AHdoc

Game Theory 2

什么是游戏

- (1) 有2个或若干个玩家 (player)
- (2) 每一个玩家有若干策略可以选择
- (3)每一个玩家的策略选择,决定了最后游戏的结果
- (4)每一个可能的游戏结果赋予了每一个玩家一个收益 (payoff)

■ 我们只考虑最简单的一类: Normal Form Games

Normal Form Games

Payoff matrix game

Player 2				
Player 1		c_1	•••	c_j
	r_1	$a_{1,1}$	•••	$a_{1,j}$
	:	• •		
	r_i	$a_{i,1}$	• • •	$a_{i,j}$

先看 Two Person Zero Sum Games

■ 所有 a(i,j) 是零和的

Player 2				
		c_1	•••	c_j
layer	r_1	$a_{1,1}$	•••	$a_{1,j}$
Pla	:	:		:
	r_i	$a_{i,1}$	•••	$a_{i,j}$

- Pure strategy:
 - 非概率策略
 - 玩家不会改变他们在游戏过程中的行为
- 常见的Pure strategy:
 - Dominant strategy
 - Saddle Point

- 常见的Pure strategy: Dominant strategy
 - 一个策略 S 是Dominant strategy,是说存在一个策略 T 满足
 - 对于任何情况,策略 T 都不差于 S 且至少有一个情况 T 严格更好
- Dominant strategy principle:
 - 任何玩家都不会尝试一个 Dominant strategy
- 可以用来减少决策

- Dominant strategy principle:
 - 任何玩家都不会尝试一个 Dominant strategy
- 可以用来减少决策
 - **3542**
 - **5624**
 - **2140**
 - **3352**

■ 常见的Pure strategy: Saddle Point

- 在 payoff matrix 中看,一个位置 (x,y) 是Saddle Point
- 是说:
 - 它是所在行最大的
 - 也是所在行最小的

■ 常见的Pure strategy: Saddle Point

	Player 2				
		A	В	С	Min
er ,	A	2	4	3	2
Player	В	1	-10	5	-10
Ъ	С	-1	6	-8	-8
	Max	2	6	5	
	Max	2	6	5	

- 常见的Pure strategy: Saddle Point
- Saddle point principle:
 - 如果存在 Saddle points
 - 则每一个玩家都一定选择有 Saddle point 的策略
- Saddle point 可能有多个

- Saddle point 可能有多个,但:
 - 任意两个 Saddle points 有相同的值(Value of the game)
 - 如果玩家 A 和 B 都选择了一个包含 Saddle points 的策略,则一定
 在 Saddle point
- 为什么?证明一下?

决策: Mixed strategy

- Mixed strategy:
 - 混合的策略,每一种策略有一定概率
 - 固定的概率
- 怎么计算 Value of the game?

最小最大原则 (Minimax Thm.)

- 总存在一个唯一的数 v ,称作 Value of the game
- 满足存在 A 和 B 的最优策略(pure or mixed)满足:
 - A在选定策略下的期望 payoff 大于等于 v,无论B做什么
 - B在选定策略下,可以让A的期望 payoff 小于等于 v,无论A做什么

如何寻找最优 Mixed strategy

- 1). 如果是 2 * 2 的策略?
- 2). 更多? 降维
- 3). 有一些几何上的方法

如何寻找最优 Mixed strategy

		A	В	Min
eľ.	A	6	-3	-3
Player	В	2	-1	-1
Ь	\mathbf{C}	-5	4	-5
	Max	6	4	

下面看 Two Person Non-Zero Sum Games

- Cooperative strategies?
- 需要先思考,到底能否有交流和商议的可能

Two Person Non-Zero Sum Games

Nash Equilibrium

- 对于2个人来说,如果有一个均衡策略满足:
 - 每一个玩家都无法通过只修改他自身的策略获得更好的 payoff
- 这样的策略位置就是 Nash Equilibrium

■ 也就是说此刻,每一个人都做到了自己能做到的最好情况

Mixed Strategy 的 Nash Equilibrium

- 考虑从一种策略出发,假设此刻两个人都等概率混合策略
- Step 1.
 - 对于 Player 1, 枚举 x 选择 A, 1-x 选择 B
 - 3x+(1-x) = 2x+3(1-x),所以x = 2/3
- Step 2.
 - 此刻 Player 1 的策略是 2/3 选择 A, 1/3 选择 B
 - 同样 -2*2x+3(1-x) = 4*2x+2(1-x)

小结

- 我们稍微介绍了均衡博弈问题的<mark>冰山一角</mark>
- 1) Pure strategy & Mixed strategy,实际上还有更多别的策略
- 2) Nash Equilibrium 以及如何找到
- 3) Mixed strategy 的Nash Equilibrium

思考题

Prisoner 2				
1		S	В	
sonei	S	(-1, -1)	(-3,0)	
Pri	В	(0, -3)	(-2, -2)	

Player 2				
<u> </u>		С	D	
layer	С	(R,R)	(S,T)	
Pla	D	(T,S)	(U, U)	

■ 求出所有合法的 (T,R,U,S)