Peter Smith, Introduction to Formal Logic (CUP, 2nd edition)

Exercises 29: Simple QL translations

In the language QL₁, the proper names are just

m: Socrates,
n: Plato,
o: Aristotle;
and the predicates are just

F: ① is a philosopher,
G: ① is a logician,
H: ① is wise,
L: ① loves ②,
M: ① is a pupil of ②,
R: ① prefers ② to ③.

- (a) Translate the following into QL_1 as best you can:
 - (1) Aristotle is a pupil of Socrates and Plato.
 - (2) Plato taught Aristotle only if Socrates taught Plato.
 - (3) If Plato is a pupil of someone, he is a pupil of Socrates.

The domain of quantification for QL_1 : people, past and present.

- (4) Some philosophers are not wise.
- (5) Not all philosophers are wise.
- (6) Any logician loves Aristotle.
- (7) No one who is a wise philosopher prefers Plato to Aristotle.
- (8) Whoever is a pupil of Plato is wise.
- (9) Not every wise logician is a pupil of Aristotle.
- (10) Any logician is a wise philosopher.
- (11) Aristotle prefers no philosopher to Plato.
- (12) Some wise people aren't philosophers, and some aren't logicians.
- (13) Only philosophers love Aristotle.
- (14) Not only philosophers love Socrates.
- (15) Socrates is a philosopher whom everyone wise loves.
- (16) Only some logicians love Plato.
- (17) No philosophers or logicians are wise.
- (18) All philosophers and logicians are wise.
- (b) Which of these pairs of wffs are equivalent, which not, and why?
 - (1) $(\exists x Fx \lor \exists x Gx), \exists x (Fx \lor Gx)$
 - (2) $(\exists x Fx \land \exists x Gx), \exists x (Fx \land Gx)$
 - (3) $(\exists x Fx \land \exists x Gx), \exists x (Fx \land \exists y Gy)$
 - (4) $(\exists x Fx \land \exists x Gx), \exists x \exists y (Fx \land Gy)$
 - (5) $\exists x \forall y (Fx \land Gy), \forall y \exists x (Fx \land Gy)$
 - (6) $\exists x \forall y (Fx \lor Gy), \forall x \exists y (Fy \lor Gx)$
 - (7) $(\forall x Fx \rightarrow \forall x Gx), \exists x (Fx \rightarrow \forall y Gy)$
 - (8) $(\forall x Fx \rightarrow \forall x Gx), \exists x \forall y (Fx \rightarrow Gy)$
 - (9) $(\forall x Fx \rightarrow \forall x Gx), \forall y \exists x (Fx \rightarrow Gy)$
- (c*) Use equivalences you now know about to outline a proof that every wff is equivalent to one in prenex form, where all quantifiers are at the beginning of the wff.
- (d*) We can render 'Plato and Aristotle are philosophers' by e.g. ($\mathsf{Fn} \wedge \mathsf{Fo}$). Why can't we render

'Plato and Aristotle are classmates' by e.g. $(Cn \wedge Co)$? What does this sort of case tell us about some expressive limitations of QL languages?