杭州电子科技大学学生考试卷(A)卷

考试课程	高等数学甲 2 (A层次)		考试日期	2014年	2014年6月13日			
课程号	A0714012	教师号	任课教师姓名					
考生姓名		学号(8		年级			专业	

题 号	_	-	三				四	五	六
得 分									

填空题 (本题共 4 小题,每小题 3 分,共 12 分)

1. 直线
$$L_1: \frac{x-1}{1} = \frac{y}{-4} = \frac{z+3}{1}$$
 和 $L_2: \frac{x}{2} = \frac{y+2}{-2} = \frac{z}{-1}$ 的夹角为

2. 函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点 M(1,-1) 处取得极值,则常数 a = -5

3.
$$\c D = \{(x,y) | x^2 + y^2 \le 1\}, \ \c M \iint x^2 dx dy =$$

4. 幂级数 $\sum_{1}^{\infty} 3^{n} x^{n-1}$ 的收敛半径R = 2 .

选择题(本题共8小题,每小题3分,共24分)

- 1. 设L是从A(1,0)到B(-1,2)的直线段,则 $\int_L (x+y)ds = (\beta)$
- (B) $2\sqrt{2}$;

- 2. 级数 $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$ 在 $(-\infty, +\infty)$ 内和函数为()).
 - (A) $-e^{x^2}$;
- (B) $-e^{-x^2}$; (C) e^{x^2} ; (D) e^{-x^2} .

3. 函数 z = z(x, y) 由方程 F(xy, z) = x 所确定, 其中 F(u, v) 具有连续的一阶偏导数, 则 $z_x + z_y$ 等于(A)

- (A) $\frac{1-yF_1-xF_1}{F_2}$; (B) $\frac{1-yF_x-xF_y}{F_2}$; (C) 0;

4. 设 L 是从 $A(1,\frac{1}{2})$ 沿曲线 $2y = x^2$ 到 B(2,2) 的弧段,则 $\int_{-v}^{2x} dx - \frac{x^2}{v^2} dy = ($ $\int_{-v}^{v} dx - \frac{x^2}{v^2} dy = ($

- (A) -3; (B) $\frac{3}{2}$; (C) 0; (D) 3.

- (A) $-\frac{4}{3}$; (B) $-\frac{2}{3}$; (C) $\frac{2}{3}$; (D). 0

6. 若幂级数 $\sum_{i=1}^{\infty} a_n(x+2)^n$ 在x=1处收敛,则该级数在x=-4处的敛散性为(\bigwedge)

- (A) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)}$; (B) $\sum_{n=1}^{\infty} \frac{n}{3n-1}$;
- (C) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{3^n}$; (D) $\sum_{n=1}^{\infty} \frac{\sin na}{n^2}$, $\sharp + 0 < a < 1$.

8. 设f(x,y)是连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(\rho \cos\theta, \rho \sin\theta) \rho d\rho = ($ /).

- (A) $\int_{0}^{\sqrt{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x,y) dy$; (B) $\int_{0}^{\sqrt{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x,y) dy$;
- (C) $\int_{0}^{\sqrt{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x,y) dx$; (D) $\int_{0}^{\sqrt{2}} dy \int_{y}^{\sqrt{1-y^2}} f(x,y) dx$.

三、试解下列各题(本题共6小题,每小题6分,共36分)

得分

2. 求点(-1,2,0)在平面x+2y-z-1=0上的投影

投州矣 N(一号, 号, 号)

采卸下 X+2y-2-1-10的法向量 分=(1,2,-1) 行M(+,2,0)包括打的直线上,程 解 [y=x 安(0.0.0) A(4.4) $J = \int_{0}^{1/2} x^{3} dx dy = \int_{0}^{4/2} dx \int_{0}^{2\sqrt{2}} xy dy$ $= \frac{1}{2} \int_{0}^{4/2} (4x^{2} + x^{3}) dx$ $= \int_{0}^{2/2} x^{3} - \int_{0}^{2\sqrt{2}} x^{4/2} dx$ $=\left[\frac{2}{3}x^3-\frac{1}{8}x^4\right]_0^4$

= 32 1. *1= \$\iiii_{4z\text{dv}}\$, \(\frac{1}{2}\text{p}\O \Delta \De] = 11/12 dv = 11/42 p dpdfd2

= 4 | 2 F do | 4 p do | 2 2 dz $= 4\pi \int_{0}^{4} (16P - \frac{1}{16}) dP$ $= \frac{4}{3}\pi$ $= 2 = 0 \le 2 \le 4, \quad x^{2} + y^{2} \le 4 \ge 4$ $[=][]_{42} dV =]_{0}^{4} dz][_{42} drdy]$

得分

四、应用题[本题共15分]

得分

2. (10 分) 设空间曲线 Γ 由曲面 $z = \frac{1}{2}(x^2 + y^2)$ 和平面 x + 2y + z = 2相交产生,

(1) 试求空间曲线 Γ 在平面 x+2y+z=2 上所围成的平面区域的面积

解: 补 Ao: y=0 (y=2→v), 记上和 Ao' (0)

用3年的上付30, 四人和AO30上の(中 DM)=excxy, Q(ry)=5x-exsmy 2 -針=5 (+)

||f|| = ||f|| = ||f|| + ||f|

() [15x-exsing) dy + excesy dc = \frac{5}{2} TH(052+1) 5 A + cos2-1

六、证明题[本题5分]

已知 $f(x) = \sum_{k=1}^{\infty} a_k x^{k+1}$ 在[0,1]上收敛,证明:级数 $\sum_{k=1}^{\infty} f(\frac{1}{n})$ 收敛.

、, 大似, 在[01] 图图

Z f(x) = x² 震 q_k x^{k'} = x²g(k) ·, g(x) 在 [0,11] 有男、即存在M>0.5H |g(x)| ≤ M

设着彻晚