(1) (10%) Consider the deterministic system \mathbf{T}_1 with real-valued input process $X(\mu, t)$ and real-valued output process $Y(\mu, t)$ being related by

$$Y(\mu, t) = \mathbf{T}_1[X(\mu, t)] = \sum_{k=0}^{K} h^k X(\mu, t - k)$$

where h is a deterministic real-valued factor with 0 < h < 1. Also, feed $Y(\mu, t)$ into the other deterministic system \mathbf{T}_2 with real-valued output process $Z(\mu, t)$ which is related to $Y(\mu, t)$ by

$$Z(\mu, t) = \mathbf{T}_2[Y(\mu, t)] = Y(\mu, -t).$$

Answer the following questions:

(a) (2%) Prove that the system \mathbf{T}_1 is linear and time-invariant. Also, find the impulse response of the system in terms of the Dirac delta function $\delta(t)$.

Sol: First, T_1 is linear because

$$\mathbf{T}_{1}[ax(t) + by(t)] = \sum_{k=0}^{K} h^{k}[ax(t-k) + by(t-k)]$$

$$= a \sum_{k=0}^{K} h^{k}x(t-k) + b \sum_{k=0}^{K} h^{k}y(t-k)$$

$$= a\mathbf{T}_{1}[x(t)] + b\mathbf{T}_{1}[y(t)].$$

Second, **T** is time-invariant because if $\mathbf{T}_1[x(t)] = z(t)$, then

$$\mathbf{T}_1[x(t-c)] = \sum_{k=0}^K h^k x(t-k-c)$$
$$= z(t-c).$$

Last, the impulse response is derived as

$$h(t) = \mathbf{T}_1[\delta(t)]$$
$$= \sum_{k=0}^{K} h^k \delta(t-k)$$

where $\delta(t)$ denotes the Dirac delta function.

(b) (1%) Let $X(\mu, t)$ and $Y(\mu, t)$ are both wide-sense stationary random processes with means η_X and η_Y . It is known that $\eta_Y = \alpha(h)\eta_X$ with $\alpha(h)$ a function of h. Determine $\alpha(h)$ in a closed-form expression.

Sol: Because η_Y is derived as

$$\begin{split} \eta_Y &= E\{Y(\mu, t)\} \\ &= \sum_{k=0}^K h^k E\{X(\mu, t-k)\} \\ &= \sum_{k=0}^K h^k \eta_X \\ &= \frac{1 - h^{K+1}}{1 - h} \eta_X, \end{split}$$

we have $\alpha(h) = \frac{1-h^{K+1}}{1-h}$.

- (c) (2%) If $X(\mu, t)$ is a Gaussian random process with mean $\eta_X(t) = 0$ and auto-correlation $R_X(t_1, t_2) = \delta(t_1 t_2)$, find the second-order density of $Y(\mu, t)$, i.e., the joint probability density function of random variables $Y(\mu, t_1)$ and $Y(\mu, t_2)$ for any two distinct time points t_1 and t_2 .
- Sol: Because $X(\mu, t)$ is a stationary Gaussian random process and \mathbf{T}_1 is linear and time-invariant, $Y(\mu, t)$ is a stationary Gaussian random process. Hence, $Y(\mu, t_1)$ and $Y(\mu, t_2)$ are jointly Gaussian and their joint probability density function is determined by their mean, variance, and covariance which are derived as

$$E\{Y(\mu, t_1)\} = 0 = E\{Y(\mu, t_2)\}$$

$$Var\{Y(\mu, t_1)\} = Var\{Y(\mu, t_2)\}$$

$$= E\left\{ \left[\sum_{k=0}^{K} h^k X(\mu, t - k) \right]^2 \right\}$$

$$= \sum_{k_1=0}^{K} \sum_{k_2=0}^{K} h^{k_1+k_2} \delta_{k_1, k_2}$$

$$= \sum_{k=0}^{K} h^{2k}$$

$$= \frac{1 - h^{2(K+1)}}{1 - h^2}$$

$$= \sigma^2$$

$$Cov\{Y(\mu, t_1), Y(\mu, t_2)\} = E\left\{\sum_{k_1=0}^{K} h^{k_1} X(\mu, t_1 - k_1) \sum_{k_2=0}^{K} h^{k_2} X(\mu, t_2 - k_2)\right\}$$
$$= \sum_{k_1=0}^{K} \sum_{k_2=0}^{K} h^{k_1+k_2} \delta(t_1 - t_2 - k_1 + k_2).$$

Therefore, the second-order density of $Y(\mu, t)$ is given by

$$f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{2\pi\sigma^2\sqrt{1-\gamma^2}} \exp\left\{\frac{-1}{2(1-\gamma^2)} \left[\frac{y_1^2}{\sigma^2} - 2\gamma \frac{y_1y_2}{\sigma^2} + \frac{y_2^2}{\sigma^2}\right]\right\}$$

with $\gamma \triangleq Cov\{Y(\mu, t_1), Y(\mu, t_2)\}/\sigma^2$.

(d) (2%) If $X(\mu, t)$ is a wide-sense stationary random process with mean $\eta_X(t) = 0$ and autocorrelation $R_X(t_1, t_2) = \delta(t_1 - t_2)$, find the power spectrum of $Y(\mu, t)$.

Sol: Because the autocorrelation function of $Y(\mu, t)$ is derived as

$$R_Y(t_1, t_2) = E\{Y(\mu, t_1)Y(\mu, t_2)\}$$

$$= \sum_{k_1=0}^K \sum_{k_2=0}^K h^{k_1+k_2} \delta(\tau - k_1 + k_2)$$

$$= R_Y(\tau)$$

with $\tau \triangleq t_1 - t_2$, the power spectrum of $Y(\mu, t)$ is obtained as

$$S_{Y}(f) = \mathcal{F}\{R_{Y}(\tau)\}$$

$$= \sum_{k_{1}=0}^{K} \sum_{k_{2}=0}^{K} h^{k_{1}+k_{2}} \mathcal{F}\{\delta(\tau - k_{1} + k_{2})\}$$

$$= \sum_{k_{1}=0}^{K} \sum_{k_{2}=0}^{K} h^{k_{1}+k_{2}} e^{-jk_{1}\omega} e^{jk_{2}\omega}$$

$$= \sum_{k_{1}=0}^{K} h^{k_{1}} e^{-jk_{1}\omega} \sum_{k_{2}=0}^{K} h^{k_{2}} e^{jk_{2}\omega}$$

$$= \left| \sum_{k=0}^{K} h^{k} e^{-jk\omega} \right|^{2}$$

$$= \left| \frac{1 - h^{K+1} e^{-j\omega(K+1)}}{1 - h e^{-j\omega}} \right|^{2}$$

where $\mathcal{F}\{\cdot\}$ is the Fourier transform operator.

(e) (3%) If $X(\mu, t)$ is a wide-sense stationary random process with mean $\eta_X(t) = 0$ and autocorrelation $R_X(t_1, t_2) = \delta(t_1 - t_2)$, find the autocorrelation of $Z(\mu, t)$. Since $Z(\mu, t)$ is wide-sense stationary as well, find the power spectrum of $Z(\mu, t)$.

Sol: The autocorrelation function of $Z(\mu, t)$ is given by

$$R_{Z}(t_{1}, t_{2}) = E\{Z(\mu, t_{1})Z(\mu, t_{2})\}$$

$$= E\{Y(\mu, -t_{1})Y(\mu, -t_{2})\}$$

$$= R_{Y}(t_{2} - t_{1})$$

$$= \sum_{k_{1}=0}^{K} \sum_{k_{2}=0}^{K} h^{k_{1}+k_{2}} \delta(t_{2} - t_{1} - k_{1} + k_{2})$$

where the autocorrelation of $Y(\mu, t)$ comes from (d). Next, since $Z(\mu, t)$ has zero mean and is wide-sense stationary, it has the power spectrum

$$S_{Z}(f) = \mathcal{F}\{R_{Z}(\tau)\} = \mathcal{F}\{R_{Y}(-\tau)\}$$

$$= \sum_{k_{1}=0}^{K} \sum_{k_{2}=0}^{K} h^{k_{1}+k_{2}} \mathcal{F}\{\delta(-\tau - k_{1} + k_{2})\}$$

$$= \sum_{k_{1}=0}^{K} \sum_{k_{2}=0}^{K} h^{k_{1}+k_{2}} e^{jk_{1}\omega} e^{-jk_{2}\omega}$$

$$= \left| \sum_{k=0}^{K} h^{k} e^{-jk\omega} \right|^{2}$$

$$= S_{Y}(f).$$

- (2) (3%) Consider the random process $X(\mu,t)$ for |t| < 1 which has mean zero, i.e., $\eta_X(t) = 0$, and autocorrelation $R_X(t,s) = \cos(\pi(t-s)) + 1 2\sin^2(\pi(t-s))$ for |t| < 1 and |s| < 1. Find the Karhunen-Loève expansion of $X(\mu,t) + X(\mu,-t)$ in the interval (-1,1).
- Sol: Define $Y(\mu, t) \triangleq X(\mu, t) + X(\mu, -t)$ for |t| < 1. Obviously, $Y(\mu, t)$ is also wide-sense stationary with mean zero and autocorrelation

$$R_Y(t,s) = E\{Y(\mu,t)Y(\mu,s)\}\$$
= $R_X(t,s) + R_X(-t,s) + R_X(t,-s) + R_X(-t,-s)$
= $2R_X(t,s) + 2R_X(-t,s)$

since $R_X(t,s) = R_X(-t,-s)$ and $R_X(-t,s) = R_X(t,-s)$. Now, $R_X(t,s)$ and $R_X(-t,s)$ can be rewritten as $R_X(t,s) = \cos(\pi(t-s)) + \cos(2\pi(t-s))$ and $R_X(-t,s) = \cos(\pi(t+s)) + \cos(2\pi(t+s))$. Therefore, $R_Y(t,s)$ can be rewritten as

$$R_Y(t,s) = 2[\cos(\pi(t-s)) + \cos(\pi(t+s))] + 2[\cos(2\pi(t-s)) + \cos(2\pi(t+s))]$$

= $4\cos(\pi t)\cos(\pi s) + 4\cos(2\pi t)\cos(2\pi s).$

By Mercer's theorem, we have

$$R_Y(t,s) = \sum_{k=1}^{\infty} \rho_k \phi_k(t) \phi_k^*(s)$$

$$= 4 \cos(\pi t) \cos(\pi s) + 4 \cos(2\pi t) \cos(2\pi s)$$
(5)

where ρ_k 's and $\phi_k(t)$'s are eigenvalues and eigenfunctions of $R_Y(t,s)$, respectively. From (4) and (5), it is straightforward to observe that

$$\begin{cases} \rho_1 = 4 \text{ and } \phi_1(t) = \cos(\pi t) \\ \rho_2 = 4 \text{ and } \phi_2(t) = \cos(2\pi t) \end{cases}$$

and $\rho_k = 0$ and $\phi_k(t) = 0$ otherwise. Therefore, the Karhunen-Loève expansion of $Y(\mu, t)$ in the interval (-1, 1) is given by

$$Y(\mu, t) = \sum_{k=1}^{2} b_k(\mu) \phi_k(t)$$

where $b_k(\mu) \triangleq \int_{-1}^1 Y(\mu, t) \phi_k(t) dt$ with $E\{b_k^2(\mu)\} = 4$.

- (3) (2%, 1% each) Determine whether each of the following functions can be the power spectrum of a real-valued wide-sense stationary random process? Explain your answer. (Any correct answer without explanation will result in zero point.)
 - (a) $S_1(\omega) = \ln\{1 + \frac{1}{|\omega|}\}$
 - (b) $S_2(\omega) = \exp{\{\omega^3 + \omega^4\}}$
- Sol: The power spectrum $S_X(\omega)$ of a real-valued wide-sense stationary random process $X(\mu,t)$ has to satisfy two conditions: (i) $S_X(\omega) \geq 0$ for all ω and (ii) $S_X(\omega) = S_X(-\omega)$ for all ω (even function). Based on these conditions, $S_2(\omega)$ can not be a power spectrum and $S_1(\omega)$ can be a power spectrum. The reasons are give below.
 - (a) $S_1(\omega)$ is nonnegative and even.
 - **(b)** $S_2(\omega)$ is not even.
- (4) (3%) Denote $\widehat{W}(\mu, t)$ as the Hilbert transform of the wide-sense stationary real-valued Gaussian random process $W(\mu, t)$ which has mean zero and autocorrelation $R_W(\tau)$. Describe the joint statistic of random processes $\widehat{W}(\mu, t)$ and $W(\mu, t)$. A complete description of joint statistic is required and needs to be explained.
- Sol: Because Hilbert transform is an (ideal) LTI system with impulse response $h(t) = \frac{1}{\pi t}$, $W(\mu, t)$ and

$$\widehat{W}(\mu, t) = \int_{-\infty}^{\infty} W(\mu, t - x) \frac{1}{\pi x} dx$$

are jointly Gaussian random processes. To describe the joint statistic completely, the mean functions, autocorrelation functions, and covariance function are required. First, because $W(\mu,t)$ has mean zero, $\widehat{W}(\mu,t)$ has mean zero as well. Second, because Hilbert transform is an all-pass system, we obtain

$$S_{\widehat{W}}(\omega) = S_W(\omega)$$

and thus

$$R_{\widehat{W}}(\tau) = R_W(\tau).$$

Thus, $\widehat{W}(\mu,t)$ and $W(\mu,t)$ have identical autocorrelation. Finally, the covariance of $W(\mu,t)$ and $\widehat{W}(\mu,t)$ is given by

$$\begin{aligned} \operatorname{Cov}\{W(\mu,t),\widehat{W}(\mu,s)\} &= E\{W(\mu,t)\widehat{W}(\mu,s)\} \\ &= E\{W(\mu,t)\int_{-\infty}^{\infty}W(\mu,s-x)\frac{1}{\pi x}dx\} \\ &= \int_{-\infty}^{\infty}E\{W(\mu,t)W(\mu,s-x)\}\frac{1}{\pi x}dx \\ &= \int_{-\infty}^{\infty}R_{W}(s-t-x)\frac{1}{\pi x}dx \\ &= \widehat{R}_{W}(s-t) \end{aligned}$$

where $\widehat{R}_W(\tau)$ denotes the Hilbert transform of $R_W(\tau)$.

- (5) (6%, 2% each) If packets enter a network router with two input ports, namely Port A and Port B, according to a Poisson process with a rate of λ packets per minute, and if each packet enters Port A independently of the others, with probability p (0 < p < 1), then find the probabilities of the following events (in terms of λ and p):
 - (a) Event A: No packet enters the router for two minutes.
 - Sol: Without loss of generality, we consider the first two minutes. Because the number of packets entering the router is a Poisson process $N(\mu, t)$ with rate λ , we have

$$\Pr\{N(\mu, 2) = 0\} = e^{-2\lambda}$$
.

- (b) Event B: In a given N minutes, there are K packets entering the router and L of them entering Port A in every minute, where N is a positive integer and K and L are nonnegative integers with $0 \le L \le K$.
- Sol: Without loss of generality, we consider the first N minutes. Because the number of packets entering Port A is a Poisson process $N_A(\mu, t)$ with rate λp and the number of packets entering Port B is a Poisson process $N_B(\mu, t)$ with rate $\lambda(1-p)$, we have

$$\Pr\{N_{A}(\mu, k+1) - N_{A}(\mu, k) = L, N_{B}(\mu, k+1) - N_{B}(\mu, k) = K - L$$
for $k = 0, 1, ..., N - 1$ }
$$= \left[\Pr\{N_{A}(\mu, k+1) - N_{A}(\mu, k) = L, N_{B}(\mu, k+1) - N_{B}(\mu, k) = K - L\}\right]^{N}$$

$$= \left\{\left[e^{-\lambda p} \frac{(\lambda p)^{L}}{L!}\right] \left[e^{-\lambda(1-p)} \frac{[\lambda(1-p)]^{K-L}}{(K-L)!}\right]^{N}$$

$$= \left\{e^{-\lambda} \frac{\lambda^{K}(p)^{L}(1-p)^{K-L}}{L!(K-L)!}\right\}^{N}.$$

- (c) Event C: There is only one packet entering Port A in the first minute, provided that only N packets enter the router in the first N minutes, where N is a positive integer with $N \geq 2$. (Your answer must not contain the parameter λ .)
- Sol: Because the number of packets entering Port A is a Poisson process $N_A(\mu, t)$ with rate λp and the number of packets entering Port B is a Poisson process $N_B(\mu, t)$ with rate $\lambda(1-p)$, we have

$$\begin{aligned} & \Pr\{N_A(\mu,1) - N_A(\mu,0) = 1 | N(\mu,N) - N(\mu,0) = N \} \\ & = \frac{\Pr\{N_A(\mu,1) - N_A(\mu,0) = 1, N(\mu,N) - N(\mu,0) = N \}}{\Pr\{N(\mu,N) - N(\mu,0) = N \}} \\ & = \frac{[e^{-\lambda p} \frac{\lambda p}{1!}] \sum_{k=0}^{N-1} [e^{-\lambda(1-p)} \frac{[\lambda(1-p)]^k}{k!}] [e^{-\lambda(N-1)} \frac{[\lambda(N-1)]^{N-1-k}}{(N-1-k)!}]}{e^{-\lambda N} \frac{(\lambda N)^N}{N!}} \\ & = \frac{p}{N^{N-1}} \sum_{k=0}^{N-1} {N-1 \choose k} (1-p)^k (N-1)^{N-1-k} \\ & = p(1-\frac{p}{N})^{N-1}. \end{aligned}$$

(6) (3%) Consider the random process

$$X(\mu, t) = A(\mu)\cos(\omega_c t + \phi(\mu)) + n(\mu, t)$$

where ω_c is a deterministic radian frequency. Here, $n(\mu,t)$ is a stationary Gaussian random process with mean zero and autocorrelation $R_n(\tau) = \delta(\tau)$. $A(\mu)$ is a Rayleigh random variable with probability density function $f_A(a) = ae^{-a^2/2}u(a)$ and u(a) a unit step function. $\phi(\mu)$ is a uniform random variable in $[0, 2\pi)$. Moreover, $A(\mu)$, $\phi(\mu)$, and $n(\mu,t)$ are mutually independent. Is $X(\mu,t)$ a wide-sense stationary process? Is $X(\mu,t)$ a Gaussian process? Prove your answer.

Sol: $X(\mu, t)$ is a strict-sense stationary Gaussian process. Let us show it below.

(i) Show that $X(\mu, t)$ is a Gaussian process: Let $X_i(\mu) \triangleq X(\mu, t_i) = A(\mu) \cos(\omega_c t_i + \phi(\mu)) + n(\mu, t_i)$. Now, for any positive integer N, we have

$$\Phi_{X_1,X_2,\dots,X_N}(\omega_1,\omega_2,\dots,\omega_N)$$

$$= E\{\exp\{j\sum_{i=1}^N \omega_i X_i(\mu)\}\}$$

$$= E\{\exp\{j\sum_{i=1}^N \omega_i [A(\mu)\cos(\omega_c t_i + \phi(\mu)) + n(\mu,t_i)]\}\}$$

$$= E\{\exp\{j\sum_{i=1}^N \omega_i A(\mu)\cos(\omega_c t_i + \phi(\mu))\}\}E\{\exp\{j\sum_{i=1}^N \omega_i n(\mu,t_i)\}\}$$
(independence)

$$= E\{\exp\{j\sum_{i=1}^{N}\omega_{i}A(\mu)\cos(\omega_{c}t_{i}+\phi(\mu))\}\}\exp\{\frac{-1}{2}\sum_{i=1}^{N}\sum_{l=1}^{N}\omega_{i}\omega_{l}C_{il}\}$$

$$(n(\mu,t) \text{ is Gaussian})$$

with $C_{il} \triangleq E\{n(\mu, t_i)n(\mu, t_l)\} = C_{|i-l|} = R_n(t_i - t_l)$ and $C_0 = \sigma_n^2$. Also, we can express

$$E\{\exp\{j\sum_{i=1}^{N}\omega_{i}A(\mu)\cos(\omega_{c}t_{i}+\phi(\mu))\}\} = E\{\exp\{j[\alpha U(\mu)+\beta V(\mu)]\}\}$$

where $\alpha \triangleq \sum_{i=1}^{N} \omega_i \cos(\omega_c t_i)$, $\beta \triangleq -\sum_{i=1}^{N} \omega_i \sin(\omega_c t_i)$, $U(\mu) \triangleq A(\mu) \cos(\phi(\mu))$ and $V(\mu) \triangleq A(\mu) \sin(\phi(\mu))$. Because

$$f_{U,V}(u,v) = \frac{1}{a} f_{A,\phi}(a,\phi) = \frac{1}{a} f_A(a) f_{\phi}(\phi)$$
$$= \frac{1}{\sqrt{2\pi}} \exp\{-\frac{u^2}{2}\} \frac{1}{\sqrt{2\pi}} \exp\{-\frac{v^2}{2}\},$$

 $U(\mu)$ and $V(\mu)$ are two independent and identically distributed Gaussian random variables with zero mean and unit variance. Thus,

$$E\{\exp\{j[\alpha U(\mu) + \beta V(\mu)]\} = E\{\exp\{j\alpha U(\mu)\}\}E\{\exp\{j\beta V(\mu)\}\}$$

$$= \exp\{-\frac{1}{2}(\alpha^2 + \beta^2)\}$$

$$= \exp\{-\frac{1}{2}[(\sum_{i=1}^{N} \omega_i \cos(\omega_c t_i))^2 + (\sum_{i=1}^{N} \omega_i \sin(\omega_c t_i))^2]\}$$

$$= \exp\{-\frac{1}{2}\sum_{i=1}^{N} \sum_{l=1}^{N} \omega_i \omega_l \cos(\omega_c (t_i - t_l))\}.$$

It thus follows that

$$\Phi_{X_{1},X_{2},...,X_{N}}(\omega_{1},\omega_{2},...,\omega_{N})$$

$$= \exp\{-\frac{1}{2}\sum_{i=1}^{N}\sum_{l=1}^{N}\omega_{i}\omega_{l}\cos(\omega_{c}(t_{i}-t_{l}))\}\exp\{\frac{-1}{2}\sum_{i=1}^{N}\sum_{l=1}^{N}\omega_{i}\omega_{l}C_{il}\}$$

$$= \exp\{\frac{-1}{2}\sum_{i=1}^{N}\sum_{l=1}^{N}\omega_{i}\omega_{l}[\cos(\omega_{c}(t_{i}-t_{l}))+R_{n}(t_{i}-t_{l})]\}$$

which shows that $X_1(\mu), X_2(\mu), ..., X_N(\mu)$ are jointly Gaussian random variables. This proves that $X(\mu, t)$ is a Gaussian random process.

(ii) Because $E\{X(\mu, t)\} = 0$ and

$$R_X(t_1, t_2)$$
= $E\{A^2(\mu)\}E\{\cos(\omega_c t_1 + \phi(\mu))\cos(\omega_c t_2 + \phi(\mu))\}$
 $+R_n(t_1 - t_2)$
= $\cos(\omega_c(t_1 - t_2)) + R_n(t_1 - t_2),$

 $X(\mu, t)$ is a stationary Gaussian random process.

- (7) (3%) Let $X_1(\mu), X_2(\mu), ..., X_N(\mu)$ be independent Poisson random variables with parameters $\lambda_1, \lambda_2, ...,$ and λ_N , respectively. Prove that the sum random variable $Y(\mu) = \sum_{n=1}^{N} X_n(\mu)$ is a Poisson random variable with parameter $\sum_{n=1}^{N} \lambda_n$. (Hint: Note that the Poisson random variable with parameter λ_n has the probability mass $\Pr\{X_n(\mu) = k\} = \exp\{-\lambda_n\}\lambda_n^k/k!$ for k = 0, 1, ... You may give your proof in terms of moment generating function.)
- Sol: We first find the moment generating function of $X_n(\mu)$, i.e., $E\{\exp\{sX_n(\mu)\}\}$ for permissible complex s, as follows.

$$E\{\exp\{sX_n(\mu)\}\} = \sum_{k=0}^{\infty} \exp\{-\lambda_n\} \frac{(\lambda_n)^k}{k!} [\exp\{s\}]^k$$

$$= \exp\{-\lambda_n\} \sum_{k=0}^{\infty} \frac{(\lambda_n \exp\{s\})^k}{k!}$$

$$= \exp\{-\lambda_n\} \exp\{\lambda_n \exp\{s\}\}$$

$$= \exp\{\lambda_n [\exp\{s\} - 1]\}.$$

Next, the moment generating function of $Y(\mu)$ is

$$E\{\exp\{sY(\mu)\}\} = E\{\exp\{s\sum_{n=1}^{N} X_n(\mu)\}\}$$

$$= \prod_{n=1}^{N} E\{\exp\{sX_n(\mu)\}\}\}$$

$$(X_n(\mu)'\text{s are independent})$$

$$= \prod_{n=1}^{N} \exp\{\lambda_n[\exp\{s\} - 1]\}$$

$$= \exp\{(\sum_{n=1}^{N} \lambda_n)[\exp\{s\} - 1]\}$$

which shows that $Y(\mu) = \sum_{n=1}^{N} X_n(\mu)$ is a Poisson random variable with parameter $\sum_{n=1}^{N} \lambda_n$.