

Lembar Kerja Responsi 5 Mata Kuliah KOM 401 Analisis Algoritme

Semester Ganjil Tahun Akademik 2020/2021

Asisten Praktikum:

- 1. Alfian Hamam Akbar
- 2. Hilmi Farhan Ramadhani

A. Mengidentifikasi relasi rekurensi dari suatu algoritme

Diberikan algoritme berikut dalam bentuk pseudocode atau bahasa pemrograman C. Identifikasi relasi rekurensi dari algoritme berikut:

1.

```
int binarySearch(int arr[], int l, int r, int x)
 2 - {
 3 +
        if (r >= 1) {
            int mid = 1 + (r - 1) / 2;
 5
            if (arr[mid] == x)
 6
                return mid;
 7
            if (arr[mid] > x)
 8
                return binarySearch(arr, 1, mid - 1, x);
9
            return binarySearch(arr, mid + 1, r, x);
10
11
        return -1;
12 }
```

```
\alpha = 1, b = 2, f(n) = 1, T(n) = (n/2) + 1
```

2. Algoritme mencari bilangan terbesar

```
int top(int arr[], int 1, int r){
   if(1 == r){
      return arr[1];
   }else if(1 <= r){
      int mid = 1 + (r-1)/2;
      return max(top(arr,1,mid),top(arr,mid+1,r));
   }
}
a = 2, b = 2, f(n) = 1, T(n) = 2*(n/2) + 1</pre>
```

B. Pohon rekursif

3. Diberikan relasi rekurensi berikut. Selesaikan relasi tersebut dengan menggunakan teknik pohon rekursif. Buat pohon rekursif dengan kedalaman **minimal 2** untuk melihat pola yang muncul

a.
$$T(n) = T(n/3) + T(n/2) + cn$$

	Total			
cn	3			cn
	1.00	V		
cn/3		cn/2		c(5/6)n
1	1	1	1	
cn/9	cn/6	cn/6	cn/4	c(25/36)n

Melihat pola yang muncul di dapat barisan geometri dengan rasio 5/6 Sn= cn/(1-5/6) = 6 cn = O(n)

b.
$$T(n) = 2T(n/2) + n^2$$

Pohon rekursif	Total
n²	cn ²
1	
$2*(n/2)^2 = n^2/4$	(1/2)n ²
1	
4*(n/4) ² =cn ² /16	(1/4)n ²

Melihat pola yang muncul, didapatkan barisan geometri dengan rasio (1/2)

$$Sn = n^2/(1-\frac{1}{2}) = 2n^2 = O(n^2)$$

c. $T(n)=2T(n/3)+cn^3$

Pohon Rekursif	Total
cn ³	cn ³
1	
$2*(n/3)^3$	$c(2/27)n^3$
1	
$4*(n/9)^3$	$c(4/729)n^3$

	Total			
cn^3	52			cn^3
1		\		
cn^3/27	0	cn^3/27		c(2/27)n^3
	\	1	\	
cn^3/729	cn^3/729	cn^3/729	cn^3/729	c(4/729)n^3

Melihat pola yang muncul di dapat barisan geometri dengan rasio 2/27 $Sn = cn^3 / (1-2/27) = 27/25 cn^3 = O(n^3)$

C. Teorema master

4. Diberikan relasi rekurensi berikut. Selesaikan relasi tersebut dengan menggunakan teknik teorema master.

No	Relasi Rekurensi	a	b	f(n)	$n^{log_b a}$	$f(n) =(n^{log_a b})$?	Kasus	Hasil
1	$T(n) = 3T(n/2) + n^2$	3	2	n ²	n^{log_23}	Ω	3	Θ(n²)
2	$T(n) = 4T(n/2) + n^2$	4	2	n ²	n ²	Θ	2	Θ(n² log n)
3	$T(n) = T(n/2) + 2^n$	1	2	2 ⁿ	1	Ω	3	Θ(2 ⁿ)

4	T(n) = 16T(n/4) + n	16	4	n	n ²	0	1	Θ(n²)
5	$T(n) = 3T(n/3) + n.\log n$	3	3	n log n	n	Ω	3	Θ(n log n)
6	T(n) = 3T(n/2) + n	3	2	n	n^{log_23}	0	1	Θ(n ^{log₂3})
7	$T(n) = 2T(n/4) + n^2$	2	4	n ²	n^{log_42}	Ω	3	Θ(n²)
8	$T(n) = 2T(n/2) + n.\log n$	2	2	n log n	n	Ω	3	Θ(n log n)
9	T(n) = 3T (n/3) + n/2	3	3	n	n	Θ	2	Θ(n log n)
10	$T(n) = 7T(n/3) + n^2$	7	3	n ²	n^{log_37}	Ω	3	Θ(n²)