

Module 7: DHCPv4

Switching, Routing and Wireless Essentials v7.0 (SRWE)

Module Objectives

Module Title: DHCPv4

Module Objective: Implement DHCPv4 to operate across multiple LANs

Topic Title	Topic Objective	
DHCP4 Concepts	Explain how DHCPv4 operates in a small- to medium-sized business network.	
Configure a Cisco IOS DHCP4 Server	Configure a router as a DHCPv4 server.	
Configure a DHCP4 Client	Configure a router as a DHCPv4 client.	

7.1 DHCPv4 Concepts

DHCPv4 Concepts DHCPv4 Server and Client

- Dynamic Host Configuration Protocol v4 (DHCPv4) assigns IPv4 addresses and other network configuration information dynamically. Because desktop clients typically make up the bulk of network nodes, DHCPv4 is an extremely useful and timesaving tool for network administrators.
- A dedicated DHCPv4 server is scalable and relatively easy to manage. However, in a small branch or SOHO location, a Cisco router can be configured to provide DHCPv4 services without the need for a dedicated server. Cisco IOS software supports an optional, fullfeatured DHCPv4 server.
- The DHCPv4 server dynamically assigns, or leases, an IPv4 address from a pool of addresses for a limited period of time chosen by the server, or until the client no longer needs the address.
- Clients lease the information from the server for an administratively defined period.
 Administrators configure DHCPv4 servers to set the leases to time out at different intervals.
 The lease is typically anywhere from 24 hours to a week or more. When the lease expires, the client must ask for another address, although the client is typically reassigned the same address.

DHCPv4 Concepts DHCPv4 Operation

DHCPv4 works in a client/server mode. When a client communicates with a DHCPv4 server, the server assigns or leases an IPv4 address to that client.

- The client connects to the network with that leased IPv4 address until the lease expires. The client must contact the DHCP server periodically to extend the lease.
- This lease mechanism ensures that clients that move or power off do not keep addresses that they no longer need.
- When a lease expires, the DHCP server returns the address to the pool where it can be reallocated as necessary.

Steps to Obtain a Lease

When the client boots (or otherwise wants to join a network), it begins a four-step process to obtain a lease:

- DHCP Discover (DHCPDISCOVER)
- 2. DHCP Offer (DHCPOFFER)
- DHCP Request (DHCPREQUEST)
- 4. DHCP Acknowledgment (DHCPACK)

Steps to Renew a Lease

Prior to lease expiration, the client begins a twostep process to renew the lease with the DHCPv4 server, as shown in the figure:

1. DHCP Request (DHCPREQUEST)

Before the lease expires, the client sends a DHCPREQUEST message directly to the DHCPv4 server that originally offered the IPv4 address. If a DHCPACK is not received within a specified amount of time, the client broadcasts another DHCPREQUEST so that one of the other DHCPv4 servers can extend the lease.

2. DHCP Acknowledgment (DHCPACK)

On receiving the DHCPREQUEST message, the server verifies the lease information by returning a DHCPACK.

Note: These messages (primarily the DHCPOFFER and DHCPACK) can be sent as unicast or broadcast according to IETF RFC 2131.

7.2 Configure a Cisco IOS DHCPv4 Server

Configure a Cisco IOS DHCPv4 Server Cisco IOS DHCPv4 Server

Now you have a basic understanding of how DHCPv4 works and how it can make your job a bit easier. A Cisco router running Cisco IOS software can be configured to act as a DHCPv4 server. The Cisco IOS DHCPv4 server assigns and manages IPv4 addresses from specified address pools within the router to DHCPv4 clients.

Configure a Cisco IOS DHCPv4 Server Steps to Configure a Cisco IOS DHCPv4 Server

Use the following steps to configure a Cisco IOS DHCPv4 server:

- Step 1. Exclude IPv4 addresses. A single address or a range of addresses can be excluded by specifying the *low-address* and *high-address* of the range. Excluded addresses should be those addresses that are assigned to routers, servers, printers, and other devices that have been, or will be, manually configured. You can also enter the command multiple times. The command is ip dhcp excluded-address *low-address* [high-address]
- Step 2. Define a DHCPv4 pool name. The ip dhcp pool pool-name command creates
 a pool with the specified name and puts the router in DHCPv4 configuration mode,
 which is identified by the prompt Router(dhcp-config)#.

Configure a Cisco IOS DHCPv4 Server Steps to Configure a Cisco IOS DHCPv4 Server (Cont.)

• **Step 3**. Configure the DHCPv4 pool. The address pool and default gateway router must be configured. Use the **network** statement to define the range of available addresses. Use the **default-router** command to define the default gateway router. These commands and other optional commands are shown in the table.

Task	IOS Command	
Define the address pool.	network network-number [mask / prefix-length]	
Define the default router or gateway.	default-router address [address2address8]	
Define a DNS server.	dns-server address [address2address8]	
Define the domain name.	domain-name domain	
Define the duration of the DHCP lease.	lease {days [hours [minutes]] infinite}	
Define the NetBIOS WINS server.	netbios-name-server address [address2address8]	

Configure a Cisco IOS DHCPv4 Server Configuration Example

Configure a Cisco IOS DHCPv4 Server DHCPv4 Verification

Use the commands in the table to verify that the Cisco IOS DHCPv4 server is operational.

Command	Description	
show running-config section dhcp	Displays the DHCPv4 commands configured on the router.	
show ip dhcp binding	Displays a list of all IPv4 address to MAC address bindings provided by the DHCPv4 service.	
show ip dhcp server statistics	Displays count information regarding the number of DHCPv4 messages that have been sent and received	

Configure a Cisco IOS DHCPv4 Server Verify DHCPv4 is Operational

Verify the DHCPv4 Configuration: As shown in the example, the **show running-config** | **section dhcp** command output displays the DHCPv4 commands configured on R1. The | **section** parameter displays only the commands associated with DHCPv4 configuration.

```
R1# show running-config | section dhcp
ip dhcp excluded-address 192.168.10.1 192.168.10.9
ip dhcp excluded-address 192.168.10.254
ip dhcp pool LAN-POOL-1
network 192.168.10.0 255.255.255.0
default-router 192.168.10.1
dns-server 192.168.11.5
domain-name example.com
```

Configure a Cisco IOS DHCPv4 Server Verify DHCPv4 is Operational (Cont.)

Verify DHCPv4 Bindings: As shown in the example, the operation of DHCPv4 can be verified using the **show ip dhcp binding** command. This command displays a list of all IPv4 address to MAC address bindings that have been provided by the DHCPv4 service.

```
R1# show ip dhcp binding
Bindings from all pools not associated with VRF:
IP address Client-ID/ Lease expiration Type State Interface
Hardware address/
User name
192.168.10.10 0100.5056.b3ed.d8 Sep 15 2019 8:42 AM Automatic Active
GigabitEthernet0/0/0
```

Configure a Cisco IOS DHCPv4 Server Verify DHCPv4 is Operational (Cont.)

Verify DHCPv4 Statistics: The output of the show ip dhcp server statistics is used to verify that messages are being received or sent by the router. This command displays count information regarding the number of DHCPv4 messages that have been sent and received.

Configure a Cisco IOS DHCPv4 Server Verify DHCPv4 is Operational (Cont.)

Verify DHCPv4 Client Received IPv4 Addressing: The ipconfig

/all command, when issued on PC1, displays the TCP/IP parameters, as shown in the example. Because PC1 was connected to the network segment 192.168.10.0/24, it automatically received a DNS suffix, IPv4 address, subnet mask, default gateway, and DNS server address from that pool. No DHCP-specific router interface configuration is required. If a PC is connected to a network segment that has a DHCPv4 pool available, the PC can obtain an IPv4 address from the appropriate pool automatically.

```
C:\Users\Student> ipconfig /all
Windows IP Configuration
  Host Name . . . . . . . . . : ciscolab
  Primary Dns Suffix . . . . . . :
  Node Type . . . . . . . . . : Hybrid
  IP Routing Enabled. . . . . . : No
  WINS Proxy Enabled. . . . . . : No
Ethernet adapter Ethernet0:
  Connection-specific DNS Suffix . : example.com
  Description . . . . . . . . . : Realtek PCIe GBE Family Controller
  Physical Address. . . . . . . : 00-05-9A-3C-7A-00
  DHCP Enabled. . . . . . . . . : Yes
  Autoconfiguration Enabled . . . . : Yes
  IPv4 Address. . . . . . . . . : 192.168.10.10
  Lease Obtained . . . . . . . : Saturday, September 14, 2019 8:42:22AM
  Lease Expires ..... : Sunday, September 15, 2019 8:42:22AM
  Default Gateway . . . . . . . : 192.168.10.1
  DHCP Server . . . . . . . . : 192.168.10.1
  DNS Servers . . . . . . . . . : 192.168.11.5
```

Configure a Cisco IOS DHCPv4 Server Disable the Cisco IOS DHCPv4 Server

The DHCPv4 service is enabled by default. To disable the service, use the **no service dhcp** global configuration mode command. Use the **service dhcp** global configuration mode command to reenable the DHCPv4 server process, as shown in the example. Enabling the service has no effect if the parameters are not configured.

Note: Clearing the DHCP bindings or stopping and restarting the DHCP service may result in duplicate IP addresses being temporarily assigned on the network.

```
R1(config)# no service dhcp
R1(config)# service dhcp
R1(config)#
```

Configure a Cisco IOS DHCPv4 Server DHCPv4 Relay

- In a complex hierarchical network, enterprise servers are usually located centrally. These servers may
 provide DHCP, DNS, TFTP, and FTP services for the network. Network clients are not typically on the
 same subnet as those servers. In order to locate the servers and receive services, clients often use
 broadcast messages.
- In the figure, PC1 is attempting to acquire an IPv4 address from a DHCPv4 server using a broadcast message. In this scenario, R1 is not configured as a DHCPv4 server and does not forward the broadcast. Because the DHCPv4 server is located on a different network, PC1 cannot receive an IP address using DHCP. R1 must be configured to relay DHCPv4 messages to the DHCPv4 server.

192,168,10,0/24

PC1
S1
G0/0/0
R1
G0/0/1
S2
PC2
Looking for a
DHCPv4 server.

I cannot forward broadcasts
between networks.

192.168.11.0/24

DHCPv4 Server

192.168.11.6/24

DNS Server

192.168.11.5/24

Configure a Cisco IOS DHCPv4 Server DHCPv4 Relay (Cont.)

- Configure R1 with the ip helper-address address interface configuration command.
 This will cause R1 to relay DHCPv4 broadcasts to the DHCPv4 server. As shown in the example, the interface on R1 receiving the broadcast from PC1 is configured to relay DHCPv4 address to the DHCPv4 server at 192.168.11.6.
- When R1 has been configured as a DHCPv4 relay agent, it accepts broadcast requests for the DHCPv4 service and then forwards those requests as a unicast to the IPv4 address 192.168.11.6. The network administrator can use the **show ip interface** command to verify the configuration.

```
R1(config)# interface g0/0/0
R1(config-if)# ip helper-address 192.168.11.6
R1(config-if)# end
R1#
```

```
R1# show ip interface g0/0/0
GigabitEthernet0/0/0 is up, line protocol is up
Internet address is 192.168.10.1/24
Broadcast address is 255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is 192.168.11.6
(output omitted)
```

Configure a Cisco IOS DHCPv4 Server Other Service Broadcasts Relayed

DHCPv4 is not the only service that the router can be configured to relay. By default, the **ip helper-address** command forwards the following eight UDP services:

- Port 37: Time
- Port 49: TACACS
- Port 53: DNS
- Port 67: DHCP/BOOTP server
- Port 68: DHCP/BOOTP client
- Port 69: TFTP
- Port 137: NetBIOS name service
- Port 138: NetBIOS datagram service

7.3 Configure a DHCPv4 Client

Configure a DHCPv4 Client Cisco Router as a DHCPv4 Client

There are scenarios where you might have access to a DHCP server through your ISP. In these instances, you can configure a Cisco IOS router as a DHCPv4 client.

- Sometimes, Cisco routers in a small office or home office (SOHO) and branch sites have to be configured as DHCPv4 clients in a similar manner to client computers. The method used depends on the ISP. However, in its simplest configuration, the Ethernet interface is used to connect to a cable or DSL modem.
- To configure an Ethernet interface as a DHCP client, use the ip address dhcp interface configuration mode command.
- In the figure, assume that an ISP has been configured to provide select customers with IP addresses from the 209.165.201.0/27 network range after the G0/0/1 interface is configured with the **ip address dhcp** command.

Configure a DHCPv4 Client Configuration Example

- To configure an Ethernet interface as a DHCP client, use the ip address dhcp interface configuration mode command, as shown in the example. This configuration assumes that the ISP has been configured to provide select customers with IPv4 addressing information.
- The show ip interface g0/1 command confirms that the interface is up and that the address was allocated by a DHCPv4 server.

```
SOHO(config)# interface G0/0/1
SOHO(config-if)# ip address dhcp
SOHO(config-if)# no shutdown
Sep 12 10:01:25.773: %DHCP-6-ADDRESS_ASSIGN: Interface GigabitEthernet0/0/1 assigned DHCP address
209.165.201.12, mask 255.255.255.224, hostname SOHO

SOHO# show ip interface g0/0/1
GigabitEthernet0/0/1 is up, line protocol is up
Internet address is 209.165.201.12/27
Broadcast address is 255.255.255.255
Address determined by DHCP
(output omitted)
```

Configure a DHCPv4 Client Home Router as a DHCPv4 Client

Home routers are typically already set to receive IPv4 addressing information automatically from the ISP. This is so that customers can easily set up the router and connect to the internet.

- For example, the figure shows the default WAN setup page for a Packet Tracer wireless router. Notice that the internet connection type is set to **Automatic Configuration - DHCP**. This selection is used when the router is connected to a DSL or cable modem and acts as a DHCPv4 client, requesting an IPv4 address from the ISP.
- Various manufacturers of home routers will have a similar setup.

Module 4: Inter-VLAN Routing

Instructor Materials

Switching, Routing and Wireless Essentials v7.0 (SRWE)

Module 4: Inter-VLAN Routing

Switching, Routing and Wireless Essentials v7.0 (SRWE)

Module Objectives

Module Title: Inter-VLAN Routing

Module Objective: Troubleshoot inter-VLAN routing on Layer 3 devices

Topic Title	Topic Objective	
Inter-VLAN Routing Operation	Describe options for configuring inter-VLAN routing.	
Router-on-a-Stick Inter-VLAN Routing	Configure router-on-a-stick inter-VLAN routing.	
Inter-VLAN Routing using Layer 3 Switches	Configure inter-VLAN routing using Layer 3 switching.	
Troubleshoot Inter-VLAN Routing	Troubleshoot common inter-VLAN configuration issues.	

4.1 Inter-VLAN Routing Operation

Inter-VLAN Routing Operation What is Inter-VLAN Routing?

VLANs are used to segment switched Layer 2 networks for a variety of reasons. Regardless of the reason, hosts in one VLAN cannot communicate with hosts in another VLAN unless there is a router or a Layer 3 switch to provide routing services.

Inter-VLAN routing is the process of forwarding network traffic from one VLAN to another VLAN.

There are three inter-VLAN routing options:

- Legacy Inter-VLAN routing This is a legacy solution. It does not scale well.
- Router-on-a-Stick This is an acceptable solution for a small to medium-sized network.
- Layer 3 switch using switched virtual interfaces (SVIs) This is the most scalable solution for medium to large organizations.

Inter-VLAN Routing Operation Legacy Inter-VLAN Routing

- The first inter-VLAN routing solution relied on using a router with multiple Ethernet interfaces. Each router interface was connected to a switch port in different VLANs. The router interfaces served as the default gateways to the local hosts on the VLAN subnet.
- Legacy inter-VLAN routing using physical interfaces works, but it has a significant limitation. It is not reasonably scalable because routers have a limited number of physical interfaces. Requiring one physical router interface per VLAN quickly exhausts the physical interface capacity of a router.

Note: This method of inter-VLAN routing is no longer implemented in switched networks and is included for explanation purposes only

Inter-VLAN Routing Operation Router-on-a-Stick Inter-VLAN Routing

The 'router-on-a-stick' inter-VLAN routing method overcomes the limitation of the legacy inter-VLAN routing method. It only requires one physical Ethernet interface to route traffic between multiple VLANs on a network.

- A Cisco IOS router Ethernet interface is configured as an 802.1Q trunk and connected to a trunk port on a Layer 2 switch. Specifically, the router interface is configured using subinterfaces to identify routable VLANs.
- The configured subinterfaces are software-based virtual interfaces. Each is associated with a single physical Ethernet interface. Subinterfaces are configured in software on a router. Each subinterface is independently configured with an IP address and VLAN assignment. Subinterfaces are configured for different subnets that correspond to their VLAN assignment. This facilitates logical routing.
- When VLAN-tagged traffic enters the router interface, it is forwarded to the VLAN subinterface. After a
 routing decision is made based on the destination IP network address, the router determines the exit
 interface for the traffic. If the exit interface is configured as an 802.1q subinterface, the data frames are
 VLAN-tagged with the new VLAN and sent back out the physical interface

Note: The router-on-a-stick method of inter-VLAN routing does not scale beyond 50 VLANs.

Inter-VLAN Routing Operation Inter-VLAN Routing on a Layer 3 Switch

The modern method of performing inter-VLAN routing is to use Layer 3 switches and switched virtual interfaces (SVI). An SVI is a virtual interface that is configured on a Layer 3 switch, as shown in the figure.

Note: A Layer 3 switch is also called a multilayer switch as it operates at Layer 2 and Layer 3. However, in this course we use the term Layer 3 switch.

Inter-VLAN Routing Operation Inter-VLAN Routing on a Layer 3 Switch (Cont.)

Inter-VLAN SVIs are created the same way that the management VLAN interface is configured. The SVI is created for a VLAN that exists on the switch. Although virtual, the SVI performs the same functions for the VLAN as a router interface would. Specifically, it provides Layer 3 processing for packets that are sent to or from all switch ports associated with that VLAN.

The following are advantages of using Layer 3 switches for inter-VLAN routing:

- They are much faster than router-on-a-stick because everything is hardware switched and routed.
- There is no need for external links from the switch to the router for routing.
- They are not limited to one link because Layer 2 EtherChannels can be used as trunk links between the switches to increase bandwidth.
- Latency is much lower because data does not need to leave the switch in order to be routed to a
 different network.
- They more commonly deployed in a campus LAN than routers.
- The only disadvantage is that Layer 3 switches are more expensive.

4.2 Router-on-a-Stick Inter-VLAN Routing

Router-on-a-Stick Inter-VLAN Routing Router-on-a-Stick Scenario

- In the figure, the R1 GigabitEthernet 0/0/1 interface is connected to the S1 FastEthernet 0/5 port. The S1 FastEthernet 0/1 port is connected to the S2 FastEthernet 0/1 port. These are trunk links that are required to forward traffic within and between VLANs.
- To route between VLANs, the R1 GigabitEthernet 0/0/1
 interface is logically divided into three subinterfaces, as
 shown in the table. The table also shows the three VLANs
 that will be configured on the switches.
- Assume that R1, S1, and S2 have initial basic configurations. Currently, PC1 and PC2 cannot **ping** each other because they are on separate networks. Only S1 and S2 can **ping** each other, but they but are unreachable by PC1 or PC2 because they are also on different networks.
- To enable devices to ping each other, the switches must be configured with VLANs and trunking, and the router must be configured for inter-VLAN routing.

Subinterface	VLAN	IP Address
G0/0/1.10	10	192.168.10.1/24
G0/0/1.20	20	192.168.20.1/24
G0/0/1.30	99	192.168.99.1/24

Router-on-a-Stick Inter-VLAN Routing S1 VLAN and Trunking Configuration

Complete the following steps to configure S1 with VLANs and trunking:

- Step 1. Create and name the VLANs.
- Step 2. Create the management interface.
- Step 3. Configure access ports.
- Step 4. Configure trunking ports.

Router-on-a-Stick Inter-VLAN Routing S2 VLAN and Trunking Configuration

The configuration for S2 is similar to S1.

```
S2(config)# vlan 10
S2(config-vlan)# name LAN10
S2(config-vlan)# exit
S2(config)# vlan 20
S2(config-vlan)# name LAN20
S2(config-vlan)# exit
S2(config)# vlan 99
S2(config-vlan)# name Management
S2(config-vlan)# exit
S2(config)#
S2(config)# interface vlan 99
S2(config-if)# ip add 192.168.99.3 255.255.255.0
S2(config-if)# no shut
S2(config-if)# exit
S2(config)# ip default-gateway 192.168.99.1
S2(config)# interface fa0/18
S2(config-if)# switchport mode access
S2(config-if)# switchport access vlan 20
S2(config-if)# no shut
S2(config-if)# exit
S2(config)# interface fa0/1
S2(config-if)# switchport mode trunk
S2(config-if)# no shut
S2(config-if)# exit
S2(config-if)# end
*Mar 1 00:23:52.137: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1,
changed state to up
```

Router-on-a-Stick Inter-VLAN Routing R1 Subinterface Configuration

The router-on-a-stick method requires you to create a subinterface for each VLAN to be routed. A subinterface is created using the **interface** *interface_id subinterface_id* global configuration mode command. The subinterface syntax is the physical interface followed by a period and a subinterface number. Although not required, it is customary to match the subinterface number with the VLAN number.

Each subinterface is then configured with the following two commands:

- encapsulation dot1q vlan_id [native] This command configures the subinterface to respond to 802.1Q encapsulated traffic from the specified vlan-id. The native keyword option is only appended to set the native VLAN to something other than VLAN 1.
- **ip address** *ip-address subnet-mask* This command configures the IPv4 address of the subinterface. This address typically serves as the default gateway for the identified VLAN.

Repeat the process for each VLAN to be routed. Each router subinterface must be assigned an IP address on a unique subnet for routing to occur. When all subinterfaces have been created, enable the physical interface using the **no shutdown** interface configuration command. If the physical interface is disabled, all subinterfaces are disabled.

Router-on-a-Stick Inter-VLAN Routing R1 Subinterface Configuration (Cont.)

In the configuration, the R1 G0/0/1 subinterfaces are configured for VLANs 10, 20, and 99.

```
R1(config)# interface G0/0/1.10
R1(config-subif)# Description Default Gateway for VLAN 10
R1(config-subif)# encapsulation dot10 10
R1(config-subif)# ip add 192.168.10.1 255.255.255.0
R1(config-subif)# exit
R1(config)#
R1(config)# interface G0/0/1.20
R1(config-subif)# Description Default Gateway for VLAN 20
R1(config-subif)# encapsulation dot10 20
R1(config-subif)# ip add 192.168.20.1 255.255.255.0
R1(config-subif)# exit
R1(config)#
R1(config)# interface G0/0/1.99
R1(config-subif)# Description Default Gateway for VLAN 99
R1(config-subif)# encapsulation dot10 99
R1(config-subif)# ip add 192.168.99.1 255.255.255.0
R1(config-subif)# exit
R1(config)#
Rl(config)# interface GO/O/1
R1(config-if)# Description Trunk link to S1
R1(config-if)# no shut
R1(config-if)# end
R1#
*Sep 15 19:08:47.015: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/1, changed state to down
*Sep 15 19:08:50.071: %LINK-3-UPDOWN: Interface GigabitEthernet0/0/1, changed state to up
*Sep 15 19:08:51.071: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0/1,
changed state to up
R1#
```

Router-on-a-Stick Inter-VLAN Routing Verify Connectivity Between PC1 and PC2

The router-on-a-stick configuration is complete after the switch trunk and the router subinterfaces have been configured. The configuration can be verified from the hosts, router, and switch.

From a host, verify connectivity to a host in another VLAN using the **ping** command. It is a good idea to first verify the current host IP configuration using the **ipconfig** Windows host command.

Next, use **ping** to verify connectivity with PC2 and S1, as shown in the figure. The **ping** output successfully confirms inter-VLAN routing is operating.

```
C:\Users\PC1> ping 192.168.20.10
Pinging 192.168.20.10 with 32 bytes of data:
Reply from 192.168.20.10: bytes=32 time<1ms TTL=127
Ping statistics for 192.168.20.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss).
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\Users\PC1>
C:\Users\PC1> ping 192.168.99.2
Pinging 192.168.99.2 with 32 bytes of data:
Request timed out.
Request timed out.
Reply from 192.168.99.2: bytes=32 time=2ms TTL=254
Reply from 192.168.99.2: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.99.2:
    Packets: Sent = 4, Received = 2, Lost = 2 (50% loss).
Approximate round trip times in milli-seconds:
    Minimum = 1ms, Maximum = 2ms, Average = 1ms
C:\Users\PC1>
```

Router-on-a-Stick Inter-VLAN Routing Router-on-a-Stick Inter-VLAN Routing Verification

In addition to using **ping** between devices, the following **show** commands can be used to verify and troubleshoot the router-on-a-stick configuration.

- show ip route
- show ip interface brief
- show interfaces
- show interfaces trunk

4.3 Inter-VLAN Routing using Layer 3 Switches

Inter-VLAN Routing using Layer 3 Switches Layer 3 Switch Inter-VLAN Routing

Inter-VLAN routing using the router-on-a-stick method is simple to implement for a small to medium-sized organization. However, a large enterprise requires a faster, much more scalable method to provide inter-VLAN routing.

Enterprise campus LANs use Layer 3 switches to provide inter-VLAN routing. Layer 3 switches use hardware-based switching to achieve higher-packet processing rates than routers. Layer 3 switches are also commonly implemented in enterprise distribution layer wiring closets.

Capabilities of a Layer 3 switch include the ability to do the following:

- Route from one VLAN to another using multiple switched virtual interfaces (SVIs).
- Convert a Layer 2 switchport to a Layer 3 interface (i.e., a routed port). A routed port is similar to a physical interface on a Cisco IOS router.
- To provide inter-VLAN routing, Layer 3 switches use SVIs. SVIs are configured using the same **interface vlan** *vlan-id* command used to create the management SVI on a Layer 2 switch. A Layer 3 SVI must be created for each of the routable VLANs.

Inter-VLAN Routing using Layer 3 Switches Layer 3 Switch Scenario

In the figure, the Layer 3 switch, D1, is connected to two hosts on different VLANs. PC1 is in VLAN 10 and PC2 is in VLAN 20, as shown. The Layer 3 switch will provide inter-VLAN routing services to the two hosts.

Inter-VLAN Routing using Layer 3 Switches Layer 3 Switch Configuration

Complete the following steps to configure S1 with VLANs and trunking:

- Step 1. Create the VLANs. In the example, VLANs 10 and 20 are used.
- Step 2. Create the SVI VLAN interfaces. The IP address configured will serve as the default gateway for hosts in the respective VLAN.
- Step 3. Configure access ports. Assign the appropriate port to the required VLAN.
- * Step 4. Enable IP routing. Issue the **ip routing** global configuration command to allow traffic to be exchanged between VLANs 10 and 20. This command must be configured to enable inter-VAN routing on a Layer 3 switch for IPv4.

Inter-VLAN Routing using Layer 3 Switches Layer 3 Switch Inter-VLAN Routing Verification

Inter-VLAN routing using a Layer 3 switch is simpler to configure than the router-on-astick method. After the configuration is complete, the configuration can be verified by testing connectivity between the hosts.

- From a host, verify connectivity to a host in another VLAN using the ping command. It
 is a good idea to first verify the current host IP configuration using
 the ipconfig Windows host command.
- Next, verify connectivity with PC2 using the ping Windows host command.
 The successful ping output confirms inter-VLAN routing is operating.

Inter-VLAN Routing using Layer 3 Switches Routing on a Layer 3 Switch

If VLANs are to be reachable by other Layer 3 devices, then they must be advertised using static or dynamic routing. To enable routing on a Layer 3 switch, a routed port must be configured.

A routed port is created on a Layer 3 switch by disabling the switchport feature on a Layer 2 port that is connected to another Layer 3 device. Specifically, configuring the **no switchport** interface configuration command on a Layer 2 port converts it into a Layer 3 interface. Then the interface can be configured with an IPv4 configuration to connect to a router or another Layer 3 switch.

Inter-VLAN Routing using Layer 3 Switches Routing Scenario on a Layer 3 Switch

In the figure, the previously configured D1 Layer 3 switch is now connected to R1. R1 and D1 are both in an Open Shortest Path First (OSPF) routing protocol domain. Assume inter-VLAN has been successfully implemented on D1. The G0/0/1 interface of R1 has also been configured and enabled. Additionally, R1 is using OSPF to advertise its two networks, 10.10.10.0/24 and 10.20.20.0/24.

Note: OSPF routing configuration is covered in another course. In this module, OSPF configuration commands will be given to you in all activities and assessments. It is not required that you understand the configuration in order to enable OSPF routing on the Layer 3 switch.

Inter-VLAN Routing using Layer 3 Switches Routing Configuration on a Layer 3 Switch

Complete the following steps to configure D1 to route with R1:

- Step 1. Configure the routed port. Use the no switchport command to convert the port to a
 routed port, then assign an IP address and subnet mask. Enable the port.
- Step 2. Enable routing. Use the **ip routing** global configuration command to enable routing.
- **Step 3**. Configure routing. Use an appropriate routing method. In this example, Single-Area OSPFv2 is configured
- **Step 4**. Verify routing. Use the **show ip route** command.
- Step 5. Verify connectivity. Use the ping command to verify reachability.

4.4 Troubleshoot Inter-VLAN Routing

Troubleshoot Inter-VLAN Routing Common Inter-VLAN Issues

There are a number of reasons why an inter-VAN configuration may not work. All are related to connectivity issues. First, check the physical layer to resolve any issues where a cable might be connected to the wrong port. If the connections are correct, then use the list in the table for other common reasons why inter-VLAN connectivity may fail.

Issue Type	How to Fix	How to Verify
Missing VLANs	•Create (or re-create) the VLAN if it does not exist. •Ensure host port is assigned to the correct VLAN.	show vlan [brief] show interfaces switchport ping
Switch Trunk Port Issues	Ensure trunks are configured correctly.Ensure port is a trunk port and enabled.	show interface trunk show running-config
Switch Access Port Issues	 Assign correct VLAN to access port. Ensure port is an access port and enabled. Host is incorrectly configured in the wrong subnet. 	show interfaces switchport show running-config interface ipconfig
Router Configuration Issues	•Router subinterface IPv4 address is incorrectly configured. •Router subinterface is assigned to the VLAN ID.	show ip interface brief show interfaces

Troubleshoot Inter-VLAN Routing Troubleshoot Inter-VLAN Routing Scenario

Examples of some of these inter-VLAN routing problems will now be covered in more detail. This topology will be used for all of these issues.

Router R1 Subinterfaces				
Subinterface	VLAN	IP Address		
G0/0/0.10	10	192.168.10.1/24		
G0/0/0.20	20	192.168.20.1/24		
G0/0/0.30	99	192.168.99.1/24		

Troubleshoot Inter-VLAN Routing Missing VLANs

An inter-VLAN connectivity issue could be caused by a missing VLAN. The VLAN could be missing if it was not created, it was accidently deleted, or it is not allowed on the trunk link.

When a VLAN is deleted, any ports assigned to that VLAN become inactive. They remain associated with the VLAN (and thus inactive) until you assign them to a new VLAN or recreate the missing VLAN. Recreating the missing VLAN would automatically reassign the hosts to it.

Use the **show interface** *interface-id* **switchport** command to verify the VLAN membership of the port.

```
Sl(config)# do show interface fa0/6 switchport
Name: Fa0/6
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dotlg
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 10 (Inactive)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
(Output omitted)
```

Troubleshoot Inter-VLAN Routing Switch Trunk Port Issues

Another issue for inter-VLAN routing includes misconfigured switch ports. In a legacy inter-VLAN solution, this could be caused when the connecting router port is not assigned to the correct VLAN.

However, with a router-on-a-stick solution, the most common cause is a misconfigured trunk port.

- Verify that the port connecting to the router is correctly configured as a trunk link using the show interface trunk command.
- If that port is missing from the output, examine the configuration of the port with the show running-config interface X command to see how the port is configured.

```
S1# show interface trunk
                             Encapsulation Status
                                                           Native vlan
Port
            Mode
Fa0/1
                             802.1q
                                             trunking
            Vlans allowed on trunk
Port
Fa0/1
            1-4094
            Vlans allowed and active in management domain
Port
            1,10,20,99
Fa0/1
            Vlans in spanning tree forwarding state and not pruned
Port
            1,10,20,99
Fa0/1
S1#
```

Troubleshoot Inter-VLAN Routing Switch Access Port Issues

When a problem is suspected with a switch access port configuration, use verification commands to examine the configuration and identify the problem.

A common indicator of this issue is the PC having the correct address configuration (IP Address, Subnet Mask, Default Gateway), but being unable to ping its default gateway.

 Use the show vlan brief, show interface X switchport or show running-config interface X command to verify the interface VLAN assignment.

```
S1# show interface fa0/6 switchport
Name: Fa0/6
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: dotlg
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
```

Troubleshoot Inter-VLAN Routing Router Configuration Issues

Router-on-a-stick configuration problems are usually related to subinterface misconfigurations.

- Verify the subinterface status using the show ip interface brief command.
- Verify which VLANs each of the subinterfaces is on. To do so, the **show** interfaces command is useful but it generates a great deal of additional unrequired output. The command output can be reduced using IOS command filters. In this example, use the include keyword to identify that only lines containing the letters "Gig" or "802.1Q"

```
Rl# show interfaces | include Gig|802.1Q
GigabitEthernet0/0/0 is administratively down, line protocol is down
GigabitEthernet0/0/1 is up, line protocol is up
Encapsulation 802.1Q Virtual LAN, Vlan ID 1., loopback not set
GigabitEthernet0/0/1.10 is up, line protocol is up
Encapsulation 802.1Q Virtual LAN, Vlan ID 100.
GigabitEthernet0/0/1.20 is up, line protocol is up
Encapsulation 802.1Q Virtual LAN, Vlan ID 20.
GigabitEthernet0/0/1.99 is up, line protocol is up
Encapsulation 802.1Q Virtual LAN, Vlan ID 99.
R1#
```


Module 6: EtherChannel

Instructor Materials

Switching, Routing and Wireless Essentials v7.0 (SRWE)

Module 6: EtherChannel

Switching, Routing and Wireless Essentials v7.0 (SRWE)

Module Objectives

Module Title: EtherChannel

Module Objective: Troubleshoot EtherChannel on switched links.

Topic Title	Topic Objective	
EtherChannel Operation	Describe EtherChannel technology.	
Configure EtherChannel	Configure EtherChannel.	
Verify and Troubleshoot EtherChannel	Troubleshoot EtherChannel.	

6.1 EtherChannel Operation

EtherChannel Operation Link Aggregation

- There are scenarios in which more bandwidth or redundancy between devices is needed than what can be provided by a single link. Multiple links could be connected between devices to increase bandwidth. However, Spanning Tree Protocol (STP), which is enabled on Layer 2 devices like Cisco switches by default, will block redundant links to prevent switching loops.
- A link aggregation technology is needed that allows redundant links between devices that will not be blocked by STP. That technology is known as EtherChannel.
- EtherChannel is a link aggregation technology that groups multiple physical Ethernet links together into one single logical link. It is used to provide fault-tolerance, load sharing, increased bandwidth, and redundancy between switches, routers, and servers.
- EtherChannel technology makes it possible to combine the number of physical links between the switches to increase the overall speed of switch-to-switch communication.

EtherChannel Operation EtherChannel

EtherChannel technology was originally developed by Cisco as a LAN switch-to-switch technique of grouping several Fast Ethernet or Gigabit Ethernet ports into one logical channel.

When an EtherChannel is configured, the resulting virtual interface is called a port channel. The physical interfaces are bundled together into a port channel interface, as shown in the figure.

EtherChannel Operation

Advantages of EtherChannel

EtherChannel technology has many advantages, including the following:

- Most configuration tasks can be done on the EtherChannel interface instead of on each individual port, ensuring configuration consistency throughout the links.
- EtherChannel relies on existing switch ports. There is no need to upgrade the link to a faster and more expensive connection to have more bandwidth.
- Load balancing takes place between links that are part of the same EtherChannel.
- EtherChannel creates an aggregation that is seen as one logical link. When several EtherChannel bundles exist between two switches, STP may block one of the bundles to prevent switching loops. When STP blocks one of the redundant links, it blocks the entire EtherChannel. This blocks all the ports belonging to that EtherChannel link. Where there is only one EtherChannel link, all physical links in the EtherChannel are active because STP sees only one (logical) link.
- EtherChannel provides redundancy because the overall link is seen as one logical connection.
 Additionally, the loss of one physical link within the channel does not create a change in the topology.

EtherChannel Operation Implementation Restrictions

EtherChannel has certain implementation restrictions, including the following:

- Interface types cannot be mixed. For example, Fast Ethernet and Gigabit Ethernet cannot be mixed within a single EtherChannel.
- Currently each EtherChannel can consist of up to eight compatibly-configured
 Ethernet ports. EtherChannel provides full-duplex bandwidth up to 800 Mbps (Fast
 EtherChannel) or 8 Gbps (Gigabit EtherChannel) between one switch and another
 switch or host.
- The Cisco Catalyst 2960 Layer 2 switch currently supports up to six EtherChannels.
- The individual EtherChannel group member port configuration must be consistent on both devices. If the physical ports of one side are configured as trunks, the physical ports of the other side must also be configured as trunks within the same native VLAN. Additionally, all ports in each EtherChannel link must be configured as Layer 2 ports.
- Each EtherChannel has a logical port channel interface. A configuration applied to the port channel interface affects all physical interfaces that are assigned to that interface.

EtherChannel Operation AutoNegotiation Protocols

EtherChannels can be formed through negotiation using one of two protocols, Port Aggregation Protocol (PAgP) or Link Aggregation Control Protocol (LACP). These protocols allow ports with similar characteristics to form a channel through dynamic negotiation with adjoining switches.

Note: It is also possible to configure a static or unconditional EtherChannel without PAgP or LACP.

EtherChannel Operation PAgP Operation

PAgP (pronounced "Pag - P") is a Cisco-proprietary protocol that aids in the automatic creation of EtherChannel links. When an EtherChannel link is configured using PAgP, PAgP packets are sent between EtherChannel-capable ports to negotiate the forming of a channel. When PAgP identifies matched Ethernet links, it groups the links into an EtherChannel. The EtherChannel is then added to the spanning tree as a single port.

When enabled, PAgP also manages the EtherChannel. PAgP packets are sent every 30 seconds. PAgP checks for configuration consistency and manages link additions and failures between two switches. It ensures that when an EtherChannel is created, all ports have the same type of configuration.

Note: In EtherChannel, it is mandatory that all ports have the same speed, duplex setting, and VLAN information. Any port modification after the creation of the channel also changes all other channel ports.

EtherChannel Operation PAgP Operation (Cont.)

PAgP helps create the EtherChannel link by detecting the configuration of each side and ensuring that links are compatible so that the EtherChannel link can be enabled when needed. The modes for PAgP as follows:

- On This mode forces the interface to channel without PAgP. Interfaces configured in the on mode do not exchange PAgP packets.
- PAgP desirable This PAgP mode places an interface in an active negotiating state in which the interface initiates negotiations with other interfaces by sending PAgP packets.
- PAgP auto This PAgP mode places an interface in a passive negotiating state in which the interface responds to the PAgP packets that it receives but does not initiate PAgP negotiation.

The modes must be compatible on each side. If one side is configured to be in auto mode, it is placed in a passive state, waiting for the other side to initiate the EtherChannel negotiation. If the other side is also set to auto, the negotiation never starts and the EtherChannel does not form. If all modes are disabled by using the **no** command, or if no mode is configured, then the EtherChannel is disabled. The on mode manually places the interface in an EtherChannel, without any negotiation. It works only if the other side is also set to on. If the other side is set to negotiate parameters through PAgP, no EtherChannel forms, because the side that is set to on mode does not negotiate. No negotiation between the two switches means there is no checking to make sure that all the links in the EtherChannel are terminating on the other side, or that there is PAgP compatibility on the other switch.

EtherChannel Operation PAgP Mode Settings Example

The table shows the various combination of PAgP modes on S1 and S2 and the resulting channel

S1	S2	Channel Establishment
On	On	Yes
On	Desirable/Auto	No
Desirable	Desirable	Yes
Desirable	Auto	Yes
Auto	Desirable	Yes
Auto	Auto	No

EtherChannel Operation LACP Operation

LACP is part of an IEEE specification (802.3ad) that allows several physical ports to be bundled to form a single logical channel. LACP allows a switch to negotiate an automatic bundle by sending LACP packets to the other switch. It performs a function similar to PAgP with Cisco EtherChannel. Because LACP is an IEEE standard, it can be used to facilitate EtherChannels in multivendor environments. On Cisco devices, both protocols are supported.

LACP provides the same negotiation benefits as PAgP. LACP helps create the EtherChannel link by detecting the configuration of each side and making sure that they are compatible so that the EtherChannel link can be enabled when needed. The modes for LACP are as follows:

- On This mode forces the interface to channel without LACP. Interfaces configured in the on mode do not exchange LACP packets.
- **LACP active** This LACP mode places a port in an active negotiating state. In this state, the port initiates negotiations with other ports by sending LACP packets.
- LACP passive This LACP mode places a port in a passive negotiating state. In this state, the
 port responds to the LACP packets that it receives but does not initiate LACP packet negotiation.

EtherChannel Operation LACP Mode Settings Example

The table shows the various combination of LACP modes on S1 and S2 and the resulting channel establishment outcome.

S1	S2	Channel Establishment
On	On	Yes
On	Active/Passive	No
Active	Active	Yes
Active	Passive	Yes
Passive	Active	Yes
Passive	Passive	No

6.2 Configure EtherChannel

Configure EtherChannel Configuration Guidelines

The following guidelines and restrictions are useful for configuring EtherChannel:

- **EtherChannel support** All Ethernet interfaces must support EtherChannel with no requirement that interfaces be physically contiguous.
- Speed and duplex Configure all interfaces in an EtherChannel to operate at the same speed and in the same duplex mode.
- VLAN match All interfaces in the EtherChannel bundle must be assigned to the same VLAN or be configured as a trunk (shown in the figure).
- Range of VLANs An EtherChannel supports the same allowed range of VLANs on all the interfaces in a trunking EtherChannel. If the allowed range of VLANs is not the same, the interfaces do not form an EtherChannel, even when they are set to auto or desirable mode.

Configure EtherChannel Configuration Guidelines (Cont.)

- The figure shows a configuration that would allow an EtherChannel to form between S1 and S2.
- If these settings must be changed, configure them in port channel interface configuration mode. Any configuration that is applied to the port channel interface also affects individual interfaces. However, configurations that are applied to the individual interfaces do not affect the port channel interface. Therefore, making configuration changes to an interface that is part of an EtherChannel link may cause interface compatibility issues.
- The port channel can be configured in access mode, trunk mode (most common), or on a routed port.

Speed 1 Gbps Duplex Full VLAN 10

32 Port Configurations		
Speed 1 Gbps		
Duplex	Full	
VLAN	10	

S2 Dort Configurations

Configure EtherChannel LACP Configuration Example

Configuring EtherChannel with LACP requires the following three steps:

- Step 1. Specify the interfaces that compose the EtherChannel group using the interface
 range interface global configuration mode command. The range keyword allows you to select several
 interfaces and configure them all together.
- Step 2. Create the port channel interface with the channel-group identifier mode active command in interface range configuration mode. The identifier specifies a channel group number. The mode active keywords identify this as an LACP EtherChannel configuration.
- Step3. To change Layer 2 settings on the port channel interface, enter port channel interface configuration mode using the interface port-channel command, followed by the interface identifier. In the example, S1 is configured with an LACP EtherChannel. The port channel is configured as a trunk interface with the allowed VLANs specified.

```
S1(config)# interface range FastEthernet 0/1 - 2
S1(config-if-range)# channel-group 1 mode active
Creating a port-channel interface Port-channel 1
S1(config-if-range)# exit
S1(config-if)# interface port-channel 1
S1(config-if)# switchport mode trunk
S1(config-if)# switchport trunk allowed vlan 1,2,20
```

6.3 Verify and Troubleshoot EtherChannel

Verify and Troubleshoot EtherChannel Verify EtherChannel

As always, when you configure devices in your network, you must verify your configuration. If there are problems, you will also need to be able to troubleshoot and fix them. There are a number of commands to verify an EtherChannel configuration:

- The show interfaces port-channel command displays the general status of the port channel interface.
- The show etherchannel summary command displays one line of information per port channel.
- The show etherchannel port-channel command displays information about a specific port channel interface.
- The show interfaces etherchannel command can provide information about the role of a physical member interface of the EtherChannel.

Verify and Troubleshoot EtherChannel

Common Issues with EtherChannel Configurations

All interfaces within an EtherChannel must have the same configuration of speed and duplex mode, native and allowed VLANs on trunks, and access VLAN on access ports. Ensuring these configurations will significantly reduce network problems related to EtherChannel. Common EtherChannel issues include the following:

- Assigned ports in the EtherChannel are not part of the same VLAN, or not configured as trunks. Ports with different native VLANs cannot form an EtherChannel.
- Trunking was configured on some of the ports that make up the EtherChannel, but
 not all of them. It is not recommended that you configure trunking mode on individual
 ports that make up the EtherChannel. When configuring a trunk on an EtherChannel,
 verify the trunking mode on the EtherChannel.
- If the allowed range of VLANs is not the same, the ports do not form an EtherChannel even when PAgP is set to the **auto** or **desirable** mode.
- The dynamic negotiation options for PAgP and LACP are not compatibly configured on both ends of the EtherChannel.

In the figure, interfaces F0/1 and F0/2 on switches S1 and S2 are connected with an EtherChannel. However, the EtherChannel is not operational.

Step 1. View the EtherChannel Summary Information: The output of the show etherchannel summary command indicates that the EtherChannel is down.

```
51# show etherchannel summary
Flags: D - down P - bundled in port-channel
       I - stand-alone s - suspended
       H - Hot-standby (LACP only)
       R - Layer3 S - Layer2
       U - in use N - not in use, no aggregation
       f - failed to allocate aggregator
       M - not in use, minimum links not met
       m - not in use, port not aggregated due to minimum links not met
       u - unsuitable for bundling
       w - waiting to be aggregated
       d - default port
       A - formed by Auto LAG
Number of channel-groups in use: 1
Number of aggregators:
Group Port-channel Protocol Ports
      Po1(SD) - Fa0/1(D)
                                       Fa0/2(D)
```

Step 2. View Port Channel Configuration: In the show run | begin interface port-channel output, more detailed output indicates that there are incompatible PAgP modes configured on S1 and S2.

```
S1# show run | begin interface port-channel
interface Port-channel1
switchport trunk allowed vlan 1,2,20
 switchport mode trunk
interface FastEthernet0/1
 switchport trunk allowed vlan 1,2,20
 switchport mode trunk
 channel-group 1 mode on
interface FastEthernet0/2
 switchport trunk allowed vlan 1,2,20
 switchport mode trunk
 channel-group 1 mode on
!-----
52# show run | begin interface port-channel
interface Port-channel1
 switchport trunk allowed vlan 1.2.20
switchport mode trunk
interface FastEthernet0/1
switchport trunk allowed vlan 1,2,20
 switchport mode trunk
 channel-group 1 mode desirable
interface FastEthernet0/2
 switchport trunk allowed vlan 1,2,20
 switchport mode trunk
channel-group 1 mode desirable
```

Step 3: Correct the Misconfiguration: To correct the issue, the PAgP mode on the EtherChannel is changed to desirable.

Note: EtherChannel and STP must interoperate. For this reason, the order in which EtherChannel-related commands are entered is important, which is why you see interface Port-Channel 1 removed and then re-added with the **channel-group** command, as opposed to directly changed. If one tries to change the configuration directly, STP errors cause the associated ports to go into blocking or errdisabled state.

```
S1(config)# no interface port-channel 1
S1(config)# interface range fa0/1 - 2
S1(config-if-range)# channel-group 1 mode desirable
Creating a port-channel interface Port-channel 1
S1(config-if-range)# no shutdown
S1(config-if-range)# exit
S1(config)# interface range fa0/1 - 2
S1(config-if-range)# channel-group 1 mode desirable
S1(config-if-range)# no shutdown
S1(config-if-range)# interface port-channel 1
S1(config-if)# switchport mode trunk
S1(config-if)# end
S1#
```

Step 4. Verify EtherChannel is Operational: The EtherChannel is now active as verified by the output of the **show etherchannel summary** command.

```
S1# show etherchannel summary
Flags: D - down
                    P - bundled in port-channel
      I - stand-alone s - suspended
      H - Hot-standby (LACP only)
      R - Layer3 S - Layer2
      U - in use N - not in use, no aggregation
      f - failed to allocate aggregator
      M - not in use, minimum links not met
      m - not in use, port not aggregated due to minimum links not met
      u - unsuitable for bundling
      w - waiting to be aggregated
      d - default port
      A - formed by Auto LAG
Number of channel-groups in use: 1
Number of aggregators:
Group Port-channel Protocol
                            Ports
Po1(SU)
                   PAgP
                            Fa0/1(P)
                                       Fa0/2(P)
```