4.2 粮食加工厂用四种不同的方法储藏粮食.储藏一段时间后,分别抽样化验,得到粮食 含水率如下:

储藏方法	含水率	储藏方法	含水率
I	7.3,8.3,7.6,8.4,8.3		8.1,6.4,7.0
П	5.8,7.4,7.1	IV	7.9,9.0

设含水率均服从正态分布且方差相同,试检验这四种不同的储藏方法对粮食的含水率是否有显著影响(取 α =0.05).

4.2 设 Xi ~ N(Ui, 8) 分别为 I. 11. 11 种储藏方法粮食的函水率 (2=1.2.3.4)

水平	数据	mi	Ti	Ti/mi	y'ij (平方和)
i	7.3,8.3, 7.6.8.4, 8.3	5	39.9	318.402	319.39
2	5.8 , 7.4 . 7.1	3	20.3	137.3633	138 - 81
3	8.1 , 6.4 , 7.0	3	21.5	154.0833	155.57
4	7.9 , 9.0	2	16.9	142.805	143.41
	总和	13	98-6	752.6537	757.18
	CONT. US				1

$$\overline{X}_1 = \frac{5}{5} \sum_{j=1}^{5} X_{ij} = 7.98$$
 $\overline{X}_2 = \frac{1}{3} \sum_{j=1}^{3} X_{2j} = 6.767$

$$\overline{X}_3 = \frac{1}{3} \sum_{j=1}^{3} X_{3j} = 7.167$$
 $\overline{X}_4 = \frac{1}{2} \sum_{j=1}^{2} X_{4j} = 8.4$

$$\overline{X}_{4} = \frac{1}{2}\sum_{j=1}^{2} X_{4j} = 8.4$$

$$Q_A = \sum_{i=1}^{n} \frac{T_i^2}{m_i} - \frac{T_i^2}{n} = 752.653 - \frac{98.6^2}{13} = 4.810$$

$$Q_T = \sum_{i=1}^{r} \sum_{j=1}^{m_1} y_{ij}^2 - \frac{T^2}{n} = 757.18 - \frac{98.6^2}{13} = 9.3369$$

来源	平方和	自由度	功方	F
Qa组内	4.8106	3	1.6035	3.189
QE组内	4, 5263	9	0.5029	
QTE	9. 33 69	12		

F<Fao5 [3.9] 故接受原假设,认为无显著差异

$$Q_{r} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} X_{ij}^{2} - n \overline{X}^{2} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} X_{ij}^{2} - \frac{1}{n} T_{..}^{2}$$

$$Q_{A} = \sum_{i=1}^{r} \frac{X_{i.}^{2}}{n_{i}} - n \overline{X}^{2} = \sum_{i=1}^{r} \frac{X_{i.}^{2}}{n_{i}} - \frac{1}{n} T_{..}^{2}$$

$$Q_E = \sum_{i=1}^r \sum_{j=1}^{n_i} X_{ij}^2 - \sum_{i=1}^{n_i} \frac{T_i^2}{n_i}$$

方差来源	平方和	自由度	均方	F 值
组间(因素影响) 组内(误差) 总和	$egin{array}{c} Q_A \ Q_E \ Q_r \end{array}$	r-1 <i>n-r</i> <i>n</i> -1	S_A^2 S_E^2	S_A^2/S_E^2

✓ 4.6 生产某种化工产品,选择三种不同的浓度及四种不同的温度重复试验两次,产品的得率如下:

温度/℃ 浓度%	10	24	38	52
2	10,14	11,11	9,13	10,12
4	7,9	8,10	7,11	6,10
6	5,11	13,14	12,13	10,14
			C. S. W. W. W. W. J 1	11上日44日本日不

设得率均服从正态分布且方差相同,试检验浓度、温度以及他们的交互作用对产品的得率是否有显著影响(取显著性水平 α =0.05).

解:设 α_i 为浓度第i个水平的效应(i=1,2,3), β_j 为温度第j个水平的效应(j=1,2,3,4), γ_{ij} 为浓度第i个水平和温度第j水平的交互效应(i=1,2,3),j=1,2,3,4)。 提出假设检验:

$$H_{01}$$
: $\alpha_1 = \alpha_2 = \alpha_3$
 H_{02} : $\beta_1 = \beta_2 = \beta_3 = \beta_4$
 H_{03} : $\gamma_{ij} = 0$ $(i = 1,2,3, j = 1,2,3,4)$

$$Q_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} X_{ijk}^{2} - \frac{1}{n} \left(\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} \right)^{2}$$

$$Q_{A} = \frac{1}{st} \sum_{i=1}^{r} X_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} \right)^{2}$$

$$Q_{B} = \frac{1}{rt} \sum_{j=1}^{s} X_{.j}^{2} - \frac{1}{n} \left(\sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{t} X_{ijk} \right)^{2}$$

$$Q_{E} = Q_{T} - Q_{A} - Q_{B} - Q_{I}$$

方差来源	平方和	自由度	均方和	F值
因素 <i>A</i> 因素 <i>B</i>	$egin{array}{c} oldsymbol{Q}_A \ oldsymbol{Q}_B \end{array}$	r-1 s-1	S_A^2 S_B^2	F_A
交互作用I 误差	$egin{array}{c} oldsymbol{Q}_I \ oldsymbol{Q}_E \end{array}$	(r-1)(s-1) rs(t-1)	S_{I}^{2} S_{E}^{2}	F_B F_I
总和	Q_T	rst-1	L	

温度	Bı	В.	В	В4	X_{i}	X_i ²
Aı	14, 10 (24)	/), (22)	13.9	(11)	90	8100
A _Σ	9.7	(81)	7, li	6.10	68	4624
Az	5, 11 (16)	13.14 (2)	(2) B	(24)	92	8464
$X_{\cdot j}$.	56	67	65	62	750	
X_{i}^{2}	3136	4489	4225	3844		

r=3 s=4

t=2

$$\sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} X_{ijk}^{k} = 2752 \qquad n\bar{\chi}^{2} = \frac{1}{4} \left(\sum_{i=1}^{3} \sum_{j=1}^{4} \sum_{k=1}^{2} X_{ijk} \right)^{2} = 2604.1667$$

4.6

$$Q_T = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^t x_{ijk}^2 - n\bar{x}^2 = 2752 - 2604.1667 = 147.83$$

$$Q_A = \frac{1}{\text{st}} \sum_{i=1}^{n} x_{i}^2 - n \overline{x}^2 = \frac{1}{8} \times 21188 - 2604.1667 = 44.333$$

$$Q_B = \frac{1}{rt} \sum_{j=1}^{S} X_{ij}^2 - n \overline{X}' = \frac{1}{6} \times 15694 - 2604.1667 = 11.5000$$

$$F_{A} = \frac{Q_{A}/(r-1)}{Q_{E}/rs(t-1)} = 4.089 \qquad F_{B} = \frac{Q_{B}/(s-1)}{Q_{E}/rs(t-1)} = 0.708 \qquad F_{I} = \frac{Q_{I}/(r-1)(s-1)}{Q_{E}/rs(t-1)} = 0.831$$

Faos (2,12) < FA < Fao; (2,12),浓度有显著影响

FB < Faor (3.12) FI < Fo.05 (6,12) 温度和交互无显著影响

4分解: 核转换设 Ha: 以=以z=以z=0 Ha: 以=0 (5=1,23; j=1,23,4). 构造统计量。 Fa= 34~F(v-1, x5(t-1)) Fa= 34~F((v-1)(5-1), x5(t-1)) 五= 34~F((v-1)(5-1), x5(t-1))

由题目数据可引擎下表

被題	B	B	B	Bu	X4.	X3.
A,	10.14	(22)	9,13	/0,12 (22)	90	3/00
Ao	7.9	3.10	7.11	6,10	68	4624
As	2:11	13.14	12,13	10.14	92	3464
Xg.	26	67	65	62	250	21188
Xż	3/36	4489	4225	3844	15694	

青青春城=1032+600+1116=2152=T /1X2=芹= (2752)2=2604.1667. 青青城=1374.

QT=2752-2604.1667=147.8333

Q4= 4x2×21188-2604.1667=44.3333

QB= \$2x15494-2604.1667=115

Qz=±xx374-2604.1667=-442333-11.5=27.

QE=147.8333-44.3333-115-27=65

列二元方差分析表如下:

	a standar 1			
滋来源	平方和	自由度	均分和	F值
因子A	44.3333	2	221667	4:0924
因子B	115	3	3.8333	07077
交互作用工	27	6	45	0.8308
误差	65	12	±4167	
× 40	147 8222	27		

查表得: Fars (2,12)=389

4.0724=F>Faox12.121=3.89

0.7077=F >< \(\fac{1}{2}, \dots \) = 3.49

拒绝原假设, 浓度对产的得率有显者影响 接发原假设, 温度对产的得率无里者影响 接发原假设, 两者的效应作用对形。得率无显著影响

Faos (3.12) = 3.49 Faos (6.12) = 3

0.8308=F < Facs 16.12=3

4.8 将三种不同的加压水平 A_1 , A_2 , A_3 用于四台不同的纺织机器 B_1 , B_2 , B_3 , B_4 中, 在每种加压水平和每台机器中各取一个试样测量, 得纱支强度如下表:

加压	B_1	B_2	B_3	B_4
A_1	1577	1692	1800	1642
A_2	1535	1640	1783	1621
A_3	1592	1652	1810	1663

设纱支强度均服从正态分布且方差相同,问不同加压水平和不同机器之间纱支强度有无显著差异(取显著性水平 α =0.05).

解:设 α_i 为加压第i个水平的效应(i = 1,2,3), β_j 为机器第j个水平的效应(j = 1,2,3,4)。

提出假设检验:

$$H_{01}$$
: $\alpha_1 = \alpha_2 = \alpha_3$
 H_{02} : $\beta_1 = \beta_2 = \beta_3 = \beta_4$

$$Q_{T} = \sum_{i=1}^{r} \sum_{j=1}^{s} X_{ij}^{2} - \frac{T^{2}}{n}$$

$$Q_{A} = \frac{1}{s} \sum_{i=1}^{r} X_{i}^{2} - \frac{T^{2}}{n}$$

$$Q_{B} = \frac{1}{r} \sum_{j=1}^{s} X_{\cdot j}^{2} - \frac{T^{2}}{n}$$

$$Q_{E} = Q_{T} - Q_{A} - Q_{B}$$

方差来源	平方和	自由度	均方和	F值
因素 A	Q_A	r-1	S_A^2	F_{A}
因素 B	Q_B	<i>s</i> -1	S_B^2	F_B
误差	Q_E	(r-1)(s-1)	S_E^2	
总和	Q_T	rs-1		

4.8 Ho: a, = a₃ = 0 Ho: b₁ = b₂ = b₃ = b₄ = 0
ai 为水平Ai 的效应 bi 为水平Bj 的效应

①先化筒,减去1600

 X_i .

加压机器	B,	В.	B ₃	B4 .	Ti
A	-23	92	200	42	311
Az	-65	40	183	21	179
Аз	-8	- 52	210	63	317
Ti	-76	184	593	126	T = 807

$$X_{\cdot i}^{2}$$

$$\sum_{i=1}^{3} \sum_{j=1}^{4} x_{ij}^{2} = (-23)^{2} + (-65)^{2} + \cdots + 63^{2} = [41349]$$

$$\sum_{j=1}^{4} T_{j}^{2} = (-9b)^{2} + 184^{2} + 593^{2} + 12b^{2} = 41059$$

$$S_{T}^{2} = \left(\sum_{i=1}^{3} \sum_{j=1}^{6} \sum_{k=1}^{2} x_{ijk}^{2}\right)^{2} - C_{T}^{2} = 87085.25$$

$$S_A = \frac{1}{4} \sum_{i=1}^{3} T_i^2 - CT = 3042$$

$$S_B = \frac{1}{3} \frac{\cancel{\xi}}{j=1} \frac{7}{j} - cT = 82594.916$$

$$F_A = \frac{f_E S_A}{f_A S_E} \approx 6.3317$$
 $F_B = \frac{f_E S_B}{f_B S_E} \approx 114.61$

4.8 解: 桂野銀魚: Hoi: 0x=0x=03=0
Hoi: B=B=B=B=0
B如 Y= 4.5=4

Hoi: B.B.B.B.B.R.R.A.全物の

构造统计量: 后=餐~F(Y-1, (Y-1)(S-1)) 居=餐~F(S-1, (Y-1)(S-1))

由题目数据可计算下表:

AFE	Bi	B2	B3	B4	Xz	X3.
Α,	1577	1692	1800	1642	6711	45087521
A2.	1535	1640	1783	162/	6379	43283241
A3	1592	1632	18/0	1663	6717	45113789
X.j	4704	4984	5393	4926	20007	
X	22/27616	24840256	29084449	24265476	-	

盖新城=73776/8+8×8/268+9692/89+8089374=33443749.

12(1 4 X 2) = 2786979.083 X = 2000 = 166725

QT = = 3 = X3 - NX2 = 33443749 - 200072 = 87078.25

Q4= \$\frac{1}{4}\times \frac{1}{4}\times \frac{1

QB=====X(12427616+2434026+2934449+24065476)-2007=82594.92

DZ=07-0A-08=14\$1.33

到二元为差分析表如下:

	1.00			
方差来源	彩和	自由後	均分和	F值
B3A	3042	2	1524	6337
国主B	82594.92	3	27531.64	11460
误差	1441.33	6	240,222	1 100
差和	87068.25	1/	THE REAL PROPERTY.	- HS

查表得 Faox(2,6)=5.14 超矩度设计。 faox(3,6)=4.76 概如=Fa>Faox(3,6)=4.76 超矩度设计。

即不同加压水平和不同机器之间约发强度均有显著差异。