RAGS

JAEMIN.OH

Date: December 19, 2020.

2 JAEMIN.OH

Problem (13.1).

I think the given condition should be modified: A is ν -null whenever $\mu(A) = 0$. With this, $\nu = \nu^+ - \nu^-$ and they are all absolutely continuous positive measure with respect to μ . Therefore we can apply the Radon-Nikodym theorem, so $d\nu^+ = f_1 d\mu$ and $d\nu^- = f_2 d\mu$. Then $f = f_1 - f_2$ is what we desired.

Problem (13.2).

Statement: Let ν be a finite signed measure and let μ be σ -finite positive measure. Then $\nu = \nu_a + \nu_s$ where $\nu_a \ll \mu$ and $\nu_s \perp \mu$. Note that $\nu_a \ll \mu$ means $|\nu_a| \ll \mu$.

This can be proved by decomposing ν into $\nu^+ - \nu^-$.

Problem (13.3).

j++j

Problem (13.4).

j++;

Problem (13.5).

First assume that $\nu \ll \mu$ and $\mu \ll \nu$. Then there are f_1, f_2 such that

$$d\nu = f_1 d\mu, \ d\mu = f_2 d\nu.$$

By change of variable formula,

$$\mu(A) = \int_A f_2 d\nu = \int_A f_2 f_1 d\mu.$$

Thus, $\mu(f_1f_2=0) > 0$ gives the contradiction.

For the other direction, assume that $d\nu = f d\mu$ for f > 0 μ -a.e. Clearly $\nu \ll \mu$. Now let $E_n = \{f > 1/n\}$. When $\nu(A) = 0$,

$$\frac{1}{n}\mu(A\cap E_n)\leq \int_A f d\mu=\nu(A)=0.$$

Thus $\mu(A \cap E_n) = 0$ for all n, and by letting $n \to \infty$, we can get $\mu(A) = 0$.

Problem (13.6).

First,

$$\mu(f=0) \le \mu\left(f \le \frac{1}{n}\right) \le \frac{1}{n}\rho\left(f \le \frac{1}{n}\right) \le \frac{1}{n}\rho(X)$$

thus by letting $n \to \infty$ we can get $\mu(f=0)=0$, which means f>0 μ -a.e.

Now,

$$\rho(A) = \mu(A) + \nu(A) = \int_A f + gd\rho$$

for all A. Thus

$$\int_A f + g - 1d\rho = 0$$

which means f + g = 1 ρ -a.e.

Since $\nu \ll \mu$, there is h such that $d\nu = hd\mu$. But,

$$\int_{A} g d\rho = \nu(A) = \int_{A} h d\mu = \int_{A} h f d\rho$$

RAGS 3

by change of variable formula. Thus g=hf ρ -a.e. Therefore $h=d\nu/d\mu=g/f$. \Box