Tut 8: PCA Dimensional Reduction

Jan 2023

1. You are given 12 communities that were rated according to transportation and education — the higher the score the better. For example, a better transportation system will score higher. Higher education facilities will score higher as well. The table below shows the score for 12 communities in the two criteria:

Obs	Transportation	Education
1	1.1	0.5
2	3.9	3.2
3	1.5	1.6
4	5.6	7.5
5	2.5	1.8
6	7.3	7.2
7	1.4	1.9
8	6.1	7.0
9	1.5	1.6
10	5.1	6.6
11	1.8	2.0
12	7.5	8.0

(a) Plot a scatterplot to visualize your data.

(b) Generate two principal components for the data.

```
Solution. Calculating using R script:
```

```
Transport = c(1.1,3.9,1.5,5.6,2.5,7.3,1.4,6.1,1.5,5.1,1.8,7.5)

Education = c(0.5,3.2,1.6,7.5,1.8,7.2,1.9,7.0,1.6,6.6,2.0,8.0)

X = data.frame(Transport, Education)

PC = prcomp(X)

print(PC)
```

Standard deviations:

[1] 3.7504618 0.4861164

Rotation:

PC1 PC2 Transport 0.6429319 -0.7659234 Education 0.7659234 0.6429319

Manual calculation:

i. Shift X to centre, i.e. find $\mu_1 = 3.775$, $\mu_2 = 4.075$ and generate table X^* below.

$\overline{x_1}$	-2.675	0.125	-2.275	1.825	-1.275	3.525	-2.375
			2.325	-2.275	1.325	-1.975	3.725
$\overline{x_2}$	-3.575	-0.875	-2.475				
			2.925	-2.475	2.525	-2.075	3.925

ii. Calculate the covariance matrix for X^* , i.e.

$$C = \frac{1}{12 - 1} (\boldsymbol{X}^*)^T \boldsymbol{X}^* = \begin{bmatrix} 5.952955 & 6.810227 \\ 6.810227 & 8.349318 \end{bmatrix}$$

iii. Find the eigenvalues and eigenvectors of C which characterises the "variance" of the data X^* , i.e.

$$|C - \lambda I| = (5.952955 - \lambda)(8.349318 - \lambda) - 6.810227^2 = \lambda^2 - 14.302273\lambda + 3.323923 = 0$$

Using calculator, we obtain

$$\lambda = 0.236310, \ 14.065963 =: \lambda_1, \lambda_2$$

iv. We then find the eigenvalues for λ_1 and λ_2 :

$$e_1 = \frac{1}{\sqrt{6.810227^2 + (-5.716645)^2}} \begin{bmatrix} 6.810227 \\ -(5.952955 - 0.236310) \end{bmatrix} = \begin{bmatrix} 0.765923 \\ -0.6429319 \end{bmatrix}$$

$$e_2 = \frac{1}{\sqrt{6.810227^2 + (8.113008)^2}} \begin{bmatrix} 6.810227 \\ -(5.952955 - 14.065963) \end{bmatrix} = \begin{bmatrix} 0.6429319 \\ 0.765923 \end{bmatrix}$$

Observe that when $e_1 = [a, b]$ and $e_1 \cdot e_2 = 0$, $e_2 = [b, -a]$ is an answer.

v. Calculate the "principal components":

$$PC_1 = \sum_{i=1}^{2} e_{i1}(X_i - \mathbb{E}(X_i)) = 0.6429319x_1^* + 0.7659234x_2^*$$

$$PC_2 = \sum_{i=1}^{2} e_{i2}(X_i - \mathbb{E}(X_i)) = 0.7659234x_1^* - 0.6429319x_2^*$$

	-2i=1	02 (0	(0)
	PC_1		PC_2
-4.45	80188	-0.2496	3649
-0.589	98165	-0.6583	80582
-3.35	83304	0.1512	21924
3.79	66382	0.8042	23156
-2.56	22138	-0.4861	1775
4.659	98454	-0.6907	71771
-3.19	28465	0.4206	9114
3.73	51425	0.0998	80394
-3.35	83304	0.1512	21924
2.78	58412	0.6085	5455
-2.85	90814	0.1786	31498
5.40	11705	-0.3295	55688
D		<u> </u>	: 1

By rotating the "principal components" and shift it to the centre (μ_1, μ_2) , we can "recover" the original data.

(c) Choose one suitable principal component to represent the data.

Solution. It must be the first principal component, i.e. PC_1 .

(d) Plot your data with the principal component you chose in (c).

Solution. Projecting the centred data X^* to the space span by PC1:

Dotation.	1 TO Jeconna
$x_1^{\#}$	$x_2^\#$
-2.8662	-3.4145
-0.3792	-0.4518
-2.1592	-2.5722
2.4410	2.9079
-1.6473	-1.9625
2.9960	3.5691
-2.0528	-2.4455
2.4014	2.8608
-2.1592	-2.5722
1.7911	2.1337
-1.8382	-2.1898
3.4726	4.1369

(e) With the eigenvalues computed in (b), calculate the proportion of variance explained by each component and the cumulative proportion.

```
Solution. print(summary(PC))
                          3.7505 0.48612
Proportion of Variance
                          0.9835 0.01652
Cumulative Proportion
                          0.9835
                                                 PVE
                                                              Cumulative PVE
                               Eigenvalue
                      PC1
                                14.0660
                                                   = 0.9835
                                                                   0.9835
Manual calculation:
                                                                                      PC2
                                 0.2363
                                                   = 0.0165
                                                                      1
                                14.3023
                     \lambda_1 + \lambda_2
```

(f) With a targeted explained variation of 95%, how many principal components should be considered? State the total variation explained.

Solution. One principal component, PC1. Total variance explained is 98.35%.

2. (May 2020 Final Q4(a)) Given the following data with 8 observations in Table 4.1:

Table 4.1: Data with 2 features.

Obs	X	У
A	5.51	5.35
В	20.82	24.03
\mathbf{C}	-0.77	-0.57
D	19.30	19.39
\mathbf{E}	14.24	12.77
\mathbf{F}	9.74	9.68
G	11.59	12.06
H	-6.08	-5.22

Find the first principle component and project the data (5.51, 5.35) to the space span by the first principal component. (4 marks)

Solution. First, we need to find the mean: $\overline{x} = 9.29375$, $\overline{y} = 9.68625$ [0.5 mark] and shift the data to centre at the mean:

[0.5 mark]

Form the covariant matrix and

$$\frac{1}{8-1}X^TX = \begin{bmatrix} 614.8648 & 631.9173 \\ 631.9173 & 661.2402 \end{bmatrix} = \begin{bmatrix} 87.83783 & 90.27390 \\ 90.27390 & 94.46288 \end{bmatrix}$$
 [0.5 mark]

By solving the eigenvalue problem

$$\begin{vmatrix} 87.83783 - \lambda & 90.27390 \\ 90.27390 & 94.46288 - \lambda \end{vmatrix} = \lambda^2 - 182.3007\lambda + 148.0374 = 0$$
 [1 mark]

leads to the eigenvalues 181.4850, 0.8157

The first principle component corresponds \boldsymbol{v} to the linear algebra problem of the eigenvalue 181.4850

$$\begin{bmatrix} 87.83783 - 181.4850 & 90.27390 \\ 90.27390 & 94.46288 - 181.4850 \end{bmatrix} \boldsymbol{v} = \boldsymbol{0}$$

i.e.

$$v = \frac{1}{\sqrt{90.27390^2 + 93.64717^2}} \begin{bmatrix} 90.27390 \\ 93.64717 \end{bmatrix} = \begin{bmatrix} 0.69402 \\ 0.71995 \end{bmatrix}$$
 [0.5 mark]

The projection of (5.51, 5.35) to the first principle component space is

3. (Jan 2021 Final Q3(a)) Given the following data with 11 observations in Table 3.1:

Table 3.1: Data with two features.

Obs	X	У
1	-5.79	4.91
2	-3.73	4.87
3	-3.25	3.98
4	-2.61	4.09
5	-2.76	4.90
6	2.81	-5.34
7	2.92	-6.15
8	1.97	-4.51
9	5.17	-5.29
10	2.66	-7.10
11	3.47	-4.70

Find the proportions of variance and the principle components.

(5 marks)

Solution. First, we need to find the mean: $\overline{x} = 0.07818182$, $\overline{y} = -0.94$ [0.5 mark] and shift the data to centre at the mean:

•	Obs	X	У
_	1	-5.868182	5.85
	2	-3.808182	5.81
X=	3	-3.328182	4.92
	4	-2.688182	5.03
	5	-2.838182	5.84
	6	2.731818	-4.40
	7	2.841818	-5.21
	8	1.891818	-3.57
	9	5.091818	-4.35
	10	2.581818	-6.16
	11	3.391818	-3.76

[0.5 mark]

Form the covariant matrix and

$$\frac{1}{11-1}X^TX = \begin{bmatrix} 138.5108 & -187.3119 \\ -187.3119 & 281.8462 \end{bmatrix} = \begin{bmatrix} 13.85108 & -18.73119 \\ -18.73119 & 28.18462 \end{bmatrix}.$$
 [1 mark]

By solving the eigenvalue problem

$$\begin{vmatrix} 13.85108 - \lambda & -18.73119 \\ -18.73119 & 28.18462 - \lambda \end{vmatrix} = \lambda^2 - 42.0357\lambda + 39.52995 = 0$$

The proportions of variance are

$$\frac{41.073275}{41.073275 + 0.962425} = 0.977105, \quad \frac{0.962425}{41.073275 + 0.962425} = 0.022895 \qquad [0.5 \text{ mark}]$$

The first principle component corresponds \boldsymbol{v} to the linear algebra problem of the eigenvalue 41.073275

$$\begin{bmatrix} 13.85108 - 41.073275 & -18.73119 \\ -18.73119 & 28.18462 - 41.073275 \end{bmatrix} v = \mathbf{0}$$

i.e.

$$v = \frac{1}{\sqrt{(-18.73119)^2 + (27.222195)^2}} \begin{bmatrix} -18.73119\\ 27.222195 \end{bmatrix} = \begin{bmatrix} -0.566856\\ 0.823817 \end{bmatrix}$$
 [1 mark]

The second principle component is orthogonal to the first principle component:

$$\begin{bmatrix} 0.823817 \\ 0.566856 \end{bmatrix}$$
 [0.5 mark]