Latent Semantic Indexing

Seminar "Theoretical Topics in Data Science"

Vahe Eminyan

vahe.eminyan@rwth-aachen.de

10.01.2024

Overview

Introduction

LSI Background

Original Paper Overview and Emphasized Aspect

LSI by Random Projection

Summary and Newer Approaches

References

Introduction

Motivation

- Large datasets, often organized in tabular form, represented as matrices
 - Term-document matrix representing word occurrence in documents
 - Movie-user matrix representing watched movies of users
- Interesting aspects
 - Find documents semantically associated with a query
 - Recommend a new movie to a user

	Doc 1	Doc 2	 Doc m
Term 1	0	1	 1
Term 2	1	0	 1
Term n	1	0	 0

Terms
$$\begin{pmatrix} 0 & 1 & \dots & 1 \\ 1 & 0 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$$
$$n \times m$$

Introduction

Latent Semantic Indexing

- LSI as an information retrieval method
- Finds the latent (hidden) semantic structure of textual data. Solves the following problems:
 - Synonymy
 - Polysemy
- Represent term-document matrix as product of three matrices
- Answer queries with help of these matrices
- Based on singular value decomposition of the matrix

Singular Value Decomposition (SVD) [7]

Any n by m matrix of rank r can be factored into

$$A_{n\times m} = U_{[n\times r]}D_{[r\times r]}(V_{[m\times r]})^T.$$

- U column-orthonormal matrix: left singular vectors
- V column-orthonormal matrix: right singular vectors
- *D* diagonal matrix: Singular values $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r$ in decreasing order
- Vector notation

$$A = UDV^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

Singular Value Decomposition (SVD) Example: Matrix A with rank r = 3

Terms
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -0.48 & -0.79 & -0.11 \cdot 10^{-14} \\ -0.58 & 0.16 & 0.71 \\ -0.34 & \textbf{0.56} & 0.42 \cdot 10^{-15} \\ -0.56 & 0.16 & -0.71 \end{pmatrix} \times \begin{pmatrix} 2.1 & 0 & 0 \\ 0 & 1.26 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A \qquad \qquad U$$

Topic-Document similarity

$$\times \begin{pmatrix} -0.5 & \textbf{-0.71} & -0.5 \\ -0.5 & \textbf{0.71} & -0.5 \\ 0.71 & 0.67 \cdot 10^{-15} & -0.711 \end{pmatrix}$$

$$V^{T}$$

Latent Semantic Indexing based on SVD

• LSI considers A_k the rank k approximation of A (I.e. keep only k most relevant topics)

$$A_k = U_k D_k V_k^T = \sum_{i=1}^k \sigma_i u_i v_i^T$$

Terms
$$\begin{pmatrix} 1.0 & 0.01 & 1 \\ 0.51 & 1.01 & 0.51 \\ 0.0 & 1.01 & 0.0 \\ 0.49 & 0.98 & 0.49 \end{pmatrix} = \begin{pmatrix} -0.48 & -0.79 \\ -0.58 & 0.16 \\ -0.34 & 0.56 \\ -0.56 & 0.16 \end{pmatrix} \times \begin{pmatrix} 2.1 & 0 \\ 0 & 1.26 \end{pmatrix} \times \begin{pmatrix} -0.5 & \textbf{-0.71} & -0.5 \\ 0 & 1.26 \end{pmatrix} \times \begin{pmatrix} V_k^T \\ V_k^T \end{pmatrix}$$

• Map a query to k dimensional space with U_k , apply cosine similarity to find similar documents in $D_k V_k^T$

Latent Semantic Indexing based on SVD

Theorem (Eckart and Young [3])

Among all $n \times m$ matrices C of rank at most k, A_k is the one that minimizes $||A - C||_F^2 = \sum_{i,j} (A_{ij} - C_{ij})^2$, where F denotes the Frobenius norm of a matrix.

Original Paper Overview and Emphasized Aspect

- Strong empirical results of LSI
- Two important aspects
 - Why does LSI find semantically related documents?
 - How to reduce the computational complexity?
- Papadimitriou et al. [6] investigated both aspects:
 - 1. Under certain constraints semantically related documents are mapped to similar vectors
 - 2. Instead of LSI use LSI by random projection.
 - Map the original term-document matrix into a lower dimensional space
 - Use LSI on the lower dimensional matrix
- We focus on the second aspect

Random Projection for Dimensionality Reduction

Given a matrix $A \in \mathbb{R}^{n \times m}$ and a matrix $R \in \mathbb{R}^{\ell \times n}$. Use matrix R to reduce the dimensionality of matrix A while preserving pairwise distances between any two points:

$$B = \sqrt{\frac{n}{\ell}} \cdot R^T A \in \mathbb{R}^{\ell \times m}$$

Lemma (Johnson and Lindenstrauss [4])

Let $v \in \mathbb{R}^n$ be a unit vector, let H be a random ℓ -dimensional subspace through the origin, and let the random variable X denote the square of the length of the projection of v onto H. Suppose $0 < \epsilon < 0.5$, and $24 \log n < \ell < \sqrt{n}$. Then, $E[X] = \frac{\ell}{n}$, and

$$Pr(|X - \frac{\ell}{n}| > \epsilon \frac{\ell}{n}) < 2\sqrt{\ell}e^{-(\ell-1)\epsilon^2/4}$$

Two-Step LSI

1. Apply a random projection onto ℓ dimensions on A. $(\ell > k)$

$$B = \sqrt{\frac{n}{\ell}} \cdot \begin{pmatrix} & | & & | & \\ r_1 & r_2 & \cdots & r_\ell \\ & | & & | & \end{pmatrix}^T \cdot A$$

- 2. Apply rank O(k) LSI
- Improved computational complexity
- With high probability the original matrix A almost as good recovered as by directly using LSI (Formulation and proof of theorem later)

Comparison of Computational Time

Given the term-document matrix $A \in \mathbb{R}^{n \times m}$.

Time complexity of one-step LSI:

• LSI computation: O(mnc) if A is sparse with about c nonzero entries per column

Time complexity of LSI by random projection:

- Random projection to ℓ dimensions: $O(mc\ell)$
- LSI computation: $O(m\ell^2)$
- Together: $O(mc\ell + m\ell^2) = O(m(c\ell + \ell^2))$, with $\ell \in O(\frac{\log n}{\epsilon^2})$
- Hence we get a time complexity: $O(m(\log^2 n + c \log n))$

 $O(m(\log^2 n + c \log n))$ better than O(mnc)

Comparison of Both Matrices

- A : original term-document matrix
- B: original term-document matrix after random projection and scaling
- $\ell \in O(\frac{\log n}{\epsilon^2})$, with $\epsilon \in (0, 0.5)$
- Dimensionality reduction for each document $(\ell << n)$

$$\begin{pmatrix}
0 & 1 & \dots & 1 \\
1 & 0 & \dots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \dots & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0.47 & \dots & 0.47 \\
\vdots & \vdots & \ddots & \vdots \\
0.47 & 0 & \dots & 0
\end{pmatrix}$$

$$\ell \times m$$

Background and Notation for the Proof

Vector notations of SVD:

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^T, \qquad A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T, \qquad B = \sum_{i=1}^{\ell} \lambda_i a_i b_i^T, \qquad B_{2k} = A \sum_{i=1}^{2k} b_i b_i^T.$$

- A: original term-document matrix
- A_k : rank k approximation of A
- B: matrix after randomly projecting and scaling A
- B_{2k} : rank 2k approximation of A

Background and Notation for the Proof

Lemma (3)

Let ϵ be an arbitrary positive constant. If $\ell \ge c((\log n)/\epsilon^2)$ for a sufficiently large constant c then, for $p = 1, ..., \ell$

$$\lambda_p^2 \ge \frac{1}{k} \left[(1 - \epsilon) \sum_{i=1}^k \sigma_i^2 - \sum_{j=1}^{p-1} \lambda_j^2 \right].$$

Corollary (4)

$$\sum_{p=1}^{2k} \lambda_p^2 \ge (1 - \epsilon) ||A_k||_F^2.$$

Background and Notation for the Proof

Lemma (5)

$$||A - A_k||_F^2 = \sum_{i=k+1}^n \sigma_i^2.$$

Theorem (Parsevals identity [2])

Let $b_1, ..., b_n$ be an orthonormal basis for a space S. Then for each $s \in S$, $|s|^2 = \sum_{i=1}^n (sb_i)^2$.

Main Theorem

Theorem (Papadimitriou et al. [6])

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

where ϵ ∈ (0, 0.5)

Informally, the theorem states that the original matrix A after applying random projection and then LSI is with high probability almost as good recovered as by using one-step LSI on the original matrix.

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

Proof

We have

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^T, \qquad A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^T, \qquad B = \sum_{i=1}^{\ell} \lambda_i a_i b_i^T, \qquad B_{2k} = A \sum_{i=1}^{2k} b_i b_i^T.$$

 $b_1, ..., b_n$ Are orthonormal vectors spanning the row space of A and B_{2k} . Hence using the Parseval's identity we can write:

$$||A - B_{2k}||_F^2 = \sum_{i=1}^n |(A - B_{2k})b_i|^2.$$
 (1)

For i = 1, ..., 2k, because $b_i^T b_i = 1$, we have

$$(A - B_{2k})b_i = Ab_i - Ab_i = 0, (2)$$

and for i = 2k + 1, ..., n, because $b_j^T b_i = 0$, we have

$$(A - B_{2k})b_i = Ab_i. (3)$$

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

Proof (continued)

Now we continue from the equation

$$||A - B_{2k}||_F^2 = \sum_{i=1}^n |(A - B_{2k})b_i|^2$$
(4)

$$= \sum_{i=2k+1}^{n} |Ab_i|^2$$
 (5)

$$= \sum_{i=2k+1}^{n} |Ab_i|^2$$

$$= \sum_{i=1}^{n} |Ab_i|^2 - \sum_{i=1}^{2k} |Ab_i|^2$$
(5)

Parseval's id.
$$||A||_F^2 - \sum_{i=1}^{2k} |Ab_i|^2$$
 (7)

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

Proof (continued)

On the other hand, we have

$$||A - A_k||_F^2 \stackrel{\text{Lemma 5}}{=} \sum_{i=k+1}^n \sigma_i^2$$
Frob. norm [5] $||A||_F^2 - ||A_k||_F^2$. (9)

Frob. norm [5]
$$||A||_F^2 - ||A_k||_F^2$$
. (9)

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

Proof (continued)

Now we consider

$$||A - B_{2k}||_F^2 - ||A - A_k||_F^2 = ||A||_F^2 - \sum_{i=1}^{2k} |Ab_i|^2 - (||A||_F^2 - ||A_k||_F^2)$$
(10)

$$= ||A_k||_F^2 - \sum_{i=1}^{2k} |Ab_i|^2, \tag{11}$$

that is equivalent to

$$||A - B_{2k}||_F^2 = ||A - A_k||_F^2 + (||A_k||_F^2 - \sum_{i=1}^{2k} |Ab_i|^2)$$
(12)

Theorem (Papadimitriou et al. [6])

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

where $\epsilon \in (0, 0.5)$

Proof (continued)

For the next step, we show

$$(1+\epsilon)\sum_{i=1}^{2k}|Ab_i|^2 \ge \sum_{i=1}^{2k}\lambda_i^2.$$
(13)

We write

$$\sum_{i=1}^{2k} \lambda_i^2 \stackrel{|Bb_i| = \lambda_i}{=} \sum_{i=1}^{2k} |Bb_i|^2 \tag{14}$$

$$\stackrel{\text{sbst. B}}{=} \sum_{i=1}^{2k} \left| \sqrt{\frac{n}{\ell}} R^T(Ab_i) \right|^2 \tag{15}$$

$$=\sum_{i=1}^{2k} \frac{n}{\ell} \left| R^T(Ab_i) \right|^2 \tag{16}$$

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

Proof (continued)

Now from the Johnson-Lindenstrauss lemma [4] for very large $\ell \in \Omega((\log n)/\epsilon^2)$ we have for each i

$$\frac{n}{\ell}|R^T(Ab_i)|^2 \le (1+\epsilon)|Ab_i|^2 \tag{17}$$

with high probability.

Hence with a high probability

$$(1+\epsilon)\sum_{i=1}^{2k}|Ab_i|^2 \ge \sum_{i=1}^{2k}\lambda_i^2.$$
 (18)

Theorem (Papadimitriou et al. [6])

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

where ϵ ∈ (0, 0.5)

Proof (continued)

Now we have

$$\sum_{i=1}^{2k} |Ab_i|^2 \ge \frac{1}{(1+\epsilon)} \sum_{i=1}^{2k} \lambda_i^2 \tag{19}$$

Cor. 4
$$\frac{(1-\epsilon)}{(1+\epsilon)} ||A_k||_F^2$$
 (20)

$$\geq (1 - 2\epsilon) \|A_k\|_F^2 \tag{21}$$

l.e.

$$\sum_{i=1}^{2k} |Ab_i|^2 \ge (1 - 2\epsilon) ||A_k||_F^2 \tag{22}$$

Theorem (Papadimitriou et al. [6])

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2$$

where $\epsilon \in (0, 0.5)$

Proof (continued)

Remember the Equation (12):

$$||A - B_{2k}||_F^2 = ||A - A_k||_F^2 + (||A_k||_F^2 - \sum_{i=1}^{2k} |Ab_i|^2)$$

Now we substitute the result of Equation (22) in equation (12):

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + ||A_k||_F^2 - (1 - 2\epsilon)||A_k||_F^2$$
(23)

$$\iff ||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A_k||_F^2 \tag{24}$$

Due to the formulation of Frobenius norm as in Lemma 5, we have $||A||_F^2 \ge ||A_k||_F^2$. Hence

$$||A - B_{2k}||_F^2 \le ||A - A_k||_F^2 + 2\epsilon ||A||_F^2.$$
(25)

Summary and Newer Approaches

- Latent semantic analysis: SVD-based technique for information retrieval
- Papadimitriou et al. analysed two important aspects [6]
 - Why does LSI find semantically related documents?
 - How to reduce the computational time ? (Our main focus)
- LSI by random projection: reduction of computational complexity, while preventing the expressiveness of original matrix with high probability.
- There are newer techniques based on neural networks [8, 1]

References

William L. Hamilton, Rex Ying, and Jure Leskovec.

Representation learning on graphs: Methods and applications.

IEEE Data Eng. Bull., 40(3):52-74, 2017.

URL: http://sites.computer.org/debull/A17sept/p52.pdf.

Leslie Hogben, editor.

Handbook of Linear Algebra.

Chapman and Hall/CRC, 2nd edition, 2013.

https://doi.org/10.1201/b16113.

C. Reinsch J. H. Wilkinson.

Handbook for Automatic Computation.

Springer Berlin, Heidelberg, volume ii: linear algebra edition, 1971.

William B Johnson.

Extensions of lipshitz mapping into hilbert space.

In Conference modern analysis and probability, 1984, pages 189–206, 1984.

Changxue Ma, Y. Kamp, and L.F. Willems.

A frobenius norm approach to glottal closure detection from the speech signal.

IEEE Transactions on Speech and Audio Processing, 2(2):258-265, 1994. doi:10.1109/89.279274.

Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh Vempala.

Latent semantic indexing: A probabilistic analysis.

Journal of Computer and System Sciences, 61(2):217-235, 2000.

URL: https://www.sciencedirect.com/science/article/pii/S0022000000917112, doi:10.1006/jcss.2000.1711.

Gilbert Strang.

Linear Algebra and Its Applications.

Cengage Learning, 4th edition edition, 2005.

References

Liang Yao, Chengsheng Mao, and Yuan Luo.

Graph convolutional networks for text classification.

In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 7370–7377, 2019.