- leading zeros permitted.
- E-represents 0.

A is regular. Construct a DFA M st L(M)=A.

$$\epsilon_{A}$$
 $\begin{cases}
11 & 3 \\
110 & 6 \\
1001 & 9 \\
1100 & 12
\end{cases}$

Let # oc - the number represented by String x in binary.

$$\# \in = 0$$

A= {xelois* | x represents a multiple of three in binory?

$$\hat{S}(0,x) = 0$$
 iff $\#x = 0 \mod 3$
 $\hat{S}(0,x) = 1$ iff $\#x = 1 \mod 3$
 $\hat{S}(0,x) = 2$ iff $\#x = 2 \mod 3$

$$\hat{S}(0,x) = \# \times \text{mod } 3. \leftarrow \text{To prove}$$

$$\#(x0) = 2(\#x)+0$$
 $\#(xc) = 2(\#x)+c$
 $\#(x1) = 2(\#x)+1$
 $\#(x1) = 2(\#x)+1$
 $\#(x1) = 2(\#x)+1$

$$\hat{S}(0, \text{SCC}) = \hat{S}(\hat{S}(0, x), C)$$

 $= \hat{S}(\# x \text{ mod } 3, C) \text{ [IH]}$

Bose case,
$$x = \epsilon$$
.
 $\hat{S}(0, \epsilon) = 0$ [def. \hat{g}]
$$= \pm \epsilon$$

= # E mod 3.

$$=(2(\#x)+c) \mod 3.$$