Result

1.1曲面方程

$$Ax^2 + By^2 = z$$

1.2船高

H

2.1龙骨方程

$$By^2 = H$$

2.2截面方程

2.2.1 xoz平面

$$\{egin{array}{l} Ax^2=z \ y=0 \end{array}$$

2.2.1 xoz平面

$$\{ egin{aligned} By^2 &= z \ x &= 0 \end{aligned}$$

2.3甲板方程

$$Ax^2 + By^2 = H$$

3.1重心

表1 船体各部件符号表示

	字母下标	质量/kg	规格/型号 单位/m	重心/m
桅杆	a	0.110	$\phi 0.010 imes 0.500$	(0, 0, 0.312)
船体	b	0.321	0.379 imes 0.240 imes 0.120	(0, 0, 0.080)
重物	С	0.770	$\phi 0.020 imes 0.078$	(0, 0, 0.042)
整体	all	1.201	$0.379 \times 0.240 \times 0.120$	(0, 0, 0.053)

已知桅杆重心为 $COM_a(0,0,z_{M_a})$,船体重心为 $COM_b(0,0,z_{M_b})$,重物重心为 $COM_c(0,0,z_{M_c})$ 则整体重心为 $COM_c(0,0,z_{M_{all}})$

$$z_{M_{all}} = rac{m_a imes z_{M_a} + m_b imes z_{M_b} + m_c imes z_{M_c}}{m_a + m_b + m_c}$$
 (1)

3.2倾斜135°时的浮心

图1 船体倾斜135°时水面方程图三维视图

图2 船体倾斜135°时水面方程图xoz截面图

浮心计算(xb, yb, zb)

已知水面方程为
$$z=px+z_0$$
,其中 $p=tan heta$, $z_0=\sqrt{rac{H-Ax^2}{B}}$

有

$$x_{b} = \frac{2}{V} \iiint_{E} x dV \qquad E = \{(x, y, z) | x_{Mid} \le x \le width, y_{0} \le y \le 0, 0 \le z \le z_{0}\}$$

$$x_{b} = \int_{xMid}^{x_{1}} \int_{0}^{y_{0}} \int_{px+z_{0}}^{H} x dz dy dx$$
(3)

计算得浮心COB = (0.061, 0, 0.097)

3.3复原力矩

图3 船体倾斜135°复原力矩图

已知 $COM(0,0,z_m)$, $COB(x_b,0,z_b)$

浮力
$$F_{\mathbb{F}}=< tan heta,0,-1>\lambda)$$
,其中 $\lambda=rac{G_{all}}{tan^2 heta+1}$

复原力臂
$$r=COM-COB=<0,0,z_m-z_b>$$

复原力矩
$$M_s=r imes F_{\mathbb{F}}=0$$

4.吃水线

图4水平吃水线

已知船体总重量为 m_{all} ,有 $m_{all}=
ho g_{\scriptscriptstyle \#}\,v_{\scriptscriptstyle \#}$

吃水线方程为z=h

有

$$v_{\parallel} = \iiint_{E} dV \qquad E = \{(x, y, z) | x_{Mid} \le x \le width, \ y_{0} \le y \le 0, 0 \le z \le z_{0}\}$$

$$v_{\parallel} = \int_{xMid}^{x_{1}} \int_{0}^{y_{0}} \int_{Ax^{2} + Bx^{2}}^{h} x dz dy dx$$

$$(5)$$

5.数量关系图

5.1重物与吃水线