On Building Efficient Recommender System

tooYoungTooSimple
Advisor: Dr. Shannon Quinn

Department of Statistics
The University of Georgia

Overview

Introduction

Feature Engineering

Sample Creation

Statistical Modeling

Ongoing Works

Introduction : Motivation

- Santander is challenging us to predict which products their existing customers will use/purchase in the next month based on their past behavior and that of similar customers
- Current recommender system is unsatisfactory with uneven customer experience
- Ongoing Kaggle competition

Introduction: Motivation

- Extremely common, and utilized in a variety of areas
- Statistical modeling is a key solution
- Balance between recommendation and customer experience (If recommender system is too aggressive, more products will be recommended correctly, but many "irrelevant" customers will be annoyed.)

Introduction : Data

- Observations: 13,647,309 (training) and 929,615 (testing)
- Response: 24 Product Variables
 Binary and Sparse
- Predictor: 24 Demographic and Behaviour Variables
- All observations are from 17 months
 Training data from 2015/01 2016/05
 Testing data from 2016/06
- Good News! No new customers appear in testing data

Introduction : Challenging

- Big and Dirty Data
- Imbalance: Very Low Proportion of Products used
- Multiple Products used by Single Customer
- Status of using May Change in Different Patterns
- Missing Values in Response and Predictors

- Remove Extremely Imbalanced Variable
 - E.g., AddressType, with 1 category

- Impute Missing Values with Different Strategies
 - Predictors: Mode for Categorical Variables
 Median for Continuous Variables

E.g. ind_empleado

Level	(Missing)	А	В	F	N	S
Frequency	27734	2492	3566	2523	13610977	17

Level	А	В	F	N	S
Frequency	2492	3566	2523	13638711	17

- Impute Missing Values with Different Strategies
 - Response: estimated sample expectation
 E.g. Ind nomina ult1 (Y 22)

Assume a Bernoulli Distribution

$$Pr(Y_22 = 0) = 0.95$$

$$Pr(Y 22 = 1) = 0.05$$

$$E(Y 22) = 0.05*1 + 0.95*0 = 0.05$$

Thus we impute *NAs* in *Y_22* as 0.05

Collapse Levels with Low Frequencies
 E.g. canal_entrada
 163 levels: 004 007 013 025 K00 KAA ... KAH KAI RED

Collapse Levels with Low Frequencies
 E.g. canal_entrada

163 levels: 004 007 013 025 K00 KAA ... KAH KAI RED

13 levels: KHE KAT KFC KHQ KFA KHK KHM KHD KHN KAS KAG RED and Others

- Create 24 Customer Historical Product (CHP) Features
 - Past purchase behaviour influence the future purchase
 - o Define CHP as weighted sum of past three years' purchase

```
    CHP(Year_i) = (1/3)*Y(Year_(i-3))
        + (1/3)*Y(Year_(i-2))
        + (1/2)*Y(Year_(i-1))
        If i = 3, we use 1/3 and 2/3 as two weights
        If i = 2, we use the previous year's purchase
        If i = 1, we keep current year's purchase
```

Sample Creation

- Different response variable has different Pr(Y=1)
- Thus we create 24 samples based on corresponding Pr(Y=1) For Y_i, keep all observations for Y_i = 1
 Sampling from the observations with Y_i = 0
 Such that Pr(Y_i = 1): Pr(Y_i = 0) = 1:5
 E.g., ind_nom_pens_utl1 (Y_23)
 Original Data: #(Y_23=1) = 810,085, #(Y_23=0) = 12,821,161
 Sample Data: #(Y_23=1) = 810,085, #(Y_23=0) = 4,050,425

Modeling : Strategy and Procedure

- We have 24 samples in total
- For sample_i, taking Y_i as Response Variable
 taking all X and CHP(-i) as Predictors
- model_i trained with sample_i to predict Y_i in testing set

Modeling : Gradient Boosted Tree

- Building up the final model by utilizing the error of previous ones.
- Apply *l*-1 regularization to control overfitting.

Modeling : XGBoost

XGBoost is an optimized distributed gradient boosting library designed to be highly *efficient*, *flexible* and *portable*.

System	exact	approximate	approximate	out-of-	sparsity	parallel
	greedy	global	local	core	aware	
XGBoost	yes	yes	yes	yes	yes	yes
SparkMLLib	no	yes	no	no	partially	yes
scikit-learn	yes	no	no	no	no	no
R-GBM	yes	no	no	no	partially	no

Modeling : Cross Validation

5-fold CV for each sample:

- Training model with train set.
- Testing model with test set.
- Aggregate over 5 validations.

Test:

Training:

Ongoing Works

- Will train 24 models with corresponding samples and predict all 24 Responses in testing data
- Kaggle Submission!

Thank you!