

Name and Surname: Student Number:

Multiple Choice (Single Answer) Questions (48 pts, 4 points each)

Q1: Suppose Host A wants to send a large file to Host B. The path from Host A to Host B has three links, of rates R1 = 500 kbps, R2 = 2 Mbps, and R3 = 1 Mbps. Assuming no other traffic in the network.

What is the throughput for the file transfer?

- b. 1.16 Mbps c. 3.5 Mbps d. 500 kbps e. 1 Mbps a. 2 Mbps
- Q2: According to Q1 above suppose the file is 4 million bytes. Dividing the file size by the 1 Mbps throughputs, roughly how long will it take to transfer the file to Host B?
- a. 32 seconds b. 400 msec c. 40 seconds d. 64 seconds e. 32 msec

4million byt = 32000000 bits 500 kbps = 500000 bps32000000 / 500000 =64sec

- Q3: Which one is **not** true for web caching?
- a. Reduce response time for client request.
- b. Satisfy client request with involving origin server.
- c. Reduce traffic on an institution's access link.
- d. Local web cache reduces packet delay.

Q4: The header format for TCP is a minimum of _____ octets.

- a. 16
- b. 8
- c. 20
- d. 160
- e. 4

Q5: Which one can be considered as a realtime application?

- a. web documents
- b. audio/video
- c. file transfer

- d. text messaging
- e. e-mail

Q6: Suppose you have the following 2 bytes: 01011100 and 01100101. What is the 1s complement of the sum of these 2 bytes for checksum?

- a. 10011010 b. 10100011 c.11111111 d. 11101000 e. 00010111

Name and Surname: Student Number:

	If an organ net?	isation us	ing subnet m	nask a.b.c	d/23 how	many ho	est can be allocated within same	
a. 2	3	b. 255	c. 512	1	d. 512	e.	256	
Q8: If the TCP server were to support <i>n</i> simultaneous connections, each from a different client host,								
hov	v many sock	ets would	d the TCP ser	ver need	?			
a. n	ı	b. 1	c. n-1		d. n+1	e.	no socket needed	
Q9: The purpose of the mechanism is to gradually expand the window until acknowledgments are received.								
a. slow start		ŀ	o. window m	ent	c.	backpressure		
d. fast recovery			e. none of ab	ove				
Q10: Which one is not true?								
a. TCP provides a reliable byte-stream between client and server but UDP does not.								
b. Nether TCP nor UDP guarantee that a certain value for throughput will be maintained.								
c. Nether TCP nor UDP guarantee that data will be delivered within a specified amount of time.								
d. Nether TCP nor UDP provide confidentiality (via encryption).								
e. You would use TCP if you wanted to do a transaction as fast as possible.								
get	s encapsula	ted in a To	· ·	and then	an IP data	gram. Wh	a every 20 msec, and each chunk nat percentage of each datagram	
a. :	100%	k	o. 25%	c. 50%	<mark>6</mark>	d. 0%	e. none of above	
Q12: Which protocol allows user to organize messages in folders keeps user state across sessions.								
a. II	MAP	b. POP3	c. SM	ITP	d. HTTP			

Name and Surname: Student Number:

General Format Questions

Q13: (10 pts) Please explain utilization, throughput, godput, packet drop, end-to-end delay.

Q14: (10 pts) Draw 3 TCP retransmission scenarios "lost ACK", "premature timeout" and "cumulative ACK" (note: time should moves forward from the top of the diagram toward the bottom of the diagram).

Name and Surname:

CSE204 Computer Networks 2016/2017 Spring - Midterm Exam

Student Number:

Q15: (10 pts) Draw 5 layers Internet protocol stack and explain functions of each layer briefly.

Name and Surname: Student Number:

Q16: (10 pts) Explain each delay that comprised by nodal delay as shown in formula below and indicate time scale (i.e. microseconds, milliseconds) of each with reasons.

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

Name and Surname: Student Number:

Q17: (16 pts) Draw a big picture of Inter-networks diagram that contains all components of network with their names. The diagram should contain edge (end-devices) devices, access networks and core networks.