UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika - 1. stopnja

Benjamin Benčina Topološke grupe

Delo diplomskega seminarja

Mentor: doc. dr. Marko Kandić

Kazalo

1. Uvod	4
2. Preliminarna poglavja	4
2.1. Operacije na množicah	4
2.2. Teorija grup	4
2.3. Topološki prostori	5
3. Kaj je topološka grupa	7
3.1. Primeri topoloških grup	7
4. Kvocienti topoloških grup	7
5. Izreki o izomorfizmih	8
5.1. Prvi izrek o izomorfizmih	9
5.2. Drugi izrek o izomorfizmih	9
5.3. Tretji izrek o izomorfizmih	9
6. Izreki tipa "2 od 3"	9
7. Separacijski aksiomi in metrizabilnost	9
7.1. Metrizabilnost	9
7.2. Separacijski aksiomi do $T_{3\frac{1}{2}}$	11
7.3. Separacijski aksiom T_4	11
Slovar strokovnih izrazov	11
Literatura	11

Topološke grupe

Povzetek

povzetek HERE

Topological groups

Abstract

ABSTRACT HERE

Math. Subj. Class. (2010): 43-00 Ključne besede: grupa topologija

Keywords: group topology

1. Uvod

2. Preliminarna poglavja

2.1. Operacije na množicah. Vse operacije na množicah, če ne bo drugače zaznamovano, delujejo na elementih. Tako je na primer produkt množicU in V enak

$$U * V = \{u * v; u \in U, v \in V\},\$$

inverz množice U pa je

$$U^{-1} = \{u^{-1}; u \in G\}.$$

Tukaj se v obeh primerih predpostavlja, da so množice vložene v neki grupi, kjer so operacije na elementih smiselno definirane. Grupno strukturo bom bolj podrobno opisal v naslednjem podrazdelku.

Pomembnejša izjema temu pravilu so operacije na množicah v smislu relacij. Predpostavimo torej, da imamo množico X in nas zanimajo podmnožice kartezičnega produkta $X \times X$. Inverz take množice U je potem

$$U^{-1} = \{(y, x); (x, y) \in U\},\$$

analogna operacija množenju pa je tukaj kompozitum množic

$$V \circ U = \{(x, z); \text{ obstaja element } y \in X, \text{ da je } (x, y) \in V \text{ in } (y, z) \in U\}.$$

Takšno dojemanje operacij bo vedno posebej označeno.

2.2. Teorija grup.

Definicija 2.1. Neprazna množica G z binarno operacijo * je grupa, če:

- (1) je množica G zaprta za (ponavadi binarno) operacijo *,
- (2) je operacija * asociativna v množici G,
- (3) v G obstaja tak element e (imenujemo ga enota), da za vsak element x množice G veljajo enakosti

$$x * e = e * x = x,$$

(4) za vsak element x množice G obstaja element y tudi iz množice G, da veljajo enakosti

$$x * y = y * x = e.$$

Oznaka za grupo je (G, *) ali samo G, če je operacija znana ali drugače očitna.

Iz zgornje definicije je razvidno, da nam grupna struktura na množici porodi dve strukturni preslikavi:

- $mno\check{z}enje\ \mu: G\times G\to G,\ (x,y)\mapsto x*y,$
- invertiranje $\iota: G \to G, x \mapsto x^{-1}$.

Definiramo lahko nekaj tipov preslikav med grupami.

Definicija 2.2. Naj bo $f:(G,*)\to (\widetilde{G},\star)$ preslikava med dvema grupama.

- (1) Preslikava f je homomorfizem, če za vsaka dva elementa $a,b \in G$ velja $f(a*b) = f(a) \star f(b)$.
- (2) Preslikava f je *izomorfizem*, če je bijektivni homomorfizem.

Definicija 2.3. Naj bo G grupa za operacijo *.

(1) Podmnožica H grupe G je podgrupa, če je tudi sama grupa za operacijo *.

4

(2) Množici $aH = \{a * h; h \in H\}$ pravimo levi odsek grupe G elementa $a \in G$ po podgrupi H. Na enak način definiramo definiramo desne odseke Ha.

- (3) Podgrupi H grupe G rečemo podgrupa edinka, če za vsak element $a \in G$ velja, da je levi odsek enak desnemu.
- (4) Množici $G/H = \{aH; a \in G\}$ rečemo kvocient grupe G po podgrupi H.
- (5) Naravna preslikava na kvocient G/H je preslikava $\varphi: G \to G/H, a \mapsto aH$.

Trditev 2.4. Če je podgrupa N grupe G podgrupa edinka, je kvocient G/N grupa za operacijo *, kjer je aH * bH = (a * b)H, naravna preslikava φ pa je homomorfizem grup.

2.3. Topološki prostori.

Definicija 2.5. Topologija na neprazni množici X je družina podmnožic $\tau \subseteq 2^X$ z lastnostmi:

- (1) $X \in \tau, \emptyset \in \tau$,
- (2) za poljubni dve množici $U, V \in \tau$ je tudi presek $U \cap V \in \tau$,
- (3) za poljubno poddružino $\{U_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq \tau$ je tudi unija $\bigcup_{{\lambda}\in\Lambda}U_{\lambda}\in\tau$.

Množici X, opremljeni s topologijo τ , rečemo topološki prostor (X,τ) in množice v družini τ označimo za odprte množice v topološkem prostoru X. Zaprte množice definiramo kot komplemente odprtih množic glede na množico X.

Definicija 2.6. Naj bo (X,τ) topološki prostor.

- (1) Podmnožica $B \subset \tau$ je baza za topologijo τ , če je vsaka množica iz topologije τ unija nekaterih množic iz B.
- (2) Podmnožica P je podbaza za topologijo τ , če je družina vseh presekov končno mnogo množic iz P neka baza za topologijo τ .

Definicija 2.7. Naj bo (X, τ) topološki prostor.

- (1) Množica $U \subseteq X$ je okolica za točko $x \in X$, če obstaja taka odprta množica $V \in \tau$, da velja $V \subseteq U$ in $x \in V$.
- (2) Množica $U \subseteq X$ je *okolica* množice $A \subseteq X$, če obstaja taka odprta množica $V \in \tau$, da velja $V \subseteq U$ in $A \subseteq V$.
- (3) Če je okolica U iz zgornjih dveh primerov tudi sama odprta množica, jo imenujemo $odprta\ okolica.$
- (4) Družina okolic $\mathcal{U}_x = \{U_\lambda; \lambda \in \Lambda\}$ za točko $x \in X$ se imenuje baza okolic za x, če za poljubno okolico V za točko x velja, da obstaja tak $\lambda \in \Lambda$, da je $U_\lambda \subseteq V$.

Definicija 2.8. Naj bo (X, τ) topološki prostor in $A \subseteq X$.

- (1) Točka $a \in A$ je notranja točka množice A, če je A okolica za točko a.
- (2) Notranjost množice A je množica vseh njenih notranjih točk. Notranjost množice označimo z int(A). Očitno velja $int(A) \subseteq A$ in tudi $int(A) = A \iff A \in \tau$.
- (3) Zaprtje množice A je najmanjša zaprta množica v X, ki vsebuje A. Zaprtje množice označimo z \overline{A} . Očitno velja $A \subseteq \overline{A}$ in tudi $\overline{A} = A \iff A$ je zaprta množica.

S pomočjo odprtih in zaprtih množic topološkega prostora X lahko sedaj definiramo zveznost in odprtost preslikave med dvema topološkima prostoroma ter pojem homeomorfizma.

Definicija 2.9. Naj bo $f:(X,\tau_1)\to (Y,\tau_2)$ preslikava med topološkima prostoroma.

- (1) Preslikava f je zvezna, kadar je praslika preslikave f vsake odprte množice v topološkem prostoru (Y, τ_2) odprta tudi v topološkem prostoru (X, τ_1) .
- (2) Preslikava f je odprta, kadar je slika preslikave f vsake odprte množice v topološkem prostoru (X, τ_1) odprta tudi v topološkem prostoru (Y, τ_2) .
- (3) Preslikava f je homeomorfizem, če je bijektivna, zvezna in ima zvezen inverz.

V svojem delu bom uporabljal še dve posebni topologiji.

Definicija 2.10. Naj bo X topološki prostor s topologijo τ in $A \subseteq X$. Inducirana ali relativna topologija na množici A, inducirana s τ , je družina množici $\{A \cap U; U \in \tau\}$. Množici A rečemo topološki podprostor prostora X.

Definicija 2.11. Naj bosta X in Y topološka prostora s topologijama τ_1 in τ_2 . Produktna topologija na kartezičnemu produktu $X \times Y$ je družina množic $\{U \times V; U \in \tau_1, V \in \tau_2\}$.

Definicija 2.12. Naj bo X topološki prostor.

- (1) Družini \mathcal{A} množic rečemo pokritje topološkega prostora X, če je $X \subseteq \bigcup \mathcal{A}$.
- (2) Družini $\mathcal{B} \subseteq \mathcal{A}$ rečemo podpokritje topološkega prostora X, če je \mathcal{B} tudi sama pokritje za X.
- (3) Topološki prostor je *kompakten*, če vsako njegovo odprto pokritje, tj. pokritje z odprtimi množicami, vsebuje kakšno končno podpokritje.
- (4) Topološki prostor je lokalno kompakten, če ima vsaka točka $x \in X$ kakšno kompaktno okolico.
- **Definicija 2.13.** (1) Naj bosta \mathcal{U} in \mathcal{V} družini podmnožic topološkega prostora X. Družina \mathcal{V} je pofinitev družine \mathcal{U} , če za vsako množico $V \in \mathcal{V}$ obstaja takšna množica $U \in \mathcal{U}$, da je $V \subset U$.
 - (2) Družina podmnožic $\mathcal U$ topološkega prostora X je lokalno končna, če ima vsaka točka $x\in X$ okolico, ki seka samo končno mnogo množic iz družine $\mathcal U$
 - (3) Topološki prostor X je parakompakten, če ima vsako njegovo odprto pokritje kakšno pofinitev, ki je lokalno končno odprto pokritje prostora X.

Definicija 2.14. Topološki prostor (X, τ) zadošča separacijskemu aksiomu

- (1) T_0 , če za poljubni različni točki $a, b \in X$ obstaja okolica V za eno od točk a, b, ki ne vsebuje druge od točk a, b;
- (2) T_1 , če za poljubno točko $a \in X$ in različno točko $b \in X$ obstaja okolica V za točko a, ki ne vsebuje točke b;
- (3) T_2 , če za poljubni različni točki $a, b \in X$ obstajata disjunktni okolici za točki a in b;
- (4) T_3 , če za poljubno zaprto množico $A \subseteq X$ in točko $b \in X \setminus A$ obstajata disjunktni okolici za množico A in točko b;
- (5) T_4 , če za poljubni disjunktni zaprti množici $A, B \subseteq X$ obstajata disjunktni okolici za množici A in B.

Opomba 2.15. (1) Iz definicije je razvidno, da $T_2 \implies T_1 \implies T_0$.

- (2) Topološkemu prostoru, ki zadošča separacijskemu aksiomu T_2 , pravimo Hausdorffov topološki prostor.
- (3) Topološku prostoru, ki zadošča $T_1 + T_3$ pravimo regularen topološki prostor.
- (4) Topološku prostoru, ki zadošča $T_1 + T_4$, pravimo normalen topološki prostor.

3. Kaj je topološka grupa

Končno lahko strukturi združimo in povežemo ter definiramo pojem topološke grupe.

Definicija 3.1. Topološka grupa je grupa (G,*) opremljena s tako topologijo τ na množici G, da sta za τ strukturni operaciji množenja in invertiranja zvezni.

Potrebujemo le še tip preslikave med topološkimi grupami, ki bo ohranjal tako algebraično kot topološko strukturo.

Definicija 3.2. Preslikava med dvema topološkima grupama je *topološki izomorfizem*, če je izomorfizem in homeomorfizem.

Trditev 3.3. Naj bo G topološka grupa in $a \in G$. Leva translacija $x \mapsto ax$ in desna translacija $x \mapsto xa$ za a sta homeomorfizma iz G v G. Prav tako je preslikava invertiranja homeomorfizem iz G v G.

Trditev 3.4. Za topološko grupo G in odprto bazo okolic \mathcal{U} enote e veljajo naslednje trditve:

- (1) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V^2 \subset U$;
- (2) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V^{-1} \subset U$;
- (3) za vsako množico $U \in \mathcal{U}$ in vsak element $x \in U$ obstaja taka množica $V \in \mathcal{U}$, da velja $xV \subset U$;
- (4) za vsako množico $U \in \mathcal{U}$ in vsak element $x \in G$ obstaja taka množica $V \in \mathcal{U}$, da velja $xVx^{-1} \subset U$.

Naj bo G sedaj grupa (ne topološka) in \mathcal{U} družina podmnožic množice G, za katero veljajo zgornje štiri lastnosti. Naj bodo poljubni končni preseki množic iz \mathcal{U} neprazni. Tedaj je družina $\{xU\}$, kjer $U \in \mathcal{U}$ in $x \in G$ odprta podbaza za neko topologijo na G. S to topologijo je G topološka grupa. Družina $\{Ux\}$ je podbaza za isto topologijo. Če velja še, da za vsaki množici $U, V \in \mathcal{U}$ obstaja množica $W \in \mathcal{U}$, da velja $W \subset U \cap V$, potem sta družini $\{xU\}$ in $\{Ux\}$ tudi bazi za to topologijo.

Trditev 3.5. Vsaka topološka grupa G ima bazo odprtih okolic \mathcal{U} enote e, da za vsako okolico U velja $U = U^{-1}$.

Opomba 3.6. Lastnosti množic iz trditve 3.5 pravimo simetričnost.

Posledica 3.7. Za vsako okolico U enote e topološke grupe G obstaja taka okolica V enote e, da velja $V^{-1} \subset U$.

3.1. Primeri topoloških grup.

4. Kvocienti topoloških grup

Trditev 4.1. Naj bo G topološka grupa in H njena podgrupa. Če H opremimo z relativno topologijo, potem je tudi H topološka grupa.

Trditev 4.2. Naj bosta A in B podmnožici topološke grupa G. Veljajo naslednje trditve:

- (1) $\overline{A} \ \overline{B} \subset \overline{AB}$,
- (2) $(\overline{A})^{-1} = \overline{A^{-1}}$,
- (3) $x\overline{A}y = \overline{xAy}$ za vsaka dva $x, y \in G$.

Če G ustreza še separacijskemu aksiomu T_0 , velja tudi:

- (4) če za vsaka dva elementa $a \in A$ in $b \in B$ velja enakost ab = ba, potem velja enakost ab = ba tudi za vsaka dva elementa $a \in \overline{A}$ in $b \in \overline{B}$.
- **Trditev 4.3.** Naj bo G topološka grupa in H njena podgrupa. H je odprta natanko tedaj, ko ima neprazno notranjost. Vsaka odprta podgrupa H topološke grupa G je tudi zaprta.
- **Trditev 4.4.** Naj bo U simetrična okolica enote e v topološki grupi G. Potem je $L = \bigcup_{n=1}^{\infty} U^n$ odprta in zaprta podgrupa topološke grupe G.
- **Izrek 4.5.** Naj bo G topološka grupa, H njena podgrupa in $\varphi: G \to G/H$ naravna preslikava. Definiramo $\theta(G/H) = \{U; \varphi^{-1}(U) \text{ odprta } v G\}$. Veljajo naslednje trditve:
 - (1) družina $\theta(G/H)$ je topologija na kvocientu G/H,
 - (2) glede na topologijo $\theta(G/H)$ je φ zvezna preslikava,
 - (3) družina $\theta(G/H)$ je najmočnejša topologija na kvocientu G/H, glede na katero je φ zvezna preslikava,
 - (4) $\varphi: G \to G/H$ je odprta preslikava.

Družini $\theta(G/H)$ pravimo kvocientna topologija, kvocientu G/H pa kvocientni prostor.

- **Trditev 4.6.** Naj bo G topološka grupa, H njena podgrupa in U, V tako okolici enote $e \ v \ G$, da velja $V^{-1}V \subset U$. Naj bo $\varphi : G \to G/H$ naravna preslikava. Potem velja $\varphi(V) \subset \varphi(U)$.
- Izrek 4.7. Za topološko grupo G in njeno podgrupo H veljajo naslednje trditve:
 - (1) kvocientni prostor G/H je diskreten natanko tedaj, ko je H odprta v G,
 - (2) če je H zaprta v G, potem je kvocient G/H regularen topološki prostor,
 - (3) če kvocientni prostor G/H zadošča separacijskemu aksiomu T_0 , potem je H zaprta v G in velja, da je kvocient G/H regularen topološki prostor.
- **Izrek 4.8.** Naj bo H podgrupa edinka topološke grupe G. Naj bo kvocient G/H opremljen s kvocientno topologijo θ . Veljajo naslednje trditve:
 - (1) kvocient G/H je topološka grupa s topologijo θ ,
 - (2) naravni homomorfizem je odprta in zvezena preslikava,
 - (3) kvocient G/H je diskreten natanko tedaj, ko je podgrupa H odprta v G,
 - (4) kvocient G/H zadošča separacijskemu aksiomu T₀ natanko tedaj, ko je podgrupa H zaprta v G.

5. Izreki o izomorfizmih

- **Trditev 5.1.** Naj bo G topološka grupa in H njena podgrupa. Naj bo za vsak element $a \in G$ na kvocientu G/H definirana preslikava ψ_a s predpisom $\psi_a(xH) = (ax)H$. Za vsak element $a \in G$ je ψ_a homeomorfizem na prostoru G/H.
- **Opomba 5.2.** Če za vsaki dve točki x,y topološkega prostora X velja, da na prostoru X obstaja homeomorfizem, ki preslika točko x v točko y, rečemo, da je X homogen topološki prostor. Zgornja trditev pravi, da je kvocientni prostor G/H homogen topološki prostor.
- **Trditev 5.3.** Naj bo G (lokalno) kompaktna topološka grupa in naj bo H njena podgrupa. Potem je tudi kvocietni prostor G/H (lokalno) kompakten.

5.1. Prvi izrek o izomorfizmih.

Izrek 5.4 (Prvi izrek o izomorfizmih za topološke grupe). Naj bosta G in \widetilde{G} topološki grupi. Naj bo $f: G \to \widetilde{G}$ odprt, zvezen homomorfizem. Potem je H:= kerf podgrupa edinka v grupi G in množice $f^{-1}(\widetilde{x})$, kjer je $\widetilde{x} \in \widetilde{G}$, so disjunktni odseki podgrupe H v grupi G. Preslikava $\Phi: \widetilde{G} \to G/H$ s predpisom $\widetilde{x} \mapsto f^{-1}(\widetilde{x})$ je topološki izomorfizem.

5.2. Drugi izrek o izomorfizmih.

Izrek 5.5. Naj bo G topološka grupa, A njena podgrupa in H podgrupa edinka grupe G. Naj bo τ izomorfizem iz kvocienta (AH)/H v kvocient $A/(A \cap H)$ s predpisom $\tau(aH) = a(A \cap H)$, kjer je $a \in A$. Potem τ slika odprte množice iz (AH)/H v odprte množice iz $A/(A \cap H)$.

Izrek 5.6 (Drugi izrek o izomorfizmih za topološke grupe). Naj bodo objekti G, A, H in τ isti kakor v izreku 5.5. Naj bo podgrupa A še lokalno kompaktna in σ -kompaktna, naj bo H zaprta v G in AH lokalno kompaktna. Tedaj je τ homeomorfizem ter topološki grupi (AH)/H in $A/(A \cap H)$ sta topološko izomorfni.

5.3. Tretji izrek o izomorfizmih.

Izrek 5.7. Naj bo G topološka grupa z enoto e in naj bo \widetilde{G} topološka grupa z enoto \widetilde{e} . Naj bo f odprt, zvezen homomorfizem iz grupe G v grupo \widetilde{G} . Naj bo \widetilde{H} podgrupa edinka grupe \widetilde{G} . Označimo $H = f^{-1}(\widetilde{H})$ in $N = f^{-1}(\widetilde{e})$ (N je jedro homomorfizma f). Potem so grupe G/H, $\widetilde{G}/\widetilde{H}$ in (G/N)/(H/N) topološko izomorfne.

Izrek lahko preoblikujemo v obliko, ki je bolj podobna algebraični različici in ne vsebuje pomožne topološke grupe \tilde{G} .

Izrek 5.8 (Tretji izrek o izomorfizmih za topološke grupe). Naj bo G topološka grupa in H, N taki njeni podgrupi edinki, da velja $N \subset H$. Potem sta kvocientni topološki grupi G/H in (G/N)/(H/N) topološko izomorfni.

6. Izreki tipa "2 od 3"

7. Separacijski aksiomi in metrizabilnost

Definicija 7.1. Topološki prostor X zadošča separacijskemu aksiomu $T_{3\frac{1}{2}}$, če za poljubno zaprto množico $A\subseteq X$ in točko $b\in X\backslash A$ obstaja zvezna realna funkcija ψ definirana na G, da je $\psi(b)=0$ in $\psi(x)=1$ za vsak $x\in A$.

Opomba 7.2. Topološku prostoru, ki zadošča $T_1 + T_{3\frac{1}{2}}$, pravimo povsem regularen topološki prostor.

Trditev 7.3. (1) Vsak povsem regularen topološki prostor je regularen.

(2) Vsak normalen topološki prostor je povsem regularen.

Izrek 7.4. Vsaka topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je regularen topološki prostor.

7.1. Metrizabilnost.

Definicija 7.5. *Pseudometrika* na neprazni množici X je preslikava $d: X \times X \to [0, \infty)$, ki zadošča naslednjim pogojem:

(1) za vsaki dve točki $x, y \in X$ velja $\rho(x, y) \ge 0$ in $\rho(x, x) = 0$;

- (2) za vsaki dve točki $x, y \in X$ velja $\rho(x, y) = \rho(y, x)$;
- (3) za vsake tri točke $x, y, z \in X$ velja $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$.

Če za preslikavo d velja še

(4) $d(x, y) = 0 \iff x = y$, potem ji rečemo metrika.

Definicija 7.6. Naj bo X neprazna množica.

- (1) Neprazna poddružina $\mathcal{F} \subset \mathcal{P}(X)$ je filter množice X, če ima naslednje lastnosti:
 - (a) družina \mathcal{F} ne vsebuje prazne množice,
 - (b) za vsako množico $F \in \mathcal{F}$ je vsaka taka množica $E \in X$, za katero velja $F \subseteq E$, tudi v družini \mathcal{F} ,
 - (c) če sta množici E in F v družini \mathcal{F} , je tudi množica $E \cap F$ v družini \mathcal{F} .
- (2) Filter \mathcal{U} na množici $X \times X$ definira uniformno strukturo na množici X, če ima naslednje lastnosti:
 - (a) vsaka množica $U \in \mathcal{U}$ ima diagonalo množice $X \Delta = \{(x, x); x \in X\}$ za svojo podmnožico,
 - (b) za vsako množico $U \in \mathcal{U}$ je tudi množica $U^{-1} \in \mathcal{U}$,
 - (c) za vsako množico $U \in \mathcal{U}$ obstaja taka množica $V \in \mathcal{U}$, da velja $V \circ V \subseteq U$.

Množici z uniformno stukturo rečemo tudi uniformni prostor.

Opomba 7.7. V zgornji definiciji so operacije na množicah mišljene v smislu relacij (glej podrazdelek 2.1).

Definicija 7.8. Naj bo X uniformni prostor z uniformno strukturo \mathcal{U} . Topologija, inducirana z \mathcal{U} je taka družina množic $T \subseteq X$, za katere za vsako točko $x \in T$ obstaja $U \in \mathcal{U}$, da velja $\{y \in X; (x,y) \in U\} \subseteq T$.

Definicija 7.9. Naj bosta X in Y uniformna prostora z uniformnima strukturama \mathcal{U} in \mathcal{V} . Preslikava $f: X \to Y$ je enakomerno zvezna, če za vsako množico $V \in \mathcal{V}$ obstaja taka množica $U \in \mathcal{U}$, da za vsak par $(x, y) \in U$ velja $(f(x), f(y)) \in V$.

Trditev 7.10. Vsaka enakomerno zvezna preslikava uniformnih prostorov je zvezna v topologiji, inducirani z uniformnima strukturama.

Trditev 7.11. Vsaka topološka grupa je uniformni prostor.

Izrek 7.12. Naj bo $\{U_k\}_{k=1}^{\infty}$ tako zaporedje simetričnih okolic enote e v topološki grupi G, da za vsak $k \in \mathbb{N}$ velja $U_{k+1}^2 \subset U_k$. Označimo $H = \bigcap_{k=1}^{\infty} U_k$. Potem obstaja taka levoinvariantna pseudometrika σ na G z naslednjimi lastnostmi:

- (1) σ je enakomerno zvezna na levi uniformni strukturi od $G \times G$;
- (2) $\sigma(x,y) = 0$ natanko tedaj, ko $y^{-1}x \in H$;
- (3) $\sigma(x,y) \le 2^{-k+2}$, če $y^{-1}x \in U_k$;
- (4) $2^{-k} \le \sigma(x, y)$, če $y^{-1}x \notin U_k$.

Če velja še $xU_kx^{-1} = U_k$ za vsak $x \in G$ in $k \in \mathbb{N}$, potem je σ tudi desnoinvariantna in velja

(5) $\sigma(x^{-1}, y^{-1}) = \sigma(x, y)$ za vsaka dva elementa $x, y \in G$.

Definicija 7.13. Topološki prostor X je metrizabilen, če njegova topologija τ izhaja iz kakšne metrike d na množici X, tj. baza topologije τ je družina odprtih krogel $\{K(x,\epsilon); x \in X, \epsilon \in \mathbb{R}\}.$

Izrek 7.14. Topološka grupa G, ki zadošča separacijskemu aksiomu T_0 , je metrizabilen topološki prostor natanko tedaj, ko obstaja števna baza odprtih okolic enote e.

7.2. Separacijski aksiomi do $T_{3\frac{1}{2}}$.

Izrek 7.15. Naj bo G topološka grupa, ki zadošča separacijskemu aksiomu T_0 . Naj bo $a \in G$ točka in F zaprta podmnožica v G, ki ne vsebuje a. Potem obstaja taka zvezna realna funkcija ψ definirana na G, da je $\psi(a) = 0$ in $\psi(x) = 1$ za vsak $x \in F$. Drugače: vsaka T_0 topološka grupa je povsem regularna.

7.3. Separacijski aksiom T_4 .

- **Izrek 7.16.** Če je m katerokoli neštevno kardinalno število, potem je \mathbb{Z}^m nenormalna povsem regularna topološka grupa.
- Trditev 7.17. Vsak parakompakten Hausdorffov topološki prostor je normalen.
- **Izrek 7.18.** Vsaka lokalno kompaktna topološka grupa, ki zadošča separacijskemu aksiomu T_0 , je normalen topološki prostor.

SLOVAR STROKOVNIH IZRAZOV

LITERATURA

- [1] S. Bhowmik, Introduction to Uniform Spaces, 10.13140/RG.2.1.3743.8967, junij 2014, [ogled 1. 4. 2019], dostopno na https://www.researchgate.net/publication/305196408_INTRODUCTION_TO_UNIFORM_SPACES.
- [2] E. Hewitt in K. A. Ross, Abstact Harmonic Analysis I, Springer-Verlag, New York, 1979.
- [3] J. Mrčun, *Topologija*, Izbrana poglavja iz matematike in računalništva **44** DMFA-založništvo, Ljubljana, 2008.