Probabilidade e Estatística - William

Unidade 1 – Introdução a Somatório e Produtório

1.1.2 – Progressões aritméticas de ordem superior:

Definição 1:
$$\Delta a_n = a_{n+1} - a_n$$

<u>Definição 2:</u> Uma PA de segunda ordem é uma sequência na qual as diferenças entre Δa_n e o termo anterior formam uma PA não estacionária. Uma PA de ordem K e K>2 é uma sequência de qual as diferenças entre cada termo e o termo anterior formam uma PA de ordem K-1.

Exemplo: Verifique a ordem das sequências:

a)
$$a_n = (1,3,6,10,21,28,...)$$

n	a_n	Δa_n	$\Delta^2 a_n$
1	1	1-3 = 2	2-3 = 1
2	3	3-6 = 3	3-4 = 1
3	6	6-10 = 4	4-5 = 1
4	10	10-15 = 5	5-6 = 1
5	15	15-21 = 6	6-7 = 1
6	21	21-28 = 7	7-8 = 1
7	28	$28-a_8 = 8$	$8-\Delta a_8 = 1$

Conseguimos ver, portanto, que $\Delta^2 a_n$ é estacionária, logo K = 2. Sendo assim, esta é uma PA de primeira ordem.

b)
$$a_n = n^3 - n$$

 1^a : $\Delta a_n = a_{n+1} - a_n : \Delta a_n = [(n+1)^3 - (n+1)] - [(n^3 - n)] = 3 * n^2 + 3n$
 2^a : $\Delta^2 a_n = \Delta a_{n+1} - \Delta a_n : \Delta^2 a_n = [3 * (n+1)^2 - 3 * (n+1)] - [(3n^2 + 3n)] = 6n + 6$
 3^a : $\Delta^3 a_n = \Delta^2 a_{n+1} - \Delta^2 a_n : \Delta^3 a_n = 6 * (n+1) + 6 - 6n - 6 = 6$

Perceba que $\Delta^3 a_n$ é estacionária, logo K = 3. Sendo assim, esta é uma PA de segunda ordem.