Programación dinámica

Matías Hunicken

Training Camp 2021

Contenidos

- Programación dinámica
 - Sucesión de Fibonacci
 - Definición de programación dinámica
 - Versión iterativa vs. recursiva
- Ejemplo recorrido óptimo en grilla
 - Generar soluciones
 - Contar soluciones
 - Generar k-ésima solución lexicográfica
 - Optimización de memoria
- 3 DP con máscara de bits
- 4 DP en árboles
- DP sobre dígitos
- 6 Exponenciación de matrices (¿Llegamos?)
- Conclusión

Sucesión de Fibonacci

Definición

```
La sucesión de Fibonacci se define como fib_0=0, fib_1=1, fib_n=fib_{n-1}+fib_{n-2} (para n\geq 2). Los primeros términos son 0,1,1,2,3,5,8,13,21...
```

• La definición nos sugiere una forma de computarlo (función recursiva).

```
int fib(int n){
  if(n <= 1)
    return n;
  return fib(n-1) + fib(n-2);
}</pre>
```

Sucesión de Fibonacci

Definición

```
La sucesión de Fibonacci se define como fib_0=0, fib_1=1, fib_n=fib_{n-1}+fib_{n-2} (para n\geq 2). Los primeros términos son 0,1,1,2,3,5,8,13,21...
```

• La definición nos sugiere una forma de computarlo (función recursiva).

```
int fib(int n){
  if(n <= 1)
    return n;
  return fib(n-1) + fib(n-2);
}</pre>
```

Notemos que este programa es ineficiente porque calcula muchas veces lo mismo (por ejemplo, fib(n-2) se calcula en fib(n) y también en la llamada recursiva a fib(n-1).

Fibonacci (cont.)

• La complejidad es exponencial en n.

Fibonacci - dinámica

• Podemos hacerlo mejor: en lugar de recalcular la respuesta cada vez, la calculamos una sola vez y guardamos el resultado.

```
int mem[MAX_N+1];
int fib(int n){
  if(mem[n] >= 0)
    return mem[n]
  int res:
  if(n \le 1)
    res = n;
  else
    res = fib(n-1) + fib(n-2);
 mem[n] = res;
  return res;
// (al principio de main):
  fill(mem, mem+MAX_N+1, -1);
```

- En el arreglo mem guardamos los resultados para los n's que ya calculamos (usamos un valor negativo para indicar que no lo calculamos).
- Ahora la complejidad de calcular todos los fibonaccis hasta n es O(n).

Programación dinámica - definición

- La programación dinámica se puede ver como una recursión con una caché para guardar resultados ya calculados.
- Podemos verla como un método para resolver un problema, que lo parte en subproblemas más pequeños, los cuáles resuelve recursivamente, guardando los resultados para no calcularlos más de una vez.
- En el contexto de programación dinámica, llamamos "estado" a cada combinación de parámetros de la misma. En el caso de Fibonacci, el estado es el valor de n.
- Para calcular el costo de la programación dinámica, la cuenta suele ser "cantidad de subproblemas" * "costo de calcular el valor de un subproblema dado que los subproblemas de los cuales depende ya están calculados"
- Para realizar programación dinámica, necesitamos que no haya dependencia cíclica entre los subproblemas.

```
int fib[MAXN+1];
void calcFibs(int n){
// calcula todos los fibonaccis hasta n
// y los guarda en el arreglo fib
  fib[0] = 0;
  fib[1] = 1;
  for(int i = 2; i <= n; ++i)
     fib[i] = fib[i-1] + fib[i-2];
}</pre>
```

Progamación dinámica iterativa vs. recursiva

- Tanto la forma iterativa como la recursiva tienen ventajas y desventajas.
- Forma iterativa:
 - Suele ser más eficiente en tiempo, porque se evitan las llamadas a función
 - A veces permite ahorrar memoria (lo veremos más adelante).
- Forma recursiva:
 - Para muchos es el modo más "natural" de pensar la programación dinámica.
 - No requiere pensar en el orden en el que debemos calcular los sub-problemas, que no siempre es obvio.
 - Es más eficiente cuando hay muchos valores de la tabla que no es necesario calcular (no es muy común, pero puede ocurrir).

Problemas de optimización

 La programación dinámica se puede usar también para resolver algunos problemas de optimización (encontrar la mejor solución, de acuerdo a cierto criterio).

Recorrido óptimo en grilla

Definición

Dada una grilla de enteros no negativos, determinar el camino desde la esquina superior izquierda a la esquina inferior derecha que maximice la suma de los números en el camino, dado que sólo nos podemos mover hacia abajo o hacia la derecha.

5	2	1	0
2	1	5	3
0	4	4	3
1	5	2	4

(Respuesta: 24)

Recorrido óptimo en grilla - Recurrencia

```
Definimos F_{i,j}= "Valor del mayor camino hasta la posición (n,m) si empezamos desde la posición (i,j)" (Por lo tanto, Respuesta =F_{1,1})
```

Recorrido óptimo en grilla - Recurrencia

Definimos $F_{i,j}$ = "Valor del mayor camino hasta la posición (n,m) si empezamos desde la posición (i,j)" (Por lo tanto, Respuesta = $F_{1,1}$)

Caso base:

$$F_{n,m} = Grid_{n,m}$$

Recorrido óptimo en grilla - Recurrencia

Definimos $F_{i,j}$ = "Valor del mayor camino hasta la posición (n, m) si empezamos desde la posición (i, j)" (Por lo tanto, Respuesta = $F_{1,1}$)

Caso base:

$$F_{n,m} = Grid_{n,m}$$

Casos recursivos:

$$F_{i,m} = Grid_{i,m} + F_{i+1,m}$$
 $(i < n)$
 $F_{n,j} = Grid_{n,j} + F_{n,j+1}$ $(j < m)$
 $F_{i,j} = Grid_{i,j} + \max(F_{i+1,j}, F_{i,j+1})$ $(i < n \&\& j < m)$

5	2	1	0
2	1	5	3
0	4	4	3
1	5	2	4

5	2	1	0
2	1	5	3
0	4	4	3
1	5	2	4 4

Programación dinámica

5	2	1	0
2	1	5	3
0	4	4	3
1	5	26	4 4

5	2	1	0
2	1	5	3
0	4	4	3
1	5 ₁₁	26	4 4

5	2	1	0
2	1	5	3
0	4	4	3
1 12	5 ₁₁	26	4 4

5	2	1	0
2	1	5	3
0	4	4	3 7
1 12	5 11	26	4 4

5	2	1	0
2	1	5	3
0	4	4 11	3 7
1 12	5 11	26	4 4

5	2	1	0
2	1	5	3
0	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

5	2	1	0
2	1	5	3
0 15	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

5	2	1	0
2	1	5	3 ₁₀
0 15	4 15	4 11	3 ₇
1 12	5 ₁₁	26	4 4

5	2	1	0
2	1	5 ₁₆	3 ₁₀
0 15	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

5	2	1	0
2	1 17	5 ₁₆	3 ₁₀
0 15	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

5	2	1	0
2 19	1 17	5 ₁₆	3 ₁₀
0 15	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

5	2	1	0 10
2 19	1 17	5 ₁₆	3 ₁₀
0 15	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

5	2	1 17	0 10
2 19	1 17	5 ₁₆	3 ₁₀
0 15	4 15	4 11	3 ₇
1 12	5 ₁₁	26	4 4

5	2 19	1 17	0 10
2 19	1 17	5 ₁₆	3 ₁₀
0 15	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

5 ₂₄	2 19	1 17	0 10
2 19	1 17	5 ₁₆	3 ₁₀
0 15	4 15	4 11	3 7
1 12	5 ₁₁	26	4 4

```
// input:
int G[MAX_N+1][MAX_N+1];
int n.m:
int dp [MAX_N+1] [MAX_N+1];
void calc_dp_iter() {
  for(int i = n; i >= 1; --i) {
    for(int j = m; j >= 1; --j) {
      if(i == n && j == m) dp[i][j] = G[i][j];
      else {
        dp[i][j] = 0;
        if(i < n)
          dp[i][j] = max(dp[i][j], G[i][j] + dp[i+1][j]);
        if(j < m)
          dp[i][j] = max(dp[i][j], G[i][j] + dp[i][j+1]);
```

```
// input:
int G[MAX_N+1][MAX_N+1];
int n.m:
// (dp debe ser inicializado en -1 antes de llamar a f)
int dp[MAX_N+1][MAX_N+1];
int f(int i, int j) {
// (atencion a la referencia (&) para actualizar el valor de
// la tabla cuando manipulamos r)
  int &r = dp[i][j];
  if(r >= 0) return r;
  if(i == n && j == m) r = G[i][j];
  else {
   r = 0:
   if(i < n) r = max(r, G[i][j] + f(i+1, j));
    if(j < m) r = max(r, G[i][j] + f(i, j+1));
  return r;
```

Recorrido óptimo en grilla - Generar solución

Dado que tenemos guardada la respuesta para cada subproblema, es sencillo saber si un movimiento es óptimo o no:

• Es óptimo moverme hacia abajo desde (i, j) cuando:

$$F_{i,j} = Grid_{i,j} + F_{i+1,j}$$
.

• Es óptimo moverme hacia la derecha desde (i,j) cuando:

$$F_{i,j} = Grid_{i,j} + F_{i,j+1}.$$

Usando esto, es sencillo generar una solución: Empiezo desde (1,1) y realizo movimientos óptimos hasta llegar a (n,m).

Recorrido óptimo en grilla - Generar solución (ejemplo)

Recorrido óptimo en grilla - Generar solución (código)

```
string sol = "";
// (gen_sol_from debe ser llamada despues de calcular dp)
void gen_sol_from(int i, int j) {
  if (i == n && j == m) return;
  if (i < n && dp[i][j] == G[i][j] + dp[i+1][j]) {</pre>
    sol.push_back('A'); // (Abajo)
    gen_sol_from(i+1, j);
 } else {
    sol.push_back('D'); // (Derecha)
    gen_sol_from(i, j+1);
```

Training Camp 2021

- En los problemas de optimización, a veces nos piden decir cuántas soluciones óptimas hay.
- Esto es sencillo de realizar una vez que sabemos para cada paso si es óptimo o no, usando otra DP:

- En los problemas de optimización, a veces nos piden decir cuántas soluciones óptimas hay.
- Esto es sencillo de realizar una vez que sabemos para cada paso si es óptimo o no, usando otra DP:

Definimos $C_{i,j}$ = "Cantidad de caminos óptimos desde la posición (i,j) hasta (n,m)"

- En los problemas de optimización, a veces nos piden decir cuántas soluciones óptimas hay.
- Esto es sencillo de realizar una vez que sabemos para cada paso si es óptimo o no, usando otra DP:

Definimos $C_{i,j}$ = "Cantidad de caminos óptimos desde la posición (i,j) hasta (n,m)"

Caso base:

$$C_{n,j}=C_{i,m}=1$$

- En los problemas de optimización, a veces nos piden decir cuántas soluciones óptimas hay.
- Esto es sencillo de realizar una vez que sabemos para cada paso si es óptimo o no, usando otra DP:

Definimos $C_{i,j}$ = "Cantidad de caminos óptimos desde la posición (i,j) hasta (n,m)"

Caso base:

$$C_{n,j}=C_{i,m}=1$$

Caso recursivo:

$$C_{i,j} = (F_{i,j} == Grid_{i,j} + F_{i+1,j}) * C_{i+1,j} + (F_{i,j} == Grid_{i,j} + F_{i,j+1}) * C_{i,j+1}$$
 $(i < n \&\& j < m)$

```
int cnt [MAX_N + 1][MAX_N + 1];
int calc_num_sols() {
  for(int i = n; i >= 1; --i) {
    for(int j = m; j >= 1; --j) {
      if(i == n && j == m) cnt[i][j] = 1;
      else {
        cnt[i][j] = 0;
        if(i < n && dp[i][j] == G[i][j] + dp[i+1][j])</pre>
          cnt[i][j] += cnt[i+1][j];
        if(j < m \&\& dp[i][j] == G[i][j] + dp[i][j+1])
          cnt[i][j] += cnt[i][j+1];
  return cnt[1][1];
```

Recorrido óptimo en grilla - Generar k-ésima solución

• A veces, no nos piden cualquier solución, sino la k-ésima lexicográfica.

5	2	1	0
2	1	5	3
0	4	4	3
1	5	2	4

En este caso. las soluciones (ordenadas lexicográficamente) son:

- ADDADA
- 2 DADADA
- ODAADA

La solución es similar a encontrar cualquier solución, excepto que decidimos qué paso hacer dependiendo de la cantidad de soluciones de los subproblemas.

```
string sol = "";
void gen_kth(int i, int j, int k) { // (index from 1)
  if(i == n && j == m) return;
  if(i < n \&\& dp[i][j] == G[i][j] + dp[i+1][j]) {
   // (si moverme para abajo es optimo)
   if (cnt[i+1][i] >= k) {
      // (si hay al menos k soluciones hacia abajo)
      sol.push_back('A');
      gen_kth(i+1,j,k);
     return;
   // (si moverme para abajo es optimo, pero la k-esima
   solucion no "cae" ahi, descuento la cantidad de
   soluciones hacia abajo antes de seguir)
   k -= cnt[i+1][j];
  sol.push_back('D');
  gen_kth(i, j+1, k);
```

Recorrido óptimo en grilla - Optimización de memoria

- Podemos hacer una optimización de memoria, usando que en cada paso sólo accedemos al valor del subproblema en la fila actual o en la siguiente, pero nunca más allá.
- Por lo tanto, si lo hacemos iterativamente, sólo tenemos que guardar la fila actual y la que procesamos anteriormente.
- Esta optimización suele no ser necesaria, pero es importante tenerla en cuenta si la programación dinámica consume mucha memoria, o el problema está ajustado en tiempo.

Optimización de memoria - Código

```
int dp [2] [MAX_N+1];
int calc_dp_iter() {
  for(int i = n; i >= 1; --i) {
    for(int j = m; j >= 1; --j) {
      if(i == n \&\& j == m) dp[i\%2][j] = G[i][j];
      else {
        dp[i\%2][j] = 0;
        if(i < n)
          dp[i\%2][j] = max(dp[i\%2][j],G[i][j]+dp[1-i\%2][j]);
        if(j < m)
          dp[i\%2][j] = max(dp[i\%2][j],G[i][j]+dp[i\%2][j+1]);
  return dp[1][1];
```

Traveling salesman problem

Problema

Hay n ciudades, y para cada par de ellas (i,j) existe un vuelo de i a la j, con costo $C_{i,j}$. Se pide determinar el menor costo de empezar en la primera ciudad, visitar todas las ciudades exactamente una vez y volver a la primera.

La solución obvia es O(n!) (probar todas las permutaciones), pero podemos hacerlo un poco mejor con programación dinámica.

Traveling salesman problem - Solución

Problema

Hay n ciudades, y para cada par de ellas (i,j) existe un vuelo de i a la j, con costo $C_{i,j}$. Se pide determinar el menor costo de empezar en la primera ciudad, visitar todas las ciudades exactamente una vez y volver a la primera.

Definimos $F_{x,S}$ = "Valor del menor camino, dado que estamos en el nodo x y visitamos los nodos del conjunto S" (Por lo tanto, Respuesta = $F_{0,\{0\}}$)

Traveling salesman problem - Solución

Problema

Hay n ciudades, y para cada par de ellas (i,j) existe un vuelo de i a la j, con costo $C_{i,j}$. Se pide determinar el menor costo de empezar en la primera ciudad, visitar todas las ciudades exactamente una vez y volver a la primera.

Definimos $F_{x,S}$ = "Valor del menor camino, dado que estamos en el nodo x y visitamos los nodos del conjunto S" (Por lo tanto, Respuesta = $F_{0,\{0\}}$)

Caso base:

$$F_{x,\{0,...,n-1\}} = C_{x,0}$$

Traveling salesman problem - Solución

Problema

Hay n ciudades, y para cada par de ellas (i,j) existe un vuelo de i a la j, con costo $C_{i,j}$. Se pide determinar el menor costo de empezar en la primera ciudad, visitar todas las ciudades exactamente una vez y volver a la primera.

Definimos $F_{x,S}$ = "Valor del menor camino, dado que estamos en el nodo x y visitamos los nodos del conjunto S" (Por lo tanto, Respuesta = $F_{0,\{0\}}$)

Caso base:

$$F_{x,\{0,...,n-1\}} = C_{x,0}$$

Caso recursivo:

$$F_{x,S} = \textit{Min} \; \{\textit{C}_{x,y} + F_{x,S \cup \{y\}} \; | \; y \in \{0,...,n-1\} - S\}$$

¿Cómo representar subconjuntos?

- En el problema anterior, tenemos que parte del estado de la DP es un conjunto. ¿Cómo representamos eso en código?
- Una opción es usar un vector con los elementos del conjunto, pero es muy caro en tiempo y memoria.

Una solución más eficiente cuando los conjuntos contienen pocos valores posibles, es usar la representación en binario de un número:

- Si los valores posibles en el subconjunto están en $\{0, ..., n-1\}$, representamos el subconjunto como un entero en $[0, 2^n)$.
- Los unos en la representación binaria del número representan los elementos contenidos en el subconjunto.
- Es decir, representamos S como $\sum_{k \in S} 2^k$.

Manipulación de bits

Representando el conjunto como entero, podemos hacer muchas operaciones sobre subconjuntos eficientemente:

```
S \cap T : S \& T

S \cup T : S \mid T

S - T : S \& ^T

\{x\} : 1 << x

\{0, ..., n - 1\} : (1 << n) - 1

|S| : __builtin_popcount(S)

min(S) : __builtin_ctz(S)

max(S) : 31 - __builtin_clz(S)
```

Manipulación de bits

Representando el conjunto como entero, podemos hacer muchas operaciones sobre subconjuntos eficientemente:

```
S \cap T : S & T

S \cup T : S | T

S - T : S & ~T

\{x\} : 1 << x

\{0, ..., n - 1\} : (1 << n) - 1

|S| : __builtin_popcount(S)

min(S) : __builtin_ctz(S)

max(S) : 31 - __builtin_clz(S)
```

Nota:

- Las funciones __builtin_cosa sólo están disponibles en GCC.
- Éstas son específicas para enteros de 32 bit. Hay funciones equivalentes para enteros de 64 bit: __builtin_popcountll, etc.

```
int C[MAX_N][MAX_N];
int n;
int dp[MAX_N][1 << MAX_N];</pre>
int f(int x, int mask) { // (mask contiene los ya visitados)
  int &r = dp[x][mask];
  if(r >= 0) return r;
  if(mask == (1 << n) - 1) r = C[x][0]:
  else {
    r = INF:
    for(int y = 0; y < n; ++y) {
      if((mask & (1 << y)) == 0) {
        r = min(r, C[x][y] + f(y, mask | (1 << y)));
  return r;
} // respuesta: f(0,1)
```

Traveling salesman problem - Complejidad

- La complejidad es $O(n^2 \times 2^n)$ $(n \times 2^n)$ estados de la DP, O(n) complejidad para cada estado).
- Esto es mucho mejor que la solución trivial $O(n \times n!)$, y nos permite resolver para n alrededor de 20.

DP en árboles - cubrimiento de vértices de costo mínimo

Problema

Se tiene una ciudad que consta de n esquinas conectadas por n-1 calles bidireccionales, de modo que todas las equinas están conectadas directa o indirectamente. Cada esquina x tiene un costo asociado para alumbrarla C_x . Se quiere saber el menor costo de alumbrar esquinas de modo que para toda calle, al menos uno de los extremos esté alumbrado.

Cubrimiento de vértices - solución (estados)

- Definimos un nodo cualquiera como raíz del árbol.
- Luego, podemos pensar que el subproblema es "resolver para un sub-árbol".
- Además, necesitamos saber si el padre del nodo raíz del sub-árbol fue pintado o no.

Definimos

 $F_{x,false}$ como "Valor del menor cubrimiento del subárbol de x dado que no pintamos al padre de x".

 $F_{x,true}$ como "Valor del menor cubrimiento del subárbol de x dado que pintamos al padre de x".

Entonces, la respuesta sería $F_{raiz,true}$ (para la raíz, nos "inventamos" un nodo padre que ya está pintado, para que no nos obligue a pintar la raíz).

Cubrimiento de vértices - solución (transiciones)

 $F_{x,false}$ = "Valor del menor cubrimiento del subárbol de x dado que no pintamos al padre de x".

 $F_{x,true} = \text{como}$ "Valor del menor cubrimiento del subárbol de x dado que pintamos al padre de x".

El caso más sencillo es el primero, ya que en ese caso estamos obligados a pintar x para cubrir la arista de x a su padre.

$$F_{x,false} = C_x + \sum_{y \in hijos(x)} F_{y,true}$$

En el segundo caso, podemos elegir si pintar x o no:

$$F_{x,true} = min(C_x + \sum_{y \in hijos(x)} F_{y,true}, \sum_{y \in hijos(x)} F_{y,false})$$

```
vector<int> g[MAX_N]; // Grafo no dirigido
int C[MAX_N]; // Costos
void dfs(int x, int father) {
 F[x][0] = C[x];
 F[x][1] = 0;
 for(int y: g[x]) {
   if(y == father) continue;
   dfs(y, x);
   F[x][0] += F[y][1];
   F[x][1] += F[y][0];
 F[x][1] = min(F[x][1], F[x][0]);
// Para obtener la respuesta:
 dfs(0,-1);
 respuesta = F[0][1];
```

DP sobre dígitos

Problema

Dados dos enteros positivos U (hasta 10^{18}) y D (hasta 100), decir cuántos enteros positivos x hay tales que $x \leq U$, x es múltiplo de D, y la suma de dígitos de x es múltiplo de D.

Podemos construir el número x de izquierda a derecha, guardando:

- En qué posición estamos.
- Valor de x mod D.
- Valor de "suma de dígitos de x" mod D.
- ullet Un flag que nos dice si ya somos menores que U o no.

En cada paso, iteramos para todos los dígitos posibles (si el flag es falso sólo podemos iterar hasta el valor del dígito correspondiente de U) y transicionamos a la siguiente posición actualizando los valores.

```
string U; // Digitos del numero U
int D;
long long dp[MAX_DIGITS+1][MAX_D][MAX_D][2];
long long f(int k , int xModD, int sModD, int menor) {
  long long& r = dp[k][xModD][sModD][menor];
  if(r >= 0) return r;
  if(k == U.size()) r = !xModD && !sModD;
  else {
   r = 0:
    for(int t = 0; t \le 9; ++t) {
      if (!menor && t > U[k] - '0') break;
      r += f(k+1, (xModD * 10 + t) % D, (sModD + t) % D,
   menor || t < U[k] - '0');
  return r;
 } // respuesta: f(0,0,0,0) - 1 
  // (se debe restar 1 porque esta contando al 0)
```

Exponenciación de matrices

En "pizarrón" (si llegamos).

Conclusión

- Programación dinámica es uno de los tópicos más comunes en el contexto de programación competitiva, por lo que es muy importante dedicarle tiempo a practicarlo.
- La clave para resolver problemas de programación dinámica es definir los estados correctamente. Esto sólo se mejora practicando :)

Algunos problemas

- https://atcoder.jp/contests/dp/tasks: 26 problemas de DP variados y relativamente sencillos, que usan varias técnicas clásicas.
- https://a2oj.com/Category33.html: Problemas de DP ordenados por dificultad.
- DP con máscara:
 - https://www.spoj.com/problems/ASSIGN/
 - https://codeforces.com/problemset/problem/11/D
 - https://codeforces.com/problemset/problem/16/E
- DP sobre dígitos:
 - https://www.spoj.com/problems/CPCRC1C/
 - https://www.urionlinejudge.com.br/judge/problems/view/2013
 - https://codeforces.com/contest/628/problem/D
- DP en árboles:
 - https://acm.timus.ru/problem.aspx?space=1&num=1039
 - https://codeforces.com/contest/461/problem/B
- Exponenciación de matrices:
 - https://codeforces.com/contest/222/problem/E
 - https://www.spoj.com/problems/TAP2015E/

¡Gracias!