明細書

冷凍装置

技術分野

[0001] 本発明は、冷蔵庫等の庫内を冷却するための熱交換器が複数設けられた冷凍装置に関するものである。

背景技術

- [0002] 従来より、冷凍サイクルを行う冷媒回路を備えた冷凍装置が知られており、食品等を貯蔵する冷蔵庫等の冷却機として広く利用されている。例えば、特許文献1には、冷蔵庫等の庫内を冷却するための熱交換器を複数備えた冷凍装置が開示されている。この冷凍装置では、1つの室外ユニットに対して、冷蔵庫内を冷却する冷蔵熱交換器と、冷凍庫内を冷却する冷凍熱交換器とが並列に接続されている。また、この冷凍装置では、室外ユニットの主圧縮機とは別に、冷凍熱交換器と室外ユニットとの間に副圧縮機が設けられている。この冷凍装置では、1つの冷媒回路において、冷蔵熱交換器を蒸発器とする単段冷凍サイクルと、冷凍熱交換器を蒸発器として副圧縮機を低段圧縮機とする2段圧縮冷凍サイクルとが行われる。
- [0003] 上記冷凍装置では、冷凍熱交換器における冷媒の蒸発温度が比較的低<設定されている。したがって、冷凍熱交換器に空気中の水分が付着して凍結し、付着した霜によって庫内空気の冷却が阻害されるれづ問題が生じる。そこで、冷凍熱交換器に付着した霜を融かすこと、即ち冷凍熱交換器の除霜(デフロスト)が必要となる。
- [0004] このような冷凍熱交換器の除霜は、特許文献2に開示されているように、電気ヒータを用いて行われるのが一般的である。つまり、一般的な冷凍装置では、電気ヒータで加熱した空気を冷凍熱交換器へ供給し、冷凍熱交換器に付着した霜を空気で暖めて融かすデフロスト運転が行われる。
- [0006] また、冷凍熱交換器の除霜は、特許文献3に開示されているように、いわゆるホットガスバイパスによって行われる場合もある。つまり、圧縮機と冷凍熱交換器の間だけで冷媒を循環させ、圧縮機から吐出された比較的高温のガス冷媒を冷凍熱交換器へ導入して霜を融かすことも提案されている。

特許文献,:特開,00,-228297号公報

特許文献::特開平0, -324978号公報

特許文献; :特開2001-183037号公報

発明の開示

発明が解決しよっとする課題

- [000.] 上述のよっに、上記冷凍装置では、冷凍熱交換器の除霜に電気ヒータを用いるのが一般的である。ところが、この場合には、電気ヒータで加熱した空気を冷凍熱交換器へ供給して霜を融かすため、加熱された空気が冷凍庫内へ流入してしまい、庫内温度の上昇を招くおそれがある。また、冷凍熱交換器に付着した霜を空気によって外側から暖めなけばならず、冷凍熱交換器の除霜に長時間(例えば40分以了)を要するれづ問題もある。
- [000.] 一方、上述のよっな問題点は、ホットガスバイパスによって冷凍熱交換器の除霜を行っことで幾分改善される。つまり、ホットガスバイパスによる除霜では、冷凍熱交換器の伝熱管内に温度の高い冷媒が導入され、冷凍熱交換器に付着した霜は内側から暖められる。このため、冷凍熱交換器の除霜中における庫内温度の上昇幅は、電気ヒータを用いて除霜を行っ場合に比べれば小さくなる。
- [000,] しかしながら、ホットガスバイパスによる除霜中には、圧縮機と冷凍熱交換器の間だけで冷媒が循環するに過ぎず、霜を融かすために利用できる熱は、圧縮機で冷媒に付与された熱だけである。このため、依然として冷凍熱交換器の除霜に長時間を要するれづ問題がある。
- [000.] また、冷凍熱交換器へ供給された冷媒は、単に再び圧縮機へ吸入されるだけであって、冷凍熱交換器の除霜以外には全<利用されない。つまり、冷凍熱交換器の除霜中において、圧縮機は冷凍熱交換器を除霜するためだけに運転されることになる。このため、電気ヒータを用いる場合と同様に、冷凍熱交換器の除霜に伴って消費される電力が嵩み、冷凍装置のランニングコストの上昇を招くれづ問題もある。
- [00] 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、冷蔵庫等の庫内冷却用の熱交換器を複数備える冷凍装置において、庫内冷却用の熱交換器の除霜に要する時間を削減すると共に、冷凍装置の消費電力を削減してそのラン

ニングコストを低減することにある。

課題を解決するための手段

- [0011] 本発明は、複数の熱交換器を有する冷媒回路を備えた冷凍装置において、冷蔵熱交換器からの冷媒を副圧縮機で圧縮した後、冷凍用熱交換器を介して冷蔵熱交換器に循環させることで、冷凍熱交換器の除霜を行う三路切換機構を設けるようにしたものである。
- [0012] より具体的に、第1の発明は、庫内を冷却する第1熱交換器(111)を有する第1冷却回路(110)と、庫内を冷却する第2熱交換器(131)及び副圧縮機(141)を有する第2冷却回路(30)とが、主圧縮機(41)を有する熱源側回路(40)に対して並列に接続されて構成される冷媒回路(20)を備えた冷凍装置を前提としている。そして、この冷凍装置は、上記冷媒回路(20)に、第2熱交換器(131)からの冷媒を副圧縮機(141)で圧縮した後、主圧縮機(41)の吸入側に送る第1動作と、第1熱交換器(111)からの冷媒を副圧縮機(141)で圧縮した後、第2熱交換器(131)を介して第1熱交換器(111)に循環させる第2動作とを切り換えて行う3路切換機構(142,160)が備えられ、上記第2熱交換器(131)を除霜するデフロスト運転中には、上記冷媒回路(20)で第2動作が行われるものである。
- [0013] 上記第1の発明では、冷凍装置に冷媒回路(20)が設けられる。冷媒回路(20)では、熱源側回路(40)に対して第1冷却回路(110)と第2冷却回路(30)とが並列に接続されている。また、冷媒回路(20)には、三路切換機構(142,160)が設けられる。この冷媒回路(20)では、三路切換機構(142,160)を操作することによって、第1動作と第2動作とが切換可能となっている。第1動作と第2動作の何れにおいても、熱源側回路(40)から第1冷却回路(110)へ供給された冷媒は、第1熱交換器(111)で蒸発して主圧縮機(41)に吸入される。第1動作において、熱源側回路(40)から第2冷却回路(30)へ供給された冷媒は、第2熱交換器(131)で蒸発して副圧縮機(141)へ吸入され、副圧縮機(141)で圧縮されてから主圧縮機(41)に吸入される。
- [0014] この発明において、冷凍装置(10)では、第2熱交換器(131)を除霜するためのデフロスト運転が行われる。このデフロスト運転中には、冷媒回路(20)で第2動作が行われる。第2動作において、副圧縮機(141)は、第1熱交換器(111)で蒸発した冷媒を

吸入して圧縮し、圧縮した冷媒を第2熱交換器(131)へ供給する。第2熱交換器(131)では、付着した霜が副圧縮機(141)から供給された冷媒によって加熱されて融解する。したがって、第2熱交換器(131)の除霜には、第1熱交換器(111)で冷媒が吸熱した熱と、副圧縮機(141)で冷媒に付与された熱とが利用される。第2熱交換器(131)で放熱して凝縮した冷媒は、第1熱交換器(111)へ循環され、庫内を冷却するために再び利用される。つまり、副圧縮機(141)から第2熱交換器(131)へ除霜のために供給された冷媒は、第1熱交換器(111)へ戻されて庫内冷却にも利用される。

- [0015] 第2の発明は、第1の発明の冷凍装置において、三路切換機構(142,160)が、第1動作時に第2熱交換器(131)を副圧縮機(141)の吸入側と連通させる一方、第2動作時に第2熱交換器(131)を副圧縮機(141)の吐出側と連通させる第1の三路切換機構(142)と、第1動作時に主圧縮機(41)の吸入側を副圧縮機(141)の吐出側と連通させる一方、第2動作時に主圧縮機(41)の吸入側を副圧縮機(141)の吸入側と連通させる第2の三路切換機構(160)とで構成されているものである。
- [0016] 上記第2の発明では、冷媒回路(20)に第1と第2の三路切換機構(142,160)が設けられる。ここで、第1動作時には、第1三路切換機構(142)が第2熱交換器(131)と副 圧縮機(141)の吸入側とを連通させることで、第2熱交換器(131)で蒸発した冷媒が 副圧縮機(141)に吸入されて圧縮される。同時に、第2三路切換機構(160)が副圧縮機(141)の吐出側と主圧縮機(41)の吸入側とを連通させることで、副圧縮機(141)で圧縮された冷媒が主圧縮機(41)に吸入される。
- [0017] 一方、第2動作時には、第2三路切換機構(160)が副圧縮機(141)の吸入側と主圧縮機(41)の吸入側、すなわち第1熱交換器(111)の出口側とを連通させることで、第1熱交換器(111)で蒸発した冷媒が副圧縮機(141)に吸入されて圧縮される。同時に、第1三路切換機構(142)が副圧縮機(141)の吐出側と第2熱交換器(131)とを連通させることで、副圧縮機(141)で圧縮された冷媒が第2熱交換器(131)へ供給される。第2熱交換器(131)では、付着した霜が副圧縮機(141)から供給された冷媒によって加熱されて融解する。したがって、第2熱交換器(131)の除霜には、第1熱交換器(111)で冷媒が吸熱した熱と、副圧縮機(141)で冷媒に付与された熱とが利用される。第2熱交換器(131)で放熱した熱と、副圧縮機(141)で冷媒に付与された熱とが利用される。第2熱交換器(131)で放熱した熱と、副圧縮機(141)で冷媒に付与された熱とが利用される。第

を冷却するために再び利用される。つまり、副圧縮機(141)から第2熱交換器(131) へ除霜のために供給された冷媒は、第1熱交換器(111)へ戻されて庫内冷却にも利 用される。

- [0018] 第3の発明は、第2の発明の冷凍装置において、三路切換機構(142)が三方弁で 構成されているものである。
- [0019] 上記第3の発明では、冷媒回路(20)における冷媒の流れを第2の発明のように切り換える三路切換機構として、三方弁(142)が用いられる。そして、三方弁(142)の開閉方向が所定方向に切り換えられることで、冷媒回路(20)において、第1動作と第2動作とが切り換わって行われる。
- [0000] 第4の発明は、第2の発明の冷凍装置において、三路切換機構(160)が、主配管(163)と、該主配管(163)より2方向に分岐される2本の分岐配管(161,162)と、該分岐配管(161,162)にそれぞれ設けられるとともに一方が開くと他方が閉じる一対の開閉弁(SV-8,SV-g)とで構成されているものである。
- [0021] 上記第4の発明では、冷媒回路(20)における冷媒の流れを第2の発明のように切り換える三路切換機構として、主配管(163)、分岐配管(161,162)、及び開閉弁(SV-8, SV-9)が用いられる。そして、この三路切換機構(160)において、第1分岐配管(161)の開閉弁(SV-8)が閉じると同時に第2分岐配管(162)の開閉弁(SV-9)が開く状態と、第1分岐配管(161)の開閉弁(SV-8)が開くと同時に第2分岐配管(162)の開閉弁(SV-9)が閉じる状態とを切り換えることで、冷媒回路(20)において第1動作と第2動作とが切り換わって行われる。
- [0022] 第5の発明は、第1か6第4のいずれか1の発明の冷凍装置において、第2冷却回路(30)には、第2熱交換器(131)を流出する冷媒の温度を検出して開度を調整する感温式膨張弁(132)と、第2動作時にだけ上記感温式膨張弁(132)をバイパスして冷媒が流通する第1バイパス通路(133)とが設けられているものである。
- [0023] 上記第5の発明では、第2冷却回路(30)に、感温式膨張弁(132)が設けられる。第 1動作時において、熱源側回路(40)から第2冷却回路(30)へ供給された冷媒は、感 温式膨張弁(132)を通過して減圧された後に第2熱交換器(131)へ導入される。この 際、感温式膨張弁(132)は、第2熱交換器(131)を流出する冷媒の温度を検出し、こ

の検出温度に基づいて開度調整を行う。一方、デフロスト運転が行われる第2動作時においては、副圧縮機(141)から第2熱交換器(131)へ供給された冷媒は、上記感温式膨張弁(132)をバイパスして第1バイパス通路(133)を通過する。すなわち、第2熱交換器(131)の除霜に利用された冷媒は、感温式膨張弁(132)を通過せず、第1熱交換器(111)へと送られる。

- [0024] 第6の発明は、第1から第4のいずれか1の発明の冷凍装置において、第2冷却回路(30)には、開度可変な膨張弁(138)が設けられ、第2動作時に上記膨張弁(138)を全開状態に保持する制御手段(201)を備えているものである。
- [0025] 上記第6の発明では、第2冷却回路(30)に開度可変の膨張弁(138)が設けられる。 第1動作時において、熱源側回路(40)から第2冷却回路(30)へ供給された冷媒は、 この膨張弁(138)を通過して減圧された後に第2熱交換器(131)へ導入される。一方 、デフロスト運転が行われる第2動作時においては、制御手段(201)が、第2冷却回 路(30)の膨張弁(138)を全開状態に保持する。このため、第2動作時に副圧縮機(141)から第2熱交換器(131)へ供給され第2熱交換器(131)の除霜に利用された冷媒 は、全開状態の膨張弁(138)を通過して第1熱交換器(111)へと送られる。
- [0026] 第7の発明は、第1から第6のいずれか1の発明の冷凍装置において、冷媒回路(20)に、副圧縮機(141)の停止中にだけ該副圧縮機(141)をバイパスして冷媒が流通する第2バイパス通路(156)が設けられ、デフロスト運転の終了により第2動作から第1動作へ切り換わる際に、上記副圧縮機(141)を所定時間停止させた後に該副圧縮機(141)を起動させる制御手段(202)を備えているものである。
- [0027] 上記第7の発明では、冷媒回路(20)に第2バイパス通路(156)が設けられる。デフロスト運転が終了すると、冷媒回路(20)では第2運転から第1運転への切り換えが行われるが、その際には制御手段(202)が所定の動作を行う。具体的に、制御手段(202)は、第2運転中に運転されていた副圧縮機(141)を一旦停止させ、それから所定時間が経過した後に副圧縮機(141)を起動させる。
- [0028] ここで、第2運転中には、副圧縮機(141)から第2熱交換器(131)へ冷媒が供給されている。第2熱交換器(131)で凝縮した冷媒は、その全てが第1熱交換器(111)へ送り出されるわけではなく、その一部が第2熱交換器(131)に留まる。このため、単に

三路切換機構 (142, 160) を操作して第1動作へ切り換えるだけでは、第2熱交換器 (131) に溜まった液冷媒が副圧縮機 (141) へ吸入され、副圧縮機 (141) の損傷を招く。

- [0029] これに対し、第7の発明では、制御手段(2 cc) が副圧縮機(141)を一時的に停止状態に保っている。このため、第2運転中に第2熱交換器(131)に溜まり込んだ液冷媒は、第2バイパス通路(156)へ流れ込み、停止中の副圧縮機(141)をバイパスして熱源側回路(40)へ送り出される。よって、第2熱交換器(131)から全ての液冷媒が排出された後に副圧縮機(141)を起動するよっにすれば、液冷媒を吸入して副圧縮機(141)が損傷することもなくなる。
- [003 0] 上記第8の発明は、第1から第7のいずれか1の発明の冷凍装置において、上記冷燥回路(20)の第1動作を第2動作に切り換えて上記デフロスト運転を開始させるデフロスト開始判定手段を備え、該デフロスト開始判定手段は、第1動作の経過時間、又は第2熱交換器(131)の着霜量、又は第2熱交換器(131)が設けられる庫内の温度に基づいてデフロスト運転を開始させるように構成されているものである。
- [0031] 上記第8の発明では、デフロスト開始判定手段によって、デフロスト運転の開始のタイミングが判定され、冷媒回路(20)において第1動作から第2動作への切り換えが行われる。具体的に、例えばデフロスト開始判定手段は、第1動作が所定時間経過する、又は第2熱交換器(131)の着霜量の増加を間接的に検知する、あるいは第2熱交換器(131)の周囲の庫内の温度が上昇すると、着霜によって第2熱交換器(131)の冷却能力が低下していると判断し、冷媒回路(20)で第2動作を行わせる。
- [0032] 上記第9の発明は、第1から第7のいずれか1の発明の冷凍装置において、上記冷燥回路(20)の第2動作を第1動作に切り換えて上記デフロスト運転を終了させるデフロスト終了判定手段を備え、上記デフロスト終了判定手段は、第2動作の経過時間、又は副圧縮機(141)の吐出冷媒圧力、又は第2熱交換器(131)を流れる冷媒温度、又は第2熱交換器(131)が設けられる庫内の温度に基づいてデフロスト運転を終了させるように構成されているものである。
- [0033] 上記第9の発明では、デフロスト終了判定手段によって、デフロストの終了のタイミングが判定され、冷媒回路(20)において第2動作から第1動作への切り換えが行われる。

具体的に、例えばデフロスト終了判定手段は、第2動作が所定時間経過する、又は副圧縮機(141)の吐出冷媒圧力が増大する、又は第2熱交換器(131)を流れる冷媒温度が上昇する、あるいは第2熱交換器(131)の周囲の庫内の温度が上昇すると、第2熱交換器(131)の除霜が完了したと判断し、冷媒回路(20)で第1動作を行わせ、第2熱交換器(131)による庫内の冷却を再開させる。

発明の効果

- [0034] 上記第1の発明によれば、第2熱交換器(131)を除霜するデフロスト運転中に第2動作を行行、第1熱交換器(111)で蒸発した冷媒を副圧縮機(141)で圧縮して第2熱交換器(131)へ供給している。このため、第2熱交換器(131)の霜を融かすための熱として、第1熱交換器(111)で冷媒が吸熱した熱と、副圧縮機(141)で冷媒に付与された熱との両方を利用できる。したがって、本発明によれば、従来に比べて第2熱交換器(131)の除霜に利用できる熱量を多く確保することができ、第2熱交換器(131)の除霜に要する時間を大幅に短縮できる。
- [0035] また、本発明では、デフロスト運転中に第2熱交換器(131)で凝縮した冷媒を第1熱交換器(111)へ送り返している。そして、第2熱交換器(131)で放熱してエンタルピの低下した冷媒を、第1熱交換器(111)での庫内冷却にも利用している。このため、デフロスト運転中における副圧縮機(141)の運転によっても第1熱交換器(111)における冷却能力を得ることができ、この得られた冷却能力の分だけ主圧縮機(41)における消費電力を削減できる。したがって、本発明によれば、主圧縮機(41)及び副圧縮機(141)における消費電力を削減することができ、冷凍装置(10)の消費電力を削減してそのランニングコストを低減することができる。
- [0036] 上記第2の発明によれば、第1と第2の三路切換機構(142,160)を操作することによって、冷媒回路(20)で第1動作と第2動作とを切り換えて行っことができる。したがって、第1の発明で上述した作用効果を得ることができる。
- [0037] 上記第3の発明によれば、三路切換機構(142)として三方弁を用いることで、冷媒回路(20)における冷媒の流れを所定方向に切り換え、第1動作と第2動作とを容易に切り換えて行っことができる。
- [0038] 上記第4の発明によれば、三路切換機構(160)として主配管(163)、2本の分岐配

管 (161,162)、2 つの関閉弁 (SV-7,SV-8) を用いることで、冷媒回路 (20) における冷媒の流れを所定方向に切り換え、第1動作と第2動作とを容易に切り換えて行っことができる。

- [0039] 上記第5の発明によれば、デフロスト運転中に第2熱交換器(131) へ供給された冷燥を感温式膨張弁(132)をバイパスさせて第1熱交換器(111)へ送るようにしている。このようにすると、例えば第2熱交換器(131)を流れる冷媒の温度の影響で、感温式膨張弁(132)が全閉したり、所定開度に絞られてしまったりした場合にも、第2熱交換器(131)の冷媒を第1熱交換器(111)へ確実に送ることができる。すなわち、本発明によれば、デフロスト運転時において、第2熱交換器(131)で凝縮した冷媒を感温式膨張弁(132)の開度に何ら影響を受けず、第1熱交換器(111)へ送り出すことができる。
- [0040] 上記第6の発明によれば、デフロスト運転中に制御手段(201)が第2冷却回路(30) の膨張弁(138)を全開状態に保持している。したがって、デフロスト運転中に第2熱交換器(131)で凝縮した冷媒を確実に第1熱交換器(111)へ送り出すことができる。
- [0041] 上記第7の発明によれば、デフロスト運転が終了する際に制御手段(202)が副圧縮機(141)を一時的に停止させ、副圧縮機(141)の停止中に第2パイパス通路(156)を通じて第2熱交換器(131)から液冷媒を排出している。このため、デフロスト運転中に第2熱交換器(131)へ溜まり込んだ液冷媒を副圧縮機(141)が吸入するといった事態を確実に回避できる。したがって、この発明によれば、液冷媒を吸入することによる副圧縮機(141)の損傷を防止でき、冷凍装置(10)の信頼性を向上させることができる。
- [0042] 上記第8の発明によれば、デフロスト開始判定手段により、デフロスト運転が必要なタイミングを確実に判定してデフロスト運転を開始するようにしている。したがって、第2熱交換器(131)の着霜に伴い庫内の冷却効率が大幅に低下してしまうのを未然に回避しながら、必要最小限の頻度でデフロスト運転を行うことができる。
- [0043] 上記第9の発明によれば、デフロスト終了判定手段により、第2熱交換器(131)の除 霜が完了したタイミングを確実に判定してデフロスト運転を終了するようにしている。し たがって、過剰なデフロスト運転を行うことで庫内の温度が上昇してしまっことを未然

に回避しながら、デフロスト運転の短期化を図ることができる。

図面の簡単な説明

[0044] [図1]図1は、実施形態に係る冷凍装置の概略構成図である。

[図2]図2は、冷房運転中の冷媒の流れを示す冷凍装置の概略構成図である。

[図3]図3は、第1暖房運転中の冷媒の流れを示す冷凍装置の概略構成図である。

[図4]図4は、第2暖房運転中の冷媒の流れを示す冷凍装置の概略構成図である。

[図5]図5は、第3暖房運転中の冷媒の流れを示す冷凍装置の概略構成図である。

[図6]図6は、デフロスト運転中の冷媒の流れを示す冷凍装置の概略構成図である。

[図7]図7は、デフロスト運転を終了する際の冷媒の流れを示す冷凍装置の概略構成図である。

[図8]図8は、実施形態の変形例に係る冷凍装置の概略構成図である。

符号の説明

- [0045] (20) 冷媒回路
 - (30) 冷凍回路(第2冷却回路)
 - (40) 室外回路(熱源側回路)
 - (41) 可変容量圧縮機(主圧縮機)
 - (43) 室外熱交換器(熱源側熱交換器)
 - (110) 冷蔵庫内回路(第 上冷却回路)
 - (111) 冷蔵熱交換器(第 菜熱交換器)
 - (120) 冷蔵庫内回路(第 上冷却回路)
 - (121) 冷蔵熱交換器(第^x熱交換器)
 - (131) 冷凍熱交換器(第2熱交換器)
 - (132) 冷凍膨張弁(感温式膨張弁)
 - (133) 第1バイパス配管(第1バイパス通路)
 - (138) 電子膨張弁(膨張弁)
 - (141) ブースタ圧縮機(副圧縮機)
 - (142) 四路切換弁(第1三路切換機構)
 - (156) 第2パイパス配管(第2パイパス通路)

- (160) 第2三路切換機構
- (161) 第1分岐配管 .
- (162) 第2分岐配管
- (163) 主配管
- (201) 開度制御部(制御手段)
- (202) 切換制御部(制御手段)
- (SV-8,SV-g) 開閉弁

発明を実施するための最良の形態

- [0046] 以下、本発明の実施形態を図面に基づいて詳細に説明する。本実施形態の冷凍 装置(10)は、コンビニエンスストア等に設置されて、店内の空気調和とショーケース 内の冷却とを行っものである。
- [0047] 図1に示すよっに、本実施形態の冷凍装置(10)は、室外ユニット(11)と、空調ユニット(12)と、冷蔵庫としての冷蔵ショーケース(13)と、冷凍庫としての冷凍ショーケース(15)と、ブースタユニット(16)とを備えている。室外ユニット(11)は、屋外に設置されている。一方、残りの空調ユニット(12)等は、何れもコンビニエンスストア等の店内に設置されている。
- [0048] 室外 ユニット(11) には室外 回路 (40) が、空調 ユニット(12) には空調 回路 (100) が、冷蔵ショーケース (13) には冷蔵庫 内回路 (110) が、冷凍ショーケース (15) には冷凍庫 内回路 (130) が、ブースタユニット(16) にはブースタ回路 (140) がそれぞれ設けられている。冷凍装置 (10) では、これらの回路 (40,100;…) を配管で接続することによって冷媒 回路 (20) が構成されている。
- [0049] 冷凍庫内回路(130)及びブースタ回路(140)は、互いに直列に接続されており、第 2冷却回路である冷凍回路(30)を構成している。この冷凍回路(30)では、ブースタユニット(16)の端部に液側閉鎖弁(31)及びガス側閉鎖弁(32)がそれぞれ設けられている。一方、冷蔵庫内回路(110)は、単独で第1冷却回路を構成している。また、室外回路(40)は、単独で熱源側回路を構成している。
- [0000] 冷媒回路(20)では、冷蔵庫内回路(110)と冷凍回路(30)とが室外回路(40)に対して互いに並列接続されている。具体的に、冷蔵庫内回路(110)及び冷凍回路(30)は

、第1液側連絡配管 (21) 及び第1ガス側連絡配管 (22) を介して、室外回路 (40) に接続されている。第1液側連絡配管 (21) は、その一端が室外回路 (40) に接続されている。第1液側連絡配管 (21) の他端は、2つに分岐しており、分岐した一方が冷蔵庫内回路 (110) の液側端に接続され、他方が液側閉鎖弁 (31) に接続されている。第1ガス側連絡配管 (22) は、その一端が室外回路 (40) に接続されている。第1ガス側連絡配管 (22) は、その一端が室外回路 (40) に接続されている。第1ガス側連絡配管 (22) の他端は、2つに分岐しており、分岐した一方が冷蔵庫内回路 (110) のガス側端に接続され、他方がガス側閉鎖弁 (32) に接続されている。

- [0051] また、冷媒回路(20)では、空調回路(100)が、第2液側連絡配管(23)及び第2ガス側連絡配管(24)を介して、室外回路(40)に接続されている。第2液側連絡配管(23)は、その一端が室外回路(40)に接続され、他端が空調回路(100)の液側端に接続されている。第2ガス側連絡配管(24)は、その一端が室外回路(40)に接続され、他端が空調回路(100)のガス側端に接続されている。
- [0052] 『室外 ユニット》

上述したよっに、室外 ユニット(11) は、室外 回路(40)を備えている。この室外 回路(40)には、可変容量圧縮機(41)、固定容量圧縮機(42)、室外熱交換器(43)、レシーバ(44)、及び室外膨張弁(45)が設けられている。また、室外 回路(40)には、四路切換弁(51,52)と、液側閉鎖弁(53,55)と、ガス側閉鎖弁(54,56)とが2つずつ設けられている。この室外 回路(40)において、第1液側閉鎖弁(53)には第1液側連絡配管(21)が、第1ガス側閉鎖弁(54)には第1ガス側連絡配管(22)が、第2液側閉鎖弁(55)には第2液側連絡配管(23)が、第2ガス側閉鎖弁(56)には第2ガス側連絡配管(24)がそれぞれ接続されている。

[0063] 可変容量圧縮機(41)及び固定容量圧縮機(42)は、何れも全密閉型で高圧ドーム型のスクロール圧縮機である。可変容量圧縮機(41)には、インバータを介して電力が供給される。この可変容量圧縮機(41)は、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更することによって、その容量が変更可能となってレ巧。可変容量圧縮機(41)は、主圧縮機を構成している。一方、固定容量圧縮機(42)は、圧縮機モータが常に一定の回転速度で運転されるものであって、その容量が変更不能となっている。

- [0064] 可変容量圧縮機 (41) の吸入側には、第1吸入管 (61) の一端が接続されている。第1吸入管 (61) の他端は、第1ガス側閉鎖弁 (54) に接続されている。一方、固定容量圧縮機 (42) の吸入側には、第2吸入管 (62) の一端が接続されている。第2吸入管 (62) の他端は、第2四路切換弁 (52) に接続されている。また、第1吸入管 (61) には吸入接続管 (63) の一端が接続され、第2吸入管 (62) には吸入接続管 (63) の他端が接続されている。この吸入接続管 (63) には、その一端から他端へ向かっ冷媒の流通だけを許容する逆止弁 (CV-1) が設けられている。
- [0055] 可変容量圧縮機(41)及び固定容量圧縮機(42)には、吐出管(64)が接続されている。吐出管(64)の一端は、第1四路切換弁(51)に接続されている。この吐出管(64)は、他端側で第1分岐吐出管(64a)と第2分岐吐出管(64b)とに分岐されている。そして、第1分岐吐出管(64a)が可変容量圧縮機(41)の吐出側に接続され、第2分岐吐出管(64b)が固定容量圧縮機(42)の吐出側に接続されている。第2分岐吐出管(64b)が固定容量圧縮機(42)の吐出側に接続されている。第2分岐吐出管(64b)には、固定容量圧縮機(42)から第1四路切換弁(51)へ向かっ冷媒の流通だけを許容する逆止弁(CV-3)が設けられている。また、吐出管(64)には、吐出接続管(65)の一端が接続されている。吐出接続管(65)の他端は、第2四路切換弁(52)に接続されている。
- [0066] 室外熱交換器 (43) は、クロスフィン式のフィン・アン トチューブ型熱交換器であって、熱源側熱交換器を構成している。この室外熱交換器 (43) では、冷媒と室外空気の間で熱交換が行われる。室外熱交換器 (43) の一端は、閉鎖弁 (57) を介して第1四路切換弁 (51) に接続されている。一方、室外熱交換器 (43) の他端は、第1液管 (81) を介してレシーバ (44) の頂部に接続されている。この第1液管 (81) には、室外熱交換器 (43) からレシーバ (44) へ向かう冷媒の流通だけを許容する逆止弁 (CV-4)が設けられている。
- [0057] レシーバ(44)の底部には、閉鎖弁(58)を介して第2液管(82)の一端が接続されている。この第2液管(82)は、他端側で第1分岐管(82a)と第2分岐管(82b)とに分岐されている。そして、第2液管(82)の第1分岐管(82a)が第1液側閉鎖弁(53)に接続され、その第2分岐管(82b)が第2液側閉鎖弁(55)に接続されている。第2液管(82)の第2分岐管(82b)には、レシーバ(44)から第2液側閉鎖弁(55)へ向かっ冷媒の流通

だけを許容する逆止弁 (CV-5)が設けられている。

- [008] 第2液管 (82) の第2分岐管 (82b) において、逆止弁 (CV-5) と第2液側閉鎖弁 (55) との間には、第3液管 (83) の一端が接続されている。第3液管 (83) の他端は、レシーバ (44) の頂部に接続されている。また、第3液管 (83) には、その一端から他端へ向かっ冷媒の流通だけを許容する逆止弁 (CV-6) が設けられている。
- [0059] 第2液管(82)における閉鎖弁(58)の下流には、第4液管(84)の一端が接続されている。第4液管(84)の他端は、第1液管(81)における室外熱交換器(43)と逆止弁(CV-4)との間に接続されている。また、第4液管(84)には、室外膨張弁(45)が設けられている。
- [0060] 第1四路切換弁(51)は、第1のポートが吐出管(64)に、第2のポートが第2四路切換弁(52)に、第3のポートが室外熱交換器(43)に、第4のポートが第2ガス側閉鎖弁(56)にそれぞれ接続されている。この第1四路切換弁(51)は、第1のポートと第3のポートが互いに連通して第2のポートと第4のポートが互いに連通する第1状態(図1に実線で示す状態)と、第1のポートと第4のポートが互いに連通して第2のポートと第3ポートが互いに連通する第2状態(図1に破線で示す状態)とに切り換え可能となっている。
- [0061] 第2四路切換弁(52)は、第1のポートが吐出接続管(65)に、第2のポートが第2吸入管(62)に、第4のポートが第1四路切換弁(51)の第2のポートにそれぞれ接続されている。また、第2四路切換弁(52)は、その第3のポートが封止されている。よって、第2四路切換弁は、実質的に三方弁として用いられる。この第2四路切換弁(52)は、第1のポートと第3のポートが互いに連通して第2のポートと第4のポートが互いに連通する第1状態(図1に実線で示す状態)と、第1のポートと第4のポートが互いに連通して第2のポートと第4のポートが互いに連通して第2のポートと第3ポートが互いに連通する第2状態(図1に破線で示す状態)とに切り換え可能となっている。
- [0062] 室外 回路 (40) には、油分離器 (70)、油戻 し管 (71)、インジェクション管 (85)、及び 連通管 (87)も設けられている。更に、室外 回路 (40) には、均油管 (72,73) と吸入側配 管 (66,67) とが 2 つず つ設けられている。
- [0063] 油分離器(70)は、吐出管(64)に設けられている。この油分離器(70)は、圧縮機(4

142) の吐出ガスから冷凍機油を分離するためのものである。油分離器 (70) には、油戻し管 (71) の一端が接続されている。油戻し管 (71) の他端は、第1吸入管 (61) に接続されている。また、油戻し管 (71) には、電磁弁 (SV-5)が設けられている。電磁弁 (5V-5)を開くと、油分離器 (70) で分離された冷凍機油が、可変容量圧縮機 (41) の吸入側へ送り返される。

- [0064] 第1均油管(72)は、その一端が可変容量圧縮機(41)に接続され、他端が第2吸入管(62)に接続されている。この第1均油管(72)には、電磁弁(SV-1)が設けられている。一方、第2均油管(73)は、その一端が固定容量圧縮機(42)に接続され、他端が第1吸入管(61)に接続されている。この第2均油管(73)には、電磁弁(SV-2)が設けられている。これら電磁弁(SV-1,SV-2)を適宜開閉することにより、各圧縮機(41,42)における冷凍機油の貯留量が平均でされる。
- [0065] 第1吸入側配管(66)は、その一端が第2吸入管(62)に接続され、その他端が第1吸入管(61)に接続されている。第1吸入側配管(66)には、その一端から他端へ向かって順に、電磁弁(SV-3)と逆止弁(CV-2)とが設けられている。この逆止弁(CV-2)は、第1吸入側配管(66)の一端から他端へ向かっ冷媒の流通だけを許容する。一方、第2吸入側配管(67)は、第1吸入側配管(66)における電磁弁(SV-3)の両側を繋くよっに接続されている。第2吸入側配管(67)には、電磁弁(SV-4)が設けられている。
- [0066] インジェクション管 (85) は、いわゆる液インジェクションを行っためのものである。インジェクション管 (85) は、その一端が閉鎖弁 (59) を介して第4液管 (84) に接続され、他端が第1吸入管 (61) に接続されている。インジェクション管 (85) には、開度可変の流量調節弁 (86) が設けられている。インジェクション管 (85) における閉鎖弁 (59) と流量調節弁 (86) との間には、連通管 (87) の一端が接続されている。連通管 (87) の他端は、油戻し管 (71) における油分離器 (70) と電磁弁 (SV-5) の間に接続されている。連通管 (87) には、その一端から他端へ向かう冷媒の流通だけを許容する逆止弁 (CV-7) が設けられている。
- [0067] 室外回路(40)には、各種のセンサや圧力ス小ツチも設けられている。具体的に、第 1吸入管(61)には、第1吸入温度センサ(91)と第1吸入圧力センサ(93)とが設けられ

ている。第2吸入管 (62) には、第2吸入温度センサ (92) と第2吸入圧力センサ (94) と が設けられている。吐出管 (64) には、吐出温度センサ (96) と吐出圧力センサ (97) と が設けられている。第1,第2吐出分岐管 (64a,64b) には、高圧圧力スイッチ (95) が1 つずつ設けられている。

[0068] また、室外ユニット(11) には、外気温センサ(90) と室外ファン(48) とが設けられている。室外熱交換器(43)へは、この室外ファン(48) によって室外空気が送られる。

[0069] (空調ユニット)

上述したよっに、空調ユニット(12)は、空調回路(100)を備えている。空調回路(100)では、その液側端からガス側端へ向かって順に、空調膨張弁(102)と空調熱交換器(101)とが設けられている。空調熱交換器(101)は、クロスフィン式のフィン・アントチューブ型熱交換器によって構成されている。この空調熱交換器(101)では、冷媒と室内空気の間で熱交換が行われる。一方、空調膨張弁(102)は、電子膨張弁によって構成されている。

[0070] 空調ユニット(12)には、熱交換器温度センサ(103)と冷媒温度センサ(104)とが設けられている。熱交換器温度センサ(103)は、空調熱交換器(101)の伝熱管に取り付けられている。冷媒温度センサ(104)は、空調回路(100)におけるガス側端の近傍に取り付けられている。また、空調ユニット(12)には、内気温センサ(106)と空調ファン(105)とが設けられている。空調熱交換器(101)へは、この空調ファン(105)によって店内の室内空気が送られる。

[0071] 《鈴蔵ショーケース》

上述したよっに、冷蔵ショーケース(13) は、冷蔵庫内回路(11 0)を備えている。冷蔵庫内回路(11 0)では、その液側端からガス側端へ向かって順に、冷蔵膨張弁(112)と冷蔵熱交換器(111)とが設けられている。冷蔵熱交換器(111)は、クロスフィン式のフィン・アントチューブ型熱交換器であって、第1熱交換器を構成している。この冷蔵熱交換器(111)では、冷媒と庫内空気の間で熱交換が行われる。一方、冷蔵膨張弁(112)は、電子膨張弁によって構成されている。

[0072] 冷蔵ショーケース(13)には、熱交換器温度センサ(113)と冷媒温度センサ(114)と が設けられている。熱交換器温度センサ(113)は、冷蔵熱交換器(111)の伝熱管に 取り付けられている。冷媒温度センサ(114)は、冷蔵庫内回路(110)におけるガス側端の近傍に取り付けられている。また、冷蔵ショーケース(13)には、冷蔵庫内温度センサ(116)と冷蔵庫内ファン(115)とが設けられている。冷蔵熱交換器(111)へは、この冷蔵庫内ファン(115)によって冷蔵ショーケース(13)の庫内空気が送られる。

[0073] #冷凍ショーケース》

上述したよっに、冷凍ショーケース(15)は、冷凍庫内回路(130)を備えている。冷凍庫内回路(130)では、その液側端からガス側端へ向かって順に、電磁弁(SV-6)、冷凍膨張弁(132)、冷凍熱交換器(131)、及び冷媒温度センサ(134)が設けられている。冷凍熱交換器(131)は、クロスフィン式のフィン・アントチューブ型熱交換器であって、第2熱交換器を構成している。この冷凍熱交換器(131)では、冷媒と庫内空気の間で熱交換が行われる。一方、冷凍膨張弁(132)は、感温式膨張弁によって構成されている。この冷凍膨張弁(132)は、点温式膨張弁によって構成されている。この冷凍膨張弁(132)は、上記冷媒温度センサ(134)の検出温度、すなわち冷凍熱交換器(131)を流出する冷媒の蒸発温度を検出して開度調整を行う。

- [0074] 冷凍庫内回路(130)には、第1バイパス配管(133)が設けられている。第1バイパス配管(133)は、一端が冷凍熱交換器(131)と冷凍膨張弁(132)との間に接続され、他端が電磁弁(SV-6)と冷凍庫内回路(130)の液側端との間に接続されている。この第1バイパス通路(133)には、その一端より他端に向かって順に、電磁弁(SV-7)と逆止弁(CV-8)とが設けられている。上記逆止弁(CV-8)は、電磁弁(SV-7)から冷凍庫内回路(130)の液側端へ向かっ冷媒の流通だけを許容する。第1バイパス配管(133)は、詳細は後述する第2動作時にだけ冷凍膨張弁(132)をバイパスして冷媒が流通する第2バイパス通路を構成している。
- [0075] また、冷凍ショーケース(15)には、冷凍庫内温度センサ(136)と冷凍庫内ファン(13 5)とが設けられている。冷凍熱交換器(131)へは、この冷凍庫内ファン(135)によって 冷凍ショーケース(15)の庫内空気が送られる。

[0076] ^はブースタコニット**)**

上述したよっに、ブースタユニット(16) は、ブースタ回路 (140) を備えている。ブースタ回路 (140) には、ブースダ連絡管 (143) と、ブースタ圧縮機 (141) と、四路切換弁 (142) とが設けられている。

- [0077] ブースタ連絡管 (143) は、一端が液側閉鎖弁 (31) を介して第1液側連絡配管 (21) に接続され、他端が冷凍回路 (130) の液側端と接続されている。このブースタ連絡管 (158) は、第1液側連絡配管 (21) をより分岐された液冷媒を冷凍庫内回路 (130) に送るものである。
- [0078] ブースタ圧縮機 (141) は、全密 閉型で高圧 ドーム型のスクロール圧縮機である。ブースタ圧縮機 (141) には、インバータを介して電力が供給される。このブースタ圧縮機 (141) は、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更することによって、その容量が変更可能となっている。ブースタ圧縮機 (141) は、副圧縮機を構成している。
- [0079] ブースタ圧縮機 (141) は、その吸入側に吸入管 (144) の一端が接続され、その吐出側に吐出管 (145) の一端が接続されている。吸入管 (144) と吐出管 (145) とは、それぞれの他端が四路切換弁 (142) に接続されている。
- [0080] 上記吸入管(144)には、ブースタ圧縮機(141)の吸入側近傍に吸入圧力センサ(146)と吸入温度センサ(147)とが設けられている。
- [0081] 上記吐出管(145)には、ブースタ圧縮機(141)から四路切換弁(142)へ向かって順に、吐出温度センサ(148)、高圧圧力ス不ソチ(149)、吐出圧力センサ(150)、油分離器(151)、及び逆止弁(CV-g)が設けられている。逆止弁(CV-g)は、ブースタ圧縮機(141)の吐出側から四路切換弁(142)へ向かう冷媒の流通だけを許容する。
- [0082] 油分離器 (151) は、ブースタ圧縮機 (141) の吐出ガスから冷凍機油を分離するためのものである。油分離器 (151) には、油戻し管 (152) の一端が接続されている。油戻し管 (152) の他端は、吸入管 (144) に接続されている。この油戻し管 (152) には、キャピラリチューブ (153) が設けられている。油分離器 (151) で分離された冷凍機油は、油戻し管 (152) を通じてブースタ圧縮機 (141) の吸入側へ送り返される。
- [0083] 四路切換弁(142)は、第1のポートに吐出管(145)が接続され、第2のポートに吸入管(144)が接続されている。また、第3のポートが配管を介して冷凍庫内回路(130)のガス側端に接続されている一方、第4ポートは封止されている。よって、この四路切換弁(142)は、冷媒の流れを三方向において切り換える三方弁として用いられる。そして、四路切換弁(142)は、第1のポートと第4のポートが互いに連通して第2のポートと

第3のポートが互いに連通する第1状態(図1に実線で示す状態)と、第1のポートと第3のポートが互いに連通して第2のポートと第4ポートが互いに連通する第2状態(図1に破線で示す状態)とに切り換え可能となっている。

- [0084] 以上のようにして、四路切換弁(142)は、冷媒回路(20)における第1動作と第2動作とを相互に切り換え可能とするための三路切換機構(第1三路切換機構)を構成している。具体的に、第1三路切換機構(142)は、第1動作時に第1状態となることで、冷凍熱交換器(131)とブースタ圧縮機(141)の吸入側とも連通させる一方、第2動作時に第2状態となることで、冷凍熱交換器(131)とブースタ圧縮機(141)の吐出側とを連通させる。
- [0085] また、ブースタ回路(140)には、主配管(163)と、該主配管(163)の一端より2方向に分岐される2本の分岐配管(161,162)とが設けられている。主配管(163)の他端は、ガス側閉鎖弁(32)を介して第1ガス側連絡配管(22)と接続されている。
- [0086] 分岐配管(161,162)は、吸入管(144)と接続される第1分岐配管(161)と、吐出管(145)と接続される第2分岐配管(162)とで構成されている。第1分岐配管(161)には、主配管(163)との接続端より順に、電磁弁(開閉弁)(SV-8)と逆止弁(CV-1の)とが設けられている。上記逆止弁(CV-1の)は、主配管(163)から吸入管(144)へ向かっ冷媒の流通だけを許容する。一方、第2分岐配管(162)には、電磁弁(開閉弁)(SV-9)が設けられている。
- [0087] 上記電磁弁 (SV-8,SV-g) は、一方が閉じると他方が開く関係を維持しながら開閉 自在に構成されている。具体的に、電磁弁 (SV-8,SV-g) は、電磁弁 (SV-8)が閉じる と同時に電磁弁 (SV-g)が開く第1状態と、電磁弁 (SV-8)が開くと同時に電磁弁 (SV -9)が閉じる第2状態とに切換可能となっている。
- [0088] 以上のよっな主配管(163)、分岐配管(161,162)、及び電磁弁(SV-8,SV-9)は、冷燥回路(20)における第1動作と第2動作とを相互に切り換え可能とするための三路切換機構(第2三路切換機構)(160)を構成している。具体的に、第2三路切換機構(160)は、第1動作時に第1状態となることで、ブースタ圧縮機(141)の吐出側と第1ガス側連絡配管(22)(主圧縮機(41)の吸入側)とも連通させる一方、第2動作時に第2状態となることで、ブースタ圧縮機(141)の吸入側と第1ガス側連絡配管(22)(冷蔵熱

交換器(111)の出口側)とを連通させる。

- [0089] ブースタ回路(140)には、油排出管(154)、インジェクション管(155)、及び第2バイ パス配管(156)も設けられている。
- [0090] 油排出管(154)は、一端がブースタ圧縮機(141)に接続され、他端が主配管(163)に接続されている。この油排出管(154)には、電磁弁(SV-10)が設けられている。そして、油排出管(154)は、ブースタ圧縮機(141)内の冷凍機油が貯まりすぎる場合に、上記電磁弁(SV-10)を開けることで、この冷凍機油を室外回路(40)側へ送り、可変容量圧縮機(41)や固定容量圧縮機(42)に吸入させる。
- [0091] インジェクション管 (155) は、いわゆる液インジェクションを行っためのものである。インジェクション管 (155) は、その一端が上記ブースタ連絡管 (143) に接続され、他端が油戻し管 (152) を介して吸入管 (144) に接続されている。このインジェクション管 (155) には、開度可変の流量調節弁 (157) が設けられている。
- [0092] 第2パイパス配管(156)は、その一端が主配管(163)と第1分岐配管(161)との連結部に接続され、他端が吸入管(144)と第1分岐配管(161)との連結部に接続されている。また、第2パイパス配管(156)には、その一端から他端へ向かっ冷媒の流通だけを許容する逆止弁(CV-11)が設けられている。第2パイパス配管(156)は、ブースタ圧縮機(141)の停止中にだけブースタ圧縮機(141)をパイパスして冷媒が流れる第2パイパス通路を構成している。
- [0093] #コントローうの構成》

本実施形態の冷凍装置(10)は、コントローラ(200)を備えている。このコントローラ(200)は、運転条件に応じて各四路切換弁や各電磁弁などの制御動作を行っものである。このコントローラ(200)には、切換制御部(202)が設けられている。切換制御部(202)は、冷媒回路(20)で第2動作から第1動作への切り換えを行っ際に、ブースタ圧縮機(141)に対する制御動作を行っ制御手段を構成している。

[0094] - 運転動作-

以下に、本実施形態の冷凍装置(10)が行う運転動作のうち、主要なものについて 図を参照しながら説明する。

[0095] #冷房運転》

冷房運転は、冷蔵ショーケース(13)及び冷凍ショーケース(15) において庫内空気の冷却を(15) において庫内空気の冷却を行って店内を冷房する運転である。

- [0096] 図2に示すよっに、室外回路(40)では、第1四路切換弁(51)及び第2四路切換弁(52)が第1状態に設定される。ブースタ回路(140)では、第1三路切換機構である四路切換弁(142)が第1状態に設定される。また、第2三路切換機構(160)が第1状態に設定され、電磁弁(SV-8)が閉じる一方、電磁弁(SV-g)が開いた状態となる。すなわち、ブースタ回路(140)では、第1動作が行われる。また、冷凍庫内回路(130)では、電磁弁(SV-6)が開<一方、第1バイパス配管(133)の電磁弁(SV-7)が閉じた状態となる。さらに、室外膨張弁(45)が全閉される一方、空調膨張弁(102)、冷蔵膨張弁(112)、及び冷凍膨張弁(132)の開度が適宜調節される。この状態において、可変容量圧縮機(41)、固定容量圧縮機(42)、及びブースタ圧縮機(141)が運転される。
- [0097] 可変容量圧縮機(41)及び固定容量圧縮機(42)から吐出された冷媒は、吐出管(64)から第1四路切換弁(51)を通って室外熱交換器(43)へ送られる。室外熱交換器(43)では、冷媒が室外空気へ放熱して凝縮する。室外熱交換器(43)で凝縮した冷媒は、レシーバ(44)を通過して第2液管(82)へ流入し、第2液管(82)の各分岐管(82a,82b)へ分配される。
- [0098] 第2液管(82)の第1分岐管(82a)へ流入した冷媒は、第1液側連絡配管(21)を通じて冷蔵庫内回路(110)とブースタ回路(140)とに分配される。
- [0099] 冷蔵庫内回路(110)へ流入した冷媒は、冷蔵膨張弁(112)を通過する際に減圧されてから冷蔵熱交換器(111)へ導入される。冷蔵熱交換器(111)では、冷媒が庫内空気から吸熱して蒸発する。その際、冷蔵熱交換器(111)では、冷媒の蒸発温度が例えば-5°C程度に設定される。冷蔵熱交換器(111)で蒸発した冷媒は、第1ガス側連絡配管(22)へ流入する。冷蔵ショーケース(13)では、冷蔵熱交換器(111)で冷却された庫内空気が庫内へ供給され、庫内温度が例えば5°C程度に保たれる。
- [0100] ブースタ回路 (140) へ流入した冷媒は、ブースタ連絡管 (143) を介して冷凍庫 内回路 (130) へ導入される。この冷媒は、冷凍膨張弁 (132) を通過する際に減圧されてか 6冷凍熱交換器 (131) へ導入される。冷凍熱交換器 (131) では、冷媒が庫内空気か

5吸熱して蒸発する。その際、冷凍熱交換器 (131) では、冷媒の蒸発温度が例えば -3 のC程度に設定される。冷凍ショーケース (15) では、冷凍熱交換器 (131) で冷却 された庫内空気が庫内へ供給され、庫内温度が例えば-2 のC程度に保たれる。

- [0101] 冷凍熱交換器 (131) で蒸発した冷媒は、ブースタ回路 (140) へ流入し、四路切換弁 (142) を通ってブースタ圧縮機 (141) へ吸入される。ブースタ圧縮機 (141) で圧縮された冷媒は、吐出管 (145) から第2分岐配管 (162) を通って第1ガス側連絡配管 (22) へ流入する。
- [010²] 第1ガス側連絡配管 (22) では、冷蔵庫内回路 (11 0) か6送り込まれた冷媒と、ブースタ回路 (14 0) か6送り込まれた冷媒とが合流する。そして、これらの冷媒は、第1ガス側連絡配管 (22) か6第1吸入管 (61) へ流入し、可変容量圧縮機 (41) に吸入される。可変容量圧縮機 (41) は、吸入した冷媒を圧縮して吐出管 (64) の第1分岐吐出管 (64a) へ吐出する。
- [010³] 一方、第2液管(82)の第2分岐管(82b)へ流入した冷媒は、第2液側連絡配管(23)を通じて空調回路(100)へ供給される。空調回路(100)へ流入した冷媒は、空調膨張弁(10²)を通過する際に減圧されてから空調熱交換器(101)へ導入される。空調熱交換器(101)では、冷媒が室内空気から吸熱して蒸発する。空調ユニット(12)では、空調熱交換器(101)で冷却された室内空気が店内へ供給される。空調熱交換器(101)で蒸発した冷媒は、第2ガス側連絡配管(24)を通って室外回路(40)へ流入し、第1四路切換弁(51)と第2四路切換弁(52)を順に通過した後に、第2吸入管(62)を通って固定容量圧縮機(42)に吸入される。固定容量圧縮機(42)は、吸入した冷媒を圧縮して吐出管(64)の第2分岐吐出管(64b)へ吐出する。
- [0104] #第1暖房運転》

第1 暖房運転は、冷蔵ショーケース(13)及び冷凍ショーケース(15) において庫内 空気の冷却を行か、空調ユニット(12)で室内空気の加熱を行って店内を暖房する運 転である。

[0105] 図3 に示すよっに、室外回路(40)では、第1四路切換弁(51)が第2状態に、第2四路切換弁(52)が第1状態にそれぞれ設定される。ブースタ回路(140)では、第1三路切換機構である四路切換弁(142)が第1状態に設定される。また、第2三路切換機構

(160) が第1状態に設定され、電磁弁 (SV-8) が閉じる一方、電磁弁 (SV-9) が開いた状態となる。すなわち、ブースタ回路 (140) では、第1動作が行われる。また、冷凍回路 (130) では、電磁弁 (SV-6) が開く一方、第1バイパス配管 (133) の電磁弁 (SV-7) が閉じた状態となる。さらに、室外膨張弁 (45) が全閉される一方、空調膨張弁 (102)、冷蔵膨張弁 (112)、及び冷凍膨張弁 (132) の開度が適宜調節される。この状態において、可変容量圧縮機 (41) 及びブースタ圧縮機 (141) が運転され、固定容量圧縮機 (42) が休止する。また、室外熱交換器 (43) は、冷媒が送り込まれずに休止状態となる。

- [016] 可変容量圧縮機(41)から吐出された冷媒は、第2ガス側連絡配管(24)を通って空調 回路(100)の空調熱交換器(101)へ導入され、室外空気へ放熱して凝縮する。空調 ユニット(12)では、空調熱交換器(101)で加熱された室内空気が店内へ供給される。空調熱交換器(101)で凝縮した冷媒は、第2液側連絡配管(23)を通って室外回路(40)へ送り返され、レシーバ(44)を通過して第2液管(82)へ流入する。
- [0107] 第2液管(82)へ流入した冷媒は、第1液側連絡配管(21)を通じて冷蔵庫内回路(110)とブースタ回路(140)(冷凍回路(30))とに分配される。そして、冷蔵ショーケース(13)及び冷凍ショーケース(15)では、上記冷房運転時と同様に、庫内空気の冷却が行われる。冷蔵熱交換器(111)で蒸発した冷媒は、第1ガス側連絡配管(22)を通って第1吸入管(61)へ流入する。一方、冷凍熱交換器(131)で蒸発した冷媒は、ブースタ圧縮機(141)で圧縮された後に第1ガス側連絡配管(22)を通って第1吸入管(61)へ流入する。第1吸入管(61)へ流入した冷媒は、可変容量圧縮機(41)に吸入されて圧縮される。
- [0108] このよっに、第1 暇房運転では、冷蔵熱交換器 (111) 及び冷凍熱交換器 (131) において冷媒が吸熱し、空調熱交換器 (101) において冷媒が放熱する。そして、冷蔵熱交換器 (111) 及び冷凍熱交換器 (131) で冷媒が庫内空気から吸熱した熱を利用して、店内の暖房が行われる。
- [0109] 尚、第1暖房運転では、固定容量圧縮機(42)を運転してもよい。固定容量圧縮機(42)を運転するか否かは、冷蔵ショーケース(13)及び冷凍ショーケース(15)における 冷却負荷に応じて決定される。この場合、第1吸入管(61)へ流入した冷媒は、その

一部が吸入接続管(63)及び第2吸入管(62)を通って固定容量圧縮機(42)へ吸入される。

[0110] #第2暖房運転》

第2暖房運転は、上記第1暖房運転と同様に店内の暖房を行う運転である。この第2暖房運転は、上記第1暖房運転では暖房能力が過剰となる場合に行われる。

- [0111] 図4に示すように、室外回路(40)では、第1四路切換弁(51)及び第2四路切換弁(52)が第2状態に設定される。ブースタ回路(140)では、第1三路切換機構である四路切換弁(142)が第1状態に設定される。また、第2三路切換機構(160)が第1状態に設定され、電磁弁(SV-8)が閉じる一方、電磁弁(SV-g)が開いた状態となる。すなわち、ブースタ回路(140)では、第1動作が行われる。また、冷凍庫内回路(130)では、電磁弁(SV-6)が開<一方、第1バイパス配管(133)の電磁弁(SV-7)が閉じた状態となる。さらに、室外膨張弁(45)が全閉される一方、空調膨張弁(102)、冷蔵膨張弁(112)、及び冷凍膨張弁(132)の開度が適宜調節される。この状態において、可変容量圧縮機(41)及びブースタ圧縮機(141)が運転され、固定容量圧縮機(42)が休止する。
- [0112] 可変容量圧縮機(41)から吐出された冷媒は、その一部が第2ガス側連絡配管(24)を通って空調回路(100)の空調熱交換器(101)へ導入され、残りが吐出接続管(65)を通って室外熱交換器(43)へ導入される。空調熱交換器(101)へ導入された冷媒は、室内空気へ放熱して凝縮し、第2液側連絡配管(23)と室外回路(40)の第3液管(83)とを通ってレシーバ(44)へ流入する。室外熱交換器(43)へ導入された冷媒は、室外空気へ放熱して凝縮し、第1液管(81)を通ってレシーバ(44)へ流入する。
- [0113] レシーバ(44)から第2液管(82)へ流出した冷媒は、上記第1暖房運転時と同様に、第1液側連絡配管(21)を通じて冷蔵庫内回路(110)とブースタ回路(140)(冷凍回路(30))とに分配される。冷蔵ショーケース(13)及び冷凍ショーケース(15)では、庫内空気の冷却が行われる。冷蔵熱交換器(111)で蒸発した冷媒は、第1ガス側連絡配管(22)を通って第1吸入管(61)へ流入する。一方、冷凍熱交換器(131)で蒸発した冷媒は、ブースタ圧縮機(141)で圧縮された後に第1ガス側連絡配管(22)を通って第1吸入管(61)へ流入する。第1吸入管(61)へ流入した冷媒は、可変容量圧縮機(

41) に吸入されて圧縮される。

- [0114] このように、第2暖房運転では、冷蔵熱交換器(111)及び冷凍熱交換器(131)において冷媒が吸熱し、空調熱交換器(101)及び室外熱交換器(43)において冷媒が放熱する。そして、冷蔵熱交換器(111)及び冷凍熱交換器(131)で冷媒が庫内空気から吸熱した熱は、その一部が店内の暖房に利用され、残りが室外空気へ放出される
- [0115] 尚、第2暖房運転では、固定容量圧縮機(42)を運転してもよい。固定容量圧縮機(42)を運転するか否かは、冷蔵ショーケース(13)及び冷凍ショーケース(15)における冷却負荷に応じて決定される。この場合、第1吸入管(61)へ流入した冷媒は、その一部が吸入接続管(63)及び第2吸入管(62)を通って固定容量圧縮機(42)へ吸入される。
- [0116] #第3暖房運転》

第3 暖房運転は、上記第1 暖房運転と同様に店内の暖房を行う運転である。この第3 暖房運転は、上記第1 暖房運転では暖房能力が不足する場合に行われる。

- [0117] 図5に示すように、室外回路(40)では、第1四路切換弁(51)が第2状態に、第2四路切換弁(52)が第1状態にそれぞれ設定される。ブースタ回路(140)では、第1三路切換機構である四路切換弁(142)が第1状態に設定される。また、第2三路切換機構(160)が第1状態に設定され、電磁弁(SV-8)が閉じる一方、電磁弁(SV-9)が開いた状態となる。すなわち、ブースタ回路(140)では、第1動作が行われる。また、冷凍庫内回路(130)では、電磁弁(SV-6)が開<一方、第1バイパス配管(133)の電磁弁(SV-7)が閉じた状態となる。さらに、室外膨張弁(45)、空調膨張弁(102)、冷蔵膨張弁(112)、及び冷凍膨張弁(132)の開度が適宜調節される。この状態において、可変容量圧縮機(41)、固定容量圧縮機(42)、及びブースタ圧縮機(141)が運転される。
- [0118] 可変容量圧縮機 (41) 及び固定容量圧縮機 (42) から吐出された冷媒は、第2ガス側連絡配管 (24) を通って空調回路 (100) の空調熱交換器 (101) へ導入され、室外空気へ放熱して凝縮する。空調ユニット(12) では、空調熱交換器 (101) で加熱された室内空気が店内へ供給される。空調熱交換器 (101) で凝縮した冷媒は、第2液側連絡配管 (23) と第3液管 (83) とを通ってレシーバ (44) へ流入する。レシーバ (44) か

5第2液管(82)へ流入した冷媒は、その一部が第1液側連絡配管(21)へ流入し、残りが第4液管(84)へ流入する。

- [0119] 第1液側連絡配管(21)へ流入した冷媒は、冷蔵庫内回路(11 の)とブースタ回路(14 の)(冷凍回路(3 の))とに分配される。そして、冷蔵ショーケース(13)及び冷凍ショーケース(15)では、上記第1暖房運転時と同様に、庫内空気の冷却が行われる。冷蔵熱交換器(111)で蒸発した冷媒は、第1ガス側連絡配管(22)を通って第1吸入管(61)へ流入する。一方、冷凍熱交換器(131)で蒸発した冷媒は、ブースタ圧縮機(141)で圧縮された後に第1ガス側連絡配管(22)を通って第1吸入管(61)へ流入する。第1吸入管(61)へ流入した冷媒は、可変容量圧縮機(41)に吸入されて圧縮される。
- [012 0] 一方、第4液管(84)へ流入した冷媒は、室外膨張弁(45)を通過する際に減圧されてから室外熱交換器(43)へ導入され、室外空気から吸熱して蒸発する。室外熱交換器(43)で蒸発した冷媒は、第2吸入管(62)へ流入し、固定容量圧縮機(42)へ吸入されて圧縮される。
- [0121] このように、第2暖房運転では、冷蔵熱交換器(111)、冷凍熱交換器(131)、及び室外熱交換器(43)において冷媒が吸熱し、空調熱交換器(101)において冷媒が放熱する。そして、冷蔵熱交換器(111)及び冷凍熱交換器(131)で冷媒が庫内空気から吸熱した熱と、室外熱交換器(43)で冷媒が室外空気から吸熱した熱とを利用して、店内の暖房が行われる。
- 「0122] **#デフロスト運転》**

上記冷凍装置(10)では、デフロスト運転が行われる。このデフロスト運転は、冷凍ショーケース(15)の冷凍熱交換器(131)に付着した霜を融かすために行われる。

- [0123] 冷凍熱交換器 (131) で庫内空気を冷却する際には、庫内空気中の水分が霜となって冷凍熱交換器 (131) に付着する。冷凍熱交換器 (131) に付着した霜の量が多くなると、冷凍熱交換器 (131) を通過する庫内空気の流量が減少し、庫内空気の冷却が不充分となる。そこで、上記冷凍装置 (10) は、冷凍熱交換器 (131) に付着した霜を取るためのデフロスト運転を行う。
- [0124] 上記冷房運転や暖房運転から上記デフロスト運転への移行は、コントローラ(200) に設けられたデフロスト開始判定手段(図示省略)によって行われる。本実施形態の

デフロスト開始判定手段は、冷媒回路(20)の第1動作、即ち冷凍熱交換器(131)による庫内の冷却が所定時間(例えば6時間)行われると第2動作に切り換えてデフロスト運転を開始させるようにしている。

- [0125] なお、これ以外の実施形態として、デフロスト開始判定手段は、冷凍熱交換器(131)の着霜量が所定量以上となったか否かを間接的に検知してデフロスト運転を開始させるものであってもよい。具体的に、デフロスト開始判定手段は、冷凍熱交換器(131)を流れる冷媒圧力が所定圧力以下になった場合、冷凍ショーケース(15)の吸込温度と吹出温度との温度差、即ち冷凍熱交換器(131)を通過する前後の空気の温度差が所定温度以下になった場合、冷凍ショーケース(15)や冷凍熱交換器(131)の重量を重量計で測定し、その重量が所定重量以上となった場合、冷凍熱交換器(131)の着霜に伴う冷凍庫内ファン(135)の通風抵抗の増加によって、冷凍庫内ファン(135)のモータ回転数が低下したり、モータ電流値が所定量変化した場合、冷凍ショーケース(13)の庫内温度が所定温度以上になった場合などにおいて、上記冷房運転や暖房運転からデフロスト運転への切り換えを行う。
- [0126] このデフロスト運転中には、冷凍熱交換器(131)の除霜と、冷蔵ショーケース(13)における庫内空気の冷却とが並行して行われる。ここでは、デフロスト運転における冷凍装置(10)の動作について、冷房運転や各暖房運転における動作と異なる点を図6を参照しながら説明する。尚、図6は、冷房運転中にデフロスト運転が行われた場合における冷媒の流れを示している。
- [0127] ブースタ回路(140)では、第1三路切換機構である四路切換弁(142)が第2状態に設定される。同時に、第2三路切換機構(160)が第2状態となり、電磁弁(SV-8)が開く一方、電磁弁(SV-9)が閉じた状態となる。すなわち、ブースタ回路(140)では、第2動作が行われる。また、冷凍庫内回路(130)では、電磁弁(SV-6)が閉じる一方、第1パイパス配管(133)の電磁弁(SV-7)が開いた状態となる。
- [0128] ブースタ回路(140)へは、第1ガス側連絡配管(22)を流れる冷媒の一部、即ち冷蔵熱交換器(111)で蒸発した冷媒の一部が取り込まれる。ブースタ回路(140)へ取り込まれた冷媒は、吸入管(144)へ流入し、ブースタ圧縮機(141)へ吸入されて圧縮される。ブースタ圧縮機(141)から吐出管(145)へ吐出された冷媒は、冷凍庫内回路(13

- のの冷凍熱交換器 (131) へ供給される。冷凍熱交換器 (131) では、供給された冷媒が放熱して凝縮する。冷凍熱交換器 (131) に付着した霜は、冷媒の凝縮熱によって加熱されて融解する。
- [0129] 冷凍熱交換器 (131) で凝縮した冷媒は、第1バイパス配管 (133) を通過する。このようにして冷凍膨張弁 (132) をバイパスした冷媒は、ブースタ連絡管 (143) を介して第1液側連絡配管 (21) へ流入する。第1液側連絡配管 (21) へ流入した冷媒は、室外回路 (40) から送り出された冷媒と共に冷蔵庫内回路 (110) へ供給され、冷蔵膨張弁 (112) を通過して冷蔵熱交換器 (111) へ送り返される。
- [013 0] このよ⁵に、上記冷凍装置(10)のデフロスト運転では、冷蔵熱交換器(111)で庫内空気から吸熱した冷媒がブースタ圧縮機(141)へ吸入され、ブースタ圧縮機(141)で圧縮された冷媒が冷凍熱交換器(131)へ送り込まれる。したがって、このデフロスト運転では、ブースタ圧縮機(141)において冷媒に付与された熱だけでなく、冷蔵ショーケース(13)の庫内空気から冷媒が吸熱した熱についても、冷凍熱交換器(131)に付着した霜を融かすために利用される。
- [0131] また、このデフロスト運転では、冷凍熱交換器(131)で凝縮した冷媒が第1バイパス配管(133)を介して冷蔵熱交換器(111)へ送り返されている。したがって、このデフロスト運転では、冷凍熱交換器(131)で放熱してエンタルピの低下した冷媒が冷蔵熱交換器(111)へ供給されることとなり、冷凍熱交換器(131)の除霜に利用された冷媒が冷蔵ショーケース(13)における庫内空気の冷却に再度利用される。
- [0132] 上記冷房運転や暖房運転から上記デフロスト運転への移行は、コントローラ(200) に設けられたデフロスト終了判定手段(図示省略)によって行われる。本実施形態のデフロスト終了判定手段は、冷媒回路(20)の第2動作、即ち冷凍熱交換器(131)の除霜が所定時間(例えば ** 時間)行われると第1動作に切り換えてデフロスト運転を終了させるようにしている。
- [0133] なお、これ以外の実施形態として、デフロスト終了判定手段は、冷凍熱交換器(131) の着霜量が所定量以下となったか否かを間接的に検知してデフロスト運転を終了させるものであってもよい。具体的に、デフロスト終了判定手段は、ブースタ圧縮機(141) の吐出冷媒が所定圧力以上になった場合、冷凍熱交換器(131)を流れる冷媒温

度が所定温度 (例えば 5° C)以上になった場合、冷凍ショーケース(13)の庫内温度が所定温度 (例えば 0° C)以上になった場合などにおいて、上記デフロスト運転を終了させて、冷凍ショーケース(13)の庫内の冷却を再開させる。

- [0134] 上述のよっに、デフロスト運転中には、ブースタ圧縮機(141)から供給された冷媒が冷凍熱交換器(131)で凝縮し、この凝縮した冷媒が第1液側連絡配管(21)へと送り出される。ところが、冷凍熱交換器(131)で凝縮した冷媒は、その全てが冷蔵熱交換器(111)へ送り出されるわけではなく、その一部が冷凍熱交換器(131)に留まる。このため、デフロスト運転を終了する際に、ブースタ回路(140)の第1,第2三路切換機構(142,160)を単純に第2状態から第1状態へ戻してしまっと、冷凍熱交換器(131)に溜まった液冷媒がブースタ圧縮機(141)へ吸入されてしまい、ブースタ圧縮機(141)が損傷してしまっ。
- [0135] そこで、上記冷凍装置(10)では、デフロスト運転を終了する際にコントローラ(200) の切換制御部(2分)が所定の制御動作を行い、ブースタ圧縮機(141)の損傷を防止している。この切換制御部(2分)の制御動作について、図7を参照しながら説明する。尚、図7は、冷房運転中にデフロスト運転が終了する場合における冷媒の流れを示している。
- [0136] デフロスト運転の終了条件が成立すると、切換制御部(2 c2)は、四路切換弁(142)を第2状態(図6に示す状態)から第1状態(図7に示す状態)へと切り換え、その直後にブースタ圧縮機(141)を停止させる。その後、切換制御部(2 c2)は、所定の設定時間(例えば1 0分間程度)に亘り、ブースタ圧縮機(141)を停止状態に保持する。
- [0137] この状態において、デフロスト運転中に冷凍熱交換器(131)へ溜まり込んだ液冷媒は、第1ガス側連絡配管(22)へと吸い出される。つまり、冷凍熱交換器(131)の液冷媒は、ブースタ回路(140)の四路切換弁(142)を通過して第2バイパス配管(156)を流通した後、第1ガス側連絡配管(22)へ流入する。ブースタ回路(140)から第1ガス側連絡配管(22)へ流入した液冷媒は、冷蔵熱交換器(111)から可変容量圧縮機(41)へ向かって流れるガス冷媒と混合されて蒸発し、その後に可変容量圧縮機(41)へ吸入される。
- [0138] このょっに、切換制御部(20)がブースタ圧縮機(141)を停止状態に保持している

間には、冷凍熱交換器 (131) から液冷媒が排出されてゆく。切換制御部 (2 02) がブースタ圧縮機 (141) を停止状態に保持する時間(設定時間)は、冷凍熱交換器 (131) から液冷媒が完全に排出されるのに要する時間を考慮して設定される。そして、この設定時間が経過すると、切換制御部 (2 02) がブースタ圧縮機 (141) を起動する。このため、デフロスト運転中に冷凍熱交換器 (131) に溜まった液冷媒をブースタ圧縮機 (141) が吸入するれトンた事態が回避され、ブースタ圧縮機 (141) の損傷が防止される

- [0139] -実施形態の効果 -
 - 上記実施形態によれば、以下の効果が発揮される。
- [0140] 本実施形態の冷凍装置(10)によれば、デフロスト運転中に冷凍熱交換器(131)の 霜を融かすための熱として、ブースタ圧縮機(141)で冷媒に付与された熱だけでなく、冷蔵熱交換器(111)で冷媒が庫内空気から吸熱した熱をも利用することができる。 したがって、本実施形態によれば、従来に比べて冷凍熱交換器(131)の除霜に利用できる熱量を多く確保することができ、冷凍熱交換器(131)の除霜に要する時間を大幅に短縮できる。
- [0141] また、本実施形態の冷凍装置(10)では、デフロスト運転中に冷凍熱交換器(131)で凝縮した冷媒を冷蔵熱交換器(111)へ送り返し、この冷媒を冷蔵庫内の冷却に再度利用している。つまり、冷凍熱交換器(131)で放熱してエンタルピの低下した冷媒を、冷蔵熱交換器(111)へ送って冷蔵庫内を冷却するために利用できる。そして、デフロスト運転中におけるブースタ圧縮機(141)の運転によっても冷蔵熱交換器(111)における冷却能力が得られることとなり、この得られた冷却能力の分だけ可変容量圧縮機(41)における消費電力を削減できる。したがって、本実施形態によれば、可変容量圧縮機(41)及びブースタ圧縮機(141)における消費電力を削減することができる。、冷凍装置(10)の消費電力を削減してそのランニングコストを低減することができる。
- [0142] また、本実施形態の冷凍装置(10)では、デフロスト運転時において、冷凍熱交換器(131)に供給された冷媒を第1バイパス配管(133)を介して冷蔵熱交換器(111)へ送り返すよっにしている。このよっにすると、例えば冷凍熱交換器(131)を流れる冷媒の温度の影響で、感温式膨張弁(132)が全閉したり、所定開度に絞られてしまったり

した場合にも、冷凍熱交換器(131)の冷媒を第1熱交換器(111)へ確実に送ることができる。すなわち、本実施形態によれば、デフロスト運転時において、第2熱交換器(131)で凝縮した冷媒を感温式膨張弁(132)の開度に何6影響を受けず、第1熱交換器(111)へ送り出すことができる。

- [0143] さらに、本実施形態の冷凍装置(10)では、デフロスト運転を終了する際に切換制御部(20)がブースタ圧縮機(141)を一時的に停止させ、ブースタ圧縮機(141)の停止中に第2パイパス配管(156)を通じて冷凍熱交換器(131)から液冷媒を排出している。このため、デフロスト運転中に冷凍熱交換器(131)へ溜まり込んだ液冷媒がブースタ圧縮機(141)へ吸入されるれ、った事態を確実に回避することができ、ブースタ圧縮機(141)の損傷を確実に防止して冷凍装置(10)の信頼性を向上させることができる。
- [0144] <実施形態の変形例>

次に、上記実施形態の変形例について説明する。この変形例は、上記実施形態と 冷凍庫内回路(130)の構成が異なるものである。以下に上記実施形態と異なる点の みを説明する。

- [0145] 図8に示すように、この変形例の冷凍庫内回路(130)では、上記実施形態の第1バイパス配管(133)が設けられておらず、また、上記実施形態の感温式膨張弁(132)の換わりに、開度可変な電子膨張弁(138)が用いられている。さらに、冷凍庫内回路(130)には、熱交換器温度センサ(139)と冷媒温度センサ(134)とが設けられている。熱交換器温度センサ(139)は、冷凍熱交換器(131)の伝熱管に取り付けられている。冷媒温度センサ(134)は、冷凍庫内回路(130)におけるガス側端の近傍に取り付けられている。冷ないる。
- [0146] また、この変形例では、コントローラ(200) に制御手段としての開度制御部(201) が 設けられている。この開度制御部(201)は、第2動作時に上記電子膨張弁(138)を全 開状態に保持するよっに構成されている。
- [0147] この変形例では、デフロスト運転時において第2動作が行われると、開度制御部(20 1)が電子膨張弁(138)を全開状態に保持する。このため、デフロスト運転時において 、ブースタ圧縮機(141)で圧縮された冷媒が冷凍熱交換器(131)に供給されると、こ

の冷媒は、全開状態となる電子膨張弁(138)を通過して冷蔵熱交換器(111)へ送り出される。したがって、この変形例の冷凍装置(10)によれば、デフロスト運転中に第2熱交換器(131)で凝縮した冷媒を確実に第1熱交換器(111)へ送り出すことができる

- [0148] はその他の実施形態》
 - 本発明は、上記実施形態について、以下のような構成としてもよい。
- [0149] 上記実施形態では、ブースタ回路(140)において、第1三路切換機構(142)として、 実質的には三方弁となる四路切換弁を用いる一方、第2三路切換機構(160)として、 主配管(163)、第1,第2分岐配管(161,162)、及び電磁弁(SV-8,SV-9)を用いるよう にしている。しかしながら、例えば第1,第2三路切換機構(142,160)の双方を三方弁 で構成してもよいし、第1,第2三路切換機構(142,160)の双方を、主配管、2本の分 岐配管、及び2つの電磁弁で構成してもよい。
- [015 0] また、上記実施形態の三路切換機構(142)は、四路切換弁の4つのポートのうち1 つのポートを封止することによって三方弁を構成しているが、三路切換機構(142)を元々3つのポートしか有さない三方弁で構成してよったとは無論のことである。
- [0151] さらに、上記実施形態では、冷媒回路(20)に空調ユニット(12)を設けているが、この空調ユニット(12)に換えて、例えば第2の冷蔵熱交換器を有する第2の冷蔵庫内回路を設け、第2の冷蔵ショーケースを設けるよっにしてもよいし、上記実施形態の冷凍装置に上記第2冷蔵ショーケースを加えた構成としてもよい。

産業上の利用可能性

[0152] 以上説明したように、本発明は、冷蔵庫等の庫内を冷却するための熱交換器が複数設けられた冷凍装置について有用である。

請求の範囲

[1] 庫内を冷却する第1熱交換器を有する第1冷却回路と、庫内を冷却する第2熱交換器及び副圧縮機を有する第2冷却回路とが、主圧縮機を有する熱源側回路に対して並列に接続されて構成される冷媒回路を備えた冷凍装置であって、

上記冷媒回路には、第2熱交換器からの冷媒を副圧縮機で圧縮した後、主圧縮機の吸入側に送る第1動作と、第1熱交換器からの冷媒を副圧縮機で圧縮した後、第2熱交換器を介して第1熱交換器に循環させる第2動作とを切り換えて行う3路切換機構を備え、

上記第2熱交換器を除霜するデフロスト運転中には、上記冷媒回路で第2動作が 行われる冷凍装置。

[2] 請求項1に記載の冷凍装置において、

三路切換機構は、第1動作時に第2熱交換器を副圧縮機の吸入側と連通させる一方、第2動作時に第2熱交換器を副圧縮機の吐出側と連通させる第1の三路切換機構と、第1動作時に主圧縮機の吸入側を副圧縮機の吐出側と連通させる一方、第2動作時に主圧縮機の吸入側を副圧縮機の吸入側を連通させる第2の三路切換機構とで構成されている冷凍装置。

- [3] 請求項2に記載の冷凍装置において、 三路切換機構は、三方弁で構成されている冷凍装置。
- [4] 請求項2に記載の冷凍装置において、

三路切換機構は、主配管と、該主配管より2方向に分岐される2本の分岐配管と、該分岐配管にそれぞれ設けられるとともに一方が開くと他方が閉じる一対の開閉弁とで構成されている冷凍装置。

[5] 請求項1か54のいずれか1に記載の冷凍装置において、

第2冷却回路には、第2熱交換器を流出する冷媒の温度を検出して開度を調整する感温式膨張弁と、第2動作時にだけ上記感温式膨張弁をバイパスして冷媒が流通する第1バイパス通路とが設けられている冷凍装置。

[6] 請求項1から4のいずれか1に記載の冷凍装置において、 第2冷却回路には、開度可変な膨張弁が設けられ、 第2動作時に上記膨張弁を全開状態に保持する制御手段を備えている冷凍装置。

[7] 請求項1から4のいずれか1に記載の冷凍装置において、

冷媒回路には、副圧縮機の停止中にだけ該副圧縮機をバイパスして冷媒が流通 する第2バイパス通路が設けられ、

デフロスト運転の終了により第2動作から第1動作へ切り換わる際に、上記副圧縮機を所定時間停止させた後に該副圧縮機を起動させる制御手段を備えている冷凍装置。

[8] 請求項1から4のいずれか1に記載の冷凍装置において、

上記冷媒回路の第1動作を第2動作に切り換えて上記デフロスト運転を開始させるデフロスト開始判定手段を備え、

上記デフロスト開始判定手段は、第1動作の経過時間、又は第2熱交換器の着霜量、又は第2熱交換器が設けられる庫内の温度に基づいてデフロスト運転を開始させるように構成されている冷凍装置。

[9] 請求項1か64のいずれか1に記載の冷凍装置において、

上記冷媒回路の第2動作を第1動作に切り換えて上記デフロスト運転を終了させるデフロスト終了判定手段を備え、

上記デフロスト終了判定手段は、第2動作の経過時間、又は副圧縮機の吐出冷媒圧力、又は第2熱交換器を流れる冷媒温度、又は第2熱交換器が設けられる庫内の温度に基づいてデフロスト運転を終了させるよっに構成されている冷凍装置。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

INTERNATIONAL SEARCH REPORT

Intarnkmonal applickmon No.

PCT/JP2005/016109

	CATION OF SUBJECT MATTER (2006.01), F25B1/00 (2006.01)	, F25B1/10 (2006.01)	
According to Int	ernational P tent Classific tion (IPC) or கூ both nations	al classification and IPC	
B. FIELDS SE			
	mentation searched (classification system followed by cl. (2006.01), $F25B1/00$ (2006.01)		
Jitsuyo Kokai Jit		suyo Shinan Toroku Koho Deoku Jitsuyo Shinan Keho	1996-2005 1994-2005
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.
A	JP 2003-75022 A (Daikin Indu 12 March, 2003 (12.03.03), (Family: none)	stries, Ltd.),	1 - 9
A	JP 2000-205708 A (Daikin Ind 28 July, 2000 (28.07.00), (Family: none)	lustries, Ltd.),	1 - 9
A	JP 2001-280768 A (Daikin Ind 10 October, 2001 (10.10.01), (Family: none)	ustries, Ltd.),	1 - 9
Further do	ocuments are listed in the continuation of Box C.	See p tent family annex.	
* Special categoπes of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on pποπty claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published pποτ to the international filing date but later than the pποπty date claimed Date of the actual completion of the international search		 "T" later document published after the international filing date or pποπty date and not in conflict with the application but cited to understand the pπnciple or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family 	
29 Nove	mber, 2005 (29 . 1 1 . 0 5)		(13.12.05)
Name and mailin Japanes	ng address of the ISA/ ne Patent Office	Authorized officer	
Facsimile No. Form PCT/ISA/21	0 (second sheet) (April 2005)	Telephone No.	

国際調査報告

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int.Cl. F2SB2以20 (2006. 01) , F25B1/00 (2006. 01) , F25B1 刀0 (2006. 01)

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int.Cl. F25B29/00 (2006. 01), F25B1/00 (2006. 01), F25B1/10 (2006. 01)

最小限資料以外の資料で調査を行った分野に含まれるもの

日本 国実用新案公親

1922-1996年

日本 国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本 国登録 実用新案公報

1994-2005年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

引用文献の		関連 する
カテゴリー	引用文献名 及び一部の箇所が関連する(ときは、その関連する箇所の表示	請求 ← 範囲の番号
Α	JP 2003-75022 A (タイキン工業株式会社) 2003. 03. 12 (ファミ Vーなし)	1-9
Α	JP 2000-205708 A (タイキン工業株式会社) 2000. 07. 28 (y ァミリーなし)	1-9
Α	JP 2001-280768 A (ダイキン工業株式会社) 2001. 10. 10 (ファミリーなし)	1-9

『 C欄の続きにも文献が列挙されている。

戸 パテントファミリ―に関する別紙を参照。

引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- TE」国際出願 日前の出願または特許であるが、国際出願 日 以後に公表されたもの
- 几」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- rpj 国際出願 日前で、かつ優先権の主張の基礎 となる出願

- の日の役に公表された文献
- ITJ 国際出願 日又は優先日後に公表された文献であって 出願 1 矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- IYJ 特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者に1って自明である組合せに よって進歩性がないと考えられるもの
- r&j 同一パテントファミリー文献