# Introduction to Number Theory Notes

# Francesco Chotuck

#### Abstract

This is KCL undergraduate module 5CCM224A, instructed by Dr Stephen Lester. The formal name for this class is "Introduction to Number Theory".

# Contents

| 1        | $\operatorname{Div}$                     | Divisibility 3                                 |  |  |  |  |
|----------|------------------------------------------|------------------------------------------------|--|--|--|--|
|          | 1.1                                      | GCD & Euclidean algorithm                      |  |  |  |  |
|          | 1.2                                      | Bezout's lemma                                 |  |  |  |  |
|          | 1.3                                      | LCM & Linear Diophantine Equations             |  |  |  |  |
| <b>2</b> | Prime numbers & modular arithmetic 7     |                                                |  |  |  |  |
|          | 2.1                                      | Prime numbers                                  |  |  |  |  |
|          | 2.2                                      | Infinite primes                                |  |  |  |  |
|          | 2.3                                      | Congruence                                     |  |  |  |  |
|          | 2.4                                      | Solving equations in $\mathbb{Z}_m$            |  |  |  |  |
| 3        | Mu                                       | tiplicative group of integers modulo $m$ 12    |  |  |  |  |
| 4        | The                                      | Chinese Remainder Theorem 13                   |  |  |  |  |
|          | 4.1                                      | How to use the CRT                             |  |  |  |  |
|          |                                          | 4.1.1 Method I: Euclidean Algorithm            |  |  |  |  |
|          |                                          | 4.1.2 Method II: Multiplicative inverses       |  |  |  |  |
|          | 4.2                                      | The CRT for polynomials in $\mathbb{Z}_m$      |  |  |  |  |
| 5        | Her                                      | sel's Lemma 16                                 |  |  |  |  |
| 6        | The structure of $\mathbb{Z}_m^{\times}$ |                                                |  |  |  |  |
|          | 6.1                                      | Euler's $\phi$ Function                        |  |  |  |  |
|          | 6.2                                      | The Fermat-Euler theorem                       |  |  |  |  |
|          | 6.3                                      | Primitive roots                                |  |  |  |  |
|          | 6.4                                      | Order of an element                            |  |  |  |  |
|          | 6.5                                      | Applications of primitive roots                |  |  |  |  |
|          |                                          | 6.5.1 Primitive roots of prime powers          |  |  |  |  |
|          | 6.6                                      | Quadratic residues                             |  |  |  |  |
| 7        | Euler's criterion 28                     |                                                |  |  |  |  |
|          | 7.1                                      | Application to solving $x^2 \equiv b \pmod{p}$ |  |  |  |  |

| 8            | Legendre symbol                             | 29 |  |  |  |
|--------------|---------------------------------------------|----|--|--|--|
|              | 8.1 Properties of the Legendre symbol       | 31 |  |  |  |
|              | 8.2 Quadratic reciprocity                   | 32 |  |  |  |
|              | 8.3 Rules for computing the Legendre symbol | 34 |  |  |  |
| 9            | Gauss sums                                  |    |  |  |  |
|              | 9.1 Proof of quadratic reciprocity          | 36 |  |  |  |
|              | 9.1.1 Preliminaries                         | 36 |  |  |  |
|              | 9.1.2 The proof                             | 37 |  |  |  |
| 10           | Sum of two squares                          | 39 |  |  |  |
|              | 10.1 The two squares theorem                | 41 |  |  |  |
| 11           | Irrational numbers                          | 41 |  |  |  |
|              | 11.1 Algebraic and transcendental numbers   | 42 |  |  |  |
| 12           | Liouville's Theorem                         | 43 |  |  |  |
| 13           | Pythagorean triples                         | 46 |  |  |  |
| 14           | Fermat's Last Theorem                       | 48 |  |  |  |
| 15           | General Diophantine equation                | 50 |  |  |  |
|              | 15.1 Solving Diophantine equations          | 50 |  |  |  |
|              | 15.2 Diophantine and congruence equations   | 51 |  |  |  |
|              | 15.3 Week 12 lectures                       | 52 |  |  |  |
| Aı           | ppendix                                     | 71 |  |  |  |
| $\mathbf{A}$ | Equivalence relations                       | 71 |  |  |  |
|              | A.1 Equivalence classes                     | 71 |  |  |  |
| В            | Solving linear congruences                  | 71 |  |  |  |

# 1 Divisibility

## 1.1 GCD & Euclidean algorithm

**Definition 1.1.** Let a and b be two integers. We say that b divides a if there exists an integer q such that a = qb. If b divides a, we write  $b \mid a$ .

#### Theorem 1.1

Some basic properties of divisibility, let  $a, b, c \in \mathbb{Z}$ :

- 1. If  $a \mid b$  and  $b \mid c$ , then  $a \mid c$ .
- 2. If  $a \mid b$  and  $a \mid c$  then  $a \mid (bx + cy)$  for all  $x, y \in \mathbb{Z}$ .
- 3. If  $a \mid 1$  then  $a = \pm 1$ .
- 4. If  $a \mid b$  and  $b \mid a$  then  $a = \pm b$ .
- 5. Suppose  $c \neq 0$  then,  $a \mid b$  if and only if  $ac \mid bc$ .

**Example 1.1.** Prove gcd(a, b) = gcd(a + b, b).

**Solution:** Let d be a divisor of a and (a + b) then,

$$d \mid a \text{ and } d \mid (a+b)$$
  
 $\Rightarrow d \mid \underbrace{(a+b-a)}_{b}$ 

**Theorem 1.1** (Division algorithm). Let  $a \in \mathbb{Z}$  and  $b \in N$ . Then there exists unique integers  $q, r \in \mathbb{Z}$  such that

$$a = qb + r$$

and  $0 \le r < b$ .

**Definition 1.2.** Let a and b be integers. If d is another integer such that  $d \mid a$  and  $d \mid b$  then we call d a **common divisor** of a and b.

**Definition 1.3.** If at least one of a and b are non-zero then we define the **greatest** common divisor of a and b to be the largest positive integer d which is a common divisor of a and b. This is usually denoted as gcd(a, b).

**Lemma 1.1** (Euclidean algorithm). If a = qb + r then gcd(a, b) = gcd(b, r).

#### Example 1.1

Let a = 1492 and b = 1066. Then applying the Euclidean algorithm:

$$1492 = 1 \cdot 1066 + 426$$

$$1066 = 2 \cdot 426 + 214$$

$$426 = 1 \cdot 214 + 212$$

$$214 = 1 \cdot 212 + 2$$

$$212 = 106 \cdot 2 + 0.$$

The last non-zero remainder is 2, so gcd(1492, 1066) = 2.

#### Remark 1.1. Why the Euclidean algorithm works:

- Algorithm always terminates since the remainder strictly decreases;
- Refer to Lemma 1.1 each iteration of the algorithm does not change the gcd of the original pair;
- gcd(0, r) = r for  $r \in \mathbb{Z}$ .

#### 1.2 Bezout's lemma

### **Theorem 1.2** (Bezout's lemma)

Let a and b be integers (not both 0). Then there exists integers x and y such that

$$gcd(a, b) = ax + by$$
.

#### Example 1.2

Using the information from Example 1.1 we can 'reverse' the Euclidean algorithm to find the integers x, y such that gcd(1492, 1066) = 2 = 1492x + 1066y. So, we have:

$$\gcd(1492, 1066) = 2$$

$$= 214 - 1 \cdot 212$$

$$= 214 - 1 \cdot (426 - 1 \cdot 214)$$

$$= -1 \cdot 426 + 2 \cdot 214$$

$$= -1 \cdot 426 + 2(1066 - 2 \cdot 426)$$

$$= 2 \cdot 1066 - 5 \cdot 426$$

$$= 2 \cdot 1066 - 5(1492 - 1 \cdot 1066)$$

$$= -5 \cdot 1492 + 7 \cdot 1066.$$

Therefore, (x, y) = (-5, 7).

**Proposition 1.1.** Let a, b be integers, not both zero, and consider the set

$$S = \{ax + by : x, y \in \mathbb{Z}\}.$$

Let d > 0 be the smallest positive integer in S. Then  $d = \gcd(a, b)$ .

**Remark 1.2.** A consequence of Proposition 1.1: gcd(a, b) = 1 if and only if there are integers x, y such that

$$1 = ax + by$$
.

Corollary 1.1. Let a, b be integers, not both zero and consider the set

$$S = \{ax + by : x, y \in \mathbb{Z}\};$$

we can also consider the set

$$S' = \{ n \gcd(a, b) : n \in \mathbb{Z} \}.$$

Then the two sets of integers S, S' are equal.

Note 1.1. Interpretation of Corollary 1.1: linear combinations (over  $\mathbb{Z}$ ) of a, b are precisely the multiples of gcd(a, b).

Corollary 1.2. Let a, b be integers, not both zero. Let c be an integer. Then c is a common divisor of a and b if and only if  $c \mid \gcd(a, b)$ .

**Definition 1.4.** Two integers a, b are said to be **coprime** or **relatively prime** if

$$gcd(a, b) = 1.$$

#### Lemma 1.1

Suppose a, b are coprime:

- 1. If  $a \mid c$  and  $b \mid c$  then  $(ab) \mid c$ ;
- 2. if  $a \mid (bc)$  then  $a \mid c$ ;
- 3. if a and c are also coprime, then a and bc are coprime.

*Proof.* 1. We have ax + by = 1 for some integers x, y. Since  $a \mid c$  and  $b \mid c$  then we can write c = aj and c = bk. Multiplying the first equation by c we get

$$cax + cby = c$$
$$(bk)ax + (aj)by = c$$
$$ab(kx) + ab(jy) = c$$
$$ab(kx + by) = c.$$

So,  $(ab) \mid c$ .

2. We have c = cax + cby. Since  $a \mid (bc)$  and  $a \mid a$  we get that  $a \mid [a(cx) + (bc)y] = c$ .

3. We have

$$1 = au + bv$$
 and  $1 = ax + cy$ .

Multiplying the equations together gives

$$1 = (au + bc)(ax + cy)$$
$$= a(uax + ucy + bvx) + bc(vy).$$

It follows that gcd(a, bc) = 1.

# 1.3 LCM & Linear Diophantine Equations

**Definition 1.5.** If a, b are integers, then a **common multiple** of a and b is an integer c such that  $a \mid c$  and  $b \mid c$ .

**Definition 1.6.** If a and b are both non-zero, the **least common multiple** of a and b is defined to be the **smallest** (positive) integer lcm(a, b) which is a common multiple of a and b.

**Proposition 1.2.** Let a, b be non-zero integers. Then

$$gcd(a, b) lcm(a, b) = |ab|$$

Corollary 1.3. Let  $a, b \in \mathbb{N}$ . Suppose gcd(a, b) = 1 then lcm(a, b) = ab

**Remark 1.3.** The  $lcm(a, b) \le ab$  for a, b > 0.

**Definition 1.7. Linear Diophantine equations** where  $a,b,c\in\mathbb{Z}$  are equations of the form

$$ax + by = c$$
,

has integer solutions for (x, y).

Note 1.2. In general, **Diophantine equations** are equations in one or more variables, for which we seek integer valued solutions.

**Theorem 1.2.** Let a, b, c be integers, with a and b not both 0 and let  $g = \gcd(a, b)$ . The equation

$$ax + by = c$$

has an integer solution (x, y) if and only if  $gcd(a, b) \mid c$ .

#### Theorem 1.3

Assume  $gcd(a, b) \mid c$ . Let  $x_0$  and  $y_0$  be solutions to  $ax_0 + by_0 = g$ . Then the solutions to

$$ax + by = c$$

are given by  $(x_n, y_n)_{n \in \mathbb{Z}}$ , where

$$x_n = \frac{c}{g}x_0 + \frac{b}{g}n,$$
  
$$y_n = \frac{c}{g}y_0 - \frac{a}{g}n.$$

## 2 Prime numbers & modular arithmetic

### 2.1 Prime numbers

**Definition 2.1.** An integer p > 1 is called a **prime number** or a **prime** if it has no positive divisors other than 1 and p.

An integer n > 1 is called **composite** if it is not prime.

Theorem 2.1 (Fundamental theorem of arithmetic).

Every integer n > 1 can be expressed uniquely (up to reordering) as a product of primes.

Corollary 2.1. There exists primes  $p_1, p_2, \ldots, p_r$  and non-negative integers,  $a_1, a_2, \ldots, a_n$  with

$$n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}.$$

Lemma 2.1 (Euclid's Lemma).

- 1. Let p be a prime number and let a, b be integers. Suppose  $p \mid ab$ , then  $p \mid a$  or  $p \mid b$ .
- 2. If we have integers  $a_1, a_2, \ldots, a_n$  and  $p \mid (a_1, a_2, \ldots, a_n)$  then  $p \mid a_i$  for some i.

#### Lemma 2.1

Let

$$n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$

with the  $p_i$  distinct primes and the  $a_i$  positive integers. Then,

1. d > 0 is a divisor of n if and only if

$$d = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$$

with  $0 \le b_i \le a_i$  for each i.

2. The number of positive divisors of n is  $\prod_{i=1}^{r} (a_i + 1)$ .

Example 2.1. How many divisors does 200 have?

**Solution:** The prime factorisation of  $200 = 2^3 \cdot 5^2$  therefore, 200 has (3+1)(2+1) = 12 divisors.

#### Example 2.1

How many positive divisors of  $999 = 3^3 \cdot 37$  are multiples of 9?

**Solution:** We have that any divisor of 999 is of the form  $d = 3^a \cdot 37^b$  for  $0 \le a \le 3$  and  $0 \le b \le 1$ . For d to be a multiple of 9 we need  $0 \mid d \iff a \ge 2$ . Hence,  $0 \le a \le 3 \Rightarrow 2$  choices and  $0 \le b \le 1 \Rightarrow 2$  choices; we then have  $0 \le a \le 3 \Rightarrow 2$  choices in total, i.e. 4 such divisors.

**Proposition 2.1.** For  $n \in \mathbb{N}$ , then the gcd(n, n + 1) = 1.

*Proof.* If  $d \mid n$  and  $d \mid (n+1)$  then  $d \mid (n+1-n) = d \mid 1$  (i.e. any linear combination of n and n+1) so,  $d=\pm 1$ . Since d>0 to be the gcd we have that d=1.

**Lemma 2.2.** Let m, n be two positive integers with

$$m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$$
$$n = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$$

where  $a_i, b_i \geq 0$  are integers. Then,

- 1.  $gcd(m, n) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$  where  $e_i = min(a_i, b_i)$ .
- 2.  $lcm(m, n) = p_1^{f_1} p_2^{f_2} \cdots p_r^{f_r}$  where  $f_i = max(a_i, b_i)$ .

**Theorem 2.2** (Euclid). There are infinitely many primes.

## 2.2 Infinite primes

**Proposition 2.2.** There are infinitely many primes of the form 4k+3, with  $k \in \mathbb{N}$ .

*Proof.* We will be using the following facts:

- 1. For  $n \in \mathbb{N}$  we have that n = 4k, 4k + 1, 4k + 2, or 4k + 3 for some  $k \in \mathbb{Z}$ . [This follows from the division algorithm applied to 4 and n].
- 2. If  $a, b \in \mathbb{Z}$  with a = 4k + 1 and b = 4j + 1 for some  $k, j \in \mathbb{Z}$  then  $ab = (4k + 1)(4j + 1) = 4\underbrace{(4kj + k + j)}_{k'} + 1 = 4k' + 1$ . I.e. numbers of this form are closed under multiplication.

We will use a proof by contradiction. Suppose,  $p_1, p_2, \ldots, p_r$  are all primes of the form 4k + 3. Consider

$$N = 4(p_1 p_2 \cdots p_r - 1) + 3$$
  
 
$$N = 4p_1 p_2 \cdots p_r - 1$$

This number is of the form 4k+3, we suppose N is not prime, so there must exist a prime which divides N. If  $p \mid N$  then p is odd since N is odd. Using Fact (1) we have that  $p \neq 4k, 4k+2$  for any  $k \in \mathbb{Z}$  since N is odd. Also since  $p \mid N$  and  $p \mid p_1p_2 \cdots p_r$  we know that  $p \nmid p_1p_2 \cdots p_r$  since

$$N - 4p_1p_2\cdots p_r = 1$$

so  $p \neq p_j$  for any j = 1, 2, ..., r [from divisibility facts we know that p must divide any linear combination of N and  $p_1p_2 \cdots p_r$  so, we choose our linear combination to be  $N - 4p_1p_2 \cdots p_r = 1$ ]. This tells us that  $p \neq 4k + 3$  for any  $k \in \mathbb{Z}$ . By Fact [1] p = 4k + 1 for  $k \in \mathbb{Z}$ , because there is no  $k \in \mathbb{Z}$  for which 4k + 3 = 1. By Fact [2] we have that N is also of the form 4k + 1, i.e. N = 4k' + 1 for some  $k' \in \mathbb{Z}$ .

$$4k' + 1 = N = 4p_1p_2 \cdots p_r - 1$$
  
=  $4(p_1p_2 \cdots p_r - 1 - k') = 2$   
 $\Rightarrow 4 \mid 2.$ 

We have arrived at a contradiction.

#### Theorem 2.1

Let  $a \in \mathbb{Z}$  and  $q \in \mathbb{N}$ . Suppose that gcd(a,q) = 1. Then there are infinitely many primes of the form qk + a with k a positive integer.

### 2.3 Congruence

**Definition 2.2.** Let m be a non-zero integer and let  $a, b \in \mathbb{Z}$ . We say that a is **congruent** to b modulo m if  $m \mid (a - b)$ . If a is congruent to b modulo m, we write

$$a \equiv b \pmod{m}$$

Remark 2.1. The definition of congruence also implies that

- 1. a = b + km for some  $k \in \mathbb{Z}$ ;
- 2. a and b have the same remainder on division by m.

#### Theorem 2.2

Some properties of congruences:

- 1.  $a \equiv b \pmod{m} \iff b \equiv a \pmod{m} \iff a b \equiv 0 \pmod{m}$ .
- 2. If  $a \equiv b \pmod{m}$  and  $b \equiv c \pmod{m}$ , then  $a \equiv c \pmod{m}$ .
- 3. If  $a \equiv b \pmod{m}$  and  $c \equiv d \pmod{m}$ , then  $ac \equiv bd \pmod{m}$  and  $ax + cy \equiv bx + dy \pmod{m}$  for all  $x, y \in \mathbb{Z}$ .
- 4. For  $n \ge 1$  we have  $a^n \equiv b^n \pmod{m}$ .
- 5. If  $a \equiv b \pmod{m}$  and  $d \mid m$ , then  $a \equiv b \pmod{d}$ .
- 6. Suppose  $c \neq 0$ ,  $a \equiv b \pmod{m}$  if and only if  $ac \equiv bc \pmod{mc}$ .

**Example 2.2.** Example of Property 5:

$$8x \equiv 2 \pmod{10} \Rightarrow 4x \equiv 1 \pmod{5}$$
.

Note 2.1. Some of these properties are inherent from congruences being an equivalence relation.

**Definition 2.3.** Let m be a non-zero integer and  $a \in \mathbb{Z}$ . The **residue class** or **congruence class** of a is the set

$$[a]_m = \{b \in \mathbb{Z} : b \equiv a \pmod{m}\}\$$
$$= \{a + mk : k \in \mathbb{Z}\}.$$

**Remark 2.2.** Congruence classes modulo m can be thought of all the integers that have a common remainder when divided by m.

Note 2.2. If the modulo m is not specified then write [a].

Lemma 2.3.

$$[a]_m = [b]_m \iff a \equiv b \pmod{m}$$
.

**Definition 2.4.** For a positive integer m, the set  $\mathbb{Z}_m$  denotes the set of congruence classes modulo m. That is

$$\mathbb{Z}_m = \{[0]_m, [1]_m, \dots, [m-1]_m\}.$$

**Remark 2.3.** If  $\{x_1, x_2, \dots, x_m\}$  is any complete residue system modulo m then the set

$$\mathbb{Z}_m = \{ [x_1]_m, [x_2]_m, \dots, [x_m]_m \}.$$

**Definition 2.5.** For  $m \neq 0$  and  $a, b \in \mathbb{Z}$  the operations of addition and multiplication on  $\mathbb{Z}_m$  are defined by:

$$[a]_m + [b]_m = [a+b]_m$$
  
 $[a]_m \cdot [b]_m = [a \cdot b]_m.$ 

**Definition 2.6.** Let m be a positive integer. A set  $\{x_1, x_2, \dots, x_r\}$  is called a **complete residue system** modulo m (CRS) if for every integer y there is exactly one  $x_i$  such that

$$y \equiv x_i \pmod{m}$$
.

**Remark 2.4.** In general, every complete residue system modulo m has size m.

Note 2.3. We can reformulate the definition of a CRS as: all the elements of the group  $\mathbb{Z}_m$ .

**Example 2.3.** Let m be a positive integer. Then  $\{0, 1, 2, \dots m-1\}$  is a complete residue system modulo m.

# 2.4 Solving equations in $\mathbb{Z}_m$

#### Lemma 2.2

Let m be a positive integer and let  $a \in \mathbb{Z}$ . If gcd(a, m) = 1 then there exists  $b \in \mathbb{Z}$  such that  $ab \equiv 1 \pmod{m}$ .

We call such ab **inverse** of a modulo m, where the residue class  $[b]_m$  by  $[a]_m^{-1}$ .

**Remark 2.5.** Reformulation:  $[a]_m \in \mathbb{Z}_m$  has a multiplicative inverse if and only if gcd(a, m) = 1.

*Proof.* Proof of converse  $(\Leftarrow)$ :

Suppose gcd(a, m) = 1 then we want to show  $\exists u \in \mathbb{Z}$  with  $au = 1 \pmod{m}$ , i.e.  $[u]_m = [a]_m^{-1}$ . By Bezout's lemma  $\exists u \in \mathbb{Z}$  such that

$$au + mv = 1$$
  
 $\Rightarrow m \mid 1 - au$   
 $\Rightarrow au \equiv 1 \pmod{m}$ .

Proof of  $(\Rightarrow)$ :

Suppose  $\exists [b]_m \in \mathbb{Z}_m$  with  $[a]_m \cdot [b]_m = [1]_m$  i.e.

$$ab \equiv 1 \pmod{m}$$
  
 $\Rightarrow m \mid ab - 1$   
 $\Rightarrow mv = ab - 1$ .

If  $d \mid m$  and  $d \mid a$  then  $d \mid \underbrace{(mv - ab)}_{-1}$  therefore  $d \mid \pm 1 \Rightarrow \gcd(a, m) = 1$ .

#### Proposition 2.1

Let  $a, b, m \in \mathbb{Z}$  and  $m \neq 0$  then

$$ax \equiv b \pmod{m}$$

has solutions in the integers if and only if  $gcd(a, m) \mid b$ .

**Remark 2.6.** Reformulation:  $[ax]_m = [b]_m$  has integer solutions if and only if  $gcd(a, m) \mid b$ .

**Example 2.4.** The linear case. Solve  $48x + 14 \equiv 0 \pmod{85}$  for  $x \in \mathbb{Z}$ . Note that  $\gcd(48,85) = 1$ .

**Solution:** By the Euclidean algorithm we have that

$$85(13) + 48(-23) = 1.$$

Now we need to find  $u \in \mathbb{Z}$  with  $48u \equiv 1 \pmod{85}$ . Notice that

$$85(13) = 1 - 48(-23)$$
  
 $\Rightarrow 85(1 - 48(-23))$   
 $\Rightarrow 48(-23) \equiv 1 \pmod{85}$ 

Since  $-14 \equiv -14 \pmod{85}$  by the addition law of modular arithmetic we can rewrite the original congruence as

$$48x + 14 - 14 \equiv -14 \pmod{85}$$
  
 $48x \equiv -14 \pmod{85}$ .

So u = -23 and if we multiply the original congruence by u we have that

$$(-23)(48)x \equiv (-14)(-23) \pmod{85}$$
  
 $1x \equiv 67 \pmod{85}$   
 $x \equiv 67 \pmod{85}$ .

#### Lemma 2.3

Let  $f(x) = a_0 + a_1 x + \cdots + a_n x^n$  be a polynomial with integer coefficients  $a_i \in \mathbb{Z}$ . If  $a \equiv b \pmod{m}$  then  $f(a) \equiv f(b) \pmod{m}$ .

Corollary 2.2. Suppose  $x \equiv y \pmod{m}$  then  $f(x) \equiv 0 \pmod{m}$  if and only if  $f(y) \equiv 0 \pmod{m}$ .

**Remark 2.7.** To solve  $f(x) \equiv 0 \pmod{m}$  it suffices to find all the solutions among a complete residue system modulo m.

Note 2.4. When the modulo, m, is very large obviously this method is not recommended being used.

#### Example 2.2

Find all the solutions to

$$x^8 + 3 \equiv 0 \pmod{4}.$$

**Solution:** By trial and error we can consider the complete residue system of modulo 4. Therefore, consider the CRS  $\{-1,0,1,2\}$ :

- $x = -1 \Rightarrow (-1)^8 + 3 = 4 \equiv 0 \pmod{8}$ ;
- $x = 0 \Rightarrow 0^8 + 3 = 3 \not\equiv 0 \pmod{8}$ ;
- $x = -1 \Rightarrow 1^8 + 3 = 4 \equiv 0 \pmod{8}$ ;
- $x = -1 \Rightarrow 2^8 + 3 = 259 \not\equiv 0 \pmod{8}$ ;

Therefore,  $x \equiv -1 \pmod{4}$  or  $x \equiv 1 \pmod{4}$ .

# 3 Multiplicative group of integers modulo m

**Definition 3.1.** Given a commutative ring R with an identity element  $1_R$  we say that  $a \in R$  is a **unit** provided there exists  $b \in R$  such that  $a \cdot b = 1_R$ .

Note 3.1. Being a unit means the same as having a multiplicative inverse in the ring R.

**Definition 3.2.** We write  $\mathbb{Z}_m^{\times}$  for the **multiplicative group** of integers modulo m of the **group of units** modulo m, which are defined by

$$\mathbb{Z}_m^{\times} = \{ [a]_m \in \mathbb{Z}_m : [a]_m \text{ is a unit} \}$$
  
=  $\{ [a]_m \in \mathbb{Z}_m : \gcd(a, m) = 1 \}.$ 

**Example 3.1.** Consider  $\mathbb{Z}_6$  which are the units?

- $[5]_6$ , we know that  $5 \cdot 5 \equiv 1 \pmod{6}$  therefore  $[5]_6^{-1} = [5]_6$ ;
- $[2]_6$  is not a unit because there is no solution x to the congruence  $2x \equiv 1 \pmod{6}$ .

**Definition 3.3.** Let m be a non-zero integer. A set  $\{x_1, x_2, \ldots, x_r\}$  is called a **reduced residue system** modulo m if for every integer y with gcd(y, m) = 1 there is exactly one  $x_i$  such that

$$y \equiv x_i \pmod{m}$$
.

Note 3.2. We can think of a reduced residue system as all the elements of the group  $(\mathbb{Z}_m^{\times}, \times)$ .

# 4 The Chinese Remainder Theorem

**Theorem 4.1** (Chinese Remainder Theorem). Let  $m_1, m_2, \ldots, m_r$  be positive integers with  $gcd(m_i, m_j) = 1$  for all  $i \neq j$ . Set  $m = m_1 m_2 \cdots m_r$  then, the map

$$\mathbb{Z}_m \to \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r}$$

given by

$$[a]_m \mapsto ([a]_{m_1}, [a]_{m_2}, \cdots, [a]_{m_r})$$

is a bijection.

#### Proposition 4.1

Suppose gcd(m,n) = 1. The image of the map  $\mathbb{Z}_{mn}^{\times} \to \mathbb{Z}_m \times \mathbb{Z}_n$  given by

$$([a]_{mn}) \mapsto ([a]_m, [a]_n)$$

equals  $\mathbb{Z}_m^{\times} \times \mathbb{Z}_n^{\times}$ .

Note 4.1. Suppose gcd(m, n) = 1 there exists an isomorphism  $\psi : \mathbb{Z}_{mn}^{\times} \to \mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$  given by the map

$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$
.

#### **Theorem 4.1** (CRT Reformulation)

Let  $m_1, m_2, \ldots, m_r$  be positive integers with  $gcd(m_i, m_j) = 1$  for all  $i \neq j$ . Let  $a_1, a_2, \ldots, a_r$  be integers then, the solutions of the simultaneous congruence equations

$$x \equiv a_1 \pmod{m_1}$$
  
 $x \equiv a_2 \pmod{m_2}$   
 $\vdots$   
 $x \equiv a_r \pmod{m_r}$ 

are given by the integers x lying in a single congruence class (mod  $m_1m_2\cdots m_r$ ).

### 4.1 How to use the CRT

#### 4.1.1 Method I: Euclidean Algorithm

The CRT does not explicitly outline how to find a solution to x in practice. Suppose we are solving the simultaneous congruence of

$$x \equiv a \pmod{m}$$
 and  $x \equiv b \pmod{n}$ .

To solve such system we use the Euclidean algorithm to find  $r, s \in \mathbb{Z}$  such that mr + ns = 1. Then the general solution is

$$x \equiv bmr + ans \pmod{mn}$$
.

**Remark 4.1.** To solve a system of congruence with 3 or more congruences, solve a pair first with the CRT. Then use the solution to form a pair so that the CRT can be invoked again and vice versa.

**Example 4.1.** Use the Chinese Remainder Theorem to find all integers x such that

$$x \equiv 11 \pmod{47}$$
 and  $x \equiv 3 \pmod{31}$ .

#### **Solution:**

First we check if 47 and 31 are relatively prime. They are since gcd(47,31) = 1. We use the Euclidean Algorithm to solve find  $r, s \in \mathbb{Z}$  such that 47r + 31s = 1. We begin as such:

$$47 = 1 \cdot 31 + 16$$
  
 $31 = 1 \cdot 16 + 15$   
 $16 = 1 \cdot 15 + 1$ .

Furthermore, we can "unwind" the system of equations:

$$1 = 16 - 15$$

$$= 16 - (31 - 16)$$

$$= 2 \cdot 16 - 31$$

$$= 2(47 - 31) - 31$$

$$= 2 \cdot 47 - 3 \cdot 31.$$

Therefore, we have that r=2 and s=-3. The general solution of the system of congruences

$$x \equiv a \pmod{m}$$
 and  $x \equiv b \pmod{n}$ 

is given by

$$x \equiv bmr + ans \pmod{mn}$$
.

Hence, the solution to our system of congruences is:

$$x \equiv (3)(47)(2) + (11)(31)(-3) \pmod{47 \times 31}$$
  
 $x \equiv 282 - 1023 \pmod{47 \times 31}$   
 $x \equiv -741 \pmod{47 \times 31}$   
 $x \equiv 716 \pmod{47 \times 31}$ 

This means that,

$$x - 716 = 1457k$$
  
 $x = 716 + 1457k$  for  $k \in \mathbb{Z}$ .

#### 4.1.2 Method II: Multiplicative inverses

In the general case, suppose we are solving the simultaneous congruence of

$$x \equiv a \pmod{m}$$
 and  $x \equiv b \pmod{n}$ .

We note that to solve such system gcd(m, n) = 1 therefore, by Bezout's lemma  $\exists r, s \in \mathbb{Z}$  such that mr + ns = 1; by such a relation we notice that

$$mr \equiv 1 \pmod{n}$$
 and  $ns \equiv 1 \pmod{m}$ 

therefore we have that r, s are the multiplicative inverses of the system of congruences respectively. As such we need to find these multiplicative inverses and then set the solution

$$x \equiv bmr + ans \pmod{mn}$$
.

**Example 4.2.** Let us reconsider the same example from before: find all integers x such that

$$x \equiv 11 \pmod{47}$$
 and  $x \equiv 3 \pmod{31}$ .

#### **Solution:**

As checked previously, 47 and 31 are coprime, so we can apply the CRT. By Bezout's lemma we have that  $\exists r, s \in \mathbb{Z}$  such that 47r + 31s = 1 therefore,

$$47r \equiv 1 \pmod{31}$$
 and  $31s \equiv 1 \pmod{47}$ .

The values r and s are the multiplicative inverse of the congruence respectively; we have that  $r = [47]_{31}^{-1} = [2]_{31}$  and  $s = [31]_{47}^{-1} = [44]_{47}$ . Hence, the solution to the problem is

$$x \equiv (3)(47)(2) + (11)(31)(44) \pmod{47 \times 31}$$
  
 $x \equiv 282 + 15004 \pmod{1457}$   
 $x \equiv 15286 \pmod{1457}$   
 $x \equiv 716 \pmod{1457}$ .

# 4.2 The CRT for polynomials in $\mathbb{Z}_m$

**Example 4.3.** Find all solutions in  $\mathbb{Z}_{15}$  to  $f(x) \equiv 0 \pmod{15}$  for  $f(x) = 2x^3 + 5x + 2$ . **Key idea:**  $f(x) \equiv 0 \pmod{15} \iff 15 \mid f(x)$  that is

$$f(x) \equiv 0 \pmod{3} \iff 3 \mid f(x)$$
  
 $f(x) \equiv 0 \pmod{5} \iff 5 \mid f(x)$ .

**Solution:** now we solve two equations

- 1.  $f(x) \equiv 0 \pmod{3}$ ;
- 2.  $f(x) \equiv 0 \pmod{5}$ .

Now we can just use trial and error to find the solutions:

• 
$$x = 0, f(0) = 2 \not\equiv 0 \pmod{3}$$
;

- $x = 1, f(1) = 2 + 5 + 2 \equiv 0 \pmod{3}$ ;
- $x = -1, f(-1) = -2 5 + 2 \not\equiv 0 \pmod{3}$ .

So our only solution for this congruence is

$$x \equiv 1 \pmod{3}$$
.

By a similar process for the second congruence the solution is

$$x \equiv 4 \pmod{5}$$
.

Applying the CRT to the congruences:

$$x \equiv 1 \pmod{3}$$
  
 $x \equiv 4 \pmod{5}$ .

We have that

$$x \equiv (1)(5)(-1) + (4)(3)(2) \pmod{15}$$
  
 $\equiv -5 + 24 \pmod{15}$   
 $\equiv 19 \pmod{15}$   
 $\equiv 4 \pmod{15}$ .

Example 4.4. How many solutions does the congruence

$$x^2 \equiv 4 \pmod{15}$$

have in  $\mathbb{Z}_{15}$ ?

Solution: Consider

$$x^2 \equiv 4 \pmod{3} \Rightarrow 2 \text{ solutions}$$
  
 $x^2 \equiv 4 \pmod{5} \Rightarrow 2 \text{ solutions}$ 

Therefore there are  $2 \times 2 = 4$  pairs of solutions.

# 5 Hensel's Lemma

**Theorem 5.1.** Let p be a prime and let  $f(x) = a_0 + a_1x + \cdots + a_nx^n$  be a polynomial degree  $\leq n$  with integer coefficients (we allow the possibility that  $a_n = 0$ ). We suppose that  $a_i \not\equiv 0 \pmod{p}$  for some i. Then the congruence equation

$$f(x) \equiv 0 \pmod{p}$$

has at most n solutions in  $\mathbb{Z}_p$ .

#### **Theorem 5.1** (Hensel's Lemma)

Let  $f(x) = a_0 + a_1x + \ldots + a_nx^n$  be a polynomial with integer coefficients, let p be a prime and let r be a positive integer. We let f'(x) be the derivative of f(x) so,  $f'(x) = a_1 + 2a_2x + \ldots + na_nx^{n-1}$ . Suppose  $x_r$  is an integer with

$$f(x_r) \equiv 0 \pmod{p^r}$$

and

$$f'(x_r) \not\equiv 0 \pmod{p}$$
.

Then there exists  $x_{r+1} \in \mathbb{Z}$  satisfying

$$f(x_{r+1}) \equiv 0 \pmod{p^{r+1}}$$
 and  $x_{r+1} \equiv x_r \pmod{p^r}$ 

Moreover, the  $x_{r+1}$  satisfying these properties is **unique** modulo  $p^{r+1}$ , and we can take

$$x_{r+1} = x_r - uf(x_r)$$

where u is an inverse of  $f'(x_r)$  modulo p.

#### Example 5.1. How many solutions does

$$f(x) = x^{10} + x^3 + 1 \equiv 0 \pmod{9}$$

have?

#### **Solution:**

- 1. Solve  $f(x) \equiv 0 \pmod{3} \Rightarrow x \equiv 1 \pmod{3}$ ;
- 2. Check if  $f'(1) \equiv 0 \pmod{3}$ ; we have that  $f'(1) = 13 \not\equiv 0 \pmod{3}$ .

Therefore, the conditions Hensel's lemma are met, so there is a solution which is **unique**. The congruence has only one solution.

#### Example 5.1

Let  $f(x) = x^2 + x + 5$ . Find all solutions to  $f(x) \equiv 0 \pmod{11^2}$ . Solution:

- 1. Solve  $f(x) \equiv 0 \pmod{11}$  by trial and error, so we have  $x = 2, 8 \pmod{11}$ ;
- 2. for each solution  $x_1$  check if  $f'(x_1) \equiv 0 \pmod{11}$  i.e.
  - $x_1 = 2 \Rightarrow f'(x_1) = 5 \not\equiv 0 \pmod{11}$ ;
  - $x_1 = 8 \Rightarrow f'(x_1) = 17 \not\equiv 0 \pmod{11}$ ;
- 3. Find the multiplicative inverse, u, to  $f'(x_1) \pmod{11}$  i.e. find u such that  $uf'(x_1) \equiv 1 \pmod{11}$ :
  - for  $x_1 = 2$  we need to find u such that  $uf'(2) = 5u \equiv 1 \pmod{11}$  which implies u = -2;
  - for  $x_1 = 8$  we have u = 2
- 4. Apply Hensel's lemma to  $x_1 = 2.8$  for which we have a formula:

$$x_2 = x_1 - uf(x_1)$$

$$\Rightarrow x_1 = 2 \Rightarrow x_2 \equiv 24 \pmod{121}$$

$$\Rightarrow x_1 = 8 \Rightarrow x_2 \equiv 96 \pmod{121}.$$

**Lemma 5.1.** For  $t \in \mathbb{Z}$  and a positive integer r, we have

$$f(x+tp^r) \equiv f(x) + tf'(x)p^r \pmod{p^{r+1}}$$
,

where we view both sides as polynomials in x, and we mean that all the coefficients of these two polynomial are congruent modulo  $p^{r+1}$ .

#### Theorem 5.2

With regard to Hensel's lemma if  $f'(x_r) \equiv 0 \pmod{p}$  then each of the following holds:

- 1. if  $p^{r+1} \mid f(x_r)$  then  $f(x_r + tp^r) \equiv 0 \pmod{p^{r+1}}$  for each  $t \pmod{p}$  i.e.  $t \in \{1, 2, \dots, p\}$ .
- 2. If  $p^{r+1} \nmid f(x_r)$  then there are **no** solutions  $x_{r+1}$  to  $f(x) \equiv 0 \pmod{p^{r+1}}$  with  $x_{r+1} \equiv x_r \pmod{p^r} \Rightarrow x_{r+1} = x_r + tp^r$ .

**Remark 5.1.** In Case 1. If **ONE** of the  $t \in \{1, 2, ..., p\}$  are roots of  $f(x) \equiv 0 \pmod{p}$  then **ALL**  $t \in \{1, 2, ..., p\}$  are roots of the congruence.

Note 5.1. That is, suppose  $x_r$  is a solution to the congruence  $f(x) \equiv 0 \pmod{p^r}$  but, Hensel's lemma's condition are not satisfied i.e.  $f'(x_r) \equiv 0 \pmod{p}$ . Then we need to compute  $f(x_r) \pmod{p^{r+1}}$ :

- if  $f(x_r) \equiv 0 \pmod{p^{r+1}}$  then  $x_r + tp^r$  are solutions for all  $t \in \{1, 2, \dots p\}$ ;
- if  $f(x_r) \not\equiv 0 \pmod{p^{r+1}}$  then there are no solutions modulo  $p^{r+1}$ .

**Example 5.2.** Solve  $x^3 + 1 \equiv 0 \pmod{9}$ .

- 1. Solve  $f(x) = x^3 + 1 \equiv \pmod{3}$  by trial and error, which implies that  $x \equiv 2 \pmod{3}$ ;
- 2. Check if  $3 \mid f'(2)$ . We have that  $f'(2) = 3 \cdot 2^2 \equiv 0 \pmod{3}$ . So, Hensel's lemma does not apply.
- 3. Check if  $9 \mid f(2)$ , we have that f(2) = 9 so yes.
- 4. We can conclude that this will have 3 solutions i.e.  $x_1 = 2 \Rightarrow x_1 + tp$  for  $t \in \{1, 2, 3\}$  which leads to  $x \equiv 2, 5, 8 \pmod{5}$ .

# 6 The structure of $\mathbb{Z}_m^{\times}$

### 6.1 Euler's $\phi$ Function

**Definition 6.1.** Let m be a positive integer. We define  $\phi : \mathbb{N} \to \mathbb{N}$  given by  $\phi(m)$  to be the number of integers a such that  $1 \le a \le m$  and  $\gcd(a, m) = 1$  i.e.

$$\phi(m) = |\{1 \le a \le m : \gcd(a, m) = 1\}|.$$

Note 6.1. The  $\phi$  function tells us how many numbers are coprime to m.

**Theorem 6.1.** Equivalently  $\phi(m) = |\mathbb{Z}_m^{\times}|$ , the cardinality of the multiplicative group  $\mathbb{Z}_m^{\times}$ .

**Lemma 6.1.** Let m, n be coprime positive integers then,  $\phi(mn) = \phi(m)\phi(n)$ .

#### Lemma 6.1

Let p be prime and n a positive integer. Then

$$\phi(p^n) = p^{n-1}(p-1) = p^n - p^{n-1}.$$

**Remark 6.1.** Notice that  $\phi(p) = p - 1$ .

### 6.2 The Fermat-Euler theorem

**Proposition 6.1.** Let m be a positive integer then

$$\sum_{d|m} \phi(d) = F(m) = m$$

for d > 0. Note that we are summing over positive divisors of m.

Note 6.2. We can interpret F(m) as the sum of the  $\phi$  of all the positive divisors of m.

**Remark 6.2.** If m, n are coprime then F(mn) = F(m)F(n)

Example 6.1. Find

- $F(p) = \sum_{d|p} = \phi(1) + \phi(p) = 1 + (p-1) = p;$
- $F(p^2) = \sum_{d|p^2} = \phi(1) + \phi(p) + \phi(p^2) = 1 + (p-1) + (p^2 p) = p^2$ .

#### **Theorem 6.1** (Fermat-Euler theorem)

Let  $a \in \mathbb{Z}$  and let m be a positive integer. Suppose gcd(a, m) = 1 then,

$$a^{\phi(m)} \equiv 1 \pmod{m}$$
.

**Definition 6.2.** Let  $m \in \mathbb{N}$  and  $a \in \mathbb{Z}$  with gcd(a, m) = 1. The **order** of  $[a]_m \in \mathbb{Z}_m^{\times}$  is the smallest positive integer d with  $[a]_m^d = [1]_m$ .

Note 6.3. Notation:  $o([a]_m)$  means the order of  $[a]_m$ .

**Corollary 6.1.** By the Euler-Fermat theorem  $o([a]_m) \leq \phi(m)$  for gcd(a, m) = 1. In particular the order of  $[a]_m$  divides  $\phi(m)$  i.e.  $o([a]_m) \mid \phi(m)$ .

**Example 6.2.** Find the order of 2 (mod 9).

**Solution:** We know the order of  $[2]_9$  divides  $\phi(9) = 6$ . So,  $o([2]_9) \in \{1, 2, 3, 6\}$  i.e. the divisors of 6. Note  $[1]_9$  has order 1 so check

- $2^2 \equiv 4 \pmod{9}$ ;
- $2^3 \equiv 8 \pmod{9}$ .

Therefore, the order of  $[2]_9$  is 6.

#### Corollary 6.1 (Fermat's Little theorem)

Suppose that p is a prime number and a is an integer.

- 1.  $a^p \equiv a \pmod{p}$ ;
- 2. if gcd(a, p) = 1 then  $a^{p-1} \equiv 1 \pmod{p}$ .

#### Example 6.1

What is  $10^{4035} \pmod{2017}$ ? (2017 is a prime number)

**Solution:** Since 2017 is prime we can use Fermat's Little Theorem which implies  $10^{2016} \equiv 1 \pmod{2017}$ . Since  $4035 = 2 \cdot 2016 + 3$  we have

$$10^{4035} \equiv 10^{2 \cdot 2016 + 3} \pmod{2017}$$
$$\equiv (10^{2016})^2 \cdot 10^3 \pmod{2017}$$
$$\equiv 1 \cdot 1000 \pmod{2017}.$$

Therefore,  $10^{4035} \pmod{2017}$  is 1000 (mod 2017).

#### 6.3 Primitive roots

The motivation behind this section is to find the positive integers m for which  $\mathbb{Z}_m^{\times}$  is a cyclic group.

**Definition 6.3.** Let m be a positive integer. If g is an integer which is coprime to m, such that the order of g modulo m is  $\phi(m)$ . Then we say that g is a **primitive root** modulo m.

Note 6.4. We can reformulate this definition as: if gcd(g, m) = 1 such that  $o([g]_m) = \phi(m)$  then we say g is a **primitive root** modulo m.

**Remark 6.3.** By this definition if a primitive root exists within  $\mathbb{Z}_m^{\times}$  then it is a cyclic group because, the order of the primitive root is equal to the order of the group. Therefore, a primitive root is a generator of  $\mathbb{Z}_m^{\times}$ .

#### Lemma 6.2 (Primitive Root Test)

Let  $m \geq 3$  be a positive integer and let g be coprime to m. Then g is a primitive root modulo m if and only if

$$g^{\frac{\phi(m)}{p}} \not\equiv 1 \pmod{m}$$

for all prime divisors p of  $\phi(m)$  i.e. all the primes, p, for which  $p \mid \phi(m)$ .

Note 6.5. We are determining that the only possible choice for the order of g is  $\phi(m)$ .

**Example 6.3.** Find a primitive root modulo 7. Solution:

- 1. Compute  $\phi(7) = 7 1 = 6$ .
- 2. Use trial and error, try g = 2, we have that the prime divisors of 6 are 2 and 3 so now with primitive root test:

- $2^{\frac{6}{3}} = 2^2 \equiv 4 \pmod{7}$ ;
- $2^{\frac{6}{2}} = 2^3 \equiv 1 \pmod{7}$ .

So, 2 is not a primitive root modulo 7.

- 3. Try a different number, g = 3.
  - $3^{\frac{6}{3}} = 3^2 \equiv 2 \pmod{7}$ ;
  - $3^{\frac{6}{2}} = 3^3 \equiv 6 \pmod{7}$ .

So, the primitive root test implies that 3 **IS** a primitive root modulo 7.

**Lemma 6.2.** Let p be a prime number. For  $d \mid (p-1)$  let

$$W_d = \{[a] \in \mathbb{Z}_p^{\times} : [a] \text{ has order } d\}$$

and  $w_d = |W_d|$ . Then  $w_d \le \phi(d)$ , for each  $d \mid (p-1)$ .

**Theorem 6.2.** For each divisor of p-1 i.e. d>0 such that  $d\mid (p-1)$ , there are  $\phi(d)$  elements of order d in  $\mathbb{Z}_p^{\times}$ .

#### Corollary 6.2

There are  $\phi(p-1)$  primitive roots modulo p.

**Remark 6.4.** Therefore,  $\mathbb{Z}_p^{\times}$  is cyclic as there are  $\phi(p-1)$  elements of p-1 i.e. the primitive roots.

#### Corollary 6.3

There always exists a primitive root modulo p.

**Example 6.4.** How many primitive roots are there modulo 23?

**Solution:** There are  $\phi(23-1) = \phi(22) = \phi(2)\phi(11) = 10$ .

#### Example 6.2

Show there is no primitive root modulo 15.

**Solution:** We have  $\phi(15) = \phi(3)\phi(5) = 8$ . Observe for any  $g \pmod{15}$ , by the CRT, we have

$$g^d \equiv 1 \pmod{15} \iff g^d \equiv 1 \pmod{3}$$
 and  $\iff g^d \equiv 1 \pmod{5}$ .

By Fermat's Little Theorem we obtain  $g^4 \equiv 1 \pmod{3}$  and  $g^4 \equiv 1 \pmod{5}$  so,  $g^4 \equiv 1 \pmod{15}$ . Hence, the order of g is at most 4. We are done because for g to be a primitive root, it needs to have order 8, but it has only at most order 4.

#### Proposition 6.1

If g is a primitive root modulo p then

$$g^{\frac{(p-1)}{2}} \equiv -1 \pmod{p}.$$

*Proof.* Suppose g is a primitive root modulo p. Let  $x = g^{\frac{p-1}{2}}$ . Then

$$x^2 = g^{p-1} \equiv 1 \pmod{p}$$

by Fermat's Little Theorem. Hence,  $x \equiv 1$  or  $-1 \pmod{p}$ . Since, g is a primitive root, we know  $o([g]_p) = \phi(p) = p - 1$  therefore

$$x \not\equiv 1 \pmod{p}$$
.

The only possibly choice is

$$x = g^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

#### 6.4 Order of an element

#### Proposition 6.2

For G a finite group  $g \in G$  and o(g) = d we have

$$o(g^k) = \frac{d}{\gcd(k, d)}.$$

**Example 6.5.** Show 4 is not a primitive root modulo m for  $m \ge 3$ . **Solution:** Write  $d = o([2]_m)$  (assuming gcd(m, 2) = 1).

• If d is even then  $4 = 2^2$  so

$$o([2^2]_m) = \frac{d}{\gcd(2, d)} = \frac{d}{2} \le \frac{\phi(m)}{2} \le \phi(m).$$

• If d is odd then

$$o([4]_m) = o([2]_m) = d < \underbrace{\phi(m)}_{\text{even}}.$$

#### Proposition 6.3

Suppose p and q are distinct prime numbers. Then the maximum order of an element in  $\mathbb{Z}_{pq}^{\times}$  is given by the lcm(p-1,q-1).

## 6.5 Applications of primitive roots

#### Lemma 6.3

Let  $a \in \mathbb{Z}$  and  $m \in \mathbb{N}$  with gcd(a, m) = 1. Then  $a^n \equiv 1 \pmod{m}$  if and only if  $o([a]_m)$  divides n.

Remark 6.5. Reformulation of lemma from lecture notes:

Let G be a finite group with identity element e. Then for  $g \in G$  we have that  $g^n = e$  if and only if o(g) divides n.

Note 6.6. In practice this lemma will be used when  $G = \mathbb{Z}_m^{\times}$ , in which case the lemma states: for  $a \in \mathbb{Z}$  with  $\gcd(a, m) = 1$  we have that

$$([a]_m)^n = 1 \iff o([a]_m) \mid n.$$

#### Example 6.3

Find all solutions in  $\mathbb{Z}_{19}$  to

$$4x^5 \equiv 7 \pmod{19}$$
.

#### **Solution:**

- 1. Find a primitive root modulo 19. With trial and error in combination with primitive root test we have that 2 is a primitive root modulo 19.
- 2. Since we know 2 is a primitive root we can write:
  - $x = 2^i$  for some i;
  - $4 = 2^2$ :
  - (by trial and error)  $7 \equiv 2^6 \pmod{19}$ .
- 3. Now the original problem becomes

$$2^2 2^{5i} \equiv 2^6 \pmod{19}$$

$$2^{5i-4} \equiv 1 \pmod{19}$$

Recall 2 is a primitive root modulo 19 so  $o([2]_{19}) = \phi(19) = 18$  therefore, by the lemma above we have  $18 \mid 5i - 4 \Rightarrow 5i \equiv 4 \pmod{18}$ .

- 4. Solve  $5i \equiv 4 \pmod{18}$  so,  $i \equiv 8 \pmod{18}$  which implies i = 8 + 18k for some  $k \in \mathbb{Z}$ .
- 5. Notice,  $2^{18k} \equiv 1 \pmod{19}$  so,  $2^{8+18k} = 2^8 \cdot 2^{18k} \equiv 2^8 \cdot 1 \pmod{19}$ . Therefore, by substituting i into x we have the solution

$$x = 2^8 \equiv 9 \pmod{19}.$$

**Example 6.6.** Find all integer x with  $4^x \equiv 9 \pmod{19}$ . Solution:

- 1. Find a primitive root modulo 19: we have 2 is a primitive root modulo 19.
- 2. Write:
  - $4=2^2$ ;
  - (by trial and error)  $9 \equiv 2^8 \pmod{19}$

so,

$$2^{2x} \equiv 2^8 \pmod{19} \Rightarrow 2^{2x-8} \equiv 1 \pmod{18}$$
.

3. Recall  $o([2]_{19}) = \phi(19) = 18$ , by the lemma above we know,

$$18 \mid (2x - 8)$$

$$\Rightarrow 2x \equiv 8 \pmod{18}$$

$$\Rightarrow x \equiv 4 \pmod{9}$$

Our answer is therefore,  $x \equiv 4 \pmod{9}$ .

#### 6.5.1 Primitive roots of prime powers

#### Proposition 6.4

Let p be a prime. Suppose g is a primitive root modulo p. Then g or g+p is a primitive root modulo  $p^2$ .

**Remark 6.6.** The group  $\mathbb{Z}_{p^2}^{\times}$  is a cyclic group.

Note 6.7. This proposition helps us 'lift' primitive roots to higher powers of p.

Note 6.8. To determine which of g or g+p is a primitive root modulo  $p^2$ , we need to compute  $g^{p-1} \pmod{p^2}$ . If  $g^{p-1} \equiv 1 \pmod{p^2}$  then g+p is a primitive root modulo  $p^2$ , otherwise g is a primitive root modulo  $p^2$ .

Since g is a primitive root modulo p it has order  $\phi(p) = p - 1$ . Suppose g is a primitive root modulo  $p^2$ , in this case g would have order  $\phi(p^2)$  therefore, if  $g^{p-1} \equiv 1 \pmod{p^2}$  then it **cannot** be a primitive root modulo  $p^2$  as this would imply g has order  $\phi(p) \neq \phi(p^2)$ . Then it follows that g + p is the primitive root.

#### Example 6.4

Find two primitive roots modulo 25.

#### Solution:

- 1. Find a primitive root modulo 5. By trial and error we have 2 is a primitive root modulo 5.
- 2. Compute  $2^{5-1} \pmod{5^2}$ .
  - If  $2^{5-1} \equiv 1 \pmod{5^2}$  then 2+5=7 is a primitive root modulo 25.
  - If  $2^{5-1} \not\equiv 1 \pmod{5^2}$  then 2 is a primitive root modulo 25.
- 3. We have  $2^4 = 16 \not\equiv 1 \pmod{25}$ . So, we conclude 2 is a primitive root modulo 25.
- 4. Since 2 and 7 are primitive roots modulo 5 we can compute

$$7^{5-1} = 7^4 = 2401 \equiv 1 \pmod{25}$$
.

So we conclude 7 + 5 = 12 is a primitive root modulo 25.

#### Proposition 6.5

Let p > 2 be a prime. Suppose g is a primitive root modulo  $p^2$  then g is a primitive root modulo  $p^n$  for all n > 2.

**Remark 6.7.** The group  $\mathbb{Z}_{p^n}^{\times}$  is cyclic whenever  $p \neq 2$ .

#### Proposition 6.6

The group  $\mathbb{Z}_m^{\times}$  is cyclic if and only if  $m=1,2,4,p^n,2p^n$  for p>2 and  $n\geq 1$ .

#### Proposition 6.7

Suppose m > 0 is a positive integer and suppose that  $\mathbb{Z}_m^{\times}$  has a primitive root. Then the number of primitive roots in  $\mathbb{Z}_m^{\times}$  is  $\phi(\phi(m))$ .

#### 6.6 Quadratic residues

**Definition 6.4.** Let p > 2 and  $b \in \mathbb{Z}$  with gcd(b, p) = 1. We say that b is a quadratic residue (QR) modulo p if the equation

$$x^2 \equiv b \pmod{p}$$

has a solution. Otherwise, we say that b is a quadratic non-residue (QNR) modulo p.

Note 6.9. We can think of quadratic residues as the 'square numbers' modulo p.

**Remark 6.8.** If  $p \mid b$  then  $x \equiv 0 \pmod{p}$  is the only solution. Also, if p = 2 and a is odd then the only other possibility is  $b \equiv 1 \pmod{2}$ . Therefore, from now on we assume that p is odd and b is coprime to p.

Remark 6.9. In this course 0 is neither a quadratic residue nor a quadratic non-residue.

Corollary 6.2. If  $a \equiv b \pmod{p}$  then a is a QR modulo p if and only if b is a QR modulo p.

### Example 6.5

Find all QR modulo 7.

**Solution:** We write an exhaustive table.

| $a \pmod{7}$  | $a^2 \pmod{7}$ |
|---------------|----------------|
| 1             | $1^2 = 1$      |
| 2             | $2^2 = 4$      |
| 3             | $3^2 \equiv 2$ |
| $4 \equiv -3$ | 2              |
| $5 \equiv -2$ | 4              |
| $6 \equiv -1$ | 1              |

Remark 6.10. The QR are the numbers that we get on the RHS of the table.

The QR modulo 7 are all the squares modulo 7 i.e. all the numbers that are equal to a square modulo 7. By looking at the right-hand column of the table we have all the numbers that satisfy such property. Therefore,

- the QR are: 1, 2, 4 modulo 7;
- the QNR are 3, 5, 6 modulo 7.

#### Proposition 6.8

Let  $g \in \mathbb{Z}$  be a primitive root modulo p. Then  $[g^k]_p$  is a quadratic residue if and only if k is even.

Corollary 6.3. There are  $\frac{(p-1)}{2}$  quadratic residues and  $\frac{(p-1)}{2}$  quadratic non-residues in  $\mathbb{Z}_p^{\times}$ .

#### Theorem 6.2

We have -1 is a quadratic residue modulo p if  $p \equiv 1 \pmod{4}$  and a quadratic non-residue if  $p \equiv 3 \pmod{4}$ .

*Proof.* Let g be a primitive root modulo p and let  $x = g^{\frac{(p-1)}{2}}$ . We have

$$x^2 = q^{p-1} \equiv 1 \pmod{p}$$

and  $x \not\equiv 1 \pmod{p}$ , since g is a primitive root. The equation  $x^2 \equiv 1 \pmod{p}$  has only two solutions, so we have  $x \equiv -1 \pmod{p}$ . We deduce that -1 is a quadratic residue if and only if  $\frac{p-1}{2}$  is even i.e.

$$\frac{p-1}{2} \equiv 0 \pmod{2}$$

$$\Rightarrow p-1 \equiv 0 \pmod{4}$$

$$\Rightarrow p \equiv 1 \pmod{4}.$$

## 7 Euler's criterion

**Theorem 7.1.** There are infinitely many primes, p, with  $p \equiv 1 \pmod{4}$  i.e. primes of the form 4k + 1.

*Proof.* For sake of contradiction suppose  $p_1, p_2, \ldots, p_n$  are **all** the primes congruent to 1 modulo 4. Consider

$$x = 2p_1p_2\cdots p_n$$
 and  $N = x^2 + 1$ .

Suppose  $p \mid N$ , then  $x^2 + 1 \equiv 0 \pmod{p}$ . Since  $x^2 \equiv -1 \pmod{p}$  then -1 is a quadratic residue modulo p we have that  $p \equiv 1 \pmod{4}$  by Theorem 6.2. Hence,  $p \mid x$ ; by assumption, p must be one of the primes  $p_1, p_2, \dots p_n$ . This is a contradiction since  $q \nmid N - x^2 = 1$ .

#### **Theorem 7.1** (Euler's Criterion)

Let  $b \in \mathbb{Z}$  and p > 2 with gcd(b, p) = 1. Then each of the following holds:

1. b is a quadratic residue if and only if

$$b^{\frac{(p-1)}{2}} \equiv 1 \pmod{p}.$$

2. b is a quadratic non-residue if and only if

$$b^{\frac{(p-1)}{2}} \equiv -1 \pmod{p}.$$

# 7.1 Application to solving $x^2 \equiv b \pmod{p}$

#### Proposition 7.1

Suppose b is a quadratic residue modulo p and  $p \equiv 3 \pmod{4}$ . Then

$$x_0 = b^{\frac{p+1}{4}}$$

is a solution to  $x^2 \equiv b \pmod{p}$ .

#### Example 7.1

Given that 5 is a quadratic residue modulo 139. Find all solutions in  $\mathbb{Z}_{139}$  to

$$x^2 \equiv 5 \pmod{139}$$
.

**Solution:** We have that 139 is prime and  $139 \equiv 3 \pmod{4}$  so take

$$x_0 = 5^{\frac{139+1}{4}} = 5^{35}.$$

Now we compute  $5^{35} \pmod{139}$  (using the method of repeated squaring) and we have

$$5^{35} \equiv 137 \pmod{139}$$
.

Notice  $(x_0)^2 \equiv b \pmod{p} \iff (-x_0)^2 \equiv 0 \pmod{p}$ . Therefore, our solutions are  $x \equiv 127 \pmod{139}$  and  $x \equiv -127 \equiv 12 \pmod{139}$ .

# 8 Legendre symbol

**Definition 8.1.** Let  $b \in \mathbb{Z}$  and p > 2. The **Legendre symbol**,  $\left(\frac{b}{p}\right)$  is given by

$$\begin{pmatrix} \frac{b}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } b \text{ is a quadratic residue modulo } p \\ 0 & \text{if } b \mid p \\ -1 & \text{if } b \text{ is a quadratic non-residue modulo } p. \end{cases}$$

**Remark 8.1.** For each prime p > 2 we can think of the Legendre symbol as a function:

$$\left(\frac{\cdot}{p}\right): \mathbb{Z} \to \{-1, 0, 1\}.$$

•

$$\left(\frac{\cdot}{p}\right): \mathbb{Z}_p \to \{-1, 0, 1\}.$$

•

$$\left(\frac{\cdot}{p}\right): \mathbb{Z}_p^{\times} \to \{-1, 1\}.$$

**Proposition 8.1.** Some properties of the Legendre symbol:

- $\left(\frac{1}{p}\right) = 1$  always because 1 is a quadratic root modulo p.
- $\left(\frac{b^2}{p}\right) = 1$  if  $p \nmid b$  because  $x^2 \equiv b^2 \pmod{p} \iff x \equiv \pm b \pmod{p}$ .
- If  $a \equiv b \pmod{p}$  then

$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right),\,$$

because a is a quadratic residue if and only if b is a quadratic residue.

### Lemma 8.1 (Periodicity)

The Legendre symbol is periodic i.e.

$$\left(\frac{a+dp}{p}\right) = \left(\frac{a}{p}\right).$$

# Example 8.1

Compute  $\left(\frac{2022}{7}\right)$ . Solution: We have  $2022 \equiv 6 \equiv -1 \pmod{7}$ , which implies

$$\left(\frac{2022}{7}\right) = \left(\frac{-1}{7}\right).$$

Since  $7 \equiv 3 \pmod{4}$  then -1 is a quadratic non-residue modulo 7. Therefore,

$$\left(\frac{-1}{7}\right) = -1.$$

### Lemma 8.2

Let  $b \in \mathbb{Z}$  and p > 2. The number of solutions in  $\mathbb{Z}_p$  to

$$x^2 \equiv b \pmod{p}$$

is equal to  $1 + \left(\frac{b}{p}\right)$ .

*Proof.* We have three cases to consider.

- If  $p \mid b$  the only solution is x = [0], and  $1 = 1 + 0 = 1 + \left(\frac{b}{p}\right)$ .
- If b is QNR then, by definition there are no solutions to the congruence hence, we  $0 = 1 - 1 = 1 + \left(\frac{b}{p}\right).$
- If b is a QR, we have one solution x and another solution given by (-x) since, it is an even polynomial thus, we have  $2 = 1 + 1 = 1 + \left(\frac{b}{p}\right)$  solutions.

#### Example 8.2

How many solutions does the equation

$$3x^2 + 6x + 2 \equiv 0 \pmod{23}$$

have in  $\mathbb{Z}_{23}$ ?

**Solution.** We have  $3x^2 + 6x + 2 = 3(x+1)^2 - 1$ , so we have to solve

$$3(x+1)^2 \equiv 1 \pmod{23}$$
.

Note that,  $[8]_{23} = [3]_{23}^{-1}$  thus, we are solving

$$(x+1)^2 \equiv 8 \pmod{23}.$$

The question is now if, 8 is a QR modulo 23, which indeed it is. Hence, we have two solutions.

# 8.1 Properties of the Legendre symbol

**Theorem 8.1.** Reformulation of Euler's criterion with the Legendre symbol. Let  $b \in \mathbb{Z}$  and p > 2 with gcd(b, p) = 1. Then we have

$$b^{\frac{p-1}{2}} \equiv \left(\frac{b}{p}\right) \pmod{p}.$$

**Remark 8.2.** This reformulation also holds true when  $b \mid p$  as both sides are 0 therefore, they are congruent modulo p.

**Lemma 8.1** (Multiplicative property). Let a, b be integers then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

**Remark 8.3.** Reformulation of Euler's criterion in terms of the Legendre symbol. If  $[a] \in \mathbb{Z}_p^{\times}$  then we have

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p}.$$

If  $p \mid a$  we also have

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p},$$

because in this case both sides are  $0 \pmod{p}$ .

**Lemma 8.2** (The rule for -1). Let p > 2. We have that

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} +1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}.$$

**Proposition 8.2** (The rule of 2). Let p > 2 then

$$\left(\frac{2}{p}\right) = (-1)^{\frac{(p^2 - 1)}{8}} = \begin{cases} +1 & \text{if } p \equiv 1 \text{ or } 7 \pmod{8} \\ -1 & \text{if } p \equiv 3 \text{ or } 5 \pmod{8} \end{cases}.$$

### Example 8.3

Compute  $\left(\frac{51}{53}\right)$ .

Solution: Observe  $51 \equiv -2 \pmod{53}$ ,  $53 \equiv 1 \pmod{4}$  and  $53 \equiv 3 \pmod{8}$  then by periodicity

$$\left(\frac{51}{53}\right) = \left(\frac{-2}{53}\right)$$

$$= \left(\frac{-1 \cdot 2}{53}\right)$$

$$= \left(\frac{-1}{53}\right) \left(\frac{2}{53}\right)$$

$$= 1 \cdot (-1)$$

$$= -1.$$

**Theorem 8.2.** Let p > 2 then

$$\sum_{n=1}^{p-1} \left(\frac{n}{p}\right) = 0.$$

# 8.2 Quadratic reciprocity

**Theorem 8.1** (The Law of Quadratic reciprocity)

Let p, q > 2 be two distinct primes. Then

$$\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{q}{p}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -\left(\frac{q}{p}\right) & \text{if } p \equiv q \equiv 3 \pmod{4}. \end{cases}$$

Remark 8.4. Quadratic reciprocity is transformative, in the following way

$$\underbrace{\left(\frac{p}{q}\right)}_{\text{Arithmetic in } \mathbb{Z}_q} = \underbrace{\left(-1\right)^{\frac{p-1}{2}\frac{q-1}{2}}\left(\frac{q}{p}\right)}_{\text{Arithmetic in } \mathbb{Z}_p}.$$

**Example 8.1.** Compute  $\left(\frac{5}{8171}\right)$  (8171 is a prime).

**Solution:** Using quadratic reciprocity:

$$\left(\frac{5}{8171}\right) = \left(\frac{8171}{5}\right)$$

As  $5 \equiv 1 \pmod{4}$  we do not include the -1. Then by periodicity

$$\left(\frac{8171}{5}\right) = \left(\frac{1}{5}\right) = 1.$$

As  $8171 \equiv 1 \pmod{5}$ .

### Example 8.4

Show that  $\left(\frac{5}{p}\right) = 1$  if and only if  $p \equiv 1$  or 4 (mod 5). (That is, show that 5 is a quadratic residue modulo 5).

**Solution:** Notice,  $5 \equiv 1 \pmod{4}$ . Observe by quadratic reciprocity

$$1 = \left(\frac{5}{p}\right)$$
$$= \left(\frac{p}{5}\right).$$

The statement holds if and only if p is a quadratic residue modulo 5. We then list the quadratic residues modulo 5.

$$\begin{array}{c|cccc} a \pmod{5} & a^2 \pmod{5} \\ \hline \pm 1 & 1 \\ \pm 2 & 4 \end{array}$$

Which means  $p \equiv 1 \pmod{5}$  or  $p \equiv 4 \pmod{5}$ .

**Example 8.2.** Compute  $\left(\frac{21}{67}\right)$ .

**Solution:** Observe,  $67 \equiv 7 \equiv 3 \pmod{4}$ ,  $67 \equiv 4 \pmod{4}$  and  $67 \equiv 1 \pmod{3}$ .

$$\left(\frac{21}{67}\right) = \left(\frac{3}{67}\right) \left(\frac{7}{67}\right)$$

$$= (-1)\left(\frac{67}{3}\right) (-1)\left(\frac{67}{7}\right)$$

$$= (-1)\left(\frac{1}{3}\right) (-1)\left(\frac{4}{7}\right)$$

$$= (-1)(1)(-1)(1)$$

$$= 1.$$

**Remark 8.5.** General strategy for computing  $\left(\frac{a}{p}\right)$ .

- 1. If |a| > p use the periodicity rule.
- 2. Factor a and then use the multiplicative rule.
- 3. Apply quadratic reciprocity.

Repeat the process if necessary.

#### Theorem 8.2

If p, q > 2 and p and q are distinct primes then for  $b \in \mathbb{N}$ 

$$\left(\frac{q^b}{p}\right) = \left(\frac{q}{p}\right)^b = \begin{cases} +1 & \text{if } b \text{ is even} \\ \left(\frac{q}{p}\right) & \text{if } b \text{ is odd.} \end{cases}$$

# 8.3 Rules for computing the Legendre symbol

#### Theorem 8.3

Let p, q be distinct odd primes and  $a, b \in \mathbb{Z}$ .

R0. Periodicity: 
$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$$
 if  $a \equiv b \pmod{p}$ .

R1. Multiplicativity: 
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$
.

R2. Rule for 2:

$$\left(\frac{2}{p}\right) = \begin{cases} +1 & \text{if } p \equiv 1 \text{ or } 7 \pmod{8} \\ -1 & \text{if } p \equiv 3 \text{ or } 5 \pmod{8} \end{cases}.$$

R3. Rule for -1:

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}.$$

R4. Quadratic reciprocity:

$$\left(\frac{p}{q}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -\left(\frac{q}{p}\right) & \text{if } p \equiv q \equiv 3 \pmod{4}. \end{cases}$$

#### Theorem 8.4

Let p be an odd prime. Given integers a, b, c with gcd(1, p) = 1; the quadratic equation

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

has (in  $\mathbb{Z}_p$ ):

- 0 solutions if  $b^2 4ac$  is a quadratic non-residue modulo p.
- 1 solution if  $b^2 4ac \equiv 0 \pmod{p}$ .
- 2 solutions  $b^2 4ac$  is a quadratic residue modulo p.

#### Example 8.5

Determine the number of solutions to  $5x^2 + 2x + 4 \equiv 0 \pmod{29}$ .

**Solution:** Consider the congruence equation  $ax^2 + bx + c \equiv 0 \pmod{p}$ , if  $p \nmid a$  then the number of solutions is given by  $1 + \left(\frac{b^2 - 4ac}{p}\right)$ . We are computing

$$1 + \left(\frac{2^2 - 4(5)(4)}{2(5)}\right).$$

We compute the Legendre symbol first

$$\left(\frac{2^2 - 4(5)(4)}{2(5)}\right) = \left(\frac{-76}{29}\right)$$
$$= \left(\frac{-1}{11}\right)$$
$$= -1$$

Therefore, there are 1-1 solutions i.e. there are no solutions.

## 9 Gauss sums

**Definition 9.1.** An  $n^{\text{th}}$  root of unity is a complex number, z, such that  $z^n = 1$  for  $n \in \mathbb{N}$ .

Note 9.1. Suppose  $z \in \mathbb{C}$ , the roots of unity are the solutions to  $z^n = 1$ . Now we write the number 1 in polar form

$$z^{n} = 1$$

$$= e^{2\pi ki}$$

$$= \cos(2\pi k) + i\sin(2\pi k).$$

Therefore, by De Moivre's theorem

$$z = 1^{\frac{1}{n}}$$

$$= e^{\frac{2\pi k}{n}i}$$

$$= (\cos(2\pi k) + i\sin(2\pi k))^{\frac{1}{n}}$$

$$= \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)$$

**Definition 9.2.** We will define the notation. Given p > 2 and  $b \in \mathbb{Z}$  then

$$e_p(b) := e^{\frac{2\pi b}{p}i} = \cos\left(\frac{2\pi b}{p}\right) + i\sin\left(\frac{2\pi b}{p}\right).$$

**Theorem 9.1.** Properties of the roots of unity; let  $a, b \in \mathbb{Z}$ .

• 
$$e_p(ab) = e_p(a)^b$$
.

- If  $a \equiv b \pmod{p}$  then  $e_p(a) = e_p(b)$ .
- $e_p(a)^p = e_p(ap) = e_p(0) = 1$ . Therefore,  $e_p(a)$  is a  $p^{\text{th}}$  root of unity.

**Definition 9.3.** Let p > 2 be a prime and  $b \in \mathbb{Z}$ . The **Gauss sum** associated to b modulo p is given by

$$g_b = \sum_{n=1}^{p-1} \left(\frac{n}{p}\right) e_p(bn).$$

**Example 9.1.** If p = 5 and b = 2 then the Gauss sum of 2 modulo 5 is given by

$$g_2 = \sum_{n=1}^{4} \left(\frac{n}{5}\right) e_5(2n)$$

$$= \left(\frac{1}{5}\right) e_5(2) + \left(\frac{2}{5}\right) e_5(4) + \left(\frac{3}{5}\right) e_5(6) + \left(\frac{4}{5}\right) e_5(8)$$

$$= (1)e_5(2) + (-1)e_5(4) + (-1)e_5(6) + (1)e_5(8)$$

$$= e_5(2) - e_5(4) - e_5(1) + e_5(3)$$

$$= -\sqrt{5}.$$

#### Proposition 9.1

Let p > 2 and  $b \in \mathbb{Z}$  with gcd(b, p) = 1. Then

$$g_b^2 = p(-1)^{\frac{p-1}{2}}.$$

**Lemma 9.1.** Let p > 2 and  $b \in \mathbb{Z}$ . Then

$$g_b = \left(\frac{b}{p}\right) g_1.$$

**Lemma 9.2.** Let  $m, m \in \mathbb{Z}$ . Then

$$\sum_{b=0}^{p-1} e_p(b(m-n)) = \begin{cases} p & \text{if } m \equiv n \pmod{p} \\ 0 & \text{otherwise.} \end{cases}$$

### 9.1 Proof of quadratic reciprocity

#### 9.1.1 Preliminaries

**Definition 9.4.** The set  $\mathbb{Z}[x]$  is the ring of polynomials with integer coefficients.

**Definition 9.5.** The set  $\mathbb{Z}[e_p]$  is defined as

$$\mathbb{Z}[e_p] = \{ f(e_p) : f \in \mathbb{Z}[x] \}$$

$$= \{ c_{p-1}e_p^{p-1} + c_{p-2}e_p^{p-2} + \dots + c_1e_p + c_0 : c_{p-1}, \dots, c_0 \in \mathbb{Z} \}.$$

**Remark 9.1.** Let  $\alpha, \beta \in \mathbb{Z}[e_p]$  and q be a prime then,

$$(\alpha + \beta)^q \equiv \alpha^q + \beta^q \pmod{q}$$
.

**Remark 9.2.** From now on the notation  $e_p := e_p(1)$ .

**Definition 9.6.** Let  $\gamma, \alpha, \beta \in \mathbb{Z}[x]$ . We say  $\alpha$  divides  $\beta$  if there exists  $\delta \in \mathbb{Z}[x]$  with  $\alpha = \delta \beta$ .

**Definition 9.7.** We say  $\alpha$  is **congruent** to  $\beta$  modulo  $\gamma$  if  $\gamma \mid (\alpha - \beta)$ .

**Theorem 9.2.** If p is prime and  $\alpha, \beta \in \mathbb{Z}[e_p]$  the

$$(\alpha + \beta)^p \equiv \alpha^p + \beta^p \pmod{p}$$
.

### 9.1.2 The proof

**Theorem 9.1** (The Law of Quadratic reciprocity)

Let p, q > 2 be two distinct primes. Then

$$\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{q}{p}\right) = \begin{cases} \left(\frac{q}{p}\right) & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -\left(\frac{q}{p}\right) & \text{if } p \equiv q \equiv 3 \pmod{4}. \end{cases}$$

*Proof.* Let  $g_1$  be the Gauss sum associated to 1 modulo p i.e.

$$g_1 = \sum_{n=1}^{p-1} \left(\frac{n}{p}\right) e_p(n).$$

We will compute  $g_1^q$  in two different ways then combine the results.

**PART I.** Let  $P = p(-1)^{\frac{p-1}{2}}$ , by Euler's criterion we have

$$P^{\frac{p-1}{2}} \equiv \left(\frac{P}{q}\right) \pmod{q}.$$

By Proposition 9.1 and Lemma 9.1 we have

$$g_1^{q-1} = (g_1^2)^{\frac{q-1}{2}}$$

$$= P^{\frac{q-1}{2}}$$

$$\equiv \left(\frac{P}{q}\right) \pmod{q}$$

therefore,

$$g_1^q \equiv g_1 \left(\frac{P}{q}\right) \pmod{q}$$

where the congruence is taken in  $\mathbb{Z}[e_p]$ .

**PART II.** Recall that if q is prime and  $\alpha, \beta \in \mathbb{Z}[e_p]$  then

$$(\alpha + \beta)^q \equiv \alpha^q + \beta^q \pmod{q}$$
.

As such we have that

$$g_1^q = \left(\sum_{n=1}^{p-1} \left(\frac{n}{p}\right) e_p(n)\right)^q$$
$$= \sum_{n=1}^{p-1} \left(\frac{n}{p}\right)^q e_p(n)^q \pmod{q}.$$

Since q is odd then  $\left(\frac{n}{q}\right)^q = \left(\frac{n}{q}\right)$  we can write

$$g_1^q = \sum_{n=1}^{p-1} \left(\frac{n}{p}\right) e_p(qn) \pmod{q}$$
$$\equiv g_q \pmod{q}.$$

Recall  $g_b = \left(\frac{b}{p}\right) g_1$  so,

$$g_q = \left(\frac{q}{p}\right)g_1$$

which implies that

$$g_1^q \equiv g_q \equiv \left(\frac{q}{p}\right) g_1 \pmod{q}$$
.

**PART III.** Now we combine the results from the previous parts,

$$g_1^q \equiv g_1\left(\frac{P}{q}\right) \equiv \left(\frac{q}{p}\right)g_1 \pmod{q}$$

thus,

$$g_1\left(\frac{P}{q}\right) \equiv \left(\frac{q}{p}\right) g_1 \pmod{q}$$
.

Multiplying by  $g_1$  on both sides we get

$$g_1^2\left(\frac{P}{q}\right) \equiv g_1^2\left(\frac{q}{p}\right) \pmod{q}.$$

Since gcd(q, P) = 1 we can cancel  $g_1^2 = P$  from both sides of the congruence to get

$$\left(\frac{P}{q}\right) \equiv \left(\frac{q}{p}\right) \pmod{q}.$$

Finally, since  $\left(\frac{P}{q}\right), \left(\frac{q}{p}\right) \in \{-1, 1\}$  we must have that  $\left(\frac{q}{p}\right) = \left(\frac{P}{q}\right)$ .

As  $P = p(-1)^{\frac{p-1}{2}}$  we conclude that

$$\begin{pmatrix} \frac{q}{p} \end{pmatrix} = \begin{pmatrix} \frac{P}{q} \end{pmatrix} \\
= \begin{pmatrix} \frac{p(-1)^{\frac{p-1}{2}}}{q} \end{pmatrix} \\
= \begin{pmatrix} \frac{(-1)^{\frac{p-1}{2}}}{q} \end{pmatrix} \begin{pmatrix} \frac{p}{q} \end{pmatrix} \\
= \begin{pmatrix} \frac{-1}{q} \end{pmatrix}^{\frac{p-1}{2}} \begin{pmatrix} \frac{p}{q} \end{pmatrix} \\
= \begin{pmatrix} (-1)^{\frac{q-1}{2}} \end{pmatrix}^{\frac{p-1}{2}} \begin{pmatrix} \frac{p}{q} \end{pmatrix} \\
= (-1)^{\frac{p-1}{2} \frac{q-1}{2}} \begin{pmatrix} \frac{p}{q} \end{pmatrix},$$

as desired.

10 Sum of two squares

**Definition 10.1.** An integer  $m \in \mathbb{N}$  is a sum of two squares if  $m = a^2 + b^2$  for some  $a, b \in \mathbb{Z}$ .

**Remark 10.1.** In this definition we allow for a and b to be zero. Thus, perfect squares are also sums of two squares.

**Definition 10.2.** The **Gaussian integers** is the ring  $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$ 

**Theorem 10.1.** The units in  $\mathbb{Z}[i]$  are:  $\pm 1$  and  $\pm i$ .

**Theorem 10.2.** Let  $\alpha, \beta \in \mathbb{Z}[i]$ , we say  $\alpha$  divides  $\beta$  and, we write  $\alpha \mid \beta$  if there exists a  $\gamma \in \mathbb{Z}[i]$  with  $\beta = \alpha \gamma$ .

**Definition 10.3.** A Gaussian prime is a Gaussian integer  $\mathfrak{p} \in \mathbb{Z}[i]$  such that  $\mathfrak{p} \neq 0, \pm 1, \pm i$  and if  $\mathfrak{p} \mid \alpha\beta$  for  $\alpha, \beta \in \mathbb{Z}[i]$  then  $\mathfrak{p} \mid \alpha$  or  $\mathfrak{p} \mid \beta$ .

**Remark 10.2.** Since  $\mathbb{Z} \subset \mathbb{Z}[i]$  we can deduce whether primes in  $\mathbb{Z}$  are Gaussian primes. If a prime, p, is a sum of two squares i.e.  $p^2 = a^2 + b^2$  then we can factor p = (a+ib)(a-ib) in  $\mathbb{Z}[i]$ . So, p will not be a Gaussian prime. Conversely, if  $p \in \mathbb{Z}$  is not a sum of two squares then p is a Gaussian prime.

**Proposition 10.1.** A positive integer, m, is a square if and only if every exponent  $a_i$  in the prime factorisation  $m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$  is even.

### Lemma 10.1

Suppose  $m \in \mathbb{Z}$  is a sum of two squares i.e.  $m = a^2 + b^2$  with  $a, b \in \mathbb{Z}$ . Then  $m \equiv 0, 1$ , or 2 (mod 4).

*Proof.* If  $x \in \mathbb{Z}$  then  $x^2$  is either 0 or 1 modulo 4.

### Corollary 10.1

If  $m \equiv 3 \pmod{4}$  then m is not a sum of two squares.

**Lemma 10.1.** Let  $m \in \mathbb{Z}$ , then m is a sum of two squares if and only if  $m = |\alpha|^2$  for some  $\alpha \in \mathbb{Z}[i]$ .

Proof.

- Proof of  $(\Rightarrow)$ . Suppose  $m=a^2+b^2$  then  $m=(a+ib)(a-ib)=|a+ib|^2$ .
- Proof of  $(\Leftarrow)$ . If  $n = |\alpha|^2$  for  $\alpha = a + ib \in \mathbb{Z}[i]$  then  $n = a^2 + b^2$ .

### Theorem 10.1

Let  $m, n \in \mathbb{Z}$ . If m and n are sums of two squares so is mn. We can write  $m = a^2 + b^2$  and  $n = c^2 + d^2$  then  $mn = (ac - bd)^2 + (ad + bc)^2$ .

*Proof.* Write  $m = |\alpha|^2$  and  $n = |\beta|^2$  for  $\alpha, \beta \in \mathbb{Z}[i]$ . Then  $mn = |\alpha|^2 |\beta|^2 = |\alpha\beta|^2 \in \mathbb{Z}[i]$ . So, by the previous lemma mn is a sum of two squares. Furthermore, we can write  $m = a^2 + b^2 = (a + ib)(a - ib)$  and  $n = c^2 + d^2 = (c + id)(c - id)$  as such,

$$mn = (a+ib)(a-ib)(c+id)(c-id)$$

$$= (a+ib)(c+id)(a-ib)(c-id)$$

$$= [(ac-bd) + i(ad+bc)][(ac-bd) - i(ad+bc)]$$

$$= (ac-bd)^2 + (ad+bc)^2.$$

### Example 10.1

Write  $1313 = 13 \cdot 101$  as a sum of two squares.

Solution: Notice that

- $13 = 2^2 + 3^2$ :
- $101 = 10^2 + 1^2$ .

Therefore, we can write

$$1313 = (2 \cdot 10 - 3 \cdot 1)^{2} + (2 \cdot 1 + 3 \cdot 10)^{2}$$
$$= 17^{2} + 32^{2}.$$

### 10.1 The two squares theorem

**Theorem 10.3** (Pigeon hole principle). If m objects are distributed into n containers and m > n then **at least** one container contains more than 2 objects.

**Example 10.1.** Let  $n \in \mathbb{N}$  and  $S \subseteq \mathbb{Z}$  with |S| = m > n. There exists  $a, b \in S$  with  $a \neq b$  and  $a \equiv b \pmod{n}$ .

**Lemma 10.2.** Let  $a, n \in \mathbb{Z}$  with n > 1 and n is not equal to a square number. Then there exists  $(c_1, d_1), (c_2, d_2) \in \mathbb{Z} \times \mathbb{Z}$  with  $0 \le c_i, d_i < \sqrt{n}$  for i = 1, 2 such that:

- $c_1 + d_1 a \neq c_2 + a d_2$ ;
- $c_1 + ad_1 \equiv c_2 + ad_2 \pmod{n}$ .

### Theorem 10.2

Let p be a prime. Then p is a sum of two squares if and only if p = 2 or  $p \equiv 1 \pmod{4}$ .

### **Theorem 10.3** (The two squares theorem)

An integer  $n \in \mathbb{N}$  is a sum of two squares if and only if the exponent of every prime number which is congruent to 3 modulo 4 in the prime factorisation of n is even.

### 11 Irrational numbers

**Definition 11.1.** We use  $\mathbb{R}$  to denote the real numbers,  $\mathbb{C}$  the complex numbers and  $\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N} \right\}$ .

**Definition 11.2.** An irrational number is a complex number  $z \in \mathbb{C}$  such that  $z \notin \mathbb{Q}$ .

**Theorem 11.1.** A real number  $x \in \mathbb{R}$  is rational if and only if its decimal expansion either terminates or repeats.

### Proposition 11.1

Let  $z \in \mathbb{C}$  be a root of a polynomial  $x^m + c_{m-1}x^{m-1} + \cdots + c_1x + c_0$  with integer coefficients  $c_i \in \mathbb{Z}$ . Then z is an integer or z is irrational.

**Remark 11.1.** We need the polynomial f(x) to be monic i.e. the leading coefficient is 1.

**Theorem 11.2.** The number e is irrational.

### 11.1 Algebraic and transcendental numbers

**Definition 11.3.** A complex number  $z \in \mathbb{C}$  is called **algebraic** if z is a root of a non-zero polynomial with rational coefficients.

**Definition 11.4.** A complex number z is called **transcendental** if it is not algebraic.

### Example 11.1.

- $\frac{a}{b} \in \mathbb{Q}$  is algebraic as it is root of  $x \frac{a}{b}$ .
- $\sqrt{2}$ ,  $\sqrt[3]{5}$  and  $\sqrt[d]{p}$  are all algebraic for  $d \ge 2$  and p is prime.
- $\pi$  and e are transcendental.

### Example 11.1

Let  $\alpha = \sqrt{7} + \sqrt{5}$ . Find integers  $c_0, c_1, c_2, c_3$  such that  $\alpha$  is a root of  $f(x) = x^4 + c_3x^3 + c_2x^2 + c_1x + c_0$ .

**Solution:** We know  $\alpha = \sqrt{7} + \sqrt{5}$  which can be rewritten as  $\alpha - \sqrt{7} = \sqrt{5}$  so,

$$(\alpha - \sqrt{7})^2 = (\sqrt{5})^2$$
$$\alpha^2 - 2\alpha\sqrt{7} + 7 = 5.$$

Which can be rewritten as  $\alpha^2 + 2 = 2\alpha\sqrt{7}$ . By squaring both sides

$$(\alpha^{2} + 2)^{2} = (2\alpha\sqrt{7})^{2}$$
$$\alpha^{4} - 4\alpha^{2} + 4 = 28\alpha^{2}$$
$$\alpha^{4} - 24\alpha^{2} + 4 = 0.$$

Therefore, the coefficients are

$$c_0 = 4$$
  
 $c_1 = c_3 = 0$   
 $c_2 = -24$ .

### **Theorem 11.1** (Dirichlet's approximation theorem)

Let  $\alpha \in \mathbb{R}$  and  $n \geq 1$  be an integer. Then there exists  $\frac{a}{b} \in \mathbb{Q}$  with  $a \in \mathbb{Z}$  and  $1 \leq b \leq n$  such that

$$\left|\alpha - \frac{a}{b}\right| < \frac{1}{bn}.$$

Corollary 11.1. Suppose  $\alpha \in \mathbb{R}$  is irrational. Then there exists infinitely many (distinct) rational numbers  $\frac{a}{b}$  such that

$$\left|\alpha - \frac{a}{b}\right| < \frac{1}{b^2}.$$

**Definition 11.5. Notation:** For  $\alpha \in \mathbb{R}$  let

$$\alpha = N(\alpha) + F(\alpha)$$

where  $N(\alpha)$  is an integer  $0 \le F(\alpha) < 1$ , where  $F(\alpha)$  is called the **fractional part** of  $\alpha$  and  $N(\alpha)$  the **integer part** of  $\alpha$ .

**Example 11.2.**  $\pi = N(\pi) + F(\pi)$  with  $N(\pi) = 3$  and  $F(\pi) = 0.14159...$ 

### 12 Liouville's Theorem

### Theorem 12.1 (Liouville's Theorem)

Let  $\alpha \in \mathbb{R}$  be an irrational number which is a root of a polynomial

$$f(x) = c_m x^m + c_{m-1} x^{m-1} + \dots + c_1 x + c_0$$

with  $c_i \in \mathbb{Q}$  and  $c_m \neq 0$ . Then there exists a real number C > 0 such that for all  $a \in \mathbb{Z}$  and  $b \in \mathbb{N}$  we have

 $\left|\alpha - \frac{a}{b}\right| > \frac{C}{b^m}.$ 

Note 12.1. The degree of b in the inequality is the degree of the polynomial f.

### Theorem 12.2

The number  $\sqrt{2}$  is irrational. Especially, we have

$$\left|\sqrt{2} - \frac{a}{b}\right| > \frac{C}{b^2}.$$

*Proof.* The proof of Liouville's theorem for the case  $\alpha = \sqrt{2}$ . We will prove that for all  $a \in \mathbb{Z}$  and  $b \in \mathbb{N}$  we have

$$\left|\sqrt{2} - \frac{a}{b}\right| > \frac{1}{b^2} \underbrace{\frac{1}{1 + 2\sqrt{2}}}_{C}.$$

- Case 1. If  $\left|\sqrt{2} \frac{a}{b}\right| < 1$  then we consider the polynomial  $f(x) = x^2 2 = (x \sqrt{2})(x + \sqrt{2})$  to find bounds for  $\left|f\left(\frac{a}{b}\right)\right| = \left|\left(\frac{a}{b} \sqrt{2}\right)\left(\frac{a}{b} + \sqrt{2}\right)\right|$ . (We do this because we want to bound  $\left|\frac{a}{b} \sqrt{2}\right| = \left|\sqrt{2} \frac{a}{b}\right|$ ).
  - **Upper bound** of  $\left| f\left(\frac{a}{b}\right) \right|$ . Note that by the triangle inequality we have

$$\left| \frac{a}{b} + \sqrt{2} \right| = \left| \frac{a}{b} - \sqrt{2} + \sqrt{2} + \sqrt{2} \right|$$

$$\leq \left| \frac{a}{b} - \sqrt{2} \right| + \left| \sqrt{2} + \sqrt{2} \right|$$

$$< 1 + 2\sqrt{2}.$$

Therefore,

$$\left| f\left(\frac{a}{b}\right) \right| \le \left| \frac{a}{b} - \sqrt{2} \right| \left(1 + 2\sqrt{2}\right).$$

- Lower bound of  $|f(\frac{a}{b})|$ . We have

$$\left| f\left(\frac{a}{b}\right) \right| = \left| \left(\frac{a}{b}\right)^2 - 2 \right|$$
$$= \left| \frac{a^2 - 2b^2}{b^2} \right|.$$

Since,  $a^2 - 2b^2 \in \mathbb{Z}$  and  $a^2 - 2b^2 \neq 0$  we have that  $|a^2 - 2b^2| \geq 1$  hence,

$$\left| f\left(\frac{a}{b}\right) \right| \ge 1.$$

By combining the bounds we have

$$\frac{1}{b^2} \le \left| f\left(\frac{a}{b}\right) \right| \le \left| \frac{a}{b} - \sqrt{2} \right| \left(1 + 2\sqrt{2}\right),$$

which implies

$$\left|\sqrt{2} - \frac{a}{b}\right| > \frac{1}{\left(1 + 2\sqrt{2}\right)b^2}.$$

• Case 2. If  $\left|\sqrt{2} - \frac{a}{b}\right| \ge 1$  then we clearly have

$$\left|\sqrt{2} - \frac{a}{b}\right| > \frac{1}{\left(1 + 2\sqrt{2}\right)b^2}$$

as well (since  $b \ge 1$ ).

Therefore, we have

$$\left|\sqrt{2} - \frac{a}{b}\right| > \frac{1}{\left(1 + 2\sqrt{2}\right)b^2}$$

in all cases. In this case we take  $C=\frac{1}{1+2\sqrt{2}}$  in the statement of Liouville's theorem.  $\square$ 

Note 12.2. By varying C the inequality can switch from > to  $\geq$  and vice versa.

### Corollary 12.1

Let  $\alpha \in \mathbb{R}$  be an irrational number as in Liouville's theorem. Suppose we have a real number  $\varepsilon > 0$ , then the inequality

$$\left|\alpha - \frac{a}{b}\right| < \frac{1}{b^{m+\varepsilon}}$$

holds for only finitely many  $a \in \mathbb{Z}$  and  $b \in \mathbb{N}$ .

### Example 12.1

The above corollary shows that thre exist pnly finite many a, b such that  $\left|\sqrt{2} - \frac{a}{b}\right| \le \frac{1}{b^3}$ . We illustrate how to find them.

We have

$$\left|\sqrt{2} - \frac{a}{b}\right| > \frac{1}{(1+2\sqrt{2})b^2}$$

so if,  $\left|\sqrt{2} - \frac{a}{b}\right| \le \frac{1}{b^3}$  then, we have

$$\frac{1}{b^3} > \frac{1}{(1+2\sqrt{2})b^2}$$

which implies  $b < 1 + 2\sqrt{2}$ . Since,  $b \in \mathbb{N}$ , we deduce that b = 1, 2, 3.

- If b=3, the inequality is  $\left|\frac{a}{3}-\sqrt{2}\right| \leq \frac{1}{27}$  which implies that  $\left|3\sqrt{2}-a\right| \leq \frac{1}{9}$ . Since,  $3\sqrt{2}\approx 4.24$ , there are no integers within the range  $\frac{1}{9}$  so, there are no a's satisfying the inequality.
- If b=2 the inequality is  $\left|\frac{a}{2}-\sqrt{2}\right| \leq \frac{1}{8}$  which implies that  $\left|2\sqrt{2}-a\right| \leq \frac{1}{4}$ . We get one solution, a=3.
- If b = 1 we get a = 1, 2.

### Proposition 12.1

The number  $\alpha = \sum_{n=1}^{\infty} \frac{1}{10^{n!}}$  is transcendental.

*Proof.* Suppose for the sake of contradiction that  $\alpha$  is a root of a polynomial of degree m with rational coefficients, i.e.  $\alpha$  is algebraic. By Liouville's theorem we know there exists a real number C>0 such that

$$\left|\alpha - \frac{a}{b}\right| > \frac{C}{b^m}$$

for all  $a \in \mathbb{Z}$  and  $b \in \mathbb{N}$ . To approximate  $\alpha$  by rational number, consider the finite sum

$$\alpha_k = \sum_{n=1}^k \frac{1}{10^{n!}},$$

which has denominator of  $10^{k!}$ . Therefore, we have

$$|\alpha - \alpha_k| = \sum_{n=k+1}^{\infty} \frac{1}{10^{n!}}.$$

By considering the decimal expansion of

$$\sum_{n=k+1}^{\infty} \frac{1}{10^{n!}} = \frac{1}{10^2} + \frac{1}{10^6} + \frac{1}{10^{24}} + \dots$$

$$= 0.01 + 0.000001 + 0.0 \underbrace{0...01}_{24} + \dots$$

$$= 0.0 \underbrace{1}_{2^{\text{th}}} \underbrace{000 \underbrace{1}_{6^{\text{th}}} 0...01}_{24^{\text{th}}} \dots$$

Generally, the decimal expansion of  $\sum_{n=k+1}^{\infty} \frac{1}{10^{n!}}$  takes the form of

$$\sum_{n=k+1}^{\infty} \frac{1}{10^{n!}} = 0.0 \dots 0 \underbrace{1}_{(k+1)!^{\text{th}}} 0 \dots 0 \underbrace{1}_{(k+2)!^{\text{th}}} \dots$$

$$< 0.0 \dots 0 \underbrace{2}_{(k+1)!^{\text{th}}}$$

$$= \frac{2}{10^{(k+1)!}}.$$

Therefore,

$$|\alpha - \alpha_k| = \sum_{n=k+1}^{\infty} \frac{1}{10^{n!}} < \frac{2}{10^{(k+1)!}}.$$

By taking k large enough, we can make  $\frac{2}{10^{(k+1)!}} = \frac{2}{\left(10^{k!}\right)^{k+1}}$  less than  $\frac{C}{\left(10^{k!}\right)^m}$ , which contradicts Liouville's theorem. Hence,  $\alpha$  is transcendental.

### 13 Pythagorean triples

**Definition 13.1.** We say  $(x, y, z) \in \mathbb{N}$  is a **Pythagorean triple** if  $x^2 + y^2 = z^2$ .

**Definition 13.2.** A Pythagorean triple, (x, y, z), is called **primitive** if gcd(x, y, z) = 1.

**Lemma 13.1.** Suppose (x, y, z) is a primitive Pythagorean triple. Then any two of three integers (x, y, z) are coprime.

**Lemma 13.2.** If (x, y, z) is a primitive Pythagorean triple the one of x, y is even and the other is odd.

**Theorem 13.1.** Let  $n \in \mathbb{N}$  then n is a square (i.e.  $n = c^2$  for  $c \in \mathbb{N}$ ) if and only if in its prime factorisation each prime appears to an even power.

**Lemma 13.3.** Suppose gcd(a,b) = 1 for  $a,b \in \mathbb{N}$  and  $ab = c^2$  for some  $c \in \mathbb{N}$ . Then a and b are both squares.

### **Theorem 13.1** (Pythagorean triples theorem)

All primitive Pythagorean triples, (x, y, z), with x even, are given by the formulas:

$$x = 2st$$
$$y = s^{2} - t^{2}$$
$$z = s^{2} + t^{2}$$

for integers

- (i) s > t > 0;
- (ii) gcd(s,t) = 1;
- (iii)  $s \not\equiv t \pmod{2}$ .

To get all Pythagorean triples (up to swapping x and y) we take integers s and t as above and d another positive integer and consider

$$x = 2dst$$
  

$$y = d(s^{2} - t^{2})$$
  

$$z = d(s^{2} + t^{2}).$$

**Remark 13.1.** The theorem implies that there is a bijection between primitive Pythagorean triples, (x, y, z) and  $(s, t) \in \mathbb{N}$  which satisfy (i), (ii) and (iii).

**Example 13.1.** Find all primitive Pythagorean triples, (x, y, z) with z = x + 3. **Solution:** Write x = 2st and  $z = s^2 + t^2$ . So,

$$s^{2} + t^{2} = 2st + 3 \iff s^{2} - 2st + t^{3} = 3$$
  
 $\Rightarrow (s - t)^{2} = 3.$ 

Which has no solutions as 3 is not a perfect square. Therefore, there are no primitive Pythagorean triples with z = x + 3 and x being even.

**Example 13.2.** Find all primitive Pythagorean triples, (x, y, z) with x being even and z = y + 2.

**Solution:** Write  $x = 2st, y = s^2 - t^2$  and  $z = s^2 + t^2$ .

$$s^{2} + t^{2} = s^{2} - t^{2} + 2 \Rightarrow 2t^{2} = 2$$
  
 $\Rightarrow t = 1.$ 

Since  $s \not\equiv t \pmod{2}$ , s > t,  $\gcd(s,t) = 1$  and t = 1, we have that s can be any positive even number.

Write, s = 2k for  $k \in \mathbb{N}$  and t = 1.

$$(x, y, z) = (4k, (2k)^2 - 1, (2k^2) + 1)$$
  
=  $(4k, 4k^2 - 1, 4k^2 + 1),$ 

with  $b \in \mathbb{N}$  which satisfy z = y + 2.

### **Example 13.1** (Exam 2022)

Find all primitive Pythagorean triples with x = 88.

Solution: By the Pythagorean triples theorem we can write

$$x = 88 = 2st$$
$$\Rightarrow st = 44$$

for  $s, t \in \mathbb{N}$ . Since s > t by property (i) we have

- s = 44, t = 1;
- s = 22, t = 2;
- s = 11, t = 4.

Now we need to check the remaining properties:

| (s,t)   | $\gcd(s,t)$ | $s \not\equiv t \pmod{2}$ |
|---------|-------------|---------------------------|
| (44,1)  | 1           | ✓                         |
| (22, 2) | 2           | ×                         |
| (11, 4) | 1           | ✓                         |

Therefore, for (s,t) = (44,1) we have

$$x = 88, y = 1935, z = 1937,$$

and for (s,t) = (11,4) we have

$$x = 88, y = 105, z = 137.$$

### 14 Fermat's Last Theorem

**Definition 14.1.** Given  $n \in \mathbb{N}$ , the  $n^{\text{th}}$  Fermat equation is given

$$x^n + y^n = z^n.$$

### Theorem 14.1

If  $n \geq 3$  there are no positive integer solutions (x, y, z) to the equation

$$x^n + y^n = z^n.$$

**Theorem 14.1.** There are no positive integer solution, (x, y, z), to the equation

$$x^4 + y^4 = z^2.$$

**Remark 14.1.** If  $(x_0, y_0, z_0)$  satisfy  $x_0^4 + y_0^4 = z_0^2 = (z_0^2)^2$ . Then  $(x_0, y_0, z_0^2)$  is a solution to the 4<sup>th</sup> Fermat equation.

Similarly, if n = 4k for  $k \in \mathbb{N}$  then  $4k^{\text{th}}$  Fermat equation has no solution by the theorem,

$$x^{4k} + y^{4k} = z^{4k} \iff (x^k)^4 + (y^k)^4 = (z^{2k})^2.$$

Note 14.1. We will use Fermat's method of "descent": given a solution (x, y, z) we produce another solution (x', y', z') with z' < z. This will be a contradiction if we start the solution by minimising z.

*Proof.* Let  $(x, y, z) \in \mathbb{N}$  be a solution with minimum possible z.

- If  $\gcd(x,y) > 1$  then  $p \mid x$  and  $p \mid y$  for some prime p. Then  $p^4 \mid (x^4 + y^4)$  that is  $p^4 \mid z^2$ . Hence,  $p^2 \mid z$ . Then  $(x', y', z') = \left(\frac{x}{p}, \frac{y}{p}, \frac{z}{p^2}\right)$  is a solution in  $\mathbb N$  with z' < z. This is a contradiction.
- If  $\gcd(x,y)=1$  then  $\gcd(x^2,y^2)=1$  and so  $(x^2,y^2,z)$  is a primitive Pythagorean triple. Without loss of generality, assume that  $x^2$  is even and  $y^2$  is odd, that is x is even and y is odd. Hence, there exists  $s,t\in\mathbb{N}$  with  $\gcd(s,t)=1,s>t>0$  and  $s\not\equiv t\pmod{2}$  such that

$$x = 2st$$
$$y = s^{2} - t^{2}$$
$$z = s^{2} + t^{2}.$$

We can write

$$t^2 + y^2 = s^2$$

therefore, (t, y, s) is a primitive Pythagorean triple with t even since y is odd. Applying the Pythagorean Triple theorem again we can write

$$t = 2uv$$
$$y = u^2 - v^2$$
$$s = u^2 + v^2$$

with gcd(u, v) = 1, u > v > 0 and  $u \not\equiv v \pmod{2}$ . Observe that

$$-\gcd(u, u^2 + v^2) = \gcd(u, v^2) = 1;$$
  
- \gcd(v, u^2 + v^2) = \gcd(v, u^2) = 1.

Recall

$$x^{2} = 2st$$

$$= 4uv(u^{2} + v^{2})$$

$$\left(\frac{x}{2}\right)^{2} = uv(u^{2} + v^{2}).$$

Hence,  $uv(u^2+v^2)$  is a square which implies  $u,v,u^2+v^2$  are also squares. Since  $\gcd(u,v)=\gcd(u,u^2+v^2)=\gcd(v,u^2+v^2)=1$  then there exists  $x',y',z'\in\mathbb{N}$  with

$$u = (x')^2$$
,  $v = (y')^2$  and  $u^2 + v^2 = (z')^2$ 

so,

$$u^{2} + v^{2} = (x')^{4} + (y')^{4}$$
$$= (z')^{2}.$$

This implies (x', y', z') is a solution to Fermat's 4<sup>th</sup> equation. Recall,

$$z = s^2 + t^2$$
 and  $s = u^2 + v^2 = (z')^2$ 

hence,  $z > s^2 > z'$  which is a contradiction to minimality.

### 15 General Diophantine equation

**Definition 15.1.** Given integers  $c_1, c_2, \ldots, c_n \in \mathbb{Z}$  a **Diophantine equation** is an equation of the form

**Proposition 15.1.** Let  $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$  where  $c_0, \dots, c_n \in \mathbb{Z}$  with  $c_n \neq 0$ . If  $a \in \mathbb{Z}$  is a root of f(x) then

$$f(x) = (x - a)g(x),$$

where  $g(x) = b_{n-1}x^{n-1} + \dots + b_1x + b_0$  where  $b_0, \dots, b_{n-1} \in \mathbb{Z}$ .

**Proposition 15.2.** For each  $k \in \mathbb{N}$  we have

$$a^{k} - b^{k} = (a - b)(a^{k-1} + a^{k-2}b + \dots + ab^{k-2} + b^{k-1}).$$

### 15.1 Solving Diophantine equations

There is no general (known) method to solve Diophantine equations, but there are some special cases where there is a method.

### Proposition 15.1

Suppose  $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_1 x + c_0$  with  $c_i \in \mathbb{Z}$ , if f(a) = 0 with  $a \in \mathbb{Z}$  then  $a \mid c_0$ .

Note 15.1. Strategy: To solve f(x) = 0 with  $x \in \mathbb{Z}$  check f(d) for each  $d \mid c_0$ .

**Example 15.1.** Find all integer solutions to f(x) = 0 for  $f(x) = 2x^4 - 14x^3 + 3x^2 + 20x - 7$ .

**Solution.** We have  $c_0 = -7$  therefore, we must check if f(d) = 0 for  $d \mid -7$  i.e.  $d = \pm 1$  or  $d = \pm 7$ . Only f(7) = 0 hence, x = 7 is the only solution to f(x) in  $\mathbb{Z}$ .

**Example 15.2.** Find all integer solutions to

$$x^4 + 4x^2 - 12xy + 9y^2 - 2 = 0.$$

**Solution:** Notice that  $4x^2 - 12xy + 9y^2 = (2x - 3y)^2$ . So, we have

$$x^4 + (2x - 3y)^2 = 2.$$

Since,  $x, y \in \mathbb{Z}$  we have that  $x = \pm 1$  as the RHS is 2.

- If x = 1 then  $(2 3y)^2 = 1 \Rightarrow y = 1$ .
- If x = -1 then  $(-2 3^2) = 1 \Rightarrow y = -1$ .

The solutions (x, y) are (1, 1) or (-1, -1).

Example 15.3. Find all integer solutions to

$$x^2 - 3y^4 = 0.$$

Solutions: We can rewrite

$$x^{2} = 3y^{4}$$
$$\left(\frac{x}{y^{2}}\right)^{2} = 3 \text{ for } y \neq 0.$$

Therefore, the only solution is (x, y) = (0, 0).

### 15.2 Diophantine and congruence equations

Consider a Diophantine equation  $x^7 + 7y^5 = 610$ . For each  $m \in \mathbb{N}$  we get a corresponding congruence equation modulo m. Consider

$$x^7 + 7y^5 \equiv 610 \pmod{m}.$$

In the Diophantine equation we seek solutions in  $\mathbb{Z}$  and in the congruence equation we seek solutions in  $\mathbb{Z}_m$ .

**Proposition 15.3.** If a Diophantine equation has a solution in  $\mathbb{Z}$  then the corresponding congruence equation has a solution for each  $m \geq 1$  in  $\mathbb{Z}_m$ .

Note 15.2. Therefore, if the congruence equation has no solution in  $\mathbb{Z}_m$  for some  $m \geq 1$  then its associated Diophantine equation has no solution in  $\mathbb{Z}$ .

### Example 15.4. Solve

$$x^7 + 7y^5 \equiv 610 \pmod{2}$$
.

**Solution.** We note that  $610 \equiv 0 \pmod{2}$  and for all  $a \in \mathbb{Z}$  and  $n \in \mathbb{N}$  we have the following relation in modulo 2.

$$a^n \equiv a \pmod{2}$$
.

Therefore,  $x^7 \equiv x \pmod{2}$  and  $7y^5 \equiv 7y \equiv y \pmod{2}$ , since  $7 \equiv 1 \pmod{2}$ . So, we are left to solve

$$x + y \equiv 0 \pmod{2}$$
.

The solutions are  $(x, y) = ([0]_2, [0]_2)$  or  $([1]_2, [1]_2)$ .

**Example 15.5.** Solve the Diophantine equation

$$x^{12} + 13y^5 = z^{12} + 2.$$

### Strategy for choosing m:

Want  $x^{12}$ ,  $13y^5$  and  $z^{12}$  to take on few values modulo m.

**Recall:** By the Euler-Fermat theorem  $a^{p-1} \equiv 1 \pmod{p}$  if  $p \nmid a$ . **Solution:** With this in mind consider

$$x^{12} + 13y^5 \equiv z^{12} + 2 \pmod{13}$$
.

So,  $x^{12} \equiv 1$  or 0 modulo 13 if  $13 \nmid x$  and  $13 \mid x$  respectively. The next term  $13y^5 \equiv 0 \pmod{13}$ . Thus, we are left with

$$x^{12} \equiv z^{12} + 2 \pmod{13}$$
.

LHS  $\equiv 0$  or 1 modulo 13.

RHS  $\equiv$  2 or 3 modulo 13. Hence, LHS  $\neq$  RHS. This, congruence equation has no solution in  $\mathbb{Z}_{13}$  which implies that the associated Diophantine equation has no solutions

**Remark 15.1.** This method is not always possible i.e. some equation could have solutions for all  $m \ge 1$  in modulo m but no integer solutions.

Example 15.6. Find all integer solutions to

$$x^4 + y^4 = z^4 + w^6 + 3.$$

**Solution.** We note that

$$x^4 \equiv 0, 1 \pmod{8}$$
$$w^6 \equiv 0, 1 \pmod{8}.$$

Therefore,

LHS 
$$\equiv 0, 1, 2 \pmod{8}$$
  
RHS  $\equiv 3, 4, 5 \pmod{8}$ 

Hence, LHS  $\not\equiv$  RHS (mod 8). This congruence equation has no solutions in  $\mathbb{Z}_8$  thus, it will not have solutions in  $\mathbb{Z}$ .

### 15.3 Week 12 lectures

## Diophantine Equations, additional examples Ex Show that $D: X^2 = 9^{5} + 7$ has no solutions in integers, Strategy Find an MENN so that Cm: X2 = y5+7 (modm) has no solutions in 4m. How to choose m? We want x2, y5 to take on few values. Euler's Criterion For ae Z a E E (a) modp. Let's p=3. Cz X = ys+7 mod3 $\chi^2 \equiv 0$ o- [ mod 3 $\sqrt{}$ X= y+I mod3 94 = 0 = 1 mod 3 XEO / XET

YS = 4 mod3

y = 2 y = 0

= y = = -1,0,0- 1 (mod 11) X model C11: X = 55+7 (mod 11) ± 5 LHS = 01/13,4,5 or 9 (moll) -RHS = 6,7 0-8 modil LHS FRHS (model) => Cu has no solas in Zu => D has Solas

(d) Show that the Diophantine equation  $(x^4 - 4y^4 = z^2)$  has no solutions in positive integers x, y, z with gcd(x, z) = 1. Precisely state any results you use from the lectures. (Hint: Express the equation as  $(x^2)^2 = (2y^2)^2 + z^2$  and use the Pythagorean Triples Theorem.) \* (292, 2, x2) a PPT Since gcd(x,Z)=1 => gcd( zy2, Z, X2)=1  $(2y^2 = 2st)$   $Z = s^2 + t^2$ ,  $X^2 = s^2 + t^2$ s>t>0, ged(s,t)=1, s≠t (mod2) y=st, => sit are squares JujueM with S=u2, t=v2 in positive E has no solms => X4-4y4= = 22 has no solw in positive integers with gellx, 31=1.



May 2021

(c) Let p be a prime such that  $p \equiv 1 \pmod{4}$ . For each integer  $n \geq 1$ , determine the number of solutions in  $\mathbb{Z}_{p^n}^{\times}$  to the congruence equation

$$x^p + x^{\frac{(p-1)}{2}} + px \equiv 0 \pmod{p^n}.$$

Ist Solve:

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{\frac{p-1}{2}} + p \times = 0 \quad \text{mod} p$$

$$f(x) = x^{p} + x^{$$

: Check X=-1

-1 = - (=) molp

(-1) = 1 for P=1 mody

Hence, the only sol'n to f(x) = 0 molp Zp is X=-1 modp. now check to see if We now chevi-Two can apply Hensel's Lemma. to lift to so our solution to a Solution in Zx. 6 o f'(-1) = 0 modp  $f'(x) = px + p-1 \cdot x^{p-1} \cdot x^{p-1}$ f'(-1) = P=1 (-1) = modp \$0 mode (since p is prime) Hersel applies The AXI=-1 will lift to a unique solution X in Zn for each nyl, with  $x_n = x_1 \mod p$ 

Note: gcd(x,p)=1 => gcd(xn,pn)=1 (EXAJ & Zpn). What if f'(xi) = 0 modp? check p2/f(x,) \* If yes, p solas, X, X=X, molp & f(x2) =0 molp2 3 If no, no solas xz with f(xz)=0 molp 2 X,=Xz modp. (Lemma 3.7)

### Review lecture

(d) For which odd primes p do we have

$$\left(\frac{-14}{p}\right) = -1?$$

(Your answer should be given in terms of a description of the possible congruence classes for p modulo some positive integer.)
[12 marks]

Stratesy set multiplicativity

$$-1 = \left(\frac{-14}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{-1}{p}\right) \left(\frac{2}{p}\right) \left(\frac{7}{p}\right)$$

Now compute the regarder symbol

Rue for 2

$$\left(\frac{2}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}} \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}}$$

$$\left(\frac{1}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}} \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}}$$

auxiliarity recognity

$$\left(\frac{1}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}} \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}}$$

$$\left(\frac{1}{p}\right) \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}} \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right) \left(-1\right)^{\frac{p-1}{2}} \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right)$$

$$= \left(\frac{1}{p}\right)^{\frac{p-1}{2}} \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right)$$

$$= \left(\frac{1}{p}\right)^{\frac{p-1}{2}} \stackrel{\text{RI}}{=} \left(\frac{1}{p}\right)$$

Wh [-1= (=) (=) (=) Shows case;  $(\frac{2}{9}) = -1$   $(\frac{2}{9}) = -1$ X X molf (1) ET OR MODT 2) modt, 3,5,6 QNR mod7 (字)=1 cuei) (=)=-1 6 possibilited p=±3 mol8 PEL24 mod Z (幸)=-1 Case  $\overline{(0)}$   $\left(\frac{2}{p}\right) = +1$ 6 paribilitily A 8 P=3,5,6 mod7 ( p= ±1 mod 8

(p=11,17,29,31,33,37,41,43, 47,51,53,0rAns. 20

Answer

# Revision - Check your understanding questions - Homework questions - Revision questions - Past exam questions Do a past exam in exam conditions! Mark your exam

Ex (lecture notes) Show the equation  $X^3 + Zy^3 + 4Z^3 = 9w^3$ has no solutions in positive integers. Homogeneous eigh i.e. each "variable" occurs to the same power If A has a solution (X, y, Z, w) then for d = gcd(X, y, Z, w)

(五,五,至,光) is also a Solo to A & gcal\*, \$, \$, \$|=| Consider  $C_{9}$ :  $X^{3} + Z + Z + 4Z^{3} = 9 \omega^{3} \pmod{9}$ For  $a \in \mathbb{Z}$ ,  $a^3 \equiv 0$ ,  $\pm 1$  (mod 9) = 1If 3[a] if 3cd(a,3)=1exercise SRHS ZO mod9 LHS \$0 mod 9 (unless 31x, 3/y & cheek care by case LHS = 0 mol9 (If X=y=Z=0 mol) If A has a solution in W it has a primitive soln => gcd(x,y,8,w)=1 Ly the Ca, has a soln (X14, E are multiples of 3. X3+293+423 = 9w3  $) 3319W^3 \Rightarrow 31W$ 31 gcd(x, 7, 2, w).

Hence & has no primitive solar in N => & has no solar in N.

Exam problem: Evaluate

(b) Show that the number of solutions in 
$$\mathbb{Z}_{n} \times \mathbb{Z}_{p}$$
 to the congruence equation

$$\frac{x^{2}-y^{2} \equiv a \pmod{p}}{\sum_{y=0}^{p-1} \left(1 + \left(\frac{y^{2}+a}{p}\right)\right)}.$$
Recall The # of Solin to

$$\mathbb{Z}_{p} = \mathbb{Z}_{p} = \mathbb{Z}_{p}$$
The property of  $\mathbb{Z}_{p}$  equals

$$\mathbb{Z}_{p} = \mathbb{Z}_{p} = \mathbb{Z}_{p}$$
The property of  $\mathbb{Z}_{p}$  in  $\mathbb{Z}_{p}$  equals

$$\mathbb{Z}_{p} = \mathbb{Z}_{p} = \mathbb{Z}_{p}$$
The property of  $\mathbb{Z}_{p}$  is  $\mathbb{Z}_{p}$  in  $\mathbb{Z}_{p}$ .

The property of  $\mathbb{Z}_{p}$  is  $\mathbb{Z}_{p}$  in  $\mathbb{Z}_{p}$ .

The property of  $\mathbb{Z}_{p}$  is  $\mathbb{Z}_{p}$  in  $\mathbb{Z}_{p}$  is  $\mathbb{Z}_{p}$ .

The property of  $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$  is  $\mathbb{Z}_{p}$  in  $\mathbb{Z}_{p}$ .

- (i) Prove that the map  $\mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p \times \mathbb{Z}_p$  given by  $(x,y) \to (x+y,x-y)$  is a bijection.
- (ii) For a such that gcd(a, p) = 1, use part (i) to show that there are p 1 solutions in  $\mathbb{Z}_p \times \mathbb{Z}_p$  to the congruence equation

$$x^2 - y^2 \equiv a \pmod{p}.$$

(Hint: Make the change of variables u = x + y, v = x - y.)

is) use i) to show (A) X2-y2= a molp p-l solins in Zp × Zp. Let u=x+y & v=x-y x2-y2= (x-y)(x+y)= [vy = a molp] Note: pter, For each v (mody) Also with ptv there is exactly 1 Soln Tu = av modp & for plv are no solos. There are P-1 V (modp), V to modp => x²-y²=a (molp) has p-l solns in ZexZp.

(d) Use parts (b) and (c) to show that if gcd(a, p) = 1 then

$$\sum_{y=0}^{p-1} \left( \frac{y^2 + a}{p} \right) = -1.$$

What is the value of this sum if p|a?

By b) 801

$$P-1 = \sum_{y=0}^{p-1} \left(1 + \lfloor \frac{y^2 + a}{p} \right)$$

$$= p' + \sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right)$$

$$= p' + \sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right)$$

$$= \sum_{y=0}^{p-1} \left(\frac{y^2 + a}{p} \right)$$

# (c) Let p be a prime number. Prove that the congruence equation $x^n \equiv 1 \pmod{p}$ has exactly one solution in $\mathbb{Z}_p$ for each odd integer n if and only if p is of the form $2^k + 1$ . g be a PR modp X= gi (modp), l=g' modp Claim in = 0 molp-1 (=) i=0 mod (=) We => X=1 modp has I soln each old n iff gcd(n,p-1)=1 for each old or iff P-1 = ZK iff p= 2 x 1

### **Appendix**

### A Equivalence relations

**Definition A.1.** A binary operation on a set X is said to be an **equivalence relation**, if and only if it is reflexive, symmetric and transitive. That is for all  $a, b, c \in X$ :

• Reflexivity:  $a \sim a$ ;

• Symmetry:  $a \sim b$  if and only if  $b \sim a$ ;

• Transitivity: if  $a \sim b$  and  $b \sim c$  then  $a \sim c$ .

### A.1 Equivalence classes

**Theorem A.1.** If  $\sim$  is an equivalence relation on a set X and  $x, y \in X$  then, these statements are equivalent:

•  $x \sim y$ ;

• [x] = [y];

•  $[x] \cap [y] = \emptyset$ 

### B Solving linear congruences

**Proposition B.1.** Let  $a, b \in \mathbb{Z}$  and let m be a positive integer. Set  $g = \gcd(a, m)$ . The congruence relation

$$ax \equiv b \pmod{m}$$

has integer solutions for x if and only if  $g \mid b$ . If  $d \mid b$ , the solutions are given by the integers x such that

$$[x]_{\frac{m}{g}} = \left[\frac{a}{g}\right]_{\frac{m}{d}}^{-1} \left[\frac{b}{d}\right]_{\frac{m}{d}}.$$

*Proof.* If  $ax \equiv b \pmod{m}$  then b = ax + km for some  $k \in \mathbb{Z}$ . So gcd(a, m) (which divided a and m) must divide b. Conversely, if  $d \mid b$  then

$$\frac{a}{g}x \equiv \frac{b}{g} \pmod{\frac{m}{g}}$$

if and only if  $ax \equiv b \pmod{m}$ . Multiplying by an inverse of  $\frac{a}{d}$  modulo  $\frac{m}{d}$  we get that

$$\frac{a}{g}x \equiv \frac{b}{g} \pmod{\frac{m}{g}}$$

if and only if

$$[x]_{\frac{m}{g}} = \left[\frac{a}{g}\right]_{\frac{m}{d}}^{-1} \left[\frac{b}{d}\right]_{\frac{m}{d}}$$