Advanced Statistics DS2003 (BDS-4A) Lecture 20

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science, FAST
28 April, 2022

Previous Lecture

- Use of Python for linear regression analysis:
 - Example with real sample data
 - Example with randomly generated values
- Multiple Linear Regression

Today

- Revision of Linear Regression
 - Sum of squares for x and y
 - Sum of products for x, y
- Least squares regression model
 - Residuals sum to zero, and the line always passes through (\bar{x}, \bar{y})

Weights of books

	weight (g)	volume (cm ³)	cover
1	800	885	hc
2	950	1016	hc
3	1050	1125	hc
4	350	239	hc
5	750	701	hc
6	600	641	hc
7	1075	1228	hc
8	250	412	pb
9	700	953	pb
10	650	929	pb
11	975	1492	pb
12	350	419	pb
13	950	1010	pb
14	425	595	pb
15	725	1034	pb

Modeling weights of books using volume

somewhat abbreviated output...

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 107.67931 88.37758 1.218 0.245 Volume 0.70864 0.09746 7.271 6.26e-06
```

```
Residual standard error: 123.9 on 13 degrees of freedom Multiple R-squared: 0.8026, Adjusted R-squared: 0.7875 F-statistic: 52.87 on 1 and 13 DF, p-value: 6.262e-06
```

Modeling weights of books using volume and cover type

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	197.96284	59.19274	3.344	0.005841	**
volume	0.71795	0.06153	11.669	6.6e-08	***
cover:pb	-184.04727	40.49420	-4.545	0.000672	***

```
Residual standard error: 78.2 on 12 degrees of freedom Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154 F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07
```

28/4/2022 Po & P2 are chosen to minimize $\sum e_i^* = \sum (Y_i - \hat{Y_i})^* = \sum (Y_i - (\hat{\beta_0} + \hat{\beta_1} \times i))^*$ This is called the method of least squares. $SS_{xx} = Sum of squares for X'' = \sum (X_i - \bar{X})^2$ $S_x^2 = \frac{SS_{xx}}{h-1}$ 35yy = " sum of squares for $y'' = \sum (y_i - \bar{y})^2$ 5y' = 55yy various of yisquares SPxy = usum of products " = 2 (Xi-X)(Yi-9) Sample covariance -> Cov(x,y) = SPx4 Bo = Y - Bo X Hardness vs Density for 36 $\hat{\beta_1} = \frac{SP_{XY}}{SS_{XX}} = \frac{Cov(x,y)}{Var(x)}$ Australian Tree Species: Hardness -Coefficients | Estimate | Std. Error tralue | Pr(>1+1) -1160.50 108.58 -10.69 2.07e-12 57.507 12.279 25.24 | Lae-16 "Density" to predict "Hardness" $\hat{y} = -1160.50 + 57.507 \times \hat{B}_{0}$ For least squares regression: -> The residuals sum to 0 (Ee; =0) -> The line passes through (X, Y) $SE_{b_0} = \frac{3}{\sqrt{n}} * \sqrt{1 + \frac{(\overline{x})^2}{Vac(x)}}$ $SE_{b_1} = \frac{S}{\sqrt{n}} * \frac{1}{Stder(x)}$ S(st. error of the regression) = \[\frac{1}{\lambda_{-2}} \frac{\varphi}{\varphi_{-1}} \varphi \frac{\varphi}{\varphi_{-1}} \tag{\varphi} \tag{\varphi_{-1}} \\ \lambda_{-1} $R^2 = 1 - \frac{Var(emors)}{Var(Y)}$

28/4/2022 A study inevestigated a possible relationship both eggshall thickness & environmental contaminants in brown pesticide. pelican eggs The figure shows a scalterplot of shell thickness US DDT level in a sample of 65 brown pelican eggs on Amacapa Island, California We use a compuler to fit the loss- squares regression lue. Estimal Std-Error t value (Pr (> 161)) Intercept 4.231e-01 2.128e-02 19.880 < 2e-16 DDT -8.732e-05 1.603c-05 -5.448 9e-07 $\hat{Y} = 0.4231 - 0.00008732 \times$ egg with DDT-2000 -> prediction of Brichness? Ý = Bô + BÎ X = 0.4231 - (0.00008732 * 2000) = 0-24846 mm What proportion of the variability in eggshell thickness can be explained by the linear relationship w / DDT? 2 -> decreasing trend reasons - random variability about the line proportion due to the "decreasing trend" is 12 (r=correlation coefficient) coefficient of determination r=) proportion of the variability in response variable y that it attributable to the Renear relationship w/ X. Multiple R-squared = 0.3202 => 12 = 0.3202 "32% of the variability in egyshall thickness can be explained by the linear relationship with DDT

Thus, 168% Of variability => random variation -

Before doing any statistical inference, we should chech the raidual plots. (Plots of e; - Yi - Yi) Jobs Spred.

28/4/2022 Simple reg. model. -) error follow normal distribution, ... etc. -) constant variance

Plot looks fine. Normal) -> plot theoretical quantiles

Test the Ho : no linear relationship both Y & X.

$$\mu_0: \beta_1 = \emptyset$$

$$t = \frac{\hat{\beta_1} - \emptyset}{SE(\hat{\beta_1})} = \frac{-8.732 \times 10^{-5} - \emptyset}{1.603 \times 10^{-5}}$$

But, we don't conclude "causation"

p-value = 9e - 07 = 0.0000009 "strong evidence against tho",

weight of books (g)					
1	800		lvole	eme (cm³)	
2	950	-	D	885	
3	1050	1	B	1016	
4	260	1	0	1125	
5	750	1	B	239	
6	600		A	701	
7	1075	_	3	641	-
8	250))	1228	
9	700	1	7	412	
10	650		7	953	
11	975	1	Y	929	
12	350		"	1472	
13	950)	419	
14	425		7)	1010	T
15	725	1)	595	1

1034

Coeffi	cients		
	Est^	8E	t-val
- (Intercept)	107.679	88-37	1.218
Volume	0-70864	0-09-	746 7.271
R2=0.8	026		

Jbstatistics (Youtube)

- Simple Linear Regression: The Least Squares Regression Line
 - https://www.youtube.com/watch?v=coQAAN4eY5s
- Simple Linear Regression: An Example
 - https://www.youtube.com/watch?v=xIDjj6ZyFuw

Sources

• openintro.org/os (Chapter 9, Section 9.1)

Linear Regression using Excel:

https://ldrv.ms/x/s!Apc0G8okxWJ1zCUKXCGBs8TgfywO?e=I69d5e