Student's full name:	Durathun: 90 min State: 25/mh/24/24					
Chartenan	Chi & ghi thy do by va ton va 5115V via pilon trên the galey nay the same photomy photo then trên thông thuring để then trên đấp số. Trá trô trốn nghiệm hằng cách tố vào phần ANSWER MILES. SCORE					
Q1 O O O O O O O O O O O O O O O O O O O	MCQ ANSWER SHEET A B C D Q6 O O O Q7 O O O Q8 O O O Q9 O O O Q14 O O O Q16 O O O Q17 O O O Q18 O O O Q19 O O O Q10 O O O Q11 O O O Q12 O O O Q13 O O O Q14 O O O Q15 O O O Q15 O O O Q16 O O O Q17 O O O Q18 O O O O Q19 O O O O Q10 O O O O Q10 O O O O Q10 O O O O O O O Q10 O O O O O O O Q10 O O O O O O O O Q10 O O O O O O O O O					
Q1. Which of the following gives the A. 8.31 J/mol B. 8.31 Q2. What is the unit of angular mome A. N B. kg.m Q3. A stone is thrown straight up. In way up C. on the way back down	entum L of a rotation object? C. kg.m² C. kg.m²					
A. greater than 5 m/s. D. impossible to say based on Of A cappon with mass M = 450 kg i	of with a speed of 5.8 m/s makes a head-on elastic collision with The velocity of the 1.0-kg object after the collision is B. less than 5 m/s. C. equal to 5 m/s. the information provided. Initially at rest shoots 6 kg shell with muzzle speed $v = 450$ m/s. The average of the average $v = 450$ m/s.					
A. 17950 N B. 1800						

C. 4h

A. $h\sqrt{2}$

B. 8h

- (b2) Assuming the frictional force is constant, determine how much time elapses between the moment the bullet enters the tree and the moment it stops moving.
- Problem 2. A cylinder of volume 0.30 m³ contains 10.0 mol of helium gas (He, with the molar mas µ = 4 g/mol) at temperature 20.0°C. Assume helium behaves as an ideal gas.
 - (a) Calculate the pressure P, and the internal energy U of the gas.
- Suppose the gas expands at constant pressure to a volume of 1.0 m³.

Q8. For the thermodynamic process, work is a

- (b) How much work is done on the gas?
- (c) What is the temperature of the gas at the new volume?
- (d) Find the internal energy of the gas when its volume is 1.0 m³.
- (e) Compute Q, the thermal energy transfer. State whether or not the gas loses or gains heat n the surroundings.

Hanoi University of Science and Technology Faculty of Engineering Physics

A. 44.4%

B. 55.6%

Final Exam - 20233

GENERAL PHYSICS (PHYS225)

Duration: 90 min

Date: 23/08/2024

S	tudent's	full n	ame:									······					
C	lass/pro	grame	::					S	Stude	nt ID	num	ber:					
	Signature of the exam invigilator			<u>Chứ ý:</u> ghi dây đủ <u>tên, họ, mã lớp bài tập và SHSV</u> vào phần trên từ giấy nây. Sử dụng phương pháp làm tròn thông thường để làm tròn đáp số.													
	Signature of the examiner											sco	ORE				
					MCQ ANSWER SHEET												
1		A	В	C	D			A	В	C	D			A	BC	D	
-	QI	0	0	0	0		Q6	0	0	0	0		Q11	0	00	0	
-	Q2	0	0	0	0		Q7	0	0	0	0		Q12	0	00	0	
	Q3	0	0	0	0		Q8	0	0	0	0	1	Q13	0	00	101	
	Q4	0	0	0	0	1	Q9	0	0	0	0	1	Q14	10	00	olo	
	Q5	0	0	0	0	1	Q10	0	0	0	0	1	Q15	10	0	20	1
_						M	ULTI-C	HOI	CE	QUE	STI	ONS		10	0,	10	7
Q	I. Whic	8.31	the fo	ollov	ving	gives the B. 8.3	he correc	t uni						٠.			
Q				-				ofai		C. 8.3			D. 8	.31 mc	2I/J		
Q2. What is the unit of angular momentum of a rotating object A. N B. kg.m ² /s ² C. kg.m ² D. k							⟨g.m²₄										
Q.	3. What	is th	e av	erage	e kin								O ₂) at a te			300 k	?
_		. 12.4					035×10 ⁻⁷					10 ⁻²¹ J			10 ⁻²¹ J		
Q.	. Calci	llate	the e	vera	ge v								m temper) K)?	
					C. 394.7 m/s						D. 13.3 m/s						
Q5. If two particles have equal kinetic energies, are their momenta equal? A. yes, always. B. no, never.																	
		•			eir n	nasses	and direc	tions	ofr				me				
C. yes, if both their masses and directions of motion are the same D. yes, as long as their masses are equal																	
Q	A bal	l is tl	hrow	n sti	raigh	it up in	the air.	For v	whic	h sit	uatio	on are b	oth the i	nstant	aneou	s velo	city
and	d the ac									_			4000 CORR 1				
	A. on the way up									f the flig	ht path	n					
07	C. halfway up and halfway do																
Q7. An ideal oxygen gas drives a piston as it expands from 1.0 m ³ to 2.0 m ³ at a constant tempera of 550 °C. If mass of the gas in the piston is 1.20 kg, how much work does the gas do in displacing																	
pis	ton?	• • • • • • • • • • • • • • • • • • • •		o	- Bu	J til.	piston	15 1	20 K	g, ne	W 11	iucii w	ork does	the ga	s do ir	aispi	acing
•		444	. kJ			В. 1	177.8 k			C	. 256	6.5 kJ		D. 11	18.8 kJ	1	
Q8. An engine does 20.0 kJ of work while rejecting the heat of 45.0 kJ to the cold reservoir. W																	
the	efficie	ency	of th	e en	gine	?				3 .						30.10	11

C. 30.8%

D. 69.2%

the gases exert?	and volume of cylind	., .,	•
A. We can conclud	le nothing about the pressu	res.	
B. The pressure in	A must be one-third the pr	ressure in l	
C. The pressures in	n A and B must be equal.		
D. The pressure in	A is three times the press	ure in B.	
	ideal gas is doubled while	e its temperature is qu	uadrupled, does the pressure
A increase by a 6			
A. increase by a fa C. remain the sam		crease by a factor of 2	
		crease by a factor of 4	r its engines are fired, whereas
its total mass is reduced	of a rocket is increased by	a factor of eight after	t factor is the magnitude of its
momentum changed?	by half through the bur	ning of fuel. By what	ractor is the magnitude of the
A. 16	B. 2	C. 4	D. 8
			akes a head-on elastic collision
with a 1.0-kg object that	is initially at rest. The w	elocity of the 1.0-kg	object after the collision is
	m/s. B. less than		C. equal to 5 m/s.
			C. equal to a man
D. Impossible to	say based on the inform	ation provided.	with an initial enged of 12 0 m/s
Q15. A ball is thrown de	ownward from the top	of a 40.0 m tower	with an initial speed of 12.0 m/s.
	resistance, what is the	speed of the ball just	before hitting the ground? g=9.81
m/s ²			
A. 28 m/s	B. 784 m/s	C. 56 m/s	D. 30.47 m/s
	WRITE	NG SECTION	
Problem 1 (a) The de			a point mass and a system of po
Problem 1. (a) The de	Illition of (translation	ananustian for an	icolated system
masses. Derivation of th	e law of momentum c	onservation for an	isolated system.
(b) A 7.80-g bullet mo	ving at 575 m/s penet	rates a tree trunk to	o a depth of 5.50 cm.
(b1) Use work and	energy consideration	s to find the averag	ge frictional force that stops the b
(b2) Assuming the	frictional force is or	nctant determine	how much time elapses between
(b2) Assuming the	irictional force is co	mstatit, determine	non much time on p
moment the bullet enters	s the tree and the mo	ment it stops movi	ing.
	1		Shalium and (He with the mole
Problem 2. A cylinder of	of volume 0.30 m ³ co	ontains 10.0 moi o	of helium gas (He, with the mola
= 4 g/mol) at temperatur	re 20.0°C. Assume h	elium behaves as	an ideal gas.
(a) Coloulate the	pressure P and the	internal energy U	of the gas.
(a) Calculate the	pressure r and the	internal chergy o	
Suppose the gas expand	s at constant pressu	re to a volume of	1.0 m ³ .
	vork is done on the		
			-0
(c) What is the t	emperature of the g	as at the new vol	ume?
(d) Find the inte	ernal energy of the	as when its volu	me is 1.0 m ³ .
(a) Find the inte	mai chergy of the	gas whom its voice	1 d and the god loses
(e) Compute O.	the thermal energ	y transfer. State	whether or not the gas loses
		-	
o/from the surrounding	gs.		

Q9. M = 20 g of nitrogen (N₂) is heated up from 27°C to 150°C through an inevalumetric process.

Q11. Two cylinders A and B at the same temperature contain the same quantity of the same kind of gas. Cylinder A has three times the volume of cylinder B. What can you conclude about the pressures

Q10. As a block slides down a frictionless incline, which of the following statements is true?

B. 24.45 J/K

A. Both its speed and acceleration increase. B. Both its speed and acceleration decrease. C. Its speed increases and its acceleration decreases D. Its speed increases and its acceleration remains consta

C. 2.04 J/K

D. 7.13 K/K

Find the change in entropy of the gas?

A. 5.10 J/