## **Business/Use Case**

- Finding the highest growth in 60 days for a specific stock with the intention of expanding functionality to multiple stocks.
- The goal is to streamline the process below on a larger scale and build a stock porfolio of highest forecasted growth.

# In Depth Analysis of MongoDB Stock

- Showcasing functions built specifically for EDA and Modeling of stock time series forecasting
- Historical stock data obtained from finance.yahoo.com
- Using ARIMA, Auto Arima and Facebook Prophet models

```
from Functions import *
In [2]:
          df = pd.read_csv('Data/MongoDB.csv')
In [3]:
          df.head()
In [4]:
Out[4]:
                                                      Close Adj Close
                                                                         Volume
                  Date
                            Open
                                      High
                                                  Low
           10/19/2017 33.000000 34.000000
                                            29.100000
                                                       32.07
                                                                  32.07
                                                                        11508500
            10/20/2017 33.369999 33.369999
                                            30.100000
                                                       30.68
                                                                  30.68
                                                                         2358700
            10/23/2017 30.510000 31.330000
                                            30.190001
                                                       30.50
                                                                  30.50
                                                                          749400
            10/24/2017 30.459999 30.920000
                                                                  30.57
                                                                          420700
                                            30.438999
                                                       30.57
            10/25/2017 30.500000 31.100000 29.879999
                                                       31.00
                                                                  31.00
                                                                         1219400
```

# **Preprocessing Function**

- From the default stock data provided, we want to look at the change in Adj Close price over time (days)
- The Volume will be our exogenous variable

```
In [10]:
          X, Xvol = preprocess(init_data=df,exog=True)
In [11]:
          X.head()
          Date
Out[11]:
          2017-10-19
                        32.07
          2017-10-20
                        30.68
          2017-10-23
                        30.50
          2017-10-24
                        30.57
          2017-10-25
                        31.00
          Name: Adj Close, dtype: float64
```

```
Xvol.head()
In [12]:
Out[12]:
         Date
          2017-10-19
                        11508500
          2017-10-20
                         2358700
          2017-10-23
                          749400
          2017-10-24
                          420700
          2017-10-25
                         1219400
         Name: Volume, dtype: int64
          figure = plt.figure(figsize=(9,7))
In [17]:
          plt.plot(X)
          plt.title('MongoDB Prices')
          plt.xlabel('Date')
          plt.ylabel('Price')
           plt.show();
```



## Log Transformations and FB Prophet Prep

- Preprocessing can perform log transformations on the data
- Can also shape the data in the format used by Prophet

```
2017-10-23
                         3.417727
          2017-10-24
                         3.420019
          2017-10-25
                         3.433987
          Name: Adj Close, dtype: float64
In [21]:
           Xfb.head()
Out[21]:
                    ds
                           у
             2017-10-19 32.07
             2017-10-20
                       30.68
             2017-10-23
                       30.50
             2017-10-24
                        30.57
             2017-10-25 31.00
           figure2 = plt.figure(figsize=(9,7))
In [23]:
           plt.plot(Xlog)
           plt.title('Logged MongoDB Prices')
           plt.xlabel('Date')
           plt.ylabel('Log Price')
           plt.show();
```



# **Train Test Split for Time Series**

• Instead of taking random samples of the data, train test split sets a cutoff date for training and testing data

- The same preprocessing above is built in to the split, along with log transform and prophet set up
- Default split is 75% Train, 25% Test

```
Xtrain,Xtrainvol,Xtest,Xtestvol = train_test(df,exog=True)
In [10]:
          Xtrain.head()
In [11]:
Out[11]: Date
         2017-10-19
                       32.07
         2017-10-20
                       30.68
                       30.50
         2017-10-23
         2017-10-24
                       30.57
         2017-10-25
                       31.00
         Name: Adj Close, dtype: float64
          Xtest.head()
In [12]:
         Date
Out[12]:
         2020-10-26
                       240.100006
         2020-10-27
                       244.009995
         2020-10-28
                       240.039993
                       235.690002
         2020-10-29
         2020-10-30
                       228.470001
         Name: Adj Close, dtype: float64
          length data = len(df)
In [13]:
          length train = len(Xtrain)
          length_test = len(Xtest)
          print('Total Data Length:',length_data)
          print('Train Length:', length_train, length_train/length_data*100,"%")
          print('Test Length:', length_test, length_test/length_data*100,"%")
         Total Data Length: 1012
         Train Length: 759 75.0 %
         Test Length: 253 25.0 %
```

### **ARIMA Order Parameters**

• These functions provide intial p,d,q values from ACF, PACF and Dickey-Fuller tests

```
In [14]: d = return_d(data=X,plotting=True)
```



In [15]: p = return\_p(data=X,plotting=True) # Uses differenced data to calculate PACF



In [16]: q = return\_q(data=X,plotting=True) # Uses differenced data to calculate ACF



```
print("d = ",d)
print("q = ",q)

p = 0
d = 1
a = 0
```

# Modeling

### **Base ARIMA Model**

In [18]: arima = base\_model(df,exog=True,logged=False,plotting=True,summary=True,mse=True)



## SARIMAX Results

Dep. Variable: Adj Close No. Observations: 759 Model: SARIMAX(0, 1, 0)Log Likelihood -2241.718 4489.435 Date: Mon, 15 Nov 2021 AIC Time: BIC 4503.327 20:36:09

| Sample:                                                                   |                                | -                             | 0 HQIC<br>759                                  |                         |                               | 4494.785                    |  |
|---------------------------------------------------------------------------|--------------------------------|-------------------------------|------------------------------------------------|-------------------------|-------------------------------|-----------------------------|--|
| Covariance                                                                | Type:                          |                               | opg                                            |                         |                               |                             |  |
|                                                                           | coef                           | std err                       | Z                                              | P> z                    | [0.025                        | 0.975]                      |  |
| intercept<br>Volume<br>sigma2                                             | 0.2859<br>7.089e-08<br>21.6920 | 0.183<br>9.42e-08<br>0.620    | 1.566<br>0.752<br>35.009                       | 0.117<br>0.452<br>0.000 | -0.072<br>-1.14e-07<br>20.478 | 0.644<br>2.56e-07<br>22.906 |  |
| Ljung-Box (L1) (Q): Prob(Q): Heteroskedasticity (H): Prob(H) (two-sided): |                                | 2.51<br>0.11<br>18.00<br>0.00 | Jarque-Bera<br>Prob(JB):<br>Skew:<br>Kurtosis: | а (ЈВ):                 | 0 -0                          | .00<br>.00<br>.14           |  |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step). ARIMA Test RMSE: 92.10970700146592



In [19]: arima\_logged = base\_model(df,exog=True,logged=True,plotting=True,summary=True,mse=True)





### SARIMAX Results

| ===========    |                  |                   | ============== |
|----------------|------------------|-------------------|----------------|
| Dep. Variable: | Adj Close        | No. Observations: | 759            |
| Model:         | SARIMAX(0, 1, 0) | Log Likelihood    | 1423.479       |
| Date:          | Mon, 15 Nov 2021 | AIC               | -2840.958      |
| Time:          | 20:36:10         | BIC               | -2827.065      |
| Sample:        | 0                | HQIC              | -2835.607      |
|                | - 759            |                   |                |

Covariance Type: opg

|           | coef   | std err  | z      | P> z  | [0.025 | 0.975] |
|-----------|--------|----------|--------|-------|--------|--------|
| intercept | 0.0027 | 0.002    | 1.764  | 0.078 | -0.000 | 0.006  |
| Volume    | 0.0023 | 0.002    | 1.003  | 0.316 | -0.002 | 0.007  |
| sigma2    | 0.0014 | 4.21e-05 | 32.481 | 0.000 | 0.001  | 0.001  |
|           |        |          |        |       |        |        |

| Ljung-Box (L1) (Q):             | 0.73 | Jarque-Bera (JB): | 414.68 |
|---------------------------------|------|-------------------|--------|
| <pre>Prob(Q):</pre>             | 0.39 | Prob(JB):         | 0.00   |
| Heteroskedasticity (H):         | 1.53 | Skew:             | 0.05   |
| <pre>Prob(H) (two-sided):</pre> | 0.00 | Kurtosis:         | 6.62   |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step). ARIMA Test RMSE: 58.08241838017868



### **Base Model Findings**

- Base ARIMA model has an AIC of 4489 and RMSE of 92
- Base ARIMA model with log transformed data has an AIC of -2840 and RMSE of 58
- In both metrics and visualization, the model with log transformed data performed better
- In both cases, it appears the Volume variable is insignificant

### **Auto Arima Model**

```
Performing stepwise search to minimize aic
ARIMA(2,1,2)(0,0,0)[0] intercept
                                    : AIC=4478.800, Time=0.62 sec
                                    : AIC=4487.592, Time=0.06 sec
ARIMA(0,1,0)(0,0,0)[0] intercept
                                    : AIC=4487.080, Time=0.05 sec
ARIMA(1,1,0)(0,0,0)[0] intercept
                                    : AIC=4486.999, Time=0.05 sec
ARIMA(0,1,1)(0,0,0)[0] intercept
ARIMA(0,1,0)(0,0,0)[0]
                                    : AIC=4488.422, Time=0.02 sec
                                    : AIC=inf, Time=0.59 sec
ARIMA(1,1,2)(0,0,0)[0] intercept
ARIMA(2,1,1)(0,0,0)[0] intercept
                                    : AIC=inf, Time=0.58 sec
ARIMA(3,1,2)(0,0,0)[0] intercept
                                    : AIC=4480.460, Time=0.76 sec
ARIMA(2,1,3)(0,0,0)[0] intercept
                                    : AIC=4480.513, Time=0.84 sec
                                    : AIC=4488.916, Time=0.13 sec
ARIMA(1,1,1)(0,0,0)[0] intercept
                                    : AIC=4492.609, Time=0.26 sec
ARIMA(1,1,3)(0,0,0)[0] intercept
ARIMA(3,1,1)(0,0,0)[0] intercept
                                    : AIC=4492.633, Time=0.26 sec
ARIMA(3,1,3)(0,0,0)[0] intercept
                                    : AIC=4480.974, Time=0.96 sec
```

ARIMA(2,1,2)(0,0,0)[0]

: AIC=4479.588, Time=0.31 sec

Best model: ARIMA(2,1,2)(0,0,0)[0] intercept

Total fit time: 5.480 seconds





### SARIMAX Results

|                         | S, WE DO NESSEE |             |         |              |        |           |  |  |  |
|-------------------------|-----------------|-------------|---------|--------------|--------|-----------|--|--|--|
| ========                | ========        | =======     | ======= |              |        | ========  |  |  |  |
| Dep. Variab             | le:             |             | y No.   | Observations | 5:     | 759       |  |  |  |
| Model:                  | SA              | RIMAX(2, 1, | 2) Log  | Likelihood   |        | -2233.400 |  |  |  |
| Date:                   | Mo              | n, 15 Nov 2 | 021 AIC |              |        | 4478.800  |  |  |  |
| Time:                   |                 | 20:36       | :17 BIC |              |        | 4506.584  |  |  |  |
| Sample:                 |                 |             | 0 HQIC  | 2            |        | 4489.500  |  |  |  |
| ·                       |                 | _           | 759     |              |        |           |  |  |  |
| Covariance <sup>-</sup> | Туре:           |             | opg     |              |        |           |  |  |  |
| =========               | ========        | =======     | ======= |              |        | ========  |  |  |  |
|                         | coef            | std err     | Z       | P> z         | [0.025 | 0.975]    |  |  |  |
|                         |                 |             |         |              |        |           |  |  |  |
| intercept               | 0.5848          | 0.352       | 1.663   | 0.096        | -0.105 | 1.274     |  |  |  |
| ar.L1                   | -0.0882         | 0.023       | -3.814  | 0.000        | -0.134 | -0.043    |  |  |  |
| ar.L2                   | -0.9625         | 0.024       | -40.573 | 0.000        | -1.009 | -0.916    |  |  |  |
| ma.L1                   | 0.1284          | 0.026       | 4.958   | 0.000        | 0.078  | 0.179     |  |  |  |
| ma.L2                   | 0.9579          | 0.024       | 40.280  | 0.000        | 0.911  | 1.004     |  |  |  |
| sigma2                  | 21.2140         | 0.586       | 36.223  | 0.000        | 20.066 | 22.362    |  |  |  |

Ljung-Box (L1) (Q): 0.30 Jarque-Bera (JB): 796.26 Prob(Q): 0.59 Prob(JB): 0.00 Heteroskedasticity (H): 16.58 Skew: -0.07 Prob(H) (two-sided): 0.00 Kurtosis: 8.02

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step). Auto Arima Test RMSE: 92.40403475573405



Best model: ARIMA(0,1,0)(0,0,0)[0] intercept Total fit time: 0.858 seconds



### SARIMAX Results

2019-07

2019-01

2020-01

2020-07

2021-01

2021-07

2022-01

| ===========                             | ======   | =========    | ======         | ========                 |           | ========  |
|-----------------------------------------|----------|--------------|----------------|--------------------------|-----------|-----------|
| Dep. Variable:                          |          | <u>'</u>     | y No.          | Observations:            | :         | 759       |
| Model:                                  | SAR      | IMAX(0, 1, 0 | ) Log          | Likelihood               |           | 1423.106  |
| Date:                                   | Mon      | , 15 Nov 202 | 1 AIC          |                          |           | -2842.212 |
| Time:                                   |          | 20:36:19     | 9 BIC          |                          |           | -2832.951 |
| Sample:                                 |          | (            | 0 HQIC         |                          |           | -2838.645 |
|                                         |          | - 759        | 9              |                          |           |           |
| Covariance Type:                        |          | op           | g              |                          |           |           |
| ======================================= | ======   | :=======:    | ======         | ========                 |           | =======   |
|                                         | coef     | std err      | Z              | P> z                     | [0.025    | 0.975]    |
| intercept 0.0                           | <br>0027 | 0.001        | 2.005          | 0.045                    | 6.07e-05  | 0.005     |
| sigma2 0.0                              | 0014     | 4.19e-05     | 32.714         | 0.000                    | 0.001     | 0.001     |
| Ljung-Box (L1) (Q                       | ) ·      | :=======:    | ======<br>0.70 | =========<br>Jarque-Bera | <br>(1B)· | 424.23    |
| Prob(Q):                                | , •      |              | 0.40           | Prob(JB):                | (35).     | 0.00      |
| Heteroskedasticity                      | v (H):   |              | 1.52           | Skew:                    |           | 0.11      |
| Prob(H) (two-side                       |          |              | 0.00           | Kurtosis:                |           | 6.66      |

### Warnings:

2018-01

2018-07

[1] Covariance matrix calculated using the outer product of gradients (complex-step). Auto Arima Test RMSE: 58.022142322809934



### **Auto ARIMA Findings**

- The auto ARIMA model with untransformed data performed almost the same as the base ARIMA model. AIC = 4478 and RMSE = 92.4
- The auto ARIMA model with log transformed data also performed better with similar results to base ARIMA with transformed data. AIC = -2842 and RMSE = 58
- Visually, the log transformed data appears to be better fit as well

## **Facebook Prophet Model**

In [22]:

fb = create\_prophet(data=df,logged=False,plotting=True,mse=True)



Prophet Test RMSE: 65.78887755293908

In [23]: fb\_logged = create\_prophet(data=df,logged=True,plotting=True,mse=True)



Logged Prophet Test RMSE: 369.84401898575334

### **Facebook Prophet Findings**

- Model with untransformed data has an RMSE of 65.8
- Model with log transformed data has a worse RMSE of 369.8
- In the vusualizations, the model with untransformed data provided a safe forecasting based on the trend
- However, the log transformed model overvalued the future prices

# **Highest Growths in 60 Days**

• Utilizing the best version of each model above, the models will be refit using the entire data set and forecasting the growth after 60 days

## **Base Model Growth**



#### SARIMAX Results

| =========     | ======= |              | =======  | ========     | ========= | ========  |  |
|---------------|---------|--------------|----------|--------------|-----------|-----------|--|
| Dep. Variable | e:      | Adj Cl       | ose No.  | Observation: | s:        | 1012      |  |
| Model:        | S       | ARIMAX(0, 1, | 0) Log   | Likelihood   |           | 1902.632  |  |
| Date:         | Me      | on, 15 Nov 2 | .021 AIC |              |           | -3801.265 |  |
| Time:         |         | 20:36        | 3:30 BIC |              |           | -3791.428 |  |
| Sample:       |         |              | 0 HQIC   |              |           | -3797.528 |  |
|               |         | - 1          | .012     |              |           |           |  |
| Covariance T  | ype:    |              | opg      |              |           |           |  |
| =========     | ======= |              | ======== | ========     | ========= |           |  |
|               | coef    | std err      | Z        | P> z         | [0.025    | 0.975]    |  |
| intercent     | 0.0027  | 0.001        | 2.315    | 0.021        | 0.000     | 0.005     |  |

39.866

0.000

0.001

0.001

sigma2

0.0014

| Ljung-Box (L1) (Q):             | 0.49 | Jarque-Bera (JB): | 869.35 |
|---------------------------------|------|-------------------|--------|
| <pre>Prob(Q):</pre>             | 0.48 | Prob(JB):         | 0.00   |
| Heteroskedasticity (H):         | 0.99 | Skew:             | 0.42   |
| <pre>Prob(H) (two-sided):</pre> | 0.92 | Kurtosis:         | 7.46   |
|                                 |      |                   |        |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step). ROI:  $17.41\,\%$ 



### **Auto ARIMA Growth**

Best model: ARIMA(0,1,0)(0,0,0)[0] intercept

Total fit time: 1.041 seconds



### SARIMAX Results

2020-10

2021-01

Date

2021-04

2021-07

2021-10

2022-01

| Dep. Variable:                          |         |               | y No.   | Observations: | ;         | 1012      |    |  |
|-----------------------------------------|---------|---------------|---------|---------------|-----------|-----------|----|--|
| Model:                                  | SA      | RIMAX(0, 1, 0 | ) Log   | Likelihood    |           | 1902.632  |    |  |
| Date:                                   | Мо      | n, 15 Nov 202 | 1 AIC   |               |           | -3801.265 |    |  |
| Time:                                   |         | 20:36:3       | 1 BIC   |               |           | -3791.428 |    |  |
| Sample:                                 |         |               | 0 HQIC  |               |           | -3797.528 |    |  |
| ·                                       |         | - 101         | 2       |               |           |           |    |  |
| Covariance Type: opg                    |         |               |         |               |           |           |    |  |
| ==========                              | ======= |               | ======  | ========      |           | :=======  |    |  |
|                                         | coef    | std err       | Z       | P>   z        | [0.025    | 0.975]    |    |  |
| intercept                               | 0.0027  | 0.001         | 2.315   | 0.021         | 0.000     | 0.005     |    |  |
| sigma2                                  | 0.0014  | 3.41e-05      | 39.866  | 0.000         | 0.001     | 0.001     |    |  |
| ======================================= |         | ========      | ======  |               | ·======== |           | == |  |
| Ljung-Box (L1)                          | (Q):    |               | 0.49    |               | (JB):     | 869.      |    |  |
| Prob(Q):                                |         |               | 0.48    | Prob(JB):     |           | 0.0       |    |  |
| Heteroskedasticity (H):                 |         | 0.99          | Skew:   |               | 0.4       |           |    |  |
| Prob(H) (two-s                          | ided):  |               | 0.92    | Kurtosis:     |           | 7.        | 46 |  |
| ==========                              | ======= | =========     | ======= | =========     |           | ========= | == |  |

### Warnings:

100

2020-01

2020-04

2020-07

[1] Covariance matrix calculated using the outer product of gradients (complex-step). ROI: 17.41 %



## **Facebook Prophet Growth**



ROI: -3.42 %

## **Conclusions**

- The ARIMA models expect a growth of ~ 17% after 60 days
- The Facebook Prophet model expects to lose ~3% after 60 days. However, it maintains a positive growth rate over time.
- Based on the models above, it looks like MongoDB would be a safe buy