MATH 6310 (FALL 2025) HOMEWORK SOLUTIONS

VANDIT GOEL UTA ID:1002245699

1. Homework 5 - Wednesday 29 October, 2025

Problem (9). A matrix $A \in \mathbb{R}^{n \times n}$ is *strictly diagonally dominant* (SDD) if $|A_{ii}| > \sum_{j \neq i} |A_{ij}|$ for all $i \in [n]$. Prove that if A is SDD then A is invertible. (*Hint:* Show that 0 cannot be an eigenvalue of A by mimicking the proof of the Geršgorin circle theorem.)

Solution. A square matrix $A \in \mathbb{R}^{n \times n}$ is invertible if and only if **0** is not an eigenvalue of A. We will prove that if A is strictly diagonally dominant (SDD), then **0** cannot be an eigenvalue, thereby showing that A must be invertible.

A matrix *A* is strictly diagonally dominant if for all $i \in [n] = \{1, 2, ..., n\}$:

$$|A_{ii}| > \sum_{j \neq i} |A_{ij}|$$

Proof. Assume, that **0** is an eigenvalue of *A*.

If **0** is an eigenvalue, then there exists a non-zero eigenvector $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^\top$ such that:

$$A\mathbf{x} = \mathbf{0}\mathbf{x} = \mathbf{0}$$

Now, consider an index k such that $|x_k| = \max_i |x_i|$. Since \mathbf{x} is a non-zero vector, we must have $|x_k| > 0$.

$$\sum_{j=1}^{n} A_{ij} x_j = 0$$

splitting at k^{th} index.

$$A_{kk}x_k + \sum_{j \neq k} A_{kj}x_j = 0$$

$$A_{kk}x_k = -\sum_{i \neq k} A_{kj}x_j$$

Taking the absolute value of both sides.

$$|A_{kk}x_k| = \left| -\sum_{j \neq k} A_{kj}x_j \right| = \left| \sum_{j \neq k} A_{kj}x_j \right|$$
$$|A_{kk}||x_k| = \left| \sum_{j \neq k} A_{kj}x_j \right|$$

By triangle inequality,

$$|A_{kk}||x_k| \le \sum_{j \ne k} |A_{kj} x_j|$$

$$|A_{kk}||x_k| \leq \sum_{j \neq k} |A_{kj}||x_j|$$

we know that $|x_j| \le |x_k|$ for all $j \ne k$. Substituting this into the inequality:

$$|A_{kk}||x_k| \leq \sum_{j \neq k} |A_{kj}||x_k|$$

$$|A_{kk}||x_k| \leq |x_k| \sum_{j \neq k} |A_{kj}|$$

Since **x** is a non-zero vector, we established that $|x_k| > 0$. Therefore, we can divide both sides of the inequality by $|x_k|$:

$$|A_{kk}| \le \sum_{j \ne k} |A_{kj}|$$

But this contradicts with our assumption that matrix *A* is SDD.

Thus, our initial assumption that $\mathbf{0}$ is an eigenvalue of A must be false and if matrix A is SDD it is invertible.

Problem (11). Alternate Proof of the Spectral Decomposition; *Counts as 2 problems* The aim is to prove that $A = V\Lambda V^{\top}$ for symmetric $A \in \mathbb{R}^{n \times n}$.

- (a) Let V be any subspace of \mathbb{R}^n and $A \in \mathbb{R}^{n \times n}$ be symmetric. Prove that if $Ax \in V$ for every $x \in V$, then $Ay \in V^{\perp}$ for every $y \in V^{\perp}$.
- (b) With the assumptions above, if V is any nontrivial subspace of \mathbb{R}^n (i.e., $V \neq \{0\}$) and $Ax \in V$ for every $x \in V$, prove that V contains an eigenvector of A. (*Hint:* Start with an orthonormal basis of V, say $\{u_1, \ldots, u_k\}$. Write A = UR for some $R \in \mathbb{R}^{k \times k}$. Show that R is symmetric. Next, suppose λ is an eigenvalue of R with eigenvector V. Show that $W = \sum_{i=1}^{k} v_i u_i$ is an eigenvector of R with eigenvalue R.)
- (c) Prove the spectral theorem. (*Hint:* Start with λ_1 , ν_1 the leading eigenvalue/vector of A and let $V_1 = \operatorname{span}(\nu_1)$. Use the above lemmas to find an orthogonal eigenvector $\nu_2 \perp \nu_1$. Iterate the argument to complete the proof.)

Solution. (a) To prove: $\langle Ay, x \rangle = 0$ Let $y \in V^{\perp}$, given $x \in V$ and $Ax \in V$.

Proof. Since $y \in V^{\perp}$,

$$\langle y, Ax \rangle = 0$$

 $\langle A^{\top} y, x \rangle = 0$
 $\langle Ay, x \rangle = 0$

Since $(A\mathbf{y}) \cdot \mathbf{x} = 0$ holds for every $\mathbf{x} \in V$, it proves that $A\mathbf{y}$ is orthogonal to V i.e., $A\mathbf{y} \in V^{\perp}$.

(b) To Prove: $w = \sum v_i u_i$ is an eigenvector of A with eigenvalue λ

Proof. Let $[u_1, ..., u_k]$ be an orthonormal basis of the nontrivial subspace (V). Let $U = [u_1 \cdots u_k]$. Then $U^{\top}U = I_k$ and col(U) = V.

Because *A* maps *V* into *V*, each column Au_j lies in *V* and so can be written as a linear combination of the u_i . Hence there exists an $k \times k$ matrix *R* with

$$AU = UR$$
.

Multiply on the left by U^{\top} . Using $U^{\top}U = I_k$ we get

$$R = U^{\top} A U$$
.

Since A is symmetric, $A^{\top} = A$, so

$$R^{\mathsf{T}} = U^{\mathsf{T}} A U^{\mathsf{T}} = U^{\mathsf{T}} A^{\mathsf{T}} U = U^{\mathsf{T}} A U = R,$$

thus *R* is symmetric. Let $Rv = \lambda v$, where $v \neq 0$ For given,

$$w := Uv = \sum_{j=1}^k v_j u_j \in V.$$

Because $U^{\top}U = I_k$ we have $|w|^2 = v^{\top}U^{\top}Uv = v^{\top}v > 0$, so $w \neq 0$. Now

$$Aw = A(Uv) = (AU)v = (UR)v = U(Rv) = U(\lambda v) = \lambda(Uv) = \lambda w.$$

(c)

Theorem 1.1. Let $A \in \mathbb{R}^{n \times n}$, then \exists orthonormal basis of eigenvectors of A.

Proof. The whole space $V = \mathbb{R}^n$ is nontrivial and A-invariant, so by the lemma (b) there is a nonzero eigenvector v_1 of A with eigenvalue λ_1

We use the lemmas established in the previous problems:

The first problem showed that if *A* is symmetric and $A(\mathbf{x}) \in V$ for all $\mathbf{x} \in V$, then

$$A(\mathbf{y}) \in V^{\perp} \quad \forall \quad \mathbf{y} \in V^{\perp}.$$

Here, $V = V_1 = \operatorname{span}(\mathbf{v}_1)$. The condition $A(\mathbf{x}) \in V_1$ is satisfied because for any $\mathbf{x} = c\mathbf{v}_1 \in V_1$, we have $A\mathbf{x} = A(c\mathbf{v}_1) = c(A\mathbf{v}_1) = c(\lambda_1\mathbf{v}_1) = (\lambda_1c)\mathbf{v}_1$, which is clearly still in V_1 .

Therefore, the previous lemma applies: A preserves the orthogonal complement V_1^{\perp} .

$$\mathbf{y} \in V_1^{\perp} \Longrightarrow A\mathbf{y} \in V_1^{\perp}$$

We can choose an orthonormal basis for V_1^{\perp} ,

$$\{\mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$$

Let *P* be the $n \times (n-1)$ matrix with columns $\mathbf{u}_2, \dots, \mathbf{u}_n$. We can define a matrix (similar to *R* in (b)):

$$A' = P^T A P$$

Since A is symmetric, A' must also be symmetric: $(A')^T = (P^TAP)^T = P^TA^T(P^T)^T = P^TAP = A'$. A' is an $(n-1) \times (n-1)$ symmetric matrix. By (b), A' has n-1 orthonormal eigenvectors, $\mathbf{w}_2, \ldots, \mathbf{w}_n$.

Each eigenvector \mathbf{w}_i of A' corresponds to an eigenvector $\mathbf{v}_i \in V_1^{\perp}$ of A by the transformation:

$$\mathbf{v}_i = P\mathbf{w}_i$$

(This is exactly the construction from the previous problem, $\mathbf{w} = U\mathbf{v}$.)

These vectors $\mathbf{v}_2, \dots, \mathbf{v}_n$ are orthonormal because the \mathbf{w}_i 's are orthonormal, and P has orthonormal columns ($P^TP = I_{n-1}$).

Finally, since $\mathbf{v}_2, \dots, \mathbf{v}_n$ are all in V_1^{\perp} , they are all orthogonal to \mathbf{v}_1 .

We have constructed a set of n vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ that are **Eigenvectors of** A and are **Orthogonal**.

Problem (12). Suppose $A \in \mathbb{R}^{m \times n}$ with SVD $A = U\Sigma V^{\top}$ and that rank(A) = k. Write U, Σ , and V^{\top} in block form as follows

$$U = \begin{bmatrix} U_k & U_{m-k} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_k & 0 \\ 0 & 0 \end{bmatrix}, \quad V^\top = \begin{bmatrix} V_k^\top \\ V_{n-k}^\top \end{bmatrix},$$

where U_k contains the first k left singular vectors, and U_{m-k} contains the remainder, and similarly for V_k , and $\Sigma_k = \text{diag}(\sigma_1, \dots, \sigma_k)$ is diagonal and contains all nonzero singular values of A.

- (a) List the sizes of all of the submatrices involved in the expressions above (including the 0 blocks in Σ)
- (b) Multiply $U\Sigma V^{\top}$ using block matrix multiplication from above, and prove that $U\Sigma V^{\top}$ = $U_k \Sigma_k V_k^{\top}$ (hence $A = U_k \Sigma_k V_k^{\top}$).

Solution. (a) Sizes of the blocks

Given $A \in \mathbb{R}^{m \times n}$ and rank(A) = k:

- U is $m \times m$ orthogonal.
 - U_k contains the first k columns of U, so U_k is $m \times k$.
 - U_{m-k} contains the remaining m-k columns, so U_{m-k} is $m \times (m-k)$.
- Σ is $m \times n$. It is blocked as

$$\Sigma = \begin{bmatrix} \Sigma_k & 0 \\ 0 & 0 \end{bmatrix},$$

where

- Σ_k is the $k \times k$ diagonal matrix diag $(\sigma_1, ..., \sigma_k)$ (the nonzero singular val-
- the top-right zero block has size $k \times (n-k)$,
- the bottom-left zero block has size $(m k) \times k$,
- the bottom-right zero block has size $(m-k) \times (n-k)$. (Together these blocks make an $(m \times n)$ matrix.)
- V is $n \times n$ orthogonal.

 - V_k (first (k) columns) is $n \times k$, so V_k^{\top} is $k \times n$. V_{n-k} is $n \times (n-k)$, so V_{n-k}^{\top} is $(n-k) \times n$. Stacking these gives V^{\top} which is $n \times n$.
- (b) Proof. We start with the block product $U\Sigma V^{\top}$. First we multiply U and Σ . Using the block forms

$$U = \begin{bmatrix} U_k & U_{m-k} \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} \Sigma_k & 0 \\ 0 & 0 \end{bmatrix},$$

we get

$$U\Sigma = \begin{bmatrix} U_k & U_{m-k} \end{bmatrix} \begin{bmatrix} \Sigma_k & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} U_k\Sigma_k & 0 \end{bmatrix}.$$

Here $U_k \Sigma_k$ is $m \times k$ and the zero block is $m \times (n - k)$.

Now multiply this with $V^{\top} = \begin{bmatrix} V_k \\ V_{\perp}^{\top} \end{bmatrix}$:

$$U\Sigma V^{\top} = \begin{bmatrix} U_k \Sigma_k & 0 \end{bmatrix} \begin{bmatrix} V_k^{\top} \\ V_{n-k}^{\top} \end{bmatrix} = U_k \Sigma_k V_k^{\top} + 0 \cdot V_{n-k}^{\top} = U_k \Sigma_k V_k^{\top}.$$

Problem (14). Let $A \in \mathbb{R}^{m \times n}$ have truncated SVD of order k given by $A_k = U_k \Sigma_k V_k^{\top}$.

- (a) Give a formula for $A_k A_k^{\top}$ (make any simplifications you can)
- (b) Give a formula for $A_k^{\top} A_k$ (make any simplifications you can)
- (c) Interpret these formulas.

Solution. Let $A_k = U_k \Sigma_k V_k^{\top}$ where $U_k \in \mathbb{R}^{m \times k}$, $V_k \in \mathbb{R}^{n \times k}$ have orthonormal columns and $\Sigma_k = \operatorname{diag}(\sigma_1, \dots, \sigma_k)$ with $\sigma_1 \geq \dots \geq \sigma_k > 0$.

Lemma 1.2. $V_k^{\top} V_k = I_k$

Proof. We know $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices $(U^{\top}U = I_m, V^{\top}V =$

 U_k and V_k are obtained by **keeping only the first** k **columns** of U and V corresponding to the nonzero singular values $\sigma_1, ..., \sigma_k$. Since the columns of U and V are orthonormal, any subset of them (like the first k) will also be orthonormal - i.e.

$$U_k^{\top} U_k = I_k$$
 and $V_k^{\top} V_k = I_k$.

(a) $\mathbf{A}_{\mathbf{k}} \mathbf{A}_{\mathbf{k}}^{\top}$

$$\begin{aligned} A_k A_k^\top &= (U_k \Sigma_k V_k^\top) (U_k \Sigma_k V_k^\top)^\top \\ &= U_k \Sigma_k V_k^\top V_k \Sigma_k U_k^\top \\ &= U_k \Sigma_k^2 U_k^\top, \end{aligned}$$

since $V_k^{\top} V_k = I_k$. Equivalently,

$$A_k A_k^{\top} = \sum_{i=1}^k \sigma_i^2, u_i u_i^{\top}.$$

(b) $\mathbf{A}_{\mathbf{k}}^{\top} \mathbf{A}_{\mathbf{k}}$

$$\begin{split} A_k^\top A_k &= (U_k \Sigma_k V_k^\top)^\top (U_k \Sigma_k V_k^\top) \\ &= V_k \Sigma_k U_k^\top U_k \Sigma_k V_k^\top \\ &= V_k \Sigma_k^\top V_k^\top, \end{split}$$

since $U_k^{\top}U_k = I_k$. Equivalently,

$$A_k^{\top} A_k = \sum_{i=1}^k \sigma_i^2, \nu_i \nu_i^{\top}.$$

(c) Interpretation

Both $A_k A_k^{\mathsf{T}}$ and $A_k^{\mathsf{T}} A_k$ are symmetric positive semidefinite matrices of rank k.

Proof. Take $A_k A_k^{\top} = U_k \Sigma_k^2 U_k^{\top}$.

$$(A_k A_k^\top)^\top = (U_k \Sigma_k^2 U_k^\top)^\top = U_k \Sigma_k^2 U_k^\top$$

Hence $A_k A_k^{\top}$ is symmetric. Similarly, $(A_k^{\top} A_k)^{\top} = A_k^{\top} A_k$, so both are symmetric.

For any vector x,

$$x^{\top} (A_k A_k^{\top}) x = (A_k^{\top} x)^{\top} (A_k^{\top} x) = |A_k^{\top} x|^2 \ge 0.$$

Therefore, $A_k A_k^{\top}$ is positive semidefinite.

Their eigenpairs are given directly by the truncated SVD: the columns u_i of U_k are eigenvectors of $A_k A_k^{\top}$ with eigenvalues σ_i^2 ; the columns v_i of V_k are eigenvectors of $A_k^{\top} A_k$ with the same eigenvalues σ_i^2 s.

Proof. Multiplying $A_k A_k^{\top}$ by any left singular vector u_i :

$$A_k A_k^\top u_i; =; U_k \Sigma_k^2 U_k^\top u_i.$$

Because the columns u_1,\ldots,u_k are orthonormal, $U_k^{\top}u_i$ is the basis vector e_i . Thus

$$A_k A_k^\top u_i = U_k \Sigma_k^2 e_i = \sigma_i^2 u_i.$$

So each u_i (for $i \le k$) is an eigenvector with eigenvalue σ_i^2 .