

ORTOPÉDIAI ELŐSZŰRŐ ESZKÖZ TERVEZÉSE

Kreinicker Gábor, Sipos Bence

Konzulens: Dr. Szilágyi Brigitta¹

Járásproblémák

Mozgásszervi korlátozottsággal rendelkezők aránya Magyarországon 2019

Képek forrása:

https://www.ksh.hu/apps/shop.kiadvany?p_kiadvany_id=1057181&p_temakor_kod=KSH&p_lang=HU

Jelenlegi vizsgálatok

Képek forrása:

 $\frac{\text{https://news.cision.com/vicon/r/motion-capture-set-to-become-more-mainstream-in-medical-science-predicts-vicon,}{\text{c9722569}}}{\text{Moln\'ar Cecília k\'epe}}$

Járásvizsgálatok fontossága

- Megfelelő időben való észlelése fontos (idősek esései) (Begg et al., 2000)
- Nagyon koncentráció függő, laborban nehéz mindennapi helyzeteket szimulálni. (Bridenbaugh et al., 2011)

Kép forrása: Begg et al., 2000

Fehérköpeny-effektus

Képek forrása:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401058/

24 órás rendszerek

ABPM

ECG

Képek forrása:

 $\frac{https://www.gponline.com/ambulatory-blood-pressure-monitoring/cardiovascular-system/article/1408835\ https://prixton.com/product/smartwatch-electrocardiogram-ecg-swb28/?lang=en$

Nem MoCap

Eszköz felépítése

Szenzorok

Mérőrendszer

Központi egység – Raspberry Pi számítógép

Mintavételezők – Arduino Nano

Szenzorok - MPU-9250

Vezeték nélküli eszköz

	A mi eszközünk	Notch	ProMove- mini	MoCap/ járáslabor
Ár	Alacsony	Közepes	Magas	Magas
Mintavételezés - sebesség	120-300	40-500	500	120-180
Helyhez kötöttség	Nincs	Nincs	Minimális	Nagy
Kültéren alkalmazható	Igen	Igen	Igen	Általában nem
Méret és tömeg	10 g	10 g	20 g	-
Pontosság	Elegendő	Elegendő	Elegendő	Nagy
Mérés maximális hossza	Hosszú	Közepes	Hosszú	Rövid
Vizsgálat előkészítés ideje	Rövid	Rövid	Rövid	Hosszú

Mérések

120 Hz-es mintavételezés Gyorsulás, giroszkóp, magnetométer Nincs trajektória visszaállítás

Adatok előkészítése

Adatok előkészítése

Szezonalitás dekompozíció

- -A cél, hogy ezekkel a feldolgozó módszereket teszteljük
- -Egyszerű 150 méteres séta 2 fordulással

-Futás 15 fokos (27%-os) emelkedőn felfelé

-Eltérő cipőtalpvastagság hatásának vizsgálata. A két láb hossza közt ez által létrehozott 4 mm-es hosszkülönbség.

-Cipőben és mezítláb való séta

LSTM

Mindössze 4 LSTM (Long-short term memory) cella.

Kép forrása:

 $\frac{https://www.researchgate.net/figure/Structure-of-the-LSTM-cell-and-equations-that-describe-the-gates-of-an-LSTM-cell fig5\ 329362532$

1D konvolúció

- -100 egység hosszú szeleteken tanítva
- -Egy-egy lépést klasszifikál

2D konvolúció

-200x100-as wavelet transzformáltakból készített képek segítségével

Következtetések

- -Leggyorsabb: 1D konvolúció
- -Könnyű futtathatóság: LSTM
- -Legkisebb adatigény: LSTM
- -Gyorsíthatóság: 1D és 2D konvolúció

Mérések megjelenítése

- OpenSim és az arra épülő OpenSense segítségével
- Adatok előkészítése Python nyelven (IMU adatok kvaterniókká alakítása)
- •Inverz kinematika számítása és plot-olás

További feldolgozási lehetőségek

- AI-IMU Dead-Reckoning nyers IMU adatok feldolgozása 1,1% hibával
- A kiterjeszett Kalman-filterbe beadott adatokat előszűri
- SONODE Másodrendű differenciál egyenletek feldolgozására
- 2020 év végi újítás Norcliffe és társai munkája -> járás vizsgálatokra még senki nem használta
- · Az integrálásból adódó egyre növekvő hibát csökkenti

Lehetséges felhasználási területek

- -Szűrésre
- -Futás, gyaloglás, labdasportok
- -Rehabilitáció
- -Hosszú megfigyelések például a fáradás vizsgálatára

Kérdések

