EVCLYE

EVOLAB Benchmark 技术尽调报告

QuarkChain Testnet 夸克链测试网

(本报告不代表投资建议)

日期: 2019年4月

前言

为了让投资者透明化地了解一个区块链项目的技术情况,EVOLABTech 从共识机制、代码、安全性、拓展性和系统性能方面进行研究,推出了区块链项目的透明化技术报告 EVOLAB Benchmark。

我们的初衷是解释区块链看似复杂的技术,让人一眼了解项目的真实性能。我们根据 Github 代码、白皮书与 Benchmark 自有的技术,对公链进行分析,通过分析其技术理念 是否合理,是否符和市场需求,是否能做到白皮书的设想,做出了一份反映真正技术水平的 透明化代码报告。

一、 概述

Quark Chain 是一个基于分片技术的公链项目,它主要是想通过增加分片来提高系统性能。接下来,我们从共识机制、安全性、系统性能、技术管理和激励模型五个方面测试并分析 Quark Chain。

二、分析

测试环境说明

我们的在 AWS 上部署了 30 个 Kubernetes 节点,具体测试环境如下:

		Barcelona		Paris		Tokyo		Toronto ×	Washington *		
Amsterdam	×	• 33.769ms		• 15.608ms		• 242.384ms		93.762ms	97.213ms		
Auckland	×	• 339.51ms		306.857ms		• 262.461ms		• 226.613ms	• 227.185ms		
Copenhagen	×	• 36.723ms		• 26.148ms		• 259.516ms		• 113.626ms	• 107.308ms		
Dallas	×	• 136.337ms		• 109.758ms		• 134.788ms		• 43.671ms	• 45.066ms		
London	×	• 25.467ms		• 4.001ms		235.712ms		• 141.819ms	84.282ms		
Los Angeles	×	• 155.675ms		• 148.037ms		• 107.817ms		58.407ms	• 65.221ms		
Moscow	×	• 78.603ms		• 51.796ms		221.938ms		• 137.391ms	• 126.481ms		
New York	×	90.763ms		• 74.108ms		218.73ms		20.561ms	22.158ms		
Paris	×	• 26.646ms				• 243.969ms		97.801ms	• 79.909ms		
Stockholm	×	45.509ms		28.444ms		295.025ms		• 118.399ms	• 124.232ms		
Tokyo	×	• 349.741ms		244.343ms		_		9 172.217ms	161.193ms		

图 2-1 Kubernetes 测试环境

(一) 共识

根据白皮书以及其他公开资料,Quark Chain 采用了根链+分片结构,根链负责验证分片上的交易,分片负责打包交易。根据白皮书的描述,Quark Chain 共识机制可以理解为以下场景。我们设想有一个 100 人的议会,比特币或以太坊需要这 100 人共同讨论来决定下

一个议案,而 Quark Chain 则将其分开成为 10 个人的小议会代表团,然后可以同时提交十份议案来提高系统性能。

在一个 100 人的议会中,设定一个高级代表团(代表根链),其中有 50 人,其他 50 人仍然组成每 10 人一组的小议会代表团(代表分片)。这 5 个 10 人一组的小代表团提出的议案,积累到一定数量之后,比如 100 个提案后,交给 50 人的高级代表团,由他们验证确认。这样的方案在提高了系统吞吐量的同时,也带了一定的安全隐患,因为总体验证的人数减少了。比如 100 人的代表团,需要 50 个人以上才能攻击,而 Quark 的攻击只需要 25 人。

根据白皮书,Quark Chain 根链最终将采用 PoSW 共识算法,即押币挖矿,算力越大的同时,需要抵押的代币也越多。也就是说,矿工在通过哈希碰撞创造新的区块的同时,需要验证抵押代币的数量,从而计算有效算力。但根据测试网的代码来看,现阶段仍然在采用PoW 算法。PoSW 的实现 demo 已经推出,代码应用目前无法评价。

而 Quark 的分片运行玻色子共识算法,其意义为允许分片(10 人一组的小代表团)使用自己的决策方式来出块。比如第一个小议会代表团采用独裁制度,也就是里面的一个人说了算。第二个小议会代表团采用轮流制,每人出块一次。这增加了区块链应用的灵活性,因为分片可以根据自己的使用场景来改变自己的共识算法。

白皮书中提到,分片之间可以进行跨链交易。但是,考虑到区块链共识算法的复杂性以及加密协议的不完全兼容性,分片之间是否都能安全的实现跨链交易,这里可能还是会存在 一定的限制。由于目前玻色子共识算法还没有实现,所以这部分也是未来可能的问题。

(二) 安全

通过 Benchmark 公链测试工具,我们对 Quark Chain 进行一系列安全测试,并从中选取了我们认为对该公链来说,有参考意义的几个攻击指标。

我们的测试方法如下:

- 1. 建立 Quark Chain 测试网;
- 2. 发送 RPC, 让测试网部分节点对其他节点发起攻击;

得到测试结果如下:

表 2-1 Benchmark 安全测试结果

方案	结果	备注			
女巫攻击	通过	模仿出多种身份进行的攻击			
BGP 劫持攻击	不通过	通过破坏使用边界网关协议 (BGP) 维护的			
		路由表非法接管 IP 地址组			
网络带宽服务攻击	不通过	通过耗尽网络带宽资源使得网络无			
		法正常工作			

测试结果: Quark Chain 可以抵御女巫攻击, 满足一个公链项目的基本安全需求,但无法抵御 BGP 劫持攻击和网络带宽服务攻击。

(三) 性能

通过 Benchmark 公链测试工具,对 Quark Chain 进行性能测试,测试方法如下:

- 1. 建立只包括单分片的 Quark Chain 测试网;
- 2. 发送 RPC, 让测试网部分节点发起交易(每秒 N 笔交易, 线性增长);
- 3. 节点检测交易同步的时间,直到检测到超过一定时间(一般是出块时间)

测试结果:Quark Chain 单分片的 TPS 为 50。因为 Quark Chain 采用分片技术,理论上只需要可以通过增加分片,提高系统吞吐量。

(四) 技术管理

1. 代码更新

Quark Chain 的 Github 仓库的一共有 4 个 public repositories,每个 repositories 的 具体数据如下:

表 2-2 QuarkChain 的 Github 数据

repositories	description	commits	Watches	stars	forks		
pyquarkchain	Python implementation	1312	36	157	92		
	of QuarkChain						
quarkchain-web3.js	QuarkChain client	42	8	18	10		
	library built around						
	web3.js						
tqkc-bounty-lottery	-	12	4	2	2		
crowdsale-whitelist	-	9	4	22	56		

根据 Quark Chain 的 pyquarkchain 的 commits 数据,得到 pyquarkchain 的代码更新,如下:

图 2-2 pyquarkchain 的代码更新情况

说明: pyquarkchain 代码也在一直持续更新,相对于 Coinmarkcap 排名附近的其他项目,也算是更新比较频繁。

2. 代码重复度

通过 Benchmark 公链测试工具,我们对 Quark Chain 进行代码相似度检查,我们的测试方法如下:

- (1) 建立代码索引库
- (2) 把目标代码放进 Elasticsearch
- (3) 把目标代码和其他代码作比较

测试结果:我们发现 pyquarkchain 部分代码**和 pyetherum(以太坊)高度重合**,可以判断 pyquarkchain 借鉴 pyetherum 的思路进行开发。

(五) 激励模型

QuarkChain 采用挖矿激励,有两种挖矿方式,一种是根链挖矿,另一种是分片挖矿。根链挖矿主要负责验证交易,除了得到根链挖矿的奖励外,分片出块会向根链交一定的"税"作为对根链矿工的奖励。分片挖矿则主要是负责打包交易。

三、总结

Quark Chain 共识和分片方案是借鉴 Ethereum 的思路,开发也借鉴了 pyethereum 的代码。类似的分片方案在以太坊上也有讨论,比如 Layer 2,从技术设想上看,是<u>通过牺牲</u>安全性以提高系统性能,没有算法级别的挑战,但如果能在工程上实现的好,对社区和市场也是有价值的。

ALL RIGHTS RESERVED TO EVOLABTech

https://evolab.io

@EVOLABTech

https://twitter.com/EVOLABTech

https://www.weibo.com/u/6560757147

https://medium.com/@EVOLAB

https://www.facebook.com/EVOLABTech/

http://t.me/EVOLAB

https://github.com/EVOLABTeam

contact@evolab.io

技术驱动,加速区块链初创团队成长