High Harmonic Generation in Laser Plasma Interaction

Kulwinder Kaur (2021PHS7190) Harikesh Kushwaha (2021PHS7181)

Adviser: Prof. Vikrant Saxena

Indian Institute of Technology, Delhi

Introduction

Interaction of light with matter at Ultra High Light intensity gives access to novel physical regimes which are barely, if at all, explored in lab. 1

- Intensity of $10^{23} W/cm^{-2}$ has been reached experimentally.².
- QED at $I = 10^{25} W/cm^{-2}$. Schwinger at $I = 10^{29} W/cm^{-2}$.
- Plasma is overdense if $\omega > \omega_p$.
- High harmonics are generated by interaction of laser with overdense plasma.
- lorem

PIC Cycle

The simulation uses *EPOCH* which implements a particle in cell algorithm.

- Interaction of laser pulse with plasma
- Effect of relativistic laser pulse

Simulation Details

We want to study the effect of various plasma and laser parameters on the generated high harmonics. The parameters which are constant throughout the entire experimentation are these:

- Particles per cell: 100
- Number of cells: 16000
- Pulse duration = 20τ ($\tau \approx 3.3$ fs)
- Simulation time = 40τ
- Wavelength $\lambda_l = 1 \mu m$
- Intensity of laser for $a_0 = 1$ is $I = 1.37 \times 10^{23} W/m^2$
- Some parameters are varied to study their effect on the generated high harmonics.

Effect of Plasma Density and Laser Intensity

Effect of Laser Envelope

1. Sine Sqaured

$$P(t) = \left\{ egin{array}{l} \sin^2(\pi t/T) \ ext{for } 0 \leq t \leq T \ 0 \ ext{otherwise} \end{array}
ight.$$

2. Gaussian

$$P(t) = \begin{cases} e^{\frac{-(t-T/2)^2}{2(0.2T)^2}} & \text{for } 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}$$

3. Triangular

$$P(t) = 2 \times \begin{cases} t/T \text{ for } 0 \le t \le T/2\\ 1 - t/T \text{ for } T/2 \le t \le T\\ 0 \text{ otherwise} \end{cases}$$

Effect of Pulse Length

Effect of Laser Intensity on Electron Oscillations

Frequency of Oscillations

Current Status and Future Plan of Work

- Odd harmonics are generated
- Increasing density decreases number of harmonics
- Increasing intensity and pulse duration increases number of harmonics
- Even harmonics are generated in electron oscillations

Future plan of work is as follows:

- Oblique incidence
 - Pulse shapes (Supergaussian, Laguere-Gauss, etc.)
 - Polarization