

planetmath.org

Math for the people, by the people.

equivalent conditions for normality of a field extension

 ${\bf Canonical\ name} \quad {\bf Equivalent Conditions For Normality Of A Field Extension}$

Date of creation 2013-03-22 18:37:56 Last modified on 2013-03-22 18:37:56 Owner azdbacks4234 (14155) Last modified by azdbacks4234 (14155)

Numerical id 8

Author azdbacks4234 (14155)

Entry type Theorem Classification msc 12F10

Related topic NormalExtension
Related topic SplittingField
Related topic ExtensionField
Related topic AlgebraicExtension

Theorem. If K/F is an algebraic extension of fields, then the following are equivalent:

- 1. K is normal over F;
- 2. K is the splitting field over F of a set of polynomials in F[X];
- 3. if \overline{F} is an algebraic closure F containing K and $\sigma: K \to \overline{F}$ is an F-monomorphism, then $\sigma(K) = K$.
- *Proof.* (1) \Rightarrow (2) Let X be an F-basis for K, and for each $x \in X$, let f_x be the irreducible polynomial of x over F. By hypothesis, each f_x splits over K, and because we evidently have K = F(X), it follows that K is a splitting field of $\{f_x : x \in X\}$ over F.
- (2) \Rightarrow (3) Assume that K is a splitting field over F of $S \subseteq F[X]$. Given $f \in S$, we may write $f(X) = u \prod_{i=1}^{n} (X u_i)$ for some $u, u_1, \ldots, u_n \in K$; because σ fixes F pointwise, we have $\sigma(u_i) \in \{u_1, \ldots, u_n\}$ for $1 \le i \le n$, and since σ is injective, it must simply permute the roots of f. Thus $u_1, \ldots, u_n \in \sigma(K)$. As K is generated over F by the roots of the polynomials in S, we obtain $K = \sigma(K)$.
- $(3)\Rightarrow (1)$ Let \overline{K} be an algebraic closure of K, noting that, since K is algebraic over F, that same is true of \overline{K} , and consequently \overline{K} is an algebraic closure of F containing K. Now suppose $f\in F[X]$ is irreducible and that $u\in K$ is a root of f, and let v be any root of F in \overline{K} . There exists an F-isomorphism $\tau:F(u)\to F(v)$ such that $\tau(u)=v$. Because \overline{K} is a splitting field over both F(u) and F(v) of the set of irreducible polynomials in F[X], τ extends to an F-isomorphism $\sigma:\overline{K}\to\overline{K}$. It follows that $\sigma|_K:K\to\overline{K}$ is an F-monomorphism, so that, by hypothesis, $\sigma(K)=K$, hence that $v=\sigma(u)\in K$. Thus f splits over K, and therefore K/F is normal.