- W elektrociepłowni wytworzono 20MWh energii elektrycznej i 128GJ ciepła. Średnia sprawność układu η=75%, tpu≈29GJ (energia chemiczna paliwa).
 Obliczyć ile paliwa zużyto, pomijając potrzeby własne.
- 2. Obliczyć sprawność termodynamiczną i sporządzić wykres i-s.

entropia kJ/kg	p	T [°C]	_
150	6 kPa	36	2
3500	15 MPa	550	
1200	6 kPa	36	
2100	6 kPa	36	

- 3. Obliczyć do zadania 2 sprawność netto i brutto, zużycie paliwa chemicznego netto i brutto gdy: sprawność kotła η_k =0,9; rurociągu η_r =1,0; mechaniczna turbozespołu η_m =0,9; generatora η_G =1,0 i zużycie na potrzeby własne: ϵ =1%.
- 4. Obliczyć wymiary przełyku elektrowni wodnej o wysokości H=150m potrzebne do uzyskania P=100W przy sprawności (turbiny?) η_T =0,92 i sprawności hydrogeneratora η_G =0,96. Przyjąć gęstość wody ρ =1000kg/m³ i g=9,81m/s. Jaki zastosować tutaj rodzaj turbiny i dlaczego?
- 5. Panel słoneczny w STC (energia słoneczna 1kW/m²). Obliczyć sprawność paneli, współczynnik wypełnienia FF i moc w punkcie maksymalnym MPP.

Krzem polikrystaliczny
$$I_{SC}$$
=4,7 A U_{OC} =42,8 V 815 x 1620 mm I_{MPP} =4,25 A U_{MPP} =33,0 V

6. Ile energii elektrycznej wytwarza turbina wiatrowa o parametrach: prąd rozruchu (cut-in speed): 4m/s; sprawność elektromechaniczna: 1,0; gęstość powietrza: ρ=1,2kg/m³; średnica wirnika: D=100m.

m/s	C_p	T, h
3	0,20	2
6	0,30	3
8	0,50	2
10	0,45	1

7. Ile energii zostanie wytworzonej w reakcji rozszczepienia 1 kg uranu 238 o zawartości izotopu ²³⁵U=4%? Przyjąć energię pojedynczego rozpadu E_f=192MeV(≈3,076 10⁻¹¹J).