Find the eigenvalues by solving the characteristic equation:

$$C\vec{v} = \lambda\vec{d} \implies (C - \lambda \vec{I})\vec{v} = \vec{0} \qquad (4\vec{x})$$

$$\det(C - \lambda \vec{I}) = 0$$

$$C - \lambda \vec{I} = \begin{pmatrix} -\Lambda & 1 & 0 \\ 1 & -\Lambda & 1 \\ 0 & (-\Lambda) \end{pmatrix} \xrightarrow{1} \text{ where } \Lambda (5\vec{z} = \lambda)$$

$$\det(C - \lambda \vec{I}) = -\Lambda (\Lambda^2 - 1) + 1 (0 + \Lambda) + 0 = 0$$

$$= -\Lambda^3 + 2\Lambda = 0 \implies \Lambda = 0 \text{ or }$$

$$\Delta^2 = 2$$

$$\text{so } \Lambda = 0, \pm 5\vec{z} \text{ so } \lambda = 0, \pm 1$$

$$\text{substitute back into (4\vec{x}) to find the eigenvectors } \vec{v}:$$

$$\vec{i} \cdot \lambda = \pm 1 \text{ solution, write } \vec{V}_{\pm 1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\vec{J}_{2} = 0 \qquad \vec{J}_{1} = 0 \qquad \vec{J}_{2} = 0$$

$$\vec{J}_{2} = 0 \qquad \vec{J}_{2} = 0 \qquad \vec{J}_{2} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{2} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

$$\vec{J}_{3} = 0 \qquad \vec{J}_{3} = 0$$

eigenstates) (but that is not something you're expected to quest!)

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$a. \text{ to see if B is degenerate, check to see if it has any repeated eigenvalues:}$$

$$det(B-\lambda I) = 0$$

$$\begin{vmatrix} b-\lambda & 0 & 0 \\ 0 & -\lambda & -ib \\ 0 & -\lambda & -ib \end{vmatrix} = (b-\lambda)(\lambda^2-b^2) = 0$$

$$b = \lambda \quad \text{or} \quad (\lambda-b)(\lambda+b) = 0$$

$$b = \lambda \quad \text{or} \quad (\lambda-b)(\lambda+b) = 0$$

$$b = \lambda \quad \text{or} \quad (\lambda-b)(\lambda+b) = 0$$

$$b = \lambda \quad \text{or} \quad (\lambda-b)(\lambda+b) = 0$$

$$b = \lambda \quad \text{or} \quad (\lambda-b)(\lambda+b) = 0$$

$$b = \lambda \quad \text{or} \quad (\lambda-b)(\lambda+b) = 0$$

$$b = \lambda \quad \text{or} \quad (\lambda-b)(\lambda+b) = 0$$

$$c. \text{ sepected!} \quad \lambda = b \quad \text{or} \quad \lambda = -b \quad \lambda$$

exceptional case we must pay attention to when arguing that commuting observables share eigenstates,

$$A|Va\rangle = \alpha |Va\rangle$$

$$A|Va$$

let's fix
$$y \in \mathbb{Z}$$
 by demanding compatibility with \mathbb{B} .

since we already found ($\frac{1}{8}$) corresponds to:

 $\mathbb{B}(\frac{1}{8}) = b(\frac{1}{8})$

we have covered one of the two $\lambda = b$ eigenvalues, and must find an eigenvector for the other $\lambda = b$ case $\frac{1}{8}$
 $(8-b1)(\frac{1}{8}) = (\frac{1}{8})$
 $(9-b-ib)(\frac{1}{4}) = (\frac{1}{8})$
 $(0-b-ib)(\frac{1}{4}) = (\frac{1}{8})$
 $(0-b-ib)(\frac{1}{4}) = (\frac{1}{8})$
 $(10-b-ib)(\frac{1}{4}) = (\frac{1}{8})$
 $(10-b-ib)(\frac{1}{4}) = (\frac{1}{8})$
 $(10-b-ib)(\frac{1}{4}) = (\frac{1}{8})$
 $(10-a-b) = (\frac{1}{12})(\frac{1}{8})$

3 consider the ket:
$$|v\rangle = |a\rangle + \lambda |\beta\rangle$$
by the Hilbert space axioms, $\langle v|v\rangle \geq 0$
 $\langle v|v\rangle = |\langle \alpha|+\lambda^*\langle \beta| ||(a\rangle + \lambda |\beta)|$
 $\langle v|v\rangle = |\langle \alpha|+\lambda^*\langle \beta| ||(a\rangle + \lambda |\beta)|$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta|^2$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\lambda |\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\langle \alpha|\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\langle \alpha|\beta\rangle^*$
 $\langle v|v\rangle = |\alpha|^2 + \lambda \langle \alpha|\beta\rangle + \lambda^*\langle \alpha|\beta\rangle^* + \lambda^*\langle \alpha|\beta\rangle^*$
 $\langle v|v\rangle =$

 $I = \int q_3 L \left[3 + \frac{9E}{95} + 3 + \frac{9E}{95} \right]$ $I = \int q_3 L \left[3 + \frac{9E}{95} + 3 + \frac{9E}{95} \right]$ $I = \int q_3 L \left[3 + \frac{9E}{95} + 3 + \frac{9E}{95} \right]$ $I = \int q_3 L \left[3 + \frac{9E}{95} + 3 + \frac{9E}{95} \right]$ from the Schrödinger equation, $\frac{i\hbar \frac{\partial \mathcal{Y}}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \mathcal{Y} + V \cdot \mathcal{Y}}{\partial t} = -\frac{i\hbar}{2m} \nabla^2 \mathcal{Y}^* + \frac{i}{\hbar} V \cdot \mathcal{Y}^*}$ $\frac{\partial \mathcal{Y}}{\partial t} = \frac{i\hbar}{2m} \nabla^2 \mathcal{Y} - \frac{i}{\hbar} V \cdot \mathcal{Y}^* + \frac{i}{\hbar} V \cdot \mathcal{Y}^*$ $I = \int d^3r \left[\frac{ik}{2m} \psi^* \nabla^2 \psi - \frac{i}{2m} \psi \psi^* \psi - \frac{ik}{2m} \psi \nabla^2 \psi^* + \frac{i}{2m} \psi \psi^* \psi^* \right]$ $I = \frac{i k}{2m} \int d^3r \left(2 + \sqrt{2} - 4 \sqrt{2} + 4 \right)$ $K = \frac{1}{2} (\frac{1}{2} + \frac{1}{2} + \frac$ $K = \vec{\nabla} \cdot (\vec{\gamma} * \vec{\nabla} \vec{\gamma} - \vec{\gamma} \vec{\nabla} \vec{\gamma}^*)$ $I = \frac{2m}{2m} \int d^3r \ \vec{\nabla} \cdot (\vec{\chi}^* \vec{\nabla} \vec{\chi} - \vec{\chi} \vec{\nabla} \vec{\chi}^*)$ $I = -\left[q_3 \right] \triangle \left[\frac{5w}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[q_3 \right] \frac{9}{9} \left[\frac{5w}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[q_3 \right] \frac{9}{9} \left[\frac{5w}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt{4} \right] = \left[\frac{9}{7} \left(\sqrt{2} + \sqrt{4} \right) + \sqrt$ so may identify: 312/12/0+ = -53 $\vec{j} = \frac{ik}{2m} (4 \vec{\nabla} \psi^* - \psi^* \vec{\nabla} \psi)$ as 12/12 is the probability density may interpret: (volume V, rigid, bounded by surface S) $\int q_3 L \frac{\partial F}{\partial 151_5} = - \int q_3 L \underline{Q} \cdot \underline{Q}$ $\int q_3 L \frac{\partial F}{\partial 151_5} = - \int q_3 L \underline{Q} \cdot \underline{Q}$ $q_{in} \cdot \text{theorem}$ rate of change particle is within Out of the surface) tome volume y so i represents a probability current density

calculate j for $2(7) = A e^{i\vec{p}\cdot\vec{r}/\hbar} + B e^{-i\vec{p}\cdot\vec{r}/\hbar}$ $\frac{+\vec{p} \text{ component}}{2\sqrt{+(\vec{r})} = A^*e^{-i\vec{p}\cdot\vec{r}/\hbar} + B^*e^{i\vec{p}\cdot\vec{r}/\hbar}}$ $\vec{\nabla} \vec{V} = \frac{i\vec{p}}{\hbar} \left(Ae^{i\vec{p}\cdot\vec{r}/\hbar} - Be^{-i\vec{p}\cdot\vec{r}/\hbar} \right)$ $\vec{\nabla} \vec{V}^* = -\frac{i\vec{p}}{\hbar} \left(A^*e^{-i\vec{p}\cdot\vec{r}/\hbar} - B^*e^{i\vec{p}\cdot\vec{r}/\hbar} \right)$ $\vec{\nabla} \vec{V}^* = -\frac{i\vec{p}}{\hbar} \left(A^*e^{-i\vec{p}\cdot\vec{r}/\hbar} - B^*e^{i\vec{p}\cdot\vec{r}/\hbar} \right)$ writing $\emptyset \equiv i\vec{p}.\vec{r}/k$ for brevity, $\vec{p} \equiv i\vec{p}/k$ this notations usually (somy this notation) $\mathcal{Z} \vec{\nabla} \mathcal{Z}^* = -\vec{\beta} \cdot (A e^{\beta} + B e^{-\beta}) (A^* e^{-\beta} - B^* e^{\beta})$ $= -\vec{\phi}(|A|^2 - AB^* e^{2\phi} + A^*Be^{-2\phi} - |B|^2)$ $2^*\vec{\nabla} \psi = +\vec{\phi} \cdot (A^* e^{-\phi} + B^*e^{\phi})(A e^{\phi} - Be^{-\phi})$ $= +\vec{\phi}(|A|^2 - A^*Be^{-2\phi} + B^*A e^{2\phi} - |B|^2e)$ $\vec{J} = \frac{i\pi}{2m} (2\vec{\nabla} 2^* - 2^*\vec{\nabla} 2)$ $\vec{J} = -\frac{i\pi}{2m} \vec{\partial} \left[|A|^2 - AB^* e^{2\phi} + A^* Be^{2\phi} - |B|^2 \right]$ $+ |A|^2 - A^* Be^{2\phi} + B^* Ae^{2\phi} - |B|^2$ $\vec{J} = -\frac{i\pi}{m} \vec{\partial} \left(|A|^2 - |B|^2 \right) = -\frac{i\pi}{m} \cdot \left(\frac{i\vec{p}}{m} \right) \left(|A|^2 - |B|^2 \right)$ $\vec{J} = \frac{\vec{p}}{m} (|A|^2 - |B|^2)$ so IAI2 amount moves with + p/m and

 -181^2 // $-\vec{p}/m$

may interpret this as probability flowing in diff. directions from the two momentum components, with speed | p/m/, effectively

(generally a g-number) $20 = 01 + \alpha$ $O = [H, Q] \quad O = [H, L]$ consider an energy eigenstate, H1X> = E1X) [2]H = H = H = HH1(X) = 1H(X)H[I|X] = E[I|X]either January JIXX XXX or H is degenerate (JIX) not proportional to IX) but a distinct eigenstate w/ some E) assume NOT degenerate so JIX>= ;1X> similarly, [Q,H]=0 => H[Q(X)] = E[Q(X)] so if H not degenerate, Q(X) & (X) write: $Q(\chi) = \overline{g(\chi)}$ then: $\frac{\partial J(X)}{\partial J(X)} = \frac{\partial J(X)}{\partial J(X)} = \frac{\partial$ $0 = (\chi (LD - DL) \text{ os}$ $[J,Q](X) = 0 \quad \text{pot} \quad [J,Q] \neq 0$! could claim $\alpha(X)=0$ for $\alpha\neq0$, so α annihilates 0, but would have to hold for all energy eigenstates of H; since these form a complete basis, & annihilates every state in the Hilbert space, and the only operator that does this is 0, and we assumed & = 0, contradiction! so H must be degenerate example: J= Lx, Q=Lz, for simple hydrogen atomH (all different me states for a given n' & l are degeneratel