Recap:

We found the photo-ionization cross-section

$$\sigma(\theta) = \frac{\frac{32a_0^3e^2p_f^3}{m\omega\epsilon\hbar^3}(\cos^2\theta)}{\left[1 + \left(\frac{p_fa_0}{\hbar}\right)^2\right]^4} \tag{1}$$

Dimensional Analysis:

Note that the we can re-write equation (1) as (ignoring constant and dimensional less quantities)

$$\frac{e^2}{\hbar c} a_0^2 \frac{p_f a_0}{\hbar} \left(\frac{E_f}{\hbar \omega} \right) \tag{2}$$

Note that equation (2) written in this way clearly has cross-section unit L^3 .

Angle part (from last lecture)

We know that

$$\cos^2\theta \sim (\vec{A}_0 \cdot \vec{p}_f)^2 \tag{3}$$

where the direction of \vec{A}_0 determines the polarization of the \vec{E} field because $\vec{E} = \frac{1}{c} \frac{\partial \vec{A}}{\partial t}$. This means that equation (3) is maximized when $\vec{p}_f \mid \vec{E}$, and it is min when $\vec{p}_f \perp \vec{E}$.

Denominator

Note that the denominator of (1)

$$rac{1}{\left[1+\left(rac{p_f a_0}{\hbar}
ight)^2
ight]^4}\sim |\left|^2$$

This is because

$$egin{aligned} \langle ec{p}_f | H_1 | \psi_{100}
angle \ &\sim ec{A}_0 \cdot \langle ec{p}_f | ec{
abla} | \psi_{100}
angle \ &\sim ec{A}_0 ec{p}_f \langle ec{p}_f | \psi_{100}
angle \ \Longrightarrow \langle ec{p}_f | \psi_{100}
angle \sim rac{1}{\left[1 + \left(rac{p_f a_0}{\hbar}
ight)^2
ight]^2} \end{aligned}$$

Note that the overlap integral between $\langle \vec{p}|\psi_{100}\rangle$ is nothing but imaging the ground state wave function in \vec{p} space. Specifically, we are probing \vec{p}_f in ψ_{100} .

Electric Dipole Approximation

We have the set-up

$$\vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t} = \frac{i\omega}{c} \vec{A}_0 e^{-i\omega t} e^{i\vec{k}\cdot\vec{r}} + \text{c.c}$$
(4)

where the absorption $e^{-i\omega t}$ dominates, and $e^{i\vec{k}\cdot\vec{r}}pprox 1$ because $\lambda=rac{2\pi}{k}\gg a_0$

This indicates that equation (4) is almost spatially invariant as the main contribution comes from resonant absorption.

Because \vec{E} couples to the electric dipole $|e|\vec{R}$ where \vec{R} is the position vector of e^- , we have:

.

$$H_{\mathrm{dip}} = -|e|\vec{R} \cdot \vec{E} = -i\frac{\omega}{2c}|e|\vec{A}_0 \cdot \vec{R}e^{-i\omega t}$$
 (5)

However, what we did instead for the dipole approximation is

$$H_1 = \frac{-|e|}{2mc} \vec{A}_0 \cdot \vec{p}e^{-i\omega t} \tag{6}$$

This is rather strange, because equation (6) is independent of the position vector \vec{R} , but equation (5) couples vector potentials to position. This is what we are trying to understand.

Let us start considering this with a unperturbed hydrogen atom $H_0=rac{p^2}{2m}+V(R)$ We observe that

$$[\vec{R}, H_0] = \frac{i\hbar}{m} \vec{p} \tag{7}$$

Note that our because equation (7) relate \vec{R} and \vec{p}_r let us start from this. Sand-witching equation (7) gets:

$$egin{aligned} \langle f
angle [ec{R},H_0]|i
angle &= rac{i\hbar}{m} \langle f|ec{p}|i
angle \ &\Longrightarrow -(E_f-E_i) \langle f|ec{R}|i
angle &= rac{i\hbar}{m} \langle f|ec{p}|i
angle \ &\Longrightarrow \langle f|H_1|i
angle &= rac{-|e|}{2mc} ec{A}_0 \cdot \langle f
angle ec{p}|i
angle e^{-i\omega t} \ &= rac{-|e|}{2mc} (im\omega_{fi}) ec{A}_0 \cdot \langle f|ec{R}|i
angle e^{-i\omega t} \ &= rac{\omega_{fi}}{\omega} \langle f|H_{dip}|i
angle \end{aligned}$$

Because we are near resonance, so we have $\omega pprox \omega_{fi}$, we have $H_1 pprox H_{dip}$.

Selection Rules:

(pp 458-459 Shankar in time-independent P.T.)

Q. When does $\langle f|H_1|i\rangle=0$ for a given perturbation H_1 ?

Let us exploit symmetry. First, symmetry is something that **commutes with the Hamiltonian**, let's call this symmetry operator Λ . By the definition of symmetry, we have

$$[\Lambda,H_0]=[\Lambda,H_1]=[\Lambda,H]=0$$

and let us consider the eigenstates of Λ

$$\Lambda |lpha_i,\lambda_i
angle = \lambda_i |a_i,\lambda_i
angle$$

this implies:

$$\langle \alpha_2, \lambda_2 | H_1 | \alpha_1, \lambda_1 \rangle = 0$$
 unless $\lambda_2 = \lambda_1$ (8)

Proof of (8)

$$egin{array}{l} \langle lpha_2,\lambda_2|[\Lambda,H_1]|lpha_1,\lambda_1
angle=0 \ (\lambda_2-\lambda_1)\langlelpha_2,\lambda_2|H_1|lpha_1,\lambda_1
angle=0 \ ext{if} \quad \lambda_2
eq \lambda_1 \implies \langlelpha_2,\lambda_2|H_1|lpha_1,\lambda_1
angle=0 \end{array}$$

Example 1: Parity

Let
$$\Lambda=\mathrm{parity}$$
 if $[H_1,\Lambda]=0$, then:

$$\langle {
m odd} | H_1 | {
m even}
angle = 0 \ \langle {
m even} | H_1 | {
m odd}
angle = 0$$

In this case, we cut the amount of calculation by a factor of 2!

Example 2: Dipole Selection Rule

Let us use angular momentum states:

$$\langle lpha_2,j_2,m_2|z|lpha_1,j_1,m_1
angle=0 \quad ext{unless} \quad j_{2=}egin{cases} j_1+1\ j_1 & ext{and} \quad m_2=m_1\ j_1-1 \end{cases}$$

Let us focus on a special case where $\vec{S}=0$, this gives $\vec{J}=\vec{L}$

Then, the matrix element becomes:

$$\int_{0}^{2\pi} \int_{-1}^{1} Y_{l_2m_2}^*(heta,\phi) \cos heta Y_{l_1,m_1} \, d(\cos heta) \, d\phi$$

Note that the condition for $m_2=m_1$ is clear, as the $e^{-im_2\phi}$ and $e^{-m_1\phi}$ should cancel each other.