Proof. Replace tensor product by n-th symmetric tensor power in the proof of Proposition 33.5.

We now give a construction that produces a symmetric n-th tensor power of a vector space E.

Theorem 33.24. Given a vector space E, a symmetric n-th tensor power $(S^n(E), \varphi)$ for E can be constructed $(n \ge 1)$. Furthermore, denoting $\varphi(u_1, \ldots, u_n)$ as $u_1 \odot \cdots \odot u_n$, the symmetric tensor power $S^n(E)$ is generated by the vectors $u_1 \odot \cdots \odot u_n$, where $u_1, \ldots, u_n \in E$, and for every symmetric multilinear map $f: E^n \to F$, the unique linear map $f_{\odot}: S^n(E) \to F$ such that $f = f_{\odot} \circ \varphi$ is defined by

$$f_{\odot}(u_1 \odot \cdots \odot u_n) = f(u_1, \dots, u_n)$$

on the generators $u_1 \odot \cdots \odot u_n$ of $S^n(E)$.

Proof. The tensor power $E^{\otimes n}$ is too big, and thus we define an appropriate quotient. Let C be the subspace of $E^{\otimes n}$ generated by the vectors of the form

$$u_1 \otimes \cdots \otimes u_n - u_{\sigma(1)} \otimes \cdots \otimes u_{\sigma(n)},$$

for all $u_i \in E$, and all permutations $\sigma \colon \{1, \dots, n\} \to \{1, \dots, n\}$. We claim that the quotient space $(E^{\otimes n})/C$ does the job.

Let $p: E^{\otimes n} \to (E^{\otimes n})/C$ be the quotient map, and let $\varphi: E^n \to (E^{\otimes n})/C$ be the map given by

$$\varphi = p \circ \varphi_0$$

where $\varphi_0 \colon E^n \to E^{\otimes n}$ is the injection given by $\varphi_0(u_1, \dots, u_n) = u_1 \otimes \dots \otimes u_n$.

Let us denote $\varphi(u_1,\ldots,u_n)$ as $u_1\odot\cdots\odot u_n$. It is clear that φ is symmetric. Since the vectors $u_1\otimes\cdots\otimes u_n$ generate $E^{\otimes n}$, and p is surjective, the vectors $u_1\odot\cdots\odot u_n$ generate $(E^{\otimes n})/C$.

It remains to show that $((E^{\otimes n})/C, \varphi)$ satisfies the universal mapping property. To this end we begin by proving that there is a map h such that $f = h \circ \varphi$. Given any symmetric multilinear map $f : E^n \to F$, by Theorem 33.6 there is a linear map $f : E^{\otimes n} \to F$ such that $f = f_{\otimes} \circ \varphi_0$, as in the diagram below.

