Exercise collection – CART

Contents

Lecture exercises	1				
Exercise 1: bagging and correlation	1				
Exercise 2: split computation	1				
Exercise 3: lymphography classification	4				
Exercise 4: leaf node prediction	5				
Questions from past exams					
Exercise 5: WS2020/21, retry exam, question 1	6				
Ideas & exercises from other sources	6				

Lecture exercises

Exercise 1: bagging and correlation

Show that the variance of the bagging prediction depends on the correlation between trees.

Hint: compute $\operatorname{Var}(\frac{1}{B}\sum_{b=1}^B f_b)$ when $\operatorname{Var}(f_b) = \sigma^2$ and $\operatorname{Corr}(f_i, f_j) = \rho$, where f_b is a single tree of the ensemble.

Solution 1:

 $f(x) = \frac{1}{B} \sum_{b=1}^{B} f_b(x)$ is the bagging estimator based on B bootstrap samples. Then we can easily calculate:

$$\operatorname{Var}(f(x)) = \frac{1}{B^2} \left(\sum_{b=1}^B \operatorname{Var}(f_b(x)) + \sum_{i \neq j}^B \operatorname{Cov}(f_i(x), f_j(x)) \right)$$
$$= \frac{1}{B^2} \left(B\sigma^2 + (B^2 - B)\rho\sigma^2 \right)$$
$$= \frac{1}{B}\sigma^2 + \rho\sigma^2 - \frac{1}{B}\rho\sigma^2$$
$$= \rho\sigma^2 + \frac{\sigma^2}{B}(1 - \rho)$$

In the first line the rules for variance of a non-independent sum of random variables is used. All other steps are trivial.

Exercise 2: split computation

Given are the dataset

X	1	2	7.0	10	20
У	1	1	0.5	10	11

and the same dataset, but with the feature x log-transformed

log(x)	0	0.7	1.9	2.3	3
У	1	1.0	0.5	10.0	11

Either manually compute the first split point that the CART algorithm would find for each dataset or implement your own CART split-point-finding algorithm with a few lines of code.

Solution 2:

- Proceed as follows, when solving manually:
 - (a) Split x in two groups using the following split points.
 - -(1), (2,7,10,20) (splitpoint 1.5)
 - -(1,2), (7,10,20) (splitpoint 4.5)
 - -(1,2,7), (10,20) (splitpoint 8.5)
 - -(1,2,7,10), (20) (splitpoint 15)
 - (b) For each possible split point compute the sum of squares in both groups.
 - (c) Use as split point the point that splits both groups best w.r.t. minimizing the sum of squares in both groups.

Here, we have only one split variable x. A split point t, leads to the following half-spaces:

$$\mathcal{N}_1(t) = \{(x, y) \in \mathcal{N} : x \le t\} \text{ and } \mathcal{N}_2(t) = \{(x, y) \in \mathcal{N} : x > t\}.$$

Remember the minimization Problem (here only for one split variable x):

$$\min_{t} \left(\min_{c_1} \sum_{(x,y) \in \mathcal{N}_1} (y - c_1)^2 + \min_{c_2} \sum_{(x,y) \in \mathcal{N}_2} (y - c_2)^2 \right).$$

The inner minimization is solved through: $\hat{c}_1 = \bar{y}_1$ and $\hat{c}_2 = \bar{y}_2$

Which results in:

$$\min_{t} \left(\sum_{(x,y) \in \mathcal{N}_1} (y - \bar{y}_1)^2 + \sum_{(x,y) \in \mathcal{N}_2} (y - \bar{y}_2)^2 \right).$$

The sum of squares error of the parent is:

Impurity_{parent} =
$$MSE_{parent} = \frac{1}{5} \sum_{i=1}^{5} (y_i - 4.7)^2 = 22.56$$

Calculate the risk for each split point:

 $x \le 1.5$

$$\mathcal{R}(1, 1.5) = \frac{1}{5} \text{MSE}_{left} + \frac{4}{5} \text{MSE}_{right} =$$

$$= \frac{1}{5} \cdot \frac{1}{1} (1 - 1)^2 + \frac{4}{5} \cdot \frac{1}{4} ((1 - 5.625)^2 + (0.5 - 5.625)^2 + (10 - 5.625)^2 + (11 - 5.625)^2)$$

$$= 19.1375$$

```
x \le 4.5 \ \mathcal{R}(1, 4.5) = 13.43

x \le 8.5 \ \mathcal{R}(1, 8.5) = 0.13

x \le 15 \ \mathcal{R}(1, 15) = 12.64
```

Minimal empirical risk is obtained by choosing the split point 8.5.

Doing the same for the log-transformation gives:

```
x \le 0.3 \ \mathcal{R}(1, 0.3) = 19.14

x \le 1.3 \ \mathcal{R}(1, 1.3) = 13.43

x \le 2.1 \ \mathcal{R}(1, 2.1) = 0.13

x \le 2.6 \ \mathcal{R}(1, 2.6) = 12.64
```

Minimal empirical risk is obtained by choosing the split point 2.1.

• Code example:

```
x = c(1,2,7,10,20)
y = c(1,1,0.5,10,11)
calculate_mse <- function (y) mean((y - mean(y))^2)</pre>
calculate_total_mse <- function (yleft, yright) {</pre>
  num_left <- length(yleft)</pre>
  num_right <- length(yright)</pre>
  w_mse_left <- num_left / (num_left + num_right) * calculate_mse(yleft)</pre>
  w_mse_right <- num_right / (num_left + num_right) * calculate_mse(yright)</pre>
  return(w_mse_left + w_mse_right)
split <- function(x, y) {</pre>
  \# try out all unique points as potential split points and ...
  unique_sorted_x <- sort(unique(x))</pre>
  split_points <- unique_sorted_x[1:(length(unique_sorted_x) - 1)] +</pre>
    0.5 * diff(unique_sorted_x)
  node_mses <- lapply(split_points, function(i) {</pre>
    y_{\text{left}} \leftarrow y[x \leftarrow i]
    y_right \leftarrow y[x > i]
    # ... compute SS in both groups
    mse_split <- calculate_total_mse(y_left, y_right)</pre>
    print(sprintf("Split at %.1f: empirical Risk = %.2f", i, mse_split))
    return(mse_split)
  # select the split point yielding the maximum impurity reduction
  best <- which.min(node_mses)</pre>
  split_points[best]
X
## [1] 1 2 7 10 20
split(x, y) # the 3rd observation is the best split point
## [1] "Split at 1.5: empirical Risk = 19.14"
## [1] "Split at 4.5: empirical Risk = 13.43"
```

```
## [1] "Split at 8.5: empirical Risk = 0.13"
## [1] "Split at 15.0: empirical Risk = 12.64"
## [1] 8.5

log(x)

## [1] 0.0000000 0.6931472 1.9459101 2.3025851 2.9957323

split(log(x), y) # also here, the 3rd observation is the best split point

## [1] "Split at 0.3: empirical Risk = 19.14"
## [1] "Split at 1.3: empirical Risk = 13.43"
## [1] "Split at 2.1: empirical Risk = 0.13"
## [1] "Split at 2.6: empirical Risk = 12.64"
## [1] 2.124248
```

Exercise 3: lymphography classification

Download the lymphography dataset from moodle.

- (a) Download the file lymphography.csv from moodle and read it in using read.csv()
- (b) Have a short look into the background and structure of the data.
- (c) Delete 6 observations from the smallest class, so the resulting problem is binary classification.

Now fit CART (from rpart) and a second model of your choice to the data and answer the following questions:

- How "stable" are the resulting trees from the CART model?
- How do the results differ between pruned and unpruned trees?
- Is one of the two methods better suited for the data?

Solution 3:

See R code

Exercise 4: leaf node prediction

The fractions of the classes $k=1,\ldots,g$ in node \mathcal{N} of a decision tree are $\pi_1^{(\mathcal{N})},\ldots,\pi_g^{(\mathcal{N})}$. Assume we replace the classification rule in node \mathcal{N}

$$\hat{k}|\mathcal{N} = \arg\max_{k} \pi_{k}^{(\mathcal{N})}$$

with a randomizing rule, in which we draw the classes in one node from their estimated probabilities.

Compute the expectation of the misclassification rate in node \mathcal{N} , for data distributed like the training data, assuming independent observations. What do you notice? (*Hint*: The observations and the predictions using the randomizing rule follow the same distribution.)

Solution 4:

According to the lecture for a target y with target space $\mathcal{Y} = \{1, \dots, g\}$ the target class proportion $\pi_k^{(\mathcal{N})}$ of class $k \in \mathcal{Y}$ in a node can be computed, s.t.

$$\pi_k^{(\mathcal{N})} = \frac{1}{|\mathcal{N}|} \sum_{(x^{(i)}, y^{(i)}) \in \mathcal{N}} [y^{(i)} = k].$$

Now for any $n \in \mathbb{N}$ let $Y^{(1)}, \dots, Y^{(n)}, \hat{Y}^{(1)}, \dots, \hat{Y}^{(n)}$ be i.i.d. random variables, where $Y^{(i)}$ and $\hat{Y}^{(i)}$ are categorically distributed with

$$\mathbb{P}(Y^{(i)} = k | \mathcal{N}) = \mathbb{P}(\hat{Y}^{(i)} = k | \mathcal{N}) = \pi_k^{(\mathcal{N})} \quad \forall i \in \{1, \dots, n\}, \quad k \in \mathcal{Y}.$$

The random variables $Y^{(1)}, \ldots, Y^{(n)}$ represent data distributed like the training data¹ of size n and the random variables $\hat{Y}^{(1)}, \ldots, \hat{Y}^{(n)}$ the corresponding estimators using the randomizing rule. With these we can define the misclassification rate $\text{err}_{\mathcal{N}}$ of node \mathcal{N} for data distributed like the training data, s.t

$$\operatorname{err}_{\mathcal{N}} = \frac{1}{n} \sum_{i=1}^{n} [Y^{(i)} \neq \hat{Y}^{(i)}].$$

We're interested in the expected misclassification rate $err_{\mathcal{N}}$ of node \mathcal{N} for data distributed like the training data,

 $^{^{1}}$ under the independence assumption

i.e.,

$$\begin{split} \mathbb{E}_{Y^{(1)},\dots,Y^{(n)},\hat{Y}^{(1)},\dots,\hat{Y}^{(n)}} &\left(\text{err}_{\mathcal{N}} \right) = \mathbb{E}_{Y^{(1)},\dots,Y^{(n)},\hat{Y}^{(1)},\dots,\hat{Y}^{(n)}} \left(\frac{1}{n} \sum_{i=1}^{n} [Y^{(i)} \neq \hat{Y}^{(i)}] \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)}} \left(\mathbb{E}_{\hat{Y}^{(i)}} \left([Y^{(i)} \neq \hat{Y}^{(i)}] \right) \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)}} \left(\sum_{k=1}^{g} [Y^{(i)} \neq k] \pi_{k}^{(\mathcal{N})} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)}} \left(\sum_{k \in \mathcal{Y} \setminus \{Y^{(i)}\}} \pi_{k}^{(\mathcal{N})} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Y^{(i)}} \left(1 - \pi_{Y^{(i)}}^{(\mathcal{N})} \right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{g} (1 - \pi_{k}^{(\mathcal{N})}) \pi_{k}^{(\mathcal{N})} \\ &= 1 - \sum_{k=1}^{g} \left(\pi_{k}^{(\mathcal{N})} \right)^{2}. \end{split}$$

This is exactly the Gini-Index which CART uses for splitting the tree.

Questions from past exams

Exercise 5: WS2020/21, retry exam, question 1

Ideas & exercises from other sources