Exercise sheet 3

Descriptive Set Theory

Academic year 2023-24

- 1. Prove that for every topological space X and every $A \subseteq X$ the following are equivalent:
 - (a) The set A is nowhere dense, i.e. there is no open set $U \subseteq X$ such that $A \cap U$ is dense in U.
 - (b) The closure of A has empty interior.
 - (c) There is an open dense set $V \subseteq X$ such that $A \cap V = \emptyset$.

Conclude that $B \subseteq X$ is comeager if and only if it contains a countable intersection of dense open sets.

- 2. Prove that for every topological space X, the following are equivalent:
 - (a) Every nonempty open subset of X is non-meager.
 - (b) Every comeager set in X is dense.
 - (c) The intersection of countably many dense open subsets of X is dense.
- 3. Prove by induction on $1 \le \alpha < \omega_1$ that
 - (a) $\Sigma_{\alpha}^{0}(X)$ is closed under countable unions and finite intersections;
 - (b) $\Pi_{\alpha}^{0}(X)$ is closed under countable intersections and finite unions;
 - (c) $\Delta_{\alpha}^{0}(X)$ is a Boolean algebra, i.e. it is closed under complements, finite unions, and finite intersections.
- 4. Let $Y \subseteq X$ be Polish spaces. Show that for every $\alpha \geq 3$

$$\Delta^0_{\alpha}(Y) = \Delta^0_{\alpha}(X) \upharpoonright Y,$$

where as usual $\Delta^0_{\alpha}(X) \upharpoonright Y = \{A \cap Y \mid A \in \Delta^0_{\alpha}(X)\}.$

5. Given a continuous function $f \colon [0;1] \to \mathbb{R}$, let

$$D_f = \{ x \in [0; 1] \mid f' \text{ exists} \}.$$

(At endpoints we take one-side derivatives.) Prove that $D_f \in \Pi_3^0([0;1])$.