

CSE454 Data Mining

Project Presentation

Ahmet Tuğkan Ayhan

Student

Context

- 1. Introduction
- 2. Data Analyzing
- 3. Preprocessing
- 4. Model Building
 - a. Multinomial Naïve Bayes
 - **b.** Multinomial Logistic Regression
 - c. Support Vector Machine
- 5. Conclusion

Introduction

What kind of Data Modelling am I gonne use?

A classification model (sentiment analysis)

How many inputs and outputs are there?

• 1 input and 3 outputs

Input

ürün güzel ancak bazı problemleri var güzel bir ürün işime yaradı almayın kesinlikle tavsiye etmiyorum Output

Tarafsız

Olumlu

Olumsuz

}}

Data Analysis

Plot View

Word Cloud

Preprocessing

What are the processes?

Removing null values

Preprocessing - Cont'd

What are the processes?

- Removing stopwords
- Removing punctuation marks
- Replacing Turkish characters with English characters

ürünü hiç ama hiç beğenmedim kimse tavsiye etmiyorum. Ürünün içi plastik dolu.

urunu hic hic begenmedim kimse tavsiye etmiyorum urunun ici plastik dolu

Model Building

Multinomial Naïve Bayes - With Normal Data

• Test Size: %25

• Vectorizer: Count Vectorizer

• Random State: 1

MultinomialNB Accuracy : 0.7018669778296382 MultinomialNB Precision : 0.7089524386586405 MultinomialNB Recall : 0.7018669778296382 MultinomialNB F1 : 0.6509991166986239

Example Reviews

urun guzel ancak icinde suzgeci oldugunda kapak tam olarak oturmuyor guzel bir urun isime yaradi almayin tavsiye etmiyorum

Predict

Olumsuz Olumlu Olumsuz

Multinomial Naïve Bayes - With Oversampled Minority Data (SMOTE)

• Test Size: %15

• Vectorizer: TF-ID

• Random State: 42

• k-neighbors: 2

• Sampling Strategy: minority

MultinomialNB_SMOTE Accuracy : 0.7222870478413069
MultinomialNB_SMOTE Precision : 0.7156001171477675
MultinomialNB_SMOTE Recall : 0.7222870478413069
MultinomialNB_SMOTE F1 : 0.7180479732535984

Example Reviews

urun guzel ancak icinde suzgeci oldugunda kapak tam olarak oturmuyor guzel bir urun isime yaradi almayin tavsiye etmiyorum

Predict

Tarafsız Olumlu Olumsuz

Multinomial Naïve Bayes - With Undersampled Majority Data (RandomUndersampler)

• Test Size: %15

Sampling Strategy : majority

• Vectorizer : TF-ID

Random State: 1

MultinomialNB_RU Accuracy : 0.7147024504084014 MultinomialNB_RU Precision : 0.7140080170487434 MultinomialNB_RU Recall : 0.7147024504084014 MultinomialNB_RU F1 : 0.662260163803594

Example Reviews

urun guzel ancak icinde suzgeci oldugunda kapak tam olarak oturmuyor guzel bir urun isime yaradi almayin tavsiye etmiyorum

<u>Predict</u>

Olumlu

Olumlu

Olumsuz

Multinomial Logistic Regression

• Test Size: %15

• Vectorizer : TF-ID

• Random State: 0

• Multi Class: multinomial

• Max Iteration: 11500

Multinomial Logistic Regression Accuracy: 0.7158693115519253
Multinomial Logistic Regression Precision: 0.7024994468316285
Multinomial Logistic Regression F1: 0.7032094322079269

Example Reviews

urun guzel ancak icinde suzgeci oldugunda kapak tam olarak oturmuyor guzel bir urun isime yaradi almayin tavsiye etmiyorum

Predict

Tarafsız Olumlu Olumsuz

Support Vector Machine

• Test Size: %25

• Vectorizer: TF-ID

• Random State: 2

SVC Accuracy : 0.7292882147024504
SVC Precision : 0.7193960566233893
SVC Recall : 0.7292882147024504
SVC F1 : 0.7174452278476063

Example Reviews

urun guzel ancak icinde suzgeci oldugunda kapak tam olarak oturmuyor guzel bir urun isime yaradi almayin tavsiye etmiyorum

Predict

Tarafsız Olumlu Olumsuz

Conclusion

As we seen from the model scores, it is important to preprocess dataset before we start modeling. Score table for the models is like this:

- Best accuracy score achieved with Multinomial Logistic Regression (%72.1)
- Best precision score achieved with Resampled Multinomial Naïve Bayes (%71.7)
- Best recall score achieved with Multinomial Logistic Regression (%72.1)
- Best F1 score achieved with Resampled Multinomial Naïve Bayes (%71.5)
- Worst accuracy score achieved with Normal Multinomial Naïve Bayes (%70.1)
- Worst precision score achieved with Support Vector Machine (%69.9)
- Worst recall score achieved with Normal Multinomial Naïve Bayes (%70.1)
- Worst F1 score achieved with Normal Multinomial Naïve Bayes (%65.0)

Thank You

References

https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall https://dataaspirant.com/svm-kernels/#t-1608054630732 https://www.kaggle.com/questions-and-answers/49890