Hash Tables

Agenda

- <u>Fundamentals</u>
- Chaining
- Open Addressing
- Summary
- Exercises

Fundamentals

- Associative array, dictionary
- Hashing
- Collision resolution
- Fill percentage
- Resizing

Chaining

Buckets with linked lists

Open Addressing

- Values are mapped into an array
- Probe sequence
- May not visit every position
- Fill percentage determines efficiency
- Removing items

Deleting Items

- Mark items as deleted
- You may eventually want to rehash the table

Linear Probing

- Collision policy: add a stride value
- Example probe sequence:

$$K, K + 1, K + 2, K + 3, ...$$

- Visits every position eventually
- Leads to primary clustering

Primary Clustering

Quadratic Probing

- Collision policy: add probe number squared
- Example probe sequence:

$$K, K + 1^2, K + 2^2, K + 3^2, ...$$

- May not visit every position
- Leads to secondary clustering

Secondary Clustering

Pseudorandom Probing

- V = value to hash
- K = PR₁(V) initial address
- Collision policy: stride is PR₂(K)
- Example probe sequence:

$$s = PR_2(K)$$

K, K + s, K + 2 × s, K + 3 × s, ...

- May not visit every position
- Leads to secondary clustering

Double Hashing

- V = value to hash
- K = PR₁(V) initial address
- Collision policy: stride is PR₂(V)
- Example probe sequence:

$$s = PR_2(V)$$

K, K + s, K + 2 × s, K + 3 × s, ...

- May not visit every position
- Eliminates secondary clustering

Ordered Hashing

- If you find an empty spot, drop the item there
- If you find a larger item, drop the new item there and rehash the larger one

Summary

- Fundamentals
- Chaining

- Open Addressing
 - Deleting Items
 - Linear Probing
 - Primary Clustering
 - Quadratic probing
 - Secondary Clustering
 - Pseudorandom Probing
 - Double Hashing
 - Ordered Hashing

Exercises

- Chapter 8 Exercises 1 17.
- Read Essential Algorithms, 2e Chapter 9 pages 227 – 252. (Stop before the section "Backtracking Algorithms.")