Remaining Topics

- Semiconductor Memory
 - Reference: 'Analysis and Design of Digital Integrated Circuits' by Hodges, Jackson, and Saleh
- Digital Logic using BJTs
- Layout

Semiconductor Memories

Classification

	<u>Volatile</u>	Speed	<u>Density</u>
SRAM	Yes	High	Moderate
DRAM	Yes	Moderate	High
ROM	No	High	Moderate
EPROM	No	Low	Low
Flash	No	Low	High
MRAM	No	High	Moderate
FeRAM	No	High	Moderate

Classification

		<u>Volatile</u>	<u>Speed</u>	<u>Density</u>
→	SRAM	Yes	High	Moderate
—	DRAM	Yes	Moderate	High
	ROM	No	High	Moderate
	EPROM	No	Low	Low
—	Flash	No	Low	High
	MRAM	No	High	Moderate
	FeRAM	No	High	Moderate

Memory Classification

Stand Alone Memory

- DRAM, ROM, SRAM, FLASH, EPROM
- MRAM, FeRAM

Embedded Memory

- SRAM for cache
- DRAM
- ROM

Memory Market

September 2006 Chip Sales Reached \$21.4 Billion

SAN JOSE, CA – November 16, 2006 – The Semiconductor Industry Association (SIA) today released its annual forecast of global semiconductor sales, projecting that the industry will continue to ride a strong wave of consumer demand for electronic products, driving sales to \$321 billion in 2009. The SIA forecast projects a compound annual growth rate of 9 percent for the forecast period, 2006-2009. Total worldwide microchip sales in 2005 amounted to \$227.5 billion.

MEMORY accounted for ~25% of the total market DRAM sales are projected to be the fastest-growing segment

- Compound annual growth rate >14% in 2006-2009
- Sales especially strong for remainder of 2006 and in 2007 --> Vista OS

Sales of NAND flash are projected to grow at compound annual rate of 11% through 2009.

- Driven by replacement of hard drives; Laptop computers with pure NAND drives are projected to account for up to 25 percent of the laptop market by 2009

ECE445

Memory Market

Historical Cost of Computer Memory and Storage

AMD Athlon

12/12/16 Clock Generator

ECE445

AMD Dual-Core Athlon

Memory Density

SRAM 6-T cell: 40-100 F² cell

DRAM 1-T, 1-C cell: 5-10 F² cell; most common 8F² cell

12/12/16

ECE445

1T DRAM Cell

4Gb DRAM

DRAM Trench Capacitor

Redundancy

Redundancy is always used on standalone DRAMs and frequently for embedded DRAMs.

Implemented via on chip fuses in which fuses are blown either by a laser pulse or by an electrical pulse during wafer test.

Normally a few rows and columns of redundancy are offered on a large DRAM embedded macro. Smaller macros require less redundancy (or no redundancy)

Redundancy can also be implemented to some extent in the logic part of the circuits. To implement a spare decoder, for example, switches can be used that shift all decoder connections by one to bypass the faulty decoder.

Memory Standards

Most memory standards are controlled by the **JEDEC** Solid State Technology Association (Once known as the **J**oint **E**lectron **D**evice **E**ngineering **C**ouncil). JEDEC is the semiconductor engineering standardization body of the Electronic Industries Alliance (EIA), a trade association that represents all areas of the electronics industry and was originally created in 1960 to cover the standardization of discrete semiconductor devices and later expanded in 1970 to include integrated circuits.

JEDEC does its work through its 48 committees/ subcommittees that are overseen by the **JEDEC** Board of Directors. Presently there are about 300 member companies in **JEDEC** including both manufacturers and users of semiconductor components and others allied to the field.

DRAM Architecture

More than 10 Different Types of DRAM

Page Mode DRAM DRAM

Fast Page Mode DRAM FPM DRAM

Extended Data Output DRAM EDO DRAM

Burse Extended Data Output DRAM BEDO DRAM

Enhanced DRAM EDRAM

Synchronous DRAM SDRAM

PC100 Synchronous DRAM PC100 SDRAM

Enhanced Synchronous DRAM ESDRAM

Double Data Rate DRAM DDR DRAM

Direct Rambus DRAM DRDRAM

Synchronous Link DRAM SLDRAM

Memory Circuits

Memory Core - typically stores 1-bit - can have multilevel cores)

Peripheral Circuits

- row and column decoders
- sense amplifiers
- column precharge circuits
- data buffers
- read/write (R/W) circuits

- . . .

Typical Memory Organization

64 Kb RAM (28 x 28)

Timing Signals

 $t_{\text{CYCLE}} - \text{minimum time to complete successive read or write operations} \\ t_{\text{W/SETUP}} - \text{write setup time}$

 $t_{\rm AC}$ – read access time – delay from change in the address until data from that address are available at the output ECE445

22

Row Decoder (n=2)

Cascade Decoder

An n-bit decoder \rightarrow 2ⁿ logic gates each with n inputs

For n=6 → requires 64, 6–input NAND gates and 64 Inverters

To minimize delay caused by large series resistances \rightarrow cascade

- predecode stage
- final decode stage

Allows intermediate signals from the predecode stage to be reused by the final decoding stage

Alternative 6-input NAND

Reuse of Intermediate Signals

Sizing Using Logical Effort

Size the decoder assuming:

- normalized output load = 1
- fan-out = 4

Work backwards from the output to the input:

- Normalized output has a size =
- Inverter input capacitance =
- The Logical Effort of the 3-input NAND =
- Input capacitance of 3-input NAND =
- Branching effort at output of predecoder =
- Input capacitance of the inverter =
- The 2-input NAND has an input capacitance = 12/12/16 ECE445

Decoder Size by Logical Effort

12/12/16

SRAM (Static RAM) Cell

Basic SRAM Cell

Voltage Transfer Characteristics

6-T Configuration

Cell Design Considerations

- 1. Minimize Cell Area $\leftarrow \rightarrow$ Increase cell density
 - replace load resistors (M5 and M6) with transistors
 - utilize TFTs for M5 and M6
 - reduce wasted area
- 2. Minimize static power → Increase Vt and sub-Vt slope
- 3. Differential bitlines \rightarrow improved noise immunity

SRAM Array (simplified)

 $C_{WORD} = 2 (C_G + C_{WIRE}) x # columns$

SRAM Read Operation

- 1. Precharge b, b to V_{DD} column pull-up R
- 2. Turn on wordline to select row
- 3. CBIT slowly discharges on either b or b
- 4. b and b \rightarrow sense $\operatorname{Expplifier}$

SRAM Write Operation

- 1. Force either b or \overline{b} low
- 2. Turn on appropriate word line
- 3. Node q or \overline{q} is driven low causing the state to switch ECE445

Transistor Sizing Guidelines

- 1. During read: need to ensure stored value is not disturbed voltage can not drop below V_s
- 2. Make conductance of M1, M2 greater than M3, M4
- 3. Need to supply enough I_{CELL} to discharge C_{BIT} sufficiently in 20-30% of a clock cycle
- 4. Can estimate I_{CELL}

$$I_{CELL} = C_{BIT} \Delta V / \tau$$

5. During write: make conductance of M3, M4 greater than M5, M6

Cell Layout

SRAM Column I/O Circuitry

Pre-charge (PC) circuitry

- used prior to a read or write operation to pull bit lines 'high'
- equalize b and b potentials

Address transition detection (ADT) circuitry to generate PC signal

- triggered by any transition of the address inputs

Column decoder – multiplexer

Read and Write circuitry

- R/W selection circuit
- sense amplifiers for read operation
- write drivers for write operation

Column Pull-up Circuitry

Address Transition Detection (ADT)

Column Decoder / Multiplexer

Column Selection / Read - Write

12/12/16

Tree Decoding Structure

Write Driver Circuitry

12/12/16

ECE445

Basic Read Circuitry

45

Differential Voltage Sense Amp

Consists of:

- common source amp
- current mirror
- current biasing

Advantages:

- High Speed Operation
- Good noise immunity
- high CMRR

Detection of '0' and '1'

(a) Discharging output

(b) Charging output

Latch-Based Sense Amp

12/12/16

Memory Architecture

Basic Memory Architecture

12/12/16

ECE445

Partitioning - Divided Wordline

Partitioning – Divided Bitline

12/12/16

Other Memory Families

Content-Addressable Memories CAM
Dynamic Random Access Memory DRAM
Flash Memory

Associative Memories Content Addressable Memories (CAMs)

Basic architecture is similar to SRAM

Data we seek is associated with a known binary keyword rather than a known binary address

Compare known keyword against previously stored keywords, known as tags, that reference the data we seek

Address decoder \rightarrow matching scheme

Often used in:

- cache memories
- Internet routing tables

Concept of a CAM Array

CAM Lookup Array

12/12/16

CAM Memory Cell

CAM Implementation

58

DRAM

1T DRAM Cell

DRAM Array Configuration

DRAM Sense/Refresh Circuit

12/12/16

64-kbit DRAM – Block Diagram

63

Flash Memory

Applications

Read / Write Non-volatile Memory

- USB memory sticks
- Digital cameras
- MP3 players

- ...

10⁶ R/W operations

1T cell implementation of E²PROM

Two architectures

- NAND
- NOR

Dual-Gate Structure

Schematic Representation

Capacitive Divider at Gate

To Turn The Device On

Gate 2
$$V_{G1} > V_{t}$$

$$\Rightarrow V_{G1} = V_{G2} \frac{C_{2}}{C_{1} + C_{2}} > V_{t}$$

$$\Rightarrow V_{G1} > V_{t}$$

$$\Rightarrow V_{G2} > V_{t} \frac{C_{1} + C_{2}}{C_{2}}$$

$$\Rightarrow V_{G2} > V_{t} \frac{C_{1} + C_{2}}{C_{2}}$$

Device Operation

Gate 2
$$V_{G2}$$
 $V_{G1} > V_{t}$

$$\Rightarrow V_{G1} = V_{G2} \frac{C_{2}}{C_{1} + C_{2}} > V_{t}$$

$$V_{S} \longrightarrow V_{D} \Rightarrow V_{G2} > V_{t} \frac{C_{1} + C_{2}}{C_{2}}$$

Device operation relies on the ability to store and remove charge from the floating gate \rightarrow namely node V_{G1}

Write Process

Write process relies on "Hot Carrier Injection" (HCL)

- Raise V_{G2} and $V_{DS} >> VDD$
- Avalanche breakdown of Drain/Substrate Junction
- Electrons are injected through the gate oxide onto the floating gate
- Self-terminating process because $V_{\rm G1}$ decreases as electrons are injected onto the floating gate

Example

Assume C1 = C2 = C
VDD = 5V,
$$V_T = 1V$$

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(a) Initial state (b) After applying 10 V

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(c) After programming

Program by applying $V_{DS} = 10V$

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(c) After programming

Program by applying $V_{DS} = 10V$ Assume₄₅ V_{G1} drops to 2V

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(c) After programming

Reduce gate voltage $V_{G2} = 0V$

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(c) After programming

Reduce gate voltage $V_{G2} = 0V$

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(c) After programming

Raise gate voltage $V_{G2} = VDD$

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(c) After programming

Raise gate voltage V_{G2} = VDD TRANSISTOR IS STILL OFF!! Have written a "1"

Assume
$$C1 = C2 = C$$

 $VDD = 5V$, $V_T = 1V$

(c) After programming

Raise gate voltage $V_{G2} = VDD$ TRANSISTOR IS STILL OFF!!

To turn the transistor on: $V_{G2} = 8V_{80}$

Different Methods to Erase

(b) Erase process —UV light

In a conventional EPROM, UV light is used generate e/h pairs in the SiO₂ dielectric making the dielectric conductive

Different Methods to Erase

In a E²PROM, the charge is removed by "Fowler-Nordheim" (FN) transport.

When the field across the oxide exceed ~10 MV/cm, electrons can tunnel across the oxide

Fowler-Nordheim Tunneling

$$j_{FN} = BE^2 e^{\left(-\frac{b}{E}\right)}$$

12/12/16

FN Tunneling – 10nm SiO₂

Symbol

2T E²PROM Cell

1T Cell - FLASH

NOR Array

Write — "hot carrier injection"

89

Erase – "Fowler-Nordheim Tunneling"

Erase – "Fowler-Nordheim Tunneling"

All transistors connected to the source line are erased simultaneously -> FLASH

Write / Erase

12/12/16 ECE445 92

Read Operation

ECE445 12/12/16

93

NAND Flash Array

NAND vs NOR Arrays

	Write	Read	Erase	Density
NAND	Fast	Slow	Fast	High
NOR	Slow	Fast	Slow	Low

Issues

Read / Write Endurance

 $- > 10^6$ Operations

Redundancy for improved yield

Multi-Bit Cell Architectures – in common practice today!