《微积分A2》第十二讲

教师 杨利军

清华大学数学科学系

2020年03月25日

二重积分化为累次积分

Theorem (Fubini)

定理一: 设 f(x,y) 在闭矩形 $\Omega=[a,b]\times[c,d]$ 上可积, 且对任意 $x\in[a,b]$, 积分 $\int_c^d f(x,y) dy$ 存在, 记作 A(x), 则 A(x) 在 [a,b] 上可积, 且 $\int_a^b A(x) dx = \iint_\Omega f(x,y) dx dy$, 即 $\iint_\Omega f(x,y) dx dy = \int_a^b dx \int_a^d f(x,y) dy.$

二重积分化为累次积分,续一

Theorem (Fubini)

 \underline{c} 理二: 设 f(x,y) 在闭矩形 $\Omega=[a,b]\times[c,d]$ 上可积, 且对任意 $y\in[c,d]$, 积分 $\int_a^b f(x,y)dx$ 存在, 记作 B(y), 则 B(y) 在 [c,d] 上可积, 且 $\int_c^d B(y)dy=\int_\Omega f(x,y)dxdy$, 即 $\iint_\Omega f(x,y)dxdy=\int_a^d dy \int_a^b f(x,y)dx.$

二重积分化为累次积分,续二

Theorem (Fubini)

定理三: 设 f(x,y) 在闭矩形 $\Omega = [a,b] \times [c,d]$ 上连续,则

$$\iint_{\Omega}\!f(x,y)dxdy=\int_{a}^{b}\!dx\int_{c}^{d}\!f(x,y)dy=\int_{c}^{d}\!dy\!\int_{a}^{b}\!f(x,y)dx.$$

显然上述定理三是定理一和定理二的直接推论.

Fubini 定理图示

例子

例: 计算积分 $J = \iint_{\Omega} f(x,y) dxdy$, 其中 $\Omega = [0,1] \times [0,1]$,

$$f(x,y) = \frac{y}{(1+x^2+y^2)^{3/2}}.$$

解: 根据上述定理可知

$$\begin{split} J &= \int_0^1 \! dx \! \int_0^1 \! \frac{y dy}{(1+x^2+y^2)^{3/2}}, \\ &= \int_0^1 \! dy \! \int_0^1 \! \frac{y dx}{(1+x^2+y^2)^{3/2}}. \end{split}$$

第二个累次积分的内层积分不便计算. 而第一个累次积分的计

算比较容易:

例子续

$$\begin{split} J &= \frac{1}{2} \int_0^1 \! dx \int_0^1 \frac{dy^2}{(1+x^2+y^2)^{3/2}} \\ &= \frac{1}{2} \int_0^1 \left[\frac{-2}{(1+x^2+y^2)^{1/2}} \right]_{y=0}^{y=1} dx \\ &= \int_0^1 \left[\frac{1}{\sqrt{1+x^2}} - \frac{1}{\sqrt{2+x^2}} \right] dx \\ &= \left[\ln \! \left(x + \sqrt{1+x^2} \right) - \ln \! \left(x + \sqrt{2+x^2} \right) \right]_{x=0}^{x=1} \\ &= \ln \! \frac{2+\sqrt{2}}{1+\sqrt{3}}. \end{split}$$

解答完毕.

◆ロ > ◆御 > ◆ き > ◆き > き の Q で

定理一证明

 \overline{u} : 想法是利用 Darboux 可积性准则. 设 π 为 Ω 的一个分割:

$$a = x_0 < x_1 < \dots < x_n = b$$
, $c = y_0 < y_1 < \dots < y_m = d$. 记

$$R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j],$$

$$\label{eq:mass_mass_mass_mass} M_{ij} = \underset{R_{ij}}{sup} \{f(x,y)\}, \quad m_{ij} = \underset{R_{ij}}{inf} \{f(x,y)\}.$$

相应的 Darboux 上和与下和为

$$U_f(\pi) = \sum_{i=1}^n \sum_{j=1}^m M_{ij} \triangle x_i \triangle y_j, \quad L_f(\pi) = \sum_{i=1}^n \sum_{j=1}^m m_{ij} \triangle x_i \triangle y_j.$$

证明续一

由 Darboux 可积性准则知, 对 $\forall \varepsilon > 0$, 存在 $\delta > 0$, 当分割 π 满 $\mathbb{Z} \|\pi\| < \delta$ 时, $\mathbb{U}_{f}(\pi) - \mathbb{L}_{f}(\pi) < \varepsilon$. 现证明函数 $\mathbb{A}(x)$ 在 [a,b]上的可积性. 每个闭矩形 $\Omega = [a,b] \times [c,d]$ 的分割 π , 均确定 了闭区间 [a,b] 的一个分割 π' : $a = x_0 < x_1 < \cdots < x_n = b$. 函数 A(x) 关于分割 π' 的 Darboux 上和与下和分别记作 $U_{\Delta}(\pi')$, $L_{\Delta}(\pi')$. 下面考虑它们与 f(x,y) 的 Darboux 上和与下 和 $U_f(\pi)$ 与 $L_f(\pi)$ 的关系. 记 $J_i = [x_{i-1}, x_i], \triangle x_i = x_i - x_{i-1},$

$$M_i = \sup_{J_i} \{A(x)\}, \quad m_i = \inf_{J_i} \{A(x)\}.$$

证明续二

对 i = 1, ..., n,
$$m_i = inf_{J_i}\{A(x)\}$$

$$\begin{split} &= \inf_{J_i} \left\{ \int_c^d f(x,y) dy \right\} = \inf_{J_i} \left\{ \sum_{j=1}^m \int_{y_{j-1}}^{y_j} f(x,y) dy \right\} \\ &\geq \sum_{i=1}^m \inf_{J_i} \left\{ \int_{y_{j-1}}^{y_j} f(x,y) dy \right\} \geq \sum_{i=1}^m m_{ij} \triangle y_j. \end{split}$$

注: 上式第一个不等式成立, 可以由如下简单情形的不等式看出

$$\inf_{\mathsf{K}} \{ \phi_1(\mathsf{x}) + \phi_2(\mathsf{x}) \} \ge \inf_{\mathsf{K}} \phi_1(\mathsf{x}) + \inf_{\mathsf{K}} \phi_2(\mathsf{x})$$
. 因此

$$m_i \geq \sum_{j=1}^m m_{ij} \triangle y_j.$$

于上述不等式的两边同乘以 $\triangle x_i$,并对 $i=1,\dots,n$ 求和得

证明续三

$$L_{A}(\pi') = \sum_{i=1}^{n} m_{i} \triangle x_{i} \geq \sum_{i=1}^{n} \sum_{i=1}^{m} m_{ij} \triangle x_{i} \triangle y_{j} = L_{f}(\pi).$$

即 $L_A(\pi') \ge L_f(\pi)$. 同理可证 $U_A(\pi') \le U_f(\pi)$. 由此得

$$L_f(\pi) \leq L_A(\pi') \leq U_A(\pi') \leq U_f(\pi).$$

于是根据 f(x,y) 的可积性,以及一维和二维 Darboux 可积性准则知,函数 A(x) 在 [a,b] 上可积,并且 $\int_{[a,b]} A = \iint_{\Omega} f$. 定理得证.

扩张函数

Definition

定义: 设 $D \subset \mathbb{R}^2$ 为平面上的有界点集, f(x,y) 为定义在 D 上的函数. 定义 $f_D: \mathbb{R}^2 \to \mathbb{R}$,

$$f_D(x,y) \stackrel{\triangle}{=} \left\{ \begin{array}{ll} f(x,y), & (x,y) \in D, \\ \\ 0, & (x,y) \not \in D, \end{array} \right.$$

并称 $f_D(x,y)$ 为函数 f(x,y) 的扩张函数.

一般平面有界集上的积分

Definition

定义:设 $D \subset \mathbb{R}^2$ 为平面上的有界点集, f(x,y) 为定义在 D 上的函数. 若存在一个包含 D 的闭矩形 $\Omega \supseteq D$,使得扩张函数 $f_D(x,y)$ 在 Ω 上可积,则称函数 f(x,y) 在点集 D 上可积,且 f(x,y) 在点集 D 上的积分定义为

$$\iint_D f(x,y) dx dy \stackrel{\triangle}{=} \iint_{\Omega} f_D(x,y) dx dy.$$

可积性和积分值与闭矩形的选择无关

不难证明 $f_D(x,y)$ 在某个含 D 的闭矩形 Ω 上可积,则在任何其它含 D 的闭矩形 Ω' 上可积,并且

$$\iint_{\Omega}\!f_D(x,y)dxdy=\iint_{\Omega'}\!f_D(x,y)dxdy.$$

这是因为两个包含 D 的闭矩形 Ω 和 Ω' 的交集 $\Omega \cap \Omega' =: \Omega''$ 仍是一个包含 D 的闭矩形. 根据积分区域的可加性得

$$\iint_{\Omega}\!f_D(x,y)dxdy=\iint_{\Omega''}\!f_D(x,y)dxdy=\iint_{\Omega'}\!f_D(x,y)dxdy.$$

Lebesgue 可积性准则

Theorem

定理: 设 $D \subset \mathbb{R}^2$ 为平面有界点集,且其边界 ∂D 为零测集.设 f(x,y) 是 D 上的有界函数,则 f 在 D 上可积,当且仅当 f 在 D 上几乎处处连续.

定理证明

Proof.

 \underline{iu} 明: 依定义, f 在 D 上可积 \iff f_D 在某个闭矩形 $\Omega \supseteq D$ 上 可积 \iff f_D 的不连续点集为零测集. 易证

f的间断点集 \subseteq f_D的间断点集 \subseteq f的间断点集 \cup ∂ D,

由假设 ∂D 是零测集, 故 f 的间断点集为零测集, 当且仅当 f_D 的间断点集为零测集. 定理得证.

平面有面积(可求面积)集合

Definition

定义:设 $D \subset \mathbb{R}^2$ 为平面有界点集. 若取值恒为 1 的常数函数,记作 T,在 D 上可积,则称集合 D 有面积,或者称 D 可求面积,且定义其面积为

$$|\mathsf{D}| \stackrel{\triangle}{=} \iint_{\Omega} \mathcal{I}_{\mathsf{D}}(\mathsf{x},\mathsf{y}) d\mathsf{x} d\mathsf{y},$$

其中 Ω 为包含 D 的任意一个闭矩形. 若常数函数 T 在 D 上不可积,则称集合 D 没有面积,或者说 D 不可求面积.

一个注记

注记:一个平面集合不可求面积(或没有面积),与平面集合的面积为零,是不同的两件事情.例如,平面上一个直线段 L 有面积,因为函数 $I_L(x,y)$ 的间断点集为 L,其测度为零.进一步不难证明 L 的面积为零.

不可求面积集合的例子

Example

例: 记 D = $\{(x,y), 0 \le x, y \le 1, x, y$ 均为有理数 $\}$,则 D 没有面积.

 \underline{u} : 显然闭矩形 $\Omega=[0,1] imes[0,1]$ 包含集合 D, 扩张函数 \mathcal{I}_D 在 Ω 上处处都不连续. 故 \mathcal{I}_D 在 Ω 上不可积, 此即函数 \mathcal{I} 在 D 上不可积. 因此 D 没有面积. 证毕.

可求面积集合的特征

Theorem

<u>定理</u>: 设 $D \subset \mathbb{R}^2$ 为有界集合,则 D 有面积,当且仅当其边界 ∂D 为零测集.

Example

例:上例中,集合 $D=\{(x,y),0\leq x,y\leq 1,x,y$ 均为有理数} 的边界 ∂D 为闭矩形 $\Omega=[0,1]\times[0,1]$, Ω 不是零测集.因此 D 没有面积.

定理证明

证明大意: 设 Ω 是一个包含D 的闭矩形, 则

D 有面积 \iff 函数 \mathcal{I} 在 D 上可积 \iff 扩张函数 \mathcal{I}_D 在 Ω 上可积 \iff \mathcal{I}_D 在 Ω 上的间断点集为零测集.

不难证明扩张函数 \mathcal{I}_D 在 Ω 上的间断点集 = ∂D . 因此点集 D 有面积 \iff 边界 ∂D 为零测集. 证毕.

常见平面曲线段是零测集

Theorem

定理: 设 $\Gamma = \{(x(t), y(t)), a \le t \le b\}$ 为平面连续曲线段, 即函数 x(t) 和 y(t) 在 [a,b] 上均连续, 假设其中之一在 (a,b) 上连续可微, 则曲线 Γ 作为平面点集是零测集.

证明略. 详见课本第122页的证明.

Corollary

推论:设函数 y = f(x) 在 [a,b] 上连续,则其函数曲线(图像)

 $\Gamma = \{(x, f(x)), a \le x \le b\}$ 作为平面点集是零测集.

两类有面积的简单闭域

定理: 如下两个类型的平面闭域

第一类
$$D: g_1(x) \leq y \leq g_2(x), x \in [a,b],$$

第二类
$$D: h_1(y) \le x \le h_2(y), y \in [c, d],$$

均有面积, 其中 $g_1(x)$, $g_2(x)$ 在 [a,b] 上连续, $h_1(y)$, $h_2(y)$ 在 [c,d] 上连续.

证明: 由上述推论知边界 ∂D 均为零测度集合. 故闭域 D 有面积. 证毕. □ 约定: 以后所涉及的积分区域均为这两类闭区域, 或者是可以分解成有限个

这两类闭区域的并集.

第一类平面简单闭域, 例一

第一类平面简单闭域, 例二

第一类平面简单闭域, 例三

第二类平面简单闭域, 例一

第二类平面简单闭域, 例二

第一类简单闭域上的二重积分计算

 \underline{c} 理一(Fubini): 设二元函数 f(x,y) 在第一类平面简单闭域 D: $g_1(x) \leq y \leq g_2(x), x \in [a,b]$ 上可积, 其中 $g_1(x)$ 和 $g_2(x)$ 均为 [a,b] 上连续函数, 并且对任何 $x \in [a,b]$, 积分

$$\int_{g_1(x)}^{g_2(x)} f(x,y) dy$$

存在, 记作 A(x), 则函数 A(x) 在 [a,b] 上可积, 且 $\int_a^b A(x) dx$ $= \iint_D f(x,y) dx dy$, 即

$$\iint_D f(x,y) dxdy = \int_a^b dx \int_{g_1(x)}^{g_2(x)} f(x,y) dy.$$

定理一证明稍后给出.

第一类简单闭域图示

第二类简单闭域上的二重积分计算

定理二 (Fubini): 设二元函数 f(x,y) 在第二类平面简单闭域 D: $h_1(y) \le x \le h_2(y), y \in [c,d]$ 上可积, 其中 $h_1(y)$ 和 $h_2(y)$ 均为 [c,d] 上连续函数, 并且对任何 $y \in [c,d]$, 积分

$$\int_{h_1(y)}^{h_2(y)} f(x,y) dx$$

存在, 记作 B(y), 则函数 B(y) 在 [c,d] 上可积, 且 $\int_c^d B(y) dy$ $= \iint_D f(x,y) dx dy$, 即

$$\iint_D f(x,y) dxdy = \int_c^d dy \int_{h_1(y)}^{h_2(y)} f(x,y) dx.$$

定理二的证明与定理一的证明类似. 故略去.

第二类简单闭域图示

例一

例: 计算积分

$$J = \iint_{D} (x^2 + y^2) dxdy$$

其中 D 为由直线 y = 2x 和抛物线 $y = x^2$ 所围成的有界闭域.

积分的几何意义是如图所示的立体的体积 V.

例一,续一

将积分区域 D 表为第一类简单闭域形式

根据定理一可知

$$\begin{split} V &= \int_0^2 \! dx \! \int_{x^2}^{2x} (x^2 + y^2) \! dy = \int_0^2 \! \left[x^2 + \frac{1}{3} y^3 \right]_{y=x^2}^{y=2x} \! dx \\ &= \int_0^2 \! \left\{ x^2 (2x - x^2) + \frac{1}{3} \! \left((2x)^3 - x^6 \right) \right\} \! dx = \frac{216}{35}. \end{split}$$

例一,续二

也可将积分区域D表为第二类简单闭域形式

根据定理二可知

$$\begin{split} V &= \int_0^4 \! dy \int_{\frac{y}{2}}^{\sqrt{y}} (x^2 + y^2) dx = \int_0^4 \! \left[\frac{x^3}{3} + y^2 \right]_{x = \frac{y}{2}}^{x = \sqrt{y}} \! dy = \\ & \int_0^4 \! \left(\frac{y^{\frac{3}{2}}}{3} + y^{\frac{5}{2}} - \frac{y^3}{24} - \frac{y^3}{2} \right) \! dx = \left[\frac{2y^{\frac{5}{2}}}{15} + \frac{2y^{\frac{7}{2}}}{7} - \frac{13y^4}{96} \right]_{y = 0}^{y = 4} = \frac{216}{35}. \end{split}$$

例二

例: 计算积分

$$J = \iint_{D} \frac{\sin y}{y} dx dy$$

其中 D 为由直线 y = x 和抛物线 $x = y^2$ 所围成的有界闭域,如图所示.

例二,续一

解: 闭域 D 有如下两种表示

$$D: x \leq y \leq \sqrt{x}, \, 0 \leq x \leq 1$$

或者

$$D: y^2 \le x \le y, \ 0 \le y \le 1.$$

因此原则上可以由两种方式计算积分J. 方式一: 先y后x,即

$$J = \int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy.$$

例二,续二

但是 Liouville 告诉我们不定积分

$$\int\!\frac{\sin y}{y}dy$$

积不出来,即不能用初等函数表示. 考虑方式二: 先 x 后 y, 即

$$J = \int_0^1 dy \int_{y^2}^y \frac{\sin y}{y} dx = \int_0^1 \frac{\sin y}{y} (y - y^2) dy$$
$$= \int_0^1 (1 - y) \sin y dy = \dots = 1 - \sin 1.$$

解答完毕.

作业

习题3.2 (page 127-128) 2, 3, 4, 5.

习题3.3 (page 144-145) 4, 5(1)(3)(5), 6(1)(3)(5)(7)(9).

注: 题 6(7) 的积分区域似应为 $0 \le x, y \le \pi$.