No SCIPER:

Examen

Consignes:

Nom:

- Indiquer votre nom et/ou numero SCIPER sur chaque feuille de votre copie et les numeroter.
- Utiliser une nouvelle feuille pour chaque nouvel exercice.

Prenom:

- A la fin de l'examen retourner votre copie dans la feuille A3 pliée.
- Les notes de cours et les notes d'exercices ne sont pas autorisées.
- Le formulaire standard est autorisé.
- Une calculette simple (sans display graphique) est autorisée.
- Sauf mention explicite du contraire on a le droit d'admettre un résultat d'un autre exercice ou d'une question précédente du même exercice pour répondre à une question.
- Dans tout le texte, "symétrie" signifie "symétrie orthogonale".
- Les angles seront représentés sous forme de nombres complexes de modules 1.
- L'examen est long mais il n'est pas nécéssaire de le faire correctement intégralement pour obtenir la note maximale.

Soit G un groupe et $A \subset G$ un sous-ensemble. On rappelle que le sous-groupe engendré par A dans G, noté $\langle A \rangle$, est de manière équivalente :

- Le plus petit sous-groupe de G contenant A.
- L'ensemble des éléments de G qui s'écrivent comme un produit fini (pour la loi de groupe) d'éléments de A ou de leurs inverse.

Si

$$\langle A \rangle = G$$

on dit que G est engendré par A.

Exercice 1. (Questions de cours)

- 1. (Critère de morphisme de groupes) Soit G, H deux groupes et $\varphi : G \to H$ une application de G vers H. Enoncer un critère garantissant que φ est un morphisme de groupes (ce critère ne doit PAS être la définition originelle d'un morphisme de groupes).
- 2. Dire si ces affirmations sont vraies ou fausses (donner les réponses sur votre copie et pas sur le texte de l'examen) :
 - (a) Le groupe des isométries spéciales de la figure 1 (dernière page) est d'ordre 5. V.
 - (b) Pour tout groupe fini d'isométries de \mathbb{R}^2 , il existe un point $\mathbf{P} \in \mathbb{R}^2$ invariant par tout les éléments du groupe. V.
 - (c) La composée de deux symétries affines glissées a toujours au moins un point fixe. F.
 - (d) L'application affine

$$\varphi(x,y) = (y+1, x+1)$$

est une isométrie d'ordre fini. F.

Exercice 2. Soit s la symétrie d'axe la droite d'équation y - x = 1/2. Pour chacune des translations $t_{\vec{v}}$ de vecteur $\vec{v} = (1, 1), (2, 0)$, soit l'isométrie composée $s_{\vec{v}} = s \circ t_{\vec{v}}$.

- 1. Pour $(x,y) \in \mathbb{R}^2$, calculer (X,Y) := s(x,y) en fonction de (x,y).
- 2. Déterminer la nature de $s_{\vec{v}}$ et ses éléments caractéristiques (points fixes etc...).
- 1. Soit s_0 la partie lineaire. c'est la symetrie par rapport a la droite d'equation y-x=0. On a donc

$$s_0(x, y) = (y, x).$$

On a s(x,y) = (y+a,x+b) et pour trouver a,b on note que le point (0,1/2) doit etre fixe car sur la droite. On a donc

$$0 = 1/2 + a$$
, $1/2 = 0 + b \iff a = -1/2, b = 1/2$

et

$$(X,Y) = (y - 1/2, x + 1/2).$$

Ainsi $s = t_{\vec{u}} \circ s_0, \ \vec{u} = (-1/2, 1/2).$

2. On a

$$s \circ t_{(1,1)}(x,y) = ((y+1) - 1/2, (x+1) + 1/2) = s_0(x,y) + (1/2,3/2).$$

Le vecteur (1/2, 3/2) n'est pas perpendiculaire a l'axe de s_0 (de vecteur directeur (1,1)) donc la symetrie est glissee : elle na pas de point fixe et l'axe de sa partielineaire est la droite $\mathbb{R}(1,1)$.

On a

$$s \circ t_{(2,0)}(x,y) = ((y+0) - 1/2, (x+2) + 1/2) = s_0(x,y) + (-1/2, 5/2).$$

Le vecteur (-1/2, 5/2) n'est pas perpendiculaire a l'axe de s_0 (de vecteur directeur (1,1)) donc la symetrie est glissee : elle na pas de point fixe et l'axe de sa partie lineaire est la droite $\mathbb{R}(1,1)$.

Exercice 3. Soit φ defini par

$$\varphi(x,y) = \left(-\frac{3}{5}x - \frac{4}{5}y + \frac{4}{5}, -\frac{4}{5}x + \frac{3}{5}y + \frac{2}{5}\right)$$

- 1. Montrer que φ est une symetrie par rapport à une droite D qu'on precisera.
- 2. Soit r la rotation de centre (0,1) et d'angle $\omega = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ et D' = r(D). Soit $s_{D'}$ la symetrie par rapport a D'. Montrer que

$$s_{D'} = r \circ s_D \circ r^{-1}$$
.

(On pourra considérer des ensembles de points fixes).

- 3. Soient β , β' les paramètres complexes des parties linéaires de s_D et $s_{D'}$. Calculer β' en fonction β et de ω .
- 4. Montrer que $r' := s_{D'} \circ s_D$ est une rotation dont on calculera l'angle.
- 5. Que vaut r'^{2017} ?.
- 1. La partie lineaire de φ a une matrice de la forme

$$\begin{pmatrix} c & s \\ s & -c \end{pmatrix}$$
, $c = -3/5$, $s = -4/5$, $c^2 + s^2 = (9+16)/25 = 1$

c'est donc une symetrie. Cherchons les points fixes

$$x = -\frac{3}{5}x - \frac{4}{5}y + \frac{4}{5}, \ y = -\frac{4}{5}x + \frac{3}{5}y + \frac{2}{5} \Longleftrightarrow 2x + y = 1$$

2. $s' = r \circ s_D \circ r^{-1}$ est une symetrie car sa partie lineaire est $r_0 \circ s_0 \circ r_0^{-1}$ qui est une symetrie (si c'etait une rotation r'_0 alors $s_0 = \operatorname{Ad}(r_0^{-1})(r'_0)$ en serait une). Pour

montrer que c'est $s_{D'}$ il suffit de montrer que s' admet D' comme point fixe; soit $P' = r(P) \in D'$ $(P \in D)$ alors

$$r \circ s_D \circ r^{-1}(P') = r \circ s_D \circ r^{-1}(r(P)) = r(s_D(P)) = r(P) = P'$$

car $P \in D$ est une point fixede s_D .

3. Ces partie lineaires s'exprimes en nombres complexes par

$$z \mapsto \overline{\beta z}, \ z \mapsto \overline{\beta' z}$$

et pour r_0 par $z \mapsto \omega z$ et on a

$$\overline{\beta'z} = \omega \overline{\beta \omega^{-1}z} = \overline{\overline{\omega}\beta\omega^{-1}z} = \overline{\omega^{-2}\beta z}$$

car $\overline{\omega} = \omega^{-1}$ (nb complexe de module 1). Ainsi

$$\beta' = \omega^{-2}\beta.$$

4. La partie lineaire de r' s'exprime en nombres complexes par

$$z \mapsto \overline{\beta'\overline{\beta}\overline{z}} = \overline{\beta'}\beta z = \omega^2\overline{\beta}\beta z = \omega^2 z.$$

L'angle exprime en complexes est donc

$$\omega^2 = i$$

et sont consinus/sinus est (c,s)=(0,1) et en terme de matrice $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. rmk : comme l'angle complexe est $\neq 1$ c'estune vraierotation par une translation.

5. Comme r' est une vraie rotation (pas l'identite ou une translation) elle admet un point unique point fixe (qui est en fait l'intersection de D et D') et ce point est fixe pour tout puissance de r' donc r'^{2017} est une rotation ayant comme point fixe le centre de r'. L'angle complexe de r'^{2017} est $(-1)^{2017} = -1$ qui est l'angle de r'. Comme r'^{2017} et r' on le meme angle et un meme point fixe on a

$$r'^{2017} = r'$$
.

Exercice 4. On considere le plan complexe \mathbb{C} identifié avec \mathbb{R}^2 de la manière usuelle. Pour $\nu \in \mathbb{C}$ un nombre complexe on notera t_{ν} la translation de \mathbb{C}

$$t_{\nu}: z \mapsto z + \nu.$$

Le groupe des translations sera note $T(\mathbb{C})$.

On note \mathcal{C} le carré formé des points 1, i, -1, -i. On note $G_{\mathcal{C}}$ le groupe (fini) des isométries préservant ce carré et $G_{\mathcal{C}}^+$ le sous-groupe des rotations.

Soit

$$G = \langle G_{\mathcal{C}}, t_1 \rangle \subset \mathrm{Isom}(\mathbb{R}^2)$$

le groupe des isométries affines engendré par le groupe $G_{\mathcal{C}}$ et par la translation par le nombre complexe $1, t_1 : z \mapsto z + 1$.

On notera $G_0 \subset \text{Isom}(\mathbb{R}^2)_0$ l'ensemble des parties linéaires des éléments de G et $T_G = T(\mathbb{C}) \cap G$, l'ensemble des translations contenues dans G. L'objectif est de calculer T_G et G_0 .

- 1. Montrer que T_G est un sous-groupe distingué de G.
- 2. Exprimer les 8 éléments de $G_{\mathcal{C}}$ sous forme de transformation sur les nombres complexes (on pourra commencer par les éléments de $G_{\mathcal{C}}^+$, ceux d'un élément de $G_{\mathcal{C}} G_{\mathcal{C}}^+$ et trouver tous les autres).
- 3. Montrer que G_0 est un groupe. Montrer que $G_0 = G_{\mathcal{C}}$ (on pourra écrire un élément de G comme produit fini d'éléments de $G_{\mathcal{C}}$ et de t_1 ou t_{-1}).
- 4. Montrer que tout élément $\varphi \in G$ s'écrit de manière unique sous la forme

$$\varphi = t \circ \varphi_0$$

avec $t \in T_G$ et $\varphi_0 \in G_{\mathcal{C}}$ et que $t = t_{\varphi(0)}$.

5. Montrer que l'ensemble (dit des entiers de Gauss)

$$\mathbb{Z} + i\mathbb{Z} = \{ \nu = m + in, \ m, n \in \mathbb{Z} \} \subset \mathbb{C}$$

est stable par les éléments de G:

$$\forall \varphi \in G, \ \forall \nu \in \mathbb{Z} + i\mathbb{Z}, \ \varphi(\nu) \in \mathbb{Z} + i\mathbb{Z}.$$

(on pourra commencer par montrer la stabilité pour les éléments de $G_{\mathcal{C}}$.)

- 6. Montrer que $T_G \subset T(\mathbb{Z} + i\mathbb{Z}) := \{t_{\nu}, \ \nu \in \mathbb{Z} + i\mathbb{Z}\}.$
- 7. A l'aide d'une conjugaison adéquate montrer que T_G contient t_i puis que

$$T_G = T(\mathbb{Z} + i\mathbb{Z}).$$

1. Soit $g \in G$ et $t \in T_G$, on va mq $gtg^{-1} \in T_G$. Comme le groupe des translation $T(\mathbb{R}^2)$ est distingue dans $Isom(\mathbb{R}^2)$ on a $gtg^{-1} \in T(\mathbb{R}^2)$ et comme $gtg^{-1} \in G$ on a $gtg^{-1} \in T(\mathbb{R}^2) \cap G = T_G$.

2. Pour les isometrie speciales, on a les rotations, lineaires $r_i = r_{i,0} : z \to iz$ et toutes ses puissances d'angles 1, i, $i^2 = -1$, $i^3 = -i$ et donc

$$r_1: z \to z, \ r_i: z \to iz, \ r_{-1}: z \to -z, \ r_{-i}: z \to -iz.$$

Par ailleurs la symetrie lineaire $s.z \to \overline{z}$ est dans G et donc toutes les symetries sont

$$s_1: z \to \overline{z}, \ s \circ r_i = s_i: z \to \overline{iz}, \ s \circ r_{-1} = s_{-1}: z - \overline{z}, \ s \circ r_{-i} = s_{-i}: z \to -\overline{iz}.$$

3. G_0 est l'image de G par l'application partie lineaire lin qui est un morphisme de groupe. C'est donc un groupe. On a $G_{\mathcal{C}} \subset G_0$ car

$$r_1, r_i, r_{-1}, r_{-i}$$

sont dans G et sont lineaires donc egales a leurs partie lineaire. Pour l'inclusion inverse : soit $\varphi \in G_{\mathcal{C}}$ alors φ est un produit d'elements de $G_{\mathcal{C}}$ et de t_1 . Appliquant lin a φ (comme lin est un morphisme) $\operatorname{lin}(\varphi)$ est le produit des parties lineaires des memes elements de $G_{\mathcal{C}}$ (qui sont ces memes elements puisque les element de $G_{\mathcal{C}}$ sont lineaires) et de la partie lineaire de t_1 qui est l'element neutre. Ainsi $\operatorname{lin}(\varphi) \in G_0$ est contenu dans $G_{\mathcal{C}}$.

4. On a $\varphi = t \circ \text{lin}(\varphi)$ et comme $\text{lin}(\varphi) \in G$ (question precedente) on a

$$t = \varphi \circ \lim(\varphi)^{-1} \in G$$

et donc $t \in T(\mathbb{R}^2) \cap G \in T_G$.

5. On a $r_i(\mathbb{Z} + i\mathbb{Z}) = i(\mathbb{Z} + i\mathbb{Z}) = i\mathbb{Z} - \mathbb{Z} = \mathbb{Z} + i\mathbb{Z}$. Donc $\mathbb{Z} + i\mathbb{Z}$ est stable par r_i (et donc par toutes les puissances de r_i .) De plus on a

$$s_1(\mathbb{Z} + i\mathbb{Z}) = \overline{\mathbb{Z} + i\mathbb{Z}} = \mathbb{Z} + \mathbb{Z}(-i) = \mathbb{Z} + i\mathbb{Z}$$

et $\mathbb{Z} + i\mathbb{Z}$ est stable par s_1 . Comme $G_{\mathcal{C}}$ est un produit de puissances r_i et de s_i , $\mathbb{Z} + i\mathbb{Z}$ est stable par tout element de $G_{\mathcal{C}}$. Par ailleurs $t_1(\mathbb{Z} + i\mathbb{Z}) = 1 + \mathbb{Z} + i\mathbb{Z} = \mathbb{Z} + i\mathbb{Z}$ ainsi $\mathbb{Z} + i\mathbb{Z}$ est stable par t_1 et $G_{\mathcal{C}}$ et donc par tout produits de ces elements ainsi que leurs inverses : $\mathbb{Z} + i\mathbb{Z}$ est donc stable par $\langle G_{\mathcal{C}}, t_1 \rangle = G$.

6. Soit $t_{\nu} \in T_G$, on a $t_{\nu}(0) = \nu + 0 = \nu \in \mathbb{Z} + i\mathbb{Z}$ car $\mathbb{Z} + i\mathbb{Z}$ est stable par t_{ν} . Ainsi $\nu \in \mathbb{Z} + i\mathbb{Z}$ et $T_G \subset T(\mathbb{Z} + i\mathbb{Z})$.

7. On a

$$r_i \circ t_1 \circ r_i^{-1} = r_i \circ t_1 \circ r_{-i} : z \to i(1 - iz) = i + z$$

donc $r_i \circ t_1 \circ r_i^{-1} = t_i \in T_G$ car T_G est distingue dans G. Comme pour tout $(m, n) \in \mathbb{Z}^2$ on a

$$t_{m+in} = t_1^m \circ t_i^n \in T_G$$

on a $T(\mathbb{Z} + i\mathbb{Z}) \in T_G$ et donc egalite.

Exercice 5. Le but de cet exercice est de montrer une partie du résultat de théorie des groupes suivant :

Théorème. Soit G un groupe fini d'ordre 2p ou p est un nombre premier > 2 alors G est soit cyclique soit dihedral.

Soit G un groupe d'ordre 2p. On notera le produit de deux éléments g, g' de G, g.g' et pour g' = g, g.g sera aussi noté g^2 ; e_G désignera l'élément neutre.

- 1. Quels sont a priori les ordres possibles des éléments de G?
- 2. Montrer que si G n'est pas commutatif alors G n'a pas d'élément d'ordre 2p.
- 3. Montrer que si tous les éléments de G vérifient

$$q^2 = e_G$$

alors G est commutatif (pour cela on calculera sous cette hypothèse, les commutateurs $[g, g'] = g.g'.g^{-1}.g'^{-1}$ pour $g, g' \in G$).

- 4. On suppose dans toute la suite que G n'est pas commutatif. Montrer que G admet au moins un élément d'ordre p. On notera r un tel élément. Soit $R = r^{\mathbb{Z}}$ le sous-groupe engendre par r. Quels sont les ordres des autres éléments nontriviaux de R.
- 5. Soit G-R l'ensemble des éléments de G qui n'appartiennent pas a R. Montrer que G-R est non-vide et que pour tout $s\in G-R$ on a

$$G - R = s.R = R.s.$$

- 6. Montrer que $s^2 \in R$ puis que $s^2 = e_G$ (on pourra utiliser la question 2.) Pour tout $s' \in G R$ que vaut s'^2 ?
- 7. Montrer que $G = \langle r, s \rangle$ est un groupe dihedral.
- 1. Par le theoreme de Lagrange ils font partie des divisieurs de 2p:1,2,p,2p.
- 2. Si G admet un element d'ordre 2p, cet element engendre un sous-groupe cyclique (donc commutatif) d'ordre 2p qui doit donc etre G tout entier. Ainsi si G n'est commutatif il n'a pas d'elements d'ordre 2p.
- 3. Si $g^2 = e_G$ alors $g^{-1} = g$ et

$$[g, g'] = gg'gg' = (gg')^2 = e_G$$

Donc pour tout $g, g' \in G$,

$$gg'g^{-1}g'^{-1} = e_G \Rightarrow gg' = g'g$$

et g, g' commutent donc G est commutatif.

4. Si G m'est par commutatif les ordre possible de ses elements sont 1, 2, p et ils ne peuvent pas tous etre d'ordre 1 ou 2 par la question precedente. Il exisate donc un element r d'ordre p.

Soit $R = r^{\mathbb{Z}}$ alors R est d'ordre p, tous ces element sont d'ordre 1 ou p. Il n'y a qu'un element d'ordre 1, l'element neutre donc tous les elements non triviaux sont d'ordre p.

5. G-R possede 2p-p elements. Soit $s \in G-R$ alors s.R possede |R|=p element distincts (la translation par s est bijective) et est contenu dans G-R: si $s'=s.r' \in s.R$ etait dans R alors $s=s'r^{-1}$ serait dans R absurde. Donc G-R=s.R. Le meme raisonnement montre que R.s=G-R.

6. On a

$$s.(G-R) = s.G - s.R = G - (G-R) = R \text{ et } s.(G-R) = s.sR = s^2R$$

comme $R = s^2 R$ on a $s^2 \in R$. Si $s^2 = e_G$ on a fini. Sinon s^2 est do'rdre p mais alors s est d'ordre 2p et G est commutatif ce qui est exclu.

La seule hypothese qu'on a fait sur s pour montrer que $s^2 = e_G$ c'est que $s \in G - R$ donc tout autre element de G - R verifie $s'^2 = e_G$.

7. Il faut montrer que

$$srs^{-1} = r^{-1}$$
.

Comme s est d'ordre 2 on a $srs^{-1}r = srsr = (sr)^2 = e_G$ car $sr \in G - R$ est d'ordre 2 et donc

$$srs^{-1}r = e_G \Rightarrow srs^{-1} = r^{-1}.$$