22. Jointly Distributed Random Variables

Two random variables [Ross S6.1]

So far, we only considered the distribution of a single random variable.

Say we want the probability of an event involving 2 random variables:

- i) P[X < 3, Y > 7]
- ii) P[X < Y]
- iii) $P[X^2 + Y^2 < 10]$
- iv) P[XY = 3]

For this, we need the **joint cumulative distribution function** (joint CDF):

$$F_{XY}(a,b) = P[X \le a, Y \le b]$$

It turns our that all probability statements involving X and Y can be found from $F_{XY}(a,b)$.

There is also joint pmf and pdf:

Discrete Case:

Say X and Y are both discrete:

- X takes values in $\mathcal{X} = \{x_1, x_2, \ldots\},\$
- Y takes values in $\mathcal{Y} = \{y_1, y_2, \ldots\}$.

We define the **joint probability mass function** (joint pmf):

$$p_{XY}(x,y) = P[X = x, Y = y]$$

Then
$$p_X(x) = P[X=x]$$

$$= P[\cup_j \{X=x, Y=y_j\}]$$

$$= \sum_j P[X=x, Y=y_j]$$

$$= \sum_j p_{XY}(x,y_j)$$

Likewise
$$p_Y(y) = \sum_i p_{XY}(x_i, y)$$

Note: $p_X(x)$ is called the X marginal of $p_{XY}(x,y)$. This process is called marginalization.

Note: This is because if we list $p_{XY}(x_i, y_j)$ in a table on a page, then the sum over j is summing the ith row of the table, and writing each sum in the right margin of the page.

Also
$$1 = P[X \in \mathcal{X}, Y \in \mathcal{Y}]$$

$$= P[\cup_{i,j} \{X = x_i, Y = y_j\}]$$

$$= \sum_{i,j} P[X = x_i, Y = y_j]$$

$$= \sum_{i,j} p_{XY}(x_i, y_j)$$

So joint pmf must sum to 1.

Example 22.1: An urn contains 3 red, 4 white and 5 blue balls. 3 balls are picked at random. Let X = # red balls, Y = # white balls.

Find
$$p_{XY}(i,j)$$
.

Solution:

Continuous Case:

X and Y are jointly continuous random variables if there exists a non-negative $f_{XY}(x,y)$ such that for every $C \subset \mathbb{R}^2$:

$$P[(X,Y) \in C] = \iint_C f_{XY}(x,y) dxdy$$

 $f_{XY}(x,y)$ is called the **joint probability density function** (joint pdf).

Since
$$P[X \in A, Y \in B] = P[(X, Y) \in \underbrace{A \times B}_{C}]$$
, then

$$P[X \in A, Y \in B] = \iint_{A \times B} f_{XY}(x, y) dx dy$$
$$= \int_{B} \int_{A} f_{XY}(x, y) dx dy$$

Also,

$$F_{XY}(a,b) = P[X \le a, Y \le b]$$

$$= P[X \in (-\infty, a], Y \in (-\infty, b]]$$

$$= \int_{-\infty}^{b} \int_{-\infty}^{a} f_{XY}(x,y) \, dx dy$$
(22.1)

Taking partial derivatives with respect to a and b in (22.1)

$$f_{XY}(a,b) = \frac{\partial^2}{\partial a \partial b} F_{XY}(a,b)$$

Also

$$\int_{A} f_{X}(x)dx = P[X \in A]$$

$$= P[X \in A, Y \in (-\infty, \infty)]$$

$$= \int_{A} \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy dx$$

So
$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$
 [marginalization]

Likewise
$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$$

Also,

$$1 = P[X \in (-\infty, \infty), Y \in (-\infty, \infty)]$$

$$= \iint\limits_{\mathbb{R}^2} f_{XY}(x,y) dx dy$$

So for a joint pdf, volume under the curve is 1.