证明:

$$n$$
为偶完全数 $->n=2^{p-1}(2^p-1)$,其中 2^p-1 , p 为素数由于 $n>6$,故 $p>2$,不妨记 $p=2k+1,k\in Z$ 则 $n=2^{2k}(2^{2k+1}-1)->n=4^k(2 imes 4^k-1)$ 又 $4^3mod9=1$

対 k按照 mod3分类考虑kmod3=0:记 $k=3m,k\in Z$ $nmod9=4^{3m}(2\times 4^{3m}-1)mod9=1\times (2\times 1-1)mod9=1mod9$

其余情况同理可证

注:部分同学只选择完系带入计算,还需要证明带入的一般性考试时不要写显然和同理可证

38

n	k	n	k	n	k	n	k
1	0	8	3	15	27	22	26
2	1	9	10	16	4	23	20
3	5	10	23	17	21	24	8
4	2	11	25	18	11	25	16
5	22	12	7	19	9	26	19
6	6	13	18	20	24	27	15
7	12	14	13	21	17	28	14

(2)26

(3)11

41

证:

```
设 a模 p的 阶 为 l q|a^p+1, q \neq 2->a^{2p}=1 mod q l|2p 对 l=1, l=2, l=p, l=2p分 类 讨 论 l=1: q|a+1 l=2: q|(a+1)(a-1) 若 q |(a+1)(a-1) 若 q |(a+1) q|a-1, 则 a=1 mod q, a^p=1 mod q, 矛 盾 l=p: 显然 矛 盾 l=2p: 由 费 马 小 定 理,a^{q-1}=1 mod q,故 q-1|2p,则 q=2pk+1,k\in Z 得 证
```

42

注:

证明 $(a+1)^x \mod p=1$ 在x=6成立比较简单,但是需要证明6是使方程成立的最小正整数在已知x=6成立时,只需要验证x=1,2,3时不成立即可注意,验证x=4,x=5不成立并不能保证x=1,2,3时不成立