Analyse of Student Performance data

Trang Nghiem

Description of data

```
RangeIndex: 480 entries, 0 to 479 Data columns (total 17 columns):
```

	,		
#	Column	Non-Null Count	Dtype
0	gender	480 non-null	object
1	NationalITy	480 non-null	object
2	PlaceofBirth	480 non-null	object
3	StageID	480 non-null	object
4	GradeID	480 non-null	object
5	SectionID	480 non-null	object
6	Topic	480 non-null	object
7	Semester	480 non-null	object
8	Relation	480 non-null	object
9	raisedhands	480 non-null	int64
10	VisITedResources	480 non-null	int64
11	AnnouncementsView	480 non-null	int64
12	Discussion	480 non-null	int64
13	ParentAnsweringSurvey	480 non-null	object
14	ParentschoolSatisfaction	480 non-null	object
15	StudentAbsenceDays	480 non-null	object
16	Class	480 non-null	object

dtypes: int64(4), object(13)

memory usage: 63.9+ KB

Student performance is quantified by class:

- L (Low-level) : note 0-69
- M (Middle-level) : note 70-89
- H (High-level) : note 90-100

Steps of analyse & classification

Data Visualization

Correlation

- between features
- between features & class

Classification

- Choose of classifiers
- Tune hyperparameters (RandomzedSearch, GridSearch)
- Best model (anlyse score, confusion matrix, feature importance)

Gender

Tendance visuelle

	Positive	Negative
Being male		_
Being female	+	

- Female students : high & middle level

- Male students : low-level note

Relationship with parents

Tendance visuelle

	Positive	Negative
Being male		_
Being female	+	
Relation with mum	+	

Good relationship with mum: better in learning

Absent Days

Tendance visuelle

	Positive	Negative
Being male		_
Being female	+	
Relation with mum	+	
Absence Days (under 7)	+	

Majority of nationality : Kuwait, Jordan No explicit relationship

Discussion, Raise Hand, Visited Resource & AnnouncementView

High-level students participe on school's course & activities much more than low-level students

Visual tendency

	Positive	Negative
Being male		-
Being female	+	
Relation with mum	+	
Absence Days (under 7)	+	
Disussion, RaisedHand, Visitesd Ressource, Announcement	+ + + +	

- Standardization of numerical features
- Encoding categorical features
- Generating polynomial features

- Used classifiers: DecisionTree, RandomForest, Logistic Regression, GradientBoosting
- Tune hyperparameters :
 - + RandomizedSearch : tune with large range of parameters
 - + GridSearch: Fine tune with results of RandomizedSearch
- Best models : scores, confusion matrix, feature importance

Classification: Results

Obtain good score of precision (logistic regression, random forest)

BUT : underfitting (test_score > train_score)

Require: more data

Classification: Results

Confusion matrix
Random Forest on test set

Claifify well all three classes

Classification: Results

Top 6 feature importances are identical in 2 models (Random Forest & Gradient Boosting)

Remarque

 Data preprocessing plays important role in machine learning (for example: OneHotEncoder vs. LabelEncoder)

Need more data to better accuracy

Others models to capture better all features (ex : Votting)