Classificação de Malwares

Ciência de Dados para Segurança

Introdução

- Smartphones s\u00e3o parte essencial da vida de grande parte da popula\u00e7\u00e3o
 - Acesso a internet
 - Comunicação entre pessoas
 - Movimentações bancárias
 - 0 ...

Malwares

- Abusar de vulnerabilidades de segurança
- Adquirir informações pessoais de seus usuários sem consentimento

Conjunto de Dados

Dataset Escolhido:

- CIC-AndMal2017
- Universidade de New Brunswick (UNB)
- Informações sobre Malwares coletadas de smartphones reais com Android

Classes:

- Adware
- Ransomware
- Scareware
- SMS Malware
- Benigna

Objetivo

• Aplicar o processo de Ciência de Dados:

Extração de Dados

Distribuição das Classes

Problema:

- Desbalanceamento entre classes
- 212.084 amostras da classe SMS Malware
- 902.583 amostras da classe Benigna

Solução:

- 4.000 amostras aleatórias de cada classe selecionadas
- Dataset final com 20.000 amostras

Divisão dos dados:

- Conjunto de Treinamento | 80% dos dados
- Conjunto de Testes | 20% dos dados

Distribuição das Classes

Histograma de Distribuição das Classes de Malwares

Modelos Baseados em Aprendizado de Máquina

Etapas de Pré-Processamento

- Transformação das características em valores numéricos:
 - Data → Timestamp (Pandas | Python)
 - IP → Inteiro (Socket Lib | Python)
 - Escala MinMax nas características não-booleanas

Seleção de Características:

- Correlações entre características
- 481 → 50
- Extra Trees (Extremely Randomized Trees Classifier)
- Conjunto de validação (4.000 amostras do Conjunto de Treinamento)

Resultado:

- Somente 2 características do CICFlowMeter permaneceram (Data e IP de Origem)
- As 48 restantes s\u00e3o compostas por permiss\u00f3es

Classificadores

Otimização dos Hiperparâmetros:

- Grid Search com Validação Cruzada → 5 pastas
- 4.000 amostras do Conjunto de Treinamento

Avaliação:

Validação Cruzada nos dados do Conjunto de Teste → 5 pastas

Métricas:

- Acurácia
- Precisão
- Recall
- F1-Score
- AUC
- Curvas ROC
- Matrizes de Confusão

Florestas Aleatórias

Pasta 4

				Classes		
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware
Precisão	1	0.9677	0.8421	0.9769	0.9864	0.974
	2	0.9747	0.8077	0.96	1.0	0.9932
	3	0.9548	0.7853	0.9231	0.986	0.979
	4	0.9551	0.7857	0.8942	0.986	0.9923
	5	0.9419	0.7944	0.9494	1.0	0.9796
Recall	1	0.9375	0.9474	1.0	0.8788	0.974
	2	0.9565	0.9735	1.0	0.8253	0.9545
	3	0.9193	0.9205	1.0	0.8494	0.9091
	4	0.9255	0.9408	1.0	0.8545	0.8431
	5	0.9068	0.9408	1.0	0.8485	0.9412

				Classes		
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware
F1-Score	1	0.9524	0.8916	0.9883	0.9295	0.974
	2	0.9655	0.8829	0.9796	0.9043	0.9735
	3	0.9367	0.8476	0.96	0.9126	0.9428
	4	0.9401	0.8563	0.9441	0.9156	0.9117
	5	0.9241	0.8614	0.9741	0.918	0.96
AUC	1	0.9884	0.988	0.9997	0.9978	0.999
	2	0.9882	0.9915	0.9999	0.9966	0.9982
	3	0.9788	0.9817	0.9969	0.9977	0.9973
	4	0.985	0.9861	0.9969	0.9984	0.9967
	5	0.9776	0.9798	0.9995	0.9984	0.9995

		Classes						
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware		
Acurácia	1			0.9475				
	2	0.9413						
	3		0.92					
	4	0.9137						
	5			0.9275				

Considerações:

- Incerteza do modelo:
 - Prevê Benigno quando Adware ou Scareware
 - Prevê Ransomware quando SMS Malware
 - Prevê Scareware ou SMS Malware quando Benigno
- Precisão da classe Benigna afetada pelos Falsos Positivos (78%)
- Recall acima de 82% → redução de Falsos Negativos
- Hiperparâmetros:
 - Poucas árvores e não tão profundas
 - Treinamento rápido (menos de 1 segundo)
 - Melhoria: aumentar os intervalos da *Grid Search*

KNN

Pasta 3

				Classes		
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware
Precisão	1	0.9938	1.0	1.0	1.0	0.9872
	2	0.9877	0.9869	1.0	1.0	1.0
	З	0.9876	0.9742	0.994	1.0	1.0
	4	1.0	0.9935	0.9941	1.0	0.9935
	5	1.0	1.0	0.9941	0.988	1.0
Recall	1	1.0	1.0	1.0	0.9818	1.0
	2	1.0	1.0	1.0	0.9759	1.0
	3	0.9876	1.0	0.9881	0.9819	1.0
	4	0.9938	1.0	1.0	0.9939	0.9935
	5	0.9938	1.0	1.0	1.0	0.9869

				Classes		
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware
F1-Score	1	0.9969	1.0	1.0	0.9908	0.9935
	2	0.9938	0.9934	1.0	0.9878	1.0
	3	0.9876	0.9869	0.991	0.9909	1.0
	4	0.9969	0.9967	0.9971	0.997	0.9935
	5	0.9969	1.0	0.9971	0.994	0.9934
AUC	1	1.0	1.0	1.0	0.9999	1.0
	2	1.0	1.0	1.0	0.9969	1.0
	3	0.9999	1.0	1.0	1.0	1.0
	4	1.0	1.0	0.9992	1.0	0.9967
	5	1.0	1.0	1.0	1.0	1.0

		Classes					
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware	
Acurácia	1			0.9962			
	2	0.995					
	3			0.9912			
	4	0.9962					
	5			0.9962			

Considerações:

- Pouca incerteza do modelo:
 - Prevê SMS Malware, Adware ou Benigno quando Scareware
 - Prevê Ransomware ou Scareware quando SMS Malware
- Curvas ROC próximas à curva ideal (AUC de 1,0)
- Recall próximo à 1 em todas as pastas → redução de Falsos Negativos
- Hiperparâmetros:
 - 5 vizinhos de mesmo peso com a distância sendo a Euclidiana
 - Bons vetores de características
 - Amostras da mesma classe próximas no espaço
 - Amostras de classes diferentes distantes
 - Intervalos de otimização escolhidos se encaixaram bem ao problema

Gradient Boosting

Pasta 3

				Classes		
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware
Precisão	1	1.0	1.0	1.0	1.0	1.0
	2	1.0	1.0	1.0	1.0	1.0
	3	1.0	1.0	1.0	1.0	0.9809
	4	1.0	1.0	1.0	1.0	1.0
	5	1.0	1.0	1.0	1.0	1.0
Recall	1	1.0	1.0	1.0	1.0	1.0
	2	1.0	1.0	1.0	1.0	1.0
	3	1.0	1.0	0.9821	1.0	1.0
	4	1.0	1.0	1.0	1.0	1.0
	5	1.0	1.0	1.0	1.0	1.0

				Classes		
Métrica	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware
F1-Score	1	1.0	1.0	1.0	1.0	1.0
	2	1.0	1.0	1.0	1.0	1.0
	З	1.0	1.0	0.991	1.0	0.9904
	4	1.0	1.0	1.0	1.0	1.0
	5	1.0	1.0	1.0	1.0	1.0
AUC	1	1.0	1.0	1.0	1.0	1.0
	2	1.0	1.0	1.0	1.0	1.0
	3	1.0	1.0	1.0	1.0	1.0
	4	1.0	1.0	1.0	1.0	1.0
	5	1.0	1.0	1.0	1.0	1.0

Métrica	E.U.	Classes						
	Fold	Adware	Benign	Ransomware	Scareware	SMS Malware		
Acurácia	1			1.0				
	2	1.0						
	3			0.9962				
	4	1.0						
	5			1.0				

Considerações:

- Pouca incerteza do modelo:
 - Confusão entre a classe SMS Malware com a Ransomware
- A confusão do modelo teve repercussões na Precisão, Recall e F1-Score
- Acurácia só diminuiu em uma das pastas (99,62%)
- Hiperparâmetros:
 - Melhores valores não muito distantes do padrão
 - Número baixo de estimadores e pouca profundidade
 - Treinamento rápido → GB foi eficiente para solucionar o problema
- Esperado:
 - Objetivo de conseguir resultados melhores do que o KNN → alcançado

Modelos Baseados em Aprendizado Profundo

Composta por camadas lineares.

 Este tipo de camada usa uma operação linear, ou seja, a saída de cada neurônio é formada em função de suas entradas.

Função de ativação ReLU.

```
Linear(130, 512)
    ReLU()
Linear(512, 1024)
    ReLU()
Linear(1024, 4096)
    ReLU()
Linear(4096, 4096)
    ReLU()
Linear(4096, 2048)
    ReLU()
Linear(2048, 1024)
    ReLU()
 Linear(1024, 5)
```


				Classes		
Métrica	Fold	0	1	2	3	4
Precisão	0	0.865460	0.895070	0.918310	0.969251	0.903346
	1	0.898246	0.918845	0.905830	0.974392	0.978523
	2	0.912633	0.911444	0.905896	0.978426	0.934579
	3	0.932611	0.871703	0.896635	0.974255	0.932026
	4	0.946996	0.923845	0.833162	0.973440	0.995208
Recall	0	0.979616	0.824214	0.898072	0.921220	0.918136
	1	0.993532	0.860825	0.985366	0.931457	0.895577
	2	0.982211	0.880263	0.944444	0.941392	0.888325
	3	0.987261	0.907615	0.937186	0.893168	0.876999
	4	0.979294	0.920398	0.996305	0.949482	0.787611

Métrica		Classes					
	Fold	0	1	2	3	4	
F1-Score	0	0.919010	0.858182	0.908078	0.944625	0.910681	
	1	0.943489	0.888889	0.943925	0.952441	0.935215	
	2	0.946144	0.895582	0.924769	0.959552	0.910865	
	3	0.959158	0.889297	0.916462	0.931951	0.903676	
	4	0.962874	0.922118	0.907459	0.961311	0.879323	

 A entrada foi interpretada como tensores de 130 valores e 1 canal.

 Operação MaxPool foi utilizada de maneira a ressaltar valores mais significativos.

 Aplica-se a operação Flatten para linearizar o resultado pelas camadas densas (lineares).

```
Conv1d(1, 64, kernel=3, stride=1)
             ReLU()
 Conv1d(64, 64, kernel=3, stride=1)
             ReLU()
  MaxPool1d(kernel=3, stride=1)
Conv1d(64, 256, kernel=3, stride=1)
             ReLU()
Conv1d(256, 256, kernel=3, stride=1)
             ReLU()
  MaxPool1d(kernel=3, stride=1)
            Flatten ()
       Linear(30208, 2048)
             ReLU()
        Linear(2048, 1024)
             ReLU()
          Linear(1024, 5)
```


				Classes		
Métrica	Fold	0	1	2	3	4
Precisão	0	0.987585	0.939086	0.896595	0.992136	0.914286
	1	0.971985	0.935301	0.867059	0.990515	0.957746
	2	0.888889	0.925982	0.868282	0.959410	0.961593
	З	0.982644	0.906840	0.866310	0.971686	0.949349
	4	0.920732	0.940026	0.912609	0.977749	0.880896
Recall	0	0.988701	0.964798	0.933071	0.948622 .0	0.893401
	1	0.987624	0.957027	0.981358	0.938383	0.848939
	2	0.991060	0.819519	0.980952	0.948905	0.837670
	3	0.965879	0.940098	0.981818	0.930949	0.836735
	4	0.990814	0.894541	0.889294	0.945570	0.910976

Métrica	Fold	Classes				
		0	1	2	3	4
F1-Score	0	0.919010	0.858182	0.908078	0.944625	0.910681
	1	0.943489	0.888889	0.943925	0.952441	0.935215
	2	0.946144	0.895582	0.924769	0.959552	0.910865
	3	0.959158	0.889297	0.916462	0.931951	0.903676
	4	0.962874	0.922118	0.907459	0.961311	0.879323

Considerações Finais

- A seleção de Características contribuiu para os bons resultados, reduzindo a quantidade de atributos de 481 para 50.
 - Treinamento dos modelos ocorreu mais rápido.
 - Considerando apenas as informações mais relevantes para a efetuar a classificação.

 Métodos baseados em Aprendizado de Máquina mostraram-se superiores na classificação dos malwares presentes no *Dataset*.

 Em futuros trabalhos, pretende-se estudar os efeitos de outros hiperparâmetros e arquiteturas de redes neurais.