

Generativni modeli

Tipovi klasifikatora

Bazirani na instancama

- KNN
- Koriste opservacije direktno (bez formiranja modela)
- Ne uvode nikakve pretpostavke o strukturi podataka

Diskriminativni

- Logistička regresija, SVM, Boosting
- Direktno estimiraju granicu odluke

Generativni

- Naivni Bajes, model Gausovih mešavina
- Modeluju kako izgledaju podaci svake klase

Diskriminativni

- Direktno učimo P(y|x):
 - Pretpostaviti formu P(y|x)
 - Na primer: u logističkoj regresiji pretpostavljamo sigmoid
- Ne možemo generisati podatke jer ne znamo P(x)

Generativni

- Određujemo P(x|y) i P(y)
 - Pretpostaviti formu P(x|y) i P(y)
- Odvojeno modelovati kako izgleda x jedne klase i druge klase
- P(y) apriorna verovatnoća y
 - Bajesovim pravilom (indirektno) određujemo P(y|x)
- Možemo generisati primere $P(x) = \sum_{y} P(y)P(x|y)$

Diskriminativni

X_1 X_2 X_3 X_n

Generativni

Naivna pretpostavka

$$P(Y|X) = P(y)P(x_1|y)P(x_2|y,x_1)...P(x_n|y,x_1...x_{n-1})$$

Poređenje: tačnost

 Generativni modeli su lošiji kada pretpostavka o uslovnoj nezavisnosti nije zadovoljena

- x_1 : broj pojave *bank*
- *x*₂: broj pojave *account*
- Nezavisno da li se radi o *spam* mailu, ove dve reči se uvek pojavljuju zajedno ($x_1 = x_2$)
- Naive Bayes: $P(x_1|y) = P(x_2|y)$ duplira dokaz
- Logistička regresija: može da podesi $heta_1$ ili $heta_2$ na 0

Poređenje: tačnost

- Generativni modeli uvode snažnije pretpostavke
- Potrebno je napraviti pretpostavke o raspodeli verovatnoće (a one mogu biti pogrešne)
- Ali, zato im treba manje podataka za trening
- Pokazalo se da, pogotovo u slučaju malog skupa podataka, NB često pokazuje bolje performanse od sofisticiranijih alternativa

[P. Domingos and M. Pazzani, "On the optimality of the simple bayesian classifier under zero-one loss," Machine learning, vol. 29, no. 2-3, pp. 103–130, 1997.]

- Ignoriše interakcije među atributima pa mu generalno treba manje podataka u odnosu na npr. logističku regresiju
- Manje verovatan da overfituje u slučaju male količine podataka

Poređenje: neodstajuće vrednosti

 Generativni modeli mogu da rade sa nedostajućim vrednostima

• Diskriminativni modeli (u opštem slučaju) ne mogu (zahtevaju sve ulaze x)

Poređenje: primena

- Generativni modeli mogu da generišu podatke (sa istim svojstvima poput podataka na kojima je trenirano)
- Da li je potrebno poznavati zavisnosti između atributa kako bi se predvidela ciljna promenljiva?

- Diskriminativni model mogu da rešavaju klasifikacione probleme
- Generativni modeli imaju mnogo drugih primena:
 - Uzorkovanje
 - Generisanje podataka (npr. Generative Adverserial Networks za generisanje novih slika)