Solutions of Damped Harmonic Motion

Question

Solve the differential equation of damped harmonic motion

$$\frac{d^2x}{dt^2} + b\frac{dx}{dt} + x = 0$$

for i $b = \sqrt{5}$, ii b = 2 and iii $b = \sqrt{3}$. In each case find the complete solution subject to the initial condition x(0) = 0, $\frac{dx}{dt}(0) = 1$, and sketch the solution. Comment on the type of damping observed.

Solution

The characteristic equation of the differential equation is:

$$m^2 + bm + 1 = 0$$

Case (i):
$$b = \sqrt{5}$$

The characteristic equation becomes:

$$m^2 + \sqrt{5}m + 1 = 0$$

Solving for m yields complex roots:

$$m = \frac{-\sqrt{5} \pm i}{2}$$

indicating that the system is underdamped. The motion will be oscillatory with decreasing amplitude over time. The general solution is:

$$x(t) = e^{-\sqrt{5}t/2}(C_1\cos(t/2) + C_2\sin(t/2))$$

Applying the initial conditions x(0) = 0, $\frac{dx}{dt}(0) = 1$, we find $C_1 = 0$ and $C_2 = 2$. Thus, the solution is:

$$x(t) = 2e^{-\sqrt{5}t/2}\sin(t/2)$$

Case (ii): b = 2

The characteristic equation becomes:

$$m^2 + 2m + 1 = 0$$

This has a repeated real root m = -1, indicating that the system is critically damped. The general solution is:

$$x(t) = (C_1 + C_2 t)e^{-t}$$

Applying the initial conditions x(0) = 0, $\frac{dx}{dt}(0) = 1$, we find $C_1 = 0$ and $C_2 = 1$. Thus, the solution is:

$$x(t) = te^{-t}$$

Case (iii): $b = \sqrt{3}$

The characteristic equation becomes:

$$m^2 + \sqrt{3}m + 1 = 0$$

Solving for m yields complex roots:

$$m = \frac{-\sqrt{3} \pm i}{2}$$

indicating that the system is underdamped. The motion will be oscillatory with decreasing amplitude over time. The general solution is:

$$x(t) = e^{-\sqrt{3}t/2}(C_1\cos(t/2) + C_2\sin(t/2))$$

Applying the initial conditions x(0) = 0, $\frac{dx}{dt}(0) = 1$, we find $C_1 = 0$ and $C_2 = 2$. Thus, the solution is:

$$x(t) = 2e^{-\sqrt{3}t/2}\sin(t/2)$$