# $D\mathrm{-BIOL},\ D\mathrm{-CHAB}$

# Prüfung zur Vorlesung Mathematik I/II

### Bitte ausfüllen!

| Name:     |  |
|-----------|--|
| Vorname:  |  |
| Legi-Nr.: |  |

### Nicht ausfüllen!

| Aufgabe | Punkte | Kontrolle |
|---------|--------|-----------|
| 1       |        |           |
| 2       |        |           |
| 3       |        |           |
| 4       |        |           |
| 5       |        |           |
| 6       |        |           |
| Total   |        |           |

| Vollständigkeit |  |
|-----------------|--|
|-----------------|--|

## Hinweise zur Prüfung

Prüfungsdauer: 3 Stunden.

Hilfsmittel: Aufzeichnungen im Umfang von 20 Seiten A4.

#### Bitte beachten Sie folgende Punkte:

- Tragen Sie **jetzt** Ihren Namen in das Deckblatt ein und geben Sie es **am Ende** der Prüfung als vorderstes Blatt Ihrer Arbeit ab.
- Legen Sie Ihre Legi offen auf den Tisch.
- Beginnen Sie jede Aufgabe auf einem neuen Blatt.
- Begründen Sie Ihre Lösungen. Dabei können bekannte Formeln aus der Vorlesung und den Übungen ohne Herleitung verwendet werden.
- Schreiben Sie nicht mit Bleistift, rotem oder grünem Kugelschreiber.
- Die Reihenfolge der Bearbeitung der Aufgaben ist Ihnen freigestellt.
- Wir erwarten nicht, dass Sie alle Aufgaben lösen. Tun Sie einfach Ihr Bestes! Verweilen Sie nicht zu lange bei einer Aufgabe, die Ihnen Schwierigkeiten bereitet.

Viel Erfolg!

# Aufgaben

#### **1.** (10 Punkte)

Die Antworten in dieser Aufgabe müssen *nicht* begründet werden. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt.

a) Sei  $a_n = \frac{n}{n+1} \cdot \cos(2n\pi)$  für n = 1, 2, ... Berechnen Sie

$$\lim_{n \to \infty} a_n = \underline{\qquad}.$$

b) Berechnen Sie

$$\lim_{x \to \infty} \left( \sin \left( \frac{3}{4} \pi \right) \right)^x = \underline{\qquad}.$$

c) Berechnen Sie

$$\lim_{x \to \infty} \left( \log(2x^3 + 2x^2 + 2) - \log(x^3 + x + 1) \right) = \underline{\qquad}.$$

d) Berechnen Sie das folgende bestimmte Integral

$$\int_0^2 |x^2 - 1| \, dx = \underline{\qquad}.$$

e) Sei  $p, q \in \mathbb{R}$  und

$$\frac{1}{(p-x)(q-x)} = \frac{A}{p-x} + \frac{B}{q-x}, \text{ für gewisse } A, B \in \mathbb{R} \text{ und alle } x \in \mathbb{R}$$

Bestimmen Sie  $A = \underline{\hspace{1cm}}$ ,  $B = \underline{\hspace{1cm}}$  in Abhängigkeit der Konstanten p,q.

f) Sei  $g: \mathbb{R} \longrightarrow \mathbb{R}$  gegeben durch

$$g(x) = \begin{cases} xe^{2x}, & \text{für } x < 1\\ ax^2 + bx + c, & \text{für } x \ge 1 \end{cases}$$

für gewisse Konstanten  $a, b, c \in \mathbb{R}$ . Bestimmen Sie a, b und c derart, dass g auf ganz  $\mathbb{R}$  zweimal differenzierbar ist (und insbesondere somit stetig und differenzierbar).

Lösung: 
$$a = ___, b = ___, c = ___.$$

### **2.** (10 Punkte)

Die Antworten in dieser Aufgabe müssen *nicht* begründet werden. Schreiben Sie die Antworten vollständig gekürzt und vereinfacht direkt auf das Aufgabenblatt.

In der folgenden Aufgabe bezeichnet i die imaginäre Einheit, d.h.  $i^2=-1$ .

a) Schreiben Sie die folgenden komplexen Zahlen u und w in der Form a+ib,  $a,b \in \mathbb{R}$ : (Bemerkung: im ersten Beispiel bezeichnet  $\overline{z}$  die zu z konjugiert komplexe Zahl.)

$$\overline{3i\left(\frac{1}{3}+2i\right)} = \underline{\hspace{1cm}}$$

$$\frac{2+5i}{1-3i} =$$
\_\_\_\_\_

$$i^{47} = ...$$

b) Skizzieren Sie folgende Menge M in der komplexen Zahlenebene:

$$M = \{ z \in \mathbb{C} : |z + \overline{z}| \le 4, \, |z - \overline{z}| \le 2 \}$$

c) Sei

$$z = 2^{-25} \cdot (1 - i)^{50}$$

i) Bestimmen r>0 und  $\varphi\in[0,2\pi)$  derart, dass  $z=re^{i\varphi}$  gilt :

$$r = \underline{\hspace{1cm}}, \varphi = \underline{\hspace{1cm}}.$$

ii) Schreiben Sie z in der Form a+ib, für geeignete  $a,b\in\mathbb{R}$ :

$$a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}.$$

d) Sei

$$\omega = 5e^{\frac{\pi}{3}i}(2\sqrt{3} + di)$$

Für welche Werte von  $d \in \mathbb{R}$  gilt  $Re(\omega) = 0$ ?

$$d =$$
 .

e) Bestimmen Sie die Lösung von

$$z^3 = 8$$

in Polarkoordinaten

$$z_1 = \underline{\hspace{1cm}}, z_2 = \underline{\hspace{1cm}}, z_3 = \underline{\hspace{1cm}}.$$

- **3.** (10 Punkte)
  - a) Für welche Werte von  $\lambda$  ist folgende Matrix invertierbar?

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 2 & 3 & \lambda \end{array}\right).$$

**b)** Seien  $v_1, v_2, v_3, v_4$  folgende Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 5 \\ -3 \\ -1 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 14 \\ 3 \\ 7 \end{pmatrix}$$

i) Drücken Sie  $v_4$  als Linearkombination der Vektoren  $v_1, v_2, v_3$  aus, das heisst finden Sie Koeffizienten  $x, y, z \in \mathbb{R}$  so dass gilt

$$v_4 = x \, v_1 + y \, v_2 + z \, v_3.$$

- ii) Sind die Vektoren  $v_1, v_2, v_3, v_4$  linear unabhängig?
- c) Sei

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ -1 & 2 & 1 \\ -1 & -1 & 4 \end{array}\right).$$

- i) Finden Sie einen Eigenvektor von A zum Eigenwert 1.
- ii) Sie wissen, dass 1 ein Eigenwert von A ist, finden Sie alle Eigenwerte von A. **Hinweis:** Schreiben Sie das charakteristische Polynom P(x) von A in der Form

$$P(x) = (x - 1)(ax^2 + bx + c)$$

mit  $a, b, c \in \mathbb{R}$ .

d) Sei

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array}\right).$$

Die Vektoren (1,1) und (2,-3) sind Eigenvektoren von A zu den Eigenwerten 3 und -2. Was sind die Eigenwerte und Eigenvektoren von  $A^{-1}$ ?

### **4.** (10 Punkte)

a) Wir betrachten folgende Differentialgleichung

$$y(x)' - \frac{3}{x}y(x) = x, \quad x > 0.$$
 (1)

mit Anfangswert

$$y(1) = 2. (2)$$

- i) Schreiben Sie die zu (1) gehörige homogene Differentialgleichung auf und finden Sie deren allgemeine Lösung.
- ii) Finden Sie die allgemeine Lösung von (1) mit Variation der Konstanten.
- iii) Finden Sie die eindeutige Lösung von (1), die die Bedingung (2) erfüllt.
- b) Wir betrachten folgende Differentialgleichung

$$y'' + 2y' + 5y = \sin(2x). \tag{3}$$

- i) Schreiben Sie die zu (3) gehörige homogene Differentialgleichung auf und finden Sie deren allgemeine Lösung.
- ii) Bestimmen Sie die Konstanten A und B so, dass

$$y(x) = A\sin(2x) + B\cos(2x)$$

eine partikuläre Lösung von (3) ist.

iii) Finden Sie die allgemeine Lösung von (3).

- **5.** (10 Punkte)
  - a) Bestimmen Sie die Gleichung der Tangentialebene an die Fläche

$$z = \sin(x)\cos(y)$$

einerseits im Punkt  $(0,\pi,0)$  und andererseits im Punkt  $(\frac{\pi}{2},\pi,-1).$ 

b) Bestimmen Sie alle kritischen Punkte, sowie alle lokalen Minima, lokalen Maxima und Sattelpunkte der Funktion f definiert durch

$$f(x,y) = x^3 + 3x^2 - 9x + y^3 - 12y.$$

c) Bestimmen Sie das Minimum der Funktion

$$f(x, y, z) = x^2 + xy + yz$$

unter der Nebenbedingung x + y + z = 1.

### **6.** (10 Punkte)

Berechnen Sie das Linienintegral  $I = \int_{\gamma} y dx + 2 dy$  wobei  $\gamma$  die Verknüpfung von  $\gamma_1$ ,  $\gamma_2$  und  $\gamma_3$  ist (das heisst  $\gamma$  ist die geschlossene Kurve, die sich ergibt, wenn man  $\gamma_1$ ,  $\gamma_2$  und  $\gamma_3$  nacheinander durchläuft).



Abbildung 1: Die Kurve  $\gamma$ 

Die Kurve  $\gamma_1$  ist gegeben durch die Gleichung

$$y = \sin(x), \quad 0 \le x \le \pi.$$

Sie beginnt beim Punkt (0,0) und endet beim Punkt  $(\pi,0)$ .

Die Kurve $\gamma_2$ ist gegeben durch die Gleichung

$$y = x - \pi$$
.

Sie beginnt beim Punkt  $(\pi,0)$  und endet beim Punkt  $(0,-\pi)$ .

Die Kurve  $\gamma_3$  geht vertikal vom Punkt  $(0, -\pi)$  zum Punkt (0, 0).

a) Parametrisieren Sie die Kurven  $\gamma_1, \gamma_2$  und  $\gamma_3$ .

b) Berechnen Sie die folgenden Linienintegrale

$$I_1 = \int_{\gamma_1} y dx + 2dy$$

$$I_2 = \int_{\gamma_2} y dx + 2dy$$

$$I_3 = \int_{\gamma_3} y dx + 2dy$$

$$I = \int_{\gamma} y dx + 2dy$$

 $\mathbf{c}$ ) Berechnen Sie das Linienintegral I mit der Formel von Green.

**Hinweis:** Die Formel von Green besagt folgendes: Sei A ein abgeschlossenes Gebiet von  $\mathbb{R}^2$  mit Rand  $\gamma$ . Dann gilt

$$\int_{\gamma} P(x,y)dx + Q(x,y)dy = \int \int_{A} \left( \frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dA$$

Die Formel von Green kann auch aus der Formel von Stokes hergeleitet werden.