Lab 5a. Data cache

CSED 311

Sungjun Cho

Data cache in Pipelined CPU

• Uses a blocking data cache instead of a "magic memory"

Data flow

Cache fetches data from the memory

Signals to / from the cache

- ready`represents the status of the cache
 - If `ready` is true => cache is ready to accept request
 - If `ready` is false => cache is busy bring data from the memory
 - 'valid' is false
 - Cache cannot accept a request currently (try later)
 - Need to stall the pipeline

- `data` represents data
 - Ignore `data` when `valid` is false

- `is_hit` represents whether a cache hit occurs
 - If a cache miss occurs, stall the pipeline
 - Even if `ready` is true

- Pipeline is not stalled only when:
 - 'ready', 'is_hit' and 'valid' are true

Data cache design

• The size of a cache line (block) is 16 bytes

	32 bits									
addr	•••	•••	•••	•••	••	4	3	2	1	0
	tags		sets			block offset		4B offset		

# sets	# ways	Block offset 0	Block offset 1	Block offset 2	Block offset 4
	Way 0	4B	4B	4B	4B
Set 0	Way 1				
	•••				

Data cache design

- Asynchronous read:
 - 'valid', 'data', 'is_hit'
- Synchronous write:
 - Write data (both from CPU and memory) into the cache line
- Write-allocate
 - Read data from the memory if a write miss occurs
- Write-back

Data cache design

- Replacement policy
 - FIFO
- Structure
 - Direct-mapped or set-associative (not fully-associative)
 - Cache size is 256B for data
 - You are free to define # of ways and sets
- Each cache line should have:
 - Valid bit
 - Dirty bit
 - Bits for replacement
 - •

Matrix data layout

- Memory layout of the matrix (row-major order)
 - Assume each element of the matrix is 4B
 - Assume cache line size is 16B

address	data
0x00	
0x04	
0x08	
0х0с	
0x10	
0x14	
0x18	
0x1c	

cache

memory

Matrix multiplication

- Naïve implementation
 - Is this cache-friendly? No. Why?

Χ

Matrix multiplication

- Tiled implementation
 - Is this cache-friendly? If yes, why?

Matrix multiplication

- Tiled implementation
 - Is this cache-friendly? If yes, why?
 - Reuse data (in the cache) as much as possible within each tile
 - The tile size is set by considering cache line size

Submission

- Implementation (Deadline: 5/31 9:00 am)
 - Blocking data cache
 - Direct-mapped (no extra credit)
 - N-way associative cache (Full extra credit + 3)
 - You need to follow the rules described in lab_guide.pdf
- Report (Deadline: 5/31 23:59)
 - The design of the cache
 - Direct-mapped or associative cache
 - Analyze cache hit ratio
 - If you implement associative cache, compare it with direct-mapped cache
 - naive_matmul vs opt_matmul
 - why is the cache hit ratio different between two matmul algorithms?
 - what happens to the cache hit ratio if you change the # of sets and # of ways?

Submission

- Implementation file format
 - .zip file name: Lab4-3a_{team_num}_{student1_id}_{student2_id}.zip
 - Contents of the zip file (only *.v):
 - All files except top.v, Memory.v, and RegisterFile.v
 - Note that top.v, Memory.v, and RegisterFile.v must not be modified
- Report file format
 - Lab4-3a_{team_num}_{student1_id}_{student2_id}.pdf