ĐẠI HỌC BÁCH KHOA – ĐẠI HỌC ĐÀ NẮNG KHOA CÔNG NGHỆ THÔNG TIN

Môn học

Toán Ứng Dụng Applied mathematics

Giảng Viên:

Phạm Minh Tuấn

Giới thiệu

- Phạm Minh Tuấn
- E-mail: pmtuan@dut.udn.vn
- ❖ Tel: 0913230910
- Khoa Công nghệ thông tin –Trường ĐHBK ĐHĐN

Contents

- Number Theory (Lý thuyết số)
 - Basic Number Theory
 - Primality Tests
 - Totient Function
- ❖Combinatorics (Tổ hợp)
 - Basics of Combinatorics
 - Inclusion-Exclusion
- Geometry (Hình học)
- Game Theory (Lý thuyết trò chơi)

Bài 4.2:

Chinese remainder theorem

Problems

The Chinese remainder theorem solves a group of equations of the form

```
x = a_1 \mod m_1
x = a_2 \mod m_2
...
x = a_n \mod m_n
```

• where all pairs of $m_1, m_2, ..., m_n$ are coprime.

- Using this notation, a solution to the equations is $x = a_1 X_{m_1} X_{m_1}^{-1} + a_2 X_{m_2} X_{m_2}^{-1} + \cdots + a_n X_{m_n} X_{m_n}^{-1}$
- ❖ Once we have found a solution x, we can create an infinite number of other solutions, because all numbers of the form $x + km_1m_2 \cdots m_n$ are solutions.

For example, a solution for

- For example, a solution for
 - $x = 3 \mod 5$
 - $x = 4 \mod 7$
 - $x = 2 \mod 3$

is x = 3.21.1 + 4.15.1 + 2.35.2 = 263.

Problem 1

- Solve a group of equations
 - $x = 4 \mod 7$
 - $x = 7 \mod 11$
 - $x = 6 \mod 17$
 - $x = 15 \mod 23$
- X = ??

TEST YOUR UNDERSTANDING

Input

The first line of input consists of an integers T where 1≤T≤1000, the number of test cases. Then follow T lines, each containing four integers a, n, b, m satisfying 1≤n,m≤10⁹, 0≤a<n, 0≤b<m. Also, you may assume gcd(n,m)=1.</p>

Output

For each test case, output two integers x, K, where K=nm and 0≤x<K, giving the solution x(mod K) to the equations x=a(mod n),x=b(mod m).

Sample Input

2 1 2 2 3 151 783 57 278

Sample Output

5 6 31471 217674

Solution ??

```
#include <iostream>
using namespace std;
long long d, x, y;
void extendedEuclid(long long A, long long B) {
  if(B == 0) {
     d = A;
     x = 1;
     V = 0;
  else {
     extendedEuclid(B, A%B);
     long long temp = x;
     X = Y;
     y = temp - (A/B)*y;
```

```
long long modInverse(long long A, long long M)
  extendedEuclid(A,M);
  return (x%M+M)%M
int main(){
  int t;
  cin >>t:
  while (t-->0){
     long long a,n,b,m;
     cin >> a >> n >> b >> m;
     long long k = n^*m;
     long long x = a * m * modInverse(m,n)
                + b * n * modInverse (n,m);
     cout << x%k << " " << k << endl;
```

Why this solution is not good?

TEST YOUR UNDERSTANDING 2

Input

The first line of input consists of an integers T where 1≤T≤1000, the number of test cases. Then follow T lines, each containing four integers a, n, b, m satisfying 1≤n,m≤109, 0≤a<n, 0≤b<m.</p>

Output

For each test case, output two integers x, K, where K=lcm(n,m) (least common multiple) and 0≤x<K, giving the solution x(mod K) to the equations x=a(mod n),x=b(mod m).

Sample Input

3 10000 23000 9000 23000 10000 23000 10000 23000 1234 2000 746 2002

Sample Output

no solution 10000 23000 489234 2002000

Problems