МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра дифференциальных уравнений и системного анализа

БАЙЕСОВСКИЕ НЕЙРОННЫЕ СЕТИ

Курсовая работа

Афанасенко Григория Сергеевича студента 2-го курса специальности 1-31 03 09 «Компьютерная математика и системный анализ»

Научный руководитель: ст. преподаватель А. Э. Малевич

ОГЛАВЛЕНИЕ

1	Теоретические сведения.			
	1.1	Байес	овский подход	į
2 Виды нейронных сетей.			ронных сетей.	4
	2.1	Детер	минированные нейронные сети	4
	2.2	2 Байесовские нейронные сети		6
		2.2.1	Вероятностные графы вычислений	6
		222	Байесовские нейронные сети	(

ГЛАВА 1

Теоретические сведения.

1.1 Байесовский подход.

Перед тем, как приступить к сетям, вспомним основы байесовской статистики.

ГЛАВА 2

Виды нейронных сетей.

2.1 Детерминированные нейронные сети.

Сначала напомним, что такое обычные (детерминированные) нейронные сети и как они обучаются.

Основная задача обычных искусственных нейронных сетей (ANN) в том, чтобы аппроксимировать некоторую зависимость выхода y от входа x: $y = \Phi(x)$. Зависимость $\Phi(x)$ аппроксимируем через композицию последовательных преобразований.

Для простоты будем рассматривать обычные *полносвязные* сети со входом x, скрытыми(промежуточными) состояниями слоёв h_i , функциями активации $a_i(\cdot)$ и выходом y:

$$egin{aligned} m{h_0} &= m{x} \ m{h_i} &= a_i (m{W_i} \cdot h_{i-1} + m{b_i}), i = \overline{1...n} \ m{h_n} &= \widehat{y} \ L &= \mathcal{L}(\widehat{y}, y), \end{aligned}$$

где $\mathcal{L}(\cdot,\cdot)$ - функция ошибки.

Обозначим параметры модели на i-ом слое $\theta_i = (W_i, b_i)$, а параметры всей модели через $\Theta = \{\theta_i : i = \overline{1...n}\}$. Чаще всего нейронные сети принято рассматривать, как вычислительный граф/граф вычислений. Такой подход удобен с инженерной точки зрения, поскольку позволяет воспользоваться инструментом автоматического дифференцирования, и используется во всех современных фреймоворках: PyTorch, TensorFlow и прочие. Граф вычислений является ациклическим ориентированным графом, составленным из вершин-переменных и вершин-операций(Рисунок 2.1).

Рисунок 2.1 Полносвязная сеть в виде графа вычислений

Далее будем называть модели, основанные на графах вычислений, — графовыми моделями. Графы вычислений могут разных типов: статическими/динамическими, детерминированными/вероятностными и т.д. Для обучения/настройки параметров детерминированных графовых моделей используется метод обратного распространения ошибки(back propagation), который широко используется в современном мире. Вкратце напомним алгоритм:

После прямого выполнения графа (forward pass), то есть в соответствии с направлениями рёбер на выходе мы получаем L -значение функции ошибки, которые в зависимости от задач мы хотим либо минимизировать, либо максимизировать. Для этого мы пользуемся градиентными методами оптимизации, что требует вычисление градиентов $\frac{dL}{dW_i}, \frac{dL}{db_i}$ по нашим параметрам модели, где $i=\overline{1,n}$. В общем случае это трудная задача, однако в случае детерминированных графовых моделей мы можем использовать цепное правило (chain rule) для того, чтобы последовательно проталкивать градиенты, начиная с концевой вершины, содержащей L.

Например, для подсчёта градиентов $\frac{dL}{dW_n}, \frac{dL}{db_n}$ мы представим его в виде

$$\frac{dL}{dW_n} = \frac{dL}{dh_n} \cdot \frac{dh_n}{dW_n}$$
$$\frac{dL}{db_n} = \frac{dL}{dh_n} \cdot \frac{dh_n}{db_n}$$

Аналогично для всех остальных параметров модели мы будем проталкивать накопленный с концевой вершины градиент до соответствующих вершин и с помощью этого градиента высчитывать градиент по параметрам модели. Схему работы алгоритма обратного распространения ошибки можно увидеть на Рису-

нок 2.2.

Рисунок 2.2 Обратное распространение ошибки по графу вычислений детерминированной полносвязной сети

Однако детерминированные нейронные сети обладают несколькими проблемами:

- Переобучение.
- Низкая интерпретируемость.
- Завышенная/заниженная уверенность модели в предсказаниях, даже если они неверные.
- Низкий уровень откалиброванности модели.

Указанные проблемы попытаемся решить с помощью байесовского подхода к нейронным сетям, который рассмотрим далее.

2.2 Байесовские нейронные сети.

2.2.1 Вероятностные графы вычислений.

Перед тем, как приступить к байесовским нейронным сетям, рассмотрим вероятностные графы вычислений, на которых основаны байесовские сети. В литературе также часто вместо названия вероятностные графы вычислений встречается вероятностные графические модели. Второе название является более общим, в то время как первое более специфично именно для байесовских нейронных сетей. Такие графы вычислений широко используются и известны достаточно давно. Они лежат в основе, например, Марковских цепей, которые

ранее активно использовались в различных задачах машинного предсказания, распознавания образов и т.п.

Основная мотивация в использовании вероятностного подхода состоит в том, что в реальном мире мы чаще имеем дело с неопределённостью в данных и знаниях и не можем детерминированно описать все приходящие переменные для решения задачи. Для решения проблем с неопределённостью можно попробовать собрать большие объёмы данных для того, чтобы попытаться "понять" эту неопределённость. С другой стороны мы можем использовать байесовский подход, который напрямую оперирует с неопределённостью.

Рассмотрим структуру вероятностных графовых моделей. В отличие от детерминированных моделей в граф добавляются вершины со случайными переменными. Таким образом в нашем совместно существуют детерминированные вершины и случайные (Рисунок 2.3). Стоит отметить, что после вступления в контакт детерминированных переменных и случайных, весь дальнейший результат будет случайным. При работе с такими моделями нужно различать наблюдаемые и скрытые/латентные переменные. Различия в этих двух понятиях естественны: в реальной жизни у нас есть некоторые известные данные и те, которые мы не может измерить явно, а лишь вычислить в результате работы модели.

Рисунок 2.3 Вероятностная графическая модель. Здесь круги с пунктирной границей являются сэмплируемыми случайными величинами. Зелёным цветом обозначены наблюдаемые случайные переменные.

Стоит сделать замечание, что детерминированные переменные также можно

представить, как случайные величины с δ -функцией плотности распределения $\delta(\cdot)$, где $\delta(\cdot)$ — δ -функция Дирака. Данный факт позволяет рассматривать все вершины в вероятностной графовой модели, как случайные.

Введём более строгое определение. Пусть $(x_1, x_2, ..., x_n)$ - множество случайных величин, представляющих вершины ориентированного графа. Тогда вероятностная графическая модель — это семейство условных распределений $p(x_1|...), p(x_2|...)$ и т.д. над данными случайными величинами $x_1, x_2, x_3, ..., x_n$.

В случае графовых моделей каждая случайная величина x_i зависит не от всех других случайных величин, а лишь от некоторого множество её предков $ancestors(x_i)$. Таким образом мы можем вычислить полную условную плотность величины x_i так:

$$p(x_i|x_n, x_{n-1}, ...x_1) = p(x_i|ancestors(x_i))$$

Используя *цепное правило* для совместного распределения $p(x_1, x_2, ..., x_n)$ мы можем расписать его через частные распределения и условные:

$$p(x_1, x_2, ..., x_n) = p(x_1)p(x_2|x_1)p(x_3|x_2, x_1)...p(x_n|x_{n-1}, ..., x_1)$$

Выбирая порядок множителей справа удобным образом мы можем вычислить совместное распределение.

Подобные вероятностные графические модели позволяют узнавать неочевидные взаимосвязи в данных, если в качестве вершин принять, например, признаки из какого-нибудь набора данных. При достаточном времени, потраченном на составлении связей в данном графе, аналитик данных способен в удобной форме отлавливать закономерности и проверять гипотезы о распределении данных. Также возможно их использование в системном или бизнес анализах, однако придётся потратить больше времени для дизайна нашего графа, поскольку мы можем столкнуться с не числовыми вершинами, а, например, событийными.

Другая полезная особенность таких моделей в том, что вместо какого-то конкретного значения интересующей нас величины мы получаем её распределение(Рисунок 2.4). Это даёт сильно больше информации, чем одно значение и позволяет оценивать *риски*, связанные с этой величиной. Существует много задач, где определение рисков важнее какого-то одного ответа. Примеры: задача

кредитного скоринга, большинство задач по работе с финансами(определение стоимости ценных бумаг, курса валют и т.д.), задачи в области медицины и здравоохранения, транспорт на автопилоте и т.п.

Рисунок 2.4 Та же графическая модель, но с видимыми распределениями значений в вершинах. Детерминированные вершины имеют δ -функцию распределения.

Существуют несколько инструментов для работы с такими моделями: Bayes Net Toolbox (MATLAB), pgmpy (Python)

2.2.2 Байесовские нейронные сети.