ECON3123 Macroeconomic Theory I

Tutorial #2: More on GDP; Unemployment and Inflation

Today's tutorial

- Real and Nominal GDP
- Unemployment
- Inflation

Real and Nominal GDP

- Nominal GDP:
 - the quantities of final goods × current prices
- Real GDP:
 - the quantities of final goods × constant prices

From 1960 and 2014, nominal GDP increased by a factor of 32.
 Real GDP increased by a factor of about 5.

 We want a measure of the size of an economy that does not depend on how prices have changed

Tutorial - ECON 3123 Macroeconomic Theory I

Nominal GDP in Year 0 and in Year 1.

		Year 0	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

Nominal GDP

- Year 0 =
- Year 1 =
- \Rightarrow Nominal GDP growth =

		Year 0	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

- Real GDP using Year 0 prices
 - Year 0 =
 - Year 1 =
 - => Real GDP growth (using Year 0 prices) =
- Real GDP using Year 1 prices
 - Year 0 =
 - Year 1 =
 - => Real GDP growth (using Year 1 prices) =

		Year 0	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

- Real GDP using Year 0 prices = 25%
- Real GDP using Year 1 prices = 20%
- Average Real GDP growth =
- Real GDP growth in Year 1 with base year Year 0

• Limitations of the basic approach to calculating real GDP:

		Year 0	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

- Real GDP using Year 0 prices
 - Year 0 = 20
 - Year $1 = 15 \times 1 + 5 \times 2 = 25$
 - \Rightarrow Real GDP growth (using Year 0 prices) = (25-20)/20 = 25%
- Notice that this figure relies on the <u>relative prices</u>
 of Potatoes and Wine in the base year
 - It is the <u>relative prices</u> that determine the <u>weights</u> of the goods in the real GDP measure

- Real GDP using Year 0 prices
 - Year 0 = 20
 - Year $1 = 15 \times 1 + 5 \times 2 = 25$
 - \Rightarrow Real GDP growth (using Year 0 prices) = (25-20)/20 = 25%
- Notice that this figure relies on the <u>relative prices</u>
 of Potatoes and Wine in the base year
 - It is the <u>relative prices</u> that determine the weights of the goods in the real GDP measure

- This causes problems:
 - Old relative prices may not reflect the true current values of different goods
 - Some goods may not even exist in the base year
- Therefore, the base year should be updated
- Then, everything should be re-calculated
- The growth rate of real GDP will change, and so on

- Chain-Weighting: a way to address these problems
- The approach:
- 1. Calculate real GDP for year 0 and year 1 using <u>year 0</u> prices, and then their ratio
 - Real GDP(0,0) =

• Real GDP(1,0) =

• Ratio(1,0,0) =

Nominal GDP in Year 0 and in Year 1.

		Year 0	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

Tutorial - ECON 3123 Macroeconomic Theory I

- 2. Calculate real GDP for year 0 and year 1 using <u>year 1</u> prices, and then its rate of change (ie real GDP growth)
 - Real GDP(0,1) =

• Real GDP(1,1) =

• Ratio(1,0,1) =

	Year 0		
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

- 3. Take a geometric average of the ratios, and subtract 1 to obtain the Chain-Weighted growth rate
 - $\sqrt{\text{Ratio}(1,0,0) \times \text{Ratio}(1,0,1)} 1 =$

=

=

Nominal GDP in Year 0 and in Year 1.

	Year 0		
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

• Repeat for each year to give a time series of chain-weighted growth rates

		Year 0	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

- Nominal GDP
 - Year $0 = 10 \times 1 + 5 \times 2 = 20$
 - Year $1 = 15 \times 1 + 5 \times 3 = 30$
 - \Rightarrow Nominal GDP growth = (30-20)/20 = 50%
- Real GDP using Year 0 prices
 - Year 0 = 20
 - Year $1 = 15 \times 1 + 5 \times 2 = 25$
 - \Rightarrow Real GDP growth (using Year 0 prices) = (25-20)/20 = 25%
- Real GDP using Year 1 prices
 - Year $0 = 10 \times 1 + 5 \times 3 = 25$
 - Year 1 = 30
 - \Rightarrow Real GDP growth (using Year 1 prices) = (30-25)/25 = 20%
- Average Real GDP growth = $\frac{1}{2}$ x (25 +20) = 22.5%
- Real GDP growth in Year 1 with base year Year $0 = 20 \times (1 + 0.225) = 24.5\%$

- Chain-Weighting: a way to address these problems
- The approach:
- 1. Calculate real GDP for year 0 and year 1 using <u>year 0</u> prices, and then their ratio
 - Real GDP(0,0) = 20; Real GDP(1,0) = 25
 - Ratio(1,0,0) = 25/20 = 1.25
- 2. Calculate real GDP for year 0 and year 1 using <u>year 1</u> prices, and then its rate of change (ie real GDP growth)
 - Real GDP(0,1) = 25; Real GDP(1,1) = 30
 - Ratio(1,0,1) = 30/25 = 1.20
- 3. Take a geometric average of the ratios, and subtract 1 to obtain the Chain-Weighted growth rate
 - $\sqrt{\text{Ratio}(1,0,0) \times \text{Ratio}(1,0,1)} 1 = \sqrt{1.25 \times 1.20} 1 \approx 22.5\%$

Nominal GDP in Year 0 and in Year 1.

	Year 0		
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	10	1	10
Wine (bottles), Nominal GDP	5	2	10
		Year 1	
	Quantity	\$ Price	\$ Value
Potatoes (pounds)	15	1	15
Wine (bottles), Nominal GDP	5	3	15

Tutorial - ECON 3123 Macroeconomic Theory I

Employment and Unemployment

Definitions: Total Labour Force, Employed and Unemployed

- N = Number of people employed
- U = Number of people without a job who are looking for one
- Distinguish Labor Force from Discouraged Workers:
 - Those who don't have a job and are not looking for one are counted as not in the labor force. These people are known as discouraged workers.

Unemployment in context

Tutorial - ECON 3123 Macroeconomic Theory I

- Unemployment typically lower in the US and Asia than in the European Union
- But: unemployment falling in recent years since the financial crisis
 - Impact of macro and micro economic policies
- Notice how unemployment increased in the US and EU after the financial crisis
- Role of 'underemployment' in sub-Saharan Africa
- Unemployment typically low in Asia
- Measured unemployment is low in China and India
 - Role of 'under-employment'?
- Cultural factors behind unemployment

Key idea: the Participation rate

Tutorial - ECON 3123 Macroeconomic Theory I

- Reflects:
 - Long term unemployment and discouraged workers
 - Important social phenomenon eg role of women in the workforce and how it is changing

Inflation

- Inflation is defined as a persistent change in the general price level
 - Inflation: Prices generally rising
 - Deflation: Prices generally falling
- We need a measure of prices in an economy: we use price indices
- There are many price indices that we could use; we choose two of them:
 - GDP deflator
 - Consumer Price Index (CPI)

Consumer Price Inflation in context

Tutorial - ECON 3123 Macroeconomic Theory I

- Defined as a general increase in prices
- Inflation in the world has structurally fallen in the past 30 years
 - Change in focus of macro economic policy towards controlling inflation
 - Shift away from oil in industrial processes
 - Emergence of China as the world's marginal manufacturer
- Now, deflation in parts of the world prices generally falling
 - Central banks printing money to try to prevent this

Source: World Bank

Why is inflation a problem?

"Lenin is said to have declared that the best way to destroy the capitalist system was to debauch the currency. By a continuing process of inflation governments can confiscate, secretly and unobserved, an important part of the wealth of their citizens." – John Maynard Keynes, (1919) "The Economic Consequences of the Peace" Chapter VI, pp. 235-236.

- Inflation imposes costs on an economy and society
- The risk of hyper-inflation
 - Hyper-inflation occurs when the inflation rate exceeds 50% per month
 - In Zimbabwe in 2008, inflation was estimated to be 79.6 billion % per month
 - Hyper-inflation can cause major social problems and political instability

Tutorial - ECON 3123 Macroeconomic Theory I

Calculating inflation

- Inflation measured with the GDP deflator:
 - GDP deflator = Nominal GDP in a year/Real GDP in a year

$$P_t = \frac{\$Y_t}{Y_t}$$

- Note: This is an index number, and has no economic interpretation
- Example:

•
$$\$Y_t = 110, Y_t = 100 \Rightarrow P_t =$$

• Inflation rate at time t = % change in the GDP deflator

$$\pi_t = \frac{(P_t - P_{t-1})}{P_{t-1}}$$

- Example:
 - $P_t = 120, P_{t-1} = 100 \Rightarrow \pi_t =$

Calculating inflation

- Inflation measured with the CPI index:
 - CPI index = index of all goods & services consumed in an economy, weighted by their importance

$$P_t = CPI_t$$

• Inflation rate at time t = % change in the CPI index

$$\pi_t = \frac{(CPI_t - CPI_{t-1})}{CPI_{t-1}}$$

- Example:
 - $CPI_t = 105, CPI_{t-1} = 100 \Rightarrow \pi_t = 100$

Consider the following economy

	2009		2010	
	Quantity	Price	Quantity	Price
Cars	10	\$2,000	12	\$3,000
Computers	4	\$1,000	6	\$500
Oranges	1,000	\$1	1,000	\$1

1. Calculate nominal GDP in 2009 and 2010 and the % growth rate

Consider the following economy

	2009		2010	
	Quantity	Price	Quantity	Price
Cars	10	\$2,000	12	\$3,000
Computers	4	\$1,000	6	\$500
Oranges	1,000	\$1	1,000	\$1

2. Using 2009 prices, what is real GDP in 2009 and 2010, and what is its rate of growth?

Consider the following economy

	2009		2010	
	Quantity	Price	Quantity	Price
Cars	10	\$2,000	12	\$3,000
Computers	4	\$1,000	6	\$500
Oranges	1,000	\$1	1,000	\$1

3. Using 2010 prices, what is real GDP in 2009 and 2010, and what is its rate of growth?

Consider the following economy

	2009		2010	
	Quantity	Price	Quantity	Price
Cars	10	\$2,000	12	\$3,000
Computers	4	\$1,000	6	\$500
Oranges	1,000	\$1	1,000	\$1

4. Why are the two growth rates different? Which of the two answers is the correct one?

Consider the following economy

	2009		2010	
	Quantity	Price	Quantity	Price
Cars	10	\$2,000	12	\$3,000
Computers	4	\$1,000	6	\$500
Oranges	1,000	\$1	1,000	\$1

5. Using 2009 prices for real GDP, compute the GDP deflator for 2009 and 2010 and use this to compute the rate of inflation in 2010

Consider the following economy

	2009		2010	
	Quantity	Price	Quantity	Price
Cars	10	\$2,000	12	\$3,000
Computers	4	\$1,000	6	\$500
Oranges	1,000	\$1	1,000	\$1

6. Using 2010 prices for real GDP, compute the GDP deflator for 2009 and 2010 and use this to compute the rate of inflation in 2010

Consider the following economy

	2009		2010	
	Quantity	Price	Quantity	Price
Cars	10	\$2,000	12	\$3,000
Computers	4	\$1,000	6	\$500
Oranges	1,000	\$1	1,000	\$1

7. Why are the two inflation rates different? Which of the two answers is the correct one?

7. Calculate the Chain-Weighted GDP growth rate between 2009 and 2010. How does this compare to a simple average of the growth rates?