Finite difference simulation of 2D waves

Compulsory project in INF5620 by Florian Arbes September 2019

Introduction

In this project I tried to implement a simulation of a two dimensional wave using the finite difference methods. Then using the simulation to study the behavior of waves as they pass through different medium with different velocities.

The core parts of the project

Discretization of the PDE

The following PDE is addressed in this project:

$$\frac{\partial^2 u}{\partial t^2} + b \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} (q(x, y) \frac{\partial u}{\partial x}) + \frac{\partial}{\partial y} (q(x, y) \frac{\partial u}{\partial y}) + f(x, y, t)$$
(1)

The boundary condition is given as:

$$\frac{\partial u}{\partial n} = 0 \tag{2}$$

with initial conditions:

$$u(x, y, 0) = I(x, y) \tag{3}$$

$$u_t(x, y, 0) = V(x, y) \tag{4}$$

The parts of the equation can be discretized as following:

$$\frac{\partial^2 u}{\partial t^2} = \frac{u_{i,j}^{n+1} - 2u_{i,j}^n + u_{i,j}^{n-1}}{\Delta t^2}$$
 (5)

$$\frac{\partial u}{\partial t} = \frac{u_{i,j}^{n+1} - u_{i,j}^{n-1}}{2\Delta t} \tag{6}$$

$$\frac{\partial}{\partial x}(q(x,y)\frac{\partial u}{\partial x}) = \frac{1}{\Delta x^2}[q_{i+.5,j}(u_{i+1,j}^n - u_{i,j}^n) - q_{i-.5,j}(u_{i,j}^n - u_{i-1,j}^n)]$$
 (7)

$$\frac{\partial}{\partial y}(q(x,y)\frac{\partial u}{\partial y}) = \frac{1}{\Delta y^2}[q_{i,j+.5}(u_{i,j+1}^n - u_{i,j}^n) - q_{i,j-.5}(u_{i,j}^n - u_{i,j-1}^n)]$$
(8)

These equations can be plugged into 1. I used SymPy to find $u_{i,j}^{n+1}$:

This means:

$$u_{i,j}^{n+1} = \frac{1}{b\Delta t + 2} \left(2\frac{\Delta t^2}{\Delta x^2} [q_{i+.5,j}(u_{i+1,j}^n - u_{i,j}^n) - q_{i-.5,j}(u_{i,j}^n - u_{i-1,j}^n)] + 2\frac{\Delta t^2}{\Delta y^2} [q_{i,j+.5}(u_{i,j+1}^n - u_{i,j}^n) - q_{i,j-.5}(u_{i,j}^n - u_{i,j-1}^n)] + 2\Delta t^2 f_{i,j}^n + b\Delta t u_{i,j}^{n-1} + 4u_{i,j}^n - 2u_{i,j}^{n-1} \right)$$

$$(9)$$

Using the discretised initial condition, a special formula for the first step can be derived:

At the boundary points, the scheme has to be modified. This was done with the Neumann conditions and modifying indices:

•
$$u_{i-1,j}^n = u_{i+1,j}^n$$
; $i = 0$

•
$$u_{i+1,j}^n = u_{i-2,j}^n; i = N_x$$

•
$$u_{i,j-1}^n = u_{i,j+1}^n; j = 0$$

$$\bullet \ u^n_{i,j+1} = u^n_{i,j-1}; j = N_y$$

Implementation

The scheme is implemented in the functions scheme_ijn and scheme_ij1 in the file wave2D.py. The vectorized version is quite simple, as it can be achieved with index lists and "advanced indexing" (see: https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html#advanced-indexing)

Verification

Constant solution

Let u(x,y,t)=c be the exact solution. This means $\frac{\partial u}{\partial t}=0$ and $\frac{\partial^2 u}{\partial t^2}=0$. Therefore $\frac{\partial}{\partial x}(q(x,y)\frac{\partial u}{\partial x})=\frac{\partial}{\partial y}(q(x,y)\frac{\partial u}{\partial y})=0$. The remaining term fin the wave equation must be 0 as well. q(x,y) could be any arbitrary function.

The constant solution is also a solution of the discrete equations:

$$u_{i,j}^{n+1} = \frac{1}{b\Delta t + 2} \{$$

$$2\frac{\Delta t^2}{\Delta x^2} [q_{i+.5,j}(u_{i+1,j}^n - u_{i,j}^n) - q_{i-.5,j}(u_{i,j}^n - u_{i-1,j}^n)] +$$

$$2\frac{\Delta t^2}{\Delta y^2} [q_{i,j+.5}(u_{i,j+1}^n - u_{i,j}^n) - q_{i,j-.5}(u_{i,j}^n - u_{i,j-1}^n)] +$$

$$2\Delta t^2 f_{i,j}^n + b\Delta t u_{i,j}^{n-1} + 4u_{i,j}^n - 2u_{i,j}^{n-1} \}$$

$$(10)$$

As $u_{i,j,n}^n = c$:

$$u_{i,j}^{n+1} = \frac{1}{b\Delta t + 2} \{$$

$$2\frac{\Delta t^2}{\Delta x^2} [q_{i+.5,j}(c-c) - q_{i-.5,j}(c-c)] +$$

$$2\frac{\Delta t^2}{\Delta y^2} [q_{i,j+.5}(c-c) - q_{i,j-.5}(c-c)] +$$

$$2\Delta t^2 f_{i,j}^n + b\Delta tc + 4c - 2c \}$$
(11)

As $f_{i,j,n}^n = 0$:

$$u_{i,j}^{n+1} = \frac{1}{b\Delta t + 2} (2\Delta t^2 0 + b\Delta t c + 4c - 2c)$$
$$u_{i,j}^{n+1} = \frac{1}{b\Delta t + 2} (b\Delta t c + 2c) = c$$

This was implemented. Please run nosetests test_3_1()

Possible bugs are:

- \bullet Arguments of f in the wrong order. Test passes.
- In the first step, I(i, j) is called instead of V(i, j). Test failes.
- Wrong formula for the initial condition. $u_{i,j}^{-1}=u_{i,j}^1-2\Delta t u_{i,j}^0$ rather than $u_{i,j}^{-1}=u_{i,j}^1-2\Delta t V_{i,j}$. Test failes.
- Initial condition wrong. Test failes.
- Boundary conditions on the left side not implemented. Test passes.
- Boundary conditions on the right side not implemented. Test fails.

Exact 1D plug-wave solution in 2D

The pulse() function was adjusted and implemented. Please run nosetests pulse(Nx=100, Ny=0, pulse_tp='plug', T=15, medium=[-1, -1]) or

nosetests pulse(Nx=0, Ny=100, pulse_tp='plug', T=15, medium=[-1, -1]). You might want to adjust the speed of the visualization. The delay between the frames is specified in ms on top of the file. Every time step, exactly 4 cells change value. If the wave is at the boundary, only two cells change value.

Standing, undamped waves

The exact solution of the PDE is given as

$$u_e(x, y, t) = A\cos(k_x x)\cos(k_y y)\cos(\omega t), k_x = \frac{m_x \pi}{L_x}, k_y = \frac{m_y \pi}{L_y}$$

c should be constant, f(x,y), I(x,y), V(x,y) are determined using SymPy:

$$I(x,y) = Acos(\frac{m_x \pi}{L_x} x) cos(\frac{m_y \pi}{L_y} y)$$

$$V(x, y) = 0.0$$

$$q(x,y) = c^2$$

$$f(x,y) = A(-L_x^2L_y^2w(bsin(t\omega) + \omega cos(t\omega)) + \pi^2Lx^2c^2m_y^2cos(t\omega) + \pi^2Ly^2c^2m_x^2cos(t\omega)) \frac{cos(k_xx)cos(k_yy)}{(L_x^2L_y^2)}$$

In 2D $C = c \frac{\Delta t^2}{\Delta x^2} + c \frac{\Delta t^2}{\Delta x^2}$, which means:

$$\Delta t = \frac{C}{c} \frac{1}{\sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta x^2}}}$$

A common discretization parameter h is introduced, such that $h = \delta x$. For the sake of simplicity I set $\Delta x = \Delta y$. This means Δt is also proportional to the common discretization parameter h:

$$\Delta t = \frac{C}{c} \frac{1}{\sqrt{2}} h$$

This leads to the simple error model

$$E = \hat{C}h^r$$

From two consecutive experiments with different h, the convergence rate r can be computed as

$$r = \frac{\log \frac{E_2}{E_1}}{\log \frac{h_2}{h_1}}$$

where E_1 and E_2 are the computed errors from the experiments. I computed the following error:

$$E = \sqrt{\Delta x \Delta y \Delta t \sum (u_{-}e_{i,j,t} - u_{i,j,t})^2}$$

In the experiment, the following parameters were set:

 $A=2.3,\,m_x=3,\,m_y=4,\,w=\pi,\,c=1.0,\,C=1.0,\,b=1.0$, Lx=10 , Ly=10 , $T=2\frac{10}{\sqrt{2}}.$ The experiments show a convergence rate of r=2 if $\Delta x<1$ and thus $N_x>10$:

```
E = 33.29835815362203

2 E1 = 502.6910, E2 = 33.2984

3 h1 = 2.0000, h2 = 1.0000

4 dx1 = 2.0000, dx2 = 1.0000

5 dy1 = 2.0000, dy2 = 1.0000

6 dt1 = 1.4142, dt2 = 0.7071

7 convergence rate: 3.916149031955887

8

E = 5.621684081060024

10 E1 = 33.2984, E2 = 5.6217

11 h1 = 1.0000, h2 = 0.5000

12 dx1 = 1.0000, dx2 = 0.5000

13 dy1 = 1.0000, dy2 = 0.5000

14 dt1 = 0.7071, dt2 = 0.3536

15 convergence rate: 2.5663767571978973

16

17 E = 1.2511877561621625

18 E1 = 5.6217, E2 = 1.2512

19 h1 = 0.5000, h2 = 0.2500
```

```
dx1 = 0.5000, dx2 = 0.2500
dy1 = 0.5000, dy2 = 0.2500
dt1 = 0.3536, dt2 = 0.1768
23 convergence rate: 2.1677040816493616
25 E = 0.299841717263914
E1 = 1.2512, E2 = 0.2998
h1 = 0.2500, h2 = 0.1250
dx1 = 0.2500, dx2 = 0.1250
dy1 = 0.2500, dy2 = 0.1250
30 \text{ dt1} = 0.1768, \text{ dt2} = 0.0884
31 convergence rate: 2.061025274043297
33 E = 0.07366495802300047
84 E1 = 0.2998, E2 = 0.0737
h1 = 0.1250, h2 = 0.0625
dx1 = 0.1250, dx2 = 0.0625
dy1 = 0.1250, dy2 = 0.0625
38 dt1 = 0.0884, dt2 = 0.0442
39 convergence rate: 2.025150714520014
E = 0.018273090079556038
42 E1 = 0.0737, E2 = 0.0183
h1 = 0.0625, h2 = 0.0312
dx1 = 0.0625, dx2 = 0.0312
dy1 = 0.0625, dy2 = 0.0312
dt1 = 0.0442, dt2 = 0.0221
47 convergence rate: 2.0112578789296505
```

Manufactured solution

The exact solution of the PDE is given as

$$u_e(x, y, t) = A\cos(k_x x)\cos(k_y y)\cos(\omega t), k_x = \frac{m_x \pi}{L_x}, k_y = \frac{m_y \pi}{L_y}$$

the wave velocity q should be variable, f(x,y), I(x,y), V(x,y) are determined using SymPy. q(x,y) was chosen in a way, that f(x,y,t) would be simple.

$$q(x,y) = \frac{1}{\sin(k_x x)} \frac{1}{\sin(k_y y)}$$

$$f(x,y) = (A+B)(-b(c\cos(t\omega) + \omega\sin(t\omega)) + c^2\cos(t\omega) + 2c\omega\sin(t\omega) - \omega^2\cos(t\omega))$$

$$e^{-ct}\cos(k_x x)\cos(k_y y)$$
(12)

Using SymPy I got the following results:

$$q(x,y) = c^2$$

$$I(x,y) = (A+B) * cos(\pi * m_x * x/L_x) * cos(\pi * m_y * y/L_y)$$

$$V(x,y) = -c * (A+B) * cos(\pi * m_x * x/L_x) * cos(\pi * m_y * y/L_y)$$

However, i couldn't find any values, in order to get a stable numerical solution. Therefore I used the equations from the previous task:

$$q(x,y) = k$$

$$\omega = \sqrt{k_x^2 + k_y^2 - c^2}$$

$$c = b/2$$

$$u_t(x,y,0) = 0$$

$$f(x,y,t) = 0$$

With SymPy i found a equation for b:

$$b = \sqrt{2kk_x^2 + 2kk_y^2}$$

After three experiments, the convergence rate was found to be 2:

```
1 E1 = 0.1457, E2 = 0.0328
2 h1 = 0.5000, h2 = 0.2500
3 dx1 = 0.5000, dx2 = 0.2500
4 dy1 = 0.5000, dy2 = 0.2500
5 dt1 = 0.3536, dt2 = 0.1768
6 convergence rate: 2.1508650974923853

8 E1 = 0.0328, E2 = 0.0078
9 h1 = 0.2500, h2 = 0.1250
10 dx1 = 0.2500, dx2 = 0.1250
11 dy1 = 0.2500, dy2 = 0.1250
12 dt1 = 0.1768, dt2 = 0.0884
13 convergence rate: 2.0731804640721454

14
15 E1 = 0.0078, E2 = 0.0019
16 h1 = 0.1250, h2 = 0.0625
17 dx1 = 0.1250, dx2 = 0.0625
18 dy1 = 0.1250, dy2 = 0.0625
19 dt1 = 0.0884, dt2 = 0.0442
20 convergence rate: 2.036265823276573
```