统计物理

Harichane

2024年1月13日

目录

目录			1
第六章	统计物理的基本概念		
6.2	微观状	态的经典描写与量子描写	2
	6.2.1	子系:	2
	6.2.2	相空间:	2
	6.2.3	相体元:	2
	6.2.4	Free Particle	2
	6.2.5	One-dimensional harmonic oscillator	2
	6.2.6	边长为 L 的正方形容器中的自由粒子的能量 (量子	
		描写):	3
	6.2.7	量子态:	3
	6.2.8	简并度 g:	3
	6.2.9	一维谐振子的能量 (量子描写):	3
	6.2.10	子相体积:	3
	6.2.11	全同性原理:	3
	6.2.12	全同粒子系统波函数的对称性:	4
	6.2.13	费米子和玻色子:	4
	6.2.14	泡利不相容原理:	4
	6.2.15	定域子系:	4
	6.2.16	子系的量子态与 (全同多粒子) 系统的量子态:	4
	6.2.17	等几率原理:	5
第七章	近独立·	子系组成的系统 子系组成的系统	6
7.1	分布与	i系统的微观态 最可几分布	6
	7.1.1	近独立子系:	6
	7.1.2	粒子按能级的分布 a_{λ} :	6
7.2	定域子	·系 麦克斯韦-玻尔兹曼分布	6

7.2.1	分布 a_{λ} 对应的 系统微观状态数 $W(\{a_{\lambda}\})$:	6
7.2.2	最可几分布 平均分布:	6
7.2.3	麦克斯韦-玻尔兹曼分布 (MB 分布):	7
7.2.4	MB 分布中参数 α 与 β 的确定:	7

第六章 统计物理的基本概念

6.2 微观状态的经典描写与量子描写

6.2.1 子系:

组成系统的基本单元,可以是气体中的分子等,也可以代表某一个自由度等.目前可以简单地理解成粒子。

6.2.2 相空间:

若系统由 N 个子系构成,每个子系的自由度为 r,整个系统的自由度为 s=Nr,则需要 2s 个广义坐标和广义动量 $q_1,\cdots,q_s,p_1,\cdots,p_s$,用这 2s 个坐标和动量构成的空间称为**相空间**(或 Γ 空间),相空间中的一个点就代表系统的一个微观状态。

6.2.3 相体元:

相空间中的小体积元 $d\Omega$ 。

$$d\Omega = dq_1 \cdots dq_s dp_1 \cdots dp_s$$

6.2.4 Free Particle

自由粒子的能量:

$$\varepsilon = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right) = \frac{p^2}{2m} \tag{6.2.1}$$

6.2.5 One-dimensional harmonic oscillator

一维谐振子的能量:

$$\varepsilon = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2 \tag{6.2.2}$$

6.2.6 边长为 L 的正方形容器中的自由粒子的能量 (量子描写):

$$\varepsilon = \frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right) = \frac{2\pi^2 \hbar^2}{mL^2} \left(n_1^2 + n_2^2 + n_3^3 \right)$$
 (6.2.3)

6.2.7 量子态:

例如 $n_1=1,n_2=1,n_3=-1$ 的态(简记为(1,1,-1))的能量为 $\varepsilon_{1,1,-1}=\frac{2\pi^2\hbar^2}{mL^2}\times 3=\varepsilon_0$,为最低能级。

6.2.8 简并度 q:

属于统一能级不同量子态数称为该能级的简并度。例如, 上例中的 ε_0 有 $2^3 = 8$ 个不同的量子态, 记为 $g_0 = 8$.

6.2.9 一维谐振子的能量 (量子描写):

$$\varepsilon_0 = \left(n + \frac{1}{2}\right) h v, n = 0, 1, 2, \cdots$$
 (6.2.4)

一维谐振子每一能级只有一个量子态, 即简并度 $g_n = 1$.

6.2.10 子相体积:

在 经典极限条件下,对量子态的求和可以代替为对子相空间的积分. 子系的一个量子态 \longleftrightarrow 大小为 h^r 的子相体积

6.2.11 全同性原理:

全同粒子是指他们的内禀性质 (如质量、电荷、自旋等) 完全相同;

全同性原理:全同粒子的交换不引起新的系统的量子态,或者说全同粒子是不可分割的.

6.2.12 全同粒子系统波函数的对称性:

当交换任何两个粒子的全部坐标 (位置, 自旋) 时, 全同粒子系统的波函数只允许两种情况: 或者波函数不变 (波函数对称), 或者波函数变号 (波函数反对称)

6.2.13 费米子和玻色子:

玻色子: 自旋为 $s\hbar(s=0,1,2,\cdot)$ 的粒子, 如光子 $(s=1),\pi$ 介子 (s=0) 等. 其波函数是**交换对称**的, 遵从**玻色-爱因斯坦统计**;

费米子: 自旋为 \hbar 的半奇整数倍 ($s = 1/2, 3/2, \cdot$) 的粒子, 如所有的轻子 (电子, τ 子, μ 子), 质子, 中子 (以上均为 s = 1/2) 等, 波函数是**交换反对** 称的, 遵从**费米-狄拉克统计**:

复合粒子: 如果是由偶数个费米子或玻色子构成,则为玻色子;由奇数个费米子组成,则为费米子.

6.2.14 泡利不相容原理:

全同费米子系统,不允许有两个全同的费米子处于同一个单粒子量子态;

全同玻色子系统热一个单粒子态上占据的粒子数是不受限制的.

6.2.15 定域子系:

对于全同多粒子系统,若各个粒子的波函数被局限在空间不同的范围 内没有重叠,则可以从粒子所处的不同的位置区分它们,这种子系称为**定域** 子系;与此相反的子系则称为非定域子系.

6.2.16 子系的量子态与 (全同多粒子) 系统的量子态:

设子系有3个不同的量子态,系统有2个粒子.

对于定域子系: 每一个粒子有 3 个量子态可选择, 则 2 个粒子的量子态的组合有 $3^2 = 9$ 个不同的量子态.

图 1: 定域子系

对于非定域玻色子,由于粒子不可分辨,则组合数为 $C_3^1+C_3^1=6;$ 对于非定域费米子,由于不能有两个费米子处于同一量子态,则组合数为 $C_3^1=3;$

6.2.17 等几率原理:

处于平衡态下的孤立系, 系统各个可能的微观状态出现的几率相等. 可能的微观状态指的是给定 (E,V,N) 的系统的可能的微观状态.

第七章 近独立子系组成的系统

7.1 分布与系统的微观态 最可几分布

7.1.1 近独立子系:

组成系统的粒子之间的相互作用可以忽略不计, 即系统的总能量 E 等于各个粒子能量之和. 由于粒子之间完全没有相互作用, 粒子之间不可能交换能量, 系统就不可能达到平衡态并保持平衡.

7.1.2 粒子按能级的分布 a_{λ} :

粒子的能级从低到高排序: $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{\lambda}, \dots$,相应的各个能级的**简并度** 为 $g_1, g_2, \dots, g_{\lambda}, \dots$,令 $a_1, a_2, \dots, a_{\lambda}, \dots$ 代表这些能级上占据的粒子数, 称 为粒子按能级的**微观分布**,简记为 a_{λ} ,不同的 a_{λ} 代表不同的微观分布.

在固定的 (E, V, N) 的宏观状态下, 允许出现的微观分布必须满足:

$$\sum_{\lambda} a_{\lambda} = N \tag{7.1.1}$$

$$\sum_{\lambda} \varepsilon_{\lambda} a_{\lambda} = E \tag{7.1.2}$$

7.2 定域子系 麦克斯韦-玻尔兹曼分布

7.2.1 分布 a_{λ} 对应的系统微观状态数 $W(\{a_{\lambda}\})$:

7.2.2 最可几分布 平均分布:

最可几分布即一定宏观状态下所有可能出现的微观分布中, 出现几率最大的分布;

若最可几分布出现的几率远大于其他分布, 那么最可几分布等于平均分布.

麦克斯韦-玻尔兹曼分布 (MB 分布): 7.2.3

全同定域子系的最可几分布 $\{a_{\lambda}\}$ 所对应的系统量子态数 $W(\{a_{\lambda}\})$ 为:

$$W(\{a_{\lambda}\}) = \frac{N!}{\prod_{\lambda} a_{\lambda}!} \prod_{\lambda} g_{\lambda}^{a_{\lambda}}$$
 (7.2.1)

最可几分布为:

$$\tilde{a}_{\lambda} = g_{\lambda} e^{-\alpha - \beta \varepsilon_{\lambda}} \tag{7.2.2}$$

即为麦克斯韦-玻尔兹曼分布.

可以证明最可几分布是尖锐成峰的极大, 故满足 $\frac{\tilde{a}_{\lambda} = \bar{a}_{\lambda}}{}$

MB 分布中参数 α 与 β 的确定: 7.2.4

引入子系配分函数 Z:

$$Z \equiv \sum_{\lambda} g_{\lambda} e^{-\beta \varepsilon_{\lambda}} \tag{7.2.3}$$

将 (7.2.2) 和 (7.1.1) 分别代入 (7.1.1) 和 (7.1.2), 得:

$$\alpha = \ln \frac{Z}{N} \tag{7.2.4}$$

$$\alpha = \ln \frac{Z}{N}$$

$$E = -N \frac{\partial}{\partial \beta} \ln Z$$
(7.2.4)
$$(7.2.5)$$