Tutorial Sheet 1: COL726

Kartikeya Gupta, 2013CS10231

February 5, 2016

1. Discretization

(a) TODO: Put in proof Code for this problem is in the *Codes* folder. Result comparison:

Table 1: Variation of h with result

Value of h	Result
0.1	1.99662925254
0.01	1.99994799207
0.001	1.99999975037

(b) i. Solution of Differential Equation

$$y(x) = e^{x^2} + x$$

$$\implies LHS = y'(x) = 2xe^{x^2} + 1$$

$$\implies RHS = 2xy(x) - 2x^2 + 1$$

$$= 2xe^{x^2} + 2x^2 - 2x^2 + 1$$

$$= 2xe^{x^2} + 1$$

$$\implies LHS = RHS$$

- ii. Divided differenceTODO: Put in proof
- iii. Graph and analysisTODO: Write code and plot graphs
- (c) i. Deriving square root

$$y(x) = x^{2} - c$$

$$\implies y'(x) = 2x$$

$$\implies x_{k+1} = x_{k} - \frac{f(x)}{f'(x)}$$

$$= x_{k} - \frac{x_{k}^{2} - c}{2x_{k}}$$

$$c = 2 \implies x_{k+1} = \frac{x_{k}}{2} + \frac{1}{x_{k}}$$

- ii. Proof for digits of accuracy TODO: Write proof
- iii. Table of convergence rate Code can be found in the *Codes* folder.

Table 2: Variation of digits of accuracy with iterations

Number of Iterations	Value Guessed	Digits of Accuracy
0	1	0
1	1.5	1
2	1.4166666666666666666666666666666666666	2
3	1.414215686274509803921568628	5
4	1.414213562374689910626295579	10
5	1.414213562373095048801689624	23
6	1.414213562373095048801688724	27+

- (d) i. Truncation Error
 - ii. Rounding Error
 - iii. Truncation Error
 - iv. Truncation Error

2. Unstable and Ill-conditioned problems

(a) i.

$$y'(x) = (2/\pi)xy(y - \pi)$$

$$y(0) = y_0$$

$$\implies (\frac{1}{y - \pi} - \frac{1}{y})dy = 2xdx$$

$$\implies \log \frac{y - \pi}{y} = x^2 + c$$

$$\implies \frac{y - \pi}{y} = \frac{y_0 - \pi}{y_0} * e^{x^2}$$

$$\implies y = \frac{\pi * y_0}{y_0 + (\pi - y_0) * e^{x^2}}$$

ii. TODO: Clear confusion

(b) For the given equations:

$$x = 2y + 0.5$$
$$cx = ay - 2$$

The solution is: $x = \frac{8-a}{4c-2a}; y = \frac{4-c}{4c-2a}$. This problem is not stable.

Table 3: Variation of solution

	x	\mathbf{y}
c=2.998, a=6.001	-199.9	-100.2
c=2.998, a=6	-250	-125.25

(c) The roots of the equation can be seen as follows:

When we vary the value of c it can be seen that the roots first converge to 1

Table 4: Variation of roots

Value of c vs Roots	x_1	x_2	x_3
203	99.9796	1.1527	0.8677
202	99.9898	1.1057	0.9045
201	100	1	1
200	100.01	0.99+0.1i	0.99-0.1i
199	100.02	0.99 + 0.14i	0.99-0.14i

and then turn complex.

3. Unstable methods

- (a) The number of digits of accuracy in x will then be 2 as the value of $\sqrt{b^2 4ac}$ correctly to 8 digits is . The source for this error is that the value of b and $\sqrt{b^2 4ac}$ are very close to each other hence we lose precision while subtracting.
- (b) Roots of a quadratic equation are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} * \frac{-b \mp \sqrt{b^2 - 4ac}}{-b \mp \sqrt{b^2 - 4ac}}$$

$$= \frac{2c}{-b \mp \sqrt{b^2 - 4ac}}$$

The program for this can be found in the *Codes* folder. The results of this are as follows:

Table 5: Comparison of both methods

	$10^1 < a, c < 10^2; 10^3 < b < 10^6$	$10^1 < a, c < 10^2; 10^6 < b < 10^8$
Mean of difference in roots	0.00049	3573.818
Maximum difference in roots	0.0033	33072.863

- (c) The graph and code can be found in the codes folder. There is a large deviation between the real and value computed in this case because the value of error is amplifying with every iteration. The error is increasing by a factor of k while computing the I_k .
- (d) i. When the x_i are close to each other, the value of x_i and \bar{x} is close to each other. On squaring these 2 individually, because of limited digits of accuracy, the squared values will be close to each other. Hence the value of the result will be 0 or something very small.
 - ii. Refer to Codes folder.
- (e) TODO: Add reasons
 - i. No, sum1 is not equal to the true value.
 - ii. No sum2 and sum3 are not equal to the true values.
 - iii. No. sum4 and sum5 are not equal to their true values.