

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

END Semester Examination DECEMBER 2023

Max. Marks: 100

Class: TE ELECTRONICS & TELECOMMUNICATION

Course Code: EC303

Name of the Course: Digital Signal Processing

Duration: 180 Min

Semester: V Branch: EXTC

Instruction:

(1) All questions are compulsory.

(2) Use of scientific calculators is allowed.

(3) Draw a neat diagram.

(4) Assume suitable data if necessary, with justification.

500 At			
		Max	ALE THE RESERVE
Q.	Attempt the following Short Answer Questions.	IVIAIK	5
(1)	Consider filter with transfer function $H(z) = \frac{z-4}{z-0.25}$	2	CO
	Identify the type of filter and justify it.		
(2)	Given $H(e^{jw}) = e^{-j2w} [24 + 4.8 \cos(2w) + 6.2 \cos(w)]$. Find h[n].	2	CO4
(3)	Given $h[n] = (0.4)^n$ for $0 \le n \le 2$	2	CO4
	Find the response of the filter to the input $x[n] = (0.5)^n u[n]$		
(4)	Justify that antisymmetric h(n) cannot be used for Linear phase Low pass FIR filter design?	2	CO5
(5)	Let $x[n] = (0.5)^{n-1} u[n-1] + (0.4)^{n-2} u[n-2]$ Find $X(z)$	2	CO3
(6)	Derive the relationship between Analog Filter Frequency & Digital Filter Frequency when Impulse Invariant Method is used for filter design?	2	CO5
(7)	Let $x[n]$ be four-point sequence with $X[k] = \{1, 2, 3, 4\}$. Find the DFT of $p[n]$ using $X[k]$ where $p[n] = (-1)^n x[n]$	2	CO2
(8)	A signal $x(t)$ that is band limited to 10KHz, is sampled with a sampling frequency of 20 KHz. The DFT of $N = 1000$ samples is then computed. To what analog frequency does the index $k=150$ correspond?	2	CO2
9)	Show that Frequency Mapping from Analog Filter to Digital filter is, One to One when BLT Method is used for filter design.	2	CO5

(10)	How many roal multiplication at 1150		
(10)	How many real multiplications and additions are required to find DFT of 256-point signal.?	2	CO2
Q.2	Assume that a Real Multiplication takes 1 microsecond & a Real Addition	10	CO2
(A)	takes 1 microsecond.		002
	How much time it will take to find the output of FIR filter with M=25-point		
	h[n] and $L = 1000$ point $x[n]$ using FFT-IFFT.		
Q.2	Given $x(n) = \{1, 1, 1, 1, 0, 0, 0, 0, 0\}.$	10	CO2
(B)	(a) Find X[k] by using FFT.		
	(b) Let $p[n] = \{1, 1, 1, 1, 1, 1, 1, 1\}$ Find $P[k]$ using $X[k]$		
	(b) Let $q[n] = \{1, 1, 1, 1, -1, -1, -1, -1\}$ Find $Q[k]$ using $X[k]$		
	OR		
	Derive DIT-FFT Flowgraph for N=6 using 3-point basic flowgraph.		
Q.3	Given $y[n] = 10x[n] + 0.5 y[n-1]$	10	CO4
(A)	Find the response of the given IIR filter to the input.		
	(1) $x[n] = 20 \cos(0.25 \pi) u[n]$.		
	(2) $x[n] = 10 \sin(0.5 \pi)$		
Q.3	A discrete time signal x(n) is defined as	10	CO1
(B)	$x(n) = \begin{cases} 1 + \frac{n}{3}, & -3 \le n \le -1 \\ 1, & 0 \le n \le 3 \\ 0, & elsewhere \end{cases}$ i) Determine its values. Can you express the signal x(n) in terms of $\delta(n)$ and u(n)? ii) Sketch the following signals and identify the type of operation involved: a) $x(n-2)$ b) $x(3-n)$ c) $x(n-1) \cdot \delta(n-1)$ d) Even part of $x(n)$ e) $x(2n)$		
Q.4	Show that if Phase response of the FIR filter is Linear phase, then output of	10	CO5
(A)	the filter is delayed version of the input signal during passband. [5 Marks]		= 0
	AND		
	If the phase response of the FIR filter is NOT Linear Phase, then output of		
	the filter is a distorted version of the input signal. [5 Marks]		
Q.4	Let $x[n] = (0.25)^n \sin(0.5\pi n)u[n] + (0.5)^n \cos(0.3\pi n)u[n]$. Find X(z).	10	CO3
(B)			

Q.5	A filter is required to be designed with the following specifications,	10	CO5
(A)	$\mathbf{H}(\mathbf{e}^{\mathbf{jw}}) = \begin{bmatrix} 2 e^{-j3w} & \frac{-3\pi}{4} \le w \le \frac{3\pi}{4} \\ 0 & Otherwise \end{bmatrix}$		
	Calculate N=11-point h[n] using Frequency Sampling Method.		
	OR		
	Given $Ap = 1.88 \text{ dB}$ $As = 13.89 \text{ dB}$ $w_p = 0.75 \pi$ $w_s = 0.35 \pi$		
	(a) Design minimum order Digital Butterworth filter		
	(b) Show Realization Diagram.		
Q.5	A system based on sensor using DSP processor is required to be designed for	10	CO6
(B)	Measurement & analysis of Sound pollution in the atmosphere.		
	If the Sound Noise level is above the user defined threshold value, then an		
	appropriate error message should get displayed on the screen.		
	(1) Draw block diagrams of the complete DSP system. Justify the need		
	of each block.		
	(2) Write Algorithms/Flowchart to address the problem	-	
	OR		
	An Audio signal band limited to 3.4 KHz is sampled with a sampling		
	frequency Fs = 44100 Hz and the sampled signal is stored on Pen Drive.		
	It is required to obtain 48000 samples per second from 44100 samples		
	obtained per second.		
	1. Devise a strategy to convert 44100 samples to 48000 samples per second.		
	2. Draw a block diagram and explain each block in detail to convert 44100		
	samples to 48000 samples per second.		

