Considere dadas as seguintes constantes físicas e, quando necessário, use estes seus valores bem como a conversão de unidades apresentada:

Aceleração local da gravidade: $g = 10 \text{ m/s}^2$.

Constante de Boltzmann: $k_B = 1.4 \times 10^{-23} \text{ J/K}.$

Constante universal dos gases: $R = 8 \frac{\text{J}}{\text{mol} \cdot \text{K}}$.

Densidade da água: 1.0 g/cm^3 .

Velocidade da luz no vácuo: $c = 3.0 \times 10^8$ m/s.

1.0 cal = 4.2 J.

Questão 1. Na figura, o anel de raio R gira com velocidade angular ω constante e dispõe de um alvo pontual A que cruza o eixo x no mesmo instante em que, do centro do anel, é disparado em sua direção um projétil puntiforme com velocidade \vec{v}_0 . Desconsiderando a resistência do ar,

- (a) determine o ângulo θ , em relação ao eixo x, em que o projétil acerta o alvo;
- (b) determine o intervalo de tempo Δt dispendido pelo projétil para acertar o alvo;
- (c) a velocidade angular ω é determinada apenas por θ e Δt ? Justifique.

Questão 2. Uma prancha retangular de espessura uniforme, 5,0 m de comprimento, 1,5 g/cm³ de densidade e 10 kg de massa homogeneamente distribuída, é parcialmente submersa na piscina ilustrada na figura, em cuja parede (lisa) se apoia, formando um ângulo de 30° com o piso horizontal, cujo coeficiente de atrito com a prancha é $0.6\sqrt{3}$. Determine para quais alturas y do nível de água a prancha permanece em equilíbrio estático nessa posição.

Questão 3. Uma mola de constante elástica k é presa a um bloco de massa m sobre um plano inclinado de um ângulo α em relação à horizontal, onde interage entre superfícies um atrito de coeficiente μ . Com o bloco deslocado forçadamente para baixo, a mola é distendida até um comprimento x=D da sua posição x=0, quando livre em seu comprimento natural. A partir do repouso, o bloco é então liberado e se inicia um movimento oscilatório. Pedem-se:

- (a) As possíveis posições finais x_f de parada do bloco após cessar o movimento oscilatório, em função das grandezas intervenientes.
- (b) O gráfico da quantidade de movimento p do bloco em função da coordenada x, considerando o intervalo de tempo compreendido entre o início do movimento e o instante de sua primeira parada.

Questão 4. Um planeta esférico de massa M e raio R gira com velocidade angular constante ao redor de seu eixo norte-sul. De um ponto de sua linha equatorial é lançado um satélite artificial de massa $m \ll M$ sob ação de seus propulsores, que realizam um trabalho W. Em consequência, o satélite passa a descrever uma órbita elíptica em torno do planeta, com semieixo maior 2R. Calcule:

- (a) A excentricidade máxima da órbita do satélite para que este complete uma volta ao redor do planeta.
- (b) O período de rotação do planeta, levando em conta as grandezas intervenientes, inclusive a constante universal da gravitação G.

Questão 5. Frentes de ondas planas de luz, de comprimento de onda λ , incidem num conjunto de três fendas, com a do centro situando-se a uma distância d das demais, conforme ilustra a figura. A uma distância $D \gg d$, um anteparo registra o padrão de interferência gerado pela difração da onda devido às fendas. Calcule:

- (a) A razão entre a intensidade da franja clara central e a das franjas claras vizinhas.
- (b) Os ângulos θ_n para os quais ocorrem franjas escuras.

Questão 6. Considere um dispositivo desenvolvido para simular condições de voo em que operam tubos de Pitot para a medição da velocidade de aeronaves. A pressão de estagnação P_A dá-se na entrada A do Pitot, onde se acopla um tubo contendo água cuja superfície livre encontra-se a h=60 cm de altura no interior de um recipiente fechado sujeito a um vácuo parcial de 9.0×10^4 Pa. Por sua vez, a pressão estática P_B dá-se na entrada B do corpo do tubo de Pitot, imerso numa câmara fechada contendo $\frac{75}{16}$ mols de gás ideal a $T=27\,^{\circ}\mathrm{C}$ que ocupa um volume total de $125\,\ell$.

Sendo $\rho=1,2$ kg/m³ a densidade do ar atmosférico, calcule, em km/h, o valor a ser registrado por um velocímetro de aeronave que se baseia na leitura dos manômetros acoplados ao sistema ilustrado abaixo.

Questão 7. De uma altura de 52,5 m é solto um frasco indeformável contendo um gás monoatômico formado de partículas com massa de $4,20\times10^{-24}$ g, e de calor específico a volume constante igual a 1,25 cal/g °C. Ao atingir o solo, a energia cinética do sistema é dissipada na forma de calor no próprio gás. Para uma temperatura inicial do gás de 16 °C, determine a variação da velocidade quadrática média das partículas do gás devida à queda. Se necessário, use a aproximação binomial $(1+x)^n \approx 1+nx$, para $|x| \ll 1$. Desconsidere a massa do frasco.

Questão 8. Um capacitor 1 de placas paralelas está submetido a uma d.d.p. $V_1=12~\rm V$, e um capacitor 2, idêntico ao primeiro, a uma d.d.p. V_2 . Um elétron em repouso parte do ponto P, atravessa um orifício no primeiro capacitor e adentra o segundo através de outro orifício, a 60° em relação à placa, conforme indica a figura. Desconsiderando a ação da gravidade, determine a d.d.p. V_2 para que o elétron tangencie a placa superior do capacitor 2.

Questão 9. Um sinal luminoso propaga-se no interior de uma fibra óptica retilínea de comprimento L=3,00 km, feita de um material com índice de refração igual a 1,50. Considere que a luz no interior da fibra é guiada por meio de sucessivas reflexões internas totais. Sendo a velocidade da luz no vácuo igual a $3,00\times10^5$ km/s, calcule o tempo de propagação do sinal de ponta a ponta

- (a) se a fibra estiver envolta de ar;
- (b) se o núcleo da fibra estiver envolvido por um revestimento feito de material com índice de refração de 1,45.

Questão 10. Raios cósmicos interagem com átomos da atmosfera e produzem partículas instáveis X. Por meio de experimentos, constata-se que X decai em uma partícula Y e em um neutrino ν , conforme a equação de decaimento $X \to Y + \nu$. Considerando desprezível a massa de repouso do neutrino e X inicialmente em repouso, determine a velocidade da partícula Y em termos de c e das massas de X e de Y.