1. Curvas en el plano y en el espacio

1.1. Curvas en general

- Una curva plana es una aplicación continua $\alpha : I \subset \mathbb{R}^n$ definida por $\alpha(t) = (\alpha_1(t), \dots, \alpha_n(t))$.
- La **rapidez** es la derivada $\alpha'(t) = (\alpha'_1(t), \dots, \alpha'_n(t))$
- La **velocidad** es la norma de la rapidez $v_{\alpha}(t) = \|\alpha'(t)\|$
 - α es regular $\iff v_{\alpha}(t) > 0, \forall t \in I$
 - La derivada (o rapidez) normalizada es $T_{\alpha}(t) = \frac{\alpha'(t)}{v_{\alpha}(t)}$.
- La longitud es $l_{\alpha} = \int_{I} v_{\alpha}(t) dt$.
- \blacksquare Una parametrización es un difeomorfismo $\varphi:J\subset\mathbb{R}\to I\subset\mathbb{R}$
 - El signo de una parametrización es

$$\varepsilon(\varphi) = \begin{cases} +1 & \text{si } \varphi'(t) > 0, \forall t \in J \\ -1 & \text{si } \varphi'(t) < 0, \forall t \in J \end{cases}$$

- Una curva está parametrizada por longitud de arco o p.p.a $\iff \|\alpha'(t)\| = 1, \ \forall t \in I.$
- Si para dos curvas α , β existe φ difeomorfismo tal que $\alpha = \beta \circ \varphi$ decimos que $\alpha \sim \beta$
 - ullet \sim es una relación de equivalencia
 - Dos curvas en una misma clase de equivalencia comparten la traza o imagen.
 - Se cumple

$$\alpha'(t) = \beta'(\varphi(t))\varphi'(t)$$
$$\|\alpha'(t)\| =$$

- Una curva es **birregular** \iff para una parametrización α se tiene que α' y α'' son linealmente independientes.
 - En particular, $\alpha', \alpha'' \neq 0$ y por tanto α también es regular.
- El diedro de Frenet-Serret formado por los vectores

$$\mathbf{t}_{\alpha}(t) = \frac{\alpha'(s)}{\|\alpha'(s)\|}$$
$$\mathbf{n}_{\alpha}(t) = J\mathbf{t}_{\alpha}(s) \text{ con } J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

■ La **curvatura** (con signo)

$$k_{\alpha}(t) = \frac{\langle \mathbf{t}'_{\alpha}(t), \mathbf{n}_{\alpha}(t) \rangle}{\|\alpha'(t)\|}$$

$$k_{\alpha}(t) = \frac{\det(\alpha'(t), \alpha''(t))}{\|\alpha'(t)\|^{3}} \quad \text{si } \alpha \text{ regular}$$

$$k_{\alpha}(t) = \|\alpha''(t)\| \quad \text{si } \alpha \text{ está p.p.a.}$$

- El vector curvatura es $\mathbf{k}_{\alpha}(t) = k_{\alpha}(t)\mathbf{n}_{\alpha}(t)$
- El radio de curvatura

$$\rho_{\alpha}(t) = \frac{1}{k_{\alpha}(t)}$$

• El centro de curvatura

$$C_{\alpha}(t) = \alpha(t) + \frac{1}{k_{\alpha}(t)} \mathbf{n}_{\alpha}(t)$$

 $\bullet\,$ El circulo osculador o circunferencia osculatriz

$$\{p \in \mathbb{R}^2 : \|p - C_{\alpha}(t)\| = \frac{1}{k_{\alpha}(t)}, \text{ para } t \in I \text{ fijado } \}$$

■ Las ecuaciones de Frenet-Serret salen de tomar la submatriz 2×2 de las ecuaciones en el espacio.

1.2. Curvas en el espacio

■ El triedro de Frenet-Serret formado por los vectores

$$\begin{split} \mathbf{t}_{\alpha}(s) &= \frac{\alpha'(s)}{\|\alpha'(s)\|} \\ \mathbf{n}_{\alpha}(s) &= \frac{\mathbf{t}_{\alpha}'(s)}{\|\mathbf{t}_{\alpha}'(s)\|} \\ \mathbf{b}_{\alpha}(s) &= \mathbf{t}_{\alpha}(s) \times \mathbf{n}_{\alpha}(s) \end{split}$$

- Los 3 planos del triedro de Frenet-Serret para un punto $\alpha(s)$ de la curva [afines] son:
 - El **plano osculador** span $\{\mathbf{t}_{\alpha}(s), \mathbf{n}_{\alpha}(s)\} + \alpha(s)$ cuyos puntos P cumplen $\langle P \alpha(s), \mathbf{b}_{\alpha}(s) \rangle = 0$
 - El **plano normal** span{ $\mathbf{n}_{\alpha}(s), \mathbf{b}_{\alpha}(s)$ } + $\alpha(s)$ cuyos puntos P cumplen $\langle P \alpha(s), \mathbf{t}_{\alpha}(s) \rangle = 0$
 - El plano rectificante span $\{\mathbf{t}_{\alpha}(s), \mathbf{b}_{\alpha}(s)\} + \alpha(s)$ cuyos puntos cumplen $\langle P \alpha(s), \mathbf{n}_{\alpha}(s) \rangle = 0$
- La curvatura (siempre ≥ 0)

$$k_{\alpha}(s) = \frac{\|\mathbf{t}'_{\alpha}(s)\|}{\|\alpha'(s)\|}$$

$$k_{\alpha}(s) = \frac{\|\alpha'(s) \times \alpha''(s)\|}{\|\alpha''(s)\|^3} \quad \text{si } \alpha \text{ regular}$$

$$k_{\alpha}(s) = \|\alpha''(s)\| \quad \text{si } \alpha \text{ p.p.a}$$

• El vector curvatura

$$\mathbf{k}_{\alpha}(s) = \frac{\mathbf{t}_{\alpha}'(s)}{\|\alpha'(s)\|} \text{ colineal con } \mathbf{n}_{\alpha}(s)$$

■ La torsión

$$\tau_{\alpha}(s) = -\frac{\langle \mathbf{b}_{\alpha}'(s), \mathbf{n}_{\alpha}(s) \rangle}{\|\alpha'(s)\|}$$
$$\tau_{\alpha}(s) = \frac{\det(\alpha'(s), \ \alpha''(s), \ \alpha'''(s))}{\|\alpha'(s) \times \alpha''(s)\|^2} \text{ si } \alpha \text{ regular}$$

■ Las ecuaciones de Frenet-Serret

$$\mathbf{t}'_{\alpha} = k_{\alpha} v_{\alpha} \mathbf{n}_{\alpha}$$

$$\mathbf{n}'_{\alpha} = -k_{\alpha} v_{\alpha} \mathbf{t}_{\alpha} + \tau_{\alpha} v_{\alpha} \mathbf{b}_{\alpha}$$

$$\mathbf{b}'_{\alpha} = -v_{\alpha} \tau_{\alpha} \mathbf{n}_{\alpha}$$

$$\begin{pmatrix} \mathbf{t}'_{\alpha} \\ \mathbf{n}'_{\alpha} \\ \mathbf{b}'_{\alpha} \end{pmatrix} = \|\alpha'(s)\| \begin{pmatrix} 0 & k_{\alpha} & 0 \\ -k_{\alpha} & 0 & \tau_{\alpha} \\ 0 & -\tau_{\alpha} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{t}_{\alpha} \\ \mathbf{n}_{\alpha} \\ \mathbf{b}_{\alpha} \end{pmatrix}$$

2. Superficies

■ Plano tangente (afín) a S en $p = \mathbf{X}(u, v) \in S$

$$T_p S = p + \underbrace{\operatorname{span}\{\mathbf{X}_u(u,v), \mathbf{X}_v(u,v)\}}_{\text{plano tangente vectorial}}$$

• Plano tangente sin parametrización

$$T_p S = \{ \alpha'(0) \mid \varepsilon > 0, \alpha : (-\varepsilon, \varepsilon) \to S$$
$$\land \alpha(0) = p$$
$$\land \alpha \text{ differenciable } \}$$