Матрицы и системы линейных алгебраических уравнений (СЛАУ)

Матрицей называют совокупность элементов, расположенных в виде таблицы из m строк и n столбцов.

Обозначение:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

 a_{ij} – элемент матрицы

$$[A]_{ij} = a_{ij}$$

Числа *т* и *п* называют **размерами** матрицы. (другие названия: тип, порядок)

Множество всех матриц размера $m \times n$ обозначаем $M_{mn}(\mathbb{R})$

Частные случаи:

- 1. m = n квадратные матрицы
- 2. n = 1 (т.е. $m \times 1$) m-мерный столбец
- 3. m = 1 (т.е. $1 \times n$) n-мерная строка
- 4. $\forall i, j. [A]_{ii} = 0$ —нулевая матрица

Операции над матрицами:

Две матрицы A и B называются **равными**, если они одинакового размера и соответствующие элементы равны, т.е. $a_{ij} = b_{ij}$

Матрица C называется **суммой** матриц A и B, если все три матрицы одинаковых размеров и $[C]_{ij} = [A]_{ij} + [B]_{ij}, (i = 1...m, j = 1...n)$

Обозначение: C = A + B

Свойства сложения матриц:

- 1. Коммутативность: A + B = B + A
- 2. Ассоциативность: (A + B) + C = A + (B + C)
- 3. \exists нейтральный элемент по сложению матриц $\theta \in M_{mn}(\mathbb{R})$:

 \forall матрицы $A \in M_{mn}(\mathbb{R})$: $A + \theta = A = \theta + A$

- θ Нулевая матрица.
- 4. \forall матрицы $A \in M_{mn}(\mathbb{R}) \exists$ единственное $B \in M_{mn}(\mathbb{R})$: $A + B = \theta$,

т.е. ∀ матрицы ∃ обратная по сложению – противоположная матрица.

Обозначение: **-A** (т.е. $b_{ij} = -a_{ij}$)

Разностью матриц А и В называется сумма А и -В

Транспонированием матрицы называется операция, переводящая все строки матрицы в столбцы с сохранением порядка.

Обозначение: A^{T}

Матрица типа $m \times n$ при транспонировании переходит в матрицу типа $n \times m$.

$$[A]_{ij} = [A^T]_{ji}$$

Пример:

$$(1 \quad 2 \quad 3)_{1\times 3}^T = \begin{pmatrix} 1\\2\\3 \end{pmatrix}_{3\times 1}$$

Умножение матриц:

Рассмотрим матрицу А типа $m \times n$ с элементами a_{ij} (i=1...m,j=1...n) и матрицу В типа $n \times p$ с элементами b_{ke} (k = 1...n, e = 1...p)

Произведением А и В называют матрицу С типа $m \times p$ с элементами $c_{ij} = \sum_{i=1}^{m} a_{ir} b_{rj}$

Умножение матриц не коммутативно:

В общем случае $A \cdot B \neq B \cdot A$

Свойства умножения:

Ассоциативность: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

Пусть A, B, C — матрицы типов
$$m \times n$$
, $n \times k$, $k \times e$ $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

$$[(A \cdot B) \cdot C]_{ij} = \sum_{r=1}^{k} [AB]_{ir} \cdot [C]_{rj} = \sum_{r=1}^{k} (\sum_{s=1}^{n} [A]_{is} \cdot [B]_{sr}) \cdot [C]_{rj} =$$

$$= \sum_{r=1}^{k} \sum_{s=1}^{n} [A]_{is} \cdot [B]_{sr} \cdot [C]_{rj} = \sum_{s=1}^{n} [A]_{is} \cdot (\sum_{r=1}^{n} [B]_{sr} \cdot [C]_{rj}) =$$

$$= \sum_{s=1}^{r_{\overline{n}}^{-1}} [A]_{is} \cdot ([BC]_{sj}) = [A \cdot (B \cdot C)]_{ij}$$

- Дистрибутивность относительно сложения: $(A + B) \cdot C = A \cdot C + B \cdot C$ 2.
- \exists нейтральный элемент $E \in M_n(\mathbb{R})$: $A \cdot E = A = E \cdot A$ 3.

Док-во:

$$A \cdot E = A = E \cdot A [A \cdot E]_{ij} = \sum_{r=1}^{n} [A]_{ir} \cdot [E]_{rj} = [A]_{ij} \cdot [E]_{jj} = [A]_{ij}$$

 \forall матрицы $A \in M_{mn}(\mathbb{R})$: $A \cdot \theta = \theta$ $(A \cdot B)^T = B^T \cdot A^T$

$$5. \quad (A \cdot B)^I = B^I \cdot A^I$$

$$\frac{\underline{\mathcal{I}}o\kappa - 6o:}{(A \cdot B)^T} = B^T \cdot A^T$$

$$[(A \cdot B)^T]_{ij} = [A \cdot B]_{ji} = \sum_{r=1}^n [A]_{jr} \cdot [B]_{ri} = \sum_{r=1}^n [A^T]_{rj} \cdot [B^T]_{ir} = \sum_{r=1}^n [B^T]_{ir} \cdot [A^T]_{rj} = [B^T \cdot A^T]_{ij}$$

Лекпия #2

Элементарные преобразования. Метод Гаусса.

Элементарными преобразованиями строк матрицы называют следующие операции:

- 1. Умножение (i)-ой строки матрицы (λ) $\neq 0$
 - $(i) \longmapsto \lambda(i)$
- 2. Перестановка двух строк местами
 - $(i) \leftrightarrow (j)$
- 3. Добавление к (і)-й строке матрицы ее (k)-й строки с коэффициаентом

$$(i) \rightarrow (i) + \lambda(k)$$

Матрица имеет:

Ступенчатый вид, если номера первых *ненулевых* элементов всех строк (такие элементы называются ведущими) возрастают, а нулевые строки стоят *внизу*

Канонический вид, если матрица имеет *ступенчатый* вид, все ведущие элементы равны 1 и в любом столбце с ведущим элементом выше и ниже его стоят только нули

Теорема О методе Гаусса:

Любую конечную матрицу А можно привести элементарными преобразованиями к ступенчатому (каноническому) виду

Док-во:

Предъявим алгоритм.

Движемся из левого верхнего угла матрицы

Элемент в левом верхнем углу - ткущий

1. Если текущий элемент = 0, переходим к шагу (2)

Если он $\neq 0$, то текущий элемент объявляется ведущим.

Теперь прибавляем ведущую к остальным так, чтобы все элементы, расположенные ниже и выше обратились в 0.

Если ведущий элемент $[A]_{ii}$, то для (k)-ой строки $(k \neq i)$ берём число:

$$\lambda = -[A]_{ki}/[A]_{ij}$$
 Делим ведущую строку на $[A]_{ij}$

Выбираем новый текущий элемент, смещаясь в матрице на 1 столбец вправо на 1 строку вниз и переходим к следующему шагу, повторяя (1).

Если это невозможно, то STOP.

2. Если текущий элемент = 0, то просматриваем все элементы под ним.

Если среди них нет $\neq 0$, то переходим к (3).

Если в k-ой строке есть элемент $\neq 0$, то меняем местами текущую строку и k-ую и переходим к (1)

3. Если текущий элемент и все под ним = 0, то меняем текущий столбец, смещаясь на 1 вправо и переходим к (1), если это невозможно, то STOP

Так как матрица конечна, а за 1 итерацию алгоритма положение текущего элемента смещается вправо на 1 столбец, то процесс преобразований закончится не более, чем за n шагов.

Зам. Каждое элементарное преобразование имеет обратное элементарное преобразование

Зам. Каждое элементарное преобразование строк матрицы А можно трактовать как умножение А слева на матрицу специального вида. Эта матрица получается, если сделать такие же преобразования с единичной матрицей соответствующего размера

Система линейных алгебраических уравнений

СЛАУ называется:

$$\begin{cases} a_{11}x_1+\ldots+a_{1n}x_n=b_1\\ \vdots\\ a_{m1}x_1+\ldots+a_{mn}x_n=b_m\\ \uparrow \textit{(3.1) Координатная форма записи СЛАУ} \end{cases}$$

$$A = egin{pmatrix} a_{11} & . & . & a_{1n} \\ . & . & . & . \\ a_{m1} & . & . & a_{mn} \end{pmatrix}$$
 — Матрица системы; $egin{pmatrix} b_1 \\ . \\ . \\ . \\ . \\ . \\ . \end{pmatrix}$ — столбец правых частей

 $A \cdot x = b$, где

↑ Матричная форма записи СЛАУ

$$\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} \cdot x_1 + \ldots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \cdot x_n = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \quad \Longleftrightarrow \quad x_1 \cdot A_1 + \ldots + x_n \cdot A_N = b$$

↑ (3.2) Векторная форма записи СЛАУ

СЛАУ называется совместной, если у нее существует хотя бы одно решение Если b = 0, то СЛАУ называется **однородной**

Метод Гаусса для СЛАУ

$$r \begin{cases} \begin{pmatrix} 1 & \cdot & \cdot & 0 & \widetilde{a}_{1 \, r+1} & \cdot & \widetilde{a}_{1n} & \widetilde{b}_{1} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & 1 & \widetilde{a}_{r \, r+1} & \cdot & \widetilde{a}_{rn} & \widetilde{b}_{r} \\ \hline 0 & \cdot & \cdot & 0 & 0 & \cdot & 0 & \widetilde{b}_{r+1} \\ 0 & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

Если $\widetilde{b}_{r+1} \neq 0$, то СЛАУ **несовместна**

Если $\widetilde{b}_{r+1}=0$, то перепишем СЛАУ:

$$\begin{cases} x_1 + \sum_{j=1+r}^n \widetilde{a}_{1j} x_j = \widetilde{b}_1 \\ \vdots \\ x_r + \sum_{j=1+r}^n \widetilde{a}_{rj} x_j = \widetilde{b}_r \end{cases}$$

$$\begin{cases} x_1 = \widetilde{b}_1 - \sum_{j=1+r}^n \widetilde{a}_{1j} x_j \\ \vdots \\ x_r = \widetilde{b}_r - \sum_{j=1+r}^n \widetilde{a}_{rj} x_j \end{cases}$$
(3.2)

Переменные $x_1, ..., x_r$ называются **главными**, они единственным образом вычисляются по формуле *3.2* при любом заданном наборе $x_{r+1}, ..., x_n$ (**свободных** переменных)

Произвольный набор $X = (x_1, \dots, x_n)^T$, удовлетворяющий исходной СЛАУ, вычисляется в виде:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_r \\ x_{r+1} \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \widetilde{b}_1 - \sum_{j=1+r}^n \widetilde{a}_{1j} x_j \\ \vdots \\ \widetilde{b}_r - \sum_{j=1+r}^n \widetilde{a}_{rj} x_j \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \widetilde{b}_1 \\ \vdots \\ \widetilde{b}_r \\ 0 \\ \vdots \\ 0 \end{pmatrix} + x_{r+1} \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{r1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \dots + x_n \begin{pmatrix} \phi_{1 n-r} \\ \vdots \\ \phi_{r n-r} \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

где
$$\left(\widetilde{b}_1 \ \ldots \ \widetilde{b}_r \ 0 \ \ldots \ 0\right)^T$$
— частные решения СЛАУ

Определители

Любое расположение чисел $1, \ldots, n$ в определенном порядке называют **перестановкой** $\alpha = (\alpha_1, \ldots, \alpha_n)$

Пример: $\alpha = (3, 1, 2, 4)$

 $lpha_i$ и $lpha_j$ образуют **инверсию**, если $lpha_j > lpha_i$ и i>j

Знак перестановки $\operatorname{sgn} \alpha = (-1)^n$, где $n - \kappa$ оличество инверсий

Транспозиция — преобразование, при котором α меняются α_i и α_j , $i \neq j$, а остальные не меняются

Зам. Любая транспозиция меняет четность

Подстановка — биекция множества 1, ..., n в себя

$$\sigma = \begin{pmatrix} 1 & \cdot & \cdot & n \\ \sigma(1) & \cdot & \cdot & \sigma(n) \end{pmatrix}$$

Биекция — взаимно однозначное отображение

 $f: X \to Y$

- 1. Сюръекция: $\forall y \in Y \exists x \in X : y = f(x)$
- 2. Инъекция: $\forall x_1, x_2 \in X, x_1 \neq x_2 : f(x_1) \neq f(x_2)$

Зам. На множестве всех постановок для n можно ввести операцию умножения композицию $|S_n| = n!$

Определителем порядка n, соответствующим квадратной матрице A, называют сумму из n! слагаемых:

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot a_{1 \sigma(1)} \cdot \ldots \cdot a_{n \sigma(n)}$$

Свойства определителей

Зам. Все свойства для строк справедливы для столбцов

- $\det A^T = \det A$
- Определитель линеен по столбцам, то есть

A.
$$\det(A_1, \dots, A_{i-1}, A_i' + A_i'', \dots, A_n) = \det(A_1, \dots, A_{i-1}, A_i', \dots, A_n) + \det(A_1, \dots, A_{i-1}, A_i'', \dots, A_n)$$

B. $\det(A_1, \dots, \alpha A_i, \dots, A_n) = \alpha \cdot \det(A_1, \dots, A_i, \dots, A_n)$

3. При перестановке строк определитель меняет знак Т.е. Определитель — кососимметрическая функция

<u>Док-во:</u>

Если произведение $a_{1\alpha_1}, \, a_{2\alpha_2}, \, \ldots, a_{i\alpha_i}, \, \ldots, a_{j\alpha_i}, \, \ldots, \, a_{n\alpha_n}$ участвует в первом определителе, то он участвует и во втором

$$\Delta_{1} = \begin{vmatrix} \alpha_{11} & . & . & \alpha_{1m} \\ . & . & . & . \\ \alpha_{i1} & . & . & \alpha_{im} \\ . & . & . & . \\ \alpha_{j1} & . & . & \alpha_{jm} \\ . & . & . & . \\ \alpha_{n1} & . & . & \alpha_{nm} \end{vmatrix}, \Delta_{2} = \begin{vmatrix} \alpha_{11} & . & . & \alpha_{1m} \\ . & . & . & . \\ \alpha_{j1} & . & . & \alpha_{jm} \\ . & . & . & . \\ \alpha_{i1} & . & . & \alpha_{im} \\ . & . & . & . \\ \alpha_{n1} & . & . & \alpha_{nm} \end{vmatrix}$$

Т.е. Если сомножители стояли в разных строках и разных столбыцах в Δ_1 , то они обладают этим же свойством в Δ_2

Знак в
$$\Delta_1$$
 определяется:
$$\sigma = \begin{pmatrix} 1 & . & i & . & j & . & n \\ \alpha_1 & . & \alpha_i & . & \alpha_j & . & \alpha_n \end{pmatrix}$$

A B Δ_2 :

$$\tau = \begin{pmatrix} 1 & . & j & . & i & . & n \\ \alpha_1 & . & \alpha_j & . & \alpha_i & . & \alpha_n \end{pmatrix}$$

$$\Rightarrow \operatorname{sgn} \sigma = -\operatorname{sgn} \tau$$
#

- 4. $\det A = 0$, если
 - А. В матрице есть нулевая строка
 - В. В матрице есть две одинаковые строки
- 5. $\det A = 0$, если одна из строк является линейной комбинацией остальных строк

<u>Док-во:</u>

$$\det(A_1, \dots, \sum_{i=1}^n \alpha_i A_i, \dots, A_n) = \sum_{i=1}^n \alpha_i \cdot \det(A_1, \dots, A_i, \dots, A_n) = 0$$
(no csoŭemsu 46)

6. Определитель не меняется, если к любой строке прибавить линейную комбинацию остальных

Док-во:

$$\det(A_{1}, \dots, A_{j-1}, A_{j} + \sum_{\substack{i=1 \ i \neq j}}^{n} \alpha_{i} A_{i}, A_{j+1}, \dots, A_{n}) = \det(A_{1}, \dots, A_{j-1}, A_{j}, A_{j+1}, \dots, A_{n}) + \det(A_{1}, \dots, A_{j-1}, \sum_{\substack{i=1 \ i \neq j}}^{n} \alpha_{i} A_{i}, A_{j+1}, \dots, A_{n}) = \det A$$

7. $\det E_n = 1$

Если f — линейная функция столбцов матрицы, то свойства (3) и (4B) эквивалентны

Док-во:

$$f(A_1,A_2)$$
 — функция от столбов и она обладает свойствами (4B) и (2) $0=f(A_1+A_2,A_1+A_2)=f(A_1,A_1+A_2)+f(A_2,A_1+A_2)=f(A_1,A_1)+f(A_2,A_1)+f(A_2,A_1)+f(A_2,A_2)=f(A_1,A_2)+f(A_2,A_1)$ $\Rightarrow f(A_1,A_2)=-f(A_2,A_1)$ #

Утв. Любая функция, удовлетворяющая свойствам (2), (4В), (7) является определителем. То есть любая полилинейная кососимметрическая функция от столбцов матрицы, равная 1 для Е, является **определителем**

Док-во:

Пусть f — такая функция, n=2

$$f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = f\begin{pmatrix} a_{11} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} \end{pmatrix} = a_{11} \cdot f\begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix} + a_{21} \cdot f\begin{pmatrix} 0 & a_{12} \\ 1 & a_{22} \end{pmatrix} =$$

$$= a_{11} \cdot f\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, a_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + a_{21} \cdot f\begin{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, a_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} =$$

$$= a_{11} a_{12} \cdot f\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + a_{11} a_{22} \cdot f\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + a_{21} a_{12} \cdot f\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + a_{21} a_{22} \cdot f\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} =$$

$$= a_{11} a_{22} \cdot f\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + a_{11} a_{22} \cdot f\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (a_{11} a_{22} - a_{11} a_{22}) \cdot f(E_{2}) = \det A$$

В матрице A_n вычеркнем і-ю строку и ј-й столбец. Определитель получившейся матрицы называется **дополнительным минором** элемента a_{ij}

Обозначение: M_{ii}

Алгебраическим дополнением элемента a_{ij} называется число $A_{ij} = (-1)^{i+j} M_{ij}$

8. Разложения определителя по строке или столбцу:

$$\det A = \sum_{i=1}^n a_{ij} A_{ij} = \sum_{i=1}^n a_{ij} A_{ij}$$
 — теорема Лапласа

9. Фальшивое разложение

$$\sum_{j=1}^{n} a_{ij} A_{kj} = 0$$
$$\sum_{i=1}^{n} a_{ij} A_{ik} = 0$$

10.
$$\begin{vmatrix} a_{11} & a_{12} & . & a_{1n} \\ 0 & a_{22} & . & . \\ . & . & . & . \\ 0 & . & . & a_{nn} \end{vmatrix} = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$$

11.
$$\det\left(\frac{A \mid *}{0 \mid B}\right) = [A$$
 и B — квадратные] $= \det A \cdot \det B$

12. $\forall A, B \in M_n(\mathbb{R}) : \det(A \cdot B) = \det A \cdot \det B$

<u>Док-во:</u>

 $Paccmoтpum f(B) = det(A \cdot B)$

Покажем, что f(B) выполняются свойства (2) и (4B), то есть она линейна и кососимметрична.

- 1. Если столбцы i и j одинаковы в матрице B, то и в матрице $A \cdot B$ они тоже одинаковы \to выполняется свойство (4B)
- 2. Если в матрице B i-ый столбец имеет вид $\lambda a + b$, то в $A \cdot B$ он имеет вид $\lambda A a + A b \rightarrow$ выполняется свойство (2)
- $\Rightarrow f(B) = \det B \cdot f(E_n), \text{ Ho } f(E_n) = \det(A \cdot E) = \det A \Rightarrow f(B) = \det B \cdot \det A$

Правило Крамера

Утв. Пусть Ax = b — совместная СЛАУ с квадратной матрицей

Тогда $x_i=\det(A_1,\ldots,A_{i-1},b,A_{i+1},\ldots A_n)$ **Зам.** Если $\det A\neq 0\Rightarrow x=\frac{\Delta_i}{\det A}-\Phi$ ормулы Крамера

Док-во:

 $\overline{Ax = b} \Leftrightarrow x_1A_1 + \ldots + x_nA_n = b$, где A_k — столбец матрицы A

$$\Delta_i = \det(A_1, \dots, A_{i-1}, b, A_{i+1}, \dots A_n) = \det(A_1, \dots, A_{i-1}, \sum_{j=1}^n x_j A_j, A_{i+1}, \dots A_n) = \det(A_1, \dots, A_{i-1}, b, A_{i+1}, \dots A_n) = \det(A_1, \dots, A_{i-1}, b, A_{i+1}, \dots A_n)$$

$$= \sum_{j=1}^{n} x_{j} \cdot \det(A_{1}, \dots, A_{i-1}, A_{j}, A_{i+1}, \dots A_{n}) = x_{i} \cdot \det A$$
#

Зам. Пусть
$$a_1 = \begin{pmatrix} a_{11} \\ a_{12} \end{pmatrix}, \ a_2 = \begin{pmatrix} a_{21} \\ a_{22} \end{pmatrix}$$
 — в прямоугольной декартовой системе координат (ПДСК)

Площадь параллелограмма на a_1, a_2

$$S = \left| \det \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \right|$$

Обратная матрица

Обратной матрицей к матрице $A \in M_n(\mathbb{R})$ называется матрица A_n^{-1} , такая что: $AA^{-1} = A^{-1}A = E$

Зам. Обратная матрица существует не всегда (например, для нулевой не существует)

Теор. Критерий существования обратной матрицы

Для $A \in M_n(\mathbb{R}) \exists A^{-1} \Leftrightarrow \det A \neq 0$ (то есть A является невырожденной)

Док-во:

«→» Необходимость:

Дано: $\exists A^{-1}$

Доказать: $\det A \neq 0$

$$\det(A \cdot A^{-1}) = \det E = 1$$

$$\det(A \cdot A^{-1}) = \det E = 1$$

$$\det(A \cdot A^{-1}) = \det A \cdot \det A^{-1} = 1$$

 $\Rightarrow \det A \neq 0$

«←» Достаточночность:

Дано: det $A \neq 0$

Доказать:
$$\exists A^{-1}$$

$$A^{-1} = \frac{1}{\det A} \cdot \widetilde{A}$$
, где \widetilde{A} — союзная матрица

$$\widetilde{A} = egin{pmatrix} A_{11} & . & . & A_{1n} \\ \vdots & & & \vdots \\ A_{n1} & . & . & A_{nn} \end{pmatrix}^T$$
 , где A_{ij} — алгебраическое дополнение к a_{ij}

$$A \frac{1}{\det A} \widetilde{A} = \frac{1}{\det A} \begin{pmatrix} a_{11} & . & . & a_{1n} \\ \vdots & & & \vdots \\ a_{n1} & . & . & a_{nn} \end{pmatrix} \begin{pmatrix} A_{11} & . & . & A_{1n} \\ \vdots & & & \vdots \\ A_{n1} & . & . & A_{nn} \end{pmatrix}^{T} = \begin{pmatrix} \det A & . & . & 0 \\ . & \det A & . & . \\ \vdots & . & . & . & \vdots \\ 0 & . & . & \det A \end{pmatrix} \frac{1}{\det A} = E_{n}$$

#

Зам.
$$\det A^{-1} = \frac{1}{\det A}$$
, если A^{-1} существует

Зам. Если обратная матрица существует, то она единственна.

Док-во:

Пусть
$$B$$
 и B' — обратные к A , тогда $B = BE = B(AB') = (BA)B' = EB' = B'$ #

Зам. $(AB)^{-1} = B^{-1}A^{-1}$, если все матрицы существуют

Док-во:

$$(AB)(A^{-1}B^{-1}) = A(BB^{-1})A^{-1} = AEA^{-1} = AA^{-1} = E$$

 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}EB = B^{-1}B = E$
 $\Rightarrow (AB)^{-1} = B^{-1}A^{-1}$

3am.
$$(A^T)^{-1} = (A^{-1})^T$$

Решение простейших матричных уравнений

1.
$$A \cdot X = B$$
, где A — квадратная невырожденная матрица $A^{-1}A \cdot X = A^{-1}B \to X = A^{-1}B$

2.
$$X \cdot A = B$$

 $X \cdot A^{-1}A = BA^{-1} \to X = BA^{-1}$

3am.
$$(x \cdot A)^T = B^T$$

Вычисление обратной матрицы с помощью элементарных преобразований:

$$Ax = b \Rightarrow (A \mid b) \sim (E \mid x)$$

 $A \Rightarrow (A \mid E) \sim (E \mid A^{-1})$

Ранг матрицы

Минором порядка k в матрице $A_{m \times n}$ называется *определитель* матрицы, составленной из элементов, стоящих на пересечении фиксированных k строк и k столбцов. Обозначение: $M_{i_1..i_k}^{j_1..j_k}$

Рангом матрицы $A_{m \times n}$ называется *порядок* наибольшего *отличного от нуля* минора. *Обозначение*: Rg A

Зам. Определение означает, что в матрице существует минор порядка $r = \operatorname{Rg} A$, отличный от нуля, а все миноры больших порядков либо равны 0, либо не существуют.

Линейная зависимость

Линейной комбинацией строк (столбцов) a_1, \dots, a_k одинаковой длины называют выражение вида $\lambda_1 a_1 + \ldots + \lambda_k a_k$, где $\lambda_1, \ldots, \lambda_k$ — некоторые числа

Строки a_1, \ldots, a_k называются **линейно-зависимыми** (л.з.), если существуют числа $\lambda_1,\ldots,\lambda_k$, не все равные нулю, такие что: $\lambda_1a_1+\ldots+\lambda_ka_k=0$, то есть существует нетривиальная линейная комбинация, равная нулю

Строки a_1, \ldots, a_k называются **линейно-независимыми** (л.н.з.), если из равенства $\lambda_1 a_1 + \ldots + \lambda_k a_k = 0$ следует, что все $\lambda_i = 0, \ i = \overline{1,k}$

Критерий линейной зависимости

Строки $a_1, ..., a_k$ являются л.з. \Leftrightarrow существует одна строка, которая является линейной комбинацией остальных

Док-во:

 $\ll \rightarrow \gg$ Необходимость:

Дано: $a_1, \ldots, a_k - \Lambda$.з.

Док-ть: хотя бы одна из них является л.к. остальных

Существуют числа
$$\alpha_1, \dots, \alpha_k$$
 не все равные нулю, такие что $\alpha_1 a_1 + \dots + \alpha_k a_k = 0$ Пусть $\alpha_1 \neq 0$, тогда $a_1 = -\frac{\alpha_2}{\alpha_1} a_2 + \dots + \frac{\alpha_k}{\alpha_1} a_k = 0$

это и есть линейная комбинация остальных

«←» Достаточность:

Дано: одна из строк — л.к. остальных

Док-ть: $a_1, \ldots, a_k - \Lambda$.з.

Пусть $a_1 = \beta_2 a_2 + \ldots + \beta_k a_k$, тогда

$$1 \cdot a_1 - \beta_2 a_2 - \ldots - \beta_k a_k = 0$$
 — это нетривиальная л.к., так как $1 \neq 0$

Любой отличный от нуля минор, порядок которого равен рангу матрицы, называют базисным минором матрицы.

Строки (столбцы), попавшие в базисный минор, называются базисными.

Свойства ранга

- 1. $\operatorname{Rg} A^T = \operatorname{Rg} A$
- 2. Элементарные преобразования строк не меняют ранга.

Док-во:

Покажем, что
$$\operatorname{Rg} A^T \geqslant \operatorname{Rg} A$$

Если это верно, то Rg
$$A \leq \operatorname{Rg} A^T \leq \operatorname{Rg} (A^T)^T = \operatorname{Rg} A \Rightarrow \operatorname{Rg} A = \operatorname{Rg} A^T$$

Пусть
$$\operatorname{Rg} A = r \Rightarrow \exists \text{ минор } M_{i_1...i_r}^{j_1,...,j_r} \neq$$

Если это верно, то $\operatorname{Rg} A \leqslant \operatorname{Rg} A^T \leqslant \operatorname{Rg} (A^T)^T = \operatorname{Rg} A \Rightarrow \operatorname{Rg} A = \operatorname{Rg} A^T$ Пусть $\operatorname{Rg} A = r \Rightarrow \exists$ минор $M^{j_1,\dots,j_r}_{i_1,\dots,i_r} \neq 0$ В матрице A^T есть минор $N^{i_1,\dots,i_r}_{j_1,\dots,j_r} \neq 0$, получающийся из M транспонированием

$$\Rightarrow N \neq 0 \Rightarrow \operatorname{Rg} A^T \geqslant r = \operatorname{Rg} A$$

Теорема о базисном миноре

- 1. Базисные строки (столбцы), соответствующие любому базисному минору л.н.з.
- 2. Строки (столбцы) матрицы A, не входящие в базисный минор M, являются линейными комбинациями базисных.

Док-во:

1. Предположим, что они л.з.

По критериям линейной зависимости найдется строка, которая является линейной комбинацией остальных

 \Rightarrow по (5) свойству определителя M = 0 — противоречие

2. Будем считать, что базисный минор M расположен в левом верхнем углу

$$A = \begin{pmatrix} r \\ M \\ \vdots \\ a_{r+1} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{r+1} & \cdots & \cdots & a_{rn} \\ \vdots & & \ddots & \vdots \\ a_{r+1} & \cdots & \cdots & \cdots & a_{r+1} \\ \vdots & & \ddots & \vdots \\ a_{m1} & \cdots & \cdots & \cdots & a_{mn} \end{pmatrix}$$

Возьмем и покажем, что существует $\lambda_1, \ldots, \lambda_k$ такие что:

$$A_k = \lambda_1 A_1 + \ldots + \lambda_r A_r$$
, где A_1, \ldots, A_r — базисные строки

Составим определитель:

$$\Delta = \begin{vmatrix} a_{11} & . & . & a_{1r} & a_{1j} \\ \vdots & \vdots & \vdots & \vdots \\ a_{r1} & . & . & a_{rr} & a_{rj} \\ a_{k1} & . & . & a_{kr} & a_{kj} \end{vmatrix}$$

Столбец і выбираем произвольно.

Покажем, что $\Delta = 0$:

Если $j \leqslant r$, то в Δ есть два одинаковых столбца \Rightarrow по (4B) $\Delta = 0$

Если j > r, то $\Delta -$ это минор порядка r + 1 в исходной матрице $A \Rightarrow \Delta = 0$

Разложим Δ по последнему столбцу:

$$a_{1j}B_1 + \ldots + a_{rj}B_r + a_{kj}B_k = 0,$$

где B_i — алгебраические дополнения в Δ для элементов последнего столбца.

$$B_k = M \neq 0$$
, так как это базисный минор $a_{kj} = -\frac{B_1}{M} a_{1j} - \ldots - \frac{B_r}{M} a_{rj} = \lambda_1 a_{1j} + \ldots + \lambda_r a_{rj}$, где $j=1..n$ и $k=r+1..m$

$$(a_{k1}\dots a_{kn})=\lambda_1\,(a_{11}\dots a_{1n})+\dots+\lambda_r\,(a_{r1}\dots a_{rn})$$
 , где $(a_{k1}\dots a_{kn})-k$ -тая строка

— это и есть нужное равенство для строк

Следствие 1.

Теорема о ранге матрицы

Ранг матрицы равен максимальному числу ее л.н.з. сток (столбцов)

Док-во:

Пусть $\operatorname{Rg} A = r$, а максимальное число л.н.з. строк -k

Покажем, что k = r

- 1. Так как в А есть r л.н.з. строк (по т. О базисном миноре все базисные строки л.н.з.) $\Rightarrow k \geqslant r$
- 2. Вычеркнем в A все строки, кроме k л.н.з.

Получим матрицу A_1 , в ней k строк.

При этом $\operatorname{Rg} A_1 = k$, так как если бы $\operatorname{Rg} A_1$ был бы < k, то среди строк как минимум одна выражалась бы через другие по т. О базисном миноре и они были бы л.з. по критерию линейной зависимости.

В матрице A_1 возьмем базисный минор порядка k

Базисный минор A_1 имеет порядок k и является отличным от нуля минором в исходной матрице $A \Rightarrow \operatorname{Rg} A = r \geqslant k \Rightarrow k = r$

#

Следствие 2.

Теор. Критерий невырожденности квадратной матрицы

Рассмотрим матрицу $A_n \in M_n(\mathbb{R})$

Следующие условия эквивалентны:

- 1. $\det A \neq 0$
- 2. $\operatorname{Rg} A = n$
- 3. Все строки A л.н.з.

Док-во:

 $(1 \rightarrow 2)$

Если det $A \neq 0$, то в матрице есть минор порядка n, $\neq 0 \Rightarrow$ по определению Rg A = n $(2 \rightarrow 3)$

Пусть $\operatorname{Rg} A = n \Rightarrow$ все строки базисные \rightarrow по теореме они все л.н.з.

 $(3 \rightarrow 1)$

Пусть все строки л.н.з.

Предположим, что $\det A = 0 \Rightarrow \operatorname{Rg} A < n \Rightarrow$ по крайней мере одна строка линейно выражается через другие \Rightarrow по критерию линейной зависимости они линейно зависимы — противоречие

#

Вычисление ранга матрицы

Минор N называется **окаймляющим** для минора M матрицы A, если N получается добавлением к M одной новой строки и одного нового столбца из матрицы A.

y_{TB} .

- 1. Пусть в матрице $A \in M_{mn}(\mathbb{R})$ существует минор порядка r, отличный от нуля
- 2. Все миноры, его окаймляющие, равны нулю $\Rightarrow \operatorname{Rg} A = r$

Док-во:

Пусть M (базисный минор) расположен в левом верхнем углу матрицы Тогда по т. О базисном миноре строки, не вошедшие в базисный минор, линейно выражаются через базисные:

$$A_{r+1} = \lambda_1 A_1 + \ldots + \lambda_r A_r$$

...
$$A_m = \alpha_1 A_1 + \ldots + \alpha_r A_r$$

Сделаем следующие элементарные преобразования: (обнулим все строки, кроме базисных)

$$A_{r+1} - \lambda_1 A_1 - \ldots - \lambda_r A_r \sim A_{r+1}$$

$$\ldots$$

$$A_m - \alpha_1 A_1 - \ldots - \alpha_r A_r \sim A_m$$

Получится матрица:

$$A_{1} = \begin{pmatrix} M & \begin{vmatrix} a_{1 \ r+1} & \cdot & a_{1n} \\ \vdots & & \vdots \\ a_{r \ r+1} & \cdot & a_{rn} \\ 0 & \cdot & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \\ 0 & \cdot & \cdot & \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

Так как ранг не меняется при элементарных преобразованиях $\operatorname{Rg} A = \operatorname{Rg} A_1$ A $\operatorname{Rg} A_1 = r$, так как в A_1 все миноры порядка r+1 равны нулю (они содержат нулевую строку)

Свойства решений СЛАУ:

1. Пусть x^1, \dots, x^s — решения однородной СЛАУ Ax = 0 Тогда для любых $\lambda_1, \dots, \lambda_s$: $\lambda_1 x^1 + \dots + \lambda_s x^s$ тоже является решением однородной СЛАУ Ax = 0

Ποκ-βο:

$$A(\lambda_1 x^1 + ... + \lambda_s x^s) = \lambda_1 A x^1 + ... + \lambda_s A x^s = 0 + ... + 0 = 0$$
#

2. Пусть x^1 — решение СЛАУ Ax = b, а x^2 — решение СЛАУ Ax = 0 (с той же матрицей) Тогда $x^1 + x^2$ — решения СЛАУ Ax = b

$$\underline{A(x^1 + x^2)} = Ax^1 + Ax^2 = b + 0 = b$$

3. Если x^1 и x^2 — решения неоднородной СЛАУ Ax = b, то $x^1 - x^2$ — решения однородной СЛАУ Ax = 0

$$\frac{\underline{A}\underline{o}\kappa - \underline{s}\underline{o}:}{A(x^1 - x^2)} = Ax^1 - Ax^2 = b - b = 0$$

Критерий совместности СЛАУ

Рассмотрим неоднородную СЛАУ Ax = b, где $A \in M_{mn}(\mathbb{R})$ Матрицу $(A \mid b)_{m,n+1}$ называют **расширенной** матрицей системы

Теорема Кронекера-Капелли

СЛАУ Ax = b совместна $\Leftrightarrow \operatorname{Rg} A = \operatorname{Rg} (A \mid b)$

Док-во:

«→» Необходимость:

Дано: В решение СЛАУ

 \mathcal{L} ок-ть: $\operatorname{Rg} A = \operatorname{Rg} (A \mid b)$

Если СЛАУ совместна, то существует решение x^0

То есть
$$\exists \ x^0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix}$$
 такое, что $\ x_1^0A_1 + \ldots + x_n^0A_n = b,$ где A_j — столбцы м-цы A

 \Rightarrow Rg $(A \mid b)$ совпадает с Rg A

Т.к. ранг равен максимальному числу л.н.з. столбцов, а для столбца b нашлось выражение через столбцы матрицы A

«←» Достаточность:

 \mathcal{L} ано: $\operatorname{Rg} A = \operatorname{Rg} (A \mid b)$

Док-ть: СЛАУ A x = b совместна

Пусть М — базисный минор матрицы А

Пусть он расположен в левом верхнем углу матрицы А

Тогда он является базисным минором для $(A \mid b)$, так как $Rg \mid A = Rg \mid (A \mid b)$

Тогда по т. О базисном миноре столбец в линейно выражается через столбцы

$$A_1, \dots, A_r \colon b = \lambda_1 A_1 + \dots + \lambda_r A_r$$
 Тогда $x^0 = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ является решением СЛАУ $Ax = b$

#

Однородные СЛАУ

Рассмотрим СЛАУ Ax=0, где $A\in M_{mn}(\mathbb{R})$ Любые

- 1. k = n r строк (r = Rg A, n число неизвестных)
- 2. л.н.з.
- 3. решений однородной СЛАУ

называются фундаментальной системой решений (ФСР) однородной СЛАУ

Теорема о существовании ФСР

Рассмотрим СЛАУ Ax = 0

У нее всегда существует k = n - r л.н.з. решений ($r = \operatorname{Rg} A$, $n - \operatorname{число}$ неизвестных)

Док-во:

Будем предполагать, что базисный минор расположен в левом верхнем углу Сделаем элементарные преобразования: (обнулим все строки, кроме базисных)

$$A_{r+1} - \lambda_1 A_1 - \ldots - \lambda_r A_r \sim A_{r+1}$$

$$\ldots$$

$$A_m - \alpha_1 A_1 - \ldots - \alpha_r A_r \sim A_m$$

Тогда получим систему:

$$(*) \begin{cases} a_{11}x_1 + \dots + a_{1r}x_r = -a_{1\ r+1}x_{r+1} - \dots - a_{1n}x_n \\ \vdots \\ a_{r1}x_1 + \dots + a_{rr}x_r = -a_{r\ r+1}x_{r+1} - \dots - a_{rn}x_n \end{cases}$$

Злесь:

 x_1, \dots, x_r — базисные (главные) переменные x_{r+1}, \dots, x_n — свободные переменные

Придадим свободным переменным следующие наборы значений:

1-и набор	2-и наоор	•	к-и наоор
$x_{r+1} = 1$	$x_{r+1} = 0$		$x_{r+1} = 0$
$x_{r+2} = 0$	$x_{r+2} = 1$	•	$x_{r+2} = 0$
•••	•••	•	•••
$x_{n-1} = 0$	$x_{n-1} = 0$	•	$x_{n-1} = 0$
$x_n = 0$	$x_n = 0$	•	$x_n = 1$

Для каждого набора решим СЛАУ (*)

Она всегда имеет $\exists !$ решение, так как ее определитель — это базисный минор $M \neq 0 \to \exists !$ решение по правилу Крамера

Получим следующие решения:

Для 1-го набора:
$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \end{pmatrix}$$
, для 2-го: $\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{21} \\ \vdots \\ \phi_{2r} \end{pmatrix}$, ... , для k-го: $\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{k1} \\ \vdots \\ \phi_{kr} \end{pmatrix}$

Тогда столбцы:
$$\Phi_1 = \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \} \begin{array}{c} r \\ r \\ \phi_{kr} \\ 0 \\ \vdots \\ n-r \\ 0 \\ \vdots \\ 0 \\ 1 \end{array}$$

 Φ_1, \ldots, Φ_k — решения исходной однородной СЛАУ

Покажем, что они л.н.з.

Рассмотрим равенство:

$$\alpha_{1}\begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \alpha_{k}\begin{pmatrix} \phi_{k1} \\ \vdots \\ \phi_{kr} \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} * \\ \vdots \\ \alpha_{1} \\ \vdots \\ \alpha_{k} \end{pmatrix} \right\} r = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ \alpha_{k} \end{pmatrix} \right\} r = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \alpha_{1} = \ldots = \alpha_{k} = 0, \text{ то есть } \Phi_{1}, \ldots, \Phi_{k} \text{ л.н.з. по определению} \Rightarrow \text{ они образуют } \Phi \text{CP}$$

Зам. ФСР, построенная в ходе доказательства, называется нормальной, так как в каждом столбце одна свободная переменная равна 1, а остальные равны 0

Следствие

Критерий существования ненулевых решений однородной квадратной СЛАУ Однородная квадратная СЛАУ Ax=0 имеет решение $\neq 0 \Leftrightarrow \det A=0$

Утв. Рассмотрим $A \in M_n(\mathbb{R})$. Однородная СЛАУ Ax = 0 имеет решения $x \neq 0 \Leftrightarrow \det A = 0$

Док-во:

 $\ll \to \gg$ Необходимость: Дано: СЛАУ A x=0 имеет решения $x \neq 0$ Док-ть: $\det A=0$ Предположим, что $\det A \neq 0$, тогда по формулам Крамера \exists ! решение $x_i = \frac{\Delta_i}{\det A}$, где $\Delta_i = 0 \to x_i = 0$ — противоречие $\ll \to \gg$ Достаточность: Дано: $\det A=0$ Док-ть: $\exists x \neq 0$ A x=0 $\det A=0 \Rightarrow \operatorname{Rg} A < n \Rightarrow k=n-\operatorname{Rg} A > 0$ Тогда по т. О существовании Φ CP найдется k л.н.з. решений. Они являются ненулевым

#

Теорема о структуре общего решения однородной СЛАУ

Пусть $\Phi_1, \dots, \Phi_k - \Phi$ СР однородной СЛАУ Ax = 0. Тогда любое решение этой СЛАУ можно представить в виде $x = c_1\Phi_1 + \dots + c_k\Phi_k$, где c_i — коэффициенты

<u>Док-во:</u>

Пусть
$$x^0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix}$$
 — произвольное решение однородной СЛАУ.

Предположим, что базисный минор расположен в левом верхнем углу матрицы A Тогда можно выразить базисные переменные $(x_1 \quad \cdots \quad x_r)$ через свободные $(x_{r+1} \quad \cdots \quad x_n)$

(7.1)
$$\begin{cases} x_1 = -\alpha_1 \,_{r+1} x_{r+1} + \ldots + \alpha_{1n} x_n \\ \vdots \\ x_r = \alpha_r \,_{r+1} x_{r+1} + \ldots + \alpha_{rn} x_n \end{cases}$$
, где α_{ij} — некоторые числа

Составим матрицу:

$$D = \begin{pmatrix} x_1^0 & \phi_{11} & . & \phi_{k1} \\ . & . & . & . & . \\ x_r^0 & \phi_{1r} & . & \phi_{kr} \\ x_{r+1}^0 & \phi_{1\,r+1} & . & \phi_{k\,r+1} \\ . & . & . & . & . \\ x_n^0 & \phi_{1n} & . & \phi_{kn} \end{pmatrix} -$$
это записанные друг за другом столбцы $x^0, \Phi_1, \ldots, \Phi_k$

Покажем, что $\operatorname{Rg} D = k$

- 1. Rg $D\geqslant k$, т.к. Φ_1,\ldots,Φ_k л.н.з. , а по определению Rg $D\geqslant k$
- 2. Rg $D \le k$, т.к. $x^0, \Phi_1, \dots, \Phi_k$ решения СЛАУ Ax = 0

Тогда для них выполнимо (7.1)

$$\begin{cases} x_1^0 = -\alpha_{1\ r+1} \cdot x_{r+1}^0 + \dots + \alpha_{1n} \cdot x_n^0 \\ \phi_{11} = \alpha_{1\ r+1} \cdot \phi_{1\ r+1} + \dots + \alpha_{1n} \cdot \phi_{1n} \\ \vdots \\ \phi_{k1} = \alpha_{1\ r+1} \cdot \phi_{k\ r+1} + \dots + \alpha_{1n} \cdot \phi_{kn} \end{cases}$$

To есть первая строка d_1 матрицы D — линейная комбинация строк d_{r+1} . . d_n :

$$d_1 = \alpha_{1\ r+1} \cdot d_{r+1} + \ldots + \alpha_{1n} \cdot d_n$$

Аналогично со всеми строками до *r*-той:

$$d_r = \alpha_{r+1} \cdot d_{r+1} + \ldots + \alpha_{rn} \cdot d_n$$

Сделаем элементарные преобразования:

$$d_1 - \alpha_{1\,r+1} \cdot d_{r+1} - \ldots - \alpha_{1n} \cdot d_n \rightsquigarrow d1$$

$$d_r - \alpha_{r\,r+1} \cdot d_{r+1} - \ldots - \alpha_{rn} \cdot d_n \sim dr$$

Тогда $D \sim D_1$:

$$D_{1} = \begin{pmatrix} 0 & . & . & 0 \\ . & . & . & . & . \\ 0 & . & . & 0 \\ x_{r+1}^{0} & \phi_{1 r+1} & . & \phi_{k r+1} \\ . & . & . & . & . \\ x_{n}^{0} & \phi_{1n} & . & \phi_{kn} \end{pmatrix}$$

 \Rightarrow Rg $D_1 \leqslant k$, а при элементарных преобразованиях ранг не меняется \Rightarrow Rg $D \leqslant k$ $\Rightarrow \operatorname{Rg} D = k$

 \Rightarrow Столбцы Φ_1, \ldots, Φ_k — базисные (они л. н. з.)

 \Rightarrow x^0- линейная комбинация Φ_1,\ldots,Φ_k (по т. О базисном миноре)

$$\Rightarrow \exists c_1, ..., c_k : x^0 = c_1 \Phi_1 + ... + c_k \Phi_k$$

Теорема о структуре общего решения неоднородной СЛАУ

Рассмотрим СЛАУ Ax = b, $A \in M_{mn}(\mathbb{R})$

Пусть известно частное решение \widetilde{x} СЛАУ Ax = b

Тогда любое решение этой СЛАУ может быть представлено в виде

 $x=\widetilde{x}+c_1\Phi_1+\ldots+c_k\Phi_k$,где Φ_1,\ldots,Φ_k — ФСР соответствующей однородной СЛАУ Ax = 0, а $c_1, ..., c_k$ — некоторые числа

Док-во:

Пусть x^{0} — произвольное решение СЛАУ Ax = b

Тогда $(x^0 - \widetilde{x})$ — решение однородной СЛАУ Ax = 0 (по свойству решений)

⇒ По т. О структуре решений однородной СЛАУ

$$\exists c_1, \dots, c_k : x^0 - \widetilde{x} = c_1 \Phi_1 + \dots + c_k \Phi_k$$

$$\Rightarrow x^0 = \widetilde{x} + c_1 \Phi_1 + \dots + c_k \Phi_k$$

$$\Rightarrow x^0 = \widetilde{x} + c_1 \Phi_1 + \ldots + c_k \Phi_k$$

Зам. Решения СЛАУ Ax = b всегда представляемо в виде

 $X_{\text{общ неод}} = X_{\text{частн неод}} + X_{\text{общ од}}$

Комплексные числа

№ — Натуральные числа

 \mathbb{Z} — Целые числа

С — Комлексные числа

Множество пар вещественных чисел с двумя операциями:

1.
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) -$$
сложение

2.
$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1) -$$
умножение

Называется **комплексами числами** и обозначается C

Мнимая единица:

$$i^2 = (0,1)(0,1) = (-1,0) = -1$$

Любое число может быть представлено в виде:

$$z = (x, y) = (x,0)(1,0) + (y,0)(0,1) = x \cdot 1 + i \cdot y$$

Тут $x = Re \ z$ — вещественная часть, $y = Im \ z$ — мнимая часть

Свойства операций:

 $\forall a,b,c\in\mathbb{C}$

1.
$$a + b = b + a$$

2.
$$(a+b)+c=a+(b+c)$$

3.
$$\exists 0 = (0,0) : a + 0 = a$$

4.
$$\forall a \exists (-a) : a + (-a) = 0$$

5.
$$a \cdot b = b \cdot a$$

6.
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

7.
$$\exists 1 = (1,0) : a \cdot 1 = a$$

8.
$$\forall a \neq 0 \ \exists \ a^{-1} : a \cdot a^{-1} = 1$$

9.
$$(a+b) \cdot c = a \cdot c + b \cdot c$$

 $\Rightarrow \mathbb{C}$ — поле (а его элементы могут называться числами)

Полярная система координат:

 $z(r,\phi)$ — полярные координаты

$$x = r \cdot \cos \phi \to r = \sqrt{x^2 + y^2}$$

 $z = x + i \cdot y = r \cdot \cos \phi + i \cdot r \cdot \sin \phi = r \cdot (\cos \phi + i \cdot \sin \phi)$ (алгебраическая и тригонометрическая формы записи)

r = |z| -**модуль** комплексного числа $\phi = Arg \ z = \{arg \ z + 2\pi k, k \in Z\}$ — аргумент комплексного числа

Главное значение аргумента arg z:

- 1. $arg z \in [0, 2\pi)$
- **2.** arg $z \in (-\pi, \pi]$

Утв. $z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\phi_1 + \phi_2) + i \cdot \sin(\phi_1 + \phi_2))$

$$z_{1} \cdot z_{2} = r_{1} \cdot r_{2} \cdot (\cos \phi_{1} + i \cdot \sin \phi_{1}) \cdot (\cos \phi_{2} + i \cdot \sin \phi_{2}) =$$

$$= r_{1} \cdot r_{2} \cdot (\cos \phi_{1} \cos \phi_{2} - \sin \phi_{1} \sin \phi_{2} + i(\cos \phi_{1} \sin \phi_{2} + \cos \phi_{2} \sin \phi_{1})) =$$

$$= r_{1} \cdot r_{2} \cdot (\cos(\phi_{1} + \phi_{2}) + i \cdot \sin(\phi_{1} + \phi_{2}))$$
#

Комплексное сопряжение

$$z = a + ib$$

$$\overline{z} = a - ib$$

$$z \cdot \overline{z} = (a + ib)(a - ib) = a^2 + b^2 = |z|^2 \in \mathbb{R}$$

1.
$$\frac{z_1}{z_2} \cdot \frac{\overline{z}_2}{\overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2}$$
, $z_2 \neq 0$

1.
$$\frac{z_1}{z_2} \cdot \frac{\overline{z}_2}{\overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2}, z_2 \neq 0$$
2.
$$\frac{z_1}{z_2} = \frac{r_1(\cos\phi_1 + i\sin\phi_1)}{r_2(\cos\phi_2 + i\sin\phi_2)} = \frac{r_1}{r_2}(\cos(\phi_1 - \phi_2) + i\sin(\phi_1 - \phi_2)), r_2 \neq 0$$

Утв. Формула Муавра

$$z^{n} = r^{n} \cdot (\cos(n\phi) + i \cdot \sin(n\phi))$$

Док-во:

При
$$n=2$$
:

$$z^2 = r^2 \cdot (\cos(2\phi) + i \cdot \sin(2\phi))$$
 — база индукции

Пусть утверждение верно для всех $n \le k$

Покажем, что из этого следует, что оно верно для всех n = k + 1:

$$z^{k+1} = r^k \cdot r \cdot (\cos(k\phi) + i \cdot \sin(k\phi))(\cos\phi + i \cdot \sin\phi) = r^{k+1} \cdot (\cos(k\phi + \phi) + i \cdot \sin(k\phi + \phi))$$

По определению математической индукции утверждение верно для $\forall n \in \mathbb{N}$

Извлечение комплексного корня

Дано число $\omega = \rho(\cos \psi + i \sin \psi)$ и число $n \in \mathbb{N}$

Нужно найти корень *n*-ой степени из ω , то есть $\sqrt[n]{\omega}$, то есть нужно найти все $z:z^n=\omega$ Пусть $z = r \cdot (\cos \phi + i \cdot \sin \phi)$,

тогда по формуле Муавра: $z^n = r^n \cdot (\cos(n\phi) + i \cdot \sin(n\phi)) = \omega$

$$\Rightarrow \begin{cases} \rho = r^n \\ \psi + 2\pi k = \phi n \end{cases} , k \in \mathbb{Z}$$

$$\Rightarrow \begin{cases} r = \sqrt[n]{\rho} \\ \phi = \frac{\psi + 2\pi k}{n} \end{cases}, k \in \mathbb{Z}$$

Достаточно взять
$$k=0,1,\ldots,n-1$$

$$\sqrt[n]{\omega}=\{\sqrt[n]{\rho}\cdot(\cos\frac{\psi+2nk}{n}+i\cdot\sin\frac{\psi+2nk}{n})\}$$

Утв. Формула Эйлера $e^{i\phi} = \cos \phi + i \sin \phi$

$$e^{-i\phi} = \cos\phi - i\sin\phi$$

$$\cos\phi = \frac{e^{i\phi} + e^{-i\phi}}{2}$$

$$\sin \phi = \frac{e^{i\phi} - e^{-i\phi}}{2i}$$

 \exists корень $z_0 \in \mathbb{C}$

Следствие

У многочлена $P_n(z)$ степени $n\in\mathbb{N}$ есть ровно n корней с учетом кратности

Зам. Говорят, что поле $\mathbb C$ алгебраически замкнуто

Разложение многочленов на неприводимые множители

Разложение многочленов на неприводилири лиции f(x) = g(x)h(x) называется **нетривиальным**, если $\begin{cases} \deg g < \deg f \\ \deg h < \deg f \end{cases}$

Многочлен называется **приводимым**, если существует *нетривиальное* разложение f = gh, и неприводимым, если такого не существует

Теорема Безу

Остаток от деления f(x) на x-a равен f(a)

Док-во:

Разделим f(x) на x - af(x) = (x - a)Q(x) + R(x), где R(x) — остаток $\deg R(x) < \deg(x - a) = 1 \rightarrow \deg R(x) = 0 \rightarrow \deg R(x) - \operatorname{const}$ $f(a) = (a - a)Q(a) + \text{const} \rightarrow R(x) = f(a)$

I. Комплексный многочлен степени n над полем $\mathbb C$

Раскладываются в произведение:

$$P_n(z)=a_n(z-z_1)\cdot\ldots\cdot(z-z_n)$$
, где $a_n,z_i\in\mathbb{C}$ $P_n(z)=a_n(z-z_1)^{\alpha_1}\cdot\ldots\cdot(z-z_k)^{\alpha_k}$, где z_1,\ldots,z_k различны, $\alpha_1+\ldots+\alpha_k=n$ Это следствие из основной теоремы алгебры и теоремы Безу

II. Многочлены с действительными коэффициентами

Если $z_0 \in \mathbb{C}$ является корнем кратности k многочлена f(x) с действительными коэффициентами, то и \overline{z}_0 является корнем f(x) кратности k

$$\triangleright z_0$$
 является корнем $P(z_0) = 0$

$$P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$
 , где $a_i \in \mathbb{R}$

$$\overline{a_n z_0^n + a_{n-1} z_0^{n-1} + \ldots + a_1 z_0 + a_0} = \overline{0} = 0$$

$$\overline{a_n} (\overline{z_0})^n + \overline{a_{n-1}} (\overline{z_0})^{n-1} + \ldots + \overline{a_1} \overline{z_0} + \overline{a_0} = 0$$

$$a_n (\overline{z_0})^n + a_{n-1} (\overline{z_0})^{n-1} + \ldots + a_1 \overline{z_0} + a_0 = 0$$
То есть, $\overline{z_0}$ является корнем \triangleleft

Утв. 2

$$\begin{aligned} &(x-z_0)(x-\overline{z_0}) = x^2 - 2\text{Re}\,z_0\,\,x + |z_0|^2 \\ & \rhd (x-(a+ib))(x-(a-ib)) = x^2 - x(a-ib) - x(a+ib) + (a+ib)(a-ib) = \\ &= x^2 - 2ax + a^2 + b^2 = x^2 - 2\text{Re}\,z_0x + |z_0|^2 \end{aligned}$$

3ам. Над $\mathbb R$ неприводимы все многочлены первой степени и все многочлены второй степени с D < 0, а остальные приводимы

Следствие

Каноническое разложение f(x) с вещественными коэффициентами имеет вид $f(x) = a_n(x - c_1)^{k_1} \dots (x - c_s)^{k_s} (x^2 + p_1 x + q_1)^{L_1} \dots (x^2 + p_t x + q_t)^{L_t}$

Теорема Виета

Пусть
$$c_1, \ldots, c_n$$
 — корни многочлена степени n
$$P(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$$
 , тогда
$$a_{n-1} = -(c_1 + \ldots + c_n)$$

$$a_{n-2} = c_1c_2 + c_1c_3 + \ldots + c_1c_n + c_2c_3 + \ldots + c_{n-1}c_n$$

$$a_{n-3} = -(c_1c_2c_3 + c_1c_2c_4 + \ldots + c_{n-2}c_{n-1}c_n)$$
 ...
$$a_1 = (-1)^{n-1}(c_1c_2 \ldots c_{n-1} + c_2c_3 \ldots c_n)$$

$$a_0 = (-1)^n c_1 \ldots c_n$$

Док-во:

Запишем многочлен в виде

$$P_n(x) = 1(x - c_1) \dots (x - c_n)$$

и раскроем скобки

Это следствие основной теоремы алгебры

Правильной называется дробь вида $\frac{f(x)}{g(x)}$, где $f,\ g$ — многочлены, $\deg f < \deg g$

Простейшей называется дробь вида $\frac{f(x)}{(p(x))^k}$, где p(x) — неприводимый многочлен, $\deg f < \deg p$

Теорема

∀ правильная дробь разлагается в сумму простейших

Элементы общей алгебры

Множество - это любая совокупность объектов

Обозначения:

 $S \cap T$ — пересечение множеств $S \cup T$ — объединение множеств $S \setminus T$ — разность множеств $S \times T = \{(x,y) | x \in S, y \in T\}$ — декартово произведение множеств $f: X \to Y$ — отображение одного множества в другое $Im \ f = \{f(x) | x \in X\} \ , f(x) \subseteq Y$ — образ отображения $f^{-1}(y) = \{x \in X | f(x) = y\}$ — полный прообраз отображения

Отображение $f: X \to Y$ называется

- 1. **Сюръективным**, если Im f = Y
- 2. **Инъективным**, если $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- 3. Биективным, если оно сюръективно и инъективно

Произведение двух отображение называется их композицией

$$f \circ g: U \to W - \text{композиция} \, f \, \text{и} \, g, \text{если}$$

$$f: V \to W$$

$$g: U \to V$$

$$(f \circ g)(u) = f(g(u))$$

Зам. Композиция отображений, вообще говоря, некоммутативна

Зам. Композиция ассоциативна

$$\begin{aligned} h: U &\to V \\ g: V &\to W \\ f: W &\to T \\ f(gh) &= (fg)h \end{aligned}$$

Бинарные отношения

 \forall множеств X и Y всякое подмножество $\omega \in X \times Y$ называется **бинарным отношением** между X и Y (или на X, если X = Y)

Зам. Часто вметсто $(x, y) \in \omega$ пишут $x \omega y$

Бинарное отношение ~ называется отношением эквивалентности, если

 $\forall x, x', x'' \in X$ выполняются условия:

- 1. $x \sim x$ рефлексивность
- 2. $x \sim x' \Rightarrow x' \sim x$ симметричность
- 3. $x \sim x', x' \sim x'' \Rightarrow x \sim x''$ транзитивность

Подмножество $\overline{x} = \{x' \in X \mid x' \sim x\} \subseteq X$ называется **классом эквивалентности**, содержащим x

 $M \sim M'$, если они лежат на одной горизонтальной прямой

Зам. Множество классов эквивалентности по отношению \sim является разбиением множества X, то есть $X = \bigcup_{x \in X} \overline{x}$ и $\overline{x'} \cap \overline{x''} = \emptyset$ (смежные кассы совпадают или не пересекаются)

Зам. Если существует разбиение $\pi(X)$ множества x на непересекающиеся подмножества C_x , то C_x будут **классами эквивалентности** по некоторому отношению эквивалентности \sim

Док-во:

Пусть $x \sim x' \Leftrightarrow$ они лежат в одном подмножестве Это рефлексивно, симметрично и транзитивно #

Разбиение, отвечающее отношению эквивалентности, обозначается x/\sim и называется фактормножеством x относительно \sim

Отображение $p: x \to \overline{x} = p(x)$ называется **канонической проекцией** x на фактормножество x/\sim

Бинарные операции

Бинарной операцией на множестве X называется отображение $\tau: X \times X \to X$

Множество X с заданной на нем бинарной операцией называется **группоидом (магмой)**

Пример:

 $X = V_3$ — множество векторов в трехмерном пространстве $\tau = [\ ,\]$ — векторное произведение

Операция \circ называется **ассоциативной** на множестве X, если

$$\forall a, b, c \in X : (a \circ b) \circ c = a \circ (b \circ c)$$

Множество X с заданной на нем accoциативной бинарной операцией называется **полугруппой**

Пример:

$$X = \mathbb{N} \setminus \{1\}$$
 — натуральные числа, кроме 1

au — умножение целых чисел

Элемент $e \in X$ называется **нейтральным** элементом, если $\forall x \in X : x \circ e = e \circ x = x$

Полугруппа, в которой есть нейтральный элемент, называется моноидом

Пример:

$$(\mathbb{N},\cdot)$$
 — натуральные числа с операцией умножения

Элемент a моноида (M, \circ) называется **обратимым**, если $\exists b \in M : a \circ b = b \circ a = e$ (тогда b тоже обратим)

Моноид G, все элементы которого обратимы, называется **группой** Эквивалентно:

Множество G с заданной на нем бинарной операцией называется **группой**, если:

- 1. $\forall x, y, z \in G : (x \circ y) \circ z = x \circ (y \circ z)$ операция ассоциативна
- 2. $\exists e \in G \ \forall x \in G : x \circ e = e \circ x = x$ есть нейтральный элемент
- 3. $\forall x \in G \exists x^{-1} \in G : x \circ x^{-1} = x^{-1} \circ x = e$ все элементы обратимы

Примеры:

 $GL_n(\mathbb{R})$ — общая линейная группа (множество всех невырожденных матриц порядка n с операцией матричного умножения)

 S_n — симметрическая группа (множество всех подстановок длины n c операцией композиции)

Бинарная операция называется **коммутативной**, если $\forall a, b \in X : a \circ b = b \circ a$

Группа называется абелевой, если ее бинарная операция коммутативна

Пример:

$$X = V_3$$
 — множество векторов в трехмерном пространстве

au — сложение векторов

Подмножество $H \subseteq G$ называется **подгруппой** в G, если:

- 1. $e \in H$ есть нейтральный элемент
- 2. $\forall h_1, h_2 \in H : h_1 \circ h_2 \in H$ замкнутость относительно умножения
- 3. $\forall h \in H \to h^{-1} \in H$ замкнутость относительно обратимости

То есть H сама является группой относительно той же операции Π ример:

 $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid \det A = 1\}$ — специальная линейная группа (множество всех матриц порядка n, определитель которых равен 1, с операцией матричного умножения)

3am.
$$SL_n(\mathbb{R}) \subset GL_n(\mathbb{R})$$

Циклические группы

Если \forall элемент $g \in G$ имеет вид $g = a^n$ (мультипликативная запись), где $a \in G$, то G называется **циклической группой**

Обозначение: $G = \langle a \rangle$

Пример:

$$(\mathbb{N}, +) = \langle 1 \rangle$$

Говорят, что число а является порождающим элементом

Зам. \forall элемента $b \in G$ множество $\langle b \rangle = \{b^n, n \in \mathbb{Z}\}$ является циклической подгруппой

Пример:

Группа — $(\mathbb{Z}, +)$

Подгруппа — $\{n \cdot 1 \mid n \in \mathbb{Z}\}$

Пусть q — наименьшее натуральное число, для которого $a^q = e$

Тогда а — элемент конечного порядка

Если такого q не существует, то говорят, что a имеет **бесконечный порядок**

Обозначение: ord a

Порядок группы — это количество элементов в ней

Обозначение: |G|

Пример:

$$|\mathbb{Z}| = \infty$$

Утв. Порядок элемента равен порядку циклической группы, которую он порождает: ord $(a) = |\langle a \rangle|$

Таблица Кэли — это матрица вида:

	g_1	g_2	g_3	
g_1	$g_{1}g_{1}$	g_1g_2	$g_{1}g_{3}$	
g_2	$g_{2}g_{1}$	$g_{2}g_{2}$	$g_{2}g_{3}$	
g_3	$g_{3}g_{1}$	<i>g</i> ₃ <i>g</i> ₂	$g_{3}g_{3}$	
	•	•		•

Зам. Если таблица Кэли для группы симметрична, то группа абелева

Пусть даны две группы (G_1 , •) и (G_2 , *)

Тогда отображение $f:G_1\to G_2$ называется **гомоморфизмом** (морфизмом), если $\forall a,b\in G_1:f(a\circ b)=f(a)*f(b)$

Зам. Говорят, что f «уважает» умножение

Пример:

$$G_1 = (\mathbb{R}_+, \cdot), \ G_2 = (\mathbb{R}_+, +)$$

 $f = \ln(x)$

 $\forall a, b \in \mathbb{R}_+$ выполнено: $\ln(a \cdot b) = \ln(a) + \ln(b)$

Свойства гомоморфизма:

1. Нейтральный элемент переходит в нейтральный элемент

$$f(e_1) * f(a) = f(e_1 \circ a) = f(a)$$

 $f(a) * f(e_1) = f(a \circ e_1) = f(a)$
 $\Rightarrow f(e_1) = e_2$

2.
$$f(a^{-1}) = (f(a))^{-1}$$

 $\underline{Ao\kappa - so}$:
 $f(a) * f(a^{-1}) = f(a \circ a^{-1}) = f(e_1) = e_2$
 $f(a^{-1}) * f(a) = f(a^{-1} \circ a) = f(e_1) = e_2$
 $\Rightarrow (f(a))^{-1} = f(a^{-1})$

Инъективный гомоморфизм называется мономорфизмом Сюръективный гомоморфизм называется эпиморфизмом Биективный гомоморфизм называется изоморфизмом

Свойство изоморфизма:

Обратное отображение $f^{-1}:G_2\to G_1$ тоже является изоморфизмом $f^{-1}(f(a)*f(b))=f^{-1}(f(a\circ b))=a\circ b$ и f^{-1} тоже биекция

Примеры групп:

1. **Группа Диэдра** — группа симметрий правильного n-угольника Обозначение: $D_n = \{r, s \mid r^n = 1, s^2 = 1, s^{-1}rs = r^{-1}\}$

Операция: композиция

$$|D_n| = 2n$$

Пример:

$$D_3 \simeq S_3$$

$$S_3 = \{id, (123), (132), (12), (23), (13)\}$$

$$D_3$$

$$\phi_0 \to id \qquad \psi_1 \to (23)$$

$$\phi_0 \to id$$
 $\psi_1 \to (23)$
 $\phi_1 \to (123)$ $\psi_2 \to (13)$
 $\phi_2 \to (132)$ $\psi_3 \to (12)$

$$\phi_2 \to (132) \quad \psi_3 \to (12)$$

2. Группа кватернионов
$$Q_8$$

$$Q_8 = \{\pm 1, \pm i, \pm j \pm k \, | \, (-1)^2 = 1, \, i^2 = j^2 = k^2 - 1, \, ijk = -1 \}$$

	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	- j	k	-k
-1	-1	1	- <i>i</i>	i	- j	j	-k	k
i	i	-i	-1	1	k	-k	- j	j
-i	-i	i	1	-1	- <i>k</i>	k	j	-j
j	j	- j	-k	k	-1	1	i	-i
-j	- j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	-1	1
-k	-k	k	-j	j	i	-i	1	-1

Утв. Пусть G — группа и $g \in G$, тогда ord $(g) = |\langle g \rangle|$

Док-во:

Если g имеет бесконечный порядок, то все элементы всегда $g^n, n \in \mathbb{Z}$

Они различны, тк если $g^k = g^{\bar{s}}, k > s$, то $g^{k-s} = e$, ord $(g) < \infty$

A их бесконечное число \Rightarrow ord $(g) = |\langle g \rangle|$

Если ord $(g) = m < \infty \Rightarrow$ из минимальности m следует, что $g_0 = e, g = g^1, g^2, \dots, g^{m-1}$, где все различны, так как если $g^k = g^s \Rightarrow g^{k-s} = e$

 $\forall n \in \mathbb{Z} : n = mq + r -$ разделим n на m с остатком

$$0 \le r < m$$

$$g^n = g^{mq+r} = (g^m)^q g^r = eg^r = g^r$$
$$|\langle g \rangle| = m = \text{ord } (g)$$

#

3. Знакопеременная группа A_n

Множество всех четных подстановок

$$|A_n| = \frac{n!}{2}$$

$$f: G_1 \rightarrow G_2$$

Ядром гомоморфизма называется множество $\operatorname{Ker} f$

$$\operatorname{Ker} f = \{ g \in G_1 | f(g) = e_2 \}$$

Утв. $\operatorname{Ker} f$, где f — гомоморфизм из группы G_1 в группу G_2 всегда является подгруппой в G_1

Док-во:

- 1. $e_1 \in \operatorname{Ker} f$, тк по первому свойству гомоморфизма $f(e_1) = e_2$
- 2. $\forall g_1, g_2 \in \operatorname{Ker} f \Rightarrow g_1 \cdot g_2 \in \operatorname{Ker} f$ $f(g_1 \cdot g_2) = f(g_1) \circ f(g_2) = e_2 \circ e_2 = e_2$ $\Rightarrow g_1 \cdot g_2 \in \operatorname{Ker} f$
- 3. $\forall g \in \text{Ker } f \Rightarrow g^{-1} \in \text{Ker } f$ $f(g^{-1}) = (f(g))^{-1} = e_2^{-1} = e_2$ $\Rightarrow g^{-1} \in \text{Ker } f$

Пример:

$$\det: GL_n(\mathbb{R}) \to \mathbb{R}$$
, тогда Ker $\det = SL_n(\mathbb{R})$

Утв. \forall подгруппа b (\mathbb{Z} , +) имеет вид $k\mathbb{Z} = \{kz \mid z \in \mathbb{Z}\}$ для некоторого $k \in \mathbb{N} \cup \{0\}$

Док-во:

Если
$$H = \{0\}$$
, то берем $k = 0$

Если
$$H \neq \emptyset$$
, то берем $k = \min(H \cap \mathbb{N})$

Докажем, что $H = k\mathbb{Z}$

Очевидно, что $k\mathbb{Z} \subseteq H$

Возьмем произвольный $a \in H$

Разделим a на k с остатком r: a = kq + r

$$0 \le r < k$$

$$r = a - kq \in H \,\mathrm{u}\, r \in \mathbb{N} \cup \{0\}$$

 $\Rightarrow r = 0$ (это следует из минимальности k)

To есть
$$a = kq, q \in \mathbb{Z}$$

To есть
$$H \subseteq k\mathbb{Z} \Rightarrow H = k\mathbb{Z}$$

#

Утв. Все циклические подгруппы одного порядка изоморфны

Док-во:

Если группа бесконечна, то изоморфизм: $f:\langle g\rangle \to (\mathbb{Z},+)$

Полагая, что $g^n \mapsto n$

Это биекция и это гомоморфизм

$$f(g^m \cdot g^n) = f(g^m) + f(g^n) = n + m$$

Если $G = \{e, g, g^2, ..., g^{m-1}\}$ и $G' = \{e', g', (g')^2, ..., (g')^{m-1}\}$, то $f : g^k \mapsto (g')^k$

Пусть G — группа и $H \subseteq G$ подгруппа и $g \in G$

Тогда **левым смежным классом** элемента g по подгруппе H называется множество $gH = \{gh | h \in H\}$

Лемма 1

$$\forall g_1, g_2 \in G$$
 либо $g_1H = g_2H$, либо $g_1H \cap g_2H = \emptyset$

Док-во:

Если
$$g_1H \cap g_2H \neq \emptyset$$
, то $\exists h_1, h_2 \in H: g_1h_1 = g_2h_2 \Rightarrow g_1 = g_2h_2h_1^{-1} \Rightarrow g_1H = g_2h_2h_1^{-1}H \subseteq g_2H$ Аналогично $g_2H \subseteq g_1H \Rightarrow g_1H = g_2H$ #

Лемма 2

$$\forall g \in G : |gH| = |H|$$

Док-во:

$$|gH| \leqslant |H|$$
, т.к. $gH = \{gh | h \in H\}$
Если $gh_1 = gh_2 \Rightarrow h_1 = h_2$, т.к. $\exists g^{-1}$
Склеиваний не происходит $\Rightarrow |gH| = |H|$

Индексом подгруппы H в группе G называется число левых смежных классов в G по H Обозначение: [G:H]

Теорема Лагранжа

Пусть
$$G$$
 — конечная группа и H — ее подгруппа Тогда $|G| = |H| \cdot [G:H]$

Док-во:

 \forall элемент группы G лежит в своем левом смежном классе по H и смежные классы не пересекаются (Лемма 1)

В $\stackrel{}{\forall}$ смежном классе |H| элементов (Лемма 2)

Следствие 1

Пусть G — конечная группа и $g \in G$ Тогда ord (g) делит |G|

Док-во:

Рассмотрим
$$\langle g \rangle = H$$

Тогда по теореме Лагранжа $|G| = |\langle g \rangle| \cdot [G:\langle g \rangle]$ \Rightarrow ord (g) делит $|G|$

H называется **собственной подгруппой** в группе G, если $H \neq G$ и $H \neq \{e\}$

Классы смежности группы $\mathbb Z$ по подгруппе $n \mathbb Z$ называют вычетами по модулю n

Следствие 2

 $\forall g \in G$, где G — конечная группа, верно $g^{|G|} = e$

Док-во:

По следствию 1
$$|G| = ord(g) \cdot s$$
, где $s \in \mathbb{N}$ Тогда $g^{|G|} = g^{ord(g) \cdot s} = (g^{ord(g)})^s = e^s = e$ #

Следствие 3

Малая теорема Ферма Пусть \overline{a} — ненулевой вычет по модулю p

Тогда
$$\overline{a}^{p-1} = \overline{1}$$

Док-во:

Это следствие 2, примененное к группе $\mathbb{Z}_p^* = (\mathbb{Z}_p \backslash \{0\}, \cdot)$

p — простое число

 $\frac{1}{1}$ — нейтральный элемент в \mathbb{Z}_n^*

$$|\mathbb{Z}_p^*| = p - 1$$

Зам. Точно так же можно было рассмотреть и правые смежные классы $Hg = \{h \cdot g \mid h \in H\}$

Зам. Количество правых и левых смежных классов совпадает и $= \frac{\mid G \mid}{\mid H \mid}$

 ${f 3am.}$ Не все делители порядка группы G являются порядками подгрупп G

Пример:

$$|A_4| = \frac{4!}{2} = 12$$
, в A_4 нет подгруппы порядка 6

Прямым произведением групп (G_1, \circ) и (G_2, \star) является упорядоченное множество пар $G_1 \times G_2$ (декартово произведение) с операцией *покоординатного* умножения то есть $(g1,g2) \cdot (g_1',g_2') = (g_1 \circ g_1',g_2 \star g_2')$

Пример:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = G$$
$$|G| = 4$$

Зам. Все с точностью до изоморфизма группы порядка 8: \mathbb{Z}_8 , D_4 , Q_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

Теорема Кэли

Любая конечная группа порядка n изоморфна подгруппе группы S_n

<u>Док-во:</u>

 $\forall a \in G$ рассмотрим отображение $L_a : G \to G$,

заданное формулой $L_a(g) = a \cdot g$

Пусть $g_1 = e, g_2, g_3, ..., g_n$ — элементы группы

Тогда a , a · g_2 , a · g_3 , . . , a · g_n — тоже элементы, но в другом порядке

T.к. $a \cdot g_i = g_i$

$$\exists a^{-1} \Rightarrow a^{-1}ag_i = a^{-1}ag_j \Rightarrow eg_i = eg_j \Rightarrow g_i = g_j$$

⇒ нет склеиваний

 \Rightarrow L_a — биективное разложение G в себя

Обратим внимание на то, что $L_e, L_{g_2}, \dots, L_{g_n}$

Если нейтральный элемент L_e , то $(L_a)^{-1} = L_{a^{-1}}$

Из ассоциативности в G следует $L_{ab}(g)=(a\,b)g=a(b\,g)=L_a(L_b(g))$

Множество $L_e, L_{g_2}, \dots, L_{g_n}$ отображает подгруппу H в группу S(G) всех биективных отображений G в себя, то есть S_n

Изоморфизм: $a\mapsto L_a\in H\subseteq S_n$, это биекция и гомоморфизм #

Применение циклической группы к криптографии

Задача дискретного логарифмирования

Пусть G — конечная группа и $g \in G$, причем $\operatorname{ord}(g)$ достаточно большой

Задача: для данного элемента $h \in \langle g \rangle$ найти $k: h = g^k$

Дискретное логарифмирование трудоемко, а возведение в степень — нет

Система Diffe-Hellman обмена ключами

Всем участниками известна конечная группа G и элемент $g \in G$ достаточно большого порядка

Участник Алиса фиксирует натуральное число a (оно секретное) и сообщает всем g^a

У Боба есть секретное значение b и он всем сообщает g^b

Как создать общий для Алисы и Боба секретный ключ?

Алиса возводит g^b в степень a, а Боб возводит g^a в степень b

Тогда в результате элемент g^{ab} есть только у Алисы и Боба и они могут использовать его в качестве секретного ключа

Криптосистема Elgamal

Снова всем участниками известна конечная группа G и элемент $g \in G$

Участник Алиса фиксирует *натуральное число* a (оно секретное) и сообщает всем g^a

Если Боб хочет конфидециально передать Алисе элемент $M \in G$, то он выбирает некоторое натуральное k и сообщает всем следующую пару значений: $(g^k, M \cdot (g^a)^k)$

<u>По этим данным восстановить M может только Алиса, и она это делает так:</u>

$$M \cdot g^{ak} \cdot (g^k)^{|G|-a} = M \cdot g^{ak-ak} \cdot g^{|G|k} = M \cdot e \cdot (g^{|G|})^k = M \cdot e = M$$

Зам. Говорят, что элементы $a_1, \ldots, a_n \in G$ порождают подгруппу H, если H — это множество произведений степеней a_1, \ldots, a_n и обратных к ним

Примеры:

 \forall циклическая группа порождается одним элементом $\langle a \rangle$

$$D_n = \langle r, s \rangle$$

Подгруппа H группы G называется **нормальной подгруппой**, есть $\forall g \in G: gH = Hg$ совпадают

Зам. Это эквивалентно тому, что $\forall g \in G: H = g^{-1}Hg$, то есть H нормальна \Leftrightarrow она инвариантна относительно сопряжений

Пусть H — нормальная подгруппа, тогда фактормножество G/H — множество левых смежных классов по H — с операцией умножения:

$$(g_1H) \cdot (g_2H) = (g_1 \cdot g_2)H$$

называется факторгруппой группы G по подгруппе H

Зам. Операция ассоциативна (следует из ассоциативности в G), обладает нейтральным элементом eH = H и $\forall g \in G$ и соответствующего смежного класса $gH \, \exists g^{-1}H$ — обратный элемент $\Rightarrow G/H$ является группой

Зам. Нормальность нужна для корректности определения операции умножения, то есть результат не зависит от выбора представителя смежного класса:

$$g_1h_1\cdot H$$
 и $g_2h_2\cdot H$ или $g_1\cdot H$ и $g_2\cdot H$ $\Rightarrow g_1h_1g_2h_2H=g_1g_2g_2^{-1}h_1g_2h_2H$ $h_1,h_2\in H\Rightarrow g_2^{-1}h_1g_2\in H\Rightarrow g_2^{-1}h_1g_2\in H$ $\Rightarrow g_1g_2h_3H$ — тот же смежный класс, что и g_1g_2H

Зам. ∀ подгруппа ∀ абелевой группы является нормальной

Зам. $H = \langle (12) \rangle$ в S_3 не является нормальной

Отображение $\varepsilon: G \to G/H$, сопоставляющее каждому элементу $g \in G$ его класс смежности gH, то есть $\varepsilon: g \mapsto gH$ называется **естественным гомоморфизмом**

Теорема о гомоморфизме

Пусть $f:G \to F$ — гомоморфизм группы G и F Тогда группа

$$\operatorname{Im} f = \{ a \in F \mid \exists g \in G : f(g) = a \}$$

изоморфна факторгруппе $G/\mathrm{Ker}\,f$

То есть

$$G/\mathrm{Ker} f \cong \mathrm{Im} f$$

Док-во:

Рассмотрим отображение $\tau:G/\mathrm{Ker}f \to \mathrm{Im}f \subseteq F$

Заданное формулой $\tau(g\operatorname{Ker} f) = f(g)$

Докажем, что это изоморфизм

Проверим корректность определения, то есть проверим, что результат не зависит от выбора представителя в смежном классе

$$\begin{split} \forall h_1, h_2 \in \operatorname{Ker} f &= H \\ f(gh_1) &= f(g) \cdot f(h_1) = f(g) \cdot e_F = f(g) \\ f(gh_2) &= f(g) \cdot f(h_2) = f(g) \cdot e_F = f(g) \end{split}$$

Проверим, что τ — гомоморфизм:

$$\tau((g_1\operatorname{Ker} f) \cdot (g_2\operatorname{Ker} f)) = \tau((g_1 \cdot g_2)\operatorname{Ker} f)) =$$

$$= f(g_1 \cdot g_2) = f(g_1) \cdot f(g_2) = \tau(g_1\operatorname{Ker} f) \cdot \tau(g_2\operatorname{Ker} f)$$

 τ является биекцией:

au сюръективно по своему определению и инъективно в силу того,

что $f(g) = e_f \Leftrightarrow g \in \operatorname{Ker} f$, то есть нейтральному элементу, так как ядро тривиально,

то e Ker f в факторгруппе

o au — биекция o au — изоморфизм

Зам.

$$f = \tau \circ \varepsilon$$

3десь f — данный гомоморфизм

G и F — данные группы

$$H = \operatorname{Ker} f \subseteq G$$

 ε — естественный гомомофризм

Пусть f — гомоморфизм, тогда f инъективен \Leftrightarrow Ker f — тривиальное

```
Док-во:
```

#

Примеры:

1. $\mathbb{Z}/k\mathbb{Z} \simeq \mathbb{Z}_k$

Гомоморфизм сопоставляет целому числу n остаток от деления n на k

2. $GL_n(\mathbb{R})/SL_n(\mathbb{R})\simeq \mathbb{R}^*$ Гомоморфизм — определитель матрицы

Утв. Критерий нормальности

Пусть $H \subseteq G$, тогда три условия эквивалентны:

- 1. H нормальная подгруппа
- 2. $gHg^{-1} \subseteq H \ \forall g \in G$
- 3. $gHg^{-1} = H \forall g \in G$

<u>Док-во:</u>

 $(1) \rightarrow (2)$

Пусть $g \in G$ и $h \in H$.

Из определения нормальности: gh = h'g для. Некоторого $h' \in H$ $\Rightarrow ghg^{-1} = h' \in H \Rightarrow gHg^{-1} \subseteq H$

 $(2) \to (3)$

Остается проверить, что $H\subseteq gHg^{-1}$ Для $h\in H:\ h=(gg^{-1})h(gg^{-1})=g(g^{-1}hg)g^{-1}\in gHg^{-1}$ $\Rightarrow H\subseteq gHg^{-1}\Rightarrow H=gHg^{-1}$ — инвариантность относительно сопряжений

 $(3) \to (1)$ $\forall g \in G: \ gH = gH(g^{-1}g) = (gHg^{-1})g = Hg$ Это определение нормальности

#

Утв. Критерий нормальности с использованием понятия ядра

Пусть $H \subseteq G$, тогда H нормальна $\Leftrightarrow \exists f$ — гомоморфизм и $\operatorname{Ker} f = H$

```
Док-во:
```

RSA (Rivest, Shamir, Adleman)

— криптографический алгоритм с открытым ключом Используется TLS/SSL

Схема:

#

I. <u>Создание отрытых ключей</u>

 $\phi(n)$ — функция Эйлера — количество натуральных чисел, меньших n и взаимно простых с n

- 1. Выбирается два достаточно больших простых числа p и q (лучше > 2048 бит каждое)
- 2. Вычисляется модуль n = pq
- 3. Вычисляется $\phi(n) = (p-1)(q-1)$
- 4. Выбирается натуральное число $e:\ 1 < e < \phi(n)$, взаимно простое с $\phi(n)$ e открытая экспонента
- 5. Вычисляется d обратное к e по модулю $\phi(n)$, то есть решение $x \cdot e = 1 \mod \phi(n)$ d секретная экспонента
- 6. Пара (e, n) публикуется в виде открытого ключа RSA
- 7. Пара (d, n) держится в секрете

II. <u>Шифрование и дешифрование</u>

1. Шифрование

Берем открытый ключ e и сообщение M $C = M^e \mod n$

2. Дешифровка

 $M = \hat{C^d} \bmod n = M^{ed} \bmod n = M \bmod n$

Пусть G — группа, тогда ее **центром** называется множество $Z(G)=\{a\in G\,|\,ab=b\,a\,\forall b\in G\}$ т.е. Элементы Z(G) коммутируют со всеми элементами G

Зам.
$$G$$
 абелева $\Leftrightarrow Z(G) = G$

Утв.
$$Z(G) \forall G$$
 — нормальная подгруппа **Зам.** H — подгруппа $\Leftrightarrow \forall a, b \in H : ab^{-1} \in H$

Док-во:

1. Докажем, что Z(G) является подгруппой

Возьмем $a, b \in Z(G)$

Возьмем
$$a, b \in Z(G)$$

Докажем, что $ab^{-1} \in Z(G)$, то есть $\forall g \in G : gab^{-1} = ab^{-1}g$
 $ab^{-1}g = ab^{-1}(g^{-1})^{-1} = a(g^{-1}b)^{-1} = a(bg^{-1})^{-1} =$
 $= a(g^{-1})^{-1}b^{-1} = agb^{-1} = gab^{-1}$
 $\Rightarrow Z(G)$ — подгруппа

2. Докажем, что Z(G) — нормальная подгруппа

Пусть $a \in Z(G)$ и $g \in G$

$$\forall b \in G : g^{-1}ag \in Z(G), \text{ r.e } g^{-1}agb = bg^{-1}ag$$

 $\forall g \in G : gZ(G) = Z(G)g$

т.к. Элементы Z(G) коммутируют со всеми элементами группы

Автоморфизм — это изоморфизм группы G в себя

Зам. Множество всех $автомор \phi измов$ является группой относительно операции композиции отображений

Обозначение: Aut (G)

Внутрненними автоморфизмами называют отображения $I_a: g \mapsto aga^{-1}$

Зам. Множество всех *внутренних автоморфизмов* является группой относительно операции композиции отображений

Обозначение: Inn(G)

Зам. Это подгруппа Aut (G), т.к:

 \exists нейтральный элемент $I_e:g\mapsto ege^{-1}=g$ — тождественное отображение Композиция ассоциативна $\forall I_a\exists (I_a)^{-1}=I_{a^{-1}}$

Зам. Если G — абелева, то Inn(G) = id

Утв.
$$\forall G : G/Z(G) \simeq \text{Inn}(G)$$

Док-во:

Применим теорему о гомоморфизме

Рассмотрим отображение $f: G \to \operatorname{Aut}(G)$, заданное формулой $f: g \mapsto ghg^{-1}$,

где $ghg^{-1} = \phi_g(h)$ — это элемент $\operatorname{Aut}(G), h \in G$

Тогда $\operatorname{Im} f = \operatorname{Inn} (G)$ по определению $\operatorname{Inn} (G)$

 $\operatorname{Ker} f = Z(G), \text{ T.K. } ghg^{-1} = h \Leftrightarrow gh = hg \in Z(G)$

Теорема о гомоморфизме:

 $G/\mathrm{Ker}\,f\simeq\mathrm{Im}\,f$, а в нашем случае: $G/Z(G)\simeq\mathrm{Inn}\,(G)$

Кольца

Пусть $K \neq \emptyset$ — множество, на котором заданы две бинарные операции: *«сложение» и «умножение»* такие, что:

- 1. (K, +) абелева группа
- 2. (K, \cdot) полугруппа
- 3. Умножение дистрибутивно относительно сложения:

$$\forall a, b, c \in K$$

 $a(b+c) = ab + ac$
 $(b+c)a = ba + ca$

Тогда $(K, +, \cdot)$ называется **кольцом**

Зам. (K,+) — аддитивная группа кольцо (K,\cdot) — мультипликативная полугруппа кольца

Если (K, \cdot) , то $(K, +, \cdot)$ — кольцо с единицей

Подмножество $L \subseteq K$ называется **подкольцом**, если $\forall x, y \in L$

- 1. $x y \in L$ Это xy^{-1} в аддитивной записи, то есть (L, +) является подгруппой в группе (K, +)
- 2. $xy \in L$, то есть L замкнуто относительно умножения

Зам. Подмножество L является подкольцом, если оно является кольцом относительно операций $(K,+,\cdot)$

Примеры:

- 1. $(\mathbb{Z}, +, \cdot)$ кольцо целых чисел Это коммутативное кольцо с «1»
- 2. Другие числовые кольца: $\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$ Коммутативные кольца с «1»
- 3. $(M_n(\mathbb{R}), +, \cdot)$ полное матричное кольцо не коммутативное кольцо с «1»
- 4. \mathbb{Z}_m кольцо вычетов по модулю m $\mathbb{Z}_m = \mathbb{Z}/m\,\mathbb{Z}$

Фиксируем $m \in \mathbb{N}, m > 1$

Рассмотрим остаток от деления произвольного $n \in \mathbb{Z}$ на m

Все целые числа можно разбить на смежные классы по подгруппе $m\mathbb{Z}$,

то есть
$$\mathbb{Z}=\{0\}_m\cup\{1\}_m\cup\ldots\cup\{m-1\}_m$$
 , где $\{r\}_m=r+m\mathbb{Z}=\{r+mk\,|\,k\in\mathbb{Z}\}$

На множестве смежных классов $\mathbb{Z}/m\mathbb{Z}$ введены две операции:

1.
$$\{k\}_m + \{l\}_m = \{k+l\}_m$$

2.
$$\{k\}_m \cdot \{l\}_m = \{kl\}_m$$

 $(\mathbb{Z}_m,+\,,\,\cdot\,)$ — коммутативное кольцо с единицей $(1+m\mathbb{Z}=\{1\}_m)$

Пример:

 \mathbb{Z}_4

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Если ab=0 при $a\neq 0$ и $b\neq 0$ в кольце K, то a называется **левым**, а b — **правым делителями нуля**

Коммутативное кольцо с «1» (\neq 0) и без делителей нуля называется **целостным кольцом** (областью целостности)

Утв. Нетривиальное коммутативное кольцо с «1» является целостным \leftrightarrow в нем выполняется *«закон сокращения»*: $\forall a, b, c$ из ab = ac при $a \neq 0$ следует, что b = c

Док-во:

```
«→»Необходимость
   Пусть K — область целостности ab = ac, a \neq 0
   ab - ac = 0
   a(b - c) = 0
   ⇒ b - c = 0, так как a \neq 0
   «←» Достаточность
   Есть закон сокращения из ab = 0 = a \cdot 0
   \begin{cases} a = 0 \\ a \neq 0, b \neq 0 \end{cases} — нет делителей нуля ab = 0
   \Rightarrow кольцо целостное
```

Пусть K — коммутативное кольцо с «1», тогда K[x] — **кольцо многочленов** от переменной x с коэффициентами из K

Пример:

#

 $\mathbb{R}[x]$ — многочлены от x с вещественными коэффициентами

Дано: $a, b \in K[x]$, $\deg a \geqslant \deg b$ $a = q_1b + r_1, \ \deg r_1 < \deg b$ $b = q_2r_1 + r_2, \ \deg r_2 < \deg r_1$ $r_1 = q_3r_2 + r_3$ $r_{k-2} = q_kr_{k-1} + r_k$ $r_{k-1} = q_{k+1}r_k$ $r_{k+1} = 0$

У нас есть убывающая последовательность неотрицательных целых чисел \Rightarrow она обрывается, а это возможно, только за счет обращения в ноль остатка Тогда $HO\mathcal{L}(a,b)=r_k$

Утв. В кольцах многочленов $K[x] \ \forall a,b \in K[x] : HOД(a,b) = au + bv, где <math>u,v \in K[x]$

Подмножество I кольца K называется **двусторонним идеалом**, если

- 1. (I, +) является подгруппой в аддитивной группе кольца K
- 2. $\forall a \in I$ и $\forall k \in K$: ak и $ka \in I$ При умножении на элемент из идеала получается элемент из идеала

Пример:

mℤ ⊂ ℤ
 (mℤ, +) — подгруппа в ℤ
 mb ∈ I и ∀k ∈ ℤ ⇒ mbk = bkm ∈ mℤ
 2. ⟨x² + 1⟩ = {(x² + 1)f(x) | f(x) ∈ ℝ[x]}

Зам. Идеал I всегда является нормальной подгруппой в аддитивной группе кольца, так как по определению является подгруппой в абелевой группе

Так как I — нормальная подгруппа в (K, +), можно рассматривать факторгруппу (K/I, +) Введем на ней умножение (a + I)(b + I) = ab + I, тк aI = Ib = I

Множество K/I — множество смежных классов — с двумя операциями («+» u «·») называется факторкольцом кольца K по идеалу I

Пример:

 $\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}m$

Поля

Элемент a в коммутативном кольце с «1» называется **обратимым**, если $\exists a^{-1} \in K : aa^{-1} = a^{-1}a = 1$

Зам. Множество всех обратимых элементов кольца образует *группу по умножению Обозначение:* K^* — мультипликативная группа кольца

Пример

$$\mathbb{C}^*$$
, \mathbb{R}^* , \mathbb{Z}_p^* , p — простое

Идеал называется **главным**, если $\exists a \in K : I = aK$ (см. Примеры)

Пусть $(K_1, +, \cdot)$ и (K_2, \oplus, \times) — кольца

Отображение $f:K_1 \to K_2$ называется **гомоморфизмом колец**, если

- 1. $\forall a, b \in K_1 : f(a+b) = f(a) \oplus f(b)$
- 2. $\forall a, b \in K_1 : f(a \cdot b) = f(a) \times f(b)$

Зам. Если a, b — взаимно простые многочлены, то $\exists u, v \in K[x] : au + bv = 1$ Это равенство может использоваться как определение взаимной простоты

Поле P — это коммутативное кольцо с «1» \neq 0, в котором *каждый ненулевой элемент* обратим

Примеры:

 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ — числовые поля

Подмножество поля, которое само является полем относительно тех же операций, называется **подполем**

Пример:

 $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ — цепочка подполей

Кольцо \mathbb{Z}_m является полем $\Leftrightarrow m = p$

Поле, не обладающее никаким собственным (не совпадающем с полем и нетривиальным) подполем, называется **простым**

Пусть P — поле

Характеристикой поля называется наименьшее $p \in \mathbb{N}$: 1 + ... + 1 = 0 (p pas)

Если такого p не существует, то характеристика равна 0

Обозначение: char P

Пример:

$$char \mathbb{Q} = char \mathbb{R} = char \mathbb{C} = 0$$
$$char \mathbb{Z}_p = p$$

Зам. ∀ поле характеристики 0 бесконечно

Утв.
$$char P = \begin{cases} 0 \\ p - npocmoe \end{cases}$$

Док-во:

Пусть $p > 0 \rightarrow \operatorname{char} P \geqslant 2$, так как «1» $\neq 0$

Если char P = mk, m, k > 1, то есть характеристика — составное число

$$0 = 1 + ... + 1 = (1 + ... + 1)(1 + ... + 1)$$

 $0 = \operatorname{char} P = mk$

Скобки не равны 0, так как char P — минимальное натуральное число по определению

$$\Rightarrow mk = 0$$
 — есть делители нуля

 \Rightarrow противоречие с определением поля

Теорема о гомоморфизме колец

Пусть $f:K_1 \to K_2$ — гомоморфизм колец Тогда $K_1/\operatorname{Ker} f \simeq \operatorname{Im} f$

 ${f 3am.}$ Ker f- ядро гомоморфизма колец — всегда является идеалом

Зам. Пересечение ∀ подполей данного поля является снова полем

В \forall поле существует наименьшее по включению подполе, оно называется **простым подполем**

Утв. Пусть P- поле, P_0- его простое подполе Тогла

- 1. Если $\operatorname{char} P = p > 0$, где p- простое, то $P_0 \simeq \mathbb{Z}_p$
- 2. Если char P = 0, то $P_0 \simeq \mathbb{Q}$

Док-во:

Рассмотрим $\langle 1 \rangle$ — циклическую подгруппу (P,+) по сложению, порожденную нейтральным элементом

Заметим, что $\langle 1 \rangle$ является подкольцом P

Так как \forall подполе P всегда содержит «1», то $\langle 1 \rangle \subseteq P_0$

- 1. Если $char\ P=p>0$, где p простое, то $\langle 1\rangle\simeq \mathbb{Z}_p$ А \mathbb{Z}_p является полем $\Rightarrow P_0\simeq \mathbb{Z}_p$
- 2. Если char P = 0, то $\langle 1 \rangle \simeq \mathbb{Z}$

Так как P_0 должен содержать $\langle 1 \rangle$ и все обратные элементы по умножению, то P_0 образуют дроби вида $\frac{a}{b}$, где $a,b \in \langle 1 \rangle$ и $b \neq 0$

Это множество изоморфно \mathbb{Q}

Если P_1 — подполе поля P_2 , то P_2 называется **расширением** P_1

Элемент $\alpha \in P_2$ называется **алгебраическим элементом** над полем P_1 ($P_1 \subseteq P_2$), если $\exists f(x) \in P_1[x], f(x) \neq 0 : f(\alpha) = 0$

Если это не так, то α называется **транцендентным** над P_1

Примеры:

- 1. $\sqrt{2}$ является алгебраическим над \mathbb{Q} $f(x) = x^2 2 \in \mathbb{Q}[x]$
- 2. π является трансцендентным

Если $P_1 \subset P_2$ и $a \in P_2$, то говорят, что F — **подполе**, **полученное расширением** P_1 с помощью a, если это пересечение всех подполей, содержащих P_1 и a

Пример:

$$\begin{aligned} &P_1 = \mathbb{Q} & P_2 = \mathbb{R} \\ &a = \sqrt{2} \\ &F = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \,|\, a, b \in \mathbb{Q}\} \end{aligned}$$

Минимальным многочленом для алгебраического элемента $\alpha \in P_2$ называется многочлен $f(x) \neq 0$ и $f(x) \in P_1[x]$ такой, что его степень минимальна среди многочленов, для которых выполняется $f(\alpha) = 0$ и старший коэффициент = 1

Пусть f — гомоморфизм колец, то есть $f:K_1\to K_2$ и f «уважает» сложение и умножение Тогда

$$\operatorname{Ker} f = \{ r \in K \mid f(r) = 0 \} \subseteq K_1$$
$$\operatorname{Im} f = \{ f(r) \mid r \in K_1 \} \subseteq K_2$$

Лемма

 $\operatorname{Ker} f$ всегда является идеалом K_1

Док-во:

f — гомоморфизм групп $(K_1, +)$ и $(K_2, +)$, так как гомоморфизм колец всегда является гомоморфизмом аддитивных групп

 \Rightarrow Ker f является подгруппой в абелевой группе $(K_1, +)$

Осталось доказать, что $\forall a \in \operatorname{Ker} f u \ \forall r \in K_1 : ar, ra \in \operatorname{Ker} f$

f(a) = 0 — по определению ядра гомоморфизма колец

$$f(ar) = f(a) \cdot f(r) = 0 \Rightarrow ar \in \operatorname{Ker} f$$

$$f(ra) = f(r) \cdot f(a) = 0 \Rightarrow ra \in \text{Ker } f$$

 \Rightarrow Ker f является идеалом K_1

#

Зам. $\operatorname{Im} f$ является подкольцом в K_2 , так как это множество замкнуто относительно операций «+» и «·»:

$$f(a) + f(b) = f(a+b) \in \text{Im } f$$

$$f(a) \cdot f(b) = f(ab) \in \text{Im } f$$

Теорема о гомоморфизме колец

Пусть $f:K_1 \to K_2$ — гомоморфизм колец Тогда $K_1/\operatorname{Ker} f \simeq \operatorname{Im} f$

Док-во:

По лемме $\operatorname{Ker} f$ является идеалом I в K_1

 \forall идеал является нормальной подгруппой в (K_1 , +)

Так как f — гомоморфизм групп $(K_1,+)$ и $(K_2,+)$, то справедлива meopema o romomopфизме rowondown rowondown

Рассмотрим отображение из теоремы: $\tau(a+I) = f(a)$

В теореме доказано, что au — изоморфизм групп по сложению

Осталось доказать, что τ — изоморфизм колец, то есть «уважает» умножение

Рассмотрим произведение двух элементов из K_1/I : (a+I)(b+I)

$$\tau((a+I)(b+I)) = \tau(ab+I) = f(ab) = f(a) \cdot f(b) = \tau(a+I) \cdot \tau(b+I)$$

- $\Rightarrow \tau$ «уважает» умножение
- $\Rightarrow \tau$ является гомоморфизмом не только групп, но и колец
- $\Rightarrow \tau$ изоморфизм колец

#

Теор. Китайская теорема об остатках

Пусть n_1,\ldots,n_m — натуральные, попарно взаимно простые, тогда $\mathbb{Z}_{n_1}\times\ldots\times\mathbb{Z}_{n_m}\simeq\mathbb{Z}_n$, где $n=n_1\cdot\ldots\cdot n_m$

Утв. Кольцо \mathbb{Z}_n является полем $\Leftrightarrow n=p$ — простому числу

Док-во:

n=mk — составное, m,k< n, то $\overline{m}\neq \overline{0}$ и $\overline{k}\neq \overline{0}$ и $\overline{m}\overline{k}=\overline{mk}=\overline{n}=\overline{0}$ $\Rightarrow \overline{m}$ и \overline{k} являются делителями нуля \Rightarrow это не поле

Покажем, что если p=n, то \mathbb{Z}_p является полем

Оно, как и любое \mathbb{Z}_n , является коммутативным кольцом с «1»

Нам нужно показать, что для всех $\bar{a} \neq 0 \exists$ обратный по умножению

 $a \in \{1,2,...,p-1\}$, то a взаимно просто с $p \Rightarrow \exists u,v \in \mathbb{Z}$:

au + pv = 1 = HOД(a, p)

 $\overline{a}\,\overline{u} = \overline{1} \mod p$

Это означает, что $\overline{u}=(\overline{a})^{-1}$ это и есть обратный

Утв. Факторкольцо $P[x]/\langle f(x) \rangle$ является полем \Leftrightarrow многочлен f(x) неприводим над полем P

Док-во:

Если многочлен f(x) не является неприводимым, то $f(x)=f_1(x)\cdot f_2(x)$, где $\deg f_i<\deg f(x)$ Тогда $\overline{f_1}$, $\overline{f_2}$ отличны от $\overline{0}$, но $\overline{f_1}\cdot \overline{f_2}=\overline{f}=\overline{0}$ $\overline{f_1}=(f_1+I)$

 $\langle f(x) \rangle \Rightarrow$ в $P[x]/\langle f(x) \rangle$ есть делители нуля и оно не является полем

Покажем, что если f(x) неприводим, то любой класс вычетов $\overline{a(x)} \neq \overline{0}$ обратим

 $\mathbb{R}[x]/\langle x^2+1\rangle\simeq\mathbb{C}$

 $\deg(a+bx) < \deg(x^2+1)$

Представитель $\overline{a(x)}$ это многочлен a(x) с $\deg a(x) < \deg f(x)$, так как f неприводим, то по алгоритму Евклида $\exists b(x), c(x) \in P[x]$

 $a(x)\overline{b}(x)+c(x)f(x)=1=\mathrm{HOД}(a,f)$, где $c(x)f(x)\in I=\langle f(x)\rangle$ $\Rightarrow \overline{a}(x)\cdot \overline{b}(x)=\overline{1}\mod I\Rightarrow \overline{b}(x)$ является обратным по умножению #

Теорема (без доказательства)

Пусть P — произвольное поле и $f(x) \in P[x]$, тогда всегда существует расширение этого поля $F(P \subseteq F)$, в котором f(x) имеет корень

Теорема (без доказательства)

- 1. Число элементов конечнго поля всегда p^n , где p простое, $n \in \mathbb{N}$
- 2. $\forall p$ простое и $\forall n \in \mathbb{N} \exists !$ (с точностью до изоморфизма) поле из p^n элементов

Зам. \forall подполе поля F_{p^n} изоморфно F_{p^m} , где m делит n

Теорема (без доказательства)

 \forall конечное поле F_{p^n} можно рассмотреть в виде факторгруппы $\mathbb{Z}_p[x]/\langle h(x) \rangle$, где $\langle h(x) \rangle$ – главный идеал, порожденный неприводимым многочленом степени n-h(x)

Пример:

 F_4 можно реализовать как $\mathbb{Z}_2[x]/\langle x^2+x+1\rangle\simeq F_4$, неприводимый над \mathbb{Z} Смежные классы: $\overline{0},\overline{1},\overline{x},\overline{x+1}$

Линейная алгебра

Пусть V — произвольное множество, на котором заданы две операции:

- 1. Сложение, то есть $\forall x, y \in v \exists x + y \in V$
- 2. Умножение на число, то есть $\forall \alpha \in \mathbb{F} : \alpha x \in V$, где \mathbb{F} поле

Множество V называется **линейным (векторным) пространством** над полем \mathbb{F} , если выполняются следующие 8 свойств:

 $\forall x, y, z \in V$ и $\forall \alpha, \beta \in \mathbb{F}$

- 1. (x + y) + z = x + (y + z) ассоциативность сложения
- 2. $\exists 0 \in V : \forall x \in Vx + 0 = 0 + x = x$ нейтральный элемент по сложению
- 3. $\exists (-x): x + (-x) = 0$ элементы обратимы по сложению
- 4. x + y = y + x коммутативность сложения
- 5. $\exists 1 \in F : 1 \cdot x = x$ нейтральный элемент по умножению
- 6. $(\alpha \beta) x = \alpha (\beta x)$ ассоциативность умножения на число
- 7. $(\alpha + \beta)x = \alpha x + \beta x$ дистрибутивность относительно умножения на вектор
- 8. $\alpha(x + y) = \alpha x + \alpha y$ дистрибутивность относительно умножения на число

Вектор — это элемент векторного пространства

Примеры:

- 1. V_3 геометрические векторы
- 2. $F^n = \{(x_1, ..., x_n) | x_i \in F\}$ *n*-мерное арифметическое пространство

Операции введены покоординатно

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$

$$\lambda x = (\lambda x_1, \dots, \lambda x_n), \lambda \in F$$

- 3. $F^{\infty} = \{(x_1, \dots) | x_i \in F\}$
- 4. C[a,b] множество функций, непрерывных на отрезке [a,b]

$$\forall f_i(x) \in C[a,b]$$

$$\Rightarrow f_1(x) + f_2(x) \in C[a, b]$$

$$\forall \alpha \in \mathbb{R} : \alpha f(x) \in C[a, b]$$

 $\Rightarrow C[a,b]$ является линейным пространством

Примеры:

 $C[0,\pi]$, sin x и cos x является векторным пространством

Аналогично можно ввести:

 $C^k[a,b]$ — это функции, имеющие непрерывную производную до k-того порядка включительно $C^\infty[a,b]$ — это множество гладких функций

Если
$$K$$
 — кольцо, то $K(x) = \left\{ \frac{f_1(x)}{f_2(x)} \middle| f_i(x) \in K[x], f_2(x) \neq 0 \right\}$ называется **полем частных**

Подмножество H линейного пространства называется подпространством в V, если оно само является линейным пространством относительно операций в V

Зам. Для проверки того, что подмножество H является подпространством, достаточно проверить, что $\forall x^1, x^2 \in H$ и $\forall \lambda \in \mathbb{F}$:

- 1. $x^1 + x^2 \in H$
- 2. $\lambda x^1 \in H$

Примеры:

- 1. \forall прямая, проходящая через начало координат в V_3
- 2. Пусть дана ОСЛАУ A x = 0 и число неизвестных = n

Пусть L — множество решений этой СЛАУ

По свойствам решений СЛАУ x^1+x^2 является решением, если x^1,x^2 — решение, и λx^1 является решением, если x^1 — решение

 \Rightarrow L является подпространством в \mathbb{R}^n

Базисом в линейном пространстве V называется упорядоченный набор b_1,\dots,b_n такой, что:

- 1. $b_1, ..., b_n$ линейно независимы

2.
$$\forall x \in V$$
 выражается как линейная комбинация b_1, \dots, b_n , то есть $x = \alpha_1 b_1 + \dots + \alpha_n b_n = \begin{pmatrix} b_1 & \dots & b_n \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$

Коэффициенты α_1,\dots,α_n разложения вектора x по базису $\beta=b_1,\dots,b_n$ называются его **координатами** в базисе β

Утв. Если b_1,\ldots,b_n — базис в V, то коэффициенты α_1,\ldots,α_n $\forall x\in V$ определены однозначно

Зам. Сложению векторов соответствует сложение координат, а умножению вектора на число — умножение координат на число

Зам. Это означает, что ∀ конечномерное пространство изоморфно арифметическому пространству F^n

Изоморфизм:

Берем в V фиксированный базис b_1, \dots, b_n

$$x \mapsto \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in F^n$$

x — произвольный вектор

Максимальное количество линейно независимых векторов в данном линейном пространстве называют его **размерностью**

Обозначение: $\dim V$

Утв. Если в линейном пространстве V существует базис из n векторов, то dim V=n

Примеры:

1. $\dim \mathbb{R}^n = n$

 \mathbb{R}^n — арифметическое пространство

Стандартный базис:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

2. Пусть L — пространство решений ОСЛАУ Ax = 0 в \mathbb{R}^n

По теореме о структуре общего решения ОСЛАУ $\forall x \in L$ можно представить в виде:

 $x=c_1\phi_1+\ldots+c_{n-r}\phi_{n-r}$, где $r=\operatorname{Rg} A,\,\phi_1,\ldots,\phi_{n-r}$ — это ФСР и векторы, ее образующие линейно независимы

⇒ ФСР является базисом в пространстве решений ОСЛАУ

$$\dim L = n - r = n - \operatorname{Rg} A$$

3. P[a,b] — множество многочленов от x на отрезке [a,b]

Это бесконечномерное линейное пространство, так как $\forall n \in \mathbb{N}$ многочлены $1, x, x^1, \dots, x^n$ линейно независимы

$$(\alpha_0 1 + \alpha_1 x + \ldots + \alpha_n x^n) \equiv 0$$

 \Rightarrow По основной теореме алгебры все $\alpha_i=0$

Переход к новому базису

Пусть есть конеччномерное пространство V и в нем два базиса:

$$A = (a_1, \ldots, a_n)$$
 и $B = (b_1, \ldots, b_n)$

Разложим векторы базиса B по базису A:

$$b_1 = t_{11}a_1 + \ldots + t_{n1}a_n$$

$$b_n = t_{1n}a_1 + \ldots + t_{nn}a_n$$

Матрицей перехода от базиса A к базису B называется матрица $T_{A \to B} = \begin{pmatrix} t_{11} & . & . & t_{n1} \\ \vdots & & & \vdots \\ t_{1n} & . & . & t_{nn} \end{pmatrix}$,

то есть i-й столбец в этой матрице — это столбец координат вектора b_i в базисе A

Зам. Заметим, что определение матрицы перехода можно записать в матричной форме: $(b_1,\ldots,b_n)=(a_1,\ldots,a_n)T_{A\to B}$

$$B = (b_1, \dots, b_n)$$

$$A = (a_1, \dots, a_n)$$

- матрицы из векторов базиса

Определение матрицы перехода: $B = AT_{A \to B}$

Зам. Матрица перехода $T_{A \to B}$ всегда невырождена, так как векторы b_1, \dots, b_n линейно независимы \Rightarrow линейно независимы столбцы их координат \Rightarrow Rg $T_{A \to B} = n \Rightarrow \det T_{A \to B} \neq 0$

Зам. Матрица перехода от B к A равна обратной матрице перехода от A к B, то есть $T_{B \to A} = T_{A \to B}^{-1}$

Домножим (1) справа на
$$T_{A\to B}^{-1}$$
: $bT_{A\to B}^{-1}=a\Rightarrow T_{B\to A}=T_{A\to B}^{-1}$

Утв. Пусть в линейном пространстве V даны два базиса: $A=(a_1,\ldots,a_n)$ и $B=(b_1,\ldots,b_n)$ Рассмотрим координаты относительно двух базисов

$$x^a = \begin{pmatrix} x_1^a \\ \vdots \\ x_n^a \end{pmatrix}$$
 — столбец координат вектора x в базисе A $x^b = \begin{pmatrix} x_1^b \\ \vdots \\ x_n^b \end{pmatrix}$ — столбец координат вектора x в базисе B Тогда: $x^b = T_{A o B}^{-1} x^a$

<u>Док-во:</u>

Докажем, что
$$x^a = T_{A \to B} x^b$$

Запишем
$$x$$
 в базисе A : $x = a x^a = (a_1 \dots a_n) \begin{pmatrix} x_1^a \\ \vdots \\ x_n^a \end{pmatrix} = x_1^a a_a + \dots + x_n^a a_n$

Аналогично: $x = bx^b$

$$\Rightarrow ax^a = bx^b$$

По определению матрицы перехода:

$$b = aT_{A \to B}$$
 Подставим:

$$ax^a = aT_{A\to B}x^b$$

$$a\,x^a=a\,T_{A o B}x^b$$
 Так как разложение по базису единственно, то $x^a=T_{A o B}x^b\Rightarrow x^b=T_{A o B}^{-1}x^a$ #

Утв. Пусть
$$A=(a_1,\ldots,a_n)$$
, $B=(b_1,\ldots,b_n)$, $C=(c_1,\ldots,c_n)$ — базисы в пространстве V . Тогда $T_{A\to C}=T_{A\to B}\cdot T_{B\to C}$

Док-во:

$$c = bT_{B \to C}$$

$$b = aT_{A \to B}$$

$$c = aT_{A \to B}T_{B \to C} = aT_{A \to C}$$
#

Подпространства

Пусть H_1, H_2 — подпространства в пространстве L Тогда $H_1 \cap H_2$ является подпространством, а $H_1 \cup H_2$, вообще говоря, нет

Пример:

Пусть
$$H_1$$
 — ось абсцисс, H_2 — ось ординат, $V=\mathbb{R}^2$ $H_1\cup H_2$ — не линейные пространства

Суммой подпространств H_1 и H_2 называется множество $H_1 + H_2 = \{x_1 + x_2 \, | \, x_i \in H_i\}$

Зам. Очевидно, что H_1+H_2 является подпространством

Сумма подпространств называется **прямой**, если $H_1 \cap H_2 = \{0\}$ Обозначение: $H_1 \oplus H_2$

Утв. Сумма двух подпространств H_1 и H_2 является прямой $\Leftrightarrow \forall x \in H_1 + H_2$: представление x в виде $x = x_1 + x_2$, где $x_1 \in H_1$, $x_2 \in H_2$ единственно Тогда x_1 называется проекцией x на H_1 вдоль H_2 , а x_2 — на H_2 вдоль H_1

Док-во:

#

$\ll \to \gg Необходимость:$

Пусть сумма прямая, то есть
$$H_1 \cap H_2 = \{0\}$$
 Предположим, что $x = x_1 + x_2$ и $x = y_1 + y_2$ То есть $x_1 - y_1 = y_2 - x_2$, где $x_1 - y_1 \in H_1, y_2 - x_2 \in H_2 \Rightarrow 0$ $\Rightarrow \begin{cases} x_1 = y_1 \\ y_2 = x_2 \end{cases}$ проекции определены однозначно

$\ll \sim \gg Достаточночность:$

Пусть представление $x=x_1+x_2$ единственно Предположим, что $\exists x \neq 0: x \in H_1 \cap H_2$ Тогда $\forall \alpha \in \mathbb{F}: \alpha x \in H_1$ и $\alpha x \in H_2$ $\forall \beta \in H: (1-\beta)x+\beta x$, где $(1-\beta) \in H_1$ и $\beta \in H_2$ Нет однозначности \Rightarrow противоречие

Теорема

Пусть H_1 и H_2 — подпространства в L Тогда $\dim(H_1+H_2)+\dim(H_1\cap H_2)=\dim H_1+\dim H_2$

Следствие

 $\dim(H_1 \oplus H_2) = \dim H_1 + \dim H_2$

Док-во:

Пусть dim $H_1 = n$, dim $H_2 = m$

Рассмотрим $H_1 \cap H_2$

Если это $\neq \{0\}$, то рассмотрим базис в нем e_1, \dots, e_r , где $r = \dim(H_1 \cap H_2)$

Дополним этот базис до базисов в H_1 и H_2

(1)
$$e_1, \ldots, e_r, v_1, \ldots v_{n-r}, w_1, \ldots, w_{m-r}$$

Весь набор (1) является базисом в $H_1 + H_2$

Найдем $\dim(H_1 + H_2)$, как количество элементов в базисе **(1)**:

$$\dim(H_1 + H_2) = r + (n - r) + (m - r) = n + m - r = \dim H_1 + \dim H_2 - \dim(H_1 \cap H_2)$$

Множество $L(a_1, ..., a_k) = \{\lambda_1 a_1 + ... + \lambda_k a_k | \lambda_i \in F\}$, где $a_1, ..., a_k$ — векторы из пространства L над F, называется **линейной оболочкой** векторов $a_1, ..., a_k$

Зам. Очевидно, что $L(a_1, ..., a_k)$ всегда является линейным пространством

Пример

L(j,k) в \mathbb{R}^2 с базисом i,j,k — это плоскость O_{yz}

Рангом системы векторов a_1, \dots, a_k в линейном пространстве называется *размерность* линейной оболочки этих векторов dim $L(a_1, \dots, a_k)$

Утв. Ранг системы векторов a_1, \dots, a_k линейного пространства V равен рангу матрицы, составленной по строкам из координат векторов a_1, \dots, a_k в некотором фиксированном базисе пространства V

Билинейные формы

Мы рассматриваем линейное пространство V над $\mathbb R$

Функцию $B: V \times V \to \mathbb{R}$, сопоставляющую паре векторов вещественное число, называют **билинейной формой**, если $\forall x, y, z \in V$ и $\forall \alpha, \beta \in \mathbb{R}$ выполнены свойства:

- 1. $B(\alpha x + \beta y, z) = \alpha B(x, z) + \beta B(y, z)$ линейность по первому аргументу
- 2. $B(x, \alpha y + \beta z) = \alpha B(x, y) + \beta B(x, z)$ линейность по второму аргументу

Пример:

∀ скалярное произведение является билинейной формой, обратное не справедливо

Рассмотрим базис в $V:e_1,\ldots,e_n$ Разложим два вектора по базису:

Разложим два вектора по оазису.
$$x = \sum_{i=1}^{n} x_i e_i$$

$$y = \sum_{j=1}^{n} y_j e_j$$

$$B(x,y) = \binom{x = eX}{y = eY} = B\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j B(e_i, e_j)$$

$$B(e_i, e_i) = \text{это число } b_i \in R$$

 $B(e_i, e_i)$ — это число $b_{ii} \in R$

Рассмотрим матрицу $(b_{ij})=B,$ где $i=\overline{1,n},$ $j=\overline{1,n}$

Она называется матрицей билинейной формы

Зам. Фиксируем базис в $V: e_1, ..., e_n$

Пусть
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 — столбец координат вектора $x, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ — столбец координат вектора y в

Тогда
$$B(x, y) = X_{1\times n}^T B_{n\times n} Y_{n\times 1}$$

Пример:

$$\mathbf{B}V = \mathbb{R}^2$$

$$B(x, y) = 5x_1y_2$$
 — билинейная форма

$$B(x,y) = 5x_1y_2$$
 — билинейная форма $\begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix}$ — матрица этой билинейной формы, так как $(x_1 \ x_2) \begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 5x_1y_2$

$$(x_1 \quad x_2) \begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 5x_1y_2$$

<u>Лемма</u>

Если $\forall x,y \in R^n$: $x^TAy = x^TBy$, где A и B — квадратные матрицы порядка n, то A = B

Док-во:

Возьмем
$$x=e_i=\begin{pmatrix} 0\\ \cdot\\0\\1\\0\\ \cdot\\0 \end{pmatrix}$$
, где 1 стоит на i -том месте, и аналогично $y=e_j$

Тогда: $a_{ii} = b_{ii}$

По определению матрицы равны

Утв. Пусть U — матрица перехода от базиса e к базису e'. Тогда $B' = U^T B U$, где B — матрица билинейной формы в базисе e, а B' — в базисе e'

Док-во:

$$B(x,y) = (x')^T B' y'$$

 $x = Ux', y = Uy'$ — доказано ранее
 $B(x,y) = (x)^T B y = (Ux')^T B U y' = (x')^T U^T B U y'$
 \Rightarrow по лемме $B' = U^T B U$

Билинейная форма называется **симметрической**, если $B(x, y) = B(y, x) \forall x, y \in V$ Билинейная форма называется **кососимметрической**, если $B(x, y) = -B(y, x) \forall x, y \in V$

Зам. При фиксированном в V базисе существует взаимно однозначное соответствие между квадратными матрицами и билинейными формами: $B \Leftrightarrow x^T B y = B(x, y)$, где $B \in M_n(\mathbb{R})$

Квадратичные формы

Однородный многочлен второй степени от n переменных, то есть

(1)
$$Q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$
, где $a_{ij} \in \mathbb{R}$

называется квадратичной формой

Рассмотрим n-мерное пространство Возьмем в нем базис

У произвольного вектора x есть набор координат: $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Тогда **(1)** задает $Q(x): V \to R$ как функцию от вектора, она задается через координаты Q(x) всегда можно записать в виде $Q(x) = x^T A x$, где A — симметрическая матрица $[A]_{ii} = a_{ii}$ из (1)

Она называется матрицей квадратичной формы

Пример:

Q(x) на \mathbb{R}^3 :

$$Q(x) = x_1^2 + 8x_1x_2 = (x_1 \quad x_2 \quad x_3) \begin{pmatrix} 1 & 4 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

Зам. Если нам дана билинейная форма B(x, y), то можно получить квадратичную форму, взяв x = y, то есть $Q(x) = B(x, x) = x^T B x$

Зам. По квадратичной форме можно восстановить соответствующую симметрическую билинейную форму $B(x,y)=\frac{1}{2}(Q(x+y)-Q(y)-Q(y))$

Тогда говорят, что билинейная форма B(x,y) получена поляризацией из квадратичной формы Q(x)

Утв. Пусть A — матрица квадратичной формы в базисе e, A' — матрица квадратичной формы в новом базисе e', S — матрица перехода от e к e', тогда $A' = S^T A S$

Док-во:

$$x = Sx'$$
 $Q(x) = x^T A x = (Sx')^T A Sx' = (x')^T S^T A Sx' = (x')^T A'x'$
 \Rightarrow по лемме $A' = S^T A S$

Если $Q(x) = x^T A x$, то Rg A называется рангом квадратичной формы

Лемма

Пусть $A, U \in M_n(\mathbb{R})$, и det $U \neq 0$

Тогда $\operatorname{Rg} AU = \operatorname{Rg} A = \operatorname{Rg} UA$, то есть при умножении на невырожденную матрицу ранг не меняется

Док-во:

 $\operatorname{Rg} AU \leqslant \operatorname{Rg} A$, так как столбцы матрицы AU — это линейные комбинации столбцов матрицы A

А по теореме о ранге матрицы ранг равен максимальному количеству л.н.з. столбцов

$$Rg A = Rg AUU^{-1} \leqslant Rg AU$$

$$\Rightarrow Rg A = Rg AU$$
#

Утв. Об инвариантности ранга квадратичной формы

Ранг матрицы квадратичной формы не зависит от выбора базиса

Док-во:

По ранее доказанному

$$A' = U^T A U$$
, где U — матрица перехода $\Rightarrow U$ невырождена $\operatorname{Rg} A' = \operatorname{Rg} (U^T A) U = \operatorname{Rg} U^T A = \operatorname{Rg} A$

Квадратичную форму $Q(x) = \alpha_1 x_1^2 + \ldots + \alpha_n x_n^2$, где $\alpha_i \in R, i = \overline{1,n}$, не имеющую попарные произведений, называют квадратичной формой **канонического вида**

Нормальным видом квадратичной формы называется канонический с условием $\alpha_i \in \{-1,0,1\}$

Утв. Любую квадратичную форму можно привести к каноническому (нормальному) виду методом Лагранжа

Метод состоит в последовательном выделении полных квадратов, не более одного на одну переменную

Если на каком-то шаге переменных на квадрате не осталось, но при этом есть выражение вида cx_ix_i , то делают замену переменных, которая устроена так:

$$x_1 = x'_1$$
...
$$x_i = x'_1 - x'_j$$
...
$$x_j = x'_i + x'_j$$
...
$$x_n = x'_n$$

$$X = TX'$$

Пример:
$$Q(x)=x_1^2-4x_1x_2=x_1^2-4x_1x_2+4x_1^2+4x_2^2=(x_1-x_2)^2-4x_2^2$$
 $x_1'=x_1-x_2$ $x_2'=2x_2$ $Q(x)=(x_1')^2-(x_2')^2$ — нормальный вид

Теор. Закон инерции в квадратичной форме

Для ∀ двух канонических видов одной и той же квадратичной формы:

$$Q_1(y_1, ..., y_m) = \lambda_1 y_1^2 + ... + \lambda_m y_m^2$$
, где $\lambda_i \neq 0, i = \overline{1,m}$ $Q_1(z_1, ..., z_k) = \mu_1 z_1^2 + ... + \mu_k z_k^2$, где $\mu_j \neq 0, j = \overline{1,k}$

- Справедливо:
- 1. m = k = рангу квадратичной формы (доказано ранее)
- 2. Количество положительных λ_i равно количеству положительных μ_j , называется положительным индексом инерции и обозначается i_+ Количество отрицательных λ_i равно количеству отрицательных μ_j , называется отрицательным индексом инерции и обозначается i_- Пара (i_+,i_-) называется сигнатурой квадратичной формы

Зам. Ранг квадратичной формы равен сумме индексов инерации: $i_+ + i_-$

Зам. Если зафиксировать (i_+,i_-) , то найдется ровно одна квадратичная форма с такими индексами инерции с точностью до выбора базиса

Зам. \forall Квадратичная форма при x = 0: Q(x) = 0, так как квадратичная форма однородный многочлен

Квадратичная форма Q(x) называется **положительно определенной**, если $\forall x \neq 0 : Q(x) > 0$, отрицательно определенной, если $\forall x \neq 0 : Q(x) < 0$ **Знакопеременной**, если $\exists x \neq y : Q(x) < 0 < Q(y)$

Критерий Сильвестра

Квадратичная форма положительно определена 👄 последовательность главных угловых миноров положительна: $\Delta_1 > 0, \ \Delta_2 > 0, ..., \ \Delta_n > 0$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Пример:
$$Q_1 = 2x_1^2 + 3x_2^2 + 4x_3^2$$
 над $V = \mathbb{R}^3$

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \Rightarrow \begin{cases} \Delta_1 = 2 \\ \Delta_2 = 6 \\ \Delta_3 = 24 \end{cases}$$
 э определена положительно

Следствие

Квадратичная форма отрицательно определена $\Leftrightarrow \Delta_1 < 0, \ \Delta_2 > 0, \ \Delta_3 < 0, \ \dots, \ (-1)^n \Delta_n > 0$

Линейные отображения и линейные операторы

Пусть V — линейное пространство, тогда ϕ называется линейным оператором (л.о.), если $\forall x, y \in V$ и $\forall \alpha \in \mathbb{F}$ справедливо:

1.
$$\phi(x + y) = \phi(x) + \phi(y)$$

2.
$$\phi(\alpha x) = \alpha \phi(x)$$

(это линейность)

Обозначение: $\phi: V \to V$

Матрица линейного оператора

Фиксируем базис e_1, \dots, e_n в V

Найдем векторы $\phi(e_1),\ldots,\phi(e_n)$ — образы базисных векторов

Результат разложим по базису:

$$\begin{cases} \phi(e_1) = a_{11}e_1 + a_{21}e_2 + \ldots + a_{n1}e_n \\ \vdots \\ \phi(e_n) = a_{1n}e_1 + a_{2n}e_2 + \ldots + a_{nn}e_n \end{cases}, \text{где } a_{ij} \in \mathbb{F}$$

Матрицей л.о. Называется
$$A=\begin{pmatrix} a_{11}&.&.&a_{1n}\\ \vdots&\vdots&\vdots&\vdots\\ a_{n1}&.&.&a_{nn} \end{pmatrix}$$
, где столбцы — векторы $\phi(e_1),\dots,\phi(e_n)$

Пример:

 $\phi(x) = \text{пр}_L x$ — проекция на ось абсцисс

L = L(i), где i — вектор из \mathbb{R}^3

$$\begin{cases} \phi(i) = i = 1 \cdot i + 0 \cdot j + 0 \cdot k \\ \phi(j) = 0 = 0 \cdot i + 0 \cdot j + 0 \cdot k \Rightarrow A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \phi(k) = 0 = 0 \cdot i + 0 \cdot j + 0 \cdot k \end{cases}$$

Утв. Пусть
$$\phi$$
 — л.о. в V , $e = \{e_1, \dots, e_n\}$ — базис в V и $x^e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ — координаты вектора x в

базисе e, A^e — матрица л.о. в том же базисе

Тогда $(\phi(x))^e = A^e x^e$

Док-во:

Разложим по базису:

$$\phi(x) = \phi(x_1 e_1 + \ldots + x_n e_n)$$

Применим свойства линейности:

$$\phi(x_1e_1+..+x_ne_n)=x_1\phi(e_1)+..+x_n\phi(e_n)$$
 Запишем через компоненты матрицы л.о.:

$$x_1\phi(e_1) + \ldots + x_n\phi(e_n) = x_1(a_{11}e_1 + \ldots + a_{n1}e_n) + \ldots + x_n(a_{1n}e_1 + \ldots + a_{nn}e_n) =$$

$$= (a_{11}x_1 + \ldots + a_{1n}x_n)e_1 + \ldots + (a_{n1}x_1 + \ldots + a_{nn}x_n)e_n$$

$$\Rightarrow \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{n1}x_1 + \dots + a_{nn}x_n \end{pmatrix} \Rightarrow A^e x^e$$

Утв. Пусть $e = \{e_1, \dots, e_n\}$ и $e' = \{e'_1, \dots, e'_n\}$ — два базиса в одном пространстве V, A^e и $A^{e'}$ — матрицы л.о. в этих базисах соответсвенно, T — матрица перехода от базиса e к e', тогда $A^{e'} = T^{-1}A^{e}T$

Док-во:

$$x=Tx'$$
, где x — координаты в базисе e , а x' — координаты в базисе e' , тогда
$$(\phi(x))^e=A^ex^e=A^eTx^{e'} \ (\phi(x))^{e'}=T^{-1}(\phi(x))^e=T^{-1}A^eTx^{e'} \ \Rightarrow A^{e'}=T^{-1}A^eT$$

Линейные отображения

 $\overline{\Pi}$ усть V_1 и V_2 — линейные пространства

Тогда ϕ называется **линейным отображением**, если $\phi: V_1 \to V_2$ и:

- 1. $\forall x \in V_1, \alpha \in \mathbb{F} : \phi(\alpha x) = \alpha \phi(x)$
- 2. $\forall x_1, x_2 \in V_1$: $\phi(x_1 + x_2) = \phi(x_1) + \phi(x_2)$

Утв. Пусть ϕ — линейное отображение из V_1 в V_2 , а $A_{\varepsilon_1\varepsilon_2}$ — матрица линейного отображения в паре базисов ε_1 (базис V_1) и ε_2 (базис V_2), то есть берем элементы из базиса ε_1 : e_1,\ldots,e_n , рассматриваем их образы $\phi(e_1),\ldots,\phi(e_n)$ и раскладываем их по базису ε_2 , то есть в V_2 , по столбцам матрицы стоят коэффициенты этого разложения

Пусть T_1 — матрица перехода от ε_1 к ε_1' , а T_2 — матрица перехода от ε_2 к ε_2' Тогда $A_{\varepsilon_1'\varepsilon_2'}=T_2^{-1}A_{\varepsilon_1\varepsilon_2}T_1$

Зам. Если $V_1=V_2$, $\varepsilon_1=\varepsilon_2=\varepsilon$ и $\varepsilon_1'=\varepsilon_2'=\varepsilon'$, то формула принимает следующий вид: $A_{\varepsilon'}=T^{-1}A_{\varepsilon}T$, это формула для линейного оператора

Док-во:

 $[x]_{\varepsilon'_1} = T_1^{-1}[x]_{\varepsilon_1}$ (1) $[y]_{\varepsilon'_2} = T_2^{-1}[y]_{\varepsilon_2}$ (2)

Пусть $y = \phi(x)$, то есть образу x под действием ϕ

Тогда $[y]_{\varepsilon_2}=A_{\varepsilon_1\varepsilon_2}[x]_{\varepsilon_1}$ и $[y]_{\varepsilon_2'}=A_{\varepsilon_1'\varepsilon_2'}[x]_{\varepsilon_1'}$

Подставим **(1)** и **(2)** и домножим на T_2 слева:

$$\begin{split} T_2^{-1}[y]_{\varepsilon_2} &= A_{\varepsilon_1'\varepsilon_2'}T_1^{-1}[x]_{\varepsilon_1} \\ [y]_{\varepsilon_2} &= T_2A_{\varepsilon_1'\varepsilon_2'}T_1^{-1}[x]_{\varepsilon_1} \\ [y]_{\varepsilon_2} &= A_{\varepsilon_1\varepsilon_2}[x]_{\varepsilon_1} \\ &\Rightarrow T_2A_{\varepsilon_1'\varepsilon_2'}T_1^{-1} = A_{\varepsilon_1\varepsilon_2} \\ &\Rightarrow A_{\varepsilon_1'\varepsilon_2'} &= T_2^{-1}A_{\varepsilon_1\varepsilon_2}T_1 \end{split}$$

Зам. С каждым линейным преобразованием $\phi:V_1\to V_2$ связаны два подпространства: $\ker\phi\subseteq V_1$ и $\mathrm{Im}\ \phi\subseteq V_2$

Утв. Пусть $\phi:V_1 \to V_2$, dim $V_1=m$, dim $V_2=n$, тогда dim Ker $\phi+$ dim Im $\phi=m$

Док-во:

Выберем в V_1 базис $e=\{e_1,\ldots,e_m\}$

 $\forall x \in V_1 : x = x_1 e_1 + \ldots + x_m e_m$

Разложим по линейности:

$$\phi(x) = x_1 \phi(e_1) + \ldots + x_m \phi(e_m)$$

 $\phi(e_1),\ldots,\phi(e_m)$ — столбцы матрицы линейного отображения

$$\Rightarrow$$
Im $\phi = L(\phi(e_1), ..., \phi(e_m))$

 \Rightarrow dim Im $\phi = \operatorname{Rg} A_e$

Ядро ϕ описывается СЛАУ $A_e x=0$ это однородная СЛАУ и размерность пространства ее решений dim Ker $\phi=m-\operatorname{Rg} A_e$

 \Rightarrow dim Ker ϕ + dim Im ϕ = m

#

Зам. Пусть $\phi: V \to V -$ л.о. Тогда, вообще говоря, $V \neq \operatorname{Im} \phi \oplus \operatorname{Ker} \phi$

Пример:

D:f o f' в $\mathbb{R}_n[x]$ — многочлены степени не выше n с коэффициентами из \mathbb{R} Im $D=\mathbb{R}_{n-1}[x]$ — многочлены степени не выше n-1 с коэффициентами из \mathbb{R} Ker D=L(1) — константы $\dim\mathbb{R}_n[x]=n+1$ — $\dim\operatorname{Im}D=n$ — $\dim\operatorname{Ker}D=1$ Но при этом $\operatorname{Im}D+\operatorname{Ker}D=\mathbb{R}_{n-1}[x]\neq\mathbb{R}_n[x]$

Собственные числа и собственные векторы

Число $\lambda \in \mathbb{F}$ называется **собственным числом (с.з.)** линейного оператора $\phi : V \to V$, если существует вектор $v \in V$, $v \neq 0$: $\phi(v) = \lambda v$, то есть $Av = \lambda v$, где A — матрица л.о. При этом v называется **собственным вектором (с.в)**

Зам. Собственный вектор — это ненулевой вектор, переходящий под действием л.о. ϕ в коллинеарный себе

Множество $\mathit{всеx}$ собственных значений ϕ называется **спектром** ϕ

Примеры:

1.
$$A_e = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
, e_1 и e_2 — с.в., 2 и 3 — с.з.

2. $A_e = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ — поворот на $\frac{\pi}{4}$ над \mathbb{R} — нет с.в. и с.з.

Для произвольной квадратной матрицы A определитель $\chi_A(\lambda) = \det(A - \lambda E)$ называется характеристическим многочленом, а $\chi_A(\lambda) = 0$ — характеристическим уравнением

Матрицы A и B называются **подобными**, если существует невырожденная матрица C такая, что $B = C^{-1}AC$

Утв. Характеристические многочлены подобных матриц совпадают

Док-во:

Пусть матрицы A и B подобны, по определению $\exists C: \det C \neq 0$ и $B = C^{-1}AC$ $\chi_B(\lambda) = \det(B - \lambda E) = \det(C^{-1}AC - \lambda E) = \det$

Утв. Характеристическое уравнение оператора не зависит от выбора базиса

<u>Док-во:</u>

Матрицы л.о. в разных базисах подобны: $A' = T^{-1}AT$ \Rightarrow характеристическое уравнение не зависит от выбора матрицы #

⇒ Можно говорить о характеристическом уравнении л.о., а не матрицы

Зам. Свободный коэффициент χ_A — это определитель матрицы A_e , а след матрицы $\operatorname{tr} A_e$ — это коэффициент при λ^{n-1} с точностью до знака \Rightarrow они не зависят от базиса

Теор. $\lambda - \text{с.з.} \Leftrightarrow \lambda - \text{корень}$ характеристического уравнения $\chi_A(\lambda) = 0$, когда все корни принадлежат полю

Зам. Всегда верно над $\mathbb C$, потому что $\mathbb C$ алгебраически замкнуто

Док-во:

 $\ll \rightarrow \gg$ Необходимость:

Дано: $\lambda - c.з.$

Доказать: λ — корень $\chi_A(\lambda) = 0$

По определению с.з.: $\exists x \neq 0 : Ax = \lambda Ix$, где I — тождественный оператор Это все равно, что:

 $(1) (A - \lambda I)x = 0$

Запишем (1) в некотором базисе:

 $(A_e - \lambda E)x = 0$ — это однородная СЛАУ

По критерию существования ненулевого решения однородной СЛАУ с квадратной матрицей, так как СЛАУ совместна $\Rightarrow \det(A_e - \lambda E) = \chi_A(\lambda) = 0$

 $\ll \sim \gg Достаточность:$

Дано: λ — корень $\chi_A(\lambda) = 0$

Доказать: $\lambda - c.з.$

Если λ — корень характеристического уравнения, то в заданном базисе выполняется равенство $\chi_A(\lambda)=\det(A_e-\lambda E)=0$

Можно рассмотреть СЛАУ с матрицей $(A_e - \lambda E)$, она имеет ненулевое решение x Это решение — набор координат некоторого вектора, для которого выполняется равенство (1): $(A - \lambda I)x = 0 \Leftrightarrow Ax = \lambda x, x \neq 0$ — это определение с.з.

#

Алгебраической характеристикой собственного значения называется его *кратность* как корня характеристического уравнения

Пример:

$$\chi_A(\lambda) = (\lambda - 5)^3 (\lambda - 6)^2 (\lambda + 3)$$

 $\lambda_1 = 5$ — алгебраическая кратность **3**

 $\lambda_2 = 6$ — алгебраическая кратность **2**

 $\lambda_3 = -3$ — алгебраическая кратность **1**

Собственным подпространством, отвечающим с.з. λ_i л.о. A , называется множество: $V_{\lambda_i} = \{x \in V \, | \, Ax = \lambda_i x\}$

Зам. V_{λ_i} — это все с.в., отвечающие $\lambda_i \cup \{0\}$

Зам. V_{λ_i} — это действительно подпространство, потому что $\forall u,v\in V$ и $\forall \alpha\in \mathbb{F}$ верно:

- 1. $A(u+v)=Au+Av=\lambda_i u+\lambda_i v=\lambda_i (u+v),$ то есть если $u,v\in V\lambda_i$, то и $(u+v)\in V\lambda_i$
- 2. $A(\alpha v) = \alpha A v = \alpha \lambda_i v = \lambda_i \alpha v$ то есть если $v \in V \lambda_i$, то и $(\alpha v) \in V \lambda_i$
- $\Rightarrow V \lambda_i$ замкнуто относительно сложения и умножения на число

3am.
$$V\lambda_i = \text{Ker}(A - \lambda_i E)$$

Pазмерность подпространства $V\lambda_i$ называется **геометрической кратностью** с.з. λ_i

Зам. Геометрическая кратность $\lambda_i = \dim \operatorname{Ker} (A - \lambda_i E)$ и это максимальное количество л.н.з. с.в., отвечающих λ_i

Зам. Геометрическая кратность с.з. λ_i равна количеству элементов в ФСР однородной СЛАУ $(A - \lambda_i E)x = 0$

Теорема (без доказательства)

Геометрическая кратность с.з. не превышает его алгебраической кратности и всегда $\geqslant 1$

Утв. Пусть $\lambda_1,\dots,\lambda_k$ — с.з. л.о. A и $\lambda_i\neq\lambda_j$, где $i,j=\overline{1,k}$, а v_1,\dots,v_k — соответствующие им с.в., тогда v_1,\dots,v_k л.н.з.

Док-во:

Нужно доказать, что с.в., отвечающие разным с.з., л.н.з.

Докажем, применив принцип матиндукции

При k=1 это верно, так как с.в. по определению $\neq 0 \Rightarrow$ л.н.з

Пусть утверждение уже верно при k = m

Добавим еще один вектор e_{m+1} , соответствующий λ_{m+1}

Докажем, что система $e_1, e_2, \dots, e_m, e_{m+1}$ осталась л.н.з.:

(2)
$$\alpha_1 e_1 + \alpha_2 e_2 + ... + \alpha_m e_m + \alpha_{m+1} e_{m+1} = 0$$

Применим к **(2)** оператор A:

$$A(\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_m e_m + \alpha_{m+1} e_{m+1}) = A(0) = 0$$

|| (3)

$$A(\alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_m e_m + \alpha_{m+1} e_{m+1}) = \alpha_1 A e_1 + \alpha_2 A e_2 + \ldots + \alpha_m A e_m + \alpha_{m+1} A e_{m+1}$$

Так как $A e_i = \lambda_i e_i$

$$\alpha_1 A e_1 + \alpha_2 A e_2 + \ldots + \alpha_m A e_m + \alpha_{m+1} A e_{m+1} = \alpha_1 \lambda_1 e_1 + \alpha_2 \lambda_2 e_2 + \ldots + \alpha_m \lambda_m e_m + \alpha_{m+1} \lambda_{m+1} e_{m+1}$$

Умножим **(2)** на λ_{m+1} и вычтем из **(3)**:

$$\alpha_1(\lambda_1 - \lambda_{m+1})e_1 + \alpha_2(\lambda_2 - \lambda_{m+1})e_2 + \dots + \alpha_m(\lambda_m - \lambda_{m+1})e_m = 0$$

 \Rightarrow По индукции векторы e_1, \dots, e_m л.н.з.

Из определения линейной независимости:

$$\begin{cases} \alpha_1(\lambda_1 - \lambda_{m+1}) = 0 \\ \vdots \\ \alpha_m(\lambda_m - \lambda_{m+1}) = 0 \end{cases}$$

Так как все с.з. различны \Rightarrow все $\alpha_i = 0, i = \overline{1,m}$

 \Rightarrow (2) можно записать в виде: $\alpha_{m+1}e_{m+1}=0$

И так как e_{m+1} это с.в. , он $\neq 0$ по определению $\Rightarrow \alpha_{m+1} = 0 \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_m = \alpha_{m+1} = 0$

- \Rightarrow По определению $e_1, e_2, \dots, e_m, e_{m+1}$ образуют л.н.з. систему
- \Rightarrow По определению матиндукции это верно $\forall k$

#

Утв. Матрица л.о. A является диагональной в данном базисе \Leftrightarrow все векторы этого базиса являются с.в. для A

Док-во:

«→» Необходимость:

Дано: А, диагональна

Доказать: базис е состоит из с.в. л.о. А

По определению матрицы л.о. в j-том столбце A_e стоят координаты вектора $A(e_j)$ — образа j-того базисного вектора

Если матрица диагональна, столбец имеет вид $\begin{pmatrix} 0 & \dots & 0 & \lambda_j & 0 & \dots & 0 \end{pmatrix}^T$

 $A(e_i) = 0 + ... + \lambda_i e_i + ... + 0$, то есть по определению e_i — с.в. с с.з. λ_i

 $e_i \neq 0$ так как является элементом базиса

Это верно $\forall j \Rightarrow$ все e_i — собственные, а на диагонали стоят соответствующие с.з.

«←» Достаточность:

Дано: базис $e = \{e_1, \dots, e_n\}$ состоит из с.в.

Доказать: A_e диагональна

По определению с.в. $Ae_i = \lambda_i e_i$

 \Rightarrow по определению в матрице л.о. все элементы в j-том столбце равны 0, кроме элементов на диагонали

⇒ матрица диагональна

#

Оператор, для которого существует базис, в котором его матрица диагональна, называется диагонализируемым

Зам. Диагонализируемость эквивалентна существованию базиса из с.в.

Существуют л.о., не являющиеся диагонализируемыми:

Существуют л.о., не являющиеся диагонализируемыми:
$$A = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}, \phi \neq \pi k, k \in \mathbb{Z}$$

$$\chi_A(\lambda) = \begin{vmatrix} \cos \phi - \lambda & -\sin \phi \\ \sin \phi & \cos \phi - \lambda \end{vmatrix} = \lambda^2 - 2\cos \phi \lambda + \cos^2 \phi + \sin^2 \phi = \lambda^2 - 2\cos \phi \lambda + 1$$

$$\chi_A(\lambda) = 0 \Rightarrow \lambda^2 - 2\cos \phi \lambda + 1 = 0 \Rightarrow D = 4(\cos^2 \phi - 1) < 0$$
 при $\phi \neq \pi k$

Теор. Линейный оператор диагонализируем \Leftrightarrow для ∀ его с.з. геометрическая кратность равна алгебраической

Теор. Достаточное условие диагонализируемости

<u>Док-во:</u>

Корень характеристического уравнения принадлежит нашему полю \Rightarrow ему можно сопоставить хотя бы один с.в.: v_{l}

Система таких векторов будет л.н.з., так как корни попарно различны, а их количество $n=\dim V$

 \Rightarrow Эта система образует базис в V

Этот базис состоит из с.в.

 \Rightarrow Матрица в нем является диагональной

#

Жорданова клетка размера $m \times m$, отвечающая с.з. λ_i — это матрица, где на диагонали

стоят
$$\lambda_i$$
, а над каждой λ_i — единица, то есть матрица вида: $J_m(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & . & 0 \\ 0 & \lambda_i & . & . \\ . & . & . & 1 \\ 0 & . & 0 & \lambda_i \end{pmatrix}$

Жорданова Нормальная Форма (ЖНФ) матрицы л.о. — это блочно-диагональная

матрица с жордановыми клетками на диагонали:
$$J=egin{pmatrix} J_{m_1}(\lambda_1) & 0 & . & 0 \\ 0 & J_{m_2}(\lambda_2) & . & . \\ . & . & . & 0 \\ 0 & . & 0 & J_{m_s}(\lambda_s) \end{pmatrix},$$

причем $m_1 + ... + m_s = \dim V$

Теорема О ЖНФ

 $\forall A \in M_n(\mathbb{F})$ заменой базиса *приводится* к ЖНФ над алгебраически замкнутым полем, т.е. $\forall A \in M_n(\mathbb{F}) \ \exists C : \det C \neq 0 : A = CJC^{-1}$, где J — ЖНФ, причем эта ЖНФ единственна с точностью до перестановки клеток

Зам. Если $\mathbb F$ не является алгебраически замкнутым полем, то эта теорема справедлива в случае, когда все корни характеристического уравнения принадлежат $\mathbb F$

Зам. Если матрица диагональна, то пространство V равно прямой сумме собственных подпространств $V_{\lambda_i} = \operatorname{Ker} (A - \lambda_i E)$

Корневым подпространством линейного оператора A , соответствующим с.з. λ_i называется множество $K_{\lambda_i} = \mathrm{Ker}\,(A - \lambda_i E)^{m_i}$, где m_i — алгебраическая кратность с.з. λ_i

Зам. K_{λ_i} является инвариантным подпространством для линейного оператора

Подпространство $H\subseteq V$ называется **инвариантным** для линейного оператора A , если $\forall y\in H:Ay\in H$

Зам. Если H — инвариантное подпространство для л.о. A, то корректно определено сужение $A|_H$ (т.е. $A_1: H \to H$) оператора A на подпространство H

Теорема (без доказательства) О расщеплении

 \forall л.о., действующего в линейном пространстве V над \mathbb{C} $V=K_{\lambda_1}\oplus\ldots\oplus K_{\lambda_s}$, где $K_{\lambda_i}-$ корневое подпространство, соответствующее λ_i

Можно рассмотреть ограничение $A\mid_{K_{\lambda_i}}$ и рассмотреть его отдельно

Зам. Каждое K_{λ_i} , в свою очередь, разбивается в прямую сумму циклических подпространств, т.е. подпространств вида $L = (x, (A - \lambda_i E)x, \dots, (A - \lambda_i E)^{h-1}x)$ — жорданова цепочка длины h

Как найти Жорданову Нормальную Форму оператора А?

Она, с точностью до перестановки клеток, определяются числами q_h — число жордановых клеток $h \times h$ с λ_i на диагонали

Пример ЖНФ:

$$J = \begin{pmatrix} -3 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 5 & 1 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 & 1 \end{pmatrix}, \text{ rge } \begin{matrix} \lambda_1 = -3 \\ \lambda_2 = 5 \end{matrix} \Rightarrow \begin{matrix} q_1(\lambda_2) = 0, & q_1(\lambda_1) = 1 \\ q_2(\lambda_2) = 1, & q_2(\lambda_1) = 0 \\ q_3(\lambda_2) = 1, & q_3(\lambda_1) = 0 \\ q_4(\lambda_2) = 0, & q_4(\lambda_1) = 0 \end{matrix}$$

Утв. Для каждого $\lambda_i:q_h=r_{h+1}-2r_h+r_{h-1}$, где $r_h=\operatorname{Rg}(A-\lambda_i E)^h$, а $r_0=\operatorname{Rg}E_n=n$

Какова максимальная длина жордановой цепочки для λ_i ?

 $\min \operatorname{Rg} (A - \lambda_i E)^m = n - m_i,$

где $m \in \mathbb{N}, n$ — размерность пространства V, m_i — алгебраическая кратность λ_i Находим минимальное m, для которого ранг равен $n-m_i$

Теорема Гамильтона-Кэли

 $\chi_A(A) = 0$, то есть, если подставить в характеристическое уравнение л.о. матрицу этого же л.о., получится нулевая матрица

Суперпозицией линейных операторов A и B называется линейный оператор A(B(x)), то есть последовательное применение л.о.

Зам. Очевидно, что суперпозиция $A \cdot B - л.о.$

$$AB(\lambda u + \mu v) = A(B(\lambda u + \mu v)) = A(\lambda Bu + \mu Bv) = \lambda A(Bu) + \mu A(Bv) = \lambda AB(u) + \mu AB(v)$$
 Это верно $\forall \lambda, \mu \in \mathbb{F}$ и $\forall u, v \in V$

Утв. Пусть A, B- л.о. на пространстве V, тогда матрицей $A\cdot B$ будет произведение матриц A и B

Док-во:

 $(ABx)^e = (AB)^e x^e$, где e — это базис, x — столбец координат, AB — матрица л.о.

По определению: $(AB)^{e}x^{e} = A^{e}(Bx)^{e} = A^{e}B^{e}x^{e}$

Т.к. x произвольна, то $(A B)^e = A^e B^e$

В качестве х можно взять базисный вектор

#

В прошлый раз была теорема Гамильтона-Кэли: $\chi_A(A) = 0$, $\deg \chi_A(\lambda) = n$ — размерность пространства

Минимальным многочленом л.о. A называется многочлен $\mu(\lambda): \mu(A_{\scriptscriptstyle \rho}) = 0$, $\mu \neq 0$ и коэффициент при старшей степени = 1

Пример:

Пусть
$$A = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$
, тогда $\chi_A(\lambda) = (\lambda - 3)(\lambda - 3)^5 \Rightarrow \deg \chi_A = 6$ $\deg \mu_A = 4$ Длина максимальной жордановой цепочки

Евклидовы пространства

Евклидово пространство — это линейное пространство над \mathbb{R} , в котором задано скалярное произведение, то есть ε — это пара (V, g(x, y)), где V, а g(x, y) — это функция от двух векторных аргументов, удовлетворяющих следующим аксиомам:

 $\forall x, y \in V, \forall \lambda \in \mathbb{R}$:

- 1. g(x, y) = g(y, x) симметричность
- 2. g(x + y, z) = g(x, z) + g(y, z) линейность по каждому из аргументов
- 3. $g(\lambda x, y) = \lambda g(x, y)$ линейность по каждому из аргументов То есть это симметрическая билинейная форма
- 4. $g(x,x) \ge 0$, причем $g(x,x) = 0 \Leftrightarrow x = 0$ То есь g(x, x) — положительно определенная квадратичная форма

Зам. То есть g(x, y) — билинейная симметрическая положительно определенная (x = y)форма

Примеры:

$$(\overrightarrow{a}, \overrightarrow{b}) = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \phi$$

Примеры.

1.
$$V_3$$
 — геометрические векторы $(\overrightarrow{a}, \overrightarrow{b}) = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \phi$

2. $V = C[a, b]$ — непрерывные функции на $[a, b]$ $(f_1, f_2) = \int_a^b f_1(x) \cdot f_2(x) \ dx$

Пусть ε — евклидово пространство, тогда величина $||v|| = \sqrt{(v,v)}$ называется **нормой** (длиной) вектора *v* в евклидовом пространстве

$$||f|| = \sqrt{\int_a^b f^2(x) dx}$$

$$||\sin x|| = \sqrt{\int_a^b \sin^2 x dx}$$

Неравенство Коши-Буняковского-Шварца

Ytb.
$$\forall x, y \in \varepsilon$$
: $|(x, y)| \le ||x|| \cdot ||y||$

Док-во:

$$\forall \lambda \in \mathbb{R} : (\lambda x - y, \lambda x - y) \geqslant 0 \text{ по аксиоме 4} \\ \lambda(x, \lambda x - y) - (y, \lambda x - y) = \lambda^2(x, x) - \lambda(x, y) - \lambda(y, x) + (y, y) = \lambda^2 \|x\|^2 - 2\lambda(x, y) + \|y\|^2 \geqslant 0 \\ D \leqslant 0 \\ D = 4(x, y)^2 - 4\|x\|^2 \|y\|^2 \\ |(x, y)| \leqslant \|x\| \cdot \|y\| \\ \#$$

Следствие 1

Можно определить угол между векторами х и у следующей формулой:

$$\cos \alpha = \frac{(x,y)}{\|x\| \cdot \|y\|} = \frac{(x,y)}{\sqrt{(x,x)} \cdot \sqrt{(y,y)}}$$

Следствие 2

Неравенство треугольника

Утв. $\forall x, y \in \varepsilon : ||x + y|| \le ||x|| + ||y||$

Док-во:

$$\|x+y\|^2 = (x+y,x+y) = (x,x) + 2(x,y) + (y,y) \leqslant \|x\|^2 + 2\|x\| \cdot \|y\| + \|y\|^2 = (\|x\| + \|y\|)^2$$
 Tak kak $\|z\| \geqslant 0 \, \forall z \in \varepsilon$, to $\|x+y\| \leqslant \|x\| + \|y\|$

Ортогональость

Два вектора x и y из евклидового пространства ε называют **ортогональными**, если g(x,y)=0, то есть их скалярное произведение равно нулю

Система векторов $\{a_1,\ldots,a_n\}$ называется

- (a) **Ортогональной**, если $\forall i, j = \overline{1,n}, i \neq j : (a_i, a_i) = 0$
- (b) **Ортонормированной,** если она ортогональна и $(a_i, a_i) = 1 \, \forall i = \overline{1,n}$

Утв. Пусть $\{a_1,\dots,a_k\}$ — ортогональная система, причем $a_i\neq 0, i=\overline{1,k}$, тогда эта система линейно независима

Док-во:

Пусть

(1)
$$\alpha_1 a_1 + \ldots + \alpha_k a_k = 0$$

Умножим **(1)** на a_i скалярно:

$$(\alpha_1 a_1 + \ldots + \alpha_k a_k, a_i) = (0, a_i) = 0$$
 $\alpha_1(a_1, a_i) + \ldots + \alpha_i(a_i, a_i) + \ldots + \alpha_k(a_k, a_i) = 0$ — тк система ортогональня $\Rightarrow \alpha_i \|a_i\|^2 = 0$, но $a_i \neq 0$
 $\Rightarrow \alpha_i = 0$ и это верно $\forall i = \overline{1,k}$
 $\Rightarrow \text{все } \alpha_i = 0 \Rightarrow \text{ по определению } \{a_i, a_i\} \text{ л. н. 3}$

 \Rightarrow все $\alpha_i=0\Rightarrow$ по определению $\{a_1,\ldots,a_k\}$ л.н.з.

Если v_1, \dots, v_k — это ортогональная система ненулевых векторов в V, то это **ортогональный базис**

Ортогональный базис всегда можно превратить в ортонормированный базис (ОНБ), положив: $e_i = \frac{a_i}{\|a_i\|}, i = \overline{1,k}$

Зам. Пусть
$$x,y\in \varepsilon$$
 и $X=\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$ и $Y=\begin{pmatrix} y_1\\ \vdots\\ y_n \end{pmatrix}$ — столбцы координат векторов x и y в некотором

базисе, тогда $g(x, y) = X^T \Gamma Y$, где Γ — матрица Грама

Матрица Грама
$$\Gamma = \begin{pmatrix} (a_1, a_1) & . & . & (a_1, a_n) \\ \vdots & \vdots & \vdots & \vdots \\ (a_n, a_1) & . & . & (a_n, a_n) \end{pmatrix}$$
, где a_i — векторы базиса, то есть это матрица

билинейной симметрической формы, которой является скалярное произведение

3am. B OHE:
$$(x, y) = X^T E Y = X^T Y = x_1 y_1 + ... + x_n y_n$$

Зам Пусть $e_1, ..., e_n$ — ОНБ в ε и $(x_1, ..., x_n)^T$ — столбец координат вектора x в базисе $e_1, ..., e_n$, тогда $x_i = (x, e_i), \forall i = \overline{1,n}$

Док-во:

$$x = x_1 e_1 + \ldots + x_n e_n$$

Скалярно умножим на e_i :

$$(x, e_i) = x_1(e_1, e_i) + \dots + x_i(e_i, e_i) + \dots + x_n(e_n, e_i)$$

$$(e_i, e_i) = 1$$
, так как ОНБ

$$\Rightarrow x_i = (x, e_i)$$

Процесс ортогонализации Грама-Шмидта

Утв. Если ε — конечномерное евклидово пространство, то в нем всегда существует ОНБ

Док-во:

Пусть a_1, \ldots, a_n — базис в евклидовом пространстве ε , построим по нему ортогональный базис

Положим, $b_1 = a_1$, он не равен нулю, так как это элемент базиса

 b_2 будем искать в виде:

$$b_2 = a_2 - \alpha b_1$$

Коэффициент α найдем из условия ортогональности b_2 и b_1 :

$$(b_2, b_1) = 0$$

$$(a_2 - \alpha b_1, b_1) = 0$$

$$(a_2, b_1) - \alpha(b_1, b_1) = 0$$

$$\Rightarrow \alpha = \frac{(a_2, b_1)}{(b_1, b_1)}$$

$$(a_2, b_1) - \alpha(b_1, b_1) = 0$$

$$\Rightarrow \alpha = \frac{(a_2, b_1)}{(b_1, b_1)}$$

$$b_2 = a_2 - \frac{(a_2, b_1)}{(b_1, b_1)}b_1$$

arGammaеометрически: мы вычитаем из a_2 его проекцию на b_1

Заметим, что a_1 и a_2 могут быть выражены через b_1 и b_2 и наоборот

 $\Rightarrow b_1$ и b_2 л.н.з.

Пусть b_1, \ldots, b_k , где $k \geqslant 2$, уже построены

Будем искать b_{k+1} в виде

(2)
$$b_{k+1} = a_{k+1} - a_{k+1} b_1 - a_{k+1} b_2 - \dots - a_{k+1} b_k$$

(2) $b_{k+1}=a_{k+1}-\alpha_{k+1}$ $_1b_1-\alpha_{k+1}$ $_2b_2-\ldots-\alpha_{k+1}$ $_kb_k$ Коэффициент α_{k+1} $_i$ найдем из условия ортогональности b_{k+1} и b_i , где $i=\overline{1,k}$

Домножим **(2)** скалярно на b_i :

$$(b_{k+1}, b_i) = (a_{k+1}, b_i) - \alpha_{k+1} i(b_i, b_i)$$

$$\Rightarrow \alpha_{k+1 \ i} = \frac{(a_{k+1}, b_i)}{(b_i, b_i)}$$

$$\Rightarrow b_{k+1} = a_{k+1} - \sum_{i=1}^{k} \frac{(a_{k+1}, b_i)}{(b_i, b_i)} b_i$$

Если переписать по-другому:
$$b_i = a_i - \sum_{k=1}^{i-1} \frac{(a_i,b_k)}{(b_k,b_k)} b_k$$
, где $i=\overline{2,n}$

Продолжаем процесс до тех пор, пока не получим ортогональную систему b_1,\ldots,b_n То есть есть система ненулевых ортогональных векторов b_1,\ldots,b_n , где $n=\dim V$ Это ортогональный базис в V, так как они л.н.з., и их количество равно размерности ОНБ получим, разделив каждый вектор на его нормаль:

ОНБ получим, разделив каждый вектор на его нормаль:
$$e_i = \frac{b_i}{\|b_i\|}, \text{где } \|b_i\| = \sqrt{(b_i,b_i)}, i = \overline{1,n}$$

#

Свойства матрицы Грама

Скалярное произведение при фиксированном базисе $a_1, ..., a_n$ $(x, y) = X^T \Gamma Y$, где

X, Y — столбцы координат векторов x и y,

 Γ — матрица Γ рама $[\Gamma]_{ii} = (a_i, a_i)$

1. Матрица Грама **симметриескас**, то есть $\Gamma = \Gamma^T$

Это свойство скалярного произведения

$$\forall x \neq 0 : x^T \Gamma x > 0$$

$$x^T \Gamma x = (x, x) = ||x||^2$$

2. Пусть e и e' — два базиса, а Γ и Γ' — их матрицы Γ рама

Тогда $\Gamma' = U^T \Gamma U$, где U — матрица перехода от e к e'

Это так, потому что Γ — матрица билинейной формы

3. Определитель матрицы Грама всегда положителен: $\det \Gamma > 0$

Док-во:

Перейдем в ОНБ

Он всегда существует по теореме Грама-Шмидта

Пусть U — матрица перехода от исходного базиса к ОНБ

Тогда $\Gamma' = U^T \Gamma U$ по свойству (1)

В ОНБ $\Gamma' = E$ по определению

$$\Rightarrow E = U^T \Gamma U$$

$$\det E = 1 = \det(U^T \Gamma U) = \det U^T \det \Gamma \det U = \det \Gamma (\det U)^2$$

$$\Rightarrow$$
 det $\Gamma > 0$

Определитель матрицы Грама набора векторов a_1, \dots, a_k называется **грамианом** и обозначается Gr (a_1, \ldots, a_k) = det $\Gamma(a_1, \ldots, a_k)$

4. Утв. Определитель матрицы Грама (грамиан) не меняется при применения процесса ортогонализации Г-Ш

Док-во:

 a_1, \ldots, a_n — исходный базис

С помощью ортогонализации Г-Ш получаем ортогональный базис b_1, \dots, b_n

$$U_{a\to b} = \begin{pmatrix} 1 & . & . & * \\ \cdot & 1 & . & . \\ \cdot & \cdot & . & . \\ 0 & . & . & 1 \end{pmatrix} - \text{верхнетреугольная матрица с 1 на диагонали}$$

$$\text{Gr}\left(b_1,\ldots,b_n\right) = \det\Gamma_b = \det(U^T\Gamma_aU) = \det U^T \det\Gamma_a \det U = 1 \cdot \det\Gamma_a \cdot 1 = \det\Gamma_a = \text{Gr}\left(a_1,\ldots,a_n\right)$$

Сдедствие

Gr
$$(a_1, ..., a_n) = (b_1, b_1) \cdot ... \cdot (b_n, b_n) = ||b_1||^2 \cdot ... \cdot ||b_n||^2$$

Зам. Если a_1, a_2, a_3 — это столбцы координат некоторых линейно независимых. векторов, то $\Gamma(a_1, a_2, a_3) = A^T A$ (матрица, составленная из скалярных произведений в ОНБ), где A --матрица, составленная и столбцов координат a_1, a_2, a_3

Gr
$$(a_1, a_2, a_3)$$
 = det $\Gamma(a_1, a_2, a_3)$ = det $(A^T A)$ = det $(A^T A)$

Но $\det A = \langle a_1, a_2, a_3 \rangle$, а это ориентированный объем

Ho det
$$A = \langle a_1, a_2, a_3 \rangle$$
, а это ориентированный объем \Rightarrow Gr $(a_1, a_2, a_3) = V^2(a_1, a_2, a_3) \Rightarrow V(a_1, a_2, a_3) = \sqrt{\text{Gr }(a_1, a_2, a_3)}$

Аналогично: $S(a_1, a_2) = |\det A| = \sqrt{\operatorname{Gr}(a_1, a_2)}$

Зам. В *n*-мерном случае принимают в виде определения: $V(a_1, \ldots, a_n) = \sqrt{\operatorname{Gr}(a_1, \ldots, a_n)}$

Ортогональное дополнение

Пусть H — некоторое подпространство в V

Множество $\{x \in V \mid (x,y) = 0 \, \forall y \in H\} = H^{\perp}$, то есть множество векторов из V, ортогональных к каждому вектору из H, называется **ортогональным дополнением** H

Утв. H^{\perp} является линейным подпространством в V и $V=H\oplus H^{\perp}$ \Rightarrow dim $V=\dim H+\dim H^{\perp}$

Док-во:

 $\forall x, y \in H^{\perp}$ и $\forall \alpha \in \mathbb{F}$

Проверим заменутость относительно сложения и умножения на число $h \in H$:

1.
$$(x + y, h) = (x, h) + (y, h) = 0 \Rightarrow x + y \in H^{\perp}$$

2.
$$(\alpha x, h) = \alpha(x, h) = 0 \Rightarrow \alpha x \in H^{\perp}$$

 $\Rightarrow H^{\perp}$ подпространство

Тогда можно рассматривать $H + H^{\perp}$

Покажем, что сумма прямая и равна V

Если $x \in H \cap H^{\perp}$, то $(x, x) = 0 \Leftrightarrow x = 0$ (по 4 аксиоме)

$$\Rightarrow H \cap H^{\perp} = \{0\}$$
 и сумму прямая

Пусть f_1, \dots, f_m — ОНБ в H (он всегда существует)

Дополним его до базиса в пространстве V векторами f_{m+1}, \dots, f_n

Применим ортогонализацию Г-Ш к $f_1, \dots, f_m, f_{m+1}, \dots, f_n$

Получим: $f_1, \dots, f_m, b_{m+1}, \dots, b_n$, где b_{m+1}, \dots, b_n ортогональны каждому из векторов f_1, \dots, f_m \Rightarrow всему H

Они принадлежат H^{\perp}

 $\forall x \in V$ можно представить в виде: $x = x_1 f_1 + \ldots + x_m f_m + x_{m+1} b_{m+1} + \ldots + x_n b_n$

$$x_1f_1+\ldots+x_mf_m=z_1\in H$$

$$x_{m+1}b_{m+1} + \ldots + x_nb_n = z_2 \in H^{\perp}$$

Значит, $V = H \oplus H^{\perp}$

#

Пусть $x = z_1 + z_2$, тогда

 $z_1 \in H$ — ортогональная проекция x на H

 $z_2 \in H^{\perp}$ — ортогональная составляющая x относительно H

Утв. $(L^{\perp})^{\perp} = L$, где L — подпространство

<u>Док-</u>во:

 $\forall x \in L$ ортогонален любому вектору из L^{\perp}

$$\Rightarrow L \subseteq (L^{\perp})^{\perp}$$

А по утверждению у них одинаковая размрность

$$\Rightarrow L = (L^{\perp})^{\perp}$$

#

5 свойство матрицы Грама:

Утв. a_1,\dots,a_k — л.н.з. (это может быть не базис) \Leftrightarrow Gr $(a_1,\dots,a_k) \neq 0$

<u>Док-во:</u>

Пусть
$$a_1 a_1 + ... + a_k a_k = 0$$
 (1)

Умножаем **(1)** последовательно на a_1, \dots, a_k скалярно:

$$\begin{cases} \alpha(a_1,a_1)+\ldots+\alpha_k(a_1,a_k)=0\\ \vdots\\ \alpha(a_k,a_1)+\ldots+\alpha_k(a_k,a_k)=0 \end{cases}, \text{ то есть } \Gamma(a_1,\ldots,a_k) \cdot \begin{pmatrix} \alpha_1\\ \vdots\\ \alpha_k \end{pmatrix} = 0$$

У этой ОСЛАУ существует нетривиальное решение \Leftrightarrow det $\Gamma(a_1,\ldots,a_k)={\rm Gr\ }(a_1,\ldots,a_k)\neq 0$ #

Как найти проекцию вектора на подпространство $H = L(a_1, ..., a_k)$?

Утв. Пусть a_1, \dots, a_k — л.н.з., так как это базис в H, x — произвольный вектор из V. Тогда $x = h + h^{\perp}$, где

 $h = \text{пр}_H x$ — ортогональная проекция вектора x на подпространство H, h^\perp — ортогональная составляющая вектора относительно H.

Тогда пр $_H x = A(A^T A)^{-1} A^T x$, где

A — матрица, составленная по столбцам из a_1,\ldots,a_k

Док-во:

Так как
$$a_1, \dots, a_k$$
 — базис в H , то $h = \alpha_1 a_1 + \dots + \alpha_k a_k$ $x = \alpha_1 a_1 + \dots + \alpha_k a_k + h^\perp$

Последовательно скалярно умножаем это выражение на векторы a_1, \dots, a_k Заметим, что $\forall i = \overline{1,n}$: $(a_i,h^{\perp}) = 0$, так как $h^{\perp} \in H^{\perp}$

$$\Rightarrow$$
 Получаем СЛАУ относительно α_1,\ldots,α_k :

$$\begin{cases} \alpha_1(a_1, a_1) + \ldots + \alpha_k(a_1, a_k) = (a_1, x) \\ \vdots \\ \alpha_1(a_k, a_1) + \ldots + \alpha_k(a_k, a_k) = (a_k, x) \end{cases}$$

В матричной форме: $\Gamma(a_1,\ldots,a_k)\cdot\alpha=A^Tx$, где $\alpha=(\alpha_1\ldots\alpha_k)^T$

Применим свойство (5) матрицы Грама: так как $a_1,\ldots,a_k-\pi$.н.з. \Rightarrow det $\Gamma(a_1,\ldots,a_k)\neq 0$ \Rightarrow $\exists \Gamma^{-1}$, так как $\Gamma(a_1,\ldots,a_k)=A^TA\Rightarrow \exists (A^TA)^{-1}$

В матричной форме: $h = \pi p_{\mu} x = A \alpha = a_1 \alpha_1 + ... + a_k \alpha_k$

$$A^T A \alpha = A^T x \Rightarrow \alpha = (A^T A)^{-1} A^T x$$

И окончательно: $h = A\alpha = A(A^TA)^{-1}A^Tx$

Расстоянием от точки M , заданной вектором x , до линейного могообразия P называется $\rho(M,P) = \inf_{n \in P} \rho(x,u) = \min_{n \in P} \|x-u\|$

Множество решений неоднородной СЛАУ Ax = b называется **линейным многообразием**

Зам. По теореме о структуре решений неоднородной СЛАУ P- линейное многообразие $\Leftrightarrow P=x_0+L$, где L- некоторое подпространсво

Зам. $\rho(M,P)=$ длине ортогональной составляющей вектора $x-x_0$, где $P=x_0+L$ Мы ищем $\min_{u\in P}\|x-u\|$, где $x-u=x-(x_0+l)=x-x_0+l'= \mathrm{np}_L(x-x_0+l)+(x-x_0+l)^\perp$, $l\in L$

$$||y|| \le ||x - u|| + ||z|| \Rightarrow \min_{u \in P} ||x - u|| = ||(x - x_0)^{\perp}||$$

То есть расстояние — это длина «перпендикуляра», опущенного из x на P

Утв. Расстояние $\rho(x,P)$ между точкой x и линейным многообразием $P=x_0+L$, где $L=L(a_1,\ldots a_k)$, может быть найдено по формуле:

$$L=L(a_1,\ldots a_k)$$
, может быть найдено по формуле:
$$\rho^2(x,P)=\frac{{
m Gr}(a_1,\ldots ,a_k,x-x_0)}{{
m Gr}(a_1,\ldots ,a_k)}$$

Док-во:

Расстояние равно длине ортогональной составляющей вектора $x-x_0$

Применим к $a_1, ..., a_k, x - x_0$:

$$Gr(a_n, ..., a_k, x - x_0) = (b_1, b_1) \cdot ... \cdot (b_k, b_k)((x - x_0)^{\perp}, (x - x_0)^{\perp})$$
По свойству (4)
$$((x - x_0)^{\perp}, (x - x_0)^{\perp}) = \rho^2$$

$$\operatorname{Gr}(a_1, ..., a_k) \neq 0$$
 по свойству (5)
$$\Rightarrow \rho^2 = \frac{\operatorname{Gr}(a_1, ..., a_k, x - x_0)}{\operatorname{Gr}(a_1, ..., a_k)}$$

#

<u>Линейные операторов в евклидовых пространствах</u>

Линейный оператор $A^*: \varepsilon \to \varepsilon$ называется **сопряженным** к линейному оператору $A: \varepsilon \to \varepsilon$, если $\forall x,y \in \varepsilon$ (евклидово пространство): $(Ax,y) = (x,A^*y)$

Линейный оператор называется **самосопряжённым**, если $A = A^*$, то есть и $\forall x, y \in \varepsilon$: (Ax, y) = (x, Ay)

Теорема

Для любого линейного оператора $A:\varepsilon\to\varepsilon$ \exists ! сопряженный оператор $A^*:\varepsilon\to\varepsilon$, причем пего матрица вычисляется так: $(A^*)_b=\Gamma^{-1}(A_b)^T\Gamma$, где Γ — матрица Γ рама в базисе b

Следствие

Если
$$b$$
 — ОНБ, то $(A^*)_b = (A_b)^T$

Док-во:

Покажем, что л.о. с матрицей $B = \Gamma^{-1} A^T \Gamma$ является сопряженным к данному л.о. С матрицей A

Для этого проверяем выполнение равенства $(Ax, y) = (x, By) \ \forall x, y \in \varepsilon$

Пусть x^{b} , y^{b} — столбцы координат векторов x и y в базисе b

Тогда по доказанному ранее $(A x)^b = A_b x^b$

 \Rightarrow Запишем скалярные произведения в матричной форме: $(((A\,x)^b)^T\Gamma y^b)=(x^b)^T\Gamma (B\,y)^b,$ так как $(x,y)=(x^b)^T\Gamma_b y^b$ $(x^b)^TA_b^Ty^b=(x^b)^T\Gamma B_b y^b$

 \Rightarrow По лемме для квадратичных форм $A_b^T \Gamma = \Gamma B_b$

Так как базис состоит из л.н.з. векторов \Rightarrow $\exists \Gamma^{-1}$ по (5) свойству \Rightarrow $B_b = \Gamma^{-1} A_b^T \Gamma$ — определено однозначно

Следствие

Матрица линейного оператора в ОНБ является симметрической ⇔ л.о. самосопряженный

Утв. Все корни характеристического уравнения самосопряженного оператора являются действительными числами

Док-во:

Пусть
$$\lambda_i \in \mathbb{C}$$
 — корень $\chi_A(\lambda) = 0$

Тогда СЛАУ
$$(A - \lambda_i E)x = 0$$
 (1) имеет ненулевое решение

Пусть
$$x = (x_1, ..., x_n)^T$$
 — такое решение, $x_i \in \mathbb{C}, k = \overline{1,n}$

Пусть
$$x=(x_1,\ldots,x_n)^T$$
 — такое решение, $x_i\in\mathbb{C}, k=\overline{1,n}$ Умножим (1) на $\overline{x}^T=x^*$ (транспонированный и комплексно сопряженный вектор)

$$\overline{x}^T(A - \lambda_i E)x = 0$$

$$\Rightarrow \overline{x}^T A x = \lambda_i \overline{x}^T x$$

$$\overline{x}^T x = \overline{x}_1 x_1 + \dots + \overline{x}_n x_n = |x_1|^2 + \dots + |x_n|^2$$

$$x \in (X - x_i E)x = 0$$

 $\Rightarrow \overline{x}^T A x = \lambda_i \overline{x}^T x$
 $\overline{x}^T x = \overline{x}_1 x_1 + \ldots + \overline{x}_n x_n = |x_1|^2 + \ldots + |x_n|^2$
Так как вектор ненулевой $\lambda_i = \frac{\overline{x}^T A x}{\overline{x}^T x} = \frac{x^* A x}{x^* x}$ — отношение Рэлея $\overline{x}^T x$ — вещественное положительное число

$$w = \overline{x}^T A x$$

Покажем, что $w \in \mathbb{R}$, то есть $\overline{w} = w$

$$w = w^T$$
 (так как это число)

$$w = w^T$$
 (так как это число)
 $w = w^T = (\overline{x}^T A x)^T = x^T A^T (\overline{x}^T)^T = x^T A \overline{x}$ (мы в ОНБ)
 $\overline{w} = \overline{x}^T A x = \overline{x}^T \overline{A} \overline{x} = x^T A \overline{x} = w$

$$\overline{w} = \overline{x}^T A x = \overline{x}^T \overline{A} \overline{x} = x^T A \overline{x} = w$$

$$\frac{w}{A} = \lambda$$
 $Ax = x$ $Ax = w$ $\overline{A} = A$, так как матрица вещественная $\Rightarrow w \in \mathbb{R} \Rightarrow \lambda_i = \frac{w}{\overline{x}^T x} \in \mathbb{R}$

Теорема

Пусть λ_i — с.з. самосопряжённого оператора A

Тогда его алгебраическая кратность равна геометрической

Утв. Собственные векторы самосопряжённого л.о., отвечающие различным с.з. ортогональны

Док-во:

Пусть
$$x_1, x_2$$
 — с.в. По определению: $A x_i = \lambda_i x_i, x_i \neq 0$ $(A x_1, x_2) = (\lambda_1 x_1, x_2) = \lambda_1 (x_1, x_2)$ $||$ — так как A самосопряженный $(x_1, A x_2) = (x_1, \lambda_2 x_2) = \lambda_2 (x_1, x_2)$ $\Rightarrow (\lambda_1 - \lambda_2)(x_1, x_2) = 0$, где $\lambda_1 \neq \lambda_2$ по условию #

Теорема

Для любого **самосопряжённого линейного оператора** *A* существует **ОНБ**, состоящий из собственных векторов. Матрица $A_{\scriptscriptstyle
ho}$ нашего линейного оператора в этом базисе диагональна, а на диагонали стоят собственные значения, повторяющиеся столько раз, какова их алгебраическая кратность

Теорема (частный случай предыдущей теоремы)

Если собственные значения $\lambda_1, \dots, \lambda_n$ самосопряжённого линейного оператора $A: \varepsilon \to \varepsilon$, где dim $\varepsilon = n$ попарно различны, то в ε существует OHБ, в котором матрица имеет диагональный вид

Док-во:

Так как $\lambda_1,\dots,\lambda_n$ попарно различны, то выбрав для каждого λ_i соответствующий ему собственный вектор v_i , мы получим систему из n ненулевых векторов

По утверждению об ортогональности собственных векторов самосопряжённого линейного оператора это будет ортогональная система

- \Rightarrow По ранее доказанному утверждению она л.н.з. и в ней n векторов ($n = \dim \varepsilon$)
- ⇒ Она является базимом

Этот базис является ортогональным ОНБ получим, взяв
$$e_i = \frac{v_i}{\|v_i\|}, i = \overline{1,n}$$

Итак, существует ОНБ из собственных векторов

По ранее доказанному утверждению матрица л.о. в нем диагональна #

Ортогональные преобразования и ортогональные матрицы

Квадратную матрицу O называют **ортогональной**, если $O^TO = E$

Пример:

$$O_4 = egin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} -$$
 матрица поворота

Свойства ортогональных матриц

1. $|\det O| = 1 \Rightarrow O$ невырожденна

$$\underline{\mathcal{A}_{OK-6O}}:$$

$$\det(O^T O) = \det E = 1$$

$$\det(O^T O) = (\det O)^2 \Rightarrow |\det O| = 1$$
#

2.
$$Q^{-1} = Q^T$$

Док-во:

По (1) O^{-1} существует

Умножим определение на O^{-1} справа:

$$(O^{T}O)O^{-1} = EO^{-1} \Rightarrow O^{T}(OO^{-1}) = O^{T}E = O^{T}$$

$$\Rightarrow O^{-1} = O^{T}$$

3. O^{T} тоже ортогональная матрица

4. Произведение двух ортогональных матриц O и Q одинакового размера — ортогональная матрица

$$\underline{\mathcal{A}}OK-BO:$$

$$(OQ)^TOQ = Q^TO^TOQ = Q^TEQ = Q^TQ = E$$
#

Зам. Множество всех ортогональных матриц размера $n \times n$ над $\mathbb R$ с матричным умножением образует группу $O_n(\mathbb R)$

Линейный оператор $A: \varepsilon \to \varepsilon$ называется **ортогональным** линейным оператором, если $\forall x,y \in \varepsilon: (Ax,Ay)=(x,y)$

Зам. Говорят, что *А «сохраняет скалярное произведение»* **Зам.** Ортогональный оператор мохраняет длины и угол между векторами

Док-во:

$$||Ax||^2 = (Ax, Ax) = (x, x) = ||x||^2,$$
 то есть длины не поменялись $\cos(Ax, Ay) = \frac{(Ax, Ay)}{||Ax|| \cdot ||Ay||} = \frac{(x, y)}{||x|| \cdot ||y||} = \cos(x, y)$ #

Теорема

Пусть $A : \varepsilon \to \varepsilon$

A — ортогональный л.о. \Leftrightarrow A переводит ОНБ e_1, \ldots, e_n в ОНБ Ae_1, \ldots, Ae_n

Док-во:

 $\ll \rightarrow \gg$ Необходимость:

Дано: e_1,\ldots,e_n — ОНБ, A — ортогональный л.о.

Дано.
$$e_1, ..., e_n$$
 оны, A ортосом Доказать: $Ae_1, ..., Ae_n - OHB$ $(Ae_i, Ae_j) = (e_i, e_j) = \delta^i_j = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$

То есть система $\{Ae_i\}$ состоит из ненулевых векторов и ортогональна \Rightarrow она л.н.з.

Так как количество элементов равно dim $\varepsilon = n$, это базис

«←» Достаточность:

Дано: e_1, \ldots, e_n и Ae_1, \ldots, Ae_n — ОНБ

Доказать: A — ортогональный л.о.

Пусть
$$x \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 в базисе e_1, \dots, e_n , тогда $Ax \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ в базисе Ae_1, \dots, Ae_n

$$\Rightarrow \forall x, y, \in \varepsilon : (x, y) = x_1 y_1 + \ldots + x_n y_n \text{ (мы в ОНБ)}$$

(Ax,Ay) точно так же выражаются через координаты в $\{Ae_i\}$

 \Rightarrow Верно соотношение $(Ax, Ay) = (x, y) \forall x, y \in \varepsilon$

#

Теорема

Матрица линейного оператора A в ОНБ ортогональна $\Leftrightarrow A$ — ортогональный оператор

Док-во:

 $\ll \to \gg$ Необходимость:

Дано: A_e — ортогональная матрица

Доказать: A — ортогональный л.о.

$$TA_{e}^{T}A_{e} = E \Rightarrow \forall x, y \in \varepsilon$$

 $x^T(A_e^TA_e)=x^TEy\Leftrightarrow (A_ex)^TA_ey=x^Ty$ — матричная запись скалярного произведения

 $(Ax, Ay) = (x, y) \Rightarrow A$ — ортогональный линейный оператор по определению

«←» Достаточность:

Дано: A — ортогональный л.о.

Доказать: A_e — ортогональная матрица

Рассмотрим определение: $(Ax, Ay) = (x, y) \Leftrightarrow (A_e x)^T (A_e y) = x^T y$

$$x^T A_e^T A_e y = x^T E y = x^T y \Rightarrow \Pi$$
о лемме $A_e^T A_e = E$

Утв. В евклидовом пространстве матрица перехода от одного ОНБ к другому ОНБ является ортогональной

Док-во:

Пусть O — матрица перехода от $e=(e_1,\ldots,e_n)$ к базису $b=(b_1,\ldots,b_n)$, оба ОНБ

По определению матрицы перехода в U по столбцам стоят координаты векторов базиса b в старом

Тогда U^TU — матрица Грама базиса b (скалярное произведение взято в ОНБ)

Второй базис тоже является ОНБ $\Rightarrow U^TU = E$, то есть U ортогональная

Теорема о каноническом или спектральном разложении

Для любой симметрической матрицы M существует такая ортогональная матрица U,

что
$$M=U\Lambda U^T$$
, где $\Lambda=\begin{pmatrix} \lambda_1 & . & . & 0 \\ . & \lambda_2 & . & . \\ . & . & . & . \\ 0 & . & . & \lambda_n \end{pmatrix}$ — диагональная матрица, где $\lambda_1,\dots,\lambda_n$ — с.з.

л.о. с матрицей M и они повторяются в соответствии с их кратностью

Зам. Говорят, что ∀ симметрическая матрица ортогональным преобразованием приводится к диагональному виду

Док-во:

Рассмотрим матрицу M, как матрицу некоторого самосопряжённого линейного оператора в некотором ОНБ $f = \{f_1, \dots, f_n\}$ — это возможно, так как M симметрична Для самосопряжённого л.о. Всегда существует ОНБ из собственных векторов, в котором его матрица диагональна

То есть $\Lambda = T_{f \to e}^{-1} M T_{f \to e}$, где $T_{f \to e}$ — матрица перехода между двумя ОНБ

 \Rightarrow Она ортогональная и ее можно взять в качестве U

Так как \bar{U} ортогональная, то $U^{-1} = U^T$

$$\Rightarrow M = U \Lambda U^T$$

Теорема о каноническом виде ортогонального преобразования

Для любого ортогонального преобразования существует ОНБ, в котором его матрица имеет следующий блочно-диагональный вид:

Следствие

<u>Теорема Эйлера</u>

При n=3 любое ортогональное преобразование в \mathbb{R}^3 имеет вид

$$\begin{pmatrix} \cos \phi_j & -\sin \phi_j & 0 \\ \sin \phi_j & \cos \phi_j & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}$$

То есть является поворотом на некоторый угол ϕ относительно некоторой оси, либо композиция поворота с отражением

<u>Теорема о приведении квадратичной формы к каноническому виду ортогональным преобразованием</u>

Приведение к главным осям

Любую квадратичную форму ортогональным преобразованием можно привести к каноническому виду

Док-во:

Матрица квадратичной формы является симметрической: $B^T = B$

Рассмотрим n -мерное евклидово пространство ε (n — число переменных в квадратичной форме Q) и некоторый ОНБ в нем

Матрица квадратичной формы B является матрицей некоторого самосопряжённого оператор в данном базисе по критерию самосопряженности в ОНБ

По теореме для самосопряжённого линейного оператора существует новый ОНБ f такой, что матрица A' линейного оператора в этом базисе диагональна, а сам он состоит из собственных векторов A

Матрица линейного оператора преобразуется по формуле:

 $A' = S^{-1}AS$, где S - матрица перехода из исходного базиса в новый

Так как S является матрицей переходя от одного ОНБ к другому, то она является ортогональной и $S^{-1} = S^T$

 Π ри этом матрица квадратичной формы преобразуется по формуле: $B' = S^T B S$

 \Rightarrow A' = B' и матрица квадратичной формы тоже является диагональной при такой замени координат

⇒ Это и есть канонический вид

#

Зам. Диагональными элементами B', то есть коэффициентами канонического вида квадратичной формы являются собственные качения самосопряжённого оператора A (оператора с той же матрицей)

Утв. О *QR*-разложении

Пусть $A \in M_m(\mathbb{R})$ и столбцы A_1, \dots, A_m л.н.з.

Тогда существуют матрицы Q и R: A = QR, причем

Q - ортогональная матрица

 $\it R$ - верхрнетреугольная матрица с положительными элементами на главной диагонали

Док-во:

Рассмотрим A_1,\dots,A_m — столбцы матрицы A и применим к ним процесс ортогоналищации Грама-Шмидта

Получим столбцы B_1, \dots, B_m , потом нормируем их и получим столбцы Q_1, \dots, Q_m

 Q_1,\dots,Q_m является ортонормированной системой

 \Rightarrow Если составить из ним матрицу $Q=(Q_1\,|\,Q_2\,|\,..\,|\,Q_m)$, то она будет ортогональной $A_k\in L(Q_1,...,Q_m), k=\overline{1,m}$ — по формулам Грама-Шмидта, так как не берем векторы с большими номерами

$$\Rightarrow A_k = \sum_{i=1}^k r_{ik} Q_i, k = \overline{1,m}$$

81
 В матричной форме $A=QR$, где $R=egin{pmatrix} \Gamma_{11}&.&.&\Gamma_{1m}\ .&\Gamma_{22}&.&.\ .&.&.&.\ 0&.&.&\Gamma_{mm} \end{pmatrix}$

 $\Gamma_{kk}>0$, так как это длина соответствующего вектора B_k

Теорема о сингулярном разложении (SVD)

Для любой матрицы $A \in M_{mn}(\mathbb{R})$ справедливо сингулярное разложение: $A = V \Sigma U^T$,

U - ортогональная матрица размера $n \times n$

где V - ортогональная матрица размера $m \times m$

 Σ - диагональная размера m imes nс числами $\sigma_i \geqslant 0$ на диагонали

 σ_i называется сингулярными числами A

При этом по договорённости σ_i располагают в порядке невозростания:

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_r \geqslant \sigma_{r+1} = \ldots = 0$$

Док-во:

 \overline{P} ассмотрим матрицу $A^T A$, она симметрична, соответсвует квадратичной форме и неотрицательно определена

$$(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$$
 — симметрична

$$Q(x) = x^T A^T A x = (Ax)^T A x = (Ax, Ax) = ||Ax||^2 \geqslant 0$$
 — неотрицательно определена

 \Rightarrow л.о. с матрицей A^TA является самосопряженным

$$\Rightarrow$$
 Все с.з. $A^T A$ вещественны и они $\geqslant 0$

$$\Rightarrow$$
 Все с.з. $A^T A$ вещественны и они $\geqslant 0$ Так как $\lambda_i = \frac{x^T A^T A x}{x^T x} \geqslant 0$

Запишем с.з. A^TA в виде σ_i^2 , то есть $\sigma_i = \sqrt{\lambda_i(A^TA)}$, и нумеруем их по невозрастанию

$$\sigma_1 \geqslant \sigma_2 \geqslant \dots \geqslant \sigma_r \geqslant \sigma_{r+1} = \dots = 0$$

 $\sigma_1\geqslant\sigma_2\geqslant\ldots\geqslant\sigma_r\geqslant\sigma_{r+1}=\ldots=0$ Так как A^TA — самосопряжённый, для него существует ОНБ из собственных

векторов
$$A^TAu_i = \begin{cases} \sigma_i^2u_i & , 1\leqslant i\leqslant r\\ 0 & , r+1\leqslant i\leqslant n \end{cases}, \text{где }u_i - \text{нормированный собственный вектор}$$
 Положим $v_i = \frac{Au_i}{\sigma_i}, \ 1\leqslant i\leqslant r$
$$(v_i,v_j) = \begin{cases} 1 & , i=j\\ 0 & , i\neq j \end{cases}$$

Положим
$$v_i = \frac{Au_i}{\sigma}$$
, $1 \le i \le r$

$$(v_i, v_j) = \begin{cases} 1 & , i = j \\ 0 & , i \neq j \end{cases}$$

Дополним систему v_1,\dots,v_r векторами v_{r+1},\dots,v_m до ОНБ в \mathbb{R}^m

В итоге
$$u_i = v_i \cdot \sigma_i \implies A \cdot [u_1, \dots, u_n] = [v_1, \dots, v_m] \cdot \Sigma$$

$$\Sigma = \begin{pmatrix} \sigma_1 & . & . & . & . & 0 \\ . & . & . & . & . \\ . & . & \sigma_r & . & . \\ . & . & 0 & . & . \\ 0 & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . & . \\ 0 & . & . & . & . \\ 0 & . & . & . & . \\ 0 & . & . & . & . \\ 0 & . & . & . & . \\ 0 & . & . & . & . \\ 0 & . & . & . & . \\ 0 & . & . & . \\ 0 & . & . & . \\ 0 & . & . & . \\ 0 & . & . & . \\ 0 & . & . & . \\ 0 & . & . & . \\ 0 & . & . & . \\ 0 & . & . \\ 0 & . & . \\ 0 & . & . \\ 0 & . & . \\ 0 & . & . \\ 0 & . & . \\ 0 & . & . \\ 0 & . & . \\ 0$$

Утв. <u>О полярном разложении</u>

Любой л.о. В евклидовом пространстве представляется в виде композиции S - Симметрический л.о. U - Ортогональный л.о.

Зам. Это аналог тригонометрической формы записи комплексного числа, то есть $z = r(\cos \phi + i \sin \phi)$, где r — аналог S, а $|\cos \phi + i \sin \phi| = 1$

Док-во:

Возьмем сингулярное разложение для A: $A = Q\Sigma P^T$, где Q и P — ортогональные Тогда $A = Q\Sigma E P^T = Q\Sigma (Q^TQ)P^T = (Q\Sigma Q^T)(QP^T) = SU$ U Является ортогональной, так как это произведение двух ортогональных матриц $S^T = (Q\Sigma Q^T)^T = (Q^T)^T \Sigma^T Q^T = Q\Sigma Q^T = S$, то есть S — симметрическая #

Сопряженное пространство

Отображение $f: V \to \mathbb{F}$, где V — линейное пространство, \mathbb{F} — поле (одномерное пространство), называется **линейной формой** или **линейным функционалом**, если $\forall x, y \in V, \forall \alpha \in \mathbb{F}$:

- 1. f(x + y) = f(x) + f(y)
- 2. $f(\alpha x) = \alpha f(x)$

Зам. Это частный случай линейного отображения

Пусть в V фиксированный базис $e=(e_1,\ldots,e_n)$ Тогда матрицей отображения f является матрица размера $1\times n$ (строка) $[f]_e=(f(e_1),\ldots,f(e_n))$

А действие линейной формы в базисе можно записать в виде произведения:

$$f(x) = [f]_e \cdot x_e = (f(e_1), \dots, f(e_n)) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = f(x_1 e_1 + \dots + x_n e_n)$$

Зам. В полярном разложении с.з. симметрическного оператора неотрицательны

Док-во:

$$A = SU = (Q\Sigma Q^T)(QP^T)$$

У Σ на диагонали стоят числа ≥ 0 — это и есть с.з.

Это так, потому что Σ — это диагональный вид S

Что происходит при замене базиса?

Утв. Пусть
$$e$$
 и g — два базиса в V , тогда $[f]_{g} = [f]_{e} T_{e \to g}$

Док-во:

Результат действия f не зависит от базиса: $[f]_g x_g = [f]_e x_e$

$$x_g = T_{e o g}^{-1} x_e$$
 — это для векторов

$$x_e = T_{e \to g} x_g$$

$$\Rightarrow [f]_g x_g = [f]_e T_{e \to g} x_g$$

Разложение по базису единственно, значит $[f]_{\varrho} = [f]_{\varrho} T_{\varrho \to \varrho}$

Пространством, **сопряженным** к линейному пространству L называется множество L^* всех линейных форм на L с операциями сложения и умножения на число $\forall x \in L, \forall \lambda \in \mathbb{F}$:

1.
$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

2.
$$(\lambda f)(x) = \lambda f(x)$$

 $L^* = \text{Hom } (L, \mathbb{F}) - \text{множество гомоморфизмов из } L$ в \mathbb{F}

Зам. Если записывать координаты элементов из L^* по столбцам, то при переходе к другому базису они преобразуются по формуле: $[f]_g^{\text{CT}} = T_{e \to g}^T [f]_e^{\text{CT}}$ Поэтому их называют **ковекторами**, а обычные — **контрвекторами**

Зам. Когда ковекторы и контрвекторы преобразуются одинаково?

Когда матрица перехода удовлетворяет условию: $U_{e \to g}^{-1} = U_{e \to g}^T$, то есть $U_{e \to g}$ ортогональна То есть это может быть матрица перехода от одного ОНБ к другому

Зам. Градиент — ковектор

Базис $e=(e_1,\dots,e_n)$ в линейном пространстве L и базис $f=(f^1,\dots,f^n)$ в сопряжённое пространстве L^* называют **взаимными**, если $f^i(e_j)=\delta^i_j=\begin{cases} 1 & ,i=j\\ 0 & ,i\neq j \end{cases}$

Утв. Пусть dim $L = n < \infty$, тогда \forall базиса \exists ! взаимный базис в L^* и наоборот

Док-во:

Пусть дан базис $e = \{e_1, ..., e_n\}$

Запишем матрицу перехода от некоторого стандартного базиса к $e: T_{s \to e}([e_1]_s, \dots, [e_n]_s)$

Для произвольного базиса $f=(f^1,\ldots,f^n)$ в L^* составим матрицу $F=\begin{pmatrix} [f^1]_s\\ \vdots\\ [f^n]_s\end{pmatrix}$

Условие взаимности базисов в матричной форме: $FT_{s \to e} = E$

 \Rightarrow Так как $T_{s o e}$ обратима, то $F=T_{s o e}^{-1}$, а обратная матрица единственна

В
$$\mathbb{R}^2 e_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 и $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, найти взаимный базис:
$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \Rightarrow FA = E \Rightarrow F = A^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 $\Rightarrow [f^1] = (1,0), [f^2] = (1,1)$
$$f^1(x) = x_1$$

$$f^2(x) = x_1 + x_2$$

Утв. \forall евклидово пространство ε изоморфно своему сопряженному

<u>Док-в</u>о:

Построим изоморфизм: $\forall a \in \varepsilon \mapsto^{\phi} f_a(x) = (a, x) \in \varepsilon^*$

Отображение ϕ является гомоморфизмом, так как если $a=a_1+a_2$, то

1.
$$\phi(a) = (a_1 + a_2, x) = (a_1, x) + (a_2, x) = \phi(a_1) + \phi(a_2)$$

2.
$$\phi(\lambda a) = (\lambda a, x) = \lambda(a, x) = \lambda \phi(a)$$

 ϕ сюръективно, так как \forall линейная функция вида $a_1x_1 + ... + a_nx_n$ может быть записан в виде (a, x), где $a = (a_1, \dots, a_n)$

И ϕ инъективно, так как разложение по базису единственно

⇒Это изоморфизм

Если отожествлять ε и ε^* , то базис взаимный к данному называется **биортогональным**

Утв. Условие биортогональность базисов e_1,\dots,e_n и f_1,\dots,f_n в ε : $A=([e_1]_s,\dots,[e_n]_s)$

$$A = ([e_1]_{\scriptscriptstyle c}, \dots, [e_n]_{\scriptscriptstyle c})$$

$$F^T\Gamma A = E$$
, где $F = ([f_1]_s, ..., [f_n]_s)$

 Γ - матрица Γ рама базиса S

Док-во:

По определению взаимности базисов $f^i(e_i) = \delta^i_i$

$$f^i(e_j) = (f^i, e_j)$$

Запишем преобразование в стандартном базисе, используя матрицу Грама

Получаем $F^T\Gamma A = E$

Зам. Если пространство L бесконечномерно., то линейная оболочка координатных функционалов любого базиса в V строго меньше всего L^*

Пример:

 $L = \mathbb{F}[x]$, то есть L^* не изоморфно L

Любому линейному отображению $A:V_1\to V_2$ можно сопоставить сопряженное (двойственное) отображение: $V_1 \stackrel{A}{\to} V_2$

$$V_1^*$$
 A^*
 V_2^*
 V_1
 A
 V_2

Здесь V_i^* — это пространство, сопряженное к V_i

$$f_2 \in V_2^*$$

 $A^*:V_2^* \to V_1^*$ по правилу: $(A^*f_2)(v_1)=f_2(Av_1)$, где $A^*f_2 \in V_1^*$

$$v_1 \in V_1$$

Зам. Если вместо f(x), где $x \in V^*$, ввести более симметричную запись $f(x) = \langle f, v \rangle$ (сопряжение), то определение A^* можно записать в следующем виде $\langle A^*f_2, v_1 \rangle = \langle f_2, Av_1 \rangle$ В случае, когда $V_1 = V_2 = \varepsilon$, получим уже известное определение сопряженного оператора

Зам. Если dim
$$L < \infty$$
, то $(L^*)^* \simeq L$, $f(x) = \langle f, x \rangle$

Пусть $\mathbb{F}-$ поле, V- векторное пространство над \mathbb{F}, V^*- сопряженное к нему, $p,q\in\mathbb{N}\cup\{0\}$ Тогда любое полилинейное отображение $f:V\times..\times V\times V^*\times..\times V^*\to\mathbb{F}$ называется **тензором** на V типа (p,q) и валентности $p+\overline{q-p}$

Примеры:

- 1. Тензор типа (1,0) это линейные функции на V, то есть элементы V^*
- 2. Тензор типа (0,1) это линейные функции на V^* , то есть элементы $V^{**} \simeq V$
- 3. Тензор типа (2,0) это билинейные формы на V
- 4. Тензор типа (1,1) можно интерпретировать как л.о. На V

Зам. Координаты тензоров образуют многомерные аналоги обычных двухмерных матриц

Пусть A — векторное пространство над \mathbb{F} , снабжение дополнительной операцией умножения $*: A \times A \to A$ называется алгеброй над полем \mathbb{F} , если выполняются следующие свойства: $\forall x, y, z \in A, \forall \alpha, \beta \in \mathbb{F}$

- 1. (x + y) * z = x * z + y * z
- 2. x * (y + z) = x * y + x * z
- 3. $(\alpha x) * (\beta y) = (\alpha \beta)(x * y)$

Алгебра называется **ассоциативной**, если операция умножения ассоциативна, и алгеброй **с единицей**, если в ней существует нейтральный элемент по умножению

Примеры:

- 1. Матрицы с операцией умножения ассоциативная алгебра с единицей
- 2. \mathbb{C} является двумерной алгеброй над \mathbb{R}
- 3. Алгебра многочленов $\mathbb{F}[x]$ многочлены можно умножать на число, складывать и умножать друг на друга
- 4. Кватернионы H это числа вида $x_1+x_2i+x_3j+x_4k$, где $x_i\in\mathbb{R},\ i^2=j^2=k^2=ijk=1,$ dim H=4 над \mathbb{R}

