DEPARTAMENTO DE ANÁLISIS MATEMÁTICO Y MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Análisis de Variable Real. Curso 20-21.

Funciones continuas. Hoja 5

103 Sea $D = \{\frac{1}{n}\}_n \cup (2,3) \cup (3,4] \cup \{5\} \subset \mathbb{R}$. Determina todos los puntos de acumulación de D.

104 Usar la definición de límite para probar que

$$i) \lim_{x \to 1} \frac{1}{1+x} = \frac{1}{2}, \quad ii) \lim_{x \to 0} \frac{x^2}{|x|} = 0, \quad iii) \lim_{x \to -1} \frac{x}{1-x} = -\frac{1}{2},$$

105 Probar que los siguientes límites no existen

$$i) \lim_{x \to 0} \frac{1}{x} \qquad \qquad ii) \lim_{x \to 0} (x + sgn(x)) \qquad \qquad iii) \lim_{x \to 0} \sin(\frac{1}{x^2}) \qquad \qquad iv) \lim_{x \to 0} \frac{x}{|x|}$$

106 Probar que

$$\lim_{x \to x_0} f(x) = \ell \quad \iff \quad \lim_{h \to 0} f(x_0 + h) = \ell.$$

107 Calcular los siguientes límites

$$i) \lim_{x \to 4} \frac{x-4}{x^2-x-12}, \quad ii) \lim_{h \to 0} \frac{(t+h)^2-t^2}{h}, \quad iii) \lim_{x \to 2} \frac{4-x^2}{3-\sqrt{x^2+5}}, \quad iv) \lim_{t \to 1} \frac{t-1}{\sqrt{t^2+3}-2}, \quad v) \lim_{x \to a} \frac{\sqrt{x}-\sqrt{a}}{x-a}, \quad vi) \lim_{t \to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$$

108 Calcular los siguientes límites

$$i) \lim_{x \to \infty} \frac{1}{x}, \quad ii) \lim_{z \to \infty} \frac{2z}{z^2 + 1}, \quad iii) \lim_{x \to \infty} \frac{x}{\sqrt[3]{x^3 + 10}}, \quad iv) \lim_{x \to \infty} \frac{2x^2 - 3x - 4}{\sqrt{x^4 + 1}}, \quad v) \lim_{x \to \infty} \frac{2x + 3}{x + \sqrt[3]{x}}, \quad vi) \lim_{x \to \infty} \frac{x^2}{10 + x\sqrt{x}}, \quad vii) \lim_{t \to \infty} \frac{\sqrt{t}}{\sqrt{t + \sqrt{t + \sqrt{t}}}}, \quad viii) \lim_{x \to \infty} \sqrt{x + a} - \sqrt{x}, \quad ix) \lim_{x \to \infty} \sqrt{x(x + a)} - x, \quad x) \lim_{t \to \infty} t(\sqrt{t^2 + 1} - t), \quad xi) \lim_{t \to \infty} (t + \sqrt[3]{1 - t^3})$$

109 Calcular los siguientes límites

$$i) \lim_{x \to 0} \left(\frac{x+1}{2x+1}\right)^{x^2}, \quad ii) \lim_{x \to \infty} \left(\frac{x-1}{x+1}\right)^x, \quad iii) \lim_{x \to 0} \left(\frac{2+x}{3-x}\right)^x, \quad iv) \lim_{t \to \infty} \left(\frac{t}{t+1}\right)^t, \quad v) \lim_{x \to 1} \frac{x^2+x-2}{(x-1)^2}, \\ vi) \lim_{x \to 0} \frac{1}{3+2^{\frac{1}{x}}}, \quad vii) \lim_{x \to 0} \frac{1+2^{\frac{1}{x}}}{3+2^{\frac{1}{x}}}$$

110 Sea $f : \mathbb{R} \to \mathbb{R}$ la función definida por:

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

- i) Probar que cualquiera que sea $c \in \mathbb{R}$, no existe $\lim_{x \to c} f(x)$.
- ii) Probar que para todo $c \in \mathbb{R} \setminus \{0\}$ no existe $\lim_{x \to c} xf(x)$ y que $\lim_{x \to 0} xf(x) = 0$
- 111 Probar que $\lim_{x\to 0}\cos(\frac{1}{x})$ no existe pero $\lim_{x\to 0}x\cos(\frac{1}{x})=0$. Probar de hecho que para todo $\alpha\in\mathbb{R}$ con $-1\leq\alpha\leq 1$ podemos construir una sucesión $x_n\to 0$ tal que $\cos(\frac{1}{x_n})\to \alpha$
- **112** Sea $D \subset \mathbb{R}$ y $f: D \to \mathbb{R}$ una función y x_0 un punto de acumulación de D. Supongamos que existe $\lim_{x\to x_0} f(x) = m$.
- i) Si m > 0 probar que existe un $\delta > 0$ tal que para todo $x \in D \cap E(x_0, \delta) \setminus \{x_0\}$ se tiene f(x) > 0.
- ii) Si m < 0 probar que existe un $\delta > 0$ tal que para todo $x \in D \cap E(x_0, \delta) \setminus \{x_0\}$ se tiene f(x) < 0.
- iii) ¿Se puede deducir algo semejante si m = 0?.

113 (Regla del Sandwich para funciones) Sea $D \subset \mathbb{R}$, x_0 un punto de acumulación de D y $f, g, h : D \to \mathbb{R}$ funciones tales que existe $\delta_0 > 0$ tal que

$$f(x) \le g(x) \le h(x), \quad x \in E(x_0, \delta_0) \setminus \{x_0\}$$

 $y \text{ tales que existe } \lim_{x \to x_0} f(x) = m = \lim_{x \to x_0} h(x).$

Demuestra que $\lim_{x\to x_0} g(x) = m$.

- 114 Siguiendo las notaciones del Problema 62,
- i) Sea a > 0. Usando el Problema [91] probar que $f(x) = a^x$ es continua. Concluir que si $g: D \to \mathbb{R}$ es continua entonces $f(x) = a^{g(x)}$ es continua en D.
- ii) Usando el Problema 95 probar que $f(x) = x^a$ es continua en $(0, \infty)$. Concluir que si $g: D \to (0, \infty)$ es continua entonces $f(x) = g(x)^a$ es continua en D.
- iii) Concluir que si $f: D \to (0, \infty)$ y $g: D \to \mathbb{R}$ con continuas, entonces $h: D \to \mathbb{R}$ definida por $h(x) = f(x)^{g(x)}$, $x \in D$, es continua.
- 115 Justificar que $\lim_{x\to 0} \cos(x) = 1 = \cos(0)$ y deducir que $\lim_{x\to 0} \sin(x) = 0 = \sin(0)$. Deducir, usando fórmulas trigonométricas que $\cos(x)$ y $\sin(x)$ son funciones continuas en \mathbb{R} .
- 116 Determinar los puntos de continuidad de las siguientes funciones

$$i) \ f(x) = \frac{x^2 + 2x + 1}{x^2 + 1} \quad (x \in IR), \quad ii) \ g(x) = \sqrt{x + \sqrt{x}} \quad (x \ge 0), \quad iii) \ h(x) = \frac{\sqrt{1 + |\sin(x)|}}{x} \quad (x \ne 0), \quad iv) \ f(x) = |x|.$$

- 117 Se dice que un conjunto $A \subset \mathbb{R}$ es denso en \mathbb{R} si todo intervalo abierto de \mathbb{R} continene un punto de A. Demostrar
- i) Si $f: \mathbb{R} \to \mathbb{R}$ es continua y f(t) = 0 para todo $t \in A$ entonces f(t) = 0 para todo $t \in \mathbb{R}$.
- ii) Si $f,g:\mathbb{R}\to\mathbb{R}$ continuas g(t)=g(t) para todo $t\in A$ entonces f(t)=g(t) para todo $t\in \mathbb{R}$.
- iii) Si $f, g : \mathbb{R} \to \mathbb{R}$ continuas $y f(t) \geq g(t)$ para todo $t \in A$ entonces $f(t) \geq g(t)$ para todo $t \in \mathbb{R}$.
- 118 Si $x \in \mathbb{R}$ denotamos E(x) la parte entera de x, es decir, el mayor entero que no supera a x y consideramos la funcion f(x) = x E(x).
- i) Encontrar los puntos en los que f(x) es continua y en los que no.
- ii) Encontrar el extremo inferior de los valores de f(x) sobre cualquier intervalo que tenga en su interior un número entero.
- iii) Encontrar el extremo superior de los valores de f(x) sobre cualquier intervalo que tenga en su interior un número entero.
- iv) Discutir si el infimo y/o el supremo de los apartados anteriores se alcanza o no.
- **119** Estudia la continuidad de la función $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(t) = \begin{cases} 2 - t^2 & \text{si t es racional} \\ t^2 - 2 & \text{si t es irracional} \end{cases}$$

120 Sea la función

$$f(t) = \begin{cases} \frac{1}{t} & si \ t \in \mathbb{Q} \setminus \{0\} \\ 0 & si \ t = 0 \\ t & si \ t \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Probar que f es biyectiva y estudiar su continuidad.

- **121** Sea $P(x) = \sum_{k=0}^{m} a_k x^k$, $m \in \mathbb{N}$, $a_k \in \mathbb{R}$, un polinomio.
- i) Probar que si $\lim_{x\to\pm\infty} P(x) = 0$ entonces P(x) = 0 para todo $x \in \mathbb{R}$.

Idem si $\lim_{n\to\infty} P(x_n) = 0$ donde x_n es una sucesion tal que $\lim_{n\to\infty} x_n = \pm \infty$.

ii) Probar que si P es acotado: $|P(x)| \le M$ para cierta constante M > 0 y para todo $x \in \mathbb{R}$, entonces P(x) es constante. Idem si la cota es válida sólo para x > 0 ó x < 0.

122 Estudia la continuidad de las funciones

$$f(x) = xE(\frac{1}{x}), \quad g(x) = (-1)^{E(\frac{1}{x})}, \quad h(t) = \frac{1}{1 - e^{1/t}}, \quad j(t) = t \operatorname{sen}(\frac{\pi}{t})$$

123 Estudia la continuidad de las funciones

$$f(x) = \begin{cases} \frac{1}{x} \sec(x) & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases} \qquad g(x) = \begin{cases} \frac{1}{x} |\sec(x)| & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases} \qquad h(x) = x^{\alpha} \sec(\frac{1}{x}), \ x > 0, \ \alpha > 0$$

- **124** i) Sea $f:[a,b] \to \mathbb{R}$ continua tal que f(x) es racional para todo $x \in [a,b]$. ¿Qué puede decirse de f?.
- ii) Supongamos que $a, b \in \mathbb{R}$, a < b y f es una función continua en [a, b] tal que $f(x) \in [a, b]$ para todo $x \in [a, b]$.

Demostrar que existe $x_0 \in [a, b]$ tal que $f(x_0) = x_0$.

- iii) Supongamos que $f: \mathbb{R} \to \mathbb{R}$ es continua y que existen los límites, $\lim_{x \to -\infty} f(x)$ y $\lim_{x \to \infty} f(x)$. Probar que f es acotada: existe M > 0 tal que $|f(x)| \le M$ para todo $x \in M$.
- iv) Supongamos que $f: \mathbb{R} \to \mathbb{R}$ es continua y f(x) > 0 para todo $x \in \mathbb{R}$, $\lim_{x \to -\infty} f(x) = 0 = \lim_{x \to \infty} f(x)$.

Demostrar que existe un $c \in \mathbb{R}$ tal que $f(c) \geq f(x)$ para todo $x \in \mathbb{R}$ (un Máximo Absoluto).

v) Si $I \subset \mathbb{R}$ es un intervalo $y f : I \to \mathbb{R}$ es continua, probar que f(I) es un intervalo.

Si ademas I es cerrado y acotado, probar que f(I) también. ¿Cuales son los extremos de f(I)?

- 125 Probar que todo polinomio de grado impar con coeficientes reales tiene por lo menos una raiz real.
- **126** i) Probar que la ecuación $x = \cos(x)$ tiene por lo menos una solución en el intervalo $[0, \pi/2]$.
- ii) Probar que la función $f(x) = 2\ln(x) + \sqrt{x} 2$ tiene una raiz en el intervalo [1,2].
- iii) Probar que el polinomio $P(x) = x^4 + 7x^3 9$ tiene por lo menos dos raices reales.
- 127 Demostrar que la ecuación

$$tg(x) = x$$

tiene infinitas raices.

- **128** Sea $I \subset \mathbb{R}$ un intervalo.
- i) Probar si $f: I \to \mathbb{R}$ es monótona y f(I) es un intervalo entonces f es continua.
- ii) Si además de continua f es estríctamente monótona, probar que existe f^{-1} y que f^{-1} es continua y estríctamente monótona en su domínio.
- iii) Probar que una función continua $f: I \to \mathbb{R}$, es inyectiva si y sólo si es estrictamente monótona.

129 Logaritmos

Siguiendo las notaciones del Problema $\boxed{62}$, sea a > 0 y $a \neq 1$.

- i) Probar que $f(x) = a^x$ es continua, estrictamente monótona y que su imagen es $(0, \infty)$.
- ii) Deducir que f es biyectiva sobre su imagen y que por tanto existe su inversa $f^{-1}(x) = \log_a(x)$, que se llama función logaritmo en base a y que

$$\log_a:(0,\infty)\to I\!\!R$$

es continua, estrictamente monótona y $\log_a(1) = 0$, $\log_a(a) = 1$.

Si a > 1 probar que $\lim_{x \to 0^+} \log_a(x) = -\infty$ y $\lim_{x \to \infty} \log_a(x) = \infty$.

Si a < 1 probar que $\lim_{x \to 0^+} \log_a(x) = \infty$ y $\lim_{x \to \infty} \log_a(x) = -\infty$.

iii) Probar que $\log_a(xy) = \log_a(x) + \log_a(y)$ y que $\log_a(x^y) = y \log_a(x)$.

Cuando a = e se escribe $ln(x) = log_e(x)$ y se llama logaritmo Neperiano.

- iv) Deducir que $a = e^{\ln(a)}$ y que por tanto $a^x = e^{\ln(a)x}$ y $\log_a(x) = \frac{\ln(x)}{\ln(a)}$ para x > 0.
- v) Deducir que si $a \in \mathbb{R}$ y x > 0, $g(x) = x^a = e^{a \ln(x)}$ es continua y monótona en su dominio.
- v) Deducir que si f(x) es continua y a > 0, entonces $a^{f(x)}$ también lo es. Estudiar la continuidad de $f(x)^{g(x)}$ (supuesto f(x) > 0).
- vi) Hacer el Problema 95 usando las herramientas de este.

130 Sea $D \subset \mathbb{R}$.

i) Una función $f:D\to I\!\!R$ es de clase Lipschitz (o Lipschitziana) si existe una constante L>0 tal que

$$|f(x) - f(y)| \le L|x - y|, \quad x, y \in D.$$

Probar que si f es Lipschitiana entonces f es uniformemente continua.

ii) Una función $f:D\to I\!\!R$ es de clase Hölder (o Hölderiana) si existen una constante L>0 y $\alpha\in(0,1]$ tales que

$$|f(x) - f(y)| \le L|x - y|^{\alpha}, \quad x, y \in D.$$

Probar que $si\ f$ es Holderiana entonces f es uniformemente continua.