

PROCESS FOR PREPARING HETEROCYCLO-ALKYLSULFONYL
PYRAZOLE DERIVATIVES

Cross-Reference to Related Application

5 This application claims the benefit of U.S. Provisional Patent Application No. 60/325,647 filed September 28, 2001, the contents of which are hereby incorporated by reference in its entirety.

Background Of The Invention

10 This invention relates to processes for the regioselective preparation of heterocycloalkylsulfonyl pyrazole derivatives and their synthetic intermediates. The pyrazole compounds prepared by the processes of this invention are useful in the treatment or alleviation of inflammation and other inflammation associated disorders, such as arthritis, neurodegeneration and colon cancer, in mammals, preferably humans, dogs, cats or livestock. It is believed that the pyrazole compounds prepared by the processes of this 15 invention inhibit the biosynthesis of prostaglandins by intervention of the action of the enzyme cyclooxygenase on arachidonic acid.

20 Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in treating pain and the signs and symptoms of arthritis because of their analgesic and anti-inflammatory activity. It is accepted that common NSAIDs work by blocking the activity of cyclooxygenase (hereinafter referred to as "COX"), also known as prostaglandin G/H synthase (PGHS), the enzyme that converts arachidonic acid into prostanoids. Prostaglandins, especially 25 prostaglandin E₂ (PGE₂), which is the predominant eicosanoid detected in inflammation conditions, are mediators of pain, fever and other symptoms associated with inflammation. Inhibition of the biosynthesis of prostaglandins has been a therapeutic target of anti-inflammatory drug discovery.

30 A variety of sulfonylbenzene compounds which inhibit COX have been disclosed in patent publications (WO 97/16435, WO 97/14691, WO 96/19469, WO 96/36623, WO 96/03392, WO 96/03387, WO 97/727181, WO 96/936617, WO 96/19469, WO 96/08482, WO 95/00501, WO 95/15315, WO 95/15316, WO 95/15317, WO 95/15318, WO 97/13755, EP 0799523, EP 418845, and EP 554829). International Publication Number WO 97/11704 discloses pyrazole compounds substituted by optionally substituted aryl.

35 The production of the compounds of formula 1 with a yield and purity suitable for commercial use has presented several difficulties. As described in detail below, the use of previously disclosed methods results in the production of significant amounts of the regiosomer of the compound of formula 1, which is difficult to separate from the compound of formula 1 without significant loss of yield. Applicants' investigations have revealed that preparing the compound of formula 1 at low temperatures favors the regioselective production of the compound of formula 1 but provides poor yields and the presence of an intermediate as a major impurity. On the other hand, maintaining the reaction temperature high enough to

allow the consumption of the intermediates causes another problem, namely, the production of the regioisomer of the compound of formula 1.

Applicants solved these problems by discovering unexpectedly that the use of water as a co-solvent in the reaction provided the following benefits: (1) the production of the regioisomer of the compound of formula 1 is minimized, thereby resulting in the formation of the compound of formula 1 with high regioselectivity; and (2) the compound of formula 1 is formed with high yield. In addition, the use of water allows the regioselective production of the compound of formula 1 over a broad range of temperatures.

SUMMARY OF THE INVENTION

The present invention relates to a process for preparing a compound of formula 1:

5 which comprises combining

(a) a compound of formula 2:

(b) a compound of formula 3:

10

- (c) one or more acids;
- (d) one or more water-miscible organic solvents; and
- (e) water;

wherein

15 R^1 is phenyl optionally substituted by 1-3 substituents independently selected from the group consisting of halo, hydroxy, cyano, mercapto, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_1-C_6) alkoxy, $-OCF_3$, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-S(=O)-, (C_1-C_6) alkyl-SO₂-, amino, (C_1-C_6) alkylamino, di[(C_1-C_6)alkyl]amino, $H_2N-(C=O)-$, (C_1-C_6) alkyl-NH-(C=O)- and formyl;

R^2 is hydrogen, halo or (C_1-C_6) alkyl;

20 R^3 is (C_1-C_6) alkyl optionally substituted with from one to three halo atoms; and
 R^4 is (C_1-C_6) alkyl.

In an embodiment of the invention, R¹ is phenyl optionally substituted with one or two substituents independently selected from halo, hydroxy, mercapto, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and (C₁-C₆)alkyl-S-. In a preferred embodiment of the invention, R¹ is unsubstituted phenyl.

5 In another embodiment of the invention, R² is chloro or fluoro. In a preferred embodiment of the invention, R² is chloro. In another preferred embodiment of the invention, R² is (C₁-C₆)alkyl; in a more preferred embodiment of the invention, R² is hydrogen or methyl. In a particularly preferred embodiment of the invention, R² is hydrogen.

10 In another embodiment of the invention, R³ is (C₁-C₆)alkyl substituted with from one to three halo atoms. In a preferred embodiment of the invention, R³ is (C₁-C₃)alkyl substituted with from one to three fluoro atoms. In a more preferred embodiment of the invention, R³ is difluoromethyl or trifluoromethyl. In a particularly preferred embodiment of the invention, R³ is difluoromethyl. In another particularly preferred embodiment of the invention, R³ is trifluoromethyl.

15 In another preferred embodiment of the invention, R⁴ is (C₁-C₃)alkyl. In a more preferred embodiment of the invention, R⁴ is methyl.

20 In another embodiment of the invention, R¹ is unsubstituted phenyl and R² is hydrogen. In another embodiment of the invention, R¹ is unsubstituted phenyl, R² is hydrogen, R³ is methyl substituted with one, two or three fluoro and R⁴ is methyl. In a preferred embodiment of the invention, R¹ is unsubstituted phenyl, R² is hydrogen, R³ is difluoromethyl or trifluoromethyl and R⁴ is methyl. In a particularly preferred embodiment of the invention, R¹ is unsubstituted phenyl, R² is hydrogen, R³ is difluoromethyl and R⁴ is methyl.

25 In this application, the term "compound of formula 1" includes a compound of formula 1 as well as a compound of formula 1a, wherein R³ is trifluoromethyl or difluoromethyl, and a compound of formula 1b:

1a

1b

30 The compounds of formula 1a and formula 1b are preferred embodiments of the compound of formula 1, to which all of the embodiments, preferred embodiments and particularly preferred embodiments of the processes described herein apply. The compound of formula 1a is a particularly preferred embodiment of the compound of formula 1, to which all of the embodiments, preferred embodiments and particularly preferred embodiments of the

processes described herein apply. Accordingly, for the sake of brevity, the phrase "process for preparing a compound of formula 1" is to be understood for the purposes of this application as interchangeable with the phrase "process for preparing the compound of formula 1a" or the phrase, "process for preparing the compound of formula 1b." It is to be further understood that the compounds of formula 2 and formula 3 used in the processes of the invention for preparing the compounds of formula 1a and formula 1b are to be understood as including the corresponding respective preferred substituents. For example, in a process for preparing a compound of formula 1a, in the compound of formula 2, R¹ is unsubstituted phenyl, R² is hydrogen and R³ is difluoromethyl, while in the compound of formula 3, R⁴ is methyl. Correspondingly, in a process for preparing the compound of formula 1b, in the compound of formula 2, R¹ is unsubstituted phenyl, R² is hydrogen and R³ is trifluoromethyl, while in the compound of formula 3, R⁴ is methyl.

It is to be noted that the term "mixture", as used herein, unless otherwise indicated, is used without regard to the state of dispersion of the components thereof.

The term "miscible" as used herein with respect to two or more substances, unless otherwise indicated, means that the two or more substances are capable of forming a "true solution" as that term is understood in the art (see, e.g., Hawley's Condensed Chemical Dictionary, 13th ed. John Wiley & Sons, New York (1997), p. 1034).

For example, the term "water-miscible" as used herein with respect to a particular component of a mixture containing at least water, means that the component is capable of forming a true solution with water. It is to be understood that any particular substance, viewed as a solute, may be capable of forming a true solution with a particular solvent only over a limited range of relative proportions or concentrations, i.e., the miscibility of any particular solute is typically limited according to (to name but a few examples of well-known relevant factors): the temperature of the mixture, the ambient pressure, the chemical properties of the solute and solvent, as well as the presence of other solutes and/or solvents whose chemical properties and relative proportions may affect the miscibility of the solute of interest.

The phrase "organic solvent" as used herein, unless otherwise indicated, means a non-aqueous solvent or mixture of non-aqueous solvents.

In an embodiment of the invention, the one or more water-miscible organic solvents comprise one or more water-miscible alcohols. In a preferred embodiment of the invention, the one or more water-miscible alcohols contain from 1 to 12 carbon atoms. In a more preferred embodiment of the invention, the one or more water-miscible alcohols are selected from the group consisting of methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and tert-butanol. In a particularly preferred embodiment of the invention, the water-miscible alcohol is ethanol or isopropanol. In another particularly preferred embodiment of the invention, the water-miscible alcohol is isopropanol.

In another embodiment of the invention, the one or more acids are selected from the group consisting of hydrochloric acid, acetic acid, trifluoroacetic acid, p-toluenesulfonic acid and sulfuric acid. In a preferred embodiment of the invention, the acid is sulfuric acid.

5 In another embodiment of the invention, (a) and (b) are combined in the presence of (e). In a preferred embodiment of the invention, (a) is combined with a mixture of at least (b) and (e). In another preferred embodiment of the invention, (a) is combined with a mixture of at least (b), (c) and (e), and in a more preferred embodiment of the invention, the mixture of (b), (c) and (e) is prepared by combining (b) with a mixture of at least (c) and (e).

10 In another embodiment of the invention, a mixture of at least (a) and (d) is combined with the mixture of at least (b) and (e), and in a preferred embodiment of the invention, a mixture of (a) and (d) is combined with a mixture of (b), (c) and (e).

15 In another embodiment of the invention, (a) and (b) are combined before the addition of (e). In another embodiment of the invention, (a), (b) and (d) are combined before the addition of (e). In still another embodiment of the invention, (a), (b) and (c) are combined before the addition of (e), and in a preferred embodiment of the invention, (a), (b), (c) and (d) are combined before the addition of (e).

20 In another embodiment of the invention, the temperature is maintained at a temperature lower than the reflux temperature of the combination of (a), (b), (c) and (d). In another embodiment of the invention the temperature is maintained at a temperature lower than the reflux temperature of the combination of (a), (b), (c), (d) and (e).

25 In any embodiment of the invention wherein (a) and (b) are combined, the process of preparing a compound of formula 1 further comprises, after (a) and (b) are combined, maintaining the temperature below about 40°C until the amount of (b) has decreased to less than about 10% of its initial value. In a preferred embodiment of the invention, the process for preparing a compound of formula 1 further comprises, after (b) has decreased to less than about 10% of its initial value, increasing the temperature to at least about 30°C.

In another embodiment of the invention, the process of preparing a compound of formula 1 further comprises maximizing the conversion to the compound of formula 1 of an intermediate of the formula 4:

referred to herein as the "5-hydroxy precursor to the compound of formula 1", wherein R¹ - R⁴ are as defined hereinabove for the compound of formula 1, including the embodiments, preferred embodiments, more preferred embodiments and particularly preferred embodiments of the compound of formula 1. This invention further relates to a compound of formula 4. In
5 an embodiment, the compound of formula 4 is in a substantially pure form. In a preferred embodiment, the compound of formula 4 is 90% pure.

In another embodiment of the invention, the process of preparing a compound formula 1 further comprises maintaining the temperature of at least about 30°C until the molar amount of the 5-hydroxy derivative of the compound of formula 1 is less than about 10% of
10 the initial molar amount of (b).

In an embodiment of the invention, the process of preparing a compound of formula 1 further comprises, after (a) and (b) are combined and after the amount of (b) has decreased to less than about 10% of its initial value, adding (e). In a preferred embodiment of the invention, (e) is added after the amount of (b) is less than about 5% of its initial value.

15 In an embodiment of the invention, the process of preparing a compound of formula 1 further comprises removing the acid from the combination of (a), (b), (c), (d) and (e) after the formation of the compound of formula 1 is substantially complete. In an embodiment of the invention, the acid is removed by washing a solid sample of the compound of formula 1. In another embodiment of the invention, the acid is removed by neutralization with a base. In
20 this application, the phrase "substantially complete", unless otherwise specified, means that the molar amount of the referenced compound is at least about 90% of the molar amount of the limiting reagent used in its preparation. For example, in the above embodiment of the process of the invention, the formation of the compound of formula 1 is substantially complete when the molar amount of the compound of formula 1 is at least about 90% of the lesser of
25 the molar amount of (a) the compound of formula 2 or (b) the compound of formula 3. It is to be understood that the percentage yield of a referenced compound is generally lower than the percentage of completion of the reaction, due to processing and purification losses, e.g. upon washing and/or recrystallization of the compound of formula 1.

30 In an embodiment of the invention, the processes of the invention produce a compound of formula 1 which is at least 90% pure, preferably at least 95% pure, more preferably at least 97% pure, and most preferably, at least 99% pure. It is to be understood that any compound which is produced in a process of the invention, other than the compound of formula 1, is to be considered an impurity, the amount of which is to be compared to the total yield of the process in order to calculate the percent purity of the compound of formula 1. Accordingly, a compound of formula 1 which is "90% pure" means a substance containing
35 90% by mass of the compound of formula 1, and 10% by mass in total of all other compounds, including any residual solvent(s) (including water) used in the process of the invention which are not removable by conventional drying techniques such as those

described herein, e.g., blow drying, vacuum drying in an oven, e.g., at a temperature up to about 50°C.

In an embodiment of the invention, the process for preparing a compound of formula 1 further comprises granulating the combination of (a), (b), (c), (d) and (e). In a preferred embodiment of the invention, the combination is granulated for at least about 2 hours.

In a particularly preferred embodiment of the invention, R¹ is unsubstituted phenyl and R² is hydrogen.

In another particularly preferred embodiment of the invention, R³ is difluoromethyl or trifluoromethyl

10 In another particularly preferred embodiment of the invention, R⁴ is methyl.

In another particularly preferred embodiment of the invention, R³ is difluoromethyl.

In an embodiment of the invention, the molar amount of the compound of formula 2 is about the same as the molar amount of the compound of formula 3.

15 Examples 1 – 4 each set forth preferred embodiments of the invention, of which Example 3 is a preferred embodiment, and of which Example 4 is a particularly preferred embodiment.

In an embodiment of the invention, the processes of the invention produce an amount of a compound of formula 6 which is less than 10% of the amount of the compound of formula 1, preferably, less than 5%, and more preferably, less than 2%. In a particularly preferred

20 embodiment of the invention, the processes of the invention produce an amount of a compound of formula 6 which is less than 1% of the amount of the compound of formula 1. It is to be understood that in this invention, the relative amounts of any two compounds, for example, the compounds of formula 1 and formula 6, may be determined by any means available to the ordinary practitioner, e.g., chromatographic, spectrometric and spectroscopic

25 methods, and that the method is to be chosen according to the desired level of sensitivity, e.g., 10%, 5%, 2%, 1% of one particular component relative to another. In an embodiment, the relative amounts of the compounds of formula 1 and formula 6 are determined by chromatography, preferably, HPLC (high performance liquid chromatography) or TLC (thin-layer chromatography). In a particularly preferred embodiment, the relative amounts of the

30 compounds of formula 1 and formula 6 are determined by HPLC. In another embodiment, the relative amounts of the compounds of formula 1 and formula 6 are determined by spectroscopic methods, preferably, IR (infrared) or NMR (nuclear magnetic resonance) spectroscopy.

Impurities which are currently known to result from carrying out the process of this
35 invention, wherein the product of the reaction is the compound of formula 1a, include in addition to starting material impurities (i.e., in the compounds of formulas 2 and 3), residual intermediates (i.e., the compounds of formulas 4 and 5) and the compound of formula 6, are the following compounds:

In addition, in a process for preparing a compound of formula **1a**, i.e., wherein R³ is difluoromethyl, the compound wherein R³ is trifluoromethyl (i.e., a compound of formula **1b**) has sometimes also been detected as an impurity.

In an embodiment of the processes described herein, the reaction is carried out at about atmospheric pressure. In this application, the term "atmospheric pressure" means a pressure within the normal range of meteorologic atmospheric pressure for a particular altitude, while the term "elevated pressure" means a pressure above atmospheric pressure. In another embodiment of the processes described herein, the reaction is carried out at elevated pressure.

Unless otherwise indicated, the term "alkyl" as referred to herein, as well as the alkyl moieties of other groups referred to herein (e.g., alkoxy), may be linear or branched (such as methyl, ethyl, *n*-propyl, *isopropyl*, *n*-butyl, *iso*-butyl, *secondary*-butyl, *tertiary*-butyl), and they may also be cyclic (e.g., cyclopropyl, or cyclobutyl); optionally substituted by 1 to 3 suitable

substituents as defined below such as fluoro, chloro, trifluoromethyl, (C₁-C₆)alkoxy, (C₆-C₁₀)aryloxy, trifluoromethoxy, difluoromethoxy or (C₁-C₆)alkyl. The phrase "each of said alkyl" as used herein refers to any of the preceding alkyl moieties within a group such alkoxy, alkenyl or alkylamino.

5 Unless otherwise indicated, the terms "halo" and "halogen" are used herein to mean fluoro, chloro, bromo or iodo, or fluorine, chlorine, bromine or iodine, respectively, while the term "halide" is used herein to refer to the fluoride, chloride, bromide or iodide anions.

10 As used herein, the term "halo-substituted alkyl" refers to an alkyl radical as described above substituted with one or more halo including, but not limited to, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trichloroethyl, and the like; optionally substituted by 1 to 3 suitable substituents as defined below such as fluoro, chloro, trifluoromethyl, (C₁-C₆)alkoxy, (C₆-C₁₀)aryloxy, trifluoromethoxy, difluoromethoxy or (C₁-C₆)alkyl.

15 As used herein, the term "alkenyl" means straight or branched chain unsaturated radicals of 2 to 6 carbon atoms, including, but not limited to ethenyl, 1-propenyl, 2-propenyl (allyl), iso-propenyl, 2-methyl-1-propenyl, 1-but enyl, 2-but enyl, and the like; optionally substituted by 1 to 3 suitable substituents as defined below such as fluoro, chloro, trifluoromethyl, (C₁-C₆)alkoxy, (C₆-C₁₀)aryloxy, trifluoromethoxy, difluoromethoxy or (C₁-C₆)alkyl.

20 As used herein, the term "alkynyl" is used herein to mean straight or branched hydrocarbon chain radicals of 2 to 6 carbon atoms having one triple bond including, but not limited to, ethynyl, propynyl, butynyl, and the like; optionally substituted by 1 to 3 suitable substituents as defined below such as fluoro, chloro, trifluoromethyl, (C₁-C₆)alkoxy, (C₆-C₁₀)aryloxy, trifluoromethoxy, difluoromethoxy or (C₁-C₆)alkyl.

25 As used herein, the term "alkoxy" refers to O-alkyl groups, wherein alkyl is as defined above.

As used herein, the term "alkoxycarbonyl" refers to an alkoxy radical as described above connected to a carbonyl group (>C=O), which, in turn, serves as the point of attachment.

30 The phrase "pharmaceutically acceptable salt(s)", as used herein, unless otherwise indicated, includes salts of acidic or basic groups which may be present in the compounds of the present invention. The compounds prepared by the processes of the present invention that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that may be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds of the present invention are those that form non-toxic acid addition salts, *i.e.*, salts containing pharmacologically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate,

benzenesulfonate, p-toluenesulfonate and pamoate [*i.e.*, 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)] salts. The compounds prepared by the processes of the present invention that include an amino moiety may form pharmaceutically acceptable salts with various amino acids, in addition to the acids mentioned above.

5 The present invention includes processes for preparing a compound of formula 1 wherein one or more hydrogen, carbon, nitrogen or other atoms are replaced by isotopes thereof. Such compounds are useful as diagnostic tools and in metabolic, pharmacokinetic and binding studies. Examples of isotopes that can be utilized in this invention include isotopes of hydrogen, carbon, nitrogen, oxygen, sulfur, fluorine and chlorine, such as ^2H , ^3H ,
10 ^{13}C , ^{14}C , ^{15}N , ^{18}O , ^{17}O , ^{35}S , ^{18}F , and ^{36}Cl , respectively. Processes of the present invention which utilize the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention. Certain isotopically-labelled compounds prepared by the processes of the present invention, for example those into which radioactive isotopes such as ^3H and ^{14}C are incorporated, are useful in drug and/or substrate tissue distribution assays. Tritiated, *i.e.*,
15 ^3H , and carbon-14, *i.e.*, ^{14}C , isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium, *i.e.*, ^2H , can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased *in vivo* half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labelled compounds prepared by the processes of this
20 invention can generally be prepared by carrying out the procedures disclosed in the Schemes and/or in the Examples below, by substituting a readily available isotopically labelled reagent for a non-isotopically labelled reagent.

DETAILED DESCRIPTION OF THE INVENTION

The process of the present invention may be carried out according to Scheme 1 below and the description that follows. Substituents R¹ - R⁴ in Schemes 1 and 2 are as defined above for the compound of formula 1.

5

Scheme 1

10

Scheme 2

Schemes 1 and 2 given above are illustrative only and are described in further detail below and in the Examples further hereinbelow.

Co-pending U.S. Application Serial No. 09/724,446, filed November 28, 2000, which is herein incorporated by reference in its entirety, discloses processes for preparing pyrazole compounds which generically encompass compounds of formula 1, as well as specific examples of the preparation of certain compounds of the formula 1, which as shown in Scheme 1, comprise heating to reflux a mixture of a compound of formula 2, a compound of formula 3 and an organic solvent under acidic neutral or basic conditions, preferably in the present of an acid or the acid salt of a compound of formula 3. Numerous solvents are described as suitable for the reaction, including alcohols, which are preferred, e.g., ethanol and isopropanol, as well as dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidinone (NMP), benzene, toluene and chloroform. The preferred acids in application 09/724,446 include hydrochloric, acetic, trifluoroacetic, p-toluenesulfonic and sulfuric acid. The temperature for the reaction in application 09/724,446 is from about 0°C to about 140°C, preferably at about the reflux temperature of the polar solvent. The Examples in application 09/724,446 describe the preparation of specific pyrazole compounds according to the method shown in Scheme 1 above, where the solvent is ethyl acetate or trifluoroethanol, wherein a compound of formula 2 and a compound of formula 3 are heated to reflux in trifluoroethanol containing sulfuric acid, or in ethyl acetate.

Compounds of formula 2 may be prepared according to Serial No. 09/724,446, Preparation 5 and Preparation 6, as well as the methods described in Aust. J. Chem., 1977, 30, 229 and Heterocycles, 1990, 31, 1951, as well as by methods which are known in the art. Compounds of formula 3 may be prepared according to Serial No. 09/724,446, Preparation 2 and Alternate Preparation 2, and as described further hereinbelow, as well as by methods which are known in the art. It is to be noted that PCT publication WO 01/40216, published on June 7, 2001, corresponds to Serial No. 09/724,446. Compounds of formula 2 are also taught in U.S. application Serial No. 09/723,609; the European application 310533.5 corresponding thereto was published on June 6, 2001, as EP 1104758.

It has been discovered that the pyrazole compounds of formula 1 are particularly preferred among the compounds disclosed in application 09/724,446. However, applicants have discovered, as shown in Scheme 2, that using the processes disclosed in application 09/724,446 to prepare a compound of formula 1 results in the formation of a mixture of a compound of formula 1 and its regiosomer (i.e., a compound having the formula 6, where the positions of R¹ and R³ are reversed compared to the compound formula 1). Accordingly, it is an object of this invention to provide a process for the regioselective production of the compound of formula 1 with high yield and purity.

The regioselective production of the compounds of formula 1 (i.e., while avoiding the simultaneous production of 6) with a yield and purity suitable for commercial use has

presented several difficulties. Applicants have found that while it is possible to recrystallize 1 from the mixtures of 1 and 6 resulting from the process shown in Scheme 1, the overall yield of 1 is poor, and the amount of 1 that can be successfully separated by recrystallization decreases as the amount of 6 in the mixture increases. Applicants' further investigations
5 have revealed that reacting the compounds of formulas 2 and 3 at low temperatures, e.g., preferably less than about 40°C (in suitable solvents, such as alcohols), favors the regioselective production of the compound of formula 1. However, because the compound of formula 1 is poorly soluble at low temperatures, the compounds of formula 1 and formula 4 co-precipitate, preventing the progression of the compound of formula 4 to the final product 1
10 and resulting in poor yields and the presence of the compound of formula 4 as a major impurity. On the other hand, maintaining the reaction temperature high enough to keep both compounds (1 and 4) in solution, allowing the reaction to proceed to completion, causes another problem, namely, the production of the compound of formula 5 and the progression of 5 to the compound of formula 6 as a major impurity.

15 Applicants solved these problems by discovering unexpectedly that the use of water as a co-solvent in the reaction provided the following benefits: (1) the production of the compounds of formula 5 and formula 6 are minimized, thereby resulting in the formation of the compound of formula 1 with high regioselectivity; and (2) the compound of formula 1 is formed with high yield. Applicants have further discovered that these advantages result
20 regardless of whether water is combined with the other ingredients from the start of the reaction, or whether the water is added after the formation of substantial amounts of the compound of formula 4. In addition, the use of water allows the regioselective production of the compound of formula 1 over a broad range of temperatures.

25 The compounds prepared by the processes of the present invention that are basic in nature are capable of forming a wide variety of different salts with various inorganic and organic acids. Although such salts must be pharmaceutically acceptable for administration to mammals, it is often desirable in practice to initially isolate a compound prepared by the processes of the present invention from the reaction mixture as a pharmaceutically unacceptable salt and then simply convert the latter back to the free base compound by
30 treatment with an alkaline reagent, for use in subsequently reactions or for the preparation of a pharmaceutically acceptable acid addition salt. The acid addition salts of the base compounds prepared by the processes of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent. Upon careful evaporation of the solvent, the desired solid salt is readily obtained. The desired salt can also be precipitated
35 from a solution of the free base in an organic solvent by adding to the solution an appropriate mineral or organic acid.

 The compounds of formula 1 prepared by the processes of this invention and the pharmaceutically acceptable salts thereof (hereinafter "the active compounds"), may be

administered through oral, parenteral, topical, or rectal routes in the treatment or alleviation of inflammation and other inflammation associated disorders, such as arthritis, neurodegeneration and colon cancer, in mammals, preferably humans, dogs, cats or livestock.

5 In general, the active compounds are most desirably administered in dosages ranging from about 0.2 mg per kg body weight per day (mg/kg/day) to about 200 mg/kg/day in single or divided doses (i.e., from 1 to 4 doses per day), although variations will necessarily occur depending upon the species, weight and condition of the subject being treated and the particular route of administration chosen. However, a dosage level that is in the range of
10 about 4 mg/kg/day to about 50 mg/kg/day is most desirably employed. Variations may nevertheless occur depending upon the species of mammal being treated and its individual response to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval at which such administration is carried out. In some instances, dosage levels below the lower limit of the aforesaid range may be more than
15 adequate, while in other cases still larger doses may be employed without causing any harmful side effects, provided that such larger doses are first divided into several small doses for administration throughout the day.

The active compounds may be administered alone or in combination with pharmaceutically acceptable carriers or diluents by the routes previously indicated, and such
20 administration may be carried out in single or multiple doses. More particularly, the active compounds may be administered in a wide variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories,
25 jellies, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc. Moreover, oral pharmaceutical compositions can be suitably sweetened and/or flavored. In general, the active compounds are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight. Numerous examples of acceptable carriers, diluents, excipients, disintegrants, lubricating
30 agents, sweetening and flavoring agents, coloring matter or dyes, emulsifying agents, suspending agents, diluents, buffers, creams, jellies, gels, pastes, patches, ointments, etc. useful in the preparation of pharmaceutical compositions and formulations are known in the art, see, Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., 18th Edition, Gennaro, ed. (1990), pages 1545-1580. The preparation of all these compositions under sterile conditions is readily accomplished by standard pharmaceutical techniques will known to those skilled in the art.

For administration to animals other than humans, such as cattle or domestic animals, such as dogs or cats, particularly dogs, the active compounds may be administered in the feed of the animals or orally as a drench composition.

The active compounds may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.

5 The active compounds may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide phenyl, polyhydroxyethylaspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the active compounds may be coupled to a class of biodegradable polymers useful in achieving
10 controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross-linked or amiphatic block copolymers of hydrogels.

15 One of ordinary skill in the art will appreciate that the compounds of formula 1 prepared by the processes of the invention are useful in treating a diverse array of diseases. One of ordinary skill in the art will also appreciate that when using the compounds of formula 1 prepared by the processes of the invention in the treatment of a specific disease that the compounds may be combined with various existing therapeutic agents used for that disease.

20 For the treatment of rheumatoid arthritis, the compounds of formula 1 prepared by the processes of the invention may be combined with agents such as TNF- α inhibitors such as anti-TNF monoclonal antibodies and TNF receptor immunoglobulin molecules (such as Enbrel®), low dose methotrexate, lefunimide, hydroxychloroquine, d-penicilamine, auranofin or parenteral or oral gold.

25 The compounds of formula 1 prepared by the processes of the invention can also be used in combination with existing therapeutic agents for the treatment of osteoarthritis. Suitable agents to be used in combination include standard non-steroidal anti-inflammatory agents (hereinafter NSAID's) such as etodolac, piroxicam, diclofenac, propionic acids such as naproxen, flurbiprofen, fenoprofen, carprofen, ketoprofen and ibuprofen, fenamates such as meclofenamic acid, mefenamic acid, indomethacin, sulindac, apazone, pyrazolones such as phenylbutazone, salicylates such as aspirin, COX-2 inhibitors such as celecoxib and rofecoxib, analgesics and intraarticular therapies such as corticosteroids and hyaluronic acids such as hyalgan and synvisc.

30 The compounds of formula 1 prepared by the processes of the present invention may be administered in combination with inhibitors of other mediators of inflammation, comprising one or more members selected from the group consisting essentially of the classes of such inhibitors and examples thereof which include, matrix metalloproteinase inhibitors, aggrecanase inhibitors, TACE inhibitors, leucotriene receptor antagonists, IL-1 processing and release inhibitors, ILra, H₁-receptor antagonists; kinin-B₁ - and B₂-receptor antagonists; prostaglandin inhibitors such as PGD-, PGF-, PGI₂-, and PGE-receptor antagonists;

thromboxane A₂ (TXA2-) inhibitors; 5- and 12-lipoxygenase inhibitors; leukotriene LTC₄-, LTD₄/LTE₄ -, and LTB₄ -inhibitors; PAF-receptor antagonists; gold in the form of an aurothio group together with various hydrophilic groups; immunosuppressive agents, e.g., cyclosporine, azathioprine, and methotrexate; anti-inflammatory glucocorticoids; 5 penicillamine; hydroxychloroquine; anti-gout agents, e.g., colchicine, xanthine oxidase inhibitors, e.g., allopurinol, and uricosuric agents, e.g., probenecid, sulfinpyrazone, and benzbromarone.

10 The compounds of formula 1 prepared by the processes of the present invention may also be used in combination with anticancer agents such as endostatin and angiostatin or cytotoxic drugs such as adriamycin, daunomycin, cis-platinum, etoposide, taxol, taxotere and alkaloids, such as vincristine, and antimetabolites such as methotrexate.

15 The compounds of formula 1 prepared by the processes of the present invention may also be used in combination with anti-hypertensives and other cardiovascular drugs intended to offset the consequences of atherosclerosis, including hypertension, myocardial ischemia including angina, congestive heart failure, and myocardial infarction, selected from vasodilators such as hydralazine, β-adrenergic receptor antagonists such as propranolol, calcium channel blockers such as nifedipine, α₂-adrenergic agonists such as clonidine, α-adrenergic receptor antagonists such as prazosin, and HMG-CoA-reductase inhibitors (anti-hypercholesterolemics) such as lovastatin or atorvastatin.

20 The compound of formula 1 prepared by the processes of the present invention may also be administered in combination with one or more antibiotic, antifungal, antiprotozoal, antiviral or similar therapeutic agents.

25 The compounds of formula 1 prepared by the processes of the present invention may also be used in combination with CNS agents such as antidepressants (such as sertraline), anti-Parkinsonian drugs (such as L-dopa, requip, mirapex, MAOB inhibitors such as selegiline and rasagiline, comP inhibitors such as Tasmar, A-2 inhibitors, dopamine reuptake inhibitors, NMDA antagonists, nicotine agonists, dopamine agonists and inhibitors of neuronal nitric oxide synthase), and anti-Alzheimer's drugs such as donepezil, tacrine, COX-2 inhibitors, propentofylline or metryfonate.

30 The compounds of formula 1 prepared by the processes of the present invention may also be used in combination with osteoporosis agents such as roloxifene, lasoxifene, droloxifene or fosomax and immunosuppressant agents such as FK-506 and rapamycin.

35 The present invention also further comprises formulating the compound of formula 1 prepared by the processes of the present invention alone or with one or more other therapeutic agents which are to form the intended combination, including wherein said different drugs have varying half-lives, by creating controlled-release forms of said drugs with different release times which achieves relatively uniform dosing; or, in the case of non-human patients, a medicated feed dosage form in which said drugs used in the combination are present together in admixture in said feed composition. There is further provided in

accordance with the present invention co-administration in which the combination of drugs is achieved by the simultaneous administration of said drugs to be given in combination; including co-administration by means of different dosage forms and routes of administration; the use of combinations in accordance with different but regular and continuous dosing
5 schedules whereby desired plasma levels of said drugs involved are maintained in the patient being treated, even though the individual drugs making up said combination are not being administered to said patient simultaneously.

The following Examples further illustrate the method and intermediates of the present
10 invention. It is to be understood that the present invention is not limited to the specific details of the Examples provided below.

Analytical methods

The amounts of starting materials, intermediates and products were determined by HPLC unless otherwise specified. The column used was a Zorbx RX-C8 CN column of 4.5 mm interior diameter, 150 mm in length, in a Hewlett Packard 1100 system at 2 mL/minute, measuring absorbance at 210 nm. Gradient elution was used with following the program: 15-minute hold at 60% A / 40% B, 10-minute ramp to 90% A / 10% B, 5-minute ramp to 60% A / 40% B. Solvent A: solution of 0.2% phosphoric acid in HPLC water; Solvent B: 85% Acetonitrile in HPLC water.
20

Example 1

5-methylsulfonyl-2-[5-phenyl-3-difluoromethyl-1H-pyrazol-1-yl]pyridine

To 12.2 kg of 5-(methylsulfonyl)-2-hydrazinyl-pyridine (64.1moles) was charged isopropanol (45 gallons) followed by 4,4-difluoro-1-phenyl-1,3-butanedione (12.0 kg, 25 61.5moles, 0.96eq.) as a melt, followed by 45 gallons of isopropanol. The slurry was stirred for 15 minutes, then 3.6 L of concentrated sulfuric acid was added (slight exotherm) (30V of isopropanol total). The reaction was heated to 75°C and held for 1 hour. The pot was then cooled to 20-30°C. After reaction completion assay, 126 gallons (40V) of water was added (slight exotherm, reaction temp kept below 45°C) and the reaction product was granulated for 30 2 hours. The product was filtered on a 36-inch nutche filter dressed with a poly cloth in less than 2 hours. The filter cake was rinsed with an additional 12 gallons (4V) of water, and the cake was blown dry for 12 hours. The product contained 2.2% of compound 6 as the major impurity (by HPLC; retention time 5.1 minutes). Analytical data: HPLC retention time (title compound) 8.4 minutes; MS: 349.36 (calc), M+1 = 350.1; ¹H NMR in CDCl₃: 8.75 doublet, (1H), 8.26 Quartet (1H), 7.38 multiplet (3H), 7.36 doublet (2H), 6.70 multiplet (2H), 3.08, Singlet, (3H); ¹³C NMR in CDCl₃: 15.3, 149.3, 147.9, 146.6, 138.1, 130.27, 133.5, 130.0, 129.1, 128.7, 117.9, 113.4, 111.1, 108.1, 107.7, 45.).
35

Example 2

5-methylsulfonyl-2-[5-phenyl-3-difluoromethyl-1H-pyrazol-1-yl]pyridine

To 120 g of 5-(methylsulfonyl)-2-hydrazinyl-pyridine [CP-675,775] (0.641 moles) was charged isopropanol (900 mL) followed by 4,4-difluoro-1-phenyl-1,3-butanedione (122 g, 0.615 moles, 0.96 eq.) as a melt, followed by 900 mL of isopropanol. The slurry was stirred for 15 minutes, then 36 mL of concentrated sulfuric acid was added (slight exotherm) (15 volumes of isopropanol total). The reaction was stirred for 6 hours at 20-30°C, 2.4 L (20 volumes) of water was added (slight exotherm, reaction temperature kept below 45°C) and the reaction was granulated for 2 days. The product was filtered and was rinsed with water.

5 The product contained less than 0.5% of compound 6 (retention time 5.1 minutes). Analytical data: HPLC retention time (title compound) 8.4 minutes; MS: 349.36 (calc), M+1 = 350.1; ¹H NMR in CDCl₃: 8.75 doublet, (1H), 8.26 Quartet (1H), 7.38 multiplet (3H), 7.36 doublet (2H), 6.70 multiplet (2H), 3.08, Singlet, (3H); ¹³C NMR in CDCl₃: 15.3, 149.3, 147.9, 146.6, 138.1, 130.27, 133.5, 130.0, 129.1, 128.7, 117.9, 113.4, 111.1, 108.1, 107.7, 45.

10

15

Example 3

5-methylsulfonyl-2-[5-phenyl-3-difluoromethyl-1H-pyrazol-1-yl]pyridine

To a clean and dry nitrogen purged 1 L round-bottom flask under nitrogen atmosphere was charged 25.6 g of 5-(methylsulfonyl)-2-hydrazinyl-pyridine (0.14 moles), 512 mL water (20 volumes) and 16 mL of concentrated H₂SO₄ (0.063 volumes). In a separate 500 mL 1-neck round-bottom flask, was prepared a solution of 384 mL of isopropanol (15 volumes) and 26.01 g (0.13 moles) of 4,4-difluoro-1-phenyl-1,3-butanedione. The isopropanol / 4,4-difluoro-1-phenyl-1,3-butanedione solution was added to the 5-(methylsulfonyl)-2-hydrazinyl-pyridine reaction mixture keeping the pot temperature less than 25°C. After addition, the mixture was stirred at 22°C for 2.0 hours and sampled for disappearance of starting material. When the starting materials had disappeared (less than 15 remaining), the pot was then heated to 40°C for 5.5 hours until disappearance of the intermediate. The resulting slurry was filtered and washed with water to achieve a pH 6-7 of the filtrate. The solids were then charged to a 250 mL 3-neck round-bottom flask. To the flask was added: 31.25 mL water (1.2 volumes) and 31.25 mL isopropanol (1.2 volumes). The mixture was heated to reflux (85°C) for 30 minutes. The pot was allowed to cool to 28°C and the solids were isolated by filtration and washed with 20 mL isopropanol. The solids were dried in a vacuum oven at 45°C. The product was obtained with 87% yield and contained 0.54% of the compound of formula 6 (retention time 5.1 minutes). Analytical data: HPLC retention time (title compound) 8.4 minutes; MS: 349.36 (calc), M+1 = 350.1; ¹H NMR in CDCl₃: 8.75 doublet, (1H), 8.26 Quartet (1H), 7.38 multiplet (3H), 7.36 doublet (2H), 6.70 multiplet (2H), 3.08, Singlet, (3H); ¹³C NMR in CDCl₃: 15.3, 149.3, 147.9, 146.6, 138.1, 130.27, 133.5, 130.0, 129.1, 128.7, 117.9, 113.4, 111.1, 108.1, 107.7, 45.

20

25

30

35

Example 4

5-methylsulfonyl-2-[5-phenyl-3-difluoromethyl-1H-pyrazol-1-yl]pyridine

To a clean and dry nitrogen purged 22 L round bottom flask under nitrogen atmosphere was charged: 500 g of 5-(methylsulfonyl)-2-hydrazinyl-pyridine (2.67 moles), 10 L water (20 volumes) and 579 mL of concentrated H₂SO₄ (0.063 volumes). In a separate 12 L 5 3-neck round-bottomed flask was prepared a solution of 7500 mL of isopropanol (15 volumes) and 508 g (2.56 moles) of 4,4-difluoro-1-phenyl-1,3-butanedione. The isopropanol/ 10 4,4-difluoro-1-phenyl-1,3-butanedione solution was added to the mixture containing the 5-(methylsulfonyl)-2-hydrazinyl-pyridine, keeping the pot temperature below 30°C. After addition 15 of the 4,4-difluoro-1-phenyl-1,3-butanedione solution, the mixture was stirred at 24°C for 1.0 hour and sampled for disappearance of 5-(methylsulfonyl)-2-hydrazinyl-pyridine by HPLC. The pot was then heated to 40°C for 2 hours until disappearance of the intermediate compound of formula 4 and the resulting slurry was filtered and washed with water to achieve a pH of the filtrate of from about 6 - 7. The solids were then charged to a 5L 3-neck round-bottom flask. To the flask was added 1250 mL water (2.5 volumes) and 1250 mL isopropanol (2.5 volumes). The mixture was heated to reflux (85°C) for 2 hours. The pot was then cooled 20 to 40°C and then stirred overnight. The solids were isolated by filtration, washed with 2 L isopropanol, and dried in a vacuum oven at 45°C. The compound of formula 6 was present at a level of 1.2% by HPLC (retention time 5.1 minutes). Analytical data: HPLC retention time (title compound) 8.4 minutes; MS: 349.36 (calc), M+1 = 350.1; ¹H NMR in CDCl₃: 8.75 doublet, (1H), 8.26 Quartet (1H), 7.38 multiplet (3H), 7.36 doublet (2H), 6.70 multiplet (2H), 3.08, Singlet, (3H); ¹³C NMR in CDCl₃: 15.3, 149.3, 147.9, 146.6, 138.1, 130.27, 133.5, 130.0, 129.1, 128.7, 117.9, 113.4, 111.1, 108.1, 107.7, 45.

25

Preparation 1

In addition to the methods disclosed in Serial Nos. 09/724,446 and 09/723,609 for preparing compounds of formula 2, applicants have utilized the following process for preparing 1-(phenyl)-1,3-butanediones, which comprises treating a compound of the formula

30

with an optionally substituted ester of the formula

wherein R^a is (C₁-C₃)alkyl, in a suitable anhydrous organic solvent, such as ethylene glycol dimethyl ether, in the presence of a base, preferably sodium methoxide. Preferably, R^a is ethyl. The product compound of formula 2 is preferably purified by recrystallization from an alcohol/water mixture, preferably methanol/water.

5

Preparation 2

In addition to the methods disclosed in Serial No. 09/724,446 for preparing compounds of formula 3, applicants have utilized the following process for preparing 5-(alkane sulfonyl)-2-hydrazinyl-pyridines, comprising the steps of: (a) treating 2,5-dibromopyridine with a Grignard reagent, such as propyl magnesium halide or isopropylmagnesium halide, in suitable solvent, such as diethyl ether, tetrahydrofuran, glyme or diglyme, at a temperature from about -20°C to about 10°C, for a period of from about 0.5 hours to about 4 hours, preferably about 45 minutes, followed by (b) sulfonylation with an agent such as alkanesulfonyl fluoride, alkanesulfonyl chloride or alkanesulfonic anhydride, to afford 2-bromo-5-(alkane sulfonyl)-pyridine, followed by (c) reaction of the product of (b) with hydrazine hydrate in a presence of an amine, in a suitable solvent, at a temperature of from about 20°C to about 100°C, preferably about 70°C, for a period of from about 3 hours to about 24 hours, preferably about 5 hours, to yield 2-hydrazinyl-5-(alkane sulfonyl)-pyridine.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150

(iii) In the reaction described above in (i), the use of methanesulfonyl anhydride as the sulfonylating agent provided the product with 50% yield.

(b) 2-Hydrazinyl-5-(methanesulfonyl)-pyridine

5 A suspension of 2-bromo-5-(methanesulfonyl)-pyridine (7.3 g, 116 mmol), triethylamine (14.7 g , 145 mmol), and hydrazine hydrate (7.26 g, 145 mmol) in water (205 mL) was heated to 70°C. The reaction mixture became homogenous before the product started to precipitate out of this mixture (after 90 minutes). The reaction mixture was stirred at 10 70°C for total of 5 hours and then was allowed to cool to room temperature and stirred for 18 hours. The precipitated product was collected by filtration, dried and recrystallized from hot ethanol to afford 2-hydrazinyl-5-(methanesulfonyl)-pyridine in 86% yield. Analytical data: ¹H NMR (300 MHz, CDCl₃) δ 3.12 (s, 3H), 4.44 (br s, 2H), 6.80 (br d, J=8.7 Hz, 1H), 7.81 (dd, J₁=9.0 Hz, J₂=2.4 Hz, 1H), 8.38 (d, 2.3 Hz, 1H), 8.57 (br s, 1H).