Networks and Protocols

Introduction

ensia Introduction

- How can machines communicate?
 - When they are directly connected

When they are not directly connected

• But, we talk about how many machines?

ensia Introduction

- A simple Task: Send information from one computer to another
 - Endpoints called hosts
 - Could be computer, iPhone, laptop, etc.

refrigerator

Communication links

• We don't care what the physical technology is: Ethernet, wireless, cellular, etc.

• Protocols: control sending, receiving of messages

ensia Introduction

- Two machines ⇒ link
- (But, what if we talk about many machines?)
- Multiple machines ⇒ network
 - A system of "links" that interconnect "nodes" in order to move "information"

between nodes

- Multiple networks ⇒ Inter-network ⇒ Internet!
- Because, you know Internet, we will focus primarily on the Internet

Chapter 01: Introduction **ENSi3** How The internet Works

The internet: Service view vs component view

GNSia

Service view

- Communication infrastructure enables distributed apps:
 - Web, VoIP, email, games, ecommerce, file sharing
- Communication services provided to apps:
 - reliable data delivery
 - QoS data delivery
 - "best effort" data delivery

Component view

- Protocols control sending, receiving of messages
 - e.g., TCP, IP, HTTP, Ethernet
- Internet: "network of networks"
 - loosely hierarchical
- Internet standards
 - RFC: Request For Comments
 - IETF: Internet Eng. Task Force

The internet: component view

ENSID

The Internet consists of many end-systems managed by many parties

How The internet Works

ENSi3

• ROUGHLY, what happens when I click on a Web page e.g. on YouTube?

The internet: Terminology

GNSia

- Network edge:
 - hosts: clients and servers
 - servers often in data centers
- Access networks, physical media:
 - wired, wireless communication links
- Network core:
 - interconnected routers
 - network of networks

ensia Host: sends packets of data

ensia

- host sending function:
 - takes application message
 - breaks into smaller chunks, known as packets, of length L bits
 - transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

ensia Network core: connecting everyone

CNSia

- Any two end-hosts (anywhere!) can talk to each other via the Internet
- How to connect millions of millions of nets?

ensia Switched networks

- **GNSia**
- Solution: Switched networks
 - Instead of directly connecting end-systems and networks
 - Use switches to connect them
 - Allows us to scale!

When do we need to share the network?

ENSI3

ensia Shared among many services

ENSi3

Two ways to share switched networks

ENSID

- Two ways to share switched networks
 - Circuit switching
 - Resource reserved per connection
 - Admission control: per connection
 - Packet switching via statistical multiplexing
 - Packets treated independently, on-demand
 - Admission control: per packet

ensia Circuit switching

ENSID

End-end resources allocated to, reserved for "call" between source and destination

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- Reservation establishes a "circuit" within a switch
- Dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

ensia Circuit switching

GNSia

Pros

- Predictable performance
- Simple/fast switching (once circuit established)

• Cons

- Complexity of circuit setup/teardown
- Circuit setup adds delay
- Switch fails □ its circuit(s) fails
- Extremely inefficient when traffic is bursty!
 - Think: Are you always clicking?

ensia Packet switching: Store and forward

ENSID

- Each packet contains destination (dst)
- Each packet treated independently
- With buffers to absolve transient overloads

Packet switching

Pros

- Efficient use of network resources
- Simpler to implement
- Robust: can "route around trouble"

• Cons

- Unpredictable performance
- Requires buffer management and congestion control

ensia Statistical multiplexing

- Allowing more demands than the network can handle
 - Hoping that not all demands are required at the same time
 - Results in unpredictability
 - Works well except for the extreme cases

Performance metrics

Loss, delay, throughput

Performance metrics

CISIO

- How does one evaluate the performance of Internet communication?
- Consider a source end-system that is sending data to a destination end-system over the Internet.

What are the simple performance metrics to quantify the quality of this communication?

Performance metrics

- What are the simple performance metrics to quantify the quality of this communication?
- We choose three metrics
 - Delay
 - How long does it take to send a packet from its source to destination?
 - 2. Loss
 - What fraction of the packets sent to a destination are dropped?
 - 3. Throughput
 - At what rate is the destination receiving data from the source

Performance metrics: Delay

ENSID

- How do packet delay and loss occur?
- They are four sources for packet Delay

$$Delay = d_{processing} + d_{queuing} + d_{transmission} + d_{propagtion}$$

Performance metrics: Delay

GNSID

They are four sources for packet Delay

Processing delay

- check bit errors
- determine output link
- typically < microsecs

Queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Transmission delay:

- L: packet length (bits)
- R: link transmission rate (bps)
- $d_{trans} = L/R$

Propagation delay:

- *d*: length of physical link
- s: propagation speed (~2x10⁸ m/sec)
- $d_{\text{prop}} = d/s$

Transmission delay & propagation delay: Example

GNSia

• Packet delay sending a 100-byte packet

Transmission delay & propagation delay: Example

GISI3

Packet delay sending a 100-byte packet

Transmission delay & propagation delay: Example

GNSia

• Packet delay sending a large file using 100-byte packets

ensia Packet queueing delay

- How long does a packet have to sit in a buffer before it is processed?
- Depends on traffic pattern
 - Arrival rate at the queue
 - Nature of arriving traffic (bursty or not?)
 - Transmission rate of outgoing link
- Characterized with statistical measures
 - Average queuing delay
 - Variance of queuing delay
 - Probability delay exceeds a threshold value

ensia Packet queueing delay

GNSia

- a: average packet arrival rate (pkt/s)
- L: packet length (bits)
- R: link bandwidth (bits/s)

Traffic intensity:
$$\frac{L \cdot a}{R} = \frac{\text{arrival rate of bits}}{\text{service rate of bits}}$$

measure of the average occupancy of a server or resource during a specified period of time,

- La/R ~ 0: avg. queueing delay small
- La/R < 1: The router can handle more average traffic
- La/R > 1: The rate at which bits arrive exceeds the rate bits can be transmitted and queuing delay will grow without bound

Processing delay

- How long does the switch take to process a packet?
 - Generally negligible

ensia Packet loss

- What fraction of the packets sent to a destination are dropped?
- How do packet loss occur?
 - Queue (aka buffer) preceding link in buffer has finite capacity
 - Packet arriving to full queue dropped (aka lost)
- Lost packet may be retransmitted by previous node, by source, or not at all

Ensia Throughput

ensia

- Throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - Instantaneous: rate at given point in time
 - Average: rate over longer period of time

ensia Round Trip Time (RTT)

- Time for a packet to go from a source to a destination and to come back
- Why do we care?
 - Measuring delay is hard from one end
- RTT/2 equals average end-to-end delay
 - Why not exact?

Chapter 01: Introduction

Protocol layers, service models

Protocol "layers" and reference models

GNSia

- Networks are complex, with many "pieces":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software
- Question: is there any hope of organizing structure of network?
 - and/or our discussion of networks?

ensia Inspiration

ENSID

- CEO A writes letter to CEO B
 - Folds letter and hands it to administrative aide
- Aide:
 - Puts letter in envelope with CEO B's full name
 - Takes to FedEx
- FedEx Office
 - Puts letter in larger envelope
 - Puts name and address on FedEx envelope
 - Puts package on FedEx delivery truck
- FedEx delivers to other company

The path of the letter

- Layers: each layer implements a service
 - "Peers" in same layer understand each other
 - relying on services provided by layer below

CEO	Semantic Content	CEO
Aide	Identity	Aide
FedE x	Location	FedE x

Lowest level has most packaging

ensia Why layering?

- Approach to designing/discussing complex systems:
 - explicit structure allows identification, relationship of system's pieces
 - layered reference model for discussion
 - modularization eases maintenance, updating of system
 - change in layer's service *implementation*: transparent to rest of system

Method:

- Decompose the problem into tasks
- Organize these tasks
- Assign tasks to entities (who does what)

Layered Internet protocol stack

GNSia

- Application: supporting network applications
 - HTTP, IMAP, SMTP, DNS
- Transport: process-process data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP, routing protocols
- Link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- Physical: bits "on the wire"

Application Transport Network Link Physical

Layered Internet protocol stack

- What gets implemented at the end systems?
 - Bits arrive on wire, must make it up to application
 - Therefore, all layers must exist at host!
- What gets implemented at routers and switches?
 - Switches only need to support physical and link layers
 - Routers support physical, link and network layers

ensia Services, Layering and Encapsulation

ENSia

ensia Encapsulation: an end-end view

ensia Encapsulation: Example

ensia Encapsulation: Example

GNSia

ensia OSI layers

GNSia

- OSI stands for Open Systems Interconnection model
 - Developed by the ISO
- Session and presentation layers are often implemented as part of the application layer

Layers and protocols

CNSia

• Communication between peer layers on different systems is defined by protocols

ensia What is a Protocol?

GNSia

- Protocol: An agreement between parties (in the same layer) on how to communicate, it defines
 - syntax of communication
 - Header

 instructions on how to process payload
 - Each protocol defines the format of its headers
 - e.g., "the first 32 bits carry the destination address"
 - And semantics
 - "First a hello, then a request..."
 - We will study many protocols later in the semester
 - Protocols exist at many levels, hardware, and software
 - Defined by standards bodies like IETF, IEEE, ITU.

ensia Credit

GISUZ

Kurose, JHU, CMU, Stanford