## Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Matematyki i Informatyki



## Testowanie białoskrzynkowe i Testy mutacyjne

Raport pokrycia kodu

Autor: Jakub Przybyła

## 1. Temat zadania

Poniższe opracowanie tekstowe dotyczy projektu z przedmiotu "Wprowadzenie do testowania". Zadanie polegało na zwiększeniu pokrycia testami jednostkowymi oraz przeprowadzenia testów mutacyjnych na zadanej aplikacji – kalkulator BMI.

# 2. Informacje ogólne

- Link do repozytorium: <a href="https://github.com/JakubPrzybyla/bmi-calculator">https://github.com/JakubPrzybyla/bmi-calculator</a>
- originalTests branch zawierający oryginalne testy
- *updatedTests* branch zawierający uzupełnione testy
- afterMutantsTests branch zawierający poprawione testy po przeprowadzeniu testów mutacyjnych

Raport dotyczący pokrycia testami został wytworzony dzięki pluginowi JaCoCo. Do przeprowadzenia testów mutacyjnych użyty został plugin PitTest.

# 3. Raport pokrycia kodu oryginalnymi testami

Oryginalne testy pokrywają kod w 92%.

#### bmi-calculator



Wynik ten zaniża klasa **App**, a dokładniej jej dwie metody: *calculateBMI()* oraz *bmiResults()*.

### com.epam.bootcamp.bmi\_calculator

| Element                       | Missed Instructions | Cov. \$ | Missed Branches | ф Соv. ф | Missed + | Cxty \$ | Missed | Lines | Missed÷ | Methods 0 | Missed | Classes |
|-------------------------------|---------------------|---------|-----------------|----------|----------|---------|--------|-------|---------|-----------|--------|---------|
| <u> Ө Арр</u>                 |                     | 100%    |                 | 83%      | 3        | 15      | 0      | 28    | 0       | 6         | 0      | 1       |
| <b>⊙</b> <u>GuessTheUnits</u> |                     | 100%    |                 | 100%     | 0        | 16      | 0      | 30    | 0       | 6         | 0      | 1       |
| Total                         | 0 of 234            | 100%    | 3 of 38         | 92%      | 3        | 31      | 0      | 58    | 0       | 12        | 0      | 2       |

#### App

| Element                              | \$ | Missed Instructions \$ | Cov. \$ | Missed Branches | ÷ | Cov. \$ | Missed | Cxty \$ | Missed | Lines | Missed | Methods = |
|--------------------------------------|----|------------------------|---------|-----------------|---|---------|--------|---------|--------|-------|--------|-----------|
| <ul><li><u>bmiResult()</u></li></ul> |    |                        | 100%    |                 | _ | 80%     | 2      | 6       | 0      | 7     | 0      | 1         |
| <ul><li>calculateBMI()</li></ul>     |    |                        | 100%    |                 |   | 75%     | 1      | 3       | 0      | 11    | 0      | 1         |
| <ul><li>ZeroChecker()</li></ul>      |    |                        | 100%    |                 |   | 100%    | 0      | 3       | 0      | 5     | 0      | 1         |
| <ul> <li>setWeight(double</li> </ul> | 2) |                        | 100%    |                 |   | n/a     | 0      | 1       | 0      | 2     | 0      | 1         |
| <ul><li>setHeight(double)</li></ul>  | )  |                        | 100%    |                 |   | n/a     | 0      | 1       | 0      | 2     | 0      | 1         |
| <u>App()</u>                         |    |                        | 100%    |                 |   | n/a     | 0      | 1       | 0      | 1     | 0      | 1         |
| Total                                |    | 0 of 117               | 100%    | 3 of 18         |   | 83%     | 3      | 15      | 0      | 28    | 0      | 6         |

## 4. Raport pokrycia kodu uzupełnionymi testami

Uzupełnione testy pokrywają kod w 97%.

#### bmi-calculator

| Element \$                                            | Missed Instructions | Cov. \$ | Missed Branches |     | Missed | Cxty \$ | Missed | Lines | Missed | Methods 0 | Missed | Classes |
|-------------------------------------------------------|---------------------|---------|-----------------|-----|--------|---------|--------|-------|--------|-----------|--------|---------|
| com.epam.bootcamp.bmi_calculator                      |                     | 100%    |                 | 97% | 1      | 29      | 0      | 58    | 0      | 12        | 0      | 2       |
| com.epam.bootcamp.bmi_calculator.interfacesImplements |                     | 100%    |                 | n/a | 0      | 6       | 0      | 8     | 0      | 6         | 0      | 2       |
| Total                                                 | 0 of 254            | 100%    | 1 of 34         | 97% | 1      | 35      | 0      | 66    | 0      | 18        | 0      | 4       |

Poprzez nowe testy udało się pokryć w całości kod metody bmiResults().

### App

| Element                               | - | Missed Instructions + | Cov. \$ | Missed Branches | ÷ | Cov. \$ | Missed≑ | Cxty | Missed | Lines | Missed | Methods 🗢 |
|---------------------------------------|---|-----------------------|---------|-----------------|---|---------|---------|------|--------|-------|--------|-----------|
|                                       |   |                       | 100%    |                 |   | 75%     | 1       | 3    | 0      | 11    | 0      | 1         |
| <ul><li>bmiResult()</li></ul>         |   |                       | 100%    |                 | _ | 100%    | 0       | 4    | 0      | 7     | 0      | 1         |
| <ul><li>ZeroChecker()</li></ul>       |   |                       | 100%    |                 |   | 100%    | 0       | 3    | 0      | 5     | 0      | 1         |
| <ul> <li>setWeight(double)</li> </ul> |   | =                     | 100%    |                 |   | n/a     | 0       | 1    | 0      | 2     | 0      | 1         |
| <ul><li>setHeight(double)</li></ul>   |   | =                     | 100%    |                 |   | n/a     | 0       | 1    | 0      | 2     | 0      | 1         |
| <u>App()</u>                          |   | •                     | 100%    |                 |   | n/a     | 0       | 1    | 0      | 1     | 0      | 1         |
| Total                                 |   | 0 of 107              | 100%    | 1 of 14         |   | 92%     | 1       | 13   | 0      | 28    | 0      | 6         |

Jedynym, niepokrytym w pełni fragmentem jest metoda calculateBMI().

```
public double calculateBMI() throws Exception{ //vegul kiszámoljuk a BMI-t
34.
          ZeroChecker();
35.
36.
37.
            GuessTheUnits gtu = new GuessTheUnits(this.height, this.weight);
            if(gtu.getUnitType().equals("US")){
                 UsBMI ubmi = new UsBMI();
                 ubmi.setBMI(gtu.getWeight(), gtu.getHeight());
38.
         this.bmi = ubmi.getBMI();
}else if(gtu.getUnitType().equals("metric")){
    MetricBMI mbmi = new MetricBMI();
39.
40.
41.
                 MetricBMI mbmi = new MetricBMI();
42.
                 mbmi.setBMI(gtu.getWeight(), gtu.getHeight());
43.
               this.bmi = mbmi.getBMI();
44.
45.
             return this.bmi;
46.
```

Nieuwzględniony w testach branch jest jednakże nieosiągalny. Logika aplikacji nie pozwala na osiągnięcie typu przyjętych danych, innych niż "US" bądź "metric".

# 5. Raport z wykonania testów mutacyjnych

Testy mutacyjne pokrywają kod w 91%.

## Pit Test Coverage Report

### **Project Summary**

| Number of Classes | I    | Line Coverage | Mutation Coverage |       |  |  |  |
|-------------------|------|---------------|-------------------|-------|--|--|--|
| 4                 | 100% | 66/66         | 91%               | 48/53 |  |  |  |

W tym przypadku obie klasy, **App** oraz **GuessTheUnits** zaniżają wynik ogólny.

# Pit Test Coverage Report

## **Package Summary**

## com.epam.bootcamp.bmi\_calculator

| Number of Classes | I    | Line Coverage | $\mathbf{M}_{1}$ | utation Coverage |
|-------------------|------|---------------|------------------|------------------|
| 2                 | 100% | 58/58         | 89%              | 41/46            |

### Breakdown by Class

| Name               | L    | ine Coverage | ge Mutation Covera |       |  |  |
|--------------------|------|--------------|--------------------|-------|--|--|
| App.java           | 100% | 28/28        | 85%                | 17/20 |  |  |
| GuessTheUnits.java | 100% | 30/30        | 92%                | 24/26 |  |  |

# 6. Analiza poszczególnych mutantów

Poniższe trzy mutacje zawarte są w jednej metodzie *bmiResults()* klasy **App** oraz są typu "Conditionals Boundary Mutator". Zmieniają one operatory (<, <=, >, >=), odpowiednio dodając, bądź zabierając równość.

```
52
              public String bmiResult(){
53 <mark>2</mark>
                        if(this.bmi < 18.5){ // Sovány
54<sub>1</sub>
                                  return "Thinness";
                        }else if(this.bmi <= 24.9){ // Normál testalkatú</pre>
55 2
56 1
                                  return "Normal";
57 <mark>2</mark>
                        }else if(this.bmi <= 29.9){ // Túlsúlyos</pre>
                                  return "Overweight";
58 1
59
                        }else{ // Erősen túlsúlyos
                                  return "Heavily overweight";
60 1
                        }
61
62
              }
```

Mutacje dotyczą sprawdzania wartości granicznych, sytuacji, gdy wartość zmiennej *bmi* wynosi 18.5, 24.9 albo 29.9. Byłem zaskoczony, że uzupełnione testy nie objęły tych przypadków. Po głębszej analizie dotychczasowych testów znalazłem w nich pewną nieścisłość, przez którą mutanty mogły przeżyć.

Przykładowy test mający w zamyśle testera pokryć ten przypadek wygląda następująco:

```
@Test
public void shouldReturnThatBMIisOverweight() throws Exception{
    app.setHeight(5.9);
    app.setWeight(207);
    assertEquals(app.calculateBMI(), actual: 29.9, delta: 1);
    assertEquals(app.bmiResult(), actual: "Overweight");
}
```

W teorii wszystko się zgadza, występuje asercja obliczonej wartości z liczbą 29.9, test przechodzi. Jednakże tester, aby ułatwić sobie pracę i uniknąć szukania dokładnych parametrów, dla których *bmi* wyniesie tyle ile chce, zastosował zaokrąglenie "delta: 1".

Dokładna wartość bmi w powyższym teście to 29.030810112036765.

Mutant został zneutralizowany poprzez napisanie nowego testu, gdzie zaokrąglanie nie występuje, a wartość *bmi* wynosi dokładnie 29.9

```
@Test
public void shouldReturnThatBMINormalWhenEquals24_9() throws Exception{
    app.setHeight(2);
    app.setWeight(99.6);
    assertEquals(app.calculateBMI(), actual: 24.9, delta: 0.0);
    assertEquals(app.bmiResult(), actual: "Normal");
}
```

Pozostałe dwa mutanty o tej samej genezie zostały zabite w analogiczny sposób.

Innymi mutantami, które przetrwały są typu "Conditionals Boundary Mutator" w metodzie *guessUnit()* klasy **GuessTheUnits.** 

```
52
53 <u>1</u>
                      if(this.unitType.equals("US")){ // ounces
54 2
                               if(this.weight > 1000){
55 <u>1</u>
                                       convertUnit("ounces"); //átkonvertáljuk fontra
56
57
                      }else{
58 2
                               if(this.weight > 1000){
59
                                       throw new Exception("Height and weight is in different metric.");
60
                               }
61
```

Oba dotyczą wartości zmiennej weight, w pierwszym przypadku, gdy unitType == "US", a w drugim, gdy równy jest on "metric". Dotychczasowe testy nie obejmowały przypadków, gdy waga wprowadzona w amerykańskim systemie wag jest równa 1000, oraz analogicznej sytuacji w systemie metrycznym.

Mutanty zostały zneutralizowane poniższymi testami:

```
//Killing mutants
@Test

public void shouldReturn1000WeightInTypeUS() throws Exception{
GuessTheUnits gtu = new GuessTheUnits (height: 10, weight: 1000);
assertEquals(gtu.getUnitType(), actual: "US");
assertEquals(gtu.getWeight(), actual: 1000, delta: 0);
}

@Test

public void shouldReturn1000WeightInTypeMetric() throws Exception {
GuessTheUnits gtu = new GuessTheUnits(height: 1.7, weight: 1000);
assertEquals(gtu.getUnitType(), actual: "metric");
assertEquals(gtu.getWeight(), actual: 1000, delta: 0);

### AssertEquals(gtu.getWeight(), actual: 1000, delta: 0);

#### AssertEquals(gtu.getWeight(), actual: 1000, delta: 0);
```

Po dodaniu odpowiednich testów pokryły one 100% kodu.

## Pit Test Coverage Report

#### **Project Summary**

| Number of Classes | . I  | Line Coverage | Mutation Coverage |       |  |  |  |
|-------------------|------|---------------|-------------------|-------|--|--|--|
| 4                 | 100% | 66/66         | 100%              | 53/53 |  |  |  |

#### Breakdown by Package

| Name                                              | Number of Classes | Line | Coverage | Mu   | tation Coverage |
|---------------------------------------------------|-------------------|------|----------|------|-----------------|
| com.epam.bootcamp.bmi_calculator                  | 2                 | 100% | 58/58    | 100% | 46/46           |
| com.epam.bootcamp.bmi_calculator.interfacesImplen | nents 2           | 100% | 8/8      | 100% | 7/7             |