SECRETS OF...

... Singular and PolyBoRi

The Systems

- * Singular: general commutative algebra
- * PolyBoRi: commutative algebra in Boolean Rings

Singular - Terms

- * A term in a polynomial is a struct containing:
 - * coefficient
 - * exponent vector
 - * pointer to the next term

* A polynomial is identified with a pointer to its leading term

Singular - monomial orderings

- * A monomial ordering can be represented by a matrix A
- * $x^{\alpha} > x^{\beta} \Leftrightarrow A \cdot \alpha >_{lex} A \cdot \beta$
- * these products are also stored in the term structure to speed up comparison of terms
- * The terms are ordered by monomial ordering
- * So the leading term is always the first term

Singular - polynomial structure

- * highly manipulateable
 - * coef
 - * exp
 - * next pointer
- * very compact in rings up to a medium number of variables
- * very fast ordered iteration of polynomials
- * arbitrary monomial ordering
- * sparse

code example: cancel every multiple of "monom"

```
poly prev=c->S->m[i];
poly tail=c->S->m[i]->next;
while((tail!=NULL)&& (pLmCmp(tail, monom)>=0))
 if (p_LmDivisibleBy(monom,tail,c->r))
  prev->next=tail->next;
  tail->next=NULL;
  p_Delete(& tail,c->r);
  tail=prev;
 prev=tail;
 tail=tail->next;
```

Consequences of this Style

- * avoid a lot of copying/ allocation
- * very direct manipulation of polynomials possible
- * "intuitive" mainstream imperative style
- * very fast polynomial arithemetic

- * can introduce funny bugs and memory holes
- * mutability of objects makes caching hard

Singular 3-1-0 - new rings

- * Polynomial rings over
 - * the integers
 - * Z/m
- * Implemented for these rings:
 - * arithmetic
 - * Gröbner bases/normal forms
- * Implemented by Oliver Wienand

Singular goes tropical... My curves come to a point!

Tropical Geometry

- * tropical.lib
 - * Anders Jensen
 - * Hannah Markwig
 - * Thomas Markwig
- * tropical lifting (calling gfan)
- * visualization
- * j-invariants
- * weierstrass form
- * polymake.lib: Thomas Markwig

Noncommutative News

discretize.lib	finite difference schemes
dmodapp.lib	applications d-modules
jacobson.lib	Smith/Jacobson Form
nchomolog.lib	noncommutative homological algebra
freegb.lib	two sided Gröbner bases in free algebras

Singular 3-0-1 further libraries

- * redcgslib (Reduced Comprehensive Gröbner Systems)
- * bfct.lib (Bernstein-Sato polynomial)
- * decodegb.lib (Coding theory)

Secret pre-release version

http://www.mathematik.uni-kl.de/ftp/pub/Math/ Singular/devel/pre-3-1/

PolyBoRi

Decision diagrams

- * diagram decides if a term occurs in the polynomial
- * term occurs if it exists as path leading to one
- * Example: all Boolean terms of degree two

a*b+a*c+a*d+a*e+b*c+b*d +b*e+c*d+c*e+d*e

Monomial orderings

- * Given an monomial ordering > and a polynomial in ZDD form, it is a priori unclear, how to
 - * calculate the leading term
 - * iterate over the terms (following the monomial ordering)
- * Implemented that for:
 - * lexicographical orderings (easy)
 - * Degree (reverse) lexicographical ordering
 - * Block orderings
- * For every ordering you have to find a special trick
- * no general matrix orderings are supported

Lexicographical Ordering

- * Leading Term:
 - * always go right
- * ordered iteration:
 - * begin with lead
 - * jump back and go left (repeatedly)

Degree Lexicographical Ordering

- * Leading Term:
 - * always go right, if exists max. degree term in this branch
- * ordered iteration:
 - * iterate lexicographical and jump over terms of "wrong" degree

Further Orderings

- * Degree Reverse Lexicographical (w<x<y<z)
- * Block Orderings
 - * dlex blocks
 - * degrevlex blocks
 - * Example:
 - * derevlex: (w),(x,y,z)

Functional Style

- * Every manipulation is forbidden/immutable objects
- * Pro
 - * Operations on polynomials can be cached on the level of diagram nodes
- * Contra
 - * Always creating new nodes can generate a lot of overhead (every node is garantied to be unique)

Example: canceling every multiple of monom

```
* p=p.set()
```

- * p=p.diff(p.multiplesOf(monom))
- # p=Polynomial(p)

Recursive Implementation

```
template < class Cache Type,
 class NaviType, class SetType>
Set Type
dd_first_multiples_of(
    const Cache Type& cache_mgr,
    NaviType navi, NaviType rhsNavi,
    SetType init){
  typedef typename SetType::dd_type dd_type;
 if(rhsNavi.isConstant())
  if(rhsNavi.terminalValue())
   return cache_mgr.generate(navi);
  else
   return cache_mgr.generate(rhsNavi);
 if (navi.isConstant() | (*navi > *rhsNavi))
  return cache_mgr.zero();
 if (*navi == *rhsNavi)
  return dd_first_multiples_of(
     cache_mgr, navi.thenBranch(),
       rhsNavi.thenBranch(), init).change(*navi);
```

```
// Look up old result - if any
NaviType result = cache_mgr.find(navi, rhsNavi);
if (result.is Valid())
 return cache_mgr.generate(result);
// Compute new result
init = dd_type(*navi,
          dd_first_multiples_of(
           cache_mgr, navi.thenBranch(),
               rhsNavi, init).diagram(),
          dd_first_multiples_of(cache_mgr,
           navi.elseBranch(),
                       rhsNavi, init).diagram();
// Insert new result in cache
cache_mgr.insert(navi, rhsNavi, init.navigation());
return init;
```

Solutions for overhead problem

- * Replace many small operations by a few bigger ones
- * Accept the overhead, understand the style decision diagram operations should be implemented and win in total by caching
- * For a few operations, use alternative data structures (e.g. vectors of integers for Exponents of Boolean monomials)

The structure most different from a ZDD is a dense matrix

- * libm4ri
 - * Gregory Bard
 - * Martin Albrecht
 - * William Hart
 - * ...
- * a good team:
 - * dense matrices for calculation with dense, random like systems
 - * ZDDs for structured/sparse polynomials