ARMA-X Model

Contents

&P500 Univariate ARMA-X Models	2
Tweet Dummy as Exogenous	2
Tweet Count as Exogenous	3
Tariff as Exogenous	Ę
Trade Mention as Exogenous	7
China Mention as Exogenous	ç
Positive Vibe as Exogenous	10
Negative Vibe as Exogenous	12

	Model 1
ar1	0.0300
	(0.0510)
ar2	0.7229^{***}
	(0.0397)
ar3	0.2110^{***}
	(0.0287)
ma1	0.2751^{***}
	(0.0496)
ma2	-0.6445***
	(0.0284)
ma3	-0.3527^{***}
	(0.0256)
intercept	0.0202^{***}
	(0.0042)
$dummy_lag_0$	0.0014^{***}
	(0.0002)
$dummy_lag_1$	0.0008***
	(0.0002)
AIC	-45761.2161
AICc	-45761.2051
BIC	-45682.1963
Log Likelihood	22890.6081
Num. obs.	19970
$^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$	

Table 1: ARMAX selected by AIC

S&P500 Univariate ARMA-X Models

Here we try various specifications with multiple variables to see what comes out.

Tweet Dummy as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res$model,nb.periods)
```


Tweet Count as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res$model,nb.periods)
```

	Model 1
ar1	0.0278
	(0.0510)
ar2	0.7210***
	(0.0399)
ar3	0.2148***
	(0.0284)
ma1	0.2779***
	(0.0496)
ma2	-0.6430^{***}
	(0.0285)
ma3	-0.3563***
	(0.0253)
intercept	0.0211***
	(0.0042)
N_lag_0	0.0004***
	(0.0001)
N_lag_1	0.0002**
	(0.0001)
AIC	-45737.6695
AICc	-45737.6585
BIC	-45658.6497
Log Likelihood	22878.8348
Num. obs.	19970

***p < 0.001; **p < 0.01; *p < 0.05

Table 2: ARMAX selected by AIC

Tariff as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res$model,nb.periods)
```

	Model 1
ar1	0.2200***
	(0.0084)
ar2	0.9388***
	(0.0037)
ar3	-0.1837***
	(0.0079)
ma1	0.0870***
	(0.0042)
ma2	-0.8960****
	(0.0042)
intercept	0.0219***
•	(0.0042)
$tariff_lag_0$	0.0035^{*}
	(0.0014)
$tariff_lag_1$	0.0191***
_	(0.0015)
tariff lag 2	0.0103***
_	(0.0015)
$tariff_lag_3$	-0.0045^{**}
_	(0.0014)
AIC	-46020.9547
AICc	-46020.9415
BIC	-45934.0340
Log Likelihood	23021.4774
Num. obs.	19968
***n < 0.001: **n < 0.0	01. *n < 0.05

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$

Table 3: ARMAX selected by AIC

Trade Mention as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20

irf.plot(res$model,nb.periods)
```

	Model 1
ar1	2.1903***
	(0.0096)
ar2	-1.4727^{***}
	(0.0173)
ar3	0.2784***
	(0.0082)
ma1	-1.8955^{***}
	(0.0062)
ma2	0.9165***
	(0.0063)
intercept	0.0225***
1	(0.0028)
trade lag 0	$0.0032^{'}$
	(0.0018)
$trade_lag_1$	0.0016
	(0.0018)
AIC	-45816.1540
AICc	-45816.1449
BIC	-45745.0361
Log Likelihood	22917.0770
Num. obs.	19970
*** n < 0.001, ** n < 0.0	

 $^{^{***}}p < 0.001; \ ^{**}p < 0.01; \ ^{*}p < 0.05$

Table 4: ARMAX selected by AIC

	Model 1
ar1	0.2209***
	(0.0084)
ar2	0.9382^{***}
	(0.0037)
ar3	-0.1837^{***}
	(0.0079)
ma1	0.0878***
	(0.0042)
ma2	-0.8950***
	(0.0042)
intercept	0.0225^{***}
	(0.0042)
$china_lag_0$	0.0026^{*}
	(0.0012)
AIC	-45840.5349
AICc	-45840.5277
BIC	-45777.3186
Log Likelihood	22928.2675
Num. obs.	19971
***n < 0.001: **n < 0.0	$0.1 \cdot *_{n} < 0.05$

***p < 0.001; **p < 0.01; *p < 0.05

Table 5: ARMAX selected by AIC

China Mention as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res$model,nb.periods)
```


Positive Vibe as Exogenous

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res$model,nb.periods)
```

	Model 1
ar1	0.0262
	(0.0503)
ar2	0.7230^{***}
	(0.0390)
ar3	0.2146***
	(0.0283)
ma1	0.2800***
	(0.0489)
ma2	-0.6451***
	(0.0277)
ma3	-0.3571****
	(0.0252)
intercept	0.0212***
•	(0.0042)
prop_positive_lag_0	0.0063***
	(0.0016)
AIC	-45722.7625
AICc	-45722.7534
BIC	-45651.6441
Log Likelihood	22870.3812
Num. obs.	19971
***n < 0.001 · **n < 0.01 · *n <	0.05

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 6: ARMAX selected by AIC

	Model 1
ar1	0.0237
	(0.0495)
ar2	0.7250^{***}
	(0.0379)
ar3	0.2150^{***}
	(0.0283)
ma1	0.2824***
	(0.0481)
ma2	-0.6460***
	(0.0270)
ma3	-0.3581^{***}
	(0.0251)
intercept	0.0216***
	(0.0042)
prop_negative_lag_0	0.0070**
	(0.0022)
AIC	-45716.8054
AICc	-45716.7964
BIC	-45645.6871
Log Likelihood	22867.4027
Num. obs.	19971
*** $p < 0.001$; *** $p < 0.01$; * $p < 0.05$	

p < 0.001; p < 0.01; p < 0.05

Table 7: ARMAX selected by AIC

Negative Vibe as Exogenous

```
\#auto.armax.r selects the lowest AIC checking all 3 p,q,r values
res = auto.armax.r(data$SPY_vol, x=data$prop_negative,
               max_p = 3, max_q = 3, max_r = 3, criterion = "AIC", latex=T)
```

```
#we want to plot the IRFs of these models
nb.periods = 7 * 20
irf.plot(res$model,nb.periods)
```



```
r_vol_h = data$SPY_vol

data$r_vol_h = r_vol_h

hvol_plotter(data, breaks="6 month", title="lol")
```

