Physics II S 2023 Crib Sheet Exam 3 Hayden Fuller

EXAM 1

Culombs Law, conductors, insulators, polarization, induced charges, adding vector fields and forces

 $\vec{F}_{1on2} = \vec{F}_{12} = -\vec{F}_{21} = q_2 \vec{E}_1 = k \frac{q_1 q_2}{r_{12}^2} \frac{\vec{r}_{12}}{r_{12}} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}; \quad \vec{F}_{tot} = q_0 \vec{E}_{tot}; \quad \vec{E}_{tot}(X_0, y_0, z_0) = \int d\vec{E}(x', y', z') = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12} \hat{r}_{$ $\int k \frac{dq'(x',y',z')}{r_0'^2} \frac{\vec{r_0'}}{r_0'}, \ \vec{r_0'} = \vec{r_0} - \vec{r'} = (x_0 - x')\hat{i} + \dots, \ \vec{r'} = x'\hat{i} + \dots$

distance away from line charge linearly, line starts at 0, at x=-D, $\vec{E} = -k \int_0^L \frac{\lambda dx'}{(D+x')^2} \hat{i}$, $V = k\lambda \ln(\frac{D+L}{D})$

with θ up from x axis, $r_x = x \cos \theta$, $r_y = y \sin \theta$, $r = \sqrt{r_x^2 + r_y^2}$, $k = 9 * 10^9 = \frac{1}{4\pi\epsilon_0}$, $\epsilon_0 = 8.85 * 10^{-12}$ Electric field for point charges, electric field for a continuous distribution of charge

 $\vec{F}_E = q\vec{E}; \ \vec{E}_s = k \frac{q_s}{r^2} \frac{\vec{r}}{r} = k \frac{q_s}{r^2} \hat{r}$

Gauss's law and electric flux through a surface, Use of Gauss's law to find field

 $\Phi_E = \oint \vec{E} \cdot d\vec{A} = \int E \cdot dA \cos \phi = \frac{Q_{encl}}{\epsilon_0}, \ \phi = \angle \vec{E} - d\vec{A}, \ d\vec{A} = dA\hat{n} \text{ net elec field } \vec{E} = 0, \ V = c \text{ within a cond.}$

gauss sphere: $\Phi_E = \oint \vec{E}(r) \cdot d\vec{A} = E(r) 4\pi r^2$, $E(r) = k \frac{q}{r^2}$,

sphere radius R: outside or point charge: $V = k \frac{q}{r}$, $E = k \frac{q}{r^2}$ inside: cond: $V = k \frac{q}{R}$, E = 0, insulating: $E = k \frac{qr}{R^3}$ long thin wire: $E(r) = \lambda/(2\pi r\epsilon_0)$ thin flat sheet: $E = \sigma/(2\epsilon_0)$, stepped: go from in to out matching net $Q_i n$ infinite plane w/ cylinder in it, $E = \sigma/\epsilon_0$

Electric potential for point charge, distribution. Electric field vs potential, equipotential. Potential for group of points, conservation of energy.

Change Elec Pot Engry $\Delta U = -\int_{\vec{r}_A}^{\vec{r}_B} q \vec{E} \cdot d\vec{s} = -W_{AB}$; Change Elec Pot $\Delta V = \frac{\Delta U_E}{q} = -\int_{\vec{r}_A}^{\vec{r}_B} \vec{E} \cdot d\vec{s}$ so $\Delta U_E = q\Delta V$

Point charge, Σ for system $V(r) = \frac{kq}{r}$, $U_E = k\frac{q_1q_2}{R_{12}} + ...$; Field from pot: $E_x = -\Delta V = -\frac{\delta V}{\delta x} - ...$. work on closed path =0;

Caps, Dielectrics, steads state, equiv, energy storage, electric field energy density

 $C = Q/V = \frac{\epsilon_0 A}{d} = kC_0$, ElcPotEnrInCap $U_E = .5QV = .5Q^2/C = .5CV^2$, EnrFieldDen $u_E = .5\epsilon_0 E^2$, $E = \frac{\sigma}{k\epsilon_0}$,

Current and density J, Resistance and itivity, Power relations and dissipation, DC steady state, KCVL Ohms $I = \frac{dQ}{dT}, \ I = \vec{J}d\vec{A}, \ \vec{J} = qn\vec{v}_d = I/A. \ E = \rho J, \ V = IR, \ R = \rho L/A, \ P = IV = I^2R = V^2/R; \ V_{bat} = \text{EMF} - Ir$ Temp: conductor: $\rho(T) = \rho_0 + \rho_0 \alpha(T - T_0)$ semi: $\rho(T) = \rho_0 e^{(\frac{E_a}{kT})}$, $E_a = \text{actiEngr}$, k = 1.38e - 23 = bolt const.Magnetic forces and fields

 $\vec{F} = q\vec{v} \times \vec{B}$, finger velocity, curl field, thumb force, flip for negative. $\vec{F}_B = I\vec{L} \times \vec{B}$, $r = \frac{mv}{|q|B}$

 $W = q\Delta V$, Centripital force $F = mv^2/r$, $E = -\Delta V/d$, V = kq/r, $V = \Delta KE = -\Delta PE$, $KE = 0.5 * mv^2$ F = ma, earth south is north, use conventional, $\vec{c} = \vec{a} \times \vec{b}$, $|\vec{c}| = |\vec{a}||\vec{b}|\sin\theta_{ab}$, cross is det, dot is sum RMS = $\sqrt{\sum(x^2)}$, %error = (act-exp)/exp

EXAM 2 Sources of magnetic fields, law of Biot-Savart for moving charges and current elements, Magnetic fields of current carrying wires and loops, Magnetic forces between conductors

field from point charge moving $\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \vec{r}}{r^3} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$, $B = \frac{\mu_0}{4\pi} \frac{qv \sin \theta}{r^2}$, velocity, radius to measurement, from current element Biot-Savart swap $q\vec{v} > \int Id\vec{l}$, right hand, thumb conventional current/positive charge. axis of

loop: $B_x = \frac{\mu_0 I a^2}{2(x^2 + a^2)^{3/2}} = \frac{\mu_0 \mu}{2\pi (s^2 + a^2)^{3/2}}, \ \mu = IA, \ x = \text{far -i.} \ B = \frac{\mu}{x^3}$

Current same direction, fields oppose, attract. $F = L \frac{\mu_0 I_1 I_2}{2\pi r}$

Straight wire: $B = \frac{\mu_0 I}{2\pi r}$, Center of a loop: $B = \frac{\mu_0 I}{2r}$, inside: $\frac{\mu_0 I}{2\pi R^2} r$ Solenoid: inductancec: $L = \frac{\Phi_B}{i} = \frac{N\Phi_{B,loop}}{i} = \frac{NBA_{loop}}{i} = \frac{Nu_0 niA_{loop}}{i} = \mu_0 N \frac{N}{l} A_{loop} = \frac{\mu_0 N^2 \pi r_s^2}{l} = \pi \mu_0 n^2 r_s^2 l$ inside a Solenoid: $B = \mu_0 nI$, voltage $\int_a^b \vec{E}_{nc} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} = -L\frac{di}{dt}$, i from + to - increase, EMF

Ampere's law, calculating magnetic fields from ampere's law. Maagnetic moments and magnetism, magnetic force and torque on a current loop/magnetic moment

Ampere's law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$ total field in a circular path around a wire is equal to μ_0 times current enclosed current density \vec{J} , $I_{enc} = \int \vec{J}_{net} \cdot d\vec{A} = J \cdot A \cos \theta$

Magnetic moment: $\vec{\mu} = I\vec{A}$, current in loop times area of loop, right hand direction. Torque $\tau_{B,net} = \vec{\mu} \times \vec{B}$, right hand rule for spin direction

Magnetic flux, Faraday's law, Lenz's law, Electromagnetic Induction.

Magnetic flux $\Phi_B = \int \vec{V} \cdot d\vec{A} = \int BdA \cos\theta$, Faraday's law: EMF from changing Mflux $\epsilon = \oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\Phi_B$,

Lenz's law, this EMF induces oposing (attracting) magnetic field. B increase up, EMF and for N loops, $\cdot N$. i cw, induced B down, net small B up

Displacement current, Maxwell's equations: "displacement current" is built up charge, $I_d = \epsilon_0 \frac{d}{dt} \Phi_E$, fixed

Ampere's $\oint \vec{B} \cdot d\vec{l} = \mu_0 (I_c + I_d)_e nc = \mu_0 I_{c,enc} + \mu_0 \epsilon_0 \frac{d}{dt} \Phi_{E,enc}$

Maxwell's: Gauss's for \vec{E} : $\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\epsilon_0}$ for \vec{B} : $\oint \vec{B} \cdot d\vec{A} = 0$

Faraday stationary: $\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\Phi_B$, Ampere stationary: $\oint \vec{B} \cdot d\vec{l} = \mu_0(i_c + \epsilon_0 \frac{d}{dt}\Phi_E)_e nc$

Self and mutual Inductance, EMF and current in circuits, Magnetic field energy and energy density self inductance: $\Phi_B = Li$, $L = \frac{\Phi_B}{i}$, Mutual: $M = M_{12} = \frac{N_1\Phi_{B1}}{i_2} = M_{21} = \frac{N_2\Phi_{B2}}{i_1}$, $\frac{d\Phi_B}{dt} = \frac{d}{dt}Li = L\frac{di}{dt}$, $\epsilon_L = -L \frac{di}{dt}, \ \epsilon_1 = -M \frac{di_2}{dt}$

magnetic energy in an inductor $U_B = 0.5Li^2$, region in field \vec{B} has energy density $u_B = \frac{U_B}{v} = \frac{B^2}{2\mu_0}$

Circuit Transients, RC, RL, LC, and RLC. Characteristic decay times and oscillation frequencies $I(C) = C \frac{dV_C}{dt}, \ V(L) = L \frac{dI_L}{dt}$

RC: charge $q(t) = C\epsilon(1 - e^{-t/RC})$, $i = \frac{dq}{dt}$, $i(t) = \frac{\epsilon}{R}e^{-t/RC}$ discharge: $q(t) = Q_0e^{-t/RC}$, $i(t) = -\frac{Q_0}{RC}e^{-t/RC}$

RL: charge $i(t) = \frac{\epsilon}{R}(1 - e^{-tR/L})$, discharge $i(t) = i_0 e^{-tR/L}$

LC: Q(C) $q(t) = Q\cos(\omega t + \phi)$, I(L) $i(t) = \frac{dq}{dt} = -\omega Q\sin(\omega t + \phi)$, $\omega = 1/\sqrt{LC}$ $T = \frac{2\pi}{\omega}$, $\omega = 2\pi * \omega$, $U_E = \frac{(q(t))^2}{2C}$, $U_B = 0.5L(i(t))^2$, $U_{tot} = U_E + U_B = \frac{Q^2}{2C}$, $L\frac{di}{dt} = -\frac{q}{C}$, $\frac{d^2q}{dt^2} = -\frac{1}{LC}q$ Alternating current circuits, phasors, reactance, impedance, resonance, power, transformers

AC: $RMS = \frac{1}{\sqrt{2}}max$, $X_L = \omega L$, V_L is 90 ahead, $X_C = \frac{1}{\omega C}$, V_C is 90 behind

 $i(t) = I\cos(\omega t)$, L: $V_L(t) = \omega LI\cos(\omega t + \pi/2) = V_L\cos(\omega t + \pi/2)$

series LRC AC: $V = \sqrt{V_R^2 + (V_L - V_C)^2} = I\sqrt{R^2 + (X_L - X_C)^2}$, *net* impedance $Z = \sqrt{R^2 + (X_L - X_C)^2}$ current phasor is shared, V_R matches, V_L leads 90, V_C lags 90, $V_S = VR + VL + VC$, some phase inbetween ϕ , $\tan \phi = \frac{V_L - V_C}{V_R} = \frac{X_L - X_C}{R}$, resonance: at ω_0 , $X_L = X_C$, Z = R,

 $q(t) = Qe^{-t/\tau_d}\cos(\omega' t + \phi), \ \tau_d = 2L/R, \ \omega' = \sqrt{\frac{1}{LC} - (\frac{R}{2L})}$

Power: $P_{average} = 0.5 V_{amp} I_{amp} \cos \phi_{V-I} = V_{RMS} I_{RMS} \cos \phi_{V-I}$, $\cos \phi = R/Z$ for series LRC Transformer: $\frac{V2}{V1} = \frac{N2}{N1}$

EXAM 3

EM basics: $\frac{\delta B_z}{\delta x} = -\epsilon_0 \mu_0 \frac{\delta E_y}{\delta t}$, $\frac{\delta B_z}{\delta t} = -\frac{\delta E_y}{\delta x}$, $\epsilon_0 \mu_0 \frac{\delta^2 E_y}{\delta t^2} = \frac{\delta^2 E_y}{\delta x^2}$, $\epsilon_0 \mu_0 \frac{\delta^2 B_z}{\delta t^2} = \frac{\delta^2 B_z}{\delta x^2}$, $E_m = c B_m$ Poynting vector $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$, Intensity $I = c \frac{1}{2} \epsilon_0 E_m^2 = c \frac{1}{2\mu_0} B_m^2 = P/A = P/(4\pi r^2)$

result wave of form $E_{tot} = E_m \cos(-\omega t + \frac{\Delta\phi}{2})$, interference result magnitude $E_m = 2E_0 \cos(\frac{\Delta\phi}{2})$

EM waves and Light, index of refraction, Wave fronts and rays, hygen's principle, polarization, malus's law Radiation pressure $p_{rad} = S_{av}/c = I/c$, *2 for reflection. Polarization, $I = I_0 \cos^2(\phi)$. $c = \omega/k = \lambda f = \lambda/T$;

Index of refraction $v_n = c/n = f/\lambda_n$, $\lambda_n = \lambda/n$

Huygens principle, wave is source of wavelets. Polarization: $I = 0.5 * I_0$, $I = I_0(\cos^2(\phi))$

interference: $I = 4I_0 \cos^2(\Delta \phi/2)$, $I_0 = 0.5c\epsilon_0 E_0^2$, d * n, $\Delta \phi = 2\pi (n_1 L_1 - n_2 L_2)/\lambda$,

double slit $y_m = m\lambda D/d$, diffraction grating: $d\sin\theta = m\lambda$

Diffraction, single slit diffraction pattern and intensity, two slit interference with diffraction, circular apertures, resolution

slits: $I = I_0 \left[\frac{\sin(\beta/2)}{(\beta/2)} \right]^2 \cos^2(\alpha/2) = I_0 * \text{single slit} * \text{double slit}, \ \beta = \frac{2\pi a}{\lambda} \sin \theta, \ \alpha = \frac{2\pi d}{\lambda} \sin \theta$

double slit: I=above, max $y_m*d=Dm\lambda$, $d\sin\theta=m\lambda$, min (m+0.5)

single slit: I=above, min $y_m = D \tan \theta_m$, $a \sin \theta = m\lambda$, max 0 and (m + 0.5), small slit long wavelength get one wide max

circular pinhole: first dark ring $\sin \theta_1 = 1.22 \lambda/D$, $\theta_R = \sin^{-1}(1.22 \lambda/D)$, approx at small angle $\theta_R = 1.22 \lambda/D$, distinguishable if max of second is outside first min of first

special relativity, frames of refrence, lorentz factor, time dialation, length contraction, relativistic momoentum and energy, energy and mass units

 $\gamma = 1/\sqrt{1-(v/c)^2}$. moving clock appears to orun slowly, things look shorter. Length viewed L of moving object actaul length L_0 , $L = 1/\gamma L_0$, $x' = \gamma(x - ut)$, $t' = \gamma(t - ux/c^2)$

```
momentum p = \gamma mv, KE = (\gamma - 1)mc^2, Energy total = K + E_0 = (\gamma - 1)mc^2 + mc^2 = \gamma mc^2. E^2 = \gamma mc^2
(pc)^2 + (mc^2)^2
m = E_0/(c^2), 1eV = 1.6 * 10^-19J
```

photons, photoelectric effect, stopping potential, Einstein's photoelectric equation, work function, intensity in the photon model, photon momentum and the compton experiment, intro to wave particle duality

 $KE_{max} = eV_0$, induvidual photon energy E = hf, $KE = hf - \phi$, $V_0 = hf/e - \phi/e$, V_0 vs f, slope h/e, intercept $-\phi/e$

I=power/area=energy/(time*area), for photons I = N * hf/(t * A) = F * E =photon flux * photon energy. $E^{2} = (pc)^{2}, p = E/c = hf/c = h/\lambda$

compton experiment: $\lambda' - \lambda = h/(mc)(1-\cos\phi)$, $\lambda' = \text{after collision}$, $\phi = \text{scatter angle}$, m=electron duallity, it exists.

 $x = 1.60218*10^{-19} \ ; \ E:eV = xJ \ ; \ p:eV/c = x^2kgm/s \ ; \ m:eV/c^2 = x^3kg$

Nuclear binding energy: $E_B = (ZM_H + NM_N - \stackrel{A}{Z}M)c^2$, $M_H = \text{hydrogen mass}$, $M_N = \text{neutron mass}$, $N_N = \text{neutron mass}$ A-Z = neutrons, ${}_{Z}^{A}M$ = mass of atom, Z=atomic number, A=isotope mass number; rest energy of nucleus $=E_0-E_B$

 $A + B \rightarrow C + D$, $E_A + E_B = E_C + E_D + Q$, $Q = (M_A + M_B - M_C - M_D)c^2$

magnitude charge of an electron, 1eV in J, $e = 1.60218 * 10^{-19}$

 $h = 6.62607 * 10^{-34}$; $m_e = 9.10938 * 10^{-31}$; $m_p = 1.6726 * 10^{-27}$; $m_n = 1.6749 * 10^{-27}$

 $\mu_0 = 4\pi * 10^{-7} \; ; \; \epsilon_0 = 1/(\mu_0 c^2) = 8.854 * 10^{-12}$

one atomic mass unit $u = 1.6605 * 10^{-27}$; electron rest energy $m_e c^2 = 0.51099 MeV$

EXAM FINAL

wave particle duality: $\hbar = h/(2\pi)$

single slit: triangle where base= p_x , height= p_y , hypotenuse= p_x , $\theta = \delta$, small angle $\theta \approx \sin \theta = \lambda/a$, $p_x \approx p_y$ $\delta \approx \tan \delta = p_u/p$

uncertianty: $\Delta p_y \Delta y \geq \hbar/2$, $\Delta E \Delta t \geq \hbar/2$, $\Delta E = h \Delta f$

matter waves: $\lambda = h/p = h/(mv) = h/\sqrt{2mK}$, f = E/h

wave functions: 1D motion mass m, wave function Ψ , potential energy U, $\frac{\hbar^2}{2m} \frac{\delta^2 \Psi(x,t)}{\delta x^2} + U(x) \Phi(x,t) = i\hbar \frac{\delta \Psi(x,t)}{\delta t}$ U = 0: $\Psi(x,t) = Ae^{i(kx-\omega t)} = A\cos(kx-\omega t) + iA\sin(kx-\omega t)$, wave number $k = 2\pi/\lambda$, $p = \frac{h}{\lambda} = \hbar k$, $\omega = 2\pi f$, $E = h f = \hbar \omega$

wave packets: Real $\Psi(x,t)$ is sin, Imagingary $\Psi(x,t)$ is cos, $2\pi/k_{av}=\lambda_{av}$ is one period, x is whole length of packet

 Δx is possible positions, width of wave.

 $|\Psi|^2 = \Psi_r^2 + \Psi_i^2 \ge 0$, pos of find part betw x and x + dx is $P(x, x + dx, t) = |\Phi(x, t)|^2 dx$, $P(x_1, x_2, t) = |\Phi(x, t)|^2 dx$ $\int_{x_1}^{x_2} |\Psi(x,t)|^2 dx$

possible Prob functions: 1) must be unity, area = 1. 2) single valued function. 3) continuous. 4) spatial derivative continuous

 $\Delta k \Delta x \approx 1$

 $\Psi(x,t) = \psi(x)e^{iEt/\hbar}, \ |\Psi(x,t)|^2 = \Psi(x,t)\cdot\Psi(x,t)^* = |\psi(x)|^2$

distortion: $L_{felt} = \frac{1}{\gamma} L_0$ and it doesn't take as long to travel as it seems. $\Delta t = \gamma \Delta t_0$, feels like $\Delta t_0 = \frac{1}{\gamma} \Delta t = \gamma \Delta t_0$ $\frac{1}{\gamma} \, \frac{26 cyrs}{.90c}$

kg to eV: $m=m\frac{c^2}{c^2}=\frac{kg*(m/s)^2}{c^2}\cdot\frac{1eV}{1.6*10^{-19}J}$ PUT UNITS EVEN IF YOU DON'T KNOW THE ANSWER