Lista 3

Zadanie 1. Wyznacz bazę obrazu dla następujących przekształceń liniowych (z \mathbb{R}^3)

- F(x, y, z) = (2x + y, 3x z, 5x + y z, -2x + 2y 2z);
- G(x, y, z) = (x + y, y 2z, 3z, x y);
- H(x, y, z) = (x + y, y + z);

 $H \mathbf{m}$

Wskazówka: Możesz skorzystać z faktu: jeśli $F: \mathbb{V} \to \mathbb{W}$ oraz LIN $(b_1, \ldots, b_k) = \mathbb{V}$ to LIN $(F(v_1), \ldots, F(v_k)) = \mathbb{V}$

Zadanie 2. Wyznacz bazę jądra dla następujących przekształceń liniowych (z \mathbb{R}^3)

- H(x, y, z) = (x + y, y + z);
- I(x, y, z) = (x + y, 2y + z, y z);
- J(x, y, z) = (x + y, 2x + 2y, 3x + 3y).

Wskazówka: Ułóż odpowiedni układ równań.

Zadanie 3. Które z poniższych przekształceń są liniowe (dziedzinami i przeciwdziedzinami przekształceń są przestrzenie \mathbb{R}^n dla odpowiednich n)?

- L(x,y) = (2x y, x + 3y 1, 5x + 2y),
- L'(x, y, z) = (3x + 5y 2z, 2x y),
- $L''(x, y, z) = (x \cdot y + z, -2x z, -2y z)$.

Dla tych z powyższych przekształceń, które są liniowe, znajdź ich rzędy oraz podaj bazy jądra i obrazu.

Zadanie 4. Niech \mathbb{V} będzie przestrzenią liniową wymiaru n nad ciałem \mathbb{F} , zaś $F: \mathbb{V} \to \mathbb{F}$ niezerowym (tj. istnieje $v \in \mathbb{V}$ takie że $F(v) \neq \vec{0}$) przekształceniem liniowym (takie przekształcenia nazywamy funkcjonałami liniowymi).

- \bullet Jaki jest wymiar jądra ker F?
- Ustalmy dowolny wektor $w \in \mathbb{V} \setminus \ker F$. Pokaż, że LIN $(\ker F \cup \{w\}) = \mathbb{V}$.
- Niech F, G będą dowolnymi funkcjonałami liniowymi na \mathbb{V} o tym samym jądrze, tj. ker $F = \ker G$. Korzystając z poprzedniego punktu pokaż, że wtedy istnieje $\beta \in \mathbb{F}$, taka że $F = \beta G$.

Zadanie 5. Rozważmy przestrzeń wielomianów o stopniu najwyżej 7 nad ciałem \mathbb{Z}_5 oraz przekształcenie liniowe zdefiniowane jako suma pierwszej i drugiej pochodnej, tj.:

$$F(x^{i}) = ix^{i-1} + i(i-1)x^{i-2} ,$$

gdzie $i(i-1)x^{i-2}$ dla i < 2 oznacza 0.

Podaj bazy jądra ker F i obrazu $\operatorname{Im} F$ tego przekształcenia. Podaj ich wymiary.

Wskazówka: Możesz skorzystać ze wskazówek do Zadania 1 i Zadania 2.

Zadanie 6. Dane jest przekształcenie liniowe $F: \mathbb{V} \to \mathbb{W}$. Udowodnij, że następujące warunki są równoważne:

- F jest różnowartościowe;
- $\dim(\ker(F)) = 0$;
- $\ker(F)$ składa się z jednego wektora;
- $\dim(\operatorname{Im}(F)) = \dim(\mathbb{V}).$

Zadanie 7 (* Nie liczy się do podstawy, choć nie jest takie trudne). Załóżmy, że dla przekształcenia liniowego $L: \mathbb{R}^2 \to \mathbb{R}^2$ zachodzi $L^3(v) = \vec{0}$, dla każdego wektora $v \in \mathbb{R}^2$. Pokaż, że wtedy również $L^2(v) = \vec{0}$, dla każdego wektora v.

Udowodnij uogólnienie tego faktu:

Jeśli dla $L: \mathbb{R}^n \to \mathbb{R}^n$ oraz pewnego k>n zachodzi $L^k(v)=\vec{0}$ dla dowolnego v, to zachodzi również $L^n(v)=\vec{0}$.

Wskazówka: Rozważ wektory $v, L(v), L^2(v), \dots, L^n(v)$. Są one liniowo zależne.

Zadanie 8. Pokaż, że dla macierzy A,B,C odpowiednich wymiarów oraz skalara α zachodzą następujące zależności (Id oznacza macierze identycznościową/jednostkową odpowiedniego wymiaru, tj. mającą na przekątnej jedynkę oraz zera w innych miejscach):

$$\operatorname{Id} \cdot A = A \quad B \cdot \operatorname{Id} = B$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

$$\alpha(A \cdot B) = (\alpha A) \cdot B = A \cdot (\alpha B)$$

$$A[B|C] = [AB|AC]$$

$$\left[\frac{B}{C}\right] A = \left[\frac{BA}{CA}\right]$$

Zadanie 9. Zdefiniujmy $f_0 = 0, f_1 = 1$ oraz $f_{n+2} = f_{n+1} + f_n$. Rozważmy macierz $M = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Pokaż, że dla $k \ge 1$ zachodzi

$$M^k = \begin{bmatrix} f_{k-1} & f_k \\ f_k & f_{k+1} \end{bmatrix} .$$

Rozważając równość $M^{n+k} = M^k \cdot M^n$ wyprowadź zależności:

$$f_{n+k} = f_{k-1}f_n + f_k f_{n+1} = f_k f_{n-1} + f_{k+1}f_n.$$

Zadanie 10. Podaj zwartą postać macierzy (nad \mathbb{R})

$$\begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}^n .$$

Postać zwarta nie zawiera sum, wielokropków itp.

Zadanie 11. Oblicz (macierze są nad \mathbb{R})

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^{2}; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^{3}; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 2 & 1 & 2 & 2 \\ 2 & 1 & -2 & 2 & 1 & -2 \\ 2 & 1 & 2 & -2 & 1 \end{bmatrix}.$$