Stein Variational Gradient Descent

Boshu, Saeed and Clemens

March 2, 2021

Table of Content

- Prerequisites
 - Gradient Descent
 - Bayesian Inference
 - Reproducing Kernel Hilbert Space
 - Stein Method
- Variational Inference Using Smooth Transformations
 - Variational Inference
 - KL Divergence
 - Variational Inference using Smooth Transformations
- Stein Variational Gradient Descent
 - Foundations
 - Algorithm
- Postface
 - Thank you
 - Appendix

Prerequisites

Gradient Descent

- First Glance: start with an initial condition, measure and iterate with the measurement
- **Objective:** minimize cost function $J(\theta)$

Pseudo code:

- Choose an initial parameters of weight θ and learning rate η
- Repeat until an approximate minimum of cost function is obtained:

$$\theta = \theta - \eta \nabla_{\theta} J$$

Prerequisites

o
o
o
o

Motivation

What is the probability of a hypothesis given the observation? A Bayesian model presents the method to approximate the probability or even, the probability of probability.

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \tag{1}$$

Challenge

However, it quickly involves intractable computations, once the feature dimensions or latent variables rise (depending on problem):

$$p(y_1, ..., y_N | x) = \frac{p(x | y_1, ..., y_N) p(y_1, ..., y_N)}{p(x)}$$
(2)

$$p(y_i|x) = \int \int ... \int dy_1...dy_{i-1}dy_{i+1}...dy_n p(y_1, ..., y_N|x)$$
 (3)

Variational Inference

Variational Inference

- **Idea:** Choose closest approximate distribution through optimization given a statistical distance.
- Pros: Low variance; Suitable for big data; Fast.
- Cons: Accuracy depends on posterior assumptions (potential bias).

Hilbert space

Prerequisites

Definition

A Hilbert space \mathcal{H} is an inner product space that is also a complete metric space (contains Cauchy sequence limits).

Kernel

Prerequisites

000

Definition

Let \mathcal{X} be a non-empty set. $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel** if there exist an \mathcal{H} -Hilbert space and a map $\phi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}.$$
 (4)

Reproducing Kernel Hilbert Space

Reproducing Kernel

Definition

 $k(\cdot,\cdot)$ is called a reproducing kernel of a Hilbert space \mathcal{H} , if $\forall f\in\mathcal{H},\ \langle k(x,\cdot),f(\cdot)\rangle=f(x).$

Stein's identity

Definition

Let p(x) be a smooth density on $\mathcal{X} \subseteq \mathbb{R}^d$, and $\phi(x) = [\phi_1(x), ..., \phi_d(x)]^T$ a smooth and sufficiently regular vector function, then we can write:

$$\mathcal{A}_p \phi(x) := \phi(x) \nabla_x \log p(x)^T + \nabla_x \phi(x)$$
 (5)

where \mathcal{A}_p is called the **Stein operator**, which acts on function ϕ and yields the following identity, known as **Stein's identity**:

$$\mathbb{E}_{x \sim p}[\mathcal{A}_p \phi(x)] = 0 \tag{6}$$

Stein discrepancy

Definition

Let q(x) be a different (from p(x)) smooth density \mathcal{X} . Given Stein operator \mathcal{A}_p (defined for p(x), we do not expect $\mathbb{E}_{x\sim q}[\mathcal{A}_p\phi(x)]$ to be zero, but we can show that its value relates to the difference between p and q. Hence **Stein Discrepancy**, \mathbb{S} , given ϕ in some proper function set \mathcal{F} between two smooth densities p and q, is defined as maximum violation of Stein's identity:

$$\mathbb{S}(q, p) = \max_{\phi \in \mathcal{F}} \{ [\mathbb{E}_{x \sim q} trace(\mathcal{A}_p \phi(x))]^2 \}$$
 (7)

Kernelized Stein discrepancy

- Bounded Lipschitz norms: discriminative but intractable
- Kernelized Stein discrepancy: discriminative and tractable

Variational Inference Using Smooth **Transformations**

Variational Inference

Key concept of Variational Inference

Figure: VI turns inference into optimization: Define variational family of distributions. Fit variational parameters to be close (in KL) to true posterior. [Blei et al. 2016]

Kullback-Leibler Divergence, D_{KL} (relative entropy)

Definition

Given two distributions p(x) and q(x) defined on the same probability space \mathcal{X} , $D_{KL}(q \parallel p)$ is:

$$D_{KL}(q \parallel p) := \mathbb{E}_q[\log \frac{q(x)}{p(x)}] = \int_{x \in \mathcal{X}} q(x) \log \frac{q(x)}{p(x)} dx \qquad (8)$$

Motivation

 D_{KL} is the mean extra information necessary to encode observations from source/target p(x), using a code optimized for q(x).

KL Divergence as objective function

The optimisation is insensitive to multiplicative coefficient, which is why we can use the unnormalised distribution for approximation:

$$KL(q \parallel Zp) = \mathbb{E}_{q}[log\frac{q(x)}{Zp(x)}]$$

$$= \mathbb{E}_{q}[log \ q(x)] - \mathbb{E}_{q}[log \ Zp(x)]$$

$$= \mathbb{E}_{q}[log \ q(x)] - \mathbb{E}_{q}[log \ p(x)] - logZ$$

$$(9)$$

$$q^* = \operatorname*{arg\,min}_{q \in Q} KL(q \parallel p) = \operatorname*{arg\,min}_{q \in Q} KL(q \parallel Zp) \tag{10}$$

Variational Inference using Smooth Transformations

The ideal function set

Figure: Traditional VI: Approximation using families. The ideal set is accurate (=approximates well), tractable (=consisting of simple distributions) and efficiently solvable by minimisation of KL. [Rocca 2019]

Variational Inference using Smooth Transformations

Particle Flows I

- Generate samples (particles) from tractable reference distribution $x_i \sim q_0(\cdot)$
- Deterministic particle flow over time

$$\frac{dz_i(t)}{dt} := \phi_t(z_i(t))$$

• Find mapping $\phi_t(\cdot)$ such that for $t\to\infty$ density of particles ${\pmb z}(t)\sim q_\infty(\cdot)$ is close (in KL) to true posterior.

Particle Flows II

- Let z(t) = T(x) be the transformed particles at time t where $T: \mathcal{X} \to \mathcal{X}$ is a smooth one-to-one transformation.
- Step-wise construction of overall transformation T: $T_{t+1}(x) = z(t+1) = T_t + \epsilon \phi_t(x)$
- \bullet Approximate density $q_{[{\boldsymbol{T}}]}(z)$ then given by change of variables:

$$q_{[T]}(z) = q(T^{-1}(z)) \cdot |det(\nabla_z T^{-1}(z))|$$

Objective function: To minimize $D_{KL}(q \parallel p)$; Where p(x) is the target and q(x) is an approximate distribution.

Theorem (3.1.)

When $x \sim q(x)$, and z = T(x) so $q_{[T]}(z)$ the density under smooth transformation T; If $T(x) = x + \epsilon \phi(x)$ we have:

$$\nabla_{\epsilon} KL(q_{[T]} \parallel p)|_{\epsilon=0} = -\mathbb{E}_{x \sim q}[trace(\mathcal{A}_p \phi(x))], \qquad (11)$$

where $A_p \phi(x) := \nabla_x log \ p(x) \phi(x)^T + \nabla_x \phi(x)$ is the Stein operator.

Steepest descent

Lemma (3.2)

Considering all the perturbation directions $\phi \in \mathcal{H}^d$, the direction of steepest descent, $\phi_{q,p}^*$ that minimizes

$$\mathbb{S}(q,p) = -\nabla_{\epsilon} KL(q_{[T]} \parallel p)|_{\epsilon=0}$$
, is:

$$\phi_{q,p}^*(\cdot) = \mathbb{E}_{x \sim q}[k(x,\cdot)\nabla_x \log p(x) + \nabla_x k(x,\cdot)]$$
 (12)

Optimal Transformation and Stepping in RKHS

Theorem (3.3)

Let T(x)=x+f(x), where $f\in\mathcal{H}^d$, and $q_{[T]}(z)$ the density of z=T(x) when $x\sim q$,

$$\nabla_{\mathbf{f}} KL(q_{[\mathbf{T}]} \parallel p)|_{\mathbf{f}=0} = -\phi_{q,p}^*(x), \tag{13}$$

whose squared RKHS norm is $\|\phi_{q,p}^*(x)\|_{\mathcal{H}^d}^2 = \mathbb{S}(q,p)$.

Another important result of Theorem 3.3

Complexity and Efficient Implementation

Theorem 3.3. suggests that $T^*(x) = x + \epsilon \cdot \phi_{q,p}^*$ is equivalent to step of gradient descent in RKHS. Therefore in every iteration of our process, we only need to evaluate the functional gradient for $\epsilon \cdot \phi_{q,p}^*$ leading to identity map T(x) = x; Hence saving us the expensive inverse Jacobian $([\nabla_x T(x)]^{-1})$ computation.

Algorithm

Ingredients

- ullet sufficiently small ϵ
- a strictly positive definite kernel with decaying property
- ullet initial distribution q_0 (insignificant in the process)
- initial particles $\{x_i^0\}_{i=1}^n$ (drawn from q_0 or arbitrary)
- target density function p(x)

Algorithm 1: Stein Variational Gradient Descent

Inputs : set of initial particles $\{x_i^0\}_{i=1}^n$, target distribution p(x)

Output: set of particles $\{x_i\}_{i=1}^n$ approximation p(x)

for iteration l **do**

$$\begin{split} \hat{\boldsymbol{\phi}}^*(x) &= \frac{1}{n} \sum_{j=1}^n [k(x_j^l, x) \nabla_{x_j^l} \log \, p(x_j^l) + \nabla_{x_j^l} k(x_j^l, x)] \\ x_i^{l+1} &\leftarrow x_j^l + \epsilon_l \hat{\boldsymbol{\phi}}^*(x_i^l) \end{split}$$

end

Postface

Thank you

Thank you for your attention

Thank you

Questions? Thoughts? Advice?

References

Liu, Qiang; Wang, Dilin (2016) "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm", NIPS 2016 https://arxiv.org/pdf/1608.04471.pdf

Blei, David; Ranganath, Rajesh; Mohamed, Shakir (2016) "Variational Inference: Foundations and Modern Methods", NIPS 2016 Tutorial https://media.nips.cc/Conferences/2016/Slides/6199-Slides.pdf

Rocca, Joseph (2019) "Bayesian inference problem, MCMC and variational inference", Towards Data Science Blog

https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29

MCMC vs. VI

Monte Carlo Markov Chain

- Idea: Setup Markov Chain with stationary distribution.
 Simulate random state sequence, keep some to compute statistics, etc.
- Pros: Asymptotically correct; No model assumptions.
- Cons: High variance; No strict convergence; Slow.

Variational Inference

- Idea: Choose closest approximate distribution through optimization given a statistical distance.
- Pros: Low variance;
 Suitable for big data; Fast.
- Cons: Accuracy depends on posterior assumptions (potential bias).

Hilbert Space

Definition

A Hilbert space $\mathcal H$ is a inner product space that is also a complete metric space (contains Cauchy sequence limits).

Hilbert Space

Definition

A Hilbert space \mathcal{H} is a inner product space that is also a complete metric space (contains Cauchy sequence limits).

Definition (inner product)

 $\langle\cdot,\cdot\rangle_{\mathcal{S}}:\mathcal{S}\times\mathcal{S}\to\mathbb{R}$ is an inner product on vector space \mathcal{S} if is:

- bilinear: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- conjugate symmetric: $\langle x,y\rangle=\overline{\langle y,x\rangle}$
- positive semi-definite: $\langle \cdot, \cdot \rangle \geq 0$ and $\langle x, x \rangle = 0 \iff x = 0$

Kernel

Definition

Let \mathcal{X} be a non-empty set. $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **kernel** if there exist an \mathcal{H} -Hilbert space and a map $\phi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}. \tag{14}$$

$\mathsf{Theorem}$

Let \mathcal{X} , \mathcal{H} and ϕ be defined as above. Then one can prove $\langle \phi(x), \phi(x') \rangle_{\mathcal{H}} =: k(x, x')$ is positive definite. Which is to say:

$$\forall (a_1, ..., a_n) \in \mathbb{R}^n, \ \forall (x_1, ..., x_n) \in \mathcal{X}^n : \sum_{j,i} a_i a_j k(x_i, x_j) \ge 0$$

Kernel properties

- **1** $k(x,x) \ge 0$
- $k(x, x')^2 \le k(x, x)k(x', x')$
- $k_1(x,x') + k_2(x,x') = k(x,x')$
- **4** $ak_1(x, x') = k(x, x') \text{ where } a > 0$
- $b_1(x, x') \cdot k_2(x, x') = k(x, x')$
- $f(x) \cdot f(y) = k(x, x')$ for any function f on x
- Let $\mathcal X$ and $\tilde{\mathcal X}$ be sets, and define a map $A:\mathcal X\to\tilde{\mathcal X}$. The kernel k on $\tilde{\mathcal X}$, k(A(x),A(x')) is a kernel on $\mathcal X$.

- 1 is almost positive definite:
 - $D_{KL}(q \parallel p) \ge 0$ (non-negative)
 - $D_{KL}(q \parallel p) = 0 \iff q(x) = p(x)$ (identity of indispensables)

- 1 is almost positive definite:
 - $D_{KL}(q \parallel p) \ge 0$ (non-negative)
 - $D_{KL}(q \parallel p) = 0 \iff q(x) = p(x)$ (identity of indispensables)
- is not a proper metric
 - $D_{KL}(q \parallel p) \neq D_{KL}(p \parallel q)$ (asymmetric)
 - does not satisfy triangle inequality

- 1 is almost positive definite:
 - $D_{KL}(q \parallel p) \ge 0$ (non-negative)
 - $D_{KL}(q \parallel p) = 0 \iff q(x) = p(x)$ (identity of indispensables)
- is not a proper metric
 - $D_{KL}(q \parallel p) \neq D_{KL}(p \parallel q)$ (asymmetric)
 - does not satisfy triangle inequality
- is convex

- 1 is almost positive definite:
 - $D_{KL}(q \parallel p) \ge 0$ (non-negative)
 - $D_{KL}(q \parallel p) = 0 \iff q(x) = p(x)$ (identity of indispensables)
- is not a proper metric
 - $D_{KL}(q \parallel p) \neq D_{KL}(p \parallel q)$ (asymmetric)
 - does not satisfy triangle inequality
- is convex
- is invariant under parameter transformations

- is almost positive definite:
 - $D_{KL}(q \parallel p) \ge 0$ (non-negative)
 - $D_{KL}(q \parallel p) = 0 \iff q(x) = p(x)$ (identity of indispensables)
- is not a proper metric
 - $D_{KL}(q \parallel p) \neq D_{KL}(p \parallel q)$ (asymmetric)
 - does not satisfy triangle inequality
- is convex
- is invariant under parameter transformations
- is additive for independent distributions

Connecting KL and Stein operator - Proof

Gradient of $\nabla_{\epsilon}KL(q_{[T]}||p)$ at $\epsilon=0$ is equivalent to $\frac{dKL(q_t||p)}{dt}$, which can be rewritten as:

$$\frac{d}{dt} \int q_t(x)log \ q_t(x)dx - \frac{d}{dt} \int q_t(x)log \ p(x)dx =$$

$$\int \nabla \cdot (q_t(x)\phi_t(x))log \ q_t(x)dx - \int \nabla \cdot (q_t(x)\phi_t(x))log \ p(x)dx =$$

$$- \int q_t(x)\phi_t(x) \cdot \nabla log \ q_t(x)dx + \int q_t(x)\phi_t(x) \cdot \nabla log \ p(x)dx =$$

$$- \int \nabla q_t(x)\phi_t(x)dx + \int q_t(x)\phi_t(x) \cdot \nabla log \ p(x)dx =$$

$$\mathbb{E}_q[\nabla \cdot \phi_t(x) + \phi_t(x) \cdot \nabla log \ p(x)]$$