positive unit substitution Positive unit substitution Set-like union of movings concatenate movings restriction on a set
n	::= 	$0 \\ n+1$		cohort index
$\widetilde{\alpha}^+$		$\widetilde{\alpha}^{+n}$		positive movable variable
\widetilde{lpha}^-	::=	$\widetilde{\alpha}^{-n}$		negative movable variable
$\overrightarrow{\widetilde{\alpha^+}}, \ \overrightarrow{\widetilde{\beta^+}}$::= 	$\overbrace{\widetilde{\alpha}^{+}}^{i}$ $\overrightarrow{\widetilde{\alpha}^{+}}_{i}$		positive movable variable list empty list a variable from a non-movable variable concatenate lists
$\overrightarrow{\widetilde{\alpha}^-}$, $\overrightarrow{\widetilde{\beta}^-}$::= 	$\overbrace{\widetilde{\alpha}^{-}}^{\cdot}$ $\overbrace{\alpha^{-n}}^{\cdot}$		negatiive movable variable list empty list a variable from a non-movable variable

```
concatenate lists
P, Q
                                         multi-quantified positive types with movable variables
                      \alpha^+
                      \tilde{\alpha}^+
                      \downarrow N
                                    Μ
                                    Μ
N, M
                                         multi-quantified negative types with movable variables
                      \alpha^{-}
                      \tilde{\alpha}^-
                      \uparrow P
                                    Μ
                                    Μ
\hat{\alpha}^+
                                         positive unification variable
\hat{\alpha}^-
                                         negative unification variable
                                         positive unification variable list
                                            empty list
                                            a variable
                                            from a normal variable
                                            from a normal variable, context unspecified
                                            concatenate lists
                                         negative unification variable list
                                            empty list
                                            a variable
                                            from a normal variable
                                            from a normal variable, context unspecified
                                            concatenate lists
P, Q
                                         a positive algorithmic type (potentially with metavariables)
                      \alpha^+
                     \tilde{\alpha}^+
                     \hat{\alpha}^+ \{vars\}
                                    Μ
```

Μ

```
N, M
                          ::=
                                     \alpha^{-}
                                     \tilde{\alpha}^-
                                     \hat{\alpha}^- \{vars\}
                                     \hat{\alpha}^-
                                     \uparrow P
                                     P \rightarrow N
                                     \forall \overrightarrow{\alpha^+}.N
                                     [\sigma]N
                                                                                      Μ
                                     [\mu]N
                                                                                      Μ
terminals
                                     \exists
                                     \forall
                                     \in
                                     ∉
                                      \leq
                                      \geqslant
                                      Ø
                                      \Rightarrow
                                      \neq
                                      \Downarrow
formula
                                     judgement
                                     formula_1 .. formula_n
```

```
| = _{n} 
| \lor 
| = 
| judgement 
| formula_{1} ... formula_{n} 
| \mu : vars_{1} \leftrightarrow vars_{2} 
| \mu \text{ is bijective} 
| \hat{\sigma} \text{ is functional} 
| \hat{\sigma}_{1} \in \hat{\sigma}_{2} 
| vars_{1} \subseteq vars_{2} 
| vars_{1} = vars_{2} 
| vars \text{ is fresh}
```

a negative algorithmic type (potentially with metavariables

$$\begin{vmatrix} \alpha & \beta & \text{tors} \\ \alpha^{+} & \text{tors} \\ \alpha^{-} & \text{tors} \\ \alpha^{-} & \text{tors} \\ \alpha^{-} & \text{tors} \\ \alpha^{+} & \text{tors} \\ \alpha^{-} & \text{tors} \\ \alpha^{+} &$$

 Γ $\overrightarrow{\alpha}$ vars

$$\begin{array}{c|c} & \mu \\ & n \\ & \widehat{\alpha}^+ \\ & \widehat{\alpha}^- \\ & \overrightarrow{\widehat{\alpha}^+} \\ & \overrightarrow{\widehat{\alpha}^-} \\ & P \\ & N \\ & \widehat{\alpha}^+ \\ & \widehat{\alpha}^- \\ & \overrightarrow{\widehat{\alpha}^-} \\ & P \\ & N \\ & terminals \\ & formula \\ \end{array}$$

 $n \models N \simeq_1^A M \dashv \mu$ Negative multi-quantified type equivalence (algorithmic)

$$\frac{n \vDash \alpha^{-} \simeq_{1}^{A} \alpha^{-} \dashv \cdot}{n \vDash P \simeq_{1}^{A} Q \dashv \mu} \qquad \text{E1ASHIFTU}$$

$$\frac{n \vDash P \simeq_{1}^{A} Q \dashv \mu}{n \vDash \uparrow P \simeq_{1}^{A} \uparrow Q \dashv \mu} \qquad \text{E1ASHIFTU}$$

$$\frac{n \vDash P \simeq_1^A Q \dashv \mu_1 \quad n \vDash N \simeq_1^A M \dashv \mu_2 \quad \mu_1 \cup \mu_2 \text{ is bijective}}{n \vDash P \to N \simeq_1^A Q \to M \dashv \mu_1 \cup \mu_2} \quad \text{E1AARROW}$$

$$\frac{n+1 \vDash [\overrightarrow{\alpha^{+n}}/\overrightarrow{\alpha^{+}}]N \simeq_{1}^{A} [\overrightarrow{\beta^{+n}}/\overrightarrow{\beta^{+}}]M = \mu}{n \vDash \forall \overrightarrow{\alpha^{+}}.N \simeq_{1}^{A} \forall \overrightarrow{\beta^{+}}.M = \mu|_{\mathbf{mv}\,M}} \qquad \text{E1AFORALL}$$

$$\frac{1}{n \models \widetilde{\alpha}^{-n} \simeq_1^A \widetilde{\beta}^{-n} \rightrightarrows \widetilde{\beta}^{-n} \mapsto \widetilde{\alpha}^{-n}} \quad \text{E1ANMVAR}$$

 $n \models P \simeq_1^A Q \rightrightarrows \mu$ Positive multi-quantified type equivalence (algorithmic)

$$\frac{n \vDash \alpha^{+} \simeq_{1}^{A} \alpha^{+} \dashv \cdot}{n \vDash N \simeq_{1}^{A} M \dashv \mu} \qquad \text{E1ASHIFTD}$$

$$\frac{n \vDash N \simeq_{1}^{A} M \dashv \mu}{n \vDash \downarrow N \simeq_{1}^{A} \downarrow M \dashv \mu} \qquad \text{E1ASHIFTD}$$

$$\frac{n+1 \vDash [\overrightarrow{\alpha^{-n}}/\overrightarrow{\alpha^{-}}]P \simeq_{1}^{A} [\overrightarrow{\beta^{-n}}/\overrightarrow{\beta^{-}}]Q \dashv \mu}{n \vDash \exists \overrightarrow{\alpha^{-}}.P \simeq_{1}^{A} \exists \overrightarrow{\beta^{-}}.Q \dashv \mu|_{\mathbf{mv}Q}} \quad \text{E1AEXISTS}$$

$$\frac{1}{n \vDash \widetilde{\alpha}^{+n} \simeq_{1}^{A} \widetilde{\beta}^{+n} \rightrightarrows \widetilde{\beta}^{+n} \mapsto \widetilde{\alpha}^{+n}} \quad \text{E1APMVAR}$$

 $\Gamma \models N \leqslant M \dashv \widehat{\sigma}$ Negative subtyping

$$\frac{\Gamma \vDash \alpha^{-} \leqslant \alpha^{-} \dashv \cdot \quad \text{ANVAR}}{P \Downarrow P' \quad Q \Downarrow Q' \quad P' \overset{u}{\simeq} Q' \dashv \widehat{\sigma}}$$

$$\frac{\Gamma \vDash \uparrow P \leqslant \uparrow Q \dashv \widehat{\sigma}}{\Gamma \vDash \uparrow P \leqslant \uparrow Q \dashv \widehat{\sigma}} \quad \text{ASHIFTU}$$

$$\frac{\Gamma \vDash P \geqslant Q \dashv \widehat{\sigma}_{1} \quad \Gamma \vDash N \leqslant M \dashv \widehat{\sigma}_{2}}{\Gamma \vDash P \rightarrow N \leqslant Q \rightarrow M \dashv \widehat{\sigma}_{1} \& \widehat{\sigma}_{2}} \quad \text{AArrow}$$

$$\frac{\Gamma, \overrightarrow{\beta^{+}} \vDash [\widehat{\alpha}^{+} \{\Gamma, \overrightarrow{\beta^{+}}\} / \alpha^{+}] N \leqslant M \dashv \widehat{\sigma}}{\Gamma \vDash \forall \alpha^{+}. N \leqslant \forall \overrightarrow{\beta^{+}}. M \dashv \widehat{\sigma} \backslash \widehat{\alpha^{+}}} \quad \text{AForall}$$

 $\Gamma \models P \geqslant Q \dashv \hat{\sigma}$ Positive supertyping

$$\frac{N \Downarrow N' \quad M \Downarrow M' \quad N' \stackrel{u}{\simeq} M' \dashv \widehat{\sigma}}{\Gamma \vDash \downarrow N \geqslant \downarrow M \dashv \widehat{\sigma}} \quad \text{ASHIFTD}$$

$$\frac{\Gamma, \overrightarrow{\beta}^- \vDash [\widehat{\alpha}^- \{\Gamma, \overrightarrow{\beta}^-\} / \overrightarrow{\alpha}^-] P \geqslant Q \dashv \widehat{\sigma}}{\Gamma \vDash \exists \overrightarrow{\alpha}^- . P \geqslant \exists \overrightarrow{\beta}^- . Q \dashv \widehat{\sigma}} \quad \text{AEXISTS}$$

$$\frac{vars_1 = \mathbf{fv} \ P \backslash vars \quad vars_2 \mathbf{is} \mathbf{fresh}}{\Gamma \vDash \widehat{\alpha}^+ \{vars\} \geqslant P \dashv (\widehat{\alpha}^+ : \geqslant P \vee [vars_2 / vars_1] P)} \quad \text{APUVAR}$$

 $N \simeq_1^D M$ Negative multi-quantified type equivalence

$$\frac{\alpha^{-} \simeq_{1}^{D} \alpha^{-}}{\alpha^{-} \simeq_{1}^{D} Q} \quad \text{E1ShiftU}$$

$$\frac{P \simeq_{1}^{D} Q}{\uparrow P \simeq_{1}^{D} \uparrow Q} \quad \text{E1ShiftU}$$

$$\frac{P \simeq_{1}^{D} Q \quad N \simeq_{1}^{D} M}{P \to N \simeq_{1}^{D} Q \to M} \quad \text{E1Arrow}$$

$$\frac{\mu : (\overrightarrow{\beta^{+}} \cap \mathbf{fv} M) \leftrightarrow (\overrightarrow{\alpha^{+}} \cap \mathbf{fv} N) \quad N \simeq_{1}^{D} [\mu] M}{\forall \overrightarrow{\alpha^{+}} . N \simeq_{1}^{D} \forall \overrightarrow{\beta^{+}} . M} \quad \text{E1Forall}$$

 $P \simeq_1^D Q$ Positive multi-quantified type equivalence

$$\frac{\alpha^{+} \simeq_{1}^{D} \alpha^{+}}{\sum_{1}^{N} \alpha^{+}} \quad \text{E1PVAR}$$

$$\frac{N \simeq_{1}^{D} M}{\downarrow N \simeq_{1}^{D} \downarrow M} \quad \text{E1SHIFTD}$$

$$\frac{\mu : (\overrightarrow{\beta^{-}} \cap \mathbf{fv} \, Q) \leftrightarrow (\overrightarrow{\alpha^{-}} \cap \mathbf{fv} \, P) \quad P \simeq_{1}^{D} [\mu] Q}{\exists \overrightarrow{\alpha^{-}} . P \simeq_{1}^{D} \exists \overrightarrow{\beta^{-}} . Q} \quad \text{E1EXISTS}$$

 $\Gamma \vdash N \simeq_1^{\varsigma} M$ Negative equivalence on MQ types

$$\frac{\Gamma \vdash N \leqslant_{1} M \quad \Gamma \vdash M \leqslant_{1} N}{\Gamma \vdash N \simeq_{1}^{\leqslant} M} \quad \text{D1NDEF}$$

 $\Gamma \vdash P \simeq_1^{\epsilon} Q$ Positive equivalence on MQ types

$$\frac{\Gamma \vdash P \geqslant_1 Q \quad \Gamma \vdash Q \geqslant_1 P}{\Gamma \vdash P \cong_1^{\varsigma} Q} \quad \text{D1PDEF}$$

 $\Gamma \vdash N \leq_1 M$ Negative subtyping

$$\frac{1}{\Gamma \vdash \alpha^- \leqslant_1 \alpha^-}$$
 D1NVAR

$$\frac{\Gamma \vdash P \cong_{1}^{\leqslant} Q}{\Gamma \vdash \uparrow P \leqslant_{1} \uparrow Q} \quad \text{D1ShiftU}$$

$$\frac{\Gamma \vdash P \geqslant_{1} Q \quad \Gamma \vdash N \leqslant_{1} M}{\Gamma \vdash P \rightarrow N \leqslant_{1} Q \rightarrow M} \quad \text{D1Arrow}$$

$$\frac{\Gamma, \overrightarrow{\beta^{+}} \vdash P_{i} \quad \Gamma, \overrightarrow{\beta^{+}} \vdash [\overrightarrow{P}/\overrightarrow{\alpha^{+}}]N \leqslant_{1} M}{\Gamma \vdash \forall \overrightarrow{\alpha^{+}}.N \leqslant_{1} \forall \overrightarrow{\beta^{+}}.M} \quad \text{D1Forall}$$

 $\Gamma \vdash P \geqslant_1 Q$ Positive supertyping

$$\frac{\Gamma \vdash \alpha^{+} \geqslant_{1} \alpha^{+}}{\Gamma \vdash \lambda^{-} \geqslant_{1} \lambda^{-}} \quad D1PVAR$$

$$\frac{\Gamma \vdash N \cong_{1}^{s} M}{\Gamma \vdash \downarrow N \geqslant_{1} \downarrow M} \quad D1SHIFTD$$

$$\frac{\Gamma, \overrightarrow{\beta^{-}} \vdash N_{i} \quad \Gamma, \overrightarrow{\beta^{-}} \vdash [\overrightarrow{N}/\overrightarrow{\alpha^{-}}]P \geqslant_{1} Q'}{\Gamma \vdash \exists \overrightarrow{\alpha^{-}}.P \geqslant_{1} \exists \overrightarrow{\beta^{-}}.Q} \quad D1EXISTSL$$

 $\Gamma \vdash N \simeq_0^{\leqslant} M$ Negative equivalence

$$\frac{\Gamma \vdash N \leqslant_0 M \quad \Gamma \vdash M \leqslant_0 N}{\Gamma \vdash N \simeq_0^{\varsigma} M} \quad \text{D0NDEF}$$

 $\Gamma \vdash P \simeq_0^{\leqslant} Q$ Positive equivalence

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash Q \geqslant_0 P}{\Gamma \vdash P \simeq_0^{\varsigma} Q} \quad \text{D0PDEF}$$

 $\overline{\Gamma \vdash N \leqslant_0 M}$ Negative subtyping

$$\frac{\Gamma \vdash a - \leqslant_0 a -}{\Gamma \vdash P = \circ_0^{\leqslant} Q} \quad D0\text{NVar}$$

$$\frac{\Gamma \vdash P = \circ_0^{\leqslant} Q}{\Gamma \vdash P \leqslant_0 \uparrow Q} \quad D0\text{ShiftU}$$

$$\frac{\Gamma \vdash P \quad \Gamma \vdash [P/a +] N \leqslant_0 M \quad M \neq \forall \beta^+ . M'}{\Gamma \vdash \forall \alpha^+ . N \leqslant_0 M} \quad D0\text{ForallL}$$

$$\frac{\Gamma, \alpha^+ \vdash N \leqslant_0 M}{\Gamma \vdash N \leqslant_0 \forall \alpha^+ . M} \quad D0\text{ForallR}$$

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash N \leqslant_0 M}{\Gamma \vdash P \to N \leqslant_0 Q \to M} \quad D0\text{Arrow}$$

 $\Gamma \vdash P \geqslant_0 Q$ Positive supertyping

$$\frac{\Gamma \vdash a + \geqslant_0 a +}{\Gamma \vdash a + \geqslant_0 a +} \quad D0PVAR$$

$$\frac{\Gamma \vdash N \simeq_0^{\leqslant} M}{\Gamma \vdash \downarrow N \geqslant_0 \downarrow M} \quad D0SHIFTD$$

$$\frac{\Gamma \vdash N \quad \Gamma \vdash [N/a -] P \geqslant_0 Q \quad Q \neq \exists \alpha^-. Q'}{\Gamma \vdash \exists \alpha^-. P \geqslant_0 Q} \quad D0EXISTSL$$

$$\frac{\Gamma, \alpha^- \vdash P \geqslant_0 Q}{\Gamma \vdash P \geqslant_0 \exists \alpha^-. Q} \quad D0EXISTSR$$

 $P_1 \vee P_2$

 $\hat{\sigma}_1 \& \hat{\sigma}_2$

 $\overline{P_1 \vee P_2 = Q}$ Least Upper Bound (Least Common Supertype)

$$\frac{\alpha^{+} \vee \alpha^{+} = \alpha^{+}}{\alpha^{+} \vee \alpha^{+} = \alpha^{+}} \quad \text{LUBVAR}$$

$$\frac{N \Downarrow N' \quad M \Downarrow M' \quad (\mathbf{fv} \, N' \cup \mathbf{fv} \, M') \vDash \downarrow N' \stackrel{a}{\simeq} \downarrow M' = (P, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})}{\downarrow N \vee \downarrow M = \exists \overrightarrow{\alpha^{-}}. [\overrightarrow{\alpha^{-}} / \mathbf{uv} \, P] P}$$

$$\frac{\overrightarrow{\alpha^{-}} \cap \overrightarrow{\beta^{-}} = \emptyset}{\exists \overrightarrow{\alpha^{-}}. P_{1} \vee \exists \overrightarrow{\beta^{-}}. P_{2} = P_{1} \vee P_{2}} \quad \text{LUBEXISTS}$$

$$LUBSHIFT$$

 $\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \Rightarrow (Q, \hat{\sigma}_1, \hat{\sigma}_2)$

$$\frac{\Gamma \vDash \alpha^{+} \stackrel{a}{\simeq} \alpha^{+} \dashv (\alpha^{+}, \cdot, \cdot)}{\Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (M, \hat{\sigma}_{1}, \hat{\sigma}_{2})} \quad \text{AUPShift}$$

$$\frac{\Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (M, \hat{\sigma}_{1}, \hat{\sigma}_{2})}{\Gamma \vDash \downarrow N_{1} \stackrel{a}{\simeq} \downarrow N_{2} \dashv (\downarrow M, \hat{\sigma}_{1}, \hat{\sigma}_{2})} \quad \text{AUPShift}$$

$$\frac{\overrightarrow{\alpha^{-}} \cap \Gamma = \varnothing \quad \Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (Q, \hat{\sigma}_{1}, \hat{\sigma}_{2})}{\Gamma \vDash \overrightarrow{\beta \alpha^{-}} . P_{1} \stackrel{a}{\simeq} \overrightarrow{\beta \alpha^{-}} . P_{2} \dashv (\overrightarrow{\beta \alpha^{-}} . Q, \hat{\sigma}_{1}, \hat{\sigma}_{2})} \quad \text{AUPExists}$$

 $\Gamma \vDash N_1 \stackrel{a}{\simeq} N_2 = (M, \hat{\sigma}_1, \hat{\sigma}_2)$

$$\frac{\Gamma \vDash \alpha^{-} \stackrel{a}{\simeq} \alpha^{-} \dashv (\alpha^{-}, \cdot, \cdot)}{\Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})}{\Gamma \vDash P_{1} \stackrel{a}{\simeq} \uparrow P_{2} \dashv (\uparrow Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2})} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2}) \quad \Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (M, \widehat{\sigma}'_{1}, \widehat{\sigma}'_{2})}{\Gamma \vDash P_{1} \rightarrow N_{1} \stackrel{a}{\simeq} P_{2} \rightarrow N_{2} \dashv (Q \rightarrow M, \widehat{\sigma}_{1} \cup \widehat{\sigma}'_{1}, \widehat{\sigma}_{2} \cup \widehat{\sigma}'_{2})} \quad \text{AUNARROW}$$

$$\frac{\Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (Q, \widehat{\sigma}_{1}, \widehat{\sigma}_{2}) \quad \Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (M, \widehat{\sigma}'_{1}, \widehat{\sigma}'_{2})}{\Gamma \vDash N \stackrel{a}{\simeq} M \dashv (\widehat{\alpha}_{\{N,M\}}^{-}, (\widehat{\alpha}_{\{N,M\}}^{-} : \approx N), (\widehat{\alpha}_{\{N,M\}}^{-} : \approx M))} \quad \text{AUNAU}$$

 $\mathbf{ord}\ vars \mathbf{in}\ N = vars'$

$$\frac{\alpha^{-} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \alpha^{-}} \quad \text{ONVARIN}$$

$$\frac{\alpha^{-} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \cdot} \quad \text{ONVARNIN}$$

$$\overline{\operatorname{ord} vars \operatorname{in} \widehat{\alpha}^{-} \{vars'\} = \cdot} \quad \text{ONUVAR}$$

$$\frac{\operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \uparrow P = \overrightarrow{\alpha}} \quad \text{OSHIFTU}$$

$$\frac{\text{ord } vars \text{in } P = \overrightarrow{\alpha}_1 \quad \text{ord } vars \text{in } N = \overrightarrow{\alpha}_2}{\text{ord } vars \text{in } P \to N = \overrightarrow{\alpha}_1, (\overrightarrow{\alpha}_2 \backslash \overrightarrow{\alpha}_1)} \quad \text{OARROW}}$$

$$\frac{\text{ord } (vars \backslash \overrightarrow{\alpha^+}) \text{in } N = \overrightarrow{\alpha}}{\text{ord } vars \text{in } \forall \overrightarrow{\alpha^+}. N = \overrightarrow{\alpha}} \quad \text{OFORALL}}$$

 $\mathbf{ord}\ vars \mathbf{in}\ P = vars'$

$$\frac{\alpha^{+} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \alpha^{+}} \quad \text{OPVARIN}$$

$$\frac{\alpha^{+} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \cdot} \quad \text{OPVARNIN}$$

$$\overline{\operatorname{ord} vars \operatorname{in} \widehat{\alpha}^{+} \{ vars' \} = \cdot} \quad \text{OPUVAR}$$

$$\frac{\operatorname{ord} vars \operatorname{in} \widehat{\alpha}^{+} \{ vars' \} = \cdot}{\operatorname{ord} vars \operatorname{in} \widehat{\lambda} = \overrightarrow{\alpha}} \quad \text{OSHIFTD}$$

$$\frac{\operatorname{ord} (vars \backslash \overrightarrow{\alpha}^{-}) \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \exists \overrightarrow{\alpha}^{-}. P = \overrightarrow{\alpha}} \quad \text{OEXISTS}$$

 $\begin{array}{c|c}
N \downarrow M \\
P \downarrow Q \\
N \downarrow M
\end{array}$

$$\frac{\overline{\alpha^{-} \downarrow \alpha^{-}}}{\overline{\alpha^{-} \lbrace vars \rbrace} \downarrow \widehat{\alpha}^{-} \lbrace vars \rbrace} \quad \text{NRMNUVAR}$$

$$\frac{P \downarrow Q}{\uparrow P \downarrow \uparrow Q} \quad \text{NRMSHIFTU}$$

$$\frac{P \downarrow Q \quad N \downarrow M}{P \rightarrow N \downarrow Q \rightarrow M} \quad \text{NRMARROW}$$

$$\frac{N \downarrow N' \quad \text{ord} \ \overrightarrow{\alpha^{+}} \text{in} \ N' = \overrightarrow{\alpha^{+'}}}{\forall \alpha^{+} \cdot N \downarrow \forall \alpha^{+'} \cdot N'} \quad \text{NRMFORALL}$$

 $P \Downarrow Q$

$$\frac{\overline{\alpha^{+} \Downarrow \alpha^{+}}}{\overline{\alpha^{+} \{vars\}} \Downarrow \widehat{\alpha}^{+} \{vars\}} \quad \begin{array}{c} \operatorname{NRMPUVAR} \\ \\ \hline N \Downarrow M \\ \hline \downarrow N \Downarrow \downarrow M \end{array} \quad \operatorname{NRMSHIFTD} \\ \\ P \Downarrow P' \quad \operatorname{ord} \overrightarrow{\alpha^{-}} \text{ in } P' = \overrightarrow{\alpha^{-}}' \\ \hline \exists \overrightarrow{\alpha^{-}}. P \Downarrow \exists \overrightarrow{\alpha^{-}}. P' \end{array} \quad \operatorname{NRMEXISTS}$$

 $e_1 \& e_2 = e_3$ Unification Solution Entry Merge

$$\overline{\hat{\alpha}^+ : \geqslant P \& \hat{\alpha}^+ : \geqslant Q = \hat{\alpha}^+ : \geqslant P \vee Q} \quad \text{SMEPSUPSUP}$$

$$\begin{split} &\frac{\mathbf{fv}\,P \cup \mathbf{fv}\,Q \vDash P \geqslant Q \dashv \widehat{\sigma}'}{\widehat{\alpha}^+ :\approx P \& \widehat{\alpha}^+ :\geqslant Q = \widehat{\alpha}^+ :\approx P} &\quad \mathrm{SMEPEqSup} \\ &\frac{\mathbf{fv}\,P \cup \mathbf{fv}\,Q \vDash Q \geqslant P \dashv \widehat{\sigma}'}{\widehat{\alpha}^+ :\geqslant P \& \widehat{\alpha}^+ :\approx Q = \widehat{\alpha}^+ :\approx Q} &\quad \mathrm{SMEPSupEq} \\ &\frac{0 \vDash P \simeq_1^A Q \dashv \mu}{\widehat{\alpha}^+ :\approx P \& \widehat{\alpha}^+ :\approx Q = \widehat{\alpha}^+ :\approx Q} &\quad \mathrm{SMEPEqEq} \\ &\frac{0 \vDash N \simeq_1^A M \dashv \mu}{\widehat{\alpha}^- :\approx N \& \widehat{\alpha}^- :\approx M = \widehat{\alpha}^+ :\approx Q} &\quad \mathrm{SMENEqEq} \end{split}$$

 $\widehat{\sigma}_1 \& \widehat{\sigma}_2 = \widehat{\sigma}_3$ Merge unification solutions

$$\overline{\cdot \& \widehat{\sigma} = \widehat{\sigma}} \quad \text{SMEMPTY}$$

$$\frac{(\widehat{\alpha}^+ :\approx Q) \in \widehat{\sigma}_2 \quad 0 \vDash P \simeq_1^A Q \preccurlyeq \mu}{\widehat{\sigma}_1 \& (\widehat{\sigma}_2 \backslash \widehat{\alpha}^+) = \widehat{\sigma}_3} \quad \text{SMPEQEQ}$$

$$\frac{\widehat{\sigma}_1 \& (\widehat{\sigma}_2 \backslash \widehat{\alpha}^+) = \widehat{\sigma}_3}{(\widehat{\alpha}^+ :\approx P, \widehat{\sigma}_1) \& \widehat{\sigma}_2 = (\widehat{\alpha}^+ :\approx P, \widehat{\sigma}_3)} \quad \text{SMPEQEQ}$$

$$\frac{(\widehat{\alpha}^+ :\geqslant Q) \in \widehat{\sigma}_2 \quad \widehat{\sigma}_1 \& (\widehat{\sigma}_2 \backslash \widehat{\alpha}^+) = \widehat{\sigma}_3}{(\widehat{\alpha}^+ :\geqslant P, \widehat{\sigma}_1) \& \widehat{\sigma}_2 = (\widehat{\alpha}^+ :\geqslant P \lor Q, \widehat{\sigma}_3)} \quad \text{SMPSUPSUP}$$

$$\frac{(\widehat{\alpha}^+ :\approx Q) \in \widehat{\sigma}_2 \quad \text{fv } Q \cup \text{fv } P \vDash Q \geqslant P \preccurlyeq \widehat{\sigma}'}{\widehat{\sigma}_1 \& (\widehat{\sigma}_2 \backslash \widehat{\alpha}^+) = \widehat{\sigma}_3} \quad \text{SMPSUPEQ}$$

$$\frac{(\widehat{\alpha}^+ :\geqslant P, \widehat{\sigma}_1) \& \widehat{\sigma}_2 = (\widehat{\alpha}^+ :\approx Q, \widehat{\sigma}_3)}{(\widehat{\alpha}^+ :\geqslant P, \widehat{\sigma}_1) \& \widehat{\sigma}_2 = (\widehat{\alpha}^+ :\approx P, \widehat{\sigma}_3)} \quad \text{SMPEQSUP}$$

$$\frac{\widehat{\sigma}_1 \& (\widehat{\sigma}_2 \backslash \widehat{\alpha}^+) = \widehat{\sigma}_3}{(\widehat{\alpha}^+ :\approx P, \widehat{\sigma}_1) \& \widehat{\sigma}_2 = (\widehat{\alpha}^+ :\approx P, \widehat{\sigma}_3)} \quad \text{SMPEQSUP}$$

$$\frac{\widehat{\sigma}_1 \& (\widehat{\sigma}_2 \backslash \widehat{\alpha}^-) = \widehat{\sigma}_3}{(\widehat{\alpha}^- :\approx N, \widehat{\sigma}_1) \& \widehat{\sigma}_2 = (\widehat{\alpha}^- :\approx N, \widehat{\sigma}_3)} \quad \text{SMNEQEQ}$$

 $N \stackrel{u}{\simeq} M = \hat{\sigma}$ Negative unification

$$\frac{Q \stackrel{u}{\sim} \alpha^{-} \Rightarrow \cdot}{\alpha^{-} \stackrel{u}{\sim} \alpha^{-} \Rightarrow \cdot} \quad \text{UNVAR}$$

$$\frac{P \stackrel{u}{\sim} Q \Rightarrow \widehat{\sigma}}{\uparrow P \stackrel{u}{\sim} \uparrow Q \Rightarrow \widehat{\sigma}} \quad \text{USHIFTU}$$

$$\frac{P \stackrel{u}{\sim} Q \Rightarrow \widehat{\sigma}_{1} \quad N \stackrel{u}{\sim} M \Rightarrow \widehat{\sigma}_{2}}{P \rightarrow N \stackrel{u}{\sim} Q \rightarrow M \Rightarrow \widehat{\sigma}_{1} \& \widehat{\sigma}_{2}} \quad \text{UARROW}$$

$$\frac{[\widetilde{\alpha^{+n}}/\alpha^{+}] N \stackrel{u}{\sim} [\widetilde{\beta^{+n}}/\overline{\beta^{+}}] M \Rightarrow \widehat{\sigma}}{\forall \alpha^{+} \cdot N \stackrel{u}{\sim} \forall \beta^{+} \cdot M \Rightarrow \widehat{\sigma}} \quad \text{UFORALL}$$

$$\frac{\mathbf{fv} N \subseteq vars}{\widehat{\alpha}^{-} \{vars\} \stackrel{u}{\sim} N \Rightarrow \widehat{\alpha}^{-} :\approx N} \quad \text{UNUVAR}$$

 $P \stackrel{u}{\simeq} Q = \widehat{\sigma}$ Positive unification

$$\frac{}{\alpha^{+} \stackrel{u}{\simeq} \alpha^{+} \Rightarrow \cdot}$$
 UPVAR

$$\frac{N\overset{u}{\simeq}M\dashv\widehat{\sigma}}{\downarrow N\overset{u}{\simeq}\downarrow M\dashv\widehat{\sigma}}\quad \text{USHIFTD}$$

$$\frac{[\widetilde{\alpha^{-n}}/\alpha^{-}]P\overset{u}{\simeq}[\widetilde{\beta^{-n}}/\beta^{-}]Q\dashv\widehat{\sigma}}{\exists \alpha^{-}.P\overset{u}{\simeq}\exists \widetilde{\beta^{-}}.Q\dashv\widehat{\sigma}}\quad \text{UEXISTS}$$

$$\frac{\mathbf{fv}\,P\subseteq vars}{\widehat{\alpha}^{+}\{vars\}\overset{u}{\simeq}P\dashv\widehat{\alpha}^{+}:\approx P}\quad \text{UPUVAR}$$

 $\overline{\Gamma \vdash N}$ Negative type well-formedness

 $\Gamma \vdash P$ Positive type well-formedness

 $\Gamma \vdash N$ Negative type well-formedness

 $\overline{\Gamma \vdash P}$ Positive type well-formedness

Definition rules: 94 good 0 bad Definition rule clauses: 167 good 0 bad