Autoencoders

What it is?

- Simple neural network, essentially a MLP with a variation on the topology
- It is designed to reproduce it's input in the output layer - Equal number of input and output neurons

General Concepts

Simplified View

- Just an input layer attempting to re-create itself at the output layer
- **Encoder**: takes information and reduces it to a smaller representation
- Decoder: takes smaller representation and attempts to re-create the input
- This means learning and internal, compressed representation. Learning the important stuff
- Mimic PCA

Tied Weights

*Not biases, just weights

Linear Autoencoder

- Simple data compression
- 3-2-3
- Just simple linear transform, without activation
- Interpret results

Exercise

- Create linear autoencoder
- Print 2d representation of dataset
- Create non-linear autoencoder and compare

Linear Autoencoder

Tutorial (<u>link</u>)

Exercise (<u>link</u>)

Input VAE $V\!AE_{\mathrm{Dis}_l}$ VAE/GAN

Stacked Autoencoder (with activation)

Exercise (<u>link</u>)

Homework - Fashion Mnist

Homework (<u>link</u>)

Digit: 6

Digit: 1

Digit: 4

Digit: 7

Digit: 2

Digit: 5

Digit: 8

