Введение в искусственный интеллект. Современное компьютерное зрение Лекция 2. Сверточные слои

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем

2 марта 2021 г.

План лекции

• Слои, фильтры и операции в СНС

План лекции

- Слои, фильтры и операции в СНС
- Операция свертки

2 / 28

План лекции

- Слои, фильтры и операции в СНС
- Операция свертки
- Переиспользование параметров

Визуализация работы сверточной сети 1

¹https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

3 / 28

Нужно различать операции, фильтры и слои сверточной нейронной сети (СНС):

Нужно различать операции, фильтры и слои сверточной нейронной сети (СНС):

Слой СНС

Слой СНС — это минимальный набор значений (между собой в графе не связанных), которые передаются по графу вычислений СНС между применениями двух операций.

Нужно различать операции, фильтры и слои сверточной нейронной сети (СНС):

Слой СНС

Слой СНС — это минимальный набор значений (между собой в графе не связанных), которые передаются по графу вычислений СНС между применениями двух операций.

Операция СНС

Операция CHC — это некая функциональная зависимость, которая применяется к одному или нескольким слоям CHC.

Нужно различать операции, фильтры и слои сверточной нейронной сети (СНС):

Слой СНС

Слой СНС — это минимальный набор значений (между собой в графе не связанных), которые передаются по графу вычислений СНС между применениями двух операций.

Операция СНС

Операция CHC — это некая функциональная зависимость, которая применяется к одному или нескольким слоям CHC.

Фильтр СНС

Фильтр CHC — это набор значений (весов / параметров), с помощью которых выполняется операция CHC.

Слои в СНС: важное замечание

Зачастую фразу "результат применения операции с использованием такого-то фильтра к слою СНС" заменяют на просто "слой СНС", т.о. объединяя применение операции, использующей фильтр, к входному слою в одно целое.

Слои в СНС: важное замечание

Зачастую фразу "результат применения операции с использованием такого-то фильтра к слою СНС" заменяют на просто "слой СНС", т.о. объединяя применение операции, использующей фильтр, к входному слою в одно целое.

Пример

Предположим, что мы применяем операцию свертки F к слою A и получаем на выходе новый слой B. Тогда $B = F_{\theta}(A)$, где θ — набор значений фильтра свертки.

При этом $F_{\theta}(\cdot)$ для краткости называется сверточным слоем со сверткой F_{θ} .

Слои в СНС: важное замечание

Зачастую фразу "результат применения операции с использованием такого-то фильтра к слою СНС" заменяют на просто "слой СНС", т.о. объединяя применение операции, использующей фильтр, к входному слою в одно целое.

Пример

Предположим, что мы применяем операцию свертки F к слою A и получаем на выходе новый слой B. Тогда $B=F_{\theta}(A)$, где θ — набор значений фильтра свертки. При этом $F_{\theta}(\cdot)$ для краткости называется сверточным слоем со сверткой F_{θ} .

Замечание. При этом в графовом представлении функционирования СНС вершинами будут являться нейроны (слои), связи между ними с некоторой функцией — это операции, а веса над ребрами — это фильтры.

Слои в CHC^2

Слой в СНС обычно представляется **трехмерным** (на самом деле — четырехмерным или даже пятимерным, но об этом позже) массивом, или, как принято называть, **тензором**.

²http://cs231n.github.io/convolutional-networks/

Слои в CHC^2

Слой в СНС обычно представляется **трехмерным** (на самом деле — четырехмерным или даже пятимерным, но об этом позже) массивом, или, как принято называть, **тензором**.

Размерности слоя в СНС

- Ширина (width) отвечает за горизонтальную размерность входной картинки
- Высота (height) отвечает за вертикальную размерность входной картинки
- Глубина / канальность (depth / channels) отвечает за количество двухмерных карт признаков (feature map) на слое.

²http://cs231n.github.io/convolutional-networks/

Слои в СНС

Замечание. Не следует путать **глубину слоя** и количество слоев в CHC — второе называется **глубиной CHC**.

Слои в СНС

Замечание. Не следует путать **глубину слоя** и количество слоев в СНС — второе называется **глубиной СНС**.

Пример слоя: входная цветная картинка размера W imes H

- ullet Ширина ширина картинки, W
- Высота высота картинки, Н
- Глубина слоя равняется 3 (три карты RGB).

Слои в СНС

Замечание. Не следует путать **глубину слоя** и количество слоев в СНС — второе называется **глубиной СНС**.

Пример слоя: входная цветная картинка размера W imes H

- ullet Ширина ширина картинки, W
- Высота высота картинки, Н
- Глубина слоя равняется 3 (три карты RGB).

Замечание. Обычно в процессе функционирования СНС ширина и высота не увеличиваются (постепенно уменьшаясь), а вот глубина слоя может меняться в широком диапазоне — от $1\ (3)$ на входе до сотен и даже тысяч внутри СНС.

Основные типы слоев в СНС

Входной слой INPUT

Необработанные пиксельные значения входной картинки. Это — первый слой в СНС.

8 / 28

Основные типы слоев в СНС

Входной слой INPUT

Необработанные пиксельные значения входной картинки. Это — первый слой в СНС.

Сверточный слой CONV

Скалярное произведение между элементами фильтра (также называемого **ядром** свертки) и ограниченой областью (обычно гораздо меньше всей площади $H \times W$) входного слоя, с которой имеются связи, с помощью скользящего окна (слева направо сверху вниз).

8 / 28

Основные типы слоев в СНС

Входной слой INPUT

Необработанные пиксельные значения входной картинки. Это — первый слой в СНС.

Сверточный слой CONV

Скалярное произведение между элементами фильтра (также называемого **ядром** свертки) и ограниченой областью (обычно гораздо меньше всей площади $H \times W$) входного слоя, с которой имеются связи, с помощью скользящего окна (слева направо сверху вниз).

О других поговорим в следующий раз Ж)

Свертка

• Свертка — основа компьютерного зрения

Свертка

- Свертка основа компьютерного зрения
- Свертка отвечает за пространственное выделение признаков

Размер фильтра

Т.к. фильтр прямоугольный (за редким исключением), то задается двумя числами: $p \times q$. Также называется **рецептивным полем** (receptive field, поле восприятия).

Размер фильтра

Т.к. фильтр прямоугольный (за редким исключением), то задается двумя числами: $p \times q$. Также называется **рецептивным полем** (receptive field, поле восприятия).

Глубина

Количество двухмерных карт признаков (обычно интересует их число на выходе).

Размер фильтра

Т.к. фильтр прямоугольный (за редким исключением), то задается двумя числами: $p \times q$. Также называется **рецептивным полем** (receptive field, поле восприятия).

Глубина

Количество двухмерных карт признаков (обычно интересует их число на выходе).

Шаг свертки (stride)

Количество элементов по горизонтали или вертикали, на которое перемещается фильтр в режиме скользящего окна для получения результирующей карты признаков.

10 / 28

Размер фильтра

Т.к. фильтр прямоугольный (за редким исключением), то задается двумя числами: $p \times q$. Также называется **рецептивным полем** (receptive field, поле восприятия).

Глубина

Количество двухмерных карт признаков (обычно интересует их число на выходе).

Шаг свертки (stride)

Количество элементов по горизонтали или вертикали, на которое перемещается фильтр в режиме скользящего окна для получения результирующей карты признаков.

Добивка, паддинг (padding)

Количество элементов, которыми дополняется исходная карта признаков (часто нулями) — обычно нужна для сохранения пространственных (ширина, высота) размеров карты.

Примеры сверточных операций 3

Шаг s=1, паддинг p=0

³https://github.com/vdumoulin/conv_arithmetic

Примеры сверточных операций 3

Шаг
$$s=1$$
, паддинг $p=0$ Шаг $s=2$, паддинг $p=0$

³https://github.com/vdumoulin/conv_arithmetic

Примеры сверточных операций 3

Шаг
$$s=1$$
, паддинг $p=0$

Шаг
$$s=2$$
, паддинг $p=0$

$$oxdots a_{s}=2$$
, паддинг $p=1$

³https://github.com/vdumoulin/conv_arithmetic

- При движении скользящим окном размера $h \times w$ по изображению $H \times W$ с шагом s=1, если не заходить за границу картинки, то на выходе будет изображение $(H-h+1) \times (W-w+1)$
- Такой режим называется "VALID", и он использовался в первых СНС

- ullet При движении скользящим окном размера h imes w по изображению H imes W с шагом s=1, если не заходить за границу картинки, то на выходе будет изображение $(H - h + 1) \times (W - w + 1)$
- Такой режим называется "VALID", и он использовался в первых СНС
- Впоследствии стали добавлять рамку вокруг изображения (паддинг) для того, чтобы выходной размер был равен входному
- Такой режим называется "SAME", и обычно рамка состоит либо из нулей, либо из зеркального отражения картинки внутри рамки

- При движении скользящим окном размера $h \times w$ по изображению $H \times W$ с шагом s=1, если не заходить за границу картинки, то на выходе будет изображение $(H-h+1) \times (W-w+1)$
- Такой режим называется "VALID", и он использовался в первых СНС
- Впоследствии стали добавлять рамку вокруг изображения (паддинг) для того, чтобы выходной размер был равен входному
- Такой режим называется "SAME", и обычно рамка состоит либо из нулей, либо из зеркального отражения картинки внутри рамки

- При движении скользящим окном размера $h \times w$ по изображению $H \times W$ с шагом s=1, если не заходить за границу картинки, то на выходе будет изображение $(H-h+1) \times (W-w+1)$
- Такой режим называется "VALID", и он использовался в первых СНС
- Впоследствии стали добавлять рамку вокруг изображения (паддинг) для того, чтобы выходной размер был равен входному
- Такой режим называется "SAME", и обычно рамка состоит либо из нулей, либо из зеркального отражения картинки внутри рамки

О рецептивном поле

• Рецептивное поле (поле восприятия) нейрона — область на входном изображении, которая участвует в вычислении данного нейрона

О рецептивном поле

- Рецептивное поле (поле восприятия) нейрона область на входном изображении, которая участвует в вычислении данного нейрона
- Не стоит путать с рецептивным полем фильтра свертки (оно имеет размер фильтра)

О рецептивном поле

- Рецептивное поле (поле восприятия) нейрона область на входном изображении, которая участвует в вычислении данного нейрона
- Не стоит путать с рецептивным полем фильтра свертки (оно имеет размер фильтра)
- Чем глубже СНС и чем дальше нейрон от входа, тем больше его рецептивное поле

О рецептивном поле

- Рецептивное поле (поле восприятия) нейрона область на входном изображении, которая участвует в вычислении данного нейрона
- Не стоит путать с рецептивным полем фильтра свертки (оно имеет размер фильтра)
- Чем глубже СНС и чем дальше нейрон от входа, тем больше его рецептивное поле

Пример: рецептивное поле нейрона после двух сверток 3×3 имеет размер 5×5

Формула свертки⁴

• Входной слой: трехмерный тензор X_{ij}^m , где верхний индекс отвечает за количество входных карт, а два нижних индекса — за пространственное разрешение карт (по горизонтали и вертикали). Всего входных карт M

⁴https://cs231n.github.io/assets/conv-demo/index.html

- Входной слой: трехмерный тензор X_{ij}^m , где верхний индекс отвечает за количество входных карт, а два нижних индекса за пространственное разрешение карт (по горизонтали и вертикали). Всего входных карт M
- Выходной слой: трехмерный тензор Y_{ij}^k с теми же обозначениями индексов. Всего выходных карт K.

⁴https://cs231n.github.io/assets/conv-demo/index.html

- Входной слой: трехмерный тензор X_{ij}^m , где верхний индекс отвечает за количество входных карт, а два нижних индекса за пространственное разрешение карт (по горизонтали и вертикали). Всего входных карт M
- Выходной слой: трехмерный тензор Y_{ij}^k с теми же обозначениями индексов. Всего выходных карт K.
- Фильтр свертки: четырехмерный (!) тензор F_{uv}^{mk} , где два верхних индекса отвечают за индекс входной и выходной карты, а нижние пространственные размерности (например, 5×5); а также одномерный тензор сдвига (bias) b^k . Пусть пространственные размерности фильтра $p \times q$.

⁴https://cs231n.github.io/assets/conv-demo/index.html

Формула свертки⁴

- Входной слой: трехмерный тензор X_{ij}^m , где верхний индекс отвечает за количество входных карт, а два нижних индекса за пространственное разрешение карт (по горизонтали и вертикали). Всего входных карт M
- Выходной слой: трехмерный тензор Y_{ij}^k с теми же обозначениями индексов. Всего выходных карт K.
- Фильтр свертки: четырехмерный (!) тензор F_{uv}^{mk} , где два верхних индекса отвечают за индекс входной и выходной карты, а нижние пространственные размерности (например, 5×5); а также одномерный тензор сдвига (bias) b^k . Пусть пространственные размерности фильтра $p \times q$.

$$Y_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} + b^{k}, \quad \forall k = 1 \dots K$$

⁴https://cs231n.github.io/assets/conv-demo/index.html

Подсчет количества весов (парамеров) фильтра

Пусть используются следующие гиперпараметры:

- Количество карт входного слоя: М
- Количество карт выходного слоя: К
- ullet Пространственное разрешение фильтра свертки: p imes q

Подсчет количества весов (парамеров) фильтра

Пусть используются следующие гиперпараметры:

- Количество карт входного слоя: М
- Количество карт выходного слоя: К
- ullet Пространственное разрешение фильтра свертки: p imes q

Тогда фильтр задается четырехмерным тензором весов свертки и одномерным тензором весов сдвига:

Количество параметров

$$N_{conv} = MKpq + K = (Mpq + 1)K$$

15 / 28

Пусть число карт M=M'g и K=K'g на предыдущем и текущем слое делится без остатка на $g\geq 1, g\in \mathbb{N}.$

Пусть число карт M=M'g и K=K'g на предыдущем и текущем слое делится без остатка на $g\geq 1, g\in \mathbb{N}.$

• Тогда фильтр свертки $F_{uv}^{mk}, 1 \leq m \leq M, 1 \leq k \leq K$ можно разбить на g независимых групп $F_{uv}^{s,m'k'}$, где $1 \leq s \leq g$ — номер группы, $1 \leq m' \leq M/g, 1 \leq k' \leq K/g$

Пусть число карт M=M'g и K=K'g на предыдущем и текущем слое делится без остатка на $g\geq 1, g\in \mathbb{N}.$

- ullet Тогда фильтр свертки $F_{uv}^{mk}, 1 \leq m \leq M, 1 \leq k \leq K$ можно разбить на g независимых групп $F_{uv}^{s,m'k'}$, где $1 \leq s \leq g$ номер группы, $1 \leq m' \leq M/g, 1 \leq k' \leq K/g$
- ullet Сдвиг тоже можно разбить на g частей $b^{s,k'}$

Пусть число карт M=M'g и K=K'g на предыдущем и текущем слое делится без остатка на $g\geq 1, g\in \mathbb{N}.$

- Тогда фильтр свертки $F_{uv}^{mk}, 1 \leq m \leq M, 1 \leq k \leq K$ можно разбить на g независимых групп $F_{uv}^{s,m'k'}$, где $1 \leq s \leq g$ номер группы, $1 \leq m' \leq M/g, 1 \leq k' \leq K/g$
- ullet Сдвиг тоже можно разбить на g частей $b^{s,k'}$
- ullet Пусть k=(s-1)K/g+k', тогда формула групповой свертки (grouped convolution)

Пусть число карт M=M'g и K=K'g на предыдущем и текущем слое делится без остатка на $g\geq 1, g\in \mathbb{N}.$

- ullet Тогда фильтр свертки $F_{uv}^{mk}, 1 \leq m \leq M, 1 \leq k \leq K$ можно разбить на g независимых групп $F_{uv}^{s,m'k'}$, где $1 \leq s \leq g$ номер группы, $1 \leq m' \leq M/g, 1 \leq k' \leq K/g$
- ullet Сдвиг тоже можно разбить на g частей $b^{s,k'}$
- ullet Пусть k=(s-1)K/g+k', тогда формула групповой свертки (grouped convolution)

Групповая свертка

$$Y_{ij}^{k} = \sum_{m'=1}^{M/g} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{(s-1)M/g+m'} \cdot F_{uv}^{s,m'k'} + b^{s,k'}$$

16 / 28

Пусть число карт M=M'g и K=K'g на предыдущем и текущем слое делится без остатка на $g\geq 1, g\in \mathbb{N}.$

- ullet Тогда фильтр свертки $F_{uv}^{mk}, 1 \leq m \leq M, 1 \leq k \leq K$ можно разбить на g независимых групп $F_{uv}^{s,m'k'}$, где $1 \leq s \leq g$ номер группы, $1 \leq m' \leq M/g, 1 \leq k' \leq K/g$
- ullet Сдвиг тоже можно разбить на g частей $b^{s,k'}$
- ullet Пусть k=(s-1)K/g+k', тогда формула групповой свертки (grouped convolution)

Групповая свертка

$$Y_{ij}^{k} = \sum_{m'=1}^{M/g} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{(s-1)M/g+m'} \cdot F_{uv}^{s,m'k'} + b^{s,k'}$$

Замечание. При g=1 групповая свертка сводится к обычной.

• Позволяет реализовывать свертки параллельно на разных устройствах (GPU)

a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

⁵https://towardsdatascience.com/

A

- Позволяет реализовывать свертки параллельно на разных устройствах (GPU)
- Уменьшается общее число параметров

a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

⁵https://towardsdatascience.com/

- Позволяет реализовывать свертки параллельно на разных устройствах (GPU)
- Уменьшается общее число параметров
- Порой получается лучшая по качеству модель (из-за корелляции карт)

⁵https://towardsdatascience.com/

- Позволяет реализовывать свертки параллельно на разных устройствах (GPU)
- Уменьшается общее число параметров
- Порой получается лучшая по качеству модель (из-за корелляции карт)

⁵https://towardsdatascience.com/

a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

• Имеет также названия "depth-wise" или "channel-wise" convolution

- Имеет также названия "depth-wise" или "channel-wise" convolution
- Является частным случаем групповой свертки при M=K=g (число групп равно числу входных либо выходных карт)

- Имеет также названия "depth-wise" или "channel-wise" convolution
- Является частным случаем групповой свертки при M = K = g (число групп равно числу входных либо выходных карт)
- ullet Если обозначить $F_{uv}^{s,11} = F_{uv}^s, 1 \leq s \leq g$, то формула поканальной свертки свертки

$$Y_{ij}^{k} = \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{k} \cdot F_{uv}^{k} + b^{k}, \quad \forall k = 1 \dots K$$

- Имеет также названия "depth-wise" или "channel-wise" convolution
- Является частным случаем групповой свертки при M=K=g (число групп равно числу входных либо выходных карт)
- ullet Если обозначить $F_{uv}^{s,11} = F_{uv}^s, 1 \leq s \leq g$, то формула поканальной свертки свертки

Формула свертки

$$Y_{ij}^{k} = \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{k} \cdot F_{uv}^{k} + b^{k}, \quad \forall k = 1 \dots K$$

18 / 28

ullet Обобщение поканальной свертки при M
eq K

- ullet Обобщение поканальной свертки при M
 eq K
- Является композицией двух видов сверток:

- ullet Обобщение поканальной свертки при M
 eq K
- Является композицией двух видов сверток:
 - lacktriangledown Поканальная свертка из M каналов в M каналов (M сверток p imes q imes 1)

19 / 28

- ullet Обобщение поканальной свертки при M
 eq K
- Является композицией двух видов сверток:
 - lacktriangle Поканальная свертка из M каналов в M каналов (M сверток p imes q imes 1)
 - $oldsymbol{2}$ 1 imes 1 свертка из M каналов в K каналов (K сверток 1 imes 1 imes M)

19 / 28

- ullet Обобщение поканальной свертки при M
 eq K
- Является композицией двух видов сверток:
 - lacktriangle Поканальная свертка из M каналов в M каналов (M сверток p imes q imes 1)
 - $oldsymbol{2}$ 1 imes 1 свертка из M каналов в K каналов (K сверток 1 imes 1 imes M)

Специальные виды сверток

Транспонированная свертка (transposed convolution)

Применяется, когда нужно увеличить пространственные размеры карты признаков. Можно представлять как вставку фиктивных нулевых значений между элементами входной карты. Количество вставляемых значений задается шагом s (stride) и равно s-1.

Специальные виды сверток

Транспонированная свертка (transposed convolution)

Применяется, когда нужно увеличить пространственные размеры карты признаков. Можно представлять как вставку фиктивных нулевых значений между элементами входной карты. Количество вставляемых значений задается шагом s (stride) и равно s-1.

Расширенная свертка (atrous / dilated convolution)

Применяется, когда нужно маленьким фильтром захватить большое рецептивное поле. Можно представлять как вставку фиктивных нулевых значений между элементами фильтра. Количество вставляемых значений задается коэффициентом расширения d (dilation rate) и равно d-1.

Примеры

Транспонированная свертка, шаг s=2

Примеры

Транспонированная свертка, шаг s=2

Расширенная свертка, коэффициент расширения d=2

Деформируемые свертки 6

• В настоящее время существует вид сверток, в которых обучаются не только веса фильтра, но и вектор сдвига для каждого элемента.

⁶Dai J. et al. Deformable convolutional networks. 2017.

Деформируемые свертки⁶

- В настоящее время существует вид сверток, в которых обучаются не только веса фильтра, но и вектор сдвига для каждого элемента.
- Позволяет настраиваться на наиболее важные области

Деформируемые свертки 6

- В настоящее время существует вид сверток, в которых обучаются не только веса фильтра, но и вектор сдвига для каждого элемента.
- Позволяет настраиваться на наиболее важные области

⁶Dai J. et al. Deformable convolutional networks. 2017.

Деформируемые свертки 6

- В настоящее время существует вид сверток, в которых обучаются не только веса фильтра, но и вектор сдвига для каждого элемента.
- Позволяет настраиваться на наиболее важные области

Деформируемые свертки — детали

• Основная идея: в дополнение к $(p \times q)$ весов фильтра F_{uv} храним дополнительно $2 \times (p \times q)$ векторов сдвига (один набор по горизонтали, другой – по вертикали) o_{uv}, p_{uv}

Деформируемые свертки — детали

- Основная идея: в дополнение к $(p \times q)$ весов фильтра F_{uv} храним дополнительно $2 \times (p \times q)$ векторов сдвига (один набор по горизонтали, другой по вертикали) o_{uv}, p_{uv}
- Формула свертки (для одной входной и выходной карты):

$$X_{ij} = \sum_{u,v=1}^{p,q} X_{i+u-1+o_{uv},j+v-1+p_{uv}} \cdot F_{uv} + b$$

Деформируемые свертки — детали

- Основная идея: в дополнение к $(p \times q)$ весов фильтра F_{uv} храним дополнительно $2 \times (p \times q)$ векторов сдвига (один набор по горизонтали, другой по вертикали) o_{uv}, p_{uv}
- Формула свертки (для одной входной и выходной карты):

$$X_{ij} = \sum_{u,v=1}^{p,q} X_{i+u-1+o_{uv},j+v-1+p_{uv}} \cdot F_{uv} + b$$

• Поскольку обучаемые o_{uv}, p_{uv} в общем случае будут нецелыми, то предлагается применять билинейную интерполяцию: $X_{\alpha\beta} = \sum_{s,t=1}^{H,W} G((s,t),(\alpha,\beta)) \cdot X_{st}$, где $G((s,t),(\alpha,\beta)) = \max(0,1-|\alpha-s|) \cdot \max(0,1-|\beta-t|)$.

Вопрос

Почему же сверточные сети так эффективны?

Вопрос

Почему же сверточные сети так эффективны?

Ответ

Из-за переиспользования (sharing) значений (весов) сверточных фильтров!

Вопрос

Почему же сверточные сети так эффективны?

Ответ

Из-за переиспользования (sharing) значений (весов) сверточных фильтров!

Переиспользование

• Полное (обычные свертки)

Вопрос

Почему же сверточные сети так эффективны?

Ответ

Из-за переиспользования (sharing) значений (весов) сверточных фильтров!

Переиспользование

- Полное (обычные свертки)
- Частичное (локальные свертки, locally connected)

Вопрос

Почему же сверточные сети так эффективны?

Ответ

Из-за переиспользования (sharing) значений (весов) сверточных фильтров!

Переиспользование

- Полное (обычные свертки)
- Частичное (локальные свертки, locally connected)
- Отсутствует (полносвязный слой, fully connected)

Иллюстрация переиспользования⁷

⁷https://pennlio.wordpress.com/2014/04/11/ fully-connected-locally-connected-and-shared-weights-layer-in-neural-networks/

Иллюстрация переиспользования⁷

Локальные свертки

⁷https://pennlio.wordpress.com/2014/04/11/

fully-connected-locally-connected-and-shared-weights-layer-in-neural-networks/

Иллюстрация переиспользования⁷

Локальные свертки

Обычная свертка

⁷https://pennlio.wordpress.com/2014/04/11/

Полное переиспользование

• Преположим, что входной слой имеет глубину d_1 , ширину w_1 и высоту h_1 , а выходной — глубину d_2 , ширину w_2 и высоту h_2 . Фильтр свертки (без тензора сдвига), применяемый ко входному слою, имеет пространственные размеры $w \times h$.

Полное переиспользование

- Преположим, что входной слой имеет глубину d_1 , ширину w_1 и высоту h_1 , а выходной глубину d_2 , ширину w_2 и высоту h_2 . Фильтр свертки (без тензора сдвига), применяемый ко входному слою, имеет пространственные размеры $w \times h$.
- При полном переиспользовании параметров мы движемся скользящим окном по входному тензору: в каждом выходном нейроне для конкретной карты используем те же параметры т.е. количество весов фильтра d_1*w*h нужно домножить на количество выходных карт d_2 : $N_c = d_1*w*h*d_2$.

Выигрыш от переиспользования

• При частичном переиспользования параметров свертки нужно соединить все входные нейроны (размерности свертки) количеством d_1*w*h , со всеми выходными нейронами количеством $d_2*w_2*h_2$, всего параметров $N_{lc}=d_1*w*h*d_2*w_2*h_2$ параметров.

Выигрыш от переиспользования

- При частичном переиспользования параметров свертки нужно соединить все входные нейроны (размерности свертки) количеством d_1*w*h , со всеми выходными нейронами количеством $d_2*w_2*h_2$, всего параметров $N_{lc}=d_1*w*h*d_2*w_2*h_2$ параметров.
- При отсутствии переиспользования все входные нейроны соединяются со всеми выходными, т.е. $N_{fc} = d_1 * w_1 * h_1 * d_2 * w_2 * h_2$.

Выигрыш от переиспользования

- При частичном переиспользования параметров свертки нужно соединить все входные нейроны (размерности свертки) количеством d_1*w*h , со всеми выходными нейронами количеством $d_2*w_2*h_2$, всего параметров $N_{lc}=d_1*w*h*d_2*w_2*h_2$ параметров.
- При отсутствии переиспользования все входные нейроны соединяются со всеми выходными, т.е. $N_{fc} = d_1 * w_1 * h_1 * d_2 * w_2 * h_2$.
- ullet Т.о. частичное переиспользование дает проигрыш в $rac{N_{lc}}{N_c}=w_2*h_2$,
- ullet A отсутствие переиспользования дает проигрыш в $rac{N_{fc}}{N_c} = rac{w_1*h_1*w_2*h_2}{w*h}$,

Спасибо за внимание!

