

Pilani Campus

Chomsky Hierarchy of Grammars

Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

Examples of CFG

Construct a CFG that generates all strings of a's and b's where each string starts and ends with different symbol.

• $L = \{ab, ba, abb, bbbaba, -----\}$

$$S \rightarrow aAb \mid bAa$$

$$A \rightarrow \in |aA|bA$$

Examples of CFG (Continued.....)

Construct a CFG that generates all even length palindromes over $\Sigma = \{a,b\}$

• $L = \{ \in, aa, bb, abba, baab, ----- \}$

$$S \rightarrow \in |aSa|bSb$$

Examples of CFG (Continued....)

Construct a CFG for the following language of balanced parenthesis

• $L = \{w \in \{[,]\}^* \mid w \text{ is balanced}\}$

$$S \rightarrow \in |[S]|SS$$

Chomsky Hierarchy of Grammars

The Chomsky Hierarchy

In 1950s, *Noam Chomsky* structured a hierarchy of formal languages based on the properties of Grammars required to generate the language.

He classified the grammar into four types (Type 3, Type 2, Type 1 and Type 0) depending on the production rules.

The Chomsky Hierarchy (Continued.....)

innovate	achieve	lead

Type Name	Formal Language	Automata	Grammar
Type 3	Regular Language	Finite Automata(FA)	Regular Grammar/Restricted Grammar
Type 2	Context Free Language	Pushdown Automata(PDA	Context-Free Grammar
Type 1	Context Sensitive Language	Linear Bounded Automata(LBA	Context-Sensitive Grammar
Type 0	Recursive Enumerable Language	Turing Machine(TM)	Unrestricted Grammar

The Chomsky Hierarchy (Continued.....)

 $Type_{i+1} \subseteq Type_i$ For i=0,1,2

The Chomsky Hierarchy of Grammars

The Chomsky Hierarchy of Grammars (Continued.....)


```
Recursive Enumerable Language or
                                            Type 0 Language
                                   Context-Sensitive Language
                                   (CSL) or Type 1 Language
A \rightarrow \alpha \ \ where \ \alpha \in (V+T) * Context-Free Grammar/
                                    Type 2 Grammar
        A \rightarrow xB | Bx | x
                          Regular Grammar/
        A, B \in V
                        Restricted Grammar/
                           Type 3 Grammar
        x \in \sum^*
                 Pushdown Automaton
               Linear Bounded Automaton
```

The Chomsky Hierarchy of Grammars (Continued.....)

Note: In Type
1 Grammar,
Start symbol
can derive
epsilon
symbol
unlike, other
variables of
Grammar.

The Chomsky Hierarchy (Continued.....)

Determine the highest type number satisfied by the following Grammar

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$S \rightarrow aSAc \mid abc$$

$$cA \rightarrow Bc$$

Type 1

Grammar

$$B \rightarrow a$$

$$S \rightarrow aSAc \mid a$$

$$CAa \rightarrow Bc$$

$$B \rightarrow abc$$