# Detection of a transiting Hot Jupiter around WASP-44

#### Adriana Barbieri

#### Alessandro Bianchetti

January 7, 2022

## Abstract

In the following report we work on WASP-44 b, an exoplanet orbiting around its G-type parent star, located in the constellation of Cetus. We first examine its atmospheric parameters and derive its mass and radius (Morton 2015). Then, we correct for limb darkening effect through different methods (Claret et al. 2011, Claret 2017, Claret 2018). We also take some images obtained with Copernico telescope at the Asiago Observatory into consideration and, after proper correction, we use them to extract the light curve of the alleged planet.

### 1 Introduction

Confirmed exoplanets are growing in number year by year, and transit method is nowadays a widespread and hugely successfull detection method. Most planets indeed are by now discovered by tracing the lightcurve and searching for any sign of a weakening in the flux.



**Figure 1:** Confirmed exoplanets distribution per year of detection via different methods. Credits to https://exoplanetarchive.ipac.caltech.edu/

In this report we focus on WASP-44 b, a Jupiter-size planet orbiting around a G-type star, located in the constellation of Cetus. Among the numerous available reports on the planet, we decided to make a conservative choice and avoid any result which is not inferred via spectroscopy. This leads us to rule out several papers regarding our target of interest and exclusively work with the discovery paper (Anderson et al. 2011). In this paper, estimates of the atmospheric parameters of WASP-44 are provided via an analysis of the width of the spectral lines.

### 2 The transit method

The transit method is a photometric indirect method of detection of exoplanets, which consists in the observation of a drop in the flux of a star due to the transit of a planet across the stellar disk.

The subsequent variation of the measured stellar luminosity is proportional to the ratio of the projected areas of the planet and the star, or equivalently, the dimming of the flux is proportional to the ratio of the square of the respective radii; therefore, known the radius of the star from its spectrum, the radius of the planet can be easily obtained from the measured depth of the flux.

Moreover, if combined with radial velocities measurements, this method allows to compute also the average density of the exoplanet.

It is important however to notice that limb darkening, stellar activity and atmospheric effects may pollute the observational transit curve and must be all taken into account.

The modelled transit light curve is distinguished by a characteristic trapezoidal shape, whose main geometrical parameters are the impact parameter, the ingress/egress and transit duration, and the transit depth.



**Figure 2:** Simplified transit light curve. Credits to *Winn* [2010]

The geometry of the system places a strong constraint on the inclination of the orbital plane of the planet with respect to the line of sight: the transit can be observed exclusively for almost edge-on orbits, meaning orbital planes that are as parallel as possible to the line of sight. This condition yealds a low probability of detection, which in turn requires a huge number of target stars to carry on successfull observations.

Furthermore, at least two transits are required to determine the orbital period of the extrasolar planet candidate, and since the duration of the transit is very short compared to the orbital period, continuous and prolonged observations are required in order to detect it.

It is of capital importance to be aware of the selection biases that are intrinsic to this method (and to the current available technology): indeed it yealds the largest detection probability for large massive planets orbiting very close to small and quiet stars, thus selecting Hot Jupiters around late type stars as ideal targets.

## 3 Preliminary steps

#### 3.1 Inferring mass and radius

The  $H_{\alpha}$  line was used to determine the effective temperature (Teff), while the NaI D and MqIb lines were used as surface gravity ( $\log g^*$ ) diagnostics (Anderson et al. 2011). The elemental abundances, including [Fe/H] were determined from equivalent width measurements of several clean and unblended lines. led to proper estimation of the atmospheric parameter triplet  $T_{eff}$ ,  $\log g^*$  and [Fe/H]. Quoted errors include statistical uncertainties only. In the same conservative spirit we previously showed, we add in quadrature a further term to the errors of all three parameters (Sousa et al. 2011). We are in fact more interested in an accurate result rather than in a precise one. This leads to the following results

| $T_{eff}$ (K)  | $\log g^*$    | [Fe/H]          |
|----------------|---------------|-----------------|
| $5400 \pm 162$ | $4.5 \pm 0.2$ | $0.06 \pm 0.11$ |

We then ran isochrones (Morton 2015), with Bayesian approach, with posterior sampling performed by MultiNest and including Gaia parallax  $p=2.764\pm0.020~\mu as$ . These are the results of the analysis:

| $ \begin{array}{ c c } \hline M/M_{\odot} \\ 0.95 \pm 0.05 \end{array} $            | $R/R_{\odot}$ $0.93 \pm 0.01$                                              |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| $\begin{array}{ c c c c c c }\hline \rho/\rho_{\odot} \\ 1.19 \pm 0.09 \end{array}$ | $   \begin{array}{c}     age[Gyr] \\     4.8^{+3.5}_{-2.9}   \end{array} $ |

Huge errors on the age estimate are pretty common for this analysis, since stars with this mass evolve very slowly along the Main Sequence.

### 3.2 Limb darkening correction

Limb darkening is an important effect that cannot be neglected when observing a star. In short, the edges of the luminosity profile of a star always look darker than the core: this occurs because there is a physical, constant distance L at which the optical depth is equal to unity, further than which the observations are not possible since photons are completely absorbed and do not reach the observer. This characteristic size, however, can extend deep inside the hot layers of the star if we look straight to the center, being L radial, while it can stop at the colder, outer layers if we look at the edges of the star, since L and our line of sight (LoS) are not radial anymore.



**Figure 3:** Limb darkening effect scheme. Credits to https://ediss.sub.uni-hamburg.de

Correcting for this effect may be challenging. Indeed we can measure it directly only for the Sun, while we need to model it somehow for any other star, thus figuring out a proper law for the intensity decrease  $I(\mu)$ , where  $\mu = \sqrt{1-r^2}$ . Many choices are plausible at this point: a uniform behaviour, a linear, a quadratic, a square-root or a logarithmic law are all valid guesses. Parametrizing such laws introduces the so-called *LD-coefficients*, which will depend on the stellar parameters. Knowing the latter relationship (for instance calibrating it based on a large sample of stars) allows to obtain the coefficients directly from the atmopsheric parameters. The alternative way is fitting the light curve leaving the coefficients as free parameters.

The choice of the functional dependence on  $\mu$  is a delicate one. Multiple approaches can be followed, basing on different papers. This analysis is addressed in A.

## 4 TASTE data analysis

Before actually analysing data from TASTE, we need to properly correct them. Then, we're going to have a look at and correctly format them, preparing the configurations file for the PyORBIT run.

#### 4.1 Bias and flat field correction

CCD s(Charged Coupled Devices) are the privileged detectors for photon counting, due to their high quantum efficiency. The images produced are *raw* and must be properly *prereduced* before being analysed. Pre-reduction goes through different steps:

• bias is the individual pixel-to-pixel offset level, and it is a zero-exposure instrumental factor, thus it is always an added contribution to any signal. Therefore it must be removed in order to isolate the photons of astrophysical origin. The root mean square of the bias corresponds to the so-called *readout noise*. We perform an average across all the pixels to get an estimate of the bias;

- a **flat field** is a calibration image obtained by illuminating homogeneously the pupil of the telescope, using twilight sky or appropriate, back-lighted screens. This correction factor is to be applied on each pixel and then also normalised, after the overall bias correction;
- differential photometry is a great way to keep track of any noise variation. The idea is to take a reference star close enough to the target: any environmental or instrumental variation will affect both sources. Working with flux ratios will make only astrophysical variations evident!

For pre-reductions steps, we use the code *huggy*. We first perform bias correction, than the flat field correction. The corrected images are ready for aperture synthesis.

#### 4.1.1 Bias correction

We run *huggy-bias.e* inputting the raw images.

huggy-bias.e A\*.fits

Many bias images are produced, displaying the zero offset of the pixel board. *Master bias* is the average of all these files. Plotting the intensities of the offset level of the pixels yields a concrete view of the correction.



Figure 4: Comparison between random bias frame and master bias

Note that the master bias frame distribution is peaked and much closer to a unique constant value, as all pixels behaved in the same way, like in an ideal situation. We can see this even numerically, by looking at the dispersions of the above distributions:  $\sigma_{rb} = 3.82$  and  $\sigma_{mb} = 0.89$ .

#### 4.1.2 Flat field correction

We now run huggy-flat.e inputting a normalization fraction, meaning the fraction of pixels we want to account for, ruling out the sides which are often polluted by overscan columns. These are visible in the form of dark stripes on the sides of any flat field take. Then we have to input the overscan values, usually set to 0. Subsequently, we need to provide the master bias file, which will be subtracted from the data. Finally, we input all the available flat fields.

huggy-flat.e 0.9 0 0 mb.fits A\*.fits

This will produce an outpute file showing the average response of pixels to an external light source. Minor differences in such response are important and must be accounted for.



Figure 5: Comparison between random flat field and master flat

#### 4.2 Final correction

The final step is applying the correction files obtained in the previous parts.

The final correction code requires the master bias and the normalised master flat, and of course all the target images, that are all going to be corrected.

## 4.3 Extracting the light curve

We are approaching the very heart of this analysis, preparing for aperture synthesis. We now need to display the science images, make sure to identify the correct target and select a proper background analysis around it. To do that, we have to properly circle the source and create a slightly larger circle around it (we used the ds9 tools). The same procedure must be repeated (with the same inner and outer radii) on a properly selected reference star, close to and roughly as bright as the target. We hereby report the coordinates of the target and of the chosen reference star, in pixel units.

|           | $x_c$ | $y_c$ |
|-----------|-------|-------|
| Target    | 170   | 37    |
| Reference | 288   | 57    |

$$R_{in} = 11, R_{out} = 20$$

Now we need to call *huggy-psf.e* and input the coordinates of the center of the target, the inner and outer radii, and a random corrected image.

huggy-psf.e x0 y0 Rin Rout A\*.fits

This yields information about the Point Spread Function, meaning how the the flux is distributed as a function of the distance from the core of the source. The ouput displays the radii at which we find 90, 95 and 99% of the total flux. The three apertures in pixel units are  $a_0 = 4.71$ ,  $a_1 = 5.97$  and  $a_2 =$ , respectively for 90, 95 and 99%. We take note of this output.

Photometry analysis is carried out by sentinel.e, which needs the coordinates of the target and of the reference stars, followed by the radii of two selected apertures from the previous output. Also, we need again inner and outer radii of the selected region for the analysis, as well as the full-corrected images of the target.

sentinel.e x0 y0 xr yr a1 a2 Rin Rout c
A\*.corr.fits

where  $c=\{1,2\}$  selects the centroiding method (gaussian/moment). For a star fainter than average like ours  $(J\approx 11)$  the recommended choices for the apertures are 90 and 95%, in order to make sure not to run into saturation. However, all three possibilities were tested.

The *sentinel* output is the starting point for TASTE analysis. This file contains the main information about the target and the sky, keeping track of the respective photometries. In fact, we check the evolution of the sky



Figure 6: Upper panel: sky background flux, every point is the median of the anulus formed by  $R_{in}$  and  $R_{out}$ . Middle panel: reference star flux, normalised to the first measurement. Bottom panel: peak points of the flux inside the defined aperture.

background throughout the observation session, and also to the behaviour of the reference star (6). The sky flux has been constantly decreasing in time, so we expect less and less disturbance as the observation proceeds. The reference star, on the other hand seems to be pretty stable in terms of flux. We also want to make sure that reference star are correctly comoving: to do that, we plot the variation in position at every time step and make sure we have similar motion (7). Plotting FWHM reveals an increasing trend, at odds with the sky pattern. Next, we compare the flux plot of all three different aperture we have chosen (8). The second case (99%) seems to be slighly less noisy: that's our first clue that this aperture might be the best suited choice for the aperture analysis. As a further goodness check, one may take a look at the peak value trend of the



Figure 7: Upper and middle panel: target and reference star show the same coordinate variation in the CCD. Bottom panel: full width half maximum of the peak flux.



**Figure 8:** From top to bottom: 90, 95 and 99% apertures, showing both the target and reference star. Dispersion is reduced as the aperture grows.



Figure 9: Upper panel: narrow apertures, bottom panel: wider apertures. In both cases the peak value is well below the saturation limit, and we also see that the reference data are above the required threshold. A few points at late times are below the quality factor for the 90-95% case, thus supporting the choice of the widest aperture at 99%.

target source and compare it to the saturation level. We also plot the reference star flux to see whether they are above the quality threshold.

We can can finally visualise the transit in all three cases. To do that, we plot the ratio between target and reference star: differential photometry helps us get rid of systematic errors affecting both sources. We still see that the wider aperture seems to have less dispersion than the other case, and we keep that in mind.

In order to evaluate the depth of the transit, we need to identify the "height" of the continuous level: to do that, we need to exclude the transit datapoints and try out a polynomial



**Figure 10:** Transit image for growing aperture, top to bottom. Note that the above case (90%) shows the most outliers.

fit, hoping to find a perfectly horizontal line. That will be our reference trend for the stellar flux. To perform the fit, we ruled out all the points during the transit by roughly selecting an ingress and egress time. A quadratic law  $(p_0x^2 + p_1x + p_2)$  was chosen to set things up in the most general case. A least square fitting via numpy function np.polyfit yields Fig.12.

| # ap | $p_0(\cdot 10^{-10})$ | $p_1(\cdot 10^{-7})$ | $p_2(\cdot 10^3)$ |
|------|-----------------------|----------------------|-------------------|
| 90   | -1.19                 | 1.43                 | 0.72              |
| 95   | -7.98                 | 1.43                 | 4.82              |
| 99   | -8.98                 | 1.42                 | 5.43              |

We immediately notice that both  $p_0$  and  $p_1$  are well compatible with zero, meaning that only a constant term survives: that represents the level of the continuous.

After the fit, we also considered discarding outliers: however, a quick analysis reveal that all point are well within  $5\sigma$ . Actually, except for the 90% aperture, even a more strict  $3\sigma$ 



Figure 11: Time boundaries for the transit are roughly ballparked to prepare a proper, flat dataset to fit with a straight line.

criterion would not rule out any data point.

We display the standard deviation of the points of the continuous with respect to the linear fit. These quantify scattering and indicate that the 99% aperture is indeed the best photometric choice, having the smallest standard deviation.

| $\sigma_{90}$ | 0.0063 |
|---------------|--------|
| $\sigma_{95}$ | 0.0061 |
| $\sigma_{99}$ | 0.0059 |



Figure 12: Horizontal fit and residuals for the three cases.

### 5 Conclusions

## A Limb darkening analysis

#### A.1 Claret 2017

We can represent data tables in Claret 2017 as 2D histograms, after proper unfolding of the data tables attached to the paper. To do that, we first fix metallicity, then gravity and see how the corresponding LD coefficients  $c_1$  and  $c_2$  depend on all three atmospheric parameters.



**Figure 13:** LD coefficient with fixed metallicty, fixed gravity

Furthermore, it's very interesting to check the strength of the dependance on each atmospheric parameters. Turns out LD coefficients are essentially a function of temperature, and minor dependences on gravity and metallicity can be barely appreciated.



**Figure 14:** LD coefficient as a function of atmospheric parameters

A relevant dependance on gravity and metallicity can only be noticed at high temperatures, where we should carefully select the proper curve. But in the range we're interested in  $(\approx 5400K)$  the curve is degenerate and the choice of these parameters is secondary.

We perform a Montecarlo simulation, generating 1000 random atmospheric parameters around the actual ones. Even in this case we see that the distribution of the fixed-metallicity estimates is almost overlapping with the fixed-gravity one, thus confirming  $c_1$  and  $c_2$  not very sensitive on metallicity and gravity.



**Figure 15:** Montecarlo simulation for  $c_1$  and  $c_2$ , for fixed metallicity and for fixed gravity



**Figure 16:** Matrices obtained by fixing gravity to  $\log g = 4.0$  to 4.5, plus the interpolated matrix

The two estimates are well compatible, thus authorizing a weighted average:  $c_1 = 0.366 \pm 0.019$  and  $c_2 = 0.243 \pm 0.011$ .

Another way to deal with the same table is by selecting from the set two values of metallicity or gravity, an upper and lower limit, instead of just one reference value. This way we build two matrices and interpolate between the two to get to the desired result. The rest of the procedure is the same as just explained, leading to other estimate of the LD coefficients.



**Figure 17:** LD coefficients trend in the  $T_{eff}$  – [Fe/H] plane



Figure 18: Final, interpolated matrices for the two methods (2017 left, 2018 right)

This can be done in the same exact way by fixing metallicity instead.

### A.2 Claret 2018

A successive paper provided a new method to model the LD coefficients dependency on atmospheric parameters. We'd like to check if this leads to different results with respect to the 2017 paper. Unfolding the table requires the same procedure we've already described. Just note that in both cases we fix metallicity, and for the 2018 table metallicity must be fixed to 0, since the method is conceived for zero-metallicity stars.

And finally we can display the dependency of the LD coefficients for the two-parameters game.



**Figure 19:**  $c_1$  and  $c_2$  trend, and comparison between the final results

See how there is an actual difference be-

tween the adopted methods, that lead in fact to slightly different results for the LD coefficients. The good news is, they're largely compatible: see how each value is within a few errorbars away from the other.

## A.3 Claret 2011

We use another table from an older paper by the same author, where even filters have a role. By looking at the header of our dataset, we find the right filter to be  $r^*$  (SDSS). Remember that transits look differently when observed through different filters, and also that boxier transits make ingress/egress time determination easier. The unfolding technique is always the same. This time, we account for stellar models (ATLAS/PHOENIX) and interpolation technique (least squares/flux conservation), for a grand total of 4 combinations. These are the very final results.



**Figure 20:**  $c_1$  and  $c_2$  trend, and comparison between the final results

Again, all results are fully compatible.

## B Time correction

When dealing with *sentinel.dat* output, we need to properly convert the time series, contained in columns two of the datatable. To do that, first we convert from minutes to days, then add the zero-point in Julian Date format, and finally also add half exposure time (after proper conversion in days).

Moreover, we can make use of the *Time* method to keep count of the time taken by the light to travel from the source position to the location of the observatory (Cima Ekar, Asiago). Since the Earth is in motion, light time travel is variable and follows a sinusoidal behaviour.



## References

Morton, Timothy D. (2015). eprint: 1503.010 Claret, A. et al. (2011). A&A 529, A75 Claret, A. (2017). A&A 600, A30 Claret, A. (2018). A&A 618, A20 Anderson, D.R. et al. (2011). MNRAS 422 Sousa, S.G. et al. (2011). A&A 533, A141