IN THE DRAWINGS:

Please substitute the amended drawings for Figures 1 through 7. Changes are marked up.

IN THE CLAIMS:

Please cancel claims 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28 and 29 without prejudice or disclaimer and enter the following new claims:

30. (New) A process for converting sorption reaction work into useful electrical work by means of a galvanic membrane electrolyte reaction cell (Fig.1) comprising feeding to and carrying off a substance system consisting of a vapor carrier gas mixture and a sorptive solution absorbing the vapor in the cell housing (2);

said cell housing (2) containing a flat-shaped, porous, gas-permeable first electrode (4) and a flat-shaped, porous gas- and liquid-permeable second electrode (5), divided by a media-sealing, electrically isolating peripheral seal (3) into a first housing part (2.1) and a second housing part (2.2);

a selectively ion-permeable membrane electrolyte (6) arranged between the electrode faces (4.2, 5.2) forming with said porous electrodes (4,5) a mechanically stable

ZP①:	SI [NH ₃ ^v , H ₂ ^g] SII [H ₂ O ^v , O ₂ ^g]	[P', P ^g , Τ, ξ']
	SII IH ₂ O ^x O ₂ 91	1, 1, 1,12,1

ZP②:
$$\frac{SI}{SI} \frac{[NH_3^{aq}]}{[LiBr^{aq}]}$$
 [Paq, T, ξ^{aq}]

$$ZP \ensuremath{\mathfrak{G}} : \quad \frac{\text{SI}}{\text{SI}} \, \frac{ \left[\text{NH}_3^{aq}, \text{NH}_3^{v}, \text{H}_2^{g} \right] }{ \left[\text{LiBr}^{aq}, \text{O}_2^{g}, \text{H}_2 \text{O}^{v} \right] } \quad \text{[Paq, Pv, Pa, T, $\xi^{aq}, ξ^{v}]}$$

ZP4:
$$SI = \frac{[NH_3^{V}, H_2^{g}]}{SI = [H_2O^{V}, O_2^{g}]}$$
 [P', P9, T, §']

SII $1H_2O^v$, $H_2^91H_3O^+$, $EL1H_2So_4^{aq}$, H_2^91 SIZ $1H_2O^v$, $O_2^91OH^-$, $EL1H_2So_4^{aq}$, O_2^{91} , State points (ZP) in accordance with Fig. 3

Saturation temperature Ts, Tv

Fig. 4

Saturation temperature Ts, Tv

Concentration of solution ξs

Concentration of solution \xists

Fig. 6

Fig. 7

