Problem Set C – Partial Solutions

Shishir Agrawal

Problem 4. Suppose p_1, p_2, \ldots, p_d are distinct primes. Show that

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_d}$$

is never an integer.

Solution. By bringing everything to a common denominator, we have

$$\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_d} = \frac{p_2 p_3 \dots p_d + p_1 p_3 \dots p_d + \dots + p_1 p_2 \dots p_{d-1}}{p_1 \dots p_d},$$

so we want to show that $p_1 \cdots p_d$ does not divide

$$Q = p_2 p_3 \cdots p_d + p_1 p_3 \cdots p_d + \cdots + p_1 p_2 \cdots p_{d-1}.$$

Suppose for a contradiction that $p_1 \cdots p_d \mid Q$. That means that $p_1 \mid Q$. But p_1 also divides all of the summands in Q after the first one: in other words, p_1 divides the sum $p_1p_3\cdots p_d + p_1p_2p_4\cdots p_d + \cdots + p_1p_2\cdots p_{d-1}$. This means that p_1 also divides

$$Q - p_1 p_3 \cdots p_d + p_1 p_2 p_4 \cdots p_d + \cdots + p_1 p_2 \cdots p_{d-1} = p_2 p_3 \cdots p_d.$$

Since p_1 is prime and it divides the product $p_2p_3\cdots p_d$, it must divide one of the factors; in other words, there must exist an $i=2,\ldots,d$ such that $p_1\mid p_i$. But p_i is prime and $p_1\neq 1$, so this means that $p_1=p_i$. This contradicts our assumption that the primes are all distinct.

Problem 5. If n > 4 is composite, show that $(n-1)! \equiv 0 \pmod{n}$. Note. This result is not true for n = 4, so make sure your proof uses the fact that n > 4 at some point.

Solution. Let p be the smallest factor of n that's greater than 1 and let q = n/p so that n = pq. Since n is composite and p is its smallest factor that's bigger than 1, we see that $2 \le p \le q \le n-1$. There are two cases:

• If p < q, then p and q both show up separately as factors in (n-1)!, so $n = pq \mid (n-1)!$.

• Suppose on the other hand that p=q, so that $n=p^2$. We claim that $2p \le n-1$. Indeed, if we had $p^2=n \le 2p$, we could divide both sides by 2 to conclude that $p \le 2$, but then squaring both sides would yield $n=p^2 \le 4$, contradicting our assumption that n>4. So $2p \le n-1$, which means that p and 2p both show up separately as factors in (n-1)!. This means that $p \cdot 2p = 2p^2 \mid (n-1)!$, and since $n=p^2 \mid 2p^2$, this shows that $n \mid (n-1)!$.