クラスタサイズ調整変数を導入したクラスタリング手法の評価

池辺 颯一

芝浦工業大学 工学部 通信工学科

2018年1月16日

概要・背景

- 情報化社会の発展によりデータが複雑かつ膨大に
- ビッグデータを人の手で分類するのは難しい
- それらのデータを自動的に分類するクラスタリングに着目

クラスタリング前

クラスタリング後

目的・目標

目的

より精度が高いクラスタリング手法の発見

目標

クラスタサイズ調整変数を導入した3つの手法について比較と評価を行う

実験対象

提案手法

- eFCMA
- qFCMA
- sFCMA

クラスタリングの最適化問題

eFCMA

minimize
$$\sum_{i=1}^{C} \sum_{k=1}^{N} u_{i,k} ||x_k - v_i||_2^2 + \lambda^{-1} \sum_{i=1}^{C} \sum_{k=1}^{N} u_{i,k} \log\left(\frac{u_{i,k}}{\alpha_i}\right)$$

subject to $\sum_{i=1}^{C} u_{i,k} = 1$, $\sum_{i=1}^{C} \alpha_i = 1$ and $\lambda > 0$, $\alpha_i > 0$

N	データ数	x_k	データ数
\overline{C}	クラスタ数	v_i	クラスタ中心
λ	ファジィ化パラメータ	$u_{i,k}$	帰属度
α_i	クラスタサイズ調整変数		

クラスタリングの最適化問題

qFCMA

\overline{N}	データ数	x_k	データ数
\overline{C}	クラスタ数	v_i	クラスタ中心
λ, m	ファジィ化パラメータ	$u_{i,k}$	帰属度
α_i	クラスタサイズ調整変数		

クラスタリングの最適化問題

sFCMA

$$\begin{split} & \underset{u,v,\alpha}{\text{minimize}} \ \sum_{i=1}^C \sum_{k=1}^N (\alpha_i)^{1-m} (u_{i,k})^m \|x_k - v_i\|_2^2 \\ & \text{subject to} \ \sum_{i=1}^C u_{i,k} = 1 \ , \ \sum_{i=1}^C \alpha_i = 1 \ \text{and} \ m > 1 \ , \ \alpha_i > 0 \end{split}$$

N	データ数	x_k	データ数
\overline{C}	クラスタ数	v_i	クラスタ中心
m	ファジィ化パラメータ	$u_{i,k}$	帰属度
α	クラスタサイズ調整変数		

研究方法

- 人工データ実験
- ② 実データ実験
- ◎ 実データ実験で算出した ARI により各手法を評価

評価方法

ARI (Adjusted Rand Index)

- -1 から1までの範囲で精度評価を行う指標
- 1の時に完全一致で0の時にランダム
- ARI の値が高いほど高評価

人工データ実験

使用する人工データ

● 平均値 (−1, −1), 標準偏差 (0.5, 0.5) 及び平均値 (1, 1), 標準偏差 (0.5, 0.5) のガウスサンプリングで生成

● データ数: 100

● クラス数:2

人工データ実験のアルゴリズム

- クラスタ中心 V をランダムに与える。
- Vを用いて帰属度 U を更新する。
- U を用いて V 及びクラスタサイズ調整変数 A を更新する。
- 収束条件すれば終了し、そうでない場合は2に戻る。

実験結果:人工データ

eFCMA

eFCMA の特徴

パラメータ λ を無限大に近づけるほど HCM に近づく

実験結果:人工データ

sFCMA

sFCMA の特徴

パラメータ m を 1 に近づけるほど HCM に近づく

実験結果:人工データ

qFCMA

$$m = 1.01$$
 , $\lambda = 10$

$$m = 2$$
, $\lambda = 10000$

qFCMA の特徴

- パラメータ λ を無限大に近づけると sFCMA に近づく
- パラメータ m を 1 に近づけると eFCMA に近づく

各手法間の関係

実データ実験

User Knowledge Modeling Data Set

- 被験者の勉強時間、試験結果など5属性を収録したデータ
- ソース: UCI Machine Learning Repository
- 個体数:403
- クラス数:4(非常に低い、低い、中央、高い)

実験条件

eFCMA

パラメータ λ を 1 から 1 刻みで 100 まで変化させる

qFCMA

- パラメータ λを 1 から 1 刻みで 100 まで変化させる
- パラメータ m を 2 から 0.01 刻みで 1.01 まで変化させる

sFCMA

パラメータ m を 2 から 0.01 刻みで 1.01 まで変化させる

実データ実験のアルゴリズム

- 正解帰属度を用いて帰属度 U を初期化する。
- U を用いてクラスタ中心 V 及びクラスタサイズ調整変数 A を更新 する。
- ⑤ 収束すれば終了し、そうでない場合は2に戻る。

実験結果:実データ

eFCMA

最高 ARI:0.315282 (λ = 99.5)

実験結果:実データ

qFCMA

最高 ARI:

実験結果:実データ

sFCMA

最高 ARI:0.715312 (m = 1.01)

実験結果

各手法の最高 ARI

eFCMA	0.315282	$\lambda = 99.5$
qFCMA		$\lambda = , m =$
sFCMA	0.715312	m = 1.01

評価

sFCMA が最も高評価

考察・課題

考察

- sFCMA と eFCMA、gFCMA との差は、エントロピー項の有無。
- エントロピー項を削除したことが計算結果に影響したと考えられる。

課題

- 他の実データでも同様の傾向が現れるかどうかの検証。
- エントロピー項が影響する原因及び理由の調査。

まとめ

目的

より精度が高いクラスタリング手法の発見

目標

クラスタサイズ調整変数を導入した3つの手法について比較と評価を行う

実験結果

sFCMA が高評価となった

考察

エントロピー項を削除したことが計算結果に影響したと考えられる

補足:eFCMA の更新式

$$v_{i} = \frac{\sum_{k=1}^{N} u_{i,k} x_{k}}{\sum_{k=1}^{N} u_{i,k}},$$

$$u_{i,k} = \frac{\pi_{i} \exp(-\lambda ||x_{k} - v_{i}||_{2}^{2})}{\sum_{j=1}^{C} \alpha_{j} \exp(-\lambda ||x_{k} - v_{j}||_{2}^{2})},$$

$$\alpha_{i} = \frac{\sum_{k=1}^{N} u_{i,k}}{N}.$$

補足:qFCMA の更新式

$$\begin{aligned} v_i &= \frac{\sum_{k=1}^N (u_{i,k})^m x_k}{\sum_{k=1}^N (u_{i,k})^m}, \\ u_{i,k} &= \frac{\alpha_i (1 + \lambda (1-m)||x_i - v_k||_2^2)^{\frac{1}{1-m}}}{\sum_{j=1}^C \alpha_j (1 + \lambda (1-m)||x_j - v_k||_2^2)^{\frac{1}{1-m}}}, \\ \alpha_i &= \frac{1}{\sum_{j=1}^C \left(\sum_{k=1}^N \frac{(u_{j,k})^m (1 - \lambda (1-m)d_{j,k})}{(u_{i,k})^m (1 - \lambda (1-m)d_{i,k})}\right)^{\frac{1}{m}}}. \end{aligned}$$

補足:sFCMA の更新式

$$v_{i} = \frac{\sum_{k=1}^{N} (u_{i,k})^{m} x_{k}}{\sum_{k=1}^{N} (u_{i,k})^{m}},$$

$$u_{i,k} = \frac{1}{\sum_{j=1}^{c} \frac{\alpha_{j}}{\alpha_{i}} \left(\frac{d_{j,k}}{d_{i,k}}\right)^{\frac{1}{1-m}}},$$

$$\alpha_{i} = \frac{1}{\sum_{j=1}^{C} \left(\sum_{k=1}^{N} \frac{(u_{j,k})^{m} d_{j,k}}{(u_{i,k})^{m} d_{i,k}}\right)^{\frac{1}{m}}}.$$