LAKSHYA BATCH

Today's GOAL

Crystal System, Packing Fraction and

Empirical formula determination

Crystal System

Super Trick

Crystal System	Axial Distance	Axial angle	Unit Cell
Cubic (Cu)	a=b=c	d=B=7=90	3 (Sc, Bcc, Fcc)
Rhombotedral (or Fri	onal) a=b=c	d=B=7+90	(Sc)
Tetragonal(70) Hexagonal(H0)	q=b+c	d=13=7=90	2 (50,800)
Orthorhombic		d=13=90, 7=120	1 (50)
Monoclinic (mo)	011	d=B=7=90	4 (SCIBCC, FCC)
Triclinic (Tyi)	0 + 6 + C	d=7=90, B +9	02(EC) (SC) FC)
		0 + B + 7 + 90	1 (SC)

£nd centered (E.C)

> orthorhombic or monoclinic

Q and A of crystal system

- 1. Total crystal system 🗇
- 2. Total Bravais lattice (4)
- 3. Most sym crystal Cubic
- 4. Most Unsymm Crystal Triclinic
- 5. Crystal sys having max no of Braivais lattice Orthorhombic
- 6. Geometry of match box orthorhombic

Packing Fraction or Efficiency

The space occupied by atoms in an unit ceur is called P.F or P.E.

$$\frac{1.P.F}{2 \times Vatom} \times 100$$

$$\frac{1.P.F}{2 \times Vatom} \times 100$$

$$\frac{1.P.F}{3} \times 100$$

Case O In S. C

$$ar=a$$

$$\frac{1 \times \frac{1}{3} \pi^{3}}{2} \times \frac{100}{3} = \frac{1 \times \frac{1}{3} \pi^{3}}{2} \times \frac{100}{6} = \frac{11}{6} \times \frac{100}{6} = \frac{100}{6} = \frac{100}{6} \times \frac{100}{6} = \frac{100}$$

Case & In B.C.C

$$\frac{1.9F = 2 \times \frac{1}{3} \pi^{3}}{2 \times 100}$$

$$= 2 \times \frac{1}{3} \times 100$$

$$= 2 \times \frac{1}{3} \times 100$$

$$= (4x)^{3}$$

$$=\frac{\sqrt{3}\pi}{8}$$
 = 68.1.

Case 3 In F. C.C

$$-1.PF = \frac{2 \times \frac{4}{3} \pi^{3}}{93} \times 100$$

$$= \frac{4 \times \frac{4}{3} \pi^{3}}{100} \times 100$$

$$= \frac{4 \times \frac{4}{3} \pi^{3}}{100} \times 100$$

$$\left(\frac{4r}{\sqrt{2}}\right)^3$$

$$= \frac{\pi}{3\sqrt{2}} \times 100$$

$$= \frac{3\sqrt{2}}{3\sqrt{4}}$$

Formulae

Unit cells	S.C	B.C.C	F.C.C
Zeff	1	2	4
Relation b/w a and r	olc:: a	$2Y = \sqrt{3q}$	27= 529
C.N	6	8	12
%P.F	52.4.1.	68.1.	74.4
%voids=100-1/PF	47.6.1.	35.1	264

How to find Empirical formula of a compounds. A -> Corners 8 find Empirical formula B -> Body center of Comp. A,B,

Contribution

Corners

B. C

 \Rightarrow Corners $8 \times \frac{1}{8} = 1$ Q $F \cdot C = 6x \frac{1}{2} = 3$ Corners 8X = Q $F \cdot C \qquad 6x = 3$ E.C 12X1 = 3

ABC3

 $- > \frac{1}{8} \times \frac{1}{8} = 1$ AB3 $B \longrightarrow F \cdot C \qquad 6 \times \frac{1}{2} = 3$ Corners 8 if one of the f.c atom is B -> F.C 5x1= removed then new E.F will be =

AB-A B 5 2 Ag B5

A \rightarrow Corners 8x = 1AB₃ B -> £.C |2×1=3 A -> Corners if one of the E.c atom is removed B -> E.c then new empirical formula will be-ABII

Q.

The correct order of the packing efficiency in different types of unit cells is

a. \rangle fcc < bcc < simple cubic \checkmark

fcc > bcc > simple cubic

|c| fcc < bcc > simple cubic

bcc < fcc > simple cubic

Q.

$$2\sqrt{2}r, \frac{4r}{\sqrt{3}}, 2r$$

$$2r$$
, $2\sqrt{2}r$, $\frac{4r}{\sqrt{3}}$

$$\frac{b}{\sqrt{3}}$$
, $2\sqrt{2}r$, $2r$

$$\frac{d}{\sqrt{3}}$$
, $2\sqrt{2}r$

comprehension

Packing fraction of a unit cell is defined as the fraction of the total volume of the unit cell occupied by the atom(s). 4^{-3}

P.F. = Volume of the atom(s) present in a unit cell

Volume of unit cell

Volume of unit cell

$$a^3$$

and % of empty space = $100 - P.F. \times 100 = 100 - 1.P.F.$

where Z = effective number of atoms in a cube

r = radius of an atom

a = edge length of the cube

% of empty space in simple cubic unit cell is nearly:

a. > 52.4

c. > 32

d. > 26

Pacl<ing fraction in face centered cubic unit cell is:

0.7406

b.

0.6802

0.5236

d.

None of these

Column-I	Column-II

- (A) Tetragonal and Hexagonal
- (P) are two crystal systems
- (B) Cubic and Rhombohedral
- (Q) have cell parameters
 - a = b = c and $\alpha = \beta = 90^{\circ} \neq \gamma$ are different
- (C) Monoclinic and Triclinic (R) (R) $a \neq b \neq c$
- (D) Cubic and Hexagonal

S) a = b = c

Q.

(A) Primitive, face centered, body centered, end centered

(B) Primitive, face centered, body centered (Q) Orthorhombic

(C) Primitive, body centered (R) Hexagonal

(D) Primitive only (S) Tetragonal

Thank you!!