

Lecture 17: Introduction to Bayesian

<u>Course</u> > <u>Unit 5 Bayesian statistics</u> > <u>Statistics</u>

> 11. Worked Example Part II

11. Worked Example Part II

Note: The problems in this vertical depend on the final answer from Worked Example Part I. **You must have the answer to the final answerbox in order to answer the questions here.**

We now consider the **Gamma distribution** , which is a probability distribution with parameters q>0 and $\lambda>0$, has support on $(0,\infty)$, and whose density is given by

$$f\left(x
ight) =rac{\lambda ^{q}x^{q-1}e^{-\lambda x}}{\Gamma \left(q
ight) }.$$

Here, $\, \Gamma \,$ is the Euler Gamma function.

Simplifying the Gamma Distribution

1/1 point (graded)

We will use proportionality notation in order to simplify the Gamma Distribution. But first, we perform a cosmetic change of variables to avoid repetitive notation with our answer in Part I: we write our parameters instead as λ_0 and q_0 .

From the expression for the Gamma distribution given above, remove outermost multipliers to simplify it in such a way that our expression for f(1) is $e^{-\lambda_0}$ regardless of the value of q_0 .

Use **q_0** for q_0 and **lambda_0** for λ_0 .

Solution:

Note that we want a function of x, so we are able to pull out factors that do not depend on the variable x. (i.e. are purely constants or a factor whose value only depends on variables other than x). From $f(x) = \frac{\lambda^q x^{q-1} e^{-\lambda x}}{\Gamma(q)}$, we can notice that both λ^q in the numerator and $\Gamma(q)$ in the denominator are independent of x, so removing those reduces our expression to $x^{q-1}e^{-\lambda x}$.

Making a slight tweak of variables so that we use λ_0 and q_0 instead, as specified, gives $f(x) \propto x^{q_0-1}e^{-\lambda_0 x}$, and it can be seen (as an exercise) that this expression for f(x) satisfies $f(1) = e^{-\lambda_0}$.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Interpreting the Posterior Distribution

3/3 points (graded)

Compare this with the posterior distribution you computed from Part I, which you should see is a Gamma distribution. What is the corresponding variable, and what are its parameters?

Use **SumXi** for $\sum_{i=1}^n X_i$.

$$x =$$

lambda ✓ Answer: lambda+a*0+n*0+SumXi*0

Solution:

In Part I, we derived the posterior distribution (as a function of λ) to be

$$e^{-(a+n)\lambda}\lambda^{\sum_{i=1}^n X_i}.$$

Here, it is the variable λ that is supposed to be distributed according to a Gamma distribution, hence we must write $x=\lambda$.

From here, we need to match the remaining variables. The exponent of x (vis. λ) in the general Gamma distribution is q_0-1 and in our posterior distribution is $\sum_{i=1}^n X_i$, so we could write $q_0=(\sum_{i=1}^n X_i)+1$. Similarly, λ_0 is what multiplies x in the exponent of e, which we see is a+n in our posterior distribution, so a+n.

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 5 Bayesian statistics:Lecture 17: Introduction to Bayesian Statistics / 11. Worked Example Part II

Add a Post

© All Rights Reserved