RR Lyrae Variable Stars in the CCD/Transit Instrument Survey

By

Charles J. Wetterer

B.S., Physics and Astronomy, University of Maryland, 1986

M.S., Physics, University of New Mexico, 1990

This document has been approved for public release and sale; its distribution is unlimited.

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics

The University of New Mexico Albuquerque, New Mexico

July, 1995

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
4. TITLE AND SUBTITLE	401 10		5. FUNDING NUMBERS
RR Lyce Variable sta	re indianolist.	Constitute	
Instrument Servey		,	·
6. AUTHOR(S)			
•			
			l i
There ICS JU	257744		8. PERFORMING ORGANIZATION
	(S) AND ADDRESS(ES)		REPORT NUMBER
AFIT Students Attending:			AFIT/CI/CIA
			95002 D
9. SPONSORING/MONITORING AGENCY	MICRICO		10. SPONSORING/MONITORING
			AGENCY REPORT NUMBER
DEPARTNEMT OF THE AIR FO	RCE		
AFIT/CI			
2950 P STREET, BDLG 125 WRIGHT-PATTERSON AFB OH	45433-7765		1
WRIGHT-FAITERSON AFB ON	+J+JJ 770J		
11. SUPPLEMENTARY NOTES			
		•	
12a. DISTRIBUTION / AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE
Approved for Public Rele			
Distribution Unlimited			
BRIAN D. GAUTHIER, MSgt,	USAF		1
Chief Administration			
13. ABSTRACT (Maximum 200 words)			
			· I
•			
			The second of th
	• •	ALTIC C	QUALITY INCPECTED 5
		DIE	v
AA GURUSCE TERMS			15. NUMBER OF PAGES
14. SUBJECT TERMS	\		343
	١,		16. PRICE CODE
	SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIF OF ABSTRACT	ICATION 20. LIMITATION OF ABSTRACT
OF REPORT	OF INIS PAGE	Of ROSINACI	

• 1995, Charles J. Wetterer

Accesion	for						
NTIS (A					
DTIC			1				
	Unan::punced						
Justifica	tion						
By Distribu	By Distribution /						
A	Availability Codes						
Dist	Avail and/or Special						
A-1							

ACKNOWLEDGEMENTS

I would like to thank the members of my dissertation committee, primarily John T. McGraw, for their salient comments and guidance during this work. I would also like to thank Thomas R. Hess for his work with the CTI databases and programing, Randy Grashuis for many nights of observing at Capilla Peak observatory, Fritz Benedict for his help with the CTI astrometry, and Jim Kunkle for many useful conversations and insights. Thanks also to Kirsten Boudreau, Heather Vogel, and Alex Collins for help throughout this endeavor.

This dissertation builds on the work of many who worked on CTI in the past. In addition to John T. McGraw and Thomas R. Hess, the CTI group at Arizona included J.R.P. Angel, T.A. Sargent, M.G.M Cawson, M.J. Keane, and J.D. Kirkpatrick.

RR Lyrae Variable Stars in the CCD/Transit Instrument Survey

By

Charles J. Wetterer

ABSTRACT OF DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Physics

The University of New Mexico
Albuquerque, New Mexico
July, 1995

RR LYRAE VARIABLE STARS IN THE CCD/TRANSIT INSTRUMENT SURVEY

by

Charles J. Wetterer

BS, Physics and Astronomy, University of Maryland, 1986
MS, Physics, University of New Mexico, 1990
PhD, Physics, University of New Mexico, 1995

ABSTRACT

RR Lyrae variable stars have long been recognized as important tools in probing the mass, chemical distribution and kinematics of the Galaxy from the inner recesses of the nuclear bulge to the outer environs of the distant Galactic halo. This dissertation chronicles an RR Lyrae variable star survey from a thorough description of the initial observations with the CCD/Transit Instrument (CTI), to an examination of RR Lyrae space density and the Galactic mass using the discovered RR Lyrae stars.

The RR Lyrae space density as a function of Galactocentric distance is shown to be a power-law function $(R^{-3 \text{ to } -3.5})$ and consistant with an ellipsoidal distribution in the nuclear bulge and more spherically symmetric distribution in the Galactic halo. The unique area of the CTI survey and comparison to other RR Lyrae surveys verifies this function is valid throughout the Galactic halo and over the range of Galactocentric distances sampled (0.6 < R < 40 kpc). Local

underdensities and overdensities of RR Lyrae stars are discussed, including a possible resonance with the Magallenic Clouds (R \approx 50 kpc).

The Galactic mass estimated using radial velocities of RR Lyrae stars discovered in the CTI survey does not support the existence of a massive dark Galactic halo. This result is compared to the mass as determined from the radial velocities of other halo objects. Depending on the type of orbits assumed, the radial velocities of RR Lyrae stars, globular clusters, and dwarf elliptical galaxies can be used to support the notion that a massive dark halo exists (i.e. the mass-to-light ratio increases for increasing Galactocentric distance), or that no excessive dark matter exists in the Galactic halo (i.e. the mass-to-light ratio remains constant for increasing Galactocentric distance).

Table of Contents

List of	Figu	res	•	•	•	•	•	•	•	•	•	•	•	•	кi
List of	Table	es .	•		•	•		•	•		•	•	•	•	xiv
Chapter	1: 11	ntrod	ucti	ion	•	•	•	•		•	•		•	•	1
Chapter	2: T	he CC	D/Tı	rans	sit	Ins	stru	ımer	nt	(CT)	[)	•	•	•	. 3
	2.1	CTI	Desc	crip	ptic	n	•	•		•	•	•	•	•	4
•	2.2	CTI	Surv	vey	Are	ea I	esc	rip	otio	on	•	•	•	•	11
Chapter	3: C	ri Da	ta I	Redu	ıcti	lon	and	l Ca	lik	orat	ior	ı	•	•	15
	3.1	Init	ial	Ent	ry	of	Dat	a		•	•		•	•	18
	3.2	Remo	val	of	Ins	stru	ımer	nta]	Si	igna	tui	ce	•	•	19
	3.3	Back Cosm						and		•				•	24
	3.4	Anal	yzir	ng a	and	Fil	lter	cinq	j	•	•	•	•	•	26
	3.5	Cali	brat	tion	1	•	•	•	•	•	•	•	•	•	30
		3.5.	1 P	osit	cior	nal	Cal	libi	ati	ion	•		•	•	30
		3.5.	2 Pł	noto	omet	ric	C Ca	alik	rat	cior	1	.•	•	•	34
	3.6	Merg	ing	and	l Ur	odat	ing	g Da	tak	oase	es	• ,	•	•	48
Chapter	4: Va	ariab	le S	Star	cs i	in t	he	CTI	Su	ırve	≥ Y	•	•	•	52
Ŀ.	4.1	Vari	able	e St	ars	5	•	•	•	•	•	•	•	•	53
	4.2	Find in t	_					ırs							58
		4.2.	1 S	puri	ious	s Va	ria	able	es	•		•	•		59
		4.2.	2 B]	lind	l Sp	ots	s (C	Comp	olet	ene	ess)		•	•	73
	4.3	CTI	Vari	[ab]	le S	Star	: Ir	ndex	C De	esci	cipt	ior	ı	•	77
Chapter	5: RI	R Lyr	ae V	Jari	labl	.e S	Star	s i	in t	he	CTI	Su	ırve	≥y	81
	5 1	DD T	urae	s 17s	ris	hle	s C+	arc	•			٠			82

Table of Contents (continued)

	5.2	Search Technique	•	87
	5.3	Completeness	•	96
	5.4	Alias Breaking Observations at Capilla Peak	•	102
	•	5.4.1 Capilla Peak Telescope and CCD Description .		102
		5.4.2 Capilla Peak Image Reduction .	•	104
		5.4.3 Combining CTI and Capilla Peak data		112
		5.4.4 Summary of Observations	•	113
	5.5	CTI RR Lyrae Survey Statistics	•	120
Chapter	6: RI	R Lyrae Variable Star Space Densities	•	125
	6.1	Calculating RR Lyrae Space Densities	•	129
	6.2	Other RR Lyrae Space Density Surveys	•	137
		6.2.1 Lick RR Lyrae Star Survey .	•	139
		6.2.2 Palomar-Groningen Variable Star Survey .	•	140
		6.2.3 Saha's RR Lyrae Survey	•	142
		6.2.4 Hawkins' RR Lyrae Survey	•	144
		6.2.5 Baade's Window RR Lyrae Survey	•	145
		6.2.6 Local RR Lyrae Space Density	•	147
		6.2.7 Miscellaneous Surveys	•	149
	6.3	RR Lyrae Space Densities	•	151
Chapter	7: Ma	ass Distribution in the Milky Way .	•	159
	7.1	RR Lyrae Astrometry	•	161
	7.2	RR Lyrae Spectroscopy	•	167

Table of Contents (continued)

	7.	3	Gal	acti	c Ma	ass	ve	rsu	s R	adia	al	Dis	tan	ce	•	171
Appendi	x 1	. -	Tab	les	•	•	•	•	•	•	•	•	•	•	•	182
Appendi	x 2	-	CTI	Dat	abas	se	Des	cri	pti	ons	•	•	•	•.	•	222
Appendi	х 3	-	CTI Lig	RR ht C	Lyra urve	ae es,	Sur	vey d F	Ph ind	oto ing	net Ch	ry, art	s			233
Referen	ces													•		327

List of Figures

1.1	-	Schematic outline of dissertation	1
2.1	-	CTI optical design	4
2.2	-	CTI structural design	5
2.3	-	CCD sidereal rate Time Delay and Integrate mode	. 8
2.4	_	CTI survey strip in equatorial coordinates	11
2.5	-	CTI survey strip in Galactic coordinates	12
3.1	-	Schematic flow chart representation of CTI analysis process	16
3.2	_	Contrast filter	28
3.3	-	V magnitude offset versus CTI dayno	38
3.4	-	Adjusted V magnitude offset versus CTI dayno .	39
3.5	-	Magnitude offsets, background intensity, and number of stars versus right ascension	43
3.6	-	Number of objects versus right ascension	42
3.7	-	Magnitude offset versus seeing for various confusions	43
3.8	-	Relationship between magnitude offset, seeing, and confusino explained	44
3.9	-	Number of V and B observations versus right ascension	5(
4.1	-	Positions of variable star types on Hertzsprung-Russell (H-R) diagram	55
4.2	-	Variable fraction of objects versus mean instrumental V magnitude	62
4.3	_	Peak luminosity versus mean luminosity	66
4.4	-	Variable fraction of objects versus number of V observations	69
4.5	-	Variable fraction of objects versus right ascension	7:

List of Figures (continued)

4.6 -	Variable fraction of objects versus mean instrumental V magnitude (19.4 ^h - 19.8 ^h)	72
4.7 -	Average V magnitude random and total error versus average instrumental V magnitude	74
4.8 -	Percent detectability versus period	75
4.9	Light curves of different variable stars	79
5.1 -	Light curves of different RR Lyrae Bailey types.	84
5.2 -	E(B-V) versus right ascension for CTI strip	88
5.3 -	CTI RR Lyrae survey area (declination versus right ascension	89
5.4 -	Fraction of survey area not masked by bright stars versus right ascension	89
5.5 -	Detectable fraction versus period	97
5.6 -	Detectable fraction versus # V observations	98
5.7 -	Detectable fraction versus right ascension	99
5.8 -	RR Lyrae stars as a function of amplitude	101
5.9 -	Detectable fraction versus average V magnitude .	101
5.10-	V_{min} - <v> versus ΔV</v>	120
5.11-	(B-V) _{min} versus period	122
5.12-	Distribution in period and amplitude of RR Lyraes in CTI survey and Palomar-Groningen survey	124
6.1 -	Galactocentric coordinates	126
6.2 -	Fraction of total volume surveyed as function of Galactocentric radial distance	131
6.3 -	Fraction of total volume surveyed versus Galactocentric radial distance for CTI survey	133
6.4 -	Cumulative number of RRab type variables versus Galactocentric Radial Distance for CTI Survey .	134

<u>List of Figures (continued)</u>

6.5 -	RR Lyrae Space Density versus Galactocentric Radial Distance and Semi-Major Axis Distance for CTI survey	135
6.6 -	Location of other RR Lyrae survey fields in right ascension versus declination	138
6.7 -	Fraction of volume surveyed and cumulative number of RRab type variables versus Galactocentric radial distance for Lick survey	139
6.8 -	Fraction of volume surveyed and cumulative number of RRab type variables versus Galactocentric radiradial distance for Palomar-Groningen survey .	: .al 141
6.9 -	Fraction of volume surveyed and cumulative number of RRab type variables versus Galactocentric radial distance for Saha's survey	143
6.10-	Fraction of volume surveyed and cumulative number of RRab type variables versus Galactocentric radial distance for Hawkins' survey	144
6.11-	Fraction of volume surveyed and cumulative number of RRab type variables versus Galactocentric radidistance for Baade's Window survey	al 146
6.12-	RR Lyrae space density versus heliocentric distance using Bright RR Lyrae Stars in GCVS .	148
6.13-	RR Lyrae space density versus Galactocentric radial distance for all fields	152
6.14-	RR Lyrae space density versus Galactocentric semi-major axis distance for all fields	153
	Positional error versus instrumental luminosity for CTI	162
7.2 -	Velocity components in Galactocentric cylindrical coordinate system	164
7.3 -	Flux versus wavelength for RR Lyrae star	168
7.4 -	Interior Galactic mass versus Galactocentric radial distance (previous measurements)	175
7.5 -	Interior Galactic mass versus Galactocentric radial distance	177

List of Tables

2.1 - CTI Optical Design	. 5
2.2 - CTI Filter Set	. 6
2.3 - CCD Operational Parameters	. 7
2.4 - Constellation Boundaries in CTI Survey	. 13
3.1 - Possible Contamination of CTI Survey Strip by Mars and Jupiter during 1987 - 1992	. 46
5.1 - RR Lyrae final candidate list	. 94
5.2 - GCVS name for stars in final candidate list .	. 95
5.3 - Photometry results for RR Lyrae survey stars	. 116
5.4 - Standard magnitudes for RR Lyrae survey stars	. 118
6.1 - CTI RR Lyrae Galactocentric Coordinates	. 128
6.2 - RR Lyrae Space Density Surveys	. 137
7.1 - McDonald Observatory Operating Parameters	. 167
7.2 - Center-of-mass velocity measurements	. 170
Al.1 - CTI Observing Log	. 182
A1.2 - Bright Stars in CTI Survey	. 197
A1.3 - SAO Stars in CTI Survey	. 198
A1.4 - Previously Known Variable Stars in CTI Survey	. 205
A1.5 - Bright Galaxies in CTI Survey	. 206
Al.6 - Variable Star Types	. 208
A1.7 - Bright Star Masks	. 213
Al.8 - Sample signal to noise calculations for Capilla	a 214
Al.9 - Capilla Peak Observing Log	. 217
Al.10- Capilla Peak Observers Log	. 219
Al.11- Capilla Peak Image Log	. 219
A1.12- RR Lyrae Variable Stars with V<11.5 in GCVS	. 220

Chapter 1 Introduction

RR Lyrae variable stars have long been recognized as important tools in probing the mass, chemical distribution and kinematics of the Galaxy from the inner recesses of the nuclear bulge to the outer environs of the distant Galactic halo. Questions concerning dark matter, the age of the Galaxy, and the size of the universe can all be addressed using information obtained from the study of RR Lyrae stars.

Figure 1.1 - Schematic outline of dissertation. (Not all "branches" and "fruit" shown.)

This dissertation chronicles an RR Lyrae variable star survey from its roots, in the observations of the CCD/Transit Instrument (CTI), to its fruits, in results of astrophysical significance. The outline is shown schematically in Figure Two chapters are devoted to describing CTI and are 1.1. intended to serve as a starting point for those wishing to explore other branches of the tree in Figure 1.1. describes the CTI in detail as well as the portion of the sky contained in the resulting survey and Chapter 3 describes the reduction and calibration of the CTI data and contents of the The next two chapters use the CTI survey survey databases. databases to identify particular types of objects. Chapter 4 discusses the search for variable stars in the CTI survey, while Chapter 5 narrows the search to a particular type of variable star, namely RR Lyraes. Both of these chapters contain information relavent to those interested in conducting similar searches in the CTI databases. The final two chapters use the RR Lyraes discovered in the CTI survey to examine the distribution of RR Lyraes in the Galactic halo (Chapter 6) and the total mass as a function of Galactocentric radial distance of the Milky Way (Chapter 7).

Chapter 2 The CCD/Transit Instrument

The CCD/Transit Instrument (CTI) is a stationary, meridian pointing optical telescope that images a narrow strip of the sky at all right ascensions. The telescope is rigidly mounted to point at a single declination and relies on the Earth's rotation to bring different parts of the sky into view. The databases resulting from the survey contain over 500,000 objects observed during the seven years the telescope operated on Kitt Peak. This chapter describes in detail the CTI's design and the portion of the sky CTI surveys.

2.1 CTI Description

CTI is a 1.8 meter, f/2.2 telescope operated on Kitt Peak in Arizona (31° 57′ 41.9″ north latitude, 111° 36′ 00.5″ west longitude, 2080 m elevation) from 1984 to 1992 (McGraw et al. 1980, 1983, 1986 and McGraw 1992a). A schematic of the optical design is shown in Figure 2.1 with optical characteristics of each element given in Table 2.1. The paraboloidal primary reflects light first to a 0.76 meter

Figure 2.1 - CTI Optical Design

secondary, then to a 0.76 meter tertiary located just above the primary, finally to the detectors located near the center of the structure. The secondary and tertiary are figured as a Paul-Baker two mirror corrector (Paul 1935, Baker 1969), providing achromatic correction of the primary's coma aberration and an almost diffraction limited field of view of over one degree at the focal plane. Originally designed for the Hale 5-meter telescope, this type corrector has never been used

Table 2.1 - CTI Optical Design (dimensions in cm)

Surface	Diameter	Radius of Curvature	Aspheric K	Coefs A6	Distance to next surface
primary secondary tertiary		-308.0399 97.80481 -97.19998	0 -3.	0 15795E-11 0	105.1778 97.2942 48.5404

before because it places the focal plane in an inconvenient position for conventional telescopes, high in the structure midway between the secondary and tertiary mirrors. Since CTI

Figure 2.2 CTI Structural Design

uses electronic detectors and is a dedicated transit instrument rigidly mounted in its own building to point at a single declination, it does not suffer from this limitation.

The optics are mounted in a thermally compensating structure in which the vertically diagonal sections are made of stainless steel with a lower linear expansion coefficient than the aluminum horizontal sections. A schematic of the structure is shown in Figure 2.2. The angles at the joints were chosen such that expansion and contraction due to temperature changes in both metals have no effect in the vertical dimension. This enables the telescope to maintain its focus throughout the night, independent of changes in temperature.

The large field of view enables the telescope to simultaneously use two side-by-side RCA charge-coupled devices (CCDs). Typically, one of the CCDs observed through a V filter while the other cycled through the B, R, and I filters. For several nights, however, an ultraviolet transparent clear filter (C) for faint galaxy and supernova detection and narrow

Table 2.2 - CTI Filter Set

```
B BG-12 (1 mm) + BG-18 (1 mm) + GG-385 (1 mm)
```

band H-alpha filters were used. A summary of the CCD filter set for CTI, made up of Schott and Hoya glass filters and H_{α} interference filters, is given in Table 2.2. The CTI observing log, listing the filter combination and observational conditions of every night of operation of CTI on Kitt Peak, is summarized in Table Al.1 of Appendix 1 of this dissertation.

The RCA CCDs have 320 x 512 x 30 μm square pixels with the construction of the CCD camera and controllers following

V BG-18 (1 mm) + GG-495 (2 mm)

R = OG-570 (1 mm) + KG-3 (2 mm)

I RG-9 (3 mm)

C UV-28 (2.5 mm)

A H-alpha 658 nm - on (>3 mm)

O H-alpha 663 nm - off (>3 mm)

CCD0 - 72 electron readout noise

- 9.18 electrons/ADU

CCD1 - 40 electron readout noise

- 10.78 electrons/ADU

CCDs have no cosmetic blemishes

a design first used by Kitt Peak National Observatory (Marcus et al. 1979). The CCD operational parameters are given in Table 2.3. The field scale for the telescope is 52 arcsec/mm with each pixel subtending 1.55 arcseconds. The CCDs are aligned with their columns in the east-west direction and are operated in the time-delay and integrate (TDI) mode at the apparent sidereal rate. Thus, for the stationary telescope pointed at a particular declination on the meridian, images of objects in the sky drift across the CCDs at the same rate as the electronic image is read off. This is illustrated in Figure 2.3. The effective exposure time for an object is 1 minute.

Images of the sky 8.26 arcminutes wide (320 pixels) in the north-south direction and arcminutes to more than a hundred degrees long in the east-west direction (depending on the length of the night) are obtained each night of observation. Due to interruptions by clouds or problems with the telescope's control computer, a single night's observation is not necessarily continuous, and may be segmented into several "sweeps", the term William Herschel applied to his observations made in a similar manner about 200 years ago.

Figure 2.3 - CCD sidereal rate Time Delay and Integrate (TDI) mode. Due to the Earth's rotation, images of stars drift across the CCDs at a calculable rate. The electronic image forming in the pixels of the CCD is read out at the same rate, creating an unsmeared digitized image of the stars. The shaded dots represent stars, with the darker shade corresponding to the same stars some time later.

Additionally, due to precession and slight shifts in telescope pointing, each night's observation doesn't exactly overlap in declination, making the effective width of the CTI survey 9.5 arcminutes. The total area surveyed by CTI is approximately

50 square degrees, corresponding to 0.065% of the total sky. The CCDs saturate for stars brighter than $V \approx 12$ and the nightly limiting magnitude is $V \approx 20$. The resulting raw images are not unlike an image obtained from a CCD operating in its standard staring mode.

The data from the telescope goes through many steps of processing before information is merged into an object master list and history lists. A detailed description of this analysis and calibration process is given in Chapter 3. The history lists contain a day-by-day record of the time, calibrated instrumental luminosity, error in luminosity, calibrated position and size of every object observed for each filter. The history lists also reference the master list, which contains averaged positional and photometric information as well as various measures of each object's characteristics. These lists are the primary databases produced by CTI for use in scientific study, although several other intermediate databases which contain interesting information as well are produced throughout the reduction process.

cTI offers unique advantages over other types of telescopes. The stability and simplicity of the design lends itself to automation. Indeed, this telescope is the Earthbased model for the proposed Lunar Ultraviolet Telescope Experiment (LUTE) (McGraw 1992b, 1993). Additionally, by its very nature, CTI observes everything in the survey strip equally well, providing an unbiased sample of a particular

type of object. Finally, and perhaps most importantly, dedicated instrument, a is a astrometrically and photometrically precise survey of all types of stars and other astronomical objects over an extended Ongoing projects include the period of time is obtained. search for and study of quasars (McGraw et al. 1988), white dwarf stars (Kirkpatrick and McGraw 1988), red dwarf stars (Kirkpatrick et al. 1990, 1994, Kirkpatrick 1992, 1994), extragalactic supernovae, high proper motion stars (Benedict et al. 1989, 1991), standard stars (McGraw et al. 1994) and all types of variable stars (McGraw 1992a, Wetterer et al. 1994, and this dissertation). Other telescopes and large surveys using techniques pioneered by CTI include the Sloan Digital Sky Survey (Kent et al. 1994, Kron 1994, Stoughton et al. 1994), new liquid mirror telescopes (Borra et al. 1989, 1992, Content et al. 1989), and standard telescopes employing the TDI mode of CCD operation (for example, Kent et al. 1993).

2.2 CTI Survey Area Description

epoch, J2000 equinox), four degrees from the zenith at Kitt Peak. This declination was chosen to pass within a degree of the north galactic pole (12^h 50^m), and intersects the heart of the Coma cluster of galaxies. The CTI survey strip also passes within a degree of the galactic anti-center (5^h 45^m), and within two degrees of the direction of solar motion (18^h 09^m). Figures 2.4 and 2.5 illustrate the sky coverage in

Figure 2.4 - CTI survey strip in equatorial coordinates. SAO stars brighter than 5th magnitude plotted with increasing symbol size corresponding to brighter stars. CTI survey strip (solid line) and Galactic Plane (dashed line), Galactic poles (NGP and SGP), Galactic center (GC) and anti-center (GAC), celestial poles (NCP and SCP) and first point of Aries (γ) are also marked.

Figure 2.5 - CTI survey strip in galactic coordinates. SAO stars brighter than 5th magnitude plotted with increasing symbol size corresponding to brighter stars. CTI survey strip (solid line) and Galactic Plane (dashed line), Galactic poles (NGP and SGP), Galactic center (GC) and anti-center (GAC), celestial poles (NCP and SCP) and first point of Aries (γ) are also marked.

both equatorial and galactic coordinates. The constellation boundaries transversed by the CTI survey strip are listed in Table 2.4 (Delporte 1930). A nearly complete representation of the CTI survey strip can be found in Database Guide (Wetterer 1995), written as a supplement to this dissertation.

The machine-readable versions of several different catalogs distributed by the Astronomical Data Center (ADC) were used to identify named objects within the CTI survey. All right ascensions and declinations were precessed to the

Table 2.4 - Constellation Boundaries in CTI Survey

Constellation	Start RA (1987.5	
Pegasus	21 ^h 29 ^m 57 ^s	00 ^h 09 ^m 48 ^s
Andromeda	00 09 48	00 49 02
Pisces	00 49 02	01 46 20
Triangulum	01 46 20	02 31 34
Aries	02 31 34	03 28 48
Taurus	03 28 48	06 00 06
Gemini	06 00 06	06 15 08
Auriga	06 00 06	06 39 05
Gemini	06 39 05	08 02 25
Cancer	08 02 25	09 21 38
Leo	09 21 38	10 36 16
Leo Minor	10 36 16	11 06 06
Leo	11 06 06	11 57 48
Coma Berenices	11 57 48	13 35 14
Bootes	13 35 14	15 15 46
Corona Borealis	15 15 46	16 24 33
Hercules	16 24 33	18 26 26
Lyra	18 26 26	19 20 01
Cygnus	19 20 01	19 44 34
Vulpecula	19 44 34	21 29 57
	•	

CTI epoch of 1987.5.

The 5th revised edition of the Bright Star Catalogue (BSC) (Hoffleit 1982) was used to identify all stars brighter than 6.5 magnitude whose effects are noticeable in the atlas. Stars with a V magnitude brighter than 12 will start saturating pixels in the CCDs. Diffraction effects of brighter stars in the BSC can be seen even if they lie well outside the strip. Table A1.2 in Appendix 1 lists each star's name, right ascension, declination, and visual magnitude. A total of 20 stars were identified. The Smithsonian Astrophysical Observatory (SAO) catalog (SAO Staff 1966) was used to identify other bright stars within the survey. These 311 stars, including the 20 BSC stars, are listed in Table

A1.3 in Appendix 1.

The 4th edition of the General Catalogue of Variable Stars (GCVS) (Kholopov et al. 1985-88) was used to identify known variable stars in the atlas. The papers containing the original finders for each star were also consulted to verify the identifications when needed (see references). Table Al.4 in Appendix 1 lists each star's name, right ascension, declination, magnitude range and type. A total of 35 previously known variable stars were identified.

Revised New General Catalogue of Nonstellar Astronomical Objects (RNGC) (Sulentic and Tifft 1973), and the galaxy portion of the Catalogue of Galaxies and Clusters of Galaxies (CGCG) (Zwicky et al. 1961-68) were used to identify a selection of bright galaxies in the atlas. The Palomar Sky Survey with overlays (Dixon et al. 1981) and Volume 5 of the Webb Society Deep-Sky Observer's Handbook (Jones 1981) were consulted to verify most of the identifications, and the Catalogue of Quasars and Active Galactic Nuclei (Veron-Cetty and Veron 1989) was used to identify a bright quasar (GQ Com) and a galaxy with an active galactic nucleus (NGC 4504) falling within the boundaries of the CTI survey strip. Table in Appendix 1 lists the name, right ascension, declination and magnitude for each of the 86 objects identified.

Chapter 3 CTI Data Reduction and Calibration

The raw pixel data from the CTI goes through many steps of processing before it can be used in a scientific project (Cawson et al. 1986a, 1986b, McGraw et al. 1989, and McGraw 1992a). Each night of CTI observation potentially yields over 460 Mbytes of data (2 CCDs of 320 pixels per row read out every 0.12 seconds at 16 bits per pixel giving 10.67 Because of the large amount of data being kbvtes/s). processed, a nearly automated data handling procedure was developed. A schematic representation of this is shown in Figure 3.1, and will be described in six steps: initial entry of night's data, removal of instrumental signature, background fitting and cosmic-ray removal, analyzing and filtering, positional and photometric calibration, and merging with the During each step of the master and history databases. analysis, one or more databases (labelled with unique two or three letter extensions) are produced for use later in the analysis, for scientific study, or for diagnostic purposes. The extension specifies the format and content of each database in the reduction system. These databases are shown as ovals in Figure 3.1.

In addition to the reduction and analysis products, one database and two text files record output from all computer routines. The *trace* file contains diagnostic information related to a single sweep (in early work this text file has a ls extension), while the log file lists the reduction and

Figure 3.1 - Schematic flow chart representation of the CTI analysis process. Rectangles represent computer routines, ovals represent databases, and rounded rectangles represent text files.

analysis steps completed for all sweeps during a particular automated reduction run. These two text files are shown as rounded rectangles in Figure 3.1. The daily analysis log (.DAL database) records the completion of each stage of the reduction and analysis process for every sweep, and can be used to determine the sweep's present status. A complete description of the contents of each type of database can be found in The CCD/Transit Instrument Atlas and Database Guide (Wetterer 1995), written as a supplement to this dissertation.

This chapter describes the current status of the CTI data reduction and analysis process, as well as areas requiring further work. These areas include: testing and implementing a new method for determining the bias and flat field functions (see Sections 3.2 and 4.2.1), testing the cosmic ray removal algorithm under various seeing conditions and resetting the thresholds (see Sections 3.3 and 4.2.1), modifying object position determination (see Section 7.1), automating discovery and rejection of data contaminated by rapid background changes due to clouds or stray light from planets (see Sections 3.5.2 and 4.2.1), and inclusion of aperture and curve-of-growth photometry to combat difficulties with photometry of galaxies and in the Galactic plane (see Sections 3.5.2 and 4.2.1).

3.1 Initial Entry of Night's Data

A night's data is transferred from the CTI on magnetic Each row of data tape in the format of a .PIX database. contains 8 underscan pixels, 320 data pixels, and 8 overscan Using the computer routine ENTEROBS, the data are pixels. examined and several stars from the AGK-3 catalog (Dieckvoss et al. 1975) at the beginning of each sweep are identified. This is done interactively with CTI personnel verifying and choosing the centroid of stars selected by the computer from an .AGK database. From this information, a rough calibration of the initial right ascension and declination, the right and precessional declination scaling, ascension and coefficients are determined and written to the header of a (This .CAL database will later be refined .CAL database. during the calibration phase of the analysis.) Additionally, a .BKM database recording the median background value over the course of the night is created to enable a quick check of observing conditions if desired. Finally, the .PIX database is converted into a .MTN database in preparation for the next step of the analysis. A .MTN database contains 320 image pixels and the mean and variance of the overscan and underscan for each row of data.

3.2 Removal of Instrumental Signature

In the CTI CCD image, instrumental additive effects, such as the readout voltage offset (bias), and instrumental multiplicative effects, such as the pixel-to-pixel response to light (flat field), of the CCD must be removed. Because the TDI procedure requires that an image of a particular object utilize every row, the nonuniformities of the CCDs are averaged over one dimension leaving only a "simple" additive and multiplicative function to be corrected in the other dimension. Determining the correct multiplicative function is essential if accurate photometry is desired.

For each night of observation, the CCDs were operated under dark conditions to produce the one-dimensional "dark bias" (additive function with .DK extension), and while observing a uniformly illuminated screen in the telescope dome to create the "flat field" (multiplicative function with .FF extension) for each filter. These functions, however, proved to be inadequate in removing the CCDs instrumental signature to obtain photometry precise to our goal of 1%. The dark bias functions appear to be corrupted by a light leak or reflection off the dark slide inserted over the CCDs before acquisition and no provision was made to map out the deferred charge structure of the CCDs. The flat field functions suffered from related problems.

It was necessary to develop a new method for determining the additive and multiplicative functions for CTI's CCDs. For

the initial versions of the master and history lists, a new dark bias function was constructed (using the computer routine FIXUP) by adjusting the original dark bias function to eliminate streaks in the data created by the deferred charge structure. The flat field function was left unchanged. Unfortunately, the flat field function from the mountain is not perfect and introduces systematic errors in the photometry of up to ≈ 0.02 magnitudes in V and ≈ 0.1 magnitudes in B.

Another method, where both the dark bias and flat field functions are obtained directly from the data, was needed. This is possible because during a night's observation, the CCDs are primarily measuring the background light level, which is recording the structure of the additive and multiplicative functions. In order for the method to work, however, the background light level must be flat in declination. means that nights when the moon is above the horizon or when the strip is crossing the Galactic plane must be handled very The second condition, which seems carefully. incompatible with the first, is that there must be a change in the background light level over the course of the night. the additive and multiplicative functions remain stable, however, several night's worth of data could be used to accomplish the necessary background change. Finally, the overall bias level can't be determined and thus a guess must be made to start the process. These last two points will be explained below.

For CTI's CCDs, a pixel value can be calculated using the equation

$$p_{ij} = a_i + m_i \times k_j, \tag{3.1}$$

where a_i is the additive terms (bias, deferred charge, self illumination), m_i are the multiplicative terms (flat field), k_j is the background light level (stars having been removed), and i and j are declination and right ascension respectively. It has been assumed that k is a function of right ascension only to meet the first condition stated in the above paragraph. The background light level can be determined by taking the mean of Equation 3.1 over all columns (declination) and solving for k_j , remembering that m_i is normalized ($\sum m_i = n_{col}$),

$$k_{j} = \frac{\sum_{i=1}^{n_{col}} p_{ij} - \sum_{i=1}^{n_{col}} a_{i}}{n_{col}}.$$
 (3.2)

If a guess of the additive function is made, the multiplicative function can be calculated by combining Equations 3.1 and 3.2,

$$m_{i(j)} = \frac{n_{col}(p_{ij} - a_i)}{\sum_{i} p_{ij} - \sum_{i} a_i}.$$
 (3.3)

As the background light level (or equivalently p_{ij}) changes, m_i should remain the same if the correct values for the a_i 's relative to $\sum a_i$ were used. If a slope exists when comparing the calculated $m_{i(j)}$ for a particular column against the

background light level, the a_i for that column is incorrect. A positive slope indicates a_i is too low while a negative slope indicates a_i is too high. All a_i 's can thus be adjusted to minimize these slopes for all columns to approach the correct solution. As stated earlier, however, the background light level must change to give leverage in determining the slopes, and the changes in the a_i 's are made relative to the average bias level $(\sum a_i)$.

Stars, truncation noise (the fact that the p_{ij} 's are integerized), random error (including readout noise), low background levels, and a small background change over the night will all reduce the quality of the resulting additive and multiplicative functions. In addition, most nights had the original .DK and .FF applied, and then were reintegerized, resulting in additional systematic errors above the original truncation noise.

This entire process is accomplished by several programs managed by the computer routine SKY_BIAS. The resulting additive function is written to a .RDK database while the multiplicative function is written to a .RFF database, both recorded as real (i.e. non-integer) numbers. Currently, however, the resulting dark bias and flat field functions using this method are inadequate in improving the existing calibration.

For the next incarnation of CTI, the method used to determine the additive and multiplicative functions will be

crucial in improving CTI's photometry. The best alternative might be to start acquiring data during astronomical twilight. As the twilight deepens, the changing background starting from a high initial value would give the factors necessary in making the method described above to work optimally. Because all the CTI raw data are recorded on magnetic tape, regenerating all databases from the current data is possible, though time consuming.

These functions (.RFF and .RDK), however determined, are applied to the pixel information in the .MTN database to remove the CCD's instrumental signature, with the result entered into a new .RFX database made up of real numbers. (Reductions using FIXUP, described earlier, reintegerized the data and saved it to a .FIX database.)

3.3 Background Fitting and Cosmic Ray Removal

The next step involves fitting the background sky brightness in the .RFX database. Accurate photometry depends on being able to fit the background well. This is accomplished with the computer routine BACKGROUND. The background fitting algorithm divides the strip into five overlapping sub-strips of 106 columns each and calculates the modal pixel value (in initial reductions, the biased median pixel value was calculated) for each sub-strip in a particular row. A .BXY database is accessed to identify regions of the strip where possible problems might occur. The resulting median values are entered into a least squared regression of the form

$$Back = A + Bx + Cy + Dx^2$$
 (3.4)

where x is the column number (declination), and y is the row number (right ascension). In the fit, the five modal values of each sub-strip are weighted by the inverse of the difference between the median (50-percentile point) and the 80-percentile point of that particular substrip. The larger the difference, the more stars present in the region, and the less weight that region's value is given in the regression. For each row (y), these coefficients (A,B,C, and D) are saved to a .BKG database. Additionally, a .BDG database containing the modal values and weights used in the regression for each row of data is produced.

Next, cosmic rays are detected and removed by the

computer routine CR_EDIT. The technique is based on the fact that the ionization trails deposited in the detectors by charged particles are basically single (or few) pixel events. This signature has a contrast much higher than the point spread function and can be isolated by simply selecting pixels greater than a certain pre-set value above the background level while requiring the mean of the surrounding eight pixels be below another lower pre-set value, (both these thresholds are listed in the header of the .CRP database for that particular sweep). A cosmic ray pixel in the .RFX database is assigned the mean value of the surrounding eight pixels, with the result of all pixel substitutions sent to the .CRP database. All cosmic ray events are thus fully recoverable.

The search for variable stars in the CTI survey strip turned up photometry anomalies related to cosmic ray removal. For a few nights entered into the current databases, the CR_EDIT algorithm removed the peak pixel of several faint stars resulting in either non-detections or anomalously low luminosity values for these stars on those nights. For the purposes of finding RR Lyrae type variable stars, these nights were easy to remove from the data (see Section 4.2.1). It will be necessary, however, to test the cosmic ray removal algorithm under various seeing conditions and reset the thresholds to distinguish between the actual short lived dimming of a star (e.g. Algol type variable stars) and a false dimming or non-detection created by cosmic ray removal.

3.4 Analyzing and Filtering

The pixel data in the .RFX database can now be background subtracted (using the .BKG database) and partitioned into images (group of pixels above some threshold) and segments (individual peaks within an image). This is accomplished by the computer routine ANALYZE. The pixel information is transformed into attributes associated with each segment's position, luminosity, shape and blending with other segments.

First, all pixels below a pre-set isophotal threshold (listed in the header of the .IMG database for the particular sweep) are ignored, with the pixels above the threshold forming groups, connected either adjacently or diagonally. All pixels in each group are considered part of the same "image." The luminosity, centroid, radius of gyration, ellipticity, and position angle of each image are calculated from the first and second moments of the group of pixels from which it is composed. For images above a preset luminosity threshold (listed in the header of the .IMG database), this information is output to the .IMG database.

Next, all pixels are grouped, connecting either adjacently or diagonally, to their nearest local peak. All pixels in each group formed are now considered part of the same "segment." Segments can be thought of as individual peaks in a mountain range, where the mountain range itself is an image. The properties of each segment are calculated in the same way as an image and output to a .SEG database.

Again, because the way segments are found guarantees to produce a segment from noise for about one pixel in nine over the entire background, segments below a preset luminosity threshold (listed in the header of the .SEG database) are not considered. The .IMG and .SEG databases also contain information specifying which segments refer to each image.

The .IMG and .SEG databases are then processed by the computer routine FILTER to produce a final list of recognized detections for that particular night's data. representing real detections must be separated from the remaining noise-produced segments with the use of a contrast filter. If the log of the peak luminosity is plotted against the log of the mean luminosity for each segment, as in Figure 3.2(a), noise-produced segments lie close to the y=x line representing the case where the peak and mean luminosity are Additionally, noise segments lie closer to the y=x line for segments with higher mean luminosities. If the axes in Figure 3.2(a) are rotated by 45°, an empirically determined division between the noise segments and potentially "real" segments can be set, represented by an exponential asymptote to the new x-axis, which is simply the y=x line in Figure 3.2(a). Figure 3.2(b) shows this plot, with the log of the yaxis used to display the exponential asymptote division between noise and real segments as a straight line. division is also plotted in Figure 3.2(a).

The y-axis of Figure 3.2(b) is defined as the contrast,

Figure 3.2 (a) peak luminosity versus mean luminosity for a single night's data, (b) log of the contrast versus log(peak luminosity × mean luminosity) for a single night's data. Empirically determined division between noise and real segments shown as solid line.

and can be represented by the simple equation

$$contrast = log(\frac{peak}{mean}),$$
 (3.5)

where peak and mean are the peak and mean luminosity respectively. The x-axis is now log(peak×mean), which is related to the brightness of the segment. All segments below the empirically defined division are thrown out, while an unnormalized probability of reality value is assigned to each real segment determined using the distance of the segment above the empirically defined division.

All information about each real segment, as well as its

unnormalized probability value, are output to the .SED database. Additionally, the information regarding what segments in the .SED database make up a particular image is entered into a .BLN database. For the rest of the analysis, only segments entered into the .SED database are considered, although the parent images are trace-recoverable by using the .BLN database.

3.5. Calibration

Each segment must now be fixed in a positional and photometric standard calibration to prepare the night's data for merging with other nights. This calibration is critical in determining the usefulness of the CTI data. We must be confident that each night has been calibrated such that changes in luminosity for an object over time or between two different objects anywhere in the CTI survey strip are actual differences in the brightness of the object or between the objects. The instrumental calibration is achieved by several programs managed by the CTI routine AUTO_CALIBRATE.

3.5.1. Positional Calibration

A rough positional calibration was carried out at the start of the analysis with the identification of bright stars from the AGK-3 catalog at the beginning of each sweep. This is improved by using a set of secondary positional standard stars selected from the Space Telescope Guide Star Catalog (Lasker et al. 1990). These secondary standard stars are contained in a database with a .888 extension. The observed positions of each segment are first converted to the CTI epoch of 1987.5, taking into account proper motion, parallax, precession, nutation, aberration of starlight due to the Earth's revolution around the sun, and diurnal aberration due to the Earth's rotation. The resulting positions are compared with the list of the expected positions for the positional

standards within the list of secondary standard stars. Typically a 2 x 2 pixel window centered on the expected star position is used to determine a positive identification. The matching routine, however, is not rigid and will follow uniform smooth deviations greater than 2 pixels over the course of the sweep to accommodate possible shifts in telescope pointing. Each standard star identified, as well as the x and y displacements (in pixels) for each, are annotated in a newly created .XYL database.

The standard star identifications in the .XYL database are then used to produce a minute-by-minute (temporal) positional calibration to be contained in the .CAL database for the sweep. This is achieved by taking the median of the x and y displacements for every standard within a three minute window about each minute of observation to determine the that global displacements to be used for Interpolations between two of these global displacements in the .CAL database will then be applied to all stars during the sweep. The .CAL database contains this, as well as the nine parameter conversion of the observed coordinates for the sweep's epoch to the CTI's 1987.5 epoch.

During this phase of the analysis, a problem was discovered that necessitated additional processing of each star's position. It was found that standard stars of similar right ascension had systematic x and y displacements dependent on their declination. The standard stars appeared closer

together than they should in declination, while there appeared to be a shearing present in right ascension. For example, a situation existed where standard stars on the north edge of the strip required a positive displacement of two pixels in right ascension to put the observed position of the star to where it was expected, while stars on the south edge required a negative displacement of two pixels, and stars in the center of the strip required no displacement at all. The resulting median displacement written to the .CAL database would thus be zero and only be valid for stars near the center of the strip, resulting in an incorrect positional determination for stars on each edge. Because the severity of this effect was different for the two CCDs and changed from night to night, double images of stars near the edges were formed in the master list producing spurious variable stars that appeared to blink on and off.

The severity was very different in magnitude for the two CCDs, and positively correlated between the two as the severity of the problem changed. Errors in any of the astrometric routines could not explain what was observed. The problem was eventually diagnosed as coming from two different causes. The first involves a misalignment of CCDO's columns from the east-west direction. This has the effect of elongating images in the north-south direction, and also creates most of the shearing effect observed. Indeed, it is with this CCD that the problem is most evident. The second

and more subtle cause involves an astigmatism in CTI's optics caused by a misalignment of either the secondary mirror, the tertiary mirror, or both. The astigmatism effects the declination scale as well as producing additional shearing in right ascension, and also elongates the images along the axis of the astigmatism, all of which are observed in the data.

combat the misalignment and astigmatism, To positional displacements versus declination are analyzed for The calculated slopes (x and y displacement each sweep. versus declination) and intercepts were then used to remove the dependence from the data. An iterative process was necessary to entirely correct the data with the final slopes and intercepts used for each sweep saved in the header of the .CAL database. Additionally, a second normalized .XYL simply the original database is produced which is displacements in the previous .XYL database with the global corrections from the .CAL database applied. This database is used to check the quality of the global corrections. Currently, no correction has been made to the shapes of the objects. As a result, virtually every object observed with CCDO (primarily through the B, R, and I filters) will be elongated north-south with a non-zero ellipticity, while objects observed with CCD1 (primarily through the V filter) will also be elongated, but along the axis of the astigmatism, and also have a non-zero, but smaller, ellipticity.

Early work with CTI data included the program STANDARDS,

which was used to modify the expected position for the standard stars in the .888 database. It compared positions in the .888 database with positions in a sweep's .XYL database, and output relevant information regarding changes to a .RES database. The program was used both before and after the positional calibration. It was eventually decided to discontinue using this program because any changes to a standard's position must be accompanied by a recalibration of the history and master lists in order to reflect those changes, and this was considered impractical.

3.5.2 Photometric Calibration

positional calibration, Concurrently with the photometric calibration is also carried out. Certain secondary standard stars appear constant and thus have expected luminosities. For each of these standard stars, the .XYL database contains the multiplicative luminosity factor needed to match the expected luminosity with the observed. For example, if the observed luminosity was half that expected, the luminosity factor would be 0.5. As with positional displacements, the median of all luminosity factors is taken for standard stars within a three minute window to produce a minute-by-minute luminosity calibration for the .CAL database. It is an interpolation between two of these global luminosity factors that will be used to adjust the luminosities of all stars within the sweep.

Because the quality of the photometric calibration depends entirely on the accuracy of the expected luminosities in the standard star list, the method developed to compile and test this list once the difficulties with the dark bias and flat field functions are solved will be described in detail. It was found early on that the luminosities in the Space Telescope Guide Star Catalog were not accurate enough for CTI's calibration, making it necessary for the expected luminosities to be determined from the CTI data itself.

Several night's observations under photometric conditions were linked together over the full CTI survey strip to produce an initial estimate for the expected luminosities. The resulting closure error was 0.02 magnitudes in V, possibly related to the systematic error introduced by the incorrect flat field function. Currently, the master and history lists use this calibration to derive all instrumental magnitudes. This can be improved by processing all the nights and examining the luminosity factors of each standard star for every night the star was observed. A systematic offset indicates the star's initial estimate for the expected luminosity was incorrect. These offsets can be calculated for each standard, and the expected luminosity adjusted to eliminate them. Before this calculation can be done, however, the effects of dimming caused by dust settling on the optics, dimming caused by background overestimation during poor seeing in confused regions of the sky, dimming caused by clouds, and

inaccurate photometry caused by background fitting or other problems must be eliminated from the data. Each of these will be addressed in turn.

For a particular night of observation, there will be a mean luminosity factor related to the amount of dust on the optics. Essentially, the more dust on the optics, the dimmer stars will appear, and the lower the luminosity factor. Using the .XYL or .CAL databases for a large number of V observations, these luminosity offsets as a function of time can be examined.

The effective reflecting (or refracting) area of a telescope, and thus the flux from a standard source, will slowly decrease over time as dust settles onto the optics. For example, if the initial reflecting area of a mirror is A_o , a given time interval later, the effective area will be $A_1 = A_o - [nA_o]A_d = A_o$ (1 - nA_d), where n is the number of dust particles deposited per unit area in the given time interval and A_d is the effective obscuration area of one dust particle. After another time interval, $A_2 = A_1 - [nA_1]A_d = A_o$ (1 - nA_d)². Given that the rate at which dust settles onto the optics is constant and the time interval between calculations is short enough, the flux reflecting from this mirror as a function of time can be represented by the equation

$$F(t) = F_o(1 - nA_d)^{t/T}, (3.6)$$

where F_o is some arbitrary initial flux, and T is the time interval over which n was calculated. Notice that the

relationship between flux and time is not linear because dust particles that land on other dust particles do not degrade the performance of the mirror. Equation 3.6 can be manipulated to express the above relationship in magnitudes as a function of time. The resulting equation is

$$\Delta m = [(-2.5/T) \log (1-nA_d)] t.$$
 (3.7)

Here, the equation is linear in time. The constants in square brakets of Equation 3.7 are independent of the size of the mirror, so for telescopes with several reflective (or refractive) surfaces, each surface contributes an identical term. The "constant" n, of course, will be different for each surface. If the constants in square brakets and contributions from all surfaces are lumped together into a single constant, we obtain the simple result

$$\Delta m = K \times t \,. \tag{3.8}$$

where K is in units of magnitudes per unit time.

For several photometric V nights of observation with CTI, the average magnitude offset was calculated from the luminosity offset (dm = -2.5*log(dl)). Figure 3.3 plots this magnitude offset versus time. Notice that there are four distinct breaks in an otherwise linear trend. By looking back in the CTI logs, these breaks were found to correspond to times when the telescope mirrors were washed. (1988 Sep 13, 1989 Apr 25, assumed washing during summer of 1989, and 1991 Apr 22). The slope of the line for each interval was

Figure 3.3 - V magnitude offset versus CTI dayno

calculated and the data adjusted such that the best fit lines for each segment yield the same value at the midpoint between them. The resulting plot of magnitude offset versus time is shown in Figure 3.4. The best fit to this scaled data is also plotted. The slope of this line is 0.001239 +/- 0.000010 mags/day which corresponds to 0.452 +/- 0.004 mags/year. This means that the CTI is only 65% as sensitive to light after only one year of observing without any cleaning! Generally, K appears to remain fairly constant over the four years of observing represented. Slight variations in the slope, however, indicate the presence of seasonal variations.

A similar calculation using Capilla Peak data acquired

Figure 3.4 - Adjusted V magnitude offset versus CTI dayno.

over one year for three separate variable star fields gives K = 0.101 +/- 0.011 mags/year. The fact that CTI has three reflective surfaces collecting dust and that the primary and tertiary mirror are always horizontal while Capilla Peak's telescope is stored with the primary vertical probably accounts for most of the difference.

The effect of dust settling on the optics can thus be eliminated by scaling each night's observation to the mode (to eliminate the effects of clouds) of all luminosity offsets for that particular night. This is exactly what is done in calculating the normalizing factor used in adjusting each star's dl in the normalized .XYL database.

Next, the effect of dimming caused by background overestimation during poor seeing in regions of high confusion must be dealt with. In examining the .CAL databases for several nights of observation in the V bandpass, there appear systematic variations in magnitude offset at certain right ascensions. Figure 3.5(a) plots the magnitude offset versus right ascension for a number of nights for right ascensions between 18h and 22h. An individual night's magnitude offset as a function of right ascension has been normalized to zero to eliminate the effect of dust settling on the optics. Figure 3.5(b) plots the average background intensity in V (as contained in the .CAL database) versus right ascension for several observation nights over the same right ascension interval. The summer galactic plane at approximately 19h40m is clearly visible. The increase in background intensity at the galactic plane indicates that stars are included in the background estimate. This suggests a possible link between the magnitude offset calculated for a particular star and the concentration of background stars.

The "confusion," proportional to the concentration of background stars, was calculated to compare with the magnitude offset (determined from the luminosity factor) and seeing for several night's observations as contained in .CAL databases. To calculate the confusion, a histogram of all objects with two or more observations in the declination slice from +28°00' to +28°03' (1987.5 epoch) contained in the CTI master list was

Figure 3.5 - (a) Normalized magnitude offsets versus right ascension, (b) Background intensity versus right ascension, (c) Number of stars per 3 arcminutes declination by $6^{\rm m}$ right ascension versus right ascension for several nights crossing the summer Galactic plane.

Figure 3.6 - Histogram in right ascension of the number of objects in CTI survey strip between $28^{\circ}00'$ and $28^{\circ}03'$ declination. Each bin corresponds to 6^{m} right ascension. Even confusion levels shown as horizontal dashed lines.

taken with respect to right ascension. Figure 3.6 shows this histogram, with every bin corresponding to 6^m of right ascension. The confusion was defined as a real number between 0 and 10 directly proportional to the concentration of stars, with confusion equal to zero for the minimum concentration, and confusion equal to ten for the maximum concentration.

Figures 3.7(a) through (c) display the magnitude offset versus seeing for increasing confusion. For each plot there

Figure 3.7 - Normalized magnitude offset versus seeing for (a) confusion < 1 in region near the north Galactic pole, (b) 3 < confusion < 4 in winter Galactic plane, (c) confusion > 9 in summer Galactic plane, and (d) trend summarized.

is a value of seeing above which the magnitude offset begins to increase. As the confusion increases, this value of seeing decreases. The trend is summarized schematically in Figure 3.7(d). Points far from the given standard trend for a particular confusion level most likely represent clouds.

Figure 3.8 - Relationship between confusion, seeing, and magnitude offset explained. Worsening seeing is to the right. Increasing confusion is towards the bottom.

The explanation for why there is a relationship between magnitude offset and seeing for a given confusion level lies in how the background is determined. Figure 3.8 illustrates in one-dimension how the background level is affected for variable seeing and confusion conditions. Low confusion is on top with high confusion on bottom, and good seeing is to the left with bad seeing to the right. Changes in seeing have little or no effect in areas of low confusion because there are still large areas of sky that essentially remain unperturbed. The background can thus follow the true sky

brightness to determine the level consistently. In areas of high confusion, however, as seeing gets worse, stars begin to merge. There is no longer any sky for the background to trace. In effect, the background level rises because it begins to trace the very stars for which we wish to estimate magnitudes. The stars thus appear dimmer, and the magnitude offset increases in order to compensate for the elevated background.

In order for the systematic variations caused by incorrect standard star luminosities to be examined and corrected, the data from the .XYL databases must first be cleaned of all seeing/confusion effects. This can be done using the above definition for confusion and setting seeing limits as determined from a process analogous to that described by Figure 3.7.

The only other effects to be addressed are clouds, photometry anomolies such as those created by CR_EDIT (see Section 3.3) and inaccurate photometry due to incorrect background determinations. An example of the latter would be photometry in a portion of the sky contaminated by diffracted or reflected light where the background fitting algorithm was unable to follow the background changes. Most of the these effects occur near bright stars, and thus the region of the CTI survey strip contaminated by their effects can be easily eliminated (see Section 4.2.1). One notable exception, however, is a diffraction effect or reflection from a bright

Table 3.1 - Possible Contamination of CTI Survey Strip by Mars and Jupiter during 1987-1992.

Date of	Opposition	Planet		(1987.	5) Dec
1987 Oct	25	Jupiter	_	31 ^m	+8°
1988 Nov	29	Jupiter	_	52 ^m	+19°
1990 Jan	06	Jupiter	_	19 ^m	+23°
1990 Dec	05	Mars	_	59 ^m	+22°
1991 Feb	11	Jupiter	_	38 ^m	+20°
1992 Mar	13	Jupiter	10 ^h	40 ^m	+10°

planet. The effect of Jupiter, for instance, is clearly evident in data taken during the fall and winter of 1988 at right ascensions about 3^h, although other regions of the CTI survey strip passing close to the ecliptic can be affected in much the same way by other planets or the Moon. Table 3.1 lists possible occurances for contamination from Mars and Jupiter during the period from 1987 to 1992. The planet Saturn was never in a position to affect the CTI survey strip during this period.

Assuming that most observations of a particular standard star are free from clouds, photometry anomolies and the effects of solar system objects, by simply taking the mode instead of the mean to find systematic offsets, the effect of these outliers are eliminated.

The final result of the calibration process is an .OBS database, identical in form to the .SED database, but containing the *calibrated* position, luminosity, and second moments of every object observed in the particular sweep.

As a side note, if the expected luminosities in the .SSS

database were correct, the .RDK and .RFF databases could be determined by simply examining the .XYL or .CAL databases for systematic trends in standard star luminosities as a function of declination, and adjusting them accordingly to eliminate those trends. Unfortunately, at this stage we can't be sure if the trends in declination are caused by an incorrect flat field application or incorrect standard star luminosities. This could be remedied by obtaining luminosities to the desired precision for all standard stars located in a small section of the CTI survey strip using another telescope. These expected luminosities could be used to correct the flatfield function for a single night's data, thus obtaining correct expected luminosities for many more standards. Other overlapping nights of data could then be corrected until the entire set of CTI standard star luminosities are free from systematic errors created by incorrect flat-field application.

3.6. Merging Data into Master and History Databases

The day's data can now be merged into the history list of the particular color filter and the master list using the computer routines AUTO MERGE, AUTO UPDATE and AUTO_FLUSH.

AUTO_MERGE compares the existing .PUL database (containing a right ascension-sorted record of every object observed) with the .OBS database of a particular day and matches the records of objects found in both. A .MRG database containing the data for each match, and two .NDX databases containing a pointer to the record of any unmatched records in the .PUL and .OBS databases are produced. Additionally, a .TRA database containing information relevant to all matches to trace possible mismatches is produced.

Next, AUTO_UPDATE uses the .MRG database to refine the information on existing objects in the .PUL, .MAS, and .HIS databases, and uses the .OBS combined with the .NDX pointer to add new objects. Only objects with a probability value of 0.5 or above are added to the .MAS and .HIS databases while all new objects, regardless of the probability value, are listed in a newly created .PUL database. Including all objects in the .PUL database retains the possibility of a very faint object building on its probability value with subsequent detections to eventually be inculded in the .MAS and .HIS databases. The .HIS database contains the day-to-day record of the time, calibrated instrumental luminosity, and error in luminosity of every object observed. The .HIS databases also

reference the .MAS database, which contains variance-weighted average positional and photometric information as well as various measures of the object's shape and blending. The .PUL database contains information similar to the .MAS database, but retains all detections regardless of the probability value of detection and is sorted by right ascension for ease in comparing the next day's data. The .MAS and .HIS databases are not sorted by right ascension, with new detections being added to the end.

Finally, AUTO_FLUSH combines the existing .PUL file with the new objects contained in the day's .PUL file. The probability value of all non-detections are adjusted downward, and the entire database is sorted by right ascension in preparation for the next day's data.

Currently, data from 77 V nights, 8 B nights, 8 R nights, and 8 I nights have been entered into the .MAS and .HIS databases. The solid lines in Figure 3.9 displays the distribution of the V and B observations in right ascension for the .MAS and .HIS databases. The lack of observations about 21^h corresponds to the summer observing season where clear nights were hard to come by. An additional 68 V nights, 26 B nights, 39 R nights, and 23 I nights have been analyzed but not yet merged into these databases.

A second analysis of all 145 V nights and 34 B nights was made for this dissertation with the output entered into new versions of the master and history databases (.NML and .NHL

Figure 3.9 - (a) Number of V observations and (b) number of B observations as a function of right ascension. Solid line represents those days merged into the current .MAS and .HIS databases. Dashed line represents those days merged into the current .NML and .NHL databases.

respectively). The primary difference between these new databases and the old versions is that the .NHL database now contains a day-to-day record of the position of every object in addition to its luminosity. Also, the positional calibration of the data used to create these new databases employed the misalignment and astigmatism correction procedure (see Section 3.5.1) not used previously. The dashed line in

Figure 3.9 displays the distribution of the V and B observations versus right ascension for the .NML and .NHL databases.

We are now ready to query the information contained in the master (.MAS or .NML), pool (.PUL), and history (.HIS or .NHL) databases, or any of the other databases produced during the analysis process. This is accomplished using the computer program PSI, which was specifically developed for use with the CTI survey. A user's guide to this and other CTI database programs can be found in The CCD/Transit Instrument Atlas and Database Guide (Wetterer 1995), written as a supplement to this dissertation.

Chapter 4 Variable stars in the CTI survey

The CTI observes over 500,000 objects, many of which vary in luminosity as a function of time. This chapter describes the discovery of variable stars in the CTI survey. First, a short history of the study of variable stars is given. Next, the method for finding variable stars and the completeness of the variable star list is presented with the issues of spurious variables and blind spots discussed. Finally, a description of the resulting variable star index database is presented.

4.1 Variable Stars

A variable star refers to a star where one or more of its physical properties change with time. Typically it is the star's luminosity in a certain wavelength range that is examined to determine variability, although it may be another property, such as spectral type (or color), radial velocity, or details within the spectra that vary with or without a luminosity variation. The simple fact that stars have finite lifetimes make all stars variable at some level. Over time, certain stars become variable due to evolutionary changes. Helium core burning RR Lyrae variable stars were quiet members of the main-sequence earlier in life. Even if time restraints are specified, small scale variability, such as the Sun's 11year sunspot cycle, are probably present in most stars. the following discussion, however, I will restrict the definition of a variable star to those for which luminosity in visible light (V bandpass) changes appreciably over a time interval detectable by CTI (a few minutes to a few years).

The history of the study of variable stars spans nearly four centuries (see, for instance, Campbell and Jacchia 1941). Although many novae and supernovae had been detected beforehand, such as the supernova leading to the Crab Nebula in Taurus recorded by the Chinese in 1054 AD, the first star to be classified as a periodic variable was a star in the constellation Cetus. The star was designated o Ceti by Bayer in 1603, who was unaware of its variability, and later also

Fabricius first noted its presence named Mira. disappearance in August 1596 and February 1609, although it was not until 1638 that Holwarda noted the star was periodic in its brightening and dimming (Allen 1963). By the end of the 18th century, sixteen stars were classified as variables. There were four Mira variables, two eclipsing variables (the star Algol being the prototype), two Cepheid variables (named after one of the two, & Cephei), five novae, and three others stars that exhibited their own unique variations (a Herculis with a small and irregular variation, R Scuti with a semiregular periodicity, and R Coronae Borealis with erratic and large variations). By the end of the 19th century, the number of identified variable stars had grown to over 1000. With improvements in photography, the discovery rate of variable stars greatly increased. By the middle of the 20th century, 10000 variables had been identified, and as we near the 21st century, nearly 30000 are known and cataloged in the Milky Way (Kholopov et al. 1985-88) with many more variable stars identified in other nearby galaxies (see, for example, Saha et al. 1990). As with the advent of photographic surveys, in the coming years, CCD surveys such as the CTI survey will undoubtedly continue the dramatic increase in the number of detected variable stars.

Because of similarities between variable stars, astronomers have continually attempted to group them into

Figure 4.1 - Positions of variable star types on Hertzsprung-Russell (H-R) diagram, (Adapted from Cox 1980). Variable stars in the "Instability Strip" are radially pulsating stars and share a common mechanism that drives their pulsations. Variable stars in "The Great Sequence" (SX Pheonices to Mira) are pulsational variables of decreasing density and increasing size and period (typical periods shown in days).

different categories and types. Whereas the number of recognized variable star types in 1800 were 7, there are currently nearly 50. The first division used in the

classifications of the General Catalog of Variable Stars (GCVS) (Kholopov et al. 1985-88) are between cataclysmic (thermonuclear burst processes deep in star's interiors, in surface layers, or in surrounding space), eruptive (violent processes and flares occurring in the chromosphere or corona), pulsating (periodic radial or nonradial contractions and expansions of surface layers), rotating (nonuniform surface brightness and/or ellipsoidal shapes), and eclipsing (close binary geometric effects) variables. Other broad distinctions can be made between intrinsic variables where the variability is the result of changes within the star itself, and extrinsic variables where the variability is a result of an interaction with another star or interstellar medium. Also, light curve morphology is often used to make distinctions between variables. Confusing matters still further, several stars exhibit variability from more than one source, presenting the possibility of multiple classifications. Table A1.6 in Appendix 1 (adapted from the GCVS and Petit 1987) attempts to summarize all the types represented in the GCVS detectable by the CTI. Many of these variables occupy specific parts of the Hertzsprung-Russell (H-R) diagram, as shown in Figure 4.1 (adapted from Cox 1980).

Variable stars are stars in certain phases of their evolution, or undergoing rapid changes. The study of variable stars has improved our understanding of stellar structure and evolution. Perhaps the most important result to come from the

study of variable stars, however, involves using certain types "standard candles" or distance of variable stars as The famous period-luminosity relationship of indicators. classical Cepheid variable stars allows their distance to be accurately calculated given knowledge of their period and apparent magnitude (see, for example, Madore and Freedman 1991, Jacoby et al. 1992). With absolute magnitudes of M_{V} = -2 to -7, Cepheid variable stars can be detected in galaxies out to 10 Mpc. Most other types of pulsating variable stars also exhibit a similar relationship. One of these types, RR Lyrae stars, are abudent in the old population of the Galaxy, enabling astronomers to probe the properties of the Milky Way's halo as well as the properties of globular clusters. The study of RR Lyrae variable stars, and subsequent search for this type of star within the CTI survey, is discussed in more detail in the next chapter.

4.2 Finding variable stars in CTI survey

The obvious CTI database to use in order to start our search for variable stars in the CTI survey is the V filter's history list (.HIS or .NHL database). The history list contains the time, luminosity (lum) and luminosity error (σ_{lum}) for every observation with the V filter of each object in the survey. The scatter in luminosity measurements is approximated well by a Gaussian distribution, and thus a simple test can determine if the observed variability of the luminosity is statistically significant (Chapter 10, Bevington 1969).

The error estimates should follow a χ^2 distribution. The reduced χ^2 is given by

$$\chi_{v}^{2} = \sum_{i=1}^{n} \frac{(1um - \langle 1um \rangle)^{2}}{v \sigma_{1um}^{2}}, \qquad (4.1)$$

where < lum> is the mean luminosity, n is the number of observations and v=n-1. It is evident that for a given number of observations, the larger χ_v^2 , the more probable the object's variability is a result of an actual change in its luminosity rather than from random errors. This probability can be calculated using the equation

$$P_{\chi}(\chi_{v}^{2}) = \int_{\chi_{v}^{2}}^{\infty} P(x^{2}, v) dx^{2}, \qquad (4.2)$$

where

$$P(x^2, \mathbf{v}) = \frac{(x^2)^{1/2(\mathbf{v}-2)} e^{-x^2/2}}{2^{\mathbf{v}/2}\Gamma(\mathbf{v}/2)}$$
(4.3)

is the probability distribution function for χ_{ν}^2 . In the search for variable stars in the CTI survey, only those objects were selected for which this probability of the observed distribution being a product of the calculated random error is less than 1%.

Due to photometry errors, if this test is applied to objects in the current .HIS or .NHL databases, approximately 60% pass the test and are considered variable. It is thus necessary to screen the photometry data before testing for variability to eliminate sources of spurious variables.

4.2.1 Spurious Variables

There are several sources of systematic error that affect the photometry of objects in the CTI survey. Before the above test for variability can be conducted, the data contaminated by these photometry errors must be eliminated.

Stars surrounding a bright star may all appear variable as the amount of contamination from the diffraction spikes of the bright star varies. These night-to-night variations are caused by different observing conditions, such as seeing, transparency, and estimated background level. To reduce this problem, a region surrounding each bright star was removed from the survey corresponding to the area visually

contaminated by false objects produced by the star's diffraction spikes and charge bleeding. The biggest offenders are Pollux, Scheat, and Alberio for which it was necessary to remove 0.24%, 0.17% and 0.07% of the CTI survey area respectively. Another 308 stars contained in the SAO catalog (see Table A1.5 in Appendix 1), and 2060 stars determined to be brighter that V = 12 from CTI's .MAS database were also The CTI selected stars were carefully screened to removed. exclude bright objects in the database created by meteor or satellite trails. The size of the regions masked around each star varied as a function of the magnitude of the star. formulas used in calculating the size and shape of the mask were determined empirically using a small selection of representative stars and are given in Table A1.7 of Appendix area removed because of bright 1. The total contamination was approximately 1.0 square degree, or 1.93% of the CTI survey area. The remaining CTI survey area contains 532,878 objects with four or more V observations.

The luminosity data of an object may also be contaminated by isolated events, such as meteor trails, systematic errors caused by photometry in regions where the background was not accurately calculated (see Chapter 3.5.2), and accidental non-detections caused by the cosmic ray removal algorithm (see Chapter 3.3). For a nonvariable star, these effects will create anomalously bright or faint data in an otherwise constant luminosity light curve. As a first cut, the minimum

and maximum luminosity for a particular star is considered. Next, luminosity measurements which deviate more than 3σ above the mean luminosity and 2σ below the mean luminosity for each object, (a being the standard deviation of the luminosity from the mean not considering the minimum and maximum luminosities) were removed from consideration. Finally, o and the mean were recalculated, with any more extreme luminosity data removed as in the first pass. limits used in this prescreening were chosen empirically to remove the bulk of the spurious variables created. prescreening of the luminosity data does bias the resulting variable object list against stars that vary by exhibiting an occasional short-lived brightening (e.g. some eruptive-type variables) or dimming (e.g. Algol type eclipsing variables). This bias, however, does not affect the detection of RR Lyrae variable stars with good phase coverage, which was the primary goal of the present search. A total of 39,334 objects (7.4%) the pass the variability test after employing prescreening.

Figure 4.2 plots the variable fraction of the total number of objects as a function of mean instrumental V magnitude (solid line labeled $\sigma=0$ %) after prescreening. Also plotted in Figure 4.2 is the total number of objects as a function of mean V magnitude (dashed line). Only objects outside the Galactic plane with 9 or more V observations were used in making this plot to reduce the effects of other

Figure 4.2 - Variable fraction of objects outside Galactic plane with 9 or more V observations versus mean instrumental V magnitude for additional systematic errors of 0.00 and 0.02 times the luminosity (solid lines). Total number of objects outside the Galactic Plane with 9 or more V observations versus mean instrumental V magnitude also shown as dashed line and using scale on right.

sources of spurious variables. The most striking feature in Figure 4.2 is the dramatic increase of the variable fraction of objects for stars with V < 15. For brighter stars, the error in luminosity relative to the luminosity decreases, making the variability test more sensitive to lower amplitudes of variation in magnitudes. The increase in the fraction of

variable objects for V < 15 could simply be an actual detection of more variables due to the increased sensitivity. An additional luminosity-dependent error not accounted for in the calculated luminosity error, however, would produce the same effect. A possible source for this type of error is incorrect flat-field application (see Chapter 3.2). An error in the flat-field would directly manifest itself as a systematic error in the calculated luminosity of an object. The calculated error in the luminosity for the object, If the position and magnitude of however, is not affected. these flat-field errors vary from night-to-night, the induced systematic errors for a particular object would be similar to increasing the random error in luminosity. The variable fraction of the total number of objects as a function of mean instrumental V magnitude after adding in quadrature an additional error of 2% the object's luminosity to the existing random error (solid line labeled $\sigma = 2\%$) is also plotted in Figure 4.2. The variable fraction of objects is now virtually independent of magnitude. Unfortunately increasing the error in the luminosities to remove spurious variables created by flat-field application (or from another source of a luminosity dependent error) undoubtedly removes true variables as well, just as using the existing error undoubtedly includes spurious variables. The former represents a conservative estimate of what objects are variable, while the latter a estimate.

If the additional error as described above is applied, an effective lower limit in amplitude of about $\Delta V \approx 0.1$ magnitudes for detecting variables is set. For fainter magnitudes, the increasing random error requires ever greater amplitude variations to be detected as a variable star. This sets a faint limit to the detection of variable stars and will be discussed in more detail in the next section. A total of 25,325 objects (4.7%) pass the variability test after employing the prescreening and additional error.

Another source of spurious variables are stars that are very close together or segments of extended objects such as These objects might appear variable because the galaxies. photometry splits the light between them differently under different conditions. Thus, sometimes one star appears dimmer while the other brighter, while at other times the reverse is true. Both stars appear variable when in fact they are not. For all stars passing the variability test using the prescreening and additional error, and with 9 or more V linear correlation coefficient observations, the calculated between the star's luminosity and the luminosity of its nearest variable neighbor (Chapter 7, Bevington 1969)

$$r = \frac{N \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{N \sum x_i^2 - (\sum x_i)^2} \sqrt{N \sum y_i^2 - (\sum y_i)^2}},$$
(4.4)

where \mathbf{x}_i is the star's luminosity, \mathbf{y}_i is the neighboring star's luminosity, and N is the number of observation dates common to

both. The light curves of the two stars are inversely correlated for r < 0. The probability that a random sample of N uncorrelated experimental data points would yield an experimental linear-correlation coefficient |r| as large as or larger than the observed value was calculated with

$$P_c(r, N) = 2 \int_{|r|}^{1} P_r(\rho, \nu) d\rho,$$
 (4.5)

where

$$P_{r}(r,v) = \frac{1}{\sqrt{\pi}} \frac{\Gamma[(v+1)/2]}{\Gamma(v/2)} (1-r^{2})^{(v-2)/2}, \qquad (4.6)$$

v=N-2, and Γ is the Gamma function. If r<0 and $P_c(r,N)$ less than 1%, the two stars in question were not considered variable. A total of 19,412 (4.3%) stars pass the variability test after employing the prescreening, additional error, and correlation test.

Galaxies may still appear variable due to a dependence of the photometry on the seeing or the throughput of the telescope (see, for instance, Hawkins 1984 and Stobie et al. 1986). For example, as dust settles on the mirror reducing the throughput of the telescope, the contribution of a galaxy's faint outer structure may slowly be lost in the noise of the surrounding background. Because the luminosity calibration is determined by stars, a spurious long period variable could thus be created from the photometry of a galaxy. An indication that this may indeed be happening is

Figure 4.3 - Peak luminosity versus mean luminosity for (a) variable objects with 9 or more V observations and a right ascension between 7^h and 18^h , and, (b) non-variable objects with 9 or more V observations and a right ascension between 7^h and 18^h . Circles in (a) are for objects with V COMB = 0.

illustrated in Figure 4.3. The peak luminosity is plotted versus the mean luminosity for (a) variable objects and (b) the same number of non-variable objects. Only objects with 9 or more V observations and a right ascensions between 7^h and 18^h are plotted to reduce the effect of other sources of spurious variables. All stars have the same point spread function and thus fall on a straight line in these plots. Extended objects such as galaxies will have a lower peak luminosity as compared to the same mean luminosity for a star, and will thus fall below the line tracing stars. As seen when comparing Figure 4.3(a) to 4.3(b), it is clear there is a higher percentage of galaxies that are variable.

A useful CTI database attribute that can be used to eliminate galaxies as well as other blended stars and artifacts surrounding bright stars not previously masked is V_COMB. V_COMB is related to possible matching errors, with a non-zero V_COMB indicating that at some time the automated matching accomplished during AUTO_MERGE (see Chapter 3.6) had trouble matching the observed object(s) with the records contained in the .PUL database. The more complicated the matching problem (corresponding to greater values of V_COMB), the greater fraction of these objects are detected as variable. The circles plotted in Figure 4.3(a) are variable objects with V_COMB = 0 (i.e. no matching problem), with nearly all falling close to the line representing stars. Requiring V COMB to equal zero appears to eliminate galaxies,

but is also reducing the effective CTI survey area by eliminating stars from consideration. A total of 13,547 (3.5%) stars pass the variability test after employing the prescreening, additional error, correlation test, and requiring V_COMB = 0. The last condition also reduces the total number of observed stars to 387,998.

Figure 4.4 plots the variable fraction of objects as a function of the number of V observations using (a) all the screening described above except the restriction on V COMB, and (b) all the screening described above including V COMB = Only objects outside the Galactic plane 0 (solid line). between right ascensions 1^h and 15^h, corresponding to regions of the CTI survey strip with approximately the same maximum number of V observations, were used in making this plot to reduce the effects of other sources of spurious variables. The total number of objects as a function of the number of V observations for this region is also plotted (dashed line). The increase in the fraction of variables for objects with less than 15 detections in Figure 4.4(a) can be explained by comparing this to Figure 4.4(b). The majority of these objects with less than 15 detections and variable have also experienced a matching problem (V COMB # 0). It is likely that most of these objects are segments of extended objects or noise segments in the diffraction halos of bright stars not previously masked. Since changing observing conditions will change the positions of these false objects, many such objects

Figure 4.4 - Variable fraction of objects outside Galactic plane between right ascensions 1^h - 15^h versus number of V observations (a) no restriction on V_COMB and (b) V_COMB = 0 shown as solid line. Total number of objects outside the Galactic plane between right ascensions 1^h to 15^h versus number of V observations also shown as dashed line and using scale on right.

are created, with a particular object being "observed" only on a fraction of the total number of nights. The rise in the variable fraction of objects when the number of V observations is above 50 is related to confusion near the Galactic plane.

Figure 4.5 plots the variable fraction of objects as a function of right ascension using (a) all the screening described above except the restriction on V COMB, and (b) all the screening described above including V_COMB = 0 (solid line). Only objects with 9 or more V observations were used in making the plot. Also plotted is the total number of objects as a function of right ascension (dashed line). general, the fraction of variable objects remains reasonably constant, except in the Galactic plane where there is a sharp rise directly correlated to the density of objects (i.e. confusion), and in highly localized regions outside the Galactic plane. The first effect is most probably a result of photometry errors created by the link between background estimation and observing conditions in regions of high confusion (see Chapter 3.5.2). Figure 4.6 plots the fraction of variable objects as a function of V magnitude for objects The photometry in the heart of the summer Galactic plane. errors resulting from the background estimation clearly increase the scatter in the luminosity data such that nearly all bright stars pass the variability test because this error is not reflected in the luminosity error. The increased fraction of variables in highly localized regions outside the

Figure 4.5 - Variable fraction of objects with 9 or more V observations versus right ascension (a) no restriction on V_COMB and (b) V_COMB = 0 shown as solid line. Total number of objects with 9 or more V observations versus right ascension also shown as dashed line and using scale on right.

Figure 4.6 - Variable fraction of objects in Galactic plane (right ascensions 19.4h to 19.8h) with 9 or more V observations versus mean instrumental V magnitude shown as solid line. Total number of objects in this region versus mean instrumental V magnitude also shown as dashed line and using scale on right.

Galactic plane are possibly due to spurious variables created by extended objects or bright stars. This is supported by the fact that these high variable fraction regions are eliminated by requiring V COMB = 0, as shown in Figure 4.5(b).

In summary, searching for variable stars in the CTI

databases also exposes sources of photometry errors that create spurious variables. Indeed, many of the sources discussed above were discovered due to clues left in the "light curves" of the spurious variables created. Each solution employed to eliminate spurious variables has unfortunately eliminated true variables as well, and depending on the type of variable star being sought, will effect the completeness of the resulting sample.

4.2.2 Blind Spots (Completeness)

There are certain variable stars that CTI will not be able to detect. As stated above, with the addition of a systematic error to account for flat-fielding problems, variable stars with changes in luminosity less than ≈0.1 magnitudes will not be detected. For fainter stars, this minimum detectable magnitude difference increases as the observational error increases. This is illustrated in Figure 4.7 which plots the average random error (solid line) and average adjusted error (including the 2% systematic error previous section, dashed line) discussed in instrumental V magnitude versus the average instrumental V It is clear that the fainter the object, the magnitude. greater the average error, and thus the greater amplitude in variability needed for detection. This is evident in Figure 4.2 as a decline in the variable fraction of objects for V > 19. Using synthesized sinusoidal light curves, the minimum

Figure 4.7 - Average V magnitude random error (solid line) and total error (dashed line) as a function of average instrumental V magnitude.

amplitude limit as a function of magnitude was determined to be between 3 and 4 times the total error.

Another blind spot involves variable stars of specific periods. As an obvious example, a variable star with a period of exactly one sidereal day will appear constant due to the fact that CTI observes with exactly a one sidereal day period. Depending on the type of variability, variable stars with

Figure 4.8 - Percent detectability as a function of period as calculated from the observation times of a typical star with 19 observations.

periods close to fractions or multiples of a sidereal day will also not be detected. These period-specific blind spots can be identified and an estimate of the completeness of detecting a certain type of variable star can be made.

Figure 4.8 maps out these blind spots for periods between a tenth of a day to 1000 days. This graph was produced using a typical list of observation times and assuming a sinusoidal

light curve with an amplitude four times that of the The observation times were first observational error. converted to heliocentric observation times to account for varying arrival times of the light from stars during different times of the year. Given the heliocentric observation times and period, the phase distribution of observations was calculated. Given some initial phase, luminosities were calculated and the resulting data was tested for variability using the same test as described above. For each period, the detections were averaged over all initial phases to determine the detection rate for that period. Fractions and multiples of the sidereal day and the tropical year are clearly visible. Any serious completeness estimate, however, should take into account minimum and maximum periods, light curve shape, and minimum and maximum amplitude of the particular variable in question.

4.3 CTI Variable Star Index Description

All entries in the CTI survey's .NML database with at least one V observation are listed in the CTI variable star index (.VNX database). This database can be used to produce index listings for the .NML or .NHL databases of potential variable stars by setting limits on the various other attributes. The following is a description of the information contained in the .VNX database.

The first two attributes are pointers to the .NML database (MLINK) and the B and V .NHL databases (HLINK). Positional information is contained in the next two attributes, YCTI (right ascension in centipixels) and XCTI (declination in centipixels). These values are given using CTI's epoch of 1987.5, and can be easily converted to hours of right ascension and degrees of declination using

$$RA = \frac{YCTI}{3.0 \times 10^6} \tag{4.7}$$

and

$$Dec=28.0+\cos(28.0) \times \frac{XCTI}{2.0\times10^5}$$
 (4.8)

When referring to a listing, the object name is "CTI" plus the right ascension (HHMMSS.S) and declination (+DDMMSS.S) (e.g. CTI025001.4+280123.3). The .VNX database is sorted by increasing YCTI.

The next attribute, NDET, refers to the number of V observations, including those observations that might suffer

from photometry errors. The next two attributes were calculated for all objects using the data prescreening procedure described in Section 4.2.1. V refers to the average instrumental V magnitude and AMP refers to the amplitude of variation in V magnitude. In both cases, the minimum and maximum luminosities were considered if they fell within the specified luminosity limits determined by the prescreening procedure.

Finally, the last attribute, FLAG, contains information pertaining to the search for variable stars. The first number in the array corresponds to whether the object passed the variability test or not. There are four possible values: 0 refers to a star that has never passed, 100 refers to stars that only pass with no prescreening of the data (must have at least 2 V observations), 110 refers to stars that pass with prescreening of the data but no additional error (must have at least 4 V observations), and 111 refer to stars that pass with prescreening and additional error (must have at least 4 V observations). The second number in the array corresponds to whether the object is close to a bright star (value equal to 1) or not (value equal to 0). The third number in the array is simply V_COMB as contained in the .NML database. Finally, the fourth number in the array corresponds to whether the luminosity data of the object is anti-correlated with the luminosity data of it's nearest variable neighbor (value equal to 1) or not (value equal to 0).

Figure 4.9 - Light curves of different types of variable stars found in CTI survey. Periods for (a) - (c) determined using additional observations at Capilla Peak (not shown). Periods for (d) and (e) potentially aliased. Period for (f) from GCVS.

The CTI survey can provide samples of many different types of variable stars (see Figure 4.9). An index created using the .VNX database is just the starting point in discovering examples of a particular type of variable star. In addition to V_COMB, the size and shape information in the .NML database can be used to eliminate or select galaxies. The .NHL databases can be used to find periodicity, calculate colors, and ultimately classify stars as a particular type of variable. The completeness of a given sample can then be estimated using information provided in this chapter and details concerning the limits used in the search. This is done for RR Lyrae type variable stars in the next chapter.

Chapter 5 RR Lyrae Variable Stars in CTI Survey

This chapter describes the search for and identification of RR Lyrae variable stars contained in the CTI survey. First, a short history of the study of RR Lyraes is presented. Next, a description of the search for RR Lyraes through the CTI survey databases is given with a discussion of the completeness of the resulting RR Lyrae variable star list. Confirmation and alias-breaking observations at Capilla Peak observatory of the RR Lyrae variable star candidates are also described. Finally, the characteristics of the resulting list of RR Lyrae variable stars is compared to those contained in other surveys of field RR Lyrae variables.

5.1 RR Lyrae Variable Stars

In 1895, Bailey discovered several short period Cepheid-like variables in the globular cluster ω Cen (Tsesevich 1975). He divided the variables into three subclasses corresponding to differences primarily in the rise time from minimum to maximum light as compared to the total period. The subclasses also showed differences, however, in their amplitude of variation and period of variation. These variable stars were found to be common in globular clusters, occupying the intersection of the horizontal branch and the instability strip of the H-R diagram.

It was soon discovered that these "cluster Cepheids" were not limited to globular clusters. In 1899, Fleming discovered a star in the constellation Lyra that exhibited the same characteristics as the cluster Cepheids but was unassociated with a cluster. This star was designated RR Lyrae, with this name eventually referring to all stars of this type.

Horizontal branch stars are highly evolved Population II stars, having already passed through their giant phase, and are burning helium in their core (Mihalas and Binney 1981). These stars have masses less than half the solar mass and radii 4-5 times greater than the Sun. RR Lyrae stars also reside in the instability strip of the H-R diagram, as do classical Cepheids, W Virginis, & Scuti, and SX Phoenices type variable stars (see Figure 4.1). Gravity and pressure provide the counteracting forces for radial oscillations. The

resulting oscillations would be damped and disappear, however, if it were not for a driving mechanism. The second ionization layer of helium for stars within this region of the H-R diagram is at the correct depth such that changes in temperature of this layer changes the opacity in such a way as Specifically, when He⁺ to drive the radial oscillations. first begins to ionize, its opacity increases with increasing When the star contracts and the temperature temperature. increases, the opacity increases. The He+ -> He++ layer traps radiation, building up a reservoir of extra thermal energy. The radiative pressure outward slows the contraction and eventually reverses it. As the star expands, the extra energy stored in the thermal reservoir is released, accelerating the gas to a higher velocity than would have been realized without the trapped energy. The expansion overshoots the equilibrium radius of the star. The opacity of the layer decreases as the temperature decreases, and at maximum expansion, the radiative pressure is not enough to support the star. The star begins to contract once more. For hotter stars, the ionization layer is too far out in the star's atmosphere, and for cooler stars, the ionization layer is too deep within the star for the oscillations to be sustained.

The resulting light curves range from a rapid increase to maximum light followed by a slower decline (RRa type) to a nearly sinusoidal light curve (RRc type), as shown in Figure 5.1. Bailey types a and b (commonly lumped together as type

Figure 5.1 - RR Lyrae variable star light curves (combined CTI and Capilla Peak data).

correspond to stars ab) oscillating in the fundamental mode, while Bailey type c correspond to oscillating in stars the first harmonic. The mode of oscillation will star a attain depends on the depth of the He layer in the star. Some RR Lyrae variable stars in both modes oscillate simultaneously, resulting in what is known as the Blazhko effect where the light curve amplitude vary shape and periodically (Tsesevich Approximately 15 -1975). 30% of all RR Lyrae variables exhibit the Blazhko effect to degree, with the some fraction increasing for stars metal with decreasing

abundance. Additionally, some RR Lyrae variable stars exhibit gradual or sudden period changes probably due to evolution. When very short period (< 0.1 days) Cepheid-like variables were discovered, they were originally designated as RRs type

variables. These variables have since been renamed & Scuti or SX Phoenices type stars (depending on the star's Population type) although the RRs reference still shows up in the literature.

The radial velocity curve of an RR Lyrae variable star has a shape similar to the light curve (positive velocity corresponding to expansion). Maximum light occurs when the expansion velocity is maximum. The hydrogen absorption lines observed in the spectra occur higher in the star's atmosphere where higher radial velocities are observed resulting in a larger amplitude of variation than the metal lines. addition, hydrogen line emission and line splitting can occur during the ascending part of the light curve when a shock is produced as the old contracting hydrogen layer meets a new expanding layer. Maximum light also corresponds to the time when the star exhibits its earliest spectral type (about A2). The RR Lyrae star's latest spectral type (about F2) occurs at minimum light. The maximum radius of the star occurs after maximum light, during the descending part of the light curve, while minimum radius is obtained during the ascending part of the light curve.

RR Lyrae variable stars exhibit a relationship similar to the famous period-luminosity relationship of classical Cepheids. The RR Lyrae relationship takes many forms, from a simple constant absolute magnitude (Hawley et al. 1986, Barnes and Hawley 1986, Layden et al. 1994), to a dependence on

metallicity (Carney et al. 1992), to a more complex periodluminosity-amplitude relationship (Sandage 1981a, 1981b, 1982a, 1982b, Sandage et al. 1981) or period-luminositymetallicity relationship (Nemec et al. 1994). Using these relationships, RR Lyrae variable stars have been used extensively as standard candles to determine the distance to globular clusters as well as probe the mass distribution of the galactic halo (see Chapters 6 and 7). With the improvement of imaging technology, RR Lyraes have now been observed in nearby galaxies and can be used as yet another yardstick of extragalactic distances (see, for instance, Saha 1990). Due to advances in theoretical modeling of stellar evolution tracks, RR Lyrae variable stars can also now be used to help determine the age of globular clusters (Carney et al. 1992, Lee 1992 and references therein) and help answer questions regarding the formation of the Galaxy.

5.2 Search for RR Lyrae Variable Stars

After prescreening the data for photometric outliers and application of an additional error of amplitude 2% times the luminosity, all objects passing the variability test were considered. Additionally, objects near bright stars, with light curves correlated with their nearest variable neighbor, within the Galactic plane (defined below), with average V magnitudes > 18.5, or with less than 9 V observations were removed. Finally, only objects with V_COMB \leq 20 (related to blending with other objects) were retained. A combined B and V history list (.BVH database) was created for these variables, and conditions were placed on various attributes of each object to discover the RR Lyrae variable stars contained in the list.

The first such condition was on average color. RR Lyrae variable stars are of spectral type A2-F2, with - <V> ≈ 0.26 for RRab type stars (Hawley et al. 1986). The reddest an RRab type star will appear, however, is at minimum light, and can be calculated using (McDonald 1977)

$$B_{\min} - V_{\min} = 0.40 + 0.25 \times (P - 0.5)$$
 (5.1)

This gives a maximum B-V of approximately 0.5 for RRab type stars. Due to the limited number of B observations, it is possible that many of the RR Lyraes were observed at or near minimum light, and thus this upper limit must be used. RRc type variables are bluer than RRab types, so this color limit will apply to them as well.

Figure 5.2 - E(B-V) versus right ascension for CTI survey strip.

Because of reddening by dust in the Galactic disk, the <B-V> of each star must first be corrected using the Galactic HI maps of Burstein and Heiles (1982). The E(B-V) as determined from these maps as a function of right ascension on the CTI survey strip is shown in Figure 5.2. No reddening information is given for galactic latitudes

The Galactic plane, corresponding to the less than 10°. region excluded from this search, was defined as the region where E(B-V) > 0.24 (right ascensions 4.4^h to 6.7^h and 18.8^h to 21.1h). The resulting RR Lyrae survey area is shown in Figure The declination boundaries are determined by the requirement that the star have 9 or more V observations and at least one B observation. The search for RR Lyrae variable stars was conducted using two different compilations of the CTI databases: the current .MAS and .HIS databases (hereafter, referred to as list 1, with boundaries shown as solid lines in Figure 5.3), and the recently compiled .NML and .NHL databases (list 2, dashed lines in Figure 5.3). Due to bright star masking, the percentage coverage as a function of right ascension varies. This percentage, smoothed to intervals of

Figure 5.3 - CTI RR Lyrae survey area. Solid line for list 1 and dashed line for list 2.

Figure 5.4 - Fraction of survey area masked by bright stars as a function of right ascension. Smoothed to 6m intervals. Five stars masking the greatest area are labeled.

6m in right ascension, is shown in Figure 5.4.

Next, a limit on the amplitude of variation was set. Several searches were conducted. For both lists, the first search used a color limit of $\langle B-V \rangle < 0.6$ and an amplitude limit of $\Delta V > 0.2$. A total of 5 variables listed as RR Lyrae variable stars in the GCVS have amplitudes less than 0.2, corresponding to less than 0.08%, and these stars are probably misclassified anyway. Due to possible systematic errors created by the flat field (see Chapter 3.2) of up to 0.2 magnitudes for the B magnitude, another search using a limit of $\langle B-V \rangle < 0.7$ and an amplitude limit of $\Delta V > 0.6$ was made. No new confirmed RR Lyrae type stars were found with this search using both list 1 and list 2. A final search, only conducted on list 1, used a color limit of $\langle B-V \rangle < 0.8$ and an amplitude limit of $\Delta V > 0.2$. Again, no new confirmed RR Lyrae type stars were found.

The best period for each object passing the above criteria within the range of 0.2 to 1.2 days was determined using a standard period finding algorithm (see Lafler and Kinman 1965 or Stellingwerf 1978) and the light curve shape was examined. This period range ensures that for an RR Lyrae variable star, the best period found corresponds to the actual period or an alias to the actual period. Objects with sinusoidal (RRc) to sawtooth (RRab) light curves were included in the final candidate list.

The sidereal day alias inherent to the CTI data has

unfortunate consequences pertaining to period selection and light curve shape. Noisy RRab-like light curves with periods close to 1/2 or 1/3 a sidereal day can be created This occurs for most "long period" for many variables. variables displaying systematic shifts in their mean magnitude from one year to the next. The source of this group of variables is unknown, although it's possible they're spurious and related to the photometry of galaxies (see Chapter 4.2.1). with bimodal magnitude variables of distributions will often produce noisy RRc-like light curves at fractional sidereal day periods. Again, the nature of these variables is unknown and it's possible they are also Considering the fact it is unlikely a large spurious. population of RR Lyrae variable stars exist at these specific fractional sidereal day periods, noisy RR Lyrae-like light curves with these periods were not selected duing the search for candidates. Another problem related to the sidereal day alias in the CTI data occurs for variables with only a few V observations. These variables display a multitude of periods and a wide range of light curve shapes can be found. problem becomes so severe that for variables with less than ≈9 observations, a period search yields no useful information relative to classification by light curve shape.

The resulting final RR Lyrae candidate lists contain 52 objects each (list1 and list2), with 39 candidates in common. Thirteen candidates in list 1 were not in list 2. Seven of

these are W UMa type variables rejected due to the improved phase coverage offered by the additional observations contained in the .NHL database, four of these are non-RR Lyrae type variables not contained in list 2 due to color considerations, and two are RR Lyrae type variables whose light curves degraded with the additional observations, possibly due to a changing period or the Blazhko effect. Thirteen candidates in list 2 were not in list 1, all of which either had poor phase coverage or were near the edge of the CTI survey area and had less than 9 V observations in the .HIS database. Eight of these are confirmed RR Lyrae variable stars, three are possible RR Lyrae variable stars, and two are probable W UMa variable stars.

Six of the final candidates are previously known RR Lyrae variable stars listed in the GCVS (GR Com, GS Com, DV Com, EZ Com, V385 Her and V532 Her). All previously known RR Lyrae variable stars within the RR Lyrae search area were found. Another previously known variable star (V375 Her), classified as a semiregular type variable star in the GCVS, is also on both final candidate lists. In addition to those candidates found in the above searches, four other previously known variable stars outside the RR Lyrae search area but within the CTI survey strip were included in the final combined RR Lyrae candidate list for a total of 69 objects. CN Tau, V427 Lyr and V926 Cyg are designated as RR Lyrae stars in the GCVS, and GS Lyr is listed as an irregular variable in the GCVS, but has

an RR Lyrae shape light curve for a particular period using the data contained in the .HIS database. Table 5.1 lists each object's right ascension, declination, number of B and V observations (from list 2), E(B-V) as determined from Burstein and Heiles (1982), average B-V as initially determined from CTI data (from list 2), master list number for list 1 (.MAS database) and list 2 (.NML database), and variable type as determined from subsequent observations at Capilla Peak observatory (see Chapter 5.4). The list 1 and 2 mlink columns also indicate whether or not the star was found during that particular search. Table 5.2 identifies all previously known variable stars.

Table 5.1 - RR Lyrae final candidate list

#	RA	Dec #	#	E(B-V)	<b-v></b-v>	list 1	list 2	Type
		5 epoch) B	V		X-25X	mlink	mlink	73. VD/-
1	00 21 01.3	28 05 18.0 8	39	0.060	0.672	1770*	1770	W UMa
2	01 13 58.1	28 02 47.1 8	46	0.049	0.519	5890*		W UMa
3	01 26 59.2	28 03 54.3 7	44	0.057	0.835	6829+	6829	W UMa
4	01 58 55.9	27 58 09.5 5	48	0.055	0.466	9134	9134*	
5	02 01 50.4	28 04 22.6 7	46	0.050	0.260	9353*		RRab (B)
6	02 31 40.3	27 59 47.3 9	45	0.076	0.789	11615+	11615 18722*	W UMa
7	03 46 21.7	28 01 24.7 6	46		-0.226	18722 21446*	21446	RRab W UMa
. 8	04 02 57.9	28 01 30.5 7	- 46	0.090	0.607	48925	48925	Cos
9	05 57 22.1		50	INDEF	0.879 0.862	105847*	112126	W UMa
10	06 49 46.1	28 04 59.5 6 28 01 58.2 7	54 49	0.181 0.016	0.385		122309*	
11	07 53 50.3 08 46 51.7	28 01 58.2 7 28 02 45.3 8	45	0.030	0.299		130077*	
12 13	08 46 51.7 09 01 17.7	28 01 31.3 9	45	0.020	0.261	140537*		RRab (B)
14	09 56 59.1	28 02 02.6 8	49	0.016	0.126	152725*	164491*	
15	10 26 04.7	28 02 51.5 8	44	0.018	0.290	153914*	165680*	RRab
16	10 36 17.2	27 59 07.7 3	14	0.020	0.211		166103*	
17	10 57 41.6	28 02 46.0 7	48	0.012	0.165		166905*	
18	11 48 32.1	28 04 36.1 8	45	0.007	0.318	163979*	174580*	RRab
19	12 04 40.4	28 01 08.5 9	48	0.007	0.244	164643*	175244*	RRab
20	12 05 25.4	28 03 28.8 9	47	0.007	0.340	164674	175275*	
21	12 24 18.6	28 03 17.4 9 28 05 21.7 9	50	0.007	0.382		175996*	
22	12 43 17.6	28 05 21.7 9	45	0.007	0.372		176687*	
23	13 14 03.3	28 00 26.7 7	35	0.007	0.105		177933*	
24	13 17 32.5	28 01 39.4 9	45	0.007	0.299		178073*	
25	13 23 46.7	28 06 32.5 7	37	0.007	0.708	167695+		Galaxy
26	14 33 13.2	28 01 17.0 8	49	0.014	0.174		194872*	
27	14 54 39.0	28 05 32.8 10	51	0.010	0.354		195975*	
28	15 16 28.1	28 00 41.6 6	47	0.014	0.137	187650	203872*	
29	16 23 17.6	27 58 28.9 3	13	0.028	0.568	196711	212616* 221010*	
30	16 50 08.8 16 58 30.7	27 59 55.0 6 28 06 00.7 6	29 20	0.053 0.060	0.346 0.297	203336	221777*	
31 32	16 58 30.7 17 13 10.9	28 00 10.3 6	27	0.055	0.388	205617*		
33	17 15 23.9	28 00 43.0 6	27	0.053	0.234		223522*	
34	17 15 57.0	28 06 44.6 3	15	0.053	0.609	433757	556381*	
35	17 19 06.6	28 06 28.2 3	17	0.051	0.645	433799	556429*	
36	17 20 58.6	28 01 15.2 8	27	0.049	0.141		224186*	
37	17 30 43.1	28 03 48.3 8	30	0.047	0.268	207769*	225423*	SX Phe
38	17 41 51.5	28 03 53.2 7	30	0.055	0.311	209299*		
39	17 42 40.2	28 04 44.7 7	30	0.055	0.275	209407*		
40	17 44 19.7	28 01 21.6 7	30	0.056	0.266	209648*		RRc?
41	17 50 17.0	28 01 00.0 7	25	0.061	0.412		234109*	
42	18 11 01.2	27 59 27.4 6	26	0.108	0.374		238926*	
43						221928*	239057*	
44	18 36 06.3	28 03 21.6 7	25	0.170	0.416		246872*	
45	18 39 18.3	28 04 16.6 7	25	0.178	0.453	230978	248106*	W UMa
46	18 40 18.8	28 00 54.1 8	25	0.181	0.571 0.644	231410+	248557	
47	18 43 15.3	28 01 14.7 8 27 59 36.6 6	24 24	0.196 0.202	0.549		250230*	
48 49	18 44 20.6 18 47 46.9	28 04 47.0 4	24	0.202	0.556		251747*	
50	19 03 50.4	28 00 44.9 7	23	INDEF	1.757	252097	269174	L L
51	19 13 11.8	28 00 51.5 6	24	INDEF	0.733	259179	276256	RRab
52	19 38 06.6	27 59 09.9 7	25	INDEF		318729	336159	RRC
53	21 07 16.1	28 02 29.2 6	19	0.206	0.531	385417*		W UMa
54	21 20 11.2	28 06 09.3 2	13	0.154	0.611	505079	477321*	
55	21 21 10.2	28 05 56.5 2	13	0.152	0.176	468466	477369*	
56	21 34 29.8	28 01 56.9 5	18	0.127	0.687	403397*		W UMa
57	21 46 11.6	28 00 57.2 4	20	0.093	0.382	405697*	433874*	RRab

Table 5.1 - RR Lyrae final candidate list (continued)

#	R	A ·		Dec	2	#	#	E(B-V)	<b-v></b-v>	list 1	list 2	Type
		(1987.	5 er	oocl	a)	В	V			mlink	mlink	
58	21 57				37.5	3	20	0.090	0.472	407892*	436069*	RRab
59	21 58	55.9	27	58	09.5	5	20	0.090	0.240	407995	436173*	RRab
60	22 00	54.8	28	00	20.1	5	21	0.090	0.471	408475*	436652*	RRab
61	22 02	44.8	27	59	04.0	5	21	0.090	0.888	408775+	436953	W UMa
62	22 10	22.8	28	04	16.2	3	20	0.088	0.314	410030	438208*	RRab B
63	22 20	36.4	27	59	39.2	5	23	0.072	0.478	60633*	60635*	W UMa
64	22 36	18.9	27	58	38.4	5	24	0.056	0.526	63071*	63069	RRab
65	22 47	34.7	28	01	20.8	6	24	0.060	0.504	64566*	64569*	W UMa
66	23 05	19.7	28	05	44.1	3	21	0.068	0.206	67062*	66402*	RRab
67	23 21	38.0	28	01	25.6	2	21	0.063	0.535	68710*	68049	W UMa
68	23 32	06.7	28	02	10.9	5	37	0.051	0.477	80409*	89389*	RRab
69	23 52	26.0	28	01	18.9	7	40	0.060	0.447	82132*	91112*	RRab

Notes to Table 5.1

In list 1 and list 2 mlink column:

* = discovered in RR Lyrae search

+ = discovered in extended color (<B-V> < 0.8) RR Lyrae search of list 1 In Type column:

RRab - type ab RR Lyrae

RRc - type c RR Lyrae
RRab(B) - type ab RR Lyrae exhibiting Blazhko effect
SX Phe - SX Phoenices type variable star
Cos - short period classical Cepheid

W UMa - W Ursa Majoris

- Irregular

Table 5.2 - GCVS name for stars in RR Lyrae candidate list

#	GCVS name
9	CN Tau
19	GR Com
21	GS Com
22	DV Com
24	EZ Com
27	NSV 06854*
32	V375 Her
34	V385 Her
43	V532 Her
50	GS Lyr
51	V427 Lyr
52	V926 Cyq

Notes to Table 5.2

* - from New Catalogue of Suspected Variable Stars (Kukarkin et al. 1982)

5.3 - Completeness

In estimating the completeness of the resulting RR Lyrae variable star list, each step in the search must be examined to determine how it affects the discovery of RR Lyraes. The final result will be estimated functions for completeness versus position and completeness versus magnitude.

During the initial testing for variability, stars with poor phase coverage due to having a small number of observations and a period close to 1/2 or 1/3 a sidereal day may not even pass the variability test. More likely, however, is that the resulting light curve for the star will not be recognized as an RR Lyrae during the final selection. completeness as a function of position was estimated by first calculating the detectable fraction of variable stars as a function of period. Typical observation times were used to calculate the phase (ϕ) of all observations for all periods (0.0005 day bins) cycled through all initial phases. least two observations fell during maximum light ($\phi = 0.0$ -0.2), at least two observations during the descending part of the light curve ($\phi = 0.2 - 0.5$), at least two observations at minimum light (ϕ = 0.5 - 0.9), and at least one more observation during minimum or the ascending part of the light curve ($\phi = 0.5 - 1.0$), it was considered detectable. ensures a well distributed sample in phase and requires that the full amplitude of the variable is observed. Figure 5.5 plots the resulting detectable fraction of RR Lyraes as a

Figure 5.5 - Detectable fraction of RR Lyrae variable stars versus period for 9 observations (solid line) and 20 observations (dashed line). Original bins 0.0005 days, smoothed to 0.005 days.

function of period for 9 and 20 V observations. For RRab type variables, the average percentage in the interval from 0.4 to 0.7 days was then calculated for a number of cases with the number of V observations ranging from 9 to 60. The resulting detectable percentage as a function of the number of V observations is shown in Figure 5.6. The same calculation for RRc type variables with periods ranging from 0.25 to 0.4 days yields an almost identical curve. Using the information from Figure 5.6, as well as the maximum number of V observations as

Figure 5.6 - Detectable fraction of RR Lyrae variable stars as a function of the number of V observations.

a function of right ascension (see Figure 3.7) and the number of objects as a function of the number of V observations and right ascension (see, for example, Figure 4.4), the completeness of the CTI RR Lyrae Survey as a function of position was calculated and is shown in Figure 5.7. The solid and dashed lines represent the completeness of list 1 and list 2 respectively.

The completeness as a function of magnitude was calculated considering the fact that the amplitude of variability needs to be four times the average error for a

Figure 5.7 - Detectable fraction of RR Lyrae variables as a function of right ascension for list 1 (solid line) and list 2 (dashed line).

positive detection (see Chapter 4.2.2). This can be accomplished by using the information from the plot of average error versus mean instrumental magnitude (Figure 4.6), and knowing the distribution of RR Lyrae stars as a function of amplitude. The Palomar-Groningen Variable Star survey provides a large homogeneous sample of RR Lyrae variable stars to estimate this last function.

It was first necessary to convert each star's amplitude in B (Δ B) as listed in the Palomar-Groningen survey to a corresponding amplitude in V (Δ V) to compare to the CTI RR

Lyrae survey. For RRab type stars, this was done by combining Equation 5.1 ($B_{min}-V_{min}$ as a function of period where B_{min} and V_{min} are magnitudes at minimum light), $\langle B \rangle - \langle V \rangle \approx 0.26$ (Hawley et al. 1986), and the empirical equation (from Barnes and Hawley 1986)

$$\langle V \rangle = V_{\min} - 0.375 \times \Delta V - 0.04.$$
 (5.2)

Using these equations, and assuming a similar relation for as in Equation 5.2, the color at maximum light can be calculated using

$$B_{\text{max}} - V_{\text{max}} = 0.03 - 0.42 \times (P - 0.5)$$
, (5.3)

and the amplitude in V can be calculated using

$$\Delta V = \Delta B - 0.37 - 0.67 \times (P - 0.5)$$
. (5.4)

For RRc type variable stars, the V and B observations of RRc type variable stars in the CTI survey were examined yielding the relationship, $\Delta V \approx \Delta B - 0.115$.

The resulting histogram of V amplitude for RR Lyrae stars in the Palomar-Groningen Variable Star survey is shown in Figure 5.8. The distribution of RRab and RRc type variables are shown with a solid and dashed line respectively. The completeness as a function of average instrumental V magnitude is shown in Figure 5.9 for RRab (solid line) and RRc (dashed line) type variable stars in the CTI RR Lyrae survey.

Figure 5.8 - Percentage of RR Lyrae variable stars in Palomar-Groningen Variable Star survey (regions 1, 2, and 3) as a function of amplitude of variation in V (using Equation 5.4). RRab type (solid line) and RRc type (dashed line).

Figure 5.9 - Detectable fraction of RR Lyrae variable stars as a function of average V magnitude for RRab type variables (solid line) and RRc type variables (dashed line).

5.4 Alias Breaking Observations at Capilla Peak

complementary observations of the candidate RR Lyrae stars are necessary to determine their correct pulsational period. This is due to CTI's built in frequency of observation, the sidereal day, and the fact that RR Lyrae variable star periods are typically less than a sidereal day. Thus, for each variable with a true period P, many aliased periods exist, given by

$$P_{alias} = \left| \frac{1}{\frac{1}{D} + nf_{sd}} \right| \tag{5.5}$$

where $f_{sd} = 1.002740 \text{ day}^{-1}$ is the sidereal day frequency and n is a positive or negative integer.

The telescope at Capilla Peak Observatory was used to make alias breaking observations. What follows is a short description of the telescope and CCD at Capilla Peak and a description of the image reduction process, which is also intended to serve as a guide to future users of Capilla Peak. Finally, the method used in combining CTI and Capilla Peak data is described.

5.4.1 Capilla Peak Telescope/CCD Description

Operated by the Institute for Astrophysics at the University of New Mexico, Capilla Peak is a small observatory located in the Manzano Mountains, 30 miles south of Albuquerque, New Mexico. The observatory is located at latitude 34° 41' 53" and longitude 106° 24' 13", and elevation

of 2842 meters. It is the 15th highest observatory in the world as listed in the The Astronomical Almanac for the year 1993.

Located at the observatory is a single 61-cm Boller and Chivens telescope equipped with a RCA 320 x 512 x 30 μ m SID50EX CCD (Laubscher et al. 1988). With a system f/# of 15.2, the image field scale is 0.67 arcsecs/pixel which produces an image size of 3.57' x 5.72'. The CCD operates with a gain of 15.6 electrons/ADU, 14-bit digitization, and has a readout noise of 57 electrons. The current filter set includes H_a filters centered at 657, 665 and 673 nm, an OIII filter (manufactured by Barr Associates), polarization filters, and BVRI filters (described in Beckert and Newberry 1989). The telescope is also equipped with an additional CCD camera with a microchannel plate amplifier used for real-time quiding on off-axis stars during lengthy exposures.

The telescope operates year round as a research and instructional instrument. Published scientific papers using data collected at Capilla Peak include studies of variable stars (Zeilik et al. 1994 and references therein, Wetterer et al. 1994 and this dissertation), standard stars (Odewahn et al. 1992), brown dwarfs (Bryja and Lawrence 1991, Bryja et al. 1992), galaxies (Gregory et al. 1990, Odewahn 1991, Hayes et al. 1993, Laubscher and Gregory 1993, Taylor et al. 1995, and others), extragalactic supernova (Schmidt et al. 1993, 1994), and the SL-9 impact on Jupiter (Gisler et al. 1994).

5.4.2 Capilla Peak Image Reduction

CCD images obtained at Capilla Peak must go through several reduction steps before useful photometry can be done (Newberry 1991, Tyson 1990). These steps include bias subtraction, removal of the deferred charge structure, preflash subtraction (if used), dark current subtraction (if desired), division by a flat-field frame, and cosmic ray removal. Several steps require that additional CCD images be acquired at the time of observation. What follows is a discussion of each step, which includes both the observational and reduction procedures required.

Every image has a device-specific baseline level, known as the bias, created by the CCD camera's electronics. bias level does not represent charge contained in individual pixels, but is rather a baseline voltage added to the image as the image is being read out of the CCD array. A bias frame, simply a zero second exposure, can be taken and examined at the telescope by using the bias command. Ideally, the bias level should be constant and uniform over the entire CCD The CCD at Capilla Peak has a nearly constant bias frame. structure, but a bias level that changes during the course of The bias level has short-term fluctuations of the night. about 8 electrons, and can have a drift greater than 90 electrons during the night. The bias structure also changes with changing bias level, primarily in the first 50 columns. These changes are probably due to changes in the ambient

temperature of the CCD camera's electronics located in the observatory dome. To accurately subtract the bias requires that the bias structure and level be tracked and recorded during observations. This can be accomplished in two ways. If the preflash is used, the bias and preflash are recorded in the same frames and can be subtracted from other images This will be described later. Otherwise, together. "superbias" frames can be made between observations to track A superbias is simply the the structure and bias level. average of several bias frames and can be made at the telescope using the addup command. Averaging is done in order to reduce the effect of readout noise in the final product. Two or more of these superbias frames bracketing your observations can then be used to create the final reduction The bias level immediately before each image can also be recorded in the image header by using the bobs command at The noise added to all other the telescope instead of obs. images by bias subtraction is

$$RB = \sqrt{\frac{\frac{R^2}{n_b} + T^2}{n_{bb}} + BL^2}$$
 (5.6)

where R = 57 electrons is the readout noise, n_b (typically 25) is the number of bias frames used in creating a superbias, T = 4.5 electrons is the truncation noise as determined from the gain, $n_{\rm sb}$ (typically 2) is the number of superbias frames used in creating the final reduction bias, and BL = 8 electrons is

the empirically determined short term bias level uncertainty.

Next, the horizontal band structure created by deferred charge within the horizontal shift register must eliminated. This is accomplished by mapping out the structure with the preflash or a low light level sky flat (approximately 100 ADUs or 1560 electrons) known as a skim flat. latter method is used, only a single skim flat is required and can be taken through any filter during astronomical twilight. To create the final frame used in reducing all other images, a high light level sky flat (approximately 8000 ADUs) taken through the same filter and scaled to the level of the skim flat must first be subtracted off the skim flat in order to remove the CCD's response to light. The remaining feature is simply the deferred charge structure. Exposure times for the skim flat and sky flat should either be identical or greater than 3 seconds in order to eliminate the effect of the shutter speed on the final images. To reduce noise, the skim flat is sliced into 512 one-dimensional rows, all containing the deferred charge structure. These rows are averaged column by column, and 512 of the resulting average slice are then stacked back together to create the final "superskim". noise added to all other images by deferred charge subtraction is

$$RS = \sqrt{\frac{R^2 + T^2 + L_{skim} (1 + RK^2 \times L_{skim}) + RB^2}{512}}$$
 (5.7)

where \mathbf{L}_{skim} is the skim flat light level in electrons, and RK

is the superskyflat error, to be discussed later. Two aspects of using a superskim frame for deferred charge subtraction First, in order for the deferred charge should be noted. structure to be accurately eliminated by using a superskim, the background sky level must be greater than the maximum deferred charge structure. Although this corresponds to about 10 ADUs, in practice the background sky level must be greater than about 50 ADUs for the superskim to work. Also, since a sky flat (containing the deferred charge structure) is used to make the superskim, a residual deferred charge structure on the order of 1% will remain. This can be remedied by creating the superskim in an iterative manner, or by using the preflash on the sky flats in order to eliminate the deferred charge structure beforehand. The deferred charge structure remains nearly constant, and thus a superskim frame from one night was typically used for several months of data.

Bias subtraction and correction of deferred charge structure can be accomplished in a single step if the preflash is used. A preflash is simply the addition of a specific number of electrons to each pixel in the CCD prior to an exposure. At Capilla Peak, the preflash consists of 6 light emitting diodes (LEDs) located inside the shutter and arranged to uniformly illuminate the CCD array. This is currently manually applied. To examine the preflash, a preflashed dark exposure can be taken at the telescope by using the dark command. A dark exposure is an exposure of a certain length

without opening the shutter. A 2 to 5 second exposure is necessary to accurately record the preflash. The resulting image will show the deferred charge structure superimposed on the bias and preflash structure. As with creating a superbias, several of these frames are averaged together to This is accomplished by taking several reduce noise. preflashbias frames and storing each in one of the eight different caches (using ci command to move between caches) of the CCD control computer memory, and then averaging them together using the median command. Because of bias and night. during the preflash level changes superpreflashbias frames should be taken throughout the night Two or more superpreflashbiases to track the changes. bracketing your observations can be used later to create the final reduction preflashbias. The noise added to an object frame by preflashbias subtraction is

$$RP = \sqrt{\frac{\frac{R^2 + L_{preflash}}{n_p} + T^2}{\frac{n_p}{n_{sp}} + BL^2 + PL^2}}$$
 (5.8)

where $L_{\rm preflash}$ is the preflash light level (about 50 - 100 ADUs = 780 - 1560 electrons), $n_{\rm p}$ (up to 7) is the number of preflashbias frames used in making the superpreflashbias, $n_{\rm sp}$ (typically 2) is the the number of superpreflashbias frames used in making the final reduction preflashbias, and PL = 16 electrons is the empirically determined preflash level uncertainty.

The final additive term in the reduction process is the dark current of the CCD. Several dark frames as long as or longer than all other image frames must be taken. A pixel-by-pixel median of these dark frames, after bias and deferred charge subtraction, must then be taken to eliminate the effect of pixels contaminated by cosmic rays. The resulting superdark can now be scaled to the exposure length of the remaining images, and subtracted. The noise per second of observation added to all other frames by dark current subtraction is

$$SD = \frac{\sqrt{\frac{R^2 + T^2 + P^2}{n_d}}}{t_d}$$
 (5.9)

where P = RP for preflashbias subtracted dark frames or $P = (RB^2 + RS^2)^{1/2}$ for bias and skim flat subtracted dark frames, n_d (3 or greater) is the number of dark frames used in creating the superdark, and t_d is the exposure length of the dark frames. The dark current for nearly the entire CCD is less than the bias level uncertainty and can thus not be determined accurately. The dark current is thus ignored in further calculations.

Next, the response of the CCD to light must be estimated. This requires images of a uniform background in order to map out the pixel-to-pixel response. Typically, sky flats are taken during evening or morning twilight. The resulting images, specific to the particular filter used, are combined

and normalized, and then used to divide out the response of the CCD from all the remaining images. The sky flats must first be bias and skim flat subtracted, (or preflashbias subtracted), before the final superskyflat can be produced. Additionally, as with the skim flat, the exposure time for a sky flat must be greater than 3 seconds to reduce the residual shutter structure to a tolerable level. Also, sky flats show up to 1% variations depending on the pointing of the telescope. This is probably due to flexing of the telescope If feasible, sky flats should thus be taken as it is moved. different telescope pointings with the resulting superskyflats used for images of similar hour angle, and the filters and CCD window should be cleaned regularly. The noise contained in the superskyflat frame is

$$RK = \frac{\sqrt{\frac{R^2 + T^2 + P^2 + L_{flat}}{n_k}}}{L_{flat}}$$
 (5.10)

where L_{flat} is the sky flat light level (typically 10,000 ADUs or 156,000 electrons), and n_k (3 or greater) is the number of sky flats used to create superskyflat.

Finally, corrupted pixels from cosmic rays or decay events in the radioactive glass used in the construction of the CCD must be removed. A cosmic ray or decay event impinging on the CCD during an exposure will corrupt the pixel value where it passes through the array. An average of 18 pixels per minute of observation are effected in this way.

Typically, only a single pixel is effected per event. Because of this unique signature, each CCD image can be examined for these cosmic ray pixels, with the pixel value of the resulting cosmic ray detections replaced with the average of the surrounding pixel values. This works well for cosmic rays located in areas of the CCD that measure background sky. If a cosmic ray happens to coincide with your object of interest, however, the image is essentially useless for accurate photometry.

Using equations 5.6 to 5.10, the total noise in a reduced image is

$$N = \sqrt{n(R^2 + T^2 + P^2) + L \times (1 + RK^2 L)}$$
 (5.11)

where $L = L_{\rm object} + nL_{\rm sky}$, $L_{\rm object}$ is the total signal level of the object of interest in electrons, $L_{\rm sky}$ is the background sky level per pixel in electrons, and n is the number of pixels used in the photometry (depends on the seeing during the night of observation). $L_{\rm object}$ can be calculated in electrons for the V filter using

$$L_{object} = 15.6 \times 10^{((V_{limit} - V)/2.5)} \times t$$
 (5.12)

where $V_{\rm limit} = (19.224 \pm 0.018)$ - (0.101 ± 0.011) × (years since last cleaning), V is the object's V magnitude, and t is the exposure length in seconds. For moonless nights, $L_{\rm sky}$ is approximately 0.87 x t electrons per pixel in V. This corresponds to a sky brightness of 22.3 magnitudes in V. A moonlit sky will have a $L_{\rm sky}$ value approximately 5 times

greater, corresponding to a sky brightness of 20.5 magnitudes in V. Table A1.8 of Appendix 1 gives sample signal to noise calculations using Equation 5.8 for various magnitude stars, exposure lengths, and conditions.

5.4.3 Combining CTI and Capilla Peak Data

The next step in determining an accurate period for a candidate RR Lyrae star is to combine the Capilla Peak data with the CTI data. Within arcminutes of every candidate variable, the CTI database also contains information on stars determined to be nonvariable from CTI light curves. Several stars of similar magnitude and color to the variable and close enough to the variable to fit within a Capilla Peak image are picked to be used as standard comparison stars. Differential Capilla Peak instrumental magnitudes ($\Delta V_{\text{Capilla}}$) are found for all standard pairs and between each standard and the variable using the photometry package in IRAF. Using the standard stars, differential CTI instrumental magnitudes (ΔV_{CTI}) are used to create a Capilla Peak to CTI conversion factor ($K_V = |\Delta V_{\text{CTI}}/\Delta V_{\text{Capilla}}|$), with the resulting CTI instrumental magnitude for the variable calculated by

$$V_{CTI}(var) = V_{CTI}(std) + K_V \times \Delta V_{Capilla}(var-std). \qquad (5.13)$$

Due to the similarity of the CTI and Capilla Peak's V filter and CCD, the value K_{V} is essentially equal to 1. This was verified using several standard star pairs and calculating K_{V} directly. A similar calculation can be done for each of the

other filters.

By selecting standard stars of similar color and magnitude, effects created by extinction in the Earth's atmosphere are practically eliminated. Where suitable standard stars do not exist for a particular variable, care was taken to observe only at low airmasses.

5.4.4 Summary of Observations

Each variable star required an average of two nights of observing to accurately determine its period with two to four variable stars observed per night. Several cloudy nights were also used to test the CCD system and aspects of the reduction and analysis process. Table A1.9 in Appendix 1 lists each night of observation at Capilla Peak used in this dissertation. The date, CTI dayno (1 = 85 Jan 01), percentage of the night used, observers, and cumulative percentage of nights observed are given. Tables A1.10 and A1.11 summarize all the images obtained and reduced.

Table 5.2 summarizes the results for all stars listed on the final RR Lyrae candidate list. The number of CTI and Capilla observations through the V filter, the maximum, minimum, flux averaged instrumental V magnitudes, and error in the flux averaged instrumental V magnitude, amplitude of variation in V, (M-m)/P (rise time in fraction of the period), period (in days), heliocentric epoch of maximum light (for RR Lyrae) or primary minimum light (for eclipsing), and type of

each variable star is given. The flux averaged instrumental magnitude was calculated using

$$\langle V \rangle = -2.5 \times \log \sum_{i=1}^{N} 0.5 (\phi_{i+1} - \phi_{i-1}) 10^{\frac{V_i}{-2.5}}$$
 (5.14)

where $\dot{\phi}_i$ is the phase of the *i*th observation in order of increasing $\dot{\phi}$, $\dot{\phi}_0 = \dot{\phi}_N$ and $\dot{\phi}_{N+1} = \dot{\phi}_1$. Photometry, finder charts, and light curves for each variable is supplied in Appendix 3.

Individual standard V magnitudes were determined using

$$V_{std} = V_{inst} + 0.084 \times (B - V)_{std} - 0.054$$
 (5.15)

and

$$(B-V)_{std}=1.007\times(B-V)_{inst}+0.089,$$
 (5.16)

where the subscript std is for the standard Johnson system and inst is for instrumental magnitudes (McGraw et al. 1989). The $(B-V)_{std}$ as a function of phase for each RR Lyrae star was calculated by first determining the minimum B-V and the B magnitude amplitude of variation (ΔB) using the CTI B observations. The B-V at any phase can then be calculated using

$$B-V=(B-V)_{\min}-\frac{(\Delta B-\Delta V)}{\Delta V}\times(V-V_{\min}). \qquad (5.17)$$

Equation 5.4 was used for stars where the number of B observations or the distribution in phase of the B observations was insufficient to determine ΔB . The error in $(B-V)_{\min}$ ranges from 0.03 to 0.2 magnitudes, while the error in

AB ranges from 0.1 to 0.4 magnitudes. At most, this results in an additional systematic error of <0.02 magnitudes for the amplitude, minimum and mean magnitudes, and <0.04 magnitudes for the maximum magnitude. The (B-V) of all eclipsing variable stars was assumed to be constant. Table 5.4 summarizes the results for all stars listed on the final RR Lyrae candidate list. The instrumental B-V at minimum light, amplitude in instrumental V and B magnitudes, standard B-V at minimum light, the minimum, maximum, and flux averaged standard V magnitudes, and the amplitude in standard V magnitudes are listed.

		I<-In	strume	ntal mag	nitudes	3 ->				
#	CTI CAP	Max	Min	Mean	Err	Amp	m-M	Period	Epoch	Type
1	39 10	16.67	17.09	16.837	0.0090	0.42	0.50	0.276682	3539.373	W UMa
2	45 16	16.23	16.73	16.415	0.0091	0.50	0.50	0.383472	3539.565	W UMa
3	43 10	16.43	16.73	16.580	0.0076	0.30	0.50	0.349120	3546.520	
4	48 29	16.33	17.59	17.081	0.0094	1.26	0.20	0.497854	3641.220	RRab
5	46 51	16.71	18.00	17.517	0.0088	1.29	0.20	0.461291	3559.380	
6	44 10	13.83	14.06	13.947	0.0015	0.23	0.50	0.265461	3539.429	
7	46 20	17.29	18.41	17.905	0.0219	1.12	0.15	0.561891	3685.125	RRab
8	46 19	17.40	18.13	17.711	0.0185	0.73	0.50	0.319400	3546.455	
9	50 32	12.56	12.91	12.739	0.0008	0.35	0.25	1.79325	3299.884	
10	51 17	18.02	18.81	18.267	0.0228	0.79	0.50	0.269392	3622.235	
11	48 20							0.632536	3308.300	
12	45 28	15.55	16.74	16.344	0.0053	1.19	0.10	0.552704	3307.320	
13	45 23	15.44	16.73	16.255	0.0048	1.29	0.20	0.513581	3331.312	
14	49 15	16.32	16.88	16.571	0.0074	0.56	0.35	0.286813	3342.322	
15	44 28	17.75	18.70	18.250	0.0167	0.95	0.20	0.552801	3666.438	
16	13 32	17.50	18.44	18.037	0.0140	0.94	0.15	0.707095	3641.348	
17	47 16	16.47	17.04	16.740	0.0064	0.57	0.30	0.327640	3363.304	
18	43 16	14.56	15.80	15.305	0.0029	1.24	0.10	0.597821	3356.253	
19	48 12	15.61	16.79	16.364	0.0065	1.18	0.10		3361.121	
20	47 16							0.508702	3683.373	
21	50 10	15.76	16.91	16.4/0	0.0068	1.15	0.10	0.529449	3361.268	RRAD
22	45 10	14.22	15.24	14.820	0.0022	1.02	0.10	0.540837 0.314639	3361.432	RKAD
23	34 10							0.568389	3468.281	
24 25	45 12 36 11	16.44	17.03	17 056	0.0030	0.65	0.25			Galaxy
26	49 20	17 63	10 3/	17.036	0.0240	0.00	0.20	0.437536	3481 155	
27	50 17	14 52	15 06	14 810	0.0271	0.54	0.20	0.622135	3112.203	
28	46 7	17.52	18.24	17.897	0.0028	0.72	0.15	0.571900	3685.029	
29	13 4	15.13	15.36	15.234	0.0055	0.23	0.50	0.343670	3685.451	
30	28 20							0.570831	3113.209	
31	20 5	14.64	15.15	14.884	0.0042	0.51	0.50	0.272711	3685.586	
32	27 19	15.54	16.62	16.202	0.0064	1.08	0.15	0.531433	3481.184	
33	27 20							0.516250	3474.160	
34	15 16							0.528145	3385.207	
35	17 0							0.47259		
36	26 25	14.60	14.94	14.768	0.0031	0.34	0.40	0.295405	3469.480	
37	30 27	15.28	15.91	15.686	0.0044	0.63	0.20	0.0568927	3385.429	
38	30 13	15.18	16.23	15.807	0.0052	1.05	0.10	0.566966	3113.194	
39	30 33	16.08.	16.98	16.642	0.0074	0.90	0.20	0.526354	3186.109	
40	30 16	15.46	15.87	13.666	0.0041	0.41	0.40	0.377069	3487.309	RRC!
41	25 20 26 27	16.15	13.3/	13.244	0.0014	1 14	0.30	0.695000 0.454185	3181.102	
42 43	25 16		15 98	15 610	0.0224	0 79	0.20	0.541466		
44	25 22							0.484114	3175.196	
45	25 19							0.709921	3516.300	
46	25 12							0.366912	3473.422	
47	24 0							0.656278	3473.717	
48	24 10							0.345930	3481.409	
49	24 44							0.764461	3488.260	
50	23 94								(3174)	L
51	24 21	15.74	16.83	16.359	0.0064	1.09	0.20	0.424599	3474.433	
52	25 22	14.93	15.43	15.131	0.0043	0.50	0.45	0.306999	3488.337	
53	18 17							0.438854	3517.448	
54	13 0							0.448676	3517.381	
55	13 0	15.18	15.61	15.423	0.0075	0.43	0.30	0.325160	3517.511	
56	18 17							0.333247		
57	20 18	14.79	15.47	15.233	0.0038	0.68	0.20	0.592806	3517.220	RRab

Figure 5.3 - Photometry Results (continued)

			<-In:	strume	ntal Mag	gnitudes	s ->				
#			Min	Max	Mean	Err	Amp	m-M	Period	Epoch	
58	20	26	16.33	17.77	17.137	0.0104	1.44	0.05	0.464627	3234.243	RRab
59	21	13	14.62	15.63	15.192	0.0049	1.01	0.25	0.525361	3660.060	RRab
60	21	29	15.01	16.02	15.630	0.0037	1.01	0.10	0.529309	3517.108	RRab
61	21	8	13.81	14.07	13.927	0.0016	0.26	0.50	0.279144	3478.351	W UMa
62	20	19	15.92	16.85	16.566	0.0089	0.93	0.05	0.554907	3673.098	RRab B
63	23	17	15.05	15.35	15.185	0.0032	0.30	0.50	0.426090	3517.356	W UMa
64	24	32	16.44	16.88	16.693	0.0069	0.44	0.10	0.611901	3622.260	RRab
65	24	8	13.40	13.68	13.525	0.0016	0.28	0.50	0.379380	3480.338	W UMa
66	21	21	16.28	17.51	17.064	0.0094	1.23	0.15	0.522284	3174.327	RRab
67	27	24	16.24	16.72	16.411	0.0055	0.48	0.50	0.394387	3545.638	W UMa
68	37	24	16.69	17.67	17.265	0.0113	0.98	0.10	0.692859	3187.329	RRab
69	40	28	17.10	17.90	17.565	0.0141	0.80	0.15	0.589192	3545.372	RRab

Notes to Table 5.3

- 1 Other short periods possible.
- 3 Other short periods possible.
 5 A period of 0.461300 days fits CTI data well, while a period of 0.461877 days fits Capilla data well. Possible example of period changing with time.
- 9 CN Tau previously classified as RRab with period of 0.642062 days.
- 24 EZ Com period listed as 0.568404 days in GCVS.
- 25 Systematic shifts in mean magnitude from one year to the next possibly indicate this galaxy is a spurious variable (see Chapter 4.2.1 and 5.2), although an actual variability can't be ruled out.
- 28 Other aliased periods possible.
- 29 Other short periods possible.
- 31 Other aliased periods possible. Possibly W UMa.
- 32 V375 Her previously classified as SR with period of 84.1 days.
- 35 Not observed at Capilla Peak. Many aliased periods possible. B-V color redder than other RR Lyraes.
- 40 CTI data from 1990 and 1991 does not agree well with chosen period. No good periods were found with this data included, and so it did not pass the search for RR Lyraes in list 2. Color consistent with RRc classification. Possibly changing period with time.
- 43 V532 Her had no period listed in GCVS.
- 47 Not observed at Capilla Peak. Many aliased periods possible. B-V color redder than other RR Lyraes, but possibly RRc.
- 48 Short period so not classified RRc although asymmetry possibly present. Other short periods possible.
- 51 V427 Lyr combined with other fainter stars in photometry (see finder chart in Appendix 3).
- 52 V926 Cyg period given as 0.30697965 days in GCVS. Combined with other fainter stars in photometry (see finder chart in Appendix 3).
- 54 Not observed at Capilla Peak. Many aliased periods possible. Asymmetric light curve, possibly RRc.
- 55 Not observed at Capilla Peak. Many aliased periods possible. Asymmetric light curve and color consistent with RRc type.
- 61 Some CTI data does not agree well with chosen period. Other short periods possible.
- 64 Combined with other star of equal brightness in photometry (see finder chart in Appendix 3).

Figure 5.4 - Standard Magnitudes for RR Lyrae survey stars

				 <-	Standar	rd magn	nitudes	->
#	(B-V)	Vamp	Bamp	(B-V)	Max	Min	Mean	Vamp
1	0.60		0.42	0.69	16.67 16.22	17.09 16.72	16.841 16.408	0.42
2	0.47		0.30	0.56 0.89	16.45	16.75	16.601	0.30
4	0.20		1.45	0.29	16.29	17.56	17.045	1.27
5	0.40		1.60	0.49	16.67	18.00	17.495	1.33
6	0.78	0.23	0.23	0.87	13.85	14.08	13.966	0.23
7	0.45		1.30	0.54	17.27	18.40	17.889 17.715	1.13 0.73
. B	0.60 0.80		0.73	0.69 0.89	17.40 12.56	18.13 12.92	12.755	0.73
10	0.75		0.79	0.84	18.04	18.83	18.284	0.79
11	0.33	0.49	0.60	0.42	15.77	16.30	16.063	0.53
12	0.21		1.40	0.30	15.51	16.71	16.310	1.20
13 14	0.30		1.60 0.69	0.39 0.16	15.40 16.27	16.71 16.84	16.226 16.525	1.31 0.57
15	0.07 0.32		1.10	0.10	17.71	18.68	18.224	0.97
16	0.24		1.20	0.33	17.46	18.42	18.003	0.96
17	0.12	0.57	0.65	0.21	16.42	17.00	16.700	0.58
18	0.36		1.62	0.45	14.52	15.78	15.278	1.26
19 20	0.20	1.18 1.18	1.25 1.50	0.29	15.58 14.92	16.77 16.17	16.332 15.705	1.19 1.25
21	0.32		1.50	0.42	15.72	16.89	16.442	1.17
22	0.35	1.02	1.29	0.44	14.19	15.23	14.794	1.04
23	0.05		0.43	0.14	13.62	13.95	13.779	0.33
24 25	0.35		1.00	0.44	16.40 16.75	17.07 17.41	16.743 17.060	0.67 0.66
26	0.40	0.71	1.05	0.49	17.60	18.32	17.972	0.72
27	0.36	0.54	0.75	0.45	14.49	15.04	14.787	0.55
28	0.30	0.72	1.10	0.39	17.47	18.22	17.860	0.75
29 30	0.47 0.33	0.23	0.23 1.25	0.56 0.42	15.12 14.73	15.35 15.74	15.227 15.341	0.23
31	0.33		0.80	0.39	14.73	15.13	14.850	0.54
32	0.30		1.50	0.39	15.49	16.60	16.170	1.11
33	0.35		1.55	0.44	17.25	18.57	17.972	1.32
34	0.45	0.75	1.20	0.54	14.64	15.41	15.071	0.77
35 36	0.60 0.15		0.77	0.69 0.24	17.22 14.56	17.99 14.91	17.641 14.730	0.77 0.35
37	0.15	0.63	0.75	0.24	15.23	15.88	15.649	0.65
38	0.30	1.05	1.30	0.39	15.14	16.21	15.779	1.07
39	0.30		1.25	0.39	16.04	16.96	16.612	0.92
40 41	0.22 0.28	$0.41 \\ 0.22$	0.50	0.31 0.37	15.43 13.13	15.84 13.35	15.634 13.221	0.41 0.22
42	0.38	1.14	1.30	0.47	16.33	17.48	17.052	1.15
43	0.43	0.79	0.90	0.52	15.18	15.97	15.595	0.79
44	0.49	1.22	1.70	0.58	15.80	17.05	16.604	1.25
45	0.55	0.77	1.00	0.64	16.29 14.21	17.07 14.75	16.690 14.424	0.78
46 47	0.52 0.66	$0.54 \\ 0.41$	0.54	0.61 0.75	16.20	16.61	16.382	0.41
48	0.45	0.48	0.48	0.54	16.89	17.37	17.095	0.48
49	0.65	0.67	1.00	0.74	16.84	17.53	17.174	0.69
50	1.75	0.94	0.94	1.85	12.57	13.51	13.078	0.94
51 52	0.60 0.60	1.09	1.50	0.69 0.69	15.90 15.03	17.44 15.63	16.694 15.258	1.54
53	0.42	0.44	0.44	0.51	12.72	13.16	12.883	0.44
54	0.43	0.32	0.32	0.52	16.33	16.65	16.483	0.32
55	0.25	0.43	0.55	0.34	15.15	15.58	15.394	0.43
56 57	0.70	0.58 0.68	0.58	0.79 0.54	16.70 14.76	17.28 15.46	16.905 15.214	0.58
58	0.38	1.44	1.78	0.47	16.29	17.76	17.107	1.47

Figure 5.4 - Standard Magnitudes (continued)

			<pre> <- Standard Magnitudes</pre>													
#	(B-V)	Vamp Bamp	(B-V)	Max	Min	Mean	Vamp									
	0.35	$1.01 \ 1.31$	0.44	14.58	15.61	15.162	1.03									
60	0.38	1.01 1.50	0.47	14.96	16.01	15.597	1.05									
61	0.79	0.26 0.26	0.88	13.83	14.09	13.947	0.26									
62	0.30	0.93 1.10	0.39	15.88	16.83	16.540	0.95									
63	0.35	0.30 0.30	0.44	15.03	15.33	15.168	0.30									
64	0.45	0.44 0.60	0.54	16.84	17.54	17.245	0.70									
65	0.40	0.28 0.28	0.49	13.39	13.67	13.512	0.28									
66	0.30	1.23 1.60	0.39	16.23	17.48	17.030	1.25									
67	0.40	0.48 0.48	0.49	16.23	16.71	16.398	0.48									
68	0.44	0.98 1.25	0.53	16.65	17.66	17.241	1.01									
69	0.48	0.80 1.00	0.57	17.08	17.89	17.549	0.81									

Notes to Table 5.4

35 - Particularly poor B observations.

51 - Luminosity of blended stars (V = 18.008 \pm 0.056 and V = 19.497 \pm 0.133 as determined by Capilla Peak photometry) removed. Random

error in standard magnitude 0.0092. Luminosity of blended stars (V = 18.273 ± 0.040 and V = 18.093 ± 0.025 as determined by Capilla Peak photometry) removed. Random error in standard magnitude 0.0048. Luminosity of blended star (V = 17.718 ± 0.035 as determined by Capilla Peak photometry) removed. Random error in standard magnitude 0.0115magnitude 0.0115.

5.5 CTI RR Lyrae Survey Statistics

Equation 5.2 (from Barnes and Hawley 1986), which empirically accounts for changing light curve shape with increasing amplitude when comparing the mean, minimum, and maximum magnitudes, will be used in Chapter 6 to calculate mean magnitudes for RR Lyrae stars in surveys where only the minimum and maximum magnitudes are listed. Equation 5.2 can be checked using the CTI data. Figure 5.10 plots $(V_{\min} - \langle V \rangle)$ versus ΔV for the twenty-five brightest RR Lyrae variable

Figure 5.10 - Vmin - <V> versus AV for bright RR Lyrae variable stars in CTI survey. Increasing symbol size corresponds to increasing (m-M)/P. Barnes and Hawley 1986 relation and CTI regression fit also plotted.

survey with increasing symbol the CTI corresponding to increasing (m-M)/P (a measure of light curve shape). The Barnes and Hawley 1986 relation $(V_{min} - \langle V \rangle = 0.04)$ + 0.375× Δ V) and the regression fit to the CTI data (V_{min} - <V> = $(0.087 \pm 0.030) + (0.305 \pm 0.021) \times \Delta V$) are also plotted. For stars of identical light curve shape, the intercept of V_{\min} -<V> versus AV must be equal to zero. This is the case for RRc type variables (represented by the largest symbols in Figure 5.10), where the resulting slope is close to 0.5 (as would be expected for a sinusoidal light curve). For the more asymmetric light curves of RRab type stars, a slope between 0.35 and 0.45 fits the data best with zero intercept. fact that increasing asymmetry is correlated with amplitude makes it possible for a relation like Equation 5.2 to be calculated using all types of RR Lyraes. The slight difference in slope and intercept between the Barnes and Hawley 1986 and CTI best fit lines are comparable to the scatter of the CTI data from the best fit lines. The CTI best fit line, however, was calculated using over three times the number of stars, and is thus more representative of the actual relationship.

Equation 5.1 (McDonald 1977), an empirical relation between B-V at minimum light and period for RRab type variable stars, was used earlier to establish a color limit in selecting RR Lyrae variables. This relation can also be checked using CTI data. Figure 5.11 plots the B-V at minimum

Figure 5.11 - B-V at minimum light (corrected for Galactic reddening) versus period for bright RR Lyrae variable stars in CTI survey. McDonald 1977 relation also plotted.

light versus period for nineteen of the brightest RR Lyrae stars with more than 5 B observations and little Galactic reddening. The reddening corrected mean B-V at minimum light of the RRab type variables is 0.39 ± 0.05 . There is only the slightest hint of a dependence on period, although this dependence might manifest itself more clearly if the sample included RRab type stars with a larger range of periods. If the four RRc type variables are included (having a mean B-V at minimum light of 0.17 ± 0.03), Figure 5.11 clearly displays

the trend of redder colors for longer periods.

Finally, Figure 5.12 compares the period and amplitude distribution of the CTI RR Lyrae variable stars to that of the RR Lyrae variable stars contained in the Palomar-Groningen Variable Star survey. Despite the fact that the CTI survey covers a large range of Galactic latitude and longitude as compared to the Palomar-Groningen survey, there are no significant deviations between the period and amplitude distributions for these surveys and thus it can be assumed they are subsets of the same parent population.

Figure 5.12 - Distribution in (a),(b) period and (c),(d) amplitude for the CTI RR Lyrae stars (solid lines) and the RR Lyrae stars contained in the Palomar-Groningen Variable Star survey (dashed lines). RRab type stars are shown in (a) and (c) while RRc type stars are shown in (b) and (d).

Chapter 6 RR Lyrae Variable Star Space Densities

The space density of RR Lyrae variable stars in the Galactic halo can now be examined. RR Lyrae variable stars exhibit a period-luminosity relationship similar to the period-luminosity relationship of Classical Cepheids. Knowing the absolute magnitude (M_V , M_B), Galactic absorption (A_V = 3 × E(B-V), A_B = 4 × E(B-V)), and apparent magnitude (<V>,), the heliocentric distance (r) to the RR Lyrae star can be readily calculated using

$$r=10^{\frac{\langle V\rangle -M_V+5-A_V}{5}}$$
 (6.1)

In this chapter the simplest luminosity function, namely that all RR Lyraes have an absolute magnitude of $M_V = 0.74 \pm 0.12$ (Layden et al. 1994) will be used. This is necessary because metallicity measurements have not been made for all the RR Lyrae stars in the CTI survey, nor in most of the other surveys with which the calculated CTI RR Lyrae space densities will be compared. Given that $\langle B \rangle - \langle V \rangle \approx 0.26$ (Hawley et al. 1986), $M_R = 1.00$.

Knowing the Galactic latitude (b), Galactic longitude (l) and heliocentric distance (r) leads directly to a calculation of the Galactocentric coordinates $((x,y,z) \text{ or } (R,\theta,\phi))$. Figure 6.1 displays this coordinate system with R_0 the distance from the Sun (S) to the Galactic center (O) defined to be along the positive x-axis, and P marking an arbitrary position for an RR Lyrae Star.

Figure 6.1 - Galactocentric coordinates. O is the Galactic center, S is the Sun's position, NGP is the north Galactic pole.

Oort and Plaut (1975) calculated R_0 with the RR Lyrae space density data from the Palomar-Groningen variable star survey and Baade's Window. Their value of $R_0=8.7\pm0.6$ kpc, however, was calculated assuming $M_{pg}=0.7$ (or equivalently, $M_V=0.44$). If this distance is recalculated using $M_V=0.74$, $R_0=7.6\pm0.5$ kpc. This value of R_0 will be used when calculating distances in this chapter and agrees well with recent calculations using the rotation curve of HI in the solar neighborhood ($R_0=7.9\pm0.8$ kpc, Merrifield 1992), and an analysis based on the weighted average of several methods ($R_0=7.7\pm0.7$ kpc, Reid 1989).

Table 6.1 lists <V>, $\sigma_{\text{<V>}}$, E(B-V), the heliocentric coordinates (r, b, and l), the Galactocentric coordinates (x, y, z, R, θ , and ϕ) and the error in the Galactocentric radial distance (σ_R) for all confirmed RRab type stars in the CTI Survey. This last value was calculated using

$$\sigma_R^2 = (1 + KR_0^2) r^2 \ln(10)^2 (\sigma_{\langle V \rangle}^2 + \sigma_{M_V}^2 + \sigma_{A_V}^2) + (1 + Kr^2) \sigma_{R_0}^2, \qquad (6.2)$$

where $K = (\cos(b)\cos(1) - 1)/R^2$ and $\sigma_{AV} \ge 0.03$ (Burstein and Heiles 1982). Due to the different completeness estimates for RRab and RRc type variables in the CTI as well as all other RR Lyrae surveys, the contribution to the space density from RRc type variables will not be considered.

Using the Galactocentric radial distances for the RRab type variable stars in the CTI survey, the RR Lyrae space density as a function of distance can be calculated. Due to the unique shape of the CTI survey field, covering a large range of both Galactic latitude and longitude, a method for determining the RR Lyrae space density must first be developed. The RR Lyrae space density will be calculated for the CTI survey and then compared to several other surveys of RR Lyrae variable stars.

	-	5	7.	\vdash	52.	50.	50.	44.	44.	54.	54.	55.	ė.	59.	٠ 0		ъ б	5	'n	ω.	0	œ	6	6	4.	5	ij	5	ω.	4.	0	;	φ.	0	ů.	57.3	4.	7
	θ	k:		5.7	4.7	o. 0	5.2	2.0	1.1	6.3	7.3	3.7	3.2	7.0	å	ů.	2	ش	ä	ö	2	æ	6	8	5.	œ	ż	2	74.	03.	60	04.	90	10.	14.	115.3	17.	_
	-	154	683.	497.	740.	085.	991.	671.	736.	726.	274.	260.	490.	261.	146.	923.	256.	463.	645.	798.	456.	386.	184.	637.	342.	756.	217.	383.	427.	402.	423.	364.	806.	229.	998.	4368.2	017.	81
		2616.7	6591.5	0413.9	8398.9	8950.4	8476.1	4961.4	1765.7	2167.0	6083.5	3272.9	6272.2	8.6600	6925.7	6234.5	8076.8	4118.4	483.4	642.2	2797.5	6969.0	287.7	616.1	290.7	7517.9	0113.2	0401.4	2190.5	441.0	376.9	9552.2	0589.2	4342.4	0004.5	8803.5	1355.2	4238.3
Ø	2	9074.0	148.0	821	857.1	429.0	762.3	979.4	3950.9	774.1	799.9	594.7	610.2	402.7	632.7	5300.1	647.7	043.	711.	6091.	826.	3626.1	224.	163.	520.	810.0	123.4	80	208.2	272.	902.	2428.5	014.3	959.8	137.6	-8042.2	755.7	542.0
inate	٨	014.8	040.2 -	9.73	306.	906	2873.	296.	454.	828.	003.	733.	555.	-16.	105.	929.	959.	453.	604.	318.	956.	472.	692.	845.	054.	16	514.	853.	757.	429.	35	26	764	176	662	14308.8	546	692
ric coord	×	652.	1469.	8634.	7595.	7189.	6518.	2532.	0140.	322.	686.	142.	901.	811.	393.	369.	431.	532.	549.	519.	404.	926.	460.	90	922.	58.	413.	267.	267.	529.	595.	790.	679.7	554.8	587.4	9173.5	033.4	955.3
ocent	-	2.5	2.2	9.0	5.3	9.9	9.6	8.0	0.3	ė.	6	6	4.	8	4	7	ς.	7	7.	2	2	8	ė,	6	0	0	5.	4.	ъ.	19.	0	21.	ij	5	ဖဲ	-29.2	i.	m.
alacto	7	40.	41.	e m	93.	96.	97.	02.	03.	05.	05.	05.	03.	84.	3	i.	2	8	8	0	0	0	2	3	4.	4.	7.	7.	œ	0	8	5	e,	4.	。	96.3	8	07.
Lyrae G	H	6904.	0941.	399.	1350.	2473.	2167.	0619.	7580.	8005,	007.	9745.	683.	6406.	718.	7415.	6359.	037.	7733.	1298.	977.	829.	436.	848.	5761.	046.	1770.	111.	4223.	6905.	573.	767.	8268.	2799.	8509.	16489.2	8603.	1173.
I RR	B-	055	020	101	016	030	.020	018	020	.007	. 007	.007	.007	.007	.007	.014	.010	.014	.053	.055	.053	9	.05	9	7	10	7	7	.22	9	õ	ö	9	ĕ.	õ	0.068	Ö	ŏ
1 - CT	6	0094	.0088	.0219	.0058	.0053	.0048	.0167	.0140	.0029	.0065	.0078	.0068	.0022	.0090	.0271	.0028	.0218	.0035	.0064	.0187	.0034	.0052	.0074	.0224	.0047	.0074	.0114	.0081	.0038	.0104	.0049	.0037	.0089	.0069	0.0094	.0113	.0141
ble 6.	A	7.04	7.49	7.88	90.9	6.31	6.22	8.22	8.00	5.27	6,33	5.70	6.44	4.79	6.74	7.97	4.78	7.86	5.34	6.17	7.97	5.07	5.77	6.61	7.05	5,59	6.60	6,69	7.17	5.21	7.10	5.16	5.59	6.54	7.24	17.030	7.24	7.54
Tal	#	4	S	7	11	12	13	15	16	18	19	20	21	22	24	26	27	28	30	32	33	34	38	39	42	43	44	45	49	57	58	59	9	62	64	99	89	69

6.1 Calculating RR Lyrae Space Densities

In most previous RR Lyrae surveys, space densities were calculated by determining the volume of space occupied by a certain number of stars of increasing heliocentric distance (based on Kinman et al. 1965). The space density at particular Galactocentric distances are then obtained by converting a given heliocentric distance to its corresponding Galactocentric distance. This method works fine for surveys covering a small solid angle at a fixed Galactic latitude and longitude where a given heliocentric distance corresponds to a single Galactocentric distance. This method will not work, however, with the CTI survey because of the unique shape of the CTI survey area.

Saha (1985) proposed a similar method for calculating space densities using the relationship

$$N = \int \omega \rho(x) x^2 dx \qquad (6.2)$$

where N is the total number of RR Lyrae stars found in a solid angle ω along a given direction, r is the heliocentric distance, and ρ is the RR Lyrae space density. Equation 6.2 can be solved for ρ giving

$$\rho(r) = \frac{1}{\omega r^2} \frac{dN}{dr} \tag{6.3}$$

By using a plot of N versus r, dN/dr can be estimated as a function of r, and Equation 6.3 used to calculate the RR Lyrae space density as a function of heliocentric distance. As

before, the space density as a function of Galactocentric distance is found by converting heliocentric distances to Galactocentric distances. Again, because of the unique shape of CTI's survey area, this method will not work for the CTI survey. A variation on this method, however, can be used. An equivalent expression to Equation 6.2 is

$$N = \int f(R) \rho(R) 4\pi R^2 dR \qquad (6.4)$$

where f(R) is the fraction of the volume of space at Galactocentric distance R the survey samples, and ρ is now measured as a function of Galactocentric distance. The function $4\pi f(R)$ is analogous to ω in Equation 6.3, but whereas ω is constant with increasing heliocentric distance, f(R) varies with increasing Galactocentric distance and must be calculated numerically knowing the magnitude limits and borders of the survey area. Equation 6.4 can be solved for ρ giving

$$\rho(R) = \frac{1}{f(R) 4\pi R^2} \frac{dN}{dR}$$
 (6.5)

By using a plot of N versus R, the RR Lyrae space density as a function of Galactocentric distance can be calculated directly (assuming a spherically symmetric distribution).

A similar derivation can be done for any type of distribution. For a distribution where the density is constant on ellipsoids with a semi-major axis of a in the plane of the Galaxy, and a semi-minor axis of c perpendicular

Figure 6.2 - Fraction of total volume as function of Galactocentric distance surveyed for three different 1 square degree pointings for $\langle B \rangle = 14 - 18$: solid line for $l=0^\circ$ and $b=30^\circ$, dotted line for $l=0^\circ$ and $b=90^\circ$, and short dashed line for $l=180^\circ$ and $b=30^\circ$. Long dashed line is asymptotic limit.

to the plane of the Galaxy, the resulting equation for space density is

$$\rho(a) = \frac{1}{f(a) \times \frac{C}{a}(a) \times 4\pi a^2} \frac{dN}{da}$$
 (6.6)

where f(a) is the fraction of the volume of space at Galactocentric semi-major axis distance a sampled by the survey.

In order to determine RR Lyrae space densities, the

functions f(R) and f(a) in Equations 6.5 and 6.6 respectively must be calculated. This was done by numerically integrating over the volume of space surveyed. Figure 6.2 plots f(R) as a function of Galactocentric distance for three 1 square degree pointings with magnitude limits B=14 to 18 and assuming no Galactic reddening. All three pointings asymptotically approach the value of (solid angle of 1 square degree)/ 4π representing the case where $R_0=0$.

Due to the different completeness estimates for RRab and RRc type variables as a function of magnitude, only RRab type variables are considered. The ellipsoidal distribution described in Preston et al. 1991, namely

$$\frac{C}{a}(a) = \frac{\left(\frac{C}{a}\right)_0 + \left[1 - \left(\frac{C}{a}\right)_0\right] \left(\frac{a}{a_u}\right), a < a_u}{1, a > a_u}$$
(6.7)

where $(c/a)_0 = 0.5$ and $a_u = 20$ kpc, was used.

The result for the CTI survey and a spherically symmetric distribution are shown in Figure 6.3. The survey area used in the calculations is that for list 2 shown in Figure 5.4, as modified by Figure 5.3 (bright star masking) and Figure 5.7 (completeness as a function of right ascension), and requiring E(B-V) (Figure 5.2) to be less than 0.15. The magnitude limits used were $\langle V \rangle = 13.0$ to 18.5. This faint magnitude limit corresponds to the point where the CTI survey becomes 50% complete (see Figure 5.9).

The values (dN/dR) and (dN/da) as functions of

Figure 6.3 - Fraction of total volume surveyed by CTI RR Lyrae survey (5 10⁻⁵) as a function of Galactocentric distance.

distance semi-major axis Galactocentric distance and respectively must also be calculated. Figure 6.4 plots the number of RR Lyrae stars out to a certain Galactocentric distance (N) versus the Galactocentric distance (R). value (dN/dR) for each RR Lyrae was estimated by calculating the slope of five consecutive points, two on either side of For the two most distant and two the point in question. closest to the Galactic center, only three or four points were used to calculate the slope. Similar calculations were done to determine (dN/da) as a function of the semi-major axis distance.

Figure 6.4 - Cumulative number of RRab type stars in the CTI RR Lyrae survey as a function of Galactocentric distance.

The method described above for calculating space densities was tested using generated N versus R plots for different spherically symmetric power-law distributions and the f(R) function appropriate for the CTI RR Lyrae survey. The resulting calculated functions matched the input functions to within the calculated errors.

The space density was calculated at the position of every RRab type star using Equations 6.5 and 6.6. The errors in R and a were taken to be the standard deviation of the individual distances going into the calculation. The error in

Figure 6.5 - RR Lyrae Space Density in #/kpc3 versus (a) Galactocentric radial distance and (b) Galactocentric semi-major axis distance for the CTI RR Lyrae survey. Solid lines correspond to best-fit linear regression.

p was calculated from the errors in R or a, the error in f (taken to be the standard deviation of the values of f for the stars used in calculating (dN/dR) or (dN/da)), and in (dN/dR) or (dN/da) (taken to be 100%/sqrt(# of points)). Figure 6.5 plots the calculated space densities as a function of Galactocentric radial distance and Galactocentric semi-major axis distance for RRab type variables in the CTI survey.

The most distant data points in Figure 6.5 correspond to an estimated most probable value given the faint limiting magnitude of the CTI survey. In other words, what must the space density be for no RR Lyrae stars to have been observed to the faint limiting magnitude. This space density was calculated by taking one over the volume of space surveyed beyond a distance midway between the two faintest RR Lyrae stars observed. The error in this space density is assumed to be 100%.

The solid lines in Figure 6.5 correspond to the best fit linear regression to the data, and are $\log(\rho) = (13.861 \pm 0.471) - (3.336 \pm 0.112) \times \log(R)$ and $\log(\rho) = (15.705 \pm 0.557) - (3.757 \pm 0.132) \times \log(a)$ for Figure 6.5(a) and (b) respectively. These results are commensurate with other RR Lyrae surveys (see Chapter 6.3), and because of the wide range of Galactic latitude and longitude covered by the CTI survey, demonstrates the large scale homogeneity of the Galactic halo.

6.2 Other RR Lyrae Variable Star Surveys

Several other variable star surveys have calculated RR Lyrae space densities. These include the Lick RR Lyrae Survey (Kinman et al. 1965a, Lafler and Kinman 1965, Kinman et al. 1965b, 1966, 1982, 1984, hereafter papers L1 - L6), the Palomar-Groningen Variable Star Survey (Plaut 1966, 1968a, 1968b, 1970, 1971, 1973a, and Oort and Plaut 1975, papers P-G1 - P-G7), surveys of Baade's Window (Blanco 1984 and references therein), an RR Lyrae survey by Saha (Saha 1984, Saha and Oke 1985, Saha 1985, Papers S1 - S3), and an RR Lyrae survey by Hawkins (Hawkins 1984 and references therein). Table 6.2 lists the area in square degrees, the central right ascension

Table 6.2 - RR Lyrae Space Density Surveys

Survey/Field	Area RA sq deg	Dec	<u> </u>	Paper
Lick RR1 (MWF 361) RR2 RR3 RR4 RR5 RR6 RR7	29.2 16 ^h 22 ^m 29.2 12 ^h 26 ^m 22.2 12 ^h 47 ^m 29.2 13 ^h 04 ^m 29.2 02 ^h 26 ^m 29.2 07 ^h 38 ^m 29.2 08 ^h 30 ^m	-3° 30' +31° 16' +28° 35' +29° 55' +40° 35' +39° 49' +39° 46'		L3, L6 L4 L4 L5 L5
Palomar-Groninger PG1 PG2 PG3	42.3 16 ^h 04 ^m 33.6 17 ^h 07 ^m 19.1 18 ^h 24 ^m		359.0 +28.5 3.5 +12.5 0.0 -10.0	P-G1 P-G2, P-G3 P-G4, P-G5
Saha SII SIII SIV	43.6 07 ^h 29 ^m 43.6 07 ^h 58 ^m 43.6 23 ^h 56 ^m	+39° 00' +40° 17' +32° 06'	180.0 +24.1 180.2 +30.0 110.2 -29.2	
Hawkins (H)	16.0 21 ^h 28 ^m	-45° 00'	355.0 -47.0	
Baade's Window (F	BW) 0.14 18h 00m	-30° 02'	1.0 -3.9	
CTI	35.6 12 ^h 00 ^m	+28° 01'		

Figure 6.6 - Location of all fields listed in Table 6.2 in right ascension and declination. CTI survey strip (solid line), Galactic plane (dashed line), Galactic poles (NGP and SGP), Galactic center (GC) and Galactic anti-center (GAC) also marked.

and declination (1950 epoch), and the central Galactic longitude and latitude for each field in these surveys.

Figure 6.6 plots the position of all fields in the above surveys in right ascension and declination. Fields RR3 and RR4 in the Lick survey are slightly overlapped, thus reducing the overall area of field RR3. As done with the CTI survey, the E(B-V) maps of Burstein and Heiles (1982) were used to estimate the Galactic reddening for all fields except Baade's

Window. As a result, it was necessary to exclude from consideration portions of fields PG2 and PG3 in the Palomar-Groningen survey closer than 10° to the Galactic plane.

6.2.1 Lick RR Lyrae Star Survey

Figure 6.7 - (a) Fraction volume surveyed and (b) cumulative number of RRab stars versus Galactocentric radial distance. RR1 (solid, filled), RR2+RR3+RR4 (dotted, open) and RR5+RR6+RR7 (dashed, x's)

The Lick RR Lyrae Star Survey used the 20-inch Carnegie Astrograph at Lick Observatory and 14 x 14-inch plates to cover an area of the sky 5° 26' square for each field. The seven Lick fields listed in Table 6.2 will be considered in three separate groups corresponding to Papers L3 and L6 (RR1), Paper L4 (RR2+RR3+RR4), and Paper L5 (RR5+RR6+RR7).

Completeness as a function of magnitude for the Lick survey is described in detail in Paper L1. For RRab type variables with amplitudes greater than 0.75, the survey is 100% complete to $<m_{pg}>=17.0$ and reduces to 50% complete at $<m_{pg}>=17.7$. By not considering variables with amplitudes less than 0.75, the overall completeness for each field is 92% when compared to the Palomar-Groningen survey (taken to be the standard, as done with the CTI survey). Additionally, from the discussion in Paper L1, photographic magnitudes $(<m_{pg}>)$ will be considered identical to .

Figure 6.7 plots (a) the fraction of space surveyed and (b) the cumulative number of RRab type variable stars as a function of Galactocentric radial distance for RR1 (solid line and filled circles), RR2+RR3+RR4 (dotted line and open circles), and RR5+RR6+RR7 (dashed line and x's).

6.2.2 Palomar-Groningen Variable Star Survey

The plates for the Palomar-Groningen Variable Star Survey were all taken with the 48" Palomar Schmidt telescope. The three survey fields listed in Table 6.2 will be considered

Figure 6.8 - (a) Fraction volume surveyed and (b) cumulative number of RRab stars versus Galactocentric radial distance. PG1 (solid, filled), PG2 (dotted, open) and PG3 (dashed, x's).

separately. The boundaries of fields PG2 and PG3 were modified to eliminate the region with $|b| < 10^{\circ}$.

In Papers P-G1 and P-G7, the completeness as a function of amplitude and magnitude are discussed in detail. Table 3 of Paper P-G7 summarizes the results. The completeness as a

function of magnitude as outlined in Table 3 of Paper P-G7 will be used. The magnitude limits of $\langle m_{pg} \rangle = 14$ - 18.5 for fields PG1 and PG2, and $\langle m_{pg} \rangle = 14$ - 18.0 for field PG3, as detailed in the same paper, will also be used. As with the Lick survey, photographic magnitudes will be considered identical to $\langle B \rangle$.

Only the minimum and maximum photographic magnitudes were listed for each star, and so Equation 5.2 (using the CTI values detailed in Chapter 5.5) was used to calculate a mean magnitude for each RRab type variable star.

Figure 6.8 plots (a) the fraction of space surveyed and (b) the cumulative number of RRab type variable stars as a function of Galactocentric radial distance for field 1 (solid line and filled circles), field 2 (dotted line and open circles), and field 3 (dashed line and x's).

6.2.3 Saha's RR Lyrae Survey

The 1.2-m Schmidt telescope at Palomar with 14 x 14-inch photographic plates was used to observe each field in Saha's RR Lyrae survey. The resulting fields covered an area of sky 6° 36' square. All three of Saha's fields will be considered together.

Saha describes completeness calculations in detail with the final results of completeness as a function of period shown in Figure 2 of Paper S1 (similar to Figure 5.5 of this dissertation). Using this figure for periods 0.4 to 0.7 days

Figure 6.9 - (a) Fraction volume surveyed and (b) cumulative number of RRab stars versus Galactocentric radial distance for Saha's survey.

(as done with the CTI survey), Fields SII, SIII, and SIV are estimated to be 85%, 78%, and 73% complete respectively. The magnitude limits for all three fields are $\langle B \rangle = 16.5 - 19.5$.

Figure 6.9 plots (a) the fraction of space surveyed and

(b) the cumulative number of RRab type variable stars as a function of Galactocentric radial distance for all of Saha's fields.

6.2.4 Hawkins' RR Lyrae Survey

Figure 6.10 - (a) Fraction volume surveyed and (b) cumulative number of RRab stars versus Galactocentric radial distance for Hawkins' survey.

Photographic plates taken with the UK 1.2-m Schmidt telescope in Australia and scanned with the COSMOS measuring machine were used by Hawkins to detect RR Lyrae variable stars (Hawkins 1984). The magnitude limits of his survey are $\langle B \rangle = 14.0 - 21.0$, but no discussion of completeness is given.

To estimate the completeness, the detectable fraction of RR Lyrae stars as a function of period for different amplitudes of variation was first calculated. This was done using a synthetic RRab type variable star of a particular amplitude observed at the times listed in Table 1 of Hawkins 1984, and requiring the rms variation in magnitude with the extreme data point removed to be greater than 0.2 (Hawkins' selection criteria as described in Hawkins 1984). Using the distribution of RRab type variables as a function of amplitude of variation from the RR Lyraes in the Palomar-Groningen survey as representing the true distribution (as done with the CTI survey), the completeness of Hawkins' survey is 74%.

Figure 6.10 plots (a) the fraction of space surveyed and (b) the cumulative number of RRab type variable stars as a function of Galactocentric radial distance for Hawkins' survey field.

6.2.5 Baade's Window RR Lyrae Survey

Baade's Window is a region of relatively small Galactic absorption centered on the globular cluster NGC 6522 approximately 4° from the Galactic center. Baade's original

Figure 6.11 - (a) Fraction volume surveyed and (b) cumulative number of RRab stars versus Galactocentric radial distance for region W of Blanco's survey of Baade's window.

survey for RR Lyrae variable stars was from Mt. Wilson Observatory and suffered from incorrect period determinations due to period aliasing to the sidereal day. Many investigators have accomplished subsequent observations in order to redetermine the RR Lyrae periods (Blanco 1984 and

references therein). Blanco's survey was accomplished using photographic plates with the CTIO's 1.5-m telescope.

The Galactic reddening of the globular cluster NGC 6522 has been estimated at 0.45 ± 0.03 (van den Bergh 1971). Because of a possible east-west absorption gradient (van den Bergh 1971), only region W in Figure 1 of Blanco (1984), corresponding to the NGC 6522 field, is considered. Blanco (1984) gives a faint magnitude limit of $\langle B \rangle = 18.5$, and argues that the completeness is $\approx 100\%$ in light of the great deal of attention given to discovering RR Lyrae stars in this region.

Figure 6.11 plots (a) the fraction of space surveyed and (b) the cumulative number of RRab type variable stars as a function of Galactocentric radial distance for region W of Blanco's survey.

6.2.6 Local RR Lyrae Space Density

The local RR Lyrae space density, (or at least a lower limit to the local space density due to possible incompleteness), can be calculated and compared to the results obtained from the other surveys by using RR Lyrae data contained in the General Catalog of Variable Stars (GCVS) (Kholopov 1985-88). First, a list of all RR Lyrae stars in the GCVS with a minimum apparent magnitude brighter than 11.5 and greater than 10° from the Galactic plane was made. After calculating the average apparent magnitude with Equation 5.2 and estimating the Galactic reddening of each star from the

Figure 6.12 - RR Lyrae space density in kpc⁻³ versus heliocentric distance for bright RRab type variables (filled circles) and bright RRc type variables (open circles) in GCVS.

E(B-V) maps of Burstein and Heiles (1982), a heliocentric distance was calculated to each. Since the magnitudes of all these stars are listed as visual estimates in the GCVS, an absolute magnitude of $\langle M_V \rangle = 0.74$ was assumed. For each RR Lyrae, the space density was determined by dividing the number of stars interior to the RR Lyrae's heliocentric distance by the volume enclosed by the star. This was done for RRab and RRc type variables seperately. The variable star name, right

ascension, declination, type, minimum, maximum and mean magnitude, Galactic absorption, and heliocentric distance are listed in Table Al.12 of Appendix 1.

Figure 6.12 plots the calculated space density versus heliocentric distance for these bright RRab type variables (filled circles) and RRc type variables (open circles). decreasing space density for the RRab type variables with heliocentric distances greater than 800 pc is probably due to incompleteness of the GCVS for fainter magnitudes. The local RR Lyrae space density was estimated by simply taking the number of RR Lyrae stars within 800 pc divided by the volume enclosed, resulting in 13.5 +/- 2.6 kpc⁻³ for RRab type variables, and 2.8 \pm - 0.5 kpc⁻³ for RRc type variables. error in these values was taken to be 100%/sqrt(# of stars). These values include both halo and potential "thick disk" (Zinn 1985, Suntzeff et al. 1991) RR Lyrae stars (see Chapter 6.3), and are commensurate with similar calculations in Paper L3 (10.8 kpc⁻³ for RRab using $M_B = 1.0$ with $\Delta B > 0.75$) and by Preston et al. 1991 (10-13 kpc⁻³ for all RR Lyrae stars using $M_v = 0.6$ and [Fe/H] < -1.0).

6.2.7 Miscellaneous Surveys

A few RR Lyrae surveys were not considered due to a lack of information in the corresponding paper necessary to calculate the completeness of the survey. These are a survey centered on the globular cluster NGC 6304 at 1=356°, b=+5°

(Hartwick et al. 1981), a survey centered on a Galactic bulge window at l=1°, b=-6° (Blanco 1992), and a survey centered on the south Galactic cap (Stobie et al. 1986). The second survey listed also does not currently have any information concerning the Galactic reddening in the field.

6.3 RR Lyrae Space Densities

Calculations identical to those described in Section 6.1 for the CTI survey can be carried out for all the other surveys listed in Table 6.2. The different completeness of each survey was accounted for when calculating the functions f(R) and f(a) of Equations 6.5 and 6.6 respectively. The most distant space density in the Saha and Hawkins surveys correspond to most probable values determined in the same way as for the CTI survey.

To lessen the confusion, data from individual stars in each survey were divided into bins equally spaced in log(R) (or log(a)) and averaged. Figure 6.13 plots the RR Lyrae space density as a function of Galactocentric radial distance for RRab type variables in the CTI survey (open circles), Lick survey (open squares), Palomar-Groningen survey (filled triangles), Saha's survey (open triangles), Hawkins' survey (x's), Baade's Window survey (filled circles) and the local space density (filled square). The best-fit least squares linear regression for the data is

$$\log\left(\rho\right) = 12.237\left(0.299\right) - 3.024\left(0.077\right) \times \log\left(R\right) \tag{6.8}$$
 where the calculated error for the intercept and slope is given in parentheses.

Figure 6.14 plots the same data as a function of Galactocentric semi-major axis distance. Clearly, using an ellipsoidal distribution for smaller Galactocentric distances yields greater agreement among surveys. This is most

Figure 6.13 - RR Lyrae space density in #/kpc3 versus Galactocentric radial distance for CTI survey (open circles), Lick survey (open squares), Palomar-Groningen survey (closed triangles), Saha's survey (open triangles), Hawkins' survey (x's), Baade's Window survey (closed circles) and the local space density as determined from the GCVS (open square). Solid line corresponds to best-fit linear regression. A second set of CTI survey points two orders of magnitude above actual value are also plotted for clarity.

Figure 6.14 - RR Lyrae space density in #/kpc³ versus Galactocentric semi-major axis distance for CTI survey (open circles), Lick survey (open squares), Palomar-Groningen survey (closed triangles), Saha's survey (open triangles), Hawkins' survey (x's), Baade's Window survey (closed circles) and the local space density as determined from the GCVS (open square). Solid line corresponds to best-fit linear regression. A second set of CTI survey points two orders of magnitude above actual value are also plotted for clarity.

evident between the Baade's Window and Palomar-Groningen surveys (~1-3 kpc). The best fit linear regression for this

$$log(\rho) = 14.425(0.307) - 3.530(0.077) \times log(a)$$
 (6.9)

data is

where again the calculated error is given in parentheses.

Although it is clear the mean RR Lyrae space density falls off with a power law distribution, the RR Lyrae space density does vary locally. Kinman noticed in field RR5 of the Lick survey (Paper L5), that all the RR Lyrae variable stars were concentrated on one half of the field. All the survey fields display systematic deviations from the best-fit linear regression at certain distances, suggesting a halo distribution that is clumpy, with locally overdense and underdense regions of RR Lyraes, but retaining an overall power law decrease with increasing distance.

The space densities at the Sun's Galactocentric distance (7.6 kpc) is of particular interest, spanning nearly two orders of magnitude. The local space density as calculated from the GCVS is 4.2 and 2.5 times above that expected for the spherically symmetric (Equation 6.8) and ellipsoidal (Equation 6.9) distributions respectively. If the local RR Lyrae stars are divided into halo and "thick disk" (defined as [Fe/H] > -0.8 with z < 1.5 kpc) components (Suntzeff et al. 1991), the space density of the halo RR Lyrae stars is still 3.0 or 1.8 times that expected. To explain this anomalously high value,

it has been suggested there exists a new population of metalpoor ([Fe/H] < -0.8) RR Lyrae stars with very low scale height from the Galactic disk (Preston et al. 1991). The CTI survey space density at R = 7.6 kpc (z > 4 kpc and well outside the thick disk), however, agrees well with the GCVS value, indicating that the local space density of RR Lyrae stars is not as anomalous as once thought. The space density at 7.6 kpc as calculated from Hawkins' survey and field PG2 of the Palomar-Groningen survey agree well with Equations 6.8 and 6.9, while the space densities for field RR1 of the Lick survey and fields PG1 and PG3 of the Palomar-Groningen survey are about 1/10th that expected. Because this distance roughly corresponds to the faint magnitude limits of the Lick and fields, it's possible the Palomar-Groningen underdensities are an artifact of incorrectly estimating the completeness as a function of magnitude. The other fields of the Lick survey and field PG2 of the Palomar-Groningen survey, however, do not show a commensurate underdensity at their faint magnitude limit. It's also possible the underdensities are caused by difficulties in discovering faint RR Lyraes in a crowded field, although again, field PG2 is very crowded and The space density as does not show an underdensity. calculated from field PG1 of the Palomar-Groningen survey even displays a flattening out and increase near its faint magnitude limit that would possibly bring it back to the bestfit line if the survey was extended to fainter magnitudes.

Although it's not possible from the present data to know for certain, the evidence suggests these deviations may indeed be real.

Another example of a significant underdensity can be found in Saha's survey beyond 25 kpc where the calculated space densities are systematically lower than the best fit It is possible this underdensity is similar in origin to the underdensities found at 10 kpc, although as Saha suggested, the distribution beyond 25 kpc may be expressed by a different power law than that of the inner halo. Indeed at some distance, the space density would be expected to fall off precipitously as the effects of other galaxies begin to strip the Milky Way of its most distant members. The Large and Small Magellanic Clouds (LMC and SMC) are suggestively only twice the distance from the Galactic center as the distance where Saha's RR Lyrae space density begins to drop. globular cluster distribution displays a similar underdensity starting at ≈20 kpc, with no globular clusters in the region 33 kpc < R < 60 kpc, again corresponding to the LMC and SMC Galactocentric distance. The globular clusters beyond 60 kpc, however, display space densities consistent with the R-3.5 densities calculated for clusters at 4 < R < 20 kpc (Harris Due to this underdensity as well as 1976, Zinn 1985). chemical and structural differences between the distant and nearby globular clusters, Harris (1976) has even suggested that the Milky Way's globular cluster system ends at R \approx 40

kpc and that the more distant clusters constitute a separate group perhaps related to the dwarf elliptical galaxies at similar distances. Although it's conceivable the underdensity of globular clusters and possible underdensity of RR Lyrae stars at the LMC and SMC's Galactocentric distance is the result of chance, it is equally plausible the underdensity is the direct result of a dynamical interaction. If the latter is correct, the underdensity could simply be the 1:1 resonance gap created by the Magellanic Clouds. The RR Lyrae space density as calculated from Hawkins' survey and the CTI survey not fully support the conclusion of an RR underdensity beyond 25 kpc. Due to the small number of RR Lyraes discovered at these distances (nine with R > 30 kpc in these surveys), however, clearly other deep surveys for RR Lyraes are needed.

Indeed, deep surveys can clear up many of the questions addressed above. Of particular interest would be extending the search for RR Lyrae variable stars in and near the RR1 field of the Lick survey and field PG1 of the Palomar-Groningen survey to see if the calculated space densities indeed return to the calculated best fit power law, or if more RR Lyraes are found to fill in the underdensity if it is indeed caused by incompleteness. As stated in the last paragraph, deeper surveys will also add to the number of stars past 25 kpc to better define the space densities at these distances. Perhaps the most promising survey would be one at

-30° declination using a CTI-like telescope. This survey would pass over Baade's Window, close to the Galactic center and Galactic south pole, providing consistent photometry and completeness over a much larger range of Galactocentric radial distances than provided by any previous survey field.

Chapter 7 Mass Distribution of the Milky Way

In the previous chapter, the Galactocentric position of each RR Lyrae variable star in the CTI RR Lyrae survey was calculated. If in addition to this positional information, the star's velocity is determined for all three dimensions, an estimation of the mass interior to the star's orbit can be accomplished.

The total energy of a star in orbit about the center of the Milky Way is simply

$$E = \frac{1}{2} m V^2 - \frac{GM(R) m}{R}, \qquad (7.1)$$

where m is the star's mass, v is the star's velocity, and M(R) is the Milky Way's mass at Galactocentric distance R. If for a given star's orbit the Milky Way's mass can be approximated as being concentrated at the Galactic center, Equation 7.1 and the energy of a Keplerian orbit of given eccentricity (E = $-GMm(1 - e^2)/2R$, where e is the eccentricity of the star's orbit) can be combined and solved for M(R) giving,

$$M(R) = \frac{Rv^2}{(1+e^2)G}.$$
 (7.2)

With a precise knowledge of R and v, the mass of the Milky Way at the Galactocentric distance R can be calculated to within a factor of two, assuming the star is in a bound orbit with a value of e between e=0 (circular orbit) and e=1 (parabolic orbit).

The calculation of R from the magnitude and position of

each star was accomplished in the previous chapter. In this chapter, preliminary results calculating the space velocity for RR Lyrae variable stars will be presented. First, the possibility of using astrometry to determine the proper motion of the RR Lyrae stars relative to the local standard of rest is examined. Next, radial velocity measurements of CTI RR Lyrae stars are presented. Finally, the mass of the Milky Way as a function of Galactocentric distance as calculated using Equations 7.2 is given.

7.1 - RR Lyrae Astrometry

In addition to the photometric information compiled in the CTI databases for each star in the CTI survey strip, there exists astrometric information as well. Seasonal variance-weighted positions for a given object can be calculated using the nightly luminosity weighted positions (YCTI and XCTI), second moments (XX and YY), and calibrated luminosity and luminosity error (LUM and LUMERR), all contained in the CTI.NHL database.

The variance of the position in right ascension (YCTI) or declination (XCTI), however, is the second moment (XX or YY respectively) divided by the uncalibrated total luminosity. It was necessary to calculate the uncalibrated total luminosity from the calibrated luminosity and luminosity error. The uncalibrated luminosity and error (L and $\sigma_{\rm L}$) and the calibrated luminosity and error (C and $\sigma_{\rm c}$) are related through the luminosity scaling factor (dl, contained in the .CAL database on a minute-by-minute basis, see Chapter 3.5.2), namely, C = dl \times L and $\sigma_{\rm c}$ = dl \times $\sigma_{\rm c}$. Using $\sigma_{\rm L}{}^2 \propto$ L, this leads to L \propto C²/ $\sigma_{\rm c}{}^2$, resulting in a positional variance of $\sigma_{\rm XCTI}{}^2 \propto$ (XX \times $\sigma_{\rm c}{}^2$)/C². The error in the seasonal position was calculated by taking the standard deviation of the individual measurements from the calculated weighted mean added in quadrature to a measurement error of 0.5 centipixels.

Figure 7.1 plots the total positional error $(\sigma_{\text{XCTI}}^2 + \sigma_{\text{YCTI}}^2)^{1/2}$ of the seasonal position in centipixels versus

Figure 7.1 - Positional error in centipixels versus instrumental luminosity in ADUs for field near north Galactic pole. (a) 1987-1988 observing season, (b) 1988-1989 observing season, (c) 1989-1990 observing season, (d) 1990-1991 observing season.

instrumental luminosity (in ADUs) for several objects with more than one observation in a sample field for (a) the 1987-1988 observing season, through (d) the 1990-1991 observing season. As expected, the error in position decreases for

increasing luminosity. Previous astrometry with CTI (Benedict et al. 1991), using early uncalibrated CTI data reported errors commensurate with those seen in Figure 7.1(a). It is not clear why the positional calibration improved after the first full year of operation, as seen in Figures 7.1(b) through (d). A number of stars in these seasons actually show no scatter in position. Either the scatter is sub-centipixel, or the position has somehow been quantized during data reduction. An in-depth analysis of positions throughout the reduction process is required to examine this question, although is not necessary for the present purposes.

The positions of objects in the CTI Survey strip for all four seasons of CTI operation can be compared to positions obtained from the Palomar Observatory-National Geographic Sky Survey (POSS). The copies of the E and O POSS plates at the University of Texas at Austin were scanned with the McDonald Observatory PDS Microdensiomter Automated Inventory System (Benedict and Shelus 1978). The scanned image was then ported into IRAF to measure the centroids of all the stars. These measurements were kindly carried out by Dr. G. F. Benedict and associates.

The process of overlapping the CTI and POSS positional data is described in detail in Benedict et al. 1991. The program GAUSSFIT (Jeffreys et al. 1989) is used to determine simultaneously the least-squares fit of all plate parameters (scale, offset and rotation) and relative proper motions for

Figure 7.2 - Definition of velocity components in Galactocentric cylindrical coordinate system

all stars, where the "plates" are the four CTI positions and the two POSS positions (from the E and O POSS plates separately).

The measured relative proper motions are relative to the mean motion of the sample of stars within the field used in the calculations. If this sample

is dominated by nearby disk stars, the resulting sample's space motion can be approximated by the motion of the local standard of rest (LSR). A cylindrical coordinate system centered at the Galactic center (R, θ , z), with II, θ , and Z the respective velocities, will be used, as shown in Figure 7.2. The LSR velocity at a given radius is defined as the velocity of a circular orbit (II = 0, Z = 0, θ = θ_0) for an axisymmetric time-independent Galactic mass distribution (resulting in only a constant radial gravitational force). Peculiar velocities are defined as the velocities relative to the LSR (u = II - II_LSR, v = θ - θ_{LSR} , and w = Z - ZLSR). It is the tangential component of these peculiar velocities of the RR Lyrae stars (as measured against the Sun's local standard of rest) combined with the peculiar velocity of the Sun with respect to the LSR that is measured astrometrically for each

star. It is necessary to transform to the rest frame of the Galactic center using knowledge of the space velocity of the LSR and the Sun's peculiar velocity. Many studies have been done using measured radial velocities of objects in the Galactic halo as well as external galaxies, yielding an LSR space velocity of $\Theta_0 = 250 \pm 25$ km/s (Mihalas and Binney 1981). The Sun's peculiar motion (as calculated against the most commonly measured velocities for stars in the solar neighborhood) is u = -9 km/s, v = 11 km/s and v = 6 km/s (Mihalas and Binney 1981).

The CTI field surrounding the RR Lyrae star DV Com was used to test the astrometric accuracy and precision of combined CTI and POSS data. This star was chosen because it is the brightest RR Lyrae variable star near the north Galactic pole, and a halo star near the Galactic poles represents the best chance of measuring a RR Lyrae proper motion relative to the LSR. For a $\Theta_{\rm LSR}=250$ km/s, r=6.36 kpc and assuming $\Theta_{\rm halo}=0$ km/s, DV Com's relative proper motion should be ≈ 8 mas/year (milliarcseconds per year) directed away from b = 0°, l = 90°.

No significant relative proper motion was measured for DV Com. The standard deviation in all relative proper motions for the DV Com field was 9 mas/year (as compared to Benedict et al.'s 5 mas/year calculation). This higher value may be a result of actual relative proper motions within the field. Disk stars with peculiar velocities comparable to the Sun's

would have relative proper motions of up to 7 mas/year at 500 pc and up to 33 mas/year at 100 pc. Taking Benedict et al.'s value of 5 mas/year as the obtainable accuracy and precision for combined CTI and POSS data, the error in a space velocity measurement as a function of heliocentric distance would be $\sigma = (0.023 \times r)$ km/s where r is measured in parsecs. This corresponds to a 150 km/s error for the closest RR Lyrae in the CTI survey strip. In light of this, and the further research necessary regarding CTI position measurements, space velocity measurements from relative proper motions will not be pursued for the CTI RR Lyrae stars in this dissertation.

7.2 - RR Lyrae Spectroscopy

Several RR Lyrae stars discovered in the CTI survey were observed with McDonald Observatory's 2.7-m (f/18) telescope using the Large Cass Spectrometer (LCS) on UT 94 Oct 7 - 10 to measure radial velocities. RR Lyrae metallicity standards, (Liu and Janes 1989, Layden 1994) SW And, XX And, DX Del, RR Cet, and RR Gem were observed for future calculation of the metallicity index ΔS , and will also serve as RR Lyrae velocity standards. All RR Lyraes were observed at a phase near minimum light. The velocity standards HR-458 and HR-2047 and flux standard G191-B2B were also observed.

Because of the low throughput of the LCS, it was necessary to use a low dispersion grating (300 l/mm). Details of the instrumentation and resulting coverage of the spectra are given in Table 7.1. Every object spectra (RR Lyraes and standards) were bracketed by argon comparison lamp spectra.

The data were reduced using IRAF with the final spectra

Table 7.1 - McDonald Observatory Operating Parameters

Telescope: McDonald Observatory's 2.7-m

f/18

Instrument: Large Cass Spectrometer

Detector: TI1V5C

800 x 800 x 15 μ m pixels

15 e readout noise

Grating: #40 (1st order)

300 1/mm

420 nm blaze

Wavelength coverage: 320 - 600 nm

Dispersion: 0.3379 nm/pixel

Slit width: 1 arcsecond

Figure 7.3 - Flux (arbitrary units) versus wavelength for RR Lyrae metallicity standard star XX And.

collapsed to one dimension. The reduction process included bias subtraction, application of flat field, distortion correction and wavelength calibration using the argon comparison lamp spectra, and sky subtraction. Figure 7.3 gives an example of an RR Lyrae spectrum (not corrected for atmospheric extinction and not flux calibrated).

The radial velocities of the RR Lyrae stars from these low resolution spectra can be determined by finding the wavelength centers of the hydrogen and CaII K lines. However, because the hydrogen and metal lines originate from different altitudes in the star's atmosphere, only the hydrogen lines

were used. The regions surrounding H β , H γ , and H δ of each spectrum were cross-correlated with the spectra of SW And, RR Cet and DX Del, producing relative velocity measurements between each star's spectrum and the templates. For all RRab type variable stars, the center-of-mass velocity (v_{cm}) and heliocentric velocity at a particular phase ($v(\phi)$) can be determined from one another if $v(\phi)$ is measured in the phase interval 0.15 - 0.85 (Saha and Oke 1984). By examining the radial velocity curves for X Ari (Oke, Giver, and Searle 1962) and SU Dra (Oke 1966), the center-of-mass velocity can be calculated using

$$v_{cm} = v(\varphi) + b \times (\varphi - a) \tag{7.3}$$

where b and a are empirically determined constants. For the H γ spectral line in the above two radial velocity curves, a = 0.44 ± 0.03 and b = -104 ± 4 km/s. Published values of v_{cm} for SW And, RR Cet and DX Del (Layden 1994) and the observation times were used to calculate $v(\phi)$ for the template spectra. The measured relative velocities for all other stars were then converted to heliocentric velocities and averaged, and using Equation 7.3, the center-of-mass velocities were determined. The error in the heliocentric velocities was taken to be the standard deviation of the calculated values. Table 7.2 lists the heliocentric radial velocity, radial velocity error and phase, and the resulting center-of-mass radial velocity and error for the observed stars. The SW And, RR Cet and DX Del spectra were not cross-correlated with themselves, so the

listed center-of-mass velocity is that determined from cross-correlation with the other two. The values listed for SW And and DX Del also represent the average of two spectra.

Table 7.2 - Center-of-mass velocity measurements

#/name	$\underline{\mathbf{v}}_{\mathtt{hel}}$	$\underline{\sigma}_{ m v}$	Φ	$\underline{\mathbf{v}}_{\mathtt{cm}}$	$\underline{\sigma}_{v}$
5	-62	<u>2</u> 7	0.59	- 77	27
11	61	27	0.45	60	28
36	-368	25	0.31	-354	25
39	-358	30	0.56	-371	30
42	-265	25	0.56	-277	25
51	-200	23	0.58	-215	23
57	-288	28	0.51	-295	28
58	-246	27	0.27	-229	27
66	-368	30	0.29	-352	30
68	-299	29	0.55	-311	29
69	-110	28	0.38	-103	29
SW And	60	9	0.81	21	10
RR Cet	-118	25	0.35	-108	25
DX Del	-30	29	0.59	-4 5	30

The metallicity standards XX And and RR Gem were also observed, but due to an error in predicting the phase of observation, these stars were observed during the ascending part of their light curve or at maximum light (phase between 0.9 to 0.1). The measured velocities for SW And, RR Cet, DX Del, and HR 458 agree reasonably well with the published values, with the differences consistant with $\sigma = 32$ km/s. The measured velocity for HR 2047, however, is 60 km/s off.

7.3 Galactic Mass versus Radial Distance

With only radial velocity measurements, the Galaxy's mass interior to a particular orbit can't be determined on a starby-star basis. The radial velocities of a collection of stars at a particular Galactocentric radial distance must be used to make this estimate. Equation 7.2 thus becomes

$$M(R) = \frac{R\langle v^2 \rangle}{G(1+\langle e^2 \rangle)}.$$
 (7.4)

Certain assumptions must be made about the types of orbits in order to calculate the total space velocity from the observed heliocentric radial velocity.

The kinematics of a collection of halo RR Lyrae stars can be described by systemic motion in each dimension (V_R , V_θ , and V_{\bullet} for R, θ and ϕ in Figure 6.1) and the average square of the peculiar motion in each dimension ($\langle v_R^2 \rangle$, $\langle v_\theta^2 \rangle$, and $\langle v_\phi^2 \rangle$). The systemic velocities can be measured directly by taking the average radial velocity for a number of RR Lyrae stars at particular Galactic coordinates. For example, V_R can be calculated using heliocentic radial velocities for stars towards the Galactic anticenter (see Saha 1985). Currently, however, the detected systemic motion of halo RR Lyrae variable stars has been of the order of or less than the error in the measurement. It will thus be assumed that V_{R} = V_{θ} = V_{ϕ} = 0. If the RR Lyrae orbits are distributed isotropically, then the average of the three peculiar velocity components squared are equal $(\langle v_R^2 \rangle = \langle v_\theta^2 \rangle = \langle v_\phi^2 \rangle)$. In this situation,

the measurement of one component of the space velocity, on average, would equal the space velocity divided by the square root of 3. Since the averaging is over the velocity squared, the high velocity RR Lyrae stars at a given distance have the largest leverage in determining the mass. Errors in these velocities could dramatically increase the mass estimate. To allow for velocity errors, the average of $(v+\sigma)(v-\sigma)$ will be used instead of v^2 (Lynden-Bell et al. 1983). The average total space velocity squared for N RR Lyrae stars is then

$$\langle v^2 \rangle = \frac{3}{N} \sum_{i=1}^{N} (v_r^2 - \sigma_v^2)_i$$
 (7.5)

where v_r is the heliocentric radial velocity corrected for the Sun's motion about the Galactic center and σ_v is the corresponding error. For isotropic orbits, all eccentricities are equally probable, so $<e^2>$ will be taken to be

$$\langle e^2 \rangle = \int_0^1 e^2 de = \frac{1}{3}$$
 (7.6)

If the RR Lyrae stars instead have radial orbits ($\langle v_R^2 \rangle > \langle v_\theta^2 \rangle \approx \langle v_\phi^2 \rangle$), $\langle v_R^2 \rangle$ (and thus $\langle v^2 \rangle$) can be easily calculated from the heliocentric radial velocity measurements and knowledge of each star's Galactocentric position (see Figure 6.1) using

$$\langle v^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{(v_r^2 - \sigma_v^2)_i}{\cos^2 \beta_i},$$
 (7.7)

where β is the angle subtended by the Sun and the Galactic

center as seen from the RR Lyrae star. The average eccentricity squared will be taken to be $\langle e^2 \rangle = 1$ for radial orbits. For both cases, Equation 7.4 can now be used to estimate the Galaxy's mass interior to the average Galactocentric radial distance. It is interesting to note that for large Galactocentric distances, $\cos(\beta)$ approaches 1 resulting in $\langle v^2 \rangle_{isotropic} = 3 \times \langle v^2 \rangle_{radial}$ and M(R) $_{isotropic} = 4.5 \times M(R)_{radial}$.

Other methods for determining the mass of the Galaxy from the dynamics of halo objects are similar to the one described above, but not identical. Hartwick and Sargent (1978) approximated globular clusters as a collisionless spherically symmetric system of mass points and used the collisionless Boltzmann equation to derive the mass. The resulting equation is

$$M(R) = \frac{R \langle v_r^2 \rangle}{G} \left[-\frac{d \ln \varrho (R)}{d \ln R} - \frac{d \ln \langle v_r^2 \rangle}{d \ln R} + (\lambda - 2) + \frac{V_{\varphi}^2}{\langle v_r^2 \rangle} \right], \quad (7.8)$$

where $\rho(R)$ is the globular cluster space density, $\lambda = (\langle v_{\theta}^2 \rangle + \langle v_{\phi}^2 \rangle)/\langle v_{R}^2 \rangle$ ($\lambda = 0$ for radial orbits and $\lambda = 2$ for isotropic orbits), and V_{ϕ} is the systemic rotation. Saha (1985) used a similar equation for a sample of RR Lyrae variable stars. Lynden-Bell et al. (1983) derived a mass formula to use with globular cluster radial velocities by time averaging the radial distance times the square of the radial velocity observed from the focus over one orbit. The Galaxy's mass interior to the orbit was approximated as a point mass. The

resulting equation is

$$M(R) = \frac{2\langle R(v_r^2 - \sigma_v^2) \rangle}{G\langle e^2 \rangle}, \qquad (7.9)$$

where it is implicitly assumed that the average heliocentric radial velocity corrected for the Sun's motion is a good approximation to the average radial velocity measured from the focus of the orbit. Other investigators of globular cluster and dwarf elliptical galaxy dynamics (Peterson 1985, Olszewski et al. 1986) have also used Equation 7.9 to estimate the mass of the Galaxy. Little and Tremaine (1987) devised an entirely different method employing Bayes' theorem with an assumed point potential, later used by Zaritsky et al. (1989). estimates using this method are nearly identical to those using Equations 7.8 or 7.9. Finally, Kulessa and Lynden-Bell (1992) employed a maximum likelihood method with results indicating a massive dark halo. The Galactic mass estimates for the dynamical studies described above are shown in Figure Open and closed symbols indicate masses calculated assuming isotropic and radial orbits respectively. studies, including Frenk and White's (1980) study testing kinematical models of the globular clusters in the inner and outer Galactic halo against observational data, have concluded a massive dark halo exists in the Milky Way.

The radial velocity measurements for the CTI RR Lyrae stars were divided into two groups corresponding to Galactocentric radial distance. This was also done for those

Figure 7.4 - Interior Galactic mass versus Galactocentric radial distance. Hartwick and Sargent 1978 (squares), Lynden-Bell et al. 1983 (x at 120 kpc), Peterson 1985 (x at 90 kpc) Saha 1985 (circles), Olszweski et al. 1986 (x at 100 kpc), Little and Tremaine 1987 (triangles), Zaritsky et al. 1989 (diamonds), and Kulessa and Lynden-Bell (x at 230 kpc).

stars with radial velocity measurements in Saha's (Saha and Oke 1985, Saha 1985) and Hawkins' (Hawkins 1984) RR Lyrae surveys. The two most distant stars in Hawkins' survey were not included due to their isolation from the rest. One of these stars is reported to have a very large radial velocity, and if it is assumed this star is bound to the Galaxy, requires a Galactic mass at 60 kpc of over 1.5×10^{12} M_{Sun}

The bright RRab-type stars in the GCVS with (Hawkins 1983). velocity measurements (Layden 1994) were used to calculate the mass interior to the Sun's orbit. Additionally, radial velocities for 38 distant globular clusters in four distance ranges and 9 distant dwarf elliptical galaxies in two distance ranges were used to calculate the mass of the Galaxy using the identical method as for RR Lyrae stars. The velocity and distance data for the globular clusters and dwarf elliptical galaxies are those listed in Table 1 of Kulessa and Lynden-Bell's (1992) study, except for Pal 15 (Peterson and Latham 1989) and Eridanus, Pal 14, Leo I, and Leo II (Zaritsky et al. The velocity errors for the other objects were 1989). obtained from the original papers (Webbink 1981, Lynden-Bell et al. 1983, Peterson 1985, Hesser et al. 1986, Armandroff and DaCosta 1986, Olszewski et al. 1986). Figure 7.5 plots the calculated mass versus Galactocentric radial distance assuming (a) isotropic orbits and (b) radial orbits. The error in the average radial distance is the standard deviation of the distances of the individual RR Lyrae stars, globular clusters, The error in the calculated or dwarf elliptical galaxies. average space velocity was calculated using 100% / sqrt (# of objects). The upper and lower error bars for the mass were calculated using $(\sqrt{\langle v^2 \rangle} + \sigma_v)^2$ and $(\sqrt{\langle v^2 \rangle} - \sigma_v)^2$ in Equation 7.4 respectively. Also plotted is the expected mass as a function of distance if the mass is proportional to the space density of RR Lyrae stars (Equation 6.8), pinned to a mass derived at

Figure 7.5 - Interior Galactic mass versus Galactocentric radial distance for (a) isotropic orbits and (b) radial orbits. CTI (open circles), Saha (filled circles), Hawkins (open squares), GCVS (filled square), globular clusters (filled triangles), dwarf elliptical galaxies (open triangles) data shown. Expected mass as derived from Equation 6.8 shown as solid line. Expected mass as derived from HI rotation curve shown as dashed line.

the Sun's distance using $\theta_{\rm LSR}=250$ km/s (solid line), and the mass as calculated from the HI rotation curve of the Milky Way assuming circular orbits (dashed line, Merrifield 1992). The solid line in Figure 7.5 assumes the mass of the entire Galaxy (both halo and disk) is described by a single power law distribution. This of course may become a very poor approximation for decreasing Galactocentric distances.

The large error bars are due to the fact that the radial velocities of 3 (farthest dwarf elliptical point) to 15 (closest globular cluster point) objects were used calculate all of these masses except the GCVS point. isotropic orbits, all the RR Lyrae data and the nearby globular clusters (R < 25 kpc), are consistent with a mass distribution traced by the RR Lyrae distribution in the outer The more distant halo (i.e. no dark matter necessary). globular clusters, the dwarf elliptical galaxies, and the HI rotation curve, however, are consistent with a distribution requiring a massive dark halo. This of course assumes these distant globular clusters and dwarf elliptical galaxies are bound to the Milky Way, and the mass of the Galaxy can be calculated from the HI rotation curve by assuming circular orbits. For radial orbits, the distant globular clusters and dwarf elliptical galaxies are now more consistent with a near constant interior mass. The calculated from the RR Lyrae radial velocities are also approximately one-fourth that calculated assuming isotropic

orbits, except for the GCVS data point. The large mass calculated for this point indicates that radial orbits are not appropriate for these stars. The low mass for the Galaxy (less than the mass interior to the Sun's orbit) determined for the other RR Lyrae stars and the inner globular clusters indicate that radial orbits are probably not appropriate for these objects as well.

Depending on the type of orbits assumed, the radial velocity data for RR Lyrae stars, globular clusters, and dwarf elliptical galaxies can be used to support the notion that a massive dark halo exists (i.e. the mass-to-light ratio increases for increasing Galactocentric distance), or that no excessive dark matter exists at all in the Galaxy (i.e. the mass-to-light ratio is constant). The latter argument requires that the orbits for objects with R < 25 kpc are isotropic while the orbits for objects with R > 25 kpc are predominantly radial. Additionally, some other explanation for the HI rotation curve would need to be found.

Some have claimed that the orbits of globular clusters and dwarf elliptical galaxies in the distant Galactic halo are actually more circular (Lynden-Bell et al. 1983). They argue that globular clusters and dwarf elliptical galaxies with central densities typical with these systems and on highly eccentric orbits do not survive their perigalactic encounter due to tidal disruption, leaving intact the systems in the outer halo with near circular orbits. This would support a

massive dark halo if these objects were indeed bound to the Milky Way. As discussed in the previous chapter, however, these distant globular clusters and dwarf elliptical galaxies might constitute a distinct population (R > 40 kpc) completely separate from the Milky Way's globular clusters (Harris 1976). This population, although perhaps bound to the Local Group, may not be bound to the Milky Way at all. Indeed, the dynamics of this group may be described well by radial orbits as the objects fall into the Milky Way's gravitational potential, perhaps for the first time.

Whereas the number of globular clusters available to make mass estimates of the Milky Way is nearly complete, a large number of known and yet to be found RR Lyrae stars exist in the distant Galactic halo. By combining radial velocity data from many surveys and increasing the number of RR Lyrae stars with radial velocity measurements, the error in the mass for all distances in Figure 7.5 can be decreased. In addition to discovering and observing spectroscopically more distant RR Lyrae variable stars to extend the mass estimates to larger radial distances, RR Lyrae variables in the inner halo and nuclear bulge could be sampled as well. The mass function, independent of the HI rotation curve, could then be calculated for a large range of Galactocentric distances.

This dissertation has used a unique sample of RR Lyrae stars to estimate their space density and to derive a mass for the Milky Way. Our dynamical results do not require a massive

dark halo. It is clear that additional work is necessary on several fronts, including the dynamics of Galactic stars and stellar systems, the Galactic HI rotation curve, and the distribution of stellar populations, to arrive at a robust, rationalized estimate of the mass distribution of the Milky Way.

Appendix 1 - Tables

Table A1.1 - CTI Observing Log

Key

```
.HIS databases, and .NML and .NHL databases
                                                                                                                   Merged into current .NML and .NHL databases (B and V filters),
                                                                                                                                                                                                                                                                                                                                                                                                                           light cirrus to SW at sunset, marginal data
                                                                                                                                                                                                                                                                             light cirrus at sunset, CCDO in for repair Closed due to high winds some clouds
                                                                                                                                                                                                                                                                                                                                                                                    worked on dewar rotation
light clouds at sunset, clouds later
                                                                                                                                                                                                                                       mostly clear with light cirrus to NW Clear with cirrus to NW at sunset
                                                                                                                                                                                                                                                                                                                                 moderate cirrus, extremely marginal
                                                                                                                                                                       Comments
test of sky
Cirrus at start, marginal night
                                                                                                                             but not merged (R and I filters) current .MAS and .HIS databases,
                                                                                                                                                                                                                                                                                                                                                                                                                                                     light cirrus throughout night
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  poor seeing
                                                                  UV transparent clear
                                                                                                                                                                                                                                                                                                                                                                                                                                         Clear
                                                                                                                                 calibrated,
Merged into
                                                                                                                                                                    CCD1
                                                                                          H-alpha off
             Johnson B
Johnson V
Johnson R
                                                                              H-alpha on
                                                    Johnson
                                                                                                                                                                        CCD0
                                                                                                                                                ŧ
filters:
                                                                                                         codes:
                                                                                                                                                                                                                                                                                                                                                                                                 85jun19
85jun20
                                                                                                                                                                                                                                                                                                                                                                                                                                                     85jun28
85aug14
                                                                                                                                                                         Date
84dec09
                                                                                                                                                                                                 84dec10
85jan04
85jan17
                                                                                                                                                                                                                                                                                                                                                                                                                          85jun21
85jun27
                O M C H C A C
                                                                                                                                                                                                                                       85<u>feb06</u>
                                                                                                                                                                                                                                                                 85feb13
                                                                                                                                                                                                                                                                               85mar18
                                                                                                                                                                                                                                                                                            85mar19
                                                                                                                                                                                                                                                                                                        85may18
                                                                                                                                                                                                                                                                                                                    85may19
                                                                                                                                                                                                                                                                                                                                 85may20
                                                                                                                                                                                                                                                                                                                                                                       85may26
                                                                                                                                                                                                                                                                                                                                                                                     85jun18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              85aug15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            85aug16
                                                                                                                                                                                                                                                   85feb07
                                                                                                                                                                                                                                                                                                                                                           85may22
                                                                                                                                                                                                                                                                                                                                              85may21
```

Table Al.1 - CTI Observing Log (continued)

Comment	Close to photometric	Very windy, rest of mountain closed, high variable background	Clear and calm	Cirrus early, bad seeing, clear later		Clouds, close early due to clouds	Clear, late start, calm	much cirrus	Very cloudy, no data acquired	photometric		ind calm, some dust	have ci	Clear, photometric, some cirrus in west	windy, cleared late, photometric	photometric, thick clouds		and calm	Clear photometric, try to realign telescope	photometric	Clear and calm	•	flashlight at start, data screwed up	ric	Cirrus, close early due to clouds		photometric	Clear, possibly photometric	Clear	photometric	warm night		windy and photometric			warm, fans on all night	•	on horizon, clear overhead, close early due	pumped, filters cleaned, variable	Clear at start, some clouds in morning
CCD1	<u>ر</u> .	۰.	۰.	٥.	۰.	۰,	۰.	Ç•	٠.	د،	Ç.	ر.	۰.	۰.	۰۰	۰،	۰۰	٠.	٠.	٥.	٠.	۰۰	٠.	ፚ	۰.	۰۰	۰۰	۰.	٥.	>	۰.	6.	۰.	c.	6.	٠.	٠٠	Ç,	>	>
	٠٠	٠.	٠.	٠٠	۰۰	۰.	٠.	ç.	۰٠	6٠	٥,	۰۰	۰.	٠.	۰،	۰۰	٠.	۲.	٥.	۲,	<u>ن</u>	۰.	٠.	>	۰,	٠.	٠.	۰.	۰.	മ	٠.	۰.	۰.	Ç.	Ç.	۰,	۲۰	د ٠	н	н
Dayno	235	248	256	265	266	425	430	432	433	444	445	459	460	465	472	473	475	495	526	527	530	870	873	874	875	877	818	889	868	006	806	606	910	911	914	918	920		1001	
Date	85aug23	sep0	sep1	sep2	sep2	sma <u>r</u> 0	5mar0	5mar0	5mar0	5mar2	5mar2	5apr0	$5a\bar{p}r0$	5apr1	Saprl	5apr1	5apr2	5may1	6jun1	6jun1	6jun1	7may2	7 may	1 may	7may2	7may2	7may2	7 jun(7jun]	7jun1	7jun2	7 <u>j</u> un2	7iun2	7jun?	7.ju1(7.ju1(7 <u>j</u> u1(87jul14	7sep	7sep?

Table Al.1 - CTI Observing Log (continued)

refocused for H-alpha filters	closed early due to WWVB error		DMC crapped out	ו כשתרדסוו				due to computer	coating on filters							-										turned off incorrectly				cantion				ata		
nd photometric all night,	Later of the start	cirrus throughout night	all night, power supply on	ly cloudy all night, use with	ir List	photometric	o data	maybe p	O	O	ar, occasional light cirrus	ar		Clear, no good data	WILLAY			technical problems	ar		metric, changed	4			م ک	tus	marrho photometr	_	_	technical problems	, maybe pinocomectic, as	clear Clear, light cirrus			Clear, maybe photometric	
Clear a	Clear	Clear, light	Clear	partly	Clear	phot	Clear	Clear	light	light	Clear,		_	•			eTo	tec	Clear	Clear	pho	_			C.F.			֓֞֞֞֞֞֓֞֓֓֓֓֟֓֓֓֓֟֓֓֓֟֟ ֓֓֞	Šī					เปี	บี	
CCD1 V**	A.	∢ ⊳	· >	>	>	* *>:	>:	> >	۰ >	>	>	>	**^	>	k ·	**>	*>	>	>	0	A	ď	**>	*	>:	> ;	> ;	>	>	> 1	* * ^	* * * ^ `	> >	· >	>	
CCDO R**	0	0 +	1 H	ፚ	X**	* * *	щι	⊢ ⊢	4 i -	+ ⊢	Н	œ	*	ፈ (ĸ	አ *	ф	В	Д	Ą	0	0	* B	ф	<u>م</u> ر	%	н	н	н	m	* * *	m t	4 Ω	: cc	m	
Dayno 1020	ä	7	4 ~	H	Ä	Ä	7	7	- F	4 ~		Н	-	Η.	_	7	Н	Н	Н	-	-	П	-	, -1				_	_	-			•	•		
Date 87oct17	Sto	87oct06		oct1	oct]	octí	octí	no v	000	200	nov	nov	nov	nov	nov	nov	nov	nov	nov	dec	dec	dec	dec	dec	dec	dec	3jan	3jar	3jar	3jar	8jar	Bjar	gjar	o Le	8fel	

Table Al.1 - CTI Observing Log (continued)

																										•		troub]					•	
					-																		50.00					computer						
		slight wind																			gusts		ts, dusty					possible			nd			
																					wind		Ø			data		ions,			slight wind			
maybe photometric slight wind	cirrus at morning	then cloudy maybe photometric,	1 1 1	cloudy later	very windy	īdy		Clear maybe photometric		clouds	maybe high dust	near photometric	bright moon	out, no data	ıdy	refocused			ins		scattered cirrus, wind		scattered clouds. Wind gusts,	maybe photometric)	windy, qusts, no		no information on conditions,		T)	photometric, slig		92	
nt may sli	_					, windy		maybe						led on			••		cirrus				ered dat				Ιγ	forma					ıt haze	
Comment Clear, Clear,	Clear,	Clear, Clear,	Cirrus	Clear,	Clear,	Clear,	Clear	Clear	Cirrus	slight	Clear,	Clear,	Clear,	Clouded	Clear,	Clear,	Clear	Clear	light	Clear	Clear,	Clear	scatte	Clear	Clear,	Clear,	Cloudy	no ir	Clear	Clear,	Clear,	Cloudy	slight	
CCD1 V** V**	· > :	>>	>:	> >	· >	* ∗∧	**^	* * * \ \	۰ >	>	^ ∗×Λ	>	>	>	۸	Ø	A	>	>	**^	>	> :	> >	** ^{\(\)}	· >	>	۸	>	*\	>	**^	>	>	
CCD0 B* * B * *	: മ	нн	K (n n	ı es	R**	* - H	т *	n cc	æ	В	~	н	н	ы	0	0	⊢	~	щ	% 1	н	x ; p	*	; ⊢	Н	н	œ	* * A	щ	¥ *	œ,	н	
Dayno 1142 1143	1147	1166	1168	1170	1171	1172	1173	1174	1176	1177	1179	1180	1181	1182	1184	1185	1194	1195	1196	1205	1206	1208	1210	1211	1213	1221	1222	1227	1228	1229	1237	1240	1241	
Date 88feb16 88feb17 88feb18	88feb21	88mar11 88mar12	88mar13	88mar15	88mar16	88mar17	88mar18	88mar19 88mar20	88mar21	88mar22	88mar24	88mar25	88mar26	88mar27	88mar29	88mar30	88apr08	88apr09	88apr10	88apr19	88apr20	88apr22	88apr24	8897106	88apr27	88may05	88may06	88may11	88may12	88may13	88may21	88may24	88may25	

Table Al.1 - CTI Observing Log (continued)

Comment Clear slight cirrus, questionable data slight cirrus Clear Clear Clear, occasional cirrus Clear, maybe photometric Clear, some cirrus Clear, scattered clouds Clear, scattered clouds Clear Cloudy, windy Clear Cloudy, windy Clear Cloudy, only 1/2 hour of data scattered clouds Clear (dewar pumped Jul 03) scattered clouds Clear Cloudy, only 1/2 hour of data scattered clouds Clear Clear	Clear, probably photometric, focusing procedures Clear, probably photometric Clear, probably photometric Clear, KPNO "fun-night" (problems with car lights) Clear, data doesn't look that good Clear, dust in atmosphere?, stayed closed due to high winds Clear, probably photometric Clear, data looks good
	* * * * * * * * * * * * * * * * * * *
CCD0 	M M M K K K K H O O
Day 1244 12544 12554 12554 12556 12663 12663 1274 1274 1283 1299 1299 1317	
Date 88may26 88may27 88may27 88may28 88jun07 88jun110 88jun113 88jun120 88jun120 88jun120 88jun121 88jun220 88jun221 88jun23 88jun23 88jun23 88jun23 88jun23 88jun24 88jun26 88jun26 88jun16 88jun26 88jun18 88jun18 88jun18 88jun27 88jun28 88jun18 88jun18 88jun28 88jun18 88jun28 88jun18 88jun28 88jun28 88jun28 88jun28 88jun18 88jun28 88jun18 88jun18	88 8 8 8 9 1 8 8 8 8 8 9 1 8 8 8 8 9 1 8 8 8 9 1 8 8 8 9 1 8 8 8 9 1 8 8 8 9 1 8 8 8 9 1 8 8 8 9 1 8 1 8

Table Al.1 - CTI Observing Log (continued)

Comment Clear, data looks O.K. Scattered clouds Clear, data looks O.K. Clear, data looks O.K. Clear, slightly hazy, data quality poor Clear, slightly hazy, data quality poor Clear, probably photometric at sunset Clear, very bright moon, high background Olow circus, thunderstorms in area, not photometric Clear, very bright moon, high background Olow circus, thunderstorms in area, not photometric Clear, probably photometric, high moon background at end scattered clouds, good seeing Clear, probably photometric, high moon background at end scattered clouds, good seeing Clear, definitely photometric patchy circus and hazy and very windy, data quality questionable Clear, clouds in morning, data looks good possibly photometric Clear, clouds in morning, data looks good possibly photometric Clear, data looks good high circus Clear, data looks good high circus Lear data looks good high circus very bad Clear, data looks good high circus very bad Clear, data looks good Scattered circus, inmages tuzzy but cleared up later scattered circus and hazy, data looks O.K. Clear with circus in west at sunset	in east at
OFRARAFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	>>>>
	нввв
David 13604 13366 13372 13372 13373 13373 13373 13373 13400 1400 1400 1400 1411 1411 1411 14	4443 4444 470
Date 885ep27 885ep27 885ep28 880ct02 880ct03 880ct09 880ct10 880ct119 880ct119 880ct119 880ct12 880ct119	Sdecj Sdecj 9jan(9jan(

Table Al.1 - CTI Observing Log (continued)

CCD1 Comment	V Clear, elongated	>	>	V Cirrus, not photometric	V scattered cirrus and hazy, high background at start	V Clear with some haze, high background	۸	V Clear, possibly photometric, images elongated due to wind	**A	**^	Λ	V Cirrus at sunset, closed early due to clouds	V Clear	V scattered cirrus and very	>	V** Clear	* * \	^**	^**	**A	۸**	Λ	^	V Cirrus throughout night	V some scattered cin	V* Clear, data looks	V* Clear,	V Clear, data looks good despite wind, some clouds in	? moderat	c Clear,	C Clear, data looks good	c Clear,	C Clear, data looks	ບ	C no info	c clear, probably photometric	V (mirrors washed Apr 24)	V Clear,	**∆	V Clear	
CCDO	K 1	ፈ	œ	н	Н	*	*	K	œ	m*	ĸ	н	н	н	н	н	* H	B**	М	*	ፈ	ፚ	ጽ*	œ	н	*	* H	Н	Ç.	œ	н	н	æ	ፚ	ፚ	œ	α,	æ	H	ፈ	
2	172	13	175	176	111	178	192	195	961	504	505	909	909	522	525	526	527	528	529	530	531	532	533	535	536	550	552	553	554	556	557	558	559	260	561	562	576	577	578	579	
	janll	jan12	jan14	jan15	jan16	jan17	jan31	feb03	feb04	feb12	feb13	feb14	feb16	mar02	mar05	mar06	9mar07	Этаг08	9mar09	9mar10	9mar11	9mar12	9mar13	9mar15	9mar16	9mar30	9apr01	9apr02	9apr03	9apr05	9apr06	9apr07	9apr08	9apr09	9apr10	9apr11	9apr25	9apr26	9apr27	9apr28	•

Table Al.1 - CTI Observing Log (continued)

Comment some scattered cirrus, data looks O.K. with some coma Cirrus but good seeing, coma present at end of data	Clear at start, data looks reasonable, closed early due to clouds partly cloudy, ragged images perhaps due to wind, coma present	Cirrus on horizon at sunset, clear overhead, images look good Clear, data looks good at start, ghost images later	data looks good at start,	clear with some cirrus to north, nigh wind and bad seeing Cirrus to west, not transparent, images elongated by wind	ook fairly good	Clear all night	scattered cirrus and slightly hazy	Clear, data looks good		start	scattered clouds	Clear, bright moon, data looks good	data looks quite good!	Clear, data looks pretty good	no go		partly cloudy, questionable data because of clouds		scattered cirrus, data reasonable but focus still a problem	Clear, stars still out of focus, come also exists	Clear with slight haze, continued focus problems	-	crear, possibly photometric, tan merr and images for your	probably photometric,	scattered cirrus by morning, data looks O.K.				Clear, data looks O.K.		Clear, data looks good, power outage	Clear
CCD1 V V	* > >	* * ^ ^	> ;	> >	**\	**N	**^	**^	*^	^	Λ	×*^	**^	**N	>	>	^	Δ	>	>	>	** ^*	*^	**^	> >	>	^	^	**^	>:	> ;	>
CCD0	+ + - - -	K K	<u>ا بد ا</u>	- 4	m	R**	* *			н	В	B*	æ	ĸ	н	н	н	В	മ	m*	* m	m F	+ *	4 - -	ı 24	α,	н	Н	₩	⊢ t	n n	Δ
Dayno 1580 1584	900	593 594	362	596 511	512	513	514	21.0	517	518	519	520	521	523	525	538	539	543	644	645	646	648	747	744	745	752	753	754	758	759	797	163
Date 89apr29 89may03	omayo omayo omay1	emayl emayl	may1	əmayı Əmav3	may3	9jun0	9jun0	יייר ל סיייר ל	ounie Ounie	9jun0	9jun0	9jun0	9jun0	9jun1	9jun1	9jun2	9jun2	9jn16	9ju10	9ju10	9jul	9jul(00000	900t	9oct1	9oct1	9oct1	9oct2	9oct2	9oct2	SOCT.	YOCE,

Table Al.1 - CTI Observing Log (continued)

CCDI Comment	/ Clear, probably photometric, moved telescope	7 Clear, data very good	7 Clear, data pretty good	<pre>// scattered cirrus, closed early due to clouds</pre>	ver in morning	Variable high clouds, elongated images due to wind, closed early clouds	Cloudy at start, cleared later, power failure during night	/ Clear with haze on horizon, data good	/ Clear, early shutdown due to high winds		/ Clear, data good	/ Clear, still trying to fix A/D problems	.5		•	*	**			** Clear, data O.K.	ed cirrus, hazy, data good, moderate cloud cover in morr	scattered cirrus,	Clear, data good, i	Clear,	data good,		Clear, data very o	Clear, data	Clear, data	Clear, data	Clear with	Clear	Clear with	Clear with	Clear	i th	widely scattered	V* widely scattered cirrus, closed early due to clouds and moon
CCDO o		· H	R*	ı	Г	Г	В	В	Г	R	Z Z	I	•					•			•																	
5	768	769	770	788	789	790	793	796	797	798	799	800	801	802	804	816	818	819	831	832	847	848	850	851	852	854	855	856	861	874	875	878	879	880	881	886	893	902
Date	890ct30	9nov0	9nov6	9nov2	9nov2	9nov2	9nov2	9dec0	9dec0	9dec0	9dec0	9dec0	9dec0	9dec0	9dec0	9dec2	9dec2	9dec2	0jan0	Ojan0	0jan2	0jan2	0jan2	0jan2	Ojan2	Ojan2	0jan2	0jan3	Ofeb0	0feb1	0feb1	0feb2	0 feb 2	0 feb 2	0feb 2	Omarc	Omar(Omar1

Table Al.1 - CTI Observing Log (continued)

0,0	Clear, clouds to west, closed early due to moon, lots of cirrus in morning	scartered cirrus and mazy unroughout might, data looks 0.6. Clear with cirrus on horizon, data looks good, lots of cirrus in morning	Clear all night, data looks good	Clear, data looks O.K.	Cirrus throughout night, data looks acceptable	Very clear early but also windy, closed due to moon	windy, closed early due to fog and moon	good night, clear and calm	good night	Cirrus, humid, breezy, Grinnell problem	Clear, good night	Breezy, clouds on horizon, low moon	Very windy, distortion, early shutdown for wind, possible Grinnell problem	windy, 35deg moon, distortion	Breezy, early shutdown for moon	windy, clear, early shutdown for moon	Cloudy, poor seeing, diagnostic data only	Cloudy, diagnostic data, cleared up later	diagnostic data only	windy, distorted	Clear, calm	ing moon, data	ring	slight cirrus,	gusty wind, 30deg moon, good data	40deg moon, very good night	40deg moon, clear, calm		(pumped dewar Jun 18) clear, slight breeze, good data		Bad dewar, no data, power supply check	system fixed, some clouds, got data	Clear after midnight	15deg moon, clear, very good data	n horizon,	clear with morning	Clear, light wind, humid 37%, Grinnell problem, close early for clouds	slight breeze, good data in spite of tape drive failure
CCD1	> :	> >	*^	*^	>	*^	*^	*^	*^	>	*^	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	*>	>	*^	>	>	>	*^	*>	*^	*^	>	>
CCD0	нн	-1 E	* M	* H	н	н	н	н	ፚ	ፚ	~	M	മ	æ	œ	~	H	m	В	*	* B	ш	н	æ	* H	н	X**	н	* H	н	æ	М	~	*	* H	œ	н	н
Dayno 1904	1905	1909	1910	1919	1930	1932	1934	1935	1936	1937	1942	1943	1945	1946	1961	1962	1963	1968	1970	1971	1973	1974	1976	1977	1978	1979	1980	1982	1997	1998	1999	2003	2005	2035	2036	2057	2058	2059
Date 90mar19	90mar20	90mar24	90mar25	90apr03	90apr14	90apr16	90apr18	90apr19	90apr20	90apr21	90apr26	90apr27	90apr29	90apr30	90may15	90may16	90may17	90may22	90may24	90may25	90may27	90may28	90may30	90may31	90jun01	90jun02	90jun03	90jun05	90jun20	90jun21	90 jun 22	90jun26	90jun28	90ju128	90ju129	90aug19	90aug20	90aug21

Table Al.1 - CTI Observing Log (continued)

				•		drive failure												-	,																					
Comment	night, good data	calm, good data	, windy, good data	, windy, good data	d data	in spite of tape	s on horizon, close early for clouds, good data	, windy, early close for clouds, good data	some clouds, low moon, data problems	cirrus, fair data	, calm, 25deg moon, good data	ered cirrus, windy, good data	y, hazy, close early for moon, good data (long flat)	, close early for moon, good data	problems	, calm good data	, Grinnell problem, close early for humid, good data	data	calm, becoming windy, data fuzzy and distorted	, breezy to windy, humid	, breezy, data problems	, calm good data	iful night, good data	, calm, data problems	, breezy, good data	, calm, 10deg moon, good data	, good seeing, good data	, windy, focus fuzzy, good data, power supply problem	power supply, no data	, breezy, good data	s, calm, fair data	, humid good data	y, fair data	with cirrus later, good data	cirrus, good data	, breezy to windy, stuck filter, fair data	, breeze, good data	, breeze, good data	, windy, bad focus, good data	Clear, windy, bad focus, Grinnell problem, needs realignment
Comment	good ni	Clear, c	Clear,	Clear,	Clear,	Breezy,	Clouds	Clear,	some cl	hazy, c	Clear,	scatter	Breezy,	Clear,	data pi	Clear,	Clear,	good da	Clear	Clear,	Clear,	Clear,	Beauti1	Clear,	Clear,	Clear,	Clear,	Clear,	Bad po	Clear,	Cirrus,	Clear,	Cloudy,	Clear 1	some c	Clear,	Clear,	Clear,	Clear,	Clear,
CCD1	>	*^	^		>																																			
CCDO	ш	ф	* H	~	н	* *	* H	н	н	24	κ	ፚ	н	н	н	~	ፚ	ш	щ	В	Ф	н	н	ж ж	χ*	*	H	н	Н	н	н	B *	М	ш	н	н	œ	*	ш	മ
Dayno	90	991	62	63	64	982	680	91	94	95	960	760	110	11	112	113	114	115	117	118	120	121	122	123	124	125	126	140	141	145	146	147	148	149	152	153	170	171	178	179
Date	90aug22	90auq23	90aug24	90aug25	90aug26	90sep13	90sep20	90sep22	90sep25	90sep26	90sep27	90sep28	90oct11	90oct12	90oct13	90oct14	90oct15	90oct16	90oct18	90oct19	90oct21	90oct22	90oct23	90oct24	90oct25	90oct26	90oct27	90nov10	90nov11	90nov15	90nov16	90nov17	90nov18	90nov19	90nov22	90nov23	90dec10	90dec11	90dec18	90dec19

Table Al.1 - CTI Observing Log (continued)

ed, data acceptable re data good	
closed-moon, O.K data o.K. data o.K. data ogood data cloudy, good data cloudy, good data cloudy, oc.K. data breeze, good data good data good data good data good data clouds in East, calm, closed-moon, O.K. data baze windy, hazy at start haze windy, hazy, closed-clouds, good data clouds in East, calm, closed-moon, O.K. data very windy, monitor blank in A.M., good data cold, breezy, closed-clouds, good data very windy, monitor blank in A.M., data good ccd and dewar temp high, stop early breeze, closed-moon, calm, data good very windy, closed-moon, calm, data O.K. breeze, scattered cirrus in A.M., data good very windy, closed-wind and clouds, data medioc drimell problem, data good ccd odta data O.K. good data dota closed-moon, data good irrus, slight wind, data O.K. very windy, closed-winds, images distorted s washed, Grinnell re-installed, clear, cirrus, calm, good data breeze, closed-moon, data acceptable 'windy, distorted images, closed-wind windy, distorted images, closed-wind data good data good windy distorted images, closed-wind data good data good wind later, data good	clear, windy, data U.K.
CCD1 CCD1	>
	¥
Day 221999 222002 222004 222005 2222005 2222005 2222005 2222005 222200 222200 23221 23221 23221 23221 23221 23221 23221 23221 23221 23221 23221 23221	7)
Date 91jan08 91jan13 91jan113 91jan113 91jan114 91jan115 91jan116 91jan116 91jan116 91jan116 91jan116 91jan117	этшаута

Table Al.1 - CTI Observing Log (continued)

good																												
data good	good			spnc										nable									ns					
good data ccd0 May 30, ccd tests Jun 03) clear and breezy,	oks			Clear and breezy, data in A.M. Clear and breezy, calm in A.M. clear and breezy, calm in A.M.	1		moon	moom			•	alm, no data		data questionable	oks good						e to moon		data 0.K., close early due co					
03) clear	due to mode early due ht breeze,	looks O.K.		close earl		pod	ly due to	louds and	ooks good	nally O.K.		Lear and Ca	close early	Clouds.	v, data lo						e early du	tv tv	s slightly				good	
tests Jun	Clear, close early Clear and calm, data looks good, close early due to moon Clear, slight breeze, data looks good, close early due to moon (test dewar hold time Jun 09) clear and slight breeze, data look	nd calm, data looks O.K. alight breeze, Grinnell problem early clouds in horizon, hazy in A.M., data		in South.		a looks go	Clear, clouds in Fast, Dieezy, data Iooks good, close early due to moon	y due to c	pumped Aug 11) clear but hazy, data looks good	data marci	hazy, scattered cirrus, clearing, data marginary	hazy, close early due to crown strike, clear and calm, no	ery good,	good, close early	close early, data looks			ks good			ind calm	to humidi	data O.K., Close early due to manage a		boop s	poc	lata looks	
ita iy 30, ccd	ks good, cl ca looks go n 09) clean	ks O.K. innell prob . hazv in 2	Ooks O.K.	n A.M.	thick clouds, clearing, ilynching Thatall two new tape drives, clear	+ 1000	ooks dood,	close earl	ear but ha	in SE	crearing,	lightning	slightly breezy, data very good,	cy good, cl	/, close ed	poks good	poor	slight breeze, data looks good	oks good	breezy, data looks good	2400	ata 100ks osrlv due	earry day	oka good	Clear and carm, data looks good	scarrered cirrus, carm, constant data good	Clear and calm, mirror focused, data looks	
y, good data	rly data loo) reeze, dat d time Jur	and calm, data looks O.K. slight breeze, Grinnell	oks O.K.	and breezy, calm in A.M.	clearing, w tape dri	ht breeze	in East, D 7V. data 1	oks good,	Aug 11) cl	patchy clouds, lightning in SE	d cirrus,	ha due to	htly breez	calm, data very	cirrus, breezy, close	cirrus, stryinc preced	hreezy, data good	tht breeze	calm, data looks good	szy, data	u.	breeze, d	K., CIOSE	DIECCC, C	Clear and carm, data loves good	onal breez	m, mirror	
comment lear and breezy, adjusted current	Clear, close early Clear and calm, da Clear, slight bree Heat dewar hold t	and calm,	1	and breez	clouds, class	Clear and slight breeze	., clouds	Clear, data looks	pedund I	y clouds,	, scattere	, close ea	down past mone Clear and slig			red	קוומ	and	and	and	Ø		r, data U	r, slight	r and carr	rered cir.	ir and call	
Comment Clear a (adjust	Clear Clear Clear	Clear Clear,	Clear,	Clear	thick Insta	Clear	Clear	Clear	(dewar	patch	hazy,	hazy,	Clea	Clea	scat	scat	Clear	Clear	Clear	Clear	Clear	Clear,	Clear,	Clear	Clea	SCAL	Clea	
CCD1 V	ньь	>>>:	>>	>>	>>	> >	>:	> >	> >	>	>	> (χ <u>γ</u>	* *	B	* #	n t	, * Ω ⊢	4 1-	Н	Н	H	н	* *	* i	Χ, f	× *	
CCD0 I B	> ¤ H +	4 m m	нк	нк	нα	αм	н	ቷ ቦ	4 m	т	н	% 1	ບ ເ	ງ ບ	ບ	ບ	U t	ပ (ט כ	י כ	ບ	ပ	ບ	ບ	ບ	ပ _ါ	ນ ບ)
Dayno 2330 2347	2348 2349 2350	2358 2358 2359	2360 2362	2363 2364	2381	2385 2385	2409	2410	2411	2417	2421	2422	2470	2472	2473	2474	2475	2478	0440	2481	2482	2493	2495	2496	2497	2498	2499	1
	91jun06 91jun07 91jun08																					_			•	~		`

Comment	CCDO CCDI Commence and calm, data very good C V Clear and calm, data looks good, close early due to clouds C V Clear and calm, data looks good, close early C V Clear and calm, data good, close early due to clouds and rain C B Clear, data has many horizontal streaks, close early due to moon, Grinnell problems C R* scattered cirrus, data looks good, close early due to moon	Clear and calm, software propress, clear acquired clear but very windy, and acquired clear but very windy, and acquired close early due to winds	Clear, slight breeze, data looks O.K. scattered cirrus, windy, data looks good scattered cirrus, whing in South, data looks good	Clear and calm, lightning of the close early due to wind	Clear and windy, data looks O.K., moonlight strong	Cloudy, close early due to clouds, data Fortly due to clouds	Clear and breezy, Grinnell Products acquired	scattered clils and actions and breezv, data good	Clear and breezy, data looks good	Clear and calm, strong modified.	grand breezy, data looks good	scattered cirrus, windy, data probabil	thin cirrus, calm, data looks good	thin cirrus, carm, data good	Clear and breezy, data good slightly distorted, data Vivi			Clear and breezy, data looks Cince early due to moon		Clear and breezy, data O.K.,	Clear and willy, con	a/n converters test, clear and precal, horizontal bars in data,	(voltage test Mar 04)	Clear	Clear	Clear
1400	CCDT A A A B A A B B A A B B A B A B A B A B	<u>к</u> н н	4 H F	+ * *	'nнi	* & +	→ ▷	н	* * *	* H	* ·	% ⊢	→ ▷	> >	> * H	H	m;	> ⊦	4 02	: >	D	pa 6		112	, PA	1)
	00000000	ಲ್ಪಲ ಕ	ე ე ნ	יטכ	ပပ	U t	ບ ບ	ບ	ບເ	ט ט	ບ	ບເ	ນ ບ	ບເ	ט ט	ບ	U	ບເ	ى ر) U) U	ນ	ه و	70	. &	0
	2502 C 2503 C 2504 C 2504 C 2507 C 2507 C 2507 C 2507 C 2507 C 2507 C 2508 C 25		525 528	2529 2532	2533 2539	2540	2541	2565	2566	2565	2571	2581	2582	2584	2585	2587	2588	2597	2611	7197	261	261	261	262	262	264
	~ ~ ~ ~ ~ ~	9 -	ov30 ec03	1dec04 2 1dec07 2			10.0	N 0	2jan10	ლ <	th re) LD	wı		2: 2	~ ~		. —	N	\sim 0	710	10	1.7	\sim $^{\circ}$.: `.	

Table Al.1 - CTI Observing Log (continued)

							•										clouds
																	to t
																	lue
	apno																ıg c
	to clo			clouds												good	Clear overhead, clouds to east, data looks good, early closing due to clouds
•	que			to											O.K.	very	arly
	nly			due									Ä.	. •	Ks	ks	0
	e ea			$r_{1}y$	1					poc			ks O	0	100	100	good
	lose			ea					po	y g			100	oks	lata	lata	ks
	1,	good		lose				bo	s gc	Ver		て	ata	a Lo	t,	n,	100
	jina	sks		0				2 go	look	oks		goo	יני יני	dat	eas	rizo	data
	marc	ļ	po	0. K	bo	bo		Ver)	ta]	a Ic	g	oks	ight	ng,	2	hoı	t,
	ata	data	s go	ata	s go	s go		oks	, da	dat	s go	a lo	ut n	orni	onds	s on	eas
	n, d	'ez	look	n, d	look	look	lm	a 10	tart	rus,	look	dat	ugho	in m	y cl	loud	s to
	calı	oree	ata	calı	ata	ata	Ca	dati	at s	cir	ata	ndy,	thro	ier	heav	th c	loud
	rus,	yht]	n, d	cus,	n, d	n, d	ere	cus,	cus	ight	D'T	/ Wil	rus	near	Lth	M.	d,
	cirı	slic	caln	cirı	calr	caln	ryw	cirı	cirı	sli	head	very	ciri	13, 1	IS W	thead	head
ų	red	and	and	red	and	and	eve	of	red	with	over	but	red	irru	irru	over	over
men	tte	ar	ar	itte	ar	ar	rus	ces	itte	ar	ar	ar	itte	g G	r C	ar	ar
50	SCa	C F	$C1_e$	sca	C1e	Cle	Ċį	tra	SCa	Cle	C1e	CJe	SCa	SOI	thi	CJe	Cle
CCDI	I	>	В	н	>	н	н	~	 1	>	>	>	М	В	Ø	>	ፈ
	O	O	Ð	ບ	ບ	ນ	ບ	ย	ບ	ט	ย	ຍ	ບ	ບ	ບ	ບ	ပ
0	I .		_	_		_	_		_				_	_	_		
Dayno	2641	2652	2653	2654	2656	2657	2658	2672	2673	2674	2675	2676	2677	2679	2680	2684	2685
	r26	20 0	r07	r08	r09	r10	r11	r25	r26	r27	r28	r29	r30	y02	V03	v07	¥08
Date	92ma	92apr06	92ap	92ap	92ap.	92ap.	92ap	92apr25	92ap	92ap	92ap	92ap	92ap.	92ma	92ma	92ma	92та
-					~ .	~ .											

Table A1.2 - Bright Stars in CTI Survey

name	RA	(1987.5)	Dec	visual mag
SAO 76990				57.6	6.01
SAO 77121	05 20	12.2	27 56	44.3	6.33
SAO 77625	05 50	10.8	27 57	53.4	5.56
49 Aur	06 34	24.8	28 01	58.7	5.27
1 Gem	07 24	57.4	27 49	28.4	3.79
64 Gem	07 28	33.9	28 08	43.8	5.05
65 Gem	07 29	02.2	27 56	34.6	5.01
β Gem (Pollux)	07 44	34.9	28 03	27.3	1.14
₩ ₁ Cnc	08 25	42.3	27 56	11.3	5.57
ρ ₂ Cnc	08 54	54.9	27 58	33.8	5.22
67 Cnc	09 01	04.4	27 57	11.8	6.07
44 LMi	10 49	12.6	28 02	23.4	6.04
β Com	13 11	19.7	27 55	55.5	4.26
SAO 82944	13 40	04.7	28 07	41.1	6.23
SAO 84015	15 48	03.4	28 11	40.9	5.85
SAO 87165	19 23	52.3	28 03	46.0	6.53
β_1 Cyg (Albireo-A)	19 30	13.0	27 55	58.5	3.08
β_2 Cyg (Albireo-B)	19 30	15.1	27 56	18.8	5.11
32 Vul	20 54	01.6	28 00	34.9	5.01
β Peg (Scheat)	23 03	09.4	28 00	48.4	2.42

Table A1.3 - SAO stars in CTI Survey

G30 #/	RA	(1987.5	: 1	Dec	visual mag
SAO #/ name	00 ^h 17 ^m		28° 06		9.4
73878					9.1
73901	00 19 4		28 05		
73920	00 20 4			20.0	9.4
73923	00 20 5			53.7	9.0
73965	00 24 3			29.8	8.6
74015	00 27 0			18.1	8.0
74022	00 27 3	37.2		29.4	8.0
74045	00 29 4	47.9	28 00	15.6	8.2
74053	00 30 0	09.2	28 02	33.8	9.0
74075	00 31 3	39.3	28 02	54.0	9.1
74124	00 34 5	58.7	28 05	38.0	9.2
74198	00 40 4	45.3	27 58	27.5	8.2
74337	00 52 4			07.8	9.3
74380	00 55 5			44.8	9.0
74403	00 57 4			16.5	9.0
74528	01 09 2			37.8	8.9
74555	01 11 5			43.1	9.0
74584	01 13 5			33.3	8.3
74711	01 25 0		28 01		8.9
74733	01 26 3			58.8	9.2
	01 33 (27 57		9.5
74794	01 37 (28 05		9.3
74835	01 37 0			45.8	7.9
74857				46.5	8.6
74876	01 41 (28 03		
74891	01 42 3		27 59	47.9	9.1
74937	01 47 (28 00		9.1 8.3
74998	01 52 2		27 57		
75027	01 54 5		27 59	10.9	9.0
75105		54.8	28 02	57.5	9.0
75137		11.5	28 02	31.5	9.0
75206		13.5	27 57	36.1	9.3
75230		39.5	28 00	38.7	9.0
75301		36.4	28 00	51.8	8.9
75328		35.7	28 05	06.3	8.6
75365		57.8	27 59	35.3	8.8
75402	02 28 !	51.3	27 59	08.9	9.0
75475	02 36 9	54.1	27 57	43.9	9.0
75484	02 37	17.0	27 59	37.8	8.6
75520	02 40	49.2	27 59	35.1	8.8
75538	02 43	04.8	28 05	31.2	8.9
75543	02 43	45.6	27 57	46.6	7.9
75561		41.8	28 00	19.1	9.0
75617		07.3		33.3	8.6
75640		40.9	28 05	43.9	8.2
75678		16.9	27 57		9.4
76223		10.5	28 01		9.0
76278		13.8	27 58		8.8
76288	03 51			49.5	8.6
, 5255	00 01				

Table A1.3 (continued) - SAO stars in CTI Survey

***		(1007	-\		Dog	visual maq
SAO #/ name	RA	(1987		<u> </u>	Dec	8.5
76298	03 5		27		44.2	
76304	03 5		28		42.5	7.8
76354	03 5		28	03	48.6	9.2
76403	04 0		28	05	33.2	7.5
76418 (RW Tau)	04 0		28	05	32.6	8.0
76540	04 1		28	04	23.9	8.7
76634	04 2	9 32.9	28	06	17.1	6.6
76659	04 3	4 07.1	28	02	23.8	9.0
76673	04 3	6 15.8	27	59	11.2	9.3
76690	04 3	8 45.5	27	59	52.5	8.8
76781	04 4	9 35.5	28	05	04.6	8.9
76805	04 5	2 13.7	28	05	15.6	8.2
76918	05 0	2 06.7	28	01	20.3	9.8
76990	05 0	8 57.8	28	00	57.6	6.0
76991	05 0	8 58.2	28	01	07.8	8.1
77093	05 1		28	04	41.8	8.4
77114	05 1	9 47.5	28	03	20.3	9.0
77121	05 2		27	56	44.3	6.3
77130		1 47.5	28	05	26.3	8.8
77268	05 3		28	02	35.9	8.1
77346	05 3		28	00	27.2	9.3
77351	05 3		27		41.2	9.0
77401	05 4		28		40.1	9.1
77625	05 5		27		53.4	5.6
77638	05 5		28	05	22.4	8.0
77662	05 5		27		45.5	9.0
77728	05 5		27		28.7	9.2
77818	05 5		28	07	33.0	7.0
78126		3 35.8	28		57.9	8.7
78185		6 54.9	28	04	33.5	9.1
78191	06 1		28		44.0	7.4
78206		7 59.9	28	03	39.7	8.0
78240	06 1		28		59.6	8.6
78291	06 2		27		36.9	7.5
78334	06 2		28		22.7	7.7
78483		2 17.7	28	05	33.6	7.6
78488		2 32.1			44.4	8.7
78496		2 54.2	27		25.3	7.8
		4 24.8	28		58.7	5.0
		4 57.3			58.4	9.3
78533		6 34.3	27		14.2	8.9
78553		5 19.9	28		58.7	8.9
79050		8 29.4	28		25.2	8.4
79112						8.8
79184		2 59.2	27		18.9	9.0
79270		7 55.7	28		55.2	9.3
79283		8 41.0	27		31.8	
79374 (1 Gem)		4 57.4	27			3.9
79390		6 17.8	28		18.0	9.0
79427 (64 Gem)	07 2	8 33.8	28	ับช	43.0	5.0

Table A1.3 (continued) - SAO stars in CTI Survey

C3.0 # /	RA	(1987.5)		Dec	visual mag
SAO #/ name	07 29		7 56	34.6	5.1
79434 (65 Gem)	07 29			42.5	9.0
79457			7 58	30.1	8.7
79602	07 40				1.2
79666 (β Gem)			8 03	27.3	6.7
79772	07 52		8 05		9.4
79807	07 55		8 05		
79891		•	7 58		8.2
80118	08 20		8 07		9.0
80181 (ψ_1 Cnc)				11.3	5.8
80183	08 25			17.9	8.5
80214	08 29			26.1	8.7
80430	08 47		8 01		8.4
80464	08 51	00.8	8 04	08.4	9.0
80511 (ρ_2 Cnc)	08 54	54.9 2	7 58	33.8	5.3
80584	09 01	00.2	7 58	37.1	9.0
80585 (67 Cnc)	09 01	04.4 2	7 57	11.8	6.0
80646	09 06	55.0 2	8 03	23.8	8.3
80854	09 28	23.2 2	7 59	18.0	8.9
80911	09 34	25.1 2	7 59	23.4	8.2
80922	09 35	52.3 2	8 01	17.1	8.9
80926	09 36	07.0 2	8 01	50.4	8.9
80941	09 37	44.0 2	8 03	45.4	7.9
80969	09 40			47.2	8.6
81194				38.1	8.8
81209			8 02	39.7	8.7
81272			8 07		9.1
81308	10 20		8 04	00.3	9.2
81395				21.5	9.0
81423			8 01		6.9
81429			8 01		9.2
81461	10 39		8 04	54.6	8.9
81462	10 39		8 04	36.1	8.9
	10 45			52.4	8.5
81503 81542 (44 LMi)	10 49		8 02		6.1
•			8 05		9.0
81663			8 07		9.1
81666					
81695	11 08		28 03	18.3	8.3
81814	11 24		8 00		8.8
81892			7 58		8.2
81932	11 39		7 58		9.1
81955	11 42		28 07		7.3
82041	11 53		28 01		8.7
82100	12 00		28 01		8.6
82121	12 03		28 07		8.4
82149	12 07		88 03	11.3	8.9
82208	12 15		28 07	05.1	8.2
82236	12 18	23.9	28 07	08.3	9.0
82241	12 18	43.3	27 59	39.6	9.2

Table A1.3 (continued) - SAO stars in CTI Survey

SAO #/ name	RA	(1987.5	()	Dec	visual	mag
82359	12 31		28 02	52.1	9.2	
82430	12 39		27 58		9.3	
82445	12 41		28 00	51.2	9.3	
82465	12 43		28 03	00.8	7.8	
82560	12 54		27 58	51.3	9.3	
82561	12 54		28 03	37.7	8.9	
		56.6	28 07	58.6	7.1	
82595	13 11		27 55	55.5	4.3	
82706 (β Com)	13 17			51.6	9.0	
82763			28 07	37.9	9.3	
82793	13 20				8.3	
82826	13 24		28 02	41.0		,
82904	13 36		28 01	41.8	7.9	
82944		04.7	28 07		6.4	
82983	13 44		28 07	25.7	9.1	
82992	13 46		28 00	17.6	8.1	
83009	13 48		28 01		9.4	
83142	14 02		28 03	50.3	9.0	
83209	14 10		28 03	54.1	9.1	
83213	14 11	00.2	28 05		8.3	
83218	14 11	52.5	28 06	55.4	9.3	
83237	14 13	34.6	27. 59		9.0	
83386	14 30	30.6	28 03	52.9	9.0	
83439	14 36	29.2	28 03	12.6	8.5	
83519	14 46	46.3	28 07	16.1	9.0	
83791	15 21	23.0	28 05	07.4	9.0	
83797	15 22		28 06	04.2	7.5	
83855	15 29	39.7	28 05	53.8	9.0	
83860	15 30	15.9	28 07	21.7	9.1	
83949	15 41	05.1	28 02	05.0	8.0	
83967	15 43	02.5	28 07	07.8	9.0	
84015	15 48		28 11	40.9	5.8	
84050	15 51		28 07	37.1	8.9	
84215	16 08		28 05		8.7	
84648		57.4	28 08		6.9	
84810	17 04		28 06		7.2	
84822	17 05		28 06		8.6	
84857		58.8	28 08		8.0	
84859	17 07			28.1	9.0	
84870	17 07		28 03		9.0	
84920		56.6		51.6	9.0	
84946	17 13		28 00		8.9	
	17 14			19.7	8.4	
84949	17 18		28 02		7.1	
85006				47.9	9.0	
85011	17 19				9.0	
85056	17 22				9.4	
85059	17 23		28 02			
85173	17 30		28 08		8.6	
85220	17 34			50.4	8.8	
85378	17 44	28.5	28 00	40.4	8.7	

Table A1.3 (continued) - SAO stars in CTI Survey

SAO #/ name	RA	(1987.5)	1	Dec	visual mag
85405	17 46		27 59	13.6	8.7
85407	17 46			55.2	8.0
	17 57		27 59	36.7	8.5
85581			27 59	23.7	8.4
85598				30.5	8.5
85803	18 10				9.1
85830			28 03	11.4	
85981	18 22			47.4	9.1
86027	18 24		28 04	30.7	8.0
86269				21.4	8.9
-86301				58.9	9.1
86306				01.0	9.1
86340	18 41			44.0	7.5
86376	18 43			53.7	8.7
86388	18 43	51.6	28 05	17.4	7.3
86402	18 44	50.8	28 00	41.3	9.2
86410	18 45	12.8	27 59	44.1	9.4
86718	19 01	13.0	28 05	53.3	8.3
87059	19 18	29.1	28 01	57.8	9.0
87108	19 20		28 02	32.4	9.0
87165	19 23		28 03	46.0	6.4
87229	19 26		27 59	45.2	9.0
87301 (β_1 Cyg)	19 30		27 55	58.5	3.2
87302 (β_2 Cyg)	19 30		27 56	18.8	5.4
87502 (p ₂ cyg)	19 38			24.4	9.3
87503	19 38		28 03	00.2	9.2
87520	19 39		28 07	01.7	8.5
	19 41			29.6	8.9
87590	19 41			30.8	8.7
87614	19 42		28 03	20.0	9.3
87651	19 46		28 00 28 00	50.4	8.6
87716	19 48		28 04	34.5	9.4
.87769	19 51		28 04	08.3	8.5
87842			28 03	59.9	7.8
87877			28 03	48.5	9.3
87890				58.2	9.2
87931					7.7
88180				43.9	8.3
88197				23.2	8.5
88265	20 08		28 02	05.7	
88357	20 12		28 02	11.0	8.9
88474	20 17		28 02	37.1	9.4
88475	20 17		28 04		9.0
88537	20 19		28 02	30.3	9.0
88563	20 20		28 04	08.5	8.5
88568	20 21			02.7	8.5
88627	20 23		28 04		9.3
88634	20 23	53.6	27 59	03.6	9.0
88684	20 26	15.0	28 01	34.4	8.8
88702	20 27	01.7	28 00	57.6	8.6

Table A1.3 (continued) - SAO stars in CTI Survey

SAO #/ name	RA	(1987.	5)		Dec	visual mag
88760		13.1		58	09.7	8.7
88854	20 33	50.6			45.3	9.4
88857	20 34			03	16.0	8.5
88948	20 38	01.1		58	01.7	9.2
88970	20 38			02	39.7	8.0
89100		58.3			59.0	9.2
89102	20 45			01	35.9	9.2
89108		19.1		01	18.8	9.2
89118		17.3		04	54.0	8.3
89125	20 46				54.6	9.2
89160	20 48	24.5		06	32.6	9.2
89169	20 48			03	16.2	9.1
89262	20 53	44.5		04	35.6	9.0
	20 54		28	00	34.9	5.2
· ·	20 54			00	49.9	9.2
89276	20 54			02	36.4	8.0
89278	20 54			05	06.0	9.3
89279		44.5		01	48.3	9.2
89359	21 01			03	08.8	7.6
89378	21 01				52.1	9.1
89433	21 04		27	58	13.5	9.3
89455		26.7	28	06	14.0	8.1
89534					09.6	8.4
89558	21 14		28		10.0	9.0
89562	21 14		28	05 05		9.0
89567	21 14		28		34.4 26.4	8.1
89569		04.0	27	57		9.0
89717		52.4	27	57	44.3	8.8
89816	21 34		27	57	51.4	8.8
89900	21 40		28	00	41.8	8.4
89996		45.5	28	02	01.3	9.0
90063		53.1	27		56.1	8.5
90152		02.8	28	04	50.0 14.6	8.2
90168	22 00		27	59		9.3
90172		48.8	27	58	22.9	9.2
90221		21.0	27		52.4	
90253	22 07		28	04	19.2	9.3
90261		47.6			02.7	9.0
90264		02.4	28		06.4	8.6
90268		23.8			24.9	9.2
90272		42.0	28		01.6	9.0
90286		48.3	28		16.1	8.5
90369		21.6	28		22.4	9.2
90394		46.3	28		42.0	8.8
90464		05.0	27	57	31.1	9.5
90479		55.7	28		21.1	9.0
90534	22 27		28	04		9.0
90561		08.5	28	05	08.6	8.5
90617		20.2	28		27.2	9.0
90675	22 38	25.9	28	06	14.7	9.0

Table A1.3 (continued) - SAO stars in CTI Survey

SAO #/ name	RA	(1987.5)		Dec	visual mag
90715	22 41	06.4 2	7 59	34.0	8.6
90732 (BD Peg)	22 42	23.3 2	8 05	30.2	8.9
90762	22 44	52.2 2	8 02	06.0	8.7
90799	22 47	54.2 2	8 03	22.2	8.1
90905	22 57	32.6 2	8 00	36.1	9.1
90929	22 59	21.8 2	8 04	15.9	9.0
90981 (β Peg)	23 03	09.4 2	8 00	48.4	2.6
91118	23 14	21.1 2	8 00	10.4	7.0
91153	23 17	14.0 2	7 57	31.8	8.5
91193	23 20	17.3 2	7 59	56.7	8.8
91214	23 21	43.8 2	8 03	20.9	8.5
91224	23 22	20.5 2	7 58	58.0	9.0
91252	23 24	43.2 2	8 07	23.7	8.6
91363	23 34	51.4 2	7 57	06.2	8.7
91406	23 39	02.8 2	7 57	19.4	9.1
91421	23 41	05.7 2	7 58	38.6	9.3
91472	23 45	10.8 2	8 06	29.5	7.9
91505	23 48	03.4 2	7 58	41.7	9.1

Table A1.4 - Previously known variable stars in CTI Survey

name	RA (1987	.5) Dec	mag range	<u>Type</u>
RW Tri	02h 24m 52.4s	28° 02' 30.0"	12.5 - 12.61	
EP Tau	03 29 18.6	28 04 20.5	11 - >13	SR
RW Tau	04 03 08	28 05 37	7.98 - 11.59	Algol
AB Tau	05 40 14	28 06 06	10.4 - 12.0	SR
SV Tau	05 51 20	28 06 36	9.68 - 10.78	
CN Tau	05 57 22.1	28 02 23.1	13.1 - 13.7	RR Lyr
AH Aur	06 25 17	28 00 26	10.2 - 10.70	w uma
IR Gem	06 46 52	28 05 34	10.7 - >14.5	U Gem
GR Com	12 04 40.4	28 01 08.6	15.4 - 16.7	RR Lyr
GS Com	12 24 18.6	28 03 17.2		RR Lyr
DV Com	12 43 18.6	28 05 21.5	14.2 - 15.5	RR Lyr
EZ Com	13 17 32.6	28 01 39.6	16.5 - 17.5	RR Lyr
V375 Her	17 13 11.0	28 00 10.2	15.8 - 17.2	SR
V385 Her	17 15 57.0	28 06 44.6	14.9 - 15.9	RR Lyr
V532 Her	18 11 26.7	28 03 45.4		RR Lyr
CE Lyr	18 36 22.8	28 03 39.5	11.7 - 14.5	Mira
CV Lyr	18 50 06.0	28 05 59.7	10.8 - 13.1	SR
DF Lyr	18 53 04.5	28 03 22.6	13.1 - 13.5	W UMa
GS Lyr	19 03 50.3	28 00 44.9		L
UU Lyr	19 05 12.5	28 03 49.3	11.5 - > 16.1	
TY Lyr	19 09 17.7	28 03 04.6	9.0 - 14.6	Mira
V427 Lyr	19 13 11.8	28 00 51.6	15.3 - 17.3	RR Lyr
PP Lyr	19 17 13.8	28 06 06.6		
V1129 Cyg	19 33 21.9	28 03 16.9		Mira
V911 Cyg	19 35 24.5	27 57 20.9		Algol
EH Cyg	19 36 18.5	28 06 00.1	11.8 - 16.5	Mira
V926 Cyg	19 38 06.6	27 59 09.9	15.2 - 15.9	RR Lyr
V1140 Cyg	19 39 16.7	28 03 26.4	15.3 - > 20	Mira
AI Vul	19 46 17	28 05 55	13.2 - > 17.5	Mira
EQ Vul	19 57 52.6	27 59 05.2	11.8 - 12.5	Algol
KW Vul	20 20 34.3	27 57 35.0	15 - >19	Mira
BY Peg	21 38 18.9	28 02 21.6	12.9 - 13.6	W UMa
CW Peg	21 47 54.0	28 02 59.1	11.8 - 16.1	Algol
BD Peg	22 42 23	28 05 28	9.4 - 10.3	SR
β Peg	23 03 09	28 00 43	2.31 - 2.74	Slow Irg

						_	
name			RA			<u>Dec</u> .	mag
Z 499020			00h	09.3 ^m	28	° 06'	15.7
Z 501011			00	46.4	28	00	15.4
Z 504093				28.3	28	05	15.7
Z 505003	(NGC	9621		32.0	28		14.2
	(MGC	902)		45.2	27		15.6
					27		15.6
Z 144002				19.8			
Z 148026				47.3	28		15.6
Z 148028				47.5	28		15.5
Z 148056				53.1	28		15.6
Z 148116			80	07.9	28	06	15.4
Z 148117			08	08.4	28	02	15.3
Z 149014				18.2	28	03	15.6
Z 149026				27.5	28		15.2
Z 150004			08		28		14.9
				03.7	28		14.4
Z 151008							15.7
Z 151044				16.1	28		
Z 151054				18.0	28		15.7
Z 152042				37.4		07	14.8
Z 152071				49.3		05	15.3
Z 153027			10	09.7		01	14.6
Z 154004			10	20.6	27	59	15.2
Z 154008	(NGC	3232)	10	23.6	28	05	15.4
Z 154010		3235)		24.2	28	05	14.7
Z 154039	(1.00	0000,		41.7		05	15.5
Z 155004				44.5		03	15.7
				48.5		59	15.3
Z 155020	()100	2414					
Z 155029		3414)		50.6	28		12.0
Z 155049		3504)		02.6	28		11.5
Z 155051	(NGC	3512)		03.4	28		12.9
Z 156021				11.8	28		15.7
Z 156022			11	12.1	20	08	15.7
Z 156024			11	12.2	28	03	15.5
Z 156098			11	31.7	28	07	15.0
GQ Com			12	04.1	27	58	14.7-16.1
Z 158021				05.7	28		15.7
Z 158022			12		28		15.4
				19.4		03	14.9
Z 158076							
Z 158079				19.7		00	15.7
Z 159024	(NGC	4559)		35.3		02	10.7
Z 159051				40.3		03	15.4
NGC 4828			12	56.1		05	15.5
NGC 4850		·	12	57.4	28	02	15.5
NGC 4864			12	58.6	28	03	15.0
NGC 4867				58.7		04	15.5
NGC 4871				58.9		02	15.0
NGC 4871				59.0		01	15.5
				58.9	28		15.5
NGC 4873							
NGC 4874			12	59.0	28	02	13.5

Table A1.5 (continued) - Bright galaxies in CTI Survey

	•	ד א כד	(1987	E\ T	000	mag
name	•	RA			<u>0ec</u> 06	<u>mag</u> 15.0
NGC 4883			59.3			
NGC 4886			59.5	28	03	15.0
NGC 4889			59.5	28	03	12.5
NGC 4894			59.7	28	02	15.5
NGC 4898			59.7	28	01	14.5
NGC 4906			00.1	28	00	15.0
NGC 4908			00.2	28	07	15.0
NGC 4927			01.4	28	04	15.0
•	•		02.1	28	06	14.9
	•		02.4	28	06	14.4
Z 160120 (N			02.7	28	05	15.0
Z 160123			03.3	28	03	15.4
Z 160141			06.6	28	06	15.5
Z 160149		13	08.4	28	06	15.6
Z 161065		13	28.6	28	06	15.7
Z 161092		13	57.1	28	04	15.7
Z 162039		13	58.5	28	05	15.6
Z 162040		13	58.5	28	07	15.6
Z 162041		13	58.6	28	02	15.7
Z 162044		13	59.0	28	80	15.3
Z 162053		14	02.4	28	05	14.7
Z 163055		14	27.5	28	00	15.7
Z 163079		14	33.0	28	06	15.3
Z 163081		14	33.5	28	00	15.2
Z 165021		15	07.4	28	01	15.5
Z 165024		15	08.7	28	02	15.7
Z 166036		15	40.9	28	02	15.2
Z 166052		15	45.1	28	08	14.9
Z 167021		16	04.2	28	08	15.6
Z 167030			09.1	28	05	14.7
Z 167048 (N	GC 6092)	16	12.2	28	00	15.0
•			56.0	28	01	15.2
Z 170028			24.3	28	05	15.7
Z 171030			56.3	28	05	15.6
	•		08.3	28	07	15.0
Z 498037	•		51.5	28	01	15.7
Z 499102			58.1	28	02	15.7
		-				

Cataclysmic (Characterized by thermonuclear processes in the interior of a star, the surface layers of star, or the surrounding space volume.)

Nova

Close binary system with one component a hot dwarf star. Mass transfer from cooler component excites a thermonuclear burst in dwarf's surface layers. Brightness increases of 7 to 19 magnitudes in V. Distinctions made between fast (fading of 3 magnitudes in V in < 100 days), slow (fading of 3 magnitudes in V in > 150 days), very slow (also called pseudonova, fading takes place over 10 years or longer) and recurrent (two or more outbursts observed) nova.

Supernova

Thermonuclear burst of entire star triggered by collapse of core. Brightness increases by 20 magnitudes or more in V. Distinctions made between Type I (no hydrogen lines present in spectra) and Type II (hydrogen lines present in spectra) supernova.

U Geminorum

(Also called dwarf nova.) Close binary with one component a white dwarf star surrounded by an accretion disk. Mass transfer excites periodic bursts in space surrounding white dwarf. Brightness increases from 2 to 6 magnitudes in V. Distinctions made between SS Cygni-type (cyclic), SU Ursae Majoris-type (cyclic with occasional larger outbursts), and Z Camelopardalis-type (cyclic with occasional variations in maximum and minimum brightness) variables.

Z Andromedae

Close binary of hot and late-type star with extended envelope excited by hot star's radiation. Irregular variations of up to 4 magnitudes in V.

Eruptive (Characterized by violent processes or flares in the star's chromosphere and coronae.)

Orion

Stars connected with diffuse nebulae and probably evolving to the zero-age main sequence. Variations of up to 6 magnitudes caused by star's interaction with surrounding circumstellar material. Irregular or cyclic variations observed. Distinctions made between early spectral types, intermediate and late spectral types, T Tauri-type (spectral type Fe-Me), YY Orionis-type (infall of matter observed in spectra), FU Orionis-type (large and sustained outburst), and flaring (identical to UV Ceti and related to nebulosity).

Rapid irregular

Similar to Orion variables, but with no apparent connection with diffuse nebulae. Brightness variations between 0.5 and 1.0 magnitudes in V. Distinctions made between early, intermediate, and late-type stars.

Table A1.6 (continued) - Variable star types (adapted from GCVS)

S Doradus

High luminosity stars connected with diffuse nebula and surrounded by expanding envelopes. Irregular, (although sometimes cyclic), brightness increases of 1 to 7 magnitudes in V.

G Cassiopeiae

Rapidly rotating stars with mass outflow from equatorial zone. Brightness variations of up to 1.5 magnitudes in V. Equatorial rings and disks often present.

Wolf-Rayet

Irregular brightness changes of up to 0.1 magnitudes in V probably caused by nonstable mass outflow from their atmospheres (stellar wind). Broadband emission features present.

UV Ceti

K-M stars displaying flare activity with brightness increases of tenths to 6 magnitudes in V. Flares peak rapidly and last from minutes to hours.

R Coronae Borealis

Hydrogen-poor, carbon- and helium-rich, high luminosity stars showing slow nonperiodic fading (1 to 9 magnitudes in V) and cyclic pulsations (tenths of magnitudes over 30-100 days).

Pulsating (Characterized by periodic radial or nonradial contractions and expansions of surface layers. Those variables within the "instability strip" of the H-R diagram are thought to all owe their pulsation to a variable opacity of the second ionization state of helium. Many types of pulsating variables also form the "Great Sequence" on the H-R diagram.)

8 Scuti

Both radial and non-radial pulsations of amplitudes from 0.003 to 0.9 magnitudes in V over periods of 0.01 to 0.2 days. Stars are of Population I with spectral types A0-F5, and are contained in the "instability strip" of the H-R diagram near the Main Sequence.

SX Pheonices

(Previously called dwarf Cepheid or RRs.) Similar to δ Scuti variables except stars are of Population II.

RR Lyrae

Radially pulsating giant (A2-F2) helium core burning stars of amplitudes from 0.2 to 2 magnitudes in V over periods of 0.3 to 1.2 days. Stars are of Population II and are in the "instability strip" of the H-R diagram. Distinctions made between ab-type (steep ascending branch), c-type (nearly symmetric with shorter periods and smaller light amplitudes), and stars with more than one pulsational mode present.

Classical Cepheids

(Also known as & Cephei-type variables.) Population I, massive, high luminosity stars that have left the main sequence and evolved into the "instability strip" of the H-R diagram. Radial pulsations produce brightness variations of hundredths to 2 magnitudes in V

Table A1.6 (continued) - Variable star types (adapted from GCVS)

over periods of 1 to 135 days. Exhibits relation between period and absolute luminosity. Distinctions made between stars with single and multiple pulsation modes.

W Virginis

Similar to Classical Cepheids, except stars are of Population II. Radial pulsations produce brightness variations of 0.3 to 1.2 magnitudes in V over periods of 0.8 to 35 days.

RV Tauri

Radially pulsating supergiant exhibiting two pulsations of unequal maxima and minima. Occasional shifts between primary and secondary minima observed. Periods between two primary minima range form 30 to 150 days with a brightness variation of up to 4 magnitudes in V. Distinctions made between stars whose mean magnitude also changes over periods of 600 to 1500 days and those that do not change.

Semi-regular

Giants and supergiants of intermediate to late spectral types showing noticeable periodicity accompanied by various irregularities. Shape of light curve is also variable. Brightness amplitudes range from hundredths to several magnitudes over periods of 20 to over 2000 days. Distinctions made between late-type giants, late-type giants with poor periodicity, late-type supergiants, and earlier-type giants and supergiants.

Slow Irregular

Late-type giants or supergiants showing no evidence of periodicity.

Mira

Giants with late-type emission spectra. Brightness amplitudes from 2.5 to 11 magnitudes in V over periods from 80 to 1000 days. Periodicity well pronounced.

a Cygni

Nonradially pulsating supergiant (B-A spectral type) with brightness variations of approximately 0.1 magnitudes in V. Superposition of many oscillations with close periods and cycles from several days to several weeks.

β Cephei

(Also known as β Canis Majoris variables.) Radially pulsating stars of spectral type O8-B6 with brightness variations of 0.01 to 0.3 magnitudes in V over periods from 0.1 to 0.6 days. Many of these stars exhibit multiple periods and nonradial pulsations.

PV Telescopium

B spectral type supergiant with weak hydrogen lines and enhanced helium and carbon lines. Brightness variations of up to 0.1 mags in V over periods from 0.1 to 1 day.

Table A1.6 (continued) - Variable star types (adapted from GCVS)

ZZ Ceti

Nonradially pulsating white dwarfs with brightness variations of 0.001 to 0.2 in V over periods of 30 seconds to 25 minutes. Many close oscillation modes are present. Distinctions made between those having hydrogen absorption lines and those having helium absorption lines.

Rotating (Characterized by stars with nonuniform surface brightness or ellipsoidal shapes. Variability caused by star's rotation.)

a, Canum Venaticorum

Main sequence B8-A7 stars having strong variable magnetic fields. Brightness variations of 0.01 to 0.1 magnitudes in V over periods from 0.5 to >160 days. Distinction made between those also displaying nonradial pulsations of about 0.01 magnitudes in V over 0.004 to 0.01 days and those that do not.

RS Canum Venaticorum

CaII H and K emission line of stars in close binary system showing nonuniform surface brightness (star spots) and chromospheric activity. Brightness variations on the order of 0.2 magnitudes in V.

BY Draconis

call H and K emission line dwarfs of K-M spectral type showing nonuniform surface brightness (star spots) and chromospheric activity. Brightness variations of hundredths to 0.5 magnitudes in V over periods from hours to 120 days. Some stars also exhibit flares, and are simultaneously classified as UV Ceti stars. Similar to RS Canum Venaticorum variable stars.

FK Comae Bernices

Giants of G-K spectral type with broad H and K CaII emission. Brightness variations of tenths of magnitudes in V over periods up to several days. Possibly related to W Ursa Majoris eclipsing variables.

SX Arietis

Main sequence B0-B9 stars with variable spectral features and magnetic fields. Brightness variations of about 0.1 magnitudes in V over periods of about 1 day. Similar to α_2 Canum Venaticorum type variables.

ellipsoidal

Close binary system with ellipsoidal components. Brightness variations caused by varying projection of stars as seen by observer. No eclipses are present.

pulsars.

Rapidly rotating neutron stars with strong magnetic fields emitting narrow beams of synchrotron radiation (radio, visible, X-ray). Brightness variations of up to 0.8 magnitudes in V over periods from 0.004 to 4 seconds.

Table A1.6 (continued) - Variable Star Types (adapted from GCVS)

Eclipsing (Characterized by close binary systems where variation is primarily caused by eclipses of one star by the other.)

Spherical or near spherical components where it Algol is possible to specify the beginning and end of the eclipses. Spectral types of components and degree of filling of inner Roche lobes are also often specified in classification. true for β Lyrae-type and W Ursae Majoris-type

variables as well.

Ellipsoidal components where it is impossible to specify the beginning and end of the eclipses. Depth of secondary minimum is considerably smaller than primary minimum. ß Lyrae

Ellipsoidal components almost in contact with W Ursae Majoris each other where it is impossible to specify

the beginning and end of the eclipses. Depths of primary and secondary minima are almost

equal.

Table A1.7 - Bright Star Masks

```
SAO stars with V < 5 (individually masked)
                  7^{h} 24^{m} 50^{s} - 7^{h} 25^{m} 00^{s} (south of 28° 03' 00")
ι Gem
                  7h 42m 45s - 7h 46m 15s
Pollux
                 13^{h} 10^{m} 45^{s} - 13^{h} 12^{m} 00^{s} (south of 28^{\circ} 25' 12")
B Com
                 19^{h} 29^{m} 30^{s} - 19^{h} 31^{m} 00^{s} (south of 28^{\circ} 03' 36")
Albireo
                 23h 02m 00s - 23h 04m 30s
Scheat
SAO stars with 5 < V < 7.6
                 43 + (4.037 \times 10^{-7}) \times 10^{((25.75-V)/2.5)} pixels
radius .
                 on star
centered
                 10 pixel wide region in RA for all declinations
additionally
                 10 pixel wide region in declination, 1.6 times
additionally
                 mask radius to east if radius > 60
SAO stars with V > 7.6
                 27 + (1.287 \times 10^{-6}) \times 10^{((25.75-V)/2.5)} pixels
radius
centered
                 on star
                 10 pixel wide region in RA for all northern
additionally
                 declinations
                 10 pixel wide region in RA, 1.5 times mask
additionally
                 radius for southern declinations if radius >
CTI stars with V < 12
                 22 pixels (V < 11), or
radius
                 22 - 10 \times (V - 11) pixels (V > 11)
                 10 x (12 - V) pixels north and east of star
centered
```

I. Signal to Noise Calculation Parameters

gain = 15.6 electrons/ADU
Readout Noise = 57.0 electrons
Truncation Noise = 4.5 electrons
Bias level Noise = 8.0 electrons
Preflash level Noise = 16.0 electrons

photometry area = 380.12 (11 pixel radius)
3 flat field frames at 10000 ADU level
flat field noise = 0.001478 electrons per pixel per ADU

OPTION #1: superbias and superskim subtracted frames 2 superbiases with 25 bias frames per superbias 3 skimflats at 100 ADU level Baseline Noise = 58.49 electrons

OPTION #2: superpreflashbias subtracted frames 2 superpreflashbiases with 7 preflashbiases per superpreflashbias, preflash at 100 ADU level Baseline Noise = 74.25 electrons

OPTION #3: superpreflashbias subtracted frames
1 superpreflashbias made up of 2 preflashbiases
preflash at 100 ADU level
Baseline Noise = 82.43 electrons

Table A1.8 - Sample S/N Calculations (continued)

OPT	ION #1			<u>Noise</u>						
V	30	(sec	120	180	300	600	900	1200	1500	1800
12 13 14 15 16 17 18 19 20 21 22	258.1 117.7 49.0 19.8 7.9 3.2 1.3	402.0 214.4 94.7 39.1 15.7 6.3 2.5 1.0	348.5 175.0 75.6 30.9 12.4 5.0 2.0 0.8	428.1 240.3 109.2 45.5 18.4 7.4 2.9 1.2	334.0 167.8 72.8 29.9 12.0 4.8 1.9 0.8	269.2 129.1 55.2 22.6 9.1 3.6 1.4	327.7 170.3 75.8 31.5 12.8 5.1 2.0	363.0 200.1 92.2 38.9 15.9 6.4 2.5	221.9 105.2 45.1 18.5 7.4 3.0 1.2	238.1 115.6 50.1 20.7 8.3 3.3 1.3
OPT	ION #2			Noise:						
7.7	time 30	(sec	onds) 120	180	300	600	900	1200	1500	1800
V 12		360.5	120	100	300	000	300	1200	1300	1000
13	95.2	178.8		391.8						
14	39.0	76.4	144.8	204.2	296.6	000 4	201 5	242 2		
15 16	15.7 6.3	31.1 12.5	60.9 24.7	89.1 36.6	140.5 59.3	238.4 109.1	301.5 148.9	179.7	203.5	222.0
17	2.5	5.0	9.9	14.7	24.1	45.7	64.4	80.2	93.5	104.5
18	1.0	2.0	3.9	5.9	9.7 3.9	18.5 7.4	26.4 10.7	33.4 13.5	39.4 16.0	44.6 18.2
19 20		0.8	1.6	2.3	1.5	3.0	4.3	5.4	6.4	7.3
21					0.6	1.2	1.7	2.2	2.6	2.9
22								0.9	1.0	1.2
OPT	ION #3	Signa	al to	Noise:						
<u>. </u>		(sec		100	200	600	000	1000	1500	1000
V 12	30 201.1	60 340.6	120	180	300	600	900	1200	1500	1800
13	86.5	164.1	287.8	373.7						
14	35.3	69.3	132.6	188.7	279.1					
15 16	14.2 5.7	28.1 11.3	55.2 22.3	81.2 33.1	129.1 54.0	224.1 100.7		331.2 170.0	19/13	213.6
17	2.3	4.5	8.9	13.3	21.9	41.8	59.5	74.9	88.0	99.1
18	0.9	1.8	3.6	5.3	8.8	16.9	24.3	31.0	36.8	42.0
19		0.7	1.4	2.1	3.5	6.8 2.7	9.8 3.9	12.5 5.0	14.9 6.0	17.1 6.9
20 21				0.8	0.6	1.1	1.6	2.0	2.4	2.7
22								0.8	1.0	1.1

Table A1.8 - Sample S/N Calculations (continued)

OPI	ION #1			<u>Noise</u>						
V 12	30 251.4	(sec c	120	180	300	600	900	1200	1500	1800
12 13 14 15 16 17 18 19 20 21 22	115.1 48.1 19.5 7.8 3.1	203.5 90.5 37.5 15.2 6.1 2.4 1.0	313.9 157.7 68.8 28.4 11.4 4.6 1.8 0.7	372.4 204.8 93.8 39.5 16.1 6.4 2.6 1.0	260.7 128.7 56.2 23.2 9.4 3.8 1.5 0.6	78.0 33.1	185.3 87.4 37.5 15.4 6.2 2.5 1.0	193.3 92.3 39.9 16.4 6.6 2.7 1.1 0.4	95.2 41.3 17.0 6.9 2.8 1.1 0.4	97.1 42.2 17.4 7.1 2.8 1.1 0.4
OPT	ION #2			Noise:	_					
V	time (second 60	ds) 120	180	300	600	900	1200	1500	1800
12		345.8	120	100	200		500	1200	1300	1000
13	93.8	172.3	282.5	347.8	.					
14 15	38.5 15.5	74.1 30.3	134.6 57.2	181.0 80.1	241.7 115.1	160.8	180.2	189.9		
16	6.2	12.2	23.3	33.2	49.2	72.9	84.1	90.0	93.6	95.9
17	2.5	4.9	9.4	13.4	20.2	30.6	35.9	38.7	40.5	41.6
18 19	1.0	1.9 0.8	3.7 1.5	5.4 2.1	8.1 3.2	12.5 5.0	14.7 5.9	15.9 6.4	16.7 6.7	17.2 6.9
20		0.0	1.5	0.9	1.3	2.0	2.4	2.6	2.7	2.8
21					0.5	0.8	0.9	1.0	1.1	1.1
.22								0.4	0.4	0.4
OP'I	CION #3			Noise:	<u>.</u>					
	time (secon		100	300	600	900	1200	1500	1800
V 12	30 197.8	60 328.2	120	180	300	600	900	1200	1300	1000
13	85.5	159.1	267.4	334.9						
14	34.9	67.6		170.0		156.0	177 0	100 0		
15 16	14.0 5.6	27.5 11.0	52.4 21.3	74.2 30.6	108.6 46.1	156.2 70.2	177.2 82.2	88.7	92.6	95.2
17	2.2	4.4	8.5	12.3	18.8	29.4	35.0	38.1	40.0	41.2
18	0.9	1.8	3.4	4.9	7.6	11.9	14.3	15.6		17.0
19 20		0.7	1.4	2.0	3.0 1.2	4.8 1.9	5.8 2.3	6.3 2.5	6.6 2.7	6.9 2.8
21				9.0	0.5	0.8	0.9	1.0	1.1	1.1
22								0.4	0.4	0.4

Table A1.9 - Capilla Peak Observation Dates

		0	3 character	nights
date		<u> </u>	d observers	0.05
93Jun20	3093		Wetterer, Boudreau	0.75
93Jun24		70%	Boudreau Wunkle Boudreau Vogel	1.30
93Jun26	3099	55%	McGraw, Kunkle, Boudreau, Vogel	1.75
93Jul06			Grashuis, Boudreau	2.25
93Jul09			Wetterer, Grashuis	3.10
93Jul10			Grashuis Workle	3.60
93Jul23	3126	50%	Wetterer, Kunkle	4.60
93Jul25			Wetterer, Grashuis	5.60
93Jul26			Grashuis	5.90
93Ju127			Grashuis, Kunkle	6.40
93Sep04			Grashuis	7.40
93Sep09			Wetterer, Grashuis, Weichman	
93Sep10	3175	70%	Grashuis	8.10
93sep15	3180	100%	Wetterer, Grashuis	9.10
93Sep16			Grashuis	10.10
93Sep21	3186		Grashuis	10.70
93Sep22	3187	60%	Grashuis, Adams	11.30
93Sep24	3189	40%	Grashuis, Kunkle, Vogel, Collette	11.70
93Sep29			Grashuis	12.10
93Sep30	3195	40%	Grashuis	12.50
930ct06	3201	5%	Grashuis	12.55
930ct08	3203	5%	Grashuis	12.60
930ct09		15%	Grashuis, Boudreau	12.75
930ct10		45%	Grashuis, Boudreau	13.20
930ct11			Grashuis, Adams	13.30
930ct14			Boudreau	13.50
930ct15			Boudreau (Sky flats only)	13.50
930ct16			Boudreau	13.70
930ct22			Grashuis, Fairweather, Malahkov	13.80
930ct23			Grashuis, Fairweather, Gregory, +	13.85
930ct28			Grashuis	13.90
93Nov05			Grashuis	14.30
93Nov06		25%	Grashuis, McGraw, McGraw's class	14.55
		100%	Wetterer, Grashuis	15.55
			Grashuis, Boudreau	15.85
93Nov20		25%	Grashuis, Kunkle	16.10
93Nov20		128	Boudreau, Fairweather, Kraybill	16.22
93Dec06		52	Grashuis, Adams	16.27
93Dec00		08	Wetterer, Grashuis, Miller (tests)	16.27
93Dec09			Grashuis, Adams	16.52
94Jan10		238	Wetterer, Grashuis (CCD tests)	16.52
		1008	Wetterer, Grashuis	17.52
94Jan11		1002	Grashuis, Adams (CCD tests)	17.52
94Jan14			Grashuis (CCD CCSCS)	17.92
94Jan20			Grashuis	18.52
94Jan21				19.32
94Feb13			Grashuis, Boudreau	19.32
94Feb17			Grashuis (CCD tests)	20.22
			Grashuis, Adams	20.22
94Mar05	3355	30%	Boudreau	20.52

Table Al.9 - Capilla Peak Observation Dates (continued)

date	davno	%use	d <u>observer</u>	s	nights
94Mar06			Boudreau	_	20.57
94Mar10	3360	75%	Grashuis,	Adams	21.32
94Mar11	3361	10%	Grashuis		21.42
			Grashuis	•	22.42
			Grashuis		23.32
94Apr07	3384	2%	Wetterer		23.34
94Apr08	3385	90%	Wetterer,	Grashuis	24.24
94.Tun15	3453	100%	Wetterer,	Grashuis	25.24
			Wetterer,		26.24
			Boudreau,		
			Boudreau	onavot, zepanize, meves	27.75
94Jun27		358	Boudreau		28.10
94Jun30			Grashuis,	Boudreau	29.10
			Grashuis,		29.70
			Wetterer,		30.30
			Wetterer,		31.30
			Boudreau	Grubiiurb	31.90
			Grashuis,	Kunkle	32.50
			Wetterer,		33.45
			Boudreau	OI UDIIUID	33.65
			Grashuis		34.15
			Grashuis	4	34.75
					34.95
			Wetterer,		35.75
			Wetterer,		36.65
			Wetterer,		37.65
94Sep09			Grashuis		38.65
94Sep10			Grashuis		39.30
94Sep15			Wetterer,	Grashuis	40.30
94Sep16			Wetterer,		40.95
94Sep29			Grashuis		41.25
940ct03			Wetterer,	Grashuis	41.55
			Grashuis,		42.55
			Grashuis		42.70
			Grashuis		43.00
94Dec01			Wetterer,	Grashuis	44.00
94Dec20	3641		Wetterer,		44.90
95Jan08			Wetterer,		45.10
95Jan14			Grashuis		46.00
95Jan15			Grashuis		46.15
95Jan21			Grashuis,	Adams	46.17
95Jan29			Grahsuis,		46.50
95Jan31			Grashuis	•	46.65
95Feb02			Wetterer,	Grashuis	47.60
201020			,		

Table A1.10 - Capilla Peak Observer Log Summary

<u>observer</u>	# V images
Grashuis	1227
Wetterer	644
Boudreau	266
Kunkle	104
Adams	53
Rivers	45
Oetiker	41
Vogel	33
Weichman	30
Kraybill	25
McGraw	23
Collette	10
Chavot	10
Lopshire	10
Fairweather	10
Malahkov	6
Gregory	2
Anderson	2
TOTAL	1465

Table A1.11 - Capilla Peak Image Log

images	description
1465	images through V filter (RR Lyr candidates)
35	images through V filter (Mira variables)
44	images through V filter (calibration)
83	images through V filter (CCD tests)
33	images through B filter (RR Lyr candidates)
360	bias or superbias images
615	V and B sky flats
46	V skim flats
367	preflash darks
18	superpreflashbias-7s
13	darks
1	pretty picture
3036	TOTAL

RRab				_		
Name	RA	Dec 1	Type Max	Min Mea		<u>r(pc)</u>
1 RR Lyr	19 23 52		RRAB 7.06 RR 8.82		0.36 03 0.36	207 385
2 FW Lup 3 X Ari	15 19 07 03 05 48	-40 44.9 H			54 0.68	422
4 UV Oct	16 20 24	-83 47.5 F			45 0.27	488
5 XZ Cyg	19 31 27		RRAB 8.90		65 0.32	523
6 ST Pic	06 13 30	-61 27.3 H			55 0.09	555
7 XZ Cet	01 57 53	-16 35.3 H			49 0.00	
8 SW And	00 21 06	29 07.5 E			69 0.14	580
9 RX Eri	04 47 29	-15 49.6 F			71 0.09	597
10 RR Cet	01 29 34	01 05.1 H			69 0.02 94 0.27	609 612
11 DX Del 12 SV Eri	20 45 06 03 09 28	12 16.7 F -11 32.6 F		10.23	94 0.18	636
13 SU Dra	11 35 07	67 36.4 H			82 0.05	642
14 TU UMa	11 27 10	30 20.6		10.24 9.	83 0.01	655
15 TT Lyn	08 59 49	44 47.1 H	RRAB 9.42	10.21 9.	87 0.05	657
16 V Ind	21 08 11	-45 16.7 F			93 0.05	675
17 IK Hya	12 02 14	-27 23.9 I		10.42 10.		691
18 XZ Dra	19 09 24	64 46.6 I		10.65 10. 10.80 10.	21 0.27 31 0.36	693 695
19 V440 Sgr 20 VY Ser	19 29 20 15 28 30	-23 57.6 F		10.46 10.		740
21 SS For	02 05 36	-27 06.1 H			13 0.00	755
22 S Ara	17 55 19	-49 25.8 H	RRAB 9.96	11.20 10.	70 0.54	764
23 RU Scl	00 00 14	-25 13.4 H		10.75 10.		767
24 SV Hya	12 27 53	-25 46.3 H		11.00 10.		792
25 BH Peg	22 50 32	15 30.8 H	RRAB 9.99 RRAB 10.42	10.79 10. 10.92 10.	45 0.18 69 0.41	805 812
26 AT And 27 V413 CrA	23 40 02	42 44.3 F			61 0.32	814
28 AV Peg	21 49 47	22 19.3 F		10.92 10.		820
29 RS Boo	14 31 25	31 58.4 H			37 0.00	843
30 SW Dra	12 15 26	69 47.3 H	RRAB 9.94	10.94 10.		887
31 V445 Oph	16 22 00	-06 25.3 I		11.39 11.		890
32 VX Her	16 28 28	18 28.1 F			.68 0.18 .88 0.36	893 903
33 V341 Aql 34 XX And	01 14 36	00 24.9 F 38 41.3 F		11.13 10.	70 0.15	915
35 U Lep	04 54 09	-21 17.6 H		11.11 10.	59 0.05	916
36 W CVn	14 04 21	38 04.0 H			57 0.00	925
37 UU Vir	12 06 01	00 12.5 H			59 0.01	928
38 WY Ant	10 13 48			11.22 10.		957
39 WZ Hya	10 10 59	-12 53.6 H			86 0.18	973 976
40 RR Leo 41 RV UMa	10 04 56 13 31 21	24 14.2 F 54 14.7 F	RRAB 9.94	11.27 10. 11.30 10.	73 0.05	982
42 RV Cet	02 12 49			11.22 10.		1031
43 KX Lyr	18 31 45				02 0.15	1062
44 UY Boo	13 56 20	13 11.7 H			90 0.00	1075
45 RY Col	05 13 33	-41 41.1 H			.90 0.00	1076
46 AN Ser	15 51 11	13 07.1 H			.01 0.05	1109
47 ST Boo 48 VW Scl	15 28 44 01 15 59	35 57.3 I -39 28.6 I			.03 0.05 .99 0.00	$\frac{1117}{1119}$
49 SX For	03 28 26	-36 13.3 I			.08 0.00	1168
50 BB Vir	13 49 11	06 40.7			11 0.02	1174
00 22 111	10 10 11		-			
RRC						
1 MT Tel	18 58 31	-46 43.5 I			.98 0.18	409
2 CS Eri	02 35 11	-43 10.8 I			.03 0.00 .48 0.18	455 514
3 DH Peg 4 T Sex	22 12 55 09 50 53	06 34.4 I 02 17.6 I			.07 0.09	703
5 RU Psc	01 11 42	24 09.1			17 0.09	736

Table A1.12 (continued) - Bright RR Lyrae stars in GCVS

Name 6 BB CMi 7 XZ Gru 8 AE Boo 9 SS Psc 10 SX UMa 11 LS Her 12 BV Aqr 13 TV Boo 14 AP Ser 15 AO Tuc	RA 07 48 46 22 44 43 14 45 15 01 18 10 13 24 17 15 59 49 22 00 07 14 14 37 15 11 37 00 01 34	17 03.3 21 28.5 56 31.0 17 37.2 -21 46.1 42 35.5 10 10.0	RRC RRC RRC RRC RRC RRC RRC	Max Min 10.00 10.80 10.40 10.70 10.44 10.88 10.73 11.21 10.58 11.21 10.79 11.12 10.80 11.20 10.71 11.30 10.85 11.38 10.88 11.40	10.97 10.90 10.96 11.00 11.01 11.12	0.14 0.00 0.05 0.05 0.00 0.05	r(pc) 820 916 959 1045 1074 1081 1104 1130 1164 1202
RZ Cep V675 Sgr AR Per V363 Cas CZ Lac	21 02 56 22 37 28 18 10 16 04 13 38 00 12 33 22 17 33 19 25 50	50 35.1 64 35.7 -34 19.9 47 16.7 60 03.8 51 13.2 24 14.7	RRC RRC RRAB RRAB RRAB RRAB RRAB	plane 7.95 8.33 9.11 9.75 9.80 10.76 9.92 10.83 10.29 10.73 10.77 11.26 10.63 11.40 10.59 11.46	9.55 10.36 10.45 10.53 11.04 11.07		
AW Mic V429 Ori V753 Cen	04 57 36 13 16 12 21 16 02 04 53 44 11 48 44 19 44 23	-12 36.6 -57 55.9 -34 07.8 -03 36.5 -55 31.3 -02 11.5	RRC RR RRC RRAB RRC RRC	4.77 4.80 9.00 9.07 9.04 9.13 10.00 11.00 10.24 10.64 10.30 10.50 10.40 10.80			

Appendix 2 - Database Descriptions

Descriptions for those databases created specifically for this dissertation and used frequently are listed in this appendix. Descriptions for CTI data reduction and analysis databases can be found in The CCD/Transit Instrument Atlas and <u>Database Guide</u> (Wetterer 1995). Descriptions for other user defined databases must be found elsewhere. The contents of all databases and all attribute titles are available by using the CTI program DBDESC. The database descriptions in this appendix are listed in alphabetical order. Each listing contains the database extension, date and time of creation, database title, listing of header attributes and main attributes with attribute type (e.g. integer) and array size (e.g. scalar), and a short description of each main attribute. If the internal and external type differ or there exists a mapping, this is listed as well. All databases with headers have essentially the same attributes in their header. descriptions for these header attributes are:

NRECS - number of records contained in the database

DATE - date file was produced (yy/mm/dd)

PROGNAME- program used to create database ORIGIN - description of database's origin

PARM - Twenty three to eighty three parameters. Described for particular database type if appropriate. (For example, the parameters for the .CAL database are defined in CALPARMS.INC, and the parameters for all other databases in the pipeline are defined in PCP.INC.)

Database: .BSA Version: (94/02/11|09:08:03)
Description: bright star mask areas

Header attributes...

NRECS type: INTEGER (scalar)
DATE type: STRING* 8 (scalar)
PROGNAME type: STRING*12 (scalar)
ORIGIN type: STRING*44 (scalar)
PARM type: REAL (23)

Record attributes...

YCTI ext: DOUBLE int: INTEGER map: LINEAR (scalar)
P AREA type: REAL (scalar)

YCTI - right ascension of bright star in centipixels

P AREA - Area in square pixels masked by star

Database: .BSM Version: (93/11/29 10:28:39)

Description: bright star masks

Header attributes...

NRECS type: INTEGER (scalar)

DATE type: STRING* 8 (scalar)

PROGNAME type: STRING*12 (scalar)

ORIGIN type: STRING*44 (scalar)

PARM type: REAL (23)

Record attributes...

YCTI ext: DOUBLE int: INTEGER map: LINEAR (scalar)
YCTI ext: DOUBLE int: INTEGER map: LINEAR (scalar)

RMASK type: INTEGER (scalar)
CATID type: INTEGER (scalar)

XCTI - Declination of bright star in centipixels
 YCTI - Right ascension of bright star in centipixels

RMASK - Radius of mask in pixels

CATID - Identification of bright star (SAO number or mlink)

```
(94/01/28 | 14:13:15)
Database: .BVH
                  Version:
Description: B and V history list
Header attributes...
          type: INTEGER
                                    (scalar)
NRECS
                                    (scalar)
          type: STRING* 8
DATE
                                    (scalar)
PROGNAME
          type: STRING*12
                                    (scalar)
          type: STRING*44
ORIGIN
                                    (23)
PARM
          type: REAL
Record attributes...
          ext: POINT int: INTEGER
                                    (scalar)
MLINK
          ext: POINT int: INTEGER
                                    (2)
HLINK
          ext: DOUBLE int: INTEGER map: LINEAR (scalar)
YCTI
          ext: DOUBLE int: INTEGER map: LINEAR (scalar)
XCTI
BDAYVAL
          type: INTEGER
                                    (21)
                                    (21)
BLUM
          type: REAL
                                    (21)
          type: REAL
BLUMERR
          type: INTEGER
                                    (63)
VDAYVAL
          type: REAL
                                    (63)
VLUM
                                    (63)
VLUMERR
          type: REAL
        - Pointer to master list (.NML database)
MLINK
        - Pointers to B and V history lists (.NHL databases)
HLINK
        - Right Ascension in centipixels
YCTI
        - Declination in centipixels
XCTI
BDAYVAL - B Observation times in CTI dayno × 105
        - B Luminosities in ADUs
BLUMERR - B Luminosity errors in ADUs
VDAYVAL - V Observation times in CTI dayno × 105
        - V Luminosities in ADUs
VLUM
VLUMERR - V Luminosity errors in ADUs
```

Note: older versions of this database using the .MAS and .HIS databases used 42 number arrays for BDAYVAL, BLUM, BLUMERR, VDAYVAL, VLUM, and VLUMERR and have the .OBV extension.

```
(93/11/22 | 08:02:56)
Database: .CAT
                  Version:
Description: Catalog
Header attributes...
                                     (scalar)
NRECS
          type: INTEGER
          type: STRING* 8
                                     (scalar)
DATE
                                    (scalar)
PROGNAME
          type: STRING*12
                                    (scalar)
          type: STRING*44
ORIGIN
PARM
          type: REAL
                                    (23)
Record attributes...
                                     (scalar)
          type: INTEGER
CATID
RA HOUR
          type: SHORT
                                     (scalar)
RA MIN
          type: SHORT
                                     (scalar)
          type: REAL
RA_SEC
                                     (scalar)
                                     (scalar)
DEC DEG
          type: SHORT
          type: SHORT
DEC MIN
                                     (scalar)
DEC SEC
          type: REAL
                                     (scalar)
EPOCH
          type: REAL
                                     (scalar)
                                     (scalar)
V
          type: REAL
CATCODE
                                    (scalar)
          type: INTEGER
        - Identification of object in catalog (SAO number,
CATID
          Zwicky number, etc..)
RA HOUR - Hour of right ascension
RA MIN - Minute of right ascension
RA_SEC - Second of right ascension
DEC DEG - Degree of declination
DEC MIN - Arcminute of declination
DEC SEC - Arcsecond of declination
        - Epoch of right ascension and declination
EPOCH
        - Magnitude
CATCODE - Identification of catalog (unique integer)
Database: .HST
                  Version:
                              (94/02/04 | 07:54:16)
Description: Histogram Result
Header attributes...
NRECS
          type: INTEGER
                                     (scalar)
DATE
          type: STRING* 8
                                     (scalar)
PROGNAME type: STRING*12
                                     (scalar)
ORIGIN
                                     (scalar)
          type: STRING*44
          type: REAL
PARM
                                     (23)
Record attributes...
                                     (scalar)
BINID
          type: REAL
BINTOTAL type: INTEGER
                                     (scalar)
```

(scalar)

BINSHADED type: INTEGER

BINID - Center of bin in histogram
BINTOTAL- Total number of records in bin
BINSHADED Total number of records shaded in bin

```
Database: .NPL
                     Version:
Description: Normal Point List
Header attributes...
          type: INTEGER
                                   (scalar)
NRECS
          type: STRING* 8
                                    (scalar)
DATE
                                   (scalar)
PROGNAME type: STRING*12
                                   (scalar)
ORIGIN
          type: STRING*44
                                   (23)
PARM
          type: REAL
Record attributes...
                                    (scalar)
RYCTI
          type: DOUBLE
          type: DOUBLE
                                    (scalar)
RXCTI
RYCTIERR type: DOUBLE
                                    (scalar)
                                   (scalar)
RXCTIERR type: DOUBLE
                                    (scalar)
          type: REAL map: LOG
          type: REAL map: LOG
LUMERR
                                   (scalar)
                                    (scalar)
DAY
          type: REAL
                                   (scalar)
RANGE
          type: INTEGER
          ext: INTEGER int: SHORT
                                   (scalar)
V NDET
        - Right ascension in centipixels
RYCTI
        - Declination in centipixels
RXCTI
RYCTIERR- Error in right ascension in centipixels
RXCTIERR- Error in declination in centipixels
LUM - Luminosity in ADUs
LUMERR - Error in luminosity in ADUs
        - Mean CTI dayno of position measurement
DAY
        - Range of days going into position measurement
RANGE
V NDET - Number of days going into position measurement
Database: .NPT
                  Version:
                             (95/02/16|12:59:03)
Description: Normal Point Table
Header attributes...
NRECS
          type: INTEGER
                                    (scalar)
          type: STRING* 8
                                    (scalar)
DATE
PROGNAME type: STRING*12
                                    (scalar)
                                    (scalar)
ORIGIN
          type: STRING*44
PARM
                                    (23)
          type: REAL
Record attributes...
         type: REAL
                                    (scalar)
SET
                                    (scalar)
ITEM
          type: REAL
```

```
type: DOUBLE
                                    (scalar)
RYCTI
          type: DOUBLE
                                    (scalar)
RXCTI
          type: REAL map: LOG
                                    (scalar)
LUM
MAG
          type: REAL
                                    (scalar)
RYCTIERR type: DOUBLE
                                    (scalar)
                                    (scalar)
RXCTIERR type: DOUBLE
                                    (scalar)
          type: REAL
YEAR
        - Number to distinguish between plates used
SET
          astrometry.
        - Number to distinguish between stars on all plates
ITEM
          used in astrometry.
        - Right ascension in centipixels
RYCTI
        - Declination in centipixels
RXCTI
        - Luminosity in ADUs
LUM
        - Magnitude
MAG
RYCTIERR- Error in right ascension in centipixels
RXCTIERR- Error in declination in centipixels

    Mean year of plate observation
```

```
(95/02/18|08:01:41)
Database: .NPP
                   Version:
Description: Normal Point POSS positions
Header attributes...
NRECS
          type: INTEGER
                                      (scalar)
          type: STRING* 8
                                      (scalar)
DATE
                                      (scalar)
PROGNAME type: STRING*12
           type: STRING*44
ORIGIN
                                      (scalar)
          type: REAL
                                      (23)
PARM
Record attributes...
EX
          type: REAL
                                      (scalar)
          type: REAL
EY
                                      (scalar)
EX ERR
          type: REAL
                                      (scalar)
          type: REAL
                                      (scalar)
EY ERR
E SIGMA
          type: REAL
                                      (scalar)
ox
           type: REAL
                                      (scalar)
          type: REAL
OY
                                      (scalar)
OX ERR
                                      (scalar)
          type: REAL
OY ERR
          type: REAL
                                      (scalar)
O SIGMA
          type: REAL
                                      (scalar)
        - Right ascension in 20-\mu m pixels for POSS E plate
\mathbf{E} \mathbf{X}
        - Declination in 20-\mu m pixels for POSS E plate
\mathbf{E} \mathbf{Y}
EX ERR - Error in E X
EY ERR - Error in E Y
E SIGMA - Related to luminosity for POSS E plate
O X

    Right ascension in 20-μm pixels for POSS O plate

OY
        - Declination in 20-\mu m pixels for POSS O plate
OX ERR - Error in O X
```

OY_ERR - Error in O_Y
O SIGMA - Related to luminosity for POSS O plate

```
Version: (93/12/01 14:55:11)
Database: .R01
Header attributes...
                                    (scalar)
          type: INTEGER
NRECS
                                   (scalar)
DATE
          type: STRING* 8
PROGNAME type: STRING*12
                                    (scalar)
          type: STRING*44
                                   (scalar)
ORIGIN
          type: REAL
                                   (23)
PARM
Record attributes...
                                   (scalar)
RNUM
          type: REAL
        - Real number (used for sorting a list of real
RNUM
          numbers to be used in an application).
                  Version:
                             (94/11/07|13:56:08)
Database: .R03
Header attributes...
NRECS
          type: INTEGER
                                  (scalar)
DATE
          type: STRING* 8
                                   (scalar)
PROGNAME type: STRING*12
                                   (scalar)
                                  (scalar)
          type: STRING*44
ORIGIN
PARM
          type: REAL
                                   (23)
Record attributes...
                                   (3)
RNUM
          type: REAL
        - Array of three real number (used for creating data
RNUM
          files of real numbers in preparation for printing a
          data table).
Database: .R06
                  Version:
                             (95/02/06 11:33:33)
Description: Six real numbers
Header attributes...
NRECS
         type: INTEGER
                                    (scalar)
                                    (scalar)
DATE
          type: STRING* 8
PROGNAME
         type: STRING*12
                                   (scalar)
          type: STRING*44
ORIGIN
                                   (scalar)
PARM
          type: REAL
                                   (23)
Record attributes...
                                   (6)
RNUM
          type: REAL
RNUM
       - Array of six real number
```

```
Database: .RRL
                   Version:
                              (94/09/01 08:41:37)
Description: RR Lyrae List
Header attributes...
NRECS
          type: INTEGER
                                     (scalar)
          type: STRING* 8
DATE
                                     (scalar)
          type: STRING*12
                                     (scalar)
PROGNAME
          type: STRING*44
                                     (scalar)
ORIGIN
PARM
          type: REAL
                                     (23)
Record attributes...
RA1987 HOUR
               type: SHORT
                                     (scalar)
               type: SHORT
RA1987 MIN
                                     (scalar)
RA1987 SEC
               type: REAL
                                     (scalar)
DEC1987 DEG
               type: SHORT
                                    (scalar)
DEC1987 MIN
                                    (scalar)
               type: SHORT
DEC1987 SEC
               type: REAL
                                    (scalar)
RA1950 HOUR
               type: SHORT
                                     (scalar)
RA1950_MIN
               type: SHORT
                                     (scalar)
                                     (scalar)
RA1950 SEC
               type: REAL
DEC1950 DEG
                                     (scalar)
               type: SHORT
DEC1950 MIN
               type: SHORT
                                     (scalar)
                                     (scalar)
DEC1950_SEC
               type: REAL
RA1987 HOUR - Hour of right ascension (1987.5 epoch)
RA1987 MIN
             - Minute of right ascension (1987.5 epoch)
             - Second of right ascension (1987.5 epoch)
RA1987 SEC
             - Degrees of declination (1987.5 epoch)
DEC1987 DEG
DEC1987 MIN
             - Arcminute of declination (1987.5 epoch)
             - Arcsecond of declination (1987.5 epoch)
DEC1987 SEC.
RA1950_HOUR - Hour of right ascension (1950 epoch)
             - Minute of right ascension (1950 epoch)
RA1950 MIN
RA1950_SEC
             - Second of right ascension (1950 epoch)
DEC1950 DEG - Degrees of declination (1950 epoch)
DEC1950_MIN - Arcminute of declination (1950 epoch)
DEC1950 SEC - Arcsecond of declination (1950 epoch)
                              (94/08/04|13:50:31)
Database: .RRM
                  Version:
Description: RR Lyrae Magnitudes
Header attributes...
NRECS
          type: INTEGER
                                    (scalar)
DATE
          type: STRING* 8
                                    (scalar)
          type: STRING*12
PROGNAME
                                    (scalar)
ORIGIN
          type: STRING*44
                                    (scalar)
PARM
          type: REAL
                                    (23)
Record attributes...
```

(scalar)

DAY

type: REAL

PHASE type: REAL (scalar)
MAG type: REAL (scalar)
MAGERR type: REAL (scalar)

DAY - CTI dayno of observation

PHASE - Phase of observation given period and epoch

MAG - Magnitude of observation

MAGERR - Error in magnitude of observation

Database: .RRP Version: (94/08/03 | 16:50:28) Description: RR Lyrae Space Densities Header attributes... NRECS type: INTEGER (scalar) type: STRING* 8 (scalar) DATE PROGNAME type: STRING*12 (scalar) ORIGIN type: STRING*44 (scalar) type: REAL (23)PARM Record attributes... (scalar) RR_SD type: REAL RR DIST type: REAL (scalar) SURVEY type: INTEGER (scalar) DRR SD type: REAL (scalar) DRR DIST type: REAL (scalar)

RR_SD - RR Lyrae space density in number per cubic kpc

RR DIST - RR Lyrae Galactocentric distance in pc

SURVEY - Identification of survey

DEC1987 MIN

DRR SD - Error in RR Lyrae space density

DRR DIST- Error in RR Lyrae Galactocentric distance

Database: .RRT Version: (94/08/03|16:56:05) Description: RR Lyrae Tables Header attributes... NRECS type: INTEGER (scalar) type: STRING* 8 (scalar) PROGNAME type: STRING*12 (scalar) ORIGIN type: STRING*44 (scalar) PARM type: REAL (23)Record attributes... RA1987_HOUR type: SHORT (scalar) RA1987_MIN type: SHORT (scalar) **RA1987 SEC** type: REAL (scalar) DEC1987 DEG type: SHORT (scalar)

type: SHORT

(scalar)

```
(scalar)
DEC1987 SEC
               type: REAL
                                          (2)
               type: INTEGER
NDET
               type: REAL
                                          (scalar)
MAG MAX
MAG MIN
               type: REAL
                                          (scalar)
MAG_MEAN
               type: REAL
                                          (scalar)
MAG MEANERR
                                          (scalar)
               type: REAL
               type: REAL
                                          (scalar)
AMP
               type: REAL
                                          (scalar)
SKEW
                                          (scalar)
               type: REAL
BV
                                          (scalar)
EBV
               type: REAL
RDIST
               type: REAL
                                          (scalar)
               type: REAL
                                          (scalar)
GLONG
               type: REAL
                                          (scalar)
GLAT
                                          (scalar)
               type: REAL
XDIST
                                          (scalar)
YDIST
               type: REAL
               type: REAL
                                          (scalar)
ZDIST
               type: REAL
                                         (scalar)
RCENT
                                         (scalar)
               type: REAL
RCENTERR
               type: REAL
                                          (scalar)
TCENT
                                          (scalar)
PCENT
               type: REAL
                                          (scalar)
VARPERIOD
               type: DOUBLE
                                          (scalar)
VAREPOCH
               type: DOUBLE
               type: REAL
                                          (scalar)
EBV
               ext: POINT int: INTEGER (scalar)
MLINK
RA1987 HOUR - Hour of right ascension (1987.5 epoch)
RA1987 MIN
             - Minute of right ascension
RA1987 SEC
             - Second of right ascension
             - Degree of declination (1987.5 epoch)
DEC1987 DEG
             - Arcminute of declination
DEC1987 MIN
             - Second of declination
DEC1987 SEC
             - Number of V observations with CTI and at
NDET
               Capilla Peak observatory
             - Magnitude of star at maximum light
MAG MAX
MAG MIN
             - Magnitude of star at minimum light

    Average magnitude of star

MAG MEAN
MAG MEANERR - Error in MAG MEAN
AMP
             - Amplitude of Variability
                                 Skewness of light curve
SKEW
             - (M-m)/P of star.
B V
             - B-V color of star
             - Galactic reddening of star
EBV
             - Heliocentric distance in parsecs
RDIST
GLONG
             - Galactic Longitude
GLAT
             - Galactic Latitude
             - Galactocentric x distance in parsecs
XDIST
             - Galactocentric y distance in parsecs
YDIST
             - Galactocentric z distance in parsecs
ZDIST
             - Galactocentric radial distance in parsecs
RCENT
RCENTERR
             - Error in RCENT
             - Galactic polar angle \theta in degrees
TCENT
             - Galactic azimuthal angle \phi in degrees
PCENT
VARPERIOD - Period of variable star in days
```

VAREPOCH - Epoch of variable star at maximum light

EBV - E(B-V) of star. Reddening.

MLINK - Pointer to .MAS and .NML databases

Database: .VNX Version: (94/11/27 | 16:08:54)

Description: Variable Star Index file

Header attributes...

NRECS type: INTEGER (scalar)
DATE type: STRING* 8 (scalar)
PROGNAME type: STRING*12 (scalar)
ORIGIN type: STRING*44 (scalar)
PARM type: REAL (23)

Record attributes...

MLINK ext: POINT int: INTEGER (scalar)

HLINK ext: POINT int: INTEGER (2)

YCTI ext: DOUBLE int: INTEGER map: LINEAR (scalar)
XCTI ext: DOUBLE int: INTEGER map: LINEAR (scalar)

NDET type: INTEGER (scalar)
V type: REAL (scalar)
AMP type: REAL (scalar)

FLAG ext: INTEGER int: SHORT (4)

MLINK - Pointer to master list (.NML database)

HLINK - Pointer to history lists (B and V .NHL databases)

YCTI - Right Ascension in centipixels

XCTI - Declination in centipixels

NDET - Number of V observations

V - Mean instrumental V magnitude

AMP - Amplitude of variation in V magnitude

- Results of variability testing. 1st number: 0 = never variable, 100 = only variable with no prescreening, 110 = variable with prescreening but no additional error, and 111 = variable with prescreening and additional error. 2nd number: 0 = not masked by nearby bright star, 1 = masked by nearby bright star, 1 = masked by nearby bright star. 3rd number: V_COMB. 4th number: 0 = not correlated with nearest variable neighbor, 1 = correlated with nearest variable neighbor.

Appendix 3 - Photometry, Light Curves, and Finder Charts for CTI RR Lyrae Survey Stars

In the first part of this appendix, the combined CTI and Capilla Peak photometry is given for each candidate RR Lyrae variable star. The dayval (dayval = 1.0 corresponds to 85 Jan 01 0:00 UT), phase (using period and epoch listed in Table 5.3), instrumental V magnitude and error in this magnitude are listed. Stars identified with number from Table 5.1 and RR+right ascension (e.g. RR002101) or GCVS variable star name when applicable. All data after dayval = 3000 is from Capilla Peak Observatory.

In the second part of this appendix, a finder chart for each candidate RR Lyrae variable star is given along with the combined CTI and Capilla Peak light curve. Finder charts are CTI images, 8.25 arcminutes square with north towards the top of the page. For three stars blended with other stars, a 1' x 1' schematic finder chart with increased resolution is also given. CTI and Capilla Peak data are plotted as open and closed circles respectively in the light curve. Zero phase refers to maximum light for the pulsational variables, and primary minimum light for the eclipsing variables. The magnitudes listed are instrumental magnitudes.

```
1. RR002101
                                                        25 1442.13501
                                                                            0.422
                                                                                      16.533
                                                                                                  0.039
                                                           1742.31604
                                                                            0.220
                                                                                      16.241
                                                                                                  0.033
                      Phase
                                Vint
                                          Vinterr
                                                        26
     Dayval
1020.25500
                      0.259
                                16.718
                                           0.038
                                                           1744.30969
                                                                            0.419
                                                                                      16.488
                                                                                                  0.061
     1023.24670
                      0.072
                                16.982
                                            0.048
                                                        28
                                                           1758.27124
                                                                            0.827
                                                                                      16.353
                                                                                                  0.039
                                                                                                  0.040
     1055.15784
                                            0.044
                                                        29 1768.24304
                                                                            0.831
                                                                                      16.357
                      0.407
                                16.915
                                                                                                  0.043
                      0.739
                                            0.040
                                                           2061.44556
                                                                            0.430
                                                                                      16,509
                                16.694
                                                        30
     1354.34302
                                                                                                  0.044
   5 1355.34033
6 1377.27783
                                            0.043
                                                        31 2063.43896
                                                                            0.629
                                                                                      16.314
                      0.343
                                16.859
                                            0.047
                                                           2094.35229
                                                                            0.243
                                                                                      16.232
                                                                                                  0.048
                      0.631
                                16.816
                                                        32
                                                                                                  0.056
    1378.27502
                                            0.046
                                                        33 2095.34668
                                                                            0.837
                                                                                      16.520
                      0.235
                                16.771
                                            0.053
                                                        34 2110.30786
                                                                            0.851
                                                                                      16.334
                                                                                                  0.059
   8 1379.27307
                      0.843
                                16.810
                                                        35 2113.29956
36 2121.27734
                                                                            0.653
                                                                                      16.303
                                                                                                  0.046
                                16.905
                                            0.052
                      0.133
    1401.21143
                      0.342
                                16.846
17.016
                                            0.049
                                                                            0.457
                                                                                      16.530
                                                                                                  0.064
 10 1403.20605
                                                                            0.658
                                            0.059
                                                        37 2123.27148
                                                                                      16.247
                                                                                                  0.046
 11 1404.20325
                                                        38 2124.26587
                                                                            0.250
                                                                                      16.358
                                                                                                  0.049
                                            0.053
 12 1405.20032
                      0.550
                                17.011
                                                        39 2126.26294
                                                                                      16.546
                                                                                                  0.175
                                                                            0.458
                                            0.050
 13 1410.18616
                      0.571
                                16.937
                                                        40 2147.20508
                                                                            0.070
                                                                                      16.436
                                                                                                  0.057
                                            0.049
                                16.835
 14 1411.18384
                      0.176
                                                       41 2169.14160
42 2171.13916
43 2178.11987
                                                                            0.275
                                            0.053
                                                                                      16.440
                                                                                                  0.054
 15 1413.17786
                      0.383
                                16.888
                                            0.065
                                                                            0.484
                                                                                      16.570
                                                                                                  0.064
 16 1414.17542
                      0.989
                                17.087
                                                                            0.688
                                                                                      16.272
                                                                                                  0.045
    1416.16968
                      0.196
                                16.783
                                            0.067
17
                                                       44 2500.23853
45 2532.15063
46 3539.16724
47 3539.17798
48 3539.25732
                                                                            0.694
                                                                                      16.228
                                                                                                  0.058
 18 1417.16711
                      0.801
                                16.753
                                            0.079
                                                                            0.913
                                                                                      16.406
                                                                                                  0.076
     1418.16406
                      0.405
                                17.017
                                            0.175
  19
                                                                                                  0.020
                                                                                      16.616
                      0.865
                                                                            0.963
  20 1432.12549
                                16.736
                                            0.050
                                                                            0.991
                                                                                      16.634
                                                                                                  0.020
     1435.11731
                                16.794
                                            0.046
  21
                      0.678
                                                                            0.197
                                                                                      16.335
                                                                                                  0.016
  22 1436.11450
                      0.282
                                16.755
                                            0.049
                                                                            0.224
                                                                                      16.296
                                                                                                  0.017
  23
     1442.09802
                      0.908
                                16.867
                                            0.054
                                                        49 3539.26733
                                                                            0.454
                                                                                      16.619
                                                                                                  0.019
     1768.20618
                      0.547
                                17.018
                                            0.062
                                                        50 3539.35547
                                                                            0.478
0.597
                                                        51 3539.36475
52 3539.41016
53 3539.41968
                                                                                      16.677
                                                                                                  0.019
     2061.40869
                      0.256
                                16.694
                                            0.054
                                                                                      16.490
                                                                                                  0.019
     2063.40210
                      0.461
                                16.848
                                            0.065
  26
                                                                            0.621
                                                                                      16.426
                                                                                                  0.018
     2094.31543
                      0.190
                                16.669
                                            0.059
                                                        54 3539.46582
                                                                            0.741
                                                                                      16,275
                                                                                                  0.017
  28 2095.30981
                      0.784
                                16.750
                                            0.064
                                                                                      16.251
                                                                                                  0.018
                                                        55 3539.47534
  29 2110.27100
                      0.857
                                16.775
                                            0.071
                                                        56 3546.15967
                                                                            0.197
                                                                                      16.284
                                                                                                  0.023
  30 2113.26270
                      0.670
                                16.585
                                            0.063
                                                        57 3546.16919
                                                                            0.222
                                                                                      16.266
                                                                                                  0.021
  31 2121.24048
                      0.504
                                16.874
                                            0.084
                                                                            0.313
                                                                                      16.332
                                                                                                  0.018
  32 2123.23462
                      0.711
                                16.649
                                            0.065
                                                        58 3546.20410
                                                        59 3546.21338
60 3546.25146
                                                                            0.337
                                                                                      16.313
                                                                                                  0.020
  33 2124.23193
                      0.316
                                16.744
                                            0.069
                                                                                                  0.023
                                                                            0.437
                                                                                      16.588
                                            0.090
  34 2125.22925
                      0.920
                                16.998
                                            0.083
                                                        61 3546.26074
                                                                            0.461
                                                                                      16.641
                                                                                                  0.021
  35 2147.16821
                      0.214
                                16,680
                                            0.078
  36 2170.10498
                      0.113
                                16.721
                                                        3. RR012659
  37
     2171.10229
                      0.717
                                16.626
                                            0.070
                                            0.081
                                                         Dayval
1 1020.30090
                                                                            Phase
                                                                                      Vint
                                                                                                 Vinterr
  38 2178.08301
                      0.947
                                16.920
                                                                                      16.678
                                                                            0.038
                                                                                                  0.039
                                            0.086
  39 2499.20215
                      0.554
                                16.696
                                                         2 1023.29266
3 1055.20386
                                                                            0.607
                                                                                      16.627
                                                                                                  0.034
  40 3539.13892
                      0.154
                                16.797
                                            0.020
                                                                            0.012
                                                                                      16.671
                                                                                                  0.038
     3539.14990
                      0.193
                                16.756
                                            0.020
  41
                                                         4 1056.20068
5 1352.39343
6 1354.38892
                                                                                      16.542
                                17.070
17.053
                                                                                                  0.090
                                            0.022
0.021
                                                                            0.867
     3539.23486
                      0.500
  42
                                                                            0.265
                                                                                                  0.037
                                                                                      16.481
     3539.24512
  43
                      0.538
                                                                            0.981
                                                                                      16.669
                                                                                                  0.036
                                            0.018
  44
     3539.32153
                      0.814
                                16.726
                                                                                                  0.034
                                16.757
                                            0.018
                                                         7 1355.38623
                                                                            0.838
                                                                                      16.536
  45
     3539.33154
                      0.850
                                                                                      16.554
                                17.020
                                            0.022
                                                         8 1377.32385
                                                                            0.675
                                                                                                  0.036
                      0.055
  46
     3539.38818
                                                         9 1378.32092
                                                                            0.531
                                                                                      16.684
                                                                                                  0.039
                                            0.021
     3539.39844
                      0.092
                                16.917
  47
                                                                                      16.532
                                                                                                  0.044
                      0.255
                                            0.019
                                                        10 1379.31897
                                                                            0.389
                                16.703
  48
     3539.44360
                                                                                      16.528
                                                        11 1401.25732
                                                                            0.228
                                                                                                  0.035
 .49
     3539.45361
                      0.292
                                16,708
                                            0.020
                                                                                                  0.042
                                                        12 1403.25195
                                                                            0.942
                                                                                      16.640
                                                        13 1404.24927
                                                                            0.798
                                                                                                  0.041
                                                                                      16.460
     RR011358
  2.
                                                        13 1404.24927
14 1405.24622
15 1410.23206
16 1411.22974
17 1413.22388
                                                                            0.654
                                                                                      16.602
                                                                                                  0.034
                                           Vinterr
     Dayval
                      Phase
                                Vint
     1020.29187
                                16.368
                                                                            0.935
                                                                                      16.614
                                                                                                  0.042
                      0.360
                                            0.031
                                            0.032
                                                                            0.793
                                                                                      16.536
                                                                                                  0.037
     1023.28363
                      0.161
                                16.343
                                                                            0.505
                                                                                      16.671
                                                                                                  0.055
   3
     1055.19482
                      0.378
                                16.444
                                            0.031
                                                        17 1413.22388

18 1414.22083

19 1416.21558

20 1417.21301

21 1418.21008

22 1432.17151

23 1435.16333
                                                                                      16.544
                                                                                                  0.053
                                                                            0.360
     1056.19165
                      0.977
                                16.716
                                            0.121
                                                                            0.074
                                                                                      16.665
                                                                                                  0.053
                                            0.035
   5
     1352.38440
                      0.375
                                16.406
                                            0.031
                                                                            0.931
                                                                                      16.598
                                                                                                  0.066
   6
     1354.37988
                      0.578
                                16.520
                                                                            0.787
                                                                                      16.435
                                                                                                  0.098
   7
     1355.37720
                      0.179
                                16.312
                                            0.031
                                                                                                  0.033
                                            0.036
                                                                            0.777
                                                                                      16.517
   8 1377.31482
                      0.387
                                16.459
                                                                                                  0.041
                                                                                      16.525
                                16.600
                                            0.040
                                                                             0.347
   Q
     1378.31189
                      0.987
                                                        24 1436.16040
                                                                                      16.522
                                                                                                  0.039
                      0.590
                                16.494
16.356
                                            0.041
                                                                             0.203
 10 1379.30994
11 1401.24829
                                            0.030
                                                        25 1442.14404
                                                                             0.342
                                                                                      16.515
                                                                                                  0.041
                      0.800
                                            0.041
                                                        26 1742.32507
                                                                             0.164
                                                                                      16.562
                                                                                                  0.040
     1403.24292
                      0.001
                                16.686
  12
                                                        27 1744.31860
                                                                             0.874
                                                                                      16.542
                                                                                                  0.062
     1404.24011
1405.23718
                                            0.036
                      0.602
                                16.432
  13
                      0.202
                                            0.031
                                                        28 1758.28027
                                                                             0.865
                                                                                      16.523
                                                                                                  0.043
                                16.296
                      0.203
                                                                                      16.631
                                                        29 1768.25220
                                                                                                  0.046
                                            0.030
                                                                             0.428
                                16.304
  15 1410.22290
                                                                                                  0.049
                      0.805
                                            0.034
                                                        30 2061.45337
                                                                            0.257
                                                                                      16.488
  16 1411.22070
                                16.400
                                                        31 2063.44800
                                                                            0.971
                                                                                      16.654
                                                                                                  0.055
                                            0.051
     1413.21472
                      0.005
                                16.686
                                                        32 2095.35596
33 2110.31689
                                            0.038
                                                                            0.366
                                                                                      16.461
                                                                                                  0.050
  18 1414.21179
                      0.605
                                16.414
                                                                            0.220
                                                                                      16.525
                                                                                                  0.067
  19
     1416.20654
                      0.807
                                16.355
                                            0.043
                                                                                      16.535
                                                                                                  0.055
                                                        34 2113.30859
                                                                            0.788
  20 1417.20398
                      0.408
                                16.552
                                            0.062
                                                        35 2121.28638
                                                                                                  0.065
                                                                                      16.563
                                                                            0.640
     1418.20093
                      0.008
                                16.731
                                            0.130
                                                                                                  0.059
                                                                            0.352
                                                                                      16.434
                                16.474
                                                        36 2123.28052
     1432.16235
                      0.416
                                            0.039
                                                                                                  0.059
                                                                            0.207
                                                                                      16.506
     1435.15430
                      0.218
                                16.297
                                            0.029
                                                        37 2124.27734
                                            0.036
                                                        38 2126.27197
                                                                             0.920
                                                                                      16.570
                                                                                                  0.182
     1436.15137
                       0.818
                                16.343
```

```
0.079
                                                                                            0.018
                                                                                 16.682
39 2147.21411
                   0.906
                             16.611
                                        0.062
                                                    61 3641.25928
                                                                                            0.021
                                                                                 17.187
                             16.644
                                                                       0.883
   2171.14819
                   0.461
                                        .0.063
                                                    62
                                                       3660.08008
40
                                                                                            0.022
   2178.12891
                                                                                 16,917
                   0.456
                             16.602
                                        0.058
                                                    63
                                                       3660.09082
                                                                       0.904
                                                                                            0.038
                                                                       0.999
                   0.115
                                                                                 16.454
   2500.24756
                             16.586
                                        0.080
                                                    64
                                                       3660.13818
                                                                       0.028
                                                                                            0.067
   2532.15967
                   0.522
                             16.646
                                        0.086
                                                    65
                                                       3660.15234
                                                                                 16.487
                                        0.043
                                                       3666.12524
                                                                       0.025
                                                                                 16.597
                                                                                            0.015
44
   3540.20020
                   0.898
                             16.632
                                                    66
                                        0.037
                                                    67
                                                       3666.13965
                                                                       0.054
                                                                                 16.684
                                                                                            0.017
   3540.20947
                    0.925
                             16.735
                                        0.026
                                                    68
                                                       3666.18774
                                                                       0.151
                                                                                 16.943
                                                                                            0.020
   3540.28882
                    0.152
                             16.587
46
                                        0.026
                                                       3666.20825
                                                                       0.192
                                                                                 16.971
                                                                                            0.024
   3540.29834
                   0.179
                             16.536
47
                   0.032
                             16.707
                                        0.026
                                                    70
                                                       3666.25342
                                                                       0.282
                                                                                 17.142
                                                                                            0.028
   3546.18213
48
                                                       3666.26758
                                                                                 17.255
                                                    71
                                                                       0.311
                                                                                            0.030
                   0.059
                             16.718
                                        0.026
   3546.19165
                   0.174
                             16.558
                                        0.024
                                                       3685.06470
                                                                       0.067
                                                                                 16.882
                                                                                            0.022
   3546.23145
50
                   0.201
                             16.504
                                        0.027
                                                       3685.07886
                                                                       0.096
                                                                                 16.970
                                                                                            0.017
   3546.24097
51
                                                       3685.13965
                                                                       0.218
                                                                                 17.124
                                                                                            0.019
                             16.676
                                        0.026
   3546.33960
                   0.483
                    0.511
                                                       3685.15405
                                                                       0.247
                                                                                 17.149
                                                                                            0.020
                                        0.025
   3546.34937
                             16,684
53
                                                       3685.19995
                                                                       0.339
                                                                                 17.237
                                                                                            0.021
                                                                                 17.233
                                                       3685.21411
                                                                       0.368
                                                                                            0.022
4 .
   RR015856
                                       Vinterr
   Dayval
1020.32318
                   Phase
                             Vint
                                                        RR020150
                   0.612
                             17.145
                                        0.052
                   0.703
0.715
                                                       Dayval
1020.32520
                                                                       Phase
                                                                                 Vint
                                                                                            Vinterr
                             17.264
                                        0.059
   1050.23987
                                                                                 17.878
                             17.281
                                        0.078
                                                                       0.763
                                                                                            0.091
   1054.22852
                                        0.060
                                                       1023.31696
                                                                       0.249
                                                                                 17.434
                                                                                            0.061
                   0.718
                             17.283
   1055.22607
                                                                       0.618
                                                                                 17.902
                                                                                            0.087
                                                       1050.24194
                                        0.199
   1056.22302
                             17.547
                                                       1054.23047
                                                                       0.264
                                                                                 17.615
                                                                                            0.098
                   0.811
                             17.303
                                        0.063
   1086.13916
                                                                                            0.081
                                                       1055.22815
                                                                       0.427
                                                                                 17.939
                                        0.062
   1352.41565
                   0.660
                             17.281
                                                       1056.22498
                                        0.050
                                                                       0.588
                                                                                 18.187
                                                                                            0.327
   1354.41125
                   0.668
                             17.219
                                                                                 17.764
                                                                                            0.080
                                                       1086.14111
                                                                       0.441
   1355.40710
                   0.668
                             17.236
                                        0.059
                                                       1352.41772
                                        0.065
                                                                       0.683
                                                                                 17.900
                                                                                            0.106
10
   1377.34607
                   0.735
                            17.351
                                                       1354.41321
                                                                       0.009
                                                                                 17.039
                                                                                            0.049
                   0.738
   1378.34314
                             17.375
                                        0.068
11
                                                    10 1355.40918
11 1377.34814
                                                                       0.168
                                                                                            0.064
                                                                                 17.332
   1379.34131
                   0.743
                             17.378
                                        0.085
12
                                                                                 17.902
                                                                                            0.094
13
   1401.27954
                   0.809
                             17.246
                                        0.076
                                                       1378.34521
1379.34326
                                                                       0.890
                                                                                 18.151
                                                                                            0.123
                                        0.064
14
   1403.27417
                   0.815
                             17.432
                                                    12
                                                                                            0.063
                                                                       0.053
                                                                                 16.797
                                        0.080
                                                    13
15
   1404.27148
                   0.818
                             17.348
                                                       1401.28162
                                                                                 18.072
                                                                                            0.115
                                        0.070
                                                                       0.612
   1405.26843
                   0.821
                             17.331
                                                    14
16
                                                       1403.27625
                                                                       0.936
                                                                                 17.957
                                                                                            0.102
17
   1410.25427
                   0.835
                             17.409
                                        0.069
                                                    15
                                        0.095
                                                       1404.27344
                                                                       0.098
                                                                                 16.815
                                                                                            0.050
   1411.25195
                                                    16
18
                   0.839
                             17.466
                                                       1405.27051
                                                                                            0.070
                             17.442
                                        0.541
                                                    17
                                                                       0.259
                                                                                 17.375
19
   1412.24866
                   0.841
   1413.24573
                   0.844
                                        0.074
                                                       1410.25623
                                                                       0.067
                                                                                 16.710
                                                                                            0.043
                                                    18
20
                             17.375
                                        0.076
                                                       1411.25403
                                                                       0.230
                                                                                 17.315
                                                                                            0.067
                   0.847
                                                    19
21
   1414.24316
                             17.244
                                                                       0.552
                                                                                            0.114
   1416.23779
                   0.854
                                        0.093
                                                    20
                                                       1413.24768
                                                                                 17,964
                             17.367
                                                                       0.715
                                                                                            0.109
                             17.160
                                        0.106
                                                    21
                                                       1414.24512
                                                                                 17.961
   1417.23535
                   0.858
23
                                                                       0.039
                                                                                            0.051
                   0.860
                                                       1416.23987
                                                                                 16.726
                                        0.251
                                                    22
   1418.23230
                             17.590
                                                                                            0.097
                                        0.057
                                                       1417.23730
                                                                       0.201
                                                                                 17.202
   1432.19373
25
                   0.903
                             17,130
                                                                                            0.095
                                        0.061
                                                    24
                                                       1432.19568
                                                                       0.628
                                                                                 17.877
26
   1435.18555
                   0.913
                             16.988
                                                                                            0.059
                   0.916
                                        0.056
                                                       1435.18762
                                                                       0.114
                                                                                 17.186
27
                             17.077
   1436.18262
                                                                       0.276
                                                                                            0.084
                   0.934
                             16.682
                                        0.045
                                                    26
                                                       1436.18469
                                                                                 17.645
28
   1442.16626
   1742.34741
1744.34094
1758.30261
                   0.885
                             17.376
                                        0.067
                                                    27
                                                       1442.16833
                                                                        0.247
                                                                                 17.605
                                                                                            0.081
                                        0.092
                                                       1742.34937
                                                                       0.988
                                                                                 17.124
                                                                                            0.056
                    0.889
                             17,426
30
                                                       1744.34290
                                                                        0.310
                                                                                 17.704
                                                                                            0.113
                   0.932
                             17.531
                                        0.080
31
                                                                       0.576
                                                                                            0.099
                    0.962
                             16.833
                                        0.048
                                                    30
                                                       1758.30457
                                                                                 17.807
   1768.27441
32
                                                       1768.27649
                                                                       0.194
                                                                                            0.072
                    0.892
                                        0.088
                                                    31
                                                                                 17.299
33
   2061.47559
                             17.334
   2063.47021
2096.37769
                                                                                 17.952
                                                                                            0.131
                                        0.095
                                                       2061.47754
                                                                        0.804
                    0.899
                             17.537
                                                                                            0.065
                    0.997
                                        0.042
                                                    33
                                                       2063.47241
                                                                        0.128
                                                                                 16.940
35
                             16.365
                                        0.080
                                                       2096.37964
                                                                        0.466
                                                                                 17.755
                                                                                            0.129
   2110.33911
                    0.041
                             16.747
36
                                                                        0.217
   2113.33081
2121.30811
2123.30298
                    0.050
                             16,720
                                        0.065
                                                    35
                                                       2113.33276
                                                                                 17.537
                                                                                            0.110
37
                                        0.072
                                                    36
                                                       2121.31006
                                                                        0.510
                                                                                            0.164
                    0.073
                             16.697
38
                    0.080
                             16.789
                                        0.062
                                                       2123.30493
                                                                        0.835
                                                                                 17.300
                                                                                            0.110
39
                                                                        0.996
                                                                                            0.092
                                        0.075
                                                    38
                                                       2124.30176
                                                                                 17.058
   2124.29980
                    0.082
                             16.716
40
                                                       2126.29614
                                                                       0.319
0.718
                                                                                            0.373
   2126.29419
                    0.088
                                        0.203
                                                                                 17.590
                             16.819
41
   2147.23608
2148.23315
                                                       2147.23804
                                                                                 17.852
                                                                                            0.146
                                        0.079
                                                    40
                    0.152
                             17.007
                                                                                 17.671
                    0.155
                             17.117
                                        0.068
                                                       2148.23511
                                                                        0.879
                                                                                            0.121
                                                       2170.17505
                                                                                            0.141
                    0.224
                                        0.095
                                                                        0.441
                                                                                 17.661
   2170.17285
                             17.147
                                                       2178.15332
                                                                        0.737
                                                                                            0.143
   2178.15112
                    0.249
                             17.407
                                        0.105
                                                                                 17.833
                                                       2199.09570
                                                                        0.136
                                                                                            0.088
   2199.09375
                    0.315
                             17.245
                                        0.103
                                                    44
                                                                                 16.799
46
                                                                                 17.199
   2500.26978
                    0.263
                             17.437
                                        0.123
                                                       2500.27173
                                                                        0.035
                                                                                            0.107
47
                             17.382
                                        0.129
                                                    46
                                                       2532.18384
                                                                        0.214
                                                                                 17.502
                                                                                            0.161
   2532.18188
                    0.363
48
                                                                        0.307
                                                                                 17.706
                                                                                            0.033
                    0.728
                                        0.026
                                                       3175.26636
   3641.08423
                             17.401
49
                   0.756
0.785
                                        0.025
                                                       3175.28052
                                                                        0.338
                                                                                 17.743
                                                                                            0.044
   3641.09863
                                                    48
                             17.427
50
                                                       3175.32812
                             17.424
                                        0.025
                                                                        0.441
                                                                                 17.793
                                                                                            0.045
51
   3641.11279
                                        0.025
                                                       3175.34570
                                                                        0.479
                                                                                 17.516
                                                                                            0.037
   3641.12720
                    0.813
                             17.372
                                                    50
                                                                        0.365
                                                       3181.28955
                                                                                 17.742
                                                                                             0.032
                                        0.023
                                                    51
53
   3641.14258
                    0.844
                             17.230
                                                       3181.30444
3181.37085
                    0.879
                                        0.021
                                                                       0.397
                                                                                 17.765
                                                                                             0.035
   3641.15967
                             17.066
                                                                        0.541
                                                                                 17.758
                                                                                             0.042
                                                    53
55
   3641.17383
                   0.907
                             16.894
                                        0.018
                                                                        0.572
                                                                                 17.814
                                                                                            0.039
                                                       3181.38501
56
   3641.18823
                    0.936
                             16.661
                                        0.016
                                                    54
                                                                       0.674
                                                                                            0.037
                                                                                 17.891
                                                       3181.43237
57
   3641.20239
                    0.965
                             16.381
                                        0.014
                                                    55
                                                                        0.705
                                                                                 17.901
                                                                                            0.033
                                                    56
                                                       3181.44678
58
   3641.21655
                    0.993
                             16.331
                                        0.014
                                                       3181.46118
                                                                        0.737
                                                                                 17.804
                                                                                             0.034
                                                    57
59
   3641.23071
                    0.022
                             16.451
                                        0.015
                                                                                             0.025
                                                                                 17.419
60
   3641.24487
                    0.050
                             16.518
                                        0.015
                                                    58
                                                       3186.25195
                                                                        0.122
```

```
59 3186.26636
                   0.154
                            17.481
                                       0.025
                                                  37 2147.25879
                                                                     0.651
                                                                              13.904
                                                                                         0.011
                   0.184
                            17.508
                                       0.028
                                                  38 2148.25586
                                                                     0.407
                                                                              14.000
                                                                                         0.009
  3186.28076
60
                                                     2170.19580
                                                                     0.055
                                                                              14.029
                                                                                         0.011
  3186.29565
                   0.217
                                       0.030
                            17.544
61
                                                                              13.922
                   0.248
                                       0.033
                                                  40
                                                     2171.19263
                                                                     0.810
                                                                                         0.010
   3186.30981
                            17.543
62
                   0.278
                                                                     0.109
                                                                              13.980
                                                                                         0.009
                                       0.033
                                                  41 2178.17407
                            17.618
63
  3186.32397
                                                                                         0.012
                                       0.028
                                                  42 2199,11646
                                                                     0.000
                                                                              14.025
64
   3187.28662
                   0.365
                            17.741
                                       0.033
                                                  43 2500.29248
                                                                     0.540
                                                                              14.009
                                                                                         0.011
65
  3187.30151
                   0.397
                            17.673
                                                  44 2532.20459
                                                                     0.754
                                       0.052
                                                                              13.869
                                                                                         0.011
   3189.23584
                   0.591
                            17.859
66
                                       0.032
                                                  45 3539.21875
                                                                     0.208
                                                                              13.901
                                                                                         0.008
  3189.25146
67
                   0.625
                            17.851
                                                                     0.228
                                                                              13.877
                                                                                         0.008
                                                  46 3539.22412
68
   3189.26611
                   0.656
                            17.735
                                       0.041
                                                  47 3539.27612
48 3539.28076
                                                                              13.985
                                                                                         0.009
                                                                     0.425
   3189.28442
                   0.696
                            17.838
                                       0.026
                                                                     0.441
                                                                              14.003
                                                                                         0.009
                                       0.030
70
   3189.30322
                   0.737
                            17.823
                                                                     0.793
                                       0.027
                                                     3539.37402
                                                                              13.855
                                                                                         0.008
                                                  49
71
  3189.32251
                   0.778
                            17.716
                                                  50 3539.37842
                                                                     0.810
                                                                              13.860
                                                                                         0.008
72
   3189.34180
                   0.821
                            17.530
                                       0.039
                                                  51 3539.42969
52 3539.43433
                                       0.072
                                                                     0.003
                                                                              14.062
                                                                                         0.009
73
  3189.39209
                   0.930
                            17.137
                                                                     0.020
                                                                              14.058
                                                                                         0.009
74
   3232.27197
                   0.886
                            18.072
                                       0.041
                                                  53 3539.48438
  3232.28638
                                       0.048
                                                                     0.209
                                                                              13.889
                                                                                         0.009
75
                   0.917
                            17.819
                                                                              13.889
                                                                                         0.008
                                                                     0.226
76
   3234.07812
                   0.801
                            17.966
                                       0.041
                                                  54 3539.48877
77
   3234.09229
                   0.832
                            17.970
                                       0.049
                                                  7.
   3234.13940
                   0.934
                            17.703
                                       0.031
                                                      RR034622
78
                                                                              Vint
                                                                                        Vinterr
                                                                     Phase
  3234.15356
                   0.965
                            17.277
                                       0.023
                                                     Dayval
                                                                              18.101
                                                                     0.573
                                                                                         0.117
80
   3234.20166
                   0.069
                            16.831
                                       0.019
                                                     1020.39801
                                                                     0.897
   3234.21606
                   0.100
                                       0.022
                                                   2
                                                     1023.38971
                                                                              18.185
                                                                                         0.104
                            16.931
                                                                                         0.119
                                                                              18,152
   3234.27173
                   0.221
                            17.270
                                       0.028
                                                   3
                                                     1050.31458
                                                                     0.816
                                                                              17.983
                                                                                         0.138
  3234.28589
                   0.252
                            17.439
                                       0.028
                                                   4 1054.30334
                                                                     0.915
83
   3234.31836
                   0.322
                            17.539
                                       0.032
                                                   5
                                                     1055.30090
                                                                     0.690
                                                                              18.040
                                                                                         0.115
                                                     1056.29785
1086.21362
                                                                                         0.271
   3234.33252
                   0.353
                            17.564
                                       0.040
                                                   6
                                                                     0.464
                                                                              18.061
                                                                     0.705
                                                                                         0.115
   3234.38989
                   0.477
                            17.790
                                       0.046
                                                                              18.262
                                                                     0.054
                                                                              17.435
                                                                                         0.136
   3234.40430
                   0.508
                            17.739
                                       0.046
                                                   8 1120.12292
                                                                                         0.119
88
   3234.42700
                   0.558
                            17.854
                                       0.040
                                                   a
                                                     1352.49048
                                                                     0.600
                                                                              18.179
                                                                                         0.077
                                                  10 1377.42090
                                                                              17.532
   3546.30371
                   0.653
                            17.889
                                       0.046
                                                                     0.968
                                                                     0.743
   3546.36108
                   0.777
                            17.850
                                       0.042
                                                  11
                                                     1378.41797
                                                                              18.100
                                                                                         0.121
90
   3546.37207
                   0.801
                            17.689
                                       0.035
                                                  12 1379.41614
                                                                     0.519
                                                                              18.196
                                                                                         0.161
   3559.28125
                   0.786
                                       0.028
                                                  13 1401.35327
                                                                     0.561
                                                                              18.133
                                                                                         0.188
                            17.689
   3559.29199
                   0.809
                                       0.025
                                                  14 1403.34790
                                                                     0.111
                                                                              17.611
                                                                                         0.085
                            17.391
   3559.36499
                            17.055
                                       0.023
                                                  15
                                                     1404.34631
                                                                     0.888
                                                                              18.080
                                                                                         0.129
                   0.968
   3559.37573
                   0.991
                            17.093
                                       0.022
                                                  16 1405.34326
                                                                     0.662
                                                                              18.213
                                                                                         0.129
95
                            17.505
                                       0.027
                                                  17
                                                     1410.32910
                                                                     0.535
                                                                              17.991
                                                                                         0.124
96
   3559.44727
                   0.146
   3559.45801
                   0.169
                            17,489
                                       0.027
                                                  18 1411.32593
                                                                     0.309
                                                                              17.914
                                                                                         0.118
                                                  19
                                                     1412.32349
                                                                     0.085
                                                                              17.606
                                                                                         0.088
                                                  20 1413.32043
                                                                     0.859
                                                                              18.228
                                                                                         0.159
6.
   RR023140
                                                     1414.31750
                                                                     0.633
                                                                              18.412
                                                                                         0.166
   Dayval
                   Phase
                            Vint
                                      Vinterr
                                                  21
   1020.34595
                   0.534
                            14.003
                                       0.007
                                                  22 1416.31213
                                                                     0.183
                                                                              17.589
                                                                                         0.104
                   0.804
                            13.871
                                       0.006
                                                  23 1417.31018
                                                                     0.959
                                                                              17.647
                                                                                         0.085
   1023.33771
   1050.26270
                            13.828
                                       0.006
                                                  24 1432.26855
                                                                     0.581
                                                                              18.030
                                                                                         0.118
                   0.232
   1054.25134
                                       0.007
                                                  25 1436.25745
                                                                     0.680
                                                                              18.125
                                                                                         0.132
                   0.257
                            13.836
   1055.24890
                   0.015
                            14.028
                                       0.007
                                                  26 1442.24109
                                                                     0.329
                                                                              17.919
                                                                                         0.121
   1086.16199
                   0.465
                            14.011
                                       0.006
                                                  27 1742.42224
                                                                     0.563
                                                                              18.412
                                                                                         0.139
   1352.43848
                   0.538
                            14.044
                                       0.007
                                                  28 1744.41565
                                                                     0.111
                                                                              17.641
                                                                                         0.091
                   0.055
                                       0.006
                                                  29
                                                     1758.37634
                                                                     0.957
                                                                              17.638
                                                                                         0.103
   1354.43396
                            14.049
  1355.42993
1377.36890
                            13.871
                                       0.006
                                                  30 1768.34924
                                                                     0.705
                                                                              18.117
                                                                                         0.146
                   0.806
                                       0.007
                                                  31 1816.21643
                                                                     0.895
                                                                              18.140
                                                                                         0.133
                   0.451
                            14.020
  1378.36597
                   0.207
                            13.898
                                       0.007
                                                  32 2096.45239
                                                                     0.632
                                                                              18.166
                                                                                         0.151
   1379.36401
                   0.967
                            14.043
                                       0.009
                                                  33 2121.38281
                                                                     0.001
                                                                              17.295
                                                                                         0.066
   1401.30237
                   0.609
                            13.960
                                       0.008
                                                  34 2123.37769
                                                                     0.551
                                                                              17.941
                                                                                         0.194
   1403.29700
                   0.123
                            13.958
                                       0.007
                                                  35 2124.37451
                                                                     0.325
                                                                              17.917
                                                                                         0.162
                                                  36 2125.37134
                                                                                         0.128
   1404.29431
                   0.880
                            13.978
                                       0.007
                                                                     0.099
                                                                              17.670
   1405.29126
                                       0.007
                                                  37 2126.36890
                                                                     0.874
                                                                              18.142
                                                                                         0.515
16
                   0.636
                            13.922
   1410.27710
                            13.997
                                       0.007
                                                  38 2147.31055
                                                                     0.144
                                                                              17.688
                                                                                         0.134
                   0.417
   1412.27148
                   0.930
                            13.957
                                       0.011
                                                  39 2148.30786
                                                                     0.919
                                                                              17.768
                                                                                         0.155
  1413.26843
                   0.686
                            13.887
                                       0.007
                                                  40 2170.24731
                                                                     0.965
                                                                              17.445
                                                                                         0.124
                                       0.008
                                                  41 2171.24438
                                                                     0.740
                                                                              18.046
                                                                                         0.201
20
   1414.26587
                   0.443
                            13.990
                                                                     0.164
                                                                              17.797
                   0.955
                                                  42 2178.22534
                                                                                         0.157
21
   1416.26013
                            14.041
                                       0.008
   1417.25806
                                                  43 2199.16846
                                                                     0.436
                                                                              17.877
                                                                                         0.231
                   0.715
                            13.860
                                       0.008
22
                                                                     0.860
23
   1418,25513
                   0.471
                            13.888
                                       0.023
                                                  44 2206.14917
                                                                              18.153
                                                                                          0.203
                   0.064
                            14.014
                                       0.007
                                                  45 2500.34448
                                                                     0.441
                                                                              18.206
                                                                                          0.194
   1432.21655
24
                                                  46 2532.25659
                                                                     0.235
                                                                                          0.198
   1435.20837
                   0.334
                            13.900
                                       0.007
                                                                              18.070
  1436.20544
1442.18909
                                                                     0.254
                   0.090
                            13.978
                                       0.008
                                                  47
                                                     3666.16357
                                                                              17.744
                                                                                          0.037
26
                                                                     0.267
                                                                              17.888
                                                                                          0.042
27
                            13.922
                                       0.007
                                                  48 3666.17090
                   0.631
                                                                                          0.050
   1742.37024
                            13.967
                                       0.007
                                                  49 3666.28296
                                                                     0.467
                                                                              18.125
28
                   0.422
                   0.932
                            14.009
                                       0.008
                                                  50 3666.29736
                                                                     0.492
                                                                              18,106
                                                                                          0.073
   1744.36365
   1758.32434
                            13.992
                   0.522
                                       0.008
                                                  51 3666.33032
                                                                     0.551
                                                                              18.099
                                                                                          0.066
30
                                                                     0.576
   1768, 29724
                   0.090
                            13.957
                                       0.008
                                                  52
                                                     3666.34448
                                                                              18.145
                                                                                          0.066
31
                   0.066
                            14.042
                                       0.009
                                                     3681.09570
                                                                     0.829
                                                                              18.279
                                                                                          0.037
                                                  53
   2096.40039
32
                                                     3681.11035
                                                                     0.855
                                                                              18.289
                                                                                          0.039
                            14.025
                                       0.010
                                                  54
   2113.35352
                   0.929
33
                   0.979
                                                                     0.977
                            14.008
                                       0.005
                                                  55
                                                     3681.17871
                                                                              17.534
                                                                                          0.027
   2121.33081
34
                   0.494
   2123.32568
                            14.034
                                       0.011
                                                  56
                                                     3681.19312
                                                                     0.002
                                                                                          0.030
35
                                       0.010
                                                                     0.066
                                                                              17.599
                                                                                          0.063
                   0.249
                                                     3681,22900
   2124.32251
                            13.872
```

				0 mr m			
58 3685.09399	0.945	17.660	0.027	9. CN Tau	Phago	Vint	Vinterr
59 3685.10840	0.970	17.573	0.023	Dayval 1 1020.48920	Phase 0.903	12.617	0.003
60 3685.12256 61 3685.16870	0.996 0.078	17.449 17.600	0.023 0.025	2 1023.48096	0.571	12.900	0.004
62 3685.18311	0.103	17.642	0.025	3 1050.40503	0.585	12.937	0.003
63 3685.22900	0.185	17.777	0.028	4 1054.39453	0.810	12.593	0.004
64 3685.24316	0.210	17.812	0.029	5 1056.38818	0.922	12.545	0.005
65 3685.28198	0.279	17.965	0.035	6 1086.30481	0.605	12.899	0.004
66 3685.29614	0.305	17.905	0.031	7 1120.21375	0.514	12.908	0.004
				8 1121.21118	0.070	12.553	0.004
8. RR040258			771 - 4	9 1142.15466	0.749	12.863	0.003 0.003
Dayval	Phase	Vint	Vinterr	10 1144.14929 11 1401.44434	0.862 0.341	12.683 12.781	0.006
1 1020.40955	0.279 0.646	17.635 17.795	0.074 0.078	12 1403.43909	0.454	12.891	0.004
2 1023.40131 3 1050.32593	0.943	17.793	0.085	13 1404.43750	0.010	12.568	0.003
4 1054.31482	0.432	17.957	0.106	14 1405.43457	0.566	12.922	0.004
5 1055.31250	0.556	18.003	0.117	15 1410.41919	0.346	12.777	0.004
6 1056.30933	0.677	17.741	0.209	16 1411.41711	0.903	12.619	0.003
7 1086.22510	0.339	17.619	0.071	17 1412.41467	0.459	12.879	0.004
8 1120.13452	0.505	17.925	0.177	18 1413.41089	0.014	12.553	0.003
9 1377.43250	0.072	18.002	0.111	19 1414.40869	0.571	12.798	0.004
10 1378.42957	0.193	17.655	0.079	20 1416.40259	0.683	12.892	0.004
11 1379.42761	0.318	17.659	0.104	21 1417.40137 22 1419.39429	0.240 0.351	12.710 12.803	0.004
12 1401.36475	0.001 0.246	18.054 17.732	0.167 0.097	23 1432.35974	0.581	12.914	0.004
13 1403.35950 14 1404.35779	0.371	17.513	0.079	24 1436.34875	0.806	12.771	0.004
15 1405.35486	0.493	17.994	0.108	25 1442.33228	0.142	12.622	0.003
16 1410.34070	0.103	17.708	0.088	26 1496.18506	0.173	12.621	0.003
17 1411.33740	0.224	17.585	0.097	27 1504.16333	0.622	12.899	0.005
18 1412.33508	0.347	17.436	0.089	28 1758.46729	0.434	12.864	0.004
19 1413.33203	0.469	17.775	0.111	29 1768.43933	0.995	12.569	0.003
20 1414.32910	0.590	17.814	0.096	30 1816.30762	0.688	12.904	0.004
21 1416.32373	0.835	17.443	0.094	31 1818.30188	0.801	12.787 12.875	0.004 0.006
22 1417.32166	0.960	17.812	0.098	32 1832.26367 33 1874.15063	0.586 0.944	12.576	0.003
23 1432.28003 24 1435.27197	0.792 0.159	17.477 17.591	0.078	34 1875.14795	0.501	12.873	0.004
25 1436.26904	0.139	17.543	0.084	35 2124.46484	0.531	12.892	0.005
26 1442.25269	0.015	18.052	0.125	36 2125.46265	0.088	12.557	0.004
27 1496.10547	0.621	17.764	0.112	37 2126.45947	0.644	12.895	0.012
28 1742.43213	0.838	17.606	0.086	38 2147.40161	0.322	12.774	0.005
29 1744.42725	0.085	17.962	0.114	39 2148.39868	0.878	12.656	0.004
30 1758.38757	0.793	17.593	0.088	40 2170.33813	0.112	12.599	0.004
31 1768.36084	0.018	18.112	0.137	41 2171.33545	0.669	12.901	0.006
32 1816.22803	0.883	17.555	0.097	42 2178.31641	0.561	12.864	0.005 0.009
33 2121.39453	0.320	17.657	0.153	43 2199.25977 44 2202.25098	0.240 0.908	12.777 12.559	0.009
34 2123.38843 35 2124.38599	0.563 0.687	17.799 17.468	0.174 0.127	45 2207.23755	0.689	12.885	0.005
36 2125.38281	0.807	17.628	0.124	46 2230.17554	0.481	12.843	0.005
37 2126.38013	0.929	17.799	0.396	47 2237.15674	0.374	12.828	0.005
38 2147.32202	0.496	17.974	0.214	48 2500.43530	0.190	12.637	0.005
39 2148.31934	0.618	17.664	0.129	49 2532.34692	0.985	12.522	0.005
40 2170.25903	0.308	17.618	0.126	50 2569.24634	0.562	12.881	0.059
41 2171.25586	0.430	17.758	0.155	51 3231.36523	0.791	12.813	0.007
42 2178.23706	0.287	17.250	0.115	52 3231.36768 53 3231.45020	0.792 0.838	12.813 12.722	0.007 0.007
43 2199.18018 44 2206.16089	0.857 0.713	17.522 17.543	0.147 0.131	54 3231.45264	0.839	12.716	0.007
45 2500.35620	0.800	17.617	0.148	55 3231.50244	0.867	12.668	0.007
46 2532.26831	0.713	17.610	0.139	56 3231.50488	0.869	12.666	0.007
47 3540.31470	0.776	17.621	0.037	57 3234.25928	0.405	12.841	0.007
48 3540.32544	0.809	17.573	0.035	58 3234.26172	0.406	12.849	0.007
49 3545.29443	0.366	17.408	0.040	59 3234.29810	0.426	12.864	0.007
50 3545.30542	0.401	17.632	0.046	60 3234.30054	0.428	12.855	0.007
51 3545.35010	0.541	17.886	0.055	61 3234.34302	0.451	12.868	0.007 0.007
52 3545.35962	0.571	17.829	0.049	62 3234.34546	0.453 0.491	12.875 12.898	0.007
53 3545.43408	0.803	17.547	0.036 0.033	63 3234.41431 64 3234.41675	0.492	12.895	0.007
54 3545.44409 55 3546.27515	0.835 0.437	17.544 17.780	0.043	65 3234.46777	0.521	12.903	0.007
56 3546.28613	0.471	18.100	0.051	66 3234.47021	0.522	12.901	0.007
57 3546.38501	0.781	17.411	0.070	67 3234.51611	0.548	12.902	0.007
58 3622.13574	0.947	17.913	0.035	68 3234.51880	0.549	12.912	0.007
59 3622.14990	0.991	18.132	0.038	69 3298.05249	0.979	12.552	0.007
60 3622.19751	0.140	17.635	0.029	70 3298.05518	0.980	12.553	0.007
61 3622.21143	0.184	17.589	0.027	71 3298.10889	0.010	12.563	0.006
62 3622.26880	0.363	17.622	0.029	72 3298.11133	0.011 0.028	12.551 12.561	0.006 0.006
63 3622.28174 64 3622.39844	0.404 0.769	17.810 17.607	0.032 0.026	73 3298.14014 74 3298.14282	0.028	12.560	0.006
65 3622.41284	0.769	17.623	0.027	75 3298.22412	0.074	12.573	0.006
00 0022111204	0.014	2,1040	0.027	76 3298.22656	0.076	12.570	0.006

77 3298.30469	0.119	12.602	0.006	11. RR075350	Db	372	Minton
78 3298.30737	0.121	12.593	0.006	Dayval	Phase	Vint 16.229	Vinterr 0.029
79 3298.38428	0.164	12.642	0.007	1 1050.48743	0.539 0.845	16.118	0.033
80 3298.38672	0.165	12.642	0.007	2 1054.47607 3 1055.47339	0.422	16.179	0.033
81 3298.43921	0.194	12.662	0.007	4 1086.38538	0.291	16.065	0.027
82 3298.44165	0.196	12.669	0.007	5 1119.29626	0.321	16.094	0.027
10. RR064946				6 1120.29382	0.899	15.940	0.029
Dayval	Phase	Vint	Vinterr	7 1121.29114	0.475	16.184	0.042
1 1050.44299	0.347	18.206	0.127	8 1142.23376	0.584	16.174	0.028
2 1054.43274	0.157	18.403	0.179	9 1144.22827	0.738	16.301	0.029
3 1055.42883	0.854	18.216	0.119	10 1173.14978	0.460	16.206	0.027
4 1056.42627	0.557	18.736	0.465	11 1174.14709	0.037	15.876	0.024
5 1086.34167	0.605	18.088	0.122	12 1405.51770	0.820	16.245	0.031
6 1119.25159	0.769	18.059	0.100	13 1410.50220	0.700	16.222	0.037
7 1120.24915	0.472	18.472	0.161	14 1412.49768	0.855	16.068	0.037
8 1121.24658	0.174	18.094	0.193	15 1413.49390	0.430	16.187	0.031
9 1142.18909	0.914	18.685	0.150	16 1414.49158	0.007	15.797	0.031
10 1144.18372	0.318	18.110	0.123	17 1416.48547	0.159	15.984	0.025
11 1403.47766	0.834	18.238	0.150	18 1417.48413	0.738	16.252	0.032
12 1404.47400	0.532	18.463	0.184	19 1419.47693	0.888	15.977	0.029
13 1405.47302	0.241	18.048	0.108	20 1436.43079	0.691	16.289	0.029
14 1410.45764	0.744	18.066	0.104	21 1442.41418	0.151	15.981	0.027
15 1412.45312	0.151	18.110	0.131	22 1496.26465	0.285	16.008 15.981	0.035 0.031
16 1413.44922	0.849	18.170	0.149	23 1504.24268	0.898 0.161	15.970	0.029
17 1414.44702	0.553	18.377	0.181 0.173	24 1527.18030 25 1528.17761	0.737	16.305	0.036
18 1416.44080	0.954	18.659 18.061	0.173	26 1529.17480	0.314	16.100	0.031
19 1417.43958 20 1419.43237	0.661 0.058	18.228	0.135	27 1530.17224	0.891	15.988	0.027
21 1442.36951	0.203	18.089	0.111	28 1816.38904	0.382	16.149	0.036
22 1496.22009	0.099	18.468	0.208	29 1818.38269	0.534	16.201	0.034
23 1504.19812	0.714	18.147	0.156		0.606	16.211	0.056
24 1527.13574	0.860	18.169	0.140	31 1851.29211	0.561	16.225	0.043
25 1528.13306	0.562	18.259	0.149	32 1854.28394	0.291	16.112	0.067
26 1529.13025	0.264	18.055	0.118	33 1855.28125	0.868	16.008	0.026
27 1530.12756	0.966	18.561	0.185	34 1874.22974	0.824	16.138	0.034
28 1758.50549	0.719	17.959	0.146	35 1875.22717	0.401	16.174	0.033
29 1768.47791	0.737	18.193	0.150	36 1880.21313	0.284	16.094	0.032
30 1816.34448	0.421	18.507	0.200	37 1902.15405	0.971	15.897	0.027
31 1818.33862	0.823	18.146	0.176	38 1904.14868	0.124	15.957	0.028
32 1832.29968	0.648	18.246	0.252	39 2148.48071	0.398	16.183	0.039
33 1850.25024	0.281	17.963	0.133	40 2178.39746	0.694	16.199	0.051
34 1851.24744	0.983	18.685	0.239	41 2199.33911	0.802	16.256 16.264	0.074 0.053
35 1854.23926	0.089	18.153	0.157	42 2202.33105	0.532 0.416	16.236	0.033
36 1855.23657	0.791	18.042	0.127 0.129	43 2207.31787 44 2230.25464	0.677	16.335	0.050
37 1874.18506 38 1875.18250	0.129 0.832	17.961 18.185	0.129	45 2237.23560	0.714	16.262	0.059
39 1880.16870	0.341	18.111	0.144	46 2262.16821	0.131	15.950	0.056
40 2125.50122	0.031	18.818	0.302	47 2532.42847	0.396	16.225	0.049
41 2126.49805	0.731	18.006	0.482	48 2569.32642	0.729	16.293	0.537
42 2147.43994	0.468	18.459	0.254	49 3298.12085	0.907	15.904	0.025
43 2171.37256	0.308	18.322	0.205	50 3298.13184	0.925	15.904	0.022
44 2178.35327	0.220	18.438	0.235	51 3298.20288	0.037	15.845	0.021
45 2199.29492	0.957	18.765	0.280	52 3298.21338	0.054	15.837	0.021
46 2202.28662	0.063	18.140	0.245	53 3298.28369	0.165	16.011	0.024
47 2207.27319	0.573	18.142	0.201	54 3298.29443	0.182	16.045	0.024
48 2230.21045	0.717	17.919	0.182	55 3298.36401	0.292	16.094	0.021
49 2237.19116	0.630	18.075	0.223	56 3298.37476	0.309	16.074	0.021
50 2500.47314	0.950	18.439	0.313	57 3298.45630	0.438	16.169	0.022
51 2532.38403	0.405	18.728	0.256	58 3298.46704	0.455	16.179 16.185	0.021 0.025
52 3331.11255	0.335	18.140	0.033	59 3298.50366 60 3298.51440	0.512 0.530	16.180	0.023
53 3331.13062	0.402	18.410	0.039 0.032	61 3308.11060	0.700	16.274	0.028
54 3331.21558 55 3331.23340	0.718 0.784	18.014 18.043	0.032	62 3308,12134	0.717	16.276	0.026
56 3331.29663	0.018	18.542	0.041	63 3308.20459	0.849	16.089	0.023
57 3331.34644	0.204	18.116	0.036	64 3308.21533	0.866	16.016	0.023
58 3331.36426	0.269	18.098	0.036	65 3308.29883	0.998	15.877	0.023
59 3342.08936	0.082	18.460	0.072	66 3308.30933	0.015	15.802	0.022
60 3342.10010	0.122	18.204	0.064	67 3308.39404	0.149	15.946	0.022
61 3342.11084	0.162	18.184	0.053	68 3308.40503	0.166	15.992	0.022
62 3342.12476	0.213	18.258	0.058				
63 3342.13550	0.253	18.092	0.045	12. RR084652	-		***
64 3342.14624	0.293	18.108	0.054	Dayval	Phase	Vint	Vinterr
65 3622.30273	0.252	17.994	0.036	1 1054.51318	0.027	15.550	0.022
66 3622.31763	0.307	18.104	0.031	2 1055.51062	0.831	16.698 16.704	0.037
67 3622.36890	0.497	18.670	0.052	3 1086.42249 4 1119.33313	0.760 0.304	16.704	0.038 0.029
68 3622.38306	0.550	18.555	0.047	5 1121.32800	0.914	16.306	0.040
				O 1111105000	0.024		

```
8 1174.19373
                                                                                  16.155
                                                                                              0.028
                                                                        0.848
 6 1142.27026
                    0.804
                             16.579
                                         0.035
                                                                                  16.507
                                                                                              0.039
                             16.489
                                                                        0.790
   1144.26501
                    0.413
                                         0.034
                                                        1175.19092
                                                                                              0.045
   1172.18896
                    0.936
                             15,899
                                         0.026
                                                     10 1435.48096
                                                                         0.604
                                                                                  16,698
                                                                                              0.042
   1173.18640
                    0.740
                             16.688
                                         0.041
                                                     11
                                                       1436.47803
                                                                        0.545
                                                                                  16.732
                                                                                              0.029
10 1174.18372
                    0.545
                                         0.041
                                                     12 1442.46143
                                                                         0.195
                                                                                  16.226
                             16.685
11 1175.18091
12 1417.52136
                                         0.046
                                                     13 1496.31152
                                                                        0.048
                                                                                  15.957
                                                                                              0.035
                    0.349
                             16.455
                                                     14 1504.28870
                                                                         0.580
                                                                                  16.549
                                                                                              0.038
                    0.812
                             16.586
                                         0.044
13 1419.51416
14 1435.47083
                    0.418
                                                    15 1526.22913
16 1527.22693
                                                                         0.301
                                                                                  16.398
                                                                                              0.035
                             16.453
                                         0.042
                                                                         0.243
                                                                                  16.327
                                                                                              0.031
                             16.361
                                         0.039
                    0.092
                                         0.024
                                                     17 1528.22424
                                                                         0.185
                                                                                  16.242
                                                                                              0.030
15 1436.46802
                             15,900
                    0.918
                                                     18 1529.22144
                                                                         0.127
                                                                                              0.029
   1442.45129
1496.30151
1504.27869
                             16.056
                                         0.030
                                                                                  16.131
16
                    0.348
                             16.441
                                         0.047
                                                     19 1530.21887
                                                                         0.069
                                                                                  15.977
                                                                                              0.029
                             16.681
                                         0.046
                                                     20 1531.21570
                                                                         0.010
                                                                                  15.859
                                                                                              0.025
18
19 1527.21692
                                                     21 1550.16467
                                                                         0.906
                                                                                  15.866
                                                                                              0.028
                    0.283
                             16.375
                                         0.038
                                                     22 1552.15942
                                                                         0.790
                                                                                  16.641
                                                                                              0.042
                                         0.034
                    0.088
   1528.21423
                             16,190
20
                    0.892
                                                     23 1816.43616
                                                                         0.366
                                                                                  16.397
                                                                                              0.044
                             16.232
                                         0.033
21
   1529.21143
                                         0.042
                                                     24 1818.42981
                                                                         0.248
                                                                                  16,289
                                                                                              0.034
22
   1530.20886
                    0.696
                             16,603
                                                     25 1832.39136
                                                                                              0.056
                                                                        0.433
                                                                                  16.603
                    0.393
                             16.572
                                         0.046
23 1552.14941
                                                    26 1850.34155
27 1851.33899
28 1854.33081
                                                                         0.384
                    0.546
                                         0.055
                                                                                  16.433
                                                                                              0.042
24
   1816.42615
                             16.680
                                                                                  16.388
                                                                        0.326
                                                                                              0.046
                                         0.035
25
   1818.41980
                    0.153
                             16.323
                                                                        0.151
                                                                                  16.122
                                                                                              0.048
                             16.585
                                         0.067
26
   1832.38135
                    0.413
                                                    26 1855.32800
29 1855.32800
30 1856.32483
31 1874.27649
32 1875.27380
                                                                        0.093
                                                                                  16.111
                                                                                              0.030
                                         0.035
27
   1850.33154
                    0.890
                             16.238
                                                                         0.034
                                                                                  16.122
                                                                                              0.028
28
   1851.32898
                    0.695
                             16.659
                                         0.063
                                                                        0.988
                                                                                  15.777
                                                                                              0.023
                                         0.055
                    0.108
                             16.236
15.781
29
   1854.32080
                                                                                              0.021
                                                                                  15.530
                                         0.022
                                                                        0.930
   1855.31799
30
                    0.912
                                                     33 1880.25989
                                                                        0.638
                                                                                  16.690
                                                                                              0.048
   1874.26648
                    0.195
                             16.428
                                         0.037
31
                                                    34 1886.24341
                                                                         0.289
                                                                                  16.351
                                                                                              0.040
   1875.26379
32
                    1.000
                             16.048
                                         0.034
                                                     35 1902.20068
                                                                        0.359
                                         0.030
                                                                                  16.388
                                                                                              0.042
33 1880.24988
                    0.021
                             16.112
                                                     36 1904.19519
                                                                         0.243
                                                                                  16.220
                                                                                              0.032
   1886.23340
                                         0.047
34
                    0.847
                             16.513
                                                    36 1904.19319
37 1910.17883
38 2202.37769
39 2207.36475
40 2230.30151
                                         0.054
                                                                         0.894
                                                                                  16.085
                                                                                              0.033
35
   1902.19067
                    0.718
                             16.698
                                                                         0.838
                                                                                  16.294
                                                                                              0.056
36
   1904.18530
                    0.327
                             16.590
                                         0.038
                                                                         0.548
                                                                                  16.498
                                                                                              0.056
                             16.543
                                         0.053
37
   2148.51782
                    0.395
                             16.045
                                                                         0.209
                                                                                  16.271
                                                                                              0.053
                                         0.043
38
   2202.36792
                    0.825
                                                     41 2237.28223
                                                                                  16.599
                                                                                              0.083
                             15.769
                                         0.041
                                                                         0.801
39
   2207.35474
                    0.847
                                                                         0.348
                                         0.068
                                                     42 2262.21484
                                                                                  16.317
                                                                                              0.060
40
   2230.29150
                    0.347
                             16.513
                                                     43 2263.21191
                                                                         0.289
                                                                                  16.427
                                                                                              0.095
                    0.977
                                         0.052
41 2237.27222
                             16.102
                                                     44 2289.14209
                                                                         0.778
                                                                                  16.615
                                                                                              0.069
42
   2262.20483
                    0.087
                             16.355
                                         0.055
                                                     45 2569.37329
46 3298.17896
                                         0.048
                                                                         0.420
                                                                                  16.517
                                                                                              0.626
43 2263.20190
                    0.891
                             16.088
                                                                         0.486
                                                                                  16.396
                                                                                              0.028
44 2532.46558
                    0.066
                             16.233
                                         0.052
                                                    47 3298.18970
48 3298.26001
                                         0.450
                                                                                  16.358
                                                                                              0.027
45 2569.36328
                    0.825
                             15.865
                                                                                  16.427
                                                                                              0.026
                                                                         0.644
                                         0.026
46 3234.36548
                    0.004
                             15.792
                                                     49 3298.27075
                                                                         0.665
                                                                                              0.025
                                                                                  16.455
47
   3234.37622
                    0.024
                             15.771
                                         0.023
                                                     50 3298.34033
51 3298.35107
                                                                                  16.377
                                                                                              0.025
48
   3234.44409
                    0.147
                             16.058
                                         0.024
                                                                         0.800
                                         0.020
                                                                         0.821
                                                                                  16.360
                                                                                              0.025
49
   3234.45483
                    0.166
                             16.101
                                                     52 3298.41895
                                                                         0.954
                                                                                  15.868
                                                                                              0.022
                                         0.023
50
   3234.49829
                    0.245
                             16.240
                                                     53 3298.42969
                                         0.023
                                                                         0.975
                                                                                  15.877
                                                                                              0.020
51
   3234.50903
                    0.264
                             16.277
                             16.517
                                         0.026
                                                     54 3298.49121
                                                                         0.094
                                                                                  16.026
                                                                                              0.023
52
   3298.15479
                    0.418
                                                     55 3298.53882
                                                                         0.187
                                                                                  16.137
                                                                                              0.028
   3298.16577
                                         0.028
53
                    0.437
                             16.503
                                                     56 3308.18140
                                                                         0.962
                                                                                  15.842
                                                                                              0.026
                    0.564
                                         0.026
54
   3298.23584
                             16.658
                                                     57 3308.19214
                                                                         0.983
                                                                                  15.874
                                                                                              0.024
                             16.705
                                         0.024
55
   3298.24658
                    0.584
                                                     58 3308.22778
                                                                         0.053
                                                                                  15.985
                                                                                              0.025
56
   3298.31616
                    0.710
                             16.697
                                         0.024
                                                     59 3308.23877
                                                                         0.074
                                                                                  16.051
                                                                                              0.024
                                         0.024
57
   3298.32690
                    0.729
                             16.676
16.741
                                                     60 3308.32227
                                                                         0.236
                                                                                  16.120
                                                                                              0.025
                                         0.025
58
   3298.39551
                    0.853
                                                     61 3308.33301
                                                                         0.257
                                                                                  16.110
                                                                                              0.023
                                         0.025
59
   3298.40649
                    0.873
                             16.735
                                                                         0.423
                                                     62 3308.41797
                                                                                  16.311
                                                                                              0.023
60
   3298.47949
                    0.005
                             15.598
                                         0.020
                                                     63 3308.42871
64 3331.15259
                                                                                  16.314
                                                                                              0.025
                                                                         0.444
61
   3298.52686
                    0.091
                             15.873
                                         0.024
                                                                         0.690
                                                                                  16.609
                                                                                              0.026
62
   3307.14551
                    0.684
                             16.616
                                         0.028
                                                                                              0.026
                                                     65 3331.16333
                                                                                  16.561
   3307.15625
                    0.704
                             16.621
                                         0.027
                                                                         0.711
63
                                                     66 3331.25293
67 3331.26367
                                                                                              0.023
                                                                                  16.233
                                                                         0.885
64
   3307.19971
                    0.782
                             16.598
                                         0.024
                                                                                              0.022
                                                                                  15.884
65
   3307.21045
                    0.802
                             16.599
                                         0.026
                                                                         0.906
                                                                                  15.442
                                                                                              0.023
                                                                         0.004
   3307.25049
                    0.874
                             16.679
                                         0.034
                                                     68 3331.31421
66
   3307.25781
                    0.887
                             16.695
                                         0.027
67
   3307.31763
                    0.996
                             15.645
                                         0.020
                                                     14. RR095659
68
                                                                         Phase
                                                                                  Vint
                                                                                             Vinterr
                                                        Dayval
   3307.32837
                    0.015
                             15.603
                                         0.020
                                                      1 1086.47302
                                                                         0.774
                                                                                  16.648
                                                                                              0.034
70
   3307.38892
                    0.125
                             15.968
                                         0.022
                                                                         0.515
                                                                                  16.819
                                                                                              0.041
   3307.39966
                    0.144
                             15.994
                                         0.022
                                                      2 1119.38208
                                                                                              0.049
                                                                                  16.756
72
   3307.47119
                    0.273
                             16.323
                                         0.024
                                                      3 1121.37671
                                                                         0.469
                                                                                              0.041
                                                                         0.484
                                                                                  16.802
   3307.48169
                    0.293
                             16.310
                                         0.023
                                                      4 1142.31836
                                                                                              0.037
                                                      5 1172.23608
                                                                                  16.618
                                                                         0.272
0.750
                                                                                              0.038
13. RR090118
                                                      6 1173.23340
                                                                                  16.579
                                                      7 1174.23071
                                                                                              0.042
   Dayval
                                                                                  16.689
                    Phase
                             Vint
                                        Vinterr
                                                                                              0.041
   1055.52075
                    0.778
                             16.529
                                         0.036
                                                      B 1175.22791
                                                                         0.226
                                                                                  16.519
                                                        1179.21667
                                                                                              0.048
   1086.43250
                    0.967
                             15.680
                                         0.018
                                                      Q
                                                                         0.134
                                                                                  16.414
                                                                                              0.045
   1119.34314
                    0.048
                             16.026
                                         0.024
                                                     10 1435.52185
                                                                         0.765
                                                                                  16,750
 4 1121.33813
                              15.855
                                         0.029
                                                     11 1436.51892
                                                                         0.242
                                                                                  16.482
                                                                                              0.038
                    0.932
   1142.28027
                    0.709
                             16.612
                                         0.032
                                                     12 1442.50208
                                                                         0.103
                                                                                  16.318
                                                                                              0.034
                                                                                              0.054
 6 1172.19897
                    0.964
                             15.984
                                         0.025
                                                     13 1496.34900
                                                                         0.845
                                                                                  16.408
                                                     14 1504.32715
                                                                         0.661
                                                                                  16.796
                                                                                              0.049
 7 1173.19641
                    0.906
                             15.864
                                         0.021
```

```
17.956
                                                                                              0.125
                    0.155
                                         0.039
                                                     26 1854.38953
                                                                         0.060
15 1526.26660
                              16.440
   1527.26440
                    0.634
                              16.859
                                         0.041
                                                     27
                                                        1855.38721
                                                                         0.865
                                                                                  18.319
                                                                                              0.161
16
   1528.26111
                    0.109
                              16.370
                                         0.036
                                                     28 1856.38391
                                                                         0.668
                                                                                  18,395
                                                                                              0.168
   1529.25879
18
                    0.588
                              16.876
                                         0.048
                                                     29
                                                        1874.33484
                                                                         0.140
                                                                                  17.924
                                                                                              0.154
   1530.25610
                    0.065
                                         0.037
                                                     30 1875.33215
                                                                         0.945
                                                                                  17.905
                                                                                              0.131
                              16.348
                                                        1880.31799
                                                                         0.964
                                                                                  17,951
                                                                                              0.122
20
   1531.25293
                    0.540
                             16.790
                                         0.051
                                                        1886.30127
                                                                         0.787
                                                                                  18.564
                                                                                              0.210
   1550.20142
                    0.606
                             16.800
                                         0.052
21
                                                     33 1902.25793
                                                                         0.653
                                                                                  18.525
                                                                                              0.211
   1552.19604
                    0.561
                              16.826
                                         0.055
22
                                                     34 1904.25244
                                                                         0.261
                                                                                  18.315
                                                                                              0.136
   1816.47668
                    0.999
                                         0.043
23
                             16.346
                                         0.037
                                                     35 1932.17651
                                                                         0.774
                                                                                  18.605
                                                                                              0.243
   1818.47021
                    0.950
                             16.365
24
                                                                                              0.179
                                         0.055
                                                     36 1935.16846
                                                                         0.187
                                                                                  18.165
                              16.800
25
   1832.43127
                    0.627
                                                     37 1936.16577
38 1910.23584
                                         0.043
                                                                         0.991
                                                                                  17.941
                                                                                              0.140
26
   1850.38074
                    0.209
                              16.487
                                                                         0.084
                                                                                  18.126
                                                                                              0.137
                                         0.069
27
   1851.37805
                    0.686
                              16.812
                                                     39 2202.43726
40 2230.36011
                                         0.043
                                                                                              0.277
                                                                         0.668
                                                                                  18.476
28
   1854.36926
                    0.115
                              16.405
                                                                         0.179
                                                                                  18.083
                                                                                              0.175
29
   1855.36694
                    0.594
                              16.850
                                         0.044
                                                                         0.907
                                                     41 2262.27222
42 2263.26904
                                                                                  17.953
                                                                                              0.154
30
   1856.36365
                    0.069
                             16.374
                                         0.035
                                                                                              0.293
                                                                                  18.541
31
   1874.31458
                    0.656
                             16.737
                                         0.051
                                                                                              0.299
                                                     43 2290.19604
                                                                         0.421
                                                                                  18.504
   1875.31189
                    0.134
                              16.409
                                         0.044
                                                                         0.441
                                                     44 2295.18262
                                                                                  18.438
18.700
                                                                                              0.235
33
   1880.29773
                    0.517
                              16.789
                                         0.050
                                                     45 3357.18628
46 3357.20435
                                                                                              0.061
34
   1886.28101
                    0.379
                             16.666
                                         0.050
                                                                                  18.401
                                                                                              0.066
                                                                         0.606
35
   1902.23767
                    0.013
                             16.375
                                         0.036
                                                                                              0.042
                                                                         0.258
                                                     47 3363.09302
                                                                                  18,254
36
   1904.23218
                    0.967
                              16.407
                                         0.034
                                                                         0.290
                                                                                  18.315
                                                                                              0.044
37
   1932.15625
                    0.327
                             16.591
                                         0.053
                                                     48 3363.11084
                                                                         0.387
                                                     49 3363.16431
50 3363.18213
                                                                                              0.041
                                                                                  18,492
38
   1935.14819
                    0.759
                             16.790
                                         0.052
                                                                         0.419
                                                                                  18.395
                                                                                              0.051
39
   1910.21558
                    0.829
                              16.574
                                         0.046
   2202.41699
2207.40430
                                         0.078
                                                                                  18.397
                                                                                              0.051
                    0.616
                              16.875
                                                     51 3363.23438
                                                                         0.514
40
                                                     52 3363.25195
                                                                         0.546
                                                                                              0.045
                                                                                  18.442
41
                    0.004
                              16.418
                                         0.048
                                                     53 3363.31860
54 3363.33618
                                         0.051
                                                                         0.666
                                                                                  18.502
                                                                                              0.043
12
   2230.33984
                    0.972
                              16.366
                                                                         0.698
                                                                                  18.491
                                                                                              0.044
43
   2237.32031
                    0.310
                              16.612
                                         0.104
                                         0.055
                                                                                              0.052
                                                     55 3363.38794
                                                                         0.792
                                                                                  18.335
44
   2262.25195
                    0.236
                              16.549
                                                     56 3363.40576
57 3622.33789
58 3622.35059
                                                                         0.824
                                                                                  18.349
                                                                                              0.043
   2263.24902
                    0.713
45
                              16.763
                                         0.108
                                         0.068
                                                                         0.224
                                                                                  18.190
                                                                                              0.039
46
   2289.17871
                    0.118
                              16.444
                                                                         0.247
                                                                                  18.229
                                                                                              0.035
                              16.752
                                         0.103
47
   2290.17578
                    0.595
                                                     59 3622.46680
60 3622.48096
61 3666.21948
                                                                         0.457
                                                                                              0.040
                                         0.061
                                                                                  18.423
48
   2295.16235
                    0.981
                              16.385
                                                                                  18.477
                                                                                              0.038
49
   2569.41284
                    0.181
                              16.454
                                         0.644
                                                                         0.483
                                                                         0.605
                                                                                  18.866
                                                                                              0.112
                                         0.015
50
   3331.18237
                    0.161
                              16.386
                                         0.015
                                                        3666.23389
                                                                         0.631
                                                                                  18.689
                                                                                              0.088
51
   3331.19751
                    0.214
                              16.427
                                                     62
                                                                                              0.048
                                                     63 3666.31396
                                                                         0.776
                                                                                  18,671
52
   3331.27954
                    0.499
                              16.806
                                         0.018
                                                                                              0.042
                                                                         0.861
                                                                                  18.395
                                                        3666.36133
53
   3331.32983
                    0.675
                              16.808
                                         0.018
                                                     64
                                                        3666.37549
3666.38965
                                                                         0.887
                                         0.014
                                                                                  18,086
                                                                                              0.049
   3331.41357
                    0.967
                              16.382
                                                     65
                                                                         0.913
                                                                                  17.986
                                                                                              0.042
55
   3331.47876
                    0.194
                              16.435
                                         0.015
                                                     66
                                                                         0.938
                                         0.015
                                                                                  17.911
                                                                                              0.030
                                                        3666.40381
56
   3331.49292
                    0.244
                              16.504
                                                     67
                                                                         0.969
                                                                                  17.798
                                                                                              0.030
                                                        3666.42065
57
   3342.23535
                    0.698
                              16.761
                                         0.032
                                                     68
                                                     69 3666.43506
70 3685.31177
                                                                         0.995
                                         0.029
                                                                                  17.746
                                                                                              0.035
58
   3342.24609
                    0.735
0.773
                              16.756
                                                                                  17.925
                                                                                              0.040
   3342.25684
                                         0.027
                                                                         0.142
59
                              16.719
                    0.812
                                         0.026
                                                     71 3685.34009
72 3685.35425
                                                                         0.193
                                                                                  18.123
                                                                                              0.036
   3342.26807
60
                              16.614
   3342.29858
                    0.918
                                                                         0.219
                                                                                  18.159
                                                                                              0.037
                                         0.020
61
                              16.363
                    0.955
                                         0.020
   3342.30908
62
                              16.363
                                         0.021
                                                          RR103617
   3342.31982
                    0.993
                              16.349
                                                     16.
63
                                                        Dayval
1086.50037
                                                                         Phase
                                                                                  Vint
                                                                                             Vinterr
                                         0.020
   3342.33057
64
                    0.030
                              16.339
                                                                         0.840
                                                                                  18.282
                                                                                              0.105
                                                      2 1119.40942
3 1121.40405
                                                                         0.381
                                                                                  18.103
                                                                                              0.107
15.
     RR102605
                                                                         0.202
                                                                                  17.895
                                                                                              0.102
                             Vint
                                        Vinterr
   Dayval
                    Phase
                                                      4 1142.34570
5 1144.33960
                                                                         0.818
   1086.49329
                              17.951
                                                                                  18,325
                                                                                              0.122
                    0.959
                                         0.091
                                                                                  18.239
                                                                                              0.127
   1119.40234
                    0.491
                              18.299
                                         0.145
                                                                         0.638
                                                      6 1172.26343
7 1173.26074
                                                                         0.129
                                                                                  17.851
                                                                                              0.094
   1121.39685
                    0.099
                              17.791
                                         0.107
                                                                                              0.132
                                                                         0.539
                                                                                  18,107
   1142.33862
                    0.982
                              17.785
                                         0.093
                                                      8 1174.25806
9 1175.25525
                                                                         0.950
                              18.527
                                                                                              0.106
   1144.33252
                    0.589
                                         0.148
                                                                                  17.894
   1172.25635
                    0.102
                              17.947
                                         0.106
                                                                         0.360
                                                                                  18.156
                                                                                              0.153
   1173.25366
                    0.906
                              18.165
                                         0.132
                                                     10 1179.24402
                                                                         0.001
                                                                                  17.502
                                                                                              0.113
   1174.25098
                    0.710
                              18.559
                                         0.164
                                                     11 1528.28845
                                                                         0.633
                                                                                  18.129
                                                                                              0.136
                                                     12 1530.28345
13 1578.15332
   1175.24817
                    0.514
                              18.593
                                         0.176
                                                                         0.454
                                                                                  18.120
                                                                                              0.126
   1179.23694
                    0.730
                              18.372
                                         0.200
                                                                         0.153
                                                                                  17,780
                                                                                              0.107
10
                                                                                  18.052
   1442.52234
                    0.005
                              17.861
                                         0.104
                                                     14 3342.20093
                                                                         0.935
                                                                                              0.066
12
   1496.36926
                    0.412
                              18.216
                                         0.159
                                                     15 3351.13062
                                                                         0.564
                                                                                  18.326
                                                                                              0.041
                                         0.183
   1504.34729
                    0.845
                              18.591
                                                     16 3351.20728
                                                                         0.672
                                                                                  18.216
                                                                                              0.038
13
   1526.28687
                    0.533
                              18.512
                                         0.156
                                                     17 3351.33057
                                                                         0.847
                                                                                  18.430
                                                                                              0.036
                              18.319
   1527.28381
                    0.336
                                         0.141
                                                     18 3351.34839
                                                                         0.872
                                                                                  18.360
                                                                                              0.040
   1528.28137
                    0.140
                              18.042
                                         0.126
                                                     19 3352.09473
                                                                         0.927
                                                                                  17.873
                                                                                              0.054
   1529.27905
                              17.918
                                         0.122
                                                     20 3352.11255
                                                                         0.952
                                                                                  17.765
                                                                                              0.088
                    0.945
   1530.27637
                    0.749
                                                     21 3356.10938
                                                                         0.605
                                                                                   18.307
                                                                                              0.044
                              18.626
                                         0.181
   1531.27319
                    0.553
                                                     22 3356.12744
                                                                         0.631
                                                                                   18.279
                                                                                              0.042
                              18.328
                                         0.164
20
   1550.22168
                    0.830
                                                     23 3356.19385
                                                                         0.724
                                                                                  18.217
                                                                                              0.045
                              18.617
                                         0.180
   1552.21631
                    0.438
                              18.357
                                         0.167
                                                        3356.23877
                                                                         0.788
                                                                                   18.351
                                                                                              0.044
                              17.996
                                                        3356.28687
                                                                         0.856
                                                                                              0.047
   1818.49048
                    0.120
                                         0.138
                                                                                   18.444
                                                                         0.921
                                                                                   18.009
   1832.45154
                    0.375
                              18.446
                                         0.197
                                                     26
                                                        3356.33301
                                                                                              0.032
   1850.40088
                    0.845
                              18.392
                                         0.176
                                                     27
                                                        3356.38599
                                                                         0.996
                                                                                  17.564
                                                                                              0.029
24
                                                     28
                                                        3356.40381
                                                                         0.021
                                                                                  17.590
                                                                                               0.030
   1851.39832
                    0.649
                              18,487
                                         0.223
```

				•				,
	29 3622.43628	0.254	17.916	0.035	59 3363.28516	0.943	16.526	0.014
	30 3622.45093	0.275	18.029	0.035	60 3363.35498	0.156	16.559	0.015
		0.341		0.037	61 3363.36938	0.199	16.613	0.015
	31 3622.49731		18.029	0.036	62 3363.42456	0.368	16.796	0.017
	32 3622.51196	0.361	18.113			0.411	16.841	0.017
	33 3622.52612	0.381	18.191	0.038	63 3363.43872	0.411	10.041	0.017
	34 3622.54028	0.401	18.176	0.060	10 700114020			
	35 3641.28809	0.915	18.237	0.072	18. RR114832	D 1	172 4-	175 m do n 1111
	36 3641.30249	0.936	17.960	0.054	Dayval	Phase	Vint	Vinterr
	37 3641.31665	0.956	17.807	0.044	1 1119.46143	0.426	15.436	0.017
	38 3641.33081	0.976	17.726	0.045	2 1121.45605	0.762	15.675	0.018
	39 3641.37109	0.032	17.578	0.040	3 1142.39673	0.791	15.677	0.019
	40 3641.38525	0.053	17.704	0.043	4 1172.31335	0.834	15.675	0.022
	41 3641.41968	0.101	17.738	0.039	5 1173.31067	0.502	15.557	0.019
	42 3641.43408	0.122	17.913	0.036	6 1174.30798	0.170	14.987	0.013
		0.173	17.871	0.042	7 1175.30505	0.838	15.699	0.027
	43 3641.47070				8 1179.29370	0.510	15.558	0.024
	44 3641.48486	0.194	17.951	0.045			15.127	0.016
	45 3641.53833	0.269	17.988	0.047	9 1496.42761	0.993		
					10 1504.40576	0.338	15.318	0.017
	17. RR105742				11 1527.34106	0.703	15.661	0.022
	Dayval	Phase	Vint	Vinterr	12 1528.33875	0.372	15.373	0.018
	1 1086.51526	0.944	16.622	0.030	13 1529.33630	0.041	14.638	0.012
	2 1119.42432	0.387	16.701	0.035	14 1530.33374	0.709	15.684	0.023
	3 1121.41895	0.474	16.649	0.034	15 1531.33044	0.376	15.381	0.018
	4 1142.36060	0.391	16.742	0.036	16 1550.27771	0.070	14.694	0.012
	5 1144.35449	0.477	16.823	0.041	17 1552.27271	0.407	15.423	0.022
		0.704	16.971	0.049	18 1578.20166	0.780	15.668	0.020
				0.047	19 1590.16919	0.798	15.652	0.024
	7 1173.27563	0.748	16.982			0.864	15.750	0.027
	8 1174.27295	0.792	-16.928	0.049	20 1851.45654			0.027
	9 1175.27014	0.835	16.956	0.056	21 1854.44849	0.869	15.746	
	10 1179.25903	0.010	16.501	0.046	22 1855.44617	0.538	15.584	0.022
	11 1496.39124	0.939	16.514	0.037	23 1856.44287	0.205	15.062	0.015
	12 1504.36938	0.289	16.722	0.042	24 1874.39294	0.231	15.129	0.020
	13 1526.30896	0.251	16.677	0.044	25 1875.39026	0.900	15.798	0.028
	14 1527.30579	0.294	16.689	0.043	26 1880.37512	0.238	15.119	0.016
	15 1528.30334	0.339	16.773	0.039	27 1886.35840	0.246	15.175	0.019
	16 1529.30103	0.384	16.797	0.048	28 1932.23230	0.981	15.121	0.024
	17 1530.29846	0.428	16.888	0.045	29 1935.22412	0.986	15.087	0.016
	18 1531.29517	0.470	16.908	0.050	30 1936.22131	0.654	15.629	0.025
	19 1550.24329	0.302	16.762	0.043	31 1910.29199	0.281	15.238	0.018
	20 1552.23828	0.391	16.847	0.051	32 2202.49634	0.064	14.690	0.019
	21 1578.16821	0.533	16.999	0.048	33 2207.48218	0.404	15.458	0.027
	22 1818.51245	0.095	16.481	0.046	34 2216.45703	0.416	15.449	0.029
		0.706	16.943	0.062	35 2237.39795	0.445	15.501	0.030
		0.663	17.041	0.057	36 2243.38135	0.453	15.495	0.031
	24 1854.41150					0.149	14.977	0.020
	25 1855.40930	0.709	16.924	0.048			15.055	0.024
	26 1856.40601	0.751	16.815	0.046	38 2289.25464	0.188		0.040
	27 1874.35681	0.539	16.958	0.069	39 2290.25146	0.855	15.732	
	28 1875.35413	0.583	16.971	0.067	40 2295.23828	0.197	15.075	0.023
	29 1880.33923	0.798	16.638	0.040	41 2318.17603	0.565	15.619	0.027
	30 1886.32324	0.062	16.517	0.046	42 2323.16260	0.907	15.790	0.029
	31 1902.27991	0.764	16.729	0.052	43 2569.49170	0.952	15.654	0.390
	32 1904.27441	0.852	16.499	0.038	44 3342.21509	0.518	15.495	0.018
	33 1935.19043	0.211	16.669	0.047	45 3342.22241	0.530	15.561	0.019
	34 1936.18774	0.255	16.791	0.050	46 3342.28027	0.627	15.571	0.016
	35.1910.25745	0.112	16.646	0.042	47 3342.28760	0.639	15.606	0.015
	36 2202.45923	0.950	16.564	0.052	48 3342.34302	0.732	15.582	0.017
	37 2207.44531	0.168	16.618	0.052	49 3342.35010	0.744	15.580	0.016
	38 2216.42017	0.561	17.005	0.074	50 3356.14600	0.821	15.686	0.016
	39 2230.38208	0.175	16.650	0.056	51 3356.15405	0.834	15.674	0.016
	40 2237.36206	0.479	16.932	0.079	52 3356.20679	0.923	15.525	0.016
	41 2243.34546	0.740	16.898	0.068	53 3356.25342	0.001	14.557	0.012
	42 2262.29419	0.575	16.972	0.083	54 3356.30151	0.081	14.738	0.013
				0.090	55 3356.30908	0.094	14.792	0.013
	43 2263.29102	0.617	16.921		56 3356.31665	0.107	14.825	0.013
	44 2289.22070	0.758	16.753	0.081				
-	45 2290.21802	0.802	16.687	0.071	57 3356.34741	0.158	14.985	0.012
	46 2295.20459	0.021	16.541	0.058	58 3356.35498	0.171	15.000	0.013
	47 2569.45435	0.067	16.467	0.584	59 3356.36255	0.183	15.035	0.013
	48 3351.17480	0.980	16.566	0.016				
	49 3351.22803	0.143	16.501	0.014	19. GR Com			
	50 3351.37451	0.590	17.016	0.018	Dayval	Phase	Vint	Vinterr
	51 3351.38892	0.634	16.997	0.018	1 1119.47278	0.198	16.203	0.027
	52 3357.24829	0.517	17.018	0.055	2 1121.46729	0.020	15.851	0.022
	53 3357.26245	0.560	17.019	0.045	3 1142.40796	0.150	16.140	0.026
	54 3363.13086	0.471	16.924	0.017	4 1172.32458	0.481	16.628	0.041
	55 3363.14502	0.515	16.991	0.018	5 1173.32190	0.392	16.473	0.037
	56 3363.20093	0.686	17.023	0.020	6 1174.31921	0.303	16.349	0.033
					7 1175.31628	0.214	16.220	0.033
	57 3363.21533	0.729	16.975	0.019				0.043
	58 3363.27100	0.899	16.579	0.014	8 1179.30493	0.858	16.615	0.043

```
10 1504.41699
                    0.889
                              16.688
                                          0.039
                                                     25
                                                        1856.45459
                                                                         0.667
                                                                                   16.092
                                                                                               0.027
11 1526.35486
                    0.930
                              16.314
                                          0.032
                                                     26 1875.40210
                                                                         0.913
                                                                                   16,058
                                                                                               0.036
12
   1527.35229
                    0.842
                              16.762
                                          0.049
                                                     27
                                                        1880.38684
                                                                         0.712
                                                                                   16,091
                                                                                               0.030
                    0.753
                                          0.049
                                                     28 1886.37012
                                                                         0.474
                                                                                   16.019
                                                                                               0.034
13 1528.34998
                              16.658
                                                     29 1902.32666
                                                                         0.841
                                                                                   16.104
                                                                                               0.051
14 1529.34753
                    0.665
                              16.678
                                          0.041
                                                     30 1919.27893
                                                                         0.166
                                                                                   15.551
                                                                                               0.038
15 1530.34497
                    0.577
                              16.656
                                          0.042
                                                     31 1932.24402
                                                                         0.653
                                                                                   16.070
                                                                                               0.039
16 1531.34167
                    0.487
                              16.655
                                          0.042
17 1550.28894
                                                     32 1934.23804
                                                                         0.573
                                                                                   16.103
                                                                                               0.037
                    0.796
                             16.748
                                          0.045
18 1552.28394
                    0.619
                              16.701
                                          0.048
                                                     33 1935.23584
                                                                         0.534
                                                                                   16.067
                                                                                               0.034
                                                     34 1936.23315
                                                                          0.494
                                                                                               0.034
19 1578.21289
                    0.309
                              16.414
                                          0.034
                                                                                   16.024
20 1590.18042
                    0.243
                              16.303
                                          0.037
                                                     35 1942.21643
                                                                          0.256
                                                                                   15.775
                                                                                               0.085
21 1832.52112
                    0.654
                              16.652
                                          0.051
                                                     36 1910.30383
                                                                         0.523
                                                                                   16.076
                                                                                               0.033
   1851.46777
                                                     37 2202.50806
                                                                         0.934
                                                                                   15.868
                                                                                               0.043
                    0.963
                              16.025
                                          0.031
22
   1854.45972
                                                     38 2207.49414
                                                                          0.736
                                                                                   16.117
                                                                                               0.044
                    0.697
                              16.695
                                          0.044
23
   1855.45740
1856.45410
                                                     39 2216.46875
                                                                         0.378
                                                                                   15.874
                                                                                               0.036
                    0.609
                              16.624
                                          0.043
24
                    0.519
                             16.632
                                          0.036
                                                     40 2237.40991
                                                                          0.544
                                                                                   16.104
                                                                                               0.043
25
   1875.40149
1880.38635
                                                     41 2243.39307
                                                                                               0.035
                             16.769
                                          0.059
                                                                         0.306
                                                                                   15.779
                    0.829
26
                                                     42 2262.34106
43 2263.33716
44 2289.26636
                                                                                   16.070
27
                    0.381
                              16.488
                                          0.040
                                                                         0.554
                                                                                               0.049
                                         0.050
                                                                         0.512
28 1886.36963
29 1902.32617
                                                                                   16.078
                                                                                               0.046
                    0.848
                             16.616
                                                                                               0.051
                    0.426
                                          0.077
                                                                         0.483
                                                                                   16.057
                             16.552
                                         0.082
                                                     45 2290.26318
                                                                                   15.954
                                                                                               0.050
                    0.912
0.758
                                                                         0.442
30 1919.27832
                             16.453
                                                     46 2318.18774
31 1932.24353
32 1934.23755
                                         0.065
                                                                         0.336
                                                                                   15.826
                                                                                               0.032
                             16.757
                                                     47 2323.17432
48 3641.35059
                                         0.056
                                                                         0.138
                                                                                   15.465
                                                                                               0.022
                    0.580
                             16.657
                                                                                   15.839
                                                                         0.393
                                                                                               0.019
                                         0.047
33 1935.23535
                    0.492
                              16.674
                                                     49 3641.35913
                                                                                   15.849
                                                                                               0.019
34 1936.23254
                    0.403
                              16.607
                                          0.044
                                                                         0.410
                                                     50 3641.39990
                                                                                   16.001
                                                                                               0.018
                                                                         0.490
35
   1942.21594
                    0.869
                              16.690
                                          0.150
                                                     51 3641.40869
52 3641.45093
53 3641.45972
54 3641.50879
55 3641.51758
                                          0.050
                                                                         0.507
                                                                                   16.001
                                                                                               0.018
36 1910.30322
                    0.713
                              16.666
                                                                         0.590
                                                                                   16.026
                                                                                               0.017
37 2202.50757
                    0.681
                              16.741
                                          0.074
                                                                         0.607
                                                                                   16.045
                                                                                               0.017
                                         0.047
38 2207.49341
                    0.236
                              16.242
                                                                                   16.099
                                                                                               0.019
                                          0.056
39 2216.46826
                    0.435
                             16.568
                                         0.068
                                                                         0.721
                                                                                   16.075
                                                                                               0.019
                             16.756
40 2237.40918
                    0.565
                                                     56 3641.52710
                    0.032
                              15.966
                                          0.038
                                                                         0.740
                                                                                   16.064
                                                                                               0.018
41 2243.39258
42 2262.34058
43 2263.33667
44 2289.26587
                                          0.055
                                                     57 3641.55444
                                                                                   15.991
                                                                                               0.021
                                                                         0.794
                    0.343
0.252
                             16.457
                                                     58 3683.36133
                                                                          0.977
                                                                                   15.025
                                                                                               0.010
                              16.306
                                          0.054
                                         0.047
                    0.941
                             16.084
                                                      59 3683.37012
                                                                         0.994
                                                                                   14.966
                                                                                               0.015
45 2290.26270
                                          0.087
                                                      60 3683.37866
                                                                                               0.012
                    0.852
                             16,820
                                                                         0.011
                                                                                   15.028
46 2318.18726
                             16.414
16.169
                                          0.048
                                                      61 3683.38721
                                                                         0.028
                                                                                   15.061
                                                                                               0.015
                    0.365
                    0.921
                                          0.038
                                                      62 3683.39600
                                                                          0.045
                                                                                   15.124
                                                                                               0.027
   2323.17383
                                                      63 3683.40454
                                                                          0.062
                                                                                   15.152
                                                                                               0.070
48 2569.50293
                    0.976
                              16.005
                                          0.498
49 3351.29761
                                          0.018
                    0.175
                              16.062
                    0.197
50 3351.30908
                              16.105
                                          0.018
                                                     21.
                                                           GS Com
                                                         Dayval
                                                                        Phase
                    0.980
                              15.852
                                          0.018
                                                                                   Vint
                                                                                              Vinterr
51 3361.11035
   3361.12109
                                                       1 1119.48645
                                                                                   16.900
52
                    0.000
                                          0.016
                                                                         0.821
                                                                                               0.042
                              15.614
                                                       2 1121.48096
                                                                         0.589
                                                                                   16.757
                                                                                               0.038
53 3361.19629
                             15.982
                                          0.018
                    0.144
                                                                                               0.029
   3361.20703
                    0.165
                             16.029
                                          0.018
                                                       3 1142.42163
                                                                         0.141
                                                                                   16.189
54
55 3361.27588
                    0.297
                             16,307
                                          0.020
                                                       4 1172.33826
                                                                         0.646
                                                                                   16.789
                                                                                               0.045
                                                                                   16.700
56 3361.28662
                             16.346
                                          0.021
                                                       5 1173.33557
                                                                         0.529
                                                                                               0.044
                    0.317
57 3361.35840
                                                       6 1174.33289
                                                                                               0.040
                             16.535
                                          0.023
                                                                         0.413
                                                                                   16.625
                    0.455
                                                      7 1175.32996
8 1179.31860
                                         0.023
                             16.562
                                                                         0.296
                                                                                   16.461
                                                                                               0.038
                    0.475
58 3361.36914
59 3361.43872
                    0.609
                                          0.024
                                                                         0.830
                                                                                   16.846
                                                                                               0.053
                             16.674
60 3361.44946
                             16.682
                                          0.024
                                                        1496.45251
                                                                         0.818
                                                                                   16.852
                                                                                               0.053
                    0.630
                                                     10 1504.43066
                                                                                               0.046
                                                                         0.887
                                                                                   16.801
                                                     11 1526.36853
                                                                         0.323
                                                                                   16.527
                                                                                               0.044
20.
     RR120525
   Dayval
1119.47327
                                                     12 1527.36597
                                                                          0.207
                    Phase
                             Vint
                                        Vinterr
                                                                                   16.308
                                                                                               0.036
                    0.918
                             16.097
                                          0.026
                                                     13 1528.36365
                                                                          0.091
                                                                                   16.082
                                                                                               0.029
 2 1121.46777
                    0.839
                              16.129
                                          0.025
                                                     14 1529.36121
                                                                         0.975
                                                                                   15.989
                                                                                               0.027
                                                     15 1530.35864
                                                                         0.859
                                                                                               0.047
 3 1142.40845
                    0.004
                              15.013
                                          0.014
                                                                                   16.911
 4 1172.32507
                                                     16 1531.35461
                                                                          0.740
                                                                                               0.049
                    0.814
                              16.082
                                          0.030
                                                                                   16.772
                                                     17 1550.30237
                                                                         0.528
                                                                                   16.765
                                                                                               0.048
 5 1173.32239
                    0.774
                              16.020
                                          0.028
                                                                                               0.044
 6 1174.31970
                    0.735
                             16.070
                                          0.027
                                                     18 1552.29761
                                                                         0.296
                                                                                   16.518
 7 1175.31677
8 1179.30542
                                                     19 1578.22656
                                          0.035
                                                                         0.270
                                                                                   16.420
                                                                                               0.035
                    0.695
                             16.111
                    0.535
                             16.054
                                          0.033
                                                     20 1590.19409
                                                                         0.873
                                                                                   16.819
                                                                                               0.065
9 1496.43933
10 1504.41760
                                                     21 1593.18579
22 1832.53479
                    0.953
                              15.456
                                          0.022
                                                                         0.524
                                                                                   16.795
                                                                                               0.091
                                          0.030
                                                                         0.596
                                                                                   16.754
                                                                                               0.066
                             16.078
                    0.637
                                                     23 1851.48145
                                                                         0.381
                                                                                               0.051
                             16.072
                                         0.029
                                                                                   16.585
11 1526.35547
                    0.762
12 1527.35291
13 1528.35046
                                                     24 1854.47339
25 1855.47107
26 1856.46777
                                                                                               0.024
                                                                         0.033
                                                                                   15.801
                    0.723
                             16.078
                                         0.030
                                                                         0.917
                                                                                   16.790
16.742
                                                                                               0.048
                    0.684
                             16.046
                                         0.032
                                                                                               0.045
                                         0.029
14 1529.34814
                    0.645
                             16.080
                                                     27 1875.41516
28 1879.40259
                                                                         0.587
                                          0.031
                                                                                   16.836
                                                                                               0.065
15 1530.34546
                    0.606
                              16.105
                                                                                               0.045
   1531.34216
                                         0.030
                                                                          0.118
                                                                                   16.144
16
                    0.565
                              16.083
                                                     29 1880.40002
30 1886.38330
   1550.28943
                              16.122
                                          0.030
                                                                         0.002
                                                                                   15.759
                                                                                               0.025
17
                    0.811
                    0.733
                                          0.033
                                                                          0.303
                                                                                   16.459
                                                                                               0.049
18
   1552.28442
                             16.074
                    0.704
                                                                                   16.699
                                                                                               0.068
                              16.080
                                          0.027
                                                     31 1902.33984
                                                                         0.441
19 1578.21338
                                                     32 1919,29199
                                                                         0.459
                                                                                               0.087
                    0.229
                                          0.024
                                                                                   16.773
   1590.18091
                              15.646
20
                                                     33 1932.25720
                                                                                   16.207
                                                                                               0.047
   1832.52161
                                          0.033
                                                                         0.947
                    0.620
21
                              16.085
                                                                          0.713
                                          0.037
                                                     34 1934.25122
                                                                                   16.820
                                                                                               0.063
22
   1851,46826
                    0.865
                             16,187
                                                                                               0.055
   1854.46021
                                                                                   16,759
                    0.746
                             16.092
                                          0.031
                                                      35 1935.24902
                                                                          0.598
```

9 1496.43884

0.600

16.650

0.054

24 1855.45789

16.080

0.708

0.031

```
0.970
                                                                               14.237
                                                                                          0.008
                            16.729
                                       0.062
                                                  51 3361.33081
36 1936.24622
                   0.482
                                                                     0.105
                                                                               14.446
                                                                                          0.009
                   0.783
                                       0.062
                                                  52
                                                     3361.40381
37 1942.22961
                            16.814
                                                                               14.470
                                                                                          0.009
                                                                      0.118
38 1910.31689
                   0.507
                            16.825
                                       0.051
                                                  53 3361.41113
                                                                                          0.009
                                                                      0.253
                            16.599
                                       0.079
                                                  54 3361.48389
                   0.410
39 2202.52124
                                                                                          0.009
                                                                               14.740
                                       0.069
                                                  55 3361.49097
                                                                      0.266
40 2207.50708
                   0.827
                            16.812
                   0.778
                                       0.076
                            16.782
41 2216.48193
                                                      RR131403
                                       0.077
                            16.543
42
   2237.42285
                   0.331
                                                   Dayval
1 1119.52100
                                                                                         Vinterr
                                                                      Phase
                                                                               Vint
                            16.857
                                       0.074
43 2243.40625
                   0.632
                                                                               13.975
                                                                                          0.006
                   0.420
                                                                      0.656
                                       0.067
44 2262.35425
                            16.671
                                                                                          0.005
                   0.302
0.275
                                       0.111
                                                     1121.51562
                                                                      0.996
                                                                               13.674
                            16.717
45 2263.35034
                                                                                          0.006
                                                                               13.986
                                                    3 1142.45630
                                                                      0.550
                                       0.063
46 2289.27954
                            16.416
                                                                               13.996
                                                                                          0.007
   2290.27637
                   0.158
                                       0.054
                                                    4 1172.37292
                                                                      0.633
                            16,196
47
                                                                               13.833
                                                                                          0.006
                            16.839
                                       0.081
                                                    5 1173.37024
                                                                      0.802
48 2295.26294
                                                                                          0.006
                                                    6 1174.36743
                                                                      0.972
                                                                               13.672
                            16.948
                                       0.066
49 2318.20093
                   0.901
                                                                               13.719
13.796
                                                                                          0.006
                                                    7 1175.36462
                                                                      0.141
                            16.499
                                       0.053
                   0.319
50 2323.18750
                            16.759
16.748
                                                                                          0.006
                                                    8 1179.35327
                                                                      0.818
                                       0.031
                   0.748
51
   3361.13428
                                                                               13.929
                                                                                          0.012
                                       0.027
                                                    9 1212.26257
                                                                      0.412
52
   3361.14526
                                                                                          0.007
                            16.775
                                                   10 1496.48682
                                                                      0.746
                                                                               13.895
                                       0.023
53
   3361.21851
                   0.907
                                                   11 1504.46448
                                                                      0.101
                                                                               13.681
                                                                                          0.006
                            16.629
                                       0.022
   3361.22949
                   0.927
54
                                       0.016
                                                   12 1526.40308
                                                                      0.828
                                                                               13.763
                                                                                          0.006
   3361.29883
                            15.981
                   0.058
55
                            16.016
                                       0.017
                                                   13 1527.40063
                                                                      0.998
                                                                               13.669
                                                                                          0.006
   3361.30957
                   0.078
56
                                       0.017
                                                   14 1528.39832
                                                                      0.169
                                                                               13.731
                                                                                          0.006
                            16.278
   3361.38110
                   0.214
57
                                       0.017
                                                   15 1529.39587
                                                                      0.339
                                                                               13.856
                                                                                          0.007
58
   3361.39185
                   0.234
                            16.291
                                       0.019
                                                   16 1530.39319
                                                                      0.509
                                                                               13.989
                                                                                          0.007
                            16.537
59
   3361.46143
                   0.365
                                                   17 1531.38904
                                                                      0.674
                                                                               13.959
                                                                                          0.009
                                       0.020
60
   3361.47217
                   0.386
                            16.567
                                                   18 1550.33704
                                                                      0.895
                                                                               13.681
                                                                                          0.006
                                                                      0.234
                                                   19 1552.33130
                                                                               13.770
                                                                                          0.007
22.
     DV Com
                                                   20 1578.26111
                                                                               13.983
                                                                                          0.007
   Dayval
1119.49963
                            Vint
                                      Vinterr
                                                                      0.645
                   Phase
                                                   21 1593.22046
                                                                      0.189
                                                                               13.765
                                                                                          0.009
                            15.229
                                       0.015
 1
                   0.856
                                                   22 1851.51611
                                                                      0.116
                                                                               13.702
                                                                                          0.006
                            15.116
                                       0.013
   1121.49414
                   0.544
                            14.794
                                                   23 1854.50806
                                                                      0.626
                                                                               13.985
                                                                                          0.007
                                        0.011
                   0.263
 3
   1142.43494
                                                   24 1856.50244
                                                                      0.964
                                                                               13.683
                                                                                          0.006
                            15.115
                                       0.015
   1172.35144
                   0.578
                            15.019
                                                   25 1879.43726
                                                                      0.857
                                                                               13.739
                                                                                          0.007
                                       0.012
 5
   1173.34875
                   0.422
                                                   26 1880.43469
                                                                      0.027
                                                                               13.667
                                                                                          0.006
                                        0.011
                            14.789
 6
   1174.34607
                   0.266
                                                      1886.41760
                                                                               13.666
                                                                                          0.007
                                        0.009
                                                   27
                                                                      0.042
   1175.34314
                   0.110
                            14.504
                                                   28 1919.32666
                                                                               13.978
                                                                                          0.010
                            15.068
                                                                      0.635
                                        0.015
   1179.33179
                   0.485
                                                      1932,29187
                                                                               13.775
                                                                                          0.007
                                        0.016
                                                   29
                                                                      0.842
 q
   1496.46570
                   0.861
                            15.244
                                                                               13.730
                                                                                          0.007
                                        0.014
                                                   30 1934.28589
                                                                      0.179
   1504.44397
                   0.612
                            15.140
10
                                                   31 1935.28308
                                                                      0.348
                                                                               13.868
                                                                                          0.007
                                        0.011
11
   1526.38184
                   0.175
                            14.652
                                                   32 1936.28088
                                                                      0.520
                                                                               13.982
                                                                                          0.008
                                        0.009
                            14.250
   1527.37927
                   0.019
                                                   33 1942.26416
                                                                      0.536
                                                                               13.986
                                                                                          0.008
                            15.237
                                        0.015
13
   1528.37683
                   0.864
                                                                               13.703
                                                                                          0.006
                                        0.015
                                                   34 1910.35156
                                                                      0.110
   1529.37451
                   0.709
                            15.126
                                                   35 3361.17725
                                                                      0.190
                                                                               13.754
                                                                                          0.007
   1530.37183
                   0.553
                            15.104
                                        0.016
                                                   36 3361.18457
                                                                               13.766
                                                                                          0.007
                                        0.014
                                                                      0.213
   1531.36780
                   0.394
                            15.006
16
                                                      3361.25684
                                                                               13.955
                                                                                          0.006
                                                   37
                                                                      0.443
17
                            15.026
                                        0.015
   1550.31555
                   0.428
                                                                               13.982
                                                                                          0:006
                            14.510
                                        0.011
                                                   38 3361.26392
                                                                      0.466
18 1552.31079
                   0.118
                            14.348
                                        0.009
                                                      3361.33936
                                                                      0.705
                                                                               13.964
                                                                                          0.006
19
   1578.23975
                   0.060
                            14.649
                                        0.013
                                                   40
                                                      3361.34644
                                                                      0.728
                                                                               13.947
                                                                                          0.006
20 1590.20728
                   0.188
                                                                                          0.006
                                                   41 3361.41992
                                                                      0.961
                                                                               13.698
                            14.842
                                        0.014
   1851.49463
21
                                                                      0.984
                                                                               13.691
                                                                                          0.006
                            15.242
                                        0.018
                                                   42 3361.42700
   1854.48657
                   0.836
                                                                                          0.006
                                                   43 3361.49976
                                                                      0.215
                                                                               13.756
                            15.134
                                        0.014
23
   1855.48425
                   0.681
   1856.48096
1875.42847
                   0.524
                                                   44 3361.50708
                                                                      0.239
                                                                               13.796
                                                                                          0.007
                            15.118
                                        0.014
                            15.117
                                        0.020
25
                            14.763
                                        0.014
                                                   24.
                                                        EZ Com
   1879.41589
                   0.930
26
                                                     Dayval
1119.52344
                                                                                         Vinterr
   1880.41321
1886.39661
1919.30518
                                                                      Phase
                                                                               Vint
                   0.774
                            15.108
                                        0.016
                                                                               16.881
                                                                                          0.046
                   0.837
                            15.206
                                        0.020
                                                                      0.694
28
                                                                                          0.036
                   0.685
                            15:119
                                        0.025
                                                    2 1121.51807
                                                                      0.203
                                                                               16.631
29
                                                    3 1142.45850
                                                                      0.045
                                                                               16.488
                                                                                           0.032
30 1932.27039
                            15.125
                                        0.024
                   0.657
   1934.26453
1935.26221
                                                    4 1172.37537
                                                                      0.679
                                                                               16.930
                                                                                           0.051
                            14.931
                                        0.015
                   0.344
31
                            14.662
                                                    5 1173.37268
                                                                      0.434
                                                                               16.855
                                                                                           0.045
                   0.189
                                        0.013
32
   1936.25952
                   0.033
                            14.271
                                        0.010
                                                    6 1174.36987
                                                                      0.188
                                                                               16.634
                                                                                           0.042
33
                   0.096
                                                      1175.36707
                                                                      0.942
                                                                               16.549
                                                                                          0.043
                            14.473
                                        0.012
   1942.24280
                            14.456
   1910.33020
2202.53442
                                                    8 1179.35571
                                                                      0.960
                                                                               16.611
                                                                                           0.038
                   0.090
                                        0.010
35
                            14.943
                                                    9 1212.26489
                                                                      0.859
                                                                               17.088
                                                                                           0.138
                   0.372
0.185
                                        0.022
36
   2216.49512
                            14.640
                                        0.017
                                                   10 1496.48926
                                                                      0.911
                                                                               16.895
                                                                                           0.058
37
                   0.968
                            14.395
                                        0.014
                                                   11 1504.46692
                                                                      0.947
                                                                               16.489
                                                                                           0.036
   2243.41943
38
                                                   12 1526.40552
                                                                      0.545
                                                                               16.898
                                                                                           0.057
                   0.002
                            14.225
                                        0.013
39
   2262.36743
                            15.107
15.165
                   0.844
                                        0.028
                                                   13 1527.40308
                                                                      0.300
                                                                               16.788
                                                                                           0.043
40
   2263.36353
                                                   14 1528.40076
                                                                      0.055
                                                                               16.501
                                                                                           0.037
                                        0.024
41
   2289.29224
                                                   15 1529.39832
                                                                               17.089
                                                                                           0.054
                   0.630
                                        0.025
                                                                      0.810
42 2290.28955
                            15.123
                                                                               16.850
                                                                      0.565
                                                                                           0.052
                            15.236
                                        0.026
                                                   16 1530.39563
43 2295.27612
                   0.850
                             14.797
                                                                      0.317
                                                                               16.729
                                                                                           0.053
                                        0.016
                                                   17 1531.39148
44
   2318.21411
                   0.262
                            15.062
                                                   18 1550.33948
                                                                      0.653
                                                                               16.963
                                                                                           0.059
                                        0.019
45 2323.20068
                   0.482
                             15.067
                                        0.014
                                                   19 1552.33374
                                                                      0.162
                                                                               16.517
                                                                                           0.044
46 3361.16040
                   0.655
                                                   20 1578.26355
                                                                      0.782
                                                                               16.935
                                                                                           0.058
                                        0.013
                             15.088
47
   3361.16772
                   0.669
                                                                               16.892
                                                                                           0.069
                                                   21 1590.23108
                                                                      0.837
                                        0.011
                             15.153
48
   3361.24121
                   0.804
                                                                      0.101
                                                                                16.552
                                                                                           0.068
                                        0.011
                                                   22 1593.22278
                             15.149
49
   3361.24854
                   0.818
                                                                               16.562
                                                                                           0.035
                                                   23 1613.16943
                                                                      0.194
50 3361.32349
                   0.956
                             14.382
                                        0.008
```

```
0.535
                             17.048
                                         0.070
                                                    42 3453.29395
                                                                        0.981
                                                                                  17.287
                                                                                             0.030
24 1851.51843
                    0.799
                                                     43 3454.14966
                                                                        0.982
                                                                                  17.377
                                                                                             0.033
                             17.016
                                         0.057
   1854.51050
                                         0.047
                                                     44 3454.16431
                                                                        0.982
                                                                                  17.361
                                                                                             0.031
26
   1856.50488
                    0.308
                             16.844
                                         0.061
                                                     45 3454.22144
                                                                        0.982
                                                                                  17.349
                                                                                             0.031
   1879.43970
                    0.659
                             16.937
                                                       3454.29224
                                         0.054
                                                                        0.982
                                                                                  17.299
                                                                                             0.029
                             16.845
                                                     46
28
   1880.43701
                    0.413
                                         0.043
                                                     47 3454.30640
                                                                        0.982
                                                                                  17.411
                                                                                             0.033
29
   1886.42004
                    0.939
                             16.435
                                         0.067
                    0.838
30
   1919.32910
                             16.720
                                         0.068
                                                    26.
                                                         RR143313
31
   1932.29419
                    0.649
                             17,020
                                                     Dayval
1 1142.51270
2 1172.42871
3 1173.42590
                                         0.054
                                                                        Phase
                                                                                 Vint
                                                                                            Vinterr
32 1934.28833
                    0.157
                             16.625
                                                                        0.972
                                                                                 17.640
                                                                                             0.075
33
   1935.28552
                    0.911
                             16.512
                                         0.044
                                                                                  18.064
                                                                                             0.112
                                         0.058
                                                                        0.346
34 1936.28333
                    0.667
                             16.975
                                                                        0.625
                                                                                 18.205
   1942.26660
                                                                                             0.116
35
                    0.194
                             16.687
                                         0.052
                                                                        0.904
                                                                                  17.828
                                                                                             0.108
                                                      4 1174.42322
36 1910.35400
                    0.048
                             16.512
                                         0.038
                                                                                 17.858
                                                                                             0.093
   2216.51904
                    0.702
                             16.834
                                         0.078
                                                     5 1175.42029
                                                                        0.183
   2243.44336
                    0.072
                                         0.058
                                                      6 1179.40881
                                                                        0.299
                                                                                  18.024
                                                                                             0.111
                             16.484
                    0.408
                                                                        0.511
                                                                                             0.202
   2262.39136
                             16.933
                                         0.080
                                                      7 1212.31702
                                                                                  18.200
                                                                                             0.088
40 2263.38721
                    0.160
                             16.741
                                         0.071
                                                     8 1228.27344
                                                                        0.980
                                                                                  17.669
                    0.778
                                         0.082
                                                     9 1254.20361
                                                                        0.244
                                                                                  17.783
                                                                                             0.104
41 2289.31592
                             16.882
                                                    10 1255.20093
                                                                        0.524
                                                                                  18.191
                                                                                             0.564
42 2290.31348
                    0.533
                             16.984
                                         0.087
43 2295.29980
                                                     11 1258.19287
                                                                        0.362
                                                                                  18.232
                                                                                             0.219
                    0.306
                             16.796
                                         0.071
   2318.23804
                    0.662
                             16.979
                                         0.066
                                                     12 1504.52100
                                                                        0.351
                                                                                 18.085
                                                                                             0.123
   2323.22437
                    0.435
                             16.858
                                         0.077
                                                    13 1526.45886
                                                                        0.491
                                                                                  18.335
                                                                                             0.145
45
46 3453.18506
                                         0.019
                                                     14 1527.45667
                                                                        0.771
                                                                                  18.103
                                                                                             0.122
                    0.441
                             16.925
   3453.19946
                    0.466
                             16.939
                                         0.018
                                                     15
                                                        1528.45435
                                                                        0.051
                                                                                  17.776
                                                                                             0.083
48 3453.24146
                    0.540
                                                     16 1529.45190
                                                                        0.331
                                                                                  18.018
                                                                                             0.112
                             16.999
                                         0.020
                                                    17 1530.44922
                                                                        0.611
                                                                                  18.261
                                                                                             0.113
4 Q
   3453.26245
                    0.577
                             16.994
                                         0.020
                                                                                  17.796
                                                    18 1531.44507
                                                                        0.887
                                                                                             0.100
50
   3453.31104
                    0.662
                             16.967
                                         0.023
                                                     19
                                                       1550.39233
                                                                        0.191
                                                                                  18.043
                                                                                             0.133
   3453.32520
                    0.687
                             16.932
                                         0.028
   3468.15088
                    0.771
                                         0.019
                                                     20 1552.38660
                                                                        0.749
                                                                                  18.199
                                                                                             0.131
                             16.893
                    0.796
                                                    21
   3468.16504
                             16.900
                                         0.019
                                                       1578.31567
                                                                        0.011
                                                                                  17.738
                                                                                             0.092
                                                                                  17.904
   3468,20898
                    0.873
                             16.835
                                         0.019
                                                     22 1593.27429
                                                                        0.199
                                                                                             0.151
                                                                                             0.116
                    0.899
                             16.792
                                         0.020
                                                     23
                                                       1612.22314
                                                                        0.507
                                                                                  18.278
   3468.22339
                                                     24 1613.22058
   3468.26587
                    0.973
                             16.545
                                         0.023
                                                                        0.787
                                                                                  18.121
                                                                                             0.107
                                                                                  17.718
   3468.28003
                    0.998
                             16.525
                                         0.022
                                                     25 1614.21790
                                                                        0.066
                                                                                             0.109
57
                                                     26 1615.21521
                                                                        0.346
                                                                                  18.161
                                                                                             0.124
                                                     27
                                                       1616.21252
                                                                        0.625
                                                                                  18.241
                                                                                             0.155
25.
     RR132347
   Dayval
                                        Vinterr
                                                     28 1617.20984
                                                                        0.904
                                                                                  17.663
                                                                                             0.434
                    Phase
                             Vint
                             16.771
                                         0.047
                                                     29 1620.20166
                                                                        0.742
                                                                                  18.162
                                                                                             0.139
   1119.52783
                    0.048
                                                                        0.022
 2
   1121.52234
                    0.049
                             16.880
                                         0.047
                                                     30 1621.19910
                                                                                  17.695
                                                                                             0.112
                                                     31 1623.19373
                                                                        0.581
                                                                                  18.307
                                                                                             0.216
 3
   1142.46289
                    0.057
                             16.753
                                         0.052
   1496.49353
                             16.954
                                                     32 1879.49316
                                                                                  18.045
                                                                                             0.135
                                         0.070
                                                                        0.360
                    0.199
                                                    33 1886.47375
34 1904.42297
35 1919.38184
36 1932.34668
                             16.941
                                         0.067
                                                                        0.314
                                                                                  18.100
                                                                                             0.127
   1504.47119
                    0.202
 5
                                                                        0.338
                                                                                  18.053
                                                                                             0.141
                    0.211
                             16.964
   1526.40979
                                         0.076
                                         0.071
                                                                                  18.164
                                                                                             0.147
   1527.40747
                    0.211
0.211
                             17.029
                                                                        0.527
                                                                                             0.295
                                         0.072
                                                                        0.158
                                                                                  17.980
   1528.40503
                             17.102
 8
                                                    37 1934.34058
38 1935.33777
9 1529.40271
10 1530.40002
11 1531.39587
12 1550.34375
                             17.052
                                         0.071
                                                                        0.715
                                                                                  18.186
                                                                                             0.134
                    0.212
0.212
                                         0.067
                                                                        0.994
                                                                                  17.683
                                                                                             0.103
                             17.031
                                                     39 1936.33484
                    0.213
                             17.028
                                         0.078
                                                                        0.273
                                                                                  17.977
                                                                                             0.114
                             17.070
                                                     40 1942.31873
                                                                        0.949
                                                                                             0.092
                    0.220
                                         0.068
                                                                                  17.684
                                                     41 1910.40710
                                                                                             0.094
                                         0.082
                                                                        0.014
                                                                                  17.844
   1552.33813
                    0.221
                             17.033
13
   1578.26794
                    0.231
                                         0.072
                                                     42 2243.49731
                                                                        0.301
                                                                                  18.012
                                                                                             0.164
                             17.094
                                                     43 2262.44482
                                                                                  18.179
                                                                                             0.201
   1593.22717
                    0.237
                             16.984
                                         0.113
                                                                        0.606
15
16 1614.17114
                             17.074
                                                     44 2263.44067
                                                                                  17.700
                                                                                             0.315
                    0.246
                                         0.078
                                                                        0.882
                                         0.083
                                                    45 2289.36841
46 2290.36572
                    0.341
0.342
                                                                        0.141
                                                                                  18.180
                                                                                             0.174
   1851.52283
                             17.170
17
                                         0.080
                                                                        0.420
                                                                                  18.188
                                                                                             0.199
   1854.51477
                             17.148
18
                                                    47 2318.28979
48 2323.27588
   1856.50916
                    0.343
                                         0.069
                                                                        0.241
                                                                                  18.041
                                                                                             0.156
19
                             17.147
   1879.44397
                                         0.091
                                                                        0.637
                                                                                  17.952
                                                                                             0.141
20
                    0.352
                             17.118
                                         0.074
                                                     49 2326.26758
                                                                        0.474
                                                                                  18.178
                                                                                             0.147
                             17.093
21
   1880.44141
                    0.352
                                                    50 3454.18286
                                                                                  18.262
                                                                                             0.035
                                         0.086
22
   1886.42432
                    0.355
                             17.146
                                                    51 3454.20068
52 3454.25366
                                                                        0.395
                                                                                  18.232
                                                                                             0.038
23
   1919.33337
                    0.368
                             17.188
                                         0.114
                                                                        0.516
                                                                                  18.298
                                                                                             0.035
   1932.29858
                                         0.094
24
                    0.373
                             17.164
                                                     53 3454.27148
                                                                                             0.034
   1934.29260
                                         0.087
                                                                        0.557
                                                                                  18,211
25
                    0.374
                             17.103
                                                    54 3454.32324
55 3454.34106
56 3469.17651
                                                                        0.675
                                                                                  18,211
                                                                                             0.037
26
   1935.28979
                    0.374
                             17.193
                                         0.083
                                                                        0.716
                                                                                             0.038
                                                                                  18,241
   1942.27100
                    0.377
                             17.075
                                         0.079
                                                                                  18.069
                                                                                             0.061
28
   1910.35840
                    0.364
                             17,207
                                         0.082
                                                                        0.623
                                                        3469.19458
                                                                                  18.153
                                                                                             0.048
   2216.52319
                    0.487
                             16.949
                                         0.094
                                                     57
                                                                        0.664
                                                    58 3469.23901
59 3469.25684
                                                                                             0.068
                                                                                  18.243
30
   2243.44775
                    0.497
                             17.021
                                         0.094
                                                                        0.766
                                                                        0.807
                                                                                             0.093
                                                                                  18.119
31
   2262.39575
                    0.505
                             17.113
                                         0.108
                                                                                  17.827
                                                                                             0.027
32
   2289.32031
                    0.516
                             16.964
                                         0.119
                                                     60 3474.19043
                                                                        0.082
                                                                                             0.027
33 2290.31787
                    0.516
                             17.138
                                         0.115
                                                     61
                                                        3474.20825
                                                                        0.123
                                                                                  17.917
                                                                                             0.028
   2295.30420
                    0.518
                             17.039
                                         0.100
                                                     62
                                                        3474.26758
                                                                        0.258
                                                                                  18.049
34
                                                                                             0.034
   2318.24219
                    0.527
                             17.027
                                         0.085
                                                     63 3474.28516
                                                                        0.299
                                                                                  18.005
35
                                                                        0.975
                                                                                             0.095
   2323.22876
                    0.529
                             16.936
                                         0.078
                                                     64
                                                        3481.14404
                                                                                  17.866
                                                                                             0.059
                             17.378
37
   3453.15161
                    0.981
                                         0.033
                                                     65 3481.16211
                                                                        0.016
                                                                                  17.631
   3453.16577
                    0.981
                                         0.029
                                                     66
                                                        3481.20776
                                                                        0.120
                                                                                  17.809
                                                                                             0.029
                             17.335
                             17.369
   3453.21704
                    0.981
                                         0.030
                                                     67
                                                        3481.22534
                                                                        0.161
                                                                                  17.873
                                                                                             0.028
40
   3453.23120
                    0.981
                             17.292
                                         0.028
                                                     68
                                                        3481.26855
                                                                        0.260
                                                                                  17,960
                                                                                             0.031
                                         0.030
                                                     69
                                                        3481.28638
                                                                        0.300
                                                                                  17.903
                                                                                             0.035
41 3453.27979
                    0.981
```

						17 004	0.100
27. RR145439				7 1212.34753	0.374	17.834	0.139
Dayval	Phase	Vint	Vinterr	8 1228.30322	0.274	17.919	0.099
1 1142.52759	0.006	14.517	0.009	9 1254 23230	0.612	17.918	0.137
2 1172.44360	0.093	14.595	0.011	10 1255.22961	0.356	17.832	0.529 0.137
3 1173.44092	0.695	15.006	0.013	11 1257.22424	0.844	18.139	0.159
4 1174.43811	0.298	14.816	0.013	12 1258.22156	0.588	18.047	0.139
5 1175.43518	0.901	14.698	0.010	13 1526.49109	0.672 0.417	18.074 18.022	0.125
6 1179.42371	0.312	14.823	0.012	14 1527.48889	0.162	17.729	0.123
7 1205.35071	0.986	14.558	0.011	15 1528.48645	0.903	17.968	0.100
8 1212.33203	0.208	14.723	0.017	16 1529.48242 17 1530.48132	0.650	18.148	0.109
9 1228.28833	0.856	14.846	0.013 0.014	18 1531.47717	0.391	18.014	0.121
10 1254.21851 11 1255.21582	0.535 0.138	14.941 14.683	0.014	19 1550.42322	0.519	17.836	0.151
12 1257.21045	0.136	14.845	0.013	20 1552.41760	0.007	17.520	0.095
13 1258.20789	0.947	14.583	0.013	21 1578.34607	0.344	18.005	0.148
14 1526.47375	0.149	14.702	0.012	22 1593.30408	0.499	18.129	0.175
15 1527.47168	0.753	15.036	0.012	23 1612.25208	0.631	18.041	0.110
16 1528.46924	0.357	14.871	0.013	24 1613.24951	0.375	17.952	0.101
17 1529.46680	0.960	14.612	0.011	25 1614.24683	0.118	17.633	0.102
18 1530.46411	0.563	14.955	0.014	26 1615.24390	0.862	17.937	0.143
19 1531.45996	0.164	14.699	0.012	27 1616.24133	0.606	17.964	0.122
20 1550.40662	0.618	14.967	0.016	28 1617.23865	0.350	17.728	0.241
21 1552.40149	0.825	14.980	0.016	29 1620.23022	0.581	17.937	0.134
22 1578.33057	0.502	14.935	0.016	30 1621.22778	0.325	17.871	0.130
23 1593.28918	0.546	14.994	0.017	31 1623.22229	0.813	17.991	0.192
24 1612.23804	0.004	14.546	0.010	32 1879.52563	0.974	17.683	0.097
25 1613.23547	0.607	14.962	0.013	33 1886.50610	0.179	17.748	0.103
26 1614.23279	0.210	14.759	0.013	34 1910.43872	0.027	17.673	0.085
27 1615.22998	0.813	14.983	0.014	35 1919.41321	0.719	18.116	0.133
28 1616.22742	0.416	14.900	0.015	36 1934.37134	0.875	17.940	0.132
29 1620.21667	0.829	14.943	0.015	37 1935.36853	0.618	18.104	0.140
30 1621.21399	0.432	14.893	0.015	38 1936.36548	0.361	17.914	0.136
31 1623.20862	0.638	14.933	0.021	39 1942.34912	0.824	18.235	0.141
32 1879.50806	0.605	14.941	0.017	40 1997.19873	0.732	18.211	0.130
33 1886.48865	0.826	14.987	0.015	41 2263.47241	0.326	17.976	0.265
34 1919.39673	0.721	14.999	0.016	42 2290.39648	0.405	18.149	0.200
35 1932.36157	0.560	15.005	0.074	43 2295.38257	0.123	17.551	0.138
36 1934.35559	0.765	15.055	0.017	44 2318.31958	0.230	17.907	0.134
37 1935.35266	0.368	14.870	0.015	45 2323.30566	0.948	17.657	0.116
38 1936.34973	0.971	14.527	0.011	46 2326.29688	0.179	17.611	0.117
39 1942.33362	0.589	14.978	0.014	47 3685.38184	0.617	18.097	0.040
40 1910.42200	0.295	14.811	0.013	48 3685.39624	0.642	18.132	0.043
41 1997.18542	0.756	15.013	0.015	49 3685.41040	0.667	18.240	0.044 0.038
42 2243.51147	0.693	15.027	0.021	50 3685.44971	0.736 0.761	18.055 18.076	0.038
43 2262.45972	0.150	14.713	0.017	51 3685.46411 52 3685.51807	0.855	18.207	0.037
44 2263.45532	0.750 0.426	14.960 14.875	0.030 0.022	53 3685.53247	0.880	17.945	0.037
45 2289.38330 46 2290.38062	0.420	14.575	0.016	33 3003.33247	0.000	17.540	0.057
47 2295.36670	0.043	14.574	0.015	29. RR162318			
48 2318.30469	0.913	14.556	0.013	Dayval	Phase	Vint	Vinterr
49 2323.29077	0.928	14.598	0.013	1 1173.50452	0.797	15.151	0.013
50 2326.28247	0.736	15.021	0.019	2 1174.49976	0.693	15.138	0.014
51 3093.14233	0.363	14.891	0.019	3 1175.49878	0.600	15.242	0.015
52 3093.15186	0.378	14.881	0.018	4 1179.48718	0.205	15.157	0.014
53 3097.15088	0.806	15.022	0.019	F 400F 44304	0.644	15.154	0.015
54 3097.16162		14.983	0.012	6 1212.39417	0.957	15.333	0.015
55 3109.18384	0.147	14.672	0.017	7 1228.34973	0.384	15.262	0.017
56 3109.19409	0.163	14.704	0.014	8 1237.32471	0.499	15.322	0.017
57 3109.20703	0.184	14.734	0.014	9 1254.27881	0.832	15.205	0.015
58 3109.22925	0.220	14.764	0.014	10 1255.27576	0.733	15.133	0.062
59 3109.24023	0.238	14.784	0.014	11 1257.27051	0.537	15.339	0.019
60 3109.25098	0.255	14.805	0.014	12 1258.26794	0.440	15.359	0.017
61 3109.27319	0.291	14.843	0.016	13 1263.25427	0.949	15.361	0.019
62 3109.28931	0.317	14.864	0.017	14 3685.42676	0.930	15.295	0.018
63 3109.29980	0.334	14.860	0.016	15 3685.43555	0.955	15.346	0.018
64 3112.19360	0.985	14.535	0.013	16 3685.49536	0.129	15.216	0.018
65 3112.20459	0.002	14.521	0.013	17 3685.50415	0.154	15.175	0.018
66 3385.22778	0.851	14.857	0.027	20 55155111			
67 3385.23511	0.863	14.781	0.031	30. RR165009	Dhara	171-4	11:
00 DE15150				Dayval	Phase	Vint 15.614	Vinterr
28. RR151628	Dhess	Wint	Winter-	1 1205.43384	0.899	14.979	0.020 0.014
Dayval	Phase	Vint	Vinterr	2 1228.36951	0.078 0.800	15.760	0.014
1 1172.46069	0.630	17.920 17.883	0.132 0.098	3 1237.34399 4 1254.29736	0.499	15.649	0.021
2 1173.45789 3 1174.45508	0.374 0.117	17.689	0.098	5 1255.29419	0.246	15.367	0.079
4 1175.45215	0.861	18.131	0.122	6 1257.28894	0.740	15.693	0.025
5 1179.44055	0.835	18.151	0.123	7 1258.28589	0.486	15.613	0.023
6 1205.36658	0.168	17.847	0.101	8 1263.27246	0.222	15.305	0.020
0 1200.0000	0.100	104/	0.101	0 1200121240			

```
0.026
                                                    8 1263.28833
                                                                      0.575
                                                                              16.557
                                                                                          0.043
 9 1550.49097
                   0.381
                            15.537
                                       0.025
                                                     1269.27173
                                                                      0.834
                                                                               16.624
                                                                                          0.054
10 1552.48511
                   0.874
                            15.603
                                                  10 1578.42786
                                                                      0.575
                                                                               16.498
                                                                                          0.057
                                       0.025
11 1578.41187
                   0.293
                            15,376
                                                                     0.721
                                                  11 1593.38599
12 1612.33350
                                                                                          0.043
                                                                               16.517
12
   1593.36987
                   0.497
                            15.645
                                       0.023
                                                                     0.375
                                                                              16.361
                                                                                          0.032
13
   1612.31750
                   0.690
                            15.687
                                       0.021
                                                                              16.190
                                                                                          0.027
                   0.437
                                                                      0.252
14 1613.31482
                            15.573
                                       0.019
                                                  13 1613.33081
                                                                                          0.027
                                                                              15.946
15
   1614.31165
                   0.184
                            15.221
                                       0.017
                                                  14 1614.32764
                                                                     0.128
                                                                              15.594
                                                                                          0.024
16.1615.30908
                   0.931
                            15.257
                                       0.018
                                                  15 1615.32520
                                                                     0.005
17
   1616.30652
                   0.678
                            15.689
                                       0.024
                                                  16
                                                     1616.32251
                                                                     0.881
                                                                              16.534
                                                                                          0.044
                                                                                          0.106
   1620.29492
                   0.665
                            15.667
                                       0.023
                                                  17 1617.31982
                                                                     0.758
                                                                               16.462
                   0.413
                                                                                          0.035
   1621.29272
                            15.561
                                       0.024
                                                  18
                                                     1620.31104
                                                                     0.386
                                                                              16.343
                                                                              16.212
                                                                                          0.037
   1623.28711
                   0.907
                            15.221
                                       0.025
                                                  19 1621.30872
                                                                     0.264
20
                                                                                          0.026
   1919.48010
                   0.788
                            15.718
                                       0.022
                                                  20
                                                     1623.30310
                                                                     0.017
                                                                              15.607
   1935.43567
                   0.739
                                       0.025
                                                  21 1935.45068
                                                                     0.386
                                                                              16.391
                                                                                          0.038
                            15.697
                            15.608
   1936.43262
                   0.486
                                       0.022
                                                     1936.44788
                                                                     0.263
                                                                              16.207
                                                                                          0.038
   1942.41602
                   0.967
                            14.927
                                       0.016
                                                  23 1942.43213
                                                                     0.523
                                                                               16.513
                                                                                          0.039
   1997.26306
                   0.050
                            14.925
                                       0.013
                                                  24
                                                     1997.27905
                                                                     0.729
                                                                              16.525
                                                                                          0.036
                                       0.028
   2295.44946
                   0.423
                            15.606
                                                  25
                                                     2305.43726
                                                                      0.592
                                                                              16.465
                                                                                          0.054
   2323.37183
                   0.338
                            15.408
                                       0.022
                                                  26
                                                     2323.38672
                                                                     0.368
                                                                              16,271
                                                                                          0.046
                            15.639
   2326.36304
                   0.578
                                       0.027
                                                  27 2326.37866
                                                                     0.997
                                                                              15.540
                                                                                          0.024
   3112.21753
                   0.263
                            15.221
                                       0.026
                                                  28
                                                     3097.19580
                                                                     0.447
                                                                              16.444
                                                                                          0.021
                                                                                          0.033
   3112.22974
                   0.284
                            15.321
                                       0.013
                                                  29 3097.20605
                                                                     0.467
                                                                              16.347
   3112.24292
                   0.307
                            15.350
                                       0.011
                                                  30
                                                     3126.14429
                                                                     0.920
                                                                              16.054
                                                                                          0.019
                                                  31
   3112.36768
                   0.526
                            15.606
                                       0.013
                                                     3126.15503
                                                                     0.940
                                                                              15.777
                                                                                          0.018
   3112.37866
                   0.545
                            15.603
                                       0.014
                                                  32
                                                     3126.36157
                                                                     0.329
                                                                              16.305
                                                                                          0.028
                            15.382
                                       0.014
                                                  33
                                                     3129.15210
                                                                     0.580
                                                                              16.524
                                                                                          0.022
   3113.16455
                   0.922
                                                  34
   3113.17529
                   0.941
                            15.197
                                       0.012
                                                     3129.16284
                                                                     0.600
                                                                              16.506
                                                                                          0.026
   3113.21851
                   0.017
                            14.765
                                       0.009
                                                     3129.23804
                                                                     0.742
                                                                              16.506
                                                                                          0.027
                                                  35
                                                                     0.762
   3113.22925
                   0.035
                            14.821
                                       0.009
                                                  36
                                                     3129.24902
                                                                              16.524
                                                                                          0.032
                                                                                          0.049
   3113.26660
                   0.101
                            14.976
                                       0.010
                                                  37
                                                     3129.30981
                                                                     0.877
                                                                              16.613
                                                     3129.32056
39
   3113.27734
                   0.120
                            15.016
                                       0.010
                                                  38
                                                                      0.897
                                                                               16.401
                                                                                          0.039
                                                     3385.28467
                                                                                          0.059
40
   3113.31470
                   0.185
                            15.148
                                       0.010
                                                  39
                                                                      0.546
                                                                              16.357
41
                                                     3385.29565
                                                                      0.566
                                                                              16.568
                                                                                          0.042
   3113.31934
                   0.193
                            15.194
                                       0.011
                                                  40
                                                                                          0.026
   3113.36401
                   0.272
                            15.292
                                       0.011
                                                   41
                                                     3385.38062
                                                                      0.726
                                                                              16.531
42
43
   3113.37500
                   0.291
                            15.327
                                       0.012
                                                   42
                                                     3385.39160
                                                                      0.747
                                                                               16,516
                                                                                          0.021
                                                                     0.983
                                                                                          0.054
   3097.17529
                   0.912
                            15.146
                                       0.036
                                                  43 3481.17505
                                                                               15.649
44
45
   3385.25513
                   0.579
                            15.677
                                       0.034
                                                   44
                                                     3481.18604
                                                                     0.004
                                                                              15,565
                                                                                          0.016
   3385.26270
                   0.592
                            15.698
                                       0.030
                                                   45
                                                     3481.23657
                                                                      0.099
                                                                               15.857
                                                                                          0.015
46
   3385.34668
                   0.740
                            15.565
                                       0.031
                                                   46
                                                     3481.24731
                                                                      0.119
                                                                              15.908
                                                                                          0.015
   3385.35425
                   0.753
                            15.629
                                       0.025
                                                       RR171524
                                                   33.
                                                     Dayval
1205.45142
                                                                                         Vinterr
 31.
     RR165831
                                                                      Phase
                                                                              Vint.
                                                                              17.985
                                                                      0.407
                                                                                          0.120
  Dayval
                  Phase
                           Vint
                                     Vinterr
  1205.43970
1552.49097
                                                                      0.835
                                                                               18.299
                                                                                          0.143
                   0.560
                            15.115
                                       0.015
                                                   2 1228.38708
3 1237.36157
                                                                     0.219
                                                                              17.834
                                                                                          0.094
                   0.157
                            14.875
                                       0.016
                                                    4 1254.31445
                            14.977
                                       0.021
                                                                      0.057
                                                                               17.310
                                                                                          0.069
   1578.41760
                   0.227
                            14.772
                                                    5 1255.31177
                                                                      0.989
                                                                              17.582
                                                                                          0.374
                   0.077
   1593.37573
                                       0.013
                                                   6 1257.30615
7 1258.30347
  1612.32324
1613.32068
                                                                      0.852
                                                                              18.136
                                                                                          0.155
                                       0.014
                            15.129
                   0.555
                                                                     0.784
                                                                              18.130
                                                                                          0.142
                   0.213
                            14.967
                                       0.013
 6
                                                                     0.443
                                                                                          0.133
                                                    8 1263.28979
                                                                              18,243
   1614.31738
                   0.868
                            14.689
                                       0.012
                                                    9 1269.27332
                                                                              17,284
                                                                                          0.081
 8
   1615.31494
                   0.525
                            15.131
                                       0.018
                                                                     0.033
                                                                                          0.230
   1616.31226
                   0.183
                            14.945
                                       0.015
                                                  10 1578.42944
                                                                      0.883
                                                                              18,461
                                                                     0.857
                                                                                          0.158
10
   1617.30957
                   0.840
                            14.735
                                       0.044
                                                  11 1593.38757
                                                                              18.396
                            14.691
   1620.30078
                   0.808
                                       0.013
                                                  12 1612.33508
                                                                     0.559
                                                                              18.369
                                                                                          0.129
   1621.29846
                   0.467
                            15.133
                                       0.017
                                                  13 1613.33240
                                                                     0.491
                                                                              18.219
                                                                                          0.119
12
13
   1623.29297
                   0.780
                            14.720
                                       0.015
                                                  14 1614.32922
                                                                     0.422
                                                                              18.083
                                                                                          0.133
                                                                     0.354
                                                                              17.971
                                                                                          0.126
14
   1919.48596
                   0.886
                            14.676
                                       0.012
                                                  15 1615.32666
                                                                              17.912
                                                                                          0.119
   1936.43848
                   0.049
                            14.707
                                       0.013
                                                  16 1616.32410
                                                                     0.286
                                                  17 1617.32129
                                                                              17.651
                                                                                          0.221
16
   1942.42188
                   0.989
                            14.636
                                       0.012
                                                                     0.218
                                                                              17.305
                                                                                          0.077
17
   1997.26892
                   0.107
                            14.761
                                       0.012
                                                  18 1620.31250
                                                                     0.012
                                                     1621.31030
                                                                              18,532
                                                                                          0.189
18
   2295.45532
                   0.522
                            15.152
                                       0.023
                                                  19
                                                                     0.945
                                                                                          0.157
                                                                     0.808
19
   2323.37769
                   0.910
                            14.705
                                       0.015
                                                  20 1623.30469
                                                                              18,291
                                                                                          0.222
   2326.36890
                   0.879
                            14.711
                                       0.016
                                                  21 1935.45227
                                                                      0.452
                                                                              18.626
20
                                                                              18.090
                                                     1936.44946
                                                                                          0.136
   3685.48096
                   0.587
                            15.080
                                       0.010
                                                  22
                                                                      0.384
                                                                              17.861
                                                                                          0.092
22
   3685.48828
                   0.614
                            15.053
                                       0.010
                                                  23
                                                     1942.43359
                                                                     0.976
                                                  24 1997.28064
                                                                                          0.091
23
   3685.54736
                   0.831
                            14.714
                                       0.010
                                                                     0.217
                                                                               17.790
24
   3685.55469
                   0.858
                            14.725
                                       0.011
                                                  25
                                                     2295.46704
                                                                     0.817
                                                                              18.246
                                                                                          0.240
   3685.56201
                   0.885
                            14.686
                                       0.018
                                                  26
                                                     2305.43872
                                                                      0.133
                                                                               17.709
                                                                                          0.125
                                                  27
                                                     2323.38843
                                                                     0.902
                                                                               18.446
                                                                                          0.209
     V375 Her
                                                     3126.17261
                                                                      0.932
                                                                               18.415
                                                                                          0.094
   Dayval
                                                  29
                                                     3126.18359
                                                                      0.954
                                                                               18.448
                                                                                          0.237
                   Phase
                            Vint
                                      Vinterr
                   0.740
   1205.44995
                            16.501
                                       0.037
                                                  30
                                                     3126.37524
                                                                      0.325
                                                                               18.185
                                                                                          0.088
   1228.38562
                   0.898
                            16.384
                                       0.035
                                                  31
                                                     3129.19385
                                                                      0.785
                                                                               18.340
                                                                                          0.045
   1237.36011
                   0.786
                            16.546
                                       0.039
                                                     3129.26782
                                                                      0.928
                                                                               18.207
                                                                                          0.089
                                       0.038
   1254.31287
                            16.538
                                                  33
                                                     3129.33789
                                                                      0.064
                                                                               17.427
                                                                                          0.057
                   0.686
                                       0.191
   1255.31030
                   0.563
                            16.492
                                                     3453.34180
                                                                      0.674
                                                                               18.272
                                                                                          0.034
                                       0.037
   1257.30469
                   0.316
                            16.314
                                                  35
                                                     3453.35986
                                                                      0.709
                                                                              18.331
                                                                                          0.036
                                                                      0.749
                                                                               18.251
                                                                                          0.040
   1258.30200
                   0.192
                            16.045
                                       0.031
                                                   36
                                                     3453.38062
```

```
0.238
                                                                                14.761
                                                                                           0.011
                   0.784
                            18.296
                                        0.039
                                                   11 1612.33887
37 3453.39844
                                                                                14.901
                                                                                           0.012
                   0.819
                            18.463
                                        .0.043
                                                   12
                                                      1613.33630
                                                                       0.614
38
   3453.41626
                                                                                            0.012
                            18.301
   3453.43408
                   0.853
                                        0.045
                                                   13 1614.33313
                                                                       0.988
                                                                                14.675
                                                                                           0.014
40
   3474.14722
                   0.975
                            17.345
                                        0.023
                                                   14
                                                      1615.33057
                                                                       0.365
                                                                                14.841
                                                                                14.826
                                                                                            0.013
                   0.010
                                        0.022
                                                   15 1616.32800
                                                                       0.741
   3474.16528
                            17.328
41
                                                                                           0.012
                                        0.027
                                                      1620.31641
                                                                       0.243
                                                                                14.670
   3474.22485
                   0.125
                            17.619
                                                   16
42
                                                                                           0.015
                                        0.027
                                                      1621.31409
                                                                       0.620
                                                                                14.804
   3474.24268
                   0.160
                            17.717
                                                   17
43
   3474.31982
                                                      1623.30859
                                                                       0.372
                                                                                14.841
                                                                                            0.014
                            18.000
                                        0.030
                                                   18
                   0.309
44
                            18.049
                                                   19 1935.45605
                                                                       0.048
                                                                                14.659
                                                                                            0.014
   3474.33740
                   0.344
                                        0.034
45
                                        0.036
                                                   20
                                                      1936.45325
                                                                       0.424
                                                                                14.870
                                                                                            0.015
   3474.39746
                   0.460
                            18.210
                                                                                            0.014
                                        0.041
                                                   21 1942.43750
                                                                       0.682
                                                                                14.886
47
   3474.41504
                   0.494
                            18.304
                                                   22
                                                      1997.28455
                                                                       0.349
                                                                                14.846
                                                                                            0.012
                                                      2295.47095
                                                                       0.764
                                                                                14.833
                                                                                            0.019
                                                   23
34.
     V385 Her
                                                      2305.44263 2323.39233
   Dayval
1578.43030
                                                                       0.520
                                                                                14.911
                                                                                            0.017
                   Phase
                            Vint
                                       Vinterr
                                                                       0.283
                                                                                14.783
                                                                                            0.016
                            14.674
                   0.014
                                        0.015
                                                   25
                                                      2326.38379
3454.35938
                                                                                14.864
                                                                                            0.016
                                                                       0.410
   1593.38831
                   0.336
                            15.175
                                        0.017
                                                   26
                                                                       0.814
                                                                                14.698
                                                                                            0.010
   1612.33569
                   0.211
                            15.019
                                        0.013
                                                   27
                                                      3454.37402
                                                                       0.864
                                                                                14.657
                                                                                            0.010
   1,613.33301
                   0.099
                            14.895
                                        0.012
                                                   28
                                                      3454.39746
3454.41211
                                                                       0.943
                                                                                14.638
                                                                                            0.009
   1614.32983
                   0.987
                            14.749
                                        0.013
                                                   29
                                                                       0.992
                                                                                14.623
                                                                                            0.009
   1615.32727
                   0.875
                            14.948
                                        0.016
                                                   30
                                                       3454.43457
                                                                       0.068
                                                                                14.636
                                                                                            0.009
   1616.32471
                   0.764
                            15.351
                                        0.021
                                                   31
                                                      3454.44995
                                                                                14.600
                                                                                            0.014
   1623.30518
                                                                       0.120
                   0.981
                            14.766
                                        0.014
                                                                                14.691
                                                      3469.14136
3469.15649
3469.20630
                                                                       0.853
                                                                                            0.036
   1935.45325
                   0.008
                            14.791
                                        0.016
                                                   33
                                                                       0.905
                                                                                14.683
                                                                                            0.015
10
   1936.45044
                   0.896
                            14.801
                                        0.015
                                                                                            0.015
                                                                       0.074
                                                                                14.673
                                                   35
11
   1942.43457
                   0.227
                            15.008
                                        0.016
                                                      3469.22998
                                                                       0.154
                                                                                14.660
                                                                                            0.016
   1997.28101
                   0.074
                            14.787
                                        0.013
                                                   36
                                                                       0.285
                                                       3469.26880
                                                                                14.857
                                                                                            0.021
                                        0.028
                                                   37
13
   2295.46802
                   0.667
                            15.312
                            15.415
15.351
                                        0.026
                                                   38
                                                      3469.28369
                                                                       0.335
                                                                                14.765
                                                                                            0.021
   2305.43970
                   0.548
                                        0.024
                                                                                14.924
                                                                                            0.024
                                                   39
                                                      3469.32520
                                                                       0.476
                   0.534
1.5
   2323.38916
                   0.724
                                        0.017
                                                      3469.34009
                                                                       0.526
                                                                                14.941
                                                                                            0.042
                            15.421
                                                   40
   3097.22217
                                        0.014
                                                      3473.25293
                                                                       0.772
                                                                                14.701
                                                                                            0.021
                   0.814
                            15,178
17
   3099.38257
                                                      3473.26807
                                                                                14.722
                                                                                            0.010
                                        0.013
                                                                       0.823
   3099.39380
                   0.836
                            15.061
18
                                                                       0.133
                                                      3540.12109
                                                                                14.657
                                                                                            0.011
                   0.895
                            14,900
                                        0.015
   3099.42529
                                                                                14.670
                                                                                            0.011
                            14.807
                                        0.015
                                                      3540.12622
                                                                       0.151
                                                   44
20
   3126.38818
                   0.948
                            15.102
                                                                       0.169
                                                                                            0.011
                                        0.013
                                                      3540.13159
                                                                                14.665
21
   3128.13574
                   0.256
                   0.279
                                                                       0.193
                                                                                14.672
                                                                                            0.011
                            15.123
                                        0.012
                                                   46
                                                       3540.13867
   3128.14795
                            15.160
                                                      3540.14404
                                                                       0.210
                                                                                14.699
                                                                                            0.011
                   0.301
                                        0.013
23
   3128.15918
                                                                       0.228
                                                                                14.747
                                                                                            0.011
                            15.247
                                        0.012
                                                    48
                                                       3540.14917
   3128.22778
                   0.430
   3128.23853
                                        0.012
                                                   49
                                                      3540.15430
                                                                       0.245
                                                                                14.729
                                                                                            0.011
                            15,243
                   0.451
                                                      3540.15942
                                                                       0.263
                                                                                14.733
                                                                                            0.011
   3128.30933
                   0.585
                            15.316
                                        0.013
                                                    50
26
                                                                       0.280
                                                                                14.742
                                                                                            0.011
                            15.330
                                        0.013
                                                      3540.16455
   3128.32007
                   0.605
27
                   0.191
                                        0.019
   3385.30786
                            15.025
28
                   0.205
   3385.31519
                            15.013
                                        0.019
                                                         RR173043
   3385.40283
3385.41040
                                                                                Vint
                                                                                          Vinterr
                   0.371
                             15.221
                                        0.028
                                                       Dayval
                                                                       Phase
30
                                                                                15.774
                                                       1205.46216
                                                                       0.837
                                                                                            0.025
                   0.385
                             15.286
                                        0.034
                                                       1228.39783
                                                                       0.976
                                                                                15.286
                                                                                            0.018
     RR171907
                                                      1237.37231
                                                                       0.720
                                                                                15.896
                                                                                            0.025
35.
   Dayval
1578.43250
                                       Vinterr
                                                      1254.32520
                                                                       0.699
                                                                                15.886
                                                                                            0.026
                   Phase
                            Vint
                            17.853
                                                      1255.32251
                                                                       0.230
                                                                                15.727
                                                                                            0.098
                   0.705
                                        0.171
                                                                                            0.027
                                                      1257.31689
                                                                       0.284
                                                                                15.798
                   0.356
                                                     6
   1593.39050
                            17.845
                                        0.117
                                                       1258.31421
                                                                                15.630
                                                                                            0.022
                                                                       0.814
   1612.33789
                   0.449
                            17.876
                                        0.104
                   0.559
                                        0.106
                                                      1263.30042
                                                                       0.458
                                                                                15.860
                                                                                            0.026
                            17.819
17.839
                                                     8
   1613.33521
                                                      1269.28394
                                                                                15.879
                                                                                            0.029
                                                                       0.630
                   0.668
                                        0.121
   1614.33203
                                                   10 1292.22168
                                                                       0.804
                                                                                15.807
                                                                                            0.028
                   0.779
                             17.927
                                        0.136
   1615.32947
                                                                                            0.039
                            17.987
                                                                                15.903
   1616.32690
                                        0.134
                                                   11 1578.43970
                                                                       0.643
                   0.889
                   0.329
                                        0.125
                                                      1593.39819
                                                                       0.568
                                                                                15.880
                                                                                            0.027
   1620.31531
                            17,830
                   0.440
                            17.720
                                        0.144
                                                   13 1612.34570
                                                                       0.608
                                                                                15.907
                                                                                            0.023
   1621.31299
                                                                                            0.020
                             17.826
                                                   14 1613.34302
                                                                       0.138
                                                                                15.607
                   0.660
10
   1623.30737
                                        0.123
                                                                                15.885
                                                                                            0.026
                                                   15 1614.33984
                                                                       0.659
                             17.404
                                        0.106
   1935.45544
                   0.165
11
                                                   16 1615.33740
                                                                                            0.023
                                                                       0.192
                                                                                15.694
                   0.275
                                        0.106
12
   1936.45264
                            17.564
                                                                                15.848
                   0.938
                             17.337
                                        0.087
                                                   17
                                                      1616.33472
                                                                       0.723
                                                                                            0.027
13
   1942.43677
                                        0.084
                                                   18 1617.33203
                                                                       0.252
                                                                                15.643
                                                                                            0.032
                   0.993
14
   1997.28320
                             17.260
                   0.956
                                        0.113
                                                   19
                                                      1620.32324
                                                                       0.828
                                                                                15.763
                                                                                            0.024
15
   2295.47021
                             17,219
                                                   20 1621.32092
21 1623.31531
                                                                                15.789
                   0.056
                                                                       0.365
                                                                                            0.033
16
   2305.44189
                             17.236
                                        0.110
                                                                                15.868
                                                                       0.421
                                                                                            0.027
17
   2323.39136
                   0.037
                             17,266
                                        0.097
                                                      1935.46289
                                                                       0.022
                                                                                15.299
                                                                                            0.021
                                                    22
                                                      1936.46008
                                                                       0.549
                                                                                15.898
                                                                                            0.032
                                                    23
36.
     RR172059
                                                   24 1942.44434
25 1980.33728
                                                                       0.734
                                                                                15.899
                                                                                            0.027
                            Vint
                                       Vinterr
   Dayval
                   Phase
                                                                       0.777
                                                                                15.773
                                                                                            0.036
   1205.45532
                             14.713
                                        0.012
                   0.862
                                        0.013
                                                    26 1997.29126
                                                                       0.777
                                                                                15.839
                                                                                            0.023
   1228.39099
                   0.503
                             14.901
                                                                       0.982
                                                                                15.577
                                                                                            0.030
                                                    27
                                                      2295.47754
 3
   1237.36548
                   0.884
                             14.679
                                        0.011
                                                      2305.44946
                                                                       0.256
                                                                                15.705
                                                                                            0.030
   1254.31836
                   0.272
                             14.774
                                        0.013
                                                    28
                                                       2323.39893
                                                                       0.755
                                                                                15.877
                                                                                            0.032
   1255.31567
                   0.649
                             14.888
                                        0.055
                                                    29
                                                                                            0.031
                                                      2326.39062
                                                                                15.807
                                                                       0.338
   1257.31006
                   0.400
                             14.886
                                        0.014
                                                    30
                                                                                            0.017
                                                                       0.483
                                                                                15.841
                                                       3097.23804
   1258.30737
                   0.776
                             14.760
                                        0.012
                                                    31
                                                                       0.490
                                                                                            0.019
                                                                                15,803
                                                       3099.28662
   1269.27722
                   0.911
                             14.689
                                        0.014
                                                    32
                                                                       0.944
                                                   33 3099.31250
                                                                                15.486
                                                                                            0.012
 9
   1578.43335
                   0.461
                             14.885
                                        0.018
                                                                                            0.014
                                                                                15.605
10 1593.39136
                   0.097
                             14.681
                                        0.012
                                                    34
                                                       3099.32520
                                                                       0.170
```

```
0.050
35 3099.33936
                   0.416
                             15.814
                                        0.013
                                                     7 1258.32251
                                                                       0.472
                                                                                 16.816
36 3099.41113
                   0.679
                             15.833
                                        0.015
                                                     8 1263.30872
                                                                       0.945
                                                                                 16.629
                                                                                             0.050
                                                       1269.29236
                                                                        0.313
                                                                                 16.639
                                                                                             0.047
                                        0.016
                   0.460
                             15.867
   3112.25635
                                        0.027
                                                    10 1292,22998
                                                                       0.891
                                                                                 16.634
                                                                                             0.051
                             15.847
38
   3112.26733
                   0.652
                                        0.016
                   0.193
                                                    11 1578.44800
                                                                       0.666
                                                                                 16.941
                                                                                             0.081
39 3112.35498
                             15.588
                                                    12 1593.40649
                                        0.013
                                                                       0.085
                                                                                 16.244
                                                                                             0.032
40 3112.39185
                   0.839
                             15.616
                                                    13 1612.35400
                                                                       0.083
                                                                                 16.302
                                                                                             0.029
   3112.40234
                   0.026
                             15.330
                                        0.013
                                                    14 1613.35132
                                                                       0.977
                                                                                 16.218
                                                                                             0.029
42 3112.41357
                   0.220
                             15.675
                                        0.014
                                                                       0.871
                                                    15 1614.34814
                                                                                 16.757
                                                                                             0.052
43 3112.42432
                   0.411
                             15.812
                                        0.016
                                                   15 1614.34814
16 1615.34570
17 1616.34302
18 1617.34033
19 1620.33154
20 1621.32922
21 1623.32361
22 1935.47119
23 1936.46838
24 1942.45264
25 1980.34558
                                                                                             0.062
                                                                                 16.884
                                                                       0.766
44
   3130.33960
                   0.309
                             15.698
                                        0.028
                                                                                 16.879
                                                                                             0.056
                                                                       0.661
45 3130.34351
                   0.376
                             15.815
                                        0.028
                                                                       0.556
                                                                                 16.894
                                                                                             0.065
46 3130.34717
                   0.442
                             15.795
                                        0.035
                                        0.034
                                                                       0.239
                                                                                 16.592
                                                                                             0.051
                             15.792
47 3130.35107
                   0.509
                                                                       0.134
                                                                                 16.489
                                                                                             0.053
                                        0.034
48 3130.35498
                   0.576
                             15.918
                                                                       0.923
                                                                                 16.502
                                                                                             0.046
49 3130.35913
                   0.651
                             15.878
                                        0.031
0.036
                                                                       0.961
                                                                                 16.348
                                                                                             0.046
50 3130.36328
                   0.725
                             15.847
                                                                                             0.067
                                        0.035
                                                                       0.855
                                                                                 16.962
                   0.802
51
   3130.36768
                             15.823
                                                                       0.224
                                                                                 16.541
                                                                                             0.041
                                        0.035
52
   3130.37207
                   0.876
                             15.633
                                                    25 1980.34558
26 1997.29968
                                                                       0.216
                                                                                 16.582
                                                                                             0.061
53 3130.37646
                   0.954
                             15.472
                                        0.031
                                                                                 16.824
                                                                                             0.046
                                                                       0.426
   3385.42041
                   0.851
                             15.790
                                        0.027
54
                                                                                            0.067
                                                                       0.425
                                                                                 16.773
                                                    27 2035.19666
55 3385.42456
                   0.921
                             15.624
                                        0.028
                                                                                 16.791
                                                                                             0.063
56
   3385.42847
                   0.989
                             15.332
                                        0.021
                                                    28 2305.45776
                                                                       0.884
   3385.43213
                    0.056
                             15.282
                                        0.025
                                                    29 2323.40747
                                                                       0.986
                                                                                 16.086
                                                                                            0.038
                                                    30 2326.39893
                                                                       0.669
                                                                                 16.931
                                                                                            0.073
                                                    31 3129.21362
                                                                       0.907
                                                                                 16.493
                                                                                            0.024
38.
     RR174152
   Dayval
1205.46985
                                                       3129.22461
                                                                       0.928
                                                                                 16.461
                                                                                            0.026
                    Phase
                             Vint
                                       Vinterr
                                                    32
                                                                       0.044
                                                    33 3129.28589
                                                                                 16.292
                                                                                            0.024
                    0.205
                             15.661
                                        0.022
                             16.093
                                        0.029
                                                    34 3129.29663
                                                                       0.064
                                                                                 16.376
                                                                                             0.033
   1228.40552
                    0.659
                                        0.029
 3 1237.38000
                                                    35 3129.36060
                                                                       0.186
                                                                                 16.556
                                                                                             0.032
                   0.488
                             16.053
 4 1254.33276
                    0.389
                             15.934
                                        0.028
                                                    36 3129.37158
                                                                       0.207
                                                                                 16.539
                                                                                             0.025
   1255.33020
                    0.148
                             15.545
                                        0.101
                                                    37 3175.11230
                                                                       0.108
                                                                                 16.323
                                                                                             0.016
   1257.32458
                    0.665
                             16.082
                                        0.035
                                                    38 3175.12329
                                                                       0.129
                                                                                 16.340
                                                                                             0.017
                                                    39 3175.16992
                                                                                 16.482
                                                                                            0.021
 7 1258.32190
                   0.424
                             15.992
                                        0.030
                                                                       0.217
                                                    40 3175.18115
41 3181.09253
                                                                                 16.546
                                                                                             0.019
 8
   1263.30823
                   0.219
                             15.670
                                        0.025
                                                                       0.239
                   0.773
                                                                       0.469
                                                                                 16,891
                                                                                             0.024
 9 1269.29175
                             16.102
                                        0.030
                                                                                             0.023
                                                    42 3181.10327
                                                                       0.490
                                                                                 16.842
10 1292.22937
                   0.230
                             15.692
                                        0.027
                                                                       0.510
                                                                                             0.025
                                                                                 16,833
                                                    43 3181.11401
11 1578.44739
                   0.054
                             15.290
                                        0.024
                                                                                 16.800
                                                                                             0.021
12 1593.40588
                   0.437
                             15.977
                                        0.030
                                                    44 3181.12476
                                                                       0.531
                                                                       0.679
                                                                                            0.026
                                                    45 3181.20288
                                                                                 16.871
13 1612.35352
                    0.856
                             16.229
                                        0.030
                                                                                 16.933
14 1613.35083
                    0.615
                             16.112
                                        0.028
                                                    46 3181.21558
                                                                                             0.024
                                                                                            0.028
15 1614.34766
                    0.373
                             15.897
                                        0.030
                                                    47 3181.22656
                                                                       0.724
                                                                                 16.930
16 1615.34509
                    0.133
                             15.511
                                        0.022
                                                    48 3181.23730
                                                                       0.744
                                                                                 16.868
                                                                                             0.026
17 1616.34253
                    0.892
                             16.178
                                        0.034
                                                    49 3186.08960
                                                                       0.963
                                                                                 16.278
                                                                                             0.017
18 1617.33972
                             16.074
                                        0.039
                                                    50 3186.10059
                                                                       0.984
                                                                                 16.229
                                                                                             0.016
                    0.651
19 1620.33093
                    0.927
                             15.812
                                        0.027
                                                    51 3186.11133
                                                                       0.005
                                                                                 16,226
                                                                                             0.015
20 1621.32861
                                        0.033
                                                    52
                                                       3186.12231
                                                                       0.025
                                                                                 16.200
                                                                                             0.017
                    0.686
                             16.070
                             15.669
   1623.32312
                    0.204
                                        0.023
                                                    53 3186.13354
                                                                       0.047
                                                                                 16.254
                                                                                             0.017
22
   1935.47070
                    0.762
                             16.064
                                        0.039
                                                    54
                                                       3186.14453
                                                                       0.067
                                                                                 16.284
                                                                                             0.015
23 1936.46777
                    0.521
                             16.074
                                        0.037
                                                    55 3186.15527
                                                                       0.088
                                                                                 16.316
                                                                                             0.018
   1942.45203
                    0.076
                             15.372
                                        0.020
                                                    56
                                                       3186.18091
                                                                       0.136
                                                                                 16.408
                                                                                             0.019
                   0.910
                                        0.040
25 1980.34509
                             16.076
                                                    57 3186.19214
                                                                       0.158
                                                                                 16.434
                                                                                             0.020
26
   1997.29907
                                        0.030
                                                    58
                                                       3186.20288
                                                                       0.178
                                                                                 16.485
                                                                                             0.020
                    0.813
                             16.180
   2035.19604
                                        0.038
                                                    59 3186.21362
                                                                       0.199
                                                                                 16.532
                                                                                             0.027
                    0.655
                             16.099
28
   2305.45728
                   0.335
                             15.867
                                        0.036
                                                    60 3186.22437
                                                                       0.219
                                                                                 16.559
                                                                                             0.030
                    0.994
                                                    61 3186.23535
                                                                        0.240
                                                                                 16.502
                                                                                             0.022
   2323.40674
                             15.195
                                        0.020
30
   2326.39844
                    0.270
                             15.764
                                        0.034
                                                    62 3385.47046
                                                                       0.759
                                                                                 16.854
                                                                                             0.057
                   0.921
   3097.27417
                             15.795
                                        0.015
                                                    63 3385.48486
                                                                       0.787
                                                                                 16.888
                                                                                             0.027
   3113.19458
                             15.180
                                        0.011
                    0.001
  3113.20532
                   0.020
                             15.226
                                        0.011
                                                    40. RR174420
   3113.24243
                    0.085
                             15.420
                                        0.011
                                                       Dayval
                                                                       Phase
                                                                                 Vint
                                                                                           Vinterr
                                                     1 1205.47156
                                                                                 15.842
35 3113.25317
                    0.104
                             15.447
                                        0.013
                                                                       0.488
                                                                                             0.025
   3113.29053
                             15.612
                                        0.012
                                                     2 1228.40723
                                                                       0.315
                                                                                 15.715
                                                                                             0.022
                    0.170
37 3113.30151
                    0.190
                             15.627
                                        0.018
                                                     3.1237.38171
                                                                       0.115
                                                                                 15.529
                                                                                             0.022
   3113.33960
                    0.257
                             15.754
                                        0.013
                                                     4 1254.33459
                                                                       0.075
                                                                                 15.519
                                                                                             0.022
38
                             15,801
39 3113.35059
                    0.276
                                        0.013
                                                     5 1255.33191
                                                                       0.720
                                                                                 15.726
                                                                                             0.097
40
   3113.38818
                   0.342
                             15.880
                                        0.015
                                                     6 1257.32629
                                                                       0.009
                                                                                 15.538
                                                                                             0.023
                   0.362
                                                     7 1258.32361
                                                                                 15.819
                                                                                             0.025
41 3113.39917
                             15.828
                                        0.031
                                                                        0.654
42 3385.44385
43 3385.45483
                   0.187
                             15.602
                                        0.015
                                                     B 1263.30994
                                                                       0.878
                                                                                 15.584
                                                                                             0.022
                                                     9 1269.29346
                   0.207
                             15.644
                                        0.036
                                                                       0.746
                                                                                 15.666
                                                                                             0.024
                                                    10 1292.23108
11 1578.44910
                                                                       0.578
                                                                                 15.869
                                                                                             0.028
                                                                                 15.799
                                                                                             0.036
39.
     RR174240
                                                                       0.638
                                                    12 1593.40771
13 1612.35522
   Dayval
1205.47046
                   Phase
                             Vint
                                       Vinterr
                                                                       0.308
                                                                                 15.729
                                                                                             0.024
                   0.060
                             16.226
                                        0.033
                                                                       0.558
                                                                                 15.860
                                                                                             0.023
                                        0.054
                             16.883
                                                                       0.203
                                                                                 15.615
                                                                                             0.021
   1228.40613
                                                    14 1613.35254
                   0.635
                                                                                             0.021
                                                    15 1614.34937
                                                                       0.846
                                                                                 15,602
 3 1237.38062
                   0.685
                             16.896
                                        0.048
                                                                                             0.027
 4 1254.33337
                   0.893
                                        0.056
                                                    16 1615.34680
                                                                                 15.837
                                                                       0.492
                             16.974
                                                                                 15.574
                                                                                             0.022
 5 1255.33081
                   0.788
                             17,018
                                                    17. 1616.34424
                                                                       0.137
                                        0.244
   1257.32520
                                                                                 15.649
                                                                                             0.026
                    0.577
                             16.881
                                        0.062
                                                    18 1617.34143
                                                                       0.782
```

```
42. RR181101
                           15.727
                                      0.025
19 1620.33264
                  0.714
                           15.742
                                                                    Phase
                                                                             Vint
                                                                                        Vinterr
                                                     Dayval
20
   1621.33044
                  0.360
                                      0.027
                                                                             17.475
17.306
                                                     1228.42737
                                                                                         0.066
                           15.800
   1623.32483
                   0.650
                                      0.025
                                                                     0.697
                                                                                         0.065
                                                    1237.40161
   1935.47241
                   0.476
                           15.599
                                      0.024
                                                   2
                                                                     0.456
                                                                                         0.083
                                                                             17.292
23 1936.46960
                  0.120
                           15.692
                                      0.026
                                                   3 1254.35388
                                                                     0.781
                                                                    0.977
   1942.45374
                  0.991
                           15.820
                                      0.026
                                                   4 1255.35132
                                                                             16.639
                                                                                         0.190
                                                                                         0.074
   1980.34680
                                                   5 1257.34558
25
                   0.484
                                      0.028
                                                                     0.368
                                                                             17.123
                           15.569
                                                                    0.563
                                                                                         0.068
   1997.30078
                   0.447
                           15.573
                                      0.021
                                                   6
                                                    1258.34290
                                                                             17.391
26
                                                                     0.541
                                                                                         0.080
  2035.19775
                   0.951
                           15.816
                                      0.029
                                                    1263.32874
                                                                             17.369
                                                                                         0.072
28
   2305.45898
                   0.693
                           15.609
                                      0.030
                                                   R
                                                     1269.31213
                                                                    0.715
                                                                             17.349
                                                                             16.822
                                                 9 1292.24915
10 1317.18164
                                                                                         0.051
   2323.40845
                   0.296
                           15.846
                                      0.031
                                                                    0.217
                                                                    0.112
                                                                             16.516
                                                                                         0.055
30
   2326.40015
                  0.229
                           15.794
                                      0.030
                                                                             17.259
                                                                                         0.066
                                                 11 1593.42773
31 3464.37500
                  0.178
                           15.546
                                      0.021
                                                                     0.337
                                                                             16.552
                                                                    0.053
                                                                                         0.038
   3464.38257
                  0.198
                           15.562
                                      0.021
                                                  12
                                                    1612.37476
32
                                                                     0.249
  3468.17700
                  0.261
                           15.642
                                      0.015
                                                  13 1613.37207
                                                                             17.106
                                                                                         0.057
                                                                             17.367
                                                                                         0.077
                                                  14 1614.36877
                                                                    0.444
   3468.18799
                  0.290
                           15.662
                                      0.016
                                                                     0.640
                                                                             17.431
                                                                                         0.082
35 3468.23340
                  0.411
                           15.776
                                      0.016
                                                  15 1615.36621
                                                                                         0.171
   3468.24414
                  0.440
                           15.814
                                      0.016
                                                  16
                                                    1617.36084
                                                                    0.032
                                                                             16.853
                                                                                         0.084
   3468.28833
                  0.556
                                      0.017
                                                  17 1620.35193
                                                                    0.617
                                                                             17.449
                           15.836
   3468.29907
                  0.585
                                      0.016
                                                     1621.34875
                                                                    0.812
                                                                             17.420
                                                                                         0.086
                           15.861
                                                  18
  3468.34814
                  0.715
                           15.710
                                      0.022
                                                  19 1623.34399
                                                                     0.205
                                                                             17.056
                                                                                         0.065
   3468.35913
                  0.744
                           15.663
                                      0.024
                                                  20
                                                    1980.36621
                                                                     0.279
                                                                             17.252
                                                                                         0.071
40
                                                  21 1997.31958
                                                                     0.606
                                                                             17.507
                                                                                         0.068
41 3468.42163
                  0.910
                           15.522
                                      0.017
  3468.43237
3487.28369
                  0.939
                                      0.016
                                                  22 2035.21533
                                                                    0.043
                                                                             16.683
                                                                                         0.055
                           15.543
42
                  0.933
                                                  23 2036.21265
                                                                                         0.083
                           15.530
                                      0.016
                                                                    0.239
                                                                             17.253
43
                  0.963
                                      0.016
                                                  24 2057.15625
                                                                    0.352
                                                                             17.195
                                                                                         0.105
44 3487.29517
                           15.499
                  0.991
                                                 25
                                                    2323.42847
                                                                    0.617
                                                                             17.487
                                                                                         0.098
   3487.30566
                           15.465
                                      0.016
45
                                                  26 2326.41992
46 3487.31641
                  0.020
                           15.542
                                      0.017
                                                                    0.203
                                                                             17.070
                                                                                         0.074
                                                     3128.17358
                                                                             17.384
                                                                                         0.032
                                                  27
                                                                     0.465
                                                  28
                                                     3128.18555
                                                                     0.491
                                                                              17.429
                                                                                         0.033
     RR175017
41.
   Dayval
1228.41284
                  Phase
                           Vint
                                      Vinterr
                                                    3128.25659
                                                                     0.648
                                                                              17.419
                                                                                         0.023
                           13.204
                                                     3128.33984
                                                                     0.831
                                                                              17.228
                                                                                         0.019
                  0.666
                                      0.005
                                                  30
   1237.38721
                  0.579
                           13.282
                                      0.005
                                                  31 3128.41333
                                                                     0.993
                                                                             16.365
                                                                                         0.030
                  0.970
                                      0.006
                                                     3169.12036
                                                                     0.619
                                                                             17.425
                                                                                         0.032
   1254.33948
                           13.362
                                                  32
   1255.33679
                           13.267
                                      0.018
                                                  33 3169.13452
                                                                     0.651
                                                                             17.425
                                                                                         0.027
                   0.406
   1257.33118
                  0.275
                           13.174
                                      0.005
                                                  34 3169.20850
                                                                    0.813
                                                                             17.492
                                                                                         0.025
                                                  35 3169.22290
 6 1258.32837
                  0.710
                           13.176
                                      0.005
                                                                    0.845
                                                                             17.305
                                                                                         0.025
   1263.31458
                  0.884
                                      0.005
                                                    3169.29614
                                                                    0.007
                                                                             16.367
                                                                                         0.024
                           13.248
                                                  36
                   0.496
   1292.23474
                           13.352
                                      0.006
                                                  37 3180.09839
                                                                     0.790
                                                                             17.463
                                                                                         0.029
   1593.41333
                  0.846
                           13.210
                                      0.005
                                                     3180.11279
                                                                    0.822
                                                                             17.386
                                                                                         0.026
                                                  38
10 1612.36023
                  0.108
                           13.261
                                      0.005
                                                  39 3180.19482
                                                                     0.003
                                                                             16.358
                                                                                         0.017
  1613.35754
                  0.543
                                      0.005
                                                  40
                                                    3180.20923
                                                                    0.034
                                                                             16.508
                                                                                         0.018
                           13.339
   1614.35437
                  0.977
                                      0.005
                                                  41 3180.25708
                                                                     0.139
                                                                             16.803
                                                                                         0.022
                           13.378
   1615.35181
                  0.413
                           13.277
                                      0.005
                                                     3180.27051
                                                                     0.169
                                                                             16.892
                                                                                         0.023
                                                  42
  1616.34924
                  0.848
                                      0.005
                                                  43 3187.10742
                                                                     0.222
                                                                             17.036
                                                                                         0.022
                           13.212
   1617.34644
                                      0.008
                                                  44 3187.12207
                                                                     0.255
                                                                             17.130
                                                                                         0.020
                  0.283
                           13.075
   1620.33752
                   0.586
                           13.276
                                      0.005
                                                  45 3187.13672
                                                                     0.287
                                                                             17.196
                                                                                         0.022
   1621.33521
                  0.022
                           13.376
                                      0.005
                                                  46
                                                     3187.15161
                                                                    0.320
                                                                             17.178
                                                                                         0.025
18 1623.32959
                  0.891
                           13.262
                                      0.005
                                                  47 3187.16650
                                                                    0.353
                                                                             17.225
                                                                                         0.025
   1942.45972
                  0.072
                                      0.005
                                                     3187.18091
                                                                    0.384
                                                                             17.280
                                                                                         0.024
                           13.321
                                                  48
  1980.35181
                  0.592
                                      0.006
                                                  49 3187.19580
                                                                     0.417
                                                                             17.326
                                                                                         0.028
20
                           13.267
   1997.30518
                  0.986
                           13.378
                                      0.006
                                                  50
                                                    3187.21021
                                                                    0.449
                                                                             17.335
                                                                                         0.030
22
   2035.20093
                  0.512
                           13.363
                                      0.006
                                                  51 3187.22437
                                                                    0.480
                                                                             17.419
                                                                                         0.029
23
   2305.46484
                  0.381
                           13.217
                                      0.006
                                                  52
                                                     3187.23853
                                                                    0.511
                                                                             17.429
                                                                                         0.025
                                                  53 3187.25269
   2323.41406
                  0.207
                           13.151
                                      0.006
                                                                    0.542
                                                                             17.406
                                                                                         0.026
25
   2326.40552
                  0.512
                           13.324
                                      0.006
26 3463.32422
                  0.366
                           13:222
                                      0.009
   3463.33667
                                      0.009
                                                  43. V532 Her
                  0.384
                           13.242
                                                    Dayval
1228.42761
   3463.38770
                                      0.009
                                                                    Phase
                                                                             Vint
                                                                                        Vinterr
28
                  0.457
                           13.345
                           13.354
   3463.40039
                  0.475
                                      0.009
                                                                    0.852
                                                                             16.000
                                                                                         0.027
30
  3464.39209
                  0.902
                           13.263
                                      0.009
                                                   2 1237.40186
                                                                    0.426
                                                                             15.735
                                                                                         0.023
                  0.920
                                      0.009
                                                   3 1254.35413
                                                                    0.734
                                                                             15.872
                                                                                         0.029
   3464.40430
                           13.291
   3473.30249
                  0.723
                                                   4 1255.35156
                                                                     0.576
                                                                                         0.103
                           13.176
                                      0.010
                                                                             15.814
   3473.31299
                  0.738
                                                    1257.34583
                                                                    0.259
                                                                                         0.023
                           13.163
                                      0.010
                                                                             15.559
  3473.43896
                  0.919
                           13.297
                                      0.011
                                                   6 1258.34314
                                                                    0.101
                                                                             15.252
                                                                                         0.016
   3473.44971
                  0.935
                           13.312
                                      0.011
                                                     1263.32898
                                                                    0.309
                                                                             15.598
                                                                                         0.023
36
   3546.08276
                  0.443
                           13.304
                                      0.012
                                                   8 1269.31250
                                                                     0.360
                                                                             15.665
                                                                                         0.023
   3546.08594
                  0.447
                           13.312
                                      0.011
                                                     1292.24951
                                                                     0.720
                                                                             15.856
                                                                                         0.025
                                                  10 1317.18188
                                                                     0.767
                                                                              15.861
   3546.11694
                  0.492
                           13.352
                                      0.011
                                                                                         0.036
   3546.11328
                  0.487
                           13.331
                                      0.011
                                                  11 1593.42798
                                                                    0.948
                                                                             15.312
                                                                                         0.017
                                                    1612.37500
40
   3546.11987
                  0.496
                           13.320
                                      0.011
                                                                     0.940
                                                                             15.345
                                                                                         0.016
41
   3546.12305
                  0.501
                           13.325
                                      0.011
                                                  13
                                                    1613.37231
                                                                     0.782
                                                                              15.944
                                                                                         0.025
                  0.505
                                                  14 1614.36914
                                                                              15.835
42
   3546.12598
                           13.320
                                      0.011
                                                                     0.623
                                                                                         0.025
43
   3546.12915
                  0.510
                           13.340
                                      0.011
                                                  15
                                                    1617.36108
                                                                     0.149
                                                                             15.421
                                                                                         0.052
   3546.13232
                  0.514
                           13.356
                                      0.011
                                                  16
                                                    1620.35229
                                                                     0.673
                                                                              15.843
                                                                                         0.026
   3546.14990
                  0.540
                           13.342
                                      0.011
                                                    1621.34912
                                                                    0.514
                                                                              15.795
                                                                                         0.032
                                                                             15.453
                                                  18
                                                     1623.34424
                                                                     0.199
                                                                                         0.021
                                                     1980.36646
                                                                    0.561
                                                                             15.805
                                                                                         0.032
```

```
0.027
                                                      4 1255.37097
                                                                         0.239
                                                                                  16.611
                                                                                              0.168
                    0.871
                             15.914
20 1997.31995
                                                      5 1257.36487
                                                                         0.047
                                                                                  16.316
                                                                                              0.035
                                         0.032
                             15.976
   2035.21570
                    0.859
                                                      6 1258.36255
                                                                                  16.792
                                                                         0.453
                                                                                              0.043
                                         0.031
   2036.21289
                    0.700
                             15.851
                                                      7 1263.34839
                                                                         0.476
                                                                                  16.817
                                                                                              0.049
23
   2057.15674
                    0.380
                             15.647
                                         0.038
                                                                         0.904
                                                                                  16.918
                                                                                              0.051
                                         0.023
                                                      8 1269.33191
   2323.42871
                    0.142
                             15.360
                                                     9 1292.26892
10 1317.20129
                                                                         0.213
                                                                                  16.533
                                                                                              0.039
   2326.42017
                    0.666
                             15.885
                                         0.031
25
                                                                                  16.673
                                                                                              0.052
                                                                         0.333
   3128.20020
                    0.424
                             15.730
                                         0.018
                                                     11 1593.44739
                                                                         0.456
                                                                                  16.741
                                                                                              0.048
   3128.21191
                    0.446
                             15.747
                                         0.018
                                                                         0.143
                                                                                  16,429
                                                                                              0.034
                                                     12 1612.39355
28 3128.27515
                    0.563
                             15.800
                                         0.018
                                                                                              0.049
                                                                         0.549
                                                                                  16.834
   3128.29443
                    0.598
                             15.814
                                         0.019
                                                     13 1613.39172
                                                                                  16.685
                                                                         0.357
                                                                                              0.048
   3128.35864
                    0.717
                              15.845
                                         0.019
                                                     14 1615.38513
                                                                         0.762
                                                     15 1616.38232
                                                                                  17.024
                                                                                              0.056
   3128.36963
                    0.737
                              15.873
                                         0.019
                                                                                              0.043
32 3128.42603
                    0.841
                             15.940
                                         0.020
                                                     16 1617.37939
                                                                         0.166
                                                                                  16.477
                              15.693
                                         0.020
                                                     17 1620.37170
                                                                         0.381
                                                                                  16.707
                                                                                              0.046
33
   3097.28540
                    0.329
   3169.15405
                    0.059
                             15.195
                                         0.016
                                                     18 1621.36841
                                                                         0.785
                                                                                  17.013
                                                                                              0.059
                                         0.017
                                                     19 1623.36365
                                                                         0.596
                                                                                  16.856
                                                                                              0.052
35
   3169.16504
                    0.079
                              15.248
                    0.227
                                                                                              0.051
36 3169.24487
                             15.516
                                         0.018
                                                     20 1980.38574
                                                                         0.500
                                                                                  16.868
                                         0.018
                                                     21 1997.33936
                                                                         0.381
                                                                                  16.785
                                                                                              0.042
   3169.25562
                    0.247
                             15.532
37
                                                     22 2035.23511
                                                                         0.761
                                                                                  16.993
                                                                                              0.066
   3175.13623
                    0.107
                             15.304
                                         0.016
                                                     23 2057.17603
                                                                         0.667
                                                                                  16.867
                                                                                              0.068
39 3175.14697
40 3175.19189
                    0.127
                             15.344
                                         0.017
                    0.210
                             15.487
                                         0.017
                                                     24 2323.44824
                                                                         0.740
                                                                                  16.968
                                                                                              0.064
41 3175.20264
                                         0.017
                                                     25 2326.43970
                                                                         0.954
                                                                                  16.590
                                                                                              0.047
                    0.230
                             15,512
                                                        3473.34888
                                                                         0.499
                                                                                  16.814
                                                                                              0.022
                                                     26
                                                                         0.514
44. RR183606
                                                        3473.35962
                                                                                  16.868
                                                                                              0.022
                                                     28 3473.39526
                                                                         0.564
                                                                                  16.848
                                                                                              0.023
   Dayval
                    Phase
                             Vint
                                        Vinterr
                    0.734
                             17.000
 1 1228.44482
2 1237.41907
3 1254.37134
                                                        3473.40649
                                                                         0.580
                                                                                  16.893
                                                                                              0.023
                                         0.050
                                                     29
                    0.271
                                                     30 3478.25171
                                                                                  16.763
                                                                                              0.018
                                         0.038
                                                                         0.405
                             16,608
                                                     31 3478.30493
                                                                                  16.830
                                                                                              0.019
                    0.289
                             16.673
                                         0.044
                                                                         0.480
 4 1255.36877
                    0.349
                                                     32 3478.31909
                                                                         0.500
                                                                                  16.855
                                                                                              0.019
                             16.734
                                         0.264
 5 1257.36267
                    0.468
                             16.926
                                         0.057
                                                     33 3478.35645
                                                                         0.552
                                                                                  16.892
                                                                                              0.020
 6 1258.36035
                    0.528
                             16.956
                                         0.050
                                                     34 3478.37061
                                                                         0.572
                                                                                  16.892
                                                                                              0.020
                                                     35 3478.40698
                                                                                  16.881
                                                                                              0.020
   1263.34619
                    0.827
                             16.904
                                         0.059
                                                                         0.624
                                                                                  16.886
 8 1269.32959
                                                     36 3478.42114
                                                                                              0.020
                    0.187
                             16.447
                                         0.035
                                                                         0.644
9 1292.26660
10 1317.19910
                                                        3516.15967
                                                                                  17.031
                                         0.057
                                                     37
                                                                         0.802
                                                                                              0.021
                    0.566
                             16,992
                                                     38 3516.19824
                    0.067
                             16.070
                                         0.041
                                                                         0.856
                                                                                  17.048
                                                                                              0.023
11 1593.44519
12 1612.39136
                                                        3516.21094
                    0.689
                             16.958
17.053
                                         0.050
                                                     39
                                                                         0.875
                                                                                  17.012
                                                                                              0.023
                                                     40 3516.25439
                                                                                              0.019
                    0.825
                                         0.050
                                                                         0.936
                                                                                  16.588
13 1613.38953
14 1615.38293
                                         0.058
                                                     41 3516.26733
                                                                         0.954
                                                                                  16.536
                                                                                              0.019
                    0.887
                             17.018
                                                                                              0.019
                                         0.028
                                                     42 3516.28027
                                                                         0.972
                                                                                  16.446
                    0.005
                             15.836
15 1616.38013
16 1617.37720
                    0.064
                                         0.029
                                                                                  16.305
                             16.051
                                                     43 3516.32471
                                                                         0.035
                                                                                              0.019
                                         0.039
                                                     44 3516.33789
                                                                         0.053
                                                                                  16.321
                                                                                              0.017
                    0.124
                             16.278
                                         0.051
   1620.36951
                             16.646
17
                    0.305
18 1621.36621
19 1623.36145
20 1980.38354
                                                     46. RR184019
                    0.364
                             16.729
                                         0.047
                                                       Dayval
1228.44775
                                         0.061
                                                                         Phase
                                                                                  Vint
                                                                                             Vinterr
                    0.485
                             16.876
                                         0.046
                                                                                  14.679
                                                                                              0.011
                                                                         0.437
                             16.548
   1997.33716
2035.23291
                                                                                  14.482
                    0.980
                             15,955
                                         0.027
                                                      2 1237.42200
                                                                         0.896
                                                                                              0.010
21
                                                                         0.098
                                                                                  14.439
22
                    0.259
                             16.605
                                         0.045
                                                      3 1254.37427
                                                                                              0.012
23
   2057.17383
                    0.581
                              17.075
                                         0.083
                                                      4 1255.37170
                                                                         0.817
                                                                                  14.303
                                                                                              0.038
   2323.44604
                                         0.072
                                                      5 1257.36560
                                                                         0.251
                                                                                  14.279
                                                                                              0.010
                    0.600
                             16.923
                             16.977
                                                      6 1258.36328
                                                                         0.970
                                                                                  14.754
                                                                                              0.012
   2326.43750
                    0.780
                                         0.069
                    0.212
                                                      7 1263.34912
                                                                         0.559
                                                                                  14.566
                                                                                              0.011
26
   3126.40332
                              16.456
                                         0.023
                                         0.029
                                                      8 1269.33252
                                                                         0.866
                                                                                  14.403
                                                                                              0.010
   3126.41406
                    0.235
                             16.560
28 3126.42505
                    0.257
                                         0.028
                                                      9 1292.26953
                                                                         0.380
                                                                                  14.453
                                                                                              0.011
                             16.610
29
   3129.38916
                    0.380
                             16.719
                                         0.034
                                                     10 1317.20203
                                                                         0.332
                                                                                  14.351
                                                                                              0.012
                                                     11 1593.44812
                                                                         0.227
                                                                                  14.276
                                                                                              0.009
30 3129.40308
                    0.409
                             16.703
                                         0.075
31 3130.38794
                    0.443
                             16.813
                                         0.023
                                                     12 1612.39429
                                                                         0.864
                                                                                  14.398
                                                                                              0.009
32 3130.39868
                    0.465
                             16.881
                                         0.027
                                                     13 1613.39246
                                                                         0.584
                                                                                  14.519
                                                                                              0.010
                                                                                  14.729
   3130.40942
                             16.907
                                         0.028
                                                     14 1615.38586
                                                                         0.017
                                                                                              0.013
                    0.487
33
34 3130.42017
35 3169.18066
36 3169.19165
                    0.510
                                                     15 1616.38306
16 1617.38013
                                                                                  14.278
                             16.917
                                         0.027
                                                                         0.735
                                                                                              0.010
                                                                                  14.726
                                         0.024
                                                                         0.452
                                                                                              0.014
                    0.574
                             16.995
                    0.597
                             16.984
                                         0.028
                                                     17 1620.37244
                                                                         0.607
                                                                                  14.371
                                                                                              0.011
37 3169.27026
                                         0.028
                                                     18 1621.36914
                                                                         0.324
                                                                                  14.368
                                                                                              0.010
                    0.760
                             16.965
38 3169.28125
                                                     19 1623.36438
                    0.782
                             16,990
                                         0.029
                                                                         0.762
                                                                                  14.264
                                                                                              0.009
                                                     20 1980.38647
21 1997.34009
39 3174.09814
40 3174.11133
                             16.926
                                                                                  14.289
                    0.732
                                         0.025
                                                                         0.808
                                                                                              0.010
                    0.759
                             17.009
                                         0.025
                                                                         0.014
                                                                                  14.745
                                                                                              0.012
                                                     22 2035.23584
23 2057.17676
                    0.782
                                         0.023
                                                                         0.297
                                                                                  14.305
                                                                                              0.011
   3174.12231
                             17.041
41
42 3174.18677
                    0.915
                                         0.023
                                                                         0.096
                                                                                  14.486
                                                                                              0.013
                             16.882
                                                     24 2323.44897
   3174.19775
                    0.938
                             16.597
                                         0.020
                                                                         0.807
                                                                                  14.251
                                                                                              0.010
43
                                                     25
                                                        2326.44043
   3174.24658
                    0.039
                             15.990
                                         0.016
                                                                         0.960
                                                                                  14.614
                                                                                              0.013
45 3174.25757
46 3454.38599
                                                        3463.34912
                    0.061
                             16.028
                                         0.016
                                                     26
                                                                         0.547
                                                                                  14.590
                                                                                              0.009
                                                        3463.36597
                                                                         0.593
                    0.703
                             16.992
                                         0.021
                                                     27
                                                                                  14.413
                                                                                              0.008
   3454.42285
                    0.779
                             16.947
                                         0.021
                                                     28
                                                        3463.41113
                                                                         0.716
                                                                                  14.231
                                                                                              0.007
                                                        3463.42651
                                                                         0.758
                                                                                              0.007
                                                        3473.27734
                                                                         0.606
                                                                                  14.381
                                                                                              0.007
                                                     30
45.
     RR183918
   Dayval
1228.44702
                             Vint
                                                                                  14.307
                                                                                              0.007
                                                     31 3473.29224
                                                                         0.646
                    Phase
                                        Vinterr
                                                     32 3473.32007
                                                                                  14.220
                                                                                              0.007
                             16.668
                                                                         0.722
                                         0.041
                    0.313
                                                        3473.33447
                                                                         0.762
                    0.954
                                         0.036
                                                     33
                                                                                  14.207
                                                                                              0.007
 2 1237.42126
                             16.541
                                                                                  14.306
                                                                                              0.008
 3 1254.37354
                    0.834
                              17.068
                                         0.063
                                                     34
                                                        3473.36963
                                                                         0.857
```

```
0.896
                                       0.008
                                                    9
                                                     1292.27478
                                                                      0.407
                                                                               17.218
                                                                                           0.067
35 3473.38379
                            14.416
                                       0.009
                                                   10 1317.20728
                                                                      0.022
                                                                               17.120
                                                                                           0.067
                   0.984
                            14.670
36
  3473.41626
                                                                      0.382
                                                                                           0.067
                                       0.009
                                                   11 1593 45337
                                                                               17.169
                   0.023
37 3473.43042
                            14.650
                                                   12 1612.39941
                                                                      0.166
                                                                               17.071
                                                                                           0.050
                                                   13 1613.39758
                                                                                           0.063
                                                                      0.472
                                                                               17.365
     RR184315
47.
                                      Vinterr
                                                   14 1616.38831
                                                                      0.384
                                                                               17.292
                                                                                           0.068
   Dayval
                   Phase
                            Vint
                                                   15 1617.38525
   1228.44971
                            16.214
                                                                      0.688
                                                                               17.497
                                                                                           0.123
                                       0.030
                   0.786
                                                   16 1620.37756
                                                                      0.602
                   0.460
                                                                               17.517
                                                                                           0.086
  1237.42407
                            16.453
                                                   17 1621.37439
                                                                      0.906
                                       0.037
                                                                               17.087
                                                                                           0.057
 3 1254.37634
                   0.291
                            16.194
                                                                      0.516
                                                                                           0.089
                                                                               17.436
                                                   18 1623.36963
   1255.37378
                   0.811
                            16.263
                                       0.150
                                                  19 1980.39160
20 1997.34521
                                                                      0.541
                                                                               17.263
                                                                                           0.069
  1257.36768
                   0.849
                            16.313
                                       0.036
                                                                               17.378
                                                                                           0.064
  1258.36523
                   0.370
                            16.284
                                       0.032
                                                  21 2035.24097
22 2036.23816
                                                                               17.184
                                                                                           0.068
                                                                      0.290
 7 1263.35120
                   0.967
                            16.600
                                       0.043
                                                                               17.268
                                                                                           0.081
                                                                      0.594
   1269.33459
                   0.084
                            16.486
                                       0.039
 В
                                                                      0.991
                                                                               17.030
                                                                                           0.065
  1292.27161
                   0.034
                            16.549
                                       0.038
                                                   23 2057.18188
                                                                                           0.071
                                                   24 2326.44556
                                                                      0.218
                                                                               17.181
10 1317.20410
                   0.025
                            16.564
                                       0.048
                                                   25 3474.35864
                                                                                           0.019
11 1593.45020
                   0.953
                            16.540
                                       0.038
                                                                      0.816
                                                                               17.226
  1612.39636
                                       0.028
                                                   26 3474.37646
                                                                      0.839
                                                                               17.131
                                                                                           0.019
                   0.822
                            16.221
                                                                                           0.019
   1613.39453
                                       0.030
                                                   27 3480.26538
                                                                      0.542
                                                                               17.258
                   0.343
                            16.243
                                                                                           0.019
                                                                               17.254
  1616.38513
                   0.900
                            16.326
                                       0.035
                                                   28 3480.28345
                                                                      0.566
                                                                               17.299
                                                                                           0.019
15 1617.38220
                   0.419
                            16.507
                                       0.059
                                                   29 3480.32031
                                                                      0.614
                                                                                           0.018
16
   1620.37439
                   0.979
                            16.519
                                       0.042
                                                   30 3480.33789
                                                                      0.637
                                                                               17.298
                                                                               17.283
   1621.37122
                   0.498
                            16.493
                                       0.036
                                                   31 3480.37158
                                                                      0.681
                                                                                           0.020
                                                                                           0.020
                                                                               17.326
   1623.36646
                   0.538
                            16.568
                                       0.040
                                                   32 3480.38940
                                                                      0.704
                                                                                           0.021
                                                                      0.749
                                                                               17.346
19 1980.38855
                   0.548
                            16.554
                                       0.039
                                                   33 3480.42358
                                                                      0.772
                                                                                           0.023
   1997.34204
                   0.381
                            16.355
                                       0.031
                                                   34 3480.44141
                                                                               17.307
20
                                                   35 3488.25293
36 3488.27051
                                                                                           0.023
   2035.23779
                                       0.039
                                                                      0.991
                                                                               17.076
                   0.125
                            16.376
                            16.516
   2057.17871
                   0.557
                                       0.041
                                                                      0.014
                                                                               17.083
                                                                                           0.021
                                                                               17.096
   2323.45093
                   0.288
                            16.205
                                       0.037
                                                   37 3488.28833
                                                                      0.037
                                                                                           0.022
                                                      3488.35083
   2326.44238
                   0.846
                            16.249
                                       0.036
                                                   38
                                                                      0.119
                                                                               17.104
                                                                                           0.022
                                                   39 3488.36841
                                                                      0.142
                                                                               17.081
                                                                                           0.020
                                                   40 3488.42798
                                                                      0.220
                                                                               17.108
                                                                                           0.019
48.
     RR184421
   Dayval
1228.45056
                                                                                           0.020
                            Vint
                                      Vinterr
                                                   41 3539.10425
                                                                      0.510
                                                                               17.294
                   Phase
                   0.242
                            16.949
                                       0.046
                                                   42 3539.11841
                                                                      0.528
                                                                               17.314
                                                                                           0.018
   1237.42480
                   0.184
                            16.948
                                        0.043
                                                   43 3539.19141
                                                                      0.624
                                                                               17.360
                                                                                           0.026
   1254.37708
                   0.189
                            16.941
                                       0.054
                                                   44 3539.20337
                                                                      0.640
                                                                               17.377
                                                                                           0.024
  1255.37451
                   0.072
                            17.099
                                       0.243
                                                   45 3539.28882
                                                                      0.751
                                                                               17.402
                                                                                           0.026
                                       0.060
                                                   46 3539.29956
                                                                      0.765
                                                                               17.389
                                                                                           0.027
   1257.36841
                   0.836
                            17.097
  1258.36609
                   0.720
                            16.982
                                        0.048
                                                   47 3563.07349
                                                                      0.864
                                                                               17.111
                                                                                           0.020
                                                   48 3563.08545
                                                                      0.880
                                                                               17.042
                                                                                           0.018
   1263.35193
                   0.133
                            17.035
                                       0.051
  1269.33545
                                                   49 3563.12256
                                                                      0.929
                                                                               16.946
                                                                                           0.020
                   0.430
                            17.308
                                       0.059
                                                                                           0.017
  1292.27234
1317.20483
                   0.735
                                       0.056
                                                   50 3563.13477
                                                                      0.945
                                                                               16.914
                            17.077
                                                                                           0.018
                            17.139
                                                                      0.962
                                       0.067
                                                   51 3563.14844
                                                                               16.883
                   0.809
10
11 1593.45093
12 1612.39709
                   0.370
                            17.199
                                                   52 3563.16089
                                                                      0.979
                                       0.059
                                                                               16.852
                                                                                           0.019
                                                   53 3563.17407
                                                                                           0.019
                            17.077
                                       0.050
                                                                      0.996
                                                                               16.850
13 1613.39526
                   0.024
                            17.380
                                       0.059
                                                   54 3563.18652
                                                                      0.012
                                                                               16.858
                                                                                           0.034
  1616.38586
1617.38293
1620.37512
                            17.017
                                       0.056
                                                   55 3606.05566
                                                                      0.090
                                                                               16.992
                                                                                           0.020
14
                   0.669
                   0.551
                                       0.081
                                                   56 3606.07007
                                                                      0.109
                                                                               17.038
                                                                                           0.019
                            17.237
15
                                                   57 3607.05078
                                                                                           0.031
                            16.973
                                       0.055
                                                                      0.391
                                                                               17.292
16
                            17.045
                                       0.054
                                                   58 3607.06519
                                                                      0.410
                                                                               17.281
                                                                                           0.026
                   0.083
  1621.37195
17
                   0.850
                            17.218
                                                   59 3607.07983
                                                                      0.429
                                                                               17.305
                                                                                           0.027
                                       0.060
18
   1623.36719
  1980.38928
1997.34290
                            17.271
                   0.915
                                       0.060
                                                   60 3607.09692
                                                                      0.452
                                                                               17.386
                                                                                           0.032
19
                   0.924
                            17.325
                                                   61 3607.11108
                                       0.066
                                                                      0.471
                                                                               17.337
                                                                                           0.034
20
21 2035.23865
22 2057.17944
                   0.471
                                       0.065
                                                   62 3607.12573
                                                                      0.489
                                                                               17.358
                                                                                           0.041
                            17.140
                            17.205
                                       0.072
                                                   63 3607.13989
                                                                      0.508
                                                                               17.504
                                                                                           0.041
  2323.45166
                            16.990
                                       0.067
                                                   64 3607.15405
                                                                      0.527
                                                                               17.392
                                                                                           0.042
23
                   0.626
   2326.44312
                   0.273
                            16.942
                                       0.056
                                                   65 3622.05103
                                                                      0.013
                                                                               16.894
                                                                                           0.015
24
                            16.911
                                                   66 3622.06519
67 3622.07935
                                       0.019
                                                                      0.032
                                                                               16.919
                                                                                           0.016
                   0.159
25
   3468.31860
                                                                      0.051
                                                                               16.935
                                                                                           0.017
                            16.930
                                       0.023
26
   3468.33325
                   0.201
                                                   68 3622.09375
                                                                      0.069
                                                                               16.973
                                                                                           0.017
   3468.37451
                            16.904
27
                   0.320
                                       0.019
28
   3468.40698
                   0.414
                            17,106
                                       0.022
                                       0.020
                                                   50.
                                                        GS Lyr
29
   3481.30103
                   0.688
                            16.975
                                                    Dayval
1 1237.43896
2 1254.39075
                                                                                          Vinterr
   3481.31519
                            16.968
                                                                      Phase
                                                                               Vint
30
                   0.729
                                       0.023
                                                                      0.095
0.102
                                                                               12.528
                   0.845
                                                                                           0.003
                                       0.024
31
   3481.35547
                            17.107
                                                                               12.651
                                                                                           0.004
   3481.36743
                            17.157
32
                   0.880
                                       0.025
                                                    3 1255.38855
4 1257.38245
                                                                                           0.010
                                                                      0.102
                                                                               12.646
33 3481.40283
                   0.982
                            17.374
                                       0.025
                                                                               12.713
                                                                                           0.004
34
  3481.41724
                   0.023
                            17,282
                                       0.024
                                                                      0.103
                                                                                           0.003
                                                    5 1258.38000
                                                                               12.744
                                                                      0.103
                                                                               12.822
49.
    RR184747
                                                    6 1263.36572
                                                                      0.105
                                                                                           0.004
                                                                                           0.004
   Dayval
                   Phase
                            Vint
                                      Vinterr
                                                    7 1269.34888
                                                                      0.108
                                                                               12.897
   1228.45288
                   0.921
                            16.965
                                       0.052
                                                    8 1292.28589
                                                                      0.117
                                                                               12.749
                                                                                           0.004
                                                                               12.793
  1237.42725
                   0.660
                            17.326
                                        0.060
                                                    9 1317.21802
                                                                      0.127
                                                                                           0.004
  1254.37952
                   0.836
                            17.167
                                       0.068
                                                   10 1612.41113
                                                                      0.245
                                                                               12.904
                                                                                           0.004
                                                                                           0.004
  1255.37683
                   0.141
                            17.111
                                       0.241
                                                   11 1613.40930
                                                                      0.245
                                                                               12.895
   1257.37085
                   0.749
                            17.367
                                       0.082
                                                   12
                                                     1615.40247
                                                                      0.246
                                                                               12.886
                                                                                           0.004
   1258.36841
                   0.054
                            17.067
                                        0.052
                                                   13 1616.39990
                                                                      0.247
                                                                               12.957
                                                                                           0.004
  1263.35425
                   0.576
                            17.305
                                       0.071
                                                   14 1617.39697
                                                                      0.247
                                                                               12,963
                                                                                           0.004
 8 1269.33777
                                        0.063
                                                   15 1620.38916
                                                                      0.248
                                                                               12.960
                                                                                           0.004
                   0.403
                            17.295
```

16	1621 20500	0.249	12.939	0.004	94 3487.45532	0.995	13.362	0.012
	1621.38599							0.013
	1623.38123	0.249	13.011	0.004	95 3487.46069	0.995	13.358	
18	1997.35669	0.399	13.003	0.004	96 3488.43945	0.995	13.382	0.012
19	2035.25195	0.414	12.472	0.003	97 3488.44482	0.995	13.368	0.012
	2036.24902	0.414	12.511	0.003	98 3516.34741	0.007	13.314	0.012
			12.956	0.005	99 3516.35376	0.007	13.312	0.012
	2057.19263	0.423						
22	2061.18188	0.424	12.993	0.005	100 3539.30786	0.016	13.362	0.011
23	2062.17920	0.425	12.976	0.005	101 3539.31079	0.016	13.326	0.011
	3097.30200	0.839	12.799	0.008	102 3540.25122	0.016	13.314	0.013
						0.016	13.333	0.012
	3126.43628	0.851	13.017	0.010	103 3540.25366			
26	3126.44214	0.851	13.000	0.008	104 3545.25317	0.018	13.360	0.012
27	3126.44971	0.851	13.010	0.008	105 3545.25562	0.018	13.365	0.011
	3128.39478	0.851	13.044	0.008	106 3546.10229	0.018	13.408	0.011
				0.008	107 3546.13843	0.018	13.371	0.011
	3128.40088	0.851	13.041					
30	3128.43628	0.851	13.022	0.009	108 3563.09497	0.025	13.347	0.011
31	3128.44263	0.851	13.017	0.009	109 3563.10059	0.025	13.344	0.011
	3128.44849	0.851	13.018	0.008	110 3569.06152	0.028	13.384	0.011
		0.870	12.673	0.010	111 3569.06738	0.028	13.399	0.011
	3174.13818							
	3174.14160	0.870	12.688	0.013	112 3606.03784	0.042	13.231	0.012
35	3174.20532	0.870	12.688	0.013	113 3606.04321	0.042	13.220	0.011
36	3174.20776	0.870	12.689	0.013	114 3607.03271	0.043	13.245	0.015
	3174.26562	0.870	12.688	0.013	115 3607.03857	0.043	13.204	0.012
							12.828	0.014
	3174.26807	0.870	12.685	0.011	116 3622.03247	0.049		
39	3175.15649	0.870	12.693	0.013	117 3622.03955	0.049	12.835	0.012
40	3175.15918	0.870	12.697	0.013				
	3175.21045	0.870	12.688	0.013	51. V427 Lyr			
					Dayval	Phase	Vint	Vinterr
	3175.21387	0.870	12.683	0.011				
43	3181.13501	0.872	12.762	0.013	1 1237.44556	0.529	16.664	0.040
44	3181.13794	0.872	12.757	0.013	2 1254.39734	0.453	16.645	0.053
	3187.26660	0.875	12.847	0.011	3 1255.39502	0.803	16.744	0.193
	3187.27075	0.875	12.839	0.011	4 1257.38892	0.499	16.632	0.051
							16.742	0.044
	3194.10986	0.878	12.971	0.010	5 1258.38611	0.848		
48	3194.11401	0.878	12.960	0.010	6 1269.35547	0.682	16.691	0.046
49	3195.08643	0.878	12.980	0.010	7 1292.29248	0.703	16.713	0.050
	3195.09058	0.878	12.979	0.010	8 1317.22461	0.422	16.608	0.050
						0.679	16.753	0.038
	3201.11133	0.880	13.000					
52	3201.11450	0.880	12.983	0.012	10 1612.41772	0.650	16.699	0.043
53	3203.13745	0.881	12.964	0.012	11 1613.41589	0.001	15.767	0.023
	3204.08447	0.882	12.938	0.012	12 1615.40906	0.695	16.779	0.056
	3204.08765	0.882	12.943	0.012	13 1616.40649	0.044	15.913	0.025
							16.590	0.041
	3205.11963	0.882	12.913	0.012	14 1617.40344	0.392		
57	3205.12305	0.882	12.912	0.012	15 1620.39575	0.439	16.668	0.047
58	3206.08105	0.882	12.921	0.012	16 1621.39246	0.787	16.832	0.054
	3206.08350	0.882	12.905	0.012	17 1623.38770	0.486	16.632	0.046
	3209.20923	0.884	12.874	0.008	18 1980.40979	0.331	16.587	0.043
							16.477	0.037
	3209.21753	0.884	12.879	0.013	19 1997.36328	0.259		
62	3211.06836	0.884	12.846	0.013	20 2036.25562	0.857	16.617	0.046
63	3211.07861	0.884	12.880	0.012	21 2057.19922	0.183	16.378	0.045
64	3217.07349	0.887	12.862	0.012	22 2061.18823	0.578	16.671	0.050
	3217.07617	0.887	12.834	0.010	23 2062.18555	0.927	15.756	0.025
							16.157	0.035
	3223.07373	0.889	12.870	0.012	24 2082.13257	0.905		
67	3223.07666	0.889	12.865	0.012	25 3097.31470	0.825	16.599	0.029
68	3231.04224	0.892	12.834	0.012	26 3129.42432	0.448	16.643	0.056
	3231.04468	0.892	12.818	0.012	27 3129.43579	0.475	16.742	0.088
		0.898	12.776	0.013	28 3194.12744	0.834	16.654	0.026
	3245.05640							
	3245.05884	0.898	12.779	0.013	29 3194.13867	0.861	16.572	0.026
72	3262.05078	0.905	12.790	0.013	30 3194.17822	0.954	15.861	0.019
73	3262.05371	0.905	12.806	0.012	31 3194.18896	0.980	15.799	0.017
	3453.45239	0.981	12.908	0.012	32 3194.21875	0.049	15.903	0.018
			12.931	0.013	33 3194.22949	0.075	15.974	0.022
	3453.45508	0.981					16.147	
	3463.44629	0.985	13.039	0.012	34 3194.26001	0.147		0.025
77	3463.44897	0.985	13.012	0.012	35 3194.27075	0.172	16.177	0.026
78	3464.41504	0.986	13.022	0.014	36 3195.10498	0.137	16.117	0.019
	3464.41748	0.986	13.013	0.014	37 3195.11572	0.162	16.171	0.020
		0.986	13.040	0.012	38 3195.14551	0.232	16.294	0.021
	3465.43262							
	3465.43506	0.986	13.036	0.012	39 3195.15625	0.258	16.332	0.023
82	3468.44287	0.987	13.040	0.012	40 3195.18579	0.327	16.341	0.025
	3468.44531	0.987	13.043	0.012	41 3195.19653	0.352	16.460	0.025
	3469.35059	0.988	13.111	0.044	42 3195.22656	0.423	16.551	0.027
						0.448	16.623	0.032
	3469.35327	0.988	13.043	0.027	43 3195.23730			
	3473.45630	0.989	13.063	0.014	44 3474.43408	0.003	15.744	0.015
87	3473.45898	0.989	13.074	0.015	45 3474.44482	0.028	15.803	0.017
	3474.45288	0.990	13.054	0.012				
	3474.45801	0.990	13.044	0.014	52. V926 Cyg			
						Dhaco	Vint	Vinterr
	3480.45312	0.992	13.128	0.012	Dayval	Phase		
	3480.45776	0.992	13.129	0.013	1 1255.41357	0.610	15.334	0.053
92	3481.45068	0.993	13.196	0.013	2 1257.40747	0.105	15.032	0.014
93	3481.45557	0.993	13.202	0.014	3 1258.40454	0.353	15.222	0.014

¥ 1062 20020	0 503	15 162	0.021	32 3517.36816	0.818	12.782	0.011
4 1263.39038	0.593	15.162					0.011
5 1269.37366	0.083	14.995	0.013	33 3517.37207	0.827	12.798	
6 1292.31018	0.795	15.009	0.016	34 3517.47339	0.058	13.045	0.020
7 1317.24158	0.005	14.932	0.016	35 3517.47705	0.066	13.019	0.015
	0.202	15.144	0.011				
				E4 DD010011			
9 1355.13928	0.451	15.313	0.013	54. RR212011			1
10 1612.43628	0.554	15.264	0.017	Dayval	Phase	Vint	Vinterr
11 1613.43323	0.802	15.024	0.014	1 1354.21448	0.779	16.628	0.034
				2 1355.21167	0.001	16.408	0.032
12 1615.42761	0.298	15.100	0.015				
13 1616.42468	0.546	15.300	0.017	3 1359.20044	0.891	16.663	0.050
14 1617.42200	0.795	14.990	0.016	4 1378.14771	0.121	16.425	0.034
15 1620.41418	0.541	15.232	0.018	5 1379.14502	0.344	16.439	0.043
	0.788		0.016	6 2035.35254	0.885	16.595	0.046
16 1621.41101		15.052					0.048
17 1623.40613	0.287	15.070	0.017	7 2061.28003	0.672	16.605	
18 1980.42834	0.229	15.177	0.015	8 2062.27710	0.895	16.617	0.047
19 1997.38147	0.452	15.354	0.016	9 2063.27393	0.116	16.386	0.049
20 2035.27551	0.885	15.036	0.016	10 2094.18774	0.017	16.398	0.050
			0.016	11 2110.14355	0.578	16.549	0.050
21 2036.27283	0.134	15.052					
22 2061.20508	0.346	15.288	0.018	12 2113.13525	0.246	16.391	0.053
23 2062.20215	0.595	15.374	0.018	13 2121.11328	0.027	16.335	0.053
24 2063.19946	0.843	15.126	0.016				
25 2082.14868	0.567	15.434	0.022	55. RR212110			
				_	Phase	Vint	Vinterr
26 3097.36401	0.468	15.279	0.029	Dayval			
27 3194.15088	0.736	15.134	0.017	1 1354.21509	0.986	15.182	0.014
28 3194.15820	0.760	15.075	0.017	2 1355.21240	0.053	15.207	0.014
29 3194.16553	0.784	15.065	0.017	3 1359.20105	0.320	15.473	0.025
	0.892	14.967	0.017	4 1378.14844	0.591	15.601	0.019
30 3194.19873							0.029
31 3194.20605	0.916	-14.965	0.015	5 1379.14575	0.658	15.743	
32 3194.24023	0.027	14.974	0.017	6 2035.35315	0.762	15.524	0.023
33 3194.24756	0.051	14.997	0.019	7 2061.28076	0.500	15.576	0.022
34 3195.12549	0.910	14.976	0.017	8 2062.27783	0.567	15.583	0.023
			0.016	9 2063.27466	0.632	15.609	0.024
35 3195.13281	0.934	14.959					
36 3195.16602	0.042	14.983	0.017	10 2094.18848	0.705	15.585	0.026
37 3195.17334	0.066	14.980	0.016	11 2110.14429	0.775	15.505	0.025
38 3195.20654	0.175	15.084	0.018	12 2113.13599	0.976	15.204	0.019
39 3195.21387	0.198	15.098	0.019	13 2121.11401	0.512	15.572	0.028
				15 2121.11401	0.012	101012	0.020
40 3195.24707	0.307	15.247	0.021	54			
41 3195.25439	0.330	15.250	0.022	56. RR213430			
42 3474.29834	0.271	15.143	0.012	Dayval	Phase	Vint	Vinterr
43 3474.30591	0.296	15.162	0.013	1 1292.39307	0.371	16.841	0.055
44 3488.30420	0.893	15.018	0.013	2 1317.32349	0.181	16.724	0.056
					0.905	16.943	0.046
45 3488.31128	0.917	14.986	0.012	3 1354.22192			
46 3488.38232	0.148	15.032	0.014	4 1355.21924	0.898	16.870	0.047
47 3488.38965	0.172	15.045	0.013	5 1359.20825	0.868	16.791	0.063
				6 1378.15698	0.729	16.693	0.042
53. RR210716				7 1404.08752	0.541	17.064	0.066
	Db	372	173 m to m m			17.184	0.056
Dayval	Phase	Vint	Vinterr	8 1405.08496	0.534		
1 1269.43628	0.541	13.063	0.004	9 1742.16040	0.022	17.115	0.091
2 1292.37280	0.805	12.767.	0.004	10 1758.11755	0.906	16.882	0.062
3 1317.30371	0.615	12.841	0.005	11 2035.35767	0.842	16.769	0.054
4 1354.20337	0.696	12.755	0.003	12 2061.28613	0.647	16.793	0.054
				13 2062.28320	0.640	16.814	0.051
5 1355.20068	0.969	13.170	0.004				
6 1359.18982	0.059	13.009	0.005	14 2063.28003	0.631	16.804	0.061
7 1378.13916	0.238	12.733	0.004	15 2094.19604	0.403	17.009	0.066
8 1379.13660	0.511	13.129	0.004	16 2110.15308	0.287	16.770	0.066
	0.679	12.771	0.005	17 2113.14502	0.265	16.737	0.063
9 1742.14258					0.207	16.768	0.069
10 2035.33765	0.771	12.743	0.004	18 2121.12378			
11 2036.33472	0.043	13.088	0.005	19 3487.36841	0.003	17.268	0.022
12 2061.26685	0.855	12.842	0.004	20 3487.38281	0.046	17.128	0.021
13 2062.26416	0.128	12.835	0.004	21 3487.43115	0.191	16.795	0.018
14 2063.26099	0.399	12.934	0.005	22 3487.44556	0.234	16.746	0.018
							0.028
15 2094.17798	0.848	12.691	0.005	23 3516.18115	0.463	17.184	
16 2110.13525	0.210	12.750	0.005	24 3516.22485	0.594	16.847	0.023
17 2113.12744	0.028	13.167	0.006	25 3516.23779	0.633	16.859	0.022
18 2121.10620	0.209	12.736	0.005	26 3516.29517	0.806	16.788	0.021
19 3465.32153	0.221	12.761	0.012	27 3516.30811	0.844	16.891	0.022
				28 3516.36230	0.007	17.225	0.024
20 3465.32959	0.240	12.729	0.012				
21 3465.35718	0.303	12.786	0.011	29 3516.37524	0.046	17.103	0.022
22 3465.36133	0.312	12.784	0.011	30 3516.43677	0.230	16.804	0.021
23 3465.36938	0.330	12.816	0.011	31 3516.44971	0.269	16.735	0.020
24 3465.39307	0.384	12.895	0.011	32 3545.19043	0.513	17.161	0.028
							0.026
25 3465.40088	0.402	12.919	0.011	33 3545.20044	0.544	17.025	
26 3517.14795	.0.316	12.765	0.015	34 3545.21045	0.574	16.939	0.025
27 3517.15161	0.325	12.795	0.013	35 3545.22046	0.604	16.836	0.025
28 3517.21948	0.479	13.128	0.010				
29 3517.22339		13.143	0.010	57. RR214612			
	0.488				Dhaga	Wint	Wintorn
30 3517.29492	0.651	12.837	0.011	Dayval	Phase	Vint	Vinterr
31 3517.29858	0.660	12.810	0.011	1 1292.40125	0.970	15.108	0.018

```
0.476
                                                                                          0.028
                                                                              17.494
   1317.33167
                   0.025
                            14.920
                                       0.017
                                                  39 3245.15088
                                                                                          0.041
 3 1354.22998
                   0.268
                            15.167
                                       0.014
                                                  40 3245.16504
                                                                     0.507
                                                                              17.448
                   0.951
                            15.182
                                       0.014
                                                     3246.16040
                                                                     0.649
                                                                              17.526
                                                                                          0.036
 4 1355.22742
                                                  41
  1359.21631
                   0.680
                            15.446
                                       0.022
                                                   42
                                                     3246.17456
                                                                     0.680
                                                                              17.470
                                                                                          0.035
                                       0.017
                                                   43 3246.22290
                                                                     0.784
                                                                              17.598
                                                                                          0.030
                   0.644
                            15.437
 6 1378.16516
                                                  44 3246.23706
                            15.162
                                                                     0.814
                                                                              17.742
                                                                                          0.036
                   0.327
                                       0.022
 7 1379, 16260
                                                                     0.625
                                                                                          0.054
                                                  45 3247.07837
                                                                              17.607
                   0.704
                            15.453
                                       0.024
 8
  1403.09839
                                                                                          0.053
                   0.386
                                       0.017
                                                  46 3247.08643
                                                                     0.642
                                                                              17.697
   1404.09570
                            15.277
                                       0.012
10 1405.09302
                   0.069
                            14.793
                                                  59.
                                                       RR215817
11
   1742.16858
                   0.679
                            15.438
                                       0.025
                                                     Dayval
1292.40967
                                                                     Phase
                                                                              Vint
                                                                                        Vinterr
                   0.597
   1758.12573
                            15.425
                                       0.022
                                                                              15.321
                                                                                          0.019
                                                                     0.289
13
   2035.36572
                   0.271
                            15.216
                                       0.018
                                                                     0.743
                                                                              15.614
                                                                                          0.025
                                                   2 1317.33997
14 2061.29419
                   0.010
                            14.833
                                       0.015
                                                                     0.977
                                                                                          0.011
   2062.29150
                   0.692
                            15.465
                                       0.023
                                                   3 1354.23840
                                                                              14.791
15
                                                                              15.227
15.485
                                                                     0.875
                                                                                          0.014
   2063.28833
                   0.373
                            15.305
                                       0.019
                                                   4 1355.23572
16
                                                                                          0.022
                                                   5 1359.22473
   2094.20435
                   0.525
                            15.432
                                       0.023
                                                                     0.468
17
                                                                              15.409
                                                                                          0.017
                   0.443
   2110.16138
                            15.355
                                       0.025
                                                   6 1378.17358
                                                                     0.536
                                                                              15.497
                                                                                          0.027
                   0.490
                                                   7 1379.17102
   2113.15332
                            15.396
                                       0.023
                                                                     0.435
                                                                              14.695
15.385
                                                                                          0.021
                                                                     0.995
   2121.13184
                   0.949
                            15.318
                                       0.025
                                                   8 1403.10669
20
                                                                     0.894
                                                                                          0.018
   3465.34204
                   0.488
                            15.347
                                       0.016
                                                   9 1404.10413
                                                                              15.569
                                                                     0.792
                                                                                          0.018
                                                  10 1405.10144
22
  3465.34961
                   0.500
                            15.333
                                       0.016
                                                                              14.900
                                                                                          0.012
23
   3465.37842
                   0.549
                            15.399
                                       0.015
                                                  11 1411.08545
                                                                     0.183
                                                                     0.400
0.773
                                                                              15.466
                                                                                          0.023
24 3465.38623
                   0.562
                            15.384
                                       0.015
                                                  12 1742.17700
                                                                                          0.022
                                                                              15.544
25
   3465.40967
                   0.601
                            15.405
                                       0.016
                                                  13 1758.13416
                                                                                          0.020
26 3465.41699
                            15.422
                                       0.016
                                                  14 2035.37415
                                                                     0.487
                                                                              15.432
                   0.614
                            15.435
                                       0.056
                                                  15 2061.30273
                                                                     0.840
                                                                              15.515
                                                                                          0.023
27
   3503.29224
                   0.506
                   0.529
                            15.390
                                       0.014
                                                  16 2062.29980
                                                                     0.739
                                                                              15.629
                                                                                          0.023
   3503.30591
                                       0.019
                                                  17 2063.29663
                                                                     0.636
                                                                              15.588
                                                                                          0.025
29
   3517.13110
                   0.850
                            15.404
                            15.379
                                       0.028
                                                  18 2094.21265
                                                                     0.483
                                                                              15.518
                                                                                          0.025
30 3517.13843
                   0.863
31 3517.20532
                   0.975
                            14.966
                                       0.017
                                                  19 2110.16943
                                                                     0.856
                                                                              15.470
                                                                                          0.018
   3517.21265
                   0.988
                            14.906
                                       0.018
                                                  20 2113.16162
                                                                     0.552
                                                                              15.482
                                                                                          0.025
   3517.28101
                   0.103
                            14.989
                                       0.014
                                                  21 2121.14038
                                                                     0.739
                                                                              15.481
                                                                                          0.024
                                                                                          0.016
                                                  22 3641.03833
                                                                     0.793
34 3517.28833
                   0.115
                            15.020
                                       0.013
                                                                              15.485
                                                                     0.810
                                                                              15.384
                                                                                          0.017
   3517.35376
                   0.226
                            15.135
                                       0.014
                                                  23 3641.04712
35
                                                  24 3660.05054
25 3660.05786
                                                                     0.982
                                                                              14.719
14.621
                                                                                          0.023
                   0.238
36 3517.36108
                            15.150
                                       0.014
                                                                     0.996
                                                                                          0.020
37 3517.43604
                   0.364
                            15.288
                                       0.019
                                                  26 3660.10718
                                                                     0.090
                                                                              14.706
                                                                                          0.029
                                       0.016
   3517.44336
                   0.377
                            15.300
                                                  27
                                                                     0.104
                                                                              14.748
                                                                                          0.022
                                                     3660.11450
                                                  28 3666.05713
29 3666.06421
                                                                              15.391
                                                                                          0.022
                                                                     0.415
58.
     RR215735
                                                                              15.420
                                                                     0.429
                                                                                          0.012
   Dayval
                   Phase
                            Vint
                                      Vinterr
   1292.40918
                                       0.096
                                                  30 3666.09302
                            17.581
                                                                     0.483
                                                                              15.489
                                                                                          0.029
 1
                   0.661
                                                                              15.244
                                                                                          0.063
   1317.33960
                                                  31 3667.04614
                                                                     0.298
                   0.318
                            17.266
                                       0.077
                                                  32 3667.05347
33 3667.08008
                                                                     0.312
                                                                              15.213
                                                                                          0.029
 3 1354.23792
                   0.733
                            17.647
                                       0.069
                                                                              15.282
                                                                                          0.039
                            17.772
                                                                     0.362
   1355.23523
                   0.879
                                       0.085
                                                                                          0.060
                                                                              15.387
 5 1359.22424
                   0.465
                            17.476
                                       0.090
                                                  34
                                                     3667.08740
                                                                     0.376
   1378.17310
                   0.247
                            17.113
                                       0.055
                                                  60.
   1379.17053
                   0.394
                            17.002
                                       0.082
                                                       RR220055
                                                                              Vint
                                                                                        Vinterr
   1403.10632
                   0.910
                            17.544
                                       0.140
                                                     Dayval
                                                                     Phase
                                                                              15.057
                                                     12\overline{9}2.41150
                                                                                          0.017
 9 1404.10364
                   0.057
                            16.471
                                       0.040
                                                   1
                                                                     0.980
10 1405.10095
                   0.203
                            16.980
                                       0.047
                                                   2 1317.34180
                                                                     0.079
                                                                              15.224
                                                                                          0.017
                   0.083
  1411.08508
                            16.634
                                       0.037
                                                   3 1354.24023
                                                                     0.790
                                                                              15.912
                                                                                          0.021
12
   1742.17651
                   0.679
                            17.555
                                       0.123
                                                   4 1355.23755
                                                                     0.674
                                                                              15.956
                                                                                          0.021
                                                                                          0.024
                   0.023
                                                   5 1359.22656
                                                                              15.505
13 1758.13367
                            16.408
                                       0.040
                                                                     0.210
                                                                     0.010
   2035.37366
                   0.717
                            17.659
                                       0.095
                                                   6 1378.17542
                                                                              15.016
                                                                                          0.013
                                                                                          0.027
15
   2061.30225
                   0.522
                            17.559
                                       0.092
                                                   7 1379.17285
                                                                     0.894
                                                                              15.864
                                                                              15.243
                                                                                          0.024
16
   2062.29932
                   0.668
                            17.681
                                       0.089
                                                   8
                                                     1403.10864
                                                                     0.115
                                                                     0.999
                                                                                          0.013
                                                                              15.050
17 2063.29614
                   0.813
                            17.773
                                       0.107
                                                   9 1404.10596
                                                                     0.883
18
   2094.21216
                   0.353
                            17.421
                                       0.089
                                                  10 1405.10327
                                                                              15.950
                                                                                          0.026
                                                                                          0.018
   2113.16113
                   0.136
                            16.800
                                       0.059
                                                  11 1411.08728
                                                                     0.189
                                                                              15.442
19
                                                                     0.705
                                                                              15.873
                                                                                          0.036
20 2121.13989
                   0.308
                            17.169
                                       0.092
                                                  12 1742.17883
                                                                     0.852
                                                                                          0.029
21 3231.05518
                   0.139
                            16.802
                                       0.019
                                                  13 1758.13599
                                                                              15.986
   3231.06934
                                       0.017
                                                  14 2035.37598
                                                                     0.630
                                                                               15.930
                                                                                          0.027
22
                   0.170
                            16.894
                                                                     0.615
                                       0.022
                                                  15 2061.30444
                                                                              15.903
                                                                                          0.030
   3231.12793
                   0.295
                            17.244
                                                                     0.499
   3231.14258
                   0.327
                                       0.024
                                                  16 2062.30176
                                                                              15.931
                                                                                          0:028
24
                            17.281
25 3231.20898
                   0.470
                            17.508
                                       0.031
                                                  17 2063.29858
                                                                     0.382
                                                                              15.804
                                                                                          0.026
26
   3231.22339
                   0.501
                            17.527
                                       0.026
                                                  18
                                                     2094.21460
                                                                     0.791
                                                                               16.002
                                                                                          0.031
                                                  19 2110.17139
                                                                     0.937
                                                                                          0.023
27
   3231.28174
                   0.627
                            17.560
                                       0.039
                                                                               15.758
28 3231.29590
                   0.657
                            17.607
                                       0.045
                                                  20 2113.16357
                                                                     0.590
                                                                               15.961
                                                                                          0.033
29
                                                  21 2121.14209
                                                                               15.968
                                                                                          0.034
  3234.04712
                   0.578
                            17.534
                                       0.035
                                                                     0.664
30 3234.06152
                   0.609
                            17.555
                                       0.029
                                                  22 3481.33228
                                                                     0.410
                                                                               15.768
                                                                                          0.014
                   0.715
                            17.549
                                       0.031
                                                  23 3481.34302
                                                                     0.431
                                                                               15.782
                                                                                          0.041
31 3234.11035
   3234.12476
                            17.549
                                                                               15.858
                   0.745
                                       0.031
                                                  24 3481.38306
                                                                     0.507
                                                                                          0.024
32
                                                                     0.523
                                                                               15.871
                                                                                          0.024
33 3234.17236
                   0.848
                            17.773
                                       0.028
                                                  25 3481.39185
   3234.18701
                                       0.028
                                                  26
                                                     3481.43311
                                                                     0.601
                                                                               15.902
                                                                                          0.015
                   0.879
                            17.710
34
   3234.23389
                                       0.015
                                                  27
                                                     3481.44385
                                                                     0.621
                                                                               15.904
                                                                                          0.014
                   0.980
                            16.329
35
   3234.24829
3245.06543
                            16.332
                                                                               15.954
                                       0.015
                                                  28
                                                     3503.26978
                                                                     0.856
                                                                                          0.021
                   0.011
36
                                                                                          0.016
37
                   0.293
                            17.219
                                       0.024
                                                  29
                                                     3503.28052
                                                                     0.876
                                                                               16.021
   3245.07959
                                                     3503.31714
                                                                     0.945
                                                                               15.452
                                                                                          0.011
                   0.323
                                       0.027
                            17.265
```

21 2502 22061	0.967	15.205	0.014	24 3660.07520	0.532	16.773	0.025
31 3503.32861		15.212	0.014	25 3660.12354	0.619	16.848	0.039
32 3503.39355	0.090		0.054	26 3660.13232	0.634	16.760	0.055
33 3503.40576	0.113	15.256			0.343	16.700	0.025
34 3517.10303	0.990	15.020	0.019				0.027
35 3517.11133	0.006	15.011	0.014	28 3666.08325	0.359	16.676	
36 3517.12036	0.023	15.065	0.014	29 3666.10938	0.406	16.704	0.028
37 3517.19141	0.158	15.378	0.016	30 3667.06274	0.124	16.413	0.032
38 3517.19580	0.166	15.417	0.017	31 3667.07153	0.140	16.414	0.027
39 3517.25635	0.280	15.597	0.012	32 3673.10205	0.007	16.145	0.064
40 3517.26807	0.302	15.637	0.012	33 3673.11060	0.023	16.165	0.060
41 3517.33252	0.424	15.782	0.013	34 3681.06152	0.351	16.630	0.027
42 3517.34326	0.444	15.820	0.013	35 3681.07031	0.367	16.670	0.025
43 3517.41235	0.575	15.892	0.013	36 3681.07935	0.383	16.668	0.024
44 3517.42334	0.596	15.890	0.016	37 3681.08813	0.399	16.713	0.029
45 3563.20288	0.085	15.223	0.021	38 3683.06567	0.963	16.591	0.055
46 3563.21313	0.105	15.269	0.020	39 3683.07446	0.979	16.424	0.030
47 3563.22339	0.124	15.317	0.043				
48 3563.25049	0.175	15.408	0.018	63. RR222036			
49 3563.25928	0.191	15.477	0.025	Dayval	Phase	Vint	Vinterr
50 3563.26978	0.211	15.423	0.016	1 1023.16327	0.324	15.075	0.012
00 3000120370		10	*****	2 1292.43213	0.277	15.070	0.018
61. RR220245				3 1317.36292	0.788	15.078	0.017
Dayval	Phase	Vint	Vinterr	4 1354.25940	0.381	15.098	0.013
1 1292.41284	0.138	13.885	0.008	5 1355.25671	0.721	15.095	0.013
2 1317.34314	0.448	14.027	0.009	6 1359.24536	0.083	15.269	0.018
			0.006	7 1378.19214	0.549	15.306	0.016
	0.632	13.913 13.811	0.006	8 1379.18945	0.890	15.148	0.015
4 1355.23889	0.205		0.009	9 1401.12769	0.377	15.134	0.015
5 1359.22791	0.495	14.057			0.058	15.307	0.016
6 1378.17676	0.377	13.951	0.007		0.399	15.181	0.015
7 1379.17407	0.950	13.841	0.007	11 1404.11963 12 1405.11682	0.739	15.084	0.013
8 1403.10986	0.697	13.816	0.007		0.782	15.059	0.013
9 1404.10730	0.270	13.844	0.007	13 1411.10010			0.015
10 1405.10461	0.843	13.840	0.006	14 1414.09167	0.803	15.064	0.013
11 1411.08862	0.280	13.864	0.007	15 1742.19556	0.837	15.114	0.017
12 1414.08069	0.998	13.981	0.008	16 1758.15088	0.283	15.077	
13 1742.18005	0.375	13.971	0.010	17 2035.39697	0.958	15.297	0.020
14 1758.13721	0.540	14.016	0.008	18 2061.32495	0.809	15.091	0.017
15 2035.37732	0.719	13.866	0.008	19 2062.32227	0.149	15.169	0.018
16 2061.30566	0.605	13.974	0.008	20 2063.31885	0.488	15.355	0.020
17 2062.30298	0.177	13.843	0.008	21 2094.23267	0.040	15.343	0.022
18 2063.29980	0.748	13.861	0.008	22 2113.17920	0.507	15.347	0.023
19 2094.21582	0.501	14.068	0.010	23 2121.15723	0.230	15.101	0.021
20 2113.16479	0.384	13.983	0.009	24 3488.33154	0.882	15.135	0.012
21 2121.14355	0.966	14.030	0.010	25 3488.34253	0.908	15.190	0.012
22 3478.28223	0.753	13.840	0.008	26 3488.41040	0.067	15.280	0.012
23 3478.29419	0.797	13.879	0.008	27 3488.42114	0.092	15.225	0.012
24 3478.33350	0.937	14.047	0.008	28 3485.41040	0.026	15.341	0.016
25 3478.34521	0.980	14.072	0.008	29 3485.44556	0.108	15.216	0.016
26 3478.38452	0.120	13.933	0.008	30 3485.45630	0.134	15.196	0.021
27 3478.39624	0.162	13.899	0.008	31 3517.17017	0.564	15.242	0.016
28 3478.43506	0.302	13.904	0.008	32 3517.18140	0.590	15.250	0.015
29 3478.44702	0.344	13.937	0.008	33 3517.23901	0.726	15.096	0.013
				34 3517.25000	0.751	15.074	0.012
62. RR221023				35 3517.31470	0.903	15.220	0.012
Dayval	Phase	Vint	Vinterr	36 3517.32568	0.929	15.258	0.012
1 1292.41809	0.768	16.792	0.060	37 3517.38843	0.076	15.260	0.012
2 1317.34851	0.695	16:765	0.059	38 3517.39917	0.101	15.219	0.012
3 1354.24683	0.190	16.328	0.028	39 3517.46094	0.246	15.062	0.014
4 1355.24414	0.987	16.474	0.037	40 3517.47168	0.271	15.080	0.014
5 1359.23315	0.175	16.271	0.042				
6 1378.18201	0.323	16.454	0.041	64. RR223619			
7 1379.17944	0.121	16.153	0.049	Dayval	Phase	Vint	Vinterr
8 1403.11523	0.255	16.402	0.041	1 1023.17419	0.441	16.778	0.042
9 1404.11255	0.053	16.356	0.037	2 1292.44312	0.494	16.811	0.058
10 1405.10986	0.850	16.709	0.043	3 1317.37378	0.237	16.620	0.057
11 1411.09399	0.634	16.739	0.043	4 1354.27039	0.535	16.737	0.040
12 1414.08594	0.026	15.919	0.029	5 1355.26758	0.165	16.555	0.040
13 1742.18542	0.295	16.505	0.048	6 1359.25623	0.683	16.688	0.051
14 1758.14258	0.052	15.934	0.032	7 1378.20312	0.647	16.726	0.047
15 2035.38257	0.667	16.794	0.060	8 1379.20044	0.277	16.707	0.046
16 2061.31104	0.393	16.592	0.054	9 1401.13867	0.130	16.635	.0.044
17 2062.30835	0.190	16.313	0.041	10 1403.13330	0.389	16.727	0.051
18 2063.30518	0.986	16.268	0.044	11 1404.13049	0.019	16.511	0.040
19 2094.22119	0.700	16.781	0.066	12 1405.12769	0.649	16.792	0.044
20 2121.14868	0.226	16.471	0.057	13 1411.11108	0.427	16.747	0.046
21 3641.05664	0.258	16.562	0.020	14 1412.10815	0.056	16.548	0.045
22 3641.06567	0.275	16.541	0.020	15 1414.10266	0.316	16.738	0.051
23 3660.06665	0.516	16.794	0.023	16 1417.09436	0.205	16.744	0.087
	0.010	10.104	0.025	10 1111103100			

```
66. RR230520
   1742.20654
                   0.520
                            16.794
                                       0.064
17
                                                      Dayval
1023.19440
   2035.40796
                            16.778
                                       0.061
                                                                      Phase
                                                                               Vint
                                                                                          Vinterr
                   0.685
18
                                                                               17.089
                                                                                           0.052
   2061.33594
                                       0.053
                                                                      0.297
                   0.058
                            16.559
19
                            16.750
                                       0.056
                                                      1055.10547
                                                                      0.396
                                                                               17.296
                                                                                           0.051
   2062.33325
                   0.688
20
                                                      1354.29053
                                                                      0.236
                                                                               17.009
                                                                                           0.043
                   0.316
                                       0.054
   2063.32983
21
                            16.752
                                                                                           0.040
                                       0.064
                                                      1355.28784
                   0.837
                                                                      0.145
                                                                               16.773
22
   2094.24365
                            16,709
                                                      1359.27649
                                                                      0.782
                                                                               17.422
                                                                                           0.096
                                       0.069
23 2113.19019
                   0.801
                            16.827
                                                                               16.508
                                                      1378.22327
                                                                      0.059
                                                                                           0.033
                                       0.069
                                                    6
24
   2121.16821
                   0.839
                            16,563
                                                                                           0.042
                   0.014
                                       0.015
                                                      1379.22058
                                                                      0.969
                                                                               16.500
25
   3516.40991
                            16.538
                                       0.016
                                                                      0.973
                                                                               16.475
                                                                                           0.037
                                                    8 1401.15881
26
   3516.42310
                   0.036
                            16.505
                                                      1403.15344
                                                                      0.792
                                                                               17.497
                                                                                           0.070
                                       0.018
27
   3516.47266
                   0.117
                            16.589
                                                   10 1404.15076
                                                                      0.702
                                                                               17.420
                                                                                           0.078
28
   3516.48560
                   0.138
                            16.730
                                       0.044
                                                                      0.067
                                                                               16.497
                                                                                           0.037
                                                   11 1411.13123
29
   3540.22534
                   0.935
                            16.579
                                       0.041
                                                                      0.976
                                                                                           0.039
                                                                               16.420
   3540.23486
                   0.950
                            16.524
                                       0.043
                                                   12 1412.12830
30
                                                                      0.795
0.523
                                                   13 1414.12292
14 1417.11450
   3545.12061
                   0.935
                            16.554
                                       0.022
                                                                               17,452
                                                                                           0.087
31
                                                                               17.671
                                                                                           0.162
   3545.13013
                   0.951
                            16.495
                                       0.021
32
                                                                      0.388
                                                   15 2035.42822
                                                                                           0.075
                                                                               17.240
33
   3545.13989
                   0.966
                            16.495
                                       0.019
                                                                               16.374
                                                                                           0.041
                                                                      0.031
   3545.14917
                   0.981
                            16.492
                                       0.020
                                                   16 2061.35620
                                                                      0.941
                                                                                           0.068
                                                                               17.211
   3545.15845
                   0.997
                            16.492
                                       0.020
                                                   17
                                                      2062.35327
35
                                                                      0.038
                                                                                           0.046
                                                   18 2094.26367
                                                                               16.445
   3569.08057
                   0.092
                            16.579
                                       0.019
36
                                                                      0.315
0.589
                                                                               17.090
                                                                                           0.075
                                                   19 2113.21045
37
   3569.09009
                   0.107
                            16.592
                                       0.019
                                                                               17.493
                                                                                           0.124
   3569.11353
                   0.145
                            16.592
                                       0.020
                                                   20 2121.18799
                                                                      0.232
                                                                                           0.097
   3569.12305
                   0.161
                            16.594
                                       0.019
                                                   21 2147.11572
                                                                               17.022
                                                                               17.394
                                                                                           0.031
                                                      3174.15967
                                                                      0.679
40
   3569.14502
                   0.197
                            16.666
                                       0.020
                                                   22
                                                                      0.709
                                                                                           0.031
   3569.15430
                   0.212
                            16.676
                                       0.020
                                                   23 3174.17480
                                                                               17,392
41
                                                   24 3174.22119
25 3174.23535
                   0.242
                                       0.020
                                                                      0.797
                                                                               17.401
                                                                                           0.029
42
   3569.17285
                            16.696
                   0.258
                                       0.019
                                                                      0.825
                                                                               17.505
                                                                                           0.030
43
   3569.18237
                            16.704
                                       0.020
                                                   26
                                                      3174.31836
                                                                      0.983
                                                                               16.343
                                                                                           0.020
44
   3569.20068
                   0.288
                            16.710
                                       0.020
                                                   27 3174.33276
                                                                      0.011
                                                                               16.337
                                                                                           0.019
   3569.21021
                   0.303
                            16.721
   3569.22803
                   0.332
                            16.729
                                       0.020
                                                   28
                                                      3174.40259
                                                                      0.145
                                                                               16.746
                                                                                           0.024
46
   3569.23730
                   0.348
                            16.717
                                       0.021
                                                   29 3174.42969
                                                                      0.197
                                                                               16.868
                                                                                           0.025
   3622.10132
                   0.741
                            16.818
                                       0.021
                                                   30
                                                      3174.46411
                                                                      0.263
                                                                               17.001
                                                                                           0.028
48
                                                                                           0.030
   3622.11084
                   0.756
                                       0.020
                                                   31 3174.47852
                                                                      0.290
                                                                               17.127
                            16.855
                                       0.022
                                                   32
                                                      3180.13379
                                                                      0.118
                                                                               16.718
                                                                                           0.022
50
   3622.16479
                   0.844
                            16.866
                                       0.020
   3622.17407
                                                   33 3180.14819
                                                                      0.146
                                                                               16.795
                                                                                           0.020
                   0.860
                            16.877
                                       0.028
                                                   34
                                                      3180.22754
                                                                      0.297
                                                                               17.112
                                                                                           0.023
   3622.18359
                   0.875
                            16.777
                                                   35 3180.29053
                                                                                           0.027
                                       0.018
                                                                      0.418
                                                                               17.292
   3622.22632
                   0.945
                            16.551
                                                   36
                                                      3180.30493
                                                                      0.446
                                                                               17.298
                                                                                           0.027
54
   3622.23560
                   0.960
                            16.491
                                       0.017
55
   3622.24512
                   0.976
                            16.480
                                       0.018
                                                   37
                                                      3180.35522
                                                                      0.542
                                                                               17.349
                                                                                           0.027
                                                   38
                                                      3180.36938
                                                                      0.569
                                                                               17.433
                                                                                           0.028
56
   3622.25391
                   0.990
                            16.440
                                       0.017
                                                   39 3180.42285
                                                                      0.672
                                                                               17.410
                                                                                           0.031
                                                      3180.43726
                                                                      0.699
                                                                               17.460
                                                                                           0.031
     RR224735
                                                   40
65.
   Dayval
1023.18201
                                                      3503.36011
                                                                      0.989
                                                                               16.373
                                                                                           0.027
                   Phase
                            Vint
                                      Vinterr
                                       0.005
                                                   42
                                                      3503.37427
                                                                      0.016
                                                                               16.281
                                                                                           0.033
                   0.233
                            13.424
   1292.45093
                   0.993
                            13.626
                                       0.007
   1317.38159
                   0.708
                                       0.006
                                                   67.
                                                        RR232138
                            13.451
                                                      Dayval
1023.20575
1055.11682
   1354.27820
                   0.962
                            13.607
                                       0.005
                                                                      Phase
                                                                               Vint
                                                                                          Vinterr
                                                                                           0.029
                                                                               16.356
   1355.27551
                   0.591
                            13.605
                                       0.005
                                                    1
                                                                      0.170
                                                                                           0.033
                                                                      0.083
                                                                               16.469
   1359.26404
                   0.105
                            13.570
                                       0.006
   1378.21094
                   0.046
                            13.664
                                       0.006
                                                      1317.40417
                                                                      0.134
                                                                               16.388
                                                                                           0.041
                                                      1354.30188
                                                                               16.335
                                                                                           0.031
   1379.20825
                   0.675
                            13.474
                                       0.005
                                                                      0.691
                                                                               16.300
                                                                                           0.032
   1401.14648
                   0.501
                            13.658
                                       0.006
                                                      1355.29919
                                                                      0.220
                                                      1359.28784
                                                                                           0.048
                                                                      0.333
                                                                               16.412
10
   1403.14111
                   0.759
                            13.406
                                       0.005
                                                                               16.475
                                                                                           0.033
11
   1404.13831
                   0.388
                            13.509
                                       0.005
                                                      1378.23462
                                                                      0.374
                                                                                           0.038
                                                      1379.23193
                                                                      0.903
                                                                               16.542
   1405.13562
                   0.016
                            13.679
                                       0.006
                                                    Ω
                                                                                           0.039
13
   1411.11890
                   0.788
                            13.400
                                       0.005
                                                    a
                                                      1401.17017
                                                                      0.529
                                                                               16.614
                                                                                           0.037
   1412.11597
                   0.416
                            13.512
                                       0.007
                                                   10 1403.16479
                                                                      0.587
                                                                               16.434
                                       0.006
                                                      1405.15906
                                                                      0.643
                                                                               16.411
                                                                                           0.035
15
   1414.11047
                   0.673
                            13.487
                                                   11
   1417.10217
                   0.559
                                       0.009
                                                      1411.14258
                                                                      0.815
                                                                               16.371
                                                                                           0.035
16
                            13.679
                                       0.007
   1742.21436
                                                   13
                                                      1412.13965
                                                                      0.343
                                                                               16.391
                                                                                           0.043
17
                   0.515
                            13.666
18
   1758.16943
                   0.571
                            13.608
                                       0.006
                                                      1413.13672
                                                                      0.871
                                                                               16.495
                                                                                           0.034
                                                                      0.986
                                                      1417.12585
                                                                               16.719
                                                                                           0.082
   2035.41577
                   0.359
                            13.476
                                       0.006
                                                   15
19
                   0.702
                                                      1435.07605
                                                                      0.500
                                                                                           0.041
20
   2061.34375
                            13.463
                                       0.006
                                                   16
                                                                               16.630
   2062.34106
2094.25146
                                                      1742,23804
                                                                      0.334
                                                                                           0.047
21
                   0.331
                            13.447
                                       0.006
                                                   17
                                                                               16.346
22
                   0.443
                            13.616
                                       0.007
                                                      1758.19324
                                                                      0.790
                                                                               16.337
                                                                                           0.037
   2113.19800
2147.10352
                   0.384
                                       0.007
                                                      2035.43958
                                                                      0.770
                                                                               16.293
                                                                                           0.036
23
                            13.535
                   0.754
                                                                      0.513
                                                                                           0.045
                                       0.007
                                                   20
                                                      2061.36743
                                                                               16.600
                            13.421
24
   3480.30835
3480.31421
25
                   0.922
                                       0.011
                                                   21
                                                      2062.36475
                                                                      0.041
                                                                               16.542
                                                                                           0.047
                            13.556
                                                   22
                                                      2094.27515
                                                                                           0.053
26
                   0.937
                            13.613
                                       0.016
                                                                      0.953
                                                                               16.517
                                                                                           0.055
27
                   0.059
                                       0.010
                                                   23
                                                      2096.26880
                                                                      0.008
                                                                               16.553
   3480.36035
                            13,627
                                                                                           0.056
   3480.36621
                   0.074
                            13.601
                                       0.010
                                                      2110.22998
                                                                      0.407
                                                                               16.421
                                                                      0.993
                                                                                16.559
                                                                                           0.053
29
   3480.41211
                   0.195
                            13.433
                                       0.010
                                                      2113.22192
                                                   26
                                                      2121.19922
                                                                      0.221
                                                                                           0.054
30
   3480.41821
                   0.211
                            13.420
                                       0.010
                                                                               16.363
                   0.354
                                       0.012
                                                   27
                                                      2147.12720
                                                                      0.963
                                                                                16.614
                                                                                           0.063
   3480.47241
                            13.454
31
                   0.369
                                       0.015
                                                   28
                                                      3540.10059
                                                                      0.959
                                                                                16.510
                                                                                           0.024
32 3480,47827
                            13,445
                                                                                           0.023
                                                   29
                                                      3540.11035
                                                                      0.984
                                                                               16.546
                                                                                           0.019
                                                   30
                                                      3540.17529
                                                                      0.149
                                                                               16.380
                                                                      0.173
                                                                               16.279
                                                                                           0.021
                                                      3540.18506
```

				•			
00 0540 06700	0 204	1.5 040	0.000	56 3180.46851	0.098	16.941	0.024
32 3540.26782	0.384	16.242	0.032				
33 3540.27734	0.407	16.474	0.028	57 3180.48291	0.119	16.981	0.023
34 3545.09814	0.631	16.366	0.023	58.3487.34204	0.007	16.688	0.019
35 3545.10767	0.655	16.384	0.021	59 3487.35620	0.028	16.743	0.017
36 3545.17261	0.820	16.273	0.021	60 3487.40723	0.101	16.918	0.018
			0.020	61 3487.42139	0.122	16.947	0.019
37 3545.18213	0.844	16.307		01 3407.42139	0.122	10.547	0.013
38 3545.23828	0.986	16.595	0.019				
39 3545.24756	0.010	16.587	0.021	69. RR235226			
40 3569.27148	0.924	16.439	0.018	Dayval	Phase	Vint	Vinterr
41 3569.28101	0.949	16.473	0.019	1 1023.22705	0.316	17.569	0.065
					0.476	17.699	0.077
42 3569.30298	0.004	16.528	0.019	2 1055.13806			
43 3569.31226	0.028	16.507	0.020	3 1317.42566	0.641	17.810	0.104
44 3569.33105	0.076	16.443	0.019	4 1354.32336	0.265	17.493	0.061
45 3569.34058	0.100	16.381	0.019	5 1355.32068	0.958	17.298	0.058
				6 1377.25818	0.191	17.436	0.061
46 3569.35864	0.146	16.349	0.018				
47 3569.36816	0.169	16.332	0.019	7 1378.25610	0.885	17.667	0.085
48 3569.38159	0.204	16.261	0.017	8 1379.25342	0.578	17.738	0.099
49 3569.39087	0.227	16.241	0.018	9 1401.19165	0.812	17.834	0.110
50 3569.40039	0.251	16.249	0.018	10 1403.18628	0.198	17.392	0.075
					0.890	17.645	0.090
51 3569.41602	0.291	16.289	0.019	11 1404.18359			
				12 1405.18054	0.582	17.629	0.084
68. RR233207				13 1410.16650	0.045	17.239	0.052
Dayval	Phase	Vint	Vinterr	14 1411.16406	0.738	17.735	0.084
1 1023.21289	0.542	17.509	0.068	15 1412.16113	0.430	17.710	0.135
			0.065	16 1413.15808	0.122	17.345	0.056
2 1055.12390	0.599	17.531				17.921	
3 1317.41150	0.157	17.069	0.066	17 1414.15564	0.815		0.114
4 1354.30920	0.412	17.458	0.059	18 1416.14978	0.200	17.365	0.103
5 1355.30652	0.851	17.628	0.084	19 1417.14734	0.893	17.684	0.176
6 1359.29517	0.608	17.614	0.085	20 1418.14429	0.585	17.926	0.290
7 1377.24402			0.069	21 1432.10571	0.281	17.592	0.085
	0.513	17.549					
8 1378.24194	0.954	16.841	0.042	22 1435.09753	0.359	17.623	0.077
9 1379.23926	0.393	17.410	0.072	23 1442.07812	0.206	17.422	0.077
10 1401.17749	0.056	16.861	0.049	24 1742.25952	0.686	17.710	0.098
11 1403.17212	0.935	17.027	0.053	25 1758.21460	0.766	17.874	0.101
	0.374	17.337	0.076	26 1768.18652	0.690	17.763	0.112
12 1404.16943							0.094
13 1405.16638	0.813	17.667	0.084	27 2035.46094	0.319	17.583	
14 1410.15234	0.010	16.770	0.046	28 2061.38892	0.325	17.631	0.092
15 1411.14990	0.449	17.431	0.067	29 2062.38623	0.018	17.147	0.075
16 1412.14697	0.888	17.469	0.094	30 2063.38232	0.709	17.908	0.096
	0.328	17.297	0.063	31 2094.29590	0.176	17.412	0.092
17 1413.14404							0.132
18 1414.14148	0.767	17.629	0.092	32 2096.29028	0.561	17.768	
19 1416.13574	0.645	17.463	0.114	33 2110.25122	0.256	17.526	0.112
20 1417.13318	0.085	16.922	0.102	34 2113.24292	0.334	17.578	0.114
21 1418.13013	0.524	17.543	0.254	35 2121.22070	0.874	17.844	0.152
22 1435.08337	0.992	16.744	0.043	36 2123.21509	0.259	17.479	0.111
					0.951	17.216	0.110
23 1742.24536	0.318	17.297	0.080				
24 1758.20044	0.346	17.351	0.078	38 2125.20947	0.644	17.804	0.145
25 2035.44678	0.494	17.402	0.084	39 2170.08496	0.809	17.966	0.143
26 2061.37476	0.916	17.263	0.077	40 2500.18237	0.063	17.224	0.116
27 2062.37207	0.355	17.227	0.082	41 3232.19482	0.463	17.897	0.039
28 2094.28247	0.411	17.476	0.100	42 3232.21021	0.489	17.696	0.043
29 2096.27612	0.289	17.294	0.084	43 3232.23462	0.531	17.678	0.042
						17.788	0.040
30 2110.23730	0.439	17.352	0.106		0.556		
31 2113.22900	0.757	17.658	0.116	45 3245.10107	0.368	17.629	0.032
32 2121.20654	0.271	17.212	0.106	46 3245.11597	0.393	17.691	0.032
33 2123.20093	0.149	17.083	0.073	47 3245.17920	0.501	17.700	0.043
34 2124.19800	0.588	17.493	0.119	48 3245.19336	0.525	17.794	0.066
35 2125.19531	0.028	16.770	0.084	49 3246.18994	0.216	17.471	0.030
					0.240	17.490	0.027
36 2147.13452	0.692	17.474	0.167	50 3246.20410			
37 2500.16821	0.224	17.162	0.109	51 3246.25073	0.320	17.588	0.031
38 3174.28735	0.177	17.114	0.021	52 3246.26514	0.344	17.537	0.029
39 3174.30151	0.198	17.168	0.021	53 3247.10278	0.765	17.859	0.051
40 3174.37012	0.297	17.304	0.022	54 3247.11060	0.779	17.810	0.057
					0.807	17.606	0.099
41 3174.38501	0.318	17.303	0.023	55 3273.05127			
42 3174.44604	0.406	17.437	0.027	56 3273.06616	0.832	17.881	0.042
43 3174.49463	0.476	17.460	0.053	57 3273.15356	0.980	17.131	0.060
44 3175.23169	0.540	17.520	0.028	58 3273.18384	0.031	17.199	0.030
45 3157.24707	0.583	17.462	0.028	59 3273.23096	0.111	17.314	0.038
46 3175.29736	0.635	17.501	0.028	60 3273.24512	0.136	17.283	0.054
			0.020	61 3485.36694	0.157	17.381	0.046
47 3175.31177	0.656	17.518					
48 3180.16553	0.661	17.540	0.033	62 3485.38135	0.181	17.459	0.043
49 3180.17993	0.682	17.530	0.029	63 3545.26953	0.826	17.882	0.037
50 3180.24316	0.773	17.636	0.027	64 3545.28027	0.844	17.794	0.035
51 3180.32397	0.890	17.541	0.028	65 3545.37231	0.001	17.101	0.027
52 3180.33838	0.910	17.387	0.027	66 3545.38330	0.019	17.183	0.025
	0.988	16.741	0.018	67 3545.45752	0.145	17.371	0.030
53 3180.39185							
54 3180.40625	0.009	16.719	0.017	68 3545.46826	0.163	17.423	0.028
55 3180.45435	0.078	16.846	0.021				

RA: 00 21 01.3

Dec: 28 05 18.0

<V> = 16.837

<B-V> = 0.60

P = 0.276682 days

Epoch = 3539.373

RA: 01 13 58.1

Dec: 28 02 47.1 <V> = 16.415

<B-V> = 0.47

P = 0.383472 days

Epoch = 3539.565

RA: 01 26 59.2

Dec: 28 03 54.3

<V> = 16.580

<B-V> = 0.80

P = 0.349120 days

Epoch = 3546.52

RA: 01 58 55.9

Dec: 27 58 09.5

<V> = 17.081

<B-V> = 0.20

P = 0.497854 days

Epoch = 3641.220

RA: 02 01 50.4 Dec: 28 04 22.6

<V> = 17.517 <B-V> = 0.40 P = 0.461291 days Epoch = 3559.380

RA: 02 31 40.3

Dec: 27 59 47.3

<V> = 13.947

<B-V> = 0.78

P = 0.265461 days

Epoch = 3539.429

RA: 03 46 21.7

Dec: 28 01 24.7

<V> = 17.905

<B-V> = 0.45

P = 0.561891 days

Epoch = 3685.125

RA: 04 02 57.9
Dec: 28 01 30.5
<V>= 17.711
<B-V>= 0.60
P = 0.319400 days
Epoch = 3546.455

RA: 05 57 22.1

Dec: 28 02 31.0

<V> = 12.739

<B-V> = 0.80

P = 1.79325 days

Epoch = 3299.884

Type: Cepheid

CN Tau

RA: 06 49 46.1 Dec: 28 04 59.5 <V>= 18.267 <B-V>= 0.75

P = 0.269392 daysEpoch = 3622.235

RA: 07 53 50.3

Dec: 28 01 58.2

<V> = 16.085

<B-V> = 0.33

P = 0.632536 days

Epoch = 3308.3

RA: 08 46 51.7

Dec: 28 02 45.3

<V> = 16.344

<B-V> = 0.21

P = 0.552704 days

Epoch = 3307.320

RA: 09 01 17.7

Dec: 28 01 31.3

<V> = 16.255

<B-V> = 0.30

P = 0.513581 days

Epoch = 3331.312

ra: 09 56 59.1

Dec: 28 02 02.6

<V> = 16.571 <B-V> = 0.07

P = 0.286813 days

Epoch = 3342.322

Type: RRc

RA: 10 26 04.7

Dec: 28 02 51.5

<V> = 18.250

<B-V> = 0.32

P = 0.552801 days

Epoch = 3666.438

RA: 10 36 17.2

Dec: 27 59 07.7

<V> = 18.037

<B-V> = 0.24

P = 0.707095 days

Epoch = 3461.348

RA: 10 57 41.6

Dec: 28 02 46.0

<V> = 16.740

<B-V> = 0.12

P = 0.327640 days

Epoch = 3363.304

Type: RRc

RA: 11 48 32.1

Dec: 28 04 36.1

<V> = 15.305

<B-V> = 0.36

P = 0.597821 days

Epoch = 3356.253

RA: 12 04 40.4 Dec: 28 01 08.5

<V> = 16.364 <B-V> = 0.20 P = 0.521823 days Epoch = 3361.121 Type: RRab GR Com

RA: 12 05 25.4

Dec: 28 03 28.8

<V> = 15.737

<B-V> = 0.32

P = 0.508702 days

Epoch = 3683.373

RA: 12 24 18.6

Dec: 28 03 17.4

<V> = 16.470

<B-V> = 0.33

P = 0.529449 days

Epoch = 3361.268

Type: RRab

GS Com

RA: 12 43 17.6

Dec: 28 05 21.7

<V> = 14.820

<B-V> = 0.35

P = 0.540837 days

Epoch = 3361.347

Type: RRab

DV Com

RA: 13 14 03.3

Dec: 28 00 26.7

<V> = 13.825

<B-V> = 0.05

P = 0.314639 days

Epoch = 3361.432

Type: RRc

RA: 13 17 32.5

Dec: 28 01 39.4

<V> = 16.770

< B-V > = 0.35

P = 0.568389 days

Epoch = 3468.281

Type: RRab B

EZ Com

RA: 13 23 46.7 Dec: 28 06 32.5

<V> = 17.056 <B-V> = 0.60 Type: AGN/QSO

RA: 14 33 13.2 Dec: 28 01 17.0

<V> = 17.995

< B-V > = 0.40

P = 0.437536 days

Epoch = 3481.155

RA: 14 54 39.0

Dec: 28 05 32.8

<V> = 14.810

<B-V> = 0.36

P = 0.622135 days

Epoch = 3112.203

RA: 15 16 28.1

Dec: 28 00 41.6

<V> = 17.897

<B-V> = 0.30

P = 0.571900 days

Epoch = 3685.029

RA: 16 23 17.6

Dec: 27 58 28.9

<V> = 15.234

<B-V> = 0.47

P = 0.343669 days

Epoch = 3685.451

RA: 16 50 08.8

Dec: 27 59 55.0

<V> = 15.368

< B-V > = 0.33

P = 0.570831 days

Epoch = 3113.209

RA: 16 58 30.7

 ${\tt Dec:}\ 28\ 06\ 00.7$

<V> = 14.884

<B-V> = 0.30

P = 0.272711 days

Epoch = 3685.586

Type: RRc?

RA: 17 13 10.9

Dec: 28 00 10.3 <V> = 16.202

< B-V > = 0.30

P = 0.531433 days

Epoch = 3481.184

Type: RRab V375 Her

RA: 17 15 23.9

Dec: 28 00 43.0

<V> = 17.998

<B-V> = 0.35

P = 0.516250 days

Epoch = 3474.160

RA: 17 15 57.0

Dec: 28 06 44.6

<V> = 15.090

<B-V> = 0.45

P = 0.528145 days

Epoch = 3385.207

Type: RRab V385 Her

ra: 17 19 06.6

Dec: 28 06 28.2

<V> = 17.637

< B-V > = 0.6

P = 0.47259 days

Epoch = 3385.248

RA: 17 20 58.6

Dec: 28 01 15.2

<V> = 14.768

< B-V > = 0.15

P = 0.295405 days

Epoch = 3469.480

Type: RRc

RA: 17 30 43.1 Dec: 28 03 48.3

<V> = 15.686

<B-V> = 0.15

P = 0.0568927 days

Epoch = 3385.429

Type: SX Phe

RA: 17 41 51.5 Dec: 28 03 53.2

<V> = 15.807

<B-V> = 0.30

P = 0.566966 days

Epoch = 3113.194

RA: 17 42 40.2

Dec: 28 04 44.7

<V> = 16.642

<B-V> = 0.30

P = 0.526354 days

Epoch = 3186.109

RA: 17 44 19.7

Dec: 28 01 21.6

<V> = 15.666

<B-V> = 0.22

P = 0.377069 days

Epoch = 3487.309

Type: RRc

RA: 17 50 17.0

Dec: 28 01 00.0

<V> = 13.244

<B-V> = 0.28

P = 0.695000 days

Epoch = 3474.19

RA: 18 11 01.2

Dec: 27 59 27.4

<V> = 17.072

<B-V> = 0.38

P = 0.454185 days

Epoch = 3181.102

RA: 18 11 26.7

Dec: 28 03 45.4

<V> = 15.610

<B-V> = 0.43

P = 0.541466 days

Epoch = 3169.122

Type: RRab

V532 Her

ra: 18 36 06.3

Dec: 28 03 21.6

<V> = 16.621

< B-V > = 0.49

P = 0.484114 days

Epoch = 3175.196

RA: 18 39 18.3

Dec: 28 04 16.6

<V> = 16.698

<B-V> = 0.55

P = 0.709921 days

Epoch = 3516.300

RA: 18 40 18.8

Dec: 28 00 54.1

<V> = 14.427

<B-V> = 0.52

P = 0.366912 days

Epoch = 3473.422

RA: 18 43 15.3
Dec: 28 01 14.7
<V>= 16.373
<B-V>= 0.66
P = 0.656278 days

Epoch = 3473.717

RA: 18 44 20.6

Dec: 27 59 36.6

<V> = 17.103

< B-V > = 0.45

P = 0.345930 days

Epoch = 3481.409

ra: 18 47 46.9

Dec: 28 04 47.0

<V> = 17.175

<B-V> = 0.65

P = 0.764461 days

Epoch = 3488.260

RA: 19 03 50.4

Dec: 28 00 44.9

<V> = 12.976

<B-V> = 1.75

Type: Irregular

GS Lyr

RA: 19 13 11.8

Dec: 28 00 51.5

<V> = 16.359

<B-V> = 0.60

P = 0.424599 days

Epoch = 3474.433

Type: RRab

V427 Lyr

RA: 19 38 06.6

Dec: 27 59 09.9

<V> = 15.131

< B-V > = 0.60

P = 0.306999 days

Epoch = 3488.337

Type: RRc

V926 Cyg

RA: 21 07 16.1

Dec: 28 02 29.2

<V> = 12.894

<B-V> = 0.42

P = 0.438854 days

Epoch = 3517.448

RA: 21 20 11.2

Dec: 28 06 09.3

<V> = 16.493

<B-V> = 0.43

P = 0.448676 days

Epoch = 3517.381

Type: RR

RA: 21 21 10.2

Dec: 28 05 56.5

<V> = 15.423

<B-V> = 0.25

P = 0.325160 days

Epoch = 3517.511

Type: RRc

RA: 21 34 29.8

Dec: 28 01 56.9 <V>= 16.892

<B-V> = 0.70

P = 0.333247 days

Epoch = 3516.360

Type: W UMa

RA: 21 46 11.6

Dec: 28 00 57.2

<V> = 15.233

<B-V> = 0.45

P = 0.592806 days

Epoch = 3517.220

RA: 21 57 35.4

Dec: 28 02 37.5

<V> = 17.137

<B-V> = 0.38

P = 0.464627 days

Epoch = 3234.243

RA: 21 58 16.5

Dec: 27 58 09.5

<V> = 15.192

<B-V> = 0.35

P = 0.525361 days

Epoch = 3660.060

RA: 22 00 54.8

Dec: 28 00 20.1

<V> = 15.630

<B-V> = 0.38

P = 0.529309 days

Epoch = 3517.108

RA: 22 02 44.8

Dec: 27 59 04.0

<V> = 13.927

<B-V> = 0.79

P = 0.279144 days

Epoch = 3478.351

Type: W UMa

RA: 22 10 22.8

Dec: 28 04 16.2

<V> = 16.566

<B-V> = 0.30

P = 0.554907 days

Epoch = 3673.098

RA: 22 20 36.4

Dec: 27 59 39.2

<V> = 15.185

<B-V> = 0.35

P = 0.426090 days

Epoch = 3517.356

Type: W UMa

RA: 22 36 18.9

Dec: 27 58 38.4

<V> = 16.693

<B-V> = 0.45

P = 0.611901 days

Epoch = 3622.260

RA: 22 47 34.7

Dec: 28 01 20.8

<V> = 13.525

<B-V> = 0.40

P = 0.379380 days

Epoch = 3480.338

Type: W UMa

RA: 23 05 19.7

Dec: 28 05 44.1

<V> = 17.064

<B-V> = 0.30

P = 0.522284 days

Epoch = 3174.327

RA: 23 21 38.0

Dec: 28 01 25.6

<V> = 16.411

<B-V> = 0.40

P = 0.394387 days

Epoch = 3545.638

Type: W UMa

RA: 23 32 06.7

Dec: 28 02 10.9

<V> = 17.265

< B-V > = 0.44

P = 0.692859 days

Epoch = 3187.329

RA: 23 52 26.0

Dec: 28 01 18.9

<V> = 17.565

<B-V> = 0.48

P = 0.589192 days

Epoch = 3545.372

References

Chapter 1

Chapter 2

Baker, J.G., "On Improving the Effectiveness of Large Telescopes," IEEE Trans. on Aerospace and Electronic Systems Vol. AES-5, No. 2, p. 261, 1969.

Benedict, G.F., McGraw, J.T., Hess, T.R., Cawson, M.G.M., Keane, M.J., "Relative Astrometry with the Steward Observatory CCD/Transit Instrument," Bulletin of the American Astonomical Society Vol. 21, No. 4, p. 1109, 1989.

Benedict, G.F., McGraw, J.T., Hess, T.R., Cawson, M.G.M., Keane, M.J., "Relative Astrometry with the Steward Observatory CCD/Transit Instrument," Astronomical Journal 101, p. 279, 1991.

Borra, E.F., Content, R., Drinkwater, M.J., Szapiel, S., "A Deffraction Limited f/2 1.5 meter Diameter Liquid Mirror," Astrophysical Journal Letters 346, p. L41, 1989.

Borra, E.F., Content, R., Girard, L., Szapiel, S., Tremblay, L.M., "Liquid Mirrors: Optical Shop Tests and Contributions to the Technology," Astrophysical Journal 393, p. 829, 1992.

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "A Relational Database Approach to Astronomical Research," SPIE Proc. Vol. 627, p. 70, 1986.

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "The CCD/Transit Instrument (CTI) Data-Analysis System," SPIE Proc. Vol. 627, p. 79, 1986.

Content, R., Borra, E.F., Drinkwater, M.J., Poirier, S., Poisson, E., Beauchemin, M., Boily, E., Gauthier, A., Tremblay, L.M., "A Search for Optical Flares and Flashes with a Liquid Mirror Telescope," Astronomical Journal 97 (3), p. 917, 1989.

Delporte, E., <u>Délimitation Scientifique des Constellations</u> (<u>Tables et Cartes</u>), (<u>Cambridge</u>, At the University Press, 1930).

Dixon, R.S., Gearhart, M.R., and Schmidtke, P.C., <u>Atlas of Sky</u> <u>Overlay Maps (for the Palomar Sky Survey)</u>, (The Ohio State Radio Observatory, 1981). Hoffleit, D., <u>Bright Star Catalogue</u>, 5th revised edition (Yale University Observatory, 1982).

Jones, K.G. (editor), <u>Webb Society Deep-Sky Observer's</u>
<u>Handbook Volume 5: Clusters of Galaxies</u>, (Enslow Publishing, 1981).

Kent, S.M., Ramella, M., Nonino, M., "A Small Drift Scan Survey for Galaxies in the Northern Sky," Astronomical Journal 105 (2), p. 393, 1993.

Kent, S.M., Stoughton, C., Newberg, H., Loveday, J., Petravick, D., Gurbani, V., Berman, E., Sergey, G., Lupton, R., Sloan Digital Sky Survey, Report #FNAL/C-94/084, (Batavia, Ill.: Fermi National Accelerator Laboratory, 1994).

Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., and Shugarov, S.Y., General Catalogue of Variable Stars, 4th edition (Moscow: Nauka Publishing House, 1985-88).

Kirkpatrick, J.D., McGraw, J.T., "The CCD/Transit Instrument (CTI) Blue Object Survey," IAU Colloquium #114 (White Dwarfs), p. 167, 1988.

Kirkpatrick, J.D., Henry, T.J., McCarthy, D.W., McGraw, J.T., "Constraining the Faint End of the Stellar Luminosity Function Through a Systematic Search for M Dwarfs," Bulletin of the American Astronomical Society, Vol. 22, No. 4, p. 1204, 1990.

Kirkpatrick, J.D., <u>Spectroscopic and Photometric Studies of Main Sequence M Stars and a Search for Late Type Dwarfs in the Solar Vicinity</u>, Phd dissertation, (Department of Astronomy, The University of Arizona, 1992).

Kirkpatrick, J.D., "The Luminosity Function of Field M Dwarfs: Evidence for a Population of Substellar Objects," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 944, 1994.

Kirkpatrick, J.D., "The Luminosity Function at the End of the Main Sequence: Results of a Deep, Large-Area, CCD Survey for Cool Dwarfs," Astrophysical Journal Supplement Series 94, p. 749, 1994.

Kron, R., "Digital Optical Sky Surveys," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 915, 1994.

McGraw, J.T., Angel, J.R.P., and Sargent, T.A., "A CCD Transit-telescope Survey for Galactic and Extragalactic Variability and Polarization," SPIE Proc. Vol. 264, p. 20,

1980.

McGraw, J.T., Stockman, H.S., Angel, J.R.P., Epps, H., and Williams, J.T., "The CCD/transit instrument (CTI) deep photometric and polarimetric survey - a progress report," SPIE Proc. Vol. 331, p. 137, 1983.

McGraw, J.T., Cawson, M.G.M., Keane, M.J., "Operation of the CCD/Transit Instrument (CTI)," SPIE Proc. Vol. 627, p. 60, 1986.

McGraw, J.T., Cawson, M.G.M., Kirkpatrick, J.D., Haemmerle, V., "A Strip Search for Quasars: The CCD/Transit Instrument (CTI) Quasar Survey," Proceedings of a Workshop on Optical Surveys for Quasars, p. 163, 1988.

McGraw, J.T., Hess, T.R., Green, E.M., Bridges, C.T., Benedict, G.F., "Photometric and Positional Calibration of the CCD/Transit Instrument (CTI) Strip of the Sky," Bulletin of the American Astronomical Society Vol. 21, No. 3, p. 1021, 1989.

McGraw, J.T., "A Strip Search of the Universe," Variable Stars and Galaxies, ASP Conference Series, Vol. 30, p. 77 (San Francisco: Astronomical Society of the Pacific, 1992).

McGraw, J.T., "The Lunar Transit Telescope (LTT): An Early Lunar Based Science and Engineering Mission," Engineering, Construction and Operations in Space III, p. 1865, 1992.

McGraw, J.T. (editor), <u>Proceedings of the Lunar Ultraviolet</u>
<u>Telescope Experiment (LUTE) Science Workshop</u>, (Institute for Astrophysics, The University of New Mexico, 1993).

McGraw, J.T., Wetterer, C.J., Hess, T.R., Green, E.M., "Photometric Standard Stars in the CCD/Transit Instrument (CTI) Survey," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 899, 1994.

Paul, M., "Corrective Systems for Astronomical Reflectors," Rev. d'Optique Vol. 14, p. 169, 1935.

Stoughton, C., Annis, J., Kent, S., Kron, R., Loveday, J., McKay, T., Newberg, H., "First Data from the Fermilab Drift Scan Camera," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 897, 1994.

Sulentic, J.W. and Tifft, W.G., <u>The Revised New General Catalogue of Nonstellar Astronomical Objects</u>, (Tucson: The University of Arizona Press, 1973).

Veron-Cetty, M.P., and Veron, P., "A Catalogue of Quasars and

Active Galactic Nuclei, 4th edition," E.S.O. Sci. Rep. 7, 1989.

Wetterer, C.J., McGraw, J.T., Hess, T.R., Grashuis, R., "Variable Stars in the CCD/Transit Instrument (CTI) Survey," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 899, 1994.

Wetterer, C.J., <u>The CCD/Transit Instrument Atlas and Database Guide</u>, Supplement to PhD Dissertation, (Department of Physics and Astronomy, University of New Mexico, 1995).

Zwicky, F., Herzog, E., Wild, P., Karpowicz, M., Kowal, C.T., The Catalogue of Galaxies and Clusters of Galaxies, (California Institute of Technology, 1961-68).

, <u>The National Geographic Society - Palomar</u> <u>Observatory Sky Survey</u>, (California Institute of Technology, 1954).

, <u>Smithsonian Astrophysical Observatory Star</u> <u>Catalog</u>, (Washington, Smithsonian Institution, 1966-1990).

(variable star original finder chart references)

Bond, H.E., Kron, R.G. and Spinrad, H., "GQ Comae and V396 Herculis: Two Low-Redshift Optically Variable QSOs," Astrophysical Journal 213 (1), p. 1, 1977. (GQ Com)

Erleksova, G.E., "EQ Vulpeculae," Переменные звезды, Прцложенце 2 №10, р. 248, 1975. (EQ Vul)

Hoffmeister, C., "Untersuchung der Schtaube des Positions-Fadenmikrometers Heyde 3013," Mitteilungen der Sternwarte zu Sonneberg Nr. 6, 1924. (UU Lyr)

Hoffmeister, C., "Relative Koordinaten, Örter und Karten neuer Veränderlicher," Mitteilungen der Sternwarte zu Sonneberg Nr. 17, 1930. (CE Lyr and CV Lyr)

Hoffmeister, C., "Relative Koordinaten, Örter und Karten neuer Veränderlicher," Mitteilungen der Sternwarte zu Sonneberg Nr. 22, 1933. (GS Lyr)

Hoffmeister, C., "89 neue veränderliche Sterne," Astronomische Nachrichten 284, p. 275, 1959. (V375 Her and V385 Her)

Hoffmeister, C., "Mitteilungen über neuentdeckte Veränderliche Sterne (S9727-S10152)," Astronomische Nachrichten 290 H1-2, p. 43, 1967. (KW Vul)

Pinto, G. and Romano, G., "Researches with the Schmidt Telescope VI - The Variable Stars around Gamma Comae," Memorie della Società Astronomica Italiana 44 Nº1, p. 53, 1973. (GR Com and GS Com)

Kurochkin, N.E., "New Variable Stars in the Region of M56," Переменные звезды 17 №128, р. 186, 1970. (V427 Lyr)

Kinman, T., Wirtanen, C.A. and Janes, K.A., "An RR Lyrae Star Survey with the Lick 20 inch Astrograph. IV. A Survey of Three Fields Near the North Galactic Pole," Astrophysical Journal Supplement 119, p. 379, 1966 (DV Com and EZ Com)

Meinunger, L., "Über Veränderliche in einigen T-Assoziationen," Mitteilungen über Veränderliche Sterne 3 H5, p. 137, 1966. (CN Tau)

Miller, W.J. and Wachmann, A.A., "Six New Variable Stars in the Cygnus Cloud, VV 125-130," Ricerche Astronomiche 6 №22, p. 497, 1964. (V926 Cyg)

Miller, W.J., "Eleven Variable Stars in the Cygnus Cloud, VV 151-161," Ricerche Astronomiche 7 M4, p. 197, 1965. (V911 Cyg)

Miller, W.J., "Ten New Variable Stars in the Cygnus Cloud, VV 191-200," Ricerche Astronomiche 7 №10, p. , 1967. (V1140 Cyg)

Rügemer, H., "Neue Veränderliche Sterne," Astronomische Nachrichten 248, p. 409, 1933. (EP Tau)

Shaganian, B.L. and Shaganian, V.B., "On Three Longperiod Variable Stars in the Region of M56," Переменные звезды, Прцложенце 3 №18, р. 748, 1979. (ТУ Lyr)

Vogt, N. and Bateson, F.M., "An Atlas of Southern and Equitorial Dwarf Novae," Astronomy and Astrophysics Supplement 48 (3), p. 383, 1982. (IR Gem)

Wachmann, A.A., "Die Veränderlichen im Südteil der Cygnuswolke - Teil II," Astronomische Abhandlungen der Hamburger Sternwarte, Band VI Nr. 2, 1963. (PP Lyr)

Wachmann, A.A., "Die Veränderlichen im Südteil der Cygnuswolke - Teil III," Astronomische Abhandlungen der Hamburger Sternwarte, Band VI Nr. 3, 1964. (EH Cyg and AI Cyg)

, Mitteilungen über Veränderliche Sterne №299, 1957. (V532 Her)

Chapter 3

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "A Relational Database Approach to Astronomical Research," SPIE Proc. Vol. 627, p. 70, 1986.

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "The CCD/Transit Instrument (CTI) Data-Analysis System," SPIE Proc. Vol. 627, p. 79, 1986.

Dieckvoss, W., Kox, H., Gunther, A., and Brosterhus, E., <u>AGK3</u>
<u>Star Catalog of Positions and Proper Motions North of -2.5</u>
<u>degree Declination</u> (Hamburg-Bergedorf, 1975).

Lasker, B.M., Sturch, C.R., McLean, B.J., Russell, J.L., Jenkner, H., Shara, M.M., "The Guide Star Catalog I. Astronomical Foundations and Image Processing," Astronomical Journal 99(6), p. 2019, 1990.

McGraw, J.T., Hess, T.R., Green, E.M., Bridges, C.T., Benedict, G.F., "Photometric and Positional Calibration of the CCD/Transit Instrument (CTI) Strip of the Sky," Bulletin of the American Astronomical Society Vol. 21, No. 3, p. 1021, 1989.

McGraw, J.T., "A Strip Search of the Universe," Variable Stars and Galaxies, ASP Conference Series, Vol. 30, p. 77 (San Francisco: Astronomical Society of the Pacific, 1992).

Wetterer, C.J., <u>The CCD/Transit Instrument Atlas and Database Guide</u>, Supplement to PhD Dissertation, (Department of Physics and Astronomy, University of New Mexico, 1995).

Chapter 4

Allen, R.H., <u>Star Names: Their Lore and Meaning</u> (New York: Dover Publications, 1963).

Bevington, P.R., <u>Data Reduction and Error Analysis for the Physical Sciences</u> (New York: McGraw-Hill Book Company, 1969).

Campbell, L. and Jacchia, L., <u>The Story of Variable Stars</u> (Philidelphia: The Blakiston Company, 1941).

Cox, J.P., <u>Theory of Stellar Pulsation</u> (Princeton: Princeton University Press, 1980).

Hawkins, M.R.S., "A Study of the Galactic halo from a complete sample of RR Lyrae variables to B=21," Monthly Notices for the Royal Astronomical Society 206, p.433, 1984.

Jacoby, G.H., Branch, D., Ciardullo, R., Davies, R.L., Harris, W.E., Pierce, M.J., Pritchet, C.J., Tonry, J.L., Welch, D.L., "A Critical Review of Selected Techniques for Measuring Extragalactic Distances," Publications of the Astronomical Society of the Pacific 104, p. 599, 1992.

Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., and Shugarov, S.Y., General Catalogue of Variable Stars, 4th edition (Moscow: Nauka Publishing House, 1985-88).

Madore, B.F., Freedman, W.L., "The Cepheid Distance Scale," Publications of the Astronomical Society of the Pacific 103, p. 933, 1991.

Petit, M., <u>Variable Stars</u> (English translation, New York: John Wiley & Sons Ltd., 1987).

Saha, A. and Hoessel, J.G., "RR Lyrae stars in Local Group galaxies I: NGC 185," Astronomical Journal 99 (1), p. 97, 1990.

Stobie, R.S., Bishop, I.S., King, D.L., "Variable Stars in the South Galactic Cap," Monthly Notices of the Royal Astronomical Society 222, p. 473, 1986.

Chapter 5

Barnes III, T.G., Hawley, S.L., "On Absolute Magnitues of RR Lyrae Stars," Astrophysical Journal 307, p. L9, 1986.

Beckert, D.C. and Newberry M.V., "The Design and Testing of Filter-Detector Systems using Synthetic Photometry," Publications of the Astronomical Society of the Pacific 101, p. 849, 1989.

Burstein, D., and Heiles, C., "Reddenings Derived form HI and Galaxy Counts: Accuracy and Maps," Astronomical Journal 87 (8), p. 1165, 1982.

Carney, B.W., Storm, J., Jones, R.V., "The Baade-Wesselink Method and the Distances to RR Lyrae Stars. VIII. Comparisons with Other Techniques and Implications for Globular Cluster Distances and Ages," Astrophysical Journal 386, p. 663, 1992.

Cox, J.P., <u>Theory of Stellar Pulsation</u> (Princeton: Princeton University Press, 1980).

Hawley, S.L., Jeffreys, W.H., Barnes III, T.G., "Absolute Magnitudes and Kinematic Properties of RR Lyrae Stars,"

Astrophysical Journal 302, p. 626, 1986.

Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., and Shugarov, S.Y., General Catalogue of Variable Stars, 4th edition (Moscow: Nauka Publishing House, 1985-88).

Kukarkin, B.V., Kholopov, P.N., Artiukhina, N.M., Fedorovich, V.P., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Karitskaya, E.A., Kirreeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., Ponomareva, G.A., Samus, N.N., and Shugarov, S.Y., New Catalogue of Suspected Variable Stars (Moscow: Nauka Publishing Office, 1982).

Lafler, J., and Kinman, T.D., "An RR Lyrae Star Survey with the Lick 20-inch Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer," Astrophysical Journal Supplement 11 p. 216, 1965.

Laubscher, B., Gregory, S., Bauer, T., Zeilik, M., Burns, J., "A CCD Camera System at Capilla Peak Observatory, New Mexico," Publications of the Astronomical Society of the Pacific 100, p. 131, 1988.

Layden, A.C., Hanson, R.B., Hawley, S.L., "Absolute Magnitudes and Kinematics of RR Lyrae Stars via Statistical Parallax," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 911, 1994.

Lee, Y-W, "Evidence for an Old Galactic Bulge from RR Lyrae Stars in Baade's Window: Implications for the Formation of the Galaxy and the Age of the Universe," Astronomical Journal 104 (5), p. 1780, 1992.

Mihalas, D. and Binney, J., <u>Galactic Astronomy: Structure and Kinematics</u>, second edition (New York: W.H. Freeman and Company, 1981).

Nemec, J.M., Linnell Nemec, A.F., Lutz, T.E., "Period-Luminosity-Metallicity Relations, Pulsation Modes, Absolute Magnitudes, and Distances for Population II Variable Stars," Astronomical Journal 108, p. 222, 1994.

Newberry, M.V., "Signal-to-Noise Considerations for Sky-Subtracted CCD Data," Publications of the Astronomical Society of the Pacific 103, p. 122, 1991.

Saha, A. and Hoessel, J.G., "RR Lyrae stars in Local Group galaxies I: NGC 185," Astronomical Journal 99 (1), p. 97, 1990.

Sandage, A., "Evidence for a Period-Luminosity-Amplitude Relation for RR Lyrae Stars," Astrophysical Journal 244, p. L23, 1981.

Sandage, A., Katem, B., Sandage, M., "The Oosterhoff Period Groups and the Age of Globular Clusters. I. Photometry of Cluster Variables in M15," Astrophysical Jouranl Supplement 46, p. L41, 1981.

Sandage, A., "The Oosterhoff Period Groups and the Age of Globular Clusters. II. Properties of RR Lyrae Stars in Six Clusters: The P-L-A Realation," Astrophysical Jouranl 248, p. 161, 1981.

Sandage, A., "The Oosterhoff Period Groups and the Age of Globular Clusters. III. The Age of the Globular Cluster System," Astrophysical Journal 252, p. 553, 1982.

Sandage, A., Katem, B., Sandage, M., "The Oosterhoff Period Groups and the Age of Globular Clusters. IV. Field RR Lyrae Stars: Age of the Galactic Disk," Astrophysical Jouranl Supplement 252, p. 574, 1982.

Stellingwerf, R.F., "Period Determination using Phase Dispersion Minimization," Astrophysical Journal 224, p. 953, 1978.

Szeidl, B. "Multiple Periodic Variable Stars," IAU Colloquium No. 29, edited by W.S. Fitch (Reidel, Dordrecht), p. 133, 1976.

Tsesevich, V.P. "RR Lyrae Stars," in <u>Pulsating Stars</u> (edited by B.V. Kukarkin), English translation (New York: Halsted Press, 1975).

Tyson, J.A., "The Shift-and-Stare Technique and a Large Area CCD Mosaic," CCDs in Astronomy, ASP Conference series, Vol. 8, p. 1, (San Francisco: Astronomical Society of the Pacific, 1990).

, <u>The Astronomical Almanac for the year 1993</u> (Washington D.C.: United States Government Printing, 1992).

(Capilla Peak research references)

Beckert, D.C., Cox, D., Gordon, S., Jaderlund, E., Mann, E., Zeilik, M., "1989 BVR photometry of CG Cygni", IBVS #3398, 1989.

Beckert, D.C. and Newberry M.V., "The Design and Testing of Filter-Detector Systems using Synthetic Photometry,"

Publications of the Astronomical Society of the Pacific 101, p. 849, 1989.

Beckert, D.C., Gordon, S., Jaderlund, E., Mann, E., Zeilik, M., "CG Cygni redux: more 1989 BVR data", IBVS #3556, 1991.

Bryja, C., Lawrence, G., "Photometry of Suspected Low Mass Hyades Cluster Members," Bulletin of the American Astronomical Society, Vol. 23, No. 2, p. 908, 1991.

Bryja, C., Jones, T.J., Humphreys, R.M., Lawrence, G., Pennington, R.L., Zumach, W., "Candidate Brown Dwarfs in the Hyades," Astrophysical Journal 388, p. L23, 1992.

Deeg, H-J., Brinks, E., Duric, N., Klein, U., Skillman, E., "New 325 MHz Observations of HII Galaxies: The Mechanisms That Shape the Unusual Radio Spectra," Astrophysical Journal 410, p. 626, 1993.

Gordon, S., Hall, S., Ledlow, M., Mann, E., Zeilik, M., "1989 BVR light curves of RT And," IBVS #3469, 1990.

Gisler, G., Laubscher, B., Chabot, N., Boudreaux, K., Grashuis, R., "Multi-filter Optical Observations of SL9 Impact Spots on Jupiter," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1374, 1994.

Gregory, S.A., Deeg, H.-J., Morrison, G., Crane, M., Grashuis, R., Lacey, C., "Galaxian Nuclear Spectral Types as a Function of Environment," Bulletin of the American Astronomical Society Vol. 22 No. 2, p. 881, 1990.

Hayes, J.J.E., Sadun, A.C., and R. Grashuis, "Narrow-band images of Arp 213," Bulletin of the American Astronomical Society Vol. 25 No. 4, p. 1248, 1993.

Kidger, M., et al., "Multiband Monitoring of OJ287 in 1993/94," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1506, 1994.

Laubscher, B., Gregory, S., Bauer, T., Zeilik, M., Burns, J., "A CCD Camera System at Capilla Peak Observatory, New Mexico," Publications of the Astronomical Society of the Pacific 100, p. 131, 1988.

Laubscher, B., Gregory, S., "Galaxy alignments in the Perseus supercluster," Bulletin of the American Astronomical Society Vol. 25, No. 2, p. 913, 1993.

Laubscher, B., "Problems with Galaxy Position Angles," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 963, 1994.

Odewahn, S.C., "Properties of the Magellanic-type spirals. I - Surface photometry of NGC 4618 and NGC 4625," Astronomical Journal 101, p. 829, 1991.

Odewahn, S.C., Bryja, C., Humphreys ,R.M., "Improved CCD Standard Fields," Publications of the Astronomical Society of the Pacific 104, p. 553, 1992.

Sadun, A., "Optical Variability of the Blazar OJ 287," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1467, 1994.

Schmidt, B.P., Kirshner, R.P., Eastman, R.G., Grashuis, R., Dell'Antonio, I., Caldwell, N., Foltz, C., Huchra, J.P., Milone, A.A.E., "The Unusual Supernoa SN 1993J in M81," Nature 364, p. 600, 1993.

Schmidt, B.P., Kirshner, R.P., Eastman, R.G., Phillips, M.M., Suntzeff, N.B., Hamuy, M., Aviles, R., Filippenko, A.V., Ho, L., Matheson, T., Grashuis, R., Maza, J., Kirkpatrick, J.D., Kuijken, K. Zucker, D., Bolte, M., Tyson, N., "The Expanding Photosphere Method Applied to SN 1992am at cz = 14600 km s⁻¹," Astronomical Journal 107, p. 1444, 1994.

Summers, D.L., Zeilik, M., "Starspot activity on the RS CVn candidate 1E 1919+0427," Bulletin of the American Astronomical Society, Vol. 22, No. 4, p. 1295, 1990.

Summers, D.L., Zeilik, M., Jaderlund, E., Hoeppe, G., Collins, A., "1991 V-band photometry of an eclipsing binary: 1E 1919+0427," IBVS #3708, 1992.

Takalo, L.O., Pursimo, T., Sillanpää, A., Lehto, H., Nilsson, K., Kidger, M., deDiego, J.A., Gonzales-Perez, J.N., Rodriguez-Espinoza, J-M., Mahoney, T., Boltwood, P., Dultzin-Hacyan, D., Benitez, E., Turner, G.W., Robertson, J.W., Honeycutt, R.K., Efimov, T.S., Shakhovskoy, N., Charles, P.A., Schramm, K.J., Borgeest, U., Linde, J.V., Sadun, A., Grashuis, R., "The Light Curve of Blazar 3C 66A," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1507, 1994.

Taylor, C., Brinks, E., Grashuis, R., Skillman, E., "An Optical and Radio Atlas of Companions to Dwarf Galaxies," to be published in Astrophysical Journal Supplement Series, 1995.

Wetterer, C.J., McGraw, J.T., Hess, T.R., Grashuis, R., "Variable Stars in the CCD/Transit Instrument (CTI) Survey," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 899, 1994.

Zeilik, M., DeBlasi, D., Rhodes, M., Budding, E., "A Half-Century of Starspot Activity on SV Camelopardalis," Bulletin

- of the American Astronomical Society Vol. 19., No. 4, p. 1086, 1987.
- Zeilik, M., Beckert, D., DeBlasi, C., Ledlow, M., Rhodes, M., Williams, T., "1987 BVRI Photometry of RT And," IBVS #3173, 1988.
- Zeilik, M., Cox, D., DeBlasi, D., Ledlow, M., Rhodes, M., Williams, T., "1988 BVRI Photometry of XY UMa," IBVS #3200, 1988.
- Zeilik, M., DeBlasi, D., Rhodes, M., Budding, E., "A Half-Century of Starspot Activity on SV Camelopardalis," The Astrophysical Journal 332, p. 293, 1988.
- Zeilik, M., Beckert, D., Cox, D., Dolby, J., Ledlow, M., Newberry, M., Rhodes, M., "1989 V-band light curve of RT And," IBVS #3301, 1989.
- Zeilik, M., Cox, D.A., DeBlasi, C., Rhodes, M., Budding, E., "Long-Term Starspot Activity of Short-Period RS CVn Stars, Part II, RT Andromedae," The Astrophysical Journal 345, p.991, 1989.
- Zeilik, M., DeBlasi, C.B., Gordon, S., Ledlow, M., "1990 BVR photometry of XY UMa," IBVS #3535, 1990.
- Zeilik, M., Gordon, S., Cox, D., Beckert, D., "Long-term starspot activity of short-period RS CVn stars: CG Cygni," Bulletin of the American Astronomical Society, Vol. 22, No. 2, p. 830, 1990.
- Zeilik, M., Ledlow, M., Rhodes, M., Arevardo, M.J., Budding, E., "Long-Term Starspot Activity of Short-Period RS CVn Stars, Part III, BH Virginis," The Astrophysical Journal 354, p.352, 1990.
- Zeilik, M., Cox, D.A., De Blasi, C., Rhodes, M., Budding, E., "Long-Term Starspot Activity of Short-Period RS CVn Stars, Part IV, WY Cancri," The Astrophysical Journal 363, p.467, 1990.
- Zeilik, M., Heckert, P., Ledlow, M., Summers, D.L., Jaderlund, E., Boudreau, K., M., "1991 BVR photometry of CG Cygni," IBVS #3663, 1991.
- Zeilik, M., Deeg, H.J., "Long-term starspot activity of short-period RS CVn stars: XY UMa," Bulletin of the American Astronomical Society, Vol. 23, No. 2, p. 880, 1991.
- Zeilik, M., Gordon, S., Jaderlund, E., Ledlow, M., Summers, D.L., Heckert, P.A., Budding, E., Banks, T.S., "Long-term

Starspot Activity of Short-Period RS Canum Venaticorum Stars. V. CG Cygni, "Astrophysical Journal 421, p. 303, 1994.

Chapter 6

Blanco, B.M., "RR Lyrae Variables in Baade's Window," Astronomical Journal 89, p. 1836, 1984.

Blanco, B.M., "RR Lyare Variables in a Galactic Bulge Window," Astronomical Journal 103, p. 1872, 1992.

Hartwick, F.D.A., Barlow, D.J., Hesser, J.E., "Variable Stars in the Bulge of the Galaxy in a Field Around NGC 6304," Astronomical Journal 86, p. 1044, 1981.

Hawkins, M.R.S., "A Study of the Galactic halo from a complete sample of RR Lyrae variables to B=21," Monthly Notices for the Royal Astronomical Society 206, p.433, 1984.

Kinman, T.D., "An RR Lyrae Star Survey with the Lick 20-inch Astrograph I. Methods of Observation and Reduction," Astrophysical Journal Supplement Series 11, p. 199, 1965.

Kinman, T.D., Wirtanen, C.A., and Janes, K.A. "An RR Lyrae Star Survey with the Lick 20-inch Astrograph III. A Survey of Part of the Variable Star Field MWF 361," Astrophysical Journal Supplement Series 11, p. 223, 1965.

Kinman, T.D., Wirtanen, C.A., and Janes, K.A. "An RR Lyrae Star Survey with the Lick 20-inch Astrograph IV. A Survey of Three Fields Near the North Galactic Pole," Astrophysical Journal Supplement Series 13, p. 379, 1966.

Kinman, T.D., Mahaffey, C.T., and Wirtanen, C.A. "An RR Lyrae Star Survey with the Lick 20-inch Astrograph V. A Survey of Three Fields at Intermediate Latitudes Towards the Galactic Anti-Center," Astronomical Journal 87, p. 314, 1982.

Kinman, T.D., Wong-Swanson, B., Wenz, M., Harlan, E.A., "An RR Lyrae Star Survey with the Lick Astrograph VI. New Photometric Observations and Ephemerides for the Variables in the Field RR I (MWF 361A)," Astronomcal Journal 89, p. 1200, 1984.

Lafler, J., and Kinman, T.D., "An RR Lyrae Star Survey with the Lick 20-inch Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer," Astrophysical Journal Supplement Series 11, p. 216, 1965.

Layden, A.C., Hanson, R.B., Hawley, S.L., "Absolute Magnitudes and Kinematics of RR Lyrae Stars via Statistical Parallax," Bulletin of the American Astronomical Society Vol. 26, No. 2,

p. 911, 1994.

Merrifield, M.R., "The Rotation Curve of the Milky Way to $2.5R_0$ from the Thickness of the HI Layer," Astronomical Journal 103, p. 1552, 1992.

Oort, J.H., and Plaut, L., "The Distance to the Galactic Centre Derived form RR Lyrae Variables, the Distribution of these Variables in the Galaxy's Inner Region and Halo, and a Redicussion of the Galactic Rotation Constants," Astronomy and Astrophysics 41, p. 71, 1975.

Plaut, L., "Variable Stars in a Field Centered at $l = 0^{\circ}$, $b = +29^{\circ}$ (Field 1 of the Palomar-Groningen Variable-Star Survey)," Bulletin of the Astronomical Institute of the Netherlands Supplement 1, p. 105, 1966.

Plaut, L., "Variable Stars in a Field Centered at $l=4^{\circ}$, $b=+12^{\circ}$ (Field 2 of the Palomar-Groningen Variable-Star Survey) Part 1: Introduction and RR Lyrae-Type Variables," Bulletin of the Astronomical Institute of the Netherlands Supplement 2, p. 293, 1968.

Plaut, L., "Variable Stars in a Field Centered at $l=4^{\circ}$, $b=+12^{\circ}$ (Field 2 of the Palomar-Groningen Variable-Star Survey)," Bulletin of the Astronomical Institute of the Netherlands Supplement 3, p. 1, 1968.

Plaut, L., "Variable Stars in a Field Centered at $1 = 0^\circ$, $b = -10^\circ$ (Field 3 of the Palomar-Groningen Variable-Star Survey $\alpha_{1950} = 18^h 24^m 04^s$, $\delta_{1950} = -33^\circ 58.6$)," Astronomy and Astrophysics 8, p. 341, 1970.

Plaut, L., "Variable Stars in a Field Centered at 1 = 0°, b = -10° (Field 3 of the Palomar-Groningen Variable-Star Survey)," Astronomy and Astrophysics Supplement 4, p. 73, 1971.

Plaut, L., "Palomar-Groningen Variable Star Survey. VI. B and V Observations of Twenty RR Lryae Variables and Some Related Problems," Astronomy and Astrophysics Supplement 12, p. 351, 1973.

Preston, G.W., Shectman, S.A., and Beers, T.C., "Detection of a Galactic Color Gradient for Blue Horizontal-Branch Stars of the Halo Field and Implications for the Halo Age and Denisty Distrubutions," Astrophysical Journal 375, p. 121, 1991.

Reid, M.J., in <u>The Center of the Galaxy</u>, IAU Symposium No. 136, (Kluwer, Dordrecht, 1989).

Saha, A., "A Search for Distant Halo RR Lyrae Stars," Astrophysical Journal 283, p. 580, 1984.

Saha, A., and Oke, J.B., "Spectroscopy and Spectrophotometry of Distant Halo RR Lyrae Stars," Astrophysical Journal 285, p. 688, 1984.

Saha, A., "RR Lyrae Stars and the Distant Galactic Halo: Distribution, Chemical Composition, Kinematics, and Dynamics," Astrophysical Journal 289, p. 310, 1985.

Stobie, R.S., Bishop, I.S., King, D.L., "Variable Stars in the South Galactic Cap," Monthly Notices of the Royal Astronomical Society 222, p. 473, 1986.

Suntzeff, N.B., Kinman, T.D., Kraft, R.P., "Metal Abundances of RR Lyrae Variables in Selected Galactic Star Fields. V. The Lick Astrographic Fields at Intermediate Galactic Latitudes," Astrophysical Journal 367, p. 528, 1991.

van den Bergh, S., "UBV Photometry in the Nuclear Bulge of the Galaxy," Astronomical Journal 76, p. 1082, 1971.

Zinn, R., "The Globular Cluster System of the Galaxy. IV. The Halo and Disk Subsystems," Astrophysical Journal 293, p. 424, 1985.

Chapter 7

Armandroff, T.E., DaCosta, G.S., "The Radial Velocity, Velocity Dispersion, and Mass-to-Light Ratio of the Sculptor Dwarf Galaxy," Astronomical Journal 92, p. 777, 1986.

Benedict, G.F., and Shelus, P.J., "Applications of Automated Invenotry Techniques to Astrometry," Proceedings of I.A.U. Colloquium No. 48 on Modern Astronomy (Institute of Astronomy, Vienna, 1978).

Benedict, G.F., McGraw, J.T., Hess, T.R., Cawson, M.G.M., Keane, M.J., "Relative Astrometry with the Steward Observatory CCD/Transit Insturment," Astronomical Journal 101, p. 279, 1991.

Frenk, C.S., White, S.D.M., "The kinematics and dynamics of the Galactic globular cluster system," Monthly Notices of the Royal Astronomical Society 193, p. 295, 1980.

Harris, W.E., "Spatial structure of the globular cluster system and the distance to the Galactic center," Astronomical Journal 81, p. 1095, 1976.

Hartwick, F.D.A., Sargent, W.L.W., "Radial Velocities for Outlying Satellites and their Implications for the Mass of the Galaxy," Astrophysical Journal 221, p. 512, 1978.

Hawkins, M.R.S., "Direct evidence for a massive Galactic halo," Nature 303, p. 406, 1983.

Hawkins, M.R.S., "A Study of the Galactic halo from a complete sample of RR Lyrae variables to B = 21," Monthly Notices for the Royal Astronomical Society 206, p.433, 1984.

Hesser, J.E., Shawl, S.J., Meyer, J.E., "Systematic Reinvestigation of the Radial Velocities of the Galactic Globular Clusters: Image-Tube Results," Publications of the Astronomical Society of the Pacific 98, p.403, 1986.

Jeffreys, W.H., Fitzpatrick, M.J., McArthur, B.E., Gaussfit - A System for Least Squares and Robust Estimation: User's Manual (Department of Astronomy, University of Texas, Austin, 1989).

Kulessa, A.S., Lynden-Bell, D., "The mass of the Milky Way Galaxy," Monthly Notices for the Royal Astronomical Society 255, p. 105, 1992.

Layden, A.C., "The Metallicities and Kinematics of RR Lyrae Variables. I. New Observations of Local Stars," Astronomical Journal 108, p. 1016, 1994.

Little, B., Tremaine, S., "Distant Satellites as Probes of our Galaxy's Mass Distribution," Astrophysical Journal 320, p. 493, 1987.

Liu, T., and Janes, K.A., "The Luminosity Scale of RR Lyrae Stars with the Baade-Wesselink Method. I. Photometry and Radial Velocities," Astrophysical Journal Supplement Series 69, p. 593, 1989.

Lynden-Bell, D., Cannon, R.D., Godwin, P.J., "Slippery evidence on the Galaxy's invisible heavy halo," Monthly Notices of the Royal Astronomical Society 204, p. 87P, 1983.

Merrifield, M.R., "The Rotation Curve of the Milky Way to $2.5R_0$ from the Thickness of the HI Layer," Astronomical Journal 103, p. 1552, 1992.

Mihalas, D. and Binney, J., <u>Galactic Astronomy: Structure and Kinematics</u>, second edition (New York: W.H. Freeman and Company, 1981).

Oke, J.B., Giver, L.P., and Searle, L., "An Analysis of the Absolute Energy Distribution in the Spectrum of SU Draconis," Astrophysical Journal 136, p. 393, 1962.

Oke, J.B., "A Spectrophotometric Study of X Arietis," Astrophysical Journal 145, p. 468, 1966.

Olszewski, E.W., Peterson, R.C., Aaronson, M., "High-Precision Radial Velocities for Faint Giants: Radial Velocities of Extreme Halo Systems and the Mass of the Galaxy," Astrophysical Journal 302, p. L45, 1986.

Peterson, R.C., "Radial Velocities of Remote Globular Clusters: Stalking the Missing Mass," Astrophysical Journal 297, p. 309, 1985.

Peterson, R.C., Latham, D.W., "The Radial Velocity and Velocity Dispersion of the Remote Globular Cluster Palomar 15: Constraints on the Mass of the Galaxy," Astrophysical Journal 336, p. 178, 1989.

Saha, A., and Oke, J.B., "Spectroscopy and Spectrophotometry of Distant Halo RR Lyrae Stars," Astrophysical Journal 285, p. 688, 1984.

Saha, A., "RR Lyrae Stars and the Distant Galactic Halo: Distribution, Chemical Composition, Kinematics, and Dynamics," Astrophysical Journal 289, p. 310, 1985.

Webbink, R.F., "A Catalog of Radial Velocities in Galactic Globular Clusters," Astrophysical Journal Supplement 45, p. 259, 1981.

Zaritsky, D., Olszewski, E.W., Schommer, R.A., Peterson, R.C., Aaronson, M., "Velocities of Stars in Remote Galactic Satellites and the Mass of the Galaxy," Astrophysical Journal 345, p. 769, 1989.

Appendix 1

Appendix 2

Wetterer, C.J., <u>The CCD/Transit Instrument Atlas and Database Guide</u>, Supplement to PhD Dissertation, (Department of Physics and Astronomy, University of New Mexico, 1995).

Appendix 3

RR LYRAE VARIABLE STARS IN THE CCD/TRANSIT INSTRUMENT SURVEY

by

Charles J. Wetterer

Captain, US Air Force

343 pages

PhD, Physics, University of New Mexico, 1995

ABSTRACT

RR Lyrae variable stars have long been recognized as important tools in probing the mass, chemical distribution and kinematics of the Galaxy from the inner recesses of the nuclear bulge to the outer environs of the distant Galactic halo. This dissertation chronicles an RR Lyrae variable star survey from a thorough description of the initial observations with the CCD/Transit Instrument (CTI), to an examination of RR Lyrae space density and the Galactic mass using the discovered RR Lyrae stars.

The RR Lyrae space density as a function of Galactocentric distance is shown to be a power-law function $(R^{-3 \text{ to } -3.5})$ and consistant with an ellipsoidal distribution in the nuclear bulge and more spherically symmetric distribution in the Galactic halo. The unique area of the CTI survey and comparison to other RR Lyrae surveys verifies this function is valid throughout the Galactic halo and over the range of Galactocentric distances sampled (0.6 < R < 40 kpc). Local underdensities and overdensities of RR Lyrae stars are

discussed, including a possible resonance with the Magallenic Clouds (R \approx 50 kpc).

The Galactic mass estimated using radial velocities of RR Lyrae stars discovered in the CTI survey does not support the existence of a massive dark Galactic halo. This result is compared to the mass as determined from the radial velocities of other halo objects. Depending on the type of orbits assumed, the radial velocities of RR Lyrae stars, globular clusters, and dwarf elliptical galaxies can be used to support the notion that a massive dark halo exists (i.e. the mass-to-light ratio increases for increasing Galactocentric distance), or that no excessive dark matter exists in the Galactic halo (i.e. the mass-to-light ratio remains constant for increasing Galactocentric distance).

References (primary)

Chapter 2

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "A Relational Database Approach to Astronomical Research," SPIE Proc. Vol. 627, p. 70, 1986.

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "The CCD/Transit Instrument (CTI) Data-Analysis System," SPIE Proc. Vol. 627, p. 79, 1986.

Delporte, E., <u>Délimitation Scientifique des Constellations</u> (<u>Tables et Cartes</u>), (Cambridge, At the University Press, 1930).

Dixon, R.S., Gearhart, M.R., and Schmidtke, P.C., <u>Atlas of Sky Overlay Maps (for the Palomar Sky Survey)</u>, (The Ohio State Radio Observatory, 1981).

Hoffleit, D., <u>Bright Star Catalogue</u>, 5th revised edition (Yale University Observatory, 1982).

Jones, K.G. (editor), <u>Webb Society Deep-Sky Observer's</u>
<u>Handbook Volume 5: Clusters of Galaxies</u>, (Enslow Publishing, 1981).

Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., and Shugarov, S.Y., General Catalogue of Variable Stars, 4th edition (Moscow: Nauka Publishing House, 1985-88).

McGraw, J.T., Angel, J.R.P., and Sargent, T.A., "A CCD Transit-telescope Survey for Galactic and Extragalactic Variability and Polarization," SPIE Proc. Vol. 264, p. 20, 1980.

McGraw, J.T., Stockman, H.S., Angel, J.R.P., Epps, H., and Williams, J.T., "The CCD/transit instrument (CTI) deep photometric and polarimetric survey - a progress report," SPIE Proc. Vol. 331, p. 137, 1983.

McGraw, J.T., Cawson, M.G.M., Keane, M.J., "Operation of the CCD/Transit Instrument (CTI)," SPIE Proc. Vol. 627, p. 60, 1986.

McGraw, J.T., Hess, T.R., Green, E.M., Bridges, C.T., Benedict, G.F., "Photometric and Positional Calibration of the CCD/Transit Instrument (CTI) Strip of the Sky," Bulletin of the American Astronomical Society Vol. 21, No. 3, p. 1021, 1989.

McGraw, J.T., "A Strip Search of the Universe," Variable Stars and Galaxies, ASP Conference Series, Vol. 30, p. 77 (San Francisco: Astronomical Society of the Pacific, 1992).

McGraw, J.T., Wetterer, C.J., Hess, T.R., Green, E.M., "Photometric Standard Stars in the CCD/Transit Instrument (CTI) Survey," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 899, 1994.

Paul, M., "Corrective Systems for Astronomical Reflectors," Rev. d'Optique Vol. 14, p. 169, 1935.

Sulentic, J.W. and Tifft, W.G., <u>The Revised New General Catalogue of Nonstellar Astronomical Objects</u>, (Tucson: The University of Arizona Press, 1973).

Veron-Cetty, M.P., and Veron, P., "A Catalogue of Quasars and Active Galactic Nuclei, 4th edition," E.S.O. Sci. Rep. 7, 1989.

Wetterer, C.J., McGraw, J.T., Hess, T.R., Grashuis, R., "Variable Stars in the CCD/Transit Instrument (CTI) Survey," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 899, 1994.

Wetterer, C.J., <u>The CCD/Transit Instrument Atlas and Database Guide</u>, Supplement to PhD Dissertation, (Department of Physics and Astronomy, University of New Mexico, 1995).

Zwicky, F., Herzog, E., Wild, P., Karpowicz, M., Kowal, C.T., The Catalogue of Galaxies and Clusters of Galaxies, (California Institute of Technology, 1961-68).

, <u>The National Geographic Society - Palomar Observatory Sky Survey</u>, (California Institute of Technology, 1954).

, <u>Smithsonian Astrophysical Observatory Star</u> Catalog, (Washington, Smithsonian Institution, 1966-1990).

Chapter 3

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "A Relational Database Approach to Astronomical Research," SPIE Proc. Vol. 627, p. 70, 1986.

Cawson, M.G.M., McGraw, J.T., Keane, M.J., "The CCD/Transit Instrument (CTI) Data-Analysis System," SPIE Proc. Vol. 627, p. 79, 1986.

Dieckvoss, W., Kox, H., Gunther, A., and Brosterhus, E., AGK3 Star Catalog of Positions and Proper Motions North of -2.5 degree Declination (Hamburg-Bergedorf, 1975). Lasker, B.M., Sturch, C.R., McLean, B.J., Russell, J.L., Jenkner, H., Shara, M.M., "The Guide Star Catalog I. Astronomical Foundations and Image Processing," Astronomical Journal 99(6), p. 2019, 1990.

McGraw, J.T., Hess, T.R., Green, E.M., Bridges, C.T., Benedict, G.F., "Photometric and Positional Calibration of the CCD/Transit Instrument (CTI) Strip of the Sky," Bulletin of the American Astronomical Society Vol. 21, No. 3, p. 1021, 1989.

McGraw, J.T., "A Strip Search of the Universe," Variable Stars and Galaxies, ASP Conference Series, Vol. 30, p. 77 (San Francisco: Astronomical Society of the Pacific, 1992).

Wetterer, C.J., <u>The CCD/Transit Instrument Atlas and Database Guide</u>, Supplement to PhD Dissertation, (Department of Physics and Astronomy, University of New Mexico, 1995).

Chapter 4

Allen, R.H., <u>Star Names: Their Lore and Meaning</u> (New York: Dover Publications, 1963).

Bevington, P.R., <u>Data Reduction and Error Analysis for the Physical Sciences</u> (New York: McGraw-Hill Book Company, 1969).

Campbell, L. and Jacchia, L., <u>The Story of Variable Stars</u> (Philidelphia: The Blakiston Company, 1941).

Cox, J.P., <u>Theory of Stellar Pulsation</u> (Princeton: Princeton University Press, 1980).

Hawkins, M.R.S., "A Study of the Galactic halo from a complete sample of RR Lyrae variables to B = 21," Monthly Notices for the Royal Astronomical Society 206, p.433, 1984.

Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., and Shugarov, S.Y., General Catalogue of Variable Stars, 4th edition (Moscow: Nauka Publishing House, 1985-88).

Petit, M., <u>Variable Stars</u> (English translation, New York: John Wiley & Sons Ltd., 1987).

Saha, A. and Hoessel, J.G., "RR Lyrae stars in Local Group galaxies I: NGC 185," Astronomical Journal 99 (1), p. 97, 1990.

Stobie, R.S., Bishop, I.S., King, D.L., "Variable Stars in the South Galactic Cap," Monthly Notices of the Royal Astronomical Society 222, p. 473, 1986.

Chapter 5

Barnes III, T.G., Hawley, S.L., "On Absolute Magnitues of RR Lyrae Stars," Astrophysical Journal 307, p. L9, 1986.

Beckert, D.C. and Newberry M.V., "The Design and Testing of Filter-Detector Systems using Synthetic Photometry," Publications of the Astronomical Society of the Pacific 101, p. 849, 1989.

Burstein, D., and Heiles, C., "Reddenings Derived form HI and Galaxy Counts: Accuracy and Maps," Astronomical Journal 87 (8), p. 1165, 1982.

Carney, B.W., Storm, J., Jones, R.V., "The Baade-Wesselink Method and the Distances to RR Lyrae Stars. VIII. Comparisons with Other Techniques and Implications for Globular Cluster Distances and Ages," Astrophysical Journal 386, p. 663, 1992.

Cox, J.P., <u>Theory of Stellar Pulsation</u> (Princeton: Princeton University Press, 1980).

Hawley, S.L., Jeffreys, W.H., Barnes III, T.G., "Absolute Magnitudes and Kinematic Properties of RR Lyrae Stars," Astrophysical Journal 302, p. 626, 1986.

Kholopov, P.N., Samus, N.N., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Kireeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., and Shugarov, S.Y., General Catalogue of Variable Stars, 4th edition (Moscow: Nauka Publishing House, 1985-88).

Kukarkin, B.V., Kholopov, P.N., Artiukhina, N.M., Fedorovich, V.P., Frolov, M.S., Goranskij, V.P., Gorynya, N.A., Karitskaya, E.A., Kirreeva, N.N., Kukarkina, N.P., Kurochkin, N.E., Medvedeva, G.I., Perova, N.B., Ponomareva, G.A., Samus, N.N., and Shugarov, S.Y., New Catalogue of Suspected Variable Stars (Moscow: Nauka Publishing Office, 1982).

Lafler, J., and Kinman, T.D., "An RR Lyrae Star Survey with the Lick 20-inch Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer," Astrophysical Journal Supplement 11 p. 216, 1965.

Laubscher, B., Gregory, S., Bauer, T., Zeilik, M., Burns, J., "A CCD Camera System at Capilla Peak Observatory, New Mexico," Publications of the Astronomical Society of the Pacific 100, p. 131, 1988.

Layden, A.C., Hanson, R.B., Hawley, S.L., "Absolute Magnitudes and Kinematics of RR Lyrae Stars via Statistical Parallax," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 911, 1994.

Lee, Y-W, "Evidence for an Old Galactic Bulge from RR Lyrae Stars in Baade's Window: Implications for the Formation of the Galaxy and the Age of the Universe," Astronomical Journal 104 (5), p. 1780, 1992.

Mihalas, D. and Binney, J., <u>Galactic Astronomy: Structure and Kinematics</u>, second edition (New York: W.H. Freeman and Company, 1981).

Nemec, J.M., Linnell Nemec, A.F., Lutz, T.E., "Period-Luminosity-Metallicity Relations, Pulsation Modes, Absolute Magnitudes, and Distances for Population II Variable Stars," Astronomical Journal 108, p. 222, 1994.

Newberry, M.V., "Signal-to-Noise Considerations for Sky-Subtracted CCD Data," Publications of the Astronomical Society of the Pacific 103, p. 122, 1991.

Saha, A. and Hoessel, J.G., "RR Lyrae stars in Local Group galaxies I: NGC 185," Astronomical Journal 99 (1), p. 97, 1990.

Sandage, A., "Evidence for a Period-Luminosity-Amplitude Relation for RR Lyrae Stars," Astrophysical Journal 244, p. L23, 1981.

Sandage, A., Katem, B., Sandage, M., "The Oosterhoff Period Groups and the Age of Globular Clusters. I. Photometry of Cluster Variables in M15," Astrophysical Jouranl Supplement 46, p. L41, 1981.

Sandage, A., "The Oosterhoff Period Groups and the Age of Globular Clusters. II. Properties of RR Lyrae Stars in Six Clusters: The P-L-A Realation," Astrophysical Jouranl 248, p. 161, 1981.

Sandage, A., "The Oosterhoff Period Groups and the Age of Globular Clusters. III. The Age of the Globular Cluster System," Astrophysical Journal 252, p. 553, 1982.

Sandage, A., Katem, B., Sandage, M., "The Oosterhoff Period Groups and the Age of Globular Clusters. IV. Field RR Lyrae Stars: Age of the Galactic Disk," Astrophysical Jouranl Supplement 252, p. 574, 1982.

Stellingwerf, R.F., "Period Determination using Phase Dispersion Minimization," Astrophysical Journal 224, p. 953, 1978.

Szeidl, B. "Multiple Periodic Variable Stars," IAU Colloquium No. 29, edited by W.S. Fitch (Reidel, Dordrecht), p. 133, 1976.

Tsesevich, V.P. "RR Lyrae Stars," in <u>Pulsating Stars</u> (edited

by B.V. Kukarkin), English translation (New York: Halsted Press, 1975).

Tyson, J.A., "The Shift-and-Stare Technique and a Large Area CCD Mosaic," CCDs in Astronomy, ASP Conference series, Vol. 8, p. 1, (San Francisco: Astronomical Society of the Pacific, 1990).

, The Astronomical Almanac for the year 1993 (Washington D.C.: United States Government Printing, 1992).

Chapter 6

Blanco, B.M., "RR Lyrae Variables in Baade's Window," Astronomical Journal 89, p. 1836, 1984.

Blanco, B.M., "RR Lyare Variables in a Galactic Bulge Window," Astronomical Journal 103, p. 1872, 1992.

Hartwick, F.D.A., Barlow, D.J., Hesser, J.E., "Variable Stars in the Bulge of the Galaxy in a Field Around NGC 6304," Astronomical Journal 86, p. 1044, 1981.

Hawkins, M.R.S., "A Study of the Galactic halo from a complete sample of RR Lyrae variables to B=21," Monthly Notices for the Royal Astronomical Society 206, p.433, 1984.

Kinman, T.D., "An RR Lyrae Star Survey with the Lick 20-inch Astrograph I. Methods of Observation and Reduction," Astrophysical Journal Supplement Series 11, p. 199, 1965.

Kinman, T.D., Wirtanen, C.A., and Janes, K.A. "An RR Lyrae Star Survey with the Lick 20-inch Astrograph III. A Survey of Part of the Variable Star Field MWF 361," Astrophysical Journal Supplement Series 11, p. 223, 1965.

Kinman, T.D., Wirtanen, C.A., and Janes, K.A. "An RR Lyrae Star Survey with the Lick 20-inch Astrograph IV. A Survey of Three Fields Near the North Galactic Pole," Astrophysical Journal Supplement Series 13, p. 379, 1966.

Kinman, T.D., Mahaffey, C.T., and Wirtanen, C.A. "An RR Lyrae Star Survey with the Lick 20-inch Astrograph V. A Survey of Three Fields at Intermediate Latitudes Towards the Galactic Anti-Center," Astronomcal Journal 87, p. 314, 1982.

Kinman, T.D., Wong-Swanson, B., Wenz, M., Harlan, E.A., "An RR Lyrae Star Survey with the Lick Astrograph VI. New Photometric Observations and Ephemerides for the Variables in the Field RR I (MWF 361A)," Astronomical Journal 89, p. 1200, 1984.

Lafler, J., and Kinman, T.D., "An RR Lyrae Star Survey with

the Lick 20-inch Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer," Astrophysical Journal Supplement Series 11, p. 216, 1965.

Layden, A.C., Hanson, R.B., Hawley, S.L., "Absolute Magnitudes and Kinematics of RR Lyrae Stars via Statistical Parallax," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 911, 1994.

Merrifield, M.R., "The Rotation Curve of the Milky Way to $2.5R_0$ from the Thickness of the HI Layer," Astronomical Journal 103, p. 1552, 1992.

Oort, J.H., and Plaut, L., "The Distance to the Galactic Centre Derived form RR Lyrae Variables, the Distribution of these Variables in the Galaxy's Inner Region and Halo, and a Redicussion of the Galactic Rotation Constants," Astronomy and Astrophysics 41, p. 71, 1975.

Plaut, L., "Variable Stars in a Field Centered at $l = 0^{\circ}$, $b = +29^{\circ}$ (Field 1 of the Palomar-Groningen Variable-Star Survey)," Bulletin of the Astronomical Institute of the Netherlands Supplement 1, p. 105, 1966.

Plaut, L., "Variable Stars in a Field Centered at $l=4^{\circ}$, $b=+12^{\circ}$ (Field 2 of the Palomar-Groningen Variable-Star Survey) Part 1: Introduction and RR Lyrae-Type Variables," Bulletin of the Astronomical Institute of the Netherlands Supplement 2, p. 293, 1968.

Plaut, L., "Variable Stars in a Field Centered at $l=4^{\circ}$, $b=+12^{\circ}$ (Field 2 of the Palomar-Groningen Variable-Star Survey)," Bulletin of the Astronomical Institute of the Netherlands Supplement 3, p. 1, 1968.

Plaut, L., "Variable Stars in a Field Centered at $l=0^\circ$, $b=-10^\circ$ (Field 3 of the Palomar-Groningen Variable-Star Survey $\alpha_{1950}=18^h24^m04^s$, $\delta_{1950}=-33^\circ$ 58.6')," Astronomy and Astrophysics 8, p. 341, 1970.

Plaut, L., "Variable Stars in a Field Centered at $l=0^{\circ}$, $b=-10^{\circ}$ (Field 3 of the Palomar-Groningen Variable-Star Survey)," Astronomy and Astrophysics Supplement 4, p. 73, 1971.

Plaut, L., "Palomar-Groningen Variable Star Survey. VI. B and V Observations of Twenty RR Lryae Variables and Some Related Problems," Astronomy and Astrophysics Supplement 12, p. 351, 1973.

Preston, G.W., Shectman, S.A., and Beers, T.C., "Detection of a Galactic Color Gradient for Blue Horizontal-Branch Stars of the Halo Field and Implications for the Halo Age and Denisty Distrubutions," Astrophysical Journal 375, p. 121, 1991. Reid, M.J., in <u>The Center of the Galaxy</u>, IAU Symposium No. 136, (Kluwer, Dordrecht, 1989).

Saha, A., "A Search for Distant Halo RR Lyrae Stars," Astrophysical Journal 283, p. 580, 1984.

Saha, A., and Oke, J.B., "Spectroscopy and Spectrophotometry of Distant Halo RR Lyrae Stars," Astrophysical Journal 285, p. 688, 1984.

Saha, A., "RR Lyrae Stars and the Distant Galactic Halo: Distribution, Chemical Composition, Kinematics, and Dynamics," Astrophysical Journal 289, p. 310, 1985.

Stobie, R.S., Bishop, I.S., King, D.L., "Variable Stars in the South Galactic Cap," Monthly Notices of the Royal Astronomical Society 222, p. 473, 1986.

Suntzeff, N.B., Kinman, T.D., Kraft, R.P., "Metal Abundances of RR Lyrae Variables in Selected Galactic Star Fields. V. The Lick Astrographic Fields at Intermediate Galactic Latitudes," Astrophysical Journal 367, p. 528, 1991.

van den Bergh, S., "UBV Photometry in the Nuclear Bulge of the Galaxy," Astronomical Journal 76, p. 1082, 1971.

Zinn, R., "The Globular Cluster System of the Galaxy. IV. The Halo and Disk Subsystems," Astrophysical Journal 293, p. 424, 1985.

Chapter 7

Armandroff, T.E., DaCosta, G.S., "The Radial Velocity, Velocity Dispersion, and Mass-to-Light Ratio of the Sculptor Dwarf Galaxy," Astronomical Journal 92, p. 777, 1986.

Benedict, G.F., and Shelus, P.J., "Applications of Automated Invenotry Techniques to Astrometry," Proceedings of I.A.U. Colloquium No. 48 on Modern Astronomy (Institute of Astronomy, Vienna, 1978).

Benedict, G.F., McGraw, J.T., Hess, T.R., Cawson, M.G.M., Keane, M.J., "Relative Astrometry with the Steward Observatory CCD/Transit Insturment," Astronomical Journal 101, p. 279, 1991.

Frenk, C.S., White, S.D.M., "The kinematics and dynamics of the Galactic globular cluster system," Monthly Notices of the Royal Astronomical Society 193, p. 295, 1980.

Harris, W.E., "Spatial structure of the globular cluster system and the distance to the Galactic center," Astronomical Journal 81, p. 1095, 1976.

Hartwick, F.D.A., Sargent, W.L.W., "Radial Velocities for Outlying Satellites and their Implications for the Mass of the Galaxy," Astrophysical Journal 221, p. 512, 1978.

Hawkins, M.R.S., "Direct evidence for a massive Galactic halo," Nature 303, p. 406, 1983.

Hawkins, M.R.S., "A Study of the Galactic halo from a complete sample of RR Lyrae variables to B=21," Monthly Notices for the Royal Astronomical Society 206, p.433, 1984.

Hesser, J.E., Shawl, S.J., Meyer, J.E., "Systematic Reinvestigation of the Radial Velocities of the Galactic Globular Clusters: Image-Tube Results," Publications of the Astronomical Society of the Pacific 98, p.403, 1986.

Jeffreys, W.H., Fitzpatrick, M.J., McArthur, B.E., Gaussfit - A System for Least Squares and Robust Estimation: User's Manual (Department of Astronomy, University of Texas, Austin, 1989).

Kulessa, A.S., Lynden-Bell, D., "The mass of the Milky Way Galaxy," Monthly Notices for the Royal Astronomical Society 255, p. 105, 1992.

Layden, A.C., "The Metallicities and Kinematics of RR Lyrae Variables. I. New Observations of Local Stars," Astronomical Journal 108, p. 1016, 1994.

Little, B., Tremaine, S., "Distant Satellites as Probes of our Galaxy's Mass Distribution," Astrophysical Journal 320, p. 493, 1987.

Liu, T., and Janes, K.A., "The Luminosity Scale of RR Lyrae Stars with the Baade-Wesselink Method. I. Photometry and Radial Velocities," Astrophysical Journal Supplement Series 69, p. 593, 1989.

Lynden-Bell, D., Cannon, R.D., Godwin, P.J., "Slippery evidence on the Galaxy's invisible heavy halo," Monthly Notices of the Royal Astronomical Society 204, p. 87P, 1983.

Merrifield, M.R., "The Rotation Curve of the Milky Way to $2.5R_0$ from the Thickness of the HI Layer," Astronomical Journal 103, p. 1552, 1992.

Mihalas, D. and Binney, J., <u>Galactic Astronomy: Structure and Kinematics</u>, second edition (New York: W.H. Freeman and Company, 1981).

Oke, J.B., Giver, L.P., and Searle, L., "An Analysis of the Absolute Energy Distribution in the Spectrum of SU Draconis," Astrophysical Journal 136, p. 393, 1962.

Oke, J.B., "A Spectrophotometric Study of X Arietis," Astrophysical Journal 145, p. 468, 1966.

Olszewski, E.W., Peterson, R.C., Aaronson, M., "High-Precision Radial Velocities for Faint Giants: Radial Velocities of Extreme Halo Systems and the Mass of the Galaxy," Astrophysical Journal 302, p. L45, 1986.

Peterson, R.C., "Radial Velocities of Remote Globular Clusters: Stalking the Missing Mass," Astrophysical Journal 297, p. 309, 1985.

Peterson, R.C., Latham, D.W., "The Radial Velocity and Velocity Dispersion of the Remote Globular Cluster Palomar 15: Constraints on the Mass of the Galaxy," Astrophysical Journal 336, p. 178, 1989.

Saha, A., and Oke, J.B., "Spectroscopy and Spectrophotometry of Distant Halo RR Lyrae Stars," Astrophysical Journal 285, p. 688, 1984.

Saha, A., "RR Lyrae Stars and the Distant Galactic Halo: Distribution, Chemical Composition, Kinematics, and Dynamics," Astrophysical Journal 289, p. 310, 1985.

Webbink, R.F., "A Catalog of Radial Velocities in Galactic Globular Clusters," Astrophysical Journal Supplement 45, p. 259, 1981.

Zaritsky, D., Olszewski, E.W., Schommer, R.A., Peterson, R.C., Aaronson, M., "Velocities of Stars in Remote Galactic Satellites and the Mass of the Galaxy," Astrophysical Journal 345, p. 769, 1989.

References (secondary)

Chapter 2

Baker, J.G., "On Improving the Effectiveness of Large Telescopes," IEEE Trans. on Aerospace and Electronic Systems Vol. AES-5, No. 2, p. 261, 1969.

Benedict, G.F., McGraw, J.T., Hess, T.R., Cawson, M.G.M., Keane, M.J., "Relative Astrometry with the Steward Observatory CCD/Transit Instrument," Bulletin of the American Astonomical Society Vol. 21, No. 4, p. 1109, 1989.

Benedict, G.F., McGraw, J.T., Hess, T.R., Cawson, M.G.M., Keane, M.J., "Relative Astrometry with the Steward Observatory CCD/Transit Instrument," Astronomical Journal 101, p. 279, 1991.

- Bond, H.E., Kron, R.G. and Spinrad, H., "GQ Comae and V396 Herculis: Two Low-Redshift Optically Variable QSOs," Astrophysical Journal 213 (1), p. 1, 1977.
- Borra, E.F., Content, R., Drinkwater, M.J., Szapiel, S., "A Deffraction Limited f/2 1.5 meter Diameter Liquid Mirror," Astrophysical Journal Letters 346, p. L41, 1989.
- Borra, E.F., Content, R., Girard, L., Szapiel, S., Tremblay, L.M., "Liquid Mirrors: Optical Shop Tests and Contributions to the Technology," Astrophysical Journal 393, p. 829, 1992.
- Content, R., Borra, E.F., Drinkwater, M.J., Poirier, S., Poisson, E., Beauchemin, M., Boily, E., Gauthier, A., Tremblay, L.M., "A Search for Optical Flares and Flashes with a Liquid Mirror Telescope," Astronomical Journal 97 (3), p. 917, 1989.
- Erleksova, G.E., "EQ Vulpeculae," Переменные звездыі, Прцложенце 2 №10, р. 248, 1975.
- Hoffmeister, C., "Untersuchung der Schtaube des Positions-Fadenmikrometers Heyde 3013," Mitteilungen der Sternwarte zu Sonneberg Nr. 6, 1924.
- Hoffmeister, C., "Relative Koordinaten, Örter und Karten neuer Veränderlicher," Mitteilungen der Sternwarte zu Sonneberg Nr. 17, 1930.
- Hoffmeister, C., "Relative Koordinaten, Örter und Karten neuer Veränderlicher," Mitteilungen der Sternwarte zu Sonneberg Nr. 22, 1933.
- Hoffmeister, C., "89 neue veränderliche Sterne," Astronomische Nachrichten 284, p. 275, 1959.
- Hoffmeister, C., "Mitteilungen über neuentdeckte Veränderliche Sterne (S9727-S10152)," Astronomische Nachrichten 290 H1-2, p. 43, 1967.
- Kent, S.M., Ramella, M., Nonino, M., "A Small Drift Scan Survey for Galaxies in the Northern Sky," Astronomical Journal 105 (2), p. 393, 1993.
- Kent, S.M., Stoughton, C., Newberg, H., Loveday, J., Petravick, D., Gurbani, V., Berman, E., Sergey, G., Lupton, R., Sloan Digital Sky Survey, Report #FNAL/C-94/084, (Batavia, Ill.: Fermi National Accelerator Laboratory, 1994).
- Kron, R., "Digital Optical Sky Surveys," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 915, 1994.
- Kurochkin, N.E., "New Variable Stars in the Region of M56," Переменные звезды 17 №128, р. 186, 1970.

Kinman, T., Wirtanen, C.A. and Janes, K.A., "An RR Lyrae Star Survey with the Lick 20 inch Astrograph. IV. A Survey of Three Fields Near the North Galactic Pole," Astrophysical Journal Supplement 119, p. 379, 1966.

Kirkpatrick, J.D., McGraw, J.T., "The CCD/Transit Instrument
(CTI) Blue Object Survey," IAU Colloquium #114 (White Dwarfs),
p. 167, 1988.

Kirkpatrick, J.D., Henry, T.J., McCarthy, D.W., McGraw, J.T., "Constraining the Faint End of the Stellar Luminosity Function Through a Systematic Search for M Dwarfs," Bulletin of the American Astronomical Society, Vol. 22, No. 4, p. 1204, 1990.

Kirkpatrick, J.D., <u>Spectroscopic and Photometric Studies of Main Sequence M Stars and a Search for Late Type Dwarfs in the Solar Vicinity</u>, Phd dissertation, (Department of Astronomy, The University of Arizona, 1992).

Kirkpatrick, J.D., "The Luminosity Function of Field M Dwarfs: Evidence for a Population of Substellar Objects," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 944, 1994.

Kirkpatrick, J.D., "The Luminosity Function at the End of the Main Sequence: Results of a Deep, Large-Area, CCD Survey for Cool Dwarfs," Astrophysical Journal Supplement Series 94, p. 749, 1994.

McGraw, J.T., Cawson, M.G.M., Kirkpatrick, J.D., Haemmerle, V., "A Strip Search for Quasars: The CCD/Transit Instrument (CTI) Quasar Survey," Proceedings of a Workshop on Optical Surveys for Quasars, p. 163, 1988.

McGraw, J.T., "The Lunar Transit Telescope (LTT): An Early Lunar Based Science and Engineering Mission," Engineering, Construction and Operations in Space III, p. 1865, 1992.

McGraw, J.T. (editor), <u>Proceedings of the Lunar Ultraviolet</u>
<u>Telescope Experiment (LUTE) Science Workshop</u>, (Institute for Astrophysics, The University of New Mexico, 1993).

Meinunger, L., "Über Veränderliche in einigen T-Assoziationen," Mitteilungen über Veränderliche Sterne 3 H5, p. 137, 1966.

Miller, W.J. and Wachmann, A.A., "Six New Variable Stars in the Cygnus Cloud, VV 125-130," Ricerche Astronomiche 6 №22, p. 497, 1964.

Miller, W.J., "Eleven Variable Stars in the Cygnus Cloud, VV 151-161," Ricerche Astronomiche 7 №4, p. 197, 1965.

Miller, W.J., "Ten New Variable Stars in the Cygnus Cloud, VV

191-200, "Ricerche Astronomiche 7 №10, p. , 1967.

Pinto, G. and Romano, G., "Researches with the Schmidt Telescope VI - The Variable Stars around Gamma Comae," Memorie della Società Astronomica Italiana 44 M1, p. 53, 1973.

Rügemer, H., "Neue Veränderliche Sterne," Astronomische Nachrichten 248, p. 409, 1933.

Shaganian, B.L. and Shaganian, V.B., "On Three Longperiod Variable Stars in the Region of M56," Переменные звезды, Приложение 3 №18, р. 748, 1979.

Stoughton, C., Annis, J., Kent, S., Kron, R., Loveday, J., McKay, T., Newberg, H., "First Data from the Fermilab Drift Scan Camera," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 897, 1994.

Vogt, N. and Bateson, F.M., "An Atlas of Southern and Equitorial Dwarf Novae," Astronomy and Astrophysics Supplement 48 (3), p. 383, 1982.

Wachmann, A.A., "Die Veränderlichen im Südteil der Cygnuswolke - Teil II," Astronomische Abhandlungen der Hamburger Sternwarte, Band VI Nr. 2, 1963.

Wachmann, A.A., "Die Veränderlichen im Südteil der Cygnuswolke - Teil III," Astronomische Abhandlungen der Hamburger Sternwarte, Band VI Nr. 3, 1964.

, Mitteilungen über Veränderliche Sterne №299, 1957.

Chapter 4

Jacoby, G.H., Branch, D., Ciardullo, R., Davies, R.L., Harris, W.E., Pierce, M.J., Pritchet, C.J., Tonry, J.L., Welch, D.L., "A Critical Review of Selected Techniques for Measuring Extragalactic Distances," Publications of the Astronomical Society of the Pacific 104, p. 599, 1992.

Madore, B.F., Freedman, W.L., "The Cepheid Distance Scale," Publications of the Astronomical Society of the Pacific 103, p. 933, 1991.

Chapter 5

Beckert, D.C., Cox, D., Gordon, S., Jaderlund, E., Mann, E., Zeilik, M., "1989 BVR photometry of CG Cygni", IBVS #3398, 1989.

Beckert, D.C. and Newberry M.V., "The Design and Testing of Filter-Detector Systems using Synthetic Photometry,"

Publications of the Astronomical Society of the Pacific 101, p. 849, 1989.

Beckert, D.C., Gordon, S., Jaderlund, E., Mann, E., Zeilik, M., "CG Cygni redux: more 1989 BVR data", IBVS #3556, 1991.

Bryja, C., Lawrence, G., "Photometry of Suspected Low Mass Hyades Cluster Members," Bulletin of the American Astronomical Society, Vol. 23, No. 2, p. 908, 1991.

Bryja, C., Jones, T.J., Humphreys, R.M., Lawrence, G., Pennington, R.L., Zumach, W., "Candidate Brown Dwarfs in the Hyades," Astrophysical Journal 388, p. L23, 1992.

Deeg, H-J., Brinks, E., Duric, N., Klein, U., Skillman, E., "New 325 MHz Observations of HII Galaxies: The Mechanisms That Shape the Unusual Radio Spectra," Astrophysical Journal 410, p. 626, 1993.

Gordon, S., Hall, S., Ledlow, M., Mann, E., Zeilik, M., "1989 BVR light curves of RT And," IBVS #3469, 1990.

Gisler, G., Laubscher, B., Chabot, N., Boudreaux, K., Grashuis, R., "Multi-filter Optical Observations of SL9 Impact Spots on Jupiter," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1374, 1994.

Gregory, S.A., Deeg, H.-J., Morrison, G., Crane, M., Grashuis, R., Lacey, C., "Galaxian Nuclear Spectral Types as a Function of Environment," Bulletin of the American Astronomical Society Vol. 22 No. 2, p. 881, 1990.

Hayes, J.J.E., Sadun, A.C., and R. Grashuis, "Narrow-band images of Arp 213," Bulletin of the American Astronomical Society Vol. 25 No. 4, p. 1248, 1993.

Kidger, M., et al., "Multiband Monitoring of OJ287 in 1993/94," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1506, 1994.

Laubscher, B., Gregory, S., Bauer, T., Zeilik, M., Burns, J., "A CCD Camera System at Capilla Peak Observatory, New Mexico," Publications of the Astronomical Society of the Pacific 100, p. 131, 1988.

Laubscher, B., Gregory, S., "Galaxy alignments in the Perseus supercluster," Bulletin of the American Astronomical Society Vol. 25, No. 2, p. 913, 1993.

Laubscher, B., "Problems with Galaxy Position Angles," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 963, 1994.

Odewahn, S.C., "Properties of the Magellanic-type spirals. I -

Surface photometry of NGC 4618 and NGC 4625," Astronomical Journal 101, p. 829, 1991.

Odewahn, S.C., Bryja, C., Humphreys ,R.M., "Improved CCD Standard Fields," Publications of the Astronomical Society of the Pacific 104, p. 553, 1992.

Sadun, A., "Optical Variability of the Blazar OJ 287," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1467, 1994.

Schmidt, B.P., Kirshner, R.P., Eastman, R.G., Grashuis, R., Dell'Antonio, I., Caldwell, N., Foltz, C., Huchra, J.P., Milone, A.A.E., "The Unusual Supernoa SN 1993J in M81," Nature 364, p. 600, 1993.

Schmidt, B.P., Kirshner, R.P., Eastman, R.G., Phillips, M.M., Suntzeff, N.B., Hamuy, M., Aviles, R., Filippenko, A.V., Ho, L., Matheson, T., Grashuis, R., Maza, J., Kirkpatrick, J.D., Kuijken, K. Zucker, D., Bolte, M., Tyson, N., "The Expanding Photosphere Method Applied to SN 1992am at cz = 14600 km s⁻¹," Astronomical Journal 107, p. 1444, 1994.

Summers, D.L., Zeilik, M., "Starspot activity on the RS CVn candidate 1E 1919+0427," Bulletin of the American Astronomical Society, Vol. 22, No. 4, p. 1295, 1990.

Summers, D.L., Zeilik, M., Jaderlund, E., Hoeppe, G., Collins, A., "1991 V-band photometry of an eclipsing binary: 1E 1919+0427," IBVS #3708, 1992.

Takalo, L.O., Pursimo, T., Sillanpää, A., Lehto, H., Nilsson, K., Kidger, M., deDiego, J.A., Gonzales-Perez, J.N., Rodriguez-Espinoza, J-M., Mahoney, T., Boltwood, P., Dultzin-Hacyan, D., Benitez, E., Turner, G.W., Robertson, J.W., Honeycutt, R.K., Efimov, T.S., Shakhovskoy, N., Charles, P.A., Schramm, K.J., Borgeest, U., Linde, J.V., Sadun, A., Grashuis, R., "The Light Curve of Blazar 3C 66A," Bulletin of the American Astronomical Society Vol. 26, No. 4, p. 1507, 1994.

Taylor, C., Brinks, E., Grashuis, R., Skillman, E., "An Optical and Radio Atlas of Companions to Dwarf Galaxies," to be published in Astrophysical Journal Supplement Series, 1995.

Wetterer, C.J., McGraw, J.T., Hess, T.R., Grashuis, R., "Variable Stars in the CCD/Transit Instrument (CTI) Survey," Bulletin of the American Astronomical Society Vol. 26, No. 2, p. 899, 1994.

Zeilik, M., DeBlasi, D., Rhodes, M., Budding, E., "A Half-Century of Starspot Activity on SV Camelopardalis," Bulletin of the American Astronomical Society Vol. 19., No. 4, p. 1086, 1987.

- Zeilik, M., Beckert, D., DeBlasi, C., Ledlow, M., Rhodes, M., Williams, T., "1987 BVRI Photometry of RT And," IBVS #3173, 1988.
- Zeilik, M., Cox, D., DeBlasi, D., Ledlow, M., Rhodes, M., Williams, T., "1988 BVRI Photometry of XY UMa," IBVS #3200, 1988.
- Zeilik, M., DeBlasi, D., Rhodes, M., Budding, E., "A Half-Century of Starspot Activity on SV Camelopardalis," The Astrophysical Journal 332, p. 293, 1988.
- Zeilik, M., Beckert, D., Cox, D., Dolby, J., Ledlow, M., Newberry, M., Rhodes, M., "1989 V-band light curve of RT And," IBVS #3301, 1989.
- Zeilik, M., Cox, D.A., DeBlasi, C., Rhodes, M., Budding, E., "Long-Term Starspot Activity of Short-Period RS CVn Stars, Part II, RT Andromedae," The Astrophysical Journal 345, p.991, 1989.
- Zeilik, M., DeBlasi, C.B., Gordon, S., Ledlow, M., "1990 BVR photometry of XY UMa," IBVS #3535, 1990.
- Zeilik, M., Gordon, S., Cox, D., Beckert, D., "Long-term starspot activity of short-period RS CVn stars: CG Cygni," Bulletin of the American Astronomical Society, Vol. 22, No. 2, p. 830, 1990.
- Zeilik, M., Ledlow, M., Rhodes, M., Arevardo, M.J., Budding, E., "Long-Term Starspot Activity of Short-Period RS CVn Stars, Part III, BH Virginis," The Astrophysical Journal 354, p.352, 1990.
- Zeilik, M., Cox, D.A., De Blasi, C., Rhodes, M., Budding, E., "Long-Term Starspot Activity of Short-Period RS CVn Stars, Part IV, WY Cancri," The Astrophysical Journal 363, p.467, 1990.
- Zeilik, M., Heckert, P., Ledlow, M., Summers, D.L., Jaderlund, E., Boudreau, K., M., "1991 BVR photometry of CG Cygni," IBVS #3663, 1991.
- Zeilik, M., Deeg, H.J., "Long-term starspot activity of short-period RS CVn stars: XY UMa," Bulletin of the American Astronomical Society, Vol. 23, No. 2, p. 880, 1991.
- Zeilik, M., Gordon, S., Jaderlund, E., Ledlow, M., Summers, D.L., Heckert, P.A., Budding, E., Banks, T.S., "Long-term Starspot Activity of Short-Period RS Canum Venaticorum Stars. V. CG Cygni," Astrophysical Journal 421, p. 303, 1994.