CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A method of integrating acoustic data using speech recognition, comprising
2	the steps of:
3	detecting voice data on a first computer and at least a second
4	computer;
5	identifying the voice data as a first master speaker associated with a
6	speech recognition system residing on the first computer;
7	providing the voice data of the first master speaker, from the first
8	computer, to the at least the second computer having a speech recognition
9	system residing thereon;
10	analyzing the voice data residing on the first computer and the at least
11	the second computer; and
12	integrating the analyzed voice data from the first computer and the at
13	least the second computer into a single decoding output.
1	2. The method of claim 1, further comprising the steps of:
2	detecting a second voice data on the first computer and at least the
3	second computer;
4	identifying the second voice data as being a second master speaker
5	associated with the speech recognition system of the at least the second
6	computer;
7	providing the second voice data to the first computer from the at least
8	second computer;
9	analyzing the second voice data residing on the first computer and the

10	at least the second computer; and
11	integrating the analyzed voice data and the analyzed second voice data
12	into the single decoding output.
1	3. The method of claim 2, wherein the at least the second computer is a
	-
2	second and third computer.
1	4. The method of claim 2, wherein:
2	the identifying the voice data as the first master speaker comprises the
3	step of determining that a volume of the voice data is higher than a
4	predetermined threshold value associated with the first computer; and
5	the identifying the second voice data as the second master speaker
6	comprises the step of determining that a volume of the second voice data is
7	higher than the predetermined threshold value associated with the at least the
8	second computer.
1	
1	5. The method of claim 2, further comprising the step of one of (i)
2	summarizing the analyzed voice data and the second voice into a single
3	transcript and (ii) editing the analyzed voice data and the second voice data.
1	6. The method of claim 2, wherein:
2	the analyzed voice data on the first computer is W1 and the analyzed
3	voice data on the at least the second computer is W2; and
4	the step of analyzing the voice data includes:
5	providing a weight to the voice data of W1 and the voice data
6	of W2;
7	comparing the weight of W1 to W2; and
8	selecting a higher or equal weight of W1 or W2 as a more

accurate rendition of the voice data.

9

1	7. The method of claim 6, wherein:
2	the analyzed second voice data on the first computer is W3 and the
3	analyzed voice data on the at least the second computer is W4; and
4	the step of analyzing the second voice data includes:
5	weighting the second voice data of W3 and the second voice
6	data of W4;
7	comparing the weight of W3 to W4; and
8	selecting a higher or equal weight of W3 or W4 as a more
9	accurate rendition of the second voice data.
1	8. The method of claim 2, wherein the step of analyzing the voice data and
2	the second voice data residing on the first computer and the at least the second
3	computer includes providing a confidence level to each word associated with
4	both the voice data and the second voice data.
1	9. The method of claim 2, wherein the first computer and the at least the
2	second computer communicate with one another via a wire or wireless
3	communication protocol.
1	10. The method of claim 2, wherein:
2	the speech recognition of the first computer and the at least the second
3	computer are one of (i) a same speech recognition system and (ii) a different
4	speech recognition system; and
5	the first master speaker and the second master speaker are further
6	associated with the speech recognition of the at least the second computer and
7	the first computer, respectively.

1	11. The method of claim 2, further comprising the step of filtering out
2	background noise.
1	12. The method of claim 2, further comprising the step of providing feedback
2	to the first computer and the at least the second computer relating to a
3	performance of the analysis of the first voice data and the second voice data,
4	respectively.
1	13. The method of claim 2, further comprising the steps of:
2	maintaining a record of credibility" of the first computer and the at
3	least second computer relating to an ability to recognize a respective master
4	speaker and associated voice data; and
5	adaptively improving a performance of the speech recognition of the
6	first computer and the at least the second computer in order to improve a
7	performance of the analyzing step.
1	14. A system for integrating acoustic data using speech recognition,
2	comprising:
3	a communication module which receives voice data from a plurality of
4	computers each having speech recognition residing thereon, the
5	communication module residing on the plurality of computers or a remote
6	server;
7	an evaluator module associated with each of the plurality of computers,
8	the evaluator module analyzes the voice data from each of the plurality of
9	computers; and
10	an integrator module associated with the evaluator module, the
11	integrator module integrates all of the analyzed voice data from each of the

12	plurality of computers and provides one decoding output.
1	15. The system of claim 14, wherein:
2	the voice data is associated with at least two master speakers
3	associated with the speech recognition associated with different computers of
4	the plurality of computers; and
5	the integrator module integrates the voice data of the at least two
6	master speakers into the one decoding output.
1	16. The system of claim 14, wherein the evaluator module:
2	provides each word of the analyzed voice data with a weight and a
3	confidence score;
4	the weight of each word is compared to one another; and
5	a highest or equal value of the combined weights of the each word is
6	chosen so as to provide a most accurate rendition of the voice data.
1	17. The system of claim 14, further comprising a master speaker
2	determination module associated with the speech recognition residing on the
3	plurality of computers, the master speaker determination module determining
4	the master speaker associated with the voice data by comparing a volume of
5	the voice data to a threshold value.
1	18. The system of claim 14, further comprising:
2	a final decoder output module associated with the integrator module,
3	the final decoder output module prepares a summary of the decoded output;
4	summurator module for receiving the summary of the decoded output;
5	and
6	a sender module for sending the decoded output to a computer of the

7	plurality of computers for transcription or editing the decoded output.
1	19. A machine readable medium containing code for integrating acoustic
2	data using speech recognition, comprising the steps of:
3	detecting voice data on a first computer and at least a second
4	computer;
5	identifying the voice data as a first master speaker associated with a
6	speech recognition system residing on the first computer;
7	providing the voice data of the first master speaker, from the first
8	computer, to the at least the second computer having a speech recognition
9	system residing thereon;
10	analyzing the voice data residing on the first computer and the at leas
11	the second computer; and
12	integrating the analyzed voice data from the first computer and the at
13	least the second computer into a single decoding output.
1	20. The machine readable code of claim 19, further comprising the steps of:
2	detecting a second voice data on the first computer and at least the
3	second computer;
4	identifying the second voice data as being a second master speaker
5	associated with the speech recognition system of the at least the second
6	computer;
7	providing the second voice data to the first computer from the at least
8	second computer;
9	analyzing the second voice data residing on the first computer and the
10	at least the second computer; and
11	integrating the analyzed voice data and the analyzed second voice data
12	into the single decoding output.