www.bac35.com facebook.com/bac35

مجموعة الاعداد المركبة

. اسئلة واجوبتها

• المستوي المركب مزود بالمعلم المتعامد والمتجانس (O; u, v) في كل ما يأتي: y : x : y معددان حقيقيان.

طويلة عدد مركب

سؤال1: z عدد مركب حيث: z = x + iy

أحسب طويلة العدد z

 $|z| = \sqrt{x^2 + y^2}$ | Ilyapin

عمدة عدد مركب غير معدوم

z = x + iy عدد مركب غير معدوم حيث: z = x + iy

الإجابة: نفرض θ عمدة للعدد z و r طويلته.

$$\begin{cases} \cos \theta = \frac{x}{r} \\ \sin \theta = \frac{y}{r} \end{cases}$$

الكتابات المختلفة لعدد مركب غير معدوم

سؤال2: z عدد مركب غير معدوم طويلته r و B عمدة له.

أكتب العدد z على الشكل الجبري.

الإجابة: الشكل الجبري للعدد z = a + bi حيث:

 $b = r \sin \theta$ $a = r \cos \theta$

سوال 2:4 عدد مركب غير معدوم طويلته r و 0 عمدة له. أكتب العدد z على الشكل المثلثي.

 $z = r(\cos\theta + i\sin\theta)$: هو الإجابة: الشكل المثلثي للعدد $z = r(\cos\theta + i\sin\theta)$

سوال z عدد مركب غير معدوم طويلته z و θ عمدة له.

أكتب العدد z على الشكل الأسي.

 $z = re^{0i}$: الشكل الأسي للعدد $z = re^{0i}$

مرافق عدد مركب

z = x + iy عدد مركب حيث: z = x + iy

 $\overline{z} = x - iy$ حيث: z = x - iy الإجابة: مرافق العدد

استنتاج الطويلة والعمدة

في التمارين من 6 إلى 11:

 $z_2 = \begin{bmatrix} r_2 \ , \theta_2 \end{bmatrix}$ ، $z_1 = \begin{bmatrix} r_1 \ , \theta_1 \end{bmatrix}$: عددان مرکبان غیر معدومین حیث z_2 معدان مرکبان غیر معدومین حیث

 $z_1 \times z_2$ أحسب طويلة وعمدة

 $z_1 \times z_2 = [r_1 \times r_2, \theta_1 + \theta_2]$ الإجابة:

 $(z_1)^n$ معوال $(z_1)^n$ معوال المسب طويلة وعمدة

 $(z_1)^n = [r_1^n, n \times \theta_1]$ الإجابة:

سوال 8: أحسب طويلة وعمدة Z-

 $-z_1 = [r_1, \pi + \theta_1]$ الإجابة:

سوال 9: احسب طويلة وعمدة Z

 $\overline{Z}_1 = [r_1, -\theta_1]$

 $\frac{1}{z_1}$ أحسب طويلة وعمدة

$$\frac{1}{z_1} = \left[\frac{1}{r_1}, -\theta_1\right]$$
 الإجابة:

 $\frac{Z_1}{Z_2}$ المسب طويلة وعمدة $\frac{Z_1}{Z_2}$

$$\frac{z_1}{z_2} = \left[\frac{r_1}{r_2}, \theta_1 - \theta_2\right]$$
 الإجابة:

 $\alpha \neq 0$: عدد مرکب حیث: $z = \alpha e^{\theta i}$ مع: $z = \alpha e^{\theta i}$

حدد طويلة و عمدة العدد z

الإجابة: لحساب طويلة وعمدة Z نميز الحالتين التاليتين

$$z = [\alpha, \theta] : \alpha > 0 (1$$

$$z = [-\alpha, \pi + \theta] : \alpha < 0 (2)$$

• في الأسئلة من 14 إلى 11: a ، a عددان حقيقيان.

سؤال 2 = a + bi عدد مركب غير معدوم حيث: z = a + bi بين أن العدد z حقيقي

الإجابة: يمكن إتباع إحدى الطرق التالية ؛ نبين أن:

 $\overline{z} = z : (1)$

طريقة (2): b=0

طريقة (arg(z) = kπ : (3) عدد صحيح.

سوال15 عدد مرکب غیر معدوم حیث: z = a + bi بین أن العدد z تخیلی صرف

الإجابة: يمكن إتباع إحدى الطرق التالية ؛ نبين أن:

 $z = -\overline{z}:(1)$ طريقة

م طريقة (2): a = 0

مع: k عدد صحيح. $arg(z) = \frac{\pi}{2} + k\pi$ عدد صحيح.

z = a + bi عدد مركب حيث: z = a + bi بين أن العدد z = aموجب تماما

الإجابة: يمكن إتباع إحدى الطرق التالية ؛ نبين أن:

طريقة (1): 0 = 0 و a > 0

a>0 و $z=\overline{z}:(2)$

طريقة (arg(z) = 2km: (3) عدد صحيح.

سوال 2 = a + bi عدد مركب حيث: z = a + bi

بين أن العدد z حقيقي سالب تماما

الطرق التالية ؛ نبين أن: $\overline{z} = z : (1)$ طريقة $\overline{z} = z : (1)$ و a < 0 مطريقة b = 0 : (2) عدد a < 0 و b = 0 : (3) طريقة a < 0 : (2) : a = a طريقة a < 0 : (2) : a = a طريقة a = a : a عدد صحيح.

دستور موافر

r عدد طبيعي و z عدد مركب طويلته z^n و θ عمدة له. z^n احسب z^n احسب $z^n = r^n \lceil \cos(n\theta) + i\sin(n\theta) \rceil$

تعيين قيم الأعداد الطبيعية n

• في الأسنلة من 19 إلى 22: k:22 عدد صحيح نسبي و n عدد طبيعي. سوال 19: z^n حيث يكون العدد z^n حقيقيا العدد z^n عين قيم العدد z^n حيث يكون العدد z^n من z^n الإجابة: قيم العدد z^n هي حلول المعادلة z^n z^n في z^n

سوال20؛ عين قيم العدد nحيث يكون العدد z^n تخيليا صرفا $n = \frac{\pi}{2} + k \pi$ الإجابة: قيم العدد n هي حلول المعادلة $n = \frac{\pi}{2} + k \pi$ في n

سوال 21: عين قيم العدد n حيث يكون العدد z^n حقيقيا موجب تماما $n \theta = 2k \pi$ في $n \theta = 2k \pi$ في $n \theta = 2k \pi$

سؤال22: عين قيم العدد nحيث يكون العدد z^n حقيقيا سالبا تماما $n = \pi + 2k \pi$ الإجابة: قيم العدد $n = \pi + 2k \pi$ في حلول المعادلة $n = \pi + 2k \pi$

تطبيقات الأعداد المركبة

• A ، B ، A ، B ، A ، B ، A ، B ، A ، B ، A

سوال 23: احسب AB

 $AB = |z_B - z_A| = |X_B - Z_A|$

سنوال24: ابين أن Mتنتمي إلى محور [AB] الإجابة: نبين أن: $|z-z_A|=|z-z_B|$

D تنتمي إلى دائرة واحدة مركزها C ، B ، A تنتمي إلى دائرة واحدة مركزها D تنتمي إلى دائرة واحدة مركزها D الإجابة: نثبت أن: $|z_D-z_B|=|z_D-z_B|$

سوال26: احسب قيسا للزاوية (AB, CD)

$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg\left(\frac{z_D - z_C}{z_B - z_A}\right)$$
 الإجابة:

سؤال27 بين أن المستقيمين (AB)، (CD) متعامدان الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن:

طريقة (1): العدد
$$\frac{Z_D - Z_C}{Z_B - Z_A}$$
 تخيلي صرف.
طريقة $\overline{AB \cdot CD} = 0: (2)$

سوال28: بين أن المستقيمين (AB)، (CD) متوازيان الإجابة: يمكن إنباع إحدى الطريقتين التاليتين ؛ نبين أن:

طريقة (1): العدد
$$\frac{Z_D - Z_C}{Z_B - Z_A}$$
حقيقي.

طريقة (2): الشعاعين CD ، AB مرتبطان خطيا

1371

موال 29: بين أن النقاط C ، B ، A في استقامية الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن:

طريقة (1): العدد المركب $\frac{z_{\rm C}-z_{\rm A}}{z_{\rm B}-z_{\rm A}}$ حقيقي.

طريقة (2): الشعاعين AC ، AB مرتبطان خطيا

 $\{(A; \alpha), (B; \beta), (C; \lambda)\}$ مرجح الجملة المثقلة z_G لتكن z_G المقلة النقطة z_G

 $z_G = \frac{\alpha z_A + \beta z_B + \lambda z_C}{\alpha + \beta + \lambda}$:الإجابة: نحسب

ABC مركز ثقل المثلث Z_G المثلث Z_G مركز ثقل المثلث $Z_G = \frac{Z_A + Z_B + Z_C}{3}$ نحسب: $Z_G = \frac{Z_A + Z_B + Z_C}{3}$

ABCD مركز الرباعي Z_G المحقة النقطة Z_G مركز الرباعي مركز $Z_G = \frac{Z_A + Z_B + Z_C + Z_D}{4}$

ا توع مثلث

موال33: بين أن المثلث ABC متساوي الساقين رأسه A

$$\frac{\left|\frac{z_{C}-z_{A}}{z_{B}-z_{A}}\right|=1:1$$
الإجابة: نبين أن

سوال34: بين أن المثلث ABC قائم في النقطة A الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن:

طريقة (1): العدد
$$\frac{Z_{C}-Z_{A}}{Z_{B}-Z_{A}}$$
تخيلي صرف $\frac{Z_{C}-Z_{A}}{AC \cdot \overline{AB}} = 0$: (2): طريقة (2): $\overline{AC} \cdot \overline{AB} = 0$

بعنال35: بين أن المثلث ABC قائم في النقطة A ومتساوي الساقين الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن:

$$\frac{Z_{C} - Z_{A}}{Z_{B} - Z_{A}} = e^{-\frac{\pi}{2}i} \int \frac{Z_{C} - Z_{A}}{Z_{B} - Z_{A}} = e^{\frac{\pi}{2}i} : (1)$$

$$\begin{cases} |z_{C} - z_{A}| = |z_{B} - z_{A}| \\ |z_{C} - z_{A}|^{2} = |z_{C} - z_{A}|^{2} + |z_{C} - z_{A}|^{2} \end{cases} : (2)$$

$$\begin{cases} |z_{C} - z_{A}| = |z_{C} - z_{A}| + |z_{C} - z_{A}|^{2} + |z_{C} - z_{A}|^{2} \end{cases}$$

سُوال36: بين أن المثلث ABC متقايس الأضلاع الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن:

$$\frac{Z_{C}-Z_{A}}{Z_{B}-Z_{A}} = e^{-\frac{\pi}{3}i} \quad \text{if} \quad \frac{Z_{C}-Z_{A}}{Z_{B}-Z_{A}} = e^{\frac{\pi}{3}i} : (1)$$

$$|Z_{C}-Z_{A}| = |Z_{C}-Z_{A}| = |Z_{C}-Z_{A}| : (2)$$

$$|Z_{C}-Z_{B}| = |Z_{C}-Z_{A}| = |Z_{C}-Z_{A}| : (2)$$

$$|Z_{C}-Z_{C}$$

نوع رياعي

سؤال37، بين أن الرباعي ABCD متوازي أضلاع |Y| الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن: طريقة $|Z_D - Z_A = Z_C - Z_B : (1)$ طريقة $|Z_D - Z_A = Z_C - Z_B : (1)$ متناصفان.

سؤال38: بين أن الرباعي ABCD مستطيل الإجابة: يمكن إنباع إحدى الطريقتين التاليتين ؛ نبين أن: طريقة (1): القطرين [AC] ، [BD] متناصفان ومتقايسان طريقة (2): • الرباعي ABCD متوازي أضلاع طريقة (2): • الرباعي ABCD فائم في B

معين ABCD معين أن الرباعي ABCD معين

الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن:

طريقة (1): • الرباعي ABCD متوازي اضلاع

• المثلث ABC متساوي الساقين راسه B

طريقة (2): القطرين [AC] ، [BD] متناصفان ومتعامدان.

سوال401 بين أن الرباعي ABCD مربع

الإجابة: يمكن إتباع إحدى الطريقتين التاليتين ؛ نبين أن:

طريقة (1): • الرباعي ABCD متوازي اضلاع

المثلث ABC قائم في B ومتساوي الساقين

طريقة (2): القطرين [AC] ، [BD] ، [AC] متناصفان ومتعامدان ومتقايسان.

سوال 41: بين أن الرباعي ABCD شبه منحرف

 $\frac{Z_{B}-Z_{A}}{Z_{D}-Z_{C}}$ حقيقي طويلته تختلف عن العدد 1.

مجموعات النقط من المستوي

في الأسئلة من 42 إلى 2:52 عدد حقيقي موجب تماما.

(E) هي مجموعة النقط Mمن المستوي التي لواحقها الأعداد المركبة z

 $|z-z_A| = |z-z_B|$ عيث يكون: (E) حدد

الإجابة: نجد: AM = BM إذن: (E) هي مجموعة نقط محور القطعة [AB]

 $|z-z_A|=\alpha$ يكون: $\alpha=(E)$ حيث يكون:

الإجابة: نجد: $AM = \alpha$ إذن: (E)هي الدائرة التي مركزها Aونصف قطرها α

 $z\overline{z} = \alpha$:حيث يكون حدد (E) حيث عون

 $OM = \sqrt{\alpha}$ ومنه: $z = \sqrt{\alpha}$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ الإجابة: لدينا: $z = \alpha$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ الإجابة: لدينا: $z = \alpha$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ الإجابة: لدينا: $z = \alpha$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ ومنه: $z = \alpha$ الإجابة: لدينا: $z = \alpha$ ومنه: $z = \alpha$ و

 $z-z_A$ مين العدد $z-z_A$ حقيقيا $z=z_A$ عدد $z-z_B$ عند $z=z_A$ الإجابة: لدينا: $z=z_A$ حقيقي ومنه: $z=z_A$ او $z=z_A$ الإجابة: لدينا: $z=z_A$ الإجابة: $z=z_A$ ال $z=z_B$ او $z=z_B$ ال $z=z_B$ ال $z=z_B$ النقطة $z=z_B$ النقطة B المستقيم $z=z_A$ النقطة B

حيث يكون العدد $\frac{z-z_A}{z-z_B}$ حقيقيا سالبا $z-z_B$

 $z=z_A$ الإجابة: لدينا: $\frac{z-z_A}{z-z_B}$ حقيقي سالب ومنه: $\pi+2k\pi$: الإجابة: لدينا $\frac{z-z_A}{z-z_B}$ او M=A ومنه: π

إذن: (E) هي مجموعة نقط القطعة [AB]ما عدا النقطة B

رسوال 47 حدد (E) حيث يكون العدد $\frac{z-z_A}{z-z_B}$ حقيقيا موجبا تماما

 $arg\left(rac{z-z_A}{z-z_B}
ight)=2k\pi$: الإجابة: لدينا $rac{z-z_A}{z-z_B}$ حقيقي موجب تماما ومنه $rac{z-z_A}{z-z_B}$ ومنه: $rac{BM}{AM}=2k\pi$

إذن: (E) هي مجموعة نقط المستقيم (AB) ماعدا نقط القطعة [AB]

موال48 حدد (E) حيث يكون العدد $\frac{z-z_A}{z-z_B}$ تخيليا صرفا غير معدوم

الإجابة: لدينا: $\frac{Z-Z_A}{Z-Z_B}$ تخيلي صرف غير معدوم ومنه:

 $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$: $(\overrightarrow{BM}, \overrightarrow{AM}) = \frac{\pi}{2}$: $(\overrightarrow{arg} \left(\frac{z - z_A}{z - z_B}\right) = \frac{\pi}{2} + k\pi$

إذن: (E) هي مجموعة نقط الدائرة التي قطرها [AB]ما عدا النقطتين B ، A

 $z=z_A+e^{ heta_i}$ يكون: $z=z_A+e^{ heta_i}$ عدد حقيقي ؛ حدد $z=z_A+e^{ heta_i}$ حيث يكون: $z=z_A+e^{ heta_i}$ عدد حقيقي ؛ حدد $z=z_A+e^{ heta_i}$ الإجابة: لدينا: $z=z_A+e^{ heta_i}$ ومنه: $z=z_A+e^{ heta_i}$ ومنه: $z=z_A+e^{ heta_i}$ الإجابة: $z=z_A+e^{ heta_i}$ ومنه: $z=z_A+e^{ heta_i}$ الإجابة: $z=z_A+e^{ heta_i}$ ومنه: $z=z_A+e^{ heta_i}$ ومنه: $z=z_A+e^{ heta_i}$ الإجابة: $z=z_A+e^{ heta_i}$ ومنه: $z=z_A+e^{ heta_i}$

 $z = z_A + k e^{\pi i}$ عدد حقيقي موجب. حدد (E) حيث يكون: $k \cdot 50$ عدد $k \cdot 50$ عدد $\overline{AM} = k \cdot \overline{u}$ ومنه: $z - z_A = -k$ ومنه: $z = z_A + k e^{\pi i}$ الإجابة: لدينا: $z = z_A + k e^{\pi i}$ ومنه: $z = z_A + k e^{\pi i}$ إذن: $z = z_A + k e^{\pi i}$ مي مجموعة نقط نصف مستقيم يشمل $z = z_A + k e^{\pi i}$ إذن: $z = z_A + k e^{\pi i}$

 $arg(z) = \theta + 2k\pi$ بيوال (E) حدد (E) حيث يكون: $arg(z) = \theta + 2k\pi$ ($(\overline{OI}, \overline{OM}) = \theta$ ومنه: $arg(z) = \theta + 2k\pi$ ((E)) هي مجموعة نقط نصف مستقيم

 $arg \, z = arg \, \overline{z} + 2 \, k \, \pi$ معناه: E الإجابة: لدينا: E معناه: E

 $\alpha |z-z_A|^2 + \beta |z-z_B|^2 = k$: حدد (E) حيث يكون حدد

 α AM² + β BM² = k : ومنه: $\alpha |z-z_A|^2 + \beta |z-z_B|^2 = <math>k$: لا α AM² + β BM² = k : α + β = 0 (1 ax + by + c = 0 : α : α + β = 0 (1 (E) . α : α + β = 0 (1 (iv): α = α : α + β = 0 (2 (2 α + β = α : α - α - α - α : α - α - α - α : α - α - α - α - α : α - α - α - α - α : α - α -

معادلات لمجهول مركب

 $a \neq 0$ في الأسئلة من 54 إلى 54 a = 0 ، a = 0 أعداد حقيقية مع: $a \neq 0$ هي الأسئلة من 54 إلى $a \neq 0$ هي مجموعة الأعداد المركبة C المعادلة $a \neq 0$ في مجموعة الأعداد المركبة C المعادلة $a \neq 0$ في مجموعة الأعداد المركبة C المعادلة $a \neq 0$ في مجموعة الأعداد المركبة C المعادلة $a \neq 0$ في مجموعة الأعداد المركبة C المعادلة C التاليتين التاليتين التاليتين: C ونميز الحالتين التاليتين:

$$z_{2} = \frac{-b + \sqrt{\Delta}}{2a} \qquad \qquad z_{1} = \frac{-b - \sqrt{\Delta}}{2a} \qquad : \Delta \ge 0 \bullet$$

$$z_2 = \overline{z}_1$$
 $z_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$ $: \Delta < 0 \bullet$

 $az^{2}+bz+c=0:(E)$ نعتبر في مجموعة الأعداد المركبة المعادلة (E): $az^{2}+bz+c=0:(E)$ نعتبر في مجموعة الأعداد المركبة المعادلة (E) ثم استنتج الحل الآخر $z_{1}=\alpha$ الخر z_{2} الإجابة: نبين أن $a\alpha^{2}+b\alpha+c=0$ ولحساب z_{1} نذكر أن:

$$z_1 \times z_2 = \frac{c}{a} \quad (\quad z_1 + z_2 = -\frac{b}{a}$$

 $az^2 + b\overline{z} + c = 0$ المعادلة z + c = 0 المعادلة z = x + iy المعادلة z = x + iy

 α عددان مركبان. بين أن العدد z ، α عددان مركبان. بين أن العدد $z^2 = \alpha$ الإجابة: نبين أن $z^2 = \alpha$

مدد مركب ، عين الجذرين التربيعيين للعدد α عدد مركب

$$\begin{cases} x^2 + y^2 = |\alpha| \\ x^2 - y^2 = \text{Rel}(\alpha) : عیکون = x + iy حیث z = x + iy الإجابة: نضع $z = x^2 - y^2 = \alpha$$$

سوال z:59 عدد مركب طويلته r و θ عمدة له.

استنتج الجذرين التربيعيين للعدد z

$$z = \left(\sqrt{r} e^{\frac{\theta}{2}i}\right)^2$$
 ومنه: $z = r e^{\theta i}$ الإجابة: لدينا

 $-\sqrt{r}\,e^{\frac{\theta}{2}i}$ ، $\sqrt{r}\,e^{\frac{\theta}{2}i}$: الجذران التربيعيان للعدد zهما

 $a\,z^4+b\,z^2+c=0$ المعادلة: C المعادلة: C المعادلة: C المعادلة: $a\,\alpha^2+b\,\alpha+c=0$ المعادلة: $a\,\alpha^2+b\,\alpha+c=0$ الإجابة: نضع $a\,\alpha^2+b\,\alpha+c=0$ المعادلة $a\,\alpha^2+b\,\alpha+c=0$ نسمي $a\,\alpha^2+b\,\alpha+c=0$ المعادلة $a\,\alpha^2+b\,\alpha+c=0$ فيكون: $a\,\alpha^2+c=0$ المعادلة $a\,\alpha^2+c=0$ المعادلة $a\,\alpha^2+c=0$ فيكون: $a\,\alpha^2+c=0$ المعادلة $a\,\alpha^2+c=0$ المعادلة

- $P(z) = a z^3 + b z^2 + c z + d$ عثير حدود للمتغير المركب zحيث: $P(z) = a z^3 + b z^2 + c z + d$ تحقق أن العدد α حل للمعادلة P(z) = 0
- $P(z) = (z-\alpha)(a'z^2 + b'z+c'): z$ عدد مرکب عدد مرکب ($z = (z-\alpha)(a'z^2 + b'z+c')$ عدد مرکب $z = (z-\alpha)(a'z^2 + b'z+c')$ عداد حقیقیة یطلب تعیینها

P(z) = 0 المعادلة C خل في C المعادلة C

الإجابة: 1) نبين أن: P(α) = 0

2) أ: لتعيين 'c' ، b' ، a نطبق خوارزمية هورنر أو مبرهنة المطابقة أو مبرهنة القسمة.

 $a'z^2 + b'z + c' = 0$ او $z - \alpha = 0$ تكافئ: P(z) = 0

 $P(z) = a z^3 + b z^2 + c z + d$ كثير حدود للمتغير المركب zحيث: $P(z) = a z^3 + b z^2 + c z + d$ كثير حدود للمتغير المركب P(z) = 0 تقبل حلا تخيليا صرفا يطلب تعيينه.

P(z) = 0 عين حلول المعادلة (2)

الإجابة: 1) نحسب $P(\alpha i) = 0$ ولتعيين α نطبق مبرهنة تساوي عددين مركبين

(2) نطبق خوارزمية هورنر أو مبرهنة المطابقة لتعيين الأعداد الحقيقية $(2) = (z - \alpha i)(a'z^2 + b'z + c')$ التي تحقق: $(2 + b'z + c')(a'z^2 + b'z + c')$ التي تحقق: $(2 + b'z + c')(a'z^2 + b'z + c')(a'z^2 + b'z + c')$ المعادلة $(2 + b'z + c')(a'z^2 + b'z + c')(a'z^2 + b'z + c')$

التحويلات النقطية

سوال63: بين أن النقطة Aصامدة (مضاعفة) بالتحويل النقطي f الإجابة: نبين أن f (A) = A

سوال 64 حدد لواحق النقط الصامدة بالتحويل f الإجابة: إذا كان:

a=1: لا توجد نقط صامدة بالتحويل f

 $z = \frac{b}{1-a}$ توجد نقطة صامدة وحيدة بالتحويل f لاحقتها $z = \frac{b}{1-a}$

سوال65: حدد طبيعة التحويل f وعناصره المميزة الإجابة: لتحديد طبيعة التحويل f نميز الحالات التالية:

1) العدد aحقيقي

i: a = 1: التحويل f انسحاب لاحقة شعاعه العدد b

 $\frac{b}{1-a}$ التحويل f تحاك نسبته $a \neq 1$ الحقة مركزه $a \neq 1$

2) انعدد a مركب ليس حقيقي

سوال66: أكتب العبارة التحليلية للتحويل f

الإجابة: لدينا: z'=az+b ومنه: x'+iy'=a(x+iy)+b ومنه: x'+iy'=a(x+iy)+b على الشكل الجبري ولتعيين y' ، x' نطبق مبر هنة تساوي عددين مركبين.

k ونسبته h الذي مركزه النقطة h ونسبته h النجابة: العبارة المركبة للتحاكي h من الشكل: h حيث:

$$z' = k z + (1-k) z_A$$
 : ذن $\begin{cases} \alpha = k \\ \beta = (1-\alpha) z_A \end{cases}$

سؤال 68: أكتب العبارة المركبة للدوران r الذي مركزه A وزاويته θ الإجابة: العبارة المركبة للدوران r من الشكل: $z' = \alpha z + \beta$ حيث:

$$z' = e^{\theta i} z + (1 - \alpha) z_A$$
 : لذن $\begin{cases} \alpha = e^{\theta i} \\ \beta = (1 - \alpha) z_A \end{cases}$

سؤال 69: أكتب العبارة المركبة للتشابه المباشر S الذي مركزه A وزاويته θ ونسبته α الإجابة: العبارة المركبة للتشابه المباشر α من الشكل: $\alpha z' = \alpha z + \beta$ حيث:

$$z' = ke^{\theta i} z + (1-\alpha)z_A$$
 ' $\begin{cases} \alpha = ke^{\theta i} \\ \beta = (1-\alpha)z_A \end{cases}$

ر 100 عند النسبة لم والزاوية () للتشابه المباشر Sالذي مركزه A ويحول B إلى C الإجابة: العبارة المركبة للتشابه المباشر Sمن الشكل: z' = αz+β

$$\theta = \arg\left(\frac{Z_C - Z_A}{Z_B - Z_A}\right), \ k = \left|\frac{Z_C - Z_A}{Z_B - Z_A}\right| : \text{also } \alpha = \frac{Z_C - Z_A}{Z_B - Z_A} : \text{limit}$$

D إلى B ويحول C إلى B ويحول C إلى C إلى C إلى C إلى C إلى C إلى C الى C ويحول C إلى C المياشر C المياشر C الشكل: C C المياشر C المياشر C المياشر C الشكل: C

$$\beta$$
 ، α : رمنه: $\begin{cases} z_B = \alpha z_A + \beta \\ z_D = \alpha z_C + \beta \end{cases}$ ، بحل الجملة نجد: α

سُوَالُ27: كَتَشَابِهُ مَبَاشِرِ مَركزَهُ A ونسبتُهُ لِمُورَاوِيتُهُ 0.

(C)دائرة مركزها Bونصف قطرها R.

S حدد العناصر المميزة للدائرة (C')صورة الدائرة (C)بالتشابه المباشر B'M = R' الإجابة: الدائرة (C')هي مجموعة النقط Mمن المستوي التي تحقق: (C')

$$\begin{cases} B' = S(B) \\ R' = S(R) \end{cases}$$