Univerza v Ljubljani Fakulteta za matematiko in fiziko

Gibanja togih teles

Matic Oskar Hajšen in Eva Zmazek

Kazalo

1	Uvo	vod		
2	Teo : 2.1	retično ozadje Homogene in kartezične koordinate		
	2.2	Zveza med koordinatami točk v fiksnem koordinatnem sistemu in ko-		
		ordinatami točk v gibajočem se koordinatnem sistemu		
	2.3	Gibanje točk v času		
	2.4	Opis rotacij s kvaternioni		
	2.5	Bezierjeve krivulje		
3	Imp	lementacija 10		
	3.1	Primeri		
	3.2	Kvaternioni		
	3.3	Bezierjeve krivulje		
	3.4	Kocka		
\mathbf{L}	istii	ngs		
	1	quat_vec		
	2	quatmultiply		
	3	conj_quat		
	4	quat_exp		
	5	quat_rot_mat		
	6	kot_v_kvat		
	7	rot_vek_za_kot		
	8	bezier		
	9	decasteljau		
	10	sbezier		
	11	sdecasteljau		
	12	polepsaj_sbezier		
	13	translacija		
	14	izracunaj_vse		
	15	kocka		
	16	kocka_vek		
	17	rotiraj_kocko		
	18	rotirana_kocka		

1 Uvod

S seminarsko nalogo bova prikazala, kako se da znanje, pridobljeno pri tem predmetu, uporabiti pri upodobitvi gibanja togih teles, ki se uporabljajo pri računalniških animacijah in v robotiki. Za opis teh gibanj bomo uporabljali kvaternione in bezierjeve krivulje na kvaternionih.

2 Teoretično ozadje

2.1 Homogene in kartezične koordinate

Naj bo p vektor v 3-dimenzionalnem prostoru s homogenimi koordinatami $p = (p_0, p_1, p_2, p_3)^T \in \mathbb{R}^4/\{(0, 0, 0, 0)^T\}$. Če je prva komponenta p_0 neničelna, lahko za točko p definiramo prirejene kartezične koordinate $\underline{p} = (\underline{p_1}, \underline{p_2}, \underline{p_3})^T \in \mathbb{R}^3$, pri čemer velja $\underline{p_i} = \frac{p_i}{p_0}$ za i = 1, 2, 3. Na tak način vektorja p in λp opisujeta isto točko \underline{p} za poljubno neničelno realno število λ . Vektorjem z ničelno prvo komponento priredimo točke v neskončnosti.

2.2 Zveza med koordinatami točk v fiksnem koordinatnem sistemu in koordinatami točk v gibajočem se koordinatnem sistemu

Definirajmo dva koordinatna sistema v \mathbb{R}^3 :

- \bullet fiksen koordinatni sistem E^3 (običajen koordinatni sistem)
- $\bullet\,$ gibajoč se koordinatni sistem \hat{E}^3

Točke lahko predstavimo v enem ali drugem.

Označimo s \underline{p} točko glede na fiksen koordinatni sistem $E^3,$ s $\underline{\hat{p}}$ pa glede na $\hat{E}^3.$ Potrebujemo koordinatno transformacijo

$$\hat{E}^3 \to E^3$$

$$\hat{p} \mapsto p$$
.

Z uporabo homogenih koordinat, lahko transformacijo zapišemo s pomočjo matrike

$$M = \begin{bmatrix} m_{0,0} & m_{0,1} & m_{0,2} & m_{0,3} \\ m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,0} & m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix},$$

kjer velja $m_{0,0} \neq 0$. Preslikavo v homogenih koordinatah lahko torej zapišemo kot:

$$\hat{p} \mapsto p = M\hat{p}$$

Vektor \hat{p} , ki ima neničelno prvo koordinato, lahko zapišemo kot $(1, b_M, c_M, d_M)^T$ (saj $\lambda \hat{p}$ in \hat{p} predstavljata isti vektor v kartezičnih koordinatah). Vektor p je tako oblike

$$p = \begin{bmatrix} m_{0,0} + m_{0,1}b_M + m_{0,2}c_M + m_{0,3}d_M \\ m_{1,0} + m_{1,1}b_M + m_{1,2}c_M + m_{1,3}d_M \\ m_{2,0} + m_{2,1}b_M + m_{2,2}c_M + m_{2,3}d_M \\ m_{3,0} + m_{3,1}b_M + m_{3,2}c_M + m_{3,3}d_M \end{bmatrix}$$

Ker je to vektor v homogenih koordinatah, lahko ponovno uporabimo lahtnost, da λp in p predstavljata isti vektor v kartezičnih koordinatah. Določimo, da ima vektor p prvo komponento enako $m_{0,0}$. Z matriko M to dosežemo tako, da $m_{0,1}$, $m_{0,2}$ in $m_{0,3}$ dodelimo vrednost 0.

$$M = \begin{bmatrix} m_{0,0} & 0 & 0 & 0 \\ m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,0} & m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix},$$

Oglejmo si, kaj naredi matrika M z vektorjem $(1, b_M, c_M, d_M)^T$:

$$M \cdot \begin{bmatrix} 1 \\ b_M \\ c_M \\ d_M \end{bmatrix} = \begin{bmatrix} m_{0,0} \\ m_{1,0} \\ m_{2,0} \\ m_{3,0} \end{bmatrix} + \begin{bmatrix} 0 \\ m_{1,1}b_M + m_{1,2}c_M + m_{1,3}d_M \\ m_{2,1}b_M + m_{2,2}c_M + m_{2,3}d_M \\ m_{3,1}b_M + m_{3,2}c_M + m_{3,3}d_M \end{bmatrix}$$

Dobimo vektor v homogeni obliki, ki ima na prvi komponenti vrednost $m_{0,0}$, preostale tri komponente pa predstavlja vektor

$$\begin{bmatrix} m_{1,0} \\ m_{2,0} \\ m_{3,0} \end{bmatrix} + \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix} \cdot \begin{bmatrix} b_M \\ c_M \\ d_M \end{bmatrix}$$

Ker je to vektor v homogeni obliki in ker je prva komponenta neničelna $(m_{0,0} \neq 0)$, je njemu prirejen vektor v kartezični obliki enak

$$\frac{1}{m_{0,0}} \left[\begin{array}{c} m_{1,0} \\ m_{2,0} \\ m_{3,0} \end{array} \right] + \frac{1}{m_{0,0}} \left[\begin{array}{ccc} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{array} \right] \cdot \left[\begin{array}{c} b_M \\ c_M \\ d_M \end{array} \right],$$

ki pa je enak vsoti $\underline{c} + R \cdot \hat{p}$

Transformacijo $\underline{\hat{p}} \mapsto \underline{p}$ v kartezičnih koordinatah zapišemo kot:

$$p = \underline{c} + R\hat{p}$$

Vektor $(1,0,0,0)^T$, zapisan s homogenimi koordinatami, predstavlja koordinatno izhodišče. Vektorju $c=M(1,0,0,0)^T=(m_{0,0},m_{1,0},m_{2,3},m_{3,0})^T$ zapisanemu v homogenih koordinatah pripada vektor $\underline{c}=(\frac{m_{1,0}}{m_{0,0}},\frac{m_{2,0}}{m_{0,0}},\frac{m_{3,0}}{m_{0,0}})^T$, zapisan v kartezičnih koordinatah. Ta vektor opisuje položaj koordinatnega izhodišča gibajočega se koordinatnega sistema \hat{E}^3 glede na koordinatni sistem E^3 . Matrika

$$\underline{R} = \frac{1}{m_{0,0}} \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix}$$

opisuje orientacijo gibajočega se koordinatnega sistema \hat{E}^3 . Pravimo ji **rotacijska matrika**. Ker stolpci matrike R predstavljajo transformacije koordinatnih osi \vec{i} , \vec{j} in \vec{k} , za matriko R velja $RR^T = R^TR = I$ in det R = 1. Hkrati velja, da je matrika R ortogonalna. Opazimo torej, da lahko transformacijo točke zapišemo kot vsoto transformacije koordinatnega izhodišča gibajočega se koordinatnega izhodišča ter rotacije okrog koordinatnega izhodišča koordinatnega sistema \hat{E}^3 .

2.3 Gibanje točk v času

Kadar je $\underline{c} = \underline{c}(t)$ in R = R(t), govorimo o gibanju togega telesa:

$$\hat{E}^3 \times I \to E^3$$

$$(\hat{p}, t) \mapsto \underline{c}(t) + R(t)\hat{p} =: p(t)$$

Krivulji $\underline{p}(t)$ pravimo **trajektorija** točke $\underline{\hat{p}}$. Če je $\underline{c}(t) = (0,0,0)$, potem trajektorija poljubne točke $\underline{\hat{p}}$ leži na sferi z radijem $||\underline{\hat{p}}||$ in središčem v koordinatnem izhodišču fiksnega koordinatnega sistema E^3 . Rotacijski del gibanja R(t) opisuje gibanje po enotski sferi, zato se imenuje tudi **sferični del gibanja togega telesa**. Problem je konstrukcija ortogonalne matrike R.

2.4 Opis rotacij s kvaternioni

Pri opisovanju rotacij si lahko pomagamo s **kvaternioni**. Prostor kvaternionov H je 4-dimenzionalni vektorski prostor s standardno bazo

$$\underline{1} = (1, (0, 0, 0)^T)$$

$$\underline{i} = (0, (1, 0, 0)^T)$$

$$\underline{j} = (0, (0, 1, 0)^T)$$

$$k = (0, (0, 0, 1)^T).$$

Vsak kvaternion \mathcal{A} lahko zapišemo kot: $\mathcal{A} = (a_0, \underline{a})$, kjer rečemo, da sta $a_0 \in \mathbb{R}$ skalarni del in $\underline{a} = (a_1, a_2, a_3)^T$ vektorski del.

Na kvaternionih sta definirana seštevanje in množenje kot:

$$\mathcal{A} + \mathcal{B} = (a_0, \underline{a}) + (b_0, \underline{b}) = (a_0 + b_0, \underline{a} + \underline{b}),$$

$$\mathcal{A} \cdot \mathcal{B} = (a_0 \cdot b_0 - \underline{a} \cdot \underline{b}, a_0\underline{b} + b_0\underline{a} + \underline{a} \times \underline{b}).$$

Konjugirana vrednost kvaretniona $\mathcal{A}=(a_0,\underline{a})$ je definirana kot $\overline{\mathcal{A}}=(a_0,-\underline{a})$. S pomočjo konjugirane vrednosti nato definiramo tudi normo kvaterniona kot

$$||\mathcal{A}|| = \sqrt{\mathcal{A} \cdot \overline{\mathcal{A}}} = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2}.$$

Opomba 2.1 (Implementirane metode). V implementaciji vektorski del kvaterniona a pridobimo s funkcijo $quat_vec(a)$, sklararni del pa kar z ukazom a(1). Kvaterniona a in b seštejemo z ukazom a + b, njun produkt pa kličemo s funkcijo quatmultiply(a,b). Konjugirano vrednost kvaterniona a pridobimo s klicom funkcije $conj_quat(a)$. Za kvaternion a normo izračunamo z ukazom $sum(a.^2)$.

Definicija 2.2. Preslikava $\chi : \mathbb{H} \setminus \{0\} \to SO_3$ oblike

$$Q \mapsto \frac{1}{q_0^2 + q_1^2 + q_2^2 + q_3^2} \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_2) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

$$Q = (q_0, (q_1, q_2, q_3)^T)$$

se imenuje kinematična preslikava.

Matrika $\chi(Q)$ je rotacijska matrika. Velja pa tudi obratno. Vsako rotacijsko matriko R lahko zapišemo v zgornji obliki, to je, lahko jo preslikamo v dva **antipodna kvaterniona** oblike

$$\pm Q = \pm (q_0, (q_1, q_2, q_3)^T),$$

$$q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1.$$

Kinematična preslikava poda korespondenco med 3D rotacijami in parom antipodnih točk na 4D enotski sferi $S^3 \subseteq R^4$.

Ker velja $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$, so vrednosti $|q_i|$; i = 0, 1, 2, 3 na zaprtem interalu med 0 in 1. Vrednost q_0 in vektor $(q_1, q_2, q_3)^T$ lahko zato zapišemo v obliki:

$$q_0 = \cos(\frac{\phi}{2})$$

in

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \sin(\frac{\phi}{2}) \cdot \vec{r}; \ \vec{r} \text{ enotski vektor.}$$

Če kvaternion Q zapišemo v tej obliki, ima rotacija, prirejena temu kvaternionu lepo geometrijsko interpretacijo. Predstavlja namreč rotacijo za kot ϕ okrog osi \vec{r} .

Opomba 2.3 (Implementirane metode). V implementaciji rotacijsko matriko, prirejeno kvaternionu a generiramo s funkcijo $quat_rot_mat(a)$. Če imamo podan kot ϕ in enotski vektor r, nam funkcija $kot_v_kvat(\phi, r)$ poda pripadajoč kvaternion.

Ker lahko vsako rotacijo zapišemo v tej obliki, lahko tako zapišemo tudi rotacijo iz poglavja 2.2. Če imamo podano preslikavo M, poiščimo, kako za to preslikavo definiramo kvaternion Q. Priemerjajmo matriki \mathbb{R} in poglavja 2.2 in \mathbb{R} , zapisanega s kvaternioni.

$$m_{0,0}+m_{1,1}+m_{1,2}+m_{3,3}=4q_0^2$$

$$m_{3,2}-m_{2,3}=2\cdot(q_2q_3-q_0q_1)-2\cdot(q_2q_3+q_0q_1)=4q_0q_1$$

$$m_{1,3}-m_{3,1}=2\cdot(q_1q_3+q_0q_2)-2\cdot(q_1q_3+q_0q_2)=4q_0q_2$$

$$m_{2,1}-m_{1,2}=2\cdot(q_1q_2+q_0q_4)-2\cdot(q_1q_2+q_0q_4)=4q_0q_3$$

$$m_{3,2}-m_{2,3}=4q_0q_1$$

$$m_{0,0}+m_{1,1}-m_{1,2}-m_{3,3}=4q_1^2$$

$$m_{2,1}+m_{1,2}=4q_1q_2$$

$$m_{1,3}+m_{3,1}=4q_1q_3$$

$$m_{1,3}+m_{3,1}=4q_1q_2$$

$$m_{0,0}-m_{1,1}+m_{1,2}-m_{3,3}=4q_2^2$$

$$m_{3,2}+m_{2,3}=4q_2q_3$$

$$m_{1,3}+m_{3,1}=4q_1q_3$$

$$m_{1,3}+m_{3,1}=4q_1q_3$$

$$m_{1,3}+m_{3,1}=4q_1q_3$$

$$m_{1,3}+m_{3,1}=4q_1q_3$$

$$m_{1,2}+m_{2,3}=4q_2q_3$$

$$m_{1,2}+m_{2,3}=4q_2q_3$$

Opazimo, da v vsakem sklopu razmerja med vrednostmi enaka

$$q_0: q_1: q_2: q_3$$

Ker q_0, q_1, q_2, q_3 niso hkrati enaki 0, bo vsaj eno izmed zgornjih razmerij različno od 0:0:0:0. Tisto razmerje nato uporabimo kot razmerje $q_0:q_1:q_2:q_3$. Skupaj z enakostjo $q_0^2+q_1^2+q_2^2+q_3^2=1$ nato izračunamo kvaternion $Q=(q_0,q_1,q_2,q_3)^T$ (bolj natančno sta v množici rešitev dva antipodna kvaterniona).

2.5 Bezierjeve krivulje

Z uporabo kinematične preslikave lahko za konstrukcijo sferičnih gibanj uporabimo Bezierjeve krivulje. Izberemo kontrolne kvaternione Q_0, Q_1, \ldots, Q_n .

$$Q(t) = \sum_{i=0}^{n} Q_i B_i^n(t)$$

Bezierjeva krivulja Q(t) v času t opiše kvaternion, ki mu priredimo rotacijo R(t):

$$\chi(Q(t)) = R(t)$$

Rotacija, ki je določena z Bezierjevo krivuljo $Q(t) = \sum_{i=0}^{n} Q_i B_i^n(t)$ stopnje n, je sferično racionalno gibanje stopnje 2n.

Gibanje koordinatnega izhodišča zapišemo v obliki

$$\underline{c}(t) = \frac{w(t)}{||Q(t)||^2}; \ w(t) := (w_1(t), w_2(t), w_3(t)).$$

Opomba 2.4. Za računanje Bezierjeve krivulje rotacije uporabimo funkciji *sbezier* in *sdecasteljau*, za gibanje koordinatnega izhodišča pa *bezier* in *decasteljau*.

Bezierjeve krivulje za rotacije računamo na sferi, zato pride do manjših zapletov z že znanimi postopki. Pri De Casteljaujevem algoritmu se običajno naredi linearno interpolacijo $b = (1 - t)b_0 + tb_1$ za parameter t med točkama b_0 in b_1 , ker pa želimo gibanje po sferi in ne po premici med točkama, moramo uporabiti sferično linearno interpolacijo.

Definicija 2.5. Sferična linearna interpolacija, znana tudi kot slerp, je preslikava

$$\operatorname{slerp}(p_0, p_1, t) = \frac{\sin((1-t)\varphi)}{\sin \varphi} p_0 + \frac{\sin(t\varphi)}{\sin \varphi} p_1,$$

kjer je φ kot med p_0 in p_1 , da velja $\cos \varphi = p_0 \cdot p_1$. Slerp torej vrne točko na krožnem loku med točkama p_0 in p_1 , ki ustreza parameteru t.

Sferično linearno interpolacijo lahko krajše zapišemo v kontekstu kvaternionov q_0 in q_1 :

slerp
$$(q_0, q_1, t) = q_0(q_0^- 1q_1)^t$$

= $q_1(q_1^- 1q_0)^{1-t}$
= $(q_0q_1^- 1)^{1-t}q_1$
= $(q_1q_0^- 1)^tq_0$.

Pri računanju rotacije je bila uporabjena prva verzija formule.

3 Implementacija

3.1 Primeri

3.2 Kvaternioni

Ker si pri opisovanju rotacij pomagamo s kvaternioni, sva na kvaternionih definirala naslednje funkcije:

Vektorski del kvaterniona:

Input:

• kvaternion Q oblike $[q_0, q_1, q_2, q_3]$

Output:

• vektorski del v (q_1, q_2, q_3) kvaterniona Q

Listing 1: quat_vec

```
1 function v = quat_vec(Q)
2 
3 v = [Q(2) Q(3) Q(4)];
4 end
```

Množenje kvaternionov:

Input:

- kvaternion a oblike $[a_1, a_2, a_3, a_4]$
- kvaternion b oblike $[b_1, b_2, b_3, b_4]$

Output:

• kvaternion $c = a \cdot b$

Listing 2: quatmultiply

```
function c = quatmultiply(a,b)

c = zeros(1,4);
    a_s = a(1);
    b_s = b(1);
    a_v = quat_vec(a);
    b_v = quat_vec(b);
    c(1) = a_s * b_s - a_v * b_v';
    c_v = a_s * b_v + b_s * a_v + cross(a_v,b_v);
    c(2) = c_v(1);
    c(3) = c_v(2);
    c(4) = c_v(3);
end
```

Konjugirana vrednost kvaterniona:

Input:

• kvaternion q oblike $[q_1, q_2, q_3, q_4]$

Output:

• kvaternion $Q = \overline{q}$

Listing 3: conj_quat

```
1 function Q = conj_quat(q)
2 
3 Q = [q(1), -q(2:4)];
4 end
```

Potenca kvaterniona q:

Input:

- kvaternion q oblike $[q_1, q_2, q_3, q_4]$
- \bullet eksponent t

Output:

 \bullet q^t

Listing 4: quat_exp

```
function e = quat_exp(q, t)
2
3
   if t==-1
4
       e = conj_quat(q)/norm(q);
5
   else
6
       a = q(1);
 7
       v = quat_vec(q);
       theta = acos(a/norm(q));
8
9
       n = v/norm(v);
10
       e = norm(q)^t*[cos(t*theta), n*sin(t*theta)];
11
   end
```

Rotacijska matrika:

Input:

• kvaternion q oblike $[q_1, q_2, q_3, q_4]$

Output:

 \bullet rotacijska matrika H za sfericno gibanje

Listing 5: quat_rot_mat

```
1
   function H = quat_rot_mat(Q)
 2
 3 \mid H = zeros(3,3);
4 \mid h = sum(Q.^2);
 5
6
  if h == 0
 7
       H = eye(3,3);
8
  else
9
       H(1,1) = Q(1)^2+Q(2)^2 - Q(3)^2 - Q(4)^2;
10
       H(1,2) = 2*(Q(2)*Q(3) - Q(1)*Q(4));
       H(1,3) = 2*(Q(2)*Q(4) + Q(1)*Q(3));
11
12
       H(2,1) = 2*(Q(2)*Q(3) + Q(1)*Q(4));
13
14
       H(2,2) = Q(1)^2 - Q(2)^2 + Q(3)^2 - Q(4)^2;
15
       H(2,3) = 2*(Q(3)*Q(4) - Q(1)*Q(2));
16
17
       H(3,1) = 2*(Q(2)*Q(4) - Q(1)*Q(3));
18
       H(3,2) = 2*(Q(3)*Q(4) + Q(1)*Q(2));
19
       H(3,3) = Q(1)^2 - Q(2)^2 - Q(3)^2 + Q(4)^2;
20
21
       H = 1/h.*H;
22 end
23
   end
```

Kvaternion glede na rotacijo za kot ϕ okrog ostie: Input:

- kot fi
- \bullet vektor osi e

Output:

 \bullet kvaternion Q

Listing 6: kot v kvat

```
function r = kot_v_kvat(fi, e)

e = e/norm(e);
r = [cos(fi/2) sin(fi/2)*e(1) sin(fi/2)*e(2) sin(fi/2)*e(3)];
end
```

Rotacija vektorja okrog koordinatnih osi:

Input:

- \bullet vektor vec
- \bullet koti $kot_x,\,kot_y,\,kot_z$ rotacije okrog $x,\!y,\!z$ osi

Output:

 \bullet zarotiran vektor v

```
Listing 7: rot_vek_za_kot
```

```
function v = rot_vek_za_kot(vec, kot_x,kot_y,kot_z)

q = angle2quat(kot_x, kot_y, kot_z);
v = quatmultiply(q, quatmultiply([0 vec], conj_quat(q)));
end
```

3.3 Bezierjeve krivulje

Bezier:

Input:

- matrika B velikosti $(n+1)\times d$, ki predstavlja kontrolne točke Bezierjeve krivulje
- \bullet seznam parametrov tdolzine k, pri katerih računamo vrednost Bezierjeve krivulje

Output:

 \bullet matrika b, ki predstavlja točke na Bezierjevi krivulji pri parametrih iz t

Listing 8: bezier

```
1
   function b = bezier (B,t)
2
3
   [n,d] = size(B);
4
   k = length(t);
5
   b = zeros(k,d);
6
7
   for i=1:k
8
        for j=1:d
9
            D = decasteljau(B(:,j)',t(i));
10
            b(i,j) = D(1,n);
11
        end
12
   end
```

Decasteljau:

Input:

- $\bullet\,$ seznam koordinat b kontrolnih točk Bezierjeve krivulje stopnje n
- parameter t, pri katerem računamo koordinato Bezierjeve krivulje

Output:

• Casteljaujeva shema D

Listing 9: decasteljau

```
1
   function D = decasteljau (b,t)
2
3
  n = length(b);
4
   D = [b', NaN(n,n-1)];
5
6
   for r=1:n
 7
        for i=0:n-r-1
8
            D(i+1,r+1) = (1-t)*D(i+1,r) + t*D(i+2,r);
9
       end
10
  end
```

sBezier:

Input:

- matrika Q velikosti $(n+1)\times d$, ki predstavlja kontrolne točke Bezierjeve krivulje
- \bullet seznam parametrov tdolzine k, pri katerih računamo vrednost Bezierjeve krivulje

Output:

 $\bullet\,$ matrika b,ki predstavlja točke na Bezierjevi krivulji pri parametrih iz t

Listing 10: sbezier

```
function b = sbezier(Q,t)
1
2
   k = length(t);
3
4
   b = cell(k,1);
5
6
   for K = 1:k
7
        decast = sdecasteljau(Q,t(K));
8
        b\{K\} = decast(1,end);
9
   end
10
   b;
```

sDecasteljau:

Input:

- ullet seznam koordinat Q kontrolnih točk Bezierjeve krivulje stopnje n
- parameter t, pri katerem računamo koordinato Bezierjeve krivulje

Output:

• Casteljaujeva shema D

Listing 11: sdecasteljau

```
function D = sdecasteljau(Q,t)
2
3
   [n,m] = size(Q);
4
   n = n-1;
5
   D = cell(n+1, n+1);
6
   for i = 1:(n+1)
 7
        D\{i,1\} = Q(i,:);
8
   end
9
   for j=2:(n+1)
10
        for i=1:(n+2-j)
11
            D{i,j} = slerp(D{i,j-1},D{i+1,j-1},t);
12
        end
13
   end
14
   end
```

Matrika iz celice:

Input:

 $\bullet \ \mbox{celica} \ Q$

Output:

 \bullet matrika Q

Listing 12: polepsaj_sbezier

```
function mat_Q = polepsaj_sbezier(Q)

n = length(Q);
mat_Q = zeros(n,4);
for i = 1:n
    mat_Q(i,:) = Q{i}{1};
end
end
```

Translacija izhodišča:

Input:

- translacijska funkcija izhodišča w, računana na t ($n \times 3$ matrika)
- $\bullet\,$ sferična rotacijska Bezierjeva krivulja, računana na t $(n\times 4$ matrika)
- \bullet seznam parametrov t dolžine n, pri katerih računamo funkcijo.

Output:

• normirana translacija ($n \times 3$ matrika)

Listing 13: translacija

```
1
   function c = translacija(w, Q, t)
2
3
   n = length(t);
4
   c = zeros(n,3);
5
   for i = 1:n
6
7
       nQt = norm(Q(i,:))^2;
8
        c(i,:) = w(i,:)/nQt;
9
   end
10
   end
```

Celotno gibanje togega telesa:

Input:

- \bullet matrika kontrolnih kvaternionov Q za sferične rotacije
- matrika kontrolnih točk za Bezierjevo krivuljo gibanja izhodišča
- \bullet seznam parametrov t, pri katerih opazujemo gibanje

Output:

- $\bullet\,$ matrika kvaternionov $mat_Q,$ ki določajo sferične rotacije
- ullet Bezierjeva krivulja w, ki določa gibanje koordinatnega izhodišča
- ullet normirana translacijska funkcija c

Listing 14: izracunaj_vse

```
function [mat_Q,w,c] = izracunaj_vse(Q, B, t)

mat_Q = polepsaj_sbezier(sbezier(Q,t));
w = bezier(B,t);
c = translacija(w,mat_Q, t);
end
```

3.4 Kocka

Oglišča kocke z diagonalo d:

Input:

• krajišči diagonale T0 in T1 (d = T0T1)

Output:

• koorinate oglišč kocke

Listing 15: kocka

```
function oglisca = kocka(T0, T1)

a = [T1(1) - T0(1) 0 0];
b = [0 T1(2) - T0(2) 0];
c = [0 0 T1(3) - T0(3)];
oglisca = [T0; T0+b; T0+a+b; T0+a; T0+c; T0+c+b; T0+a+b+c; T0+a+c];
end
```

Kocka s stranicami in izhodiščem:

Input:

- vektorji stranic X,Y,Z
- izhodišče T0

Output:

• vsa oglišča kocke, ki se začne v T0

Listing 16: kocka_vek

```
function oglisca = kocka_vek(X, Y, Z, T0)

glisca = [T0; T0+Y; T0+X+Y; T0+X; T0+Z; T0+Z+Y; T0+X+Y+Z; T0+X+Z];
end
```

Rotacija kocke:

Input:

- kocka K0
- koti kot_x , kot_y , kot_z

Output:

 \bullet K1 - zarotirana kocka K0 za podane kote

Listing 17: rotiraj_kocko

```
function K1 = rotiraj_kocko(K0, kot_x, kot_y, kot_z)

K1 = zeros(size(K0));
for i = 1:8
    K1(i,:) = quat_vec(rot_vek_za_kot(K0(i,:), kot_x, kot_y, kot_z));
end
end
```

Rotacija kocke:

Input:

- \bullet kvaternion Q
- ullet vektorji stranic kocke x,y in z

Output:

• Oglišča zarotirane kocke z enim ogliščem v [0,0,0]

Listing 18: rotirana_kocka

```
function [K0, x0, y0, z0] = rotirana_kocka(x,y,z,Q)

H = quat_rot_mat(Q);

x0 = (H*x')';

y0 = (H*y')';

z0 = (H*z')';

K0 = kocka_vek(x0,y0,z0, [0 0 0]);

end
```