Functions 13

Exact Differentials
We know that for a function of two veriables u(xiy) the total differential is du = Du dx + Do dy and of course, Soc, Sy will be, in yereral, functions of or and y. Now lets consider the inverse problem! Given P(x,y)doc + Q(x,y)dy

when is it the case that this is the total

differential of some (as yet unknown)

function v(x,y)? If it is such then P(x,y) = 5x

and Q(x,y) = 2/3y. for the function v(x,y). This implies and is implied by the condition of intergrability

Example y2doc + (x2+2y)dy

P(x,y) = y2 8P(0y = 2y Q(x,y) = x2+2y 8P(0x = 2x

By & De not exact

Example (2xy + cosxcosy)dx + (x2-sinxsiny)dy OBy = 2x + cosxsiny Dx = 2x - cosxsiny De = De exact U(x,y) = x2y + sinxcosy + f(y) Then either: $\frac{\partial y}{\partial y} = x^2 - \sin x \cos y + f'(y)$ · of (y) =0 f(y) = k or: v(x,y) = x2y + sinx(xxy + q(x) 0/(20)=0 g(x)=4 Note: du = pain Stabinary Points How do stabinary points when we have two variables? There are 3 types of stationary points. \$ local maximum \$ local minimum * Saddle point

30

30

Local Mariner M(xin) u(x,y) decreasing away
the point Local Maximum PHYDUR 200 x v(xiy) in creases away
from the point

if Eo = 0, you need to look at higher order directives Example $v(x,y) = x^3 + xy^2 - x - x^2y - y^3 + y$ = (oc-4) (ocs+45+1) <u>Ou</u> = 3x2 +y2 -1 - 2xy = 0 80 = 20cy - oc2 - 3y2+1 =0 $2x^{2}-2y^{2}=0$ $x^{2}-y^{2}=10$ $y^{2}=x^{2}=1$ $y=\pm x$ $y=\pm x$ x=0 y=0 y=0327+27-1-2007=0 -2007-27-327+1=0 So we have four stabinary parits for this function. P.(5,-5), P.(-5,-5), P.(-5,5)

PT	A=(022) =(6x-2y)	$B = \begin{pmatrix} \frac{\partial^2 u}{\partial x \partial y} \end{pmatrix}$ $= 2x - 2y$	$C = \left(\frac{\partial u}{\partial u^2}\right)$ $= 2 \times -69$	B2-4AC = E0	Vo	Type
Pi	452	0	-4/5	8	0	Saddle
P	-4/	0	4/52	8	0	Saddle
P ₃	Y6	-456	8/16	-8	22'	Minimon
P4	-8/16	4/56	-8/16	-8	$\frac{2}{3}\sqrt{3}$	Maxim
-	. 6.2	(O)	Pı		.4.04	
		Pi	302 mg 2.	-1		
the	7er0 (1	entar ic	truetter	146.2	Y - 11	
onc	1 22+4	entour is	i, link to	factors	iation.	

3 8

Warning when we are faced with a function of several uniables and we read to find stationary points - we reed to make sure our independent variables are independent. = ...! Example to maximise volume, V, of a rectangular box given surface area A (fixed). max V = xy.7 given that A = 2xy +2xz + 2yz however, x,y, 7 cre not independent here!! $Z = \frac{A - 2\alpha y}{2(\alpha + y)}$ " $V = \frac{\alpha y(A - 2\alpha y)}{(\alpha + y)}$ now, or ly are independent $\Rightarrow x_0 = \left(\frac{A}{6}\right)^{\frac{1}{2}} = y_0 = z_0$ $\forall x_0 = \left(\frac{A}{6}\right)^{\frac{3}{2}} = y_0 = z_0$ $\forall x_0 = \left(\frac{A}{6}\right)^{\frac{3}{2}} = y_0 = z_0$