Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики
Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе 3 по дисциплине "математическая статистика"

Выполнил студент:

Аникин Александр Алексеевич, группа $3630102\80201$

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург

Содержание

1	Пос	становка задачи	4
2	Teo	рия	5
	2.1	Рассматриваемые распределения	5
	2.2	Боксплот Тьюки	5
		2.2.1 Построение	5
	2.3	Теоретическая доля выбросов	6
3	Pea	лизация	7
4	Рез	ультаты	8
	4.1	Боксплоты	8
	4.2	Эмпирическая и теоретическая доли выбросов	13
$\mathbf{\Pi}$	итер	атура	14

Список иллюстраций

1	Боксплоты для нормального распределения (1)	8
2	Боксплоты для распределения Коши (2)	9
3	Боксплоты для распределения Лапласа (3)	10
4	Боксплоты для распределения Пуассона (4)	11
5	Боксплоты для равномерного распределения (5)	12

Список таблиц

1	Теоретические доли выбросов	6
2	Эмпирические и теоретические доли выбросов	13

1 Постановка задачи

Для следующих распределений:

- Нормальное распределение N(x, 0, 1)
- Распределение Коши C(x,0,1)
- \bullet Распределение Лапласа $L(x,0,\frac{1}{\sqrt{2}})$
- Распределение Пуассона P(k, 10)
- Равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$

Стенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки. Для каждого распределения определить долю выбросов экспериментально (сгенерировав выборку, соответствующую распределению 1000 раз, и вычислив среднюю долю выбросов) и сравнить с результатами, полученными теоретически.

2 Теория

2.1 Рассматриваемые распределения

Плотности:

• Нормальное распределение:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{1}$$

• Распределение Коши:

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

• Распределение Лапласа:

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{3}$$

• Распределение Пуассона:

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение:

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при} \quad |x| \le \sqrt{3} \\ 0 & \text{при} \quad |x| > 3 \end{cases}$$
 (5)

2.2 Боксплот Тьюки

2.2.1 Построение

Границами ящика – первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выбросов). Длина «усов»:

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \quad X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1),$$
 (6)

где X_1 - нижняя граница, X_2 - верхняя граница, Q_1 - первый квартиль, Q_2 - нижний квартиль.

Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков [1].

2.3 Теоретическая доля выбросов

Можно вычислить теоретические первый и третий квартили распределений - $Q_1^TQ_2^T$. По формуле (6) можно вычислить теоретические нижнюю и верхнюю границы уса - $X_1^TX_2^T$. Под выбросами понимаются такие величины x, что

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(7)

Теоретическая вероятность выбросов:

• для непрерывных распределений:

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = F(X_1^T) + (1 - F(X_2^T))$$
(8)

• для дискретных распределений:

$$P_B^T = P(x < X_1^T) + P(x > X_2^T) = (F(X_1^T) - P(x = X_1^T)) + (1 - F(X_2^T))$$
(9)

В формулах выше $F(X) = P(x \le X)$ - функция распределения.

Теоретические доли выбросов для данных распределений - постоянные величины. Их значения приведены в следующей таблице.

Нормальное распределение	0.007
Распределение Коши	0.156
Распределение Лапласа	0.063
Распределение Пуассона	0.008
Равномерное распределение	0

Таблица 1: Теоретические доли выбросов

3 Реализация

Лабораторная работа выполнена на языке Python $3.8~\mathrm{c}$ помощью загружаемых пакетов SciPy, MatPlotLib, Pandas, Seaborn. Исходный код лабораторной работы находится на GitHub репозитории.

4 Результаты

4.1 Боксплоты

normal

Рис. 1: Боксплоты для нормального распределения (1)

cauchy

Рис. 2: Боксплоты для распределения Коши (2)

laplace

Рис. 3: Боксплоты для распределения Лапласа (3)

poisson

Рис. 4: Боксплоты для распределения Пуассона (4)

uniform

Рис. 5: Боксплоты для равномерного распределения (5)

4.2 Эмпирическая и теоретическая доли выбросов

Распределение	Эмп. ДВ, $n = 20$	Эмп. ДВ, $n = 100$	Теор. ДВ
Нормальное	0.0248	0.0101	0.007
Коши	0.1509	0.1564	0.156
Лапласа	0.0725	0.0646	0.063
Пуассона	0.0646	0.0110	0.008
Равномерное	0.0018	0.0	0

Таблица 2: Эмпирические и теоретические доли выбросов

Нетрудно заметить, что при увеличении размера выборки эмпирическая доля выбросов стремится к теоретической.

Список литературы

 $[1] \ \ Box \ plot. \ URL: \verb|https://en.wikipedia.org/wiki/Box_plot|$