

BIUUUU

calibration-free metering chip

BL0939 datasheet

BL0939 Calibration-

free Metrology

Chip Data

Sheet

Release Notes

Vers	Date	Content	Revisioni
ions			st
V1.0	2018/06/07	Create	Kang
			Liao, HCJ
V1.1	2019/12/25	Errata	Kang
			Liao, HCJ
V1.2	2020/9/7	Errata	Kang
			Liao, HCJ

Catalog

Rel	ease No	tes	2
1	Produc	t Brief	5
	1.1	Function Introduction	5
	1.2	Main Features	5
	1.3	System Block Diagram.	6
	1.4	Package and Pin Description	7
	1.5	Register List	<u>ç</u>
	1.6	Special Register Description	10
	1.6	5.1 User mode selection register	10
	1.6	5.2 Temperature mode control register	11
	1.7	Performance indicators	12
	1.7	7.1 Electrical parameters performance	12
	1.7	7.2 Limit range	13
2	Functi	on Description	14
	2.1	Current and voltage transient waveform measurement	14
	2.2	Active power	15
	2.3	Active power bias calibration	15
	2.4	Anti-submarine of active power	16
	2.5	Electricity metering	16
	2.6	Current and voltage RMS.	17
	2.7	Current-voltage RMS bias calibration	19
	2.8	Leakage/overcurrent detection	19
	2.9	Phase angle calculation	21

	2.10	$\bigcap_{x_{i}}$	or gone detection	Calibration-life	22
			er zero detection		
	2.11	Te	mperature measurement		23
3	Communi	icat	ion interface		25
	3.1	SP			25
	3.1	1	Working mode		25
	3.1	2	Frame Structure		25
	3.1	3	Timing of write operations		26
	3.1	4	Read Operation Timing		26
	3.1	5	Fault-Tolerance Mechanism for SPI Interface	2	27
	3.2	UA	RT		28
	3.2	2.1	Overview		28
	3.2	2.2	Description		28
	3.2	2.3	Format per byte		28
	3.2	2.4	Write Timing		28
	3.2	2.5	Read Timing		29
	3.2	2.6	Packet sending mode		30
	3.2	2.7	Protection mechanism of the UART interface	·	31
4	Order 1	Info	rmation		32
5	Package				32
	5.1	SO	P16L		32
	5.2	SSO	DP201		34

1 Product Briefing

1.1 Function Introduction

BL0939 is a built-in clock calibration-free power metering chip, suitable for single-phase multi-functional power meters, smart sockets, smart appliances, electric bicycle charging posts and other applications, with high cost performance.

The BL0939 integrates a 3-channel high precision Sigma-Delta ADC to measure 2 currents and 1 voltage simultaneously.

BLO939 can measure current, voltage RMS, active power, active energy and other parameters, can output fast current RMS (for leakage monitoring or overcurrent protection), as well as temperature detection, waveform output and other functions, through the UART/SPI interface output data, can fully meet the smart socket, smart home appliances, single-phase multi-functional power meter, electric bicycle charging pile and electricity information big data It can fully meet the needs of smart socket, smart home appliance, single-phase multifunctional power meter, electric bicycle charging pile and big data collection of electricity consumption information.

BL0939 has a patented anti-submarine design, with reasonable external hardware design, can ensure that the noise power is not counted in the power pulse when there is no current.

1.2 Main features

- Three independent Sigma-Delta ADCs for measuring two currents and one voltage.
- Current RMS range (10mA~35A) @1mohm
- Active power (1w~7700w)@1mohm@220V
- Can output current, voltage RMS, fast current RMS, active power, current and voltage waveform phase angle
- Batch factory gain error less than 1%, peripheral components to meet certain conditions can be free of calibration
- Both current channels are equipped with leakage/overcurrent monitoring function, monitoring threshold and response time can be set
- Voltage over zero signal output
- Built-in waveform register for outputting waveform data for load type analysis
- Integrated temperature sensor to meet the product itself over-temperature monitoring, high

calibration-free current node preset temperature alarm, ambient temperature measurement and other needs

• Integrat Fastest rate support 900KHz)/UART (4800bps) communication method, UART supports multi-chip ed 9N communication with address (SSOP20L)

(Encaps ulatio n)

- Internal power down monitoring, when it falls below 2.7V, the chip enters reset state.
- Built-in 1.218V reference voltage source
- Built-in oscillation circuit, clock approximately 4MHz
- Chip single operating power supply 3.3V, low power consumption 10mW (typical)
- SSOP20L/SOP16L package

1.3 System Block Diagram

Figure 1

1.4 Package and Pin Description

BL0939 is available in two packages.

Figure 2 Figure 3

Pin Description (SSOP20L)

Pin No.	Symbo	
	ls	cript
		ion
1	VDD	Power supply (+3.3V)
2	VT	External temperature sensor signal input
3, 4	IP1, IN1	Analog input for current A channel, maximum differential voltage of pin $\pm 50 \text{mV}$ (35mV rms)
5, 6	IP2, IN2	Analog input for current B channel, maximum differential voltage of pin $\pm 50 \text{mV}$ (35mV rms)
7	VP	Voltage signal positive input, maximum differential voltage $\pm 100 \mathrm{mV}$ (70mV rms)
8	GND	Chip Land
9	A1	UART multi-chip communication mode, used to set the address
10	A2	of the chip, A4/A3/A2/A1 binary code (0000~1111), can set the
11	A3	address $0^{\sim}15$; there is a pull-down resistor inside the pin,
12	A4	hanging is O level, the pin is directly connected to VDD is
		high level. Matching with the device address in UART
		communication protocol
13	ZX	Voltage over zero indication
14	I_leak	Leakage/overcurrent alarm output for current B channel
15	CF	Electrical energy pulse output, multiplexing function see MODE register description

		calibration-free
16	SEL	UART/SPI communication mode selectione(GriHARThip SPI) with
		internal pull-down resistor
		O level (UART) if overhung, high level (SPI) if the pin is
		connected directly to VDD
17	SCLK	SPI mode clock input; in UART communication mode, just dangle
18	RX/SDI	UART/SPI multiplexed pins, UART RX/SPI DIN
19	TX/SDO	UART/SPI multiplexing pin, UART TX/SPI DOUT, external pull-
		up resistor required
20	VPP	Retain, just suspend

Pin Description (SOP16L)

Pin	Symbol	Des
No.	S	cript
		ion
1	VDD	Power supply (+3.3V)
2	VT	External temperature sensor signal input
3, 4	IP1, IN1	Analog input for current A channel, maximum differential voltage of pin $\pm 50 \mathrm{mV}$ (35mV rms)
5, 6	IP2, IN2	Analog input for current B channel, maximum differential voltage of pin $\pm 50 \text{mV}$ (35mV rms)
7	VP	Voltage signal positive input, maximum differential voltage ±100mV (70mV rms)
8	GND	Chip Land
9	ZX	Voltage over zero indication
10	I_leak	Leakage/overcurrent alarm output for current B channel
11	CF	Electrical energy pulse output, multiplexing function see MODE register description
12	SEL	UART/SPI communication mode selection (0: UART 1: SPI) with internal pull-down resistor O level (UART) if left open, high level (SPI) if the pin is connected directly to VDD
13	SCLK	SPI clock input, UART communication mode, dangling
14	RX/SDI	UART/SPI multiplexed pins, UART RX/SPI DIN
15	TX/SDO	UART/SPI multiplexing pin, UART TX/SPI DOUT, external pull-up resistor required
16	VPP	Retain, just suspend

1.5 Register List

Add	Name	Exter	Intern	Bit	Default	Des	
ress	- Traine	nal	al Dood/	widt	Value	cript	
1033		Read/ Write	Read/ Write	h	value	ion	
		vviite			l cal Paramet		
					er (read-on		
0x00	IA FAST RMS	R	W	24	0x000000	A-Channel Fast RMS, unsigned	
0x01	IA WAVE	R	W	20	0x000000	A channel current waveform register	
						with sign	
0x02	IB_WAVE	R	W	20	0x000000	B-channel current waveform register with sign	
0x03	V_WAVE	R	W	20	0x000000	Voltage waveform register with sign	
0x04	IA_RMS	R	W	24	0x000000	A-channel current RMS register,	
						unsigned	
0x05	IB_RMS	R	W	24	0x000000	B-channel current RMS register, unsigned	
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned	
0x07	IB_FAST_RMS	R	W	24	0x000000	B-Channel Fast RMS, unsigned	
0x08	A_WATT	R	W	24	0x000000	A-channel active power register, signed	
0x09	B_WATT	R	W	24	0x000000	B-channel active power register, signed	
OxOA	CFA_CNT	R	W	24	0x000000	A-channel active energy pulse counting, unsigned	
0x0B	CFB_CNT	R	W	24	0x000000	B-channel active energy pulse counting, unsigned	
0x0C	A_CORNER	R	W	16	0x0000	A channel current and voltage waveform phase angle register	
0x0D	B_CORNER	R	W	16	0x0000	B-channel current and voltage waveform phase angle register	
0x0E	TPS1	R	W	10	0x000	Internal temperature detection register, unsigned	
0x0F	TPS2	R	W	10	0x000	External temperature detection register, unsigned	
	l			User	operation	10010tel, anolonea	
					ers (read a	and	
	T	T	<u> </u>		write)		
0x10	IA_FAST_RMS _CTRL	R/W	R	16	0xFFFF	A-Channel Fast RMS Control Register	
0x13	IA_RMSOS	R/W	R	8	0x00	Current A channel RMS small signal correction register	
0x14	IB_RMSOS	R/W	R	8	0x00	Current B channel RMS small signal	
Shanghai Belling Corn. Ltd.							

BL0939 Built-in clock

	1			calibration-free				
						metering chiprrection register		
0x15	A_WATTOS	R/W	R	8	0x00	A-channel active power small signal		
						correction register		
0x16	B_WATTOS	R/W	R	8	0x00	B-channel active power small signal		
						correction register		
0x17	WA_CREEP	R/W	R	8	0x0B	Active power anti-submarine		
						register		
0x18	MODE	R/W	R	16	0x0000	User mode selection register		
0x19	SOFT_RESET	R/W	R	24	0x000000	Reset the user area register when		
						writing to 0x5A5A5A		
						User write protect setting register.		
Ox1A	USR_WRPROT	R/W	R	8	0x00	After writing to 0x55, use the		
						The user operation register can be		
						written; write other values,		
						the user operation register		
						area is not writable		
0x1B	TPS_CTRL	R/W	R	16	0x07FF	Temperature mode control		
						register		
0x1C	TPS2_A	R/W	R	8	0x0000	External temperature sensor gain		
						coefficient correction register		
0x1D	TPS2_B	R/W	R	8	0x0000	External temperature sensor offset		
						coefficient correction register		
O1E	IB_FAST_RMS	D/W	D	16	OPEEE	D. Channal Foot DMC Control		
0x1E	_CTRL	R/W	R	16	0xFFFF	B-Channel Fast RMS Control		
						Register		

1.6 Special Register Description

1.6.1 User mode selection register

0x18	MODE		Operating mode register			
No.	name	default value	otion			
[7:0]	reserved	0b00000000	Reserv	rved		
8	RMS_UPDATE_SEL	0b0	Valid value register refresh time selection Select	0: 400ms 1: 800ms		
9	AC_FREQ_SEL	0b0	AC frequency selection	0: 50 Hz 1: 60Hz		
10	reserved	0b0	Reserved			
11	CF_SEL	0ь0	CF pin output power pulse selection	0: A channel 1: B-channel		
12	CF_UNABLE	0ь0	CF pin output function selection	O: Electrical energy pulse, MODE [11] Configuration valid 1: Alarm function, TPS_CTRL[14] is configured with Effect		
[15:13]	reserved	0b000	Reserv	ved		

1.6.2 Temperature mode control register metering chip

0x1B	TPS_CTRL	Temperature mode	control register	
No.	name	default value	description	
			[15] Temperature measurement switch, default 0b0, on Start temperature measurement	0: Open 1: Close
0x1B	TPS_CTRL	0x07FF	[14] Alarm switch, default 0b0,	0: Temperature alarm on 1: Current A channel overcurrent/leakage alarm Police On
			[13:12] Temperature measurement selection, default 0b00 automatic temperature measurement	00: Automatic temperature measurement 01: Same as 00 10: Internal temperature measurement 11: External temperature measurement
			[11:10] Temperature measurement time interval selection, default 0b01 100ms [9:0] External temperature measurement alarm threshold setting The default setting is 0x3FF, no alarm.	00:50ms 01: 100ms 10: 200ms 11: 400ms TPS2 register value is greater than or equal to report Alarm value, generate alarm

1.7 Performance Indicators

1.7.1 Electrical parameters performance

(VDD = 3.3V, GND = 0V, on-chip reference voltage source, built-in crystal, 25° C, electrical energy measured via CF output)

Measurement items	Symbol s	Measuremen t conditions	Minimu m	Typica I	Max imu m	Unit
Power supply VDD	VDD		3.0		3.6	V
Power consumption	Iop	VDD=3.3V		3		mA
Measurement Range		4000:1 input motion State Range				
Active energy measurement accuracy (Big Signal)		35A~100mA Input Input @ 1mohm sampling resistanc e		0.2		%
Active energy measurement accuracy (small signal)		100mA~50mA input @ 1mohm sampling Resistance		0.4		%
Active energy measurement accuracy (tiny signal)		50mA~10mA Input Input @ 1mohm sampling resistanc		0.6		%
RMS measurement accuracy (Big Signal)		e 35A~100mA input @ 1mohm sampling Resistance		0.2		%
RMS measurement accuracy (small signal)		100mA~50mA input @ 1mohm sampling Resistance		2		%
RMS measurement accuracy (tiny signal)		50mA~10mA input @ 1mohm sampling Resistance		6		%

			calîk	ration-	free	
Fact DMC response	50Hz	Can be set to	10net	ering ch	10^{40}	mS
Fast RMS response	60Hz	circumferenti	8.3	9 -	33	mS
time		al/				
		Semi-Circular				
		Wave				
Over-zero signal				571		uS
output delay						
Measurement error	PF08err	Phase overrun			0.5	%
due to phase angle	1100011	37			0.0	70
between channels		(PF=0.8)				
Difference						
(capacitive)						
Measurement error	DEOL	Phase lag 60			0.5	0/
due to phase angle	PF05err	(PF=0.5)			0.5	%
between channels		,				
Poor (perceptual)						
AC power supply	ACDCDD	TD /N-100 V			0.1	0/
rejection (output	ACPSRR	IP/N=100mV			0.1	%
frequency)						
(rate range change)						
DC power supply	DCDCDD	VD /N-100V			0.1	0/
rejection (output	DCPSRR	VP/N=100mV			0.1	%
frequency)						
(rate range change)						

			calli	<u>oration-</u>	rree	
Measurement items	Symbol	Measuremen	Minimu	ering ch Typica	ip Max	Unit
	s	t conditions	m	I	imu	
					m	
Analog input level (current)		Current differential input			50	mV
		(peak)				
Analog input level (voltage)		Voltage differential input			200	mV
		(peak)				
Analog Input Impedance				370		kΩ
SEL Pull-down resistor		SEL (drop down)		56.9		kΩ
Analog input bandwidth		(-3dB)		3. 5		kHz
Internal voltage reference	Vref			1.218		V
Logic input high		VDD=3. $3V \pm 5\%$	2.6			V
Logic input low		VDD=3. $3V \pm 5\%$			0.8	V
Logic output high		VDD=3.3V±5% IOH=5mA	VDD-0.5			V
Logic output low		VDD=3. 3V ± 5% IOL=5mA			0.5	V

1.7.2 Limit range

(T = 25 ° C)

Projects	Symbols	Extreme values	Unit
Supply Voltage VDD	VDD	-0.3 ~ +4	V
Analog input voltage (with respect to GND)	IP1, IP2, VP	-4 [∼] +4	V
Digital input voltage (with respect to GND)	A1~A4, UART_SEL, RX/SDI	-0.3 ~ VDD+0.3	V
Digital output voltage (with respect to GND)	CF, I_Leak, TX/SD0	-0.3 ~ VDD+0.3	V
Operating temperature	Topr	-40 [~] +105	$^{\circ}\mathbb{C}$
Storage temperature	Tstr	−55 [~] +150	$^{\circ}\mathbb{C}$

2 Function Description

BL0939 is mainly divided into two blocks: analog signal processing and digital signal processing. The analog part mainly includes three-channel PGA, three-channel Sigma-Delta ADC, internal clock, power on/reset, temperature sensor, LDO and other related modules. The digital part is the digital signal processing module (DSP).

2.1 Current and voltage transient waveform measurement

Figure 4

As shown in the figure above, two currents and one voltage are passed through the analog module amplifier (PGA) and high precision analog-to-digital conversion (ADC) to get three 1bit PDMs to the digital module, which passes through the downsampling filter (SINC3), high-pass filter (HPF), channel bias correction and other modules to get the required current waveform data and voltage waveform data (IA_WAVE, IB_WAVE, V_WAVE). IB_WAVE, V_WAVE).

The BL0939 has three high-precision ADCs with double-ended differential signal inputs for current: A current channel IP1/IN1, B current channel IP2/IN2, voltage channel VP.

The acquired load current and voltage waveform data are updated at a rate of 7.8k, and each sample data is a 24bit signed number and stored in the waveform registers (IA_WAVE, IB_WAVE, V_WAVE) respectively. The SPI rate configuration is greater than 375Kbps, and the waveform value of one channel can be read continuously.

Note: register is **24bit**, insufficient bits, high bits are zeroed. Shanghai Belling Corp., Ltd.

calibration-free

		Exter	Intern			metering chip	
Addre	Name	nal	al	Bit	Default	Description	
SS		Read/ write	Read/w rite	width	Value		
0x01	IA_WAVE	R	W	24	0x000000	A-channel current waveform	
						register	
0x02	IB_WAVE	R	W	24	0x000000	B-channel current waveform	
						register	
0x03	V_WAVE	R	W	24	0x000000	Voltage waveform register	

2.2 Active power

Figure 5

Addre ss	Name	Extern al Read/Wr ite	Intern al Read/W rite	Bit width	Default Value	Description
0x08	A_WATT	R	W	24	0x000000	A channel active register
0x09	B_WATT	R	W	24	0x000000	B Channel active register

Active power calculation formula $\frac{4046*I(A)*V(V)*Cos(\phi)}{Vref2}$

A/B WATT =

where I(A), V(V) is the rms value of the channel pin input signal (mV), ϕ is the phase angle of the I(A), V(V) AC signal, and Vref is the built-in reference voltage with a typical value of 1.218V.

These two registers indicate whether the current active power is positive or negative, Bit[23] is the sign bit, Bit[23]=0, the current power is positive, Bit[23]=1, the current power is negative, in the form of complementary code.

2.3 Active power bias calibration

The BL0939 contains two 8-bit active power bias correction registers (A_WATTOS, B_WATTOS) with a default value of 00H. They remove the active power bias during power metering with data in the form of 2's complement, Bit [7] being the sign bit. The deviations here may originate from board-level noise or crosstalk. The deviation correction allows the value in the active power register to approach 0 in the absence of load.

						calibration-free
Addre	Name	Extern al	Inter nal	Bit width	Default Value	metering chipption
33		Read/w	Read/	wiuth	varue	
		rite	write			
0x15	A_WATTOS	R/W	R	8	00x0	A-channel power small signal
						correction register
0x16	B_WATTOS	R/W	R	8	0x00	B-channel power small signal
						correction register

$$WATTOS = \frac{WATT - WATT0}{8 \times 3.05172}$$

WATT is the active power after correction and WATTO is the active power before correction.

2.4 Anti-submergence of active power etering chip

BL0939 has a patented power anti-submarine function to ensure that the board-level noise power will not accumulate power when there is no current input.

The active anti-submarine threshold register (WA_CREEP) is an 8bit unsigned number, default is OBH. This value corresponds to the active power register value as shown in the following equation. accumulate.

Addre ss	Name	Extern al Read/W rite	Inter nal Read/ Write	Bit width	Default Value	Description
0x17	WA_CREEP	R/W	R	8	0x0B	Active power anti-submarine register

WA_CREEP can be set according to the value of power register A_WATT/B_WATT, their correspondence

WA_CREEP =
$$\frac{WATT}{3.0517578125*8}$$

Note: When the channel is in the anti-submarine state, the current RMS value of the channel is not measured and is also cut to **0**.

2.5 Electricity metering

BLO939 provides two channels of electrical energy pulse metering, two channels of active instantaneous power by time integration, can obtain active electrical energy, proportional to the output check pulse CF, CFA_CNT and CFB_CNT registers to store the number of output electrical energy pulse CF, as shown in the figure below.

Figure 6

			calibra	ation-free				
0x18	MODE	Opera ming anideg chip						
		register						
Mo		default	1,,,,,	ointion				
NO.	No. name		desci	ription				
10	reserved	0b0	Res	erved				
1.1	CD CDI	01.0	CF pin output power	0: A channel				
11	CF_SEL	0b0	pulse pass	1: B channel				
			Road selection					
				0: Electrical energy				
1.0	OD INIADI D	01.0	CD DI O	pulse				
12	CF_UNABLE	0b0	CF Pin Output	MODE[11] configuration				
			Selection	is valid				
				1: Temperature				
				measurement/leakage				
				alarm				
				TPS [14] configuration				
				is valid				

First set MODE[12]=0 to select CF pin output power pulse, then set MODE[11] to select output power pulse of A channel or B channel.

Addre ss	Name	Exter nal Read/ Write	Intern al Read/W rite	Bit width	Default Value	Description
OxOA	CFA_CNT	R	W	24	0x000000	A-channel active energy pulse
						counting, unsigned
0x0B	CFB_CNT	R	W	24	0x000000	B-channel active energy pulse
						counting, unsigned

The active power pulse count corresponds to the power consumption, and the results are stored in two registers, CFA_CNT and CFB_CNT respectively, or the number of pulses can be counted directly from the CF pin through I/O interrupt.

Note: CFA_CNT and CFB_CNT registers are the algebraic and cumulative way of power pulses, i.e. positive work plus, negative work minus.

Cumulative time of each
$$\frac{1638.4*256}{WATT}$$
 CF pulse tCF=

where WATT is the corresponding active power register value (A_WATT, B_WATT).

2.6 Current and voltage RMS

The RMS values of the three channels, as shown in the figure below, are squared (X²), low-pass filtered (LPF_RMS), and open-rooted (ROOT) to obtain the instantaneous value of the RMS_t, and then averaged to obtain the average value of the three channels (A_RMS, B_RMS, and V_RMS).

Figure 7

Addre ss	Name	Extern al Read/Wr ite	Intern al Read/W rite	Bit width	Default Value	Description
0x04	IA_RMS	R	W	24	0x000000	A-channel current RMS register, unsigned
0x05	IB_RMS	R	W	24	0x000000	B-channel current RMS register, unsigned
0x06	V_RMS	R	W	24	0x000000	Voltage RMS register, unsigned

0x18	MODE	Operating mode register			
No.	name	default description			
8	RMS_UPDATE_SEL	0b0	Valid value update	0: 400ms 1: 800ms	

Set MODE[8].RMS_UPDAT_SEL to choose the RMS average refresh time to 400ms or 800ms, default 400ms. when a current channel is in anti-submarine state, the RMS value of this current channel is zero.

Current RMS conversion formula: $\frac{324004*I(A)}{Vref}$

Voltage RMS conversion formula: $V_RMS = \frac{79931*V(V)}{Vref}$

Vref is the reference voltage and the typical value is 1.218 metering chip

Note: I(A) is the input signal (mV) between IP1, IN1 pins and V(V) is the input signal (mV) of VP pin.

2.7 Current-voltage RMS bias calibration chip

The BL0939 contains two 8-bit rms bias registers (IA_RMSOS and IB_RMSOS) with a default value of 00H, which adjust for deviations in the rms calculation with data in the form of 2's complement. Such deviations may originate from input noise. The deviation correction allows the value in the rms register to be close to 0 without load.

Addre ss	Name	Extern al Read/W rite	Inter nal Read/ Write	Bit width	Default Value	Description
0x13	IA_RMSOS	R/W	R	8	0x00	IA Current RMS small signal correction register
0x14	IB_RMSOS	R/W	R	8	0x00	IB Current RMS Small Signal Correction Register

Calibration formula: RMSOS = RMS

9.3132×2 ¹⁵

Here RMSO is the valid value before correction and RMS is the valid value after correction.

2.8 Leakage/overcurrent detection

Both BL0939 A and B channels have fast RMS registers to detect half-periodic or periodical RMS values. This function can be used for leakage or overcurrent detection. The source of the leakage waveform I_WAVE is shown in the block diagram of channel waveform. IA/IB_WAVE_F takes the absolute value and then performs half-periodic or periodical time accumulation, which is selected by FAST_RMS_CTRL[15], and the default value 1 selects periodical accumulation with a maximum response time of 40ms (50Hz) or 33mS

(60Hz), note that the x_FAST_RMS register jumps more when the half-cycle is totalized. To distinguish between 50 Hz and 60 Hz half-cycle times (AC FREQ SEL).

Figure 8

						pration-free
Addre ss	Name	Extern al Read/W rite	Inter nal Read/ Write	Bit width	met Default Value	ering chip Desc ript ion
0x10	IA_FAST_RMS_CTRL	R/W	R	16	0xFFFF	A-Channel Fast RMS Control Register
Ox1E	IB_FAST_RMS_CTRL	R/W	R	16	0xFFFF	B-Channel Fast RMS Control Register

The two Fast RMS control registers, IA_FAST_RMS_CTRL and IB_FAST_RMS_CTRL, allow you to select the refresh time as half-cycle or cycle and set the fast rms threshold (i.e., leakage or overcurrent threshold).

		Channel Fast RMS Register				
No.	name	default description value				
0x10	IA_FAST_RMS_CTRL	0xFFFF	[15] A-Channel Fast RMS Register Refresh Time 0: Half- perimeter 1: Zhou			
			[14:0] A Channel Fast RMS Threshold			
0x1E	IB_FAST_RMS_CTRL	0xFFFF	[15] B-Channel Fast RMS Register Refresh Time	0: Half- perimeter wave 1: Zhou Bo		
			[14:0] B-Channel Fast RMS Threshold			

0x18	MODE	Operating mode				
		register				
No.	name	default description				
9	AC FREQ SEL 0b0	AC frequency selection	0: 50 Hz			
9	9 AC_FREQ_SEL		Ac frequency serection	1: 60Hz		

Set the AC frequency via MODE [9].

Addres s	Name	Exter nal Read/ Write	Inter nal Read/W rite	pos iti on wid e	Default Value	Description
0x00	IA_FAST_RMS	R	W	24	0x000000	A-Channel Fast RMS,
						unsigned
0x07	IB_FAST_RMS	R	W	24	0x000000	B-Channel Fast RMS,
						unsigned

The 24-bit unsigned fast rms register is refreshed according to the circumference or half circumference, and the Bit[23:9] of the FAST_RMS register is compared with the leakage/overcurrent threshold FAST_RMS_CTRL [14:0], if it is greater than or equal to the set threshold, the leakage/overcurrent alarm output indicator pin outputs high.

The B channel leakage/overcurrent alarm output indication pin is I_{leak} , which can be output directly without configuration.

A channel leakage/overcurrent alarm output indication pin is CF, you need to set MODE[12]=1 first, then set TPS CTRL[14]=1.

0x18	MODE	Operating mode					
			register				
No.	name	default value description					
12	CF_UNABLE	0ь0	CF Pin Output Selection	0: Electrical energy pulse MODE[11] configuration is valid 1: Temperature measurement/leakage alarm TPS [14] configuration is valid			

_	T			Calibration-free		
0x1B	TPS_CTRL	Temperature metering chip				
		control register				
No.	name	default value description				
				0: Temperature alarm on		
14	ALERT_CTRL	0b0	Alarm switch	1: Current A channel overcurrent/leakage alarm on		

The response time of I_leak is up to 2 cycles or 2 half cycles because the fast RMS value is updated on a weekly or semi-periodic basis.

2.9 Phase angle calculation

The BLO939 can be used for phase angle measurements, with the phase angle between the current and voltage of each of the two A/B phases CORNER_A/CORNER_B indicating the reactive quadrant. The calculation is obtained by the difference of the forward crossing time of the current and voltage, which is updated to the registers CORNER_A/CORNER_B, respectively, when the current is forward crossing, each register is a 16-bit unsigned number.

Figure 9

Addre ss	Name	Extern al Read/W	Inter nal Read/	Bit width	Default Value	Description
		rite	Write			
0x0C	A_CORNER	R	W	16	0x0000	A channel current and voltage
						waveform phase angle register
0x0D	B_CORNER	R	W	16	0x0000	B-channel current and voltage
						waveform phase angle register

Figure 10

Phase angle conversion formula: $\frac{2*pi*A/B CORNER*fc}{}$

Unit is radian

f0

Where, f_c is the measurement frequency of the AC signal source, default is 50Hz, and f_0 is the sampling frequency, typical value is 1MHz.

2.10 Over-zero detection

The BL0939 provides voltage over-zero detection, and the over-zero signal is output directly from pin ZX.AZX of zero indicates a positive half-cycle of the waveform, and a ZX of 1 indicates a negative half-cycle of the waveform. The time delay with the actual input signal is 570us.

Figure 11

2.11 Temperature measurement

BL0939 provides internal temperature measurement and off-chip temperature measurement.

When external temperature measurement, optional output alarm indication, when the alarm function is turned on, CF pin can be multiplexed to output alarm signal, when TPS2 is greater than or equal to the alarm threshold value, CF pin outputs high level, temperature indication alarm. Exit the alarm indication when the temperature value is lower than the alarm value or when the alarm function is turned off.

0x1B	TPS_CTRL	Temperature mode control register				
No.	name	default value	description	on		
			[15] Temperature measurement switch, default 0b0, on Start temperature measurement	0: Open 1: Close		
0x1B	TPS_CTRL	0x07FF	[14] Alarm switch, default 0b0,	0: Temperature alarm on 1: Current A channel overcurrent/		
			[13:12] Temperature measurement selection, default 0b00 automatic temperature measurement	Leakage alarm on 00: Automatic temperature measurement 01: Same as 00 10: Internal temperature measurement 11: External temperature measurement		
			[11:10] Temperature measurement time interval selection, default 0b01 100ms [9:0] External temperature measurement alarm threshold setting The default setting is 0x3FF.	00:50ms 01: 100ms 10: 200ms 11: 400ms		

First set MODE[12]=1, then set TPS_CTRL[14]=0 to enable the CF pin to output external

temperature alarm indication.

0x18	MODE	Operating mode					
			register				
No.	name	default value		description			
10	CE IMADI E	01.0	CP D: O 4	0: Electrical energy pulse MODE[11] configuration is valid			
12	CF_UNABLE	0b0	CF Pin Output Selection	1: Temperature measurement alarm TPS [14] configuration is valid			

The external and internal temperature readings are stored in two registers, $\mathsf{TPS1}$ and $\mathsf{TPS2}$, respectively.

Addre ss	Name	Extern al Read/W rite	Inter nal Read/ Write	Bit width	Default Value	Description
0x0E	TPS1	R	W	10	0x0000	Internal temperature
						value register, unsigned
0x0F	TPS2	R	W	10	0000x0	External temperature
						value register, unsigned

Internal temperature measurement formula: Tx=(170/448)(TB/2-32)-45

TB is the TPS1 register value.

The external test temperature uses a SAR ADC with a maximum input signal of 0.55*VDD (V) on the VT pin and the TPS2 register value is the corresponding AD

Sampling value, full scale 1024.

Addre ss	Name	Extern al Read/wr ite	Intern al Read/w rite	Bit width	Default Value	Description
0x1C	TPS2_A	R/W	R	8	0x00	External temperature sensor gain coefficient A calibration register
0x1D	TPS2_B	R/W	R	8	0x00	External Temperature Sensor Bias Factor B Calibration Register

3 Communication Interface

The register data is sent by 3 bytes (24 bits). If the register data is less than 3 bytes, the unused bits are complemented by 0 to make up the full 3 bytes.

3.1 **SPI**

- Selected via pin UART SEL, multiplexed with UART
- From the model
- Half-duplex communication, communication rate can be matched, maximum communication rate 900khz
- 8-bit data transfer, MSB first, LSB second
- Fixed one clock polarity/phase (CPOL=0, CPHA=1)

3.1.1 Working mode

The master device works in Mode1: CPOL=0, CPHA=1, i.e. when idle state, SCLK is at low level, data sending is at the 1st edge, i.e. SCLK jumps from low level to high level, so data sampling is at falling edge and data sending is at rising edge.

Figure 12

3.1.2 Frame Structure

In communication mode, the **8bit** identification byte **(0x55)** or **(0xA5)** is sent first, **(0x55)** is the read operation identification byte and **(0xA5)** is the write operation identification byte, and then the register address byte is sent to determine the address to access the register (see **BL0939** Register List). The following figure shows the data transfer sequence for read Shanghai Belling Corp., Ltd.

and write operations, respectively. When a frame of data transfer is completed, the BL0939 re-enters communication mode. The number of pulses of SCLK required for each read/write operation is 48 bits.

There are two types of frame structures, each described as follows.

1) Write operation frame

Write operation Ofman	ADDR[7:0]	DATA_H[7:0]	DATA_M[7:0]	DATA_L[7:0]	CHECKSUM[7:0]
-----------------------	-----------	-------------	-------------	-------------	---------------

The checksum byte CHECKSUM is((0xA5 + ADDR + DATA_H + DATA_M + DATA_L) & 0xFF) and then inverted by bit. 2) Read operation frame

The checksum byte CHECKSUM is((0x55+ADDR+DATA_H+DATA_M+DATA_L) & 0xFF) and then inverted by bit. Note: The data is fixed 3 bytes (high byte in front, low byte at the end, if the valid byte of data is less than 3 bytes, the invalid bit is complemented by 0)

3.1.3 Timing of write operations

The serial write sequence is performed in the following manner. The frame identification byte {OxA5} indicates that the data communication operation is to write data, and ADDR is the address of the register to be written to. All remaining bits of the register data are also shifted left at the lower edge of this SCLK (Figure 13).

Figure 13

3.1.4 Read Operation Timing

During the data readout operation of the BL0939, on the rising edge of SCLK, the BL0939 shifts the corresponding data out to the SDO logic output pin, and the SDO value remains unchanged for the next time when SCLK is 1, i.e., the external device can sample the SDO value on the next falling edge. The MCU must first send a read command frame during the data readout operation.

Figure 14

When the BLO939 is in communication mode, the frame identification byte {Ox55}, indicates that the data communication operation is reading out data. Then the immediately following byte ADDR is the address of the target register to be read out. the BLO939 starts shifting out the data in the register on the rising edge of SCLK after receiving the register address (Figure 14). All remaining bits of the register data are shifted out on the subsequent rising edge of SCLK. Thus, at the falling edge of SCLK, the external device can sample the SPI output data. Once the readout operation is complete, the serial interface reenters communication mode. At this point, the SDO output enters a high resistance state at the falling edge of the last SCLK signal.

3.1.5 Fault tolerance mechanism for SPI interface

1) The soft reset function of SPI interface can reset the SPI interface individually by sending 6 bytes of OxFF through SPI interface.

Note: SPI communication does not support chip selection, if you choose 20pin package, you need to connect A4A2 to ground and A3A1 to high level.

3.2 UART

3.2.1 Overview

The BL0939 is available with UART communication. the UART interface requires only two low-speed optocouplers for isolated communication. Fixed baud rate 4800bps, N, 8, 1.5, operates in slave mode, half duplex communication.

Both packages with UART communication, 20 pin package with chip select address [A4 A3 A2 A1], can set device address 00~15.

3.2.2 Description

UART port setting: communication baud rate is 4800bps, no parity, stop bit 1.5.

3.2.3 Per Byte Format

Start bit low duration t1=208us

Valid data bit time duration t2=208*8=1664us

Stop bit high duration t3=208us+104us

3.2.4 Write Timing

The host UART write data timing is shown below, the host first sends the command byte (OxA,{A4,A3,A2,A1}), then the register address (ADDR) where the data needs to be written, then sends the data byte in order (low byte before, high byte after, if the data valid byte is less than 3 bytes, the invalid bit is complemented by 0), and finally the checksum byte.

 t_1

 t_1

 $(0xA,\{A4,A3,A2,A1\})$ is the frame identification byte for write operation, if [A4A1]=0101, device address 5, frame identification byte is 0xA5.

 t_1

calibration-free

ADDR is the internal register address of the BL0939 corresponding incomplication.

CHECKSUM byte is ((0xA,{A4,A3,A2,A1})+ADDR+Data_L+Data_M+Data_H) & 0xFF) and then inverse by bit. Note: The BL0939-SOP16L device address is 5, i.e. the first byte is

3.2.5 Read Timing

0xA5.

The host UART read data timing is shown below, the host first sends the command byte (Ox5,{A4,A3,A2,A1}), then sends the register address (ADDR) to be read, then BLO939 sends the data byte (low byte before, high byte after, if the valid data byte is less than 3 bytes, the invalid bit is complemented by 0), and finally the checksum byte.

(0x5,{A4,A3,A2,A1}) is the frame identification byte of the read operation; if [A4A1]=0101, device address 5, the frame identification byte is 0x55; ADDR is the internal register address of BL0939 corresponding to the read operation.

CHECKSUM bytes as $((0x5,\{A4,A3,A2,A1\})+ADDR+Data_L+Data_M+Data_H)$ & 0xFF) and then inverted by bit.

Timing Description

	Description	Min	Туре	Max	Unit
t1	MCU interval between sending bytes	0		20	mS
t2	The interval between the end of the MCU transmit register address and the BL0939 transmit byte during the read operation		72		uS

t3	Frame interval time	ing c 0.5	-free hip	uS	
t4	BL0939 Interval between sent bytes		116	uS	

3.2.6 Packet sending mode

With the command "(0x5,{A4,A3,A2,A1}) + 0xAA", BL0939 returns an all-electric parameter packet. The returned packets are 35

Current A RMS (3byte IA_RMS① Current B RMS (3byte IB_RMS② Voltage RMS (3byte V_RMS② Current B Fast RMS (3byte IB_FAST_RMS② A Channel Power Value (3byte A_WATT② B Channel Power Value (3byte B_WATT)

A channel pulse count value (3byte CFA_CNT① B channel pulse count value (3byte CFB_CNT① Internal thermometer measurement value (2byte TPS1 + 1byte 0) External temperature sensor measurement Value (2byte TPS2 + 1byte 0① Checksum value (1byte CHECKSUM)

All-electric parameter package format.

Name	Byte order	Content	Name	Byte order	Content
	No.	, ,		No.	
Baot	0	Head(0x55)		19	B_WATT_I
ou			B_WATT		
	1	IA_FAST_RMS_I		20	B_WATT_m
IA_FAST_RMS	2	IA_FAST_RMS_m		21	B_WATT_h
	3	IA_FAST_RMS_h		22	CFA_CNT_I
	4	IA_RMS_I	CFA_CNT	23	CFA_CNT_m
IA_RMS	5	IA_RMS_m		24	CFA_CNT_h
	6	IA_RMS_h		25	CFB_CNT_I
	7	IB_RMS_I	CFB_CNT	26	CFB_CNT_m
IB_RMS	8	IB_RMS_m		27	CFB_CNT_h
	9	IB_RMS_h		28	TPS1_l
	10	V_RMS_I	TPS1	29	TPS1_m
V_RMS	11	V_RMS_m		30	0x00
	12	V_RMS_h		31	TPS2_I
	13	IB_FAST_RMS_I	TPS2	32	TPS2_m
IB_FAST_RMS	14	IB_FAST_RMS_m		33	0x00
	15	IB_FAST_RMS_h	checksum	34	checksum
	16	A_WATT_I			
A_WATT	17	A_WATT_m			
	18	A_WATT_h			

checksum=((0x5,{A4,A3,A2,A1})+0x55+data1_I+data1_m+data1_h_metering chip and then invert by

3.2.7 Protection mechanism for the UART interface

The UART communication of BL0939 provides a timeout protection mechanism, if the interval between bytes exceeds 18.5mS, the UART

The interface is automatically reset.

If the frame identification byte is incorrect or the CHECKSUM byte is incorrect, the frame data is dropped.

UART module reset: The UART module is reset when the RX pin is pulled high after a low level of more than 6.65mS.

4 Order Information

BL0939-X X=SOP16L: SOP16L package

X=SSOP20L: SSOP20L package

5 Package

Moisture
sensitivity
class MSL 3
Warranty period
Two
years
Packaging method
Taping packing
minimum packing
2500

5.1 SOP16L

11.	_			
共	_	H	1	۱
11	ردا	/ \	٠,٦	

	外 观	尺 寸(mm)
	E	1.75±0.10
	F	7.50 \pm 0.05
Δ	P2	2.00±0.10
Δ	D	1.55 ± 0.05
	D1	1. 50 ^{+0. 25}
	PO	4.00±0.10
	10P0	40.0±0.20

口袋尺寸

外 观	尺 寸(mm)
W	16.00±0.30
Р	8.00±0.10
A0	6.70±0.10
В0	10.40±0.10
КО	2. 10±0. 10
t	0.30±0.05
θ	5° TYP

5.2 SSOP20L

SYMBOL	MILLIMETER				
SYMBOL	MIN	NOM	MAX		
Α	-	_	1.75		
A1	0.10	0.15	0.25		
A2	1.30	1.40	1.50		
A3	0.60	0.65	0.70		
b	0.23	_	0.31		
ь1	0.22	0.25	0.28		
c	0.20	-	0.24		
c1	0.19	0.20	0.21		
D	8.55	8.65	8.75		
Е	5.80	6.00	6.20		
El	3.80	3.90	4.00		
e	().635BSC			
h	0.30	-	0.50		
L	0.50	-	0.80		
LI		1.05REF			
0	0	_	8*		

Built-in clock calibration-free

共同尺寸

外 观	尺 寸(mm)
E	1.75±0.10
F	7.50±0.10
P2	2.00±0.10
D	1.55±0.05
D1	1. 5 ^{+0. 25}
P0	4.00±0.10
10P0	40.00±0.20

外 观	尺 寸(mm)	
W	16.00±0.20	1
Р	12.00±0.10	
AO	8.40±0.10	1
ВО	7.75±0.10	13
КО	2.50±0.10	13
t	0.30±0.05	
θ	3~5° TYP	
K1	2.10 ± 0.10	7/3