

Recursive KalmanNet: Capacités de généralisation

Cyril Falcon, Hassan Mortada, Mathéo Clavaud, Jean-Philippe Michel

Exail – R&D Navigation, 34 rue de la Croix de Fer, 78100, Saint-Germain-en-Laye, France

À propos d'Exail

Un groupe industriel **français**.

Un acteur majeur des **hautes technologies** :

- Robotique
- Navigation
- Photonique

Une intégration verticale des produits.

Plus de **2000 collaborateurs** dans **80 pays**.

Contexte

Soit une représentation linéaire d'état :

$$\mathbf{x}_t = \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{v}_t, \quad \mathbf{v}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$$
 $\mathbf{z}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{w}_t, \quad \mathbf{w}_t \sim \mathcal{N}(0, \mathbf{R}_t)$

Question : Comment estimer les états \mathbf{x}_t à partir d'observations bruitées \mathbf{z}_t , et quantifier les incertitudes associées ?

Le **filtre de Kalman** (KF) est un estimateur linéaire récursif qui réalise la fusion des prédictions et des observations via un gain calculé analytiquement.

Problématique

Bruits et performance du filtre de Kalman :

	Blancs	Indépendants	Gaussiens
BLUE	X	X	
MMSE	X	X	X

BLUE = Best Linear Unbiased Estimator MMSE = Minimal Mean Square Error

Des hypothèses rarement satisfaites en pratique.

Objectif: Construire un estimateur qui s'affranchit d'hypothèses *a priori* sur la distribution statistique des bruits \mathbf{v}_t et \mathbf{w}_t , et donc sur \mathbf{Q}_t et \mathbf{R}_t .

Recursive KalmanNet (RKN)

Gain de fusion $\widehat{\mathbf{K}}_t$ appris par un RNN en substitut à sa forme analytique classique, voir [2].

Covariance $\widehat{\mathbf{P}}_{t|t}$ décomposée via la formule de Joseph, applicable à des gains de fusion appris.

- Composante déterministe $\widehat{\mathbf{A}}_t$ calculée à partir de la sortie du RNN apprenant le gain.
- Composante stochastique apprise par un second RNN à travers son facteur de Cholesky $\widehat{\mathbf{C}}_t$, voir [1].

Entrée	Définition
F_1	$\mathbf{z}_t - \mathbf{H}_t \widehat{\mathbf{x}}_{t t-1}$
	Innovation
F_2	$\widehat{\mathbf{x}}_{t-1 t-1} - \widehat{\mathbf{x}}_{t-1 t-2}$
	Correction à $t-1$
F_3	$oldsymbol{H}_t$
	Matrice de mesure
F_4	$\mathbf{z}_t - \mathbf{z}_{t-1}$
	Différence des mesures
	•

Entraînement supervisé : Descente de gradient sur la log-vraisemblance gaussienne + régularisation ℓ^2 .

Ensembles de données

Cinématique 1D position/vitesse avec bruit blanc d'accélération et **mesures de position** :

$$\mathbf{x}_t = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \mathbf{x}_{t-1} + \mathbf{v}_t, \quad \mathbf{Q}_t = \begin{pmatrix} 0 & 0 \\ 0 & 0.01^2 \end{pmatrix}$$
 $z_t = \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x}_t + w_t, \qquad R_t = \sigma_t^2$

5 types d'écart type de bruit de mesure σ_t :

Pour générer **3 ensembles de données** de 1000 séries temporelles de 150 échantillons.

Performances du Recursive KalmanNet

Liste des estimateurs :

Nom	Méthode	
RKN _{E1}	RKN entraîné sur E1	
	Test d'interpolation	
RKN _{E2}	RKN entraîné sur E2	
	Test d'extrapolation	
RKN _{Réf}	RKN entraîné sur Réf	
	RKN optimal	
so-KF	$KFavecR_t=1^2$	
	KF sous-optimal	
o-KF	$\text{KF avec } R_t = \sigma_t^{2}$	
	Estimateur optimal	

Métriques de performance :

$$\begin{aligned} & \text{EQM}(t) = \frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} (\mathbf{x}_t - \widehat{\mathbf{x}}_t)^\mathsf{T} (\mathbf{x}_t - \widehat{\mathbf{x}}_t) \\ & \text{EQMN}(t) = \frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} (\mathbf{x}_t - \widehat{\mathbf{x}}_t)^\mathsf{T} \widehat{\mathbf{P}}_{t|t}^{-1} (\mathbf{x}_t - \widehat{\mathbf{x}}_t) \end{aligned}$$

où ${\mathcal T}$ est l'ensemble de test issu de Réf.

Performances en **précision** et **représentativité des covariances des erreurs** évaluées sur Réf :

Commentaires des figures:

- Tous les RKN surpassent le so-KF en précision et en représentativité.
- La précision et la représentativité du RKN_{Réf} se rapprochent de celles du o-KF.
- · Les RKN perdent en représentativité en situation de généralisation.
- Tous les RKN ont des gains asymptotiques proches du o-KF.
- Tous les RKN ajustent leurs gains en fonction du bruit de mesure, contrairement au so-KF.

Performance en EQM(t):

	à 70	à 80	à 150
RKN _{E1}	0.04	0.38	0.45
RKN _{E2}	0.04	0.37	0.45
RKN _{Réf}	0.04	0.15	0.44
so-KF	0.06	0.33	0.49
o-KF	0.04	0.11	0.45

Performance en $\mathbf{EQMN}(t)$:

	à 70	à 80	à 150
RKN _{E1}	1.40	3.25	2.48
RKN _{E2}	3.21	2.77	1.84
RKN _{Réf}	1.86	2.10	2.05
so-KF	1.10	2.53	3.87
o-KF	2.09	1.94	1.94

Selon le TCL : EQMN $(t) \sim \mathcal{N}(2, 0.004)$.

Bibliographie

[1] H. Mortada, C. Falcon, Y. Kahil, M. Clavaud, and J.-P. Michel. Recursive KalmanNet: Deep Learning-Augmented Kalman Filtering for State Estimation with Consistent Uncertainty Quantification. In 33rd Eur. Signal Process. Conf., 2025.