ПОТОКИ ПАРОСОЧЕТАНИЯ

Сеть

Сеть (англ. *flow network*) G=(V,E) представляет собой ориентированный граф, в котором каждое ребро (u,v)∈E имеет положительную **пропускную способность** (англ. *capacity*) c(u,v)>0. Если (u,v) $\notin E$, предполагается что c(u,v)=0.

В транспортной сети выделяются две вершины: **исток** S и **сток** T.

Поток

Потоком (англ. *flow*) f в G является действительная функция $f: V \times V \rightarrow R$, удоволетворяющая условиям:

- 1) f(u,v) = -f(v,u) (антисимметричность);
- 2) $f(u,v) \le c(u,v)$ (ограничение пропускной способности), если ребра нет, то f(u,v) = 0
- 3) $\sum_{v} f(u, v) = 0$ для всех вершин u, кроме s и t (закон сохранения потока).

Величина потока f определяется как $|f| = \sum v \in Vf(s, v)$.

В данном случае:

Исток S

Сток Т

Величина потока 4 + 2 = 6 (f(S, V) + f(S, U)) - сумма потоков выходящих из вершины S)

Задача о максимальном потоке. Разрез

Разрез — это набор ребер, удаление которых делает невозможным путь от источника к стоку.

Пропускная способность разреза — сумма пропускных способностей ребе, проходящих через разрез

Поток, проходящий через разрез — сумма значений потока проходящих через разрез

В данном случае: Поток через разрез = 3

Пропускная способность разреза = 4

Задача о максимальном потоке. Разрез

Минимальным разрезом (англ. *minimum cut*) называется разрез с минимально возможной пропускной способностью

Если f(S, T) = c(S, T), то поток - максимален, а разрез - минимален

Разрез	"Разрезанные" ребра	Пропускная способность
1	(1,2),(1,3),(1,4)	10+30+20=60
2	(1,3),(1,4),(2,3),(2,5)	30+10+40+30=110
3	(2,5),(3,5),(4,5)	30+20+20=70

Минимальный разрез — 1 с пропускной способностью 60, Значит максимальная пропускная способность == 60

Остаточная сеть. Принцип построения

Задача о максимальном потоке. Теорема Форда-Фалкерсона

По данной теореме, для любого максимального потока, для его остаточной сети не будет существовать пути из истока в сток

Построим сеть с максимальным потоком и его остаточную сеть

Алгоритм Форда-Фалкерсона

- 1. Обнуляем все потоки. Остаточная сеть изначально совпадает с исходной сетью.
- 2. В остаточной сети находим любой путь из источника в сток. Если такого пути нет, останавливаемся.
- 3. Пускаем через найденный путь (дополняющий путь) максимально возможный поток:
 - 1. На найденном пути в остаточной сети ищем ребро с минимальной пропускной способностью Стіп.
 - 2. Для каждого ребра на найденном пути увеличиваем поток на Стіп, а в противоположном ему уменьшаем на Стіп.
 - 3. Модифицируем остаточную сеть. Для всех рёбер на найденном пути, а также для противоположных им рёбер, вычисляем новую пропускную способность. Если она стала ненулевой, добавляем ребро к остаточной сети, а если обнулилась, стираем его.
- 4. Возвращаемся на шаг 2.

Алгоритм Форда-Фалкерсона

Оценка по времени O(VE)

Паросочетания

Паросочетание (англ. matching) M — произвольное множество рёбер графа такое, что никакие два ребра не имеют общей вершины.

Задача о максимальном паросочетании Алгоритм Куна

Чередующейся цепью (в двудольном графе, относительно некоторого паросочетания) назовём цепь, в которой рёбра поочередно принадлежат/не принадлежат паросочетанию.

Увеличивающей цепью (в двудольном графе, относительно некоторого паросочетания) назовём чередующуюся цепь, у которой начальная и конечная вершины не принадлежат паросочетанию.

Алгоритм Куна

Алгоритм Куна — сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.

Проще говоря: Алгоритм Куна просматривает все вершины графа по очереди, запуская из каждой обход, пытающийся найти увеличивающую цепь, начинающуюся в этой вершине.

Алгоритм Куна

```
bool dfs(v: int):
    if (used[v])
        return false
    used[v] = true
    for to in g[v]
        if (matching[to] == -1 or dfs(matching[to])):
            matching[to] = v
            return true
    return false
```

```
function main():
    fill(matching, -1)
    for i = 1..n
        fill(used, false)
        dfs(i)
    for i = 1..n
        if (matching[i] != -1)
            print(i, " ", matching[i])
```

Оценка по времени

O(VE)

Задача о максимальном паросочетании Алгоритм Форда-Фалкерсона

Для неориентированного двудольного графа построим относительно изначального, граф такой что:

У нового графа есть исток(все ребра которого ведут в первую долю) и сток(все ребра, входящие в него принадлежат второй доле)

Сделаем ребра ориентированными так, что ребра из истока направлены в первую долю, ребра первой доли направлены во вторую, а ребра второй доли направлены в сток.

Задача о максимальном паросочетании Алгоритм Форда-Фалкерсона

Изначально текущее паросочетание пусто. На каждом шаге алгоритма будем поддерживать следующий инвариант: в текущее найденное паросочетание входят те и только те ребра, которые направлены из первой доли во вторую

- 1. Ищем в графе путь из *s* в *t* поиском в глубину.
- 2. Если путь найден, перезаписываем текущее паросочетание. Далее инвертируем все рёбра на пути и удаляем ребра, принадлежащие текущему паросочетанию.
- 3. Если путь не был найден, значит текущее паросочетание является максимальным, и алгоритм завершает работу. Иначе переходим к пункту 1.

Задача о максимальном паросочетании Алгоритм Форда-Фалкерсона

```
bool dfs(x):
    if vis[x]
        return false
    vis[x] = true
    for (x,y) ∈ E
        if py[y] == -1
            py[y] = x
            px[x] = y
            return true
    else
        if dfs(py[y])
            py[y] = x
            px[x] = y
            return true
return false
```

Оценка по времени O(VE)