ETH zürich

Exercise Session 9 – Dynamic Programming I

Informatik II

15. / 16. April 2025

Programm Heute

- Recap
- Schneiden von Eisenstäben
- Matrix-Ketten-Multiplikation
- Zusammenfassung

1. Recap

Zusammenfassung der Vorlesung

Für Probleme, die rekursiv gelöst werden können, können wir optimierte Lösungen wie Memoisierung (Top-Down) oder dynamische Programmierung (Bottom-Up) nutzen, um wiederholte Rechnungen zu vermeiden.

Memoisierung

Wir nutzen Memoisierung, indem wir Lösungen für Subprobleme in einer Tabelle speichern (memoisieren) und diese Tabelle mit jedem Funktionsaufruf mitgeben.

Dynamic Programming

Wir können das Problem iterativ lösen, indem wir beim Basisfall beginnen und eine passende Datenstruktur wie eine DP-Tabelle nutzen, um alle Subprobleme effizient zu berechnen.

Memoisierung

Dynamic Programming

- Memoisierung
 - Ansatz?Löst nur die notwendigenTeilprobleme.

Dynamic Programming

- Memoisierung
 - Ansatz? Löst nur die notwendigen Teilprobleme.

- Dynamic Programming
 - Ansatz? Löst alle Teilprobleme im Voraus, auch wenn einige davon am Ende nicht benötigt werden.

- Memoisierung
 - Ansatz? Löst nur die notwendigen Teilprobleme.
 - Rekursion? Wird mit Rekursion implementiert, dabei wird eine Tabelle bei jedem Aufruf mitgegeben.

- Dynamic Programming
 - Ansatz? Löst alle Teilprobleme im Voraus, auch wenn einige davon am Ende nicht benötigt werden.

- Memoisierung
 - Ansatz? Löst nur die notwendigen Teilprobleme.
 - Rekursion? Wird mit Rekursion implementiert, dabei wird eine Tabelle bei jedem Aufruf mitgegeben.

- Dynamic Programming
 - Ansatz? Löst alle Teilprobleme im Voraus, auch wenn einige davon am Ende nicht benötigt werden.
 - Rekursion? Wird typischerweise iterativ implementiert.

- Memoisierung
 - Ansatz? Löst nur die notwendigen Teilprobleme.
 - Rekursion? Wird mit Rekursion implementiert, dabei wird eine Tabelle bei jedem Aufruf mitgegeben.
 - Berechnungsrichtung? Top-down.

- Dynamic Programming
 - Ansatz? Löst alle Teilprobleme im Voraus, auch wenn einige davon am Ende nicht benötigt werden.
 - Rekursion? Wird typischerweise iterativ implementiert.

- Memoisierung
 - Ansatz? Löst nur die notwendigen Teilprobleme.
 - Rekursion? Wird mit Rekursion implementiert, dabei wird eine Tabelle bei jedem Aufruf mitgegeben.
 - Berechnungsrichtung? Top-down.

- Dynamic Programming
 - Ansatz? Löst alle Teilprobleme im Voraus, auch wenn einige davon am Ende nicht benötigt werden.
 - Rekursion? Wird typischerweise iterativ implementiert.

Berechnungsrichtung? Bottom-Up.

2. Schneiden von Eisenstäben

Length i	1	2	3	4
Full price $p[i]$	5	12	1	25

■ Input:

■ Eine Stange mit Länge n

Length i	1	2	3	4
Full price $p[i]$	5	12	1	25

Input:

- Eine Stange mit Länge n
- Verschieden lange Stücke haben verschiedene Preise

Length i	1	2	3	4
Full price $p[i]$	5	12	1	25

Input:

- Eine Stange mit Länge n
- Verschieden lange Stücke haben verschiedene Preise
- **Ziel:** Die Stange so zerschneiden, dass die Schnittstücke zusammen für den höchstmöglichen Preis verkauft werden können.

Length i	1	2	3	4
Full price $p[i]$	5	12	1	25

Input:

- Eine Stange mit Länge n
- Verschieden lange Stücke haben verschiedene Preise
- **Ziel:** Die Stange so zerschneiden, dass die Schnittstücke zusammen für den höchstmöglichen Preis verkauft werden können.
- Output: Maximaler Preis für die Stange

■ Stange der Länge 3 hat tiefen Preis p[3]

Länge i	1	2	3	4
Ganzpreis $p[i]$	5	12	1	25

- Stange der Länge 3 hat tiefen Preis p[3]
- Man zersägt eine 3er-Stange also in zwei bessere Teile!

Länge i	1	2	3	4
Ganzpreis $p[i]$	5	12	1	25

■ Die besten Schnitte sollen systematisch gesucht werden.

Länge i	1	2	3	4
Ganzpreis $p[i]$	5	12	1	25
Bestpreis $r[i]$	5	12	17	25

- Die besten Schnitte sollen systematisch gesucht werden.
- Gesucht ist der beste Preis für die Länge i, genannt r[i], wenn die Stange beliebig geschnitten werden darf.

Länge i	1	2	3	4
Ganzpreis $p[i]$	5	12	1	25
Bestpreis $r[i]$	5	12	17	25

Mögliche Lösungsansätze

■ Alle möglichen Schritte ausprobieren wäre unpraktisch.

Mögliche Lösungsansätze

- Alle möglichen Schritte ausprobieren wäre unpraktisch.
 - Die Zahl möglicher Schnitte skaliert exponentiell.

Mögliche Lösungsansätze

- Alle möglichen Schritte ausprobieren wäre unpraktisch.
 - Die Zahl möglicher Schnitte skaliert exponentiell.
- Gesucht sind Vereinfachungen!

Schritt 1: Optimale Substruktur

Schritt 1: Optimale Substruktur

■ Die besten Preise von kleinen *i* können zum berechnen möglicher Preise für grosse *i* benutzt werden.

Schritt 1: Optimale Substruktur

- Die besten Preise von kleinen *i* können zum berechnen möglicher Preise für grosse *i* benutzt werden.
- Die **rechte** Stange wird nochmal weiter zerschnitten. Die **Linke** bleibt ein Stück.

Schritt 2: Konstruktion der optimalen Lösung

max. Preis

Zwei Schritte zur Lösung

Schritt 2: Konstruktion der optimalen Lösung

max. Preis

- Zwei Schritte zur Lösung
 - Preise für alle möglichen Schnitte berechnen.

Schritt 2: Konstruktion der optimalen Lösung

max. Preis

- Zwei Schritte zur Lösung
 - Preise für alle möglichen Schnitte berechnen.
 - lacksquare Das **Maximum finden**, und als r[i] speichern.

■ Beispiel: Was wäre der Preis nach diesem Schnitt?

- Beispiel: Was wäre der Preis nach diesem Schnitt?
 - Preis für **1er-Stange** ist bekannt: p[1]

- Beispiel: Was wäre der Preis nach diesem Schnitt?
 - Preis für **1er-Stange** ist bekannt: p[1]
 - Gesucht ist noch der Bestpreis für **3er-Stange**: r[3]

- Beispiel: Was wäre der Preis nach diesem Schnitt?
 - Preis für **1er-Stange** ist bekannt: p[1]
 - Gesucht ist noch der Bestpreis für **3er-Stange**: r[3]
 - Preis ist dann p[1] + r[3]

Bestpreis für 3er-Stange r[3] kann nach gleichem Prinzip berechnet werden...

Schritt 3: Rekursive Beschreibung

lacktriangleright Für diesen Schnitt muss wiederum der Bestpreis für 2er-Stangen r[2] gefunden werden...

Schritt 3: Rekursive Beschreibung

- Für diesen Schnitt muss wiederum der Bestpreis für 2er-Stangen r[2] gefunden werden...
 - Ende der Rekursion, 1er-Stücke können nicht zersägt werden.

Schritt 3: Rekursive Beschreibung

- Für diesen Schnitt muss wiederum der Bestpreis für 2er-Stangen r[2] gefunden werden...
 - Ende der Rekursion, 1er-Stücke können nicht zersägt werden.
 - ↑ Das ist der Basisfall!

Schritt 4: Berechnung aus Zwischenergebnissen

$$\mathbf{r}[i] = \begin{cases} p[i] & wenn \ i = 1\\ \max(\mathbf{p}[i] + \mathbf{r}[i-j] \ f \ddot{\mathbf{u}} \mathbf{r} \mathbf{j} \in [1, i]) & wenn \ i > 1 \end{cases}$$

Schritt 4: Berechnung aus Zwischenergebnissen

$$\mathbf{r}[i] = \begin{cases} p[i] & wenn \ i = 1\\ \max(\mathbf{p}[i] + \mathbf{r}[i-j] \ f \ddot{\mathbf{u}} \mathbf{r} \mathbf{j} \in [1, i]) & wenn \ i > 1 \end{cases}$$

r[i-j] wird rekursiv berechnet, wie im Beispiel.

Lösungsansatz in Python

```
def best_price(prices, i):
    # Basisfall der Rekursion:
    if i == 1:
        return prices[1]
    # Rekursive Fälle
    max_p = prices[i-1]
    for j in range(1, i):
         max_p = max(prices[j-1] + best_price(prices, i-j), max_p)
    return max_p
```

Laufzeit-Diagramm

Rekursive Laufzeit: $\Theta(2^n)$

Funktions-Aufrufe

■ Insgesamt T(i) = $1 + \sum_{j=1}^{i} T(i-j)$ Aufrufe

An Lösungen erinnern

Schlaue "Richtung" finden

An Lösungen erinnern

Schlaue "Richtung" finden

Jeder Wert wird mehrfach berechnet!

An Lösungen erinnern

- Jeder Wert wird mehrfach berechnet!
- Was, wenn sich das Programm an bekannte Werte erinnern könnte?

Schlaue "Richtung" finden

An Lösungen erinnern

- Jeder Wert wird mehrfach berechnet!
- Was, wenn sich das Programm an bekannte Werte erinnern könnte?

Schlaue "Richtung" finden

An Lösungen erinnern

- Jeder Wert wird mehrfach berechnet!
- Was, wenn sich das Programm an bekannte Werte erinnern könnte?

Schlaue "Richtung" finden

r[4] braucht r[3], aber r[3] braucht nie r[4]!

An Lösungen erinnern

- Jeder Wert wird mehrfach berechnet!
- Was, wenn sich das Programm an bekannte Werte erinnern könnte?

Schlaue "Richtung" finden

- r[4] braucht r[3], aber r[3] braucht nie r[4]!
- Man könnte Probleme in schlauer Reihenfolge von "unten nach oben" berechnen!

An Lösungen erinnern

- Jeder Wert wird mehrfach berechnet!
- Was, wenn sich das Programm an bekannte Werte erinnern könnte?

Schlaue "Richtung" finden

- r[4] braucht r[3], aber r[3] braucht nie r[4]!
- Man könnte Probleme in schlauer Reihenfolge von "unten nach oben" berechnen!

Funktions-Aufrufe mit Memoisierung

■ i Aufrufe, in jedem Aufruf eine max-Funktion, total also $T(i) = i^2$

■ In Python kann Memoisierung einfach mit einem Dictionary implementiert werden.

■ In Python kann Memoisierung einfach mit einem Dictionary implementiert werden.

■ Für jeden Aufruf, suche zuerst im Dictionary nach einer Lösung...

- In Python kann Memoisierung einfach mit einem Dictionary implementiert werden.
- Für jeden Aufruf, suche zuerst im Dictionary nach einer Lösung...
 - Wenn gefunden: Gebe Wert aus Dictionary zurück, kein rechnen

- In Python kann Memoisierung einfach mit einem Dictionary implementiert werden.
- Für jeden Aufruf, suche zuerst im Dictionary nach einer Lösung...
 - Wenn gefunden: Gebe Wert aus Dictionary zurück, kein rechnen
 - Wenn nicht: Berechne Wert, speichere vor Rückgabe im Dictionary

- In Python kann Memoisierung einfach mit einem Dictionary implementiert werden.
- Für jeden Aufruf, suche zuerst im Dictionary nach einer Lösung...
 - Wenn gefunden: Gebe Wert aus Dictionary zurück, kein rechnen
 - Wenn nicht: Berechne Wert, speichere vor Rückgabe im Dictionary
- Gebe dasselbe Dictionary an alle Funktions-Aufrufe weiter!

Memoisierung in Python

```
def best_p_memo(prices, i, mem=None):
    # Erinnerung
    if mem is None:
        mem = dict()
    if i in mem:
        return mem[i]
    # Basisfall der Rekursion:
    # Rekursive Fälle
    ... best_p_memo(prices, i-j, mem) ...
    mem[i] = max_p
    return max_p
```

Laufzeit-Diagramm

Memoisiert Laufzeit: $\Theta(n^2)$

■ Um Länge 3 zu berechnen, muss <u>nie</u> Länge 4 berechnet werden.

- Um Länge 3 zu berechnen, muss <u>nie</u> Länge 4 berechnet werden.
 - Logisch, eine 3er-Stange kann nicht in 4er-Stangen zerschnitten werden.

- Um Länge 3 zu berechnen, muss <u>nie</u> Länge 4 berechnet werden.
 - Logisch, eine 3er-Stange kann nicht in 4er-Stangen zerschnitten werden.
 - Wir nennen dieses Subproblem s[i]

- Um Länge 3 zu berechnen, muss <u>nie</u> Länge 4 berechnet werden.
 - Logisch, eine 3er-Stange kann nicht in 4er-Stangen zerschnitten werden.
 - Wir nennen dieses Subproblem s[i]
- Das Muster setzt sich fort Bis zur Länge 1!

Das Problem hat eine Richtung, und deswegen ein unterstes Sub-Problem, das bekannt ist. Seine Lösung ist selbst nicht auf andere Lösungen angewiesen.

Das Problem hat eine Richtung, und deswegen ein unterstes Sub-Problem, das bekannt ist. Seine Lösung ist selbst nicht auf andere Lösungen angewiesen.

■ Herausforderung: Die "Richtung" für ein Problem finden → oft ersichtlich aus rekursiver Lösung!

■ Python: Eine Struktur (z.B. Liste, wie rechts) speichert berechnete Probleme. Berechne immer "Ende der Kette" mit einer Schleife – jedes vorherige Ergebnis wird an seinem Index in der Struktur gespeichert!

Bottom-Up in Python

```
def best p iter(prices, i):
    # "Struktur" erstellen
    s = [0] + [None]*i
    # Iteration statt Funktionsaufrufe
    for j in range(1, i+1):
        # Genau gleiche Rechnung wie mit Rekursion
        \max p = prices[j-1]
        for k in range(1, j):
            max_p = max(max_p, s[k] + prices[j-k-1])
        # Fülle Struktur statt Memoisierung
        s[j] = \max p
    return s[i]
```

Laufzeit-Diagramm

*Memoisiert und Bottom-Up beides $\Theta(n^2)$, mit verschiedenen Konstanten multipliziert. Grund: Mehr Overhead (Aufwand) für "Erinnern".

Bottom-Up Laufzeit: $\Theta(n^2)^*$

3. Matrixmultiplikation

Problemstellung

$$A_1A_2A_3$$

$$(A_1A_2)\cdot A_3$$
 oder $A_1\cdot (A_2A_3)$

Problemstellung

$$A_1A_2A_3$$
 $(A_1A_2)\cdot A_3$
oder
 $A_1\cdot (A_2A_3)$

■ **Input:** Eine Sequenz von Matrizen $A_1, A_2, ..., A_n$ wobei Matrix A_i nicht quadratisch sein muss.

Problemstellung

$$A_1A_2A_3$$

$$(A_1A_2)\cdot A_3$$
 oder $A_1\cdot (A_2A_3)$

- **Input:** Eine Sequenz von Matrizen $A_1, A_2, ..., A_n$ wobei Matrix A_i nicht quadratisch sein muss.
- **Ziel:** Die Reihenfolge finden, in der die Matrixkettenmultiplikation am schnellsten berechnet wird.

Optimale Reihenfolge

$$A_1A_2A_3$$
 $(A_1A_2) \cdot A_3$
oder
 $A_1 \cdot (A_2A_3)$

■ **Problem:** Die Berechnung von $A_1 \cdot A_2 \cdot ... \cdot A_n$ dauert je nach Reihenfolge unterschiedlich lange!

Beispiel

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$$

könnte berechnet werden als...

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} [6] \text{ oder } \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Beispiel

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 6 \end{bmatrix}$$
könnte berechnet werden als...
$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix} \text{ oder } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

■ Hier macht es keinen Sinn, die Matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ zu berechnen.

Schlussfolgerung

$$A_1A_2A_3$$
 $(A_1A_2)\cdot A_3$ oder $A_1\cdot (A_2A_3)$

■ Für ein gegebenes Problem sind mehrere Berechnungs-Reihenfolgen möglich.

Schlussfolgerung

$$A_1A_2A_3$$
 $(A_1A_2)\cdot A_3$ oder

$$A_1 \cdot (A_2 A_3)$$

- Für ein gegebenes Problem sind mehrere Berechnungs-Reihenfolgen möglich.
- Wir legen diese Reihenfolge mit Klammern fest.

$$A_1A_2A_3$$
 $(A_1A_2)\cdot A_3$
oder
 $A_1\cdot (A_2A_3)$

■ **Input:** Eine Sequenz von Matrizen $A_1, A_2, ..., A_n$ wobei Matrix A_i nicht quadratisch sein muss.

$$A_1A_2A_3$$

$$(A_1A_2)\cdot A_3$$
 oder $A_1\cdot (A_2A_3)$

- **Input:** Eine Sequenz von Matrizen $A_1, A_2, ..., A_n$ wobei Matrix A_i nicht quadratisch sein muss.
- **Ziel:** Die Reihenfolge finden, in der die Matrixkettenmultiplikation $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ am schnellsten berechnet wird.

$$A_1A_2A_3$$

$$(A_1A_2)\cdot A_3$$
 oder $A_1\cdot (A_2A_3)$

- **Input:** Eine Sequenz von Matrizen $A_1, A_2, ..., A_n$ wobei Matrix A_i nicht quadratisch sein muss.
- **Ziel:** Die Reihenfolge finden, in der die Matrixkettenmultiplikation $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ am schnellsten berechnet wird.
- Output: Zahl Rechnungen der optimalen Reihenfolge mit Klammern.

Nötige Informationen

```
■ Für \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} genügt es zu wissen, dass A_1 eine 3 \times 1-Matrix ist, sowie A_2 eine 1 \times 3-Matrix und A_3 eine 3 \times 1-Matrix.
```

$$A_1A_2A_3$$

$$(A_1A_2)\cdot A_3$$
 oder $A_1\cdot (A_2A_3)$

- Input: Eine Sequenz von Dimensionen $p_0, p_1, ..., p_n$ wobei Matrix A_i die Dimensionen $p_{i-1} \times p_i$ hat. Also $p_0 \times p_1$ für A_1 .
- **Ziel:** Die Reihenfolge finden, in der die Matrixmultiplikation $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ am schnellsten berechnet wird.
- Output: Zahl Rechnungen der optimalen Reihenfolge mit Klammern.

Erster Algorithmus

■ **Idee:** Teste alle möglichen Reihenfolgen von Matrizen und wählen die optimale Lösung.

Erster Algorithmus

- **Idee:** Teste alle möglichen Reihenfolgen von Matrizen und wählen die optimale Lösung.
- **Problem:** Exponentiell viele Lösungen für längere Matrix-Ketten!

1. Charakterisiere Struktur einer optimalen Lösung.

- 1. Charakterisiere Struktur einer optimalen Lösung.
- 2. Definiere rekursiv den Wert einer optimalen Lösung.

- 1. Charakterisiere Struktur einer optimalen Lösung.
- 2. Definiere rekursiv den Wert einer optimalen Lösung.
- 3. Berechne Wert einer idealen Lösung.

- Charakterisiere Struktur einer optimalen Lösung.
- 2. Definiere rekursiv den Wert einer optimalen Lösung.
- 3. Berechne Wert einer idealen Lösung.
- 4. Konstruiere optimale Lösung aus den Zwischenergebnissen.

Vereinfachungen

■ Wir berechnen als Ergebnis <u>nur</u> die optimale Anzahl Rechnungen.

Vereinfachungen

- Wir berechnen als Ergebnis <u>nur</u> die optimale Anzahl Rechnungen.
- Notiz: Es wäre möglich, während der Berechnung auch die Matrix-Kette zu bilden.

Vereinfachungen

- Wir berechnen als Ergebnis <u>nur</u> die optimale Anzahl Rechnungen.
- Notiz: Es wäre möglich, während der Berechnung auch die Matrix-Kette zu bilden.
 - Wir konzentrieren uns für Einfachheit auf die Rechnungen.

■ $A_{i:j}$ bezeichnet die <u>berechnete</u> Matrix-Ketten-Multiplikation $A_i \cdot A_{i+1} \cdot \ldots \cdot A_j$ für i < j

Optimale Berechnung für die ganze Kette kann in die optimale Berechnung für zwei Ketten plus die Kombinationskosten verwandelt werden.

- Optimale Berechnung für die ganze Kette kann in die optimale Berechnung für zwei Ketten plus die Kombinationskosten verwandelt werden.
- Die Subprobleme sind $A_{1:k}$ und $A_{k+1:n}$

■ Bezeichnen wir mit $opt(A_{p:q})$ die optimale Anzahl Berechnungen für eine Matrix-Kette.

- Bezeichnen wir mit $opt(A_{p:q})$ die optimale Anzahl Berechnungen für eine Matrix-Kette.
- Wenn wir die optimalen Anzahlen Berechnungen für $A_{1:k}$ und $A_{k+1:n}$ kennen, ist das Ergebnis für $A_{1:n}$ gegeben als:

- Bezeichnen wir mit $opt(A_{p:q})$ die optimale Anzahl Berechnungen für eine Matrix-Kette.
- Wenn wir die optimalen Anzahlen Berechnungen für $A_{1:k}$ und $A_{k+1:n}$ kennen, ist das Ergebnis für $A_{1:n}$ gegeben als:

- Bezeichnen wir mit $opt(A_{p:q})$ die optimale Anzahl Berechnungen für eine Matrix-Kette.
- Wenn wir die optimalen Anzahlen Berechnungen für $A_{1:k}$ und $A_{k+1:n}$ kennen, ist das Ergebnis für $A_{1:n}$ gegeben als:

 - $\mathbf{P}_0p_kp_n$ ist die Zeit, die es braucht, um das linke und rechte Ergebnis zu kombinieren.

■ $A_{1:k}$ hat zwingend Höhe von A_1 und Breite von A_k .

- \blacksquare $A_{1:k}$ hat zwingend Höhe von A_1 und Breite von A_k .
- $A_{k+1:n}$ hat zwingend Höhe von A_{k+1} und Breite von A_n .

- \blacksquare $A_{1:k}$ hat zwingend Höhe von A_1 und Breite von A_k .
- $A_{k+1:n}$ hat zwingend Höhe von A_{k+1} und Breite von A_n .
- Die Höhe von A_{k+1} ist die Breite von A_k .

Die Ergebnis-Matrix hat Dimensionen $p_0 \times p_n$.

- Die Ergebnis-Matrix hat Dimensionen $p_0 \times p_n$.
- Für jedes Element der Ergebnis-Matrix machen wir p_k Rechnungen, um die linke und rechte Matrix zu kombinieren.

- Die Ergebnis-Matrix hat Dimensionen $p_0 \times p_n$.
- Für jedes Element der Ergebnis-Matrix machen wir p_k Rechnungen, um die linke und rechte Matrix zu kombinieren.
- \blacksquare Also total $p_0p_kp_n$ Rechnungen.

Optimierungsproblem

■ Wenn wir die optimalen Anzahlen Berechnungen für $A_{1:k}$ und $A_{k+1:n}$ kennen, ist das Ergebnis für $A_{1:n}$ gegeben als:

Optimierungsproblem

- Wenn wir die optimalen Anzahlen Berechnungen für $A_{1:k}$ und $A_{k+1:n}$ kennen, ist das Ergebnis für $A_{1:n}$ gegeben als:

Optimierungsproblem

- Wenn wir die optimalen Anzahlen Berechnungen für $A_{1:k}$ und $A_{k+1:n}$ kennen, ist das Ergebnis für $A_{1:n}$ gegeben als:
- Wir wollen die optimalen Subprobleme $A_{1:k}$ und $A_{k+1:n}$ identifizieren, welche die Anzahl Rechnungen minimieren.

Rekursive Lösung

Wir bezeichnen mit m[i,j] die minimale Anzahl Rechnungen, um die Matrixkette $A_{i:j}$ zu berechnen.

Rekursive Lösung

- Wir bezeichnen mit m[i,j] die minimale Anzahl Rechnungen, um die Matrixkette $A_{i:j}$ zu berechnen.
- Es gilt also, dass:

$$m[i,j] = \begin{cases} 0 & wenn \ i = j \\ opt(A_{i:k}) + opt(A_{k+1:j}) + p_{i-1}p_kp_j & wenn \ i < j \end{cases}$$

Die optimale Lösung berechnen

■ Wir besitzen nun eine <u>rekursive</u> Lösung für das Problem. An sich benötigt diese immer noch exponentielle Zeit.

Die optimale Lösung berechnen

- Wir besitzen nun eine <u>rekursive</u> Lösung für das Problem. An sich benötigt diese immer noch exponentielle Zeit.
- Wir können dynamic Programming mit <u>Bottom-Up</u> benutzen, um das Resultat effizienter zu berechnen.

$$m[i,j] = \begin{cases} 0 & wenn \ i = j \\ opt(A_{i:k}) + opt(A_{k+1:j}) + p_{i-1}p_kp_j & wenn \ i < j \end{cases}$$

$$m[i,j] = \begin{cases} 0 & wenn \ i = j \\ opt(A_{i:k}) + opt(A_{k+1:j}) + p_{i-1}p_kp_j & wenn \ i < j \end{cases}$$

■ Wir können eine Tabelle *m* für Zwischenergebnisse benutzen.

$$m[i,j] = \begin{cases} 0 & wenn \ i = j \\ opt(A_{i:k}) + opt(A_{k+1:j}) + p_{i-1}p_kp_j & wenn \ i < j \end{cases}$$

- Wir können eine Tabelle *m* für Zwischenergebnisse benutzen.
- Wir müssen die Tabelle (wie schon gesehen) in einer schlauen Reihenfolge durchlaufen!

■ Da m[i,j] nur für i < j definiert ist, müssen wir nur ein Dreieck berechnen!

- Da m[i,j] nur für i < j definiert ist, müssen wir nur ein Dreieck berechnen!
- Hier sind die Matrizen A_1, A_2, A_3, A_4 als A, B, C, D bezeichnet.

lacktriangle Die finale Lösung für unser Problem können wir bei m[1,n] finden

- lacksquare Die finale Lösung für unser Problem können wir bei m[1,n] finden
- Die Basisfälle sind durch die einzelnen Matrizen mit Berechnungskosten 0 gegeben.

- Wir bewegen uns über die Diagonalen nach ihren.
- \blacksquare AB kostet die Kosten von A, die Kosten von B, und Kombinationskosten

- Wir bewegen uns über die Diagonalen nach innen.
- \blacksquare AB kostet die Kosten von A, die Kosten von B, und Kombinationskosten
- ABC können wir aus $A \cdot BC$ oder $AB \cdot C$ berechnen!

- Wir bewegen uns über die Diagonalen nach innen.
- \blacksquare AB kostet die Kosten von A, die Kosten von B, und Kombinationskosten.
- ABC können wir aus $A \cdot BC$ oder $AB \cdot C$ berechnen.
- *ABCD*...

■ Die finale Lösung steht bei m[1,-1]

Reihenfolge der Lösungen

■ Um die Berechnungs-Reihenfolge zu finden, müssen wir uns bloss erinnern, wo wir die Subprobleme getrennt haben.

Reihenfolge der Lösungen

- Um die Berechnungs-Reihenfolge zu finden, müssen wir uns bloss erinnern, wo wir die Subprobleme getrennt haben.
- k = 2 sight z.B. so aus.

Dynamic Programming in Python

```
def best chain(dims):
   # Erstelle Strukturen für Resultate
    n = len(dims) - 1
    s, m = [[None] * n for _ in range(0, n)], [[None] * n for _ in range(0, n)]
   # Basisfälle füllen
    for i in range(0, n):
       m[i][i] = 0
   # Dynamische Berechnung
    for diag in range(1, n):
        for i in range(0, n - diag):
            j = i + diag
            for k in range(i, j):
                cost = m[i][k] + m[k+1][j] + dims[i]*dims[k+1]*dims[j+1]
                if m[i][j] is None or cost < m[i][j]:</pre>
                    m[i][j] = cost
                    s[i][i] = k
   return m[0][-1]
```

4. Wrap-Up

Allgemeines Vorgehen bei Dynamic Programming:

1. Datenstruktur initialisieren

Allgemeines Vorgehen bei Dynamic Programming:

- 1. Datenstruktur initialisieren
- 2. Basisfall implementieren

Allgemeines Vorgehen bei Dynamic Programming:

- 1. Datenstruktur initialisieren
- 2. Basisfall implementieren
- 3. Datenstruktur ausfüllen

Allgemeines Vorgehen bei Dynamic Programming:

- Datenstruktur initialisieren
- 2. Basisfall implementieren
- 3. Datenstruktur ausfüllen
- 4. Resultat zurückgeben

- 1. Datenstruktur initialisieren
 - 2D Matrix (Dreieck)

```
m = [[None] * n
    for _ in range(0, n)],
```

- 1. Datenstruktur initialisieren
 - 2D Matrix (Dreieck)
- 2. Basisfall implementieren
 - Fall i = j

```
m = [[None] * n
    for _ in range(0, n)],
```

```
for i in range(0, n):
    m[i][i] = 0
```

- 1. Datenstruktur initialisieren
 - 2D Matrix (Dreieck)
- 2. Basisfall implementieren
 - Fall i = j
- 3. Datenstruktur ausfüllen
 - In Diagonalen nach innen

```
m = [[None] * n
    for _ in range(0, n)],
```

```
for i in range(0, n):
    m[i][i] = 0
```

```
for diag in range(1, n):
    for i in range(0, n - diag):
    ...
```

- 1. Datenstruktur initialisieren
 - 2D Matrix (Dreieck)
- 2. Basisfall implementieren
 - Fall i = j
- 3. Datenstruktur ausfüllen
 - In Diagonalen nach innen
- 4. Resultate zurückgeben

```
m = [[None] * n
    for _ in range(0, n)],
```

```
for i in range(0, n):
    m[i][i] = 0
```

```
for diag in range(1, n):
    for i in range(0, n - diag):
    ...
```

```
return m[0][-1]
```

5. Hausaufgaben

Übung 8: Dynamic Programming I

Auf https://expert.ethz.ch/enrolled/SS25/mavt2/exercises

Exercise 8: DP I

- Tribonacci
- Catalan-Zahlen
- Blöcke
- Aufgabenplanung v2.0

Abgabedatum: Montag 28.04.2025, 20:00 MEZ

KEINE HARDCODIERUNG