Plan du cours d'algèbre

Fondamentaux d'algèbre linéaire

Semaine 1

- ► Espaces vectoriels réels
- Applications linéaires
- Matrices

Semaine 2

- Produit scalaire, projections, interprétations géométriques
- Réductions de matrices

Produit scalaire

- ► Généraliser les « angles »en dimension quelconque (orthogonalité)
- \triangleright Définir une distance dans \mathbb{R}^n (une norme)
- **produit scalaire canonique** entre deux vecteurs $\mathbf{x} = (x_1, \dots, x_n)$ et $\mathbf{y} = (y_1, \dots, y_n)$ de \mathbb{R}^n :

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i$$

Produit scalaire et matrices :

► Si
$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$$
, $X = (x_1, \dots, x_n)^\top$, $Y = (y_1, \dots, y_n)^\top$,

$$\langle \mathbf{x}, \mathbf{y} \rangle = X^{\top} Y$$

▶ Si $M \in \mathbb{R}^{p \times n}$, $f \sim M$, $\mathbf{y} \in \mathbb{R}^p$,

$$\langle x, f(y) \rangle = X^{\top} M Y = (M^{\top} X)^{\top} Y$$

= $\langle f'(y), x \rangle$; où $f' \sim M^{\top}$

Propriétés du produit scalaire

Le produit scalaire est

symétrique :

$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$$

Linéaire en ses deux variables (**bilinéaire**) : pour $a, b \in \mathbb{R}$, on a

$$\langle a\mathbf{x}_1 + b\mathbf{x}_2, \mathbf{y} \rangle = a\langle \mathbf{x}_1, \mathbf{y} \rangle + b\langle \mathbf{x}_2, \mathbf{y} \rangle$$

 $\langle \mathbf{x}, a\mathbf{y}_1 + b\mathbf{y}_2 \rangle = a\langle \mathbf{x}, \mathbf{y}_1 \rangle + b\langle \mathbf{x}, \mathbf{y}_2 \rangle$

donc pour tout \mathbf{x} , $\langle \mathbf{0}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{0} \rangle = 0$.

défini positif : pour tout x,

$$\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$$

Avec égalité seulement si $\mathbf{x} = \mathbf{0}$.

Fondamentaux d'algèbre

linéaire

Norme, vecteurs unitaires

► Norme euclidienne d'un vecteur x : notée ||x|| : racine carrée de son produit scalaire avec lui-même

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

x est **unitaire** si ||x|| = 1.

Inégalité de Cauchy-Schwarz

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||x|| ||y||$$

(égalité ⇔ y et x colinéaire)

Vecteurs orthogonaux, sous-espaces orthogonaux

vecteurs u et v orthogonaux :

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$
 (alors on écrit $\mathbf{u} \perp \mathbf{v}$)

▶ Sous-espaces E, F orthogonaux (on écrit $E \perp F$) :

$$\forall \mathbf{u} \in E, \ \forall \mathbf{v} \in F, \qquad \langle \mathbf{u}, \mathbf{v} \rangle = 0$$

. _

► Bases « privilégiées » dans Rn

$\mathbf{d\acute{e}f}$: Une famille $\mathcal U$ est une \mathbf{base} orthonormée si

- C'est une base
- $\langle u_i, u_j \rangle = egin{cases} 1 & ext{si } i = j & ext{(vecteurs de norme 1)} \\ 0 & ext{sinon} & ext{(orthogonalité deux à deux)} \end{cases}$
- ex : bases canoniques, $\left(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\right)$ dans \mathbb{R}^2 .

Bases orthonormales

Fondamentaux d'algèbre linéaire

Matrices orthogonales

► Une matrice carrée *P* est **orthogonale** si ses colonnes sont orthogonales deux à deux et unitaires, *i.e.*si

$$P_{[\cdot,i]}^{\top}P_{[\cdot,j]} = \begin{cases} 0 & \text{si } i \neq j \\ 1 & \text{si } i = j \end{cases}$$

- ▶ autrement dit P est orthogonale $\Leftrightarrow P^\top P = \mathbf{I}$
- ▶ On a alors $P^{-1} = P^{\top}$, donc aussi $PP^{\top} = \mathbf{I}$.
- ▶ De même $PP^{\top} = \mathbf{I}$ $\Rightarrow P^{\top} = P^{-1}$ $\Rightarrow P^{\top}P = \mathbf{I}$.
- ▶ Une application linéaire $f: E \rightarrow E$ est appelée orthogonale si sa matrice dans la base canonique l'est.

Fondamentaux d'algèbre linéaire

Invariances

► application orthogonale ⇔ préserve produits scalaires.

$$\langle f(\mathbf{x}), f(\mathbf{y}) \rangle = (MX)^{\top}(MY) = X^{\top}M^{\top}MY = X^{\top}Y = \langle \mathbf{x}, \mathbf{y} \rangle.$$

► Conséquence : transforme toute base orthonormée en une base orthonormée.

- ► Changement de base orthonormée : : P : matrice de passage de (e) vers U orthonormée,
- ▶ alors : M' (matrice de f dans U) est encore orthogonale. vérifiez-le : a) Q est orthogonale ; b) $M' = P^{-1}MP$.

Supplémentaire orthogonal

F un sous-espace de \mathbb{R}^n .

Supplémentaire orthogonal de F, noté F^{\perp} :

$$\mathbf{F}^{\perp} = \{ \mathbf{u} \in \mathbb{R}^{\mathbf{n}} : \forall \mathbf{v} \in \mathbf{F}, \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{0} \}.$$

 F^{\perp} est :

- ▶ un sous espace vectoriel de \mathbb{R}^n .
- un supplémentaire de F dans \mathbb{R}^n : Tout \mathbf{x} dans \mathbb{R} s'écrit de manière unique

$$x = u + v, \quad u \in G, v \in F$$

Projections

Fondamentaux d'algèbre linéaire

Projection sur $P \parallel \Delta$

Projection orthogonale sur P

Projections : définition mathématique

Deux définitions équivalentes ((i) ou (i)') : Un projecteur est une application linéaire telle que

(i) \exists décomposition de l'espace en somme de deux sous-espaces supplémentaires : $E = F \bigoplus G$, tels que

$$p: E \longrightarrow F$$
$$x = x_F + x_G \mapsto x_F$$

on a alors $F = \operatorname{Im} p$ et $G = \operatorname{Ker} p$

(i)' p est idempotente, i.e. $p \circ p = p$

- Projecteur orthogonal : $F = G^{\perp}$
- ▶ Un projecteur *p* est orthogonal si et seulement si la matrice de *p* dans une base orthonormée est symétrique (exercice)

Utilisation des projections orthogonales

Point de F le plus proche de y

projection orthogonale p(y) sur F.

'Expliquer'
$$n$$
 observations $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$ par des variables explicatives $X = (\mathbf{x}_1, \dots \mathbf{x}_n)$

Trouver $\hat{\mathbf{y}}$, combinaison linéaire des \mathbf{x}_i , proche de \mathbf{y}

Calculer la projection othogonale de y sur le sous espace engendré par les x_i .

$$p(y) = \arg\min_{u \in F} \{ \|y - u\|^2 \}$$

problème d'optimisation convexe!

Fondamentaux d'algèbre linéaire

