Scilab Textbook Companion for Control Engineering - Theory & Practice by M. N. Bandyopadhyay¹

Created by
Pooja Naik
B. E.
Instrumentation Engineering
Watumaull College of Electronics
College Teacher
Prof. Ashutosh Sharma
Cross-Checked by
Chaitanya

July 17, 2017

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

 ${\bf Title:}$ Control Engineering - Theory & Practice

Author: M. N. Bandyopadhyay

Publisher: PHI Learning Pvt. Ltd.

Edition: 1

Year: 2009

ISBN: 9788120319547

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Ll	List of Schab Codes				
2	Review of some mathematical tools	5			
3	Transient and steady state behaviour of system	16			
4	State variable analysis	18			
5	stability of linear control system	23			
6	study of the locus of the roots of the characristic equation	31			
7	Analysis of frequency response	36			
8	stability in frequency response systems	38			
9	compensators and controllers	41			
10	Non linear control system	44			
11	Digital control system	47			
15	Miscellaneous solved problems	51			

List of Scilab Codes

Exa 2.1	solving differential equation using scilab	5
Exa 2.2	inverse of laplace transform using scilab	6
Exa 2.3	computing initial value using scilab	6
Exa 2.4.b	eigen values using scilab	7
Exa 2.4	computing initial value of transfer function .	7
Exa 2.4.1	eigen values using scilab	8
Exa 2.5	computing initial value of function F in scilab	9
Exa 2.6	computing final value of function F using scilab	9
Exa 2.7	Inverse laplace transform using scilab	10
Exa 2.8	Z transform of the signal	10
Exa 2.9	z transform of the signal using scilab	11
Exa 2.10	Inverse of z transform using scilab	12
Exa 2.11	Inverse of z transform by power expansion se-	
	ries	12
Exa 2.12	inverse of Z transform by partial fraction method	14
Exa 3.1	Type of the system	16
Exa 4.1	State equation	18
Exa 4.3	Eigen values	18
Exa 4.6.a	Canonical form	19
Exa 4.6.b	Canonical form	20
Exa 4.8	Jordan canonical form	21
Exa 4.10	Controllable companion form	21
Exa 5.1	Hurwitz stability test	23
Exa 5.2	Routh array	24
Exa 5.2.2a	Routh array	25
Exa 5.2.2b	Routh array	25
Exa 5.2.2c	Routh array	26
Exa 5.2.2d		

Exa 5.3	Routh array
Exa 5.4	Routh array
Exa 5.5	Routh array
Exa 5.6	Routh array
Exa 6.2	Root locus in scilab
Exa 6.2.2	location of the root locus between poles and
	zeros
Exa 6.3	Root locus
Exa 6.4	root locus
Exa 6.5	Root locus
Exa 6.6	Root locus
Exa 6.7	Root locus
Exa 7.3.1a	Bode plot
Exa 7.3.1b	Bode plot
Exa 8.1	Nyquist plot
Exa 8.2	Nyquist plot
Exa 8.3	Nyquist plot
Exa 9.1	compensation in open loop control system .
Exa 10.1.1	Mass dashpot and spring arrangement
Exa 10.3	determination of quadratic form
Exa 10.4	Lipunovs method
Exa 11.6	Jurys stability test
Exa 11.9.2a	stability of linear continuous system
Exa 11.9.2b	stability of linear continuous system
Exa 11.9.3	Schurcohn stability test
Exa 15.2	Time domain specifications of second order
	system
Exa 15.4	transfer function of gyroscope
Exa 15.5	Transfer function of system
Exa 15.6	comparison of sensitivities of two systems .
Exa 15.7	To find bandwidth of the transfer function .
Exa 15.8	Bandwidth of the transfer function
Exa 15.9	Nyquist plot
Exa 15.12	solution of polynolynomial equation
Exa 15.13	Time domain specifications
Exa 15.14	Position servomotor
Exa 15.15	steady output speed of DC motor
Exa 15.26	Routh array

Exa 15.27	To check reachability of the system	59
Exa 15.28	Determine the stability of the system	60
Exa 15.31	Time domain specifications of second order	
	system	60
Exa 15.33	Lipunovs method	61
Exa 15.34	Find bandwidth of the transfer function	62
Exa 15.36	Impulse response of the transfer function	62
Exa 15.37	step response of the transfer function	63
Exa 15.38	Roots of characteristic equation	63
Exa 15.39	Bode plot	64
Exa 15.40	Nyquist plot	64
Exa 15.41	Nyquist plot	65
Exa 15.42	Bode plot	65
Exa 15.43	Eigen values of matrix	66
Exa 15.44	State space representation of LTI system	66
Exa 15.45	Covariant matrix of A	67
Exa 15.49	Root locus of the transfer function	67
Exa 15.50	Bode plot	68
Exa 15.53	Statespace model of the differential equation	68
Exa 15.54	Nyquist plot	69
Exa 15.57	determination of zeta and wn	69
Exa 15.59	transfer function of signal flow graph	70
Exa 15 60	root locus	71

Chapter 2

Review of some mathematical tools

Scilab code Exa 2.1 solving differential equation using scilab

```
//Example 2.1
//solving differential equation in scilab
clear; clc;
xdel(winsid());

function ydot=f(t, y)
ydot=(10/4)-(3*y/4)
endfunction
y0=1;
t0=0;
t=0:5:10;
y=ode(y0,t0,t,f)
//since"t=0;5;10"
//the answer is calculated for t=0:5:10"
//thus the value of "y"can be calculated at any value of "t".
```

Scilab code Exa 2.2 inverse of laplace transform using scilab

```
1 / \text{Example } 2.2
2 //Inverse laplace transform using scilab
3 clear; clc;
4 xdel(winsid());
5 s = %s;
6 num = (s+6);
7 den=(s^2+2*s+10);
8 F1=syslin('c', num, den)
9 F = pfss(F1)
10 //since pfss(F1) is not able to factorise F1,
      therefore,
11 // Rewriting numerator as, (s+6)=(s+1+5);
12 //Rewriting the denominator as, (s^2+2*s+6)=(s+1)
      ^2 + 3^2;
13 \operatorname{disp}("F=[((s+1)/(s+1)^2+3^2)+(5/3)*(3/(s+1)^2+3^2)]"
14 //From the standard formula of inverse laplace
      transform;
15 //(s+1)/(s+1)^2+3^2=\%e^-t*(\cos 3t);
16 //(5/3)*(3/(s+1)^2+3^2)=(5/3)*\%e^-t*(\sin 3t);
17 disp("f(t)=(%e^-t)*(cos3t)+(5/3)*(%e^-t)*(sin3t)")
```

Scilab code Exa 2.3 computing initial value using scilab

```
1 //Example 2.32 //computing initial value using scilab
```

Scilab code Exa 2.4.b eigen values using scilab

```
1 //Example sec 2.4.2
2 //eigen values
3 clear; clc;
4 xdel(winsid());
5
6 A=[0 6 -5;1 0 2;3 2 4]
7 B=spec(A)
8 disp(B, "Eigen values=")
```

Scilab code Exa 2.4 computing initial value of transfer function

```
1 //Example 2.4
2 //computing f'(0+) and f''(0+) using scilab
3 clear; clc;
4 xdel(winsid());
```

```
5
6 s = \%s;
7 n4 = (4*s+1);
8 d4=s*(s^2+4*s+5);
9 F=n4/d4
10 // As per initial value theorem, limit "t" tends to
      zero and limit "s" tends to infinity
11
12 // for f'(0+)
13 F1 = s * F + 0
14
15 for s = \% inf
        disp("f''(0+)=4")
16
17 \text{ end}
18 // for f''(0+)
19 s = %s;
20 F2 = ((s*(F1)) - (4))
21
22 for s=%inf
        disp("f",","(0+)=-15")
23
24 end
```

Scilab code Exa 2.4.1 eigen values using scilab

```
//Example sec 2.4. a
//eigen values
clear; clc;
xdel(winsid());

A=[1 -1;0 -1]
B=spec(A)
disp(B, "Eigen values=")
```

Scilab code Exa 2.5 computing initial value of function F in scilab

```
1 //Example 2.5
2 //computing final value of function F using scilab
3 clear; clc;
4 xdel(winsid());
6 \text{ s=\%s};
7 \text{ n5} = (8*s+5);
8 d5=s*(s+1)*(s^2+4*s+5);
9 F=n5/d5
10 \quad F1 = s * F
11 //for final value limit "t" tends to infinity and
      limit "s" tends to zero.
12 //When s=0, the value of F1 will be "(5/5)=1"
13 for s=0
       disp("Final value=1")
14
15 end
```

Scilab code Exa 2.6 computing final value of function F using scilab

```
1 //Example 2.6
2 //computing final value of function F using scilab
3 clear; clc;
4 xdel(winsid());
5 s=%s;
6 n6=(5);
7 d6=s*(s^2+49);
```

Scilab code Exa 2.7 Inverse laplace transform using scilab

```
1 / Example 2.7
2 //Inverse laplace transform of "2/(s^2*(s+1))" using
       scilab
3 clear; clc;
4 xdel(winsid());
5 s = %s;
6 num=2;
7 \text{ den}=(s^2)*(s+1);
8 F1=syslin('c', num, den)
9 F=pfss(F1)
10 //from the partial fraction decomposition, taking
     out 2 as common term.
11 //The result would be in the form of "F(s) = 2*(1/s)
      2-1/s+(1/s+1)"
12 disp("F(s)=2*((1/s^2)-(1/s)+(1/(s+1)))")
13 //From the standard formula of inverse laplace
      transform;
14 //(1/s^2)=t;(1/s)=1;(1/(s+1))=\%e^-t
15 disp("f(t))=2*(t-1+e^-t)")
```

Scilab code Exa 2.8 Z transform of the signal

```
//Example 2.8
//Z transform of the signal x(n)=(0.5)^n*u(n)
clear; clc;
xdel(winsid());
//u(n) is unit step input
n=2;
x=(0.5)^n;
m=1;
w=1;
phi=tand(0);
a=1;
theta=tand(45);
[cxz]=czt(x,m,w,phi,a,theta)
```

Scilab code Exa 2.9 z transform of the signal using scilab

```
16  n2=2;
17  x2=(0.6)^n2;
18  m2=1;
19  w2=-1;
20  phi2=tand(-45);
21  a2=1;
22  theta2=tand(45);
23  [X2]=czt(x2,m2,w2,phi2,a2,theta2)
24  X=X1+X2;
25  disp(X,"ans=")
```

Scilab code Exa 2.10 Inverse of z transform using scilab

```
//Example 2.10
//inverse Z transform of 1/(1-a*z^-1)
clear; clc;
xdel(winsid());

// a=1
function y=f(z);
y=z/(z-1) //upon simplification of the given equation
endfunction
intc(1+%i,2-%i,f)
```

Scilab code Exa 2.11 Inverse of z transform by power expansion series

```
1 //Example 2.11
2 //inverse z transform by power series expansion
```

```
3 clear; clc;
4 xdel(winsid());
6 z = \%z;
7 num=2;
8 den=(2-(3*z^-1)+z^-2);
9 X=syslin('c',num/den)
10 //dividing the numerator and denominator by 2
11 num1=1;
12 den1=1-(1.5*(z^-1))+(0.5*(z^-2));
13 X1=syslin('c',(num1)/(den1))
14 / \text{when } \text{mod}(z) > 1
15 //developing series expansion in negative power of z
16 \quad A1 = (num1) - (den1)
17 // multiplying the den2 by 1 and subtracting it
       from num1
18 B1=((1.5*(z^-1))-(0.5*(z^-2)))-((1.5*(z^-1))*den1)
19 // multiplying the den2 by (1.5*z^-1) and
      subtracting it from reminder of A1
20 C1 = ((1.75*z^2-2) - (0.75*z^3)) - ((1.75*z^2-2)*den1)
21 // multiplying the den2 by (1.75*z^2-2) and
      subtracting it from reminder of A1
22 D1 = ((1.875*z^{-3}) - (0.875*z^{-4})) - ((1.875*z^{-3})*den1)
23 // multiplying the den2 by (1.875*z^{-3}) and
       subtracting it from reminder of A1
24 E1=((1.9375*z^-4)-(0.9375*z^-5))-((1.9375*z^-4)*den1
      )
  // multiplying the den2 by (1.9375*z^-4) and
25
      subtracting it from reminder of A1
26 disp("x1(n) = 1, 1.5, 1.75, 1.875, 1.9375, .....")
27
28 / \text{when mod}(z) < 0.5
29 //developing series expansion in positive power of z
30 A2=(num)-((2*z^2)*den) //multiplyong the den by 2*(z)
      2) and subtracting it from num
31 B2=A2-(6*z^3*den)
32 //multiplyong the den by 2*(z^2) and subtracting it
      from A2
```

Scilab code Exa 2.12 inverse of Z transform by partial fraction method

```
1 //Example 2.12
2 //inverse z transform by partial fraction method
3 clear; clc;
4 xdel(winsid());
6 z = \%z;
7 num=1;
8 den=((1-z^-1)^2)*(1+z^-1);
9 X=syslin('c', num/den)
10 \quad X1 = X/z
11 pfss(X1)
12 // by partial fraction the X1 will be factorised as
      (in terms of z)
13 disp("X(z) = (0.25*z/(z+1))+(0.75*z/(z-1))+(0.5*z/(z-1))
      -1)^2)")
14 disp("X(z) = (0.25/(1+z^{-1}))+(0.75/(1-z^{-1}))+(0.5*z/(z^{-1}))
      -1)^2)")
15 // 0.25/(1+z^2-1) is the z transform of "0.25*(-1)^n*
```

```
\begin{array}{c} u(n)\text{"} \\ 16 \text{ } // \text{ } (0.75/(1-z^{\hat{}}-1)) \text{ is the z transform of "} 0.75*u(n)\text{"} \\ 17 \text{ } // (0.5*z/(z-1)^{\hat{}}2) \text{ is the z transform of "} 0.5*n*u(n)\text{"} \\ 18 \text{ } \text{disp("x(n)=0.25*((-1)^n)*u(n)+0.75*u(n)+0.5*n*u(n)")} \end{array}
```

Chapter 3

Transient and steady state behaviour of system

Scilab code Exa 3.1 Type of the system

```
1 / \text{Example } 3.1
2 //type of the system
3 clear; clc;
4 xdel(winsid());
6 // fig (3.14)
7 s = %s;
8 n1=(2);
9 d1=((s)*(s^2+2*s+2));
10 \quad A=n1/d1
11 disp("since one integration is being observed, it is
       TYPE 1 system")
12
13 // \text{ fig } (3.15)
14 s = %s;
15 \quad n2 = (5);
16 d2=((s+2)*(s^2+2*s+3));
17 B=n2/d2
18 disp("since no integration is being observed, it is
```

```
TYPE 0 system")

19
20 //fig(3.16)
21 s=%s;
22 n3=(s+1);
23 d3=((s^2)*(s+2));
24 C=n3/d3
25 disp("since two integration is being observed, it is TYPE 2 system")
```

Chapter 4

State variable analysis

Scilab code Exa 4.1 State equation

```
1 //Example 4.1
2 //state equation
3 clear; clc;
4 xdel(winsid());
5
6 A=[0 1;-2 -3]
7 B=[0;1]
8 C=[0]
9 [Ac Bc U ind]=canon(A,B);
10 disp(clean(Ac), 'Ac=');
11 disp(clean(Bc), 'Bc=');
12 disp(U, 'transformation matrix U=');
```

Scilab code Exa 4.3 Eigen values

```
1 //Example 4.3
```

Scilab code Exa 4.6.a Canonical form

```
1 //Example sec 4.6a
2 //example of canonical form
3 clear; clc;
4 xdel(winsid());
5 A = [1 2 1; 0 1 3; 1 1 1];
6 B = [1;0;1];
7 C = [1 0 0; 0 1 0; 0 0 1]
8 S=cont_mat(A,B)
9 s = %s;
10 D = s * C - A
11 det(D)
12
13 //the characteristic equation i.e. \det(D)=s^3-3*s^2-
      s-3=0 is of the form of
14 //s^3+a2*S^2+a1*s+a0=0. therefore comparing two
      equation.
15
```

```
16 a2=-3

17 a1=-1

18 a0=-3

19 M=[a1 a2 1;a2 1 0;1 0 0]

20

21 P=S*M

22 A1=inv(P)*A*P

23 B1=inv(P)*B
```

Scilab code Exa 4.6.b Canonical form

```
1 //Example sec 4.6b
2 //example of canonical form
3 clear; clc;
4 xdel(winsid());
5 A = [1 2 1; 0 1 3; 1 1 1];
6 B = [1;0;1];
7 C = [1 1 0];
8 V = [C; C*A; C*A^2]
10 D = eye(3,3)
11 s=%s
12 \quad E=s*D-A
13 det(E)
14
15 //the characteristic equation i.e. \det(E)=s^3-3*s^2-
      s-3=0 is of the form of
16 //s^3+a2*S^2+a1*s+a0=0. therefore comparing two
      equation.
17
18 \ a2 = -3
19 \quad a1 = -1
20 \text{ a0} = -3
```

```
21 M=[a1 a2 1;a2 1 0;1 0 0]

22 F=M*V

23 Q=inv(F)

24 A1=inv(Q)*A*Q

25 B1=inv(Q)*B

26 C1=C*Q
```

Scilab code Exa 4.8 Jordan canonical form

```
//Example sec 4.8
//Jordan canonical form
clear; clc;
xdel(winsid());
A=[0 6 -5;1 0 2;3 2 4]
B=spec(A)
//Eigen vectors corresponding to eigen values of A are
p1=[2;-1;-2];
p2=[1;-0.4285;-0.7142];
p3=[1;-0.4489;-0.93877];
T=[p1 p2 p3];
A1=inv(T)*A*T
```

Scilab code Exa 4.10 Controllable companion form

```
1 //Example sec 4.10
2 //Controllable companion form
3 clear; clc;
4 xdel(winsid());
```

```
5 A=[1 0 0;0 2 0;0 0 3]
6 B = [1 0; 0 1; 1 1]
7 b1=[1;0;1]
8 b2 = [0;1;1]
9 u = [B A*B A^2 B]
10 u1=[1 0 1;0 1 0;1 1 3]
11 // u1 is arranged from [b1 A^{(v1-1)}*b1 A^{(v2-1)}*b2]
12 // v1 and v2 are controllability indices.
13 u1=[b1 A*b1 b2]
14 \text{ v1=2};
15 \text{ v2=1};
16 inv(u1)
17
18 p1 = [-0.5 -0.5 0.5]
19 p2 = [0 \ 1 \ 0]
20 P = [p1; p1*A; p2]
21 A1=P*A*inv(P)
22 B1=P*B
23 C = eye(3,3)
24 s=%s
25 D = s * C - A1
26 E = det(D)
27 routh_t(E)
28 //to get equation E, A must be equal to
29 \quad A2 = [0 \quad 1 \quad 0; 0 \quad 0 \quad 1; -6 \quad -11 \quad -6]
30 B2 = [0 0; 1 0.5; 0 1]
31 \text{ N1} = [6 \ 1.5 \ 4.5; -6 \ -11 \ 8]
32 N = N1 * P
```

Chapter 5

stability of linear control system

Scilab code Exa 5.1 Hurwitz stability test

```
1 / \text{Example } 5.1
2 //Hurwitz stability test in scilab
3 clear; clc;
4 xdel(winsid());
5
6 s = %s
7 A=s^4+8*s^3+18*s^2+16*s+4 // characteristic equation
9 // coefficients of characteristic equation
10 a0=det(coeff(A,4))
11 a1=det(coeff(A,3))
12 a2=det(coeff(A,2))
13 a3=det(coeff(A,1))
14 a4=det(coeff(A,0))
15
16 D=[a1 a0 0 0;a3 a2 a1 a0;0 a4 a3 a2;0 0 0 a4]//
      Hurwitz determinant
17
18 //minors of hurwitz determinant
```

```
19 D1=[a1]
20 det(D1)
21 D2=[a1 a0;a3 a2]
22 det(D2)
23 D3=[a1 a0 0;a3 a2 a1;0 a4 a3]
24 det(D3)
25 D4=[a1 a0 0 0;a3 a2 a1 a0;0 a4 a3 a2;0 0 0 a4]
26 det(D2)
```

Scilab code Exa 5.2 Routh array

```
1 / Example 5.2
2 //constructing Routh array in scilab
3 clear; clc;
4 xdel(winsid());
5 mode(0);
6
7 s=%s;
9 A=s^4+4*s^3+4*s^2+3*s; // characteristic equation
10
11 k = poly(0, 'k')
12
13 routh_t((1)/A,poly(0, 'k'))
14 disp("0<k<2.4375")
15
16 //the function will automatically computes Routh
     array
17 //from the Routh array the value of "k" lies between
      0 and 2.4375
```

Scilab code Exa 5.2.2a Routh array

```
1 //Example sec 5.2.2 a
2 //Routh array in scilab
3 clear; clc;
4 xdel(winsid());
5
6 s=poly(0, 's')
7 A=s^5+s^4+2*s^3+2*s^2+4*s+6
8 routh_t(A)
```

Scilab code Exa 5.2.2b Routh array

```
//Example sec 5.2.2 b
//Routh array in scilab
clear; clc;
xdel(winsid());

s=poly(0,'s')
B=s^5+2*s^4+6*s^3+12*s^2+8*s+16
routh_t(B)
// In this example a row of zero forms at s^3.
//The function automatically the derivative of the //auxillary polynomial 2*s^4+12*s^2+16
//viz=8*s^3+24*s
```

Scilab code Exa 5.2.2c Routh array

```
1 //Example sec 5.2.2 c
2 //Routh array in scilab
3 clear; clc;
4 xdel(winsid());
5
6 s=poly(0, 's')
7 p=poly(0, 'p')
8 C=s^5+s^4+2*s^3+2*s^2+3*s+5
9
10 //substituting "s=(1/p)" in B
11 //The resulting characteristic equation is
12
13 C1=5*p^5+3*p^4+2*p^3+2*p^2+p+1
14 routh_t(C1)
```

Scilab code Exa 5.2.2d Routh array

```
1 //Example sec 5.2.2 d
2 //Routh array in scilab
3 clear; clc;
4 xdel(winsid());
5
6 s=poly(0,'s')
7 D=2*s^6+2*s^5+3*s^4+3*s^3+2*s^2+s+1
8 routh_t(D)
```

Scilab code Exa 5.3 Routh array

```
1 // Example 5.3
2 // Constructing Routh array in scilab
4 clear; clc
5 xdel(winsid());
6 mode(0);
8 \text{ s=\%s};
10 A=s^4+4*s^3+4*s^2+3*s;
                             // characteristic equation
      after simplification
11
12 k = poly(0, 'k')
13
14 routh_t((1)/A,poly(0, 'k'))
15
16 //system will construct Routh array and
17 //from Routh array "k" must lie between 0&39/16 i.e
      (0 < k < 2.4375)
18
19 disp("0 < k < 39/16")
```

Scilab code Exa 5.4 Routh array

```
1 // example 5.4
2 //constructing Routh array in scilab
4 xdel(winsid());//close all windows
5 mode(0);
6 \text{ s=}\%\text{s};
7 A=s^3+8*s^2+26*s+40;
9 //consider p-plane is located to the left of the s-
      plane.
10 //distance between p-plane and s-plane is 1.
11 //if the origin is shifted from s-plane to the p-
      plane, then, s=p-1
12
13 z = \%z
14 B=z^3+5*z^2+13*z+21; //substituting s=p-1 in the
      equation of A, the resulting equation will be
15 routh_t(B)
```

Scilab code Exa 5.5 Routh array

```
1 //Example 5.5 a
2 //constructing Routh array in scilab
3 clear; clc
4 xdel(winsid()); // close all windows
5 mode(0);
```

```
6 s=%s;
7 A=s^3+s^2-s+1
8 routh_t(A)
9
10 //Example 5.5 b
11
12 s=%s;
13 B=s^4-s^2-2*s+2
14 routh_t(B)
15 //in this example 0 occurs in the first column of the array
16 // for which system assumes any small value "eps" and computes the array automatically.
```

Scilab code Exa 5.6 Routh array

```
//Example 5.6
//constructing Routh array in scilab
clear; clc;
xdel(winsid());
mode(0);

s=%s;

A=s^4+8*s^3+24*s^2+32*s; //characteristic equation
k=poly(0, 'k')

routh_t((1)/A,poly(0, 'k'))
disp(k=80)

//since from the fourth row of the Routh array
// the positive value "k=80" will give roots with zero real part.
```

Chapter 6

study of the locus of the roots of the charactristic equation

Scilab code Exa 6.2 Root locus in scilab

```
1 //Example 6.2
2 // Plotting root locus
3 clear; clc;
4 xdel(winsid());
5 s=%s;
6 num=1;
7 den=s*(s+3)^2;
8 G=syslin('c',num/den);
9 clf();
10 evans(G);
11 axes_handle.grid=[1 1]
12 mtlb_axis([-5 5 -5 5]);
13 //form the graph it can be seen that the break away point is at "-1"
14 disp("Break away point=-1")
```

Scilab code Exa 6.2.2 location of the root locus between poles and zeros

```
//Example sec 6.2.2
// location of root locus in between poles and zeros
.

clear; clc;
xdel(winsid());
s=%s;
num=((s+1)*(s+2));
den=(s*(s+3)*(s+4));
G=syslin('c',num/den);
clf();
evans(G);
axes_handle.grid=[1 1]
the mtlb_axis([-5 5 -5 5]);
```

Scilab code Exa 6.3 Root locus

```
1 //Example 6.3
2 // Plotting root locus
3 clear; clc;
4 xdel(winsid());
5 s=%s;
6 num=(s+2);
```

```
7 den1=(s+1+(%i*sqrt(3)))*(s+1+(%i*sqrt(3)));
8 //upon simplification the denominator becomes
9 den2=(s^2+2*s+4)
10 G=syslin('c',num/den2);
11 clf();
12 evans(G);
13 axes_handle.grid=[1 1]
14 mtlb_axis([-5 5 -5 5]);
```

Scilab code Exa 6.4 root locus

```
1 //Example 6.4
2 // Plotting root locus
3 clear; clc;
4 xdel(winsid());
5 s=%s;
6 num=-(s+2);
7 den1=(s+1+(%i*sqrt(3)))*(s+1+(%i*sqrt(3)));
8 //upon simplification the denominator becomes
9 den2=(s^2+2*s+4)
10 G=syslin('c',num/den2);
11 clf();
12 evans(G);
13 axes_handle.grid=[1 1];
14 mtlb_axis([-3 3 -3 3]);
```

Scilab code Exa 6.5 Root locus

```
1 //Example 6.5
2 // Plotting root locus
3 clear; clc;
4 xdel(winsid());
5 s=%s;
6 num=1;
7 den=s*(s+4)*(s^2+4*s+20);
8 G=syslin('c',num/den);
9 clf;
10 evans(G);
11 axes_handle.grid=[1 1]
12 mtlb_axis([-5 5 -5 5]);
```

Scilab code Exa 6.6 Root locus

```
1 //Example 6.6
2 // Plotting root loci in scilab
3 clear; clc;
4 xdel(winsid());
5 s=%s;
6 num=(s+2);
7 den=(s+1)^2;
```

```
8 t=syslin('c',num/den);
9 clf;
10 evans(t);
11 axes_handle.grid=[1 1]
12 mtlb_axis([-4 4 -4 4]);
```

Scilab code Exa 6.7 Root locus

```
1 //Example 6.7
2 // Plotting root locus
3 clear; clc;
4 xdel(winsid());
5 Beta=0
6 s=%s;
7 num=1;
8 den=s*(s+1)*(s+Beta);
9 G=syslin('c',num/den);
10 clf();
11 evans(G);
12 axes_handle.grid=[1 1]
13 mtlb_axis([-4 4 -4 4]);
```

Chapter 7

Analysis of frequency response

Scilab code Exa 7.3.1a Bode plot

```
1 //Example 7.3.1 a
2 // Bode plot in scilab
3 clear; clc;
4 xdel(winsid());
5
6 s=poly(0,'s');
7 H=syslin('c',(10*(1+s)),s^2*(1+.25*s+0.0625*s^2));
8 clf();
9 bode(H,0.1,1000)
```

Scilab code Exa 7.3.1b Bode plot

```
1 //Example:(i) 7.3.1 b
2 // Bode plot in scilab
3 clear; clc;
```

```
4    xdel(winsid());
5
6    s=poly(0, 's');
7    G=syslin('c',(8*(1+0.5*s)),s*(1+2*s)*(1+0.05*s +0.0625*s^2));
8    clf();
9    bode(G,0.01,1000);
```

Chapter 8

stability in frequency response systems

Scilab code Exa 8.1 Nyquist plot

```
1 //Example 8.1
2 //Nyquist plot
3 clear; clc;
4 xdel(winsid());
5
6 s = %s/2/%pi;
7 num=(1);
8 den=s*(s+1);
9 G=syslin('c',num,den)
10 clf();
11 nyquist(G)
```

```
1 / \text{Example } 8.2
2 // Nyquist plot
3 clear; clc;
4 xdel(winsid());
    s = %s/2/%pi;
   //since the value of "K" and "tau" in the given
       transfer function is constant
    // thus assuming "K=1" and "tau=1"
   //the resulting transfer function is,
10
    num2=(1);
11
   den2=(s+1)^2;
12
   G=syslin('c',num2,den2)
13
    clf();
    nyquist(G)
14
```

Scilab code Exa 8.3 Nyquist plot

```
1 //Example 8.3
2 //Nyquist plot
3 clear; clc;
4 xdel(winsid());
5
6 s = %s /2 /%pi;
7 num=(s+3);
8 den=(s+1)*(s-1)
9 G=syslin('c',num,den)
10 clf();
11 nyquist(G)
```

Chapter 9

compensators and controllers

Scilab code Exa 9.1 compensation in open loop control system

```
1 //Example sec 9.1
2 //compensation in open loop control system
3 clear; clc;
4 xdel(winsid());
6 \text{ s=\%s};
7 disp("G=(60*k)/s*(s+1)*(s+6)")
8 // velocity error constant "Kv" when unit ramp input
      is applied to G is "5k".
9 // If "k=1", then, steady state error is 0.2.
10 // when "k=35/60" G becomes
11
12 \text{ num} = 35;
13 den=s*(s+2)*(s+6);
14 G1=syslin('c',num,den);
15 subplot (1,2,1);
16 evans (G1)
17 // From the figure 9.1
18 OA = sqrt((0.3)^2 + (2.8)^2);
19 wn1=0A
20 theta=84 // analytically calculated
```

```
21 zeta1=cosd(theta)
22 Ts1=4/(zeta1*wn1) // Ts1=settling time in seconds
\frac{23}{\sqrt{\text{For zeta to be } 0.6}} and settling time less than 0.4
       sec
24 = a = a \cos d (0.6)
25 //By drawing angle "a" on the root locus
26 OB=1.26;
27 \text{ wn} 2 = 0B;
28 Ts2=4/(0.6*1.26) //in seconds
29 k=10.5/60;
30 //substituting "s=0" and "60k=10.5" in the equation
31 Kv1=10.5/12 //Kv= velocity error coefficient
32 Ess1= 1/\text{Kv1} //Ess= steady state error
33 //To get the required value of the zeta, steady
      state error increases and settling time improves.
34
35 //inserting one zero in the expression for "G"
36 disp("G2=60*k*(s+3)/s*(s+2)*(s+6)")
37 //considering k=1
38 \text{ num1} = 60*(s+3);
39 den1=(s*(s+1)*(s+6));
40 G3=syslin('c',num1,den1);
41 subplot (1,2,2);
42 evans(G3);
43 // considering "zeta=0.6" and drawing line OA at an
      angle 53.13, on the root locus.
44 zeta=0.6;
45 \quad \text{OA1} = 3.4;
46 \text{ wn} = \text{OA1}
47 \text{ K} = 16/60
48 Kv = (60*K*3)/(2*6)
49 Ts=4/(zeta*wn) //in seconds
50 \quad \text{Ess} = 1 / \text{Kv}
```

Chapter 10

Non linear control system

Scilab code Exa 10.1.1 Mass dashpot and spring arrangement

```
1 //Example sec 10.1.1
2 //mass, dashpot, spring arrangement.
3 clear; clc;
4 xdel(winsid());
5 M=1
6 K = 2
7 F = 2
8 \quad A = [0 \quad 1; -2 \quad -2]
9 C = eye(A)
10 s=%s
11 \quad D=s*C-A
12 X = inv(D) * [1;1]
13 //taking the laplace transform of X
14 disp("X(t)=sqrt(5)*sin(t+inv(tan 0.5)); sqrt(10)*sin(
      t+inv(tan -1/3)")
15 disp("The system is asymptotically stable")
```

Scilab code Exa 10.3 determination of quadratic form

```
//Example 10.3
//determination of quadratic form
clear;clc;
xdel(winsid());
//from the given euation we get the following
A=[9 1 -2;1 4 -1;-2 -1 1]
det(A)
A1=[9 1;1 4]
det(A1)
//since determinant of A and A1 is positive
//therefore W is positive definite.
disp("W is positive definite")
```

Scilab code Exa 10.4 Lipunovs method

```
1 //Example 10.4
2 //Lipunov's method
3 clear; clc;
4 xdel(winsid());
5
6 x1=poly(0, 'x1');
7 x2=poly(0, 'x2');
8 x11=poly(0, 'x11');
9 x22=poly(0, 'x22');
10 x2=x11
11 //assuming K1 and K2 equal to one.
12 disp("W=x1^2+x2^2")
13 //"W=x1^2+x2^2" is Liapunov's function
14 //W is chosen arbitrarily, since there no standard procedure for selecting W.
15 disp("dW/dt=2*x1*x11+2*x2*x22=-2*(x2^2+x2^4)")
```

16 disp("This will be negative semidefinite and therefore the system will be stable")

Chapter 11

Digital control system

Scilab code Exa 11.6 Jurys stability test

```
1 //Example 11.6
2 //Jury's stability test
3 clear; clc;
4 xdel(winsid());
6 z = \%z;
7 F=4*z^4+6*z^3+12*z^2+5*z+1
8 //equating the equation F with a4*z^4+a3*z^3+a2*z^2+
      a1*z3+a0.
9 a0=1
10 \text{ a} 1 = 5
11 a2=12
12 \quad a3=6
13 \ a4=4
14
15 b0=[a0 a4;a4 a0]
16 det(b0)
17 b1=[a0 a3;a4 a1]
18 det(b1)
19 b2=[a0 a2;a4 a2]
20 det(b2)
```

```
b3=[a0 a1;a4 a3]
det(b3)

c0=[det(b0) det(b3);det(b3) det(b0)]
det(c0)
c1=[det(b0) det(b2);det(b3) det(b1)]
det(c1)
c2=[det(b0) det(b1);det(b3) det(b2)]
det(c2)
det(c2)
disp("det(a0)<det(a4)=satisfied")
disp("det(b0)>det(b3)=satisfied")
disp("det(c0)<det(c3)=not satisfied")
disp("The system is unstable")</pre>
```

Scilab code Exa 11.9.2a stability of linear continuous system

```
1 //Example sec 11.9.2 a
2 //stability of linear continuous system
3 clear; clc;
4 xdel(winsid());
5
6 s=%s;
7 G=1/(s*(s+1)*(s+2))
8 G1=pfss(G)
9 //taking Z transform of G1
10 z=%z;
11 G2=(z/(2*(z+1)))-(z/(z+%e^(-1)))+(z/(2*(z+%e^(-2))))
12 //upon simplification we get the following characteristic equation
13 B=z^3-(1.3*z^2)+0.85*z-0.5
14 //substituting "z=(1+r/1-r)" in B
```

```
15 //the resultant equation is B1
16 r=poly(0, 'r');
17 B1=3.65*r^3+1.95*r^2+2.35*r+0.05
18 routh_t(B1)
19 disp("The system is stable")
```

Scilab code Exa 11.9.2b stability of linear continuous system

```
1 //Example sec 11.9.2 b
2 //stability of linear continuous system
3 clear; clc;
4 xdel(winsid());
6 \text{ s=}\%\text{s};
7 G=5/(s*(s+1)*(s+2))
8 G1=pfss(G)
9 //taking Z transform of G1
10 z = \%z;
11 G2=5*((z/(2*(z+1)))-(z/(z+%e^{-1})))+(z/(2*(z+%e^{-2}))
12 //upon simplification we get the following
      characteristic equation
13 B=z^3-(0.5*z^2)+2.49*z-0.496
14 / substituting "z=(1+r/1-r)" in B
15 //the resultant equation is B1
16 r=poly(0,'r')
17 B1=3.5*r^3-2.5*r^2+0.5*r+2.5
18 routh_t(B1)
19 disp("The system is unstable")
```

Scilab code Exa 11.9.3 Schurcohn stability test

```
1 //Example sec 11.9.3
2 //Schurcohn stability test
3 clear; clc;
4 xdel(winsid());
5
6 z = \%z
7 G=1/(1-((7/4)*(z^-1))-((1/2)*(z^-2)))
8 A2=1-((7/4)*(z^-1))-((1/2)*(z^-2))
9 / K2 = coefficient of z^2
10 \text{ K2} = -0.5
11 B2=-0.5-1.75*(z^-1)+z^-2
12
13 A1 = (A2 - K2 * B2) / (1 - K2^2)
14 / K1 = coefficient of z^-1
15 \text{ K1} = -3.5
16 / (\text{mod}(K1)) > 1 \text{ and } \text{mod}(K2) < 1
17 disp("The sytem is unstable")
```

Chapter 15

Miscellaneous solved problems

Scilab code Exa 15.2 Time domain specifications of second order system

```
//Example 15.2
   //time domain specifications of second order system
   clear; clc;
   xdel(winsid());
   mode(0);
   //converting the given differential equation in "s"
        domain
   //since x and y are constants
9
   //therefoere considering "x=y=1"
10
11 s = %s;
12 \text{ g=s}^2+2*s;
13 x = roots(g)
14 wn=sqrt (abs(x(1))) //undamped natural frequency
15 zeta=(1/wn) //damping ratio
16 wd=wn*sqrt(1-zeta^2)//damped natural frequency
17 Dc=(zeta*wn) //Dc=damping coefficient
18 Tc=1/(zeta*wn)//Tc=time constant of the system
```

Scilab code Exa 15.4 transfer function of gyroscope

```
//Example 15.4
//Transfer function of Gyroscope
clear;clc;
xdel(winsid());
//in case of Gyroscope the equation is

disp("(J*s^2+B*s+K)theta(s)=H*w(s)")
//therefore
disp("theta(s)/w(s)=H/J*s^2+B*s+K")
```

Scilab code Exa 15.5 Transfer function of system

```
1 //Example 15.5 (fig 15.4)
2 //transfer function of the system
3 clear; clc;
4 xdel(winsid());
5 mode(0);
6
7 s=poly(0, 's');
8 //G1 and G2 are connected in series
9 G1=s^2/(s+4)^2
10 G2=(s+1)/(s^3*(s+3))
11 //H1 is feedback loop
12 H1=(s^2+s+1)/(s*(s+3))
13 // Tf=transfer function
14 Tf=(G1*G2*H1)
```

```
15 A=type(s);
16 disp(A, 'Type of the system=')
```

Scilab code Exa 15.6 comparison of sensitivities of two systems

```
1 //Example 15.6
2 //comparison of sensivity of the two system
3 clear; clc;
4 xdel(winsid());
5 //k1 andk2 are series blocks of the transfer
      function
6 k1=100
7 k2 = 100
8 //transfer function of fig.15.5
9 T1=k1*k2/(1+(0.0099*k1*k2))
10 //transfer function of fig.15.6
11 T2=(k1/(1+(0.09*k1)))*(k2/(1+(0.09*k2)))
12 disp("both transfer function are equal")
13 // sensitivity of the transfer function T1 with
      respect to k1
14 \quad T11=1/(1+(0.0099*k1*k2))
15 // sensitivity of the transfer function T2 with
      respect to k1
16 \quad T12=1/(1+(0.09*k1))
17 disp ("The system of fig 15.6 is 10 times more
      sensitive than system of fig 15.5 with respect to
       variations in k1")
```

Scilab code Exa 15.7 To find bandwidth of the transfer function

```
//Example 15.7
//find bandwidth of the transfer function
clear; clc;
xdel(winsid());

s=%s;
c=1;
R=(s+1);
tf=0/R
disp("when O/R(jw)=0.707, w=wc")

wc=(1/0.707)^2-1
//wc=bandwidth of the transfer function
disp("Hence the bandwidth is 1 rad/sec")
```

Scilab code Exa 15.8 Bandwidth of the transfer function

```
1 //Example 15.8
2 //find bandwidth of the transfer function
3 clear; clc;
4 xdel(winsid());
5
6 s=%s;
7 0=6;
8 R=(s^2+2*s+6);
9 tf=0/R
10
11 disp("when O/R(jw)=6/sqrt(w^4-8*w+36)")
12
13 w=[+2 -2] //after differentiation and simplification
14
15 disp("when O/R(jw)=6/sqrt(w^4-8*w+36), At w=+-2")
```

```
16
17 peak=3/sqrt(5)
```

Scilab code Exa 15.9 Nyquist plot

```
1 //Example 15.9
2 //Nyquist plot
3 clear; clc;
4 xdel(winsid());
5
6 s = %s/2/%pi;
7 num=(1);
8 den=s^3*(s+1);
9 G=syslin('c',num,den)
10 clf()
11 nyquist(G)
```

Scilab code Exa 15.12 solution of polynolynomial equation

```
1 //Example 15.12
2 //prove the solution of the equation
3 clear; clc;
4 xdel(winsid());
5 //assuming n=1
6 n=1;
7 z=%z;
8 y(n)=z^n;
```

```
9 y(n+1)=z^(n+1);
10 y(n+2)=z^(n+2);
11 A=y(n+2)+3*y(n+1)+2*y(n)
12 B=A/z
13 roots(z^2+3*z+2)
14 disp("y(n)=z^n is solution of polynomial equation (z +2)*(z+1)=0")
```

Scilab code Exa 15.13 Time domain specifications

```
1 //Example 15.13
2 //Time domain specifications
3 clear; clc;
4 xdel(winsid());
6 J=5.5*10^-2;
7 f = 3.0 * 10^{-4};
8 disp("wn=sqrt(k/J)=10^3*sqrt(k/5.5)")
9 disp("zeta=sqrt(4.9*10^-3/k)")
10 //at critically damped condition "zeta=1", therefore
11 k=4.09*10^-3
12 / \text{when } k = 1.5 * 10^{-2}
13 zeta=sqrt((4.09*10^-3)/(1.5*10^-2))
14 \text{ wn} = 10^3 * \text{sqrt} (1.5 * 10^- - 2/5.5)
15 wd=(wn/(2*%pi))*sqrt(1-zeta^2)
16 //wd=frequency of damped oscillation
17 \text{ Pwd} = 1/\text{wd}
18 //Pwd=period of damped oscillation
```

Scilab code Exa 15.14 Position servomotor

```
1 //Example 15.14
2 // position servomoter
3 clear; clc;
4 xdel(winsid());
6 // Mil= motor inertia referred to the load side
7 Mil=20^2*0.45*10^-6 // unit= kg.m^2
9 //Tr= Transformation ratio of gear train between the
       loadshaft and the tachogenerator
10 Tr=20*2
11
12 //til= tachogenerator inertia referred to the load
13 til=40^2*0.35*10^-6 // unit= kg.m<sup>2</sup>
14
15 // Til= total inertia referred to the load side
16 Til=(20*10^-6)+(1.8*10^-4)+(5.6*10^-4) //unit= kg.m
17
18 //Mi= inertia referred to the motor side
19 Mi = (760*10^-6)/400 // unit = kg.m^2
```

Scilab code Exa 15.15 steady output speed of DC motor

```
1 //Example 15.15
2 //steady output speed of DC motor
3 clear;clc;
4 xdel(winsid());
5
6 //Jm= moment of inertia of motor
```

```
7 Jm=6.5*10^-2;
8 //Fm= friction of motor
9 Fm=3.5*10^-3;
10 / a = gear ratio
11 a=1/100;
12 // Jl= inertia of load
13 J1=420;
14 //Fl= friction of load
15 F1=220;
16 //J= total moment of inertia
17 J=Jm+(a^2*J1)
                    //unit=kg.m^2
18 //F= total friction
19 F=Fm+(a^2*F1) // unit=kg.m<sup>2</sup>
20 s=%s
21 //wm1=Angular velocity in frequency domain
22 \text{ wm1}=2/(s*((J*s)+F))
23 t = 1;
24 //wm2=Angular velocity in time domain
25 //since "t=1", wm2 is initial value of angular
      velocity
26 \text{ wm2}=(2/F)*(1-(\%e^((-5.7*10^-2)/(10.7*10^-2))*t))
      unit=rad/sec
27 //Nm1=motor speed in rps(initial speed)
28 \text{ Nm1} = \text{wm2}/(2*\%\text{pi});
29 //Nm2=motor speed in rpm
30 Nm2=(wm2/(2*%pi))*60; //unit=rpm
31 //Nl=load speed
32 Nl = (1/100) * ((wm2/(2*\%pi))*60) //unit=rpm
33 //Nos= steady output speed
34 //since Nos is steady speed, the exponential term of
       wn2 becomes 0.
35 Nos=(1/100)*(60/(2*\%pi))*(2/(5.7*10^-2)) //unit=rpm
```

Scilab code Exa 15.26 Routh array

```
1 // Example 15.26
2 // Constructing Routh array in scilab
3
4 clear; clc
5 xdel(winsid());
6 \mod (0);
8 A = [5 -6 -12; -1 1 2; 5 -6 -11]
9 B = eye(3,3)
10 s=%s
11 C = s * B - A
12 D=s^3+5*s^2+5*s+1;
                       // characteristic equation after
       simplification
13 routh_t(D)
14 disp("No sign change in the first column, hence the
      system is asymptotically stable")
```

Scilab code Exa 15.27 To check reachability of the system

```
1 // Example 15.27
2 // To check whether the system is reachable or not
3
4 clear; clc
5 xdel(winsid());
6 mode(0);
7 A=[1 0;0 1]
8 B=[1;1]
9 Wc=[A*B B]
10 disp("The rank of Wc=(1*1-1*1)=0, and not equal to 2.
Thus the given system is not reachable")
```

Scilab code Exa 15.28 Determine the stability of the system

```
// Example 15.28
// Determine the stability of the system.

clear; clc
xdel(winsid());
mode(0);

z=%z

D=z^3+6*z^2+8*z-0.04; // characteristic equation after simplification

routh_t(D)
disp("There is sign change in the first column, hence the system is unstable")
```

Scilab code Exa 15.31 Time domain specifications of second order system

```
1 //Example 15.31
2 //time domain specifications of second order system
3 clear; clc;
4 xdel(winsid());
5 mode(0);
6
7 //converting the given differential equation in "s"
domain
```

```
//since x and y are constants
//therefoere considering "x=y=1"

s=%s;
g=s^2+5*s+7;
x=coeff(g)
//comparing with the standard equation of second order system.

wn=sqrt(x(:,1)) //undamped natural frequency
zeta=(5/(2*wn)) //damping ratio
wd=wn*sqrt(1-zeta^2)//damped natural frequency
Tc=1/(zeta*wn)//Tc=time constant of the system
```

Scilab code Exa 15.33 Lipunovs method

```
1 //Example 15.33
2 //Lipunov's method
3 clear; clc;
4 xdel(winsid());
6 x1 = poly(0, 'x1');
7 x2 = poly(0, 'x2');
8 \times 11 = poly(0, 'x11');
9 \text{ x22=poly}(0, 'x22');
10 x2 = x11
11 disp("x22+x2+x2^3+x1=0")
12 //(x1,x2) has singular point at (0,0)
13 disp("V=x1^2+x2^2")
14 //"V=x1^2+x2^2" is Liapunov's function
15 //V is positive for all values of x1 and x2, except
      at x1=x2=0
16 \operatorname{disp}(\operatorname{"dV}/\operatorname{dt}=2*x1*x2-2*x1*x2-2*x2^2-2*x2^4=-2*x2^2-2*
      x2^4"
```

```
17 disp("dV/dt will never be positive hence origin is stable")
```

Scilab code Exa 15.34 Find bandwidth of the transfer function

```
1 //Example 15.34
2 //find bandwidth of the transfer function
3 clear; clc;
4 xdel(winsid());
5
6 s=%s
7 A=1
8 B=(s+1)
9 tf=A/B
10
11 disp("when A/B(jw)=1/sqrt(2), w=w1")
12
13 w1=(1/0.707)^2-1
14 //w1=bandwidth of the transfer function
15
16 disp("Hence the bandwidth is 1 rad/sec")
```

Scilab code Exa 15.36 Impulse response of the transfer function

```
1 //Example 15.36
2 //impulse response transfer function
3 clear; clc;
4 xdel(winsid());
```

Scilab code Exa 15.37 step response of the transfer function

Scilab code Exa 15.38 Roots of characteristic equation

```
//Example 15.38
//find roots of characteristic equation

clear; clc;
xdel(winsid());
s=poly(0,'s')
G=s^4+2*s^3+s^2-2*s-1
roots(G)
```

Scilab code Exa 15.39 Bode plot

```
1 //Example:15.39
2 // Bode plot in scilab
3 clear; clc;
4 xdel(winsid());
5
6 s=poly(0,'s');
7 G=syslin('c',(25),s^2+4*s+25);
8 clf();
9 bode(G,0.01,1000);
```

Scilab code Exa 15.40 Nyquist plot

```
1 //Example 15.40
2 //Nyquist plot
3 clear; clc;
4 xdel(winsid());
```

```
5
6  s = %s/2/%pi;
7  num=(1);
8  den=(s^2+0.8*s+1);
9  G=syslin('c', num, den)
10  clf();
11  nyquist(G)
```

Scilab code Exa 15.41 Nyquist plot

```
1 //Example 15.41
2 //Nyquist plot
3 clear; clc;
4 xdel(winsid());
5
6 s = %s/2/%pi;
7 num=(s+2);
8 den=(s+1)*(s+1);
9 G=syslin('c',num,den)
10 clf();
11 nyquist(G)
```

Scilab code Exa 15.42 Bode plot

```
1 / Example: 15.42
```

```
2 // Bode plot in scilab
3  clear; clc;
4  xdel(winsid());
5
6  s=poly(0, 's');
7  G=syslin('c',(64*(s+2)),(s*(s+0.5)*(s^2+3.2*s+64)));
8  clf();
9  bode(G,0.01,1000);
```

Scilab code Exa 15.43 Eigen values of matrix

```
1 //Example:15.43
2 //eigen values of matrix A
3 clear; clc;
4 xdel(winsid());
5
6 A=[0 6 -5;1 0 2;3 2 4];
7 spec(A)
```

Scilab code Exa 15.44 State space representation of LTI system

```
1 //Example 15.44
2 //state space representation of LTI system
3 clear; clc;
4 xdel(winsid());
5
6 A=[0 1;-2 -3];
```

```
7 B=[0;1];
8 C=[1 1];
9 D=[0];
10 E=[0];
11
12 H=syslin('c',A,B,C);
13 s=%s;
14 g=eye(2,2);
15 P=(-s*g)-A
16 sm=[P B;C D];
17 H1=sm2ss(sm)
```

Scilab code Exa 15.45 Covariant matrix of A

```
1 //Example 15.45
2 // Covariant matrix of "A"
3 clear; clc;
4 xdel(winsid());
5 A=[1 0 0;0 2 0;0 0 3]
6 mvvacov(A)
```

Scilab code Exa 15.49 Root locus of the transfer function

```
1 //Example 15.49
2 // Plotting root loci of the transfer function k/s*(
    s+4)*(s^2+4*s+20)
3 clear; clc;
4 xdel(winsid());
5 s=%s;
```

```
6 num=(1);
7 den=s*(s+3)*(s^2+2*s+2);
8 G=syslin('c',num/den);
9 clf;
10 evans(G);
11 mtlb_axis([-5 5 -5 5]);
```

Scilab code Exa 15.50 Bode plot

```
1 //Example:15.50
2 // Bode plot in scilab
3 clear; clc;
4 xdel(winsid());
5
6 s=poly(0,'s');
7 G=syslin('c',(16*(s+2)),(s*(s+0.5)*(s^2+3.2*s+64)));
8 clf();
9 bode(G,0.01,1000);
```

Scilab code Exa 15.53 Statespace model of the differential equation

```
1 //Example 15 53
2 //state space model of differential equation.
3 clear; clc;
4 xdel(winsid());
```

Scilab code Exa 15.54 Nyquist plot

```
1 //Example 15.54
2 //Nyquist plot
3 clear; clc;
4 xdel(winsid());
5
6 s = %s/2/%pi;
7 num=(2);
8 den=s*(s^2+2*s+2);
9 G=syslin('c',num,den)
10 clf();
11 nyquist(G)
```

Scilab code Exa 15.57 determination of zeta and wn

```
1 //Example 15.57
2 //determination of zeta & wn
3 clear; clc;
```

```
4 xdel(winsid());
5
6 s = %s
7 \text{ num} = 10;
8 den=s^2+2*s+10; //\sin ce k=0
9 G=num/den;
10 B=coeff (den)
11 //wn= undamped natural ftrquency
12 wn=sqrt(B(:,1))
13 // zeta= damping ratio
14 \text{ zeta=2/(2*sqrt(wn))}
15 // when time t tends to infinity, static error viz.
      ess tends to 0.
16 \text{ ess=0}
17 // when "zeta=0.65" i.e.(zeta1=0.65)
18 \text{ zeta1} = 0.65
19 k0 = 2 * zeta1 * wn - 2
```

Scilab code Exa 15.59 transfer function of signal flow graph

```
//Example 15.59
// transfer function of signal flow graph
clear; clc;
xdel(winsid());

k1=1;
k2=5;
k3=5;
s=%s;
// From the graph the transfer function is
T=(k3*k1)/(s^3+s^2+(k3*k1)+(k1*k2*s^2)+5)
// substitutins "s=0"in the equation of T
// and differentiating and simplifying the equation
```

```
14 // the following value of T will appear 15 T1=1/(1+k1)
```

Scilab code Exa 15.60 root locus

```
1 //Example 15.60
2 //root locus
3 clear;clc;
4 xdel(winsid());
5
6 s=%s;
7 //substituting "a=15" in the numerator
8 num=2*(s+15);
9 den=s*(s+2)*(s+10);
10 G=syslin('c',num/den);
11 evans(G);
12 axes_handle.grid=[1 1]
13 mtlb_axis([-5 5 -5 5]);
```