Package 'MRMCaov'

January 10, 2023

Type Package

Title Multi-Reader Multi-Case Analysis of Variance

Version 0.3.0 **Date** 2023-01-09

Author Brian J Smith [aut, cre], Stephen L Hillis [aut], Lorenzo L Pesce [ctb]

Maintainer Brian J Smith <bri> smith@uiowa.edu>

Description Estimation and comparison of the performances of diagnostic tests in multi-reader multi-case studies where true case statuses (or ground truths) are known and one or more readers provide test ratings for multiple cases. Reader performance metrics are provided for area under and expected utility of ROC curves, likelihood ratio of positive or negative tests, and sensitivity and specificity. ROC curves can be estimated empirically or with binormal or binormal likelihood-ratio models. Statistical comparisons of diagnostic tests are based on the ANOVA model of Obuchowski-Rockette and the unified framework of Hillis (2005) <doi:10.1002/sim.2024>. The ANOVA can be conducted with data from a full factorial, nested, or partially paired study design; with random or fixed readers or cases; and covariances estimated with the DeLong method, jackknifing, or an unbiased method. Smith and Hillis (2020) <doi:10.1117/12.2549075>.

Depends R (>= 3.5.0)

Imports ggplot2, methods, mytnorm, progress, tibble, trust

Suggests knitr LazyData true License GPL-3

URL https://github.com/brian-j-smith/MRMCaov

BugReports https://github.com/brian-j-smith/MRMCaov/issues

RoxygenNote 7.2.3 VignetteBuilder knitr 2 MRMCaov-package

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2023-01-10 18:33:10 UTC

R topics documented:

MRMC	aov-package	MRMCa	iov: 1	Multi-	Reade	r Mult	i-Case	Analysis	of Varianc	ce :	
Index											2
	VanDyke										2
	summary										
	stmc										
	srmc										
	roc_curves										
	RMH_to_OR										
	print.roc_curve										
	plot										
	OR_to_RMH										
	mrmc										
	metrics										,
	Kundel										,
	Franken										
	cov_methods										
	MRMCaov-package										

Description

Estimation and comparison of the performances of diagnostic tests in multi-reader multi-case studies where true case statuses (or ground truths) are known and one or more readers provide test ratings for multiple cases. Reader performance metrics are provided for area under and expected utility of ROC curves, likelihood ratio of positive or negative tests, and sensitivity and specificity. ROC curves can be estimated empirically or with binormal or binormal likelihood-ratio models. Statistical comparisons of diagnostic tests are based on the ANOVA model of Obuchowski-Rockette and the unified framework of Hillis (2005) doi:10.1002/sim.2024. The ANOVA can be conducted with data from a full factorial, nested, or partially paired study design; with random or fixed readers or cases; and covariances estimated with the DeLong method, jackknifing, or an unbiased method. Smith and Hillis (2020) doi:10.1117/12.2549075.

MRMCaov-package 3

Details

The functions below are available in **MRMCaov** for estimation and comparison of test performance metrics in studies involving multiple cases and one or more readers. Examples of their use can be found in the online guide at https://brian-j-smith.github.io/MRMCaov/.

Statistical Inference:

4 MRMCaov-package

mrmc Multi-reader multi-case ANOVA Srmc Single-reader multi-case ANOVA

stmc Single-test (single-reader) multi-case Estimation

Tabular and Graphical Summaries:

parameters ROC curve parameters
plot ROC curve plots
roc_curves ROC curves

summary Statistical analysis summaries

Performance Metrics (Binary Rating):

binary_sens Sensitivity
binary_spec Specificity

Performance Metrics (Ordinal or Numeric Rating):

binormal_auc Binormal ROC AUC binormal_sens ... sensitivity

binormal_spec ... specificity

binormalLR_auc Binormal likelihood ratio ROC AUC

binormalLR_sens ... sensitivity
binormalLR_spec ... specificity
empirical_auc Empirical ROC AUC

empirical_sens ... sensitivity empirical_spec ... specificity

trapezoidal_auc Empirical ROC AUC

trapezoidal_sens ... sensitivity trapezoidal_spec ... sensitivity

Performance Metric Covariance Estimation Methods:

DeLong jackknife unbiased

ROC Curves:

roc_curves Estimate one or more curves
parameters Extract curve parameters
points Extract curve points

cov_methods 5

mean Compute the mean of multiple curves plot Plot curves

Conversion of MRMC Model Parameters:

```
OR_to_RMH Obuchowski-Rockette to Roe, Metz & Hillis parameters RMH_to_OR Roe, Metz & Hillis to Obuchowski-Rockette parameters
```

Note

This research was supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under Award Number R01EB025174

Author(s)

Maintainer: Brian J Smith <bri> smith@uiowa.edu>

Authors:

• Stephen L Hillis <steve-hillis@uiowa.edu>

Other contributors:

• Lorenzo L Pesce <lorenzo.pesce@northwestern.edu>[contributor]

See Also

Useful links:

- https://github.com/brian-j-smith/MRMCaov
- Report bugs at https://github.com/brian-j-smith/MRMCaov/issues

cov_methods

Covariance Methods

Description

Reader performance metric covariance estimation methods to be used with package-supplied multicase statistical analysis functions.

Usage

```
DeLong()
jackknife()
unbiased(abar = FALSE)
```

6 Franken

Arguments

abar

logical indicating whether to compute mean covariance components.

Value

Returns a function of class cov_method specifying a covariance method for mrmc, srmc, or stmc.

References

DeLong ER, DeLong DM, and Clarke-Pearson DL (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44: 837–45.

Efron B (1982). The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: SIAM. Gallas BD, Pennello GA, and Meyers KJ (2007). Multireader multicase variance analysis for binary data. JJournal of the Optical Society of America A, 24: B70–80.

See Also

mrmc, srmc, stmc

Franken

Multi-reader multi-case dataset

Description

Multi-reader multi-case dataset

Usage

Franken

Format

A data frame with 800 rows and 5 variables:

reader reader identifier

treatment treatment identifier

case case identifier

truth true case status (1 = abnormal, 0 = normal)

rating ordinal reader ratings of abnormal case status (1 = definitely normal, 5 = definitely abnormal)

References

Franken EA Jr, Berbaum KS, Marley SM, Smith WL, Sato Y, Kao SC, Milam SG (1992). Evaluation of a digital workstation for interpreting neonatal examinations: a receiver operating characteristic study. Investigational Radiology, 27(9): 732-737.

Kundel 7

Kundel

Multi-reader multi-case dataset

Description

Data from a multi-reader multi-case study conducted by Kundel et al. (1997) to compare the clinical diagnostic accuracy of hard-copy readings of screen-film bedside chest radiographs and both hard-and soft-copy readings of computed radiographs from separate groups of patients in a medical intensive care unit.

Usage

Kundel

Format

A data frame with 760 rows and 5 variables:

reader reader identifier

treatment numeric identifier for treatment modality

treatment_name name of treatment modality

case patient identifier

truth true case status (1 = diseased, 0 = non-diseased)

rating ordinal reader ratings of case status

References

Kundel HL, Gefter W, Aronchick J, Miller W Jr, Hatabu H, Whitfill CH, Miller W Sr (1997). Accuracy of bedside chest hard-copy screen-film versus hard- and soft-copy computed radiographs in a medical intensive care unit: receiver operating characteristic analysis. Radiology, 205(3): 859-63.

metrics

Performance Metrics

Description

Estimated performance metrics from ROC curves.

8 metrics

Usage

```
binary_sens(truth, rating)
binary_spec(truth, rating)
binormal_auc(
  truth,
  rating,
  partial = FALSE,
 min = 0,
 max = 1,
 normalize = FALSE
)
binormal_eu(truth, rating, slope = 1)
binormal_sens(truth, rating, spec)
binormal_spec(truth, rating, sens)
binormalLR_auc(
  truth,
  rating,
  partial = FALSE,
 min = 0,
 \max = 1,
  normalize = FALSE
)
binormalLR_eu(truth, rating, slope = 1)
binormalLR_sens(truth, rating, spec)
binormalLR_spec(truth, rating, sens)
empirical_auc(
  truth,
  rating,
  partial = FALSE,
 min = 0,
 max = 1,
  normalize = FALSE
)
empirical_eu(truth, rating, slope = 1)
empirical_sens(truth, rating, spec)
```

metrics 9

```
empirical_spec(truth, rating, sens)

trapezoidal_auc(
   truth,
   rating,
   partial = FALSE,
   min = 0,
   max = 1,
   normalize = FALSE
)

trapezoidal_sens(truth, rating, spec)

trapezoidal_spec(truth, rating, sens)
```

Arguments

truth vector of true binary statuses.

rating vector of 0-1 binary ratings for the binary metrics and ranges of numeric ratings

for the others.

partial character string "sensitivity" or "specificity" for calculation of partial

AUC, or FALSE for full AUC. Partial matching of the character strings is allowed. "specificity" results in area under the ROC curve between the given min and max specificity values, whereas "sensitivity" results in area to the right of the

curve between the given sensitivity values.

min, max minimum and maximum sensitivity or specificity values over which to calculate

partial AUC.

normalize logical indicating whether partial AUC is divided by the interval width (max -

min) over which it is calculated.

slope slope of the iso-utility line at which to compute expected utility of the ROC

curve.

sens, spec numeric sensitivity/specificity at which to calculate specificity/sensitivity.

Details

Performance metrics measure the degree to which higher case ratings are associated with positive case statuses, where positive status is taken to be the highest level of truth. Available metrics include area under the ROC curve (auc), expected utility of the ROC curve (eu) at a given isoutility line (Abbey, 2013), sensitivity (sens) at a given specificity, and specificity (spec) at a given sensitivity.

Value

Returns a numeric value.

References

Abbey CK, Samuelson FW and Gallas BD (2013). Statistical power considerations for a utility endpoint in observer performance studies. Academic Radiology, 20: 798-806.

10 mrmc

See Also

mrmc, srmc, stmc

mrmc

Multi-Reader Multi-Case ROC Analysis

Description

Estimation and comparison of ROC performance metrics for multi-reader multi-case studies.

Usage

```
mrmc(response, test, reader, case, data, cov = jackknife, design = NULL)
```

Arguments

response	response metric expressed in terms of a package-supplied performance metric.
test	variable of test identifiers.
reader	variable of reader identifiers.
case	variable of case identifiers.
data	data frame containing the response, test, reader, and case variables.
cov	function, function call, or character string naming the method to use in calculating performance metric covariances.
design	one of the following study designs: 1 = factorial, 2 = cases nested within readers, 3 = cases nested within tests, or NULL to automatically set the design based on variable codings in data.

Details

Readers and cases are treated as random factors by default. Either one may be designated as fixed in calls to mrmc with the syntax fixed(<variable name>), where <variable name> is the name of the reader or case variable.

Value

Returns an mrmc class object with the following elements.

design experimental study design: 1 = factorial, 2 = cases nested within readers, 3 = cases nested within tests.

vars character names of the analysis factors and reader performance metric.

fixed logicals indicating whether the reader and case factors are treated as fixed in the analysis. aov results from an ordinary analysis of variance.

data data frame of computed reader performance metrics for the analysis of variance.

num_obs number of case observations for each of the computed metrics.

cov reader performance covariance matrix.

mrmc_data data frame of case-specific reader ratings.

levels character levels of the true case statuses.

References

Dorfman DD, Berbaum KS, and Metz CE (1992). Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method. Investigative Radiology, 27: 723–731.

Obuchowski NA and Rockette HE (1995). Hypothesis testing of diagnostic accuracy for multiple readers and multiple tests: an ANOVA approach with dependent observations. Communications in Statistics–Simulation and Computation 24: 285–308.

Hillis SL, Obuchowski NA, Schartz KM, and Berbaum KS (2005). A comparison of the Dorfman-Berbaum-Metz and Obuchowski-Rockette methods for receiver operating characteristic (ROC) data. Statistics Medicine. 24: 1579–1607.

Hillis SL (2007). A comparison of denominator degrees of freedom methods for multiple observer ROC analysis. Statistics in Medicine, 26: 596–619.

Hillis SL, Berbaum KS, and Metz CE (2008). Recent developments in the Dorfman-Berbaum-Metz procedure for multireader ROC study analysis. Academic Radiology, 15: 647–661.

See Also

```
metrics, cov_methods, parameters, plot, roc_curves, summary
```

Examples

OR_to_RMH

Convert Obuchowski-Rockette Parameters to Roe & Metz Parameters

Description

Determines Roe & Metz (RM) simulation model parameters for simulating multireader multicase likelihood-of-disease rating data based on real-data or conjectured Obuchowski-Rockette (OR) parameter estimates that describe the distribution of the empirical AUC reader performance measure. The algorithm assumes the constrained unequal-variance RM model (Hillis, 2012) which generalizes the original RM model (Roe and Metz, 1997) by allowing the diseased and nondiseased decision-variable distributions to have unequal variances for each reader, with the variance components involving diseased cases constrained to differ by a factor of 1/b^2 from corresponding variance

components involving nondiseased cases. This algorithm is described in Hillis (2020). *Throughout we refer to the Hillis (2012) RM model as the RMH model*.

Usage

```
OR_to_RMH(...)
## Default S3 method:
OR_to_RMH(
  . . . ,
 AUC1,
 AUC2,
 var_R,
 var_TR,
  corr1,
  corr2,
  corr3,
  var_error = NULL,
  n0,
 n1,
  b_method = c("unspecified", "mean_to_sigma", "specified"),
 mean_sig_input = NULL,
 b_input = NULL,
  b_le_1 = TRUE
)
## S3 method for class 'data.frame'
OR_to_RMH(params, ...)
```

Arguments

arguments passed to the default method. . . . test 1 and 2 expected empirical AUCs. AUC1, AUC2 var_R, var_TR OR reader and test-by-reader variance components. corr1, corr2, corr3 OR error correlations. OR error variance. var_error number of nondiseased and diseased cases. n0, n1 method of estimating RMH b parameter. b_method mean_sig_input mean-to-sigma ratio, required only if b_method = "mean_to_sigma". b_input binormal b value, required only if b_method = "specified". b_le_1 logical indicating whether the algorithm searches first for b <= 1 and then, if no solution, for $b \ge 1$; if FALSE, the algorithm searches only for for $b \ge 1$. Required only if b_method = "unspecified". data frame of above OR parameter values in the columns. params

Details

Hillis (2012) modified the original RM model (Roe and Metz, 1997) by allowing variance components involving case to depend on truth (diseased/nondiseased), with variance components involving diseased cases set equal to those involving nondiseased cases multiplied by the factor 1/b^2, b>0. We refer to the Hillis (2012) model as the RMH model. Hillis (2018) derived analytical formulas that express OR parameters describing the distribution of empirical AUC outcomes computed from RMH simulated data as functions of the RMH model parameters. The reverse mapping from the RMH parameters to the OR parameters is implemented in R by the RMH_to_OR function. The OR_to_RMH function uses an iterative search procedure.

b_method indicates the method for estimating the RMH *b* parameter. Note that *b* is the conventional binormal-curve slope, i.e., the slope of each reader's true ROC curve plotted in probit space.

• b_method = "unspecified" should be used when the goal is to determine RM parameters that result in simulated data for which the empirical AUC distribution is described by the inputted values for the OR parameter vector

$$\beta_O R = (AUC1, AUC2, var_R, var_T R, var_error, corr1, corr2, corr3).$$

• b_method = "mean_to_sigma" should be used when the goal is to determine RM parameters that result in simulated data for which the empirical AUC distribution is described by the inputted values for the OR parameter vector

$$\beta 1_O R = (AUC1, AUC2, var_R, var_T R, corr1, corr2, corr3),$$

and such that the median mean-to-sigma ratio across readers is equal to mean_sig_input for the test having the lowest AUC. Note that $\beta 1_O R$ differs from $\beta_O R$ in that it does not contain the OR error variance.

• b_method = "specified" should be used when the goal is to determine RM parameters that result in simulated data for which the empirical AUC distribution is described by the inputted values for the OR parameter vector $\beta 1_O R$ (see above) with b equal to mean_sig_input. (E.g., set b_input = 1 for symmetric ROC curve.)

For b_method = "mean_to_sigma" or "specified", the simulated empirical AUC estimate distribution is specified by the parameter values in params, except for var_error. Thus for these two options, var_error can be equal to NA or excluded from params.

Parameter mean_sig_input is the inputted mean-to-sigma ratio needed for b_method = "mean_to_sig". See Hillis & Berbaum (2011) for more information.

Parameter b_input is the inputted binormal b value needed for b_method = "specified".

There may not be a solution for a set of OR parameters values. When this occurs, the function will either produce an approximate solution or indicate what OR input needs to be changed.

A related function is the RMH_to_OR function, which determines OR parameters that describe the distribution of empirical AUC estimates computed from inputted RM model parameter values, based on the analytical mapping provided by Hillis (2018).

Value

The RMH model parameters are returned in a data frame with the following elements.

delta1 mean separation of nondiseased and diseased decision-variable distributions for test 1 across reader population.

delta2 mean separation of nondiseased and diseased decision-variable distributions for test 2 across reader population.

var_R RMH reader variance compnent.

var_TR RMH text-by-reader variance component.

var_C RMH case variance component.

var_TC RMH test-by-case variance.

var_RC RMH reader-by-case variance.

var_error RMH error variance.

b variance components involving diseased cases are constrained to differ by a factor of 1/b^2 from corresponding variance components involving nondiseased cases.

Related quantities that are also returned in the data frame:

b_method method used to estimate b.

n0 number of nondiseased cases per simulated sample.

n1 number of diseased cases per simulated sample.

mean_to_sig1 expected mean-to-sigma ratio across readers for test 1.

mean_to_sig2 expected mean-to-sigma ratio across readers for test 2.

Pr1_improper probability that the test 1 ROC curve for a random reader will be noticeably improper (i.e, lmean-to-sigma ratiol < 2).

Pr2_improper probability that the test 2 ROC curve for a random reader will be noticeably improper (i.e, |mean-to-sigma ratio| < 2).

Author(s)

References

Hillis SL (2012). Simulation of unequal-variance binormal multireader ROC decision data: an extension of the Roe and Metz simulation model. *Academic Radiology*, 19(12): 1518-1528. doi: 10.1016/j.acra.2012.09.011

Hillis SL (2018). Relationship between Roe and Metz simulation model for multireader diagnostic data and Obuchowski-Rockette model parameters. *Statistics in Medicine*, 37(13): 2067-2093. doi: 10.1002/sim.7616

Hillis SL (2020). Determining Roe and Metz model parameters for simulating multireader multicase confidence-of-disease rating data based on read-data or conjectured Obuchowski-Rockette parameter estimates. Vol. 11316, SPIE Medical Imaging: SPIE. doi.org/10.1117/12.2550541

Hillis SL and Kevin SB (2011). Using the mean-to-sigma ratio as a measure of the improperness of binormal ROC curves. *Academic Radiology*, 18(2): 143-154. doi: 10.1016/j.acra.2010.09.002

Roe CA and Metz CE (1997). Dorfman-Berbaum-Metz method for statistical analysis of multireader, multimodality receiver operating characteristic data: validation with computer simulation. *Academic Radiology*, 4(4): 298-303. doi: 10.1016/S1076-6332(97)80032-3

See Also

RMH_to_OR

Examples

```
## Example 1: Computing RM parameters from OR parameters directly
##-----
## Example 1a: Using b_method ="unspecified" (the default)
RM \leftarrow OR_{to}RMH(n0 = 69, n1 = 45, AUC1 = 0.897, AUC2 = 0.941,
               corr1 = 0.433, corr2 = 0.430, corr3 = 0.299,
               var_R = 0.00154, var_TR = 0.000208, var_error = 0.000788)
RM
## We recommend also computing the OR parameter values ("true values")
# that describe the distribution of simulated data based on above RM parameters.
# using the RMH_to_OR function. Ideally the true values will be the same as the
# inputted OR values used for deriving the RM parameter values. We recommend
# always performing this check. This check is carried out below, as shown below.
true_values = RMH_to_OR(RM)
true_values
# From the output we see, for this example, that the true OR values are identical to the
# inputted OR values
# Example 1b: Using b_method = "specified" with b_input = 1
# Note that the error variance does not need to be specified since this b_method
# does not utilize it.
RM \leftarrow OR_{to}RMH(n0 = 69, n1 = 45, AUC1 = 0.897, AUC2 = 0.941,
               corr1 = 0.433, corr2 = 0.430, corr3 = 0.299,
               var_R = 0.00154, var_TR = 0.000208,
               b_method = "specified", b_input = 1)
RM
true_values <- RMH_to_OR(RM)
# From the output we see, for this example, that the true values are identical
# (within rounding error) to the inputted OR values (but note that var_error was
# not inputted)
## Example 1c: Using b_method = "mean_to_sigma" with mean_to_sig_input = 4.5
# Note the error variance does not need to be specified since this b_method
# does not utilize it.
RM \leftarrow OR_{to}RMH(n0 = 69, n1 = 45, AUC1 = 0.897, AUC2 = 0.941,
               corr1 = 0.433, corr2 = 0.430, corr3 = 0.299,
                var_R = 0.00154, var_TR = 0.000208,
               b_method = "mean_to_sigma", mean_sig_input = 4.5)
true_values <- RMH_to_OR(RM)</pre>
true_values
# From the output we see for this example that the true OR values are identical
# (within rounding error) to the inputted OR values (but note that var_error was
# not inputted)
```

```
## Example 2: Computing RM parameters from a data frame of OR parameters
## Example 2a: One study
vandyke_OR \leftarrow data.frame(n0 = 69, n1 = 45, AUC1 = 0.897, AUC2 = 0.941,
                         corr1 = 0.433, corr2 = 0.430, corr3 = 0.299,
                         var_R = 0.00154, var_TR = 0.000208, var_error = 0.000788)
vandyke_RM <- OR_to_RMH(vandyke_OR)</pre>
vandyke_RM
true_values <- RMH_to_OR(vandyke_RM)</pre>
true_values
## Example 2b: Three studies
three_studies_OR <- data.frame(</pre>
 rbind(
    vandyke = c(69, 45, 0.89793704, 0.94083736, 0.432, 0.429, 0.298, 0.00154,
                0.0002, 0.00080229),
    franken = c(33, 67, .8477498869, 0.8368950701, 0.521430051, 0.319691199,
                0.3386375697, 0.0000433385, 0.0, 0.0014967254),
   kundel = c(66, 29, 0.8038793103, 0.8413662487, 0.507695244, 0.3843523762,
               0.4035662578, 0.0007340122, 0, 0.002148844)
 )
)
colnames(three_studies_OR) <- c("n0", "n1", "AUC1", "AUC2", "corr1", "corr2",</pre>
                                 "corr3", "var_R", "var_TR", "var_error")
three_studies_OR
three_studies_RM <- OR_to_RMH(three_studies_OR)</pre>
three_studies_RM
true_values <- RMH_to_OR(three_studies_RM)</pre>
true_values
## Note above that the true values for corr2 and corr3 for the Franken study
# differ slightly from the inputted values; this is because corr2 < corr3 for the
# inputted OR values, which is not possible for simulated RM model data.
##Example 2c: Examples 1a, 1b and 1c run using one data frame
vandyke_OR \leftarrow data.frame(n0 = 69, n1 = 45, AUC1 = 0.897, AUC2 = 0.941,
                         corr1 = 0.433, corr2 = 0.430, corr3 = 0.299,
                         var_R = 0.00154, var_TR = 0.000208, var_error = 0.000788)
vandyke_0R_x3 < vandyke_0R[c(1,1,1),]  #has 3 rows, each equal to vandyke_0R
b_method = c("unspecified","mean_to_sigma","specified")
mean\_sig\_input = c(NA, 4.5, NA)
b_{input} = c(NA, NA, 1)
vandyke_OR_3ex <- cbind(vandyke_OR_x3,b_method,mean_sig_input,b_input)</pre>
vandyke_OR_3ex
vandyke_OR_3ex_RM <- OR_to_RMH(vandyke_OR_3ex)</pre>
vandyke_OR_3ex_RM
true_values <- RMH_to_OR(vandyke_OR_3ex_RM)</pre>
true_values
## Example 3: Printing the alternative x1 -- x7 parameter values
## -----
```

plot 17

plot

ROC Plots

Description

Plots of ROC curves.

Usage

```
## S3 method for class 'roc_curve'
plot(x, n = 100, emp_points = FALSE, ...)
## S3 method for class 'roc_curves'
plot(x, n = 100, emp_points = FALSE, ...)
## S3 method for class 'empirical_curve'
plot(x, ...)
## S3 method for class 'empirical_curves'
plot(x, ...)
## S3 method for class 'roc_points'
plot(x, coord_fixed = TRUE, ...)
## S3 method for class 'mrmc'
plot(x, n = 100, ...)
## S3 method for class 'stmc'
plot(x, n = 100, ...)
```

Arguments

Х

object to plot.

print.roc_curve

n number of equally spaced false-positive rate points at which to calculate truepositive rates and interpolate through for display of the curve.

emp_points logical indicating whether to overlay empirical ROC points on parametric curves.

... arguments passed to other methods.

coord_fixed logical indicating whether to fix the scales of x and y axes.

Value

Returns a ggplot object.

See Also

```
roc_curves
```

Examples

```
curves <- with(VanDyke,
  roc_curves(truth, rating, groups = list(Test = treatment, Reader = reader))
)
plot(curves)</pre>
```

print.roc_curve

Print ROC Objects

Description

Print ROC objects from the MRMCaov package.

Usage

```
## S3 method for class 'roc_curve'
print(x, n = 11, ...)
## S3 method for class 'roc_curves'
print(x, n_curves = 5, n = 11, ...)
```

Arguments

x object to print.
n number of ROC curve points to print.
... arguments passed to other methods.
n_curves number of ROC curves to print.

Value

Returns the printed object x.

RMH_to_OR

Examples

```
curves <- with(VanDyke,
  roc_curves(truth, rating, groups = list(Test = treatment, Reader = reader))
)
print(curves)</pre>
```

RMH_to_OR

Convert Roe & Metz Parameters to Obuchowski-Rockette Parameters

Description

Determines Obuchowski-Rockette (OR) model parameter values that describe the distribution of empirical AUC reader performance outcomes computed from multireader multicase likelihood-of-disease rating data simulated from the Roe & Metz (RM) simulation model, based on the analytical mapping provided by Hillis (2018). The function assumes the RM model proposed by (Hillis, 2012), which generalizes the original RM model (Roe and Metz, 1997) by allowing the latent confidence-of-disease rating distributions to have unequal diseased-case and nondiseased-case variances, with the variance components involving diseased cases constrained to differ by a factor of 1/b^2, b>0, from corresponding variance components involving nondiseased cases. *Throughout we refer to the Hillis (2012) RM model as the RMH model*.

Usage

```
RMH_to_OR(...)
## Default S3 method:
RMH_to_OR(
  . . . ,
  n0,
  n1,
  b,
  delta1,
  delta2,
  var_R,
  var_TR,
  var_C,
  var_TC,
  var_RC,
  var_error
## S3 method for class 'data.frame'
RMH_to_OR(params, ...)
```

20 RMH_to_OR

Arguments

... arguments passed to the default method.n0, n1 numbers of nondiseased and diseased cases.

b b>0, with $1/b^2$ = ratio of each diseased-case variance component to the corre-

sponding diseased-case variance component. It follows that b is also the conventional binormal-curve slope, i.e., the slope of each reader's true ROC curve

plotted in probit space.

delta1, delta2 test 1 and test 2 separations of the RMH-model nondiseased and diseased latent

likelihood-of-disease rating distribution means.

var_R, var_TR RMH-model reader and test-by-reader variance components.

var_C, var_TC, var_RC, var_error

RMH-model case, test-by-case, reader-by-case and error variance components

for nondiseased cases.

params data frame of above RM parameter values in the columns.

Details

Hillis (2012) modified the original RM model (Roe and Metz, 1997) by allowing variance components involving case to depend on truth (diseased/nondiseased), with variance components involving diseased cases set equal to those involving nondiseased cases multiplied by the factor 1/b^2, b>0. Assuming this model, which we refer to as the RMH model, Hillis (2018) derived analytical formulas expressing OR parameters that describe the distribution of empirical AUC outcomes computed from RMH model simulated data as functions of the RMH parameters. This mapping from the RMH parameters to the OR parameters is implemented in R by the RMH_to_OR function.

A related function is the OR_to_RMH function, which determines RM parameter values corresponding to real-data or conjectured Obuchowski-Rockette (OR) parameter estimates.

Value

The OR model parameters are returned in a data frame with the following elements.

... arguments passed to the default method.

AUC1, AUC2 test 1 and 2 expected empirical AUCs.

var_R, var_TR OR reader and test-by-reader variance components.

corr1, corr2, corr3 OR error correlations.

var_error OR error variance.

n0, n1 number of nondiseased and diseased cases.

Related quantities describing the true reader ROC curves that are also returned in the data frame:

b b > 0, with 1/b^2 = (RM diseased variance component) / (corresponding RM nondiseased variance component).

mean_to_sig1 expected mean-to-sigma ratio across readers for test 1.

mean_to_sig2 expected mean-to-sigma ratio across readers for test 2.

 RMH_{to} OR

Pr1_improper probability that the test 1 ROC curve for a random reader will be noticeably improper (i.e, |mean-to-sigma ratio| < 2).

Pr2_improper probability that the test 2 ROC curve for a random reader will be noticeably improper (i.e, |mean-to-sigma ratio| < 2).

Author(s)

References

Hillis SL (2012). Simulation of unequal-variance binormal multireader ROC decision data: an extension of the Roe and Metz simulation model. *Academic Radiology*, 19(12): 1518-1528. doi: 10.1016/j.acra.2012.09.011

Hillis SL (2018). Relationship between Roe and Metz simulation model for multireader diagnostic data and Obuchowski-Rockette model parameters. *Statistics in Medicine*, 37(13): 2067-2093. doi: 10.1002/sim.7616

Roe CA and Metz CE (1997). Dorfman-Berbaum-Metz method for statistical analysis of multireader, multimodality receiver operating characteristic data: validation with computer simulation. *Academic Radiology*, 4(4): 298-303. doi: 10.1016/S1076-6332(97)80032-3

See Also

OR_to_RMH

Examples

```
## Example 1: Computing OR parameters from RMH parameters directly
# RMH parameters from first line (A_z = 0.702) of Table 1 in Roe & Metz (1997)
# with 50 diseased and 50 nondiseased cases.
OR \leftarrow RMH_{to}OR(n0 = 50, n1 = 50, delta1 = 0.75, delta2 = 0.75,
               var_R = 0.0055, var_TR = 0.0055, var_C = 0.3, var_TC = 0.3,
               var_RC = 0.2, var_error = 0.2, b = 1)
OR
## Example 2: Computing OR parameters from a data frame of RMH parameters
  ______
## Example 2a: RMH parameters from first line (A_z = 0.702) of Table 1 in
# Roe & Metz (1997) with 50 diseased and 50 nondiseased cases
RM_parms_line1 < - data.frame(n0 = 50, n1 = 50, delta1 = 0.75, delta2 = 0.75,
                           var_R = 0.0055, var_TR = 0.0055, var_C = 0.3, var_TC = 0.3,
                           var_RC = 0.2, var_error = 0.2, b = 1)
OR <- RMH_to_OR(RM_parms_line1)
## Note below that applying the OR_to_RMH function to the above OR parameters
# results in the original RMH parameters within rounding error:
check <- OR_to_RMH(OR)</pre>
check
```

roc_curves

```
## Example 2b: RMH parameters from last 3 lines of Table 1 in Roe & Metz (1997)
# using 10 diseased and 25 nondiseased cases
RM_3_models <- data.frame(
  rbind(
    line6 = c(25, 10, 0.75, 0.75, 0.011, 0.011, 0.1, 0.1, 0.2, 0.6, 1),
    line7 = c(25, 10, 1.50, 1.50, 0.03, 0.03, 0.1, 0.1, 0.2, 0.6, 1),
    line8 = c(25, 10, 2.5, 2.5, 0.056, 0.056, 0.1, 0.1, 0.2, 0.6, 1)
  )
)
colnames(RM_3_models) <- c("n0", "n1", "delta1", "delta2", "var_R", "var_TR",</pre>
                            "var_C", "var_TC", "var_RC", "var_error", "b")
RM_3_models
OR_3_models <- RMH_to_OR(RM_3_models)
OR_3_models
## Example 2c: RMH parameters from last 3 lines of Table 1 in Hillis (2012)
# using 10 diseased and 25 nondiseased cases
RM_3_models_Hillis <- data.frame(</pre>
  rbind(
    line6 = c(25, 25, 0.821, 0.821, 0.0132, 0.0132, 0.1, 0.1, 0.2, 0.6, 0.84566),
    line7 = c(25, 25, 1.831, 1.831, 0.0447, 0.0447, 0.1, 0.1, 0.2, 0.6, 0.71082),
    line8 = c(25, 25, 3.661, 3.611, 0.1201, 0.1201, 0.1, 0.1, 0.2, 0.6, 0.55140)
  )
)
colnames(RM_3_models_Hillis) <- c("n0", "n1", "delta1", "delta2", "var_R", "var_TR",</pre>
                                   "var_C", "var_TC", "var_RC", "var_error", "b")
RM_3_models_Hillis
OR_3_models_Hillis <- RMH_to_OR(RM_3_models_Hillis)</pre>
OR_3_models_Hillis
```

roc_curves

ROC Performance Curves

Description

Calculation of ROC curve true positive rate (TPR) and false positive rate (FPR) pairs for values of a numeric rating of a true binary response.

Usage

```
roc_curves(...)
## Default S3 method:
roc_curves(truth, rating, groups = list(), method = "empirical", ...)
## S3 method for class 'mrmc'
roc_curves(x, ...)
```

roc_curves 23

```
## S3 method for class 'stmc'
roc_curves(x, ...)
parameters(x, ...)
## S3 method for class 'roc_curve'
parameters(x, ...)
## S3 method for class 'roc_curves'
parameters(x, ...)
## S3 method for class 'mrmc'
parameters(x, ...)
## S3 method for class 'stmc'
parameters(x, ...)
## S3 method for class 'roc_curve'
points(
 х,
 metric = c("specificity", "sensitivity"),
 values = seq(0, 1, length = 101),
)
## S3 method for class 'roc_curves'
points(
 Х,
 metric = c("specificity", "sensitivity"),
 values = seq(0, 1, length = 101),
  . . .
)
## S3 method for class 'empirical_curve'
points(
 metric = c("specificity", "sensitivity"),
 values = NULL,
 which = c("curve", "curves", "observed"),
 ties = max,
)
## S3 method for class 'empirical_curves'
points(
 metric = c("specificity", "sensitivity"),
 values = NULL,
```

24 roc_curves

```
which = c("curve", "curves", "observed"),
ties = max,
...
)

## S3 method for class 'roc_curve'
mean(x, ...)

## S3 method for class 'roc_curves'
mean(x, ...)

## S3 method for class 'binormal_curves'
mean(x, method = c("points", "parameters"), ...)
```

Arguments

• • •	arguments passed from the mean() method to points().
truth	vector of true binary statuses.
rating	vector of numeric ratings.
groups	list or data frame of grouping variables of the same lengths as truth and rating.
method	character string indicating the curve type as "binormal", "binormalLR", "empirical", or "trapezoidal" or the averaging of binormal curves over "points" or "parameters".
x	object returned by mrmc or roc_curves for which to compute points on or to average over the curves.
metric	reader performance metric to which the values correspond.
values	numeric vector of values at which to compute ROC curve points, or NULL for default empirical values as determined by which.
which	character string indicating whether to use curve-specific observed values and 0 and 1 ("curve"), the combination of these values over all curves ("curves"), or only the observed curve-specific values ("observed").
ties	function determining empirical roc points returned in cases of ties.

Value

Function roc_curves returns an roc_curve class object of a single estimated ROC curve or an roc_curves class object of grouped ROC curves. Function parameters extracts the parameters that define the curves, points returns a data frame of points on individual curves, and means returns points on averaged curves (Chen and Samuelson, 2014).

References

Chen W and Samuelson FW (2014). The average receiver operating characteristic curve in multireader multicase imaging studies. The British Journal of Radiology, 87(1040): 20140016.

See Also

plot

srmc 25

Examples

```
curves <- with(VanDyke,
  roc_curves(truth, rating, groups = list(Test = treatment, Reader = reader))
)
points(curves)
mean(curves)</pre>
```

srmc

Single-Reader Multi-Case ROC Analysis

Description

Estimation and comparison of ROC performance metrics for single-reader multi-case studies.

Usage

```
srmc(response, test, case, data, cov = jackknife)
```

Arguments

response	response metric expressed in terms of a package-supplied performance metric.
test	variable of test identifiers.
case	variable of case identifiers.
data	data frame containing the response, test, and case variables.
cov	function, function call, or character string naming the method to use in calculating performance metric covariances.

Value

Returns an mrmc class object.

See Also

```
metrics, cov_methods, parameters, plot, roc_curves, summary
```

Examples

```
VanDyke1 <- subset(VanDyke, reader == "1")
est <- srmc(empirical_auc(truth, rating), treatment, case, data = VanDyke1)
plot(est)
summary(est)</pre>
```

26 stmc

stmc

Single-Test (Single-Reader) Multi-Case ROC Analysis

Description

Estimation of ROC performance metrics for a single test of multiple cases.

Usage

```
stmc(response, case, data, cov = jackknife)
```

Arguments

response	$response\ metric\ expressed\ in\ terms\ of\ a\ package-supplied\ performance\ {\tt metric}.$
case	optional variable of case identifiers.
data	data frame containing the response, test, reader, and case variables.
COV	function, function call, or character string naming the method to use in calculating performance metric covariances.

Value

Returns a stmc class object with the following elements.

```
metric character name of the performance metric.
est estimated mean.
se estimated standard error.
stmc_data data frame of case-specific ratings.
```

See Also

```
metrics, cov_methods, parameters, plot, roc_curves, summary
```

Examples

```
VanDyke11 <- subset(VanDyke, treatment == "1" & reader == "1")
est <- stmc(empirical_auc(truth, rating), data = VanDyke11)
plot(est)
summary(est)</pre>
```

summary 27

summary

Summary Estimates and Statistical Tests

Description

Summary estimates and statistical tests from single and multi-reader multi-case analyses.

Usage

```
## $3 method for class 'mrmc'
summary(object, conf.level = 0.95, ...)
## $3 method for class 'stmc'
summary(object, conf.level = 0.95, ...)
```

Arguments

object object to summarize.

conf.level confidence level for confidence intervals.
... additional arguments affecting the summary.

Value

The respective method functions return summary.mrmc and summary.stmc class objects.

Object summary.mrmc is a list of the following elements.

data_name character name of the original data frame supplied for the analysis.

cov method character name of the covariance method.

design experimental study design: 1 = factorial, 2 = cases nested within readers, 3 = cases nested within tests.

vars character names of the analysis factors and reader performance metric.

conf.level numeric confidence interval level.

vcov_comps data frame of estimated variances, covariances, and correlations.

test_equality data frame of the ANOVA global test of equality.

test_diffs data frame of pairwise test differences.

test means data frame of estimated test means.

reader_test_diffs data frame of (fixed) reader-specific pairwise test differences.

reader_means data frame of (fixed) reader-specific test means.

Object summary.stmc is a numeric vector of the estimated reader performance mean, standard error, lower confidence limit, and upper confidence limit.

See Also

```
mrmc, srmc, stmc
```

28 VanDyke

VanDyke

Multi-reader multi-case dataset

Description

Multi-reader multi-case dataset

Usage

VanDyke

Format

A data frame with 1140 rows and 7 variables:

reader reader identifier

treatment treatment identifier

case case identifier (factorial design)

case2 case identifier (cases nested within readers)

case3 case identifier (cases nested within treatments)

truth true case status (1 = positive, 0 = negative)

rating ordinal reader ratings of case status

References

Van Dyke CW, White RD, Obuchowski NA, Geisinger MA, Lorig RJ, Meziane MA (1993). Cine MRI in the diagnosis of thoracic aortic dissection. 79th Radiological Society of North America Meetings, Chicago, IL.

Index

* datasets Franken, 6 Kundel, 7	<pre>jackknife, 4 jackknife (cov_methods), 5</pre>
VanDyke, 28	Kundel, 7
binary_sens, 4 binary_sens (metrics), 7 binary_spec, 4 binary_spec (metrics), 7 binormal_auc, 4 binormal_auc (metrics), 7 binormal_eu (metrics), 7 binormal_sens, 4	mean, 5 mean (roc_curves), 22 method, 10, 25, 26 metric, 10, 25, 26 metrics, 7, 11, 25, 26 mrmc, 4, 6, 10, 10, 24, 25, 27 MRMCaov (MRMCaov-package), 2 MRMCaov-package, 2
<pre>binormal_sens (metrics), 7 binormal_spec, 4</pre>	OR_to_RMH, 5, 11, 21
binormal_spec (metrics), 7 binormalLR_auc, 4 binormalLR_auc (metrics), 7 binormalLR_eu (metrics), 7 binormalLR_sens, 4 binormalLR_sens (metrics), 7 binormalLR_spec, 4 binormalLR_spec (metrics), 7 cov_methods, 5, 11, 25, 26	parameters, 4 , 11 , 25 , 26 parameters (roc_curves), 22 plot, 4 , 5 , 11 , 17 , 24 – 26 points, 4 points (roc_curves), 22 print.roc_curve, 18 print.roc_curve (print.roc_curve), 18 RMH_to_OR, 5 , 15 , 19 roc_curves, 4 , 11 , 18 , 22 , 25 , 26
DeLong, 4 DeLong (cov_methods), 5	srmc, 4, 6, 10, 25, 27 stmc, 4, 6, 10, 26, 27 summary, 4, 11, 25, 26, 27
<pre>empirical_auc, 4 empirical_auc (metrics), 7 empirical_eu (metrics), 7 empirical_sens, 4 empirical_sens (metrics), 7 empirical_spec, 4 empirical_spec (metrics), 7</pre>	<pre>trapezoidal_auc, 4 trapezoidal_auc (metrics), 7 trapezoidal_sens, 4 trapezoidal_sens (metrics), 7 trapezoidal_spec, 4 trapezoidal_spec (metrics), 7 unbiased, 4</pre>
Franken, 6	unbiased (cov_methods), 5
ggplot, 18	VanDyke, 28