DEVOIR MAISON 1

Exercice 1 (Extrait de ESC) – On considère les matrices suivantes

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}, \qquad L = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad Q = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- 1. Calculer PQ et QP.
- 2. Vérifier que QAP = L. En déduire que A = PLQ.
- 3. (a) Montrer que, pour tout entier naturel n, on a $A^n = PL^nQ$.
 - (b) Soit J = L I. Calculer J^2 puis J^3 .
 - (c) En utilisant la formule du binôme de Newton, montrer que pour tout entier $n \ge 2$, on a

$$L^{n} = I + nJ + \frac{n(n-1)}{2}J^{2}.$$

- (d) En déduire, pour $n \ge 2$, les neufs coefficients de L^n .
- (e) Déduire des questions précédentes que, pour tout $n \ge 2$, on a

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2n(n-1) & 1 & 2n \\ 2n & 0 & 1 \end{pmatrix}.$$

4. On considère les trois suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ définies par $u_0 = 1$, $v_0 = 0$ et $w_0 = 2$ et pour tout entier $n \in \mathbb{N}$,

$$u_{n+1} = u_n$$
, $v_{n+1} = v_n + 2w_n$ et $w_{n+1} = 2u_n + w_n$.

- (a) Que pouvez-vous dire de la suite $(u_n)_{n \in \mathbb{N}}$? Donner u_n pour tout entier $n \in \mathbb{N}$.
- (b) Pour tout entier $n \in \mathbb{N}$, on pose $X_n = \begin{pmatrix} 1 \\ v_n \\ w_n \end{pmatrix}$. Montrer que $X_{n+1} = AX_n$.
- (c) Montrer que pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
- (d) Déduire des questions précédentes que pour tout entier $n \in \mathbb{N}$, on a

$$v_n = 2n(n-1)$$
 et $w_n = 2n$.

Exercice 2 (Extrait de ESC) – On dispose d'un dé cubique classique équilibré et d'une pièce équilibrée. On lance le dé et on observe son résultat.

- Si celui-ci est un 6, on lance la pièce deux fois,
- Dans tous les autres cas, on lance la pièce une seule fois.

On note X la variable aléatoire égale au résultat du dé.

On note Y la variable aléatoire égale au nombre de PILE apparus au cours de cette expérience.

- 1. (a) Justifier que X suit une loi uniforme que l'on précisera en détail.
 - (b) Donner l'expérance E(X) et la variance V(X).

- 2. Montrer que $P(Y = 2) = P([Y = 2] \cap [X = 6]) = \frac{1}{24}$.
- 3. (a) Montrer que pour $k \in \{1; 2; 3; 4; 5\}$, $P_{[X=k]}(Y=0) = \frac{1}{2}$.
 - (b) Que vaut $P_{[X=6]}(Y=0)$? En déduire en utilisant la formule des probabilités totales que $P(Y=0)=\frac{11}{24}$.
 - (c) Donner finalement la loi de la variable *Y* et calculer son espérance.
- 4. (a) Recopier et compléter les cases du tableau suivant afin qu'il fournisse la loi du couple (X, Y) (aucune justification supplémentaire n'est demandée).

	X = 1	X = 2	X = 3	X = 4	X = 5	X = 6
Y = 0						
Y = 1						
Y = 2						

(b) Calculer alors la covariance de *X* et *Y* .

Exercice 3 (Extrait de ECRICOME) – Soit g la fonction définie sur $]0; +\infty[$ par

$$g(x) = x^2 - 4\ln(x).$$

- 1. Étudier le sens de variation de g et vérifier que g admet un minimum sur $]0; +\infty[$ égal à $2(1-\ln(2))$.
- 2. En déduire le signe de g(x) pour tout réel x de $]0;+\infty[$. (*Indication numérique* : $\ln(2) \simeq 0,7$.) On considère la fonction f définie sur $]0;+\infty[$ par

$$f(x) = \frac{x}{4} + \frac{1 + \ln(x)}{x}.$$

On appelle \mathscr{C} sa courbe réprésentative de f dans un repère orthonormé (unité graphique 2 cm).

- 3. Déterminer la limite de f en 0. Interpréter graphiquement le résultat.
- 4. Déterminer la limite de f en $+\infty$.
- 5. Montrer que la droite \mathcal{D} d'équation $y = \frac{x}{4}$ est asymptote à la courbe \mathscr{C} .
- 6. Étudier la position relative de $\mathscr C$ et de $\mathscr D$. On montrera en particulier que $\mathscr D$ coupe $\mathscr C$ en un point A dont on calculera les coordonnées.
- 7. Étudier le sens de variation de f. Dresser le tableau de variations de f.
- 8. (a) Vérifier que pour tout réel x de $]0; +\infty[$, on a

$$f''(x) = \frac{2\ln(x) - 1}{x^3}.$$

- (b) Étudier la convexité de f. La courbe \mathscr{C} possède-t-elle des points d'inflexion?
- 9. On donne

$$\frac{1}{e} \simeq 0.4$$
, $\sqrt{e} \simeq 1.6$, $f(\sqrt{e}) \simeq 1.3$ et $f'(\sqrt{e}) \simeq 0.1$.

Représenter la courbe \mathscr{C} et la droite \mathscr{D} dans un même repère orthonormé.