CS 225: Switching Theory

S. Tripathy IIT Patna

Previous Class

- Number Systems and Codes
 - Different Number systems (positional)
 - Conversion

This Class

- Number Systems and Codes
 - Binary Arithmetic
 - Codes
 - BCD, cyclic code etc.
 - Gray code
 - Parity and Error correcting code

Number Systems

Decimal Number: $123.45=1\cdot10^2 + 2\cdot10^1 + 3\cdot10^0 + 4\cdot10^{-1} + 5\cdot10^{-2}$

Base b number:
$$N = a_{q-1}b^{q-1} + \cdots + a_0b_0 + \cdots + a_{-p}b^{-p}$$

Integer part: $a_{q-1}a_{q-2} \cdots a_0$

Fractional part: $a_{-1}a_{-2}$ ···· a_{-p}

Most significant digit: a_{q-1}

Least significant digit: a_{-p}

Binary number (b=2): $110\dot{1}.01 = 1\cdot2^3 + 1\cdot2^2 + 0\cdot2^1 + 1\cdot2^0 + 0\cdot2^{-1} + 1\cdot2^{-2}$

Representing number N in base b: $(N)_b$

Complement of digit a: a' = (b-1)-a

Decimal system: 9's complement of 3 = 9-3 = 6Binary system: 1's complement of 1 = 1-1 = 0

Conversion (Octal)

- Octal Numbers conversions
- Binary-to-Octal conversion
- 1. Break the binary number into 3-bit groups
- 2. Replace each group with an octal equivalent
- Octal-to-decimal conversion
- 1. Convert the octal to groups of 3-bit binary
- 2. Convert the binary to decimal
- Decimal-to-Octal conversion
 - Repeated division by 8

Conversion (Hexadecimal)

- Hexadecimal Numbers conversions
- Binary-to-hexadecimal conversion
 - 1. Break the binary number into 4-bit groups
 - 2. Replace each group with the hexadecimal equivalent
- Hexadecimal-to-decimal conversion
 - 1. Convert the hexadecimal to groups of 4-bit binary
 - 2. Convert the binary to decimal
- Decimal-to-hexadecimal conversion
 - Repeated division by 16
 - Hexa decimal to Octal or vice-versa?

Ex.:

Conversion

$$(41.6875)_{10} = (?)_2$$

(101001.1011)2

$$(153.513)_{10}$$
= $(?)_8$

 $(231.406517)_8$

Binary Arithmetic

Bits		Sum	Carry	Difference	Borrow	Product
а	b	a+b		a-b		a•b
0	0	0	0	0	0	0
0	1	1	0	1	1	0
1	0	1	0	1	0	0
1	1	0	1	0	0	1

Binary Addition/Subtraction

Example: Binary addition

```
1111 = carries of 1

1111.01 = (15.25)_{10}

+ 0111.10 = (7.50)_{10}

10110.11 = (22.75)_{10}
```

Example: Binary subtraction

```
1 = borrows of 1

10010.11 = (18.75)_{10}

01100.10 = (12.50)_{10}

00110.01 = (6.25)_{10}
```

Answer the following

$$(1001.1)_2 + (010.1)_2 = ?$$
 Show Carries and Borrows $(100.01)_2 - (010.1)_2 = ?$

$$9.5+2.5 = 12.0 = (1100.0)_2$$

 $4.25-2.5 = 1.75 = (01.11)_2$

Binary Multiplication/Division

Example: Binary Multiplication

```
11001.1 = (25.5)_{10}
\underline{110.1} = (6.5)_{10}
110011
000000
110011
\underline{110011}
10100101.11 = (165.75)_{10}
```

Binary Multiplication/Division

Example: Binary Division

```
10110 = quotient
11001 1000100110

11001
00100101
11001
0011001
11001
00000 remainder
```

Signed Numbers Representation

- Three main different ways
- Sign and magnitude
- r's complement
- r-1's complement

Signed binary number

Positive numbers can be defined with Sign bit 0

- Ex. In 8-bit representation of +9 = 00001001
- Negative numbers can be represented in three different ways:
 - Signed magnitude: -9 = 10001001
 - Signed 1's complement: -9 = 11110110
 - Signed 2's complement: -9 = 11110111

+0 has different code from -0

representation of 0s:

• Undesired aspect in signed binary and 1 s complement method:

Radix Complements

- Radix complement:
 - r's complement of a number N with n digits is $r^n N = (r^n 1) N + 1$.

Ex. 10's complement of 346 is = 654 (653+1) 2's complement of 1011= 0101

NB: complement of complement of N is N $r^n - (r^n - N) = N$

Arithmetic operations

- Addition
 - Care for overflow
- Subtraction:
 - Complements:
 - Diminished Radix (r-1)'s Complement
 - (r-1)'s complement of a number N with n digits is $(r^n-1)-N$.

Ex.:9's complement of 346 is 999-346=653 (103 -1= 999)

• 1's complement of a binary number can be determined as just replacing 1's with 0's and vice- versa..

Subtraction using 2's complement

- M and N are two n digit numbers with radix r
- To subtract N from M
 - Compute the r's complement of $N = r^n N$
 - Add M with r's complement of N
 - i.e. $M N + r^n$
- If M >= N result produce the carry rn which may be discarded so resulting M -N
 - If M<N result does not produce carry that may be treated as . M $-N+r^n=r^n-(N-M)$ so the answer is r's complement of the result.

Overfl ow

- Overflow is said to occur if the result needs more than n-bits.
- If c is a carry into the sign-bit position and o is the carry from sign-bit position; then overflow is said to occur if and only if $c \times CR = 1$

. Thanks