Electricity and Magnetism

- Physics 259 L02
 - •Lecture 19

Midterm Review

Vector Components

$$\vec{a} = a_x \hat{i} + a_y \hat{j}$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2}$$
$$a_y = a\sin\theta$$

$$a_{v} = a \sin \theta$$

$$a_x = a\cos\theta$$

The unit vectors point along axes.

Charge Polarization

Metal

Coulomb's Law

Describes the forces that charged **particles** exert on each other:

point charges

The forces always act along the line joining the charges.

Coulomb's Law

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = K \frac{|q_1||q_2|}{r^2}$$

K = electrostatic
constant

$$K = 8.99 \times 10^9 \frac{N \cdot m^2}{C^2}$$

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{1}{4\pi\varepsilon_0} \frac{|q_1||q_2|}{r^2}$$

 ε_0 = permittivity of free space

$$\varepsilon_0 = \frac{1}{4\pi K} = 8.85 \times 10^{12} \frac{C^2}{N \cdot m^2}$$

 $\bullet q$

Calculate the net force on particle 1.

 $q = 1.0 \times 10^{-6}C$

Use superposition principle

$$\vec{F}_{1,net} = \vec{F}_{2 \text{ on } 1} + \vec{F}_{3 \text{ on } 1} + \vec{F}_{4 \text{ on } 1}$$

4 basic geometries

A point charge

An infinitely long charged wire

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

An infinitely wide charged plane

A charged sphere

Linear, surface and volume charge densities

$$\lambda = \frac{Q}{L}$$

$$\sigma = \frac{Q}{A}$$

$$\rho = \frac{Q}{V}$$

Electric fields

$$\vec{E}(x, y, z) = \frac{\vec{F}_{\text{on q}} \operatorname{at}(x, y, z)}{q}$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$$

Electric Field Lines

Electric field lines are continuous curves. The electric field vectors are tangent to the field lines

The denser the field lines, the stronger the field (magnitude of E)

we found > Fret, ~= \(\frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1 Now we just need to solve the integral => $\rightarrow \overrightarrow{F}_{\text{net}} = \frac{kQq}{t\sqrt{(\frac{l}{2})^2 + d^2}}$ x / limiting cases => { > ① d>> L > d+ (/2)=d2 (1) \$<<< => \$\frac{1}{2}^{2} (\frac{1}{2})^{2} = (\frac{1}{2})^{2}

$$(E_i)_z = \frac{1}{4\rho e_o} \frac{zDQ}{\left(z^2 + R^2\right)^{\frac{3}{2}}}$$

$$r = 1$$
 zQ

$$\mathbf{Z=0} \rightarrow E_{ring} = \frac{1}{4\pi\varepsilon_o} \frac{zQ}{\left(z^2 + R^2\right)^{3/2}} \rightarrow \mathbf{E=0}$$

Z>>R
$$\rightarrow$$
 $E_{ring} = \frac{1}{4\rho e_o} \frac{zQ}{(z^2 + 0^2)^{3/2}} = \frac{1}{4\rho e_o} \frac{Q}{z^2}$

What is the direction of the electric field at the point indicated?

A disk of charge

$$E_{disk,z} = \frac{\sigma}{2\varepsilon_o} \left[1 - \frac{z}{\sqrt{z^2 + R^2}} \right]$$

$$E_{disk,z} = \frac{Q}{4\pi\varepsilon_o z^2}$$

$$z \rightarrow 0$$

$$E_{disk,z} = \frac{\delta}{2\varepsilon_o}$$

P16) A non-conducting plastic rod has been bent into the quarter-circle shape shown below. Electrons have been removed, and the linear charge density λ , in C/m, is uniform.

- a) To the best of your artistic abilities, redraw this figure in your answer sheet, and draw an arrow representing the electric field at the origin <u>due only</u> to the charge in the segment ds. Call this electric field vector **dE**.
- b) Write an expression for the amount of charge, dq, contained in the small segment ds.

$$dg = \lambda ds$$

 c) Write an expression for the magnitude of the electric field at the origin, dE, due to the small amount of charge dq.

The Electric Flux

Amount of electric field going through a surface

$$\Phi_e \alpha E$$

$$\Phi_e\,\alpha\,A$$

$$\Phi_e \alpha \theta$$

$$\Phi_{\rm e} = E_{\perp} A = E A \cos \theta$$

$$\rightarrow \Phi_e = E.A$$

19

Gauss' law relates the net flux ϕ of an electric field through a closed surface (a Gaussian surface) to the *net* charge q_{enc} that is enclosed by that surface.

$$\varepsilon_0 \Phi = q_{\rm enc}$$
 (Gauss' law).

we can also write Gauss' law as

$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = q_{\rm enc}$$
 (Gauss' law).

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

$$E_{wire} = \frac{\lambda}{2\pi\varepsilon_0 r}$$

 $E = \frac{\sigma}{\varepsilon_0} \quad \text{(conducting surface)}.$

$$E_{plane} = \frac{\sigma}{2\varepsilon_0}$$

Summary of Conductors and Electric Fields

(a) The electric field inside the conductor is zero.

All excess charge is on the surface.

A void completely enclosed by the conductor $\vec{E} = \vec{0}$

The charges are closer together and the electric field is strongest at the pointed end.

The electric field inside the enclosed void is zero.

(b) The electric field at the surface is perpendicular to the surface.

What is the field inside the slab? head-on view centre line plastic jacket dielectric insulator

metallic shield

centre core

TopHat Question

4 surfaces are coaxial with an infinitely long line of charge with a uniform linear charge density = λ . Choose all the surfaces through which $F_E = \frac{L}{e_0}$

- A) I only
- B) I and II only
- C) I and III only
- D) I, II, and III only
- E) All four.

This section we talked about:

Midterm Review

See you Tomorrow

