## 高中数学公式汇总



### 课堂笔记

### §01. 集合与简易逻辑

- 1. 元素与集合的关系
  - $x \in A \Leftrightarrow x \notin [UA;$
  - $x \in \int_{U} A \Leftrightarrow x \notin A$ .
- 2. 德摩根公式
  - $\int_U (A \cap B) = \int_U A \cup \int_U B;$
  - $[U(A \cup B) = ]UA \cap ]UB.$
- 3. 包含关系
  - $A \cap B = A$
  - $\Leftrightarrow A \cup B = B$
  - $\Leftrightarrow A \subseteq B$
  - $\Leftrightarrow \int_U B \subseteq \int_U A$
  - $\Leftrightarrow A \cap \bigcup_U B = \emptyset$
  - $\Leftrightarrow \int_{U} A \cup B = R$
- 4. 容斥原理

 $card(A \cup B) = cardA + cardB - card(A \cap B).$ 

- 5. 集合  $\{a_1, a_2, \dots, a_n\}$  的
  - 子集个数有 $2^n$ 个;
  - 真子集有 $2^n-1$ 个;
  - 非空子集有 $2^n-1$ 个;
  - 非空真子集有 $2^n-2$ 个.
- 6. 二次函数的解析式的三种形式
  - (1) 一般式:  $f(x) = ax^2 + bx + c(a \neq 0)$ ;
  - (2) 顶点式:  $f(x) = a(x-h)^2 + k(a \neq 0)$ ; ( 顶点为 (h,k))
  - (3) 零点式:  $f(x) = a(x x_1)(x x_2)(a \neq 0)$ .
- 7. 解不等式 N < f(x) < M(N < M) 常有以下转化形式
  - N < f(x) < M
  - $\Leftrightarrow$  [f(x) M][f(x) N] < 0
  - $\Leftrightarrow |f(x) \frac{M+N}{2}| < \frac{M-N}{2}$
  - $\Leftrightarrow \frac{f(x) N}{M f(x)} > 0$
  - $\Leftrightarrow \frac{M f(x)}{f(x) N} > 0$
  - $\Leftrightarrow \frac{1}{f(x)-N} > \frac{1}{M-N}$
  - $\Leftrightarrow \begin{cases} N < f(x) \\ f(x) < M \end{cases}$
- 8. 方程 f(x) = 0 在  $(k_1, k_2)$  上有且只有一个实根,与  $f(k_1)f(k_2) < 0$  不等价,前者是后者的一个必要而不是充分条件.

第 1 页



特别地,方程 $ax^2 + bx + c = 0$ ( $a \neq 0$ )有且只有一个实根在 $(k_1, k_2)$ 内,等价于

$$f(k_1)f(k_2) < 0$$
,或  $\begin{cases} \Delta = 0 \\ k_1 < -\frac{b}{2a} < k_2 \end{cases}$ ,或  $f(k_1) = 0$  且  $k_1 < -\frac{b}{2a} < \frac{k_1 + k_2}{2}$ ,或  $f(k_2) = 0$  且  $\frac{k_1 + k_2}{2} < -\frac{b}{2a} < k_2$ .

9. 闭区间上的二次函数的最值

二次函数  $f(x) = ax^2 + bx + c(a \neq 0)$  在闭区间 [p,q] 上的最值只能在  $x = -\frac{b}{2a}$  处及区间的两端点处取得,具体如下:

$$(1)$$
 当  $a>0$  时,若  $x=-\frac{b}{2a}\in[p,q]$ ,则  $f(x)_{\min}=f(-\frac{b}{2a})$ , $f(x)_{\max}=\max\{f(p),f(q)\}$  ;

若  $x=-\frac{b}{2a}$  ∉ [p,q] , f ( x )  $_{\max}=_{\max}\{f(p),f(q)\}$  , f ( x )  $_{\min}=_{\min}\{f(p),f(q)\}.$ 

$$(2)$$
 当  $a<0$  时,若  $x=-\frac{b}{2a}\in[p,q]$ ,则  $f(x)_{\max}=f(-\frac{b}{2a})$ , $f(x)_{\min}=\min\{f(p),f(q)\}$ ;

若  $x=-\frac{b}{2a}$   $\notin$  [p,q],则  $f(x)_{\max}=\max\{f(p),f(q)\}$ ,  $f(x)_{\min}=\min\{f(p),f(q)\}.$ 

10. 一元二次方程的实根分布

若 f(m)f(n) < 0,则方程 f(x) = 0 在区间 (m,n) 内至少有一个实根 . 设  $f(x) = x^2 + px + q$ ,则

(1) 方程 f(x) = 0 在区间  $(m, +\infty)$  内有根的充要条件为 f(m) = 0 或  $\begin{cases} p^2 - 4q \ge 0 \\ -\frac{p}{2} > m \end{cases}$ ;

(2) 方程 f(x) = 0 在区间 (m,n) 内有根的充要条件为 f(m)f(n) < 0 或 f(m) > 0

$$\begin{cases} f(n) > 0 \\ p^2 - 4q \ge 0 \end{cases} \stackrel{\text{id}}{=} \begin{cases} f(m) = 0 \\ f(n) > 0 \end{cases} \stackrel{\text{id}}{=} \begin{cases} f(n) = 0 \\ f(m) > 0 \end{cases};$$

(3) 方程 f(x) = 0 在区间  $(-\infty, n)$  内有根的充要条件为 f(m) < 0 或  $\begin{cases} p^2 - 4q \ge 0 \\ -\frac{p}{2} < m \end{cases}$ 

11. 定区间上含参数的二次不等式恒成立的条件依据

(1) 在给定区间  $(-\infty, +\infty)$  的子区间  $L(\mathbb{R}^2, \mathbb{R}^2)$  , $(-\infty, \beta]$  , $[\alpha, +\infty)$  不同) 上含参数的二次不等式  $f(x,t) \ge 0$  (t 为参数) 恒成立的充要条件是  $f(x,t)_{\min} \ge 0$  ( $x \notin L$ ).

(2) 在给定区间  $(-\infty, +\infty)$  的子区间上含参数的二次不等式  $f(x,t) \ge 0$  (t 为参数) 恒成立的充要条件是  $f(x,t)_{\max} \le 0 (x \notin L)$ .

第 2 页

12. 真值表

| p | $\boldsymbol{q}$ | 非 <b>p</b> | p或 $q$ | $p \coprod q$ |
|---|------------------|------------|--------|---------------|
| 真 | 真                | 假          | 真      | 真             |
| 真 | 假                | 假          | 真      | 假             |
| 假 | 真                | 真          | 真      | 假             |
| 假 | 假                | 真          | 假      | 假             |

# 课堂笔记

#### 13. 常见结论的否定形式

| 原结论          | 反设词           | 原结论           | 反设词                 |  |
|--------------|---------------|---------------|---------------------|--|
| 是            | 不是            | 至少有一个         | 一个也没有               |  |
| 都是           | 不都是           | 至多有一个         | 至少有两个               |  |
| 大于           | 不大于           | 至少有 $n$ 个     | 至多有(n-1)个           |  |
| 小于           | 不小于           | 至多有 $n$ 个     | 至少有(n+1)个           |  |
| 对所有 $x$ ,成立  | 存在某 $x$ , 不成立 | p或 $q$        | $\neg p$ 且 $\neg q$ |  |
| 对任何 $x$ ,不成立 | 存在某 $x$ ,成立   | $p \coprod q$ | $\neg p$ 或 $\neg q$ |  |

#### 14. 四种命题的相互关系

原命题:与逆命题互逆,与否命题互否,与逆否命题互为逆否; 逆命题:与原命题互逆,与逆否命题互否,与否命题互为逆否; 否命题:与原命题互否,与逆命题互为逆否,与逆否命题互逆; 逆否命题:与逆命题互否,与否命题互逆,与原命题互为逆否;

#### 15. 充要条件

- (1) 充分条件: 若 $p \Rightarrow q$ ,则 $p \neq q$ 充分条件.
- (2) 必要条件: 若 $q \Rightarrow p$ ,则p是q必要条件.
- (3) 充要条件: 若 $p \Rightarrow q$ , 且 $q \Rightarrow p$ , 则 $p \neq q$  充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

### §02. 函数

### 16. 函数的单调性

(1) 设 $x_1, x_2 \in [a,b], x_1 \neq x_2$ 那么

$$(x_1-x_2)[f(x_1)-f(x_2)] > 0 \Leftrightarrow \frac{f(x_1)-f(x_2)}{x_1-x_2} > 0 \Leftrightarrow f(x)$$
 在  $[a,b]$  上是增函数:

$$(x_1-x_2)[f(x_1)-f(x_2)] < 0 \Leftrightarrow \frac{f(x_1)-f(x_2)}{x_1-x_2} < 0 \Leftrightarrow f(x)$$
 在  $[a,b]$  上是減函数.

(2) 函数单调性的充分条件:

设函数 y = f(x) 在某个区间内可导,

如果 f'(x) > 0,则 f(x) 在该区间内为单调递增函数;

如果 f'(x) < 0,则 f(x) 在该区间内为单调递减函数.

(3) 函数单调性的必要条件:

设函数 y = f(x) 在某个区间内可导,

如果 f(x) 在该区间内为单调递增函数,则在该区间内  $f'(x) \ge 0$ ;

第 3 页



如果 f(x) 在该区间内为单调递减函数,则在该区间内  $f'(x) \leq 0$ .

17. 如果函数 f(x) 和 g(x) 都是减函数,则在公共定义域内,和函数 f(x)+g(x) 也是减函数;

如果函数 y = f(u) 和 u = g(x) 在其对应的定义域上都是减函数,则复合函数 y = f[g(x)] 是增函数.

18. 奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称; 反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数; 如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

- 19. 若函数 y = f(x) 是偶函数,则 f(x+a) = f(-x-a); 若函数 y = f(x+a) 是偶函数,则 f(x+a) = f(-x+a).
- 20. 高考常考的奇函数
  - (1)幂函数及其复合型

$$(1)y = ax + \frac{b}{x}(ab \neq 0)$$

- ② $y=x^{\alpha}$ , ( $\alpha$  为奇数) 考察较多的有  $y=x,y=x^{3}$
- $(3)y = \sin x$
- (2)三角函数型
- $(4)y = \tan x$

$$\textcircled{5}y = x - \frac{1}{x}$$

(3)指数函数及其复合型

$$(6)y = e^x - e^{-x}$$

$$7y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
或  $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ 或  $y = (e^x - e^{-x}) (e^x + e^{-x})$ 

$$8y = \frac{1 - e^x}{1 + e^x}$$
  $\not \equiv y = \frac{e^x - 1}{1 + e^x}$   $\not \equiv y = \frac{1 + e^x}{1 - e^x}$ 

(4)对数函数及其复合型

(9)
$$y = \lg(\sqrt{1+x^2} - x)$$
 或  $y = \lg(\sqrt{1+x^2} + x)$ 

①
$$y = \lg \frac{1-x}{1+x}$$
 或  $y = \lg \frac{1+x}{1-x}$  或  $y = \lg \frac{x-1}{x+1}$  或  $y = \lg \frac{x+1}{x-1}$ 

$$(5)f(x) - f(-x)$$

21. 高考常考的偶函数

$$(1)y = x^2$$

$$2y = x + \frac{1}{x}$$

$$(3)y = e^x + e^{-x}$$

22. 对于函数 y = f(x) ( $x \in R$ ),

若 f(x+a) = f(b-x) 恒成立, 则函数 f(x) 的对称轴是函数  $x = \frac{a+b}{2}$ ; 若两个函数 y = f(x+a) 与 y = f(b-x) 的图象关于直线  $x = \frac{a+b}{2}$  对称 . 若 f(x) = -f(-x+a), 则函数 y = f(x) 的图象关于点  $(\frac{a}{2}, 0)$  对称; 若 f(x) = -f(x+a), 则函数 y = f(x) 为周期为 2a 的周期函数 .

 多项式函数 P(x) 是偶函数  $\Leftrightarrow P(x)$  的奇次项 (即偶数项)的系数全为零.

- 24. 函数 y = f(x) 的图象的对称性
  - (1) 函数 y = f(x) 的图象关于直线 x = a 对称
  - $\Leftrightarrow f(a+x) = f(a-x)$
  - $\Leftrightarrow f(2a-x) = f(x).$
  - (2) 函数 y = f(x) 的图象关于直线  $x = \frac{a+b}{2}$  对称
  - $\Leftrightarrow f(a+mx) = f(b-mx)$
  - $\Leftrightarrow f(a+b-mx) = f(mx).$
- 25. 两个函数图象的对称性
  - (1) 函数 y = f(x) 与函数 y = f(-x) 的图象关于直线 x = 0 (即 y 轴) 对称.
  - (2) 函数 y = f(mx a) 与函数 y = f(b mx) 的图象关于直线  $x = \frac{a + b}{2m}$  对
  - (3) 函数 y = f(x) 和  $y = f^{-1}(x)$  的图象关于直线 y = x 对称.
- 26. 若将函数 y = f(x) 的图象先右移 a 再上移 b 个单位,得到函数 y = f(x a) + b 的图象;

若将曲线 f(x,y) = 0 的图象先右移 a 再上移 b 个单位,得到曲线 f(x-a,y-b) = 0 的图象.

27. 互为反函数的两个函数的关系

$$f(a) = b \Leftrightarrow f^{-1}(b) = a.$$

- 28. 若函数 y = f(kx + b) 存在反函数,则其反函数为  $y = \frac{1}{k}[f^{-1}(x) b]$ ,并不是  $y = [f^{-1}(kx + b)]$ ,而函数  $y = [f^{-1}(kx + b)]$ 是  $y = \frac{1}{k}[f(x) b]$ 的反函数.
- 29. 几个常见的函数方程
  - (1) 正比例函数 f(x) = cx, f(x+y) = f(x) + f(y), f(1) = c.
  - (2) 指数函数  $f(x) = a^x$ , f(x+y) = f(x)f(y),  $f(1) = a \neq 0$ .
  - (3) 对数函数 $f(x) = \log_a x, f(xy) = f(x) + f(y), f(a) = 1 (a > 0, a \neq 1).$
  - (4) 幂函数  $f(x) = x^{\alpha}, f(xy) = f(x)f(y), f'(1) = \alpha$ .
  - (5) 余弦函数  $f(x) = \cos x$ , 正弦函数  $g(x) = \sin x$ ,

$$f(x-y) = f(x)f(y) + g(x)g(y),$$

$$f(x+y) + f(x-y) = 2f(x)f(y),$$

$$g(x-y) = g(x)f(y) - f(x)g(y)$$
,  $f(0) = 1$ ,  $\lim_{x \to 0} \frac{g(x)}{x} = 1$ .

- 30. 几个函数方程的周期 (约定a>0)
  - (1) 若 f(x) = f(x+a),则 f(x) 的周期 T = a;

$$(2)f(x) + f(x+a) = 0$$
,

或
$$f(x+a) = \frac{1}{f(x)}(f(x) \neq 0)$$
,或 $f(x+a) = -\frac{1}{f(x)}(f(x) \neq 0)$ ,

或 
$$\frac{1}{2} + \sqrt{f(x) - f^2(x)} = f(x+a), (f(x) \in [0,1]), 则 f(x)$$
的周期  $T = 2a$ 

$$(3)f(x) = 1 - \frac{1}{f(x+a)}(f(x) \neq 0)$$
,则  $f(x)$  的周期  $T = 3a$ ;

(2a),则 f(x)的周期 T=4a;





(5)f(x) + f(x+a) + f(x+2a)f(x+3a) + f(x+4a) = f(x)f(x+a)f(x+2a)f(x+3a)f(x+4a),则 f(x) 的周期 T=5a;

(6)f(x+a) = f(x) - f(x+a),则 f(x) 的周期 T = 6a.

31. 分数指数幂

$$(1)a^{\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}(a > 0, m, n \in N^*, \perp n > 1).$$

$$(2)a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}}(a > 0, m, n \in N^*, \perp n > 1).$$

- 32. 根式的性质
  - $(1)(\sqrt[n]{a})^n = a.$
  - (2) 当 n 为奇数时,  $\sqrt[n]{a^n} = a$ ;

当 n 为偶数时, $\sqrt[n]{a^n} = |a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$ .

- 33. 有理指数幂的运算性质
  - $(1)a^r \cdot a^s = a^{r+s} (a > 0, r, s \in Q).$
  - $(2) (a^r)^s = a^{rs} (a > 0, r, s \in Q).$
  - $(3) (ab)^r = a^r b^r (a > 0, b > 0, r \in Q).$

- 34. 指数式与对数式的互化式  $\log_a N = b \Leftrightarrow a^b = N(a > 0, a \neq 1, N > 0)$
- 35. 对数的换底公式

$$\log_a N = \frac{\log_m N}{\log_m a} \ (a > 0, \ \text{$\perp$} \ a \neq 1, m > 0, \ \text{$\perp$} \ m \neq 1, N > 0).$$

推论  $\log_{a^m} b^n = \frac{n}{m} \log_a b(a > 0, \perp a > 1, m, n > 0, \perp m \neq 1, n \neq 1, N > 0).$ 

36. 对数的四则运算法则

若a>0, $a\neq 1$ ,M>0,N>0,则

- $(1)\log_a(MN) = \log_a M + \log_a N;$
- $(2)\log_a \frac{M}{N} = \log_a M \log_a N;$
- $(3)\log_a M^n = n\log_a M(n \in R).$
- 37. 设函数  $f(x) = \log_m(ax^2 + bx + c)$   $(a \neq 0)$ , 记  $\Delta = b^2 4ac$ . 若 f(x) 的定义域为 R, 则 a > 0,且  $\Delta < 0$ ; 若 f(x) 的值域为 R, 则 a > 0,且  $\Delta \ge 0$ . 对于 a = 0 的情形,需要单独检验.
- 38. 对数换底不等式及其推广

若  $a > 0, b > 0, x > 0, x \neq \frac{1}{a}$ , 则函数  $y = \log_{ax}(bx)$ 

- (1) 当 a > b 时, 在  $(0, \frac{1}{a})$  和  $(\frac{1}{a}, +\infty)$  上  $y = \log_{ax}(bx)$  为增函数.
- (2) 当 a < b 时, 在  $(0, \frac{1}{a})$  和  $(\frac{1}{a}, +\infty)$  上  $y = \log_{ax}(bx)$  为减函数.

推论:设n > m > 1, p > 0, a > 0, 且 $a \ne 1$ ,则

- $(1)\log_{m+p}(n+p) < \log_m n.$
- $(2)\log_a m \cdot \log_a n < \log_a^2 \frac{m+n}{2}.$

### §03. 数列



### 课堂笔记

39. 平均增长率的问题

如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,有 $y = N(1+p)^x$ .

40. 数列的同项公式与前 n 项的和的关系

$$a_n = \begin{cases} s_1, & n = 1 \\ s_n - s_{n-1}, & n \ge 2 \end{cases}$$
 (数列  $\{a_n\}$  的前  $n$  项的和为  $s_n = a_1 + a_2 + \dots + a_n$ ).

41. 等差数列的通项公式

$$a_n = a_1 + (n-1)d = dn + a_1 - d(n \in N^*);$$

其前n项和公式为:

$$s_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + (a_1 - \frac{1}{2}d)n.$$

42. 等比数列的通项公式

$$a_n \! = a_1 q^{n-1} \! = \! rac{a_1}{q} \! \cdot \! q^n (n \in N^*)$$
 ;

其前n项的和公式为:

$$s_n = \begin{cases} rac{a_1(1-q^n)}{1-q}, & q 
eq 1 \\ na_1, & q = 1 \end{cases}$$
 $\vec{\mathbb{R}} s_n = \begin{cases} rac{a_1 - a_n q}{1-q}, & q 
eq 1 \\ na_1, & q = 1 \end{cases}.$ 

43. 等比差数列  $\{a_n\}$ :  $a_{n+1} = qa_n + d$ ,  $a_1 = b(q \neq 0)$  的通项公式为

$$a_n = egin{cases} b + (n-1)d, & q = 1 \ rac{bq^n + (d-b)q^{n-1} - d}{q-1}, & q 
eq 1 \end{cases};$$

其前n项和公式为:

$$s_n = \begin{cases} nb + n(n-1)d, & q = 1\\ (b - \frac{d}{1-q})\frac{1-q^n}{q-1} + \frac{d}{1-q}n, & q \neq 1 \end{cases}.$$

44. 分期付款(按揭贷款)

每次还款 
$$x = \frac{ab(1+b)^n}{(1+b)^n-1}$$
 元 (贷款  $a$  元, $n$  次还清, 每期利率为  $b$ ).

### §04. 三角函数

- 45. 常见三角不等式
  - (1) 若 $x \in (0, \frac{\pi}{2})$ ,则 $\sin x < x < \tan x$ .
  - (2) 若 $x \in (0, \frac{\pi}{2})$ ,则 $1 < \sin x + \cos x \le \sqrt{2}$ .
  - $(3)|\sin x| + |\cos x| \ge 1.$
- 46. 同角三角函数的基本关系式  $\sin^2\theta + \cos^2\theta = 1$ ,



$$\tan \theta = \frac{\sin \theta}{\cos \theta},$$
$$\tan \theta \cdot \cot \theta = 1.$$

### 47. 诱导公式

| 诱导公式          | _                         | =              | 三              | 四              | 五.                       | 六                        |
|---------------|---------------------------|----------------|----------------|----------------|--------------------------|--------------------------|
|               | $2k\pi + \alpha(k \in Z)$ | $\pi + \alpha$ | $-\alpha$      | $\pi - \alpha$ | $\frac{\pi}{2} - \alpha$ | $\frac{\pi}{2} + \alpha$ |
| $\sin \alpha$ | $\sin \alpha$             | $-\sin \alpha$ | $-\sin \alpha$ | $\sin \alpha$  | $\cos \alpha$            | $\cos \alpha$            |
| $\cos \alpha$ | $\cos \alpha$             | $-\cos \alpha$ | $\cos \alpha$  | $-\cos \alpha$ | $\sin \alpha$            | $-\sin \alpha$           |
| $\tan \alpha$ | $\tan \alpha$             | $\tan a$       | $-\tan \alpha$ | $-\tan \alpha$ | $\cot \alpha$            | $-\cot \alpha$           |

备注: 
$$\cot \alpha = \frac{1}{\tan \alpha}$$

如下为具体形式的公式:

公式一:

$$\sin(2k\pi + \alpha) = \sin\alpha$$

$$\cos(2k\pi + \alpha) = \cos\alpha$$

$$\tan(2k\pi + \alpha) = \tan\alpha$$

公式二:

$$\sin(\pi + \alpha) = -\sin\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$\tan(\pi + \alpha) = \tan\alpha$$

$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$\tan(-\alpha) = -\tan\alpha$$

公式四:

$$\sin(\pi - \alpha) = \sin\alpha$$

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$\tan(\pi - \alpha) = -\tan\alpha$$

公式五:

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$$

公式六:

$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

$$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$$

48. 正弦、余弦的诱导公式(奇变偶不变,符号看象限)

$$\sin(\frac{n\pi}{2} + \alpha) = \begin{cases} (-1)^{\frac{n}{2}} \sin \alpha, \\ (-1)^{\frac{n-1}{2}} \cos \alpha, \end{cases}$$

$$\cos(\frac{n\pi}{2} + a) = \begin{cases} (-1)^{\frac{n}{2}}\cos\alpha, \\ (-1)^{\frac{n+1}{2}}\sin\alpha, \end{cases}$$



### 课堂笔记

49. 和角与差角公式

$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta;$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta;$$

$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$$

$$\sin(\alpha + \beta)\sin(\alpha - \beta) = \sin^2\alpha - \sin^2\beta$$
 (平方正弦公式);

$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2\alpha - \sin^2\beta$$
.

50. 辅助角公式

$$(1)a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\sin(\alpha + \phi)$$
 ( $a \neq 0$ ), (辅助角  $\phi$  所在象限由点

$$(a,b)$$
的象限决定, $\tan \phi = \frac{b}{a}$ ).

$$(2)a\sin\alpha + b\cos\alpha = \sqrt{a^2 + b^2}\cos(\alpha - \phi)(b \neq 0)$$
, (辅助角  $\phi$  所在象限由点

$$(a,b)$$
的象限决定, $\tan \phi = \frac{a}{b}$ ).

51. 二倍角公式

$$\sin 2\alpha = 2\sin \alpha \cos \alpha.$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha.$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}.$$

52. 半角公式:

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}$$

53. 升幂公式:

$$1 + \cos\alpha = 2\cos^2\frac{\alpha}{2}$$

$$1 - \cos\alpha = 2\sin^2\frac{\alpha}{2}$$

54. 降幂公式:

$$\sin^2\!\alpha = \frac{1 - \cos 2\alpha}{2}$$

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

55. 三倍角公式 (了解)

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta = 4\sin \theta \sin(\frac{\pi}{3} - \theta)\sin(\frac{\pi}{3} + \theta).$$

$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta = 4\cos\theta\cos(\frac{\pi}{3} - \theta)\cos(\frac{\pi}{3} + \theta).$$

$$\tan 3\theta = \frac{3 \tan \theta - \tan^3 \! \theta}{1 - 3 \tan^2 \! \theta} = \tan \theta \tan (\frac{\pi}{3} - \theta) \tan (\frac{\pi}{3} + \theta).$$

56. 三角函数的单调区间:

$$y = \sin x$$
 的 递 增 区 间 是  $\left[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right] (k \in \mathbb{Z})$ ,递 减 区 间 是  $\left[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right] (k \in \mathbb{Z})$ ;



 $y = \cos x$  的递增区间是  $[2k\pi - \pi, 2k\pi](k \in \mathbb{Z})$ ,递减区间是  $[2k\pi, 2k\pi + \pi](k \in \mathbb{Z})$ ;

 $y = \tan x$  的递增区间是  $\left(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right) (k \in \mathbb{Z})$ 

- 57. 三角函数的周期公式
  - (1) 函数  $y = \sin(\omega x + \phi)$ ,  $x \in R$  及函数  $y = \cos(\omega x + \phi)$ ,  $x \in R(A, \omega, \phi)$  为常数,且  $A \neq 0$ ,  $\omega > 0$ ) 的周期  $T = \frac{2\pi}{\omega}$ ;
  - (2) 函数  $y = \tan(\omega x + \phi)$ ,  $x \neq k\pi + \frac{\pi}{2}$ ,  $k \in Z(A, \omega, \phi)$  为常数,且  $A \neq 0$ ,  $\omega > 0$ ) 的周期  $T = \frac{\pi}{\omega}$ .
- 58. 函数  $y = A\sin(\omega x + \phi) + B$  函数  $y = A\sin(\omega x + \phi) + B$  (其中 A > 0,  $\omega > 0$ )的最大值是 A + B,最小值是 B A,周期是  $T = \frac{2\pi}{\omega}$ ,频率是  $f = \frac{\omega}{2\pi}$ ,相位是  $\omega x + \phi$ ,初相是  $\phi$ ;其图象的对称轴是直线  $\omega x + \phi = k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$ ,凡是该图象与直线 y = B的交点都是该图象的对称中心
- 59. 正弦定理  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R(R \, \text{为} \, \triangle ABC \, \text{的外接圆的半径} \, ).$
- $\frac{d}{\sin A} = \frac{d}{\sin B} = \frac{c}{\sin C} = 2R(R \, \text{为} \, \Delta ABC \, \text{的外接圆的}$  60. 余弦定理

$$a^{2} = b^{2} + c^{2} - 2bc\cos A;$$

$$b^{2} = c^{2} + a^{2} - 2ca\cos B;$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos C.$$

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$\cos B = \frac{c^{2} + a^{2} - b^{2}}{2ca}$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

61. 面积定理

$$(1)S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c(h_a, h_b, h_c 分别表示 a, b, c 边上的高).$$

$$(2)S = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B.$$

$$(3)S_{\!\triangle\!O\!A\!B}\!=\!\frac{1}{2}\sqrt{(|\overrightarrow{O\!A}|\cdot|\overrightarrow{O\!B}|)^2\!-(\overrightarrow{O\!A}\cdot\overrightarrow{O\!B})^2}.$$

62. 三角形内角和定理

在 
$$\triangle ABC$$
 中,有  $A+B+C=\pi$ 

$$\Leftrightarrow C = \pi - (A + B)$$

$$\Leftrightarrow \frac{C}{2} = \frac{\pi}{2} - \frac{A+B}{2}$$

$$\Leftrightarrow$$
 2*C* = 2 $\pi$  – 2(*A* + *B*).

在  $\triangle ABC$  中:

$$\sin(A+B) = \sin C$$
,

$$\cos(A+B) = -\cos C$$
,

$$tg(A+B) = -tgC$$

$$\sin\frac{A+B}{2} = \cos\frac{C}{2}$$
,

$$\cos\!\frac{A+B}{2}\!=\!\sin\!\frac{C}{2}\ ,$$



$$\sin x = a \Leftrightarrow x = k\pi + (-1)^k \arcsin a (k \in \mathbb{Z}, |a| \le 1).$$

$$\cos x = a \Leftrightarrow x = 2k\pi \pm \arccos(k \in \mathbb{Z}, |a| \leq 1).$$

$$\tan x = a \Rightarrow x = k\pi + \arctan a (k \in \mathbb{Z}, a \in \mathbb{R}).$$

特别地,有

$$\sin \alpha = \sin \beta \Leftrightarrow \alpha = k\pi + (-1)^k \beta(k \in \mathbb{Z}).$$

$$\cos \alpha = \cos \beta \Leftrightarrow \alpha = 2k\pi \pm \beta (k \in \mathbb{Z}).$$

$$\tan \alpha = \tan \beta \Rightarrow \alpha = k\pi + \beta (k \in \mathbb{Z}).$$

64. 最简单的三角不等式及其解集 (了解)

$$\sin x > a(|a| \le 1) \Leftrightarrow x \in (2k\pi + \arcsin a, 2k\pi + \pi - \arcsin a), k \in \mathbb{Z}.$$

$$\sin x < a(|a| \le 1) \Leftrightarrow x \in (2k\pi - \pi - \arcsin a, 2k\pi + \arcsin a), k \in \mathbb{Z}.$$

$$\cos x > a(|a| \le 1) \Leftrightarrow x \in (2k\pi - \arccos a, 2k\pi + \arccos a), k \in \mathbb{Z}.$$

$$\cos x < a(|a| \le 1) \Leftrightarrow x \in (2k\pi + \arccos a, 2k\pi + 2\pi - \arccos a), k \in \mathbb{Z}.$$

$$\tan x > a(a \in R) \Rightarrow x \in (k\pi + \arctan a, k\pi + \frac{\pi}{2}), k \in \mathbb{Z}.$$

$$\tan x < a(a \in R) \Rightarrow x \in (k\pi - \frac{\pi}{2}, k\pi + \arctan a), k \in Z.$$

### §05. 平面向量

65. 实数与向量的积的运算律

设λ、μ为实数,那么

- (1) 结合律:  $\lambda(\mu \vec{a}) = (\lambda \mu)\vec{a}$ ;
- (2) 第一分配律:  $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$ ;
- (3) 第二分配律:  $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$ .

66. 向量的数量积的运算律:

- (1)  $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$  (交換律);
- (2)  $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}) = \lambda \vec{a} \cdot \vec{b} = \vec{a} \cdot (\lambda \vec{b});$
- (3)  $(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$ .

67. 平面向量基本定理

如果  $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$  是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数  $\lambda_1$ 、 $\lambda_2$ ,

使得
$$\vec{a} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2}$$
.

注:此时,不共线的向量 $\overrightarrow{e_1}$ 、 $\overrightarrow{e_2}$ 叫做表示这一平面内所有向量的一组基底.

68. 向量平行的坐标表示

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), \exists \vec{b} \neq \vec{0}, \forall \vec{a} / (\vec{b} \neq \vec{0}) \Leftrightarrow x_1 y_2 - x_2 y_1 = 0.$$

69. 常见的向量等式与不等式:

$$\vec{a}$$
 与  $\vec{b}$  的数量积 (或内积) $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ .

$$(\vec{a} \pm \vec{b})^2 = |\vec{a} \pm \vec{b}|^2 = \vec{a}^2 \pm 2\vec{a} \cdot \vec{b} + \vec{b}^2 = \vec{a}^2 \pm 2\vec{a} \cdot \vec{b} + \vec{b}^2;$$

$$\vec{a}^2 - \vec{b}^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$$





$$(\vec{a} + \vec{b})^2 + (\vec{a} - \vec{b})^2 = 2(|\vec{a}|^2 + |\vec{b}|^2);$$

$$\vec{a}^2 + \vec{b}^2 = 0 \Leftrightarrow \vec{a} = \vec{b} = \vec{0};$$

 $||\vec{a}| - |\vec{b}|| \le |\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$ ,当且仅当 $\vec{a}$ 与 $\vec{b}$ 同向共线时右边等号成立, $\vec{a}$ 与 $\vec{b}$ 反向共线时左边等号成立。

$$-|\vec{a}|\cdot|\vec{b}| \leqslant \vec{a}\cdot\vec{b} \leqslant |\vec{a}|\cdot|\vec{b}|;$$

极化恒等式: 
$$(\vec{a} + \vec{b})^2 - (\vec{a} - \vec{b})^2$$
;

70. 数量积  $\vec{a} \cdot \vec{b}$  的几何意义

数量积 $\vec{a} \cdot \vec{b}$ 等于 $\vec{a}$ 的长度|a|与 $\vec{b}$ 在 $\vec{a}$ 的方向上的投影 $|\vec{b}|\cos\theta$ 的乘积.

71. 平面向量的坐标运算

(1) 
$$\ \ \vec{y} \ \vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), \ \ \vec{y} \ \vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2).$$

(2) 设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), 则 \vec{a} - \vec{b} = (x_1 - x_2, y_1 - y_2).$$

(3) 设 
$$A(x_1, y_1)$$
,  $B(x_2, y_2)$ , 则  $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, y_2 - y_1)$ .

$$(4)$$
 设 $\vec{a} = (x, y), \lambda \in R$ , 则  $\lambda \vec{a} = (\lambda x, \lambda y)$ .

(5) 
$$\ \ \vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), \ \ \vec{a} \cdot \vec{b} = (x_1x_2 + y_1y_2).$$

72. 两向量的夹角公式

$$\cos heta = rac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}} (\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2)).$$

73. 平面两点间的距离公式

$$d_{A,B} = |\overrightarrow{AB}| = \sqrt{\overrightarrow{AB} \cdot \overrightarrow{AB}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} (A(x_1, y_1), B(x_2, y_2)).$$

74. 向量的平行与垂直

设
$$\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), 且 \vec{a} \neq \vec{0}, 则$$

$$(1)\vec{a}/\!/\vec{b} \Leftrightarrow \vec{b} = \lambda \vec{a} \Leftrightarrow x_1y_2 - x_2y_1 = 0.$$

$$(2)\vec{a} \perp \vec{b}(\vec{a} \neq \vec{0}) \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow x_1 x_2 + y_1 y_2 = 0.$$

75. 线段的定比分公式

设  $P_1(x_1,y_1)$ ,  $P_2(x_2,y_2)$ , P(x,y) 是线段  $P_1P_2$  的分点, $\lambda$  是实数,且  $\overrightarrow{P_1P} = \lambda \overrightarrow{PP_2}$ ,则

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}$$
 $y = \frac{y_1 + \lambda y_2}{1 + \lambda}$ 

$$\Leftrightarrow \overrightarrow{OP} = \frac{\overrightarrow{OP_1} + \lambda \overrightarrow{OP_2}}{1 + \lambda}$$

$$\Leftrightarrow \overrightarrow{OP} = t\overrightarrow{OP_1} + (1-t)\overrightarrow{OP_2}(t = \frac{1}{1+\lambda}).$$

76. 三角形的重心坐标公式

 $\triangle ABC$  三个顶点的坐标分别为  $A(x_1,y_1)$ 、 $B(x_2,y_2)$ 、 $C(x_3,y_3)$ ,则  $\triangle ABC$  的重心的坐标是  $G(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})$ .

77. 点的平移公式

$$\begin{cases} x^{'} = x + h \\ y^{'} = y + k \end{cases} \Leftrightarrow \begin{cases} x = x^{'} - h \\ y = y^{'} - k \end{cases} \Leftrightarrow \overrightarrow{OP}^{'} = \overrightarrow{OP} + \overrightarrow{PP}^{'} \ .$$

注:图形F上的任意一点P(x,y)在平移后图形F'上的对应点为P'(x',y'),且 $\overrightarrow{PP'}$ 的坐标为(h.k).

#### 78."按向量平移"的几个结论

- (1) 点 P(x,y) 按向量  $\vec{a} = (h,k)$  平移后得到点 P'(x+h,y+k).
- (2) 函数 y = f(x) 的图象 C 按向量  $\vec{a} = (h,k)$  平移后得到图象 C', 则 C' 的函数解析式为 y = f(x-h) + k.
- (3) 图象 C' 按向量  $\vec{a} = (h,k)$  平移后得到图象 C, 若 C 的解析式 y = f(x), 则 C' 的函数解析式为 y = f(x+h) k.
- (4) 曲线 C: f(x,y) = 0 按向量  $\vec{a} = (h,k)$  平移后得到图象 C', 则 C' 的方程为 f(x-h,y-k) = 0.
- (5) 向量 $\overrightarrow{m} = (x,y)$ 按向量 $\overrightarrow{a} = (h,k)$  平移后得到的向量仍然为 $\overrightarrow{m} = (x,y)$ .

#### 79. 三角形五"心"向量形式

设O为 $\triangle ABC$ 所在平面上一点,角A,B,C所对边长分别为a,b,c,则

- (1)O 为  $\triangle ABC$  的外心  $\Leftrightarrow \overrightarrow{OA}^2 = \overrightarrow{OB}^2 = \overrightarrow{OC}^2$ .
- (2)O为  $\triangle ABC$  的重心  $\Leftrightarrow \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}$ .
- (3)O 为  $\triangle ABC$  的垂心  $\Leftrightarrow \overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OC} \cdot \overrightarrow{OA}$ .
- (4)O 为  $\triangle ABC$  的内心  $\Leftrightarrow a\overrightarrow{OA} + b\overrightarrow{OB} + c\overrightarrow{OC} = \overrightarrow{0}$ .
- (5)O 为  $\triangle ABC$  的  $\angle A$  的旁心  $\Leftrightarrow a\overrightarrow{OA} = b\overrightarrow{OB} + c\overrightarrow{OC}$ .

在三角形中,"五心"是一组特殊的点,在近几年高考试题中,总会出现一些新颖别致的问题,不仅考查向量等知识点,而且考查考生分析问题、解决问题的能力.

#### O为 $\triangle ABC$ 的外心:

- 三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.
- O为  $\triangle ABC$  的重心: 三角形三条中线的交点叫重心, 它到三角形顶点的距离与到对边中线距离之比为2:1.
- O为  $\triangle ABC$  的垂心: 三角形三条高线的交点叫垂心. 它与顶点的连线垂直于对边.
- O为  $\triangle ABC$  的内心: 三角形三边内角平分线的交点叫内心. 内心就是三角形内切圆的圆心, 它到三角形三边的距离相等.
- ○为△ABC的∠A的旁心:旁心是三角形旁切圆的圆心,它是三角形一个内角平分线和其他两个内角的外角平分线的交点.显然,任意一个三角形都存在三个旁切圆、三个旁心,旁心一定在三角形外.直角三角形斜边上的旁切圆的半径等于三角形周长的一半.旁心到三角形三边的距离相等.

### §06. 不等式

#### 80. 常用不等式:

- $(1)a,b \in R \Rightarrow a^2 + b^2 \ge 2ab$ ( 当且仅当 a = b 时取 "="号).
- $(2)a,b \in R^+ \Rightarrow \frac{a+b}{2} \geqslant \sqrt{ab}$  (当且仅当a=b时取 "="号).
- $(3)a^3 + b^3 + c^3 \ge 3abc(a > 0, b > 0, c > 0).$
- (4) 柯西不等式
- $(a^2+b^2)(c^2+d^2) \geqslant (ac+bd)^2, a,b,c,d \in R$ . 当且仅当 ad=bc 时,等号成立.
- $(5)|a| |b| \le |a + b| \le |a| + |b|.$





#### 81. 极值定理

已知x,y都是正数,则有

- (1) 若积 xy 是定值 p,则当 x=y 时和 x+y 有最小值  $2\sqrt{p}$ ;
- (2) 若和x+y是定值s,则当x=y时积xy有最大值 $\frac{1}{4}s^2$ .

推广 己知  $x,y \in R$ ,则有  $(x+y)^2 = (x-y)^2 + 2xy$ 

- ①若积 xy 是定值, 则当 |x-y| 最大时, |x+y| 最大; 当 |x-y| 最小时, |x+y| 最小.
- ②若和 |x+y| 是定值, 则当 |x-y| 最大时, |xy| 最小; 当 |x-y| 最小时, |xy| 最大.
- 82. 一元二次不等式  $ax^2 + bx + c > 0$ ( 或 < 0) ( $a \ne 0$ ,  $\Delta = b^2 4ac > 0$ ), 如果 a 与  $ax^2 + bx + c$  同号,则其解集在两根之外;如果 a 与  $ax^2 + bx + c$  异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.

83. 含有绝对值的不等式

当a > 0时,有

$$|x| < a \Leftrightarrow x^2 < a^2 \Leftrightarrow -a < x < a$$
.

$$|x| > a \Leftrightarrow x^2 > a^2 \Leftrightarrow x > a \stackrel{\text{dis}}{\otimes} x < -a.$$

84. 无理不等式

$$(1)\sqrt{f(x)} > \sqrt{g(x)} \Leftrightarrow \begin{cases} f(x) \geqslant 0 \\ g(x) \geqslant 0 \\ f(x) > g(x) \end{cases}$$

$$(2)\sqrt{f(x)} > g(x) \Leftrightarrow \begin{cases} f(x) \geqslant 0 \\ g(x) \geqslant 0 \\ f(x) > [g(x)]^2 \end{cases} \xrightarrow{\text{PL}} \begin{cases} f(x) \geqslant 0 \\ g(x) < 0 \end{cases}$$

$$(3)\sqrt{f(x)} < g(x) \Leftrightarrow \begin{cases} f(x) \geqslant 0 \\ g(x) > 0 \\ f(x) < [g(x)]^2 \end{cases}$$

85. 指数不等式与对数不等式

(1) 当 a > 1 时,

$$a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) > g(x);$$

$$\log_a f(x) > \log_a g(x) \Leftrightarrow \begin{cases} f(x) > 0 \\ g(x) > 0 \\ f(x) > g(x) \end{cases}.$$

(2) 当0 < a < 1时,

$$a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) < g(x);$$

$$\log_{a} f(x) > \log_{a} g(x) \Leftrightarrow \begin{cases} f(x) > 0 \\ g(x) > 0 \\ f(x) < g(x) \end{cases}$$

86. 比例的几个性质

比例基本性质:  $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$ ;

反比定理: 
$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{b}{a} = \frac{d}{c}$$

更比定理: 
$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a}{c} = \frac{b}{d}$$
;

合比定理; 
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a+b}{b} = \frac{c+d}{d}$$

分比定理: 
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a-b}{b} = \frac{c-d}{d}$$
;

合分比定理: 
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d}$$

合比定理: 
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a-b}{a+b} = \frac{c-d}{c+d}$$

等比定理:若
$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \dots = \frac{a_n}{b_n}$$
,  $b_1 + b_2 + b_3 + \dots + b_n \neq 0$ ,

$$\text{III} \ \frac{a_1 + a_2 + a_3 + \dots + a_n}{b_1 + b_2 + b_3 + \dots + b_n} = \frac{a_1}{b_1}$$

### §07. 直线和圆的方程

### 87. 斜率公式

$$k = \frac{y_2 - y_1}{x_2 - x_1} (P_1(x_1, y_1), P_2(x_2, y_2)) (x_1 \neq x_2)$$

#### 88. 直线的五种方程

- (1) 点斜式  $y y_1 = k(x x_1)$  (直线 l 过点  $P_1(x_1, y_1)$ , 且斜率为 k).
- (2) 斜截式 y = kx + b(b) 为直线  $l \in y$  轴上的截距).

(3) 两点式 
$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} (y_1 \neq y_2) (P_1(x_1,y_1), P_2(x_2,y_2) (x_1 \neq x_2)).$$

(4) 截距式 
$$\frac{x}{a} + \frac{y}{b} = 1(a, b)$$
 为直线的横、纵截距, $a, b \neq 0$ 

(5) 一般式 
$$Ax + By + C = 0$$
(其中  $A \setminus B$  不同时为 0).

### 89. 两条直线的平行和垂直

- (1)  $l_1 || l_2 \Leftrightarrow k_1 = k_2, b_1 \neq b_2;$
- (2) 若  $l_1$ :  $A_1x + B_1y + C_1 = 0$ ,  $l_2$ :  $A_2x + B_2y + C_2 = 0$ , 且  $A_1$ 、 $A_2$ 、 $B_1$ 、 $B_2$  都不为零

$$(1) l_1 | l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2};$$

② 
$$l_1 \perp l_2 \Leftrightarrow A_1 A_2 + B_1 B_2 = 0$$
;

### 90. 夹角公式

(1) 
$$\tan \alpha = \left| \frac{k_2 - k_1}{1 + k_2 k_1} \right|$$
.

$$(l_1: y = k_1x + b_1, l_2: y = k_2x + b_2, k_1k_2 \neq -1)$$

$$(2)\tan\alpha = \left| \frac{A_1 B_2 - A_2 B_1}{A_1 A_2 + B_1 B_2} \right|.$$

$$(l_1: A_1x + B_1y + C_1 = 0, l_2: A_2x + B_2y + C_2 = 0, A_1A_2 + B_1B_2 \neq 0).$$

直线  $l_1 \perp l_2$ 时,直线  $l_1$ 与  $l_2$ 的夹角是  $\frac{\pi}{2}$ .

### 91. $l_1$ 到 $l_2$ 的角公式

$$(1)\tan\alpha = \frac{k_2 - k_1}{1 + k_2 k_1}.$$





 $(l_1: y = k_1x + b_1, l_2: y = k_2x + b_2, k_1k_2 \neq -1)$ 

(2)
$$\tan \alpha = \frac{A_1 B_2 - A_2 B_1}{A_1 A_2 + B_1 B_2}.$$

 $(l_1: A_1x + B_1y + C_1 = 0, l_2: A_2x + B_2y + C_2 = 0, A_1A_2 + B_1B_2 \neq 0).$ 

直线  $l_1 \perp l_2$ 时,直线  $l_1$ 到  $l_2$ 的角是  $\frac{\pi}{2}$ .

### 92. 四种常用直线系方程

- (1) 定点直线系方程: 经过定点  $P_0(x_0, y_0)$  的直线系方程为  $y y_0 = k(x x_0)$  (除直线  $x = x_0$ ), 其中 k 是待定的系数; 经过定点  $P_0(x_0, y_0)$  的直线系方程为  $A(x x_0) + B(y y_0) = 0$ , 其中 A, B 是待定的系数.
- (2) 共点直线系方程:经过两直线  $l_1: A_1x + B_1y + C_1 = 0$ , $l_2: A_2x + B_2y + C_2 = 0$  的 交 点 的 直 线 系 方 程 为  $(A_1x + B_1y + C_1) + \lambda(A_2x + B_2y + C_2) = 0$  (除  $l_2$ ),其中  $\lambda$  是待定的系数.
- (3) 平行直线系方程: 直线 y = kx + b 中当斜率 k 一定而 b 变动时,表示平行直线系方程. 与直线 Ax + By + C = 0 平行的直线系方程是  $Ax + By + \lambda = 0 (\lambda \neq 0)$ , $\lambda$  是参变量.
- (4) 垂直直线系方程: 与直线 Ax + By + C = 0  $(A \neq 0, B \neq 0)$  垂直的直线系方程是  $Bx Ay + \lambda = 0, \lambda$  是参变量.
- 93. 点到直线的距离

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$
 (点  $P(x_0, y_0)$ , 直线  $l: Ax + By + C = 0$ ).

94. Ax + By + C > 0 或 < 0 所表示的平面区域

设直线 l: Ax + By + C = 0,则 Ax + By + C > 0 或 < 0 所表示的平面区域是:

若  $B \neq 0$ ,当  $B \ni Ax + By + C$  同号时,表示直线 l 的上方的区域;当  $B \ni Ax + By + C$  异号时,表示直线 l 的下方的区域.简言之,同号在上,异号在下.若 B = 0,当  $A \ni Ax + By + C$  同号时,表示直线 l 的右方的区域;当  $A \ni Ax + By + C$  异号时,表示直线 l 的左方的区域.简言之,同号在右,异号在左.

- 95.  $(A_1x + B_1y + C_1)(A_2x + B_2y + C_2) > 0$  或 < 0 所表示的平面区域 设曲线  $C: (A_1x + B_1y + C_1)(A_2x + B_2y + C_2) = 0(A_1A_2B_1B_2 \neq 0)$ ,则  $(A_1x + B_1y + C_1)(A_2x + B_2y + C_2) > 0$  或 < 0 所表示的平面区域是:  $(A_1x + B_1y + C_1)(A_2x + B_2y + C_2) > 0$  所表示的平面区域上下两部分;  $(A_1x + B_1y + C_1)(A_2x + B_2y + C_2) < 0$  所表示的平面区域上下两部分.
- 96. 86. 圆的四种方程
  - (1) 圆的标准方程  $(x-a)^2 + (y-b)^2 = r^2$ .
  - (2) 圆的一般方程  $x^2 + y^2 + Dx + Ey + F = 0(D^2 + E^2 4F > 0)$ .
  - (3) 圆的参数方程  $\begin{cases} x = a + r\cos\theta \\ y = b + r\sin\theta \end{cases} (\theta \text{ 为参数}).$
  - (4) 圆的直径式方程  $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$ ( 圆的直径的端点是  $A(x_1,y_1)$ 、 $B(x_2,y_2)$ ).
- 97. 圆系方程

(1) 过点 
$$A(x_1, y_1)$$
,  $B(x_2, y_2)$  的圆系方程是  $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) + \lambda[(x - x_1)(y_1 - y_2) - (y - y_1)(x_1 - x_2)]$  = 0

 $\Leftrightarrow$   $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)+\lambda(ax+by+c)=0$ , 其中 ax+by+c=0 是直线 AB 的方程,  $\lambda$  是待定的系数.



 $x^2 + y^2 + Dx + Ey + F + \lambda(Ax + By + C) = 0, \lambda$  是待定的系数.

(3) 过圆  $C_1$ :  $x^2 + y^2 + D_1 x + E_1 y + F_1 = 0$  与圆  $C_2$ :  $x^2 + y^2 + D_2 x + E_2 y + F_2 = 0$  的交点的圆系方程是  $x^2 + y^2 + D_1 x + E_1 y + F_1 + \lambda (x^2 + y^2 + D_2 x + E_2 y + F_2) = 0, \lambda$  是待定的系数.

### 98. 点与圆的位置关系

点 
$$P(x_0,y_0)$$
 与圆  $(x-a)^2+(y-b)^2=r^2$  的位置关系有三种 若  $d=\sqrt{(a-x_0)^2+(b-y_0)^2}$ ,则  $d>r\Leftrightarrow$  点  $P$  在圆外; $d=r\Leftrightarrow$  点  $P$  在圆上; $d< r\Leftrightarrow$  点  $P$  在圆内.

99. 直线与圆的位置关系

直线 
$$Ax + By + C = 0$$
 与圆  $(x - a)^2 + (y - b)^2 = r^2$  的位置关系有三种:  $d > r \Leftrightarrow$  相离  $\Leftrightarrow \Delta < 0$ ;  $d = r \Leftrightarrow$  相切  $\Leftrightarrow \Delta = 0$ ;  $d < r \Leftrightarrow$  相交  $\Leftrightarrow \Delta > 0$ . 其中  $d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}$ .

100. 两圆位置关系的判定方法

设两圆圆心分别为  $O_1$ ,  $O_2$ , 半径分别为  $r_1$ ,  $r_2$ ,  $|O_1O_2| = d$   $d > r_1 + r_2 \Leftrightarrow$  外离  $\Leftrightarrow$  4 条公切线;  $d = r_1 + r_2 \Leftrightarrow$  外切  $\Leftrightarrow$  3 条公切线;  $|r_1 - r_2| < d < r_1 + r_2 \Leftrightarrow$  相交  $\Leftrightarrow$  2 条公切线;  $d = |r_1 - r_2| \Leftrightarrow$  内切  $\Leftrightarrow$  1 条公切线;  $0 < d < |r_1 - r_2| \Leftrightarrow$  内含  $\Leftrightarrow$  无公切线.

#### 101. 圆的切线方程

- (1) 已知圆  $x^2 + y^2 + Dx + Ey + F = 0$ .
- ①若已知切点  $(x_0,y_0)$  在圆上,则切线只有一条,其方程是

$$x_0x + y_0y + \frac{D(x_0 + x)}{2} + \frac{E(y_0 + y)}{2} + F = 0.$$

当  $(x_0, y_0)$  圆外时, $x_0x + y_0y + \frac{D(x_0 + x)}{2} + \frac{E(y_0 + y)}{2} + F = 0$  表示过两个切点的切点弦方程.

- ②过圆外一点的切线方程可设为 $y-y_0=k(x-x_0)$ ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
- ③斜率为k的切线方程可设为y = kx + b,再利用相切条件求b,必有两条切线.
- (2) 已知圆  $x^2 + y^2 = r^2$ .
- ①过圆上的  $P_0(x_0, y_0)$  点的切线方程为  $x_0x + y_0y = r^2$ ;
- ②斜率为k的圆的切线方程为 $y = kx \pm r\sqrt{1 + k^2}$ .

### §08. 圆锥曲线方程





- 102. 椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$  的参数方程是  $\begin{cases} x = a\cos\theta \\ y = b\sin\theta \end{cases}$  ( $\theta$  为参数).
- 103. 椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$  焦半径公式  $|PF_1| = e(x + \frac{a^2}{c}), |PF_2| = e(\frac{a^2}{c} x).$
- 104. 椭圆的的内外部
  - (1) 点  $P(x_0, y_0)$  在椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$  的内部  $\Leftrightarrow \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} < 1$ .
  - (2) 点  $P(x_0, y_0)$  在椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$  的外部  $\Leftrightarrow \frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} > 1$ .
- 105. 椭圆的切线方程
  - (1) 椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上一点  $P(x_0, y_0)$  处的切线方程是  $\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$ .
  - (2) 过椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$  外一点  $P(x_0, y_0)$  所引两条切线的切点弦方程是

$$\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1.$$

- (3) 椭圆  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 与直线 Ax + By + C = 0 相切的条件是  $A^2a^2 + B^2b^2 = c^2$ .
- 106. 双曲线  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  (a > 0, b > 0) 的焦半径公式  $|PF_1| = |e(x + \frac{a^2}{c})|, |PF_2| = |e(\frac{a^2}{c} x)|.$
- 107. 双曲线的内外部
  - (1) 点  $P(x_0, y_0)$  在双曲线  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  (a > 0, b > 0) 的内部  $\Leftrightarrow \frac{x_0^2}{a^2} \frac{y_0^2}{b^2} > 1$ .
  - (2) 点  $P(x_0, y_0)$  在双曲线  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$  的外部  $\Leftrightarrow \frac{x_0^2}{a^2} \frac{y_0^2}{b^2} < 1$ .
- 108. 双曲线的方程与渐近线方程的关系
  - (1) 若双曲线方程为  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  ⇒ 渐近线方程:  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$  ⇔  $y = \pm \frac{b}{a}x$ .
  - (2) 若渐近线方程为 $y=\pm \frac{b}{a}x \Leftrightarrow \frac{x}{a} \pm \frac{y}{b} = 0 \Rightarrow$  双曲线可设为 $\frac{x^2}{a^2} \frac{y^2}{b^2} = \lambda$ .
  - (3) 若双曲线与  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  有公共渐近线,可设为  $\frac{x^2}{a^2} \frac{y^2}{b^2} = \lambda(\lambda > 0$ ,焦点在 x 轴上, $\lambda < 0$ ,焦点在 y 轴上).
- 109. 双曲线的切线方程
  - (1) 双曲线  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 上一点  $P(x_0, y_0)$  处的切线方程是  $\frac{x_0 x}{a^2} \frac{y_0 y}{b^2} = 1$ .
  - (2) 过双曲线  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  (a > 0, b > 0) 外一点  $P(x_0, y_0)$  所引两条切线的切点弦方程是

$$\frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1.$$

- (3) 双曲线  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 与直线 Ax + By + C = 0 相切的条件是  $A^2a^2 B^2b^2 = c^2$ .
- 110. 抛物线  $y^2 = 2px$  的焦半径公式

抛物线  $y^2 = 2px(p > 0)$  焦半径  $|CF| = x_0 + \frac{p}{2}$ .

过焦点弦长  $|CD| = x_1 + \frac{p}{2} + x_2 + \frac{p}{2} = x_1 + x_2 + p.$ 

- 111. 抛物线  $y^2 = 2px$  上的动点可设为  $P(\frac{y_0^2}{2p}, y_0)$  或  $P(2pt^2, 2pt)$  或  $P(x_0, y_0)$ ,其中  $y_0^2 = 2px_0$ .
- 112. 二次函数  $y = ax^2 + bx + c = a(x + \frac{b}{2a})^2 + \frac{4ac b^2}{4a}(a \neq 0)$  的图象是抛物线:
  - (1) 顶点坐标为  $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$ ;
  - (2) 焦点的坐标为  $\left(-\frac{b}{2a}, \frac{4ac-b^2+1}{4a}\right)$ ;
  - (3) 准线方程是  $y = \frac{4ac b^2 1}{4a}$ .
- 113. 抛物线的内外部
  - (1) 点  $P(x_0, y_0)$  在抛物线  $y^2 = 2px(p > 0)$  的内部  $\Leftrightarrow y^2 < 2px(p > 0)$ .

点  $P(x_0, y_0)$  在抛物线  $y^2 = 2px(p > 0)$  的外部  $\Leftrightarrow y^2 > 2px(p > 0)$ .

(2) 点  $P(x_0, y_0)$  在抛物线  $y^2 = -2px(p > 0)$  的内部  $\Leftrightarrow y^2 < -2px(p > 0)$ .

点  $P(x_0, y_0)$  在抛物线  $y^2 = -2px(p > 0)$  的外部  $\Leftrightarrow y^2 > -2px(p > 0)$ .

(3) 点  $P(x_0, y_0)$  在抛物线  $x^2 = 2py(p > 0)$  的内部  $\Leftrightarrow x^2 < 2py(p > 0)$ .

点  $P(x_0, y_0)$  在抛物线  $x^2 = 2py(p > 0)$  的外部  $\Leftrightarrow x^2 > 2py(p > 0)$ .

(4) 点  $P(x_0, y_0)$  在抛物线  $x^2 = 2py(p > 0)$  的内部  $\Leftrightarrow x^2 < 2py(p > 0)$ .

点  $P(x_0, y_0)$  在抛物线  $x^2 = -2py(p > 0)$  的外部  $\Leftrightarrow x^2 > -2py(p > 0)$ .

- 114. 抛物线的切线方程
  - (1) 抛物线  $y^2 = 2px$  上一点  $P(x_0, y_0)$  处的切线方程是  $y_0y = p(x + x_0)$ .
  - (2) 过抛物线  $y^2 = 2px$  外一点  $P(x_0, y_0)$  所引两条切线的切点弦方程是  $y_0 y = p$   $(x + x_0)$ .
  - (3) 抛物线  $y^2 = 2px(p > 0)$  与直线 Ax + By + C = 0 相切的条件是  $pB^2 = 2AC$ .
- 115. 两个常见的曲线系方程
  - (1) 过曲线  $f_1(x,y) = 0$ ,  $f_2(x,y) = 0$  的交点的曲线系方程是  $f_1(x,y) + \lambda f_2(x,y) = 0$  ( $\lambda$  为参数)
  - (2) 共焦点的有心圆锥曲线系方程  $\frac{x^2}{a^2-k} + \frac{y^2}{b^2-k} = 1$ , 其中  $k < \max\{a^2,b^2\}$  . 当  $k > \min\{a^2,b^2\}$  时,表示椭圆;当  $\min\{a^2,b^2\} < k < \max\{a^2,b^2\}$  时,表示双曲线.
- 116. 直线与圆锥曲线相交的弦长公式  $|AB| = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$  或  $|AB| = \sqrt{(1 + k^2)(x_2 x_1)^2} = |x_1 x_2|\sqrt{1 + \tan^2\alpha} = |y_1 y_2|\sqrt{1 + \cot^2\alpha}$  (弦端





点  $A(x_1, y_1)$ ,  $B(x_2, y_2)$ , 由方程  $\begin{cases} y = kx + b \\ F(x, y) = 0 \end{cases}$  消去 y 得到  $ax^2 + bx + c = 0$ ,  $\Delta > 0$ ,  $\alpha$  为直线 AB 的倾斜角, k 为直线的斜率).

- 117. 圆锥曲线的两类对称问题
  - (1) 曲线 F(x,y) = 0 关于点  $P(x_0,y_0)$  成中心对称的曲线是  $F(2x_0 x, 2y_0 y) = 0$ .
  - (2) 曲线 F(x,y) = 0 关于直线 Ax + By + C = 0 成轴对称的曲线是  $F(x \frac{2A(Ax + By + C)}{A^2 + B^2}, y \frac{2B(Ax + By + C)}{A^2 + B^2}) = 0.$
- 118. "四线"一方程

对于一般的二次曲线  $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ ,用  $x_0x$  代  $x^2$ ,用  $y_0y$  代  $y^2$ ,用  $\frac{x_0y + xy_0}{2}$  代 xy,用  $\frac{x_0 + x}{2}$  代 x,用  $\frac{y_0 + y}{2}$  代 y 即得方程  $Ax_0x + B \cdot \frac{x_0y + xy_0}{2} + Cy_0y + D \cdot \frac{x_0 + x}{2} + E \cdot \frac{y_0 + y}{2} + F = 0$ ,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.

### §09. 立体几何

- 119. 证明直线与直线的平行的思考途径
  - (1) 转化为判定共面二直线无交点;
  - (2) 转化为二直线同与第三条直线平行;
  - (3) 转化为线面平行;
  - (4)转化为线面垂直;
  - (5) 转化为面面平行.
- 120. 证明直线与平面的平行的思考途径
  - (1) 转化为直线与平面无公共点;
  - (2) 转化为线线平行;
  - (3) 转化为面面平行.
- 121. 证明平面与平面平行的思考途径
  - (1) 转化为判定二平面无公共点;
  - (2) 转化为线面平行;
  - (3) 转化为线面垂直.
- 122. 证明直线与直线的垂直的思考途径
  - (1) 转化为相交垂直;
  - (2) 转化为线面垂直;
  - (3) 转化为线与另一线的射影垂直;
  - (4) 转化为线与形成射影的斜线垂直.
- 123. 证明直线与平面垂直的思考途径
  - (1) 转化为该直线与平面内任一直线垂直;
  - (2) 转化为该直线与平面内相交二直线垂直;
  - (3) 转化为该直线与平面的一条垂线平行;
  - (4) 转化为该直线垂直于另一个平行平面;
  - (5) 转化为该直线与两个垂直平面的交线垂直.

- 124. 证明平面与平面的垂直的思考途径
  - (1)转化为判断二面角是直二面角;
  - (2)转化为线面垂直.
- 125. 空间向量的加法与数乘向量运算的运算律
  - (1) 加法交换律:  $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ .
  - (2) 加法结合律:  $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ .
  - (3) 数乘分配律:  $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$ .
- 126. 平面向量加法的平行四边形法则向空间的推广

始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱 的平行六面体的以公共始点为始点的对角线所表示的向量.

127. 共线向量定理

对空间任意两个向量 $\vec{a}$ 、 $\vec{b}(\vec{b} \neq \vec{0})$ , $\vec{a}$  //  $\vec{b}$   $\Leftrightarrow$  存在实数  $\lambda$  使  $\vec{a} = \lambda \vec{b}$ .

P、A、B 三点共线  $\Leftrightarrow$   $AP||AB <math>\Leftrightarrow$   $\overrightarrow{AP} = t\overrightarrow{AB} \Leftrightarrow \overrightarrow{OP} = (1-t)\overrightarrow{OA} + t\overrightarrow{OB}$ .

 $AB||CD \Leftrightarrow \overrightarrow{AB} \setminus \overrightarrow{CD}$  共线且  $AB \setminus CD$  不共线  $\Leftrightarrow \overrightarrow{AB} = t\overrightarrow{CD}$  且  $AB \setminus CD$  不共线 .

128. 共面向量定理

向量p与两个不共线的向量 $a \cdot b$  共面的  $\Leftrightarrow$  存在实数对x,y, 使p = ax + by.

**推论** 空间一点 P 位于平面 MAB 内的  $\Leftrightarrow$  存在有序实数对 x,y, 使  $\overrightarrow{MP} = x\overrightarrow{MA} + y\overrightarrow{MB}$ ,

或对空间任一定点 O,有序实数对 x,y,使  $\overrightarrow{OP} = \overrightarrow{OM} + x\overrightarrow{MA} + y\overrightarrow{MB}$ .

129. 对空间任一点 O 和不共线的三点 A、B、C,满足  $\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB} + z\overrightarrow{OC}$  (x+y+z=k),则

当k=1时,对于空间任一点O,总有P、A、B、C四点共面;

当 $k \neq 1$ 时,

若 O ∈ 平面 ABC,则 P、A、B、C 四点共面;

若  $O \notin$  平面 ABC,则 P、A、B、C 四点不共面.

A、B、C、D四点共面

- $\Leftrightarrow \overrightarrow{AD} 与 \overrightarrow{AB} \setminus \overrightarrow{AC}$  共面
- $\Leftrightarrow \overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC}$
- $\Leftrightarrow \overrightarrow{OD} = (1 x y)\overrightarrow{OA} + x\overrightarrow{OB} + y\overrightarrow{OC}(O \notin \overline{\Upsilon} \stackrel{.}{\text{iff}} ABC).$
- 130. 空间向量基本定理

如果三个向量a、b、c 不共面,那么对空间任一向量p,存在一个唯一的有序 实数组x, y, z, 使p = xa + yb + zc.

**推论** 设  $O \setminus A \setminus B \setminus C$  是不共面的四点,则对空间任一点 P,都存在唯一的三个有序实数 x, y, z, 使  $\overrightarrow{OP} = x\overrightarrow{OA} + y\overrightarrow{OB} + z\overrightarrow{OC}$ .

131. 射影公式

已知向量  $\overrightarrow{AB} = \overrightarrow{a}$  和轴 l,  $\overrightarrow{e} \in l$  上与 l 同方向的单位向量 . 作 A 点在 l 上的射影 A', 作 B 点在 l 上的射影 B', 则

 $\overrightarrow{AB} = |\overrightarrow{AB}|\cos\langle \overrightarrow{a}, \overrightarrow{e}\rangle = \overrightarrow{a \cdot e}$ 

132. 向量的直角坐标运算

设 $\vec{a} = (a_1, a_2, a_3)$ , $\vec{b} = (b_1, b_2, b_3)$  则





$$(1)\vec{a} + \vec{b} = (a_1 + b_1, a_2 + b_2, a_3 + b_3);$$

$$(2)\vec{a} - \vec{b} = (a_1 - b_1, a_2 - b_2, a_3 - b_3);$$

$$(3)\lambda \overrightarrow{a} = (\lambda a_1, \lambda a_2, \lambda a_3) \ (\lambda \in R);$$

$$(4)\vec{a}\cdot\vec{b} = a_1b_1 + a_2b_2 + a_3b_3;$$

133. 设 $A(x_1,y_1,z_1)$ ,  $B(x_2,y_2,z_2)$ , 则

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

134. 空间的线线平行或垂直

设
$$\vec{a} = (x_1, y_1, z_1), \vec{b} = (x_2, y_2, z_2),$$
则

$$\vec{a} /\!\!/ \vec{b} \Leftrightarrow \vec{a} = \lambda \vec{b} (\vec{b} \neq \vec{0}) \Leftrightarrow \begin{cases} x_1 = \lambda x_2 \\ y_1 = \lambda y_2 \\ z_1 = \lambda z_2 \end{cases}$$

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow x_1 x_2 + y_1 y_2 + z_1 z_2 = 0.$$

135. 夹角公式

设
$$\vec{a} = (a_1, a_2, a_3)$$
, $\vec{b} = (b_1, b_2, b_3)$ ,则

$$\cos \langle \vec{a}, \vec{b} \rangle = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}.$$

推论  $(a_1b_1+a_2b_2+a_3b_3)^2 \le (a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)$ ,此即三维柯西不等式.

136. 四面体的对棱所成的角

四面体 ABCD 中, AC 与 BD 所成的角为  $\theta$ , 则

$$\cos\theta = \frac{|(AB^2 + CD^2) - (BC^2 + DA^2)|}{2AC \cdot BD}.$$

137. 异面直线所成角

$$\cos heta = |\cos \left< ec{a}, ec{b} 
ight>| = rac{|ec{a} \cdot ec{b}|}{|ec{a}| \cdot |ec{b}|} = rac{|x_1 x_2 + y_1 y_2 + z_1 z_2|}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

(其中 $\theta(0^{\circ} < \theta \le 90^{\circ})$  为异面直线 a,b 所成角, $\vec{a},\vec{b}$  分别表示异面直线 a,b 的方向向量)

138. 直线 AB 与平面所成角

$$\beta = \arcsin \frac{\overrightarrow{AB} \cdot \overrightarrow{m}}{|\overrightarrow{AB}||\overrightarrow{m}|} (\overrightarrow{m}$$
 为平面  $\alpha$  的法向量 ).

139. 若  $\triangle ABC$  所在平面若  $\beta$  与过若 AB 的平面  $\alpha$  成的角  $\theta$ , 另两边 AC, BC 与平面  $\alpha$  成的角分别是  $\theta_1$ 、 $\theta_2$ , A、B 为  $\triangle ABC$  的两个内角,则

$$\sin^2\theta_1 + \sin^2\theta_2 = (\sin^2 A + \sin^2 B)\sin^2\theta.$$

特别地, 当 $\angle ACB = 90^{\circ}$ 时, 有

 $\sin^2\theta_1 + \sin^2\theta_2 = \sin^2\theta.$ 

140. 若  $\triangle ABC$  所在平面若  $\beta$  与过若 AB 的平面  $\alpha$  成的角  $\theta$ , 另两边 AC, BC 与 平面  $\alpha$  成的角分别是  $\theta_1$ 、 $\theta_2$ , A'、B' 为  $\triangle ABO$  的两个内角,则

$$\tan^2\theta_1 + \tan^2\theta_2 = (\sin^2 A' + \sin^2 B') \tan^2\theta.$$

特别地, 当 $\angle AOB = 90^{\circ}$ 时, 有

 $\sin^2\theta_1 + \sin^2\theta_2 = \sin^2\theta.$ 

141. 二面角  $\alpha - l - \beta$  的平面角

$$\theta = \arccos \frac{\overrightarrow{m} \cdot \overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$$
 或  $\pi - \arccos \frac{\overrightarrow{m} \cdot \overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$  ( $\overrightarrow{m}$ ,  $\overrightarrow{n}$  为平面  $\alpha$ ,  $\beta$  的法向量 ).



### 课堂笔记

#### 142. 三余弦定理

设 AC 是  $\alpha$  内的任一条直线,且 BC  $\bot$  AC,垂足为 C,又设 AO 与 AB 所成的角为  $\theta_1$ , AB 与 AC 所成的角为  $\theta_2$ , AO 与 AC 所成的角为  $\theta$ . 则  $\cos\theta = \cos\theta_1 \cos\theta_2$ .

#### 143. 三射线定理

若夹在平面角为 $\phi$ 的二面角间的线段与二面角的两个半平面所成的角是 $\theta_1, \theta_2$ ,与二面角的棱所成的角是 $\theta$ ,则有  $\sin^2\phi\sin^2\theta = \sin^2\theta_1 + \sin^2\theta_2 - 2\sin\theta_1\sin\theta_2\cos\phi$ ;

$$|\theta_1 - \theta_2| \le \phi \le 180^{\circ} - (\theta_1 + \theta_2)$$
 (当且仅当  $\theta = 90^{\circ}$  时等号成立).

144. 空间两点间的距离公式

若 
$$A(x_1,y_1,z_1)$$
,  $B(x_2,y_2,z_2)$ , 则

$$d_{A,B} = |\overrightarrow{AB}| = \sqrt{\overrightarrow{AB} \cdot \overrightarrow{AB}} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

145. 点 Q 到直线 l 距离

$$h = \frac{1}{|a|} \sqrt{(|a||b|)^2 - (a \cdot b)^2}$$
 (点  $P$  在直线  $l$  上,直线  $l$  的方向向量  $a = \overrightarrow{PA}$ ,向量  $b = \overrightarrow{PQ}$ ).

146. 异面直线间的距离

$$d = \frac{|\overrightarrow{CD} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|} (l_1, l_2$$
是两异面直线,其公垂向量为 $\overrightarrow{n}$ ,  $C$ 、 $D$ 分别是 $l_1, l_2$ 上任一

点,d为 $l_1$ , $l_2$ 间的距离).

 $147. 点 B 到平面 <math>\alpha$  的距离

$$d = \frac{|\overrightarrow{AB} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$$
 ( $\overrightarrow{n}$  为平面  $\alpha$  的法向量, $AB$  是经过面  $\alpha$  的一条斜线, $A \in \alpha$ ).

148. 异面直线上两点距离公式

$$d = \sqrt{h^2 + m^2 + n^2 \mp 2mn\cos\theta}.$$

$$d = \sqrt{h^2 + m^2 + n^2 - 2mn\cos\langle \overrightarrow{EA'}, \overrightarrow{AF'}\rangle}.$$

$$d = \sqrt{h^2 + m^2 + n^2 - 2mn\cos\phi} \ (\phi = E - AA' - F).$$

(两条异面直线 a、b 所成的角为  $\theta$ ,其公垂线段 AA' 的长度为 h. 在直线 a、b 上分别取两点 E、F, A'E=m, AF=n, EF=d).

149. 三个向量和的平方公式

$$(\vec{a} + \vec{b} + \vec{c})^2 = \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{c} \cdot \vec{a}$$

$$= \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2|\vec{a}| \cdot |\vec{b}| \cos\langle \vec{a}, \vec{b} \rangle + 2|\vec{b}| \cdot |\vec{c}| \cos\langle \vec{b}, \vec{c} \rangle + 2|\vec{c}| \cdot |\vec{a}| \cos\langle \vec{c}, \vec{a} \rangle$$

150. 长度为 l 的线段在三条两两互相垂直的直线上的射影长分别为  $l_1$ 、 $l_2$ 、 $l_3$ ,夹角分别为  $\theta_1$ 、 $\theta_2$ 、 $\theta_3$ ,则有

$$l^2 = l_1^2 + l_2^2 + l_3^2 \Leftrightarrow \cos^2\theta_1 + \cos^2\theta_2 + \cos^2\theta_3 = 1 \Leftrightarrow \sin^2\theta_1 + \sin^2\theta_2 + \sin^2\theta_3 = 2.$$
  
(立体几何中长方体对角线长的公式是其特例).

151. 面积射影定理

$$S = \frac{S'}{\cos \theta}$$
.



(平面多边形及其射影的面积分别是S、S,它们所在平面所成锐二面角的为 $\theta$ ).

### 152. 斜棱柱的直截面

已知斜棱柱的侧棱长是l,侧面积和体积分别是 $S_{Alberted}$ 和 $V_{Alberted}$ ,它的直截面的周长和面积分别是 $c_1$ 和 $S_1$ ,则

- ①  $S_{\text{AHR}} = c_1 l$ .
- ②  $V_{\text{app}} = S_1 l$ .

### 153. 作截面的依据

三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.

#### 154. 棱锥的平行截面的性质

如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.

### 155. 欧拉定理(欧拉公式)(了解)

V+F-E=2(简单多面体的顶点数 V、棱数 E 和面数 F).

- (1)E=各面多边形边数和的一半 . 特别地, 若每个面的边数为 n 的多边形,则面数 F 与棱数 E 的关系:  $E=\frac{1}{2}nF$ ;
- (2) 若每个顶点引出的棱数为m,则顶点数V与棱数E的关系:  $E = \frac{1}{2}mV$ .

### 156. 球的半径是 R,则

其体积  $V = \frac{4}{3}\pi R^3$ ,

其表面积 $S = 4\pi R^2$ .

#### 157. 球的组合体

(1) 球与长方体的组合体:

长方体的外接球的直径是长方体的体对角线长.

(2) 球与正方体的组合体:

正方体的内切球的直径是正方体的棱长,正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.

(3) 球与正四面体的组合体:

棱长为a的正四面体的内切球的半径为 $\frac{\sqrt{6}}{12}a$ ,外接球的半径为 $\frac{\sqrt{6}}{4}a$ .

#### 158. 柱体、锥体的体积

 $V_{\text{kt}} = \frac{1}{3} Sh(S)$  是柱体的底面积、h 是柱体的高).

 $V_{\text{th}} = \frac{1}{3} Sh(S)$  是锥体的底面积、h 是锥体的高).

### §10. 排列组合二项定理

159. 分类计数原理(加法原理)

 $N = m_1 + m_2 + \cdots + m_n.$ 

#### 160. 分步计数原理(乘法原理)

$$N = m_1 \times m_2 \times \cdots \times m_n$$
.

### 161. 排列数公式

$$A_n^m = n(n-1)\cdots(n-m+1) = \frac{n!}{(n-m)!}.(n, m \in N^*, \exists m \leq n).$$

注:规定0!=1.

#### 162. 排列恒等式

$$A_n^m = (n-m+1)A_n^{m-1}$$
;

$$A_{n}^{m} = \frac{n}{n-m} A_{n-1}^{m};$$

$$A_n^m = nA_{n-1}^{m-1};$$

$$nA_n^n = A_{n+1}^{n+1} - A_n^n$$
;

$$A_{n+1}^m = A_n^m + mA_n^{m-1}$$
.

$$1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1.$$

### 163. 组合数公式

$$C_n^m = \frac{A_n^m}{A_m^m} = \frac{n(n-1)\cdots(n-m+1)}{1\times 2\times \cdots \times m} = \frac{n!}{m! \cdot (n-m)!} (n \in N^*, m \in N, \underline{\mathbb{H}}.$$

$$m \leq n).$$

### 164. 组合数的两个性质

$$C_n^m = C_n^{n-m}$$
;

$$C_n^m + C_n^{m-1} = C_{n+1}^m$$
.

注:规定 
$$C_n^0 = 1$$
.

#### 165. 155. 组合恒等式

$$C_n^m = \frac{n-m+1}{m}C_n^{m-1};$$

$$C_n^m = \frac{n}{n-m}C_{n-1}^m;$$

$$C_n^m = \frac{n}{m} C_{n-1}^{m-1};$$

$$\sum_{n=0}^{\infty} C_n^r = 2^n;$$

$$C_r^r + C_{r+1}^r + C_{r+2}^r + \dots + C_n^r = C_{n+1}^{r+1}$$
.

$$C_n^0 + C_n^1 + C_n^2 + \dots + C_n^r + \dots + C_n^n = 2^n$$
.

$$C_n^1 + C_n^3 + C_n^5 + \dots = C_n^0 + C_n^2 + C_n^4 + \dots + C_n^{n-1}$$
.

$$C_n^1 + 2C_n^2 + 3C_n^3 + \dots + nC_n^n = n2^{n-1}$$
.

$$C_m^r C_n^0 + C_m^{r-1} C_n^1 + \dots + C_m^{0r} C_n^r = C_{m+n}^r$$

$$(C_n^0)^2 + (C_n^1)^2 + (C_n^2)^2 + \dots + (C_n^n)^2 = C_{2n}^n$$

#### 166. 排列数与组合数的关系

$$A_n^m = m! \cdot C_n^m$$
.

### 167. 单条件排列

以下各条的大前提是从n个元素中取m个元素的排列.

①某(特)元必在某位有 $A_{n-1}^{m-1}$ 种;②某(特)元不在某位有 $A_n^m - A_{n-1}^{m-1}$ (补集思想)= $A_{n-1}^1 A_{n-1}^{m-1}$ (着眼位置)= $A_{n-1}^1 A_{n-1}^{m-1}$ (着眼元素)种.

紧贴与插空(即相邻与不相邻)

①定位紧贴:  $k(k \leq m \leq n)$  个元在固定位的排列有  $A_k^k A_{n-k}^{m-k}$  种.



### 果党笔记

第 25 页



- ②浮动紧贴:n个元素的全排列把k个元排在一起的排法有 $A_{n-k+1}^{n-k+1}A_k^k$ 种. 注:此类问题常用捆绑法;
- ③插空:两组元素分别有k、h个( $k \le h+1$ ),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有 $A_h^k A_{h+1}^k$ 种.

两组元素各相同的插空

m个大球n个小球排成一列,小球必分开,问有多少种排法?

当
$$n > m+1$$
时,无解;当 $n \le m+1$ 时,有 $\frac{A_{m+1}^n}{A_n^n} = C_{m+1}^n$ 种排法.

两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为 $C_{m+n}^n$ .

#### 168. 分配问题

- (1) (平均分组有归属问题)将相异的m、n个物件等分给m个人,各得n件,其分配方法数共有 $N = C_{mn}^n \cdot C_{mn-n}^n \cdot C_{mn-2n}^n \cdot \cdots \cdot C_{2n}^n \cdot C_n^n = \frac{(mn)!}{(n!)^m}$ .
- (2) (平均分组无归属问题)将相异的 $m \cdot n$ 个物体等分为无记号或无顺序的m堆,其分配方法数共有

$$N=rac{C_{mn}^n\cdot C_{mn-n}^n\cdot C_{mn-2n}^n\dots\cdot C_{2n}^n\cdot C_n^n}{m!}=rac{(mn)!}{m!\,(n!)^m}.$$

(3) (非平均分组有归属问题)将相异的 $P(P=n_1+n_2+\cdots+n_m)$ 个物体分给m个人,物件必须被分完,分别得到 $n_1,n_2,\ldots,n_m$ 件,且 $n_1,n_2,\ldots,n_m$ 这m个数彼此不相等,则其分配方法数共有 $N=C_p^{n_1}\cdot C_{p-n_1}^{n_2}\ldots C_{n_m}^{n_m}\cdot m!=$ 

$$\frac{p!m!}{n_1!n_2!...n_m!}.$$

(4) (非完全平均分组有归属问题)将相异的  $P(P=n_1+n_2+\cdots+n_m)$  个物体分给 m 个人,物件必须被分完,分别得到  $n_1$ ,  $n_2$ ,..., $n_m$ 件,且  $n_1$ ,  $n_2$ ,..., $n_m$  这 m 个数中分别有 a、b、c、... 个相等,则其分配方法数有 N=

$$\frac{C_p^{n_1} \cdot C_{p-n_1}^{n_2} ... C_{n_m}^{n_m} \cdot m!}{a!b!c!...} = \frac{p!m!}{n_1!n_2!...n_m! \left(a!b!c!...\right)}.$$

- (5) (非平均分组无归属问题)将相异的 $P(P=n_1+n_2+\cdots+n_m)$ 个物体分为任意的 $n_1,n_2,\ldots,n_m$ 件无记号的m堆,且 $n_1,n_2,\ldots,n_m$ 这m个数彼此不相等,则其分配方法数有 $N=\frac{p!}{n_1!n_2!\ldots n_m!}$ .
- (6) (非完全平均分组无归属问题)将相异的 $P(P=n_1+n_2+\cdots+n_m)$ 个物体分为任意的 $n_1,n_2,\ldots,n_m$ 件无记号的m堆,且 $n_1,n_2,\ldots,n_m$ 这m个数中分别有a、b、c、...个相等,则其分配方法数有 $N=\frac{p!}{n_1!n_2!\ldots n_m!\;(a!b!c!\ldots)}$ .
- (7) (限定分组有归属问题)将相异的 $p(p=n_1+n_2+\cdots+n_m)$ 个物体分给甲、乙、丙,……等m个人,物体必须被分完,如果指定甲得 $n_1$ 件,乙得 $n_2$ 件,丙得 $n_3$ 件,…时,则无论 $n_1$ , $n_2$ ,…, $n_m$ 等m个数是否全相异或不全相异其分配方法数恒有

$$N = C_p^{n_1} \boldsymbol{\cdot} C_{p-n_1}^{n_2} ... C_{n_m}^{n_m} = \frac{p!}{n_1! n_2! ... n_m!}.$$

169."错位问题"及其推广

贝努利装错笺问题:信n封信与n个信封全部错位的组合数为

$$f(n) = n! \left[ \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^n \frac{1}{n!} \right].$$

推广:n个元素与n个位置,其中至少有m个元素错位的不同组合总数为

f(n,m)

$$= n! - C_m^1(n-1)! + C_m^2(n-2)! - C_m^3(n-3)! + C_m^4(n-4)! - \dots + (-1)^p C_m^p(n-p)! + \dots + (-1)^m C_m^m(n-m)!$$

$$= n! \left[1 - \frac{C_m^1}{A_n^1} + \frac{C_m^2}{A_n^2} - \frac{C_m^3}{A_n^2} + \frac{C_m^4}{A_n^4} - \dots + (-1)^p \frac{C_m^p}{A_n^p} + \dots + (-1)^m \frac{C_m^m}{A_n^m}\right]$$

- 170. 不定方程  $x_1 + x_2 + \cdots + x_n = m$  的解的个数
  - (1) 方程  $x_1 + x_2 + \cdots + x_n = m(n, m \in N^*)$  的正整数解有  $C_{m-1}^{m-1}$  个.
  - (2) 方程  $x_1 + x_2 + \cdots + x_n = m(n, m \in N^*)$  的非负整数解有  $C_{n+m-1}^{n-1}$  个.
  - (3) 方程  $x_1 + x_2 + \dots + x_n = m(n, m \in N^*)$  满足条件  $x_i \ge k(k \in N^*, 2 \le i \le n 1)$
  - 1) 的非负整数解有  $C_{m+1-(n-2)(k-1)}^{n-1}$  个.
  - (4) 方程  $x_1 + x_2 + \dots + x_n = m(n, m \in N^*)$  满足条件  $x_i \leq k(k \in N^*, 2 \leq i \leq n 1)$
  - 1) 的正整数解有  $C_{n+m-1}^{n-1} C_{n-2}^1 C_{m+n-k-2}^{n-1} + C_{n-2}^2 C_{m+n-2k-3}^{n-1} \cdots + (-1)^{n-2} C_{n-2}^{n-2} C_{m+1-(n-2)k}^{n-1}$  个.
- 171. 二项式定理  $(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^r a^{n-r} b^r + \dots + C_n^n b^n$ ;
  - 二项展开式的通项公式:  $T_{r+1} = C_n^r a^{n-r} b^r (r=0,1,2...,n)$ .

### §11、12. 概率与统计

172. 等可能性事件的概率

$$P(A) = \frac{m}{n}$$
.

173. 互斥事件 A, B 分别发生的概率的和

$$P(A+B) = P(A) + P(B).$$

174. n 个互斥事件分别发生的概率的和

$$P(A1 + A2 + ... + An) = P(A1) + P(A2) + ... + P(An).$$

175. 独立事件 A, B 同时发生的概率

$$P(A \cdot B) = P(A) \cdot P(B)$$
.

176. n 个独立事件同时发生的概率

$$P(A1 \cdot A2 \cdot ... \cdot An) = P(A1) \cdot P(A2) \cdot ... \cdot P(An).$$

177. n 次独立重复试验中某事件恰好发生 k 次的概率

$$P_n(k) = C_n^k P^k (1-P)^{n-k}$$
.

- 178. 离散型随机变量的分布列的两个性质
  - $(1)P_i \geqslant 0 (i = 1, 2, \cdots);$
  - $(2)P_1 + P_2 + \cdots = 1.$
- 179. 数学期望

$$E\xi = x_1P_1 + x_2P_2 + \dots + x_nP_n + \dots$$

- 180. 数学期望的性质
  - $(1)E(a\xi + b) = aE(\xi) + b.$
  - (2) 若  $\xi \sim B(n,p)$ , 则  $E\xi = np$ .
  - (3) 若  $\xi$  服从几何分布, 且  $P(\xi = k) = g(k, p) = q^{k-1}p$ , 则  $E\xi = \frac{1}{n}$ .





181. 方差

$$D\xi = (x_1 - E\xi)^2 \cdot p_1 + (x_2 - E\xi)^2 \cdot p_2 + \dots + (x_n - E\xi)^2 \cdot p_n + \dots$$

182. 标准差

$$\sigma \xi = \sqrt{D\xi}$$
.

183. 方差的性质

- $(1)D(a\xi+b)=a^2D\xi;$
- (2) 若  $\xi \sim B(n, p)$ ,则  $D\xi = np(1-p)$ .
- (3) 若 $\xi$ 服从几何分布,且 $P(\xi = k) = g(k,p) = q^{k-1}p$ ,则 $D\xi = \frac{q}{p^2}$ .

184. 方差与期望的关系

$$D\xi = E\xi^2 - (E\xi)^2.$$

185. 正态分布密度函数

$$f(x) = \frac{1}{\sqrt{2\pi 6}} e^{-\frac{(x-\mu)^2}{26^2}}, x \in (-\infty, +\infty),$$
式中的实数  $\mu$ ,  $\sigma(\sigma > 0)$  是参数, 分别表示个体的平均数与标准差.

186. 标准正态分布密度函数

$$f(x) = \frac{1}{\sqrt{2\pi}6} e^{-\frac{x^2}{2}}, x \in (-\infty, +\infty).$$

187. 对于  $N(\mu, \sigma^2)$ , 取值小于 x 的概率

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

$$P(x_1 < x_0 < x_2) = P(x < x_2) - P(x < x_1)$$

$$= F(x_2) - F(x_1)$$

$$= \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right).$$

188. 回归直线方程

$$\hat{y} = a + bx$$
,其中 $egin{cases} b = rac{\sum\limits_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sum\limits_{i=1}^{n}(x_i - ar{x})^2} = rac{\sum\limits_{i=1}^{n}x_iy_i - nar{x}ar{y}}{\sum\limits_{i=1}^{n}x_i^2 - nar{x}^2} \ a = ar{y} - bar{x} \end{cases}$ 

189. 相关系数

$$r = \frac{\sum\limits_{\mathrm{i}=1}^{n} (x_{\mathrm{i}} - \bar{x}) (y_{\mathrm{i}} - \bar{y})}{\sqrt{\sum\limits_{\mathrm{i}=1}^{n} (x_{\mathrm{i}} - \bar{x})^{2} \sum\limits_{\mathrm{i}=1}^{n} (y_{\mathrm{i}} - \bar{y})^{2}}} = \frac{\sum\limits_{\mathrm{i}=1}^{n} (x_{\mathrm{i}} - \bar{x}) (y_{\mathrm{i}} - \bar{y})}{\sqrt{(\sum\limits_{\mathrm{i}=1}^{n} x_{\mathrm{i}}^{2} - n\bar{x}^{2}) (\sum\limits_{\mathrm{i}=1}^{n} y_{\mathrm{i}}^{2} - n\bar{y}^{2})}}.$$

 $|r| \leq 1$ ,且 |r| 越接近于 1,相关程度越大; |r| 越接近于 0,相关程度越小.

### §13. 极限

190. 特殊数列的极限

$$(1) \underset{n \to \infty}{\lim} q^n = \begin{cases} 0|q| < 1 \\ 1q = 1 \\ \text{不存在} |q| < 1 或 q = -1 \end{cases}.$$

$$(2)\lim_{n\to\infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_0}{b_t n^t + b_{t-1} n^{t-1} + \dots + b_0} = \begin{cases} 0 & (k < t) \\ \frac{a_t}{b_k} & (k = t) \\ \hline{ 不存在} & (k > t) \end{cases}$$

$$(3)S = \lim_{n \to \infty} \frac{a_1(1-q^n)}{1-q} = \frac{a_1}{1-q} (S 无穷等比数列 \left\{ a_1 q^{n-1} \right\} (|q| < 1) 的和 ).$$

191. 函数的极限定理

$$\lim_{x\to x_0}\!\!f(x)=a \Leftrightarrow \lim_{x\to x_0^-}\!\!f(x)=\lim_{x\to x_0^+}\!\!f(x)=a.$$

192. 函数的夹逼性定理

如果函数f(x), g(x), h(x) 在点 $x_0$ 的附近满足:

- $(1)g(x) \leq f(x) \leq h(x);$
- $(2)\lim_{x\to x_0}g(x)=a,\lim_{x\to x_0}h(x)=a$  (常数), 则  $\lim_{x\to x_0}f(x)=a$ .

本定理对于单侧极限和 $x \to \infty$ 的情况仍然成立.

193. 几个常用极限

$$(1)\lim_{n\to\infty}\frac{1}{n}=0$$
,  $\lim_{n\to\infty}a^n=0(|a|<1)$ ;

$$(2)\lim_{x\to x_0} x = x_0, \lim_{x\to x_0} \frac{1}{x} = \frac{1}{x_0}.$$

194. 两个重要的极限

$$(1)\lim_{x\to 0}\frac{\sin x}{x}=1;$$

(2)
$$\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x = e(e = 2.718281845...).$$

195. 函数极限的四则运算法则

若 
$$\lim_{x \to a} f(x) = a$$
,  $\lim_{x \to a} g(x) = b$ , 则

$$(1)\lim_{x \to a} [f(x) \pm g(x)] = a \pm b;$$

$$(2)\lim_{x \to a} [f(x) \cdot g(x)] = a \cdot b;$$

$$(3) \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b} (b \neq 0).$$

196. 数列极限的四则运算法则

若 
$$\lim_{n\to\infty} a_n = a$$
,  $\lim_{n\to\infty} b_n = b$ , 则

$$(1)\lim_{n\to\infty}(a_n\pm b_n)=a\pm b;$$

$$(2)\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b;$$

$$(3)\lim_{n\to\infty}\frac{a_n}{b_n} = \frac{a}{b}(b\neq 0)$$

$$(4)$$
 $\lim_{n\to\infty}(c\cdot a_n)=\lim_{n\to\infty}c\cdot\lim_{n\to\infty}a_n=c\cdot a(c$  是常数).

### §14. 导数

197.f(x) 在  $x_0$  处的导数 (或变化率或微商

$$f'(x_0) = y'|_{x=x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

198. 瞬时速度





$$v = s'(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t}.$$

199. 瞬时加速度

$$a = v'(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t}.$$

200. f(x) 在 (a,b) 的导数

$$f'(x) = y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

201. 函数 y = f(x) 在点  $x_0$  处的导数的几何意义

函数 y = f(x) 在点  $x_0$  处的导数是曲线 y = f(x) 在  $P(x_0, f(x_0))$  处的切线的斜率  $f'(x_0)$ ,相应的切线方程是  $y - y_0 = f'(x_0)$   $(x - x_0)$ .

- 202. 几种常见函数的导数
  - (1) C' = 0(C为常数).
  - $(2)(x^n)' = nx^{n-1}(n \in Q).$
  - (3)  $(\sin x)' = \cos x$ .
  - (4)  $(\cos x)' = -\sin x$ .

(5) 
$$(\ln x)' = \frac{1}{x}$$
;  $(\log a^x)' = \frac{1}{x} \log_a^e = \frac{1}{x \ln a}$ .

- (6)  $(e^x)' = e^x$ ;  $(a^x)' = a^x \ln a$ .
- 203. 导数的运算法则
  - $(1) (u \pm v)' = u' \pm v'.$
  - (2) (uv)' = u'v + uv'.

(3) 
$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2} (v \neq 0).$$

204. 复合函数的求导法则

设函数  $u = \phi(x)$  在点 x 处有导数  $u'_x = \phi'(x)$ , 函数 y = f(u) 在点 x 处的对应 点 U 处有导数  $y'_u = f'(u)$ ,则复合函数  $y = f(\phi(x))$  在点 x 处有导数,且  $y'_x = y'_u$  ·  $u'_x$ ,或写作  $f'_x(\phi(x)) = f'(u)\phi'(x)$ .

205. 常用的近似计算公式 (当|x|充分小时)(了解)

$$(1)\sqrt{1+x} \approx 1 + \frac{1}{2}x; \sqrt[n]{1+x} \approx 1 + \frac{1}{n}x;$$

(2) 
$$(1+x)^{\alpha} \approx 1 + \alpha x (\alpha \in R); \ \frac{1}{1+x} \approx 1-x;$$

- $(3)e^x \approx 1 + x$ ;
- $(4)l_n(1+x)\approx x$ ;
- $(5)\sin x \approx x(x$  为弧度);
- $(6)\tan x \approx x(x 为弧度);$
- (7)arctan $x \approx x(x$  为弧度)
- 206. 判别  $f(x_0)$  是极大(小) 值的方法

当函数 f(x) 在点  $x_0$  处连续时,

- (1) 如果在 $x_0$ 附近的左侧f'(x) > 0,右侧f'(x) < 0,则 $f(x_0)$ 是极大值;
- (2) 如果在 $x_0$ 附近的左侧f'(x) < 0,右侧f'(x) > 0,则 $f(x_0)$ 是极小值.

#### 207. 导数的应用:

可导函数求单调区间或判断单调性的方法:使f'(x) > 0的区间为增区间,使f'(x) < 0的区间为减区间.

可导函数 f(x) 求极值的步骤:

- (1)求导数f'(x)
- (2)求方程f'(x) = 0的根 $x_1, x_2, \dots, x_n$
- (3)检验 f'(x) 在方程的根的附近左右值的符号, 若左正右负, 则在这个根处取极大值, 若左负右正, 则在这个根处取极小值



函数f(x) 在闭区间 [a,b] 上连续, 在 (a,b) 内可导,则求f(x) 最大值、最小值的步骤与格式为:

- (1)求导数f'(x)
- (2)求方程 f'(x) = 0 的根  $x_1, x_2, \dots, x_n$
- (3)结合在 [a,b] 上的根及闭区间 [a,b] 的端点数值,列出表格若  $(a < x_1 < x_2 < \cdots < x_n < b)$

| x       | a | $(a,x_1)$ | $x_1$ | $(x_1,x_2)$ | $x_2$ | <br>$x_n$ | $(x_n,b)$ | b |
|---------|---|-----------|-------|-------------|-------|-----------|-----------|---|
| $y^{'}$ |   | 正负号       | 0     | 正负号         | 0     | 0         | 正负号       |   |
| y       | 值 | 单调性       | 值     | 单调性         | 值     | 值         | 单调性       | 值 |

(4)根据上述表格的单调性及的大小,确定最大值与最小值.

### §15. 复数

209. 复数的相等

$$a + bi = c + di \Leftrightarrow a = c, b = d.(a, b, c, d \in R)$$

210. 复数 z = a + bi 的模 ( 或绝对值 )

$$|z| = |a + bi| = \sqrt{a^2 + b^2}.$$

211. 复数的四则运算法则

$$(1)(a+bi) + (c+di) = (a+c) + (b+d)i;$$

(2) 
$$(a + bi) - (c + di) = (a - c) + (b - d)i;$$

(3) 
$$(a + bi) (c + di) = (ac - bd) + (bc + ad)i;$$

$$(4)\left(a+b\mathrm{i}\right)\div\left(c+d\mathrm{i}\right)=\frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}\mathrm{i}(c+di\neq0).$$

212. 复数的乘法的运算律

对于任何 $z_1, z_2, z_3 \in C$ ,有

交換律:  $z_1 \cdot z_2 = z_2 \cdot z_1$ .

结合律:  $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$ .

分配律:  $z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$ .

213. 复平面上的两点间的距离公式

$$d = |z_1 - z_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} (z_1 = x_1 + y_1 i, z_2 = x_2 + y_2 i).$$

214. 向量的垂直

非零复数  $z_1 = a + bi$ ,  $z_2 = c + di$  对应的向量分别是  $\overrightarrow{OZ_1}$ ,  $\overrightarrow{OZ_2}$ , 则

 $\overrightarrow{OZ_1} \perp \overrightarrow{OZ_2}$ 

*→ z*<sub>1</sub> · *z*<sub>2</sub> 的实部为零

 $\Leftrightarrow \frac{z_2}{z_1}$  为纯虚数





- $\Leftrightarrow |z_1 + z_2|^2 = |z_1|^2 + |z_2|^2$
- $\Leftrightarrow |z_1 z_2|^2 = |z_1|^2 + |z_2|^2$
- $\Leftrightarrow |z_1 + z_2| = |z_1 z_2|$
- $\Leftrightarrow ac + bd = 0$
- $\Leftrightarrow z_1 = \lambda i z_2 (\lambda$  为非零实数).
- 215. 实系数一元二次方程的解

实系数一元二次方程  $ax^2 + bx + c = 0$ ,

①若 
$$\Delta = b^2 - 4ac > 0$$
,则  $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ;

②若 
$$\Delta = b^2 - 4ac = 0$$
, 则  $x_1 = x_2 = -\frac{b}{2a}$ ;

③若 $\Delta = b^2 - 4ac < 0$ ,它在实数集R内没有实数根;在复数集C内有且仅有 两个共轭复数根  $x = \frac{-b \pm \sqrt{-(b^2 - 4ac)}i}{2a}(b^2 - 4ac < 0).$