

GOING DEEPER WITH CONVOLUTIONS

분석 16기 이지혜 - SEGMENTATION

Contents

- 1. Introduction
- 2. Improving Traditional Neural Networks
- 3. Inception Architecture
- 4. GoogLeNet
- 5. Polyack Average + Asynchronous SGD
- 6. Conclusion

1. Introduction

About Neural Networks

- Object detection
- Given 2 images of wolves, can identify sub species
 - Speech recognition
- Identify how people respond to different stimuli in various environments
 - Requires a large amount of resources to run smoothly
 - Mostly constant

2. Improving Traditional Neural Networks

Problem: Increasing the size of the network

- 1. Overfitting
- 2. More Computational Resources

Solution

- 1. Including Sparsity in the architecture
- Replacing Fully-Connected Layers to Sparse Layers
- Mimic biological systems
- 2. How?
- Utilizing computations on dense matrices
- Inception Architecture

2-1. Including Sparsity

Sparsity?

- 1. 직/간접 선택 / dropout / 모델의 자연스러운 학습 등 방법으로 발생한 deactivated node를 다음 학습에 반영 X
- 대부분의 node를 비활성화
- Strict condition에 따라 상관관계 분석 -> 이후 activate할 node 결정

2. 즉, 학습 효과 증대를 위해 depth + width 를 모두 증가시키는 것을 목적으로 둔다.

2-2. Biological Systems?

- CNN의 배경 -> 실험체의 시신경들이 특정 패턴에 뉴런이 반응하는 것 관찰
- 각 패턴에 반응하는 뉴런의 집합은 전체에 비해 소수
- 즉, 반응하는 뉴런은 SPARSE한 구조

3-1. Inception Architecture : Naïve Version

Input -> [Various Conv Layers + Max Pool]

- 1. "Decision based more on convenience than necessity"
- Can be repeated spatially for scaling
- Avoids patch-alignment issues
- Pooling layer used to control overfitting

2. However

• 5x5 modules are expensive on Conv layers with many filters

9/3/20XX 프로마 프레젠테이션 제목 7

3-2. Why Computational Problems?

3-3. Inception Architecture : Dimensionality Reduction

Compute reductions with 1x1 Conv Layers

- Necessary processing power reduced
- Increase on number of units at each stage
- No sharp increase in computational resources in 3x3, 5x5 Convlayers

3-4. Why 1x1 Conv Layer?

/3/20XX 프레젠테이션 제목 10

4. GoogLeNet

1. Deep but Efficient

• enough to run on individual devices with low computational resources

2. Auxiliary Layer used

- REGULARIZATION (정규화 효과) -> avoid overfitting
- Use 0.3 of the loss
- Expect discrimination in the lower stages in the classifier

4. GoogLeNet

Local Response Normalization

• 측면 억제(lateral inhibition) 의 역할

$$b_{x,y}^i = a_{x,y}^i/(k+\alpha\sum_{j=max(0,i-n/2)}^{j=min(N-1,i+n/2)}a_{x,y}^{j-2})^\beta$$
 where
$$b_{x,y}^i - \text{regularized output for kernel } i \text{ at position } x,y$$

$$a_{x,y}^i - \text{source ouput of kernel } i \text{ applied at position } x,y$$

$$N - \text{total number of kernels}$$

$$n - \text{size of the normalization neigbourhood}$$

$$\alpha,\beta,k,(n) - \text{hyperparameters}$$

- 상호 연결된 신경 세포가 interneuron을 통해 이웃 신경 세포 억제
- ReLU를 사용하면 양수의 방향으로는 입력 값 그대로 사용
- Conv / Pooling에서 매우 높은 하나의 픽셀 값이 주변에 영향
- 이것을 방지하기 위해 다른 Activation Map의 같은 위치의 픽셀끼리 정규화
- 현재는 Batch Normalization이 주로 쓰임

4. GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce)#3×3 (#5×5 reduce)#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1		Teduce		reduce		ргој	2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

- 1. #3x3 / #5x5 reduce
- Number of 1x1 filters in reduction layer
- 2. Softmax
- 3. Image Sampling
- [3/4, 4/3]
- 3. Activation
- ReLU
- Same for every layer
- 4. Optimizer
- Asynchronous SGD (momentum = 0.9)
- 5. Polyack Averaging
- Keep a moving average of the parameter vector
- 6. Fixed Learning Rate Schedule
- Learning rate x 0.96 for every 8 epoch

9/3/20XX 프레젠테이션 제목 13

5-1. Polyack Averaging

- Sets final parameters to an average of (recent)
 parameters visited in the optimization trajectory
- Specifically if in t iterations we have parameters $\theta_1, \theta_2, \theta_3 \dots \theta_t$

•
$$\theta_t = \frac{1}{t} \sum_i \theta_i$$

5-2. Asynchronous(=비동기적) SGD

- Accelerated by leveraging variance reduction
- Coordinate sampling
- Nesterov Momentum

$$v_{temp} = \mu v_{t-1} - \epsilon g(\theta_t)$$

 $v_{t+1} = \mu(v_{temp}) - \epsilon g(\theta_t)$
 $\theta_{t+1} = \theta_t + v_{t+1}$

- 각 worker device 가 분할된 data set 으로 학습된 것을 비동기적인 방법으로 weight parameter 저장소를 update
- 많은 data set 환경에서 하나의 GPU로 계산을 할 때, SGD 가 전체적으로 효과적 학습 가능
- 분산된 환경에서 효율적인 학습 가능

6. Conclusion

CNN is still top performers in the Neural Network

• Inception architecture allowing large scaling + minimizing bottlenecks

Proves using 1x1 Conv to be effective in reducing dimension

감사합니다.