Trabajo Práctico 4

Ignacio Pardo & Luca Mazzarello

2022-10-20

1.

- a) μ : concentración **media** arsenico (ppb) en pollos del proveedor A
- b) $H_0: \mu = 80 \text{ versus } H_1: \mu > 80$
- c) X_i : concentración de arsénico (ppb) del i-esimo pollo de la muestra, $1 \le i \le n$. Sabemos que X_i son variables aleatorias i.i.d de distribución $\mathcal{N}(\mu, 16)$. Consideramos una muestra aleatoria $X_1, \ldots, X_n \sim \mathcal{N}(\mu, 16)$.
- d) Nivel $\alpha = 0.1$
- e) $T = \frac{\overline{X}_n 80}{\sqrt{\frac{16}{n}}}$ y bajo H_0 sabemos que $T \sim \mathcal{N}(0, 1)$
- f) $\mathcal{R} = \{ \mathcal{T} > \ddagger_{\alpha} = 1.281552 \}$

2.

```
a)
n = 5
set.seed(44512364)
concentraciones = rnorm(5, 80, 4)
(mean(concentraciones) - 80) / sqrt(16/n)
```

```
## [1] -0.9283433
(mean(concentraciones) - 80) / sqrt(16/n) < qnorm(0.9)
```

[1] TRUE

- b) Segun el test planteado en el ejercicio 1, no rechazariamos H_0 dado que el valor es menor a 1.281552
- c) Dado el contexto, no puedo asegurarme de que puedo aceptar H_0 si no que la informacion conseguida no es suficiente como para rechazar la hipotesis nula. Es decir, no rechazo H_0
- d) No se cancela la relación con el proovedor.

3.

```
estadistico = function(a){
  (mean(a)-80) / sqrt(16/length(a))
}
estadistico(concentraciones)
```

```
## [1] -0.9283433
```

4.

```
Nrep = 10000
muchos_estadisticos = replicate(Nrep,estadistico(rnorm(5, 80, 4)))
mean(muchos_estadisticos > qnorm(0.9))
```

[1] 0.097

A partir de los resultados podemos decir que en el diez porciento de las veces rechazo H_0 ya que solo el noventa porciento de las muestras satisface la hipotesis nula, es decir, $T > z_{0.1004} = 1.281552$

5.

```
hist(muchos_estadisticos,
    probability = TRUE,
    col="darkmagenta")

curve(dnorm(x, 0, 1),
    col="violet",
    add=TRUE,
    lwd=5)
```

Histogram of muchos_estadisticos

- a) Podemos observar que el promedio se concentra en 0 (coincide con el hecho de tener una distribución N(0,1))
- b) Es de esperarse por el Teorema Central del Limite ya que trabajamos con un valor de "n" grande.

6.

El valor se debería aproximar al nivel alpha = 0.1

```
mean(muchos_estadisticos > qnorm(0.9))
```

[1] 0.097

- a) La proporción de muestras generadas en el ejercicio 4) para las cuales se rechazaría H_0 en base al test propuesto en el ejercicio 1) deberia acercarce al nivel propuesto α , ya que asumimos H_0 como verdadera cuando generamos muchos_estadisticos, y estamos ahora calculando la proporcion de estadisticos con los que rechazamos H_0 .
- b) Efectivamente el valor obtenido aproxima 0.1

7.

```
Nrep = 10000
muchos_estadisticos2 <- replicate(Nrep, estadistico(rnorm(5, 84, 4)))
sum(muchos_estadisticos2 > qnorm(0.9))
```

[1] 8347

8.

```
hist(muchos_estadisticos2,
    probability = TRUE,
    main = "Histograma de densidad con Normal (0, 1) superpuesta",
    col="darkmagenta")

curve(dnorm(x, 0, 1),
    add=TRUE,
    lwd=5,
    col="violet")
```

Histograma de densidad con Normal (0, 1) superpuesta

- a) Se observa que muchos_estadisticos2 tiene forma de una distribución normal, pero con media corrida para la derecha.
- b) Como la funcion estadistico estandariza la distribución con una media de 80, pero la distribución original fue generada con una media de 84.

c)

```
hist(muchos_estadisticos2,
    probability = TRUE,
    main = "Histograma de densidad con Normal superpuesta",
    col="darkmagenta")

curve(dnorm(x, 4 / sqrt(16/5) ,1),
    add=TRUE,
    lwd=5,
    col="violet")
```

Histograma de densidad con Normal superpuesta

$$\overline{X}_5 \sim N(84, 16/5)\overline{X}_5 - 80 \sim N(84 - 80, 16/5)\overline{X}_5 - 80 \sim N(4, 16/5)\frac{\overline{X}_n - 80}{\sqrt{16/n}} \sim N(\frac{4}{\sqrt{16/5}}, 1)$$

9.

mean(muchos_estadisticos2 < qnorm(0.9))</pre>

[1] 0.1653

10.

a) ${\rm H_1}=\mu>80$, la región de rechazo $R=\{{\rm T}>z_\alpha\}$ con $z_{0,05}=1,644854$

```
nivel = 0.05
qnorm(1 - nivel)
```

[1] 1.644854

b)

mean(muchos_estadisticos2 < qnorm(0.95))</pre>

[1] 0.2733

- c) En este caso la región de rechazo va a ser más grande, debido que tratamos con un nivel mas bajo, y, como consecuencia, la proporción de muestras que no rechacen H_0 va a ser mayor en el ejercicio 7 que en el ejercicio 9.
- 11.
 - a)

```
valores = c(81.12, 82.87, 82.08, 81.19, 78.31, 82.26, 87.85)

estadistico_valores = estadistico(valores)
p_valor = 1 - pnorm(estadistico_valores, 0, 1)

estadistico_valores
```

```
## [1] 1.481621
```

p_valor

```
## [1] 0.06922062
```

b)

Cuando el nivel es 0.05 no rechazamos H_0 porque el p-valor = 0.06922062 no es menor al nivel. Pero cuando el nivel es 0.1, si rechazamos H_0 porque el p-valor = 0.06922062 es menor al nivel.

```
c)
Nrep = 10000
mean(replicate(Nrep, estadistico(rnorm(7, 80, 4))) > estadistico_valores)
```

[1] 0.0675

El p-valor se aproxima al valor obtenido.