Cloud Computing

What is Cloud Computing?

- Cloud computing is the on-demand delivery of compute power, database storage, applications, and other IT resources
- Through a cloud services platform with pay-as-you-go pricing
- You can provision exactly the right type and size of computing resources you need
- You can access as many resources as you need, almost instantly
- Simple way to access servers, storage, databases and a set of application services
- Amazon Web Services owns and maintains the network-connected hardware required for these application services, while you provision and use what you need via a web application.

The Deployment Models of the Cloud

Private Cloud:	Public Cloud:	Hybrid Cloud:
Cloud services used by a single organization, not exposed to the public.	Cloud resources owned and operated by a thirdparty cloud service provider delivered over the Internet.	Keep some servers on premises and extend some capabilities to the Cloud
Complete control	Six Advantages of Cloud Computing	Control over sensitive assets in your private infrastructure
Security for sensitive applications		Flexibility and costeffectiveness of the public cloud
Meet specific business needs		

The Five Characteristics of Cloud Computing

• On-demand self service:

 Users can provision resources and use them without human interaction from the service provider

Broad network access:

 Resources available over the network, and can be accessed by diverse client platforms

Multi-tenancy and resource pooling:

- Multiple customers can share the same infrastructure and applications with security and privacy
- Multiple customers are serviced from the same physical resources

Rapid elasticity and scalability:

- Automatically and quickly acquire and dispose resources when needed
- Quickly and easily scale based on demand

• Measured service:

Usage is measured, users pay correctly for what they have used

Six Advantages of Cloud Computing

- Trade capital expense (CAPEX) for operational expense (OPEX)
 - o Pay On-Demand: don't own hardware
 - Reduced Total Cost of Ownership (TCO) & Operational Expense (OPEX)
- Benefit from massive economies of scale
 - Prices are reduced as AWS is more efficient due to large scale
- Stop guessing capacity
 - Scale based on actual measured usage
- Increase speed and agility
- Stop spending money running and maintaining data centers
- Go global in minutes: leverage the AWS global infrastructure

Problems solved by the Cloud

- Flexibility: change resource types when needed
- Cost-Effectiveness: pay as you go, for what you use
- Scalability: accommodate larger loads by making hardware stronger or adding additional nodes
- Elasticity: ability to scale out and scale-in when needed
- High-availability and fault-tolerance: build across data centers
- Agility: rapidly develop, test and launch software applications

Types of Cloud Computing

- Infrastructure as a Service (laaS)
 - Provide building blocks for cloud IT
 - o Provides networking, computers, data storage space
 - Highest level of flexibility
 - Easy parallel with traditional on-premises IT
- Platform as a Service (PaaS)
 - Removes the need for your organization to manage the underlying infrastructure

- o Focus on the deployment and management of your applications
- Software as a Service (SaaS)
 - Completed product that is run and managed by the service provider

Example of Cloud Computing Types

- Infrastructure as a Service:
 - Amazon EC2 (on AWS)
 - o GCP, Azure, Rackspace, Digital Ocean, Linode
- Platform as a Service:
 - Elastic Beanstalk (on AWS)
 - Heroku, Google App Engine (GCP), Windows Azure (Microsoft)
- Software as a Service:
 - Many AWS services (ex: Rekognition for Machine Learning)
 - Google Apps (Gmail), Dropbox, Zoom

Pricing of the Cloud - Quick Overview

- AWS has 3 pricing fundamentals, following the pay-as-you-go pricing model
- Compute:
 - Pay for compute time
- Storage:
 - Pay for data stored in the Cloud
- Data transfer OUT of the Cloud:
 - Data transfer IN is free
- Solves the expensive issue of traditional IT

AWS Cloud Use Cases

- AWS enables you to build sophisticated, scalable applications
- Applicable to a diverse set of industries
- Use cases include
 - Enterprise IT, Backup & Storage, Big Data analytics
 - Website hosting, Mobile & Social Apps
 - Gaming

AWS Global Infrastructure

- AWS Regions
- AWS Availability Zones

- AWS Data Centers
- AWS Edge Locations / Points of Presence
- https://infrastructure.aws/

AWS Regions

- AWS has Regions all around the world
- Names can be us-east-1, eu-west-3...
- A region is a cluster of data centers
- Most AWS services are region-scoped

How to choose an AWS Region?

If you need to launch a new application, where should you do it?

- Compliance with data governance and legal requirements: data never leaves a region without your explicit permission
- Proximity to customers: reduced latency
- Available services within a Region: new services and new features aren't available in every Region
- Pricing: pricing varies region to region and is transparent in the service pricing page

AWS Availability Zones

- Each region has many availability zones (usually 3, min is 2, max is 6). Example:
 - o ap-southeast-2a
 - o ap-southeast-2b
 - o ap-southeast-2c
- Each availability zone (AZ) is one or more discrete data centers with redundant power, networking, and connectivity
- They're separate from each other, so that they're isolated from disasters
- They're connected with high bandwidth, ultra-low latency networking

AWS Points of Presence (Edge Locations)

- Amazon has 216 Points of Presence (205 Edge Locations & 11 Regional Caches) in 84 cities across 42 countries
- Content is delivered to end users with lower latency

Tour of the AWS Console

- AWS has Global Services:
 - Identity and Access Management (IAM)
 - Route 53 (DNS service)
 - CloudFront (Content Delivery Network)
 - WAF (Web Application Firewall)
- Most AWS services are Region-scoped:
 - Amazon EC2 (Infrastructure as a Service)
 - Elastic Beanstalk (Platform as a Service)
 - Lambda (Function as a Service)
 - Rekognition (Software as a Service)
- Region Table: https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services

Shared Responsibility Model

- CUSTOMER = RESPONSIBILITY FOR THE SECURITY IN THE CLOUD
- AWS = RESPONSIBILITY FOR THE SECURITY OF THE CLOUD

Identity and Access Management

What Is IAM?

AWS Identity and Access Management (IAM) is a web service that helps you securely control access to AWS resources. You use IAM to control who is authenticated (signed in) and authorized (has permissions) to use resources.

IAM: Users & Groups

- IAM = Identity and Access Management, Global service
- Root account created by default, shouldn't be used or shared
- Users are people within your organization, and can be grouped
- Groups only contain users, not other groups
- Users don't have to belong to a group, and user can belong to multiple groups

IAM: Permissions

- Users or Groups can be assigned JSON documents called policies
- These policies define the permissions of the users
- In AWS you apply the least privilege principle: don't give more permissions than a user needs

IAM Policies Inheritance

IAM Policies Structure

- Consists of
 - Version: policy language version, always include "2012-10-17"
 - Id: an identifier for the policy (optional)
 - Statement: one or more individual statements (required)
- Statements consists of
 - Sid: an identifier for the statement (optional)
 - Effect: whether the statement allows or denies access (Allow, Deny)
 - o Principal: account/user/role to which this policy applied to
 - Action: list of actions this policy allows or denies
 - Resource: list of resources to which the actions applied to

o Condition: conditions for when this policy is in effect (optional)

```
Example:
```

```
{
 "Version": "2012-10-17",
 "Statement": [
  {
   "Effect": "Allow",
   "Action": "ec2:Describe*",
   "Resource": "*"
 },
  {
   "Effect": "Allow",
   "Action": "elasticloadbalancing:Describe*",
   "Resource": "*"
 },
  {
   "Effect": "Allow",
   "Action": [
    "cloudwatch:ListMetrics",
    "cloudwatch:GetMetricStatistics",
    "cloudwatch:Describe*"
   ],
   "Resource": "*"
```

```
}
]
}
```

IAM - Password Policy

- Strong passwords = higher security for your account
- In AWS, you can setup a password policy:
 - Set a minimum password length
 - Require specific character types:
 - including uppercase letters
 - lowercase letters
 - numbers
 - non-alphanumeric characters
- Allow all IAM users to change their own passwords
- Require users to change their password after some time (password expiration)
- Prevent password re-use

IAM Roles for Services

- Some AWS service will need to perform actions on your behalf
- To do so, we will assign permissions to AWS services with IAM Roles
- Common roles:
 - EC2 Instance Roles
 - Lambda Function Roles
 - Roles for CloudFormation

IAM Security Tools

- IAM Credentials Report (account-level)
- a report that lists all your account's users and the status of their various credentials
- IAM Access Advisor (user-level)
- Access advisor shows the service permissions granted to a user and when those services were last accessed.
- You can use this information to revise your policies.

IAM Guidelines & Best Practices

- Don't use the root account except for AWS account setup
- One physical user = One AWS user
- Assign users to groups and assign permissions to groups
- Create a strong password policy
- Use and enforce the use of Multi Factor Authentication (MFA)
- Create and use Roles for giving permissions to AWS services
- Use Access Keys for Programmatic Access (CLI / SDK)
- Audit permissions of your account with the IAM Credentials Report
- Never share IAM users & Access Keys

Shared Responsibility Model for IAM

AWS	YOU
Infrastructure (global network security)	Users, Groups, Roles, Policies management and monitoring
Configuration and vulnerability analysis	Enable MFA on all accounts
Compliance validation	Rotate all your keys often, Use IAM tools to apply appropriate permissions, Analyze access patterns & review permissions

Multi Factor Authentication - MFA

- Users have access to your account and can possibly change configurations or delete resources in your AWS account
- You want to protect your Root Accounts and IAM users
- MFA = password you know + security device you own
- Main benefit of MFA: if a password is stolen or hacked, the account is not compromised

MFA devices options in AWS

- Virtual MFA device (Support for multiple tokens on a single device.)
 - Google Authenticator (phone only)
 - Authy (multi-device)
- Universal 2nd Factor (U2F) Security Key (Support for multiple root and IAM users using a single security key)
 - YubiKey by Yubico (3rd party)
- Hardware Key Fob MFA Device
- Hardware Key Fob MFA Device for AWS GovCloud (US)

How can users access AWS?

- To access AWS, you have three options:
 - AWS Management Console (protected by password + MFA)
 - o AWS Command Line Interface (CLI): protected by access keys
 - AWS Software Developer Kit (SDK) for code: protected by access keys
- Access Keys are generated through the AWS Console
- Users manage their own access keys
- Access Keys are secret, just like a password. Don't share them
- Access Key ID ~= username
- Secret Access Key ~= password

What's the AWS CLI?

- A tool that enables you to interact with AWS services using commands in your command-line shell
- Direct access to the public APIs of AWS services
- You can develop scripts to manage your resources
- It's open-source https://github.com/aws/aws-cli
- Alternative to using AWS Management Console

What's the AWS SDK?

- AWS Software Development Kit (AWS SDK)
- Language-specific APIs (set of libraries)
- Enables you to access and manage AWS services programmatically
- Embedded within your application
- Supports
 - SDKs (JavaScript, Python, PHP, .NET, Ruby, Java, Go, Node.js, C++)

- Mobile SDKs (Android, iOS, ...)
- o IoT Device SDKs (Embedded C, Arduino, ...)
- Example: AWS CLI is built on AWS SDK for Python

IAM Section - Summary

- Users: mapped to a physical user, has a password for AWS Console
- Groups: contains users only
- Policies: JSON document that outlines permissions for users or groups
- Roles: for EC2 instances or AWS services
- Security: MFA + Password Policy
- AWS CLI: manage your AWS services using the command-line
- AWS SDK: manage your AWS services using a programming language
- Access Keys: access AWS using the CLI or SDK
- Audit: IAM Credential Reports & IAM Access Advisor

Advance Security Concepts

AWS STS (SecurityToken Service)

- Enables you to create temporary, limited- privileges credentials to access your AWS resources
- Short-term credentials: you configure expiration period
- Use cases
 - Identity federation: manage user identities in external systems, and provide them with STS tokens to access AWS resources
 - IAM Roles for cross/same account access
 - IAM Roles for Amazon EC2: provide temporary credentials for EC2 instances to access AWS resources

Amazon Cognito (simplified)

- Identity for your Web and Mobile applications users (potentially millions)
- Instead of creating them an IAM user, you create a user in Cognito

What is Microsoft Active Directory (AD)?

- Found on any Windows Server with AD Domain Services
- Database of objects: User Accounts, Computers, Printers, File Shares, Security Groups
- Centralized security management, create account, assign permissions

AWS Directory Services

AWS Managed Microsoft AD

- o Create your own AD in AWS, manage users locally, supports MFA
- Establish "trust" connections with your on- premise AD

AD Connector

- Directory Gateway (proxy) to redirect to on- premise AD, supports
 MFA
- \circ Users are managed on the on-premise AD

• Simple AD

- AD-compatible managed directory on AWS
- Cannot be joined with on-premise AD

AWS IAM Identity Center (successor to AWS Single Sign-On)

- One login (single sign-on) for all your
 - AWS accounts in AWS Organizations
 - o Business cloud applications (e.g., Salesforce, Box, Microsoft 365, ...)
 - SAML2.0-enabled applications
 - EC2 Windows Instances
- Identity providers
 - Built-in identity store in IAM Identity Center

Summary

IAM

- Identity and Access Management inside your AWS account
- For users that you trust and belong to your company
- Organizations: manage multiple AWS accounts
- Security Token Service (STS): temporary, limited-privileges credentials to access AWS resources
- Cognito: create a database of users for your mobile & web applications
- Directory Services: integrate Microsoft Active Directory in AWS

• IAM Identity Center: one login for multiple AWS accounts & applications				

EC2

What is Amazon EC2?

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing capacity in the Amazon Web Services (AWS) Cloud.

- EC2 is one of the most popular of AWS' offering
- EC2 = Elastic Compute Cloud = Infrastructure as a Service
- It mainly consists in the capability of:
 - Renting virtual machines (EC2)
 - Storing data on virtual drives (EBS)
 - Distributing load across machines (ELB)
 - Scaling the services using an auto-scaling group (ASG)
- Knowing EC2 is fundamental to understand how the Cloud works

EC2 sizing & configuration options

- Operating System (OS): Linux, Windows or Mac OS
- How much compute power & cores (CPU)
- How much random-access memory (RAM)
- How much storage space:
 - Network-attached (EBS & EFS)
 - hardware (EC2 Instance Store)
- Network card: speed of the card, Public IP address
- Firewall rules: security group
- Bootstrap script (configure at first launch): EC2 User Data

EC2 User Data

- It is possible to bootstrap our instances using an EC2 User data script.
- bootstrapping means launching commands when a machine starts
- That script is only run once at the instance first start
- EC2 user data is used to automate boot tasks such as:
 - Installing updates
 - Installing software
 - o Downloading common files from the internet
 - o Anything you can think of
- The EC2 User Data Script runs with the root user

EC2 Instance Types - Overview

- You can use different types of EC2 instances that are optimised for different use cases (https://aws.amazon.com/ec2/instance-types/)
 - o General Purpose
 - o Compute Optimized
 - Memory Optimized
 - Storage Optimized
 - Accelerated Computing
- AWS has the following naming convention: m5.2xlarge
- m: instance class
- 5: generation (AWS improves them over time)
- 2xlarge: size within the instance class

General Purpose

- Great for a diversity of workloads such as web servers or code repositories
- Balance between:
 - Compute
 - Memory
 - Networking

Compute Optimized

- Great for compute-intensive tasks that require high performance processors:
 - Batch processing workloads
 - Media transcoding
 - High performance web servers
 - High performance computing (HPC)
 - Scientific modeling & machine learning
 - Dedicated gaming servers

Memory Optimized

- Fast performance for workloads that process large data sets in memory
- Use cases:
 - High performance, relational/non-relational databases
 - Distributed web scale cache stores

- In-memory databases optimized for BI (business intelligence)
- Applications performing real-time processing of big unstructured data

Storage Optimized

- Great for storage-intensive tasks that require high, sequential read and write access to large data sets on local storage
- Use cases:
 - High frequency online transaction processing (OLTP) systems
 - Relational & NoSQL databases
 - Cache for in-memory databases (for example, Redis)
 - Data warehousing applications
 - Distributed file systems

EC2 Instance Types: example

Instance	vCPU	Mem (GiB)	Storage	Network Performa nce	EBS Bandwidt h (Mbps)
t2.micro	1	1	EBS-Only	Low to Moderate	
t2.xlarge	4	16	EBS-Only	Moderate	
c5d.4xlar ge	16	32	1 x 400 NVMe SSD	Up to 10 Gbps	4,750
r5.16xlarg e	64	512	EBS Only	20 Gbps	13,600
m5.8xlarg e	32	128	EBS Only	10 Gbps	6,800

t2.micro is part of the AWS free tier (up to 750 hours per month)

Introduction to Security Groups

- Security Groups are the fundamental of network security in AWS
- They control how traffic is allowed into or out of our EC2 Instances.
- Security groups only contain allow rules
- Security groups rules can reference by IP or by security group

Deeper Dive

- Security groups are acting as a "firewall" on EC2 instances
- They regulate:
 - Access to Ports
 - Authorised IP ranges IPv4 and IPv6
 - Control of inbound network (from other to the instance)
 - Control of outbound network (from the instance to other)

Security Groups Diagram

Good to know

- Can be attached to multiple instances
- Locked down to a region / VPC combination
- Does live "outside" the EC2 if traffic is blocked the EC2 instance won't see it
- It's good to maintain one separate security group for SSH access
- If your application is not accessible (time out), then it's a security group issue
- If your application gives a "connection refused" error, then it's an application error or it's not launched
- All inbound traffic is blocked by default
- All outbound traffic is authorized by default

Classic Ports to know

- 22 = SSH (Secure Shell) log into a Linux instance
- 21 = FTP (File Transfer Protocol) upload files into a file share
- 22 = SFTP (Secure File Transfer Protocol) upload files using SSH
- 80 = HTTP access unsecured websites
- 443 = HTTPS access secured websites
- 3389 = RDP (Remote Desktop Protocol) log into a Windows instance

EC2 Instance Launch Types

- On Demand Instances: short workload, predictable pricing
- Reserved: (1 & 3 years)
 - Reserved Instances: long workloads
 - Convertible Reserved Instances: long workloads with flexible instances
- <u>Savings Plans</u> (1 & 3 years): commitment to an amount of usage, long workload
- Spot Instances: short workloads, for cheap, can lose instances
- Dedicated Instances: no other customers will share your hardware
- <u>Dedicated Hosts</u>: book an entire physical server, control instance placement
- <u>Capacity Reservations</u>: reserve capacity in a specific AZ for any duration

On Demand Instance

- Pay for what you use:
 - o Linux or Windows billing per second, after the first minute
 - o All other operating systems billing per hour
- Has the highest cost but no upfront payment
- No long-term commitment
- Recommended for **short-term** and **un-interrupted workloads**, where you can't predict how the application will behave

Reserved Instances

- Up to 72% discount compared to On-demand
- You reserve a specific instance attributes (Instance Type, Region, Tenancy, OS)
- Reservation Period 1 year (+discount) or 3 years (+++discount)
- Payment Options No Upfront (+), Partial Upfront (++), All Upfront (+++)
- Reserved Instance's Scope Regional or Zonal (reserve capacity in an AZ)
- Recommended for steady-state usage applications (think database)
- You can buy and sell in the Reserved Instance Marketplace
- Convertible Reserved Instance

- Can change the EC2 instance type, instance family, OS, scope and tenancy
- Up to 66% discount

Savings Plans

- Get a discount based on long-term usage (up to 72% same as RIs)
- Commit to a certain type of usage (\$10/hour for 1 or 3 years)
- Usage beyond EC2 Savings Plans is billed at the On-Demand price
- Locked to a specific instance family & AWS region (e.g., M5 in us-east-1)
- Flexible across:
 - Instance Size (e.g., m5.xlarge, m5.2xlarge)
 - OS (e.g., Linux, Windows)
 - Tenancy (Host, Dedicated, Default)

Spot Instances

- Can get a discount of up to 90% compared to On-demand
- Instances that you can "lose" at any point of time if your max price is less than the current spot price
- The MOST cost-efficient instances in AWS
- Useful for workloads that are resilient to failure
 - Batch jobs
 - Data analysis
 - Image processing
 - Any distributed workloads
 - Workloads with a flexible start and end time
- Not suitable for critical jobs or databases

Dedicated Hosts

- A physical server with EC2 instance capacity fully dedicated to your use
- Allows you to address compliance requirements and use your existing server- bound software licenses (per-socket, per-core, pe-VM software licenses)
- Purchasing Options:
 - On-demand pay per second for active Dedicated Host
 - Reserved 1 or 3 years (No Upfront, Partial Upfront, All Upfront)
- The most expensive option

- Useful for software that have complicated licensing model (BYOL Bring Your Own License)
- Or for companies that have strong regulatory or compliance needs

Dedicated Instances

- Instances run on hardware that's dedicated to you
- May share hardware with other instances in same account
- No control over instance placement (can move hardware after Stop / Start)

Capacity Reservations

- Reserve On-Demand instances capacity in a specific AZ for any duration
- You always have access to EC2 capacity when you need it
- No time commitment (create/cancel anytime), no billing discounts
- Combine with Regional Reserved Instances and Savings Plans to benefit from billing discounts
- You're charged at On-Demand rate whether you run instances or not
- Suitable for short-term, uninterrupted workloads that needs to be in a specific AZ

Which purchasing option is right for me?

- On demand: coming and staying in resort whenever we like, we pay the full price
- Reserved: like planning ahead and if we plan to stay for a long time, we may get a good discount.
- Savings Plans: pay a certain amount per hour for certain period and stay in any room type (e.g., King, Suite, Sea View, ...)
- Spot instances: the hotel allows people to bid for the empty rooms and the highest bidder keeps the rooms. You can get kicked out at any time
- Dedicated Hosts: We book an entire building of the resort
- Capacity Reservations: you book a room for a period with full price even you don't stay in it

Price Comparison Example - m4.large - us-east-1

Price Type	Price (per hour)
On-Demand	\$0.10
Spot Instance (Spot Price)	\$0.038 - \$0.039 (up to 61% off)
Reserved Instance (1 year)	\$0.062 (No Upfront) - \$0.058 (All Upfront)
Reserved Instance (3 years)	\$0.043 (No Upfront) - \$0.037 (All Upfront)
EC2 Savings Plan (1 year)	\$0.062 (No Upfront) - \$0.058 (All Upfront)
Reserved Convertible Instance (1 year)	\$0.071 (No Upfront) - \$0.066 (All Upfront)
Dedicated Host	On-Demand Price
Dedicated Host Reservation	Up to 70% off
Capacity Reservations	On-Demand Price

Shared Responsibility Model for EC2

AWS	USER
Infrastructure (global network security)	Security Groups rules
Isolation on physical hosts	Operating-system patches and updates
Replacing faulty hardware	Software and utilities installed on the EC2 instance
Compliance validation	IAM Roles assigned to EC2 & IAM user access management, Data security on your instance

EC2 Section - Summary

- EC2 Instance: AMI (OS) + Instance Size (CPU + RAM) + Storage + security groups + EC2 User Data
- Security Groups: Firewall attached to the EC2 instance
- EC2 User Data: Script launched at the first start of an instance
- SSH: start a terminal into our EC2 Instances (port 22)
- EC2 Instance Role: link to IAM roles
- Purchasing Options: On-Demand, Spot, Reserved (Standard + Convertible + Scheduled), Dedicated Host, Dedicated Instance

EC2 - Auto Scaling and Storage

Scalability & High Availability

- Scalability means that an application / system can handle greater loads by adapting.
- There are two kinds of scalability:
 - Vertical Scalability

- Horizontal Scalability (= elasticity)
- Scalability is linked but different to High Availability
- Let's deep dive into the distinction, using a call center as an example

Vertical Scalability

- Vertical Scalability means increasing the size of the instance
- For example, your application runs on a t2.micro
- Scaling that application vertically means running it on a t2.large
- Vertical scalability is very common for non distributed systems, such as a database.
- There's usually a limit to how much you can vertically scale (hardware limit)

Horizontal Scalability

- Horizontal Scalability means increasing the number of instances / systems for your application
- Horizontal scaling implies distributed systems.
- This is very common for web applications / modern applications
- It's easy to horizontally scale thanks the cloud offerings such as Amazon EC2

High Availability

- High Availability usually goes hand in hand with horizontal scaling
- High availability means running your application / system in at least 2
 Availability Zones
- The goal of high availability is to survive a data center loss (disaster)

High Availability & Scalability For EC2

- Vertical Scaling: Increase instance size (= scale up / down)
 - From: t2.nano 0.5G of RAM, 1 vCPU
 - To: u-12tb1.metal 12.3 TB of RAM, 448 vCPUs
- Horizontal Scaling: Increase number of instances (= scale out / in)
 - Auto Scaling Group
 - Load Balancer
- High Availability: Run instances for the same application across multi AZ
 - Auto Scaling Group multi AZ

Scalability vs Elasticity (vs Agility)

Scalability	Elasticity	Agility
ability to accommodate a larger load by making the hardware stronger (scale up), or by adding nodes (scale out)	once a system is scalable, elasticity means that there will be some "autoscaling" so that the system can scale based on the load. This is "cloudfriendly": pay-peruse, match demand, optimize costs	(not related to scalability - distractor) new IT resources are only a click away, which means that you reduce the time to make those resources available to your developers from weeks to just minutes.

What is load balancing?

• Load balancers are servers that forward internet traffic to multiple servers (EC2 Instances) downstream.

Why use a load balancer?

- Spread load across multiple downstream instances
- Expose a single point of access (DNS) to your application
- Seamlessly handle failures of downstream instances
- Do regular health checks to your instances
- Provide SSL termination (HTTPS) for your websites
- High availability across zones

Why use an Elastic Load Balancer?

- An ELB (Elastic Load Balancer) is a managed load balancer
 - AWS guarantees that it will be working
 - o AWS takes care of upgrades, maintenance, high availability
 - AWS provides only a few configuration knobs

- It costs less to setup your own load balancer but it will be a lot more effort on your end (maintenance, integrations)
- 3 kinds of load balancers offered by AWS:
 - Application Load Balancer (HTTP / HTTPS only) Layer 7
 - Network Load Balancer (ultra-high performance, allows for TCP) –
 Layer 4
 - Classic Load Balancer (slowly retiring) Layer 4 & 7

What's an Auto Scaling Group?

- In real-life, the load on your websites and application can change
- In the cloud, you can create and get rid of servers very quickly
- The goal of an Auto Scaling Group (ASG) is to:
 - Scale out (add EC2 instances) to match an increased load
 - o Scale in (remove EC2 instances) to match a decreased load
 - Ensure we have a minimum and a maximum number of machines running
 - Automatically register new instances to a load balancer
 - Replace unhealthy instances
- Cost Savings: only run at an optimal capacity (principle of the cloud)

Auto Scaling Groups Scaling Strategies

- Manual Scaling: Update the size of an ASG manually
- Dynamic Scaling: Respond to changing demand
 - Simple / Step Scaling
 - When a CloudWatch alarm is triggered (example CPU > 70%), then add 2 units
 - When a CloudWatch alarm is triggered (example CPU < 30%), then remove 1
 - Target Tracking Scaling
 - Example: I want the average ASG CPU to stay at around 40%
 - Scheduled Scaling
 - Anticipate a scaling based on known usage patterns
 - Example: increase the min. capacity to 10 at 5 pm on Fridays
- Predictive Scaling
 - Uses Machine Learning to predict future traffic ahead of time
 - Automatically provisions the right number of EC2 instances in advance

• Useful when your load has predictable time - based patterns

ELB & ASG Summary

- High Availability vs Scalability (vertical and horizontal) vs Elasticity vs Agility in the Cloud
- Elastic Load Balancers (ELB)
 - Distribute traffic across backend EC2 instances, can be Multi-AZ
 - Supports health checks
 - 3 types: Application LB (HTTP L7), Network LB (TCP L4), Classic LB (old)
- Auto Scaling Groups (ASG)
 - o Implement Elasticity for your application, across multiple AZ
 - Scale EC2 instances based on the demand on your system, replace unhealthy
 - Integrated with the ELB

- EBS: Elastic Block Store, Volume is a network drive you can attach to your instances while they run
- EFS: network file system, can be attached to 100s of instances in a region
- EFS-IA: cost-optimized storage class for infrequent accessed files
- FSx for Windows: Network File System for Windows servers
- FSx for Lustre: High Performance Computing Linux file system

EBS Volumes

What's an EBS Volume?

- An EBS (Elastic Block Store) Volume is a network drive you can attach to your instances while they run
- It allows your instances to persist data, even after their termination