Graph Traversal Algorithms:

Depth First Search:

is an algorithm you traversing or saaching tree on graph data structures.

One starts at most (selecting some arbitrary node as the most in case of a graph) and explores as you as possible along each branch before backtracking.

Examples: Perform DFS on

A B C F

Traversal:

SADGEBFC

Traversal:

20.13

DFS forest:

Traversal result:

a c d f b e g h i j

Breadth First Seasch:

searching tree on graph data structures. It

Starts at the tree root (or some arbitrary

node of a graph, Sometimes suferred to as
a 'search key') and explores the neighbor

nodes first, before moving to the next level

neighbors.

Examples: Perjorm BFS on:

Traversal:

SABCDEFG

Traversal:

512345

3>

BFS Forest:

Traversal result:

acdefbghji

DFS and BFS comparison:

Farture	1	ر سام ا
Feature	DFG	BFS
1. Fog	Brove Ones	cautions ones
2. Data Structure	Stack	Queue
3. Edge types	tree edges	tree edges
	back edges	cross edges
4. Matrix supresentation	0 (IV2I)	@ (IV21)
5. List representation eggiciency	0 (IVI+ 1EI)	OCIVI+IEI)
6. Vertex Orderings	2 ouderings	1 ordering
7. Applications	-Detecting cycles	- Crawlers
	-Path yinding	- Social N/W
	-Bipartite graph	websites
	maze with one	- GPS Systems
	Solution	-cycle detection
	-ctc	-ctc

Scanned by CamScanner

Exercise: Perform DFS & BFS On:

3) 15 the maze jou brave ones ou cautious ones.

Creneric Creaph Search:

Goals:

- a) Find everything reachable from given start Vertex
- 6) Don't explore anything twice

Generic Algorithm: Given graph Gr, vertex 5

- initially s-explored, all other vertices unexplored
- While possible:
 - choose an edge (u, u) with u explosed

 E u excurexplored

 if none,

 mark u explored

 halt

Discovering all the Nodes:

Input Graph (5)

Discovered Nodes & {s}

while there is an edge e leaving Discovered Nodes that has not been explored:

add vertex at other end of e to the Discovered Nodes

return Discovered Nodes

Book- keeping:

- How to keep track of which edges / vertices we have dealt with?
- What ouder do we explore new edges in?
- what if edges have weights?
- Can we sout the edges?
- 15 the graph directed on lindirected?
- How do we sepresent the graph?
- Does the graph have mare than one component?
- 15 the graph Space on dense?
- Do we need to keep track of discovered edges on discovered vertices?
- How do we make such that every node on king is visited only once?
- what other Supporting Data Structures would be needed yor traversal?

Precuder & Postonder Numbers jou DFS:

OFS marks all vertices as visited. We can Certainly keep track of other data that can be useful. Design Augment junctions to store additional information.

Explore (b)

visited (v) = true

previsit (6)

you (υ,ω) ∈ E:

if not visited (w):

explore(w)

postuisit (6)

what can be previsit (v) & postvisit(v)?

One possible option:

- keep track of order of wisits
- he could previsit & post visit times jour each v.
- Its like having sout of clock ticks we can certainly design the functions any other way as the application demands.

Example:

Oudering:

tick <1

previsit (0)

prelo Y = tick

tick = tick + 1

postuisit (v)

post(u) = tick

tick + tick + 1

Previsit and Postvisit numbers tell as about the execution of DFS.

Lemma: For any vertices u, to the intervals

[pre(u), post(u)] and [pre(u), post(u)] or either nested on disjoint.

Nested	ε,	Disjoint	,
--------	----	----------	---

Nested:

Disjoint:

The interleaved case is not possible:

which of the following tables is not a volid set of pre- & post-orders?

Table 01:

V	Pre	Post
A	1	8
В	9	10
С	3	4
D	a	7
E	5	6

Table 02:

V	Pre	Post
A	1	9
В	8	10
C	a	7
D	3	6
E	4	5

Answer: Table 02.

Can you justify why?

Question: Draw a shortest path tree you the given graph

we can apply <u>BFS</u> traversal to obtain the Shortest path tree.

Note how BFS creates a tree with shortest path from given source vertex to every other vertices.