# Praktikum Numerische Methoden für Ingenieure

Rechengenauigkeit, Interpolation und Kurvenanpassung

### Christoph Ager

TUM - Lehrstuhl für Numerische Mechanik

October 27, 2016





## Überprüfungstermine

- Um das Praktikum positiv zu absolvieren, ist die Teilnahme an beiden Terminen zwingend erforderlich!
- Die Festlegung ob Sie am Montags- oder Mittwochs/Donnerstagstermin teilnehmen, wird ca. einen Monat vorher durch Sie (soweit möglich) festgelegt.
- Sie werden in ca. zwei Woche automatisch zu einem Prüfungstermin im TUMonline angemeldet. Das dabei angegebene Datum wird !nicht! dem Überprüfungsdatum entsprechen.

### 1. Aufgabenblatt

- Lösungszahlenwerte mit Matlab R2012b
- Funktion disp f
  ür Ausgabe verwenden
- Plots nicht symbolisch
- Generelle Unterschiede zwischen Matlab Versionen
- \*.m-files erstellen und nicht direkt in Konsole!



### 1. Aufgabenblatt

 Aufgabe 3: Ein Viereck soll jeweils in zwei Dreiecke unterteilt werden (keine globale Delaunytriangulierung!)

Beispiel: 3 Vierecke zum Plotten von  $f(x,y) = x^2 + y^2$ 





## binäre Zahlendarstellung

- Darstellung durch bits (0 oder 1):
- Bsp.: 4 bit Zahl  $[1001]_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [9]_{10}$
- Achtung Subtraktion Auslöschung
- Bsp.: simple Gleitkommazahl: ...

### Rechengenauigkeit

### Double-precision floating-point format (64bit):



https://en.wikipedia.org/wiki/Double-precision\_floating-point\_format

$$(-1)^{sign} (1 + \sum_{i=1}^{52} b_{52-i} 2^{-i}) 2^{e-1023}$$

- Vorzeichen: 1 bit  $(-1)^{sign} \longrightarrow -1, 1$
- Exponent: 11 bits  $e \in [1,2046]$  (0, 2047 used differently)  $\longrightarrow \left[2^{-1022},2^{1023}\right] \sim \left[10^{-308},10^{308}\right]$
- Mantisse: 52 bits  $m \in \left[1, 1+2^{-52}, 1+2^{-51}, ..., 2-2^{-52}\right]$   $\sim \left[1, 1+2\cdot 10^{-16}, 1+4\cdot 10^{-16}, ..., 2-2\cdot 10^{-16}\right]$



#### Praktikum Numerische Methoden für Ingenieure

#### Aufgabenblatt 2

WS 2016/2017



#### Rechengenauigkeit, Interpolation und Kurvenanpassung

#### Aufgabe 1: Rechengenauigkeit

Erstelle eine Matlab Funktion, die den Schnittpunkt (x-Koordinate) einer durch zwei Punkte definierten Linie mit der x-Achse (y = 0) berechnet (function x = lineintersection(P1,P2)).

Nutze die Funktion, um für die gegebenen Punkte  $\mathbf{P}_1 = \begin{pmatrix} 0.0 \\ 1.0 \end{pmatrix}$  und  $\mathbf{P}_2 = \begin{pmatrix} 0.0 + \delta \\ 1.0 - \delta \end{pmatrix}$  den Schnittpunkt zu berechnen.

Berechne die Position für  $10^{-20} \le \delta \le 10^5$  (HINWEIS: wähle eine geeignete Verteilung des Parameters  $\delta$ ) und plotte  $(\delta, |x-x_{ex}|)$  den Betrag des absoluten Fehlers der Position in doppelt logaritmischem Maßstab im relevanten Bereich. Dabei ist x die ermittelte Position und  $x_{ex}$  die analytisch exakte Position.

Interpretiere das Ergebnis qualitativ.

### Lagrange-Interpolation: 2 Punkte

gegeben: 
$$(x_0, y_0)$$
,  $(x_1, y_1)$ ;  $y_0 = f(x_0)$ ,  $y_1 = f(x_1)$ 

$$P(x) = \underbrace{\frac{(x - x_1)}{(x_0 - x_1)}}_{=L_{10}(x)} f(x_0) + \underbrace{\frac{(x - x_0)}{(x_1 - x_0)}}_{=L_{11}(x)} f(x_1).$$





### Lagrange-Interpolation: n Punkte

$$\begin{split} L_{ni}\left(x_{j}\right) &= 0, \quad \text{für } j \neq i \text{ und } i = 0, 1, \dots, n, \\ L_{ni}\left(x_{i}\right) &= 1, \quad \text{für } i = 0, 1, \dots, n. \end{split}$$

Basispolynome:

$$L_{ni}(x) = \frac{(x - x_0) \dots (x - x_{i-1}) (x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0) \dots (x_i - x_{i-1}) (x_i - x_{i+1}) \dots (x_i - x_n)}$$

LagrangePolynom:

$$P_n(x) = f(x_0) L_{n0}(x) + \ldots + f(x_n) L_{nn}(x) = \sum_{i=0}^{n} f(x_i) L_{ni}(x)$$



## Lagrange-Interpolation: Empfehlung für Umsetzung

- function wert=LagrangeBasis(x,n,i,x\_node)
- function wert=LagrangePolynom(x,n,x\_node,f\_node)

Verwende immer die elementsweisen Operatoren in den Funktionen  $(.*, ./, .^{\circ})$ 



### Lagrange-Interpolation: n Punkte

Ableitung LagrangePolynom:

$$\frac{dP_{n}\left(x\right)}{dx} = f\left(x_{0}\right)\frac{dL_{n0}\left(x\right)}{dx} + \ldots + f\left(x_{n}\right)\frac{dL_{nn}\left(x\right)}{dx} = \sum_{i=0}^{n} f\left(x_{i}\right)\frac{dL_{ni}\left(x\right)}{dx}$$

Basispolynome:

$$L_{ni}(x) = \frac{(x - x_0) \dots (x - x_{i-1}) (x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0) \dots (x_i - x_{i-1}) (x_i - x_{i+1}) \dots (x_i - x_n)}$$
$$= \prod_{k=0}^{n} \frac{(x - x_k)}{(x_i - x_k)}$$

Ableitung Basispolynome:

$$\frac{\mathsf{d}L_{ni}(x)}{\mathsf{d}x} = \sum_{m=0, m \neq i}^{n} \frac{1}{x_i - x_m} \prod_{k=0, k \neq (i, m)}^{n} \frac{(x - x_k)}{(x_i - x_k)}$$



## Lagrange-Interpolation: Empfehlung für Umsetzung

- function wert=LagrangeDerivBasis(x,n,i,x\_node)
- function wert=LagrangeDerivPolynom(x,n,x\_node,f\_node)

Verwende immer die elementsweisen Operatoren in den Funktionen  $(.*, ./, .^{\circ})$ 



#### Aufgabe 2: Interpolation mit Lagrange-Polynomen

Erstelle ein MATLAB-Programm, das die Auswertung der Lagrange-Polynome und deren Ableitung für einen beliebigen Grad ermöglicht.

Es sind fünf Stützstellen x mit den zugehörigen Funktionswerten  $f(x) = \left(\frac{x}{1+x}\right)^5$  gegeben:

| x    | 0.0             | 1,0            | 2.0            | 3.0            | 4.0            |
|------|-----------------|----------------|----------------|----------------|----------------|
| f(x) | 0.0000000000000 | 0.031250000000 | 0.131687242798 | 0.237304687500 | 0.327680000000 |

Berechne mit Hilfe des erstellten Programmes den Funktionswert und die Ableitung an der Stelle x=0.6 und plotte die jeweilige Funktion, sowie die Ableitung der untenstehenden Lagrange-Interpolation (Es ist exemplarisch der Plot für Polynome vom Grad 4 abgebildet).

Wenden dies auf folgende Fälle an:

- 1. Lagrange-Interpolation: Polynome vom Grad 1 verwenden Sie nur f(x) bei x=0.0; x=1.0 ( $Lsg.: f_{L1}(0.6)=0.01875, f'_{L1}(0.6)=0.03125$ )
- **2. Lagrange-Interpolation**: Polynome vom Grad 4 (*Lsg.*:  $f_{L4}(0.6) = 0.0053987$ ,  $f'_{L4}(0.6) = 0.046593$ )



3. Lagrange-Interpolation: Polynome vom Grad 80 - Verwenden Sie dazu die gegebene Funktion f(x) und werten Sie diese in gleichmäßigem Abstand im Intervall [0.0, 4.0] aus.

$$(Lsg.:f_{L80}(0.6)=0.0074158,f_{L80}^{\prime}(0.6)=0.038624)$$

(HINWEIS: Exakte Lösung der zugrunde liegenden Funktion: f(0.6) = 0.0074158, f'(0.6) = 0.038624)

## Lagrange-Interpolation: 2 dimensional

#### gegeben:

- zweidimensionales vierknotiges Element  $\Omega^e$  im  $\pmb{\xi}=(\xi,\eta)$ -Koordinatensystem.
- $f(\xi, \eta)$





## Lagrange-Interpolation: 2 dimensional

Die Lagrange'schen bilinearen Ansatzfunktionen in 2D sind wie folgt definiert:

$$N^{1}(\xi, \eta) = \frac{1}{4}(1 - \xi)(1 - \eta)$$
  $N^{3}(\xi, \eta) = \frac{1}{4}(1 + \xi)(1 + \eta)$ 

$$N^{2}(\xi,\eta) = \frac{1}{4}(1+\xi)(1-\eta)$$
  $N^{4}(\xi,\eta) = \frac{1}{4}(1-\xi)(1+\eta)$ 



## Lagrange-Interpolation: Vorgabe für Umsetzung

• **Fkt. I**: function val=linquadref(xi,eta)

Rückgabewert: Lagrange Polynome ausgewertet im Punkt
(xi,eta).

Fkt. II: function deriv=linquadderivref(xi,eta)
 Rückgabewert: Ableitungen der Lagrange Polynome ausgewertet im Punkt (xi,eta).



#### Praktikum Numerische Methoden für Ingenieure

#### ${\bf Aufgabenblatt~3}$

#### WS 2016/2017



#### Interpolation und Kurvenanpassung

#### Aufgabe 1: 2d - Interpolation

Gegeben ist ein zweidimensionales vierknotiges Element (siehe Abbildung)  $\Omega^e$  im  $\boldsymbol{\xi} = (\xi, \eta)$ -Koordinatensystem.



An den vier Knoten sind folgende Funktionswerte  $f(\xi_i, \eta_i)$  gegeben:

| $(\xi \eta)$  | (-1 -1) | +1 -1 | (+1 +1) | (-1 +1) |
|---------------|---------|-------|---------|---------|
| $f(\xi,\eta)$ | 0.0     | 1.0   | 3.0     | 1.0     |

Mithilfe von Lagrange'schen Ansatzfunktionen  $N^i(\xi, \eta)$  sollen die Funktionswerte  $f(\xi, \eta)$  sowie die Ableitungen  $\frac{\partial f(\xi, \eta)}{\partial \xi}$ ,  $\frac{\partial f(\xi, \eta)}{\partial \eta}$  an den Punkten  $(\xi | \eta) = (0.0; 0.0)$  sowie  $(\xi | \eta) = (0.577; -0.577)$  approximiert werden.

Die Lagrange'schen bilinearen Ansatzfunktionen in 2D sind wie folgt definiert:

$$\begin{split} N^1(\xi,\eta) &= \tfrac{1}{4}(1-\xi)(1-\eta) & N^3(\xi,\eta) &= \tfrac{1}{4}(1+\xi)(1+\eta) \\ N^2(\xi,\eta) &= \tfrac{1}{4}(1+\xi)(1-\eta) & N^4(\xi,\eta) &= \tfrac{1}{4}(1-\xi)(1+\eta) \end{split}$$

#### Vorgehen:

- 1. Erstellen der Funktion **Fkt. I** (siehe unten), die alle Ansatzfunktionen  $N^i(\xi, \eta)$  als Vektor zurückgibt.
- 2. Approximieren der Funktionswerte f(0.0;0.0) und f(0.577;-0.577).  $(Lsg.: f_L(0.0;0.0)=1.25$  und  $f_L(0.577;-0.577)=1.16676775)$

- 3. Erstellen der Funktion **Fkt. II**, die alle Ableitungen der Ansatzfunktionen  $\frac{\partial N^i(\xi,\eta)}{\partial \xi}$ ,  $\frac{\partial N^i(\xi,\eta)}{\partial \eta}$  als Matrix zurückgibt (Zeilen *i*, Spalten  $\xi,\eta$ ).
- 4. Approximieren der Ableitungen  $\frac{\partial f(\xi,\eta)}{\partial \eta}$ ,  $\frac{\partial f(\xi,\eta)}{\partial \xi}$  in den Punkten  $(\xi|\eta)=(0.0;0.0)$  sowie  $(\xi|\eta)=(0.577|-0.577)$   $(Lsg.: \frac{\partial f(\xi,\eta)}{\partial \xi}_L|_{(0.0;0.0)}=0.75;$   $\frac{\partial f(\xi,\eta)}{\partial \eta}_L|_{(0.0;0.0)}=0.75)$  $(Lsg.: \frac{\partial f(\xi,\eta)}{\partial \xi}_L|_{(0.577;-0.577)}=0.60575;$   $\frac{\partial f(\xi,\eta)}{\partial \eta}_L|_{(0.577;-0.577)}=0.89425)$

#### Matlab Funktionen:

Folgende Funktionen sollen bei der Bearbeitung dieses Aufgabenblattes erstellt werden, da diese für spätere Aufgabenblätter wiederverwendet werden sollen. Erstellen Sie die Funktionen in Matlab und speichern Sie diese in eigenen \*.m-files ab.

• Fkt. I: function val=linguadref(xi,eta)

Rückgabewert: Lagrange Polynome ausgewertet im Punkt (xi,eta).

Teste die Funktion mit:

$$(xi=0.0,eta=0.0) \rightarrow [0.25;0.25;0.25;0.25]$$
 
$$(xi=0.577,eta=-0.577) \rightarrow [0.16676775;0.62173225;0.16676775;0.04473225]$$

Fkt. II: function deriv=linguadderivref(xi,eta)

• Flot I function val-linguadrof(vi eta)

ullet Fkt. I: function val=linquadref(xi,eta)

 $\underline{\text{R\"{u}\'{c}kgabewert:}} \text{ Lagrange Polynome ausgewertet im Punkt (xi,eta)}.$ 

Teste die Funktion mit:

$$(xi = 0.0, eta = 0.0) \rightarrow [0.25; 0.25; 0.25; 0.25]$$
  
 $(xi = 0.577, eta = -0.577) \rightarrow [0.16676775; 0.62173225; 0.16676775; 0.04473225]$ 

• Fkt. II: function deriv=linquadderivref(xi,eta)

Rückgabewert: Ableitungen der Lagrange Polynome ausgewertet im Punkt (xi,eta).

Teste die Funktion mit:

$$\begin{split} (xi=0.0,eta=0.0) \rightarrow [-0.25,-0.25;0.25,-0.25;0.25,0.25;-0.25,0.25] \\ (xi=0.577,eta=-0.577) \rightarrow [-b,-a;b,-b;a,b;-a,a] \qquad mit \quad a=0.10575,b=0.39425 \end{split}$$

### Und Los ...

Nächste Tutorsprechstunden:

Montag 31.10. 16:00-18:15, 1264 - Computer-Red-Pool Mittwoch 02.11. 15:30-17:45, 1264 - Computer-Red-Pool

Montag 07.11. 16:00-18:15, 1264 - Computer-Red-Pool Mittwoch 09.11. 15:30-17:45, 1264 - Computer-Red-Pool

Nächste Aufgabenblätter:

**Donnerstag 03.11. 17:00-17:45, 0350 - entfällt!**Donnerstag 10.11. 17:00-17:45, 0350

