

Introducción

El consumo de agua de baja calidad es un problema común que afecta a muchas comunidades en todo el mundo.

5 mil familias se ven afectadas por desabastecimiento de agua potable en Villa María del Triunfo.

En 12/01/2024
Familias de 140
asentamientos
humanos presentan
escasez de agua.

Descripción del problema

La diarrea infantil -asociada a la escasez de agua, saneamientos inadecuados, aguas contaminadas con agente patógenos de enfermedades infecciosas y falta de higiene- causa la muerte a 1,5 millones de niños al año. La mayoría de ellos menores de cinco años[2]

Según el último Informe Mundial sobre el Desarrollo de los Recursos Hídricos 2023, el uso de agua ha aumentado aproximadamente un 1% cada año en los últimos 40 años.

En 2021, más de 251 millones de personas necesitaron recibir tratamiento enfermedades causadas por parásitos llamados helmintos, que se contrae principalmente a través del contacto con agua contaminada[2].

Unas mejores condiciones de agua, saneamiento e higiene podrían evitar unas 400.000 muertes al año por enfermedades diarreicas entre niños menores de 5 años[3].

MUNDIAL

En la actualidad el 663 millones no cuentan con acceso a agua potable en todo el mundo[3]/

El 58 % de los 159 millones de personas que todavía

recolectan agua potable no tratada -y muchas veces

contaminada- directamente de fuentes superficiales,

vive en África Subsahariana[4]

2,200 millones de personas no pueden obtener agua limpia y segura para beber[2].

De 100 pacientes ingresados en hospitales, siete de países de ingresos altos y 15 de países de ngresos medianos y bajos contraen una infección relacionada con la atención sanitaria[3]

mundo bebían agua contaminada con heces, representando el mayor riesgo de toxicidad debido a la contaminación microbiana del agua potable[3]

Figura 2.1. Nivel de estrés hídrico físico en los países del mundo, expresado en porcentaje (Unesco, 2019).

NACIONAL

Ocupa el puesto 66 en el ranking de estrés hídrico de la ONU y estudios recientes muestran que el país experimenta un nivel de estrés hídrico que varía entre -40% y -80%[5].

S/ 30 mil millones se necesitan para cerrar la brecha para servicios de agua potable a nivel nacional.

Según un informe del Banco Mundial (2023), en Perú, las brechas de seguridad hídrica representan un costo anual entre 1.3% y 3.5% del PBI, abarcando restricciones en el suministro de agua, inundaciones y la falta de saneamiento para la población.[7]

25 millones de peruanos carecen de acceso continuo a servicios de agua potable de calidad.

La crisis hídrica tiene un costo económico considerable, estimado entre 1.3% y 3.5% del PIB cada año debido a las restricciones en el suministro de agua y la falta de saneamiento adecuado[7].

La contaminación del agua y la falta de acceso a agua y saneamiento seguros representan un costo anual para el Perú estimado entre 8,400 millones y 13,400 millones de dólareS [8]

REGIONAL

Según el último Censo Educativo, el porcentaje de locales públicos conectados a la red de agua potable es del 83% en áreas urbanas y del 25% en zonas rurales[9]

De cada 100 litros que Sedapal produce en sus plantas, solo el 67.5 litros llega a los caños de las familias limeñas[10]

Las regiones con menores tasas de conexión son Huánuco con un 25%, Ucayali con un 15% y Loreto con un 10%.

Estrategia de solución

Frente al desafío que se enfrenta en Villa Maria del Triunfo , proponemos una solución que permitirá la clasificación automática del agua recogida de la nube. Utilizaremos sensores para lograr este proceso. Estos sensores, junto con otros dispositivos conectados a un sistema centralizado controlado por Arduino, nos permitirán no solo medir la calidad del agua, sino también tomar decisiones sobre su uso , segun las ECA (Decreto Supremo N.º 031-2010-SA). Al final del proceso, se añadirá cloro automáticamente para garantizar su calidad del H2O.

LISTA DE REQUERIMIENTOS

Requerimiento del Sistema	Tipo	Descripción
Función Principal		Medir pH, conductividad eléctrica y turbidez del agua.
Dimensiones del Dispositivo		Altura: 30 cm; Diámetro: 14 cm (cilíndrico).
Capacidad de Almacenamiento		Soporta hasta 2 litros de agua.
Recolección de Agua		Entre 20 a 40 litros, dependiendo de condiciones climáticas.
Materiales		Estructura: PVC y vidrio; Sensores: PVC; Piezas sujetas: acero.
Alimentación		Batería de 9V, cargada con energía solar.
Monitoreo de Parámet	ros	pH: 5.5 - 8.5 (riego), 6.0 - 8.5 (animales), 6.5 - 8.5 (humano); Turbidez: <5 NTU; Conductividad: <1500 μS/cm.
Señales de Entrada		Agua recolectada de neblina, energía solar.
Señales de Salida		Agua clasificada, parámetros del agua visualizados en pantalla OLED.
Control del Sistema		Mantenimiento de niveles de agua para evitar sobrellenado.
Sensores		No intrusivos, con un margen de error de 0.5%.
Frecuencia de Lectura		Llenado de agua cada 2 minutos; lectura de parámetros en 30 segundos.

MODELADO 3D

LINK:

<u>https://cad.onshape.com/documents/b6cc6b7b8ff543f3f81e7e0b/w/1281a4e5ddff4b325dd53fcf/e/9f01f70b687863cef80be5de</u>

Conclusión

Referencias

- 1. ONU-Agua. Resumen actualizado de 2021 sobre los progresos en el ODS 6: agua y saneamiento para todos. https://www.unwater.org/sites/default/files/app/uploads/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021_SP.pdf .
- 2. United Nations. (2023, July 4). WHO/UNICEF Joint Monitoring Program for Water Supply, Sanitation and Hygiene (JMP) Progress on household drinking water, sanitation and hygiene 2000–2022: Special focus on gender. UN-Water. https://www.unwater.org/publications/who/unicef-joint-monitoring-program-update-report-2023
- 3. Nations, U. (2019). Agua | Naciones Unidas. United Nations. https://www.un.org/es/global-issues/water
- 4. Rojas Rueda, A., & Tzatchkov, V. G. (Coordinadores). (2022). Introducción a la seguridad hídrica. Instituto Mexicano de Tecnología del Agua. ISBN 978-607-8629-28-2.
- 5. Perú: alto riesgo de vulnerabilidad debido a crisis del agua. (n.d.). Www.gob.pe. https://www.gob.pe/institucion/ceplan/noticias/690049-peru-alto-riesgo-de-vulnerabilidad-debido-a-crisis-del-agua
- 6. https://www.facebook.com/APOYOConsultoria. (2024, April 22). 25 millones de peruanos carecen de acceso continuo a servicios de agua potable de calidad APOYO Consultoría. APOYO Consultoría. https://www.apoyoconsultoria.com/es/25-millones-de-peruanos-carecen-de-acceso-continuo-a-servicios-de-agua-potable-de-calidad/
- 7. CooperAcción. (2023, 23 octubre). Agua y economía CooperAcción. CooperAcción –. https://cooperaccion.org.pe/opinion/agua-y-economial/
- 8. Mundial, B. (2023, 6 julio). Perú puede responder a las crecientes amenazas del cambio climático, la contaminación y la creciente demanda de agua. World Bank. https://www.bancomundial.org/es/news/press-release/2023/07/06/per-puede-responder-a-las-crecientes-amenazas-del-cambio-clim-tico-la-contaminaci-n-y-la-creciente-demanda-de-agua
- 9. El 10 % la población peruana no tiene agua potable y 23 % no accede al alcantarillado. (s. f.). Noticias Superintendencia Nacional de Servicios de Saneamiento Plataforma del Estado Peruano. https://www.gob.pe/institucion/sunass/noticias/781301-el-10-la-poblacion-peruana-no-tiene-agua-potable-y-23-no-accede-al-alcantarillado
- 10. Espinoza, A. (2024, 13 abril). Trujillo, Lima y Arequipa, las ciudades del Perú en riesgo extremo de escasez de agua, según The Economist. Infobae. https://www.infobae.com/peru/2024/04/12/trujillo-lima-y-arequipa-entre-las-ciudades-en-peligro-extremadamente-alto-de-estres-hidrico-segun-the-economist/
- 11. Decreto Supremo n.º 031–2010–SA. (s. f.). Normas y Documentos Legales Ministerio de Salud Plataforma del Estado Peruano.

 https://www.gob.pe/institucion/minsa/normas-legales/244805-031-2010-sa