Exercise 5.1

(a) From the slides we have the hint that equivalence relations induce partitions.

We look for the amount of relations over the equivalence set of M: $|R| \subseteq (\sim M)$, $M = \{1, 2, 3\}$. Since $(\sim M) = M_1 \times M_2$, where $M_1 \times M_2$ has to be reflexive, symetric and transitive, every possible subset of $(\sim M)$ has to fulfill $M_1 = M_2$.

This is equivalent to the different ways you can partition the set M into disjoint subsets. $R_1 = \{\{1,2\},3\}, R_2 = \{1,\{2,3\}\}, \text{ otc. } |R| = 5$

$$R_1 = \{\{1, 2\}, 3\}, R_2 = \{1, \{2, 3\}\} \text{ etc.., } |R| = 5.$$

(b)
$$[a]_{\sim} = \{a\}, [b]_{\sim} = \{b, d\}, [c]_{\sim} = \{c, e\}, [d]_{\sim} = \{d, b\}, [e]_{\sim} = \{e, c\}$$

Exercise 5.2

- (a) Since the equivalence relation \sim is reflexive, we have that for all $x \in S$ that $(x, x) \in \sim$. Therefore, for any equivalence class $[x]_{\sim} = \{y \in S \mid x \sim y\}$ there must exist a $y \in [x]_{\sim}$ with x = y. Each equivalence class of the set $E = \{[x]_{\sim} \mid x \in S\}$ has the latter property. Therefore, every element of S is in some equivalence class in E.
- (b) I will show this by an indirect proof. Assume there is are $x,y,z\in S$ with $x\in [y]_{\sim},x\in [z]_{\sim}$ and $[y]_{\sim}\neq [z]_{\sim}$. Because equivalence relations are symmetric, we have that for arbitrary s,q that $s\in [q]_{\sim}$ iff $q\in [s]_{\sim}$. Therefore $x\in [y]_{\sim}\leftrightarrow y\in [x]_{\sim}$ and $x\in [z]_{\sim}\leftrightarrow z\in [x]_{\sim}$. We have a contradiction, since we assumed $[y]_{\sim}\neq [z]_{\sim}$ which is equivalent to $[x]_{\sim}\neq [x]_{\sim}$, but it is the case that $[x]_{\sim}=[x]_{\sim}$. Thus every element of S is in at most one equivalence class in E.

Exercise 5.3

 $S = \{(c, c), (d, d), (a, b)\}$

It is a partial order since not every element is related to another and its reflexive, antisymetric and transitive

c and d are the minimal elements as there is no y with $y \leq c, d$.

Exercise 5.4

- (a) Let R be a total order over an arbitrary set S and let $x, y \in S$. If x = y, then the statements xRy and yRx are the same statements and thus count as only one statement. If $x \neq y$, then we have, because partial relations are antisymmetric, that if $xRy \in R$, then $yRx \notin R$ and vice versa. Therefore, either $xRy \in R$ xor $yRx \in R$ is true.
- (b) I will disprove this statement by a counterexample. Let $S = \{a, b\}$. The only strict orders over S which exist are $R_1 = \{(a, b)\}, R_2 = \{(b, a)\}.$

Let's look at the strict order R_1 . Here a is minimal, since there is no $y \in R_1$ with yR_1a . The element a is not maximal, since there exists $y \in R_1$ with aR_1y which is y = b.

An analogous argument can be made for R_2 . Therefore, there does not exist a strict order over S where all $x \in S$ are both minimal and maximal. Thus the statement is false.

Exercise 5.5

(a)
$$A^{-1} = \{\langle 2x, x \rangle | x \in \mathbb{N}_o \}$$

(b)
$$B \setminus A^{-1} = \{\langle i * x, x \rangle | i, x \in \mathbb{N}_0, i \neq 2\}$$

(c)
$$C \circ A = \{\langle 4, 2 \rangle, \langle 8, 16 \rangle, \langle 7, 14 \rangle, \langle 2, 4 \rangle, \langle 4, 9 \rangle\}$$

(d)
$$A \circ (A \circ A) = \{\langle x, 8 * x \rangle | x \in \mathbb{N}_0 \}$$

(e)
$$A^* = \{ \langle x, 2 * y * x \rangle | x, y \in \mathbb{N}_0 \}$$

(f)
$$A \circ B = \{ \langle x, x \rangle | 2 * x = i * x : i, x \in \mathbb{N}_0 \}$$