${\bf Vorlesung smitschrift}$

AGLA II

Prof. Dr. Damaris Schindler

Henry Ruben Fischer

Auf dem Stand vom 25. April 2020

Disclaimer

Nicht von Professor Schindler durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1	Affine Geometrie		
	1.1	Was ist ein affiner Raum?	4
	1.2	Affine Abbildungen	9
	1.3	Durchschnitt und Verbindung affiner Räume	13
	1.4	Parallelprojektionen	18

Kapitel 1

Affine Geometrie

Vorlesung 1

Di 21.04. 10:15

§1.1 Was ist ein affiner Raum?

Beispiel 1 (aus der AGLA I). \mathbb{R}^2 , \mathbb{R}^3 . In diesen Räumen gibt es einen ausgezeichneten "Usprung".

Frage. Wie könne wir eine affine Ebene / affine Räume modellieren, wobei alle Punkte gleichberechtigt sind?

Idee. Verwende affine Unterräume.

Beispiel 2. Sei K ein Körper, V ein K-Vektorraum, $W \subseteq V$ ein Untervektorraum und $v \in V$. Wir nennen X = v + W einen affinen Unterraum von V. X ist im Allgemeinen selbst kein Vektorraum unter der Addition in V, aber W "operiert" auf X.

Für $w \in W$ definieren wir die Abbildung

$$\tau_w \colon X \to X$$

$$p \mapsto p + w.$$

Sei

$$Bij(X) = \{ f : X \to X, f \text{ ist bijektiv } \}.$$

Dann ist $\tau_w \in \text{Bij}(X)$ für alle $w \in W$.

Bemerkung. $\mathrm{Bij}(X)$ ist eine Gruppe unter Verkettung von Abbildung. Wir erhalten eine Abbildung

$$\tau \colon W \to \operatorname{Bij}(X)$$

 $w \mapsto \tau_w.$

Lemma 1. Die Abbildung τ ist ein Gruppenhomomorphismus.

Beweis. Seien $w, w' \in W$ Dann

$$\tau_w \circ \tau_{w'} \colon X \to X$$
$$p \mapsto p + \underline{w' + w},$$

also

$$\tau(w) \circ \tau(w') = \tau_w \circ \tau_{w'} = \tau_{w+w'} = \tau(w+w').$$

Es gilt noch mehr:

für $p, q \in X$ besteht genau ein $w \in W$ mit $\tau_w(p) = q$.

Gruppenoperationen

Beispiel 3. Betrachte ein gleichseitiges Dreieck D und Spiegelungen / Drehungen die D auf sich selbst abbilden.

Diese formen eine Gruppe (welche?) und "operieren" auf D.

Definition 1. Sei X eine Menge und G eine Gruppe. Eine Operation von G auf X ist ein Homomorphismus von Gruppen

$$\tau \colon G \to \operatorname{Bij}(X)$$

 $g \mapsto \tau_g.$

Bemerkung. τ ist ein Homomorphismus $\delta \forall g, g' \in G$

$$\tau_g \circ \tau_{g'} = \tau_{gg'}.$$

Für $x \in X$ nennen wir

$$G(x) = \{ \tau_g(x) \mid g \in G \}$$

die Bahn von x unter G.

Beispiel 4. a) Sei G eine Gruppe und X=G die Linkstranslation $l\colon G\to \mathrm{Bij}(G)$ $g\mapsto l_g$ mit $l_g(x)=gx\quad \forall\, x\in G$ ist eine Gruppenoperation von G auf sich selbst. b)

$$k \colon G \to \operatorname{Bij}(G)$$

 $g \mapsto k_g$

mit $k_g(x) = gxg^{-1}$ $\forall x \in G$ ist eine Gruppenoperation.

Frage. Sei $\tau \colon G \to \operatorname{Bij}(x)$ eine Gruppenoperation, $x,y \in X$. Wann gibt es ein $g \in G$ mit $\tau_g(x) = y$?

Definition. Sei $\tau \colon G \to \operatorname{Bij}(X)$ eine Gruppenoperation von G auf X. Wir nennen τ einfach transitiv, wenn $\forall x, y \in X$ genau ein $g \in G$ besteht mit

$$\tau_q(x) = y.$$

Beispiel. • Die Gruppenoperation aus Beispiel 3 ist nicht einfach transitiv

• Die Linkstranslation aus Beispiel 4 a) ist immer einfach transitiv.

Zurück zum Beispiel 2 (V K-Vektorraum, $W \subseteq V$ Untervektorraum, $v \in V$, X = v + W) Wir haben Translationen definiert

$$\tau \colon W \to \operatorname{Bij}(X)$$
$$x \mapsto \tau_w$$

mit $\tau_w \colon X \to X, \ p \mapsto p + w. \ \tau$ ist eine einfach transitive Gruppenoperation von W auf x.

Definition. Sei K ein Körper. Ein affiner Raum über K ist ein Tripel $(X, T(X), \tau)$ mit

- $X \neq \emptyset$ eine Menge
- T(X) ein K-Vektorraum
- $\tau : T(x) \to \text{Bij}(X)$ eine einfach transitive Gruppenoperation

Konvention. $X = \emptyset$ ohne Spezifikation von T(X), τ nennen wir auch einen affinen Raum.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum über einem Körper K. Dann nennen wir $\dim_K T(X)$ die Dimension von X, schreiben auch dim X.

Ist $\dim X = 1$ bzw. $\dim X = 2$, dann nennen wir X eine affine Gerade bzw. affine Ebene.

Sei $(X, T(X), \tau)$ in affiner Raum, $p, q \in X$. Dann $\exists ! t \in T(X)$ mit $\tau_t(p) = q$. Schreibe $\overrightarrow{pq} = t \in T(X)$ als $\tau_{\overrightarrow{pq}}(p) = q$.

Wir erhalten eine Abbildung

$$X \times X \to T(X)$$

 $(p,q) \mapsto \overrightarrow{pq}.$

Frage. Welche Eigenschaften hat die Abbildung $(p,q)\mapsto \overrightarrow{pq}$ in einem allgemeinen affinen Raum?

Lemma 2. Sei X ein affiner Raum, $p, q, r \in X$. Dann gilt $\overrightarrow{pq} + \overrightarrow{qr} = \overrightarrow{pr}$.

Beweis. $\tau : T(X) \to \operatorname{Bij}(X)$ ist ein Homomorphismus. Also gilt $\tau_{\overrightarrow{qr}} \circ \tau_{\overrightarrow{pq}} = \tau_{\overrightarrow{pq}+\overrightarrow{qr}}$. Es gilt damit $\tau_{\overrightarrow{pq}+\overrightarrow{qr}}(p) = r$. Also $\overrightarrow{pq}+\overrightarrow{qr}=\overrightarrow{pr}$.

§1.2 Affine Abbildungen

Seien V, W K-Vektorräume. In der AGLA I: lineare Abbildungen

$$F \colon V \to W$$

 $\eth F$ respektiert die Vektorraum-Struktur

$$F(v_1 + v_2) = F(v_1) + F(v_2) \quad \forall v_1, v_2 \in V$$
$$F(\lambda v) = \lambda F(v) \quad \forall \lambda \in K \, \forall v \in V.$$

Frage. Was sind natürliche Abbildungen zwischen affinen Räumen?

Seien X, Y affine Räume über einem Körper K.

$$\overrightarrow{pq} \leadsto \overrightarrow{f(p)f(q)}.$$

$$T(X) \qquad T(Y)$$

Definition. Wir nennen eine Abbildung $f: X \to Y$ affin, wenn es eine K-lineare Abbildung $F: T(X) \to T(Y)$ gibt, sodass $\forall p, q \in X$ gilt

$$\overrightarrow{f(p)f(q)} = F(\overrightarrow{pq}).$$

Bemerkung. a) Es gibt im Allgemeinen verschiedene affine Abbildungen $f: X \to Y$, die zur gleichen linearen Abbildung $F: T(X) \to T(Y)$ gehören.

b) Sei $p_0 \in X$ fest und $f: X \to Y$ affin.

Für $q \in X$ gilt

$$\begin{split} f(q) &= \tau_{\overrightarrow{f(p_0)f(q)}}(f(p0)) \\ &= \tau_{F(\overrightarrow{p_0q})}(f(p0)). \end{split}$$

Also bestimmen $f(p_0)$ und F zusammen die Abbildung $f: X \to Y$.

Beispiel. Seien V, W K-Vektorräume

$$X = (V, V, \tau), \quad Y = (W, W, \tau).$$

Eine affine Abbildung $f\colon V\to W$ ist eindeutig bestimmt durch f(0) und eine lineare Abbildung $F\colon V\to W$. Es gilt

$$f(v) = f(0) + F(v) \quad \forall v \in V.$$

Bemerkung / Übung. Eine affine Abbildung $f: X \to Y$ ist genau dann injektiv bzw. surjektiv bzw. bijektiv, wenn die zugehörige Abbildung $F: T(X) \to T(Y)$ es ist.

Definition. Wir nennen eine bijektive affine Abbildung $f: X \to Y$ eine Affinität.

Affine Unterräume

Beispiel (\mathbb{R}^2 als Vektorraum.). Untervektorräume von \mathbb{R}^2 sind \emptyset , $\{0\}$, \mathbb{R}^2 und Geraden durch 0.

Betrachte nun \mathbb{R}^2 als affinen Raum.

Idee. Wir wollen l und l' als affine Unterräume von \mathbb{R}^2 definieren, da die Verschiebung von l, l' jeweils Untervektorräume von \mathbb{R}^2 sind.

Definition. Sei $(X, T(X), \tau)$ in affiner Raum und $Y \subseteq X$. Wenn es einen Punkt $p_0 \in Y$ gibt, sodass

$$T(Y) := \{ \overrightarrow{p_0q} \in T(X), q \in Y \}$$

ein Untervektorraum von T(X) ist, dann nennen wir Y einen affinen Unterraum von X.

Lemma 3. Sei $Y \subseteq X$ ein affiner Unterraum eines affinen Raumes $(X, T(X), \tau)$. Dann gilt

$$T(Y) = \{ \overrightarrow{pq} \in T(X), q \in Y \}$$

für jeden beliebigen Punkt $p \in Y$.

Beweis. Sei $p_0 \in Y$ ein fester Punkt mit

$$T(Y) = \{ \overrightarrow{p_0q} \in T(X), q \in Y \}$$

Untervektorraum von T(X). Dann gilt für $p \in Y$

$$\{ \overrightarrow{pq} \mid q \in Y \} = \overrightarrow{pp_0} + \{ \overrightarrow{p_0q} \mid q \in Y \} = \overrightarrow{pp_0} + T(Y) = T(Y), \qquad \Box$$

da $\overrightarrow{pp_0} = -\overrightarrow{p_0p} \in T(Y)$.

Definition. Sei $Y\subseteq X$ ein affiner Unterraum. Wir nennen $\dim_K T(Y)$ die Dimension von Y und schreiben

$$\dim Y = \dim_K T(Y).$$

Vorlesung 2
Fr 24.10, 10:15

§1.3 Durchschnitt und Verbindung affiner Räume

Frage. Sei X ein affiner Raum, Y_1, Y_2 affine Unterräume von X. Sind $Y_1 \cap Y_2, Y_1 \cup Y_2$ auch affine Unterräume von X?

Lemma 1. Sei X ein affiner Raum, Y_i , $i \in I$, eine Familie von affinen Unterräumen von X.

Dann ist $Y := \bigcap_{i \in I} Y_i$ ein affiner Unterraum von X.

Wenn $Y \neq \emptyset$, dann gilt

$$T(Y) = \bigcap_{i \in I} T(Y_i).$$

Beweis. Falls $Y = \emptyset$:

Wir nehmen also an $Y \neq \emptyset$. Sei $p_0 \in Y$. Dann gilt:

$$T(Y) = \left\{ \overrightarrow{p_0q}, q \in \bigcap_{i \in I} Y_i \right\}$$

$$= \bigcap_{i \in I} \left\{ \overrightarrow{p_0q}, q \in Y_i \right\}$$

$$= \bigcap_{i \in I} T(Y_i).$$

$$= \bigcap_{i \in I} T(X_i)$$
Untervektorräume von $T(X)$

Also ist T(Y) ein Untervektorraum von T(X) und $T(Y) = \bigcap_{i \in I} T(Y_i)$.

Bemerkung. In obiger Notation ist $\bigcup_{i \in I} Y_i$ im Allgemeinen kein affiner Unterraum von X.

Frage. Finde den "kleinsten" affinen Unterraum von X, der $\bigcup_{i \in I} Y_i$ enthält! (z. B. $X \supseteq \bigcup_{i \in I} Y_i$, aber X ist im Allgemeinen nicht "minimal").

Definition. Sei X ein affiner Raum, $Y_i, i \in I$ affine Unterräume von X. Wir nennen

$$\bigcap_{Y\subseteq X \text{ aff. Unterraum}} Y$$

den Verbindungsraum der affinen Unterräume $Y_i, i \in I$. Schreibe $\bigvee_{i \in I} Y_i$.

 $X = \mathbb{R}^2$, $Y_1 \vee Y_2 = X$, $Y = Y_1 \vee Y_2$, $T(Y) = T(Y_1) + T(Y_2)$.

Beispiel.

Frage. Wie kann man im Allgemeinen $T(Y_1 \vee Y_2)$ aus $T(Y_1), T(Y_2)$ bestimmen?

Lemma 2. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2).$$

b) Sei $Y_1 \cap Y_2 = \emptyset$, $p_1 \in Y_1, p_2 \in Y_2$ und $Y = p_1 \vee p_2$. Dann gilt:

$$T(Y_1 \vee Y_2) = (T(Y_1) + T(Y_2)) \oplus T(Y).$$

Beweis. a) Sei $p \in Y_1 \cap Y_2$. Dann gilt

$$T(Y_1) \cup T(Y_2) = \{ \overrightarrow{pq} \mid q \in Y_1 \cup Y_2 \}$$

$$\subseteq T(Y_1 \vee Y_2),$$

also $T(Y_1) + T(Y_2) \subseteq T(Y_1 \vee Y_2)$.

Sei $Y=\{\, \tau_t(p)\mid t\in T(Y_1)+T(Y_2)\,\}$. Dann ist Y affiner Unterraum von X mit $Y_1\cup Y_2\subseteq Y$, also $Y_1\vee Y_2\subset Y$, also $Y_1\vee Y_2\subseteq Y$. Also gilt

$$T(Y_1 \vee Y_2) \subseteq T(Y) = T(Y_1) + T(Y_2).$$

Also $T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2)$.

b) $Y_1 \cap Y_2 = \emptyset$, $p_1 \in Y_1$, $p_2 \in Y_2$, $Y = p_1 \vee p_2$.

Schreibe $Y_1 \vee Y_2 = Y_1 \vee Y \vee Y_2$ (verwende dazu $Y \subseteq Y_1 \vee Y_2$). Verwende a) und leite ab, dass gilt:

$$T(Y_1 \lor Y \lor Y_2) = T(Y_1) + T(Y \lor Y_2)$$

= $T(Y_1) + T(Y) + T(Y_2)$
= $(T(Y_1) + T(Y_2)) \stackrel{!}{\oplus} T(Y).$

Es gilt

$$T(Y) = \{ \lambda \overrightarrow{p_1 p_2} \mid \lambda \in K \}.$$

Wir wollen zeigen

$$(T(Y_1) + T(Y_2)) \cap T(Y) = \{ 0 \}.$$

Es genügt zu zeigen

$$\overrightarrow{p_1p_2} \notin T(Y_1) + T(Y_2).$$

Gegenannahme:

$$\overrightarrow{p_1p_2} = \overrightarrow{p_1y_1} + \overrightarrow{q_2p_2}$$

$$\overset{\cap}{T(Y_1)} \overset{\cap}{T(Y_2)}$$

mit $q_1 \in Y_1, q_2 \in Y_2$.

Dann gilt

$$\overrightarrow{q_1q_2} = \overrightarrow{q_1p_1} + \overrightarrow{p_1p_2} + \overrightarrow{p_2q_2} = 0,$$

Als nächstes: $\dim(Y_1 \vee Y_2)$ ist durch $\dim_K T(Y_1 \vee Y_2)$ gegeben, also sollten wir aus Lemma 2 für $Y_1 \vee Y_2$ ableiten können.

Lemma 3. Sei X ein affiner Raum, $Y_1, Y_2 \neq \emptyset$ affine Unterräume von X.

- a) Sei $Y_1 \cap Y_2 \neq \emptyset$. Dann gilt $\dim(Y_1 \vee Y_2) = \dim(Y_1) + \dim(Y_2) \dim(Y_1 \cap Y_2)$.
- b) Sei $Y_1 \cap Y_2 = \emptyset$. Dann gilt

$$\dim(Y_1 \vee Y_2) = \dim(Y_1) + \dim(Y_2) - \dim(T(Y_1) \cap T(Y_2)) + 1.$$

Beweis. a) Aus Lemma 2 folgt

$$T(Y_1 \vee Y_2) = T(Y_1) + T(Y_2),$$

aus der Dimensionsformel für Untervektorräume folgt

$$\dim(Y_1 \vee Y_2) = \dim T(Y_1 \vee Y_2)$$

$$= \dim(Y_1) + \dim T(Y_2) - \dim(T(Y_1) \cap T(Y_2))$$

$$= \dim T(Y_1) + \dim T(Y_2) - \dim T(Y_1 \cap Y_2)$$

$$\stackrel{\uparrow}{Lemma \ 1}$$

$$= \dim Y_1 + \dim Y_2 - \dim Y_1 \cap Y_2.$$

b)
$$Y_1 \cap Y_2, p_1 \in Y_1, p_2 \in Y_2, Y = p_1 \vee p_2.$$

Dann ist

$$\dim Y = \dim T(Y) = 1.$$

Wir erhalten

$$\dim(Y_{1} \vee Y_{2}) = \dim T(Y_{1} \vee Y_{2})$$

$$= \dim((T(Y_{1}) + T(Y_{2})) \oplus T(Y))$$

$$= \dim(T(Y_{1}) + T(Y_{2})) + \dim T(Y)$$

$$= \dim T(Y_{1}) + \dim T(Y_{2}) - \dim(T(Y_{1}) \cap T(Y_{2})) + 1$$

$$= \dim Y_{1} + \dim Y_{2} - \dim(T(Y_{1}) \cap T(Y_{2})) + 1$$

Beispiel $(X = \mathbb{R}^3)$.

$$\dim(Y_1 \vee Y_2) = 1 + 1 - \underbrace{\dim(T(Y_1) \cap T(Y_2))}_{=1} + 1 = 2$$

$$\dim(Y_1 \vee Y_2)1 + 1 - 0 + 1 = 3$$

und $Y_1 \vee Y_2 = X$.

§1.4 Parallelprojektionen

Wiederholung (Projektionen aus der AGLA I). Beispiel.

Sei V ein K-Vektorraum, $W, W_1 \subset V$ K-Untervektorräume mit $V = W \oplus W_1$. Schreibe $v \in V$ in der Form $v = w + w_1$ und mit $w \in W$, $w_1 \in W_1$. Definiere

$$P_W \colon V \to W_1$$

$$v \mapsto w_1.$$

$$w \mapsto w_1.$$

Ein paar Eigenschaften von P_W :

- $P_W: V \to W_1$ ist eine lineare Abbildung,
- $\operatorname{Ker} P_W = W$,
- $P_W|_{W_1} = \mathrm{Id}_{W_1}$.

Als Nächstes: Wir schränken P_W ein auf einen Untervektorraum W_0 von V.

Lemma 4. Sei V ein K-Vektorraum, $W, W_0, W_1 \subseteq V$ Untervektorräume mit $V = W \oplus W_0 = W \oplus W_1$.

Dann ist $P_W|_{W_0}: W_0 \to W_1$ ein Isomorphismus (Notation wie oben).

Beweis. Es gilt $\dim W_0 = \dim W_1$ und es genügt zu zeigen, dass $P_W|_{W_0}$ injektiv ist.

Sei $P_W|_{w_0}=w_1$ für $w_0\in W_0,\ w_1\in W_1$. Dann ist $w_0=w+w_1$ mit $w\in W,\ w_1\in W_1,$ also

$$w_1 = w_0 - w \in W_0 \oplus W,$$

$$W_0 \longrightarrow W$$

und diese Zerlegung ist eindeutig.

Parallelprojektionen für affine Räume

Sei X ein affiner Raum (über einem Körper K), $Y_1 \subseteq X$ ein affiner Unterraum

Beispiel.

Sei $W \subseteq T(X)$ ein Untervektorraum mit $T(X) = T(Y_1) \oplus W$.

Ziel. Definiere eine Projektionsabbildung

$$\pi_W \colon X \to Y_1$$

"längs W".

Für $p \in X$ definiere

$$W(p) := \{ x \in X \mid \overrightarrow{px} \in W \}$$

Lemma 5. Notation wie oben. Für $p \in X$ gilt

$$\#(Y_1 \cap W(p)) = 1.$$

Beweis. Wir berechnen

$$\dim(Y_1 \cap W(p)).$$

Sei $x = \dim X$, verwende Lemma 3 b). Falls $Y_1 \cap W(p) = \emptyset$, dann

$$\dim(Y_1 \vee W(p)) = \dim Y_1 + \dim W(p) - \dim(\underbrace{T(Y_1) \cap W}_{=\{0\}}) + 1$$
$$= \dim T(Y_1) + \dim W + 1$$

 \nleq zu $Y_1 \vee W(p) \subseteq X$, also ist $Y_1 \cap W(p) \neq \{\ 0\ \}$, und nach Lemma 3 a) gilt Folgendes:

$$\underbrace{\dim(Y_1 \vee W(p))}_{\text{ii}} = \dim Y_1 + \dim W(p) - \dim(Y_1 \cap W(p))$$
$$= n - \dim(Y_1 \cap W(p))$$

und nach Lemma 1

$$\dim Y_1 \vee W(p) = \dim(T(Y_1) + W) \qquad \Box$$
$$= n.$$

also $\dim(Y_1 \cap W(p)) = 0$.

Wir definieren die Projektion längs W

$$\pi_W \colon \underset{Y_0}{\overset{\subseteq}{Y_0}} \to Y_1, \ p \mapsto W(p) \cap Y_1.$$

Satz 6. Sei X ein affiner Raum, $Y_1,Y_0\subseteq X$ affine Unterräume, $W\subseteq T(X)$ ein Untervektorraum mit

$$T(X) = W \oplus T(Y_0) = W \oplus T(Y_1).$$

Dann ist $\pi_W \colon X \to Y_1$ eine surjektive affine Abbildung und $\pi_w|_{Y_0} \colon Y_0 \to Y_1$ eine Affinität.

Beweis. Seien $p, q \in X$.

Dann gilt

$$\overrightarrow{pq} = \overrightarrow{p\pi_W(p)} + \overrightarrow{\pi_W(p)\pi_W(q)} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q} + \overrightarrow{\pi_W(q)q} + \underbrace{\overrightarrow{\pi_W(p)\pi_W(q)}}_{\in W},$$

also $\overrightarrow{\pi_W(p)\pi_W(q)} = P_W(\overrightarrow{pq}).$

 P_W ist surjektiv, also ist π_W eine surjektive affine Abbildung.

Der zweite Teil folgt aus Lemma 4.