Heart Failure Prediction

Samuel Kim

The problem

Introduction

- Cardiovascular diseases are the number one cause of death.
- eighteen million lives each year (thirty-one percent worldwide).
- Four out of five deaths in cardiovascular diseases are due to heart attacks and strokes.
- one-third of these deaths occur prematurely in people under seventy years of age.

Context

This dataset contains twelve features that can be used to predict a possible heart disease: Age, Sex, Chest Pain Type, Resting Blood Pressure, Cholesterol, Fasting Blood Sugar, resting electrocardiogram results, Max Heart Rate, exerciseinduced angina, Old_Peak, the slope of the peak exercise ST segment, and heart disease.

Problem statement

People with cardiovascular disease or who are at high cardiovascular risk is due to the presence of one or more risk factors. Therefore, machine learning can be a great asset to the early detection and management of people who have cardiovascular disease or who simply have high cardiovascular risk.

Distribution of Age

Cholesterol Levels

Distribution of cholestrol levels

Cholesterol Levels

Age 50 older are more likely to have heart disease.

Asymptomatic is the most common within patients.

Pairplot with Heart Disease

Logistic Regression

	precision	recall	f1-score	support
0	0.88	0.83	0.86	119
1	0.88	0.92	0.90	157
Accuracy			0.88	276
macro avg	0.88	0.87	0.88	276
weighted av	/g 0.88	0.88	0.88	276

Random Forest Classification

	precision	recall	f1-score	support
0	0.88	0.84	0.86	116
1	0.89	0.91	0.90	160
accu	ıracy		0.88	276
mac	ro avg 0.88	0.88	0.88	276
weig	ghted avg 0.88	0.88	0.88	276

SVC

	precision	recall	f1-score	support
0	0.88	0.87	0.87	113
1	0.91	0.91	0.91	163
accuracy			0.89	276
macro avg	0.89	0.89	0.89	276
weighted a	avg 0.89	0.89	0.89	276

Cat Boost

	precision	recall	f1-score	support
0	0.89	0.88	0.88	114
1	0.91	0.93	0.92	162
accura	acy		0.91	276
macro	avg 0.90	0.90	0.90	276
weigh	ted avg 0.91	0.91	0.91	276

LGBM Classifier

	precision	recall	f1-score	support
0	0.87	0.83	0.85	117
1	0.88	0.91	0.89	159
accuracy			0.87	276
macro avg	0.87	0.87	0.87	276
weighted avg	0.87	0.87	0.87	276

Best Result

	Model	Validation Score	Cross_Validation Score
0 L	ogisticRegression	0.880435	0.864496
1	RandomForest	0.884058	0.871900
2	svc	0.894928	0.866230
3	CatBoost	0.905797	0.877568
4	LGBM	0.873188	0.865816

Conclusion

- As we can see, all of our models obtained decent results within the validation and cross validation score.
- We can see that the Light GBM model performed the worst than the Logistic Regression, SVC, and Random Forest within the validation score.
- It seems CatBoost performed the best within the validation score
- Within the cross validation score we can see that Logistic Regression performed the worst.
- While CatBoost seems to performed the best within the cross validation score as well