Decision Trees

Ninghao Liu

University of Georgia

February 6, 2024

Some contents adopted from "Data Mining", Section 8.2, by Jiawei Han et al.

Basic algorithm:

- At start, all the training examples are at the root.
- Attributes are categorical (if continuous-valued, they are discretized in advance).
- Examples are partitioned recursively based on selected attributes.
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain).

Conditions for stopping:

- All samples for a given node belong to the same class.
- There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf.
- There are no samples left.

Brief history of decision tree learning:

- ID3.
- C4.5.
- CART.

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, \dots, y_m\}$,
 - $H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$, where $p_i = P(Y = y_i)$

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values {y₁, ..., y_m},

•
$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$$
, where $p_i = P(Y = y_i)$

- Interpretation:
 - Higher entropy => higher uncertainty
 - Lower entropy => lower uncertainty

m = 2

- Example 1: The random variable Y: Whether the sun will rise tomorrow. Can you compute the entropy of Y?
- Example 2: The random variable Y: The winning number sequence of powerball. Can you compute the entropy of Y?
 - 4 balls.
 - The number on each ball ranges from 1 to 8.

- Example 3: The random variable Y: Whether the sun will rise tomorrow. I am telling you that "the sun will rise tomorrow".
- Example 4: The random variable Y: The winning number sequence of powerball.
 - 4 balls.
 - The number on each ball ranges from 1 to 8.
 - I am telling you: "The winning numbers tomorrow are [1, 3, 7, A], where A is a number from {4, 5, 6, 7}".
 - Does the sentence above contain much information or little information?

The expected **information** needed to classify instances in \mathcal{D} is given by:

$$Info(\mathcal{D}) = -\sum_{i=1}^{m} p_i \log_2(p_i) \tag{1}$$

where

- p_i is the nonzero probability that an arbitrary instance belong to class C_i
- $p_i = C_{i,\mathcal{D}}/|\mathcal{D}|$, and $C_{i,\mathcal{D}}$ denotes the number of C_i instances in \mathcal{D} .

- We were to partition the instances in \mathcal{D} on some attribute A having v distinct values $\{a_1, a_2, ..., a_v\}$.
- The above attribute will partition \mathcal{D} into $\{\mathcal{D}_1, \mathcal{D}_2, ..., \mathcal{D}_{\nu}\}$.
- \mathcal{D}_j contains instances whose value of A is a_j .
- These partitions correspond to the branches in the decision tree.
- Ideally, we would like this partitioning to produce an exact classification of the instances.
 - This is not easy.
 - A partition \mathcal{D}_j may contain a collection of instances from different classes rather than from a single class.

- How much more information would we still need (after the partitioning) to arrive at an exact classification?
- This amount of information is measured by:

$$Info_A(\mathcal{D}) = \sum_{j}^{v} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} \times Info(\mathcal{D}_j)$$
 (2)

- $\frac{|\mathcal{D}_j|}{|\mathcal{D}|}$ is the weight of the j-th partition.
- $\mathit{Info}_{A}(\mathcal{D})$ is smaller \to the greater the purity of the partitions.

$$Info(\mathcal{D}) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
 (3)

$$Info_{A}(\mathcal{D}) = \sum_{j=1}^{\nu} \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \times Info(\mathcal{D}_{j})$$
 (4)

Information gain:

$$Gain(A) = Info(D) - Info_A(D)$$
 (5)

- The difference between the original information requirement and the new requirement (after partitioning on A).
- The attribute A with the **highest information gain**, Gain(A), is chosen as the splitting attribute.
- We want to partition on the attribute A that would do the "best classification".

age	income	student	redit_rating	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	pi	ni	l(p _i , n _i)
<=30	2	თ	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	pi	ni	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Info _{age} (D) =
$$\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

+ $\frac{5}{14}I(3,2) = 0.694$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 <u>yes'es</u> and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	pi	n _i	$I(p_i, n_i)$
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Info _{age} (D) =
$$\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

+ $\frac{5}{14}I(3,2) = 0.694$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 <u>yes'es</u> and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$
 $Gain(credit_rating) = 0.048$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
<=30	medium	yes	excellent	yes

Information gain is not perfect. A notable problem occurs when information gain is applied to attributes that can take on a large number of distinct values.

- Suppose that one is building a decision tree for some data describing the customers of a business
- One of the input attributes might be the customer's membership number, if they are a member of the business's membership program.
- This attribute has a high mutual information, because it uniquely identifies each customer, but we do not want to include it in the decision tree.
- Deciding how to treat a customer based on their membership number is unlikely to generalize to customers we haven't seen before (overfitting).

Gain Ratio for Attribute Selection (C4.5)

 C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{r} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex. $SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 1.557$
 - gain_ratio(income) = 0.029/1.557 = 0.019
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gain Ratio for Attribute Selection (C4.5)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

For the example on the whiteboard:

- What is the Gain value for choose each of the attributes?
- Which attribute will be chosen using GainRatio?

Gini Index (CART)

• If a data set D contains examples from m classes, gini index, gini(D) is defined as

$$gini(D) = \sum_{i=1}^{m} \sum_{i' \neq i} p_i p_{i'}$$

$$= 1 - \sum_{i=1}^{m} p_i^2$$
(6)

where p_i is the probability that an instance belongs to the i-th class.

 The gini index measures the "impurity" of a dataset, i.e., how likely that two instances in the dataset do not belong to the same class.

Gini Index (CART)

If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is defined as $gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$

Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

The attribute provides the smallest <u>gini</u>_{split}(D) (or the largest reduction in impurity) is chosen to split the node (<u>need to enumerate all the possible splitting points for each attribute</u>)

Gini Index (CART)

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no" $gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D₁: {low, $gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_2)$ medium and 4 in D₂ $=\frac{10}{14}\left(1-\left(\frac{7}{10}\right)^2-\left(\frac{3}{10}\right)^2\right)+\frac{4}{14}\left(1-\left(\frac{2}{4}\right)^2-\left(\frac{2}{4}\right)^2\right)$ = 0.443

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

 $= Gini_{income \in \{high\}}(D).$

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions