Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Lecture 6

Hyperbolic Equations of first order - Part

FVM for Conservation Laws Linearization Boundary Conditions

Boundary conditions for hyperbolic equations

Boundary conditions for hyperbolic equations

- ▶ Hyperbolic problems are posed on whole \mathbb{R} (no boundary conditions) and are typically well-posed.
- ▶ Hyperbolic problems on an interval [a, b] are only well-posed for suitable boundary conditions.
- ► Where and how to pose boundary conditions depends on the characteristics of the problem.

Boundary conditions for hyperbolic equations

Example: Let $\mathbf{a} > \mathbf{o}$. We seek $\mathbf{u} = \mathbf{u}(\mathbf{x}, t) : [\mathbf{o}, \mathbf{1}] \times [\mathbf{o}, \infty) \to \mathbb{R}$

$$\partial_t u(x,t) + \mathbf{a} \partial_x u(x,t) = \mathbf{0}$$
 and $u(x,\mathbf{0}) = \mathbf{v_0}(x)$ for $\mathbf{0} \le x \le 1$.

At x = 0: Characteristics going into domain \Rightarrow impose BC. At x = 1: Characteristics going out of domain \Rightarrow no BC.

Boundary Conditions

< □ > < ⑤

Boundary conditions for hyperbolic equations

Naturally, values at x = 1 are given by

$$u(1,t) = \begin{cases} v_0(1-at) & \text{for } t \leq \frac{1}{a} \\ u_r & \text{for } t > \frac{1}{a}. \end{cases}$$

⇒ well-posed problem.

< □ > < □ >

Boundary conditions for hyperbolic equations General rule

- ► Boundary conditions <u>must</u> be posed at <u>inflow boundaries</u> (ingoing characteristics)
- ► Boundary conditions <u>cannot</u> be posed at outflow boundaries (outgoing characteristics)

< □ > < 🗗 >

Boundary conditions for systems:

- ▶ same rule applies BUT to the characteristic variables
- more than one characteristic at each boundary

- At x = o boundary conditions on z_2 , no conditions on z_1 .
 - x = 1 boundary conditions on z_1 , no conditions on z_2 .

< □ > < 🗗 >

Given a problem with BC in terms of "physical" variables must make sure that the problem is well-posed.

Example. u₂ could be a flow velocity. We consider:

$$\begin{split} \partial_t \mathbf{u}(x,t) + \mathbf{A} \partial_x \mathbf{u}(x,t) &= \mathbf{o}, \qquad \mathbf{u} = \begin{pmatrix} \mathbf{u_1} \\ \mathbf{u_2} \end{pmatrix}, \qquad x \in [\mathbf{o},\mathbf{1}]; \quad t \geq \mathbf{o}; \\ \mathbf{u}(x,\mathbf{o}) &= \mathbf{v_0}(x) \qquad \text{(initial condition)} \\ \mathbf{u_2}(\mathbf{o},t) &= \mathbf{u_2}(\mathbf{1},t) &= \mathbf{o} \qquad \text{(boundary condition: "solid walls")}. \end{split}$$

Well-posed?

Assume the eigenvalues of **A** fulfill $\lambda_1 < 0$ and $\lambda_2 > 0$. As before with $\mathbf{u} = \mathbf{Rz}$:

$$x = 0$$
: BC for \mathbf{z}_2
 $x = 1$: BC for \mathbf{z}_1 \Rightarrow well-posed problem.

Does this match with $\mathbf{u}_2(0,t) = \mathbf{u}_2(1,t) = 0$?

Boundary Conditions

Relation between **u** and **z** on the boundary:

At x = o we have $\mathbf{u}_2(o, t) = o$ (fixed) and $\mathbf{u}_1(o, t) = *$ (free, no BC posed):

$$\begin{pmatrix} * \\ \mathbf{0} \end{pmatrix} = \mathbf{u}(\mathbf{0},t) = \mathbf{Rz}(\mathbf{0},t) = \begin{pmatrix} \mathbf{R_{11}Z_1} + \mathbf{R_{12}Z_2} \\ \mathbf{R_{21}Z_1} + \mathbf{R_{22}Z_2} \end{pmatrix} \quad \overset{\text{second relation}}{\Rightarrow} \quad \mathbf{z_2}(\mathbf{0},t) = -\frac{\mathbf{R_{21}}}{\mathbf{R_{22}}}\mathbf{z_1}(\mathbf{0},t).$$

At x = 1 we have $\mathbf{u}_2(1, t) = 0$ (fixed) and $\mathbf{u}_1(1, t) = *$ (free, no BC posed):

Hence, the setting $\mathbf{u_2}(\mathbf{0},t) = \mathbf{u_2}(\mathbf{1},t) = \mathbf{0}$ corresponds to

$$\mathbf{z}_{2}(0,t) = -\frac{\mathbf{R}_{21}}{\mathbf{R}_{22}}\mathbf{z}_{1}(0,t)$$

$$\mathbf{z}_{1}(1,t) = -\frac{\mathbf{R}_{22}}{\mathbf{R}_{21}}\mathbf{z}_{2}(1,t)$$
Reflective boundary conditions

Why is it called a reflective boundary condition?

< □ > < □ >

FVM for Conservation Laws Linearization Boundary Conditions

Systems of hyperbolic equations

We have $\mathbf{z}_2(0,t) = -\frac{\mathbf{R}_{21}}{\mathbf{R}_{22}}\mathbf{z}_1(0,t)$ and $\mathbf{z}_1(1,t) = -\frac{\mathbf{R}_{22}}{\mathbf{R}_{22}}\mathbf{z}_2(1,t)$. Recall

- ▶ In (0, t) the information " $\mathbf{z}_1(0, t)$ " came from the interior.
- ln (1, t) the information " $\mathbf{z}_2(1, t)$ " came from the interior.

Hence both are known information.

- ▶ Value of \mathbf{z}_1 is reflected back in \mathbf{z}_2 at $x = \mathbf{0}$.
- ▶ Value of \mathbf{z}_2 is reflected back in \mathbf{z}_1 at x = 1.

We conclude $\mathbf{u}_2(0,t) = \mathbf{u}_2(1,t) = 0$ is well-posed.

< □ > < □ >

How do we implement the boundary conditions?

For
$$j = 1, \dots, N-1$$
 and $n \in \mathbb{N}$ let
$$\mathbf{Q}^{j,n} = (\mathbf{Q}_1^{j,n}, \mathbf{Q}_2^{j,n}) \approx (\mathbf{u}_1(x_i, t^n), \mathbf{u}_2(x_i, t^n)).$$

At x = 0: use a ghost cell (for \mathbf{u}_2). Denoting $Q^j := Q_2^{j,n}$:

▶ Boundary condition for $\mathbf{u_2}$ in x = 0:

$$\mathbf{u_2}(0,t) = 0 \quad \Rightarrow \quad \frac{Q_2^{-1,n} + Q_2^{0,n}}{2} = 0 \quad \Rightarrow \quad Q_2^{-1,n} = -Q_2^{0,n}, \qquad n \ge 0.$$

► No boundary condition for \mathbf{u}_1 in $x = \mathbf{o}$:

Extrapolate to have conditions for $Q_1^{-1,n}$. E.g.

$$Q_1^{-1,n} = Q_1^{0,n}$$
 for all $n \geq 0$.

←□ → ←⊡

FVM for Conservation Laws Linearization Boundary Conditions

Non-reflecting boundary conditions

What boundary condition should we impose in order to avoid reflections at the boundary?

We do not want information to be reflected back into the domain. Recall

$$\mathbf{u}(\mathbf{0},t) = \begin{pmatrix} \mathbf{R}_{11}\mathbf{Z}_{1}(\mathbf{0},t) + \mathbf{R}_{12}\mathbf{Z}_{2}(\mathbf{0},t) \\ \mathbf{R}_{21}\mathbf{Z}_{1}(\mathbf{0},t) + \mathbf{R}_{22}\mathbf{Z}_{2}(\mathbf{0},t) \end{pmatrix} \qquad \overset{\text{if } \mathbf{z}_{2}(\mathbf{0},t) = \mathbf{0}}{\Rightarrow} \qquad \mathbf{u}(\mathbf{0},t) = \begin{pmatrix} \mathbf{R}_{11} \\ \mathbf{R}_{21} \end{pmatrix} \mathbf{z}_{1}(\mathbf{0},t)$$

" $\mathbf{z}_2(0,t) = 0$ " is admissible choice, because: allowed to prescribe BC for \mathbf{z}_2 in (0,t). On the other hand, $\mathbf{z}_1(0,t)$ is information coming from the interior.

Non-reflecting boundary conditions

We have

$$\mathbf{u}(\mathbf{o},t) = \begin{pmatrix} \mathbf{R}_{11}\mathbf{z}_1(\mathbf{o},t) + \mathbf{R}_{12}\mathbf{z}_2(\mathbf{o},t) \\ \mathbf{R}_{21}\mathbf{z}_1(\mathbf{o},t) + \mathbf{R}_{22}\mathbf{z}_2(\mathbf{o},t) \end{pmatrix} \quad \overset{\text{if } \mathbf{z}_2(\mathbf{o},t) = \mathbf{o}}{\Rightarrow} \quad \mathbf{u}(\mathbf{o},t) = \begin{pmatrix} \mathbf{R}_{11} \\ \mathbf{R}_{21} \end{pmatrix} \mathbf{z}_1(\mathbf{o},t)$$

Analogously

STOCKHOLM

$$\mathbf{u}(1,t) = \begin{pmatrix} \mathbf{R}_{11}\mathbf{z}_{1}(1,t) + \mathbf{R}_{12}\mathbf{z}_{2}(1,t) \\ \mathbf{R}_{21}\mathbf{z}_{1}(1,t) + \mathbf{R}_{22}\mathbf{z}_{2}(1,t) \end{pmatrix} \quad \overset{\text{if } \mathbf{z}_{1}(1,t)=0}{\Rightarrow} \quad \mathbf{u}(1,t) = \begin{pmatrix} \mathbf{R}_{12} \\ \mathbf{R}_{22} \end{pmatrix} \mathbf{z}_{2}(1,t)$$

- $\mathbf{z}_{2}(0,t) = \mathbf{0}$ and " $\mathbf{z}_{1}(1,t) = \mathbf{0}$ " are admissible choices (allowed to prescribe BCs).
- $ightharpoonup \mathbf{z}_1(0,t)$ and $\mathbf{z}_2(1,t)$ are information coming from the interior (natural).
- Solution only given by initial conditions; rest is cancelled at boundaries.
- $\mathbf{u}(0,t)$ and $\mathbf{u}(1,t)$ only depends on information coming from characteristic directions.
- \triangleright Values $\mathbf{u}(0,t)$ and $\mathbf{u}(1,t)$ are decoupled, because \mathbf{z}_1 and \mathbf{z}_2 are decoupled.
- ightharpoonup ightharpoonup No reflection ightharpoonup Well-posed problem.

2521

Non-reflecting boundary conditions

Note on the transfer to physical boundary conditions:

- ► Translate BCs $\mathbf{z}_2(0,t) = 0$ and $\mathbf{z}_1(1,t) = 0$ into explicit BCs for \mathbf{u} .
- From $\mathbf{z}_2(0,t) = 0$ and $\mathbf{z}_1(1,t) = 0$ we have

$$\mathbf{u}(\mathbf{0},t) = \begin{pmatrix} \mathbf{R}_{11} \\ \mathbf{R}_{21} \end{pmatrix} \mathbf{z}_1(\mathbf{0},t) \qquad \text{and} \qquad \mathbf{u}(\mathbf{1},t) = \begin{pmatrix} \mathbf{R}_{12} \\ \mathbf{R}_{22} \end{pmatrix} \mathbf{z}_2(\mathbf{1},t)$$

Recalling that $\mathbf{u} = \mathbf{Rz}$ and that for p = 1, 2

$$\mathbf{z}_p(x,t) = \mathbf{z}_p(x - \lambda_p t, \mathbf{o}) = (\mathbf{R}^{-1}\mathbf{v}(x - \lambda_p t))_p$$

we conclude the explicit physical boundary conditions

$$\mathbf{u}(\mathbf{0},t) = \begin{pmatrix} \mathbf{R}_{11} \\ \mathbf{R}_{21} \end{pmatrix} \mathbf{z}_{1}(\mathbf{0},t) = \begin{pmatrix} \mathbf{R}_{11} \\ \mathbf{R}_{21} \end{pmatrix} (\mathbf{R}^{-1}\mathbf{v}(-\lambda_{1} t))_{1}$$

and

$$\mathbf{u}(\mathbf{1},t) = \begin{pmatrix} \mathbf{R}_{12} \\ \mathbf{R}_{22} \end{pmatrix} \mathbf{z}_{2}(\mathbf{0},t) = \begin{pmatrix} \mathbf{R}_{12} \\ \mathbf{R}_{22} \end{pmatrix} (\mathbf{R}^{-1}\mathbf{v}(\mathbf{1} - \lambda_{2} t))_{2}.$$

We can also apply extrapolation to realize the BC for u.