MODEL FITTING II: RIDGE & TIKHONOV

Prof. Alexander Huth 2.20.2020

RECAP

- * Linear regression!
- * Ordinary least squares (OLS)
- * Regularized regression
 - * Priors on weights
 - * Penalties on weights
 - * Ad hoc metrics (early stopping)

RECAP

- * L2 penalty = Gaussian prior = ridge
- * L1 penalty = Laplacian prior = LASSO

TODAY

- * Analytic solutions to L2-regularized regression problems:
 - * Ridge regression
 - * Tikhonov regression

- * Multivariate normal (MVN) prior on beta
- * L2 penalty on beta
- * Gradient descent w/ early stopping

RIDGE REGRESS!

\hat\beta = \underset{\beta}
{\mbox{argmin}} \left[||Y-X\beta||_2^2 + \lambda ||\beta||_2^2 \right]

\hat\beta = \underset{\beta}

$$Y = X\beta + \epsilon$$

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left[||Y - X\beta||_2^2 + \lambda ||\beta||_2^2 \right]$$
 Error or Loss Penalty

$$\hat{\beta} = (X^\top X + \lambda I)^{-1} X^\top Y$$

$$\hat{\beta} = X_{ridge}^{+} Y$$

* Efficient solution with SVD

$$\hat{\beta} = (X^\top X + \lambda I)^{-1} X^\top Y$$

(SVD)
$$X = USV^{\top}$$

$$D = \frac{S}{S^2 + \lambda^2}$$

$$\hat{\beta} = VDU^{\top}Y$$

 $D = \frac{S}{S^2 + \lambda^2}$ $\hat{S} = V D U^{top} Y$

- * How to choose lambda?
- * GCV Generalized Cross Validation 👎
- * Block-wise cross-validation 👍

- * Good implementation: scikit-learn
- * Awesome implementation: http://github.com/alexhuth/ridge

1D EXAMPLE

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

1D EXAMPLE

(as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

1D EXAMPLE

(as penalty)

L2 Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$
 (as penalty)

* A measure of the "joint variability" of two variables

 $\label{eq:linear_cov} $$ \mbox{cov}(\vec{x},\vec{y}) = \frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}) $$$

 $\text{mbox}\{\text{cov}\}(X,Y) = \text{E}[(X-\text{E}[X])(Y-\text{E}[Y])]$

 $\label{eq:mbox} $$ \mbox{cov}(X,X) = E[(X-E[X])(X-E[X])] = E[(X-E[X])^2] = \mbox{var}(X)$

$$cov(\vec{x}, \vec{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$cov(X, X) = E[(X - E[X])(X - E[X])] = E[(X - E[X])^{2}] = var(X)$$

$$cov(x,y) > 0$$
?

$$cov(x,y) < 0$$
?

$$cov(x,y) > 0$$
?

$$cov(x,y) < 0$$
?

(Well, correlation...)

COVARIANCE MATRIX

 $(A_1,A_2) \ \mbox{cov}(A_1,A_2) \mbox{var}(A_2) \end{bmatrix} \mbox{cov}(A) = \left(\sqrt{rac{1}{n}}\right)$

\mbox{cov}(A) = \begin{bmatrix} \mbox{var}(A_1) & \mbox{cov}

 $\label{eq:mbox} $$ \mbox{cov}(A) = \left(\frac{1}{n} A A^T \right) $$$

$$cov(A) = \begin{bmatrix} var(A_1) & cov(A_1, A_2) \\ cov(A_1, A_2) & var(A_2) \end{bmatrix}$$

(assuming A is mean 0)
$$cov(A) = \left(\frac{1}{n}\right) AA^T$$

\hat\beta = \underset{\beta} {\mbox{argmin}} \left[||Y-X\beta||_2^2 + \lambda ||\beta||_2^2 \right]

\hat\beta = \underset{\beta}

$$Y = X\beta + \epsilon$$

* RIDGE REGRESSION

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \ \big[||Y - X\beta||_2^2 + \lambda ||\beta||_2^2 \big]$$
 Error or Loss penalty

* TIKHONOV REGRESSION

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \left[||Y - X\beta||_2^2 + \lambda ||C\beta||_2^2 \right]$$

- * RIDGE REGRESSION is a special case of TIKHONOV REGRESSION
- * TIKHONOV REGRESSION puts a ZERO-MEAN MULTIVARIATE NORMAL PRIOR on the weights
- * in RIDGE REGRESSION the covariance matrix of the prior has a constant diagonal
 - * i.e. the prior is a **SPHERE**
- * in TIKHONOV REGRESSION the covariance matrix can be *ANYTHING*

* the multivariate normal prior given by TIKHONOV REGRESSION

$$\beta \sim N(0, \sigma^2(C^TC)^{-1})$$

\beta \sim N(0, \sigma^2 \Lambda^{-1}), \Lambda = C^T C

\begin{eqnarray*}
A &=& XC^{-1}\\
\hat\beta_A &=& \underset{\undersetargmax}} \le
+ \lambda ||\beta||_2

TIKHONOV REGRESSIOI

* any TIKHONOV problem can be converted into a RIDGE problem

Rank-Deficient and Discrete Ill-Posed Problem: Numerical Aspects of Linear Inversion (1998; Per Christian Hansen)

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss ridge penalty

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss
ridge
penalty
total

* Suppose we strongly suspect that **beta1** and **beta2** should be similar

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss
Tikhonov
penalty

$$y_t = x_{1,t}\beta_1 + x_{2,t}\beta_2$$

loss
Tikhonov
penalty
total

- * any TIKHONOV problem can be converted into a RIDGE problem by a LINEAR TRANSFORMATION
- * conversely, **ANY LINEAR TRANSFORMATION** of *X* followed by **RIDGE REGRESSION** is equivalent to some **TIKHONOV REGRESSION** problem

- * WORD EMBEDDING MODELS
- * think of stimulus matrix as WORDS over time projected onto WORD EMBEDDING

\underset{t\times n}{X} =
\underset{t\times w}{W}
\underset{w\times n}{E}

* this is equivalent to TIKHONOV REGRESSION on the WORDS with a prior determined by the WORD EMBEDDING

$$\frac{1}{\sigma^2} \Sigma_\beta = (C^T C)^{-1} = E^T E$$

$$\frac{1}{\sigma^2} \Sigma_\beta =$$

* i.e. the prior covariance between two words' weights is equal to the dot product of their embedding vectors

word_1

 $E^T E =$

EMBEDDING
INNER PRODUCT,
english1000

\underset{w \times v}
\underset{w \times n}
\underset{n \times v}

* to get WEIGHTS ON WORDS we just project onto the EMBEDDING

WEIGHTS IN WORD SPACE EMBEDDING WEIGHTS IN EMBEDDING SPACE
$$\hat{eta}_W = E \hat{eta}_X \ w imes v = w imes n imes v$$

* (this is equivalent to simulating responses to single words)

NEXT TIME

* Data quality!