

=====

Sequence Listing was accepted with existing errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Tue Jun 05 17:50:16 EDT 2007

=====

Application No: 10582918 Version No: 1.1

Input Set:

Output Set:

Started: 2007-06-05 17:50:06.738
Finished: 2007-06-05 17:50:08.539
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 801 ms
Total Warnings: 35
Total Errors: 0
No. of SeqIDs Defined: 42
Actual SeqID Count: 42

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)

Input Set:

Output Set:

Started: 2007-06-05 17:50:06.738
Finished: 2007-06-05 17:50:08.539
Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 801 ms
Total Warnings: 35
Total Errors: 0
No. of SeqIDs Defined: 42
Actual SeqID Count: 42

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> KROGER, BURKHARD
ZELDER, OSKAR
KLOPPROGGE, CORINNA
SCHRODER, HARTWIG
HAEFNER, STEFAN

<120> P EF-TU EXPRESSION UNITS

<130> BGI-186US

<140> 10/582, 918
<141> 2006-06-14

<150> PCT/EP04/014266
<151> 2004-12-15

<150> DE 10359594.5
<151> 2003-12-18

<160> 42

<170> PatentIn Ver. 3.3

<210> 1
<211> 186
<212> DNA
<213> Corynebacterium glutamicum

<400> 1
ggccgttacc ctgcgaatgt ccacagggta gctggtagtt tgaaaatcaa cgccgttgcc 60
cttaggattc agtaactggc acatttgtta atgcgctaga tctgtgtgct cagtcttcca 120
ggctgcttat cacagtgaaa gcaaaaccaa ttctgtggctg cgaaaagtcgt agccaccacg 180
aagtcc 186

<210> 2
<211> 199
<212> DNA
<213> Corynebacterium glutamicum

<400> 2
ggccgttacc ctgcgaatgt ccacagggta gctggtagtt tgaaaatcaa cgccgttgcc 60
cttaggattc agtaactggc acatttgtta atgcgctaga tctgtgtgct cagtcttcca 120
ggctgcttat cacagtgaaa gcaaaaccaa ttctgtggctg cgaaaagtcgt agccaccacg 180
aagtccagga ggacataca 199

<210> 3
<211> 1365
<212> DNA
<213> Corynebacterium glutamicum

<400> 3
atgaatgatg agaatattca aagctccaac tatcagccat tcccggatgg tgacgattgg 60
aaacagatcg aggtgtcgct ctttagatgtc atcgaatcct cacgccattt ttctgtgttg 120

aaagatagca ctgatcggtc tgcgttagat gctgcgctag agagagcaaa aagagctgcc 180
gcagttgata ccaatgccat agaaggaaatc ttccaaactg atcgcggtt tacccataca 240
gttgcaacgc aggtagggc ttgggagcaa caaatggcga tgaaaggcaa acatgttaag 300
cctgcgttg acgataactt agaaggctt gagtatgttc tcgatgcagt aactggtaga 360
actccaatct ctcagcaatg gattagaaat ttgcacgccc tcattctgcg gagccaagaa 420
agccacgagg ttttacagc cggtggagtc caaaaatcagg cgcttcagaa aggcgagtt 480
aaaactcagc caaatagtcc acagcgctca gatggatctg tacatgcata cgccccagtt 540
gaagataactc ctgctgaaat ggcttagatt atttcagaac ttgaatctaa ggaattctta 600
gcagccgaga aggttattca agctgcctat gcccactatg ctttcgtatg tattcatcct 660
tttgcagatg ggaatggacg agttgcacga gccttggcta gtgttttct atacaagat 720
cctgggtgtcc ctctcgtaat ctaccaagat caacgcagag attacatcca tgctctagaa 780
gcagcggaca agaataaccc gtcctgctg attagattct ttgctgaacg agtgcaccat 840
actattaact ctattatcgt tgatctcaact accccgatcg cggtaaaatc tggttcggct 900
aagcttcgg atgcgctacg ccccactcgc gtattaccag aattacatga tgctgcacat 960
aggctccaag aaagtttatt tacagaaatc cgatctcgat tggatgaaga aggaaaaagg 1020
aatgggttgg agtttctact tcaacggatt tttatcggtt ccccattcaa tctgccagag 1080
ggctataacg cttccctga tagctattgt ctgaccttag cttcaatag caactctcca 1140
aaacaaatct tccacccgct atccatagta atagcagctc gagatggaa aagagcggc 1200
agcgacctcg tggcagctac ttctattgga tacaacttacgg acgtgaagtc 1260
gagcctgttg ttactgaaag cttcgagaa cgtgtaaaaa tttacgcccga cgggattgta 1320
gatcacttct taaccgaact ggctaaaaag tttcaacaga attaa 1365

<210> 4

<211> 454

<212> PRT

<213> Corynebacterium glutamicum

<400> 4

Met Asn Asp Glu Asn Ile Gln Ser Ser Asn Tyr Gln Pro Phe Pro Ser
1 5 10 15

Phe Asp Asp Trp Lys Gln Ile Glu Val Ser Leu Leu Asp Val Ile Glu
20 25 30

Ser Ser Arg His Phe Ser Asp Leu Lys Asp Ser Thr Asp Arg Ser Ala
35 40 45

Leu Asp Ala Ala Leu Glu Arg Ala Lys Arg Ala Ala Ala Val Asp Thr
50 55 60

Asn Ala Ile Glu Gly Ile Phe Gln Thr Asp Arg Gly Phe Thr His Thr
65 70 75 80

Val Ala Thr Gln Val Gly Ala Trp Glu Gln Gln Met Ala Met Lys Gly
85 90 95

Lys His Val Lys Pro Ala Phe Asp Asp Thr Leu Glu Gly Phe Glu Tyr
100 105 110

Val Leu Asp Ala Val Thr Gly Arg Thr Pro Ile Ser Gln Gln Trp Ile
115 120 125

Arg Asn Leu His Ala Val Ile Leu Arg Ser Gln Glu Ser His Glu Val
130 135 140

Phe Thr Ala Val Gly Val Gln Asn Gln Ala Leu Gln Lys Gly Glu Tyr

145 150 155 160
Lys Thr Gln Pro Asn Ser Pro Gln Arg Ser Asp Gly Ser Val His Ala
165 170 175

Tyr Ala Pro Val Glu Asp Thr Pro Ala Glu Met Ala Arg Phe Ile Ser
180 185 190

Glu Leu Glu Ser Lys Glu Phe Leu Ala Ala Glu Lys Val Ile Gln Ala
195 200 205

Ala Tyr Ala His Tyr Ala Phe Val Cys Ile His Pro Phe Ala Asp Gly
210 215 220

Asn Gly Arg Val Ala Arg Ala Leu Ala Ser Val Phe Leu Tyr Lys Asp
225 230 235 240

Pro Gly Val Pro Leu Val Ile Tyr Gln Asp Gln Arg Arg Asp Tyr Ile
245 250 255

His Ala Leu Glu Ala Ala Asp Lys Asn Asn Pro Leu Leu Leu Ile Arg
260 265 270

Phe Phe Ala Glu Arg Val Thr Asp Thr Ile Asn Ser Ile Ile Val Asp
275 280 285

Leu Thr Thr Pro Ile Ala Gly Lys Ser Gly Ser Ala Lys Leu Ser Asp
290 295 300

Ala Leu Arg Pro Thr Arg Val Leu Pro Glu Leu His Asp Ala Ala His
305 310 315 320

Arg Leu Gln Glu Ser Leu Phe Thr Glu Ile Arg Ser Arg Leu Asp Glu
325 330 335

Glu Gly Lys Arg Asn Gly Leu Glu Phe Leu Leu Gln Arg Ile Phe Ile
340 345 350

Gly Ser Pro Phe Asn Leu Pro Glu Gly Tyr Asn Ala Phe Pro Asp Ser
355 360 365

Tyr Cys Leu Thr Leu Ala Phe Asn Ser Asn Ser Pro Lys Gln Ile Phe
370 375 380

His Pro Leu Ser Ile Val Ile Ala Ala Arg Asp Gly Lys Arg Ala Ser
385 390 395 400

Ser Asp Leu Val Ala Ala Thr Ser Ile Gly Tyr Asn Phe His Ala Tyr
405 410 415

Gly Arg Glu Val Glu Pro Val Val Thr Glu Ser Phe Arg Glu Arg Val
420 425 430

Lys Ile Tyr Ala Asp Gly Ile Val Asp His Phe Leu Thr Glu Leu Ala
435 440 445

Lys Lys Phe Gln Gln Asn

<210> 5
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 5
cccgggatcc gctagcggcg cgccggccgg cccggtgtga aataccgcac ag 52

<210> 6
<211> 53
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 6
tctagactcg agcggccgca gccggccttt aaattgaaga cgaaagggcc tcg 53

<210> 7
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 7
gagatctaga cccggggatc cgctagcggg ctgctaaagg aagcgg 47

<210> 8
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 8
gagaggcgcg ccgctagcgt gggcgaagaa ctccagca 38

<210> 9
<211> 34

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 9
gagagggcgg ccgcgcaaag tcccgcttcg tgaa 34

<210> 10
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 10
gagagggcgg ccgctcaagt cggtaagcc acgc 34

<210> 11
<211> 140
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 11
tcgaatttaa atctcgagag gcctgacgtc gggcccgta ccacgcgtca tatgactagt 60
tcggacctag ggatatcgta gacatcgatg ctcttctgcg ttaattaaca attggatcc 120
tctagaccgg ggatttaat 140

<210> 12
<211> 140
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 12
gatcatttaa atcccggtc tagaggatcc caattgttaa ttaacgcaga agagcatcga 60
tgtcgacgt atcccttagt ccgaactagt catatgacgc gtggtaaccgg gcccgacgtc 120
aggcctctcg agatttaat 140

<210> 13
<211> 5091
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
plasmid

<400> 13

tcgatttaaa tctcgagagg cctgacgtcg ggcccggtac cacgcgtcat atgactagtt 60
cggacctagg gatatcgtag acatcgatgc tcttctgcgt taattaacaa ttgggatcct 120
ctagaccgg gatttaaatc gctagcgggc tgctaaagga agcggAACAC gtagaaAGCC 180
agtccgcaga aacggtgctg accccggatg aatgtcagct actgggctat ctggacaagg 240
gaaaacgcaa gcgcAAAGAG aaagcaggt a gcttgcagt g ggcttacatg gcgataagct 300
gactggcgg ttttatggac agcaagcgaa ccggaattgc cagctggggc gcccctctgg 360
aaggttggga agccctgcaa agtaaactgg atggctttct tgccgccaag gatctgatgg 420
cgcaggggat caagatctga tcaagagaca ggtgaggat cgtttgcgt gattgaacaa 480
gatggattgc acgcagggttc tccggccgct tgggtggaga ggctattcgg ctatgactgg 540
gcacaacaga caatcggtcg ctctgtatgcc gccgtgttcc ggctgtcagc gcaggggcgc 600
ccggttctt ttgtcaagac cgacctgtcc ggtgcctga atgaactgca ggacgaggca 660
gcgcggctat cgtggctggc cacgacgggc gttccttgcg cagctgtgct cgacgttg 720
actgaagcgg gaaggactg gctgctattg ggcgaagtgc cggggcagga tctcctgtca 780
tctcaccttgc tccctgcccga gaaagtatcc atcatggctg atgcaatgcg gcccgtgc 840
acgcttgatec cggctacactg cccattcgac caccaagcga aacatcgcat cgagcggagca 900
cgtactcgga tggaaAGCCGG tcttgcgtat caggatgatc tggacgaaga gcatcagggg 960
ctcgcgccag ccgaactgtt cgccaggctc aaggcgcgca tgccccacgg cgaggatctc 1020
gtcgtgaccc atggcgatgc ctgcttgcg aatatcatgg tggaaaatgg ccgcctttct 1080
ggattcatcg actgtggccg gctgggtgtg gcggaccgct atcaggacat agcgttggct 1140
accctgtata ttgctgaaga gcttggcggc gaatgggctg accgcttcct cgtgctttac 1200
ggtatcgccg ctcccgttgc gcagcgcattc gccttctatc gccttcttgcg cagttcttc 1260
tgagcgggac tctgggttgc gaaatgaccg accaagcgcac gcccacaccc ccatcaccg 1320
atTCGATTc caccggccgc ttctatgaaa ggttgggctt cggaaatcggtt ttccggacg 1380
ccggctggat gatcctccag cgcggggatc tcatgctggc gttcttcgcac caccgtacgc 1440
gcgcgcggc cggccgggtg tggaaataccg cacagatgcg taaggagaaa ataccgcattc 1500
aggcgctttt ccgccttcctc gctcactgac tcgctgcgt cggtcgttgc gctgcggcga 1560
gcggatcag ctcaactaaa ggccgtataa cggttatcca cagaatcagg ggataacgc 1620
ggaaagaaca tgtgagcaaa aggccagca aaggccagga accgtaaaaaa ggccgcgtt 1680
ctggcgttt tccataggct ccgccttcct gacgacgtatc acaaaaatcg acgctcaagt 1740
cagaggtggc gaaacccgac aggactataa agataccagg cgtttcccccc tggaaagctcc 1800
ctcgtgcgtc ctccctgttcc gaccctgcgc cttaccggat acctgtccgc ctttctccct 1860
tcgggaagcg tggcgcttcc tcatagctca cgctgttaggt atctcagttc ggtgttaggtc 1920
gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgcaccc ctgcgcctta 1980
tccggtaact atcgcttgc gtcaccaacccg gtaagacacg acttacgcgc actggcagca 2040
gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgc 2100
tggtggccata actacggcta cactagaagg acagtatttgc gtatctgcgc tctgctgaag 2160
ccagttaccc tggaaaaaag agttggtagc tcttgcgtcc gcaaaacaaac caccgttgtt 2220
agcggtggtt ttttgggttgc caagcagcag attacgcgc gaaaaaaaagg atctcaagaa 2280
gatccttgc tctttctac ggggtctgc gctcgttgcg acgaaaactc acgttaagg 2340
atTTGGTCA tgagattatc aaaaaggatc ttcacctaga tcctttaaa ggccggccgc 2400
ggccgcgcaa agtcccgctt cgtgaaaatt ttctgcgcgt gtgattttcc gccaaaaact 2460
ttaacgaacg ttctgtataa tgggtgtatg accttcacga cgaagtacta aaattggccc 2520
gaatcatcag ctatggatct ctctgtatgc gcgcgtggagt ccgcgcgtc cgatgcgtcc 2580
gtcgatttaa aaacgggtat cggatTTTC cggatctcg atacgcacggc cgcgcgcagca 2640
tcacgagact gggccagtgc cgcgcgcac ctagaaactc tcgtggcggc tcttgggg 2700
ctggctgcgc agctgcgtgc tcggccagcg ccaggaggac gcacagtagt ggaggatgc 2760
atcgatgcg cctactgcgg tggcctgatt cctccccggc ctgaccgcgc aggacggcgc 2820
gcaaaatatt gctcagatgc gtgtcgtgc gcagccagcc gcgagcgcgc caacaaacgc 2880
cacgcccagg agctggaggc ggcttaggtcg caaatggcgc tggaaagtgcg tccccggagc 2940
gaaattttgg ccatggcgtt caccatggcgc gaaagcggcag cgagaattat cgcgatcg 3000

gcgggtccccg caggcatgac aaacatcgta aatgccgcgt ttcgtgtgcc gtggccgccc 3060
aggacgtgtc agcgccgcca ccacctgcac cgaatcgca gcagcgtcgc gcgtcgaaaa 3120
agcgcacagg cggcaagaag cgataagctg cacgaatacc tgaaaaatgt tgaacgcccc 3180
gtgagcggtaa actcacaggg cgtcgctaa cccccagtc aaacctggga gaaagcgctc 3240
aaaaaatgact ctagcggatt cacgagacat tgacacaccg gcctggaaat ttccgctga 3300
tctgttcgac acccatccccg agctcgcgct gcgatcacgt ggctggacga gcgaagaccg 3360
cccgcaattc ctgcgtcacc tggcgagaga aaatttccag ggcagcaaga cccgcgactt 3420
cgccagcgct tggatcaaag acccggacac ggagaaacac agccgaagtt ataccgagtt 3480
ggttcaaaat cgcttgccccg gtgccagtat gttgctctga cgcacgcgca gcacgcagcc 3540
gtgcttgtcc tggacattga tgtgccgagc caccaggccg gcggggaaaat cgagcacgt 3600
aaccccgagg tctacgcgtat tttggagcgc tggcacgccc tggaaaaaagc gccagcttgg 3660
atcggcgtga atccactgag cggaaatgc cagctcatct ggctcattga tccggtgtat 3720
gccgcagcag gcatgagcag cccgaatatg cgcctgctgg ctgcaacgac cgaggaaatg 3780
acccgcgttt tcggcgctga ccaggcttt tcacataggc tgagccgtgg ccactgcact 3840
ctccgacgat cccagccgta cgcgtggcat gcccagcaca atcgcgtgga tcgcctagct 3900
gatcttatgg aggttgctcg catgatctca ggcacagaaa aacctaaaaa acgctatgag 3960
caggagttt ctagcggacg ggcacgtatc gaagcggcaa gaaaagccac tgcggaaagca 4020
aaagcacttg ccacgcttga agcaaggctg ccgagcgccg ctgaagcgctc tggagagctg 4080
atcgacggcg tccgtgtct ctggactgtt ccagggcggt ccgcccgtga tgagacggct 4140
tttcgccacg ctttgcgtgt gggataccag ttaaaagcgg ctggtgagcg cctaaaagac 4200
accaagggtc atcgagccta cgagcgtgcc tacaccgtcg ctcaggcggt cggaggaggc 4260
cgtgagcctg atctgccgcc ggactgtgac cgccagacgg attggccgca acgtgtgcgc 4320
ggctacgtcg ctaaaggcca gccagtcgtc cctgctcgatc agacagagac gcagagccag 4380
ccgaggcgaa aagctctggc cactatggga agacgtggcg gtaaaaaggc cgcagaacgc 4440
tggaaagacc caaacagtga gtacgcccga gcacagcgag aaaaacttagc taagtccagt 4500
caacgacaag ctaggaaagc taaaggaaat cgcttgacca ttgcaggttgc tttatgact 4560
gttgagggag agactggctc gtggccgaca atcaatgaag ctatgtctga atttagcggt 4620
tcacgtcaga ccgtgaatag agcacttaag gtctgcgggc attgaacttc cacgaggacg 4680
ccgaaagctt cccagtaat gtgccatctc gtggcagaa aacggttccc ccgtagggtc 4740
tctcttttgg cctcccttct aggtcggtt gattgctctt gaagctctt aggggggctc 4800
acaccatagg cagataacgt tccccaccgg ctgcctcgat aagcgacaaa ggactgctcc 4860
caaagatctt caaaggccact gccgcgactg cttcgccaa gccttggccc gcggaaattt 4920
cctccaccga gttcggtcac acccctatgc caagcttctt tcaccctaaa ttcgagagat 4980
tggattctta ccgtggaaat tcttcgcaaa aatcgcccc tgatcgccct tgcgacgttg 5040
gcgtcggtgc cgctgggtgc gcttggcttg accgacttga tcagcggccg c 5091

<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic primer

<400> 14
gcgcgggtacc tagactcacc ccagtgtc 28

<210> 15
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

primer

<400> 15
ctctactagt ttagatgtag aactcgatgt 30

<210> 16
<211> 6349
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
plasmid

<400> 16
tcgatttaaa tctcgagagg cctgacgtcg ggcccggtac ctagactcac cccagtgctt 60
aaagcgctgg gttttcttt ttcaagactcg tgagaatgca aactagacta gacagagctg 120
tccatataca ctggacgaag ttttagtctt gtccaccagg aacaggcggt tattttcatg 180
cccaccctcg cgccttcagg tcaacctgaa atccaagcga tcggtgatgt ctccaccgaa 240
gccggagcaa tcattacaaa cgctgaaatc gcctatcacc gctggggta ataccgcgta 300
gataaagaag gacgcagcaa tgtcggttc atcgaacacg ccctcaactgg agattccaac 360
gcagccgatt ggtgggctga cttgctcggt cccggcaaag ccatcaacac tgatatttac 420
tgcgtgatct gtaccaacgt catcggtggt tgcaacgggtt ccaccggacc tggctccatg 480
catccagatg gaaatttctg gggtaatcgc ttccccgcca cgtccattcg tgatcaggta 540
aacgcccggaaa aacaattcct cgacgcactc ggcattcacca cggtcgcccgc agtacttgg 600
ggttccatgg gtggtgcccg cacccttagag tggccgcaa tgtaccaga aactgttggc 660
gcagctgctg ttcttgcaagt ttctgcacgc gccagcgcct ggcaaatcgg cattcaatcc 720
gccccaaatta aggccgattga aaacgaccac cactggcactg aaggcaacta ctacgaatcc 780
ggctgcaacc cagccaccgg actcgccgac gcccgaacgca tcgcccaccc cacctaccgt 840
ggcgaactag aaatcgacga acgcttcggc accaaagccc aaaagaacga aaacccactc 900
ggtccttacc gcaagcccga ccagcgcttc gccgtggaat cctacttggc ctaccaagca 960
gacaagctag tacagcggtt cgacgcccggc tcctacgtct tgctcaccga cgcctcaac 1020
cgccacgaca ttggtcgca cccggaggc ctcaacaagg cactcgaatc catcaaagtt 1080
ccagtccttg tcgcaggcgt agataccgt attttgtacc cctaccacca gcaagaacac 1140
ctctccagaa acctggaaaa tctactggca atggcaaaaa tcgtatcccc tgtcggccac 1200
gatgcttcc tcaccgaaag ccgcggaaatg gatcgcatcg tgaggaactt cttcagcctc 1260
atctccccag acgaagacaa cccttcgacc tacatcgagt tctacatcta aactagttcg 1320
gacctaggga tatcgacatcgatc ttctgcgtta attaacaatt gggatcctct 1380
agacccggga tttaaatcgc tagcgggctg ctaaaggaag cggAACACGT agaaagccag 1440
tccgcagaaa cggcgctgac c