

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	<u>Информатика и системы управл</u>	ения
КАФЕДРА Сист	емы обработки информации и у	<u>/правления</u>
o	_	30.4
Отчёт п	о рубежному контролю) № 1
«Tex	По дисциплине: нологии машинного обучения»	
Выполнил:		
Студент группы ИУ5Ц-83	Б Донченко М.А.	
Проверил:		
		Гапанюк Ю. Е
	(Подпись, дата)	(Фамилия И.О.)

Задание

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему?

Какие выводы о наборе данных Вы можете сделать на основании построенных графиков? Дополнительные требования по группам:

Для студентов групп ИУ5-63Б, ИУ5Ц-83Б - для произвольной колонки данных построить график "Ящик с усами (boxplot)".

Набор данных:

https://scikit-

 $learn.org/stable/modules/generated/sklearn.datasets.load_boston.html \# sklearn.datasets.load_boston$

РК ИУ5Ц-83Б

Импорт библиотек

```
In [1]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from pandas.plotting import scatter_matrix
         import warnings
         from sklearn import datasets
         from sklearn.datasets import load iris
         from sklearn import linear_model
         from sklearn.cluster import KMeans
         from sklearn import metrics
         from pandas import DataFrame
         %pylab inline
        Populating the interactive namespace from numpy and matplotlib
In [2]: | boston = load_iris()
         data = pd.DataFrame(boston.data, columns=boston.feature_names)
         data['TARGET'] = boston.target
In [3]: # Первые пять строк датасета
         data.head()
           sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) TARGET
                                     35
                                                    1.4
                      5.1
                                                                  0.2
                                                                           0
        1
                      4.9
                                     3.0
                                                   1.4
                                                                  0.2
                                                                           0
                                     3.2
                                                                  0.2
        2
                      4.7
                                                   1.3
                                                                           0
                                                   1.5
                                                                  0.2
        3
                      4.6
                                     3.1
                                                                           0
                                                   1.4
                                                                           0
                      5.0
                                     3.6
                                                                  0.2
In [4]; # Описание датасета
         data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 5 columns):
         # Column
                                Non-Null Count Dtype
         0 sepal length (cm) 150 non-null
         1 sepal width (cm)
                                150 non-null
                                                float64
            petal length (cm) 150 non-null
                                                float64
            petal width (cm)
                               150 non-null
                                               float64
            TARGET
                                150 non-null
                                                int64
        dtypes: float64(4), int64(1)
        memory usage: 6.0 KB
In [5]: # Статистические данные
         data.describe()
```

Out[5]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET
	count	150.000000	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.057333	3.758000	1.199333	1.000000
	std	0.828066	0.435866	1.765298	0.762238	0.819232
	min	4.300000	2.000000	1.000000	0.100000	0.000000
	25%	5.100000	2.800000	1.600000	0.300000	0.000000
	50%	5.800000	3.000000	4.350000	1.300000	1.000000
	75%	6.400000	3.300000	5.100000	1.800000	2.000000
	max	7.900000	4.400000	6.900000	2.500000	2.000000

```
In [6]: # Гистограммы для всех признаков data.hist(bins=30, figsize = (15,7))
```



```
In [7]: # Диаграммы рассеяние для всех признаков
plt.figure(figsize=(12,6))
sns.pairplot(data)
```

Out[7]: <seaborn.axisgrid.PairGrid at 0x7ffcbe26bb50>


```
In [8]: from sklearn.preprocessing import StandardScaler, MinMaxScaler, StandardScaler
In [9]: sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['petal width (cm)']])
In [10]: plt.hist(data['petal width (cm)'], 50)
plt.show()
```



```
In [11]: # Заполняем отсутствующие значения
              data['TARGET'] = data['TARGET'].replace(0,np.nan)
data['TARGET'] = data['TARGET'].fillna(data['TARGET'].mean())
```

In [12]:

Out[12]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	TARGET
	0	5.1	3.5	1.4	0.2	1.5
	1	4.9	3.0	1.4	0.2	1.5
	2	4.7	3.2	1.3	0.2	1.5
	3	4.6	3.1	1.5	0.2	1.5
	4	5.0	3.6	1.4	0.2	1.5

Ящик с усами

```
In [13]: sns.boxplot(data['sepal width (cm)'])
```

/Users/kirsan/opt/anaconda3/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[13]: <AxesSubplot:xlabel='sepal width (cm)'>

