Formule Utili – Analisi Matematica per Bioinformatici a.a. 2007-2008

Dott. Simone Zuccher

14 settembre 2007

Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all'autore (zuccher@sci.univr.it).

Indice

1	Gec	metria Analitica	1
	1.1	Il piano cartesiano	1
	1.2	La retta	1
	1.3	La circonferenza	2
	1.4	La parabola	2
	1.5	L'ellisse	3
	1.6	L'iperbole	4
	1.7	L'iperbole equilatera	5
2	Gor	niometria	6
	2.1	Relazioni fondamentali	6
	2.2	Periodicità	6
	2.3	Formule di conversione	6
	2.4	Archi associati	7
	2.5	Formule di addizione e sottrazione	7
	2.6	Formule di duplicazione e triplicazione	8
	2.7	Formule di bisezione	8
	2.8		8
	2.9	Formule di prostaferesi e di Werner	8
	2.10	Archi noti	9
3	Der	ivate 10)
	3.1	Derivate fondamentali ed altre notevoli	J
4	Svil	uppi in serie di Taylor)
		Principali sviluppi di McLaurin	J

5	Inte	egrali									1
	5.1	Integrali indefiniti immediati (o quasi)									1

1 Geometria Analitica

1.1 Il piano cartesiano

Punto medio di un segmento $M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$ $(x_1; y_1), (x_2; y_2)$ coordinate estremi

Distanza tra due punti $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ $(x_1;y_1),(x_2;y_2)$ coordinate punti

1.2 La retta

Definizione: nessuna perché è un ente primitivo.

Forma implicita ax + by + c = 0 tutte le rette

 $x = -\frac{c}{a} = k$ retta verticale (b = 0)

 $y = -\frac{c}{h} = h$ retta orizzontale (a = 0)

Forma esplicita y = mx + q non comprende rette verticali perché

 $m = -\frac{b}{a}, q = -\frac{c}{a}$ sono espressioni valide solo se $a \neq 0$

Date due rette ax + by + c = 0 e a'x + b'y + c = 0 si ha:

 $\frac{a}{a'} \neq \frac{b}{b'}$ rette incidenti (una intersezione)

 $\frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$ rette parallele (nessuna intersezione)

 $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$ rette coincidenti (infinite intersezioni)

Date due rette $m = m_1 x + q_1$ e $y = m_2 x + q_2$ si ha:

 $m_1 = m_2$ rette parallele

 $m_1m_2 = -1 \Leftrightarrow m_1 = -\frac{1}{m_2}$ rette perpendicolari

Retta per un punto $y - y_0 = m(x - x_0)$ $(x_0; y_0)$ coordinate del punto

Retta per due punti $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$ $(x_1;y_1)$ e $(x_2;y_2)$ coordinate dei punti

Distanza punto retta $d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$ Nota: retta in forma implicita

1.3 La circonferenza

Definizione: luogo geometrico dei punti del piano per i quali la distanza da un punto fisso detto *centro* è costante e congruente ad un segmento detto *raggio*.

Equazione noti centro
$$C(x_0; y_0)$$
 e raggio r
$$(x - x_0)^2 + (y - y_0)^2 = r^2$$
 Equazione canonica
$$x^2 + y^2 + \alpha x + \beta y + \gamma = 0$$

$$C\left(-\frac{\alpha}{2}; -\frac{\beta}{2}\right)$$

$$r = \sqrt{\left(-\frac{\alpha}{2}\right)^2 + \left(-\frac{\beta}{2}\right)^2 - \gamma}$$

1.4 La parabola

Definizione: luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta fissa detta direttrice.

La figura così ottenuta ha un asse di simmetria. Il punto di intersezione tra l'asse di simmetria e la figura stessa è detto vertice.

Asse parallelo all'asse delle ordinate
$$y=ax^2+bx+c$$
 $a>0\Leftrightarrow \smile, a<0\Leftrightarrow \smile$ Posto $\Delta=b^2-4ac$, si ha $V\left(-\frac{b}{2a};-\frac{\Delta}{4a}\right)$ Vertice
$$F\left(-\frac{b}{2a};\frac{1-\Delta}{4a}\right) \quad \text{Fuoco}$$

$$x=-\frac{b}{2a} \qquad \text{Asse di simmetria}$$

$$y=-\frac{1+\Delta}{4a} \qquad \text{Direttrice}$$
 Asse parallelo all'asse delle ascisse
$$x=ay^2+by+c \quad a>0\Leftrightarrow (,a<0\Leftrightarrow)$$

$$V\left(-\frac{\Delta}{4a};-\frac{b}{2a}\right) \quad \text{Vertice}$$

$$F\left(\frac{1-\Delta}{4a};-\frac{b}{2a}\right) \quad \text{Fuoco}$$

$$y=-\frac{b}{2a} \qquad \text{Asse di simmetria}$$

$$x=-\frac{1+\Delta}{4a} \qquad \text{Direttrice}$$

1.5 L'ellisse

Definizione: luogo geometrico dei punti del piano per i quali è costante la somma delle distanze da due punti fissi detti fuochi.

La figura così ottenuta ha due assi di simmetria (o più semplicemente assi), il maggiore dei quali è detto asse maggiore (su di esso si trovano i fuochi) e l'altro asse minore. Il punto di intersezione degli assi è detto centro, i punti di intersezione tra gli assi e la figura stessa sono detti vertici.

Riferita a rette parallele agli assi
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1 \qquad \text{Centro } O'(x_0;y_0)$$

$$mx^2 + ny^2 + px + qy + r = 0 \qquad \begin{cases} mn > 0 \\ \frac{p^2}{4m} + \frac{q^2}{4n} - r > 0 \\ O'\left(-\frac{p}{2m}; -\frac{q}{2n}\right) \end{cases}$$
 Riferita agli assi
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad a > b \quad \Leftrightarrow \quad \text{Fuochi sull'asse } x, \\ a \text{ semiasse maggiore } b \text{ semiasse minore} \end{cases}$$

$$F(\pm \sqrt{a^2 - b^2}; 0) \qquad \quad \text{Coordinate dei fuochi}$$

$$V(\pm a; 0), V(0; \pm b) \qquad \quad \text{Coordinate dei vertici}$$
 Riferita agli assi
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad a < b \quad \Leftrightarrow \quad \text{Fuochi sull'asse } y, \\ a \text{ semiasse minore } b \text{ semiasse minore } b \text{ semiasse maggiore} \end{cases}$$

$$F(0; \pm \sqrt{b^2 - a^2}) \qquad \quad \text{Coordinate dei fuochi}$$

$$V(\pm a; 0), V(0; \pm b) \qquad \quad \text{Coordinate dei fuochi}$$

$$Coordinate \text{ dei vertici}}$$

1.6 L'iperbole

Definizione: luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti *fuochi*.

La figura così ottenuta ha due $assi\ di\ simmetria$. L'asse che interseca la figura stessa è detto $asse\ trasverso$ (su di esso si trovano i fuochi) e l'altro $asse\ non\ trasverso$. Il punto di intersezione degli $assi\ è\ detto\ centro$, i punti di intersezione tra l'asse trasverso e la figura stessa sono detti vertici. Esistono due rette, detti asintoti, tali che la distanza tra ciasuna di esse e i punti dell'ellisse tende a zero al tendere all'infinito di x o y.

Riferita a rette parallele agli assi	$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$	$\begin{cases} \text{Centro } O'(x_0; y_0) \\ \text{Asse trasverso orizzontale} \end{cases}$
	$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = -1$	$\begin{cases} \text{Centro } O'(x_0; y_0) \\ \text{Asse trasverso verticale} \end{cases}$
		$\int mn < 0$
	$mx^2 + ny^2 + px + qy + r = 0$	$\begin{cases} O'\left(-\frac{p}{2m}; -\frac{q}{2n}\right) \end{cases}$
	$\frac{p^2}{4m} + \frac{q^2}{4n} - r > 0$	Asse trasverso orizzontale
	$\frac{p^2}{4m} + \frac{q^2}{4n} - r < 0$	Asse trasverso verticale
Riferita agli assi	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	a semiasse trasverso b semiasse non trasverso
	$F(\pm\sqrt{a^2+b^2};0)$	Coordinate dei fuochi
	$V(\pm a;0)$	Coordinate dei vertici
	$y = \pm \frac{b}{a}x$	Equazioni degli asintoti
Riferita agli assi	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$	a semiasse non trasverso b semiasse trasverso
	$F(0; \pm \sqrt{a^2 + b^2})$	Coordinate dei fuochi
	$V(0;\pm b)$	Coordinate dei vertici
	$y = \pm \frac{b}{a}x$	Equazioni degli asintoti

1.7 L'iperbole equilatera

Definizione: iperbole con semiassi congruenti, ossia a = b.

Riferita agli assi	$x^2 - y^2 = a^2$	Fuochi sull'asse x
	$F(\pm a\sqrt{2};0)$	Coordinate dei fuochi
	$V(\pm a;0)$	Coordinate dei vertici
	$y = \pm x$	Equazioni degli asintoti
Riferita agli assi	$x^2 - y^2 = -a^2$	Fuochi sull'asse y
	$F(0;\pm a\sqrt{2})$	Coordinate dei fuochi
	$V(0;\pm a)$	Coordinate dei vertici
	$y = \pm x$	Equazioni degli asintoti
Riferita ai propri asintoti	$xy = k$ $k > 0, \Leftrightarrow$	occupa il I e III quadrante
	$F_1(\sqrt{2k}; \sqrt{2k}), F_2(-\sqrt{2k}; -\sqrt{2k})$	Coordinate dei fuochi
	$V_1(\sqrt{k}; \sqrt{k}), V_2(-\sqrt{k}; -\sqrt{k})$	Coordinate dei vertici
	x = 0, y = 0	Equazioni degli asintoti
Riferita ai propri asintoti	$xy = k$ $k < 0,$ \Leftrightarrow	occupa il II e IV quadrante
	$F_1(-\sqrt{-2k}; \sqrt{-2k}), F_2(\sqrt{-2k}; -\sqrt{-2k})$	Coordinate dei fuochi
	$V_1(-\sqrt{-k};\sqrt{-k}), V_2(\sqrt{-k};-\sqrt{-k})$	Coordinate dei vertici
	x = 0, y = 0	Equazioni degli asintoti
Funzione omografica	$y = \frac{ax + b}{cx + d}$	$c \neq 0, ad - bc \neq 0$
	$\left(-\frac{d}{c}; \frac{a}{c}\right)$	Coordinate del centro
	$x = -\frac{d}{c}, y = \frac{a}{c}$	Equazioni degli asintoti

2 Goniometria

Nota: in quanto segue, con il simbolo $\sin^2 x$ si intende $(\sin x)^2$. È chiaro che questa scrittura non è corretta perché $\sin^2 x = \sin(\sin x)$ ma, essendo entrata nell'uso corrente ed essendo più veloce da scrivere, la adottiamo anche qui.

2.1 Relazioni fondamentali

Descrizione	relazione matematica	restrizioni
Relazione fondamentale:	$\sin^2 x + \cos^2 x = 1$	$\forall x \in \mathbb{R}$
Definizione di tangente:	$\tan x = \frac{\sin x}{\cos x}$	$x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
Definizione di cotangente:	$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$	$x \neq k\pi, k \in \mathbb{Z}$
Definizione di secante:	$\sec x = \frac{1}{\cos x}$	$x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
Definizione di cosecante:	$\csc x = \frac{1}{\sin x}$	$x \neq k\pi, k \in \mathbb{Z}$

2.2 Periodicità

$\sin(x+2k\pi)$	=	$\sin x$	$\cos(x+2k\pi)$	=	$\cos x$	$k \in \mathbb{Z}$
$\tan(x+k\pi)$	=	$\tan x$	$\cot(x+k\pi)$	=	$\cot x$	$k \in \mathbb{Z}$
$\sec(x+2k\pi)$	=	$\sec x$	$\csc(x+2k\pi)$	=	$\csc x$	$k \in \mathbb{Z}$

2.3 Formule di conversione

		noto $\sin x$	noto $\cos x$	nota $\tan x$
$\sin x$	=	$\sin x$	$\pm\sqrt{1-\cos^2 x}$	$\pm \frac{\tan x}{\sqrt{1 + \tan^2 x}}$
$\cos x$	=	$\pm \sqrt{1 - \sin^2 x}$	$\cos x$	$\pm \frac{1}{\sqrt{1 + \tan^2 x}}$
$\tan x$	=	$\pm \frac{\sin x}{\sqrt{1 - \sin^2 x}}$	$\pm \frac{\sqrt{1 - \cos^2 x}}{\cos x}$	$\tan x$

Una volta noti $\sin x$, $\cos x$ o $\tan x$, il passaggio alle altre funzioni trigonometriche è banale essendo $\cot x = 1/\tan x$, $\sec x = 1/\cos x$ e $\csc x = 1/\sin x$.

2.4 Archi associati

f(x)	$\sin f(x)$	$\cos f(x)$	$\tan f(x)$	$\cot f(x)$
-x	$-\sin x$	$\cos x$	$-\tan x$	$-\cot x$
$\frac{\pi}{2} - x$	$\cos x$	$\sin x$	$\cot x$	$\tan x$
$\frac{\pi}{2} + x$	$\cos x$	$-\sin x$	$-\cot x$	$-\tan x$
$\pi - x$	$\sin x$	$-\cos x$	$-\tan x$	$-\cot x$
$\pi + x$	$-\sin x$	$-\cos x$	$\tan x$	$\cot x$
$\frac{3}{2}\pi - x$	$-\cos x$	$-\sin x$	$\cot x$	$\tan x$
$\frac{3}{2}\pi + x$	$-\cos x$	$\sin x$	$-\cot x$	$-\tan x$
$2\pi - x$	$-\sin x$	$\cos x$	$-\tan x$	$-\cot x$

Nota: questi archi associati sono deducibili immediatamente dal cerchio goniometrico, quindi è inutile memorizzarli.

2.5 Formule di addizione e sottrazione

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y}$$

2.6 Formule di duplicazione e triplicazione

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

$$\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$$

$$\sin(3x) = 3\sin x - 4\sin^3 x$$

$$\cos(3x) = 4\cos^3 x - 3\cos x$$

$$\tan(3x) = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

2.7 Formule di bisezione

$$\sin\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos x}{2}}$$

$$\cos\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1+\cos x}{2}}$$

$$\tan\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1-\cos x}{1+\cos x}} = \frac{\sin x}{1+\cos x} = \frac{1-\cos x}{\sin x}$$

2.8 Formule parametriche

$$t = \tan\left(\frac{x}{2}\right), x \neq \pi(1+2k) \ k \in \mathbb{Z} \Rightarrow \qquad \sin x = \frac{2t}{1+t^2} \quad \cos x = \frac{1-t^2}{1+t^2} \quad \tan x = \frac{2t}{1-t^2}$$

2.9 Formule di prostaferesi e di Werner

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\sin x \sin y = \frac{1}{2} \left[\cos(x - y) - \cos(x + y) \right]$$

$$\cos x \cos y = \frac{1}{2} \left[\cos(x + y) + \cos(x - y) \right]$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x + y) + \sin(x - y) \right]$$

2.10 Archi noti

x[rad]	$x[\deg]$	$\sin x$	$\cos x$	$\tan x$	$\cot x$
0	0	0	1	0	A
$\frac{\pi}{12}$	15°	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
$\frac{\pi}{10}$	18°	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\sqrt{1 - \frac{2\sqrt{5}}{5}}$	$\sqrt{5+2\sqrt{5}}$
$\frac{\pi}{8}$	22°30′	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\sqrt{2}-1$	$\sqrt{2} + 1$
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{3}{8}\pi$	67°30′	$\frac{\sqrt{2+\sqrt{2}}}{2}$	$\frac{\sqrt{2-\sqrt{2}}}{2}$	$\sqrt{2}+1$	$\sqrt{2}-1$
$\frac{5}{12}\pi$	75°	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	Æ	0

Nota: sono qui riportati solo gli archi del primo quadrante in quanto gli altri sono riconducibili a tale quadrante tramite gli archi associati (vedi $\S 2.4$).

3 Derivate

3.1 Derivate fondamentali ed altre notevoli

derivate fondamentali

f(x)	f'(x)
$k, k \in \mathbb{R}$	0
$x^{\alpha}, \alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$
$x^{\alpha}, \alpha \in \mathbb{R}$ a^{x} e^{x}	$a^x \log a$
e^x	e^x
$\log_a x$	$\frac{1}{x}\log_a e = \frac{1}{x\log a}$
$\log x $	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$

altre derivate notevoli

f(x)	f'(x)
$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$
$\cot x$	$-(1+\cot^2 x) = -\frac{1}{\sin^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$
$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$

4 Sviluppi in serie di Taylor

4.1 Principali sviluppi di McLaurin

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)}{n!} x^{n} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\tan x = x + \frac{x^{3}}{3} + o(x^{4})$$

$$\arcsin x = x + \frac{x^{3}}{6} + o(x^{4})$$

$$\arccos x = \frac{\pi}{2} - x - \frac{1}{6} x^{3} + o(x^{4})$$

$$\arccos x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

5 Integrali

5.1 Integrali indefiniti immediati (o quasi)

Integrali fondamentali

Altri integrali notevoli

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c, \ \alpha \neq -1$$

$$\int \frac{1}{x} dx = \log|x| + c$$

$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + c$$

$$\int a^{x} dx = \frac{a^{x}}{\log a} + c, \ a > 0 \land a \neq 1$$

$$\int f'(x) \cdot a^{f(x)} dx = \frac{a^{f(x)}}{\log a} + c, \ a > 0 \land a \neq 1$$

$$\int e^{x} dx = e^{x} + c$$

$$\int f'(x) \cdot e^{f(x)} dx = e^{f(x)} + c$$

$$\int \sin x dx = -\cos x + c$$

$$\int f'(x) \cdot \sin[f(x)] dx = -\cos[f(x)] + c$$

$$\int \cos x dx = \sin x + c$$

$$\int f'(x) \cdot \cos[f(x)] dx = \sin[f(x)] + c$$

$$\int \frac{1}{(\cos x)^{2}} dx = \tan x + c$$

$$\int \frac{f'(x)}{[\sin f(x)]^{2}} dx = -\cot[f(x)] + c$$

$$\int \frac{1}{\sqrt{1 - x^{2}}} dx = \arcsin x + c$$

$$\int \frac{f'(x)}{\sqrt{1 - [f(x)]^{2}}} dx = \arcsin[f(x)] + c$$

$$\int \frac{1}{1 + x^{2}} dx = \arctan x + c$$

$$\int \frac{f'(x)}{1 + [f(x)]^{2}} dx = \arctan[f(x)] + c$$

$$\int \frac{1}{1 + x^{2}} dx = \arctan x + c$$

$$\int \frac{f'(x)}{1 + [f(x)]^{2}} dx = \arctan[f(x)] + c$$

$$\int \frac{f'(x)}{1 + [f(x)]^{2}} dx = \arctan[f(x)] + c$$