Introduction to Machine Learning

Third Edition

Adaptive Computation and Machine Learning

Thomas Dietterich, Editor Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, Associate Editors

A complete list of books published in The Adaptive Computation and Machine Learning series appears at the back of this book.

Introduction to Machine Learning

Third Edition

Ethem Alpaydın

The MIT Press Cambridge, Massachusetts London, England

© 2014 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

For information about special quantity discounts, please email special_sales@mitpress.mit.edu.

Typeset in 10/13 Lucida Bright by the author using $\text{MF}_{\text{E}}X2_{\mathcal{E}}$. Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Information

Alpaydin, Ethem.

Introduction to machine learning / Ethem Alpaydin—3rd ed.

p. cm

Includes bibliographical references and index.

ISBN 978-0-262-02818-9 (hardcover : alk. paper)

1. Machine learning. I. Title

Q325.5.A46 2014

006.3'1—dc23

2014007214

CIP

10 9 8 7 6 5 4 3 2 1

Brief Contents

1	Introduction 1
2	Supervised Learning 21
3	Bayesian Decision Theory 49
4	Parametric Methods 65
5	Multivariate Methods 93
6	Dimensionality Reduction 115
7	Clustering 161
8	Nonparametric Methods 185
9	Decision Trees 213
10	Linear Discrimination 239
11	Multilayer Perceptrons 267
12	Local Models 317
13	Kernel Machines 349
14	Graphical Models 387
15	Hidden Markov Models 417
16	Bayesian Estimation 445
17	Combining Multiple Learners 487
18	Reinforcement Learning 517
19	Design and Analysis of Machine Learning Experiments 547
A	Probability 593

Contents

Preface	xvii				
Notations xxi					
1 Intro	1 Introduction 1				
1.1 1.2 1.3 1.4 1.5	1.2.1 Learning Associations 4 1.2.2 Classification 5 1.2.3 Regression 9 1.2.4 Unsupervised Learning 11 1.2.5 Reinforcement Learning 13 Notes 14 Relevant Resources 17 Exercises 18				
1.6 2 Super	References 20 rvised Learning 21				
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Learning a Class from Examples 21	41			

viii Contents

	2.10	Exercises 43
	2.11	References 47
3	Bayes	sian Decision Theory 49
	3.1	Introduction 49
	3.2	Classification 51
	3.3	Losses and Risks 53
	3.4	Discriminant Functions 55
	3.5	Association Rules 56
	3.6	Notes 59
	3.7	Exercises 60
	3.8	References 64
4	Para	metric Methods 65
	4.1	Introduction 65
	4.2	Maximum Likelihood Estimation 66
		4.2.1 Bernoulli Density 67
		4.2.2 Multinomial Density 68
		4.2.3 Gaussian (Normal) Density 68
	4.3	Evaluating an Estimator: Bias and Variance 69
	4.4	The Bayes' Estimator 70
	4.5	Parametric Classification 73
	4.6	Regression 77
	4.7	Tuning Model Complexity: Bias/Variance Dilemma 80
	4.8	Model Selection Procedures 83
	4.9	Notes 87
	4.10	Exercises 88
	4.11	References 90
5		variate Methods 93
	5.1	Multivariate Data 93
	5.2	Parameter Estimation 94
	5.3	Estimation of Missing Values 95
	5.4	Multivariate Normal Distribution 96
	5.5	Multivariate Classification 100
	5.6	Tuning Complexity 106
	5.7	Discrete Features 108
	5.8	Multivariate Regression 109
	5.9	Notes 111
	5.10	Exercises 112

Contents ix

	5.11	References 113
6	Dime	nsionality Reduction 115
	6.1	Introduction 115
	6.2	Subset Selection 116
	6.3	Principal Component Analysis 120
	6.4	Feature Embedding 127
	6.5	Factor Analysis 130
	6.6	Singular Value Decomposition and Matrix Factorization 135
	6.7	Multidimensional Scaling 136
	6.8	Linear Discriminant Analysis 140
	6.9	Canonical Correlation Analysis 145
	6.10	Isomap 148
	6.11	Locally Linear Embedding 150
	6.12	Laplacian Eigenmaps 153
	6.13	Notes 155
	6.14	Exercises 157
	6.15	References 158
7 Clustering 161		ering 161
	7.1	Introduction 161
	7.2	Mixture Densities 162
	7.3	k-Means Clustering 163
	7.4	Expectation-Maximization Algorithm 167
	7.5	Mixtures of Latent Variable Models 172
	7.6	Supervised Learning after Clustering 173
	7.7	Spectral Clustering 175
	7.8	Hierarchical Clustering 176
	7.9	Choosing the Number of Clusters 178
	7.10	Notes 179
	7.11	Exercises 180
	7.12	References 182
8	Nonp	arametric Methods 185
	8.1	Introduction 185
	8.2	Nonparametric Density Estimation 186
		8.2.1 Histogram Estimator 187
		8.2.2 Kernel Estimator 188
		8.2.3 <i>k</i> -Nearest Neighbor Estimator 190
	8.3	Generalization to Multivariate Data 192

X Contents

	8.4	Nonparametric Classification 193
	8.5	Condensed Nearest Neighbor 194
	8.6	Distance-Based Classification 196
	8.7	Outlier Detection 199
	8.8	Nonparametric Regression: Smoothing Models 201
		8.8.1 Running Mean Smoother 201
		8.8.2 Kernel Smoother 203
		8.8.3 Running Line Smoother 204
	8.9	How to Choose the Smoothing Parameter 204
	8.10	Notes 205
	8.11	Exercises 208
	8.12	References 210
9	Decis	ion Trees 213
	9.1	Introduction 213
	9.2	Univariate Trees 215
		9.2.1 Classification Trees 216
		9.2.2 Regression Trees 220
	9.3	Pruning 222
	9.4	Rule Extraction from Trees 225
	9.5	Learning Rules from Data 226
	9.6	Multivariate Trees 230
	9.7	Notes 232
	9.8	Exercises 235
	9.9	References 237
10	Linea	r Discrimination 239
	10.1	Introduction 239
	10.2	Generalizing the Linear Model 241
	10.3	Geometry of the Linear Discriminant 242
		10.3.1 Two Classes 242
		10.3.2 Multiple Classes 244
	10.4	Pairwise Separation 246
	10.5	Parametric Discrimination Revisited 247
	10.6	Gradient Descent 248
	10.7	Logistic Discrimination 250
		10.7.1 Two Classes 250
		10.7.2 Multiple Classes 254
	10.8	Discrimination by Regression 257

Contents xi

	10.9	Learning to Rank 260
	10.10	Notes 263
	10.11	Exercises 263
	10.12	References 266
11	Multil	ayer Perceptrons 267
	11.1	Introduction 267
		11.1.1 Understanding the Brain 268
		11.1.2 Neural Networks as a Paradigm for Parallel
		Processing 269
	11.2	The Perceptron 271
	11.3	Training a Perceptron 274
	11.4	Learning Boolean Functions 277
	11.5	Multilayer Perceptrons 279
	11.6	MLP as a Universal Approximator 281
	11.7	Backpropagation Algorithm 283
		11.7.1 Nonlinear Regression 284
		11.7.2 Two-Class Discrimination 286
		11.7.3 Multiclass Discrimination 288
		11.7.4 Multiple Hidden Layers 290
	11.8	Training Procedures 290
		11.8.1 Improving Convergence 290
		11.8.2 Overtraining 291
		11.8.3 Structuring the Network 292
		11.8.4 Hints 295
	11.9	8
		Bayesian View of Learning 300
		Dimensionality Reduction 301
	11.12	Learning Time 304
		11.12.1 Time Delay Neural Networks 304
	11.10	11.12.2 Recurrent Networks 305
		Deep Learning 306
		Notes 309
		Exercises 311
	11.16	References 313
12	Local	Models 317
	12.1	Introduction 317
	12.2	Competitive Learning 318

xii Contents

	12.2.1 Online <i>k</i> -Means 318
	12.2.2 Adaptive Resonance Theory 323
	12.2.3 Self-Organizing Maps 324
12	.3 Radial Basis Functions 326
12	.4 Incorporating Rule-Based Knowledge 332
12	.5 Normalized Basis Functions 333
12	.6 Competitive Basis Functions 335
12	.7 Learning Vector Quantization 338
12	.8 The Mixture of Experts 338
	12.8.1 Cooperative Experts 341
	12.8.2 Competitive Experts 342
12	.9 Hierarchical Mixture of Experts 342
12	.10 Notes 343
12	.11 Exercises 344
12	.12 References 347
13 K	rnel Machines 349
13	.1 Introduction 349
13	.2 Optimal Separating Hyperplane 351
13	.3 The Nonseparable Case: Soft Margin Hyperplane 355
	.4 v-SVM 358
13	.5 Kernel Trick 359
13	.6 Vectorial Kernels 361
13	.7 Defining Kernels 364
13	.8 Multiple Kernel Learning 365
13	.9 Multiclass Kernel Machines 367
13	.10 Kernel Machines for Regression 368
	.11 Kernel Machines for Ranking 373
13	.12 One-Class Kernel Machines 374
	.13 Large Margin Nearest Neighbor Classifier 377
	.14 Kernel Dimensionality Reduction 379
	.15 Notes 380
	16 Exercises 382
13	17 References 383
14 G	aphical Models 387
14	.1 Introduction 387
14	2 Canonical Cases for Conditional Independence 389
14	.3 Generative Models 396

Contents xiii

	14.4	d-Separation 399
	14.5	Belief Propagation 399
		14.5.1 Chains 400
		14.5.2 Trees 402
		14.5.3 Polytrees 404
		14.5.4 Junction Trees 406
	14.6	Undirected Graphs: Markov Random Fields 407
	14.7	Learning the Structure of a Graphical Model 410
	14.8	Influence Diagrams 411
	14.9	Notes 412
	14.10	Exercises 413
	14.11	References 415
1 -	TT: 33.	Madaa Madala A17
15	ніаае	n Markov Models 417
	15.1	Introduction 417
	15.2	Discrete Markov Processes 418
	15.3	Hidden Markov Models 421
	15.4	Three Basic Problems of HMMs 423
	15.5	Evaluation Problem 423
	15.6	Finding the State Sequence 427
	15.7	Learning Model Parameters 429
		Continuous Observations 432
		The HMM as a Graphical Model 433
		Model Selection in HMMs 436
	15.11	Notes 438
	15.12	Exercises 440
	15.13	References 443
16	Bayes	sian Estimation 445
	16.1	Introduction 445
	16.2	Bayesian Estimation of the Parameters of a Discrete
		Distribution 449
		16.2.1 $K > 2$ States: Dirichlet Distribution 449
		16.2.2 $K = 2$ States: Beta Distribution 450
	16.3	Bayesian Estimation of the Parameters of a Gaussian
		Distribution 451
		16.3.1 Univariate Case: Unknown Mean, Known
		Variance 451

xiv Contents

		16.3.2	Univariate Case: Unknown Mean, Unknown
			Variance 453
			Multivariate Case: Unknown Mean, Unknown
			Covariance 455
	16.4	-	n Estimation of the Parameters of a Function 456
			Regression 456
			Regression with Prior on Noise Precision 460
			The Use of Basis/Kernel Functions 461
			Bayesian Classification 463
	16.5		ng a Prior 466
		-	n Model Comparison 467
		-	n Estimation of a Mixture Model 470
		_	ametric Bayesian Modeling 473
			n Processes 474
			t Processes and Chinese Restaurants 478
			Dirichlet Allocation 480
			ocesses and Indian Buffets 482
		Notes	
			es 484
	16.15	Referen	ces 485
17	Comb	ining M	ultiple Learners 487
	17.1	Rationa	le 487
	17.2	Generat	ing Diverse Learners 488
	17.3	Model C	Combination Schemes 491
	17.4	Voting	492
	17.5	Error-Co	orrecting Output Codes 496
	17.6	Bagging	498
	17.7	Boosting	g 499
	17.8	The Mix	ture of Experts Revisited 502
	17.9	Stacked	Generalization 504
	17.10	Fine-Tu	ning an Ensemble 505
		17.10.1	Choosing a Subset of the Ensemble 506
		17.10.2	Constructing Metalearners 506
	17.11	Cascadi	ng 507
	17.12	Notes	509
	17.13	Exercise	es 511
	17.14	Referen	ces 513

Contents xv

18 Reinforcement Learning 517		
18.1	Introduction 517	
18.2	Single State Case: <i>K</i> -Armed Bandit 519	
18.3	Elements of Reinforcement Learning 520	
18.4	Model-Based Learning 523	
	18.4.1 Value Iteration 523	
	18.4.2 Policy Iteration 524	
18.5	Temporal Difference Learning 525	
	18.5.1 Exploration Strategies 525	
	18.5.2 Deterministic Rewards and Actions 526	
	18.5.3 Nondeterministic Rewards and Actions 527	
	18.5.4 Eligibility Traces 530	
18.6	Generalization 531	
18.7	Partially Observable States 534	
	18.7.1 The Setting 534	
	18.7.2 Example: The Tiger Problem 536	
18.8	Notes 541	
18.9		
18.10	References 544	
19 Design and Analysis of Machine Learning Experiments 547		
19 Desig	n and Analysis of Machine Learning Experiments 547	
19 <i>Desig</i>	n and Analysis of Machine Learning Experiments 547 Introduction 547	
_		
19.1	Introduction 547	
19.1 19.2	Introduction 547 Factors, Response, and Strategy of Experimentation 550	
19.1 19.2 19.3	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553	
19.1 19.2 19.3 19.4	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554	
19.1 19.2 19.3 19.4 19.5	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K-Fold Cross-Validation 559	
19.1 19.2 19.3 19.4 19.5	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558	
19.1 19.2 19.3 19.4 19.5	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K -Fold Cross-Validation 559 19.6.2 5×2 Cross-Validation 560 19.6.3 Bootstrapping 561	
19.1 19.2 19.3 19.4 19.5	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K -Fold Cross-Validation 559 19.6.2 5×2 Cross-Validation 560 19.6.3 Bootstrapping 561 Measuring Classifier Performance 561	
19.1 19.2 19.3 19.4 19.5 19.6	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K -Fold Cross-Validation 559 19.6.2 5×2 Cross-Validation 560 19.6.3 Bootstrapping 561	
19.1 19.2 19.3 19.4 19.5 19.6	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K-Fold Cross-Validation 559 19.6.2 5 × 2 Cross-Validation 560 19.6.3 Bootstrapping 561 Measuring Classifier Performance 561 Interval Estimation 564 Hypothesis Testing 568	
19.1 19.2 19.3 19.4 19.5 19.6	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K -Fold Cross-Validation 559 19.6.2 5×2 Cross-Validation 560 19.6.3 Bootstrapping 561 Measuring Classifier Performance 561 Interval Estimation 564 Hypothesis Testing 568 Assessing a Classification Algorithm's Performance 570	
19.1 19.2 19.3 19.4 19.5 19.6	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K -Fold Cross-Validation 559 19.6.2 5×2 Cross-Validation 560 19.6.3 Bootstrapping 561 Measuring Classifier Performance 561 Interval Estimation 564 Hypothesis Testing 568 Assessing a Classification Algorithm's Performance 570 19.10.1 Binomial Test 571	
19.1 19.2 19.3 19.4 19.5 19.6	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K-Fold Cross-Validation 559 19.6.2 5 × 2 Cross-Validation 560 19.6.3 Bootstrapping 561 Measuring Classifier Performance 561 Interval Estimation 564 Hypothesis Testing 568 Assessing a Classification Algorithm's Performance 570 19.10.1 Binomial Test 571 19.10.2 Approximate Normal Test 572	
19.1 19.2 19.3 19.4 19.5 19.6	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K -Fold Cross-Validation 559 19.6.2 5×2 Cross-Validation 560 19.6.3 Bootstrapping 561 Measuring Classifier Performance 561 Interval Estimation 564 Hypothesis Testing 568 Assessing a Classification Algorithm's Performance 570 19.10.1 Binomial Test 571 19.10.2 Approximate Normal Test 572 19.10.3 t Test 572	
19.1 19.2 19.3 19.4 19.5 19.6	Introduction 547 Factors, Response, and Strategy of Experimentation 550 Response Surface Design 553 Randomization, Replication, and Blocking 554 Guidelines for Machine Learning Experiments 555 Cross-Validation and Resampling Methods 558 19.6.1 K-Fold Cross-Validation 559 19.6.2 5 × 2 Cross-Validation 560 19.6.3 Bootstrapping 561 Measuring Classifier Performance 561 Interval Estimation 564 Hypothesis Testing 568 Assessing a Classification Algorithm's Performance 570 19.10.1 Binomial Test 571 19.10.2 Approximate Normal Test 572	

xvi Contents

		19.11.2 K-Fold Cross-Validated Paired t Test 573	
		$19.11.35 \times 2$ cv Paired t Test 574	
		$19.11.45 \times 2$ cv Paired F Test 575	
	19.12	Comparing Multiple Algorithms: Analysis of Variance 57	76
	19.13	Comparison over Multiple Datasets 580	
		19.13.1 Comparing Two Algorithms 581	
		19.13.2 Multiple Algorithms 583	
	19.14	Multivariate Tests 584	
		19.14.1 Comparing Two Algorithms 585	
		19.14.2 Comparing Multiple Algorithms 586	
	19.15	Notes 587	
	19.16	Exercises 588	
	19.17	References 590	
A	Proba	ability 593	
	A.1	Elements of Probability 593	
		A.1.1 Axioms of Probability 594	
		A.1.2 Conditional Probability 594	
	A.2	Random Variables 595	
		A.2.1 Probability Distribution and Density Functions 5	95
		A.2.2 Joint Distribution and Density Functions 596	
		A.2.3 Conditional Distributions 596	
		A.2.4 Bayes' Rule 597	
		A.2.5 Expectation 597	
		A.2.6 Variance 598	
		A.2.7 Weak Law of Large Numbers 599	
	A.3	Special Random Variables 599	
		A.3.1 Bernoulli Distribution 599	
		A.3.2 Binomial Distribution 600	
		A.3.3 Multinomial Distribution 600	
		A.3.4 Uniform Distribution 600	
		A.3.5 Normal (Gaussian) Distribution 601	
		A.3.6 Chi-Square Distribution 602	
		A.3.7 <i>t</i> Distribution 603	
		A.3.8 <i>F</i> Distribution 603	
	A.4	References 603	
In	dex	605	

Preface

Machine learning must be one of the fastest growing fields in computer science. It is not only that the data is continuously getting "bigger," but also the theory to process it and turn it into knowledge. In various fields of science, from astronomy to biology, but also in everyday life, as digital technology increasingly infiltrates our daily existence, as our digital footprint deepens, more data is continuously generated and collected. Whether scientific or personal, data that just lies dormant passively is not of any use, and smart people have been finding ever new ways to make use of that data and turn it into a useful product or service. In this transformation, machine learning plays a larger and larger role.

This data evolution has been continuing even stronger since the second edition appeared in 2010. Every year, datasets are getting larger. Not only has the number of observations grown, but the number of observed attributes has also increased significantly. There is more structure to the data: It is not just numbers and character strings any more but images, video, audio, documents, web pages, click logs, graphs, and so on. More and more, the data moves away from the parametric assumptions we used to make—for example, normality. Frequently, the data is dynamic and so there is a time dimension. Sometimes, our observations are multi-view—for the same object or event, we have multiple sources of information from different sensors and modalities.

Our belief is that behind all this seemingly complex and voluminous data, there lies a simple explanation. That although the data is big, it can be explained in terms of a relatively simple model with a small number of hidden factors and their interaction. Think about millions of customers who each day buy thousands of products online or from their local supermarket. This implies a very large database of transactions, but there is a

xviii Preface

pattern to this data. People do not shop at random. A person throwing a party buys a certain subset of products, and a person who has a baby at home buys a different subset; there are hidden factors that explain customer behavior.

This is one of the areas where significant research has been done in recent years—namely, to infer this hidden model from observed data. Most of the revisions in this new edition are related to these advances. Chapter 6 contains new sections on feature embedding, singular value decomposition and matrix factorization, canonical correlation analysis, and Laplacian eigenmaps.

There are new sections on distance estimation in chapter 8 and on kernel machines in chapter 13: Dimensionality reduction, feature extraction, and distance estimation are three names for the same devil—the ideal distance measure is defined in the space of the ideal hidden features, and they are fewer in number than the values we observe.

Chapter 16 is rewritten and significantly extended to cover such generative models. We discuss the Bayesian approach for all major machine learning models, namely, classification, regression, mixture models, and dimensionality reduction. Nonparametric Bayesian modeling, which has become increasingly popular during these last few years, is especially interesting because it allows us to adjust the complexity of the model to the complexity of data.

New sections have been added here and there, mostly to highlight different recent applications of the same or very similar methods. There is a new section on outlier detection in chapter 8. Two new sections in chapters 10 and 13 discuss ranking for linear models and kernel machines, respectively. Having added Laplacian eigenmaps to chapter 6, I also include a new section on spectral clustering in chapter 7. Given the recent resurgence of deep neural networks, it became necessary to include a new section on deep learning in chapter 11. Chapter 19 contains a new section on multivariate tests for comparison of methods.

Since the first edition, I have received many requests for the solutions to exercises from readers who use the book for self-study. In this new edition, I have included the solutions to some of the more didactic exercises. Sometimes they are complete solutions, and sometimes they give just a hint or offer only one of several possible solutions.

I would like to thank all the instructors and students who have used the previous two editions, as well as their translations into German, Chinese, and Turkish, and their reprints in India. I am always grateful to those

Preface xix

who send me words of appreciation, criticism, or errata, or who provide feedback in any other way. Please keep them coming. My email address is alpaydin@boun.edu.tr. The book's web site is http://www.cmpe.boun.edu.tr/~ethem/i2ml3e.

It has been a pleasure to work with the MIT Press again on this third edition, and I thank Marie Lufkin Lee, Marc Lowenthal, and Kathleen Caruso for all their help and support.

Notations

x Scalar value

x VectorX Matrix

 \mathbf{x}^T Transpose \mathbf{X}^{-1} Inverse

X Random variable

P(X) Probability mass function when X is discrete

p(X) Probability density function when X is continuous

P(X|Y) Conditional probability of X given Y

E[X] Expected value of the random variable X

Var(X) Variance of X

Cov(X, Y) Covariance of X and Y Corr(X, Y) Correlation of X and Y

 μ Mean

 σ^2 Variance

Σ Covariance matrix

m Estimator to the mean

 s^2 Estimator to the variance

S Estimator to the covariance matrix

xxii Notations

$\mathcal{N}(\mu,\sigma^2)$	Univariate normal distribution with mean μ and variance σ^2
Z	Unit normal distribution: $\mathcal{N}(0,1)$
$\mathcal{N}_d(\pmb{\mu}, \pmb{\Sigma})$	d -variate normal distribution with mean vector ${\pmb \mu}$ and covariance matrix ${\pmb \Sigma}$
x	Input
d	Number of inputs (input dimensionality)
у	Output
r	Required output
K	Number of outputs (classes)
N	Number of training instances
Z	Hidden value, intrinsic dimension, latent factor
k	Number of hidden dimensions, latent factors
C_i	Class i
χ	Training sample
$\{x^t\}_{t=1}^N$	Set of x with index t ranging from 1 to N
$\{x^t, r^t\}_t$	Set of ordered pairs of input and desired output with index t
$g(x \theta)$	Function of x defined up to a set of parameters θ
$\arg \max_{\theta} g(x \theta)$	The argument θ for which g has its maximum value
$\arg\min_{\theta} g(x \theta)$	The argument $ heta$ for which g has its minimum value
$E(\theta X)$	Error function with parameters $ heta$ on the sample X
$l(\theta X)$	Likelihood of parameters $ heta$ on the sample X
$\mathcal{L}(\theta \mathcal{X})$	Log likelihood of parameters θ on the sample X
1(<i>c</i>)	1 if <i>c</i> is true, 0 otherwise
#{c}	Number of elements for which c is true
δ_{ij}	Kronecker delta: 1 if $i = j$, 0 otherwise