UAV LATEX-course

Tim Weijers & Vincent Kuhlmann

15 March 2022

Slides are available at vkuhlmann.com/latex

Introduction 0000000

Schedule

Introduction 0000000

- ► Introduction
- ► Text formatting
- Structure of a document.
- \langle Exercises! \rangle
- **Images**
- Formulas
- \(\mathbb{E}\)\(\text{Exercises!}\)\
- Closing remarks

Mv document

Lorem ipsum

Introduction 0000000

Lorem insum dolor sit amet, consectetuer adjoiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec. pellentesque eu, pretium quis, sem, Nulla conseguat massa quis enim.

Donec nede justo

Fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae,

Nullam dictum felis eu nede mollis pretium. Integer tincidunt

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{1}{2} \left(\frac{N \cdot \mu}{\sigma}\right)^2}$$

Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula. porttitor eu, conseguat vitae, eleifend ac, enim, Aliquam Jorem ante, dapibus in, viverra quis, feugiat a, tellus.

Figure 1: Bengandre tiine

My document

Vincent Kuhlmann

3 May 2021

1 Lorem ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natorue penatibus et magnis dis parturient montes, nascetur ridiculus mus. Dones quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim.

1.1 Donec pede justo

Fringilla vel. alignet nec. vulnutate eret. areu. In enim insto, rhoncus ut. imperdiet a, venenatis vitae.

Nullam dictum felis eu pede mollis pretium. Integer tincidunt

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\alpha}{2})^2}$$
(1)

Cras danibus. Vivamus elementum semper nisi. Aenean valnutate eleifend tellus. Aenean leo lizula. porttitor eu, consegnat vitae, eleifend ac, enim. Aliquam lorem ante, danibus in, viverra quis, feuriat a.

Figuur 1: Bengaalse tiiges

LATEX vs Mord

Introduction

Inner workings: big difference.

Word: Edit visually

LATEX: Edit code (text)

```
\title{My document}
\author{Vincent Kuhlmann}
\date{3 May 2021}
\begin { document }
\maketitle
\section{Lorem ipsum}
Lorem ipsum dolor sit amet, consectetue
\begin{align}
    f(x) = \frac{1}{\sqrt{2\pi}}
        -\frac{1}{2}\left(\frac{1}{2}\right)
\end{align}
```

My document

Vincent Kuhlmann

3 May 2021

1 Lorem ipsum

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donce quam felis, ultricies nec, pellentesque eu, pretuim quis, sem. Nulla consequat massa quis enim.

1.1 Donec pede justo

Fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo.

Nullam dictum felis eu pede mollis pretium. Integer tincidunt

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-y}{T}\right)^2}$$
(6)

Cras dapibus. Vivamus elementum semper nisi. Aenean vulputate eleifend tellus. Aenean leo ligula, portitior eu, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a, tellus.

Figuur 1: Bengaalse tijger

Code vs Visual

```
\begin{lemma}
    Lorem ipsum dolor sit
    ... eget dolor.
    \begin{proof}
        Aenean massa. Cum
        ... quis enim.
    \end{proof}
\end{lemma}
```

Lemma 1.9. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor.

Proof. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Done quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim.

Introduction 0000000 Overleaf

LaTeX is the programming language.

Overleaf is a website where you can write and compile LaTeX.

Visual Studio Code is a desktop app where you can write and compile IaTeX

MiKTeX does compilation for Visual Studio code.

For now: Overleaf.

Want VS Code? Instructions at vkuhlmann.com/latex/installation

simple document

Introduction 000000 Overleaf

Simple document

```
\documentclass{article}
\usepackage [utf8] {inputenc}
\title{My document}
\author{Vincent Kuhlmann}
\date{1 May 2021}
\begin{document}
\maketitle
\section{Introduction}
Hello everyone!
\end{document}
```

My document

Vincent Kuhlmann

7 September 2021

Introduction

Hello everyone!

Text effects

Result Code	Result Code
Text	Text
Text	Text
TEXT	Text
<u>Text</u>	Text

Text effects

Result	Code	Result Code
Text	\textbf{Text}	Text
Text		Text
Техт		Text
<u>Text</u>		Text

 $\mathbf{bf} = \mathbf{b}$ old \mathbf{f} ace | $\mathbf{it} = \mathbf{it}$ alics | $\mathbf{sc} = \mathbf{s}$ mall \mathbf{c} aps | $\mathbf{tt} = \mathbf{t}$ ele \mathbf{t} ype (a.k.a. monospace)

Text effects

Result	Code	Result	Code
Text	\textbf{Text}	Text	\texttt{Text}
Text	\textit{Text}	Text	{\tiny Text}
Text	\textsc{Text}	Text	{\LARGE Text}
<u>Text</u>	\underline{Text}	Text	$\verb \textcolor{red}{Text} ^1$

Huge, huge, LARGE, Large, large, normalsize, small, footnotesize, scriptsize, tiny

^{1\}usepackage{xcolor}

\textbf

Text formatting 000000000000

ipsum \tiny dolor sit amet, consectetur adipiscing elit. Phasellus elementum, lacus quis tempus scelerisque, elit diam vulputate ex, semper elementum massa odio in ante

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus elementum, lacus quis tempus scelerisque, elit diam vulputate ex. semper elementum massa odio in ante.

Lorem {ipsum \tiny dolor sit ame}t, consectetur adipiscing elit. Phasellus {elementum}, lacus quis tempus scelerisque, {elit diam vulputate ex, semper} elementum massa odio in ante.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus elementum, lacus quis tempus scelerisque, elit diam vulputate ex, semper elementum massa odio in ante.

\textbf

Paragraphs

Lorem ipsum dolor sit amet, ornare sit amet. ipsum ante, sollicitudin sit amet augue.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer id erat leo, Suspendisse sit amet ligula turpis. Duis congue turpis odio, non ornare elit ornare sit amet. In ipsum ante, sollicitudin at euismod vitae, tincidunt vitae massa. Aenean metus lectus, porta at tempor at, dapibus sit amet augue.

Paragraphs

Lorem ipsum dolor sit amet, ... ornare sit amet. In ipsum ante, sollicitudin ... sit amet augue.

Lorem ipsum dolor sit amet, ornare sit amet.

In ipsum ante, sollicitudin ... sit amet augue.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer id erat leo, Suspendisse sit amet ligula turpis. Duis congue turpis odio, non ornare elit ornare sit amet. In ipsum ante, sollicitudin at euismod vitae, tincidunt vitae massa. Aenean metus lectus, porta at tempor at, dapibus sit amet augue.

Text formatting 000000000000

Paragraphs

Lorem ipsum dolor sit amet, ... ornare sit amet. In ipsum ante, sollicitudin ... sit amet augue.

Lorem ipsum dolor sit amet, ornare sit amet.

In ipsum ante, sollicitudin ... sit amet augue.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer id erat leo, Suspendisse sit amet ligula turpis. Duis congue turpis odio, non ornare elit ornare sit amet. In ipsum ante, sollicitudin at euismod vitae, tincidunt vitae massa. Aenean metus lectus, porta at tempor at, dapibus sit amet augue.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer id erat leo. Suspendisse sit amet ligula turpis. Duis conque turpis odio, non ornare elit ornare sit amet.

In ipsum ante, sollicitudin at euismod vitae, tincidunt vitae massa. Aenean metus lectus, porta at tempor at. dapibus sit amet augue.

parskip

\textbf

```
\usepackage{parskip}
\begin{document}
Lorem ipsum dolor sit amet.
... ornare sit amet.
In ipsum ante, sollicitudin
... sit amet augue.
\end{document}
```

blank line

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer id erat leo. Suspendisse sit amet ligula turpis. Duis congue turpis odio, non ornare elit ornare sit amet.

In ipsum ante, sollicitudin at euismod vitae, tincidunt vitae massa. Aenean metus lectus, porta at tempor at, dapibus sit amet augue.

enumerate

parskip

Lists

\textbf

```
These are the ingredients:
\begin{enumerate}
    \item Carrots
    \item Onions
    Lipsum dolor sit amet.
    \item Potatoes
\end{enumerate}
```

These are the ingredients:

- 1. Carrots
- 2. Onions

Lipsum dolor sit amet.

3. Potatoes

```
These are the ingredients:
\begin{enumerate}
    \item Carrots
    \begin{enumerate}
        \item Buy
        \item Peel
        \item Chop
    \end{enumerate}
    \item Onions
    Lipsum dolor sit amet.
    \item Potatoes
\end{enumerate}
```

These are the ingredients:

- 1. Carrots
 - (a) Buy
 - (b) Peel
 - (c) Chop
- 2. Onions

Lipsum dolor sit amet.

3. Potatoes

Lists

```
These are the ingredients:
\begin{itemize}
    \item Carrots
    \begin{enumerate}
        \item Buy
        \item Peel
        \item Chop
    \end{enumerate}
    \item Onions
    Lipsum dolor sit amet.
    \item Potatoes
\end{itemize}
```

These are the ingredients:

- Carrots
 - 1. Buy
 - 2. Peel
 - 3. Chop
- Onions
 Lipsum dolor sit amet.
- Potatoes

Lists

```
These are the ingredients:
\begin{itemize}
    \item Carrots
    \begin{itemize}
        \item Buy
        \item Peel
        \item Chop
    \end{itemize}
    \item Onions
    Lipsum dolor sit amet.
    \item Potatoes
\end{itemize}
```

These are the ingredients:

- Carrots
 - Buy
 - Peel
 - Chop
- Onions

Lipsum dolor sit amet.

Potatoes

Special characters

Code	Result	Code	Result
\{	{	{	Begin group
\}	}	}	End group
\%	%	%	Comment
_	_	_	Used in maths
\textasciicircum	^	^	Used in maths
\\$	\$	\$	Math mode
\textbackslash	\	\	Command
\&	&	&	Column separation
\#	#	#	Parameter
\textgreater	>	>	>
\textless	<	<	<

Special characters

Code	Result	Code	Result
\{	{	{	Begin group
\}	}	}	End group
\%	%	%	Comment
_	_	_	Used in maths
\textasciicircum	^	^	Used in maths
\\$	\$	\$	Math mode
\textbackslash	\	\	Command
\&	&	&	Column separation
\#	#	#	Parameter
\textgreater	>	>	>
\textless	<	<	<

itemize

enumerate

Comments

\textbf

```
% Make soul package work in beamer presentations
% Source: https://tex.stackexchange.com/...
\let\UL\ul
\makeatletter
\renewcommand\ulf
    \let\set@color\beamerorig@set@color
    \let\reset@color\beamerorig@reset@color
    \UL
```

parskip

Comments

```
% TODO Translate to English
\section{Nonsense}

Lorem ipsum dolor sit amet,
\textfb{ornare} sit amet.

\subsection{About $\sqrt{2}$}
```

Error! Undefined control sequence

Comments

\textbf

```
% TODO Translate to English
\section{Nonsense}
%Lorem ipsum dolor sit amet,
%\textfb{ornare} sit amet.
%
%\subsection{About $\sqrt{2}$}
```

1 Nonsense

Comments

\textbf

```
% TODO Translate to English
\section{Nonsense}

Lorem ipsum dolor sit amet,
\textfb{ornare} sit amet.

%\subsection{About $\sqrt{2}$}
```

Error! Undefined control sequence

itemize

enumerate

Comments

\textbf

```
% TODO Translate to English
\section{Nonsense}
Lorem ipsum dolor sit amet,
\textbf{ornare} sit amet.
\subsection{About $\sqrt{2}$}
```

Nonsense

Lorem ipsum dolor sit amet, ornare sit amet.

About $\sqrt{2}$ 1.1

enumerate

\textbackslash

`....'

Quotes

```
'LaTeX' : 'LaTeX' 
`LaTeX' : 'LaTeX'
```

``LaTeX'': "LaTeX"

Simple document

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\title{My document}
\author{Vincent Kuhlmann}
\date{1 May 2021}
```

```
\begin{document}
\maketitle
\section{Introduction}
Hello everyone!
\end{document}
```

Preamble

My document Vincent Kuhlmann 1 May 2021

Introduction

Hallo indercent

Document

Page margins

```
\documentclass{article}
\usepackage[utf8]{inputenc}
\title{My document}
\author{Vincent Kuhlmann}
\date{1 May 2021}
\begin{document}
    \maketitle
    \section{Introduction}
    Hello everyone!
\end{document}
```

```
My document
1 Introduction
```


Page margins

```
\documentclass[a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2.54cm]{geometry}
\title{My document}
\author{Vincent Kuhlmann}
\date{1 May 2021}
\begin{document}
    \maketitle
    \section{Introduction}
    Hello everyone!
\end{document}
```

```
My document
1. Introduction
Hello interest
```


Page margins

```
\documentclass[a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[margin=2.54cm,left=-0.5cm]
{geometry}
\title{My document}
\author{Vincent Kuhlmann}
\date{1 May 2021}
\begin{document}
    \maketitle
    \section{Introduction}
    Hello everyone!
\end{document}
```


Section commands

```
\section{AA}
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
\section{BB}
\subsection {CC}
\subsubsection{DD}
\subsection{EE}
Nullam a risus at arcu
lobortis viverra vel
volutpat diam.
\section{FF}
\subsubsection {GG}
```

1 AA

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

- BB
- 2.1 CC
- 2.1.1DD
- 2.2 $\mathbf{E}\mathbf{E}$

Nullam a risus at arcu lobortis viverra vel volutpat diam.

- \mathbf{FF}
- 3.0.1 GG

preamble | geometry | \subsection | \tableofcontents

Contents

```
\begin{document}
    \maketitle
    \tableofcontents
    \section{AA}
\end{document}
```

Contents

1 AA

2	вв										:
	2.1	CC	 								
		2.1.1 DD	 								
	2.2	EE	 								
_	\mathbf{FF}	201 00									:

1 AA

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Contents

geometry

preamble

```
\begin{document}
    \maketitle
    \tableofcontents
    \newpage
    \section{AA}
\end{document}
```

Contents

1 AA

\newpage

2	BB												2	
	2.1	CC .											2	
		2.1.1	DD.										2	
	2.2	EE .											2	
3	\mathbf{FF}												2	
		3.0.1	GG										2	

Contents

geometry

subsection

preamble

```
\usepackage[dutch] {babel}
\begin{document}
    \maketitle
    \tableofcontents
    \newpage
    \section{AA}
\end{document}
```

Inhoudsopgave

\newpage

1	AA												
2	вв												
	2.1	CC .											
		2.1.1	DD.										
	2.2	EE .											
3	\mathbf{FF}												
		3.0.1	GG										

\newpage

babel secnumdepth

Partial numbering

```
\setcounter{secnumdepth}{3}
\section{AA}
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
\section{BB}
\subsection {CC}
\subsubsection{DD}
\subsection{EE}
Nullam a risus at arcu
lobortis viverra vel
volutpat diam.
\section{FF}
\subsubsection {GG}
```

$\mathbf{A} \mathbf{A}$

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

- BB
- CC 2.1

DD

- 2.1.1
- 2.2 $\mathbf{E}\mathbf{E}$

Nullam a risus at arcu lobortis viverra vel volutpat diam.

- FF
- 3.0.1 GG

\newpage

babel secnumdepth

Partial numbering

```
\setcounter{secnumdepth}{2}
\section{AA}
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
\section{BB}
\subsection {CC}
\subsubsection{DD}
\subsection{EE}
Nullam a risus at arcu
lobortis viverra vel
volutpat diam.
\section{FF}
\subsubsection {GG}
```

$\mathbf{A} \mathbf{A}$

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

- BB
- CC 2.1

DD

2.2 $\mathbf{E}\mathbf{E}$

Nullam a risus at arcu lobortis viverra vel volutpat diam.

FF

GG

\newpage

babel secnumdepth

Partial numbering

```
\setcounter{secnumdepth}{1}
\section{AA}
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
\section{BB}
\subsection {CC}
\subsubsection{DD}
\subsection {EE}
Nullam a risus at arcu
lobortis viverra vel
volutpat diam.
\section{FF}
\subsubsection {GG}
```

$\mathbf{A} \mathbf{A}$

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

BB

CC

DD

 $\mathbf{E}\mathbf{E}$

Nullam a risus at arcu lobortis viverra vel volutpat diam.

FF

GG

babel

\newpage

\tableofcontents

BB

CC

DD $\mathbf{E}\mathbf{E}$

Nullam a risus at arcu lobortis viverra vel volutpat diam.

FF

GG

Partial numbering

```
\setcounter{secnumdepth}{0}
\section{AA}
Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
\section{BB}
\subsection{CC}
\subsubsection{DD}
\subsection {EE}
Nullam a risus at arcu
lobortis viverra vel
volutpat diam.
\section{FF}
```

\subsubsection {GG}

\tableofcontents | \newpage | babel | secnumdepth | \section*

Partial numbering

```
\section{AA}
Lorem ipsum dolor sit amet.
consectetur adipiscing elit.
\section * {BB}
\subsection * {CC}
\subsubsection{DD}
\subsection * {EE}
Nullam a risus at arcu
lobortis viverra vel
volutpat diam.
\section{FF}
\subsubsection {GG}
```

1 AA

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

BB

CC

1.0.1 DD

 $\mathbf{E}\mathbf{E}$

Nullam a risus at arcu lobortis viverra vel volutpat diam.

2 FF

2.0.1 GG

Vincents favorite package: \usepackage[bookmarksnumbered] {hyperref}

A lot of packages

Necessary for examples in this presentation.

Improve page margins, mathematics, pragraph indent, language, images and more.

Find a template including the most important packages from Vincent's website, on

vkuhlmann.com/latex/example

\includegraphics

\includegraphics

```
Here you see a penguin:
\includegraphics[height=2cm]{penguin.jpg}
Photo by Sue Flood.
```


\includegraphics

\includegraphics

```
Here you see a penguin:
\includegraphics[height=2cm] {penguin.jpg}
Photo by Sue Flood.
```


Here you see a penguin:

Photo by Sue Flood.

https://www.pinterest.co.kr/pin/645844402812554993/

as paragraph

\includegraphics

\includegraphics

```
Here you see a penguin:
\includegraphics[height=2cm]{penguin.jpg}
Photo by Sue Flood.
```

Here you see a penguin:

Photo by Sue Flood.

\includegraphics

\includegraphics

```
Here you see a penguin:
\begin{center}
    \includegraphics[height=2cm]{penguin.jpg}
\end{center}
Photo by Sue Flood.
```

Here you see a penguin:

Photo by Sue Flood.

\includegraphics | as paragraph | center | figure

\includegraphics

```
You can see a penguin in Figure~\ref{fig:penguin}.
\begin{figure}[h]
    \centering
    \includegraphics[height=2cm]{penguin.jpg}
    \caption{A cute penguin. Photo by Sue Flood.}
    \label{fig:penguin}
\end{figure}
```

You can see a penguin in Figure 1.

Figure 1: A cute penguin. Photo by Sue Flood.

htbp

figure

Figure placement

\includegraphics

▶ h (HERE): Figure can come here.

as paragraph

▶ t (TOP): Figure can come at the top of the page.

center

- ▶ b (BOTTOM): Figure can come at the bottom of the page
- ▶ p (PAGE): Figure can come on a special page for figures.
- !: Override internal parameters for floats.
- ► H (HERE): No floating, always here. (\usepackage{float})

When working with images: \usepackage{graphicx}

htbp

figure

Dimensions

\includegraphics

Full linewidth

as paragraph

```
\includegraphics[width=\linewidth] {assets/pinguin.jpg}
```

center

• 90% linewidth

```
\includegraphics[width=0.9\linewidth] {assets/pinguin.jpg}
```

Width maximally 90% linewidth and height maximally 5 cm

```
\includegraphics[
    width=0.9\linewidth,height=5cm,keepaspectratio
]{assets/penguin.jpg}
```

Subfigure (\usepackage{subcaption})

Figuur 1: Multiple images next to eachother!

htbp

subfigure

figure

Subfigure (\usepackage{subcaption})

as paragraph

center

```
\begin{figure}[htbp]
    \centering
    \begin{subfigure}[b]{0.45\textwidth}
        \includegraphics[width=\textwidth]{AA}
        \caption{BB}
        \label{fig:dphiExample}
    \end{subfigure}\qquad
    \begin{subfigure}[b]{0.45\textwidth}
        \includegraphics[width=\textwidth]{CC}
        \caption{CC}
        \label{fig:fitExample}
    \end{subfigure}
    \caption{Multiple images next to eachother!}
\end{figure}
```

\includegraphics

\$ \$

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

\$ \$

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity is \$ \sin^2(\theta) + \cos^2(\theta) = 1 \$.
```


S S

Formulas

The trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

```
The trigonometric identity
is $\sin^2(\theta) + \cos^2(\theta) = 1 $.
```

```
\usepackage{amsmath,amssymb}
\usepackage{commath,mathtools}
```

Formula	Code	Formula	Cod	е	
$\sqrt{2}$	\$	\$ $\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	\$	\$ x_1	\$	\$	
$6 \geq 3$	\$	\$ x_1^2	\$	\$	
$a^2 + b^2$	\$	\$ a^{2+b^2}	<i>\$</i>		\$

Formula	Code		Formula	Coc	Code		
$\sqrt{2}$	\$\sqrt{2} \$		$\sqrt[3]{8}$	\$ \$		\$	
$\frac{2}{3}$	\$	\$	x_1	\$	\$		
$6 \geq 3$	\$	\$	x_1^2	<i>\$</i>	\$		
$a^2 + b^2$	<i>\$</i>	\$	a^{2+b^2}	\$		\$	

Formula	Code		Formula	Cod	Code		
$\sqrt{2}$	\$\sqrt{2} \$		$\sqrt[3]{8}$	\$	\$ \$		
$\frac{2}{3}$	\$\frac{2}{3} \$		x_1	\$	\$		
$6 \geq 3$	\$	\$	x_1^2	\$	\$		
$a^2 + b^2$	<i>\$</i>	\$	a^{2+b^2}	<i>\$</i>		\$	

Formula	Code	Formula	Code		
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$	\$	
$\frac{2}{3}$	\$\frac{2}{3} \$	x_1	\$ \$		
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$		
$a^2 + b^2$	\$ \$	a^{2+b^2}	\$	\$	

Formula	Code	Formula	Code		
$\sqrt{2}$	\$\sqrt{2} \$	$\sqrt[3]{8}$	\$		\$
$\frac{2}{3}$	\$\frac{2}{3} \$	x_1	\$	\$	
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$	\$	
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	<i>\$</i>		<i>\$</i>

Formula	Code	Formula	Code		
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$ \sqrt[3]{8} \$		
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ \$		
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$		
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$		

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	³ √8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$\sqrt{2} \$	$\sqrt[3]{8}$	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^2 + b^2$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	$\sqrt[3]{8}$	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

\$ x^22 \$: x^2 2

Formula	Code	Formula	Code
$\sqrt{2}$	\$ \sqrt{2} \$	√3/8	\$ \sqrt[3]{8} \$
$\frac{2}{3}$	<pre>\$ \frac{2}{3} \$</pre>	x_1	\$ x_1 \$
$6 \geq 3$	\$ 6\geq 3 \$	x_1^2	\$ x_1^2 \$
$a^{2} + b^{2}$	\$ a^2 + b^2 \$	a^{2+b^2}	\$ a^{2 + b^2} \$

 $$x^22 $: x^2 | $x^{22} $: x^{22}$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$	\$	5 · 6	\$	\$
α, β, γ	\$	\$	A,B,Γ	<i>\$</i>	\$
$\epsilon, arepsilon$	\$	\$	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	\$	\$	\mathbb{P}	\$	\$

Formulas: Symbols

Formula	Code		Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dots,x_r	ı <i>\$</i>	5 · 6	\$	\$
α, β, γ	\$	\$	A,B,Γ	\$	\$
$\epsilon, arepsilon$	\$	\$	${\cal P}$	\$	\$
$\phi, arphi$	\$	\$	\mathbb{P}	\$	\$

Formula	Code		Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,</pre>	x_n <i>\$</i>	5 · 6	\$	\$
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\gamma \$</pre>		A,B,Γ	<i>\$</i>	\$
$\epsilon, arepsilon$	\$	\$	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	\$	\$	\mathbb{P}	\$	\$

Formulas: Symbols

Formula	Code	Formula	Code	
x_1,\ldots,x_n	\$ x_1,\dots,x_n \$	5 · 6	\$	\$
α,β,γ	\$\alpha,\beta,\gamma	<i>A</i> , <i>B</i> , Γ	\$	\$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilo</pre>	on \$ P	\$	\$
$\phi, arphi$	\$ \$	${\mathbb P}$	\$	\$

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$	\$
$lpha,eta,\gamma$	\$\alpha,\beta,\gamma \$	A,B,Γ	<i>\$</i>	<i>\$</i>
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<i>\$</i>	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$	\$

Formula	Code	Formula	Code	
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$	
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$	\$
$\epsilon, arepsilon$	$\$$ \epsilon,\varepsilon $\$$	${\cal P}$	\$	\$
$\phi, arphi$	<pre>\$\phi,\varphi \$</pre>	\mathbb{P}	\$	\$

Formulas: Symbols

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
$lpha,eta,\gamma$	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	\$
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$

Formulas: Symbols

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$5\cdot 6 \$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	$\$$ \epsilon,\varepsilon $\$$	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	\$

Formula	Code	Formula	Code
x_1,\ldots,x_n	<pre>\$ x_1,\dots,x_n \$</pre>	5 · 6	\$ 5\cdot 6 \$
α, β, γ	<pre>\$ \alpha,\beta,\gamma \$</pre>	A,B,Γ	\$ A,B,\Gamma \$
$\epsilon, arepsilon$	<pre>\$ \epsilon,\varepsilon \$</pre>	${\cal P}$	<pre>\$ \mathcal{P} \$</pre>
$\phi, arphi$	<pre>\$ \phi,\varphi \$</pre>	\mathbb{P}	<pre>\$ \mathbb{P} \$</pre>

Formulas: Vectors

\ varphi

\mathcal

\$ \$

Formula	Code	Formula	Code
\vec{x}	\$ \vec{x} \$	$ec{F}_{tot}$	<pre>\$ \vec{F}_{\text{tot}} \$</pre>
x	<pre>\$ \mathbf{x} \$</pre>	$\hat{\imath} + 6\hat{k}$	<pre>\$ \hat{\imath} + 6\hat{k} \$</pre>
$\ \vec{x}\ $	<pre>\$ \norm{\vec{x}} \$</pre>	$ abla imes extbf{A}$	<pre>\$ \nabla\times\mathbf{A} \$</pre>

$$\vec{F}_{tot}$$
, \vec{F}_{tot}

\mathcal

\mathbb

vec

\text

sin(x) \vec{F}_{tot}

```
$ sin(x) $
$ \vec{F}_{tot}$
```

```
\sin(x)

\vec{F}_{tot}
```

```
$\sin(x) $
$\vec{F} {\text{tot}}$$
```

Formulas: Calculus

\usepackage{commath}

\text

$$\label{eq:continuous_sin_x} $$ \dod{\sin(x)}{x}, \dpd{f(x,y)}{x}, \partial_x f $$ \int_{0}^{\int \left(x + y \right)^{dif} x = 1$} $$$$

$$\frac{\mathsf{d} \sin(x)}{\mathsf{d} x}, \frac{\partial f(x, y)}{\partial x}, \partial_x f$$

$$\int_0^\infty e^{-x} \, \mathrm{d} x = 1$$

Formula	Code	Formula	Code
$a \leq b$	\$ a \leq b \$	$a \geq b$	\$ a \geq b \$
a < b	\$ a < b \$	a > b	\$ a > b \$
$a\ll b$	\$ a \11 b \$	a ≫ b	\$ a \gg b \$
a = b	\$ a = b \$	$ extit{a} \simeq extit{b}$	$\$$ a \simeq b $\$$
a eq b	$$$ a \neq b $$$	approx b	<pre>\$ a \approx b \$</pre>
$\mathit{a}\sim\mathit{b}$	$$$ a \sim b $$$	$a\stackrel{*}{=}b$	<pre>\$ a \stackrel{*}{=}b \$</pre>

\int

∖ne

x\to 0

Formulas: Arrows and operators

```
\DeclareMathOperator{\Image}{Image}
a \iff b, a\implies b, a\mapsto b
\lim_{x\to 0}\frac{\sin(x)}{x} = 1
\Image(f) = \mathbb{R}_{\geq 0}
```

$$a \iff b, a \implies b, a \mapsto b$$

\dod

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\mathsf{Image}(f) = \mathbb{R}_{\geq 0}$$

int

\dod |

\neq | x\to 0

So many! And there are lots more :-)

CTAN symbol list:

http://mirrors.ctan.org/info/symbols/comprehensive/ symbols-a4.pdf

Detexify:

http://detexify.kirelabs.org/classify.html

\mathbb

\nea

hob/

Equation

\mathbb

```
The trigonometric identity is
$\sin^2(\theta) + \cos^2(\theta) = 1 $.
The trigonometric identity is
\begin{equation}
    \sin^2(\theta) + \cos^2(\theta) = 1.
\end{equation}
```

De trigonometric identity is $\sin^2(\theta) + \cos^2(\theta) = 1$.

De trigonometric identity is

\ text

$$\sin^2(\theta) + \cos^2(\theta) = 1. \tag{1}$$

equation

 $x \to 0$

Align

hob/

```
The double-angle formula can now be rewritten as
\begin{align}
    \cos(2 \theta) = \cos^2(\theta) - \sin^2(\theta)
    = 2 \cos^2(\theta) - 1.
\end{align}
```

The double-angle formula can now be rewritten as

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. \tag{2}$$

hob/

align

Align

```
The double-angle formula can now be rewritten as
\begin{align}
    \cos(2 \theta) &= \cos^2(\theta) - \sin^2(\theta)
    &= 2 \cos^2(\theta) - 1
\end{align}
```

The double-angle formula can now be rewritten as

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \tag{1}$$

$$=2\cos^2(\theta)-1. (2)$$

align

nonumber

Align

hob/

```
The double-angle formula can now be rewritten as
\begin{align}
  \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
  \nonumber\\
  &= 2\cos^2(\theta)-1.
\end{align}
```

equation

The double-angle formula can now be rewritten as

x\to 0

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$
$$= 2\cos^2(\theta) - 1. \tag{1}$$

Align

hob/

```
The double-angle formula can now be rewritten as
\begin{align*}
    \cos(2 \theta) &= \cos^2(\theta) - \sin^2(\theta)
    &= 2 \cos^2(\theta) - 1
\end{align*}
```

equation

The double-angle formula can now be rewritten as

 $x \to 0$

$$cos(2\theta) = cos^{2}(\theta) - sin^{2}(\theta)$$
$$= 2 cos^{2}(\theta) - 1.$$

\nonumber

Align

hob/

```
We do this with the double-angle formula
\begin{align*}
    \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
\end{align*}
which we can rewrite as
\begin{align*}
    \&= \cos^2(\theta) - (1 - \cos^2(\theta))
    &= 2 \cos^2(\theta) - 1.
\end{align*}
```

equation

We do this with the double-angle formula

$$cos(2\theta) = cos^2(\theta) - sin^2(\theta),$$

which we can rewrite as

 $x \to 0$

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

nonumber

align*

intertext

Align

```
We do this with the double-angle formula
\begin{align*}
    \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)
\intertext{which we can rewrite as}
    \&= \cos^2(\theta) - (1 - \cos^2(\theta)) \
    \&= 2 \cos^2(\theta) - 1.
\end{align*}
```

We do this with the double-angle formula

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta),$$

which we can rewrite as

=
$$\cos^2(\theta) - (1 - \cos^2(\theta))$$

= $2\cos^2(\theta) - 1$.

Also in use

equation

```
AA \(\sqrt{2}\)
BB \[\sqrt{3}\]
CC $$ \sqrt{4} $$
```

```
AA \sqrt{2} BB \sqrt{3} CC \sqrt{4}
```

\intertext

Left-right

nonumber

equation

```
\begin{align*}
    &f(\sum_{i=1}^{n}x_i)\\
    &f \left(\sum_{i=1}^{n} x_i \right)
\end{align*}
```

$$f\left(\sum_{i=1}^{n} x_i\right)$$

$$f\left(\sum_{i=1}^{n} x_i\right)$$

\intertext

align*

nonumber

Delimiter point

equation

align

```
\begin{align*}
  \left.\left[x^2\right]\right|_{x=0}^{x=2} = 4
\end{align*}
```

$$\left[x^2\right]\Big|_{x=0}^{x=2}=4,$$

\nonumber

align*

intertext

1/...1/

```
\begin{align*}
  R(\theta) = \begin{pmatrix}
    \cos(\theta) & -\sin(\theta)\\
    \sin(\theta) & \cos(\theta)
  \end{pmatrix},\quad
  \abs{x} = \begin{cases}
    x & \text{if $x \geq 0$}\\
    -x & \text{if $x < 0$}
  \end{cases}
\end{align*}</pre>
```

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

align*

Chemical formulas \usepackage{mhchem}

nonumber

intertext

$$\begin{array}{l} \mathsf{CO_2} + \mathsf{C} \longrightarrow 2\,\mathsf{CO} \\ \mathsf{CO_2} + \mathsf{C} \longrightarrow 2\,\mathsf{CO} \\ \mathsf{CH_4} + 2\left(\mathsf{O_2} + \frac{79}{21}\,\mathsf{N_2}\right) \end{array}$$

align

Some examples are taken from the mhchem package documentation (see below)

More example can be found in the documentation of mhchem, see https://ctan.org/pkg/mhchem

equation

Installation

vkuhlmann.com/latex/installation

000

Το τέλος

Questions?

Stuck? Mail me at vincent.kuhlmann@hotmail.com

The slides can be found on https://vkuhlmann.com/latex

(c) 2022 Vincent Kuhlmann, Creative Commons CC BY-NC-SA

