

Requisiti della base di dati

Progettazione
concettuale

Schema concettuale

Progettazione
logica

Schema logico

Progettazione
fisica

Schema fisico

Progettazione logica

- Obiettivo: "tradurre" lo schema concettuale in uno schema logico che rappresenti gli stessi dati in maniera corretta ed efficiente
- Ingresso:
 - schema concettuale
 - o informazioni sul carico applicativo
 - modello logico
- Uscita:
 - schema logico
 - · documentazione associata
- Non si tratta di una pura e semplice traduzione
 - · alcuni aspetti non sono direttamente rappresentabili
 - · è necessario considerare le prestazioni

3

Ristrutturazione schema E-R

- Motivazioni:
 - o semplificare la traduzione
 - o "ottimizzare" le prestazioni
- Osservazione:
 - uno schema E-R ristrutturato non è (più) uno schema concettuale nel senso stretto del termine

5

Prestazioni?

- Per ottimizzare il risultato abbiamo bisogno di analizzare le prestazioni a questo livello
- Ma:
 - le prestazioni non sono valutabili con precisione su uno schema concettuale!

Prestazioni, approssimate

- Consideriamo:
 - "indicatori" dei parametri che regolano le prestazioni
- spazio:
 - o numero di occorrenze previste
- tempo:
 - numero di occorrenze (di entità e relationship)
 visitate durante un'operazione

7

Tavola dei volumi

Concetto	Tipo	Volume
Sede	ш	10
Dipartimento	Ш	80
Impiegato	Ш	2000
Progetto	Е	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

9

Esempio di valutazione di costo

- Operazione:
 - trova tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- Si costruisce una tavola degli accessi basata su uno schema di navigazione

Tavola degli accessi

Mediamente un impiegato partecipa a 6000/2000=3 progetti

Tavola dei volumi

Concetto	Tipo	Volume
Sede	Ê	10
Dipartimento	- E	80
Impiegato	Е	2000
Progetto	Ē	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

Concetto	Costrutto	Accessi	Tipo
Impiegato	Entità	1	L
Afferenza	Relationship	1	L
Dipartimento	Entità	1	L
Partecipazione	Relationship	3	L
Progetto	Entità	3	L

13

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

Analisi delle ridondanze

- Una ridondanza in uno schema E-R è una informazione significativa ma derivabile da altre
- in questa fase si decide se eliminare le ridondanze eventualmente presenti o mantenerle (o anche di introdurne di nuove)

15

Ridondanze

- Vantaggi
 - o semplificazione delle interrogazioni
- Svantaggi
 - $^{\circ}$ appesantimento degli aggiornamenti
 - o maggiore occupazione di spazio

Forme di ridondanza in uno schema E-R

- attributi derivabili:
 - da altri attributi della stessa entità (o relationship)
 - o da attributi di altre entità (o relationship)
- relationship derivabili dalla composizione di altre (più in generale: cicli di relationship)

17

Concetto	Tipo	Volume
Città	Е	200
Persona	Е	1000000
Residenza	R	1000000

- Operazione I: memorizza una nuova persona con la relativa città di residenza (500 volte al giorno)
- Operazione 2: stampa tutti i dati di una città (incluso il numero di abitanti) (2 volte al giorno)

Presenza di ridondanza

Operazione 1 memorizza nuovo abitante

•			
Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2 stampare dati sulla citta

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	П

23

Assenza di ridondanza

Operazione 1 memorizza nuovo abitante

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S

Operazione 2 stampare dati sulla citta

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	Ш
Residenza	Relazione	5000	L

Presenza di ridondanza

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Costi:

- Operazione I (500 volte al giorno):
 I 500 accessi in scrittura e
 500 accessi in lettura al giorno
- Operazione 2 (2 volte al giorno): trascurabile.
- Contiamo doppi gli accessi in scrittura
 - Totale di 3500 accessi al giorno

25

Assenza di ridondanza

- Costi:
 - Operazione I (500 volte al giorno):
 1000 accessi in scrittura
 - Operazione 2 (2 volte al giorno):
 10000 accessi in lettura al giorno
- Contiamo doppi gli accessi in scrittura
 - Totale di 12000 accessi al giorno

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

27

Eliminazione delle gerarchie

- il modello relazionale non può rappresentare direttamente le generalizzazioni
- entità e relationship sono invece direttamente rappresentabili
- si eliminano perciò le gerarchie, sostituendole con entità e relationship

Tre possibilità

- accorpamento delle figlie della generalizzazione nel genitore
- accorpamento del genitore della generalizzazione nelle figlie
- 3. sostituzione della generalizzazione con relationship

29

- la scelta fra le alternative si può fare con metodo simile a quello visto per l'analisi delle ridondanze (però non basato solo sul numero degli accessi)
- è possibile seguire alcune semplici regole generali

- I. conviene se gli accessi al padre e alle figlie sono contestuali
- conviene se gli accessi alle figlie sono distinti
- 3. conviene se gli accessi alle entità figlie sono separati dagli accessi al padre
- sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori primari

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base a un semplice principio
- Gli accessi si riducono:
 - separando attributi di un concetto che vengono acceduti separatamente
 - raggruppando attributi di concetti diversi acceduti insieme

Ristrutturazioni, casi principali

- partizionamento verticale di entità
- partizionamento orizzontale di relationship
- eliminazione di attributi multivalore
- accorpamento di entità/ relationship

Attività della ristrutturazione

- Analisi delle ridondanze
- Eliminazione delle generalizzazioni
- Partizionamento/accorpamento di entità e relationship
- Scelta degli identificatori principali

51

Scelta degli identificatori principali

- operazione indispensabile per la traduzione nel modello relazionale
- Criteri
 - assenza di opzionalità
 - semplicità
 - o utilizzo nelle operazioni più frequenti o importanti

Se nessuno degli identificatori soddisfa i requisiti visti?

Si introducono nuovi attributi (codici) contenenti valori speciali generati appositamente per questo scopo

53

Traduzione verso il modello relazionale

- idea di base:
 - · le entità diventano relazioni sugli stessi attributi
 - le relationship diventano relazioni sugli identificatori delle entità coinvolte (più gli attributi propri)

Entità e relationship molti a molti

Impiegato(<u>Matricola</u>, Cognome, Stipendio)
Progetto(<u>Codice</u>, Nome, Budget)
Partecipazione(<u>Matricola</u>, <u>Codice</u>, Datalnizio)

- con vincoli di integrità referenziale fra
 - Matricola in Partecipazione e (la chiave primaria di) Impiegato
 - Codice in Partecipazione e (la chiave primaria di) Progetto

Nomi più espressivi per gli attributi della chiave della relazione che rappresenta la relationship

Impiegato(<u>Matricola</u>, Cognome, Stipendio)
Progetto(<u>Codice</u>, Nome, Budget)

Partecipazione(Matricola, Codice, DataInizio)

Partecipazione(<u>Impiegato</u>, <u>Progetto</u>, Datalnizio)

57

Nota

La traduzione non riesce a tener conto delle cardinalità minime delle relationship molti a molti (se non con vincoli di CHECK complessi e poco usati)

Soluzione corretta

Giocatore(<u>Cognome</u>, <u>DataNascita</u>, Ruolo) Squadra(<u>Nome</u>, Città, ColoriSociali)

Contratto(<u>CognGiocatore, DataNascG, S</u>quadra, Ingaggio)

Giocatore(<u>Cognome, DataNasc</u>, Ruolo, Squadra, Ingaggio) Squadra(<u>Nome</u>, Città, ColoriSociali)

Giocatore[Squadra] ⊆ Squadra[Nome]

Nel nostro esempio l'attributo Squadra in Giocatore è un attributo obbligatorio perché nel modello E-R la cardinalità minima della relationship (della linea tra Giocatore e Contratto), è 1.

63

Nota

- La traduzione riesce a rappresentare efficacemente la cardinalità minima della partecipazione che ha I come cardinalità massima:
 - 0 : valore nullo ammesso
 - I : valore nullo non ammesso

Schema finale

Notate che il simbolo * indica qui attributi opzionali

Impiegato(<u>Codice</u>, Cognome, Dipartimento,Sede, Data*)

Dipartimento(Nome, Sede, Telefono, Direttore*)

Sede(Città, Via, CAP)

Progetto(Nome, Budget)

Partecipazione(Impiegato, Progetto)

Impiegato[Dipartimento, Sede]⊆ Dipartimento[Nome,Sede]

Dipartimento[Direttore] Impiegato[Codice]

Dipartimento[Sede] Sede[Città]

Partecipazione[Impiegato]⊆ Impiegato[Codice]

Participazione[Progetto]⊆ Progetto[Nome]

Attenzione

 Differenze apparentemente piccole in cardinalità e identificatori possono cambiare di molto il significato ...

71

Strumenti di supporto

- Esistono sul mercato prodotti CASE che forniscono un supporto a tutte le fasi della progettazione di basi di dati
 - CASE è acronimo di Computer-Aided Software Engineering, ovvero sviluppo del software assistito dal computer

