

Data Augmentation for Surgical Scene Segmentation using Anatomy-Aware Diffusion Models

Danush Kumar Venkatesh^{1,2}, Dominik Rivoir², Micha Pfeiffer², Fiona Kolbinger^{1,3}, Stefanie Speidel^{1,2}

Introduction

- Laparoscopic procedures
- Computer assistance during surgery
- Requirement: Understanding the surgical scene

Problem Statement

Multi

> Full scene understanding requires multi-class annotation

Available segmentation masks:

Can we generate multi-class surgical images?

Method

Semantic Segmentation

Qualitative Results

Conclusion

- Multi-stage diffusion approach
- Specific control of each anatomy
- Extension to other anatomies

Code & Paper