# Лабораторная работа №7

Лукьянова Ирина Владимировна 10 October 2022

RUDN University, Moscow, Russian Federation

Цель лабораторной работы



Задачи выполнения лабораторной работы

#### Задачи выполнения лабораторной работы

Нужно подобрать ключ, чтобы получить сообщение «С Новым Годом, друзья!». Требуется разработать приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования. Приложение должно:

- 1. Определить вид шифротекста при известном ключе и известном открытом тексте.
- 2. Определить ключ, с помощью которого шифротекст может быть преоб- разован в некоторый фрагмент текста, представляющий собой один из возможных вариантов прочтения открытого текста.

Добавляем необходимые библиотеки и создаем функцию генерации ключа.(рис. 1)

Figure 1: Код

Создаем функцию перевода в 16 строку и переводим ключ, с помощью этой функции.(рис. 2)

Figure 2: Код 2

Создаем функцию сложения по модулю 2 (XOR) для нее нам нужна еще одна функция, которая переводит наши символы в числа. (рис. 3)

```
[25]: def f3(t,k): #XOR
         a = []
         for (i.i) in zip(t.k):
            a.append(chr(i^j))
         return a
[27]: def for16(a): #превращаем символы в числа
         f = []
         for i in a:
            f.append(ord(i))
         return f
[28]: cipher = f3(for16(sms), for16(kev))
     nplarray(cipher)
[28]: array(['Й', 'C', 'щ', 'ѿ', 'x', 'J', 'i', 'L', 'Ы', 'ф', 's', 'Ѷ', 'oy',
            'f', 'v', 'I', '\", 'E', 'x', '\", 'T', '\"], dtype='<U1')
[29]: cipher16 = f2(cipher)
     np.array(cipher16)
[29]: array(['419', '43', '449', '47f', '445', '408', '456', '4c', '42b', '444',
            '455', '476', '479', '66', '76', '406', '470', '415', '445', '429',
            '422', '60'], dtype='<U3')
[32]: decoding = f3(for16(cipher), for16(key))
     np.array(decoding)
',', ' ', 'д', 'p', 'y', '3', 'b', 'я', '!'], dtype='<U1')
```

Figure 3: Функции

#### В итоге получаем следующие данные: (рис. 4)

```
print("Gorparuk текст: ", sms)
print("Know: ", '', join(key))
print("Know: ", '', join(key))
print("Шифр: ", '', join(cipher))
print("Шифр: ", '', join(cipher))
print("Шифр: 16: ", '', join(cipher))
print("Расшифрованный текст: ", '', join(decoding))

Открытий текст: С Новым Гором, друзыя!
Ключ: 8сТамС]18zaHEVZ0VremA
Ключ: 8сТамС]18zaHEVZ0VremA
Ключ: 8сТамС]18zaHEVZ0VremA
Шифр: 8сТамС]18zaHEVZ0VremA
Шифр: 8сТамС]18zaHEVZ0VremA
Шифр: 8сТамС]18zaHEVZ0VremA
Ключ: 16: 38 63 54 17 74 36 6 6 28 7a 61 48 45 4a 56 32 30 56 72 65 6d 41
Шифр: 16: 414 94 34 49 47 44 44 54 58 48 56 4 42 54 444 455 476 479 66 76 406 478 415 445 429 422 60
Расшифрованный текст: С Новым Гором, друзья!
```

Figure 4: Вывод данных

После мы создаем новый ключ, используя открытый текст и шифр и расшифровываем сообщение с новым ключом: (рис. 5)

```
new key = f3(for16(sms), for16(cipher))
np.array(new_key)
array(['8', 'c', 'T', 'A', 'w', 'C', 'j', 'l', '8', 'z', 'a', 'H', 'E',
       'J', 'V', '2', '0', 'V', 'r', 'e', 'm', 'A'], dtype='<U1')
new decoding = f3(for16(new key), for16(cipher))
np.array(new_decoding)
array(['C', ' ', 'H', 'o', 'B', 'ы', 'м', ' ', 'Г', 'o', 'д', 'o', 'м',
       ',', '', 'n', 'p', 'v', '3', 'b', 'я', '!'], dtype='<U1')
print("Открытый текст: ". sms)
print("Новый ключ: ", ''.join(new key))
print("Шифр: ", ''.join(cipher))
print("Расшифрованный текст: ", ''.join(new_decoding))
Открытый текст: С Новым Годом, друзья!
Новый ключ: 8cTAwCil8zaHEJV20VremA
Шифр: ЙСшѿхJiLЫфsѶovfvIYExШТ`
Расшифрованный текст: С Новым Годом, друзья!
if key == new key:
    print("Одинаковый ключ")
else:
    print("Другой ключ")
Одинаковый ключ
```

Figure 5: Проверяем работу сервиса

# Результаты выполнения лабораторной работы

## Результаты выполнения лабораторной работы

В ходе выполнения данной лабораторной работы я освоила на практике применение режима однократного гаммирования.