

(5) Int. Cl.5:

(9) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES PATENTAMT

 ② Aktenzeichen:
 P 41 27 842.9

 ② Anmeldetag:
 22. 8. 91

 ③ Offenlegungstag:
 25. 2. 93

C 07 D 333/24 C 07 D 333/34 C 07 D 333/14 C 07 D 333/22 C 07 D 409/04 A 61 K 31/38 // (C07D 409/04, 333:24,213:32,309:30, 319:06)

7 Anmelder:

Rhône-Poulenc Rorer GmbH, 5000 Köln, DE

(4) Vertreter:

Beines, U., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 4050 Mönchengladbach

(7) Erfinder:

Labaudinière, Richard, Dipl.-Chem. Dr., Charenton, FR; Hilboll, Gerd, Dipl.-Chem. Dr.; Lautenschläger, Hans-Heiner, Dipl.-Chem. Dr., 5024 Pulheim, DE; Leon-Lomeli, Alicia, Dipl.-Chem.; Kuhl, Peter, Dipl.-Biol. Dr., 5000 Köln, DE

- ⑤ 5-(ω-Arylalky)-2-thienyl alkansäuren, ihre Salze und/oder ihre Derivate
- Es werden neue [5-(ω-Arylalkyl)-2-thienyl] alkansäuren, ihre Selze und/oder ihre Derivate der allgemeinen Formel 1

sowie Herstellungsverfahren und Verwendung dieser Verbindungen beschrieben.

Beschreibung

Die vorliegende Erfindung betrifft neue Alkansäuren, ihre Salze und/oder ihre Derivate sowie entsprechende Verfahren zur Herstellung derartiger Verbindungen und derartige Verbindungen aufweisende pharmazeutische Präparate.

Leukotrien B₄ (LTB₄) wurde 1979 als Metabolit der Archidonsäure entdeckt (B. Samuelson et al Prostaglandins 19, 645 (1980); 17, 785 (1979)). Bei der Biosynthese wird durch das Enzym 5-Lipoxygenase zunächst als zentrales Zwischenprodukt das Leukotrien A₄ gebildet, das dann durch eine spezifische Hydrolase in das LTB₄ umgewandelt wird.

LTB₄ ist ein wichtiger Entzündungsmediator für entzündliche Krankheiten, bei denen Leukozyten in das erkrankte Gewebe einwandern (The Leukotrienes, Chemistry and Biology eds., L. W. Chakrin, D. M. Bailey, Academic Press 1984; J. W. Gillard et al, Drugs of the Future 12, 453 (1987); B. Samuelson et al, Science 237, 1171 (1987); C. W. Parker, Drug Development Research 10, 277 (1987)).

Bisher waren als LTA₄-Hydrolasehemmer lediglich LTA₃ (J. F. Ewans et al, J. Biol. Chem. 260, 10 966—10 970 (1985) und LTA₃-Derivate (J. F. Ewans et al, Prostaglandins, Leukotriens and Medicine 23, 167 ff (1986)) bekannt.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Alkansäuren, ihre Salze und/oder ihre Derivate der angegebenen Art zur Verfügung zu stellen.

Diese Aufgabe wird durch [5-(ω-Arylalkyl)-2-thienyl]alkansäuren, ihre Salze und/oder ihre Derivate der allgemeinen, nachstehend wiedergegebenen Formel I gelöst:

$$R_{1}-(CH_{2})_{n}-R_{2}-(CH_{2})_{o}-R_{4}-(CH_{2})_{q}-R_{5}-(CH_{2})_{p}-C-R_{6} \quad (I)$$

In dieser Formel I bedeuten: R₁ eine

20

wobei m=0 oder 1, R₇ eine nicht substituierte oder eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁—C₄-Alkyl und/oder C₁—C₄-Alkoxyl, und R₈ eine C₁—C₄-Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

R₂ eine Einfachbindung, eine Carbonylgruppe, eine -CO-CH-CH-oder eine -CH-CH-CO-Gruppe; R₃ Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4;

 R_4 eine Einfachbindung, eine Carbonylgruppe, eine CHOH-, eine NR₃CO-, eine CONR₉- eine —CH = CH — CO-oder eine —CH = CH —CHOH-Gruppe oder Schwefel mit R_9 gleich Wasserstoff oder eine C_1 — C_4 -Alkylgruppe; R_5 eine Einfachbindung, Sauerstoff, eine

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer C_1 — C_4 -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer C_1 — C_4 -Alkylgruppe oder Wasserstoff ausgewählt sind;

p eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6;

R₆ eine

60

65

bedeuten, wobei R_{12} Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C_1 — C_4 -Alkylrest, R_{13} Wasserstoff oder eine Hydroxygruppe und R_{14} Wasserstoff oder ein C_1 — C_4 -Alkylrest sind.

Besonders bevorzugt sind solche Alkansäuren, ihre Salze und/oder ihre Derivate, bei denen in der vorstehend wiedergegebenen allgemeinen Formel I nicht gleichzeitig R7 eine nicht substituierte oder eine disubstituierte Phenylgruppe mit Fluor, Chlor, Brom, eine Trifluormethyl-, Nitro-, Amino-, Hydroxy-, C₁-C₄-Alkylgruppe oder eine C₁-C₄-Alkoxy-Gruppe als Substituenten, n + m einen Wert zwischen 1 und 6; 5 o+p+q einen Wert zwischen 2 und 10, wenn R5 eine Einfachbindung ist oder 0+p+g einen Wert zwischen 2 und 9, wenn R5 eine CH2-Gruppe ist; R₂ eine Einfachbindung: R4 eine Einfachbindung; Re eine OR12-Gruppe mit R12 Wasserstoff, Alkalimetall oder ein C1-C4-Alkylrest 10 sind. Vorzugsweise gehören zu den erfindungsgemäßen Alkansäuren, ihren Salzen und/oder ihren Derivaten solche Verbindungen der vorstehend genannten allgemeinen Formel I, bei denen R₁ eine 15 R, CH Gruppe 20 wobei m=0 oder 1, R7 eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählte aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl- und $-C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind; R₂ eine Carbonylgruppe, eine -CO-CH = CH- oder eine -CH = CH-CO-Gruppe; R4 eine Carbonylgruppe, eine CHOH-, eine -NR9CO-, eine CONR9-, eine -CH-CH-CO- oder eine CH=CH-CHOH-Gruppe oder Schwefel, mit Rogleich Wasserstoff oder ein C1-C4-Alkylrest bedeuten, wobei n, R₃, o, R₅, p, q und R₆ die vorstehend genannten Bedeutungen haben. Ebenso bevorzugt sind solche Verbindungen der allgemeinen Formel I, bei denen n, q, R2, R3, o, R4, R3, p und Re die vorstehend angegebenen Bedeutungen besitzen und bei denen R_t eine 30 R,—CH Gruppe 35 wobei m=0 oder 1, Ry eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C1 - C4-Alkyl und/oder C1 - C4-Alkoxyl, und R8 eine C1 - C4-Alkylgruppe ist, bedeuten. 40 Auch solche Alkansäuren, ihre Salze und/oder Derivate, bei denen R4 für Schwefel steht und bei denen o einen Wert von 0 und p einen Wert zwischen 1 und 5 in der vorstehend wiedergegebenen allgemeinen Formel I haben, während R1, n, q, R2, R3, R5 und R6 die bereits vorstehenden Bedeutungen erfüllen, sind besonders bevorzugte erfindungsgemäße Verbindungen. Des weiteren gehören insbesondere zu den erfindungsgemäßen Alkansäuren allgemein Pentansäuren, Hexansäuren, Heptansäuren oder Octansäuren, vorzugsweise die nachfolgend aufgeführten speziellen Pentan-, Hexan-, Heptan- oder Octansäuren: 5-[3-Methyl-5-(Benzyl)-2-thienyl]-pentansaure 6-[3-Methyl-5-(Benzyl)-2-thienyl]-hexansaure 50 7-[3-Methyl-5-(Benzyl)-2-thienyl]-heptansäure 8-[3-Methyl-5-(Benzyl)-2-thienyl]-octansaure 5-[3-Methyl-5-(2-Phenylethyl)-2-thienyl]-pentansäure 6-[3-Methyl-5-(2-Phenylethyl)-2-thienyl]-hexansaure 55 7-[3-Methyl-5-(2-Phenylethyl)-2-thienyl]-heptansäure 8-[3-Methyl-5-(2-Phenylethyl)-2-thienyl]-octansaure 5-[3-Methyl-5-(3-Phenylpropyl)-2-thienyl]-pentansäure 6-[3-Methyl-5-(3-Phenylpropyl)-2-thienyl]-hexansaure 60 7-[3-Methyl-5-(3-Phenylpropyl)-2-thienyl]-heptansäure 8-[3-Methyl-5-(3-Phenylpropyl)-2-thienyl]-octansaure 5-[3-Methyl-5-(4-Phenylbutyl)-2-thienyl]-pentansäure 6-[3-Methyl-5-(4-Phenylbutyl)-2-thienyl]-hexansaure 65 7-[3-Methyl-5-(4-Phenylbutyl)-2-thienyl]-heptansäure 8-[3-Methyl-5-(4-Phenylbutyl)-2-thienyl]-octansaure

```
5-[4-Methyl-5-(Benzyl)-2-thienyl]-pentansäure
    6-[4-Methyl-5-(Benzyl)-2-thienyl]-hexansäure
    7-[4-Methyl-5-(Benzyl)-2-thienyl]-heptansäure
    8-[4-Methyl-5-(Benzyl)-2-thienyl]-octansaure
5
    5-[4-Methyl-5-(2-Phenylethyl)-2-thienyl]-pentansaure
    6-[4-Methyl-5-(2-Phenylethyl)-2-thienyl]-hexansäure
    7-[4-Methyl-5-(2-Phenylethyl)-2-thienyl]-heptansäure
    8-[4-Methyl-5-(2-Phenylethyl)-2-thienyl]-octansaure
    5-[4-Methyl-5-(3-Phenylpropyl)-2-thienyl]-pentansäure 6-[4-Methyl-5-(3-Phenylpropyl)-2-thienyl]-hexansäure 7-[4-Methyl-5-(3-Phenylpropyl)-2-thienyl]-heptansäure
     8-[4-Methyl-5-(3-Phenylpropyl)-2-thienyl]-octansaure
     5-[5-(2-Phenylpropyl)-2-thienyl]-pentansäure
     6-[5-(2-Phenylpropyi)-2-thienyl]-hexansäure
     7-[5-(2-Phenylpropyl)-2-thienyl]-heptansäure
     8-[5-(2-Phenylpropyl)-2-thienyl]-octansäure
    5-[5-(2-Phenylbutyl)-2-thienyl]-pentansäure
6-[5-(2-Phenylbutyl)-2-thienyl]-hexansäure
7-[5-(2-Phenylbutyl)-2-thienyl]-heptansäure
     8-[5-(2-Phenylbutyl)-2-thienyl]-octansaure
25
     5-[5-(3-Phenylbutyl)-2-thienyl]-pentansäure
     6-[5-(3-Phenylbutyl)-2-thienyl]-hexansaure
     7-[5-(3-Phenylbutyl)-2-thienyl]-heptansäure
     8-[5-(3-Phenylbutyl)-2-thienyl]-octansäure
30
     5-(5-Phenyl-2-thienyl)-pentansäure
     6-(5-Phenyl-2-thienyl)-hexansäure
     7-(5-Phenyl-2-thienyl)-heptansäure
     8-(5-Phenyl-2-thienyl)-octansaure
     5-[4-Methyl-5-(4-Phenylbutyl)-2-thienyl]-pentansaure
     6-[4-Methyl-5-(4-Phenylbutyl)-2-thienyl]-hexansaure
     7-[4-Methyl-5-(4-Phenylbutyl)-2-thienyl]-heptansäure
     8-[4-Methyl-5-(4-Phenylbutyl)-2-thienyl]-octansaure
     5-[5-(3-Phenylpropanoyl)-2-thienyl]-pentansäure
     6-[5-(3-Phenylpropanoyl)-2-thienyl]-hexansäure
     7-[5-(3-Phenylpropanoyl)-2-thienyl]-heptansäure
     8-[5-(3-Phenylpropanoyl)-2-thienyl]-octansäure
45
     5-[5-(3-Phenylbutanoyl)-2-thienyl]-pentansäure
     6-[5-(3-Phenylbutanoyl)-2-thienyl]-hexansaure
     7-[5-(3-Phenylbutanoyl)-2-thienyl]-heptansäure
     8-[5-(3-Phenylbutanoyl)-2-thienyl]-octansäure
50
     5-[5-(4-Phenylpentanoyl)-2-thienyl]-pentansäure
     6-[5-(4-Phenylpentanoyl)-2-thienyl]-hexansäure
     7-[5-(4-Phenylpentanoyl)-2-thienyl]-heptansäure
     8-[5-(4-Phenylpentanoyl)-2-thienyl]-octansäure
     5-Oxo-5-[(5-benzyl)-2-thienyl]-pentansäure
     6-Oxo-6-[(5-benzyl)-2-thienyl]-hexansaure
     7-Oxo-7-[(5-benzyl)-2-thienyl]-heptansäure
     8-Oxo-8-[(5-benzyl)-2-thienyl]-octansaure
     5-Oxo-5-[(5-phenyl)-2-thienyl]-pentansäure
     6-Oxo-6-[(5-phenyl)-2-thienyl]-hexansäure
     7-Oxo-7-[(5-phenyl)-2-thienyl]-heptansäure
     8-Oxo-8-[(5-phenyl)-2-thienyl]-octansäure
     5-Oxo-5-[5-(2-phenylethyl)-2-thienyl]-pentansäure
     6-Oxo-6-[5-(2-phenylethyl)-2-thienyl]-hexansaure
     7-Oxo-7-[5-(2-phenylethyl)-2-thienyl]-heptansäure
```

8-Oxo-8-[5-(2-phenylethyl)-2-thienyl]-octansäure	
5-Oxo-5-[5-(3-phenylpropyl)-2-thienyl]-pentansäure 6-Oxo-6-[5-(3-phenylpropyl)-2-thienyl]-hexansäure 7-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure 8-Oxo-8-[5-(3-phenylpropyl)-2-thienyl]-octansäure	5
5-Oxo-5-[5-(4-phenylbutyl)-2-thienyl]-pentansäure 6-Oxo-6-[5-(4-phenylbutyl)-2-thienyl]-hexansäure 7-Oxo-7-[5-(4-phenylbutyl)-2-thienyl]-heptansäure 8-Oxo-8-[5-(4-phenylbutyl)-2-thienyl]-octansäure	10
5-Oxo-5-{5-(5-phenylpentyl)-2-thienyl]-pentansäure 6-Oxo-6-{5-(5-phenylpentyl)-2-thienyl]-hexansäure 7-Oxo-7-{5-(5-phenylpentyl)-2-thienyl]-heptansäure 8-Oxo-8-{5-(5-phenylpentyl)-2-thienyl}-octansäure	15
5-Oxo-5-[5-(3-phenylpropyl)-2-thienyl]-pentansäure 6-Oxo-6-[5-(3-phenylpropyl)-2-thienyl]-hexansäure 7-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure 8-Oxo-8-[5-(3-phenylpropyl)-2-thienyl]-octansäure	20
3-Methyl-5-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure	
3-Methyl-5-[5-(3-phenylpropyl)-2-thienyl]-pentansäure 3-Methyl-6-[5-(3-phenylpropyl)-2-thienyl]-hexansäure 3-Methyl-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure 3-Methyl-8-[5-(3-phenylpropyl)-2-thienyl]-octansäure	25
4-[2-[5-(3-Phenylpropyl)-2-thienyl]-ethoxy]-buttersäure	30
5-Hydroxy-3-oxo-5-[5-(3-phenylpropyl)-2-thienyl]-heptansäure 3,5-Dihydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure 2,2-Dimethyl-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure	
2-{3-[5-(3-Phenylpropy!)-2-thienyl]-propyloxy]-essigsäure 2-{4-[5-(3-Phenylpropy!)-2-thienyl]-butyloxy}-essigsäure 2-{5-[5-(3-Phenylpropy!)-2-thienyl]-pentyloxy}-essigsäure	35
5-[5-(3-Phenylbutyl)-2-thienylthio]-pentansäure 6-[5-(3-Phenylbutyl)-2-thienylthio]-hexansäure 7-[5-(3-Phenylbutyl)-2-thienylthio]-heptansäure 8-[5-(3-Phenylbutyl)-2-thienylthio]-octansäure	40
6-[5-(2-Phenylpropyl)-2-thienylthio]-hexansäure 5-[5-(2-Phenylbutyl)-2-thienylthio]-pentansäure	45
5-[5-(4-Phenylbutyl)-2-thienylthio]-pentansäure 6-[5-(4-Phenylbutyl)-2-thienylthio]-hexansäure 7-[5-(4-Phenylbutyl)-2-thienylthio]-heptansäure 8-[5-(4-Phenylbutyl)-2-thienylthio]-octansäure	50
2-{3-[5-(2-Phenylethyl}-2-thienyl]-propyloxy}-essigsäure 2-{4-[5-(2-Phenylethyl}-2-thienyl]-butyloxy}-essigsäure 2-{5-[5-(2-Phenylethyl)-2-thienyl]-pentyloxy}-essigsäure	55
2-[3-(5-Benzyl-2-thienyl)-propyloxy]-essigsäure 2-[4-(5-Benzyl-2-thienyl)-butyloxy]-essigsäure 2-[5-(5-Benzyl-2-thienyl)-pentyloxy]-essigsäure	
2-[3-(5-Phenyl-2-thienyl)-propyloxy]-essigsäure 2-[4-(5-Phenyl-2-thienyl)-butyloxy]-essigsäure 2-[5-(5-Phenyl-2-thienyl)-pentyloxy]-essigsäure	60
4-Oxo-4-[[5-(3-phenylpropyl)-2-thienyl]-methylamino]-buttersäure 5-Oxo-5-[[5-(3-phenylpropyl)-2-thienyl]-methylamino]-pentansäure	65

```
N-[2-[5-(3-Phenylpropyl)-2-thienyl]-acetyl]-4-aminobuttersäure
N-[2-[5-(3-Phenylpropyl)-2-thienyl]-acetyl]-5-aminopentansäure
N-[2-[5-(3-Phenylpropyl)-2-thienyl]-acetyl}-6-aminohexansaure
5-[5-(3-Phenylpropyl)-2-thienyl]-pentanhydroxamsäure
6-[5-(3-Phenylpropyl)-2-thienyl]-hexanhydroxamsäure
7-[5-(3-Phenylpropyl)-2-thienyl]-heptanhydroxamsäure
5-(5-Benzyl-2-thienylthio)-pentansäure
6-(5-Benzyl-2-thienylthio)-hexansaure
7-(5-Benzyl-2-thienylthio)-heptansäure
8-(5-Benzyl-2-thienylthio)-octansaure
5-[5-(2-Phenylethyl)-2-thienylthio}-pentansäure
6-[5-(2-Phenylethyl)-2-thienylthio]-hexansaure
7-[5-(2-Phenylethyl)-2-thienylthio]-heptansaure
8-[5-(2-Phenylethyl)-2-thienylthio]-octansaure
5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansaure
6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäure
7-[5-(3-Phenylpropyl)-2-thienylthio]-heptansäure
8-[5-(3-Phenylpropyl)-2-thienylthio]-octansaure
5-(5-Phenyl-2-thienylthio)-pentansäure
6-(5-Phenyl-2-thienylthio)-hexansaure
7-(5-Phenyl-2-thienylthio)-heptansäure
8-(5-Phenyl-2-thienylthio)-octansaure
 4-[5-(3-Phenylpropanoyl)-2-thienylthio]-buttersäure
5-[5-(3-Phenylpropanoyl)-2-thienylthio]-pentansaure
 6-[5-(3-Phenylpropanoyl)-2-thienylthio]-hexansaure
 7-[5-(3-Phenylpropanoyl)-2-thienylthio]-heptansäure
 4-{5-(4-Phenylbutanoyl)-2-thienylthio}-buttersäure
 5-[5-(4-Phenylbutanoyl)-2-thienylthio]-pentansaure
 6-75-(4-Phenylbutanoyl)-2-thienylthio]-hexansaure
 7-[5-(4-Phenylbutanoyl)-2-thienylthio]-heptansäure
 (E)-4-[5-(2-Benzoylvinyl)-2-thienylthio]-buttersäure
 (E)-5-[5-(2-Benzoylvinyl)-2-thienylthio]-pentansäure
 (E)-6-[5-(2-Benzoylvinyl)-2-thienylthio]-hexansaure
 (E)-4-[5-Benzylidenacetyl-2-thienylthio]-buttersäure
 (E)-5-[5-Benzylidenacetyl-2-thienylthio]-pentansäure
(E)-6-[5-Benzylidenacetyl-2-thienylthio]-hexansäure
 2-{3-[5-(3-Phenylpropyl)-2-thienylthio]-propyloxy}-essigsäure
 2-[4-[5-(3-Phenylpropyl)-2-thienylthio]-butyloxy]-essigsäure
 2-[4-[5-(3-Phenylpropyl)-2-thienylthio]-propyloxy]-essigsaure
 5-[5-(2-Pyridyl)-2-thienyl]-pentansäure
 6-[5-(2-Pyridyl)-2-thienyl]-hexansaure
 7-[5-(2-Pyridyl)-2-thienyl]-heptansäure
 8-[5-(2-Pyridyl)-2-thienyl]-octansaure
 5-Oxo-5-[5-(2-Pyridyl)-2-thienyl]-pentansäure
 6-Oxo-5-[5-(2-Pyridyl)-2-thienyl]-hexansäure
 7-Oxo-5-[5-(2-Pyridyl)-2-thienyl]-heptansaure
 8-Oxo-5-[5-(2-Pyridyl)-2-thienyl]-octansaure
 5-Hydroxy-5-[5-(2-pyridyl)-2-thienyl]-pentansäure
 6-Hydroxy-5-[5-(2-pyridyl)-2-thienyl]-hexansaure
 7-Hydroxy-5-[5-(2-pyridyl)-2-thienyl]-heptansäure
 8-Hydroxy-5-[5-(2-pyridyl)-2-thienyl]-octansaure
```

65

Bevorzugte Derivate der erfindungsgemäßen Alkansäure sind Ester, insbesondere Methyl-, Ethyl-, Isopropyl-, Propyl- oder Butylester der zuvor allgemein oder speziell aufgeführten Alkansäuren. Weiterhin gehören zu den bevorzugten Derivaten Amide der vorstehend genannten allgemeinen oder speziellen Verbindungen. Hierbei

sind insbesondere die nachfolgenden Verbindungen hervorzuheben:

```
4-[5-(2-Phenylethyl)-2-thienylthio]-buttersäureamid
5-[5-(2-Phenylethyl)-2-thienylthio]-pentansäureamid
6-[5-(2-Phenylethyl)-2-thienylthio]-hexansäureamid
5-[5-(3-Phenylpropyl)-2-thienyl]-pentansäureamid
6-[5-(3-Phenylpropyl)-2-thienyl]-hexansäureamid
7-[5-(3-Phenylpropyl)-2-thienyl]-heptansäureamid
8-[5-(3-Phenylpropyl)-2-thienyl]-octansaureamid
                                                                                                                                 10
2-(4-[5-(3-Phenylpropyl)-2-thicnyl]-butyloxy]-essigsäureethylester
4-[5-(3-Phenylpropyl)-2-thienylthio]-buttersäureamid
5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansäureamid
                                                                                                                                 15
6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansaureamid
7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure-methylester
7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure-ethylester
7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure-isopropylester
                                                                                                                                 20
7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure-butylester
8-[5-(2-Phenylethyl)-2-thienylthio]-octansäuremethylester
8-[5-(2-Phenylethyl)-2-thienylthio]-octansäuremethylester
                                                                                                                                 25
   Auch kann die erfindungsgemäß beanspruchte Alkansäure in Form eines Salzes, insbesondere eines Alkalisal-
zes und vorzugsweise in Form eines Natrium- oder Kaliumsalzes, vorliegen. Besonders hervorzuheben sind
hierbei die nachfolgend aufgeführten speziellen Salze:
4-[5-(3-Phenylpropanoyi)-2-thienylthio]-buttersäure-Natriumsalz 5-[5-(3-Phenylpropanoyi)-2-thienylthio]-pentansäure-Natriumsalz 6-[5-(3-Phenylpropanoyi)-2-thienylthio]-hexansäure-Natriumsalz
                                                                                                                                 30
 7-[5-(3-Phenylpropanoyl)-2-thienylthio]-heptansaure-Natriumsalz
 8-[5-(3-Phenylpropanoyl)-2-thienylthio]-octansäure-Natriumsalz
                                                                                                                                 35
 4-[5-(4-Phenylbutanoyl)-2-thienylthio]-buttersäure-Natriumsalz
 5-[5-(4-Phenylbutanoyl)-2-thienylthio]-pentansäure-Natriumsalz
 6-[5-(4-Phenylbutanoyl)-2-thienylthio]-hexansäure-Natriumsalz
 7-[5-(4-Phenylbutanoyl)-2-thienylthio]-heptansäure-Natriumsalz
 8-[5-(4-Phenylbutanoyl)-2-thienylthio]-octansäure-Natriumsalz
                                                                                                                                 40
 5-[5-(2-Phenylethyl)-2-thienylthio]-pentansäure-Natriumsalz
 6-75-(2-Phenylethyl)-2-thienylthio]-hexansäure-Natriumsalz
 7-[5-(2-Phenylethyl)-2-thienylthio]-heptansäure-Natriumsalz
 8-[5-(2-Phenylethyl)-2-thienylthio]-octansaure-Natriumsalz
                                                                                                                                 45
 5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansaure-Natriumsalz
 6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäure-Natriumsalz
 7-[5-(3-Phenylpropyl)-2-thienylthio]-heptansäure-Natriumsalz
 8-[5-(3-Phenylpropyl)-2-thienylthio]-octansäure-Natriumsalz
                                                                                                                                  50
 5-[5-(4-Phenylbutyl)-2-thienylthio]-pentansäure-Natriumsalz 6-[5-(4-Phenylbutyl)-2-thienylthio]-hexansäure-Natriumsalz
 7-[5-(4-Phenylbutyl)-2-thienylthio]-heptansäure-Natriumsalz
 8-[5-(4-Phenylbutyl)-2-thienylthio]-octansaure-Natriumsalz
                                                                                                                                  55
 5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure-Natriumsalz-Monohydrat
 (E)-5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-6-heptensäure-Natriumsalz
                                                                                                                                  60
 2-[4-[5-(3-Phenylpropyl)-2-thienyl]-butanoylamino)-essigsäure-Natriumsalz
 2-{N-Methyl-4-[5-(3-phenylpropyl)-2-thienyl}-butanoylamino}-essigsäure-Natriumsalz
 5-(5-Benzyl-2-thienylthio)-pentansäure-Natriumsalz
                                                                                                                                  65
 6-(5-Benzyl-2-thienylthio)-hexansaure-Natriumsalz
 7-(5-Benzyl-2-thienylthio)-heptansäure-Natriumsalz
 8-(5-Benzyl-2-thienylthio)-octansäure-Natriumsalz
```

7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure-Natriumsalz 7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure-Kaliumsalz

8-[5-(2-Phenylethyl)-2-thienylthio]-octansäure-Natriumsalz 8-[5-(2-Phenylethyl)-2-thienylthio]-octansäure-Kaliumsalz

Die vorliegende Erfindung betrifft des weiteren Verfahren zur Herstellung der zuvor genannten Verbindungen.

So sieht eine erste Verfahrensvariante zur Herstellung der Alkansäureester gemäß der allgemeinen Formel II

$$R_1 - (CH_2)_n - \{CH_2\}_{p+1} - COOR_{12}$$
 (II)

vor, daß man von 2-Thiophenverbindungen der allgemeinen Formel III

$$R_1$$
— $(CH_2)_n$ — $\begin{pmatrix} R_3 \\ S \end{pmatrix}$ (III)

10

15

ausgeht. Unter den üblichen Bedingungen einer Friedel-Crafts-Reaktion wird die 2-Thiophenverbindung der allgemeinen Formel III mit einem Säurechlorid der allgemeinen Formel IV

$$CI-CO-(CH2)p+1-COOR12 (IV)$$

unter Ausbildung der vorstehend durch die Formel II allgemein wiedergegebenen Verbindung umgesetzt. In den vorstehend wiedergegebenen Formeln II bis IV bedeuten:
R₁ eine

R₇
$$\leftarrow \begin{pmatrix} CH \\ | \\ R_k \end{pmatrix}_m$$

wobei m=0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxyl, und R₈ eine C₁-C₄-Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

p eine ganze Zahl zwischen 0 und 5; R₃ Wasserstoff oder eine Methylgruppe;

R4 eine Carbonylgruppe; und

R₁₂ ein C₁-C₄-Alkylrest.

50

55

Eine zweite Verfahrensvariante zur Herstellung der erfindungsgemäßen Verbindungen gemäß der allgemeinen Formel V

$$R_1$$
— $(CH_2)_{n-1}$ — CO — $(CH_2)_{n}$ — CH_2 — R_3 — $(CH_2)_{p}$ — $COOR_{12}$ (V)

geht von 2-Thiophenverbindungen der allgemeinen Formel VI

$$\begin{array}{c} R_{3} \\ + \\ - \\ CH_{2})_{0} - CH_{2} - R_{5} - (CH_{2})_{p} - COOR_{12} \end{array} (VI)$$

aus. Diese 2-Thiophenverbindungen werden dann einer Friedel-Crafts-Acylierung in Gegenwart von Zinntetrachlorid mit Säurechloriden der allgemeinen Formel VII

$$R_1 - (CH_2)_{n-1} - COCI$$
 (VII)

unterworfen, wobei man anschließend das hierbei entstehende Reaktionsprodukt der vorstehend wiedergegebenen Formel V isoliert.

In den zuvor wiedergegebenen Formeln V bis VII bedeuten:

5

10

15

25

35

45

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

n eine ganze Zahl zwischen 1 und 5; R3 Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4; R₅ eine Einfachbindung, Sauerstoff, eine

Carbonyl- oder eine — C-Gruppe

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5; und R_{12} ein $C_1 - C_4$ -Alkylrest.

Für die zuvor beschriebenen Friedel-Crafts-Acylierungen werden als Katalysatoren insbesondere Aluminiumchlorid und/oder Zinntetrachlorid eingesetzt. Hierbei wird die Friedel-Crafts-Acylierung vorzugsweise in indifferenten Lösungsmitteln, wie beispielsweise Dichlormethan, Nitrobenzol oder Nitromethan, durchgeführt.

Um die bei den zuvor beschriebenen Acylierungsreaktionen entstehen Carbonylgruppen zu reduzieren, kann man die vorstehend aufgeführten erfindungsgemäßen Verbindungen gemäß den Formeln II und V reduzieren. Diese Reduktion kann vorzugsweise mit Hydrazin in Gegenwart von Alkalihydroxiden, insbesondere Kaliumhydroxyd oder Natriumhydroxyd, in hochsiedenden Lösungsmitteln, wie vorzugsweise Diethylenglykol oder Triethylenglykol, bei Temperaturen von insbesondere zwischen 150°C bis 210°C durchgeführt werden. Zur Reduktion der Alkansäureester gemäß der vorstehenden Formeln II oder V verwendet man vorzugsweise Natriumborhydrid unter den üblichen Bedingungen.

Um aus den Alkansäureestern der vorstehend genannten Formeln II und V die entsprechenden Salze herzustellen, werden diese Alkansäureester mit geeigneten Alkalihydroxyden, insbesondere Natriumhydroxyd, verseift. Ebenso ist es möglich, diese Alkansäureester (Formel II und Formel V) durch Zugabe einer geeigneten Säure zu hydrolisieren oder nach den an sich bekannten Verfahren umzuestern.

Eine dritte Ausführungsform des erfindungsgemäßen Verfahrens, die speziell zur Herstellung von Alkansäuren der nachstehend wiedergegebenen Formel IX geeignet ist,

$$R_1-(CH_2)_n$$
 CH=CH-CO-CH₂-(CH₂)_p-COOH (IX) 50

geht von Thiophenverbindungen der allgemeinen Formel X aus:

$$R_1 - (CH_2)_n - \begin{pmatrix} R_1 \\ S \end{pmatrix} (X)$$

Diese Thiophenverbindungen der vorstehend wiedergegebenen Formel X werden zu den Verbindungen der allgemeinen Formel XI

$$R_1$$
—(CH₂)_n—CHO (XI)

formyliert und anschließend mit Ketocarbonsäuren der allgemeinen Formel XII

$$H_3C-CO-CH_2-(CH_2)_p-COOH$$
 (XII)

in Gegenwart von Piperidin umgesetzt.

In den vorstehend wiedergegebenen allgemeinen Formeln IX bis XII bedeuten: R₁ eine

30

55

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_6 eine C_1-C_4 -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe; und

o p eine ganze Zahl zwischen 0 und 5.

Um die zuvor beschriebene Formylierung durchzuführen, arbeitet man vorzugsweise mit n-Butyllithium und Dimethylformamid.

Wie bereits vorstehend dargelegt, kann, falls erwünscht, die in der Formel IX enthaltene Carbonylgruppe reduziert werden, wobei diese Reduktion in der vorstehend beschriebenen Weise durchgeführt wird. Ebenso ist es möglich, die Alkansäure gemäß der Formel IX durch Zugabe eines geeigneten Alkalihydroxyds in das entsprechende Salz zu überführen oder die Alkansäure nach den bekannten Verfahren zu verestern.

Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung der Alkansäuresalze gemäß der nachfolgenden allgemeinen Formel XIII

$$R_1 - (CH_2)_n - CH = CH - CH - CH_2 - (CH_2)_0 - COOR_{12}$$
 (XIII)

sieht vor, daß man eine ungesättigte Hydroxyverbindung gemäß der nachfolgend wiedergegebenen Formel XIV,

$$R_{1} = (CH_{2})_{n} = CH = CH = CH_{2} = (CH_{2})_{p} = COOH \quad (XIV)$$

die durch Reduktion mit Natriumborhydrid aus der vorstehend durch die allgemeine Formel IX wiedergegebene Alkansäure herstellbar ist, durch Wasserabspaltung zur Pyranonverbindung gemäß der allgemeinen Formel XV

$$R_{1}-(CH_{2})_{n}-CH=CH-CH$$

$$C=0$$

$$(CH_{2})_{p}$$

$$CH_{2}$$

$$CH_{2}$$

cyclisiert. Anschließend werden diese Pyranonverbindungen der allgemeinen Formel XV durch Zusatz eines entsprechenden Alkalihydroxydes zu den Alkansäuresalzen gemäß der Formel XIII hydrolisiert, was insbesondere durch Einwirkung von entsprechenden Alkalihydoxyden in verdünnten alkoholischen Lösungen durchgeführt werden kann.

In den vorstehend genannten Formeln XIII bis XV bedeuten: $R_{\rm I}$ eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

5

10

35

55

60

65

n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe;

peinen Wert von 2 oder 3; und

R₁₂ ein Alkylimetall, insbesondere Natrium.

Eine fünfte Verfahrensvariante zur Herstellung der erfindungsgemäßen Verbindungen gemäß der nachfolgenden allgemeinen Formel XVI

$$R_1$$
— $(CH_2)_n$ — $CHOH$ — CH_2 — $CO-CH_2$ — $COOR_{12}$ (XVI)

geht ebenfalls von Thiophenverbindungen der allgemeinen Formel XVII

$$R_1 - (CH_2)_n - S \qquad (XVII)$$

aus. Diese Thiophenverbindungen der Formel XVII werden dann zunächst mit n-Butyllithium umgesetzt und hiernach mit Halogenalkandioxanen der allgemeinen Formel XVIII

$$X - (CH_2)_0 - (XVIII)$$

zur Reaktion gebracht, wobei das hierbei entstehende Reaktionsprodukt durch die allgemeine Formel XIX

$$R_1 - (CH_2)_0 - CH_2)_0 - CO - (XIX)$$

charakterisiert ist. Durch Einwirkung einer geeigneten Säure kann dann die vorstehend durch die Formel XIX wiedergegebene cyclische Verbindung in eine entsprechende Aldehydverbindung der allgemeinen Formel XX

$$R_1$$
— $(CH_2)_n$ — CHO (XX)

überführt werden. Diese Aldehydverbindung der Formel XX wird dann mit Acetylessigsäureethylester unter Ausbildung der gewünschten erfindungsgemäßen Verbindung gemäß Formel XVI reagieren gelassen.

In den Formel XVI bis XX bedeuten:

R₁ eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5; Ra Wasserstoff oder eine Methylgruppe

R₃ Wasserstoff oder eine Methylgruppe; o eine ganze Zahl zwischen 0 und 4;

R₁₂ C₂H₅-Rest; und

X ein Halogen, insbesondere Brom.

5

10

20

25

35

50

55

Um aus der erfindungsgemäßen Verbindung gemäß der vorstehend wiedergegebenen allgemeinen Formel XVI eine entsprechende Dihydroxyverbindung gemäß der Formel XXL

$$R_{1}-(CH_{2})_{n}- \begin{matrix} R_{3} & OH & OH \\ & & | & \\ CH_{2}-CH-CH_{2}-CH-CH_{2}-COOC_{2}H_{5} & (XXI) \end{matrix}$$

wobei in der Formel XXI R₁, n, R₃ und o die bei der Formel XVI angegebenen Bedeutungen haben, herzustellen, kann man den entsprechenden Alkansäureester gemäß der Formel XVI mit Natriumborhydrid reduzieren.

Wie bereits vorstehend mehrfach beschrieben ist, besteht die Möglichkeit, den Alkansäureester gemäß der Formel XVI bzw. die durch Reduktion mit Natriumborhydrid entstandene entsprechende Dihydroxyverbindung zu verseifen, umzuestern oder zur freien Säure zu hydrolisieren.

Eine sechste Verfahrensvariante des erfindungsgemäßen Verfahrens zur Herstellung von stickstoffhaltigen Alkansäuren gemäß der allgemeinen Formel XXII

$$R_1-(CH_2)_n$$
 $CH_2-N-CO-CH_2-(CH_2)_p-COOH$ (XXII)

sieht vor, daß man 2-Thenylamine der allgemeinen Formel XXIII

$$R_1$$
 CH_2
 NHR , (XXIII)

mit Trifluoressigsäureanhydrid acyliert.

Die bei dieser Reaktion entstehende Verbindung gemäß der allgemeinen Formel XXIV

wird dann mit einem Arylalkylsäurechlorid der allgemeinen Formel XXV

$$R_1 - (CH_2)_{n-1} - COCI$$
 (XXV)

unter den Bedingungen einer Friedel-Crafts-Reaktion umgesetzt, wobei sich bei dieser Reaktion eine Verbindung gemäß der folgenden Formel XXVI ausbildet:

$$R_1-(CH_2)_{n-1}-CO-CF_3$$
 (XXVI)

Aus dieser Verbindung gemäß der vorstehenden Formel XXVI wird dann die Trifluoressigsäuregruppe unter den Bedingungen einer Wolff-Kishner-Reduktion abgespaltet, um so zu den Thiophenaminen der allgemeinen Formel XXVII

$$R_1 - (CH_2)_n - CH_2 - NHR, (XXVII)$$

zu gelangen.

41 27 842 A1

Hiernach addiert man an die Thiophenamine der allgemeinen Formel XXVII Glutarsäureanhydrid oder Bernsteinsäureanhydrid und spaltet gleichzeitig unter Herstellung der Alkansäure gemäß Formel XXII den bei dieser Addition entstehenden Ring.

In den vorstehend wiedergegebenen Formeln XXII bis XXVII bedeuten:

5

10

15

wobei m = 0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe;

Rg Wasserstoff oder ein C1-C4-Alkylrest; und

p 1 oder 2.

Die so hergestellte Alkansäure gemäß der Formel XXII kann dann, wie vorstehend bereits mehrfach beschrieben, verestert werden. Ebenso ist es möglich, durch Zugabe eines Alkalihydroxydes hieraus das entsprechende Salz herzustellen.

Eine siebte Verfahrensvariante, die ebenfalls zur Herstellung von stickstoffhaltigen erfindungsgemäßen Verbindungen gemäß der nachfolgend wiedergegebenen Formel XXVIII

25

$$R_1 - (CH_2)_n - R_2 - (CH_2)_o - CO - N - CH_2 - (CH_2)_p - COOR_{12}$$
 (XXVIII)

verwendet wird, geht von Ω -Arylalkylthienylalkansäuren der allgemeinen Formel XXIX aus;

35

30

$$R_1$$
— $(CH_2)_n$ — $COOH$ (XXIX)

40

Diese Arylalkylthienylalkansäuren der Formel XXIX werden mit einer Aminocarbonsäureverbindung der allgemeinen Formel XXX

$$HN - CH_2 - (CH_2)_p - COOR_{12}$$
 (XXX)
$$|$$

$$R_p$$

in Gegenwart von N,N'-Carbonyldiimidazol zu den Verbindungen gemäß der Formel XXVIII umgesetzt. In den vorstehend wiedergegebenen Formeln XXVIII bis XXX bedeuten: R₁ eine

50

55

wobei m = 0 oder 1, Rz eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

 R_2 eine Einfachbindung, eine Carbonylgruppe, eine -CO-CH=CH-oder eine $CH=CH-CO\cdot Gruppe$:

R₃ Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4;

65

R₉ Wasserstoff oder eine C₁ - C₄-Alkylgruppe;

p eine ganze Zahl zwischen 0 und 5; und

 $R_{12}C_1-C_4$ -Alkylrest.

Wie bereits vorstehend mehrfach dargelegt wurde, kann der Ester der Formel XXVIII durch Zugabe von Alkalihydroxyden verseift, umgeestert oder durch Zugabe von Säure hydrolisiert werden.

Eine achte Verfahrensvariante zur Herstellung von Alkansäuren gemäß der allgemeinen Formel XXXI

$$R_1-(CH_2)_n$$
 $CH_2-CH_2-CO-(CH_2)_3-COOH$ (XXXI)

sieht vor, daß man ω-Arylalkyl-2-Thienylalkohole der allgemeinen Formel XXXII

$$R_1 - (CH_2)_n - S$$
 $CH_2OH (XXXII)$

mit Sulfonylchlorid zu Verbindungen der allgemeinen Formel XXXIII

$$R_1$$
—(CH₂)_n— R_3 —CH₂CI (XXXIII)

umsetzt. Die entsprechende Chlorverbindung gemäß Formel XXXIII wird dann mit Cyclohexan-1,3-dion zu den Verbindungen der allgemeinen Formel XXXIV

$$R_1$$
— $(CH_2)_n$ — CH_2 — CH_2 — $(XXXIV)$

cyclisiert. Durch Einwirkung von Bariumhydroxyd auf die cyclisierte Verbindung gemäß der Formel XXXIV wird dann unter Ausbildung der Alkansäure gemäß der Formel XXXI der entsprechende Ring gespaltet.

In den Formeln XXXI bis XXXIV bedeuten:

5

10

20

25

30

35

60

$$R_7 - CH$$
-Gruppe
 $R_1 - CH$

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5; und

R₃ Wasserstoff oder eine Methylgruppe.

Wie bereits vorstehend mehrfach beschrieben wurde, kann man die Alkansäuren gemäß der Formel XXXI reduzieren, insbesondere nach Wolff-Kishner oder Huang-Minlon, verestern oder durch Zusatz von entsprechenden Alkalihydroxyden die entsprechenden Salze herstellen.

Eine neunte Verfahrensvariante des erfindungsgemäßen Verfahrens zur Herstellung von Verbindungen mit der allgemeinen Formel XXXV

$$R_1 - (CH_2)_n - CH_2 - CH_2 - COOR_{12}$$
 (XXXV)

geht von entsprechenden Hydroxyverbindungen der allgemeinen Formel XXXVI aus:

$$R_1$$
— $(CH_2)_n$ — CH_2OH (XXXVI)

Diese Hydroxyverbindungen der allgemeinen Formel XXXVI werden mit Bromessigsäure-Kaliumsalz in butanolischer Lösung zu den entsprechenden Etherverbindungen umgesetzt, die ihrerseits nach bekannten Verfahren in die Salze oder Ester der vorstehend durch die Formel XXXV wiedergegebenen erfindungsgemä-Ben Verbindung überführt werden.

In den vorstehend genannten Formeln XXXV und XXXVI bedeuten:

wobei m = 0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe; o eine ganze Zahl zwischen 0 und 4; und

R₁₂ Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C₁ - C₄-Alkylrest ist.

Eine zehnte Ausführungsform des erfindungsgemäßen Verfahrens, die zur Herstellung von Verbindungen der nachfolgenden Formel XXXVII

$$R_1$$
— $(CH_2)_n$ — CH_2 — CH_2 — CH_2 — $COOR_{12}$ (XXXVII)

dienen, geht von Hydroxyverbindungen der allgemeinen Formel XXXVIII aus:

$$R_1$$
— $(CH_2)_n$ — CH_2OH (XXXVIII)

Unter den Bedingungen einer Williamson-Synthese werden diese Hydroxyverbindungen der Formel XXXVIII zu den Halogenalkyloxyverbindungen der Formel XXXIX

$$R_1 - (CH_2)_0 - CH_2 - CH_2$$

umgesetzt.

Diese Halogenalkyloxyverbindungen der Formel XXXIX werden in die entsprechenden Nitrile, die isolierbar sind, der allgemeinen Formel XL

$$R_1 - (CH_2)_0 - CH_2 - CH_2 - CN$$
 (XL) . 60

umgewandelt. Diese Nitrile werden dann unter Säureeinwirkung zu den Estern kondensiert, die wahlweise isoliert, zur freien Säure hydrolisiert oder umgeestert werden können.

In den vorstehend wiedergegebenen Formeln XXXVII bis XL bedeuten: R₁ eine

65

5

10

25

45

wobei m=0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxyl, und R₈ eine C₁-C₄-Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4;

p ein Wert zwischen 2 und 5;

R₁₂ ein Alkalimetall, insbesondere Natrium, Wasserstoff oder eine C₁ - C₄-Alkylgruppe und

15 X ein Halogen.

Eine elfte Verfahrensvariante des erfindungsgemäßen Verfahrens zur Herstellung von erfindungsgemäßen Verbindungen gemäß der allgemeinen Formel XLI

$$R_1 - (CH_2)_n - R_4 - (CH_2)_4 - C - COOH (XLI)_{R_1}$$

geht von entsprechenden Alkoholen der allgemeinen Formel XLII

$$R_1 - (CH_2)_0 - R_4 - (CH_2)_0 - OH$$
 (XLII)

aus. Diese Alkohole der Formel XLII werden mit Allylbromid in Gegenwart von N,N'-Carbonyldiimidazol zu den Verbindungen der allgemeinen Formel XLIII bromiert:

$$R_1$$
 (CH₂)_n R_4 (CH₂)_q Br (XLIII)

Die Bromverbindung gemäß der Formel XLIII wird dann mit Alkansäuren der allgemeinen Formel XLIV

in Gegenwart von n-Butyllithium und Diisopropylamin unter Ausbildung der Alkansäure gemäß der Formel XLI alkvliert.

In den vorstehend genannten Formeln XLI bis XLIV bedeuten:

R₁ eine

$$R_{7} = \left(\begin{array}{c} CH \\ R_{1} \end{array}\right)_{m} Gruppe$$

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

R₃ Wasserstoff oder eine Methylgruppe:

R4 eine Einfachbindung, eine Carbonylgruppe, eine CHOH-, eine NR9CO-, eine CONR9-, eine -CH = CH -CO-

oder eine -CH-CH-CHOH-Gruppe oder Schwefel mit Rogeleich Wasserstoff oder eine C1-C4-Alkylgruppe;

R₁₀ eine C₁—C₄-Alkylgruppe oder Wasserstoff;

R₁₁ eine C₁—C₄-Alkylgruppe oder Wasserstoff;

n eine ganze Zahl zwischen 0 und 5; und

q eine ganze Zahl zwischen 1 und 6.

Eine zwölfte Verfahrensvariante zur Herstellung von Verbindungen mit der allgemeinen Formel XLV

$$R_{1} - (CH_{2})_{0} - (CH_{2})_{0} - (CH_{2})_{0} - (CH_{2})_{0} - COOR_{12}$$
 (XLV)

5

15

25

55

60

geht ebenfalls von Bromverbindungen der allgemeinen Formel XLVI

$$R_1 - (CH_2)_n - R_3$$

$$CH_2)_{n-1} - Br \quad (XLVI)$$
20

aus. Diese Bromverbindungen werden unter den Bedingungen einer Grignard-Reaktion mit Verbindungen der Formel XLVI a acyliert,

$$\begin{array}{c|c} R_{10} \\ \hline \\ Cl - CO - (CH_2)_q - C - (CH_2)_p - COOR_{12} \quad (XLVI) \\ \hline \\ R_{11} \end{array}$$

wobei die dabei entstehenden Verbindungen gemäß der allgemeinen Formel XLVII isoliert werden:

$$R_{1}-(CH_{2})_{n}- \begin{matrix} R_{3} \\ \\ \\ S \end{matrix} - (CH_{2})_{o} & -CO-(CH_{2})_{q}- \begin{matrix} R_{11} \\ \\ \\ \\ \\ R_{10} \end{matrix} - COOR_{12} \quad (XLVII)$$

Anschließend wird die isolierte Verbindung (gemäß Formel XLVII) einer Reduktion nach Wolff-Krishner oder Huang-Minlon unterworfen.

In den vorstehend wiedergegebenen Formeln XLV bis XLVII bedeuten:

$$R_7 - CH \atop R_8 \atop m$$
 -Gruppe

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4;

R₁₀ eine C₁ - C₄-Alkylgruppe oder Wasserstoff;

R₁₁ eine C₁—C₄-Alkylgruppe oder Wasserstoff;

 R_{12} Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C_1 – C_4 -Alkylrest;

p eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6.

Eine dreizehnte Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung von Verbindungen der allgemeinen Formel XLVIII

$$R_1$$
— $(CH_2)_n$ — R_4 — $(CH_2)_q$ — R_5 — $(CH_2)_p$ — COR_6 (XLVIII)

geht von Alkansäuren der allgemeinen Formel XLIX

$$R_{1}-(CH_{2})_{n}-R_{4}-(CH_{2})_{q}-R_{5}-(CH_{2})_{p}-COOH \quad (X \sqcup X)$$

15 aus. Diese Alkansäuren werden in Gegenwart von N,N'-Carbonyldiimidazol mit einem Amin der allgemeinen Formel L

5

umgesetzt. Die hierbei entstehende erfindungsgemäße Verbindung mit der vorstehend wiedergegebenen Formel XLVIII wird dann entsprechend isoliert.

In den vorstehend wiedergegebenen Formeln XLVIII bis L bedeuten: R_i eine

$$\begin{array}{ccc}
R_{1} & CH \\
 & R_{3}
\end{array}$$

wobei m = 0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁ -- C₄-Alkyl und/oder C₁ -- C₄-Alkoxyl, und R₆ eine C₁ -- C₄-Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4;

R₄ eine Einfachbindung, eine Carbonylgruppe, eine CHOH-, eine NR₉CO-, eine CONR₉-, eine —CH=CH— CO— oder eine CH=CH—CHOH-Gruppe oder Schwefel mit R₉ gleich Wasserstoff oder eine C₁—C₄-Alkylgruppe;

R5 eine Einfachbindung, Sauerstoff, eine

Carbonyl- oder eine — C-Gruppe
$$R_{11}$$

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5;

55 Re eine

45

50

bedeuten, wobei

R₁₃ Wasserstoff oder eine Hydroxygruppe und R₁₄ Wasserstoff oder ein C₁ — C₄-Alkylrest sind; q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6.

Eine vierzehnte Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung von Verbindungen mit

der allgemeinen Formel LI

$$R_1 - (CH_2)_n - S - (CH_2)_q - R_s - (CH_2)_p - COOR_12$$
 (LI)

geht von Thiophenverbindungen der allgemeinen Formel LII

$$R_1$$
— $(CH_2)_n$ — S (LII)

10

35

40

50

55

60

aus. In etherischer Lösung werden diese Thiophenverbindungen (Formel LII) mit n-Butyllithium, hiernach mit elementarem Schwefel und anschließend mit einer ω-Halogenalkansäure oder einem ω-Halogenalkansäureester der allgemeinen Formeln LIII

$$X-(CH_2)_q-R_5-(CH_2)_p-COOR_{12}$$
 (LIII)

umgesetzt. Anschließend wird die bei dieser Reaktion entstandene Arylalkylthienylthioalkansäureester gemäß der allgemeinen Formel LI isoliert.

Wie bereits vorstehend wiederholt beschrieben, kann die so isolierte Arylalkylthienylthioalkansäureverbindung, sofern sie als Ester vorliegt, zur freien Säure hydrolisiert oder umgeestert werden. Ebenfalls ist es möglich, durch Zusatz von Alkalihydroxyd das entsprechende Salz herzustellen.

In den vorstehend wiedergegebenen Formeln LI und LIII bedeuten: \mathbf{R}_{i} eine

$$R_{7} - \left(\begin{array}{c} C H \\ I \\ R_{8} \end{array}\right)_{m}$$

wobei m = 0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind;

R₂ eine Einfachbindung, eine Carbonylgruppe, eine —CO—CH — CH oder eine —CH — CH—CO-Gruppe; R₃ Wasserstoff oder eine Methylgruppe;

Rs eine Einfachbindung, Sauerstoff, eine

Carbonyl- oder eine —
$$C$$
-Gruppe R_{11}

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy- oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind;

p eine ganze Zahl zwischen 0 und 5;

R₁₂ Wasserstoff, ein Alkalimetall, insbesondere Natrium oder ein C₁ — C₄-Alkylrest;

n eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6.

In der Formel LIII bedeuten:

X ein Halogen, insbesondere Brom;

 R_{12} ein $C_1 - C_4$ -Alkylrest;

p eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6.

Eine weitere Verfahrensvariante des erfindungsgemäßen Verfahrens wird zur Herstellung von schwefelhaltigen Alkansäureverbindungen der nachfolgend wiedergegebenen allgemeinen Formeln LIV

$$R_1$$
— $(CH_2)_n$ — S — $(CH_2)_q$ — R_3 — $(CH_2)_p$ — $COOR_{12}$ (LIV)

verwendet. Hierbei geht dieser Syntheseweg von 2-Thiophenverbindungen der allgemeinen Formel LV

15 aus. Unter den Bedingungen einer Friedel-Crafts-Acylierung werden diese Thiophenverbindungen (Formel LV) in Gegenwart von Zinntetrachlorid mit Arylalkylsäurechloriden der allgemeinen Formel LVa

$$R_1-(CH_2)_{n-1}COCI$$
 (LVa)

5

20 umgesetzt. Die bei dieser Reaktion entstehende Verbindung gemäß der allgemeinen Formel LVI

25
$$R_1$$
— $(CH_2)_{n-1}$ — CO — S — S — $(CH_2)_q$ — R_5 — $(CH_2)_p$ — $COOR_{12}$ (LVI)

wird isoliert. Des weiteren besteht die Möglichkeit, diese Verbindung gemäß der Formel LVI einer Wolff-Kishner-Reduktion oder einer Reduktion mit Natriumborhydrid zu unterwerfen, wodurch die Carbonylgruppe in eine CH₂-Gruppe umgewandelt wird.

In den vorstehend wiedergegebenen Formeln LVa, LIV bis LVI bedeuten: \mathbf{R}_1 eine

35
$$R_7 = \begin{pmatrix} CH \\ | \\ | \\ R_8 \end{pmatrix}_m$$

wobei m = 0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁ - C₄-Alkyl und/oder C₁ - C₄-Alkoxy, und R₈ eine C₁ - C₄-Alkylgruppe sind; R₃ Wasserstoff oder eine Methylgruppe;

R5 eine Einfachbindung, Sauerstoff, eine

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind;

55 n eine ganze Zahl zwischen 0 und 5;

p eine ganze Zahl zwischen 0 und 5;

R₁₂ ein C₁ - C₄-Alkylrest;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6.

Auch bei dem zuvor beschriebenen Verfahren besteht die Möglichkeit, den nach diesem Verfahren hergestellten Ester zu hydrolisieren, umzuestern oder mit einem Alkalihydroxyd unter Ausbildung des entsprechenden Salzes umzusetzen.

Zur Herstellung von schwefelhaltigen erfindungsgemäßen Verbindungen der allgemeinen Formel LVII

65

45

$$R_1 - (CH_2)_n - C - CH = CH - S - (CH_2)_q - R_5 - (CH_2)_p - COOR_{12}$$
 (LVII)

geht man ebenfalls von 2-Thiophenverbindungen der allgemeinen Formel LVIII

$$\begin{array}{c}
R_{3} \\
+ \\
S \\
- (CH_{2})_{q} - R_{5} - (CH_{2})_{p} - COOR_{12}
\end{array}$$
(LVIII)

5

25

35

50

60

aus. Hierbei werden diese Thiophenverbindungen der Formel LVIII unter den üblichen Bedingungen einer IVIII unter den üblichen Bedingungen einer IVIIII unter den üblichen Bedingungen einer IVIIII

$$R_3$$
 $S = (CH_2)_q = R_5 = (CH_2)_p = COOR_{12}$ (LIX)

formyliert. Anschließend werden diese Aldehyde unter den üblichen Bedingungen einer Wittig-Reaktion mit entsprechenden Phosphorverbindungen gemäß der Formel LIXa

$$\begin{array}{c|cccc}
O & OC_2H_3 \\
\parallel & | & | \\
R_1 - (CH_2)_n - C - CH_2 - P = O & (LIX) \\
& & | & & \\
OC_2H_3 & & & \\
\end{array}$$

unter Ausbildung der Verbindung gemäß der vorstehend wiedergegebenen allgemeinen Formel LVII umgesetzt.

In den zuvor wiedergegebenen Formeln LVII bis LIX bedeuten: \mathbf{R}_1 eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; R_3 Wasserstoff oder eine Methylgruppe;

R5 eine Einfachbindung, eine

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind;

R₁₂ Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C₁ – C₄-Alkylrest,

n eine ganze Zahl zwischen 0 und 5;

p eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6.

Die vorliegende Erfindung betrifft des weiteren pharmazeutische Präparate, die als pharmazeutischen Wirkstoff mindestens eine Verbindung der nachfolgend wiedergegebenen Formel I

$$R_{1}-(CH_{2})_{n}-R_{2}-(CH_{2})_{o}-R_{4}-(CH_{2})_{q}-R_{5}-(CH_{2})_{p}-C-R_{6} \quad (I)$$

neben üblichen pharmazeutischen Hilfs- und/oder Trägerstoffen enthalten.

In der Formel I bedeuten:

R₁ eine

5

10

15

40

45

$$R_1 - CH$$
 Gruppe $R_1 - CH$

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

R₂ eine Einfachbindung, eine Carbonylgruppe, eine -CO-CH=CH oder eine -CH=CH-CO-Gruppe;

R₃ Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4;

R₄ eine Einfachbindung, eine Carbonylgruppe, eine CHOH-, eine NR₉CO-, eine CONR₉-, eine —CH = CH = CH = CH = CH = CH - C4-Alkylgruppe; R₅ eine Einfachbindung, Sauerstoff, eine

wobei R₁₀ aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer C₁—C₄-Alkylgruppe und R₁₁ aus der Gruppe bestehen aus einer C₁—C₄-Alkylgruppe oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5; R₆ eine

bedeuten, wobei R_{12} Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein $C_1 - C_4$ -Alkylrest, R_{13} Wasserstoff oder ein $C_1 - C_4$ -Alkylrest sind; q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6.

Insbesondere haben sich solche pharmazeutische Präparate besonders bewährt, die als pharmazeutischen Wirkstoff solche Verbindungen enthalten, bei denen in der allgemeinen Formel I nicht gleichzeitig R₇ eine nicht substituierte oder eine disubstituierte Phenylgruppe mit Fluor, Chlor, Brom, eine Trifluormethyl-, Nitro-, Amino-, Hydroxy-, C₁—C₄-Alkylgruppe oder eine C₁—C₄-Alkoxyl-Gruppe als Substituenten,

n+m einen Wert zwischen 1 und 6;

o+p+q einen Wert zwischen 2 und 10, wenn R5 eine Einfachbindung ist, oder

0+p+q einen Wert zwischen 2 und 9, wenn R5 eine CH2-Gruppe ist;

R₂ eine Einfachbindung;

R4 eine Einfachbindung;

 R_6 eine OR_{12} -Gruppe mit R_{12} Wasserstoff, Alkalimetall oder eine C_1 — C_4 -Alkylrest sind.

Verbindungen, die aufgrund unterschiedlicher Substituenten für R_{10} und R_{11} und/oder wegen der Präsenz von R_8 (m=1) und/oder im Falle von R_4 = CHOH oder CH=CH—CHOH ein oder mehrere Chiralitätszentren besitzen, können je nach Bedarf nach an sich bekannten Verfahren mit geeigneten optisch aktiven Basen über die Bildung von diastereomeren Salzen oder durch chromatografische Verfahren mit optisch aktivem Säulenmaterial in reine Enantiomere aufgetrennt werden.

Das erfindungsgemäße pharmazeutische Präparat, das mindestens einen Wirkstoff der vorstehend wiedergegebenen allgemeinen Formel I und insbesondere der eingangs aufgeführten speziellen Verbindungen der For-

mei I sowie der speziellen Säuren, Salze und/oder Derivate aufweist, zeigt eine stark entzündungshemmende Wirksamkeit, die sich vorzugsweise für die Behandlung von chronisch entzündlichen Prozessen und insbesondere zur Behandlung von Erkrankung des rheumatischen Formenkreises eignet.

Diese entzündungshemmende Wirkung der erfindungsgemäßen Verbindungen ist auf eine ausgeprägte Leukotrien-A₄-Hydrolasehemmende Aktivität zurückzuführen. Diese Leukotrien-A₄-Hydrolase steuert die Biosynthese des Leukotrien B₄ aus Leukotrien A₄, einem Metabolit der Arachidonsäure. Somit können insbesondere solche krankhaften Prozesse besonders wirksam gehemmt werden, die in einem Überangebot des Leukotriens B₄ ihre Ursache haben. Hierzu gehören insbesondere Psoriasis und andere Hautkrankheiten, entzündliche Darmläsionen, insbesondere des Dünndarmes, rheumatische Arthritis, Allergien und Asthma.

Wie festgestellt wurde, bewirken die erfindungsgemäßen pharmazeutischen Produkte eine ausgeprägte LTA₄-Hydrolasehemmung, wie dies im einzelnen auch anhand der nachfolgend wiedergegebenen Tabelle 1 zu entnehmen ist.

Die erfindungsgemäßen pharmazeutischen Präparate können enteral, so zum Beispiel oral oder rektral, sowie parenteral verabreicht werden. Vorteilhafterweise wird das erfindungsgemäße pharmazeutische Präparat in der Form von Einzeldosen gegeben, wobei die jeweilige Anwendungskonzentration üblicherweise zwischen 1 mg und 500 mg pro Dosis, vorzugsweise zwischen 10 mg und 150 mg pro Dosis, liegt. Hierbei kann ein derartiges Präparat als Tablette, Dragee, Kapsel, Suppositorium, Granulat, Lösung, Emulsion oder Suspension verabreicht werden.

Vorteilhafte Ausführungsformen der erfindungsgemäßen Verbindungen sowie der erfindungsgemäßen Verfahren sind in den Unteransprüchen angegeben.

20

30

35

40

45

50

55

60

65

Die Wirksamkeit der erfindungsgemäßen Verbindungen sowie die Herstellung der erfindungsgemäßen Verbindungen werden nachfolgend anhand von Ausführungsbeispielen näher erläutert. Die in den Ausführungsbeispielen angegebenen Schmelzpunkte wurden mit einem Büchi 510-Schmelzpunktbestimmungsapparat gemessen und sind nicht korrigiert. Die IR-Spektren wurden mit einem Gerät MAT-311-A aufgenommen.

Zur Bestimmung der LTA₄-Hydrolasehemmung und der LTB₄-Produktion wurden nach Standardmethoden isolierte Schweinegranulozyten verwendet. 1 × 10⁸ Zellen/ml wurden in Ca²⁺-haltigem Phosphatpuffer suspendiert und in Anwesenheit bzw. Abwesenheit der Testsubstanzen mit Arachidonsäure und Calcium-Ionophor A 23 187 inkubiert. Nach fünf Minuten wurden die von der Arachidonsäure abstammende Produkte aus dem angesäuerten Inkubationsmedium extrahiert und mit einem für die Trennung von 5,12-Dihydroxyeicosatetraensäuren geeigneten Laufmittel mittels HPLC getrennt (P. Kuhl et al, Prostaglandins 28, S. 783, 1984).

Tabelle 1

Hemmung der Leukotrien-B₄-Bildung der erfindungsgemäßen Verbindungen bei einer Konzentration von 20 µmol/I

5	Verbindung gemäß Beispiel	Hemmung %
	1	67
	1 2 3	19
10	3	16
	5	48
	6	66
	5 6 7	41
4.5	9	90
15	10	66
	12	46
	14	47
	15	82
20	17	39
	18	48
	19	42
	21	58
	22	73
25	23	67
	24	53
	26	38
	31	60
30	32	44
	33	75
	34	30
	35	60
	36	40
35	39	50
	42	30
	43	24
	Principal	

Beispiel 1

6-Oxo-6-[5-(3-phenylpropyl)-2-thienyl]-hexansäure

a) 6-Oxo-6-[5-3-phenylpropyl)-2-thienyl]-hexansäureethylester

50 g 2-(3-Phenylpropyl)-thiophen (hergestellt nach Buu-Hoi, J. Org. Chem. 23 (1958), 97), 47,4 g Hexandisäure-ethylesterchlorid (hergestellt nach Archer et al., J. Am. Chem. Soc. 66, (1944), 1656) und 250 ml 1,2-Dichlorethan wurden vorgelegt und auf 0°C abgekühlt. Anschließend wurden 79,2 g Zinntetrachlorid innerhalb 2 Stunden so zugetropft, daß die Temperatur nicht über 5°C stieg. Nach beendeter Zugabe wurde die Reaktionsmischung noch 1 Stunde bei Raumtemperatur weitergerührt. Dann wurde die Mischung auf 1000 ml Eiswasser gegossen, die organische Phase abgetrennt und die wäßrige Phase mit je 300 ml Dichlormethan extrahiert. Die organischen Extrakte wurden mit Wasser neutral gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Ether/Petrolether 50/50)) gereinigt.

Ausbeute: 73,2 g (82,8%). Öl.

40

45

65

b) 6-Oxo-6-[5-3-(phenylpropyl)-2-thienyl]-hexansaure

Eine Mischung aus 87,2 g 6-Oxo-6-[5-3-(phenylpropyl)-2-thienyl]-hexansäureethylester, 900 ml Ethanol und 29,2 g Natriumhydroxid wurde 2 Stunden bei 60°C gerührt, dann im Vakuum eingeengt, der Rückstand in Wasser aufgenommen und die wäßrige Phase mit Essigsäureethylester gewaschen. Die wäßrige Phase wurde bei 0°C mit Salzsäure auf pH 1 eingestellt, der ausgefallene Feststoff abgesaugt und getrocknet. Ausbeute: 76,6 (95%). Weiße Kristalle mit einem Schmelzpunkt von 57°C. IR (in KBr): 1714 cm⁻¹, 1643 cm⁻¹.

Beispiel 2

7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure

a) 7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäureethylester

Zu einer Mischung aus 58 g Aluminiumtrichlorid und 100 ml 1,2-Dichlorethan wurde bei 10°C innerhalb 30 Minuten eine Lösung von 30 g Heptandisäureethylesterchlorid in 100 ml 1,2-Dichlorethan zugetropft. Anschließend wurde eine Lösung von 21,3 g 2-(2-Thienyl)-pyridin in 100 ml 1,2-Dichlorethan bei 5°C in 30 Minuten zugetropft. Nach beendeter Zugabe wurde 16 Stunden bei Raumtemperatur gerührt. Die Reaktionsmischung wurde auf 21 Eiswasser gegeben und nach Zugabe von 160 g Titriplex III auf pH 5 eingestellt. Die organischen Phase wurde abgetrennt und die wäßrige Phase dreimal mit je 500 ml Dichlormethan extrahiert. Die organischen Phasen wurden vereint, mit Wasser, gesättigter Natriumhydrogen-carbonatlösung und nochmals mit Wasser	
gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Die Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan). Ausbeute: 21,9 g (50%). Weiße Kristalle mit einem Schmelzpunkt von 97°C.	10
b) 7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure	
Eine Mischung aus 21,5 g 7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäureethylester, 400 ml Ethanol und 7,8 g Natriumhydroxid wurde 3 Stunden bei 60°C gerührt. Der nach Abkühlen ausgefallene Feststoff wurde abgesaugt, in 1 l Wasser gelöst, mit Salzsäure auf pH 6 eingestellt, der dabei ausgefallene Feststoff abgesaugt, mit Wasser gewaschen und getrocknet. Ausbeute: 18,4 g (93%), Weiße Kristalle mit einem Schmelzpunkt von 193°C.	15
IR (in KBr): 1711 cm ⁻ , 1654 cm ⁻¹ .	20
Beispiel 3	
7-[5-(2-Pyridyl)-2-thienyl]-heptansäure	25
12 g 7-Oxo-7-[5-(2-pyridyl)-2-thienyl]-heptansäure (Beispiel 2), 7,4 g Hydrazinhydrat, 11 g Kaliumhydroxid und 100 ml Triethylenglykol wurden vorgelegt und 4 Stunden auf 210°C erhitzt. Danach wurde langsam ein	
Gemisch aus Hydrazin und Wasser abdestilliert (2 Stunden). Die Lösung wurde abgekühlt, mit 200 ml Eiswasser hydrolysiert, mit Salzsäure neutralisiert und der ausgefallene Feststoff abgesaugt und getrocknet und anschließend aus Essigsäureethylester umkristallisiert. Ausbeute: 9 g (79%). Weiße Kristalle mit einem Schmelzpunkt von 106°C. IR (in KBr): 1693 cm ⁻¹ .	30
Beispiel 4	35
7-{4-Methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäure	
a) 3-Methyl-2-(3-phenylpropanoyl)-thiophen (4a1) und 4-Methyl-2-(3-phenylpropanoyl)-thiophen (4a2)	
Analog Beispiel 1a aus: 100 g 3-Methylthiophen	4(
172 g 3-Phenylpropionsäurechlorid	
700 ml 1,2-Dichlorethan 320 g Zinntetrachlorid Reinigung über Säulenchromatographie (Kieselgel; Ether/Petrolether 15/85) (4a1, unpolarere Komponente) und anschließende fraktionierte Umkristallisation der Mischfraktionen aus Ether/Petrolether 30/70 (4a2, polare	45
Komponente). Ausbeute: 4a1: 99,2 g (42%). ÖL 4a2: 35 g (15%). Kristalle mit einem Schmelzpunkt von 95°C.	50
b) 3-Methyl-2-(3-phenylpropyl)-thiophen	
Analog Beispiel 3 aus:	55
99 g 3-Methyl-2-(3-phenylpropanoyl)-thiophen (Beispiel 4a1), 80,7 g Hydrazinhydrat, 96,4 g Kaliumhydroxid,	
490 ml Triethylenglykol. Reinigung durch Säulenchromatographie (Kieselgel; Ether/Petrolether 30/70). Ausbeute: 83,6 g (90%). Öl.	60
c) 7-Oxo-7-[4-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester	

Analog Beispiel 1a aus: 20 g 3-Methyl-2-(3-phenylpropyl)-thiophen, 21 g Heptandisäure-ethylester-chlorid, 150 ml 1,2-Dichlorethan,

28,9 g Zinntetrachlorid.

5

25

30

40

50

Reinigung durch Säulenchromatographie (Kieselgel; Ether/Petrolether 40/60)

Ausbeute: 33 g (92%), Öl.

d) 7-Oxo-7-[4-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäure

Eine Mischung aus 33 g 7-Oxo-7-[4-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester, 85 ml
1N-Natronlauge und 300 ml Ethanol wurde 4 Stunden bei Raumtemperatur gerührt. Nach Einengen im Vakuum
wurde der Rückstand in 500 ml Wasser gelöst und mit 300 ml Ether extrahiert. Die Wasserphase wurde mit
Salzsäure angesäuert und zweimal mit je 500 ml Ether extrahiert. Die Etherphase wurde mit Natriumsulfat
getrocknet und im Vakuum bis zur Trockne eingeengt.

Ausbeute: 26,6 g (87%), ÖL

e) 7-[4-Methyl-5-(3-phenylpropyl)-2-thienyl]-heptansaure

15 Analog Beispiel 3 aus:

26 g 7-Oxo-7-[4-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäure,

13,6 ml Hydrazinhydrat,

16,3 g Kaliumhydroxid,

100 ml Triethylenglykol.

Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 98/2).

Das Produkt kristallisiert nach einigen Tagen bei 4°C.

Ausbeute: 14,7 g (59%). Kristalle mit einem Schmelzpunkt von 55-56°C.

IR (in KBr): 1708 cm⁻¹.

Beispiel 5

7-[3-Methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäure

a) 4-Methyl-2-(3-phenylpropyl)-thiophen

Analog Beispiel 3 aus:

35 g 4-Methyl-2-(3-phenylpropanoyl)-thiopen (Beispiel 4a2),

28,5 ml Hydrazinhydrat.

5 34 g Kaliumhydroxid,

175 ml Triethylenglykol.

Reinigung durch Säulenchromatographie (Kieselgel; Ether-Petrolether 10/90).

Ausbeute: 22 g (67%). Öl.

b) 7-Oxo-7-[3-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester

Analog Beispiel 1a aus:

11 g 4-Methyl-2-(3-phenylpropyl)-thiophen,

11,6 g Heptandisäure-ethylester-chlorid,

5 100 ml 1,2-Dichlorethan,

15.9 g Zinntetrachlorid.

Reinigung durch Säulenchromatographie (Kieselgel; Ether/Petrolether 40/60),

Ausbeute: 18,5 g (94%). Öl.

c) 7-Oxo-7-[3-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäure

Analog Beispiel 4d aus:

18.3 g 7-Oxo-7-[3-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester,

47,4 ml 1N-Natronlauge,

150 ml Ethanol.

Ausbeute: 16,7 g (98%), Öl.

d) 7-[3-Methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäure

60 Analog Beispiel 3 aus:

16,5 g 7-Oxo-7-[3-methyl-5-(3-phenylpropyl)-2-thienyl]-heptansäure,

8,6 ml Hydrazinhydrat,

10,3 g Kaliumhydroxid,

100 ml Triethvlenglykol.

Reinigung durch Säulenchromatographie (Kieselgel, Dichlormethan/Methanol 98/2).

Ausbeute: 10,8 g (68%). Öl.

IR: 1708 cm⁻¹.

41 27 842 A1

Beispiel 6

7-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

a) 7-Oxo-7-[5-(3-phenylpropyl)-2-thienyl}-heptansäure-ethylester

5

10

15

25

30

35

40

45

50

55

60

65

6 g 2-(3-Phenylpropyl)-thiopen, 9,3 g Zinntetrachlorid und 100 ml 1,2-Dichlorethan wurden vorgelegt und auf 0°C abgekühlt. Anschließend wurde eine Lösung von 6,1 g Heptandisäureethylesterchlorid in 50 ml 1,2-Dichlorethan innerhalb 1 Stunde so zugetropft, daß die Temperatur nicht über 5°C stieg. Dann wurde die Mischung aus 200 ml Eiswasser gegossen, die organische Phase abgetrennt und die wäßrige Phase dreimal mit je 100 ml Dichlormethan extrahiert. Die vereinigten organischen Extrakte wurden mit Wasser neutral gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde durch Flash-Säulenchromatographie (Kieselgel 30-60 µm; Hexan/Essigsäureethylester 87/13) gereinigt. Ausbeute: 9,1 (82%). Öl.

b) 7-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

Eine Mischung aus 100 ml Ethanol, 8,2 ml 6molarer wäßriger Natriumhydroxidlösung und 9,1 g 7-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethyl-ester wurde 2 Stunden unter Rückfluß erhitzt, im Vakuum eingeengt, der Rückstand in Wasser aufgenommen und die wäßrige Phase mit auf pH 1 eingestellt und mit Dichlormethan extrahiert. Der Extrakt wurde über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde aus Diethylether umkristallisiert.

Ausbeute: 5,4 g (64%), Beige Kristalle mit einem Schmelzpunkt von 69-70°C. Ir (in KBr): 1705 cm⁻¹ (s), 1654 cm⁻¹) (s), 1457 cm⁻¹ (s).

Beispiel 7

7-[5-(3-Phenylbutyl)-2-thienyl]-heptansäure

a) 7-[5-(3-Phenylbutanoyl)-2-thienyl]-heptansäureethylester

Analog Beispiel 6a: 9,4 g 7-(2-Thienyl)-heptansäureethylester, 12,9 g Zinntetrachlorid, 200 ml 1,2-Dichlorethan, 7,5 g 3-Phenylbuttersäurechlorid in 50 ml 1,2-Dichlorethan.

Reinigung durch Flashsäulenchromatographie

(Kieselgel 30-60 µm; Hexan/Essigsäureethylester 9/1).

Ausbeute: 11,2 g (74,1% Öl).

b) 7-[5-(3-Phenylbutyl)-2-thienyl]-heptansäure

Analog Beispiel 3 aus:

6 g 7-[5-(3-Phenylbutanoyl)-2-thienyl]-heptansäureethylester,

2,4 g Hydrazinhydrat,

3,5 g Kaliumhydroxid,

150 ml Triethylenglykol.

Reinigung durch Flashsäulenchromatographie (Kieselgel 30-60 µm; Hexan/Essigsäureethylester/Essigsäure 7/3/0.05 und durch Extraktion der Säure mittels wäßrigem Natriumhydroxid und anschließender Ansäuerung. Ausbeute: 1,4 g (26,2%). Weiße Kristalle mit einem Schmelzpunkt von 27 – 29°.

IR (in KBr): 1710 cm⁻¹

Beispiel 8

7-[5-(3-Phenylbutanoyl)-2-thienyl]-heptansäure

Analog Beispiel 6b aus: 5 g 7-[5-(3-Phenylbutanoyl)-2-thienyl]-heptansäureethylester, 50 ml Ethanol,

0,8 g Natriumhydroxid.

Der Rückstand wurde aus n-Hexan/Essigsäureethylester umkristallisiert.

Ausbeute: 2,8 g (60,4%). Gelbliche Kristalle mit einem Schmelzpunkt von $51-53^{\circ}$ C. IR (in KBr): 1699 cm⁻¹ (s), 1654 cm⁻¹ (s), 1454 cm⁻¹ (s).

Beispiel 9

2-{4-[5-(3-Phenylpropyl)-2-thienyl]-butyloxy|-essigsäure-Natriumsalz

a) 4-[5-(3-Phenylpropanoyl)-2-thienyl]-buttersäureethylester

Analog Beispiel 6a aus:

27,5 g 4-(2-Thienyl)-buttersäureethylester,

39,4 g Zinntetrachlorid,

550 ml 1,2-Dichlorethan,

23,4 g 3-Phenylpropionsäurechlorid in 15 ml 1,2-Dichlorethan,

Reinigung durch Flashsäulenchromatographie

(Kieselgel 30-60 µm; Hexan/Essigsäureethylester 95/5).

Ausbeute: 43,3 g (95%), Öl.

b) 4-[5-(3-Phenylpropyl)-2-thienyl]-buttersäure

Analog Beispiel 3 aus:

42 g 4-{5-(3-Phenylpropanoyl)-2-thienyl}-buttersäureethylester,

13 g Hydrazinhydrat,

28 g Kaliumhydroxid,

200 ml Triethylenglykol.

Reinigung durch Flashsäulenchromatographie (Kieselgel 30-60 μm; Hexan/Essigsäureethylester/Essigsäure 10/2/0.5).

Ausbeute: 30,4 g (83%). Öl.

c) 4-[5-(3-Phenylpropyl)-2-thienyl]-1-butanol

8,1 g Lithiumaluminiumhydrid und 600 ml absolutes Tetrahydrofuran wurden vorgelegt. Eine Lösung von 29 g 4-[5-(3-phenylpropyl)-2-thienyl]-buttersäure in 50 ml Tetrahydrofuran wurde innerhalb 2 Stunden zugetropft. Die Temperatur stieg auf 40°C. Anschließend wurde die Mischung durch ein Eisbad auf 10°C abgekühlt, dann wurde 200 ml Wasser langsam zugetropft und mit 410 ml 10%iger Schwefelsäurelösung langsam angesäuert. Die organische Phase wurde abgetrennt und die wäßrige Phase dreimal mit 200 ml Diethylether extrahiert. Die vereinigten organischen Extrakte wurden mit dreimal 250 ml Wasser, einmal mit 200 ml 6-N-Natriumhydroxidlösung und viermal mit je 250 ml NaCl-gesättigtem Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde durch Flashsäulenchromatographie (Kieselgel 30-60 µm; Hexan/Diethylether 7/3) gereinigt. Ausbeute: 22 g (80%). Öl.

d) 2-{4-[5-(3-Phenylpropyl)-2-thienyl]-butyloxy}-essigsäure

5 g 4-[5-(3-Phenylpropyl)-2-thienyl]-1-butanol und 4.8 g Bromessigsäure-Kaliumsalz wurden vorgelegt. Die Mischung wurde auf 80°C erhitzt. Eine Lösung von 6,14 g Kalium-tert.-Butylat in 100 ml absolutem tert.-Butanol wurde innerhalb 45 Minuten zugetropft. Dann wurde die Mischung 16 Stunden unter Rückfluß erwärmt. Die Mischung wurde abgekühlt und mit 130 ml NaCl-gesättigtem Wasser hydrolisiert. Die wäßrige Phase wurde dreimal mit je 50 ml Diethylether/Essigsäureethylester 1/1 gewaschen, mit 1-molarer Salzsäurelösung auf pH 5 eingestellt und dreimal mit 50 ml Essigsäureethylester extrahiert. Die organischen Extrakte wurden mit Wasser neutral gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Ausbeute: 3,83 g (64%). Öl.

Ir: 1731 cm⁻¹.

35

60

e) 2-{4-[5-(3-Phenylpropyl)-2-thienyl]-butyloxy}-essigsäure-Natriumsalz

0,88 g 2-{4-[5-(3-Phenylpropyl)-2-thienyl]-butyloxy}-essigsäure wurde in 5 ml Aceton gelöst. Eine Lösung von 103 mg Natriumhydroxid in 0,4 ml Wasser wurde zugetropft. Ein weißes festes Produkt fiel aus. Die Mischung wurde 30 Minuten auf Raumtemperatur gerührt und dann abfiltriert. Die feste Substanz wurde dreimal mit je 5 ml kaltem Aceton gewaschen und getrocknet.

Ausbeute: 0,8 g (85%). Weißes Pulver mit einem Schmelzpunkt von 192-193°C.

IR (in KBr): 1598 cm⁻¹.

Beispiel 10

2-[4-[5-(3-Phenylpropyl)-2-thienyl]-butyloxy)-essigsäuremethylester

4,2 g 2-[4-[5-(3-Phenylpropyl)-2-thienyl]-butyloxy]-essigsäure (Beispiel 9d) wurden in 80 ml Methanol gelöst und mit 0,5 ml Schwefelsäure versetzt. Die Mischung wurde 24 Stunden auf Raumtemperatur nachgerührt. Anschließend wurde das Lösungsmittel eingeengt. Der Rückstand wurde in 15 ml Essigsäureethylester gelöst, mit 10 ml 2N Natriumhydroxidlösung und dann mit Wasser neutral gewaschen. Die organische Phase wurde über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde durch Flashsäulenchromatographie (Kieselgel 30 – 60 μm;

Hexan/Essigsäureethylester 95/5) gereinigt.

Ausbeute: 4 g (92%). ÖL

IR: 1757 cm⁻¹ (s), 1740 cm⁻¹ (s).

Beispiel 11

7-Hydroxy-7-[5-(2-pyridyl)-2-thienyl]-heptansäure

5

15

20

25

30

35

40

45

55

60

65

Eine Lösung von 0,75 g Natriumborhydrid in 2,5 ml Wasser wurde in 15 Minuten bei 0°C zu einer Lösung von 4 g 7-Οπο-7-[5-(2-pydridyl)-2-thienyl]-heptansäure (Beispiel 2) in 30 ml 1N-Natronlauge zugetropft. Anschließend wurde 2 Stunden bei Raumtemperatur gerührt. Die Reaktionsmischung wurde danach auf 100 ml Wasser gegeben und mit Salzsäure auf pH 5 eingestellt. Das abgeschiedene Öl wurde mit Dichlormethan extrahiert, die Dichlormethanphase mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt. Der Rückstand wurde aus 45 ml Essigsäureethylester umkristallisiert.

Ausbeute: 2,9 g (72%). Weiße Kristalle mit einem Schmelzpunkt von 113°C. IR (in KBr): 1707 cm⁻¹

Beispiel 12

2,2-Dimethyl-7-[5-(3-phenylpropyl)-2-thienyl-heptansäure

a) 5-[5-(3-Phenylpropyl)-2-thienyl]-1-pentanol

Zu einer Mischung aus 2 g Lithiumaluminiumhydrid und 100 ml Diethylether wurde unter Rühren eine Lösung von 18,5 g 5-[5-(3-Phenylpropyl)-2-thienyl]-pentansäureethylester (DE-OS 34 07 510) in 50 ml Diethylether in einer Stunde zugetropft. Anschließend wurde eine weitere Stunde unter Rückfluß gerührt, auf 0°C gekühlt und 1,5 ml Wasser wurden vorsichtig zugetropft. Der ausgefallene Niederschlag wurde durch Filtration über Celite entfernt, die Etherphase über Magnesiumsulfat getrocknet und eingeengt.

Ausbeute: 12,5 g (77%). Öl.

b) 1-Brom-5-[5-(3-phenylpropyl)-2-thienyl]-pentan

Zu einer Lösung von 8 g 5-[5-(3-Phenylpropyl)-2-thienyl]-1-pentanol in 40 ml Acetonitril wurden 4,5 g Carbonyldiimidazol zugegeben. Anschließend wurden 16,8 g Allylbromid in 15 Minuten zugetropft und die Reaktionsmischung 1 Stunde unter Rückfluß gerührt. Nach Abkühlen wurde die Reaktionsmischung in eine Mischung aus 200 ml Ether und 100 ml Wasser eingetragen. Die Phasen wurden getrennt, und die Wasserphase wurde mti 100 ml Ether extrahiert. Die vereinigten organischen Phasen wurden nacheinander mit je 80 ml 1N-Salzsäure, Wasser, gesättigter Natriumhydrogencarbonatlösung und nochmals mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingeengt.

Ausbeute: 8,5 g (87%). Öl.

c) 2,2-Dimethyl-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

Zu einer Lösung von 3,5 g Diisopropylamin in 20 ml Tetrahydrofuran wurden bei 0°C, 21,4 ml einer 1,6-molaren n-Butyllithium-Lösung in n-Hexan in 15 Minuten zugetropft. Anschließend wurden 1,35 g Isobuttersäure zugetropft. Nach Zugabe von 2,4 g Hexamethylphosphor-säuretriamid wurde 2 Stunden bei 50°C gerührt. Die Reaktionsmischung wurde auf 0°C gekühlt und eine Lösung von 6 g 1-Brom-5-[5-(3-Phenylpropyl)-2-thienyl]-pentan in 5 ml Tetrahydrofuran wurde in einer Portion zugegeben. Anschließend wurde 2 Stunden bei Raumtemperatur gerührt. Die Reaktionsmischung wurde danach in 300 ml Eiswasser eingetragen. Nach Ansäuern mit Salzsäure wurde dreimal mit je 200 ml Ether extrahiert, die vereinigten Etherphasen wurden nacheinander mit je 150 ml 2N-Salzsäure, Wasser und gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Ether/Petrolether 50/50) gereinigt.

Ausbeute: 1,64 g (26,8%). Öl.

IR: 1609 cm-1.

Beispiel 13

(E)-4-Oxo-6-[5-(3-phenylpropyl)-2-thienyl]-5-hexensaure

a) 5-(3-Phenylpropyl)-thiopen-2-aldehyd

Zu einer Lösung von 15 g 2-(3-Phenylpropyl)-thiopen in 150 ml Diethylether wurden bei 5°C 5 ml einer 1,6-molaren n-Butyllithium-Lösung in n-Hexan in 15 Minuten zugetropft. Anschließend wurde auf -60°C abgekühlt und 7,6 g Dimethylformamid in 30 Minuten zugetropft. Nach weiteren 30 Minuten bei -60°C wurde das Reaktionsgemisch in einer Mischung aus 200 ml Eiswasser und 20 ml konzentrierter Salzsäure eingetragen. Die Phasen wurden getrennt, die Wasserphase wurde mit 100 ml Ether extrahiert, die vereinigten organischen Phasen wurden dreimal mit je 100 ml Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Ether/Petrolether 50/50) gereinigt. Ausbeute: 13,5 g (80%). Öl.

b) (E)-4-Oxo-6-[5-(3-phenylpropyl)-2-thienyl]-5-hexensäure

Eine Mischung aus 6 g 5-(3-Phenylpropyl)-thiophen-2-Aldehyd, 3 g 4-Oxo-pentansäure, 0,86 g Piperidin und 60 ml Toluol wurde 2 Stunden am Wasserabscheider zum Rückfluß erhitzt. Anschließend wurde im Vakuum eingeengt, der Rückstand in 200 ml Essigsäureethylether aufgenommen und mit 80 ml 2N-Salzsäure extrahiert. Die organische Phase wurde zweimal mit je 150 ml 5%iger Natriumcarbonat-Lösung extrahiert, die vereinigten Wasserphasen mit Salzsäure angesäuert und zweimal mit je 200 ml Essigsäureethylester extrahiert. Die organische Phase wurde über Natriumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 98/2) und anschließende Umkristallisation (n-Hexan/Essigsäureethylester) gereinigt.

Ausbeute: 0.6 g (7%). Farblose Kristalle mit einem Schmelzpunkt von 102° C. IR (in KBr): 1713 cm⁻¹, 1682 cm⁻¹, 1592⁻¹.

Beispiel 14

15

30

(E)-5-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-trans-6-heptensäure

Analog Beispiel 13b aus:

7 g 5-(3-Phenylpropyl)-thiopen-2-aldehyd (Beispiel 13a),

4 g 5-Oxo-hexansäure.

1 g Piperidin,

70 ml ToluoL

Reinigung durch zweimalige Umkristallisation (Essigsäureethylester/n-Hexan 70/30; Aktivkohle; Essigsäureethylester).

25 Ausbeute: 2,8 g (27,3%). Kristalle mit einem Schmelzpunkt von 89°C. IR (in KBr): 1693 cm⁻¹, 1639 cm⁻¹, 1612 cm⁻¹.

Beispiel 15

5-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

a) 5-(3-Phenylpropyl)-2-hydroxymethyl-thiopen

Zu einer Lösung von 15 g 2-(3-Phenylpropyl)-thiopen in 150 ml Diethylether wurden 56 ml einer 1,6molaren
Lösung von n-Butyllithium in n-Hexan in 10 Minuten bei 15°C zugetropft. Nach Abkühlen auf 0°C wurden 3,7 g
Paraformaldehyd in einer Portion zugegeben. Die Reaktionsmischung wurde 1,5 Stunden bei 32°C gerührt und
anschließend auf eine Mischung aus 200 ml Eiswasser und 20 ml konzentrierter Salzsäure gegeben. Nach
Phasentrennung wurde die Wasserphase zweimal mit je 100 ml Diethylether extrahiert, die vereinigten organischen Phasen mit 100 ml Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Der Rückstand
wurde durch Säulenchromatographie (Kieselgel; Diethylether/Petrolether 60/40) gereinigt.
Ausbeute: 13,6 g (80%), Öl.

b) 2-Chlormethyl-5-(3-phenylpropyl)-thiopen

Zu einer Lösung von 12,6 g 5-(3-Phenylpropyl)-2-hydroxymethyl-thiopen in 50 ml Diethylether wurde bei 5°C eine Lösung von 12,9 g Thionylchlorid in 25 ml Diethylether in 30 Minuten zugetropft. Die Reaktionsmischung wurde 5 Stunden bei Raumtemperatur gerührt. Anschließend wurde im Vakuum eingeengt, 100 ml Toluol zugegeben und nochmals im Vakuum eingeengt. Der Rückstand wurde ohne weitere Reinigung in die nächste Stufe eingesetzt.

c) 3-Hydroxy-2-[[5-(3-phenylpropyl)-2-thienyl]-methyl]-2-cyclohexen-1-on

Zu einer Mischung aus 7,1 g Cyclohexan-1,3-dion, 0,65 g Kaliumjodid und 16,2 g einer 20%igen wäßrigen Kaliumhydroxidlösung wurden 14,6 g ungereinigtes 2-Chlormethyl-5-(3-phenylpropyl)-thiopen unter starkem Rühren zugetropft. Die Reaktionsmischung wurde 4 Stunden bei Rückflußtemperatur gerührt. Nach Abkühlen wurde die Mischung auf 200 ml Wasser gegeben, auf pH 5 eingestellt und zweimal mit je 200 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit Natriumsulfat getrocknet und eingeengt. Der Rückstand wurde durch zweimalige Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 99/1 bzw. Diethylether/Methanol 98/2) und nachfolgendes Ausrühren mit Diethylether gereinigt.

Ausbeute: 1,4 g (8%) mit einem Schmelzpunkt von 103—105°C.

d) 5-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

Eine Mischung aus 1,6 g 3-Hydroxy-2-[[5-(3-phenylpropyl)-2-thienyl]-methyl)-2-cyclohexen-1-on, 9,5 g Bariumhydroxid-octahydrat und 15 ml Wasser wurde 48 Stunden bei Rückflußtemperatur gerührt. Nach Abkühlen wurde mit 100 ml Wasser verdünnt und durch Zugabe von konzentrierter Salzsäure angesäuert. Anschließend wurde je zweimal mit je 100 ml Dichlormethan extrahiert, die vereinigten organischen Phasen eingeengt und der Rückstand durch Flashsäulenchromatographie (Kieselgel; Dichlormethan/Methanol 98/2) und nachfolgendem

Ausrühren mit n-Hexan gereinigt.

Ausbeute: 0,5 g (34%) mit einem Schmelzpunkt von 41°C.

IR (in KBr): 1704 cm-1

Beispiel 16

3

10

3-Methyl-5-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

a) 5-(3-Phenylpropyl)-2-(2-hydroxyethyl)-thiopen

Zu einer Lösung von 27 g 2-(3-Phenylpropyl)-thiopen in 300 ml Diethylether wurden bei 10°C 100 ml einer 1,6-molaren Lösung von n-Butyllithium in n-Hexan zugetropft. Nach Abkühlen auf -5°C wurden 8,2 g Ethylenoxid in einer Portion zugegeben und durch gelegentliches Kühlen die Temperatur unter 30°C gehalten. Nach 1 h Rühren bei 30°C wurde die Reaktionsmischung auf 500 ml Eiswasser gegeben, die Phasen getrennt und die Wasserphase zweimal mit je 200 ml Diethylether extrahiert. Die vereinigten Etherphasen wurden mit 200 ml Wasser gewaschen, über Magnesiumsulfat getrocknet, eingeengt und der Rückstand durch Säulenchromatographie (Kieselgel; Diethylether/Petrolether 60/40) gereinigt.

Ausbeute: 26 g (79%). Ol.

b) 5-(3-Phenylpropyl)-2-(2-bromethyl)-thiophen

20

Analog Beispiel 12b aus:

40 g 5-(3-Phenylpropyl)-2-(2-hydroxyethyl)-thiopen,

26,4 g Carbonyldiimidazol,

98,4 g Allylbromid,

250 ml Acetonitril.

Reinigung durch Säulenchromatographie (Kieselgel; Diethylether/Petrolether 20/80).

Ausbeute: 43,5 g (86%). Öl.

c) 3-Methyl-5-oxo-7-[5-phenylpropyl)-2-thienyl]-heptansäuremethylester

30

25

Zu einer Lösung von 29,3 g 3-Methylglutarsäure-methylester-chlorid in 100 ml Tetrahydrofuran wurde bei -75°C eine Grignard-Lösung, hergestellt aus 25,4 g 5-(3-Phenylpropyl)-2-(2-bromethyl)-thiopen, 2 g Magnesiumspänen und 80 ml Tetrahydrofuran, in 1,5 Stunden zugetropft. Anschließend wurde 20 Stunden gerührt, wobei die Reaktionstemperatur langsam bis auf Raumtemperatur erhöht wurde. Die Reaktionsmischung wurde auf 400 ml Eiswasser gegeben und nach Phasentrennung die Wasserphase zweimal mit je 200 ml Diethylether extrahiert. Die vereinigten organischen Phasen wurden nacheinander mit je 200 ml 1N-Natronlauge, gesättigter Natriumchloridlösung und Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulen-chromatographie (Kieselgel; Diethylether/Petrolether 30/70) gereinigt. Ausbeute: 24,5 g (80%). Öl.

40

d) 3-Methyl-5-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

Analog Beispiel 4d aus:

24 g 3-Methyl-5-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäuremethylester,

45

97 ml 1N-Natronlauge,

500 ml Ethanol.

Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 98/2).

Ausbeute: 13,6 g (59%). Öl. IR (in KBr): 1709 cm⁻¹.

50

Beispiel 17

3-Methyl-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure

55

Analog Beispiel 3 aus:

2 g 3-Methyl-5-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure (Beispiel 16),

1,1 ml Hydrazinhydrat,

1,3 g Kaliumhydroxid,

30 ml Triethylenglykol.

Reinigung durch zweimalige Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 98/2 und Diethylet-

nerj

Ausbeute: 1,2 g (62%). Öl. IR (in KBr): 1706 cm⁻¹.

65

Beispiel 18

4-[-[5-(3-Phenylpropyl)-2-thienyl]-ethoxy)-buttersäure-Natriumsalz

a) 2-[2-(3-Brompropoxy)-ethyl]-5-(3-phenylpropyl)-thiopen

Zu einer Lösung von 2,54 g Natrium in 700 ml Ethanol wurden 108 g 5-(3-Phenylpropyl)-2-(2-hydroxyethyl)-thiopen (Beispiel 16a) gegeben. Nach zehnminütigem Rühren wurde Ethanol abdestilliert. Die zurückbleibende Alkoholat-Lösung wurde zu einer Mischung aus 113 g 1,3-Dibrompropan und 0,5 g Kaliumjodid gegeben. Die Reaktionsmischung wurde 2 Stunden auf 120°C erhitzt. Nach Abkühlen wurde auf 900 ml Eiswasser gegeben und zweimal mit je 600 ml Diethylether extrahiert. Die vereinigten Etherphasen wurden mit 600 ml Wasser gewaschen und über Natriumsulfat getrocknet. Nach Einengen wurde überschüssiges 1,3-Dibrompropanat im Vakuum abdestilliert und der Rückstand durch viermalige Flashsäulenchromatographie (Kieselgel; Diethylether/Petrolether 5/95) gereinigt. Ausbeute: 5 g (12%). Öl.

b) 4-{2-{5-(3-Phenylpropyl)-2-thienyl]-ethoxy}-butyronitril

Eine Mischung aus 0,77 g Natriumcyanid und 30 ml Dimethylsulfoxid wurde auf 80°C erwärmt. Nach Entfernen des Heizbades wurden 4,74 g 2-[2-(3-Brompropoxy)-ethyl]-5-(3-phenylpropyl)-thiopen, gelöst in 10 ml Dimethylsulfoxid, in 5 Minuten zugetropft. Nach 30minütigem Rühren bei 80°C wurde abgekühlt, die Reaktionsmischung auf 200 ml Eiswasser gegeben und zweimal mit je 200 ml Diethylether extrahiert. Die vereinigten organischen Phasen wurden mit 150 ml Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Diethylether/Petrolether 40/60) gereinigt. Ausbeute: 3,4 g (84%). Öl.

c) 4-{2-[5-(3-Phenylpropyl)-2-thienyl]-ethoxy}-buttersäuremethylester

In einer Lösung von 3,6 g 4-[2-[5-(3-Phenylpropyl)-2-thienyl]-ethoxy]-butyronitril in 150 ml Methanol wurde unter Rühren bei 5° C 3 Stunden lang Chlorwasserstoff eingeleitet. Anschließend wurde Methanol unter vermindertem Druck abdestilliert, der Rückstand in 200 ml Eiswasser aufgenommen und die Mischung zweimal mit je 150 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit 150 ml Wasser und zweimal mit je 150 ml gesättigter Natriumhydrogencarbonatlösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Diethylether/Petrolether 20/80) gereinigt.

Ausbeute: 1,9 g (50%), Ol.

35

45

d) 4-{2-[3-Phenylpropyl)-2-thienyl]-ethoxy]-buttersäure-Natriumsalz

Eine Mischung aus 1,9 g 4-[2-[5-(3-Phenylpropyl)-2-thienyl]-ethoxy]-buttersäuremethylester, 15 ml Ethanol und 4,9 ml 1N-Natronlauge wurden 4 Stunden bei Raumtemperatur gerührt. Die Reaktionsmischung wurde auf 200 ml Wasser gegeben und zweimal mit je 100 ml Diethylether extrahiert. Die Wasserphase wurde anschließend gefriergetrocknet.

Ausbeute: 1,4 g (72%). Weißes Pulver.

IR (in KBr): 1561 cm-1.

Beispiel 19

5-Hydroxy-3-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure-Natriumsalz

a) 2-[2-[5-(3-Phenylpropyl)-2-thienyl]-ethyl]-1,3-dioxan

Zu einer Mischung aus 100 ml Tetrahydrofuran und 100 ml einer 1,6molaren Lösung von n-Butyllithium in n-Hexan wurden bei 0°C 38,8 g 2-(3-Phenylpropyl)-thiophen in 20 Minuten zugetropft. Nach 30minütigem Rühren bei Raumtemperatur wurden 40,5 g 2-(2-Bromethyl)-1,3-dioxan in 20 Minuten zugetropft, wobei die Reaktionstemperatur auf 50°C stieg. Anschließend wurde 3 Stunden bei 55°C gerührt, Nach Abkühlen wurde die Reaktionsmischung auf 300 ml Eiswasser gegeben und zweimal mit je 200 ml Diethylether extrahiert. Die vereinigten Etherphasen wurden mit 150 ml Wasser gewaschen, über Magnesiumsulfat getrocknet und im Vakuum, zuletzt bei 80°C und 0,02 mbar, eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Diethylether/Petrolether 50/50) gereinigt.

Ausbeute: 18,5 g (37%), Öl.

b) 3-[5-(3-Phenylpropyi)-2-thienyl]-propionaldehyd

Eine Mischung aus 18,5 g 2-(2-[5-(3-Phenylpropyl)-2-thinyl]-ethyl]-1,3-dioxan, 265 ml Essigsäure und 72 ml 2N-Salzsäure wurde 16 Stunden bei Raumtemperatur gerührt. Anschließend wurden 500 ml Wasser zugegeben und zweimal mit je 300 ml Diethylether extrahiert. Die vereinigten Etherphasen wurden mit je 300 ml Wasser, gesättigter Natriumhydrogencarbonatlösung und nochmals mit Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Dichlormethan) gereinigt.

Ausbeute: 7,9 g (52%). Öl.

41 27 842

c) 5-Hydroxy-3-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester

Zu einer Mischung aus 1,87 g 55%iger Natriumhydrid-Suspension (in Paraffinöl) und 70 ml Tetrahydrofuran wurden bei 0°C 5,6 g Acetylessigsäureethylester in 30 Minuten zugetropft. Anschließend wurden bei 0°C 26,8 ml einer 1,6molaren Lösung von n-Butyllithium in n-Hexan in 10 Minuten zugetropft. Nach weiteren 15 Minuten bei 0°C wurde zu der gelben Lösung bei - 10°C eine Lösung von 9,4 g 3-[5-(3-Phenylpropyl)-2-thienyl]-propionaldehyd in 50 ml Tetrahydrofuran in 30 Minuten zugetropft. Nach Erwärmen auf Raumtemperatur innerhalb von 1 Stunde wurde die Reaktionsmischung auf 400 ml Eiswasser gegeben und durch Zugabe von 2N-Salzsäure auf pH 8 eingestellt. Nach dreimaligem Extrahieren mit je 300 ml Diethylether wurden die vereinigten Etherphasen mit 300 ml Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Diethylether/Petrolether 50/50) gereinigt. Ausbeute: 8,5 g (59%). Ol. d) 5-Hydroxy-3-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure-Natriumsalz 15 Analog Beispiel 18d aus: 1 g 5-Hydroxy-3-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester, 20 ml Ethanol, 2.3 ml 1N-Natronlauge. Ausbeute: 0,45 g (51%). Weißes Pulver. IR (in KBr): 1628 cm⁻¹, 1543 cm⁻¹. 20 **Beispiel 20** 3,5-Dihydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester 25 Zu einer Lösung von 5,8 g 5-Hydroxy-3-oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester (Beispiel 19c) in 50 ml Ethanol wurden bei 5°C portionsweise innerhalb von 30 Minuten 0,29 g Natriumborhydrid zugegeben. Nach weiterem 15minütigem Rühren bei 0°C wurde die Reaktionsmischung auf 300 ml Eiswasser gegeben und durch Zugabe von 2N-Salzsäure auf pH 5 eingestellt. Nach zweimaligem Extrahieren mit je 200 ml Diethy-30 lether wurden die vereinigten Etherphasen mit 150 ml Wasser gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Diethylether) gereinigt. Ausbeute: 4,35 g (75%), ÖL IR: 1732 cm⁻¹. 35 Beispiel 21 3,5-Dihydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure-Natriumsalz Analog Beispiel 18d aus: 40 1 g 3,5-Dihydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester (Beispiel 20), 20 ml Ethanol. 2.3 ml 1N-Natronlauge. Ausbeute: 0,45 g (51%). Weißes Pulver. IR (in KBr): 1562 cm⁻¹. 45 **Beispiel 22** 5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure-Natriumsalz-Monohydrat 50 a) 5-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester Eine Lösung von 1,85 g 5-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure (Beispiel 15) in 20 ml Ethanol wurde 2 Stunden bei 5°C mit Chlorwasserstoff gesättigt. Anschließend wurde im Vakuum eingeengt, der Extrakt in Dichlormethan gelöst, mit Wasser neutral gewaschen und über Natriumsulfat getrocknet. Die Reinigung erfolgte durch Säulenchromatographie (Kieselgel; Diethylether/Pextrolether 20/80). Ausbeute: 1,7 g (85%). Öl. b) 5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester 60 Analog Beispiel 20 aus: 1,65 g 5-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester, 0,086 g Natriumborhydrid, 20 ml Ethanol. Ausbeute: 1,2 g (73%). ÖL

c) 5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäure-Natriumsalz

Analog Beispiel 18d aus:

1,12 g 5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-heptansäureethylester,

15 ml Ethanol,

2,95 ml ! N-Natronlauge.

Ausbeute: 0,8 g (72%). Weißes Pulver.

IR (in KBr): 1562 cm⁻¹.

10

15

25

45

Beispiel 23

(E)-5-Hydroxy-7-{5-(3-phenylpropyl)-2-thienyl}-6-heptensäure-Natriumsalz

a) (E)-5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-6-heptensäure

Analog Beispiel 11 aus:

8 g (E)-5-Oxo-7-[5-(3-phenylpropyl)-2-thienyl]-6-heptensäure (Beispiel 14),
1,8 g Natriumborhydrid,
0,94 g Natriumhydroxid,
35 ml Wasser,
105 ml Methanol.
Das Rohprodukt wurde ohne Reinigung in die nächste Stufe eingesetzt.

b) (E)-6-{2-[5-(3-Phenylpropyl)-2-thienyl]-ethenyl}-3,4,5,6-tetrahydro-2H-pyran-2-on

Ungereinigte (E)-5-Hydroxy-7-[5-(3-phenylpropyt)-2-thienyl]-6-heptensäure wurde mit 300 ml Toluol 3 Stunden am Wasserabscheider unter Rückfluß erhitzt. Anschließend wurde Toluol im Vakuum abdestilliert, der Rückstand in 200 ml Diethylether aufgenommen und mit 100 ml 5%iger Natriumcarbonatlösung gewaschen. Nach Trocknen über Magnesiumsulfat wurde eingeengt und der Rückstand durch Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 98/2) gereinigt. Ausbeute: 1,7 g (22%, 2 Stufen). ÖL

c)(E)-5-Hydroxy-7-[5-(3-phenylpropyl)-2-thienyl]-6-heptensäure-Natriumsalz-Monohydrat

Analog Beispiel 18d aus:

1,64 g (E)-6-[2-[5-(3-Phenylpropyl)-2-thienyl]-ethenyl]-3,4,5,6-tetrahydro-2H-pyran-2-on,
15 ml Ethanol,
4,5 ml 1N-Natronlauge.
Ausbeute: 0,82 g (47%). Weißes Pulver.
18 (in KBr): 1561 cm⁻¹.

Beispiel 24

2-[4-[5-(3-Phenylpropyl)-2-thienyl]-butanoylamino}-essigsäure-Natriumsalz

a) 2-{4-[5-(3-Phenylpropyl)-2-thienyl]-butanoylamino|-essigsäureethylester

1 g 4-[5-(3-Phenylpropyl)-2-thienyl]-buttersäure (Beispiel 9b) wurde in absoluten Tetrahydrofuran gelöst. 0,81 g N,N'-Carbonyldiimidazol wurde zugegeben und die Reaktionsmischung 1 Stunde auf Raumtemperatur gerührt. Anschließend wurde zuerst 0,5 g Glycinethylesterhydrochlorid und dann 0,54 g DBU (1,8-Diazabicy-clo[5,4,0]-7-undecen) hinzugetropft. Die Reaktionsmischung wurde 2 Stunden auf Raumtemperatur gerührt. Das Lösungsmittel wurde im Vakuum abgedampft. Der Rückstand wurde in 50 ml Essigsäureethylester aufgenommen und die organische Phase dreimal mit 20 ml Wasser gewaschen. Die vereinigten organischen Extrakte wurden über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde durch Flashsäulenchromatographie (Kieselgel 30 – 60 μm; Hexan/Essigsäureethylester 7/3) gereinigt. Ausbeute: 1 g (77,2%). Öl.

b) 2-[4-[5-(3-Phenylpropyl)-2-thienyl]-butanoylamino}-essigsäure-Natriumsalz

4,6 g 2-[4-[5-(3-Phenylpropyl)-2-thienyl]-butanoylamino]-essigsäureethylester wurden in 30 ml Ethanol gelöst und eine Lösung von 600 mg Natriumhydroxid in 5 ml Wasser wurde hinzugefügt. Nach zwölfstündigem Rühren wurde die Reaktionsmischung im Vakuum konzentriert, wobei das Rohprodukt ausfällt. Das Rohprodukt wurde abfiltriert und das Filtrat zur Trockne eingeengt. Der feste Rückstand wurde in einer Dichlormethan/Ethanol-1/2-Mischung umkristallisiert, abgesaugt und getrocknet.

Ausbeute: 1,9 g (42%). Weiße Kristalle mit einem Schmelzpunkt von 190-191°C. IR (in KBr): 1614 cm⁻¹ (s), 1567 cm⁻¹ (s), 1551 cm⁻¹ (s).

Beispiel 25

2-{N-Methyl-4-[5-(3-phenylpropyl)-2-thienyl]-butanoylamino}-essigsäure-Natriumsalz	
a) 2-{N-Methyl-4-[5-(3-phenylpropyl)-2-thienyl]-butanoylamino}-essigsäureethylester	9
Analog Beispiel 24a aus:	
2 g 4-[5-(3-Phenylpropyl)-2-thienyl]-buttersäure (Beispiel 9b), 1,6 g N,N'-Carbonyldiimidazol,	
1 g Sarcosinethylester-hydrochlorid,	
1,1 g DBU (1,8-Diazabicyclo[5,4,0]-7-undecen).	10
100 ml absolutes Tetrahydrofuran.	
Reinigung durch Flashsäulenchromatographie (Kieselgel 30—60 μm; Hexan/Essigsäureethylester 7/3). Ausbeute: 0,69 g (25,5%). Öl.	
b) 2-{N-Methyl-4-[5-(3-phenylpropyl)-2-thienyl]-butanoylamino]-essigsäure-Natriumsalz	15
Analog Beispiel 24b aus:	
0,68 g 2-{N-Methyl-4-[5-(3-phenylpropyl)-2-thienyl]-butanoylamino}-essigsäureethylester, 6 ml Ethanol,	
143 mg Natriumhydroxid,	20
1 ml Wasser.	
Ausbeute: 0,44 g (70%). Weißes Pulver.	
IR (in KBr): 1629 cm ⁻¹ (s), 1607 cm ⁻¹ (s).	
Beispiel 26	25
5-Oxo-5-[[5-(3-phenylpropyl)-2-thienyl]-methylamino]-pentansäure	
a) N-Trifluoracetyl-2-thenylamin	30
5,6 g 2-Thenylamin, 7,5 g Triethylamin und 200 ml absoluter Diethylether wurden vorgelegt und auf 0°C abgekühlt. Anschließend wurden 10 g Trifluoressigsäureanhydrid langsam zugetropft. Nach beendeter Zugabe wurde die Reaktionsmischung 15 Stunden bei Raumtemperatur gerührt. Dann wurde das Lösungsmittel im Vakuum abgedampft, der Rückstand in 100 ml Wasser aufgenommen und die wäßrige Phase dreimal mit 50 ml Dichlormethan extrahiert. Die vereinigten organischen Extrakte wurden mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde durch Flashsäulenchromatographie (Kieselgel 30—60 µm; Hexan/Essigsäureethylester 9/1) gereinigt. Ausbeute: 7 g (67%), Öl.	35
b) N-Trifluoracetyl-[5-(3-phenylpropanoyl)-2-thienyl]-methylamin	40
Analog Beispiel 6a aus: 7 g N-Trifluoracetyl-2-thienylamin,	
13 g Zinntetrachlorid,	AE
100 ml 1,2-Dichlorethan,	45
5,8 g 3-Phenylpropionsäurechlorid in 50 ml 1,2-Dichlorethan. Ausbeute: 10,9 g (94%). Oranger Feststoff mit einem Schmelzpunkt von 122—125°C.	
c)[5-(3-Phenylpropyl)-2-thienyl]-methylamin	50
Analog Beispiel 3 aus:	
10,9 g N-Trifluoracetyl-[5-(3-phenylpropanoyl)-2-thienyl]-methylamin.	
4.9 g Hydrazinhydrat,	
7,2 g Kaliumhydroxid, 150 ml Triethylenglykol.	55
Reinigung durch Flashsäulenchromatographie (Kieselgel 30—60 μm; Essigsäureethylester).	
Ausbeute: 2,7 g (36%). Gelber Feststoff.	
d) 5-Oxo-5-[[5-(3-phenylpropyl)-2-thienyl]-methylamino -pentansäure	60
1.7 g [5-(3-Phenylpropyl)-2-thienyl]-methylamin und 40 ml absolutes Tetrahydrofuran wurden vorgelegt. An-	
chließend wurde eine Lösung von 0,9 g Glutarsäureanhydrid in 10 ml Tetrahydrofuran wurden vorgelegt. An- rugetropft. Dann wurde das Lösungsmittel im Vakuum abgedampft und der Rückstand aus Essigsäureethylester Imkristallisiert.	
Ausbeute: 1,9 g (74%). Gelbliche Kristalle mit einem Schmelzpunkt von 88°C.	65
P (in K Pa), 1600 am = 1 (a) 1642 am = 1 (a) 1630 am = 1 (b)	

41 27 842

Beispiel 27

N-[2-[5-(3-Phenylpropy!)-2-thienyf]-acetyl]-4-aminobuttersäure

a) 2-[5-(3-Phenylpropanoyl)-2-thienyl]-essigsäureethylester

Analog Beispiel 6a aus:

15 g 2-(2-Thienyl)-essigsäureethylester.

5,4 g Zinntetrachlorid.

350 ml 1,2-Dichlorethan,

15 g 3-Phenylpropionsäurechlorid in 100 ml 1,2-Dichlorethan.

Ausbeute: 30 g (80%), Ol.

b) 2-[5-(3-Phenylpropyl)-2-thienyl]-essigsaure

15 Analog Beispiel 3 aus:

34 g 2-[5-(3-Phenylpropanoyl)-2-thienyl]-essigsäureethylester,

17 g Hydrazinhydrat,

25 g Kaliumhydroxid.

500 ml Triethylenglykol.

Reinigung durch Flashsäulenchromatographie (Kieselgel 30-60 µm; Hexan/Essigsäureethylester 65/35). Ausbeute: 9,4 g (32%). Öl.

c) N-[2-[5-(3-Phenylpropyl)-2-thienyl]-acetyl]-4-aminobuttersäureethylester

25

5

Analog Beispiel 24a aus:

7 g 2-[5-(3-Phenylpropyl)-2-thienyl]-essigsäure.

4,5 g N,N'-Carbonyldiimidazol,

3,5 g 4-Aminobuttersäureethylester,

100 ml absolutes Tetrahydrofuran.

Reinigung durch Flashsäulenchromatographie (Kieselgel 30 – 60 µm; Hexan/Essigsäureethylester 7/3). Ausbeute: 6,6 g (66%). Feststoff mit einem Schmelzpunkt von 55-57°C.

d) N-[2-[5-(3-Phenylpropyl)-2-thienyl]-acetyl]-4-aminobuttersäure

35

Analog Beispiel 6b aus:

6,6 g N-{2-[5-(3-Phenylpropyl)-2-thienyl]-acetyl}-4-aminobuttersäureethylester,

1 g Natriumhydroxid in 1 ml Wasser.

80 ml Ethanol.

40 Der Rückstand wurde durch Flashsäulenchromatographie (Kieselgel 30-60 μm; Hexan/Essigsäureethylester 7/3) gereinigt und dann aus Essigsäureethylester umkristallisiert.

Ausbeute: 3 g (48%). Weiße Kristalle mit einem Schmelzpunkt von 75-76°C. IR (in KBr): 1698 cm⁻¹ (s), 1645 cm⁻¹ (s).

45

Beispiel 28

7-[5-(3-Phenylpropyl)-2-thienyl]-heptanhydroxamsäure

a) 7-[5-(3-Phenylpropyl)-2-thienyl]-heptansäureethylester

50 Analog Beispiel 22a aus:

28 g 7 [5-(3-Phenylpropyl)-2-thienyl]-heptansäure (DE-OS 34 07 510).

Ausbeute: 28,8 g (95%). OL

55

b) 7-{5-(3-Phenylpropyi)-2-thienyl}-heptanhydroxamsäure

Zu einer Mischung aus 26,7 g 7-[5-(3-Phenylpropyl)-2-thienyl]-heptansäureethylester, 80 ml Ethanol, 20,7 g Hydroxylamin-Hydrochlorid, 180 ml Methanol und 0,37 g Natriumcyanid wurden bei 30°C 74,5 ml einer 5molaren methanolischen Kaliumhydroxidlösung in 25 Minuten zugetropft. Anschließend wurde 4 Stunden bei 45°C gerührt. Nach Einengen wurde der Rückstand in 500 ml Eiswasser eingerührt und dreimal mit je 300 ml Essigsäureethylester extrahiert. Die vereinigten organischen Phasen wurden über Natriumsulfat getrocknet, im Vakuum eingeengt und der Rückstand aus 380 ml n-Hexan/Essigsäureethylester 75/25 umkristallisiert. Ausbeute: 17,2 g (67%). Weiße Kristalle mit einem Schmelzpunkt von 59-60°C. IR (in KBr): 1622 cm⁻¹.

Beispiel 29

7-[5-(3-Phenylpropyl)-2-thienyl]-heptansäureamid

Analog Beispiel 24a aus:	
7,37 g 7-[5-(3-Phenylpropyl)-2-thienyl]-heptansäure (DE-OS 34 07 510), 5,4 g N,N'-Carbonyldiimidazol,	
1,14 g Ammoniak in 100 ml Tetrahydrofuran gelöst.	
100 ml absolutes Tetrahydrofuran. Reinigung durch Säulenchromatographie (Kieselgel; Hexan/Essigsäureethylester 9/1). Ausbeute: 4,95 g (67,5%). Weißer Feststoff mit einem Schmelzpunkt von 76°C. IR (in KBr): 1647 cm ⁻¹ .	
B	
Beispiel 30	1
6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäure-Natriumsalz	
a) 6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäureethylester	
10.52 g 2-(3-Phenylpropyl)-thiophen wurden in 200 ml absolutem Diethylether gelöst und 33 ml 1,6molare n-Butyllithium-Lösung in Hexan wurden langsam zugetropft. Die Reaktionsmischung wurde noch etwa 15 Minuten gerührt und unter Kühlung auf 0°C mit 1,67 g Schwefelpulver versetzt. Nach Erwärmen auf Raumtemperatur wurde weitere 15 Minuten gerührt, 11,6 g 6-Bromhexansäureethylester zugetropft und wiederum ca. 12 Stunden gerührt. Die Mischung wurde auf Eis gegossen, die organische Phase abgetrennt und die wäßrige Phase	1
noch zweimal mit Diethylether extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel im Vakuum abgedampft. Der Rückstand wurde durch Säulenchromatographie (Kieselgel; Hexan/Essigsäureethylester) gereinigt. Ausbeute: 8,5 g (43%), Ol.	-
b) 6-[5-(3-Phenylpropyi)-2-thienylthio]-hexansäure	2:
Analog Beispiel 6b aus: 5 g 6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäureethylester, 50 ml Methanol, 3 g Natriumhydroxid, 2 ml Wasser. Ausbeute: 4,3 g (92,9%). Öl.	30
c) 6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäure-Natriumsalz	35
2 g 6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäure wurden in Methanol gelöst. Die äquivalente Menge Natriumhydroxid wurde dann hinzugefügt. Die Mischung wurde im Vakuum eingeengt und der feste Rückstand im Mörser zerkleinert. Ausbeute: 2 g (94%). Weißes Pulver.	
IR (in KBr): 1563 cm ⁻¹ .	40
Beispiel 31	
5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansäure-Natriumsalz	45
a) 5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansäureethylester	
Analog Beispiel 30a aus: 10,52 g 2-(3-Phenylpropyl)-thiophen, 200 ml Diethylether, 33 ml 1,6molarer n-Butyllithium-Lösung in Hexan, 1,67 g Schwefel,	50
10,9 g 5-Brompentansäureethylester. Ausbeute: 9,3 g (49%), Öl.	55
b) 5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansäure	
Analog Beispiel 6b aus: 5 g 5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansäureethylester, 50 ml Methanol, 3 g Natriumhydroxid, 2 ml Wasser.	60
Ausbeute: 4,15 g (89,9%). ÖL	
c) 5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansäure-Natriumsalz	65
Analog Beispiel 30c aus:	

thatog beispiel soc aus.

2 g 5-[5-(3-Phenylpropyl)-2-thienylthio]-pentansäure.

Ausbeute: 1,7 g (72,7%), Weißes Pulver. IR (in KBr): 1565 cm⁻¹. 5 **Beispiel 32** 6-[5-(4-Phenylbutyl)-2-thienylthio]-hexansäure-Natriumsalz a) 6-[5-(4-Phenylbutyl)-2-thienylthio]-hexansäureethylester 10 Analog Beispiel 30a aus: 5,6 g 2-(4-Phenylbutyl)-thiophen (hergestellt nach Sy, Bull. Soc. Chim. France 1955, 1175), 100 ml Diethylether. 17 ml 1,6molarer n-Butyllithium-Lösung in Hexan, 15 0,85 g Schwefel, 5.8 g 6-Bromhexansäureethylester. Ausbeute: 5,1 g (50,3%), Öl. b) 6-[5-(4-Phenylbutyl)-2-thienylthio] hexansaure-Natriumsalz 20 Analog Beispiel 24b aus: 5 g 6-[5-(4-Phenylbutyl)-2-thienylthio]-hexansäureethylester. 40 ml Ethanol, 770 mg Natriumhydroxid, 25 1 ml Wasser. Der feste Rückstand wurde mit n-Hexan gewaschen und getrocknet. Ausbeute: 4,1 g (83,2%). Weißes Pulver. IR (in KBr): 1562 cm⁻¹. 30 Beispiel 33 6-[5-(3-Phenylethyl)-2-thienylthio]-hexansäure-Natriumsalz a) 6-[5-(2-Phenylethyi)-2-thienylthio]-hexansäureethylester 35 Analog Beispiel 30a aus: 4,9 g 2-(2-Phenylethyl)-thiophen (hergestellt nach Buu-Hoi et al., J. Chem. Soc. 1951, 1381), 100 ml Diethylether, 17 ml 1,6molarer n-Butyllithium-Lösung in Hexan. 0,85 g Schwefel, 5,8 g 6-Bromhexansäureethylester. Ausbeute: 6,3 g (66,7%). Öl. b) 6-[5-(2-Phenylethyl)-2-thienylthio]-hexansäure-Natriumsalz 45 Analog Beispiel 24b aus: 6 g 6-[5-(2-Phenylethyl)-2-thienylthio)-hexansäureethylester, 60 ml Ethanol 1 g Natriumhydroxid, 50 1,5 ml Wasser. Ausbeute: 5,1 g (86,4%). Weißes Pulver. IR (in KBr): 1562 cm⁻¹. Beispiel 34 55 7-[5-(4-Phenylbutyl)-2-thienylthio]-heptansäure-Natriumsalz a) 7-[5-(4-Phenylbutyl)-2-thienylthio]-heptansäureethylester Analog Beispiel 30a aus: 5,6 g 2-(4-Phenylbutyl)-thiophen, 100 ml Diethylether. 17 ml 1,6molarer n-Butyllithium-Lösung in Hexan, 0.85 g Schwefel. 5,8 g 7-Bromheptansäureethylester. Ausbeute: 6,7 g (64%). Öl.

b) 7-[5-(4-Phenylbutyl)-2-thienylthio]-heptansäure-Natriumsalz

Analog Beispiel 24b aus: 6 g 7-[5-(4-Phenylbutyl)-2-thienylthio)-heptansäureethylester, 60 ml Ethanol.	-
900 mg Natriumhydroxid, 2 ml Wasser.	5
Ausbeute: 5,2 g (87,9%). Weißes Pulver. IR (in KBr): 1565 cm ⁻¹ .	
Beispiel 35	10
8-[5-(2-Phenylethyl)-2-thienylthio]-octansäure-Natriumsalz	
a) 8-[5-(2-Phenylethyl)-2-thienylthio]-octansäureethylester	15
Analog Beispiel 30a aus: 4,9 g 2-(2-Phenylethyl)-thiophen, 100 ml Diethylether, 17 ml 1,6molarer n-Butyllithium-Lösung in Hexan, 0,85 g Schwefel,	20
6,6 g 8-Bromoctansäureethylester. Ausbeute: 5,3 g (52,1%). Öl.	
b) 8-[5-(2-Phenylethyl)-2-thienylthio]-octansäure-Natriumsalz	25
Analog Beispiel 24b aus: 6 g 8-[5-(2-Phenylethyl)-2-thienylthio]-octansäureethylester, 40 ml Ethanol, 700 mg Natriumhydroxid, 1,5 ml Wasser. Ausbeute: 4,1 g (69,4%), Weißes Pulver.	30
IR (in KBr): 1564 cm ⁻¹ .	
Beispiel 36	35
5-[5-(2-Phenylethyl)-2-thienylthio]-pentansäure-Natriumsalz	
a) 5-[5-(2-Phenylethyl)-2-thienylthio]-pentansäureethylester	40
Analog Beispiel 30a aus: 6 g 2-(2-Phenylethyl)-thiophen, 175 ml Diethylether, 20 ml 1,6molarer n-Butyllithium-Lösung in Hexan, 1 g Schwefel,	45
6,7 g 5-Brompentansäureethylester. Ausbeute: 7,0 g (64%). Öl.	73
b) 5-[5-(2-Phenylethyl)-2-thienylthio]-pentansäure-Natriumsalz	50
Analog Beispiel 24b aus: 7 g 5-[5-(2-Phenylethyl)-2-thienylthio]-pentansäureethylester, 60 ml Ethanol, 1,2 g Natriumhydroxid,	
1,2 ml Wasser. Ausbeute: 5,4 g (79%). Weißes Pulver. IR (in KBr): 1565 cm ⁻¹ .	55
Beispiel 37	
5-(5-Benzyl-2-thienylthio)-pentansäure-Natriumsalz	60
a) 5-(5-Benzyl-2-thienylthio)-pentansäureethylester	
Analog Beispiel 30a aus: 4 g 2-Benzylthiophen (hergestellt nach Buu-Hoi et al., J. Chem. Soc. 1951, 1656), 100 ml Diethylether, 14 5 ml 1 6 molarer n-Butyllithium-Lösung in Hexan	65

41 27 842 A1

0,75 g Schwefel,

4,8g 5-Brompentansäureethylester.

Ausbeute: 2,4 g (31%). Öl.

5

b) 5-(5-Benzyl-2-thienylthio)-pentansäure-Natriumsalz

Analog Beispiel 24b aus: 2,4 g 5-(5-Benzyl-2-thienylthio)-pentansäureethylester,

20 ml Ethanol, 430 mg Natriumhydroxid,

0,5 ml Wasser.

Ausbeute: 2,0 g (85%), Weißes Pulver.

IR (in KBr): 1565 cm-1.

15

Beispiel 38

6-(5-Benzyl-2-thienylthio)-hexansäure-Natriumsalz

a) 6-(5-Benzyl-2-thienylthio)-hexansäureethylester

20

Analog Beispiel 30a aus: 5 g 2-Benzylthiophen, 150 ml Diethylether, 18 ml 1,6molarer n-Butyllithium-Lösung in Hexan, 0,92 g Schwefel, 6,4 g 6-Bromhexansäureethylester.

Ausbeute: 6,5 g (65%). Öl.

b) 6-(5-Benzyl-2-thienylthio)-hexansäure-Natriumsalz

30

Analog Beispiel 24b aus: 5,52 g 5-(5-Benzyl-2-thienylthio)-hexansaureethylester, 38 ml Ethanol, 950 mg Natriumhydroxid, 1 ml Wasser.

Ausbeute: 4,8 g (82%). Weißes Pulver. IR (in KBr): 1559 cm-1.

Beispiel 39

40

(E)-6-[5-(2-Benzoylvinyl)-2-thienylthio]-hexansaure

a) 6-(2-Thienylthio)-hexansaureethylester

Analog Beispiel 30a aus: 45

16,83 g Thiophen,

150 ml absolutes Tetrahydrofuran,

125 ml 1,6molarer n-Butyllithium-Lösung in Hexan,

6,4 g Schwefel,

44,6 g 6-Bromhexansäureethylester.

Das flüssige Rohprodukt wurde im Vakuum destilliert.

Ausbeute: 31,4 g (60,9%). Ol mit Kp0.06 mbar = 126-130°C.

b) 6-(5-Formyl-2-thienylthio)-hexansäureethylester

55

65

Zu einer auf 0°C gekühlten Lösung von 25,8 g 6-(2-Thienylthio)-hexansäureethylester in 23,1 ml Dimethylformamid wurden 9,13 ml Phosphoroxytrichlorid so zugetropft, daß die Temperatur 20°C nicht überstieg. Dann wurde 1 Stunde bei Raumtemperatur, 1 Stunde bei 40°C und über Nacht wiederum bei Raumtemperatur nachgerührt. Die Lösung wurde auf 500 g Eis gegossen. Der pH wurde mit 5molarer Natrium-hydroxidlösung auf 6 eingestellt und die wäßrige Phase wurde zweimal mit 200 ml Diethylether extrahiert. Die vereinigten organischen Phasen wurden neutral gewaschen, über Natriumsulfat getrocknet und das Lösungmittel wurde im Vakuum abgedampft. Das flüssige Rohprodukt wurde im Vakuum destilliert.

Ausbeute: 24,4 g (85,3%). Öl mit $Kp_{0.05 \text{ mbar}} = 162 - 163^{\circ}C$.

c) (E)-6-[5-(2-Benzoylvinyl)-2-thienylthio]-hexansäureethylester

1 g Natriumhydrid (50% ige Dispersion) wurden unter Stickstoff in 80 mi trockenen Ethylenglycoldimethylether suspendiert. Bei Raumtemperatur wurde eine Lösung von 3,3 g Phenacylphosphonsäurediethylether in 20 ml

Ethylenglykoldimethylether zugetropft und dann 1 Stunde nachgerührt. Anschließend wurde eine Lösung von 3,7 g 6-(5-Formyl-2-thienylthio)-hexansäureethylester in 20 ml Ethylenglykoldimethylether zu der Reaktionsmischung getropft. Nach einer Nacht wurde die Mischung mit verdünnter Schwefelsäure hydrolysiert (bis pH ca. 6).

Das organische Lösungsmittel wurde unter Vakuum abgedampft und der Rückstand zweimal mit 100 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel wurde im Vakuum abgedampft. Das Rohprodukt wurde durch Säulenchromatographie (Kieselgel; Chloroform) gereinigt. Ausbeute: 4,1 g (70,4%), Öl. d)(E)-6-[5-(2-Benzoylvinyl)-2-thienylthio]-hexansäure 10 Analog Beispiel 6b aus: 1,5 g (E)-6-[5-(2-Benzoylvinyl)-2-thienylthio]-hexansaureethylester, 15 ml Methanol. 0,9 g Natriumhydroxid, 15 0,6 ml Wasser. Der Rückstand wurde aus Hexan/Toluol umkristallisiert. Ausbeute: 0,9 g (64,5%). Kristalle mit einem Schmelzpunkt von 70°C. 20 Beispiel 40 6-[5-(3-Phenylpropanoyl)-2-thienylthio]-hexansaure-Natriumsalz a) 6-(5-(3-Phenylpropanoyl)-2-thienylthio]-hexansäureethylester 25 Analog Beispiel 6a aus: 5,16 g 6-(2-Thienylthio)-hexansaureethylester. 11,5 g Zinntetrachlorid, 100 ml 1,2-Dichlorethan, 30 3,71 g 3-Phenylpropionsäurechlorid in 50 ml 1,2-Dichlorethan. Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan). Ausbeute: 6,45 g (82,7%), Öl. b) 6-[5-(3-Phenylpropanoyl)-2-thienylthio]-hexansäure 35 Analog Beispiel 6b aus: 2 g 6-[5-(3-Phenylpropanoyl)-2-thienylthio]-hexansäureethylester, 20 ml Methanol. 1,3 g Natriumhydroxid, 40 0,8 ml Wasser. Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 95/5). Ausbeute: 0,6 g (32,4%). Öl. IR (in KBr): 1711 cm⁻¹(s), 1651 cm⁻¹(s), 1413 cm⁻¹(s). 45 c) 6-[5-(3-Phenylpropanoyl)-2-thienylthio]-hexansäure-Natriumsalz 0,5 g 6-[5-(3-Phenylpropanyl)-2-thienylthio]-hexansäure wurden in 10 ml Diethylether gelöst und langsam unter Rühren mit 0,055 g Natriumhydroxid in 1 ml Methanol versetzt. Die Suspension wurde abgesaugt, mit je 3 ml Diethylether dreimal gewaschen und getrocknet. 50 Ausbeute: 0,5 g (98%). Feststoff. Beispiel 41 5-[5-(3-Phenylpropanoyl)-2-thienylthio]-pentansäure 55 a) 5-(2-Thienylthio)-pentansäureethylester Analog Beispiel 30a aus: 16,83 g Thiophen, 60 150 ml absolutem Tetrahydrofuran, 125 ml 1,6 molarer n-Butyllithium-Lösung in Hexan, 6,4 g Schwefel, 41,8 g 5-Brompentansäureethylester. Ausbeute: 46,6 g (95,5%). Öl. 65

b) 5-[5-(3-Phenylpropanoyl)-2-thienylthio]-pentansäureethylester

```
Analog Beispiel 6a aus:
    4,88 g 5-(2-Thienylthio)-pentansäureethylester,
5 11.5 g Zinntetrachlorid.
     100 ml 1,2-Dichlorethan,
     3,71 g 3-Phenylpropionsäurechlorid in 50 ml 1,2-Dichlorethan.
     Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan).
     Ausbeute: 6,35 g (84,4%). Öl.
10
                                   c) 5-[5-(3-Phenylpropanoyl)-2-thienylthio]-pentansäure
       Analog Beispiel 6b aus:
     2 g 5-[5-(3-Phenylpropanoyl)-2-thienylthio]-pentansäureethylester,
    20 ml Methanol,
     1,3 g Natriumhydroxid,
     0,8 ml Wasser.
     Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan/Methanol 95/5).
    Ausbeute: 0,7 g (38%). Öl.
IR: 1707 cm<sup>-1</sup> (s), 1650 cm<sup>-1</sup> (s), 1408 cm<sup>-1</sup> (s).
                                                           Beispiel 42
                             4-[5-(3-Phenylpropanoyl)-2-thienylthio]-buttersäure-Natriumsalz
25
                                          a) 4-(2-Thienylthio)-buttersäureethylester
       Analog Beispiel 30a aus:
     19,3 g Thiophen,
    150 ml absolutem Tetrahydrofuran,
     145 ml 1,6molarer n-Butyllithium-Lösung in Hexan,
     7,5 g Schwefel,
     45,7 g 4-Brombuttersäureethylester.
     Das flüssige Rohprodukt wurd im Vakuum destilliert.
    Ausbeute: 31,6 g (60%). Öl mit kP_{0.07 \text{ mbar}} = 120^{\circ} \text{C}.
                              b) 4-[5-(3-Phenylpropanoyl)-2-thienylthio]-buttersäureethylester
       Analog Beispiel 6a aus:
    4,6 g 4-(2-Thienylthio)-buttersäureethylester,
     11,5 g Zinntetrachlorid,
     100 ml 1,2-Dichlorethan,
     3,71 g 3-Phenylpropionsäurechlorid in 50 ml 1,2-Dichlorethan.
     Reinigung durch Säulenchromatographie (Kieselgel; Dichlormethan).
    Ausbeute: 6,3 g (87,5%). Öl.
                                    c) 4-[5-(3-Phenylpropanoyl)-2-thienylthio]-buttersäure
       Analog Beispiel 6b aus:
    2g 4-[5-(3-Phenylpropanoyl)-2-thienylthio]-buttersäureethylester,
     20 ml Methanol.
     1,3 g Natriumhydroxid,
     0,8 ml Wasser.
     Reinigung durch Säulenchromatographie (kieselgel; Dichlormethan/Methanol 95/5).
    Ausbeute: 1,1 g (60,1%). Öl.
     IR: 1708 \text{ cm}^{-1} (s), 1649 \text{ cm}^{-1} (s), 1425 \text{ cm}^{-1} (s).
                            d) 4-[5-(3-Phenylpropanoyl)-2-thienylthio]-buttersäure-Natriumsalz
       Analog Beispiel 40c aus:
     3 g 4-[5-(3-phenylpropanoyl)-2-thienylthio]-buttersäure,
    0.8 g Natriumhydroxid.
     Ausbeute: 2,2 g (69%). Feststoff.
     IR (in KBr): 1641 cm<sup>-1</sup> (s), 1560 cm<sup>-1</sup> (s), 1445 cm<sup>-1</sup> (s), 1405 cm<sup>-1</sup> (s),
65
                                                           Beispiel 43
                                       6-(5-Benzylidenacetyl-2-thienylthio)-hexansäure
```

a) 6-(5-Benzylidenacetyl-2-thienylthio)-hexansäureethylester

Analog Beispiel 6a aus: 4,4 g 6-(2-Thienylthio)-hexansäureethylester (Beispiel 39a), 9,77 g Zinntetrachlorid, 100 ml 1,2-Dichlorethan, 3,15 g Zimtsäurechlorid in 50 ml 1,2-Dichlorethan. Ausbeute: 5 g (75,8%), Öl.	5
b) 6-(5-Benzylidenacetyl)-2-thienylthio)-hexansäure	10
Analog Beispiel 6b aus: 4 g 6-(5-Benzylidenacetyl-2-thienylthio)-hexansäureethylester, 40 ml Methanol, 2,6 g Natriumhydroxid, 1,6 ml Wasser. Das Rohprodukt wurde aus Ethanol umkristallisiert. Ausbeute: 1,4 g (37,7%), Feststoff mit einem Schmelzpunkt von 120° C.	15
Beispiel 44	20
6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäureamid	
Analog Beispiel 24a aus: 9,4 g 6-[5-(3-Phenylpropyl)-2-thienylthio]-hexansäure (Beispiel 43b), 6,5 g N,N'-Carbonyldiimidazol, 1,38 g Ammoniak in 100 ml Tetrahydrofuran gelöst, 100 ml absolutem Tetrahydrofuran.	25
Reinigung durch Säulenchromatographie (Kieselgel; Hexan/Essigsäureethylester 9/1). Ausbeute: 8,26 g (88,2%). Weißer Farbstoff mit einem Schmelzpunkt von 66°C. IR (in KBr): 1644 cm ⁻¹ .	30
Beispiel 45	
7-(5-Phenyl-2-thienyl)-heptansäure	35
a) 7-Oxo-7-(5-phenyl-2-thienyl)-heptansäureethylester	
Analog Beispiel 1a aus: 8 g 2-Phenylthiophen (hergestellt nach Tamao et al., Tetrahedron 38 (1982), 3347—3354), 10,32 g Heptandisäure-ethylester-chlorid (hergestellt nach Wilds et al., J. Am. Chem. Soc. 70 (1948), 2427), 80 ml 1,2-Dichlorethan, 15,6 g Zinntetrachlorid.	40
Nach beendeter Zugabe wurde die Reaktionsmischung 24 Stunden bei Raumtemperatur gerührt und dann 24 Stunden auf 80°C erhitzt.	
Die Reinigung erfolgte durch Säulenchromatographie (Kieselgel; Dichlormethan). Ausbeute: 9,5 g (57,5%). Ōl.	45
b) 7-(5-Phenyl-2-thienyl)-heptansäure Analog Beispiel 3b aus:	50
9,5 g 7-Oxo-7-(5-phenyl-2-thienyl)-heptansäureethylester, 1,3 g Hydrazinhydrat, 5,4 g Kaliumhydroxid, 100 ml Triethylenglykol,	55
Die Reinigung erfolgte durch Umkristallisierung aus Toluol. Ausbeute: 4,95 g (59,7%). Weiße Kristalle mit einem Schmelzpunkt von 135°C. IR (in KBr): 1693 cm ⁻¹ .	**
Patentansprüche	60
1.[5-(ω-Arylalkyl)-2-thienyl]alkansäuren, ihre Salze und/oder ihre Derivate der allgemeinen Formel I	
$R_{1}-(CH_{2})_{n}-R_{2}-R_{3}-(CH_{2})_{o}-R_{4}-(CH_{2})_{q}-R_{5}-(CH_{2})_{p}-C-R_{6} (1)$	65

wobei R_i eine

5

10

15

25

30

35

40

45

50

55

60

65

$$R_1 - CH$$
-Gruppe

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

 R_2 eine Einfachbindung, eine Carbonylgruppe, eine -CO-CH=CH-CH=CH-CO-Gruppe; R_3 Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4:

R₄ eine Einfachbindung, eine Carbonyigruppe, eine CHOH-, eine NR₉CO-, eine CONR₉-, eine -CH=CH-CO- oder eine -CH=CH-CHOH-Gruppe oder Schwefel mit R₉ gleich Wasserstoff oder eine C₁-C₄-Alkylgruppe;

20 R₅ eine Einfachbindung, Sauerstoff, eine

$$R_{10}$$
|
Carbonyl- oder eine — C-Gruppe
|
 R_{11}

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6;

R₆ eine

wobei R_{12} Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein $C_1 - C_4$ -Alkylrest, R_{13} Wasserstoff oder eine Hydroxygruppe und R_{14} Wasserstoff oder ein $C_1 - C_4$ -Alkylrest sind; und p+q eine ganze Zahl zwischen 1 und 6;

bedeuten.

2. Alkansäure, ihre Salze und/oder ihre Derivate nach Anspruch 1, dadurch gekennzeichnet, daß in der allgemeinen Formel I des Anspruchs 1 nicht gleichzeitig

 R_7 eine nicht substituierte oder eine disubstituierte Phenylgruppe mit Fluor, Chlor, Brom, eine Trifluormethyl-, Nitro-, Amino-, Hydroxy-, C_1 — C_4 -Alkylgruppe oder eine C_1 — C_4 -Alkoxy-Gruppe als Substituenten, n+m einen Wert zwischen 1 und 6;

o+p+q einen Wert zwischen 2 und 10, wenn R5 eine Einfachbindung ist oder

0+p+q ein Wert zwischen 2 und 9, wenn R₅ eine CH₂-Gruppe ist;

R₂ eine Einfachbindung;

R4 eine Einfachbindung;

R₆ eine OR₁₂-Gruppe mit R₁₂ Wasserstoff, Alkalimetall oder eine C₁-C₄-Alkylrest;

3. Alkansäure, ihre Salze und/oder ihre Derivate nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der allgemeinen Formel I des Anspruchs 1

R₁ eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl- und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkyl-

gruppe sind;

R₂ eine Carbonylgruppe, eine —CO—CH = CH- oder eine —CH = CH—CO-Gruppe;

R₄ eine Carbonylgruppe, eine CHOH-, eine -NR₉CO-, eine CONR₉-, eine -CH-CH-CO- oder eine -CH-CH-Gruppe oder Schwefel, bedeuten, wobei R₉ Wasserstoff oder ein C₁-C₄-Alkylrest ist, und daß

n, R₃, o, R₅, p, q und R₆ die vorstehend bei dem Anspruch 1 oder dem Anspruch 2 genannten Bedeutungen besitzen.

4. Alkansäure, ihre Salze und/oder ihre Derivate nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß in der allgemeinen Formel I des Anspruchs 1

10

15

20

25

40

45

50

55

65

R₁ ein

wobei m=0 oder 1, R_1 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe ist mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; bedeutet,

und daß n, R₂, R₃, o, R₄, R₅, p, q und R₆ die vorstehend bei dem Anspruch 1 oder dem Anspruch 2 angegebenen Bedeutungen besitzen.

5. Alkansäuren, ihre Salze und/oder ihre Derivate nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in der Formel I des Anspruchs 1

R4 Schwefel:

o einen Wert von 0;

p einen Wert zwischen 1 und 5 bedeuten

und daß R₁, n, R₂, R₃, R₅, R₆ und q die vorstehend bei dem Anspruch 1 oder dem Anspruch 2 angegebenen Bedeutungen haben.

6. Verfahren zur Herstellung eines Alkansäureesters nach einem der vorangehenden Ansprüche gemäß der allgemeinen Formel II

$$R_1 - (CH_2)_n - R_4 - (CH_2)_{p+1} - COOR_{12}$$
 (II)

wobei in der Formel II

R₁ eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind:

n eine ganze Zahl zwischen 0 und 5;

p eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe;

R4 eine Carbonylgruppe; und

R₁₂ ein C₁-C₄-Alkylrest bedeuten,

dadurch gekennzeichnet, daß man 2-Thiophenverbindungen der allgemeinen Formel III

$$R_1 - (CH_2)_n - S$$
 (III)

unter den üblichen Bedingungen einer Friedel-Crafts-Reaktion mit einem Säurechlorid der allgemeinen Formel IV umsetzt,

$$Cl-CO-(CH_2)_{p+1}-COOR_{12}$$
 (IV)

und daß man die entstandene Verbindung gemäß der Formel II ist Fert, wobei in den Formeln III und IV R₁, n, R₃, p und R₁₂ die vorstehend bei der Formel II angegebenen Bedeutungen haben.

7. Verfahren zur Herstellung eines Alkansäureesters nach einem der vorangehenden Ansprüche gemäß der allgemeinen Formel V.

 $R_1-(CH_2)_{n-1}-CO-(CH_2)_{o}-CH_2-R_5-(CH_2)_{o}-COOR_{12}$ (V)

wobei in der Formel V R₁ eine

R₇ CH Gruppe

5

10

30

35

45

50

55

60

65

wobei m=0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxy, und R₈ eine C₁-C₄-Alkylgruppe sind; n eine ganze Zahl zwischen 1 und 5;

R₃ Wasserstoff oder eine Methylgruppe; o eine ganze Zahl zwischen 0 und 4; R₅ eine Einfachbindung, Sauerstoff, eine

Carbonyl- oder eine — C-Gruppe

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einem $C_1 - C_4$ -Alkylrest und R_{11} aus der Gruppe bestehend aus einem $C_1 - C_4$ -Alkylrest oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5;

R₁₂ ein C₁—C₄-Alkylrest bedeuten,

dadurch gekennzeichnet, daß man 2-Thiophenverbindungen der allgemeinen Formel VI

$$R_3$$
 CH_2
 CH_2
 CH_3
 CH_3
 CH_3
 $COOR_{12}$
 $COOR_{12}$
 $COOR_{12}$

einer Friedel-Crafts-Acylierung in Gegenwart von Zinntetrachlorid mit Säurechloriden der allgemeinen Formel VII

$$R_1$$
—(CH₂)_{n-1}—COCl (VII)

unterwirft und daß man das hierbei entstehende Reaktionsprodukt der Formel V isoliert, wobei in den Formeln VI und VII R₃, o, R₅, p, R₁₂, R₁ und n die bei Formel V angegebenen Bedeutungen haben.

 Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß man den Alkansäureester gemäß der Formel II oder der Formel V reduziert.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man eine Reduktion mit Hydrazin in Gegenwart von Alkalihydroxyd nach Wolff-Kishner oder Huang-Minlon durchführt.

10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß man den Alkansäureester gemäß der Formel II oder gemäß der Formel V mit Natriumborhydrid reduziert.

11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß man den Alkansäureester durch Umsetzung mit einem geeigneten Alkalihydroxyd, insbesondere Natriumhydroxyd, verseift, daß man den Alkansäureester umestert oder daß man den Alkansäureester hydrolisiert.

12. Verfahren zur Herstellung der Alkansäuren nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel IX,

$$R_1$$
— $(CH_2)_n$ — CH = CH — CO — CH_2 — $(CH_2)_p$ — $COOH$ (IX)

wobei in der Formel IX R₁ eine

5

20

30

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

p eine ganze Zahl zwischen 0 und 5: und

R₃ Wasserstoff oder eine Methylgruppe bedeuten,

dadurch gekennzeichnet, daß man Thiophenverbindungen der allgemeinen Formel X

$$R_1 - (CH_2)_n - \begin{pmatrix} R_3 \\ S \end{pmatrix} (X)$$

zu Verbindungen der allgemeinen Formel XI formyliert,

$$R_1$$
— $(CH_2)_n$ — CHO (XI)

und daß man die Verbindungen der allgemeinen Formel XI mit Ketocarbonsäuren der allgemeinen Formel XII

$$H_3C-CO-CH_2-(CH_2)_p-COOH$$
 (XII)

in Gegenwart von Piperidin umsetzt, wobei in den Formeln X bis XII R₁, R₃, n und p die vorstehend bei der Formel IX angegebenen Bedeutungen haben.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß man die Verbindung gemäß Formel IX reduziert.

14. Verfahren zur Herstellung eines Alkansäuresalzes nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XIII,

$$R_1$$
— $(CH_2)_n$ — CH = CH — CH — CH_2 — $(CH_2)_p$ — $COOR_{12}$ (XIII)

OH

50

wobei in der Formel XIII R₁ eine

$$R_7 - \left(\begin{array}{c} CH \\ | \\ | \\ R_k \end{array}\right)_m = 60$$

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

p einen Wert von 2 oder 3; und

5

15

20

25

30

35

40

45

50

55

65

R₃ Wasserstoff oder eine Methylgruppe; und

R₁₂ ein Alkalimetall, insbesondere Natrium, bedeuten,

dadurch gekennzeichnet, daß man eine ungesättigte Hydroxyverbindung gemäß der allgemeinen Formel

$$R_{1}-(CH_{2})_{n}-CH=CH-CH-CH_{2}-(CH_{2})_{p}-COOH \quad (XIV)$$

durch Abspaltung von Wasser zu entsprechenden Pyranonverbindungen der allgemeinen Formel XV cyclisiert,

$$R_{1}-(CH_{1})_{n}-\begin{array}{c} R_{3} \\ CH=CH-CH \\ CH_{2} \\ CH_{2} \end{array} (XV)$$

und daß man die Pyranonverbindungen der allgemeinen Formel XV durch Zusatz eines entsprechenden Alkalihydroxydes zu den Alkansäuresalzen gemäß der Formel XIII hydrolisiert, wobei in den Formeln XIV und XV R₁, n, R₃ und p die vorstehend bei der Formel XIII angegebenen Bedeutungen haben.

15. Verfahren zur Herstellung eines Alkansäureesters nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XVI,

$$R_1-(CH_2)_n$$
 CH_2 CH_3 $CHOH-CH_2-CO-CH_1-COOR_{12}$ (XVI)

wobei in der Formel XVI R₁ eine

$$R_7 - CH$$
 Gruppe R_8

wobei m=0 oder 1, R₁ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxyl, und R₈ eine C₁-C₄-Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4; und

R₁₂ eine C₂H₅-Rest bedeuten,

dadurch gekennzeichnet,

daß man Thiophenverbindungen der allgemeinen Formel XVII

$$R_1$$
—(CH₂)_n— R_3 (XVII)

mit n-Butyllithium umsetzt,

daß man die bei dieser Umsetzung entstandene Verbindung hiernach mit Halogenalkandioxanen der nachfolgenden Formel XVIII

$$x-(CH_2)_0$$
 \longrightarrow $(XVIII)$

reagieren läßt, wobei in der Formel XVIII X für ein Halogen, insbesondere Brom, steht, daß man das dabei entstandene Produkt der allgemeinen Formel XIX

$$R_1 - (CH_2)_0 - \begin{cases} R_3 \\ CH_2 \\ S \end{cases} - (CH_2)_0 - \begin{cases} CH_2 \\ CH_2 \\ CH_2 \end{cases}$$
 (XIX)

5

35

40

50

60

65

durch Einwirkung einer Säure in die entsprechende Aldehydverbindungen der allgemeinen Formel XX 1 überführt

$$R_1$$
— $(CH_2)_a$ — CHO (XX)

und daß man die Aldehydverbindungen der Formel XX mit Acetylessigsäureethylester unter Ausbildung der Verbindung gemäß Formel XVI reagieren läßt, wobei in den Formeln XVII bis XX R₁, n, R₃, o und R₁₂ die vorstehend bei der Formel XVI angegebenen Bedeutungen haben.

16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß man den Alkansäureestern gemäß der Formel XVI mit Natriumborhydrid zu den Dihydroxyverbindungen gemäß Formel XXI reduziert

$$R_1$$
— $(CH_2)_0$ — CH — CH_2 — CH — CH_2 — $COOC_2H_5$ (XXI)

wobei in der Formel XXI R₁, n, R₃ und o die vorstehend bei Formel XVI angegebenen Bedeutungen haben. 17. Verfahren nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß man die Alkansäureester gemäß der Formel XVI oder der Formel XXI hydrolisiert, verseift oder umestert.

18. Verfahren zur Herstellung einer Alkansäure nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XXII

$$R_1-(CH_2)_n$$
 $CH_2-N-CO-CH_2-(CH_2)_p$ $COOH$ (XXII)

wobei in Formel XXII R₁ eine

$$R_7 - CH$$
-Gruppe R_8 m

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5; R₃ Wasserstoff oder eine Methylgruppe;

Ro Wasserstoff oder ein C1-C4-Alkylrest; und

p 1 oder 2 bedeuten,

dadurch gekennzeichnet,

daß man 2-Thenylamine der allgemeinen Formel XXIII

49

5

20

30

50

60

65

mit Trifluoressigsäureanhydrid acyliert, daß man die dabei entstandene Verbindung gemäß der allgemeinen Formel XXIV

mit einem Arylalkylsäurechlorid der allgemeinen Formel XXV

$$R_1-(CH_2)_{n-1}-COCl$$
 (XXV)

unter den Bedingungen einer Friedel-Crafts-Reaktion umsetzt, daß man anschließend aus der so erhaltenen Verbindung gemäß der allgemeinen Formel XXVI

$$R_1$$
— $(CH_2)_{a=1}$ — CO — R_3 — CH_2 — N — CO — CF_3 (XXVI)

die Trifluoressigsäuregruppe unter den Bedingungen einer Wolff-Ksihner-Reduktion abspaltet, um so zu Thiophenaminen der allgemeinen Formel XXVII

R₁—
$$(CH_2)_0$$
— CH_2 — NHR , $(XXVII)$

40 zu gelangen,

und daß man an die Thiophenamine der allgemeinen Formel XXVII Glutarsäureanhydrid oder Bernsteinsäureanhydrid unter gleichzeitiger Ringspaltung und Herstellung der Alkansäure gemäß Formel XXII addiert, wobei in den Formeln XXIII bis XXVII Ri, n, R3, R9 und p die vorstehend bei der Formel XXII angegebenen Bedeutungen haben.

45 19. Verfahren zur Herstellung des Alkansäureesters nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XXVIII

$$R_1$$
— $(CH_2)_n$ — R_2 — $(CH_2)_o$ — CO — N — CH_2 — $(CH_2)_p$ — $COOR_{12}$ (XXVIII)

wobei in der Formel XXVIII
Ri eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

R₂ eine Einfachbindung, eine Carbonylgruppe, eine -CO-CH-CH oder eine -CH-CH-CO-Gruppe;

R₃ Wasserstoff oder eine Methylgruppe; o eine ganze Zahl zwischen 0 und 4;

R₉ Wasserstoff oder eine C₁ - C₄-Alkylrest;

p eine ganze Zahl zwischen 0 und 5;

R₁₂ ein C₁—C₄-Alkylrest bedeuten,

dadurch gekennzeichnet, daß man o-Arylalkylthienylalkansäuren der allgemeinen Formel XXIX

 $R_1 - (CH_2)_n - R_2 - (CH_2)_0 - COOH (XXIX)$

15

20

25

35

50

mit einer Aminocarbonsäureverbindung der allgemeinen Formel XXX

 $HN-CH_2-(CH_2)_p-COOR_{12}$ (XXX)

in Gegenwart von N,N'-Carbonyldiimidazol zu der Verbindung gemäß der Formel XXVIII umsetzt, wobei in den Formeln XXIX und XXX R₁, n, R₂, R₃, o, R₉, p und R₁₂ die vorstehend bei der Formel XXVIII angegebenen Bedeutungen besitzen.

20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß man den Ester der Formel XXVIII durch Zugabe von Alkalihydroxyden verseift, umestert oder durch Zugabe von Säure hydrolysiert.

21. Verfahren zur Herstellung von Alkansäuren nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XXXI

$$R_1$$
— $(CH_2)_n$ — CH_2 — CH_2 — CO — $(CH_2)_3$ — $COOH$ (XXXI)

wobei in der Formel XXXI R₁ eine

 $R_7 - CH$ Gruppe

wobei m=0 oder 1, R_1 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5; und

R₃ Wasserstoff oder eine Methylgruppe bedeuten,

dadurch gekennzeichnet,

daß man 5-[ω-Arylalkyl)-2-thienylalkohole der allgemeinen Formel XXXII

 R_1 — $(CH_2)_n$ — CH_2OH (XXXII)

mit Sulfonylchlorid zu Verbindungen der allgemeinen Formel XXXIII

$$R_1 - (CH_2)_n - CH_2CI \quad (XXXIII)$$
60
65

umsetzt,

daß man die Verbindungen der allgemeinen Formel XXXIII mit Cyclohexan-1,3-dion zu den Verbindungen der allgemeinen Formel XXXIV

$$R_1 - (CH_2)_n - CH_2 - CH_2 - OH$$
 (XXXIV)

zur Reaktion bringt

5

10

15

20

25

30

35

40

50

55

65

und daß man durch Einwirkung von Bariumhydroxyd auf die Verbindungen gemäß der Formel XXXIV den Ring unter Ausbildung der Alkansäure gemäß der Formel XXXI spaltet, wobei in den Formeln XXXII bis XXXIV R₁, n und R₃ die vorstehend bei der Formel XXXI angegebenen Bedeutungen haben.

22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß man die Alkansäuren gemäß der For-

mel XXXI reduziert, verestert oder durch Zusatz von Alkalihydroxiden die entsprechenden Salze herstellt.

23. Verfahren zur Herstellung von Alkansäuren, ihren Salzen und/oder ihren Derivaten nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XXXV

$$R_1-(CH_2)_0-CH_2-COOR_{12}$$
 (XXXV)

wobei in der Formel XXXV

R₁ eine

$$R_7 - CH$$
-Gruppe

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind;

n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe; o eine ganze Zahl zwischen 0 und 4; und

R₁₂ Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C₁ - C₄-Alkylrest, bedeuten,

dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel XXXVI

45
$$R_1 - (CH_2)_n - S - (CH_2)_0 - CH_2OH (XXXVI)$$

mit Bromessigsäure-Kaliumsalz in butanolischer Lösung zu den entsprechenden Etherverbindungen umsetzt, die ihrerseits nach bekannten Verfahren in die Salze oder Ester der vorstehenden Formel XXXV überführt werden.

24. Verfahren zur Herstellung von Alkansäuren, ihren Salzen und/oder ihren Derivaten nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XXXVII

$$R_1$$
— $(CH_2)_0$ — CH_2 — CH_2 — $COOR_{12}$ (XXXVII)

wobei in der Formel XXXVII R₁ eine

wobei m = 0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder

eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_6 eine $C_1 - C_4$ -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

5

10

25

35

40

50

65

R₃ Wasserstoff oder eine Methylgruppe; o eine ganze Zahl zwischen 0 und 4;

p ein Wert zwischen 2 und 5; und

R₁₂ ein Alkalimetall, insbesondere Natrium, Wasserstoff oder eine C₁—C₄-Alkylgruppe bedeuten, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel XXXVIII

$$R_1$$
— $(CH_2)_n$ — CH_2OH (XXXVIII)

unter den Bedingungen einer Williamson-Synthese zu den Halogenalkyloxyverbindungen der Formel XXXIX umsetzt

$$R_1$$
— $(CH_2)_n$ — CH_2 — CH_2 — CH_3 — X (XXXIX)

wobei in der Formel XXXIX X für ein Halogen steht, diese Halogenalkyloxyverbindungen der Formel XXXIX in die isolierbaren Nitrile der allgemeinen Formel XL

$$R_1 - (CH_2)_n - CH_2 - CH_2 - CN$$
 (XL)

umwandelt und die Nitrile unter Säureeinwirkung zu den Estern verwandelt, die wahlweise isoliert, zur freien Säure hydrolisiert oder umgeestert werden können, wobei in den Formeln XXXVIII bis XL R₁, n, R₃, o und p die zuvor bei der Formel XXXVII angegebenen Bedeutungen haben.

25. Verfahren zur Herstellung einer Alkansäure nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XLI

$$R_1 - (CH_2)_0 - R_4 - (CH_2)_0 - R_4 - (CH_2)_0 - C - COOH$$
 (XLI)

wobei in der Formel XLI R₁ eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, $C_1 - C_4$ -Alkyl und/oder $C_1 - C_4$ -Alkoxyl, und R_8 eine $C_1 - C_4$ -Alkylgruppe sind; R_3 Wasserstoff oder eine Methylgruppe;

 R_4 eine Einfachbindung, eine Carbonylgruppe, eine CHOH-, eine NR₉CO-, eine CONR₉- eine —CH = CH — CO- oder eine —CH = CH—CHOH-Gruppe oder Schwefel mit R_9 gleich Wasserstoff oder eine C_1 — C_4 -Alkylgruppe;

o eine ganze Zahl zwischen 0 und 4; und
Rineine Co-Ca-Alkylgruppe oder Wasse

 R_{10} eine $C_1 - C_4$ -Alkylgruppe oder Wasserstoff; R_{11} $C_1 - C_4$ -Alkylgruppe oder Wasserstoff,

n eine ganze Zahl zwischen 0 und 5; und

41 27 842 A1

q eine ganze Zahl zwischen 1 und 6; bedeuten, dadurch gekennzeichnet, daß man Alkohole der allgemeinen Formel XLII

$$R_1 - (CH_2)_a - R_4 - (CH_2)_q - OH \quad (XLII)$$

mit Allylbromid in Gegenwart N,N'-Carbonyldiimidazol zu den Verbindungen der allgemeinen For-10 mel XLIII

$$R_1 - (CH_2)_n - R_1 - (CH_2)_0 - R_4 - (CH_2)_q - Br$$
 (XLIII)

und daß man die Bromverbindung gemäß der Formel durch Umsetzung mit Alkansäuren der allgemeinen Formel XLIV 20

5

15

25

30

35

40

in Gegenwart von n-Butyllithium und Diisopropylamin unter Ausbildung der Alkansäure gemäß der Formel XLI alkyliert, wobei in den Formeln XLII bis XLIV R1, R3, R4, R10, R11, o, q, und n die vorstehend bei der Formel XLI angegebenen Bedeutungen haben.

26. Verfahren zur Herstellung der Alkansäuren, ihrer Salze und/oder ihrer Derivate nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XLV

$$R_1-(CH_2)_n$$
 R_{10} R_{10} R_{10} $CCH_2)_0$ $CCH_2)_0$ $CCH_2)_0$ $CCOOR_{12}$ $CCUV)$

wobei in der Formel XLV R₁ eine

$$R_7 - \left(\begin{array}{c} CH \\ R_1 \end{array}\right)_m$$

wobei m = 0 oder 1, R₇ eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder 50 eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxyl, und R₈ eine C₁-C₄-Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5:

R₃ Wasserstoff oder eine Methylgruppe: 55

o eine ganze Zahl zwischen 0 und 4;

 R_{10} Wasserstoff oder eine C_1 — C_4 -Alkylgruppe; R_{11} Wasserstoff oder eine C_1 — C_4 -Alkylgruppe;

R₁₂ Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C₁ - C₄-Alkylrest;

p eine ganze Zahl zwischen 0 und 5; 60

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6

bedeuten, dadurch gekennzeichnet, daß man Bromverbindungen der allgemeinen Formel XLVI

65

$$R_1 - (CH_2)_n - S$$
 $(CH_2)_{n-1} - Br$ (XLVI)

unter den Bedingungen einer Grignard-Reaktion mit einer Verbindung gemäß Formel XLVIa acyliert

$$C1-CO-(CH_2)_q-C-(CH_2)_p-COOR_{12}$$
 (XLVI a)

5

15

30

50

und daß man die dabei entstehenden Verbindungen gemäß der allgemeinen Formel XLVII isoliert

$$R_{1}-(CH_{2})_{n}- R_{1} - CO - (CH_{2})_{q} - C - (CH_{2})_{p} - COOR_{12} \quad (XLVII)$$

und anschließend unter Ausbildung der Verbindung gemäß der allgemeinen Formel XLV eine Reduktion nach Wolff-Kishner oder Huang-Minlon durchführt, wobei in den Formeln XLVI, XLVIa und XLVII R₁, n, R₃, o, R₁₀, R₁₁, q, p sowie R₁₂ die vorstehend bei der Formel XLV angegebenen Bedeutungen haben.

27. Verfahren zur Herstellung von Alkansäurederivaten nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel XLVIII

$$R_1-(CH_2)_n-R_3-(CH_2)_0-R_4-(CH_2)_0-COR_6$$
 (XLVIII)

wobei in der Formel XLVIII R₁ eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

R₃ Wasserstoff oder eine Methylgruppe; o eine ganze Zahl zwischen 0 und 4;

 R_4 eine Einfachbindung, eine Carbonylgruppe, eine NR_9CO -, eine $CONR_9$ -, eine -CH - CH - CO- oder eine -CH - CHOH-Gruppe oder Schwefel mit R_9 gleich Wasserstoff oder eine $C_1 - C_4$ -Alkylgruppe; R_5 eine Einfachbindung, Sauerstoff, eine

Carbonyl- oder eine —
$$C$$
-Gruppe R_{11}

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy- oder einer C_1 — C_4 -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer C_1 — C_4 -Alkylgruppe oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5; und R_6 eine

5

15

25

35

40

45

50

55

60

bedeuten, wobei R₁₃ Wasserstoff oder eine Hydroygruppe und R₁₄ Wasserstoff oder ein C₁—C₄-Alkylrest sind;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6 bedeuten,

dadurch gekennzeichnet, daß man Alkansäuren der allgemeinen Formei XLIX

$$R_1 - (CH_2)_n - R_3 - (CH_2)_0 - R_4 - (CH_2)_q - R_5 - (CH_2)_p - COOH$$
 (XLIX)

20 in Gegenwart von N,N'-Carbonyldiimidazol mit einem Amin der allgemeinen Formel L

umsetzt und die hierbei entstehende Verbindung gemäß der Formel XLVIII isoliert, wobei in den Formeln XLIX und L R₁, R₃, R₄, R₅, R₁₃, R₁₄, n, o, q und p die vorstehend bei der Formel XLVIII angegebenen Bedeutungen haben.

28. Verfahren zur Herstellung von Alkansäuren, ihren Salzen und/oder ihren Derivaten nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel LI

$$R_1 - (CH_2)_n - R_2 - S - (CH_2)_q - R_5 - (CH_2)_p - COOR_{12}$$
 (LI)

wobei in der Formel LI

R₁ eine

$$R_7 - CH$$
 Gruppe R_8

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; R_2 eine Einfachbindung, eine Carbonylgruppe, eine -CO-CH=CH-oder eine -CH=CH-CO-Gruppe; R_3 Wasserstoff oder eine Methylgruppe; R_5 eine Einfachbindung, Sauerstoff, eine

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5;

R₁₂ Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C₁—C₄-Alkylrest; n eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6; und p+q eine ganze Zahl zwischen 1 und 6

bedeuten, dadurch gekennzeichnet, daß man Thiophenverbindungen der allgemeinen Formel LII

$$R_1 - (CH_2)_n - R_2 - \begin{pmatrix} R_3 \\ S \end{pmatrix} \qquad (L.II)$$

in etherischer Lösung mit n-Butyllithium, hiernach mit elementarem Schwefel und anschließend mit einer

ω-Halogenalkansäure oder einem ω-Halogenalkansäureester der allgemeinen Formel LII

10

15

25

55

60

$$X-(CH_2)_q-R_5-(CH_2)_p-COOR_{12}$$
 (LIII)

wobei in der Formel LIII

X für ein Halogen, insbesondere Brom;

R₁₂ für einen C₁—C₄-Alkylrest;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6 stehen

umsetzt und daß man den hierbei entstandenen Arylalkylthienylthioalkansäureester isoliert, unter Ausbildung der freien Säure hydrolisiert, umestert oder durch Zusatz von Alkalihydroxyd das entsprechende Salz herstellt, wobei in den Formeln LII und LIII R1, n, R2, R3, R5, p, n, q und R12 die vorstehend bei der Formel LI bzw. der Formel LIII angegebenen Bedeutungen haben.

29. Verfahren zur Herstellung von Alkansäurederivaten nach einem der Ansprüche 1 bis 5 gemäß der allgemeinen Formel LIV

$$R_1$$
— $(CH_2)_n$ — S — $(CH_2)_q$ — R_3 — $(CH_2)_p$ — $COOR_{12}$ (LIV)

wobei in der Formel LIV R_i eine

$$R_7 - CH Gruppe$$

$$\begin{bmatrix} CH \\ R_4 \end{bmatrix}_m$$

wobei m = 0 oder 1, R7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxyl, und R₈ eine C₁-C₄-Alkylgruppe sind; R₃ Wasserstoff oder eine Methylgruppe;

R₅ eine Einfachbindung, eine 45

wobei R₁₀ aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer C₁ - C₄-Alkylgruppe und R₁₁ aus der Gruppe bestehend aus einer C1-C4-Alkylgruppe oder Wasserstoff ausgewählt sind:

p eine ganze Zahl zwischen 0 und 5:

 R_{12} ein $C_1 - C_4$ -Alkylrest;

n eine ganze Zahl zwischen 0 und 5;

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6

bedeuten, dadurch gekennzeichnet,

daß man Thiophenylverbindungen der allgemeinen Formel LV

$$R_3$$
 $S = (CH_2)_q = R_5 = (CH_2)_p = COOR_{12}$ (LV)

unter den Bedingungen einer Friedel-Crafts-Acylierung in Gegenwart von Zinntetrachlorid mit Arylalkyfsäurechloriden der allgemeinen Formel LVa

$$R_1-(CH_2)_{n-1}COCl$$
 (LVa)

umsetzt

5

20

25

35

40

45

50

55

60

65

daß man die hierbei erhaltene Verbindung gemäß der allgemeinen Formel LVI

$$R_{1}-(CH_{2})_{n-1}-CO - S - (CH_{2})_{0}-R_{5}-(CH_{2})_{0}-COOR_{12} \quad (LVI)$$

isoliert oder diese Verbindung gemäß der Foprmel LVI einer Wolff-Kishmer-Reduktion oder einer Reduktion mit Natriumborhydrid unterwirft, wobei in den Formeln LVa und LIV bis LVI R₁, R₃, R₃, R₁₂ sowie n, q und p die zuvor in Anspruch 28 bei der Formel LI angegebenen Bedeutungen haben.

30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß man die Verbindung gemäß der allgemeinen Formel LI oder die Verbindung gemäß der allgemeinen Formel LVI hydrolisiert, umestert oder hieraus durch Umsetzung mit einem Akalihydroxyd das entsprechende Salz herstellt.

31. Verfahren zur Herstellung von Alkansäuren, ihren Derivaten und/oder ihren Salzen gemäß der allgemeinen Formel LVII

$$R_1 - (CH_2)_n - C - CH = CH - S - (CH_2)_q - R_3 - (CH_2)_p - COOR_{12}$$
 (LVII)

wobei in der Formel LVII R₁ eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_6 eine C_1-C_4 -Alkylgruppe sind; R_3 Wasserstoff oder eine Methylgruppe; R_5 eine Einfachbindung, eine

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer $C_1 - C_4$ -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer $C_1 - C_4$ -Alkylgruppe oder Wasserstoff ausgewählt sind;

R₁₂ Wasserstoff, ein Alkalimetall, insbesondere Natrium, oder ein C₁ - C₄-Alkylrest,

n eine ganze Zahl zwischen 0 und 5:

p eine ganze Zahl zwischen 0 und 5:

q eine ganze Zahl zwischen 1 und 6; und

p+q eine ganze Zahl zwischen 1 und 6

bedeuten, dadurch gekennzeichnet, daß man Thiophenverbindungen der allgemeinen Formel LVIII

$$R_3$$

$$S = (CH_2)_q - R_5 = (CH_2)_p - COOR_{12} \quad (LVIII)$$

unter den üblichen Bedingungen einer Vilsmeier-Formylierung zu Aldehyden der allgemeinen Formel LIX

OHC
$$R_3$$
 $S-(CH_2)_q-R_5-(CH_2)_p-COOR_{12}$ (LIX)

zuerst formyliert und anschließend diese Aldehyde unter den üblichen Bedingungen einer Wittig-Reaktion mit ensprechenden Phosphorverbindungen der allgemeinen Formel LIXa

5

30

45

50

60

unter Ausbildung der Verbindung gemäß der allgemeinen Formel LVII umsetzt, wobei in den Formeln LVIII, LIX, LIXa, R_1 , n, R_3 , R_5 , p, q und R_{12} die vorstehend bei der Formel LVII aufgeführten Bedeutungen haben.

32. Pharmazeutisches Präparat, dadurch gekennzeichnet, daß es als pharmazeutischen Wirkstoff mindestens eine Verbindung der allgemeinen Formel I

$$R_{1}-(CH_{2})_{n}-R_{2}-(CH_{2})_{o}-R_{4}-(CH_{2})_{q}-R_{5}-(CH_{2})_{o}-C-R_{6} \quad (I)$$

neben üblichen pharmazeutischen Hilfs- und/oder Trägerstoffen enthält, wobei in der Formel I R_1 eine

wobei m=0 oder 1, R_7 eine nicht substituierte oder eine ein- bis vierfach substituierte 2-Pyridylgruppe oder eine nicht substituierte oder eine ein- bis vierfach substituierte Phenylgruppe mit wahlweise 1 bis 4 Substituenten, ausgewählt aus der Gruppe bestehend aus Fluor, Chlor, Brom, Trifluormethyl, Nitro, Cyano, Amino, Hydroxy, C_1-C_4 -Alkyl und/oder C_1-C_4 -Alkoxyl, und R_8 eine C_1-C_4 -Alkylgruppe sind; n eine ganze Zahl zwischen 0 und 5;

 R_2 eine Einfachbindung, eine Carbonylgruppe, eine -CO-CH-CH-CH-CH-CO-Gruppe; R_3 Wasserstoff oder eine Methylgruppe;

o eine ganze Zahl zwischen 0 und 4;

R4 eine Einfachbindung, eine Carbonylgruppe, eine CHOH-, eine NR₉CO-, eine CONR₉-, eine

-CH=CH-CO- oder eine -CH=CH-CHOH-Gruppe oder Schwefel mit R₉ gleich Wasserstoff oder
eine C₁-C₄-Alkylgruppe;

R₅ eine Einfachbindung, Sauerstoff, eine

wobei R_{10} aus der Gruppe bestehend aus Wasserstoff, Hydroxy oder einer C_1-C_4 -Alkylgruppe und R_{11} aus der Gruppe bestehend aus einer C_1-C_4 -Alkylgruppe oder Wasserstoff ausgewählt sind; p eine ganze Zahl zwischen 0 und 5; R_6 eine

bedeuten, wobei R₁₂ Wasserstoff, eine Alkalimetall, insbesondere Natrium, oder ein C₁-C₄-Alkylrest, R₁₃ Wasserstoff oder eine Hydroxygruppe und R₁₄ Wasserstoff oder ein C₁ - C₄-Alkylrest sind: q eine ganze Zahl zwischen 1 und 6: und p+q eine ganze Zahl zwischen 1 und 6 bedeuten. 5 33. Pharmazeutisches Präparat nach Anspruch 32, dadurch gekennzeichnet, daß in der allgemeinen Formel I nicht gleichzeitig R7 eine nicht substituierte oder eine disubstituierte Phenylgruppe mit Fluor, Chlor, Brom, eine Trifluormethyl-, Nitro-, Amino-, Hydroxy-, C1-C4-Alkylgruppe oder eine C1-C4-Alkoxyl-Gruppe als Substituenten, n+m einen Wert zwischen 1 und 6; 10 o+p+q einen Wert zwischen 2 und 10, wenn Rs eine Einfachbindung ist. oder o+p+q einen Wert zwischen 2 und 9, wenn Rs eine CH2-Gruppe ist; R₂ eine Einfachbindung: R4 eine Einfachbindung; 15 R6 eine OR12-Gruppe mit R12 Wasserstoff, Alkalimetall oder ein C1-C4-Alkylrest sind. 34. Pharmazeutisches Präparat nach Anspruch 32 oder 33, dadurch gekennzeichnet, daß es die mindestens eine Verbindung der allgemeinen Formel I in einer Konzentration zwischen 1 mg und 500 mg, vorzugsweise in einer Konzentration zwischen 10 mg und 150 mg, pro Dosis aufweist. 20 35. Verwendung des pharmazeutischen Präparates nach einem der Ansprüche 32 bis 34 als Hemmer des LTB4-Biosynthese durch Inhibition der LTA4-Hydrolase bei allen Erkrankungen, an denen das Leukotrien B4 beteiligt ist. 36. Verwendung des pharmazeutischen Produktes nach einem der Ansprüche 32 bis 34 zur Behandlung von entzündlichen Hauterkrankungen oder Hautreizungen, insbesondere von Ekzemen. Psoriasis und/oder 25 37. Verwendung des pharmazeutischen Präparates nach einem der Ansprüche 32 bis 34 zur Behandlung von Arthritis. 38. Verwendung des pharmazeutischen Präparates nach einem der Ansprüche 32 bis 34 zur Behandlung von Asthma oder Rhinitis. 30 39. Verwendung des pharmazeutischen Präparates nach einem der Ansprüche 32 bis 34 zur Behandlung von entzündlichen Darmerkrankungen. 35 40 45 50 55 60

65

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY