1

Assignment: CNN and MNIST

David Bertoldi – 735213 email: d.bertoldi@campus.unimib.it

Department of Informatics, Systems and Communication

University of Milano-Bicocca

1 Inspecting the data

The MNIST dataset contains 70 000 images of handwritten digits (0 to 9) that have been size-normalized and centered in a square grid of pixels. Each image is a 28×28 array of floating-point numbers representing grayscale intensities ranging from 0 (black) to 255 (white).

The labels consist of a vector of values, corresponding to the digit classification categories 0 through 9.

The dataset is already divided into training and test sets, respectively with $60\,000$ and $10\,000$ samples.

Figure 1 shows an example of the population.

Figure 1: The first 10 samples of the train dataset

The training population presents a distribution with mean $\mu=6\,000$ and standard deviation $\sigma\simeq 340$ and thus we didn't notice any important unbalance in the data. For this reason we assumed the data followed a distribution $X\sim U(\mu,\sigma)$ and no data augmentation on less populated classes was taken into account. Figure 2 shows the data distribution for both training and test datasets.

2 Preparing the data

Before training a FFNN using this images, encoded in 28×28 matrices with values from 0 to 255, we flattened them in arrays 1×784 and rescaled each value in the continuous interval [0,1]. This encoding will be used in every section of this work: a flat array better suits the input layer of a FFNN and small values increases the efficiency in the calculations.

2.1 Data split

As noted in section 1, the dataset is divided into training and test samples. A validation subset is missing and thus

Figure 2: Histogram of the frequency of samples in the dataset

is retrieved from the training set: 15% of the images are randomly used for validation instead of training (along with their labels) for a total of $9\,000$ samples.

About labels, we encoded them in one-hot vectors so that the 1s are set in the index representing the numerical class.

3 Building the network and training

The aim of this section is to describe a CNN with less than 10 000 parameters that is able to classify with high level of accuracy the numbers from the dataset with or without any regularization technique.

3.1 The network

Figure 3: Histogram of the frequency of samples in the dataset $\,$