Задача 10.3 «Эксцентричная машинка»

На платформе с подставкой расположен электродвигатель (с источником). Полная масса платформы с подставкой и двигателем равна m, центр масс $C_{\scriptscriptstyle 0}$ расположен посредине К валу двигателя прикреплен платформы. эксцентрик, представляющий собой жесткий невесомый стержень длиной r, к концу которого жестко прикреплен небольшой шарик массы m_0 . Обозначим отношение массы шарика

к массе всей платформы $\eta = \frac{m_0}{m}$. Двигатель вращает стержень с постоянной угловой скоростью ω . Все система расположена на горизонтальной поверхности. Положительное направление вращения эксцентрика и положительное направление оси Ox указаны на рисунке. Положение стержня определяется углом его отклонения от вертикали ϕ .

- 1 Найдите проекции скорости и ускорения центра масс всей системы на горизонтальную и вертикальную оси координат в зависимости от угла отклонения ϕ .
- 2 Пусть платформа закреплена между упорами на горизонтальной поверхности так, что не может двигаться горизонтально, но может «подпрыгивать» вверх. Определите, при какой минимальной угловой скорости вращения стержня ω_0 платформа будет отрываться от горизонтальной поверхности.
- 3. Пусть теперь платформа может скользить по горизонтальной поверхности без трения. Стержень вращается с постоянной скоростью ω , которая меньше, чем величина ω_0 , найденная в предыдущем пункте. Сначала платформу удерживают, а затем отпускают. Определите закон движения центра платформы C_0 , если в момент ее отпускания
 - 3.1 Стержень располагался горизонтально;
- 3.2 Шарик находился в нижней точке.

Постройте примерные графики законов движения в этих двух случаях.

- 4. Рассмотрите теперь случай, когда между платформой и горизонтальной поверхностью присутствует сила сухого трения, коэффициент трения равен μ (μ < 1)
- 4.1 При какой минимальной угловой скорости вращения ω_1 стержня платформа сможет сдвинуться с места? В какую сторону произойдет этот сдвиг? Чему равен угол ϕ в момент начала движения?
- 4.2 Пусть $\mu=0.35$, $\eta=\frac{m_0}{m}=0.20$, длина стержня $r=1.0\,\mathrm{M}$. Найдите численное значение угловой скорости ω_1 .
- 5. Пусть угловая скорость вращения стержня равна $1,02\omega_1$. Найдите среднюю скорость горизонтального движения платформы. Используйте численные данные, приведенные в пункте 4.