66.70 Estructura del Computador

Sistemas de representación numérica

√¿Qué número representa "112"?

Sistemas para la representación de números

Sist. numérico — Conjunto de símbolos

Reglas para su organización

Símbolos:

 Desarrollo histórico: marcas, nudos en una cuerda, simbología, ...

Organización:

Sistemas aditivos y Sistemas posicionales

Sistemas de Numeración Aditivos

El sistema egipcio:

Sistemas de Numeración Aditivos

El número 1214

Sistemas de numeración posicionales

El sistema árabe

√ Símbolos que lo forman

- ✓ Con una cantidad limitada de símbolos repr. todo número
- ✓ Es decimal (base 10)
- Desarrollado en India antes del siglo VII e introducido en Europa por los árabes.
- Babilonios, chinos y mayas en distintas épocas llegaron al mismo principio
- Entre el sistema actual y el de los Indios sólo hay diferencias en la forma que escribimos los dígitos

El sistema decimal no es el único sistema numérico posicional

Un sistema numérico posicional queda definido por:

- ✓ Símbolos
- ✓ Cantidad de símbolos (base)
- ✓ Peso de cada posición (generalmente son potencias crecientes de la base)
- ✓ Cantidad de posiciones

Representar $42|_{10}$ en diferentes bases

· base 3, octal, base 2, hexadecimal. etc.

Conversión entre diferentes bases

Casos:

- a. Conversión de cualquier base a base 10
- b. Conversión de base 10 a otra base
- c. Conversión entre dos bases diferentes de 10
- d. Bases potencias de otras bases

Métodos de conversión entre bases

- Cualquier base a base 10 -> sumatoria
- De base 10 a otra base
 - Divisiones sucesivas
 - Estimación en base a los pesos
- Base que es potencia de otra base:
 - Agrupar y convertir cada grupo en un dígito
 - Desagrupar dígito a dígito

Cantidad de dígitos necesaria para un mismo rango de representación

Binary (base 2)	Octal (base 8)	Decimal (base 10)	Hexadecimal (base 16)	
0	0	0	0	
1	1	1	1	
10	2	2	2	
11	3	3	3	
100	4	4	4	
101	5	5	5	
110	6	6	6	
111	7	7	7	
1000	10	8	8	
1001	11	9	9	
1010	12	10	A	
1011	13	11	В	
1100	14	12	C	
1101	15	13	D	
1110	16	14	E	امس
1111	17	15	F	nario y en hexadecimal
			. :	nario y eli lio

- Representar 2532 en binario y en hexade

Rango de representación

Símbolos (cuáles y cuántos)
Cantidad de dígitos
Peso de cada posición

- Cuántos valores distintos?
- Cuál es el valor máximo?
- Cuál es el valor mínimo?

Comparar procesadores de 8, 16 y 32 bits

Representación de NUMEROS CON PARTE FRACCIONARIA

1) Sistemas de punto fijo

- Puede aplicarse a una base cualquiera, incluyendo la binaria
- Cómo convertir un número en base diez a otra base
- Cómo convertir un número a base 10
- Precisión de la conversión

2) Sistemas de punto flotante

Representación de ENTEROS CON SIGNO

- Magnitud y signo
- Complemento a la base menos 1
- Complemento a la base

Representación de ENTEROS CON SIGNO

Decimal	Two's Complement	Ones' Complement	Signed Magnitude
-8	1000	T 7	, - · ·
-7	1001	1000	1111
-6	1010	1001	1110
-5	1011	1010	1101
-4	1100	1011	1100
-3	1101	1100	1011
-2	1110	1101	1010
-1	1111	1110	1001
0	0000	1111 or 0000	1000 or 0000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111

Representación en magnitud y signo

• Forma de representación

- + N → Idem binario puro
- N \longrightarrow Primer bit a izq es 1

• Rango representable

$$(-2^{n-1}+1)_{10} \le x \le (2^{n-1}-1)_{10}$$

Con 4 bits 1000 or 0000

Representación en complemento a la base menos 1

En binario (base 2) => "COMPLEMENTO A 1"

• Forma de representación

$$-N \rightarrow C_{b-1}(N) = b^n - 1 - N$$

b: base **n**: cant. de dígitos

En binario:

$$-N \rightarrow C_1(N) = 2^n - 1 - N$$

Se puede obtener haciendo la resta o invirtiendo bit a bit

Rango representable

$$(-2^{n-1} + 1)_{10} \le x \le (2^{n-1} - 1)_{10}$$

¿ Cuál es el rango representable con 8 bits, 16 bits y 32 bits?

Con 4 bits 1000 1001 1010 1011 1100 1101 1110 1111 or 0000 0001 0010 0011 0100 0101 0110 0111

Representación en complemento a la base

En binario (base 2) => "COMPLEMENTO A 2"

• Forma de representación

$$-N \rightarrow C_b(N) = b^n - N$$

b: base **n**: cant. de dígitos

En binario:

$$-N \longrightarrow C2(N) = 2^n - N$$

Se puede obtener haciendo la resta

o invirtiendo bit a bit y sumando 1 ← Basado en complemento a 1

Rango representable

$$(-2^{n-1})_{10} \le x \le (2^{n-1} - 1)_{10}$$

¿ Cuál es el rango representable con 8 bits, 16 bits y 32 bits?

Con 4 bits

1000
1001
1010
1011
1100
1101
1110
1111

Representación de ENTEROS CON SIGNO

Decimal	Two's Complement	Ones' Complement	Signed Magnitude
-8	1000	T 7	, - · ·
-7	1001	1000	1111
-6	1010	1001	1110
-5	1011	1010	1101
-4	1100	1011	1100
-3	1101	1100	1011
-2	1110	1101	1010
-1	1111	1110	1001
0	0000	1111 or 0000	1000 or 0000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111

Convertir a base 10 números en compl. a 1 y compl. a 2

- Si el bit más significativo es 0
 - ✓ El número es positivo
 - ✓ Se convierte como si estuviera en binario puro (sumatoria de pesos)
- Si el bit más significativo es 1
 - ✓ El número es negativo
 - ✓ Fue obtenido complementando su módulo

Invierto ese proceso calculando su complemento

Tengo su módulo Convierto por sumatoria de pesos

¿ Cómo puedo distinguir si se trata de un entero con signo o sin signo? ¿ Cómo puedo distinguir si se trata de complemento a 1 o complemento a 2?

Suma de números binarios

Sistema numérico:

- -8 bits
- Enteros sin signo

Sistema numérico:

- -8 bits
- Enteros con signo
- Repres. en compl. a 2

$$\begin{array}{c}
01010110 \\
+ \\
\hline
11010010 \\
\hline
????????
\end{array}$$

Resultado:

- Suma
- Se fue de rango?

Suma de números binarios

Indicadores (flags)

- C Carry
- V Overflow
- Z Cero
- N Signo
- P Paridad

Operación **resta** en binario

- Forma directa
- Como suma del complemento

<u>Álgebra de números VS. microprocesador</u> Ley asociativa

El álgebra dice que:

$$a + (b + c) = (a + b) + c$$

Qué dice un procesador de 8 bits?

Suma de dos o más números definidos con distinta cantidad de bits

"EXTENSIÓN" DEL SIGNO

Suma de Números con parte fraccionaria

(Punto fijo)

Ejemplo:

Suma de Números con parte fraccionaria

(Punto fijo)

Ejemplo:

- Opera como en números enteros
- Se implementa operando con números enteros y definiendo un factor de escala fijo

Cuánto vale en el ejemplo?

Representación de Números con parte fraccionaria

Multiplicación y división de números enteros

× 1101

Multiplicación y división de números enteros

- Método general
- Por desplazamientos a derecha e izquierda
 - ✓ Implementación sencilla
 - ✓ Alta velocidad de proceso

Bibliografía

- HILL F, PETERSON G. "Teoría de Conmutación y Diseño Lógico",
 Limusa.1992 \(\rightarrow \rightarrow
- MURDOCCA M.J., HEURING V. P. "Principios de Arquitectura de Computadoras", Prentice Hall, 2002 1° ρας το
- Morris Mano "Arquitectura de Computadores" 🔾 ັ ρຊເ ৮ ૯