

INTRODUCTION TO THE FINITE ELEMENT METHOD: I D-2D CASES

3rd Workshop on Advances in CFD and LB Modelling of Interface Dynamics in Capillary Two-Phase Flows

Gustavo R.ANJOS

http://www.uerj.br

http://2phaseflow.org

http://www.gesar.uerj.br

http://gustavorabello.github.io

Kobe - Japan October 10th, 2018

OUTLINE

- Intro to Finite Element Method
- ·Variational method: the weak form;
- Function approximations: The Galerkin method;
- ID example;
- Tasks: ID and 2D examples;
- •Stream-Vorticity formulation and examples;
- Hands-on: Python scripts for 2D and Axisymmetric problems

2

BIBLIOGRAPHY

Basic

Fundamentals of the Finite Element Method for Heat and Fluid Flow Authors: Roland W. Lewis, Perumal Nithiarasu, Kankanhally and N. Seetharamu

Basic

A First Course in Finite Elements Authors:Jacob Fish and Sand Belytschko

BIBLIOGRAPHY

Basic-advanced

The Finite Element Method - Linear Static and Dynamic Finite Element Analysis
Author:Thomas J.R. Hughues

Advanced

The Finite Element Method - Its Basis & Fundamentals Authors: O.C. Zienkiewicz, R.L. Taylor & J.Z. Zhu

1

BRIEF HISTORY OF FEM

- Has been used since 1950's in solid mechanics
- in the 1970's FEM began to be used in CFD
- nowadays FEM is applicably to many engineering problems
 Heat transfer, fluid flow, electromagnetic fields, solid mechanics, acoustics, biomechanics etc.

Finite Difference Method - FDM Finite Element Method - FEM Finite Volume Method - FVM strong math easy math flux formulation complex geometry simple geometries complex geometry element geometry grid systems conservative master element low memory high memory low memory not flexible flexible

5

FINITE ELEMENT METHOD

Governing

equations

(heat equation,

Maxwell

weak form

Variational

form

ODE

Set of Ordinary Differential Equations

Ax=b

linear

system

approximated solution

solution for x x=A-1b x=[u,v,w,p,T,c]

equation, Navier-Stokes equation)

Approximation functions: The Galerkin Method

The approximation functions are combined with the weak form to obtain the discrete finite element equations.

6

CHOICE OF FUNCTIONS

Finite element function properties:

- •the shape functions are I at the node and zero elsewhere:
- •the sum of all shape function at the element is I everywhere, including boundary;
- •the weight function is zero at boundary for Dirichlet b.c.

Chart:

function	node, i	node, j	x
Ni	- 1	0	between 0 e 1
Nj	0	1	between 0 e 1
Ni+Nj		I	

7

ID PROBLEM - STRONG FORM

Find u in $\Omega = [0,1]$ such that:

$$\frac{d^2u}{dx^2} + u + 1 = 0$$

$$u(0) = 0$$
 boundary condition

domain:
$$h_1 = h_2 = h_3 = 1/3$$

MESH GENERATION

mesh:
$$(0,0)$$
 $(0,1)$ $(0,1)$ $(0,1)$

IEN matrix

element node I node 2

node	not b.c.
ı	0
2	I
3	2
4	3

ID vector Coordinate boundary vector vector

node	b.c. value
I	0

D PROBLEM - WEAK FORM

Find u in H^1 with b.c. such that:

$$\int_{\Omega} w \left(\frac{d^2 u}{dx^2} + u + 1 \right) d\Omega = 0$$
weight function

mathematical procedure (integration by parts)

$$\int_0^1 w \frac{d^2 u}{dx^2} dx + \int_0^1 w u dx + \int_0^1 dx = 0$$

$$w \frac{du}{dx} \Big|_0^1 - \int_0^1 \frac{du}{dx} \frac{dw}{dx} dx + \int_0^1 w u dx + \int_0^1 w dx = 0$$

$$\frac{du}{dx}\Big|_{0} = J_{0} \quad dx \quad dx \qquad J_{0} \qquad J_{0}$$

$$\frac{du}{dx}\Big|_{0} - w \frac{du}{dx}\Big|_{0} - \int_{0}^{1} \frac{du}{dx} \frac{dw}{dx} dx + \int_{0}^{1} wu dx + \int_{0}^{1} w dx = 0$$

ID PROBLEM - WEAK FORM

$$\left|w\frac{du}{dx}\right|_{1} - w\frac{du}{dx}\Big|_{0} - \int_{0}^{1} \frac{du}{dx} \frac{dw}{dx} dx + \int_{0}^{1} wudx + \int_{0}^{1} wdx = 0$$

apply boundary conditions to the equation in the continuous form:

$$w(1)\frac{du}{dx}(1) - w(0)\frac{du}{dx}(0) - \int_0^1 \frac{du}{dx} \frac{dw}{dx} dx + \int_0^1 wu dx + \int_0^1 w dx = 0$$

$$w(1) - \int_0^1 \frac{du}{dx} \frac{dw}{dx} dx + \int_0^1 wu dx + \int_0^1 w dx = 0$$

GALERKIN METHOD

Approximate functions: $\hat{u} = \sum_{i=1}^{4} N_i(x)u_i$ $\hat{w} = \sum_{i=1}^{4} N_j(x)w_j$

$$w(1)\frac{du}{dx}(1) - w(0)\frac{du}{dx}(0) - \sum_{i=j=1}^{4} \int_{0}^{1} \frac{dN_{i}}{dx} u_{i} \frac{dN_{j}}{dx} w_{j} dx + \sum_{i=j=1}^{4} \int_{0}^{1} N_{i} u_{i} N_{j} w_{j} dx + \sum_{j=1}^{4} \int_{0}^{1} N_{j} w_{j} dx = 0$$

$$\sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{0}^{1} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx - \int_{0}^{1} N_{i} N_{j} dx \right) \mathbf{u_{i}} = \sum_{j=1}^{4} \int_{0}^{1} N_{j} dx + \left[w(1) \frac{du}{dx}(1) - w(0) \frac{du}{dx}(0) \right]$$
stiffness K_{ij} mass M_{ij} right b_{i} boundary matrix M_{ij} hand side.

12

П

GALERKIN METHOD

$$\sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{0}^{1} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx - \int_{0}^{1} N_{i} N_{j} dx \right) \mathbf{u_{i}} = \sum_{j=1}^{4} \int_{0}^{1} N_{j} dx + w(1) \frac{du}{dx} (1) - w(0) \frac{du}{dx} (0)$$

Replacing the shape function to the B.C. Note that w_i is present at all members and can be removed!

$$\sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{0}^{1} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx - \int_{0}^{1} N_{i}N_{j} dx \right) u_{i} = \sum_{j=1}^{4} \int_{0}^{1} N_{j} dx + N_{j}(1) \right] \begin{array}{c} \text{boundary condition} \\ \text{(evaluated only at } x=1) \\ \text{stiffness } K_{ij} & \underset{\text{matrix}}{\text{mass}} M_{ij} & \underset{\text{hand side.}}{\text{right}} b_{i} \\ \text{hand side.} \end{array}$$

$$(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$$

13

ID PROBLEM - LINEAR

domain and shape functions:

element () $N_1 = -3x + 1$ $\Omega_1^e = [0, 1/3]$ $N_2 = 3x$

element (2) $N_2 = -3x + 2$ $\Omega_2^e = [1/3, 2/3]$ $N_3 = 3x - 1$

element (3) $N_3 = -3x + 3$

 $\Omega_3^e = [2/3, 1]$ $N_4 = 3x - 2$

FEM SHAPE FUNCTIONS

ID Problem - linear:

ID problem - quadratic:

$$T(x) = \alpha_1 + \alpha_2 x$$

$$T(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$$

MATRIX FORM

$$K_{11} - M_{11} = \int_0^{1/3} \frac{dN_1}{dx} \frac{dN_1}{dx} dx - \int_0^{1/3} N_1 N_1 dx$$

$$\int_{0}^{1/3} dN_{1} dN_{2} dN_{3} dN_{4} dN_{4} dN_{5} dN$$

$$K_{12} - M_{12} = \int_0^{1/3} \frac{dN_1}{dx} \frac{dN_2}{dx} dx - \int_0^{1/3} N_1 N_2 dx$$

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} - \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$

$$K_{21} - M_{21} = \int_0^{1/3} \frac{dN_2}{dx} \frac{dN_1}{dx} dx - \int_0^{1/3} N_2 N_1 dx$$

$$K_{22} - M_{22} = \int_0^{1/3} \frac{dN_2}{dx} \frac{dN_2}{dx} dx - \int_0^{1/3} \frac{N_2 N_2}{2} dx$$

$$\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} - \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$

element
$$\bigcirc$$
 $\Omega_1^e = [0, 1/3]$
 $N_1 = -3x + 1$
 $N_2 = 3x$

$$b_1 = \int_0^{1/3} N_1 dx$$

$$b_2 = \int_0^{1/3} N_2 dx$$

vector
$$egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

MATRIX FORM

$$K_{22} - M_{22} = \int_{1/3}^{2/3} \frac{dN_2}{dx} \frac{dN_2}{dx} dx - \int_{1/3}^{2/3} N_2 N_2 dx \qquad \text{matrix}$$

$$K_{23} - M_{23} = \int_{1/3}^{2/3} \frac{dN_2}{dx} \frac{dN_3}{dx} dx - \int_{1/3}^{2/3} N_2 N_3 dx \qquad \begin{bmatrix} K_{22} & K_{23} \\ K_{32} - M_{32} \end{bmatrix} - \begin{bmatrix} M_{22} & M_{23} \\ M_{32} & M_{33} \end{bmatrix}$$

$$K_{32} - M_{32} = \int_{1/3}^{2/3} \frac{dN_3}{dx} \frac{dN_2}{dx} dx - \int_{1/3}^{2/3} N_3 N_2 dx$$

$$K_{23} - M_{23} = \int_{1/3}^{2/3} \frac{dN_2}{dx} \frac{dN_3}{dx} dx - \int_{1/3}^{2/3} N_2 N_3 dx$$

$$K_{32} - M_{32} = \int_{1/3}^{2/3} \frac{dN_3}{dx} \frac{dN_2}{dx} dx - \int_{1/3}^{2/3} N_3 N_2 dx$$

$$K_{33} - M_{33} = \int_{1/3}^{2/3} \frac{dN_3}{dx} \frac{dN_3}{dx} dx - \int_{1/3}^{2/3} N_3 N_3 dx$$

$$\begin{bmatrix} K_{22} & K_{23} \\ K_{32} & K_{33} \end{bmatrix} - \begin{bmatrix} M_{22} & M_{23} \\ M_{32} & M_{33} \end{bmatrix}$$

vector
$$\begin{bmatrix} b_2 \\ b_3 \end{bmatrix}$$

$$K_{33} - M_{33} = \int_{2/3}^{1} \frac{dN_3}{dx} \frac{dN_3}{dx} dx - \int_{2/3}^{1} N_3 N_3 dx$$
$$K_{34} - M_{34} = \int_{2/3}^{1} \frac{dN_3}{dx} \frac{dN_4}{dx} dx - \int_{2/3}^{1} N_3 N_4 dx$$

MATRIX FORM

$$K_{43} - M_{43} = \int_{2/3}^{1} \frac{dN_4}{dx} \frac{dN_3}{dx} dx - \int_{2/3}^{1} N_4 N_3 dx$$

$$K_{44} - M_{44} = \int_{2/3}^{1} \frac{dN_4}{dx} \frac{dN_4}{dx} dx - \int_{2/3}^{1} N_4 N_4 dx$$

$$\begin{bmatrix} K_{33} & K_{34} \\ K_{43} & K_{44} \end{bmatrix} - \begin{bmatrix} M_{33} & M_{34} \\ M_{43} & M_{44} \end{bmatrix}$$

element
$$3$$

$$\Omega_3^e = [2/3, 1]$$

$$N_3 = -3x + 3$$

$$N_4 = 3x - 2$$

element
$$3$$
 $\Omega_3^e = [2/3,1]$ $N_3 = -3x + 3$ $N_4 = 3x - 2$ $b_3 = \int_{2/3}^1 N_3 dx$ $b_4 = \int_{2/3}^1 N_4 dx$

vector
$$\begin{bmatrix} b_3 \\ b_4 \end{bmatrix}$$

MATRIX FORM

domain and shape functions:

element
$$\Omega_1^e = [0, 1/3]$$

element
$$\begin{pmatrix} 1 \end{pmatrix}$$
 $K_1^e - M_1^e = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} - \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$

 $K_1^e - M_1^e = \begin{bmatrix} 3 - \frac{2}{18} & -3 - \frac{1}{18} \\ -3 - \frac{1}{18} & 3 - \frac{2}{18} \end{bmatrix} = \begin{bmatrix} \frac{52}{18} & -\frac{55}{18} \\ -\frac{55}{18} & \frac{52}{18} \end{bmatrix}$

note that:

b.c. at
$$x = 0$$

does not exist!
 $w(0) = 0$

b.c. at
$$x = 0$$
 $b_1^e = \begin{bmatrix} b_1 + \text{b.c. at } x = 0 \\ b_2 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 1/6 \end{bmatrix}$

MATRIX FORM

domain and shape functions:

element
$$\textcircled{2}$$

$$\Omega_2^e = \begin{bmatrix} 1/3, 2/3 \end{bmatrix}$$

$$K_2^e - M_2^e = \begin{bmatrix} K_{22} & K_{23} \\ K_{32} & K_{33} \end{bmatrix} - \begin{bmatrix} M_{22} & M_{23} \\ M_{32} & M_{33} \end{bmatrix}$$

$$K_2^e - M_2^e = \begin{bmatrix} 3 - \frac{2}{18} & -3 - \frac{1}{18} \\ -3 - \frac{1}{18} & 3 - \frac{2}{18} \end{bmatrix} = \begin{bmatrix} \frac{52}{18} & -\frac{55}{18} \\ -\frac{55}{18} & \frac{52}{18} \end{bmatrix}$$

$$b_2^e = \begin{bmatrix} b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 1/6 \end{bmatrix}$$

MATRIX FORM

domain and shape functions:

element
$$3$$
 $M_3^e = [2/3, 1]$ $M_3^e = \begin{bmatrix} K_{33} & K_{34} \\ K_{43} & K_{44} \end{bmatrix} - \begin{bmatrix} M_{33} & M_{34} \\ M_{43} & M_{44} \end{bmatrix}$ $M_4^e = \begin{bmatrix} 3 - \frac{2}{18} & -3 - \frac{1}{18} \\ -3 - \frac{1}{18} & 3 - \frac{2}{18} \end{bmatrix} = \begin{bmatrix} \frac{52}{18} & -\frac{55}{18} \\ -\frac{55}{18} & \frac{52}{18} \end{bmatrix}$ note that: b.c. at $x = 1$ $b_3^e = \begin{bmatrix} b_3 \\ b_4 + \text{b.c. at } x = 1 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 1/6 + 1 \end{bmatrix}$ $0 = 3.1 - 2$ $0 = 1$

21

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

ASSEMBLING

Algorithm 1 Assembling algorithm for stiffness matrix K_{ij}	
1: for $elem \leftarrow 1, NE$ do	\longrightarrow NE = Total number of elements
2: for $i_{local} \leftarrow 1, 2$ do	$\longrightarrow i_{local} = [1, 2]$
3: $i_{\text{global}} \leftarrow IEN[elem, i_{\text{local}}]$	$\longrightarrow i_{\text{global}} = [v_1, v_2]$
4: for $j_{local} \leftarrow 1, 2$ do	$\longrightarrow j_{local} = [1, 2]$
5: $j_{global} \leftarrow IEN[elem, j_{local}]$	$\longrightarrow j_{\text{global}} = [v_1, v_2]$
6: $K[i_{global}, j_{global}] \leftarrow K[i_{global}, j_{global}] + k_{elem}[i_{local}, j_{local}]$	
7: end for	
8: end for	
9: end for	

- loop on elements (1)
- loop on neighbors (i=1,2) and loop (j=1,2)
- conversion between local to global node
- assembling of stiffness matrix using SUM

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})u_i = b_i + b.c.$

24

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

I 2 3 4

1	$KM_{11}^{1} \ KM_{12}^{1}$ $KM_{21}^{1} \ \frac{KM_{12}^{2}}{KM_{22}^{2}} \ KM_{23}^{2}$	$\begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$		$b_1^1 + \text{b.c.}$ $b_1^1 + b^2$
3	KM_{32}^2 KM_{23}^2 KM_{33}^2	u_3	=	$\begin{vmatrix} b_2 + b_2 \\ b_3^2 \end{vmatrix}$
4		u_4		

25

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

 $\begin{array}{|c|c|c|}
u_1(0) = 0 \\
 & u_2 \\
 & u_3 \\
 & u_4 \\
\end{array} \qquad \begin{array}{|c|c|c|}
b_1^1 + \text{b.c.} \\
b_2^1 + b_2^2 \\
b_3^2 + b_3^3 \\
b_3^3 + 1
\end{array}$

27

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

1 2 3 4

b.c.	b_1^1	u_1	$KM_{11}^1 KM_{12}^1$	ı
$+b_2^2$	b	u_2	$KM_{21}^{1} \frac{KM_{22}^{1}}{KM_{22}^{2}} KM_{23}^{2}$	2
$+b_3^3$		u_3	$KM_{32}^2 \frac{KM_{33}^2}{KM_{33}^3} KM_{43}^3$	3
b.c.	b_{ξ}^{2}	u_4	$KM_{34}^3 KM_{44}^3$	4
		u_3	$KM_{32}^{2} \begin{array}{c} KM_{33} \\ +3 \\ KM_{33} \end{array} KM_{43}^{3}$	

20

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

how to remove this line?

ı	$(KM_{11}^1 \ KM_{12}^1)$	0	$b_1^1 + \text{b.c.}$
2	$KM_{21}^{1} \begin{array}{c} KM_{22}^{1} \\ +M_{22}^{2} \end{array} KM_{23}^{2}$	u_2	 $b_2^1 + b_2^2$
3	$\begin{array}{ccc} KM_{22} & & & & \\ & & KM_{33}^2 & & \\ KM_{32}^2 & & & & \\ & & & KM_{33}^3 & \\ \end{array}$	u_3	 $b_3^2 + b_3^3$
4	$KM_{34}^3 KM_{44}^3$	u_4	$b_3^3 + 1$

SETTING B.C.

writing down the equation of line 2

$$KM_{21}^1 * \mathbf{u_1} + (KM_{22}^1 + KM_{22}^2) * u_2 + KM_{23}^2 = b_2^1 + b_2^2$$
 subtracting $KM_{21}^1 * \mathbf{u_1}$ from both sides:

$$(KM_{22}^1 + KM_{22}^2) * u_2 + KM_{23}^2 = b_2^1 + b_2^2 - KM_{21}^1 * u_1$$

29

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

	2 3 4			
2	$KM_{22}^{1} \atop + KM_{22}^{2} \atop KM_{22}^{2}$	u_2		$b_2^1 + b_2^2$
3	$\begin{array}{c c} KM_{22}^2 & KM_{23} \\ KM_{32}^2 & KM_{33}^2 & KM_{43}^3 \\ KM_{33}^2 & KM_{33}^3 & KM_{43}^3 \end{array}$	u_3		$b_3^2 + b_3^3$
4	$KM_{34}^3 KM_{44}^3$	u_4		$b_3^3 + 1$

33Ⅰ

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

I	2	3	4

ı	$(KM_{11}^1)KM_{12}^1$	0	$b_1^1 + \text{b.c.}$
2	$KM_{21}^{1} \begin{vmatrix} KM_{22}^{1} \\ + \\ KM_{22}^{2} \end{vmatrix} KM_{23}^{2}$	u_2	$b_2^1 + b_2^2$
3	$KM_{32}^{2} \xrightarrow{KM_{33}^{2}} KM_{43}^{3}$	u_3	$b_3^2 + b_3^3$
4	$KM_{34}^3 KM_{44}^3$	u_4	$b_3^3 + 1$

30

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

1 2

SUBSTITUTING VALUES

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

33

SUBSTITUTING VALUES

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

34

SUBSTITUTING VALUES

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

SOLVING LINEAR SYSTEM

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

solving for u_i :

 $(K_{ij} - M_{ij})^{-1} (K_{ij} - M_{ij}) \mathbf{u_i} = (K_{ij} - M_{ij})^{-1} b_i + \text{b.c.}$

How to compute $(K_{ij} - M_{ij})^{-1}$?

How to solve the linear system?

direct methods: **not recommended!** iterative methods: **recommended!**

36

SOLUTION

Find u in $\Omega = [0,1]$ such that:

$$\frac{d^2u}{dx^2} + u + 1 = 0$$

$$u(0) = 0$$

$$\frac{du}{dx}(1) = 1$$
boundary condition

domain:
$$h_1 = h_2 = h_3 = 1/3$$
 $u_2 = 1.049$

$$u_3 = 1.874$$

$$u_3 = 1.874$$

$$u_4 = 2.386$$

ID PROBLEM

Find u in $\Omega = [0, 1]$ such that:

$$\frac{d^2u}{dx^2} + u + 1 = 0$$

$$u(0) = 0$$
 boundary condition

domain: $h_1 = h_2 = h_3 = 1/3$

MESH GENERATION

mesh: $\frac{0}{(0,0)}$ $\frac{2}{2}$ $\frac{3}{3}$ $\frac{4}{(0,1)}$ \times

IEN matrix

element node I node 2

node	not b.c.
I	0
2	I
3	2

ID vector Coordinate boundary vector vector

•	
	n

node	b.c. value
_	0

39

ID PROBLEM - WEAK FORM

Find u in H^1 such that:

$$\int_{\Omega} w \left(\frac{d^2 u}{dx^2} + u + 1 \right) d\Omega = 0$$
 weight function

mathematical procedure (integration by parts)

$$\int_0^1 w \frac{d^2 u}{dx^2} dx + \int_0^1 w u dx + \int_0^1 dx = 0$$

$$w\frac{du}{dx}\bigg|_0^1 - \int_0^1 \frac{du}{dx} \frac{dw}{dx} dx + \int_0^1 wudx + \int_0^1 wdx = 0$$

$$w\frac{du}{dx}\bigg|_{1} - w\frac{du}{dx}\bigg|_{0} - \int_{0}^{1} \frac{du}{dx} \frac{dw}{dx} dx + \int_{0}^{1} wudx + \int_{0}^{1} wdx = 0$$

ID PROBLEM - WEAK FORM

$$\left. w \frac{du}{dx} \right|_1 - w \frac{du}{dx} \right|_0 - \int_0^1 \frac{du}{dx} \frac{dw}{dx} dx + \int_0^1 wu dx + \int_0^1 w dx = 0$$

apply boundary conditions to the equation in the continuous form:

$$w(1)\frac{du}{dx}(1) - w(0)\frac{du}{dx}(0) - \int_0^1 \frac{du}{dx}\frac{dw}{dx}dx + \int_0^1 wudx + \int_0^1 wdx = 0$$

$$-w(1)u(1) - \int_0^1 \frac{du}{dx} \frac{dw}{dx} dx + \int_0^1 wu dx + \int_0^1 w dx = 0$$

41

GALERKIN METHOD

note that the b.c. has -u(1):

$$\sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{0}^{1} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx - \int_{0}^{1} N_{i}N_{j} dx \right) \mathbf{u_{i}} = \sum_{j=1}^{4} \int_{0} N_{j} dx + \underbrace{w(1) \frac{du}{dx}(1) - w(0) \frac{du}{dx}(0)}_{\text{matrix}} \mathbf{u_{ij}} + \underbrace{w(1) \frac{du}{dx}(1) -$$

$$\sum_{i=1}^{4} \sum_{j=1}^{4} \left(\int_{0}^{1} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx - \int_{0}^{1} N_{i} N_{j} dx \right) u_{i} + w(1) u(1) = \sum_{j=1}^{4} \int_{0}^{1} N_{j} dx - u(0) \frac{du}{dx}(0)$$

Replacing the shape function to the B.C.

Note that w_j is present at all members and can be removed!

$$\sum_{i=1}^{4} \sum_{j=1}^{4} \left[\int_{0}^{1} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx - \int_{0}^{1} N_{i} N_{j} dx + N_{i}(1) N_{j}(1) \right] \mathbf{u_{i}} = \sum_{j=1}^{4} \int_{0}^{1} N_{j} dx$$

GALERKIN METHOD

Approximated functions: $\hat{u} = \sum_{i=1}^4 N_i(x) u_i$ $\hat{w} = \sum_{j=1}^4 N_j(x) w_j$

$$w(1)\frac{du}{dx}(1) - w(0)\frac{du}{dx}(0) - \sum_{i=j=1}^{4} \int_{0}^{1} \frac{dN_{i}}{dx} u_{i} \frac{dN_{j}}{dx} w_{j} dx +$$

$$+ \sum_{i=j=1}^{4} \int_{0}^{1} N_{i} u_{i} N_{j} w_{j} dx + \sum_{j=1}^{4} \int_{0}^{1} N_{j} w_{j} dx = 0$$

$$\sum_{i=1}^{4}\sum_{j=1}^{4}\left(\int_{0}^{1} \frac{dN_{i}}{dx}\frac{dN_{j}}{dx}dx - \int_{0}^{1} N_{i}N_{j}dx\right) \mathbf{u_{i}} = \sum_{j=1}^{4}\int_{0}^{1} N_{j}dx + w(1)\frac{du}{dx}(1) - w(0)\frac{du}{dx}(0)$$
 stiffness K_{ij} mass M_{ij} right b_{i} boundary matrix M_{ij} hand side.

$$(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$$

42

ASSEMBLING


```
Algorithm 1 Assembling algorithm for stiffness matrix K_{ij}

1: for elem \leftarrow 1, NE do \longrightarrow NE = Total number of elements

2: for i_{local} \leftarrow 1, 2 do \longrightarrow i_{local} = [1, 2]

3: i_{global} \leftarrow IEN[elem, i_{local}] \longrightarrow i_{global} = [v_1, v_2]

4: for j_{local} \leftarrow 1, 2 do \longrightarrow j_{local} = [1, 2]

5: j_{global} \leftarrow IEN[elem, j_{local}] \longrightarrow j_{local} = [1, 2]

6: K[i_{global}, j_{global}] \leftarrow K[i_{global}, j_{global}] + k_{elem}[i_{local}, j_{local}]

7: end for

8: end for

9: end for
```

- loop on elements (1)
- loop on neighbors (i=1,2) and loop (j=1,2)
- conversion between local to global node
- assembling of stiffness matrix using SUM

FEM SHAPE FUNCTIONS

ID PROBLEM - LINEAR

domain and shape functions:

element
$$\bigcirc$$
 $N_1 = -3x + 1$
 $\Omega_1^e = [0, 1/3]$ $N_2 = 3x$

element ②
$$N_2 = -3x + 2$$

 $\Omega_2^e = [1/3, 2/3]$ $N_3 = 3x - 1$

element
$$3$$
 $N_3 = -3x + 3$

$$\Omega_3^e = [2/3, 1]$$
 $N_4 = 3x - 2$

MATRIX FORM

$$K_{11} - M_{11} = \int_{0}^{1/3} \frac{dN_{1}}{dx} \frac{dN_{1}}{dx} dx - \int_{0}^{1/3} N_{1} N_{1} dx$$

$$K_{12} - M_{12} = \int_{0}^{1/3} \frac{dN_{1}}{dx} \frac{dN_{2}}{dx} dx - \int_{0}^{1/3} N_{1} N_{2} dx$$

$$K_{21} - M_{21} = \int_{0}^{1/3} \frac{dN_{2}}{dx} \frac{dN_{1}}{dx} dx - \int_{0}^{1/3} N_{2} N_{1} dx$$

$$K_{22} - M_{22} = \int_{0}^{1/3} \frac{dN_{2}}{dx} \frac{dN_{2}}{dx} dx - \int_{0}^{1/3} N_{2} N_{2} dx$$

$$K_{11} - M_{11} = \int_{0}^{1/3} \frac{dN_{1}}{dx} \frac{dN_{1}}{dx} dx - \int_{0}^{1/3} N_{1}N_{1}dx \qquad \text{matrix}$$

$$K_{12} - M_{12} = \int_{0}^{1/3} \frac{dN_{1}}{dx} \frac{dN_{2}}{dx} dx - \int_{0}^{1/3} N_{1}N_{2}dx \qquad \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} - \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$

$$K_{21} - M_{21} = \int_{0}^{1/3} \frac{dN_{2}}{dx} \frac{dN_{1}}{dx} dx - \int_{0}^{1/3} N_{2}N_{1}dx$$

$$K_{22} - M_{22} = \int_{0}^{1/3} \frac{dN_{2}}{dx} \frac{dN_{2}}{dx} dx - \int_{0}^{1/3} N_{2}N_{2}dx$$

$$element \bigcirc_{\Omega_{1}^{e} = [0, 1/3]} \\ N_{1} = -3x + 1 \\ N_{2} = 3x \qquad b_{2} = \int_{0}^{1/3} N_{2}dx$$

$$vector$$

$$\begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix}$$

MATRIX FORM

$$K_{22} - M_{22} = \int_{1/3}^{2/3} \frac{dN_2}{dx} \frac{dN_2}{dx} dx - \int_{1/3}^{2/3} N_2 N_2 dx$$

$$K_{23} - M_{23} = \int_{1/3}^{2/3} \frac{dN_2}{dx} \frac{dN_3}{dx} dx - \int_{1/3}^{2/3} N_2 N_3 dx$$

$$K_{32} - M_{32} = \int_{1/3}^{2/3} \frac{dN_3}{dx} \frac{dN_2}{dx} dx - \int_{1/3}^{2/3} N_3 N_2 dx$$

$$K_{33} - M_{33} = \int_{1/3}^{2/3} \frac{dN_3}{dx} \frac{dN_3}{dx} dx - \int_{1/3}^{2/3} N_3 N_3 dx$$

element
$$\bigcirc$$
 $\Omega_2^e = [1/3, 2/3]$ $N_2 = -3x + 2$ $N_3 = 3x - 1$

element ②
$$\Omega_2^e = [1/3, 2/3]$$
 $D_2 = \int_{1/3}^{2/3} \frac{N_2}{N_2} dx$ $D_3 = 3x - 1$ $D_3 = \int_{1/3}^{2/3} \frac{N_3}{N_3} dx$

vector

matrix

MATRIX FORM

$$K_{33}-M_{33}=\int_{2/3}^{1}\frac{dN_3}{dx}\frac{dN_3}{dx}dx-\int_{2/3}^{1}N_3N_3dx \qquad \text{matrix}$$

$$K_{34}-M_{34}=\int_{2/3}^{1}\frac{dN_3}{dx}\frac{dN_4}{dx}dx-\int_{2/3}^{1}N_3N_4dx \qquad \begin{bmatrix} K_{33}&K_{34}\\K_{43}&K_{44}\end{bmatrix}-\begin{bmatrix} M_{33}&M_{34}\\K_{43}&K_{44}\end{bmatrix}-\begin{bmatrix} M_{33}&M_{34}\\K_{43}&K_{44}\end{bmatrix}-\begin{bmatrix} M_{33}&M_{34}\\K_{43}&M_{44}\end{bmatrix}$$

$$K_{44}-M_{44}=\int_{2/3}^{1}\frac{dN_4}{dx}\frac{dN_4}{dx}dx-\int_{2/3}^{1}N_4N_4dx+N_4(1)N_4(1)$$

element
$$3$$

$$\Omega_3^e = [2/3, 1]$$

$$N_3 = -3x + 3$$

$$N_4 = 3x - 2$$

$$b_3=\int_{2/3}^1 rac{N_3}{dx}$$
 vector $b_4=\int_{2/3}^1 N_4 dx$

vector
$$egin{bmatrix} b_3 \ b_4 \end{bmatrix}$$

MATRIX FORM

domain and shape functions:

element
$$\bigcap$$
 $M_1^e = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} - \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$ $M_1^e = \begin{bmatrix} 3 - \frac{2}{18} & -3 - \frac{1}{18} \\ -3 - \frac{1}{18} & 3 - \frac{2}{18} \end{bmatrix} = \begin{bmatrix} \frac{52}{18} & -\frac{55}{18} \\ -\frac{55}{18} & \frac{52}{18} \end{bmatrix}$ note that:

does not exist!

b.c. at x = 0 $b_1^e = \begin{bmatrix} b_1 + \text{b.c. at } x = 0 \\ b_2 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 1/6 \end{bmatrix}$

w(0) = 0

MATRIX FORM

domain and shape functions:

element
$$\bigcirc$$

$$\Omega_2^e = [1/3, 2/3]$$

$$K_2^e - M_2^e = \begin{bmatrix} K_{22} & K_{23} \\ K_{32} & K_{33} \end{bmatrix} - \begin{bmatrix} M_{22} & M_{23} \\ M_{32} & M_{33} \end{bmatrix}$$

$$K_2^e - M_2^e = \begin{bmatrix} 3 - \frac{2}{18} & -3 - \frac{1}{18} \\ -3 - \frac{1}{18} & 3 - \frac{2}{18} \end{bmatrix} = \begin{bmatrix} \frac{52}{18} & -\frac{55}{18} \\ -\frac{55}{18} & \frac{52}{18} \end{bmatrix}$$

$$b_2^e = \begin{bmatrix} b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 1/6 \end{bmatrix}$$

5 I

MATRIX FORM

domain and shape functions:

element
$$\textcircled{3}$$
 $K_3^e - M_3^e = \begin{bmatrix} K_{33} & K_{34} \\ K_{43} & K_{44} \end{bmatrix} - \begin{bmatrix} M_{33} & M_{34} \\ M_{43} & M_{44} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $K_3^e - M_3^e = \begin{bmatrix} 3 - \frac{2}{18} & -3 - \frac{1}{18} \\ -3 - \frac{1}{18} & 3 - \frac{2}{18} + 1 \end{bmatrix} = \begin{bmatrix} \frac{52}{18} & -\frac{55}{18} \\ -\frac{55}{18} & \frac{70}{18} \end{bmatrix}$ note that: b.c. at $x = 1$ $b_3^e = \begin{bmatrix} b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} 1/6 \\ 1/6 \end{bmatrix}$ $w(1)u(1) = N_4(1) * N_4(1)$ $= (3.1 - 2)(3.1 - 2)$

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

53

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

$$KM_{11}^1 KM_{12}^1$$

2
$$KM_{21}^1 KM_{22}^1$$

3

4

$$\begin{array}{|c|c|c|c|c|} & u_1 & & & b_1^1 + \text{b.c.} \\ & u_2 & & & \\ & u_3 & & & \\ & & u_4 & & & \\ \end{array}$$

54

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

1 2 3 4

55

ASSEMBLING

linear system of equations: $(K_{ij} - M_{ij})u_i = b_i + b.c.$

1 2 3 4

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

57

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

SETTING B.C.

	I 2 3 4	, ∤ repla	ce this ed	quation by b.c.
1	$KM_{11}^1 KM_{12}^1$	u_1		b_1^1
2	$KM_{21}^{1} \overset{KM_{22}^{1}}{KM_{22}^{2}} KM_{23}^{2}$	u_2		$b_2^1 + b_2^2$
3	$KM_{22}^{2} = KM_{33}^{2} KM_{33}^{3} KM_{43}^{3}$ $KM_{32}^{2} + KM_{33}^{3} KM_{33}^{3}$	u_3		$b_3^2 + b_3^3$
4	$KM_{34}^3 \stackrel{KM_{44}^3}{\underset{+}{KM}_{44}}$	u_4		b_3^3

58

SETTING B.C.

writing down the equation of node 2

$$KM_{21}^1* \frac{\textit{u}_1}{\textit{u}_1} + (KM_{22}^1 + KM_{22}^2)* u_2 + KM_{23}^2 = b_2^1 + b_2^2$$
 subtracting $KM_{21}^1* \frac{\textit{u}_1}{\textit{u}_1}$ from both sides:

$$(KM_{22}^1 + KM_{22}^2) * u_2 + KM_{23}^2 = b_2^1 + b_2^2 - KM_{21}^1 * \mathbf{u_1}$$

replacing equation of node 1 by the trivial equation:

$$1 * u_1 = 0$$

59

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

	. I :	2 3	4		
ı	$\left(\left(KM_{11}^{1}\right) KI\right)$	M_{12}^{1}		u_1	b_1^1
2	$KM_{21}^1 \left \begin{matrix} KI \\ KI \end{matrix} \right $	$M_{22}^1 \ M_{22}^2 \ KM_{23}^2$	1	u_2	$b_2^1 + b_2^2$
3	K	M_{22}^2 KM_{33}^2 KM_{33}^2 KM_{33}^3	KM_{43}^{3}	u_3	$b_2^1 + b_2^2$ $b_3^2 + b_3^3$
4		KM_{34}^3	$\begin{bmatrix}KM_{44}^3\\1\end{bmatrix}$	u_4	b_{3}^{3}

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

	. 1	2	3	4			
ı		0			u_1		0
2	0	$KM_{22}^{1} \ KM_{22}^{2}$	KM_{23}^{2}		u_2		$b_2^1 + b_2^2 - KM_{21}^1 * \mathbf{u}_1$
3		KM_{32}^{2}	KM_{33}^{2} $+$ KM_{33}^{3}	KM_{43}^3	u_3	<u> </u>	$b_3^2 + b_3^3$
4			KM_{34}^{3}	KM_{44}^{3} 1	u_4		b_3^3
	I						

61

SETTING B.C.

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

	ı	2	3	4		
ı	1	0	0	0	u_1	
2	0	52/9 -	-55/18	0	u_2	$b_2^1 + b_2^2 - KM_{21}^1 = u_1$
3	0	-55/18	52/9	-55/18	u_3	 $b_3^2 + b_3^3$
4	0	0	-55/18	${\overset{26/9}{\overset{+}{1}}}$	u_4	b_3^3

62

SUBSTITUTING VALUES

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

	1	2	3	4			
ı	1	0	0	0	u_1		0
2	0	52/9 -	-55/18	0	u_2		1/3
3	0	-55/18	52/9	-55/18	u_3	<u> </u>	1/3
4	0	0 -	-55/18	$ \begin{array}{c c} 26/9 \\ 1 \end{array} $	u_4		1/6

63

SUBSTITUTING VALUES

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

	ı	2	3	4			
ı	1	0	0	0	u_1		0
2	0	52/9 -	-55/18	0	u_2		1/3
3	0	-55/18	52/9	-55/18	u_3	<u> </u>	1/3
4	0	0	-55/18	35/9	u_4		1/6

SOLVING LINEAR SYSTEM

linear system of equations: $(K_{ij} - M_{ij})\mathbf{u_i} = b_i + b.c.$

solving for u_i :

$$(K_{ij} - M_{ij})^{-1}(K_{ij} - M_{ij})\mathbf{u_i} = (K_{ij} - M_{ij})^{-1}b_i + \text{b.c.}$$

How to compute $(K_{ij} - M_{ij})^{-1}$?

How to solve the linear system?

direct methods: **slow and high memory consumption!**iterative methods: **faster!**

65

EXERCISE

Repeat exercise I and 2 for quadratic elements.

domain: $h_1 = h_2 = h_3 = 1/3$

67

SOLUTION

Find u in $\Omega = [0, 1]$ such that:

$$\frac{d^2u}{dx^2} + u + 1 = 0$$

$$u(0) = 0$$

$$\frac{du}{dx}(1) = -u$$
boundary condition

domain:
$$h_1 = h_2 = h_3 = 1/3$$

$$u_1 = 0.000$$

$$u_2 = 0.251$$

$$u_3 = 0.363$$

$$u_4 = 0.328$$

66

EXERCISE

domain and shape functions:

element
$$N_1 = 18x^2 - 9x + 1$$

 $N_2 = 18x^2 - 3x$
 $N_5 = -36x^2 + 12x$

element ②
$$\frac{N_2}{N_3} = 18x^2 - 21x + 6$$

 $\Omega_2^e = [1/3, 2/3]$ $N_6 = -36x^2 + 36x - 8$

element 3
$$N_3 = 18x^2 - 33x + 15$$

 $N_4 = 18x^2 - 27x + 10$
 $N_7 = -36x^2 + 60x - 24$

EXERCISE

Repeat exercise I and 2 for different mesh numbering:

domain:
$$h_1 = h_2 = h_3 = 1/3$$

Repeat exercise I and 2 for different mesh spacing:

domain:
$$2h_1 = 2h_2 = h_3 = 1/2$$

69

2D PROBLEM

Find u in $\Omega = [0,1] \times [0,1]$ such that:

Equation:

$$\nabla^2 u = 0$$

70

MESH GENERATION

b.c. value

1/3

2/3

1/3

10/9

2/3

13/9

10/9

element	node I	node 2	node 3
- 1	- 1	6	5
2	I	2	6
3	2	7	6
4	2	3	7
5	3	8	7
6	3	4	8
7	5	10	9
8	5	6	10
9	6	Ш	10
10	6	7	- 11
- 11	7	12	- 11
12	7	8	12
13	9	14	13
14	9	10	14
15	10	15	14
16	10	Ш	15
17	Ш	16	15
18	11	12	16

node	not b.c.
- 1	0
2	0
3	0
4	0
5	0
6	- 1
7	2
8	0
9	0
10	3 4
П	4
12	0
13	0
14	0
15	0
16	0

7 I

no		Υ	Х	node
ı		0	0	- 1
2		0	1/3	2
3		0	2/3	3
		0	1	4
5		1/3	0	5
6		1/3	1/3	6
7		1/3	2/3	7
- 8		1/3	-	8
9		2/3	0	9
⊢		2/3	1/3	10
-		2/3	2/3	П
- 1		2/3	1	12
- 1		- 1	0	13
-		- 1	1/3	14
I		I	2/3	15
- 1		I	1	16
- 1	ļi			

ASSEMBLING

- loop on elements (1)
- loop on neighbors (i=1,2,3) and loop (j=1,2,3)
- conversion between local to global node
- assembling of stiffness matrix using SUM

2D PROBLEM - WEAK FORM

Find u in H^1 such that:

$$\int_{\Omega} w \bigg(\nabla^2 u \bigg) d\Omega = 0$$
weight function

mathematical procedure (Green theorem)

$$\int_{\Omega} w \nabla^2 u d\Omega = \int_{\Omega} w \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) d\Omega = 0$$

$$\oint_{\Gamma} \mathbf{w} \, \nabla \mathbf{u} \, d\Gamma - \int_{\Omega} \nabla \mathbf{w} \cdot \nabla \mathbf{u} \, d\Omega = 0$$

73

2D PROBLEM - WEAK FORM

$$\oint_{\Gamma} \mathbf{w} \, \nabla \mathbf{u} \, d\Gamma - \int_{\Omega} \nabla \mathbf{w} \cdot \nabla \mathbf{u} \, d\Omega = 0$$

apply boundary conditions to the equation in the continuous form:

$$\oint_{\Gamma} \mathbf{w} \nabla \mathbf{u} \, d\Gamma - \int_{\Omega} \nabla \mathbf{w} \cdot \nabla \mathbf{u} \, d\Omega = 0$$

$$\int_{\Omega} \nabla w \cdot \nabla u d\Omega = 0$$

74

GALERKIN METHOD

Approximated functions: $\hat{u} = \sum_{i=1}^{16} N_i(x,y) u_i$ $\hat{w} = \sum_{j=1}^{16} N_j(x,y) w_j$

$$\mathbf{k}^{\mathrm{e}} = \int_{\Omega} B^T DB d\Omega$$
 formula

where:

$$B = \begin{bmatrix} \frac{\partial N(x,y)}{\partial x} \\ \frac{\partial N(x,y)}{\partial y} \end{bmatrix} B = \begin{bmatrix} \frac{\partial N_1(x,y)}{\partial x} & \frac{\partial N_2(x,y)}{\partial x} & \frac{\partial N_3(x,y)}{\partial x} \\ \frac{\partial N_1(x,y)}{\partial y} & \frac{\partial N_2(x,y)}{\partial y} & \frac{\partial N_3(x,y)}{\partial y} \end{bmatrix} D = k\mathbf{I}$$

if k constant and isotropic: $\mathbf{k}^{e} = \frac{k}{4A} \overrightarrow{B^{T}B}$ area

GALERKIN METHOD

Approximated functions: $\hat{u} = \sum_{i=1}^{16} N_i(x, y) u_i$ $\hat{w} = \sum_{j=1}^{16} N_j(x, y) w_j$

clockwise or counter clockwise

$$B = \frac{1}{2A} \begin{bmatrix} (y_2 - y_3) & (y_3 - y_1) & (y_1 - y_2) \\ (x_3 - x_2) & (x_1 - x_3) & (x_2 - x_1) \end{bmatrix}$$

76

ELEMENT MATRIX

$$B^{T}B = \frac{1}{4A} \begin{bmatrix} 1/9 & -1/9 & 0\\ -1/9 & 2/9 & -1/9\\ 0 & -1/9 & 1/9 \end{bmatrix}$$

$$N_{2}$$

77

ASSEMBLING

linear system of equations:

$$K_{ij}\mathbf{u_i} = b_i + \text{b.c.}$$

78

SOLUTION

Find u in $\Omega = [0,1] \times [0,1]$ such that:

TRIANGLE FORMULAE

$$\mathbf{N}(x,y) = \begin{bmatrix} N_i \ N_j \ N_k \end{bmatrix}$$
$$N_i = \frac{1}{2A} (a_i + b_i x + c_i y)$$

$$a_i = x_j y_k - x_k y_j$$
$$a_j = x_k y_i - x_i y_k$$

$$b_i = y_j - y_k \qquad c_i = x_k - x_j$$

$$c_i = x_k - x_j$$

$$b_j = y_k - y$$

$$b_j = y_k - y_i \qquad c_k = x_i - x_k$$

$$a_k = x_i y_i - x_j y_i$$

$$b_k = y_i - y_i$$

$$b_k = y_i - y_j \qquad c_k = x_j - x_i$$

TRIANGLE FORMULAE

stiffness matrix

$$\mathbf{k}^{\mathbf{e}} = \frac{k}{4A} \begin{bmatrix} b_i^2 + c_i^2 & b_i b_j + c_i c_j & b_i b_k + c_i c_k \\ b_i b_j + c_i c_j & b_j^2 + c_j^2 & b_k b_j + c_k c_j \\ b_i b_k + c_i c_k & b_k b_j + c_k c_j & b_k^2 + c_k^2 \end{bmatrix}$$

mass matrix

$$\mathbf{m}^{\mathbf{e}} = \frac{A}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\mathbf{g_{x}^{e}} = \frac{1}{6} \begin{bmatrix} b_{i} & b_{j} & b_{k} \\ b_{i} & b_{j} & b_{k} \\ b_{i} & b_{j} & b_{k} \end{bmatrix}$$

$$\mathbf{m^{e}} = \frac{A}{12} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \qquad \begin{array}{c} \mathbf{gradient} \\ \mathbf{matrices} \\ \mathbf{g_{y}^{e}} = \frac{1}{6} \begin{bmatrix} c_{i} & c_{j} & c_{k} \\ c_{i} & c_{j} & c_{k} \\ c_{i} & c_{j} & c_{k} \end{bmatrix}$$

81

GESAR

FIRST FLUID SOLVER: 2D STREAM-VORTICITY FORMULATION

3rd Workshop on Advances in CFD and LB Modelling of Interface **Dynamics in Capillary Two-Phase Flows**

Gustavo R.ANIOS

http://www.ueri.br

http://2phaseflow.org

http://www.gesar.uerj.br

http://gustavorabello.github.io

Kobe - Japan October 10th, 2018

GOVERNING EQUATIONS

vorticity transport:

$$abla^2\psi=-\omega_z$$

auxiliary:

$$\frac{\partial \boldsymbol{\psi}}{\partial y} = v_x$$

$$\frac{\partial \mathbf{\psi}}{\partial x} = -v_y$$

$$\omega_z = \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}$$

Required 2 boundary conditions for ψ and ω_z

MATRICIAL EQUATIONS

vorticity transport:

$$\left(\frac{\mathbf{M}}{\Delta t} + \nu \mathbf{K} + \mathbf{v} \cdot \mathbf{G}\right) \omega_{z}^{n+1} = \frac{\mathbf{M}}{\Delta t} \omega_{z}^{n} + \mathbf{b.c.}$$

stream function:

$$\mathbf{K} \psi = \mathbf{M} \omega_z + \mathbf{b.c.}$$

auxiliary:

$$egin{aligned} \mathbf{M} v_x &= \mathbf{G_y} oldsymbol{\psi} \ \mathbf{M} v_y &= -\mathbf{G_x} oldsymbol{\psi} \end{aligned}$$

$$\psi \longrightarrow {\sf constant}$$

$$\mathbf{M} \mathbf{\omega}_{z} = \mathbf{G}_{\mathbf{x}} v_{y} - \mathbf{G}_{\mathbf{y}} v_{x}$$

$$\omega_z \longrightarrow \text{variable}$$

