Relational Database Design

Why do Relational Database Design?

- ER Model driven database design has been intuitive.
 - experience and judgement helps determine ER Schema.
- Relational Data Schema can be got from ER Schema.
- But, how "good" is this Relational Data Schema?
- Relational theory helps <u>formally</u> compare one relational schema with another.
- Relational theory deals with design of base relations.

Informal Design Guidelines

Clear semantics for attributes

It should be easy to explain the meaning of a relation schema.

- should not combine attributes from multiple entity types and relationship types.
- Reduce redundant values in tuples

The base relation schema should not cause insertion, deletion, or update anomalies.

- Note anomalies clearly so that update programs update the database correctly.
- Reduce null values in tuples -

Avoid placing attributes in a base relation whose values may be null

Nulls should be exceptions -- not common case!

Informal Design Guidelines (cont.)

Disallow Spurious Tuples

It should be possible to join relations using equality condition on primary key and foreign key attributes in a way that guarantees that no spurious tuples are generated.

Relations should have loss-less join property.

STUI	STUDENT_COURSE			
SID	Name	Cnum	Sem	
1	Jim	comp231	fall95	
1	Jim	comp111	spring94	
2	Alice	comp111	spring94	
2	Alice	comp211	fall95	

STUDENT		
SID	Name	Sem
1	Jim	fall95
1	Jim	spring94
2	Alice	spring94
2	Alice	fall95

COURSE	
Cnum	Sem
comp231	fall95
comp111	spring94
comp111	spring94
comp211	fall95

STUDENT_COURSE_SPURIOUS			
SID	Name	Cnum_	Sem
1	Jim	comp231	fall95
1	<u>Jim</u>	<u>comp211</u>	fall95
1	Jim	comp111	spring94
2	<u>Alice</u>	comp231	fall95
2	Alice	comp211	fall95
2	Alice	comp111	spring94

Functional Dependencies

- a <u>Functional Dependency</u> (FD) is a <u>constraint</u> between <u>two sets</u> of <u>attributes</u> from the database.
- defined using Universal Relation Schema Assumption
 Given a relational database schema with n attributes A₁, A₂, ..., A_n, then a single universal relation R = {A₁, A₂, ... A_n} describes the whole database.

Notation: R - Relation Schema, r - Relation Instance

Functional Dependency
 X → Y (X & Y are set of attributes of R)
 for any two tuples t₁ and t₂ in r such that
 t₁[X] = t₂[X] we must also have t₁[Y] = t₂[Y]

Example:

$HKID \rightarrow DoB$

Person	
HKID	DoB
K222222	31/4/48
P111111	29/2/29
R333333	31/2/61
K222222	

Use of Functional Dependencies

To specify constraints on legal relations

keys

If a set of relations R satisfy a set F of FDs, we say that F holds on R.

 To test relations to see whether they are legal under a given set of functional dependencies

determine if constraints are violated

If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.

 To "improve" the relation schema by removing undesirable dependencies

decomposition

Inference Rules for FDs

- F denotes the set of FDs specified for R
- Other FDs may also hold on all legal instances that satisfy F
- The set of all such FDs is called <u>closure</u> of F denoted by <u>F</u>⁺
- A FD X→Y is <u>inferred</u> from F if X→Y <u>holds in every legal instance</u> r of
 R
 - reed a set of inference rules that can systematically infer new FDs from a given set of FDs

Notation:

 $F \mid = X \rightarrow Y \text{ (F infers } X \rightarrow Y); \{X,Y\} \rightarrow Z \text{ written as } XY \rightarrow Z;$ and $\{X,Y,X\} \rightarrow \{UV\} \text{ written as } XYZ \rightarrow UV$

Reflexivity

IR1: (Reflexivity) If $X \supseteq Y$, then $X \to Y$.

Proof:

Suppose $X \supseteq Y$ and that two tuples t_1 and t_2 exist in some relation instance r of R such that $t_1[X] = t_2[X]$.

Then, $t_1[Y] = t_2[Y]$ because $X \supseteq Y$; hence $X \to Y$ must hold.

STUI	STUDENT_COURSE			
SID	Name Cnum		Sem	
1	Jim	comp231	fall95	
1	Jim	comp111	spring94	
2	Alice	comp111	spring94	
2	Alice	comp211	fall95	

$$X \rightarrow Y$$

Augmentation

IR2: (Augmentation) If $\{X \rightarrow Y\} = XZ \rightarrow YZ$.

Proof (by contradiction):

Assume that $X \rightarrow Y$ holds in a relation instance r of R but that $XZ \rightarrow YZ$ does not hold. Then there exists two tuples such that

1).
$$t_1[X] = t_2[X]$$

3).
$$t_1[XZ] = t_2[XZ]$$

2).
$$t_1[Y] = t_2[Y]$$

4).
$$t_1[YZ] \neq t_2[YZ]$$

This is not possible because from (1) and (3) we have

(5) $t_1[Z] = t_2[Z]$ and from (2) and (5) we have (6) $t_1[YZ] = t_2[YZ]$ contradicting (4).

Transitivity

IR3: (Transitivity) If $\{X \rightarrow Y, Y \rightarrow Z\} \mid = X \rightarrow Z$.

Proof:

Assume that (1) $X \rightarrow Y$ and (2) $Y \rightarrow Z$ both hold in a relation r.

Then for any two tuple t_1 and t_2 in r such that $t_1[X] = t_2[X]$ we must have (3) $t_1[Y] = t_2[Y]$ (from assumption (1)).

Hence we must also have (4) $t_1[Z] = t_2[Z]$, (from (3) and assumption (2));

hence, $X \rightarrow Z$ must hold in r.

Inference Rules (cont.)

IR1 to IR3 are

sound: given a set of FDs F specified on a relation schema R, any FD that we can infer from F by using IR1, IR2, and IR3 holds in every relation state r of R that satisfies the FDs in F

<u>complete:</u> using IR1, IR2, and IR3 repeatedly to infer FDs until no more FDs can be <u>inferred</u> will result in the <u>complete set</u> of all possible <u>FDs</u> that can be inferred from F.

Additional Inference Rules

IR4 Projectivity

$$\{X \rightarrow YZ\} \mid = X \rightarrow Y \text{ and } X \rightarrow Z$$

IR5 Additive

$${X \rightarrow Y, X \rightarrow Z} = X \rightarrow YZ$$

IR6 Pseudotransitivity

$$\{X \rightarrow Y, WY \rightarrow Z\} \mid = WX \rightarrow Z$$

Definitions

1. Key and Superkey:

A super key, S, of R = $\{A_1, A_2, ..., A_n\}$ is a set of attributes $S \subseteq R$ such that for any two tuples t_1 and t_2 in r, $t_1[S] \neq t_2[S]$ A key, K, is a superkey that is minimal.

2. Prime and non-prime attributes:

<u>prime</u>: if part of any candidate key <u>non-prime</u>: if not part of any candidate key

3. Full dependency:

Given a relation scheme R and an FD X \rightarrow Y, Y is fully functionally dependent on X if there is no Z \subset X such that Z \rightarrow Y

Definitions (cont.)

4. Partial Dependency

Given a relation scheme R, FDs F, a functional dependency $X \rightarrow Y$ is a partial dependency if some attribute $A \in X$ can be removed from X and the dependency still holds;

That is, for some $A \in X$, $(X - \{A\}) \rightarrow Y$.

Definitions (cont.)

4. Transitive Dependency

Given a relation scheme R, FDs F, let X, Y and Z be subsets of R such that $X \not\subset Y$, and $Z \not\subset XY$.

If the set of FDs $\{X \rightarrow Y, Y \rightarrow Z\}$ is implied by F, then Z is transitively dependent on X.

Normalization

- A systematic process of decomposing unsatisfactory relation schemas into smaller relations schemas that possess desirable properties.
- Provides a series of tests for relation schemas
- expressed in terms of normal forms
 - first four: only use FDs
 - additional: use other types of dependencies
- Not necessary to normalize to highest form!
- Normal forms do not guarantee good design
 - also need to consider
 - loss less join property
 - dependency preserving property

First Normal Form (1NF)

A Relation schema is in 1NF if the values in the domain of each

attribute are atomic.

DEP	DEPARTMENT			
DID	DName	DMGR	DLOCATIONS	
5	Research	101	{HK, Beijing, Shanghai}	
2	Admin	105	London	
1	Headquarters	108	Hyderabad	

DEPARTMENT			
DID	DName	DMGR	DLOCATIONS
5	Research	101	HK
5	Research	101	Beijing
5	Research	101	Shanghai
2	Admin	105	London
1	Headquarters	108	Hyderabad

DEPARTMENT			
DID	DName DMGR		
5	Research	101	
2	Admin	105	
1	Headquarters	108	

1	Location		
	<u>DID</u>	DLOCATIONS	
1	5	HK	
_	5.	Beijing	
-	5	Shanghai	
_	2	London	
	1	Hyderabad	

Second Normal Form (2NF)

A relation schema is in 2NF if every nonprime attribute A in R is fully functionally dependent on every key of R.

Second Normal Form (2NF)

Example:

Third Normal Form (3NF)

A relation schema is in 3NF if for all non trivial dependencies in F^+ are of the form $X \rightarrow A$ with either:

a). X is a superkey

Third Normal Form (3NF)

Example:

Boyce-Codd Normal Form (BCNF)

A relation schema is in BCNF if for all non trivial dependencies in F^+ of the form $X \rightarrow A$; X is a superkey.

Summary

Normal Form	Test	Normalization (Remedy)
First (1NF)	Relation should have no non-atomic attributes or nested relations.	Form new relations for each non-atomic attribute or nested relation.
Second (2NF)	For relations where primary key contains multiple attributes, no non-key attributes should be functionally dependent on a part of primary key.	Decompose and set up a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it.
Third (3NF)	Relation should not have a non-key attribute functionally determined by another non-key attribute (or by a set of non-key attributes.) That is, there should be no transitive dependency of a non-key attribute on the primary key.	Decompose and set up a relation that includes the non key attribute(s) that functionally determine(s) other non-key attribute(s).

Computing the closure of F F+

- Closure F⁺ of a set of FDs can be determined by using the inference rules IR1, IR2, and IR3 on F
- first, determine each set of attributes X that appears on left hand side (lhs) of some FD in F
- use IR1, IR2 and IR3 to determine the set of all attributes that are dependent on X
- this is called the <u>closure X+ of X under F</u>

Algorithm for computing X⁺

```
Algorithm: X<sup>+</sup> (closure of X under F)
    X^+ := X:
         while (changes to X<sup>+</sup>) do
                   for each FD Y \rightarrow Z
                            begin
                                     if Y \subset X^+; then X^+ = X^+ \cup Z
                            end
      rac{1}{2} does F |= X \rightarrow Y?
```

Covers and Equivalences of sets of FDs

- When are two sets of FDs equivalent?
 - We may have two sets of FDs F and G which may represent same constraints, but G might be much simpler than F; hence using G is to our advantage in enforcing the FDs in the database.
 - Given sets of FDs G and F, G and F are equivalent when G+ = F+
 G is said to cover F (and F is said to cover G) or G is a cover of F
- Given FD sets G and F, does F cover G?
 - Calculate X^+ with respect to G for each FD $X \rightarrow Y$ in F
 - if X⁺ includes Y for each X⁺ then G covers F

Nonredundant Covers

 Given a set of FDs F, if a proper subset of F of F covers F, then F is redundant

Algorithm: Nonredundant Cover

```
G := F

For each FD X \rightarrow Y in G do

if (X \rightarrow Y) \in \{ F - (X \rightarrow Y) \}^+

then F := \{ F - (X \rightarrow Y) \}

G:= F;
```

Canonical (Minimal) Cover

- A set of FDs F_c is a <u>canonical (minimal) cover</u> if every FD in F_c satisfies:
 - 1. Each FD in F_c is simple (single attribute on the right hand side)
 - always possible using IR4 and IR5
 - 2. We cannot replace FD X \rightarrow Y in F_c with an FD Z \rightarrow A, where Z \subset X and still have a set of FDs that is equivalent to F_c lhs of FDs do not have any <u>extraneous attributes</u>.
 - 3. No FD $X \rightarrow A$ is redundant

$$F_{c} - (X \rightarrow A) + F_{c}^{+}$$

- There can be several canonical covers for a set of FDs
- can always find at least one

Additional Properties of Decompositions

- Normalization does not mean we have a good design
- also need to examine inter-relation properties

Definitions:

R (A_1 , A_2 , ..., A_n) universal relation schema D = (R_1 , R_2 , ..., R_m) a decomposition of R

Attribute preservation condition:

$$\bigcup_{i=1,n} R_i = R$$

Need to consider inter relation properties: dependency preservation and lossless join.

Dependency Preservation Property

- Each FD X \rightarrow Y should appear directly in some R_i or be inferred from the FDs in some R_i so as to allow efficient validation of the FDs
 - FDs are normally specified within a relation scheme
 - when do FDs go across relation schemes

R(A, B, C, D)
$$A \rightarrow BCD$$
; $BC \rightarrow AD$; $D \rightarrow B$

R₁(A, C, D) $A \rightarrow CD$;

R₂(B, D) $D \rightarrow B$

Dependency Preservation Property

Definition:

Given a set of FDs F on R, the projection of F on R_i , denoted by $\pi F(R_i)$ is the set of FDs X \rightarrow Y in F⁺ such that attributes in X \cup Y are all contained in R_i .

 $D = (R_1, R_2, ..., R_m)$ is <u>dependency preserving with respect</u> to F if

$$((\pi_{R1}(F)) \cup (\pi_{R2}(F)) \cup ... \cup (\pi_{Rm}(F)))^{+} = F^{+}$$

Lossless Join Property

STUDENT		
SID	Name Sem	
1	Jim	fall95
1	Jim	spring94
2	Alice	spring94
2	Alice	fall95

STUDENT_COURSE					
SID	Name	Cnum	Sem		
1	Jim	comp231	fall95		
1	Jim	comp111	spring94		
2	Alice	comp111	spring94		
2	Alice	comp211	fall95		

STUDENT_COURSE_SPURIOUS				
SID	Name	Cnum_	Sem	
1	Jim	comp231	fall95	
1	Jim	comp211	fall95	
1	Jim	comp111	spring94	
2	Alice	comp231	fall95	
2	Alice	comp211	fall95	
2	Alice	comp111	spring94	

COURSE				
Cnum	Sem			
comp231	fall95			
comp111	spring94			
comp111	spring94			
comp211	fall95			

Lossless Join Property

• D = $(R_1, R_2, ..., R_m)$ has loss less join property with respect to F if for every relation instance r of R that satisfies F

$$\bowtie \pi_{R_i}(r) = r$$

Properties of Lossless Join Decomposition

Property LJ1

A decomposition D = $\{R_1, R_2\}$ has lossless join property with respect to set of FDs F iff either

- the FD $(R_1 \cap R_2) \rightarrow (R_1 R_2)$ is in F⁺ or
- the FD $(R_1 \cap R_2) \rightarrow (R_2 R_1)$ is in F⁺

- $(R_1 \cap R_2)$ are attributes common to both R_1 and R_2
- $\ \ \, \mathbb{R}_1$ \mathbb{R}_2 are attributes in \mathbb{R}_1 not in \mathbb{R}_2 .

Properties of Lossless Join Decomposition

Property LJ2

If D = {R₁, R₂, ---, R_m} of R has the lossless join property with respect to F and D₁ = {Q₁, Q₂, ..., Q_k} of R_i, has the lossless join property with respect to $\pi_F(R_i)$, then D = {R₁, R₂, ..., R_{i-1}, Q₁, Q₂, ..., Q_k, R_{i+1}, ..., R_m} has the lossless join property with respect to F

can replace schema R_i by its loss less decomposition $\{Q_1, Q_2, \dots, Q_k\}$

Lossless Join and Dependency Preserving 3NF algorithm

- 1. Find a minimal set (cover) of FDs G equivalent to F
- 2. For each X of an FD $X \rightarrow A$ in G
 - Create a relation schema R_i in D with the attributes $\{X \cup A_1 \cup A_2 \cup ... \cup A_k\}$ where the A_j 's are all the attributes appearing in an FD in G with X as left hand side
- 3. If any attributes in R are not placed in any R_i, create another relation in D for these attributes
- 4 If none of them contain a candidate key K or R, create one more relation schema that contains attributes in K.
 - Step 2 assures dependency preserving property
 - Step 4 assures lossless join property

Lossless Join and Dependency Preserving 3NF algorithm

Problems:

Must find a minimal cover G for F

No efficient algorithm for finding a minimal cover

Several minimal covers can exist for F; the result of the algorithm can be different depending on which is chosen

Lossless Join Decomposition into BCNF

- 1. set D:={R}
- 2. While there is a relation schema Q in D that is not in BCNF do
 - choose a Q in D that is not in BCNF
 - find a FD X \rightarrow Y that violates BCNF
 - replace Q in D by two relation schemas (Q Y) and (X∪Y)

Nulls and Decomposition

- theory of lossless join decomposition assumes that nulls are not allowed for join attributes
- allowing nulls causes problems of
 - missing tuples
 employee(Emp#, name, ... Dno)
 department(Dno, ...)
 - dangling tuples
 employee(emp#, ...)
 works_on(emp#, dept#)
 department(dept#,...)

Problems with decomposition

- Need all FDs to get proper decomposition
- decomposition algorithms are not deterministic
 - algorithms are not popular in practice
 - much of database design is still intuitive and heuristic