homework5

Collin

5/28/2021

```
#Question 1
data = Boston
train = sample(dim(data)[1],dim(data[1]/2))
x.train = data[train, -14]
x.test = data[train, -14]
y.train = data[train,14]
y.test = data[train,14]
p = dim(x.train)[2]
p.2 = p/2
p.sq = sqrt(p)
rf.p = randomForest(x.train, y.train,
                    xtest = x.test, ytest = y.test,
                    ntree = 500, ntry = p)
rf.p.2 = randomForest(x.train, y.train,
                    xtest = x.test, ytest = y.test,
                    ntree = 500, ntry = p.2)
rf.p.sq = randomForest(x.train, y.train,
                    xtest = x.test, ytest = y.test,
                    ntree = 500, ntry = p.sq)
#plot
plot(1:500, rf.p$test$mse, col = "green", type = "1",
     xlab = "Number of Trees", ylab = "Test MSE",
     ylim = c(5,19)
lines(1:500, rf.p.2$test$mse, col = "red", type = "l")
lines(1:500, rf.p.sq$test$mse, col = "blue", type = "l")
legend("topright", c("m = p", "m = p/2", "m = sqrt(p)", col = c("green", "red", "blue", cex = 1, lty = 1)
```


test MSE Looks super high for smaller number of trees, but as the number of trees increases, the test MSE decreases.

The

Question 8 (2)

a)

```
set.seed(10101)
train = sample(dim(Carseats)[1], dim(Carseats)[1]/2)
carseats_train = Carseats[train,]
carseats_test = Carseats[-train,]
\#\#b)
#Regression tree
tree_carseats = tree(Sales ~ ., data = carseats_train)
summary(tree_carseats)
##
## Regression tree:
## tree(formula = Sales ~ ., data = carseats_train)
## Variables actually used in tree construction:
## [1] "ShelveLoc"
                     "Price"
                                   "Age"
                                                 "Advertising" "CompPrice"
## [6] "Education"
## Number of terminal nodes: 17
## Residual mean deviance: 2.027 = 370.8 / 183
## Distribution of residuals:
      Min. 1st Qu.
                     Median
                                  Mean 3rd Qu.
                                                    Max.
## -3.64500 -0.94450 -0.08439 0.00000 0.91340
#plot
plot(tree_carseats)
```

```
text(tree_carseats, pos = 4, cex = .5)
```

```
ShelveLoc:ac
                                                                                                              Price < 135
                                        Price < 105.5
                                                                                                      Education < 11.
                        Age < 68.5
                                                        ShelveLoc:a
                                                                                                            Advertising <71225
               Advertising < 9
                                 Education < 14.5
                                                                    Age < 47.5
                                                                                                 12.740
         CompPrice < 115.5
                                                                                                         7.646 10.840
                                                                                Price < 124.5
                                                        Advertising < 10.5
                             4.220 7.047
                      9.732
                                                                              Advertising < 3.5
                                                    7.119 8.738
8.922 6.201
                                                                   5.367
```

```
# OOS MSE

pred_carseats = predict(tree_carseats, newdata = carseats_test)
MSE = mean( (carseats_test$Sales - pred_carseats )^2 )
```

The MSE is 5.4043086

c)

```
#estimate cross-validated tree
cv_tree_carseats = cv.tree(tree_carseats, FUN = prune.tree)

#plot
par(mfrow =(c(1,3)))
plot(cv_tree_carseats\size,cv_tree_carseats\sdev, type = "b")
plot(cv_tree_carseats\s\k,cv_tree_carseats\sdev, type = "b")

#plot of pruned tree
pruned_carseats = prune.tree(tree_carseats, best = 9)
plot(pruned_carseats)
text(pruned_carseats, pretty = 0, cex = .5)
```



```
#00S MSE
pred_pruned = predict(pruned_carseats, carseats_test)

MSE = mean( (carseats_test$Sales - pred_pruned)^2 )
```

the out of sample MSE is 4.8083061.

#Question 3 (Using CA SChools Data)

```
ntree = 500, ntry = p)
rf.p.2 = randomForest(x.train, y.train,
                    xtest = x.test, ytest = y.test,
                    ntree = 500, ntry = p.2)
rf.p.sq = randomForest(x.train, y.train,
                    xtest = x.test, ytest = y.test,
                    ntree = 500, ntry = p.sq)
#plot
plot(1:500, rf.p$test$mse, col = "green", type = "l",
     xlab = "Number of Trees", ylab = "Test MSE",
     ylim = c(5,19)
lines(1:500, rf.p.2$test$mse, col = "red", type = "l")
lines(1:500, rf.p.sq$test$mse, col = "blue", type = "l")
legend("topright", c("m = p", "m = p/2", "m = sqrt(p)", col = c("green", "red", "blue", cex = 1, lty = 1)
                                                                          m = p
                                                                          m = p/2
      16
                                                                          m = sqrt(p)
                                                                          green
                                                                          red
Test MSE
                                                                          blue
      12
      10
      \infty
      9
```

the differences are marginal at best, the 3rd model, where the number of predictors that are sampled for splitting is the square root of the total number of predictors.

Number of Trees

200

300

400

500

While

```
#Question #4
##a)

ca_schools = CASchools %>% drop_na()
set.seed(10101)
train = sample(dim(ca_schools)[1], dim(ca_schools)[1]/2) #split-half
ca_schools_train = ca_schools[train,]
ca_schools_test = ca_schools[-train,]
```

##b)

0

100

```
tree_ca_schools = tree(math ~ .- district - county - school, data = ca_schools_train)
summary(tree_ca_schools)
##
## Regression tree:
## tree(formula = math ~ . - district - county - school, data = ca_schools_train)
## Variables actually used in tree construction:
## [1] "read"
## Number of terminal nodes: 7
## Residual mean deviance: 50.57 = 10270 / 203
## Distribution of residuals:
      Min. 1st Qu. Median
                               Mean 3rd Qu.
## -15.960 -4.930 -0.081
                              0.000
                                       4.686 28.690
#plot
plot(tree_ca_schools)
text(tree_ca_schools, pos = 4, cex = .5)
                                    read < 652.9
                read < 638.3
                                                       read < 681.4
       read < 628.2
                         644.7
 623.5
             635.0
                                           read < 663.6
                                                                   read < 692.6
                                                             679.0
                                                                         700 1
                                                 666.8
                                     656.6
# OOS MSE
pred_ca_schools = predict(tree_ca_schools, newdata = ca_schools_test)
MSE = mean( (ca_schools_test$math - pred_ca_schools )^2
The out of sample MSE is 65.6557396
##c)
cv_tree_ca_schools = cv.tree(tree_ca_schools, FUN = prune.tree)
#plot
par(mfrow = (c(1,3)))
plot(cv_tree_ca_schools$size,cv_tree_ca_schools$dev, type = "b")
plot(cv_tree_ca_schools$k,cv_tree_ca_schools$dev, type = "b")
#plot of pruned tree
pruned_ca_schools = prune.tree(tree_ca_schools, best = 9)
```

```
## Warning in prune.tree(tree_ca_schools, best = 9): best is bigger than tree size
plot(pruned_ca_schools)
text(pruned_ca_schools,pretty = 0, cex = .5)
```



```
#00S MSE
pred_pruned = predict(pruned_ca_schools, ca_schools_test)
MSE = mean( (ca_schools_test$math - pred_pruned)^2 )
```

The OOS MSE is 65.6557396.