Mobile App Development

Lec1: Introduction

Ekarat Rattagan, PhD

Outline

1	Introduction and application fundamental	
2	Layout and GUI widget I	
3	Layout and GUI widget II	
4	Activity	
5	Intents + Preference	
6	Saving data & files	
7.	Saving database	
		Midterm
8	Concurrent I	
9	Concurrent II	
10	Multimedia I	
11	Multimedia II	
12	Networking I	
13	Networking II	
14	Jason	
15.	Case study	
	-	 1

Outline

- กลางภาค 30%
- ปลายภาค 30%
- Project 30%
- เข้าเรียน 10%
- Quiz (option) 10%

Biography

- Name: Ekarat Rattagan (เอกรัฐ รัฐกาญจน์)
- Education: Ph.D. (Electrical Engineering and Computer Science), NCTU, Taiwan.
- Research:
 - Mobile system and app technology
 - □ Video game technology
- Published:
 - "Calibrating Parameters and Formulas for Process-level Energy Consumption Profiling in Smartphones", Journal of Network and Computer Application, 2014.
 - "Semi-online Power Estimation For Smartphone Hardware Components", IEEE International Symposium on Industrial Embedded System(SIES), Siegen, Germany, June 8-10, 2015.
 - □ "Symbolic Regression and Clustering for Power Consumption Estimation on Smartphone Hardware Subsystem", Taiwan patent, 2015.
 - "Wi-Fi Usage Monitoring and Power Management Policy for Smartphone Background Applications", Management and Innovation Technology International Conference (MITicon), Bang-Saen, Thailand, 12-14 October 2016.
- Tel: 094-450-4027
- Line id: ajpok
- E-mail: pokekarat@gmail.com

Biography (Cont.)

More channels

- → Linkedin: https://th.linkedin.com/in/ekarat-rattagan-478210100
- ☐ ResearchGate: https://www.researchgate.net/profile/Ekarat Rattagan
- □ Dblp: http://dblp.uni-trier.de/pers/hd/r/Rattagan:Ekarat

Smartphones

Smartphone HW components

https://www.mathworks.com/help/supportpkg/android/ref/gyroscope.html

Embedded Android book

What is Android?

- ☐ Mobile operating system
 - Google purchased from Android, Inc. in 2005.
- Runs on phones, tablets, watches, TVs
- □ ~ 4 million apps published in Play Store (Feb. 2018) [statista].

http://www.mobipicker.com/

Android version history & distribution

Android version history & distribution

Version	Codename	API	Distribution
2.3.3 - 2.3.7	Gingerbread	10	0.3%
4.0.3 - 4.0.4	Ice Cream Sandwich	15	0.4%
4.1.x	Jelly Bean	16	1.7%
4.2.x		17	2.6%
4.3		18	0.7%
4.4	KitKat	19	12.0%
5.0	Lollipop	21	5.4%
5.1		22	19.2%
6.0	Marshmallow	23	28.1%
7.0	Nougat	24	22.3%
7.1		25	6.2%
8.0	Oreo	26	0.8%
8.1		27	0.3%

Data collected during a 7-day period ending on February 5, 2018. Any versions with less than 0.1% distribution are not shown.

Android platform

- ☐Based on Java and Linux.
- □Open source codes
 - Easier to customize, license, etc.
- ☐ □ software stack for mobile devices:

 Operating system, middleware & key applications
- ☐ Use Android SDK to create applications
 Libraries & development tools
- □Lots of documentation

http://developer.android.com/

The Android Architecture

Linux Kernel Layer

Abstraction layer between HW & SW

- Memory & process management
- Network stack
- Device driver model

Library layer

Library layer: Native Libraries

C/C++ libraries

- System C library bionic libc
- Surface Manager
 Display management
- Media Framework Audio/video
- Webkit
 Web browser engine
- OpenGL ES, SGL Graphics engines
- SQLite
 Relational database engine
- SSL
 Secure Socket Layer

Library layer: Android Runtime

Library layer: Android Runtime

Support services for executing applications

- Core libraries
- Dalvik Virtual Machine (DVM)

Library layer: Android Runtime - Core Libraries

Core libraries

- Doesn't include all standard Java SDK classes
- Android.*
- Java.*, javax.*
- Junit.*
- Org.apache.*, org.json.*, org.xml.*

Library layer: Android Runtime - DVM(1/7)

DVM designed to run on a handheld device

- Slow CPU
- Little RAM
- Limited battery life

Library layer: Android Runtime - DVM(2/7)

Apps typically wrote in Java

- Do not run in a standard Java virtual machine
- dx program transforms java classes into .dex formatted bytecodes
- Bytecodes executed in DVM
- Applications typically run in their own processes, inside their own instance of the DVM.

Library layer: Android Runtime - DVM(3/7)

□Memory

- One .dex file for multiple classes
- Modified garbage collection to improve memory sharing

UCPU

- Optimization applied at installation time
- Register-based, rather than stack-based

Library layer: Android Runtime - DVM(4/7)

Stack-based

1.POP 20 2.POP 7 3.ADD 20, 7, result 4.PUSH result

Library layer: Android Runtime - DVM(5/7)

Register-based

1. ADD R1, R2, R3;

Add contents of R1 and R2, store result in R3

Library layer: Android Runtime - DVM(7/7)

```
Example
public static long sumArray (int[] arr)
   long sum = 0;
   for(int i:arr)
      sum += i;
   return sum;
```

Java Bytecode (Stack-based)

```
o: lconst_o
                                  iload
                                           5
                         19:
                                                   % javap –c ClassName
                                  iaload
1: lstore_1
                         21:
2: aload_o
                                  istore
                                           6
                         22:
                                  lload_1
3: astore_3
                         24:
4: aload_3
                                  iload
                                           6
                         25:
5: arraylength
                                  izl
                         27:
                                  ladd
6: istore
                         28:
                4
8: iconst_o
                                  lstore_1
                         29:
9: istore
                5
                                  iinc
                         30:
                                           5, 1
11:iload
                                  goto
                                           11
                         33:
13: iload
                                  lload_1
                         36:
15:if_icmpge
                                  Ireturn
                36
                         37:
18:aload_3
```

Dex Bytecode (Register-based)

```
% dexdump –d classes.dex
0000: const-wide/16 vo, #long o // #0000
0002: array-length v2, v8
0003: const/4 v3, #int o // #0
0004: move v7, v3
0005: move-wide v3, vo
0006: move vo, v7
0007: if-ge vo, v2, 0010 // +0009
0009: aget v1, v8, v0
ooob: int-to-long v5, v1
oooc: add-long/2addr v3, v5
oood: add-int/lit8 vo, vo, #int 1 // #o1
ooof: goto ooo7 // -ooo8
0010: return-wide v3
```

Register-based vs Stack-based VMs

- 30% fewer instructions
- 35% fewer code units (the number of bits an encoding uses)
- 35% more bytes in the instruction stream

Application Framework Layer

Application Framework Layer

- **□Window Manager**
 - Manages top-level window's look & behavior
- **□View system**

Lists, grids, buttons, etc.

- □Content providers
 - Inter-application data sharing
- □Activity manager
 - Application lifecycle

Application Layer

Application Layer

□Standard apps

- Home main screen
- Contacts contacts database
- Phone-dial phone numbers
- Browser-view web pages
- Email
- □Installed apps (Google Play)

Building an App

Android requires that all APKs be digitally signed with a public-key certificate before they can be installed. The public-key certificate serves as as a "fingerprint" that uniquely associates the APK to you and your corresponding private key.

See: developer.android.com/guide/developing/building/index.html

Application Components

Main component classes include

- 1. Activities
- 2. Services
- 3. Broadcast receivers
- 4. Content providers

1. Activity

Primary class for interacting with users

- Usually implements a focused task
- E.g., calculator

2. Service

Runs in the background to perform long running or remote operations

- Does not have a visual user interface
- E.g., Music player

3. Broadcast Receiver

Component that listens for broadcast announcements (events)

- Does not have a visual user interface
- E.g., Messaging (SMS receipt)

4. Content Providers

Store & retrieve data across apps

- Uses database-style interface
- E.g., contacts

Conclusion

- ☐ Smartphone HW & SW
- ☐ Android architecture
- ☐ Android app components