We take a brief segue to provide some theory into the tail approximation to the  $\alpha$ -stable distribution that will be useful in the later sections.

When  $\alpha < 2$ , the tails of the  $\alpha$ -stable distribution are are asymptotically equivalent to a Pareto law. More precisely, if  $\lambda$  is a standardized  $\alpha$ -stable variable  $\lambda \sim S_{\alpha}(\sigma, \beta, \mu)$  with  $0 < \alpha < 2$ ,  $\sigma = 1$ ,  $\mu = 0$  then as  $\lambda \to \infty$  [samoradnitsky2017stable]:

$$\lim_{x \to \infty} P(\lambda > x) = C_{\alpha} (1 + \beta) x^{-\alpha} \tag{1}$$

where:

$$C_{\alpha} = \left(2\int_{0}^{\infty} x^{-\alpha} \sin x dx\right)^{-1} = \frac{1}{\pi}\Gamma(\alpha)\sin(\frac{\alpha\pi}{2})$$

We can then differentiate Equation 1 formally to obtain the probability distribution function (PDF) of the tail approximation:

$$\lim_{x \to \infty} S_{\alpha}(\lambda = x | \sigma = 1, \beta, \mu = 0) = f_{pareto}(\lambda = x | \alpha, \beta)$$

$$= \alpha C_{\alpha}(1 + \beta)x^{-\alpha - 1}$$
(2)

## Numerical accuracy of the tail approximation

We first define a metric for the absolute relative error in the tail approximation:

$$\epsilon_{rel}(x) = \left| \frac{S_{\alpha}(\lambda = x | 1, \beta, 0) - f_{pareto}(\lambda = x | \alpha, \beta)}{S_{\alpha}(\lambda = x | 1, \beta, 0)} \right|$$
(3)

We can then investigate the numerical accuracy of the tail approximation for  $\beta = 1$  and  $\alpha < 1$  using Figure 1. As expected, we note that the relative error in the tail approximation decreases monotically.

Note that for  $\alpha < 1$ , there is no clear dependence on the value of  $\alpha$  and the rate of convergence of the  $\alpha$ -stable distribution to the paretian tail approximation.

## Sampling from the paretian tail

Using the paretian tail approximation to the  $\alpha$ -stable distribution, we note that up to a certain scale parameter  $(\alpha(1+\beta)C_{\alpha})$ , sampling from a left-truncated  $\alpha$ -stable distribution can be approximated by sampling from a left-truncated pareto distribution.



Figure 1: Relative error in the tail approximation  $\epsilon_{rel}(x)$  for  $\beta = 1$  and  $\alpha < 1$ 

For a left-truncated pareto distribution  $f_{pareto}(x|\alpha,\beta)$  lower bounded by  $x \geq L$ , the corresponding PDF  $f_{bounded\ pareto}(x|\alpha,\beta,L)$  is given by Equation 4:

$$f_{bounded\ pareto}(x|\alpha,\beta,L) = \alpha(1+\beta)C_{\alpha}L^{\alpha}x^{-\alpha-1}$$
(4)

We can then sample from this left-truncated pareto distribution easily using the inverse transform method.

$$x = \left(\frac{1 - U}{L^{\alpha}(1 + \beta)C_{\alpha}}\right)^{-\frac{1}{\alpha}} \quad \text{where: } U \sim \text{Unif}(0, 1)$$
 (5)

Following Equation 5, x will be left-truncated pareto distributed according to  $f_{bounded\ pareto}(x|\alpha,\beta,L)$ 

List of Figures

1 Relative error in the tail approximation  $\epsilon_{rel}(x)$  for  $\beta = 1$  and  $\alpha < 1$  . . . . .

## List of Tables