Programme n°25

MECANIQUE

M8 Mouvement dans un champ de force centrale

Cours et exercices

THERMODYNAMIQUE

TH1 Introduction à la thermodynamique (Cours et exercices)

- Corps pur diphasé en équilibre
- Changement d'état (rappels)
- Diagramme de phase (P, T)
- Equilibre liquide vapeur
- Variables d'état d'un système diphasé
- Diagramme de Clapeyron → Isotherme d'Andrews
 - → Diagramme global
 - → Titre d'un mélange liquide vapeur

	, This dan melange induite vaped
Corps pur diphasé en équilibre. Diagramme de phases (P,T).	Analyser un diagramme de phase expérimental (P,T).
Cas de l'équilibre liquide-vapeur : diagramme de Clapeyron (P,v), titre en vapeur.	Proposer un jeu de variables d'état suffisant pour caractériser l'état d'équilibre d'un corps pur diphasé soumis aux seules forces de pression.
	Positionner les phases dans les diagrammes (P,T) et (P,v).
	Interpréter graphiquement la différence de compressibilité entre un liquide et un gaz à partir d'isothermes expérimentales.
	Déterminer la composition d'un mélange diphasé en un point d'un diagramme (P,v).
	Expliquer la problématique du stockage des fluides.

TH2 Le premier principe de la thermodynamique (Cours uniquement)

- Transformation d'un système Définition
 - Transformations particulières
 - Notion qualitative de vitesse d'évolution
 - Echange d'énergie
- Le travail des forces de pression
- Le travail des forces de pression au cours d'une transformation élémentaire
- Le travail au cours d'une transformation finie
- Représentation graphique du travail des forces de pression
- Exemples
- Cas particulier d'un fluide en mouvement

2. Énergie échangée par un système au cours d'une transformation					
Transformation système.	thermodynamique	subie	par	un	Définir le système.
					Exploiter les conditions imposées par le milieu extérieur pour déterminer l'état d'équilibre final.
					Utiliser le vocabulaire usuel : évolutions isochore, isotherme, isobare, monobare, monotherme.

Travail des forces de pression. Transformations isochore, monobare.	Calculer le travail par découpage en travaux élémentaires et sommation sur un chemin donné dans le cas d'une seule variable.
	Interpréter géométriquement le travail des forces de pression dans un diagramme de Clapeyron.
Transfert thermique. Transformation adiabatique. Thermostat, transformations monotherme et	Identifier dans une situation expérimentale le ou les systèmes modélisables par un thermostat.
isotherme.	Proposer de manière argumentée le modèle limite le mieux adapté à une situation réelle entre une transformation adiabatique et une transformation isotherme.

SOLUTIONS AQUEUSES

- AQ3 L'oxydoréduction (Cours uniquement)

 ◆ Domaines de prédominance Oxydant et réducteur en solution Oxydant et réducteur en solution, les ions H⁺ présents dans la demi-équation Oxydant ou réducteur sous forme solide

 Oxydant ou réducteur sous forme gazeuse

 - Oxydant ou réducteur sous forme gazeuse
 - Utilité de ces diagrammes

<u>TP</u>

 $\overline{\mbox{lodom\'etrie}}: \mbox{dosage directe et dosage en retour.}$ Piles de concentrations : détermination d'un pK_S, d'un pK_D et de la formule d'un complexe