Găujăneanu Nicoleta Monica, 424D

Caracteristica de transfer

Se modifică R1 la valoarea 100 Ω de la VGS > 3V. $V_T = 3V$.

Se face analiza prin care VS1 variază de la 0 la 20V și se completează tabelul următor:

Tabelul 3.3 – 1,5p

V _{GS} [V]	0	1,5	2	3	3,05	3,07	3,09	3,1	3,15	3,2
Vcc = VS1	0	1,84	2.45	3.86	3.39	3.79	4.33	4,66	6.78	9.69
$(R1)$ $R_D=R_{12}+R_{J22}$ $[K\Omega]$	100k	100k	100k	100k	0,1k	0,1k	0,1k	0,1k	0,1k	0,1k
I _D [mA]	0	0.00338	0.0045	0.0086	3.49	7.2	12.4	15.6	36.3	64.9
$(V_{GS}-V_T)^2/2$ $[V^2]$	4.5	1.125	0.5	0	0.00125	0.00245	0.00405	0.005	0.01125	0.02

ID = (VS1 - VGS)/R1

T1 - 1p. Desenați caracteristica de transfer $I_D = f(V_{GS})$ a tranzistorului nMOS.

Caracteristica de ieșire

Se face analiza prin care VS1=VDD variaza de la 0 la 40 V și se completează tabelul următor:

Tabelul 3.4 – 2,5p

Tabelul 3.4 – 2 ,					2				10
$egin{array}{c} \mathbf{V}_{\mathrm{DS}}\left[\mathbf{V} ight] \end{array}$		0	1	2	3	4	6	8	10
V _{GS} =0 [V]									
	V _{DD} [V]	0	1.23	2.45	3.68	4.9	7.35	9.8	12.25
	$R_1 = R_{12} + R_{J22} [K\Omega]$	100k	100k	100k	100k	100k	100k	100k	100k
	$I_D = [mA]$	0	0.0023	0.0045	0.0068	0.009	0.0135	0.018	0.0225
X/ 25(X/)	V _{DD} [V]	0	1.23	2.45	3.68	4.9	7.35	9.8	12.25
V_{GS} =2,5 [V]	$R_{12}+R_{J22}$ [K Ω]	100k	100k	100k	100k	100k	100k	100k	100k
	$I_D = [mA]$	0	0.0023	0.0045	0.0068	0.009	0.0135	0.018	0.0225
V _{GS} =3,0 [V]	$\mathbf{V}_{ ext{ iny DD}}\left[\mathbf{V} ight]$	0	1.23	2.45	3.68	4.9	7.35	9.8	12.25
	$R_{12}+R_{J22}$ [K Ω]	100k	100k	100k	100k	100k	100k	100k	100k
	$I_D = [mA]$	0	0.0023	0.0045	0.0068	0.009	0.0135	0.018	0.0225
V _{GS} =3,1 [V]									
	$\mathbf{V}_{ ext{ iny DD}}\left[\mathbf{V} ight]$	0	2.56	3.56	4.56	5.56	7.56	9.56	11.56
	$R_{12}+R_{J22}$ [K Ω]	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k
	$I_D = [mA]$	0	15.56	15.56	15.56	15.57	15.57	15.57	15.58
V _{GS} =3,2 [V]									
	$\mathbf{V}_{ ext{ iny DD}}\left[\mathbf{V} ight]$	0	7.49	8.49	9.49	10.49	12.49	14.49	16.49
	$R_{12}+R_{J22}$ [K Ω]	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k
	$I_{D}=[mA]$	0	64.89	64.89	64.89	64.9	64.9	64.91	64.91
V _{GS} =3,3 [V]									
	$\mathbf{V}_{ ext{ iny DD}}\left[\mathbf{V} ight]$	0	15.32	16.32	17.32	18.32	20.32	22.32	24.32
	$R_{12}+R_{J22}$ [K Ω]	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k
	$I_D = [mA]$	0	143.19	143.19	143.19	143.19	143.2	143.2	143.2
V _{GS} =3,4 [V]									
	V _{DD} [V]	0	25.66	26.66	27.66	28.66	30.66	32.66	34.66
	$R_{12}+R_{J22}$ [K Ω]	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k	0.1k
	$I_D = [mA]$	0	246.58	246.58	246.58	246.58	246.59	246.59	246.6

Curentul ID se calculeaza cu formula: $I_D = (V_{DD} - V_{DS})/R1$;

T2 - 2p. Desenați pe același grafic caracteristicile de ieșire $I_D = f(V_{GS}, V_{DS})$ pt. tranzistorul nMOS.

Generator de curent constant cu nMOS

Ecuația ce descrie funcționarea nMOS pentru acest regim este: $I_D = \frac{k}{2} \times (V_{GS} - V_T)^2$; rezulta ca pentru $V_{GS} > V_T$ si $V_{GS} = ct$. $=> I_D = ct$.

Se completează tabelul următor:

Tabelul 3.6 – 2p

VD (V)		13	<mark>14</mark>	15	<mark>16</mark>	17	<mark>18</mark>	<mark>19</mark>
VS (V)		3,15	3.15	3.15	3.15	3.15	3.15	3.15
VS1 (V)	16,15	17,15	18.15	19.15	20.15	21.15	22.15
VDS (V)= V	VD - VS	9,85	10.85	11.85	12.85	13.85	14.85	15.85
VGS (V)=VZ - VS		3,05	3.05	3.05	3.05	3.05	3.05	3.05
VZ=6,2(V)	ID	3,15	3.15	3.15	3.15	3.15	3.15	3.15
	(mA)							

 $VZ = tensiunea \ pe \ dioda \ Z1$, $VDS = VD - VS \ iar \ ID = (VS1 - VD) / R1$

T3 – 1,5p. Desenați pe același grafic variația VD și VS în funcție de VS1.

T4 – **1,5p.** Desenați graficul $I_D = f(V_{DS})$.

Modelul Dinamic

Caracteristici VG1: semnal sinusoidal cu A = 10 mV, f = 1kHz,. Se completează tabelul următor (aici se fixeaza VGS = 3,05V si se determina in c.c.VS1, a.i. VDS=Vout = 5V, dupa care se determina Vds in c.a.)

Tabel evaluare rezistenta dinamica de saturație (r_{d,sat})

Tabelul 3.7 – 1p

$R1 = RD (k\Omega)$	2k	11k		
$V_{DS}(V) = Vout (in c.c.)$	5	5		
Vds(V) = Vout(in c.a.)	3,07	15.39		

Se calculează rezistenta dinamica de saturație $(r_{d,sat})$ cu formula:

$$r_{d,sat} = \frac{1}{g_{d,sat}} = \frac{R_{D2} - R_{D1}}{\frac{R_{D2} \times V_{ds1}}{R_{D1} \times V_{ds2}} - 1} = 92.40\Omega$$

Tabel evaluare amplificare (aici se folosește tot schema modelului dinamic, dar R1 = RD = 2K indiferent de valoarea lui V_{GS}); trebuie făcută analiza DC Transfer si se determina de fiecare data, ce val are VS1 a.i. in c.c $V_{OS} = 5V$

Tabelul 4 – 2p

$V_{GS}[V]$	3.04	3.05	3.06	3.07	3.1 (VS1 = 40V)
VS1 (V)	8,76	11.52	15.02	19.24	36,13
I_{D} [mA]	1,88	3.26	5.01	7.12	15,57
$V_{ds} = V_{out}$	2,35V	3.07V	3.77V	4.45V	6,4V
$V_{gs} = VG1$	10mV	10mV	10mV	10mV	10mV
I_d	1,17mA	1.53	1.88	2.22	3,2mA
$A_{ m V}$	235	307	377	445	<mark>640</mark>
g _{ms} [mA/V]	-117.5	-153.5	-188.5	-222.5	-320

Amplificarea in tensiune (in c.a) se calculeaza cu relatia: $A_V = \frac{v_o}{v_i} = -g_{ms} \cdot R_D$ semnul (–) arata ca semnalul de ieșire este defazat cu 180° fata de semnalul de intrare. Conductanța mutuala de saturație (g_{ms}) se calculează din relația lui A_V .

T5 - 2p. Calculați amplificarea si inserați simularea amplificatorului pentru V_{GS} = 3,12V, V_{GS} = 10mV, semnal sinusoidal și V_{DS} = 5,5V

Caracteristica in DC

VS1 = 51.29 V $I_D = 22.9 mA$

Tabel in AC

$$V_{ds} = V_{out} = 7.62V$$

$$I_d = 3.81 \text{ mA}$$

$$V_{gs} = 10 \; mV$$

$$A_{V} = \frac{v_o}{v_i} = V_{ds}/V_{gs} = 762V$$

T6 – 2p. Comparați valoarea lui A_V obținută analitic prin vizualizarea tensiunii de la ieșirea **Vout** cu ajutorul osciloscopului virtual și calculați amplificarea circuitului. Se inserează captura de ecran cu graficul de pe displayul osciloscopului numai pentru una din valorile lui V_{GS} din Tabelul 4 - specificați valoarea aleasa.

$$VGS = 3.1V \qquad VSI = 36.13V \qquad V_{ds} = v_o = 6.4V \qquad V_{gs} = v_i = 10mV \label{eq:VGS}$$

$$A = v_0 / v_i = 640$$

Valoarea amplificarii masurate cu osciloscopul este putin mai mica decat valoarea obtinuta analitic, aceasta mica diferenta fiind prezenta prin pozitia condensatorului inaintea punctului de masura Vin.

**Am mai luat un caz din Tabelul 4 pentru verificare: VGS = 3.05V VSI = 11.52V V $_{ds} = v_o = 3.07V$ V $_{gs} = v_i = 10mV$ => $A = v_o/v_i = 307$

