Univerza v Ljubljani

Fakulteta za elektrotehniko

Timotej Gašpar

Vodenje robota v stiku s podajnim objektom

Magistrsko delo

Mentor: prof. dr. Aleš Ude

Somentor: dr. Leon Žlajpah

Zahvala

Zahvalil se bi rad staršem za popolno podporo pri študiju, bratu, ker me je motiviral čeprav tega ni vedel ter partnerki, ker je vedela kaj je treba reč v katerem trenutku. Zahvalil bi se tudi somentorju Leonu Žlajpahu, ker mi je z izkušnjami ogromno pomagal.

Vsebina

1	Uvo	od .	5
2	Rol	ootski manipulator PA-10 in senzor sile JR3	7
	2.1	Robotski manipulator PA-10	7
		2.1.1 Denavitt - Hartemberg parametri za robotski manipulator PA-10	7
	2.2	Servo Krmilnik	8
		2.2.1 Komunikacija z ARCNET vmesnikom	10
	2.3	Senzor sile in navorov - JR3	12
3	str	ežnik	15
	3.1	protocol	15
	3.2	Razlogi za strežnik	15
4	Adı	nitančno krmiljenje	17
	4.1	Teorija	17
	4.2	Implementacija	17
	4.3	Rezultati	17
5	Krr	niljenje z inverzno dinamiko	19

vi Vsebina

	5.1	Teorija	19
	5.2	Implementacija	19
	5.3	Rezultati	19
6	Rez	ultati	21
7	Sim	ulink knjižice	23
8	Zak	juček	25
A	App	endix 1	29
В	App	endix 2	31
\mathbf{C}	App	endix 3	33
D	Pred	dloge za navajanje literature - baza BibTex	35

Seznam slik

2.1	Dimenzije roke za identifikacijo D-H parametrov	8
2.2	Skica robotskega mehanizma PA 10	ć
2.3	Način za krmiljenje robota	12

viii Seznam slik

Seznam tabel

1	Veličine in simbo	oli .												X
2.1	D-H parametri													8

x Seznam tabel

Seznam uporabljenih simbolov

V pričujočem zaključnem delu so uporabljeni naslednje veličine in simboli:

Veličina / ozn	Enota					
Ime	Simbol	Ime	Simbol			
čas	t	sekunda	S			
frekvenca	f	Hertz	Hz			
tlak	p	Pascal	Pa			
sila vzgona	$oldsymbol{f}_{ ext{vz}}$	Newton	N			
gostota	ho	-	${\rm kg/m^3}$			
masa telesa	$m_{ m t}$	kilogram	kg			
vhodna napestost	$U_{ m vh}$	volt	V			
Jacobijeva matrika	J	-	-			

Tabela 1: Veličine in simboli

Pri čemer so vektorji in matrike napisani s poudarjeno pisavo. Natančnejši pomen simbolov in njihovih indeksov je razviden iz ustreznih slik ali pa je pojasnjen v spremljajočem besedilu, kjer je simbol uporabljen.

Povzetek

Ključne beseda: beseda1, beseda2, beseda3

Povzetek 2

Abstract

The thesis addresses ...

Key words: word1, word2, word3

4 Abstract

1 Uvod

Uvod

2 Robotski manipulator PA-10 in senzor sile JR3

2.1 Robotski manipulator PA-10

Celotno delo, ki je v tem delu je bilo narejeno na robotskem mehanizmu Portable General Purpose Intellient Arm - PA10, proizvajalca Mitsubishi Heavy Industries. Gre za serijskega robota s sedmimi sklepi. Robotska roka tehta 36 kg in ima nosilnost 10 kg. Servo motorji v sklepih se napajajo preko izmenične napetosti. Prenosi med v sklepih so realizirani s mehanizmom harmonic drive. Proizvajalec navaja, da lahko bazo robota pritrdimo v katerokoli lego. To pomeni, da ga lahko fiksiramo bodisi na tla, na stane ali na strop. Za namene tega dela je bila baza robota fiksirana na tla.

2.1.1 Denavitt - Hartemberg parametri za robotski manipulator PA10

Robotski mehanizem PA-10 ima 7 prostostnih stopenj razporejenih tako, da spominjajo na človeško roko. Prvi trije sklepi so označeni kot ramenskio sklepi (shoulder), S1, S2, S3. Naslednja dva sta označena kot komolčni sklepi (elbow), E1, E2. Zadnja dva sklepa pa sta označena kot zapestna (wrist), W1, W2. Ker ima robot več kot 6 prostostnih stopenj ga uvrščamo med redundantne mehanizme. Vsi sklepi so rotacijski.

Proizvajalec v dokumentaciji navaja zadostno količino podatkov, da lahko

	Shoulder reach	: 315mm (base surface to S2)
A man lamath	Upper arm	: 450mm (S2 to E1 axes)
Arm length	Lower arm	: 500mm (E1 to W1 axes)
	Wrist reach	: 80mm (W1 to mechanical interface side)

Slika 2.1: Dimenzije roke za identifikacijo D-H parametrov

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0.315	q1
2	$-\frac{\pi}{2}$	0	0	q2
3	$\frac{\pi}{2}$	0	0.45	$q\beta$
4	$-\frac{\pi}{2}$	0	0	q4
5	$\frac{\pi}{2}$	0	0.5	q5
6	$-\frac{\pi}{2}$	0	0	q6
7	$\frac{\pi}{2}$	0	0.08	q7

Tabela 2.1: D-H parametri

uporabnik sam zgradi kinematičen model robota. S poznavanjem razdalj in postavitev sklepov je moč definirati Denavit-Hartenberg (kasneje D-H parametri) parametre.

S pomočjo D-H parametrov lahko definiramo geometrijski model robota oz. transformacijsko matriko $A_{PA10} = A_1 \times A_2 \times ... \times A_7$, ki nam preslika koordinate iz koordinatnega sistema baze (x_{base}) v koordinatni sistem na vrhu robota (x_{PA10}) v odvisnosti od kotov v sklepih. Tako velja relacija

$$x_{PA10} = A_{PA10} \times x_{base}$$

2.2 Servo Krmilnik

Proizvajalec ob robotskem mehanizmu dostavi tudi krmilnik. V krmilniku je so štiri ločeni krmilniki za servo motorje. Vsak servo krmilnik krmili dva sklepa 2.2 Servo Krmilnik 9

Slika 2.2: Skica robotskega mehanizma PA 10

razen enega. Krmilnik omogoča vodenje na dva načina. Prvi način predvideva, da motorje krmilimo navorno, drugi pa hitrostno. Razlika je tudi v regulatorjih. Navorno krmiljenje je realizirano z analognim P regulatorjem toka, hitrostna regulacija pa je realizirana z digitalnim PI regulatorjem s frekvenco priblićno 1500 Hz.

Na zadnji strani krmilinka je stikalo s katerim lahko priklopimo med načinom delovanj imenovanim "Teach Mode" ter "Run mode". Ko je krmilnik nastavljen na "Teach Modešo hitrosti v sklepih omejene tako, da se lahko vrh robota premika s maksimalno hitrostjo 250 mm/s

Ob vžigu krmilnika se parametri za vodenje robota naložijo iz EEPROM tabele v RAM. Med temi parametri so recimo tudi ojačanje proporcionalnega ter integracijskega dela regulatorja, limite posameznih stopenj, razmerje prenosa zobnikov, itd.

Referenčne navore ali hitrosti v sklepih na servo krmilniku nastavljamo preko zunanjega vmesnika. Krmilnik ima ARCNET vmesnik, ki podpira serijsko komunikacijo po ARCNET protokolu. Krmilink ima ločen konektor za vhod (Rx) ter izhod (Tx). Uporabljena so optična vodila. Za komunikacijo s servo krmilnikom je bil v namen tega dela narejen vmesnik, ki je podrobneje opisan v poglavju XXX.

2.2.1 Komunikacija z ARCNET vmesnikom

ArcNET vmesnik na krmilniku skrbi za komunikacijo med servo krmilniki ter visokonivojskim vmesniku. Dovoli hitrost komunikacije do 5 Mb/0.s Njegova naloga je interpretirati dobljene pakete, primerno nastaviti parametre na servo krmilniku ter posredovati primeren odgovor višjenivojskemu vmesniku. Ko višjenivojski vmesnik ne pošilja nobenih ukazov je ARCNET vmesnik v čakanju. V tem stanju čaka na primerno sestavljen paket. Vsak paket se začne z veliko tiskano črko zapisano v 8-bitnem ASCII formatu. Z različnimi črkami lahko izberemo različna stanja oz. načine delovanja ARCNET vmesnika:

2.2 Servo Krmilnik 11

- Izpis EEPROM tabele
- Vpis v EEPROM tabelo
- Vpis v RAM tabelo
- Kopiranje iz RAM v EEPROM tabelo
- Postavitev kotov na ničelno vrednost
- Sporstitev zavor
- Vodenje sklepov

Tako lahko uporabnik poljubno spremeni razne parametre, ki se uporabljajo za vodenje robota. Možno je na primer spremeniti ojačanja PI regegulatorja, vendar se teh funkcionalosti v tem delu ni podrobneje raziskalo saj ni bilo potrebe po tem.

V tem delu se je v večini uporabljalo način za vodenje sklepov. Ta način se izbere tako, da se ARCNET vmesniku najprej pošlje ukaz, ki se začne z velikim tiskanim S (ASCII DEC 65), nadaljuje se s pošiljanjem paketov, ki se začnejo s veliko tiskano črko C (ASCII DEC 67) ter zaključi s tem, da se pošlje paket, ki se začne z velikim tiskanim E (ASCII 69). Pri tem načinu delovanja je potrebno posvetiti nekaj pozornosti hitrosti pošiljanja, saj, če paketi ne pridejo v intervalu specificiranem na krmilniku bo ARCNET vmesnik šel iz tega načina delovanja nazaj na način čakanje.

Paket, ki se začne s C in nosi podatke o krmiljenju sklepov robota je velik 35 bajtov, 5 za vsak sklep. Prvi bajt je kontrolni in samo prvi trije biti nosijo podatke o vodenju:

- 1. vklop ali izklop mehanske zavore (1 vklop, 0 izklop)
- 2. vklop ali izklop servo motorja (1 vklop, 0 izklop)

Slika 2.3: Način za krmiljenje robota

3. izbira navornega ali hitrostnega načina (1 - navorni, 0 - hitrostni)

Drugi in tretji bajt nosijo podatek o referenčnem navoru na sklepu. Ta podatek bo uporabljen le, če je servo motor nastavljen na navorni način delovanja. Dvo bajtni podatek pa je v formatu 0.001 Nm/digit. Četrti in peti bajt nosijo podatek o referenčni hitrosti na sklepu. Podatek je tako kot pri navornem delovanju v uporabi le, ko vodimo servo motor na hitrostnem načinu. Dvo bajtni podatek je v formatu 0.0002 rad/s/digit.

2.3 Senzor sile in navorov - JR3

Za namene tega dela se je med vrhom robota ter prijemalom pritrdilo senzor sil JR3. Senzor nam omogoča merjenje sil in navorov v X, Y in Z smeri. Sensor je narejen iz uporovnih lističev porazdeljenih po notranjosti. Iz specifikacij senzorja je razvidno, da uporablja 8 uporovnih lističev. S tem, ko na senzor deluje zunanja sila ali navor, se upornost na uporovnih lističih spremeni. Senzor sile JR3 ima v svoji notranjosti poleg uporovnih lističev še AD-pretvornik. Iz senzorja tako dobimo podatke o navoru v digitalnem zapisu. Senzor navadno priključimo preko

6 ali 8 pinskega kabla na osebni računalnik, na katerem je kartica, ki skrbi za digitalno obdelavo signala. Kartice na osebnem računalniku so v ISA ali PCI izvedbi. Za potrebe tega dela se je uporabljala kartica na ISA vodilu. Na kartici je vezje za digitalno procesiranje signalov. V dokumentaciji kartice so opisani trije nizkoprepustni filtri z različnimi mejnimi frekvencami. V tem delu se je uporabilo filter z mejno frekvenco 500 Hz.

1.

3 strežnik

V sklopu tega dela je nastal UDP - strežnik, ki skrbi za komunikacijo med servo krmilnikom ter programom za kontrolo. Strežniški program je nastal na operacijskem sistemu Linux ter v programskem jeziku C. Razlog za to je bila zahteva, da je čim bližje realnemu času - real time. Strežnik opravlja glavni program s frekvenco 500 Hz.

3.1 protocol

3.2 Razlogi za strežnik

16 strežnik

4 Admitančno krmiljenje

- 4.1 Teorija
- 4.2 Implementacija
- 4.3 Rezultati

5 Krmiljenje z inverzno dinamiko

- 5.1 Teorija
- 5.2 Implementacija
- 5.3 Rezultati

6 Rezultati

22 Rezultati

7 Simulink knjižice

Ob nastajanju tega dela so bile razvite razne simulink knjižnice za krmiljnenje robota PA10. Namen teh je omogočiti uporabo robotskega mehanizma PA10 osebam, ki niso seznanjene z vsemi podrobnosti.

8 Zaključek

Zaključek Zaključek

Dodatek

28 Dodatek

A Appendix 1

30 Appendix 1

B Appendix 2

32 Appendix 2

C Appendix 3

Postopek dela:

34 Appendix 3

D Predloge za navajanje literature baza BibTex

```
@ARTICLE{clanek1,
   author = "L[eslie] A. Aamport",
   title = "The Gnats and Gnus Document Preparation System",
   journal = "\mbox{G-Animal's} Journal",
   year = 1986,
   volume = 41,
   number = 7,
   pages = "73-77",
   month = jul,
}
@BOOK{knjiga1,
   author = "Donald E. Knuth",
   title = "Seminumerical Algorithms",
   publisher = "Addison-Wesley",
   address = "Reading, Massachusetts",
   year = "1981",
}
@INPROCEEDINGS{vzborniku,
   author = "Alfred V. Oaho and Jeffrey D. Ullman and Mihalis Yannakakis",
   title = "On Notions of Information Transfer in {VLSI} Circuits",
   editor = "Wizard V. Oz and Mihalis Yannakakis",
   booktitle = "Proc. Fifteenth Annual ACM" # STOC,
```

```
pages = "133--139",
  month = mar,
  year = 1983,
  address = "Boston",
  publisher = "Academic Press",
}

@misc{spletna_stran,
  author = "LLC",
  title = "{MS Windows NT Kernel Description [Online]}",
  howpublished = "Dosegljivo: \url{http://web.archive.org}",
  note = "[Dostopano: 19. 4. 2013]"
}
```