

Determine the force in members DG and FH of the truss shown. (*Hint:* Use section aa.)

SOLUTION

FBD Truss:

$$\rightarrow \Sigma F_x = 0$$
: $\mathbf{A}_x = 0$

By symmetry:
$$\mathbf{A}_y = \mathbf{N}_y = 3.2 \text{ kN}$$

FBD Section:

$$(\Sigma M_F = 0: (2.4 \text{ m}) F_{DG} - (3.2 \text{ m}) (3.2 \text{ kN}) + (1.6 \text{ m}) (1 \text{ kN}) = 0$$

$$F_{DG} = 3.60 \text{ kN C} \blacktriangleleft$$

$$(\Sigma M_D = 0: (2.4 \text{ m}) F_{FH} + (1.6 \text{ m}) (1 \text{ kN}) - (3.2 \text{ m}) (3.2 \text{ kN}) = 0$$

$$F_{FH} = 3.60 \text{ kN T} \blacktriangleleft$$

Determine the force in members IL, GJ, and HK of the truss shown. (*Hint*: Begin with pins *I* and *J* and then use section *bb*.)

SOLUTION

FBD Truss:

$$\rightarrow \Sigma F_x = 0$$
: $\mathbf{A}_x = 0$

By symmetry: $A_x = 0$; $A_y = N_y = 3.2 \text{ kN}$

Joints: By inspection of joint *I*: $F_{GI} = F_{IL}$ and $F_{IJ} = 1.2 \text{ kN C}$

By inspection of joint *J*:

$$F_{GJ}(\mathbf{C}) = F_{HJ}(\mathbf{T})$$

PROBLEM 6.63 CONTINUED

FBD Section:

$$\Sigma F_x = 0; F_{IL} - F_{HK} + \frac{4}{5} \left(F_{GJ} / F_{HJ} \right) = 0 \quad \text{so} \quad F_{IL} - F_{HK} = 0$$

$$(\Sigma M_J = 0: (3.2 \text{ m})(3.2 \text{ kN}) - (1.2 \text{ m})(F_{IL} + F_{HK}) - (1.6 \text{ m})(1 \text{ kN}) = 0$$
 so $F_{IL} + F_{HK} = 7.2 \text{ kN}$

Solving:
$$F_{IL} = F_{HK} = 3.6 \text{ kN}$$
 $F_{IL} = 3.60 \text{ kN C} \blacktriangleleft$

$$F_{HK} = 3.60 \text{ kN T} \blacktriangleleft$$

$$\uparrow \Sigma F_{y} = 0: 3.2 \text{ kN} - 1 \text{ kN} - 1.2 \text{ kN} - \frac{5}{5} (F_{GJ} + F_{HJ}) = 0$$

$$F_{GJ} + F_{HJ} = \frac{5}{3} \text{ kN} \qquad \text{but} \qquad F_{GJ} = F_{HJ} = \frac{5}{6} \text{ kN} \qquad F_{GJ} = .833 \text{ kN C} \blacktriangleleft$$

The diagonal members in the center panels of the truss shown are very slender and can act only in tension; such members are known as *counters*. Determine the forces in the counters which are acting under the given loading.

SOLUTION

FBD Truss:

$$\Sigma F_x = 0: \mathbf{F}_x = 0$$

$$(\Sigma M_F = 0: (5.5 \text{ m}) H_y + (2.75 \text{ m}) (24 \text{ kN}) - (2.75 \text{ m}) (24 \text{ kN})$$

$$- (5.5 \text{ m}) (12 \text{ kN}) - (8.25 \text{ m}) (12 \text{ kN}) = 0$$

$$\mathbf{H}_y = 30 \text{ kN} \dagger$$

$$\Sigma F_y = 0: F_y + 30 \text{ kN} - 3(24 \text{ kN}) - 2(12 \text{ kN}) = 0$$

$$\mathbf{F}_y = 66 \text{ kN} \dagger$$

FBD Section:

Here tension is required in *BG* to provide downward force, so *CF* is

loaded, one of each pair becomes taut while the other becomes slack.

Assume there is no pretension in any counter so that, as the truss is

↑
$$\Sigma F_y = 0$$
: 66 kN - 24 kN - 24 kN - $\frac{2.4}{3.65} F_{BG} = 0$

$$F_{BG} = 27.375 \text{ kN} \qquad F_{BG} = 27.4 \text{ kN T} \blacktriangleleft$$

$$F_{CF} = 0 \blacktriangleleft$$

Here tension is required in *GD* to provide downward force, so *CH* is slack.

$$F_{CH} = 0 \blacktriangleleft$$

$$\uparrow \Sigma F_y = 0: 30 \text{ kN} - 2(12 \text{ kN}) - \frac{2.4}{3.65} F_{GD} = 0$$

$$F_{GD} = 9.125 \text{ kN} \qquad F_{GD} = 9.13 \text{ kN T} \blacktriangleleft$$

The diagonal members in the center panels of the truss shown are very slender and can act only in tension; such members are known as *counters*. Determine the forces in the counters which are acting under the given loading.

SOLUTION

Assume that there is no pretension in any counter. So that, as the truss is loaded, one of each crossing pair becomes taut while the other becomes slack.

FBD Section:

Note: Tension is required in *CH* to provide upward force; thus *GD* is slack

↑
$$\Sigma F_y = 0$$
: $\frac{2.4}{3.65} F_{CH} - 24 \text{ kN} = 0$ $F_{CH} = 36.5 \text{ kN T} \blacktriangleleft$

FBD Truss:

$$(\Sigma M_G = 0: (5.5 \text{ m})(24 \text{ kN}) + (2.75 \text{ m})(24 \text{ kN}) - (2.75 \text{ m})(F_y)$$

$$-(2.75 \text{ m})(12 \text{ kN}) - (5.5 \text{ m})(12 \text{ kN}) = 0$$

$$\mathbf{F}_y = 36 \text{ kN}$$

$$\Sigma F_x = 0$$
: $\mathbf{F}_x = 0$

FBD Section:

Note: Tension is required in FC to provide upward force; so BG is slack.

$$\left(\sum F_{y} = 0: (36 - 24 - 24) \text{ kN} + \frac{2.4}{3.65} F_{FC} = 0\right)$$
$$F_{FC} = 18.25 \text{ kN T} \blacktriangleleft$$

The diagonal members in the center panel of the truss shown are very slender and can act only in tension; such members are known as counters. Determine the force in members BD and CE and in the counter which is acting when P = 3 kips.

SOLUTION

FBD Truss:

$$\longrightarrow \Sigma F_x = 0 \colon \mathbf{A}_x = 0$$

$$\sum M_A = 0$$
: $(25 \text{ ft}) F_y - (17 \text{ ft}) (2 \text{ kips}) - (8 \text{ ft}) (3 \text{ kips}) = 0$
 $\mathbf{F}_y = 2.32 \text{ kips}$

Assume there is no pretension in either counter so that, as the truss is loaded, one becomes taut while the other becomes slack.

FBD Section:

$$F - 0$$

$$\uparrow \Sigma F_y = 0$$
: 2.32 kips $-2 \text{ kips} - \frac{5.6}{10.6} F_{CD} = 0$

$$F_{CD} = 0.6057 \text{ kip}$$

Here tension is required in CD to provide downward force, so

$$F_{CD} = 0.6057 \text{ kip}$$
 $F_{CD} = 606 \text{ lb T} \blacktriangleleft$

$$(\Sigma M_D = 0: (8 \text{ ft})(2.32 \text{ kips}) - (5.6 \text{ ft})F_{CE} = 0$$

$$F_{CE} = 3.314 \text{ kips}$$

$$F_{CE} = 3.31 \,\mathrm{kips} \,\mathrm{T} \,\blacktriangleleft$$

$$\rightarrow \Sigma F_x = 0$$
: $F_{BD} - \frac{9}{10.6} (0.6057 \text{ kip}) - 3.314 \text{ kips} = 0$

$$F_{BD} = 3.829 \text{ kips}$$

$$F_{BD} = 3.83 \text{ kips C} \blacktriangleleft$$

Solve Prob. 6.66 when P = 1.5 kips.

SOLUTION

FBD Truss:

$$\sum M_A = 0: (25 \text{ ft}) F_y - (17 \text{ ft}) (2 \text{ kips}) - (8 \text{ ft}) (1.5 \text{ kips}) = 0$$

$$\mathbf{F}_y = 1.84 \text{ kips} \dagger$$

Here tension is needed in *BE* to provide upward force, so $F_{CD} = 0$

FBD Section:

$$\Sigma F_y = 0: \frac{5.6}{10.6} F_{BE} + 1.84 \text{ kips} - 2 \text{ kips} = 0$$

$$F_{BE} = 0.03029 \text{ kip}$$

 $F_{BE} = 303 \text{ lb T} \blacktriangleleft$

$$\sum M_E = 0$$
: (8 ft)(1.84 kips) – (5.6 ft) $F_{BD} = 0$
 $F_{BD} = 2.629$ kips

$$F_{BD} = 2.63 \text{ kips C} \blacktriangleleft$$

$$\rightarrow \Sigma F_x = 0$$
: 2.629 kips $-\frac{9}{10.6} (0.3029 \text{ kip}) - F_{CE} = 0$

$$F_{CE} = 2.371 \, \text{kips}$$

 $F_{CE} = 2.37 \text{ kips T} \blacktriangleleft$

The diagonal members CF and DE of the truss shown are very slender and can act only in tension; such members are known as *counters*. Determine the force in members CE and DF and in the counter which is acting.

SOLUTION

FBD Section:

DE must be in tension to provide leftward force, so CF is slack.

$$\longrightarrow \Sigma F_x = 0: 4 \text{ kips} - \frac{4}{5} F_{DE} = 0$$

 $F_{DE} = 5.00 \text{ kips T} \blacktriangleleft$

$$\left(\sum \Delta M_D = 0: (8 \text{ ft}) F_{CE} - (6 \text{ ft}) (4 \text{ kips}) = 0\right)$$

 $F_{CE} = 3.00 \text{ kips T} \blacktriangleleft$

$$\sum M_E = 0: (8 \text{ ft}) F_{DF} - (12 \text{ ft}) (4 \text{ kips}) = 0$$

 $F_{DF} = 6.00 \text{ kips C} \blacktriangleleft$

The diagonal members EH and FG of the truss shown are very slender and can act only in tension; such members are known as *counters*. Determine the force in members EG and FH and in the counter which is acting.

SOLUTION

FBD Section:

It is not obvious which counter is active, so assume FG is (and thus EH is slack)

$$\sum M_F = 0: (8 \text{ ft}) \left(\frac{6}{6.824} F_{GE}\right) - (12 \text{ ft}) (4 \text{ kips}) = 0$$

$$F_{GE} = 6.824 \text{ kips T}$$

$$\left(\sum M_G = 0: (14.5 \text{ ft}) \left(\frac{6}{6.824} F_{FH}\right) - (18 \text{ ft}) (4 \text{ kips}) = 0\right)$$

$$F_{FH} = 5.647 \text{ kips C}$$

$$\uparrow \Sigma F_y = 0: \left(\frac{6}{6.824}\right) (5.647 \text{ kips} - 6.824 \text{ kips}) - \frac{6}{12.75} F_{FG} = 0$$

This gives $F_{FG} < 0$ which is impossible, so the assumption is wrong, FG is slack, and EH is in tension.

Then

$$\left(\sum M_E = 0: (8 \text{ ft}) \left(\frac{6}{6.824} F_{FH}\right) - (12 \text{ ft}) (4 \text{ kips}) = 0\right)$$

$$F_{FH} = 6.824 \text{ kips}$$

$$F_{FH} = 6.83 \text{ kips C} \blacktriangleleft$$

$$\left(\sum M_H = 0: (14.5 \text{ ft}) \left(\frac{6}{6.824} F_{GE}\right) - (18 \text{ ft}) (4 \text{ kips}) = 0\right)$$

$$F_{GE} = 5.647 \text{ kips}$$

$$F_{GE} = 5.65 \text{ kips T} \blacktriangleleft$$

$$\uparrow \Sigma F_y = 0: \frac{6}{6.824} (6.824 \text{ kips} - 5.647 \text{ kips}) - \frac{6}{12.75} F_{EH} = 0$$

$$F_{FH} = 2.198 \text{ kips}$$

$$F_{FH} = 2.20 \text{ kips T} \blacktriangleleft$$

Classify each of the structures shown as completely, partially, or improperly constrained; if completely constrained, further classify it as determinate or indeterminate. (All members can act both in tension and in compression.)

SOLUTION

Structure (a):

Structure (b):

Structure (c):

Simple truss with r = 4, m = 16, n = 10

So m + r = 20 = 2n so completely constrained and determinate

Compound truss with r = 3, m = 16, n = 10

So m + r = 19 < 2n = 20 so partially constrained

Non-simple truss with r = 4, m = 12, n = 8

So m + r = 16 = 2n but must examine further, note that reaction forces

 \mathbf{A}_x and \mathbf{H}_x are aligned, so no equilibrium equation will resolve them.

∴ Statically indeterminate ◀

For $\Sigma F_y = 0$: $H_y = 0$, but then $\sum M_A \neq 0$ in FBD Truss,

∴ Improperly constrained ◀