EE1101: Signals and Systems JAN—MAY 2019

Tutorial Quiz 1 Solutions

Set A

Solution 1

x(1-t) = x(-t+1) can be obtained by shifting x(t) left by one unit and time reversing the signal (or time reversing first and then shifting right by one unit).

1 mark for graph and 1 mark for labeling.

1 mark for graph and 1 mark for labeling.

Solution 2

1.5 mark (digital marking) for each bit correctly solved with justification.

 \mathbf{a}

Let $y_1(t)$ is the output of a system to input $x_1(t)$ and $y_2(t)$ is the output to input $x_2(t)$. Let y(t) be the output of the system to the input $ax_1(t) + bx_2(t)$.

$$y(t) = ax_1\left(\frac{t}{2}\right) + bx_2\left(\frac{t}{2}\right)$$
$$= ay_1(t) + by_2(t)$$

Hence the system is **linear**.

Let y(t) is the output of a system to input x(t). Hence the system is **time invariant**.

Let $y_1(t)$ be the output of the system to the input $x(t-t_0)$.

$$y_1(t) = x \left(\frac{t}{2} - t_0\right)$$

But,

$$y(t - t_0) = x \left(\frac{t - t_0}{2}\right)$$
$$= x \left(\frac{t}{2} - \frac{t_0}{2}\right)$$
$$\therefore y(t - t_0) \neq y_1(t)$$

Hence the system is **time variant**.

b

Let $y_1[n]$ be the response of $x_1[n]$, $y_2[n]$ be the response of $x_2[n]$ and y[n] be the response of the combined input $x[n] = ax_1[n] + bx_2[n]$.

$$y_1[n] = x_1[n]x_1[n+1]$$

$$y_2[n] = x_2[n]x_2[n+1]$$

$$y[n] = ax_1[n] \times ax_1[n+1] + ax_1[n] \times bx_2[n+1] +$$

$$ax_1[n+1] \times bx_2[n] + bx_2[n] \times bx_2[n+1]$$

$$= a^2x_1[n]x_1[n+1] + abx_1[n]x_2[n+1] +$$

$$abx_1[n+1]x_2[n] + b^2x_2[n]x_2[n+1]$$

$$\neq ay_1[n] + by_2[n]$$

The given system is **non-linear**.

Let y[n] is the output of a system to input x[n]. Let $y_1[n]$ be the output of the system to the input $x[n-n_0].$

$$y_1[n] = x[n - n_0]x[n + 1 - n_0]$$

And,

$$y[n - n_0] = x[n - n_0]x[n + 1 - n_0]$$
$$\therefore y[n - n_0] = y_1[n]$$

Set B

Solution 1

 $-x(\frac{t}{2})$ can be obtained by time compressing x(t) and flipping it about the X-axis (or flipping first and then compressing).

1 mark for graph and 1 mark for labeling.

1 mark for graph and 1 mark for labeling.

Solution 2

1.5 mark (digital marking) for each bit correctly solved with justification.

 \mathbf{a}

Let y(t) is the output of a system to input x(t). Let $y_1(t)$ be the output of the system to the input $x(t-t_0)$.

$$y_1(t) = x(2t - 4 - t_0)$$

And,

$$y(t - t_0) = x(2(t - t_0) - 4)$$

$$\therefore y(t-t_0) \neq y_1(t)$$

Hence the system is **time variant**.

For t > 4, y(t) is dependent on future values of x(t). Hence, this system is **not causal**.

b

Let y[n] is the output of a system to input x[n]. Let $y_1[n]$ be the output of the system to the input $x[n-n_0]$.

$$y_1[n] = x^2[n - n_0]$$

And,

$$y[n - n_0] = x^2[n - n_0]$$

$$\therefore y[n-n_0] = y_1[n]$$

Hence the system is **time invariant**.

y[n] is not dependent on future values of x[n]. Hence, this system is **causal**.