

Elektrotechnische Grundlagen der Informatik (LU 182.692)

Protokoll der 3. Laborübung: "OPV" "Transiente Vorgänge und Frequenzverhalten" b) Messungen

Gruppennr.: 22 Datum der Laborübung: 01.06.2017

Matr. Nr.	Kennzahl	Name
1614835	033 535	Jan Nausner
1633068	033 535	David Pernerstorfer

Kontrolle	√
Nichtinvertierender OPV	
OPV und Grenzfrequenz	
Invertierender OPV	
Integrierer	
Schmitt-Trigger	

Contents

1	Nichtinvertierender OPV	3
2	Invertierender OPV	7
3	Integrierer	10
4	Invertierender Schmitt-Trigger	12
5	Anhang - Messwerte	16

Materialien

Oszilloskop: Agilent InfiniiVision MSO-X 3054A

• Frequenzgenerator: Agilent 33220A

• Netzteil Agilent U8031A

• Multimeter: Amprobe 37XR-A

1 Nichtinvertierender OPV

Aufgabenstellung

Durch Messung der Ströme und Spannungen an einem nichtinvertierenden OPV soll dessen Verhalten nachvollzogen werden.

Schaltplan

Figure 1: Nichtinvertierender OPV

Durchführung

Die Schaltung wurde gemäß Schaltplan mit dem OPV-IC LM741 aufgebaut. Die Widerstände wurden mit $R_1=1k\Omega$ und $R_2=47k\Omega$ gewählt um gemäß der Übertragungsfunktion der Schaltung

$$U_a = U_e(1 + \frac{R_2}{R_1}) = U_e(1 + \frac{47k\Omega}{1k\Omega}) = 48 * U_e$$

eine 48-fache Verstärkung der Eingangsspannung zu erreichen. Der OPV wurde mit $\pm 15V$ Versorgungsspannung betrieben. Um Ströme und Spannungen in der Schaltung zu messen,

wurde ein Eingangsspannung von 0,1V angelegt und die Werte in der Folge mit dem Multimeter erhoben. Dieselben Messungen wurden mit einer Eingangsspannung von 0,3V wiederholt. Um das Verhalten des nichtinvertierenden OPV im Zeitbereich zu untersuchen, wurde eine Rechteckspannung mit $0,1V_{pp}$ Amplitude und jeweils mit 100Hz und 10kHz Frequenz angelegt. Hierbei wurden Messungen mit dem Oszilloskop durchgeführt.

Ergebnisse & Diskussion

	$U_e = 0, 1V$	$U_e = 0, 3V$
U_a	5,43V	14,21V
U_{R2}	4,43V	13,91V
U_{R1}	100mV	293mV
U_d	-0.8mV	5mV
I_{R2}	105uA	-279uA
I_{R1}	102uA	-280uA
$\overline{I_+}$	0,15uA	0,07uA
I_{-}	-0,04uA	-0,11uA

Table 1: Messergebnisse bei Gleichspannung

Die Verstärkung eines Idealen OPV ist unendlich groß, sie wird jedoch durch die Beschaltung herabgesetzt. Die berechnete Verstärkung der Schaltung beträgt 48, bei $U_e=0,1V$ beträgt die gemessene Verstärkung 54,3 und bei $U_e=0,3V$ 47. Da der Ideale OPV einen unendlich großen Eingangswiderstand hat, kann man auch hier erkennen, dass an den Eingängen nur ein sehr kleiner Strom fließt. Die Differenzspannung, welche beim idealen OPV 0V beträgt ist mit -0,8mV bzw. 5mV bei der realen Beschaltung auch sehr klein. Man erkennt, dass an R_1 die Eingangspannnung abfällt.

Figure 2: Rechtecksignal mit 100Hz (gelb ... U_e , grün ... U_a)

	pp	RMS
U_e	100mV	49,7mV
$\overline{U_a}$	4,8V	2,4V

Table 2: Messungen mit Oszilloskop

Das Rechteckssignal am Eingang wird am Ausgang 48-fach verstärkt, wie man anhand der Spitze-Spitze-Spannungen erkennen kann. Das Signal am Ausgang entspricht ebenfalls einem Rechteck. Ein- und Ausgangsspannung sind phasengleich.

Figure 3: Rechtecksignal mit 10kHz (gelb ... U_e , grün ... U_a)

	pp	RMS
U_e	100mV	49,7mV
$\overline{U_a}$	4,7V	1,8V

Table 3: Messungen mit Oszilloskop

Das Eingangssignal wird 47-fach verstärkt, wie man anhand der Spitze-Spitze-Spannungen erkennen kann. Jedoch ist am Ausgang kein Rechtecksignal mehr zu erkennen, was sich auf die Tiefpasseigenschaft eines OPV zurückführen lässt, die bei überschreiten der Grenzfrequenz sichtbar wird.

2 Invertierender OPV

Aufgabenstellung

Durch Messung der Ströme und Spannungen an einem invertierenden OPV soll dessen Verhalten nachvollzogen werden. Weiters soll das Frequenzverhalten des beschalteten OPV bei unterschiedlicher Verstärkung untersucht werden.

Schaltplan

Figure 4: Invertierender OPV

Durchführung

Die Schaltung wurde gemäß Schaltplan mit dem OPV-IC LM741 aufgebaut. Die Widerstände wurden mit $R_1=1k\Omega$ und $R_2=47k\Omega$ gewählt um gemäß der Übertragungsfunktion der Schaltung

$$U_a = -\frac{R_2}{R_1}U_e = -\frac{47k\Omega}{1k\Omega}U_e = -47*U_e$$

eine 48-fache Verstärkung der Eingangsspannung zu erreichen. Der OPV wurde mit $\pm 15V$ Versorgungsspannung betrieben. Um Ströme und Spannungen in der Schaltung zu messen, wurde ein Eingangsspannung von 0,1V angelegt und die Werte in der Folge mit dem Multimeter erhoben. Um das Verhalten des invertierenden OPV im Zeitbereich zu untersuchen, wurde eine Dreieckspannug mit $0,1V_{pp}$ Amplitude und jeweils mit 100Hz und 10kHz Frequenz angelegt. Hierbei wurden Messungen mit dem Oszilloskop durchgeführt. Um das Frequenzverhalten der Schaltung zu untersuchen wurde jeweils ein Bode-Diagramm für den invertierenden Verstärker mit -47-facher und -4,7-facher ($R_2=4,7k\Omega$) Verstärkung angefertig. Hierfür wurde als Eingangsspannung ein Sinussignal mit $0,1V_{pp}$ gewählt, wobei im Bereich zwischen 10Hz und 1MHz gemessen wurde.

Ergebnisse & Diskussion

	$U_e = 0, 1V$
U_a	-5,77V
$\overline{U_{R2}}$	5,69V
U_{R1}	128mV
$\overline{U_d}$	35mV
$\overline{I_{R2}}$	123uA
$\overline{I_{R1}}$	66uA
$\overline{I_+}$	-0,02uA
$\overline{I_{-}}$	7,38uA

Table 4: Messergebnisse bei Gleichspannung

Die Verstärkung eines Idealen OPV ist unendlich groß, sie wird jedoch durch die Beschaltung herabgesetzt. Die berechnete Verstärkung der Schaltung beträgt -47, bei $U_e=0,1V$ beträgt die gemessene Verstärkung -57,7. Da der Ideale OPV einen unendlich großen Eingangswiderstand hat, kann man auch hier erkennen, dass an den Eingängen nur ein sehr kleiner Strom fließt. Die Differenzspannung, welche beim idealen OPV 0V beträgt ist mit 35mV bei der realen Beschaltung auch sehr klein.

Figure 5: Dreiecksignal mit 100Hz (gelb ... U_e , grün ... U_a)

	pp	RMS
U_e	92mV	28mV
$\overline{U_a}$	4,7V	1,82V

Table 5: Messungen mit Oszilloskop

Das Dreieckssignal wird am Ausgang -47-fach (an Spitze-Spitze-Spannung ersichtlich) verstärkt. Am Ausgang ist ein (gegenüber dem Eingang) invertiertes Dreiecksignal erkennbar. Die beiden Signale verlaufen phasengleich.

Figure 6: Dreiecksignal mit 10kHz (gelb ... U_e , grün ... U_a)

$$\begin{array}{c|cccc} & pp & RMS \\ \hline U_e & 91mV & 27mV \\ \hline U_a & 3,21V & 1,68V \\ \end{array}$$

Table 6: Messungen mit Oszilloskop

Bei hoher Frequenz wird die Verstärkung vermindert und das Dreiecksignal wird am Ausgang verschliffen. Dies liegt an der Tiefpasseigenschaft der Verstärkerschaltung, welche nach überschreiten der Grenzfrequenz in Erscheinung tritt.

Figure 7: Amplitudengang mit -47x (f_{g1}) bzw. -4,7x (f_{g2}) Verstärkung

Da sich ein OPV intern wie ein Tiefpass verhält, fällt die Verstärkung zwischen Grenzfrequenz ($f_{g1}=26kHz, f_{g2}=230kHz$) und Transitfrequenz (Bauteileigenschaft des OPV, $f_t=700kHz$) mit einer Filtersteilheit von ca. -20dB/Dekade. Bei der Transitfrequenz wird das Signal nicht mehr verstärkt.

Wenn die Verstärkung der Schaltung verringert wird (hier auf $\frac{1}{10}$), verschiebt sich die Grenzfrequenz in Richtung höherer Frequenzen ($26kHz \rightarrow 230kHz$) und die Dämpfung ist erst ca. eine Dekade später zu erkennen.

3 Integrierer

Aufgabenstellung

In der Übung soll eine einfache integrierende Operationsverstärkerschaltung aufgebaut werden. Es sollen die Ströme und Spannungen in dieser Schaltung gemessen und dadurch das Verhalten eines Integrierers nachvollzogen werden.

Schaltplan

Figure 8: Integrierer

Durchführung

Die Schaltung wurde gemäß Schaltplan (siehe 8) mit dem OPV LM324 aufgebaut. Der OPV wurde mit $\pm 15V$ Versorgungsspannung betrieben. Mittels Funktionsgenerator wurde am Eingang ein periodisches Rechtecksignal mit der Einstellung $0,1V_{PP}$, Offset 0V, Duty Circle 50% und Frequenz 5Hz angelegt. Die Wirkungsweise wurde untersucht und die Eingangsund Ausgangsspannung aufgezeichnet.

Ergebnisse & Diskussion

Figure 9: Integrierer Rechtecksignal 5Hz (gelb ... U_e , grün ... U_a)

Ein Integrierer ist ein Verstärker, bei dem der Ausgang über einen Kondensator auf den invertierenden Eingang rückgekoppelt wird. Außerdem wird ein hochohmiger Widerstand R_S parallel dazu geschalten, welcher jedoch nur zu Stabilisierung dient. Aufgrund der Kapazität des Kondensators C ergibt sich die Übertragungsfunktion:

$$U_a = -\frac{1}{R_1 C} \int U_e dt$$

Am Ausgang erhält man also das invertierte Integral der Eingangsspannung über die Zeit. Wie in der Abbildung 9 zu sehen ist, ergibt sich daher mit einem Rechtecksigal am Eingang ein Dreiecksignal am Ausgang. Verwendung findet die Schaltung bspw. als Teil von PID-Reglern, als aktiver Filter, in der Analogtechnik zum Generieren von Sägezahnschwingungen oder in Analogrechnern.

4 Invertierender Schmitt-Trigger

Aufgabenstellung

In der Übung soll ein invertierender Schmitt-Trigger aufgebaut und dessen Funktionsweise dokumentiert werden.

Schaltplan

Figure 10: Invertierender Schmitt-Trigger

Durchführung

Der invertierende Schmitt-Trigger wurde gemäß Schaltplan (siehe 10) mit dem OPV LM324 aufgebaut. Am OPV wurde mit +5V am positiven Versorgungsanschluss betrieben, der negative Versorgungsanschluss wurde mit Masse verbunden. Mittels Funktionsgenerator wurde am Eingang ein periodisches Sinussignal mit der Einstellung $5V_{PP}$, Offset 2,5V und Frequenz 50Hz angelegt. Die Spannungen U_a , U_e und U_t wurden gemessen und protokolliert (siehe Tabelle 7). Weiters wurden Eingangs- und Ausgangssignal mit dem Oszilloskop im Zeitund Bildbereich aufgezeichnet (siehe Abbildung 11 und 12).

Ergebnisse & Diskussion

$$\begin{array}{c|c} U_e(PP) & 5,11V \\ \hline U_a(PP) & 3,26V \\ \hline U_t(PP) & 1,72V \\ \end{array}$$

Table 7: Messung Spannungen Invertierender Schmitt-Trigger

Allgemein schaltet ein Schmitt-Trigger am Ausgang zwischen der positiven bzw. negativen Versorungsspannung um. Die Schaltschwellen, wo das Ausgangssignal kippt sind im Allgemeinen symmetrisch zur Nullline. Um nun die Schaltschwellen auf ein anderes Spannungsniveau zu ändern, welches nicht symmetrisch zur Nulllinie ist, wird der OPV unipolar und mit einer Referenzspannung betrieben. Dh. die negative Versorgungsspannung mit Masse verbunden. Die positive bzw. negative Versorungsspannung wird hier nicht erreicht, da es sich hier um eine Rail-To-Rail OPV Schaltung handelt.

Figure 11: Invertierender Schmitt-Trigger mit 50Hz Sinussignal (gelb ... U_e , grün ... U_a)

Der Schmitt-Trigger arbeitet als Komparator mit Hysterese. Das bedeutet, dass die beiden Eingänge (invertierend und nichtinvertierend) verglichen werden und der Ausgang schaltet entsprechend auf U_{low} bzw. auf U_{high} . Wie in Abbildung 11 zu erkennen ist, hängen U_e und U_a so zusammen, dass bei den Schwellwerten ($\approx 1V$ und $\approx 2,5V$) der Ausgang entweder auf $\approx 0,6V$ bzw. auf $\approx 3,8V$ kippt. Die Spannung U_t ist direkt proportional zu U_a . Diese Kippstufe kommt daher, dass ein Teil der Ausgangsspannung auf den positiven Eingang des OPV zurückgeführt wird (Mitkopplung). Allgemein benötigt man die Hysterese, da sonst im Bereich der Schaltschwelle die Ausgangsspannung mehrfach kippen könnte.

Bei der Ausgangsspannung U_a ist mit 0,6V bzw. 3,8V ein Unterschied zu den berechneten Werten aus der Simulation zu erkennen (0,029V bzw. 4,39). Dies kommt daher, dass bei der Berechnung ideale Bauelementen angenommen werden. Wird die Amplitude des Eingangssignals verringert, so kann man sehen, dass der Schmitt Trigger am Ausgang nicht mehr schaltet.

Figure 12: Invertierender Schmitt-Trigger mit Sinussignal (Bildbereich); x-Achse: U_e ; y-Achse: U_a

Die Abbildung 12 zeigt die Hysterese-Kennlinie des invertierenden Schmitt-Triggers. Auf der x-Achse ist die Eingangsspannung und auf der y-Achse die Ausgangsspannung eingtragen. Der Verlauf sieht so aus, dass die Linie links oben startet. Die Eingangsspannung wird erhöht, ohne dass sich die Ausgangsspannung ändert. Wird der obere Schwellwert des Schmitt-Triggers erreicht (rechts oben), so schaltet der Ausgang auf U_{low} . Danach steigt die Eingangsspannung weiter, ohne Änderung am Ausgang. Da es sich um ein periodisches Sinussignal handelt, sinkt dann die Eingangsspannung wiederum bis auf den unteren Schwellwert und der Ausgang schaltet wider auf U_{high} .

Verwendet wird diese Schaltung bspw. zum Erzeugen von binären Signalen oder um eindeutige Schaltzustände aus einem analogen Eingangssignalverlauf zu gewinnen.

5 Anhang - Messwerte

f[Hz]	Ue[V]	Ua[V]
10	0,0845	3,99
20	0,091	4,033
40	0,0765	4,21
60	0,0735	3,45
80	0,076	3,88
100	0,095	4,47
200	0,095	4,37
400	0,075	3,53
600	0,095	4,39
800	0,095	4,38
1000	0,093	4,39
2000	0,095	4,32
4000	0,095	4,22
6000	0,095	4,08
8000	0,095	3,88
10000	0,095	3,66
20000	0,097	2,72
25000	0,1	2,35
26000	0,1	2,33
30000	0,1	2,07
35000	0,1	1,805
40000	0,1	1,63
60000	0,1	1,123
80000	0,1	0,843
100000	0,1	0,7
200000	0,1	0,35
400000	0,1	0,187
600000	0,1	0,129
700000	0,1	0,1
800000	0,1	0,09
1000000	0,1	0,07

Figure 13: Messdaten invertierender OPV (-47 Verstärkung)

f[Hz]	Ue[V]	Ua[V]
10	0,125	0,51
20	0,125	0,51
40	0,125	0,51
60	0,125	0,51
80	0,125	0,51
100	0,125	0,51
200	0,125	0,51
400	0,125	0,51
600	0,125	0,51
800	0,125	0,51
1000	0,125	0,51
2000	0,125	0,51
4000	0,125	0,5
6000	0,125	0,5
8000	0,133	0,5
10000	0,133	0,5
20000	0,133	0,5
40000	0,096	0,429
60000	0,096	0,416
80000	0,099	0,395
100000	0,099	0,371
200000	0,1	0,27
230000	0,1	0,247
400000	0,1	0,159
600000	0,1	0,11
650000	0,102	0,102
700000	0,102	0,096
750000	0,103	0,09
800000	0,104	0,084
1,00E+06	0,104	0,069

Figure 14: Messdaten invertierender OPV (-4,7 Verstärkung)