INF01 118

UFRGS

Técnicas Digitais para Computação

Lógica Programável

Aula 17

- Programabilidade é noção associada normalmente ao processador de instruções.
- Esta aula introduz conceitos relacionados à programabilidade de hardware, i.e. a maneira de configurar blocos lógicos utilizando a programação de conexões.

Chips programáveis: Processador(es) em um Chip

IBM Power PC 750

AMD Opteron Dual Core

Motorola M68355 Microcontroller

Intel Pentium Processor

TI DSP 8847

System-on-Chip

(Bluetooth SoC: Eynde et al., Alcatel, 2001)

Conceitos básicos de Lógica Programável. "Programmable Logic Devices" - PLD

Introdução

Especificação de uma função como SDP (Soma de Produtos)

Implementação trivial por um circuito AND-OR

- dispositivos pré-difundidos
- arrays AND-OR
- "fusíveis " inicialmente intactos
 (fusíveis são na verdade implementados por transistores/diodos)
- programação corresponde à queima dos "fusíveis"

Cada linha implementa uma função de saída (wired-or)

Tipos de PLD's (Dispositivo Lógico Programável)

- PROM
- PLA
- PAL
- FPGA

Diferem:

- Na organização dos arrays AND e OR
- Na programabilidade dos arrays (colocação dos fusíveis ou transistores para realizar conexões)
- Programáveis pelo fabricante (ROM, p. ex.) ou pelo usuário (EEPROM, p.ex.)

Memória PROM usada como PLD

PROM - Programmable Read-Only-Memory

Representação simbólica

Note: D_i é uma função combinacional das Entradas de Endereço.

Qualquer função de 4 entradas é implementada em D_i.

A (E-E-P-)ROM é um bloco combinacional universal.

- •Notar que se trata de uma memória, onde cada célula tem originalmente todos os bits iguais a 1.
- •Programação corresponde à queima dos "fusíveis"
- •Encarando a PROM como um PLD
 - •Bits de endereço Ai → variáveis de entrada da função
 - •Decodificador: efetua a decodificação de todos os mintermos cada palavra corresponde então a um mintermo
 - •Bits de dados de saída ⇒ saída de múltiplas funções
 - •Por exemplo: $F = \Sigma m (0,1,14) = m_0 + m_1 + m_{14}$ Implementada por D_7 na figura

Cada mintermo endereça uma linha danemória

Ex.: 16 mintermos 4 variáveis de entrada

4 bits de endereço

- Comparando com a forma geral de um PLD
 - PROM decodifica todos os mintermos
 - ARRAY AND é fixo (Decodificador) saída do Decod. são mintermos
 - ARRAY OR é programável (OU LÓGICO) dos mintermos
 - Número de funções = número de bits das palavras
 - Número de variáveis de entrada = número de bits de endereço

PAL - Programmable Array Logic

- Array AND é programável
- Características: Array OR é fixo (cada OR é limitado a n termos-produto)
 - Feedbacks das saídas para o array <mark>and</mark> permitem funções com mais de <mark>n</mark> termos

Termos-produto $A \overline{A} B \overline{B} C \overline{C} D \overline{D} W \overline{W}$ **10** 12 Projeto com PAL

- Termos-produto não são compartilhados pelas funções de saída (minimização individual)
- Não há inversores nas saídas para optar obter um F

PLA - Programmable Logic Array

Características

- Arrays AND e OR são programáveis
- Para n variáveis de entrada, o array AND tem 2n linhas (variável e variável complementada)
- São decodificados apenas os termos-produto necessários

Projeto com PLA

- Deve-se minimizar todas as funções de saída simultaneamente, procurando-se o menor número de termos-produto comuns a todas as funções_
- Deve-se tentar solução ótima tanto com F como com F, procurando:
 - menor número de termos
 - termos comuns a outras funções

No exemplo: AC é comum a F1 e \overline{F2}

- Tamanho do PLA
 - Nro. entradas = número de variáveis da função
 - Nro. linhas do array AND = nro. máximo de termos-produto no conjunto das funções
 - Nro. saídas = número de funções simultâneas

- Tipos de PLA's:
 - Programável por "máscaras", na fábrica de chips (silicon foundry).

•

FPGA - Field Programmable Gate Array

Características

- Reprogramável n vezes
- Array de blocos lógicos (função definida por seleção)
- Blocos lógicos e conexões são programáveis

PLB Blocos Lógicos Programáveis (Programmable Logic Blocks)
CLB Configurable Logic Blocks

SM - Switching Matrix

Ponto de Interconexão. Programada por transistores MOS

Xilinx Virtex FPGA: Overview

- Conexão (fio) local dentro das CLBs
- Interconexão entre CLBs (global)
- 1 CLB tem 4 células lógicas programáveis.
- Interconexões rápidas e longas
 - -8ns entre blocos com 250.00 portas
- Previsão da frequência de acordo com o comprimento do fio.

Xilinx Virtex FPGA: Roteamento Segmentado

Técnicas Digitais

Xilinx Virtex FPGA: CLB Structure

Xilinx Virtex FPGA: CLB Slice Structure

Xilinx Virtex-II Pro FPGA: Architecture

- Até 3 Mbits de Dual-PortTM RAM em blocos de 18-Kbit. SelectRAM Resources
- Até 12 DCM (Digital Clock Manager) Módulos
- Multiplicadores 18-bit x 18-bit
- Fast look-ahead Carry Logic Chains
- 0.15µm / 0.12µm CMOS 8-Camadas de metalização para interconexão, distribuição de Clock e VDD/GND.

	Fastest DSP	Virtex-II
8x8 MAC	4.8 Billion MAC/s	0.5 Tera MAC/s
256-FIR	9.3 MSPS	180 MSPS
1024-FFT	10 µs	1 μs

LINX VIRTEX-II Pro Hechitas Digitais

Architecture

Rocket

• Além da matriz de FPGA, inclui até 4 PowerPC **® 405 RISC**

Power PC Core

• Chip layout decontroller **FPGA** tipoVirtex-II

CPU cores

Embeded RAM

On Chip Memory 10

Source: Ivo Bolsens, Xilinx

Discussão crítica do projeto de blocos combinacionais

• Alternativas de projeto de circuito digitais

Componentes discretos (de prateleira)

Circuito integrado dedicado

• Estilos de projeto de blocos combinacionais

Lógica programável

Lógica hardwired

Decodificadores/multiplexadoresLógica em 2 níveisLógica aleatória multi-nível

Fatores a considerar na escolha

Eficiência da solução: área, timing, consumo

Custo de produção

Custo de projeto

Volume de produção

Número de entradas/saídas (encapsulamento)

Somente em função do problema a ser resolvido é que podemos definir a melhor solução.