LỚP THẦY THI TỔNG HỢP CÔNG THỨC THỐNG KÊ CUỐI KỲ HK202

Nội dung 1: Tìm khoảng ước lượng (khoảng tin cậy)

	Dạng ước lượng	Độ chính xác	Khoảng ước lượng
1.	Tỷ lệ:	$\epsilon = Z_{\alpha} \frac{\sqrt{f.(1-f)}}{\sqrt{n}}$	$f - \varepsilon$
2.	Trung bình (kỳ vọng):		
*	Tuân theo N(a, σ^2), chưa biết σ^2 (n < 30)	$\epsilon = t_{lpha/2^{(n-1)}} rac{s}{\sqrt{n}}$	\overline{x} - ε < a < \overline{x} + ε
*	Mẫu lớn (n $\geq 30),$ chưa biết σ^2	$\epsilon = \mathrm{Z}_{\alpha} \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}$	\overline{x} - ϵ < a < \overline{x} + ϵ
*	Tuân theo N(a, σ^2), đã biết σ^2 (ít thi)	$\epsilon = Z_{\alpha} \frac{\sigma}{\sqrt{n}}$	\overline{x} - ϵ < a < \overline{x} + ϵ
3.	Phương sai:		$\frac{(n-1).s^2}{(n-1).s^2}$
		DACNA	$\frac{(n-1).s^2}{\chi^2_{\frac{\alpha}{2}^{(n-1)}}} < \sigma^2 < \frac{(n-1).s^2}{\chi^2_{1-\frac{\alpha}{2}^{(n-1)}}}$

Xác định kích thước mẫu:

Zac	dinn kien tudoe mad.	
	Dạng ước lượng Kích thước mẫu	
1.	$\mathbf{T\mathring{y}} \text{ lệ: (nếu không biết f dùng CT 2)} \qquad \qquad \mathbf{n'} = \left[\left(\frac{\mathbf{Z}_{\alpha} \sqrt{\mathbf{f}.(1-\mathbf{f})}}{\mathbf{\epsilon'}} \right)^2 \right] + 1 \text{ hoặc } \mathbf{n'} = \left[\left(\frac{\mathbf{Z}_{\alpha}}{\mathbf{\epsilon'}} \right)^2.0,25 \right]$	+1
2.	Trung bình (kỳ vọng):	
*	Chưa biết σ^2 TÀI LIÊ J SƯU TÂ' $\models \left[\left(Z_{\alpha} \frac{s}{\epsilon'} \right)^2 \right] + 1$	
*	Đã biết σ^2 (ít thi) $ \begin{array}{ccc} B \check{\sigma} I & H CMUT\text{-CNCP} & \mathrm{n'} = \left[\left(\mathrm{Z}_{\alpha} \frac{\sigma}{\epsilon'} \right)^2 \right] + 1 \end{array} $	

Nội dung 2: Kiểm định

Dạng 1: Kiểm định tỷ lệ 1 mẫu

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận \overline{H}	P - value
$\begin{aligned} & \text{H: p} = \mathbf{p}_0 \\ & \overline{\text{H}: p} \neq \mathbf{p}_0 \end{aligned}$	$W_{\alpha} = (\text{-} \infty, \text{-} Z_{\alpha}) \cup (Z_{\alpha}, + \infty)$	$ \mathrm{U}_{\mathrm{qs}} > \mathrm{Z}_{\alpha} \leftrightarrow \mathrm{U}_{\mathrm{qs}} \in \mathrm{W}_{\alpha}$	$p=2[1-\Phi(U_{qs})]$
$\begin{aligned} & \text{H: p} = \mathbf{p}_0 \\ & \overline{\text{H: p}} < \mathbf{p}_0 \end{aligned}$	$W_{\alpha} = (-\infty, -Z_{2\alpha})$	$U_{qs} < -Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = \Phi(U_{qs})$
$\begin{aligned} & \text{H: p} = \mathbf{p}_0 \\ & \overline{\text{H: p}} > \mathbf{p}_0 \end{aligned}$	$W_{\alpha} = (Z_{2\alpha}, +\infty)$	$U_{qs} > Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p=1-\Phi(U_{qs})$

2. Tính giá trị quan sát:

$$U_{qs} = \frac{f-p_0}{\sqrt{p_0(1-p_0)}} \sqrt{n}$$

Dạng 2: Kiểm định tỷ lệ 2 mẫu:

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận \overline{H}	P - value
$\begin{aligned} & \text{H: } \mathbf{p}_1 = \mathbf{p}_2 \\ & \overline{\text{H}: } \mathbf{p}_1 \neq \mathbf{p}_2 \end{aligned}$	$W_{\alpha} = (\text{-} \infty, \text{-} Z_{\alpha}) \cup (Z_{\alpha}, + \infty)$	$ \mathrm{U}_{\mathrm{qs}} > \mathrm{Z}_\alpha \leftrightarrow \mathrm{U}_{\mathrm{qs}} \in \mathrm{W}_\alpha$	$p=2[1-\Phi(U_{qs})]$
$\begin{aligned} & \text{H: } \mathbf{p}_1 = \mathbf{p}_2 \\ & \overline{\text{H}: } \mathbf{p}_1 < \mathbf{p}_2 \end{aligned}$	$W_{\alpha}=(\text{-}\infty,\text{-}Z_{2\alpha})$	$U_{qs} < -Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = \Phi(U_{qs})$
$\begin{aligned} & \text{H: } \mathbf{p}_1 = \mathbf{p}_2 \\ & \overline{\text{H}: } \mathbf{p}_1 > \mathbf{p}_2 \end{aligned}$	$W_{\alpha}=(Z_{2\alpha},+\infty)$	$U_{qs} > Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p=1-\Phi(U_{qs})$

2. Tính giá trị quan sát:

$$U_{qs} = \frac{f_1 - f_2}{\sqrt{\frac{\bar{p}(1 - \bar{p})}{\bar{n}}}}$$
 Trong đó: $f_1 = \frac{m_1}{n_1}$; $f_2 = \frac{m_2}{n_2}$; $\bar{n} = \frac{n_1.n_2}{n_1 + n_2}$; $\bar{p} = \frac{m_1 + m_2}{n_1 + n_2}$

Dạng 3: Kiểm định trung bình (kỳ vọng) 1 mẫu trường hợp biết phương sai σ^2

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận H	P - value
H: $a = a_0$	$W_{\alpha} = (-\infty, -Z_{\alpha}) \cup (Z_{\alpha}, +\infty)$	$ U_{qs} > Z_{\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = 2[1 - \Phi(IJ)]$
\overline{H} : a \neq a ₀	$W_{\alpha} = (\infty, Z_{\alpha}) \cup (Z_{\alpha}, +\infty)$	$ c_{qs} > 2\alpha + c_{qs} c + \alpha$	P 2[1 1(0qs)]
$H: a = a_0$	$W_{\alpha} = (-\infty, -Z_{2\alpha})$	$U_{qs} < -Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = \Phi(U_{as})$
$\overline{\mathbf{H}}$: $\mathbf{a} < \mathbf{a}_0$	u () 2u/	qo zu qo u	1 (4c)
$H: a = a_0$	$W_{\alpha} = (Z_{2\alpha}, +\infty)$	$U_{qs} > Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$ m p = 1 - \Phi(U_{qs})$
$\overline{\mathbf{H}}$: $\mathbf{a} > \mathbf{a}_0$,	1	

MOACNA

2. Tính giá trị quan sát:

$$U_{qs} = \frac{\bar{x} - a_0}{\sigma} . \sqrt{n}_{|C|}$$

Dạng 4: Kiểm định trung bình (kỳ vọng) 1 mẫu trường hợp chưa biết phương sai σ^2 , mẫu lớn (n ≥ 30)

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận \overline{H}	P - value
$H: a = a_0$ $\overline{H}: a \neq a_0$	$W_{\alpha}=($ - $\infty,$ - $Z_{\alpha}) \cup (Z_{\alpha},$ + $\infty)$	$ \mathrm{U}_{\mathrm{qs}} > \mathrm{Z}_{\alpha} \leftrightarrow \mathrm{U}_{\mathrm{qs}} \in \mathrm{W}_{\alpha}$	$p=2[1-\Phi(U_{qs})]$
$\begin{array}{c} H: a = a_0 \\ \overline{H}: a < a_0 \end{array}$	$W_{\alpha} = (-\infty, -Z_{2\alpha})$	$U_{qs} < -Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = \Phi(U_{qs})$
$H: a = a_0$ $\overline{H}: a > a_0$	$W_{\alpha} = (Z_{2\alpha}, +\infty)$	$U_{qs} > Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p=1-\Phi(U_{qs})$

2. Tính giá trị quan sát:

$$U_{qs} = \frac{\overline{x} - a_0}{s} . \sqrt{n}$$

Dạng 5: Kiểm định trung bình (kỳ vọng) 1 mẫu trường hợp chưa biết phương sai σ^2 , mẫu bé (n < 30)

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận $\overline{\mathbf{H}}$	P - value
H: $a = a_0$	$W_{lpha}=\left(-\infty,-\operatorname{t}_{lpha/2^{(n-1)}} ight)$ U $\left(\operatorname{t}_{lpha/2^{(n-1)}},+\infty ight)$	$ { m T_{qs}} > { m t}_{{mlpha}/2^{({ m n-1})}}$	n = 9D(T > T)
$\overline{\mathbf{H}}$: $\mathbf{a} \neq \mathbf{a}_0$	$\alpha = (\infty, \alpha_{\alpha/2}^{(n-1)}) \circ (\alpha_{\alpha/2}^{(n-1)}, \infty)$	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = 2P(T_{n-1} \ge T_{qs})$
H: $a = a_0$	W = (22 + 1)	$T_{qs} < -t_{\boldsymbol{\alpha}^{(n-1)}}$	r = D/T < T
\overline{H} : $a < a_0$	$W_{\pmb{lpha}} = (-\infty, -t_{\pmb{lpha}^{(n-1)}})$	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = P(T_{n-1} \le -T_{qs})$
H: $a = a_0$	$W = (t + \cdots + \infty)$	$T_{qs} > t_{\pmb{lpha}^{(n-1)}}$	p = P(T > T)
\overline{H} : $a > a_0$	$W_{\pmb{\alpha}} = (t_{\pmb{\alpha}^{(n-1)}}, +\infty)$	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = P(T_{n-1} \ge T_{qs})$

2. Tính giá trị quan sát:

$$T_{qs} = \frac{\overline{x} - a_0}{s} . \sqrt{n}$$

Dạng 6: Kiểm định trung bình (kỳ vọng) 2 mẫu độc lập, đã biết phương sai σ_1^2 , σ_2^2

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận $\overline{\overline{\mathrm{H}}}$	P - value
$H: a_1 = a_2$ $\overline{H}: a_1 \neq a_2$	$W_{\alpha} = (-\infty, -Z_{\alpha}) \cup (Z_{\alpha}, +\infty)^{\Delta} C /$	$ \mathrm{U}_{\mathrm{qs}} > \mathrm{Z}_\alpha \leftrightarrow \mathrm{U}_{\mathrm{qs}} \in \mathrm{W}_\alpha$	$p=2[1-\Phi(U_{qs})]$
$H: a_1 = a_2$ $\overline{H}: a_1 < a_2$	$W_{\alpha} = (-\infty, -Z_{2\alpha})$	$U_{qs} < -Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = \Phi(U_{qs})$
H: $a_1 = a_2$ \overline{H} : $a_1 > a_2$	$W_{\alpha}=(Z_{2\alpha},+\infty)$	$U_{qs} > Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$ m p = 1 - \Phi(U_{qs})$

2. Tính giá trị quan sát:

$$U_{\mathrm{qs}} = rac{ar{ar{x}} - ar{y}}{\sqrt{rac{oldsymbol{\sigma}_1^2}{n_1} + rac{oldsymbol{\sigma}_2^2}{n_2}}}$$
 TAP

Dạng 7: Kiểm định trung bình (kỳ vọng) 2 mẫu lớn độc lập, chưa biết phương sai $\sigma_1^2, \sigma_2^2, \sigma_1^2 \neq \sigma_2^2$.

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận \overline{H}	P - value
$H: a_1 = a_2$	$W_{\alpha} = (-\infty, -Z_{\alpha}) \cup (Z_{\alpha}, +\infty)$	$\left \begin{array}{c} \left \mathrm{U}_{\mathrm{qs}} \right > \mathrm{Z}_{\alpha} \leftrightarrow \mathrm{U}_{\mathrm{qs}} \in \mathrm{W}_{\alpha} \end{array} \right $	$\mathrm{p} = 2[1 - \Phi(\mathrm{U}_{\mathrm{qs}})]$
$\overline{\mathbf{H}}$: $\mathbf{a_1} \neq \mathbf{a_2}$	$W_{\alpha} = (-\infty, -Z_{\alpha}) \cup (Z_{\alpha}, +\infty)$	$ O_{qs} > Z_{\alpha} \lor O_{qs} \subset V_{\alpha}$	$p = 2[1 \Psi(\mathcal{O}_{qs})]$
$H: a_1 = a_2$	$W_{\alpha} = (-\infty, -Z_{2\alpha})$		$\mathrm{p} = \Phi(\mathrm{U}_{\mathrm{os}})$
$\bar{H}: a_1 < a_2$	$W_{\alpha} = (-\infty, - Z_{2\alpha})$	$O_{qs} \setminus D_{2\alpha} \lor O_{qs} \cup W_{\alpha}$	$p = \Psi(O_{qs})$
$H: a_1 = a_2$	W = (7 + 20)	$\begin{array}{c c} & & \\ & &$	$\mathrm{p} = 1 - \Phi(\mathrm{U}_{\mathrm{qs}})$
\overline{H} : $a_1 > a_2$	$W_{\alpha} = (Z_{2\alpha}, +\infty)$	$U_{qs} > Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = 1 - \Psi(O_{qs})$

2. Tính giá trị quan sát:

$$U_{qs} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

1. Phát biểu giả thiết:

Giả thiết	Miền bác bỏ
H: $\sigma^2 = \sigma_0^2$ \overline{H} : $\sigma^2 \neq \sigma_0^2$	$W_{\alpha} = (0, \chi^{2}_{1-\alpha/2^{(n-1)}}) \cup (\chi^{2}_{\alpha/2^{(n-1)}}, +\infty)$
$H: \sigma^2 = \sigma_0^2 \ \overline{H}: \sigma^2 < \sigma_0^2$	$W_{\alpha} = (0, \chi^2_{1-\alpha^{(n-1)}})$
$ ext{H: } \sigma^2 = \sigma_0^2 \ ext{ar{H}: } \sigma^2 > \sigma_0^2 \ ext{}$	$\mathrm{W}_{\alpha} = (\chi^2_{\alpha^{(n-1)}}, +\infty)$

2. Tính giá trị quan sát:

$$\chi^2_{qs} = \frac{(n-1)s^2}{\sigma_0^2}$$

Dạng 9: Phân tích phương sai một nhân tố (cỡ mẫu bằng nhau)

1. Phát biểu giả thiết:

H:
$$\mu_1 = \mu_2 = \mu_3 = \ldots = \mu_T$$

Trung bình của tất cả các phương thức xử lý bằng nhau.

$$\overline{H}$$
: $\exists \mu_i \neq \mu_i$

Có ít nhất 2 giá tri trung bình ở các phương thức xử lý khác nhau.

2. Tính các trung bình:

$$\overline{\mathbf{x}_1} = ..., \overline{\mathbf{x}_2} = ..., \overline{\mathbf{x}_3} = ..., \overline{\mathbf{x}_I} = ..., \overline{\mathbf{x}} =$$

3. Tính các tổng bình phương (sai số, nghiệm thức, toàn thể):

$$SSE = SS_1 + SS_2 + SS_3 + \dots SS_I = \sum_{j=1}^{J} (x_{1j} - \overline{x_1})^2 + \sum_{j=1}^{J} (x_{2j} - \overline{x_2})^2 + \dots + \sum_{j=1}^{J} (x_{Ij} - \overline{x_I})^2$$

$$SSTr = J \sum_{i=1}^{J} (\overline{x_i} - \overline{x})^2$$

$$SSTr = SSTr + SSTr + SSTr$$

$$SST = SSTr + SSE$$

(Có thể tính SST bằng cách nhập toàn bộ bằng vào máy tính bổ túi, SST = $n.\hat{s}^2$; sau đó tính SSTr, rồi tính SSE = SST - SSTr)

4. Trung bình bình phương sai số:

$$\mathrm{MSE} = \frac{\mathrm{SSE}}{\mathrm{I}(\mathrm{J-1})}$$

Trung bình bình phương nghiệm thức:

$$MSTr = \frac{SSTr}{I - 1}$$

6. Trung bình bình phương toàn thể:

$$MST = \frac{SST}{IJ - 1}$$

7. Tính giá trị giá trị quan sát:

$$F = \frac{MSTr}{MSE}$$

8. Miền bác bỏ: $F > F_{\alpha:I-1:I(J-1)}$

(J: tổng số quan sát ở 1 nhóm, I: số nhóm so sánh)

Dạng 10: Kiểm định trung bình (kỳ vọng) 2 mẫu nhỏ độc lập, chưa biết phương sai σ_1^2 , σ_2^2

1. Phát biểu giả thiết

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận $\overline{\mathbf{H}}$	P - value
$H: a_1 = a_2$	$W_{\pmb{lpha}} = ($ - $\infty,$ - $t_{\pmb{lpha}/2^{(df)}})$ U $(t_{\pmb{lpha}/2^{(df)}}$ $,$ + $\infty)$	$ \mathrm{T}_{\mathrm{qs}} > \mathrm{t}_{lpha/2^{(\mathrm{df})}}$	$p = 2P(T_{df} \ge T_{qs})$
$\bar{\mathbf{H}}$: $\mathbf{a_1} \neq \mathbf{a_2}$	$\alpha/2^{(\alpha)}$	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = 2i \left(i \text{d} i = i \text{qs} \right)$
$H: a_1 = a_2$	$\mathrm{W}_{lpha} = (ext{-} \infty, ext{-} \mathrm{t}_{lpha^{(\mathrm{df})}})$	$T_{qs} < - t_{\boldsymbol{\alpha}^{(df)}}$	$p = P(T_{df} \le -T_{qs})$
$\bar{H}: a_1 < a_2$	$w_{\alpha} = (-\infty, -v_{\alpha}^{(df)})$	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = r \left(r_{df} \le - r_{qs} \right)$
$H: a_1 = a_2$	$\mathrm{W}_{\pmb{lpha}} = (\mathrm{t}_{\pmb{lpha}^{(\mathrm{df})}}, + \infty)$	$ m T_{qs} > t_{m{lpha}^{(df)}}$	p = D(T > T)
\overline{H} : $a_1 > a_2$	${\rm vv}_{lpha} - ({ m t}_{lpha^{ m (df)}}, + \infty)$	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = P(T_{df} \ge T_{qs})$

2. Tính giá trị quan sát:

Trường hợp $\sigma_1^2 = \sigma_2^2 = \sigma^2$:

$$T_{qs} = \frac{\bar{x} - \bar{y}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ v\'oi } s_p^2 = \frac{(n_1 - 1).s_1^2 + (n_2 - 1).s_2^2}{n_1 + n_2 - 2}, \text{ df} = n_1 + n_2 - 2$$

Trường hợp $\sigma_1^2 \neq \sigma_2^2$:

$$T_{qs} = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_1^2 + \frac{s_2^2}{n_2}}{n_1 + \frac{s_2^2}{n_2}}}} \text{ v\'oi } df = \frac{\left[\left(s_1^2/n_1\right) + \left(s_2^2/n_2\right)\right]^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

Dạng 11: Kiểm định trung bình (kỳ vọng) 2 mẫu nhỏ phụ thuộc (không độc lập)

1. Phát biểu giả thiết

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận H	P - value
H: $a_1 = a_2$		$ T_{qs} > t_{\alpha/2^{(n-1)}}$	p = 2P(T > T)
\overline{H} : $a_1 \neq a_2$	α (α /2(α -1)) α (α /2(α -1)), α	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = 2P(T_{n-1} \ge T_{qs})$
H: $a_1 = a_2$	$W = (-\infty)^2 + (-1)^2$	$T_{qs} < -t_{\alpha^{(n-1)}}$	$p = P(T_{n-1} \le -T_{qs})$
$\bar{H}: a_1 < a_2$	$W_{\alpha} = (-\infty, -t_{\alpha^{(n-1)}})$	\leftrightarrow $T_{qs} \in W_{\alpha}$	$p = r(r_{n-1} \le r_{qs})$
$H: a_1 = a_2$	$W_{\alpha} = (t_{\alpha^{(n-1)}}, +\infty)^{-1}$	CNCP $T_{qs} > t_{\pmb{lpha}^{(n-1)}}$	$p = P(T_{n-1} \ge T_{qs})$
$\overline{\mathbf{H}}$: $\mathbf{a_1} > \mathbf{a_2}$	$\alpha = ({}^{\circ}\alpha^{(n-1)}, +\infty)$	$\leftrightarrow T_{qs} \in W_{\alpha}$	$p = r (r_{n-1} \ge r_{qs})$

2. Tính giá trị quan sát:

$$T_{qs} = \frac{\overline{D}}{S_D/\sqrt{n}} \text{ v\'oi } D_i = X_i \text{ - } Y_i \text{ ; } \overline{D} = \frac{\sum_{i=1}^n D_i}{n} \text{ ; } S_D = \sqrt{\frac{\sum_{i=1}^n \left(D_i \text{ - } \overline{D}\right)^2}{n \text{ - } 1}}$$

Dạng 12: Kiểm định trung bình (kỳ vọng) 2 mẫu lớn phụ thuộc (không độc lập)

1. Phát biểu giả thiết

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận \overline{H}	P - value
$\begin{array}{l} H\colon a_1=a_2\\ \overline{H}\colon a_1\neq a_2 \end{array}$	$\mathrm{W}_{\alpha} = (\text{-} \infty, \text{-} \mathrm{Z}_{\alpha}) \cup (\mathrm{Z}_{\alpha}, + \infty)$	$\left \left \mathbf{U}_{\mathrm{qs}} \right > \mathbf{Z}_{\alpha} \leftrightarrow \mathbf{U}_{\mathrm{qs}} \in \mathbf{W}_{\alpha} \right $	$p=2[1-\Phi(U_{qs})]$
$H: a_1 = a_2$ $\overline{H}: a_1 < a_2$	$W_{\alpha} = (-\infty, -Z_{2\alpha})$	$U_{qs} < -Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = \Phi(U_{qs})$
$H: a_1 = a_2$ $\overline{H}: a_1 > a_2$	$W_{\alpha} = (Z_{2\alpha}, +\infty)$	$U_{qs} > Z_{2\alpha} \leftrightarrow U_{qs} \in W_{\alpha}$	$p = 1 - \Phi(U_{qs})$

2. Tính giá trị quan sát: Tương tự như dạng 11 (thay kí hiệu $T_{\rm qs}$ thành $U_{\rm qs})$

Nội dung 3: Hồi quy

Dạng 1: Viết phương trình đường hồi quy và tìm hệ số tương quan Phương trình hồi quy tuyến tính mẫu của Y theo X: y = a + bx, với:

$$\begin{cases} a = \overline{y} - b\overline{x} \\ b = \frac{\overline{x}\overline{y} - \overline{x}.\overline{y}}{\widehat{s_x}^2} \end{cases}$$

Phương trình hồi quy tuyến tính mẫu của X theo Y: x = c + dy, với:

$$\begin{cases} c = \overline{x} - d\overline{y} \\ d = \frac{\overline{x}\overline{y} - \overline{x}.\overline{y}}{\widehat{S_{v}}^{2}} \end{cases}$$

Hệ số tương quan mẫu:

$$r_{XY} = \frac{\overline{x}\overline{y} - \overline{x}.\overline{y}}{\widehat{s_x}.\widehat{s_y}}$$

Nhận xét mối quan hệ tuyến tính giữa X và Y:

$$|\mathbf{r}_{\mathrm{XY}}| < 0.7$$
: nghèo nàn ;

 $0.8 \le |r_{XY}| < 0.9$: tốt;

 $0.7 \le |r_{XY}| < 0.8$: khá,

 $|\mathbf{r}_{XY}| \ge 0.9$: xuất sắc (xấp xỉ tuyến tính)

Hê số xác đinh: r²

Dạng 2: Ước lượng sai số chuẩn, phương sai của sai số

$$SSE = SST - SSR = n.\widehat{s_y}^2 - \frac{n(\overline{xy} - \overline{x}.\overline{y})^2}{\widehat{s_x}^2}$$

$$\begin{split} \mathrm{SSE} &= \mathrm{SST} - \mathrm{SSR} = \mathrm{n.} \widehat{s_y}^2 - \frac{\mathrm{n} (\overline{\mathrm{x}} \overline{\mathrm{y}} - \overline{\mathrm{x.}} \overline{\mathrm{y}})^2}{\widehat{s_x}^2} \\ \mathrm{Sai} \ \mathrm{s\acute{o}} \ \mathrm{chuẩn} \ \mathrm{đường} \ \mathrm{h\r{o}} \mathrm{i} \ \mathrm{quy:} \ \sigma = \sqrt{\frac{\mathrm{SSE}}{\mathrm{n-2}}} \end{split}$$

Uốc lượng phương sai: $\sigma^2 = \frac{\text{SSE}}{\text{n-2}}$

Dạng 3: Khoảng tin cậy cho các hệ số hồi quy

Khoảng tin cậy cho hệ số tự do A: a - $\epsilon_a < A < a + \epsilon_a$, trong đó: $\epsilon_a = t_{\alpha/2^{(n-2)}} \frac{\sqrt{SSE.\overline{x^2}}}{\widehat{s_x}\sqrt{n(n-2)}}$

$$\epsilon_{a} = t_{\alpha/2^{(n-2)}} \frac{\sqrt{\mathrm{SSE}.\overline{x^{2}}}}{\widehat{s_{x}}\sqrt{n(n-2)}}$$

Khoảng tin cậy cho hệ số góc B: b - ε_b < B < b + ε_b , trong đó:

$$\epsilon_{\rm b} = t_{\alpha/2^{(n-2)}} \frac{\sqrt{\rm SSE}}{\widehat{s_x} \sqrt{n(n\text{-}2)}}$$

Dạng 4: Kiểm định cho các hệ số hồi quy Kiểm định A:

1. Phát biểu giả thiết

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận $\overline{\mathbf{H}}$	P - value
$\begin{array}{c} H: A = a_0 \\ \overline{H}: A \neq a_0 \end{array}$	$W_{\alpha} = (\text{-} \infty, \text{-} t_{\alpha/2^{(n-2)}}) \cup (t_{\alpha/2^{(n-2)}}, + \infty)$	$\begin{aligned} T_{qs} &> t_{\alpha/2^{(n-2)}} \\ &\leftrightarrow T_{qs} \in W_{\alpha} \end{aligned}$	$p = 2P(T_{n-2} \ge T_{qs})$
$\begin{array}{c} \text{H: } A = a_0 \\ \overline{\text{H}: } A < a_0 \end{array}$	$W_{\pmb{lpha}} = (-\infty, -t_{\pmb{lpha}^{(n-2)}})$	$T_{qs} < -t_{\alpha^{(n-2)}}$ $\leftrightarrow T_{qs} \in W_{\alpha}$	$p = P(T_{n-2} \le -T_{qs})$
$\begin{array}{c} H: \ A = a_0 \\ \overline{H}: \ A > a_0 \end{array}$	$W_{\alpha}{=}(t_{\alpha^{(n-2)}},\!+\infty)$	$T_{qs} > t_{\alpha^{(n-2)}}$ $\leftrightarrow T_{qs} \in W_{\alpha}$	$p = P(T_{n-2} \ge T_{qs})$

Thông thường $a_0 = 0$

2. Tính giá trị quan sát:

$$T_{qs} = \frac{a - a_0}{\frac{\sqrt{SSE.\overline{x^2}}}{\widehat{s_x}\sqrt{n(n-2)}}}$$

Kiểm đinh B:

1. Phát biểu giả thiết

Giả thiết	Miền bác bỏ	Bác bỏ H, chấp nhận $\overline{\mathbf{H}}$	P - value
$\begin{array}{c} H: B = b_0 \\ \overline{H}: B \neq b_0 \end{array}$	$W_{\alpha} = (\text{-} \infty, \text{-} t_{\alpha/2^{(n-2)}}) \cup (t_{\alpha/2^{(n-2)}}, + \infty)$	$\begin{aligned} T_{qs} &> t_{\alpha/2^{(n-2)}} \\ &\leftrightarrow T_{qs} \in W_{\alpha} \end{aligned}$	$p = 2P(T_{n-2} \ge T_{qs})$
$\begin{array}{c} \text{H: B} = b_0 \\ \overline{\text{H}: B} < b_0 \end{array}$	$W_{\pmb{lpha}} = (-\infty, -t_{\pmb{lpha}^{(n-2)}})$	$T_{qs} < -t_{\alpha^{(n-2)}}$ $\leftrightarrow T_{qs} \in W_{\alpha}$	$p = P(T_{n-2} \le -T_{qs})$
$\begin{array}{c} \text{H: B} = b_0 \\ \overline{\text{H: B}} > b_0 \end{array}$	$W_{\pmb{\alpha}} = (t_{\pmb{\alpha}^{(n-2)}}, +\infty)$	$T_{qs} > t_{\alpha^{(n-2)}}$ $\leftrightarrow T_{qs} \in W_{\alpha}$	$p = P(T_{n-2} \ge T_{qs})$

Thông thường $b_0 = 0$

2. Tính giá trị quan sát:

$$T_{qs} = \frac{b - b_0}{\frac{\sqrt{SSE}}{\widehat{s_x}\sqrt{n(n-2)}}}$$

Dạng 5: Kiểm định sự phù hợp của hàm hồi quy tuyến tính đơn

1. Phát biểu giả thiết:

H: $R^2 = 0$ hoặc (B = 0): Phương trình đường hỗi quy không thích hợp

 \overline{H} : $R^2 \neq 0$ hoặc (B $\neq 0$): Phương trình đường hồi quy thích hợp

2. Tính giá trị quan sát:

$$F = \frac{r^2}{\frac{1-r^2}{n-2}} \prod_{\alpha} F$$
3. Miền bác bỏ: $W_{\alpha} = (F_{\alpha^{(1, n-2)}}; +\infty)$
4. Bác bỏ H, chấp nhận \overline{H} khi $F > F_{\alpha^{(1, n-2)}} \leftrightarrow F \in W_{\alpha}$
ang 6: Kiểm định mối tương quan tuyến tính X, Y

Dạng 6: Kiểm định mối tương quan tuyến tính X, Y

1. Phát biểu giả thiết:

H: X,Y không có tương quan tuyến tính (R = 0)

 \overline{H} : X,Y có tương quan tuyến tính (R \neq 0)

2. Tính giá tri quan sát:

$$T_{qs} = r \sqrt{\frac{n-2}{1-r^2}}$$

- 3. Miền bác bỏ: $W_{\alpha}=(-\infty,-t_{\alpha/2^{(n-2)}})$
 U $(t_{\alpha/2^{(n-2)}},+\infty)$
- 4. Bác bỏ H, chấp nhận \overline{H} khi $|T_{qs}|>t_{\alpha/2^{(n-2)}}\leftrightarrow T_{qs}\in W_\alpha$

Dạng 7: Khoảng tin cậy cho giá trị dự đoán

$$a + bx_0 \pm t_{\alpha/2^{(n-2)}}.\sigma.\sqrt{\left[\frac{1}{n} + \frac{(\bar{x} - x_0)^2}{n.\hat{s_x}^2}\right]}$$

TỔNG HỢP CÔNG THỰC XÁC SUẤT CUỐI KỲ

Nội dung 1: Công thức cộng xác suất

P(A+B) = P(A) + P(B) - P(AB)

P(A+B+C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)

Tổng quát:

$$P(A_1 + A_2 + A_3 + ... A_n) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) - ... + (-1)^{n-1} .P(A_1 A_2 A_3 ... A_n)$$

Nếu A, B xung khắc thì P(A+B) = P(A) + P(B)

Nếu $A_1; A_2; A_3; A_n$ XK đôi một thì $P(A_1 + A_2 + A_3 + ... A_n) = P(A_1) + P(A_2) + ... + P(A_n)$

Nếu $\{A_1; A_2; A_3; ..., A_n\}$ là nhóm biến cố đầy đủ thì $P(A_1) + P(A_2) + ... + P(A_n) = 1$

Nội dung 2: Công thức xác suất đầy đủ - công thức Bayes

Định lý: Giả sử $\{H_1, H_2, ..., H_n\}$ là hệ biến cố đầy đủ và F là một biến cố bất kỳ.

Công thức 1:

$$P(F) = P(H_1).P(F/H_1) + P(H_2).P(F/H_2) + ... + P(H_n).P(F/H_n) = \sum_{i=1}^{n} P(H_i).P(F/H_i)$$

⇒ Đây là công thức xác suất toàn phần hay công thức thức xác suất đầy đủ

Công thức 2:

$$P(H_k/F) = \frac{P(H_k.F)}{P(F)} = \frac{P(H_k).P(F/H_k)}{\sum_{i=1}^{n} P(H_i).P(F/H_i)}; k = 1, 2, 3,...n \text{ và } P(F) \neq 0$$
c. Bayes

⇒ Đây là công thức Bayes.

Công thức 3:

$$P(F_2/F_1) = \frac{P(F_1F_2)}{P(F_1)} = \frac{\sum_{i=1}^{n} P(H_i).P(F_1F_2/H_i)}{\sum_{i=1}^{n} P(H_i).P(F_1/H_i)}$$

 $\Rightarrow~$ Đây là công thức mở rộng.

Nội dung 3: Các quy luật phân phối xác suất

1. Phân phối Đều: $X \sim U(a, b)$, nếu hàm mật độ của nó có dạng:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a; b] \\ 0, & x \notin [a; b] \end{cases}$$

$$E(X) = med(X) = \frac{a+b}{2}; D(X) = \frac{(b-a)^2}{12}; Mod(X) = x, v\'{o}i \ x \in [a; b]$$

2. Phân phối Mũ: X ~ $E(\lambda)$, nếu hàm mật độ của nó có dạng:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$E(X) = \frac{1}{\lambda}; D(X) = \frac{1}{\lambda^2}; Mod(X) = 0; Med(X) = \ln(2)/\lambda$$

• Công thức **mất trí nhớ**: $X \sim E(\lambda)$ thì với mọi $a,b \geq 0$, ta có:

$$P(X > a + b | X > a) = P(X > b)$$

• Nếu các biến ngẫu nhiên $X_i \sim E(\lambda_i), \, i=1,\,2,\,3,\,...,\,n$ độc lập thì ta có:

$$\mathrm{Y} = \min\{\mathrm{X}_{1}, \, \mathrm{X}_{2}, \, \mathrm{X}_{3}, ... \, \, \mathrm{X}_{n}\} \sim \mathrm{E}(\pmb{\lambda}_{1} \, + \, \pmb{\lambda}_{2} \, + \, \pmb{\lambda}_{3} \, + \, ... \, + \, \pmb{\lambda}_{n})$$

3. Phân phối Poisson: $X \sim P(\lambda)$:

$$\begin{split} E(X) &= D(X) = \lambda; \ \lambda - 1 \le \operatorname{Mod}(X) \le \lambda \ \operatorname{va} \ \operatorname{Mod}(X) \in \mathbb{N} \\ P(X = k) &= \frac{e^{-\lambda} \cdot \lambda^k}{k!} \\ P(k_1 \le X \le k_2) &= \sum_{k_1}^{k_2} \frac{e^{-\lambda} \cdot \lambda^k}{k!} \end{split}$$

• Nếu các biến ngẫu nhiên $X_i \sim P(\lambda_i), i=1,\,2,\,3,\,...,\,n$ độc lập thì ta có:

$$Y = X_1 + X_2 + X_3 + ... + X_n \sim P(\lambda_1 + \lambda_2 + \lambda_3 + ... + \lambda_n)$$

4. Phân phối Chuẩn: $X \sim N(a, \sigma^2)$, nếu hàm mật độ của nó có dạng:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-a)^2}{2\sigma^2}}, x \in R$$

$$E(X) = \operatorname{Mod}(X) = \operatorname{Med}(X) = a; D(X) = \sigma^{2}$$

$$P(k_{1} \le X \le k_{2}) = \int_{k_{1}}^{k_{2}} \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-a)^{2}}{2\sigma^{2}}} dx = \Phi\left(\frac{k_{2}-a}{\sigma}\right) - \Phi\left(\frac{k_{1}-a}{\sigma}\right) = \overline{\Phi}\left(\frac{k_{2}-a}{\sigma}\right) - \overline{\Phi}\left(\frac{k_{1}-a}{\sigma}\right) (*)$$

$$P(|X - a| < \varepsilon) = 2. \ \Phi\left(\frac{\varepsilon}{\sigma}\right), \varepsilon > 0$$

• Nếu các biến ngẫu nhiên $X_i \sim N(a_i, \sigma_i^2) = 1, 2, 3, ..., n độc lập thì ta có:$

$$Y = X_1 + X_2 + X_3 + ... + X_n \sim N(a, \sigma^2) \text{ v\'oi } a = a_1 + a_2 + a_3 + ... + a_n, \ \sigma^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + ... + \sigma_n^2$$

• Nếu các biến ngẫu nhiên $X \sim N(a_1, \sigma_1^2)$ và $Y \sim N(a_2, \sigma_2^2)$ độc lập thì ta có:

$$Z = c.X + d.Y \sim N(a, \sigma^2) \text{ v\'oi } a = c.a_1 + d.a_2; \sigma^2 = c^2.\sigma_1^2 + d^2.\sigma_2^2$$

5. Phân phối Siêu bội: $X \sim H(N,M,n)$:

$$\begin{split} E(X) &= np; \, D(X) = npq \frac{N-n}{N-1} \,\, \text{v\'oi} \,\, p = \frac{M}{N} \,\, \text{v\'a} \,\, q = 1-p \\ P(X=k) &= \frac{C_M^k.C_{N-M}^{n-k}}{C_N^n} \,\, \text{v\'a} \,\, P(k_1 \leq X \leq k_2) = \sum_{k_1}^{k_2} \frac{C_M^k.C_{N-M}^{n-k}}{C_N^n} \,\, \text{TAP} \\ Trong trường hợp $n << N \,\, (n \,\, \text{rất nhỏ so v\'oi} \,\, N \,\, \text{l\'on}) : P(X=k) = \frac{C_M^k.C_{N-M}^{n-k}}{C_N^n} \approx C_n^k.p^k.q^{n-k}; \,\, k = 0, \, 1, \, 2,, \, n \end{split}$$$

6. Phân phối nhị thức: $X \sim B(n, p)$:

$$\begin{split} E(X) &= np; \, D(X) = npq \text{ với } q = 1-p, \, [np-q] \leq \operatorname{Mod}(X) \leq [np-q] + 1 \; ([\;]: \, lấy \text{ phần nguyên}) \text{ và } \operatorname{Mod}(X) \in \mathbb{N} \\ P(X = k) &= C_n^k.p^k.q^{n-k} \end{split}$$

$$P(k_1 \le X \le k_2) = \sum_{k_1}^{k_2} C_n^k p^k q^{n-k}$$

1. Trong trường hợp n lớn, $5\% \le p \le 95\%$. Khi đó biến ngẫu nhiên X có phân phối Nhị thức sẽ được xem như xấp xỉ phân phối Chuẩn N(a = np, σ^2 = npq):

$$P(X=k) = \frac{1}{\sqrt{npq}} \sqrt{2\pi} e^{\frac{(k-np)^2}{2npq}} \text{ và } P(k_1 \le X \le k_2) = \Phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - np}{\sqrt{npq}}\right)$$

2. Trong trường hợp n
 lớn, p<5%. Khi đó biến ngẫu nhiên X có phân phối Nhị thức sẽ được xem như xấp xỉ phân phối Poisson P($\lambda=$ np)

$$P(X = k) = \frac{e^{-(np)}.(np)^k}{k!} \text{ và } P(k_1 \le X \le k_2) = \sum_{k_1}^{k_2} \frac{e^{-(np)}.(np)^k}{k!}$$

• Nếu các biến ngẫu nhiên $X_i \sim B(n_i, p) = 1, 2, 3, ..., n$ độc lập thì ta có:

$$Y = X_1 + X_2 + X_3 + ... + X_n \sim B(n, p) \text{ v\'oi } n = n_1 + n_2 + n_3 + ... + n_n$$

Nội dung 4: Véc tơ ngẫu nhiên (X, Y) rời rạc

1. Phân phối xác suất có điều kiện:

Bảng phân phối xác suất của X với điều kiện $Y = y_i \ (j = \overline{1,n})$ là:

X	\mathbf{x}_1	\mathbf{x}_2		X_{m}
DX/yi	$\underline{\mathrm{p}_{\mathrm{1j}}}$	$\underline{\mathbf{p}_{2\mathbf{j}}}$		$\underline{\mathrm{p}_{\mathrm{mj}}}$
P	${ m q_j}$	${\bf q_j}$	•••	q_{j}

$$P\left(X=x_{i} \mid Y=y_{j}\right) = \frac{p_{ij}}{q_{i}}$$

Bảng phân phối xác suất của Y đối với điều kiện $X=x_i~(i=\overline{1,m})$ là:

X	У1	y_2	 y_n
P^{Y/x_i}	$\underline{\mathbf{p}_{i1}}$	$\underline{\mathbf{p}_{i2}}$	 $\underline{\mathrm{p}_{\mathrm{in}}}$
	p_{i}	p_{i}	p_{i}

$$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_i}$$

2. Điều kiện độc lập của X, Y:

X và Y độc lập
$$\leftrightarrow$$
 P(X = x_i, Y = y_j) = P(X = x_i).P(Y = y_j) \forall i, j hay p_{ij} = p_iq_j \forall i, j. \leftrightarrow F(x, y) = F_X(x).F_Y(y)

(F_X, F_Y là các hàm phân phối xác suất của X, Y, hay gọi la các hàm phân phối lề)

3. Hàm phân phối xác suất đồng thời của (X, Y):

$$F(x, y) = P(X < x, Y < y) = \sum_{x_i < x} \sum_{y_i < y} p_{ij}$$

Nội dung 5: Các đặc trưng của véc tơ ngẫu nhiên (X, Y)

- 1. Kỳ vọng toán: E(X, Y) = (E(X), E(Y))
- 2. Hiệp phương sai (Coravian): Cov(X, Y) = E(XY) E(X).E(Y)
- 3. Ma trận tương quan:

$$\textbf{D}(X,\,Y) = \begin{bmatrix} cov(X,\,X) & cov(X,\,Y) \\ cov(Y,\,X) & cov(Y,\,Y) \end{bmatrix} = \begin{bmatrix} D(X) & cov(X,\,Y) \\ cov(Y,\,X) & D(Y) \end{bmatrix}$$

4. Hệ số tương quan của X và Y:

$$R_{XY} = \frac{cov(X,Y)}{\sqrt{D(X)}.\sqrt{D(Y)}} = \frac{E(XY) - E(X).E(Y)}{\sqrt{D(X)}.\sqrt{D(Y)}}$$

Nội dung 6: Định lý giới hạn trung tâm

Giả sử X_1 , X_2 , X_3 ,... X_n là các biến ngẫu nhiên độc lập cùng tuân theo một quy luật phân phối xác suất nào đó. Kí hiệu $E(X_i) = a$ và $D(X_i) = \sigma^2$, $\forall i$. Khi $n \rightarrow \infty$, chúng ta có sự hội tụ theo xác suất của các BNN sau: Biến ngẫu nhiên $X = X_1 + X_2 + ... + X_n$ hội tụ về phân phối chuẩn $N(n.a,n.\sigma^2)$

Biến ngẫu nhiên
$$\overline{X} = \frac{X_1 + X_2 + ... + X_n}{n}$$
 hội tụ về phân phối chuẩn $N(a, \frac{\sigma^2}{n})$

TÀI LIỆU THAM KHẢO:

BÀI GIẢNG XSTK – THẦY NGUYỄN BÁ THI