Duração: 1h30

Álgebra Linear e Geometria Analítica

$2.^{\rm a}$ Prova de Avaliação Discreta - 05/12/2012

Nome:	N.º mecanográfico:

Declaro que desisto

N.º de folhas suplementares: _____

	Grupo I
Cotação	48

	(
Questões	1	2	Total
Cotação	42	110	152
Classificação			

Grupo I

Este grupo é constituído por 4 questões de escolha múltipla. Cada questão tem uma só opção correta que deve assinalar na folha de resposta em anexo e que será recolhida após 40 minutos. Uma resposta correta é cotada com 12 pontos, uma resposta em branco com 0 pontos e uma resposta errada com -3 pontos.

- 1. As retas em \mathbb{R}^3 definidas por $(x,y,z)=\alpha(-1,1,0),\,\alpha\in\mathbb{R},$ e por x-1=y e z=0 são
 - A. concorrentes;
 - B. coincidentes;
 - C. estritamente paralelas;
 - D. enviezadas.
- 2. Dados os vetores $X_1 = (1, 0, -1), X_2 = (0, 1, 0), X_3 = (1, 1, -1)$ de \mathbb{R}^3 , o vetor (2, 3, -2)
 - A. não se escreve como combinação linear de X_1 e X_2 ;
 - B. não se escreve como combinação linear de X_1, X_2 e X_3 ;
 - C. escreve-se como combinação linear de X_1, X_2, X_3 de forma única;
 - D. escreve-se como combinação linear de X_1, X_2, X_3 de mais do que uma forma.
- 3. Seja \mathcal{P}_2 o espaço dos polinómios de grau menor ou igual a dois e $S = \{ax^2 + bx + c \in \mathcal{P}_2 : 3a + b = 0\}$. Então
 - A. S não é um subespaço de \mathcal{P}_2 ;
 - B. $3x^2 + x$ é um elemento de S;
 - C. $\{x^2 3x, 1\}$ é uma base de S;
 - D. $\{1, 3x, x^2\}$ é um conjunto gerador de S.
- 4. Seja \mathcal{B} uma base de \mathbb{R}^3 , X um vetor de \mathbb{R}^3 tal que

$$[X]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 e $\begin{bmatrix} 1 & -1 & 0\\0 & 1 & -1\\0 & 0 & 1 \end{bmatrix}$

a matriz de mudança da base canónica ((1,0,0),(0,1,0),(0,0,1)) de \mathbb{R}^3 para a base \mathcal{B} . Então X é

- A. (1,1,1);
- B. (1,0,0);
- C. (0,0,1);
- D. (3, 2, 1).

Grupo II

Justifique convenientemente todas as suas respostas e indique os cálculos que efetuar.

1. Considere em \mathbb{R}^3 a reta \mathcal{F} definida por

$$\begin{cases} x - z = 3 \\ y - z = -1 \end{cases}$$

e a reta \mathcal{G} paralela a \mathcal{F} e que passa pelo ponto P=(2,1,0).

- (a) Escreva equações vetoriais da reta \mathcal{G} e do plano \mathcal{H} que contém as retas \mathcal{F} e \mathcal{G} .
- (b) Calcule a distância da reta ${\mathcal F}$ ao plano ${\mathcal P}$ de equação geral x+y-2z=3.

- 2. Seja S o subespaço de \mathbb{R}^3 gerado por X=(1,2,2), Y=(2,-2,1) e Z=(0,2,1).
 - (a) Calcule o ângulo entre X e Y.
 - (b) Averigue se o conjunto $\{X,Y,Z\}$ é linearmente independente e indique a dimensão de S.
 - (c) Determine uma base ortonormada do espaço S e o vetor das coordenadas de Z nessa base.
 - (d) Determine o conjunto T de todos os vetores ortogonais a X e Y. Justifique que T é subespaço de \mathbb{R}^3 .
 - (e) Considere $\mathcal{L}(A)$ o espaço das linhas e $\mathcal{N}(A)$ o espaço nulo de uma matriz $A \ m \times 3$.
 - i. Se (x, y, z) é um vetor ortogonal aos vetores de $\mathcal{L}(A)$, mostre que $(x, y, z) \in \mathcal{N}(A)$.
 - ii. Indique, se possível, uma matriz A com 3 colunas, tal que $\mathcal{L}(A) = S$ e $\mathcal{N}(A) = T$.