FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Saturday 05th SEPTEMBER, 2020) TIME: 3 PM to 6 PM

PHYSICS

TEST PAPER WITH ANSWER & SOLUTION

1. In the circuit, given in the figure currents in different branches and value of one resistor are shown. Then potential at point B with respect to the point A is:

- (1) + 1V
- (2) 1V
- (3) 2V
- (4) + 2V

- 2. A parallel plate capacitor has plate of length 'l', width 'w' and separation of plates is 'd'. It is connected to a battery of emf V. A dielectric slab of the same thickness 'd' and of dielectric constant k = 4 is being inserted between the plates of the capacitor. At what length of the slab inside plates, will be energy stored in the capacitor be two times the initial energy stored?

 (1) l / 4 (2) l / 2 (3) l / 3 (4) 2l / 3
- 3. Ten charges are placed on the circumference of a circle of radius R with constant angular separation between successive charges. Alternate charges 1, 3, 5, 7, 9 have charge (+q) each, while 2, 4, 6, 8, 10 have charge (-q) each. The potential V and the electric field E at the centre of the circle are respectively: (Take V = 0 at infinity)

(1)
$$V = \frac{10q}{4\pi \in _0 R}$$
; $E = \frac{10q}{4\pi \in _0 R^2}$

(2)
$$V = 0$$
, $E = \frac{10q}{4\pi \epsilon_0 R^2}$

(3)
$$V = 0$$
, $E = 0$

(4)
$$V = \frac{10q}{4\pi \epsilon_0 R}; E = 0$$

I, one side opened rectangular loop and a conductor C with a sliding connector are located in the same plane, as shown in the figure. The connector has length *l* and resistance R. It slides to the right with a velocity v. The resistance of the conductor and the self inductance of the loop are negligible. The induced current in the loop, as a function of separation r, between the connector and the straight wire is:

- $(1) \ \frac{\mu_0}{\pi} \ \frac{Ivl}{Rr}$
- (2) $\frac{\mu_0}{2\pi} \frac{\text{Iv}l}{\text{Rr}}$
- $(3) \frac{2\mu_0}{\pi} \frac{Ivl}{Rr}$
- $(4) \frac{\mu_0}{4\pi} \frac{Ivl}{Rr}$

- **4.** An iron rod of volume 10⁻³ m³ and relative permeability 1000 is placed as core in a solenoid with 10 turns/cm. If a current of 0.5 A is passed through the solenoid, then the magnetic moment of the rod will be:
 - (1) $0.5 \times 10^2 \text{ Am}^2$
- (2) $50 \times 10^2 \text{ Am}^2$
- (3) $500 \times 10^2 \text{ Am}^2$
- (4) $5 \times 10^2 \text{ Am}^2$

- 6. The acceleration due to gravity on the earth's surface at the poles is g and angular velocity of the earth about the axis passing through the pole is ω. An object is weighed at the equator and at a height h above the poles by using a spring balance. If the weights are found to be same, then h is : (h<<R, where R is the radius of the earth)
 - (1) $\frac{R^2\omega^2}{8g}$ (2) $\frac{R^2\omega^2}{4g}$ (3) $\frac{R^2\omega^2}{g}$ (4) $\frac{R^2\omega^2}{2g}$

7. Two coherent sources of sound, S_1 and S_2 , produce sound waves of the same wavelength, $\lambda = 1$ m, in phase. S_1 and S_2 are placed 1.5 m apart (see fig.) A listener, located at L, directly in front of S2 finds that the intensity is at a minimum when he is 2m away from S_2 . The listener moves away from S₁, keeping his distance from S₂ fixed. The adjacent maximum of intensity is observed when the listener is at a distance d from S₁. Then, d is:

- (1) 12m
- (2) 3m
- (4) 2m

- 8. A driver in a car, approaching a vertical wall notices that the frequency of his car horn, has changed from 440 Hz to 480 Hz, when it gets reflected from the wall. If the speed of sound in air is 345 m/s, then the speed of the car is
 - (1) 36 km/hr
- (2) 24 km/hr
- (3) 18 km/hr
- (4) 54 km/hr

- 9. In an adiabatic process, the density of a diatomic gas becomes 32 times its initial value. The final pressure of the gas is found to be n times the initial pressure. The value of n is:
 - (1) 326
- $(2) \frac{1}{32} \qquad (3) \ 32 \qquad (4) \ 128$

- **10.** A radioactive nucleus decays by two different processes. The half life for the first process is 10 s and that for the second is 100s. the effective half life of the nucleus is close to:
 - (1) 9 sec
- (2) 55 sec
- (3) 6 sec
- (4) 12 sec

11. A ring is hung on a nail. It can oscillate, without slipping or sliding (i) in its plane with a time period T₁ and, (ii) back and forth in a direction perpendicular to its plane, with a period T_2 . the

ratio
$$\frac{T_1}{T_2}$$
 will be :

- (1) $\frac{2}{\sqrt{3}}$ (2) $\frac{\sqrt{2}}{3}$ (3) $\frac{2}{3}$ (4) $\frac{3}{\sqrt{2}}$

12. In the circuit shown, charge on the 5 μ F capacitor is:

- (1) $5.45 \mu C$
- (2) $16.36 \mu C$
- (3) $10.90 \mu C$
- (4) $18.00 \mu C$

In an experiment to verify Stokes law, a small 13. spherical ball of radius r and density p falls under gravity through a distance h in air before entering a tank of water. If the terminal velocity of the ball inside water is same as its velocity just before entering the water surface, then the value of h is proportional to:

(ignore viscosity of air)

- (1) r
- $(2) r^4$
- $(3) r^3$
- $(4) r^2$

14. Two different wires having lengths L_1 and L_2 , and respective temperature coefficient of linear expansion α_1 and α_2 , are joined end-to-end. Then the effective temperature coefficient of linear expansion is:

$$(1)\ \ \, 4\frac{\alpha_{_{1}}\alpha_{_{2}}}{\alpha_{_{1}}+\alpha_{_{2}}}\,\frac{L_{_{2}}L_{_{1}}}{\left(L_{_{2}}+L_{_{1}}\right)^{^{2}}}\ \ \, (2)\ \, 2\sqrt{\alpha_{_{1}}\alpha_{_{2}}}$$

- $(3) \frac{\alpha_1 + \alpha_2}{2} \qquad (4) \frac{\alpha_1 L_1 + \alpha_2 L_2}{L_1 + L_2}$

The quantities $x = \frac{1}{\sqrt{\mu_0 \in \Omega}}, y = \frac{E}{B}$

$$z = \frac{1}{CR}$$
 are defined where C-capacitance,

R-Resistance, *l*-length, E-Electric field, B-magnetic field and \in_0 , μ_0 ,-free space permittivity and permeability respectively. Then:

- (1) Only x and y have the same dimension
- (2) x, y and z have the same dimension
- (3) Only x and z have the same dimension
- (4) Only y and z have the same dimension

- A galvanometer is used in laboratory for detecting the null point in electrical experiments. If, on passing a current of 6mA it produces a deflection of 2°, its figure of merit is close to:
 - (1) 3×10^{-3} A/div.
 - (2) 333° A/div.
 - (3) 6×10^{-3} A/div.
 - (4) 666° A/div.

17. The velocity (v) and time (t) graph of a body in a straight line motion is shown in the figure.

The point S is at 4.333 seconds. The total distance covered by the body in 6s is:

- (1) 12m
- (2) $\frac{49}{4}$ m
- (3) 11 m
- (4) $\frac{37}{3}$ m

18. A spaceship in space sweeps stationary interplanetary dust. As a result, its mass

increases at a rate
$$\frac{dM(t)}{dt} = bv^2(t)$$
, where $v(t)$

is its instantaneous velocity. The instantaneous acceleration of the satellite is:

$$(1) -\frac{2bv^3}{M(t)}$$

- $(2) -\frac{bv^3}{2M(t)}$
- $(3) bv^3(t)$
- $(4) -\frac{bv^3}{M(t)}$

19. Two Zener diodes (A and B) having breakdown voltages of 6V and 4V respectively, are connected as shown in athe circuit below. The output voltage V_0 variation with input voltage linearly increasing with time, is given by :

 $(V_{input} = 0V \text{ at } t = 0) \text{ (figures are qualitative)}$

(2) time \rightarrow 4V
(3) \downarrow time \rightarrow 6V
(4)

time ->

20. The correct match between the entries in column I and column II are :

I	II
Radiation	Wavelength
(a) Microwave	(i) 100m
(b) Gamma rays	(ii) 10 ⁻¹⁵ m
(c) A.M. radio waves	(iii) 10 ⁻¹⁰ m
(d) X-rays	(iv) 10^{-3} m
(1) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)	
(2) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)	
(3) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)	
(4) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)	

21. The surface of a metal is illuminated alternately with photons of energies $E_1 = 4eV$ and $E_2 = 2.5 eV$ respectively. The ratio of maximum speeds of the photoelectrons emitted in the two cases is 2. The work function of the metal in (eV) is _____.

- 22. Nitrogen gas is at 300°C temperature. The temperature (in K) at which the rms speed of a H₂ molecule would be equal to the rms speed of a nitrogen molecule, is ____.

 (Molar mass of N₂ gas 28 g)
- 24. A body of mass 2kg is driven by an engine delivering a constant power 1J/s. The body starts from rest and moves in a straight line. After 9 seconds, the body has moved a distance (in m) _____.

23. A thin rod of mass 0.9 kg and length 1m is suspended, at rest, from one end so that it can freely oscillate in the vertical plane. A particle of move 0.1 kg moving in a straight line with velocity 80 m/s hits the rod at its bottom most point and sticks to it (see figure). The angular speed (in rad/s) of the rod immediately after the collision will be

25. A prism of angle $A = 1^{\circ}$ has a refractive index $\mu = 1.5$. A good estimate for the minimum angle of deviation (in degrees) is close to N/ 10. Value of N is _____.

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Saturday 05th SEPTEMBER, 2020) TIME: 3 PM to 6 PM

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

1. The rate constant (k) of a reaction is measured at different temperatures (T), and the data are plotted in the given figure. The activation energy of the reaction in kJ mol-1 is: (R is gas constant)

- (1) 2R
- (2) R
- (3) 1/R
- (4) 2/R

2. The major product of the following reaction is:

$$\begin{array}{c} \text{HO} \\ \text{CH}_2\text{CH}_3 \\ \\ \text{O} \end{array} \xrightarrow{\text{H}_2\text{SO}_4}$$

3. The following molecule acts as an:

$$N$$
 $(CH_2)_2$
 $(Brompheniramine)$
 Br

- (1) Antiseptic
- (2) Anti-bacterial
- (3) Anti-histamine
- (4) Anti-depressant
- 4. An element crystallises in a face-centred cubic (fcc) unit cell with cell edge a. The distance between the centres of two nearest octahedral voids in the crystal lattice is
 - (1) a
- (2) $\sqrt{2}a$ (3) $\frac{a}{\sqrt{2}}$ (4) $\frac{a}{2}$

5. The variation of molar conductivity with concentration of an electrolyte (X) in aqueous solution is shown in the given figure.

The electrolyte X is:

- (1) CH₃COOH
- (2) KNO₃
- (3) HCl
- (4) NaCl
- 6. The one that is NOT suitable for the removal of permanent hardness of water is:
 - (1) Treatment with sodium carbonate
 - (2) Calgon's method
 - (3) Clark's method
 - (4) Ion-exchange method

- 7. The correct statement about probability density (except at infinite distance from nucleus) is:
 - (1) It cn be negative for 2p orbital
 - (2) It can be zero for 3p orbital
 - (3) It can be zero for 1s orbital
 - (4) It can never be zero for 2s orbital

8. The increasing order of boiling points of the following compounds is:

$$\begin{array}{c|cccc} OH & OH & OH & OH \\ \hline \\ CH_3 & NO_2 & NH_2 & OCH_3 \\ I & II & III & IV \\ \end{array}$$

- (1) I < IV < III < II
- (2) IV < I < II < III
- (3) I < III < IV < II
- (4) III < I < II < IV

- 9. The compound that has the largest H-M-H bond angle (M=N, O, S, C), is:
 - (1) H_2O
- (2) CH₄
- (3) NH₃
- (4) H₂S

10. Among the following compounds, geometrical isomerism is exhibited by :

$$(1) \bigcup_{\text{Cl}}^{\text{CH}_2}$$

$$(4) \qquad \begin{array}{c} \text{CHCl} \\ \\ \text{H}_3\text{C} \end{array}$$

- **11.** Which one of the following polymers is not obtained by condensation polymerisation?
 - (1) Buna N
- (2) Bakelite
- (3) Nylon 6
- (4) Nylon 6, 6

12. The final major product of the following reaction is:

Me (i)
$$Ac_2O/Pyridine$$
(ii) Br_2 , $FeCl_3$
(iii) OH^{-}/Δ

Br

Me

NH,

(3) Br

$$(4) \qquad \qquad \text{Br} \\ \text{NH}_2$$

NH,

(2)

- 15. Lattice enthalpy and enthalpy of solution of NaCl are 788 kJ mol⁻¹ and 4 kJ mol⁻¹, respectively. The hydration enthalpy of NaCl is:
 - (1) -780 kJ mol⁻¹
- (2) -784 kJ mol⁻¹
- (3) 780 kJ mol⁻¹
- (4) 784 kJ mol⁻¹

- 13. Hydrogen peroxide, in the pure state, is:
 - (1) non-planar and almost colorless
 - (2) linear and almost colorless
 - (3) planar and blue in color
 - (4) linear and blue in color

- **14.** Boron and silicon of very high purity can be obtained through:
 - (1) vapour phase refining
 - (2) electrolytic refining
 - (3) liquation
 - (4) zone refining

- **16.** Reaction of ammonia with excess Cl₂ gives :
 - (1) NH₄Cl and N₂
 - (2) NCl₃ and NH₄Cl
 - (3) NH₄Cl and HCl
 - (4) NCl₃ and HCl
- 17. The correct order of the ionic radii of O²⁻, N³⁻, F⁻, Mg²⁺, Na⁺ and Al³⁺ is:

(1)
$$A1^{3+} < Na^+ < Mg^{2+} < O^{2-} < F^- < N^{3-}$$

(2)
$$N^{3-} < O^{2-} < F^{-} < Na^{+} < Mg^{2+} < Al^{3+}$$

(3)
$$Al^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$$

(4)
$$N^{3-} < F^{-} < O^{2-} < Mg^{2+} < Na^{+} < Al^{3+}$$

18. Consider the complex ions,

trans-[Co(en)₂Cl₂]+ (A) and

cis-[Co(en)₂Cl₂]⁺ (B). The correct statement regarding them is :

- (1) both (A) and (B) can be optically active
- (2) both (A) and (B) cannot be optically active
- (3) (A) can be optically active, but (B) cannot be optically active
- (4) (A) cannot be optically active, but (B) can be optically active

20. The major product formed in the following reaction is:

$$CH_3CH = CHCH(CH_3)_2 \xrightarrow{HBr}$$

- (1) CH₃ CH₂ CH₂ C(Br) (CH₃)₂
- (2) Br(CH₂)₃ CH(CH₃)₂
- (3) CH₃ CH₂ CH(Br) CH(CH₃)₂
- (4) CH₃ CH(Br) CH₂ CH(CH₃)₂

19. Adsorption of a gas follows Freundlich adsorption isotherm. If x is the mass of the gas adsorbed on mass m of the adsorbent, the correct plot of $\frac{x}{m}$ versus p is:

21. The number of chiral carbons present in sucrose is______.

22. For a dimerization reaction, $2 \ A(g) \rightarrow A_2(g)$ at 298 K, ΔU^{\odot} , = - 20kJ mol⁻¹, ΔS^{\odot} = -30 J K⁻¹ mol⁻¹, then the ΔG^{\odot} will be ______ J.

- The volume, in mL, of 0.02 M K₂Cr₂O₇ solution required to react with 0.288 g of ferrous oxalate in acidic medium is ______.
 (Molar mass of Fe = 56 g mol⁻¹)
- 23. For a reaction $X + Y \rightleftharpoons 2Z$, 1.0 mol of X, 1.5 mol of Y and 0.5 mol of Z were taken in a 1 L vessel and allowed to react. At equilibrium, the concentration of Z was 1.0 mol L^{-1} . The equilibrium constant of the reaction is

 $\frac{x}{15}$. The value of x is $\frac{x}{15}$.

V . V 27

25. Considering that $\Delta_0 > P$, the magnetic moment (in BM) of $[Ru(H_2O)_6]^{2+}$ would be______.

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Saturday 05th SEPTEMBER, 2020) TIME: 3 PM to 6 PM

MATHEMATICS

TEST PAPER WITH SOLUTION If the system of linear equations 3. If the sum of the first 20 terms of the series

$$x + y + 3z = 0$$

$$x + 3y + k^2z = 0$$

$$3x + y + 3z = 0$$

has a non-zero solution (x, y, z) for some

 $k \in R$, then $x + \left(\frac{y}{z}\right)$ is equal to :

(1) 9

1.

- (3) -9
- (4) 3

 $\lim_{x \to 0} \frac{x \left(e^{(\sqrt{1+x^2+x^4-1})/x} - 1 \right)}{\sqrt{1+x^2+x^4}}$

x is equal to:

(1) 746/21

 $(3) e^2$

- (1) does not exist. (2) is equal to \sqrt{e} .
- (3) is equal to 0.
- (4) is equal to 1.

 $\log_{(7^{1/2})} x + \log_{(7^{1/3})} x + \log_{(7^{1/4})} x + \dots$ is 460, then

 $(2) 7^{1/2}$

 $(4) 7^2$

If α and β are the roots of the equation, 2. $7x^2 - 3x - 2 = 0$, then the value of

$$\frac{\alpha}{1-\alpha^2}\!+\!\frac{\beta}{1-\beta^2}$$
 is equal to :

- $(1) \ \frac{27}{16} \qquad \qquad (2) \ \frac{1}{24}$
- (3) $\frac{27}{32}$

The derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with

respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at $x=\frac{1}{2}$ is :

(3) $\frac{2\sqrt{3}}{5}$

- 5. If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P. is:

 - (1) $\frac{2}{13}(3^{50}-1)$ (2) $\frac{1}{26}(3^{50}-1)$

 - (3) $\frac{1}{13}(3^{50}-1)$ (4) $\frac{1}{26}(3^{49}-1)$

- The value of $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30}$ is:
 - $(1) 2^{15} i$
- $(3) -2^{15} i$
- (4) 6⁵

- The area (in sq. units) of the region 8. $A = \{(x, y) : (x - 1) [x] \le y \le 2\sqrt{x}, 0 \le x \le 2\},\$ where [t] denotes the greatest integer function, is:
 - $(1) \ \frac{8}{3}\sqrt{2} \frac{1}{2} \qquad (2) \ \frac{8}{3}\sqrt{2} 1$
 - (3) $\frac{4}{3}\sqrt{2} \frac{1}{2}$ (4) $\frac{4}{3}\sqrt{2} + 1$
- If x = 1 is a critical point of the function **10.** $f(x) = (3x^2 + ax - 2 - a) e^x$, then:
 - (1) x = 1 is a local minima and $x = -\frac{2}{3}$ is a local maxima of f.
 - (2) x = 1 is a local maxima and $x = -\frac{2}{3}$ is a local minima of f.
 - (3) x = 1 and $x = -\frac{2}{3}$ are local minima of f.
 - (4) x = 1 and $x = -\frac{2}{3}$ are local maxima of f.

- If the length of the chord of the circle, 9. $x^2 + y^2 = r^2$ (r > 0) along the line, y - 2x = 3is r, then r^2 is equal to:
 - (1) $\frac{9}{5}$
- (2) $\frac{12}{5}$
- (3) 12

11. If the mean and the standard deviation of the data 3, 5, 7, a, b are 5 and 2 respectively, then a and b are the roots of the equation:

$$(1) 2x^2 - 20x + 19 = 0$$

$$(2) x^2 - 10x + 19 = 0$$

$$(3) x^2 - 10x + 18 = 0$$

$$(4) x^2 - 20x + 18 = 0$$

13. If $\int \frac{\cos \theta}{5 + 7\sin \theta - 2\cos^2 \theta} d\theta = A \log_e |B(\theta)| + C,$

where C is a constant of integration, then $\frac{B(\theta)}{A}$ can be:

$$(1) \frac{2\sin\theta + 1}{5(\sin\theta + 3)}$$

$$(2) \frac{2\sin\theta + 1}{\sin\theta + 3}$$

(3)
$$\frac{5(\sin \theta + 3)}{2\sin \theta + 1}$$

(3)
$$\frac{5(\sin\theta + 3)}{2\sin\theta + 1}$$
 (4) $\frac{5(2\sin\theta + 1)}{\sin\theta + 3}$

12. If a + x = b + y = c + z + 1, where a, b, c, x, y, z are non-zero distinct real numbers, then

$$\begin{vmatrix} x & a+y & x+a \\ y & b+y & y+b \\ z & c+y & z+c \end{vmatrix}$$
 is equal to:

$$(1) \ 0$$

$$(2) y(a - b)$$

$$(3) y (b - a)$$

$$(4) y(a - c)$$

If the line y = mx + c is a common tangent to 14.

the hyperbola $\frac{x^2}{100} - \frac{y^2}{64} = 1$ and the circle

 $x^2 + y^2 = 36$, then which one of the following is true?

- (1) 5m = 4
- $(2) 4c^2 = 369$
- $(3) c^2 = 369$
- (4) 8m + 5 = 0

- There are 3 sections in a question paper and **15.** each section contains 5 questions. A candidate has to answer a total of 5 questions, choosing at least one question from each section. Then the number of ways, in which the candidate can choose the questions, is:
 - (1) 1500
- (2) 2255
- (3) 3000
- (4) 2250

16. If for some $\alpha \in R$, the lines

$$L_1: \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-1}{1}$$
 and

 $L_2: \frac{x+2}{\alpha} = \frac{y+1}{5-\alpha} = \frac{z+1}{1}$ are coplanar, then the

line L_2 passes through the point :

- (1) (-2, 10, 2)
- (2) (10, 2, 2)
- (3) (10, -2, -2) (4) (2, -10, -2)

- 17. Let y = y(x) be the solution of the differential equation $\cos x \frac{dy}{dx} + 2y \sin x = \sin 2x$, $x \in \left(0, \frac{\pi}{2}\right)$. If $y(\pi/3) = 0$, then $y(\pi/4)$ is equal

 - (1) $\sqrt{2} 2$ (2) $\frac{1}{\sqrt{2}} 1$

 - $(3) 2 \sqrt{2} \qquad (4) 2 + \sqrt{2}$

- 19. The statement $(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow (p \lor q))$
 - is:
 - (1) a contradiction
 - (2) equivalent to $(p \land q) \lor (\sim q)$
 - (3) a tautology
 - (4) equivalent to $(p \lor q) \land (\sim p)$

20. If
$$L = \sin^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$$
 and

$$M = cos^2 \left(\frac{\pi}{16}\right) - sin^2 \left(\frac{\pi}{8}\right)$$
, then :

(1)
$$M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

(2)
$$L = \frac{1}{4\sqrt{2}} - \frac{1}{4}\cos\frac{\pi}{8}$$

(3)
$$M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$$

(4)
$$L = -\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

- 18. Which of the following points lies on the tangent to the curve $x^4e^y + 2\sqrt{y+1} = 3$ at the point (1, 0)?
 - (1)(2, 2)
- (2) (-2, 6)
- (3) (-2, 4)
- (4) (2, 6)

- 23. The coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^6$ in powers of x, is _____.
- 21. In a bombing attack, there is 50% chance that a bomb will hit the target. At least two independent hits are required to destroy the target completely. Then the minimum number of bombs, that must be dropped to ensure that there is at least 99% chance of completely destroying the target, is _____.

1

- 24. If the lines x + y = a and x y = b touch the curve $y = x^2 3x + 2$ at the points where the curve intersects the x-axis, then $\frac{a}{b}$ is equal to
- 22. Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then the number of elements in the set $C = \{f : A \rightarrow B | 2 \in f(A) \text{ and } f \text{ is not one-one} \}$ is _____.

25. Let the vectors \vec{a} , \vec{b} , \vec{c} be such that $|\vec{a}| = 2$, $|\vec{b}| = 4$ and $|\vec{c}| = 4$. If the projection of \vec{b} on \vec{a} is equal to the projection of \vec{c} on \vec{a} and \vec{b} is perpendicular to \vec{c} , then the value of $|\vec{a} + \vec{b} - \vec{c}|$ is