# Introduction to Machine Learning Methods in Condensed Matter Physics

LECTURE 11, FALL 2021

Yi Zhang (张亿)

International Center for Quantum Materials, School of Physics Peking University, Beijing, 100871, China

Email: frankzhangyi@pku.edu.cn

# What is quantum machine learning?

 Why? Both quantum computation and machine learning are cutting-edge topics with a lot of interests and focuses (fundings, grants, jobs, etc.)

 (1) Application of classical Machine learning to meaningful quantum problems

A distinct perspective and a useful tool Examples: quantum phase identification, quantum compiling and control optimization, QMC speed up, renormalization group, quantum-state representation, quantum state tomography, etc.

| Data<br>Method | Classical    | Quantum |
|----------------|--------------|---------|
| Classical      | Classical ML | (1)     |
| Quantum        | (2)          | (3)     |

Quantum-classical hybrid algorithm for noisy intermediate-scale quantum (NISQ) computer and devices

(2) Application of quantum methods to difficult classical problems computer and devices Practical utility, but true quantum advantage is difficult to establish Examples: Shor's factorization algorithm, quantum annealing, quantum generative adversarial network (QGAN), quantum approximate optimization algorithm (QAOA), variational quantum eigensolver (VQE), etc.
Quantum simulation?

(3) Quantum machine learning for quantum many-body problems pood utility yet to be established

#### A new perspective for quantum many-body problem

Solve the ground-state properties of a tight-binding Hamiltonian (Solid state physics 101):

$$\widehat{H} = \sum_{x} -t(c_{x+1}^{\dagger}c_x + \text{h.c.}) + \mu c_x^{\dagger}c_x$$

• Conventional strategy: (1) diagonalize the Hamiltonian in the momentum space:

and (2) fill the Fermi sea for the lowest-energy ground state:

$$|GS\rangle = \prod_{\epsilon_k + \mu < 0} c_k^{\dagger} |vac\rangle$$

then (3) calculate the ground-state properties as expectation values:

$$\langle GS|c_x^{\dagger}c_x|GS\rangle$$
,  $\langle GS|c_{x+1}^{\dagger}c_x|GS\rangle$ , etc.

• Alternative strategy: given a quantum state with translation symmetry and a single Fermi sea:

$$\begin{bmatrix}
|\Phi\rangle = \prod_{k_L < k < k_R} c_k^{\dagger} | vac\rangle \\
k_{R(L)} = k_0 \pm k_F
\end{bmatrix}
\xrightarrow{C_1} \left\{ c_{x+1}^{\dagger} c_x \right\} = \left\langle c_x^{\dagger} c_{x-1} \right\rangle = \dots = k_F / \pi \\
c_0 = \left\langle c_x^{\dagger} c_x \right\rangle = \left\langle c_{x-1}^{\dagger} c_{x-1} \right\rangle = \dots = \sin(k_F) e^{ik_0} / \pi$$

$$\Rightarrow \pm \pi |C_1| = \sin(\pi C_0)$$

#### A new perspective for quantum many-body problem

Physical expectation values (classical number):

$$\pm \pi |\mathcal{C}_1| = \sin(\pi \mathcal{C}_0)$$

For the ground state, minimize energy (Hamiltonian expectation value)
 with a classical constrained optimization:

$$\min \bar{E}$$
 s.t.  $\pm \pi |C_1| = \sin(\pi C_0)$ 



lacksquare The quantum many-body system  $\widehat{H} \implies$  The ground-state properties  $\left\langle \widehat{m{o}} \right\rangle_{GS}$ 

$$\widehat{H} \bowtie |\Phi\rangle_{GS} \Rightarrow \langle \widehat{\boldsymbol{o}} \rangle_{GS}$$

The Hamiltonian is also but an operator (linear combination of operators):

$$\widehat{H} = \sum_i c_i \widehat{O}_i \quad \Longrightarrow \quad E = \sum_i c_i \langle \widehat{O}_i \rangle \quad \text{Its role?}$$
Pei-lin Zheng, Si-Jing Du, YZ, arXiv: 2105.09947 \quad \text{Minimum energy criteria.}

### Classical-machine-learning-invigorated quantum strategy

- ullet How do we get such function  $f(\langle \hat{m{o}} \rangle)$  that can distinguish physical and unphysical expectation values?
  - Sample  $|\Phi\rangle$  consistent with the *presumptions* of the ground states.
  - Evaluate  $\langle \hat{o} \rangle$  as one sample, so on so forth.
  - Apply supervised machine learning for an approximate  $f(\langle \widehat{\boldsymbol{o}} \rangle)$ .





Advantages: thermodynamic limit, strongly correlated systems, etc.

Advantages: thermodynamic limit, strongly correlated sy fully translation-invariant 
$$iMPS$$
 Evaluate expectation value  $H$   $|\Psi\rangle = \sum_{\dots, s_n, \dots} \dots M_{s_n} \dots \times |\dots, s_n, \dots\rangle$  of  $S_r^{\lambda}, S_r^{\lambda} S_{r+l}^{\lambda'}|_{l=1,\dots,l_{max}}^{\lambda, \lambda' = x,y,z}$  Pei-lin Zhena. Si-Jina Du. YZ. arXiv: 2105.09947

Pei-lin Zheng, Si-Jing Du, YZ, arXiv: 2105.09947

valuate expectation value 
$$H = \sum_{j} -JS_{j}^{z}S_{j+1}^{z} - gS_{j}^{x} - hS_{j}^{z}$$
 of  $S_{r}^{\lambda}$ ,  $S_{r}^{\lambda}S_{r+l}^{\lambda'}\Big|_{l=1,\cdots,l_{max}}^{\lambda,\lambda'=x,y,z}$ 

$$\min_{\langle \widehat{\boldsymbol{o}} \rangle} L = \overline{E} + \eta f^* \quad \blacksquare$$



#### Classical-machine-learning-invigorated quantum strategy

• Another advantage: property design, for example, maximize  $(C_1^{AA} - C_1^{BB})^{\epsilon}(C_{1/2}^{AB} + C_{-1/2}^{AB})$ 

Conventionally, we can search within a variational model:

$$\widehat{H}_{var} = \sum -t(c_{x+1}^{\dagger}c_x + \text{h. c.}) + (-1)^x \Delta(c_{x+2}^{\dagger}c_x + \text{h. c.}) + \cdots$$

Generally, we need a larger search space for better outcome, and solve the ground state for each attempted Hamiltonian.

With the new perspective, we simply need to apply classical optimizations:



Extrapolation and impact of  $\eta$ :



#### 'Simple' yet difficult classical optimization problems

Globally optimal solutions of classical spin glass problems are difficult (NP-hard):

$$\hat{H}_C = \sum_{i < j} J_{ij} \hat{\sigma}_i^z \hat{\sigma}_j^z + \sum_{i=1}^n h_i \hat{\sigma}_i^z$$
 Example max-cut problems with 8

Example max-cut and 15 nodes:





Examples: number partition, max cut, 3-SAT, exact cover, etc.

Conventional methods: simulated annealing (Classical Monte Carlo), quantum annealing

$$H = \lambda H_C + (1 - \lambda) H_M, \lambda = 0 \rightarrow 1$$

from a trivial initial  $H_M$  with a simple ground state.

Example: 
$$\hat{H}_M \equiv \sum_{i=1}^n \hat{\sigma}_i^x$$
 and  $|+\rangle^{\otimes n}$ 

Need quantum experiment, since the realtime evolution is very expensive to calculate.





Quantum annealing needs to be sufficiently slow to keep the system at ground state.

# Quantum approximate optimization algorithm

ullet Instead of an infinite number of (time) steps, we approximate the process with p discrete steps:

$$|\psi_p(\vec{\gamma},\vec{\beta})\rangle \equiv \hat{V}(\beta_p)\hat{U}(\gamma_p)\dots\hat{V}(\beta_1)\hat{U}(\gamma_1)|+\rangle^{\otimes n} \qquad \hat{V}(\beta) \equiv e^{-i\beta\hat{H}_M} \qquad \hat{U}(\gamma) \equiv e^{-i\gamma\hat{H}_G}$$

and treat it as a variational state and optimize the energy with respect to its parameters:

$$E_{p}(\vec{\gamma}, \vec{\beta}) \equiv \langle \psi_{p}(\vec{\gamma}, \vec{\beta}) | \hat{H}_{C} | \psi_{p}(\vec{\gamma}, \vec{\beta}) \rangle \qquad \hat{H}_{C} = \sum_{i < j} J_{ij} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{z} + \sum_{i=1}^{n} h_{i} \hat{\sigma}_{i}^{z}$$
$$(\vec{\gamma}^{*}, \vec{\beta}^{*}) = \arg \min_{\vec{\gamma}, \vec{\beta}} E_{p}(\vec{\gamma}, \vec{\beta}) \qquad \hat{H}_{M} \equiv \sum_{i=1}^{n} \hat{\sigma}_{i}^{x}$$

 $|\psi_p\rangle$  is a linear superposition of classical configurations, which can be measured for the optimal solution as long as it has a notable weight.

- QAOA as a hybrid algorithm:
  - Quantum computer/circuit: evaluate  $E_p$
  - Classical computer: classical optimization problem



Edward Farhi and Jeffrey Goldstone, arXiv: 1411.4028; Pontus Vikstal, et al., Phys. Rev. Applied 14, 034009 (2020).

## Quantum approximate optimization algorithm

- When the depth/level  $p \to \infty$ , we should approach the expressibility of the true solution.
- Good-enough approximation to the true solution is good enough.
- All potential solutions are considered equally in the initial state.
- When the energy is low, the true solution's weight should be high.
- The optimization problem is with respect to the parameters  $\vec{\lambda}$  and  $\vec{\beta}$ , and can be carried out using gradient descent, etc.





Single layer (p=1) QAOA's energy landscape for n=25 and n=8 max-cut problems Edward Farhi and Jeffrey Goldstone, arXiv: 1411.4028; Pontus Vikstal, et al., Phys. Rev. Applied 14, 034009 (2020).

## QAOA for quantum states

QAOA as an efficient way for state preparation:

$$\psi(\boldsymbol{\gamma},\boldsymbol{\beta})\rangle_{p} = e^{-i\beta_{p}H_{1}}e^{-i\gamma_{p}H_{2}}\cdots e^{-i\beta_{1}H_{1}}e^{-i\gamma_{1}H_{2}}|\psi_{1}\rangle$$

Examples on the GHZ state and TFIM critical state:

$$H_T = -\sum_{i=1}^{L} Z_i Z_{i+1}$$

$$H_T = -\sum_{i=1}^{L} Z_i Z_{i+1} - \sum_{i=1}^{L} X_i$$

$$H_T = -\sum_{i=1}^{L} Z_i Z_{i+1} - \sum_{i=1}^{L} X_i$$

$$H_T = -\sum_{i=1}^{L} Z_i Z_{i+1} - \sum_{i=1}^{L} X_i$$

$$\frac{-0.55}{-0.55} - \frac{0.65}{-0.75} - \frac{0.85}{-0.75} - \frac{0.85}{-0.85} - \frac{0.85}{-0.85} - \frac{0.85}{-0.95} - \frac{0.85}{-0.95} - \frac{0.85}{-0.95} - \frac{0.65}{-1} -$$

Wen Wei Ho, Timothy H. Hsieh, SciPost Phys. 6, 029 (2019).



Duality between the Ising model and  $Z_2$  lattice gauge theory

Also for certain topological states

However, QAOA is still approximate in general, and can be most/more useful determine ground-state properties that are discrete, robust, e.g. topological invariants.