Name:		
Roll No.:		
Invigilator's Signature :		

2011

STATISTICS, NUMERICAL METHODS AND ALGORITHMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Cho	ose	the	correct	alternativ	es	for	any	ten	of	the
	follo	wing	:						10	× 1 =	: 10
	i)	The	num	ber of sig	nificant di	git i	n 0·0	0303	is		
		a)	6			b)	5				
		c)	3			d)	non	e of th	nese.		
	ii)		en ro omes	ounded o	off after 4	de	cima	l plac	ces 0	0.003	256
		a)	0.00)32		b)	0.00	033			
		c)	0.03	326		d)	non	e of th	iese.		

4175 [Turn over

a)

iii) Divided difference formula is used for

equispaced point

	b)	unequally spaced points								
	c)	both (a) & (b)	both (a) & (b)							
	d)	none of these.								
iv)		wton's forward formula is used for interpolating the u e of y near the								
	a)	beginning of a set								
	b)	end of a set								
	c)	central of the set								
	d)	none of these.								
v)	In b	eackward difference V	$\nabla^2 f(x)$ is	S						
				$\nabla^2 f(x) - \nabla^2 f(x - h)$						
	c)	$\Delta f(x) - \Delta f(x+h)$	d)	none of these.						
vi)	The	iterative method to s	solve a s	ystem of equation is						
	a)	Gauss-elimination	b)	Gauss-Jordan						
	c)	Gauss-Seidel	d)	None of these.						
vii)	The	error in the Simpson	n's $\frac{1}{3}$ rd	method is of order						
	a)	h	b)	h^2						
	c)	h^3	d)	h^4 .						
4175		2								

		$f^{\prime}(x) = 0$	b)	f'(x) > 0
	c)	f'(x) < 0	d)	none of these.
ix)	Diag	gonal dominance is mus	st for	
	a)	Gauss-Seidel method		
	b)	Gauss-Jordan's matrix	k inve	ersion method
	c)	Gauss elimination met	thod	
	d)	none of these.		
x)		second order Runge-Kur which is of order of	ıtta f	ormula has a truncation
	a)	h^2	b)	h^3
	c)	h^4	d)	none of these.
xi)		order of h in the error	expre	ssion of trapezoidal rule
	is			
	a)	1	b)	2
	c)	3	d)	4.
xii)	Rela x_{Γ} :			ical method where $x_A = Approximate value$
	of so	olution is		
	a)	$ x_{\Gamma}-x_A $	b)	$\frac{\left x_{\Gamma}-x_{A}\right }{x_{\Gamma}}$
	c)	$\frac{\left x_{\Gamma}-x_{A}\right }{x_{\Gamma}}\times100$	d)	none of these.

viii) Newton-Raphson method fails when

xiii) Which is the direct method?

- a) Gauss-elimination method
- b) Gauss-Jacobi method
- c) Gauss-Seidel method
- d) none of these.

xiv) Newton-Raphson method is also known as

- a) chord method
- b) tangent method
- c) secant method
- d) none of these.

GROUP – B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. By means of Newton's divided differential interpolation formula find the value of f(8) from the following table :

<i>x</i> =	4	5	7	10	11	13
f(x) =	48	100	294	900	1210	2028

- 3. Prove that for small values of 'h' $\Delta^{n+1} f(x_0) \approx h^{n+1} f^{n+1}(x_0)$.
- 4. Evaluate $\int_{0}^{1} \cos x \, dx$ taking five equal intervals. Explain the reason behind your choice of integration formula used.
- 5. Compute f(1.42) from the following data:

х	1.1	1.2	1.3	1.4
f(x)	7.831	8.728	9.697	10.744

- 6. Solve $\frac{dy}{dx} = x^2y 1$, where y (0) = 1 by Taylor's series method. Also find y (0.1) correct to seven significant digits.
- 7. How many digits are to be taken in computing $\sqrt{13}$ so that error does not exceed 0.1%?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Compute f(1.16) from the following table:

х	1.11	1.12	1.13	1.14	1.15	1·16
f(x)	6.2321	6.2544	6.2769	6.2996	6.3225	6.3456

- b) Find the positive root of the equation $x^2 + 2x 2 = 0$, correct up to 2 significant figures by Newton-Raphson method.
- c) Estimate the missing term from the table :

x	2	4	6	8	10
у	5	13	*	53	85

9. a) Solve the following system of linear equations by Gauss-Seidel method :

$$6x + 15y + 2z = 72$$

$$27x + 6y - z = 85$$

$$x + y + 54z = 110$$
.

- b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Simpson's one-third rule taking $h = \frac{1}{6}$ correct up to 3 decimal places.
- c) Find the root of the equation $x \log_{10} x = 1 \cdot 2$, correct to 2 decimal places by Bisection method. 6 + 4 + 5
- 10. a) Solve by Gauss elimination method:

$$x + 2y + 3z = 10$$

$$x + 3y - 2z = 7$$

$$2x - y + z = 5.$$

b) Evaluate $\int_{0}^{1} (4x - 3x^{2}) dx$ taking 10 intervals by

Trapezoidal rule and then find the absolute error.

c) Prove that $E = e^{hD}$, $D = \frac{d}{dx}$ and E is the shift operator.

7 + 5 + 3

- 11. a) Use Euler's method to find the solution of $\frac{dy}{dx} = x y$ with y(0) = 1, h = 0.2 at x = 0.4.
 - b) Find the value of y (0.2) by 4th order Runge-Kutta method which is correct to *four* decimal places, where $\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 x^2, y(0) = 1 \text{ taking } h = 0.1.$ 7 + 8

4175

- 12. a) Compute a root of the equation $x^2e^{-x/2} = 1$ in the interval [0, 2] by secant method correct to 3 decimal places.
 - b) Find the inverse of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$ by Gauss' method. 7+8
- 13. a) Solve the following equation by Jacobi's iteration method:

$$10x - 2y - z - w = 3$$
$$-2x + 10y - z - w = 15$$
$$-x - y + 10z - 2w = 27$$
$$-x - y - 2z + 10w = -9$$

b) Solve by *LV* factorization method :

$$2x - 3y + z = -1$$

$$x + 2y - 3z = -4$$

$$x - 4y + z = -6$$

$$7 + 8$$