Naturalna funkcja sklejana interpolacyjna III stopnia

Stanisław Lewanowicz

Listopad 2009 r.

- 1 Naturalna funkcja sklejana interpolacyjna III stopnia
- Przykłady
- 3 Ekstremalna własność NFSI3
- Oszacowanie błędu

Definicja 1. Niech będą **dane:** n, $a = x_0 < x_1 < \ldots < x_n = b$ i funkcja f.

Naturalną funkcją sklejaną interpolacyjną III stopnia (w skrócie **NFSI3**) nazywamy funkcję *s*, o własnościach

- ② dla $k=1,2,\ldots,n$ funkcja s jest w przedziale $[x_{k-1},x_k]$ identyczna z pewnym wielomianem π_k , stopnia co najwyżej trzeciego:

$$s(x) = \pi_k(x) \qquad (x \in [x_{k-1}, x_k]),$$

- s''(a) = s''(b) = 0.

Twierdzenie 1. Dla dowolnych danych: $n \in \mathbb{N}$, $a = x_0 < x_1 < \ldots < x_n = b$ i funkcji f istnieje dokładnie jedna naturalna funkcja sklejana interpolacyjna III stopnia s. W każdym z przedziałów $[x_{k-1}, x_k]$ $(k = 1, 2, \ldots, n)$ zachodzi wzór

$$s(x) = h_k^{-1} \left[\frac{1}{6} M_{k-1} (x_k - x)^3 + \frac{1}{6} M_k (x - x_{k-1})^3 + \left(f(x_{k-1}) - \frac{1}{6} M_{k-1} h_k^2 \right) (x_k - x) + \left(f(x_k) - \frac{1}{6} M_k h_k^2 \right) (x - x_{k-1}) \right]$$

Momenty

$$M_k := s''(x_k)$$
 $(k = 0, 1, ..., n; M_0 = M_n = 0)$

spełniają układ równań liniowych

$$\lambda_k M_{k-1} + 2M_k + (1 - \lambda_k) M_{k+1} = d_k \quad (k = 1, 2, ..., n-1),$$
 (1.1)

gdzie $\lambda_k := h_k/(h_k + h_{k+1}), \quad h_k := x_k - x_{k-1}, \quad d_k := 6f[x_{k-1}, x_k, x_{k+1}].$

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 9 0 0

Lemat 1. Niech $A=[a_{ij}]\in \mathbf{R}^{m\times m}$ będzie macierzą z dominującą przekątną, tj. taką, że

$$|a_{kk}| > \sum_{l=1,l\neq k}^{m} |a_{kl}|$$
 $(k = 1,2,...,m).$

Wówczas A jest macierzą nieosobliwą.

Lemat 2. Macierz układu równań dla momentów,

$$M := \left[egin{array}{cccccc} 2 & 1 - \lambda_1 & 0 & \cdots & 0 & 0 \\ \lambda_2 & 2 & 1 - \lambda_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n-1} & 2 \end{array}
ight]$$

jest macierzą z dominującą przekątną, a więc jest nieosobliwa.

Wniosek. Układ (1.1) ma jedyne rozwiązanie M_1, \ldots, M_{n-1} .

5 / 12

Algorytm 1. [Rozwiązanie układu równań dla momentów] Obliczamy pomocnicze wielkości $p_1, p_2, \ldots, p_{n-1}, q_0, q_1, \ldots, q_{n-1}$, oraz $u_0, u_1, \ldots, u_{n-1}$ w następujący sposób rekurencyjny:

$$q_0 := u_0 := 0,$$

$$p_k := \lambda_k q_{k-1} + 2,$$

$$q_k := (\lambda_k - 1)/p_k,$$

$$u_k := (d_k - \lambda_k u_{k-1})/p_k$$

$$(k = 1, 2, ..., n - 1)$$

Wówczas

$$M_{n-1} = u_{n-1},$$

 $M_k = u_k + q_k M_{k+1}$ $(k = n-2, n-3, ..., 1).$

Funkcja arctg – węzły równoodległe

$$f(x) = \operatorname{arctg} x$$
 $(-4 \le x \le 4);$ $x_k = k - 4$ $(k = 0, 1, ..., 8)$

Funkcja arctg – węzły równoodległe

Wielomian L_8 i arctg x

Funkcja arctg – węzły równoodległe

NFSI3 i arctg x

$$f(x) = \frac{1}{1+25x^2}$$
 $(-1 \le x \le 1);$ $x_k = -1 + \frac{2k}{n}$ $(k = 0, 1, ..., n)$

Funkcja Rungego

Wypadek n = 10: wielomian L_n i funkcja Rungego

Funkcja błędu $R_{10}=f-L_{10}$

Wypadek n=10: NFSI3 i funcja Rungego

Wypadek n=10: funkcja błędu f-NFSI3

Twierdzenie 2 [Holladay] Niech f będzie ustaloną funkcją określoną w przedziale [a, b]. W klasie funkcji F mających ciągłą drugą pochodną w przedziale [a, b] i takich, że

$$F(x_k) = f(x_k) \qquad (k = 0, 1, \dots, n)$$

najmniejszą wartość całki

$$\int_{a}^{b} \left[F''(x) \right]^{2} dx$$

daje NFSI3 s(x) i tylko ona. Przy tym zachodzi wzór

$$\int_a^b \left[s''(x) \right]^2 dx = \sum_{k=1}^{n-1} \left(f[x_k, x_{k+1}] - f[x_{k-1}, x_k] \right) M_k.$$

Twierdzenie 3. Niech będzie dana funkcja $f \in C^3[a, b]$. Dla danej liczby naturalnej n niech s będzie naturalną funkcją sklejaną III stopnia interpolującą funkcję f w danych węzłach $a = x_0 < x_1 < \ldots < x_n = b$. Wówczas

$$\max_{a \le x \le b} |f(x) - s(x)| \le \frac{5}{384} h^4 \max_{a \le x \le b} |f(x)|,$$

$$\max_{a \le x \le b} |f'(x) - s'(x)| \le \frac{1}{24} h^3 \max_{a \le x \le b} |f'(x)|,$$

$$\max_{a \le x \le b} |f''(x) - s''(x)| \le \frac{3}{8} h^2 \max_{a \le x \le b} |f''(x)|,$$

gdzie

$$h := \max_{i} h_{i}, \qquad h_{i} := x_{i} - x_{-1} \qquad (i = 1, 2, ..., n).$$

Przykład

W wypadku funkcji Rungego $f(x)=1/(25x^2+1)$ $(-1 \le x \le 1)$ i równoodległych węzłów uzyskano następujące wyniki:

n	10	20	40	80	160
h	0.2	0.1	0.05	0.025	0.0125
$\max_{-1 \le x \le 1} f(x) - s(x) $	0.022	0.0032	$2.77 \cdot 10^{-4}$	$1.60 \cdot 10^{-5}$	$9.63 \cdot 10^{-7}$

Uwagi

- **1** Wielomian interpolacyjny $L_n(x)$ i funkcję sklejaną s(x) otrzymujemy na podstawie tej samej informacji: n, x_0, \ldots, x_n oraz $f(x_0), \ldots, f(x_n)$.
- ② Inaczej niż w wypadku wielomianu $L_n(x)$, duża wartość n nie stanowi żadnego ograniczenia w konstrukcji i użyciu funkcji sklejanej s(x).
- **3** Wykres funkcji sklejanej s(x) jest zwykle zdecydowanie lepiej dopasowany do wykresu funkcji f(x) niż wykres wielomianu $L_n(x)$ (**twierdzenie Holladaya!**).