

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SEMESTER II EXAMINATION - 2009

CHEM 10030 Chemistry For Engineers

Professor Cole-Hamilton

Professor Graetzel

Professor Waghorne

Dr. Sullivan *

Professor Sidebottom *

Time Allowed: 2 hours

Instructions for Candidates

All questions carry equal marks; the approximate assignment of marks to parts of a question is indicated (as a percentage) in parentheses.

Use a separate answer book provided for each question.

No rough work sheets are to be used. The rough work for each question should be included in the answer book for that question.

Instructions for Invigilators

The use of electronic calculators is permitted
A Periodic Table of the Elements is attached to these sheets
Graph paper should be provided

ONLY ANSWER QUESTION 3 IF YOU ARE SEEKING TO IMPROVE YOUR PRACTICAL MARK!

- 1. Answer either part (a) or part (b) and any four parts (c) (h).
 - (a) Draw a diagram showing the experiment that Curie performed using radioactive Radium and explain how her conclusions following this experiment furthered the development of modern atomic theory. (40)
 - (b) Discuss the experiment Rutherford performed using α particles and gold foil. Explain how his results disproved the atomic theory previously proposed by Thompson. (40)

Answer any four parts (c) - (h).

- (c) Chlorine has two stable isotopes, ³⁵Cl with a mass of 34.97 (and abundance of 75.77%) and ³⁷Cl with a mass of 36.95. What is the relative atomic mass of chlorine? (15)
- (d) For a hydrogen atom, calculate the wavelength of a photon that results from the transition of an electron from n = 4 to n = 2. The Rydberg constant is 2.18 * 10⁻¹⁸ J, the speed of light is $3*10^8$ ms⁻¹ and Planck's constant is (15) $6.626*10^{-34}$ Js.
- (e) Write the electronic configurations of the following atoms and ions, He, Na, Na⁺, O, O²⁻, Mg²⁺. (15)
- (f) Draw an approximate potential energy diagram (Energy V Inter nuclear distance) for the formation of a molecule of Br₂ from two Br atoms, given that the Bond Length of a Br₂ molecule is 229 pm and the bond energy is 224 kJ mol⁻¹.
- (g) Draw Lewis structures of the following molecules, H₂S, PH₃ and CBr₄. (15) Use VSEPR theory to determine their shapes.
- (h) Determine the % C in C_6H_6 . What mass of CO_2 and what number of moles (15) of H_2O are produced from the combustion of 1 mole of C_6H_6 ?

- 2. Answer *all* parts (a) (d).
 - (a) Answer both parts (i) and (ii).

(25)

(i) Use the data given below to calculate the enthalpy change at 298 K for the reaction:

$$N_2O_{4\,(g)} \ + \ 3CO_{\,(g)} \ \to \ N_2O_{\,(g)} \ + \ 3CO_{2\,(g)}$$

$$\Delta H_{\rm f}^{0} (N_2 O_{\rm (g)}) = 81 \text{ kJ mol}^{-1}$$

$$\Delta H_{\rm f}^{0}({\rm CO}_{2\,\rm (g)}) = -393 \,\rm kJ \, mol^{-1}$$

$$\Delta H_{\rm f}^0 (N_2 O_{4(g)}) = 10 \,{\rm kJ \ mol}^{-1}$$

$$\Delta H_{\rm f}^{0} ({\rm CO}_{\rm (g)}) = -110 \,{\rm kJ \ mol^{-1}}$$

- (ii) Draw the enthalpy diagram for the reaction including the elements in their standard states
- (b) Answer both parts (i) and (ii).

(25)

(i) Write an expression for the equilibrium constant for the reaction:

$$2NO_{2(g)} \leftrightarrow N_2O_{4(g)}$$

Initially, 1.0 mol of NO_2 and 1.0 mol of N_2O_4 were present in a 1L flask. When equilibrium was reached the concentration of N_2O_4 was 0.75 mol L^{-1}

- (ii) Calculate the concentration of NO₂ at equilibrium and hence the equilibrium constant for the reaction.
- (c) The decomposition of a compound A to give products gave the following (25) kinetic data:

$[A], \operatorname{mol} L^{-1}$	Time, s
0.583	0.0
0.303	
0.123	17.0
0.063	25.0
0.029	35.0

Determine the order of the reaction and calculate the rate constant.

(d) Calculate the activation energy for a reaction which doubles in rate when the temperature is increased from 298 K to 398 K.
 (25)
 (Gas constant, R = 8.314 J mol⁻¹ K⁻¹)

ONLY ANSWER QUESTION 3 IF YOU ARE SEEKING TO IMPROVE YOUR PRACTICAL MARK!

- 3. Answer any part (a) (c).
 - (a) Describe an experiment used to measure the strength of a hydrogen bond using infra red spectroscopy. (40)
 - (b) Describe an experiment which separates, identifies and quantifies the chemical components of a mixture. (40)
 - (c) Describe an experiment that measures the rate of the chemical reaction between I₂ and (CH₃)₂CO. (40)

oOo

Perodic Table of the Elements

	s 4. 9	Γ.				d	α	Ī	g	······································	_				6		д	_					1
18	2 Helium H C 4.0026	10	N eon	20 18	18	Argo	Ar 30 948	36	Krypton	Κr	83.80	54	Xenon	Xe	131.29	98	Radon	Rn	222				
17 VII		6	F.norme	18.9984	17	Chbrine	ິບ	35	Brom ine	Вд	79.904	53	Done		126 904	82	Astathe	Αt	210				
16 VI		ω (O xygen	15 9994	16	Sumi	ນ ຊີ້	34	Selninm	S a	78.96	52	Tellurim	Te	127.60	84	Pobnim	ЪО	209				
15 V		7	N Erogen	14.0067	15	Phosphorus	P	33	Arsenic	As	74.922	51	Antinony	Sp	121.75	83	Bism uth	B	208.98				
14 V		9 -	Cartoon	12.0112	14	Silicon		32	G erm anim	G e	72.61	20	T.	Sn	118.71	82	Lead	Pb	207.19				
133		ī	B origin	10.811	13	A lum in in	A]	31	Gallim	Ga	69.723	49	Indiam	Ħ	114.82	81	Thallim	E	204.38				
							12	30	Zinc	Zn	65 39	48	Cadmin	Cg	112 411	80	M excury	Нg	200.59				
							11	29	Copper	Cu	63.546	47	Silver	Ag	107.868	79	God	Au	196967				
							10	28	Nicke.	Z	58.69	46	Paladim	Pď	106.42	7.8	Platinum	Pt	195.09				
ation)	nber OJ						ġ	27	Copal	ပ္ပ	58.933	45	Rhodim	Rh	102905	77	Trilim	H	192.22	109	м елиепли	M t	22.7
Group (new notation) Group (old notation)	A tom is number Name Sym bo Atom is m ass	_					80	26		FI (I)	55.847		Ruthenim	Ru	101.07	92	o sm ium	<u>ရ</u>	190.2	108	H dSS IIII	H See	~~~
Grou	Name Name						7	25	lan	M	54.938	43	Technetium	•	ı		κ	Re	186.207		4	Вћ 254	11
							9	24	Chom im	Ç	51 996	42	M olyddenum	o ¥	95.94	74	Tungsten	≽	183.85	106	megoopag	Rf Db Sg	222
							Ŋ	23	Vanadim	>	50.942	41	micca	qN	92.906	73	Tantalım	Тa	180.948	105	mirrion of	0 252	~~~
							4	22	Ttanim	E	47.87	40	Ziconim	Zz	91,224	72	Hafrim	Ħ	178.49	1.04	Rutherbidian	자 261	3
							ń	21	Scandim	ည္သ	44.956	39	Yttriam	×	88 905	57	Lanthanum	Гa	138.91	68	ACCULATION	Ac 227	
H 5	<u> </u>	4	Beryllium	9.0122	12	Magnesum	D ₹	1	Cabium					SI	- 1				. 1	88		ж С %) 1
т н	1 Hydrogen H 1,0079	۳,	Li	6.941	#	Sodium	N 8	13	Potassium	×	39.0983	37	Rubilim	Rb	85.468	55	Cesium	င္သ	132 905	87	FEBRUCIAN	FT.	

	58	59	09	61		63	64		99		89	69	70	7.1
	Cerim	Praesodym inm	Neodym aum	Promethium	Samarim	Europium	G adoloinium	Terbium	Dysprosim	Hom im	Erbim	Thulim	Y tterbium	Lutetim
Lanthanides	c G	Pĭ	Nd	Pm	Sm	Eu	Gd	T.	Dλ	НО	Er	Th Th	ХÞ	Ľ
	14012	140.907	144.24	144.913	150.35	151.96	157.25	158 925	162.50		167.26	168934	173.04	174.97
	0.6	91	92	93	94	95	96		86		100	101	102	103
	Thorim	Thorim Proactnim	Uranium	Neptunium	P Jutonium	Am ercim	Curim		Californium	Einsteinim	Fem im	Mendelevim	Nobelim	Lawrencim
Actinides	먑	Ра	Þ	dN	Pu	Am	S E C	B'n	Ç	E S	댎	Z Z	No	Ľ
	232.038	231.036	238.03	237.048	244.064	243	247	247	242.058	254	257.095	258.10	259 101	260 105