Switching Circuits

Example 1

Here is a switch called a . It can be closed or open.

If a is closed then electric current can flow. We say a=1

If a is open then electric current cannot flow. We say a=0

Example 2

Here are two switches in series:

a.b denotes switches *a* and *b* in series (this is not multiplication!)

If *a* is closed and *b* is closed then electric current can flow.

So if a=1 and b=1 then a.b=1 So 1.1=1

If a is open or b is open (or both) then electric current cannot flow.

So if a=0 or b=0 (or both) then a.b=0 So 0.1=0 1.0=0 0.0=0

We can set this out in a table:

а	b	a.b
0	0	0
0	1	0
1	0	0
1	1	1

Example 3

Here are two switches in parallel:

a+b denotes switches a and b in parallel (this is not addition!) a is closed or b is closed (or both) then electric current can flow. So if a=1 or b=1 (or both) then a+b=1 So 1+0=1 0+1=1 1+1=1 If a is open and b is open then electric current cannot flow. So if a=0 and b=0 then a+b=0 So 0+0=0

We can set this out in a table:

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

We can have switches that are linked to each other. If two switches are both called a then they are always in the same state, either both open or both closed. If one switch is called a and another switch is called a' then they are always in opposite states, one open and the other one closed. If a=1 then a'=0 If a=0 then a'=1

Example 4

Here is a circuit:

The mathematical expression for this circuit is: (a.b)+(a'+c) Think about it.

The table for this circuit is:

а	b	С	a.b	a'	a'+c	(a.b)+(a'+c)
0	0	0	0	1	1	1
0	0	1	0	1	1	1
0	1	0	0	1	1	1
0	1	1	0	1	1	1
1	0	0	0	0	0	0
1	0	1	0	0	1	1
1	1	0	1	0	0	1
1	1	1	1	0	1	1

see EXERCISE 1

Look at Exercise 1 questions (4) and (5)

You should have found that the columns for (a.b)+(a.c) and a.(b+c) are the same.

We say
$$(a.b)+(a.c)=a.(b+c)$$

The circuit in (5) does the same thing as the circuit in (4) but uses fewer switches.

a.1 denotes switch a in series with a closed switch electric current can flow if a is closed, so a.1=1 if a=1 electric current cannot flow if a is open, so a.1=0 if a=0 So a.1=a

a+1 denotes switch a in parallel with a closed switch. Electric current can always flow. So a+1=1

a.0 denotes switch a in series with an open switch. Electric current can never flow. So a.0=0

a+0 denotes switch a in parallel with an open switch electric current can flow if a is closed, so a+0=1 if a=1 electric current cannot flow if a is open, so a+0=0 if a=0 So a+0=a

Use tables to prove the following rules: (no need to do them all)

$$(a')'=a$$

$$a.a=a$$

$$a,a'=0$$

$$a.b=b.a$$

$$(a.b).c=a.(b.c)$$

$$a.(b+c)=(a.b)+(a.c)$$

$$(a.b)' = a' + b'$$

$$a.(a+b)=a$$

$$a+a=a$$

$$a + a' = 1$$

$$a+b=b+a$$

$$(a+b)+c=a+(b+c)$$

$$a+(b.c)=(a+b).(a+c)$$

$$(a+b)'=a'.b'$$

$$a+(a.b)=a$$

EXERCISE

1) Draw the circuit and fill in the table for (a+b)+(a.b)

a	b	a+b	a.b	(a+b)+(a.b)
0	0			
0	1			
1	0			
1	1			

2) Draw the circuit and fill in the table for a.(a'+b)

a	b	a'	a'+b	a.(a'+b)
0	0			
0	1			
1	0			
1	1			

3) Draw the circuit and fill in the table for (a.b)+c

a	b	С	a.b	(a.b)+c
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4) Draw the circuit and fill in the table for (a.b)+(a.c)

a	b	С	a.b	a.c	(a.b)+(a.c)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

5) Draw the circuit and fill in the table for a.(b+c)

a	b	С	b+c	a.(b+c)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

SOLUTIONS

1)

a	b	a+b	a.b	(a+b)+(a.b)
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

Here is the circuit. Can you label the switches?

2)

a	b	a'	a'+b	a.(a'+b)
0	0	1	1	0
0	1	1	1	0
1	0	0	0	0
1	1	0	1	1

Here is the circuit. Can you label the switches?

3)

a	b	С	a.b	(a.b)+c
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Here is the circuit. Can you label the switches?

4)

a	b	С	a.b	a.c	(a.b)+(a.c)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Here is the circuit. Can you label the switches?

5)

a	b	С	b+c	a.(b+c)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Here is the circuit. Can you label the switches?

