YEAR 12 MATHEMATICS METHODS

[2]

Differentiation Techniques & the Exponential Function $\begin{tabular}{c} Test \end{tabular}$

MESTEX COFFECE

By daring & by doing

[2]		$V = \sqrt{x^2 + 1}$
[2]		$\delta = (1 + 3x^3)^5$
		Differentiate the following functions and simplify:
		1. [7 marks]
		Calculator Free (25 marks)
me: 45 minutes	iΤ	
98/	Marks:	Vame:
		Supp. (a.v. Suupp. (a.

 $(3 - \chi^2) = (1 - \chi^2) \delta^{4x}$ [8]

- 2. [5 marks]
- a) Consider $f(x) = \frac{(x-2)^2}{e^{x-2}}$, clearly show that $f'(x) = \frac{-x^2 + 6x 8}{e^{x-2}}$ [3]

b) Determine the x-ordinates of the point(s) where the gradient of the curve is zero.

[2]

3. [3 marks]

Determine the equation of the tangent to the curve $y = 3x^2 + e^{2x} + 3$ at the point $(1, 6+e^2)$.

4. [3 marks] The curve $y = a\sqrt{x} + 3x$ has a gradient of 4 when x = 1. Calculate the value of 'a'.

8. [4 marks]
The rate of decay of a radio-active material is proportional to the amount present i.e. $\frac{dM}{dt} = -kM$ where M is the amount of radio-active material in grams and t is in years.
Given that it takes 100 years for ten grams of the materials to decay to eight grams, determine:

s) the mass present after $50 \, \mathrm{years}$, if ten grams were originally present

5. [4 marks]

If $z = 6 - x^2$ and $y = \sqrt{z}$ determine:

 $\frac{xp}{zn}$ (8

[1] $\frac{zp}{\sqrt{p}}$ (q

[1]

 $\frac{dp}{\sqrt{dp}} \qquad (5)$

b) the material's half-life.

6. [3 marks]

Given $y = x + \sqrt{x^2 - 4}$ show that $\frac{d^2y}{dx^2} = \frac{-4}{\left(\sqrt{x^2 - 4}\right)^3}$

<u>Calculator Section</u> (10 marks)

7. [6 marks]

The temperature, T^0C , of a bronze casting t seconds after being removed from a kiln was modelled by $T = T_0 e^{-0.0034t}$ for $0 \le t \le 800$.

How long, to the nearest second, did it take for the initial temperature of the casting to halve? [2]

b) Determine the initial temperature of the casting, given that it had cooled to $787^{\circ}C$ after one minute. [2]

c) Can the above rate of change model be used to calculate how long it takes the temperature of the casting to fall below 40 °C? Explain your answer. [2]