

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 18.56 psf (ASCE 7-05, Eq. 7-2) $I_s =$ 1.00 $C_s =$ 0.82 $C_e =$ 0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 15.70 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- portou	_	-1 000	applied and from the carriage.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

1.2D + 1.6S + 0.8W

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>590.87</u>	<u>5733.53</u>	k
Compressive Load =	3974.34	<u>4706.00</u>	k
Lateral Load =	<u>14.58</u>	3096.70	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 145037.7 in-lbs Resisting Force Required = 2197.54 lbs A minimum 132in long x 31in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3662.57 lbs to resist overturning. Minimum Width = Weight Provided = 6180.63 lbs Sliding Force = 744.13 lbs Use a 132in long x 31in wide x 18in tall Friction = 0.4 Weight Required = 1860.32 lbs ballast foundation to resist sliding. Resisting Weight = 6180.63 lbs Friction is OK. Additional Weight Required = Cohesion 744.13 lbs Sliding Force = Cohesion = 130 psf Use a 132in long x 31in wide x 18in tall 28.42 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3090.31 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D ·	+ 1.0S			1.0D+	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D+	+ 1.0W	
Width	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in
FA	1421 lbs	1421 lbs	1421 lbs	1421 lbs	1379 lbs	1379 lbs	1379 lbs	1379 lbs	1967 lbs	1967 lbs	1967 lbs	1967 lbs	-278 lbs	-278 lbs	-278 lbs	-278 lbs
FB	1411 lbs	1411 lbs	1411 lbs	1411 lbs	1968 lbs	1968 lbs	1968 lbs	1968 lbs	2404 lbs	2404 lbs	2404 lbs	2404 lbs	-2751 lbs	-2751 lbs	-2751 lbs	-2751 lbs
F _V	193 lbs	193 lbs	193 lbs	193 lbs	1346 lbs	1346 lbs	1346 lbs	1346 lbs	1137 lbs	1137 lbs	1137 lbs	1137 lbs	-1488 lbs	-1488 lbs	-1488 lbs	-1488 lbs
P _{total}	9012 lbs	9212 lbs	9411 lbs	9610 lbs	9527 lbs	9727 lbs	9926 lbs	10125 lbs	10552 lbs	10751 lbs	10950 lbs	11150 lbs	680 lbs	800 lbs	919 lbs	1039 lbs
M	3769 lbs-ft	3769 lbs-ft	3769 lbs-ft	3769 lbs-ft	3953 lbs-ft	3953 lbs-ft	3953 lbs-ft	3953 lbs-ft	5442 lbs-ft	5442 lbs-ft	5442 lbs-ft	5442 lbs-ft	3052 lbs-ft	3052 lbs-ft	3052 lbs-ft	3052 lbs-ft
е	0.42 ft	0.41 ft	0.40 ft	0.39 ft	0.41 ft	0.41 ft	0.40 ft	0.39 ft	0.52 ft	0.51 ft	0.50 ft	0.49 ft	4.49 ft	3.82 ft	3.32 ft	2.94 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	244.8 psf	243.9 psf	243.1 psf	242.4 psf	259.4 psf	258.1 psf	256.8 psf	255.7 psf	266.9 psf	265.3 psf	263.9 psf	262.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	389.5 psf	384.1 psf	379.1 psf	374.3 psf	411.2 psf	405.1 psf	399.4 psf	394.1 psf	475.8 psf	467.7 psf	460.1 psf	453.0 psf	173.5 psf	118.8 psf	102.2 psf	95.4 psf

Ballast Width

6181 lbs 6380 lbs 6579 lbs 6779 lbs

33 in

<u>34 in</u>

32 in

31 in

Maximum Bearing Pressure = 476 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.58 \text{ ft}) =$

Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1034.4 \text{ ft-lbs}$

 $\begin{array}{ccc} \text{Resisting Force Required =} & 800.83 \text{ lbs} \\ & \text{S.F. =} & 1.67 \end{array}$

Weight Required = 1334.72 lbs Minimum Width = 31 in in Weight Provided = 6180.63 lbs A minimum 132in long x 31in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		31 in			31 in			31 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	250 lbs	650 lbs	250 lbs	815 lbs	2349 lbs	815 lbs	73 lbs	190 lbs	73 lbs	
F _V	2 lbs	0 lbs	2 lbs	6 lbs	0 lbs	6 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	7901 lbs	6181 lbs	7901 lbs	8099 lbs	6181 lbs	8099 lbs	2310 lbs	6181 lbs	2310 lbs	
М	5 lbs-ft	0 lbs-ft	5 lbs-ft	19 lbs-ft	0 lbs-ft	19 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	
f _{min}	277.6 psf	217.5 psf	277.6 psf	283.5 psf	217.5 psf	283.5 psf	81.3 psf	217.5 psf	81.3 psf	
f _{max}	278.5 psf	217.5 psf	278.5 psf	286.5 psf	217.5 psf	286.5 psf	81.4 psf	217.5 psf	81.4 psf	

Maximum Bearing Pressure = 287 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 31in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.057 k	Maximum Axial Load = 3.876 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>41%</u>	Utilization = 52%
Diagonal Strut		
Maximum Axial Load =	2.062 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shea
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>28%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, } h_{sx} = & 46.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{sx} \\ 0.938 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.055 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 123 \text{ in}$$

$$J = 0.432$$

$$340.276$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 27.3 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 37.0588

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ lx &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \\ M_{max} St &= & 2.788 \text{ k-ft} \end{aligned}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 123 \\ J &= 0.432 \\ 216.395 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= 28.6 \end{split}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_{y}}{\theta_{b}} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_{0} = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$
 2.366 in^4
 $y = 43.717 \text{ mm}$

$$Sx = 1.375 \text{ in}^3$$

 $M_{max}St = 3.363 \text{ k-ft}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

S1 = 12.21

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$C2 \qquad \left(\frac{C_c}{c} \right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_b = \phi b [Bp-1.6Dp^*b/t]$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4$

3.4.16.1

$$Rb/t = 0.0$$

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

 $\phi F_1 =$

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 38.9 \text{ ksi}$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$

0.621 in³

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

x =

Sy =

 $M_{max}Wk = 1.460 \text{ k-ft}$

27.5 mm

0.621 in³

24.5

Sx=

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

3.4.16.1

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$\begin{split} \text{h/t} &= 24.5 \\ S1 &= \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= 36.9 \\ \text{m} &= 0.65 \\ \text{C}_0 &= 27.5 \\ \text{Cc} &= 27.5 \\ \text{S2} &= \frac{k_1 Bbr}{mDbr} \\ \text{S2} &= 77.3 \\ \text{\phiF}_L &= 1.3 \text{\phiyFcy} \\ \text{\phiF}_L &= 43.2 \text{ ksi} \end{split}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 3$$

$$\phi F_L = 30.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$

$$0.942$$
 98.9729

$$c_1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{\theta_b}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

(Rt 1.17
$$\theta_y$$
 Fm)²

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

3.4.18

h/t =

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

24.5

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ lx = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ y = & 27.5 \text{ mm} \\ Sx = & 0.621 \text{ in}^3 \\ M_{max} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ & \text{ly} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 1.3 \phi y F c y$

43.2 ksi

 $\phi F_L =$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \textbf{\phic}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-48.164	-48.164	0	0
2	M14	٧	-48.164	-48.164	0	0
3	M15	V	-74.435	-74.435	0	0
4	M16	٧	-74.435	-74.435	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	109.464	109.464	0	0
2	M14	V	83.192	83.192	0	0
3	M15	V	43.785	43.785	0	0
4	M16	V	43 785	43.785	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	590.062	2	1105.966	2	.768	1	.004	1	Ö	1	Ó	1
2		min	-750.994	3	-1345.983	3	.037	15	0	15	0	1	0	1
3	N7	max	.039	9	1133.644	1	478	15	0	15	0	1	0	1
4		min	146	2	-113.203	3	-11.217	1	023	1	0	1	0	1
5	N15	max	.029	9	3057.185	1_	0	10	0	3	0	1	0	1
6		min	-1.738	2	-454.517	3	0	1	0	12	0	1	0	1
7	N16	max	2220.811	2	3620.003	2	0	3	0	3	0	1	0	1
8		min	-2382.08	3	-4410.408	3	0	2	0	2	0	1	0	1
9	N23	max	.039	9	1133.644	1	11.217	1	.023	1	0	1	0	1
10		min	146	2	-113.203	3	.478	15	0	15	0	1	0	1
11	N24	max	590.062	2	1105.966	2	037	15	0	15	0	1	0	1
12		min	-750.994	3	-1345.983	3	768	1	004	1	0	1	0	1
13	Totals:	max	3398.905	2	10912.369	1	0	10	·		·		·	
14		min	-3884.459	3	-7783.299	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	114.157	1	446.2	1	-7.455	15	0	3	.273	1	0	1
2			min	4.725	15	-654.829	3	-180.925	1	013	2	.011	15	0	3
3		2	max	114.157	1	312.637	1	-5.735	15	0	3	.09	1	.635	3
4			min	4.725	15	-460.892	3	-139.106	1	013	2	.004	15	432	1
5		3	max	114.157	1	179.074	1	-4.015	15	0	3	0	3	1.05	3
6			min	4.725	15	-266.955	3	-97.287	1	013	2	044	1	712	1
7		4	max	114.157	1	45.511	1	-2.296	15	0	3	004	12	1.243	3
8			min	4.725	15	-73.019	3	-55.469	1	013	2	131	1	84	1
9		5	max	114.157	1	120.918	3	576	15	0	3	007	12	1.216	3
10			min	4.725	15	-88.052	1	-13.65	1	013	2	171	1	816	1
11		6	max	114.157	1	314.854	3	28.169	1	0	3	007	15	.968	3
12			min	4.725	15	-221.616	1	.553	12	013	2	162	1	639	1
13		7	max	114.157	1	508.791	3	69.987	1	0	3	004	15	.499	3
14			min	4.725	15	-355.179	1	2.273	12	013	2	106	1	311	1
15		8	max	114.157	1	702.727	3	111.806	1	0	3	0	10	.17	1
16			min	4.725	15	-488.742	1	3.992	12	013	2	003	3	191	3
17		9	max	114.157	1	896.664	3	153.625	1	0	3	.148	1	.802	1
18			min	4.725	15	-622.305	1	5.712	12	013	2	.004	12	-1.102	3
19		10	max	114.157	1	755.868	1	-7.431	12	0	3	.347	1	1.587	1
20			min	4.725	15	-1090.6	3	-195.443	1	013	2	.011	12	-2.233	3
21		11	max	114.157	1	622.305	1	-5.712	12	.013	2	.148	1	.802	1
22			min	4.725	15	-896.664	3	-153.625	1	0	3	.004	12	-1.102	3
23		12	max	114.157	1	488.742	1	-3.992	12	.013	2	0	10	.17	1
24			min	4.725	15	-702.727	3	-111.806	1	0	3	003	3	191	3
25		13	max	114.157	1	355.179	1	-2.273	12	.013	2	004	15	.499	3
26			min	4.725	15	-508.791	3	-69.987	1	0	3	106	1	311	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14		114.157	1	221.616	1	553	12	.013	2	007	15	.968	3
28			min	4.725	15	-314.854	3	-28.169	1	0	3	162	1	639	1
29		15	max	114.157	1	88.052	_1_	13.65	1_	.013	2	007	12	1.216	3
30			min	4.725	15	-120.918	3	.576	15	0	3	171	1	816	1
31		16	max	114.157	1	73.019	3	55.469	1	.013	2	004	12	1.243	3
32			min	4.725	15	-45.511	1	2.296	15	0	3	131	1	84	1
33		17	max	114.157	1	266.955	3	97.287	1	.013	2	0	3	1.05	3
34			min	4.725	15	-179.074	1	4.015	15	0	3	044	1	712	1
35		18	max	114.157	1	460.892	3	139.106	1	.013	2	.09	1	.635	3
36			min	4.725	15	-312.637	1	5.735	15	0	3	.004	15	432	1
37		19	max	114.157	1	654.829	3	180.925	1	.013	2	.273	1	0	1
38			min	4.725	15	-446.2	1	7.455	15	0	3	.011	15	0	3
39	M14	1	max	52.206	1	470.915	1	-7.681	15	.008	3	.31	1	0	1
40			min	2.165	15	-506.443	3	-186.42	1	01	2	.013	15	0	3
41		2	max	52.206	1	337.352	1	-5.961	15	.008	3	.122	1	.494	3
42			min	2.165	15	-360.38	3	-144.602	1	01	2	.005	15	46	1
43		3	max	52.206	1	203.789	1	-4.241	15	.008	3	.003	3	.821	3
44		3		2.165	15	-214.317	3	-102.783	1	01	2	019	1	768	1
		4	min			70.226	1	-2.522	15		3		12		
45		4	max	52.206	1					.008		004		.982	3
46		-	min	2.165	15	-68.254	3	-60.964	1_	01	2	113	1	924	1
47		5	max	52.206	1	77.809	3	802	15	.008	3	006	12	.976	3
48			min	2.165	15	-63.337	1	-19.146	1_	01	2	158	1	<u>928</u>	1
49		6	max	52.206	1	223.872	3	22.673	1	.008	3	006	15	.805	3
50			min	2.165	15	-196.9	1_	.336	12	01	2	156	1	78	1
51		7	max	52.206	1	369.936	3	64.492	1_	.008	3	004	15	.466	3
52			min	2.165	15	-330.464	_1_	2.056	12	01	2	107	1	48	1
53		8	max	52.206	1	515.999	3	106.31	1	.008	3	0	10	0	15
54			min	2.165	15	-464.027	1	3.775	12	01	2	009	1	038	3
55		9	max	52.206	1	662.062	3	148.129	1	.008	3	.136	1	.577	1
56			min	2.165	15	-597.59	1	5.494	12	01	2	.003	12	709	3
57		10	max	52.206	1	731.153	1	-7.214	12	.008	3	.328	1	1.334	1
58			min	2.165	15	-808.125	3	-189.948	1	01	2	.01	12	-1.546	3
59		11	max	52.206	1	597.59	1	-5.494	12	.01	2	.136	1	.577	1
60			min	2.165	15	-662.062	3	-148.129	1	008	3	.003	12	709	3
61		12	max	52.206	1	464.027	1	-3.775	12	.01	2	0	10	0	15
62			min	2.165	15	-515.999	3	-106.31	1	008	3	009	1	038	3
63		13	max	52.206	1	330.464	1	-2.056	12	.01	2	004	15	.466	3
64			min	2.165	15	-369.936	3	-64.492	1	008	3	107	1	48	1
65		14	max	52.206	1	196.9	1	336	12	.01	2	006	15	.805	3
66			min	2.165	15	-223.872	3	-22.673	1	008	3	156	1	78	1
67		15	max		1	63.337	1	19.146	1	.01	2	006	12	.976	3
68		13	min	2.165	15	-77.809	3	.802	15	008	3	158	1	928	1
69		16	max	52.206	1	68.254	3	60.964	1	.01	2	004	12	.982	3
70		10	min	2.165	15	-70.226	1	2.522	15	008	3	113	1	924	1
71		17		52.206	1	214.317	3	102.783	1	.01	2	.001	3	<u>924</u> .821	3
72		17	max	2.165		-203.789	1	4.241	15		3	019	1		1
		10	min		15			144.602		008			_	768	
73		18	max	52.206	1	360.38	3		1_15	.01	2	.122	1	.494	3
74		40	min	2.165	15	-337.352	1	5.961	<u>15</u>	008	3	.005	15	46	1
75		19	max	52.206	1	506.443	3	186.42	1_	.01	2	.31	1	0	1
76	NAA C	4	min	2.165	15	-470.915	1	7.681	15	008	3	.013	15	0	3
77	M15	1	max	-2.28	15	601	2	-7.679	15	.01	2	.31	1	0	2
78			min	-54.944	1	-264.286	3	-186.393	1_	007	3	.013	15	0	15
79		2	max	-2.28	15	428.932	2	-5.959	15	.01	2	.121	1	.259	3
80			min	-54.944	1	-190.031	3	-144.575	1_	007	3	.005	15	586	2
81		3	max	-2.28	15	256.865	2	-4.24	15	.01	2	.001	3	.433	3
82			min	-54.944	1	-115.777	3	-102.756		007	3	019	1	977	2
83		4	max	-2.28	15	84.798	2	-2.52	15	.01	2	004	12	.522	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-54.944	1	-41.522	3	-60.937	1	007	3	113	1	-1.172	2
85		5	max	-2.28	15	32.733	3	8	15	.01	2	006	12	.527	3
86			min	-54.944	1	-87.269	2	-19.119	1	007	3	158	1	-1.17	2
87		6	max	-2.28	15	106.988	3	22.7	1	.01	2	006	15	.448	3
88			min	-54.944	1	-259.336	2	.382	12	007	3	156	1	973	2
89		7	max	-2.28	15	181.243	3	64.519	1	.01	2	004	15	.284	3
90			min	-54.944	1	-431.403	2	2.102	12	007	3	107	1	579	2
91		8	max	-2.28	15	255.498	3	106.337	1	.01	2	0	10	.035	3
92			min	-54.944	1	-603.471	2	3.821	12	007	3	009	1	007	9
93		9	max	-2.28	15	329.752	3	148.156	1	.01	2	.136	1	.795	2
94		9	min	-54.944	1	-775.538	2	5.541	12	007	3	.003	12	298	3
95		10		-2.28	15	947.605	2	-7.26	12	.01	2	.328	1	1.776	2
96		10	max	- <u>54.944</u>	1	-404.007	3	-189.975	1	007	3	.011	12	716	3
		44	min		_										
97		11	max	-2.28	15	775.538	2	-5.541	12	.007	3	.136	1	.795	2
98		40	min	-54.944	1_	-329.752	3	-148.156	1	01	2	.003	12	298	3
99		12	max	-2.28	15	603.471	2	-3.821	12	.007	3	0	<u>10</u>	.035	3
100			min	-54.944	1_	-255.498	3	-106.337	1_	01	2	009	<u>1</u>	007	9
101		13	max	-2.28	15	431.403	2	-2.102	12	.007	3	004	15	.284	3
102			min	-54.944	1	-181.243	3	-64.519	1	01	2	107	1_	579	2
103		14	max	-2.28	15	259.336	2	382	12	.007	3	006	<u>15</u>	.448	3
104			min	-54.944	1	-106.988	3	-22.7	1	01	2	156	1	973	2
105		15	max	-2.28	15	87.269	2	19.119	1	.007	3	006	12	.527	3
106			min	-54.944	1	-32.733	3	.8	15	01	2	158	1	-1.17	2
107		16	max	-2.28	15	41.522	3	60.937	1	.007	3	004	12	.522	3
108			min	-54.944	1	-84.798	2	2.52	15	01	2	113	1	-1.172	2
109		17	max	-2.28	15	115.777	3	102.756	1	.007	3	.001	3	.433	3
110			min	-54.944	1	-256.865	2	4.24	15	01	2	019	1	977	2
111		18	max	-2.28	15	190.031	3	144.575	1	.007	3	.121	1	.259	3
112			min	-54.944	1	-428.932	2	5.959	15	01	2	.005	15	586	2
113		19	max	-2.28	15	264.286	3	186.393	1	.007	3	.31	1	0	2
114		10	min	-54.944	1	-601	2	7.679	15	01	2	.013	15	0	15
115	M16	1	max	-5.051	15	576.735	2	-7.462	15	.011	1	.274	1	0	2
116	IVITO		min	-121.869	1	-246.802	3	-181.164	1	01	3	.011	15	0	3
117		2		-5.051	15	404.668	2	-5.742	15	.011	1	.092	1	.239	3
118			max	-121.869	1	-172.547	3	-139.346	1		3				2
		2	min		_					01		.004	15	<u>559</u>	
119		3	max	-5.051	15	232.601	2	-4.022	15	.011	1	0	12	.393	3
120		-	min	-121.869	1_	-98.293	3	-97.527	1_	01	3	043	1_	922	2
121		4	max	-5.051	15	60.534	2	-2.303	15	.011	1	005	12	.463	3
122		_	min	-121.869	1_	-24.038	3	-55.708	1_	01	3	131	1_	-1.089	2
123		5	max	-5.051	15	50.217	3	583	15	.011	1	007	12	.448	3
124				-121.869	1	-111.533		-13.89	1	01	3	17	_1_	-1.06	2
125		6	max		15	124.472	3	27.929	1	.011	1	007	15	.348	3
126			min		1	-283.601	2	.706	12	01	3	162	1_	835	2
127		7	max		15	198.727	3	69.748	1	.011	1	004	15	.164	3
128			min			-455.668	2	2.426	12	01	3	107	1	414	2
129		8	max		15	272.981	3	111.566	1	.011	1	0	10	.203	2
130			min	-121.869	1	-627.735	2	4.145	12	01	3	003	1	104	3
131		9	max	-5.051	15	347.236	3	153.385	1	.011	1	.148	1	1.016	2
132			min	-121.869		-799.802	2	5.865	12	01	3	.004	12	458	3
133		10	max		15	971.869	2	-7.584	12	.011	1	.346	1	2.025	2
134				-121.869		-421.491	3	-195.204		01	3	.012	12	895	3
135		11	max		15	799.802	2	-5.865	12	.01	3	.148	1	1.016	2
136			min		1	-347.236	3	-153.385		011	1	.004	12	458	3
137		12	max		15	627.735	2	-4.145	12	.01	3	0	10	.203	2
138		14	min			-272.981	3	-111.566		011	1	003	1	104	3
139		13	max		15	455.668	2	-2.426	12	.01	3	004	15	.164	3
140		10			1			-69.748	1	011	1	107	1		2
140			min	-121.009		-198.727	3	-09.748		011		107		414	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
141		14	max	-5.051	15	283.601	2	706	12	.01	3	007	15	.348	3
142			min	-121.869	1	-124.472	3	-27.929	1	011	1	162	1_	835	2
143		15	max	-5.051	15	111.533	2	13.89	1	.01	3	007	12	.448	3
144			min	-121.869	1	-50.217	3	.583	15	011	1	17	1	-1.06	2
145		16	max	-5.051	15	24.038	3	55.708	1	.01	3	005	12	.463	3
146			min	-121.869	1	-60.534	2	2.303	15	011	1	131	1	-1.089	2
147		17	max	-5.051	15	98.293	3	97.527	1	.01	3	0	12	.393	3
148			min	-121.869	1	-232.601	2	4.022	15	011	1	043	1	922	2
149		18	max	-5.051	15	172.547	3	139.346	1	.01	3	.092	1	.239	3
150			min	-121.869	1	-404.668	2	5.742	15	011	1	.004	15	559	2
151		19	max	-5.051	15	246.802	3	181.164	1	.01	3	.274	1	0	2
152			min	-121.869	1	-576.735	2	7.462	15	011	1	.011	15	0	3
153	M2	1		1004.261	1	1.921	4	.736	1	0	5	0	3	0	1
154	1412		min	-1183.035	3	.452	15	.03	15	0	1	0	1	0	1
155		2		1004.689	1	1.864	4	.736	1	0	5	0	1	0	15
156			min	-1182.714	3	.439	15	.03	15	0	1	0	15	0	4
157		3	max		1	1.807	4	.736	1	0	5	0	1	0	15
158			min	-1182.393	3	.426	15	.03	15	0	1	0	15	001	4
		4					4						1		_
159		4		1005.546	1	1.75	_	.736	1	0	5	0		0	15
160		_	min	-1182.071	3	.412	15	.03	15	0	1	0	15	002	4
161		5		1005.974	1	1.694	4	.736	1	0	5	0	1	0	15
162			min	-1181.75	3	.399	15	.03	15	0	1_	0	15	002	4
163		6		1006.403	1	1.637	4	.736	1_	0	5	.001	1	0	15
164			min	-1181.429	3	.386	15	.03	15	0	1	0	15	003	4
165		7		1006.831	1_	1.58	4	.736	1_	0	5	.001	1_	0	15
166			min	-1181.107	3	.372	15	.03	15	0	1	0	15	003	4
167		8	max	1007.26	1	1.523	4	.736	1_	0	5	.001	1	0	15
168			min	-1180.786	3	.359	15	.03	15	0	1	0	15	004	4
169		9	max	1007.688	1	1.466	4	.736	1	0	5	.002	1	0	15
170			min	-1180.465	3	.346	15	.03	15	0	1	0	15	004	4
171		10	max	1008.117	1	1.41	4	.736	1	0	5	.002	1	001	15
172			min	-1180.143	3	.332	15	.03	15	0	1	0	15	004	4
173		11	max	1008.545	1	1.353	4	.736	1	0	5	.002	1	001	15
174			min	-1179.822	3	.319	15	.03	15	0	1	0	15	005	4
175		12	max	1008.974	1	1.296	4	.736	1	0	5	.002	1	001	15
176			min	-1179.5	3	.305	15	.03	15	0	1	0	15	005	4
177		13	max	1009.402	1	1.239	4	.736	1	0	5	.003	1	001	15
178			min	-1179.179	3	.292	15	.03	15	0	1	0	15	006	4
179		14		1009.831	1	1.182	4	.736	1	0	5	.003	1	001	15
180			min	-1178.858	3	.273	12	.03	15	0	1	0	15	006	4
181		15		1010.259	1	1.126	4	.736	1	0	5	.003	1	001	15
182			min		3	.251	12	.03	15	0	1	0	15	006	4
183		16		1010.688	1	1.069	4	.736	1	0	5	.003	1	002	15
184				-1178.215	3	.229	12	.03	15	0	1	0	15	007	4
185		17		1011.116	1	1.012	4	.736	1	0	5	.003	1	007	15
186		17	min	-1177.894	3	.207	12	.03	15	0	1	0	15	002	4
187		18		1011.545	1	.965	2	.736	1	0	5	.004	1	007	15
188		10	min	-1177.572	3	.184	12	.03	15	0	1	.004	15	002	4
189		10		1011.973		.921	2	.736	1		5	_	1		15
		19		-1177.251	1					0		.004		002	
190	MAG	4	min		3	.162	12	.03	15	0	1	0	15	007	4
191	<u>M3</u>	1		511.408	2	7.882	4	.167	1	0	5	0	1_	.007	4
192			min		3	1.853	15	.007	15	0	1	0	15	.002	15
193		2	max		2	7.115	4	.167	1	0	5	0	1	.004	2
194			min		3	1.673	15	.007	15	0	1	0	15	0	12
195		3		511.067	2	6.347	4	.167	1	0	5	0	1	.002	2
196			min			1.493	15	.007	15	0	1	0	15	0	3
197		4	max	510.897	2	5.58	4	.167	1	0	5	0	1	0	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
198			min	-654.306	3	1.312	15	.007	15	0	1	0	15	002	3
199		5	max		2	4.813	4	.167	1	0	5	0	1	0	15
200			min	-654.433	3	1.132	15	.007	15	0	1	0	15	003	4
201		6	max	510.556	2	4.046	4	.167	1	0	5	0	1	001	15
202			min	-654.561	3	.952	15	.007	15	0	1	0	15	005	4
203		7	max	510.386	2	3.278	4	.167	1	0	5	0	1	002	15
204			min	-654.689	3	.771	15	.007	15	0	1	0	15	007	4
205		8	max	510.215	2	2.511	4	.167	1	0	5	0	1	002	15
206			min	-654.817	3	.591	15	.007	15	0	1	0	15	008	4
207		9	max	510.045	2	1.744	4	.167	1	0	5	0	1	002	15
208			min	-654.945	3	.411	15	.007	15	0	1	0	15	009	4
209		10	max	509.875	2	.977	4	.167	1	0	5	.001	1	002	15
210			min	-655.072	3	.23	15	.007	15	0	1	0	15	009	4
211		11	max	509.704	2	.316	2	.167	1	0	5	.001	1	002	15
212			min	-655.2	3	086	3	.007	15	0	1	0	15	01	4
213		12	max	509.534	2	131	15	.167	1	0	5	.001	1	002	15
214			min	-655.328	3	558	4	.007	15	0	1	0	15	01	4
215		13	max	509.364	2	311	15	.167	1	0	5	.001	1	002	15
216			min	-655.456	3	-1.325	4	.007	15	0	1	0	15	009	4
217		14	max	509.193	2	491	15	.167	1	0	5	.001	1	002	15
218			min	-655.583	3	-2.092	4	.007	15	0	1	0	15	008	4
219		15	max	509.023	2	672	15	.167	1	0	5	.001	1	002	15
220			min	-655.711	3	-2.859	4	.007	15	0	1	0	15	007	4
221		16	max	508.853	2	852	15	.167	1	0	5	.001	1	001	15
222			min	-655.839	3	-3.627	4	.007	15	0	1	0	15	006	4
223		17	max	508.682	2	-1.032	15	.167	1	0	5	.002	1	001	15
224			min	-655.967	3	-4.394	4	.007	15	0	1	0	15	004	4
225		18	max	508.512	2	-1.213	15	.167	1	0	5	.002	1	0	15
226			min	-656.094	3	-5.161	4	.007	15	0	1	0	15	002	4
227		19	max	508.342	2	-1.393	15	.167	1	0	5	.002	1	0	1
228			min	-656.222	3	-5.928	4	.007	15	0	1	0	15	0	1
229	M4	1		1130.578	1	0	1	479	15	0	1	.001	1	0	1
230	141 1		min	-115.503	3	0	1	-11.601	1	0	1	0	15	0	1
231		2		1130.748	1	0	1	479	15	0	1	0	3	0	1
232			min	-115.375	3	0	1	-11.601	1	0	1	0	1	0	1
233		3		1130.919	1	0	1	479	15	0	1	0	15	0	1
234			min	-115.248	3	0	1	-11.601	1	0	1	001	1	0	1
235		4		1131.089	1	0	1	479	15	0	1	0	15	0	1
236			min	-115.12	3	0	1	-11.601	1	0	1	003	1	0	1
237		5		1131.259	1	0	1	479	15	0	1	0	15	0	1
238			min		3	0	1	-11.601	1	0	1	004	1	0	1
239		6		1131.43	<u> </u>	0	1	479	15	0	1	0	15	0	1
240			min		3	0	1	-11.601	1	0	1	005	1	0	1
241		7	max		<u> </u>	0	1	479	15	0	1	005 0	15	0	1
241			min		3	0	1	-11.601	1	0	1	007	1	0	1
243		8		1131.77	<u> </u>	0	1	479	15	0	1	007 0	15	0	1
244		0		-114.609	3	0	1	-11.601	1	0	1	008	1	0	1
244		9			1		1	479	15		1	008 0	15	0	1
		1 3		1131.941 -114.481	3	0	1	-11.601	15	0	1	009	15	0	1
246 247		10	min	1132.111	_	_	1		15	_	1		15		1
		10			<u>1</u> 3	0	1	479	15	0	1	011	15	0	1
248		4.4		-114.353				-11.601			•				
249		11		1132.281	1	0	1	479	15	0	1	0	15	0	1
250		40		-114.225	3_4	0	1	-11.601	1_	0	1	012	1	0	1
251		12		1132.452	1	0	1	479	15	0	1	0	15	0	1
252		40			3	0	1	-11.601	1	0	1	013	1	0	1
253		13		1132.622	1_	0	1	479	15	0	1	0	15	0	1
254			min	-113.97	3	0	1	-11.601	1	0	1	015	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14		1132.792	1	0	1	479	<u>15</u>	0	<u>1</u> 1	0	15 1	0	1
256 257		15		-113.842 1132.963	<u>3</u> 1	0	1	-11.601 479	<u>1</u> 15	0	1	016 0	15	<u> </u>	1
258		13		-113.714	3	0	1	-11.601	1	0	1	017	1	0	1
259		16		1133.133	<u> </u>	0	1	479	15	0	1	0	15	0	1
260		10		-113.587	3	0	1	-11.601	1	0	1	019	1	0	1
261		17		1133.303	1	0	1	479	15	0	1	0	15	0	1
262				-113.459	3	0	1	-11.601	1	0	1	02	1	0	1
263		18		1133.474	1	0	1	479	15	0	1	0	15	0	1
264				-113.331	3	0	1	-11.601	1	0	1	021	1	0	1
265		19	max	1133.644	1	0	1	479	15	0	1	0	15	0	1
266			min	-113.203	3	0	1	-11.601	1	0	1	023	1	0	1
267	M6	1		3234.985	_1_	2.299	2	0	1	0	1	0	1	0	1
268				-3876.324	3	.143	12	0	1	0	1	0	1	0	1
269		2		3235.414	_1_	2.254	2	0	_1_	0	1	0	1	00	12
270			min		3	.12	3	0	1_	0	1	0	1	0	2
271		3		3235.842	_1_	2.21	2	0	1_	0	1	0	1	0	3
272				-3875.681	3	.087	3	0	_1_	0	1_	0	1	001	2
273		4		3236.271	1_	2.166	2	0	1_	0	1	0	1	0	3
274		_		-3875.36	3	.054	3	0	1_	0	1_	0	1	002	2
275		5		3236.699	1	2.122	2	0	1	0	1	0	1	0	3
276		6	min	-3875.038 3237.128	<u>3</u> 1	.021	3	0	<u>1</u> 1	0	<u>1</u> 1	0	1	003 0	3
277 278		О		-3874.717	3	2.077 013	3	0	1	0	1	0	1	003	2
279		7		3237.556	<u>ა</u> 1	2.033	2	0	1	0	1	0	1	<u>003</u> 0	3
280			min		3	046	3	0	1	0	1	0	1	004	2
281		8	_	3237.985	1	1.989	2	0	1	0	1	0	1	0	3
282				-3874.074	3	079	3	0	1	0	1	0	1	004	2
283		9		3238.413	1	1.945	2	0	1	0	1	0	1	<u>.00-</u>	3
284			min	-3873.753	3	112	3	0	1	0	1	0	1	005	2
285		10		3238.842	1	1.9	2	0	1	0	1	0	1	0	3
286			min	-3873.432	3	145	3	0	1	0	1	0	1	005	2
287		11	max	3239.27	1	1.856	2	0	1	0	1	0	1	0	3
288			min	-3873.11	3	178	3	0	1	0	1	0	1	006	2
289		12	max	3239.699	_1_	1.812	2	0	_1_	0	1	0	1	0	3
290			min		3	212	3	0	1_	0	1	0	1	007	2
291		13		3240.127	_1_	1.768	2	0	_1_	0	_1_	0	1	0	3
292				-3872.467	3	245	3	0	_1_	0	1_	0	1	007	2
293		14		3240.556	_1_	1.723	2	0	1_	0	1	0	1	0	3
294		4.5		-3872.146	3	278	3	0	1_	0	1_	0	1	008	2
295		15		3240.984	1_	1.679	2	0	1	0	1	0	1	0	3
296		16	min	-3871.825 3241.413	3	311	2	0	<u>1</u> 1	0	<u>1</u> 1	0	1	008	2
297 298		16		-3871.503	<u>1</u> 3	1.635 344	3	0	1	0	1	0	1	0 009	2
299		17		3241.841	<u> </u>	1.591	2	0	1	0	1	0	1	<u>009</u> 0	3
300		17	min		3	378	3	0	1	0	1	0	1	009	2
301		18	_	3242.27	1	1.546	2	0	1	0	1	0	1	0	3
302				-3870.861	3	411	3	0	1	0	1	0	1	009	2
303		19		3242.698	1	1.502	2	0	1	0	1	0	1	0	3
304				-3870.539	3	444	3	0	1	0	1	0	1	01	2
305	M7	1		1980.948	2	7.918	4	0	1	0	1	0	1	.01	2
306			min	-2059.842	3	1.859	15	0	1	0	1	0	1	0	3
307		2		1980.778	2	7.151	4	0	1	0	1	0	1	.007	2
308				-2059.97	3	1.678	15	0	1	0	1	0	1	002	3
309		3	max	1980.608	2	6.384	4	0	1	0	1	0	1	.005	2
310			min		3	1.498	15	0	1	0	1	0	1	004	3
311		4	max	1980.437	2	5.617	4	0	1_	0	1	0	1	.003	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2060.225	3	1.318	15	0	1	0	1	0	1	005	3
313		5	max	1980.267	2	4.85	4	0	1	0	1	0	_1_	0	2
314			min	-2060.353	3	1.137	15	0	1	0	1	0	1	006	3
315		6	max	1980.096	2	4.082	4	0	1	0	1	0	1	0	2
316			min	-2060.481	3	.957	15	0	1	0	1	0	1	007	3
317		7	max		2	3.315	4	0	1	0	1	0	1	002	15
318			min	-2060.608	3	.777	15	0	1	0	1	0	1	007	3
319		8	max	1979.756	2	2.548	4	0	1	0	1	0	1	002	15
320			min	-2060.736	3	.559	12	0	1	0	1	0	1	008	4
321		9	max		2	1.915	2	0	1	0	1	0	1	002	15
322			min	-2060.864	3	.26	12	0	1	0	1	0	1	009	4
323		10	max	1979.415	2	1.317	2	0	1	0	1	0	1_	002	15
324			min	-2060.992	3	101	3	0	1	0	1	0	1	009	4
325		11	max	1979.245	2	.719	2	0	1	0	1	0	1	002	15
326			min	-2061.119	3	549	3	0	1	0	1	0	1	009	4
327		12	max	1979.074	2	.121	2	0	1	0	1	0	1	002	15
328			min	-2061.247	3	997	3	0	1	0	1	0	1	009	4
329		13	max	1978.904	2	306	15	0	1	0	1	0	1	002	15
330			min	-2061.375	3	-1.446	3	0	1	0	1	0	1	009	4
331		14	max	1978.734	2	486	15	0	1	0	1	0	1	002	15
332			min	-2061.503	3	-2.055	4	0	1	0	1	0	1	008	4
333		15	max	1978.563	2	666	15	0	1	0	1	0	1	002	15
334			min	-2061.63	3	-2.823	4	0	1	0	1	0	1	007	4
335		16	max	1978.393	2	847	15	0	1	0	1	0	1	001	15
336			min	-2061.758	3	-3.59	4	0	1	0	1	0	1	006	4
337		17	max	1978.223	2	-1.027	15	0	1	0	1	0	1	001	15
338			min	-2061.886	3	-4.357	4	0	1	0	1	0	1	004	4
339		18	max	1978.052	2	-1.207	15	0	1	0	1	0	1	0	15
340			min	-2062.014	3	-5.124	4	0	1	0	1	0	1	002	4
341		19	max	1977.882	2	-1.388	15	0	1	0	1	0	1	0	1
342			min	-2062.142	3	-5.892	4	0	1	0	1	0	1	0	1
343	M8	1	max	3054.119	1	0	1	0	1	0	1	0	1	0	1
344			min	-456.817	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3054.289	1	0	1	0	1	0	1	0	1	0	1
346			min	-456.689	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3054.46	1	0	1	0	1	0	1	0	1	0	1
348			min	-456.562	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3054.63	1	0	1	0	1	0	1	0	1	0	1
350			min	-456.434	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3054.8	1	0	1	0	1	0	1	0	1	0	1
352			min	-456.306	3	0	1	0	1	0	1	0	1	0	1
353		6		3054.971	1	0	1	0	1	0	1	0	1	0	1
354			min	-456.178	3	0	1	0	1	0	1	0	1	0	1
355		7		3055.141	1	0	1	0	1	0	1	0	1	0	1
356				-456.051	3	0	1	0	1	0	1	0	1	0	1
357		8		3055.311	1	0	1	0	1	0	1	0	1	0	1
358				-455.923	3	0	1	0	1	0	1	0	1	0	1
359		9		3055.482	1	0	1	0	1	0	1	0	1	0	1
360				-455.795	3	0	1	0	1	0	1	0	1	0	1
361		10		3055.652	1	0	1	0	1	0	1	0	1	0	1
362		1.0		-455.667	3	0	1	0	1	0	1	0	1	0	1
363		11		3055.822	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3055.993	1	0	1	0	1	0	1	0	1	0	1
366		12	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3056.163	<u> </u>	0	1	0	1	0	1	0	1	0	1
368		1.0	min		3	0	1	0	1	0	1	0	1	0	1
000			111111	100.204								•			

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

369 14 max 3056.333 1 0 1 0 1 0 1 0 1 370 min -455.156 3 0 1 0 1 0 1 0 1 371 15 max 3056.504 1 0 1 0 1 0 1 0 1 372 min -455.029 3 0 1 0 1 0 1 0 1 0 1 373 16 max 3056.674 1 0 1 0 1 0 1 0 1 0 1 374 min -454.901 3 0 1 0 1 0 1 0 1 0 1 375 17 max 3056.844 1 0 1 0 1 0 1 0 1 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
371 15 max 3056.504 1 0 1 0 1 0 1 0 1 372 min -455.029 3 0 1 0 1 0 1 0 1 373 16 max 3056.674 1 0 1 0 1 0 1 0 1 374 min -454.901 3 0 1 0 1 0 1 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1
372 min -455.029 3 0 1 0 1 0 1 0 1 373 16 max 3056.674 1 0 1 0 1 0 1 0 1 374 min -454.901 3 0 1 0 1 0 1 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1
373	0 1 0 1 0 1 0 1 0 1 0 1
374 min -454.901 3 0 1 0 1 0 1	0 1 0 1 0 1 0 1 0 1
	0 1 0 1 0 1 0 1
375 17 max 3056.844 1 0 1 0 1 0 1 0 1	0 1 0 1 0 1
	0 1 0 1
376 min -454.773 3 0 1 0 1 0 1 0 1	0 1
377 18 max 3057.015 1 0 1 0 1 0 1 0 1	
378 min -454.645 3 0 1 0 1 0 1 0 1	0 1
379 19 max 3057.185 1 0 1 0 1 0 1 0 1	
380 min -454.517 3 0 1 0 1 0 1 0 1	0 1
381 M10 1 max 1004.261 1 1.921 403 15 0 1 0 1	0 1
382 min -1183.035 3 .452 15736 1 0 5 0 3	0 1
383 2 max 1004.689 1 1.864 403 15 0 1 0 15	0 15
384 min -1182.714 3 .439 15736 1 0 5 0 1	0 4
385 3 max 1005.117 1 1.807 403 15 0 1 0 15	0 15
386 min -1182.393 3 .426 15736 1 0 5 0 1	001 4
387 4 max 1005.546 1 1.75 403 15 0 1 0 15	0 15
388 min -1182.071 3 .412 15736 1 0 5 0 1	002 4
389 5 max 1005.974 1 1.694 403 15 0 1 0 15	0 15
390 min -1181.75 3 .399 15736 1 0 5 0 1	002 4
391 6 max 1006.403 1 1.637 403 15 0 1 0 15	0 15
392 min -1181.429 3 .386 15736 1 0 5001 1	003 4
393 7 max 1006.831 1 1.58 403 15 0 1 0 15	0 15
394 min -1181.107 3 .372 15736 1 0 5001 1	003 4
395 8 max 1007.26 1 1.523 403 15 0 1 0 15	0 15
396 min -1180.786 3 .359 15736 1 0 5001 1	004 4
397 9 max 1007.688 1 1.466 403 15 0 1 0 15	0 15
398 min -1180.465 3 .346 15736 1 0 5002 1	004 4
399 10 max 1008.117 1 1.41 403 15 0 1 0 15	001 15
400 min -1180.143 3 .332 15736 1 0 5002 1	004 4
401	004 4
402 min -1179.822 3 .319 15736 1 0 5002 1	005 4
	003 4
403	005 4
	001 15 006 4
	001 15
100 1210 12 1100 1	006 4
409	001 15
410 min -1178.536 3 .251 12736 1 0 5003 1	006 4
411 16 max 1010.688 1 1.069 403 15 0 1 0 15	002 15
412 min -1178.215 3 .229 12736 1 0 5003 1	007 4
413 17 max 1011.116 1 1.012 403 15 0 1 0 15	002 15
414 min -1177.894 3 .207 12736 1 0 5003 1	007 4
415 18 max 1011.545 1 .965 203 15 0 1 0 15	002 15
416 min -1177.572 3 .184 12736 1 0 5004 1	007 4
417	002 15
418 min -1177.251 3 .162 12736 1 0 5004 1	007 4
419 M11 1 max 511.408 2 7.882 4007 15 0 1 0 15	.007 4
420 min -653.922 3 1.853 15167 1 0 5 0 1	.002 15
421 2 max 511.237 2 7.115 4007 15 0 1 0 15	.004 2
422 min -654.05 3 1.673 15167 1 0 5 0 1	0 12
423 3 max 511.067 2 6.347 4007 15 0 1 0 15	.002 2
424 min -654.178 3 1.493 15167 1 0 5 0 1	0 3
425 4 max 510.897 2 5.58 4007 15 0 1 0 15	0 2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-654.306	3	1.312	15	167	1	0	5	0	1	002	3
427		5	max	510.726	2	4.813	4	007	15	0	1	0	15	0	15
428			min	-654.433	3	1.132	15	167	1	0	5	0	1	003	4
429		6	max	510.556	2	4.046	4	007	15	0	1	0	15	001	15
430			min	-654.561	3	.952	15	167	1	0	5	0	1	005	4
431		7	max	510.386	2	3.278	4	007	15	0	1	0	15	002	15
432			min	-654.689	3	.771	15	167	1	0	5	0	1	007	4
433		8	max	510.215	2	2.511	4	007	15	0	1	0	15	002	15
434			min	-654.817	3	.591	15	167	1	0	5	0	1	008	4
435		9	max	510.045	2	1.744	4	007	15	0	1	0	15	002	15
436			min	-654.945	3	.411	15	167	1	0	5	0	1	009	4
437		10	max	509.875	2	.977	4	007	15	0	1	0	15	002	15
438		10	min	-655.072	3	.23	15	167	1	0	5	001	1	009	4
439		11	max	509.704	2	.316	2	007	15	0	1	0	15	002	15
440			min	-655.2	3	086	3	167	1	0	5	001	1	01	4
441		12	max	509.534	2	131	15	007	15	0	1	0	15	002	15
442		12	min	-655.328	3	558	4	167	1	0	5	001	1	01	4
443		13		509.364	2	311	15	007	15	0	1	0	15	002	15
		13	max						1		_	_			
444		4.4	min	-655.456	3	-1.325	4	167	-	0	5	001	1_	009	4
445		14	max	509.193	2	491	15	007	15	0	1	0	15	002	15
446		4.5	min	-655.583	3	-2.092	4	167	1	0	5	001	1_	008	4
447		15	max	509.023	2	672	15	007	15	0	1	0	15	002	15
448			min	-655.711	3	-2.859	4	167	1_	0	5	001	1_	007	4
449		16	max	508.853	2	852	15	007	15	0	1	0	15	001	15
450			min	-655.839	3	-3.627	4	167	1	0	5	001	1	006	4
451		17	max	508.682	2	-1.032	15	007	15	0	_1_	0	15	001	15
452			min	-655.967	3	-4.394	4	167	1	0	5	002	1	004	4
453		18	max	508.512	2	-1.213	15	007	15	0	1	0	15	0	15
454			min	-656.094	3	-5.161	4	167	1	0	5	002	1	002	4
455		19	max	508.342	2	-1.393	15	007	15	0	1	0	15	0	1
456			min	-656.222	3	-5.928	4	167	1	0	5	002	1	0	1
457	M12	1	max	1130.578	1	0	1	11.601	1	0	1	0	15	0	1
458			min	-115.503	3	0	1	.479	15	0	1	001	1	0	1
459		2	max	1130.748	1	0	1	11.601	1	0	1	0	1	0	1
460			min	-115.375	3	0	1	.479	15	0	1	0	3	0	1
461		3	max	1130.919	1	0	1	11.601	1	0	1	.001	1	0	1
462			min	-115.248	3	0	1	.479	15	0	1	0	15	0	1
463		4	+		1	0	1	11.601	1	0	1	.003	1	0	1
464			min	-115.12	3	0	1	.479	15	0	1	0	15	0	1
465		5		1131.259	1	0	1	11.601	1	0	1	.004	1	0	1
466		T .		-114.992		0	1	.479	15	0	1	0	15	0	1
467		6	max		1	0	1	11.601	1	0	1	.005	1	0	1
468			min	-114.864	3	0	1	.479	15	0	1	.005	15	0	1
469		7	+	1131.6	1	0	1	11.601	1	0	1	.007	1	0	1
470			min		3	0	1	.479	15	0	1	.007	15	0	1
471		8		1131.77	<u>3</u> 1		1	11.601	1		1	.008	1		1
471		0				0	1		15	0	1	.008	15	0	1
		0		-114.609	3	0		.479		0				0	_
473		9		1131.941	1	0	1	11.601	1	0	1	.009	1	0	1
474		40		-114.481	3	0	1	.479	15	0	1	0	15	0	
475		10		1132.111	1	0	1	11.601	1	0	1	.011	1_	0	1
476				-114.353	3	0	1	.479	15	0	1	0	15	0	1
477		11		1132.281	1	0	1	11.601	1	0	1	.012	1_	0	1
478			min		3	0	1	.479	15	0	1	0	15	0	1
479		12		1132.452	1	0	1	11.601	1	0	1	.013	1	0	1
480				-114.098	3	0	1	.479	15	0	1	0	15	0	1
481		13		1132.622	1	0	1	11.601	1	0	1	.015	1	0	1
482			min	-113.97	3	0	1	.479	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14		1132.792	_1_	0	1	11.601	1	0	1	.016	_1_	0	1
484			min	-113.842	3	0	1	.479	15	0	1	0	15	0	1
485		15	max	1132.963	<u>1</u>	0	1	11.601	1	0	1	.017	<u>1</u>	0	1
486			min		3	0	1	.479	15	0	1	0	15	0	1
487		16	max	1133.133	1	0	1	11.601	1	0	1	.019	1	0	1
488			min	-113.587	3	0	1	.479	15	0	1	0	15	0	1
489		17	max	1133.303	1	0	1	11.601	1	0	1	.02	1	0	1
490			min	-113.459	3	0	1	.479	15	0	1	0	15	0	1
491		18	max	1133.474	1	0	1	11.601	1	0	1	.021	1	0	1
492			min	-113.331	3	0	1	.479	15	0	1	0	15	0	1
493		19		1133.644	1	0	1	11.601	1	0	1	.023	1	0	1
494			min	-113.203	3	0	1	.479	15	0	1	0	15	0	1
495	M1	1	max	180.931	1	654.806	3	-4.725	15	0	1	.273	1	0	3
496			min	7.455	15	-444.807	1	-114.013	1	0	3	.011	15	013	2
497		2	max	181.536	1	653.832	3	-4.725	15	0	1	.212	1	.223	1
498			min	7.638	15	-446.105	1	-114.013	1	0	3	.009	15	345	3
499		3	max		3	499.221	1	-4.695	15	0	3	.152	1	.447	1
500		-	min	-237.603	2	-466.957	3	-113.525	1	0	1	.006	15	676	3
501		4				497.922	1	-4.695	15	0	3	.092	1	.184	1
		4	max	-236.997	<u>3</u>		3	-113.525	1		1		15		
502		-	min			-467.931				0	_	.004		43	3
503		5	max		3	496.624	1	-4.695	15	0	3	.032	1_	003	15
504			min	-236.392	2	-468.905	3	-113.525	1_	0	1	.001	15	183	3
505		6	max	402.18	3_	495.326	1	-4.695	15	0	3	001	15	.065	3
506		-	min	-235.786	2	-469.878	3	-113.525	1_	0	1	027	1_	352	2
507		7	max	402.634	3_	494.028	1	-4.695	15	0	3	004	<u>15</u>	.313	3
508			min	-235.181	2	-470.852	3	-113.525	1_	0	1	087	1_	606	2
509		8	max	403.088	3_	492.729	1	-4.695	15	0	3	006	15	.562	3
510		_	min	-234.576	2	-471.826	3	-113.525	1	0	1	147	_1_	861	1
511		9	max		3_	40.949	2	-6.859	15	0	9	.086	_1_	.658	3
512			min	-158.81	2	.395	15		1	0	3	.004	15	983	2
513		10	max		3_	39.651	2	-6.859	15	0	9	0	<u>15</u>	.639	3
514			min	-158.205	2	.004	15	-165.768	1	0	3	001	1_	-1.004	2
515		11	max	416.899	3	38.353	2	-6.859	15	0	9	004	15	.621	3
516			min	-157.599	2	-1.585	4	-165.768		0	3	089	1_	-1.025	2
517		12	max	429.729	3_	299.642	3	-4.58	15	0	2	.145	1_	.541	3
518			min	-98.126	10	-563.294	2	-110.887	1	0	3	.006	15	908	2
519		13	max		3	298.668	3	-4.58	15	0	2	.087	1_	.383	3
520			min	-97.622	10	-564.592	2	-110.887	1	0	3	.004	15	61	2
521		14	max	430.638	3	297.695	3	-4.58	15	0	2	.028	1	.226	3
522			min	-97.117	10	-565.891	2	-110.887	1	0	3	.001	15	32	1
523		15	max	431.092	3	296.721	3	-4.58	15	0	2	001	15	.069	3
524			min		10	-567.189		-110.887	1	0	3	03	1	036	1
525		16	max		3	295.747	3	-4.58	15	0	2	004	15	.287	2
526			min		10	-568.487	2	-110.887		0	3	089	1	088	3
527		17	max		3	294.774	3	-4.58	15	0	2	006	15	.587	2
528			min		10	-569.785		-110.887		0	3	147	1	243	3
529		18	max		15	578.546	2	-5.051	15	0	3	009	15	.295	2
530		ľ	min	-181.765	1	-245.887	3	-122.009		0	2	21	1	12	3
531		19	max		15	577.248	2	-5.051	15	0	3	011	15	.01	3
532		'	min		1	-246.861	3	-122.009	1	0	2	274	1	011	1
533	M5	1	max		1	2181.125	3	0	1	0	1	0	1	.026	2
534	IVIO		min	14.864	12	-1503.497	1	0	1	0	1	0	1	0	3
535		2			1	2180.151	3	0	1	0	1	0	1	.818	1
536			max min		12	-1504.795	1	0	1	0	1	0	1	-1.151	3
537		3		1290.039	3	1526.356	1	0	1		1		1	1.576	1
538		3			2	-1504.577	3		1	0	1	0	1	-2.257	3
		1	min					0	-	0	•	0	•		
539		4	шах	1290.493	3_	1525.058	1	0	1	0	_1_	0	_1_	.771	1

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-844.998	2	-1505.551	3	0	1	0	1	0	1	-1.463	3
541		5	max	1290.947	3	1523.759	1	0	1	0	1	0	_1_	.007	9
542			min	-844.393	2	-1506.524	3	0	1	0	1	0	1_	668	3
543		6	max	1291.401	3	1522.461	1	0	1	0	1	0	1_	.127	3
544			min	-843.787	2	-1507.498	3	0	1	0	1	0	1_	866	2
545		7	max		3	1521.163	1	0	1	0	1	0	_1_	.923	3
546			min	-843.182	2	-1508.472	3	0	1	0	1	0	1_	-1.644	2
547		8	max	1292.309	3	1519.865	1	0	1	0	1	0	_1_	1.719	3
548			min	-842.576	2	-1509.445	3	0	1	0	1	0	1_	-2.443	1
549		9	max	1314.292	3	136.311	2	0	1	0	1	0	1_	1.982	3
550			min	-686.514	2	.393	15	0	1	0	1	0	1	-2.766	1
551		10	max	1314.746	3	135.012	2	0	1	0	1	0	1	1.916	3
552			min	-685.909	2	.001	15	0	1	0	1	0	1	-2.826	2
553		11	max	1315.2	3	133.714	2	0	1	0	1	0	1	1.85	3
554			min	-685.303	2	-1.436	4	0	1	0	1	0	1	-2.897	2
555		12	max	1337.328	3	953.863	3	0	1	0	1	0	1	1.624	3
556			min	-529.275	2	-1749.004	2	0	1	0	1	0	1	-2.592	2
557		13	max	1337.782	3	952.89	3	0	1	0	1	0	1	1.12	3
558			min	-528.669	2	-1750.302	2	0	1	0	1	0	1	-1.669	2
559		14	max		3	951.916	3	0	1	0	1	0	1	.618	3
560			min	-528.064	2	-1751.6	2	0	1	0	1	0	1	775	1
561		15	max		3	950.942	3	0	1	0	1	0	1	.18	2
562		1	min	-527.459	2	-1752.898	2	0	1	0	1	0	1	004	13
563		16		1339.144	3	949.969	3	0	1	0	1	0	1	1.105	2
564			min	-526.853	2	-1754.197	2	0	1	0	1	0	1	386	3
565		17	max		3	948.995	3	0	1	0	1	0	1	2.031	2
566		1 '	min	-526.248	2	-1755.495	2	0	1	0	1	0	1	887	3
567		18	max	-15.471	12	1947.978	2	0	1	0	1	0	1	1.047	2
568		10	min	-391.022	1	-842.366	3	0	1	0	1	0	1	464	3
569		19	max	-15.168	12	1946.68	2	0	1	0	1	0	1	.021	1
570		13	min	-390.417	1	-843.34	3	0	1	0	1	0	1	019	3
571	M9	1	max	180.931	1	654.806	3	114.013	1	0	3	011	15	0	3
572	IVIƏ		min	7.455	15	-444.807	1	4.725	15	0	1	273	1	013	2
573		2	max	181.536	1	653.832	3	114.013	1	0	3	009	15	.223	1
574				7.638	15	-446.105	1	4.725	15	0	1	212	1	345	3
575		3	min max	400.818	3	499.221	1	113.525	1	0	1	006	15	3 4 3 .447	1
576		3		-237.603	2	-466.957	3	4.695	15	0	3	152	1		3
		4	min	401.272		497.922	1	113.525	1		1	004	15	<u>676</u> .184	1
577		4	max		3					0			1		_
578		-	min	-236.997	2	-467.931	3	4.695	15	0	3	092	•	43	3
579		5	max		3	496.624	1	113.525	1	0	1	001	<u>15</u>	003	15
580		_		-236.392	2	-468.905	-	4.695	15	0	3	032	1_1	183	3
581		6	max		3	495.326	1	113.525	1	0	1	.027	1_	.065	3
582		-	min	-235.786	2	-469.878		4.695	15	0	3	.001	<u>15</u>	352	2
583		7		402.634	3	494.028	1	113.525	1	0	1	.087	1_	.313	3
584			min	-235.181	2	-470.852	3	4.695	15	0	3	.004	15	606	2
585		8		403.088	3	492.729	1	113.525	1	0	1	.147	1_	.562	3
586			min	-234.576	2	-471.826	3	4.695	15	0	3	.006	15	861	1
587		9		415.991	3	40.949	2	165.768	1	0	3	004	15	.658	3
588			min		2	.395	15		15	0	9	086	1_	983	2
589		10	max		3	39.651	2	165.768	1	0	3	.001	1_	.639	3
590				-158.205	2	.004	15		15	0	9	0	15	-1.004	2
591		11	max		3	38.353	2	165.768	1	0	3	.089	_1_	.621	3
592			min	-157.599	2	-1.585	4	6.859	15	0	9	.004	15	-1.025	2
593		12		429.729	3	299.642	3	110.887	1	0	3	006	15	.541	3
594			min	-98.126	10	-563.294	2	4.58	15	0	2	145	1	908	2
595		13	max	430.183	3	298.668	3	110.887	1	0	3	004	15	.383	3
596			min	-97.622	10	-564.592	2	4.58	15	0	2	087	1	61	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	430.638	3	297.695	3	110.887	1	0	3	001	15	.226	3
598			min	-97.117	10	-565.891	2	4.58	15	0	2	028	1	32	1
599		15	max	431.092	3	296.721	3	110.887	1	0	3	.03	1	.069	3
600			min	-96.613	10	-567.189	2	4.58	15	0	2	.001	15	036	1
601		16	max	431.546	3	295.747	3	110.887	1	0	3	.089	1	.287	2
602			min	-96.109	10	-568.487	2	4.58	15	0	2	.004	15	088	3
603		17	max	432	3	294.774	3	110.887	1	0	3	.147	1	.587	2
604			min	-95.604	10	-569.785	2	4.58	15	0	2	.006	15	243	3
605		18	max	-7.645	15	578.546	2	122.009	1	0	2	.21	1	.295	2
606			min	-181.765	1	-245.887	3	5.051	15	0	3	.009	15	12	3
607		19	max	-7.462	15	577.248	2	122.009	1	0	2	.274	1	.01	3
608			min	-181.16	1	-246.861	3	5.051	15	0	3	.011	15	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1	max	.001	1	.102	2	.007	3 8.347e-3	2	NC	_1_	NC	1
2			min	0	15	012	3	003	2 -1.177e-3	3	NC	1_	NC	1
3		2	max	0	1	.322	3	.045	1 9.63e-3	2	NC	5	NC	2
4			min	0	15	109	1	.002	10 -1.193e-3	3	736.14	3	5693.598	
_ 5		3	max	0	1	.592	3	.107	1 1.091e-2	2	NC	5	NC	3
6			min	0	15	273	1	.005	15 -1.209e-3	3	406.711	3	2322.459	1
7		4	max	0	1	.757	3	.162	1 1.22e-2	2	NC	5_	NC	3
8			min	0	15	366	1	.007	15 -1.224e-3	3	319.742	3	1534.553	1
9		5	max	0	1	.795	3	.19	1 1.348e-2	2	NC	5	NC	3
10			min	0	15	373	1	.008	15 -1.24e-3	3	304.53	3	1305.932	1
11		6	max	0	1	.71	3	.184	1 1.476e-2	2	NC	5	NC	3
12			min	0	15	297	1	.008	15 -1.256e-3	3	340.27	3	1351.84	1
13		7	max	0	1	.528	3	.144	1 1.605e-2	2	NC	5	NC	3
14			min	0	15	157	1	.006	15 -1.272e-3	3	455.243	3	1722.377	1
15		8	max	0	1	.296	3	.084	1 1.733e-2	2	NC	4	NC	3
16			min	0	15	004	9	.001	10 -1.287e-3	3	797.858	3	2982.318	1
17		9	max	0	1	.178	2	.024	1 1.861e-2	2	NC	4	NC	1
18			min	0	15	.005	15	006	10 -1.303e-3	3	2514.615	3	NC	1
19		10	max	0	1	.242	2	.022	3 1.99e-2	2	NC	3	NC	1
20			min	0	1	01	3	015	2 -1.319e-3	3	1754.699	2	NC	1
21		11	max	0	15	.178	2	.024	1 1.861e-2	2	NC	4	NC	1
22			min	0	1	.005	15	006	10 -1.303e-3	3	2514.615	3	NC	1
23		12	max	0	15	.296	3	.084	1 1.733e-2	2	NC	4	NC	3
24			min	0	1	004	9	.001	10 -1.287e-3	3	797.858	3	2982.318	1
25		13	max	0	15	.528	3	.144	1 1.605e-2	2	NC	5	NC	3
26			min	0	1	157	1	.006	15 -1.272e-3	3	455.243	3	1722.377	1
27		14	max	0	15	.71	3	.184	1 1.476e-2	2	NC	5	NC	3
28			min	0	1	297	1	.008	15 -1.256e-3	3	340.27	3	1351.84	1
29		15	max	0	15	.795	3	.19	1 1.348e-2	2	NC	5	NC	3
30			min	0	1	373	1	.008	15 -1.24e-3	3	304.53	3	1305.932	1
31		16	max	0	15	.757	3	.162	1 1.22e-2	2	NC	5	NC	3
32			min	0	1	366	1	.007	15 -1.224e-3	3	319.742	3	1534.553	1
33		17	max	0	15	.592	3	.107	1 1.091e-2	2	NC	5	NC	3
34			min	0	1	273	1	.005	15 -1.209e-3	3	406.711	3	2322.459	1
35		18	max	0	15	.322	3	.045	1 9.63e-3	2	NC	5	NC	2
36			min	0	1	109	1	.002	10 -1.193e-3	3	736.14	3	5693.598	1
37		19	max	0	15	.102	2	.007	3 8.347e-3	2	NC	1	NC	1
38			min	001	1	012	3	003	2 -1.177e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.195	3	.006	3 4.974e-3	2	NC	1	NC	1
40			min	0	15	328	2	003	2 -3.502e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
41		2	max	0	1	.509	3	.031	1	5.976e-3	2	NC	5	NC	2
42			min	0	15	648	1	0	10	-4.276e-3	3	758.144	1_	8323.993	1
43		3	max	0	1	.774	3	.087	1	6.977e-3	2	NC	15	NC	3
44			min	0	15	926	1	.004	15	-5.051e-3	3	408.039	1	2891.683	1
45		4	max	0	1	.956	3	.139	1	7.979e-3	2	NC	15	NC	3
46			min	0	15	-1.127	1	.006	15	-5.825e-3	3	306.159	1	1790.124	1
47		5	max	0	1	1.039	3	.169	1	8.98e-3	2	NC	15	NC	3
48			min	0	15	-1.234	1	.007	15	-6.599e-3	3	270.247	1	1470.273	1
49		6	max	0	1	1.022	3	.167	1	9.982e-3	2	9990.072	15	NC	3
50			min	0	15	-1.246	1	.007	15	-7.373e-3	3	266.58	1	1488	1
51		7	max	0	1	.924	3	.134	1	1.098e-2	2	NC	15	NC	3
52			min	0	15	-1.18	1	.006	15	-8.148e-3	3	287.274	1	1865.668	1
53		8	max	0	1	.779	3	.079	1	1.198e-2	2	NC	15	NC	2
54			min	0	15	-1.065	1	.001	10	-8.922e-3	3	331.642	1	3187.26	1
55		9	max	0	1	.64	3	.023	1	1.299e-2	2	NC	15	NC	1
56			min	0	15	952	2	006	10	-9.696e-3	3	393.173	1	NC	1
57		10	max	0	1	.575	3	.02	3	1.399e-2	2	NC	5	NC	1
58		1.0	min	0	1	901	2	014		-1.047e-2	3	428.739	2	NC	1
59		11	max	0	15	.64	3	.023	1	1.299e-2	2	NC	15	NC	1
60			min	0	1	952	2	006		-9.696e-3	3	393.173	1	NC	1
61		12	max	0	15	.779	3	.079	1	1.198e-2	2	NC	15	NC	2
62		12	min	0	1	-1.065	1	.001	10	-8.922e-3	3	331.642	1	3187.26	1
63		13	max	0	15	.924	3	.134	1	1.098e-2	2	NC	15	NC	3
64		13	min	0	1	-1.18	1	.006		-8.148e-3	3	287.274	1	1865.668	
65		14	max	0	15	1.022	3	.167	1	9.982e-3	2	9990.072	15	NC	3
66		14	min	0	1	-1.246	1	.007		-7.373e-3	3	266.58	1	1488	1
67		15	max	0	15	1.039	3	.169	1	8.98e-3	2	NC	15	NC	3
68		13	min	0	1	-1.234	1	.007		-6.599e-3	3	270.247	1	1470.273	1
69		16	max	0	15	.956	3	.139	1	7.979e-3	2	NC	15	NC	3
70		10	min	0	1	-1.127	1	.006		-5.825e-3	3	306.159	1	1790.124	1
71		17	max	0	15	.774	3	.087	1	6.977e-3	2	NC	15	NC	3
72		17	min	0	1	926	1	.004		-5.051e-3	3	408.039	1	2891.683	1
73		18	max	0	15	.509	3	.031	1	5.976e-3	2	NC	5	NC	2
74		10	min	0	1	648	1	0		-4.276e-3	3	758.144	1	8323.993	
75		19		0	15	.195	3	.006	3	4.974e-3	2	NC	1	NC	1
76		19	max min	0	1	328	2	003	2	-3.502e-3	3	NC	1	NC	1
77	M15	1		0	15	.199	3	.006	3	2.956e-3	3	NC	1	NC	1
78	IVITO		max	0	1	327	2	003	2	-5.165e-3	2	NC	1	NC NC	1
79		2	min	0	15	.391	3	.031	1	3.614e-3	3	NC	5	NC	2
80			max	0	1	718	2	0		-6.209e-3	2	628.871	2	8284.498	1
		2													
81		3	max	0	15	.558	3	.087	1	4.273e-3	3	NC 339.934	1 <u>5</u>	NC 2002 F	3
82		4	min	<u> </u>	15	-1.051	3	.004		-7.252e-3	2	NC	15	2883.5 NC	3
83		4	max	0	15	.68 -1.284	2	.139	1	4.931e-3	<u>3</u>	256.978	<u>15</u> 2		1
84 85		5	min	0	15	-1. <u>284</u> .749	3	.006 .169	15	-8.296e-3 5.589e-3	3	256.978 NC	<u> </u>	1786.121 NC	3
		<u> </u>	max						_						1
86 87		6	min	0	15	-1.399 765	3	<u>.007</u> .167		-9.339e-3 6.248e-3	2	229.48 NC	<u>2</u> 15	1467.231 NC	3
		6	max	0		.765			1		3				
88		7	min	<u> </u>	1 1 1 5	<u>-1.395</u>	2	.007		-1.038e-2	2	230.352 NC	15	1484.727	1
89		1	max		15	.736	3	.134	1	6.906e-3	3		15	NC 1960 40	3
90		0	min	0	1 1 1 5	-1.292	2	.006		-1.143e-2	2	254.809	15	1860.49	1
91		8	max	0	15	<u>.678</u>	3	.079	1	7.565e-3	3	NC	<u>15</u>	NC	2
92			min	0	1 1 1 1 1 1	-1.132	2	.002		-1.247e-2	2	305.604	<u>2</u>	3172.423	
93		9	max	0	15	.617	3	.023	1	8.223e-3	3	NC	<u>15</u>	NC NC	1
94		10	min	0	1	<u>974</u>	2	005		-1.351e-2	2	380.101	2	NC NC	1
95		10	max	0	1	.587	3	.019	3	8.882e-3	3	NC	5	NC NC	1
96		4.4	min	0	1	9 617	2	013		-1.456e-2	2	429.356	<u>2</u>	NC NC	1
97		11	max	0	1	<u>.617</u>	3	.023	1	8.223e-3	3_	NC	15	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
98			min	0	15	974	2	005	10		2	380.101	2	NC	1
99		12	max	0	1	.678	3	.079	1	7.565e-3	3	NC	<u>15</u>	NC	2
100			min	0	15	-1.132	2	.002	10	-1.247e-2	2	305.604	2	3172.423	1
101		13	max	0	1	.736	3	.134	1	6.906e-3	3	NC	15	NC	3
102			min	0	15	-1.292	2	.006	15	-1.143e-2	2	254.809	2	1860.49	1
103		14	max	0	1	.765	3	.167	1	6.248e-3	3	NC	15	NC	3
104			min	0	15	-1.395	2	.007	15	-1.038e-2	2	230.352	2	1484.727	1
105		15	max	0	1	.749	3	.169	1	5.589e-3	3	NC	15	NC	3
106			min	0	15	-1.399	2	.007	15	-9.339e-3	2	229.48	2	1467.231	1
107		16	max	0	1	.68	3	.139	1	4.931e-3	3	NC	15	NC	3
108			min	0	15	-1.284	2	.006	15	-8.296e-3	2	256.978	2	1786.121	1
109		17	max	0	1	.558	3	.087	1	4.273e-3	3	NC	15	NC	3
110			min	0	15	-1.051	2	.004	15	-7.252e-3	2	339.934	2	2883.5	1
111		18	max	0	1	.391	3	.031	1	3.614e-3	3	NC	5	NC	2
112			min	0	15	718	2	0	10	-6.209e-3	2	628.871	2	8284.498	
113		19	max	0	1	.199	3	.006	3	2.956e-3	3	NC	1	NC	1
114		10	min	0	15	327	2	003	2	-5.165e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.096	1	.005	3	5.245e-3	3	NC	1	NC	1
116	IVITO		min	001	1	065	3	003	2	-7.367e-3	1	NC	1	NC	1
117		2		<u>001</u> 0	15	.044	3	.044	1	6.209e-3	3	NC	5	NC	2
118			max	001	1	185	2	.002	15	-8.434e-3	1	890.075	2	5730.983	1
		2	min		15		3				•			NC	
119		3	max	0		.129		.107	1	7.173e-3	3	NC	5		3
120		4	min	0	1	406	2	.005	15	-9.5e-3	1_	495.047	2	2329.477	1
121		4	max	0	15	.175	3	.161	1	8.137e-3	3	NC 004.050	5_	NC 4500 400	3
122		+ -	min	0	1	533	2	.007		-1.057e-2	1_	394.059	2	1536.166	
123		5	max	0	15	<u>.174</u>	3	.19	11	9.1e-3	3_	NC	5	NC 1005.11	3
124		_	min	0	1	<u>55</u>	2	.008	15		1_	383.627	2	1305.14	1
125		6	max	0	15	.128	3	.184	1	1.006e-2	3_	NC	_5_	NC	3
126			min	0	1	46	2	.008	15	-1.27e-2	1_	446.589	2	1348.342	1
127		7	max	0	15	.046	3	.145	1	1.103e-2	3	NC	5_	NC	3
128			min	0	1	285	2	.006	15	-1.376e-2	1_	653.89	2	1712.202	1
129		8	max	0	15	.004	4	.085	1	1.199e-2	3_	NC	3_	NC	3
130			min	0	1	069	2	.003	10	-1.483e-2	_1_	1530.947	2	2939.978	1
131		9	max	0	15	.145	1	.025	1	1.296e-2	3	NC	4	NC	1
132			min	0	1	138	3	004	10	-1.59e-2	1	3402.553	3	NC	1
133		10	max	0	1	.225	1	.016	3	1.392e-2	3	NC	5	NC	1
134			min	0	1	176	3	012	2	-1.696e-2	1	1907.915	1	NC	1
135		11	max	0	1	.145	1	.025	1	1.296e-2	3	NC	4	NC	1
136			min	0	15	138	3	004	10	-1.59e-2	1	3402.553	3	NC	1
137		12	max	0	1	.004	4	.085	1	1.199e-2	3	NC	3	NC	3
138			min	0	15	069	2	.003	10	-1.483e-2		1530.947	2	2939.978	
139		13	max	0	1	.046	3	.145	1	1.103e-2	3	NC	5	NC	3
140			min	0	15	285	2	.006	15		1	653.89	2	1712.202	
141		14	max	0	1	.128	3	.184	1	1.006e-2	3	NC	5	NC	3
142			min	0	15	46	2	.008	15	-1.27e-2	1	446.589	2	1348.342	
143		15	max	0	1	.174	3	.19	1	9.1e-3	3	NC	5	NC	3
144		10	min	0	15	55	2	.008	15	-1.163e-2	1	383.627	2	1305.14	1
145		16	max	0	1	.175	3	.161	1	8.137e-3	3	NC	5	NC	3
146		10	min	0	15	533	2	.007	15	-1.057e-2	1	394.059	2	1536.166	
147		17	max	0	1	.129	3	.107	1	7.173e-3	3	NC	5	NC	3
148		17	min	0	15	406	2	.005	15	-9.5e-3	1	495.047	2	2329.477	1
		10					3								-
149		18	max	.001	1	.044		.044	1	6.209e-3	3	NC 900.075	5	NC 5720 002	2
150		40	min	0	15	185	2	.002	15	-8.434e-3	1_	890.075	2	5730.983	
151		19	max	.001	1	.096	1	.005	3	5.245e-3	3_	NC	1_	NC	1
152	* **		min	0	15	065	3	003	2	-7.367e-3	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1_	max	.006	1	.006	2	.009	1	-1.007e-5	<u>15</u>	NC	1_	NC	2
154			min	007	3	01	3	0	15	-2.438e-4	<u> 1</u>	NC	<u>1</u>	7110.757	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
155		2	max	.006	1	.005	2	.008	1_	-9.451e-6	<u>15</u>	NC	_1_	NC	2
156			min	007	3	01	3	0	15	-2.287e-4	_1_	NC	1_	7756.839	1
157		3	max	.005	1	.004	2	.007	1	-8.828e-6		NC	1_	NC	2
158			min	006	3	009	3	0	15	-2.136e-4	1_	NC	1_	8527.128	
159		4	max	.005	1	.003	2	.007	1	-8.204e-6	<u>15</u>	NC	1_	NC 0.454.007	2
160		_	min	006	3	009	3	0	15	-1.985e-4	1_	NC NC	1_	9454.637	1
161		5	max	.005	1	.002	2	.006	1	-7.581e-6	<u>15</u>	NC	1	NC NC	1
162			min	006	3	009	3	0	15	-1.834e-4	1_	NC NC	1_	NC NC	1
163		6	max	.004	1	.002	2	.005	1	-6.958e-6	<u>15</u>	NC	1_	NC NC	1
164		7	min	005	3	008	3	0	15	-1.683e-4	1_	NC NC	1_	NC NC	1
165		7	max	.004	1	.001	2	.005	1	-6.335e-6	<u>15</u>	NC NC	1	NC NC	1
166		0	min	005	3	008	3	0	15	-1.532e-4	1_	NC NC	1_	NC NC	1
167		8	max	.004	1	0	2	.004	1	-5.712e-6	<u>15</u>	NC NC	1	NC NC	1
168			min	004	3	007	3	0	15	-1.381e-4	1_	NC NC		NC NC	1
169 170		9	max	.003	3	0 007	3	.003	15	-5.088e-6	<u>15</u> 1	NC NC	1	NC NC	1
170		10	min	004		007 0		0		-1.23e-4	-		_		1
171		10	max	.003	3	006	3	.003	1 15	-4.465e-6	<u>15</u>	NC NC	1	NC NC	
		11	min	004	1			<u> </u>		-1.079e-4	1 =	NC NC	1		1
173		11	max	.003	3	0	3	_	1	-3.842e-6 -9.285e-5	<u>15</u>	NC NC	1	NC NC	1
174 175		12	min	003 .002	1	006 0	15	<u> </u>	1 <u>5</u>	-9.265e-5 -3.219e-6	<u>1</u> 15	NC NC	1	NC NC	1
176		12	max	003	3	005	3	<u>.002</u>	15	-3.219e-6 -7.776e-5	1	NC NC	1	NC NC	1
177		13	min max	.003	1	005 0	15	.001	1	-7.776e-3 -2.595e-6	15	NC NC	1	NC NC	1
178		13	min	002	3	005	3	0 0	15	-2.595e-6 -6.267e-5	1	NC NC	1	NC NC	1
179		14		.002	1	005 0	15	0	1	-0.207e-5 -1.972e-6		NC NC	1	NC NC	1
180		14	max min	002	3	004	3	0	15	-1.972e-6	<u>15</u> 1	NC NC	1	NC NC	1
181		15	max	.002	1	004	15	0	1	-1.349e-6	15	NC	1	NC	1
182		15	min	002	3	003	3	0	15	-3.249e-5	1	NC	1	NC	1
183		16	max	.002	1	<u>003</u> 0	15	0	1	-3.249e-3	15	NC	1	NC	1
184		10	min	001	3	003	3	0	15	-1.74e-5	1	NC	1	NC	1
185		17	max	0	1	_ 003 _	15	0	1	-1.025e-7	15	NC	1	NC	1
186		- ' '	min	0	3	002	4	0	15	-2.309e-6	1	NC	1	NC	1
187		18	max	0	1	0	15	0	1	1.278e-5	1	NC	-	NC	1
188		10	min	0	3	001	4	0	15	4.173e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	0	1	2.787e-5	1	NC	1	NC	1
190		10	min	0	1	0	1	0	1	1.144e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-3.79e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-9.224e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	1.627e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	15	6.722e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0		4.176e-5		NC	1	NC	1
196			min	0	2	004	4	0	15		15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	6.726e-5	1	NC	1	NC	1
198			min	0	2	006	4	0	15	2.774e-6	15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	9.275e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15	3.826e-6	15	NC	1	NC	1
201		6	max	.002	3	002	15	0	1	1.182e-4	1	NC	1	NC	1
202			min	001	2	009	4	0	15	4.877e-6	15	NC	1	NC	1
203		7	max	.002	3	003	15	.001	1	1.437e-4	1	NC	1	NC	1
204			min	001	2	011	4	0	15	5.928e-6	15	8605.229	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.692e-4	1	NC	1	NC	1
206			min	002	2	012	4	0	15	6.979e-6	15	7725.855	4	NC	1
207		9	max	.003	3	003	15	.002	1	1.947e-4	1	NC	2	NC	1
208			min	002	2	013	4	0	15		15	7205.926	4	NC	1
209		10	max	.003	3	003	15	.002	1	2.202e-4	1	NC	3	NC	1
210			min	002	2	013	4	0	15	9.081e-6	15	6954.865	4	NC	1
211		11	max	.003	3	003	15	.003	1	2.457e-4	1_	NC	3	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

213 12 max .003 3 003 15 .003 1 2.712e-4 1 NC 2 N 214 min 003 2 013 4 0 15 1.118e-5 15 7150.809 4 N 215 13 max .004 3 003 15 .004 1 2.967e-4 1 NC 1 N 216 min 003 2 012 4 0 15 1.223e-5 15 7644.805 4 N 217 14 max .004 3 003 15 .004 1 3.222e-4 1 NC 1 N 218 min 003 2 011 4 0 15 1.329e-5 15 8527.5 4 N 219 15 max .004 3 002 15 .005 1 3.477e-4 1 </th <th> </th>	
Deciding the color of the col	IC
215 13 max .004 3 003 15 .004 1 2.967e-4 1 NC 1 N 2 1 N 1 1 N <td>IC 1 IC 1</td>	IC 1
216 min 003 2 012 4 0 15 1.223e-5 15 7644.805 4 N 217 14 max .004 3 003 15 .004 1 3.222e-4 1 NC 1 N 218 min 003 2 011 4 0 15 1.329e-5 15 8527.5 4 N 219 15 max .004 3 002 15 .005 1 3.477e-4 1 NC 1 N 220 min 003 2 01 4 0 15 1.434e-5 15 NC 1 N 221 16 max .005 3 002 15 .006 1 3.732e-4 1 NC 1 N 222 min 004 2 008 4 0 15 1.539e-5 15 NC	IC
217 14 max .004 3 003 15 .004 1 3.222e-4 1 NC 1 N 218 min 003 2 011 4 0 15 1.329e-5 15 8527.5 4 N 219 15 max .004 3 002 15 .005 1 3.477e-4 1 NC 1 N 220 min 003 2 01 4 0 15 1.434e-5 15 NC 1 N 221 16 max .005 3 002 15 .006 1 3.732e-4 1 NC 1 N 222 min 004 2 008 4 0 15 1.539e-5 15 NC 1 N 223 17 max .005 3 001 15 .007 1 3.987e-4 1 NC 1 N	IC
218 min 003 2 011 4 0 15 1.329e-5 15 8527.5 4 N 219 15 max .004 3 002 15 .005 1 3.477e-4 1 NC 1 N 220 min 003 2 01 4 0 15 1.434e-5 15 NC 1 N 221 16 max .005 3 002 15 .006 1 3.732e-4 1 NC 1 N 222 min 004 2 008 4 0 15 1.539e-5 15 NC 1 N 223 17 max .005 3 001 15 .007 1 3.987e-4 1 NC 1 N 224 min 004 2 006 1 0 15 1.644e-5 15 NC <t< td=""><td> IC</td></t<>	IC
219 15 max .004 3 002 15 .005 1 3.477e-4 1 NC 1 N 220 min 003 2 01 4 0 15 1.434e-5 15 NC 1 N 221 16 max .005 3 002 15 .006 1 3.732e-4 1 NC 1 N 222 min 004 2 008 4 0 15 1.539e-5 15 NC 1 N 223 17 max .005 3 001 15 .007 1 3.987e-4 1 NC 1 N 224 min 004 2 006 1 0 15 1.644e-5 15 NC 1 N 225 18 max .005 3 0 15 .007 1 4.242e-4 1 NC 1 N 226 min 004 2 004 1	IC 1
220 min 003 2 01 4 0 15 1.434e-5 15 NC 1 N 221 16 max .005 3 002 15 .006 1 3.732e-4 1 NC 1 N 222 min 004 2 008 4 0 15 1.539e-5 15 NC 1 N 223 17 max .005 3 001 15 .007 1 3.987e-4 1 NC 1 N 224 min 004 2 006 1 0 15 1.644e-5 15 NC 1 N 225 18 max .005 3 0 15 .007 1 4.242e-4 1 NC 1 N 226 min 004 2 004 1 0 15 1.749e-5 15 NC 1	IC 1
221 16 max .005 3 002 15 .006 1 3.732e-4 1 NC 1 N 222 min 004 2 008 4 0 15 1.539e-5 15 NC 1 N 223 17 max .005 3 001 15 .007 1 3.987e-4 1 NC 1 N 224 min 004 2 006 1 0 15 1.644e-5 15 NC 1 N 225 18 max .005 3 0 15 .007 1 4.242e-4 1 NC 1 N 226 min 004 2 004 1 0 15 1.749e-5 15 NC 1 N 227 19 max .006 3 0 15 .008 1 4.496e-4 1 NC 1 N 228 min 004 2 003 1 <td< td=""><td>IC 1 IC 1</td></td<>	IC 1
222 min 004 2 008 4 0 15 1.539e-5 15 NC 1 N 223 17 max .005 3 001 15 .007 1 3.987e-4 1 NC 1 N 224 min 004 2 006 1 0 15 1.644e-5 15 NC 1 N 225 18 max .005 3 0 15 .007 1 4.242e-4 1 NC 1 N 226 min 004 2 004 1 0 15 1.749e-5 15 NC 1 N 227 19 max .006 3 0 15 .008 1 4.496e-4 1 NC 1 N 228 min 004 2 003 1 0 15 1.854e-5 15 NC 1	IC 1
223 17 max .005 3 001 15 .007 1 3.987e-4 1 NC 1 N 224 min 004 2 006 1 0 15 1.644e-5 15 NC 1 N 225 18 max .005 3 0 15 .007 1 4.242e-4 1 NC 1 N 226 min 004 2 004 1 0 15 1.749e-5 15 NC 1 N 227 19 max .006 3 0 15 .008 1 4.496e-4 1 NC 1 N 228 min 004 2 003 1 0 15 1.854e-5 15 NC 1 N 229 M4 1 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N 230 min 0 3 006 3 008 1 <	IC 1 IC 1 IC 1 IC 1 IC 1
224 min 004 2 006 1 0 15 1.644e-5 15 NC 1 N 225 18 max .005 3 0 15 .007 1 4.242e-4 1 NC 1 N 226 min 004 2 004 1 0 15 1.749e-5 15 NC 1 N 227 19 max .006 3 0 15 .008 1 4.496e-4 1 NC 1 N 228 min 004 2 003 1 0 15 1.854e-5 15 NC 1 N 229 M4 1 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N 230 min 0 3 006 3 008 1 2.587e-6 15 NC	IC 1 IC 1 IC 1 IC 1
225 18 max .005 3 0 15 .007 1 4.242e-4 1 NC 1 NC 1 NC 226 min 004 2 004 1 0 15 1.749e-5 15 NC 1 NC 1 NC 227 19 max .006 3 0 15 .008 1 4.496e-4 1 NC 1 NC 1 NC 228 min 004 2 003 1 0 15 1.854e-5 15 NC 1 N 229 M4 1 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N 230 min 0 3 006 3 008 1 2.587e-6 15 NC 1 295	IC 1 IC 1 IC 1
226 min 004 2 004 1 0 15 1.749e-5 15 NC 1 N 227 19 max .006 3 0 15 .008 1 4.496e-4 1 NC 1 N 228 min 004 2 003 1 0 15 1.854e-5 15 NC 1 N 229 M4 1 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N 230 min 0 3 006 3 008 1 2.587e-6 15 NC 1 295	IC 1 IC 1 IC 1
227 19 max .006 3 0 15 .008 1 4.496e-4 1 NC 1 N 228 min 004 2 003 1 0 15 1.854e-5 15 NC 1 N 229 M4 1 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N 230 min 0 3 006 3 008 1 2.587e-6 15 NC 1 295	IC 1 IC 1
228 min 004 2 003 1 0 15 1.854e-5 15 NC 1 N 229 M4 1 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N 230 min 0 3 006 3 008 1 2.587e-6 15 NC 1 295	IC 1
229 M4 1 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N 230 min 0 3006 3008 1 2.587e-6 15 NC 1 295	
230 min 0 3006 3008 1 2.587e-6 15 NC 1 295	IC 3
	3.069 1
231 2 max .003 1 .004 2 0 15 6.242e-5 1 NC 1 N	IC 3
	0.767 1
	IC 3
	7.497 1
	IC 3
236 min 0 3005 3006 1 2.587e-6 15 NC 1 388	5.988 1
	IC 2
	3.546 1
	IC 2
	4.163 1
	IC 2
	1.903 1
	IC 2
	6.44 1
	IC 2
	2.557 1
	IC 2
	7.153 1
	IC 1
	IC 1 IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
	IC 1
268 min023 3032 3 0 1 0 1 1977.296 3 N	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio L			
269		2	max	.018	1	.02	2	0	1	0	1		4	NC	1
270			min	022	3	03	3	0	1	0	1_		3	NC	1
271		3	max	.017	1	.019	2	0	1	0	_1_		4	NC	1_
272			min	021	3	028	3	0	1	0	1		3	NC	1
273		4	max	.016	1	.017	2	0	1_	0	_1_		4	NC	1_
274			min	019	3	026	3	0	1	0	1_		3	NC	1
275		5	max	.015	1	.015	2	0	1	0	_1_		4	NC	1_
276			min	018	3	025	3	0	1	0	1_		3	NC	1
277		6	max	.014	1	.013	2	0	1	0	1		1	NC	1
278			min	017	3	023	3	0	1	0	1_		3	NC	1
279		7	max	.013	1	.011	2	0	1	0	1_		1	NC	1
280			min	016	3	021	3	0	1	0	1		3	NC	1
281		8	max	.012	1	.01	2	0	1	0	1		1	NC	1
282			min	014	3	019	3	0	1	0	1	3239.666	3	NC	1
283		9	max	.011	1	.008	2	0	1	0	1	NC	1	NC	1
284			min	013	3	018	3	0	1	0	1	3566.31	3	NC	1
285		10	max	.01	1	.007	2	0	1	0	1	NC	1	NC	1
286			min	012	3	016	3	0	1	0	1		3	NC	1
287		11	max	.009	1	.005	2	0	1	0	1		1	NC	1
288			min	01	3	014	3	0	1	0	1		3	NC	1
289		12	max	.008	1	.004	2	0	1	0	1		1	NC	1
290			min	009	3	012	3	0	1	0	1		3	NC	1
291		13	max	.007	1	.003	2	0	1	0	1		1	NC	1
292			min	008	3	01	3	0	1	Ö	1		3	NC	1
293		14	max	.005	1	.002	2	0	1	0	1		1	NC	1
294		17	min	006	3	009	3	0	1	0	1		3	NC	1
295		15	max	.004	1	.001	2	0	1	0	1		1	NC	1
296		10	min	005	3	007	3	0	1	0	1		3	NC	1
297		16	max	.003	1	0	2	0	1	0	1		1	NC	1
298		10	min	004	3	005	3	0	1	0	1		1	NC	1
299		17	max	.002	1	<u>003</u> 0	2	0	1	0	1		1	NC	1
300		17	min	003	3	003	3	0	1	0	1		1	NC NC	1
301		18		.003	1	- <u>003</u> 0	2	0	1	0	1		1	NC NC	1
302		10	max	001	3	002	3	0	1	0	1		1	NC NC	1
		40	min						1		1		_		1
303		19	max	0	1	0	1	0	1	0	1		1	NC NC	1
304	N 4 7	4	min	0	•	0	•	0		0		110	•	NC NC	
305	<u>M7</u>	1	max	0	1	0	1	0	1	0	1		1	NC NC	1
306			min	0	1	0	1	0	1	0	1_		1	NC NC	1
307		2	max	0	3	0	2	0	1	0	1		1	NC NC	1
308			min	0	2	002	3	0	1	0	1_	110	1	NC NC	1
309		3	max	.002	3	0	15	0	1	0	1	NC NC	1	NC NC	1
310		-	min	002	2	005	3	0	1	0	1_		1	NC NC	1
311		4	max	.003	3	001	15	0	1	0	1		1	NC_	1
312			min	003	2	007	3	0	1	0	1_		1	NC	1
313		5	max	.004	3	002	15	0	1	0	_1_	.,,	1	NC	1
314			min	004	2	009	3	0	1	0	1_	110	1	NC NC	1
315		6	max	.005	3	002	15	0	1	0	_1_		1	NC	1_
316			min	005	2	011	3	0	1	0	1		3	NC	1
317		7	max	.006	3	003	15	0	1	0	_1_		1	NC	1
318			min	006	2	012	3	0	1	0	1	8467.538	3	NC	1
319		8	max	.007	3	003	15	0	1	0	1	NC	1	NC	1
320			min	007	2	013	3	0	1	0	1		3	NC	1
321		9	max	.008	3	003	15	0	1	0	1		1	NC	1
322			min	008	2	014	3	0	1	0	1		4	NC	1
323		10	max	.009	3	003	15	0	1	0	1		1	NC	1
324			min	009	2	014	3	0	1	0	1		4	NC	1
325		11	max	.01	3	003	15	0	1	0	1		1	NC	1
									-				-		$\overline{}$

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC_
326			min	01	2	014	3	0	1	0	1	7064.958	4	NC	1
327		12	max	.011	3	003	15	0	1	0	1_	NC	1_	NC	1
328			min	011	2	014	3	0	1	0	1	7277.876	4	NC	1
329		13	max	.012	3	003	15	0	1	0	_1_	NC	1_	NC	1
330			min	011	2	013	3	0	1	0	1	7775.079	4	NC	1
331		14	max	.013	3	003	15	0	1	0	1	NC	1	NC	1
332			min	012	2	012	3	0	1	0	1	8667.655	4	NC	1
333		15	max	.014	3	002	15	0	1	0	1	NC	1_	NC	1
334			min	013	2	011	3	0	1	0	1	NC	1	NC	1
335		16	max	.015	3	002	15	0	1	0	1	NC	1	NC	1
336			min	014	2	009	3	0	1	0	1	NC	1	NC	1
337		17	max	.016	3	001	15	0	1	0	1	NC	1	NC	1
338			min	015	2	008	3	0	1	0	1	NC	1	NC	1
339		18	max	.017	3	0	15	0	1	0	1	NC	1	NC	1
340			min	016	2	006	1	0	1	0	1	NC	1	NC	1
341		19	max	.018	3	0	15	0	1	0	1	NC	1	NC	1
342			min	017	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
344			min	001	3	018	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.015	2	0	1	0	1	NC	1	NC	1
346			min	001	3	017	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
348			min	0	3	016	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.013	2	0	1	0	1	NC	1	NC	1
350			min	0	3	015	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.013	2	0	1	0	1	NC	1	NC	1
352			min	0	3	014	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.012	2	0	1	0	1	NC	1	NC	1
354			min	0	3	013	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.011	2	0	1	0	1	NC	1	NC	1
356			min	0	3	012	3	0	1	0	1	NC	1	NC	1
357		8	max	.004	1	.01	2	0	1	0	1	NC	1	NC	1
358			min	0	3	011	3	0	1	0	1	NC	1	NC	1
359		9	max	.004	1	.009	2	0	1	0	1	NC	1	NC	1
360		Ĭ	min	0	3	01	3	0	1	0	1	NC	1	NC	1
361		10	max	.004	1	.008	2	0	1	0	1	NC	1	NC	1
362		10	min	0	3	009	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
364			min	0	3	008	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.006	2	0	1	0	1	NC	1	NC	1
366		12	min	0	3	007	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
368		13	min	0	3	006	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
370		14	min	0	3	005	3	0	1	0	1	NC	1	NC NC	1
371		15		.002	1	.004	2	0	1	0	1	NC NC	1	NC NC	1
		15	max		3				1						
372		4.0	min	0		004	3	0		0	1	NC NC	1_	NC NC	1
373		16	max	.001	1	.003	2	0	1	0	1	NC	1_	NC	1
374		47	min	0	3	003	3	0	1	0	1_	NC NC	1_	NC NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC NC	1	NC NC	1
376		40	min	0	3	002	3	0	1	0	1	NC NC	1_	NC NC	1
377		18	max	0	1	0	2	0	1	0	1	NC	1_	NC NC	1
378		40	min	0	3	001	3	0	1	0	1	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
380	1440		min	0	1	0	1	0	1	0	1	NC	1_	NC	1
381	M10	1	max	.006	1	.006	2	0	15	2.438e-4	1_	NC	1_	NC	2
382			min	007	3	01	3	009	1	1.007e-5	15	NC	1	7110.757	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
383		2	max	.006	1	.005	2	00	15	2.287e-4	_1_	NC	_1_	NC	2
384			min	007	3	01	3	008	1	9.451e-6	15	NC	1_	7756.839	1
385		3	max	.005	1	.004	2	0	15	2.136e-4	_1_	NC	_1_	NC	2
386			min	006	3	009	3	007	1	8.828e-6	15	NC	1_	8527.128	
387		4	max	.005	1	.003	2	0	15	1.985e-4	_1_	NC	_1_	NC	2
388			min	006	3	009	3	007	1	8.204e-6	15	NC	1_	9454.637	1
389		5	max	.005	1	.002	2	0	15	1.834e-4	_1_	NC	_1_	NC	1
390			min	006	3	009	3	006	1	7.581e-6	15	NC	_1_	NC	1
391		6	max	.004	1	.002	2	0	15	1.683e-4	_1_	NC	_1_	NC	1
392			min	005	3	008	3	<u>005</u>	1	6.958e-6	<u>15</u>	NC	1_	NC	1
393		7	max	.004	1	.001	2	0	15	1.532e-4	1_	NC	1_	NC	1
394			min	005	3	008	3	005	1	6.335e-6	15	NC	1_	NC	1
395		8	max	.004	1	0	2	0	15	1.381e-4	1_	NC	1_	NC NC	1
396			min	004	3	007	3	004	1	5.712e-6	15	NC	1_	NC	1
397		9	max	.003	1	0	2	0	15	1.23e-4	1_	NC	1_	NC	1
398		10	min	004	3	007	3	003	1	5.088e-6	15	NC	1_	NC	1
399		10	max	.003	1	0	2	0	15	1.079e-4	1_	NC	1	NC NC	1
400		4.4	min	004	3	006	3	003	1_	4.465e-6	<u>15</u>	NC NC	1_	NC NC	1
401		11	max	.003	1	0	2	0	15	9.285e-5	1_	NC		NC NC	1
402		40	min	003	3	006	3	002	1	3.842e-6	<u>15</u>	NC NC	1_	NC NC	1
403		12	max	.002	1	0	15	0	15	7.776e-5	1_	NC NC	1	NC NC	1
404		40	min	003	3	005	3	002	1_45	3.219e-6	15	NC NC	1_	NC NC	1
405		13	max	.002	1	0	15	0	15	6.267e-5	1_	NC NC	1	NC NC	1
406		4.4	min	002	3	005	3	001	1_1_	2.595e-6	15	NC NC		NC NC	1
407		14	max	.002	1	0	15	0	15	4.758e-5	1_	NC NC	1	NC NC	1
408		4.5	min	002	3	004	3	0	1_1_	1.972e-6	<u>15</u>	NC NC	_	NC NC	
409		15	max	.001	3	0	15	0	15	3.249e-5	1_	NC NC	1_	NC NC	1
410		40	min	002		003	3	0	1_1_	1.349e-6	<u>15</u>	NC NC	1_	NC NC	1
411		16	max	.001	3	0	15	0	15	1.74e-5	1_	NC NC	<u>1</u> 1	NC NC	1
412		17	min	001 0	1	003 0	15	<u> </u>	15	7.257e-7 2.309e-6	<u>15</u> 1	NC NC	1	NC NC	1
414		17	max	0	3	002	4	0	1	1.025e-7	15	NC NC	1	NC NC	1
415		18	min	0	1	<u>002</u> 0	15	0	15	-4.173e-7	12	NC NC	1	NC NC	1
416		10	max min	0	3	001	4	0	1	-4.173e-7	12	NC NC	1	NC NC	1
417		19		0	1	<u>001</u> 0	1	0	1	-1.276e-5	15	NC	1	NC	1
418		19	max min	0	1	0	1	0	1	-1.144e-6	1	NC NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	9.224e-6	1	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	3.79e-7	15	NC NC	1	NC	1
421		2	max	0	3	0	15	0	15	-6.722e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.627e-5	1	NC NC	1	NC	1
423		3	max	0	3	0	15	0		-1.723e-6			1	NC NC	1
424			min	0	2	004	4	0	1	-4.176e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0		-2.774e-6		NC	-	NC	1
426		_	min	0	2	006	4	0	1	-6.726e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	15	-3.826e-6		NC	1	NC	1
428			min	0	2	007	4	0	1	-9.275e-5	1	NC	1	NC	1
429		6	max	.002	3	002	15	0		-4.877e-6		NC	1	NC	1
430			min	001	2	009	4	0	1	-1.182e-4	1	NC	1	NC	1
431		7	max	.002	3	003	15	0		-5.928e-6	_	NC	1	NC	1
432			min	001	2	011	4	001	1	-1.437e-4	1	8605.229	4	NC	1
433		8	max	.002	3	003	15	0	15		•	NC	1	NC	1
434			min	002	2	012	4	002	1	-1.692e-4	1	7725.855	4	NC	1
435		9	max	.003	3	003	15	0	15		15	NC	2	NC	1
436			min	002	2	013	4	002	1	-1.947e-4	1	7205.926	4	NC	1
437		10	max	.003	3	003	15	0	15		15	NC	3	NC	1
438			min	002	2	013	4	002	1	-2.202e-4	1	6954.865	4	NC	1
439		11	max	.003	3	003	15	0	15	-1.013e-5	15	NC	3	NC	1
												_			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
440			min	002	2	014	4	003	1	-2.457e-4	1	6935.686	4	NC	1
441		12	max	.003	3	003	15	0	15		15	NC	2	NC	1
442			min	003	2	013	4	003	1	-2.712e-4	1_	7150.809	4	NC	1
443		13	max	.004	3	003	15	0	15		15	NC	_1_	NC	1
444			min	003	2	012	4	004	1_	-2.967e-4	1_	7644.805	4_	NC	1
445		14	max	.004	3	003	15	0	15		<u>15</u>	NC 0507.5	1_	NC NC	1
446		45	min	003	2	011	4	004	1	-3.222e-4	1_	8527.5	4	NC NC	1
447		15	max	.004	3	002	15	0	15	-1.434e-5	<u>15</u>	NC	1_	NC NC	1
448		4.0	min	003	2	01	4	005	1	-3.477e-4	1_	NC NC	1_1	NC NC	1
449		16	max	.005	3	002 008	15	0 006	15	-1.539e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	004 .005	3		15	<u>006</u> 0	15	-3.732e-4 -1.644e-5	1_	NC NC	1	NC NC	1
451		17	max	005	2	001 006	1	007	1	-3.987e-4	<u>15</u>	NC NC	1	NC NC	1
452		18		.005	3	<u>006</u> 0	15	<u>007</u> 0	15		<u>1</u> 15	NC NC	1	NC NC	1
454		10	max min	005	2	004	1	007	1	-1.749e-3	1	NC NC	1	NC NC	1
455		19	max	.006	3	- <u>004</u> 0	15	<u>007</u> 0	15		15	NC	1	NC	1
456		13	min	004	2	003	1	008	1	-4.496e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.003	2	.008	1	-2.587e-6		NC	1	NC	3
458	IVIIZ	•	min	0	3	006	3	0	15		1	NC	1	2953.069	1
459		2	max	.003	1	.004	2	.008	1	-2.587e-6	15	NC	1	NC	3
460			min	0	3	006	3	0	15	-6.242e-5	1	NC	1	3210.767	1
461		3	max	.002	1	.004	2	.007	1	-2.587e-6	15	NC	1	NC	3
462			min	0	3	005	3	0	15	-6.242e-5	1	NC	1	3517.497	1
463		4	max	.002	1	.003	2	.006	1	-2.587e-6	15	NC	1	NC	3
464			min	0	3	005	3	0	15	-6.242e-5	1	NC	1	3885.988	1
465		5	max	.002	1	.003	2	.006	1	-2.587e-6	15	NC	1	NC	2
466			min	0	3	005	3	0	15	-6.242e-5	1	NC	1	4333.546	1
467		6	max	.002	1	.003	2	.005	1	-2.587e-6	15	NC	1	NC	2
468			min	0	3	004	3	0	15	-6.242e-5	1	NC	1	4884.163	1
469		7	max	.002	1	.003	2	.004	1	-2.587e-6	<u>15</u>	NC	1_	NC	2
470			min	0	3	004	3	0	15	-6.242e-5	1_	NC	1_	5571.903	1
471		8	max	.002	1	.002	2	.004	1	-2.587e-6	15	NC	1_	NC	2
472			min	0	3	004	3	0	15	-6.242e-5	1_	NC	1_	6446.44	1
473		9	max	.002	1	.002	2	.003	1	-2.587e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	3	003	3	0	15	-6.242e-5	1_	NC	1_	7582.557	1
475		10	max	.001	1	.002	2	.003	1	-2.587e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	3	003	3	0	15	-6.242e-5	_1_	NC	1_	9097.153	1
477		11	max	.001	1	.002	2	.002	1	-2.587e-6	<u>15</u>	NC	1_	NC NC	1
478		40	min	0	3	003	3	0	15	-6.242e-5	1_	NC	1_	NC NC	1
479		12	max	.001	1	.002	2	.002	1	-2.587e-6	<u>15</u>	NC NC	1_	NC NC	1
480		40	min	0	3	002	3	0		-6.242e-5		NC NC	1	NC NC	1
481		13	max	0	3	.001	2	.001	1	-2.587e-6	15	NC NC	1	NC NC	1
482		1.1	min	0	1	002	2	0		-6.242e-5	1 =	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	3	.001	3	0	1	-2.587e-6		NC NC	1	NC NC	1
484 485		15	min max	0	1	002 0	2	<u> </u>	1 <u>5</u> 1	-6.242e-5 -2.587e-6	1_	NC NC	1	NC NC	1
486		15	min	0	3	001	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-0.242e-5 -2.587e-6		NC	1	NC	1
488		10	min	0	3	0	3	0		-6.242e-5	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-0.242e-5 -2.587e-6	_	NC	1	NC	1
490		11/	min	0	3	0	3	0	15		1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-0.242e-3	•	NC	1	NC	1
492		10	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-2.587e-6	•	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-6.242e-5	1	NC	1	NC	1
495	M1	1	max	.007	3	.102	2	.001	1	1.581e-2	1	NC	1	NC	1
496			min	003	2	012	3	0		-2.536e-2	3	NC	1	NC	1
											_		_		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			LC
497		2	max	.007	3	.048	2	0	15	7.672e-3	1	NC	3	NC	1
498			min	003	2	004	3	006	1	-1.255e-2	3	2170.338	2	NC	1
499		3	max	.007	3	.011	3	0	15	2.252e-5	10	NC	5	NC	1
500			min	003	2	009	2	009	1	-1.752e-4	1	1044.07	2	NC	1
501		4	max	.007	3	.038	3	0	15	4.376e-3	1	NC	5	NC	1
502			min	003	2	074	2	008	1	-4.491e-3	3	657.354	2	NC	1
503		5	max	.007	3	.074	3	0	15	8.927e-3	1		15	NC	1
504			min	003	2	141	2	006	1	-8.86e-3	3		2	NC	1
505		6		.007	3	.114	3	<u>.000</u>	15	1.348e-2	1		15	NC	1
		0	max		2		2	002	1		3			NC	1
506		-	min	003		208			•	-1.323e-2			2		_
507		7	max	.007	3	.153	3	0	1	1.803e-2	1		15	NC_	1
508			min	003	2	266	2	0	12	-1.76e-2	3	312.559	2	NC_	1
509		8	max	.006	3	.185	3	.001	1	2.258e-2	_1_		15	NC	1
510			min	003	2	313	2	0	15	-2.197e-2	3	277.322	2	NC	1
511		9	max	.006	3	.206	3	0	15	2.498e-2	1		15	NC	1
512			min	003	2	343	2	0	1	-2.197e-2	3	258.994	2	NC	1
513		10	max	.006	3	.213	3	0	1	2.634e-2	2	8268.069	15	NC	1
514			min	003	2	353	2	0	12	-1.907e-2	3		2	NC	1
515		11	max	.006	3	.208	3	0	1	2.829e-2	2		15	NC	1
516			min	003	2	343	2	0	15	-1.617e-2	3		2	NC	1
517		12	max	.006	3	.191	3	0	15	2.73e-2	2		15	NC	1
518		12	min	003	2	312	2	001	1	-1.336e-2	3	279.746	2	NC	1
		13		.006	3	.162	3		15	2.19e-2			15	NC	1
519		13	max		2			0			2				_
520		4.4	min	003		263	2	0	1	-1.069e-2	3	318.481	2	NC NC	1
521		14	max	.006	3	.126	3	.002	1	1.651e-2	2		15	NC_	1
522			min	003	2	202	2	0	15	-8.027e-3	3	384.692	1	NC NC	1
523		15	max	.005	3	.086	3	.005	1	1.111e-2	2		15	NC	1
524			min	003	2	<u>135</u>	2	0	15	-5.36e-3	3	496.468	1	NC	1
525		16	max	.005	3	.044	3	.008	1	5.708e-3	2	NC	5	NC	1
526			min	003	2	067	2	0	15	-2.693e-3	3	702.862	1	NC	1
527		17	max	.005	3	.004	3	.008	1	5.799e-4	1	NC	5	NC	1
528			min	003	2	005	2	0	15	-2.662e-5	3	1142.753	1	NC	1
529		18	max	.005	3	.049	1	.006	1	1.049e-2	2	NC	4	NC	1
530			min	003	2	032	3	0	15	-4.11e-3	3	2416.1	1	NC	1
531		19	max	.005	3	.096	1	0	15	2.103e-2	2	NC	1	NC	1
532		10	min	003	2	065	3	001	1	-8.35e-3	3	NC	1	NC	1
533	M5	1	max	.022	3	.242	2	0	1	0.000 0	1	NC	1	NC	1
534	IVIO		min	015	2	01	3	0	1	0	1	NC	1	NC	1
		2											-		
535			max	.022	3	.114	2	0	1	0	1	NC	5	NC NC	1
536			min	015	2	0	3	0	1	0	1	906.715	2	NC NC	1
537		3	max	.022	3	.034	3	0	1	0	1_		5	NC_	1
538			min	015	2	029	2	0	1	0	_1_	427.225	2	NC	1
539		4	max	.022	3	.109	3	0	1	0	_1_		15	NC	1
540			min	015	2	199	2	0	1	0	1		2	NC	1
541		5	max	.021	3	.214	3	0	1	0	1_		15	NC	1
542			min	015	2	382	2	0	1	0	1	184.685	2	NC	1
543		6	max	.021	3	.332	3	0	1	0	1	5233.298	15	NC	1
544			min	014	2	565	2	0	1	0	1		2	NC	1
545		7	max	.021	3	.448	3	0	1	0	1		<u>-</u> 15	NC	1
546		l i	min	014	2	729	2	0	1	0	1		2	NC	1
547		8	max	.02	3	.545	3	0	1	0	1		15	NC	1
548			min	014	2	861	2	0	1	0	1	104.486	2	NC	1
		0		-	3	.607	3		1		1		15	NC NC	1
549		9	max	.02				0	1	0					
550		40	min	013	2	<u>945</u>	2	0	•	0	1_		2	NC NC	1
551		10	max	.019	3	.63	3	0	1	0	1_		15	NC NC	1
552			min	013	2	<u>973</u>	2	0	1	0	1	00.00.	2	NC NC	1
553		11	max	.019	3	.614	3	0	1	0	<u>1</u>	3536.556	15	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	013	2	945	2	0	1	0	1	97.508	2	NC	1
555		12	max	.018	3	.561	3	0	1	0	1	3805.924	15	NC	1
556			min	013	2	858	2	0	1	0	1	105.49	2	NC	1
557		13	max	.018	3	.476	3	0	1	0	1	4331.106	15	NC	1
558			min	013	2	719	2	0	1	0	1	121.114	1	NC	1
559		14	max	.018	3	.368	3	0	1	0	1	5234.221	15	NC	1
560			min	012	2	547	2	0	1	0	1	147.812	1	NC	1
561		15	max	.017	3	.248	3	0	1	0	1	6797.819	15	NC	1
562			min	012	2	36	2	0	1	0	1	194.617	1	NC	1
563		16	max	.017	3	.126	3	0	1	0	1		15	NC	1
564			min	012	2	177	2	0	1	0	1	283.313	1	NC	1
565		17	max	.016	3	.011	3	0	1	0	1	NC	5	NC	1
566			min	012	2	016	2	0	1	0	1	477.543	1	NC	1
567		18	max	.016	3	.115	1	0	1	0	1	NC	5	NC	1
568			min	012	2	087	3	0	1	0	1	1039.409	1	NC	1
569		19	max	.016	3	.225	1	0	1	0	1	NC	1	NC	1
570			min	012	2	176	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.007	3	.102	2	0	15	2.536e-2	3	NC	1	NC	1
572			min	003	2	012	3	001	1	-1.581e-2	1	NC	1	NC	1
573		2	max	.007	3	.048	2	.006	1	1.255e-2	3	NC	3	NC	1
574			min	003	2	004	3	0	15	-7.672e-3	1	2170.338	2	NC	1
575		3	max	.007	3	.011	3	.009	1	1.752e-4	1	NC	5	NC	1
576			min	003	2	009	2	0	15	-2.252e-5	10	1044.07	2	NC	1
577		4	max	.007	3	.038	3	.008	1	4.491e-3	3	NC	5	NC	1
578			min	003	2	074	2	0	15	-4.376e-3	1	657.354	2	NC	1
579		5	max	.007	3	.074	3	.006	1	8.86e-3	3		15	NC	1
580			min	003	2	141	2	0	15	-8.927e-3	1	473.374	2	NC	1
581		6	max	.007	3	.114	3	.002	1	1.323e-2	3	NC	15	NC	1
582			min	003	2	208	2	0	15	-1.348e-2	1	372.196	2	NC	1
583		7	max	.007	3	.153	3	0	12	1.76e-2	3		15	NC	1
584			min	003	2	266	2	0	1	-1.803e-2	1	312.559	2	NC	1
585		8	max	.006	3	.185	3	0	15	2.197e-2	3	9040.965	15	NC	1
586			min	003	2	313	2	001	1	-2.258e-2	1	277.322	2	NC	1
587		9	max	.006	3	.206	3	0	1	2.197e-2	3	8448.495	15	NC	1
588			min	003	2	343	2	0	15	-2.498e-2	1	258.994	2	NC	1
589		10	max	.006	3	.213	3	0	12	1.907e-2	3	8268.069	15	NC	1
590			min	003	2	353	2	0	1	-2.634e-2	2	253.602	2	NC	1
591		11	max	.006	3	.208	3	0	15	1.617e-2	3	8448.226	15	NC	1
592			min	003	2	343	2	0	1	-2.829e-2	2	259.787	2	NC	1
593		12	max	.006	3	.191	3	.001	1	1.336e-2	3		15	NC	1
594			min	003	2	312	2	0	15	-2.73e-2	2	279.746	2	NC	1
595		13	max	.006	3	.162	3	0	1	1.069e-2	3	NC	15	NC	1
596			min	003	2	263	2	0	15	-2.19e-2	2	318.481	2	NC	1
597		14	max	.006	3	.126	3	0	15	8.027e-3	3	NC	15	NC	1
598			min	003	2	202	2	002	1	-1.651e-2	2	384.692	1	NC	1
599		15	max	.005	3	.086	3	0	15	5.36e-3	3	NC	15	NC	1
600			min	003	2	135	2	005	1	-1.111e-2	2	496.468	1	NC	1
601		16	max	.005	3	.044	3	0	15		3	NC	5	NC	1
602			min	003	2	067	2	008	1	-5.708e-3	2	702.862	1	NC	1
603		17	max	.005	3	.004	3	0	15		3	NC	5	NC	1
604			min	003	2	005	2	008	1	-5.799e-4	1	1142.753	1	NC	1
605		18	max	.005	3	.049	1	0	15	4.11e-3	3	NC	4	NC	1
606			min	003	2	032	3	006	1	-1.049e-2	2	2416.1	1	NC	1
607		19	max	.005	3	.096	1	.001	1	8.35e-3	3	NC	1	NC	1
608			min	003	2	065	3	0	15	-2.103e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2559	6071	0.42	Pass
Concrete breakout	5118	10231	0.50	Pass
Adhesive	5118	8093	0.63	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1784	3156	0.57	Pass (Governs)
T Concrete breakout x+	3567	8641	0.41	Pass
Concrete breakout y-	1784	22862	0.08	Pass
Pryout	3567	20601	0.17	Pass
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.