PROBLEM SET 2

Due October 4th, 2001

Problem 1 (#2 from Folland p.24). Complete the reminding cases of the Proof of Proposition 1.2 (Folland p. 22) by proving that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}(\mathcal{E}_j)$ for all $j \geq 3$.

Problem 2 (#4 from Folland p.24). An algebra \mathcal{A} is a σ -algebra if and only if \mathcal{A} is closed under countable increasing unions (by the latter it is meant that if $\{E_j\}_{j=1}^{\infty} \subset \mathcal{A}$ and $E_1 \subset E_2 \subset E_3 \subset \cdots$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{A}$).

Problem 3 (#5 from Folland p.24). If \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} . (Hint: show that the latter object is a σ -algebra).

Problem 4 (#7 from Folland p.27). If $\mu_1, \mu_2, \dots, \mu_n$ are measures on (X, \mathcal{M}) and $a_1, a_2, \dots, a_n \in [0, \infty)$, then $\sum_{j=1}^n a_j \mu_j$ is a measure on (X, \mathcal{M}) .

Problem 5 (#9 from Folland p.27). If (X, \mathcal{M}, μ) is a measure space and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$

Problem 6 (#10 from Folland p.27). Given a measure space (X, \mathcal{M}, μ) abd $E \in \mathcal{M}$, define

$$\mu_E(A) = \mu(A \cap E)$$
 for $A \in \mathcal{M}$.

Prove that μ_E is a measure.

Problem 7. Provide a complete proof of Proposition 1.4 p. 23 of Folland. That is prove the following:

Suppose that \mathcal{M}_{α} is generated by \mathcal{E}_{α} , $\alpha \in A$. Then $\bigoplus_{\alpha \in A} \mathcal{M}_{\alpha}$ is generated by

$$\mathcal{F}_1 := \{ \pi_{\alpha}^{-1}(E_{\alpha}) : E_{\alpha} \in \mathcal{E}_{\alpha}, \alpha \in A \}.$$

If A is countable and $X_{\alpha} \in \mathcal{E}_{\alpha}$ for all α , $\bigoplus_{\alpha \in A} \mathcal{M}_{\alpha}$ is generated by

$$\mathcal{F}_2 := \{ \Pi_{\alpha \in A}(E_\alpha) : E_\alpha \in \mathcal{E}_\alpha \}.$$

Note: Verbatim reproduction of the proof in book with no further explanations or justifications of claims is not acceptable. If you use a previous result please state <u>clearly</u> what are you using instead of just refering to numbering in the book.