CKY example

Based on these slides by Dávid Nemeskey

The input sentence

The dog bit John

The grammar

```
S
           \rightarrow NP VP
             ProperNoun VP
              NP Verb
              ProperNoun Verb

ightarrow Det Nominal
NP
               Det Noun
Nominal

ightarrow Nominal Noun
                Noun Noun

ightarrow Verb NP
۷P
            | Verb ProperNoun
```

Now we can apply the CKY algorithm...

First, we start by drawing the upper triangular matrix

Each column is assigned to a word in the sentence

We note the word indices each cell corresponds to

The diagonal records the terminal production rules (POS). Ambiguity: bit can also be a noun

There is not much else to do in the first column

On to the second column...

Non-leaf cells correspond to binary rules:

- the first constituent on the right side of the rule is to the *left*
- the second one is down

The first rule application: NP ightarrow Det Noun

On to the third column...

Rule application: Nominal \rightarrow Noun Noun

[1]	Det	[1-2]	NP	[1–3]		[1–4]
	the	[2]	Noun	[2–3]	Nominal	[2–4]
			dog	[3]	Noun Verb	[3–4]
					bit	ProperNoun [4]
						John

In general, non-leaf cells with N words can be split into two in N-1 ways.

In general, non-leaf cells with N words can be split into two in N-1 ways. When N=3:

ullet 2 to the left, 1 down: rule application NP o Det Nominal

In general, non-leaf cells with N words can be split into two in N-1 ways. When N=3:

- ullet 2 to the left, 1 down: rule application NP o Det Nominal
- ullet 1 to the left, 2 down: rule application $\mathtt{S} \to \mathtt{NP}$ Verb

[1]	Det	[1-2]	NP	[1–3]	NP S	[1–4]
	the	[2]	Noun	 [2–3]	Nominal	[2–4]
			dog	[3]	Noun Verb	[3–4]
					bit	ProperNoun [4]
						John

Here we found an S. However, it is not at the top right cell, so we are not done yet.

On to the fourth column...

Rule application: $VP \rightarrow Verb ProperNoun$

No applicable rules

No applicable rules

The top right cell represents the whole sentence.

Rule application: $S \rightarrow NP VP$

[1]	Det	[1–2]	NP	[1–3]	NP S	[1-4]	S	
	the	[2]	Noun	[2–3]	Nominal	[2-4]		
		d	log	[3]	Noun Verb	[3–4]	VP	
					bit	Prope [4]	rNoun	
						John		

S in the top right cell: sentence accepted.

Each nonterminal maintains backpointers to its children (here: NP and VP)

The backpointers define the syntax tree.