

Simplex Solver

Цисык Р.О.

г. Барнаул, 2009

© 2009, Роман Цисык. Версия документа 1.0 от 25 мая 2009 г. для SimpleSolver версии 1.0.

SimplexSolver представляет собой свободное программное обеспечение. Вы можете свободно распространять и/или изменять программу при соблюдении условий лицензии GNU General Public License (версии 3 или более поздней), опубликованной Фондом свободного программного обеспечения. Данная программа распространяется в надежде, что она будет полезной, но без всякой гарантии, в том числе без связанной гарантии товарной пригодности или пригодности для частного использования.

Данная документация и логотип программы распространяется на условиях лицензии Creative Commons Attribution ShareAlike 3.0. Вы можете без ограничений распространять их, изменять и использовать в любых (в том числе коммерческих) целях при условии указания оригинального авторства и сохранения данной лицензии в производных работах.

1 Примеры решения задач

1.1 Пример I

1.1.1 Постановка задачи

Задана ЗЛП с целевой функцией:

$$F(\vec{X}) = x_1 + x_2 \to max. \tag{1}$$

Система ограничений имеет следующий вид:

$$\begin{cases} 20x_1 + 10x_2 \le 45\\ 2x_1 + 7x_2 \le 14\\ x_i \ge 0 \end{cases}$$
 (2)

Необходимо:

- 1) Решить исходную ЗЛП симплекс-методом;
- 2) Решить исходную ЗЛП графически;
- 3) Из последней симплекс-таблицы найти решение исходной и двойственной задач;
- 4) Построить двойственную ЗЛП;
- 5) Решить двойственную ЗЛП методом искусственного базиса;
- 6) Решить двойственную ЗЛП графически;
- 7) Из последней симплекс-таблицы найти решение исходной и двойственной задач;
- 8) Сравнить результаты.

1.1.2 Решение исходной ЗЛП симплекс-методом

Введем балансовые переменные и приведем к каноническому виду. Для нахождения максимума, умножим целевую функцию на -1.

$$-F(\vec{X}) = -(-x_1 - x_2) \to max$$

$$\begin{cases} 20x_1 + 10x_2 + x_3 = 45\\ 2x_1 + 7x_2 + x_4 = 14\\ x_i, s_i > 0 \end{cases}$$
 (3)

Составим таблицу и решим задачу симплекс-методом.

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -1$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_3	0	45	20	10	1	0	2,25
2	P_4	0	14	2	7	0	1	7
m+1			0	1	1	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -1$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_1	-1	2,25	1	0,5	0,05	0	4,5
2	P_4	0	9,5	0	6	-0,1	1	1,583
m+1			-2,25	0	0,5	-0.05	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -1$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_1	-1	1,458	1	0	0,05833	-0,08333	4,5
2	P_2	-1	1,583	0	1	-0,01667	0,1667	1,583
m+1			-3,042	0	0	-0,04167	-0,08333	
m+1			3,042	0	0	0,04167	0,08333	

Получен оптимальный план: $X^{\text{опт}} = (1,458;1,583)$, и оптимальное значение целевой функции $F^{\text{опт}} = 3,04$.

1.1.3 Решение исходной ЗЛП графическим методом

1.1.4 Решение исходной и двойственной ЗЛП из симплекс-таблицы

Для исходной ЗЛП был получен оптимальный план и оптимальное решение:

$$X^{\text{онт}} = (1,458; 1,583), F^{\text{онт}} = 3,04.$$

Тогда оптимальный план и значение двойственной симметричной ЗЛП:

$$Y^{\text{ont}} = (0.042; 0.083), Z^{\text{ont}} = 3.04.$$

1.1.5 Построение двойственной ЗЛП

Построим двойственную симметричную ЗЛП:

$$Z(\vec{Y}) = 45y_1 + 14y_2 \to min,$$
 (4)

$$\begin{cases} 20y_1 + 2y_2 \ge 1, \\ 10y_1 + 7y_2 \ge 1, \\ y_1, y_2 \ge 0. \end{cases}$$
 (5)

Рисунок 1 — Решение графическим методом

1.1.6 Решение двойственной ЗЛП методом искусственного базиса

Введем искусственные переменные и приведем к каноническому виду.

$$Z(\vec{Y}) = 45y_1 + 14y_2 + Wy_5 + Wy_6 \to min$$
(6)

$$\begin{cases} 20y_1 + 2y_2 - y_3 + s_5 = 1\\ 10y_1 + 7y_2 - y_4 + s_6 = 1\\ y_i, s_i \ge 0 \end{cases}$$
 (7)

i	Базис	B_i	С	$B_1 = 45$	$B_2 = 14$	$B_3 = 0$	$B_4 = 0$	$B_5 = W$	$B_6 = W$	Θ_i
1	P_5	W	1	20	2	-1	0	1	0	0,05
2	P_6	W	1	10	7	0	-1	0	1	0,1
m+1			0	-45	-14	0	0	0	0	
m+2			2W	30W	9W	-1W	-1W	0W	0W	

i	Базис	B_i	С	$B_1 = 45$	$B_2 = 14$	$B_3 = 0$	$B_4 = 0$	$B_5 = W$	$B_6 = W$	Θ_i
1	P_1	45	0,05	1	0,1	-0.05	0	0,05	0	0,5
2	P_6	W	0,5	0	6	0,5	-1	-0,5	1	0,08333
m+1			2,25	0	-9,5	-2,25	0	2,25	0	
m+2			0.5W	0W	6W	0.5W	-1W	-1,5W	0W	

i	Базис	B_i	С	$B_1 = 45$	$B_2 = 14$	$B_3 = 0$	$B_4 = 0$	$B_5 = W$	$B_6 = W$	Θ_i
1	P_1	45	0,04167	1	0	-0,05833	0,01667	0,05833	-0,01667	
2	P_2	14	0,08333	0	1	0,08333	-0,1667	-0,08333	0,1667	
			3,042	0	0	-1,458	-1,583	1,458	1,583	
			0W	0W	0W	0W	0W	-1W	-1W	

Получен оптимальный план: $Y^{\text{опт}}=(0{,}0417;0{,}0833)$, и оптимальное значение целевой функции $Z^{\text{опт}}=3{,}04$.

1.1.7 Решение двойственной ЗЛП графическим методом

Рисунок 2 — Решение графическим методом

1.1.8 Решение исходной и двойственной ЗЛП из симплекс-таблицы

Для двойственной ЗЛП был получен оптимальный план и оптимальное решение:

$$Y^{\text{ont}} = (0.042; 0.084), Z^{\text{ont}} = 3.04.$$

Тогда оптимальный план и значение исходной ЗЛП:

$$X^{\text{oht}} = (1,458; 1,583), F^{\text{oht}} = 3,04.$$

1.1.9 Сравнение результатов

Из результатов видно, что $\max F = \min Z$ в независимости от порядка и способа вычисления, что подтверждает правильность выполнения основной теоремы двойственности в данном примере.

1.2 Пример II

1.2.1 Постановка задачи

Задана ЗЛП в каноническом виде:

$$F(\vec{X}) = 2x_1 - 5x_2 - x_3 + x_4 \to max, \tag{8}$$

$$\begin{cases} x_1 + 3x_2 - x_3 + x_4 = 1\\ 2x_1 + 3x_3 - x_4 = 2\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$
 (9)

Необходимо:

- 1) Решить исходную ЗЛП методом искусственного базиса;
- 2) Решить исходную ЗЛП графически;

1.2.2 Решение исходной ЗЛП методом искусственного базиса

Введем искусственные переменные и приведем к каноническому виду. Для нахождения максимума, умножим целевую функцию на -1. Заметим, что вектор во втором столбце уже является единичным после деления строки на 3.

$$-F(\vec{X}) = -(-2x_1 + 5x_2 + x_3 - x_4 + Wx_5) \to max$$

$$\begin{cases} \frac{1}{3}x_1 + x_2 - \frac{1}{3}x_3 + \frac{1}{3}x_4 = \frac{1}{3} \\ 2x_1 + 3x_3 - x_4 + s_5 = 2 \\ x_i, s_i \ge 0 \end{cases}$$
(10)

i	Базис	C_i	В	$C_1 = -2$	$C_2 = 5$	$C_3 = 1$	$C_4 = -1$	$C_5 = W$	Θ_i
1	P_2	5	0,3333	0,3333	1	-0,3333	0,3333	0	_
2	P_5	W	2	2	0	3	-1	1	0,6667
m+1			1,667	3,667	0	-2,667	2,667	0	
m+2			2W	2W	0W	3W	-1W	0W	

i	Базис	C_i	В	$C_1 = -2$	$C_2 = 5$	$C_3 = 1$	$C_4 = -1$	$C_5 = W$	Θ_i
1	P_2	5	0,5556	0,5556	1	0	0,2222	0,1111	1
2	P_3	1	0,6667	0,6667	0	1	-0,3333	0,3333	1
m+1			3,444	5,444	0	0	1,778	0,8889	
m+2			0W	0W	0W	0W	0W	-1W	

i	Базис	C_i	В	$C_1 = -2$	$C_2 = 5$	$C_3 = 1$	$C_4 = -1$	$C_5 = W$	Θ_i
1	P_1	-2	1	1	1,8	0	0,4	0,2	1
2	P_3	1	0	0	-1,2	1	-0,6	0,2	1
m+1			-2	0	-9,8	0	-0,4	-0,2	
m+2			0W	0W	0W	0W	0W	-1W	

Получен оптимальный план: $X^{\text{опт}}=(1;0;0;0;0)$, и оптимальное значение целевой функции $F^{\text{опт}}=2$.

1.2.3 Решение исходной ЗЛП графическим методом

Рисунок 3 — Решение графическим методом

1.3 Пример III

1.3.1 Постановка задачи

Задана ЗЛП:

$$F(\vec{X}) = 3x_1 + 3x_2 \to max,\tag{11}$$

$$\begin{cases} x_1 - 4x_2 \le 4 \\ 3x_1 + 2x_2 \le 6 \\ x_1 + 2x_2 \ge 2 \\ x_1, x_2 \ge 0 \end{cases}$$
 (12)

Необходимо:

- 1) Привести исходную ЗЛП к каноническому виду и решить методом искусственного базиса;
- 2) Решить исходную ЗЛП графически;

1.3.2 Решение исходной ЗЛП методом искусственного базиса

Введем искусственные переменные и приведем к каноническому виду. Для нахождения максимума, умножим целевую функцию на -1.

$$-F(\vec{X}) = -(-3x_1 - 3x_2 + Wx_6) \to max$$

$$\begin{cases} x_1 - 4x_2 + x_3 = 4 \\ 3x_1 + 2x_2 + x_4 = 6 \\ x_1 + 2x_2 - x_5 + s_6 = 2 \\ x_i, s_i \ge 0 \end{cases}$$
 (13)

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	4	1	-4	1	0	0	0	_
2	P_4	0	6	3	2	0	1	0	0	3
3	P_6	W	2	1	2	0	0	-1	1	1
m+1			0	3	3	0	0	0	0	
m+2			2W	1W	2W	0W	0W	-1W	0W	

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	8	3	0	1	0	-2	2	2,667
2	P_4	0	4	2	0	0	1	1	-1	2
3	P_2	-3	1	0,5	1	0	0	-0,5	0,5	2
m+1			-3	1,5	0	0	0	1,5	-1,5	
m+2			0W	0W	0W	0W	0W	0W	-1W	

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	2	0	0	1	-1,5	-3,5	3,5	_
2	P_1	-3	2	1	0	0	0,5	0,5	-0,5	4
3	P_2	-3	0	0	1	0	-0,25	-0.75	0,75	_
m+1			-6	0	0	0	-0,75	0,75	-0.75	
m+2			0W	0W	0W	0W	0W	0W	-1W	

i	Базис	C_i	В	$C_1 = -3$	$C_2 = -3$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = W$	Θ_i
1	P_3	0	16	7	0	1	2	0	0	-
2	P_5	0	4	2	0	0	1	1	-1	4
3	P_2	-3	3	1,5	1	0	0,5	0	0	_
m+1			- 9	-1,5	0	0	-1,5	0	0	
m+1			9	1,5	0	0	1,5	0	0	
m+2			0W	0W	0W	0W	0W	0W	-1W	

Получен оптимальный план: $X^{\text{онт}} = (0; 3)$, и оптимальное значение целевой функции $F^{\text{онт}} = 9$.

1.3.3 Решение исходной ЗЛП графическим методом

Рисунок 4 — Решение графическим методом

1.4 Пример IV

1.4.1 Постановка задачи

Задана ЗЛП:

$$F(\vec{X}) = x_1 + 4x_2 \to max$$

$$\begin{cases} 2x_1 + 4x_2 \le 17 \\ 10x_1 + 3x_2 \le 15 \\ x_i \ge 0 \end{cases}$$
 (14)

Необходимо:

- Привести исходную ЗЛП к каноническому виду и решить методом искусственного базиса;
- 2) Найти целочисленное решение, используя алгоритм Гомори.

1.4.2 Решение исходной ЗЛП методом искусственного базиса

Введем искусственные переменные и приведем к каноническому виду. Для нахождения максимума, умножим целевую функцию на -1.

$$-F(\vec{X}) = -(-x_1 - 4x_2) \to max$$

$$\begin{cases} 2x_1 + 4x_2 + x_3 = 17\\ 10x_1 + 3x_2 + x_4 = 15\\ x_i, s_i \ge 0 \end{cases}$$
 (15)

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_3	0	17	2	4	1	0	4,25
2	P_4	0	15	10	3	0	1	5
m+1			0	1	4	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	Θ_i
1	P_2	-4	4,25	0,5	1	0,25	0	4,25
2	P_4	0	2,25	8,5	0	-0.75	1	5
m+1			-17	0	0	-1	0	

Получен оптимальный план: $X^{\text{опт}} = (0; 4, 25)$, и оптимальное значение целевой функции $F^{\text{опт}} = 17$.

1.4.3 Нахождение целочисленных решений

Компонент P_2 полученного плана не является целочисленным. Применим алгоритм Гомори. Первое отсечение:

$$-0.5x_1 - 0.25x_3 + U_1 = -0.25. (16)$$

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	Θ_i
1	P_2	-4	4,25	0,5	1	0,25	0	0	_
2	P_4	0	2,25	8,5	0	-0.75	1	0	_
3	P_5	0	-0,25	-0,5	0	-0,25	0	1	_
m+1			-17	0	0	0	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	Θ_i
1	P_2	-4	4	0	1	0	0	1	_
2	P_4	0	-2	0	0	-5	1	17	-
3	P_1	-1	0,5	1	0	0,5	0	-2	-
m+1			-17	0	0	0	0	0	

Второе отсечение:

$$-0.5x_3 + U_2 = -0.5. (17)$$

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = 0$	Θ_i
1	P_2	-4	4	0	1	0	0	1	0	_
2	P_4	0	-2	0	0	-5	1	17	0	_
3	P_1	-1	0,5	1	0	0,5	0	-2	0	_
4	P_6	0	-0.5	0	0	-0.5	0	0	1	_
m+1			-17	0	0	0	0	0	0	

i	Базис	C_i	В	$C_1 = -1$	$C_2 = -4$	$C_3 = 0$	$C_4 = 0$	$C_5 = 0$	$C_6 = 0$	Θ_i
1	P_2	-4	4	0	1	0	0	1	0	_
2	P_4	0	3	0	0	0	1	17	-10	_
3	P_1	-1	0	1	0	0	0	-2	1	_
4	P_3	0	1	0	0	1	0	0	-2	-
m+1			-17	0	0	0	0	0	0	

Получен оптимальный план: $X^{\text{опт}} = (0; 4)$, и оптимальное значение целевой функции $F^{\text{опт}} = 16$.