

Lista de Exercícios - Matrizes

Prof. Helder G. G. de Lima¹

Legenda

Cálculos	✓ Conceitos	Teoria	☐ Software
_ 0 011 0 011 0 10			

Questões

- 1. Exiba matrizes quadradas A e B de ordem 2×2 que exemplifiquem as situações a seguir. Compare com o que ocorreria se A e B fossem números reais.
 - (a) É possível que $A^2=B^2$ mesmo que $A\neq B$ e $A\neq -B$.
 - (b) $(AB)^2 \neq A^2B^2$.
 - (c) Pode ocorrer que $A^2 = 0$ apesar de $A \neq 0$.
 - (d) Há casos em que AB=0 ao mesmo tempo em que $0\neq A\neq B\neq 0$.
- 2. Seja $M = (m_{ij})$ a matriz de ordem 7×7 cujo termo geral é $m_{ij} = \begin{cases} 1, & \text{se } i \leq j, \\ 0, & \text{se } i > j. \end{cases}$

Utilize a definição do produto de matrizes para obter uma fórmula (em função de i e j) para as seguintes entradas da matriz $C = M^2$:

(a) c_{1j} , sendo $1 \le j \le 7$.

(d) c_{ij} , quando $1 \le j < i \le 7$.

- (b) c_{4j} , quando $1 \le j < 4$.
- (c) c_{4j} , quando $4 \le j \le 7$.

- (e) c_{ij} , quando $1 \le i \le j \le 7$.
- 3. Uma matriz A é considerada **simétrica** se $A^T = A$ e **antissimétrica** se $A^T = -A$. Levando em conta as propriedades da transposição de matrizes, justifique as afirmações que forem verdadeiras e exiba um contraexemplo para as falsas:
 - (a) Todas as entradas da diagonal de uma matriz antissimétrica devem ser nulas.
 - (b) Não existem matrizes simétricas que também sejam antissimétricas.
 - (c) Toda matriz simétrica é antissimétrica.
 - (d) Toda matriz antissimétrica é simétrica.
 - (e) Se uma matriz não é simétrica, então ela é antissimétrica.
- 4. Se A é uma matriz $p \times q$, B uma matriz $q \times r$ e C uma matriz $r \times q$, qual é o tamanho da matriz $M = (B + C^T)((AB)^T + CA^T)$?
- 5. Se X é uma matriz $m \times n$, para que valores de m e n as operações a seguir fazem sentido? Quais os tamanhos das matrizes obtidas? Quais delas são simétricas? Justifique.

¹Este é um material de acesso livre distribuído sob os termos da licença Creative Commons BY-SA 4.0

- (a) XX^T

- (b) $X^T X$ (c) $X + X^T$ (d) $X^T + X$ (e) $X X^T$
- **✓** 6. Justifique as afirmações verdadeiras e exiba um contraexemplo para as demais:
 - (a) A matriz nula é uma matriz na forma escalonada reduzida por linhas.
 - (b) A matriz identidade 4×4 está na forma escalonada reduzida por linhas.
 - (c) Se uma matriz triangular superior é simétrica então ela é uma matriz diagonal.
 - (d) Se U e V são matrizes diagonais, então UV = VU.
 - (e) Se A é uma matriz antissimétrica, isto é, se $A^T = -A$, então A^T é antissimétrica.
 - (f) Se A é uma matriz $n \times n$ antissimétrica, então sua diagonal é igual a zero.
 - (g) Nenhuma matriz $A n \times n$ pode ser simétrica e antissimétrica simultaneamente.
- 7. Quantas matrizes diagonais D de ordem 2×2 satisfazem $D^2 = I$, isto é, quantas matrizes diagonais são "raízes quadradas" da matriz identidade de ordem 2? E se D for 3×3 ?
- 8. Encontre todas as matrizes diagonais D de ordem 3×3 tais que $D^2 7D + 10I = 0$.
- 9. Mostre que se S é uma matriz simétrica então S^2 também é simétrica. Decida se vale o mesmo para S^n , qualquer que seja $n \in \mathbb{N}$, e explique sua conclusão.
- 10. Se M é uma matriz quadrada $n \times n$, a soma das entradas da diagonal de M é chamada de **traço** de M, e denotada por $tr(M) = m_{11} + m_{22} + \ldots + m_{nn}$. Explique por que são válidas as seguintes afirmações, para quaisquer matrizes A e B e todo $c \in \mathbb{R}$:
 - (a) tr(A+B) = tr(A) + tr(B)
 - (b) $\operatorname{tr}(c \cdot A) = c \cdot \operatorname{tr}(A)$
 - (c) $\operatorname{tr}(A^T) = \operatorname{tr}(A)$

Respostas

- 1. Em todos os itens há uma infinidade de matrizes que exemplificam as afirmações feitas. Seguem alguns exemplos:
 - (a) Para $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ é verdade que $A^2 = I = B^2$, mas $A \neq B$ e $A \neq -B$.
 - (b) Se $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 2 \\ 2 & 2 \end{bmatrix}$ então $(AB)^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ mas $A^2B^2 = \begin{bmatrix} 4 & 4 \\ 0 & 0 \end{bmatrix}$.
 - (c) Toda matriz $A = \begin{bmatrix} 0 & k \\ 0 & 0 \end{bmatrix}$ satisfaz $C^2 = 0$, até mesmo quando $k \neq 0$ (e então $A \neq 0$).
 - (d) Se $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ então $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ mas $0 \neq A \neq B \neq 0$.
- 2. (a) As entradas da primeira linha são dadas por $c_{1j} = j$ pois, por definição,

$$c_{1j} = \underbrace{m_{11}m_{1j} + m_{12}m_{2j} + \ldots + m_{1j}m_{jj}}_{j \text{ parcelas}} + \underbrace{\ldots + m_{17}m_{7j}}_{7-j \text{ parcelas}}$$
$$= \underbrace{1 + 1 + \ldots 1}_{j \text{ vezes}} + \underbrace{0 + \ldots 0}_{7-j \text{ vezes}} = j.$$

(b) Se $1 \leq j < 4$, então $c_{4j} = 0$ pois

$$c_{4j} = m_{41}m_{1j} + m_{42}m_{2j} + m_{43}m_{3j} + m_{44}m_{4j} + \dots + m_{47}m_{7j}$$

$$= 0m_{1j} + 0m_{2j} + 0m_{3j} + 1m_{4j} + \dots + 1m_{7j}$$

$$= m_{4j} + \dots + m_{7j}$$

$$= 0 + \dots + 0 = 0.$$

- (c) Se $4 \le j \le 7$, então $c_{4j} = j i + 1$.
- (d) Se $1 \le j < i \le 7$, então $c_{ij} = 0$.
- (e) Se $1 \le i \le j \le 7$, então $c_{ij} = j i + 1$.
- 3. (a) **Verdadeira**, pois dada uma matriz antissimétrica $A \in M_{n \times n}(\mathbb{R})$, tem-se $[A]_{ij} = [A^T]_{ji} = -[A]_{ji}$. Em particular, se i = j, vale $[A]_{ii} = -[A]_{ii}$, o que implica que $2[A]_{ii} = 0$, isto é, $[A]_{ii} = 0$. Assim, todas as entradas da diagonal de A são nulas.
 - (b) Falsa, pois a matriz nula $0 \in M_{n \times n}(\mathbb{R})$ é simétrica e antissimétrica simultaneamente.
 - (c) Falsa, pois $C = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ é simétrica mas não é antissimétrica.
 - (d) Falsa, pois $D=\begin{bmatrix}0&2\\-2&0\end{bmatrix}$ é antissimétrica mas não é simétrica.
 - (e) **Falsa**, pois $E = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ não é uma matriz simétrica mas não é antissimétrica.
- 4. A matriz $(B + C^T)((AB)^T + CA^T)$ tem tamanho $q \times p$, pois
 - $B \in C^T$ têm tamanho $q \times r$, de modo que $B + C^T$ também é $q \times r$.
 - AB têm tamanho $p \times r$, de modo que $(AB)^T$ é $r \times p$
 - A^T têm tamanho $q\times p,$ de modo que CA^T é $r\times p.$

- O produto de qualquer matriz $q \times r$ por uma matriz $r \times p$ tem tamanho $q \times p$.
- 5. (a) Para quaisquer m e n, se X é $m \times n$ então sua transposta X^T é $n \times m$. Em particular, o número de colunas de X é sempre igual ao número de linhas de X^T , e estas matrizes podem ser multiplicadas (nesta ordem), gerando um produto que é $m \times m$. Além disso, XX^T é simétrica pois

$$(XX^{T})^{T} = (X^{T})^{T}X^{T} = XX^{T}.$$

(b) De forma análoga ao item anterior, o número de colunas de X^T é sempre igual ao número de linhas de X, e estas matrizes podem ser multiplicadas (nesta ordem), desta vez gerando um produto que é $n \times n$. Além disso, X^TX também é simétrica:

$$(X^T X)^T = X^T (X^T)^T = X^T X.$$

(c) Para que seja possível calcular $X + X^T$, é necessário que X e X^T tenham o mesmo tamanho. Como uma delas é $m \times n$ e a outra é $n \times m$, a adição só será possível se m = n. Neste caso, a soma será uma matriz simétrica, pois

$$(X + X^T)^T = X^T + (X^T)^T = X^T + X = X + X^T.$$

(d) Como no item anterior, para que X^T+X faça sentido é preciso que X e X^T tenham o mesmo tamanho, isto é, que m=n. Neste caso, a soma também será uma matriz simétrica, já que

$$(X^T + X)^T = (X^T)^T + X^T = X + X^T = X^T + X.$$

(e) Novamente, é preciso que m=n para que a operação $X-X^T$ seja possível. No entanto, neste caso

$$(X - X^T)^T = X^T - (X^T)^T = X^T - X = -(X - X^T).$$

No entanto, $D = X - X^T$ só será igual a $-(X - X^T)$ se $d_{ij} = -d_{ij}$, para cada i, j, e isso só é possível se todos os d_{ij} forem nulos. Em outras palavras, $X - X^T$ só é uma matriz simétrica se $X - X^T = 0$.

- 6. (a) A matriz nula é uma matriz na forma escalonada reduzida por linhas, pois
 - Não há nenhuma linha não nula em que o primeiro elemento não nulo seja diferente de 1 (nem sequer existem linhas não nulas);
 - Todas as linhas nulas estão na parte inferior
 - Não há pivôs mais a esquerda dos pivôs de linhas anteriores (já que não há pivôs)
 - Não há elementos não nulos acima ou abaixo de nenhum pivô
 - (b) A matriz identidade $I_{4\times4}$ está na forma escalonada reduzida por linhas pois
 - Em todas as linhas o o primeiro elemento não nulo é 1;
 - Não há linhas nulas
 - Todos os pivôs estão na diagonal
 - Exceto pelos pivôs que estão na diagonal, as colunas só contém zeros
 - (c) Em uma matriz triangular superior $S \in M_{n \times n}(K)$, todos os elementos abaixo da diagonal principal são nulos, ou seja, $s_{ij} = 0$ sempre que i > j. Se S é simétrica, então $s_{ij} = s_{ji}$, sendo $1 \le i, j \le n$. Em particular, se i < j então $s_{ij} = s_{ji} = 0$, pois j > i. Logo, T é uma matriz diagonal, já que $s_{ij} = 0$ sempre que que i > j ou i < j, isto é, para $i \ne j$.

(d) Se $U, V \in M_{m \times m}(K)$ são matrizes diagonais, então UV = VU. De fato, se $i \neq j$ então $u_{ij} = v_{ij} = 0$ e além disso

$$[UV]_{ij} = \sum_{k=1}^{m} u_{ik} v_{kj} = u_{i1} v_{1j} + u_{i2} v_{2j} + \ldots + u_{im} v_{mj}.$$

Nesta soma, tem-se $u_{ik}=0$, exceto possivelmente quando k=i. Mesmo assim, a parcela $u_{ii}v_{ij}$ será nula, pois $k=i\neq j \Rightarrow v_{kj}=v_{ij}=0$. Assim, todos os termos da soma são nulos, e as entradas $[UV]_{ij}$ são nulas sempre que $i\neq j$. De forma análoga, tem-se $[VU]_{ij}=0$ para $i\neq j$, ou seja, UV e VU coincidem fora da diagonal principal. Por outro lado, na diagonal principal tem-se i=j e então

$$[UV]_{ij} = u_{ii}v_{ii} = v_{ii}u_{ii} = [VU]_{ij}$$
.

- (e) Seja A antissimétrica. Então $A^T = -A$ e resulta que $(A^T)^T = A = -A^T$, ou seja, A^T também é antissimétrica.
- (f) Dada uma matriz antissimétrica $A \in M_{n \times n}(\mathbb{R})$, tem-se $[A]_{ij} = [A^T]_{ji} = -[A]_{ji}$. Em particular, se i = j, vale $[A]_{ii} = -[A]_{ii}$, o que implica que $2[A]_{ii} = 0$, isto é, $[A]_{ii} = 0$. Assim, todas as entradas da diagonal de A são nulas.
- (g) A matriz nula $0 \in M_{n \times n}(\mathbb{R})$ é simétrica e antissimétrica simultaneamente.
- 7. Seja $D \in M_{2\times 2}(\mathbb{R})$ uma matriz diagonal. Então $D = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}$, com $x_1, x_2 \in \mathbb{R}$ e tem-se

$$D^2 = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}^2 = \begin{bmatrix} x_1^2 & 0 \\ 0 & x_2^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Assim, os escalares x_1 e x_2 satisfazem $x_i^2 = 1$, ou seja, $x_i = 1$ ou $x_i = -1$. Logo, D pode ser uma destas 4 matrizes:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} e \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

No caso de matrizes 3×3 , cada uma das três entradas da diagonal pode ser igual a 1 ou a -1, e consequentemente $I = I_3$ tem 8 raízes quadradas distintas.

8. Seja $D \in M_{3\times 3}(\mathbb{R})$ uma matriz diagonal. Então $D = \begin{bmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{bmatrix}$, com $x_1, x_2, x_3 \in \mathbb{R}$ e tem-se

$$D^{2} - 7D + 10I = \begin{bmatrix} x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3} \end{bmatrix}^{2} - 7 \begin{bmatrix} x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3} \end{bmatrix} + 10 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} x_{1}^{2} - 7x_{1} + 10 & 0 & 0 \\ 0 & x_{2}^{2} - 7x_{2} + 10 & 0 \\ 0 & 0 & x_{3}^{2} - 7x_{3} + 10 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Assim, se $D^2 - 7D + 10I = 0$ os escalares x_1 , x_2 e x_3 são soluções de $x_i^2 - 7x_i + 10 = 0$, ou seja, de $(x_i - 2)(x_i - 5) = 0$. Portanto, cada x_i pode assumir os valores 2 ou 5, e há as seguintes possibilidades para D:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

9. Seja S uma matriz simétrica $n \times n$, isto é, $S^T = S$. As entradas de S^2 e de $(S^2)^T$, são dadas por

$$[S^2]_{ij} = \sum_{k=1}^n s_{ik} s_{kj} = s_{i1} s_{1j} + s_{i2} s_{2j} + \ldots + s_{in} s_{nj}$$
 (1)

е

$$[(S^2)^T]_{ij} = [S^2]_{ji} = \sum_{k=1}^n s_{jk} s_{ki} = s_{j1} s_{1i} + s_{j2} s_{2i} + \dots + s_{jn} s_{ni}$$

respectivamente. Mas as entradas de S satisfazem a igualdade $s_{ij} = s_{ji}$, então resulta desta última equação, permutando os índices de cada termo, que

$$[(S^{2})^{T}]_{ij} = s_{j1}s_{1i} + s_{j2}s_{2i} + \dots + s_{jn}s_{ni}$$

= $s_{1j}s_{i1} + s_{2j}s_{i2} + \dots + s_{nj}s_{in}$
= $s_{i1}s_{1j} + s_{i2}s_{2j} + \dots + s_{in}s_{nj}$,

onde a última igualdade deve-se à propriedade comutativa dos escalares s_{ij} . Comparando com (1), conclui-se que $[(S^2)^T]_{ij} = [S^2]_{ij}$, ou seja, que $(S^2)^T = S^2$, o que significa que S^2 é simétrica.

Observação: Para uma verificação mais direta, sem comparar entradas individuais das matrizes, poderia ser usada o fato de que $(AB)^T = B^T A^T$:

$$(S^2)^T = (SS)^T = S^T S^T = SS = S^2.$$

Por este raciocínio fica fácil ver que as potências de uma matriz simétrica são simétricas:

$$(S^n)^T = (S \cdot \ldots \cdot S)^T = S^T \cdot \ldots \cdot S^T = S \cdot \ldots \cdot S = S^n.$$

10. (a) Usando a definição de traço e as propriedades da adição, resulta que:

$$tr(A + B) = [A + B]_{11} + [A + B]_{22} + \dots + [A + B]_{nn}$$

$$= ([A]_{11} + [A]_{11}) + ([A]_{22} + [B]_{22}) + \dots + ([A]_{nn} + [B]_{nn})$$

$$= ([A]_{11} + \dots + [A]_{nn}) + ([B]_{11} + \dots + [B]_{nn})$$

$$= tr(A) + tr(B).$$

(b) Segue da definição de traço e das propriedades da multiplicação por escalar que:

$$tr(cB) = [cA]_{11} + [cA]_{22} + \dots + [cA]_{nn}$$

$$= c[A]_{11} + c[A]_{22} + \dots + c[A]_{nn}$$

$$= c([A]_{11} + \dots + [A]_{nn})$$

$$= c \cdot tr(A).$$

(c) Como a diagonal principal não é alterada pela transposição de matrizes, e o traço só depende destas entradas, tem-se:

$$tr(A^T) = [A^T]_{11} + [A^T]_{22} + \dots + [A^T]_{nn}$$

= $[A]_{11} + [A]_{22} + \dots + [A]_{nn}$
= $tr(A)$.