ГУАП

КАФЕДРА № 41

ОТЧЕТ					
ЗАЩИЩЕН С ОЦЕНКОЙ					
ПРЕПОДАВАТЕЛЬ					
старший преподаватель		Е. К. Григорьев			
должн., уч. степень, звание	подпись, дата	инициалы, фамилия			
ОТЧЕТ О Л	АБОРАТОРНОЙ РАБ	SOTE № 5.			
СТАТИСТИЧЕСКИЙ АН	А ПИЗ ЭКСПЕРИМЕ	НТА ПЬНЫХ ЛАННЫХ			
	ASING SKEITEI MIVIE	тти шитих длиних			
		шиг			
по курсу: МОДЕЛИРОВАНИЕ.					
РАБОТУ ВЫПОЛНИЛ					
СТУДЕНТ ГР. № 4217		У. А. Мазориев			
·	подпись, дата	инициалы, фамилия			

Цель работы

Получить навыки обработки выборочных данных средствами Python.

Результат выполнения работы

Программный код, файл с расчетами в формате xlsl можно посмотреть, перейдя по ссылке на GitHub:

https://github.com/Mrx112426/Modelirovanie/tree/main

Ход выполнения работы

Индивидуальное задание: Вариант 10

1. Решение аналитическим способом

Для начала определяться нужное число интервалов для нашей выборки, наша выборка состоит из 50 элементов, в качестве формулы для вычисления оптимального количества интервалов было выбрано соотношение: $z = \sqrt{N}$, где N – количество элементов, т.е. $z = \sqrt{50}$ (рис. 1).

Рисунок 1 – Количество интервалов

Далее вычисляется размах выборки, для этого вычисляется разница между максимальным и минимальным значением (рис. 2).

Рисунок 2 – Размах выборки

Длина интервала вычисляется по формуле R/z = 15.81/7 = 2.26 (рис. 3).

Рисунок 3 – Длина интервала

Далее формируется таблица с границами интервалов, средними значениями, частотой и относительной частотой (рис. 4):

- 1. Количество интервалов известно из предыдущих подсчетов
- 2. Для того чтобы вычислить границы берется минимальное значение начало для первого интервала, чтобы найти его край нужно прибавить длину интервала, следующий интервал будет начинаться с конца предыдущего, причем если первый интервал [-6,51;4;25), то следующий [-4;25;-1;99), последний интервал включает две границы в себя
- 3. Для расчета середина интервала берется среднее значение между границами
- 4. Чтобы определить частоту нужно подсчитать количество значений, который входят в интервал
- 5. Для подсчета относительной частоты используется формула 1/N * w(i) где w(i) частота, а N кол-во значений

Интервалы	Границы интервалов			Частота	Относительная
			интервала		частота
1	-6,51	-4,25	-5,38	3	0,06
2	-4,25	-1,99	-3,12	5	0,1
3	-1,99	0,27	-0,86	19	0,38
4	0,27	2,52	1,39	12	0,24
5	2,52	4,78	3,65	7	0,14
6	4,78	7,04	5,91	3	0,06
7	7,04	9,30	8,17	1	0,02

Рисунок 4 — Таблица интервалов

После вычисляется значения эмпирической функции распределения (рис. 5)

		0	х	(-∞;-5,38)
		0,06	х	[-4,25; -1,99)
			х	[-1,99; 0,27)
Fn(x)	=	0,54	х	[0,27; 2,52)
		0,78	х	[2,52; 4,78)
		0,92	х	[4,78; 7,04)
		0,98	х	[7,04; 9,30]
		1	х	(9,30;∞)

Рисунок 5 – Значения ЭФР

Далее строится график гистограммы выборки (рис. 6).

Рисунок 6 – График гистограммы выборки

После строится график полигона частот (рис. 7).

График полигона частот

Рисунок 7 – График полигона частот

Далее строится график эмпирической функции распределения (рис. 8).

Рисунок 8 – График ЭФР

После считается выборочное среднее M(x), медиана, мода (самое частовстречающееся значения в выборке. Для подсчета медианы в выборки с четным N используется формула $(X_{\frac{N}{2}} + X_{\frac{N}{2}+1}) * \frac{1}{2}$, где $X_{\frac{N}{2}}$ — элемент в отсортированный выборке (рис. 9)

Выборочное среднее М(x)	0,41
Медиана	-0,19
Мода	-1,38

Рисунок 9 – Подсчитанные значения

Далее считается дисперсии выборки, кф асимметрии и эксцесса для их расчета используется формулы на рисунке 10.

$$D(x) = \frac{1}{N-1} \sum_{i=1}^{N} \left(x_i - M(x) \right)^2$$

$$A_s = \frac{m_3}{\sigma^3} = \frac{\sum_{i=1}^{N} \left(x_i - M(x) \right)^3}{N\sigma^3}$$

$$E_k = \frac{m_4}{\sigma^4} - 3 = \frac{\sum_{i=1}^{N} \left(x_i - M(x) \right)^4}{N\sigma^4} - \frac{1}{N\sigma^4}$$

Рисунок 10 – Формулы для расчета

1.4		
Оценка ді выбо	9,37	
Оцен асимм	0,42	
	ка кф есса	0,21

Рисунок 11 – Результат расчета

В конечном счете получаются результаты представленные на рисунке 12.

	Von no untopponon z			Выборочное среднее	0,41	Оценка дисперсии	9,37		
	Кол-во интервалов z	7		M(x)	0,41	0,41	0,41	выборки	3,37
	Размах выборки R			Медиана	-0,19	Оценка кф	0.42		
		15,81				асимметрии	0,42		
	Длина интервала			Мода	-1,38	Оценка кф	0,21		
		2,26				эксцесса	0,21		

Рисунок 12 – Посчитанные значения аналитическим способом

1. Центральная тенденция

Среднее значение (0.41) близко к нулю, что говорит о сбалансированности положительных и отрицательных значений.

Медиана (-0.19) немного меньше среднего, что указывает на небольшую асимметрию в сторону меньших значений.

Мода (-1.38) показывает, что наиболее частое значение находится в отрицательной области.

Размах (15.81) показывает значительное расстояние между минимальным и максимальным значениями.

Дисперсия (9.37) и стандартное отклонение (3.06) указывают на достаточно большой разброс значений.

Коэффициент асимметрии (0.43) положительный, значит, распределение немного скошено вправо (есть больше крупных положительных выбросов).

Коэффициент эксцесса (0.21) положительный, что говорит о том, что выборка немного более "остроконечная", чем нормальное распределение (возможны частые выбросы).

Для наглядности визуализируются график QQ-Plot, который показывает, что распределение имеет небольшое отклонение от нормального, имеются выбросы (рис. 13).

Рисунок 13 – График QQ-plot

2. Решение через Python

Далее пишется скрипт, который считает метрики посчитанные в 1 части, для проверки правильности подсчетов скрипт проверяется на выборки для 1 части, результаты приведены на рисунках 14–17.

Рисунок 14 – Гистограмма выборки для 1 части

Рисунок 15 – Гистограмма выборки для 1 части

Рисунок 16 – ЭФР для 1 части

```
Количество интервалов: 7
Размах 15.81
Длина интервала 2.2585714285714285
Выборочное среднее: 0.4120000000000003
Выборочная дисперсия: 9.369522448979591
Среднеквадратическое отклонение: 3.0609675674498074
Мода: -1.38
Медиана: -0.19
Коэффициент асимметрии: 0.4296208556059158
Коэффициент эксцесса (без коррекции): 0.21344981495423854
```

Рисунок 17 — Результаты подсчетов для 1 части Значения подсчитанные вручную совпадают со значениями в Python.

Далее подсчитываются метрики и строятся графики для 2 части (рис. 17 – рис. 20)

Рисунок 18 – Гистограмма выборки для 2 части

Рисунок 19 – Гистограмма выборки для 2 части

Рисунок 20 – ЭФР для 1 части

Количество интервалов: 70 Размах 17.58565640518573

Длина интервала 0.2512236629312247

Выборочное среднее: 10.732245847296818 Выборочная дисперсия: 13.37588733045089

Среднеквадратическое отклонение: 3.657306020891729

Мода: 2.34424316589137

Медиана: 10.64298492195425

Коэффициент асимметрии: 0.08706783512362702

Коэффициент эксцесса (без коррекции): -0.608756878966727

Рисунок 21 – Результаты подсчетов для 2 части

Среднее (10.73) и медиана (10.64) очень близки, что говорит об относительной симметричности распределения.

Мода (2.34) сильно отличается от среднего и медианы, что может свидетельствовать о наличии второго пика или скошенности распределения.

Размах (17.59) указывает на значительный диапазон значений.

Дисперсия (13.38) и стандартное отклонение (3.66) показывают, что данные довольно широко разбросаны вокруг среднего.

Коэффициент асимметрии близок к нулю, что означает почти симметричное распределение.

Коэффициент эксцесса (-0.61) меньше 0, что говорит о более "плоском" распределении по сравнению с нормальным (распределение имеет менее выраженный пик и более толстые хвосты).

На рисунке 22 показан график QQ-plot для второй выборки.

Рисунок 22 – График QQ-Plot для второй части

Вывод

В ходе работы были получены навыки анализа выборок, их графического отображения и вычисления метрик для определения типа распределения. Первая выборка имеет положительный коэффициент асимметрии (0.43) и небольшой положительный эксцесс (0.21), что указывает на скошенность вправо и остроконечность распределения. QQ-Plot показывает отклонения от нормального распределения, особенно в хвостах. Первая выборка имеет логнормальное распределение.

Вторая выборка характеризуется почти нулевой асимметрией (0.087) и отрицательным эксцессом (-0.61), что говорит о симметричности и более «плоском» распределении по сравнению с нормальным. График QQ-plot опроверг гипотезу о нормальности, распределение треугольное.