-PARTE I-

Tema 1. EL LENGUAJE SQL Y LOS SISTEMAS DE GESTIÓN DE BASES DE DATOS.

El lenguaje S.Q.L.

S.Q.L. significa lenguaje estructurado de consulta (*Structured Query Language*). Es un lenguaje estándar de cuarta generación que se utiliza para definir, gestionar y manipular la información contenida en una Base de Datos Relacional.

Se trata de un lenguaje definido por el estándar ISO/ANSI SQL que utilizan los principales fabricantes de Sistemas de Gestión de Bases de Datos Relacionales.

En los lenguajes procedimentales de tercera generación se deben especificar todos los pasos que hay que dar para conseguir el resultado. Sin embargo en SQL tan solo deberemos indicar al SGDB qué es lo que queremos obtener, y el sistema decidirá cómo obtenerlo.

Es un lenguaje sencillo y potente que se emplea para la gestión de la base de datos a distintos niveles de utilización: usuarios, programadores y administradores de la base de datos.

¿Qué es una Base de Datos?

Una base de datos está constituida por un conjunto de información relevante para una empresa o entidad y los procedimientos para almacenar, controlar, gestionar y administrar esa información.

Además, la información contenida en una base de datos cumple una serie de requisitos o características:

- Los datos están interrelacionados, sin redundancias innecesarias.
- Los datos son independientes de los programas que los usan.
- Se emplean métodos determinados para incluir datos nuevos y para borrar, modificar o recuperar los datos almacenados.

¿Qué es un Sistema de Gestión de Bases de Datos?

Un Sistema de Gestión de Bases de Datos (SGBD) es una aplicación comercial que permite construir y gestionar bases de datos, proporcionando al usuario de la Base de Datos las herramientas necesarias para realizar, al menos, las siguientes tareas:

- Definir las estructuras de los datos.
- Manipular los datos. Es decir, insertar nuevos datos, así como modificar, borrar y consultar los datos existentes.
- Mantener la integridad de la información.
- Proporcionar control de la privacidad y seguridad de los datos en la Base de Datos, permitiendo sólo el acceso a los mismos a los usuarios autorizados.

Nota.- La herramienta más difundida para realizar todas estas tareas es el lenguaje SQL.

Algunos de los productos comerciales más difundidos son:

- **ORACLE** de Oracle Corporation.
- **DB2** de I.B.M. Corporation
- **SYBASE** de Sybase Inc.
- Informix de Informix Software Inc.
- **SQL Server** de Microsoft Corporation.

Tipos de Bases de Datos.

Existen básicamente tres tipos de bases de datos:

- Bases de Datos Jerárquicas.
- Bases de Datos en Red.
- Bases de Datos Relacionales.

Éstas últimas son, con diferencia, las más difundidas y utilizadas en la actualidad debido a su potencia, versatilidad y facilidad de utilización. Se basan en el Modelo Relacional cuyas principales características veremos a continuación. Para gestionarlas se utiliza el lenguaje SQL.

El Modelo de Datos Relacional. Componentes.

El Modelo Relacional fue enunciado por E.F. Codd. Sus principales componentes son:

Entidad.

Es un objeto acerca del cual se recoge información relevante.

Ejemplo de entidades: EMPLEADO, CLIENTE, PRODUCTO.

Atributo.

Es una propiedad o característica de la entidad. Por ejemplo pueden ser atributos de la entidad PERSONA los siguientes: DNI, NOMBRE, EDAD, ...

Tabla.

Son los objetos de la Base de Datos donde se almacenan los datos.

Ejemplo de tabla de *empleados*:

EMP_NO	APELLID O	OFICIO	DIRECTO R	FECHA_A L	SALARIO	COMISIO N	DEP_NO
7499	ALONSO	VENDEDOR	7698	20/02/8	140000	40000	30
7521	LOPEZ	EMPLEADO	7782	08/05/8 1	135000		10
7654	MARTIN	VENDEDOR	7698	28/09/8 1	150000	160000	30
7698	GARRIDO	DIRECTOR	7839	01/05/8 1	385000		30
7782	MARTINE Z	DIRECTOR	7839	09/06/8 1	245000		10
7839	REY	PRESIDENT E		17/11/8 1	600000		10
7844	CALVO	VENDEDOR	7698	08/09/8 1	180000	0	30
7876	GIL	ANALISTA	7782	06/05/8 2	335000		20
7900	JIMENEZ	EMPLEADO	7782	24/03/8 3	140000		20

Normalmente **una tabla representa una entidad** aunque también puede representar una asociación de entidades.

Las tablas están formadas por filas y columnas:

• Cada fila representa una ocurrencia de la entidad:

Ejemplo: Un empleado si es una tabla de empleados, un departamento si es una tabla de departamentos, un cliente si se trata de una tabla de clientes, o un producto si es una tabla de productos.

• Cada columna: Representa un atributo o característica de la entidad. Tiene un nombre y puede tomar por un conjunto de valores.

Ejemplo: La tabla de empleados puede tener como columnas o atributos: numero de empleado, nombre, fecha de alta, salario,...

Ejemplo de tabla de departamentos:

	DEP_NO	DNOMBRE	LOCALIDAD	
Fila 1 ->	10	CONTABILIDAD	BARCELONA	
<i>Fila 2 -></i>	20	INVESTIGACION	VALENCIA	
<i>Fila 3 -></i>	30	VENTAS	MADRID	
Fila 4 ->	40	PRODUCCION	SEVILLA	

Columna 1 Columna 2 Columna 3

A lo largo de este curso utilizaremos, además de las tablas de empleados y departamentos, las tablas de clientes, productos y pedidos cuyo contenido es el siguiente:

TABLA DE CLIENTES:

CLIENTE_NO NOMBRE	LOCALIDAD	VENDEDOR_NO	DEBE	HABER LIM	ITE_CREDITO
101 DISTRIBUCIONES GOME	Z MADRID	7499	0	0	500000
102 LOGITRONICA S.L	BARCELONA	7654	0	0	500000
103 INDUSTRIAS LACTEAS	S.A. LAS ROZAS	7844	0	0	1000000
104 TALLERES ESTESO S.A	. SEVILLA	7654	0	0	500000
105 EDICIONES SANZ	BARCELONA	7499	0	0	500000
106 SIGNOLOGIC S.A.	MADRID	7654	0	0	500000
107 MARTIN Y ASOCIADOS	S.L. ARAVACA	7844	0	0	1000000
108 MANUFACTURAS ALI S.	A. SEVILLA	7654	0	0	500000

TABLA DE PRODUCTOS

PRODUCTO_NO	DESCRIPCION	PRECIO_ACTUAL	STOCK_DISPONIBLE
10	MESA DESPACHO MOD. GAVIOTA	55000	50
20	SILLA DIRECTOR MOD. BUFALO	67000	25
30	ARMARIO NOGAL DOS PUERTAS	46000	20
40	MESA MODELO UNIÓN	34000	15
50	ARCHIVADOR CEREZO	105000	20
60	CAJA SEGURIDAD MOD B222	28000	15
70	DESTRUCTORA DE PAPEL A3	45000	25
80	MODULO ORDENADOR MOD. ERGOS	55000	25

TABLA DE PEDIDOS

PEDIDO_NO	PRODUCTO_NO	CLIENTE_NO	UNIDADES	FECHA_PE
1000	20	103	3	06/10/99
1001	50	106	2	06/10/99
1002	10	101	4	07/10/99
1003	20	105	4	16/10/99

1004	40	106	8 20/10/99	-
1005	30	105	2 20/10/99	
1006	70	103	3 03/11/99	
1007	50	101	2 06/11/99	
1008	10	106	6 16/11/99	
1009	20	105	2 26/11/99	
1010	40	102	3 08/12/99	
1011	30	106	2 15/12/99	
1012	10	105	3 06/12/99	
1013	30	106	2 06/12/99	
1014	20	101	4 07/01/00	
1015	70	105	4 16/01/00	
1016	30	106	7 18/01/00	
1017	20	105	6 20/01/00	

Relación.

Conexión que puede haber entre dos entidades.

Por ejemplo: Cliente-> **compra**-> Producto

Empleado-> **pertenece a** -> Departamento

En nuestras tablas podemos observar las siguientes relaciones:

- La tabla EMPLEADOS está relacionada con la tabla DEPARTAMENTOS através de la columna DEP_NO (numero de departamento) que se encuentra en ambas tablas. De esta forma podemos saber, por ejemplo que el empleado GIL pertenece al departamento 20. Y si vamos a la tabla departamentos comprobaremos que el departamento 20 es INVESTIGACION y se encuentra en VALENCIA. Por tanto, el empleado GIL pertenece al departamento de INVESTIGACION que está en VALENCIA.
- La tabla EMPLEADOS también se relaciona consigo misma mediante las columnas EMP_NO y DIRECTOR. Cada empleado tiene un número de empleado (EMP_NO) y suele tener también un DIRECTOR. Esta última columna contiene un número de empleado que, suponemos, es el director del empleado en cuestión. Así podemos saber que REY es el director de GARRIDO y de MARTINEZ; y que el director de JIMENEZ es MARTINEZ, etcétera.
- La tabla PEDIDOS se relaciona con PRODUCTOS mediante la columna PRODUCTO_NO y con CLIENTES mediante la columna CLIENTE_NO. De esta forma sabemos que el pedido número 1000 lo ha realizado el cliente INDUSTRIAS LACTEAS S.A. y que el producto solicitado es SILLA DIRECTOR MOD. BUFALO a un precio de 67000, etcétera.
- La tabla CLIENTES se relaciona con EMPLEADOS por medio de la columna VENDEDOR_NO de la primera que hace referencia a la columna EMPLEADO_NO de la segunda. Así cada cliente tendrá asignado un vendedor.

El SGBD velará porque todas las operaciones que se realicen respeten estas restricciones manteniendo así la integridad de la información.

¿ Qué podemos hacer con SQL?

Todos los principales SGBDR incorporan un motor SQL en el Servidor de Base Datos, así como herramientas de cliente que permiten enviar comandos SQL para que sean procesadas por el motor del servidor. De esta forma, todas las tareas de gestión de la Base de Datos (BD) pueden realizarse utilizando sentencias SQL.

- Consultar datos de la Base de Datos.
- Insertar, modificar y borrar datos.
- · Crear, modificar y borrar objetos de la Base de Datos.
- · Controlar el acceso a la información.
- Garantizar la consistencia de los datos.

Tipos de sentencias SQL.

Entre los trabajos que se pueden realizar en una base de datos podemos distinguir dos tipos: definición y manipulación de datos. Por ello se distinguen dos tipos de sentencias SQL:

 Sentencias de manipulación de datos. (Lenguaje de Manipulación de Datos DML).

Se utilizan para:

- Recuperar información. (**SELECT**)
- Actualizar la información:
 - Añadir filas (**INSERT**)
 - Eliminar filas (**DELETE**)
 - Modificar filas (**UPDATE**)
- Sentencias de definición de datos. (Lenguaje de Definición de Datos **DDL**). Se utilizan para:
 - Crear objetos de base de datos (CREATE)
 - Eliminar objetos de base de datos (**DROP**)
 - Modificar objetos de base de datos (ALTER)

Lenguaje SQL

SQL EN ACCES.

El motor de la base de datos ACCES se llama **Microsoft Jet**, permite administrar la base de datos, recuperar y almacenar datos en bases de datos del sistema y de los usuarios. Sentencias SQL que podemos manejar en ACCESS:

DML

DDL

SELECT

INSERT

DELETE

UPDATE

CREATE

DROP

ALTER