Вариант 1

Задачи 1—3 являются обязательными и необходимыми для получения максимальной оценки. Задача 4 — дополнительная и будет оцениваться отдельно; приступайте к ней, если останется время после решения первых трех задач.

На контрольной разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

- **1.** Линейный оператор $T: L^1[0,1] \to L^1[0,1]$ задан формулой $(Tf)(x) = f(\sqrt{x})$.
- 1) Докажите, что T действительно переводит $L^1[0,1]$ в $L^1[0,1]$, и что он ограничен.
- **2**) Вычислите ||T||.
- **3)** Достигает ли T нормы?
- **2.** Пусть $X = C_b(\mathbb{R}) \cap L^1(\mathbb{R})$.
- 1) Мажорирует ли норма $\|\cdot\|_1$ норму $\|\cdot\|_\infty$ на X? А наоборот?
- **2)** Докажите полноту X относительно нормы $||f|| = ||f||_{\infty} + ||f||_{1}$.
- **3)** Полно ли X относительно нормы $\|\cdot\|_{\infty}$?
- **3.** Сепарабельно ли пространство $\mathscr{B}(L^2[0,1])$?
- **4.** Пусть G компактная топологическая группа (т.е. группа, снабженная компактной топологией, относительно которой операция умножения и операция $g \mapsto g^{-1}$ непрерывны). Пусть $\pi \colon G \to \operatorname{GL}(X)$ представление G в нормированном пространстве X, такое, что соответствующее действие $G \times X \to X$ непрерывно. Докажите, что на X есть норма, эквивалентная исходной, относительно которой все операторы $\pi(g)$ ($g \in G$) изометричны.

Вариант 2

Задачи 1—3 являются обязательными и необходимыми для получения максимальной оценки. Задача 4 — дополнительная и будет оцениваться отдельно; приступайте к ней, если останется время после решения первых трех задач.

На контрольной разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

- **1.** Линейный оператор $T \colon L^2[0,1] \to L^1[0,1]$ задан формулой $(Tf)(x) = f(\sqrt{x})$.
- 1) Докажите, что T действительно переводит $L^2[0,1]$ в $L^1[0,1]$, и что он ограничен.
- **2**) Вычислите ||T||.
- **3)** Достигает ли T нормы?
- **2.** Пусть $X = L^1(\mathbb{R}) \cap L^2(\mathbb{R})$.
- **1)** Мажорирует ли норма $\|\cdot\|_1$ норму $\|\cdot\|_2$ на X? А наоборот?
- **2)** Докажите полноту X относительно нормы $||f|| = ||f||_1 + ||f||_2$.
- **3)** Полно ли X относительно нормы $\|\cdot\|_2$?
- **3.** Сепарабельно ли пространство $\mathscr{B}(c_0)$?
- **4.** Пусть $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Зафиксируем $p \geqslant 2$ и обозначим через \mathbb{K}_p^n пространство \mathbb{K}^n , снабженное нормой $\|x\|_p = (\sum_i |x_i|^p)^{1/p}$. Пусть $T \colon \mathbb{K}_p^n \to \mathbb{K}_2^n$ изоморфизм векторных пространств. Докажите, что $\|T\| \|T^{-1}\| \geqslant n^{1/2-1/p}$. Выведите отсюда, что при $p,q \geqslant 2, \ p \neq q$, пространства \mathbb{K}_p^n и \mathbb{K}_q^n не являются изометрически изоморфными (если $n \neq 1$).