強化学習まとめ

用語定義

- 状態 s_t :時刻tにおけるシステムの状態
- 行動 a_t : 時刻tにエージェントの選択する行動
- 報酬 R_{t+1} : 行動 a_t によってエージェントに与えられる報酬
- 方策 $\pi(s_t, a_t)$:状態 s_t で行動 a_t を選択する確率

価値の定量化

- ullet 状態価値関数 $V^\pi(s)$
 - \circ 状態sにおける価値
 - \circ 「状態 s_t を起点に、方策 π に従って行動したときの報酬の期待値」と定義する
- 行動価値関数 $Q^{\pi}(s,a)$
 - \circ 状態sで行動aを採る価値
 - \circ 「状態 s_t で行動 a_t を選択した後、方策 π に従って行動したときの報酬の期待値」と定義する

価値関数の定式化

- 状態価値関数
 - 簡易的に漸化式で表すと、以下のようになる

$$V^{\pi}(s_t) = R_{t+1} + \gamma V^{\pi}(s_{t+1})$$

• 方策と遷移確率を考慮して期待値を計算すると、価値関数が導かれる (Bellman方程式)

$$V^{\pi}(s_t) = \sum_a \pi(s,a) \sum_{s'} P^a_{ss'} \{ R^a_{ss'} + \gamma V^{\pi}(s') \}$$