PRESENTATION - GRAPH NEURAL NETWORKS FOR NEXT POINT OF INTEREST RECOMMENDATION

Deep Learning

Master's Degree in Computer Science Adriano Izzi 2048338

Gavriel Di Nepi 2067753 Jacopo Fabi 1809860

Academic Year 2023/2024

Table of Contents

1 Task and data analysis

- ► Task and data analysis
- Sequences study and definition
- Model architecture and result

Task: given a sequence of check-ins we want to predict where the user will go

Columns

- 1. Venue (ID-Name)
- 2. User
- 3. Category (Name)
- 4. Location (Longitude-Altitude)
- 5. Timestamp

The dataset comprises

- 227,428 check-ins
- 38,333 venues
- 398 distinct categories
- 1,083 users
- time range 2012 2013

New features - Grid and Hotness

1 Task and data analysis

Figure: Analysis of the distribution of venues' check-ins

- 1. **Hotness:** based on the popularity of the venue (0-6)
- Grid: based on the coordinates of the place we obtained 336 different grid values

Label discrimination

1 Task and data analysis

Number of labels

38,333
$$\xrightarrow{-33,198}$$
 5135

Figure: Analysis of the distribution of venues' check-ins

Table of Contents

2 Sequences study and definition

- Task and data analysis
- ► Sequences study and definition

Model architecture and result

- We grouped check-ins by user and ordered them in a ascending fashion
- A sequence is defined of a set of ordered check-ins, where each adjacent pair has a time $\Delta \leq 1$ day
- The last is the element of the set is a label

Sequence analysis and problems

2 Sequences study and definition

Top_1	Top_5	Top_10	Top_20
17.10	38.50	46.10	52.20

Table: U Top score

Number of sequences: 33,023

Number of 1 element sequences: 10,889

Sequences' problem resolution

2 Sequences study and definition

- 1. Removed sequences with length < 4
- 2. Take a random venue in the sequence as label

	Top_1	Top_5	Top_10	Top_20
Init. Sequences	17.10	38.50	46.10	52.20
Mod. Sequences	4.13	9.95	12.00	13.42

Table: U Top score

Sequences to Graph

2 Sequences study and definition

Figure: Graph representation of the 'venues-id' sequence [5, 8, 3, 2] with a maximum sequence length of six.

Table of Contents

3 Model architecture and results

Task and data analysis

- Sequences study and definition
- ► Model architecture and results

Model architecture

3 Model architecture and results

Model hyper-parameters

3 Model architecture and results

Hyperparameter	Value		
Learning Rate	0.0001		
Batch Size	128		
Optimizer	Adam		
Loss Function	Cross Entropy		
Dropout Rate	0.25		
Units per Hidden Layer	512		
Activation Function	Relu, Tanh		

Results

3 Model architecture and results

Model	Top-1	Top-5	Top-10	Top-20	MRR
U-TOP-10-WRL	4.13	9.95	12.00	13.42	n/d
LSTM	7.33	14.10	16.64	19.46	10.47
Model-10-WRL	7.75	19.88	24.68	29.05	13.45

Table: Performance Metrics for Different Models

PRESENTATION - GRAPH NEURAL NETWORKS FOR NEXT POINT OF INTEREST RECOMMENDATION

Thank you for listening!