Deep Time-Series Analysis: Features

Deep Time Series Analysis Features

Use Case	Features
Trend Analysis	trend_strength, median_crosses, trend_changes, linear_regression_slope, linear_regression_r2
Noise/Complexity	forecastability, entropy_pairs, fluctuation
Seasonality Detection	ac_relevance, seasonal_strength
Volatility/Outliers	window_fluctuation
Model Selection	st_variation, ac_diff_series, complexity
Clustering/Classification	records_concentration, centroid

Trend Analysis

• Old: stl_features (trend_strenght)

New: trend_strength (Trend Strength)

Source: tsfeatures

Description: Computes the strength of trend in a time series

Formula:

$$\mathrm{trend} = 1 - \frac{\mathrm{Var}\left(\,e_t\,\right)}{\mathrm{Var}\left(\,f_t + e_t\,\right)} \quad \mathrm{and} \quad$$

Old: crossing_points

• New: median_crosses (Median Crosses)

Source: tsfeatures

Description: Computes the number of times a time series crossed the median line

Formula:

1. Compute the median line

2. Return the number of times the series values cross the median line

• Old: Pelt

New: trend_changes (Trend Changes)

Source: ruptures

Description: Detection of trend changing points: Linearly penalized segmentation

Formula:

1. Input Signal Preparation

• The time series data is formatted as a numpy array (shape $[n_samples, n_features]$ or $[n_samples,]$).

2. Model Selection

• Choose a cost function [model] parameter) to measure segment dissimilarity:

• "11" / "12" : Absolute/quadratic error for piecewise constant signals.

• "rbf" : Kernel-based for non-parametric changes $\ 3$ $\ 6$.

3. Penalized Segmentation

• The algorithm minimizes the sum of costs + penalty term: $\sum_{i=1}^{K+1} C(y_{t_{i-1}:t_i}) + \beta K$ where \mathcal{C} is the cost function, K is the number of change points, and β is the penalty (pen parameter) $\ 3$ $\ 1$

Old: Linear Regression

New: linear_regression_slope (Linear Regression Slope)
 & linear_regression_r2 (Linear Regression R2)

Source: scikit-learn

Description: Computes the linear regression of a time series using the Ordinary Least Squares

Formula:

- 1. Model Equation: $y=w_0+w_1x_1+w_2x_2+\ldots+w_px_{p_i}$ where w_0 is the intercept and w_1,w_2,\ldots,w_p are the coefficients.
- 2. Objective: Find w_0, w_1, \ldots, w_p that minimize the sum of squared residuals: $\sum (y_i \hat{y}_i)^2$, where \hat{y}_i is the predicted value for observation i.
- 3. **Solution**: Compute coefficients using the normal equation: $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$, where \mathbf{X} is the matrix of input features and \mathbf{y} is the vector of target values. Wikipédia

Noise/Complexity

- Old: special_entropy
- New: forecastability (Series Forecastability)

Source: antropy

Description: Forecastability measure of a time-series (Shannon entropy)

Formula: $-\int_{-\pi}^{\pi} \hat{f}(\lambda) \log \hat{f}(\lambda) d\lambda,$

- Old: entropy_pairs
- New: entropy_pairs (Entropy Pairs)

Source: catch22

Description: Computes the probability of a two letter sequence, being the possible letters A, B and C, that represent the third lowest values of the series, the third median values and the third highest values

Formula:

- 1. Converts each value in the time series into one of three symbols ('A', 'B', or 'C') using an equi-probable binning in which the lowest 3rd of values are assigned 'A', the middle 3rd 'B', and the highest 3rd of values are given 'C'.
- 2. It then analyses the probabilities of all two-letter sequences ('AA', 'AB', 'BB', ...) and outputs the entropy of this set of probabilities.
- Old: high_fluctuation
- New: fluctuation (Series Fluctuation)

New Name: Series Fluctuation (fluctuation)

Source: catch22

Description: Computes the proportion of difference magnitudes that are greater

than 4% of the standard deviation of the time series.

Seasonality Detection

- Old: acf_timescale
- New: ac_relevance (Autocorrelation Relevance)

Source: catch22

Description: Captures the first 1/e crossing of the auto-correlation function. Measures the first time lag at which the autocorrelation function drops below 1/e.

Formula:

- 1. Compute the autocorrelation function
- 2. Return the first 1/e crossing
- Old: stl_features (seasonal_strenght)
- New: seasonal_strength (Seasonal Strength)

Source: tsfeatures

Description: Computes the strength of trend in a time series

Formula: seasonal.strength = $1 - \frac{\text{Var}(e_t)}{\text{Var}(s_{i,t} + e_t)}$

Volatility/Outliers

• Old: rs_range

New: window_fluctuation (Window Fluctuation)

Source: catch22

Description: Computes the fluctuation in defined timescale window

Formula:

1. Compute a cumulative sum of the time series

- 2. Compute the level of fluctuation (e.g., root-mean-square deviations from local low-order trends) across windows corresponding to a given timescale. Different methods exist for detrending time-series windows at a given timescale, including (relevant to these two features):
- 3. Rescaled range analysis removes a line connecting the endpoints of each window and computes the range of the remaining points (Caccia et al., Physica A, 1997)
- 4. DFA fits a k-order polynomial to each window and computes the residuals from this fit.
- 5. Looks for linear scaling in the log(timescale)–log(fluctuation) plot.

Model Selection

Old: Trev

New: st_variation (Short-Term Variation)

Source: catch22

Description: Computes the average across the time series of the cube of successive time-series differences.

Formula:

 $\langle (xi+1-xi)3\rangle t$, for time-series values x, at all time points, t

• Old: acf_feature (x_acf1)

• New: ac (Autocorrelation)

Source: tsfeatures

Description: Returns the autocorrelation function.

Formula:

1. Compute and return the autocorrelation

Old: acf_feature (diff1_ac10)

• New: diff_series (Differenced Series)

Source: tsfeatures

Description: Returns the autocorrelation of the differenced series.

Formula:

1. Compute the differenced series

2. Compute and return autocorrelation of the differenced series

• New: complexity (Series Complexity)

Source: NEW

Description: Computes the complexity estimate of a z-normalized time-series.

Formula:

$$CE(Q) = \sqrt{\sum_{i=1}^{n-1} (q_i - q_{i+1})^2}$$

Clustering/Classification

• Old: mode10

New: rec_concentration (Records Concentration)

Source: catch22

Description: Captures the relative position of the most probable value in relation

to the mean

Formula:

- 1. z-score the input time series.
- 2. Compute a histogram using 10 bins.
- 3. Return the location of the bin with the most counts.
- Old: calc_centroid
- New: centroid (Series Centroid)

New Name: Series Centroid (centroid)

Source: tsfel

Description: Computes the centroid along the time axis

Formula:

 $C_t = rac{\sum_{i=1}^{N} t_i \cdot |y_i|}{\sum_{i=1}^{N} |y_i|}$