

Moriond QCD and High Energy Interactions March 10th - March 17th 2012

Single Top Production at √s=7 TeV

Rebeca Gonzalez Suarez on behalf of the CMS and ATLAS collaborations

Intro

- Top quarks (Tevatron, 1995) in hadron colliders are mostly produced in pairs, via strong interaction
- Alternative production: via the weak interaction, involving a Wtb vertex, leading to a single top quark final state:

Cross-sections by N. Kidonakis approximate NNLO, $\sqrt{s} = 7 \text{ TeV}$ ($\sigma_{tt} = 164.6 \text{ pb}$)

- First observed at the Tevatron (2009), in a combination of t/s-channel
- Already observed by the LHC experiments with 2010-2011 data
- Single top-quark processes:
 - are sensitive to many models of new physics
 - allow for a measure of V_{tb} without assumptions about the number of quark generations
 - can be used to measure the b-quark parton distribution function (PDF)

t-channel

Dominating process with the highest cross section at the Tevatron and the LHC

▶ ATLAS and CMS have public results with 2011 data:

ATLAS-CONF-2011-101 July 2011; L = 0.7fb⁻¹ CMS PAS TOP-11-021

March 2012; L = 1.1/1.5fb⁻¹

Updates previous result with 36pb⁻¹

Phys. Rev. Lett. 107 (2011) 091802

arxiv:1106.305

- The final state studied is a **lepton + jets signature**
- Signal events are characterized by:
 - One isolated **muon or electron** and missing transverse energy (**E**_T^{miss}) (leptonic decay of the W)
 - A central b-jet and an additional light-quark jet from the hard scattering process (often forward)
 - Additionally, a second b-jet produced in association to the top quark can be present as well (softer p_T spectrum with respect to the b-jet from top decay)

Selection criteria

CMS:

- Exactly I isolated lepton (e,μ)
- 2 jets in the event, I b-tagged
- Muon channel: m_T(W) > 40 GeV
- ► Electron channel: E_T^{miss} > 35 GeV
- Invariant mass of the reconstructed top quark within (130,220) GeV

ATLAS:

- Exactly I isolated lepton (e,μ)
- 2 or 3 jets in the event (NN only 2), I btagged
- ► E_Tmiss > 25 GeV
- $m_T (W) > 60 \text{ GeV} E_T^{\text{miss}}$

Other jet (I-2-3 jets) and b-tagging multiplicities (0-I-2) used in background estimations and control regions

Main backgrounds:

- W boson production in association with jets (W+jets)
- top pair (tt) production
- Multijets (QCD) events

tt and smaller backgrounds from Z+jets, other single-top processes, and diboson production are estimated from simulation and normalized to their theoretical cross-sections.

Background estimation

The multijet QCD contribution is estimated via maximum likelihood Fit to MET (e,μ ATLAS, e CMS) / m_T (μ CMS)

- Template for QCD obtained in data by inverting the isolation on muons and either requiring the electrons to fail some of the quality requirements (CMS), or replacing the electron by a jet passing similar requirements as the electrons (jet-electron model, ATLAS).
- For all other processes (top, W/Z+jets, dibosons),
 Monte Carlo templates

- W+jets
 - ▶ ATLAS: distributions from Monte Carlo, overall normalization and flavor composition from data (data-driven scale factors)
 - CMS: W+jets shapes and normalization extracted from the reconstructed top quark mass sideband —events that fail the cut-, subtracting other backgrounds

Signal extraction

ATLAS: set of discriminant variables Cut based / Neural Network analysis Main variables:

- reconstructed top quark mass
- pseudorapidity of the light (untagged) jet, | η_{i} '|
- transverse energy of the light (untagged) jet

Distributions after the cut-based selection, signal contribution normalized to the measured combined cut-based cross section.

CMS: maximum likelihood fit to the distribution of the pseudorapidity of the light (untagged) jet, $|\eta_i'|$

Result of simultaneous fit in the muon and electron decay channel

Systematics

- Several sources of systematic uncertainty considered, main ones quoted:
 - Background normalization to data
 - Detector simulation and object modeling
 - JES (~9% ALTAS,CMS), b-tagging, JER (18%, 6% ATLAS) (3%, 1% CMS)
 - Theoretical uncertainties:
 - CMS: renormalization and factorization scale Q^2 (7%)
 - ATLAS: generator (11%), parton shower (10%), ISR/FSR (14%)
 - Monte Carlo generators
 - Statistics
 - **Luminosity**

CMS	[%]
Total	± 17

Full tables in the backup slides

ATLAS	Cut-based [%]			NN [%]
	2-jet	3-jet	combined	
Total	+45/-31	+57/-43	+44/-30	+45/-34

Results

ATLAS: As the cut-based method uses both 2- and 3-jet channels, and has a slightly smaller overall expected uncertainty, it is chosen as the baseline result.

σ [pb]

(2-jet)
$$\sigma_t = 102^{+12}_{-11}(stat.)^{+38}_{-27}(syst.) = 102^{+40}_{-30} \text{pb}$$

(3-jet) $\sigma_t = 50^{+15}_{-14}(stat.)^{+30}_{-22}(syst.) = 50^{+34}_{-27} \text{pb}$
(NN) $\sigma_t = 105 \pm 7(stat)^{+36}_{-30}(syst) = 105^{+37}_{-31} \text{pb}$

$$\sigma_t = 90^{+9}_{-9}(stat.)^{+31}_{-20}(syst.) = 90^{+32}_{-22}pb$$

CMS: Results for muon and electron channels and combination

(muons)
$$\sigma_t = 76.9 \pm 6.6 (stat.) \pm 11.4 (syst.) \pm 3.7 (lumi.)$$
pb (electrons) $\sigma_t = 59.3 \pm 8.2 (stat.) \pm 11.9 (syst.) \pm 2.8 (lumi.)$ pb

$$\sigma_t = 70.2 \pm 5.2 (stat.) \pm 10.4 (syst.) \pm 3.4 (lumi.)$$
pb

$$|V_{\rm tb}| = \sqrt{\frac{\sigma_{t-{\rm ch.}}}{\sigma_{t-{\rm ch.}}^{\rm th}}} = 1.04 \pm 0.09 \, ({\rm exp.}) \pm 0.02 \, ({\rm th.}) \,,$$

tW associated production

- ▶ Interesting topology (background to $H \rightarrow WW$ searches), not yet observed
- Mixes at NLO with tt production
- ▶ Public results with 2011 data:

ATLAS-CONF-2011-104 July 2011;
$$L = 0.7 \text{ fb}^{-1}$$

CMS PAS-TOP-11-022 September 2011; $L = 2.1 \text{ fb}^{-1}$

- ▶ 2 leptons, E_T^{miss} and a jet from a b-decay
- Main backgrounds:
 - tt production
 - Z+jets
 - Small contributions from dibosons, other single top channels, W+jets and QCD

Event selection

- ee, eμ and μμ final states (with no extra leptons)
- Jet selection: exactly | jet (ATLAS/CMS), b-tagged (CMS)
- $E_T^{miss} > 50 \text{ (ATLAS) } 30 \text{ (CMS, ee/}\mu\mu)$
- Anti Z+jets: Remove events in the Z mass window 81 < mll < 101 GeV (ee/ $\mu\mu$)

CMS: Extra variables, $\mathbf{p_T}$ of the system formed by the leptons, the jet and the $\mathsf{E_T}^{\mathsf{miss}}$ and $\mathbf{H_T}$ (scalar sum of the pt of the leptons, jet and MET)

ATLAS: dedicated anti $Z \rightarrow \tau \tau$ cut in the selection

$$\Delta\phi(l_1, E_{\rm T}^{\rm miss}) + \Delta\phi(l_2, E_{\rm T}^{\rm miss}) > 2.5$$

Same structure: Cut-based analysis

Background estimation

CMS:

- Data-driven estimation of the Z+jets
 background (in/out of the Z mass window)
- Two tt enriched control regions (2jlt, 2j2t) considered in the significance calculation to constrain tt contamination and b-tagging efficiency

 $N_{A/C}^{predicted} = N_{D/F}^{data} \times (N_B^{data}/N_E^{data})$

ATLAS:

- Data-driven **Drell-Yan**, using ABCDEF method, orthogonal cuts on 2 variables (m_{II} and E_T^{miss}) define signal and background enriched regions; used to determine background content in the signal region from data.
- Fake lepton estimation for W+jets (single) and Multijets (double-fake) with matrix method (< 1% effect)
- Data-driven estimation of $Z \rightarrow \tau \tau$
- Scale factor for tt obtained from 2j sample

Results

Main sources of **systematics**:

Tables in the backup slides

- **CMS:** B-tagging (10%) and Q^2 (~10%)
- ▶ ATLAS: JES (35%), JER(32%), and background normalization

ATLAS:

95% CL observed limit on tW production: $\sigma_{\rm tW}$ < 39.1(40.6) pb obs. (exp.) Observed significance of 1.2 σ

With a value of the cross-section:

$$\sigma_{tW} = 14 + 5.3 - 5.1 \text{(stat.)} + 9.7 - 9.4 \text{(syst.)} \text{ pb}$$

CMS:

Observed (expected) significance of

 2.7σ (1.8±0.9 σ)

Measured value of the cross-section and 68% CL interval:

$$\sigma_{tW}$$
 = 22 +9-7 (stat+sys) pb

s-channel

- Sensitive to several models of new physics, like W' bosons or charged Higgs bosons
- Not yet observed
- Signal signature: lepton + jets
 - \blacktriangleright A lepton (e,µ) and E_T^{miss} from the leptonic decay of a W boson
 - two hadronic jets with high transverse momentum, at least one of which is required to originate from a b-quark
- ▶ Backgrounds: tt, W+jets, Multijet + small contributions from other processes
- Very Challenging

Same objects and preselection as t-channel
Also same background
estimations for
Multijets and W+jets

After the final selection: signal purity of 6% Upper limit on the observed production cross-section

Cut-based analysis

 $\sigma_t < 26.5(20.5) \text{ pb obs.(exp.)}, 95\%\text{CL}$

Other single top studies: FCNC single top quark production

New!

- Analysis strategy:
 - use leptonic decays, I jet bin
 - classify events using a neural network
 - ▶ most signicant variables:W boson p_T , $\Delta R_{(b-jet,lepton)}$ and lepton charge

arXiv:1203.0529

Upper limit on the branching fractions $t \rightarrow ug$ and $t \rightarrow cg$

Results: no observed excess over SM, limits set:

$$\sigma(qg o t) \cdot B(t o Wb) < 3.9 \text{ pb } (95\% \text{ CL})$$

$$B(t \to ug) < 5.7 \cdot 10^{-5}, B(t \to cg) < 2.7 \cdot 10^{-4}$$

Summary

- ATLAS and CMS have a broad program of single top physics
- Window to new physics, key to measurements of electroweak properties of the top quark, background to Higgs and other searches
- Measurement of the cross-section of t-channel production with 2011 data
- From t-channel cross section: CMS measures |V_{tb}| at the 10% level
- First hints of tW associated production with upper limit on the cross-section (ATLAS) and **significance close to 3** σ (CMS) in cut based analysis
- First upper limits on s-channel production (ATLAS), challenging final state
- Other single top studies, latest result from ATLAS: FCNC single top quark production:
 - The limits set on the coupling constants and the branching fractions are the most stringent to date on FCNC single top-quark production processes for qg→t and improve on the previous best limits set by the Tevatron by factors of 4 and 15, respectively.

Backup Slides

Systematic uncertainties: t-channel

ATLAS CONF-2011-101

	Δσ/σ [%]			
Source	cut-based NN			NN
	2-jet	3-jet	combined	
Data statistics	± 16	± 24	± 13	± 10
MC statistics	± 8	± 11	± 6	±7
Jet energy scale	+7/-5	+10/-1	+9/-1	+32/-20
Jet energy resolution	+6/-4	+8/-7	+6/-1	± 4
Jet reconstruction	+2/-1	± 1	± 1	+3/-2
b-tagging scale factor	+17/-12	+21/-14	+18/-13	± 13
Mis-tagging scale factor	± 1	± 1	± 1	± 1
Lepton efficiencies	+6/-5	+11/-9	+8/-6	± 5
Lepton energy scale/resolution	± 1	± 1	+2/-1	± 5
Generator	+10/-8	+16/-12	+11/-9	±7
Parton shower	+9/-7	+14/-12	+10/-9	± 6
ISR/FSR	+19/-16	± 7	± 14	± 13
PDF	+5/-4	+6/-5	± 5	± 4
W+jets shape modeling	± 1	± 1	± 1	± 1
Jet η reweighting	+12/-10	+18/-14	+13/-11	+10/-6
Background normalization				± 3
QCD normalization	± 4	± 8	± 4	
W+heavy flavour normalization	± 2	± 2	± 3	
W+light flavour normalization	± 1	± 1	± 1	
Theory cross sections	± 7	± 13	± 8	
Luminosity	+6/-5	+11/-8	+7/-6	± 5
All systematics	+42/-27	+51/-37	+41/-27	+44/-34
Total	+45/-31	+57/-43	+44/-30	+45/-34

Systematic uncertainties: t-channel

CMS PAS TOP-11-021

Uncertainty source	in pb	in %
Statistical	±5.2	±7.4%
W+heavy flavours extraction	±5.0	±7.1%
Jet energy scale	-4.4/+6.5	-6.2/+9.2%
Jet energy res.	-0.48/+0.87	-0.69/+1.2%
Unclustered ₽ _T	± 0.37	±0.53%
t t rate	-2.4/+2.8	-3.5/+4.0%
Q^2 , $t\bar{t}$	-2.8/+1.5	-4.0/+2.1%
Q^2 , t-channel	± 4.9	±7.0%
t-channel generator	±3.5	±5.0%
Muon trigger + reco.	-1.1/+1.2	-1.5/+1.7%
Electron trigger + reco.	-0.53/+0.66	-0.76/+0.94%
Pile up	-0.23/+0.13	-0.33/+0.18%
QCD, muon	-0.67/+0.63	-0.95/+0.89%
QCD, electron	-0.26/+0.21	-0.37/+0.29%
s-, tW-channel, dibosons	±0.38	$\pm 0.54\%$
b-tagging	±2.2	±3.1%
Hadronic trigger	± 0.95	±1.4%
PDF	±1.8	±2.5%
Total syst.	±10	±15%
Total	±12	±17%

Systematic uncertainties: tW

ATLAS-CONF-2011-104

Source	$\Delta\sigma/\sigma$ [%]
Data statistics	+37/-35
MC statistics	+11/-5.4
Lepton energy scale	+7.0/-5.4
Lepton energy resolution	+9.0/-8.9
Lepton efficiencies	+5.3/-2.9
Jet energy scale	+34/-35
Jet energy resolution	+29/-32
Jet reconstruction efficiency	+30/-33
Top pair scaling factor	+23/-24
Drell-Yan background estimation	+2.7/-4.0
Fake lepton background estimation	+4.2/-4.3
Generator	+16/-11
ISR/FSR	+6.0/-1.9
PDF	+5.4/-2.8
Pileup	+10/-6.6
Background cross-sections	+6.9/-6.8
Luminosity	+9.2/-5.9
All systematics	+68/-66
Total	+77/-75

Systematic uncertainties: tW

CMS PAS TOP-11-022

Systematic uncertainty (ee/eμ/μμ) [%]	signal tW	tŧ	Z/γ^*	other
Luminosity	4.5	4.5	-	4.5
Pile-up multiplicity	0.48/0.55/0.73	*	-	*
Trigger Efficiency	1.5	1.5	-	1.5
Muon reconstruction and identification	- /1/1	- /1/1	-	- /1/1
Electron reconstruction and identification	2/2/-	2/2/-	-	2/2/-
JES	$^{-2.5}_{+1.6}/^{-2.4}_{+0.1}/^{-0.6}_{+1.0}$	$^{-5.6}_{+4.4}/^{-6.0}_{+4.7}/^{-5.9}_{+2.3}$	-	*
JER	1.1/0.5/0.4	3.1/3.9/4.4	-	*
B-tagging	$^{-9.5}_{+10}/^{-9.8}_{+9.8}/^{-9.5}_{+10}$	$^{-8.5}_{+10}/^{-11}_{+10}/^{-9.1}_{+11}$	-	*
Factorization/Normalization Scale (Q^2)	7.7/6/10	7.7/11/12	-	*
ME/PS matching thresholds	-	5.7/0.7/2.3	-	*
ISR/FSR	-	8.9/7.3/7.3	-	*
DR/DS scheme	8.2/9.1/6.6	-	-	*
$E_{\rm T}^{ m miss}$ modeling	2.3/0.9/0.9	*	_	*
PDF uncertainties	4.5/4.5/4.5	*	_	*
Background Normalization	-	15/15/15	50/50/50	*
Simulation statistics	3.5/1.9/2.7	-	-	17/21/11

"-" means it doesn't apply, and "★" for negligible contributions

Systematic uncertainties: s-channel

ATLAS-CONF-2011-118

Source	$\Delta\sigma/\sigma$ [%]
	cut-based
Data statistics	±100
MC statistics	±70
b-tagging	-30/+20
Jet and lepton modeling	-20/+10
MC generator modeling	-60/+20
Multijets normalization	±40
Others	-10/+30
Luminosity	±50
All systematics	-110/+90
Total uncertainty	-160/+150

Background estimation in t-channel CMS

- QCD multijets is controlled in the 2 jet I tag sample after fitting the low m_T region for the muon channel/low ET miss region for the electron channel
- ▶ Check shape and normalization of $|\eta_i|$ and m_{lvb} in 2 control regions:
 - 2 jets 0 tags:W+light
 - 3 jets 2 tags: ttbar
- W+ heavy flavor production is the main background
 - From EWK/ ttbar cross section measurement it is expected to be I.2 (W+b) / I.7x (W+c) larger with respect to MC prediction
 - ▶ Control $|\eta_i|$ in the m_{lvb} sidebands
 - Subtract TTbar, single top-s, -tW and dibosons from **prediction**
 - Derive the template for W+heavy flavor contribution to be fit in the signal region

