Parabola

	Asse parallelo all'asse y	Asse parallelo all'asse x
Equazione	$y = ax^2 + bx + c$	$x = ay^2 + by + c$
Concavità	$\begin{cases} \text{verso l'alto} & \text{se } a > 0 \\ \text{verso il basso} & \text{se } a < 0 \end{cases}$	
Vertice	$V\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$	$V\left(-\frac{\Delta}{4a}; -\frac{b}{2a}\right)$
Asse	$x = -\frac{b}{2a}$	$y = -\frac{b}{2a}$
Fuoco	$F\left(-\frac{b}{2a}; \frac{1-\Delta}{4a}\right)$	$F\left(\frac{1-\Delta}{4a}; -\frac{b}{2a}\right)$
Direttrice	$y = \frac{-1 + \Delta}{4a}$	$x = \frac{-1 + \Delta}{4a}$
Sdoppiamento	$\frac{y+y_P}{2} = axx_P + b\frac{x+x_P}{2} + c$	$\frac{x + x_P}{2} = ayy_P + b\frac{y + y_P}{2} + c$

L'area del segmento parabolico compreso tra una retta r secante alla parabola e che la interseca nei punti A e B è i $\frac{2}{3}$ dell'area del rettangolo ABB'A', dove A' e B' sono le proiezioni dei punti A e B sulla retta r' parallela a r e tangente alla parabola.

Circonferenza

Equazione	$(x - x_C)^2 + (y - y_C)^2 = r^2$ $x^2 + y^2 + ax + by + c = 0$
Centro	$C\left(-\frac{a}{2};-\frac{b}{2}\right)$
Raggio	$r = \sqrt{\frac{a^2}{4} + \frac{b^2}{4} - c}$
Sdoppiamento	$xx_P + yy_P + a\frac{x + x_P}{2} + b\frac{y + y_P}{2} + c = 0$

Ellisse

	Fuochi paralleli all'asse $x (a > b)$	Fuochi paralleli all'asse $y (a < b)$
Equazione	$\frac{(x - x_C)^2}{a^2} + \frac{(y - y_C)^2}{b^2} = 1$ $Ax^2 + By^2 + Cx + Dy + E = 0$	
Centro	$C\left(x_{C},y_{C} ight)$	
Semiasse maggio- re	a	b
Semiasse minore	b	a
Semidistanza fo- cale	$c = \sqrt{a^2 - b^2}$	$c = \sqrt{b^2 - a^2}$
Eccentricità	$e = \frac{c}{a}$	$e = \frac{c}{b}$
Fuochi	$F\left(\pm c + x_C; y_C\right)$	$F\left(x_C; \pm c + y_C\right)$
Vertici	$A(\pm a + x_C; y_C)$ $B(x_C; \pm b + y_C)$	
Sdoppiamento	$Axx_P + Byy_P + C\frac{x + x_P}{2} + D\frac{y + y_P}{2} + E = 0$	

Iperbole

	Fuochi paralleli all'asse x	Fuochi paralleli all'asse y
Equazione	$\frac{(x - x_C)^2}{a^2} - \frac{(y - y_C)^2}{b^2} = 1$	$\frac{(x-x_C)^2}{a^2} - \frac{(y-y_C)^2}{b^2} = -1$
Equazione generica	$Ax^2 + By^2 + Cx + Dy + E = 0$	
Centro	$C\left(x_{C},y_{C} ight)$	
Semiasse maggio- re	a	b
Semiasse minore	b	a
Asintoti	$y = \pm \frac{b}{a}(x - x_C) + y_C$	
Semidistanza fo- cale	$c = \sqrt{a^2 + b^2}$	
Eccentricità	$e = \frac{c}{a}$	$e = \frac{c}{b}$
Fuochi	$F\left(\pm c + x_C; y_C\right)$	$F\left(x_C; \pm c + y_C\right)$
Vertici	$A(\pm a + x_C; y_C)$ $B(x_C; \pm b + y_C)$	
Sdoppiamento	$Axx_P + Byy_P + C\frac{x + x_P}{2} + D\frac{y + y_P}{2} + E = 0$	

Iperbole equilatera riferita ai propri asintoti e funzione omografica

	k > 0	k < 0
Equazione	$y = \frac{ax+b}{cx+d} \text{con}$	$a \ c \neq 0 \land ad - bc \neq 0$
Centro	$C\left(-\frac{d}{c};\frac{a}{c}\right)$	
Costante di proporzionalità	$k = \frac{bc - ad}{c^2}$	
Semiassi	$a = \sqrt{2 k }$	
Asintoti	$x = -\frac{d}{c} \qquad y = \frac{a}{c}$	
Semidistanza fo- cale	$c = 2\sqrt{ k }$	
Eccentricità	$e = \sqrt{2}$	
Fuochi	$F\left(\pm a + x_C; \pm a + y_C\right)$	$F\left(\pm a + x_C; \mp a + y_C\right)$
Vertici	$A\left(\pm\sqrt{ k } + x_C; \pm\sqrt{ k } + y_C\right)$	$A\left(\pm\sqrt{ k } + x_C; \mp\sqrt{ k } + y_C\right)$

Classificazione di coniche nella forma $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

Metodo 1: Eccentricità

DEF. Si dice conica il luogo dei punti P del piano tali che sia costante il rapporto e (eccentricità della curva) tra le distanze da un punto F detto fuoco e una retta d detta direttrice:

$$\frac{\overline{PF}}{d(P,d)} = e$$

L'eccentricità permette di classificare le coniche come segue:

• e > 1: iperbole (2 direttrici)

 $-e = \sqrt{2}$: iperbole equilatera

• e = 1: parabola

• 0 < e < 1: ellisse

• e = 0: circonferenza

Metodo 2: Termine rettangolare

Metodo 3: Matrice associata¹

Si costruisce la matrice

$$M = \begin{pmatrix} A & \frac{B}{2} & \frac{D}{2} \\ \frac{B}{2} & C & \frac{E}{2} \\ \frac{D}{2} & \frac{E}{2} & F \end{pmatrix}$$

Il cui minore principale di ordine 2 è la matrice

$$M = \begin{pmatrix} M_0 & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}$$

- $\det M > 0$: ellisse
 - $-\det M(A+C) > 0$ ellisse complessa
 - $-\det M(A+C) < 0$ ellisse reale
 - $\det M = 0$ ellisse degenere
 - $-\ B=0 \land A=C$ circonferenza (reale o complessa come sopra)
- $\det M_0 = 0$: parabola
 - $\, \det A \neq 0$ parabola non degenere
 - $\det A = 0$ parabola degenere
- $\det M < 0$: iperbole
 - $-\det A \neq 0$ iperbole non degenere
 - $-\det A = 0$ iperbole degenere
 - -A+C=0 iperbole equilatera (reale o complessa come sopra)

¹Potrebbe contenere errori