A. 跳跃 (jump.cpp)

题目描述

你是一只兔子, 在数轴上玩耍。

一开始你在 K 点处,要前往 M 点,你要使得自己尽可能愉悦。

具体来说,你有一个愉悦度,初始为0。数轴上有N个位置有胡萝卜,第i个胡萝卜位于 T_i 。当你到达 T_i 后,可以吃掉这个位置的胡萝卜并收获 B_i 的愉悦度(以后到达 T_i **不会**再收获愉悦度)。

在数轴上移动的方法是跳跃。如果当前你的位置是 x,你可以在一步之内跳跃到位置 y,满足 y 是整数,且 $|x-y| \leq D$ 。

但是,你不想让自己太累,所以每次跳跃你的愉悦度会**减少** A。

在到达点 M 时,你可以选择结束玩耍。求结束玩耍时你的愉悦度最大为多少。注意愉悦度**可能为负**。

输入格式

第一行五个非负整数 K, M, D, A, N。

接下来 N 行每行两个正整数 T_i, B_i 。

输出格式

一行一个整数,表示结束时最大的愉悦度。

样例输入1

0 9 3 7 2

3 6

7 1

样例输出 1

-15

样例 1 解释

先跳到位置3并吃掉胡萝卜,愉悦度减少7再增加6。

然后跳到位置 6,愉悦度减少 7。

然后跳到位置 9,愉悦度减少 7。结束玩耍。

最后的愉悦度为-15,可以证明这是最优的。

数据范围与约定

对于 20% 的数据: $N \leq 1000$ 。 另有 30% 的数据: D < 100。

对于 100% 的数据: $1 < A, D, B_i < 10^9$, $1 < N < 10^5$,

 $0 \le K < T_1 < T_2 < \cdots < T_N < M \le 10^9$.

B. 匹配 (match.cpp)

题目描述

对于一个字符集大小为 C 的字符串 P,可以进行以下操作任意多次:

• 选择两种字符 c_1, c_2 $(c_1 \neq c_2)$,将这两种字符在 P 中互相替换。 (即,将 P 中所有的 c_1 替换成 c_2 ,**同时**将 P 中所有的 c_2 替换成 c_1) 。

例如,对于 $P={\sf abcba}$,将 ${\sf a}$, ${\sf b}$ 互相替换后就变为了 ${\sf bacab}$;将 ${\sf a}$, ${\sf d}$ 互相替换后就变为了 ${\sf dbcbd}$ 。

如果在操作**任意多次(包括0次)**后,P变为了Q,就称P和Q是**匹配**的。

给定两个字符集大小为 C 的字符串 S,T,求 S 有多少个**连续子段**和 T 是**匹配**的,以及这些子段的**首位** 置(下标从 1 开始)。

字符串中的字符使用 1 到 C 内的正整数表示。

本题有多组数据。

输入格式

第一行两个整数 Q, C,分别表示数据组数和字符集大小。

接下来 Q 组数据,每组数组第一行两个整数 n, m 分别表示 S 和 T 的长度。

第二行 $n \cap 1$ 到 C 内的正整数,表示 S。

第三行m个1到C内的正整数,表示T。

输出格式

对于每组数据输出两行。

第一行一个整数 k,表示 S 有多少个连续子串和 T 匹配。

接下来一行 k 个**递增的**正整数,分别表示这 k 个连续子段的首位置(下标从 1 开始,注意要从小到大输出)。

样例输入1

```
3 3
6 3
1 1 1 2 2 2
3 3 3
7 3
1 2 3 2 1 2 3
2 1 3
6 3
1 2 1 2 1 2
3 1 3
```

样例输出1

```
2
1 4
3
1 3 5
4
1 2 3 4
```

数据范围与约定

对于 10% 的数据: $n, m, C \leq 1000$ 。

另有 20% 的数据: $n,m \leq 10^5$, $C \leq 40$ 。

另有 30% 的数据: $n, m, C \leq 10^5$ 。

对于 100% 的数据: $1 \leq n, m, C \leq 10^6$, Q = 3。

C. 图 (graph.cpp)

题目描述

给定一张 N 个点 M 条边的无向连通图(节点从 1 开始标号),以及两个点 S,T。

你需要选择一个正整数 k, 并为每条边确定一个 0 到 k 之间的整数权值, 使得:

- 对于每个正整数 x $(1 \le x \le k)$,删去所有权值为 x 的边后,S 和 T 不连通。注意对边权为 0 的边没有要求。
- 在满足上述条件的情况下, k 尽量大。

请求出最大的k,并输出一种方案。如果有多种可能的方案,输出任意一种。

输入格式

第一行两个整数 N, M,表示图的点数和边数。

第二行两个正整数 S, T,表示给定的两个点。

接下来 M 行,每行两个正整数 u_i, v_i ,表示编号为 i 的无向边连接 u_i 和 v_i 。

输出格式

第一行一个正整数 k。

接下来 M 行,第 i 行一个非负整数 w_i $(0 \le w_i \le k)$,表示编号为 i 的边的权值。

如果有多种方案,输出任意一种。

样例输入1

4 3			
1 3			
1 2			
2 3			
4 2			

样例输出1

2			
2			
1			
0			

样例输入2

```
4 4
1 4
1 2
2 4
1 3
3 4
```

样例输出 2

2			
2			
1			
1			
2			

数据范围与约定

对于 30% 的数据: M = N - 1.

另有 30% 的数据:满足除 S,T 外的任意一点都和恰好两条边相连。 对于 100% 的数据: $2\leq N\leq 400$, $N-1\leq M\leq \frac{N(N-1)}{2}$, $1\leq S,T,u_i,v_i\leq N$, $S\neq T$ 。

保证图连通, 且没有重边和自环。

D. 异或(xor.cpp)

题目描述

给定一个长度为 N 的非负整数序列 $a_1, a_2 \ldots, a_N$ 和非负整数 x。

求有多少个**非空**子序列 $1 \leq b_1 < b_2 < \cdots < b_k \leq N$,满足对任意的 (i,j) $(1 \leq i < j \leq k)$ 都有 $a_{b_i} \oplus a_{b_i} \geq x$ 。其中 \oplus 表示按位异或。

你只需要输出答案对 998244353 取模后的结果。

输入格式

第一行两个整数 N, x。

第二行 N 个非负整数 $a_1, a_2 \ldots, a_N$ 。

输出格式

输出一行一个整数,表示答案对998244353取模后的结果。

样例输入1

3 2 2 0 1

样例输出1

5

样例输入2

```
5 0
11 14 45 51 14
```

样例输出 2

31

数据范围与约定

对于 10% 的数据: $N \leq 20$ 。 对于 30% 的数据: $N \leq 5000$ 。 对于 80% 的数据: $N \leq 10^5$ 。

对于 100% 的数据: $1 \le N \le 3 \times 10^5$, $0 \le x, a_i < 2^{60}$.