```
import pandas as pd
import numpy as np
import tensorflow as tf
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
from sklearn.linear_model import LogisticRegression
from xgboost import XGBClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import auc
from sklearn.metrics import roc_curve
sns.set()
from google.colab import drive
drive.mount("/content/drive")
data = pd.read_csv("/content/drive/My Drive/dataset/kredit.csv")
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
```

data

index	id_pelanggan	usia	jk	pendapatan	jmlh_kartu_kredit	pengeluaran	respon
0	1	40	1	72000000	3	6000000	
1	2	28	1	36000000	1	4500000	
2	3	31	0	60000000	2	5000000	
3	4	28	1	36000000	1	3000000	
4	5	38	0	72000000	2	5000000	
5	6	28	1	58000000	2	6200000	
6	7	40	0	36000000	1	4000000	
7	8	38	1	72000000	4	10000000	
8	9	31	0	70000000	3	8000000	
9	10	41	1	60000000	1	5300000	
10	11	44	0	36000000	1	4500000	
11	12	28	1	58000000	2	5000000	
12	13	41	0	72000000	4	12000000	
13	14	38	1	68000000	3	9000000	
14	15	40	0	45000000	3	8000000	
15	16	37	1	36000000	2	5400000	
16	17	28	0	60000000	1	3000000	
17	18	38	0	47000000	1	4000000	
18	19	40	1	42000000	2	5200000	
19	20	32	1	36000000	3	8000000	
20	21	32	0	65000000	3	11000000	
21	22	32	0	72000000	1	5000000	
22	23	36	1	42000000	2	8000000	
23	24	40	1	65000000	2	6100000	
24	25	36	0	36000000	1	4500000	

Ш

Like what you see? Visit the data table notebook to learn more about interactive tables.

```
data.info()
```

```
1
                        31 non-null
                                        int64
     usia
                       31 non-null
                                        object
    pendapatan
                                        int64
3
                       31 non-null
     jmlh_kartu_kredit 31 non-null
4
                                        int64
5
    pengeluaran
                       31 non-null
                                        int64
                       31 non-null
                                        int64
    respon
dtypes: int64(6), object(1)
memory usage: 1.8+ KB
```

data.describe()

```
id_pelanggan
                                 pendapatan jmlh_kartu_kredit pengeluar
                         usia
count
          31.000000 31.000000 3.100000e+01
                                                     31.000000 3.100000e+
                                                      1.903226 5.903226e+
          16.000000 34.354839 5.506452e+07
mean
                                                      0.943569 2.263402e+
           9.092121
                      5.588968 1.364047e+07
 std
           1.000000
                   24.000000 3.600000e+07
                                                      1.000000 3.000000e+
 min
25%
           8.500000
                   29.500000 4.200000e+07
                                                      1.000000 4.500000e+
50%
          16.000000 36.000000 5.800000e+07
                                                      2.000000 5.000000e+
75%
          23.500000 40.000000 6.650000e+07
                                                      2.500000 7.100000e+
```

```
4
data.isna().sum()
    id_pelanggan
    usia
    jk
                          0
    pendapatan
     jmlh_kartu_kredit
                          0
    pengeluaran
     respon
                          0
    dtype: int64
data['jk'].value_counts()
         17
         14
    Name: jk, dtype: int64
data['respon'].value_counts()
    0
         15
    Name: respon, dtype: int64
data.dtypes
    id_pelanggan
                           int64
    usia
                           int64
                          object
     jk
    pendapatan
                           int64
    jmlh_kartu_kredit
                           int64
    pengeluaran
                           int64
                           int64
     respon
    dtype: object
for col in data.columns:
    if data[col].dtypes == 'object':
       print(col, data[col].unique())
    jk ['P' 'L']
cols_to_label=[]
for i in data.columns:
   if data[i].dtypes == '0':
       cols_to_label.append(i)
cols_to_label
    ['jk']
```

data[cols_to_label] = data[cols_to_label].apply(LabelEncoder().fit_transform)

data.head()

	id_pelanggan	usia	jk	pendapatan	jmlh_kartu_kredit	pengeluaran	res
0	1	40	1	72000000	3	6000000	
1	2	28	1	36000000	1	4500000	
2	3	31	0	60000000	2	5000000	
3	4	28	1	36000000	1	3000000	
4							-

data.isnull().sum()

id_pelanggan	0		
usia	0		
jk	0		
pendapatan			
jmlh_kartu_kredit			
pengeluaran	0		
respon	9		
dtype: int64			

sns.distplot(data['usia'])

<ipython-input-49-153e0390af28>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0

Please adapt your code to use either `displot` (a figure-level function wi similar flexibility) or `histplot` (an axes-level function for histograms)

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

import seaborn as sns
sns.heatmap(data.corr(),annot=True)

```
<ipython-input-33-53fe516a88e7>:2: FutureWarning: The default value of num
sns.heatmap(data.corr(),annot=True)
<Axes: >
```



```
X_train, X_test, y_train, y_test = train_test_split(data.drop('respon', axis=1), data['respon'], test_size=0.2)
```

```
model1 = LogisticRegression(random_state = 20).fit(X_train, y_train)
preds = model1.predict(X_test)
print(f'The accuracy score of Logistic Regression model is: {accuracy_score(preds, y_test)}')
```

The accuracy score of Logistic Regression model is: 0.42857142857142855

```
model2 = XGBClassifier().fit(X_train, y_train)
preds = model2.predict(X_test)
print(f'The accuracy score of XGBClassifier model is: {accuracy_score(preds, y_test)}')
```

The accuracy score of XGBClassifier model is: 0.42857142857142855

Colab paid products - Cancel contracts here

✓ 0s completed at 1:07 AM

×