Линейная регрессия и обобщения

Виктор Китов

victorkitov.github.io

Курс поддержан фондом 'Интеллект'

Победитель конкурса VK среди курсов по IT

Содержание

- 1 Линейная регрессия
- Регуляризация
- Вазные функции потеры
- 4 Специальные виды регрессии

Линейная регрессия

• Линейная регрессия

$$\widehat{y} = x^T \widehat{\beta} = \sum_{i=1}^{D} \widehat{\beta}_i x^i$$

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg min}} \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2$$

- Если смещение \widehat{eta}_0 явно не указано, всегда включают константный признак в x.
- Предположения:
 - ullet каждый x^i линейно влияет y с коэффициентом \widehat{eta}_i
 - ullet вклад каждого признака x^i не зависит от значений др. признаков.

Анализ метода

Преимущества:

- интерпретируемость
 - знак коэффициентов=направление влияния x^i
 - модуль коэффициента=сила влияния x^i (при признаках из одной шкалы!)
 - $\widehat{\beta}$ асимптотически нормальны (см. ссылку), можем тестировать:
 - значимость отличия коэффициентов (или группы коэффициентов) от нуля,
 - гипотезу положительного влияния признака на отклик (положительности коэффициента)
 - есть аналитическое решение
 - быстро и просто строятся прогнозы
 - меньше переобучается, чем сложные модели
 - ullet для больших D может быть оптимальной моделью

Недостатки: модельные предположения слишком простые

- признаки могут влиять нелинейно
- признаки могут иметь взаумозависимое влияние

Решение

Определим $X \in \mathbb{R}^{N \times D}, \{X\}_{ij}$ - значение j-го признака i-го объекта, $Y \in \mathbb{R}^N, \{Y\}_i$ - отклик i-го объекта. Метод наименьших квадратов (МНК, ordinary least squares):

$$L(\beta) = \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 = \|X\beta - Y\|_2^2 \to \min_{\beta}$$

$$\nabla L(\widehat{\beta}) = 2 \sum_{n=1}^{N} x_n \left(x_n^T \widehat{\beta} - y_n \right) = 0$$

$$\left(\sum_{n=1}^{N} x_n x_n^T \right) \widehat{\beta} = \sum_{n=1}^{N} x_n y_n$$

$$X^T X \widehat{\beta} = Y$$

 $\widehat{\beta} = (X^T_{4}X_{36})^{-1}X^TY$

Линейная регрессия и обобщения - Виктор Китов Линейная регрессия

Глобальность минимума

- Это глобальный минимум, т.к. оптимизируемый критерий выпуклый.
 - выпуклая ф-ция от линейной выпукла¹, сумма выпуклых выпукла
 - для выпуклой ф-ции достаточное условие минимума равенство нулю производной.

¹Будет ли суперпозиция произвольных выпуклых ф-ций выпуклой?

Геометрическая интерпретация

• Находится линейная комбинация признаков, чтобы приблизить Y в \mathbb{R}^N :

$$L(\beta) = \sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 = \| X \beta - Y \|_2^2 \to \min_{\beta}$$

• Решение - проекция на линейную оболочку признаков в \mathbb{R}^N

Линейно зависимые признаки - проблема

- ullet Решение $\widehat{eta}=(X^TX)^{-1}X^TY$ существует, когда X^TX невырождена.
- Поскольку $rank(X) = rank(X^TX) \ \forall X$, проблема возникает при линейной зависимости признаков.
 - ullet пример: константный признак и one-hot закодированные $e_1, e_2, ... e_K$, поскольку $\sum_k e_k \equiv 1$
 - интерпретация: возникает неоднозначность \widehat{eta} для зависимых признаков:
 - линейная зависимость: $\exists \alpha : x^T \alpha = 0 \, \forall x$
 - предположим $\widehat{\beta}$ решение $\sum_{n=1}^{N} \left(x_n^T \beta y_n \right)^2 o \min_{\beta}$
 - тогда $\widehat{\beta} + k\alpha$ тоже решение $\forall k \in \mathbb{R}: x^T \widehat{\beta} \equiv x^T \widehat{\beta} + kx^T \alpha \equiv x^T (\widehat{\beta} + k\alpha).$
- При почти зависимых признаках (X^TX плохо обусловлена, т.е. $\lambda_{max}/\lambda_{min}$ велико):
 - ullet \widehat{eta} неустойчиво и принимает большие по модулю значения.

Линейно зависимые признаки - решение

- Проблема может быть решена:
 - отбором признаков (feature selection)
 - снижением размерности (dimensionality reduction)
 - накладыванием доп. условий на решение (регуляризация)
 - $\|\beta\|$ должна быть мала
 - ullet некоторые eta_i должны быть неотрицательные
 - ..

Нелинейные зависимости в линейной регрессии

Перейдем от $x \in \mathbb{R}^D$ к его нелинейному преобразованию $\in \mathbb{R}^M$:

$$x \rightarrow [\phi_1(x), \phi_2(x), \dots \phi_M(x)]$$

$$\widehat{y}(x) = \phi(x)^T \widehat{\beta} = \sum_{m=1}^M \widehat{\beta}_m \phi_m(x)$$

Лин. регрессия с полиномиальным преобразованием:

$$x \rightarrow [x, x^2, x^3, ... x^{degree}]$$

Анализ

 $\widehat{y}(x)$ уже нелинейно зависит от x. При этом преимущества лин. регрессии сохраняются:

- интерпретируемость (для несложных преобразований)
- аналитическое решение
- глобальный минимум потерь

Нелинейная регрессия

• Можно исходные признаки подставлять в нелинейную ϕ -цию $\hat{y} = f(x|\beta)$

$$L(\beta|X,Y) = \sum_{n=1}^{N} (f(x_n|\beta) - y_n)^2$$

$$\widehat{eta} = \arg\min_{eta} L(eta|X,Y)$$

- ullet В общем случае не существует аналитического решения $\widehat{eta}.$
 - используем численные методы, например SGD.

Пример использования

```
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error

X_train, X_test, Y_train, Y_test = get_demo_regression_data()
model = LinearRegression() # инициализация модели model.fit(X_train, Y_train) # обучение модели

Y_hat = model.predict(X_test) # построение прогнозов print(f'Cpедний модуль ошибки (MAE): \
    {mean_absolute_error(Y_test, Y_hat):.2f}')
```

Больше информации. Полный код.

Содержание

- Линейная регрессия
- 2 Регуляризация
- З Разные функции потерь
- 4 Специальные виды регрессии

Регуляризация

- Для лучшей обобщающей способности важна не только точность, но и простота модели.
- Учтем простоту дополнительным регуляризатором $R(\beta)$:

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda R(\beta) \to \min_{\beta}$$

• $\lambda > 0$ - гиперпараметр 2 , контролирующий сложность модели.

$$R(\beta) = ||\beta||_1$$
, Лассо регрессия (Lasso regression) $R(\beta) = ||\beta||_2^2$ Гребневая регрессия (Ridge regression)

 На практике смещение часто не регуляризуют, чтобы не приводить к смещению прогнозов к нулю.

²Как он влияет на сложность модели?

Пример использования гребневой регрессии

```
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_absolute_error

X_train, X_test, Y_train, Y_test =
    get_demo_regression_data()
model = Ridge(alpha=1) # инициализация модели
model.fit(X_train,Y_train) # обучение модели
Y_hat = model.predict(X_test) # построение прогнозов
print(f'Cpeдний модуль ошибки (MAE):
    {mean_absolute_error(Y_test, Y_hat):.2f}')
```

- α вес при регуляризаторе (а не при ф-ции потерь).
- Больше информации. Полный код.

Пример использования LASSO регрессии

```
from sklearn.linear_model import Lasso
from sklearn.metrics import mean_absolute_error

X_train, X_test, Y_train, Y_test =
    get_demo_regression_data()
model = Lasso(alpha=1) # инициализация модели
model.fit(X_train,Y_train) # обучение модели
Y_hat = model.predict(X_test) # построение прогнозов
print(f'Cpeдний модуль ошибки (MAE): \
    {mean_absolute_error(Y_test, Y_hat):.2f}')
```

- α вес при регуляризаторе (а не при ф-ции потерь).
- Больше информации. Полный код.

Зависимость \widehat{eta} от λ

• Зависимость $\widehat{\beta}$ от λ для гребневой (A) и лассо (B) регрессии:

- Лассо регрессия может использоваться для автоматического отбора признаков.
- $\overline{\lambda}$ находят по экспоненциальной сетке $[10^{-6}, 10^{-5}, ... 10^{5}, 10^{6}].$
 - потом уточняют
- Всегда рекомендуется включать регуляризацию:
 - плавный контроль сложности модели
 - решение однозначно даже для линейно зависимых признаков
 - ullet из набора решений выбирается с наименьшим $\|eta\|.$

Разное поведение L1 и L2 регуляризации

Разное поведение L1 и L2 регуляризации объясняется эквивалентностью следующих оптимизационных задач:

$$L(w) + \lambda R(w) \to \min_{w} \iff \begin{cases} L(w) \to \min_{w} \\ R(w) \le \gamma \end{cases}$$

где $\gamma = \gamma(\lambda)$ и доказывается из условий Каруша-Куна-Таккера.

Оптимизация при L2 регуляризации Оптимизация при L1 регуляризации w_2 w_1 w_1 $|w_1| + |w_2| \le \gamma$ $w_1^2 + w_2^2 \le \gamma$

ElasticNet.

• ElasticNet - линейная комбинация L_1 и L_2 регуляризации:

$$R(eta)=lpha||eta||_1+(1-lpha)||eta||_2^2$$
 $lpha\in[0,1]$ – гиперпараметр.

- Если два признака x^i и x^j равны:
 - Гребневая регрессия выберет оба с равным весом
 - правильно, т.к. нет априорных предпочтений
 - Лассо регрессия выберет один из них (в общем случае)
 - зато отберет лишние признаки
- ElasticNet обладает обоими преимуществами.

Аналитическое решение для гребневой регрессии

Критерий гребневой регрессии

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \lambda \beta^T \beta \to \min_{\beta}$$

Условие стационарности (равенство нулю производной):

$$2\sum_{n=1}^{N} x_n \left(x_n^T \widehat{\beta} - y_n \right) + 2\lambda \widehat{\beta} = 0$$
$$2X^T (X \widehat{\beta} - Y) + 2\lambda \widehat{\beta} = 0$$
$$\left(X^T X + \lambda I \right) \widehat{\beta} = X^T Y$$

поэтому

$$\widehat{\beta} = (X^T X + \lambda I)^{-1} X^T Y$$

 $X^TX + \lambda I$ всегда невырождена как сумма $X^TX \succeq 0$ и $\lambda I \succ 0$.

Зашумление признаков

• Приём регуляризации: зашумление признаков во время обучения модели с шумом $\delta \in \mathbb{R}^D$:

$$x \rightarrow x + \delta$$

 Шум генерируется свой на каждом шаге оптимизации и удовлетворяет

$$\mathbb{E}\delta = 0, \quad \mathbb{E}\delta = \lambda I$$

- Во время применения модели признаки не зашумляются.
- Препятствуем модели сильно полагаться на отдельный признак и учитывать его с большой силой.
- Это общий приём для любой модели.
- В случае линейной регрессии он эквивалентен L2 регуляризации.

Эквивалентность зашумления и L2 регуляризации

Усреднённый MSE по всевозможным реализациям шума:

$$L(w) = \mathbb{E}\left\{\frac{1}{N}\sum_{i=1}^{N}(y_{i}-\hat{y}_{i})^{2}\right\} = \mathbb{E}\left\{\frac{1}{N}\sum_{i=1}^{N}(y_{i}-(x_{i}+\delta_{i})^{T}w)^{2}\right\}$$

$$= \mathbb{E}\left\{\frac{1}{N}\sum_{i=1}^{N}((y_{i}-x_{i}^{T}w)-\delta_{i}^{T}w)^{2}\right\}$$

$$= \mathbb{E}\left\{\frac{1}{N}\sum_{i=1}^{N}(y_{i}-x_{i}^{T}w)^{2}-2\delta_{i}^{T}w(y_{i}-x_{i}^{T}w)+w^{T}\delta_{i}\delta_{i}^{T}w\right\}$$

$$= \mathbb{E}\left\{\frac{1}{N}\sum_{i=1}^{N}(y_{i}-x_{i}^{T}w)^{2}\right\}-2\mathbb{E}\left\{\delta_{i}^{T}w(y_{i}-x_{i}^{T}w)\right\}+\mathbb{E}\left\{w^{T}\delta_{i}\delta_{i}^{T}w\right\}$$

$$= \frac{1}{N}\sum_{i=1}^{N}(y_{i}-x_{i}^{T}w)^{2}+\lambda\|w\|_{2}^{2},$$

Учет разных признаков с разной силой

• При масштабированию признаков прогнозы лин. регрессии

Учет разных признаков с разной силой

 При масштабированию признаков прогнозы лин. регрессиине изменятся:

$$\widehat{y} = \widehat{\beta}_1 x^1 + \widehat{\beta}_2 x^2 + \dots \xrightarrow{x^1 \to x^1/\alpha} \left(\alpha \widehat{\beta}_1 \right) \left(\frac{x^1}{\alpha} \right) + \widehat{\beta}_2 x^2 + \dots$$

• А с регуляризацией изменятся:

$$\sum_{n=1}^{N} \left(x_n^T \beta - y_n \right)^2 + \frac{\lambda R(\beta)}{\beta} \rightarrow \min_{\beta}$$

- После изменения масштаба признаков, они будут вносить другой вклад в прогноз.
 - для большего учета признака как нужно изменить его масштаб?

Содержание

- 1 Линейная регрессия
- 2 Регуляризация
- 3 Разные функции потерь
- 4 Специальные виды регрессии

Обобщение функции потерь³

• Обобщим квадратичные потери на произвольные:

$$\sum_{n=1}^{N} \left(x^{T} \beta - y_{n} \right)^{2} \to \min_{\beta} \qquad \Longrightarrow \qquad \sum_{n=1}^{N} \mathcal{L}(x_{n}^{T} \beta - y_{n}) \to \min_{\beta}$$

ФУНКЦИЯ ПОТЕРЬ

$$\mathcal{L}(\varepsilon) = \varepsilon^2$$

$$\mathcal{L}(\varepsilon) = |\varepsilon|$$

$$\mathcal{L}(arepsilon) = egin{cases} rac{1}{2}arepsilon^2, & |arepsilon| \leq \delta \ \delta \left(|arepsilon| - rac{1}{2}\delta
ight) & |arepsilon| > \delta \end{cases}$$
 Хубера

название свойства

квадратичная абсолютная дифференцируемая устойчивая к выбросам

оба свойства

³Чему равен константный прогноз, минимизирующий квадратичные и абсолютные ошибки?

Визуализация функций потерь

Оптимальный прогноз для квадратичной ошибки

Константный прогноз $\widehat{y} \in \mathbb{R}$ при квадратичной ф-ции потерь:

$$L(\widehat{y}) = \mathbb{E}\left\{(\widehat{y} - y)^2\right\} \to \min_{\widehat{y} \in \mathbb{R}}$$

Оптимальный прогноз для квадратичной ошибки

Константный прогноз $\widehat{y} \in \mathbb{R}$ при квадратичной ф-ции потерь:

$$L(\widehat{y}) = \mathbb{E}\left\{(\widehat{y} - y)^2\right\} \to \min_{\widehat{y} \in \mathbb{R}}$$
$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \mathbb{E}\left\{2(\widehat{y} - y)\right\} = 2\widehat{y} - 2\mathbb{E}y = 0$$
$$\widehat{y} = \mathbb{E}y$$

Оптимальный прогноз для абсолютной ошибки

Константный прогноз $\widehat{y} \in \mathbb{R}$ при абсолютной ф-ции потерь:

$$L(\widehat{y}) = \mathbb{E}\left\{|\widehat{y} - y|\right\} = \int |\widehat{y} - y| \, p(y) dy =$$

$$= \int (\widehat{y} - y) \mathbb{I}[\widehat{y} \ge y] p(y) dy + \int (y - \widehat{y}) \mathbb{I}[\widehat{y} < y] p(y) dy \to \min_{\widehat{y} \in \mathbb{R}}$$

Оптимальный прогноз для абсолютной ошибки

Константный прогноз $\widehat{y} \in \mathbb{R}$ при абсолютной ф-ции потерь:

$$L(\widehat{y}) = \mathbb{E}\left\{|\widehat{y} - y|\right\} = \int |\widehat{y} - y| \, p(y) dy =$$

$$= \int (\widehat{y} - y) \mathbb{I}[\widehat{y} \ge y] p(y) dy + \int (y - \widehat{y}) \mathbb{I}[\widehat{y} < y] p(y) dy \to \min_{\widehat{y} \in \mathbb{R}}$$

$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \int \mathbb{I}[\widehat{y} \ge y] p(y) dy - \int \mathbb{I}[\widehat{y} < y] p(y) dy = 0$$

$$\frac{\partial L(\widehat{y})}{\partial \widehat{y}} = \int_{y \le \widehat{y}} p(y) dx - \int_{y > \widehat{y}} p(y) dy = 0$$

$$\widehat{y} = \text{median}[y]$$

Влияние функции потерь на результат

• Следовательно, для фиксированного *х* оптимальный функциональный прогноз будет:

$$\begin{split} \arg\min_{\widehat{y}(x)} \mathbb{E}\left\{\left.\left(\widehat{y}(x) - y\right)^2 \right| x\right\} &= \mathbb{E}[y|x] \\ \arg\min_{\widehat{y}(x)} \mathbb{E}\left\{\left.\left|\widehat{y}(x) - y\right| \right| x\right\} &= \mathsf{median}[y|x] \end{split}$$

 При фиксированных обучающей выборке и модели результат будет получаться разный для различных ф-ций потерь!

Содержание

- Линейная регрессия

- 4 Специальные виды регрессии

Взвешенный учет наблюдений⁴

• Взвешенный учет наблюдений

$$\sum_{n=1}^{N} w_n (x_n^T \beta - y_n)^2 \to \min_{\beta \in \mathbb{R}^D}$$
$$w_1 \ge 0, ... w_N \ge 0$$

- Неравномерные веса могут быть обусловлены:
 - разному доверию различным фрагментам обучающей выборки
 - желанием снизить влияние объектов-выбросов
 - желанием сделать сделать сбалансированную выборку
 - Например, при голосовании женщины голосовали чаще мужчин. Но хотим универсальную модель для мужчин и женщин.

⁴Выведите решение для взвешенной линейной регрессии.

Проблема выбросов

Робастная регрессия

- ullet Инициализировать $w_1 = ... = w_N = 1/N$
- Повторять до сходимости:
 - ullet оценить регрессию $\widehat{y}(x)$ используя (x_i,y_i) с весами w_i .
 - для каждого i = 1, 2, ...N:
 - переоценить $\varepsilon_i = \widehat{y}(x_i) y_i$
 - пересчитать веса $w_i = K(|\varepsilon_i|)$
 - ullet нормализовать веса $w_i = rac{w_i}{\sum_{n=1}^N w_n}$

Комментарии:

- $K(\cdot)$ некоторая убывающая функция.
- Веса объектов-выбросов убывают, получаем устойчивое к выбросам решение.
- Алгоритм обобщается на любой метод, допускающий взвешенный учет наблюдений.

Orthogonal matching pursuit: задача

Метод Orthogonal Matching Pursuit решает задачу:

$$\begin{cases} \|X\beta - Y\|_2^2 \to \min_{\beta} \\ \|\beta\|_0 \le K \end{cases}$$

или эквивалентную (для $\varepsilon = f(K)$ для некоторой $\downarrow f(\cdot)$):

$$\begin{cases} \|\beta\|_0 \to \min_{\beta} \\ \|X\beta - Y\|_2^2 \le \varepsilon \end{cases}$$

• $\|\beta\|_0 = \#[$ число ненулевых весов]

Orthogonal matching pursuit: метод

- Инициализировать модель, равную константному нулю.
- **2** Повторять, пока $\|\beta\|_0 < K$ (или пока $\|X\beta Y\|_2^2 > \varepsilon$)
 - добавить признак, максимально коррелирующий с ошибками прогноза последней модели.
 - переобучить линейную регрессию на данных (отобранные признаки, ошибки прогнозирования)
 - 3 обновить ошибки прогнозирования
 - Метод обобщается
 - на др. меру взаимосвязи признаков и откликов
 - на др. алгоритм прогнозирования (корреляция-только с линейными)

Заключение

- Лин. регрессия интерпретируемое аналитическое решение.
- Нелинейные закономерности моделируются:
 - добавлением нелинейных преобразований признаков
 - ullet использованием нелинейной функции $f_w\left(x
 ight)$
- Регуляризация позволяет:
 - считать прогнозы для линейно-зависимых признаков
 - плавно настраивать сложность модели
 - отбирать признаки (лассо регрессия)
- Orthogonal matching pursuit также отбирает признаки.
- Различные функции потерь приводят к разным прогнозам.
- Устойчивость к выбросам достигается:
 - применением L_1 потерь (лассо регрессия)
 - взвешенным учётом наблюдений (робастная регрессия)