

Computer Graphics (Graphische Datenverarbeitung)

- Introduction -

WS 2022/23

Overview

- Today
 - Administrative stuff
 - History of CG
 - Photo Realism
 - Math Primer

- Next
 - Geometric Primitives
 - Triangle Meshes
 - Ray-Triangle Intersections

CG lecture Administrative Issues

General Information

- 4 V + 2 Ü
- Lectures in English
- Time and Location
 - Tue, 8:15-10, F122
 - Thu, 14-15, F122
 - Lectures will be recorded
- ECTS:
 - 9 credit points
- Web-Page
 - www.graphics.uni-tuebingen.de
 - ILIAS
 - Schedule, Slides as PDF
 - Literature, Assignments, other Information

Team

- Lecturer
 - Hendrik Lensch
 - Maria-von-Linden-Str. 6, 20-7/A24
 - E-mail: hendrik dot lensch at uni-tuebingen.de
- Assistants
 - Faezeh S Zakeri
 - Maria-von-Linden-Str. 6, 20-30/A24
 - E-mail: faezeh-sadat dot zakeri at uni-tuebingen.de at uni-tuebingen.de
 - Lukas Ruppert
 - Maria-von-Linden-Str. 6, 20-30/A24
 - email: lukas.ruppert @ uni-tuebingen.de
 - Raphael Braun
 - Maria-von-Linden-Str. 6, 20-30/A18
 - email: raphael.braun @ uni-tuebingen.de

Exercise Groups

• Wed 10–12, F122

You need to register:

- ILIAS
- apply for WSI account

Weekly Assignments

- Weekly assignment sheets
 - Theoretical & programming assignments
 - You will build your own ray tracing system

Without the exercises you will have a hard time passing the exam

- You need to reach at least 50% in the exercises to be admitted to the exam!

- On good performance (> 75%) in the exercises you can earn a bonus of 0,3 for your final grade if you pass the written exam.

Weekly Assignments

- Weekly assignment sheets
 - Hand in assignments by next Monday
 - PDFs and Code via ILIAS
 - Exercise meetings
 - You present correct solutions
 - Discuss problems with teaching assistant
 - Groups of max. 2 students allowed

Java to C++ Mini Course

- As the exercises will be in C++
 - we do offer a tiny course on C++
 - explain the differences to Java
- You will learn
 - how to compile your own C++ program
 - how to chase segmentation faults

Wednesday, 19.10.!!

Grading

- Final Exam
 - Written exam:
 - Dates tba
 - Minimum: 50% to pass
- Exercises
 - Permission to participate in final exam if > 50%
 - Bonus of 0.3 if > 75%

Text Books

- Suggested Readings:
 - Matt Pharr, Greg Humphreys, *Physically Based Rendering: From Theory to Implementation*, Morgan Kaufmann Series, 2005
 - Peter Shirley, *Fundamentals in CG*, 2. Ed, AK Peters, 2005
 - Alan Watt, 3D Computer Graphics, Addison-Wesley, 1999
 - Foley, Van Dam, et al., *Computer Graphics: Principles and Practice*, Addison-Wesley, 2. Ed, 1996
 - Andrew Glassner, *An Introduction to Ray-Tracing*, Academic Press, 1989
 - Andrew Glassner, *Principles of Digital Image Synthesis*, 2 Bände, Morgan Kaufman, 1995
 - Andrew Woo, et al., *OpenGL Programming Guide*, 3. Ed., Addison-Wesley, 1999
 - Thomas Akenine-Möller, Eric Haines, *Real-Time Rendering*, 2nd Ed., AK Peters, 2002
 - Randima Fernando, Mark Kilgard, *The Cg Tutorial*, Addison Wesley, 2003
 - Randima Fernando, *Cg Gems*, Addison Wesley, 2004

Course Syllabus (1)

- Geometric Primitives
 - Triangles, Meshes
 - Ray/Triangle Intersections
- Transformations
 - Camera Transformations
- Ray Tracing
 - Basics intersections
 - Acceleration structure
- Light Transport
 - Shading / BRDFs
 - Rendering Equation
 - Path Tracing
- OpenGL

Course Syllabus (2)

- Textures
 - Bilinear Interpolation
 - MipMapping
 - Environment Mapping
- Aliasing
 - Fourier Analysis
 - Antialiasing / Super Sampling
 - Importance Sampling
- Volumes
 - Rendering
 - Visualization
- Image-Based Rendering
 - Light Fields

Course Syllabus (3)

- Neural Rendering
 - Deep Signed Distance Functions
 - NeRF Neural Reflectance Fields
- Modelling
 - Splines
 - Subdivision Surfaces
- Color
 - Color Spaces
 - HDR
 - Composition
- Realtime Rendering

What is Computer Graphics?

What is Computer Graphics?

Historical Perspective

- A short history of graphics:
 - 1950: MIT Whirlwind (CRT)
 - 1955: Sage, Radar with CRT and light pen
 - 1958: Willy Higinbotham "Tennis for Two"
 - 1960: MIT "Spacewar" on DEC PDP-1
 - 1963: Ivan Sutherland's "Sketchpad" (CAD)
 - 1969: ACM Siggraph founded
 - 1968: Tektronix storage tube (\$5-10.000)
 - 1968: Evans&Sutherland (flight simulators) founded
 - 1968: Douglas Engelbart: computer mouse
 - 1970: Xerox: GUI
 - 1971: Gouraud shading
 - 1974: Z-buffer
 - 1975: Phong shading model
 - 1976: First animations rendered
 - 1979: Eurographics founded
 - 1980: Whitted: Ray tracing

Historical Perspective

- A short history of graphics (Cont.):
 - 1981: Apollo Workstation, IBM PC
 - 1982: Silicon Graphics (SGI) founded
 - 1984: X Window System
 - 1984: First Silicon Graphics Workstations (IRIS GL)
 - Until mid/end of 1990s: Dominance of SGI in the high end
 - HW: RealityEngine, InfiniteReality, RealityMonster, ...
 - SW: OpenGL, OpenInventor, Performer, Digital Media Libs, ...
 - End of 1990s:

Low- to mid range taken over by "PCs" (Nvidia, ATI, ...)

- HW: Fast development cycles, Graphics-on-a-chip, ...
- SW: Direct 3D & OpenGL, computer games
- 1995: First feature film "Toy Story"
- 1996: Image-based Rendering
- 2001: Featuring (realistic) virtual humans "Final Fantasy"
- 2006: GeForce-8-Series: Fully programmable GPU
- 2009: Reinvention of Stereo: "Avatar"
- 2016: Vulkan

Historical Perspective

- A short history of graphics (Cont.):
 - Today computer graphics is ubiquitous
 - Movies, games, ads, medicine, CAD, visual analytics,
 - On any device: cell phone, camera, TV, cars
 - Realtime ray tracing
 - Programmable graphics hardware, GLSL, Cuda
 - Computer graphics technology has been driven by games
 - This trend has reach other areas in computer science.
 - Massively parallel computing for image processing, simulation, or machine learning

Photo Realism

CG will change the way you look at and perceive the world around you

Photorealistic Rendering

- long standing goal in computer graphics
- ingredients:
 - camera model
 - scene model
 - illumination model
 - rendering algorithm

Image Intensity - Dynamic Range

loss of contrast in dark / bright areas

Same Scene - Different View

left right

Perspective

• How can the same room look so different?

Perspective

• How can the same room look so different?

Lens Properties

• focus, depth of field, aberrations

Scene Description

Visualization of Complex Geometry

[Hullin, Fuchs, Ihrke, Seidel, Lensch – SIGGRAPH 2008]

Realistic 3D Model

- model consists of
 - 3D geometry
 - color
 - texture

Color

• reproduce the same appearance or at least the best possible approximation on arbitrary output devices

CG or Photography?

Material Properties

Relighting in Virtual Environments

Direct Reflections

Direct Reflections

High-Quality Rendering

Illumination

Directionally-varying Light Sources

Global Illumination Effects

- light scatters multiple times
- shadows
- refractions
- interreflections
- caustics
- ...

Light Transport

Caustics

• light patterns formed by focused refractions/reflections

Subsurface Scattering

translucent

Translucent Objects

- light transport through the object
- scattering dampens high frequencies

Complex Scattering in Fibers

• the overall appearance is due to scattering within and between fibers

Participating Media

- fog, smoke, liquids ...
- scattering inside volume
- reduces contrast in background areas
- background blurred

Wrap-Up

- Computer Graphics
 - Rendering
 - Modeling
 - Visualization
 - Animation
 - Imaging
- Young, dynamic area
 - Progress driven by research & technology
- Big industry!
- Interdisciplinary field
 - Relations to mathematics, physics, engineering, psychology, art, entertainment, ...

Wrap-Up

- Lots of different visual effects
- Homework:
 - Start looking around for interesting visual phenomena!

Math Primer

Overview

- Today
 - About the computer graphics group in Tübingen
 - Administrative stuff
 - History of CG
 - Photo Realism
 - Math Primer
- Next
 - Ray Tracing

• This week (Wednesday): C++ - Mini Course

We offer

- Topics for
 - Bachelor theses
 - Master theses
 - Individual lab courses (Praktika)
- Jobs (for performing students):
 - Teaching assistant
 - Research assistant