Análisis de Factores (FA)

José A. Perusquía Cortés

Análisis Multivariado Semestre 2024-l

- El análisis de factores es un modelo matemático que busca:

Explicar la correlación de un conjunto de p variables a través de m factores latentes.

- Orígenes en psicología:

Spearman (1904). "General-Intelligence," Objectively Determined and Measured. American

Journal of Psychology. 15 (2): 201–293.

Thurstone (1931). Multiple factor analysis. Psychological Review. 38 (5): 406–427.

Thurstone (1934). The Vectors of Mind. The Psychological Review. **41**: 1–32.

- Sea $\mathbf{x}_{p \times 1}$ un vector aleatorio con $\mathbb{E}(\mathbf{x}) = \mu$ y $\mathrm{Var}(\mathbf{x}) = \Sigma$ entonces,

$$\mathbf{x} = \Lambda \mathbf{f} + \mathbf{u} + \mu$$

Donde

- 1. $\Lambda_{p \times k}$ es una matriz de constantes
- 2. $\mathbf{f}_{k \times 1}$ es un vector aleatorio de factores comunes
- 3. $\mathbf{u}_{p \times 1}$ es un vector aleatorio de factores únicos

- Supuestos

1.
$$\mathbb{E}(\mathbf{f}) = \mathbf{0}$$

2.
$$Var(f) = I$$

3.
$$\mathbb{E}(\mathbf{u}) = \mathbf{0}$$

4.
$$Var(\mathbf{u}) = \Psi = diag(\Psi_{11}, ..., \Psi_{pp})$$

5.
$$Cov(\mathbf{f}, \mathbf{u}) = \mathbf{O}$$

- Así, para cada variable se tiene la representación

$$x_i = \sum_{j=1}^k \lambda_{ij} f_j + u_i + \mu_i$$

Proposición

Dado el modelo de análisis de factores, se tiene que la varianza de cada x_i está dada por

$$Var(x_i) = \sum_{j=1}^{k} \lambda_{ij}^2 + \Psi_{ii} = h_i^2 + \Psi_{ii},$$

y la covarianza de x_i y x_k es

$$\operatorname{Cov}\left(x_{i}, x_{k}\right) = \sum_{j=1}^{k} \lambda_{ij} \lambda_{jk}$$

- Por lo que, $\Sigma = \Lambda \Lambda^T + \Psi$

1. Invariante ante cambios de escala, i.e. para $\mathbf{y} = \mathbf{C}\mathbf{x}$ con, $\mathbf{C} = \mathrm{diag}(c_1, \dots, c_p)$, se cumple

$$Var(\mathbf{y}) = \mathbf{C}\Lambda\Lambda^T\mathbf{C} + \mathbf{C}\Psi\mathbf{C} = \mathbf{C}\Sigma\mathbf{C}$$

2. Λ no es única, ya que si $\mathbf{G} \in \mathcal{O}$ entonces $\mathbf{x} = (\Lambda \mathbf{G})(\mathbf{G}^T\mathbf{f}) + \mathbf{u} + \mu$ y así

$$\Sigma = (\Lambda \mathbf{G})(\mathbf{G}^T \Lambda^T) + \Psi.$$

Se necesita una restricción,

$$G = \Lambda^T \Psi^{-1} \Lambda = \text{diag}(g_{11}, ..., g_{pp})$$
 $g_{11} > g_{22} > \cdots > g_{pp}$

Dada una matriz de datos X ¿ Cómo estimar Λ, Ψ a partir de S ?

- Buscar
$$\widehat{\Lambda}$$
, $\widehat{\Psi}$ tales que $\mathbf{S} = \widehat{\Lambda} \widehat{\Lambda}^T + \widehat{\Psi} \mathbf{y} \widehat{\Psi}_{ii} \geq 0$

- Dado un estimador $\widehat{\Lambda}$ podemos hacer

$$\widehat{\Psi}_{ii} = \mathbf{S}_{ii} - \sum_{j=1}^{k} \widehat{\lambda}_{ij}^2$$

- La solución dependerá de la diferencia entre los grados de libertad de Σ y de Λ,Ψ

$$s = \frac{p(p+1)}{2} - \left[p + pk - \frac{k(k-1)}{2}\right] = \frac{1}{2}[(p-k)^2 - (p+k)]$$

- Si s < 0: Hay una infinidad de soluciones (no es interesante)
- Si s = 0: existe una única solución (no siempre es viable)
- Si s > 0: no hay solución exacta y debe aproximarse (caso interesante)

Proposición

Sea $Y = HXD^{-\frac{1}{2}}$ entonces considerando el modelo de análisis de factores se cumple que

$$\mathbf{R} = \widehat{\Lambda}_{y} \widehat{\Lambda}_{y}^{T} + \widehat{\Psi}_{y}$$

donde

$$\widehat{\Lambda}_{y} = \mathbf{D}^{-\frac{1}{2}} \widehat{\Lambda}_{x}$$

$$\widehat{\Psi}_{y} = \mathbf{D}^{-\frac{1}{2}} \widehat{\Psi}_{x}$$

Observación

Con la matriz de correlaciones se tiene que, $\widehat{\Psi}_{ii} = 1 - \sum_{j=1}^{\kappa} \widehat{\lambda}_{ij}^2$

Estimación por factores principales

- Aplicar una descomposición de valores propios para la matriz de correlación reducida

$$\mathbf{R} - \widehat{\mathbf{\Psi}} \qquad \text{diag} \left(\mathbf{R} - \widehat{\mathbf{\Psi}} \right) = \left(\widehat{h}_1^2, ..., \widehat{h}_p^2 \right)$$

- Primero hay que estimar \hat{h}_i^2
 - El cuadrado del coeficiente de correlación múltiple de la i-ésima variable con el resto de las variables.
 - El coeficiente de correlación más grande entre la i-ésima variable y alguna de las otras, i.e., $\max_{j \neq i} |r_{ij}|$.

Estimación por factores principales

- Por el teorema de descomposición espectral se tiene que

$$\mathbf{R} - \widehat{\boldsymbol{\Psi}} = \sum_{i=1}^{p} \alpha_i \gamma_i \gamma_i^T$$

donde, $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_p$ son los eigenvalores y $\gamma_1, \ldots, \gamma_p$ los eigenvectores

$$- \mathsf{Asi} \widehat{\Lambda} = \Gamma_k \mathbf{A}_k^{\frac{1}{2}}$$

- Finalmente, voler a estimar a $\widehat{\Psi}_{ii}$ como

$$\widehat{\Psi}_{ii} = 1 - \sum_{i=1}^{\kappa} \widehat{\lambda}_{ij}^2$$

- Correlaciones entre el aprovechamiento académico de:
 - Estudios clásicos
 - Francés
 - Inglés

$$R = \begin{pmatrix} 1 & 0.83 & 0.78 \\ & 1 & 0.67 \\ & & 1 \end{pmatrix}$$

- Considerando un solo factor se tiene una solución exacta

- Podemos modelar las correlaciones como:

$$x_1 = 0.983 \cdot f + u_1$$

 $x_2 = 0.844 \cdot f + u_2$
 $x_3 = 0.794 \cdot f + u_3$

Donde, f es un factor común llamado "general intelligence ability" y donde

$$\Psi_{11} = Var(u_1) = 0.034$$
 $\Psi_{22} = Var(u_2) = 0.288$
 $\Psi_{33} = Var(u_3) = 0.370$

- Considerar la matriz de correlaciones

$$R = \begin{pmatrix} 1 & 0.84 & 0.6 \\ & 1 & 0.35 \\ & & 1 \end{pmatrix}$$

- La solución al sistema es

$$\lambda_1 = 1.2$$
 $\Psi_{11} = Var(u_1) = -0.44$
 $\lambda_2 = 0.7$ \Rightarrow $\Psi_{22} = Var(u_2) = 0.51$
 $\lambda_3 = 0.5$ $\Psi_{33} = Var(u_3) = 0.75$

• No es admisible y una posible solución es fijar $\lambda_1=1$ (caso de Heywood)

- 88 calificaciones de 5 exámenes a libro abierto o cerrado.

Lineal (C)	Estadística (C)	Probabilidad(A)	Finanzas (A)	Cálculo (A)
97	92	77	72	96
83	88	90	75	96
95	83	81	71	96
75	82	73	75	83
83	73	75	75	78

- La matriz de correlación es

$$R = \begin{pmatrix} 1 & .546 & .545 & .410 & .390 \\ & 1 & .613 & .489 & 449 \\ & & 1 & .712 & .666 \\ & & & 1 \end{pmatrix}$$

- Resolvemos en R con la función fa() de la librería psych

- Para k=1

Variable	λ_i	h_i^2	Ψ_{ii}
Lineal	0.61	0.37	0.63
Estadística	0.69	0.48	0.52
Probabilidad	0.91	0.83	0.17
Finanzas	0.76	0.58	0.42
Cálculo	0.72	0.51	0.49

- El factor común se puede interpretar como un factor de habilidad general en matemáticas

- Para k=2

Variable	λ_{1i}	λ_{2i}	h_i^2	Ψ_{ii}
Lineal	0.64	0.33	0.51	0.49
Estadística	0.71	0.28	0.59	0.41
Probabilidad	0.90	-0.08	0.81	0.19
Finanzas	0.77	-0.23	0.65	0.35
Cálculo	0.72	-0.22	0.57	0.43

- El primer factor se puede interpretar como un factor de habilidad general en matemáticas
- El segundo factor se puede interpretar como un factor de habilidad en exámenes cerrados y abiertos

Estimación por máxima verosimilitud

- Suponiendo que ${\bf x}\sim N(\mu,\Sigma)$ donde $\Sigma=\Lambda\Lambda^T+\Psi$ y $\hat{\mu}=\bar{\bf x}$ podemos pensar en maximizar la log-verosimilitud

$$L = \frac{n}{2} (\log |2\pi\Sigma|) - \frac{n}{2} tr(\Sigma^{-1}S)$$

- O equivalentemente minimizar (Jörekog, 1967)

$$F = \log(|\Sigma|) + \operatorname{tr}(\mathbf{S}\Sigma^{-1}) - \log(|\mathbf{S}|) - p$$

- 1. Minimizar F analíticamente con respecto a Λ para una Ψ fija
- 2. Minimizar numéricamente F con respecto a Ψ

Prueba de hipótesis en el número de factores

- Bajo el supuesto de normalidad se pueden hacer pruebas de hipótesis para el número de factores

- El estadístico de prueba estará dado por (Bartlett, 1954)

$$U = n' \min(F) \qquad \qquad n' = n - 1 - \frac{1}{6}(2p + 5) - \frac{2}{3}k$$

- Si k factores son suficientes entonces,

$$U \sim \chi_{\nu}^{2} \qquad \qquad \nu = \frac{1}{2}(p-k)^{2} - \frac{1}{2}(p+k)$$

- Se puede probar de forma secuencial para $k=1,2,\ldots$ para encontrar el número de factores a considerar

- Para k=1

Estimación por MLE

Variable	λ_i	h_i^2	Ψ_{ii}
Lineal	0.60	0.36	0.64
Estadística	0.67	0.45	0.55
Probabilidad	0.92	0.84	0.16
Finanzas	0.77	0.60	0.40
Cálculo	0.73	0.53	0.47

Estimación por factores principales

Variable	λ_i	h_i^2	Ψ_{ii}
Lineal	0.61	0.37	0.63
Estadística	0.69	0.48	0.52
Probabilidad	0.91	0.83	0.17
Finanzas	0.76	0.58	0.42
Cálculo	0.72	0.51	0.49

- Para k=2

Estimación por MLE

Variable	λ_{1i}	λ_{2i}	h_i^2	Ψ_{ii}
Lineal	0.62	0.38	0.53	0.47
Estadística	0.70	0.29	0.57	0.43
Probabilidad	0.90	-0.05	0.81	0.19
Finanzas	0.78	-0.20	0.65	0.35
Cálculo	0.73	-0.19	0.57	0.43

Estimación por factores principales

Variable	λ_{1i}	λ_{2i}	h_i^2	Ψ_{ii}
Lineal	0.64	0.33	0.51	0.49
Estadística	0.71	0.28	0.59	0.41
Probabilidad	0.90	-0.08	0.81	0.19
Finanzas	0.77	-0.23	0.65	0.35
Cálculo	0.72	-0.22	0.57	0.43

- Hacemos la prueba de hipótesis para k=1, obteniendo

$$U = n' \min(F) = 7.749803 < 11.0705 = \chi_{5..95}^2$$

- Por lo que no rechazamos la hipótesis nula de que un factor sea suficiente

- Hacemos la prueba de hipótesis para k=2, obteniendo

$$U = n' \min(F) = 0.02823699 < 3.841459 = \chi_{1..95}^2$$

- Por lo que no rechazamos la hipótesis nula de que un factor sea suficiente

- Para tener unicidad en el modelo se consideró la restricción

$$G = \Lambda^T \Psi^{-1} \Lambda = \text{diag}(g_{11}, ..., g_{pp})$$
 $g_{11} > g_{22} > \cdots > g_{pp}$

- Para la interpretación de los factores es preferible que:
 - 1. Cada variable esté asociada fuertemente a lo más a un factor
 - 2. Las cargas sean muy grandes y positivas o cercanas al cero con algunos valores intermedios

- Ejemplos: varimax, quartimax, orthomax, etc.

- Rotación ortogonal propuesta por Kaiser (1958)

- Sea Λ la matriz de cargas y G matriz ortogonal entonces la matriz de cargas rotadas es:

$$\Delta = \Lambda \mathbf{G}$$

- Objetivo: maximizar ϕ

$$\phi = \sum_{j=1}^{k} \sum_{i=1}^{p} (d_{ij}^2 - \bar{d}_j)^2 \qquad d_{ij} = \frac{\delta_{ij}}{h_i} \qquad \bar{d}_j = p^{-1} \sum_{i=1}^{p} d_{ij}^2$$

- Para
$$k=2$$

Factores principales con varimax

Variable	λ_{1i}	λ_{2i}	h_i^2	Ψ_{ii}
Lineal	0.27	0.66	0.51	0.49
Estadística	0.36	0.68	0.59	0.41
Probabilidad	0.74	0.52	0.81	0.19
Finanzas	0.74	0.32	0.65	0.35
Cálculo	0.69	0.30	0.57	0.43

Factores principales sin rotación

Variable	λ_{1i}	λ_{2i}	h_i^2	Ψ_{ii}
Lineal	0.64	0.33	0.51	0.49
Estadística	0.71	0.28	0.59	0.41
Probabilidad	0.90	-0.08	0.81	0.19
Finanzas	0.77	-0.23	0.65	0.35
Cálculo	0.72	-0.22	0.57	0.43

Ejemplo 3: Calificaciones

Ejemplo 3: Calificaciones

- Permiten que los factores estén correlacionados

- Pueden proporcionar soluciones más simples

- Para factores latentes puede ser complicado tener que explicar la correlación entre ellos

- Ejemplos: quartimin, covarimin, biquartimin, oblimin (por default en R), etc.

- Para k=2

Factores principales con varimax

Variable	λ_{1i}	λ_{2i}	h_i^2	Ψ_{ii}
Lineal	0.27	0.66	0.51	0.49
Estadística	0.36	0.68	0.59	0.41
Probabilidad	0.74	0.52	0.81	0.19
Finanzas	0.74	0.32	0.65	0.35
Cálculo	0.69	0.30	0.57	0.43

Factores principales con oblimin

Variable	λ_{1i}	λ_{2i}	h_i^2	Ψ_{ii}
Lineal	-0.03	0.74	0.51	0.49
Estadística	0.09	0.70	0.59	0.41
Probabilidad	0.72	0.22	0.81	0.19
Finanzas	0.85	-0.05	0.65	0.35
Cálculo	0.79	-0.05	0.57	0.43

- La correlación de los factores es 0.76

Ejemplo 3: Calificaciones

