Inferenza

Patrizio Frederic

2025-04-24

Inferire

Dalla Treccani si definisce l'atto di inferire come: Trarre, partendo da una determinata premessa o dalla constatazione di un fatto, una conseguenza, un giudizio, una conclusione. Inferire: un atto cognitivo fondamentale

▶ Inferire = trarre conclusioni da osservazioni o idee

Inferire: un atto cognitivo fondamentale

- ▶ Inferire = trarre conclusioni da osservazioni o idee
- ► Collega idee ed esperienze con altre idee

Inferire: un atto cognitivo fondamentale

- ▶ Inferire = trarre conclusioni da osservazioni o idee
- ► Collega idee ed esperienze con altre idee
- ▶ Richiede riconoscimento, elaborazione, astrazione

Inferenza	nel	mond	\circ	anıma	le
IIIICICIIZa	1101	IIIOIIU	U	allilla	

► Alcune specie evolute apprendono regolarità dall'ambiente

Inferenza nel mondo animale

- Alcune specie evolute apprendono regolarità dall'ambiente
- ► Adattano il comportamento in base all'esperienza

Inferenza nel mondo animale

- Alcune specie evolute apprendono regolarità dall'ambiente
- Adattano il comportamento in base all'esperienza
- ► Inferenza implicita, non consapevole

lacktriangle Se succede questa condizione ightarrow adotto questo comportamento

- $lackbox{ }$ Se succede questa condizione ightarrow adotto questo comportamento
- Perché succede questa condizione?

- lacktriangle Se succede questa condizione ightarrow adotto questo comportamento
- Perché succede questa condizione?
- Cosa succederebbe se adottassi un altro comportamento?

- lacktriangle Se succede questa condizione ightarrow adotto questo comportamento
- Perché succede questa condizione?
- Cosa succederebbe se adottassi un altro comportamento?
- Se succedesse questa situazione ipotetica?

- ightharpoonup Se succede questa condizione ightharpoonup adotto questo comportamento
- Perché succede questa condizione?
- Cosa succederebbe se adottassi un altro comportamento?
- Se succedesse questa situazione ipotetica?
- Se succederebbe se in questa situazione ipotetica, adottassi un comportamento ipotetico?

L'uomo prende coscienza dell'atto inferenziale

- L'uomo prende coscienza dell'atto inferenziale
- Costruisce linguaggi simbolici e modelli astratti

- L'uomo prende coscienza dell'atto inferenziale
- Costruisce linguaggi simbolici e modelli astratti
- Nascono logica, matematica, statistica

- L'uomo prende coscienza dell'atto inferenziale
- Costruisce linguaggi simbolici e modelli astratti
- Nascono logica, matematica, statistica
- L'inferenza diventa replicabile e comunicabile

▶ Deduttiva: da premesse date a conclusioni necessarie

- ▶ Deduttiva: da premesse date a conclusioni necessarie
 - ightharpoonup Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$

- ▶ Deduttiva: da premesse date a conclusioni necessarie
 - ▶ Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$

- ▶ Deduttiva: da premesse date a conclusioni necessarie
 - ▶ Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - Michele è una mucca → Tutte le mucche hanno le ali → Michele ha le ali

- Deduttiva: da premesse date a conclusioni necessarie
 - ▶ Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - Michele è una mucca \rightarrow **Tutte** le mucche hanno le ali \rightarrow Michele ha le ali
 - Se x > 2 allora $x^2 > 4 \to x = 3 \to x^2 = 9 > 4$

- Deduttiva: da premesse date a conclusioni necessarie
 - ightharpoonup Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - ▶ Michele è una mucca \rightarrow **Tutte** le mucche hanno le ali \rightarrow Michele ha le ali
 - ► Se x > 2 allora $x^2 > 4 \to x = 3 \to x^2 = 9 > 4$
 - ► Se P(B|A) = 1, e P(C|B) = 1 allora P(C|A) = 1

- Deduttiva: da premesse date a conclusioni necessarie
 - ightharpoonup Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - ▶ Michele è una mucca \rightarrow **Tutte** le mucche hanno le ali \rightarrow Michele ha le ali
 - Se x > 2 allora $x^2 > 4 \rightarrow x = 3 \rightarrow x^2 = 9 > 4$
 - ► Se P(B|A) = 1, e P(C|B) = 1 allora P(C|A) = 1
- Induttiva diretta: da modello noto a probabilità di osservazioni

- ▶ Deduttiva: da premesse date a conclusioni necessarie
 - ightharpoonup Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - Michele è una mucca → Tutte le mucche hanno le ali → Michele ha le ali
 - Se x > 2 allora $x^2 > 4 \rightarrow x = 3 \rightarrow x^2 = 9 > 4$
 - ▶ Se P(B|A) = 1, e P(C|B) = 1 allora P(C|A) = 1
- Induttiva diretta: da modello noto a probabilità di osservazioni
 - questa una pallina → alcune palline sono vincenti → calcolo la probabilità che sia vincente

- ▶ Deduttiva: da premesse date a conclusioni necessarie
 - ▶ Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow$ **Tutti** gli uomini sono mortali $(U \Rightarrow M) \rightarrow$ Socrate è mortale $(S \Rightarrow M)$
 - Michele è una mucca \rightarrow **Tutte** le mucche hanno le ali \rightarrow Michele ha le ali
 - Se x > 2 allora $x^2 > 4 \rightarrow x = 3 \rightarrow x^2 = 9 > 4$
 - ▶ Se P(B|A) = 1, e P(C|B) = 1 allora P(C|A) = 1
- Induttiva diretta: da modello noto a probabilità di osservazioni
 - ► questa una pallina → alcune palline sono vincenti → calcolo la probabilità che sia vincente
 - Michele è un uomo \rightarrow **Alcuni** uomini hanno l'allele APOE ε 4 \rightarrow 0 < $P(\mathsf{APOE}\ \varepsilon 4\ |\ \mathsf{Michele}) < 1$

- ▶ Deduttiva: da premesse date a conclusioni necessarie
 - ▶ Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - Michele è una mucca \rightarrow **Tutte** le mucche hanno le ali \rightarrow Michele ha le ali
 - Se x > 2 allora $x^2 > 4 \rightarrow x = 3 \rightarrow x^2 = 9 > 4$
 - ▶ Se P(B|A) = 1, e P(C|B) = 1 allora P(C|A) = 1
- ▶ Induttiva diretta: da modello noto a probabilità di osservazioni
 - questa una pallina → alcune palline sono vincenti → calcolo la probabilità che sia vincente
 - Michele è un uomo \rightarrow **Alcuni** uomini hanno l'allele APOE ε 4 \rightarrow 0 < $P(\mathsf{APOE}\ \varepsilon$ 4 | Michele) < 1
- Induttiva inversa (statistica): da dati osservati a modello incognito

- Deduttiva: da premesse date a conclusioni necessarie
 - ▶ Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - Michele è una mucca \to **Tutte** le mucche hanno le ali \to Michele ha le ali
 - Se x > 2 allora $x^2 > 4 \to x = 3 \to x^2 = 9 > 4$
 - ► Se P(B|A) = 1, e P(C|B) = 1 allora P(C|A) = 1
- Induttiva diretta: da modello noto a probabilità di osservazioni
 - \blacktriangleright questa una pallina \to alcune palline sono vincenti \to calcolo la probabilità che sia vincente
 - Michele è un uomo \rightarrow **Alcuni** uomini hanno l'allele APOE ε 4 \rightarrow 0 < $P(\mathsf{APOE}\ \varepsilon 4\ |\ \mathsf{Michele}) < 1$
- Induttiva inversa (statistica): da dati osservati a modello incognito
 - Estraggo 10 palline → 6 palline sono vincenti → com'è composta l'urna?

- Deduttiva: da premesse date a conclusioni necessarie
 - ▶ Se $A \Rightarrow B$ e $B \Rightarrow C$, allora $A \Rightarrow C$
 - Socrate è un uomo $(S \Rightarrow U) \rightarrow \textbf{Tutti}$ gli uomini sono mortali $(U \Rightarrow M) \rightarrow \textbf{Socrate}$ è mortale $(S \Rightarrow M)$
 - Michele è una mucca → Tutte le mucche hanno le ali → Michele ha le ali
 - Se x > 2 allora $x^2 > 4 \rightarrow x = 3 \rightarrow x^2 = 9 > 4$
 - ▶ Se P(B|A) = 1, e P(C|B) = 1 allora P(C|A) = 1
- Induttiva diretta: da modello noto a probabilità di osservazioni
 - questa una pallina → alcune palline sono vincenti → calcolo la probabilità che sia vincente
 - Michele è un uomo \rightarrow Alcuni uomini hanno l'allele APOE ε 4 \rightarrow 0 < P(APOE ε 4 | Michele) < 1
- Induttiva inversa (statistica): da dati osservati a modello incognito
 - Estraggo 10 palline → 6 palline sono vincenti → com'è composta l'urna?
 - ▶ Osservo 100 persone \rightarrow 53 hanno l'allele APOE ε 4 \rightarrow com'è composta l'urna?

Inferenza statistica

▶ Trasforma osservazioni parziali in conoscenza generalizzabile

Inferenza statistica

- ▶ Trasforma osservazioni parziali in conoscenza generalizzabile
- ▶ Richiede un linguaggio formale per esprimere incertezza

Inferenza statistica

- ▶ Trasforma osservazioni parziali in conoscenza generalizzabile
- ▶ Richiede un linguaggio formale per esprimere incertezza
- ► Formalizza una capacità innata nell'uomo

Campione e Campionamento

► Tutta l'inferenza parte dall'osservazione di un campione

Campione e Campionamento

- ► Tutta l'inferenza parte dall'osservazione di un campione
- ▶ Il campione è al fonte principale di informazione

Campione e Campionamento

- ► Tutta l'inferenza parte dall'osservazione di un campione
- Il campione è al fonte principale di informazione
- Rappresenta (idealmente) qualcosa di più grande

Campioni Casuali

La casualità nella selezione garantisce generalizzabilità

Campioni Casuali

- La casualità nella selezione garantisce generalizzabilità
- Senza casualità: rischio di distorsione sistematica

Campioni Casuali

- La casualità nella selezione garantisce generalizzabilità
- Senza casualità: rischio di distorsione sistematica
- La probabilità permette di misurare l'incertezza

Popolazioni chiuse, elencabili (es. censimenti)

- Popolazioni chiuse, elencabili (es. censimenti)
- ▶ Necessario un registro completo della popolazione

- Popolazioni chiuse, elencabili (es. censimenti)
- Necessario un registro completo della popolazione
- Richiede disegno campionario, strumenti di rilevazione, controllo qualità

- Popolazioni chiuse, elencabili (es. censimenti)
- Necessario un registro completo della popolazione
- Richiede disegno campionario, strumenti di rilevazione, controllo qualità
- ► Tipica delle statistiche ufficiali (ISTAT, Eurostat, OCSE)

► Forze di lavoro (ISTAT): tasso di occupazione, 77 000 famiglie/trim.

- ► Forze di lavoro (ISTAT): tasso di occupazione, 77 000 famiglie/trim.
- Consumi delle famiglie (ISTAT): diario spese, 30 000 famiglie/anno

- ► Forze di lavoro (ISTAT): tasso di occupazione, 77 000 famiglie/trim.
- Consumi delle famiglie (ISTAT): diario spese, 30 000 famiglie/anno
- ► EU-SILC (Eurostat/ISTAT): redditi e disuguaglianze, >20 000 famiglie

- ► Forze di lavoro (ISTAT): tasso di occupazione, 77 000 famiglie/trim.
- ► Consumi delle famiglie (ISTAT): diario spese, 30 000 famiglie/anno
- ► EU-SILC (Eurostat/ISTAT): redditi e disuguaglianze, >20 000 famiglie
- ► PISA (OCSE): competenze studenti quindicenni, 11 000 studenti/3 anni

- ► Forze di lavoro (ISTAT): tasso di occupazione, 77 000 famiglie/trim.
- Consumi delle famiglie (ISTAT): diario spese, 30 000 famiglie/anno
- ► EU-SILC (Eurostat/ISTAT): redditi e disuguaglianze, >20 000 famiglie
- ► PISA (OCSE): competenze studenti quindicenni, 11 000 studenti/3 anni
- ▶ PIAAC (OCSE): competenze adulti 16-65 anni, 5 000 individui

- ► Forze di lavoro (ISTAT): tasso di occupazione, 77 000 famiglie/trim.
- Consumi delle famiglie (ISTAT): diario spese, 30 000 famiglie/anno
- ► EU-SILC (Eurostat/ISTAT): redditi e disuguaglianze, >20 000 famiglie
- ► PISA (OCSE): competenze studenti quindicenni, 11 000 studenti/3 anni
- ▶ PIAAC (OCSE): competenze adulti 16-65 anni, 5 000 individui
- TALIS (OCSE): condizioni di lavoro degli insegnanti, 3 000 insegnanti

▶ Popolazioni non enumerate, concettualmente infinite

- ▶ Popolazioni non enumerate, concettualmente infinite
- ▶ I dati sono realizzazioni di una variabile aleatoria

- Popolazioni non enumerate, concettualmente infinite
- ▶ I dati sono realizzazioni di una variabile aleatoria
- ► Si adotta un approccio modellistico probabilistico

▶ I consumatori abituali degli spaghetti Barilla

- ▶ I consumatori abituali degli spaghetti Barilla
- Le aziende con un gestionale più vecchio di 10 anni

- ▶ I consumatori abituali degli spaghetti Barilla
- Le aziende con un gestionale più vecchio di 10 anni
- Le formiche presenti in una foresta tropicale

- I consumatori abituali degli spaghetti Barilla
- Le aziende con un gestionale più vecchio di 10 anni
- ▶ Le formiche presenti in una foresta tropicale
- ▶ I malati di diabete nel mondo

Esempi di inferenza da popolazioni infinite

Processi fisici e ambientali (es. temperatura, inquinanti)

Esempi di inferenza da popolazioni infinite

- Processi fisici e ambientali (es. temperatura, inquinanti)
- Produzione industriale (pezzi futuri)

Esempi di inferenza da popolazioni infinite

- Processi fisici e ambientali (es. temperatura, inquinanti)
- Produzione industriale (pezzi futuri)
- Eventi ripetibili (click, richieste a server)

Inferenza non parametrica e parametrica

 Non parametrica: osservazioni IID, nessuna ipotesi sulla distribuzione

Inferenza non parametrica e parametrica

- Non parametrica: osservazioni IID, nessuna ipotesi sulla distribuzione
- ▶ Parametrica: ipotesi su una famiglia di distribuzioni

Inferenza non parametrica e parametrica

- Non parametrica: osservazioni IID, nessuna ipotesi sulla distribuzione
- Parametrica: ipotesi su una famiglia di distribuzioni
- Scelta = compromesso tra flessibilità e precisione