

Decomposizione dati 2D:
Algoritmi full-parallel per la gestione di matrici
esercitazione laboratorio

Docente: Prof. L. Marcellino

Tutor: Prof. P. De Luca

Decomposizione di matrici

Prodotto di uno scalare con una matrice di grandi dimensioni!

Input: $\beta \cdot A$: dim(A)=N×N

Output: $C = \{c_{i,j}\} = \{\beta \cdot \alpha_{i,j}\} i = 0,...,N-1, j=0,...,N-1$

I STRATEGIA

Suddividiamo la matrice A in BLOCCHI di RIGHE

p=3, $dim[A]=N\times N$

1 strategia - p righe - $dim[A_{loc}]=(N/p) \times N$

In sequenziale

$$T_1(N^2) = N^2$$

$$S_p = T_1(N^2)/T_p(N^2) = N^2/(N^2/p) = p$$

Oh =
$$p T_p(N^2) - T_1(N^2) = p[N^2/p] - N^2 = 0$$

$$E_p = S_p / p = 1$$

prodotto di uno scalare per una matrice

II STRATEGIA

Suddividiamo la matrice A in BLOCCHI di COLONNE

prodotto di uno scalare per una matrice

$$p=3$$
, $dim[A]=N\times N$

2 strategia - p colonne - $dim[A_{loc}] = N \times (N / p)$

In sequenziale

$$T_1(N^2) = N^2$$

$$S_p = T_1(N^2)/T_p(N^2) = N^2/(N^2/p) = p$$

Oh =
$$p T_p(N^2) - T_1(N^2) = p[N^2/p] - N^2 = 0$$

$$E_p = S_p / p = 1$$

III STRATEGIA

Suddividiamo la matrice A in BLOCCHI di RigheColonne

$q \times p = 2 \times 2$, $dim[A] = N \times N$

3 strategia – q righe – p colonne $dim[A_{loc}] = (N/q) \times (N/p)$

In sequenziale

$$T_1(N^2) = N^2$$

$$S_{qp} = T_1(N^2)/T_{qp}(N^2) = N^2/[(N/q)(N/p)] = qp$$

Oh =
$$qp T_{qp}(N^2) - T_1(N^2) = qp[N^2/qp] - N^2 = 0$$

$$E_p = S_p / p = 1$$

prodotto di uno scalare per una matrice

Cosa succede se le matrici sono del tipo N ×M e/o le dimensioni non sono esattamente divisibili per p o q???

A₀₀ A₀₁
A₁₀ A₁₁

Nucleo: Prodotto scalare per Matrice – 1 strategia

```
#pragma omp parallel for shared(m,n,A, B, alpha) private(i,j)
for (i=0; i<n; i++){
    for (j=0; j<m; j++)
        B[i][j] = A[i][j]*alpha;
}</pre>
```

Nucleo: Prodotto scalare per Matrice – 2 strategia

```
#pragma omp parallel for shared(m,n,A, B, alpha) private(i,j)
for (j=0; j<n; j++){
    for (i=0; i<m; i++)
        B[i][j] = A[i][j]*alpha;
}</pre>
```

Nucleo: Prodotto scalare per Matrice 3 strategia

Con la clausola collapse (2) è possibile espandere espandere il costrutto parallel for anche al secondo for