LINEAR TRANFORMATIONS,

- 1. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation Such that $T(x_1y_1z) = (x_1+2y_2, y_1+z_1x_1+y_2)$ Find basis and dimension of range space of Tand Noll space of T. (Apr-22)
- 2. Find the range space, Null space, rank, nullity of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x_1y_1z) = (x_1y_1, x_1y_2, x_2y_1, x_1y_2)$ (Apr-23)
- 3. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation such that $T(x_1y_1z_1t) = (x-y+z+t, x+z-t, x+y+z-t)$ Find basis, elimension of Range (T), Ker (T).
- 4. Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1b) = (a_1b, a_2b, b)$ is a Linear Transfect. Also verity Rank nullity Theorem.