Exercise 8,5(a):

Pf: $\forall \epsilon > 0$, $\exists N_1 > 0$ sit $|\alpha_n - s| < \epsilon$ $\forall n > N_1$ (stace $|\alpha_n - s| < \epsilon$) $\Rightarrow \alpha_n > s - \epsilon$ $\forall n > N_1$ $\exists N_2 > 0$ sit $|\alpha_n - s| < \epsilon$ $\forall n > N_2$ (since $|\alpha_n - s| < \epsilon$) $\Rightarrow b_n < s + \epsilon$ $\forall n > N_2$.

Take $N := \max\{N_1, N_2\}$,

Then $\forall n > N$, we have $a_n > s - \epsilon$ and $b_n < s + \epsilon$,

Therefore $s - \epsilon < a_n \leq s_n \leq b_n < s + \epsilon$ $\forall n > N$ $\Rightarrow |s_n - s| < \epsilon \forall n > N$ Hence $\lim_{n \to \infty} s_n = s$.

Exercise 8 9 (a)

PE Since $5n \ge a$ for all but finitely many n, $\exists N > 0$ sit. $5n \ge a$ for any n > N.

Assume by contradiction that $= \lim_{n \to \infty} s_n < a$,

We can choose $\epsilon > 0$ small enough sit. $\lim_{n \to \infty} s_n + \epsilon < a$.

By definition of $\lim_{n \to \infty} t$, $\exists N > 0$ sit. $|s_n - s| < \epsilon$ $\forall n > N'$. $\Rightarrow s_n < s_1 \epsilon$ $\forall n > N'$ Then, for any $n > \max_{n \to \infty} \{N, N'\}$, we have $a \le s_n < s_1 \epsilon$ $a \le s_n \epsilon$ $a \le s_$

Exercise 8,4 pf: Stace lims =0, YE>0, & N>0 sit. | Sn- 0 | < M \ \ N > N. \Rightarrow $|snting = |sn||t_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon$ $\forall n > N$. Hence I'm Sntn = 0. Exercise 9.12(a) Pf: Choose a sit. L<a<1. Then I'm | Sn+1 | <a<1. 3 JN70 Sit. |Snt1 | < a Vn7N. (Why?) -> | Shfi | < a (sn | \forall n > N. ⇒ IsnI < an-N IsNI Yn>N. (Theorem 9.7(6)).

Observe that $\lim_{n\to\infty} \alpha^{n-N} |s_N| = 0$ $\forall o < \alpha < 1$.

By squeeze lemma (Exercise 8,5(a)), we get lim sn =0.

Exercise 12,2

Pf. Denote $V_{N}:=\sup \{|s_{n}|: n>N\}$ We know that $V_{1} \geq V_{2} \geq \cdots \geq V_{N} \geq \cdots \geq \lim_{n \to \infty} |s_{n}|$ It is supplied \Leftrightarrow $\forall E>0$, $\exists N>0$ sit. $sup\{|s_{n}|: n>N\} \leq E$. $\Leftrightarrow \forall E>0$, $\exists N>0$ sit. $|s_{n}| \leq E \quad \forall n>N$. $\Leftrightarrow \lim_{n \to \infty} |s_{n}| \leq E \quad \forall n>N$.