Roteiro de produção da AI-0100

taxas de variação e derivadas

Dr. Ivan Ramos Pagnossin
5 de abril de 2012

1 Orientações

[Al rodando num LMS \sim (Nome do aluno),] nesta atividade interativa nós exploraremos os conceitos de taxa de variação média e instantânea (derivadas) de uma função de uma variável ($f : \mathbb{R} \to \mathbb{R}$). A atividade consiste numa sequência de explicações, questões e instruções, que devem ser executadas na figura interativa ao lado.

Você pode seguir esses passos quantas vezes quiser sem valer nota, bem como recomeçá-los a qualquer momento. Quando você achar que já está pronto para ser avaliado, pressione o botão "valendo nota". A partir deste momento cada nova tentativa será avaliada, de zero a cem pontos, e deverá ser executada até o fim (o botão "recomeçar" não terá efeito). Sua nota será a média aritmética de todas as suas tentativas.

obs.: para responder às questões, talvez você precise modificar a visualização da janela acima. Par isso, utilize os botões no canto superior esquerdo dela: o botão mais à esquerda (seta) lhe permite arrastar os pontos *A* e *B*, enquanto o outro botão lhe permite mover o centro da janela e ampliar/reduzir o gráfico. Caso você não esteja vendo os pontos *A* e *B*, utilize esses botões agora para ajustar a visualização. ●

Comentário técnico: quando o usuário acessar a atividade interativa pela primeira vez, uma configuração de exercício deve ser sorteada para aquela tentativa. Esta configuração permanece em uso até que o usuário pressione o botão "recomeçar".

Uma "configuração de exercício" é composta por uma função f, sua derivada f', um x_A e um x_B inicial.

2 Taxa de variação média

A taxa de variação média de uma função f é uma medida de quão rapidamente f(x) varia quando variamos x. Dito de outra, se calcularmos f em x_A e depois em x_B (veja a figura), qual será a variação em f associada a esta variação em f? Uma forma bastante comum de expressar isso é simplesmente dividir uma variação pela outra:

Taxa de variação média de
$$f \doteq \frac{f(x_B) - f(x_A)}{x_B - x_A} = \frac{\Delta f}{\Delta x}$$
,

onde o Δ é usado para representar uma variação. Ou seja, Δx é uma variação em x, enquanto Δf é uma variação em f. Δx é arbitrário (de x_A até x_B , no caso), pois x é a variável independente, mas Δf depende da variação em x (na verdade, depende de x_A e x_B). \bullet

obs.: o símbolo \doteq denota que a taxa de variação média é *definida* daquela forma (poderia haver uma outra forma de definir a taxa de variação média).

A figura acima apresenta o gráfico de f, uma função escolhida aleatoriamente pelo *software*, bem como os pontos A e B mencionados no parágrafo anterior. Calcule a taxa de variação média da função neste caso (isto é, calcule a razão $\Delta f/\Delta x$) e escreva seu resultado abaixo. Pressione "avançar" para prosseguir (você pode errar a resposta em até 1%).

Comentário técnico: a avaliação deve ser feita usando as coordenadas de A e B, questionando o *applet* através da interface Javascript que ele expõe. A resposta esperada é $(y_B - y_A)/(x_B - x_A)$ e deve haver uma tolerância de 1% na avaliação da resposta do aluno. Exibir os elementos C, \bar{AC} , \bar{BC} e θ , no *applet*.

Observe o triângulo ABC na figura. A relação $\Delta f/\Delta x$ é simplesmente a tangente do ângulo θ , ou ainda o coeficiente angular da reta azul, ou ainda a inclinação dessa reta.

3 Taxa de variação instantânea

Ainda mais importante é a *taxa de variação instantânea* ou *derivada*, que é simplesmente a taxa de variação média de f quando escolhemos Δx muito pequeno. Podemos representar esta ideia usando limites, assim:

Taxa de variação instantânea
$$=\lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \frac{df}{dx}$$
.

Para calcular analiticamente a taxa de variação instantânea você precisa da expressão de f, que você ainda não tem. Mas é possível estimá-la a partir da figura acima: arraste o ponto B para **muito** perto de A (use a ferramenta zoom). Este processo simboliza fazer $\Delta x \rightarrow 0$.

Você pode estimar visualmente a qualidade da sua estimativa comparando a reta azul com a reta cinza. Esta é a *tangente* a f em x_A , ou a *inclinação* de f em x_A , ou a *taxa de variação instantânea* de f em x_A , ou a *derivada* de f em x_A .

Agora faça novamente o cálculo da taxa de variação para A e B muito próximos (você pode errar a resposta em até 10%):

Comentário técnico: salvar x_A , pois será necessário restaurá-lo em seguida.

A avaliação deve ser feita usando a função derivada de f, parte da configuração de exercício. A resposta esperada é $f'(x_A)$, com tolerância de 10%.

Usuário errou \sim A resposta correta é ⟨resposta⟩. Perceba que, há pouco, insistentemente escrevi "em x_A ". Isto é importante por que essa quantidade, a taxa de variação instantânea (ou derivada, ou inclinação...) depende do valor de x que escolhemos para calculá-la. Experimente arrastar A (isto é, variar x_A) e veja como a reta tangente muda. •

Comentário técnico: Restaurar x_A salvo há pouco.

Agora que você estimou a taxa de variação instantânea, posso dizer que função é esta que você está vendo na figura: $f(x) = \langle \text{função aleatória} \rangle$.

Determine — analiticamente — a derivada de f para x qualquer e, em seguida, calcule o valor da derivada em $x = x_A$. Escreva o resultado abaixo. Atenção: a tolerância para erros no valor é agora muito menor (< 1%) que na questão anterior, onde você estava apenas estimando a derivada. Por isso, calcule a derivada analiticamente, isto é, à mão (**não** faça como você fez no exercício anterior).

4 A reta tangente a f

Se você compreendeu as ideias anteriores, então você já sabe o que é uma derivada. Mas nós ainda não terminamos. Frequentemente é útil saber determinar a expressão da reta tangente a f em x_A (a expressão da reta cinza). Isto pode ser feito através da expressão geral da reta:

$$y(x) - y(x_A) = m(x - x_A),$$

onde m é o coeficiente angular da reta. Como estamos interessados na reta tangente a f em x_A , m é simplesmente a derivada de f ali, ou o coeficiente angular de f em x_A , ou...

Preencha abaixo os campos com as informações necessárias para representar a reta cinza:

$$y(x) =$$
 $+$ $(x -$

obs.: a expressão acima pode ser escrita numa forma equivalente que talvez lhe seja mais familiar: $y - y_0 = m(x - x_0)$. Compare-as.

Comentário técnico: as respostas esperadas são: y_A , $f'(x_A)$ e x_A , respectivamente. Elas têm pesos iguais e tolerância de 1%.

Desafio: qual é a expressão da reta *perpendicular* à curva f em x_A ? Dica: se m_1 é o coeficiente angular da reta tangente e m_2 , o da reta perpendicular, então $m_1m_2 = -1$ (da geometria analítica), desde que nenhum dos dois seja zero.