Исследование вынужденной регулярной прецессии гироскопа

Выполнил студент группы Б03-302: Танов Константин

1 Цель работы:

Исследовать вынужденную прецессию гироскопа, установить зависимость скорости вынужденной прецессии от величины момента сил, действующий на ось гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

2 Оборудование:

Гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенсциркуль, линейка.

3 Теоретические сведения:

В этой работе исследуется зависимость скорости прецессии гироскопа от момента силы, приложенной к его оси. Для этого к оси гироскопа подвешиваются грузы. Скорость прецессии определяется по числу оборотов рычага вокруг вертикальной оси и времни, которое на это ушло, определяемоу секундомером. В процессе измерений рычаг не только поворачивается в результате прецессии гироскопа, но и опускается. Поэтому его в начале опыта следует преподнять на 5-6 градусов. Опять надо закончить, когда рычаг опустится на такой же угол.

Рис. 1. Маховик

Рис. 2. Гироскоп в кардановом подвесе

Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора. Расчет производится по формуле:

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{1}$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа, I_z — момент инерции гироскопа по его главной оси вращения. ω_0 — частота его вращения относительно главной оси, Ω — частота прецессии.

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на десткой проволоке. Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}. (2)$$

Чтобы исключить модуль кручения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр правильной формы с известными размерами и массой, для которого легко можно вычислить момент инерции $I_{\mathfrak{q}}$. Для определения момента инерции ротора гироскопа имеем:

$$I_0 = I_{\rm II} \frac{T_0^2}{T_{\rm II}^2},\tag{3}$$

Здесь $T_{\rm u}$ – период крутильных колебаний цилиндра.

Рис. 3. Схема экспериментальной установки

Скорость вращения ротора гироскопа можно определить и не прибегая к исследованию прецессии. У используемых в работе гироскопов статор имеет

две обмотки, необходимые для быстрой раскрутки гироскопа. В данной работе одну обмотку искользубт для раскрутки гироскопа, а вторую – для измерения числа оборотов ротора. Ротор электромотора всегда немного намагничен. Вращаясь, он наводит во второй обмотке переменную ЭДС индукции, частота которой равна частоте врещения ротора. Частоту этой ЭДС можно, в частности, измерить по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой – переменное напряжение с хорошо прокалиброванного генератора. При совпадении частот на эеране получаем эллипс.

4 Ход работы

- 1. Устанавливаем ось гироскопа в горизонтальное положение, поворачивая его за рычаг С.
- 2. Включаем питание гироскопа и ждем, пока вращение ротора не стабилизируется.
- 3. Убеждаемся в том, что ротор вращается достаточно быстро: при легком постукивании по рычагу С последний не должен изменять своего положения в пространстве.
 - Причина: Он не меняет своего положения, так как момент импулса настолько большой вдоль оси вращения, что полная составляющая момента импулса пости сонапрвлена с ним, что не дает гироскопу изменить своего положения при легком постукивании
 - Как движется гироскоп при нажатии на рычаг? При нажатии гироскоп начинает вращаться вдоль вертикальной оси. Пояснение иллюстрирует рисунок 3.
- 4. Подвешиваем к рычагу С груз Г. При этом должна начяться прецессия гироскопа. Трение в оси (в ОО) приводит к тому, что рычаг С начинает медленно опускаться. Пояснение также иллюстрирует рисунок 3.
- 5. Отклоняем гироскоп на 5-6 градусов и измеряем угловую скорость регулярной прецессии Ω . Продолжаем измерения, пока рычаг не отклонится на 5-6 градусов ниже горизонтальной плоскости.
- 6. Данные для частоты прецессии и опускания гироскопа: $\Omega = \frac{2\pi N}{t}$

Macca	T, c	N	Ω, c^{-1}	Macca	T, c	N	Ω, c^{-1}
m = 338 г	88,61	3	$21,26 \cdot 10^{-2}$		115,33	3	$16,34 \cdot 10^{-2}$
	89	3	$21,17 \cdot 10^{-2}$	m=268 г	112,86	3	$16,69 \cdot 10^{-2}$
	93,95	3	$20 \cdot 10^{-2}$		111,64	3	$16,88 \cdot 10^{-2}$
	88	3	$21,4\cdot 10^{-2}$		113	3	$16,67 \cdot 10^{-2}$
	90,6	3	$20,8 \cdot 10^{-2}$		111,72	3	$16,86\cdot10^{-2}$
Среднее	90,03	3	$20,93 \cdot 10^{-2}$	Среднее	112,91	3	$16,69 \cdot 10^{-2}$

Macca	<i>T</i> , c	N	Ω, c^{-1}	Macca	<i>T</i> , c	N	Ω, c^{-1}
m = 215 г	140,37	3	$13,42 \cdot 10^{-2}$	m=173г	115,5	2	$10,9 \cdot 10^{-2}$
	139,99	3	$13,46\cdot10^{-2}$		115,41	2	$10,88 \cdot 10^{-2}$
	140,47	3	$13,41\cdot10^{-2}$		115,22	2	$10,9 \cdot 10^{-2}$
	140,47	3	$13,41\cdot10^{-2}$		115,65	2	$10,86 \cdot 10^{-2}$
	139,92	3	$13,46 \cdot 10^{-2}$		115,21	2	$10,9 \cdot 10^{-2}$
Среднее	140,24	3	$13,43\cdot10^{-2}$	Среднее	115,4	2	$10,89 \cdot 10^{-2}$

Macca	<i>T</i> , c	N	Ω, c^{-1}
	142,34	2	$8,82 \cdot 10^{-2}$
	142,03	2	$8,84 \cdot 10^{-2}$
m=142 г	141,77	2	$8,86 \cdot 10^{-2}$
	141,88	2	$8,85 \cdot 10^{-2}$
	142,36	2	$8,85 \cdot 10^{-2}$
Среднее	142,08	2	$8,84 \cdot 10^{-2}$

Каждый раз рычаг опускался на 12° , что равняется $\frac{\pi}{15}$. Для каждой массы посчитаем скорость опускания рычага по формуле: $v=\omega l=\frac{\pi/15}{T}l$, и момент M=mgl, где l=121 мм:

- $m = 338 \text{ r}, v = 2,81 \cdot 10^{-4} \text{ c}^{-1}, M = 40,898 \cdot 10^{-2} \text{ H} \cdot \text{M}$
- $m=268 \text{ r}, v=2,24\cdot 10^{-4} \text{ c}^{-1}, M=32,428\cdot 10^{-2} \text{ H·m}$
- $m = 215 \text{ r}, v = 1,81 \cdot 10^{-4} \text{ c}^{-1}, M = 26,015 \cdot 10^{-2} \text{ H} \cdot \text{M}$
- m=173 г, $v=2,15\cdot 10^{-4}$ c⁻¹, $M=20,933\cdot 10^{-2}$ H·м
- $m = 142 \text{ r}, v = 1,78 \cdot 10^{-4} \text{ c}^{-1}, M = 17,182 \cdot 10^{-2} \text{ H} \cdot \text{M}$

Построим график зависимости $\Omega(M)$ рисунок 1.

7. Измеряем момент инерции I_0 относительно оси симметрии. Для этого подвешиваем ротор к концу вертикально висящей проволоки так, чтобы ось симметрии гироскопа была вертикальна, и измеряем период крутильных колебаний маятника T_0 . Заменяем ротор на цилиндр известного радиуса и известной массы.

Извест	цилин	др	Ротор				
	N	t, c	σ_t, c		N	t, c	σ_t, c
1	10	39,13	-	1	10	31,94	-
2	10	39,53	-	2	10	31,98	-
Среднее	10	39,33	0,2	Среднее	10	31,96	0,022
$T_{\rm II} = ($	$\pm 0,02$	(2)c	$T_0 = (3,196 \pm 0,002)c$				

Далее найдем момент инерции ротора гироскопа по формуле (3), для этого посчитаем момент инерции цилиндра, с известной нам массой и диаметром: $I_{\rm II}=\frac{1}{2}mr^2\approx 1,23\cdot 10^{-3}~{\rm kr\cdot m^2},$ а периоды: $T_0=3,196~{\rm c}$ и $T_{\rm II}=3,93~{\rm c}$. Тогда $I_0\approx 0,81\cdot 10^{-3}~{\rm kr\cdot m^2}$

Рис. 1: Зависимость Ω от M

8. Оцениваем погрешности в определении I_0 и Ω .

$$\sigma_{\Omega} = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2}; \ \sigma_{\Omega}^{\text{сист}} = \sigma_{T}^{\text{сист}}; \ \sigma_{\Omega}^{\text{случ}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\Omega_i - \overline{\Omega})^2}$$
(4)

Каждая частота Ω с учетом погрешностей:

•
$$\Omega = (20, 93 \pm 1, 2) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (16,69 \pm 0,58) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (13, 43 \pm 0, 09) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (10, 89 \pm 0, 07) \cdot 10^{-2} \text{ c}^{-1}$$

•
$$\Omega = (8,84 \pm 0,08) \cdot 10^{-2} \text{ c}^{-1}$$

$$\sigma_{I_c} = I_c \sqrt{\left(\frac{\sigma_M}{M}\right)^2 + 2\left(\frac{\sigma_R}{R}\right)^2} \approx 4,46 \cdot 10^{-6} \text{kg} \cdot \text{m}^2$$

$$\sigma_{I_0} = I_0 \sqrt{2\left(\frac{\sigma_{T_c}}{T_c}\right)^2 + 2\left(\frac{\sigma_{T_0}}{T_0}\right)^2 + \left(\frac{\sigma_{I_c}}{I_c}\right)^2} \approx 0,02 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Получаеам, что $I_0 = (0.81 \pm 0.02) \cdot 10^{-3} \text{кг} \cdot \text{м}^2$.

9. Определить частоту вращения ротора можно по формуле $\omega_0 = \frac{1}{kI_0}$, где $k = \frac{\Omega}{M}$ – коэффицент наклона графика зависимости $\Omega(M)$.

По методу наименьших квадратов определяем коэффициент наклона и его погрешность.

$$k = \frac{\langle \Omega M \rangle}{\langle M^2 \rangle} \approx 0,514 \frac{1}{\text{Дж} \cdot \text{c}}$$
 (5)

$$\sigma_k^{\text{\tiny CJI}} = \sqrt{\frac{1}{N-1} \left(\frac{\langle \Omega^2 \rangle}{\langle M^2 \rangle} - k^2 \right)} \approx 0,0013 \frac{1}{\text{Дж} \cdot \text{c}}$$
 (6)

$$\sigma_k^{\text{chct}} = k \sqrt{\left(\frac{\sigma_{\Omega}}{\Omega_{max}}\right)^2 + \left(\frac{\sigma_M}{M_{max}}\right)^2} \approx 0,03 \frac{1}{\text{Дж} \cdot \text{c}}$$
 (7)

Тогда $\omega_0 = 2401, 88 \text{ c}^{-1}$, а погрешность:

$$\sigma_{\omega_0} = \omega_0 \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_{I_0}}{I_0}\right)^2} \approx 152,34c^{-1} \tag{8}$$

Используя полученную угловую скорость можно определить частоту вращения ротора гироскопа: $\nu = \frac{\omega_0}{2\pi} \approx 382,46$ Гц, а $\sigma_{\nu} = \nu \varepsilon_{\omega_0} \approx 24,26$ Гц

Таким образом получаем: $\nu = (382, 46 \pm 24, 26)$ $\Gamma_{\rm II}$, что с учетом сигмы попадает в значение полученное с помощью осциллографа $\nu_0 = 388$ $\Gamma_{\rm II}$, определённое при помощи фигуры Лиссажу, изображенной на рисунке 2.

10. При измерении угловой скорости двумя разными методами результаты совпали с точностью 1%, при том, что реальная частота гироскопа находится в пределах погрешности. Теория согласуется с практикой, небольшие расхождения можно объяснить трением в осях карданного подвеса, хотя и его момент много меньше моментов других сил. Гипотеза о том, что $L_{\Omega} \ll L_{\omega_0}$ подтвердилась.

