University of St Andrews

CS4099

SH PROJECT REPORT

An online card-based game to explore human response to predefined scenarios

Author:
Cameron Allan

Supervisor: Dr. Ruth LETHAM

April 1, 2019

Todo list

Figure out tense of various sections (is context review past, eval present?)	:
Figure out name for software instead of "the game"/"my game"/"my artifact"	٠
Add word count	1
Discuss LimitedLiterature (citation) - quote in findings	-
Maybe draw an example as this is a bit confusing	-

Contents

1	Declaration	1
2	Introduction 2.1 Objectives	3 3 3 3 3
3	Context Survey 3.1 First Contact 3.2 Survey Gamification 3.3 Similar Software 3.3.1 Datagame 3.3.2 Qualifio 3.3.3 Reigns	5 5 6 6 7 8
4	Requirements4.1 Functional Requirements4.2 Non-Functional Requirements	9 9
5 6	5.1 Process	10 10 10
7	7.1 Gameplay Overview 7.2 UI	15 15 15 15 17 21
8	8.1 Tools & Technologies	23 23 23 23 24 24 24

8.3	8.2.2 Game Maker						
9 Ev	Evaluation 2						
9.1	User Evaluation	28					
	9.1.1 Data Collection	28					
	9.1.2 Quantitative Analysis	29					
	9.1.3 Qualitative Feedback	29					
9.2	Objective Evaluation	30					
9.3	Future Work	30					
10 Co	nclusion	32					
Appe	ndices	35					
1	Artifact Evaluation Form	36					
Figure out tense of various sections (is context review past, eval present?)							
Figure out name for software instead of "the game"/"my game"/"my artifact"							

Abstract

There are many situations in which it is desirable to know the opinions of a population. Aside from standard opinion surveys, little to no research has been done into alternative methods of gathering the public opinion.

This project was undertaken in collaboration with the St Andrews Centre for Exoplanet Science[1], in an attempt to develop a software artifact capable of capturing user decisions in a game interface. This project focuses on the framework through which these games may be created, played and visualised, with the end goal of analysing these responses and inferring user's opinions on certain subject matters through their choices. The framework is designed to be highly flexible, allowing all aspects of a game's story and development to be decided by an administrator.

Declaration

I declare that the material submitted for assessment is my own work except where credit is explicitly given to others by citation or acknowledgement. This work was performed during the current academic year except where otherwise stated.

The main text of this project report is

Add word count

NN,NNN* words long, including project specification and plan.

In submitting this project report to the University of St Andrews, I give permission for it to be made available for use in accordance with the regulations of the University Library. I also give permission for the title and abstract to be published and for copies of the report to be made and supplied at cost to any bona fide library or research worker, and to be made available on the World Wide Web. I retain the copyright in this work.

Todo list

Introduction

This project was kickstarted by researchers Anne Smith (Biology) and Christine Helling (Astronomy), with the aim of using the completed system to determine how the population would react to the discovery of alien life. This would be done through use of the system in some experimental context, however the details on what form this would take remain unclear.

2.1 Objectives

As part of my Description, Objectives, Ethics and Resources (DOER) document I described the objectives of this project:

2.1.1 Primary Objectives

- Devise and implement a game that presents the player with scenarios and allows them to choose from potential responses
- Devise and implement a flexible infrastructure to model and constrain scenarios and their impacts
- In collaboration with Anne Smith and Christine Helling, devise a sample set of appropriate scenarios with impacts and populate the game
- Devise and implement an infrastructure for capturing and recording player responses
- Implement basic visualisation of responses

2.1.2 Secondary Objectives

- Devise and implement an admin centre to allow easy creation of new game content
- Carry out an experiment to assess the effectiveness of the game as a tool to assess people's real world views
- Create more advanced visualisation and analysis tools

2.1.3 Tertiary Objectives

• Perform a wider user experiment

2.1.4 Definitions

Throughout this text I will use the following words defined as so:

- Player A user playing the game through the UI
- Admin An user that has access to the game maker and visualisation applications

• Game definition - A game within the context of the framework I have created. A unique game definition consists of a set of cards, a set of pillars, and a starting deck

Context Survey

Here I will review the existing software and literature around the different aspects of this project.

3.1 First Contact

This project has been undertaken in collaboration with the Exoplanet Research Society, who aim to answer the question - how would humans react to the discovery of alien life? There has been some research [2, 3, 4] into this area, but it is certainly not extensive and very little of it is systematic. The topic is vast, and is made more complex by many factors that could affect the answer:

- How has extra-terrestrial life been discovered?
- What is the nature of the life, is it intelligent?
- Is alien life on our doorstep, or far enough away that it could never reach or harm us?

Anne Smith and Christine Helling believe it could be beneficial to create a game capable of collecting this information, in order to reduce the burden on participants answering such an extensive library of questions and improve engagement. This format of gathering opinions would allow the player to become immersed in the context of the quesiton, hopefully leading to more honest responses.

If it was possible to accurately capture players' thoughts and feelings in this manner, this would have potential to impact the way opinion data is collected across multiple faculties.

3.2 Survey Gamification

An emerging trend in modern business practice, gamification can be defined as 'using game mechanics and game design elements to measure, influence and reward user behaviors.' [5]. There has been some research into gamification as a tool to improve the quality of responses from and engagement with surveys. From this I aim to gain an awareness of the necessary considerations when designing and implementing gamification.

As of yet, most experiments into survey gamification have only gone so far as to change the wording of survey questions, show questions alongside imagery or change the answer input mechanics. My project represents a considerable departure from the standard survey format, with the goal being that the game could be enjoyed as a standalone experience. Because of this, there are many psychological considerations as to the validity of the results that can be gathered through this format. There exists a tradeoff between complex levels of gamificaiton that increase enjoyment, and the accuracy of respondent data. It is also difficult to be certain whether player's will respond the same way in a game as they would in real life. While deep investigation of these issues is not my goal, I deemed it important to understand them, in an attempt to minimise any bias that my framework could impose onto players.

A 2011 paper found that while participants' enjoyment of the survey is generally increased, there are three main aspects of gamification that can affect the 'character of the data' [6]:

cotd.1 Effects caused by changes to the question and how it is interpreted

cotd.2 Effects caused by changing the attitude and mindset of respondents

cotd.3 Effects caused by changes to the design and layout of question

These considerations are targeted towards the low levels of gamification previously discussed, where the questions still have a fairly standard format - I do however believe that they are still applicable to my project.

A key aspect of the framework I designed is the context that is persistent between questions, and affected by player's choices. In researching this I found a 2015 paper [7] that states 'Designers may also implement feedback loops, i.e., dynamics wherein user actions affect the overall state of gameplay. Feedback loops may visualize concepts such as a user's progress, status, wealth, health, points, etc.'. This gives me confidence that adding a persistent context to the game is a valid design decision. As for how this will affect the character of the data, I believe this relates to **cotd.1**. This is because changing the context effectively changes the question, as people may respond differently under different circumstances.

cotd.3 will also occurr in my artifact - where there is a UI to interact with, there is potential to influence the way the user interacts with it. I will attempt to minimise this risk - ideally the only bias imposed on a player's decision will be from the game definition itself.

Briana Brownell, Jared Cechanowicz, and Carl Gutwin summarise the state of research into survey gamification as follows: 'In most cases, their results show that the addition of these game elements increases the length and quantity of responses, and respondents typically prefer the gamified version to the standard survey version. However, their research does not compare the effectiveness of game elements in gamified surveys. They have also found that that some gamified survey designs can lead to compromised respondent data (Puleston & Sleep, 2011).' [8]. This indicates that there is promise in the notion of gamifying surveys - however it can result in a reduction in accuracy of the data collected. Depending on the extent to which the survey is abstracted from, precise details, both of the question and response, can be lost. Given this, gamification is likely best suited to situations in which the surveyors need broad answers, rather than precise ones.

3.3 Similar Software

3.3.1 Datagame

Datagame [9] is a company that offers services allowing researchers to create and publish gamified surveys. This is done through interfaces that are heavily game-influenced, such as word searches and decks of cards.

Datagame supplies the tools required to populate one of several template games with custom questions, and export this to an online format that can be played through many channels including Facebook [10].

Datagame offer four game types available to customise. The one most similar to the game I intend to create is referred to as a 'Swiper' game. In this, the player draws cards from a virtual deck, each of which presents a yes/no question. The user swipes the card left or right to answer yes or no respectively. Figure 3.1 shows this interface - it is fairly simple, with no standout features other than those added during admin configuration. Customisation options include allowing the user to replace card backgrounds with images, as well as change the colour of the text. Figure 3.2 shows an example of the game editing view in which the following aspects of the game can be edited:

- Project title
- Title question
- List of cards
- Card name
- Card text/images
- Toggle card shuffling
- Game UI labels
- Background image

Figure 3.1: Example question in one of the Datagame [9] game types, which involves answering yes or no questions by swiping left or right.

Figure 3.2: Process of editing the Datagame [9] game instance shown in figure 3.1.

3.3.2 Qualifio

Qualifio [11] offer a similar service. They provide more varied game formats than Datagame, but the presentation is less game-like.

3.3.3 Reigns

I based my framework proposal on an existing game, Reigns [12]. In Reigns, the player takes the role of a medieval ruler, and makes binary decisions to solve problems their subjects approach them with. These decisions affect the scenarios that may later appear, as well as changing how the ruler is perceived by various factions, such as their population, army, and church. The player's success is measured by how many decisions they can make without falling out of favour with any of the factions.

As of 2019-03-01, Reigns is a well reviewed game, with a rating of 4.7/5 on the Google Play store [13]. Given this, in addition to the relative simplicity of recording and analysing the binary choices, I believe the framework of Reigns could provide a good starting point for collecting player opinion data.

Requirements

Below are the software requirements that I specified early on in the project.

4.1 Functional Requirements

- A user can enter a unique id, under which their game data will be recorded
- A user can choose a game to play by entering the game code
- A user can read and respond to scenarios presented to them
- A user can see the effect that their responses will have on the pillars
- A user can lose a game, when the value of one of their pillars reaches zero
- An administrator can add, edit and remove cards from a game definition
- An administrator can add, edit and remove pillars from a game definition
- An administrator can view a summary of the game they are creating, which contains information on any machine detectable oversights and game balance
- An administrator can save a game they are editing and return to it later, or let users play it
- An administrator can save their progress in editing one game and switch to another
- An administrator can select specific cards and obtain visualisations that summarise how players respond to them
- An administrator can filter turns included in visualisations by the state of the game during those turns
- An administrator can export and download all game data to an appropriate data processing format

4.2 Non-Functional Requirements

- All interfaces are clear and intuitive
- The game interface is responsive to input there should be minimal delay between an input action and the outcome
- The game interface does not influence the user's choice in a way that is not customisable
- User data should be stored securely

Software Engineering Process

As the majority of the work put into this project was in developing the software artifact, I was focused from the beginning on following an effective software engineering process.

5.1 Process

I employed an agile[14] methodology throughout my work on this project.

One of the key Agile principles is to 'Deliver working software frequently' [15]. I followed this from the beginning by setting myself intermediary deadlines, by which I planned to demo working sections of project. These deadlines were discussed and agreed upon with my supervisor. This helped me stay focused on getting the features I needed working while avoiding premature optimisation.

Another primary principle of the Agile Manifesto is to 'Welcome changing requirements, even late in development'[15]. As an example of this, one of my original requirements involved assessing how accurately my software could gather people's real world views. After thinking more about the psychological aspects of this question, my supervisor and I decided that this would be too difficult, and would be closer to psychology than computer science. After realising this, we changed this requirement to performing a comparatively simple user evaluation.

5.2 Tools

With this in mind, one of the first tools I employed was Git[16]. Considering the length of the project, it was reasonable to suspect that there may come a time when I would have to revert my project to a previous point if something was broken. Version control software was the obvious solution, and Git is the one of these that I have the most experience with. To complement this, I set up a master GitHub[17] repository to use as a backup.

In addition to serving as a backup, GitHub provides a useful set of project tracking features. I did consider other tools often used to track projects, such as Trello[18], but in the end decided that GitHub's ability to reference aspects of the code (thanks to them being stored in the same place) made it better suited for my needs. Here I will outline the features that I used and describe how they helped my development process:

Issues These are a core element of GitHub; any task that needs completing is documented as an issue. I kept my issues fairly high-level, as I have found previously that too much detail in issues results in spending excessive amounts of time managing them or some inevitably become outdated. Figure 5.1 shows an example issue.

Projects Issues alone can become unorganised, so I made use of GitHub's projects feature. I split my work into four parts - game, game maker, visualisation and backend then made a project for each of these. This allowed me to keep issues relating to different parts of the project separate, making it easier to focus on one section at a time.

Figure 5.1: An example of an issue, note the assigned description, project, and milestone.

Figure 5.2: Project overview page.

Each project has its own kanban-style[19] board, used to track its progress, an example of which can be seen in figure 5.3. Issues assigned to a project start in the todo column. When being worked on, I would move them into In progress, and finally when closed they are automatically moved to Done.

The project overview visualises the proportion of issues in each column, providing an instant, accurate depiction of progress.

Milestones The first step I took in tracking my project was to set my Milestones. These are an aspect of a GitHub project that serve as a deadline, to which issues can be added. Completing and closing these issues

Figure 5.3: Example project board towards the end of the project.

then automatically provides a visualisation of progress towards a milestone, as can be seen in figures 5.4 and 5.5. These made for a helpful overview, which was useful both for myself, and for sharing my progress with my supervisor.

I decided on these milestones early on by estimating the dates by which I could complete core parts of the project. As this was done in advance I was not able to be precise with demo dates, however I completed the vast majority of work for each milestone in advance of the deadline, so I consider this a successful element of my planning.

Figure 5.4: Closed (completed) milestones towards the end of the project

Figure 5.5: Open milestones towards the end of the project

Ethics

All data used for testing and development purposes was fictional. Fictional data was made up by myself, and consists only of user ids. No personal or identifying information was gathered during the user evaluation. Participants' answers were anonymously recorded on paper forms and kept in a secure location. The digitised forms were stored in an encrypted location.

Design

7.1 Gameplay Overview

Maybe draw an example as this is a bit confusing

The game provides a fairly straightforward experience from the user's point of view. Conceptually, it is a card game, so I will describe it as such. The game consists of three decks which I dub 'in play', 'out of play' and 'reserve'. In addition to this, there are n 'pillars' - these are attributes of importance within the game story context. Each of these has a minimum, maximum and current value. The 'in play' deck has a defined starting set of cards, with the 'reserve deck' containing all others - 'out of play' starts empty. Both decks are shuffled at the start of the game, and each pillar has a predefined starting value.

The player draws and reads a card from the play deck, each one showing the following information:

- Title
- Description
- Choice #1 ('accept')
- Choice #2 ('reject')
- Requirements to draw

Each choice on a card consists of text detailing the response, and the effects of the response. Effects are made up of two parts - pillar changes, and cards added/removed. Pillar changes specify amounts to add or remove from one or more pillars. Cards added/removed defines which cards should be moved between 'out of play' and 'reserve'. Requirements to draw consists of conditions that the current pillar levels must satisfy in order for this card to be drawn.

After each choice made (turn), any cards in 'out of play' the meet the current pillar requirements are moved to 'in play', and any 'in play' that do not are moved to 'out of play'.

The game ends when any of the pillars fall to their minimum value.

7.2 UI

7.2.1 Game

As it is described above, the game takes a lot of effort on behalf of the player, having to sort and shuffle cards. Fortunately, this effort can be removed completely through work done by the computer. This leaves a simple game from the user perspective; users are presented with a card, make a choice, and get the next card.

This simple perspective meant that the design for the game UI was quite straightforward. Figure 7.1 shows my first design for this UI alongside the final product. Initially, I wasn't sure whether the pillars

Discuss Lim itedLiterature (citation) - quote in findings would be visible to the player, however after some testing it was clear that they were needed to provide the player with feedback as they played the game, so they were later added to the top of the screen.

Figure 7.1: Comparison between initial and final designs for the game UI

Pillars are displayed as vertical bars at the top of the screen, each having their own fill colour (customisable in the game maker). I was inspired to add this colour customisation by other survey gamification tools, as a way to make the game more visually engaging without imposing any particular colour scheme, as doing so could conflict with the desires of game creators. Pillars fill from bottom to top, and represent where the current value lies between the defined min and max.

Figure 7.2: Visualisation of a negative outcome; the red outline around Popularity

The image shown with a given card is dependent upon the pillars the card influences, as seen in figure 7.3. In this example game, I gave each pillar an 'advisor' image, so that the advisor representing the pillar most affected by a card is shown.

Figure 7.3: These cards primarily affect different pillars, so they have different associated images

As seen in figure 7.4, not only can the image change, but the primary colour of the image may also change.

I decided to include this feature as cards may affect more than one pillar, and this was not being represented when only using different images. With this colour shifting implemented, the image can represent secondary pillar effects.

Figure 7.4: Both of these cards primarily affect the Money pillar (they are being presented by the Money advisor) however the second also affects Popularity, so has a blue primary colour

7.2.2 Admin tools

Game Maker

The game maker interface was the most challenging to design, as I wanted the user to be able to maintain a high-level overview of the game while adding and editing pillars and cards. After thinking this through, I initially settled on the design depicted in figure 7.5. The main theme is that editing is done in the left panel, while the right side continues to show an interactive view of the game, including a visualisation of the relationships between cards. The final design ended up being roughly the same, however the card view is not as complex - connections between cards are not visualised, as after more consideration of the relationships involved, I could not think of a clear way to show this. The cards are instead displayed in a grid in the final design.

Figure 7.5: Comparison between initial and final designs for the game maker. Shown is the example game I created for demonstration purposes.

In the section on the right, the user can see the game pillars and cards that they have created. This side is scrollable, while the left section remains in view. If the details of a card are too large for the view, the text fades out. The card view can be expanded by hovering over it, as seen in figure 7.6 - when this is done, other cards shrink and move to allow the extra space. New cards and pillars can be added with the large + buttons by the headers, while existing ones can be edited by clicking on them. Both of these options opens the edit view on the left section.

The left section provides contextual menus. When no pillar or card is selected, it provides high-level functionality, such as saving, switching, or creating new game definitions. Also present here is starting deck selection, game balance information and any warnings.

Figure 7.6: Demonstration of hover expanded view (note that the full text is cut off on the left, readable on the right)

The pillar effect balance provides the admin user with an idea of how balanced their game is in its current state. This is done by summing all of the effects that are applied to each pillar for any given response to all cards. This acts as an indicator of how well a user is likely to do if they randomly pick their responses. The higher the balance values, easier the game.

Warnings appear when a card has no chance of being added to the game. This means that a card has been created, but it is neither in the starting deck, nor is it added by any other card. This is only a shallow check - if card A is added by another card B, which itself is never added, the warning will only appear for card B. I consider this acceptable, as once card B is added or deleted, the situation will be resolved.

Figure 7.7: Info on left panel. Note the two warnings, which appeared on removing recruitmentPaidOff and loanRepay from all 'cards added' lists

When editing a card, a live preview can be seen at the bottom of the panel, along with buttons to cancel changes, delete, or submit the card. When editing the consequences, adding and removing cards is done through a dropdown list, which allows multiple cards to be selected.

Figure 7.10 shows the pillar editing menu, which is very similar to the card editing view. The colour of the pillar can be entered as a hex value, which is immediately reflected in the preview below.

Clicking Save Current will save the updated game definition to the database, and it can then be played from the game UI by entering the correct game ID.

Figure 7.8: Card editing view, reached by selecting a card by clicking it.

Figure 7.9: Dropdown showing all other cards that can be added or removed

Visualisation

The visualisation screen took a similar shape to the game maker, with data selection and filtering happening in a left panel while the visualisations are updated on the right. It is possible to filter results to be visualised by pillar values. This limits the data shown only to cards that appeared while pillar values match the specified criteria The visualisations I chose to show are as follows:

• Accept/Reject balance

Figure 7.10: Pillar editing view

This is a horizontal bar chart showing the proportion of players that choose one option over the other for a given set of cards. Each card has a value between -1 and 1, where -1 indicates that players choose the reject option every time, while 1 indicates accept is chosen every time.

• Total times drawn

This is a vertical bar chart showing the total number of times each card has been drawn and responded to

• Pillar average

This shows the average pillar levels over all turns.

The intention of these visualisations is to allow a user to 'play' with the data. The live updating charts allow the user to rapidly identify relationships, for example between pillar levels and accept/reject balance.

Figure 7.11: Visualisation screen effects of filtering data by cards and pillar values. This example filters responses to cards during turns where the player's Army was between 0 and 5, and their Popularity was between 5 and 10.

The other function this page offers is the ability to export data to CSV. This effectively repackages the database as a csv file, where each row represents the turn of a user. Individual games are uniquely identified by sets of rows with the same user id and game id.

7.3 Frontend

When using Redux, one of the first design decisions that must be made is the structure of the Redux store. This is the JavaScript object that holds the page's state. Figures 7.12 and 7.13 show a visual representation of the store for the game site. The game logic runs client-side, so to enable this, the entire game definition is requested from the database server once the player requests to play it. Depending on the use case, this could be considered a downside as technically a player could 'cheat' the game through using console commands. This choice did however greatly simplify the API between the client and sever, as once the game has begun, the client only needs to send the outcome of each turn.

Figure 7.12: Redux store object structure. Note that the pillars (Army, Science, Popularity, Money) are game definition dependent. Cards object is omitted due to large size.

7.4 Backend

Access to the database is provided through a backend server, which exposes a RESTful [20] API. This is a lightweight server that directly accesses and modifies the databases, of which there are two. One database stores game definitions, while the other stores user turn data. The documentation for this API is in the top level of the backend folder.

Figure 7.13: Example of a card object in the store. This is a starting card that adds many other cards to the game no matter which option is chosen.

Implementation

8.1 Tools & Technologies

8.1.1 Node.js

I decided early on that this application should be easily accessible on a range of devices, particularly the game interface. For this reason I built the system as a responsive web-application, running on a node server. Node[21] is an excellent framework for getting sizeable projects up and running very quickly, which I was able to do with this project. This is in part due to NPM[22], which provides access to countless packages which I was able to use, ranging from Victory[23] for visualisations, to Thunk[24] for managing asynchronous side effects.

8.1.2 TypeScript

According to Microsoft who maintain it, 'TypeScript is a typed superset of JavaScript that compiles to plain JavaScript'[25]. I decided to use TypeScript (TS) to combat some of the problems that can occur when working on a large JavaScript codebase. Being statically typed, TS prevents type errors and instantly makes code more navigable and readable. This helps both during development and maintenance, which is particularly important if others continue to work on this project.

8.1.3 TSLint

Alongside TypeScript, I set up TSLint[26], a linter for TypeScript. This was a huge help with development, as TSLint catches issues that can affect the performance of the application. For example, using arrow functions in JSX results in the function being recreated each time the component renders. This can then lead to the component re-rendering due to the shallow comparison of the old and new functions. This can lead to performance issues, which could have been troublesome for the more responsive parts of my software, such as the visualisation page. TSLint also provides general code cleanup features such as organising imports.

React

React[27] is a UI library that simplifies the creation of responsive interface components. I knew that I wanted my application to be highly responsive, with each section effectively being split into a single page application. React made this fairly trivial once the structure of the page was settled, as information flows down through components and they are automatically updated.

Using React also encourages the use of inline styles. This makes styles composable, vastly improving reuse of styles and improving maintainability.

Redux

Redux [28] complements React nicely, by helping to manage state. When using pure React, each component stores it's own state. This can make things confusing as components that should be reflecting information can fall out of sync. Redux encourages moving the state of the whole application into one top-level serializable

JS object. This then acts as a 'single source of truth', which takes care of several considerations. Another benefit that I found redux to have is the debugging tools, which take the form of a chrome extension [29]. When Redux is correctly used, this tool makes it possible to view and manipulate the application state, and even 'time travel' the page to a previous state, such as before a button was clicked. This made debugging very straightforward, particularly for the game logic.

8.1.4 NeDB

To store both the game definitions and the gameplay data, I needed a form of server-side persistance. I had decide here between designing and maintaining a rigid relational database, or opting for a NoSQL [30] solution. After consideration, I chose to go with a document-based database. The main factor in this decision was that I was unsure of what data would be desired by users of the final product. While a relational database requires strict definitions of data and their types, document-based databases are much more free form, meaning values can be added and removed with no alterations to the database server required.

Specifically, I chose to use NeDB[31]. NeDB is a lightweight JS database library that was quick and easy to set up and use. The API it provides is a subset of that of MongoDB[32], and was therefore well documented despite this being a smaller, more lightweight tool. Game definitions and user data are stored in two separate instances.

This database implementation does have some downsides in terms of long term maintenance - ideally further along in the project's life cycle this would probably be converted to a relational database, once the data requirements were more strictly defined. Also, regrettably NeDB does not expose encryption as part of its API. This was something I only became aware of towards the end of the project, I might have chosen a different library if this had been immediately obvious. It would still be possible to encrypt fields individually It did however suit the needs of the project, and I believe I made the right choice in getting started with NoSQL.

8.2 Frontend

8.2.1 Game

Logic

Most of the game logic happens in the redux reducers. This is the part of the code where actions arrive and the payload gets processed, resulting in some change to the game state which is then propagated through the page.

Reducers should technically be pure functions, as this makes them reliably testable and allows the time travel aspect of the debug tools to work correctly. I have followed this convention for all of my reducers, except for CHOOSE, which is called when the player makes a choice. This is because of the shuffle function that gets called, which has a random element.

The shuffle function I used is an implementation of the Fisher-Yates Shuffle[33]. I needed this to ensure that the game remained unpredictable across replays, improving replayability.

Building the play deck is simply a case of iterating through each card that is out of play and adding those that match the requirements, as well as iterating through the previous play deck and removing those that do not.

Images

The colouring of images was one of the more technically involved parts of the project. In order to avoid heavily pixel processing I knew I would have to use SVGs, which can be edited with comparably insignificant computation (also having the advantage of being infinitely scalable). I then had to acquire some example images to use for my game definition. To maintain a similar art style I sourced them all from the same artist, Katerina Limpitsouni, on her site unDraw[34]. These images are open-source and usable for free and without attribution. The website has the advantage of allowing the main colour of each image downloaded to be set through a colour picker. After failing to find a solution to edit specific colours of an SVG in JavaScript, I

Figure 8.1: Redux DevTool [29] opened in game view. This shows what actions have occurred while the page has been open, as well as visualising the application state.

resorted to wrapping each image in a React component, which passes through and injects the desired colour. This was not a favourable solution, as it's not possible to do this through the game maker tool. Considering

this a prototypical feature (and not part of requirements), I believe the implementation is satisfactory.

Alternatively to this solution, another, less technically challenging but more time consuming possibility would be to fill the image URL property of each card, which could then be downloaded and rendered client-side.

Hover

When the user hovers over an answer with the mouse, the pillars affected by that response are outlined with a border, the colour of which depends on whether the effect is positive or negative. There were multiple ways in which this could have been implemented; I decided to use an enum property in the global state. Doing so makes it extensible - other effects or other hovering elements could be added easily.

8.2.2 Game Maker

Much of the time I spent working with CSS was on the game maker page, particularly the card and pillar views.

Within the cards, if any text overflows beyond the limit of its section, it slowly fades out towards the bottom. This indicates to the user that there is more text to read, avoiding the situation where text is cut off but this is disguised by the gap between two lines of text. This effect is achieved by adding a fixed-height, partially transparent gradient matching the background colour to the bottom of each text div.

Cards are displayed in a responsive grid, which was done using CSS-flexboxes. I first used a combination of the flex-basis, min-width and max-width properties to allow each card to expand and contract slightly beyond its initial size. These were then placed inside a div with display:flex, allowing the cards to dynamically size and arrange themselves according to the size of this parent container. Using the Emotion[35] library, I was able to inject inline styles into the hover attribute of the card component, which allowed me to create the card expansion effect on hovering over them. The responseive nature of the site can be seen in figure 8.2.

Removing a card or pillar removes all references to it held by other cards/pillars. This ensures that games remain consistent.

8.3 Testing

Thanks to the structure enforced by Redux, the application logic is entirely contained within one file -reducers.tsx. This simplifies testing, as the important code can be covered with a few well chosen unit tests. To write these tests I used Jest[36] - a fairly simple JavaScript testing framework.

While there exist libraries capable of testing the UI, I found my UI small enough that manual testing was both possible and sufficient.

Figure 8.2: Game maker at 960x1080 - note that all infomation is still visible.

Evaluation

9.1 User Evaluation

9.1.1 Data Collection

Towards the end of this project, I gave a presentation of my software to the members [37] of the St Andrews Exoplanet Research Society. This provided an excellent opportunity to get feedback on the software in its current state, as well as feature requests as inspiration for future work. To collect this information, I designed a brief artifact evaluation form which is attached as Appendix .1. This form covers the main non-functional, user facing requirements of my system. It consists of seven statements, each of which the respondent must express their agreement by circling the appropriate point on a seven point Likert scale.

The items on the form were as follows:

- it.1 The game is entertaining
- it.2 The game interface is intuitive
- it.3 The game interface is attractive
- it.4 The visualisation section provides useful controls and visualisations
- it.5 The game maker interface is intuitive
- it.6 The game maker provides useful feedback when making a game ¹
- it.7 This software would be useful in evaluating human responses to predefined scenarios

Shortcomings

The survey I designed was not perfect, here I describe some of its shortcomings:

- sc.1 I did not take sufficient measures to avoid acquiescence bias[38] when designing the form. This is the tendency for users to generally agree with statements, even if this results in two conflicting answers. Avoiding this would have required adding additional, negatively phrased questions in order to establish a baseline level of respondents' agreeableness.
- sc.2 The form is brief, with only seven questions. This was a design decision, with the aim of increasing engagement. This however, limited the amount of quantitative feedback I received.
- sc.3 Participants did not have an opportunity to personally interact with the software, answers provided are based upon a presentation that lasted roughly thirty minutes. I particularly feel that this could impact the questions regarding the intuitiveness of the interface; watching somebody else perform a task they are familiar with can make it seem easier, which may affect one's perception of how intuitive it is

¹Due to time restrictions, I was unable to sufficiently present this aspect of the game maker, therefore I told participants to ignore this question and will not include it in my analysis

sc.4 Responses pertaining to the game UI may have been swayed by the quality of the example game definition I was using. Improving this was not an item of high priority therefore it may not have provided the best demonstration of the framework.

9.1.2 Quantitative Analysis

Since they are categorical, it is not appropriate to average Likert scale data [39]. For this reason, I have visualised the results as an aggregated stacked bar chart in figure 9.1.

Figure 9.1: Visualisation of artifact evaluation likert items. Number to the right of each item indicates the number of responses.

From the data, it is immediately striking that none of the responses to any of the items exceeded 4, meaning that none of them were negative. It is impossible to judge how much of this could be due to acquiescence bias; I will however interpret this as negligible, due to the extent to which the responses are positive.

Items it.1, it.3 and it.7 received the lowest levels of agreement. The response to it.1 could have been influenced by sc.4, or be a deeper comment on the game framework itself.

it.3 could be influenced by the images used in this game definition (sc.4), however this aside, in my effort to avoid imposing a bias onto the framework, perhaps achieving a neutral response is desirable here.

it.7 is intended to provide an assessment of the software as a whole, being used for its intended purpose. This sees agreement, which is a strong sign. The reasoning for this seeing less agreement than the other items which constitute it could be explained by the general feeling of doubt around the concept of a game being used to gather player's opinions.

One piece of written feedback was submitted, which stated that it was 'very intuitive to create the game'

9.1.3 Qualitative Feedback

The half an hour following the presentation consisted of discussion around the software and its potential uses.

Feature Requests

There were several suggestions to improve various aspects of the software pipeline:

- Addition of 'sub-decks' decks of cards which can be easily added or removed in one click, rather than having to select each card manually, possibly multiple times.
- Addition of more than one choice per card.
- Addition of an option for pillars to be 'invisible'. This would add depth to the games that could be created, allowing for hidden factors that the player can not predict, such as how they are perceived by an enemy
- Addition of game-end condition customisation, for example two pillars must be empty before the game ends, or one must fill.
- Addition of different endings, some considered winning and others losing.

9.2 Objective Evaluation

9.3 Future Work

All of the feature requests raised by participants in the study would make for worthwhile future work, in addition to many other quality of life and aesthetic updates. Here I will elaborate on future technical work, as implementation details weren't much discussed in the presentation:

- The response system could be expanded and generalised to support different numbers of responses for different cards, rather than two for each.
- Depending on the final use case, it may be desirable to add support for collecting user demographic data, such as age and gender. This would require frontend work, in making the appropriate forms, as well as increased security for communication (SSL) and encrypted storage on the backend.
- Currently the application only deploys locally, some work would be required in implementing a permentant hosting solution, however this wouldn't be too difficult as this is well supported for Node.
- The visualisation tool could be endlessly expanded to become a more capable analysis suite. If more user data was added, there exists the possibility of filtering by age bracket and various other factors.
- The game is not currently playabe through any channels other than the site itself. Future work could consist of migrating to a more portable technology, which could be shared and played directly through other channels, such as social media.
- Deeper analysis and verification could take place in the game maker. For example, detecting cards that will never be playable given the pillar consequences of choices that must precede them.

Priority	Objective	Complete?	Comments
Primary	Devise and implement a game that	✓	
	presents the player with scenarios and		
	allows them to choose from potential re-		
	sponses		
	Devise and implement a flexible infras-	✓	
	tructure to model and constrain scenar-		
	ios and their impacts		
	In collaboration with Anne Smith and	X	Due to the lateness of my first meeting
	Christine Helling, devise a sample set of		with Anne and Christine, there was not
	appropriate scenarios with impacts and		enough time for them to become famil-
	populate the game		iar with the framework and create test
			scenarios. I did however create my own
	Device and implement an infrastructure	/	example scenario.
	Devise and implement an infrastructure for capturing and recording player re-		
	sponses		
	Implement basic visualisation of re-	/	
	sponses		
Secondary	Devise and implement an admin centre	/	This became a more primary objective,
	to allow easy creation of new game con-		as it became obvious that without the
	tent		game maker tool, the software would be
			much less accessible, as technical expe-
			rience would be required to create new
			games
	Carry out an experiment to assess the	X	It became clear early on that this was a
	effectiveness of the game as a tool to		more psychological question, and that I
	assess people's real world views		had neither the time or knowledge re-
			quired to answer this question
	Create more advanced visualisation and	X	After basic visualisations were com-
	analysis tools		plete, I prioritised the quality of the
			game maker tool over more advanced
			visualisations. The reasoning behind
			this was that I could not be certain I
			was providing useful visualisations, and
			in that case, external tools could be
Tertiary	Parform a wider user experiment	/	used with the exportable data. This was achieved in the form of the
remary	Perform a wider user experiment	•	user evaluation forms handed back from
			members of the Centre for Exoplanet
			Research.
			TUSCALCII.

Conclusion

Comparing my project to the software I found to be most like mine, Datagame [9], I find that my software holds up well. I believe the game I have created is as engaging, if not more so than the games available on Datagame. Both game makers offer a similar toolset, and while I cannot speak for any analysis tools that Datagame provides, I believe the functionality provided by my analysis tools - combined with data export functionality - is sufficient. Is previously stated, I cannot evaluate the accuracy with which the tool can infer player's opinions, however it may provide a point from which research into this area can proceed.

My game has achieved or surpassed the majority of my goals, and I feel confident that it could provide the grounds for further research into the world of gamification and opinion gathering.

Bibliography

- [1] Centre for Exoplanet Science. St Andrews Centre for Exoplanet Science. 2019. URL: https://www.st-andrews.ac.uk/exoplanets/ (visited on 03/17/2019).
- [2] Douglas Vakoch and Yuh-shiow Lee. "Reactions to receipt of a message from extraterrestrial intelligence: a cross-cultural empirical study". In: *Acta Astronautica* 46 (June 2000), pp. 737–744. DOI: 10.1016/S0094-5765(00)00041-2.
- [3] Jung Yul Kwon et al. "How Will We React to the Discovery of Extraterrestrial Life?" In: Frontiers in psychology (). DOI: 10.3389/fpsyg.2017.02308. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767786/.
- [4] A A Harrison. "Fear, pandemonium, equanimity and delight: human responses to extra-terrestrial life". In: (). DOI: 10.3389/fpsyg.2017.02308. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767786/.
- [5] Á. Tóth and S. Tóvölgyi. "The introduction of gamification: A review paper about the applied gamification in the smartphone applications". In: 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom). Oct. 2016, pp. 000213-000218. DOI: 10.1109/CogInfoCom.2016. 7804551.
- [6] D. Sleep and J. Puleston. "The Game Experiments: Researching how gaming techniques can be used to improve the quality of feedback from online research". In: ESOMAR Congress 2011 (2011). URL: http://www.websm.org/db/12/16748/Web%20Survey%20Bibliography/The_Game_Experiments_Researching_how_gaming_techniques_can_be_used_to_improve_the_quality_of_feedback_from_online_research/.
- [7] Johannes Harms et al. "Gamification of Online Surveys: Design Process, Case Study, and Evaluation". In: *Human-Computer Interaction INTERACT 2015*. Cham: Springer International Publishing, 2015, pp. 219–236. ISBN: 978-3-319-22701-6. DOI: 10.1007/978-3-319-22701-6_16.
- [8] Briana Brownell, Jared Cechanowicz, and Carl Gutwin. "Gamification of Survey Research: Empirical Results from Gamifying a Conjoint Experiment". In: Oct. 2015, pp. 569–591. ISBN: 978-3-319-10207-8. DOI: 10.1007/978-3-319-10208-5_29.
- [9] Datagame. Datagame. 2017. URL: http://datagame.io/ (visited on 03/26/2019).
- [10] Facebook. Facebook. 2004. URL: https://www.facebook.com (visited on 03/26/2019).
- [11] Qualifio. Qualifio. 2011. URL: https://qualifio.com/ (visited on 03/26/2019).
- [12] Francois Alliot. Reigns. 2019. URL: http://reignsgame.com/reigns/ (visited on 03/18/2019).
- [13] DevolverDigital. Reigns. 2019. URL: https://play.google.com/store/apps/details?id=com.devolver.reigns&hl=en_GB (visited on 03/18/2019).
- [14] Ward Cunningham. Agile Manifesto. 2019. URL: https://agilemanifesto.org/(visited on 03/29/2019).
- [15] Ward Cunningham. Principles behind the Agile Manifesto. 2019. URL: https://agilemanifesto.org/iso/en/principles.html (visited on 03/29/2019).
- [16] Git. Git. 2019. URL: https://git-scm.com/ (visited on 03/23/2019).
- [17] GitHub. GitHub. 2019. URL: https://github.com/ (visited on 03/23/2019).

- [18] Trello. Trello. 2019. URL: https://trello.com/en (visited on 03/23/2019).
- [19] Atlassian. What is Kanban? 2015. URL: https://www.atlassian.com/agile/kanban.
- [20] Shirgill Farhan. What exactly is RESTful programming? 2015. URL: https://stackoverflow.com/a/29648972.
- [21] Linux Foundation. node. 2019. URL: https://nodejs.org/en/ (visited on 03/24/2019).
- [22] Inc. npm. NPM. 2019. URL: https://www.npmjs.com/ (visited on 03/24/2019).
- [23] Formidable. Victory. 2019. URL: https://formidable.com/open-source/victory/ (visited on 03/24/2019).
- [24] reduxjs. Redux-Thunk. 2019. URL: https://github.com/reduxjs/redux-thunk (visited on 03/24/2019).
- [25] Microsoft. Typescript. 2019. URL: https://www.typescriptlang.org/ (visited on 03/24/2019).
- [26] Palantir. TSLint. 2019. URL: https://palantir.github.io/tslint/ (visited on 03/29/2019).
- [27] Facebook. React. 2019. URL: https://reactjs.org/ (visited on 03/24/2019).
- [28] reduxjs. Redux. 2019. URL: https://redux.js.org/ (visited on 03/24/2019).
- [29] remotedevio. Redux DevTools. 2019. URL: https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en (visited on 03/24/2019).
- [30] mongoDB. NoSQL Databases Explained. 2019. URL: https://www.mongodb.com/nosql-explained (visited on 03/24/2019).
- [31] Louis Chatriot. NeDB. 2019. URL: https://github.com/louischatriot/nedbz (visited on 03/24/2019).
- [32] mongoDB. MongoDB. 2019. URL: https://www.mongodb.com (visited on 03/24/2019).
- [33] Wilipedia. Fisher-Yates Shuffle. 2019. URL: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm (visited on 03/28/2019).
- [34] Katerina Limpitsouni. Undraw. 2018. URL: https://undraw.co/illustrations (visited on 03/28/2019).
- [35] emotion-js. emotion. 2019. URL: https://github.com/emotion-js/emotion (visited on 03/29/2019).
- [36] Jest. Jest. 2019. URL: https://jestjs.io/en/ (visited on 03/29/2019).
- [37] Centre for Exoplanet Science. *Members*. 2019. URL: https://www.st-andrews.ac.uk/exoplanets/members.html (visited on 03/30/2019).
- [38] Paul J. Lavrakas. "Acquiescence Response Bias". In: Encyclopedia of Survey Research Methods (2008). DOI: 10.4135/9781412963947.
- [39] Dwight Barry. Do not use averages with Likert scale data. 2019. URL: https://bookdown.org/Rmadillo/likert/ (visited on 03/30/2019).
- [40] Juho Hamari, Jonna Koivisto, and Harri Sarsa. "Does Gamification Work? A Literature Review of Empirical Studies on Gamification". In: Jan. 2014. DOI: 10.1109/HICSS.2014.377.
- [41] L. Dorcec et al. "Exploring Willingness to Pay for Electric Vehicle Charging with Gamified Survey". In: 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech). June 2018, pp. 1–8.
- [42] Raed S. Alsawaier. "The effect of gamification on motivation and engagement". In: *International Journal of Information and Learning Technology* 35.1 (2018), pp. 56-79. DOI: 10.1108/IJILT-02-2017-0009. URL: https://www.emeraldinsight.com/doi/abs/10.1108/IJILT-02-2017-0009.

Appendices

.1 Artifact Evaluation Form

Artifact Evaluation Form

Artifact title: An online card-based game to explore human response to predefined scenarios Please circle the response that you feel most aligns with your own. $(1=\text{strongly agree},\,7=\text{strongly disagree})$

1. The game is entertaining								
Strongly			Neutral			Strongly		
Agree 1	2	3	4	5	6	Disagree 7		
2. The game interface is intuitive								
Strongly			Neutral			Strongly		
Agree 1	2	3	4	5	6	Disagree 7		
3. The game	interface is attrac	ctive						
Strongly			Neutral			Strongly		
Agree 1	2	3	4	5	6	Disagree 7		
4. The visual	lisation section pr	ovides usef	ul controls and vi	isualisation	s			
Strongly Agree			Neutral			Strongly Disagree		
1	2	3	4	5	6	7		
5. The game maker interface is intuitive								
Strongly Agree			Neutral			Strongly Disagree		
1	2	3	4	5	6	7		
6. The game maker provides useful feedback when making a game								
Strongly Agree			Neutral			Strongly Disagree		
1	2	3	4	5	6	7		
7. This software would be useful in evaluating human responses to predefined scenarios								
Strongly Agree			Neutral			Strongly Disagree		
Agree 1	2	3	4	5	6	7		
Please write any other comments or feedback on the reverse								

Covered by ethical application CS12476