Soluzione Esame 27-01-2021

mercoledî 3 giugno 2020 17:37

Si calcolino i seguenti dati come segue:

Inoltre, considerare:

= **F** - (3 * **y**) segmenti

1)
$$CW_{max} = \frac{R \cdot RTT}{L} = 62.3077 = 62.0$$

2)
$$CW_{mean} = \frac{3}{4} \cdot CW_{max} = 46.7308 = 46.0$$

3) dopo 3DUPACK finestra si dimezza
$$\rightarrow CW = \frac{CW_{max}}{2} = 31.0$$

- 4) dopo TIMEOUT finestra va a 1
- 5) A quale round di trasmissione finisce la fase di SLOW START?

SLOW START finisce al round: 3

6) Qual è l'ultimo pacchetto inviato al round 6?

ultimo paccheto inviato al round 6: 25

7) Qual è il primo pacchetto inviato al round 8.

primo paccheto inviato al round 8: 34

8) ★A quale round viene perso il primo pacehetto?

il primo pacchetto viene perso al round: 7

9) *A quale round viene perso il secondo pacchetto

il secondo pacchetto viene perso al round:

10) ★A quale round viene perso il terzo pacchetto

il terzo pacchetto viene perso al round:

11) Qual è la dimensione della finestra di congestione all'ultimo round di trasmissione?

CW = 5

12) Qual è il valore della Slow Start Threshold all'ultimo round di trasmissione?

SST = 3

13) Quanto tempo è necessario a completare il trasferimento del file F?

 $T = RTT \cdot \#turni = 0.024 second \cdot 15 = 0.36 s$

14) \star Calcolare la velocità massima V_{max} raggiunta dal trasferimento

$$V_{max} = \frac{CW_{lag}}{RTT} \frac{L}{e} = \frac{9 \cdot 1.04 \times 10^4 \text{ bit}}{0.024 \text{ s}} = 3.9 \text{Mbit/s}$$

★Calcolare la velocità media V_{mean} del trasferimento.

$$V_{mean} = \frac{L \cdot \sum_{i=1}^{n} CW_{i}}{RTT \cdot \#turni} = \frac{76 \cdot 1.04 \times 10^{4} \text{ bit}}{0.024 \text{ s} \cdot 15} = 2.19556 \times 10^{6} \text{bit/s}$$

dove Cwtop indica il valore più alto raggiunto dalla congestion window durante la trasmissione

dove con

si intende la somma delle finestre di congestione dei vari turni, che divisa per il numero di turni ci da la dimensione media della finestra di congestione durante il trasferimento

ARROTONDARE PER DIFETTO

SST CW

ROUND

PACK