Implementasi Classifier Weka myID3

Tugas Pra-Praktikum IF4071 Semester I Tahun 2014 / 2015

Kelompok WbTeladan

oleh:

Iskandar Setiadi / 13511073 Raden Fajar Hadria Putra / 13511076 M Andri Eka Fauzy / 13511088

Sekolah Teknik Elektro dan Informatika (STEI ITB)
Institut Teknologi Bandung
Jl. Ganesha No. 10, Bandung 40132
Tahun 2014

A. Struktur Data

Nama Kelas : myID3

Parent Class : Classifier

Attribut :

Nama Atribut	Tipe Atribut	Fungsi Atribut	
EMPTY_VALUE	double	Nilai apabila pada pohon tidak terdapat instance	
node_attribute	Attribute	Atribut yang digunakan untuk splitting	
attribute_title	array of String	Nama-nama atribut dari data yang dibuat ID3	
classification	double	Nilai dari node jika node merupakan daun	
node_value	Attribute	Atribut node dari dataset	
isChecked	boolean	Boolean apakah Instances yang diberikan berjumlah 0 atau tidak	
next_node	array of myID3	Suksesor dari node	
IG	array of double	Nilai <i>information gain</i> dari semua attribute di node suatu tree.	

Metode:

Nama Metode	Output Metode	Parameter	Fungsi Metode
buildClassifier	-	arg0 (Instances)	Membangun <i>classifier</i> myID3
process	-	arg0 (Instances)	Membangun pohon (tree) myID3
entropyCalculation	double	arg0 (Instances)	Menghitung entropi dari dataset
ntr	array of Instances	arg0 (Instance) a (Attribute)	Memisahkan dan mengelompokkan data berdasarkan atribut pada parameter
classifyInstance	double	arg0 (Instances)	Mengembalikan nilai classValue hasil klasifikasi

			menggunakan myID3. Selain itu, menampilkan path dari proses klasifikasi
toString	String	-	Menampilkan model decision tree
recursive_print	String	level (Integer)	Menampilkan pohon pada level tertentu

B. Implementasi

Implementasi Pembuatan Pohon:

```
@SuppressWarnings("rawtypes")
   private void process(Instances arg0) throws Exception {
        if (arg0.numInstances() == 0) {
               classification = EMPTY VALUE;
               node value = null;
               isChecked = true;
                return;
        } else {
               IG = new double[arg0.numAttributes()];
                Enumeration e = arg0.enumerateAttributes();
                while (e.hasMoreElements()) {
                       double information gain = entropyCalculation(arg0);
                       Attribute att = (Attribute) e.nextElement();
                       Instances[] s = ntr(arg0, att);
                       int total instances = arg0.numInstances();
                       for (int i = 0; i < att.numValues(); i++) {
                               int n = s[i].numInstances();
                               if (n > 0) {
                                      information_gain -= ((double) n / (double)
total instances)
                                                      * entropyCalculation(s[i]);
                               }
                       /** Information Gain */
                       IG[att.index()] = information gain;
                }
                int max index = 0;
                for (int i = 1; i < arg0.numAttributes(); i++) {
                       if (IG[i] > IG[max index]) {
                              \max index = i;
                node_value = arg0.attribute(max_index);
                if (IG[node_value.index()] == 0) {
                       /** Leaf */
                       double[] num of elements = new double[arg0.numClasses()];
                       isChecked = true;
                       node_value = null;
                       Enumeration e2 = arg0.enumerateInstances();
                       while (e2.hasMoreElements()) {
                               Instance inst = (Instance) e2.nextElement();
```

```
int class value = (int) inst.classValue();
                       num of elements[class value]++;
               Utils.normalize(num_of_elements);
               int max index2 = 0;
               for (int i = 1; i < arg0.numClasses(); i++) {
                       if (num of elements[i] > num of elements[max index]) {
                              \max index = i;
               classification = num of elements[max index2];
       } else {
               /** Recursive */
               next_node = new myID3[node_value.numValues()];
               Instances[] s = ntr(arg0, node value);
               for (int i = 0; i < node_value.numValues(); i++) {</pre>
                       next_node[i] = new myID3();
                       next node[i].process(s[i]);
}
```

Implementasi Penghitungan Entropi:

```
@SuppressWarnings("rawtypes")
   private double entropyCalculation(Instances arg0) throws Exception {
        double return_value = 0;
        for (int i = 0; i < arg0.numClasses(); i++) {
               int num of elements = 0;
                Enumeration e = arg0.enumerateInstances();
                while (e.hasMoreElements()) {
                       Instance inst = (Instance) e.nextElement();
                       if (inst.classValue() == i) {
                               num of elements++;
                }
                if (num of elements > 0) {
                       double v = (double) num_of_elements / arg0.numInstances();
                       return value -= Utils.log2(v) * v;
                }
        return return value;
```

Implementasi Penghitungan Information Gain:

C. Pengujian

Data Set yang Digunakan:

```
@relation weather.symbolic
@attribute outlook {sunny, overcast, rainy}
@attribute temperature {hot, mild, cool}
@attribute humidity {high, normal}
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}
@data
sunny, hot, high, FALSE, no
sunny, hot, high, TRUE, no
overcast, hot, high, FALSE, yes
rainy, mild, high, FALSE, yes
rainy, cool, normal, FALSE, yes
rainy, cool, normal, TRUE, no
overcast, cool, normal, TRUE, yes
sunny, mild, high, FALSE, no
sunny, cool, normal, FALSE, yes
rainy, mild, normal, FALSE, yes
sunny, mild, normal, TRUE, yes
overcast, mild, high, TRUE, yes
overcast, hot, normal, FALSE, yes
rainy, mild, high, TRUE, no
```

weather.nominal.arff

ID3 yang dihasilkan:

```
Id3
outlook (IG = 0.24674981977443894)
temperature (IG = 0.029222565658954536)
humidity (IG = 0.15183550136234125)
windy (IG = 0.04812703040826921)
outlook = sunny
outlook (IG = 0.0)
temperature (IG = 0.5709505944546683)
humidity (IG = 0.9709505944546684)
windy (IG = 0.019973094021974558)
humidity = high
Kelas : no [LEAF]
outlook (IG = 0.0)
temperature (IG = 0.5709505944546683)
humidity (IG = 0.9709505944546684)
windy (IG = 0.019973094021974558)
humidity = normal
Kelas : yes [LEAF]
outlook (IG = 0.24674981977443894)
temperature (IG = 0.029222565658954536)
humidity (IG = 0.15183550136234125)
windy (IG = 0.04812703040826921)
outlook = overcast
Kelas : yes [LEAF]
outlook (IG = 0.24674981977443894)
temperature (IG = 0.029222565658954536)
humidity (IG = 0.15183550136234125)
windy (IG = 0.04812703040826921)
outlook = rainy
outlook (IG = 0.0)
temperature (IG = 0.019973094021974558)
humidity (IG = 0.019973094021974558)
windy (IG = 0.9709505944546684)
windy = TRUE
Kelas : no [LEAF]
outlook (IG = 0.0)
temperature (IG = 0.019973094021974558)
humidity (IG = 0.019973094021974558)
windy (IG = 0.9709505944546684)
windy = FALSE
Kelas : yes [LEAF]
```

Ilustrasi Pohon:

