(Working Title): Gaze-Based Mind Windering Detection using Deep Learning

Derek Harter Subroto Singha Texas A&M University - Commerce

September 15, 2021

Abstract

Appendix of all figures, tables and materials generated by the project. Not all figures and tables may be used in final document, so can refer to this document for details of data analysis, visualizations, summary tables and other products of this project.

Appendix

Tables

Table 1: Summary of all pipeline transformer and estimator parameters used in grid search to determine best estimator parameters.

			Search Values	
Model	Pipeline	Parameter		
LogisticRegression	ClassImbalanceTransformer	balancer_type	allknn, smote-enn	
	SelectKBest	k	12, 15, 18, 21, 24, 31	
		$score_func$	$f_{classif}$	
	LogisticRegression	\mathbf{C}	10.00, 19.68, 38.75, 76.27, 150.13, 2	
		$\max_{}$ iter	50000	
		solver	lbfgs, liblinear, newton-cg	
	Winsorization Outlier Transformer	$outlier_threshold$	0.00, 3.00	
	${\bf Feature Scaler Transformer}$	$type_of_scaling$	standard	
	VIFThresholdTransformer	$score_threshold$	0	
kNN	${\bf Class Imbalance Transformer}$	balancer_type	none, random-undersampler, smote	
	SelectKBest	k	15, 31, 46, 62	
		$score_func$	$f_{classif}, f_{regression}$	
	KNeighborsClassifier	metric	euclidean, manhattan	
		n _neighbors	3, 5, 11, 19	
		weights	uniform, distance	
			Continued or	

Continued or

Table 1: Summary of all pipeline transformer and estimator parameters used in grid search to determine best estimator parameters.

			Search Values
Model	Pipeline	Parameter	
	WinsorizationOutlierTransformer	outlier_threshold	0.00, 2.00, 3.00
	FeatureScalerTransformer	type_of_scaling	standard
	VIFThresholdTransformer	score_threshold	0
SVM	${\bf Class Imbalance Transformer}$	balancer_type	allknn, smote-enn
	SelectKBest	k	12, 15, 18, 21, 24, 31
		$score_func$	f_classif
	SVC	\mathbf{C}	0.10, 1, 10, 100
		gamma	0.10, 0.01, 0.00, 0.00
		kernel	rbf, poly
	Winsorization Outlier Transformer	$outlier_threshold$	0.00, 3.00
	FeatureScalerTransformer	$type_of_scaling$	standard
	${\it VIFThresholdTransformer}$	$score_threshold$	0
DecisionTree	${\bf Class Imbalance Transformer}$	balancer_type	allknn, smote-enn
	SelectKBest	k	12, 15, 18, 21, 24, 31
		$score_func$	$f_{classif}$
	DecisionTreeClassifier	criterion	gini, entropy
		\max_depth	3, 4, 5, 6, 7, 8, 9
		\max_{leaf_nodes}	3, 4, 5, 6, 7, 8, 9
	Winsorization Outlier Transformer	$outlier_threshold$	0.00, 3.00
	FeatureScalerTransformer	$type_of_scaling$	standard
	${\it VIFThresholdTransformer}$	$score_threshold$	0
RandomForest	${\bf Class Imbalance Transformer}$	$balancer_type$	allknn, smote-enn
	SelectKBest	k	12, 15, 18, 21, 24, 31
		$score_func$	$f_{classif}$
	RandomForestClassifier	criterion	gini, entropy
		\max_depth	4, 5, 6, 7, 8
		\max_{features}	auto, sqrt, log2
		$n_{estimators}$	200, 500
	WinsorizationOutlierTransformer	outlier_threshold	0.00, 3.00
	FeatureScalerTransformer	$type_of_scaling$	standard
	VIFThresholdTransformer	$score_threshold$	0
NaiveBayes	ClassImbalanceTransformer	balancer_type	allknn, smote-enn
	SelectKBest	k	12, 15, 18, 21, 24, 31
	G	score_func	f_classif
	GaussianNB	var_smoothing	0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0
	WinsorizationOutlierTransformer	outlier_threshold	0.00, 3.00
	FeatureScalerTransformer	type_of_scaling	standard
	${\it VIFThresholdTransformer}$	$score_threshold$	0

Table 2: Comparison of performance for best standard ML estimator found for each type by parameter grid search.

Model name	k-fold aucroc	final aucroc	accuracy	recall	precision
LogisticRegression	0.6258	0.5660	0.4485	0.8248	0.3090
kNN	0.6337	0.8304	0.7983	0.9012	0.5848
SVM	0.6580	0.6272	0.5999	0.6873	0.3735
DecisionTree	0.6428	0.6157	0.5559	0.7475	0.3524
RandomForest	0.6535	0.6273	0.5773	0.7376	0.3646
NaiveBayes	0.6565	0.6165	0.6349	0.5759	0.3868

Figures

Summary Figures

Figure 1: Histogram of AUCROC performance for parameter search of all standard ML trained models

Comparison of Best Estimator AUC-ROC Curves

Figure 2: Comparison of AUCROC scores achieved by best standard ML models in each type of estimator that was explored.

replication-LogisticRegression Best Estimator Confusion Matrix

Figure 3: Logistic Regression best estimator final confusion matrix.

replication-LogisticRegression Best Estimator Recall vs. Precision

Figure 4: Logistic Regression best estimator recall vs. precision.

replication-LogisticRegression Best Estimator AUC-ROC Curve

 $\label{eq:Figure 5: Logistic Regression best estimator auc-roc curve. }$

replication-kNN Best Estimator Confusion Matrix

Figure 6: kNN k Nearest Neighbors best estimator final confusion matrix.

replication-kNN Best Estimator Recall vs. Precision

Figure 7: kNN k Nearest Neighbors best estimator recall vs. precision.

replication-kNN Best Estimator AUC-ROC Curve

Figure 8: kNN k Nearest Neighbors best estimator auc-roc curve.

replication-SVM Best Estimator Confusion Matrix

Figure 9: SVM Support Vector Machine best estimator final confusion matrix.

replication-SVM Best Estimator Recall vs. Precision

Figure 10: SVM Support Vector Machine best estimator recall vs. precision.

replication-SVM Best Estimator AUC-ROC Curve

 $Figure \ 11: \ SVM \ Support \ Vector \ Machine \ best \ estimator \ auc\text{-roc } curve.$

Logistic Regression

kNN k Nearest Neighbors

SVM Support Vector Machine

Decision Tree

replication-DecisionTree Best Estimator Confusion Matrix

Figure 12: Decision Tree best estimator final confusion matrix.

Random Forest

Naive Bayes

replication-DecisionTree Best Estimator Recall vs. Precision

Figure 13: Decision Tree best estimator recall vs. precision.

replication-DecisionTree Best Estimator AUC-ROC Curve

Figure 14: Decision Tree best estimator auc-roc curve.

replication-RandomForest Best Estimator Confusion Matrix

Figure 15: Random Forest best estimator final confusion matrix.

replication-RandomForest Best Estimator Recall vs. Precision

Figure 16: Random Forest best estimator recall vs. precision.

replication-RandomForest Best Estimator AUC-ROC Curve

Figure 17: Random Forest best estimator auc-roc curve.

replication-NaiveBayes Best Estimator Confusion Matrix

Figure 18: Naive Bayes best estimator final confusion matrix.

replication-NaiveBayes Best Estimator Recall vs. Precision

Figure 19: Naive Bayes best estimator recall vs. precision.

replication-NaiveBayes Best Estimator AUC-ROC Curve

Figure 20: Naive Bayes best estimator auc-roc curve.