Master Theorem: Practice Problems and Solutions

Practice Problems

For each of the following recurrences, give an expression for the runtime T(n) if the recurrence can be solved with the Master Theorem. Otherwise, indicate that the Master Theorem does not apply.

1.
$$T(n) = 3T(n/2) + n^2$$

2.
$$T(n) = 4T(n/2) + n^2$$

3.
$$T(n) = T(n/2) + 2^n$$

4.
$$T(n) = 2^n T(n/2) + n^n$$

5.
$$T(n) = 16T(n/4) + n$$

6.
$$T(n) = 2T(n/2) + n\log n$$

¹most of the time, k = 0

7.
$$T(n) = 2T(n/2) + n/\log n$$

8.
$$T(n) = 2T(n/4) + n^{0.51}$$

9.
$$T(n) = 0.5T(n/2) + 1/n$$

10.
$$T(n) = 16T(n/4) + n!$$

11.
$$T(n) = \sqrt{2}T(n/2) + \log n$$

12.
$$T(n) = 3T(n/2) + n$$

13.
$$T(n) = 3T(n/3) + \sqrt{n}$$

14.
$$T(n) = 4T(n/2) + cn$$

15.
$$T(n) = 3T(n/4) + n \log n$$

16.
$$T(n) = 3T(n/3) + n/2$$

17.
$$T(n) = 6T(n/3) + n^2 \log n$$

18.
$$T(n) = 4T(n/2) + n/\log n$$

19.
$$T(n) = 64T(n/8) - n^2 \log n$$

20.
$$T(n) = 7T(n/3) + n^2$$

21.
$$T(n) = 4T(n/2) + \log n$$

22.
$$T(n) = T(n/2) + n(2 - \cos n)$$

Solutions

1.
$$T(n) = 3T(n/2) + n^2 \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 3)

2.
$$T(n) = 4T(n/2) + n^2 \Longrightarrow T(n) = \Theta(n^2 \log n)$$
 (Case 2)

3.
$$T(n) = T(n/2) + 2^n \Longrightarrow \Theta(2^n)$$
 (Case 3)

4.
$$T(n) = 2^n T(n/2) + n^n \Longrightarrow \text{Does not apply } (a \text{ is not constant})$$

5.
$$T(n) = 16T(n/4) + n \implies T(n) = \Theta(n^2)$$
 (Case 1)

6.
$$T(n) = 2T(n/2) + n \log n \Longrightarrow$$
 Does not apply (no polynomial separation between $f(n)$ and the number of leaves.)

7.
$$T(n) = 2T(n/2) + n/\log n \Longrightarrow \text{Does not apply (non-polynomial difference between } f(n) \text{ and } n^{\log_b a})$$

8.
$$T(n) = 2T(n/4) + n^{0.51} \Longrightarrow T(n) = \Theta(n^{0.51})$$
 (Case 3)

9.
$$T(n) = 0.5T(n/2) + 1/n \Longrightarrow \text{Does not apply } (a < 1)$$

10.
$$T(n) = 16T(n/4) + n! \implies T(n) = \Theta(n!)$$
 (Case 3)

11.
$$T(n) = \sqrt{2}T(n/2) + \log n \Longrightarrow T(n) = \Theta(\sqrt{n})$$
 (Case 1)

12.
$$T(n) = 3T(n/2) + n \Longrightarrow T(n) = \Theta(n^{\lg 3})$$
 (Case 1)

13.
$$T(n) = 3T(n/3) + \sqrt{n} \Longrightarrow T(n) = \Theta(n)$$
 (Case 1)

14.
$$T(n) = 4T(n/2) + cn \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 1)

15.
$$T(n) = 3T(n/4) + n \log n \Longrightarrow T(n) = \Theta(n \log n)$$
 (Case 3)

16.
$$T(n) = 3T(n/3) + n/2 \Longrightarrow T(n) = \Theta(n \log n)$$
 (Case 2)

17.
$$T(n) = 6T(n/3) + n^2 \log n \Longrightarrow T(n) = \Theta(n^2 \log n)$$
 (Case 3)

18.
$$T(n) = 4T(n/2) + n/\log n \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 1)

19.
$$T(n) = 64T(n/8) - n^2 \log n \Longrightarrow \text{Does not apply } (f(n) \text{ is not positive})$$

20.
$$T(n) = 7T(n/3) + n^2 \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 3)

21.
$$T(n) = 4T(n/2) + \log n \Longrightarrow T(n) = \Theta(n^2)$$
 (Case 1)

22. $T(n) = T(n/2) + n(2 - \cos n) \Longrightarrow$ Does not apply. We are in Case 3, but the regularity condition is violated. (Consider $n = 2\pi k$, where k is odd and arbitrarily large. For any such choice of n, you can show that $c \ge 3/2$, thereby violating the regularity condition.)