SCC461 – Programming for Data Scientists

Leandro Marcolino

Lancaster University

Week 10

Outline

- Private Members
- Peer Feedback
- OS Libraries
- 4 Problem Solving
- 6 Assignment
- Conclusion

```
class Stack:
     def __init__(self):
         self.items = 10*[0];
         self.position = 0;
     def push(self, item):
          if (self.position < 10):</pre>
               self.items[self.position] = item;
               self.position = self.position + 1;
               return True;
          else:
               return False;
```

```
def pop(self):
         if (self.position <= 0):</pre>
             return False;
         else:
             self.position = self.position - 1;
             return self.items[self.position];
stack = Stack();
stack.push(5);
stack.push(10);
stack.pop();
stack.pop();
print(stack.items[1]);
```

```
def pop(self):
          if (self.position <= 0):</pre>
             return False;
          else:
             self.position = self.position - 1;
             return self.items[self.position];
stack = Stack();
stack.push(5);
                               Why this code
stack.push(10);
stack.pop();
                                 is wrong?
stack.pop();
print(stack.items[1]);
```

Private Members

```
class Stack:
     def __init__(self):
         self._items = 10*[0];
         self._position = 0;
     def push(self, item):
          if (self._position < 10):</pre>
               self._items[self._position] = item;
               self._position = self._position +
                  1;
               return True;
          else:
               return False;
```

```
def pop(self):
    if (self._position <= 0):</pre>
       return False;
    else:
       self._position = self._position - 1;
       return self._items[self.position];
def _checkStack(self):
```

Outline

- Private Members
- Peer Feedback
- OS Libraries
- 4 Problem Solving
- 6 Assignment
- Conclusion

Peer Feedback Exercise

- WAIT FOR ALL INSTRUCTIONS BEFORE YOU START MOVING!
- You will work in pairs
- Discuss your CW 8 and 9 with your partner
- Ask your partner what he/she is struggling with, and teach him/her
- Similarly, tell your partner what you are struggling with, and he/she will teach you
- If you are new to programming, find an experienced programmer as a pair
- If you are an experienced programmer, find someone that is new to programming as a pair

Outline

- Private Members
- Peer Feedback
- **DS** Libraries
- Problem Solving
- Assignment

SciPy

NumPy Base N-dimensional array package

SciPy library Fundamental library for scientific computing

Matplotlib
Comprehensive 2D
Plotting

IPython
Enhanced
Interactive Console

Sympy
Symbolic
mathematics

pandas Data structures & analysis

Basic Element: Matrix (homogeneous multidimensional array)

$$\begin{bmatrix} 4 & 5 & 8 & 3 \\ 10 & 3 & -1 & 0 \\ 5 & 7 & 4 & 5 \end{bmatrix}$$

- Number of dimensions: 2
- Shape: (3, 4). 3 Rows, 4 Columns.

```
import numpy as np
a = np.array([2,3,4])
```

$$a = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$$

$$b = np.array([(1.5,2,3), (4,5,6)])$$

$$b = \begin{bmatrix} 1.5 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$a = np.zeros((3,4))$$

$$a = np.ones((3,4))$$

$$a = np.ones((2,3,4))$$

$$a = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$b = np.arange(12).reshape(4,3)$$

$$a = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 11 \end{bmatrix}$$

```
a = np.array( [20,30,40,50] )
b = np.arange( 4 )
c = a - b
```

$$c = \begin{bmatrix} 20 & 29 & 38 & 47 \end{bmatrix}$$

```
= np.arange(4)
a = b**2
```

$$a = \begin{bmatrix} 0 & 1 & 4 & 9 \end{bmatrix}$$

$$a = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

$$a = A.dot(B)$$

$$a = \begin{bmatrix} 5 & 4 \\ 3 & 4 \end{bmatrix}$$

$$a = np.random.random((2,3))$$

$$a = \begin{bmatrix} 0.18626021 & 0.34556073 & 0.39676747 \\ 0.53881673 & 0.41919451 & 0.6852195 \end{bmatrix}$$

- a. sum()
- 2.5718191614547998
- a.min()
- 0.1862602113776709
- a.max()
- 0.6852195003967595

Indexing

```
def f(x,y):
         return 10*x+y
     = np.fromfunction(f,(5,4),dtype=int)
                                      b = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 10 & 11 & 12 & 13 \\ 20 & 21 & 22 & 23 \\ 30 & 31 & 32 & 33 \\ 40 & 41 & 42 & 43 \end{bmatrix}
b[2,3]
23
b[0:5, 1]
```

SciPy

Subpackage	Description
cluster	Clustering algorithms
constants	Physical and mathematical constants
fftpack	Fast Fourier Transform routines
integrate	Integration and ordinary differential equation solvers
interpolate	Interpolation and smoothing splines
io	Input and Output
linalg	Linear algebra
ndimage	N-dimensional image processing
odr	Orthogonal distance regression
optimize	Optimization and root-finding routines
signal	Signal processing
sparse	Sparse matrices and associated routines
spatial	Spatial data structures and algorithms
special	Special functions
stats	Statistical distributions and functions

SciPy Optimization

Rosenbrock Function:

$$f(\mathbf{x}) = \sum_{i=1}^{N-1} 100(x_i - x_{i-1}^2)^2 + (1 - x_{i-1})^2$$

SciPv

SciPv

Optimization

```
import numpy as np
from scipy.optimize import minimize
def rosen(x):
    return sum (100.0*(x[1:]-x[:-1]**2.0)**2.0 +
       (1-x[:-1])**2.0)
x0 = np.array([1.3, 0.7, 0.8, 1.9, 1.2])
res = minimize(rosen, x0, method='nelder-mead',
                options={'xtol': 1e-8, 'disp':
                   True })
Optimization terminated successfully.
```

Current function value: 0.000000

SciPv

Interpolation

```
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
x = np.linspace(0, 10, num=11, endpoint=True)
y = np.cos(-x**2/9.0)
f = interp1d(x, y)
f2 = interp1d(x, y, kind='cubic')
xnew = np.linspace(0, 10, num=41, endpoint=True)
plt.plot(x, y, 'o', xnew, f(xnew), '-', xnew,
   f2(xnew), '--')
plt.legend(['data', 'linear', 'cubic'],
   loc='best')
plt.show()
```

SciPy Interpolation


```
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()
```



```
plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
plt.show()
```



```
plt.plot([1, 2, 3, 4], [1, 4, 9, 16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()
```


PyPlot PyPlot

```
import numpy as np
# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)
# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3,
  'g^')
plt.show()
```



```
names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]
plt.figure(1, figsize=(9, 3))
plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()
```

PyPlot

PyPlot PyPlot

```
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1,
   facecolor='g', alpha=0.75)
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\\sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()
```

PyPlot

More Information

- NumPy: http://www.numpy.org/
- SciPy: https://www.scipy.org/
- Matplotlib: http://matplotlib.org/

Must see! :D

Outline

- Private Members
- Peer Feedback
- OS Libraries
- Problem Solving
- 6 Assignment
- Conclusion

Area of circle: $\pi \times R^2$

2R

Area of circle: $\pi \times R^2$

Area of square: $(2R)^{2}$

2R

Area of circle: $\pi \times R^2$

Area of square: $(2R)^2$

Ratio: $\frac{\pi}{4}$

N random points inside the square

N random points inside the square

Inside circle:

 $\frac{N*\pi}{4}$

8 Queens Problem

- Place the 1st queen on the board.
- Place the 2nd queen on the board. If not safe, change position of 2nd queen.
- ...
- Place queen n on the board. If not safe, change position of queen n.
- If we ran out of positions for queen n, find a new position for queen n-1.
- If we ran out of positions for queen n-1, find a new position for queen n-2...

- Place the 1st queen on the board.
- Place the 2nd queen on the board. If not safe, change position of 2nd queen.
- ...
- Place queen n on the board. If not safe, change position of queen n.
- If we ran out of positions for queen n, find a new position for queen n-1.
- If we ran out of positions for queen n-1, find a new position for queen n-2...

Can be implemented with: a stack! :)

- Place the 1st queen on the board.
- Place the 2nd queen on the board. If not safe, change position of 2nd queen.
- ...
- Place queen n on the board. If not safe, change position of queen n.
- If we ran out of positions for queen n, find a new position for queen n-1.
- If we ran out of positions for queen n-1, find a new position for queen n-2...

Can be implemented with a stack! :)

Can be implemented with: recursive functions!

Animation at: https://www.youtube.com/watch?v=ckC2hFdLff0 Many resources at:

 $https://www.youtube.com/results?search_query=8+queen+puzzle+backtracking\\$

Is 99 on the list?

Divide and Conquer!

```
def binary_search(myList, item, low, high):
    if (high < low):</pre>
        return -1:
    midPoint = (low + high) // 2
    if (item == myList[midPoint]):
        return midPoint
    elif (item < myList[midPoint]):</pre>
        return binary_search(myList, item, low,
           mid - 1)
    else:
        return binary_search(myList, item, mid +
           1, high)
```



```
def _get(self,key,currentNode):
    if not currentNode:
        return None
    elif currentNode.key == key:
        return currentNode
    elif key < currentNode.key:</pre>
        return
           self._get(key,currentNode.leftChild)
    else:
        return
           self._get(key,currentNode.rightChild)
```

```
def _put(self,key,val,currentNode):
   if key < currentNode.key:</pre>
      if currentNode.hasLeftChild():
         self._put(key,val,currentNode.leftChild)
      else:
         currentNode.leftChild =
            TreeNode (key, val, parent = currentNode)
   else:
         currentNode.hasRightChild():
         self._put(key,val,currentNode.rightChild)
      else:
         currentNode.rightChild =
            TreeNode (key, val, parent = currentNode)
```

More Information:

http://interactivepython.org/runestone/static/pythonds/ Trees/SearchTreeImplementation.html

Planning

Planning - Minimax Search

Minimax Search - Pseudocode

```
01 function minimax(node, depth, maximizingPlayer)
02
       if depth = 0 or node is a terminal node
           return the heuristic value of node
03
04
       if maximizingPlayer
           bestValue := -∞
05
           for each child of node
06
07
               v := minimax(child, depth - 1, FALSE)
               bestValue := max(bestValue, v)
80
           return bestValue
09
10
       else (* minimizing player *)
11
           bestValue := +∞
12
           for each child of node
13
               v := minimax(child, depth - 1, TRUE)
14
               bestValue := min(bestValue, v)
           return bestValue
15
```

 $https://en.wikipedia.org/wiki/Minimax\#Minimax_algorithm_with_alternate_moves$

Outline

- Private Members
- 2 Peer Feedback
- OS Libraries
- 4 Problem Solving
- Same and the second of the
- Conclusion

Assignment

- Implement a logistic regression classifier, for a binary problem with two features. Use stochastic gradient descent for training. (3%)
- ② Use the Monte Carlo method to approximate the value of π . (2%)

Outline

- Private Members
- 2 Peer Feedback
- O DS Libraries
- 4 Problem Solving
- 6 Assignment
- 6 Conclusion

Keep Studying:)

Problem Solving with Algorithms and Data Structures using Python http://interactivepython.org/runestone/static/pythonds/index.html

Keep Studying:)

Advertisement...

http://www.lancaster.ac.uk/staff/sorianom/l.marcolino@lancaster.ac.uk