Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science

End Sem (Odd) Examination Dec-2022 BC3EP04 Quantum Mechanics & Spectroscopy

Programme: B.Sc. Branch/Specialisation: Computer

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 (N	(ICQs)	should be writt	ten in full inste	ad of only a, b,	c or d.	
Q.1	i.	In the Compton scattering, the increase in wavelength depends on-				1
		(a) The Wave	elength of the ir	ncident radiatio	n	
		(b) Nature of	scatterer			
		(c) Angle of s	scattering			
		(d) None of the	hese			
	ii.	The velocity	of matter wave	is-		1
		(a) c	(b) v	$(c) c^2/v$	(d) c/v	
iii. The Quantity $ \Psi ^2$ represents-				1		
		(a) Probabilit	y density	(b) Charge de	ensity	
		(c) Energy de	ensity	(d) Intensity	of wave	
iv.		The wave function associated with a material particle is-			1	
		(a) Only finite	e			
		(b) Only cont	tinuous			
		(c) Only sing	le valued			
		(d) Finite, single valued and continuous				
	v.	The expectati	ion value of pot	cential energy o	f hydrogen atom is-	1
		(a) Zero	(b) -13.6 eV	(c) -27.2 eV	(d) 13.6 eV	
	vi.	A particle of	energy E is inc	ident on a poter	ntial step of finite width	1
		and height V_0 . If $E \le V_0$, then-				
		(a) $R=0$, $T=1$		(b) $R=1$, $T=0$		
		(c) $R=0.5$, $T=$		(d) $R=0.16$, T		
	vii.			_	of sodium atom are-	1
		` '	/2, J=1/2	. , , , , ,		
		(c) $L=1$, $S=1/2$	/2, J=1/2,3/2	(d) $L=2$, $S=1$	/2, J=3/2	

P.T.O.

Q.5	i.	Deduce energy of electron in n th orbit.	4
	ii.	Explain the fine structure of H_{α} line on the basis of vector atom model.	6
OR	iii.	What is meant by L-S coupling? Give example.	6
Q.6		Attempt any two:	
	i.	What is binding energy? Draw the binding energy curve? What important information do you obtain from the binding energy curve?	5
	ii.	Discuss shell model.	5
	iii.	Explain the working of cyclotron with neat diagram and give its limitations.	5

Marking Scheme(BC3EP04 Quantum Mechanics and Spectroscopy)	
i. In the Compton Scattering, the increase in Wavelength depend	ds on:
 (c) Angle of scattering ii The velocity of matter wave is: (b) c²/v iii The Quantity Ψ ² represents: (a) Probability density iv The wave function associated with a particle is: (d)Finite, continuous and single valued 	1
 v The expectation value of potential energy of hydrogen aton 1 (c) -27.2 eV vi A particle of energy E is incident on a potential step of finit If E ≤ V₀, then: (b) R=1, T=0 	
vii The values of L, S and J in the ground state of I $J=1/2$	of sodium atom are (b)L=0, S=1/2
viii The maximum number of electrons in a shell of principal 1 2n ²	I quantum number n is (b
ix The mass number of a nucleus is equal to: (d) The number of nucleons in it x Nuclear forces are: (d) Short range and strong attractive	

Q. 2 i) Write four differences between Electromagnetic waves and	matter Waves.
2 marks	
0.5 mark for each $(0.5 \text{ mark} * 4=2)$	
ii) Definition of Photoelectric effect. 1.5 marks	
Explanation of the photoelectric equation. 1.5 marks	
iii) Definition of $v_p \& v_g$. 1 mark	
Relation between v _p & v _g . 4 marks	
iv) Statement of Heisenberg's uncertainty principle. 1 mark	
Derivation for Heisenberg's uncertainty principle. 4 marks	
Q.3 i) Four properties of wave function. 2 marks	
0.5 mark for each $(0.5 \text{ mark } * 4=2)$	
ii) Basic postulates of Quantum mechanics. 8 marks	
iii) Full derivation for energy of the particle. 8 marks	
Q.4 i) Energy Eigen values and the Schrödinger's equation for	a linear harmonic
Oscillator. 1 mark	
Diagram of energy levels. 2 marks	
ii) Schrödinger wave equation for the particle incident on a re	ctangular potential
barrier and its solution 7 marks	
iii) Show that the degeneracy of n th energy state of hydro	ogen atom is $2n^2$.
7 marks	
0.5 h B i i i i a i i i i i i i i i i i i i i	
Q.5 i) Derivation for electron's energy in n th orbit. 4 marks	
ii) Fine structure of H_{α} line on the basis of vec	ctor atom model
6 marks	
iii) Meaning of L-S coupling. 2 marks	
Explanation with example. 4 marks	
Q.6 i) What is binding energy?	
Draw the binding energy curve? 2 marks	
What important information do you obtain from the bindin 2 marks	g energy curve?
ii) Discussion of shell model. 5 marks	
iii) Cyclotron diagram. 1 mark	
Cyclotron working. 4 marks	