I. Vecteurs directeurs, Équations

Exercice 1. (Points vers Équation)

- **1.** Déterminer, dans \mathbb{R}^3 , une équation cartésienne du plan dirigé par les vecteurs $\overrightarrow{u} = (-1, 0, 1)$ et $\overrightarrow{v} = (1, -1, 0)$.
- **2.** Déterminer, dans \mathbb{R}^3 , une équation cartésienne du plan passant par les points $A(1,1,1),\ B(2,0,1)$ et C(-1,2,4).

Exercice 2. (Équation vers Vecteurs directeurs) Déterminer une base de vecteurs directeurs des espaces vectoriels définis par les équations suivantes.

- **1.** Dans \mathbb{R}^3 , x + y + 3z = 0.
- **2.** Dans \mathbb{R}^4 , x + 2y + 3z + t = 0.
- **3.** Dans \mathbb{R}^4 , x + y + 3z = 0.
- **4.** $\{(x,y,z) \in \mathbb{R}^3 ; x+y+z=0, x+2y-z=0\}.$
- **5.** $\{(x, y, z, t) \in \mathbb{R}^4 : x + y + z = 0, x + y + t = 0, 2x + 2y + z + t = 0\}.$
- **6.** $\{(x,y,z,t) \in \mathbb{R}^4 : x+y+z+t0, x-y-2z-t=0\}.$

Exercice 3. (Perpendiculaire commune) On considère l'espace affine E de dimension 3. Soient A, A' deux points de E et \overrightarrow{u} , \overrightarrow{v} deux vecteurs non colinéaires. On note D (resp. D') la droite passant par A (resp. A') de vecteur directeur \overrightarrow{u} (resp. \overrightarrow{v}). On suppose dans cet exercice que D et D' ne sont pas coplanaires.

On note I (resp. I') un point de D (resp. D') et $\overrightarrow{AI} = \alpha u$, $\overrightarrow{A'I'} = \beta \overrightarrow{v}$.

- **1.** Montrer que $\overrightarrow{II'} \cdot \overrightarrow{u} = 0$ si et seulement si $\alpha \|\overrightarrow{u}\|^2 + \overrightarrow{u} \cdot \overrightarrow{AA'} + \beta \overrightarrow{u} \cdot \overrightarrow{v} = 0$.
- **2.** De manière analogue, déterminer une condition nécessaire et suffisante pour que $\overrightarrow{II'}\cdot\overrightarrow{v}=0$.

3. Montrer que le système d'équations

$$\begin{cases} \alpha \|\overrightarrow{u}\|^2 + \beta \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{AA'} = 0 \\ \alpha \overrightarrow{u} \cdot \overrightarrow{v} + \beta \|\overrightarrow{v}\|^2 + \overrightarrow{v} \cdot \overrightarrow{AA'} = 0 \end{cases}$$

possède une unique solution.

4. En déduire qu'il existe une unique droite sécante à D et D' et perpendiculaire à D et D'.

II. Changements de bases

Exercice 4. (Calculs de coordonnées) On note $\mathscr{C} = (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ la base canonique de \mathbb{R}^3 et \mathscr{B} la base $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$, où $\overrightarrow{u} = (1, 1, 1)$, $\overrightarrow{v} = (2, 2, -4)$ et $\overrightarrow{w} = (3, -1, 1)$.

- **1.** Montrer que \mathscr{B} est une base de \mathbb{R}^3 .
- **2.** Déterminer les coordonnées du vecteur $z = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$ dans la base \mathscr{B} .

Exercice 5. (Calcul de puissance) Soit $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\varphi \in \mathscr{L}(\mathbb{R}^3)$ telle que $A = \operatorname{Mat}_{\mathscr{B}}(\varphi) = \begin{pmatrix} 3 & 1 & 0 \\ -3 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. On pose $v_1 = e_1 - 2e_2 + e_3$, $v_2 = -e_2 + e_3$ et $v_3 = e_3$.

- **1.** Montrer que $\mathscr{B}' = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- **2.** Déterminer $C = \operatorname{Mat}_{\mathscr{C}'}(\varphi)$.
- 3. Pour tout entier naturel n, déterminer C^n et en déduire A^n .

Exercice 6. (Projection)

1. Soient $D_1 = \text{Vect}\{(2,1)\}$, $D_2 = \text{Vect}\{(2,2)\}$ et p la projection sur D_1 parallèlement à D_2 . Déterminer la matrice de p dans la base canonique.