

Graph Embedding

NLP-BA-Seminar

Outline

- Data structure Graph
- Motivation
- Embedding Types & Applications
- Techniques
- node2vec
- Graph embedding in NLP
- Outlook use cases

What is a Graph?

- Broadly defined and versatile Data structure
- Network of Entities and pairwise Relations

figure 1: NordNordWest, 2017

Example

- Network of German Autobahnen
 - o A1-99
 - o > 65km
- 188 nodes
- 225 edges

What is a Graph? II

Noah Hurmer

noah.hurmer@campus.lmu.de

08.07.2021

What is a Graph? II

Nodes

- Entity
- Any type of data (Profiles, Images, text, etc)

Edges

- Any type of relationship (Connection, Similarity, Is A, interaction, etc)
- Directional
- Weighted

Additional Graph modes

- Additional Attributes
- Heterogeneous
- Semantic (Knowledge Graph)

Problems

- Storage and computational cost
 - edgelist

|E|

- adjacency Matrix
- $|V \times V|$
- Limited Analysis tools
 - non euclidean space
 - few applicable algorithms: A*, Dijkstra

Embedding into low dimensional feature space

- compress information of Graph
- widen spectrum of tools
- increase performance
- remove / reduce manual feature engineering

- Node
- Edge
- Whole graph
- Subgraph / hybrid

Node Embedding

- LMU
 - LUDWIG-MAXIMILIAN UNIVERSITÄ MÜNCHEN

- ullet Every node to a vector of \mathbb{R}^d
- Preserve (structural) "proximity" of nodes
 - define proximity
 - similarity between neighbourhoods
- Applications
 - Compression
 - Node classification
 - Node similarity & Clustering

Edge Embedding

- LMU
 - LUDWIG-MAXIMILI UNIVERSI MÜNCHEN

- ullet Every edge to a vector of \mathbb{R}^d
- ullet Embed node pair or triplets < a, r, b >
- Preserve relations between nodes
- Applications
 - Link prediction
 - suggestions
 - Attributed edges
 - social networks

Other

- Whole Graph
 - compare graphs
 - Proteins
- Hybrid / Subgraph
 - combines types to embed graphlets, community
 - semantic search, classification

- LMU
 - LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

- Matrix factorization
- Deep Learning
 - DL with Random Walks
- Edge reconstruction
- Graph kernel
- Generative model

node2vec

- Node embedding model
- Utilizes 2nd order Random Walk
- DL model SkipGram
- Extension on DeepWalk
 - Adaptation of word2vec

Random Walk

- Efficient sample strategy to explore neighbourhood
- Sample paths from starting nodes
- Paths as "sentence" equivalent to words

$$P(c_i=x|c_{i-1}=v)=\left\{egin{array}{l} rac{\pi_{v,x}}{Z}, & ext{if } (v,x)\in E \ 0, & ext{otherwise} \end{array}
ight.$$

$$\pi_{v,x}=w_{v,x};Z=|E_v|$$

Noah Hurmer

noah.hurmer@campus.lmu.de

08.07.2021

Random Walk in node2vec

- 2nd order Random Walk
- Return parameter p
- ullet In-out parameter $\, q \,$
- BFS & DFS
 - homophily vs. structural similarity

$$lpha_{p,q}(t,x)=\left\{egin{array}{ll} rac{1}{p}, & ext{if } d_{t,x}=0 \ 1, & ext{if } d_{t,x}=1 \ rac{1}{q}, & ext{if } d_{t,x}=2 \end{array}
ight.$$

$$\pi_{v,x} = lpha_{p,q}(t,x) * w_{v,x}$$

Random Walk in node2vec

$$lpha_{p,q}(t,x)=egin{cases} rac{1}{p}, & ext{if } d_{t,x}=0\ 1, & ext{if } d_{t,x}=1\ rac{1}{q}, & ext{if } d_{t,x}=2 \end{cases}$$
 $\pi_{v,x}=lpha_{p,q}(t,x)*w_{v,x}$

figure 3: Grover et al. 2016

node2vec II

figure 4: Cohen, 2018

SkipGram

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Paths instead of sentences
- Random Walks define neighbourhoods
- maximize the log Probabilities

$$\max_f \sum_{u \in V} log(P(N(u)|f(u)))$$

Probability of observing the Neighbourhood of Node u given the feature representation of u

SkipGram II

Assumptions in node2vec

conditional independence

$$P(N(u)|f(u)) = \prod_{n_i \in N(u)} P(n_i|f(u))$$

feature space symmetry

$$P(n_i|f(u)) = rac{exp(f(ni)*f(u))}{\sum_{v \in V} exp(f(v)*f(u))}$$

Final objective function

$$\max_f \sum_{u \in V} -log \left(\sum_{v \in V} exp(f(v) * f(u))
ight) + \sum_{n_i \in N(u)} f(n_i) * f(u)$$

Final objective function

$$\max_f \sum_{u \in V} -log \left(\sum_{v \in V} exp(f(v) * f(u))
ight) + \sum_{n_i \in N(u)} f(n_i) * f(u)$$

Unfeasible to calculate

- Speeds up SkipGram
 - transforms probability calculation to logistic estimator
 - sampling known negative nodes
 - adjusting only relevant weights
- Alternative to hierarchical sampling (DeepWalk)

Autobahn Graph

- p and q
 - usually tuned to task
 - o grid search {0.25, 0.5, 0.75, 1, 2, 4}
- number of walks
- length of walks

node2vec Hyperparameters

Here:

- p = 0.5
- q = 1
- number of walks = 10
- length of walks = 12

Embedded Autobahn Example (tSNE)

- Text evaluation/classification
- Social Networks
- Semantic searches
- Fake news
- Speech recognition
- Translation
- Chat Bot
- etc.

Q&A / CQA

- Community based Question & Answer Forums
 - stackoverflow, Quora, etc.
- Goals
 - Finding best Answer
 - similar Question
 - Expert on a topic

Q&A Example Dataset

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Quora heterogeneous dataset
 - 444 138 questions
 - 95'915 users
 - 887'771 answers

figure 5: Fang et al., 2016

- Previous "state" influences the current output
- Temporal dynamic behavior
- Sequence or Stream of Data
 - LSTM with Random Walks
 - common use in CQA tasks

- Computer Vision
 - Image captioning
 - Video tracking
- Biological
 - Brain network representation
 - Genomic

References

- Karte: NordNordWest, Lizenz: Creative Commons by-sa-3.0 de, CC BY-SA 3.0 DE
 https://creativecommons.org/licenses/by-sa/3.0/de/deed.en, via Wikimedia Commons (figure 1)
- Cai, HongYun, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. "A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications." IEEE Transactions on Knowledge and Data Engineering 30 (9): 1616–37. https://doi.org/10.1109/TKDE.2018. 2807452. (figure 2)
- Grover, Aditya, and Jure Leskovec. 2016. "Node2vec: Scalable Feature Learning for Networks."
 CoRR abs/1607.00653. http://arxiv.org/abs/1607.00653. (figure 3)
- Cohen, Elior. 2018. "Node2vec: Embeddings for Graph Data." Towards data science.
 https://towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef. (figure 4)
- Fang, H., Wu, F., Zhao, Z., Duan, X., Zhuang, Y., & Ester, M. (2016). Community-Based Question Answering via Heterogeneous Social Network Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1). (figure 5)

Discussion