ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

05 июня 2012г.

ФИО	№ группы

ВАРИАНТ А

1	2	3	4	5	Σ	оценка

1A. На бипризму БП с показателем преломления n=1,5 и преломляющим углом α падает параллельный квазимонохроматический пучок света (средняя длина волны $\lambda=1$ мкм, ширина спектра $\Delta\lambda <<\lambda$). За бипризмой вплотную к ней помещена рассеивающая линза \mathcal{J} с фокусным расстоянием f=-40 см. На экране \mathcal{J} , расположенном на расстоянии |f| от линзы, наблюдается интерференционная картина.

- 1. Найти угол α , если измеренная ширина интерференционной полосы $\Delta x = N \cdot \lambda$, где N = 57.
- 2. Найти $\Delta \lambda$, если максимальное число наблюдаемых на экране полос m = 200.
- 3. Найти видность V 50-й полосы, отсчитываемой от центра. Линзу и бипризму считать тонкими.
- **2A**. В Германии создана установка, представляющая собой мощный импульсный лазер, смонтированный на грузовике, с телескопом для расширения лазерного пучка и спектрографом. Сфокусированное лазерное излучение может вызывать пробой воздуха на значительном расстоянии от установки, и по спектру излучения искры можно дистанционно определять загрязнение воздуха в недоступных точках. Найти пороговую энергию W лазерного импульса, необходимую для осуществления пробоя воздуха на расстоянии L=1 км, если диаметр лазерного пучка после телескопа D=0.5 м, распределение интенсивности излучения по сечению пучка вблизи телескопа прямоугольное, длина волны излучения $\lambda=1$ мкм, длительность импульса $\tau=10$ нс, расходимость лазерного излучения близка к дифракционной. Воздух пробивается, если амплитуда электрического поля в световой волне достигнет значения $E=10^7$ В/см.
- **3А**. На пути плоской квазимонохроматической неполяризованной световой волны (интенсивность I_0 , длина волны λ) установлен круглый диск из поляроидной плёнки, плоскость которого нормальна волновому вектору волны. Показатель преломления плёнки для разрешённого направления поляризации равен n, радиус диска R. При какой толщине плёнки d интенсивность света в точке P, находящейся на оси за диском на расстоянии, при котором на диске укладывается m=1,5 зоны Френеля, окажется максимальной? Чему равна эта интенсивность?

4A. В установке для наблюдения колец Ньютона монохроматический свет от удалённого точечного источника с длиной волны $\lambda=500$ нм нормально падает на плоскую поверхность плоско-выпуклой линзы с радиусом кривизны выпуклой поверхности R=100 см. Участок интерференционного поля радиусом $r_0=1$ см с помощью полупрозрачной пластинки $\Pi\Pi$ и линзы Π фокусируется на фотоплёнке Φ с линейным увеличением $\Gamma=2$.

Для упрощения задачи будем считать интенсивности обеих волн, создающих интерференционную картину, одинаковыми и пренебрегать преломлением лучей на поверхностях линзы. В этом приближении:

- 1. Найдите распределение интенсивности света от радиуса $I(\rho)$ на фотоплёнке и определите число колец на выделенном участке интерференционного поля.
- 2. Можно ли рассмотреть (разрешить) все кольца на фотоплёнке невооружённым глазом с расстояния L=25 см? Диаметр зрачка примите равным d=5 мм.
- 3. Пусть теперь обработанную фотоплёнку просвечивают нормально падающей плоской волной с той же длиной волны $\lambda = 500$ нм. Какие волны будут распространяться за фотоплёнкой? Укажите точки фокусировки света.

5A. Твердотельный лазер на кристалле Fe:CdSe излучает короткие импульсы длительностью $\tau = 50$ пс на длине волны $\lambda = 5$ мкм. Излучение лазера пропускается через плоскопараллельную прозрачную для этой длины волны пластинку из PbTe толщиной L = 1 мм. Показатель преломления пластинки n = 5,857. Благодаря Френелевскому отражению от поверхностей пластинки, она работает как интерферометр Фабри-Перо. Оцените длительность импульсов за пластинкой.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

05 июня 2012г.

ФИО	№ группы

ВАРИАНТ Б

1	2	3	4	5	Σ	оценка

1Б. Свет от протяжённого монохроматического источника ($\lambda = 1$ мкм) с размером b падает на собирающую линзу диаметром D = 1 см с фокусным расстоянием f = 40 см. За линзой вплотную к ней расположена бипризма с показателем преломления n = 1,5 и преломляющим углом $\delta = 0,02$ рад. На экране,

расположенном на некотором расстоянии от бипризмы, наблюдается интерференционная картина, причём оказалось, что ширина полос интерференции Δx не зависит от этого расстояния.

- 1. Найти ширину интерференционных полос Δx .
- 2. Найти расстояние L между бипризмой и экраном, при котором на экране наблюдается максимальное число полос.
- 3. Найти размер источника b, если видность полос, измеренная на этом расстоянии L от бипризмы, оказалась равна $V = \sin(\pi/2)/(\pi/2) \approx 0,64$.

Линзу и бипризму считать тонкими.

2Б. Существовал проект (так и не реализованный) выведения из строя электроники вражеских самолетов путем подачи на корпус самолета по плазменному шнуру высоковольтного импульса от высокой мачты, на которую подано напряжение ~1 МВ. Плазменный шнур должен был создаваться за счет пробоя воздуха мощным сфокусированным лазерным излучением, предварительно расширенным телескопом для уменьшения расходимости.

Оцените необходимый диаметр D объектива телескопа, чтобы инициировать пробой воздуха на расстоянии L=3 км, если длительность лазерного импульса $\tau=100$ мкс, энергия W=100 кДж, длина волны $\lambda=1000$ нм, расходимость обусловлена только дифракцией, а пробой наступает при амплитуде электрического поля волны $E_0=10^7$ В/см. Считать, что лазерное излучение полностью заполняет объектив телескопа, то есть распределение интенсивности по сечению пучка вблизи телескопа близко к прямоугольному.

3Б. Система состоит из двух поляроидов, между которыми поставили двулучепреломляющую пластинку, вырезанную параллельно оптической оси. Угол между разрешенными направлениями поляроидов $\alpha=60^\circ$, а ось пластинки ориентирована вдоль биссектрисы этого угла. Полученную конструкцию освещают неполяризованным квазимонохроматическим светом интенсивностью I_0 , для которого данная пластинка оказывается пластинкой $\lambda/3$. Найти интенсивность света на выходе из системы.

- **4Б**. Периодическая структура решётка периода $d=2\cdot10^{-2}\,\mathrm{cm}$ с узкими щелями освещается нормально падающим параллельным пучком света, содержащим две спектральные линии: $\lambda_1=600\,\mathrm{mm}$ (оранжевый цвет) и $\lambda_2=450\,\mathrm{mm}$ (синий цвет). Определите минимальное расстояние от решётки, где саморепродуцированное изображение её щелей имеет максимальную интенсивность.
- **5Б**. Многие лазеры непрерывного действия генерируют свет одновременно на нескольких частотах (модах), определяемых размерами резонатора лазера и шириной спектральной линии (линии усиления) активного вещества. У аргонового (Ar) лазера, работающего на длине волны $\lambda = 514,5$ нм, ширина линии усиления составляет $\Delta v_0 = 3.5$ ГГц. Длина резонатора Ar лазера L = 1.5 м.

Для выделения только одной моды, соответствующей максимуму линии усиления, излучение лазера пропускается через эталон Фабри-Перо, представляющий собой прозрачную пластину с показателем преломления n=1,5. Энергетический коэффициент отражения поверхностей эталона (за счёт специального покрытия) r=0,9. Оцените верхний и нижний пределы допустимых значений толщины эталона Фабри-Перо.