

RSA

Cryptography, Spring 2020

L. Batina, J. Daemen

May 27, 2020

Institute for Computing and Information Sciences Radboud University

Outline

Euler totient function

The RSA cryptosystem

Chinese remainder theorem

RSA key pair generation

Security strength of RSA

Using RSA

RSA vs ECC

Conclusions

Euler totient function

$((\mathbb{Z}/n\mathbb{Z})^*, \times)$ with n not prime

Remember

Invertibility criterion

m has multiplicative inverse modulo n (i.e., in $\mathbb{Z}/n\mathbb{Z}$) iff $\gcd(m,n)=1$

- ▶ We define $(\mathbb{Z}/n\mathbb{Z})^* = \{m \mid m \in \mathbb{Z}/n\mathbb{Z} \text{ and } \gcd(m,n) = 1\}$
- \blacktriangleright $((\mathbb{Z}/n\mathbb{Z})^*, \times)$ is an abelian group
 - closed: if gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1
 - 1 is neutral element
 - each element in $(\mathbb{Z}/n\mathbb{Z})^*$ has an inverse
 - associativity and commutativity follow from multiplication in Z
- ▶ But what is the order of $(\mathbb{Z}/n\mathbb{Z})^*$? (we will need that!)

This is Euler's totient function

Computing the order of $(\mathbb{Z}/n\mathbb{Z})^*$

Definition: Euler's totient function

Euler's totient function of an integer n, denoted $\varphi(n)$, is the number of integers smaller than and coprime to n

- ▶ For prime p, all integers 1 to p-1 are coprime to p: $\varphi(p)=p-1$
- ▶ If $n = a \cdot b$ with a and b coprime: $\varphi(a \cdot b) = \varphi(a)\varphi(b)$
- ▶ For the power of a prime p^n : $\varphi(p^n) = (p-1)p^{n-1}$
- ▶ Computing $\varphi(n)$:
 - factor *n* into primes and their powers
 - apply $\varphi(p^n) = (p-1)p^{n-1}$ to each of the factors
- Example: $\varphi(2020) = \varphi(2^2 \cdot 5 \cdot 101) = 2 \cdot 4 \cdot 100 = 800$

Fact: computing $\varphi(n)$ is as hard as factoring n (see lecture notes)

Euler's theorem

Euler's theorem (Leonhard Euler, 1736)

If
$$gcd(x, n) = 1$$
, then $x^{\varphi(n)} \equiv 1 \mod n$

PROOF:

If
$$gcd(x, n) = 1$$
, then $x \in (\mathbb{Z}/n\mathbb{Z})^*$

We know
$$\#(\mathbb{Z}/n\mathbb{Z})^* = \varphi(n)$$

Lagrange says: ord(x) divides $\varphi(n)$

Therefore $x^{\varphi(n)} \mod n = 1$

We can use this for computing inverses in $(\mathbb{Z}/n\mathbb{Z})^*$ with exponentiation:

$$x^{-1} = x^{\varphi(n)-1} \bmod n$$

... just as we did in $(\mathbb{Z}/p\mathbb{Z}) \setminus \{0\}$

The RSA cryptosystem

Ron Rivest, Adi Shamir, Leonard Adleman

Designed their famous cryptosystem in 1977

What is the RSA cryptosystem?

RSA is a trapdoor one-way function y = f(x)

- (1) given x, computing y = f(x) is easy
- (2) given y, finding x is difficult
- (3) given y and trapdoor info: computing $x = f^{-1}(y)$ is easy

Concretely:

- (1) $f(x) = x^e \mod n$ with n = pq with p, q primes and $gcd(e, \varphi(n) = 1)$
- (2) $f^{-1}(y) = y^d \mod n$ requires knowing d with $ed \equiv 1 \mod \varphi(n)$
- (3) Trapdoor info: d, or equivalently $\varphi(n)$, or equivalently p and q

Public and private keys:

- (1) Public key: (n, e)
- (2) n is the product of two large primes and different for each public key
- (3) Private key: (n, d)

Domain parameters? RSA has none! (except maybe the fixed value of e)

How does RSA work?

- ▶ Why is $x = y^d$ when $y = x^e$? (we omit mod n for brevity)
 - (1) Substitution gives $y^d = (x^e)^d = x^{ed}$
 - (2) Euler's theorem says $x^{\varphi(n)} = 1$ so $x^{ed} = x^{ed \mod \varphi(n)}$
 - (3) By the definition of d we have $ed \mod \varphi(n) = 1$
 - (4) It follows $x^{ed \mod \varphi(n)} = x$
- \triangleright Computation of d from e and p, q
 - inverse of e modulo $\varphi(n) = \varphi(pq) = (p-1)(q-1)$
 - it only exists if gcd(e, p 1) = 1 and gcd(e, q 1) = 1
 - ullet just apply extended Euclidean algorithm to (p-1)(q-1) and e

Quiz questions:

- (1) can we compute d by exponentiation?
- (2) if so, what would be the base, exponent and modulus?

Textbook RSA encryption and signing

- ▶ Encryption of a message $m \in (\mathbb{Z}/n\mathbb{Z})^*$
 - Bob uses (n, e) to encipher m to cryptogram $c = m^e$ for Alice
 - Alice deciphers cryptogram c with (n, d) to $m = c^d$

Security breaks down if Eve can find the eth root of c

- ▶ Signing a message $m \in (\mathbb{Z}/n\mathbb{Z})^*$
 - Alice signs message m with (n, d): signature $s = m^d$ over
 - Bob (or anyone) verifies s using (n, e) as $m \stackrel{?}{=} s^e$

Security breaks down if Eve can find an e^{th} root of some chosen m

- ightharpoonup Knowing $\varphi(n)$ allows computing d and hence finding an e^{th} root
- \Rightarrow the security of textbook RSA requires factoring to be hard

Converse is not true: textbook RSA is non-secure even if factoring is hard

Chinese remainder theorem

Something uneasy with our usage of RSA

- ▶ When encrypting m we must take $m \in (\mathbb{Z}/n\mathbb{Z})^*$
 - but we don't know $(\mathbb{Z}/n\mathbb{Z})^*$
 - that would require knowing p and q and hence the private key
 - best we can do is choose $m \in (\mathbb{Z}/n\mathbb{Z}) \setminus \{0\}$
 - this set has (pq-1)-(p-1)(q-1)=p+q elements that are not in the group
- ▶ What happens when we compute $c \leftarrow m^e$ with m one of these?
 - choosing such an m only happens with probability (p+q)/pq
 - still interesting to know: what if?
- lt turns out to be no problem: c^d will yield the original m
 - are we lucky or is this coincidence?
 - the world of algebra knows no luck or coincidence
- ▶ It can be explained with the help of the Chinese Remainder Theorem

Cross-product of rings

Definition of cross product of groups

```
Given groups (G,*) and (H,\circ), the cross product group (G\times H,\cdot) has set: \{(g,h)\mid g\in G,h\in H\} group operation: (g,h)\cdot(g',h')=(g*g',h\circ h')
```

The same can be applied to cross-product of rings, in particular

Cross-product of rings of integers modulo n

```
Given (\mathbb{Z}/n_1\mathbb{Z}, +, \times) and (\mathbb{Z}/n_2\mathbb{Z}, +, \times), the cross product ring (\mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}, +, \times) has set: \{(g,h) \mid g \in \mathbb{Z}/n_1\mathbb{Z}, h \in \mathbb{Z}/n_2\mathbb{Z}\} addition: (g,h) + (g',h') = (g+g' \text{ mod } n_1, h+h' \text{ mod } n_2) multiplication: (g,h) \times (g',h') = (g \times g' \text{ mod } n_1, h \times h' \text{ mod } n_2)
```

This generalizes to the cross-product of more than two groups or rings

Chinese Remainder Theorem (general)

Chinese Remainder Theorem (CRT)

Let $n = n_1 \cdot n_2 \cdots n_k$ with all n_i, n_j coprime, then the map

$$x \mapsto (x_1, x_2, \dots, x_k)$$
 with $x \in \mathbb{Z}/n\mathbb{Z}$ and $\forall i : x_i = x \mod n_i$

defines a ring isomorphism:

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_k\mathbb{Z}$$

Informally, any sum or product of elements in $\mathbb{Z}/n\mathbb{Z}$ is matched by that of the corresponding elements in $\mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z} \times \ldots \times \mathbb{Z}/n_k\mathbb{Z}$

Usually the term CRT is used for computing x from $(x_1, x_2, ..., x_k)$

Chinese Remainder Theorem (specific for RSA)

Chinese Remainder Theorem (CRT)

Let $n = p \cdot q$ with p, q primes, then the map

$$x \mapsto (x_1, x_2)$$
 with $x \in \mathbb{Z}/n\mathbb{Z}$, $x_1 = x \mod p$ and $x_2 = x \mod q$

defines a ring isomorphism:

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$$

Informally, any sum or product of elements in $\mathbb{Z}/n\mathbb{Z}$ is matched by that of the corresponding elements in $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$

Usually the term CRT is used for computing x from (x_1, x_2)

CRT visually for n = 77, p = 11, q = 7

	0	1	2	3	4	5	6	7	8	9	10
0	0			14				7			21
1	22	1			15				8		
2			2			16				9	
3				3			17				10
4	11				4			18			
5		12				5			19		
6			13				6			20	

CRT visually for n = 77, p = 11, q = 7, complete

	0	1	2	3	4	5	6	7	8	9	10
0	0	56	35	14	70	49	28	7	63	42	21
1	22	1	57	36	15	71	50	29	8	64	43
2	44	23	2	58	37	16	72	51	30	9	65
3	66	45	24	3	59	38	17	73	52	31	10
4	11	67	46	25	4	60	39	18	74	53	32
5	33	12	68	47	26	5	61	40	19	75	54
6	55	34	13	69	48	27	6	62	41	20	76

Chinese Remainder Theorem, alternative version (general)

Chinese Remainder Theorem (CRT), alternative version

If $n = \prod_i n_i$ with n_1, n_2, \dots, n_k pairwise coprime integers, then the system of congruence relations:

$$x \equiv x_i \pmod{n_i}, 1 \leq i \leq k,$$

has a unique solution $x \in \mathbb{Z}/n\mathbb{Z}$ for any k-tuple of integers (x_1, x_2, \dots, x_k)

The mapping from x to $(x_1, x_2, ..., x_k)$ is injective: different values x cannot give equal tuples $(x_1, x_2, ..., x_k)$

The number of possible values for x and $(x_1, x_2, ..., x_k)$ is both n and hence the mapping is a bijection

Chinese Remainder Theorem, alternative version (RSA-specific)

Chinese Remainder Theorem (CRT), alternative version

If $n = p \cdot q$ with p, q primes, then the system of congruence relations:

$$x \equiv x_1 \pmod{p}$$
$$x \equiv x_2 \pmod{q}$$

has a unique solution $x \in \mathbb{Z}/n\mathbb{Z}$ for any couple of integers (x_1, x_2)

The mapping from x to (x_1, x_2) is injective: different values x cannot give equal tuples (x_1, x_2)

The number of possible values for x and (x_1, x_2) is both n and hence the mapping is a bijection

CRT formula (general)

CRT formula

The solution $x \in \mathbb{Z}/n\mathbb{Z}$ with $n = \prod_i n_i$ for

$$x \equiv x_i \pmod{n_i}, 1 \leq i \leq k,$$

with n_1, n_2, \ldots, n_k pairwise coprime integers is given by

$$x = u_1x_1 + u_2x_2 + \ldots + u_kx_k \mod n$$

with
$$\forall i$$
: $u_i = r \cdot (n/n_i)$ with $r = (n/n_i)^{-1} \mod n_i$

It can be seen that for all i, u_i satisfies following equations:

$$u_i \equiv 1 \pmod{n_i}$$
 for all i
 $u_i \equiv 0 \pmod{n_i}$ for all $i \neq j$

The constants u_i can be used for any vector (x_1, x_2, \dots, x_k)

Computing and using the CRT formula: example

Let $n = 616 = 7 \cdot 11 \cdot 8$

Computation of the constants u_i :

ni	n/n_i	mod n _i	inverse	u _i	u _i mod 7	<i>u_i</i> mod 11	u _i mod 8
7	88	4	2	176	1	0	0
11	56	1	1	56	0	1	0
8	77	5	5	385	0	0	1

Computing x for some vectors x_i

(x_1, x_2, x_3)	expression	X
(2,4,1)	$2 \cdot 176 + 4 \cdot 56 + 1 \cdot 385 \mod 616$	114
(3, 3, 3)	$3 \cdot 176 + 3 \cdot 56 + 3 \cdot 385 \mod 616$	3
(1, 1, 0)	$1 \cdot 176 + 1 \cdot 56 + 0 \cdot 385 \mod 616$	232
(6, 10, 7)	$6 \cdot 176 + 10 \cdot 56 + 7 \cdot 385 \mod 616$	615

CRT formula (RSA-specific)

CRT formula

The solution $x \in \mathbb{Z}/n\mathbb{Z}$ with n = pq for

$$x \equiv x_1 \pmod{p}$$

 $x \equiv x_2 \pmod{q}$

with p, q primes is given by

$$x = u_1x_1 + u_2x_2 \bmod n$$

with
$$u_1 = (q^{-1} \mod p) \cdot q$$
 and $u_2 = (p^{-1} \mod q) \cdot p$

It can be seen that:

$$u_1 \equiv 1 \pmod{p} \qquad \qquad u_1 \equiv 0 \pmod{q}$$

$$u_2 \equiv 0 \pmod{p} \qquad \qquad u_2 \equiv 1 \pmod{q}$$

The constants u_i can be used for any vector (x_1, x_2)

Garner's algorithm

For the two-factor case the CRT formula can be simplified

Garner's algorithm (Harvey Garner, 1959)

```
INPUT: (p,q) with p>q and (x_1,x_2),
OUTPUT: x
i_q=q^{-1} \bmod p
t=x_1-x_2 \bmod p
x=x_2+q\cdot (t\cdot i_q \bmod p)
```

Verify that this is correct!

RSA private key exponentiation in the cross-product ring

Given y we must compute x that satisfies $y = x^e \mod pq$

For
$$(x_1,x_2)\in \mathbb{Z}/p\mathbb{Z}\times \mathbb{Z}/q\mathbb{Z}$$
 we get $y_1=x_1^e mod p$ and $y_2=x_2^e mod q$

These are solved by

- $ightharpoonup x_1 \leftarrow y_1^{d_p} \mod p$ with d_p the solution of $ed_p \equiv 1 \pmod{p-1}$
- $ightharpoonup x_2 \leftarrow y_2^{d_q} \mod q$ with d_q the solution of $ed_q \equiv 1 \pmod{q-1}$

This works for all values of y_1 and y_2 including 0 (Check this!)

Thanks to CRT, it follows that $x \leftarrow y^d \mod n$ always works, with

- $d \bmod (q-1) = d_q$

Note that one cannot compute d from d_p and d_q using CRT (Why not?)

RSA CRT private key operation with Garner

RSA with Garner's algorithm

INPUT:

- ▶ base c
- ightharpoonup private key $p, q, d_p, d_q, i_q (= q^{-1} \mod p)$

OUTPUT: m

- $(1) c_1 \leftarrow c \bmod p, m_p \leftarrow c_1^{d_p} \bmod p$
- $(2) c_2 \leftarrow c \bmod q, m_q \leftarrow c_2^{d_q} \bmod q$
- $(3) t \leftarrow m_p m_q \pmod{p}$
- (4) $m \leftarrow m_q + q \cdot (t \cdot i_q \mod p)$

Efficiency gain from using CRT

- ▶ moving addition from $\mathbb{Z}/n\mathbb{Z}$: $x + y \mod n$ to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$:
 - $x_1 + y_1 \mod p$
 - $x_2 + y_2 \mod q$

similar efficiency: two short additions instead of one long

- ▶ moving multiplication from $\mathbb{Z}/n\mathbb{Z}$: $x \cdot y \mod n$ to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$:
 - $x_1 \cdot y_1 \mod p$
 - $x_2 \cdot y_2 \mod q$

factor 2 more efficient: two short multiplications instead of one long

- ▶ moving exponentiation from $\mathbb{Z}/n\mathbb{Z}$: $x^d \mod n$ to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$:
 - $x_1^d \mod p$ or $x_1^{d \mod p-1} \mod p$
 - $x_2^d \mod q$ or $x_2^{d \mod q-1} \mod q$

factor 4 more efficient: two short exponentiations instead of one long

So use of CRT speeds up RSA private key exponentiation with a factor 4

On the choice of d

Fact:
$$\forall x_1 \in \mathbb{Z}/p\mathbb{Z}$$
, $\operatorname{ord}(x_1) \mid (p-1)$ and $\forall x_2 \in \mathbb{Z}/q\mathbb{Z}$, $\operatorname{ord}(x_2) \mid (q-1)$
So $\forall (x_1, x_2) \in \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$, $\operatorname{ord}((x_1, x_2)) \mid \operatorname{lcm}(p-1)(q-1)$
With least common multiple $\operatorname{lcm}(a, b) = a \cdot b / \gcd(a, b)$
Thanks to CRT this also holds for elements of $(\mathbb{Z}/pq\mathbb{Z})^*$

This implies we can compute d as the inverse of e modulo lcm(p-1,q-1) instead of modulo (p-1)(q-1)

This is what standards prescribe (e.g. NIST FIPS 186)

Toy example: p = 13, q = 17, $ord(x_1) \mid 12$, $ord x_2 \mid 16$ so $ord((x_1, x_2)) \mid 48$ while (p - 1)(q - 1) = 192

RSA key pair generation

RSA key pair generation

Generating an RSA key pair with given modulus length $|n| = \ell$:

- \triangleright |n| determines security of RSA key pair, but also efficiency
 - No consensus on how to choose length
 - See www.keylength.com for advice by experts

Procedure to generate an RSA key pair:

- (1) choose e: often this is fixed to $2^{16} + 1$ by the context
- (2) randomly choose prime p with $|p| = \ell/2$ and gcd(e, p 1) = 1
- (3) randomly choose prime q such that $|pq| = \ell$ and $\gcd(e, q 1) = 1$
- (4) compute modulus $n = p \cdot q$
- (5) compute the private key exponent(s)
 - no CRT: $d \leftarrow e^{-1} \mod \operatorname{lcm}(p-1,q-1)$
 - CRT: $d_p \leftarrow e^{-1} \mod (p-1)$, $d_q \leftarrow e^{-1} \mod (q-1)$, $i_q \leftarrow q^{-1} \mod p$

Generation of a random prime with a given length

```
Method: randomly generate \ell-bit integer x then increment until (probably) prime
  Input: length ℓ and public exponent e
  Output: (probable) prime p
  generate \ell-2 random bits, put a 1 before and after
  interpret the result as an integer x: odd integer length \ell
  repeat
     if gcd(x-1,e)=1 then
        randomly choose b \in \mathbb{Z}/x\mathbb{Z}
        if (b^{x-1} \mod x = 1) (Fermat: holds if x prime and likely not otherwise) then
           do w more Fermat tests for randomly chosen b
           if all tests pass then
              return p = x
           else
              x \leftarrow x + 2
        else
           x \leftarrow x + 2
     else
        x \leftarrow x + 2
  until false
```

This is an example, there are several other approaches

Distribution of prime numbers

There are infinitely many primes (Euclid, 300 BC)

prime counting function $\pi(n)$

 $\pi(n) = \#p_i, p_i \leq n$, where p_i is a prime

For example $\pi(100) = 25$

Prime number theorem (mathematicians, XVIII century - today)

$$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n} = 1 \tag{1}$$

1.1.
$$\pi(x) / \frac{x}{\ln x}$$
1.0. $\pi(x) / \int_{2}^{x} \frac{1}{\ln t} dt$
1. $10^{4} \cdot 10^{8} \cdot 10^{12} \cdot 10^{16} \cdot 10^{20} \cdot 10^{24}$

Consequence: expected distance between ℓ -bit primes is close to $\ell \ln 2$

Generation of random primes: attention points

- ► Execution time: long and variable
 - takes multiple exponentiations
 - number of them depends on the distance from x to next prime p
 - expected value is $(\ell \ln 2)/2$ but varies a lot
- ▶ Optimization
 - trial division by small primes: 3, 5, 7, 11, · · ·
 - fixing the base b to small numbers: 2,3,...
 - variant of Fermat test: Rabin-Miller, slightly more efficient
- Efficiency of RSA key generation
 - ullet expected cost pprox 30 RSA private key operations
 - in concrete cases it can be 5 but also 120
- Security
 - result may be non-prime but probability decreases with number of Rabin-Miller tests
 - unpredictability of random generator is crucial!

Security strength of RSA

RSA security: advances of factoring over time

- ▶ State of the art of factoring: two important aspects
 - reduction of computing cost: Moore's Law
 - improvements in factoring algorithms
- ► Factoring algorithms
 - Sophisticated algorithms involving many subtleties
 - Two phases:
 - distributed phase: equation harvesting
 - centralized phase: equation solving
 - Best known: general number field sieve (GNFS)
- ► These advances lead to increase of advised RSA modulus lengths make sure to check http://www.keylength.com/

Factoring records

number digits		date	sieving time	alg.
C116	116	mid 1990	275 MIPS years	mpqs
RSA-120	120	June, 1993	830 MIPS years	mpqs
RSA-129	129	April, 1994	5000 MIPS years	mpqs
RSA-130	130	April, 1996	1000 MIPS years	gnfs
RSA-140	140	Feb., 1999	2000 MIPS years	gnfs
RSA-155	155	Aug., 1999	8000 MIPS years	gnfs
C158	158	Jan., 2002	3.4 Pentium 1GHz CPU years	gnfs
RSA-160	160	March, 2003	2.7 Pentium 1GHz CPU years	gnfs
RSA-576	174	Dec., 2003	13.2 Pentium 1GHz CPU years	gnfs
C176	176	May, 2005	48.6 Pentium 1GHz CPU years	gnfs
RSA-200	200	May, 2005	121 Pentium 1GHz CPU years	gnfs
RSA-768	232	Dec., 2009	2000 AMD Opteron 2.2 Ghz CPU years	gnfs

RSA-240 795 bits Dec 2, 2019 900 core-years on 2.1 GHz Intel Xeon Gold 6130 RSA-250 829 bits Feb 28, 2020

Using RSA

Using RSA for encryption: attention points

Plaintext *m* shall have enough entropy:

▶ Otherwise, Eve can guess m and check if $c = m^e \mod n$

Example: PIN encryption in EMV (Visa, Mastercard) payment cards

- ▶ Requirement: protecting PIN in transfer from terminal to card
- ▶ Solution: encryption between terminal and smart card using RSA
- ► Enhancements:
 - terminal adds entropy with random string $r: m \leftarrow PIN; r$
 - for freshness: include challenge c from card $m \leftarrow PIN$; r; c

There are many ways to get RSA encryption wrong

Advice: just don't encrypt data with RSA

Using RSA for encryption: solutions

- ► Apply a hybrid scheme:
 - use RSA for encrypting a symmetric key K
 - encipher (and authenticate) with symmetric cryptography
- Sending an encrypted key
 - addition of redundancy and randomness before encryption
 - verification of redundancy after decryption
 - if NOK, return error
- Many proposals:
 - best known standard: PKCS #1 v1.5 and v2 (e.g. OAEP)
 - rather complex and no consensus on their security
- ▶ Despite the problems, this is still the most widespread method

Using RSA for key exchange: state-of-the-art

RSA Key Encapsulation Method (KEM)

- ▶ Bob randomly generates $r \in \mathbb{Z}/n\mathbb{Z}$
- ▶ Bob sends $c = r^e \mod n$ to Alice
- ▶ Alice deciphers c back to $r = c^d \mod n$
- ▶ both compute shared symmetric key K as K = h("KDF"; r)

RSA-KEM is the sound way to use RSA for exchanging a key

Problems of textbook RSA signatures

- ► RSA malleability
 - given two signatures $s_1 = m_1^d$ and $s_2 = m_2^d$. Eve can construct a signature for $m_3 = m_1 \cdot m_2 \mod n$ by computing $s_3 = s_1 \cdot s_2 \mod n$.

$$m_3^d = (m_1 \times m_2)^d = m_1^d \times m_2^d = s_1 \times s_2$$

- this is forgery: signing without knowing private key
- ► Limitation on message length
- Several other attention points

Using RSA for signatures

- ▶ Let h() be a function with co-domain $\mathbb{Z}/n\mathbb{Z}$
- ▶ Alice signs message m with her private key: $s \leftarrow (h(m))^d \mod n$
- ▶ Bob verifies the signed message (m, s):
 - computes $z \leftarrow s^e \mod n$
 - checks that z = h(m)
- ▶ this is secure if the hash function behaves like a random oracle
- ▶ This never made it to the standards
 - RO assumption conflicts with beliefs of many cryptographers
 - requires long hash output and XOFs are reasonably recent
- ▶ Most important standards: PKCS # 1 v1.5 or v2 (PSS)
 - First hashes message h = h(m) with classical hash function
 - then embeds h into the RSA input in $\mathbb{Z}/n\mathbb{Z}$...
 - ...uses padding and some messy processing
 - uses hash function calls to destroy malleability

RSA vs **ECC**

Computational efficiency of RSA

- ▶ Public exponentiation is light (assuming $e = 2^{16} + 1$))
 - 15 squarings and 1 multiplication of |n|-bit integers
 - time grows only quadratically with |n|
- ▶ Private exponentiation is heavy
 - without CRT: |n| |n|-bit squarings and multiplications
 - with CRT: |n| |n|/2-bit squarings and multiplications
 - time grows with the third power of |n|
- ▶ Key generation is a nightmare
 - its computation time is unpredictable and has huge variance
 - expected time: about 30 times that of private exponentiation
 - time grows with more than third power of |n|

RSA vs ECC

- ▶ Disclaimer: fair comparison is probably not possible
 - worse: almost all comparisons out there have a hidden agenda
 - we try to give here advantages and downsides of both
 - keep these in mind when comparing
- ▶ For making things concrete we target 128 bits of security
 - ECC: |p| = 256 following general consensus
 - RSA: |n| = 3072 following advice on keylength.com

key lengths	RSA		ECC	
domain parameters	e:	17	p, a, b, G, q, h:	≈ 1400
public key	<i>n</i> :	3072	A :	512
compressed	-		A :	257
private key	d :	3072	a:	256
with Garner	p, q, d_p, d_q, i_q :	3840	-	
compressed	<i>p</i> :	768	-	

RSA signatures vs EC Schnorr signatures

- Computation
 - ECC faster in generation, RSA faster in verification
 - RSA best choice for
 - ► long-term certificates as in a PKI
 - broadcast signatures as in software updates
 - ECC best choice for
 - certificates over short-lived keys
 - challenge-response entity authentication
- ▶ Signature size: ECC 512 bits, RSA 3072 bits
 - but: RSA support data recovery
 - inclusion of part of signed message in the signature
 - specified in ISO 9796-2 and used in EMV card certificates
 - overhead can be reduced to about 256 bits

RSA-KEM vs ECDH

- ▶ Computation
 - RSA-KEM: light on sending side and heavy on receiving
 - ECDH has same workload on both sides
 - forward secrecy requires generation of fresh key pairs
 - RSA-KEM best choice if
 - sender is lightweight and receiver is not
 - ► there is some RSA legacy
 - ECDH best choice if
 - forward secrecy is a requirement
 - sender and receiver have similar CPU power
- ▶ Data exchanged:
 - there are many cases
 - RSA-KEM with receiver having authentic public key: 3072 bits
 - unilaterally authenticated forward-secret ECDH: 1300 bits

Conclusions

Conclusions

- ▶ Until recently, RSA was the most widespread public key crypto
- ▶ It remains an amazing cryptosystem
 - · underlying mathematics are very interesting
 - supports key exchange, signatures, and much more
- ▶ RSA is considered less *cool* than ECC but has unique advantages
 - faster public key operation
 - shorter signature overhead when using data recovery
- ▶ But actually, most applications don't require public key crypto
 - just use symmetric crypto
 - orders of magnitudes faster
 - 128-bit keys and tags