Outline
Introduction
The value of having great data
Inferential Statistics
Regression
Slope and significance
Identification issues

Applied Econometrics for Researchers Introduction to Econometrics; Ordinary Least Squares

H.C. Kongsted

Department of Strategy and Innovation Copenhagen Business School Denmark Outline
Introduction
The value of having great data
Inferential Statistics
Regression
Slope and significance
Identification issues

Outline of this morning's lecture

Introduction

The value of having great data Data, Datasets, and Variables

Inferential Statistics

Regression

Core: Ordinary Least Squares (OLS)

Slope and significance

The estimate Its significance

Identification issues

Outline
Introduction
The value of having great data
Inferential Statistics
Regression
Slope and significance
Identification issues

A typical module

- ► We meet for intro + 8 modules, see course outline. Note: Breaks in some weeks. Exam (December 13).
- ► Lecture session Wednesdays 9.00-12.00. Workshop session (on-line) Fridays 9.00-12.00.
- Organized around a mixture of theory and practice
 - Theory in the lectures session;
 - Class teaching with slides, Q&A
 - Workshops provide the data used for each exercise, you solve a problem using Stata, and present/discuss your results
- Exam: in the format of a typical workshop, except that it is solved on an individual basis
- A textbook would be useful (Wooldridge, Cameron/Trivedi); links to articles provided in CANVAS

What are the (typical) data at hand?

- Surveys: of firms or individuals:
 - Ex: Valentina Tartari and I did a survey of Danish academics in 2017. Population: all academics in Denmark. Sample: \approx 4,800 responses (38%)
 - Ex: Community Innovation Surveys. Sample of firms. Run in a number of developed economies. We will work with actual data from a vintage of the UK survey ($\approx 1,100$ firms).
- Administrative registers: in firms/organizations/government
 - Data on patents and inventors from the European Patent Office: Ulrich Kaiser and I collected data for Danish firms and Danish inventors
 - ► Government registry data: data on individuals (and firms) in DK: Family, education, health, earnings, ...

What are the (typical) data at hand?

- Scraped from the web: increasing use of data eg. from LinkedIn, facebook, etc
- Each type of data source has pros and cons, for different purposes
- Real magic (like whole new insights and/or publications in top-journals) can happen if you are able to combine data from several sources

Example: Innovation in British firms

- Modelling product innovation—and the use of external knowledge—in British firms, the potential role of internal R&D, as well as a host of "control" variables
- Example based on data from the UK Community Innovation Survey (CIS)
- Build further on this example and the CIS data more generally in lectures and workhops
- ► Link to UK CIS questionnaire

Data, Datasets, and Variables

Example: Innovation in British firms

Different types of datasets (all relate to the same phenomenon)

- Cross-sectional: Observations drawn at same point in time: Ex: Sample of startups in DK in 2019.
- ➤ Time Series: A single observational unit, often aggregate, observed across time: Ex Data on the number of start-ups in DK, by year, from 1980 to 2018.
- ▶ Pooled Cross Sections: Cross sections observed at different times—any overlap across observational units over time is unintentional: Ex: Startups observed in their year of founding, between 2010 and 2019.
- Panel data: the *same* cross sectional units (persons, firms, ...) are followed across time: Ex: Startups in 2010 are followed for 10 years.

Types of variables

Two main types of variables:

- Continuous (Sales, Wages, Temperature,...)
- ▶ Discrete/Categorical (Industry (service, manufacturing, public sector,...), University Degree (None, B.Sc., M.Sc., PhD)

How about these examples:

- A finite number of possible categories (Ex: technology classification of patents)
- No (upper) bound (Ex: number of patents granted to a firm in a given year)

Continuous variables can be converted into discrete categorizations but not *vice versa*

Types of Scales/Variables

- Nominal: No natural ordering of values, order of listing is irrelevant (Ex. industry affiliation of a firm)
- Ordinal: There is a natural ordering of values, however "distance" is not well-defined (Ex. level of completed university degree)
- ► Interval: Natural ordering and numerical distance between alternatives matter (Ex.: temperature in degrees C or F)
- Ratio: Zero point and ratios meaningful (Ex.: Number of years of university education)
- Type of data to be modelled dictates the appropriate econometric method

Types of Scales/Variables

- Some tools are only strictly appropriate when studying continuous variables
- ▶ Specific tools for dealing with categorical variables and counts
- ▶ Depends on the purpose of analysis and the question asked
- Linear models will often turn out be (surprisingly) helpful

Testing hypotheses

- Econometrics is often about testing a hypothesis:
 - Do PhDs benefit from their degree in terms of wages (and why (not)?)?
 - Do R&D intensive firms produce more inventions?
 - ► The heavier an object is, the quicker it will hit the ground when dropped from a height of one metre in a no-air-resistance setting
- ▶ The aim is to set up a clearly defined benchmark, a "null" hypothesis (*H*₀). This allows you to estimate the likelihood that it can be rejected.
- Nowever, we should also have an idea about what is the proper alternative (H_a) if we reject H_0

Types of Errors

- ► Type I Error: Rejecting a true hypothesis
- Type II Error: Failing to reject a false hypothesis
- First identify a region of probability in which you are "willing to" make a Type I Error
 - The probability of a Type I Error is often referred to as the level of significance, $\alpha = P(\text{Reject}H_0|H_0)$
- Then we aim to minimize the likelihood of a Type II Error
 - ▶ 1- the probability of a Type II Error is often referred to as the *power* of the test, $1 \pi(\theta) = P(\text{Reject}H_0|\theta)$ the ability of the test to detect that H_0 is not true when in fact it is not

The simplest example

We may for instance test whether a continuous variable y is generated by a distribution in which the mean is μ_0 :

$$H_0: \mu = \mu_0, H_a: \mu \neq \mu_0$$

- Example of a two-sided test: Alternative can be greater or smaller than hypothesized value (just different).
- How can we test this simple hypothesis:
 - ► Collect a random sample of y's: $y_1, y_2, ..., y_n$
 - Use average value \bar{y} as *estimator* of the (unknown) mean.
 - Question: Is the *observed* average sufficiently different from μ_0 that we can reject H_0 ?

The z-test

- z-tests are useful for testing hypotheses, strictly speaking regarding the mean of a normal distribution function
- ► The test relies on the calculation of a test score, z, which can be compared to a critical value signifying whether the value is high or low given our chosen level of significance

$$z = \frac{\bar{y} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \tag{1}$$

- We can then look up the critical value in the z-table (link Z-table)
- ► For a 5% level of significance and a two-sided test, we consider critical values of -1.96 and +1.96.

Regression

- We need a too that enables us to quantify relationships between variables
- Often to quantify the effect of one variable, x, on another, y
- ▶ Preferably keeping all else constant.
- Some pretty causal language is being used here (why?)
- ▶ The most basic econometric tool: Ordinary Least Squares

Regression

- Regression is a statistical method used to quantify any linear association between—on the one side—a dependent variable and—on the other side—one or more independent variables
- ► There are many different types of regression techniques that are applicable in different scenarios depending on the characteristics of the data
- Ordinary Least Squares (OLS) is the most basic type of technique – Understanding OLS will allow you to understand the general principles of regression analysis

The Regression Equation

- ► We seek to understand if the variation of one variable, *y*, is associated with the variation of another, *x*
- We start with a simple linear functional form:

$$y = \beta_0 + \beta_1 x \tag{2}$$

- β_0 refers to the intercept on the y axis (x=0) and β_1 is the (unknown) slope parameter (the change in y given a unit change in x)
- ▶ In practice, we will never find a perfectly fitting line between two variables. Extend by with an error term (u) something that is left unexplained by the model

$$y = \beta_0 + \beta_1 x + u \tag{3}$$

Terminology

▶ Often you see the regression written as:

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{4}$$

- where the subscripts refer to each single observation i
- y may be referred to as the dependent variable, explained variable, response variable, predicted variable, or the regressand
- x may be referred to as the independent variable, explanatory variable, control variable, predictor, regressor

Notation

In case we have multiple x variables, you may see the regression written as:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + u_i$$
 (5)

or more compactly as

$$y_i = \beta_0 + \beta' \mathbf{x}_i + u_i \tag{6}$$

- where bold symbols refer to vectors—a number of variables and a coefficient for each variable
- ▶ We use "explanatory" for independent variables that are of particular interest; "controls" are added to the equation to account for other variables that potentially will affect y and correlate with the explanatory variables.

Why multiple regression?

- ▶ Why don't we just stick to simple correlation and *z*-tests instead of doing regression analysis?
 - Correlations and simple one-variable models are likely to suffer from spurious correlation since relevant factors are not controlled for
 - Ex: A spurious correlation between R&D and profits, when not controlling for industry affiliation
 - Ex: Based on a z-test, we see that there is a significant difference in the wages of men and women – this could partially be explained by occupational choice
- ► We want to ask the question "what is the effect of a unit change in *x*, *keeping everything else constant?*"

Ordinary Least Squares (OLS)

- Ordinary Least Squares is the obvious first choice when your dependent variable is a continuous variable
- ▶ It is usually the "point of reference" in any application, and (surprisingly) often it provides a valid answer to the problem
- ▶ Useful to examine a bit of technique: Go back to the bivariate case to show explicit expressions and gain some intuition.

Technique of Ordinary Least Squares

The OLS estimator is obtained by minimizing the sum of squared residuals, \hat{u}_i , the difference between the estimated values, $\hat{y}_i = \hat{\beta}_0 + \hat{\beta} x_i$, and the actually observed value of y

$$\min_{\hat{\beta}_{0},\hat{\beta}_{1}} \sum_{i=1}^{n} (\underbrace{y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1} x_{i})}_{\hat{u}_{i}})^{2} = \min_{i=1}^{n} \hat{u}_{i}^{2}$$
 (7)

Technique of Ordinary Least Squares

Solving this min problem leads to the following equations from which the values of the *estimates*, $\hat{\beta}_0$ and $\hat{\beta}_1$, can be determined:

$$\sum_{i=1}^{n} y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) = \sum_{i=1}^{n} \hat{u}_i = 0$$
 (8)

$$\sum_{i=1}^{n} x_i (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)) = \sum_{i=1}^{n} x_i \hat{u}_i = 0$$
 (9)

(10)

By construction, the sum of the residuals is zero and the residuals are unrelated to the values of x_i . The regression "exhausts" any linear dependence between y and x.

Example: Innovation and use of external knowledge sources in British firms: Scatter plot and regression line

Core: Ordinary Least Squares (OLS)

Example: Innovation in British firms: Regression output from Stata

. reg prodnew extsource

Source	SS	df	MS	Number of obs	-	773 31.42
Model	5806.18069	1	5806.18069	Prob > F	=	0.0000
Residual	142461.411	771	184.774852	R-squared Adj R-squared	=	0.0392 0.0379
Total	148267.591	772	192.056465	Root MSE	=	13.593
prodnew	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
extsource	2.731872	.4873449		0.000 1.7751		3.688552
_cons	4.927718	.4889416	10.08	0.000 3.9679	03	5.887532

The slope parameter

- ► The slope parameter shows us the "best-fitting" value of the slope of the relationship between the variables
- For the simple case of just one explanatory variable, we can calculate the slope parameter by:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
(11)

Note: The equation is simply the covariance between x and y, divided by the variance of x

The slope parameter - and so what?

- We often wish to understand if the true but unknown value of the slope parameter is equal to or different from zero
- In case it is zero, we can say that the two variables are not (linearly) related to each other
- ▶ We need somehow to estimate the "likelihood" that the slope is equal to zero, based on the data at hand.
- We do this by testing the following set of hypotheses:

$$H_0$$
: $\beta_1 = 0$ (12)

$$H_a : \beta_1 \neq 0 \tag{13}$$

► How do we conclude on the validity of H_0 ?

Uncertainty of slope parameter

- We consider our sample as if it were just one out of many potential samples. This means we treat our estimate $\hat{\beta}_1$ of the slope (and the intercept) as stochastic.
- We need a measure of the uncertainty with which we have determined the estimates $\hat{\beta}_0$ and $\hat{\beta}_1$. Such a measure can also be determined from the data.
- ▶ One determinant of the variance of the slope parameter is how "noisy" are the observations around the regression line: The variance of the error term *u*.
- The variance of the error term is also called the squared standard error of the model: σ^2

Uncertainty of slope parameter II

An estimate of σ^2 is obtained from the residuals as:

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_i^2$$
 (14)

▶ The standard error of the estimate $\hat{\beta}_1$ is a measure of the uncertainty associated with the slope estimate

$$se(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$
 (15)

▶ Depends positively on σ ; negatively on the total variation of x.

Is it equal to zero?

► To uncover the "likelihood" that the estimated parameter is equal to zero, we consider the relative size of the estimate compared to its standard error - also known as the *t*-value

$$t = \frac{\hat{\beta}_1 - 0}{se(\hat{\beta}_1)} = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} \tag{16}$$

- Note: This is the *t*-statistic for one particular hypothesis $\beta_1 = 0$.
- ▶ We wish to understand whether *t* is a large value (in absolute terms)—the estimate is substantially higher than its associated standard error—to conclude on the validity of *H*₀.

The estimate Its significance

Example: Innovation in British firms: Regression output from Stata

. reg prodnew extsource

Source	SS	df	MS	Number of obs	=	773 31.42
Model Residual	5806.18069 142461.411	1 771	5806.18069 184.774852	Prob > F	=	0.0000 0.0392 0.0379
Total	148267.591	772	192.056465		=	
prodnew	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
extsource _cons	2.731872 4.927718	.4873449 .4889416		0.000 1.7751 0.000 3.9679		3.688552 5.887532

Identification: What is driving this relationship?

The identification problem

- ➤ The effect of improved management practices, keeping all else constant.
- Is it actually what we would be estimating here?
- Or: is there a risk that our estimate is "confounded" by other (unobserved) factors that (also) influence productivity (the dependent variable)?
- ► Logically, this problem precedes estimation. And it has little to do with "having enough data".

Association versus causality

- You theorize about a (positive) relationship between firm productivity, Y, and the implementation of management practices, X, (job rotation,group/individual incentives, ...)
- ▶ You observe that *Y* and *X* are correlated over the sample.
- ▶ There can be several causal drivers of this correlation:
 - X may affect Y (as hypothesized)
 - Y may affect X (reverse causality)
 - X and Y may be jointly influenced by Z, a variable outside the model
- ► Theory may suggest causation; but we need to be able to "control for" (or randomize) other potential causes: main agenda for the second half of the course.

Correlated omitted variable: Simple case

► The "true" model (satisfies all ideal assumptions)

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + u_i$$

► The actual regression equation (by OLS)

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}$$

▶ The expected value of the OLS estimator

$$E(\hat{\beta}_1|x_1,x_2) = \beta_1 + \beta_2 \frac{\sum_{i=1}^n (x_{1i} - \bar{x_1})(x_{2i} - \bar{x_2})}{\sum_{i=1}^n (x_{1i} - \bar{x_1})^2} = \beta_1 + \beta_2 \frac{cov(x_1,x_2)}{var(x_1)}$$

▶ Biased if $\beta_2 \neq 0$ and $cov(x_1, x_2) \neq 0$!!

What's next?

- ► Friday: Workshop 1 get you started on using Stata; starting the analysis of the UK CIS data set.
- Online with Zoom.
- ► Next week: No teaching (fall break)
- ➤ Two weeks from now: (Much more) on linear regression; show that it is a useful tool to answer a host of questions that often pop up in our research.