

Екзамен з лінійної алгебри

Фамілія: Захаров Група: МП11

Ім'я: Дмитро **Білет:** 56

Задание 1

Означення детермінанту. Нехай в нас є деяка матриця $A = \{a_{i,j}\}_{i,j=1}^n$. За означенням, детермінант матриці:

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{j=1}^n a_{j,\sigma(j)}$$

Тут S_n — множина перестановок $\sigma=\begin{pmatrix}1&2&\dots&n\\\sigma(1)&\sigma(2)&\dots&\sigma(n)\end{pmatrix}:\{1,\dots,n\} o \{1,\dots,n\}.$

Чи є вірним, що для довільних матриць $\det(A+B)=\det A+\det B$? Ні, це неправильно. Наприклад, візьмемо $A=\begin{pmatrix}1&0\\0&1\end{pmatrix}=B$. Маємо $\det A=\det B=1$. Якщо візьмемо суму, то отримаємо $A+B=\begin{pmatrix}2&0\\0&2\end{pmatrix}$, звідси $\det(A+B)=4\ne\det A+\det B=2$. Отже, це дійсно не виконується.

Однак, є випадок, коли це виконується: $A=\alpha\in\mathbb{R}, B=\beta\in\mathbb{R}$. В таком разі дійсно $\det(A+B)=\det(\alpha+\beta)=\alpha+\beta=\det A+\det B$.

Для будь-яких більших розмірностей матриць за n>1 можна привести контрприклад $A=B=E_n$. Тоді $\det A=\det B=1$, а $\det (A+B)=2^n\neq 2$.

Обчисліть визначник матриці:

$$A = egin{pmatrix} 0 & 0 & \dots & 0 & a_1 \ 0 & 0 & \dots & a_2 & 0 \ dots & dots & \dots & dots & dots \ a_n & 0 & \dots & 0 & 0 \end{pmatrix}$$

Змінимо 1ий рядок з nим, 2ий рядок з (n-1)им тощо. Отримаємо матрицю:

$$B = egin{pmatrix} a_n & 0 & \dots & 0 & 0 \ 0 & a_{n-1} & \dots & 0 & 0 \ dots & dots & \dots & dots & dots \ 0 & 0 & \dots & 0 & a_1 \end{pmatrix}$$

її детермінант вже знаходиться легко: $\det B = \prod_{i=1}^n a_i$. При цьому, з властивостей детермінанту, ми отримали, що $\det A = (-1)^m \det B$, де m — кількість перестановок рядків. Кількість перестановок дорівнює $\lfloor n/2 \rfloor$, тому маємо:

$$\det A = (-1)^{[n/2]} \prod_{j=1}^n a_j$$

Знайдемо **ранг матриці**. Зручно розглянути стовпчатий ранг матриці B (який з доведеної в курсі лінійної алгебри теореми рівний усім рангам матриці):

$$\mathbf{a}_1 = egin{pmatrix} a_n \ 0 \ dots \ 0 \end{pmatrix}, \mathbf{a}_2 = egin{pmatrix} 0 \ a_{n-1} \ dots \ 0 \end{pmatrix}, \ldots, \mathbf{a}_n = egin{pmatrix} 0 \ 0 \ dots \ dots \ a_1 \end{pmatrix}$$

(коментар: оскільки при зміні рядків ранг не змінюється, ми розглянемо для зручності матрицю B)

Твердження. $\operatorname{rg}(A) = n - k$, де k — кількість нульових векторів з $\mathbf{a}_1, \mathbf{a}_2, \dots$

Доведення. Приберемо усі нульові вектори з $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$. Без обмеження загальності, нехай ми отримали $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, k < n$. Доведемо, що те, що залишилось — лінійно незалежні вектори. Розглянемо їх лінійну комбінацію:

$$lpha_0 egin{pmatrix} a_n \ 0 \ dots \ 0 \end{pmatrix} + lpha_1 egin{pmatrix} 0 \ a_{n-1} \ dots \ 0 \end{pmatrix} + \cdots + lpha_{k-1} egin{pmatrix} 0 \ \cdots \ a_{n-k} \ \cdots \ 0 \end{pmatrix} = heta$$

Звідки маємо систему відносно $lpha_0,\ldots,lpha_{k-1}$:

$$\alpha_0 a_n = 0, \ \alpha_1 a_{n-1} = 0, \ldots, \ \alpha_{k-1} a_{n-k} = 0$$

Оскільки вектори ненульові, то $a_i \neq 0, i=\overline{n-k,n}$, отже $\alpha_0=\alpha_1=\dots=\alpha_{k-1}=0$. В такому разі дійсно маємо систему незалежних векторів.

При додаванні будь-якого з векторів $\mathbf{a}_{k+1}, \mathbf{a}_{k+2}, \dots, \mathbf{a}_n$, які є нульовими, до нашого набору зробить цей набір лінійно залежним (цю теорему ми вже доводили). Отже твердження доведено.

Задание 2

Нехай в нас ε L — лінійний простір в полі F.

Означення. Відображення $\mathcal{A}:L o L$ називається лінійним оператором в L, якщо

$$orall \mathbf{x}, \mathbf{y} \in L \ orall \lambda, \mu \in F : \mathcal{A}(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda \mathcal{A}(\mathbf{x}) + \mu \mathcal{A}(\mathbf{y})$$

Питання. Чи є відображення $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2, \mathcal{A}inom{x_1}{x_2}=inom{x_1-3}{2x_2}$ лінійним оператором у просторі \mathbb{R}^2 ?

По-перше, \mathbb{R}^2 — дійсно лінійний простір в полі \mathbb{R} . Тепер розглянемо вираз

$$\mathcal{A}(\lambda\mathbf{x}+\mu\mathbf{y})=\lambda\mathcal{A}(\mathbf{x})+\mu\mathcal{A}(\mathbf{y})$$
 для довільних $\mathbf{x}=egin{pmatrix}x_1\x_2\end{pmatrix},\mathbf{y}=egin{pmatrix}y_1\y_2\end{pmatrix}$:

$$\mathcal{A}\left(\lambdaegin{pmatrix} x_1 \ x_2 \end{pmatrix} + \muegin{pmatrix} y_1 \ y_2 \end{pmatrix}
ight) = \mathcal{A}egin{pmatrix} \lambda x_1 + \mu y_1 \ \lambda x_2 + \mu y_2 \end{pmatrix} = egin{pmatrix} \lambda x_1 + \mu y_1 - 3 \ 2\lambda x_2 + 2\mu y_2 \end{pmatrix}$$

Якщо розглянути
$$\lambda\mathcal{A}(\mathbf{x})+\mu\mathcal{A}(\mathbf{y})=\lambdainom{x_1-3}{2x_2}+\muinom{y_1-3}{2y_2}=$$

 $egin{pmatrix} (\lambda x_1 + \mu y_1 - 3(\lambda + \mu) \ 2\lambda x_2 + 2\mu y_2 \end{pmatrix}$, то бачимо, що це не завжди збігається з $\mathcal{A}(\lambda \mathbf{x} + \mu \mathbf{y})$, а

лише коли $\lambda+\mu=1$. Дійсно, наведемо контрприклад: нехай $\mathbf{x}=(0,1)^T, \mathbf{y}=(1,0)^T,$ а $\lambda=\mu=1$. В такому разі $\mathbf{x}+\mathbf{y}=(1,1)^T.$ Тоді:

$$\mathcal{A}\mathbf{x} = (-2,0)^T, \; \mathcal{A}\mathbf{y} = (-3,2)^T, \; \mathcal{A}(\mathbf{x}+\mathbf{y}) = (-2,2)^T
eq \mathcal{A}\mathbf{x} + \mathcal{A}\mathbf{y}$$

Що суперечить визначенню.

Питання. Наведіть приклад лінійного оператора, який у всіх базисах має одну й ту саму матрицю.

Отже, нехай в нас матриця A_e оператора в базисі $\{{\bf e}_i\}$. Нехай в нас є матриця переходу $T_{e \to u}$ до нового базису $\{{\bf u}_i\}$. Матриця цього оператора в базисі $\{{\bf u}_i\}$:

$$A_u = T_{e
ightarrow u}^{-1} A_e T_{e
ightarrow u}$$

За умовою $A_u=A_e=A$. Тому маємо, що для будь-яких матриць переходу T:

$$A = T^{-1}AT \rightarrow TA = AT \rightarrow TA - AT = 0$$

Іншими словами, треба знайти будь-які A, що ε комутативні за множенням до будь-яких матриць T.

В якості прикладу можна взяти A=O — нульову матрицю (тобто $\mathcal{A}\mathbf{x}=\theta$) або одиничну матрицю A=E (тобто $\mathcal{A}\mathbf{x}=\mathbf{x}$).

Задание 3

Означення. Нехай маємо євкілдовий простір E, в якому $\mathcal{A}: E \to E$ — лінійний оператор. Тоді оператор є самоспряженим, якщо $\mathcal{A} = \mathcal{A}^*$ (тобто спряжений до оператора дорівнює самому оператору). Іншими словами:

$$orall \mathbf{x}, \mathbf{y} \in E : \langle \mathcal{A}\mathbf{x}, \mathbf{y}
angle = \langle \mathbf{x}, \mathcal{A}\mathbf{y}
angle$$

Питання: навести приклад лінійного оператора в \mathbb{R}^3 , який не є самоспряженим. Дійсно, нехай лінійному оператору $\mathcal A$ відповідає матриця A у деякому ортонормованому базисі. В такому разі, як ми доводили, $A^* = \overline{A^T} = A^T$ (оскілки ми в \mathbb{R}^3), тому нам достатньо

взяти таку матрицю, що $A
eq A^T$. Дійсно, наприклад $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, що відповідає

лінійному оператору $\mathcal{A}egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} x_1 \ x_2 \ x_1 + x_3 \end{pmatrix}$. Тоді якщо наприклад $\mathbf{x} = egin{pmatrix} 1 \ 0 \ 2 \end{pmatrix}, \mathbf{y} =$

 $\begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$, то маємо:

$$egin{aligned} \mathcal{A}\mathbf{x} = egin{pmatrix} 1 \ 0 \ 3 \end{pmatrix}
ightarrow \langle \mathcal{A}\mathbf{x}, \mathbf{y}
angle = 15 \end{aligned}$$

$$egin{aligned} \mathcal{A}\mathbf{y} = egin{pmatrix} 3 \ 0 \ 7 \end{pmatrix}
ightarrow \langle \mathbf{x}, \mathcal{A}\mathbf{y}
angle = 17 \end{aligned}$$

Отже маємо $\langle \mathcal{A}\mathbf{x}, \mathbf{y} \rangle \neq \langle \mathbf{x}, \mathcal{A}\mathbf{y} \rangle$.

Питання: коли число $\lambda = (a-2) + (a+6)i$ може бути власним числом деякого самоспряженого оператора $\mathcal A$ у комплексному євклідовому просторі?

Твердження. Якщо \mathcal{A} — самоспряжений оператор, то $\lambda_i \in \mathbb{R}$, де λ_i — власні числа \mathcal{A} .

Доведення. Розглянемо деяке λ . Оскільки $\chi_{\mathcal{A}}(\lambda)=0$, то $\exists \mathbf{x}_0 \in E: \mathcal{A}\mathbf{x}_0=\lambda \mathbf{x}_0, \mathbf{x}_0 \neq \theta$. В такому разі, оскільки \mathcal{A} — самоспряжений оператор:

$$\langle \mathcal{A}\mathbf{x}_0,\mathbf{x}_0\rangle = \langle \mathbf{x}_0,\mathcal{A}\mathbf{x}_0\rangle \to \langle \lambda\mathbf{x}_0,\mathbf{x}_0\rangle = \langle \mathbf{x}_0,\lambda\mathbf{x}_0\rangle \to \lambda = \overline{\lambda} \to \lambda \in \mathbb{R}$$

Отже, якщо $\lambda(a)$ — власне число самоспряженого оператору \mathcal{A} , то $\lambda \in \mathbb{R}$, отже $\mathrm{Im}(\lambda)=0$, тому маємо, що $a+6=0 \to a=-6$. Звідси $\lambda=-8$ — єдине можливе власне число.

Наведемо приклад для \mathbb{R}^2 . Маємо, що матриця повинна бути симетричною (тобто $A=A^T$). Спробуємо підібрати цю матрицю так, щоб:

1)
$$trace(A) = -8$$
,

2)
$$\det A = 0$$
,

3)
$$A = A^{T}$$
.

В такому разі $\chi_A(\lambda)=\lambda^2-{
m trace}(A)\cdot\lambda+{
m det}\,A=\lambda^2+8\lambda\to\lambda_1=0, \lambda_2=-8.$ Отже, поставимо на головну діагональ числа -2,-6. Отже, матриця буде мати вигляд $A=\begin{pmatrix} -2&\mu\\ \mu&-6 \end{pmatrix}$. Оскільки ${
m det}\,A=0$, оберемо $\mu=\sqrt{12}=2\sqrt{3}.$ Отже, в якості приклада маємо не дуже тривіальну, однак дійсно самоспряжену матрицю з $\lambda=-8$:

$$A=egin{pmatrix} -2 & 2\sqrt{3} \ 2\sqrt{3} & -6 \end{pmatrix},\; \mathcal{A}egin{pmatrix} x_1 \ x_2 \end{pmatrix}=egin{pmatrix} -2x_1+2\sqrt{3}x_2 \ 2\sqrt{3}x_1-6x_2 \end{pmatrix}$$

Перевіримо, що це дійсно самоспряжений оператор. Розглянемо довільні $\mathbf{x}=egin{pmatrix}x_1\\x_2\end{pmatrix}, \mathbf{y}=egin{pmatrix}y_1\\y_2\end{pmatrix}$. Маємо:

$$\langle \mathcal{A} {f x}, {f y}
angle = \langle inom{-2x_1 + 2\sqrt{3}x_2}{2\sqrt{3}x_1 - 6x_2}, inom{y_1}{y_2}
angle
angle = -2x_1y_1 + 2\sqrt{3}x_2y_1 + 2\sqrt{3}x_1y_2 - 6x_2y_2$$

$$\langle \mathbf{x}, \mathcal{A}\mathbf{y}
angle = \langle inom{x_1}{x_2}, inom{-2y_1 + 2\sqrt{3}y_2}{2\sqrt{3}y_1 - 6y_2}
angle
angle = -2x_1y_1 + 2\sqrt{3}y_2x_1 + 2\sqrt{3}x_2y_1 - 6x_2y_2$$

Бачимо $\langle \mathcal{A}\mathbf{x},\mathbf{y} \rangle = \langle \mathbf{x},\mathcal{A}\mathbf{y} \rangle \ \forall \mathbf{x},\mathbf{y} \in E$, отже він дійсно є самоспряженим.