Lecture 3

4/25/25 Prof. Overbey University of Austin (UATX) Fluid Dynamics

Form 4 printer trainina

Updates

- 1. There is a black pad that can be used as a build platform cleaning station
- 2. IPA squirt bottle is available
- 3. Let me know if we are running low on any materials over email
- 4. Google calendar for printer booking
- 5. Weekends?
- 6. Emergency contact info

Agenda

- 1. Concepts in Fluid Dynamics
- 2. Fluids on the ISS
- 3. Redesigned Fluid Systems
- 4. CAD Sandbox

Hydrostatic Pressure

Hydrostatic pressure is the pressure exerted by a fluid at rest that arises solely from the fluid's own weight acting along the local gravity vector.

For a uniform-density fluid on Earth, the magnitude at a depth h measured downward from a free surface is:

$$p = p_{
m surface} \ + \
ho \, g \, h$$

- ullet $p_{
 m surface}$ is the pressure at the reference surface (often atmospheric pressure)
- $m{
 ho}$ is the fluid's density, and
- g is the local gravitational acceleration.

Hydrostatic Pressure on Earth

It depends only on **depth** (distance along g), not on the container's shape or cross-section.

It produces the vertical pressure gradient $\nabla p = p$ g that supports buoyancy and drives phenomena like convection.

Example: Scuba Diving.
Limitations/restrictions on depth humans can dive due to how hydrostatic pressure changes gas dynamics in the body.

Mallen et αl. (2019)

Turning the Gravity Knob Down

Environment	Effective g	Resulting pressure gradient	Consequence
Earth	9.81 m s ⁻²	ρgh	Strong buoyancy, convection.
Moon	1.62 m s⁻²	~1/6 Earth's gradient	Buoyancy weak; fluids still "fall," but sluggishly
ISS orbit	≪10 ⁻³ m s ⁻² ("micro-g")	Negligible	No buoyancy, no "up," liquids cling to walls

In microgravity, g≈0g ⇒ the hydrostatic pressure gradient effectively vanishes

Surface Tension and Capillary Action

Earth-gravity	Microgravity	
Surface tension shapes menisci only in small-scale systems; on larger scales gravity flattens the interface.	Surface tension becomes the dominant shaping force. Capillary action can draw fluids meters through tubes and across corners; interfaces seek minimum-energy shapes (spheres, catenoids).	

Bond Number

A dimensionless quantity that compares the body force due to gravity to the surface-tension force acting on a fluid interface:

Bo	=	$ hogL^2$
Do		σ

Symbol	Meaning
ρ	Density difference between the two adjoining fluids (e.g., liquid–gas)
g	Magnitude of the gravitational acceleration vector
L	Characteristic length scale of the system (drop radius, capillary diameter, etc.)
σ	Interfacial (surface) tension between the fluids

- **Bo ≪ 1** → Surface-tension forces dominate; the interface seeks minimum-energy shapes (spheres, capillary menisci).
- **Bo** \gg 1 \rightarrow Gravity dominates; the interface is flattened or distorted by hydrostatic pressure differences.

Fluid Behavior in Space

Surface Tension

Containment of Fluid Experiments

Cola Wars: Soda in Space

Cola Wars: Soda in Space

Fluid Container: Coffee Cups

Fluid Container: Coffee Cups

Fluid Container: Martini Glass

Cosmic Lifestyle Corp

Fluid Manipulation: Serving Champagne

Unpublished Images/Videos

CAD Software Sandbox

Recommended Software: OnShape

https://www.onshape.com/en/

Instructions

- 1) Open the test tube file.
- 2) Experiment with different ways to modify the shape of the tube.
 - a) Ex: Can you make the tube rectangular?
 - b) Ex: Can you add ridges to the inside?