Zusammenfassung Analysis SS2018

Dozent: Prof. Dr. Friedemann Schuricht Kursassistenz: Moritz Schönherr

20. Juli 2018

In halts verzeichnis

Ι	Differentiation					
	1	Wiederholung und Motivation	1			
		1.1 Lineare Abbildungen	1			
		1.2 Landau-Symbole	1			
	2	Ableitung	3			
		2.1 Spezialfälle für $K = \mathbb{R}$	5			
		2.2 Einfache Beispiele für Ableitungen	6			
		2.3 Rechenregeln	9			
	3	Richtungsableitung und partielle Ableitung	14			
		3.1 Anwendung: Eigenschaften des Gradienten	14			
		3.2 R-differenzierbar und C-differenzierbar	16			
		3.3 CAUCHY-RIEMANN-Differentialgleichungen	16			
	4	Mittelwertsatz und Anwendung	17			
	-	4.1 Anwendung des Mittelwertsatzes in \mathbb{R}	21			
	5	Stammfunktionen	$\frac{21}{25}$			
	J	Dealinitum Concil.	20			
II	Inte	egration	26			
	6	Messbarkeit	27			
		6.1 Lebesgue-Maß	27			
		6.2 Messbare Mengen	28			
		6.3 Messbare Funktionen	28			
	7	Integral	30			
		7.1 Integral für Treppenfunktionen	30			
		7.2 Erweiterung auf messbare Funktionen	30			
		7.3 Lebesgue-Integral	31			
		7.4 Grenzwertsätze	37			
		7.5 Parameterabhängige Integrale	39			
		7.6 RIEMANN-Integral	40			
	8	Integration auf \mathbb{R}	42			
	U	8.1 Integrale konkret ausrechnen	42			
		8.2 Uneigentliche Integrale	45			
	9	Satz von Fubini und Mehrfachintegrale	48			
	9	9.1 Integration durch Koordinatentransformation	51			
		9.1 Integration durch Koordinatentransformation	91			
Ш	Dif	Ferentiation II	54			
	10	Höhere Ableitungen und TAYLOR-scher Satz	54			
		10.1 Partielle Ableitungen	58			
		10.2 Anwendungen	62			
		10.3 TAYLOR-scher Satz	62			
	11	Extremwerte	67			
		11.1 Lokale Extrema ohne Nebenbedingung	67			
		11.2 Sylvester'sches Definitheitskriterium	68			
		11.3 Lokale Extrema mit Gleichungsnebenbedingung	68			
		11.4 Globale Extrema mit Abstrakter Nebenbedinung	70			
	12	Inverse und implizite Funktionen	71			
	13	Funktionsfolgen	79			
	10	19.1 A second days and Datas and Dat	00			

Kapitel I

Differentiation

1. Wiederholung und Motivation

Sei K^n n-dim. VR über Körper mit $K = \mathbb{R}$ oder $K = \mathbb{C}, n \in \mathbb{N}_{>0}$.

- Elemente sind alle $x = (x_1, \dots, x_n) \in K^n$ mit $x_1, \dots, x_n \in K$.
- Standardbasis ist $\{e_1, \ldots, e_n\}$
- \bullet alle Normen auf K^n sind äquivalent \Rightarrow Konvergenz unabhängig von der Norm, verwende in der Regel euklidische Norm
- Skalarprodukt

$$-\langle x,y\rangle = \sum_{j=1}^{n} x_j \cdot y_j$$
 in \mathbb{R}^n

$$-\langle x,y\rangle = \sum_{j=1}^{n} \overline{x}_{j} \cdot y_{j} \text{ in } \mathbb{C}^{n}$$

• CAUCHY-SCHWARZ-Ungleichung $(|\langle x,y\rangle| \le |x| \cdot |y| \quad \forall x,y \in K^n)$

1.1. Lineare Abbildungen

Eine lineare Abbildung ist homogen und additiv

- $\bullet\,$ Lineare Abbildung $A:K^n\to K^m$ ist darstellbar durch $m\times n$ -Matrizen bezüglich der Standardbasis
 - lineare Abbildung ist stetig auf endlich-dimensionalen Räumen (unabhängig von der Norm)
 - transponierte Matrix: $A^T \in K^{n \times m}$
 - $-x^T \cdot y = \langle x, y \rangle$
 - $-\ x\cdot y^T=x\otimes y,$ sogenanntes Tensorprodukt
- $L(K^n, K^m) = \{A : K^n \to K^m \mid A \text{ linear}\}$ (Menge der linearen Abbildung, ist normierter Raum)
 - $-\|A\| = \sup\{|Ax| \mid |x| \le 1\}$ (Operatornorm, $\|A\|$ hängt i.A. von Normen auf K^n, K^m ab)
 - in der Regel wird euklidische Norm verwendet: $|A| = \sqrt{\sum_{k,l} |a_{kl}|^2}$
 - $L(K^n, K^m)$ ist isomorph zu $K^{m \times n}$ als VR ⇒ $L(K^n, K^m)$ ist $m \cdot n$ -dim. VR
 - Es gilt:

$$|Ax| \le ||A|| \cdot |x| \text{ und } |Ax| \le |A| \cdot |x|$$

• Abbildung $\tilde{f}:K^n\to K^m$ heißt affin linear, falls $\tilde{f}(x)=Ax+a$ für lineare Abbildung $A:K^n\to K^m, a\in K^m$

1.2. Landau-Symbole

Definition (Landau-Symbole)

Sei
$$f: D \subset K^n \to K^m$$
, $g: D \subset K^n \to K$, $x_0 \in \overline{D}$. Dann:

•
$$f(x) = o(g(x))$$
 für $x \to x_o$ gdw. $\lim_{\substack{x \to x_0 \ x \neq x_0}} \frac{|f(x)|}{g(x)} = 0$

•
$$f(x) = \mathcal{O}(g(x))$$
 für $x \to x_0$ gdw. $\exists \delta > 0, c \ge 0 : \frac{|f(x)|}{|g(x)|} \le c \ \forall x \in (B_{\delta}(x_0) \setminus \{x_0\}) \cap D$

Definition (Anschmiegen)

$$f(x) + \underbrace{f(x_0) + A(x - x_0)}_{\tilde{A}(x)} = o(|x - x_0|),$$

d.h. die Abweichung wird schneller klein als $|x - x_0|!$

Satz 1.1 (Rechenregeln für Landau-Symbole)

Für $r_k, \tilde{r}_l, R_l: D \subset K^n \to K^m, x_0 \in D, k, l \in \mathbb{N}$ mit

$$r_k(x) = o(|x - x_0|^k)$$
$$\tilde{r}_l = o(|x - x_0|^l)$$
$$R_l(x) = \mathcal{O}(|x - x_0|^l)$$

für $x \to x_0$

1.
$$r_k(x) = o(|x - x_0|^j) = \mathcal{O}(|x - x_0|^j)$$
 $j \le k$
 $R_l(x) = o(|x - x_0|^j) = \mathcal{O}(|x - x_0|^j)$ $j < l$

2.
$$\frac{r_k(x)}{|x-x_0|^j} = o(|x-x_0|^{k-j}) \quad j \le k$$
$$\frac{R_l(x)}{|x-x_0|^j} = \mathcal{O}(|x-x_0|^{l-j}) = o(|x-x_0|^{l-j-1}) \quad j \le l$$

3.
$$r_k(x) \pm \tilde{r}_l(x) = o(|x - x_0|^k)$$
 $k \le l$

4.
$$r_k(x) \cdot \tilde{r}_l(x) = o(|x - x_0|^{k+l}), r_k(x) \cdot R_l(x) = o(|x - x_0|^{k+l})$$

Beweis. Sei $\frac{|R_l(x)|}{|x-x_0|^l} \le c$ nahe x_0 , d.h. auf $(B_\delta(x_0) \setminus \{x_0\}) \cap D$ für ein $\delta > 0$

1.
$$\frac{r_k(x)}{|x-x_0|^j} = \frac{r_k(x)}{|x-x_0|^k} |x-x_0|^{k-j} \to 0, \text{ folgl. } \frac{r_k(x)}{|x-x_0|^\delta} \text{ auch beschränkt nahe } x_0 \\ \frac{R_l(x)}{|x-x_0|^j} = \frac{R_l(x)}{|x-x_0|^l} |x-x_0|^{l-j} \to 0, \text{ Rest wie oben}$$

2.
$$\frac{r_k(x)}{|x-x_0|^j|x-x_0|^{k-j}} = \frac{r_k(x)}{|x-x_0|^k} \to 0$$
$$\frac{R_l(x)}{|x-x_0|^j|x-x_0|^{l-j}} = \frac{R_l(x)}{|x-x_0|^l} \le c \text{ nahe } x_0, \text{ Rest wie oben}$$

3.
$$\frac{r_k(x)}{|x-x_0|^k} \pm \frac{\hat{r}_l(x)}{|x-x_0|^k} \stackrel{(2)}{=} o(1) \pm \underbrace{o(|x-x_0|^{l-k})}_{o(1)} \to 0$$

$$4. \frac{\frac{r_k(x) \cdot \tilde{r}_l(x)}{|x - x_0|^{k+l}} = \frac{r_k(x)}{|x - x_0|^k} \cdot \frac{\tilde{r}_l(x)}{|x - x_0|^l} \to 0}{\frac{|r_k(x) \cdot R_l(x)|}{|x - x_0|^k} = \frac{|r_k(x)|}{|x - x_0|^k} \cdot \frac{|R_l(x)|}{|x - x_0|^l} \to 0}$$

■ Beispiel 1.2

• offenbar in
$$K^n$$
: $|x - x_0|^k = \mathcal{O}(|x - x_0|^k) = o(|x - x_0|^{k-1}), x \to x_0$

• in
$$\mathbb{R}$$
 gilt für $x \to 0$:

$$-x^{5} = o(|x|^{4}), x^{5} = o(|x|), x^{5} = \mathcal{O}(|x|^{5}), x^{5} = \mathcal{O}(|x|^{3})$$

$$-e^{x} = \mathcal{O}(1) = 3 + \mathcal{O}(1), e^{x} = 1 + o(1) \neq 2 + o(1)$$

$$-\sin(x) = \mathcal{O}(|x|), \sin(x) = o(1), x^{3} \cdot \sin(x) = o(|x|^{3}), e^{x} \cdot \sin(x) = o(1)$$

$$-(1 - \cos(x))x^{2} = \mathcal{O}(|x|^{2})x^{2} = o(|x|^{3})$$

$$-\frac{1}{o(1) + \cos(x)} = e^{x} + o(1) = 1 + o(1)$$

2. Ableitung

Definition (differenzierbar, Ableitung)

Sei $f: D \subset \mathbb{R}^n \to K^m$, D offen, heißt differenzierbar in $x \in D$, falls es lineare Abbildung $A \in L(K^n, K^m)$ gibt mit

$$f(x) = f(x_0) + A(x - x_0) + o(|x - x_0|), x \to x_0$$
(1)

Abbildung A heißt dann Ableitung von f in x_0 und wird mit $f'(x_0)$ bzw. $Df(x_0)$ bezeichnet (statt dem Terminus Ableitung auch (totales) Differential, Frechet-Abbildung, Jacobi-Matrix, Funktionalmatrix).

Andere Schreibweisen: $\frac{\partial f}{\partial x}(x_0)$, $\frac{\partial f(x)}{\partial x}\Big|_{x=x_0}$, $\mathrm{d}f(x_0)$,...

Somit ist Gleichung (1) gleichwertig mit

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0), \text{ für } x \to x_0$$

Anmerkung

Eine andere Erklärung der oben stehenden Definition wäre folgende:

Eine Funktion f ist genau dann differenzierbar an der Stelle x_0 , wenn eine reelle Zahl m (die von x_0 abhängen darf) und eine (ebenfalls von x_0 abhängige) Funktion r (Fehler der Approximation) mit folgenden Eigenschaften existieren:

- $f(x_0 + h) = f(x_0) + m \cdot h + r(h)$
- Für $h \to 0$ geht r(h) schneller als linear gegen 0, d.h. $\frac{r(h)}{h} \to 0$ für $h \to 0$

Die Funktion f lässt sich also in der Nähe von x_0 durch eine lineare Funktion g mit $g(x_0 + h) = f(x_0) + m \cdot h$ bis auf den Fehler r(h) approximieren. Den Wert m bezeichnet man als Ableitung von f an der Stelle x_0 .

Anmerkung

Neben der oben genannten Definition gibt es noch eine weitere Definition, die sich des Differentialquotienten bedient:

$$f$$
 differentierbar in $x_0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ exisitiiert

Diese Definition lässt sich im Kontext komplexer oder mehrdimensionaler Funktionen nicht anwenden, zudem sind Beweise wegen des Quotienten leichter zu führen.

▶ Bemerkung

Affin lineare Abbildung $\tilde{A}(x) := f(x_0) + f'(x_0) \cdot (x - x_0)$ approximiert die Funktion f in der Nähe von x_0 und heißt Linearisierung von f in x_0 (man nennt Gleichung (1) auch Approximation 1. Ordnung von f in der Nähe von x_0).

Satz 2.1

Sei $f:D\subset K^n\to K^m,\,D$ offen. Dann:

f ist differenzierbar in $x_0 \in D$ mit Ableitung $f'(x_0) \in L(K^n, K^m)$ genau dann wenn (gdw.) eine der folgenden Bedingungen erfüllt ist:

a)
$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + r(x) \quad \forall x \in D$$
 (3)

für ein
$$r: D \to K^m$$
 mit $\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{r(x)}{|x - x_0|} = 0$

- b) $f(x) = f(x_0) + f'(x_0) \cdot (x x_0) + R(x)(x x_0) \quad \forall x \in D$ (4) für ein $R: D \to L(K^n, K^m)$ ($\cong K^{m \times n}$) mit $\lim_{x \to x_0} R(x) = 0$ (d.h. Matrizen $R(x) \xrightarrow{x \to x_0}$ Nullmatrix in $K^{m \times n}$)
- c) $f(x) = f(x_0) + Q(x)(x x_0) \quad \forall x \in D$ (5) für ein $Q: D \to L(K^n, K^m)$ ($\cong K^{m \times n}$) mit $\lim_{x \to x_0} Q(x) = f'(x_0)$ (d.h. Matrizen $Q(x) \xrightarrow{x \to x_0}$ Matrix $f'(x_0)$ in $K^{m \times n}$)

▶ Bemerkung

Es gilt:

Gleichung (3)
$$\Leftrightarrow \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{|x - x_0|} = 0$$

Beweis. Aussage a) ist leicht zu zeigen, anschließend erfolgt per Ringschluss die Äquivalenz der anderen Definitionen.

zu a) Offensichtlich ist $r(x) = o(|x - x_0|), x \to x_0$ \Rightarrow a) \Leftrightarrow f ist differenzierbar in x_0 mit Ableitung $f'(x_0)$

Ringschluss:

a) \Rightarrow b): Sei $R: D \to K^{m \times n}$ gegeben durch

⊗: Tensorprodukt (siehe ??)

$$R(x) = \begin{cases} 0, & x = x_0 \\ \frac{r(x)}{|x - x_0|} \otimes (x - x_0)^T, & x \neq x_0 \end{cases}$$

$$\Rightarrow R(x)(x - x_0) = \left(\frac{r(x)}{|x - x_0|^2} \otimes (x - x_0)^T\right) \cdot (x - x_0)$$

$$= \frac{r(x)}{|x - x_0|^2} \cdot \langle x - x_0, x - x_0 \rangle = r(x) \quad \forall x \neq x_0$$

Wegen $0 = r(x_0) = R(x_0) \cdot (x - x_0)$ folgt

$$\lim_{x \to x_0} |R(x)| = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{|r(x) \otimes (x - x_0)^T|}{|x - x_0|^2} = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{|r(x)|}{|x - x_0|} = 0$$

b) \Rightarrow c): Setzte $Q(x) := f'(x_0) + R(x) \ \forall x \in D \Rightarrow$ Gleichung (5). Wegen $\lim_{x \to x_0} Q(x) = f'(x_0)$ folgt c).

c) \Rightarrow a): Setzte $r(x) := (Q(x) - f'(x)) \cdot (x - x_0) \ \forall x \in D \Rightarrow \text{Gleichung (3)}. \text{ Wegen } |r(x)| \le |Q(x) - f'(x_0)| \cdot |x - x_0| \text{ folgt}$

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{|r(x)|}{|x - x_0|} = \lim_{\substack{x \to x_0 \\ x \neq x_0}} |Q(x) - f'(x_0)| = 0$$

Satz 2.2

Sei $f: D \subset K^n \to K^m$, D offen, differenzierbar in $x_0 \in D$. Dann:

- 1) f ist stetig in x_0
- 2) Die Ableitung $f'(x_0)$ ist eindeutig bestimmt.

Beweis. 1. Sei $A, \tilde{A} \in L(K^n, K^m)$ Ableitungen von f in x_0 , betrachte $x = x_0 + ty$, wobei $y \in K^n$ mit |y| = 1 fest, $t \in \mathbb{R}_{>0}$ (offenbar $|x - x_0| = t$) $\Rightarrow (A - \tilde{A})(ty) = o(|ty|) \Rightarrow (A - \tilde{A})(y) = \frac{o(t)}{t} \to 0$ $\Rightarrow (A - \tilde{A})(y) = 0 \Rightarrow A - \tilde{A} = 0 \Rightarrow A = \tilde{A} \Rightarrow \text{ Behauptung}$

2.
$$\lim f(x) = 1 = \lim (f(x_0) + f'(x_0)(x - x_0) + o(|x - x_0|)) = f(x_0) \Rightarrow \text{Behauptung}$$

2.1. Spezialfälle für $K = \mathbb{R}$

1) $\underline{m=1: f: \mathbb{R}^n \to \mathbb{R}}$

 $f'(x_0) \in \mathbb{R}^{1 \times n}$ ist Zeilenvektor, $f'(x_0)$ betrachtet als Vektor im \mathbb{R}^n auch Gradient genannt.

Offenbar gilt $f'(x_0) \cdot y = \langle f'(x_0), y \rangle \ \forall y \in \mathbb{R}^n$ (Matrizenmultiplikation = Skalarprodukt) \Rightarrow Gleichung (4) hat die Form

$$f(x) = \underbrace{f(x_0) + \langle f'(x_0), x - x_0 \rangle}_{\text{affin lineare Funktion: } \tilde{A} \cdot \mathbb{R} \to \mathbb{R} \text{ (in } x)} + o(|x - x_0|)$$

$$(6)$$

Graph von f ist Fläche im $\mathbb{R}^{n\times 1}$, genannt Tangentialebene vom Graphen von f in $(x_0, f(x_0))$.

$2) \ n = 1: f: D \subset \mathbb{R} \to \mathbb{R}^n$

f (bzw. Bild f[D]) ist Kurve im \mathbb{R}^n ($\cong \mathbb{R}^{m \times 1}$). Gleichung (4) kann man schreiben als

$$f(x_{0} + t) = \underbrace{f(x_{0}) + t \cdot f'(x_{0})}_{\text{Affin lineare Abb. } \tilde{A}: \mathbb{R} \to \mathbb{R}^{m} \text{ (in } t)} + o(t), t \to 0, t \in \mathbb{R}$$

$$\Leftrightarrow \underbrace{\frac{f(x_{0} + t) - f(x_{0})}{t}}_{\text{Differenzenquotient von } f \text{ in } x_{0}}_{\text{Differentialquotient}} = f'(x_{0}) + o(1), t \to 0$$

$$\Leftrightarrow \underbrace{\lim_{t \to 0} \frac{f(x_{0} + t) - f(x_{0})}{t}}_{\text{Differentialquotient}} = f(x_{0})$$

$$(7)$$

beachte:

- f differenzierbar (diffbar) in $x_0 \Leftrightarrow \text{Differential quotient existient in } x_0$
- Gleichung (7) nicht erklärt im Fall von n > 1

Interpretation für m > 1:

 $f'(x_0)$ heißt <u>Tangentenvektor</u> an die Kurve in $f(x_0)$. Falls f nicht diffbar in x_0 bzw. x_0 Randpunkt in D und ist $f(x_0)$ definiert, so betrachtet man in Gleichung (7) auch einseitige Grenzwerte (vgl. ??).

 $\lim_{t\downarrow 0}\frac{f(x_0+t)-f(x_0)}{t}=f'_r(x_0) \text{ heißt } \underline{\text{rechtsseitige}} \ \underline{\text{Ableitung von } f \text{ in } x_0 \text{ (falls existent), analog ist } \lim_{t\uparrow 0} \underline{\text{die linksseitige Ableitung } f'_l(x_0).}$

3) n = m = 1: $f: D \subset \mathbb{R} \to \mathbb{R}$ (vgl. Schule)

 $f'(x_0) \in \mathbb{R}$ ist Zahl und Gleichung (7) gilt (da Spezialfall von Punkt 2)).

Beobachtung: Punkt 2) gilt allgemein für n = 1, nicht für n > 1!

Folgerung 2.3

Sei $f:D\subset K\to K^n,\,D$ offen. Dann:

$$f \text{ ist differenzierbar in } x_0 \in D \text{ mit Ableitung } f'(x_0) \in L(K, K^m)$$

$$\Leftrightarrow \exists f'(x_0) \in L(K, K^m) : \lim_{y \to 0} \frac{f(x_0 + y) - f(x_0)}{y} = f'(x_0)$$

$$\text{alternativ: } \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

$$(8)$$

2.2. Einfache Beispiele für Ableitungen

■ Beispiel 2.4 (affin lineare Funktionen)

Sei $f: K^n \to K^m$ affin linear, d.h.

$$f(x) = A \cdot x + a \quad \forall x \in K^n, \text{ mit } A \in L(K^n, K^m), a \in K^m \text{ fest}$$

Dann gilt für beliebiges $x_0 \in K^n$:

$$f(x) = A \cdot x_0 + a + A(x - x_0)$$

= $f(x_0) + A(x - x_0)$

 $\stackrel{(1)}{\Longrightarrow}$ f ist diffbar in x_0 mit $f'(x_0) = A$

Insbesondere gilt für konstante Funktionen $f'(x_0) = 0$

■ Beispiel 2.5 (quadratische Funktion)

Sei $f: \mathbb{R}^n \to \mathbb{R}$ mit $f(x) = |x|^2$ für beliebiges x_0 gilt:

$$|x - x_0|^2 = \langle x - x_0, x - x_0 \rangle$$

= $|x|^2 - |x_0|^2 - 2\langle x_0, x - x_0 \rangle$

$$\Rightarrow f(x) = f(x_0) + 2\langle \underbrace{2x_0}_{\text{Ableitung}}, x - x_0 \rangle + \underbrace{|x - x_0|^2}_{o(|x - x_0|)}$$

 $\Rightarrow f$ ist differenzierbar in x_0 mit $f'(x_0) = 2x_0$, offenbar ist f' stetig, also $f \in C^1(\mathbb{R}^n)$

■ Beispiel 2.6 (Funktionen mit höherem Exponent)

Sei $f: K \to K$, $f(x) = x^k$, $k \in \mathbb{N}$.

$$k=0$$
: $f(x)=1 \ \forall x \Rightarrow f'(x_0)=0 \ \forall x_0 \in \mathbb{C}$ (vgl. Beispiel 2.4)

 $k \ge 1$: Es gilt

Es gire
$$(x_0 + y)^k = \sum_{j=0}^k \binom{k}{j} x_0^{k-j} \cdot y^j = x_0^k + k \cdot x_0^{k-1} \cdot y + o(y), \ y \to 0$$

$$\Rightarrow f(x_0 + y) = f(x_0) + k \cdot x_0^{k-1} \cdot y + o(y), y \to 0$$

$$\xrightarrow{(1)} f'(x_0) = k \cdot x_0^{k-1}$$

beachte: gilt in \mathbb{C} und \mathbb{R} .

■ Beispiel 2.7 (Exponentialfunktion)

 $f: K \to K \text{ mit } f(x) = e^x$

mit Differentialquotient $\Rightarrow f$ ist differenzierbar mit $f'(x_0) = e^{x_0} \Rightarrow f \in C^1(K)$

■ Beispiel 2.8 (Betragsfunktion)

 $f: \mathbb{R}^n \to \mathbb{R} \text{ mit } f(x) = |x|$

f ist nicht differenzierbar in $x_0 = 0$, denn angenommen, $f'(x_0) \in \mathbb{R}^n$ existiert und fixiere $y \in \mathbb{R}^n$,

 $\Rightarrow |ty| = 0 + \langle f'(0), ty \rangle + o(|t|), t \to 0$ $\Rightarrow t \neq 0 \Rightarrow \frac{|t|}{t} = \langle f'(0), y \rangle + \frac{o(t)}{t} \Rightarrow \pm 1 = \text{feste Zahl in } \mathbb{R}_+ \to 0 \Rightarrow \sharp \Rightarrow \text{ Behauptung}$

Folglich: f stetig in $x_0 \not\Rightarrow f$ differenzierbar in x_0 , das heißt Umkehrung von Satz 2.2 gilt nicht!

Hinweis: Es gibt stetige Funktion $f: \mathbb{R} \to \mathbb{R}$, die in keinem Punkt x diffbar ist (siehe Hildebrand, Analysis 1 S. 192 oder Königsberger Analysis 1, Kap. 9.11)

Satz 2.9 (Rechenregeln)

Sei $D \in K^n$ offen, $f, g: D \to K^m$, $\lambda: D \to K$ diffbar in $x_0 \in D$

 $\Rightarrow (f \pm g): D \to K^m, (\lambda \cdot f): D \to K^m, (f \cdot g): D \to K \text{ sind diffbar in } x_0 \in D \text{ und } \frac{1}{\lambda}: D \to K$ ist diffbar in x_0 , falls $\lambda(x_0) \neq 0$ mit

a)
$$(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0) \in K^{m \times 1}$$

b)
$$(\lambda \cdot f)'(x_0) = \lambda(x_0) \cdot f'(x_0) + f(x_0) \cdot \lambda'(x_0) \in K^{m \times n}$$

c)
$$(f \cdot g)'(x_0) = f(x_0)^{\mathsf{T}} \cdot g'(x_0) + g(x_0)^{\mathsf{T}} \cdot f'(x_0) \in K^{m \times n}$$

d)
$$\left(\frac{\mu}{\lambda}\right)'(x_0) = \frac{\mu'(x_0)\cdot\lambda(x_0)-\mu(x_0)\cdot\lambda'(x_0)}{(\lambda(x_0))^2}$$

• $f(x_0) \pm g(x_0) + (f'(x_0))(x - x_0) \pm (g'(x_0))(x - x_0) + o(|x - x_0|) = f(x_0) \pm g(x_0) + (f'(x_0) \pm g(x_0)) + (f'(x_0) \pm g(x_0)) + (f'(x_0) \pm g(x_0)) + (f'(x_0))(x - x_0) + (f'(x_0))(x - x_0) + o(|x - x_0|) = f(x_0) + (f'(x_0))(x - x_0) + (f'(x_0))(x - x_0) + o(|x - x_0|) = f(x_0) + (f'(x_0))(x - x_0) + (f'(x_0))(x - x_0) + o(|x - x_0|) = f(x_0) + (f'(x_0))(x - x_0) + (f'(x_0))(x - x_0) + o(|x - x_0|) = f(x_0) + (f'(x_0))(x - x_0) + (f'(x_0))(x - x_0)(x - x_0) + (f'(x_0))(x - x_0)(x - x_0) + (f'(x_0))(x - x_0)(x - x_0)(x - x_0) + (f'(x_0))(x - x_0)(x -$ Beweis. $g'(x_0)(x-x_0) + o(|x-x_0|) \Rightarrow$ Behauptung

•
$$\lambda(x)f(x) = (\lambda(x_0) + \lambda'(x_0)(x - x_0) + o(|x - x_0|)) \cdot (f(x_0) + f'(x_0)(x - x_0) + o(|x - x_0|)) = \lambda(x_0)f(x_0) - (\lambda'(x_0)f(x_0) + \lambda(x_0)f'(x_0))(x - x_0) + o(|x - x_0|) \Rightarrow \text{Behauptung}$$

• analog

• zeige
$$\left(\frac{1}{\lambda}\right)'(x_0) = -\frac{\lambda'(x_0)}{\lambda(x_0)^2}$$
, Rest folgt mit $f = \mu$

$$\frac{1}{\lambda(x)} - \frac{1}{\lambda(x_0)} = \frac{\lambda(x_0) - \lambda(x)}{\lambda(x)\lambda(x_0)} = \dots = \left(\frac{-\lambda'(x_0)}{\lambda(x_0)^2}\right)(x - x_0) + o(|x - x_0|) \Rightarrow \text{ Behauptung}$$

■ Beispiel 2.10

Sei $f: D \in K^n \to K^m, c \in K, f$ diffbar in $x_0 \in D$ $\xrightarrow{2.9\ b)} (c \cdot f) = c \cdot f'(x_0)$ (dackonst. Funktion $D \to K)$

■ Beispiel 2.11 (Polynom)
Sei
$$f: K \to K$$
, Polynom $f(x) = \sum_{l=0}^{k} a_l x^l$

$$\Rightarrow f$$
 diffbar $\forall x_0 \in K$ mit $f'(x_0) = \sum_{l=1}^k la_l x_0^{l-1}$

■ Beispiel 2.12

Sei
$$f = \frac{f_1}{f_2}$$
 rationale Funktion auf \mathbb{R} (d.h. $f_1, f_2 : K \to K$ Polynom) $\Rightarrow f$ ist diffbar auf $K \setminus \{\text{Nullstellen von } f_2\}$

■ Beispiel 2.13 (Sinus und Cosinus)

$$\sin, \cos: K \to K \ (\mathbb{R} \text{ bzw. } \mathbb{C}) \ \forall x_0 \in K.$$

Denn:

$$\frac{\sin y}{y} = \frac{e^{iy} - e^{-iy}}{2iy} = \frac{1}{2} \cdot \left(\frac{e^{iy} - 1}{iy} + \frac{e^{-iy} - 1}{-iy}\right) \xrightarrow[\text{vgl. (??)}]{y \to 0} 1,$$

folglich

$$\lim_{y \to 0} \frac{\sin(x_0 + y) - \sin(x_0)}{y} \stackrel{\star}{=} \lim_{y \to 0} \frac{2}{y} \cos\left(x_0 + \frac{y}{2}\right) \cdot \sin\left(\frac{y}{2}\right)$$
$$= \lim_{y \to 0} \frac{2}{y} \cdot \sin\left(\frac{y}{2}\right) \cdot \cos\left(x_0 + \frac{y}{2}\right)$$
$$= \cos x_0 \quad \forall x_0 \in K$$

*: Additionstheoreme

Analog für den Kosinus.

2.3. Rechenregeln

Definition

Sei $f: D \subset K^n \to K^m$, D offen.

Falls f diffbar in allen $x_0 \in D$, dann heißt f differenzierbar auf D und Funktion $f': D \to L(K^n, K^m)$ heißt Ableitung von f.

Ist zusätzlich Funktion $f': D \to L(K^n, K^m)$ stetig, dann heißt Funktion f stetig differenzierbar (auf D) bzw. C^1 -Funktion (auf D).

$$C^1(D, K^m) := \{ f : D \to K^m \mid f \text{ stetig diffbar auf } D \}$$

■ Beispiel 2.14

a)
$$f(x) = x^k \ \forall x \in \mathbb{R}, k \in \mathbb{N}_{\geq 0}$$

 $\Rightarrow f'(x) = k \cdot x^{k-1} \ \forall x \in \mathbb{R}$
 \Rightarrow offenbar stetige Funktion
 $\Rightarrow f \in C^1(\mathbb{R}, \mathbb{R})$

b)
$$f(x) = e^x \ \forall x \in \mathbb{C}$$

 $\Rightarrow f'(x) = e^x \ \forall x \in \mathbb{C}$ stetig
 $\Rightarrow f \in C^1(\mathbb{C}, \mathbb{C})$

c)
$$f(x) = |x|^2 \, \forall x \in \mathbb{R}^n$$

 $\Rightarrow f(x) = 2x \, \forall x \in \mathbb{R}^n$, offenbar stetig
 $\Rightarrow f \in C^1(\mathbb{R}^n, \mathbb{R})$

■ Beispiel 2.15

Sei
$$f: \mathbb{R} \to \mathbb{R}$$
 mit $f(0) = 0$, $f(x) = x^2 \cdot \sin\left(\frac{1}{x}\right) \ \forall x \neq 0$.

Wegen

$$\frac{|x^2 \cdot \sin \frac{1}{x}|}{|x|} \le |x| \xrightarrow{x \ne 0} 0$$

folgt

$$\begin{split} f(x) &= o(|x|), x \to 0 \\ \Rightarrow f(x) &= f(0) + 0 \cdot (x - 0) + o(|x - 0|), x \to 0 \\ \Rightarrow f \text{ diffbar in } x &= 0 \text{ mit } f'(0) = 0 \end{split}$$

Rechenregeln liefern $x \neq 0$:

$$f'(x) = 2x \cdot \sin \frac{1}{x} - \cos \frac{1}{x} \quad \forall x \neq 0$$

Für $x_k := \frac{1}{k\pi}$ gilt:

$$\lim_{k \to \infty} 2x_k \cdot \sin \frac{1}{x_k} = 0, \lim_{k \to \infty} \cos \frac{1}{x_k} = \pm 1$$

$$\Rightarrow \lim_{x \to 0} f'(x) \text{ existiert nicht}$$

$$\Rightarrow f \notin C^1(\mathbb{R}, \mathbb{R}),$$

d.h. Ableitung einer stetigen Funktion muss <u>nicht</u> stetig sein.

Man beobachtet:

- Gleichung (1) bzw. ?? sind häufig ungeeignet zum Bestimmen von $f'(x_0)$
- \bullet Gleichung (8) ist durchaus nützlich für konkrete Fälle im Falln=1
 - \rightarrow Strategie: Zurückführung auf einfachere Fälle durch Rechenregeln und Reduktion

Folgerung 2.16

Seien λ , $\mu: D \to K$ diffbar in x_0 , D offen und $\lambda(x_0) \neq 0$ $\Rightarrow \left(\frac{\mu}{\lambda}\right): D \to K$ diffbar in x_0 mit

$$\left(\frac{\mu}{\lambda}\right)'(x_0) = \frac{\lambda(x_0) \cdot \mu'(x_0) - \mu(x_0) \cdot \lambda'(x_0)}{\lambda(x_0)^2} \in K^{1 \times n}$$

Beweis (Folgerung 2.16). Setzte in Satz 2.9 $f = \mu$ (d.h. m = 1) und betr. Produkt $\frac{1}{\lambda} \cdot \mu$.

Satz 2.17 (Kettenregel)

Sei $f: D \subset K^n \to K^m$, $g: \tilde{D} \subset K^m \to K^l$, D, \tilde{D} offen, f diffbar in $x_0 \in D$, g diffbar in $f(x_0) \in \tilde{D}$ $\Rightarrow g \circ f: D \to K^l$ diffbar in x_0 mit $(g \circ f)' = g'(f(x)) \cdot f'(x)$ ($\in K^{l \times n}$)

Beweis.

$$(g \circ f)(x) = g(f(x)) = g(f(x_0)) + g'(f(x_0))(f(x) - f(x_0)) + o(|f(x) - f(x_0)|)$$

$$= (g \circ f)(x_0) + g'(f(x_0)) \cdot f(x_0)(x - x_0) + o(|x - x_0|)$$
(9)

 \Rightarrow Behauptung

■ Beispiel 2.18 (x im Exponenten)

 $f: \mathbb{R} \to \mathbb{R}, \ f(x) = a^x \ (a \in \mathbb{R}_{\geq 0}, \ a \neq 1).$ Offenbar $a^x = (e^{\ln a})^x = e^{x \cdot \ln a}$ $\Rightarrow f(x) = g(h(x)) \text{ mit } g(y) = e^y, \ h(x) = x \cdot \ln a \Rightarrow g'(y) = e^y, \ h'(x) = \ln a \Rightarrow f'(x) = e^{x \cdot \ln a} \cdot \ln a = a^x \cdot \ln a$

■ Beispiel 2.19 (Logarithmus)

 $\begin{array}{l} f: \mathbb{R}_{>0} \to \mathbb{R} \text{ mit } f(x) = \log_a x, \, a \in \mathbb{R}_{>0} \text{ und } a \neq 1, \, x_0 \in \mathbb{R}_{>0} \\ \text{mit } y = \log_a x, \, y_0 = \log_a x_0 \text{ ist } x - x_0 = a^y - a^{y_0} \\ \text{Differential quotient } \Rightarrow f'(x) = \frac{1}{x \cdot \ln a}, \, \text{also } f \in C^1(\mathbb{R}_{>0}) \end{array}$

Spezialfall: $(\ln(x))' = \frac{1}{x} \ \forall x > 0$

■ Beispiel 2.20

Sei $f: \mathbb{R}_{>0} \to \mathbb{R}, f(x) = x^r \ (r \in \mathbb{R})$

Wegen $x^r = e^{r \cdot \ln x}$ liefert Kettenregeln (analog zu Beispiel 2.18)

$$f'(x_0) = \frac{r \cdot e^{r \cdot \ln x_0}}{x_0} = \frac{r \cdot x_0^r}{x_0} = r \cdot x_0^{r-1} \quad \forall x_0 > 0$$

Spezialfall: $f(x) = \frac{1}{x^k} \Rightarrow f'(x) = -\frac{k}{x^{k+1}}$

Zu Beispiel 2.15:

$$f'(x) = 2x \cdot \sin\frac{1}{x} + x^2 \cdot \cos\frac{1}{x} \cdot \left(-\frac{1}{x^2}\right) = 2x \cdot \sin\frac{1}{x} - \cos\frac{1}{x}$$

■ Beispiel 2.21 (Tangens und Cotangens)

 $\tan: K \setminus \{\frac{\pi}{2} + k \cdot \pi \mid k \in \mathbb{Z}\} \to K, \cot: K \setminus \{k \cdot \pi \mid k \in \mathbb{Z}\} \to K$

Quotientenregel
$$\tan'(x_0) = \frac{\sin'(x_0)\cos(x_0) - \cos(x_0) \cdot \sin(x_0)}{(\cos(x_0))^2}$$

$$= \frac{\cos^2(x_0) + \sin^2(x_0)}{\cos^2(x_0)} = \frac{1}{\cos^2(x_0)} \quad \forall x_0 \in \text{ Definitionsbereich}$$

$$\cot'(x_0) = -\frac{1}{\sin^2(x_0)} \quad \forall x_0 \in \text{ Definitionsbereich}$$

Satz 2.22 (Reduktion auf skalare Funktionen)

Sei $f = (f_1, \ldots, f_m) : D \subset K^n \to K^m, D$ offen, $x_0 \in D$. Dann gilt:

f diffbar in $x_0 \Leftrightarrow \text{alle } f_j$ diffbar in $x_0 \ \forall j = 1, \dots, m$

Im Fall der Differenzierbarkeit hat man:

$$f'(x_0) = \begin{pmatrix} f'_1(x_0) \\ \vdots \\ f'_m(x_0) \end{pmatrix} \in K^{m \times n}$$

$$\tag{10}$$

 \odot Wenn Sie das nächste mal aus der Disko kommen, zuviel getrunken haben und den Namen ihrer Freundin nicht mehr kennen, sollten sie sich daran aber noch erinnern: \odot

▶ Bemerkung 2.23

Mit Satz 2.22 kann man die Berechnungen der Ableitungen stets auf skalare Funktionen $f:D\subset K^n\to K$ zurückführen. Die Matrix in Gleichung (10) besteht aus m Zeilen $f_i'(x_0)\in K^{1\times m}$.

■ Beispiel 2.24

Sei $f: \mathbb{R} \to \mathbb{R}^2$ mit

$$f(t) = \begin{pmatrix} t \cdot \cos(2\pi t) \\ t \cdot \sin(2\pi t) \end{pmatrix}, \qquad f'(t) = \begin{pmatrix} \cos(2\pi t) - t \cdot \sin(2\pi t) \cdot 2\pi \\ \sin(2\pi t) + t \cdot \cos(2\pi t) \cdot 2\pi \end{pmatrix} \in \mathbb{R}^{2 \times 1},$$

und $f'(0) = \binom{1}{0}, f'(1) = \binom{1}{2\pi}.$

Lemma 2.25

Sei $f = (f_1, f_2) : D \subset K^n \to K^k \times K^l, D$ offen, $x_0 \in D$.

Funktion f ist diffbar in x_0 genau dann, wenn $f_1:D\to K^k$ und $f_2:D\to K^l$ diffbar in x_0 .

Im Falle der Differenzierbarkeit gilt

$$f'(x_0) = \begin{pmatrix} f'_1(x_0) \\ f'_2(x_0) \end{pmatrix} \in K^{(k+l) \times n}$$
(11)

<u>Hinweis:</u> Da $K^k \times K^l$ mit K^{k+l} identifiziert werden kann, kann man f auch als Abbildung von D nach K^{k+l} ansehen. Dementsprechend kann die Matrix in Gleichung (11) der Form

$$\begin{pmatrix} (k \times n) \text{ Matrix} \\ (l \times n) \text{ Matrix} \end{pmatrix}$$

auch als $((k+l) \times n)$ -Matrix aufgefasst werden.

Beweis.

"⇒" Man hat

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + R(x) \cdot (x - x_0), \ R(x) \xrightarrow{x \to x_0} 0$$
 (12)

da $f'(x_0), R(x) \in L(K^n, K^k \times K^l)$

$$\Rightarrow f'(x_0) = (A_1, A_2), R(x) = (R_1(x), R_2(x))$$

mit $A_1, R_1(x) \in L(K^n, K^k), A_2, R(x) \in L(K^n, K^l)$

$$\stackrel{\text{(12)}}{\Longrightarrow} f_j(x) = f_j(x_0) + A_j \cdot (x - x_0) + R_j(x)(x - x_0), \ R_j(x) \xrightarrow{x \to x_0} 0$$

$$\Rightarrow f_j \text{ ist diffbar in } x_0 \text{ mit } f'_j(x_0) = A_j, \ j = 1, 2$$

$$(13)$$

⇒ Behauptung

"

" (es gilt auch (13) mit $A_j = f'_j(x_0)$)

Setzte

$$A = \begin{pmatrix} f_1'(x) \\ f_2'(x) \end{pmatrix}, \ R(x) = \begin{pmatrix} R_1(x) \\ R_2(x) \end{pmatrix}$$

$$\stackrel{\text{(13)}}{\Longrightarrow} A, R(x) \in L(K^n, K^k \times K^l)$$

$$\xrightarrow{\text{mit } A_j = f_j'(x_0)} f(x) = f(x_0) + A(x - x_0) + R(x)(x - x_0), R(x) \xrightarrow{x \to x_0} 0$$

 $\Rightarrow f$ diffbar in x_0 und (11) gilt.

Beweis (Satz 2.22). Mehrfache Anwendung von Lemma 2.25 (z.B. mit k=1, l=m-j für $j=1,\ldots,m-1$)

3. Richtungsableitung und partielle Ableitung

Sei $f: D \subset K^n \to K^m$, D offen, $x \in D$.

Ziel: Zurückführung der Berechnung der Ableitung f(x) auf die Berechnung der Ableitung für Funktionen $\tilde{f}: \tilde{D} \subset K \to K$

- Reduktionssatz \Rightarrow man kann sich bereits auf m=1 einschränken
- \bullet für Berechnung der Ableitung von f ist neben den Rechen- und Kettenregeln auch der Differentialquotient verfügbar

Idee: Betrachte f auf Geraden $t \to x + t \cdot z$ durch $x \Rightarrow$ skalares Argument $t, t \in K \Rightarrow$ Differential quotient.

Spezialfall: $z = e_j \Rightarrow$ Partielle Ableitung

Definition (Richtungsableitung)

Sei $f: D \subset K^n \to K^m$, D offen, $x \in D$, $z \in K^n$.

Falls $a \in L(K, K^m) \ (\cong K^m)$ existiert mit

$$f(x+t\cdot z) = f(x) + t\cdot a + o(t), \ t \to 0, \ t \in K,$$

dann heißt f diffbar in x in Richtung z und $D_z f(x) := a$ heißt Richtungsableitung von f in x in Richtung z

Satz 3.1

Sei $f: D \subset K^n \to K^m$, D offen, $x \in D$, $z \in K^n$. Dann:

f diffbar in x in Richtung z mit $D_z f(x) \in L(K, K^m) \iff \lim_{t \to 0} \frac{f(x+tz) - f(x)}{t} = a$ existiert und $D_z f(x) = a$

Satz 3.2

Sei $f: D \subset K^n \to K^m$, D offen, f diffbar in $x \in D$. \Rightarrow Richtungsableitung $D_z f(x)$ existiert $\forall z \in K^n$ und

$$D_z f(x) = f'(x) \cdot z$$

Beweis. Definition Ableitung mit f(y) = f(x)..., y = x + tz, Ausrechnen, Behauptung

3.1. Anwendung: Eigenschaften des Gradienten

Definition (Niveaumenge)

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D offen, f diffbar in $x \in D$. $N_C := \{x \in D \mid f(x) = C\}$ heißt Niveaumenge von f für $x \in \mathbb{R}$.

Definition (Tangentialvektor)

Sei $\gamma: (-\delta, \delta) \to N_C \ (\delta > 0)$ Kurve mit $\gamma(0) = 0$, γ diffbar in 0.

Ein $z \in \mathbb{R} \setminus \{0\}$ mit $z = \gamma'(0)$ für eine derartige Kurve γ heißt Tangentialvektor an N_C in x.

Offenbar gilt

$$\varphi(t) = f(\gamma(t)) = c$$

$$\varphi'(0) = f'(\gamma(0)) \cdot \gamma'(0) = 0$$

$$D_{\gamma'(0)}f(x) = \langle f'(x), \gamma'(0) \rangle = 0$$

Satz 3.3 (Eigenschaften des Gradienten)

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D offen, f diffbar in $x \in D$. Dann:

- 1) Gradient f'(x) steht senkrecht auf der Niveaumenge $N_{f(x)}$, d.h. $\langle f'(x),z\rangle=0$ \forall Tangentialvektoren z an $N_{f(x)}$ in x
- 2) Richtungsableitung $D_z f(x) = 0 \ \forall$ Tangentialvektoren z an $N_{f(x)}$ in x
- 3) Gradient f(x) zeigt in Richtung des steilsten Anstieges von f in x und |f'(x)| ist der steilste Anstieg, d.h. falls $f'(x) \neq 0$ gilt für Richtung $\tilde{z} := \frac{f'(x)}{|f'(x)|}$

$$D_{\tilde{z}}f(x) = \max \{D_z f(x) \in \mathbb{R} \mid z \in \mathbb{R}^n \text{ mit } |z| = 1\} = |f(x)|$$

Beweis.

- 1) klar, siehe Definition Tangentialvektor
- 2) analog oben
- 3) für |z| = 1 gilt

$$D_z f(x) = \langle f'(x), z \rangle = |f'(x)| \langle \tilde{z}, z \rangle$$

$$\leq |f'(x)| |\tilde{z}| |z| = |f'(x)| = \frac{\langle f'(x), f'(x) \rangle}{|f'(x)|} = \langle f'(x), \tilde{z} \rangle = D_{\tilde{z}} f(x)$$

⇒ Behauptung

Definition (partielle Ableitung)

Sei $f: D \subset K^n \to K^m$, D offen, $x \in D$ (nicht notwendigerweise diffbar in x).

Falls Richtungsableitung $D_{e_j}f(x)$ existiert, heißt f partiell diffbar bezüglich x_j im Punkt x und $D_{e_j}f(x)$ heißt partielle Ableitung von f bezüglich x_j in x.

▶ Bemerkung 3.4

Zur Berechnung von $\frac{\partial}{\partial x_j} f(x)$ differenziert man skalare Funktionen $x_j \to f(x_1, \dots, x_j, \dots, x_n)$ (d.h. alle x_k mit $k \neq j$ werden als Parameter angesehen).

Folgerung 3.5

Sei $f: D \subset K^n \to K^m$, D offen, f diffbar in $x \in D$

$$\Rightarrow D_z f(x) = \sum_{j=1}^n z_j \frac{\partial}{\partial x_j} f(x) \quad \forall z = (z_1, \dots, z_n) \in \mathbb{R}$$

Beweis. Definition $D_z f(x) = f'(x)z$, z zerteilen als Summe $z_j \cdot e_j$, f' reinziehen, zusammenfassen

Theorem 3.6 (Vollständige Reduktion)

Sei $f = (f_1, \ldots, f_m) : D \subset K^n \to K^m$, D offen, f diffbar in $x \in D$. Dann:

$$f'(x) \stackrel{(a)}{=} \begin{pmatrix} f'_1(x) \\ \vdots \\ f'_m(x) \end{pmatrix} \stackrel{(b)}{=} \begin{pmatrix} \frac{\partial}{\partial x_1} f(x) & \dots & \frac{\partial}{\partial x_n} f(x) \end{pmatrix} \stackrel{(c)}{=} \underbrace{\begin{pmatrix} \frac{\partial}{\partial x_1} f_1(x) & \dots & \frac{\partial}{\partial x_n} f_1(x) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} f_m(x) & \dots & \frac{\partial}{\partial x_n} f_m(x) \end{pmatrix}}_{\text{JACOBI-Matrix}} \in K^{m \times n}$$

Beweis.

zu a) Reduktion auf skalare Funktionen

zu b) Benutze $f'(x) \cdot z = D_z f(x)$

zu c)
$$f_j'(x) = \left(\frac{\partial}{\partial x_1} f_j(x), \dots, \frac{\partial}{\partial x_n} f_j(x)\right)$$
, sonst analog zu b)

3.2. \mathbb{R} -differenzierbar und \mathbb{C} -differenzierbar

Jede C-diffbare Funktion $f: D \subset \mathbb{C}^n \to \mathbb{C}^m$ ist auch \mathbb{R} -diffbar. Die Umkehrung gilt i.A. nicht!

Definition (\mathbb{R} -differenzierbar)

 $f:D\subset X\to Y,\ D$ offen, $(X,Y)=(\mathbb{R}^n,\mathbb{C}^m)$ bzw. $(\mathbb{C}^n,\mathbb{R}^m)$ oder $(\mathbb{C}^n,\mathbb{C}^m)$ heißt \mathbb{R} -diffbar in $z_0\in D$, falls Ableitung $A:X\to Y$ \mathbb{R} -linear ist.

Satz 3.7

Sei $f: D \subset \mathbb{C} \to \mathbb{C}$, D offen, $z_0 \in D$. Dann:

$$f$$
 \mathbb{C} -diffbar in $z_0 \Leftrightarrow f$ \mathbb{R} -diffbar in z_0 mit $f_x(z) = -if_y(z_0)$

Beweis.

" \Rightarrow " vgl. oben

" \Leftarrow " z = x + iy, Zerteilen in Real- und Imaginärteil

3.3. Cauchy-Riemann-Differentialgleichungen

Definition (Cauchy-Riemann-Differentialgleichungen)

Falls \mathbb{R} -diffbar in z_0 ist

$$f_x(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0),$$
 $f_y(z_0) = u_y(x_0, y_0) + iv_y(x_0, y_0)$

folglich

$$f \text{ ist } \mathbb{C}\text{-diffbar } \Leftrightarrow \begin{array}{l} u_x(x_0,y_0) = \ v_y(x_0,y_0) \\ u_y(x_0,y_0) = -v_x(x_0,y_0) \end{array}$$

CAUCHY-RIEMANN-Differentialgleichungen

4. Mittelwertsatz und Anwendung

Definition (Maximum, Minimum)

Wir sagen, $f:D\subset\mathbb{R}^n\to\mathbb{R}$ besitzt <u>Minimum</u> bzw. <u>Maximum</u> auf D, falls eine <u>Minimalstelle</u> bzw. Maximalstelle $x_0\in D$ existiert mit

$$f(x_0) \le f(x)$$
 $f(x) \ge f(x)$ $\forall x \in D$ (1)

f hat ein lokales Minimum bzw. lokales Maximum in $x_0 \in D$ falls

$$\exists \varepsilon > 0 : f(x_0) \le f(x)$$
 $f(x_0) \ge f(x)$ $\forall x \in B_{\varepsilon}(x_0 \cap D)$ (2)

Hat man in (1) bzw. (2) für x und x_0 ,<" bzw. ,>", so sagt man <u>strenges</u> (lokales) Minimum bzw. Maximum.

Hinweis: Es gilt:

$$f$$
 hat Minimum auf $D \stackrel{\text{vgl. ??}}{\Longleftrightarrow} \min\{f(x) \mid x \in D\}$ existiert (das heißt, $\inf\{\dots\}$ wird angenommen)

Analog für Maximum.

Theorem 4.1 (notwendige Optimalitätsbedingung)

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D offen, f sei diffbar in $x \in D$ und habe lokales Minimum bzw. Maximum in x_0 . Dann:

$$f'(x_0) = 0 \quad (\in \mathbb{R}^{1 \times n}) \tag{3}$$

▶ Bemerkung 4.2

- Theorem 4.1 ist neben dem Satz von Weierstraß (??) der wichtigste Satz für Optimierungsprobleme, denn (3) dient der Bestimmung von "Kandidaten" für Minimal- und Maximalstellen.
- (3) besagt, dass die Tangentialebene an den Graphen von f in $(x_0, f(x_0))$ horizontal ist.

Beweis. Für Minimum (Maximum analog) fixiere beliebiges $z \in \mathbb{R}^n$.

D offen

$$\Rightarrow \exists \delta > 0 : x_0 + t \cdot z \in D \ \forall t \in (-\delta, \delta)$$

f diffbar in x_0 , Minimum in x_0

$$\Rightarrow 0 \le f(x_0 + t \cdot z) - f(x_0) = t \cdot f'(z_0) \cdot z + o(t), t \to 0$$

 $\stackrel{t>0}{\Longrightarrow}$ $0 \le f'(x_0) \cdot z + o(1)$

$$\stackrel{t\to 0}{\Longrightarrow} \quad 0 \le f'(x_0) \cdot z \ \forall z \in \mathbb{R}^n$$

$$\stackrel{\pm z}{\Longrightarrow} \quad f'(x_0) \cdot z = 0 \ \forall z \in \mathbb{R}^n$$

$$\Rightarrow f'(x_0) = 0$$

 $\pm z$: gilt für z und additiv Inverses

Einfache, aber wichtige Anwendung:

Satz 4.3 (Satz von Rolle)

Sei
$$f : [a, b] \in \mathbb{R} \to \mathbb{R}$$
 stetig, $-\infty < a < b < \infty$, f diffbar auf (a, b) und $f(a) = f(b)$. $\Rightarrow \exists \xi \in (a, b) : f(\xi) = 0$

Beweis. f stetig, [a, b] kompakt

$$\stackrel{??}{\Rightarrow} \exists x_1, x_2 \in [a, b] : f(x_1) \le f(x) \le f(x_2) \ \forall x$$

• Angenommen, $f(x_1) = f(x_2) = f(a) \Rightarrow f$ konstante Funktion $\Rightarrow f'(\xi) = 0 \ \forall \xi \in (a,b)$

- Andernfalls sei $f(x_1) < f(a) \Rightarrow \xi := x_1 \in (a,b) \xrightarrow{\text{Theorem 4.1}} f'(\xi) = 0$
- analog $f(x_2) > f(a)$

Definition (abgeschlossenes, offenes Segment)

Setze für $x, y \in K^n$

- $[x,y] := \{x + t(y-x) \in \mathbb{R}^n \mid t \in [0,1]\}$ <u>abgeschlossenes</u> <u>Segment</u> (abgeschlossene Verbindungsstrecke)
- $(x,y) := \{x + t(y x) \in \mathbb{R}^n \mid t \in (0,1)\}$ offenes Segment (offene Verbindungsstrecke)

Theorem 4.4 (Mittelwertsatz)

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D offen, f diffbar auf D und seien $x, y \in D$ mit $[x, y] \subset D$. Dann

$$\exists \xi \in (x,y) : f(y) - f(x) = f'(\xi) \stackrel{\star}{\cdot} (y - x) \tag{4}$$

⋆: Skalarprodukt

▶ Bemerkung 4.5

• Für n = 1 schreibt man (4) auch als

$$f'(\xi) = \frac{f(y) - f(x)}{y - x}$$
 falls $x \neq y$.

- Der Mittelwertsatz (MWS) gilt nicht für \mathbb{C} oder $m \neq 1$.
- Theorem 4.4 gilt bereits für $D \subset \mathbb{R}^n$ beliebig, f stetig auf $[x,y] \subset D$, f diffbar auf $(x,y) \subset \text{int } D$.

Beweis. Setzte $\varphi(t) = f(x + t(y - x)) - (f(y) - f(x))t \ \forall t \in [0, 1]$

$$\underline{\underline{f} \text{ diffbar}} \quad \varphi : [0,1] \to \mathbb{R} \text{ stetig, } \varphi(0) = \varphi(1) = f(x)$$

 φ diffbar auf (0,1) (verwende Kettenregel) mit

$$\varphi'(t) = f'(x + t(y - x)) \cdot (y - x) - (f(y) - f(x)) \tag{5}$$

 $\stackrel{(5)}{\Longrightarrow} f(y) - f(x) = f'(\underbrace{x + \tau(y - x)}_{=:\xi \in (x,y)}) \cdot (y - x)$

 \Rightarrow Behauptung

Satz 4.6 (Verallgemeinerter Mittelwertsatz in \mathbb{R})

Seien $f, g : [x, y] \subset \mathbb{R} \to \mathbb{R}$ stetig und diffbar auf (x, y) $(x, y \in \mathbb{R}, x < y)$. Dann

$$\exists \xi \in (x, y) : (f(y) - f(x)) \cdot g'(\xi) = (g(y) - g(x))f'(\xi)$$

Beweis. Sei $h(t) := (f(y) - f(x))g(t) - (g(y) - g(x))f(t) \forall t \in [x, y]$

 $\Rightarrow h: [x,y] \to \mathbb{R}$ stetig, diffbar auf (x,y), h(x) = h(y)

$$\exists \xi \in (x,y) : 0 = h'(\xi) = (f(y) - f(x))g'(\xi) - (g(y) - g(x))f'(\xi)$$

⇒ Behauptung

Frage: Der MWS gilt für m = 1. Was ist bei m > 1?

 $\begin{array}{l} \langle u, v \rangle = \\ \sum_{i=1}^{n} \overline{u_i} v_i \end{array}$

Folgerung 4.7

Sei $f = (f_1, \ldots, f_m) : D \subset \mathbb{R}^n \to \mathbb{R}^m$, D offen, diffbar auf D, $[x, y] \subset D$. Dann

$$\exists \xi_1, \dots, \xi_m \in (x, y) : f(y) - f(x) = \begin{pmatrix} f'_1(\xi_1) \\ \vdots \\ f'_m(\xi_m) \end{pmatrix} \cdot (y - x)$$
 (6)

Beweis. Gleichung (6) ist äquivlanet zu m skalaren Gleichungen

$$f_i(y) - f_i(x) = f'_i(\xi_i) \cdot (y - x), \quad j = 1, \dots, m$$

und diese Folgen direkt aus Theorem 4.4 für $f_i: D \to \mathbb{R}$.

Frage: Ist in (6) auch $\xi_1 = \ldots = \xi_m$ möglich? Im Allgemeinen nein.

■ Beispiel 4.8

Sei $f: \mathbb{R} \to \mathbb{R}^2$ mit $f(x) = \begin{pmatrix} \cos x \\ \sin x \end{pmatrix} \ \forall x \in \mathbb{R}$.

Angenommen, $\exists \xi \in (0, 2\pi) : f(2\pi) - f(0) = f'(\xi) \cdot (2\pi - 0) = 0$

$$\Rightarrow$$
 $0 = f'(\xi) = {-\sin \xi \choose \cos \xi}$, d.h. $\sin \xi = \cos \xi = 0$

- \Rightarrow \mathcal{E}
- $\Rightarrow \xi_1 = \xi_2$ in (6) ist nicht möglich.

Ausweg: Für m > 1 gilt statt (4) Abschätzung (7), die meist ausreicht und ebenso richtig ist wie der MWS.

Theorem 4.9 (Schrankensatz)

Sei $f: D \subset K^n \to K^m$, D offen, f diffbar auf D. Seien $x, y \in D$, $[x, y] \subset D$. Dann

$$\exists \xi \in (x, y) : |f(y) - f(x)| \le |f'(\xi)(y - x)| \le ||f'(\xi)|| \cdot |y - x| \tag{7}$$

beachte: Theorem 4.9 gilt auch für $K = \mathbb{C}$.

Beweis. Sei $f(x) \neq f(y)$ (sonst klar). Setzte $v := \frac{f(y) - f(x)}{|f(y) - f(x)|} \in K^m$, offenbar |v| = 1.

Betrachte $\varphi:[0,1]\to\mathbb{R}$ mit $\varphi(t):=\mathfrak{Re}\langle f(x+t(y-x)),v\rangle$ Da f diffbar, gilt

$$\langle f(x+s(y-x)),v\rangle = \langle f(x+t(y-x)),v\rangle + \langle f'(x+t(y-x))\cdot (s-t)(y-x),v\rangle + \underbrace{o(|s-t|\cdot |y-x|)}_{=o(|s-t|)},\ s\to t$$

und damit ist auch φ diffbar auf (0,1) mit

$$\varphi'(t) = \mathfrak{Re}\langle f'(x+t(y-x))\cdot (y-x), v\rangle \quad \forall t \in (0,1)$$

Theorem 4.4 liefert: $\exists \tau \in (0,1)$: $\underbrace{\varphi(1) - \varphi(0)}_{=\Re \mathfrak{e}\langle f(y) - f(x), v \rangle} = \varphi(\tau) \cdot (1-0)$

$$\begin{array}{c} \stackrel{\xi=x+\tau(y-x)}{\longrightarrow} |f(y)-f(x)| = \mathfrak{Re}\langle f(y)-f(x),v\rangle = \varphi(1)-\varphi(0) \\ \leq |\langle f'(\xi)\cdot (y-x),v\rangle| \stackrel{\star}{\leq} |f'(\xi)\cdot (y-x)| \cdot \underbrace{|v|}_{=1} \\ \leq ||f'(\xi)|| \cdot |y-x| \end{array}$$

Wiederholung: $M \subset K^n$ heißt konvex, falls $[x, y] \subset M \ \forall x, y \in M$

Satz 4.10 (Lipschitz-Stetigkeit)

Sei $f:D\subset K^n\to K^m,\,D$ offen, f stetig diffbar auf D. Sei $M\subset D$ kompakt und konvex. Dann

$$|f(y) - f(x)| \le L \cdot |y - x| \quad \forall x, y \in M \tag{8}$$

mit $L = \max_{\xi \in M} \|f'(\xi)\| \le +\infty$, d.h. f ist Lipschitz-stetig auf M mit Lipschitz-Konstante L.

▶ Bemerkung 4.11

Wegen $||f'(\xi)|| \le |f'(\xi)|$ (vgl. ??) kann man in (7) und (8) auch |f'(y)| benutzen.

Beweis. Seien $x, y \in M \xrightarrow{M \text{ konvex}} [x, y] \subset M$

 $f': M \to L(K^n, K^m)$ stetig, M kompakt

 $\stackrel{??}{\Rightarrow} ||f'(\xi)||$ besitzt Maxium auf M und die Behauptung folgt aus Theorem 4.9.

bekanntlich: $f(x) = \text{const } \forall x \Rightarrow f'(x) = 0$

Satz 4.12

Sei $f: D \subset K^n \to K^m$, D offen, und zusammenhängend.

f diffbar auf D mit $f'(x) = 0 \ \forall x \in D \implies f(x) = \text{const} \ \forall x \in D$.

Beweis.

- 1. D offen, zusammenhängend, K^n normierter Raum $\stackrel{??}{\Rightarrow}$ D bogenzusammenhängend
 - Wähle nun $x,y\in D\Rightarrow \exists \varphi:[0,1]\to D$ stetig, $\varphi(0)=x,\,\varphi(1)=y$
 - D offen $\Rightarrow \forall t \in [0,1]$ existiert $r(t) > 0 : B_{r(t)}(\varphi(t)) \subset D$
 - Nach ?? ist $\varphi([0,1])$ kompakt und $\{B_{r(t)}(\varphi(t)) \mid t \in [0,1]\}$ ist offene Überdeckung von $\varphi([0,1])$ \Rightarrow existiert endliche Überdeckung, d.h. $\exists t_1, \ldots, t_n \in [0,1]$ mit $\varphi([0,1]) \subset \bigcup_{i=1}^n B_{r(t_i)}(\varphi(t_i))$.
- 2. Falls wir noch zeigen, dass f konstant ist auf jeder Kugel $B_r(z) \subset D$ ist, dann wäre f(x) = f(y) $\xrightarrow{x,y \text{ bel.}}$ Behauptung.
- 3. Sei $B_r(z) \subset D$, $x, y \in B_r(z)$

Theorem 4.9
$$|f(y) - f(x)| \le \underbrace{\|f'(\xi)\|}_{=0} \cdot |y - x| = 0$$

$$\Rightarrow f(x) = f(y)$$

$$\xrightarrow{x,y \text{ bel.}} f \text{ konst. auf } B_r(z)$$

■ Beispiel 4.13

Sei $f: D = (0,1) \cup (2,3) \to \mathbb{R}$ diffbar, sei f'(x) = 0 auf D

Satz 4.12 f(x) = const auf (0,1) und (2,3), aber auf jedem Intervall kann die Konstante anders sein.

Zurück zur Frage nach 18.11:

partielle Ableitung existiert \Rightarrow Ableitung existiert?

Nein! Aber:

Theorem 4.14

Sei $f: D \subset K^n \to K^m$, D offen, $x \in D$.

Falls partielle Ableitung $f_{x_j}(y)$, $j=1,\ldots,n$ für alle $y\in B_r(x)\subset D$ für ein r>0 existierten und falls $y\to f_{x_j}(y)$ stetig in x für $j=1,\ldots,n$ $\Rightarrow f$ ist differentierbar in x mit $f'(x)=\left(f_{x_1}(x),\ldots,f_{x_n}(x)\right)\in K^{m\times n}$

Beweis. Fixiere $y = (y_1, \ldots, y_n) \in B_r(0)$.

Betrachte die Eckpunkt eines Quaders in D: $a_0 = x, a_k := a_{k-1} + y_k e_k$ für $k = 1, \dots, n$ $\Rightarrow a_n = x + y$.

Offenbar $\varphi_k(t) = f(a_{k-1} + te_k y_k) - f(a_{k-1}) - t f_{x_k}(a_{k-1}) y_k$ stetig auf [0, 1], diffbar auf (0, 1) mit $\varphi'_k(t) = f_{x_k}(a_{k-1} + te_k y_k) y_k - f_{x_k}(a_{k-1}) y_k$

$$\xrightarrow{\text{Theorem 4.9}} |\varphi_k(1) - \varphi_k(0)| = |f(a_k) - f(a_{k-1}) - f_{x_k}(a_{k+1})y_k| \le \sup_{t \in (0,1)} |\varphi'_k(\xi)|, \ k = 1, \dots, n$$

Es gilt mit $A := (f_1(x), \ldots, x_{x_n}(x))$:

$$|f(x+y) - f(x) - Ay| = \left| \sum_{k=1}^{n} f(a_k) - f(a_{k-1}) - f_{x_k}(x) y_k \right|$$

$$\stackrel{\triangle\text{-Ungl}}{\leq} \sum_{k=1}^{n} |f(a_k) - f(a_{k-1}) - f_{x_k}(x) y_k |$$

$$\stackrel{\triangle\text{-Ungl}}{\leq} \sum_{\text{Def. } \varphi_k} |\varphi_k(1) - \varphi_k(0)| + |f_{x_k}(a_{k-1}) y_k - f_{x_k}(x) y_k|$$

$$\leq |y| \sum_{t \in (0,1)} \sup_{t \in (0,1)} |f_{x_k}(a_{k-1} + t \cdot e_k y_k) - f_{x_k}(a_{k-1})| + |f_{x_k}(a_{k-1}) - f_{x_k}(x)|$$

$$\stackrel{\triangle\text{-Ungl}}{\leq} |y| \sum_{k=1}^{n} \sup_{t \in (0,1)} |f_{x_k}(a_{k-1} + t e_k y_k) - f_{x_k}(x)| + 2|f_{x_k}(a_{k-1}) - f_{x_k}(x)|$$

$$=: \rho(y) \xrightarrow{y \to 0} 0, \text{ da part. Ableitung } f_{x_k} \text{ stetig in } x$$

$$\Rightarrow f(x+y) = f(y) + Ay + R(y) \text{ mit } \frac{|R(y)|}{y} \le \rho(y) \xrightarrow{y \to 0} 0 \text{ (d.h. } R(y) = o(|y))$$

$$\xrightarrow{Satz \ 2.1} f \text{ ist diffbar in } x \text{ mit } f'(x) = A$$

4.1. Anwendung des Mittelwertsatzes in \mathbb{R}

Satz 4.15 (Monotonie)

Sei $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$ diffbar, dann gilt:

- i) $f'(x) \ge 0 \ (\le 0) \ \forall x \in (a,b) \Leftrightarrow f$ monoton wachsend (monoton fallend)
- ii) $f'(x) > 0 \ (< 0) \ \forall x \in (a, b) \Rightarrow f$ streng monoton wachsend (fallend)
- iii) $f'(x) = 0 \ \forall x \in (a, b) \Leftrightarrow f \text{ konst.}$

▶ Bemerkung 4.16

In ii) gilt die Rückrichtung nicht! (Betr. $f(x) = x^3$ und f'(0) = 0)

Beweis (jeweils für wachsend, fallend analog). Sei $x,y \in (a,b)$ mit x < y. " \Rightarrow " in i), ii), iii)

Nach Theorem 4.4 $\exists \xi \in (a,b) : f(y) - (x) = f'(\xi)(y-x) \stackrel{\geq}{=} 0 \xrightarrow{x,y \text{ bel.}}$ Behauptung " \Leftarrow " in i), iii) $0 \stackrel{\leq}{=} \frac{f(y) - f(x)}{y-x} \xrightarrow{y \to x} f'(x) \Rightarrow \text{Behauptung}$

Satz 4.17 (Zwischenwertsatz für Ableitungen)

Sei $f:(a,b)\subset\mathbb{R}\to\mathbb{R}$ diffbar, $a< x_1< x_2< b$. Dann

$$f'(x_1) < \gamma < f'(x_2) \Rightarrow \exists \tilde{x} \in (x_1, x_2) : f'(\tilde{x}) = \gamma$$

(analog $f(x_2) < \gamma < f(x_1)$)

Beweis. Sei $g:(a,b)\to\mathbb{R}$ mit $g(x)=f(x)-\gamma x$ ist diffbar auf (a,b)

$$\xrightarrow{\text{Weierstraß}} \exists \tilde{x} \in [x_1, x_2] \text{ mit } g(\tilde{x}) \leq g(x) \ \forall x \in [x_1, x_2]$$

Angenommen, $\tilde{x} = x_1$

$$\Rightarrow 0 \le \frac{g(x) - g(x_1)}{x - x_1} \xrightarrow{x \to x_1} g'(x_1) = f'(x_1) - \gamma < 0$$

$$\Rightarrow$$
 $f(\text{für Minimum: } f'(x) \ge 0)$

$$\Rightarrow x_1 < \tilde{x}$$
, analog $\tilde{x} < x_2$

$$\xrightarrow{\text{Theorem 4.1}} 0 = g'(\tilde{x}) = f'(\tilde{x}) - \gamma \Rightarrow \text{Behauptung}$$

Betrachte nun "unbestimme Grenzwerte" $\lim_{y\to x} \frac{f(x)}{g(x)}$ der Form $\frac{0}{0}, \frac{\infty}{\infty}$, wie z.B. $\lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x$, $\lim_{x\to 0} \frac{\sin x}{x}$.

Satz 4.18 (Regeln von de l'Hospital)

Seien $f, g: (a, b) \subset \mathbb{R} \to \mathbb{R}$ diffbar, $g'(x) \neq 0 \ \forall x \in (a, b)$ und entwender

i)
$$\lim_{x \downarrow a} f(x) = 0$$
, $\lim_{x \downarrow 0} g(x) = 0$, oder

ii)
$$\lim_{x \downarrow a} f(x) = \infty$$
, $\lim_{x \downarrow a} g(x) = \infty$

Dann gilt:

Falls
$$\lim_{y \downarrow a} \frac{f'(y)}{g'(y)} \in \mathbb{R} \cup \{\pm \infty\} \text{ ex. } \Rightarrow \lim_{y \downarrow a} \frac{f(y)}{g(y)} \in \mathbb{R} \cup \{\pm \infty\} \text{ ex. und } \lim_{y \downarrow a} \frac{f(y)}{g(y)} = \lim_{y \to a} \frac{f'(y)}{g'(y)}$$
 (9)

(Analoge Aussagen für $x \uparrow b, x \to +\infty, x \to -\infty$)

▶ Bemerkung 4.19

- 1) Vgl. Analgie zum Satz von Stolz und Folgen (9.34)
- 2) Satz kann auch auf Grenzwerte der Form $0 \cdot \infty$, 1^{∞} , 0^{0} , ∞^{0} , $\infty \infty$ angewendet werden, falls man folgende Identitäten verwendet:

$$\alpha \cdot \beta = \frac{\alpha}{\frac{1}{\beta}}$$
 $\qquad \qquad \alpha^{\beta} = e^{\beta \cdot \ln \alpha} \qquad \qquad \alpha - \beta = \alpha \left(1 - \frac{\beta}{\alpha}\right)$

Beweis.

zu i) Mit
$$f(a) := 0$$
, $g(a) := 0$ sind f, g stetig auf $[a, b]$

$$\xrightarrow{\text{Satz 4.6}} \forall x \in (a, b) \ \exists \xi = \xi(x) \in (a, x) : \frac{f(x)}{g(x)} = \frac{f'(\xi)}{g'(\xi)}. \text{ Wegen } \xi(x) \to a \text{ für } x \to a \text{ folgt die Behauptung}$$

zu ii) Sei
$$\lim_{x \perp a} \frac{f'(x)}{g'(x)} =: \gamma \in \mathbb{R} \ (\gamma = \pm \infty \ \text{ähnlich})$$

Sei ohne Beschränkung der Allgemeinheit (oBdA) $f(x) \neq 0$, $g(x) \neq 0$ auf (a, b). Sei $\varepsilon > 0$ fest $\Rightarrow \exists \delta > 0 : \left| \frac{f'(\xi)}{g'(\xi)} - \gamma \right| < \varepsilon \ \forall \xi \in (a, a + \delta)$ und

$$\left|\frac{f(y)-f(x)}{g(y)-g(x)}-\gamma\right| \leq \sum_{\exists \xi \in (a,a+\delta)}^{Satz} \underbrace{\left|\frac{f(y)-f(x)}{g(y)-g(x)}-\frac{f'(\xi)}{g'(\xi)}\right|}_{=0} + \left|\frac{f'(\xi)}{g'(\xi)}-\gamma\right| < \varepsilon \quad \forall x,y \in (a,a+\delta), \ g(x) \neq g(y)$$

Fixiere $y \in (a, a + \delta)$, dann $f(x) \neq f(y)$, $g(x) \neq g(y)$ $\forall x \in (a, a + \delta_1)$ für ein $0 < \delta_1 < \delta$ und

$$\frac{f(x)}{g(x)} = \frac{f(y) - f(x)}{g(y) - g(x)} \cdot \underbrace{\frac{1 - \frac{g(y)}{g(x)}}{1 - \frac{f(y)}{f(x)}}}_{\underbrace{x \downarrow a} \downarrow 1}$$

$$\Rightarrow \exists \delta_2 > 0 : \delta_2 < \delta_1 \text{ und } \left| \frac{f(x)}{g(x)} - \frac{f(y) - f(x)}{g(y) - g(x)} \right| < \varepsilon \quad \forall x \in (a, a + \delta_2)$$

$$\Rightarrow \left| \frac{f(x)}{g(x)} - \gamma \right| \le \left| \frac{f(x)}{g(x)} - \frac{f(y) - f(x)}{g(y) - g(x)} \right| + \left| \frac{f(y) - f(x)}{g(y) - g(x)} - \gamma \right| < 2\varepsilon \quad \forall x \in (a, a + \delta_2)$$

 $\xrightarrow{\varepsilon \,>\, 0 \text{ beliebig}} \overset{\circ}{\text{Behauptung}}$

andere Fälle:

- $x \uparrow b$ analog
- $x \to +\infty$ mittels Transformation $x = \frac{1}{y}$ auf $y \downarrow 0$ zurückführen
- $x \to -\infty$ analog

■ Beispiel 4.20
$$\lim_{x\to 0} \frac{\sin x}{x} = 1, \text{ denn } \lim_{x\to 0} \frac{(\sin x)'}{x'} = \lim_{x\to 0} \frac{\cos x}{1} = 1$$

■ Beispiel 4.21
$$\lim_{x\to 0} x \cdot \ln x = \lim_{x\to 0} \frac{\ln x}{\frac{1}{x}} = 0$$
, denn $\lim_{x\to 0} \frac{(\ln x)'}{\left(\frac{1}{x}\right)'} = \lim_{x\to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0$

■ Beispiel 4.22
$$\lim_{x \to 0} \frac{2 - 2\cos x}{x^2} = 1, \text{ denn es ist } \lim_{x \to 0} \frac{(2 - 2\cos x)'}{(x^2)'} = \lim_{x \to 0} \frac{2\sin x}{2x} \stackrel{Beispiel}{=} 4.20$$
1.

beachte: Satz 4.18 wird in Wahrheit zweimal angewendet.

■ Beispiel 4.23
$$\lim_{x \to \infty} \left(1 + \frac{y}{x}\right)^x = e^y \ \forall y \in \mathbb{R} \text{ mit}$$

$$\left(1+\frac{y}{x}\right)^x = e^{x\cdot\ln\left(1+\frac{y}{x}\right)} = e^{\frac{\ln\left(1+y/x\right)}{1/x}}, \quad \lim_{x\to\infty} \frac{\left(\ln\left(1+\frac{y}{x}\right)\right)'}{\left(\frac{1}{x}\right)'} = \lim_{x\to\infty} \frac{yx^2}{\left(1+\frac{y}{x}\right)x^2} = \lim_{x\to\infty} \frac{y}{1+\frac{y}{x}} = y$$

(vgl. Satz 13.9)

5. Stammfunktionen

Sei $f: D \subset K^n \to K^{m \times n}$

Frage: Existiert eine Funktion F mit F' = f auf D?

Definition (Stammfunktion, unbestimmtes Integral)

 $F:D\subset K^n\to K^m$ heißt Stammfunktion oder unbestimmtes Integral von f auf D, falls F diffbar und $F'(x)=f(x)\ \forall x\in D$

Betrachte zunächst den Spezialfall n=m=1. Sei $f:D\subset K\to K,\,D$ offen. Die Beispiele zur Differentiation liefern folgende Stammfunktionen

für $K = \mathbb{R}$ und $K = \mathbb{C}$:

f(x)	Stammfunktion $F(x)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
e^x	e^x
x^k	$\frac{1}{k+1}x^{k+1} (k \in \mathbb{Z} \setminus \{-1\})$

für $K = \mathbb{R}$:						
f(x)	Stammfunktion $F(x)$					
a^x x^{α}	$\frac{\frac{a^x}{\ln a}}{\frac{1}{1}x^{\alpha+1}} (x > 0, \alpha \in \mathbb{R} \setminus \{-1\})$					

$$a^{x} \qquad \frac{a}{\ln a}$$

$$x^{\alpha} \qquad \frac{1}{\alpha+1}x^{\alpha+1} \qquad (x > 0, \ \alpha \in \mathbb{R} \setminus \{-1\})$$

$$\frac{1}{x} \qquad \ln|x| \qquad (x \in \mathbb{R} \setminus \{0\})$$

$$\frac{1}{1+\alpha^{2}} \qquad \arctan x$$

Satz 5.1 (partielle Integration)

Seien $f, g: D \subset K \to K$, D Gebiet mit zugehörigen Stammfunktion $F, G: D \to K$.

Falls $f \cdot G : D \to K$ Stammfunktion, dann auch $(F \cdot g) : D \to K$ mit

$$\int F \cdot g \, dx = F(x)G(x) - \int f \cdot G \, dx$$

Satz 5.2 (Integration durch Substitution)

Sei $f:D\subset K\to K,\,D$ Gebiet, mit Stammfunktion $F:D\to K$ und sei $\varphi:D\to D$ diffbar. Dann hat $f(\varphi(.))\cdot\varphi'(.):D\to K$ eine Stammfunktion mit

$$\int f(\varphi(x)) \cdot \varphi'(x) \, \mathrm{d} \, x = F(\varphi(x))$$

Beweis. $F(\varphi(.))$ ist nach der Kettenregel auf D diffbar mit

$$\frac{\mathrm{d}}{\mathrm{d}x}F(\varphi(x)) = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x)$$

Satz 5.3

Sei $f: I \subset \mathbb{R} \to \mathbb{R}$, I offenes Intervall, $f(x) \neq 0$ auf I, dann gilt

$$\int \frac{f'(x)}{f(x)} \, \mathrm{d} \, x = \ln|f(x)|$$

Kapitel II

Integration

Integration kann betrachtet werden als

- $\bullet\,$ verallgemeinerte Summation, d.h. $\int_{\mu}f\,\mathrm{d}\,x$ ist Grenzwert von Summen
- lineare Abbildung $\int : \mathcal{F} \to \mathbb{R}$ über $\int_a^b (\alpha f + \beta g) \, dx = \alpha \int_a^b f \, dx + \beta \int_a^b g \, dx$ Funktionen, d.h. als Grundlage benötigt man ein "Volumen" (Maß) für allgemeine Mengen $M \subset \mathbb{R}$.

Funktionen

Wir betrachten Funktionen $f:D\subset\mathbb{R}^n\to\mathbb{R}\cup\{\pm\infty\}$, welche komponentenweise auf $f:D\subset\mathbb{R}\to K^k$ erweitert werden kann. Benutze $\mathbb{C}^m\cong\mathbb{R}^{2m}$ für $K=\mathbb{C}$.

Vgl. Buch: Evans, Lawrence C.; Gariepy, Ronald F.: Measure theory and fine properties of functions

6. Messbarkeit

Wir führen zunächst das Lebesgue-Maß ein und behandeln dann messbare Mengen und messbare Funktionen.

6.1. Lebesgue-Maß

Definition (Quader, Volumen)

Wir definieren die Menge

$$Q := \{I_1 \times \ldots \times I_n \subset \mathbb{R}^n \mid I_j \subset \mathbb{R} \text{ beschränktes Intervall} \}$$

 \emptyset ist auch als beschränktes Intervall zugelassen. $Q \in \mathcal{Q}$ heißt Quader.

Sei $|I_j| := \text{Länge des Intervalls } I_j \subset \mathbb{R} \text{ (wobei } |\emptyset| = 0), dann heißt$

$$v(Q) := |I_1| \cdot \cdot \cdot \cdot |I_n| \quad \text{für } Q = I_1 \times \cdot \cdot \cdot \times I_n \in \mathbb{Q}$$

Volumen von Q

Definition (Lebesgue-Maß)

Dafür betrachte eine (Mengen-) Funktion $|.|: \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$ mit

$$|\mu| = \inf \left\{ \sum_{j=1}^{\infty} v(Q_j) \mid M \subset \bigcup_{j=1}^{\infty} Q_j, \ Q_j \in \mathcal{Q} \text{ Quader} \right\} \quad \forall M \subset \mathbb{R}^n,$$
 (1)

die man Lebegue-Maß auf \mathbb{R}^n nennt.

Satz 6.1

Es gilt:

$$M_1 \subset M_2 \Rightarrow |M_1| \leq |M_2|$$

und die Abbildung $\mu \mapsto |\mu|$ ist σ -subadditiv, d.h.

$$\left| \bigcup_{j=1}^{\infty} M_k \right| \leq \sum_{k=1}^{\infty} |M_k|, \quad \text{für } M_j \subset \mathbb{R}^n, \ j \in \mathbb{N}_{\geq 1}$$

Beweis. • klar

• Finde Quader Q_{k_j} mit $M_k \subset \bigcup Q_{k_j}$, $\sum v(Q_{k_j}) \leq |M_k| + \frac{\varepsilon}{2^k}$. Wegen $\bigcup_{k=1}^{\infty} M_k \subset \bigcup_{j,k=1}^{\infty} v(Q_{k_j}) \leq \sum_{k=1}^{\infty} |M_k| + \varepsilon$ folgt

$$\left| \bigcup_{k=1}^{\infty} M_k \right| \le \sum_{j,k=1}^{\infty} v(Q_{k_j}) \le \sum_{k=1}^{\infty} |M_k| + \varepsilon$$

Definition (Nullmenge)

 $N \subset \mathbb{R}^n$ heißt Nullmenge, falls |N| = 0. Offenbar gilt:

Folgerung 6.2

Es ist $v(Q) = |Q| \ \forall Q \in \mathcal{Q}$

Damit im folgenden Stets |Q| statt v(Q)

Beweis. $v(Q) = v(\operatorname{cl} Q)$ und $|Q| = |\operatorname{cl} Q| \Rightarrow Q$ abgeschlossen. Finde neue Quader Q_j mit $Q \subset \bigcup Q_j$ und $\sum v(Q_j) \leq |Q| + \varepsilon$. Da Q kompakt \Rightarrow Überdeckung durch endlich viele Q_j , geeignete Zerlegung von $Q_j \Rightarrow v(Q) \leq \sum v(Q_j) \Rightarrow |Q| \leq v(Q) \leq |Q| + \varepsilon$

Definition

Eine Eigenschaft gilt f.ü. auf $M \subset \mathbb{R}^n$, falls eine Nullmenge existiert, sodass die Eigenschaft $\forall x \in M \setminus N$ gilt. Man sagt auch, dass die Eigenschaft für fast alle $x \in M$ gilt.

6.2. Messbare Mengen

Definition (messbar)

Eine Menge $M \subset \mathbb{R}^n$ heißt messbar, falls

$$|\tilde{M}| = |\tilde{M} \cap M| + |\tilde{M} \setminus M| \quad \forall \tilde{M} \in \mathbb{R}$$

Beim Nachweis der Messbarkeit muss man nur "≥" prüfen.

Satz 6.3

- (a) \emptyset , \mathbb{R}^n sind messbar
- (b) $M \subset \mathbb{R}^n$ messbar $\Rightarrow M^C = \mathbb{R}^n \setminus M$ messbar
- (c) $M_1, M_2, \ldots \subset \mathbb{R}^n$ messbar $\Rightarrow \bigcup_{j=1}^{\infty} M_j, \bigcap_{j=1}^{\infty} M_j$ messbar

Beweis.

- wegen $|\emptyset| = 0$ und: $|\tilde{M}| \leq |\tilde{M} \setminus \emptyset| = |\tilde{M}|$
- wegen $\tilde{M} \cap M = \tilde{M} \setminus M^C$, $\tilde{M} \setminus M = \tilde{M} \cap M^C \Rightarrow$ Behauptung
- offenbar $M_1 \cap ... \cap M_k$ messbar und $M_1 \cup ... \cup M_k$ messbar, wähle $A = \bigcup M_i \Rightarrow A$ messbar

Satz 6.4

Es gilt:

- (a) alle Quader sind Messbar $(Q \in \mathcal{Q})$
- (b) Offene und abgeschlossene $M \subset \mathbb{R}^n$ sind messbar
- (c) alle Nullmengen sind messbar
- (d) Sei $M \subset \mathbb{R}^n$ messbar, $M_0 \subset \mathbb{R}^n$, beide Mengen unterscheiden sich voneinander nur um eine Nullmenge, d.h. $|(M \setminus M_0) \cup (M_0 \setminus M)| = 0$ $\Rightarrow M_0$ messbar.

6.3. Messbare Funktionen

Definition (messbar)

Eine Funktion $f: D \subset \mathbb{R} \to \overline{\mathbb{R}}$ heißt messbar, falls D messbar ist und $f^{-1}(U)$ für jede offene Menge $U \subset \overline{\mathbb{R}}$ messbar ist.

Definition (charakteristische Funktion)

Für $M \subset \mathbb{R}^n$ heißt $\chi_{\mu} : \mathbb{R}^n \to \mathbb{R}$ mit

$$\chi_{\mu} = \begin{cases} 1, & x \in M \\ 0, & x \in \mathbb{R}^n \setminus M \end{cases}$$

charakteristische Funktion von M.

Definition (Treppenfunktion)

Eine Funktion $h: \mathbb{R}^n \to \mathbb{R}$ heißt Treppenfunktion, falls es $M_1, \dots, M_k \subset \mathbb{R}^n$ und $c_1, \dots, c_k \in \mathbb{R}$

gibt mit

$$h(x) = \sum_{j=1}^{k} a_j \chi_{\mu_j}(x)$$

Definition (Nullfortsetzung)

Für $f:D\subset \mathbb{R}^n\to \overline{\mathbb{R}}$ definieren wir die Nullfortsetzung $\overline{f}:\mathbb{R}^n\to \overline{\mathbb{R}}$ durch

$$\overline{f}(x) := \begin{cases} f(x), & x \in D \\ 0, & x \in \mathbb{R}^n \setminus D \end{cases}$$

■ Beispiel 6.5

Folgende Funktionen sind messbar

- Stetige Funktionen auf offenen und abgeschlossenen Mengen, insbesondere konstante Funktionen sind messbar
- Funktionen auf offenen und abgeschlossenen Mengen, die f.ü. mit einer stetigen Funktion übereinstimmen
- tan, cot auf \mathbb{R} (setzte z.b. $\tan\left(\frac{\pi}{2} + k\pi\right) = \cot(k\pi) = 0 \ \forall k$)
- $x \to \sin \frac{1}{x}$ auf [-1,1] (setzte beliebigen Wert in x=0)
- $\chi_M: \mathbb{R} \to \mathbb{R}$ ist für $|\partial M| = 0$ messbar auf \mathbb{R} (dann ist χ auf int M, ext M stetig)

7. Integral

Integral für Treppenfunktionen 7.1.

Sei $h: \mathbb{R} \to \mathbb{R}$ messbare Treppenfunktion mit

$$h = \sum_{j=1}^{k} c_j \chi_{M_j}$$
, d.h. $c_j \in \mathbb{R}$, $M_j \subset \mathbb{R}$ messbar

Definition (integrierbar, Integral, Integralabbildung)

Sei $M \subset \mathbb{R}$ messbar.

h heißt integrierbar auf M, falls $|M_i \cap M| < \infty \ \forall j : c_i \neq 0$ und

$$\int_{M} h \, \mathrm{d} x := \int_{M} h(x) \, \mathrm{d} x := \sum_{j=1}^{k} c_{m} |M_{j} \cap M| \tag{1}$$

heißt (elementares) Integral von h auf M.

Menge der auf M integrierbaren Treppenfunktionen ist $T^1(M)$. $\int_M: T^1(M) \to \mathbb{R}$ mit $h \to \int_M h \, \mathrm{d} \, x$ ist die Integral-Abbildung.

Man verifiziert leicht

Folgerung 7.1

Sei $M \subset \mathbb{R}^n$ messbar. Dann gilt:

- a) (Linearität) Integralabbildung $\int_M : T^1(M) \to \mathbb{R}$ ist linear
- b) (Monotonie) Integral-Abbildung ist monoton auf $T^1(M)$,.d.h

$$h_1 \le h_2 \text{ auf } M \Rightarrow \int_M h_1 \, \mathrm{d} \, x \le \int_M h_2 \, \mathrm{d} \, x$$

- c) (Beschränktheit) Es ist $|\int_M h \, \mathrm{d}\, x| \le \int_M |h| \, \mathrm{d}\, x \ \forall h \in T^1(M)$ d) Für $h \in T^1(M)$ gilt:

$$\int_{M} |h| \, \mathrm{d} \, x = 0 \ \Leftrightarrow \ h = 0 \text{ f.\"{u}. auf } M$$

<u>Hinweis:</u> $\int_M |h| \, \mathrm{d} \, x$ ist Halbnorm auf dem Vektorraum $T^1(M)$.

7.2. Erweiterung auf messbare Funktionen

sinnvoll:

- Linearität und Monotonie erhalten
- eine gewisse Stetigkeit der Integral-Abbildung

$$h_k \to f$$
 in geeigneter Weise $\Rightarrow \int_M h_k \, \mathrm{d} \, x \to \int_m f \, \mathrm{d} \, x$ (2)

nach?? sollte man in (2) eine Folge von Treppenfunktionen $\{h_k\}$ mit $h_k(x) \to f(x)$ f.ü. auf M betrachten, aber es gibt zu viele konvergente Folgen für einen konsistenten Integralbegriff.

(4)

Formel (3)

unbekannt

■ Beispiel 7.2

Betrachte f = 0 auf \mathbb{R} , wähle beliebige Folge $\{\alpha_k\} \subset \mathbb{R}$, dazu eine Treppenfunktion

$$h_k(x) = \begin{cases} k \cdot \alpha_k & \text{auf } (0, \frac{1}{k}) \\ 0 & \text{sonst} \end{cases}$$

Offenbar konvergiert h_k gegen 0 f.ü. auf $\mathbb R$ und man hat $h_k \to 0$ f.ü. auf $\mathbb R$ und $\int_{\mathbb R} h_k \,\mathrm{d} x = \alpha_k$

- \Rightarrow je nach Wahl der Folge α_n liegt ganz unterschiedliches Konvergenzverhalten der Folge $\int_{\mathbb{R}} h_k \, dx$ vor
- ⇒ kein eindeutiger Grenzwert in (2) möglich
- \Rightarrow stärkerer Konvergenzbegriff in (2) nötig

Motivation:

- Nur monotone Folgen von Treppenfunktionen, oder
- Beschränktheit aus Folgerung 7.1 erhalten
- ⇒ jeweils gleiches Ergebnis, jedoch ist die 1. Variante technisch etwas aufwendiger

Beschränktheit aus Folgerung 7.1 c) bedeutet insbesondere

$$\left| \int_{M} h_k \, \mathrm{d} \, x - \int_{M} f \, \mathrm{d} \, x \right| = \left| \int_{M} h_k - f \, \mathrm{d} \, x \right| \le \int_{M} |h_k - f| \, \mathrm{d} \, x \quad \forall k$$

man definiert: $h_k \to f$ gdw. $\int_M |h_k - f| dx \to 0$

⇒ Integralabbildung stetig bezüglich dieser Konvergenz.

Wegen $\int_M |h_k - h_l| dx \le \int_m |h_k - f| dx + \int_M |h_l - f| dx$ müsste $\int_M |h_k - h_l| dx$ klein sein $\forall h, l$ groß.

7.3. Lebesgue-Integral

Definition (L^1 -Chauchy-Folge, Lebesgue-Integral)

Sei $M \subset \mathbb{R}^n$ messbar, Folge $\{h_k\}$ in $T^1(M)$ heißt L^1 -CAUCHY-Folge (kurz L1-CF), falls

$$\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : \int_M |h_k - h_l| \, \mathrm{d} \, x < \varepsilon \quad \forall h, l > k_0$$

Messbare Funktion $f: D \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ heißt <u>integrierbar</u> auf $M \subset D$, falls Folge von Treppenfunktionen $\{h_k\}$ in $T^1(M)$ existiert mit $\{h_k\}$ ist L1-CF auf M und $H_k \to f$ f.ü. auf M.

Für integrierbare Funktion f heißt eine solche Folge $\{h_k\}$ zugehörige L^1 -CF auf M.

Wegen

 $\left| \int_{M} h_k \, \mathrm{d} \, x - \int_{M} h_l \, \mathrm{d} \, x \right| = \left| \int_{M} (h_k - h_l) \, \mathrm{d} \, x \right| \stackrel{Folgerung}{\leq} \stackrel{7.1}{\leq} \int_{M} |h_k - h_l| \, \mathrm{d} \, x \tag{5}$

ist $\{\int_M h_k \, \mathrm{d} x\}$ CAUCHY-Folge in $\mathbb R$ und somit konvergent.

Der Grenzwert

$$\int_{m} f \, \mathrm{d} x := \int_{M} f(x) \, \mathrm{d} x := \lim_{k \to \infty} \int_{M} h_{k} \, \mathrm{d} x \tag{6}$$

heißt (Lebesgue)-Integral von f auf M.

Hinweis: Integrale unter dem Grenzwert in (6) sind elementare Integrale gemäß (1).

Sprechweise: f integrierbar auf M bedeutet stets $f:D\subset\mathbb{R}^n\to\overline{\mathbb{R}}$ messbar und $M\subset D$ messbar

Definition (Menge der integrierbaren Funktionen)

Menge der auf M integrierbaren Funktionen ist

$$L^{1}(M) := \{ f : M \subset \mathbb{R}^{n} \to \overline{\mathbb{R}} \mid f \text{ integierbar auf } M \}$$

▶ Bemerkung 7.3

- a) Integral in (6) kann als vorzeichenbehaftetes Volumen des Zylinders im \mathbb{R}^{n+1} unter (über) dem Graphen von f interpretiert werden.
- b) Sei $0 \le h_1 \le h_2 \le \ldots$ monotone Folge von integrierbaren Treppenfunktionen mit $h_k \to f$ f.ü. auf M und sei Folge $\{\int_M h_k \, \mathrm{d}\, x\}$ in $\mathbb R$ beschränkt \Rightarrow (6) gilt und monotone Folge $\{\int_m h_k \, \mathrm{d}\, x\}$ konvergiert in $\mathbb R$ (d.h. $\{h_k\}$ ist L^1 -CF zu f)
- c) $\{h_k\}$ aus Beispiel 7.2 ist nur dann L^1 -CF, falls $\alpha_k \to 0$.

Frage: Ist die Definition des Integrals in (6) unabhängig von der Wahl einer konkreten L^1 -CF $\{h_k\}$ zu f?

Satz 7.4

Definition des Integrals in (6) ist unabhängig von der speziellen Wahl einer L^1 -CF $\{h_k\}$ zu f.

Vgl. Integral $\int_M h \, dx$ einer Treppenfunktion gemäß (1) mit dem in (6):

Offenbar ist konstante Folge $\{h_k\}$ mit $h_k=h \; \forall k \; L^1\text{-CF}$ zu h

 $\xrightarrow{Satz} \xrightarrow{7.4} \text{Integral } \int_M h \, dx \text{ in (6) stimmt mit elementarem Integral in (1) überein.}$

Folgerung 7.5

Für eine Treppenfunktion stimmt das in (1) definierte elementare Integral mit dem in (6) definierte Integral überein. Insbesondere ist der vor (1) eingeführte Begriff integrierbar mit dem in (4) identisch

 \Rightarrow wichtige Identität (1) mit Treppenfunktion χ_M für $|M| < \infty$:

$$|M| = \int_M 1 \, \mathrm{d} \, x = \int_M \mathrm{d} \, x \quad \forall M \in \mathbb{R}, \ M \text{ messbar},$$

d.h. das Integral liefert Maß für messbare Mengen.

Beweis (Satz 7.4). beachte: alle Integrale im Beweis sind elementare Integrale gemäß (1).

• Sei $f: M \subset \mathbb{R} \to \overline{\mathbb{R}}$ integrierbar und seien $\{h_k\}$, $\{\tilde{h}_k\}$ zugehörigen L^1 -CF in $T^1(M)$. $\Rightarrow \forall \varepsilon > 0 \ \exists k_0 \ \text{mit}$

$$\int_{M} |(h_k + \tilde{h}_k) - (h_l + \tilde{h}_l)| \, \mathrm{d} \, x \le \int_{M} |h_k - h_l| + |\tilde{h}_k - \tilde{h}_l| \, \mathrm{d} \, x < \varepsilon \quad \forall k, l \ge k_0$$

 $\Rightarrow \{h_k - \tilde{h}_k\} \text{ ist } L^1\text{-CF mit } (h_k - \tilde{h}_k) \to 0 \text{ f.\"{u}. auf } M.$

Da $\{\int_M h_k \, \mathrm{d}\, x\}$, $\{\int_M \tilde{h}_k \, \mathrm{d}\, x\}$ in \mathbb{R} konvergieren, bleibt zu zeigen: $\{h_k\}$ ist L^1 -CF in $T^1(M)$ mit $h_k \to 0$ f.ü. auf M

$$\Rightarrow \int_{M} h_{k} \, \mathrm{d} \, x \xrightarrow{k \to \infty} 0 \tag{7}$$

Da Konvergenz von $\{\int_M h_k \, \mathrm{d}\, x\}$ bereits bekannt ist, reicht es, den Grenzwert für eine <u>Teilfolge</u> (TF) zu zeigen.

• Wähle TF derart, dass $\int_M |h_k - h_l| dx \le \frac{1}{2^l} \ \forall k \ge l$ Fixiere $l \in \mathbb{N}$ und definiere $M_l := \{x \in M \mid h_l(x) \ne 0\}$, offenbar ist M messbar mit $|M_l| < \infty$.

Sei nun $\varepsilon_l := \frac{1}{2^l \cdot |M_l|}$ falls $|M_l| > 0$ und $\varepsilon_l = 1$ falls $|M_l| = 0$. Weiterhin sei $M_{l,k} := \{x \in M_l \mid |h_k(x)| > \varepsilon_l\}$, und für k > l folgt

$$\begin{split} \left| \int_{M} h_{k} \, \mathrm{d} \, x \right| & \leq \int_{M} |h_{k}| \, \mathrm{d} \, x = \int_{M_{l}} |h_{k}| \, \mathrm{d} \, x + \int_{M \backslash M_{l}} |h_{k}| \, \mathrm{d} \, x \\ & \leq \int_{M \backslash M_{l,k}} |h_{k}| \, \mathrm{d} \, x + \int_{M_{l,k}} |h_{k}| \, \mathrm{d} \, x + \int_{M \backslash M_{l}} |h_{k} - h_{l}| \, \mathrm{d} \, x + \underbrace{\int_{M \backslash M_{l}} |h_{k} - h_{l}| \, \mathrm{d} \, x}_{=0} \\ & \leq \varepsilon_{l} |M_{l}| + \int_{M_{l,k}} |h_{k} - h_{l}| \, \mathrm{d} \, x + \int_{M_{l,k}} |h_{l}| \, \mathrm{d} \, x + \frac{1}{2^{l}} \\ & \leq \frac{1}{2^{l}} + \frac{1}{2^{l}} + c_{l} \cdot |M_{l,k}| + \frac{1}{2^{l}} \end{split}$$

 $\begin{array}{l} \text{mit } c_l := \sup_{x \in M} |h_l(x)|, \ \exists k_l > l \ \text{mit ?? folgt } |\{x \in M_l \mid |h_k(x)| > \varepsilon_l\}| \leq \frac{1}{2^l \cdot (c_l + 1)} \ \forall k > k_l \\ \Rightarrow \ \left| \int_M h_k \, \mathrm{d} \, x \right| \leq \frac{4}{2^l} \ \forall k > k_l \\ \xrightarrow[\text{beliebig}]{l \in \mathbb{N}} \int_M h_k \, \mathrm{d} \, x \to 0 \end{array}$

Satz 7.6 (Rechenregeln)

Seien f, g integrierbar auf $M \subset \mathbb{R}^n, c \in \mathbb{R}$. Dann

a) (Linearität) $f \pm g$, cf sind integrierbar auf M mit

$$\int_{M} f \pm g \, \mathrm{d} \, x = \int_{M} f \, \mathrm{d} \, x + \int_{M} g \, \mathrm{d} \, x$$
$$\int_{M} c f \, \mathrm{d} \, x = c \int_{M} f \, \mathrm{d} \, x$$

b) Sei $\tilde{M} \subset \mathbb{M}$ messbar

 $\Rightarrow \ f\chi_{\tilde{M}}$ ist integrierbar auf M und f ist integrierbar auf \tilde{M} mit

$$\int_{M} f \cdot \chi_{\tilde{M}} \, \mathrm{d} \, x = \int_{\tilde{M}} f \, \mathrm{d} \, x$$

c) Sei $M=M_1\cup M_2$ für $M_1,\,M_2$ disjunkt und messbar

 \Rightarrow f ist integrierbar auf M_1 und M_2 mit

$$\int_{M} f \, \mathrm{d} x = \int_{M_1} f \, \mathrm{d} x + \int_{M_2} f \, \mathrm{d} x$$

d) Sei $f = \tilde{f}$ f.ü. auf M

 $\Rightarrow \tilde{f}$ ist integrierbar auf M mit

$$\int_{M} f \, \mathrm{d} \, x = \int_{M} \tilde{f} \, \mathrm{d} \, x$$

e) Die Nullfortsetung $\tilde{f}:\mathbb{R}^n\to\overline{\mathbb{R}}$ von f (vgl. ??) ist auf jeder messbaren Menge $\tilde{M}\subset\mathbb{R}^n$

integrierbar mit

$$\int_{M\cap \tilde{M}} f \, \mathrm{d}\, x = \int_{\tilde{M}} \overline{f} \, \mathrm{d}\, x$$

Aussage d) bedeutet, dass eine Änderung der Funktionswerte von f auf einer Nullmenge das Integral nicht verändert.

Beweis. Seien $\{h_k\}$ und $\{\tilde{h}_k\}$ aus $T^1(\mathbb{R})^n$ L^1 -CF zu f und g.

zu a) Es ist $h_k + \tilde{h}_k \to f + g$ f.ü. auf M.

Wegen

$$\int_{M} |(h_k + \tilde{h}_k) - (h_l + \tilde{h}_l)| \, \mathrm{d} \, x \le \underbrace{\int_{M} |h_k - h_l| \, \mathrm{d} \, x}_{=L^1\text{-CF}, < \varepsilon} + \underbrace{\int_{M} |\tilde{h}_k - \tilde{h}_l| \, \mathrm{d} \, x}_{=L^1\text{-CF}, < \varepsilon}$$

ist $\{h_k + \tilde{h}_k\}$ L^1 -CF zu f + g.

 $\Rightarrow f + g$ ist integrierbar auf M und Grenzübergang in

$$\int_{M} h_k + \tilde{h}_k \, \mathrm{d} \, x = \int_{M} h_k \, \mathrm{d} \, x + \int_{M} \tilde{h}_k \, \mathrm{d} \, x$$

liefert die Behauptung für f + g.

Analog zu cf. Wegen f - g = f + (-g) folgt die letzte Behauptung.

zu b) Offenbar ist $\{\chi_{\tilde{m}h_k}\}$ L^1 -CF zu $\chi_{\tilde{M}}f$ und $\{h_k\}$ L^1 -CF zu f auf \tilde{M} . Mit

$$\int_{M} h_{k} \chi_{\tilde{M}} \, \mathrm{d} \, x = \int_{\tilde{M}} h_{k} \, \mathrm{d} \, x \quad \forall k \in \mathbb{N}$$

folgt die Behauptung durch Grenzübergang.

- zu c) Nach b) ist f auf M_1 und M_2 integrierbar. Wegen $f = \chi_{M_1} f + \chi_{M_2} f$ folgt die Behauptung aus a) und b).
- zu d) Da $\{h_k\}$ auch L^1 -CF zu \tilde{f} ist, folgt die Integrierbarkeit mit dem gleichen Integral.
- zu e) Es ist $\{\chi_{M\cap \tilde{M}}h_k\}$ L^1 -CF zu f auf $M\cap \tilde{M}$ und auch zu \overline{f} auf \tilde{M} . Damit folgt die Behauptung.

Satz 7.7 (Eigenschaften)

Es gilt

a) (Integierbarkeit) Für $f: M \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ messbar gilt:

f integrierbar auf $M \Leftrightarrow |f|$ integrierbar auf M

b) (Beschränktheit) Sei f integrierbar auf M, dann

$$\left| \int_{M} f \, \mathrm{d} \, x \right| \le \int_{M} |f| \, \mathrm{d} \, x$$

c) (Monotonie) Seien f, g integrierbar auf M. Dann

$$f \leq g$$
 f.ü. auf $M \Rightarrow \int_{M} f \, \mathrm{d} x \leq \int_{M} g \, \mathrm{d} x$

d) Sei f integrierbar auf M, dann

$$\int_{M} |f| \, \mathrm{d} \, x = 0 \iff f = 0 \text{ f.ü.}$$

In Analogie zur Treppenfunktion ist $||f||_1 := \int_M |f| dx$ auf $L^1(M)$ eine Halbnorm, aber keine Norm $(\|f\| = 0 \not\bowtie f = 0)$. $\|f\|_1$ heißt L^1 -Halbnorm von f.

Hinweis: Eine lineare Abbildung $A: X \to Y$ ist beschränkt, wenn $||Ax||_Y \le c||x||_X$ ⇒ Begriff der Beschränktheit in b).

Beweis.

zu a) Sei f integrierbar auf M und sei $\{h_k\}$ L^1 -CF zu f $\Rightarrow |h_k| \to |f|$ f.ü. auf M.

Wegen $\int_M ||h_k| - |h_l|| dx \stackrel{Folgerung}{\leq} \int_M |h_k - h_l| dx$ ist $\{|h_k|\} L^1$ -CF zu $|f| \Rightarrow |f|$ ist integrierbar.

 $\forall \alpha, \beta \in \mathbb{R}$

 $||\alpha| - |\beta|| \le$

beachte: andere Richtung später

zu b) Für eine L^1 -CF $\{h_k\}$ zu f gilt nach Folgerung 7.1 c):

$$\left| \int_{M} h_k \, \mathrm{d} \, x \right| \le \int_{M} |h_k| \, \mathrm{d} \, x$$

Da $\{|h_k|\}$ L¹-CF zu |f| ist, folgt die Behauptung durch Grenzübergang.

zu c) Nach den Rechenregeln ist g-f integrierbar, wegen |g-f|=g-f f.ü. auf M folgt

$$0 \le \left| \int_M g - f \, \mathrm{d} \, x \right| \stackrel{b)}{\le} \int_M |g - f| \, \mathrm{d} \, x \stackrel{Satz}{=} \stackrel{\textbf{7.6 a}}{=} \int_M g \, \mathrm{d} \, x - \int_M f \, \mathrm{d} \, x$$

⇒ Behauptung

zu a) für " \Leftarrow " wähle f^{\pm} ($f = f^+ - f^-$) jeweils eine monotone Folge von TF $\{h_k^{\pm}\}$ gemäß ??. Folglich liefert $H_k = h_k^+ - h_k^-$ eine Folge von TF mit $h_k \to f$ f.ü. auf M.

Wegen $|h_k| \leq |f|$ f.ü. auf M ist $\int_M |h_k| \, \mathrm{d} \, x \leq \int_M |f| \, \mathrm{d} \, x$. Folglich ist die monotone Folge $\int_M |h_k| \, \mathrm{d} \, x$ in $\mathbb R$ beschränkt

Da h_k^{\pm} jeweils das Vorzeichen wie f^{\pm} haben und die Folge monoton ist, gilt

$$||h_l| - |h_k|| = |h_l| - |h_k| = |h_l - h_k| \quad \forall l > k$$

und somit auch

$$\int_{M} |h_l - h_k| \, \mathrm{d} \, x = \int_{M} |h_l| - |h_k| \, \mathrm{d} \, x = \left| \int_{M} |h_l| \, \mathrm{d} \, x - \int_{M} |h_k| \, \mathrm{d} \, x \right| \quad \forall l > k$$

Als konvergente Folge ist $\{\int_M |h_k| dx\}$ CAUCHY-Folge in \mathbb{R} und folglich ist $\{h_k\}$ L^1 -CF und sogar L^1 -CF

 $\Rightarrow f$ integrierbar

zu d
) Für f=0 f.ü. auf M ist offenbar $\int_M |f|\,\mathrm{d}\,x=0.$

Sei nun $\int_M |f| dx = 0$, mit $M_k := \{x \in M \mid |f| \ge \frac{1}{k}\} \ \forall k \in \mathbb{N}$ ist

$$0 = \int_{M \backslash M_k} |f| \, \mathrm{d} \, x + \int_{M_k} |f| \, \mathrm{d} \, x \geq \int_{M \backslash M_k} 0 \, \mathrm{d} \, x + \int_{M_k} \frac{1}{k} \, \mathrm{d} \, x \geq \frac{1}{k} |M_k| \geq 0$$

 $\Rightarrow \ |M_k| = 0 \ \forall k,$ wegen $\{f \neq 0\} = \bigcup_{k \in \mathbb{N}} M_k$

$$\Rightarrow |\{f \neq 0\}| \le \sum_{k=1}^{\infty} |M_k| = 0$$

⇒ Behauptung

Folgerung 7.8

Sei f auf M integrierbar

a) Für $\alpha_1, \alpha_2 \in \mathbb{R}$ gilt:

$$\alpha_1 \leq f \leq \alpha_2$$
 f.ü. auf $M \Rightarrow \alpha_1 |M| \leq \int_M f \, \mathrm{d} \, x \leq \alpha_2 |M|$

b) Es gilt $f \geq 0$ f.ü. auf $M \implies \int_M f \, \mathrm{d}\, x \geq 0$

c) Es gilt:
$$\tilde{M} \subset M$$
 messbar, $f \geq 0$ f.ü. auf M $\Rightarrow \int_{\tilde{M}} f \, \mathrm{d} \, x \leq \int_{M} f \, \mathrm{d} \, x$

(linkes Integral nach Satz 7.6 b))

Beweis.

- zu a) Wegen $\int_M \alpha_j \, dx = \alpha_j |M|$ für |M| endlich folgt a) direkt aus der Monotonie des Integrals.
- zu b) folgt mit $\alpha_1 = 0$ aus a)
- zu c) folgt, da $\chi_{\tilde{M}} \cdot f \leq f$ f.ü. auf M und aus der Monotonie

In der Vorüberlegung zum Integral wurde eine gewisse Stetigkeit der Integralabbildung angestrebt. Das Integral ist bezüglich der L^1 -Halbnorm stetig.

Satz 7.9

Seien $f, f_k : D \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ integrierbar auf $M \subset \mathbb{R}^n$ und sei

$$\lim_{k \to \infty} \int_{M} |f_{k} - f| \, \mathrm{d} \, x = 0 \quad (\|f_{k} - f\| \to 0)$$

$$\Rightarrow \lim_{k \to \infty} \int_{M} f_{k} \, \mathrm{d} \, x = \int_{M} f \, \mathrm{d} \, x$$

Weiterhin gibt es eine Teilfolge $\{f_{k'}\}$ mit $f_{k'} \to f$ f.ü. auf M.

Beweis. Aus der Beschränktheit nach Satz 7.7 folgt

$$\left| \int_{M} f_{k} \, \mathrm{d} x - \int_{M} f \, \mathrm{d} x \right| \leq \int_{M} |f_{k} - f| \, \mathrm{d} x \xrightarrow{k \to 0} 0$$

 \Rightarrow 1. Konvergenzaussage

Wähle nun eine TF $\{f_{k_l}\}_l$ mit $\int_M |f_{k_l} - f| dx \le \frac{1}{2^{l+1}} \ \forall l \in \mathbb{N}$.

Für
$$\varepsilon > 0$$
 sei $M_{\varepsilon} := \{ x \in M \mid \limsup_{l \to \infty} |f_{k_l} - f| > \varepsilon \}$

$$\Rightarrow M_{\varepsilon} \subset \bigcup_{l=j}^{\infty} \{ |f_{k_{l}} - f| > \varepsilon \} \ \forall j \in \mathbb{N}$$

$$\Rightarrow M_{\varepsilon} \leq \sum_{l=j}^{\infty} |\{ f_{k_{l}} - f| > \varepsilon \} | \leq \frac{1}{\varepsilon} \sum_{l=j}^{\infty} \int_{M} |f_{k_{l}} - f| \, \mathrm{d} \, x \leq \frac{1}{\varepsilon} \sum_{l=j}^{\infty} \frac{1}{2^{l+1}} = \frac{1}{2^{j}\varepsilon} \quad \forall j \in \mathbb{N}$$

$$\Rightarrow M_{\varepsilon} = 0 \ \forall \varepsilon > 0$$

$$\Rightarrow \ f_{k_l} \xrightarrow{l \to \infty} f$$
f.ü. auf M

Satz 7.10 (Majorantenkriterium)

Seien $f, g: D \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ messbar, M messbar, $|f| \leq g$ f.ü. auf M, g integrierbar auf $M \Rightarrow f$ integrierbar auf M

Man nennt g auch integrierbare Majorante von f.

Lemma 7.11

Sei $f:D\subset\mathbb{R}^n\to\overline{\mathbb{R}}$ messbar auf M, sei $f\geq 0$ auf M und sei $\{h_k\}$ Folge von Treppenfunktionen mit

$$0 \le h_1 \le h_2 \le \ldots \le f$$
 und $\int_M h_k \, \mathrm{d} x$ beschränkt (8)

 $\Rightarrow \{h_k\}$ ist L^1 -CF zu f und falls $\{h_k\} \to f$ f.ü. auf M ist f integrierbar (vgl ??)

Beweis. Offenbar sind alle h_k integrierbar und wegen der Monotonie gilt

$$\left| \int_{M} h_k \, \mathrm{d} \, x - \int_{M} h_l \, \mathrm{d} \, x \right| = \int_{M} |h_k - h_l| \, \mathrm{d} \, x \quad \forall k \ge l$$

Da $\{\int_M h_k \, \mathrm{d}\, x\}$ konvergent ist in $\mathbb R$ als monoton beschränkte Folge ist diese CF in $\mathbb R$ \Rightarrow $\{h_k\}$ ist L^1 -CF

Falls noch $h_k \to f$ f.ü. $\Rightarrow \{h_k\}$ ist L^1 -CF zu $f \Rightarrow f$ ist integrierbar

Beweis (Satz 7.10). (mit f auch |f| mesbbar nach ??)

Es existiert eine Folge $\{h_k\}$ von Treppenfunktionen mit

$$0 \le h_1 \le h_2 \le \ldots \le |f| \le g$$

auf M und $\{h_k\} \to |f|$ f.ü. auf M.

Da $\{\int_M h_k \, \mathrm{d}\, x\}$ beschränkt ist in $\mathbb R$ da g integrierbar ist $\xrightarrow{\text{Lemma 7.11}}$ $\{h_k\}$ ist $L^1\text{-Cf zu }|f|$

 $\Rightarrow |f|$ integrierbar $\xrightarrow{\text{Satz 7.7}} f \text{ integrierbar auf } M$

Folgerung 7.12

Seien $f, g: M \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ messbar, |M| endlich. Dann

- a) Falls f beschränkt ist auf M, dann ist f integrierbar auf M
- b) Sei f beschränkt und g integrierbar auf M $\Rightarrow f \cdot g$ ist integrierbar auf M

Hinweis: Folglich sind stetige Funktionen auf kompaktem M integrierbar (vgl. Theorem von Weierstraß)

Beweis. Sei $|f| \leq \alpha$ auf M für $\alpha \in \mathbb{Q}$

zu a) \Rightarrow konstante Funktion $f_1 = \alpha$ ist integrierbare Majorante von |f|

zu b) Mit $f_2 = \alpha \cdot |g|$ ist f_2 integrierbare Majorante zu $|f \cdot g|$ $\xrightarrow{\text{Majoranten-kriterium}}$ Behauptung

7.4. Grenzwertsätze

 $\int_M f_k dx \xrightarrow{?} \int_M f dx$ Vertauschbarkeit von Integration und Grenzübergang ist zentrale Frage \to grundlegende Grenzwertsätze $\int_M |f_k - f| dx \to 0$

Theorem 7.13 (Lemma von Fatou)

Seien $f_k: D \subset \mathbb{R}^n \to [0, \infty]$ integrierbar auf $M \subset D \ \forall k \in \mathbb{N}$ $\Rightarrow f(x) := \liminf f_k(x) \ \forall x \in M$ ist integrierbar auf M und

$$\left(\int_{M} f \, \mathrm{d} x = \right) \int_{M} \liminf_{k \to \infty} f_{k} \, \mathrm{d} x \le \liminf_{k \to \infty} \int_{M} f_{k} \, \mathrm{d} x,$$

falls der Grenzwert rechts existiert.

Keine Gleichheit hat man z.B. für $\{h_k\}$ aus Beispiel 7.2 mit $\alpha_k = 1 \ \forall k$

$$h_k = \begin{cases} h \cdot \alpha_k & x \in \left[0, \frac{1}{k}\right] \\ 0 & \text{sonst} \end{cases}$$

Dann

$$\int_{M} \liminf_{k \to \infty} h_k \, \mathrm{d} \, x = \int_{M} 0 \, \mathrm{d} \, x = 0 < \liminf_{k \to \infty} \int_{\mathbb{R}} h_k \, \mathrm{d} \, x = 1$$

Beweis. Auf M ist $0 \le g_k := \inf_{l > k} f_l \le f_j \ \forall j \ge k, \ k \in \mathbb{N}, \ g_1 \le g_2 \le \dots \text{ und } \lim_{k \to \infty} g_k = \liminf_{k \to \infty} f_k = f_k = f_k$

Alle g_k sind messbar nach ??, Satz 7.10

Für jedes $k \in \mathbb{N}$ wählen wir gemäß ?? eine Folge $\{h_{k_l}\}_l$ von Treppenfunktionen mit $0 \le h_{k_1} \le h_{k_2} \le \ldots \le g_k$, $h_{k_l} \xrightarrow{l \to \infty} g_k$ f.ü. auf M.

Nach Lemma 7.11 ist $\{h_{k_l}\}_l$ L^1 -CF zu g_k .

Anwendung von ?? auf $g_k - f$ auf $B_k(0) \cap M$

 $\Rightarrow \exists A'_k \subset \mathbb{R}^n \text{ messbar mit } |A'_k| \leq \frac{1}{2^{k+1}} \text{ und (ggf. TF) } |g_k - f| < \frac{1}{k} \text{ auf } (B_k(0) \cap M) \setminus A'_K$

Analog für Folge $h_{k_l} \xrightarrow{l \to \infty} g_k : \exists A_K'' \subset \mathbb{R}^k \text{ mit } |A_k''| < \frac{1}{2^{k+1}} \text{ und (evtl. TF) } |h_{k_l} - g_k| < \frac{1}{k} \text{ auf } (B_k(0) \cap M) \setminus A_k''$

Setzte $A_k = A'_k \cup A''_k$, offenbar $|A_k| < \frac{1}{2k}$, $h_k := h_{k_k}$

Definiere rekursiv
$$\tilde{h}_1 := h_1$$
, $\tilde{h}_k := \max(\tilde{h}_{k-1}, h_k)$
 $\Rightarrow h_k \leq \tilde{h}_k \leq g_k \leq f_k \text{ und } \tilde{h}_{k-1} \leq \tilde{h}_k \ \forall k \in \mathbb{N}$
 $\Rightarrow |\tilde{h}_k - f| \leq |\tilde{h}_k - g_k| + |g_k - f| \leq |h_k - g_k| + |g_k - f| \leq \frac{2}{k} \text{ auf } (B_k(0) \cap M) \setminus A_k.$

Mit $\tilde{A}_l := \bigcup_{k=l}^{\infty} A_k$ folgt $|\tilde{A}_l| \leq \frac{1}{2^{l-1}}$ und $|\tilde{h}_k - f| \leq \frac{2}{k}$ auf $(B_k(0) \cap M) \setminus \tilde{A}_l \ \forall k > l$.

Folglich
$$\tilde{h}_l \to f$$
 f.ü. auf M und wegen der Monotonie ist $\{\tilde{h}_k\}$ L^1 -CF zu $f \Rightarrow \int_M f \, \mathrm{d} \, x \stackrel{\mathrm{Def}}{=} \lim_{k \to \infty} \int_M \tilde{h}_k \, \mathrm{d} \, x \stackrel{\mathrm{Monotonie}}{\leq} \liminf_{k \to \infty} \int_M f_k \, \mathrm{d} \, x$

Theorem 7.14 (Monotone Konvergenz)

Seien $f_k: D \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ integrierbar auf $M \subset D \ \forall k \in \mathbb{N}$ mit $f_1 \leq f_2 \leq \ldots$ f.ü. auf M $\Rightarrow f$ ist integrierbar auf M und

$$\left(\int_{M} f \, \mathrm{d} x = \right) \int_{M} \lim_{k \to \infty} f_{k}(x) \, \mathrm{d} x = \lim_{k \to \infty} \int_{M} f_{k} \, \mathrm{d} x$$

falls der rechte Grenzwert existiert.

▶ Bemerkung 7.15

Theorem 7.14 bleibt richtig, falls man $f_1 \geq f_2 \geq \dots$ f.ü. auf M hat.

Ferner ist wegen der Monotonie die Beschränktheit der Folge $\{\int_M f_k \, \mathrm{d}\, x\}$ für die Existenz des Grenzwertes ausreichend.

Beweis (Theorem 7.14). Nach Theorem 7.13 ist $f - f_1 = \lim_{k \to \infty} f_k - f_1$ integrierbar auf M und damit auch $f = (f - f_1) + f_1$

$$\Rightarrow \int_{M} f - f_{1} dx \leq \lim_{k \to \infty} \int_{M} f_{k} - f_{1} dx$$

$$= \lim_{k \to \infty} \int_{M} f_{k} dx - \int_{M} f_{1} dx \stackrel{\text{Monotonie}}{\leq} \int_{M} f dx - \int_{M} f_{1} dx$$

$$= \int_{M} f - f_{1} dx$$

Theorem 7.16 (Majorisierte Konvergenz)

Seien f_k , $g: D \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ messbar für $k \in \mathbb{N}$ und sei g integrierbar auf $M \subset D$ mit $|f_k| \leq g$ f.ü. auf $M \ \forall k \in \mathbb{N}$ und $f_k \to f$ f.ü. auf $f_k \to f$ f.ü.

$$\Rightarrow \lim_{k \to \infty} \int_{M} |f_k - f| \, \mathrm{d} \, x = 0 \tag{9}$$

und

$$\left(\int_{M} f \, \mathrm{d} x = \right) \int_{M} \lim_{k \to \infty} f_{k} \, \mathrm{d} x = \lim_{k \to \infty} \int_{M} f_{k} \, \mathrm{d} x,$$

wobei alle Integrale existieren.

Beweis. Nach dem Majorantenkriterium sind alle f_k f.ü. integrierbar auf M.

Nach Theorem 7.13 gilt:

$$\int_M 2g \,\mathrm{d}\, x = \int_M \liminf_{k \to \infty} |2g - |f_k - f|| \,\mathrm{d}\, x \le \liminf_{k \to \infty} \int_M 2g - |f_k - f| \,\mathrm{d}\, x$$

$$\Rightarrow 0 = \liminf_{k \to \infty} -\int_M |f_k - f| \, \mathrm{d} \, x \Rightarrow (9) \xrightarrow{\text{Satz 7.9}} \text{Behauptung}$$

Folgerung 7.17

Seien $f_k: D \subset \mathbb{R}^n \to \overline{\mathbb{R}}$ integrierbar auf $M \ \forall k \in \mathbb{N}$. Sei $|M| < \infty$ und konvergieren die $f_k \to f$ gleichmäßig auf M

 $\Rightarrow f$ ist integrierbar auf M und $\int_M f \, dx = \lim_{k \to \infty} \int_M f_k \, dx$

Beweis. $\exists k_0 \in \mathbb{N} \text{ mit } |f_k(x)| \leq |f_{k_0}(x) + 1| \ \forall x \in \mathbb{M}, \ k > k_0.$

Da $f_{k_0} + 1$ integrierbar auf M folgt die Behauptung aus Theorem 7.16.

Theorem 7.18 (Mittelwertsatz der Integralrechnung)

Sei $M \subset \mathbb{R}^n$ kompaket und zusammenhängend, und sei $f: M \to \mathbb{R}$ stetig

$$\Rightarrow \ \exists \xi \in M : \int_M f \, \mathrm{d} \, x = f(\xi) \cdot |M|$$

Beweis. Aussage klar für |M| = 0, deshalb wähle |M| > 0.

Da f stetig auf M kompakt

7.5. Parameterabhängige Integrale

Sei $M \subset \mathbb{R}^n$ messbar, $P \subset \mathbb{R}^n$ eine Menge von Parametern und sei $f: M \times P \to \mathbb{R}$.

Betrachte parameterabhängige Funktion

$$F(p) := \int_{M} f(x, p) \, \mathrm{d} x \tag{10}$$

Satz 7.19 (Stetigkeit)

Seien $M\subset\mathbb{R}^n$ messbar, $P\subset\mathbb{R}^n$ und $f:M\times P\to\mathbb{R}$ eine Funktion mit

- $f(\cdot, p)$ messbar $\forall p \in P$
- $f(x, \cdot)$ stetig für fast alle (fa.) $x \in M$

Weiterhin gebe es integrierbare Funktion $g: M \to \mathbb{R}$ mit

- $|f(x,p)| \le g(x)$ für fa. $x \in M$
- \Rightarrow Integrale in (10) existieren $\forall p \in P$ und F ist stetig auf P.

Beweis. $f(\cdot, p)$ ist integrierbar auf $M \ \forall p \in P$ nach Satz 7.10.

Fixiere p und $\{p_k\}$ in P mit $p_k \to p$.

Setzte $f_k(x) := f(x, p_k)$

Stetigkeit von $f(x, \cdot)$ liefert $f_k(x) = f(x, p_k) \xrightarrow{x \to \infty} f(x, p)$ für fa. $x \in M$.

 $\xrightarrow{\text{Theorem 7.16}} F(p_k) = \int_M f_k(x) \, \mathrm{d} \, x \to \int_M f(x, p) \, \mathrm{d} \, x = F(p)$ $\xrightarrow{p \in P} \text{ Behauptung}$

Satz 7.20 (Differenzierbarkeit)

Seien $M \subset \mathbb{R}^n$ messbar, $P \subset \mathbb{R}^m$ offen und $f: M \times P \to \mathbb{R}$ mit $f(\cdot, p)$ integrierbar auf $M \ \forall p \in P$. und

• $f(x, \cdot)$ stetig diffbar auf P für fa. $x \in M$

Weiterhin gebe es eine integrierbare Funktion $g: M \to \mathbb{R}$ mit

- $|f_P(x,p)| \leq g(x)$ für fa. $x \in M$ und $\forall p \in P$
- $\Rightarrow F$ aus (10) ist diffbar auf P mit

$$F'(p) = \int_{M} f_p(x, p) \, \mathrm{d} x \tag{11}$$

<u>Hinweis:</u> Das Integral in (11) ist komponentenweise zu verstehen und liefert für jedes $p \in P$ einen Wert im \mathbb{R}^m .

Betrachtet man für $p = (p_1, \dots, p_m) \in \mathbb{R}^n$ nur p_j als Parameter und fixiert andere p_i , dann liefert (11) die partielle ABleitung $F_{p_j}(p) = \int_m f_{p_j}(x, p) dx$ für $j = 1, \dots, m$.

Beweis. Königsberger: Analysis 2 (Abschnitt 8.4)

7.6. Riemann-Integral

Der klassische Integralbegriff hat konzeptionelle Bedeutung (Einführung etwas einfacher, keine messbaren Mengen und Funktionen)

⇒ weniger Leistungsfähig (Anwendung nur in speziellen Situationen)

ebenfalls: Approximation von der zu integrierenden Funktion f durch geeignete Treppenfunktionen

Sei $f:Q\subset\mathbb{R}^n\to\mathbb{R}$ mit $Q\in\mathcal{Q}$ eine beschränkte Funktion. Betrachte die Menge der Treppenfunktionen $T_{\mathcal{Q}}(Q)$, der Form

$$h = \sum_{j=1}^{l} c_j \chi_{Q_j} \quad \text{mit} \quad \bigcup_{j=1}^{l} Q_j = Q,$$

 $Q_j \in \mathcal{Q}$ paarweise disjunkt, $c_j \in \mathbb{R}$.

Quader $\{Q_j\}_{j=1,...,l}$ werden als Zerlegung zugehörig zu h bezeichnet.

Definition (Feinheit, Riemann-Summe, Riemann-Folge)

Für Quader $Q' = F'_1 \times \ldots \times F'_n \in \mathcal{Q}$ mit Intervallen $F_j \subset \mathbb{R}$ heißt $\sigma_{Q'} := \max_j |I'_j|$ ($|I'_j|$ - Intervallänge) Feinheit von Q' (setzte $\sigma_{\emptyset} = 0$).

Für $h = \sum_{j=1}^{l} c_j \chi_{Q_j}$ heißt $\sigma_h := \max \sigma_{Q_j}$ Feinheit zur <u>Treppenfunktion</u> h.

Treppenfunktion $h = \sum_{j=1}^{l} c_j \chi_{Q_j} \in T_{\mathcal{Q}}(Q)$ heißt <u>zulässig</u> (RIEMANN-zulässsig) für f falls $\forall j \exists x_j \in Q_j : c_j = f(x_j)$, d.h. auf jedem Quader Q_j stimmt h mit f in (mindestens) einem Punkt x_j überein.

Zu zulässigen h nennen wir $S(h) := \sum_{j=1}^l c_j |Q_j| = \sum_{j=1}^l f(x_j) \cdot |Q_j|$ RIEMANN-Summe zu h.

Folge $\{h_k\}$ zulässiger Treppenfunktionen zu f, deren Feinheit gegen Null geht (d.h. $\sigma_{h_k} \to 0$) heißt RIEMANN-Folge zu f.

f heißt RIEMANN-integrierbar (kurz R-integrierbar) auf Q, falls $S \in \mathbb{R}$ existiert mit

$$S = \lim_{k \to \infty} S(h_k) \tag{12}$$

für alle RIEMANN-Folgen $\{h_k\}$ zu f.

Grenzwert $\int_{O} f(x) dx := S$ heißt RIEMANN-Integral (kurz R-Integral) von f auf Q.

Satz 7.21

Sei $f: Q \subset \mathbb{R}^n \to \mathbb{R}$ stetig und $Q \in \mathcal{Q}$ abgeschlossen $\Rightarrow f$ ist (Lebesgue) integrierbar und Riemann-Integrierbar auf Q mit $R-\int_{\mathcal{Q}} f \, dx = \int_{\mathcal{Q}} f \, dx$.

▶ Bemerkung 7.22

Sei $f: Q \subset \mathbb{R}^n \to \mathbb{R}$ beschränkt und es sei $N:=\{x \in Q \mid f \text{ nicht stetig in } x\}.$

Dann kann man zeigen: f ist RIEMANN-Integrierbar, wenn n Nullmenge ist.

f ist R-integrierbar $\Leftrightarrow N$ ist Nullmenge.

Man sieht leicht: die DIRICHLET-Funktion (??) ist auf [0,1] nicht R-integrierbar, da die Treppenfunktionen $h_0 = 0$ und $h_1 = 1$ auf [0,1] mit belieb feiner Zerlegung $\{Q_j\}$ jeweils stets zulässig sind, sich jedoch in der RIEMANN-Summe 0 bzw. 1 unterscheiden. (Die DIRICHLET-Funktion ist jedoch L-integrierbar)

Beweis (Satz 7.21). Als stetige Funktion ist f auf Q messbar und beschränkt und somit L-integrierbar.

Fixiere $\varepsilon > 0$ und sei $h = \sum_{j=1}^{l_k} f(x_{k_j}) \chi_{Q_j}$ RIEMANN-Folge von Treppenfunktionen zu f.

Für |Q| = 0 folgt die Behauptung leicht, da $S(h_k) = 0 \ \forall k \in \mathbb{N}$

Sei nun |Q| > 0. Da f auf kompakter Menge Q gleichmäßig stetig ist, existiert $\delta > 0$ mit $|f(x) - f(\tilde{x})| < \frac{\varepsilon}{|Q|}$ falls $|x - \tilde{x}| < \delta$.

Da $\sigma_{h_k} \to 0 \; \exists k_0 \in \mathbb{N} : \sigma_{h_k} < \frac{\delta}{\sqrt{n}} \; \forall k \geq k_0$

$$\Rightarrow |x - \tilde{x}| < \delta \ \forall x, \tilde{x} \in Q_{k_j} \text{ falls } k \ge k_0 \text{ und } |f(x) - f(x_j)| < \frac{\varepsilon}{|Q|} \ \forall x \in Q_{k_j} \text{ mit } k \ge k_0$$

$$\Rightarrow \left| \int_{Q} f \, \mathrm{d} \, x - \int_{Q} h_{k} \, \mathrm{d} \, x \right| \leq \int_{Q} |f - h_{k}| \, \mathrm{d} \, x \leq \frac{\varepsilon}{|Q|} \cdot |Q| = \varepsilon \, \, \forall k \geq k_{0}$$

Da $S(h_k) = \int_{\mathcal{O}} h_k \, dx$ und $\varepsilon > 0$ beliebig folgt $S(h_k) \to \int_{\mathcal{O}} f \, dx$.

Für jede RIEMANN-Folge $\{h_k\}$ zu f ist f R-integrierbar und Behauptung folgt.

8. Integration auf \mathbb{R}

8.1. Integrale konkret ausrechnen

Theorem 8.1 (Hauptsatz der Differential- und Integralrechnung)

Sei $f: I \to \mathbb{R}$ stetig und integrierbar auf Intervall $I \subset \mathbb{R}$ und sei $x_0 \in I$. Dann

- a) $\tilde{F}: I \to \mathbb{R}$ mit $\tilde{F}(x) := \int_{x_0}^x f(y) \, \mathrm{d} y \, \forall x \in I$ ist Stammfunktion von f auf I.
- b) Für jede Stammfunktion $F: I \to \mathbb{R}$ auf F gilt:

$$F(b) - F(a) = \int_a^b f(x) dx \quad \forall a, b \in I$$

Beweis.

a Fixiere $x \in I$. Dann gilt für $t \neq 0$

$$\frac{\tilde{F}(x+t)-\tilde{F}(x)}{t}=\frac{1}{t}\left(\int_{x_0}^{x+t}f\,\mathrm{d}\,y-\int_{x_0}^xf\,\mathrm{d}\,y\right)=\frac{1}{t}\int_x^{x+t}f\,\mathrm{d}\,y=:\varphi(t),$$

wobei nach alle Integrale existieren. Mit Mittelwertsatz der Integralrechnung:

- $\Rightarrow \forall t \neq 0 \ \exists \xi_t \in [x,x+t] \ (\text{bzw.} \ [x+t,x] \ \text{für} \ t < 0) \colon \varphi(t) = \tfrac{1}{|t|} f(\xi) |t| = f(\xi_t)$
- $\Rightarrow \tilde{F}'(x) = \lim_{t \to 0} \varphi(t) = f(x) \Rightarrow \text{Behauptung}$

b Für eine beliebige Stammfunktion F von f gilt: $F(x) = \tilde{F}(x) + c$ für ein $c \in \mathbb{R} \Rightarrow F(b) - F(a) = \tilde{F}(b) - \tilde{F}(a) = \int_{x_0}^b f dx - \int_{x_0}^a f dx = \int_a^b f dx$

Satz 8.2 (Differenz von Funktionswerten)

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$, D offen, f stetig diffbar, $[x, y] \subset D$. Dann

$$f(y) - f(x) = \int_0^1 f'(x + t(y - x)) \cdot (y - x) dt = \int_0^1 f(x + t(y - x)) dt (y - x)$$

Beweis. Sei $f = (f_1, \ldots, f_n), \varphi_k : [0, 1] \to \mathbb{R}$ mit $\varphi_k(t) := f_K(x + t(y - x))$

- $\Rightarrow \varphi_t$ ist diffbar auf [0,1] mit $\varphi'_k(t) = f'(x+t(y-x))\cdot (y-x)$
- $\Rightarrow f_k(y) f_k(x) = \varphi_k(1) \varphi_k(0) = \int_0^1 \varphi_k'(t) dt \Rightarrow \text{Behauptung}$

8.2. Uneigentliche Integrale

Satz 8.3

Sei $f:[a,b]\to\mathbb{R}$ stetig für $a,b\in\mathbb{R}$. Dann

$$f$$
 integrier auf $(a,b]$ $\Leftrightarrow \lim_{\substack{x\downarrow a \ x\neq a}} \int_a^b |f| \, \mathrm{d} \, x$ existient

Beweis. Hinrichtung: Majorisierte Konvergenz, Rückrichtung: Majorisierte Konvergenz

9. Satz von Fubini und Mehrfachintegrale

Ziel: Reduktion der Berechnung von Integralen auf \mathbb{R}^n $\int_{\mathbb{R}^n} f \, dx$ auf Integrale über \mathbb{R} .

Betrachte Integrale auf $X \times Y$ mit $X = \mathbb{R}^p$, $Y = \mathbb{R}^q$, $(x, y) \in X \times Y$. $|M|_X$ Maß auf X, \mathcal{Q}_X Quader in X usw.

Theorem 9.1 (Fubini)

Sei $f: X \times Y \to \mathbb{R}$ integrierbar auf $X \times Y$. Dann

- a) Für Nullmenge $N \subset Y$ ist $x \to f(x,y)$ integrierbar auf $X \ \forall y \in Y \setminus N$
- b) Jedes $F: Y \to \mathbb{R}$ mit $F(y) := \int_X f(x,y) \, \mathrm{d} x \, \forall y \in Y \setminus N$ ist integrierbar auf Y und

$$\int_{X \times Y} f(x, y) \, \mathrm{d}(x, y) = \int_{Y} F(y) \, \mathrm{d}y = \int_{Y} \left(\int_{X} f(x, y) \, \mathrm{d}x \right) \, \mathrm{d}y \tag{1}$$

Definition (iteriertes Integral, Mehrfachintegral)

Rechte Seite in (1) heißt iteriertes Integral bzw. Mehrfachintegral .

▶ Bemerkung 9.2

Analoge Aussage gilt bei Vertauschungen von X und Y mit

$$\int_{X \times Y} f(x, y) \, \mathrm{d}(x, y) = \int_{X} \int_{Y} f(x, y) \, \mathrm{d} y \, \mathrm{d} x \tag{2}$$

Theorem 9.1 mit $f = \chi_N$ für Nullmenge $N \subset X \times Y$ liefert Beschreibung von Nullmengen in $X \times Y$.

Folgerung 9.3

Sei $N \subset X \times Y$ Nullmenge und $N_Y := \{x \in X \mid (x, y) \in N\}$ $\Rightarrow \exists$ Nullmenge $\tilde{N} \subset Y$ mit $|N_Y|_X = 0 \ \forall y \in Y \setminus \tilde{N}$

Hinweis: $\tilde{N} \neq \emptyset$ tritt z.B. auch auf für $N = \mathbb{R} \times \mathbb{Q} \subset \mathbb{R} \times \mathbb{R}$ $(\tilde{N} = \mathbb{Q})$

Beweis (Theorem 9.1, Folgerung 9.3).

- a) Zeige: Theorem 9.1 gilt für $f=\chi_M$ mit $M\subset X\times Y$ messbar, $|M|_{X\times Y}<\infty$
 - $\exists Q_{k_j} \in \mathcal{Q}_{X \times Y}$, paarweise disjunkt für festes k mit $M \subset \bigcup_{j \in \mathbb{N}} Q_{k_j} =: R_k$

$$|M| \le \sum_{j=1}^{\infty} |Q_{k_j}| \le |M| + \frac{1}{k}, R_{k+1} \subset R_k$$
 (3)

- Wähle $Q'_{k_j} \in \mathcal{Q}_X, \, Q''_{k_j} \in \mathcal{Q}_Y$ mit $Q_{k_j} = Q'_{k_j} \times Q''_{k_j} \, \forall k, j \in \mathbb{N}$
- Mit $M_Y := \{x \in X \mid (x,y) \in M\}$ gilt:

$$|M_Y|_X \le \sum_{j=1}^{\infty} |Q'_{k_j}|_X \cdot \chi_{Q''_{k_j}}(y) =: \psi_k(y) \in [0, \infty] \quad \forall y \in Y$$
 (4)

• Für festes k ist $y \to \psi_{k_l}(y) := \sum_{j=1}^l |Q'_{k_j}|_X \cdot \chi_{Q_{k_j}}(y)$ monoton wachense Folge und Treppenfuntion in $T^1(Y)$ mit $\psi_k(y) = \lim_{l \to \infty} \psi_{k_l}(y)$

$$\Rightarrow \int_{Y} \psi_{k_{l}}(y) \, \mathrm{d}y = \sum_{i=1}^{l} |Q'_{k_{j}}|_{X} \cdot |Q''_{k_{j}}|_{Y} = \sum_{i=1}^{l} |Q_{k_{j}}|_{X \times Y} \stackrel{(3)}{\leq} |M| + \frac{1}{k}$$

• Nach Lemma 7.11 ist $\{\psi_{k_l}\}_l$ L¹-CF zu ψ_k und ψ_k ist integrierbar auf Y mit

$$|M| \stackrel{(3)}{\leq} \int_{Y} \psi_k \, \mathrm{d} \, y = \sum_{i=1}^{\infty} |Q_{k_j}|_{X \times Y} \stackrel{(3)}{\leq} |M| + \frac{1}{k}$$
 (5)

- Da $\{\psi_k\}$ monoton fallend (wegen $R_{k+1} \subset R_k$), existiert $\psi(y) = \lim_{k \to \infty} \psi_k(y) \ge 0 \ \forall y \in Y$.
- Grenzwert (5) mittels majorisierter Konvergenz liefert

$$|M| = \int_{V} \psi \, \mathrm{d} y \tag{6}$$

- Falls |M| = 0, folgt $\psi(y) = 0$ f.ü. auf Y
 - \Rightarrow Folgerung 9.3 bewiesen.
- $\{\chi_{R_k}\}$ monoton fallend mit $\psi_{R_k} \to \chi_M$ f.ü. auf $X \times Y$ und χ_{R_k} integrierbar auf $X \times Y$ $\Rightarrow \{\chi_{R_k}\}$ ist L^1 -CF zu χ_M und

$$\int_{X\times Y} \psi_{R_k} \, \mathrm{d}(x,y) \to \int_{X\times Y} \chi_M \, \mathrm{d}(x,y).$$

• Nach Folgerung 9.3 existiert Nullmenge $\tilde{N} \subset Y$ mit $\chi_{R_k}(\,\cdot\,,y) \to \chi_M(\,\cdot\,,y)$ f.ü. auf $X \,\,\forall y \in Y \,\,\backslash\, \tilde{N}$ $\xrightarrow{(3),(4)} \quad \chi_{R_k}(\,\cdot\,,y) \text{ integrierbar auf } X \,\,\forall k \in \mathbb{N}, \, y \in Y \,\,\backslash\, \tilde{N}$ $\xrightarrow{\text{majorisierte}} \quad \chi_M(\,\cdot\,,y) \text{ integrierbar auf } X \,\,\forall y \in Y \,\,\backslash\, \tilde{N} \text{ mit}$

$$\psi(y) = \int_X \chi_{R_k}(x, y) \, \mathrm{d}\, x \to \int_X \chi_M(x, y) \, \mathrm{d}\, y$$

für fa. $y \in Y$

$$\stackrel{\textbf{(6)}}{\Longrightarrow} \int_{X\times Y} \chi_M(x,y) \, \mathrm{d}(x,y) = |M| = \int_Y \left(\int_X \chi_m(x,y) \, \mathrm{d}\, x \right) \, \mathrm{d}\, y$$

- D.h. Behauptung für $f = \chi_M$ $\xrightarrow{\text{Linearität} \atop \text{des Integrals}} \text{Behauptung richtig für alle Treppenfunktionen}$
- b) Sei $f \geq 0$ integrierbar auf $X \times Y$

Wähle zu f monotone Folge von Treppenfunktionen $\{h_k\}$ gemäß ??

$$\Rightarrow \int_{X \times Y} h_k(x, y) \, \mathrm{d}(x, y) \stackrel{\mathrm{a}}{=} \int_Y \left(\int_X h_k \, \mathrm{d} \, x \right) \, \mathrm{d} \, y$$

Analog zu a) folgt: $h_k(\,\cdot\,,y) \to f(\,\cdot\,,y)$ f.ü. auf X für fa. $y \in Y$

 $\frac{\text{Majorisierte}}{\text{Konvergenz}} \rightarrow \text{Behauptung für } f.$

Allgemein: Zerlege $f = -f^- + f^+$ und argumentiere für f^\pm separat.

Satz 9.4 (Satz von Tonelli)

Sei $f: X \times Y \to \mathbb{R}$ messbar. Dann

$$f \text{ integrierbar } \Leftrightarrow \int_Y \left(\int_X |f(x,y)| \, \mathrm{d} \, x \right) \, \mathrm{d} \, y \quad \text{oder} \quad \int_X \left(\int_Y |f(x,y)| \, \mathrm{d} \, y \right) \, \mathrm{d} \, x$$
 (7)

existiert.

- ▶ Bemerkung 9.5
 - a) Falls eines der iterierten Integrale (7) mit |f| existieren, dann gelte (1), (2)
 - b) Existiert z.B. $\int_Y \left(\int_X |f| \, \mathrm{d} x \right) \, \mathrm{d} y$ heißt dies: \exists Nullmenge $\tilde{N} \subset Y$ mit

$$F(y) := \int_X |f(x,y)| \, \mathrm{d} \, x \quad \forall y \in Y \setminus \tilde{N}$$

und mit $F(y) := 0 \ \forall y \in \tilde{N}$ ist F integrierbar auf Y

Beweis.

", \Rightarrow " Mit f auch |f| integrierbar und die Behauptung folgt aus Theorem 9.1

"
—" Sei
$$W_k:=(-k,k)^{p+q}\subset X\times Y$$
 Würfel, $f_k:=\in\{|f|,k\cdot\chi_{W_k}\}$

 $\Rightarrow f$ ist integrierbar auf $X \times Y$

Offenbar sind die $\{f_k\}$ wachsend, $f_k \to |f|$ f.ü. auf $X \times Y$. Falls oberes Integral in (7) existiert, gilt

$$\int_{X\times Y} f(x,y) \, \mathrm{d}(x,y) \stackrel{\mathrm{Fubini}}{=} \int_{Y} \left(\int_{X} f_{k} \, \mathrm{d}\, x \right) \mathrm{d}\, y \leq \int_{Y} \left(\int_{X} |f| \, \mathrm{d}\, x \right) \mathrm{d}\, y < \infty$$

$$\Rightarrow \{\int_{X\times Y} f_k d(x,y)\}$$
 beschränkte Folge

$$\Rightarrow \; \{ \int_{X \times Y} f_k \, \mathrm{d}(x,y) \} \text{ beschränkte Folge} \\ \xrightarrow[\text{Konvergenz}]{\text{Majorisierte}} \; |f| \; \text{integrierbar} \xrightarrow{\text{Satz 7.7}} f \; \text{integrierbar} \Rightarrow \text{Behauptung}$$

Folgerung 9.6

Sei $f: \mathbb{R}^n \to \mathbb{R}$ integrierbar auf \mathbb{R}^n , $x = (x_1, \dots, x_n) \in \mathbb{R}^n$

$$\Rightarrow \int_{\mathbb{R}^n} f(x) \, \mathrm{d} \, x = \int_{\mathbb{R}} \dots \left(\int_{\mathbb{R}} f(x_1, \dots, x_n) \, \mathrm{d} \, x_1 \right) \dots \, \mathrm{d} \, x_n \tag{8}$$

Beweis. Mehrfachanwendung von Theorem 9.1

▶ Bemerkung 9.7

- 1) Die Reihenfolge der Integration in (8) ist beliebig
- 2) Integrale reduzieren die Integration auf reelle Integrale über \mathbb{R}
- 3) Für $\int_M f \, \mathrm{d}\, x$ ist $(\chi_M f)$ gemäß (8) zu integrieren, wo ggf. $\int_{\mathbb{R}} \dots \, \mathrm{durch}\, \int_a^b \dots$ mit geeigneten Grenzen ersetzt wird.

■ Beispiel 9.8

Sei $f: M \subset \mathbb{R}^2 \to \mathbb{R}$ stetig, $M = [a, b] \times [c, d]$

- $\Rightarrow f$ messbar, beschränkt auf M
- $\Rightarrow f$ integrierbar auf M
- $\Rightarrow \chi_M f$ ist integrierbar auf \mathbb{R}^2

$$\Rightarrow \int_{M} f \, \mathrm{d} \, x = \int_{\mathbb{R}^{2}} \chi_{M} f \, \mathrm{d} \, x = \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{M}(x_{1}, x_{2}) f(x_{1}, x_{2}) \, \mathrm{d} \, x_{1} \, \mathrm{d} \, x_{2}$$

$$= \int_{\mathbb{R}} \int_{a}^{b} \chi_{[c,d]}(x_{2}) f(x_{1}, x_{2}) \, \mathrm{d} \, x_{1} \, \mathrm{d} \, x_{2} = \int_{c}^{d} \int_{a}^{b} f(x_{1}, x_{2}) \, \mathrm{d} \, x_{1} \, \mathrm{d} \, x_{2}$$

Z.B.
$$f(x_1, x_2) = x_1 \cdot \sin x_2$$
, $M = [0, 1] \times [0, \pi]$

$$\Rightarrow \int_{M} f \, dx = \int_{0}^{\pi} \int_{0}^{1} x_{1} \sin x_{2} \, dx_{1} \, dx_{2} = \int_{0}^{\pi} \left[\frac{1}{2} x_{1}^{2} \sin x_{2} \right]_{0}^{1} \, dx_{2}$$
$$= \int_{0}^{\pi} \frac{1}{2} \sin x_{2} \, dx_{2} = \left[-\frac{1}{2} \cos x_{2} \right]_{0}^{\pi} = 1$$

■ Beispiel 9.9

Sei
$$f: M \subset \mathbb{R}^2 \to \mathbb{R}$$
 stetig, $M = \{(x, y) \mid x^2 + y^2 = 1\}$

 $\Rightarrow \chi_M f$ integrierbar auf \mathbb{R}^2

$$\Rightarrow \int_{M} f \, d(x, y) = \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_{M} f \, dy \, dx = \int_{-1}^{1} \int_{\sqrt{1 - x^{2}}}^{\sqrt{1 - x^{2}}} f(x, y) \, dy \, dx$$

Z.B.
$$f(x,y) = |y|$$

$$\Rightarrow \int_{M} |y| \, d(x,y) = 2 \int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} y \, dy \, dx = 2 \int_{-1}^{1} \left[\frac{1}{2} y^{2} \right]_{0}^{\sqrt{1-x^{2}}} dx$$

$$= 2 \int_{-1}^{1} \frac{1}{2} (1 - x^{2}) \, dx = \left[x - \frac{1}{3} x^{3} \right]_{-1}^{1} = \frac{4}{3}$$

■ Beispiel 9.10

Sei $f: M \subset \mathbb{R}^3 \to \mathbb{R}$ stetig, M Tetraeder mit Ecken 0, e_1, e_2, e_3

$$\int_{M} f d(x, y, z) = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} f(x, y, z) dz dy dx$$

Z.B: f(x, y, z) = 1:

$$\begin{split} \int_{M} 1 \, \mathrm{d}(x,y,z) &= \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} f(x,y,z) \, \mathrm{d}\,z \, \mathrm{d}\,y \, \mathrm{d}\,x = \int_{0}^{1} \int_{0}^{1-x} [z]_{0}^{1-x-y} \, \mathrm{d}\,y \, \mathrm{d}\,x \\ &= \int_{0}^{1} \int_{0}^{1-x} 1 - x - y \, \mathrm{d}\,y \, \mathrm{d}\,z = \int_{0}^{1} [y - xy - \frac{y^{2}}{2}]_{y=0}^{1-x} \, \mathrm{d}\,x = \int_{0}^{1} \frac{1}{2} - x + \frac{x^{2}}{2} \, \mathrm{d}\,x \\ &= \frac{1}{6}, \end{split}$$

das Volumen eines Tetraeders.

9.1. Integration durch Koordinatentransformation

Definition (Diffeomorphismus, diffeomorph)

Sei $f: U \subset K^n \to V \subset K^m$ bijektiv, wobei U, V offen.

f heißt Diffeomorphismus , falls f und f^{-1} stetig diffbar auf U bzw. V sind.

U und V heißen dann diffeomorph

Theorem 9.11 (Transformationssatz)

Seien $U, V \subset \mathbb{R}^n$ offen, $\varphi: U \to V$ Diffeomorphismus. Dann

 $f: V \to \mathbb{R}$ integrierbar $\Leftrightarrow f(\varphi(\cdot)) | \det \varphi'(y) | : U \to \mathbb{R}$ integrierbar

und es gilt

$$\int_{U} f(\varphi(y)) \cdot |\varphi'(y)| \, \mathrm{d} \, y = \int_{V} f(x) \, \mathrm{d} \, x \tag{9}$$

Beweis. Vgl. Literatur (z.B. Königsberger Analysis 2, Kapitel 9)

Sei $U=Q\in\mathcal{Q}$ Würfel, $V:=\varphi(Q),\,\tilde{y}\in\mathcal{Q},\,x:=\varphi(\tilde{y})$

 $\stackrel{(9)}{\Longrightarrow} |V| = \int_V 1 \, \mathrm{d} \, y = \int_Q |\det \varphi'(y)| \, \mathrm{d} \, y \stackrel{Q \text{ klein}}{\approx} |\det \varphi'(\tilde{y})| \cdot |Q|, \text{ d.h. } |\det \varphi'(y)| \text{ beschreibt (infinitesimale)}$ relative Veränderung des Maßes unter Transformation φ .

■ Beispiel 9.12

Sei $V = B_R(0) \subset \mathbb{R}^3$ Kugel mit Radius R > 0.

Zeige:
$$|B_R(0)| = \int_V 1 d(x, y, z) = \frac{4}{3} \pi R^3$$

Benutze Kugelkoordinaten (Polarkoordinaten in \mathbb{R}^2) mit

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \varphi(r, \alpha, \beta) := \begin{pmatrix} r \cos \alpha \cos \beta \\ r \sin \alpha \cos \beta \\ r \sin \beta \end{pmatrix}$$

Für $(r, \alpha, \beta) \in U : (0, R) \times (-\pi, \pi) \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Mit $H := \{(x, 0, z) \in \mathbb{R} \mid x \leq 0\}$ und $\tilde{V} := V \setminus H$ gilt: $|H|_{\mathbb{R}^3} = 0$

 $\varphi: U \to \tilde{V}$ diffbar, injektiv, und

$$\varphi'(r,\alpha,\beta) = \begin{pmatrix} \cos\alpha\cos\beta & -r\sin\alpha\cos\beta & -r\cos\alpha\sin\beta\\ \sin\alpha\cos\beta & r\cos\alpha\cos\beta & -r\sin\alpha\sin\beta\\ \sin\beta & 0 & r\cos\beta \end{pmatrix}$$

 $\Rightarrow \text{ Definiere } \varphi'(r,\alpha,\beta) = r^2 \cos \beta \neq 0 \text{ auf } U$ $\xrightarrow{\underline{Satz27.8}} \varphi: U \to \tilde{V} \text{ ist Diffeomorphismus}$

$$\Rightarrow |B_{R}(0)| = \int_{V} 1 \, \mathrm{d}(x, y, z) = \int_{\tilde{V}} 1 \, \mathrm{d}(x, y, z) + \int_{H} 1 \, \mathrm{d}(x, y, z)$$

$$\stackrel{(9)}{=} \int_{U} |\det \varphi'(r, \alpha, \beta)| \, \mathrm{d}r \, \mathrm{d}\alpha \, \mathrm{d}\beta + |H| \stackrel{\mathrm{Fubini}}{=} \int_{0}^{R} \int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^{2} \cos \beta \, \mathrm{d}\beta \, \mathrm{d}\alpha \, \mathrm{d}r$$

$$= \int_{0}^{R} \int_{-\pi}^{\pi} [r^{2} \sin \beta]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \, \mathrm{d}\alpha \, \mathrm{d}r = \int_{0}^{R} \int_{-\pi}^{\pi} 2r^{2} \, \mathrm{d}\alpha \, \mathrm{d}r = \int_{0}^{R} 4\pi r^{2} \, \mathrm{d}r$$

$$= \frac{4}{3}\pi r^{3} \Big|_{0}^{R} = \frac{4}{3}\pi R^{3}$$

■ Beispiel 9.13 (Rotationskörper im \mathbb{R}^3)

Sei $g:[a,b] \to [0,\infty]$ stetiger, rotierender Graphen von g um die z-Achse.

 \rightarrow Bestimme das Volumen des (offenen) Rotationskörpers $V \subset \mathbb{R}^3$.

Benutze Zylinderkoordinaten:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \varphi(r, \alpha, z) := \begin{pmatrix} r \cos \alpha \\ r \sin \alpha \\ z \end{pmatrix}$$

auf

$$U = \{ (r, \alpha, z) \in \mathbb{R}^3 \mid r \in (0, g(z)), \alpha \in (-\pi, \pi), z \in (a, b) \},\$$

mit $H := \{(x,0,z) \in \mathbb{R}^3 \mid x \leq 0\}, \ \tilde{V} := V \setminus H \text{ gilt } |H| = 0 \text{ und } \varphi : U \to \tilde{V} \text{ diffbar, injektiv, sowie}$

$$\varphi'(r,\alpha,z) = \begin{pmatrix} \cos \alpha & -r\sin \alpha & 0\\ \sin \alpha & r\cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix} = r > 0 \text{ auf } U$$

 $\xrightarrow{\text{Satz } 27.8} \varphi: U \to \tilde{V} \text{ ist Diffeomorphismus}$

Vmessbar (da offen) $\Rightarrow \tilde{V}$ messbar, und offenbar f=1integrierbar auf \tilde{V}

$$\Rightarrow |V| = |\tilde{V}| = \int_{\tilde{V}} 1 \, \mathrm{d}(x, y, z) \qquad \stackrel{(9)}{=} \int_{U} |\det \varphi'(r, \alpha, z)| \, \mathrm{d}(x, y, z)$$

$$\stackrel{\mathrm{Fubini}}{=} \int_{a}^{b} \int_{-\pi}^{\pi} \int_{0}^{g(z)} r \, \mathrm{d} r \, \mathrm{d} \alpha \, \mathrm{d} z = \int_{a}^{b} \int_{-\pi}^{\pi} \left[\frac{r^{2}}{2} \right]_{0}^{g(z)} \, \mathrm{d} \alpha \, \mathrm{d} z$$

$$= \int_{a}^{b} \int_{-\pi}^{\pi} \frac{g(z)^{2}}{2} \, \mathrm{d} \alpha \, \mathrm{d} z \qquad = \pi \int_{a}^{b} g(z)^{2} \, \mathrm{d} z$$

Z.B. g(z)=R auf [a,b]: $|V|=\pi\int_a^bR^2\,\mathrm{d}\,z=\pi R^2(b-a)$ (Volumen des Kreiszylinders)

Kapitel III

Differentiation II

10. Höhere Ableitungen und Taylor-scher Satz

Vorbetrachtung: Sei X endlich dimensionaler, normierter Raum über K (d.. Vektorraum über K mit Norm $\|\cdot\|$, dim $X=l\in\mathbb{N}$).

Offebar sind X und K^l isomorph als Vektorraum, schreibe $X \cong K^l$, z.B. $X = L(K^n, K^m) \cong K^{m \cdot n}$.

Für $g:D\subset K^n\to X,D$ offen, kann man die bisherigen Resultate bezüglich der Ableitung übertragen. $g'(x)\in L(K^n,X)$ heißt Ableitung von g im Punkt $x\in D$, falls

$$g(x + y) = g(x) + g'x()y + o(|y|), y \to 0$$

Definition (zweite Ableitung)

Betrachte nun $f: D \subset K^n \to K^m$, D offen, f diffbar auf D. Falls $g:=f': D \to L(K^n, K^m) =: y_1$ diffbar in $x \in D$ ist, heißt

$$f''(x) := g'(x) \in L(K^n, Y_1) = L\left(K^n, \underbrace{L(K^n, K^m)}_{\cong K^{m \times n}}\right) \tag{1}$$

zweite Ableitung von f in X.

Offenbar gilt dann:

$$f'(x+y) = f'(x) + f''(x)y + o(|y|), y \to 0$$

bzw.

$$f'(x+y) \cdot z = f'(x) \cdot z + \underbrace{\left(\underbrace{f''(x) \cdot y}_{\in K^m \times n}\right)}_{z \in K^m} z + o(|y|) \cdot z \quad \forall z \in K^n$$
(2)

Interpretation: Betrachte f''(x) als kubische bzw. 3-dimensionale "Matrix" (heißt auch <u>Tensor</u> 3. Ordnung).

beachte: Ausdruck für $f''(x+y) \cdot z$ ist jeweils linear in y und z.

Frage: höhere Ableitungen, d.h. von $f'': D \to L(K^n, Y_1)$ usw.

Offenbar:

$$\begin{split} g_2 &:= L(K^n, Y_1) = L\big(K^n, L(K^nK^m)\big) \cong L(K^n, K^{m \times n}) \cong L(K^n, K^{m \times n}) \cong K^{m \cdot n^2} \\ g_3 &:= L(K^n, Y_2) \cong L(K^n, K^{m \cdot n^2}) \cong K^{k \cdot n^3} \end{split}$$

Endlich dimenionale, normierte Räume, man kann rekursiv $\forall k \in \mathbb{N}$ definieren:

(i) (Räume)

$$Y_0=K^n$$
mit | . |
$$Y_{k+1}:=L(K^n,Y_k) \text{ mit Standard$$

analog zu oben ist $Y_k \cong K^{m \cdot n^k}$, Y_k normierter Raum

(ii) (Ableitungen)

$$f^{(0)}:=f:D\subset K^n\to K^m,\,D$$
 offen.

Falls $f^{(k)}:D \to Y_k$ diffbar in $x \in D$ heißt

$$f^{(k+1)}(x) := (f^{(k)})(x) \in L(K^n, Y_k)$$

(k+1)-te Ableitung von f in x. (beachte: $f^{(1)}(x) = f'(x)$)

Somit gilt:

$$f^{(k)}(x+y) = f^{(k)}(x) + f^{(k+1)}(x) \cdot y + o(|y|) \ (\in Y_k), \ y \to 0$$
(3)

Definition (k-fach differenzierbar)

f heißt k-fach differenzierbar (auf D), falls $f^{(k)}(\mathbf{x})$ existiert $\forall x \in D$.

f heißt k-fach stetig diffbar (auf D) oder C^k -Funktion, falls f k-fach diffbar und $f^{(k)}:D\to Y_k$ stetig.

 $C^k(D,K^m):=\{f:D\to K^m \mid \text{f k-fach stetig diffbar auf }D\}$

Hinweis: Falls $f^{(k)}(x)$ existiert $\Rightarrow f^{(k-1)}$ stetig in X (vgl. Satz I.2.2)

Speziafall n = 1: $f: D \subset K \to K^m$

$$f'(x) \in Y_1 = L(K, K^n) \cong K^m$$

$$f''(x) \in Y_2 = L(K, Y_1) \cong L(K, K^m) \cong K^m$$

Allgemein: $f^{(k)}(x) \in Y_k = L(K, Y_{k-1}) \cong L(K, K^m) \cong K^m$, d.h. für n = 1 kann $f^{(k)}(x)$ stets als m-Vektor in K^m betrachtet werden.

■ Beispiel 10.1

Für $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x \cdot \sin x$

$$\Rightarrow f'(x) = \sin x + x \cdot \cos x$$

$$\Rightarrow f''(x) = \cos x + \cos x - x \sin x = 2\cos x - x \sin x$$

$$\Rightarrow f'''(x) = -3\sin x - x\cos x$$
 usw.

■ Beispiel 10.2

sei $f: \mathbb{R}_{>0} \to \mathbb{R}^2$ mit $f(x) = \begin{pmatrix} x^3 \\ \ln x \end{pmatrix}$.

$$\Rightarrow f'(x) = \begin{pmatrix} 3x^2 \\ \frac{1}{x} \end{pmatrix} \qquad \Rightarrow f''(x) = \begin{pmatrix} 6x \\ -\frac{1}{x^2} \end{pmatrix} \qquad \Rightarrow f'''(x) = \begin{pmatrix} 6 \\ \frac{2}{x^3} \end{pmatrix}$$

■ Beispiel 10.3

Sei $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} x^3 & x \ge 0\\ -x^3 & x < 0 \end{cases}$$

Folglich

$$\Rightarrow f'(x) = \begin{cases} 3x^2 \\ -3x^2 \end{cases} \Rightarrow f''(x) = \begin{cases} 6x \\ -6x \end{cases}$$

 $\Rightarrow f'''(0)$ existiert nicht, d.h. $f \in C^2(K, \mathbb{R})$ aber $f \notin C^3(\mathbb{R}, \mathbb{R})$

■ Beispiel 10.4

Sei $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

 $\Rightarrow f^{(k)}(x)$ existiert $\forall x \in \mathbb{R}, k \in \mathbb{N}$ mit $f^{(k)}(0) = 0 \ \forall k, \text{d.h.} \ f \in C^k(\mathbb{R}, \mathbb{R}) \ \forall k \in \mathbb{N}.$

Man schreibt auch $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$

Räume Y_k : = $L(K^n, Y_{k-1}) \cong K^{m \times n^k}$.

Für $A \in Y_k = L(K^n, Y_{k-1})$ und $y_1, \dots, y_k \in K^n$ gilt:

$$A \cdot y_1 \qquad \qquad \in Y_{k-1} = L(K^n, Y_{k-2}),$$

$$(Ay_1) \cdot y_2 \qquad \qquad \in Y_{k-2} = L(K^n, Y_{k-3})$$

$$\vdots$$

$$(\dots(Ay_1)y_2)\dots y_k) \in Y_0 = K^m$$

Ausdrücke links sind offebar linear in jedem $y_i \in K^n$ separat, $j = 1 \dots, k$

Definition (k-lineare Abbildung)

Betrachte

$$X_k := L^k(K^n, K^m)$$

$$:= \{B : \underbrace{K^n \times \ldots \times K^n}_{k\text{-fach}} \to K^m \mid y_j \to B(y_1, \ldots, y_k) \text{ linear für jedes } j = 1, \ldots, k \}$$

 $B \in X_k$ heißt
 $\underline{k\text{-lineare}}$ Abbildung
. X_k ist Vektorraum.

(6)

■ Beispiel 10.5

Für 3-lineare Abbildung $B \in L^3(\mathbb{R}, \mathbb{R}^2)$ mit

$$B(x, y, z) = \begin{pmatrix} xyz \\ (x+y)z \end{pmatrix}$$

ist z.B. nicht linear als Abbildung auf \mathbb{R}^3 .

Satz 10.6

Für $k \in \mathbb{N}$ ist $I_k : Y_k \to X_k$ mit

$$(I_k A)(y_1, \dots, y_k) := (\dots ((Ay_1)y_2) \dots y_k) \quad \forall A \in Y_k, \ y_j \in K^n, \ j = 1, \dots, k$$
 (4)

ein Isomorphismus bezüglich der Vektorraum-Struktur (also $X_k \cong Y_k$).

<u>Hinweis:</u> Somit kann $f^{(k)}(x)$ auch als Element von X_k betrachtet werden, d.h. $f^{(k)}(x) \in X_k = L^k(K^n, K^m)$

Damit wird z.B. (2) zu

$$f'(x+y) \cdot z = f'(x) \cdot z + f''(x) \cdot (y,z) + o(|y|) \cdot z \quad \forall z \in K^n$$
 (5)

und für n = 1 gilt

$$f^{(k)}(x)(y_1, \dots, y_k) = \underbrace{f^{(k)}(x)}_{\in K^m} \underbrace{y_1 \cdot \dots y_k}_{\text{Produkt von Zahlen}} \forall y_j \in K$$

Beweis. I_k offenbar linear auf Y_k , I_k injektiv, denn $I_k(A) = 0$ gdw. A = 0

Zeige mittels Vollständiger Induktion: I, surjektiv.

IA: Offenbar ist $X_1 = Y_1$ und $I_1A = A \Rightarrow I_1$ surjektiv

 $\underline{\text{Sei } I_k \text{ surjektiv und wähle beliebiges } B \in X_{k+1}.}$ Setze $\tilde{B}_{y_1} := B(y_1, \cdot, \dots, \cdot) \in X_k \ \forall y_1 \in K^n, \ \tilde{B} \in L(K^n, X_k)$

$$\Rightarrow A := I_k^{-1} \tilde{B} \in L(K^n, Y_k) = Y_{k+1}$$

$$\Rightarrow (I_{k+1}A)(y_1, \dots, y_{k+1}) \stackrel{(4)}{=} (\dots ((Ay_1)y_2) \dots y_{k+1}) = (I_K(Ay_1))(y_2, \dots, y_{k+1})$$

$$\stackrel{(6)}{=} (\tilde{B}y_1)(y_2, \dots, y_{k+1}) = B(y_1, \dots, y_{k+1})$$

$$\Rightarrow B = I_{k+1} \cdot A \Rightarrow I_{k+1} \text{ surjektiv}$$

 $\Rightarrow I_k$ Isomorphismus

Norm: in X_k , Y_k : für $A \in Y_k$ folgt durch rekursive Definition

$$\left(\dots\left(\left(A\frac{y_1}{|y_1|}\right)\frac{y_2}{|y_2|}\right)\dots\frac{y_k}{|y_k|}\right) \le \|A\|_{Y_k} \quad \forall y_j \in K^n, \ y_j \ne 0$$

$$\Rightarrow \left(\dots\left((Ay_1)y_2\right)\dots y_k\right) \le \|A\|_{Y_k}|y_1||y_2|\dots|y_k| \quad \forall y_1 \dots, y_k \in K^n$$

$$(7)$$

Norm für $A \in X_k = L^k(K^n, K^m)$:

$$||A||_{X_k} := \sup\{|A(y_1, \dots, y_k)| \mid y_j \in K^n, |y_j| \le 1\}$$

Analog zu (7) folgt für $A \in X_k$:

$$|A(y_1, \dots, y_k)| \le ||A||_{X_k} |y_1| \cdot \dots \cdot |y_k| \quad \forall y_i \in K^n$$
(8)

Satz 10.7

Mit Isomorphismus $I_k: Y_k \to X_k$ aus Satz 10.6 gilt:

$$||I(A)||_{X_k} = ||A||_{Y_k} \quad \forall A \in Y_k$$

Beweis. Selbststudium / ÜA

▶ Bemerkung 10.8

 $||f^{(k)}(x)||$ unabhängig davon, ob man $f^{(k)}(x)$ als Element von X_k oder Y_k betrachtet.

10.1. Partielle Ableitungen

Sei $X = (x_1, \dots, x_k) \in K^n$; d.h. $x_j \in K$, e_1, \dots, e_k die Standard-Einheitsvektoren

Wiederholung: Partielle Ableitung $f_{x_j}(x) = \frac{\partial}{\partial x_j} f(x) = D_{x_j} f(x)$ ist Richtungsableitung $f'(x, e_j) = D_{e_j} f(x) \in L(K, K^m)$.

Definition (partielle Ableitung)

Nenne $f_{x_1}(x), \ldots, f_{x_1}(x)$ partielle Ableitung 1. Ordnung von f in X

Für $g: D \to X$ definieren wir die partielle Ableitung $\frac{\partial}{\partial x_i} g(x) = g_{x_j}(x) \in L(K, X)$ analog zu ??:

$$g(x+t \cdot e_j) = g(x) + g_{x_j}(x)t + o(t), \ t \to 0, \ t \in K$$

Für $g = f_x : D \to L(K, K^m)$ ist dann $g_{x_j} \in L(K, L(K, K^m))$. Für $g = f_{x_j} : D \to L(K, K^m)$ ist dann $g_{x_j} \in L(K, L(K, K^m)) \cong L^2(K, K^m) \cong K^m$ die <u>partielle Ableitung</u> $f_{x_i x_j}(x)$ von f in x nach x_i und x_i .

Andere Notation: $\frac{\partial^2}{\partial x_i x_i} f(x), D_{x_i x_j} f(x), \dots$

Die $f_{x_i x_j}(x)$ heißen partielle Ableitung 2. Ordnung von f in x.

Mittels Rekursion

$$f_{x_{j_1}\dots x_{j_k}}(x) := \frac{\partial}{\partial x_i} f_{x_{i_1}\dots x_{j_k}} \tag{10}$$

erhält man schrittweise die partielle Ableitung der Ordnung $k \in \mathbb{N}$ von f in x:

$$f_{x_{j_1}...x_{j_k}}(x) = D_{x_{j_1}...x_{j_k}}f(x) = \frac{\partial^k}{\partial x_{j_k}...\partial x_{j_1}}f(x) \in L^k(K, K^m)$$

Berechnung durch schrittweises Ableiten von $x_{j_1} \to f(x_1, \dots, x_n), x_{j_2} \to f_{x_{j_1}}(x_1, \dots, x_n)$ usw.

■ Beispiel 10.9

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = y \sin x \ \forall x, y \in \mathbb{R}$ und

$$f_x(x,y) = y \cos x$$

$$f_{xx}(x,y) = -y \sin x$$

$$f_{xy}(x,y) = \cos x$$

$$f_y(x,y) = \sin x$$

$$f_{yy}(x,y) = 0$$

$$f_{yx}(x,y) = \cos x$$

Beobachtung: $f_{xy}(x,y) = f_{yx}(x,y)$

Abkürzende Schreibweise:

$$f_{x_j x_j x_j}(x) = \frac{\partial^3}{\partial x_j \partial x_j \partial x_j} f(x) = \frac{\partial^3}{\partial x_j^3} f(x)$$
$$f_{x_i x_j x_i x_l x_l} f(x) = \frac{\partial}{\partial x_l^2 \partial x_j^2 \partial x_i} f(x)$$

Definition (Hesse-Matrix)

Für m = 1 (d.h. $f : D \subset \mathbb{R}^n \to K$) ist

$$\begin{pmatrix} f_{x_1x_1}(x) & \dots & f_{x_1x_n}(x) \\ \vdots & & \vdots \\ f_{x_nx_1}(x) & \dots & f_{x_nx_n}(x) \end{pmatrix} =: \operatorname{Hess}(f)$$

die HESSE-Matrix, die alle partiellen Ableitungen 2. Ordnung enthält.

■ Beispiel 10.10

Sei $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$\begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix} = \begin{pmatrix} x_1^2 x_2 \\ x_1 x_2 + x_2^2 \end{pmatrix}$$

Folglich

$$f_{x_1}(x_1, x_2) = \begin{pmatrix} 2x_1x_2 \\ x_2 \end{pmatrix}$$
 $f_{x_2}(x_1, x_2) = \begin{pmatrix} x_1^2 \\ x_1 + 2x_2 \end{pmatrix}$

und

$$\begin{pmatrix} 2x_1x_2 & x_1^2 \\ x_2 & x_1 + 2x_2 \end{pmatrix}$$

ist die Jacobi-Matrix sowie

$$\operatorname{Hess}(f_1) = \begin{pmatrix} 2x_2 & 2x_1 \\ 2x_1 & 0 \end{pmatrix} \qquad \operatorname{Hess}(f_2) = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$$

Anschaulich: alle partiellen Ableitungen 2. Ordnung bilden eine 3D Matrix.

Frage: Zusammenhang von $f^{(k)}(x)$ mit partiellen Ableitungen?

Theorem 10.11

Sei $f: D \subset K^n \to K^m$, D offen, $x \in D$. Dann

(a) Falls $f^{(k)}(x)$ existiert, dann existieren alle partiellen Ableitungen der Ordnung k in x und

$$f_{x_{j_1}...x_{j_k}}(x) = f^{(k)}(x)(e_{j_k},...,e_{j_1})$$
 (11)

(b) Falls alle partiellen Ableitungen $f_{x_{j_1}...x_{j_k}}$ der Ordnung k für alle $y \in B_r(x) \subset D$ existieren und falls diese stetig sind

 $\Rightarrow f$ ist k-fach diffbar, d.h. $f^{(k)}(x)$ existiert.

▶ Bemerkung 10.12

Theorem 10.11 (b) ist ein wichtiges Kriterium zur Prüfung der diffbarkeit, k-te Ableitung kann dann mittels (11) bestimmt werden.

Beweis. Jeweils mittels vollständiger Induktion nach K ausgeführt:

- a) basiert auf??
- b) basiert auf Theorem I.4.14

■ Beispiel 10.13 (nochmal Beispiel 10.10)

 $f^{(2)}(x) = f''(x) \in L^2(\mathbb{R}^2, \mathbb{R}^2)$ existiert $\forall x = (x_1, x_2) \in \mathbb{R}^2$ nach Theorem 10.11 und kann als Vektor von der HESSE-Matrix dargestellt werden:

$$f^{(2)}(x) = \begin{pmatrix} \operatorname{Hess} f_1 \\ \operatorname{Hess} f_2 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2x_2 & 2x_1 \\ 2x_1 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \end{pmatrix}$$

Was ist nun $f''(x)(y_1, y_2)$ für (Vektoren) $y_1, y_2 \in \mathbb{R}^2$?

$$f''(x)(y_{1}, y_{2}) = f''(x) \left({y_{11} \choose y_{12}}, {y_{21} \choose y_{22}} \right) = f^{(2)}(x)(y_{11}e_{1} + y_{12}e_{2}, y_{21}e_{1} + y_{22}e_{2})$$

$$= y_{11}f''(x)(e_{1}, y_{2}) + y_{12}f''(x)(e_{2}, y_{2})$$

$$= y_{21}y_{11}f''(x)(e_{1}, e_{1}) + y_{12}y_{21}f''(x)(e_{2}, e_{1}) + y_{11}y_{22}f''(x)(e_{1}, e_{2}) + y_{12}y_{22}f''(x)(e_{2}, e_{2})$$

$$\stackrel{(11)}{=} y_{11}y_{21}f''_{x_{1}x_{1}}(x) + y_{12}y_{21}f_{x_{1}x_{2}}(x) + y_{21}y_{22}f_{x_{2}x_{1}}(x) + y_{12}y_{22}f_{x_{2}x_{2}}(x) \ (\in \mathbb{R}^{2})$$

$$= \left(\langle (\text{Hess}f_{1})(x)y_{1}, y_{2} \rangle \right) \in \mathbb{R}^{2} \quad \forall y_{1}, y_{2} \in \mathbb{R}^{2}$$

Analoge Rechnung liefert allgemein

Folgerung 10.14

Für $f = (x_1, \ldots, f_m) : D \subset K^n \to K^m$, D offen, es existieren alle $f^{(2)}(x)$ für $x \in D$. Dann

$$f^{(2)}(x)(y_1, y_2) = \begin{pmatrix} \langle (\operatorname{Hess} f_1)(x) y_1, y_2 \rangle \\ \vdots \\ \langle (\operatorname{Hess} f_m)(x) y_1, y_2 \rangle \end{pmatrix} \in K^m \ \forall y_1, y_2 \in K^n$$
 (12)

▶ Bemerkung 10.15

Für höhere Ableitungen wird die Darstellung $f^{(k)}(x)(y_1,\ldots,y_k)$ allgemein mittels partiellen Ableitungen immer komplexer, wird allerdings auch selten benötigt.

Frage:: Kann man die Reihenfolge bei partiellen Ableitungen vertauschen? (vgl. Beispiel 10.9)

■ Beispiel 10.16

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

und folglich

$$f_x(x,y) = \begin{cases} \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} & \text{für } (x,y) \neq (0,0) \\ \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 0 & \text{sonst} \end{cases}$$

insbesondere $f_x(0,y) = -y \ \forall y \in \mathbb{R}$, also $f_{xy}(0,0) = -1$

 $f_y(x,0) = x \ \forall x \in \mathbb{R}, \text{ also } f_{yx}(0,0) = +1$ analog

Satz 10.17 (Satz von Schwarz)

Für $f:D\subset\mathbb{R}^n\to\mathbb{R}^m,\,D$ offen. Mögen die partiellen Ableitungen $f_{x_i},\,f_{x_j},\,f_{x_ix_j}$ auf D existieren. Falls $f_{x_i x_i}$ stetig in $x \in D$

$$\Rightarrow f_{x_i x_i}(x) \text{ existiert und } f_{x_i x_i}(x) = f_{x_i x_i}(x)$$
 (14)

Folgerung 10.18

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$, D offen, f k-fach diffbar (d.h. $f \in C^k(D, \mathbb{R}^m)$) \Rightarrow alle partiellen Ableitung bis Ordnung k existieren und die Reihenfolge kann vertauscht werden.

Beweis (Folgerung 10.18). Existenz der partiellen Ableitung und deren Stetigkeit folgen aus Theorem 10.11, beliebige Vertauschung der Reihenfolge kann durch schrittweises Vertauschen von zwei "benachbarten Veränderlichen" $\xrightarrow{\text{Erreicht werden.}} \text{Behauptung}$

Zur Veranschaulichung:

$$f_{x_3x_1x_2}(x) \stackrel{\text{(10)}}{=} D_{x_2} f_{x_3x_1}(x) \stackrel{\text{Theorem } 10.17}{=} D_{x_2} f_{x_1x_3}(x) \stackrel{\text{(10)}}{=} f_{x_1x_3x_2}(x)$$

$$\stackrel{\text{(10)}}{=} (f_{x_1})_{x_3x_2}(x) \stackrel{\text{Theorem } 10.17}{=} (f_{x_1})_{x_2x_3}(x) \stackrel{\text{(10)}}{=} f_{x_1x_2x_3}(x)$$

Beweis (Satz 10.17). oBdA m=1. Fixiere $\varepsilon>0 \Rightarrow \exists \delta>0$ mit

$$x + s \cdot e_i + t \cdot e_j \in D \quad \forall s, t \in (-\delta, \delta)$$

und

$$|f_{x_i x_i}(x + s \cdot e_i + t \cdot e_j) - f_{x_i x_i}(x)| < \varepsilon \quad \forall s, t \in (-\delta, \delta)$$

$$\tag{15}$$

Definiere $\varphi(s) := f(x + s \cdot e_i + t \cdot e_j) - f(x + s \cdot e_i)$ ist diffbar auf $(-\delta, \delta) \ \forall t \in (-\delta, \delta)$ $\xrightarrow{\text{MWS}} \exists \sigma \in (0, s) : \varphi(s) - \varphi(0) = \varphi'(\sigma)s = (f_{x_i}(x + \sigma e_i + te_j) - f_{x_i}(x + \sigma e_i)) s$

$$\xrightarrow{\text{MWS}} \text{ für } t \to f_{x_i}(x + \sigma e_i + t e_j) : \exists \tau \in (0, t) : \varphi(s) - \varphi(0) = f_{x_i x_j}(\underbrace{x + \sigma e_i + \tau e_j}_{-\varepsilon x}) st \ (\sigma, \tau \text{ abhängig von } s, t)$$

Daher gilt:

$$\left| \frac{\varphi(s) - \varphi(0)}{st} - f_{x_i x_j}(x) \right| \leq \underbrace{\left| \frac{\varphi(s) - \varphi(0)}{st} - f_{x_i x_j}(\tilde{x}) \right|}_{=0} + \left| f_{x_i x_j}(\tilde{x}) - f_{x_i x_j}(x) \right|$$

$$\stackrel{(15)}{<} \varepsilon \quad \forall s, t \in (-\delta, \delta), \ s, t \neq 0$$

$$(16)$$

Wegen

$$\lim_{t \to 0} \frac{\varphi(s) - \varphi(0)}{t} = \lim_{t \to 0} \frac{f(x + s \cdot e_i + t \cdot e_j) - f(x + s \cdot e_i)}{t} - \frac{f(x + t \cdot e_j) - f(x)}{t} = f_{x_j}(x + s \cdot e_i) - f_{x_j}(x)$$

folgt aus Gleichung (16)

$$\left| \frac{f_{x_j}(x + s \cdot e_i) - f_{x_j}(x)}{s} - f_{x_i x_j}(x) \right| < \varepsilon \quad \forall s \in (-\delta, \delta); \ s \neq 0$$
 (17)

$$\stackrel{\varepsilon > 0}{\Longrightarrow} f_{x_j x_i}(x) = \lim_{s \to 0} \frac{f_{x_j}(x + s \cdot e_i) - f_{x_j}(x)}{s} \stackrel{\text{(17)}}{=} f_{x_i x_j}(x)$$

10.2. Anwendungen

Frage: Wann besitzt $fD \subset \mathbb{R}^n \to \mathbb{R}^{m \times n}$ eine Stammfunktion? (Vgl. ??, oBdA m = 1)

Satz 10.19 (notwendige Integrabilitätsbedingung)

Sei $f = (f_1, \ldots, f_n) : D \subset \mathbb{R}^n \to \mathbb{R}^n$, D Gebiet, f stetig diffbar.

Damit f eine Stammfunktion $F:D\to\mathbb{R}$ besitzt, muss folgende <u>Integrabilitätsbedingung</u> erfüllt sein:

$$\frac{\partial}{\partial x_i} f_j(x) = \frac{\partial}{\partial x_j} f_i(x) \quad \forall x \in D, \ i, j = 1, \dots, n$$
(18)

▶ Bemerkung 10.20

(18) ist hinreichend, falls z.B. D konvex (siehe Analysis 3)

Beweis. f habe Stammfunktion $F \Rightarrow F \in C^2(D)$

$$\Rightarrow F_{x_j}(x) = f_j(x) \quad \forall x \in D, j, i$$

$$\Rightarrow F_{x_j x_i}(x) = \frac{\partial}{\partial x_i} f_j(x) \ \forall x \in D, i, j$$

$$\xrightarrow{\text{Schwarz}} F_{x_j x_i}(x) = F_{x_i x_j}(x) = \frac{\partial}{\partial x_j} f_i(x)$$

■ Beispiel 10.21

Nochmal ?? mit Parameter $\alpha \in \mathbb{R}$:

$$f(x,y) = \begin{pmatrix} \alpha xy \\ x^2 + y^2 \end{pmatrix}$$

Betrachte die Ableitungen

$$\frac{\partial}{\partial y} f_1(x, y) = \alpha x,$$
 $\frac{\partial}{\partial x} f_2(x, y) = 2x$

 $\stackrel{\text{(18)}}{\Longrightarrow} \alpha = 2$

Satz 10.22

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D offen und konvex, f stetig diffbar. Dann:

- a) f konvex $\Leftrightarrow \langle f'(x), y x \rangle \leq f(y)f(x) \ \forall x, y \in D$
- b) falls sogar $f \in C^2(D)$, dann:

$$f \text{ konvex} \Leftrightarrow f''(x) = (\text{Hess } f)(x) \text{ positiv definit } \forall x \in D$$

Beweis. Vgl. Literatur

10.3. Taylor-scher Satz

Ziel: Bessere Approximation als durch Linearisierung

Verwende allgemeine Polynome $\varphi: K^n \to K$ der Ordnung k, d.h.

$$\varphi(x) = a_0 + \sum_{i=1}^n a_i x_i + \sum_{i,j=1}^n a_{ij} x_i x_j + \dots + \sum_{j_1,\dots,j_k}^n a_{j_1\dots j_k} x_{j_1} \cdot \dots \cdot x_{j_k}$$
(19)

mit $a_0, a_j, a_{ij} \in K$ gegebene Koeffizienten

Notation: $f^{(k)}(x)(y,...,y) = f^{(k)}(x)y^k$

Wiederholung: $f \in C(D)$: $f(x+y) = f(x) + o(1), y \to 0$ $f \in C^1(D)$: $f(x+y) = f(x) + f(x)y + o(|y|), y \to 0$

Theorem 10.23 (Taylor-scher Satz)

Sei $f: D \subset K^n \to K^m$, D offen, k-fach diffbar auf $D, x \in D$. Dann

$$f(x+y) = f(x) + \sum_{j=1}^{k-1} \frac{1}{j!} f^{(j)}(x) y^j + R_k(y) \quad \text{falls } [x, x+y] \subset D,$$
 (20)

wobei

$$|R_k(y)| \le \frac{1}{k!} |f^{(k)}(x+\tau y)y^k| \le \frac{1}{k!} ||f^{(k)}(x+\tau y)|| |y|^k$$
 (21)

für ein $\tau = \tau(y) \in (0,1)$

Für $K = \mathbb{R}$, m = 1 gilt auch

$$R_k(y) = \frac{1}{k!} f^{(k)}(x + \tau y) y^k$$
 (22)

(Lagrange Restglied)

Falls $f \in C^k(D, K^m)$ gilt:

$$R_k(y) = \frac{1}{k!} f^{(k)}(x) y^k + o(|y|^k), \ y \to 0$$
 (23)

▶ Bemerkung 10.24

Entscheidente Aussage in Theorem 10.23 ist nicht (20), sondern die Eigenschaften des Restglieds (dies wird klein).

Beweis. Sei $[x, x + y] \subset D$, definiere

$$R_K(y) = f(x+y) - f(x) - \sum_{i=1}^{k-1} \frac{1}{j!} f^{(j)}(x) y^j \implies (20)$$

und definiere

$$\varphi(t) := f(x+y) - f(x+ty) - \sum_{j=1}^{k-1} \frac{(1-t)^j}{j!} f^{(j)}(x+ty)y^j - (1-t)^k R_k(y)$$

Offenbar $\varphi(1) = 0 = \varphi(0)$.

Da f k-fach diffbar

 $\Rightarrow \varphi: [0,1] \to K^m$ \mathbb{R} -diffbar auf (0,1) mit

$$\varphi'(t) = -f'(x+ty) \cdot y + \sum_{j=1}^{k-1} \left(\frac{(1-t)^{j-1}}{(j-1)!} f^{(j)}(x+ty) y^j - \frac{(1-t)^j}{j!} f^{(j+1)}(x+ty) y^{j+1} \right) + k(1-t)^{k-1} R_k(y)$$

$$= -\frac{(1-t)^{k-1}}{(k-1)!} f^{(k)}(x+ty) y^k + k(1-t)^{k-1} R_k(y)$$
(24)

(a) $K = \mathbb{R}$, n = 1: nach MWS $\exists \tau \in (0, 1)$ und

$$0 = \varphi(1) - \varphi(0) = \varphi'(\tau) \quad \stackrel{\text{(24)}}{\Longrightarrow} (22)$$

(b) zu (21) mit $K=\mathbb{R}$: Sei $\psi(t):=\langle \varphi(t),v\rangle$ für $v\in\mathbb{R}^n$

$$\Rightarrow \psi : [0,1] \to \mathbb{R}$$
 diffbar auf $(0,1)$ mit $\psi'(t) = \langle \varphi'(t), r \rangle$

$$\xrightarrow{\text{MWS}} \exists \tau \in (0,1) : 0 = \langle \varphi'(\tau), v \rangle$$

$$\Rightarrow \langle R_K(y), v \rangle = \frac{1}{k!} \langle f^{(k)}(x + \tau y) y^k, v \rangle \tag{25}$$

mit $v = \frac{R_k(y)}{|R_k(y)|} \; (|R_k(y)| \neq 0, \, \text{sonst klar})$ und es folgt

$$\langle R_k(y), v \rangle = |R_k(y)| = \left\langle \frac{1}{k!} f^{(k)}(x + \tau y) y^k, v \right\rangle \stackrel{|v|=1}{\leq} \frac{1}{k!} \left| f^{(k)}(x + \tau y) y^k \right| \stackrel{(8)}{\Longrightarrow} (21)$$

- (c) $K=\mathbb{C}$: identifiziere \mathbb{C}^m mit \mathbb{R}^{2m} und setzte $\varphi(t)=\langle \varphi(t),r\rangle_{\mathbb{R}^{2m}}$ Beachte:
 - $\varphi: [0,1] \to \mathbb{R}, \frac{\mathrm{d}}{\mathrm{d}t} \Re \mathfrak{e} \varphi_j(t) = \Re \mathfrak{e} \frac{\mathrm{d}}{\mathrm{d}t} \varphi_j(t) \ \forall j$
 - $\langle R_k(y), R_k(y) \rangle_{\mathbb{R}^{2m}} = |R_k(y)|_{\mathbb{C}^m}^2$

und argumentiere wie in b)

(d) zu (23): Setzte
$$R_k(y) = \frac{1}{k!} f^{(k)}(x) y^k + r_k(y)$$
 in (25), $r = \frac{r_k(y)}{|r_k(y)|}$ (falls $r_k(y) \neq 0$)
$$\Rightarrow \frac{|r_k(y)|}{|y|^k} \leq \frac{1}{k!|y|^k} \left| \left(f^{(k)}(x + \tau(y)y) - f^{(k)}(x) \right) y^k \right| \leq \frac{1}{k!} \left\| f^{(k)}(x + \tau(y)y) - f^{(k)}(x) \right\| \xrightarrow{y \to 0} 0,$$
d.h. $r_k(y) = o(|y|^k), y \to 0$

Definition (Taylorpolynom, Taylorentwicklung)

Rechte Seite in (20) ohne Restglied heißt Taylorpolynomvon f in x vom Grad k-1.

(20) heißt Taylorentwicklungvon f in x.

Folgerung 10.25 (Taylor-Formel mit partiellen Ableitungen)

Sei $f: D \subset K^n \to K^m$, d offen, f k-fach diffbar auf $D, x \in D, [c, c+y] \subset D$:

$$f(x+y) = f(x) = \sum_{l=1}^{k-1} \frac{1}{l!} \sum_{i=1}^{n} f_{x_{j_l} \dots x_{j_1}}(x) y_{j_1} \dots y_{j_l} + R_k(y),$$
(26)

wobei $y = (y_1, \dots, y_n) \in K^n$ (d.h $y_j \in K$ Zahlen).

Beweis. Benutze (11)
$$\Box$$

▶ Bemerkung 10.26

Falls alle partiellen Ableitungen von f bis Ordnung k existieren und stetig sind auf $D \Rightarrow f \in C^k(D)$ und (26) (vgl. Theorem 10.11)

■ Beispiel 10.27

Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \cos x$. Für x = 0 gilt:

$$\cos y = \cos 0 + \frac{1}{1!} (\cos'(0)) y + \frac{1}{2!} (\cos''(0)) y^2 + \dots + \frac{1}{k!} (\cos^{(k)} 0) y^k + o(|y|^k)$$

$$\stackrel{k=8}{=} 1 - 0 \cdot y - \frac{1}{2} y^2 + 0 y^3 + \frac{1}{24} y^4 - 0 \cdot y - \frac{1}{720} y^6 + 0 \cdot y^7 + \frac{1}{40320} y^8 + o(|y|^8)$$

(gilt auch für $K = \mathbb{C}$)

■ Beispiel 10.28

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x) = (x_1^2 + x_1 x_2 + \sin x_2)$ $(x = (x_1, x_2))$

Taylorentwicklung in $x_0 = (1, \pi), y = (y_1, y_2) \in \mathbb{R}^2$.

$$f(x+y) = f(x_0) + f'(x_0)y + \frac{1}{2}f''(x_0)y^2 + \frac{1}{3}f'''(x_0)y^3 + o(|y|^3)$$

Offenbar sind

$$f'(x) = \begin{pmatrix} 2x_1 + x_2 \\ x_1 + \cos x_2 \end{pmatrix} \qquad f''(x) = (\text{Hess}f)(x) = \begin{pmatrix} 2 & 1 \\ 1 & -\sin x_2 \end{pmatrix}$$

und es ergibt sich

$$f(x_0 + y) = f(x_0) + f_{x_1}(x_0)y_1 + f_{x_2}(x_0)y_2$$

$$+ \frac{1}{2!}f_{x_1x_1}(x_0)y_1^2 + \frac{2}{2}f_{x_1x_2}(x_0)y_1y_2 + \frac{1}{2}f_{x_2x_2}(x)y_2^2$$

$$+ \frac{1}{3}f_{x_2x_2x_2}(x_0)y_2^3 + o(|y|^3)$$

$$= 1 + \pi + (2 + \pi)y_1 + 0 \cdot y_2 + y_1^2 + y_1y_2 + 0 \cdot y_2^2 + \frac{1}{6}y_2^3 + o(|y|^3), \ y \to 0$$

Frage: Falls $f \in C^{\infty}(D)$ existiert, dann

$$f(x+y) = f(x) * \sum_{k=1}^{n} \frac{1}{k!} f^{(k)}(x) y^k + o(|y|^k) \quad \text{für } k = 1, \dots, n$$
 (27)

Definition (Taylorreihe)

Rechte Seite in (27) heißt Taylorreihevon f in x.

■ Beispiel 10.29

Sei $f: \mathbb{C} \to \mathbb{C}$ mit $f(x) = \sin x$ für x = 0, dann

$$f^{(k)}(0) = \begin{cases} 0 & k \text{ gerade} \\ (-1)^k & \text{für } k = 2l + 1 \end{cases}$$

 \Rightarrow (27) hat die folgende Form:

$$\sin y = y - \frac{y^3}{3!} + \frac{y^5}{5!} + \ldots = \sum (-1)^l \frac{y^{2l+1}}{(2l+1)!} \text{ für } l = 0, \ldots, \infty$$

Diese gilt $\forall y \in \mathbb{C}$ (vgl. Definition Sinus in Kap. 13), analog Cosinus

■ Beispiel 10.30

Sei $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0 \end{cases}$$

Nach Beispiel 10.4: $f \in C^{\infty}(\mathbb{R}), f^{(k)}(0) = 0 \ \forall k \in \mathbb{N}$

$$\stackrel{\textbf{(27)}}{\Longrightarrow} f(y) = 0) \ \forall y \Rightarrow \textbf{f}$$

 \Rightarrow (27) gilt <u>nicht</u> für alle $f \in C^{\infty}(D)$

Wiedeholung: Eine Reihe ist konvergent, falls die Folge der Partialsummen konvergieren, und damit (27) gilt, muss die Reihe auch gegen f(x + y) konvergieren!

Satz 10.31 (Taylorreihe)

Sei $f: D \subset K^n \to K^m$, D offen, $f \in C^{\infty}(D, K^m)$, $x \in D$, $B_r(x) \subset D$. Falls

$$\lim_{k \to \infty} R_k(y) = 0 \quad \forall y \in B_r(x)$$

 \Rightarrow Taylorformel (27) gilt $\forall y \in B_r(x)$ und f heißt analytisch in x.

Beweis. Folgt direkt aus Theorem 10.23

■ Beispiel 10.32

sin, cos, exp : $\mathbb{C} \to \mathbb{C}$ sind jeweils analytisch in allen $x \in \mathbb{C}$ und (27) gilt jeweils $\forall y \in \mathbb{C}$ (klar für x = 0) aus der Definition, für $x \neq 0$ erfolgt der Nachweis als ÜA / Selbststudium.

11. Extremwerte

11.1. Lokale Extrema ohne Nebenbedingung

Betrachte $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D offen, f diffbar.

Zielraum \mathbb{R}

notwendige Bedingung: (Theorem I.4.1): f hat lokales Minimum / Maximum in $x \in D \Rightarrow f'(x) = 0$

Frage: Hinreichende Bedingung?

Definition (definit, semidefinit, indefinit)

 $f^{(k)}(x)$ für $k \ge \text{heißt positiv definit (negativ definit), falls}$

$$f^{(k)}(x)y^k > 0 \ (<0) \quad \forall y \in \mathbb{R} \setminus \{0\}$$
 (1)

und positiv (negativ) semidefinit mit \geq (\leq).

 $f^{(k)}$ heißt indefinit, falls

$$\exists y_1, y_2 \in \mathbb{R}^n \setminus \{0\} : f^{(k)}(x)y_1^k < 0 < f^{(k)}(x)y_2^k \tag{2}$$

<u>Hinweis:</u> k ungerade, $f^{(k)}(x) \neq 0 \Rightarrow f^{(k)}(x)$ indefinit, denn $f^{(k)}(-y)^k = (-1)^k f^{(k)}(x) y^k$

Satz 11.1 (Hinreichende Extremwertbedingung)

Sei $f: D \subset \mathbb{R}^n \to \mathbb{R}$, D offen, $f \in C^k(D, \mathbb{R})$, $x \in D$, $k \geq 2$ und sei

$$f'(x) = \dots = f^{(k-1)} = 0$$
 (3)

Dann:

- a) f hat strenges lokales Minimum (Maximum), falls $f^{(k)}(x)$ positiv (negativ) definit
- b) f hat weder Minimum noch Maximum, falls $f^{(k)}(x)$ indefinit.

▶ Bemerkung 11.2

1) Falls $f^{(k)}(x)$ positiv (negativ) semidefinit \Rightarrow keine Aussage möglich.

(betrachte $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x_1, x_2) = x_1^2 + x_2^4$, hat Minimum in x = 0, aber $f(x_1, x_2) = x_1^2 + x_2^3$ hat weder Minimum noch Maximum in x = 0)

2) b) liefert: $f^{(k)}(x) \neq 0$ positiv (negativ) semidefinit ist notwendige Bedingung für ein lokales Minimum bzw. Maximum, falls (3) gilt

Beweis.

zu a) Für Minimum (Maximum analog):

Sei $f^{(k)}(x)$ positiv definite Abbildung, $y \to f^{(k)}(x)y^k$ stetige Abbildung (folgt aus Bemerkung 10.8). Sei $S = \{y \in \mathbb{R}^n \mid |y| = 1\}$ ist kompakt

$$\stackrel{??}{\Rightarrow} \quad \exists \tilde{y} \in S : f^{(k)}(x)y^k \ge f^{(k)}(x)\tilde{y}^k =: \gamma > 0 \ \forall y \in S$$

 $\xrightarrow{\text{Theorem 10.23}} f(x+y) = f(x) + \frac{1}{k!} f^{(k)}(x) y^k + o(|y|^k)$

$$= f(x) + \frac{1}{k!} |y|^k \left(\underbrace{f^{(k)}(x) \left(\frac{y}{|y|}\right)^k}_{\geq \gamma} + \underbrace{o(1)}_{\geq -\frac{\gamma}{2}} \right), |y| \to 0$$

 $\geq f(x) + \frac{\gamma}{2k!} \cdot |y|^k \ \forall y \in B_r(0) \ \text{falls } y \in B_r(0), \ r > 0 \ \text{klein}$

 \Rightarrow x ist strenges, lokales Minimum \Rightarrow Behauptung

zu b) Wähle y_1, y_2 gemäß (2), oBdA $|y_1| = |y_2| = 1$

$$\xrightarrow{\text{analog zu a)}\atop |t| \text{ klein}} f(x+ty_1) = f(x) + \frac{t^k}{k!} \left(f^{(k)}(x) y_1^k + o(1) \right) < f(x),$$

$$f(x+ty_2) = f(x) + \frac{t^k}{k!} \left(f^{(k)}(x) y_2^k + o(1) \right) > f(x)$$

 $\Rightarrow \text{Behauptung}$

Test Definitheit in Anwendungen: k = 2 wichtig (vgl. lineare Algebra).

$$f''(x) \in L^2(\mathbb{R}^2, \mathbb{R}) \cong \mathbb{R}^{n \times n}$$
 (Hesse-Matrix)

$$f''(x)y^2 = f''(x)(y,y) = \langle (\text{Hess} f)(x)y, y \rangle$$
, vgl. Beispiel 10.10

Matrix $A \in \mathbb{R}^{n \times}$ ist

- positiv (negativ) definit \Leftrightarrow alle Eigenwerte sind positiv (negativ)
- indefinit $\Rightarrow \exists$ positive und negative Eigenwerte

11.2. Sylvester'sches Definitheitskriterium

Eine symmetrische Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ ist positiv definit gdw. alle führenden Hauptminoren positiv sind, d.h.

$$\alpha_k := \det \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1k} \\ \vdots & & \vdots \\ \alpha_{k1} & \dots & \alpha_{kk} \end{pmatrix} > 0 \quad \forall k \in \{1, \dots, n\}$$

beachte: A negativ definit \Leftrightarrow -A positiv definit

Spezialfall n = 2: • det $A < 0 \Leftrightarrow$ indefinit

- $\alpha_1 < 0$ und det $A > 0 \Leftrightarrow$ negativ definit
- Beispiel 11.3

Sei
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 mit $f(x_1, x_2) = x_1^2 + \cos x_2$

$$\Rightarrow f'(x_1, x_2) = (2x_1) - \sin x_2 = 0$$

 $\Rightarrow~x_1=0,\,x_2=k\cdot\pi,$ d.h. $\tilde{x}=(0,k\cdot\pi)$ für $k\in\mathbb{Z}$ sind Kandidaten für Extrema.

$$f''(x_1, x_2) = \begin{pmatrix} 2 & 0 \\ 0 & -\cos x_2 \end{pmatrix}$$
 $\Rightarrow f(\tilde{x}) = \begin{pmatrix} 2 & 0 \\ 0 & (-1)^{k+1} \end{pmatrix}$

entsprechend ergeben sich folgende Fälle:

- $\Rightarrow f''(\tilde{x})$ ist positiv definit für k ungerade $\Rightarrow f''(\tilde{x})$ ist indefinit für k gerade
- \Rightarrow lokales Minimum, \Rightarrow kein Extremum

11.3. Lokale Extrema mit Gleichungsnebenbedingung

Betrachte $f:D\subset\mathbb{R}^n\to\mathbb{R}$ diffbar, D offen, $g:D\subset\mathbb{R}^n\to\mathbb{R}$ diffbar

Frage:: Bestimmen von Extrema von f auf der Menge $G := \{x \in \mathbb{R} \mid g(x) = 0\}$, d.h. suche notwendige Bedingung (für hinreichende Bedingung sieh Vorlesung Optimierung)

Motivation: Für $m \ge 1$: notwendige Bedingung: $f'(\max)$ steht senkrecht auf der Niveaumenge $G \Rightarrow \exists \lambda \in \mathbb{R} : f'(x_{\max}) + \lambda g'(x_{\max}) = 0$

Satz 11.4 (Lagrange-Multiplikatorregel, notwendige Bedingung)

Seien $f:D\subset\mathbb{R}^n\to\mathbb{R},\,g:D\to\mathbb{R}^m$ stetig, diffbar, D offen und sei $x\in D$ lokales Extremum von f bezüglich G, d.h.

$$\exists r > 0 : f(x) \leq f(y) \quad \forall y \in B_r(x)$$

mit g(y) = 0.

Falls g'(x) regulär, d.h.

$$rang g'(x) = m, (4)$$

dann

$$\exists \lambda \in \mathbb{R}^m : f'(x) + \lambda^{\mathsf{T}} g'(x) = 0 \tag{5}$$

Definition (Lagrangescher Multiplikator)

 λ oben heißt Lagrangescher Multiplikator

▶ Bemerkung 11.5

- Offenbar nur für $m \leq n$
- \bullet x mit (4) heißt reguläres Extrema .
- Kandidaten für Extrema bestimmen: (5) liefert n Gleichungen für n+m Unbekannte (x,λ) , aber (5) mit g(x)=0 liefert n+m Gleichungen für (x,λ)

Beweis. Vgl. Literatur. \Box

■ Beispiel 11.6

Bestimme reguläre Extrema von f auf $G = \{g = 0\}$ mit

$$f: \mathbb{R}^3 \to \mathbb{R}, \ (x, y, z) \mapsto x^2 + y^2 + z^2$$
$$g: \mathbb{R}^3 \to \mathbb{R}^2, \ (x, y, z) \mapsto \begin{pmatrix} x^2 + 4y^2 - 1\\ z \end{pmatrix}$$

Betrachte $\lambda^{\mathsf{T}} = (\lambda_1, \lambda_2)$:

$$0 = f'(x, y, z) + \lambda^{\mathsf{T}} g'(x, y, z) = (2x, 2y, 2z) + \lambda^{\mathsf{T}} \cdot \begin{pmatrix} 2x & 8y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$0 = g(x, y, z)$$
(6)

Das heißt

$$2x + 2\lambda_1 x = 0$$

$$2y + 8\lambda_1 y = 0$$

$$2z + \lambda_2 = 0$$

$$x^2 + 4y^2 = 1$$

$$z = 0$$

 $\Rightarrow z = 0, \lambda_2 = 0, \text{ und}$

$$x(1+\lambda_1) = 0$$
 $y(1+4\lambda_1) = 0$ $x^2 + 4y^2 = 1$

falls: •
$$x \neq 0$$
: $\lambda_1 = -1$, $y = 0$, $x = \pm 1 \Rightarrow (\pm 1, 0, 0)$
• $x = 0$: $y = \pm \frac{1}{2}$, $\lambda_1 = -\frac{1}{1}$ $\Rightarrow (0, \pm \frac{1}{2}, 0)$ Kandidaten für reguläre Extrema

Offenbar ist rang g'(x, y, z) = 2 für alle Kandidaten.

Da G Ellipse in der x-y-Ebene ist, und f die Norm in's Quadrat, prüft man leicht: Minimum in $(0, \pm \frac{1}{2}, 0)$ und Maximum in $(\pm 1, 0, 0)$.

11.4. Globale Extrema mit Abstrakter Nebenbedinung

Betrachte $f: \overline{D} \subset \mathbb{R} \to \mathbb{R}$, D offen, f stetig auf \overline{D} , diffbar auf D.

Existenz: nach??:

D beschränkt $\xrightarrow{\overline{D} \text{ kompakt}} f$ besitzt auf \overline{D} ein Minimum und ein Maximum

Frage: Bestimme sogenannte globale Extremalstelle x_{\min} , x_{\max} .

Strategie:: a) Bestimmte lokale Extrema in D

- b) Bestimme globale Extrema auf ∂D
- c) Vergleiche Extrema aus a) und b)
- Beispiel 11.7

Sei
$$f(x_1, x_2) = x_1^2 + \cos x_2$$
 mit $D = (-1, 1) \times (0, 4)$ (vgl. Beispiel 11.3).

Lokale Extrema in D: $f(0,\pi) = -1$ Minimum.

Globale Extrema auf ∂D :

- $x_1 = \pm 1$: Betrachte $x_2 \to f(\pm 1, x_2) = 1 + \cos x_2$ auf [0, 4]. Offenbar $0 = f(\pm 1, \pi) < f(\pm 1, x_2) < f(\pm 1, 0) = 2$
- $x_2 = 0$: $x_1 \to f(x_1, 0) = x_1^2 + 1$ auf [-1, 1]Offenbar $1 = f(0, 0) \le f(x_1, 0) \le f(\pm 1, 0) = 2$
- $x_2 = 4$: Betrachte $x_1 \to x_1^2 + \cos 4$ mit [-1, 1] $\cos 4 \le f(0, 4) \le f(x_1, 4) \le f(\pm 1, 4) = 1 + \cos 4$

Vergleich liefert: $x_{\min} = (0, \pi), x_{\max} = (\pm 1, 0)$

Hinweis: Bentze für Extrema evtl. partielle Ableitungen

$$f_{x_2}(\pm 1, x_2) = -\sin x_2 = 0$$
bzw. $f_{x_1}(x_1, 0) = 2x_1 = 0$ usw.

12. Inverse und implizite Funktionen

Frage 1: Sei $f:D\subset K^n\to K^m$ diffbar, $x\in D$. Wann existiert – zumindest lokal – diffbar Umkehrfunktion?

Vorbetrachtung: f ist dann (lokal) Diffeomorphismus und man hat in Umgebung von x

- f^{-1} existiert $\Rightarrow f$ injektiv
- f^{-1} diffbar, z.B. $y \in K^m \Rightarrow B_{\varepsilon}(y) \subset f(K^m)$ für ein $\varepsilon > 0 \Rightarrow (y \text{ innerer Punkt})$ f surjektiv

Falls f linear, d.h. f(x) = Ax und $A \in L(K^n, K^m) \Rightarrow n = m$ und A regulär.

Für allgemeine Funktion sollte dann gelten: n = m, f'(x) regulär (sonst ungewiss)

■ Beispiel 12.1

Sei $f_j: \mathbb{R} \to \mathbb{R}$ mit $f_j(x) = x^j$ (in Umgebung von 0). f_1 und f_3 sind invertierbar, f_2 nicht. wobei: $f'_1(0) = 1 \ (\neq 0)$ regulär, $f'_2(0) = 0 = f'(0) \Rightarrow$ nicht regulär

■ Beispiel 12.2

Se $f: \mathbb{R} \to \mathbb{R}$ und

$$f(x) = \begin{cases} x + x^2 \cos \frac{\pi}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

 $\Rightarrow f'(0) = 1$, d.h. regulär

<u>aber:</u> f in keiner Umgebung von x = 0 invertierbar (Selbststudium / ÜA) (Problem: f' nicht stetig in x = 0)

Lemma 12.3

Sei $f:U\subset K^n\to V\subset K^m,\,U,\,V$ offen, f Diffeomorphismus mit $f(U)=V\Rightarrow n=m$

Beweis. Sei $y = f(x) \in V$ für $x \in U$

$$\Rightarrow f^{-1}(f(x)) = x, f(f^{-1}(y)) = y$$

$$\xrightarrow{\text{Ketten}_{5}} \underbrace{(f^{-1})'(f(x))}_{n \times m} \cdot \underbrace{f'(x)}_{m \times n} = \mathrm{id}_{K^{n}}, f'(x) \cdot (f^{-1})'(y) = \mathrm{id}_{K^{m}}$$

$$\Rightarrow \Re \left((f^{-1})'(y) \right) = K^{n} \Rightarrow n \leq m \text{ sowie}$$

$$\Re \left((f'(x)) \right) = K^{m} \Rightarrow m \leq n$$

$$n = m$$

Frage 2: Lösen von Gleichungen:

Sei $f: D \subset K^n \times K^l \to K^m$, $(x, y) \in K^n \times K^l$.

Bestimme Lösungen y in Abhängigkeit vom Parameter x für folgende Gleichung:

$$f(x,y) = 0 (1)$$

Sinnvolle Anwendung:

- Lösung y = g(x) hängt stetig oder Differenzierbar vom Parameter x ab
- Beispiel 12.4

Sei $f: D \subset \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ diffbar.

Betrachte die Niveaumenge

$$N = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = 0\} \quad (\cong \text{Kurve})$$

Im Allgemeinen mehrere Lösungen von (1) für \tilde{x} fest.

 \Rightarrow betrachte lokale Lösung, d.h. fixiere $(x_0,y_0)\in N$ und suche Lösungen in der Umgebung.

Was passiert bei (x_j, y_j) ?

- j = 1: Kreuzungspunkt: \Rightarrow keine eindeutige Lösung (offenbar f'(x, y) =)
- j = 2: kein eindeutiges y (offenbar f'(x, y) = 0)
- j=3: eindeutige Lösung, aber Grenzfall mit $f_y(x_3,y_3)=0$
- j=4: eindeutige Lösung y und offenbar $f_y(x_4,y_4)\neq 0$

Vermutung

lokale Lösung existiert, falls $f_y(x_0, y_0)$ regulär

allgemein

- a) beste lokale Lösungen, d.h. in Umgebung einer Lösung $(x_0, y_0) \in D$
- b) lokal eindeutige Lösung y erforderlich $\forall x$
 - $\Rightarrow y \to f(x,y)$ muss invertierbar sein für festes x
 - \Rightarrow I.A. nur für l=m möglich (vgl. Lemma 12.3). Betrachte z.B. f affin linear in y, d.h. (1) hat die Form A(x)y=b(x) mit $A(x)\in L(K^l,K^m)$, $b(x)\in K^m$
 - \Rightarrow betrachte somit $f:D\subset K^n\times K^m\to K^m$
 - \Rightarrow für gegebenes x hat (1) m skalare Gleichungen mit m skalaren Unbekannten

$$f^{j}(x_{1},...,x_{n},y_{1},...,y_{n})=0, \quad j=1,...,n$$

 \Rightarrow Faustregel: wie bei linearen Gleichungen benötigt man m skalare Gleichungen zur Bestimmung von m skalaren Unbekannten. (mehrere Gleichungen: in der Regel <u>keine</u> Lösung, weniger Gleichungen: i.A. viele Lösungen)

Definition

u[(lokale) Lösung] Funktion $\tilde{y}: \tilde{D} \subset K^n \to K^m$ heißt (lokale) Lösung von (1) in x auf \tilde{D} falls

$$f(x, \tilde{y}(x)) = 0 \quad \forall x \in \tilde{D}$$
 (2)

Man sagt: (1) beschreibt Funktion \tilde{y} implizit (d.h. nicht explizit) häufig schreibt man y(x) statt $\tilde{y}(x)$

Sei $f: D \subset K^n \times K^m \to K^m$, D offen, $f_x(x,y)$ bzw. $f_y(x,y)$ ist Ableitung der Funktion $x \to f(x,y)$ (für y feste) im Punkt x bzw. von $y \to f(x,y)$ (x fest) im Punkt y heißt partielle Ableitung von f in (x,y) bezüglich x. bzw. y

Theorem 12.5 (Satz über implizite Funktionen)

Sei $f: D \subset \mathbb{R}^m \times K^m \to K^m$, D offen, f stetig und

- a) $f(x_0, y_0) = 0$ für ein $(x_0, y_0) \in D$
- b) die Partielle Ableitung $f_y: D \to L(K^m, K^n)$ existiert, ist stetig in (x_0, y_0) und $f_y(x_0, y_0)$ ist regulär

Dann:

1) $\exists r, \rho > 0$: $\forall x \in B_r(x_0) \exists ! y = \tilde{y} \in B_\rho(y_0) \text{ mit } f(x, \tilde{y}(x)) = 0 \text{ und } \tilde{y} : B_r(x_0) \to B_\rho(y_0) \text{ stetig}$ (beachte: $B_r(x_0) \times B_\rho(y_0) \subset D$) 2) falls zusätzlich $f: D \to K^m$ stetig diffbar \Rightarrow auch \tilde{y} stetig diffbar auf $B_r(x_0)$ mit

$$\tilde{y}'(x) = -\underbrace{f_y(x, \tilde{y}(x))^{-1}}_{m \times n} \cdot \underbrace{f_x(x, \tilde{y}(x))}_{m \times n} \in K^{m \times n}$$

 $\mathrm{GL}(n,K):=\{A\in L(K^n,K^n)\mid A \text{ regul\"ar}\}$ ist die allgemeine lineare Gruppe .

Lemma 12.6

- a) Sei $A \in GL(n, K)$, $B \in L(K^n, K^n)$, $||B A| < \frac{1}{||A^{-1}||}$ $\Rightarrow B \in GL(n, K)$
- b) $\varphi: \mathrm{GL}(n,K) \to \mathrm{GL}(n,K)$ mit $\varphi(A) = A^{-1}$ ist stetig.

Hinweis: a) liefert, dass $GL(n, K) \subset L(K^n, K^n)$ offen ist

Beweis (Lemma 12.6).

zu (a) Es ist

$$\|\operatorname{id} - A^{-1}B\| = \|A^{-1}(A - B)\| \le \|A^{-1}\| \cdot \|A - B\| < 1$$
$$|(\operatorname{id} - A^{-1}B)x| \le \|\operatorname{id} - A^{-1}B\| \cdot |x| < |x| \quad \forall x \ne 0$$

$$(3)$$

Sei $A^{-1}Bx = 0$ für $x \neq 0 \stackrel{(3)}{\Longrightarrow} I \Rightarrow C := A^{-1}B$ regulär $\Rightarrow B = AC$ regulär

zu (b) Fixiere $A \in GL(n, K)$ und betrachte $B \in GL(n, K)$ mit

$$||B - A|| \le \frac{1}{2||A^{-1}||} \tag{4}$$

Beweis (Theorem 12.5). Setze $\varphi(x,y) := y - f_y(x_0,y_0)^{-1} f(x,y) \ \forall (x,y) \in D$

a) Offenbar existiert die partielle Ableitung $\varphi_y(x,y) = \mathrm{id}_{K^m} - f_y(x_0,y_0)^{-1} f_y(x,y) \ \forall (x,y) \in D$ Da f_y stetig in (x_0,y_0) und $\varphi(x_0,y_0) = 0$ existiert konvexe Umgebung $U(x_0,y_0) \subset D$ von (x_0,y_0) und

$$\|\varphi_y(x,y)\| < \frac{1}{2} \quad \forall (x,y) \in U(x_0,y_0)$$

Für feste $(x,y),\,(x,z)\in U(x_0,y_0)$ liefert der Schrankensatz ein $\tau\in(0,1)$ mit

$$|\varphi(x,y) - \varphi(x,z)| \le \|\varphi_y(x,\underbrace{z + \tau(y-z)}_{\in U(x_0,y_0)})\||y-z| \le \frac{1}{2}|y-z| \quad \forall (y,z), (x,z) \in U(x_0,y_0)$$
 (5)

Nun existiert $\rho > 0$: $\overline{B_{\rho}(x_0) \times B_{\rho}(y_0)} \subset U(x_0, y_0)$.

Da f stetig, $f(x_0, y_0) = 0$ existiert r > 0:

$$||f_y(x_0, y_0)^{-1} f(x, y_0)|| < \frac{1}{2} \rho \quad \forall x \in B_r(x_0)$$

 $\Rightarrow |\varphi(x,y) - y_0| \le |\varphi(x,y) - \varphi(x,y_0)| + |\varphi(x,y_0) - y_0|$

$$\stackrel{(5)}{\leq} \frac{1}{2} |y - y_0| + ||f_y(x_0, y_0)^{-1}|| \cdot |f(x, y_0)| < \rho \quad \forall x \in B_r(x_0), \ y \in \overline{B_\rho(y_0)}$$

$$\Rightarrow \varphi(x, \cdot) : \overline{B_{\rho}(y_0)} \to B_{\rho}(y_0) \quad \forall x \in B_r(x_0)$$
 (6)

und $\varphi(x,\cdot)$ ist kontraktiv nach (5) $\forall x \in B_r(x_0)$

 $\stackrel{??}{\Longrightarrow} \forall x \in B_r(x_0) \; \exists ! \; \text{Fixpunkt:} \; y = \tilde{y}(x) \in \overline{B_\rho(y_0)} \; \text{mit}$

$$\tilde{y}(x) = \varphi(x, \tilde{y}(x)) \tag{7}$$

Offenbar (7) $\Leftrightarrow f_y(x_0, y_0)^{-1} f(x, \tilde{y}(x)) = 0 \Leftrightarrow f(x, \tilde{y}(x)) = 0$

Wegen (6) und (7) ist $\tilde{y}(x) \in B_{\rho}(y_0)$

 \Rightarrow Behauptung (1) bis auf Stetigkeit von \tilde{y}

b) Zeige: \tilde{y} ist stetig. Für $x_1, x_2 \in B_r(x_0)$ gilt:

$$\begin{split} |\tilde{y}(x_2) - \tilde{y}(x_1)| &\stackrel{(7)}{=} |\varphi(x_2, \tilde{y}(x_2)) - \varphi(x_1, \tilde{y}(x_1))| \\ &\leq |\varphi(x_2, \tilde{y}(x_2)) - \varphi(x_2, \tilde{y}(x_1))| + |\varphi(x_2, \tilde{y}(x_1)) - \varphi(x_1, \tilde{y}(x_1))| \\ &\stackrel{(5)}{\leq} \frac{1}{2} |\tilde{y}(x_2) - \tilde{y}(x_1)| + ||f_y(x_0, y_0)^{-1}|| \cdot |f(x_2, \tilde{y}(x_1)) - f(x_1, \tilde{y}(x_1))|| \end{split}$$

$$\Rightarrow |\tilde{y}(x_2) - \tilde{y}(x_1)| \le 2||f_y(x_0, y_0)^{-1}|||f(x_2, \tilde{y}(x_1)) - f(x_1, \tilde{y}(x_1))|$$
(8)

Da f stetig folgt \tilde{y} stetig auf $B_r(x_0)$

c) Zeige 2): Fixiere $x \in B_r(x_0), z \in K^n$

Da f diffbar und \tilde{y} Lösung, gilt für |t| klein nach Satz I.2.1 b):

$$0 = f(x+t \cdot z, \tilde{y}(x+tz)) - f(x, \tilde{y}(x)), \xrightarrow{t \to 0} 0$$

$$= Df(x, \tilde{y}) \cdot \begin{pmatrix} tz \\ \tilde{y}(x+tz) - \tilde{y}(x) \end{pmatrix} + \underbrace{r(t)}_{\underline{t \to 0}} \cdot \begin{pmatrix} tz \\ \tilde{y}(x+tz) - \tilde{y}(x) \end{pmatrix}$$

$$\Rightarrow 0 = f_x(x, \tilde{y}(x)) \cdot (tz) + f_y(x, \tilde{y}(x)) \cdot (\tilde{y}(x+tz) - \tilde{y}(x)) + \underbrace{r(t)}_{\underline{t \to 0}} \cdot \begin{pmatrix} tz \\ \tilde{y}(x+tz) - \tilde{y}(x) \end{pmatrix}$$

$$(9)$$

Wegen (8) existiert c > 0:

$$\begin{aligned} |\tilde{y}(x+tz) - \tilde{y}(x)| &\leq c|f(x+tz,\tilde{y}(x)) - f(x,\tilde{y}(x))| = c|f_x(x,\tilde{y}(x)) \cdot (tz) + o(t)| \\ &\leq c \left(||f_x(x,\tilde{y}(x))|| \cdot |z| \cdot |t| + o(1) \cdot |t| \right) \\ &\leq c \left(||f_x(x,\tilde{y}(x))|| \cdot |z| + o(1) \right) |t| \quad \text{für } |t| \text{ klein} \end{aligned}$$

 $\Rightarrow R(t) = o(t), t \to 0$

Wegen $f_y(x_0, \tilde{y}(x_0)) \in GL(m, K)$, f_y stetig, \tilde{y} stetig

 $\xrightarrow{\text{Lemma } 12.6}$ für eventuell kleineres r > 0 als oben:

$$f_y(x, \tilde{y}(x)) \in GL(m, K) \quad \forall x \in B_r(x_0)$$

$$\stackrel{(9)}{\Longrightarrow} \tilde{y}(x+tz) - \tilde{y}(x) = -f_y(x, \tilde{y}(x))^{-1} \cdot f_x(x, \tilde{y}(x)) \cdot (tz) + o(t), \ t \to 0$$

$$\Rightarrow \tilde{y}'(x, z) \text{ existiert } \forall z \in K^n \text{ mit}$$

$$\tilde{y}'(x,z) = -\underbrace{f_y(x,\tilde{y}(x))^{-1} \cdot f_x(x,\tilde{y}(x))}_{\text{stetig bezüglich } x, \text{ da } f \in C^1 \text{ nach Lemma } 12.6}$$
(10)

 \Rightarrow Alle partiellen Ableitungen \tilde{y}_{x_i} sind stetig auf $B_r(x_0)$

 $\xrightarrow{\text{Theorem I.4.14}} \tilde{y}$ stetig diffbar auf $B_r(x_0)$

Wegen $\tilde{y}'(x) \cdot z = \tilde{y}'(x;z)$ folgt aus (10) die Formel für $\tilde{y}'(t)$

<u>Hinweis:</u> Sei $f = (f^1, ..., f^m) : D \subset K^n \times K^n \to K^m$, D offen und seien alle partiellen Ableitungen $f^i_{y_j}$ stetig in y (d.h. $y \to f^i_{y_j}(x, y)$ stetig für x fest $\forall i = 1, ..., m$)

$$\xrightarrow{\text{Theorem I.4.14}} f_y(x,y) = \begin{pmatrix} f_{y_1}^1(x,y) & \dots & f_{y_m}^1(x,y) \\ \vdots & & \vdots \\ f_{y_1}^m(x,y) & \dots & f_{y_m}^m(x,y) \end{pmatrix}$$

Analog erhält man $f_x(x,y) \in K^{m \times n}$.

Falls alle $f_{x_j}^j$, $f_{y_l}^i$ stetig sind in x und $y \Rightarrow f$ diffbar mit

$$f'(x,y) = (f_x(x,y) \mid f_y(x,y))$$

■ Beispiel 12.7

Sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $f(x,y) = x^2(1-x^2) - y^2 \ \forall x,y \in \mathbb{R}$.

Offenbar ist

$$f_x(x,y) = 2x(1-x^2) - 2x^3 = 2x - 4x^3$$

$$f_y(x,y) = -2y$$

Suche Lösungen von f(x, y) = 0

- $y_0 = 0$: $f_y(x_0, 0) = 0$ nicht regulär \Rightarrow Theorem nicht anwendbar
- $y_0 \neq 0$: $f_y(x_0, y_0) \neq 0$, also regulär. Sei $f(x_0, y_0) = 0 \xrightarrow{\text{Beispiel 12.5}}$ anwendbar, z.B. $(x_0, y_0) = (\frac{1}{3}, \frac{2 \cdot \sqrt{2}}{9})$ ist Nullstelle von f

 $\Rightarrow \exists r, \rho > 0$, Funktion $\tilde{y}: f(x, \tilde{y}(x)) = 0 \ \forall x \in B_r(\frac{1}{3})$ $\tilde{y}(\frac{1}{3}) = \frac{2 \cdot \sqrt{2}}{9}$ und $\tilde{y}(x)$ ist einzige Lösung um $B_{\rho}(\frac{2\sqrt{2}}{9})$

$$\tilde{y}'\left(\frac{1}{3}\right) = -f_y\left(\frac{1}{3}, \frac{2\sqrt{2}}{9}\right)^{-1} \cdot f_x\left(\frac{1}{3}, \frac{\sqrt{2\sqrt{2}}}{9}\right)$$
$$= -\left(-\frac{4\sqrt{2}}{9}\right)^{-1} \cdot \left(\frac{2}{3} - \frac{4}{27}\right) = \frac{7}{6\sqrt{2}} \approx 0.8$$

- $y_0 = 0$, $x_0 = 1$: hier ist $f_x(1,0) = -2$, also regulär

 Beispiel 12.5 \exists lokale Lösung $\tilde{x}(y)$: $f(\tilde{x}(y), y) = 0 \ \forall y \in B_{\tilde{r}}(0)$ und $\tilde{x}'(0) = 0$
- $y_0 = 0$, $x_0 = 0$: $f_x(0,0) = f_y(0,0) = 0$ nicht regulär $\xrightarrow{\text{Beispiel 12.5}} \text{ in keiner Variante Anwendbar.}$

■ Beispiel 12.8

Betrachte nicht-lineares Gleichungssystem:

$$2e^{u} + vw = 5$$

$$v\cos u - 6u + 2w = 7$$
(11)

Offenbar (u, v, w) = (0, 1, 3) Lösung.

Faustregeln: 2 Gleichungen, 3 Unbekannte \Rightarrow "viele" Lösungen, 1 Freiheitsgrad \Rightarrow Suche Lösung der Form (u,v)=g(w) nahe obiger Lösung für $g:\mathbb{R}\to\mathbb{R}^2$

Betrachte mit $x := w, g = (y_1, y_2) := (u, v)$ Funktion

$$f: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto \begin{pmatrix} 2e^{y_1} + y_2x - 5\\ y_2\cos y - 1 - 6y_1 + 2x - 7 \end{pmatrix}$$

$$f(x,y) = \begin{pmatrix} 2e^{y_1} & x\\ & & \end{pmatrix}$$

$$\Rightarrow f_y(x,y) = \begin{pmatrix} 2e^{y_1} & x \\ -y_2\sin y_1 - 6 & \cos y_1 \end{pmatrix}$$

$$\Rightarrow f_y((3,0,01)) = \begin{pmatrix} 2 & 3 \\ -6 & 1 \end{pmatrix} \text{ regul\"ar, det} = 20$$

 $\xrightarrow{\text{Beispiel 12.5}} \exists \text{ Funktion } g: (3-r,3+r) \to B_{\rho}((0,1)) \text{ mit}$

$$f(x, g(x)) = 0,$$
 $g(3) = (0, 1)$

Insbesondere (u, v, w) = (g(w), w) sind weitere Lösungen von (11).

$$g'(3) = -f_y(3, (0, 1))^{-1} \cdot f_0(3, (0, 1)) = -\begin{pmatrix} 2 & 3 \\ -6 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = -\frac{1}{20} \begin{pmatrix} 1 & -3 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{2} \end{pmatrix}$$

Zurück zu Frage 1: Wann hat $f:D\subset K^n\to K^n$ eine diffbar Umkehrfunktion?

Betrachte Gleichung f(x)-y=0. Falls diese Gleichung nach x auflösbar, d.h. $\exists g:K^n\to K^n$ mit $f(g(y)) = y \ \forall y \Rightarrow g = f^{-1}$

Theorem 12.9 (Satz über inverse Funktionen)

Sei $f:U\subset K^n\to K^n$, U offen, f stetig diffbar, f'(x) regulär für ein $x_0\in U$

 \Rightarrow Es existiert eine offene Umgebung $U_0 \subset U$ von x_0 , sodass $V_0 := f(U_0)$ offene Umgebung von $y_0 := f(x_0)$ ist, und die auf U_0 eingeschränkte Abbildung $f: U_0 \to V_0$ ist Diffeomorphismus.

Satz 12.10 (Ableitung der inversen Funktion)

Sei $f: D \subset K^n \to K^n$, D offen, f injektiv und diffbar, f^{-1} diffbar in $y \in \text{int } f(D)$

$$\Rightarrow (f^{-1})'(y) = f'(f^{-1}(y))^{-1}$$
(12)

(bzw. $(f^{-1})'(y) = f'(x)^{-1}$ falls y = f(x))

Spezialfalln = m = 1: $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$

Beweis (Beispiel 12.9). Betrachte $\tilde{f}: D \times K^n \to K^n$ mit $\tilde{f}(x,y) = f(x) - y$.

Offenbar ist \tilde{f} stetig, $\tilde{f}(x_0, y_0) = 0$ und $\tilde{f}_x(x, y) = f'(x)$, $f_y(x, y) = -\mathrm{id}_{K^n} \ \forall (x, y)$

 $\Rightarrow \tilde{f}_x, \tilde{f}_y \text{ stetig} \Rightarrow \tilde{f} \text{ stetig diffbar}$

Nach Voraussetzung $\tilde{f}_x(x_0, y_0) = f'(x_0)$ regulär

 $\xrightarrow{\text{Beispiel 12.5}} \exists r, \rho > 0 : \forall y \in B_r(y_0) \ \exists ! x = \tilde{x}(y) \in B_y(x_0) \ \text{mit } 0 = \tilde{f}(\tilde{x}(y), y) = f(\tilde{x}(y)) - y$

 \Rightarrow lokal inverse Funktion $f^{-1} = \tilde{x}$ existiert auf $B_r(y_0) =: V_0$ und ist stetig diffbar.

Setzte $U_0 := f^{-1}(V_0) = \underbrace{\{x \in D \mid f(x) \in V_0\}} \cap B_{\rho}(x_0)$ offene Umgebung von x_0

$$\Rightarrow f(U_0) = V_0 \Rightarrow f: U_0 \rightarrow V_0 \text{ ist Diffeomorphismus}$$

Beweis (Beispiel 12.10). f^{-1} existiert, f diffbar, f^{-1} diffbar in $y = f(x), x \in D$.

Wegen $f(f^{-1}(y)) = y$, $f^{-1}(f(x)) = x$ folgt

$$f'(f^{-1}(y)) \cdot (f^{-1})'(y) = \mathrm{id}_{K^n},$$
 $(f^{-1})'(y) = f'(f^{-1}(y)) = \mathrm{id}_{K^n}$

$$\Rightarrow f'(f^{-1}(y))^{-1} = (f^{-1})(y)$$

Als Folgerung eine globale Aussage:

Satz 12.11

Sei $f:D\subset K^n\to K^n,\,D$ offen, f stetig diffbar, f'(x) regulär $\forall x\in D$

- $\Rightarrow \quad \text{(a) (Satz "uber offene Abbildungen)} \\ f(D) \text{ ist offen}$
 - (b) (Diffeomorphiesatz) $f \text{ injektiv} \Rightarrow f: D \rightarrow f(D) \text{ ist Diffeomorphismus}$

Beweis.

zu a) Sei
$$y_0 \in f(D) \Rightarrow x_0 \in D : y_0 = f(x_0)$$

$$\xrightarrow{\text{Beispiel 12.9}} \exists \text{ Umgebung } V_0 \subset f(D) \text{ von } y_0$$

$$\xrightarrow{y_0 \text{ beliebig}} f(D) \text{ offen}$$

zu b) Offenbar existiert $f^{-1}:f(d)\to D$

Lokale Eigenschaften wie Stetigkeit und diffbarkeit folgen aus Theorem 12.9

■ Beispiel 12.12

Sei
$$f(x) = a^x \ \forall x \in \mathbb{R} \ (a > 0, \ a \neq 1)$$

$$\xrightarrow{\text{Beispiel I.2.18}} f'(x) = a^x \cdot \ln a, \ f' \text{ stetig}$$

Offenbar $f^{-1}(y) = \log_a y \ \forall y > 0, \ f'(x) \neq 0, \ d.h.$ regulär $\forall x \in \mathbb{R} \xrightarrow{\text{Beispiel 12.11}} f : \mathbb{R} \to \mathbb{R}_{<0}$ ist Diffeomorphismus und

$$(\log_a y)' = (f^{-1})(y) \stackrel{y=f(x)}{=} \frac{1}{f'(x)} = \frac{1}{a^x \ln a} = \frac{1}{y \ln a} \quad \forall y > 0$$

(vgl. Beispiel I.2.19)

■ Beispiel 12.13

Sei
$$f(x) = \tan x \ \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Beispiel I.2.21
$$(\tan x)' = \frac{1}{\cos^2 x} \neq 0 \ \forall x, \text{ stetig}$$

Beispiel 12.11 \Rightarrow arctan : $\mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ ist Diffeomorphismus und

$$(\arctan y)' = \frac{1}{(\tan x)'} = \cos^2 x = \frac{1}{\tan^2 x + 1} = \frac{1}{1 + y^2} \quad \forall y \in \mathbb{R}$$

■ Beispiel 12.14 (Polarkoordinaten im \mathbb{R}^2)

$$x = r \cdot \cos \varphi \qquad \qquad y = r \cdot \sin \varphi$$

Sei $f: \mathbb{R}_{\geq 0} \times \mathbb{R} \to \mathbb{R}^2$ mit

$$f(r,\varphi) = \begin{pmatrix} r \cdot \cos \varphi \\ r \cdot \sin \varphi \end{pmatrix}$$

Offenbar stetig diffbar auf $\mathbb{R}_{>0} \times \mathbb{R}$ mit

$$f'(r,\varphi) = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$

Wegen det $f'(x) = r(\cos^2 \varphi + \sin^2 \varphi) = r$ ist $f'(r, \varphi)$ regulär $\forall r, \varphi \in (\mathbb{R}_{>0} \times \mathbb{R})$ Beispiel 12.9 f ist lokal Diffeomorphismus, d.h. für jedes $(r_0, \varphi_0) \in \mathbb{R}_{>0} \times \mathbb{R}$ existiert Umgebung U_0 , sodass $f: U_0 \to V_0 := f(U_0)$ Diffeomorphismus ist.

Für Ableitung $(f^{-1})'(x,y)$ mit $(x,y)=(r\cos\varphi,r\sin\varphi)$ gilt mit $r=\sqrt{x^2+y^2}$:

$$(f^{-1})'(x,y) = f'(r,\varphi)^{-1} = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\frac{\sin\varphi}{r} & \frac{\cos\varphi}{r} \end{pmatrix} = \begin{pmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \\ -\frac{y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{pmatrix} \quad \forall (x,y) \neq 0$$

<u>beachte:</u> $f: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R} \setminus \{0\}$ ist <u>kein</u> Diffeomorphismus, da f nicht injektiv (f periodisch in φ), <u>aber:</u> $f: \mathbb{R}_{>0} \times (\varphi_0, \varphi_0 + 2\pi) \to \mathbb{R}^2 \setminus \{\text{Strahl in Richtung } \varphi_0\}$ ist Diffeomorphismus für beliebiges $\varphi_0 \in \mathbb{R}$ nach Satz 12.11 (b).

folglich: Voraussetzung f injektiv in Satz 12.11 (b) ist wesentlich.

13. Funktionsfolgen

Betrachte $f_k: D \subset K^n \to K^m$, D offen, f_k diffbar für $k \in \mathbb{N}$

Frage:: Wann konvergiert $\{f_k\}_{k\in\mathbb{N}}$ gegen diffbare Funktion f mit $f'_k\to f'$

Wiederholung: alle f_k stetig, $f_k \to f$ gleichmäig auf $D \stackrel{??}{\Rightarrow} f$ stetig

Beispiel

Sei
$$f_k : \mathbb{R} \to \mathbb{R}$$
 mit $f_k(x) = \frac{\sinh^2 x}{k}$.

Wegen $|f_k(x)| \leq \frac{1}{k} \ \forall k \Rightarrow f_k \to f$ gleichmäßig auf \mathbb{R} für f = 0

Aber
$$f'_k(x) = k \cdot \cosh^2 x + f'(x) = 0$$

■ Beispiel 13.1

Sei
$$f_k : \mathbb{R} \to \mathbb{R}$$
 mit $f_k(x) = \sqrt{x^2 + \frac{1}{k}}$, wobei $f(x) = |x|$
 \Rightarrow alle f_k diffbar, $f_k \to f$ gleichmäßig auf $[-1, 1]$ und $(|f_k(x) - f(x)| \le f_k(0) \frac{1}{\sqrt{k}}$ aber f nicht diffbar

■ Beispiel 13.2

Sei
$$f_k : \mathbb{R} \to \mathbb{R}$$
 mit $f_k(x) = \frac{\sin kx}{x}$, $\Rightarrow f_k \to f(x) = 0$ gleichmäßig auf \mathbb{R} (da $|f_k(x)| \le \frac{1}{k} \forall x \in \mathbb{R}$) aber $f'_k(x) = \cos kx \not\to f'(x) = 0$

Satz 13.3 (Differentiation bei Funktionsfolgen)

Sei $f_K: D \subset K^n \to K^m$, D offen, beschränkt, f_k diffbar $\forall k$ und

- (a) $f'_k \to g$ gleichmäßig auf $B_r(x) \subset D$
- (b) $\{f_k(x_0)\}_k$ konvergiert für ein $x_0 \in B_r(x)$

 $\Rightarrow f_k \rightarrow : f$ gleichmäßig auf $B_r(x)$ und f ist diffbar auf $B_r(x)$ mit

$$f'_k(y) \to f'(y) \quad \forall y \in B_r(x)$$

<u>Hinweis:</u> Betrachte $f_k(x) := \frac{\sin x}{k} + k$ auf \mathbb{R} um zu sehen (g = 0), dass Voraussetzung (b) wichtig ist.

Beweis. Für $\varepsilon > 0 \; \exists k_0 \in \mathbb{N}$ mit

$$|f_k(x_0) - f_l(x_0)| < \varepsilon \quad \forall k, l \ge k_0 \text{ und}$$
 (1)

$$||g(y) - f_{k}^{y}|| < \varepsilon, ||f_{k}'(y) - f_{k}'(y)|| < \varepsilon \forall k, l \ge k_0, y \in B_r(x)$$
 (2)

Weiter gilt (eventuell für größeres k_0) $||g(z) - f'_k(z)|| < \varepsilon$ und

$$||f_k'(y) - f_l'(y)|| < \varepsilon \quad \forall k, l \ge k_0, \ z, y \in B_r(x)$$
(3)

Schrankensatz: $\forall z, y \in B_r(x), k, l \geq k_0 \; \exists \xi \in [y, z] \; \text{mit}$

$$||(f_k(y) - f_l(y)) - (f_k(z) - f_l(z))|| \le ||f_k'(\xi) - f_l'(\xi)|| \cdot |y - z| \le \varepsilon |y - z| < 2r \cdot \varepsilon$$
(4)

$$\Rightarrow |f_k(y) - f_l(y)| \le |(f_k(y) - f_l(y)) - (f_k(x_0) - f_l(x_0))| + |f_k(x_0) - f_l(x_0)|$$

$$\le 2r\varepsilon + \varepsilon = \varepsilon(2r+1) \quad y \in B_r(x), \ k, l \ge k_0$$
(5)

$$\Rightarrow \{f_k(y)\}_{k \in \mathbb{N}} \text{ ist } \underline{\text{CAUCHY-Folge}} \text{ (CF) in } K^m \ \forall y$$
$$\Rightarrow f_k(y) \xrightarrow{k \to \infty} : f(y) \ \forall y \in B_r(x)$$

$$\Rightarrow f_k(y) \longrightarrow : f(y) \ \forall y \in B_r(x)$$

Mit $l \to \infty$ in (5): $f_k \to f$ gleichmäßig auf $B_r(x)$

Fixiere $\tilde{x} \in B_r(x)$, $k = k_0$. Dann liefert $l \to \infty$ in (4)

$$|f(y) - f(\tilde{x}) - (f_k(y) - f_k(\tilde{x}))| \le \varepsilon |y - \tilde{x}| \quad \forall y \in B_r(x)$$

Da f_k diffbar $\exists \rho = \rho(\varepsilon) > 0$ mit

$$|f_k(y) - f_k(\tilde{x}) - f_k'(\tilde{x}) \cdot (y - \tilde{x})| \le \varepsilon |y - \tilde{x}| \quad \forall y \in B_\rho(\tilde{x}) \subset B_r(x)$$

$$\Rightarrow |f(y) - f(\tilde{x}) - g(\tilde{x}) \cdot (y - \tilde{x})| \leq |f(y) - f(\tilde{x})| + |f_k(y) - f_k(\tilde{x})|| + |f_k(y) - f_k(\tilde{x}) - f'_k(\tilde{x}) \cdot (y - \tilde{x})| + |f'_k(\tilde{x}) \cdot (y - \tilde{x}) - g(\tilde{x})(y - \tilde{x})| \leq \varepsilon |y - \tilde{x}| + \varepsilon |y - \tilde{x}| + \varepsilon |y - \tilde{x}| = 3\varepsilon |y - \tilde{x}| \quad \forall y \in B_{\rho}(\tilde{x})$$

$$(6)$$

Beachte: $\forall \varepsilon > 0 \ \exists \rho > 0 \ \text{und mit (6)}$

$$\Rightarrow f(y) - f(\tilde{x}) - g(\tilde{x}) \cdot (y - \tilde{x}) = o(|y - \tilde{x}|), \ y \to \tilde{x}$$

$$\Rightarrow f(\tilde{x}) = g(\tilde{x}) \xrightarrow{\tilde{x} \text{ beliebig}} \text{Behauptung}$$

13.1. Anwendung auf Potenzreihen

Sei $f: B_R(x_0) \subset K \to K$ gegeben durch eine Potenzreihe

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k \quad \forall x \in B_{\underbrace{R}}(x_0)$$
Konvergenzradius

Wiederholung: $R = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}}$

Frage: Ist f diffbar und kann man gliedweise differenzieren?

Satz 13.4

Sei $f: B_r(x_0) \subset K \to K$ Potenzreihe gemäß (7) $\Rightarrow f$ ist diffbar auf $B_r(x_0)$ mit

$$f'(x) = \sum_{k=1}^{\infty} k a_k (x - x_0)^{k-1} \quad \forall x \in B_r(x_0)$$
 (8)

Folgerung 13.5

Sei $f: B_R(x_0) \subset K \to K$ Potenzreihe gemäß (7) $\Rightarrow f \in C^{\infty}(B_R(x_0), K)$ und

$$a_k = \frac{1}{k!} \cdot f^{(k)}(x_0) \tag{9}$$

(d.h die Potenzreihe stimmt mit der Taylorreihe von f in x_0 überein)

Beweis. k-fache Anwendung von Beispiel 13.4 liefert $f \in C^k(B_r(x_0), K) \ \forall k \in \mathbb{N}$ $\stackrel{(8)}{\Longrightarrow} f'(x) = a_1, f''(x_0) = 2a_k, \dots \text{ rekursiv folgt (9)}.$

Beweis (Satz 13.4). Betrache die Partialsummen

$$f_k(x) := \sum_{j=0}^k a_j (x - x_0)^j \quad \forall x \in B_R(x_0)$$

 $\Rightarrow f_k(x_0) \xrightarrow{k \to \infty} f(x_0)$ und f_k diffbar mit

$$f'_k(x) = \sum_{j=1}^k j a_j (x - x_0)^{j-1} \quad \forall x \in B_R(x_0)$$

Wegen

$$\limsup_{k\to\infty} \sqrt[k]{(k+1)|a_{k+1}|} = \limsup \sqrt[k]{k\left(1+\frac{1}{k}\right)} \cdot \left(\sqrt[k+1]{|a_{k+1}|}\right)^{\frac{k+1}{k}} = \limsup \sqrt[k]{|a_k|} = \frac{1}{R}$$

hat die Potenzreihe

$$g(x) := \sum_{k=1}^{\infty} k a_k (x - x_0)^{k-1}$$

den Konvergenzradius R

 \Rightarrow Reihe gkonvergiert gleichmäßig auf $B_r(x_0) \ \forall r \in (0,R)$ (vgl. 13.1), d.h. $f_k' \to g$ gleichmäßig auf $B_r(x_0)$

 $\xrightarrow{\underline{\text{Beispiel 13.3}}} f \text{ ist diffbar auf } B_r(x_0) \text{ mit (8) auf } B_r(x_0).$

Da $r \in (0, R)$ beliebig, folgt die Behauptung.

■ Beispiel 13.6

Es gilt

$$\ln(1+x) = f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1} \quad \forall x \in (-1,1) \subset \mathbb{R}$$
 (10)

Beweis. f(x) sei Potenzreihe in (10), hat Konvergenzradius $R=1, x_0=0$ $\xrightarrow{\text{Beispiel } 13.4} f$ diffbar auf (-1,1) und

$$f'(x) = \sum_{k=0}^{\infty} (-x)^k = \frac{1}{1 - (-x)} = \frac{1}{1 + x}$$
 geometrische Reihe

und

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(1+x) = \frac{1}{1+x} = f'(x)$$
$$f(x) = \ln(1+x) + \text{const}$$

Wegen $f(0) = 0 = \ln 1 \Rightarrow f(x) = \ln(1+x) \ \forall x \in (-1,1), \text{ d.h. (10) gilt.}$