VI. Ciągłość funkcji jednej zmiennej.

1. Pojęcie ciągłości i nieciągłości funkcji.

Definicja 1.1. (otoczenia punktu)

Niech $x_0 \in R$, r > 0, $a, b \in R$. Definiujemy

- $\bullet \ O(x_0,r) := (x_0-r,x_0+r)$ otoczenie o promieniu rpunktu $x_0;$
- $\bullet \ O(x_0^-,r):=(x_0-r,x_0]$ otoczenie lewostronne o promieniu r punktu $x_0;$
- $O(x_0^+,r) := [x_0,x_0+r)$ otoczenie prawostronne o promieniu r punktu x_0 .

Definicja 1.2. (funkcji ciągłej w punkcie)

Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym otoczeniu $O(x_0)$ punktu x_0 .

Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Definicja 1.3. (funkcji jednostronnie ciągłej w punkcie)

(i) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym otoczeniu $O(x_0^-)$ punktu x_0 .

Funkcja f jest lewostronnie ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0^-} f(x) = f(x_0).$$

(ii) Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym otoczeniu $O(x_0^+)$ punktu x_0 .

Funkcja f jest prawostronnie ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0^+} f(x) = f(x_0).$$

Definicja 1.4. (funkcji ciągłej w przedziale)

Funkcja jest ciągła na przedziale otwartym (a, b), gdzie $-\infty \le a < b \le \infty$, jeżeli jest ciągła w każdym punkcie tego przedziału.

Funkcja jest ciągła na przedziale domkniętym [a, b], gdzie $-\infty < a < b < \infty$, jeżeli jest ciągła na przedziale (a, b) oraz jest prawostronnie ciągła w punkcie a i lewostronnie ciągła w punkcie b.

Definicja 1.5. (funkcji nieciągłej)

Niech $x_0 \in R$ i niech f będzie funkcją określoną przynajmniej na pewnym otoczeniu $O(x_0)$ punktu x_0 .

Funkcja f jest nieciągła w punkcie x_0 wtedy i tylko wtedy, gdy nie istnieje granica $\lim_{x\to x_0} f(x)$ albo

$$\lim_{x \to x_0} f(x) \neq f(x_0).$$

Mówimy, że funkcja f ma w punkcie x_0 nieciągłość I-go rodzaju, jeżeli istnieją skończone granice jednostronne

$$\lim_{x \to x_0^-} f(x), \quad \lim_{x \to x_0^+} f(x)$$

oraz zachodzi przynajmniej jeden z warunków

$$\lim_{x \to x_0^-} f(x) \neq f(x_0), \quad \lim_{x \to x_0^+} f(x) \neq f(x_0).$$

Przy tym jest to nieciągłość I-go rodzaju typu 'skok', jeżeli

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x),$$

zaś typu 'luka', jeśli

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \neq f(x_0).$$

Mówimy, że funkcja f ma w punkcie x_0 nieciągłość II-go rodzaju, jeżeli co najmniej jedna z granic jednostronnych nie istnieje lub jest niewłaściwa.

Przykład 6.1.

Zbadać ciągłość funkcji

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x} & dla & x > 0 \\ 0 & dla & x = 0 \\ e^{-\frac{1}{x}} & dla & x < 0, \end{cases}$$

w punkcie $x_0 = 0$.

Przykład 6.2.

Dobrać tak parametry $a,b\in R,$ aby funkcja

$$f(x) = \begin{cases} \frac{\sin x}{ax} & dla & x < 0\\ 2x + b & dla & x \ge 0 \end{cases}$$

była ciągła w punkcie $x_0 = 0$.

Przykład 6.3.

Określić rodzaj nieciągłości funkcji f w punkcie $x_0=0$, jeśli

$$f(x) = \begin{cases} \frac{\sin x}{x} & dla & x < 0\\ 0 & dla & x = 0\\ \frac{e^x - 1}{x} & dla & x > 0. \end{cases}$$

2. Twierdzenia o funkcjach ciągłych.

Twierdzenie 2.1. (działania na funkcjach ciągłych)

Jeżeli funkcje f i g są ciągłe w punkcie x_0 , to funkcje f+g, f-g, $f\cdot g$, $\frac{f}{g}$ są ciągłe w punkcie x_0 , przy czym funkcja $\frac{f}{g}$ jest ciągła w punkcie x_0 , o ile $g(x_0) \neq 0$.

Twierdzenie 2.2. (ciągłość funkcji złożonej)

Jeżeli funkcje f i g są ciągłe odpowiednio w punktach x_0 i $y_0 = f(x_0)$, to złożenie $g \circ f$ jest funkcją ciągłą w punkcie x_0 .

Twierdzenie 2.3. (ciągłość funkcji odwrotnej)

Niech $X,Y\subset R$ dowolne przedziały na prostej. Jeżeli funkcja $f:X\to Y$ jest 'na', ściśle monotoniczna i ciągła, to funkcja odwrotna $f^{-1}:Y\to X$ jest również ciągła.

Twierdzenie 2.4.

Funkcje elementarne są ciągłe na swoich dziedzinach.

Przykład 6.4.

Uzasadnimy, że funkcje $f(x) = \frac{\sin x^2 + e^{2x}}{x^4 + x^2 + 1}$, $g(x) = \operatorname{arctg}(x^3 + 1)$ są ciągłe na R.

Twierdzenie 2.5. (o ograniczoności funkcji ciągłych)

Funkcja f ciągła na przedziale domkniętym i ograniczonym [a,b] jest na tym przedziale ograniczona, a ponadto osiąga swoje kresy, tj.

$$\exists c \in [a, b] \quad f(c) = \inf_{x \in [a, b]} f(x)$$

oraz

$$\exists d \in [a, b] \ f(d) = \sup_{x \in [a, b]} f(x).$$

Twierdzenie 2.6. (Darboux o przyjmowaniu wartości pośrednich)

Jeżeli funkcja f jest ciągła na przedziale [a,b] oraz spełnia warunek f(a) < f(b), to dla dowolnego punktu $w \in (f(a),f(b))$ istnieje taki punkt $c \in (a,b)$, że

$$f(c) = w,$$

tzn. każda prosta y = w, gdzie f(a) < w < f(b) przecina wykres funkcji f co najmniej jeden raz.

Uwaga.

Jeżeli w powyższym twierdzeniu dodatkowo założymy, że funkcja f jest ściśle rosnąca, to punkt c jest określony jednoznacznie, czyli każda prosta y=w, gdzie f(a) < w < f(b) przecina wykres funkcji f dokładnie jeden raz Analogiczne twierdzenie i uwagę można sformułować przy założeniu f(a) > f(b).

Twierdzenie 2.7. (własność Darboux o miejscach zerowych funkcji) Jeżeli funkcja f jest ciągła na przedziale [a,b] oraz spełnia warunek

$$f(a) \cdot f(b) < 0$$

, to istnieje taki punkt $c \in (a, b)$, że

$$f(c) = 0.$$

Jeżeli dodatkowo funkcja f jest w tym przedziale ściśle monotoniczna, to punkt c jest określony jednoznacznie.

Przykład 6.5.

Uzasadnimy, że równanie

$$\ln x = 2 - x$$

ma jedno rozwiązanie w przedziale [1, 2].

Definiujemy funkcję

$$f(x) := \ln x + x - 2.$$

Pytanie o istnienie rozwiązania rozważanego równania sprowadza się do pytania o istnienie miejsca zerowego funkcji f w przedziale [1,2].

Zauważmy, że

- \bullet funkcja f jest ciągła w [1,2],
- f(1) = -1, $f(2) = \ln 2$, czyli $f(1) \cdot f(2) < 0$.

Zatem funkcja f spełnia założenia twierdzenia Darboux 2.7 na przedziale [1,2]. Stąd istnieje taki punkt $c \in (1,2)$, że f(c) = 0. Ponadto funkcja f jest rosnąca na przedziale (1,2) i stąd punkt c jest wyznaczony w sposób jednoznaczny.