SBML Model Report

Model name: "Yang2007_ArachidonicAcid"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Enuo He¹ and Kun Yang² at January twelveth 2007 at 3:06 p.m. and last time modified at July fifth 2012 at 2:48 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	25
events	0	constraints	0
reactions	32	function definitions	0
global parameters	54	unit definitions	2
rules	0	initial assignments	0

Model Notes

This model is according to the paper *Dynamic Simulation on the Arachidonic Acid Metabolic Network*. Figure 2A has been reproduced by SBML ode solver on line. In the original model, all the reactions are presented as ODE directly. So curator rewrite each reaction according to the semantics of the paper. In this paper, the authors used quict complex kinetics law to describe the catalysis in the network, curators did not necessarily know all the complete meanings of the

¹BNMC, enuo@caltech.edu

²Beijing National Laboratory for Molecular Sciences

paper.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micromole

Definition µmol

2.2 Unit time

Name minute

Definition 60 s

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell	cell		3	1	litre	Ø	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains 25 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x1	AA	cell	μ mol·l ⁻¹	\Box	
x10	5-HPETE	cell	$\mu mol \cdot l^{-1}$		
x11	5-HETE	cell	μ mol \cdot l $^{-1}$		\Box
x12	LTA4	cell	μ mol \cdot l $^{-1}$		
x13	LTB4	cell	$\mu mol \cdot l^{-1}$		
x14	w-LTB4	cell	$\mu mol \cdot l^{-1}$		
x15	PLA2	cell	$\mu mol \cdot l^{-1}$		
x16	15-LOX	cell	$\mu mol \cdot l^{-1}$		
x17	12-LOX	cell	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
x18	COX-2	cell	μ mol \cdot l $^{-1}$		
x19	PGES	cell	μ mol \cdot l $^{-1}$		
x2	15-HPETE	cell	μ mol \cdot l $^{-1}$		
x20	TXAS	cell	μ mol \cdot l $^{-1}$		
x21	5-LOX	cell	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
x22	LTA4H	cell	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		\Box
x23	CYP4F3	cell	$\mu \mathrm{mol} \cdot \mathrm{l}^{-1}$		
x24	PHGPx	cell	μ mol·l ⁻¹		
x25	exo-AA	cell	μ mol·l ⁻¹		
x3	15-HETE	cell	$\mu mol \cdot l^{-1}$		
x4	12-HPETE	cell	$\mu mol \cdot l^{-1}$		
x5	12-HETE	cell	μ mol· 1^{-1}		\Box
x6	PGH2	cell	μ mol·l ⁻¹		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x7	PGE2	cell	$\mu mol \cdot l^{-1}$		
x8	TXA2	cell	$\mu mol \cdot l^{-1}$		
x9	TXB2	cell	$\mu mol \cdot l^{-1}$		\Box

5 Parameters

This model contains 54 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
lin	lin	12.000)	Ø
K15	Kcat(PLA2)	3600.000)	
k15	Km(PLA2)	2600.000)	
K16	Kcat(15-LOX)	1000.000)	
k16	Km(15-LOX)	70.000)	
K17	Kcat(12-LOX)	1000.000)	
k17	Km(12-LOX)	50.000)	
K18	Kcat(COX-2)	1000.000)	
k18	Km(COX-2)	50.000)	
K19	Kcat(PGES)	3000.000)	
k19	Km(PGES)	160.000)	
K20	Kcat(TXAS)	1599.000)	
k20	Km(TXAS)	4.000)	
K21	Kcat(5-LOX)	5000.000)	
k21	Km(5-LOX)	5.000)	
K22	Kcat(LTA4H)	125.000)	
k22	Km(LTA4H)	20.000)	
K23	Kcat(CYP4F3)	150.000)	
k23	Km(CYP4F3)	3.900)	
K24	Kcat(PHGPx)	500.000)	
k24	Km(PHGPx)	70.000)	
kd2		0.050)	
kd3		0.010)	
kd8		0.100)	
kd9		0.001	1	
kd11		0.001	1	\checkmark
kd12		0.070)	
kd13		0.010)	
kd16		0.010)	
ki1		0.300)	
ki2		30.000)	
ki3		30.000		
ki4		0.600)	
ki5		0.100)	
ki6		0.010)	$ \overline{\checkmark} $
ki7		30.000)	$ \overline{\checkmark} $
ki8		4.000)	

Id	Name	SBO	Value	Unit	Constant
ki9			0.175		\overline{Z}
ki10			0.010		$ \overline{\checkmark} $
ki11			15.000		$ \overline{\checkmark} $
ki12			6.300		$ \overline{\checkmark} $
ki14			0.200		
ki15			0.860		
ki16			10.000		
ki17			10.000		
ki18			10.000		
KI19			500.000		
KI2O			200.000		
KI21			500.000		
KI22			500.000		
KI23			0.053		
KI24			$2.3 \cdot 10^{-5}$		
a24			0.150		
ks			500.000		$\overline{\checkmark}$

6 Reactions

This model contains 32 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	R1	AA production	$\emptyset \xrightarrow{x11, x13, x15, x2, x4} x1$	
2	R2	15-HPETE production	$x1 \stackrel{x16}{\rightleftharpoons} x2$	
3	R3	15-HETE production	$x2 \stackrel{x24}{\longleftarrow} x3$	
4	R4	12-HPETE production	$x1 \stackrel{x17, x3}{\longleftarrow} x4$	
5	R5	12-HETE production	$x4 \stackrel{x24}{\longleftarrow} x5$	
6	R6	PGH2 production	$x1 \stackrel{x18, x7}{\longleftarrow} x6$	
7	R7	PGE2 production	$x6 \stackrel{\underbrace{x1, x19, x3}}{\longleftarrow} x7$	
8	R8	TXA2 production	$x6 \stackrel{x20}{\rightleftharpoons} x8$	
9	R9	TXB2 production	$\emptyset \xrightarrow{X8} x9$	
10	R10	5-HPETE production	$x1 \times \frac{x11, x3, x5, x7, x21}{x10} \times 10$	
11	R11	5-HETE production	$x10 \stackrel{x24}{\longleftarrow} x11$	
12	R12	LTA4 production	$x10 \stackrel{x11, x21, x3, x5, x7}{\longleftarrow} x12$	
13	R13	LTB4 production	$x12 \stackrel{x22}{\longleftarrow} x13$	
14	R14	20-OH-LTB4 production	$x13 \times \underbrace{11, x23, x5}_{} x14$	
15	R16	15-LOX upregulation	$\emptyset \xrightarrow{\mathbf{x}7} \mathbf{x}16$	
16	R17	12-LOX inhibition	$x17 \xrightarrow{x2} \emptyset$	

Nō	Id	Name	Reaction Equation	SBO
17	R20	TXAS inhibition	$x20 \xrightarrow{x2} \emptyset$	
18	R21	5-LOX upregulation	$\emptyset \xrightarrow{x13} x21$	
19	R22	LTA4H inhibition	$x22 \xrightarrow{x12} \emptyset$	
20	R18	TXB2 decay	$x9 \longrightarrow \emptyset$	
21	R19	TXAS inhibition by PGH2	$x20 \xrightarrow{x6} \emptyset$	
22	R25	TAX2 decay	$x8 \longrightarrow \emptyset$	
23	R24	LTB4 decay	$x13 \longrightarrow \emptyset$	
24	R23	LTA4 decay	$x12 \longrightarrow \emptyset$	
25	R26	15-HETE decay	$x3 \longrightarrow \emptyset$	
26	R27	15-HPETE decay	$x2 \longrightarrow \emptyset$	
27	R28	15-LOX decay	$x16 \longrightarrow \emptyset$	
28	R29	5-HETE decay	$x11 \longrightarrow \emptyset$	
29	R30	5-LOX inhibition by x12	$x21 \xrightarrow{x12} \emptyset$	
30	R31	5-LOX inhibition by x10	$x21 \xrightarrow{x10} \emptyset$	
31	R32	5-LOX inhibition by x2	$x21 \xrightarrow{x2} \emptyset$	
32	R34	AA decay	$x1 \longrightarrow \emptyset$	

6.1 Reaction R1

This is an irreversible reaction of no reactant forming one product influenced by five modifiers.

Name AA production

Reaction equation

$$\emptyset \xrightarrow{x11, x13, x15, x2, x4} x1$$
 (1)

Modifiers

Table 6: Properties of each modifier.

Id	Name	SBO
x11	5-HETE	
x13	LTB4	
x15	PLA2	
x2	15-HPETE	
x4	12-HPETE	

Product

Table 7: Properties of each product.

Id	Name	SBO
x1	AA	

Kinetic Law

Derived unit contains undeclared units

$$v_{1} = \frac{\text{vol}\left(\text{cell}\right) \cdot \text{K15} \cdot \left[\text{x15}\right] \cdot \text{lin} \cdot \left(1 + \frac{\left[\text{x4}\right]}{\text{KI19}} + \frac{\left[\text{x2}\right]}{\text{KI20}} + \frac{\left[\text{x13}\right]}{\text{KI21}} + \frac{\left[\text{x11}\right]}{\text{KI22}}\right)}{\text{lin} + \text{k15} \cdot \left(1 + \frac{\left[\text{x1}\right]}{\text{ks}}\right)}$$
(2)

6.2 Reaction R2

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name 15-HPETE production

Reaction equation

$$x1 \stackrel{\underline{\times}16}{=} x2$$
 (3)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
x1	AA	

Modifier

Table 9: Properties of each modifier.

Id	Name	SBO
x16	15-LOX	

Product

Table 10: Properties of each product.

Id	Name	SBO
x2	15-HPETE	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \frac{\operatorname{vol}(\operatorname{cell}) \cdot \operatorname{K}16 \cdot [\operatorname{x}16] \cdot [\operatorname{x}1]}{[\operatorname{x}1] + \operatorname{k}16 \cdot \left(1 + \frac{[\operatorname{x}2]}{\operatorname{ks}}\right)}$$
(4)

6.3 Reaction R3

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name 15-HETE production

Reaction equation

$$x2 \rightleftharpoons x3 \tag{5}$$

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
x2	15-НРЕТЕ	

Modifier

Table 12: Properties of each modifier.

Id	Name	SBO
x24	PHGPx	

Product

Table 13: Properties of each product.

Id	Name	SBO
x3	15-HETE	

Kinetic Law

Derived unit contains undeclared units

$$v_{3} = \frac{\text{vol}(\text{cell}) \cdot \text{K24} \cdot [\text{x24}] \cdot [\text{x2}]}{[\text{x2}] + \text{k24} \cdot \left(1 + \frac{[\text{x3}]}{\text{ks}}\right)}$$
(6)

6.4 Reaction R4

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name 12-HPETE production

Reaction equation

$$x1 = \underbrace{x17, x3}_{} x4 \tag{7}$$

Table 14: Properties of each reactant.

Id	Name	SBO
x1	AA	

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
x17	12-LOX	
x3	15-HETE	

Product

Table 16: Properties of each product.

Id	Name	SBO
x4	12-НРЕТЕ	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \frac{\text{vol}(\text{cell}) \cdot \text{K17} \cdot [\text{x17}] \cdot [\text{x1}]}{[\text{x1}] + \text{k17} \cdot \left(1 + \frac{[\text{x4}]}{\text{ki18}} + \frac{[\text{x3}]}{\text{ki16}} + \frac{[\text{x4}]}{\text{ks}}\right)}$$
(8)

6.5 Reaction R5

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name 12-HETE production

Reaction equation

$$x4 \stackrel{x24}{\rightleftharpoons} x5 \tag{9}$$

Table 17: Properties of each reactant.

Id	Name	SBO
x4	12-НРЕТЕ	

Modifier

Table 18: Properties of each modifier.

Id	Name	SBO
x24	PHGPx	

Product

Table 19: Properties of each product.

Id	Name	SBO
х5	12-HETE	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \frac{\text{vol}(\text{cell}) \cdot \text{K24} \cdot [\text{x24}] \cdot [\text{x4}]}{[\text{x4}] + \text{k24} \cdot \left(1 + \frac{[\text{x5}]}{\text{ks}}\right)}$$
(10)

6.6 Reaction R6

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name PGH2 production

Reaction equation

$$x1 = x18, x7 \times x6 \tag{11}$$

Table 20: Properties of each reactant.

Id	Name	SBO
x1	AA	

Modifiers

Table 21: Properties of each modifier.

Id	Name	SBO
x18	COX-2	
x7	PGE2	

Product

Table 22: Properties of each product.

Id	Name	SBO
х6	PGH2	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \frac{\operatorname{vol}(\operatorname{cell}) \cdot \operatorname{K}18 \cdot [\operatorname{x}18] \cdot [\operatorname{x}1]}{[\operatorname{x}1] + \operatorname{k}18 \cdot \left(1 + \frac{[\operatorname{x}7]}{\operatorname{ki}3} + \frac{[\operatorname{x}6]}{\operatorname{ks}}\right)}$$
(12)

6.7 Reaction R7

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name PGE2 production

Reaction equation

$$x6 \xrightarrow{x1, x19, x3} x7 \tag{13}$$

Table 23: Properties of each reactant.

Id	Name	SBO
x6	PGH2	

Modifiers

Table 24: Properties of each modifier.

Id	Name	SBO
x1	AA	
x19	PGES	
x3	15-HETE	

Product

Table 25: Properties of each product.

Id	Name	SBO
x7	PGE2	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \frac{\text{vol}(\text{cell}) \cdot \text{K19} \cdot [\text{x19}] \cdot [\text{x6}]}{[\text{x6}] + \text{k19} \cdot \left(1 + \frac{[\text{x1}]}{\text{ki1}} + \frac{[\text{x3}]}{\text{ki2}} + \frac{[\text{x7}]}{\text{ks}}\right)}$$
(14)

6.8 Reaction R8

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name TXA2 production

Reaction equation

$$x6 \stackrel{\underline{x20}}{=} x8 \tag{15}$$

Table 26: Properties of each reactant.

Id	Name	SBO
х6	PGH2	

Modifier

Table 27: Properties of each modifier.

Id	Name	SBO
x20	TXAS	

Product

Table 28: Properties of each product.

Id	Name	SBO
x8	TXA2	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \frac{\text{vol}(\text{cell}) \cdot \text{K20} \cdot [\text{x20}] \cdot [\text{x6}]}{[\text{x6}] + \text{k20} \cdot \left(1 + \frac{[\text{x8}]}{\text{ks}}\right)}$$
(16)

6.9 Reaction R9

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name TXB2 production

Reaction equation

$$\emptyset \xrightarrow{x8} x9 \tag{17}$$

Modifier

Table 29: Properties of each modifier.

Id	Name	SBO
x8	TXA2	

Table 30: Properties of each product.

Id	Name	SBO
х9	TXB2	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = kd8 \cdot [x8] \cdot vol(cell) \tag{18}$$

6.10 Reaction R10

This is a reversible reaction of one reactant forming one product influenced by five modifiers.

Name 5-HPETE production

Reaction equation

$$x1 \xrightarrow{x11, x3, x5, x7, x21} x10 \tag{19}$$

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
x1	AA	

Modifiers

Table 32: Properties of each modifier.

Id	Name	SBO
x11	5-HETE	

Id	Name	SBO
x3	15-HETE	
x5	12-HETE	
x7	PGE2	
x21	5-LOX	

Table 33: Properties of each product.

Id	Name	SBO
x10	5-HPETE	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \frac{\text{vol}(\text{cell}) \cdot \text{K21} \cdot [\text{x21}] \cdot [\text{x1}]}{[\text{x1}] + \text{k21} \cdot \left(1 + \frac{[\text{x5}]}{\text{ki7}} + \frac{[\text{x3}]}{\text{ki8}} + \frac{[\text{x7}]}{\text{ki11}} + \frac{[\text{x11}]}{\text{ki12}} + \frac{[\text{x10}]}{\text{ks}}\right)}$$
(20)

6.11 Reaction R11

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name 5-HETE production

Reaction equation

$$x10 \stackrel{x24}{\rightleftharpoons} x11$$
 (21)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
x10	5-HPETE	

Modifier

Table 35: Properties of each modifier.

Id	Name	SBO
x24	PHGPx	

Table 36: Properties of each product.

Id	Name	SBO
x11	5-НЕТЕ	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \frac{\text{vol}(\text{cell}) \cdot \text{K24} \cdot [\text{x24}] \cdot [\text{x10}]}{[\text{x10}] + \text{k24} \cdot \left(1 + \frac{[\text{x11}]}{\text{ks}}\right)}$$
(22)

6.12 Reaction R12

This is a reversible reaction of one reactant forming one product influenced by five modifiers.

Name LTA4 production

Reaction equation

$$x10 \xrightarrow{x11, x21, x3, x5, x7} x12$$
 (23)

Reactant

Table 37: Properties of each reactant.

Id	Name	SBO
x10	5-HPETE	

Modifiers

Table 38: Properties of each modifier.

Id	Name	SBO
x11	5-HETE	
x21	5-LOX	
x3	15-HETE	
x5	12-HETE	
x7	PGE2	

Table 39: Properties of each product.

Id	Name	SBO
x12	LTA4	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \frac{\text{vol}(\text{cell}) \cdot \text{K21} \cdot [\text{x21}] \cdot [\text{x10}]}{[\text{x10}] + \text{k21} \cdot \left(1 + \frac{[\text{x5}]}{\text{ki7}} + \frac{[\text{x3}]}{\text{ki8}} + \frac{[\text{x7}]}{\text{ki11}} + \frac{[\text{x11}]}{\text{ki12}} + \frac{[\text{x12}]}{\text{ks}}\right)}$$
(24)

6.13 Reaction R13

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name LTB4 production

Reaction equation

$$x12 \stackrel{X22}{\rightleftharpoons} x13 \tag{25}$$

Table 40: Properties of each reactant.

Id	Name	SBO
x12	LTA4	

Modifier

Table 41: Properties of each modifier.

Id	Name	SBO
x22	LTA4H	

Product

Table 42: Properties of each product.

Id	Name	SBO
x13	LTB4	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \frac{\text{vol}(\text{cell}) \cdot \text{K22} \cdot [\text{x22}] \cdot [\text{x12}]}{[\text{x12}] + \text{k22} \cdot \left(1 + \frac{[\text{x13}]}{\text{ks}}\right)}$$
(26)

6.14 Reaction R14

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name 20-OH-LTB4 production

Reaction equation

$$x13 \xrightarrow{x11, x23, x5} x14 \tag{27}$$

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
x13	LTB4	

Modifiers

Table 44: Properties of each modifier.

Id	Name	SBO
x11 x23 x5	5-HETE CYP4F3 12-HETE	

Table 45: Properties of each product.

Id	Name	SBO
x14	w-LTB4	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \frac{\text{vol}(\text{cell}) \cdot \text{K23} \cdot [\text{x23}] \cdot [\text{x13}]}{[\text{x13}] + \text{k23} \cdot \left(1 + \frac{[\text{x5}]}{\text{ki14}} + \frac{[\text{x11}]}{\text{ki15}} + \frac{[\text{x14}]}{\text{ks}}\right)}$$
(28)

6.15 Reaction R16

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name 15-LOX upregulation

Reaction equation

$$\emptyset \xrightarrow{x7} x16 \tag{29}$$

Modifier

Table 46: Properties of each modifier.

Id	Name	SBO
x7	PGE2	

Product

Table 47: Properties of each product.

Id	Name	SBO
x16	15-LOX	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \frac{\text{vol}(\text{cell}) \cdot \text{a24} \cdot [\text{x7}] \cdot [\text{x7}]}{[\text{x7}] \cdot [\text{x7}] + \text{KI24} \cdot \text{KI24}}$$
(30)

6.16 Reaction R17

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name 12-LOX inhibition

Reaction equation

$$x17 \xrightarrow{x2} \emptyset \tag{31}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
x17	12-LOX	

Modifier

Table 49: Properties of each modifier.

Id	Name	SBO
x2	15-НРЕТЕ	

Kinetic Law

$$v_{16} = \text{vol}(\text{cell}) \cdot \text{ki}17 \cdot [\text{x2}] \cdot [\text{x17}]$$
(32)

6.17 Reaction R20

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name TXAS inhibition

Reaction equation

$$x20 \xrightarrow{x2} \emptyset \tag{33}$$

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
x20	TXAS	

Modifier

Table 51: Properties of each modifier.

Id	Name	SBO
x2	15-HPETE	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{ki4} \cdot [\text{x2}] \cdot [\text{x20}] \cdot \text{vol} (\text{cell})$$
(34)

6.18 Reaction R21

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name 5-LOX upregulation

Reaction equation

$$\emptyset \xrightarrow{\mathbf{x}13} \mathbf{x}21 \tag{35}$$

Modifier

Table 52: Properties of each modifier.

Id	Name	SBO
x13	LTB4	

Table 53: Properties of each product.

Id	Name	SBO
x21	5-LOX	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}\left(\text{cell}\right) \cdot \text{KI23} \cdot [\text{x13}] \cdot [\text{x21}] \tag{36}$$

6.19 Reaction R22

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name LTA4H inhibition

Reaction equation

$$x22 \xrightarrow{x12} \emptyset \tag{37}$$

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
x22	LTA4H	

Modifier

Table 55: Properties of each modifier.

Id	Name	SBO
x12	LTA4	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \frac{\text{vol}(\text{cell}) \cdot \text{K22} \cdot [\text{x22}] \cdot [\text{x12}]}{([\text{x12}] + \text{k22}) \cdot \text{129}}$$
(38)

6.20 Reaction R18

This is an irreversible reaction of one reactant forming no product.

Name TXB2 decay

Reaction equation

$$\mathbf{x9} \longrightarrow \mathbf{0} \tag{39}$$

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
х9	TXB2	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{kd9} \cdot [\text{x9}] \cdot \text{vol} (\text{cell}) \tag{40}$$

6.21 Reaction R19

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name TXAS inhibition by PGH2

Reaction equation

$$x20 \xrightarrow{x6} \emptyset \tag{41}$$

Table 57: Properties of each reactant.

Id	Name	SBO
x20	TXAS	

Modifier

Table 58: Properties of each modifier.

Id	Name	SBO
x6	PGH2	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}(\text{cell}) \cdot \text{ki5} \cdot [\text{x6}] \cdot [\text{x20}] \tag{42}$$

6.22 Reaction R25

This is an irreversible reaction of one reactant forming no product.

Name TAX2 decay

Reaction equation

$$x8 \longrightarrow \emptyset$$
 (43)

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
x8	TXA2	

Kinetic Law

$$v_{22} = \text{vol}(\text{cell}) \cdot \text{kd8} \cdot [\text{x8}] \tag{44}$$

6.23 Reaction R24

This is an irreversible reaction of one reactant forming no product.

Name LTB4 decay

Reaction equation

$$x13 \longrightarrow \emptyset$$
 (45)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
x13	LTB4	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{cell}) \cdot \text{kd}13 \cdot [\text{x}13] \tag{46}$$

6.24 Reaction R23

This is an irreversible reaction of one reactant forming no product.

Name LTA4 decay

Reaction equation

$$x12 \longrightarrow \emptyset$$
 (47)

Reactant

Table 61: Properties of each reactant.

Id	Name	SBO
x12	LTA4	

Kinetic Law

$$v_{24} = \text{vol}(\text{cell}) \cdot [\text{x}12] \cdot \text{kd}12 \tag{48}$$

6.25 Reaction R26

This is an irreversible reaction of one reactant forming no product.

Name 15-HETE decay

Reaction equation

$$x3 \longrightarrow \emptyset$$
 (49)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
хЗ	15-HETE	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{kd3} \cdot [\text{x3}] \cdot \text{vol} (\text{cell}) \tag{50}$$

6.26 Reaction R27

This is an irreversible reaction of one reactant forming no product.

Name 15-HPETE decay

Reaction equation

$$x2 \longrightarrow \emptyset$$
 (51)

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
x2	15-НРЕТЕ	

Kinetic Law

$$v_{26} = \text{kd2} \cdot \text{vol}(\text{cell}) \cdot [\text{x2}] \tag{52}$$

6.27 Reaction R28

This is an irreversible reaction of one reactant forming no product.

Name 15-LOX decay

Reaction equation

$$x16 \longrightarrow \emptyset$$
 (53)

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
x16	15-LOX	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{cell}) \cdot \text{kd16} \cdot [\text{x16}] \tag{54}$$

6.28 Reaction R29

This is an irreversible reaction of one reactant forming no product.

Name 5-HETE decay

Reaction equation

$$x11 \longrightarrow \emptyset \tag{55}$$

Reactant

Table 65: Properties of each reactant.

Id	Name	SBO
x11	5-HETE	

Kinetic Law

$$v_{28} = \text{kd11} \cdot [\text{x11}] \cdot \text{vol} (\text{cell})$$
(56)

6.29 Reaction R30

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name 5-LOX inhibition by x12

Reaction equation

$$x21 \xrightarrow{x12} \emptyset \tag{57}$$

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
x21	5-LOX	

Modifier

Table 67: Properties of each modifier.

Id	Name	SBO
x12	LTA4	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{cell}) \cdot \text{ki}9 \cdot [\text{x}12] \cdot [\text{x}21]$$
(58)

6.30 Reaction R31

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name 5-LOX inhibition by x10

Reaction equation

$$x21 \xrightarrow{x10} \emptyset \tag{59}$$

Table 68: Properties of each reactant.

Id	Name	SBO
x21	5-LOX	

Modifier

Table 69: Properties of each modifier.

Id	Name	SBO
x10	5-HPETE	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{vol}(\text{cell}) \cdot \text{ki} 10 \cdot [\text{x} 10] \cdot [\text{x} 21]$$

$$(60)$$

6.31 Reaction R32

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name 5-LOX inhibition by x2

Reaction equation

$$x21 \xrightarrow{x2} \emptyset \tag{61}$$

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
x21	5-LOX	

Modifier

Table 71: Properties of each modifier.

Id	Name	SBO
x2	15-HPETE	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol}(\text{cell}) \cdot \text{ki6} \cdot [\text{x21}] \cdot [\text{x2}]$$
(62)

6.32 Reaction R34

This is an irreversible reaction of one reactant forming no product.

Name AA decay

Reaction equation

$$x1 \longrightarrow \emptyset$$
 (63)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
x1	AA	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = 0.1 \cdot [x1] \cdot \text{vol}(\text{cell}) \tag{64}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species x1

Name AA

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R2, R4, R6, R10, R34 and as a product in R1 and as a modifier in R7).

$$\frac{\mathrm{d}}{\mathrm{d}t} x 1 = |v_1| - |v_2| - |v_4| - |v_6| - |v_{10}| - |v_{32}| \tag{65}$$

7.2 Species x10

Name 5-HPETE

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R11, R12 and as a product in R10 and as a modifier in R31).

$$\frac{\mathrm{d}}{\mathrm{d}t}x10 = |v_{10}| - |v_{11}| - |v_{12}| \tag{66}$$

7.3 Species x11

Name 5-HETE

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R29 and as a product in R11 and as a modifier in R1, R10, R12, R14).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x} 11 = |v_{11}| - |v_{28}| \tag{67}$$

7.4 Species x12

Name LTA4

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R13, R23 and as a product in R12 and as a modifier in R22, R30).

$$\frac{\mathrm{d}}{\mathrm{d}t}x12 = |v_{12}| - |v_{13}| - |v_{24}| \tag{68}$$

7.5 Species x13

Name LTB4

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R14, R24 and as a product in R13 and as a modifier in R1, R21).

$$\frac{\mathrm{d}}{\mathrm{d}t}x13 = |v_{13}| - |v_{14}| - |v_{23}| \tag{69}$$

7.6 Species x14

Name w-LTB4

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a product in R14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}\mathbf{14} = v_{14} \tag{70}$$

7.7 Species x15

Name PLA2

Initial concentration $1.5 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in R1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}15 = 0\tag{71}$$

7.8 Species x16

Name 15-LOX

Initial concentration $1.5 \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R28 and as a product in R16 and as a modifier in R2).

$$\frac{d}{dt}x16 = |v_{15}| - |v_{27}| \tag{72}$$

7.9 Species x17

Name 12-LOX

Initial concentration $0.5 \, \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R17 and as a modifier in R4).

$$\frac{\mathrm{d}}{\mathrm{d}t}x17 = -v_{16} \tag{73}$$

7.10 Species x18

Name COX-2

Initial concentration $0.2 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in R6).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x} \mathbf{18} = 0 \tag{74}$$

7.11 Species x19

Name PGES

Initial concentration $0.5~\mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in R7).

$$\frac{\mathrm{d}}{\mathrm{d}t}x19 = 0\tag{75}$$

7.12 Species x2

Name 15-HPETE

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R3, R27 and as a product in R2 and as a modifier in R1, R17, R20, R32).

$$\frac{d}{dt}x2 = |v_2| - |v_3| - |v_{26}| \tag{76}$$

7.13 Species x20

Name TXAS

Initial concentration $0.5 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R20, R19 and as a modifier in R8).

$$\frac{d}{dt}x20 = -v_{17} - v_{21} \tag{77}$$

7.14 Species x21

Name 5-LOX

Initial concentration $5 \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R30, R31, R32 and as a product in R21 and as a modifier in R10, R12).

$$\frac{\mathrm{d}}{\mathrm{d}t}x21 = |v_{18}| - |v_{29}| - |v_{30}| - |v_{31}| \tag{78}$$

7.15 Species x22

Name LTA4H

Initial concentration 0.76 µmol·1⁻¹

This species takes part in two reactions (as a reactant in R22 and as a modifier in R13).

$$\frac{\mathrm{d}}{\mathrm{d}t}x22 = -v_{19} \tag{79}$$

7.16 Species x23

Name CYP4F3

Initial concentration $0.07 \ \mu mol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in R14).

$$\frac{\mathrm{d}}{\mathrm{d}t}x23 = 0\tag{80}$$

7.17 Species x24

Name PHGPx

Initial concentration $0.8 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a modifier in R3, R5, R11).

$$\frac{\mathrm{d}}{\mathrm{d}t}x24 = 0\tag{81}$$

7.18 Species x25

Name exo-AA

Initial concentration $0 \mu mol \cdot l^{-1}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{\mathrm{d}}{\mathrm{d}t}x25 = 0\tag{82}$$

7.19 Species x3

Name 15-HETE

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R26 and as a product in R3 and as a modifier in R4, R7, R10, R12).

$$\frac{d}{dt}x3 = v_3 - v_{25} \tag{83}$$

7.20 Species x4

Name 12-HPETE

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R5 and as a product in R4 and as a modifier in R1).

$$\frac{\mathrm{d}}{\mathrm{d}t}x4 = v_4 - v_5 \tag{84}$$

7.21 Species x5

Name 12-HETE

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a product in R5 and as a modifier in R10, R12, R14).

$$\frac{\mathrm{d}}{\mathrm{d}t}x5 = v_5 \tag{85}$$

7.22 Species x6

Name PGH2

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R7, R8 and as a product in R6 and as a modifier in R19).

$$\frac{d}{dt}x6 = |v_6| - |v_7| - |v_8| \tag{86}$$

7.23 Species x7

Name PGE2

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in five reactions (as a product in R7 and as a modifier in R6, R10, R12, R16).

$$\frac{\mathrm{d}}{\mathrm{d}t}x7 = v_7 \tag{87}$$

7.24 Species x8

Name TXA2

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R25 and as a product in R8 and as a modifier in R9).

$$\frac{\mathrm{d}}{\mathrm{d}t}x8 = v_8 - v_{22} \tag{88}$$

7.25 Species x9

Name TXB2

Initial concentration $0.0010 \ \mu mol \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R18 and as a product in R9).

$$\frac{\mathrm{d}}{\mathrm{d}t}x9 = v_9 - v_{20} \tag{89}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany