Good Proofs & Bad Proofs.

Principle of strong Induction.

Let P(n) be 2 predicate · i[

-P(o) is true, and

-for all n ∈ N, P(x), P(2), -.., P(n)

imply P(n+1)

then P(n) is true for all n ∈ N

Ordinary Induction:

-s P(n) 15 the K try to prove that P(nti) is the strong Induction:

Strong Induction:

P(o), P(1), ... P(n-1), P(n) are all true

when you go to prove p(n+1).

Strong Induction Co	stack	mg	gam	e)				
stack heights	5						54	~ e
10							0	
5 5							23	
5 3	2						6	
4 3	2	1					4	
2 3		1	2				4	
			2	1			ì	
2 2	2							
1 3	2	1	2	1	1			
4 7	2	1	2	1	1	1		
1 1		7					1	
1 1	1	1	2	1	7	1	1	
1 1	1	1	1	1	1	1	1	
	-	-						
							40	Ponts
		195-2						

Theorem. Everyway of unstading n blocks. P(1) is a long cost. P(1), _ - P(n-1) (mply p(n) for all n > 2 P(n): proposition that every way of unstacking n blocks
gives a score of n(n-1) Basecare: if n=1, then there is only one box
, no move, total score: 0(0-1)_0. P(1) is then trul. Industre (exe: P(1), ---, P(n-1) imply P(n) for all n 7,2 assume: P(+), _... P(n-1) are all true & that we have a stock of n blocks The first more must split this stack y'sizes k k (n-h) now the total some for the game the sum of points for this first none plus points obstained by unstacking the two resulting substacks:

total scal = (scare 1st make)
+ (scare for unstactions k blacks)
+ (scare for unstactions k blacks)
= k(n-k) + k(k-1) + (n-k)(n-k-1)
= nk-k2+ k2-k + n2-nk-n-nk+k2+k
= 2nk-2k2+k2-k+n2-nk-n-nk+k2+k

= 2nk-2k2+k2-k+n2-nk-n-nk+k2+k

= 2nk-2k2+k2-k+n2-nk-n-nk+k2+k