UTC BT169 SCR

DESCRIPTION

The UTC BT169 is glass passivated, sensitive gate thyristors in a plastic envelope, intended for use in general purpose switching and phase control applications. These devices are intended to be interfaced directly to microcontrollers, logic integrated circuits and other low power gate trigger circuits.

1:CATHODE 2:GATE 3:ANODE

QUICK REFERENCE DATA

PARAMETER	SYMBOL	MAX(B)	MAX(D)	MAX(E)	MAX(G)	UNIT
Repetitive peak off-state voltages	VDRM, VRRM	200	400	500	600	V
Average on-state current	IT(AV)	0.5	0.5	0.5	0.5	Α
RMS on-state current	IT(RMS)	0.8	0.8	0.8	0.8	Α
Non-repetitive peak on-state current	ITSM	8	8	8	8	Α

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNIT
Repetitive peak off-state voltages :	VDRM,VRRM			B:200	V
				D:400	
				E:500	
				G:600	
Average on-state current	IT(AV)	Half sine wave;		0.5	Α
		Tlead<=83°C			
RMS on-state current	IT(RMS)	All conduction angles		0.8	Α
Non-repetitive peak on-state current	ITSM	t=10ms		8	Α
		t=8.3ms		9	
		half sine wave;			
		Tj=25°C prior to surge			
I ² t for fusing	l ² t	t=10ms		0.32	A ² S
Repetitive rate of rise of on-state current	DI _⊤ /dt	ITM=2A;I _G =10mA;		50	A/μs
after triggering		dl _G /dt=100mA/μs			
Peak gate current	Igм			1	Α
Peak gate voltage	VGM			5	V
Peak reverse gate voltage	VRGM			5	V

UTC UNISONIC TECHNOLOGIES CO., LTD.

UTC BT169 SCR

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNIT
Peak gate power	Рсм			2	W
Average gate power	PG(AV)	Over any 20 ms period		0.1	W
Storage temperature	Tstg		-40	150	°C
Operating junction temperature	Tj			125	°C

THERMAL RESISTANCES

	-					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Thermal resistance junction to lead	Rth j-lead				60	K/W
Thermal resistance junction to	Rth j-a	pcb mounted;		150		K/W
ambient		lead length=4mm				

ELECTRICAL CHARACTERISTICS (Tj=25°C unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
STATIC						
Gate trigger current	IGT	VD=12V;IT=10mA;gate open circuit		50	200	μΑ
Latching current	IL	VD=12V;IGT=0.5mA; RGK=1k Ω		2	6	mA
Holding current	lн	VD=12V;IGT=0.5mA; RGK=1k Ω		2	5	mA
On-state voltage	VT	IT=1A		1.2	1.35	V
Gate trigger voltage	VgT	VD=12V;IT=10mA; gate open circuit		0.5	0.8	V
		VD=VDRM(max) ;IT=10mA ; Tj=125°C; gate open circuit	0.2	0.3		
Off-state leakage current	lD,lR	$VD=VDRM(max)$; $VR=VRRM(max)$; $Tj=125^{\circ}C$; $RGK=1k\Omega$		0.05	0.1	mA
DYNAMIC						
Ciritical rate of rise of off-state voltage	dVD/dt	VDM=67% VDRM(max); Tj=125°C; exponential waveform;RGK=1kΩ		25		V/µs
Gate controlled turn-on time	t _{gt}	ITM=2A;VD=VDRM(max); IG=10mA;dIG/dt=0.1A/μs		2		μs
Circuit commutated turn-off time	tq	VD=67% VDRM(max); Tj=125°C;ITM=1.6A;VR=35V ;dITM/dt=30A/μs; VD/dt=2V/μs;RGK=1kΩ		100		μs

UTC BT169

FIG.1 Maximum on-state dissipation, P tot, versus average on-state current, I $_{\text{T(AV)}}$, where a=form factor=I $_{\text{T(RMS)}}$ / IT(AV)

FIG.2 Maximum permissible non-repetitive peak on-state current ITSM ,versus pulse width tp,for sinusoidal currents, t $_{\text{p}}$ <=10ms.

FIG.3 Maximum permissible rms current I T(RMS), versus lead temperature, Tlead

FIG.4 Maximnum permissible non-repetitive peak on-state current I_{TSM} , versus number of cycles, for sinusoidal currents, f = 50Hz.

FIG.6 Normalised gate trigger voltage V GT(Tj)/VGT(25¢ XC), versus junction temperature Tj

UTC BT169

FIG.7 Normalised gate trigger current \$\delta\tau(Tj)/|\text{Gr}(25\circ \cdot C)\$, versus junction temperature Tj}

FIG.10 Typical and maximum on-state characteristic.

FIG.8 Normalised latching current $\text{ll}(Tj)/\text{lL}(25\,^{\circlearrowright}\,\text{XC}), versus$ junction temperature Tj, R_{SK} = 1K Ω

FIG.11 Transient thermal impedance Zth j-lead, versus pulse width tp.

FIG.9 Normalised holding current $\mbox{\it H}(Tj)/\mbox{\it H}(25\column{\,^\circ}{}\column{\,$ junction temperature Tj, Rsk=1K Ω

FIG.12 Typical, critical rate of rise of off-state voltage, dV_D/dt versus junction temperature Tj.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.