Fetal Health Classification Project

The Data:

Number of records: 2126

Number of features: 22

Goal: Classify the fetal health into 3 classes:

- 1. Normal
- 2. Suspect
- 3. Pathological

Name: Reema Alnafisi

Workflow

Workflow

Model Model **Data Scaling Preprocessing Data Analysis Building and Selection Evaluating**

2 Preprocessing

Preprocessing

- No null values
- No missing values

Data Preprocessing

How many null values do we have?

```
In [28]: data.isnull().sum().sum()
```

Out[28]: 0

How many missing values do we have?

```
In [29]: data.isna().sum().sum()
```

Out[29]: 0

3 Data Analysis

Data Analysis

Balanced or imbalanced?

Data Analysis

features with largest correlation with the fetal health state are:

- prolongued decelartions
- abnormal short term variability
- percentage of time with abnormal long term variability

fetal_health	1.000000

fetal_health

1.000000	fetal_health
0.484859	prolongued_decelerations
0.471191	abnormal_short_term_variability
0.426146	$percentage_of_time_with_abnormal_long_term_variability$
0.206630	histogram_variance
0.148151	baseline value
0.131934	severe_decelerations
0.088010	fetal_movement
0.063175	histogram_min
0.058870	light_decelerations
-0.016682	histogram_number_of_zeroes
-0.023666	histogram_number_of_peaks
-0.045265	histogram_max
-0.068789	histogram_width
-0.103382	mean_value_of_short_term_variability

Data Scaling

Data Scaling

Feature scaling is a critical step in the preprocessing of data. The most common techniques are:

- 1. Normalization: used to bound the values between two numbers.
- 2. Standardization: used to transform the data to have a mean of zero and a variance of one. It makes the data unitless.

Model Selection

Model Selection

Cross validation score with 10 folds on a list of pipelines which has different classifiers.

Logistic Regression: 0.897170

Decision Tree: 0.916683

RandomForest: 0.938854

SVC: 0.906594

Random Forest:

An ensemble method, meaning that a random forest model is made up of a large number of small decision trees, called estimators, which each produce their own predictions. The random forest model combines the predictions of the estimators to produce a more accurate prediction.

```
#Find the best estimator according to GridSearchCV
best estimator RF = CV RFC.best params
print(f"Best estimator for RF: \n{best estimator RF}")
Best estimator for RF:
{'criterion': 'gini', 'min_samples_leaf': 1, 'min_samples_split': 6, 'n_estimators': 500}
#Find the best score according to GridSearchCV
best score RF = CV RFC.best score
print(f"Best score for RF: {round(best score RF, 4)}")
Best score for RF: 0.9388
```

	Classification Report precision recall				f1-score	support
			precision	recarr	11-30016	зиррог с
Mean Square Error= 0.08		1.0	0.96	0.98	0.97	496
Root Mean Square Error= 0.283		2.0	0.91	0.77	0.83	101
R^2 on training set = 0.995		3.0	0.86	0.93	0.89	41
R^2 on testing set = 0.944						
	accur	асу			0.94	638
	macro	avg	0.91	0.89	0.90	638
	weighted	avg	0.94	0.94	0.94	638

Confusion Matrix:

Conclusion

THANKSI

Any questions?