随机变量数字特征

Didnelpsun

目录

1	一维随机变量数字特征		
	1.1	数学期望	1
	1.2	方差标准差	2
	1.3	切比雪夫不等式	2
2	— <u>/</u> #	随机变量数字特征	2
4	—===		4
	2.1	数学期望	2
	2.2	协方差相关系数	2
3	独立性与相关性		
	0.1	/\	0
	3.1	分布判断独立性	2
	3.2	数字特征判断相关性	2

有时候研究随机变量,其是没有具体的概率分布的,而对于这种类型我们只用研究其数学特征就可以了。

1 一维随机变量数字特征

1.1 数学期望

设 X 是随机变量, Y 是 X 的函数, Y = g(X)。

定义: 若 X 是离散型随机变量,其分布列为 $p_i = P\{X = x_i\}$ $(i = 1, 2, \cdots)$,若级数 $\sum\limits_{i=1}^\infty x_i p_i$ 绝对收敛,则称随机变量 X 的数学期望存在,并将级数和 $\sum\limits_{i=1}^\infty x_i p_i$ 称为随机变量 X 的**数学期望**,记为 E(X) 或 EX,即 $EX = \sum\limits_{i=1}^\infty x_i p_i$,否则 X 数学期望不存在。(数学期望实际上是一种加权的合理平均值)

若级数 $\sum\limits_{i=1}^{\infty}g(x_i)p_i$ 也绝对收敛,则称 Y=g(X) 的数学期望 E[g(X)] 存在,且 $E[g(X)]=\sum\limits_{i=1}^{\infty}g(x_i)p_i$,否则 g(X) 的数学期望不存在。 定义:若 X 是连续型随机变量,其概率密度为 f(x)。若积分 $\int_{-\infty}^{+\infty}xf(x)\,\mathrm{d}x$

定义: 若 X 是连续型随机变量,其概率密度为 f(x)。若积分 $\int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$ 绝对收敛,则称 X 的数学期望存在,且 $EX = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$,否则 X 的数学期望不存在。

若积分 $\int_{-\infty}^{+\infty} g(x)f(x) dx$ 绝对收敛,则称 g(X) 的数学期望存在,且 $E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x) dx$,否则 g(X) 的数学期望不存在。

- 1.2 方差标准差
- 1.3 切比雪夫不等式
 - 2 二维随机变量数字特征
- 2.1 数学期望
- 2.2 协方差相关系数
 - 3 独立性与相关性
- 3.1 分布判断独立性
- 3.2 数字特征判断相关性