Practical No. 3

Aim: To observe the following reactions and to classify them into the types combination, displacement, decomposition and double displacement.

Reaction:

- 1. Reaction of water with (Calcium Oxide) lime.
- 2. Effect of heat on ferrous sulphate.
- 3. Reaction of copper sulphate solution with iron nail.
- 4. Reaction of solutions of sodium sulphate and barium chloride with each other.

Apparatus: 250 ml beaker, china dish, asbestos sheet, dropper, hard glass test tube, test tube holder, test tube stand, sand paper, burner / spirit lamp, filter paper etc.

Chemicals: Calcium oxide, water, crystals of ferrous sulphate, iron nail / wire scrubber, solution of copper sulphate.

Procedure

A. Reaction of water with slaked lime.

- 1. Take about 10 gm lime in a clean and dry china dish, place this dish on an asbestos sheet.
- 2. Take a little water in a beaker, using dropper sprinkle some water on the lime in the dish. Record your observations.

Observation:

Sr.No.	Experimental procedure	Obsertvations
1	Note the heat absobed or evolved during the reaction by touching the dish.	Heat will be evolved during this reaction
2	Note whether a gas or vapour is given away in the reaction.	
3	Note the noise, if, any, produced during the reaction.	Hissing sound is.
4	Note the change in the physical state	The aques solution is make

Reaction:

Inference Conclusion:

	The reaction of water with lime is Combination reaction. Here
C	alcium oxide and water react to formthecalciumhydroxide

Procedure:

B. Effect of heat on crystals of ferrous sulphate

Figure: (Label the following diagram.)

Procedure:

- 1. Take about 10 gm of powdered crystals of ferrous sulphate in a test tube.
- 2. Clamp the test tube to a stand and heat it with burner /spirit lamp for 10 minutes.
- 3. Note the colour of the gas evolved. (Do not smell the gas).
- 4. Continue heating until the colour of the substance in the test tube changes.
- 5. Keep the hot test tube on an asbestos sheet. Observe the colour of the substance in it after cooling.

Observation:

Sr.No.	Experiment procedure	
	Note the 1	Obsertvations Light green.
	Note the colour of the gas evolved on heating.	Reddish brown
3	Observe the colour of the substance in the cold test tube and note it.	

Reaction:

$$2(\text{FeSO}_4.7\text{H}_2\text{O})(s)$$
 Heat $\text{Fe}_2\text{O}_3(s) + \text{SO}_2(g) + \text{SO}_3(g) + 14\text{H}_2\text{O}(g)$

Inference / Conclusion:

- 1. On heating the pale green coloured crystals of ferrous sulphate undergo decomposition. A mixture of .F.e.so..... and ..H20..... gases formed.
- 2. A residue of . Whate colour remains in the test tube.

This is a decomposition reaction. In or more products are formed from the reactants.	which two. Single

Procedure: C. Reaction of solution of copper sulphate with iron nail.

Figure: (Label the following diagram.)

Procedure:

- 1. Take about 100 ml solution of copper sulphate in a beaker. Note its colour.
- 2. Take two-three unrusted iron nails. Clean them by rubbing with sand paper and wash with water. Note the colour of the nails.
- 3. Keep the nails immersed in the copper sulphate solution for about fifteen minutes.
- 4. Observed the change in the colour of the nails and the solution.
- 5. Remove the nails from the solution after fifteen minutes. Wash them and keep them on a filter paper. Note the changed colour of the nails and the solution.

Observation Table:

Sr.No.	Experiment procedure	Obsertvations	
CONTRACTOR AND THE	Colour of CuSO ₄ soln. before the experiment.	React with Fe.	
2	Colour of iron nail before the experiment.	Blue	
3	Colour of CuSO ₄ soln. after the experiment.	White	
4	Colour of iron nail after the experiment.	White raddish.	

Inference / Conclusion:

- 2. This is a .. displacementeaction.

In which the irons are displace from most reactive to less reactive element.

Procedure:

D. The reaction between sodium sulphate and barium chloride:

- 1. Take about 20 ml sodium sulphate solution in a clean beaker. Note the colour and nature
- 2. Take 10 to 15 ml barium chloride solution in a test tube. Note its colour and nature.
- 3. Pour the barium chloride solution from the test tube slowly into the sodium sulphate solution in the beaker.
- 4. Keep on stirring the solution in beaker.

oper sulph

5. Observe the changes occur in beaker and note it down.

Observation Table:

Sr.No.	Experiment procedure	Obsertvations
1	The colour and the nature of the sodium sulphate solution before the experiment.	colourless
2	The colour and the nature of the barium chloride solution before the experiment.	Colourless
3	The colour and the nature of the mixture resulting on mixing the two solution into each other.	

Reaction:

 $BaCl_2(aq) + Na_2SO_4(aq) \longrightarrow BaSO_4(aq) + 2NaCl(aq)$

In this chemical reaction two new compounds are formed by mutual exchange of the components (ions or radicals) of the two compounds. Such reactions are called 'double displacement' reactions.

Inference / Conclusion:

1. In this reaction white coloured insoluble . Bo.50.4... is formed. As a result of a white coloured precipitate is formed in the beaker.

Multiple Choice Questions

- 1. The reaction of water with slaked lime is studied by
 - a. putting slaked lime into water taken in a test tube.
 - b. putting a lot of water into slaked lime.
 - c. sprinkling a little water on slaked lime.
 - d. None of the above method.
- 2. When ferrous sulphate crystals are heated, the residue obtained in the test tube is a red coloured
- b. blue coloured c. green coloured 3. When sodium sulphate solution reacts with barium chloride solution, the solution after the d. colourless reaction contains mainly
- a. barium sulphate b. sodium chloride a and b both d. none of a and b
- 4. The reaction of iron nail with copper sulphate solution is reaction.
 - b decomposition . displacement d. double displacement a. combination 10

5. The reddish brown	n colour obtained on the	iron nail placed in coppe	er sulphate solution is o
a. Cu ₂ O	b. CuO g. Cu	d. CuS	
		ercise:	
	calcium oxide." Which is		
calcium axid	$e + Water \longrightarrow$	Calcium hydrox	ide + A
reaction Co caloH) 2 [Co	combination. 00 and H20 is. 1cium hydroxide	reaction becau	se in this I formed
2. In experiment (C), Which factor do yo	speed of reaction increase ou observe that affects the	es if we use iron wire scrurate of reaction? Explain.	bber instead of iron nail.
In experiment iron wire scrubent this all af	crubber is used of ber react fastle fectet the rate.	f reaction increased instead of iron of reaction.	ses Because nail iran ron nail so,
3. Name the substan	ce which remains in a test	tube after heating ferrous	sulphate.
Fe0504+ 2Fe+504	-7H ₂ O → FeSO. + O → Fe ₂ O.	4 + 7H20 4 + 504 + 503	
4. Observe double d	isplacement reactions given tion in which the to form a precision splacement Rec	n in the text book and writ	te down the similarities.
Exe, Cro	+ Baso4	Koso, + Bacr	0,1
		342	
			PVPPSS