Lab 4: Area-optimized Multiplier and Handshake Protocol Design on Datapath

Name: Peng Guo GTID: 903424176

1. Diagram

2. Tables

a) Resources

i. Slice Logic

Site Type	Used	Fixed	Available	Util%
Slice LUTs	5	0	20800	0.02
LUT as Logic	5	0	20800	0.02
LUT as Memory	0	0	9600	0.00
Slice Registers	35	0	41600	0.08
Register as Flip Flop	35	0	41600	0.08
Register as Latch	0	0	41600	0.00
F7 Muxes	0	0	16300	0.00
F8 Muxes	0	0	8150	0.00

ii. DSP

Site Type	1	Used	1	Fixed	Available	1	Util%
DSPs							
DSP48E1 only	1	1			1	1	1

iii. IO and GT Specific

Site Type	Used	Fixed	Available	Util%
Bonded IOB	62	0	106	58.49
IOB Master Pads	30			į i
IOB Slave Pads	31			1
Bonded IPADs	0	0	10	0.00
Bonded OPADs	0	0	4	0.00
PHY_CONTROL	0	0	5	0.00
PHASER_REF	0	0	5	0.00
OUT_FIFO	0	0	20	0.00
IN_FIF0	0	0	20	0.00
IDELAYCTRL	0	0	5	0.00
IBUFDS	0	0	104	0.00
GTPE2_CHANNEL	0	0	2	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	20	0.00
PHASER_IN/PHASER_IN_PHY	0	0	20	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	250	0.00
IBUFDS_GTE2	0	0	2	0.00
ILOGIC	0	0	106	0.00
OLOGIC	0	0	106	0.00
+	+			++

iv. Primitives

+	+	
Ref Name	Used	Functional Category
++	+	
FDRE	35	Flop & Latch
OBUF	34	10
IBUF	28	10
CARRY4	4	CarryLogic
LUT4	2	LUT
LUT2	2	LUT
LUT5	1	LUT
LUT3	1	LUT
DSP48E1	1	Block Arithmetic
BUFG	1	Clock
++	+	

b) Power

+	++
Total On-Chip Power (W)	0.091
Dynamic (W)	0.021
Device Static (W)	0.070
Effective TJA (C/W)	5.0
Max Ambient (C)	84.5
Junction Temperature (C)	25.5
Confidence Level	Low
Setting File	
Simulation Activity File	
Design Nets Matched	NA
+	++

Dynamic: 0.021W Static: 0.070W

c) Worst Negative Slack

Design Timin	g Summary						
WNS(ns)	TNS(ns)	TNS Failing	Endpoints	TNS Total	Endpoints	WHS(ns)	THS(ns)
5.332	0.000		0		70	0.198	0.000
THS Failing Endpo	oints THS To	tal Endpoints	WPWS(ns)	TPWS(ns)	TPWS Failing	Endpoints TPWS	Total Endpoints
	0	70	4.500	0.000		0	37

3. Answer the question

Why don't we immediately stall the current stage if the next stage is stalled but instead take into consideration of the valid signal? Use scenarios to explain your thought. (Answer should not exceed 6 sentences)

We assume the scenario of counter-example as following. If the valid signal from current stage is 0, the data in current stage that is not useful and valid should be thrown away. Thus, if we do not take the valid signal into consideration, then there may be some junk data held in the producer, which results in a wasteful use of resources. If we take the valid signal into consideration, then there is only valid data kept by the producer, which is a more reasonable design.