Sensor tension	7
halman filters good fordifferent sensors > co	ombine strength to of Radar D-LADAR
projects truck pedestrian	
Extended: More Complex Motion Models & Mea	swement Models
11010	State of pedection = 20 Position Px 20 Velocity P/x
Initialize () Predict	Update: Cambine Measurement with Prediction
Covariance Matrices MeasureMent Inptate: = correction skp RADAR	emphasis depending on un certainty of each value
State condition is the setup Raday Matrices	Timestap W: Prediction
State apolite with new	Kt1 " measurement uptade
Measurement With new	Gnew belief-) posterior
Laser: Cartesian	
Radai: Polar coordinale System	a l'illian all annes V
X: wear state Vector oposition & velocity - god	assian distribution with Mean x
P State covariance matrix: info about uncertainty U: Timesteps: Xn-> post V at time K	of pos. & Velocity(V) , like Std-deviation
K: Timesteps: Xn-> posb V at time K	
in a land be down to som u	-1 to u
Ma senest function was measurement is cut	000000
State transition: $X' = f(x) + v = fx + 8h$ $G(x) = f(x) + v = fx + 8h$ $G(x) = f(x) + f(x) + f(x) = f(x) + f(x)$ We assument: $G(x) = f(x) + f(x) + f(x) = f(x) + f(x)$	+V ise part (vandom)
Ly Masurement: $Z = [h'(x)] + (w) = Hx' + (w)$	
Prediction Deterministic Part Port Port Port Port Port O Matrixform > (PI) = (0)	ot Phile = 2=pl measured Lider 1 / V = constil z=(10) (vi)

Kalman filter prediction

X' = FX+V prediction

X' = FX+V prediction

Covariance

P' = FPFT+Q

represents

Increase in uncertainty

ANGO V~ N(O,Q)

Someon

PULL-[0,0043m² -0,0013m²] There transformed measurement or-Points as colours in Marins

This Radar Zuzille-[0] \$ 3.0,m > Martix: 3 Rows

Zuzille-[0]

Zuzille-[0] Coveriance matrix update Ret) kt = Prt1/k-Ket/ks Kt1/k Kt1/k Kt1/k

Now: Cross-come lation betw. o-p in state space and measurement space

Tet1/k= \sum_{no} wi\(\chi\) (\chi\) (\chi\ Sensor manual : 50:013m Wise We - Lugar R= (000) Q = [on o] - guess max Predicted measurement mean

Extilk = 5 widetilk liocess moise covariance: State update XK+1/K+1 = XK+1/K+1K+K+1/K (2K+1 - 2K+1/K) Kalman Gain KK+11K = TK+1/K SK+1/K Update state Sk+1/K= & W: (2K+1K1)-2K+1/K)(2K+1/K1-2K+1/K)+ R+R=E {uk-uk-1} Predicted measurement covariance Update Measurement Prediction Shortcut: Reuse Sigmapoints : Transform old or-Points into uneasurement space - Predicted o-P acceleration of a=9 m Mensurement or p Measurementmodel: First = h(Xic+1) + Wict 1+2/4 | 1+2/X | 4= 1+2/2 Measurement model Oa = amex = 6 = 3 Uprocess noise 1 Constituty Constituty smooth estimations? Measurement noise

Consistency: Check if Nose Phrameters are good

Man 1-20-1 1 ment on Salared (NIS). 5-10-12 Normalized Innovation Squared (NIS): E=(EKHI-EKHILK) T-SKHILK (EKHI-EKHILK Lo Chi X2 - Distribution x2.950 ... X . 050 Normalize dfidegiees of freedom 7.815 Lydim measurey 15 x Wis will be higher than 7.815 ment space 43dim Radar glooks gient 25 x abose NIS-Value