Mini Homework 8

- 1. Consider Kruskal's algorithm, sort edges into non-increasing order, and take one by one in non-increasing order.
- 2. Algorithm(G, k):
 - 1. $T_{\min} := \min \max \text{ spanning tree of } G$.
 - 2. $T_{\text{max}} := \text{maximum spanning tree of } G$.
 - 3. if T_{\min} weight $\leq k \leq T_{\max}$ weight: return true.
 - 4. else: return false.
- 3. If k is outside the range of $[T_{\min}]$.weight, T_{\max} .weight], then a spanning tree of weight k is not possible, since T_{\max} is maximum, and T_{\min} is minimum. Otherwise, k is within the range, then the spanning tree of weight k can be generated as follows.

Suppose there is a non-maximum spanning tree T = (V, E) of weight i, where T_{\min} weight $\leq i < T_{\max}$ weight. The goal is to substitute an one-edge for a zero-edge so that a spanning tree T' = (V', E') of weight i + 1 is generated.

Consider the set of zero-edges $E_0 \subseteq E$. Removing an edge in E_0 partitions T into two subtrees T_1 and T_2 . Let G_1 and G_2 be the subgraphs induced by the vertices of T_1 and T_2 , respectively. The vertices of G_1 and G_2 form a cut of G with some edges crossing G_1 and G_2 . In so doing, there must be a corresponding cut for every edge in E_0 .

Next, there must exist an edge $e_0 \in E_0$ such that its corresponding cut contains an one-edge e_1 . If there is no such cut, then it is not possible to update a spanning tree of weight i to weight i+1. However, this is a contradiction to that a spanning tree of weight i is not maximum. Finally, e_0 can be replaced with e_1 so that the resulting graph is a spanning tree of weight i+1.

By inductive proof, any spanning tree of weight $k \in [T_{\min}]$ weight, T_{\max} weight] is possible.