Wie der holung

Algoni-Homen Pseu do Gode

Korrektheit - Invariante

Instrtion Sort

Analyse der Zeitkomplexifat

tj = # Durch læufe der while - 5 Alei fe in Abh. von j.

Best case: $t_3 = 1$ falls Folge Sortiet vot.

Worst case: $t_j = j$ falls Folge um gekelvet Sortieit

n $\sum_{j=2}^{n} 1 = n-1$ Best case j=2 j=3 j=3 j=3 j=3 j=3 j=3 j=3j=3

 $\frac{h(n+1)}{2}-1$

Worst case

$$= \frac{\sqrt{2} + \sqrt{9}}{2} - 1$$

$$h^{2} \left(\frac{C_{5}}{2} + \frac{C_{6}}{2} + \frac{C_{7}}{2} \right) + n \left(c_{1} + c_{2} + c_{4} + \frac{C_{5}}{2} - \frac{C_{6}}{2} - \frac{C_{7}}{2} + c_{8} \right)$$

$$- \left(2 + c_{4} + c_{5} + c_{8} \right) \qquad quadvatish$$

Best case: linear, optimal

$$\Theta(\cancel{f})$$
 wurde auf Folie definiert und "fast" gezeigt
$$\frac{1}{2} n^2 - 3n = \Theta(n^2)$$

$$\frac{7}{2} n^3 \in \Theta(n^2)$$

$$\lim_{n \to \infty} \frac{6n^3}{n^2} = \infty$$

n→ ∞ n²

Angmommen, es gabe euri passendes (c_2) dann wate $6n^3 \le c_2n^2 \quad \forall n > n_0$ $6n \le c_2 \quad \forall n > n_0$

falson für hinreichund großes n, namlich (n > 52 für) 6

O(g) definie tauf Folie. $1000 \text{ n}^2 = O(\text{n}^2 \log \text{n})$ $n^2 \log \text{n} = \Omega(1000 \text{ n}^2)$

 $f \in O(g)$ - f wadst \times rudit S deneller alog $f \in O(g)$ - f wadst \times ridit C an g amerals g $f \in O(g)$ - f wadst \times C an g amerals g

* asymptotisch

Theorem ①
$$f \in \Theta(g) \Leftrightarrow$$
 $f \in O(g) \land f \in L(g)$
② $f \in O(g) \Leftrightarrow g \in L(f)$
 $f \ominus g \Leftrightarrow f \in \Theta(g)$

die anderen Relationen analog
transitiv $O_1 L_1 \ominus_1 o^2$
reflexiv $O_1 L_1 \ominus$
Symmetriodh \ominus
 $\Theta(1)$ browstant
 $\Theta(n)$ linear
 $\Theta(n)$ quasilinear
 $\Theta(n^3)$ kulsisch

O (nk) polynomiell
O (2n) exponentiell