Set 8, Section 4.1: Discrete Random Variables A Random Variable is a function which maps each outcome of an experiment to a number.

Example: 1) Toss a fair coin until a H is observed. Let X be the number of tails until a head is observed.

Example: 2) Suppose two dice are rolled. Let the random variable X denote the sum of the rolls.

X =Sum of 2 dice

		2'nd						
1'st	Roll	1	2	3	4	5	6	
	1	2	3	4	5	6	7	
	2	3	4	5	6	7	8	
	3	4	5	6	7	8	9	
	4	5	6	7	8	9	10	
	5	6	7	8	9	10	11	
	6	7	8	9	10	11	12	

The rolls can have sum $2, 3, \dots, 12$. Thus, X takes on values $2, 3, \dots, 12$.

P(X=3) is equivalent to finding the probability that the sum of the rolls is 3.

A Bernoulli random variable takes values 0 and 1.

Examples:

Discrete random variables: range of X is discrete.

Finite discrete: possible values for X is finite.

Infinite discrete: values for X can be "lined up" in a sequence (countable).

We use X to denote a random variable; lower case x to denote a value.

The *Probability Mass Function* or *pmf* of a discrete random variable p(x) is defined by p(x) = P(X = x) for every number x.

Example: Construct a table of the pmf for the random variable X, where X is the sum of the rolls of two dice.

Referring to the dice chart we saw earlier, we have that the possible values for X are $2, 3, \ldots, 12$.

Since there is one roll where the sum is 2, then $P(X=2) = \frac{1}{36}$.

Since there are two rolls where the sum is 3, then $P(X=3)=\frac{2}{36}$.

Display p(x) = P(X = x) for the sum of rolls of 2 dice:

x	2	3	4	5	6	7	8	9	10	11	12
p(x) = P(X = x)	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

Note: By default, for any value of x not specified in the table, p(x) = 0.

Example: Refer to the probability distribution table we have just constructed. What is the probability that the sum of the two rolls is 8 or more?

This is equivalent to finding $P(X \ge 8)$.

Example: Suppose we know that the sum is at least 7. What is the probability that the sum is no more than 10?

GIVEN that $X \ge 7$, what is the probability that $X \le 10$. In symbols, we want $P(X \le 10 | X \ge 7)$.

Using our conditional probability formula:

$$P(X\leq 10|X\geq 7)=\frac{P(X\leq 10\cap X\geq 7)}{P(X\geq 7)}$$

The probability mass function may depend on a parameter, which may be assigned any one of a number of different values.

Each value of the parameter will give rise to a different pmf.

The collection of all pmf's for all the different values of the parameter is called a *family* of probability distributions.

Example: A machine produces steering wheels which are acceptable or defective.

Let θ be the probability that a single steering wheel is defective.

Let the random variable X count the number of defective steering wheels in a sample of three.

We find X has the following distribution:

x	0	1	2	3
$p(x;\theta)$	$(1-\theta)^3$	$3\theta(1-\theta)^2$	$3\theta^2(1-\theta)$	θ^3

Here, θ is the parameter which takes values between 0 and 1.

The *Cumulative Distribution Function*, F(x), of a discrete random variable X with probability mass function p(x) is defined as:

$$F(x) = P(X \le x) = \sum_{y \le x} p(y).$$

Example: Construct the cumulative distribution table for the random variable X, where X is the sum of the rolls of two dice.

x	2	3	4	5	6	7	8	9	10	11	12
F(x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{15}{36}$	$\frac{21}{36}$	$\frac{26}{36}$	$\frac{30}{36}$	33 36	$\frac{35}{36}$	1