Meetun Dylan Note: 8/20 (score total : 8/20)

+183/1/14+

QCM THLR 4

	None of majorana ligibles .	Identificant (de hout on hee)	
	Nom et prénom, lisibles :	Identifiant (de haut en bas) : □0 □1 ■2 □3 □4 □5 □6 □7 □8 □9	
	PICE LOID		
	DYCHN		
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « 🗶 » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I j'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +183/1/xx+···+183/2/xx+.		
	Q.2 Le langage $\{\bigcup_{n=1}^{2n} \forall n \in \mathbb{N} \}$ est		
2/0			
2/2		aissable par automate fini 🔀 rationnel	
	Q.3 Le langage $\{ \stackrel{\text{\tiny w}}{=}^n \stackrel{\text{\tiny w}}{=}^n \mid \forall n \text{ premier, codable en binaire sur 64 bits} \}$ est		
1/2	🛚 fini 🗌 rationnel 📵 non r	econnaissable par automate 🔲 vide	
	Q.4 Quels langages ne vérifient pas le lemme de pompage?		
2/2	Certains langages reconnus par DFATous les langages reconnus par DFA	Tous les langages non reconnus par DFACertains langages non reconnus par DFA	
2/2	 Q.5 A propos du lemme de pompage Si un langage le vérifie, alors il est rationnel Si un langage ne le vérifie pas, alors il n'est pas rationnel Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Q.6 Si un automate de n états accepte aⁿ, alors il accepte 		
1/2	$\boxtimes a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$		
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:		
1/2	L_2 est rationnel L_1, L_2 so L_1, L_2 sont rational		
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):		
2/2	\square 2^n \square 4^n \square $\frac{n(n+1)}{n}$	$\frac{1)(n+2)(n+3)}{4}$	
	Q.9 Déterminiser cet automate. $\xrightarrow{a,b}$ \xrightarrow{a} \xrightarrow{a}	b O	

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

-1/2

- \square $Det(T(Det(T(\mathscr{A}))))$
- \Box $T(Det(T(Det(\mathscr{A}))))$
- \square $Det(T(Det(T(Det(\mathscr{A})))))$
- \Box $T(Det(T(Det(T(\mathscr{A})))))$

Fin de l'épreuve.