МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе№2
по дисциплине «Организация ЭВМ и систем»
Тема: Изучение режимов адресации и формирования
исполнительного адреса.

Студент гр. 1303	Попандопуло А. Г.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучение и практика в работе с различными режимами адресации на языке Ассембелер.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы

- 1. У преподавателя получен вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и свои данные занесены вместо значений, указанных в приведенной ниже программе.
- 2. Программа протранслирована с созданием файла диагностических сообщений; обнаруженные ошибки объяснены и закомментированы соответствующие операторы в тексте программы.
 - lb2.asm(42): error A2502: Improper operand type mov mem3,[bx]

Нельзя напрямую перемещать значения из памяти в память.

• lb2.asm(49): warning A4031: Operand types must match mov cx,vec2[di]

Несоответствие типов операндов, сх – слово, а vec2[di] – размерность в 1 байт – попытка поместить байт в слово.

• lb2.asm(53): warning A4031: Operand types must match mov cx,matr[bx][di]

Несоответствие типов операндов, сх – слово, matr[bx][di] – размерность в 1 байт – попытка поместить байт в слово.

• lb2.asm(54): error A2055: Illegal register value mov ax,matr[bx*4][di]

Регистр bx нельзя масштабировать.

• lb2.asm(73): error A2046: Multiple base register mov ax,matr[bp+bx]

В операнде нельзя использовать более одного базового регистра.

• lb2.asm(74): error A2047: Multiple index register mov ax,matr[bp+di+si]

В операнде нельзя использовать более одного индексного регистра.

3. После исправления представленных ошибок, программа была вновь протранслирована. (см рис.1)

```
C:\>masm lb2.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [lb2.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:

49904 + 461453 Bytes symbol space free

0 Warning Errors
0 Severe Errors

C:\>link lb2.obj

Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Run File [LB2.EXE]:
List File [NUL.MAP]:
Libraries [.LIB]:
```

Рис. 1 – трансляция и линковка программы

4. Программа выполнена в пошаговом режиме под управлением отладчика AFDPRO.

lb2.exe

Адрес	Символический	1 -	Изменяемые данные	
команды	нды код команды код команді	код команды	до	после
0000	PUSH DS		STACK(+0) 0000	STACK(+0) 19F5
			IP = 0000	IP = 0001
			SP=0018	SP=0016
0001	SUB AX, AX	2BCO	AX=0000	AX=0000
			IP = 0001	IP = 0003
0003	PUSH AX	50	STACK(+0)=19F5 STACK(+2)=0000	STACK(+0)=0000 STACK(+2)=19F5

			IP = 0003	IP = 0004
			SP=0016	SP=0014
0004	MOV AX,1A07	B8071A	AX = 0000	AX = 1A07
			IP = 0004	IP = 0007
0007	MOV DS,AX	8ED8	DS=19F5	DS=1A07
			IP = 0007	IP = 0009
0009	MOV AX,01F4	B8F401	AX = 1A07	AX = 01F4
			IP = 0009	IP = 000C
0000	MOVCYAY	0DC0	IP=000C	IP=000E
OUUC	000C MOV CX,AX	8BC8	CX=00B0	CX=01F4
000E	MOV BL,24	B324	BX=0000	BX=0024
OOOL	WIO V BE,24		IP=000E	IP=0010
0010	MOV DIL CE	D7CE	BX=0024	BX = CE24
0010	MOV BH,CE	B7CE	IP=0010	IP=0012
0012	MOV [0002],FFCE	C7060200C EFF	IP = 0012	IP = 0018
0010	MOV BX,0006	BB0600	BX = CE24	BX = 0006
0018	WO V DA,0000	טטטטעם	IP = 0018	IP = 001B
001B	MOV [0000],AX	A30000	IP = 001B	IP = 001E

001E MOV AL,[BX]	MOVAL [DV]	9 4 0 7	AX = 01F4	AX = 011F
	8A07	IP = 001E	IP = 0020	
0020	MOV AL,[BX+03]	8A4703	IP = 0020 $AX = 011F$	IP = 0023 $AX = 0122$
0023	MOV CX, [BX+03]	8B4F03	CX = 01F4 $IP = 0023$	CX = 2622 $IP = 0026$
0026	MOV DI, 0002	BF0200	DI = 0000 IP = 0026	DI = 0002 IP = 0029
0029	MOV AL, [000E+DI]	8A850E00	AX = 0122 IP = 0029	AX = 01CE $IP = 002D$
002D	MOV BX, 0003	BB0300	IP = 002D $BX = 0006$	IP = 0030 $BX = 0003$
0030	MOV AL, [0016+BX+DI]	8A811600	IP = 0030 $AX = 01CE$	IP = 0034 $AX = 01FF$
0034	MOV AX, 1A07	B8071A	AX = 01FF $IP = 0034$	AX = 1A07 $IP = 0037$
0037	MOV ES, AX	8EC0	ES = 19F5 IP= 0037	ES = 1A07 $IP = 0039$

0039	MOV AX, ES:[BX]	268B07	AX = 1A07 $IP = 0039$	AX= 00FF IP = 003C
003C	MOV AX, 0000	B80000	AX= 00FF IP= 003C	AX=0000 IP= 003F
003F	MOV ES, AX	8EC0	ES = 1A07 IP= 003F	ES= 0000 IP= 0041
0041	PUSH DS	1E	IP= 0041 SP= 0014 STACK (+0) = 0000 STACK (+2) =19F5 STACK (+4) =0000	IP= 0042 SP= 0012 STACK(+0)=1A07 STACK (+2)=0000 STACK (+4)=19F5
0042	POP ES	07	SP= 0012 ES=0000 IP= 0042 STACK (+0) = 1A07 STACK (+2) = 0000 STACK (+4) =19F5	SP = 0014 ES=1A07 IP= 0043 STACK (+0)=0000 STACK (+2)=19F5 STACK (+4)=0000
0043	MOV CX, ES:[BX—01]	268B4FFF	CX = 2622 $IP = 0043$	CX= FFCE IP= 0047
0047	XCHG AX, CX	91	AX = 0000	AX = FFCE

			CX = FFCE	CX = 0000
			IP=0047	IP=0048
0049	MOV DI 0002	DE0200	IP = 0048	IP = 004B
0048	MOV DI, 0002	BF0200	DI=0002	DI=0002
004B	MOV ES:[BX+DI], AX	268901	IP = 004B	IP = 004E
004E	MOV BP, SP	ODEC	IP = 004E	IP = 0050
004L	MOV Br, Sr	8BEC	Bb = 0000	BP = 0014
			IP = 0050	IP = 0054
			SP=0014	SP=0012
0050	PUSH [0000]	FF360000	STACK $(+0) = 0000$	STACK $(+0) = 01F4$
			STACK $(+2) = 19F5$	STACK $(+2) = 0000$
			STACK (+4) =0000	STACK (+4) =19F5
			IP = 0054	IP = 0058
		FF360200	SP = 0012	SP = 0010
0054	Discrição (2)		STACK $(+0) = 01F4$	STACK (+0) = FFCE
0054	PUSH [0002]		STACK $(+2) = 0000$	STACK $(+2) = 01F4$
			STACK (+4) =19F5	STACK (+4) =0000
			STACK $(+6) = 0000$	STACK (+6) = 19F5
0050	MOV DD CD	8BEC	IP = 0058	IP = 005A
0058	MOV BP, SP		BP = 0014	BP = 0010

005A	MOV DX, [BP+02]		IP = 005A $DX = 0000$	IP = 005D $DX = 01F4$
			IP = 005D	IP = FFCE
			SP = 0010	SP= 0016
			CS=1A0A	CS=01F4
005D	RET Far 0002	CA0200	STACK (+0) = FFCE	STACK $(+0) = 19F5$
			STACK $(+2) = 01F4$	STACK $(+2) = 0000$
			STACK (+4) =0000	STACK (+4) =0000
			STACK $(+6) = 19F5$	STACK (+6) = 0000

Выводы

В ходе выполнения лабораторной работы были исследованы основные принципы работы с режимами адресации на языке программирования Ассемблер.

приложение а

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lb2.asm

```
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
; Вариант 9
vec1 DB 31,32,33,34,38,37,36,35
vec2 DB 50,60,-50,-60,70,80,-70,-80
matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
push DS
sub AX, AX
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
 mov bh, n2
```

```
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
mov al, [bx]
;mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
;mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
;mov cx,matr[bx][di]
;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx,ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp, sp
;mov ax,matr[bp+bx]
 ;mov ax,matr[bp+di+si]
```

```
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
```

CODE ENDS
END Main