Se hace en VH a menos que vaya a ser versión estable.

Operación con sniffers: Wireshark, Microsoft Network Monitor y NetworkMiner TCPDUMP Capturas en Windows NTOPNG para Linux

Alfredo Abad PARP401-Sniffers.pptx UA: 7-nov-2022

Objetivo de la práctica

- Conocer algunos de los escuchadores de red (sniffers) más comunes en la gestión de redes
- Determinar las condiciones necesarias para la escucha de la red
- Trabajar con ficheros de captura en formatos estándar
- Aprender a buscar información concreta dentro de los ficheros de captura
- Tomar conciencia de la necesidad de una ética profesional

Wireshark

https://noticiasseguridad.com/importantes/como-interceptar-el-trafico-de-usb/

CÓMO INTERCEPTAR EL TRÁFICO DE USB UTILIZANDO WIRESHARK

Hay una nueva versión (sucesor de Network Monitor) que se denomina Microsoft Message Analyzer, compatible con W10 (se descarga de Microsoft Connect)

NetworkMiner

- Total Network Monitor: https://www.softinventive.com/total-network-monitor/
- OpenNMS: https://www.opennms.com/
- PRTG Network Monitor: https://www.paessler.com/prtg
- Free Network Analyzer:
 https://www.colasoft.com/download/products/capsa free.php

OTRAS HERRAMIENTAS Y MONITORES ALTERNATIVOS

https://windowserver.wordpress.com/2014/08/05/windows-server-2012-r2-resolucin-de-nombres-de-mquina-incluye-capturas-de-red-explicadas/

EJEMPLO: RESOLUCIÓN DE NOMBRES DE SISTEMAS EN WINDOWS VISTOS DESDE WIRESHARK

Escenario

- La infraestructura que se utilizará para esta demostración es sencilla:
 - DC1.ad.guillermod.com.ar
 Windows Server 2012 R2
 Controlador de Dominio
 Servicio DNS

Servicio WINS (para resolución NetBIOS)

IPv4: 192.168.2.201/24

IPv6: por omisión (Link-local)

- CL1.ad.guillermod.com.ar

Windows 8.1

Cliente del Dominio

Configurado DNS a DC1

Configurado WINS a DC1

IPv4: 192.168.2.1/24

IPv6: por omisión (Link-local)

Pruebas de red

- En CL1 se ha instalado el analizador de protocolo Microsoft Network Monitor 3.4 que es de descarga gratuita para hacer las capturas de red
- Para forzar a que el sistema utilice todos los métodos de resolución posibles, ejecutaré un comando que acepta tanto nombre NetBIOS, como "Hostname" o FQDN, como es "PING" usando un nombre noespecificando de qué tipo es
 - Por tanto ,el comando será "PING NoExiste" y veremos qué formas de resolución utiliza sobre la red
- Como la parte que hace en memoria no podremos verla en la red, vamos a aclararla:
 - Cuando tiene que resolver un nombre de tipo "Hostname/FQDN" siempre lo primero que se revisa es si la información no está ya presente en memoria
 - Puede estar en memoria porque fue resuelta anteriormente y aún resta tiempo para tenerla "cacheada", o porque está incluida en el archivo HOSTS ya que la implementación de Microsoft es mantener en este "cache" el contenido del archivo
 - Si de esta forma no consigue resolver el nombre, procederá como se muestra en las siguientes capturas
 - Cuando tiene que resolver un nombre de tipo NetBIOS, también lo primero que hace es ver si la información no está "cacheada" en memoria
 - Puede estar en memoria por haber sido resuelta anteriormente, este tiempo es fijo de 10 minutos

Primera prueba

- Como tiene que contactar a DC1 que es servidor tanto de DNS como de WINS, lo primero que debe hacer el cliente es resolver la "MAC Address" de DC1, que hace a través del protocolo ARP
- Podemos observar en el "frame 3" que es un "Broadcast" a nivel Ethernet preguntando por la "MAC Address" de 192.168.2.201, y adjuntando su propia "MAC Address" para que la guarde DC1

Como DC1 ya conoce la "MAC Address" de CL1, le responde por ARP, pero esta vez con tráfico dirigido a nivel Ethernet en el "frame 4"

Y en el "frame 6" el servidor DNS le responde que ese nombre no existe ("Name error")

WINS le responderá que no tiene registrado a nadie con ese nombre. Pero antes que WINS responda, va a intentar resolver por LLMNR. De todas formas podemos verificar en el "frame 9" la no resolución

Y simultáneamente hace el mismo intento por IPv4 como se observa en los "frames 10, 12, 15 y 17"

Conclusión del ejemplo

- Resumiendo, al indicarle un nombre no calificado, siendo parte de un Dominio y teniendo configurado tanto DNS como WINS, el sistema utiliza varios métodos, tanto de resolución NetBIOS como de Hostname/FQDN
- La resolución de nombres de red es algo que hay que prestarle mucha atención
 - Es habitual que cuando se experimenta un largo tiempo hasta poder conectarse a una máquina, pero luego todo funciona normalmente, se deba a un problema de resolución de nombres
 - Por ejemplo si no lo puede resolver por DNS y termine resolviendo por "Net Broadcasts"
- Información adicional:
 - <u>Link-local Multicast Name Resolution (LLMNR)</u>
 - Multicast Address

Descripción de las utilidades

- Se trata de tres utilidades que se utilizan como escuchadores de red
 - TCPDUMP: entorno GNU/Linux
 - Windump: semejante a TCPDUMP para entorno
 Windows
 - FING: Ofrece información muy ordenada y se suele utilizar con redes WiFi

Ejemplos de utilización (II)

 Capturar paquetes con origen y destino en una IP

tcpdump -i eth0 host 192.168.1.12

- Capturar paquetes con destino en una MAC tcpdump ether dst XX:XX:XX:XX:XX
- Capturar paquetes que vengan desde una red tcpdump dst net 192.168.1.0

Ejemplos de utilización (IV)

- Capturar peticiones DNS tcpdump udp and dst port 53
- Capturar peticiones LDAP
 tcpdump tcp port ldap

Captura desde eth0

Captura desde una MAC

```
🔞 🗐 📵 aabad@pruebas: ~
aabad@pruebas:~$ sudo tcpdump ether dst 00:0c:29:c2:d2:cc
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
17:13:03.351949 IP 192.168.111.2.domain > pruebas.local.44537: 49765 2/0/0 CNAME w
ww-cctld.l.google.com., A 173.194.34.216 (83)
17:13:03.437061 IP 192.168.111.2.domain > pruebas.local.38275: 55973 NXDomain 0/0/
0 (46)
17:13:03.437062 IP mad01s08-in-f24.1e100.net > pruebas.local: ICMP echo reply. id
29102, seg 1, length 64
17:13:03.479951 IP 192.168.111.2.domain > pruebas.local.40641: 18721 1/0/0 PTR mad
01s08-in-f24.1e100.net. (84)
17:13:03.598298 IP 192.168.111.2.domain > pruebas.local.45522: 32254 NXDomain 0/0/
0 (44)
17:13:04.401055 IP mad01s08-in-f24.1e100.net > pruebas.local: ICMP echo reply, id
29102, seg 2, length 64
17:13:04.455365 IP 192.168.111.2.domain > pruebas.local.52528: 5171 1/0/0 PTR mad0
1s08-in-f24.1e100.net. (84)
17:13:05.473917 IP mad01509-in-f24 to100 not > neuchas local. TCMD acho senty id
                           🚳 🗐 📵 aabad@pruebas: ~
29102, seq 3, length 64
17:13:05.557002 IP 192.168<sub>aabad@pruebas:~</sub>$ ping www.google.es
01s08-in-f24.1e100.net. (8pING www-cctld.l.google.com (173.194.34.216) 56(84) bytes of data.
17:13:08.644497 IP 192.16864 bytes from mad01s08-in-f24.1e100.net (173.194.34.216): icmp_req=1 ttl=128 tim
01s08-in-f24.1e100.net. (8e=83.9 ms
                          64 bytes from mad01s08-in-f24.1e100.net (173.194.34.216): icmp req=2 ttl=128 tim
                          e=46.1 ms
                          64 bytes from mad01s08-in-f24.1e100.net (173.194.34.216): icmp_req=3 ttl=128 tim
                          e=117 ms
                          ^C
                          --- www-cctld.l.google.com ping statistics ---
                          3 packets transmitted, 3 received, 0% packet loss, time 2003ms
                          rtt min/avg/max/mdev = 46.195/82.455/117.189/29.003 ms
                          aabad@pruebas:~$
```

Operación

- Sobre un sistema Linux, practica escuchas con TCPDUMP
- Intenta hacer algo semejante con Windump y con Fing
- Construye con cada utilidad un sencillo manual de usuario sobre cómo usar cada una de las utilidades
- Nomenclatura identificativa de práctica:
 - PARP401B-Sniffers-tcpdump

Objetivo de la práctica

- Conocer algunas herramientas de Windows que permiten la escucha de la red
- Aprender a salvar capturas en formatos legibles por las aplicaciones de análisis

Operación con netsh trace

```
Administrador: C:\Windows\system32\cmd.exe
C:\>md SYSADMIT
C:\>netsh trace start persistent=yes capture=yes tracefile=C:\SYSADMIT\Traz
d.etl
Configuración de seguimiento:
Estado:
                           En ejecución
Archivo de seguimiento:
                           C:\SYSADMIT\Trazas-Red.etl
Anexar:
                           Desactivar
Circular:
                           Activar
Tamaño máx.:
                          250 MB
Informe:
                          Desactivar
C:\>netsh trace stop
Seguimiencos correlacivos... listo
Generando recolección de datos... listo
El archivo de seguimiento y otros datos de solución de problemas se compila
omo "C:\SYSADMIT\Trazas-Red.cab".
Ubicación del archivo = C:\SYSADMIT\Trazas-Red.etl
La sesión de seguimiento se detuvo correctamente.
C:\>dir C:\SYSADMIT /B
Trazas-ked.cap
Trazas-Red.etl
```

Contenido del fichero .cab

- Si descomprimimos el fichero CAB, veremos toda una serie de ficheros correspondientes a los reports generados
- Entre los formatos de los ficheros de los reports veremos: TXT, XML, EVTX (Visor de eventos), entre otros
- También encontraremos el fichero: report.html con enlaces a los reports generados, muy útil para disponer de un índice de los mismos
 - Ver fichero report.html en diapo siguiente

Contenido del fichero ETL

- El fichero ETL generado puede ser analizado con "Microsoft Message Analyzer", herramienta gratuita que podemos descargar de la web de Microsoft
- Con "Microsoft Message Analyzer" podremos analizar el tráfico capturado, filtrarlo, etc...
- Con "Microsoft Message Analyzer" también podemos exportar el fichero ETL a formato CAP. Con formato CAP podremos leer el fichero desde Wireshark
- Vista ejecución de "Microsoft Message Analyzer" (ver diapo siguiente)

Algunos parámetros de netsh trace

• persistent:

- Los valores posibles son yes o no, el valor por defecto es no
- Si configuramos el valor persistent a yes, conseguiremos que la captura siga aunque reiniciemos el equipo
- Solo se detendrá la captura cuando ejecutemos: netsh trace stop

maxSize:

- Valor en MB correspondiente al fichero generado, el valor por defecto es de 250
- Si configuramos 0, corresponde a ilimitado

• fileMode:

 Circular, significa que la captura, al llegar al valor especificado como maxSize por defecto 250MB, empezará a sobreescribirse la información

Sugerencia de estudio

- USBPcap: aplicación Windows libre para realizar capturas
 - Se puede descargar desde https://desowin.org/usbpcap/index.html

¿Qué es ntopng?

- Ntopng is a free and open source software for monitoring network traffic that provides a web interface for real-time network monitoring. It is the next generation version of the original ntop that shows the network usage, similar to what the popular top Unix command does
- It supports different operating system like, Unix, Linux, Mac OS, BSD and Windows
- We will use Ubuntu Server

Configure Ntopng

- After installing Ntopng, you will need to modify Ntopng default configuration file located at /etc/ntopng/ntopng.conf:
 - sudo nano /etc/ntopng/ntopng.conf
- Make the following changes:
 - -G=/var/run/ntopng.pid
 - ##Specifies the network interface or collector endpoint to be used by ntopng for network monitoring.
 - -i=enp0s3
 - ##Sets the HTTP port of the embedded web server.
 - -w = 3000
- Save and close the file, then create a ntopng.start file:
 - sudo nano /etc/ntopng/ntopng.start
- Add the following lines as per your network:
 - --local-networks "192.168.0.0/24" ## give your local IP Ranges here.
 - --interface 1
- Save and close the file, then restart Ntopng and enable it to start on boot time:
 - sudo systemctl start ntopng
 - sudo systemctl enable ntopng

Existe versión ntopng para Windows

 Puede obtenerse información y descargarse desde :

— https://www.ntop.org/products/traffic-

analysis/ntop/

Para entregar

- Una vez finalizada la práctica deberás entregar:
 - El informe de práctica con los detalles de ejecución según la plantilla de prácticas
 - Las pantallas más significativas que demuestren la ejecución (no necesariamente del ejemplo, pero si hay que utilizar el resto de herramientas con un escenario imaginado por ti)