Statistics MCQ Question Bank

Second Paper

Abdullah Al Mahmud

www.statmania.info

Contents

1	Intr	roduction to Probability 2
	1.1	Permutation-Combination
	1.2	Conceptual Questions
	1.3	Numbers
	1.4	Coin-Die
	1.5	Balls-Cards
	1.6	Set-Problems
	1.7	Multiple Completion
2	Rar	ndom Variables 8
	2.1	Concept of Random Variable
	2.2	Situation Set
	2.3	Multiple Completion
3	Ma	thematical Expectation 14
	3.1	Situation Set
4	Bin	omial Distribution 18
	4.1	Situation Set
	4.2	Multiple Completion
5	Pois	sson Distribution 21
	5.1	Multiple Completion
	5.2	Problems
6	Vita	al Statistics 23
	6.1	Growth Rates

1 Introduction to Probability

1.1 Permutation-Combination

1. Three objects can be placed in 2 positions in – ways.

	(a) 3	(b) 4	(c) 6	(d) 8
2.	In how many ways c	an a team of 2 be for	med from 4 people?	
	(a) 4	(b) 6	(c) 8	(d) 12
3.	$^{n}p_{r}=$			
	(a) $\frac{n!}{(n-r)!}$	(b) $\frac{n!}{(n+r)!}$	(c) $\frac{n!}{r!}$	(d) $\frac{n!}{(r-n)!}$
4.	$^{n}C_{r} =$			
	(a) $\frac{n!}{(n-1)!(n+r)!}$	(b) $\frac{r!}{n!(n-r)!}$	(c) $\frac{n!(n-1)!}{r!}$	(d) $\frac{n!}{(r-n)!}$
	1.2 Conceptual	Questions		
5.	What is the probabi	lity that at least one	item in a sample spac	e will occurr?
	(a) 0	(b) 0.5	(c) 1	(d) Undefined
6.	The probability of tw	vo disjoint sets happe	ning together is:	
	(a) 0.5	(b) 0	(c) 1	(d) $0 \le x < 1$
7.	How many additive	laws of probability are	e there?	
	(a) 1	(b) 2	(c) 3	(d) 4
8.	$P(A \cup B) = P(A) + P($	B) implies A & B are	_	
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent
9.	$P(A\cap B)=P(A)\times P($	B) implies A & B are	_	
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent
10.		a of classical approach		
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$		(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	<u>)</u>
11.	Which is the formula	a of empirical/relative	e frequency approach	of probability?
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$	outcomes le outcomes	(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	comes utcomes
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	
12.	What is the correct	formula for condition	al probability?	
	(a) $P(A B) = \frac{P(A \cap B)}{P(B A)}$	(b) $P(A B) = \frac{P(A \cap B)}{P(A)}$	(c) $P(A B) = \frac{P(A \cap B)}{P(B)}$	(d) $P(A B) = \frac{P(B A)}{P(B A)}$
13.	The third axiom of p	orobability is –		
	(a) $0 \le P(A) \le 1$		(b) $P(S) = 1$	
	(c) $P(A_1UA_2U\cdots UA_n)$	$) = \sum_{i=1}^{\infty} P(A_i)$	(d) $P(A) = 1 - P(A)$	

14.	Possible value of pro	bability			
	i1 ii. 0.5 iii. 0				
	Which one is correct	?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
15.	An act repeated und	ler some specific cond	itions is called –		
	(a) Event	(b) Experiment	(c) Sample	(d) Sample space	
16.	P(0) implies –				
	(a) A certain event	(b) An uncertain event	(c) An impossible event	(d) A probable event	
17.	Events having some	common elements are	called –		
	(a) Complementary ever	nts	(b) Mutually exclusive e	events	
	(c) Exhaustive events		(d) Non-Mutually exclu	sive events events	
18.	The minimum value	of probability is			
	(a) $-\alpha$	(b) 1	(c) 0	(d) -1	
19.	Each element of sam	ple space is called–			
	(a) Trial	(b) Experiment	(c) Variable	(d) Sample Point	
20.	Two events not ocur	ring together are calle	$\mathrm{ed}-$		
	(a) dependent Events		(b) Independent Events		
	(c) Mutually Exclusive Events		(d) Marginal Events		
21.	If A and B are indep	pendent, which formul	a is correct?		
	(a) $P(A \cap B) = P(A) \cdot A$	P(B)	(b) $P(A \cap B) = P(\bar{A}) \cdot \bar{A}$	P(B)	
	(c) $P(A \cap B) = P(A) \cdot A$	$P(ar{B})$	(d) $P(A \cap \bar{B}) = P(A) \cdot \bar{A}$	P(B)	
22.	Which of the following	ng are disjoint events	?		
	(a) $A = \{1, 2, 3\}, B = \{4, 2, 3\}, $	$4,5$ }	(b) $A = \{a, b\}, B = \{b, c\}$,	
	(c) $A = \{0\}, B = \{0, 1\}$		(d) $A = \{x, y\}, B = \{x, y\}$	y }	
23.	Which of the following	ng are disjoint events	?		
	(a) $P = \{1, 2\}, Q = \{2, 3\}$		(b) $P = \{x\}, Q = \{x, y\}$		
	(c) $P = \{1, 3\}, Q = \{3, 5\}$	5}	(d) $P = \{m, n\}, Q = \{p, q\}$	q	
24.	Let the sample space disjoint?	e be $S = \{1, 2, 3, \dots, 1\}$	0}. Which of the following	lowing pairs of events are	
	i. A: Number is prime,ii. A: Number is even,	B: Number is greater B: Number is divisible han 5, B: Number is g	by 3		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
25.	Let $S = \{1, 2, \dots, 10\}$.	Which of the following	ng event pairs are disj	oint?	
	ii. A : Number is less th	le by 2, B: Number is an 7, B: Number is one, B: Number is a mu	ld		
	Which one is correct				
	(a) i and iii	(b) i and ii	(c) ii and iii	(d) i, ii and iii	

26.	Let the sample space disjoint?	e be $S = \{1, 2, 3, \dots, 1\}$	0}. Which of the following	lowing pairs of events are	
	i. A: Number is a multiii. A: Number is less thiii. A: Number is a squa		eater than 8		
	Which one is correct	?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
27.	Let $S = \{1, 2, 3, \dots, 10\}$. Which of the follow	ing pairs of events ar	e disjoint?	
	(a) A : Multiples of 3, E	3: Multiples of 5			
	(b) A : Prime numbers,	B: Even numbers greate	r than 2		
	(c) A: Numbers less tha	an 4, B: Numbers greate	r than 6		
	(d) All of the above				
	1.3 Numbers				
28.		v	reater than the averag	itive integers. What is the ge (arithmetic mean) of all	
	(a) $\frac{1}{3}$	(b) $\frac{3}{4}$	(c) $\frac{4}{10}$	(d) $\frac{1}{2}$	
29.		eople in a city walk to does not walk to the		picked randomly, what is	
	(a) 0.95	(b) 0.10	(c) 0.90	(d) 0.01	
30.	-	_	online classes over in-pity that they prefer in	person classes. If a student a-person classes?	
	(a) 0.15	(b) 0.85	(c) 0.75	(d) 0.25	
31.			manufactured items a that it is not defective	are defective. If an item is ve?	
	(a) 0.08	(b) 0.92	(c) 0.80	(d) 0.12	
32.	_	_	-	appointments. If a patient evening appointments?	
	(a) 0.12	(b) 0.78	(c) 0.88	(d) 0.18	
33.			stomers in a store pay y that they pay using	y with cash. If a customer another method?	
	(a) 0.050	(b) 0.500	(c) 0.975	(d) 0.025	
	1.4 Coin-Die				
34.	Tossing a die r times	generates how many	outcomes?		
	(a) $6 \times r$	(b) r^6	(c) 6^r	(d) 2^r	
35.	Tossing a coin r time	es generates how man	y outcomes?		
	(a) $2 \times r$	(b) r^2	(c) 2^r	(d) 6^r	

36.	A coin is thrown thr	ice. How many outco	mes are generated?	
	(a) 3	(b) 4	(c) 8	(d) 9
37.	A coin is thrown twi	ce. What is the proba	ability of getting 2 hea	ads?
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{4}$
38.	A fair coin is tossed	twice. What is the pr	obability of getting a	t least one tail?
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) $\frac{1}{3}$
39.	Two fair coins are to head?	ossed simultaneously.	What is the probabi	lity of getting exactly one
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{4}$	(d) $\frac{1}{3}$
40.	A coin is flipped twice	ce. What is the proba	ability of getting head	s first and tails second?
	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	(d) $\frac{2}{4}$
41.	If two fair coins are	tossed together, what	is the probability of	getting at least one head?
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$
42.	A fair coin is tossed	twice. What is the pr	obability of getting to	wo tails?
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{2}{4}$
43.	Two fair coins are to	ssed. What is the pro	bability that at least o	one of them lands on tails?
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{1}{3}$
44.	A die is thrown twice	e. This is called –		
	(a) An experiment	(b) sample space	(c) A random experiment	-(d) A trial
45.	If a neutral die is the	rown, the probability	of having a digit grea	ter than 6 is
	(a) $\frac{1}{6}$	(b) $\frac{0}{6}$	(c) $\frac{2}{3}$	(d) $\frac{3}{6}$
46.	· ·	(b) $\frac{0}{6}$ generates how many		(d) $\frac{3}{6}$
46.	· ·	. , 0		(d) $\frac{3}{6}$ (d) 2
	Tossing a coin twice (a) 4	generates how many	outcomes? (c) 8	•
	Tossing a coin twice (a) 4	generates how many (b) 16	outcomes? (c) 8	•
	Tossing a coin twice (a) 4 A die is rolled twice.	generates how many (b) 16 How many possible	outcomes? (c) 8 outcomes are there?	(d) 2
47.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 b	generates how many (b) 16 How many possible (b) 12	outcomes? (c) 8 outcomes are there? (c) 36	(d) 2
47.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 b	generates how many (b) 16 How many possible (b) 12 black, and 5 white ba	outcomes? (c) 8 outcomes are there? (c) 36	(d) 2 (d) 18
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 h what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 h	generates how many (b) 16 How many possible (b) 12 black, and 5 white backy that both are red? (b) $\frac{1}{22}$	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two	(d) 2 (d) 18 balls are randomly taken,
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 h what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 h	generates how many (b) 16 How many possible (b) 12 black, and 5 white batty that both are red? (b) $\frac{1}{22}$ black, and 5 white bath	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two	 (d) 2 (d) 18 balls are randomly taken, (d) 3/11
47. 48.	Tossing a coin twice (a) 4 A die is rolled twice. (a) 6 1.5 Balls-Cards There are 3 red, 4 be what is the probabilit (a) $\frac{1}{66}$ There are 3 red, 4 be what is the probabilit (a) $\frac{1}{66}$	generates how many (b) 16 How many possible (b) 12 black, and 5 white backy that both are red? (b) $\frac{1}{22}$ black, and 5 white backy that neither is red (b) $\frac{6}{11}$ e and 4 green marbles	outcomes? (c) 8 outcomes are there? (c) 36 lls in an urn. If two (c) $\frac{2}{22}$ lls in an urn. If two? (c) $\frac{3}{11}$	 (d) 2 (d) 18 balls are randomly taken, (d) 3/11 balls are randomly taken,

	(a) $\frac{24}{91}$	(b) $\frac{58}{91}$	(c) $\frac{48}{91}$	(d) $\frac{72}{91}$
53.	A box contains 9 bl probability that at le		If two balls are rand	omly picked, what is the
	(a) $\frac{3}{11}$	(b) $\frac{1}{3}$	(c) $\frac{18}{33}$	(d) $\frac{5}{11}$
	Answer the next que	estions based on the fo	ollowing information.	
	A card is drawn from of	f pack of playing cards.		
54.	What is the probabil	lity that the card is a	King?	
	(a) 0.0192	(b) 0.25	(c) 0.5	(d) 0.0769
55.	P(The card is not from	om Diamonds)–		
	(a) $\frac{1}{2}$	(b) 0	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$
56.	P(The card is red or	Clubs)		
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$
	Answer the next TW	O questions based or	the following inform	ation.
	An urn contains 5 red, '	7 blue, and 8 green balls.		
57.	What is the probabil	lity that the ball draw	n is red?	
	(a) 0.26	(b) 0.25	(c) 0.2	(d) 0.4
58.	P(The ball drawn is	${f not} {f blue})-$		
	(a) $\frac{13}{20}$	(b) 0.5	(c) $\frac{7}{20}$	(d) $\frac{8}{20}$
	1.6 Set-Problems	S		
59.	For two independent	events A and B , which	ch one is correct?	
	(a) $P(A \cap B) = P(A) \times$	P(B)	(b) $P(A \cup B) = P(A) +$	P(B)
	(c) $P(A \cap B) = P(A) -$	P(B)	(d) $P(A \cup B) = P(A) \times$	P(B)
60.	For two mutually exc	clusive events A and B	B, which one is correct	t?
	(a) $P(A \cap B) = P(A) \times$	P(B)	(b) $P(A \cup B) = P(A) +$	P(B)
	(c) $P(A \cap B) = P(A) -$	P(B)	(d) $P(A \cup B) = P(A) \times$	P(B)
61.	Which of the following	ng correct?		
	(a) $\frac{P(A)}{P(B)} = \frac{P(B A)}{P(A B)}$	(b) $\frac{P(A)}{P(A B)} = \frac{P(B A)}{P(B)}$	(c) $\frac{P(A)}{P(B)} = \frac{P(B A)}{P(B)}$	(d) $\frac{P(A)}{P(B)} = \frac{P(A B)}{P(B A)}$
62.	The probability of rawill rain on both Mo		day next week. What	t is the probability that it
	(a) $\frac{1}{6}$	(b) $\frac{1}{36}$	(c) $\frac{5}{6}$	(d) $\frac{1}{17}$

51. A box has 7 black and 5 white balls. If one ball is drawn at random, what is the probability

52. A bag contains 8 red and 6 white balls. If two balls are drawn at random, what is the

(c) $\frac{1}{2}$

(d) $\frac{1}{3}$

that it is not black?

(b) $\frac{5}{12}$

probability that they are of different colors?

(a) $\frac{7}{12}$

63.	Given $P(A \cup B) = 0.7$, $P(A \cap B) = 0.2$, what	are $P(A)$ and $P(B)$?	
	(a) $P(A) = 0.5 \text{ and } P(A)$	(3) = 0.4	(b) $P(A) = 0.4$ and $P(A) = 0.4$	(B) = 0.6
	(c) $P(A) = 0.4$ and $P(A) = 0.4$	B) = 0.3	(d) $P(A) = 0.7$ and $P(A) = 0.7$	B) = 0.3
64.	If $P(A) = 0.4$, $P(B) =$	0.5, and $P(A \cup B) = 0.7$	7, what is $P(A \cap B)$?	
	(a) 0.2	(b) 0.1	(c) 0.3	(d) 0.4
65.	Given $P(A) = 0.3, P(A) = 0.3$	$A \cup B$) = 0.6, and $P(A \cap B)$	$\cap B) = 0.1$, what is $P(B)$	3)?
	(a) 0.6	(b) 0.4	(c) 0.3	(d) 0.2
66.	If $P(A) = 0.5$, $P(B) =$	0.6, and $P(A \cap B) = 0.3$	B, what is $P(A \cup B)$?	
	(a) 0.8	(b) 0.9	(c) 0.7	(d) 1
67.	If $P(A) = 0.2$, $P(B) =$	0.3, and $P(A \cup B) = 0.4$	4, what is $P(A \cap B)$?	
	(a) 0.9	(b) 0.2	(c) 0.3	(d) 0.1
68.	Given $P(A) = 0.7, P(A) = 0.7$	$A \cup B) = 0.9$, and $P(A \cap B) = 0.9$	$\cap B) = 0.5$, what is $P(B)$	3)?
	(a) 0.8	(b) 0.6	(c) 0.7	(d) 0.5
	Answer the next two	questions based on t	he following informat	ion
	For	· two exhaustive evenst A	& B $P(A) = 0.7$ and P	P(B) = 0.4
	101	two exhaustive evensu ii	$\mathbf{a} \otimes \mathbf{b}, \mathbf{r} (\mathbf{n}) = 0 \cdot \mathbf{r} \text{ and } \mathbf{r}$	(D) = 0.4
69.	$P(A \cap B) = ?$			
	(a) 0.1	(b) 0.3	(c) 0.6	(d) 1
70.	The events A & B ar	re –		
	i. independent			
	ii. dependentiii. not mutually exclusi	ive		
	Which one is correct	?		
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
	Answer the next thr	ee questions using the	e following information	n
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{2} \& F$	$P(A \cup B) = \frac{7}{12}$		
71.	$P(A \cap B) = ?$			
	(a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{15}{16}$
72.	$P(A \cap \bar{B}) = ?$			
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{1}{12}$
73.	What is the probabil	lity that B occurs or A	A does not occur?	
	(a) $\frac{3}{4}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{11}{12}$
	Answer the next through $D) = \frac{9}{10}$	ee questions using the	following information	$P(C) = \frac{2}{5}, P(D) = \frac{3}{4} \& P(C \cup C)$
74.	$P(C \cap D) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{1}{4}$	(c) $\frac{7}{20}$	(d) $\frac{4}{5}$
75.	$P(C\cap \bar{D})=?$			
	(a) $\frac{1}{10}$	(b) $\frac{2}{5}$	(c) $\frac{2}{20}$	(d) $\frac{3}{10}$

76.	6. What is the probability that D occurs or C does not occur?				
	(a) $\frac{17}{20}$	(b) $\frac{7}{10}$	(c) $\frac{3}{4}$	(d) $\frac{11}{20}$	
	Answer the next three	ee questions using the	e following information	n:	
	$P(E) = \frac{1}{3}, P(F) = \frac{1}{4} \& F$	$P(E \cap F) = \frac{1}{10}$			
77.	$P(E \cup F) = ?$				
	(a) $\frac{1}{58}$	(b) $\frac{3}{10}$	(c) $\frac{58}{60}$	(d) $\frac{58}{120}$	
78.	$P(E \cap \bar{F}) = ?$				
	(a) $\frac{7}{40}$	(b) $\frac{7}{30}$	(c) $\frac{3}{10}$	(d) $\frac{1}{30}$	
79.	What is the probabil	ity that F occurs or l	E does not occur?		
	(a) $\frac{11}{30}$	(b) $\frac{19}{30}$	(c) $\frac{13}{40}$	(d) $\frac{23}{30}$	
80.	An un contains 10 regetting two red balls		Two balls are drawn;	what is the probability of	
	(a) $\frac{3}{7}$	(b) $\frac{4}{7}$	(c) $\frac{20}{21}$	(d) $\frac{2}{21}$	
	1.7 Multiple Cor	npletion			
81.	P(A) = 0 implies				
	i. A is an impossible even ii. A would ocurr in extriciii. $P(\bar{A})$ is a certain even where A	reme cases ent			
	Which one is correct		(a) :: and :::	(d): :: and :::	
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
	2 Random Va	riables			
	2.1 Concept of F	Random Variable			
82.	Which is a discrete r	andom variable?			
	(a) Age of students		(b) Amount of Product	ion in a factory	
	(c) Height of workers		(d) Page size in word pr	rocessing softwares	
83.	A set of sample point	ts tabulated along wit	th their respective pro	babilities is an example of	
	(a) Probability distribut	tion	(b) Probability function	1	
	(c) Frequency distribution		(d) Marginal probability distribution		
84.	How many condition	s does a probability of	lensity function have?		
	(a) 2	(b) 3	(c) 4	(d) 5	
85.	A coin is tossed twice values of X are there		appeared is denoted	by X. How many possible	
	(a) 1	(b) 2	(c) 0	(d) 3	

86.	6. A die is thrown thrice and the number of times a 6 appears is denoted by X . How many			
	possible values can 2		() -	
	(a) 1	(b) 2	(c) 3	(d) 4
87.		erty of marginal prob		on?
	(a) $\int_{x} f(x^2) dx = 1$	(b) $\int_x f(x^2) dx = 0.5$	(c) $\int_{x} f(x) dx = 1$	(d) $P(x \ge 1)$
88.	Which one is NOT a	an example of a contin	uous random variable) —
	(a) Weight	(b) Height	(c) Time	(d) Size of television
89.	Integrated value of $\frac{1}{4}$	$\frac{1}{4}x^4$ -		
	(a) $\frac{1}{20}x^5$	(b) $\frac{1}{20}x^5 + c$	(c) $\frac{1}{5}x^4$	(d) $\frac{5}{4}x^5$
90.	The conditions of a	probability distributio	n are-	
	i. $\sum P(X) = 1$			
	ii. $\sum P(X) = 0$			
	iii. $0 \le P(X) \le 1$			
	Which one is correct			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
91.	The conditions for a	cumulative distributi	on function (CDF) ar	e-
	i. $F(x)$ is non-decreasing	ıg.		
	ii. $0 \le F(x) \le 1$			
	iii. $\lim_{x \to \infty} F(x) = 1$			
	Which one is correct			
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii
92.		discrete probability di	stribution table are—	
	i. $\sum P(X) = 1$			
	ii. $P(X) \ge 0$ for all X	1	1	
	Which one is correct	rresponds to a discrete va	due.	
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii
02		•	, ,	(a) 1, 11, with 111
95.	(a) $-\infty$	distribution function I (b) -1	(c) 0	(d) 1
0.4	•	,	` '	(u) 1
94.		distribution function		(1) 1
	(a) $-\infty$	(b) -1	(c) 0	(d) 1
95.	· · ·	random variables are		(1) =
	(a) 2	(b) 3	(c) 4	(d) 5
96.		ng is not a discrete ra		
	(a) umber of students		(b) Weight	
	(c) Number of heads in	coin toss	(d) Population	

97. Which one is a	property of a proba	bility distribution?	
(a) $P(x_i) = 0$	(b) $P(x_i \neq 1)$	(c) $\Sigma P(x_i) = 1$	(d) $\int_x P(X)dx \le 1$
98. Which one is n	ot a discrete random	ı variable?	
(a) Summation to	wo die throw outcome	(b) Weight	
(c) Number of he	(c) Number of heads in five coin tosses		on number of a software
99. Which one is n	ot a discrete random	ı variable?	
(a) Number of st	udents in a class	(b) Weight of a pa	ckage
(c) Shoe size		(d) Total goals sco	red in a match
100. Which variable	le type can skip certa	ain whole numbers?	
(a) Number of ch	apters read in a day	(b) Weight of a pe	rson
(c) Number of flo	oors in a building	(d) Number of peo	ple boarding a train
101. Which one is	an example of a disc	rete random variable?	
(a) The amount	of liquid in a glass	(b) Temperature re	eadings at noon
(c) Number of de	efective items in a batch	(d) Exact age in ye	ears
102. Identify which	n one is not a discret	e variable.	
(a) Number of co	okies eaten	(b) Height of stude	ents
(c) Total cars in	a parking lot	(d) Number of sibl	ings
103. Which one is	a property of joint p	robability distribution?	
(a) $P(X_i, Y_j) < 1$	(b) $P(X_i, Y_j) =$	0 (c) $P(X_i, Y_j) < 0$	(d) $0 \le P(X_i, Y_j) \le 1$
2.2 Situation	n Set		
Answer the ne	xt two questions base	ed on the following info	rmation
	-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
104 337 + 1 7/1)			
104. What is F(1) (a) 0.65	(b) 0.75	(c) 0.5	(d) 1
` '	. ,	(c) 0.5	(d) 1
105. $P(X \le 1 \le 3) =$		()	(4)
(a) 0.75	(b) 0.70	(c) 0.95	(d) 1
Answer the ne	xt three questions ba	ased on the following inf	ormation
	P($ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
106. What is the v	alue of m?		
(a) $\frac{1}{3}$	(b) $\frac{5}{12}$	(c) $\frac{1}{4}$	(d) $\frac{1}{6}$
107. Find $F(2)$.		-	*
(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{2}{3}$
\	\ / 4	\	(/ 3

108. What is $P(X > 1)$?			
(a) $\frac{1}{2}$	(b) $\frac{5}{12}$	(c) $\frac{1}{3}$	(d) $\frac{7}{12}$
Answer the next the	ree questions	based on the following	information
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	P	$(X) \frac{1}{5} c \frac{1}{4} \frac{1}{6} \frac{1}{3}$	
109. What is the value	of c?		
(a) $\frac{1}{3}$	(b) $\frac{1}{4}$	(c) $\frac{1}{20}$	(d) $\frac{1}{6}$
	() 4	(*) 20	() 6
110. Find $P(2 < X \le 4)$. (a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{5}{6}$	(d) $\frac{2}{3}$
12	(3) 2	(6) 6	(4) 3
111. What is $P(X \le 3)$? (a) $\frac{9}{20}$	(b) $\frac{7}{10}$	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$
	10	$\begin{array}{c} (3) & 2 \\ \textbf{based on the following} \end{array}$	1
	•		
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		(/ 3 6	
112. What is the value	of a?		
(a) $\frac{2}{3}$	(b) $\frac{5}{6}$	(c) $\frac{1}{2}$	(d) 1
113. Find $P(2 < X \le 3)$			
(a) $\frac{5}{6}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
114. What is P(X<3)?			
(a) $\frac{5}{6}$	(b) $\frac{2}{5}$	(c) $\frac{1}{9}$	(d) $\frac{1}{7}$
Answer the next tw	o questions ba	ased on the following in	nformation
		x 1 2 3	
		$\begin{array}{c c c c} x & 1 & 2 & 3 \\ \hline P(x) & \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \end{array}$	
115 What is E(2)?			
115. What is $F(2)$?	(b) $\frac{5}{6}$	(c) $\frac{1}{2}$	(d) 1
3	(5) 6	() 2	(d) 1
116. $P(1 < X \le 2)$ (a) $\frac{5}{6}$	(b) $\frac{2}{3}$	(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
. , 0		$\mathbf{a}\mathbf{sed}$ on the following in	0
	•		
		f(x) = kx; 0 < x < 5	
117. What is the value	of $P(2 < x < 3)$		
(a) $\frac{4}{5}$	(b) $\frac{3}{5}$	(c) $\frac{2}{5}$	(d) $\frac{1}{5}$
118. $P(X > 0)$			
(a) 0.99	(b) 0.5	(c) 1	(d) 0
Answer the next tw	o questions us	sing the following infor	mation

X	1	2	3	4	5	6
P(x)	k	2k	3k	4k	5k	6k

119. What is the value of k?

(a) $\frac{7}{21}$	(b) $\frac{5}{21}$	(c) $\frac{1}{21}$	(d) 1
120. What is the ty	pe of variable X?		
(a) Discrete	(b) Discrete random	(c) Continuous	(d) Continuous random
Answer the nex	t THREE questions usin	g the following infor	mation
	P(x) =	$\frac{x+1}{k}; x = 1, 2, 3, 4$	
121. What is the va	due of k?		
(a) 10	(b) 11	(c) 14	(d) 15
122. $F(2) = -$			
(a) $\frac{2}{14}$	(b) $\frac{3}{11}$	(c) $\frac{5}{14}$	(d) $\frac{5}{11}$
123. $P(x)$ is a –			
(a) Joint probabil(c) Probability ma		(b) Cumulative probability Dens	
, ,	of a discrete random varia	, ,	sity function
i. Binomial variateii. Poisson variateiii. Normal variateWhich one is contact	e		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
125. $f(x) = 2x; 0 < X$	T < 3; What is $F(3)$?		
(a) 3	(b) 0	(c) 1	(d) 0
	T < 2; What is $F(2)$?		
(a) 6	(b) 3	(c) 1	(d) 0
127. $f(x) = x^2; 0 < X$	T < 4; What is $F(4)$?		
(a) 16	(b) 0	(c) 4	(d) 1
128. $f(x) = 4 - x; 1 <$	X < 5; What is $F(5)$?		
(a) 3	(b) 0	(c) 1	(d) 4
	It two questions based on (y) ; $x = 1, 2, 3$ and $y = 1, 2$	the following inform	nation:
129. P (x)=?			
	(b) $P(x) = \frac{x+3}{27}$	(c) $P(x) = \frac{4x+3}{21}$	(d) $P(x) = \frac{2x+5}{21}$
130. $P(y)=?$	(b) $y+3$	(c) $\frac{3y+2}{}$	(d) $y+2$

131. If $f(x) = kx^3$	$; -1 \le x \le 1$, then k is		
i) positiveii) negativeiii) lies from -1	to 1		
(a) i	(b) ii	(c) iii	(d) i and ii
Answer the r	next two questions base	ed on the following in	formation.
	$egin{array}{c} x \\ P(X) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
132. The value of	f $P(3 < X < 5)$ is:		
(a) $\frac{1}{2}$	(b) $\frac{1}{6}$	(c) $\frac{1}{3}$	(d) 0
133. $P(x \neq 2)is$:			
(a) $\frac{5}{6}$		(b) 0	
(c) 1		(d) Can't be for	and from this information
2.3 Multip	ple Completion		
134. For a contin	uous random variable	X with PDF $f(x) = 2x$	x, defined on $[0,1]$:
i. $f(x) \ge 0$ for ii. $\int_0^1 f(x) dx =$ iii. $P(X > 1) =$	$all \ x \in [0, 1]$ $= 1$		
Which one is	correct?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
135. For a contin	uous random variable	X with PDF $f(x) = k$	$(2-x)$ defined on $0 \le x \le 2$:
i. The value of ii. The cumula iii. $P(1 < X <$	tive distribution function	$F(x) = x - \frac{x^2}{4} \text{ for } 0 \le x$	$\leq 2.$
Which one is	correct?		
(a) i	(b) i and ii	(c) ii	(d) i, ii and iii

3 Mathematical Expectation

136. $E(X+Y) = ?$			
(a) $E(X) - E(Y)$	(b) $E(X) + E(Y)$	(c) $2E(X) - E(Y)$	(d) $E(X) \times E(Y)$
137. $E(4x+2Y) = ?$			
(a) $E(X) - E(Y)$	(b) $4E(X) + 2E(Y)$	(c) 2E(X) + 4E(Y)	(d) $E(X) \times E(Y)$
138. What is the expect from their mean?	ed value of of the squ	ared deviation of the v	value of the random variable
(a) Arithmetic Mean	(b) Expectation	(c) Variance	(d) Co-variance
139. What is the minim	num value of variance	a random variable?	
(a) $-\infty$	(b) 1	(c) 0	(d) -1
140. If $y = ax + b$, what	is the value of $V(y)$?		
(a) $aV(X)$	(b) $a^2V(X)$	(c) $V(X)$	(d) a^2
141. If $y = ax + b$, what	is the value of $E(y)$?		
(a) $aE(X) + b$	(b) $a^2 E(X)$	(c) $E(X)$	(d) <i>b</i>
142. What is the value	of $V(5)$?		
(a) 0	(b) 25	(c) 5	(d) 1
143. If $P(x) = \frac{1}{n}$; $x = 1, 2$	$3, \cdots, n$, what is the	value of $E(X)$?	
(a) $\frac{n}{2}$	(b) $\frac{n-1}{2}$	(c) $\frac{n+1}{2}$	(d) $n+1$
144. If $P(x) = \frac{4 - 5 - x }{k}$	$; x = 2, 3, 4, \dots 8, $ what	is the value of k?	
(a) 5	(b) 8	(c) 16	(d) 24
145. Expected value of	a constant a is –		
(a) 1	(b) Variance	(c) a	(d) a+1
146. The variance of a	constant m is –		
(a) 0	(b) 1	(c) m	(d) m^2
147. What is $V(X - Y)$	equal to?		
(a) $V(X) + V(Y)$		(b) $V(X) + V(Y) - 20$	
(c) $V(X) - V(Y)$		(d) $V(X) + V(Y) + 20$	Cov(X,Y)
148. What is the value	of $V(2X+5)$?		
(a) $4V(X) - 5$	(b) 20	(c) $4V(X)$	(d) 0
149. If $P(x) = \frac{1}{20}$; $x = 1, 2$	$2, 3, \cdots, 20$, what is the	e standard deviation?	
(a) 1	(b) 5.77	(c) 7.75	(d) 12.57
150. Expectation measu	ires –		
(a) Dispersion	(b) Skewness	(c) Kurtosis	(d) Central tendency
151. If $E(X) = -0.5$, the	en $E(1-2X) = ?$		
(a) 0	(b) -1	(c) 2	(d) 1

	If $P(X) = \frac{1}{10}$; $x = 1, 2$,			4.0
(;	a) 10	(b) 5.5	(c) 0	(d) 11
	Which formula of va			
			(b) $V(X + Y) = V(X)$	
(c) $V(X+Y) = V(X) +$	+V(Y) - 2Cov(X,Y)	(d) $V(X+Y) = V(X)$	-V(Y) + 2Cov(X,Y)
154.	X is a constant; wha	at is the value of $V(\frac{X}{2})$?	
	0			
ii	i) $\frac{1}{2}$ ii) $\frac{1}{4}$			
	a) ii	(b) i	(c) iii	(d) i and iii
155.	If $E(X) = 2, E(X^2) =$	8, V(X) =		
	a) 0	(b) 2	(c) 4	(d) 8
156.	If $E(X) = 3, E(X^2) =$	11, V(X) =		
	a) 2	(b) 5	(c) 6	(d) 4
157.	If $E(X) = 4$, what is	E(3X-2)?		
	a) 10	(b) 8	(c) 7	(d) 6
158.	If $E(X) = 5, E(X^2) =$	30, V(X) =		
	a) 3	(b) 5	(c) 4	(d) 6
159.	If $E(X) = 6$, what is	$E(\frac{X}{2}+1)$?		
	a) 4	(b) 3	(c) 2	(d) 5
160.	If $E(X) = 2, E(X^2) =$	10, V(X) =		
	a) 5	(b) 6	(c) 7	(d) 4
161.	If $E(X) = 7$, what is	E(4X+3)?		
	a) 28	(b) 30	(c) 31	(d) 29
162.	If $E(X) = 3$, what is	E(5-X)?		
		(b) 3	(c) 4	(d) 5
163.	If $E(X) = 4$ and $V(X)$	$E(X) = 5$, what is $E(X^2)$?		
	a) 9	(b) 16	(c) 21	(d) 25
164.	If $E(X) = 3$ and $V(X)$	$E(X) = 7$, what is $E(X^2)$?		
	a) 9	(b) 10	(c) 16	(d) 18
165.	If $E(X) = 5$ and $E(X)$	$V^{2} = 34$, what is $V(X)^{2}$	•	
	a) 6	(b) 9	(c) 10	(d) 7
166.	If $E(X) = 2$ and $E(X)$	$(x^2) = 14$, what is $V(X)^2$?	
	a) 10	(b) 9	(c) 8	(d) 7
167.	If $E(X) = 6$ and $V(X)$	$E(X) = 12$, what is $E(X^2)$?	?	
	a) 36	(b) 40	(c) 48	(d) 50

168. If $P(x) = \frac{4- 5-x }{k}$; $x =$	2 3 4 8 what is th	o value of $F(Y)$?	
(a) 3	(b) 8	(c) 16	(d) 5
169. If $P(x) = \frac{6 - 7 - x }{k}$; $x = \frac{6 - 7 - x }{k}$	2 3 412 what is t		,
(a) 6	(b) 9	(c) 13	(d) 36
170. If $P(x) = \frac{3- 4-x }{k}$; $x =$	` /		
(a) 6	(b) 9	(c) 10	(d) 40
171. If the variance of X	` /		()
(a) 1	(b) 2	(c) 3	(d) 0
172. If $V(X) = 5$, what is	V(X+5)?		
(a) 0	(b) 5	(c) 10	(d) 25
173. If $V(X) = 5$,, what is	V(2X+5)?		
(a) 20	(b) 5	(c) 10	(d) 25
174. If $E(X) = 2$ and $E(X) = 2$	(2) = 8, then the value	of the $V(X) = ?$	
(a) 0	(b) 2	(c) 4	(d) 8
175. If $E(X^2) = 20$ and V	(X) = 11, what is $E(X)$)?	
(a) 3	(b) 4	(c) 5	(d) 6
176. If $E(X^2) = 50$ and V			
(a) 5	(b) 6	(c) 7	(d) 8
177. If $E(X^2) = 25$ and V			(1)
(a) 2	(b) 3	(c) 4	(d) 5
178. If $E(X^2) = 45$ and V			(1) 7 (0
(a) $4\sqrt{3}$	(b) $2\sqrt{6}$	(c) $6\sqrt{2}$	(d) $7\sqrt{2}$
179. If $E(X^2) = 13$ and V (a) 2	(X) = 4, what is $E(X)$		(d) 5
	` /	(c) 4	(d) 5
180. If $E(X) = 3$, what is (a) 1	E(2X - 5): (b) 3	(c) 5	(d) 7
		(0) 0	(4)
181. If $E(X) = 4$, what is (a) 4	(b) 5	(c) 6	(d) 7
182. If $E(X) = -2$, what			
(a) 1	(b) -1	(c) -2	(d) 4
183. If $E(X) = 6$, what is	E(5-X)?		,
(a) 1	(b) 0	(c) -1	(d) 2
184. If $E(X) = 10$, what i	$\mathbf{s} \ E(4X - 8)$?		
(a) 12	(b) 40	(c) 28	(d) 32
185. If $P(x) = \frac{1}{15}$; $x = 1, 2$,	$3, \cdots 15$, what is the v	alue of the expectatio	n?

(b) 7.5

(c) 7

(d) 8

(a) 8.5

3.1 Situation Set

Answer the next THREE questions based on the following information

	- -	$P(x) = \frac{1}{3} = \frac{1}{4} = \frac{5}{12}$	
186. What is the v	value of $E(X)$		
(a) $\frac{15}{12}$	(b) $\frac{13}{12}$	(c) $\frac{1}{12}$	(d) $\frac{11}{13}$
187. What is the v	value of $E(X^2)$		
(a) $\frac{25}{12}$	(b) $\frac{13}{12}$	(c) $\frac{23}{12}$	(d) $\frac{25}{13}$
188. What is $V(2X)$	7)?		
(a) 2.93	(b) 2.91	(c) 1.97	(d) 2.97
Answer the ne	xt THREE questions	based on the following	g information
	_	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
189. What is the v	value of $E(X)$?		
(a) 2.00	(b) 2.17	(c) 2.33	(d) 2.50
190. What is the v	value of $E(X^2)$?		
(a) 5.17	(b) 4.83	(c) 5.00	(d) 5.33
191. What is $V(3X)$	7)?		
(a) 9.67	(b) 11.33	(c) 12.67	(d) 4.25
Answer the ne	xt two questions base	ed on the following inf	formation
	The probability fund	ction of random variable	x is given below:
		$P(x) = \frac{x}{k}; x = 1, 2, 3, 4$	O
192. What is the v	value of k ?		
(a) 6	(b) 10	(c) 15	(d) 20
193. What is $E(X)$?		
(a) 2.25	(b) 3.5	(c) 2.5	(d) 3.0
Answer the ne	xt three questions ba	sed on the following i	nformation
		etion of random variable $(x) = \frac{2x+1}{k}$; $x = 1, 2, 3, 4$	x is given below:
194. What is the v	value of k ?		
(a) 18	(b) 25	(c) 12	(d) 24
195. What is $E(X)$?		
(a) 1.75	(b) 2.92	(c) 3.25	(d) 2.25

196. What is $V(X)$?			
(a) 1.05	(b) 3.0	(c) 1.5	(d) 1.25
Answer the nex	t two questions based on	the following information	tion
	The probability function of	of random variable x is gi	ven below
	P(x) =	$\frac{x-1}{k}$; $x = 2, 3, 4, 5$	
197. What is the va	lue of k?		
(a) 2	(b) 5	(c) 10	(d) 25
198. What is $E(X)$?	· /	· /	()
(a) 0.425	(b) 0.525	(c) 0.725	(d) 0.625
4 Binomia	al Distribution		
199. How many par	ameters are there in a bi	nomial distribution?	
(a) 1	(b) 2	(c) 3	(d) 4
200. What is the M	ean of Binomial Distribu	tion?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
201. What is the Va	ariance of Binomial Distr	ibution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
202. What is the St	andard Deviation of Bind	omial Distribution?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}
203. What is the Co	pefficient of Variation of l	Binomial Distribution?	?
(a) np	(b) npq	(c) $\frac{q}{np}$	(d) \sqrt{npq}
204. Which is true	of mean (np) of Binomial	Distribution?	
(a) $np = 0$	(b) $np < 0$	(c) $np > 0$	(d) $np \neq 0$
205. In a Binomial of	distribution, how are mea	an and variance related	d?
(a) $Mean > Vario$	ance	(b) $Mean < Variance$	
(c) $Mean = Vario$	ance	(d) $Mean = 2 \times Varia$	nce
206. When does Bir	nomial distribution tend t	to Poisson distribution	n?
(a) $n \to \infty$ and p	$\rightarrow \infty$ (b) $n \rightarrow 0$ and $p \rightarrow 0$	(c) $n \to \infty$ and $p \to 0$	(d) $n \to 0$ and $p \to \infty$
	t two questions based on	_	tion.
X is a binomial va	riate with expectation 4 and	standard deviation $\sqrt{3}$.	
207. What are the v	values of the parameters	(mean and probability)?
(a) $16, \frac{1}{4}$	(b) $16, \frac{3}{4}$	(c) $15, \frac{1}{4}$	(d) $10, \frac{1}{4}$
208. What is $P(X \neq$	0)?		
(a) 0	(b) 0.01	(c) 0.99	(d) 1

209. The characteristi	cs of binomial distrib	ution-	
i. $E(X) > V(X)$ ii. $E(X) = V(X)$ iii. $E(X) = np$			
Which one is corre	ect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
210. What is true of b	oinomial distribution?	•	
(a) There is one para	ameter	(b) Number of tria	l is fixed
(c) Mean is greater t	han variance	(d) Skewness is neg	gative
211. What is the skew	ness of binomial dist	ribution?	
(a) $\frac{(q-p)^2}{}$	(b) $\frac{(q-p)^2}{nn}$	(c) $\frac{(p+1)^2}{nna}$	(d) $\frac{(q+p)^2}{npq}$
np	np	npq	npq
212. When is a binom			
(a) p > q	(b) p = q	(c) p < q	(d) $p+q < 1$
Answer the next t	wo questions based o	n the following infor	rmation
	In a binomial distribut	tion, $P(x=4) = \frac{1}{2}P(x$	= 5); n = 10
213. What is the mean	n?		
(a) 6.25	(b) 5.15	(c) 8.52	(d) 5.22
214. $P(x=2) =$			
(a) 0.0053	(b) 0.0069	(c) 0.0085	(d) 0.94
215. In a binomial dis	tribution with $p = 0.3$	and $n = 10$, what is	P(2)?
(a) 0.2335	(b) 0.2668	(c) 0.3828	(d) 0.1211
216. In a binomial dis		, ,	, ,
(a) 0.0896	(b) 0.2131	(c) 0.1419	(d) 0.2942
217. In a binomial dis		· /	. ,
(a) 0.2734	(b) 0.3125	(c) 0.2070	(d) 0.0898
,		, ,	· /
218. In a binomial dis (a) 0.1789	(b) 0.1887	and $n = 15$, what is (c) 0.1032	(d) 0.2413
` '		. ,	` ´
219. In a binomial dis			
(a) 0.2007	(b) 0.2508	(c) 0.2311	(d) 0.7682
220. In a binomial dis		. ,	4 -5
(a) 18	(b) 10	(c) 13	(d) 6
221. In a binomial dis			4 - 3
(a) 5	(b) 6	(c) 12	(d) 15
222. In a binomial dis		* /	
(a) 15	(b) 1	(c) 8	(d) 12
223. In a binomial dis	tribution with $p = 0.2$	and $P(x) = 0.9389$, n	=?
(a) 7	(b) 12	(c) 11	(d) 15
224. In a binomial dis	tribution with $p = 0.6$	and $P(5) = 0.02449$,	n = ?
(a) 3	(b) 9	(c) 10	(d) 15

4.1 Situation Set

Answer the next THREE questions based on the following information

The mean of a Binomila distribution is 40 and standard deviation 6.

225. What is the value of n ? (a) 200 (b) 300 (c) 400 (d) 500 226. What is the value of $1-q$? (a) 0.5 (b) 0.2 (c) 0.3 (d) 0.1 227. What is the value of $P(X \le 40)$? (a) 0.52 (b) 0.54 (c) 0.45 (d) 0.91 4.2 Multiple Completion 228. In a binomial distribution with parameters n and p : i. The expected value is given by $E(X) = np$. ii. The variance is given by $V(X) = np(1-p)$. iii. The standard deviation is given by \sqrt{np} . Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$. Which we have a suppose the suppose of the properties.	
226. What is the value of $1-q$? (a) 0.5 (b) 0.2 (c) 0.3 (d) 0.1 227. What is the value of $P(X \le 40)$? (a) 0.52 (b) 0.54 (c) 0.45 (d) 0.91 4.2 Multiple Completion 228. In a binomial distribution with parameters n and p : i. The expected value is given by $E(X) = np$. ii. The variance is given by $V(X) = np(1-p)$. iii. The variance is given by $V(X) = np(1-p)$. iii. The standard deviation is given by \sqrt{np} . Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial in the probability mass function of a binomial distribution can be computed using the binomial in the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
(a) 0.5 (b) 0.2 (c) 0.3 (d) 0.1 227. What is the value of $P(X \le 40)$? (a) 0.52 (b) 0.54 (c) 0.45 (d) 0.91 4.2 Multiple Completion 228. In a binomial distribution with parameters n and p : i. The expected value is given by $E(X) = np$. ii. The variance is given by $V(X) = np(1-p)$. iii. The standard deviation is given by \sqrt{np} . Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. iii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
227. What is the value of $P(X \le 40)$? (a) 0.52 (b) 0.54 (c) 0.45 (d) 0.91 4.2 Multiple Completion 228. In a binomial distribution with parameters n and p : i. The expected value is given by $E(X) = np$. ii. The variance is given by $V(X) = np(1-p)$. iii. The standard deviation is given by \sqrt{np} . Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. iii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
(a) 0.52 (b) 0.54 (c) 0.45 (d) 0.91 4.2 Multiple Completion 228. In a binomial distribution with parameters n and p : i. The expected value is given by $E(X) = np$. ii. The variance is given by $V(X) = np(1-p)$. iii. The standard deviation is given by \sqrt{np} . Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
(a) 0.52 (b) 0.54 (c) 0.45 (d) 0.91 4.2 Multiple Completion 228. In a binomial distribution with parameters n and p : i. The expected value is given by $E(X) = np$. ii. The variance is given by $V(X) = np(1-p)$. iii. The standard deviation is given by \sqrt{np} . Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
 228. In a binomial distribution with parameters n and p: i. The expected value is given by E(X) = np. ii. The variance is given by V(X) = np(1 - p). iii. The standard deviation is given by √np. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 231. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1 - p). 	
 i. The expected value is given by E(X) = np. ii. The variance is given by V(X) = np(1-p). iii. The standard deviation is given by √np. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1-p). 	
ii. The variance is given by $V(X) = np(1-p)$. iii. The standard deviation is given by \sqrt{np} . Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
 (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 229. Which of the following statements about a binomial distribution are true? The probability of success remains constant for each trial. The trials are dependent on each other. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr Each trial results in exactly one of two possible outcomes. The expected value is always greater than the variance. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? The variance is maximized when p = 0.5. If p = 1, the distribution becomes degenerate. The standard deviation is given by √np(1 − p). 	
 229. Which of the following statements about a binomial distribution are true? i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 231. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1 − p). 	
i. The probability of success remains constant for each trial. ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the following is/are correct about the binomial distribution? i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
 ii. The trials are dependent on each other. iii. The number of trials is fixed in advance. Which one is correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 231. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1 − p). 	
 (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the probability mass function of a binomial distribution can be computed using the binomial in the probability in the probability mass function of a binomial distribution of the probability mass function of a binomial distribution? i. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1 − p). 	
 230. Consider a binomial experiment. Which of the following statements is/are tr i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the probability mass function of a binomial distribution can be computed using the binomial in the computed using the binomial in the probability mass function of a binomial distribution can be computed using the binomial distribution of the probability mass function of a binomial distribution? i. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1 − p). 	
 i. Each trial results in exactly one of two possible outcomes. ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the correct? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 231. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1 − p). 	
 ii. The expected value is always greater than the variance. iii. The probability mass function of a binomial distribution can be computed using the binomial of the probability mass function of a binomial distribution can be computed using the binomial distribution? (a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 231. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when p = 0.5. ii. If p = 1, the distribution becomes degenerate. iii. The standard deviation is given by √np(1 − p). 	ue?
(a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii 231. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when $p=0.5$. ii. If $p=1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	omial formula
231. Which of the following is/are correct about the binomial distribution? i. The variance is maximized when $p=0.5$. ii. If $p=1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
i. The variance is maximized when $p = 0.5$. ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
ii. If $p = 1$, the distribution becomes degenerate. iii. The standard deviation is given by $\sqrt{np(1-p)}$.	
Which are is connect?	
Which one is correct?	
(a) i and ii (b) i and iii (c) ii and iii (d) i, ii and iii	

5 Poisson Distribution

232. The no. of paramet	ers in a Poisson distri	ibution is —	
(a) 1	(b) 2	(c) 3	(d) 4
233. What is the mean o	of Poisson distribution	ı	
(a) $\frac{1}{\sqrt{m}}$	(b) <i>m</i>	(c) $\frac{1}{m}$	(d) $1 + \frac{1}{m}$
234. Which relationship	between mean and va	ariance of Poisson Dist	tribution is correct?
(a) $Mean > Variance$	(b) $Mean < Variance$	(c) $Mean = Variance$	(d) $Mean \neq Variance$
235. What is the Variance	ce of Poisson Distribu	tion(with parameter	m)?
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) <i>m</i>	(d) $\frac{1}{m+1}$
236. What is the Standa	rd Deviation of Poisso	on Distribution(with p	parameter m)?
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) \sqrt{m}	(d) $\frac{1}{m+1}$
237. Which one is true of	of the parameter (m)	of Poisson Distributio	n?
(a) $m = 0$	(b) $m < 0$	(c) $m > 0$	(d) $m = 1$
238. The parameter of a	Poisson Distribution	is 5. What is its mean	n?
(a) 2	(b) 5	(c) 2.24	(d) 25
239. When does Binomia	al Distribution tend to	o Poisson Distribution	n?
(a) $n \to \infty, p \to 0 \& np$	is finite	(b) $n \to \infty, p \to 0 \& np$	
(c) $n \to \infty, p \to \infty \& n$	p is finite	(d) $n \to 0, p \to \infty \& np$	is infinite
240. The parameter of a	Poisson variate is 2.	What is its variance?	
(a) 0	(b) 4	(c) $\sqrt{2}$	(d) 2
241. The parameter of a	Poisson variate is 5.	What is its variance?	
(a) 10	(b) 5	(c) $\sqrt{5}$	(d) 25
242. A Poisson distribut	ion has a mean of 3.	What is the variance?	
(a) 9	(b) 3	(c) $\sqrt{3}$	(d) 0
243. X is a Poisson varia	te. $P(2) = P(4)$. Wh	at is the value of the	parameter?
(a) 12	(b) 3.46	(c) 3.6	(d) 4
244. X is a Poisson varia	te. $P(3) = P(5)$. Wh	at is the value of the	parameter?
(a) 4.5	(b) 5	(c) 2.3	(d) 4.1
245. For a Poisson variat	E = X, if P(1) = P(3), v	what is the variance?	
(a) 2.5	(b) 3.2	(c) 2.45	(d) 4.5
246. For a Poisson variat	te X , if $P(2) = P(3)$, w	hat is the variance?	
(a) 3	(b) 4	(c) 5	(d) 6
Answer the next two	questions based on t	he following informat	ion
For a Poisson variate X	, if $P(2) = P(5)$.		
247. What is standard d	eviation?		
(a) 1.978	(b) 1.998	(c) 1.989	(d) 1.889

248. What is the valu	$e ext{ of } P(2)$?		
(a) 0.25	(b) 0.14	(c) 0.15	(d) 0.02
249. The standard de	viation of a poisson	distribution is 2. Wh	at is the parameter?
(a) 2	(b) 3	(c) 4	(d) 5
250. Mean of a Poisso	on variate is a. Wha	at is its standard devia	ation?
(a) 0	(b) a	(c) $a^{\frac{1}{2}}$	(d) a^2
251. The standard de	viation of a Poisson	distribution is 3. Wh	nat is the parameter?
(a) 6	(b) 9	(c) 3	(d) 4
252. For a Poisson dis	stribution with a m	ean of 5, what is the v	variance?
(a) 5	(b) 10	(c) 25	(d) 15
	f a Poisson distribu	tion is 4, what is $P(2)$?
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2184
254. If the variance of	f a Poisson distribu	tion is 3.5, what is $P(1)$	1)?
(a) 0.1465	(b) 0.1057	(c) 0.1839	(d) 0.2184
		of 7. What is the stand	
(a) 3.2	(b) 4.1	(c) 2.65	(d) 1.78
256. If $P(2)$ in a Poiss λ ?	son distribution wit	th parameter λ equals	0.2240, what is the parameter
(a) 2.4551	(b) 1.2515	(c) 1.2115	(d) 2.5112
257. A Poisson distrib	oution has a mean o	of 4. What is $P(3)$?	
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2381
258. If the variance of	f a Poisson distribu	tion is 3, what is the	mean?
(a) 3	(b) $\sqrt{3}$	(c) 2	(d) 6
259. For a Poisson dis	stribution with mea	n 6, what is the proba	ability of $P(0)$?
(a) 0.0895	(b) 0.012	(c) 0.0454	(d) 0.0024
260. The mean of a P		is 10. What is its star	
(a) 5	(b) $\sqrt{10}$	(c) 10	(d) $\sqrt{20}$
261. Given that the p	arameter of a Poiss	son distribution is 8, w	what is the variance?
(a) 4	(b) 8	(c) $\sqrt{8}$	(d) 16
5.1 Multiple (Completion		
262. For a Poisson-dis	stributed variable w	with mean $\lambda = 4$, which	of the following is true?
i. $E(X) = 4$			
ii. $V(X) = 2$ iii. $E(X^2) = 18$			
Which one is corr	ect?		
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii

263. If $X \sim $ Poisson	(m=3), which of the	following holds?		
i. $E(X) = 3$ ii. $V(X) = 3$ iii. $E(X^2) = 12$				
Which one is co	orrect?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
264. For a Poisson	distribution, which of	the following stateme	nts are true?	
ii. The distribution	variance are always equal on is always symmetric. by of zero occurrences is g			
Which one is co	orrect?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
265. If a Poisson-distriction is true? i. $E(X) = 6$ ii. $V(X) = 6$ iii. $P(X = 0) = e^{-1}$		able has mean $\lambda=6,{f w}$	hich of the following state	ments
Which one is co	orrect?			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
i. The standard d ii. $P(X \ge 1) = 1$ iii. $E(X^2) = 30$ Which one is co	$-e^{-5}$.			
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	
			a year.If there are 2000 house will be burnt?	${ m ouses},$
(a) 0.036	(b) 0.040	(c) 0.027		
6 Vital St		、 /		
268. What is the ca	alled the ratio of the d	lependent population	to the earning population	ւ?
(a) Dependency ra	atio (b) Sex ration	(c) Population der	sity (d) Growth rate	
(a) The ratio of the(b) The ratio of theulation	following best describes the elderly population to the combined non-working the of young dependents (0)	the working-age population (0-14 and 65+) population		l) pop-
(d) The total pop	ulation divided by the nu	umber of children (0-14)		

270. City A has 12,000 individuals aged 0-14, 35,000 aged 15-64, and 5,000 aged 65+. What										
is the dependent			, , , ,	a a a g	,	, , ,	and a second			
(a) 0.31	0.31 (b) 0.48		(c)	(c) 0.60			25			
271. A City has a d what is the total						oopulatio	on (15-64) is 50,000,			
(a) 15,600	(c)	26,000		(d) 30	,000					
Answer the follo	wing 2 que	estions base	ed on the	e inform	ation gi	ven belo	w.			
	City	Population	(in the	(in thousands) Area (
			1200		<u> </u>	00				
			800			20				
272. What is the population density of City Delta?										
(a) 2 people/ km^2	(b) 4	people/km ²	(c)	2.5 peopl	e/km^2	(d) 2.2	2 people/km^2			
273. Which city is less densely populated?										
(a) Gamma (b)			b) Delta							
(c) Both are equal			(d)	Cannot l	oe determ	nined				
Answer the follo	wing two	questions ba	ased on	the info	rmation	given be	elow.			
In a city, the total number of live births in a year was 2,400. The number of women aged 15-49 years in the population was 48,000.										
274. Calculate the General Fertility Rate (GFR) for the city.										
(a) 40 per 1,000 women (b) 50 per 1,000 women (c) 60 per 1,000 women (d) 30 per 1,000 women										
275. If live births increase to 3,000 while the number of women aged 15-49 remains the same, what is the new GFR?										
(a) 55 per 1,000 we	omen (b) 65	per 1,000 we	omen (c)	50 per 1,	000 wome	en (d) 62	5 per 1,000 women			
276. The population 8,000. What is t	-				of live	births r	ecorded in a year is			
(a) 12 per 1,000		per 1,000	` ′	20 per 1,	000	(d) 22	per 1,000			
	mula of no	nulation de	. ,	• ,		()	• ,			
277. What is the formula of population der (a) $\frac{M}{F} \times 100$ (b) $\frac{F}{M} \times 100$			(c) $\frac{B}{P} \times 100$			(d) $\frac{P}{A}$				
278. In the following data, what is the dependency ratio?										
					45 54	FF C4	CF 1			
Ag Populat	$\frac{e}{ation}$ 31.5	14 15-24 500 40,000	25-34 48,000	35-44 41,000	45-54 32,000	55-64 25,000	$\frac{65+}{16,000}$			
Topala	, , ,	10,000	10,000	11,000	02,000	20,000	10,000			
(a) 35.54% (b) 25.54%			(c)	(c) 23.24% (d) 31.25%		.25%				
279. Crude Birth Rate (CBR) is:										
(a) $\frac{B}{P} \times 100$	(b) $\frac{B}{P}$	\times 1000	(c)	$\frac{P}{B} \times 100$		(d) $\frac{F}{P}$	\times 100			
280. Which one is a i) CBR ii) CDR iii) NRR	measure o	f reproduct	ion?							
(a) i	(b) ii		(c)	iii		(d) i a	nd ii			

281. The number of peo	ple living per unit are	ea is called—		
(a) Population Index		(b) Population Density		
(c) Human Developmen	nt Index	(d) Dependency Ratio		
282. Which formula of C	GFR is accurate?			
(a) $GFR = \frac{B}{P} \times 1000$		(b) $GFR = \frac{B}{F_{15-49}} \times 100$	00	
(c) $GFR = \frac{B_i}{F_i} \times 1000$		(d) $GFR = \frac{G_i}{F15-49} \times 10^{-3}$	000	
283. Total number of ch	ildren born to each 10	000 people in any cour	ntry or region is called –	
(a) TFR	(b) GFR	(c) CBR	(d) GRR	
	dency ratio of 0.48. I of dependents (ages 0		pulation (15–64) is 62,500,	
(a) 30,000	(b) 25,000	(c) 22,000	(d) 20,000	
285. The dependency raindividuals are consi		f there are 40,000 peo	pple aged 15–64, how many	
(a) 22,000	(b) 26,500	(c) 24,000	(d) 25,000	
growth do we have? (a) Simple growth	(b) Arithmetic growth o questions based on t	(c) Exponential growth	• •	
287. Which type of grow	wth is seen here?			
	(b) Geometric growth	(c) Exponential growth	(d) None	
288. What is the rate of	increase?			
(a) 1	(b) 0.1	(c) 10	(d) 1%	
289. In exponential grow	vth, when is a populat	ion doubled?		
(a) $\frac{\log_{10} 2}{r}$	(b) $\frac{\log_e 2}{r}$	(c) $\frac{\log_e 2}{r^2}$	(d) $\frac{\log_e 3}{r}$	
290. If a population exp	onentially declines, w	hen is it reduced to ha	alf?	
(a) $\frac{\log_{10} 2}{r}$	(b) $\frac{\log_e 2}{r}$	(c) $\frac{\log_e 2}{r^2}$	(d) $\frac{\log_e 3}{r}$	
291. How long does it ta	ake for a population to	triple in exponential	growth?	
(a) $\frac{\log_{10} 3}{r}$	(b) $\frac{\log_e 3}{r}$	(c) $\frac{\log_e 3}{r^2}$	(d) $\frac{\log_e 2}{r}$	
Answer the next two	o questions based on t	he following informat	ion	
	St	catement		

292. Vital statistics records -

- i. marriage
- ii. birth
- iii. sickness and death

Which one is correct?

- (a) i and ii
- (b) i and iii
- (c) ii and iii
- (d) i, ii and iii

Answer Key:

23. (d)
$$P = \{m, n\}, Q = \{p, q\}$$

48. (b)
$$\frac{1}{22}$$

3. (a)
$$\frac{n!}{(n-r)!}$$

$$25.$$
 (a) i and iii

49. (b)
$$\frac{6}{11}$$

$$(n-r)!$$

50. (b)
$$\frac{1}{3}$$

4. (a)
$$\frac{n!}{(n-1)!(n+r)!}$$

51. (b)
$$\frac{5}{12}$$

28. (d)
$$\frac{1}{2}$$

52. (c)
$$\frac{48}{91}$$

53. (d)
$$\frac{5}{11}$$

55. (c)
$$\frac{3}{4}$$

56. (d)
$$\frac{3}{4}$$

10. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 33.$$
 (c) 0.975

11. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 34.$$
 (c) 6^r

58. (a)
$$\frac{13}{20}$$

12. (a)
$$P(A|B) = \frac{P(A \cap B)}{P(B|A)}$$

35. (c)
$$2^r$$

12. (a)
$$P(A|B) = \frac{P(A|B)}{P(B|A)}$$

59. (a)
$$P(A \cap B) = P(A) \times P(B)$$

13. (c)
$$P(A_1UA_2U\cdots UA_n) = \sum_{i=1}^{\infty} P(A_i)(a) \frac{1}{4}$$

$$(b) T (H \cup D) = T (H) + T$$

38. (c)
$$\frac{3}{4}$$

39. (b)
$$\frac{1}{2}$$

40. (a)
$$\frac{1}{4}$$

41. (c)
$$\frac{3}{4}$$

42. (c)
$$\frac{1}{4}$$

43. (a)
$$\frac{3}{4}$$

21. (a)
$$P(A \cap B) = P(A) \cdot P(B)$$

45. (b)
$$\frac{0}{6}$$

22. (a)
$$A = \{1, 2, 3\}, B = \{4, 5\}$$

60. (b)
$$P(A \cup B) = P(A) + P(B)$$

61. (d)
$$\frac{P(A)}{P(B)} = \frac{P(A|B)}{P(B|A)}$$

62. (b)
$$\frac{1}{36}$$

63. (a)
$$P(A) = 0.5$$
 and $P(B) = 0.4$

71. (c) $\frac{1}{4}$ 95. (a) 2 119. (c) $\frac{1}{21}$ 120. (b) Discrete random 72. (a) $\frac{1}{4}$ 96. (b) Weight 121. (c) 14 73. (d) $\frac{11}{12}$ 97. (c) $\Sigma P(x_i) = 1$ $a \operatorname{software}^{122} (c) \frac{5}{4}$ 98. (d) Released version number of 74. (b) $\frac{1}{4}$ 123. (c) Probability mass function 99. (b) Weight of a package 75. (c) $\frac{2}{20}$ 124. (a) i and ii 100. (c) Number of floors in a building 76. (a) $\frac{17}{20}$ 125. (c) 1 101. (c) Number of defective items in a batch 77. (c) $\frac{58}{60}$ 126. (c) 1 102. (b) Height of students 78. (b) $\frac{7}{30}$ 127. (d) 1 103. (d) $0 \le P(X_i, Y_i) \le 1$ 128. (c) 1 79. (d) $\frac{23}{30}$ 104. (b) 0.75 129. (a) $P(x) = \frac{2x+3}{21}$ 80. (a) $\frac{3}{7}$ 105. (a) 0.75 130. (c) $\frac{3y+2}{7}$ 81. (b) i and iii 106. (c) $\frac{1}{4}$ 131. (a) i 82. (d) Page size in word processing softwares 132. (b) $\frac{1}{6}$ 107. (c) $\frac{5}{6}$ 83. (a) Probability distribution 133. (a) $\frac{5}{6}$ 108. (a) $\frac{1}{2}$ 84. (b) 3 134. (d) i, ii and iii 109. (c) $\frac{1}{20}$ 85. (d) 3 135. (c) ii 110. (a) $\frac{5}{12}$ 86. (d) 4 136. (b) E(X) + E(Y)111. (c) $\frac{1}{2}$ 87. (c) $\int_{x} f(x) dx = 1$ 137. (b) 4E(X) + 2E(Y)112. (c) $\frac{1}{2}$ 138. (c) Variance 88. (d) Size of television 139. (c) 0 113. (d) $\frac{1}{6}$ 89. (b) $\frac{1}{20}x^5 + c$ 140. (b) $a^2V(X)$ 114. (a) $\frac{5}{6}$ 90. (b) i and iii 141. (a) aE(X) + b115. (b) $\frac{5}{6}$ 91. (d) i, ii, and iii 142. (a) 0 116. (c) $\frac{1}{2}$ 92. (d) i, ii, and iii 143. (c) $\frac{n+1}{2}$ 117. (d) $\frac{1}{5}$ 93. (d) 1 144. (c) 16

145. (c) a

118. (c) 1

94. (c) 0

146. (a) 0 171. (d) 0 196. (a) 1.05 197. (c) 10 147. (c) V(X) - V(Y)172. (b) 5 198. (c) 0.725 148. (c) 4V(X)173. (a) 20 199. (b) 2 149. (a) 1 174. (c) 4 200. (a) np 175. (a) 3 150. (d) Central tendency 201. (b) npq 176. (b) 6 151. (c) 2 202. (d) \sqrt{npq} 177. (c) 4 152. (b) 5.5 203. (c) $\frac{q}{np}$ 153. (b) $V(X+Y) = V(X) + V(Y) \pm 78C(x)(X\sqrt{8})$ 204. (c) np > 0154. (b) i 179. (c) 4 205. (a) Mean > Variance155. (c) 4 180. (a) 1 206. (c) $n \to \infty$ and $p \to 0$ 207. (a) $16, \frac{1}{4}$ 156. (a) 2 181. (b) 5 208. (c) 0.99 182. (a) 1 157. (a) 10 209. (b) i and iii 158. (b) 5 183. (c) -1 210. (c) Mean is greater than variance 184. (d) 32 159. (a) 4 211. (a) $\frac{(q-p)^2}{np}$ 185. (d) 8 160. (b) 6 186. (b) $\frac{13}{12}$ 161. (c) 31 212. (c) p < q162. (a) 2 187. (b) $\frac{13}{12}$ 213. (a) 6.25 214. (b) 0.0069 163. (c) 21 188. (d) 2.97 215. (c) 0.3828 164. (c) 16 189. (b) 2.17 216. (c) 0.1419 165. (b) 9 190. (a) 5.17 217. (a) 0.2734 166. (a) 10 191. (d) 4.25 218. (c) 0.1032 167. (c) 48 192. (b) 10 219. (b) 0.2508 168. (d) 5 193. (d) 3.0 220. (b) 10 169. (d) 36 194. (d) 24 221. (c) 12 170. (b) 9 195. (b) 2.92 222. (c) 8

223. (d) 15	247. (a) 1.978	271. (c) 26,000
224. (b) 9	248. (c) 0.15	272. (b) 4 people/ km^2
225. (c) 400	249. (c) 4	273. (b) Delta
226. (d) 0.1	250. (c) $a^{\frac{1}{2}}$	274. (b) 50 per 1,000 women
227. (b) 0.54	251. (b) 9	275. (d) 62.5 per 1,000 women
228. (a) i and ii	252. (a) 5	276. (b) 16 per 1,000
229. (b) i and iii	253. (a) 0.1465	
230. (d) i, ii and iii	254. (b) 0.1057	277. (d) $\frac{P}{A}$
231. (d) i, ii and iii	255. (c) 2.65	278. (b) 25.54%
232. (a) 1	256. (b) 1.2515	279. (b) $\frac{B}{P} \times 1000$
233. (b) m	257. (b) 0.1954	280. (c) iii
234. (c) $Mean = Variance$	258. (a) 3	281. (b) Population Density
235. (c) m	259. (d) 0.0024	282. (b) $GFR = \frac{B}{F_{15-49}} \times 1000$
236. (c) \sqrt{m}	260. (b) $\sqrt{10}$	283. (c) CBR
237. (c) $m > 0$	261. (b) 8	284. (a) 30,000
238. (b) 5	262. (b) i and iii	285. (c) 24,000
239. (a) $n \to \infty, p \to 0$ & np is finite	$_{ m te}^{263.}$ (d) i, ii and iii	286. (c) Exponential growth
240. (d) 2	264. (b) i and iii	287. (a) Arithmetic growth
241. (b) 5	265. (d) i, ii and iii	
242. (b) 3	266. (d) i, ii and iii	288. (b) 0.1
243. (b) 3.46	267. (a) 0.036	289. (b) $\frac{\log_e 2}{r}$
244. (a) 4.5	268. (a) Dependency ratio	290. (b) $\frac{\log_e 2}{r}$
245. (c) 2.45	269. (b) The ratio of the combine population	ed non-working (0-14 and 65+) population to the 291. (b) $\frac{\log_e \$}{r}$
246. (a) 3	270. (b) 0.48	292. (d) i, ii and iii
		(11)