

- 2.1 状态和状态空间
- 2.2 线性时不变系统状态空间描述的建立
- 2.3 线性系统在坐标变换下的特性
- 2.4 状态方程的对角线规范形和约当规范形
- 2.5 组合系统的状态空间描述

(2.2)

线性肘不变系统状态空间描述的建立

根据系统机理。

建立状态 空间表达 式的方法 由 京 学 学 建 空 表 达 表 达

建立状态空间描述的方法主要有两种:

1.根据系统机理建立状态空间描述:属于分析的途径,适用于结构和参数已知的系统。

直接根据系统的机理建立相应的微分方程,继而选择有关的物理量作为状态变量,从而导出其状态空间表达式。

2.由系统其它数学模型建立状态空间描述:属于辨识的途径,适用于结构和参数难以搞清楚的系统。

通过实验手段取得数据并采用适当的方法确定系统的输入输出模型,再由所得的系统输入输出描述导出相应的状态空间描述。

一、根据系统机理建立状态空间描述

步骤:

- 1) 根据系统所遵循的物理规律,建立系统的微分方程或差分方程;
- 2) 选取有关物理量 (变量) 作为状态变量, 推导出系统的状态方程和输出方程。

例:建立RCL网络的状态方程

解:根据各元件的电流与电压关系、回路电压和等于

零,得到系统的方程:

$$Ri(t) + L\frac{di(t)}{dt} + u_o(t) = u_i(t)$$

$$i(t) = C \frac{du_o(t)}{dt}$$

系统的输入、输出分别为

$$u = u_i$$
, $y = u_o$

状态变量选取不同,则状态空间描述不同。

a) 选取状态变量 $x_1 = i$ $x_2 = u_0$, 则状态空间描述为:电感电流电容电压

$$\dot{\mathbf{x}} = \begin{bmatrix} -R/L & -1/L \\ 1/C & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1/L \\ 0 \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}$$

$$\dot{\overline{x}} = \begin{bmatrix} 0 & 1 \\ -1/(LC) & -R/L \end{bmatrix} \overline{x} + \begin{bmatrix} 0 \\ 1/LC \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \overline{x}$$

比较两种状态变量选取方法,很容易得到它们 之间的变换矩阵:

$$\begin{cases} \overline{x}_1 = u_o \\ \overline{x}_2 = \dot{u}_o \end{cases} \qquad \blacksquare \qquad \begin{cases} x_1 = i \\ x_2 = u_o \end{cases}$$

$$\Rightarrow \begin{cases} \overline{x}_1 = x_2 \\ \overline{x}_2 = \frac{1}{C} x_1 \end{cases} \qquad \longrightarrow \qquad \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

注意:该例说明系统的状态空间描述不是唯一的,各种描述之间可以相互转换,且不改变系统的固有性质。

例 建立右图所示电路系统状态空间描述

$$\begin{cases} u_c + R_2 C \frac{du_c}{dt} - L \frac{di_L}{dt} = 0 \\ R_1 i_L + R_1 C \frac{du_c}{dt} + L \frac{di_L}{dt} = e \end{cases}$$

$$\begin{bmatrix} \dot{u}_c \\ \dot{i}_L \end{bmatrix} = \begin{bmatrix} -\frac{1}{(R_1 + R_2)C} & -\frac{R_1}{(R_1 + R_2)C} \\ \frac{R_1}{L(R_1 + R_2)} & -\frac{R_1R_2}{L(R_1 + R_2)} \end{bmatrix} \begin{bmatrix} u_c \\ i_L \end{bmatrix} + \begin{bmatrix} \frac{1}{(R_1 + R_2)C} \\ \frac{R_2}{L(R_1 + R_2)} \end{bmatrix} e$$

$$u_{R_{2}} = \left[-\frac{R_{2}}{R_{1} + R_{2}} - \frac{R_{1}R_{2}}{R_{1} + R_{2}} \right] \begin{bmatrix} u_{c} \\ i_{L} \end{bmatrix} + \left[\frac{R_{2}}{R_{1} + R_{2}} \right] e$$

$$\begin{cases} \dot{\mathbf{x}} = A\mathbf{x} + Bu \\ \mathbf{y} = C\mathbf{x} + Du \end{cases}$$

例 建立右图所示机械系统的状态空间表达式

(注:质量块 m 的重量已经和弹簧 k 的初始拉伸 相抵消)

根据牛顿第二定律

$$\sum F = F - ky - f \frac{dy}{dt} = m \frac{d^2y}{dt^2}$$

即:
$$m \frac{d^2 y}{dt^2} + f \frac{dy}{dt} + ky = F$$

状态变量 $x_1 = y$ $x_2 = \dot{y} = \dot{x}_1$

选择状态变量

$$x_1 = y \qquad x_2 = \dot{y} = \dot{x}_1$$

则:
$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{k}{m}y - \frac{f}{m}\frac{dy}{dt} + \frac{1}{m}F = -\frac{k}{m}x_1 - \frac{f}{m}x_2 + \frac{1}{m}F$$

系统的动态方程为

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{f}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} F$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

系统的结构图如下

电枢回路的电压方程为

$$L_D \frac{di_D}{dt} + R_D i_D + K_e \omega = u_D - \infty$$

系统运动方程为

$$K_{m}i_{D} - f\omega = J_{D} \frac{d\omega}{dt}$$

 $K_m I_D = J_D = I_D =$

可选择电枢电流 i_D 和角速度 ω 为状态变量,电动机的电枢电压 u_D 为输入量,角速度 ω 为输出量。

状态空间表达式

$$\begin{bmatrix} \frac{di_D}{dt} \\ \frac{d\omega}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{R_D}{L_D} & -\frac{K_e}{L_D} \\ \frac{K_m}{J_D} & -\frac{f}{J_D} \end{bmatrix} \begin{bmatrix} i_D \\ \omega \end{bmatrix} + \begin{bmatrix} \frac{1}{L_D} \\ 0 \end{bmatrix} u_D$$

系统结构图如下:

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i_D \\ \omega \end{bmatrix}$$

二、由输入—输出描述导出状态空间描述

状态实现:由输入-输出描述建立状态空间描述称为状态实现。

一个给定系统的状态实现有多种形式。在线性系统理论中,要讨论某种性质时,为叙述方便,常采用特定的标准形式。

能控规范形实现 能观测规范形实现 对角形实现 约当规范形实现

1 问题的提法

考虑一个单变量线性定常系统, 其输入输出描述微分方程如下:

$$y^{(n)} + \alpha_{n-1}y^{(n-1)} + \dots + \alpha_1y^{(1)} + \alpha_0y = b_mu^{(m)} + \dots + b_1u^{(1)} + b_0u$$

其中:
$$y^{(i)} = \frac{d^i y}{dt^i}, u^{(i)} = \frac{d^i u}{dt^i}, m \le n$$

或:
$$G(s) = \frac{Y(s)}{U(s)} = \frac{\beta_{n-1}s^{n-1} + \beta_{n-2}s^{n-2} + \dots + \beta_1s + \beta_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} \qquad m < n$$
$$\beta_i = b_i$$

状态实现问题将归结为:

选取适当的状态变量组和确定各个系数矩阵。

$$m = n$$

$$\beta_i = b_i - a_i b_n$$
 $i = 0...n-1$

$$\frac{Y(s)}{U(s)} = \frac{b_n s^n + \dots + b_1 s + b_0}{s^n + \dots + a_1 s + a_0} = b_n + \frac{\beta_{n-1} s^{n-1} + \dots + \beta_1 s + \beta_0}{s^n + \dots + a_1 s + a_0} = b_n + \overline{G}(s)$$

严真分式
$$\bar{G}(s) = \frac{\beta_{n-1}s^{n-1} + \dots + \beta_1s + \beta_0}{s^n + \dots + a_1s + a_0}$$

$$Y(s) = b_n U(s) + \overline{Y}(s)$$
 $y(t) = \overline{y}(t) + b_n u(t)$

基于等效原则, 状态方程对应传递函数严真分式部分。

不含输入导数项, n 阶微分方程为:

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = b_0u$$

选择状态变量如下:

$$\begin{aligned}
x_1 &= y \\
\dot{x}_1 &= x_2 &= \dot{y} \\
\dot{x}_2 &= x_3 &= \ddot{y} \\
\dot{x}_{n-1} &= x_n &= y^{(n-1)} \\
\dot{x}_n &= y^{(n)} &= -a_0 x_1 - a_1 x_2 - \dots - a_{n-1} x_n + b_0 u
\end{aligned}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ x_n \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

2. 能控规范形实现

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\beta_{n-1}s^{n-1} + \beta_{n-2}s^{n-2} + \dots + \beta_1s + \beta_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} = \frac{N(s)}{D(s)}$$

则矩阵形式的能控规范形实现为

$$\dot{x} = Ax + bu$$
$$y = cx$$

式中:

友矩阵
$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}, \quad c = \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_{n-1} \end{bmatrix}$$

$$\begin{vmatrix} \mathbf{b} & \mathbf{b} & \mathbf{b} \\ \mathbf{b} & \vdots \\ 0 & 1 \end{vmatrix}, \quad \mathbf{c} = \begin{bmatrix} \beta_0 & \beta_1 & \cdots & \beta_{n-1} \end{bmatrix}$$

引入辅助变量 z

$$\frac{1}{s^n + \dots + a_1 s + a_0} \xrightarrow{Z(s)} \beta_{n-1} s^{n-1} + \dots + \beta_1 s + \beta_0 \xrightarrow{\bar{Y}(s)} \rightarrow$$

$$z^{(n)} + a_{n-1}z^{(n-1)} + \dots + a_1\dot{z} + a_0z = u \quad \beta_{n-1}z^{(n-1)} + \dots + \beta_1\dot{z} + \beta_0z = \overline{y}$$

选择状态变量如下:

$$\begin{aligned} x_1 &= z \\ \dot{x}_1 &= x_2 = \dot{z} \\ \dot{x}_2 &= x_3 = \ddot{z} \\ \dot{x}_{n-1} &= x_n = z^{(n-1)} \\ \dot{x}_n &= z^{(n)} = -a_0 x_1 - a_1 x_2 - \dots - a_{n-1} x_n + u \end{aligned}$$

$$\overline{y} = \beta_{n-1} z^{(n-1)} + \dots + \beta_1 \dot{z} + \beta_0 z = \beta_0 x_1 + \beta_1 x_2 + \dots + \beta_{n-1} x_n$$

3 能观测规范形实现

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\beta_{n-1}s^{n-1} + \beta_{n-2}s^{n-2} + \dots + \beta_1s + \beta_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} = \frac{N(s)}{D(s)}$$

则矩阵形式的状态方程和输出方程为

式中:

$$\dot{x} = A x + b u$$
$$y = cx$$

$$m{b} = egin{bmatrix} m{eta}_1 \ dots \ m{eta}_{n-2} \ m{eta}_{n-1} \end{bmatrix}; \ m{c} = m{b}$$

$$\boldsymbol{c} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\beta_{n-1}s^{n-1} + \dots + \beta_1s + \beta_0}{s^n + \dots + a_1s + a_0}$$

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1\dot{y} + a_0y = \beta_{n-1}u^{(n-1)} + \dots + \beta_1\dot{u} + \beta_0u$$

选n个状态变量为

$$x_n = y$$

$$x_i = \dot{x}_{i+1} + a_i y - \beta_i u; \quad i = 1, 2, \dots, n-1$$

$$\dot{x}_n = x_{n-1} - a_{n-1} x_n + \beta_{n-1} u$$

$$\dot{x}_{n-1} = x_{n-2} - a_{n-2}x_n + \beta_{n-2}u$$

•

$$\dot{x}_2 = x_1 - a_1 x_n + \beta_1 u$$

$$\dot{x}_1 = -a_0 x_n + \beta_0 u$$

$$\begin{split} x_{n-1} &= \dot{x}_n + a_{n-1}y - \beta_{n-1}u = \dot{y} + a_{n-1}y - \beta_{n-1}u \\ x_{n-2} &= \dot{x}_{n-1} + a_{n-2}y - \beta_{n-2}u = \ddot{y} + a_{n-1}\dot{y} + a_{n-2}y - \beta_{n-1}\dot{u} - \beta_{n-2}u \\ \vdots \end{split}$$

$$x_{2} = \dot{x}_{3} + a_{2}y - \beta_{2}u = y^{(n-2)} + a_{n-1}y^{(n-3)} + \dots + a_{3}\dot{y} + a_{2}y$$

$$-\beta_{n-1}u^{(n-3)} - \beta_{n-2}u^{(n-4)} - \dots - \beta_{3}\dot{u} - \beta_{2}u$$

$$x_{1} = \dot{x}_{2} + a_{1}y - \beta_{1}u = y^{(n-1)} + a_{n-1}y^{(n-2)} + \dots + a_{2}\dot{y} + a_{1}y$$

$$-\beta_{n-1}u^{(n-2)} - \beta_{n-2}u^{(n-3)} - \dots - \beta_{2}\dot{u} - \beta_{1}u$$

$$\dot{x}_{1} = y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_{2}\ddot{y} + a_{1}\dot{y} + a_{0}y$$

$$-\beta_{n-1}u^{(n-1)} - \beta_{n-2}u^{(n-2)} - \dots - \beta_{1}\dot{u} - \beta_{0}u + (\beta_{0}u - a_{0}y)$$

$$\dot{x}_{1} = -a_{0}x_{n} + \beta_{0}u$$

例:已知二阶系统的微分方程

$$\ddot{y} + 2\xi\omega\,\dot{y} + \omega^2\,y = T\,\dot{u} + u$$

试求系统的状态空间表达式.

解: 系统传递函数为

$$G(s) = \frac{Y(s)}{U(s)} = \frac{T s + 1}{s^2 + 2\xi\omega s + \omega^2}$$

可控标准型:
$$\begin{bmatrix} \dot{x}_{c1} \\ \dot{x}_{c2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\xi\omega \end{bmatrix} \begin{bmatrix} x_{c1} \\ x_{c2} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \quad y = \begin{bmatrix} 1 & T \end{bmatrix} \begin{bmatrix} x_{c1} \\ x_{c2} \end{bmatrix}$$

可观测标准型:
$$\begin{bmatrix} \dot{x}_{o1} \\ \dot{x}_{o2} \end{bmatrix} = \begin{bmatrix} 0 & -\omega^2 \\ 1 & -2\xi\omega \end{bmatrix} \begin{bmatrix} x_{o1} \\ x_{o2} \end{bmatrix} + \begin{bmatrix} 1 \\ T \end{bmatrix} u; \quad y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_{o1} \\ x_{o2} \end{bmatrix}$$

例: 给定单变量线性定常系统的输入输出描述为

$$G(s) = \frac{4s^3 + 160s + 720}{s^3 + 16s^2 + 194s + 640}$$

$$y^{(3)} + 16y^{(2)} + 194\dot{y} + 640y = 4u^{(3)} + 160\dot{u} + 720u$$

试求系统的状态空间表达式

解: m=n=3, 系统传递函数变为

$$G(s) = 4 + \frac{-64s^2 - 616s - 1840}{s^3 + 16s^2 + 194s + 640}$$

系统的可控标准型状态空间表达式:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -640 & -194 & -16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} -1840 & -616 & -64 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} + \begin{bmatrix} 4 \end{bmatrix} u$$

系统的可观标准型状态空间表达式:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -640 \\ 1 & 0 & -194 \\ 0 & 1 & -16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} -1840 \\ -616 \\ -64 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 4 \end{bmatrix} u$$

$$G(s) = \frac{8s^2 + 12}{4s^3 + 16s^2 + 64}$$
 J31
$$G(s) = \frac{2s^2 + 3}{s^3 + 4s^2 + 16}$$

归1
$$G(s) = \frac{2s^2 + 3}{s^3 + 4s^2 + 16}$$

$$4y^{(3)} + 16y^{(2)} + 64y = 8u^{(2)} + 12u$$
$$y^{(3)} + 4y^{(2)} + 16y = 2u^{(2)} + 3u$$

$$y^{(3)} + 4y^{(2)} + 16y = 2u^{(2)} + 3u$$

系统的可控标准型状态空间表达式:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -16 & 0 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

4 对角规范形实现

当系统传递函数只含单实极点时,还可作对角线 规范形实现,该实现形式系统矩阵A是一个对角阵。

$$G(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{\beta_{n-1}s^{n-1} + \beta_{n-2}s^{n-2} + \dots + \beta_1s + \beta_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}$$

分母多项式D(s)有n个单实极点 $\lambda_1, \lambda_2, \dots, \lambda_n$,对传递 函数作部分分式展开则有:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \sum_{i=1}^{n} \frac{c_i}{s - \lambda_i}$$

其中:
$$c_i = \left\lfloor \frac{N(s)}{D(s)} \cdot (s - \lambda_i) \right\rfloor_{s = \lambda_i}$$
 为 $G(s)$ 在极点 λ_i 处的留数。

对角线规范形实现为:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \cdots \begin{bmatrix} c_n \\ c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

或

对偶关系

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

例:已知系统的传递函数为

$$G(s) = \frac{N(s)}{D(s)} = \frac{3.5s^2 + 7s + 3}{s^3 + 3.5s^2 + 3.5s + 1}$$

请写出系统的对角线规范形实现。

解: (1) 求系统极点:

$$D(s) = s^3 + 3.5s^2 + 3.5s + 1 = (s+1)(s+2)(s+0.5) = 0$$

故系统有三个单实极点,即 $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -0.5$

(2) 对传递函数进行部分分式展开为

$$G(s) = \frac{N(s)}{D(s)} = \frac{1}{s+1} + \frac{2}{s+2} + \frac{0.5}{s+0.5}$$

即:

$$c_1 = 1, c_2 = 2, c_3 = 0.5$$

$$G(s) = \frac{N(s)}{D(s)} = \frac{1}{s+1} + \frac{2}{s+2} + \frac{0.5}{s+0.5}$$

(3) 对角线规范形实现为:

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -0.5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u; \quad \mathbf{y} = \begin{bmatrix} 1 & 2 & 0.5 \end{bmatrix} \mathbf{x}$$

或

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -0.5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 2 \\ 0.5 \end{bmatrix} u; \quad \mathbf{y} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{x}$$

5 约当规范形实现

当传递函数除含有单实极点以外,还含有重极点时,通常不能进行对角线规范形实现,但总可以化作分块对角形实现,称之为约当规范形实现,其系统矩阵A是一个含有约当块的矩阵。

例 系统传递函数为

$$G(s) = \frac{Y(s)}{U(s)} = \frac{N(s)}{D(s)} = \frac{s-2}{(s-3)^3} + \frac{s+1}{(s+2)^2} + \frac{1}{s-1}$$

求约当标规范形实现。

部分分式改写为:

$$c_{im} = \frac{1}{(m-1)!} \lim_{s \to \lambda_i} \frac{d^{m-1}}{ds^{m-1}} \left[\frac{Y(s)}{U(s)} (s - \lambda_i)^m \right]$$

$$\frac{N(s)}{D(s)} = \frac{1}{(s-3)^3} + \frac{1}{(s-3)^2} + \frac{0}{s-3} + \frac{-1}{(s+2)^2} + \frac{1}{s+2} + \frac{1}{s-1}$$

即:

$$c_{11} = 1, c_{12} = 1, c_{13} = 0, c_{41} = -1, c_{42} = 1, c_{6} = 1$$

选择如下状态变量

$$X_{11}(s) = \frac{1}{(s-3)^3}U(s) = \frac{1}{(s-3)}X_{12}(s)$$

$$X_{12}(s) = \frac{1}{(s-3)^2}U(s) = \frac{1}{s-3}X_{13}(s)$$

$$X_{13}(s) = \frac{1}{s-3}U(s)$$

$$X_{41}(s) = \frac{1}{(s+2)^2}U(s) = \frac{1}{s+2}X_{42}(s)$$

$$X_{42}(s) = \frac{1}{s+2}U(s)$$

$$X_6(s) = \frac{1}{s-1}U(s)$$

同时有

$$Y(s) = X_{11}(s) + X_{12}(s) + 0 \cdot X_{13}(s) - X_{41}(s) + X_{42}(s) + X_{6}(s)$$

上述表达式两边同时进行拉式反变换得约当规范 形实现

$$\dot{x}_{11} = 3x_{11} + x_{12}$$

$$\dot{x}_{12} = 3x_{12} + x_{13}$$

$$\dot{x}_{13} = 3x_{13} + u$$

$$\dot{x}_{41} = -2x_{41} + x_{42}$$

$$\dot{x}_{42} = -2x_{42} + u$$

$$\dot{x}_{6} = x_{6} + u$$

$$y = x_{11} + x_{12} + 0 \cdot x_{13} - x_{41} + x_{42} + x_{6}$$

即约当规范形实现为:

$$\begin{bmatrix} \dot{x}_{11} \\ \dot{x}_{12} \\ \dot{x}_{13} \\ \vdots \\ \dot{x}_{41} \\ \dot{x}_{42} \\ \dot{x}_{6} \end{bmatrix} = \begin{bmatrix} 3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{41} \\ x_{42} \\ x_{6} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 1 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{13} \\ x_{41} \\ x_{42} \\ x_{6} \end{bmatrix}$$

由方块图描述导出状态空间描述

设系统方块图如下, 试列写其状态空间描述

指定状态变量组后,列 写变量间的关系方程:

$$x_2(s) = \frac{2}{s+1}(u(s) - x_3(s))$$

$$s x_1(s) = -4x_1(s) + 5(u(s) - x_3(s))$$

$$s x_2(s) = -x_2(s) + 2(u(s) - x_3(s))$$

$$s x_3(s) = -2x_3(s) + y(s)$$

$$y = x_1(s) + x_2(s)$$

$$\dot{x}_1 = -4x_1 + 5(u - x_3)$$

$$\dot{x}_2 = -x_2 + 2(u - x_3)$$

$$\dot{x}_3 = -2x_3 + y$$

$$y = x_1 + x_2$$

$$\dot{x}_1 = -4x_1 - 5x_3 + 5u$$

$$\dot{x}_2 = -x_2 - 2x_3 + 2u$$

$$\dot{x}_3 = x_1 + x_2 - 2x_3$$

$$y = x_1 + x_2$$

矩阵形式
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -4 & 0 & -5 \\ 0 & -1 & -2 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

• **(b)**
$$\hat{G}(s) = \frac{k(s-z_1)}{(s-s_1)(s-s_2)} = k \cdot \frac{1}{s-s_1} \cdot \frac{s-z_1}{s-s_2} = k \cdot \frac{1}{s-s_1} \cdot (1 + \frac{s_2-z_1}{s-s_2})$$

结构图

$$x_1(s) = \frac{1}{s - s_1} (u(s) + x_2(s))$$

 $y = kx_1(s)$

$$x_2(s) = \frac{s_2 - z_1}{s - s_2} u(s)$$

$$sx_1(s) = s_1x_1(s) + x_2(s) + u(s)$$

$$sx_2(s) = s_2x_2(s) + (s_2 - z_1)u(s)$$

动态方程为

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} s_1 & 1 \\ 0 & s_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ s_2 - z_1 \end{bmatrix} u$$

$$y = \begin{bmatrix} k & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

四、由状态空间描述导出传递函数矩阵

- 1. 传递函数矩阵的定义和表达式
 - 定义:初始条件为零时,输出向量的拉氏变换式与输入向量的拉氏变换式之间的传递关系称为传递函数矩阵,简称传递矩阵。
 - > 表达式: 设线性定常连续系统的状态空间描述为:

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

$$\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$$

在初始条件为零时,系统的传递函数矩阵表达式为:

$$G(s) = C(sI - A)^{-1}B + D$$

$$sX(s) = AX(s) + BU(s)$$
 $sX(s) - AX(s) = BU(s)$

$$Y(s) = CX(s) + DU(s)$$
 $(sI - A)X(s) = BU(s)$

$$\boldsymbol{X}(s) = (s\boldsymbol{I} - \boldsymbol{A})^{-1} \boldsymbol{B} \boldsymbol{U}(s)$$

$$Y(s) = C(sI - A)^{-1}BU(s) + DU(s)$$
$$= \left[C(sI - A)^{-1}B + D\right]U(s) = G(s)U(s)$$

$$G(s) = C(sI - A)^{-1}B + D$$

2. 传递函数矩阵的几点说明

1) 若输入u为p维向量,输出y为q维向量,则G(s)为 $(q \times p)$ 矩阵。Y(s) = G(s)U(s)的展开式为:

$$\begin{bmatrix} Y_{1}(s) \\ Y_{2}(s) \\ \vdots \\ Y_{q}(s) \end{bmatrix} = \begin{bmatrix} G_{11}(s) & G_{12}(s) & \cdots & G_{1p}(s) \\ G_{21}(s) & G_{22}(s) & \cdots & G_{2p}(s) \\ \vdots & \vdots & & \vdots \\ G_{q1}(s) & G_{q2}(s) & \cdots & G_{qp}(s) \end{bmatrix} \cdot \begin{bmatrix} U_{1}(s) \\ U_{2}(s) \\ \vdots \\ U_{p}(s) \end{bmatrix}$$

式中: $G_{ij}(s)$ 表示第i个输出量与第j个输入量之间的传函。

2) 前馈矩阵D不影响系统的动态性能,在分析系统动态性能时,通常认为D = 0,即:

$$G(s) = C(s I - A)^{-1}B$$

状态空间描述中: 当 $D\neq 0$ 时, G(s)为真有理分式阵;

当D=0时,G(s)为严格真有理分式阵。

例:已知系统动态方程为

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}; \quad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

试求系统的传递函数矩阵。

解:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $D = 0$

$$(s\mathbf{I} - A)^{-1} = \begin{bmatrix} s & -1 \\ 0 & s+2 \end{bmatrix}^{-1} = \frac{adj(s\mathbf{I} - A)}{|s\mathbf{I} - A|} = \frac{\begin{bmatrix} s+2 & 1 \\ 0 & s \end{bmatrix}}{s(s+2)} = \begin{bmatrix} \frac{1}{s} & \frac{1}{s(s+2)} \\ 0 & \frac{1}{(s+2)} \end{bmatrix}$$

~

传递函数矩阵为:

$$G(s) = C(s\,\boldsymbol{I} - A)^{-1}B$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{s} & \frac{1}{s(s+2)} \\ 0 & \frac{1}{(s+2)} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{s} & \frac{1}{s(s+2)} \\ 0 & \frac{1}{(s+2)} \end{bmatrix}$$

例:已知系统动态方程为

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

解:

系统的传递函数:

$$G(s) = \frac{y(s)}{u(s)} = c(s \mathbf{I} - A)^{-1}b$$

$$= c \frac{adj(s \mathbf{I} - A)}{|s \mathbf{I} - A|}b = \begin{bmatrix} 1 & 1 \end{bmatrix} \frac{\begin{bmatrix} s+2 & 1 \\ 0 & s \end{bmatrix}}{s(s+2)} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{s+1}{s(s+2)}$$

输入-输出微分方程:

$$y^{(2)} + 2\dot{y} = \dot{u} + u$$

- 3) 几个概念:
- ① 系统的特征矩阵: (sI-A)
- ②系统的特征多项式: det(sI-A),n维系统的特征多项式为:

$$\alpha(s) = \det(s\mathbf{I} - A) = s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_1s + \alpha_0$$

- ③系统的特征根 (或特征值): 特征方程 $\alpha(s)=0$ 的根。
- ④ G(s)的特征多项式:

G(s)的特征多项式 $\alpha_G(s)$ =

G(s)所有1阶、2阶、…、min(p,q)阶子式的最小公分母

⑤ G(s)的极点:特征方程 $\alpha_G(s) = 0$ 的根。

$$G(s) = \begin{bmatrix} \frac{s+1}{s+2} & \frac{s+3}{s+2} & 0\\ \frac{1}{s+2} & 0 & \frac{1}{s+2} \end{bmatrix}$$

1阶子式的最小公分母: s+2

2阶子式的最小公分母:
$$(s+2)^2$$

特征多项式:
$$\alpha_G(s) = (s+2)^2$$

4) 开环与闭环传递矩阵

$$\mathbf{B}(s) = \mathbf{H}(s)\mathbf{y}(s) = \mathbf{H}(s)\mathbf{G}(s)\mathbf{E}(s)$$

开环传递矩阵:偏差向量至反馈向量之间的传递矩阵 $\mathbf{H}(s)\mathbf{G}(s)$

闭环传递矩阵:

$$\mathbf{y}(s) = \mathbf{G}(s)\mathbf{E}(s) = \mathbf{G}(s)[\mathbf{u}(s) - \mathbf{B}(s)]$$

$$= \mathbf{G}(s)[\mathbf{u}(s) - \mathbf{H}(s)\mathbf{y}(s)]$$

$$\mathbf{y}(s) = [\mathbf{I} + \mathbf{G}(s)\mathbf{H}(s)]^{-1}\mathbf{G}(s)\mathbf{u}(s)$$

$$\mathbf{\Phi}(s) = [\mathbf{I} + \mathbf{G}(s)\mathbf{H}(s)]^{-1}\mathbf{G}(s)$$

$$\mathbf{\Phi}(s) = \mathbf{G}(s)[\mathbf{I} + \mathbf{H}(s)\mathbf{G}(s)]^{-1}$$

$$\mathbf{E}(s) = \mathbf{u}(s) - \mathbf{B}(s) = \mathbf{u}(s) - \mathbf{H}(s)\mathbf{G}(s)\mathbf{E}(s)$$

$$\mathbf{E}(s) = [\mathbf{I} + \mathbf{H}(s)\mathbf{G}(s)]^{-1}\mathbf{u}(s)$$

$$\mathbf{\Phi}_{e}(s) = [\mathbf{I} + \mathbf{H}(s)\mathbf{G}(s)]^{-1}$$