Project Presentation

Joel W. Yuhas, Vedhas S. Patkar

Project Motivations

Find efficient way for deletion of data from ML models

Find any advantages to the Machine Unlearning architecture proposed by Bourtole et. al, over DP-systems and Naïve ML models, for privacy, retraining time or accuracy

Model Architecture - Naïve Model

NEURAL NETWORK WITH NADAM OPTIMIZER

DROPOUT

BATCH SIZE 10, EPOCHS = 200

Model Architecture-DP Model

Anaconda Environment

Tensorflow Implementation

Based from 2 sources

- Papernot "Machine Learning with Differential Privacy in Tensorflow"
- Github tensorflow census example
- http://www.cleverhans.io/privacy/2019/03/26/machine-learning-with-differential-privacy-in-tensorflow.html
- https://github.com/tensorflow/transform/blob/master/examples/census example.py

DP Model

Anaconda Environment

Tensorflow Implementation

- Python version: 3.7.7
- Tensorflow version: 2.1.0
- Tensorflow.compact.v1 package
- Tensorflow_privacy package
- Stocastic Gradient Decent Model
- Full dataset
 - Training :32651 samples
 - Test: 16281 samples

Machine Unlearning Model

- Example
- 3 Shards, 10 Slices
- 1 Deletion Request present in Model 1 (0-based indexing)
- Data present in 8th slice
- Load Checkpoint of model at 7th slice, use that checkpoint and deleted data to retune model for 8th and 9th slice
- Store updated model

Experimental Tasks

Subsample the Census dataset into 2350 records: 2000 training, 350 test

Find accuracy and training times if there are 0, 1, 10, 50, 100, 500, 1000 deletion requests

For DP-model, do step 2 for 3/5 different epsilon values

For Naïve model, do step 2

For MUL model, do step 2 for 1, 5, 10 slices and 5, 10 shards

Find Privacy Loss in Naïve and MUL architectures

DP Model Base Test

Type	Value
Epoch	100
Learning Rate	0.15
Batch Size	128
Noise Multiplier	1.1

Paper Results for Comparison

• https://arxiv.org/pdf/1607.00133.pdf

(6) variable noise level

(4) variable learning rate

epochs		accuracy	loss
	1	0.7587986	1.2678659
	10	0.80289906	0.7501584
	50	0.7888336	0.8562333
	100	0.797924	1.0325124
	500	0.81143665	0.9975366
	1000	0.80541736	0.98672414
	2000	0.83206975	1.0481032

learning rate	accuracy	loss
0.15	0.8220011	0.93863773
0.3	0.80357474	1.6992259
0.5	0.79589707	2.8933535
0.75	0.79473007	3.6492982

batch size	accuracy	loss
128	0.7994595	0.8515555
256	0.801425	0.75710887
1024	0.8081813	0.55650437

noise			
multiplier		accuracy	loss
	1.1	0.81843865	0.81071043
	1.5	0.7955899	1.671327
	2	0.7907991	2.366083

Experimental Results - DP

Experimental Results – Naïve

Experimental Results - MUL

Experimental Results - MUL

Findings DP

- Results ended up being similar to expected
 - More epochs= higher accuracy and lower loss
 - Higher learning rate = lower accuracy and higher loss
 - Batch size had inverse effects on DP v Non DP (higher loss Non, lower DP)
 - Noise multiplier drastically degraded performance but increased privacy
 - Issue with epsilon calculation (0.1895)

Findings Naïve, MUL

- Ginormous cost to implementing MUL could only run subsampled dataset for 1 and 10 deleted records; authors correctly point this out and use a massive GPU cluster
- Significant improvement time for 1 deleted record for MUL vs Naïve
- Naïve performs better when batch deleted
- Serializing Deletion Requests may give better performance
- For "small" datasets, no significant advantage over a neural network

Summary of Findings

- MUL has no privacy-loss guarantees, just a framework to speedup retraining for deleted requests
- MUL needs a large cluster
- Small Dataset = Advantage Naïve Neural Network
- DP stronger privacy guarantees, large retraining times
- Efficient clustering of deletion requests may improve MUL architecture