

$\begin{array}{c} \textbf{Linear mixed-} \\ \textbf{effects modeling} \\ \textbf{in SPSS}^{\text{\tiny \$}} \end{array}$

AN INTRODUCTION TO THE MIXED PROCEDURE

Table of contents

Introduction3
Data preparation for MIXED
Fitting fixed-effects models with iid residual errors
Example 1 — Fixed-effects model using MIXED
Example 2 — Fixed-effects model using GLM
Fitting fixed-effects models with non-iid residual errors
Example 3 — Fixed-effects model with correlated residual errors
Fitting simple mixed-effects models (balanced design)
Example 4 — Simple mixed-effects model with balanced design using MIXED $\dots 11$
Example 5 — Simple mixed-effects model with balanced design using GLM $\ldots12$
Example 6 — Variance components model with balanced design $\dots 13$
Fitting simple mixed-effects models (unbalanced design)
Example 4a — Mixed-effects model with unbalanced design using MIXED15
Example 5a — Mixed-effects model with unbalanced design using GLM \ldots
Example 6a — Variance components model with unbalanced design
Fitting mixed-effects models with subjects
Example 7 — Fitting random effect*subject interaction using MIXED $\dots 18$
Example 8 — Fitting random effect*subject interaction using GLM \ldots 18
Example 9 — Fitting random effect*subject interaction using
SUBJECT specification
Example 10 — Using COVTYPE in a random-effects model
Multilevel analysis
Example 11 — Multilevel mixed-effects model
Custom hypothesis tests
Example 12 — Custom hypothesis testing in mixed-effects model
Covariance structure selection
Information criteria for Example 9
Information criteria for Example 10
Reference
About SPSS Inc

Introduction

The linear mixed-effects model (MIXED) procedure in SPSS enables you to fit linear mixedeffects models to data sampled from normal distributions. Recent texts, such as those by McCulloch and Searle (2000) and Verbeke and Molenberghs (2000), comprehensively reviewed mixed-effects models. The MIXED procedure fits models more general than those of the general linear model (GLM) procedure and it encompasses all models in the variance components (VARCOMP) procedure. This report illustrates the types of models that MIXED handles. We begin with an explanation of simple models that can be fitted using GLM and VARCOMP, to show how they are translated into MIXED. We then proceed to fit models that are unique to MIXED.

The major capabilities that differentiate MIXED from GLM are that MIXED handles correlated data and unequal variances. Correlated data are very common in such situations as repeated measurements of survey respondents or experimental subjects. MIXED also handles more complex situations in which experimental units are nested in a hierarchy. MIXED can, for example, process data obtained from a sample of students selected from a sample of schools in a district.

In a linear mixed-effects model, responses from a subject are thought to be the sum (linear) of so-called fixed and random effects. If an effect, such as a medical treatment, affects the population mean, it is fixed. If an effect is associated with a sampling procedure (e.g., subject effect), it is random. In a mixed-effects model, random effects contribute only to the covariance structure of the data. The presence of random effects, however, often introduces correlations between cases as well. Though the fixed effect is the primary interest in most studies or experiments, it is necessary to adjust for the covariance structure of the data. The adjustment made in procedures like GLM-Univariate is often not appropriate because it assumes the independence of the data.

The MIXED procedure solves these problems by providing the tools necessary to estimate fixed and random effects in one model. MIXED is based, furthermore, on maximum likelihood (ML) and restricted maximum likelihood (REML) methods, versus the analysis of variance (ANOVA) methods in GLM. ANOVA methods produce only an optimum estimator (minimum variance) for balanced designs, whereas ML and REML yield asymptotically efficient estimators for balanced and unbalanced designs. ML and REML thus present a clear advantage over ANOVA methods in modeling real data, since data are often unbalanced. The asymptotic normality of ML and REML estimators, furthermore, conveniently allows us to make inferences on the covariance parameters of the model, which is difficult to do in GLM.

Data preparation for MIXED

Many datasets store repeated observations on a sample of subjects in "one subject per row" format. MIXED, however, expects that observations from a subject are encoded in separate rows. To illustrate, we select a subset of cases from the data that appear in Potthoff and Roy (1964). The data shown in Figure 1 on the next page encode, in one row, three repeated measurements of a dependent variable ("dist1" to "dist3") from a subject observed at different ages ("age1" to "age3").

Figure 1

MIXED, however, requires that measurements at different ages be collapsed into one variable, so that each subject has three cases. The Data Restructure Wizard in SPSS simplifies the tedious data conversion process. We choose "Data->Restructure" from the pull-down menu and select the option, "Restructure selected variables into cases." We then click the "Next" button to reach the following dialog box:

Figure 2

We need to convert two groups of variables ("age" and "dist") into cases. We therefore enter "2" and click "Next." This brings us to the "Select Variables" dialog box on the next page:

Figure 3

In the "Select Variables" dialog box, we first specify "Subject ID [subid]" as the case group identification. We then enter the names of new variables in the target variable drop-down list. For the target variable "age," we drag "age1," "age2" and "age3" to the list box in the "Variables to be Transposed" group. We similarly associate variables "dist1," "dist2" and "dist3" with the target variable "distance." We then drag variables that do not vary within a subject to the "Fixed Variable(s)" box. Clicking "Next" brings us to the "Create Index Variables" dialog box. We accept the default of one index variable, then click "Next" to arrive at the final dialog box:

In the "Create One Index Variable" dialog box, we enter "visit" as the name of the indexing variable and click "Finish." The data file is transformed into a format that MIXED can analyze. We now have three cases for each subject, as shown in Figure 5 on the next page:

Figure 5

We can also perform the conversion using the following syntax:

VARSTOCASES
/MAKE age FROM age1 age2 age3
/MAKE distance FROM dist1 dist2 dist3
/INDEX = visit(3)
/KEEP = subid gender.

The syntax is easy to interpret — it collapses the three age variables into "age" and the three response variables into "distance." At the same time, a new variable, "visit," is created to index the three new cases within each subject. The last subcommand means that all variables that are constant within a subject should be kept.

Fitting fixed-effects models with iid residual errors

A fitted model has the form $y = X\beta + \varepsilon$, where y is a vector of responses, x is the fixed-effects design matrix, y is a vector of fixed-effects parameters and y is a vector of residual errors. In this model, we assume that y is distributed as y is an unknown covariance matrix. A common belief is that y is distributed as y is an unknown model with this assumption. Using a subset of the growth study dataset, we illustrate how to use MIXED to fit a fixed-effects model. The following syntax (Example 1) fits a fixed-effects model that investigates the effect of the variables "gender" and "age" on "distance," which is a measure of the growth rate.

Example 1 — Fixed-effects model using MIXED

Syntax:

MIXED DISTANCE BY GENDER WITH AGE /FIXED = GENDER AGE | SSTYPE(3) /PRINT = SOLUTION TESTCOV.

Output:

Type III Tests of Fixed Effects

Source	Numerator df	Denominator df	F	Sia.
Intercept	1	27	38.356	.000
GENDER	1	27	7.621	.010
AGE	1	27	11.040	.003

Figure 6

Estimates of Fixed Effects

						95% Cor Inter	
Parameter	Estimate	Std. Error	df	to	Sia.	Lower Bound	Upper Bound
Intercept	17.050	2.620	27	6.507	.000	11.673	22.427
[GENDER=F]	-1.933	700	27	-2.761	.010	-3.370	- 496
[GENDER=M]	.000a	.000	60	*0	()#	36	
AGE	.713	.214	27	3.323	.003	.273	1.152

Figure 7

Estimates of Covariance Parameters^a

					95% Confidence Interval	
Parameter	Estimate	Std. Error	Wald Z	Sia.	Lower Bound	Upper Bound
Residual	3.679	1.001	3.674	.000	2.158	6.271

Figure 8

The syntax in Example 1 produces a "Type III Tests of Fixed Effects" table (Figure 6). Both "gender" and "age" are significant at the .05 level. This means that "gender" and "age" are potentially important predictors of the dependent variable. More detailed information on fixed-effects parameters may be obtained by using the subcommand /PRINT SOLUTION. The "Estimates of Fixed Effects" table (Figure 7) gives estimates of individual parameters, as well as their standard errors and confidence intervals. We can see that the mean distance for males is larger than that for females. Distance, moreover, increases with age. MIXED also produces an estimate of the residual error variance and its standard error. The /PRINT TESTCOV option gives us the Wald statistic and the confidence interval for the residual error variance estimate.

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fissure

a. This parameter is set to zero because it is redundant.

b. Dependent Variable Distance (mm) from center of pituitary to pteryo-maxillary

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary

Example 1 is simple — users familiar with the GLM procedure can fit the same model using GLM.

Example 2 — Fixed-effects model using GLM

Syntax:

GLM DISTANCE BY GENDER WITH AGE /METHOD = SSTYPE(3)/PRINT = PARAMETER /DESIGN = GENDER AGE.

Output:

Tests of Between-Subjects Effects

Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fissure

Source	Type III Sum of Squares	df	Mean Square	F	Sitt
Corrected Model	68,646ª	2	34.323	9.331	.001
intercept	141.095	1	141.095	38.356	.000
GENDER	28.033	1	28 033	7 621	010
AGE	40,613	1	40.613	11.040	.003
Error	99.321	27	3.679		
Total	18372.000	30			
Corrected Total	167.967	29			

Figure 9

Parameter Estimates

Parameter					95% Co Inte	nfidence rval
	В	Std. Error	l t	Sia.	Lower Bound	Upper Bound
Intercept	17.050	2.620	6.507	.000	11.673	22.427
[GENDER=F] [GENDER=M]	-1.933 0°	.700	-2.761	.010	-3.370	496
AGE	.713	.214	3.323	.003	.273	1.152

Figure 10

We see in Figure 9 that GLM and MIXED produced the same Type III tests and parameter estimates. Note, however, that in the "Parameter Estimates" table (Figure 10), there is no column for the sum of squares. This is because, for some complex models, the test statistics in MIXED may not be expressed as a ratio of two sums of squares. They are thus omitted from the ANOVA table.

Fitting fixed-effects models with non-iid residual errors

The assumption $R = \sigma^2 I$ may be violated in some situations. This often happens when repeated measurements are made on each subject. In the growth study dataset, for example, the response variable of each subject is measured at various ages. We may suspect that error terms within a subject are correlated. We may assume that R is a block diagonal matrix, where each block is a first-order, autoregressive (AR1) covariance matrix.

a. R Squared = .409 (Adjusted R Squared = .365)

This parameter is set to zero because it is redundant.

Example 3 — Fixed-effects model with correlated residual errors Syntax:

MIXED DISTANCE BY GENDER WITH AGE /FIXED GENDER AGE /REPEATED VISIT | SUBJECT(SUBID) COVTYPE(AR1) /PRINT SOLUTION TESTCOV R.

Output:

Type III Tests of Fixed Effects

Source	Numerator df	Denominator df	E	Sia.
Intercept	1	25.723	75.036	.000
GENDER	1	8.701	3.702	.088
AGE	1	23.687	22.772	.000

Figure 11

Estimates of Fixed Effects

					130	95% Con Inter	
Parameter	Estimate	Std. Error	df	t	Sig	Lower Bound	Upper
Intercept	17.243	1.947	26,760	8.857	.000	13.246	21.239
[GENDER=F]	-2.072	1.077	8.701	-1.924	.088	4.522	.377
[GENDER=M]	.000a	.000	18	58	+:	191	-
AGE	.712	.149	23.687	4.772	.000	.404	1.021

Figure 12

Estimates of Covariance Parameters'

Parameter		Estimate Std Error	10	Wald 2	Sia	95% Confidence Interval	
			Std Error			Lower Bound	Upper Bound
Repeated Measures	AR1 diagonal	3.909	1.467	2.597	.009	1,791	8.101
	AR1 tho	729	120	6.072	.000	401	892

Figure 13

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fissure.

a. This parameter is set to zero because it is redundant.

b. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary

a. Dependent Variable. Distance (mm) from center of pituitary to pteryo-maxillary fissure.

Residual Covariance (R) Matrix

	IVISIT = 11	IVISIT = 21	IVISIT = 31
[VISIT = 1]	3.809	2.778	2.026
[VISIT = 2]	2.778	3,809	2.778
[VISIT = 3]	2.026	2.778	3.809

Figure 14

First-Order Autorearessive

 Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary fissure.

Example 3 uses the /REPEATED subcommand to specify a more general covariance structure for the residual errors. Since there are three observations per subject, we assume that the set of three residual errors for each subject is a sample from a three-dimensional, normal distribution, with a first-order, autoregressive (AR1) covariance matrix. Residual errors within each subject are therefore correlated, but are independent across subjects. The MIXED procedure, by default, uses the restricted maximum likelihood (REML) method to estimate the covariance matrix. An option is to request maximum likelihood (ML) estimates.

The syntax in Example 3 also produces the "Residual Covariance (R) Matrix" (Figure 14), which shows the estimated covariance matrix of the residual error for one subject. We see from the "Estimates of Covariance Parameters" table (Figure 13) that the correlation parameter has a relatively large value (.729) and that the p-value of the Wald test is less than .05. The autoregressive structure may thus fit the data better than the model in Example 1.

We also see that, for the tests of fixed effects, the denominator degrees of freedoms are not integers. This is because these statistics do not have exact F distributions. The denominator degrees of freedoms are obtained by a Satterthwaite approximation. We see in the new model that gender is not significant at the .05 level. This demonstrates that ignoring the possible correlations in your data may lead to incorrect conclusions. MIXED is therefore usually a better alternative to GLM and VARCOMP when you suspect correlation in the data.

Fitting simple mixed-effects models (balanced design)

MIXED, as its name implies, handles complicated models that involve fixed and random effects. Levels of an effect are, in some situations, only a sample of all possible levels. If we want to study the efficiency of workers in different environments, for example, we don't need to include all workers in the study — a sample of workers is usually enough. The worker effect should be considered random, due to the sampling process. A mixed-effects model has, in general, the form $y = X\beta + Z\gamma + \varepsilon$ where the extra term $Z\gamma$ models the random effects. Z is the design matrix of random effects and γ is a vector of random-effects parameters. We can use GLM and MIXED to fit mixed-effects models. MIXED, however, fits a much wider class of models. To understand the functionality of MIXED, we first look at several simpler models that can be created in MIXED and GLM. We also look at the similarity between MIXED and VARCOMP in these models.

In examples 4 through 6, we use a semiconductor dataset that appeared in Pinheiro and Bates (2000) to illustrate the similarity between GLM, MIXED and VARCOMP. The dependent variable in this dataset is "current" and the predictor is "voltage." The data are collected from a sample of ten silicon wafers. There are eight sites on each wafer and five measurements are taken at each site. We have, therefore, a total of 400 observations and a balanced design.

Example 4 — Simple mixed-effects model with balanced design using MIXED **Syntax:**

MIXED CURRENT BY WAFER WITH VOLTAGE /FIXED VOLTAGE | SSTYPE(3) /RANDOM WAFER /PRINT SOLUTION TESTCOV.

Output:

Type III Tests of Fixed Effects

Source	Numerator df	Denominator df	F	Sia	
Intercept	1	16.531	3774.499	.000	
VOLTAGE	1	389.000	67958.177	.000	

a. Dependent Variable: CURRENT.

Estimates of Fixed Effect®

						95% Confide	nce interval
Parameter	Estimate	Std. Error	df	1	Sig	Lower Bound	Upper Bound
Intercept	-7 08287	1152888	16 531	-61.437	.000	-7 3266279	-6.8391076
VOLTAGE	9 6486595	0370123	389.000	260.688	.000	9.5758903	9.7214287

G. Dependent Variable: CURRENT

Estimates of Covariance Parameters

		Std.	Wald Z	Sia	95% Confidence Interval	
Parameter	Estimate				Lower Bound	Upper
Residual	.175	.013	13.946	.000	.152	.202
WAFER ID	tiagonal .093	.046	2.026	.043	.036	.246

a Dependent Variable: CURRENT.

☐ Figure 17

Figure 15

Figure 16

Example 5 — Simple mixed-effects model with balanced design using GLM

Syntax:

GLM CURRENT BY WAFER WITH VOLTAGE /RANDOM = WAFER /METHOD = SSTYPE(3) /PRINT = PARAMETER /DESIGN = WAFER VOLTAGE.

Output:

Tests of Between-Subjects Effects

Source		Type III Sum of Squares	df	Mean Square	F	Sia
Intercept	Hypothesis	2229.645	1	2229.645	3774.499	.000
	Error	9.782	16.559	.591ª	204-10-12-40-28-5	1000000
WAFER	Hypothesis	35.223	9	3.914	22.319	.000
	Error	68.211	389	.175 ^b		993396
VOLTAGE	Hypothesis	11916.369	1	11916.369	67958.177	.000
	Error	68.211	389	.175 ^b		110000

a. ,111 MS(WAFER) + .889 MS(Error)

Expected Mean Squaresa,b

	Variance Component					
Source	Var(WAFER)	Var(Error)	Quadratic Term			
Intercept	4.444	1.000	Intercept			
WAFER	40.000	1.000	8:			
VOLTAGE	.000	1.000	VOLTAGE			
Error	.000	1.000				

Figure 19

Figure 18

- a. For each source, the expected mean square equals the sum of the coefficients in the cells times the variance components, plus a quadratic term involving effects in the Quadratic Term cell.
- b. Expected Mean Squares are based on the Type III Sums of Squares

b MS(Error)

Example 6 — Variance components model with balanced design Syntax:

VARCOMP CURRENT BY WAFER WITH VOLTAGE /RANDOM = WAFER /METHOD = REML.

Output:

Variance Estimates

Component	Estimate
Var(WAFER)	.093
Var(Error)	.175

Figure 20

Dependent Variable: CURRENT

Method: Restricted Maximum Likelihood Estimation

In Example 4, "voltage" is entered as a fixed effect and "wafer" is entered as a random effect. This example tries to model the relationship between "current" and "voltage" using a straight line, but the intercept of the regression line will vary from wafer to wafer according to a normal distribution. In the Type III tests for "voltage," we see a significant relationship between "current" and "voltage." If we delve deeper into the parameter estimates table, the regression coefficient of "voltage" is 9.65. This indicates a positive relationship between "current" and "voltage." In the "Estimates of Covariance Parameters" table (Figure 17), we have estimates for the residual error variance and the variance due to the sampling of wafers.

We repeat the same model in Example 5 using GLM. Note that MIXED produces Type III tests for fixed effects only, but GLM includes fixed and random effects. GLM treats all effects as fixed during computation and constructs F statistics by taking the ratio of the appropriate sums of squares. Mean squares of random effects in GLM are estimates of functions of the variance parameters of random and residual effects. These functions can be recovered from "Expected Mean Squares" (Figure 19). In MIXED, the outputs are much simpler because the variance parameters are estimated directly using maximum likelihood (ML) or restricted maximum likelihood (REML). As a result, there is no random-effect sum of squares.

When we have a balanced design, as in examples 4 through 6, the tests of fixed effects are the same for GLM and MIXED. We can also recover the variance parameter estimates of MIXED by using the sum of squares in GLM. In MIXED, for example, the estimate of the residual variance is 0.175, which is the same as the MS(Error) in GLM. The variance estimate of random effect "wafer" is 0.093, which can be recovered in GLM using the "Expected Mean Squares" table (Figure 19) in Example 5:

Var(WAFER) = [MS(WAFER)-MS(Error)]/40 = 0.093

This is equal to MIXED's estimate. One drawback of GLM, however, is that you cannot compute the standard error of the variance estimates.

VARCOMP is, in fact, a subset of MIXED. These two procedures, therefore, always provide the same variance estimates, as seen in examples 4 and 6. VARCOMP only fits relatively simple models. It can only handle random effects that are iid normal. No statistics on fixed effects are produced. If, therefore, your primary objective is to make inferences about fixed effects and your data are correlated, MIXED is a better choice.

An important note: due to the different estimation methods that are used, GLM and MIXED do not produce the same results. The next section gives an example of such differences.

Fitting simple mixed-effects models (unbalanced design)

One situation about which MIXED and GLM disagree is an unbalanced design. To illustrate this, we removed some cases in the semiconductor dataset, so that the design is no longer balanced.

Figure 21

We then rerun examples 4 through 6 with this unbalanced dataset. The output is shown in examples 4a through 6a. We want to see whether the three methods — GLM, MIXED and VARCOMP — still agree with each other.

Example 4a — Mixed-effects model with unbalanced design using MIXED Syntax:

MIXED CURRENT BY WAFER WITH VOLTAGE /FIXED VOLTAGE | SSTYPE(3) /RANDOM WAFER /PRINT SOLUTION TESTCOV.

Output:

Type III Tests of Fixed Effects

Source	Numerator df	Denominator df	F	Sia.
Intercept	1	16.467	3709.960	.000
VOLTAGE	1	385.034	67481.118	.000

Figure 22

Estimates of Fixed Effects

		-				95% Confide	nce Interval
Parameter	Estimate	Std. Error	df	1	Sig	Lower Bound	Upper Bound
Intercept	-7.098	117	16.467	-60.909	000	-7.345	-6.852
VOLTAGE	9.656	.037	385.034	259.771	.000	9.583	9.730

Figure 23

Dependent Variable: CLIRRENT

Estimates of Covariance Parameters

						95% Confidence	
Parameter		Estimate	Std. Error	Wald Z	Sia.	Lower Bound	Upper Bound
Residual	Acceptance of the	.1744505	.013	13.874	.000	.151	.201
WAFER	ID diagonal	.0957247	.047	2.027	.043	.036	.252

a. Dependent Variable; CURRENT.

Figure 24

a. Dependent Variable: CURRENT.

Example 5a — Mixed-effects model with unbalanced design using GLM **Syntax:**

GLM CURRENT BY WAFER WITH VOLTAGE /RANDOM = WAFER /METHOD = SSTYPE(3) /PRINT = PARAMETER /DESIGN = WAFER VOLTAGE.

Output:

Tests of Between-Subjects Effects

Source		Type III Sum of Squares	of .	Mean Square	F	Sia.
Intercept	Hypothesis	2193.281	1	2193.281	3724.816	.000
	Error	9.746	16,551	,5888293 ^a		1143300
WAFER	Hypothesis	35,495	9	3.944	22.607	.000
	Error	67.163	385	.1744494 ^b		1,500,00
VOLTAGE	Hypothesis	11772.307	1	11772.307	67482.629	.000
	Error	67 163	385	1744494b		

Figure 25

a. 110 MS(WAFER) + 890 MS(Error)

Expected Mean Squaresa,b

	Variance Component						
Source	Var(WAFER)	Var(Error)	Quadratic Term				
Intercept	4.352	1.000	Intercept				
WAFER	39.591	1.000	AUGUST 0-40-40.780				
VOLTAGE	.000	1.000	VOLTAGE				
Error	.000	1.000					

Figure 26

- a. For each source, the expected mean square equals the sum of the coefficients in the cells times the variance components, plus a quadratic term involving effects in the Quadratic Term cell.
- b. Expected Mean Squares are based on the Type III Sums of Squares.

b. MS(Error)

Example 6a — Variance components model with unbalanced design Syntax:

VARCOMP CURRENT BY WAFER WITH VOLTAGE /RANDOM = WAFER /METHOD = REML.

Output:

Variance Estimates

Component	Estimate
Var(WAFER)	.0957247
Var(Error)	.1744505

Figure 2

Dependent Variable: CURRENT

Method: Restricted Maximum Likelihood Estimation

Since the data have changed, we expect examples 4a through 6a to differ from examples 4 through 6. We will focus instead on whether examples 4a. 5a and 6a agree with each other.

In Example 4a, the F statistic for the "voltage" effect is 67481.118, but Example 5a gives an F statistic value of 67482.629. Apart from the test of fixed effects, we also see a difference in covariance parameter estimates.

Examples 4a and 6a, however, show that VARCOMP and MIXED can produce the same variance estimates, even in an unbalanced design. This is because MIXED and VARCOMP use maximum likelihood or restricted maximum likelihood methods in estimation, while GLM estimates are based on the method-of-moments approach.

MIXED is generally preferred because it is asymptotically efficient (minimum variance), whether or not the data are balanced. GLM, however, only achieves its optimum behavior when the data are balanced.

Fitting mixed-effects models with subjects

In the semiconductor dataset, "current" is a dependent variable measured on a batch of wafers. These wafers are therefore considered subjects in a study. An effect of interest (such as "site") may often vary with subjects ("wafer"). One scenario is that the (population) means of "current" at separate sites are different. When we look at the current measured at these sites on individual wafers, however, they hover below or above the population mean according to some normal distribution. It is therefore common to enter an "effect by subject" interaction term in a GLM or MIXED model to account for the subject variations.

In the dataset there are eight sites and ten wafers. The site*wafer effect, therefore, has 80 parameters, which can be denoted by γ_{ij} , i=1...10 and j=1...8. A common assumption is that γ_{ij} 's are assumed to be iid normal with zero mean and an unknown variance. The mean is zero because γ_{ij} 's are used to model only the population variation. The mean of the population is modeled by entering "site" as a fixed effect in GLM and MIXED. The results of this model for MIXED and GLM are shown in examples 7 and 8.

Figure 28

Example 7 — Fitting random effect*subject interaction using MIXED **Syntax:**

MIXED CURRENT BY WAFER SITE WITH VOLTAGE /FIXED SITE VOLTAGE |SSTYPE(3) /RANDOM SITE*WAFER | COVTYPE(ID).

Output:

Type III Tests of Fixed Effects

Source	Numerator df	Denominator df	F	Sia.
Intercept		264.928	10467,974	.000
SITE	7	68.691	1,140	.349
VOLTAGE	1	319.000	76639.444	.000

Dependent Variable: CURRENT.

Estimates of Covariance Parameters'

	the contract of the contract o		TAX BOOK CONTRACT	Wald Z Sig	95% Cor inte		
Parameter		Std			Lower	Upper	
Residual	155	.012	12 629	000	133	182	Figure 29
SITE * WAFER ID diagonal	104	.023	4.586	000	.068	159	

⁸ Dependent Variable CURRENT.

Example 8 — Fitting random effect*subject interaction using GLM Syntax:

GLM CURRENT BY WAFER SITE WITH VOLTAGE /RANDOM = WAFER/METHOD = SSTYPE(3) /DESIGN = SITE SITE*WAFER VOLTAGE.

Output:

Tests of Between-Gubjects Effects

Source		Type III Sum of Squares	ď	Mean Square	F	Sia.
intercept	Hypothesis	2229.645	1	2229.645	10467.974	.000
	Error	70.246	329.798	213*	AND THE COLUMN	
SITE	Hypothesis	5.371	. 7	767	1.140	.348
	Error	48.462	72	.673°	18/10/100	
WAFER *	Hypothesis	48.462	72	.673	4.329	.000
SITE	Error	49 500	319	155	environe.	
VOLTAGE	Hypothesis	11916.369	1	11916.369	78839.444	.000
	Error	49.600	319	.155*		

Figure 30

			•	- a h
ΕX	pected	Mean	Sq	uares ^{1,b}

	Variance Component						
Source	Var(WAFER *	Var(Error)	Quadratic Term				
Intercept	.556	1.000	Intercept, SITE				
SITE	5.000	1.000	SITE				
WAFER * SITE	5.000	1.000	PRESIDENT SEC				
VOLTAGE	.000	1.000	VOLTAGE				
Error	.000	1.000					

Figure 31

Since the design is balanced, the results of GLM and MIXED in examples 7 and 8 match. This is similar to examples 4 and 5. We see from the results of Type III tests that "voltage" is still an important predictor of "current," while "site" is not. The mean currents at different sites are thus not significantly different from each other, so we can use a simpler model without the fixed effect "site." We should still, however, consider a random-effects model, because ignoring the subject variations may lead to incorrect standard error estimates of fixed effects or false significant tests.

Up to this point, we examined primarily the similarities between GLM and MIXED. MIXED, in fact, has a much more flexible way of modeling random effects. Using the SUBJECT and COVTYPE options, Example 9 presents an equivalent form of Example 7.

Example 9 — Fitting random effect*subject interaction using *SUBJECT* specification Syntax:

MIXED CURRENT BY SITE WITH VOLTAGE
/FIXED SITE VOLTAGE |SSTYPE(3)
/RANDOM SITE | SUBJECT(WAFER) COVTYPE(ID).

The *SUBJECT* option tells MIXED that each subject will have its own set of random parameters for the random effect "site." The *COVTYPE* option will specify the form of the variance covariance matrix of the random parameters within one subject. The syntax attempts to specify the distributional assumption in a multivariate form, which can be written as:

a. For each source, the expected mean square equals the sum of the coefficients in the cells times the variance components, plus a quadratic term involving effects in the Quadratic Term cell.

b. Expected Mean Squares are based on the Type III Sums of Squares.

This assumption is equivalent to that in Example 7 under normality.

One advantage of the multivariate form is that you can easily specify other covariance structures by using the *COVTYPE* option. The flexibility in specifying covariance structures helps us to fit a model that better describes the data. If, for example, we believe that the variances of different sites are different, we can specify a diagonal matrix as covariance type and the assumption becomes:

The result of fitting the same model using this assumption is given in Example 10.

Example 10 — Using *COVTYPE* in a random-effects model Syntax:

MIXED CURRENT BY SITE WITH VOLTAGE

/FIXED SITE VOLTAGE |SSTYPE(3)

/RANDOM SITE | SUBJECT(WAFER) COVTYPE(VC)

/PRINT G TESTCOV.

Output:

Type III Tests of Fixed Effects

Source	Numerator df	Denominator df	F	Sia.
Intercept	1	252.867	10467.974	.000
SITE	7	16.071	1.267	.326
VOLTAGE	1	319.000	76639.444	.000

Figure 34

Estimates of Covariance Parameters'

						95% Confidence Interval		
Parameter		Estimate	Std. Error	Wald Z	Sia	Lower Bound	Upper Bound	
Residual		.155	.012	12.629	.000	.133	.182	
SITE [subject =	VC diagonal 1	.136	.079	1.726	.084	.044	.424	
	VC diagonal 2	.096	.060	1.599	_110	.028	.326	
WAFER]	VC diagonal 3	.183	101	1.812	070	062	539	
	VC diagonal 4	.119	.071	1.681	.093	.037	.382	
	VC diagonal 5	.071	.048	1.475	.140	.019	.269	
	VC diagonal 6	.073	.049	1.484	.138	.019	.272	
	VC diagonal 7	.030	.029	1.046	.296	.005	.198	
	VC diagonal 8	.120	.071	1.685	.092	.038	.385	

Figure 35

Dependent Variable: CURRENT.

a. Dependent Variable: CURRENT.

SITE [subject = WAFER]

	[SITE=1] LWAFER	[SITE=2] LWAFER	[SITE=3]	[SITE=4] WAFER	[SITE=5] LWAFER	[SITE=6]	[SITE=7] WAFER	[SITE=8]
[SITE=1] WAFER	.136	.000	.000	.000	.000	.000	.000	.000
[SITE=2] WAFER	.000	.096	.000	.000	.000	.000	.000	.000
[SITE=3] WAFER	.000	.000	183	.000	.000	.000	.000	.000
[SITE=4] WAFER	.000	.000	.000	.119	.000	.000	.000	.000
[SITE=5] WAFER	.000	.000	.000	.000	.071	.000	.000	.000
[SITE=6] WAFER	.000	.000	,000	.000	.000	.073	.000	.000
[SITE=7] WAFER	.000	.000	.000	.000	.000	.000	.030	.000
[SITE-8] WAFER	.000	.000	.000	.000	.000	.000	.000	.120

Variance Components

Figure 36

In Example 10, we request one extra table, the estimated covariance matrix of the random effect "site." It is an eight-by-eight diagonal matrix in this case. Note that changing the covariance structure of a random effect also changes the estimates and tests of a fixed effect. We want, in practice, an objective method to select a suitable covariance structure for our random effects. In the section "Covariance Structure Selection," we revisit examples 9 and 10 to show how to select covariance structure for random effects.

Multilevel analysis

The use of the *SUBJECT* and *COVTYPE* options in */RANDOM* and */REPEATED* brings many options for modeling the covariance structures of random effects and residual errors. It is particularly useful when modeling data obtained from a hierarchy. Example 11 illustrates the simultaneous use of these options in a multilevel model. We selected data from six schools from the Junior School Project of Mortimore et al. (1988). We investigate below how the socioeconomic status (SES) of a student affects his or her math scores over a three-year period.

Example 11 — Multilevel mixed-effects model Syntax:

MIXED MATHTEST BY SCHOOL CLASS STUDENT GENDER SES SCHLYEAR
/FIXED GENDER SES SCHLYEAR SCHOOL
/RANDOM SES |SUBJECT(SCHOOL*CLASS) COVTYPE(ID)
/RANDOM SES |SUBJECT(SCHOOL*CLASS*STUDENT) COVTYPE(ID)
/REPEATED SCHLYEAR | SUBJECT(SCHOOL*CLASS*STUDENT) COVTYPE(AR1)
/PRINT SOLUTION TESTCOV.

Output:

Type III Tests of Fixed Effects

Source	Numerator df	Denominator df	F	Sia
Intercept	1	15.100	1076.489	.000
GENDER	1	96.609	.979	.325
SES	2	16.513	3.888	.041
SCHLYEAR	2	201.195	55.376	.000
SCHOOL	5	12.969	.872	.526

Figure 37

a Dependent Variable: Math test.

Dependent Variable: CURRENT.

Estimates of Fixed Effects

						95% Confide	ence Interval
Parameter	Estimate	Std Error	df		Sig	Lower Bound	Upper Bound
Intercept	29.097	2.184	19.564	13.324	.000	24.535	33.659
[GENDER=0]	-1.026	1.037	96,609	989	.325	-3.084	1.032
[GENDER=1]	.000°	.000		100			124
[SES=1.00]	5.803	2.331	20.899	2.490	.021	.955	10.652
[SES=2.00]	.304	1.782	13.705	.170	.867	-3.527	4.134
[SES=3.00]	.0000	000	-	0.0			
[SCHLYEAR=0]	-4.377	.457	116,837	-9.575	.000	-5.282	-3.471
[SCHLYEAR=1]	-4.126	.468	219,911	-8.825	.000	-5.047	-3.204
[SCHLYEAR=2]	.000ª	.000	5.0	20		V2	64
[SCHOOL=1]	-2.751	2.405	12.727	-1 144	274	-7.958	2.456
[SCHOOL=2]	784	2.865	18,151	274	.787	-6.801	5.232
[SCHOOL=3]	2.269	2.645	14.332	.858	.405	-3.392	7.929
[SCHOOL=4]	-1.911	2.811	9.275	680	513	-8.241	4.420
[SCHOOL=5]	686	2.545	15.323	270	.791	-6.100	4.728
[SCHOOL=6]	.000*	.000	92	25	202	220	62

Figure 38

Estimates of Covariance Parameters'

						95% Confidence Interval	
Parameter		Estimate	Std.	Wald Z	Sia.	Lower Bound	Upper Bound
Repeated Measures	AR1 diagonal	12,686	1.667	7.609	.000	9.805	16.413
	AR1 rho	027	.142	190	.850	298	.246
SES [subject = SCHOOL * CLASS]	D diagonal	6.450	4.991	1.292	.196	1.415	29.391
SES [subject = SCHOOL * CLASS * STUDENT]	ID diagonal	30.409	4.782	8.358	.000	22.342	41.387

Figure 39

a. Dependent Variable: Math test.

In Example 11, the goal is to discover whether socioeconomic status ("ses") is an important predictor for mathematics achievement ("mathtest"). To do so, we use the factor "ses" as a fixed effect. We also want to adjust for the possible sampling variation due to different classes and students. "Ses" is therefore also used twice as a random effect. The first random effect tries to adjust for the variation of the "ses" effect owing to class variation. In order to identify all classes in the dataset, school*class is specified in the SUBJECT option. The second random effect also tries to adjust for the variation of the "ses" effect owing to student variation. The subject specification is thus school*class*student. All of the students are followed for three years; the school year ("schlyear") is therefore used as a fixed effect to adjust for possible trends in this period. The /REPEATED subcommand is also used to model the possible correlation of the residual errors with each student.

We have a relatively small dataset, since there are only six schools, so we can only use it as a fixed effect while adjusting for possible differences between schools. In this example, there is only one random effect in each level. More than one effect can, in general, be specified, but MIXED will assume that these effects are independent. Check to see whether such an assumption is reasonable for your applications. In SPSS 11.5, users are able to specify correlated random effects, which provide additional flexibility in modeling data.

In the Type III tests of fixed effects, in Example 11, we see that socioeconomic status does have an impact on student performance. The parameter estimates of "ses" for students with "ses=1" (fathers have managerial or professional occupations) indicates that they perform better than other groups. The effect "schlyear" is also significant in the model and the students' performances increase with "schlyear."

a. This parameter is set to zero because it is redundant.

Dependent Variable: Math test.

From "Estimates of Covariance Parameters" (Figure 39), we notice that the estimate of the "AR1 rho" parameter is not significant, which means that a simple, scaled-identity structure may be used. For the variation of "ses" due to school*class, the estimate is very small compared to other sources of variance and the Wald test indicates that it is not significant. We can therefore consider removing the random effect from the model.

We see from this example that the major advantages of MIXED are that it is able look at different aspects of a dataset simultaneously and that all of the statistics are already adjusted for all effects in the model. Without MIXED, we must use different tools to study different aspects of the models. An example of this is using GLM to study the fixed effect and using VARCOMP to study the covariance structure. This is not only time consuming, but the assumptions behind the statistics are usually violated.

Custom hypothesis tests

Apart from predefined statistics, MIXED allows users to construct custom hypotheses on fixed- and random-effects parameters through the use of the /TEST subcommand. To illustrate, we use a dataset in Pinheiro and Bates (2000). The data consist of a CT scan on a sample of ten dogs. The dogs' left and right lymph nodes were scanned and the intensity of each scan was recorded in the variable pixel. The following mixed-model syntax tests whether there is a difference between the left and right lymph nodes.

Example 12 — Custom hypothesis testing in mixed-effects model

Syntax:

```
MIXED PIXEL BY SIDE

/FIXED SIDE

/RANDOM SIDE | SUBJECT(DOG) COVTYPE(UN)

/TEST(0) 'Side (fixed)' SIDE 1 -1

/TEST(0) 'Side (random)' SIDE 1 -1 | SIDE 1 -1

/PRING LMATRIX.
```

Output:

Contrast Coefficients

	2	1.1
Fixed	Intercept	0
Effects	[SIDE=L]	1
	[SIDE=R]	-1
Random	[SIDE=L] DOG	0
Effects	[SIDE=R] DOG	0

Figure 40

Contrast Estimates^{a,b}

			10				95% Confide	ence Interval
Contrast	Estimate	Std. Error	df	Test Value	t	Sig.	Lower Bound	Upper Bound
L1	8.502	7.337	7.723	.000	1.159	.281	-6.523	25.528

a. Side (fixed)

Figure 41

b. Dependent Variable: PIXEL

Contrast Estimates^{a,b}

							95% Confide	ence Interval
Contrast	Estimate	Std. Error	df	Test Value	- t	Sa	Lower Bound	Upper Bound
L1	8,502	3.205	82.839	_000	2.653	.010	2.127	14.877

a. Side (random)

Figure 42

Contrast Estimates^{a,b}

Contrast	Estimate	Std. Error	df	Test Value	t	Sia.	95% Confidence Interval	
							Lower Bound	Upper Bound
11	8.5018356	3.2050572	86,681	0	2.653	.009	2.1311069	14.8725643

a Side (random).

Figure 43

The output of the two/*TEST* subcommands is shown above. The first test looks at differences in the left and right sides in the general population (broad inference space). We should use the second test to test the differences between the left and right sides for the sample of dogs used in this particular study (narrow inference space). In the second test, the average differences of the random effects over the ten dogs are added to the statistics. MIXED automatically calculates the average over subjects. Note that the contrast coefficients for random effects are scaled by one/(number of subjects). Though the average difference for the random effect is zero, it affects the standard error of the statistic. We see that statistics of the two tests are the same, but the second has a smaller standard error. This means that if we make an inference on a larger population, there will be more uncertainty. This is reflected in the larger standard error of the test. The hypothesis in this example is not significant in the general population, but it is significant for the narrow inference. A larger sample size is therefore often needed to test a hypothesis about the general population.

Covariance structure selection

In examples 3 and 11, we see the use of Wald statistics in covariance structure selection. Another approach to testing hypotheses on covariance parameters uses likelihood ratio tests. The statistics are constructed by taking the differences of the -2 Log likelihood of two nested models. It follows a chi-squared distribution with degrees of freedom equal to the difference in the number of parameters of the models.

To illustrate the use of the likelihood ratio test, we again look at the model in examples 9 and 10. In Example 9, we use a scaled identity as the covariance matrix of the random effect "site." In Example 10, however, we use a diagonal matrix with unequal diagonal elements. Our goal is to discover which model better fits the data. We obtain the -2 Log likelihood and other criteria about the two models from the information criteria tables shown on the next page.

Dependent Variable: PIXEL

b. Dependent Variable: PIXEL.

Information criteria for Example 9

Information Criteria

-2 Restricted Log Likelihood	523.532
Akaike's Information Criterion (AIC)	527.532
Hurvich and Tsai's Criterion (AICC)	527.563
Bozdogan's Criterion (CAIC)	537.469
Schwarz's Bayesian Criterion (BIC)	535.469

Figure 44

The information criteria are displayed in smaller-is-better forms.

Information criteria for Example 10

Information Criteria

-2 Restricted Log Likelihood	519.290
Akaike's Information Criterion (AIC)	537.290
Hurvich and Tsai's Criterion (AICC)	537.763
Bozdogan's Criterion (CAIC)	582.009
Schwarz's Bayesian Criterion (BIC)	573.009

Figure 45

The information criteria are displayed in smaller-is-better forms.

The likelihood ratio test statistic for testing Example 9 (null hypothesis) versus Example 10 is 523.532 - 519.290 = 4.242. This statistic has a chi-squared distribution and the degree of freedom is determined by the difference (seven) in the number of parameters in the two models. The p-value of this statistic is 0.752, which is not significant at level 0.05. The likelihood ratio test indicates, therefore, that we may use the simpler model in Example 9. Apart from Wald statistics and likelihood ratio tests, we can also use such information criteria as Akaike's Information Criterion (AIC) and Schwarz's Bayesian Criterion (BIC) to search for the best model.

a. Dependent Variable: CURRENT.

a. Dependent Variable: CURRENT.

Reference

McCulloch, C.E., and Searle, S.R. (2000). Generalized, Linear, and Mixed Models. John Wiley and Sons.

Mortimore, P., Sammons, P., Stoll, L., Lewis, D. and Ecob, R. (1988). School Matters: the Junior Years. Wells, Open Books.

Pinheiro J.C., and Bates, D.M. (2000). Mixed-Effects Models in S and S-PLUS. Springer.

Potthoff, R.F., and Roy, S.N. (1964). "A generalized multivariate analysis of variance model useful especially for growth curve problems." Biometrika, 51:313-326.

Verbeke, G., and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. Springer.

About SPSS Inc.

SPSS Inc. (Nasdaq: SPSS), headquartered in Chicago, IL, USA, is a multinational computer software company providing technology that transforms data into insight through the use of predictive analytics and other data mining techniques. The company's solutions and products enable organizations to manage the future by learning from the past, understanding the present and predicting potential problems and opportunities. For more information, visit www.spss.com.

SPSS is a registered trademark and the other SPSS products named are trademarks of SPSS Inc. All other products are trademarks of their respective owners. © Copyright 2002 SPSS Inc.

