PHY 240: Basic Electronics Homework Problem H9

October 17, 2024 Aiden Rivera

1. Charge Bucket.

- (a) Consider the circuit above, in which the capacitor is initially uncharged. In this configuration, and with the output taken between terminals a and b, would you consider this a "high-pass circuit" or a "low-pass circuit"?
- (b) Suppose that we choose a 2 k Ω resistor for R. If we close the switch at time t=0, sketch the voltage between terminals a and b, V_{ab} , for the time interval -1 ms $\leq t \leq$ 2 ms. Make your sketch quantitative, labeling relevant voltages and times.
- (c) Suppose that we now discharge the capacitor completely, replace the $2 \text{ k}\Omega$ resistor that we used for R with a 200 Ω resistor, and again close the switch at time t=0. Sketch the voltage that we now see between terminals a and b, Vab, for the time interval -1 ms $\leq t \leq 2$ ms. Make your sketch quantitative, labeling relevant voltages and times.
- (d) Explain clearly how the generic behavior that you sketched in parts (b) and (c) justifies the name that you gave in part (a).

Solution: (a) This is a high pass filter because the low frequencies get consumed by the	
high impedance of the capacitor before returning to ground through the resistor.	!

(b) With $R = 2 k\Omega...$

Voltage Between Terminals a and b

(c) With $R = 200 \Omega...$

Voltage Between Terminals a and b

(d) My brother in christ, what are you talking about