1 Linear Algebra

1.1 Gram-Schmidt orthogonalisation

1. Given two vectors \mathbf{a}_1 and \mathbf{a}_2 in \mathbb{R}^n , show that

$$egin{aligned} \mathbf{u}_1 &= \mathbf{a}_1 \ \mathbf{u}_2 &= \mathbf{a}_2 - rac{\mathbf{u}_1^{ op} \mathbf{a}_2}{\mathbf{u}_1^{ op} \mathbf{u}_1} \mathbf{u}_1 \end{aligned}$$

are orthogonal to each other.

- 2. Show that any linear combination of (linearly independent) \mathbf{a}_1 and \mathbf{a}_2 can be written in terms of \mathbf{u}_1 and \mathbf{u}_2 .
- 3. Show by induction that for any $k \leq n$ linearly independent vectors $\mathbf{a}_1, \ldots, \mathbf{a}_k$, the vectors \mathbf{u}_i , $i = 1, \ldots k$, are orthogonal, where

$$\mathbf{u}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} \frac{\mathbf{u}_j^{\top} \mathbf{a}_i}{\mathbf{u}_j^{\top} \mathbf{u}_j} \mathbf{u}_j. \tag{1.1}$$

The calculation of the vectors \mathbf{u}_i is called Gram-Schmidt orthogonalisation.

- 4. Show by induction that any linear combination of (linear independent) $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ can be written in terms of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$.
- 5. Consider the case where $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ are linearly independent and \mathbf{a}_{k+1} is a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Show that \mathbf{u}_{k+1} , computed according to (1.1), is zero.

1.2 Linear transforms

1. Assume two vectors \mathbf{a}_1 and \mathbf{a}_2 are in \mathbb{R}^2 . Together, they span a parallelogram. Use task 1.1 to show that the squared area S^2 of the parallelogram is given by

$$S^2 = (\mathbf{a}_2^T \mathbf{a}_2)(\mathbf{a}_1^T \mathbf{a}_1) - (\mathbf{a}_2^T \mathbf{a}_1)^2$$

2. Form the matrix $\mathbf{A}=(\mathbf{a}_1\ \mathbf{a}_2)$ where \mathbf{a}_1 and \mathbf{a}_2 are the first and second column vector, respectively. Show that

$$S^2 = (\det \mathbf{A})^2.$$

- 3. Consider the linear transform $\mathbf{y} = \mathbf{A}\mathbf{x}$ where \mathbf{A} is a 2×2 matrix. Denote the image of the rectangle $U_x = [x_1 \ x_1 + \triangle_1] \times [x_2 \ x_2 + \triangle_2]$ under the transform \mathbf{A} by U_y . What is U_y ? What is the area of U_y ?
- 4. Give an intuitive explanation why we have equality in the change of variables formula

$$\int_{U_y} f(\mathbf{y}) d\mathbf{y} = \int_{U_x} f(\mathbf{A}\mathbf{x}) |\det \mathbf{A}| d\mathbf{x}.$$

where **A** is such that U_x is an axis-aligned (hyper-) rectangle as in the previous question.

1.3 Eigenvalue decomposition

For a square matrix **A** of size $n \times n$, a vector $\mathbf{u}_i \neq 0$ which satisfies

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$

is called a eigenvector of \mathbf{A} , and λ_i is the corresponding eigenvalue. For a matrix of size $n \times n$, there are n eigenvalues λ_i (which are not necessarily distinct).

- 1. Show that if \mathbf{u}_1 and \mathbf{u}_2 are eigenvectors with $\lambda_1 = \lambda_2$, then $\mathbf{u} = \alpha \mathbf{u}_1 + \beta \mathbf{u}_2$ is also an eigenvector with the same eigenvalue.
- 2. Assume that none of the eigenvalues of \mathbf{A} is zero. Denote by \mathbf{U} the matrix where the column vectors are linearly independent eigenvectors \mathbf{u}_i of \mathbf{A} . Verify that (1.3) can be written in matrix form as $\mathbf{A}\mathbf{U} = \mathbf{U}\mathbf{\Lambda}$, where $\mathbf{\Lambda}$ is a diagonal matrix with the eigenvalues λ_i as diagonal elements.
- 3. Show that we can write, with $\mathbf{V}^T = \mathbf{U}^{-1}$,

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\top},$$
 $\mathbf{A} = \sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T},$ $\mathbf{A}^{-1} = \mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{V}^{\top},$ $\mathbf{A}^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_{i}} \mathbf{u}_{i} \mathbf{v}_{i}^{\top},$

where \mathbf{v}_i is the *i*-th column of \mathbf{V} .

1.4 Trace, determinants and eigenvalues

- 1. Use task 1.3 to show that $tr(\mathbf{A}) = \sum_i A_{ii} = \sum_i \lambda_i$. (You can use $tr(\mathbf{AB}) = tr(\mathbf{BA})$.)
- 2. Use task 1.3 to show that det $\mathbf{A} = \prod_i \lambda_i$. (Use det $\mathbf{A}^{-1} = 1/(\det \mathbf{A})$ and det $(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$ for any \mathbf{A} and \mathbf{B} .)

1.5 Eigenvalue decomposition for symmetric matrices

- 1. Assume that a matrix **A** is symmetric, i.e. $\mathbf{A}^{\top} = \mathbf{A}$. Let \mathbf{u}_1 and \mathbf{u}_2 be two eigenvectors of **A** with corresponding eigenvalues λ_1 and λ_2 , with $\lambda_1 \neq \lambda_2$. Show that the two vectors are orthogonal to each other.
- 2. A symmetric matrix **A** is said to be positive definite if $\mathbf{v}^T \mathbf{A} \mathbf{v} > 0$ for all non-zero vectors \mathbf{v} . Show that positive definiteness implies that $\lambda_i > 0$, i = 1, ..., M. Show that, vice versa, $\lambda_i > 0$, i = 1 ... M implies that the matrix **A** is positive definite. Conclude that a positive definite matrix is invertible.

1.6 Power method

We here analyse an algorithm called the "power method". The power method takes as input a positive definite symmetric matrix Σ and calculates the eigenvector that has the largest eigenvalue (the "first eigenvector"). For example, in case of principal component analysis, Σ is the covariance matrix of the observed data and the first eigenvector is the first principal component direction.

The power method consists in iterating the update equations

$$\mathbf{v}_{k+1} = \mathbf{\Sigma} \mathbf{w}_k, \qquad \qquad \mathbf{w}_{k+1} = \frac{\mathbf{v}_{k+1}}{||\mathbf{v}_{k+1}||_2},$$

where $||\mathbf{v}_{k+1}||_2$ denotes the Euclidean norm.

- 1. Let **U** the matrix with the (orthonormal) eigenvectors \mathbf{u}_i of Σ as columns. What is the eigenvalue decomposition of the covariance matrix Σ ?
- 2. Let $\tilde{\mathbf{v}}_k = \mathbf{U}^T \mathbf{v}_k$ and $\tilde{\mathbf{w}}_k = \mathbf{U}^T \mathbf{w}_k$. Write the update equations of the power method in terms of $\tilde{\mathbf{v}}_k$ and $\tilde{\mathbf{w}}_k$. This means that we are making a change of basis to represent the vectors \mathbf{w}_k and \mathbf{v}_k in the basis given by the eigenvectors of Σ .
- 3. Assume you start the iteration with $\tilde{\mathbf{w}}_0$. To which vector $\tilde{\mathbf{w}}^*$ does the iteration converge to?
- 4. Conclude that the power method finds the first eigenvector.

