

SEQUENCE LISTING

<110> Lin, Xinli

<120> METHODS FOR PRODUCTION OF RECOMBINANT
UROKINASE

<130> 544112000200

<140> US 10/825,911

<141> 2004-04-16

<150> US 60/463,632

<151> 2003-04-16

<150> US 60/498,134

<151> 2003-08-26

<150> CN 03134847.5

<151> 2003-09-25

<160> 7

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1248

<212> DNA

<213> Homo Sapiens

<400> 1

catatgtcca acgaactgca ccaggttcca tcgaactgtg actgtctaaa tggaggaaca 60
tgtgtgtcca acaagtactt ctccaaacatt cactggtgca actgcccataa gaaattcggaa 120
gggcagcaact gtjaaataga taagtcaaaaa acctgctatg agggaaatgg tcactttac 180
cgaggaaagg ccagcaactga caccatgggc cggccctgcc tgccctggaa ctctgcccact 240
gtccttcagc aaacgtacca tgcccacaga tctgatgctc ttca gctggggaaa 300
cataaattact gcaggaaccc agacaaccgg aggccacctt ggtctatgt gcagtgggc 360
ctaaagctgc ttgtccaaga gtgcattggc catgactgctg cagatggaaa aaagccctcc 420
tctcctccag aagaattaaa atttcagttt ggc当地aaaaga ctctgaggcc cccgtttaag 480
attattgggg gagaattcac caccatcgag aaccagccct ggtttgcggc catctacagg 540
aggcaccggg ggggctctgt cacctacgtg tgtggaggca gcctcatcag cccttgcgtgg 600
gtgatcagcg ccacacactg cttcattgtat tacccaaaga aggaggacta catcgctac 660
ctgggtcgct caaggcttaa ctccaaacacg caaggggaga tgaagtttga ggtggaaaac 720
ctcatcctac acaaggacta cagcgctgac acgcttgctc accacaacga cattgccttg 780
ctgaagatcc gttccaagga gggcagggtgt ggcgcagccat cccggactat acagaccatc 840
tgcctgcctt cgatgtataa cgatccccag tttggcacaa gctgttagat cactggcttt 900
ggaaaagaga attctaccga ctatcttat ccggagcagc tgaaaatgac tgggttgaag 960
ctgatttccc accggggagtgc tcagcagccc cactactacg gctctgaagt caccaccaa 1020
atgctgtgtg ctgctgaccc acagtggaaa acagattctt gccaggggaga ctcaggggaa 1080
cccctcgctt gttccctcca aggccgcattt accttgactg gaattgttag ctggggccgt 1140
ggatgtgccc tgaaggacaa gccaggcgtc tacacgagag tctcacactt cttaccctgg 1200
atccgcagtc acaccaagga agagaatggc ctggccctct aactcgag 1248

<210> 2

<211> 412

<212> PRT

<213> Homo Sapiens

<400> 2

Met Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp Cys Leu Asn
1 5 10 15
Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys
20 25 30
Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile Asp Lys Ser
35 40 45
Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly Lys Ala Ser
50 55 60
Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser Ala Thr Val
65 70 75 80
Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu Gln Leu Gly
85 90 95
Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg Arg Arg Pro
100 105 110
Trp Cys Tyr Val Gln Val Gly Leu Lys Leu Leu Val Gln Glu Cys Met
115 120 125
Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro Pro Glu Glu
130 135 140
Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg Phe Lys Ile
145 150 155 160
Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp Phe Ala Ala
165 170 175
Ile Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly
180 185 190
Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His Cys Phe Ile
195 200 205
Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg
210 215 220
Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val Glu Asn Leu
225 230 235 240
Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His His Asn Asp
245 250 255
Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gln Pro
260 265 270
Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro
275 280 285
Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser
290 295 300
Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val Val Lys Leu
305 310 315 320
Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly Ser Glu Val
325 330 335
Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys Thr Asp Ser
340 345 350
Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gln Gly Arg
355 360 365
Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys Ala Leu Lys
370 375 380
Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu Pro Trp Ile
385 390 395 400
Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu
405 410

```

<210> 3
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 3
catatgtcca acgaactgca ccaggttcca tcgaactgtg actgtc 46

<210> 4
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 4
ctcgagttag agggccaggc cattctcttc 30

<210> 5
<211> 1239
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 5
atgagcaatg aactgcata ggttccgagc aactgtgatt gtctgaatgg tggcacctgt 60
gtgagcaaca aataacttcag caacattcac tggtgcaact gcccggaaaa attcggtggc 120
cagcaactgtg aaatcgataa aagcaaaacc tgctatgaag gcaatggtca cttttaccgc 180
ggcaaagcca gcaccgatac catggggccgt ccgtgcctgc cgtggAACAG cgccaccgtt 240
ctgcagcaga cctaccatgc ccaccgttagc gatgcgcgtc agctgggcct ggttaaacat 300
aattactgcc gcaaccggta taaccgtcgat cgtccgttgt gctatgtgca ggtgggcctg 360
aaaccgctgg ttcaggaatg catggtgcat gattgcgcgg atggtaaaaa accgagcagc 420
ccggccggaaag aactgaaatt ccagtgtggc cagaaaaacc tgcgtccgcg cttaaaaatt 480
attggcggcg aattcaccac catcgaaaaac cagccgttgt ttgcggccat ctaccgtcg 540
caccgtggtg gcagcgttac ctacgtgtgt ggtggcagcc tgatcagccc gtgctgggtg 600
atcagcgcca cccactgctt cattgattac ccgaaaaaaag aagattacat cgtttacctg 660
ggtcgcagcc gtctgaacag caacacccag ggcgaaatga aatttgaagt ggaaaaacctg 720
atccctgcaca aagattacag cgccggatacc ctggcgcacc acaacgatat tgccctgctg 780
aaaatccgta gcaaagaagg ccgttgtcgcc cagccgagcc gcaccatcca gaccatctgc 840
ctggcgagca tgtataacga tccgcagttt ggcaccagct gtgaaatcac cggctttggc 900
aaagaaaaata gcaccgatta tctgtatccg gaacagctga aatgaccgt tgtgaaactg 960
attagccacc gtgaatgtca gcagccgcac tactacggca ggcgaaatgtgac cacccaaaatg 1020
ctgtgtgcgg cggatccgca gtggaaaacc gatactgccc agggtgatag cgggtggccg 1080
ctggtttgtt gcctgcgtt ccgcgttgcacc ctgacccgttta ttgtgagctg gggccgttgt 1140
tgtgcccgtt aagataaaacc gggcgtttac acccggttta gccacttcct gccgtggatc 1200
cgcagccaca ccaaagaaga aatggcctg gcactgtaa 1239

<210> 6
<211> 33
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Synthetic Construct

<400> 6
atcaactggct ttggacacga gaattctacc gac 33

<210> 7
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 7
gtcggtagaa ttctcgtgtc caaagccagt gat 33