Predicting Redshifts Using Random Forests

Amir Kazemi-Moridani

Outline

- Random forests
- Our data
- Pre-processing
- Optimization and results

Schedule

======

Week 1:

- Get the data and make some preliminary plots (axis ratio, size, photometry)
- Investigate what packages are available for random forest
- Stretch goal: Make a tree (or a series of trees)

Week 2:

- Generate the random forest fits for a series of galaxies (probably just using photometry)
- Evaluate goodness of fit

Week 3:

- Parameterize the uncertainties of the fits using the trees

Week 4:

- Explore other parameters (such as size, axis ratio)

Week 5:

- Finalize the fitting parameters
- Potentially vary the number of photometric data points in the fit to see the extent to which extra parameters aid the fit

Week 6: DESC Meeting

- Finalize fits

Week 7: Thanksgiving

- Summarize results of adding different numbers of parameters

Random Forests

- Forests of prediction trees
 - Decision trees discrete
 - Regression trees continuous
- Each tree is constructed by selecting the best split point from a **random** subsample of the dimensions minimizing the sum of squared errors
 - Trained on bootstrap samples of the data
 - Using a subset of features
 - Terminated based on provided criteria (e.g. minimum leaf size)

https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77 dd74

Photometric Redshift (photo-z)

- Spectroscopic surveys are expensive and time-consuming
- Photometric measurements are faster and less expensive

Straatman C.~M.~S. + 2016, ApJ, 830, 51

The Data

• From the FourStar galaxy evolution survey (ZFOURGE)

ıu			y		ra .	uec 3	Ellays	iso_area	Iap_Ksaii	eap_Ksaii	apcon	W	mm_Juk	willin_nst	willin_irac	wiriiri_aii	star	nearstar
66	3781.6	74 10	9.945	150.0887	15 2.177	286	0	62.0	1.396826	0.116562	1.143497	***	1.08	0.00	1.01	0.54	0	0
3	4079.6	08 22	9.830	150.0762	94 2.182	282	2	252.0	7.455316	0.116562	1.099861		1.02	0.00	1.05	0.54	0	0
11	3734.1	80 29	7.363	150.0906	98 2.185	095	3	63.0	1.096613	0.116562	1.119066		1.00	0.00	0.94	0.54	0	0
8	3406.1	60 30	0.911	150.1043	70 2.185	241	3	75.0	1.203554	0.121134	1.078640		1.01	0.81	0.90	0.50	0	0
8	3777.10	61 29	4.776	150.0888	98 2.184	987	2	114.0	1.680287	0.116562	1.126751		1.01	0.00	0.94	0.54	0	0
f.J	Ksall	1	В	f_G	f_l	f_IA	A427	f_IA484	f_IA505	f_IA527	f_IA624	f_IA7	09	f_F606W	f_F814W	f_UVISTA_J	f_U\	/ISTA_H
2.76	3520	0.8038	338 (0.938691	1.133950	0.540	0159	0.815649	1.124296	0.950815	1.166044	1.1009	23	1.078534	1.042126	1.644773	2	.375077
9.47	79900	3.1070	52 3	3.531762	9.960004	2.53	1886	3.616404	3.814700	4.016532	8.534525	9.9387	34	6.434791	10.598488	15.004392	17	.988017
2.88	31431	0.6801	46 (0.775524	0.980625	0.55	7790	0.817122	0.639527	0.788392	1.045351	1.0085	76	0.837689	1.104082	1.947452	3	.042136
3.95	57254	1.6698	303	1.714664	1.723101	1.660	0514	1.693340	1.721699	1.603944	1.748214	1.5488	54	1.717241	1.768363	2.710785	4	.566974
3.96	55060	1.3222	258	1.427895	1.668771	1.23	7378	1.355434	1.501069	1.479561	1.600855	1.7108	45	1.393661	1.460127	3.348458	4	.078588
		40.7.07.0										0.000				(100 M & 100 M		

Pre-processing

- Eliminating columns that are not flux measurements
- Eliminating objects that might be stars
- Interpolating to estimate the missing values
 - Using a kNN algorithm (using *impyute* package)


```
f_Hl is missing 1 values
f_Hs is missing 1 values
f_J1 is missing 1 values
f_J2 is missing 2 values
f_J3 is missing 1 values
f_Ks is missing 1 values
f_Ks is missing 1 values
f_NB118 is missing 19 values
f_NB209 is missing 21 values
f_F125W is missing 8 values
f_F140W is missing 75 values
f_F160W is missing 3 values
f_F606W is missing 2 values
f_F814W is missing 2 values
f_F814W is missing 2 values
f_UVISTA_Ks is missing 5 values
f_UVISTA_Y is missing 5 values
```

Initial Results

• Results with default arguments of Scikit learn random forest regressor

Optimizing the Hyperparameters

• Parameters of the regressors

```
{'bootstrap': [True, False],
'criterion': ['mae', 'mse'],
'max_depth': [20, 36, 52, 69, 85, 101, 118, 134, 150, 167, 183, 200, None],
'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2],
'min_samples_split': [2, 5, 10, 15, 20],
'n_estimators': [100, 129, 166, 215, 278, 359, 464, 599, 774, 1000]}
```

- Scikit learn packages
 - RandomizedSearchCV ~4 hrs of runtime
 - o GridSearchCV ~3 hrs of runtime

Final Results

f_I	:	0.1089
f_Zp	:	0.0974
f_z	:	
f_IA738	:	
f UVISTA J	:	
f_UVISTA_Y	:	0.0485
f_J1	:	0.0468
f_IRAC_45	:	0.0337
f_IA709	:	
f_J3	:	
f_U	:	0.0289
f_Rp	:	
f_J2	:	0.0258
f_F125W	:	0.0233
f_IRAC_36	:	0.0206
f_IA505	:	0.0196
f_v	:	0.0192
f_IA624	:	0.0187
f_G	:	
f_IA527	:	0.0182
f_F814W	:	0.018
f_IA427	:	0.0166
f_IA484	:	0.0163
f_B	:	0.016
f_R	:	
I_F606W	:	
f_IRAC_58	:	0.0115
f_Hs	:	0.0107
f_F160W	:	0.01
f_NB118	:	0.0098
f_Hl	:	0.0095
f_Ks	:	0.0058
f_UVISTA_H	:	0.0056
f_IRAC_80	:	0.0054
f_Ksall	:	
f_UVISTA_Ks	:	
f_NB209	:	
f_F140W	:	0.0039

```
: 0.0898
f_Zp
fI
             : 0.0864
             : 0.0796
f Z
             : 0.0645
f IA738
f UVISTA J
            : 0.0566
f J1
             : 0.0522
f UVISTA Y : 0.0385
f_IA709
             : 0.0345
f IRAC 45
             : 0.0332
f F814W
             : 0.0323
f J2
             : 0.0295
f J3
             : 0.0271
             : 0.0262
f_U
f Rp
             : 0.024
             : 0.0232
f IA624
f F125W
             : 0.0219
f IRAC 36
             : 0.0193
f G
             : 0.019
f IA427
             : 0.0183
f IA505
             : 0.018
             : 0.0172
f_V
f R
             : 0.0169
             : 0.0163
f IA527
f IA484
             : 0.016
f_B
             : 0.0159
f F160W
             : 0.0159
f F606W
             : 0.0122
f IRAC 58
             : 0.0112
f Hs
             : 0.0108
f NB118
             : 0.0103
f Hl
             : 0.0094
f Ksall
             : 0.0085
b vector
             : 0.0078
a vector
             : 0.0064
f UVISTA H : 0.0064
f UVISTA Ks : 0.0059
f Ks
             : 0.0057
f_IRAC_80
             : 0.0049
f F140W
             : 0.0039
```

f NB209

: 0.0038

$\operatorname{rms}\left(\frac{\Delta z}{1+z}\right)$

Final Results

• Accuracy =

$$1 - \frac{1}{N} \sum_{i} \frac{|z_{\text{rf, i}} - z_{\text{spec, i}}|}{z_{\text{spec, i}}}$$

Final Results

- Making 5 sets for cross validation and fitting 5 random forests
- Predicting the redshift using each tree
- Taking the median or mean of the 5 values as the estimate

Summary

- Random forests are robust and easy to implement
- Imputation is crucial
- The available packages are versatile
- Optimization slightly improved our results
- Future work: need more datapoints at higher redshifts