CS543 / ECE 549: Computer Vision, Homework 1

Semester: Spring 2021

Name: Francis Yu (hangy6)

1 Vanishing Points and Vanishing Lines

Without losing generality, we choose a pair of parallel lines from plane $\mathbf{N}^T\mathbf{X}=d$, A: $Y=kX,Z=d-N_xX-N_yY$, B: $Y=kX+b,Z=d-N_xX-N_yY$. From basic geometry knowledge we know that the projection of the lines in a 2D plane are still lines. Thus, we select $(0,0,d),(t,kt,z_a)$ from A and $(0,b,z_0),(t,kt+b,z_b)$ from B where $z_0=Z(0,b),z_a=Z(t,kt),z_b=Z(t,kt+b)$ to compute the equations of the projected lines in 2D plane.

Converting from camera coordinate to the image coordinate, we get the selected points from A are (0,0) and $(\frac{ft}{z_a},\frac{fkt}{z_a})$, the selected points from B are $(0,\frac{fb}{z_0})$ and $(\frac{ft}{z_b},\frac{f(kt+b)}{z_b})$. Thus we get:

$$A: y = kx$$

$$B: y = (k + \frac{b(z_0 - z_b)}{z_0 t})x + \frac{fb}{z_0}$$

Solve the intersecting point of line A and line B in the image plane, we get:

$$x' = \frac{ft}{z_b - z_0} = \frac{ft}{\frac{d - N_x t - N_y (kt + b) - d + N_y b}{N_z}} = -\frac{fN_z}{N_x + N_y k}$$
$$y' = kx' = -\frac{fN_z k}{N_x + N_y k}$$

Substitute k back with $\frac{y}{x}$, we get:

$$x' = -fN_z \frac{x}{N_x x + N_y y}, y' = -fN_z \frac{y}{N_x x + N_y y}$$

Thus we have:

$$N_x x' + N_y y' = -f N_z$$

Thus we know the intersecting point of line A and line B in the image plane always lies on the line $N_x x + N_y y + f N_z = 0$

2 Rectangle and Cylinder under Perspective Projection

1. Suppose the right side of the projection on the image plane is x distance away from Z-axis, then from the basic geometry knowledge, we have:

$$\frac{f}{Z} = \frac{x}{d}$$

$$\frac{f}{Z} = \frac{l+x}{L+d}$$

Thus we have:

$$x = \frac{df}{Z}$$

$$l = \frac{f(L+d)}{Z} - x = \frac{fL}{Z}$$

2. If we know the corresponding L in question 1, then we can easily get the result from question 1. Suppose L is broken into L_1 and L_2 which are the left part and right part of L broken by center of the circle, then we have:

$$\frac{r}{L_1} = \frac{Z}{\sqrt{Z^2 + (d + L_1)^2}}$$
$$\frac{r}{L_2} = \frac{Z}{\sqrt{Z^2 + (d - L_2)^2}}$$

Then we get:

$$L_1 = \frac{r^2d + Zr\sqrt{Z^2 - r^2 + d^2}}{Z^2 - r^2}$$

$$L_2 = \frac{-r^2d + Zr\sqrt{Z^2 - r^2 + d^2}}{Z^2 - r^2}$$

Hence, $L = L_1 + L_2 = \frac{2Zr\sqrt{Z^2 - r^2 + d^2}}{Z^2 - r^2}$. Then according to question 1 we have that:

$$l = \frac{fL}{Z} = \frac{2fr\sqrt{Z^2 - r^2 + d^2}}{Z^2 - r^2}$$

3 Phong Shading Model

The generated figures are shown in Figure 1-4

In the code, the first thing I do is to use a Numpy 3D array to contain the camera coordinates in each pixel coordinates, computed by $X = \frac{(x-cx)Z}{f}, Y = \frac{(y-cy)Z}{f}$. Z coordinates can be obtained directly from the given Z matrix.

Surface normal vector \hat{n} can be derived directly from matrix N (N[y, x, :]).

 $\hat{v_i}$ contains both point light direction, which is derived by point_light_loc - camera_coordinates, and directional light direction, which is given as directional_light_direction.

 $\hat{v_r}$ is computed by directly using the negative of the camera coordinates tensor because we assume the camera is at the origin point.

 $\hat{s_i}$ also contains both point light reflection direction and directional light reflection direction. The reflection light direction vector can be computed by $2(x \cdot N) - x$, where x is the incident light vector and both N and x are unit vector.

Figure 1: Specular 0 move direction

Figure 2: Specular 0 move point

Figure 3: Specular 1 move direction

Figure 4: Specular 1 move point

4 Dynamic Perspective

1. First we have that:

$$x = \frac{fX}{Z}$$
$$y = \frac{fY}{Z}$$

Thus take the derivative we have:

$$\dot{x} = \frac{f(\dot{X}Z - \dot{Z}X)}{Z^2}$$

$$\dot{y} = \frac{f(\dot{Y}Z - \dot{Z}Y)}{Z^2}$$

2. See **Figure 5-9**

- In scenario 1, we have $t_z = 1$ and use road image
- In scenario 2, we have $t_x = 1$ and use wall image
- In scenario 3, we have $t_z = 1$ and use wall image
- In scenario 4, we have $t_x=1, t_y=1, t_z=1$ and use wall image
- In scenario 5, we have $\omega_y = 1$ and use wall image

Figure 5: 4.2.1

Figure 6: 4.2.2

Figure 7: 4.2.3

Figure 8: 4.2.4

Figure 9: 4.2.5