Chapter 07

Classification

Dr. Steffen Herbold herbold@cs.uni-goettingen.de

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

Example of Classification

This is a whale

This is a bear

The General Problem

The Formal Problem

- Object space
 - $O = \{object_1, object_2, \dots\}$
 - Often infinite
- Representations of the objects in a feature space
 - $\mathcal{F} = \{ \phi(o), o \in O \}$
- Set of classes
 - $C = \{class_1, ..., class_n\}$
- A target concept that maps objects to classes
 - $h^*: O \rightarrow C$
- Classification
 - Finding an approximation of the target concept

How do you get h^* ?

The "Whale" Hypothesis

Why do we know this is a whale?

Has a fin

Blue background

Oval body

Black top, white bottom

Hypothesis: Objects with fins, an oval general shape that are black on top and white on the bottom in front of a blue background are whales.

The Hypothesis

- A hypothesis maps features to classes
 - $h: \mathcal{F} \to \mathcal{C}$
 - $h: \phi(o) \rightarrow C$
- Approximation of the target concept h*
 - $h^*(o) \approx h(\phi(o))$
- Hypothesis = Classifier = Classification Model

What if I am not sure about the class?

Classification using Scores

- A numeric score for each class $c \in C$
- Often a probability distribution
 - $h': \phi(o) \to [0,1]^{|C|}$
 - $||h'(\phi(o))||_1 = 1$
- Example
 - Three classes: "whale", "bear", "other"
 - $h'(\phi(\text{"whalepicture"})) = (0.7,0.1,0.2)$

score whale

score bear

score other

- Standard approach:
 - Classification is class with highest score

Thresholds for Scores

Different thresholds also possible

Threshold of 0.2 would miss "Spam" but better identify "No Spam"

Many "No Spam" incorrectly detected as spam if "highest" score is used

Quality of Hypothesis

How do you evaluate $h^*(o) \approx h(\phi(o))$

- Goal: Approximation of the target concept
 - $h^*(o) \approx h(\phi(o))$

- Structure is the same as training data
- Apply hypothesis

		$\phi(o)$			$h^*(o)$	$h(\phi(o))$
hasFin	shape	colorTop	colorBottom	background	class	prediction
true	oval	black	black	blue	whale	whale
false	rectangle	brown	brown	green	bear	whale

The Confusion Matrix

Table of actual values versus prediction

Binary Classification

- Many problems are binary
 - Will I get my money back?
 - Is this credit card fraud?
 - Will my paper be accepted?
 - ...
- Can all be formulated as either being in a class or not
- → Labels true and false

The Binary Confusion Matrix

- False positives are also called Type I error
- False negatives are also called Type II error

Binary Performance Metrics (1)

- Rates per actual class
 - True positive rate, recall, sensitivity
 - · Percentage of actually "True" that is predicted correctly

•
$$TPR = \frac{TP}{TP + FN}$$

- True negative rate, specificity
 - Percentage of actually "False" that is predicted correctly

•
$$TNR = \frac{TN}{TN+FP}$$

- False negative rate
 - Percentage of actually "True" that is predicted wrongly

•
$$FNR = \frac{FN}{FN + TP}$$

- False positive rate
 - Percentage of actually "False" that is predicted wrongly

•
$$FPR = \frac{FP}{FP+TN}$$

Binary Performance Metrics (2)

- Rates per predicted class
 - Positive predictive value, precision
 - · Percentage of predicted "True" that is predicted correctly

•
$$PPV = \frac{TP}{TP + FP}$$

- Negative predictive value
 - Percentage of predicted "False" that is predicted correctly

•
$$NPV = \frac{TN}{TN + FN}$$

- False discovery rate
 - Percentage of predicted "True" that is predicted wrongly

•
$$FDR = \frac{FP}{TP + FP}$$

- False omission rate
 - Percentage of predicted "False" that is predicted wrongly

•
$$FOR = \frac{FN}{FN + TN}$$

Binary Performance Metrics (3)

- Metrics that take "everything" into account
 - Accuracy
 - Percentage of data that is predicted correctly

•
$$accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

- F1 measure
 - Harmonic mean of precision and recall

•
$$F_1 = 2 \frac{precision \times recall}{precision + recall}$$

- Matthews correlation coefficient (MCC)
 - Chi-squared correlation between prediction and actual values

•
$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Receiver Operator Characteristics (ROC)

- Plot of true positive rate (TPR) versus false positive rate (FPR)
- Different TPR/FPR values possible due to thresholds for scores

Area Under the Curve (AUC)

- Large Area = Good Performance
- Accounts for tradeoffs between TPR and FPR

Micro and Macro Averaging

- Metrics not directly applicable for more than two classes
 - Accuracy is the exception
- Micro Averaging
 - Expand formulas to use individual positive, negative examples for each class
- Macro Averaging
 - Assume one class as true, combine all other as false
 - Compute metrics for all such combinations
 - Take average
- Example for the true positive rate:

•
$$TPR_{micro} = \frac{\sum_{c \in C} TP_c}{\sum_{c \in C} TP_c + \sum_{c \in C} FN_c}$$

• $TPR_{macro} = \frac{\sum_{c \in C} \frac{TP_c}{TP_c + TN_c}}{|C|}$

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

Overview of Classifiers

- The following classifiers are introduced
 - k-nearest Neighbor
 - Decision Trees
 - Random Forests
 - Logistic Regression
 - Naive Bayes
 - Support Vector Machines
 - Neural Networks

k-nearest Neighbor

- Basic Idea
 - Instances with similar feature values should have the same class
 - Class can be determined by looking at instances that are similar
- \rightarrow Assign each instance the mode of its k nearest instances

Impact of k

Decision Trees

- Basic Idea
 - Make decisions based on logical rules about features
 - Organize rules as a tree

Basic Decision Tree Algorithm

- Recursive algorithm
 - Stop if
 - Data is "pure", i.e. mostly from class
 - Amount of data is too small, i.e., only few instances in partition
 - Otherwise
 - Determine "most informative feature" X
 - Partition training data using X
 - Recursively create subtree for each partition
- Details may vary depending on the specific algorithm
 - For example, CART, ID3, C4.5
- General concept always the same

The "Most Informative Feature"

- Information theory based approach
- Entropy of the class label

•
$$H(C) = -\sum_{c \in C} p(c) \log p(c)$$

Can be used as measure for purity

- Conditional entropy of the class label based on feature X
 - $H(C|X) = -\sum_{x \in X} p(x) \sum_{c \in C} p(c|x) \log p(c|x)$
- Mutual Information

•
$$I(C,X) = H(C) - H(C|X)$$

→ Feature with highest mutual information is most informative

Interpret each dimension as random variable

Decision Surface of Decision Trees

All decisions are axis-aligned

Random Forest

Basic Idea

Ensemble of randomized decision trees

Randomized sepal length (cm) ≤ 5.75 samples = 88value = [50, 41, 59]class = virginica True False samples = 44samples = 44value = [0, 23, 57]value = [50, 18, 2]class = setosa class = virginica sepal width (cm) ≤ 3.35 samples = 99value = [61, 39, 50]class = setosa True False samples = 70samples = 29value = [22, 38, 44] value = [39, 1, 6]class = virginica class = setosa

Randomized

attributes

subset

sepal length (cm) ≤ 5.45 samples = 102value = [44, 52, 54]class = virginica True False samples = 35samples = 67value = [39, 5, 2]value = [5, 47, 52]class = setosa class = virginica sepal length (cm) ≤ 5.75 samples = 93value = [48, 42, 60]class = virginica True False samples = 41samples = 52value = [47, 19, 4]value = [1, 23, 56]class = setosa class = virginica

Classification as majority vote of random trees

Bagging as Ensemble Learner

- Bagging is short for bootstrap aggregating
- Randomly draw subsamples of training data
- Build model for each subsample → ensemble of models
- Voting to create class
 - Can be weighted, e.g., using quality of ensemble models

- Random Forests combine Bagging with
 - Short decision trees, i.e., low depth
 - Allowing only a random subset of features for each decision

Decision Surface of Random Forests

Logistic Regression

- Basic Idea:
 - Regression model of the probability that an object belongs to a class
 - Combines the *logit* function with *linear regression*
- Linear Regression
 - y as linear combination of $x_1, ..., x_n$
 - $y = b_0 + b_1 x_1 + \dots + b_n x_n$
- The logit function
 - $logit(P(y=c)) = ln \frac{P(y=c)}{1-P(y=c)}$
- Logistic Regression
 - $logit(P(y = c)) = b_0 + b_1x_1 + \dots + b_nx_n$

Odds Ratios

- Probabilities vs. Odds
 - Probability: $P(pass_exam) = 0.75$
 - Odds of passing the exam: $odds(pass_exam) = \frac{0.75}{1.075} = 3$
 - The odds if passing the exam is 3 to 1
- If we invert the natural logarithm, we get

Definition
$$\frac{P(y=c)}{1-P(y=c)} = \exp(b_0 + b_1 x_1 + \dots + b_n x_n) = \prod_{j=0}^{n} \exp(b_j x_j)$$

- It follows that $\exp(b_i)$ is the odds ratio of feature j
 - Odds ratio means the change in odds if we increase x_i by one.
 - Odds ratio greater than one means increased odds
 - Odds ratio less than one mean decreased odds

Decision Surface of Logistic Regression

Decision boundaries are linear

Naive Bayes

- Basic idea:
 - Assume all features as independent
 - Score classes using the conditional probability
- Bayes Law

•
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Conditional probability of a class:

•
$$P(c|x_1,...,x_n) = \frac{P(x_1,...,x_n|c)P(c)}{P(x_1,...,x_n)}$$

From Bayes Law to Naive Bayes

Probability following Bayes law

•
$$P(c|x_1,...,x_n) = \frac{P(x_1,...,x_n|c)P(c)}{P(x_1,...,x_n)}$$

• "Naive" assumption: x_1, \dots, x_n conditionally independent given c

•
$$P(c|x_1,...,x_n) = \frac{P(x_1|c)...P(x_n|c)P(c)}{P(x_1,...,x_n)} = \frac{\prod_{j=1}^n P(x_j|c)P(c)}{P(x_1,...,x_n)}$$

- $P(x_1, ..., x_n)$ is independent of c and always the same
 - $score(c|x_1,...,x_n) = \prod_{j=1}^n P(x_j|c) P(c)$
- Assign the class with highest score

Multinomial and Gaussian Naive Bayes

• Different variants on how $P(x_i|c)$ is estimated

Multinomial

- $P(x_i|c)$ is the empirical probability of observing a feature
- "Counts" observations of x_i in the data

Gaussian

- Assumes features follow a gaussian/normal distribution
- Estimates $P(x_j|c)$ conditional probability using the gaussian density function

Decision Surface of Naive Bayes

- Multinomial has linear decision boundaries
- Gaussian has piecewise quadratic decision boundaries

Support Vector Machines (SVM)

- Basic Idea:
 - Calculate decision boundary such that it is "far away" from data

Non-linear SVMs through Kernels

- Expand features using kernels to separate non-linear data
 - Transformation into high-dimensional kernel space
 - Can be infinite (e.g., Gaussian kernel, RBF kernel)!
 - Calculate linear separation in kernel space
 - Use kernel trick to avoid actual expansion

Quadractic kernel

Decision Surface of SVMs

Shape of decision surface depends on kernel

Neural Networks

Basic Idea:

- Network of neurons with different layers and communication between neurons
- Input layer feeds data into the network
- Hidden layers "correlate" data
- Output layer gives computation results

Multilayer Perceptron (MLP)

Each feature gets an input neuron

Single output neuron with the classification

Multiple fully connected hidden layers

Decision Surface of MLP

- Shape of decision boundary depends on
 - Activation function
 - Number of hidden layers
 - Number of neurons in the hidden layers

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

General Approach

- Different approaches behind all covered classifiers
 - k-nearest Neighbor
 - Decision Trees
 - Random Forests
 - Logistic Regression
 - Naive Bayes
 - Support Vector Machines
 - Neural Networks

- → Instance based
- → Rule based + information theory
- → Randomized ensemble
- → Regression
- → Conditional probability
- → Margin maximization + kernels
- → (Very complex) Regression

Comparison of Decision Surfaces IRIS Data

Comparison of Decision Surfaces Non-linear separable

Comparison of Decision Surfaces Circles within circles

Comparison of Execution Times

Times taken using GWDG Jupyter Hub and scikit-learn implementations of the algorithms. Data randomly generated with using scikit-learn.datasets.make_moons (July 2018)

Strengths and Weaknesses

	Explanatory value	Consise representation	Scoring	Categorical features	Missing features	Correlated features
k-nearest Neighbor	0	-	-	-	+	-
Decision Tree	+	+	+	+	0	+
Random Forest	-	0	+	+	0	+
Logistic Regression	+	+	+	0	-	0
Naive Bayes	0	0	+	+	-	-
SVM	-	0	-	0	-	-
Neural Network	-	0	+	0	-	+

Outline

- Overview
- Classification Models
- Comparison of Classification Models
- Summary

Summary

- Classification is the task of assigning labels to objects
- Many evaluation criteria
 - Confusion matrix commonly used
- Lots of classification algorithms
 - Rule based, instance based, ensembles, regressions, ...
- Different algorithms may be best in different situations