Necessity of Network-Application Collaboration in Wireless Access Scenarios

(draft-meng-tsvwg-wireless-collaboration)

Tong Meng Hang Shi (Huawei)

Many Drafts on How to Accomplish App-Net Collaboration

- RFC 9419 on Path Signals
 - > Design Principles
- SADCDN
 - > Append network-host signaling in-band with data packets
- CIDFI
 - > Network-server signaling relayed by client
- FAST
 - > IPv6 Hop-by-Hop option
- MED
 - > UDP Option
- ...

Scope

• Scenario: Interactive and immersive (Metaverse) applications with wireless access links

- Immersive: ultra-high bw
 →30-100+ Mbps bitrate
- Interactive: ultra-low latency
 ≥20-50 ms for transport

- What we discuss:
 - > Why application-network collaboration is necessary
- Out-of-scope:
 - > how to accomplish application-network (host-network) signaling

Tradeoffs to Mitigate/Compensate Inherently Unreliable Wireless Links

- Modulation and Coding Scheme (MCS)
 - > Higher-order modulation, less coding redundancy > Higher spectral efficiency, larger bw upper bound, but higher loss

Tradeoffs to Mitigate/Compensate Inherently Unreliable Wireless Links

- Modulation and Coding Scheme (MCS)
 - > Higher-order modulation, less coding redundancy \rightarrow Higher spectral efficiency, larger bw upper bound, but higher loss

- L2 retransmission
 - > Exposes lower loss rate to transport layer and above, but increases tail latency
 - > Causes out-of-order delivery
- L2 reordering
 - > Guarantees in-order delivery, but further increase tail latency
 - > May cause throughput degradation to congestion control

Tradeoffs of Wireless QoS

• A single pervasive wireless QoS cannot efficiently guarantee high bandwidth, low latency, high reliability at the same time

QoS Objective	Wireless Configurations
High spectral efficiency	High-order MCS
Stable and low latency	Disable L2 retransmission and reordering
Low loss	Low-order MCS, OREnable L2 retransmission with reordering

AS-IS: Default Cellular Wireless Configuration

MCS adaptively set to satisfy a 10% low-layer transport block error rate MAC retransmission with reordering

Pros:

- Almost no random transportlayer packet losses in most cases
- Traditional TCP runs well

Cons:

- Tail latency above 100ms even for 5G
- Application-layer mechanisms (e.g., WebRTC jitter buffer) do no help

L4S Atop Default 5G QoS Cannot Efficiently Guarantee Ultra Low Wireless Latency

- RED-style ECN marking at 5G gNB (low CE marking threshold high CE marking threshold)
- IPerf using BBRv2 for bandwidth, concurrent ping for RTT
- LOS path near gNB, no neighbor cell interference, no background traffic

Ultra latency sensitivity comes with 30% lower utilization

Tail latency limited by L2 retransmission/reordering

Cannot efficiently satisfy high-bandwidth low-latency requirements of interactive immersive Metaverse applications

App-Net Collaboration Needed

Default pervasive network QoS

High-performance congestion control and app-layer optimization

Collaborative stream/packet prioritization/differentiation

Abdelhak Bentaleb, et al. Toward One-Second Latency: Evolution of Live Media Streaming

Thank You