Varianta 51

Subiectul I.

- **a)** $2\sqrt{2}$.
- **b**) $2\sqrt{2}$
- c) Ecuația căutată este: $(x-1)^2 + (y-2)^2 8 = 0$.
- **d**) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.
- **e)** $V_{ABCD} = 15$.
- **f**) a = -7 și b = 22.

Subjectul II.

- 1
- a) Calcul direct.
- **b)** Probabilitatea căutată este $p = \frac{4}{8} = \frac{1}{2}$.
- c) g(11)=1.
- **d**) x = 0.
- **e)** $x_1 \cdot x_2 \cdot x_3 = -1$.
- 2.

a)
$$f'(x) = \frac{7}{3}x^{\frac{4}{3}}, \ \forall x \in \mathbf{R}$$
.

b)
$$\int_{0}^{1} f(x) dx = \frac{13}{10}$$
.

c) $f'(x) \ge 0$, $\forall x \in \mathbf{R}$, deci f e strict crescătoare pe \mathbf{R} .

d)
$$\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = \frac{7}{3}$$
.

e)
$$\int_{0}^{1} (e^{x} + \sin x) dx = e - \cos 1$$
.

Subjectul III.

- a) det(A) = 0 şi rang(A) = 2.
- **b)** $A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ şi $A^3 = O_3$.
- c) Se arată prin calcul direct.
- **d**) Dacă pentru $X \in M_3(\mathbb{C})$ avem $f(X) = X^{2007}$ inversabilă, atunci și

 $\det(X^{2007}) = (\det(X))^{2007} \neq 0$, deci $\det(X) \neq 0$, adică X este inversabilă.

e)
$$\det(Z) = 0$$
 implică $a = 0$ și se arată ușor că $Z^3 = O_3$.

f)
$$U = A$$
, $V = O_3$.

g) Presupunem că există
$$X \in M_3(\mathbb{C})$$
 astfel încât $f(X) = A$.

Din
$$X^{2007} = A$$
 obtinem că $det(X) = 0$.

Mai mult, deoarece XA=AX din **c**) ș**i e**) rezultă că $X^3=O_3$, deci $X^{2007}=\left(X^3\right)^{669}=O_3\neq A$, contradicție.

Subjectul IV.

a)
$$I_1 = \frac{1}{6}$$
.

- b) Evident.
- **c**) Ridicând la puterea a n a și apoi integrând dubla inegalitate de la **b**) obținem concluzia.
- d) Se arată prin calcul direct.
- e) Se folosește principiul I de inducție.

f) Din **d)** avem că
$$\forall k \in \mathbb{N}^*$$
, $I_k = \frac{1}{4} \cdot \frac{2k}{2k+1} I_{k-1}$.

Înlocuindu-l succesiv pe k cu numerele 1, 2, ..., n în identitatea precedentă și

înmulțind relațiile obținute, deducem că $\forall n \in \mathbb{N}^*$, $I_n = \frac{2}{3} \cdot \frac{4}{5} \cdot \dots \cdot \frac{2n}{2n+1} \cdot \left(\frac{1}{4}\right)^n$.

$$\mathbf{g)} \lim_{n\to\infty} \left(n\cdot 4^n\cdot I_n\right) = \lim_{n\to\infty} \frac{2}{3}\cdot \frac{4}{5}\cdot \dots \cdot \frac{2n}{2n+1}\cdot n = \lim_{n\to\infty} \frac{n}{2n+1}\cdot \frac{2}{1}\cdot \frac{4}{3}\cdot \dots \cdot \frac{2n}{2n-1}.$$

Din e) deducem:
$$\forall n \in \mathbb{N}^*$$
, $\frac{2}{1} \cdot \frac{4}{3} \cdot \dots \cdot \frac{2n}{2n-1} > \sqrt{2n+1}$, deci $\lim_{n \to \infty} \frac{2}{1} \cdot \frac{4}{3} \cdot \dots \cdot \frac{2n}{2n-1} = +\infty$

$$\operatorname{si} \lim_{n \to \infty} \left(n \cdot 4^n \cdot I_n \right) = \lim_{n \to \infty} \frac{n}{2n+1} \cdot \frac{2}{1} \cdot \frac{4}{3} \cdot \dots \cdot \frac{2n}{2n-1} = +\infty.$$