<u>Ebenen</u>

- 1. Parameterform
- 2. Spurpunkte
- 3. Normalenform
- 4. Koordinatenform
- 5. Hessesche Normalenform

1. Parameterform:

Synonyme:

• Ebene im Raum in Parameterform

Anwendung:

ullet Eine Ebene durch einen Stützvektor $ec{p}$ und 2 linear Unabhängige Spannvektoren $ec{u}$ und $ec{v}$ beschreiben

Berechnung:

Allgemeine Form: $E: \vec{x} = \vec{p} + r \cdot \vec{u} + s \cdot \vec{v}$

1. Die Spannvektoren in Abhängigkeit von \vec{p} einsetzen:

$$E: \vec{x} = \vec{p} + r \cdot \overrightarrow{pu} + s \cdot \overrightarrow{pv}$$

2. Spurpunkte:

Synonyme:

• Schnittpunkt mit den Koordinatenachsen /-ebenen

Anwendung:

Veranschaulichung von Ebenen

Berechnung:

Eine Ebene *E* geht durch die:

•
$$x_1$$
-Achse bei k_1 , wenn gilt: $E = \begin{pmatrix} k_1 \\ 0 \\ 0 \end{pmatrix}$

•
$$x_2$$
-Achse bei k_2 , wenn gilt: $E = \begin{pmatrix} 0 \\ k_2 \\ 0 \end{pmatrix}$

•
$$x_3$$
-Achse bei k_3 , wenn gilt: $E = \begin{pmatrix} 0 \\ 0 \\ k_3 \end{pmatrix}$

Also bei
$$E: \vec{x} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} -5 \\ 1 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -5 \\ 0 \\ 2 \end{pmatrix}$$
 gilt:

$$\binom{k_1}{0}_0 = \binom{5}{0}_0 + r \cdot \binom{-5}{1}_0 + s \cdot \binom{-5}{0}_2 => S_1(5|0|0)$$

3. Normalenform:

Synonyme:

• Ebene mit Normalvektor aufstellen; Punktberechnung

Anwendung:

 Eine andere Darstellungsweise einer Ebene mittels eines Normalenvektors

Berechnung:

Allgemeine Form: $E: \vec{x} = (\vec{x} - \vec{p}) \cdot \vec{n} = 0$

1. Den Normalvektor \vec{n} berechnen:

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = \Rightarrow \vec{n} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

2. In die Gleichung einsetzen:

$$E: \vec{x} = \begin{pmatrix} \vec{x} - \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = 0$$

4. Koordinatenform:

Synonyme:

Punktberechnung

Anwendung:

 Mithilfe eines Normalvektors und einem Punkt eine Ebene im Raum beschreiben

Herleitung:

• Eine Ebene wird mit einem Normalenvektor \vec{n} und dem Skalarprodukt von den Vektoren \vec{n} und \vec{p} beschrieben

Berechnung:

Allgemeine Form: \vec{E} : $\vec{x} = n_1 x_1 + n_2 x_2 + n_3 x_3 = \vec{n} * \vec{p}$

1. Durch Kreuzprodukt \vec{n} berechnen:

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = > \vec{n} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

2. Den Normalenvektor \vec{n} einsetzen und $\vec{n} \cdot \vec{p}$ berechnen:

$$E: \vec{x} = -2x_1 + x_2 = \vec{n} * \vec{p}$$

5. Hessesche Normalenform:

Synonyme:

Abstandsberechnung Punkt zu Ebene

Anwendung:

 Durch diese Form lässt sich sofort die Lage eines Punktes zur Ebene berechnen

Berechnung:

- 1. Ebene in Koordinatenform umstellen
- 2. Normalenvektor \vec{n} ablesen
- 3. Ebenengleichung umstellen:

$$E: \vec{x} = -2x_1 + x_2 = 25 \mid -25$$

$$E: \vec{x} = -2x_1 + x_2 - 25 = 0$$

3. In die Hessesche Normalenform einsetzen:

$$d = \left| \frac{E}{|\vec{n}|} \right|$$

$$d = \left| \frac{-2x_1 + x_2 - 25}{\begin{vmatrix} -2 \\ 1 \\ 0 \end{vmatrix}} \right|$$