# GATE 2008 Multiple Choice Questions

# EE25BTECH11010-ARSH DHOKE

# Q.1 – Q.20 Carry one mark each

| 1. | The total number of is                                     | somers of Co(en) <sub>2</sub> C | Cl <sub>2</sub> (en = ethylenediami | ne) is         |
|----|------------------------------------------------------------|---------------------------------|-------------------------------------|----------------|
|    | (a) 4                                                      | (b) 3                           | (c) 6                               | (d) 5          |
|    |                                                            |                                 |                                     | (GATE CY 2008) |
| 2. | Metal-metal quadrupl                                       | e bonds are well-k              | nown for the metal                  |                |
|    | (a) Ni                                                     |                                 | (c) Fe                              |                |
|    | (b) Co                                                     |                                 | (d) Re                              |                |
|    |                                                            |                                 |                                     | (GATE CY 2008) |
| 3. | The reaction of Al <sub>4</sub> C <sub>3</sub>             | with water leads t              | to the formation of                 |                |
|    | (a) methane                                                |                                 | (c) propene                         |                |
|    | (b) propyne                                                |                                 | (d) propane                         |                |
|    |                                                            |                                 |                                     | (GATE CY 2008) |
| 4. | The correct statement                                      | about C <sub>60</sub> is        |                                     |                |
|    | (a) C <sub>60</sub> is soluble in                          | benzene                         |                                     |                |
|    | (b) $C_{60}$ does not react with <i>tert</i> -butyllithium |                                 |                                     |                |
|    | (c) C <sub>60</sub> is made up of                          | of 10 five–member               | ed and 15 six-membere               | d rings        |
|    | (d) Two adjacent fiv                                       | e-membered rings                | share a common edge                 | (GATE CY 2008) |
| 5. | The lattice parameters                                     | s for a monoclinic              | crystal are                         |                |
|    | (a) $a \neq b \neq c$ ; $\alpha = \gamma$                  | $y = 90^{\circ}$                |                                     |                |
|    | (b) $a = b \neq c$ ; $\alpha \neq \beta$                   | $\beta \neq \gamma$             |                                     |                |

(c) 
$$a \neq b \neq c$$
;  $\alpha \neq \beta \neq \gamma$ 

(d) 
$$a = b = c; \ \alpha = \gamma = 90^{\circ}$$

- 6. The magnetic moment of  $[Ru(H_2O)_6]^{2+}$  corresponds to the presence of
  - (a) four unpaired electrons
  - (b) three unpaired electrons
  - (c) two unpaired electrons
  - (d) zero unpaired electrons

(GATE CY 2008)

#### 7. The compound that is **NOT** aromatic is



(a)



(b)



(c)



(GATE CY 2008)

#### 8. The order of stability for the following cyclic olefins is



- (a) I < II < III < IV
- (b) I < III < IV < I
- $(c) \ \ II < III < I < IV$
- (d) IV < II < I < III

# 9. The most acidic species is









(GATE CY 2008)

# 10. The major product of the following reaction is











11. In the carbylamine reaction, R–X is converted to R–Y *via* the intermediate Z. R–X, R–Y and Z, respectively, are

- (a) R-NH<sub>2</sub>, R-NC, carbene
- (b) R-NH<sub>2</sub>, R-NC, nitrene
- (c) R-NC, R-NH<sub>2</sub>, carbene
- (d) R-OH, R-NC, nitrene

(GATE CY 2008)

12. The compound that is **NOT** oxidized by KMnO<sub>4</sub> is









(GATE CY 2008)

13. Cyanogen bromide (CNBr) specifically hydrolyses the peptide bond formed by the C-side of

(a) methionine

(c) proline

(b) glycine

(d) serine

(GATE CY 2008)

14. The Hammett reaction constant  $\rho$  is based on

- (a) the rates of alkaline hydrolysis of substituted ethyl benzoates
- (b) the dissociation constants of substituted acetic acids
- (c) the dissociation constants of substituted benzoic acids
- (d) the dissociation constants of substituted phenols

(GATE CY 2008)

15. The lifetime of a molecule in an excited electronic state is  $10^{-10}$  s. The uncertainty in the energy (eV) approximately is

|     | (b) $3 \times 10^6$                                 |                                    | (d) $10^{-14}$                                                   |                             |     |
|-----|-----------------------------------------------------|------------------------------------|------------------------------------------------------------------|-----------------------------|-----|
|     |                                                     |                                    |                                                                  | (GATE CY 20                 | 08) |
| 16. | For a one compor is                                 | nent system, the ma                | ximum number of phases tha                                       | at can coexist at equilibri | um  |
|     | (a) 3                                               |                                    | (c) 1                                                            |                             |     |
|     | (b) 2                                               |                                    | (d) 4                                                            | (GATE CY 20                 | 08) |
| 17. | At $T = 300 \text{ K}$ , the                        | e thermal energy (k                | $_BT$ ) in cm <sup>-1</sup> is approximately                     | y                           |     |
|     | (a) 20000                                           |                                    | (c) 5000                                                         |                             |     |
|     | (b) 8000                                            |                                    | (d) 200                                                          | (GATE CY 20                 | 08) |
| 18. | For the reaction 2                                  | $2X_3 \rightarrow 3X_2$ , the rate | of formation of $X_2$ is                                         |                             |     |
|     | (a) $3\left(-\frac{d[X_3]}{dt}\right)$              |                                    |                                                                  |                             |     |
|     | (b) $\frac{1}{2} \left( -\frac{d[X_3]}{dt} \right)$ |                                    |                                                                  |                             |     |
|     | (c) $\frac{1}{3} \left( -\frac{d[X_3]}{dt} \right)$ |                                    |                                                                  |                             |     |
|     | (d) $\frac{3}{2} \left( -\frac{d[X_3]}{dt} \right)$ |                                    |                                                                  | (GATE CY 20                 | 08) |
| 19. | The highest occup                                   | pied molecular orbi                | tal of HF is                                                     |                             |     |
|     | (a) bonding                                         |                                    | (c) ionic                                                        |                             |     |
|     | (b) antibonding                                     |                                    | (d) nonbonding                                                   | (GATE CY 20                 | 08) |
| 20. |                                                     |                                    | ric molecule $N_2O$ in its crystal entations that can be adopted |                             |     |
|     | (a) 4                                               | (b) 3                              | (c) 2                                                            | (d) 1                       |     |
|     |                                                     |                                    |                                                                  | (GATE CY 20                 | 08) |
|     | Q.21 to Q.75 Car                                    | rry two marks eac                  | h                                                                |                             |     |
| 21. | The spectroscopi $[Ti(H_2O)_6]^{3+}$ are            | c ground state syn                 | nbol and the total number                                        | of electronic transitions   | of  |
|     | (a) ${}^3T_{1g}$ and 2                              |                                    | (c) ${}^{1}T_{1g}$ and 3                                         |                             |     |
|     | (b) ${}^{3}A_{2g}$ and 3                            |                                    | (d) ${}^{3}A_{2g}$ and 2                                         | (GATE CY 20                 | 08) |

(c) 0

(a)  $2 \times 10^5$ 

| 22.                                                                                                                                             | The structures of the complexes $[Cu(NH_3)_4](ClO_4)_2$ and $[Cu(NH_3)_4](ClO_4)$ in solution respectively are                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                 | (a) square planar and tetrahedral                                                                                                                                                                    |
|                                                                                                                                                 | (b) octahedral and square pyramidal                                                                                                                                                                  |
|                                                                                                                                                 | (c) octahedral and trigonal bipyramidal                                                                                                                                                              |
|                                                                                                                                                 | (d) tetrahedral and square planar (GATE CY 2008)                                                                                                                                                     |
| 23.                                                                                                                                             | In biological systems, the metal ions involved in electron transport are                                                                                                                             |
|                                                                                                                                                 | (a) $Na^+$ and $K^+$ (b) $Zn^{2+}$ and $Mg^{2+}$ (c) $Ca^{2+}$ and $Mg^{2+}$ (d) $Cu^{2+}$ and $Fe^{3+}$                                                                                             |
|                                                                                                                                                 | (GATE CY 2008)                                                                                                                                                                                       |
| 24.                                                                                                                                             | In a homogeneous catalytic reaction, 1.0 M of a substrate and 1.0 $\mu$ M of a catalyst yields 1.0 mM of a product in 10 seconds. The turnover frequency (TOF) of the reaction (s <sup>-1</sup> ) is |
|                                                                                                                                                 | (a) $10^2$ (c) $10^{-3}$                                                                                                                                                                             |
|                                                                                                                                                 | (b) $10^1$ (d) $10^3$                                                                                                                                                                                |
|                                                                                                                                                 | (GATE CY 2008)                                                                                                                                                                                       |
| 25. The expected magnetic moments of the first-row transition metal complexes and those lanthanide metal complexes are usually calculated using |                                                                                                                                                                                                      |
|                                                                                                                                                 | (a) $\mu_{so}$ equation (s.o. = spin only) for both lanthanide and transition metal complexes                                                                                                        |
|                                                                                                                                                 | (b) $\mu_{so}$ equation for lanthanide metal complexes and $\mu$ equation for transition metal complexes                                                                                             |
|                                                                                                                                                 | (c) $\mu_{so}$ equation for transition metal complexes and $\mu$ equation for lanthanide metal complexes                                                                                             |
|                                                                                                                                                 | (d) $\mu_{\rm eff}$ equation for transition metal complexes and $\mu_{\rm so}$ equation for lanthanide metal complexes (GATE CY 2008)                                                                |
| 26.                                                                                                                                             | The Brønsted acidity of boron hydrides follows the order                                                                                                                                             |
|                                                                                                                                                 | (a) $B_2H_6 > B_4H_{10} > B_5H_9 > B_{10}H_{14}$                                                                                                                                                     |
|                                                                                                                                                 | (b) $B_2H_6 = B_4H_{10} > B_5H_9 = B_{10}H_{14}$                                                                                                                                                     |
|                                                                                                                                                 | (c) $B_{10}H_{14} > B_5H_9 > B_4H_{10} > B_2H_6$                                                                                                                                                     |
|                                                                                                                                                 | (d) $B_5H_9 > B_4H_{10} > B_2H_6 > B_{10}H_{14}$                                                                                                                                                     |
|                                                                                                                                                 | (GATE CY 2008)                                                                                                                                                                                       |
| 27.                                                                                                                                             | NaCl is crystallised by slow evaporation of its aqueous solution at room temperature. The correct statement is                                                                                       |

|     | (b)                                                                                                                                                                              | The crystals sho                 | ould have Frenkel defe             | cts                      |                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|--------------------------|---------------------------------------------|
|     | (c)                                                                                                                                                                              | The percentage tion and its rate | · · ·                              | als will depend on the   | concentration of the solu-                  |
|     | (d)                                                                                                                                                                              | The nature of de evaporation     | efects will depend upor            | n the concentration of t | the solution and its rate of (GATE CY 2008) |
| 28. | CaTi                                                                                                                                                                             | O <sub>3</sub> has a perovsl     | kite crystal structure.            | The coordination number  | per of titanium in CaTiO <sub>3</sub>       |
|     | (a)                                                                                                                                                                              | 9                                |                                    | (c) 3                    |                                             |
|     | (b)                                                                                                                                                                              | 6                                |                                    | (d) 12                   |                                             |
|     |                                                                                                                                                                                  |                                  |                                    |                          | (GATE CY 2008)                              |
| 29. | If ClF <sub>5</sub> were to be stereochemically rigid, its $^{19}F$ NMR spectrum (I for $^{19}F = \frac{1}{2}$ ) would be (assume that Cl is not NMR active)                     |                                  |                                    |                          |                                             |
|     | (a)                                                                                                                                                                              | a doublet and a                  | triplet                            |                          |                                             |
|     | (b)                                                                                                                                                                              | a singlet                        |                                    |                          |                                             |
|     | (c)                                                                                                                                                                              | a doublet and a                  | singlet                            |                          |                                             |
|     | (d)                                                                                                                                                                              | two singlets                     |                                    |                          | (GATE CY 2008)                              |
| 30. | The                                                                                                                                                                              | point group of N                 | SF <sub>3</sub> is                 |                          |                                             |
|     | (a)                                                                                                                                                                              | $D_{3d}$                         | (b) $C_{3h}$                       | (c) $D_{3h}$             | (d) $C_{3\nu}$                              |
|     |                                                                                                                                                                                  |                                  |                                    |                          | (GATE CY 2008)                              |
| 31. | When NiO is heated with a small amount of $\text{Li}_2\text{O}$ in air at 1200°C, a non-stoichiometric compound $\text{Li}_x\text{Ni}_{1-x}\text{O}$ is formed. This compound is |                                  |                                    |                          |                                             |
|     | (a) an n-type semiconductor containing only Ni <sup>1+</sup>                                                                                                                     |                                  |                                    |                          |                                             |
|     | (b) an n-type semiconductor containing Ni <sup>1+</sup> and Ni <sup>2+</sup>                                                                                                     |                                  |                                    |                          |                                             |
|     | (c)                                                                                                                                                                              | a p-type semicor                 | nductor containing Ni <sup>2</sup> | $^{2+}$ and Ni $^{3+}$   |                                             |
|     | (d)                                                                                                                                                                              | a p-type semicor                 | nductor containing on              | ly Ni <sup>3+</sup>      | (GATE CY 2008)                              |
|     | 0                                                                                                                                                                                |                                  |                                    |                          |                                             |
| 32. | Whi                                                                                                                                                                              | te phosphorus, P <sub>4</sub>    | , belongs to the                   |                          |                                             |
|     | (a)                                                                                                                                                                              | closo system                     | (b) nido system                    | (c) arachno system       | (d) hypho system                            |
|     |                                                                                                                                                                                  |                                  |                                    |                          | (GATE CY 2008)                              |
|     |                                                                                                                                                                                  |                                  |                                    |                          |                                             |

(a) The crystals will be non-stoichiometric

| 33. | Among the compounds Fe <sub>3</sub> O <sub>4</sub> , NiFe <sub>2</sub> O <sub>4</sub> and         | $Mn_3O_4$                                 |                     |
|-----|---------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|
|     | (a) NiFe <sub>2</sub> O <sub>4</sub> and Mn <sub>3</sub> O <sub>4</sub> are normal spinel         | s                                         |                     |
|     | (b) Fe <sub>3</sub> O <sub>4</sub> and Mn <sub>3</sub> O <sub>4</sub> are normal spinels          |                                           |                     |
|     | (c) Fe <sub>3</sub> O <sub>4</sub> and Mn <sub>3</sub> O <sub>4</sub> are inverse spinels         |                                           |                     |
|     | (d) Fe <sub>3</sub> O <sub>4</sub> and NiFe <sub>2</sub> O <sub>4</sub> are inverse spinels       |                                           | (GATE CY 2008)      |
| 34. | The number of M-M bonds in $Ir_4(CO)_{12}$ are                                                    |                                           |                     |
|     | (a) four                                                                                          | (c) eight                                 |                     |
|     | (b) six                                                                                           | (d) zero                                  |                     |
|     |                                                                                                   |                                           | (GATE CY 2008)      |
| 35. | Schrock carbenes are                                                                              |                                           |                     |
|     | (a) triplets and nucleophilic                                                                     | (c) singlets and nucleophil               | ic                  |
|     | (b) triplets and electrophilic                                                                    | (d) singlets and electrophil              | ic                  |
|     |                                                                                                   |                                           | (GATE CY 2008)      |
| 36. | The <b>INCORRECT</b> statement about linear d                                                     | limethylpolysiloxane, [(CH <sub>3</sub> ) | $_{2}SiO]_{n}$ , is |
|     | (a) it is extremely hydrophilic                                                                   |                                           |                     |
|     | (b) it is prepared by a KOH catalysed ring-opening reaction of [Me <sub>2</sub> SiO] <sub>4</sub> |                                           |                     |
|     | (c) it has a very low glass transition tempe                                                      | rature                                    |                     |
|     | (d) it can be reinforced to give silicon elast                                                    | tomers                                    | (GATE CY 2008)      |
| 37. | Match the entries <b>a–d</b> with their correspondi                                               | ing structures <b>p–s</b>                 |                     |



- (a) a s, b r, c q, d p
- (b) a p, b s, c q, d r
- (c) a q, b p, c s, d r
- (d) a s, b r, c p, d q

#### 38. The reaction between X and Y to give Z proceeds via

- (a)  $4\pi$ -conrotatory opening of X followed by *endo* Diels-Alder cycloaddition
- (b)  $4\pi$ -disrotatory opening of X followed by *endo* Diels-Alder cycloaddition
- (c)  $4\pi$ -conrotatory opening of X followed by *exo* Diels–Alder cycloaddition
- (d)  $4\pi$ -disrotatory opening of X followed by *exo* Diels-Alder cycloaddition

39. The major products  $P_1$  and  $P_2$ , respectively, in the following reaction sequence are

(GATE CY 2008)

40. The products Y and Z are formed, respectively, from X via



- (a)  $h\nu$ , conrotatory opening and  $\Delta$ , disrotatory opening
- (b)  $h\nu$ , disrotatory opening and  $\Delta$ , conrotatory opening
- (c)  $\Delta$ , conrotatory opening and hv, disrotatory opening
- (d)  $\Delta$ , disrotatory opening and  $h\nu$ , conrotatory opening

- 41. *o*-Bromophenol is readily prepared from phenol using the following conditions:
  - (a) i)  $(CH_3CO)_2O$ ; ii)  $Br_2$ ; iii)  $HCl-H_2O$ ,  $\Delta$
  - (b) i) H<sub>2</sub>SO<sub>4</sub>, 100°C; ii) Br<sub>2</sub>; iii) H<sub>3</sub>O<sup>+</sup>, 100°C
  - (c) N-Bromosuccinimide, dibenzoyl peroxide, CCl<sub>4</sub>, Δ
  - (d)  $Br_2/FeBr_3$  (GATE CY 2008)
- 42. The major product of the following reaction is





- 43. The photochemical reaction of 2-methylpropane with F<sub>2</sub> gives 2-fluoro-2-methylpropane and 1-fluoro-2-methylpropane in 14:86 ratio. The corresponding ratio of the bromo products in the above reaction using Br<sub>2</sub> is most likely to be:
  - (a) 14:86
  - (b) 50:50

- (c) 1:9
- (d) 99:1

44. The major product P of the following reaction is

(GATE CY 2008)

45. The reagent  $\mathbf{X}$  in the following reaction is

(GATE CY 2008)

(a) HO<sub>2</sub>CN=NCO<sub>2</sub>H

(d)

- (b) EtO<sub>2</sub>CHC=CH-CO<sub>2</sub>Et
- (c) EtO<sub>2</sub>CN=NCO<sub>2</sub>Et

#### 46. The major product of the following reactions is

(GATE CY 2008)

#### 47. The major product of the following reaction is



48. In the following compound, the hydroxy group that is most readily methylated with  $CH_2N_2$  is

(a) p

(c) r

(b) q

(d) s

(GATE CY 2008)

49. The most appropriate sequence of reactions for carrying out the following transformation is



- (a) i) O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>; ii) excess SOCl<sub>2</sub>/pyridine; iii) excess NH<sub>3</sub>; iv) LiAlH<sub>4</sub>
- (b) i) O<sub>3</sub>/Me<sub>2</sub>S; ii) excess SOCl<sub>2</sub>/pyridine; iii) LiAlH<sub>4</sub>; iv) excess NH<sub>3</sub>
- (c) i) O<sub>3</sub>/H<sub>2</sub>O<sub>2</sub>; ii) excess SOCl<sub>2</sub>/pyridine; iii) LiAlH<sub>4</sub>; iv) excess NH<sub>3</sub>
- (d) i) O<sub>3</sub>/Me<sub>2</sub>S; ii) excess SOCl<sub>2</sub>/pyridine; iii) excess NH<sub>3</sub>; iv) LiAlH<sub>4</sub>

(GATE CY 2008)

- 50. The number of optically active stereoisomers possible for 1,3-cyclohexanediol in its chair conformation is
  - (a) 4
  - (b) 3
  - (c) 2
  - (d) 1 (GATE CY 2008)
- 51. The major product of the following reactions is







52. In the following reaction,

The absolute configurations of the chiral centres in X and Y are

- (a) 2S, 3R and 2R, 3R
- (b) 2R, 3R and 2R, 3S
- (c) 2S, 3S and 2R, 3R
- (d) 2S, 3R and 2S, 3R

(GATE CY 2008)

53. The IR stretching frequencies (cm $^{-1}$ ) for the compound X are as follows: 3300–3500 (s, br); 3000 (m); 2225 (s); 1680 (s).



The correct assignment of the absorption bands is:



54. The  $T_d$  point group has 24 elements and 5 classes. Given that it has two 3-dimensional irreducible representations, the number of one-dimensional irreducible representations is

(a) 1 (c) 2 (b) 6 (d) 3 (GATE CY 2008)

55. The total number of ways in which two nonidentical spin  $\frac{1}{2}$  particles can be oriented relative to a constant magnetic field is

(a) 1 (c) 3 (b) 2 (d) 4 (GATE CY 2008)

56. Approximately one hydrogen atom per cubic meter is present in interstellar space. Assuming that the H-atom has a diameter of  $10^{-10}$  m, the mean free path (m) approximately is

(a)  $10^{10}$  (b)  $10^{19}$  (c)  $10^{24}$  (d)  $10^{14}$ 

(GATE CY 2008)

57. The wavefunction of a diatomic molecule has the form  $\psi = 0.89 \, \varphi_{\text{covalent}} + 0.45 \, \varphi_{\text{ionic}}$ . The chance that both electrons of the bond will be found on the same atom in 100 inspections of the molecule approximately is

| (a) | 79 |
|-----|----|
| (b) | 20 |

(c) 45

(d) 60

(GATE CY 2008)

58. For the reaction given below, the relaxation time is  $10^{-4}$  s. Given that 10% of A remains at equilibrium, the value of  $k_1$  (s<sup>-1</sup>) is



(a)  $9 \times 10^5$ 

(b)  $10^5$ 

(c)  $10^6$ 

(d)  $9 \times 10^6$ 

(GATE CY 2008)

59. The minimum number of electrons needed to form a chemical bond between two atoms is

- (a) 1
- (b) 2
- (c) 3
- (d) 4

(GATE CY 2008)

60. The ground state electronic energy (Hartree) of a helium atom, neglecting the inter-electron repulsion, is

- (a) -1.0
- (b) -0.5
- (c) -2.0
- (d) -4.0

| 61. | A particle is confined to a one-dimensional box of length 1 mm. If the length is changed by $10^{-9}$ m, the % change in the ground state energy is                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a) $2 \times 10^4$                                                                                                                                                                                                                        |
|     | (b) $2 \times 10^7$                                                                                                                                                                                                                        |
|     | (c) $2 \times 10^2$                                                                                                                                                                                                                        |
|     | (d) 0                                                                                                                                                                                                                                      |
|     | (GATE CY 2008)                                                                                                                                                                                                                             |
| 62. | A certain molecule can be treated as having only a doubly degenerate state lying at 360 cm <sup>-1</sup> above the nondegenerate ground state. The approximate temperature (K) at which 15% of the molecules will be in the upper state is |
|     | (a) 500                                                                                                                                                                                                                                    |
|     | (b) 150                                                                                                                                                                                                                                    |
|     | (c) 200                                                                                                                                                                                                                                    |
|     | (d) 300                                                                                                                                                                                                                                    |
|     | (GATE CY 2008)                                                                                                                                                                                                                             |
| 63. | A box of volume $V$ contains one mole of an ideal gas. The probability that all $N$ particles will be found occupying one half of the volume leaving the other half empty is                                                               |
|     | (a) 1/2                                                                                                                                                                                                                                    |
|     | (b) 2/N                                                                                                                                                                                                                                    |
|     | (c) $(1/2)^N$                                                                                                                                                                                                                              |
|     | (d) $(1/2)^{6N}$                                                                                                                                                                                                                           |
|     | (GATE CY 2008)                                                                                                                                                                                                                             |
| 64. | According to the Debye-Hückel limiting law, the mean activity coefficient of $5\times10^{-4}$ mol kg aqueous solution of CaCl <sub>2</sub> at 25°C is (the Debye-Hückel constant 'A' can be taken to be 0.509)                             |
|     | (a) 0.63                                                                                                                                                                                                                                   |
|     | (b) 0.72                                                                                                                                                                                                                                   |
|     | (c) 0.80                                                                                                                                                                                                                                   |
|     | (d) 0.91                                                                                                                                                                                                                                   |
|     | (GATE CY 2008)                                                                                                                                                                                                                             |
| 65  | The operation of the commutator $[x, d/dx]$ on a function $f(x)$ is equal to                                                                                                                                                               |

- (a) 0
- (b) f(x)
- (c) -f(x)
- (d)  $x \frac{df}{dx}$

- 66. If a gas obeys the equation of state P(V nb) = nRT, the ratio  $(C_P C_V)/(C_P C_V)_{ideal}$  is
  - (a) > 1
  - (b) < 1
  - (c) 1
  - (d) (1 b)

(GATE CY 2008)

- 67. Physisorbed particles undergo desorption at 27°C with an activation energy of 16.628 kJ mol<sup>-1</sup>. Assuming first-order process and a frequency factor of 10<sup>12</sup> Hz, the average residence time (in seconds) of the particles on the surface is
  - (a)  $8 \times 10^{-10}$
  - (b)  $8 \times 10^{-11}$
  - (c)  $2 \times 10^{-9}$
  - (d)  $1 \times 10^{-12}$

(GATE CY 2008)

- 68. The rotational constants for CO in the ground and the first excited vibrational states are 1.9 and 1.6 cm<sup>-1</sup>, respectively. The % change in the internuclear distance due to vibrational excitation is
  - (a) 9
  - (b) 30
  - (c) 16
  - (d) 0

(GATE CY 2008)

69. The mechanism of enzyme (E) catalysed reaction of a substrate (S) to yield product (P) is:

$$E + S = \frac{k_1}{k_{-1}} [E S] = \frac{k_2}{k_{-2}} E + P ; \qquad \frac{-d[S]}{dt} = \frac{k_1 k_2 [S] - k_{-1} k_{-2} [P]}{k_1 [S] + k_{-2} [P] + k_{-1} + k_2} [E]_0$$

If a small amount of S is converted to P, the maximum rate for the reaction will be observed for:

- (a)  $(k_1 + k_2) \gg k_1 [S]_0$
- (b)  $(k_1 + k_2) \ll k_1[S]_0$
- (c)  $(k_2 + k_{-1}) = (k_1 + k_1)$
- (d)  $k_2 \ll k_1$

(GATE CY 2008)

- 70. The lowest energy state of the  $(1s)^2(2s)^1(3s)^1$  configuration of Be is
  - (a)  ${}^{1}S_{0}$
  - (b)  ${}^{1}D_{2}$
  - (c)  ${}^3S_1$
  - (d)  ${}^{3}P_{1}$

(GATE CY 2008)

# **Common Data Questions**

Common Data for Questions 71, 72 and 73:

An electron accelerated through a potential difference of  $\varphi$  volts impinges on a nickel surface, whose (100) planes have a spacing  $d = 351.8 \times 10^{-12}$  m (351.8 pm).

- 71. The de-Broglie wavelength of the electron is  $\lambda/\text{pm} = (a/\varphi)^{1/2}$ . The value of 'a' in volts is:
  - (a)  $1.5 \times 10^{-18}$
  - (b)  $1.5 \times 10^6$
  - (c)  $6.63 \times 10^5$
  - (d)  $2.5 \times 10^{18}$

(GATE CY 2008)

- 72. The condition for observing diffraction from the nickel surface is:
  - (a)  $\lambda \gg 2d$
  - (b)  $\lambda \leq 2d$
  - (c)  $\lambda \leq d$
  - (d)  $\lambda \ge d$

- 73. The minimum value of  $\varphi$  (V) for the electron to diffract from the (100) planes is:
  - (a) 3000
  - (b) 300
  - (c) 30
  - (d) 3

Common Data for Questions 74 and 75: An iron complex  $[FeL_3]^{2+}$  (L = neutral monodentate ligand) catalyses the oxidation of  $(CH_3)_2S$  by perbenzoic acid.

- 74. The formation of the organic product in the above reaction can be monitored by:
  - (a) gas chromatography
  - (b) cyclic voltammetry
  - (c) electron spin resonance
  - (d) fluorescence spectroscopy

(GATE CY 2008)

- 75. The oxidation state of the metal ion in the catalyst can be detected by:
  - (a) atomic absorption spectroscopy
  - (b) Mössbauer spectroscopy
  - (c) HPLC
  - (d) gas chromatography

(GATE CY 2008)

# 1 Linked Answer Questions: Q.76 to Q.85 carry two marks each

Linked Answer Questions 76 and 77:

In the reaction.



#### 76. Compound X is

- 77.  $Rh(PPh_3)_3Cl$  reacts very fast with a gaseous mixture of  $H_2$  and  $C_2H_4$  to immediately give Z. The structure of Z is
  - (a) H<sub>3</sub>C-CH<sub>3</sub>





### **Linked Answer Questions 78 and 79**

The reaction of PCl<sub>3</sub> with methanol in the presence of triethylamine affords compound X. EI mass spectrum of X shows a parent ion peak at m/z = 124. Microanalysis of X shows that it contains C, H, O and P. The <sup>1</sup>H NMR spectrum of X shows a doublet at 4.0 ppm. The separation between the two lines of the doublet is approximately 15 Hz (J for <sup>1</sup>H and <sup>31</sup>P =  $\frac{1}{2}$ ).

- 78. Compound X is:
  - (a)  $(CH_3O)_2P$
  - (b) (CH<sub>3</sub>O)<sub>2</sub>PO
  - (c)  $(CH_3O)_2P(O)OH$
  - (d)  $(CH_3O)_2PH$

(GATE CY 2008)

79. Upon heating, compound X is converted to Y, which has the same molecular formula as that of X. The <sup>1</sup>H NMR spectrum of Y shows two doublets centered at 3.0 ppm (separation of two lines = 20 Hz) and 4.0 ppm (separation of two lines = 15 Hz) respectively.

#### Compound Y is:

- (a)  $(CH_3O)_2P(O)(OH)$
- (b)  $(CH_3O)_2P$
- (c)  $(CH_3O)(CH_3)P(O)$
- (d)  $(CH_3O)(CH_3)P(OH)$

# **Linked Answer Questions 80 and 81**

For butyrophenone (PhCOCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>),

80. The most probable fragmentation observed in the electron impact ionization (EI) mass spectrometry is

(a) 
$$Ph$$
 +  $H_2C=CH_2$   
(b)  $Ph$  +  $H_2C=CH_2$   
(c)  $Ph$  +  $CH_3$   
(d)  $Ph$  +  $H_2C$   $CH_3$ 

(GATE CY 2008)

81. Photoirradiation leads to the following set of products.

(GATE CY 2008)

Linked Answer Questions 82 and 83: In the following reaction,



82. the reactive intermediate I and the product P are



(GATE CY 2008)

- 83. The product P shows 'm' and 'n' number of signals in <sup>1</sup>H and <sup>13</sup>C NMR spectra, respectively. The values of 'm' and 'n' are
  - (a) m = 3 and n = 2
  - (b) m = 2 and n = 3
  - (c) m= 2 and n = 2
  - (d) m = 4 and n = 3 (GATE CY 2008)

Linked Answer Questions 84 and 85:

The infrared spectrum of a diatomic molecule exhibits transitions at 2144, 4262 and 6354 cm <sup>-1</sup> corresponding to excitations from the ground state to the first, second, and third vibration states respectively.

- 84. The fundamental transition (cm<sup>-1</sup>) of the diatomic molecule is at
  - (a) 2157
- (b) 2170
- (c) 2183
- (d) 2196

(GATE CY 2008)

85. The anharmonicity constant (cm<sup>-1</sup>) of the diatomic molecule is

(a) 0.018 (c) 0.006 (b) 0.012 (d) 0.003

(GATE CY 2008)

# END OF THE QUESTION PAPER