Recall: If  $\vec{u} * \vec{v}$  are vectors in  $\mathbb{R}^3$  and linearly independent, then the area of the parallelogram with Sides along  $\vec{u} * \vec{v} =$ 

Area of 119m = || uxv|





Suppose we project  $\vec{u} \times \vec{v}$  onto the  $x_1 x_2$ -plane



Projection of  $\vec{u} * \vec{v}$  onto  $x_1 x_2$  plane Similarly, we can project  $\vec{u} * \vec{v}$  onto  $x_2 x_3$  plane  $\begin{pmatrix} u_1 \\ u_2 \\ 0 \end{pmatrix} * \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix} & \begin{pmatrix} v_1 \\ v_2 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ u_2 \\ v_3 \end{pmatrix}, \begin{pmatrix} 0 \\ v_2 \\ v_3 \end{pmatrix}$ Area of the farallelogram  $T_{12}$  determined by these two vectors Area of parallelogram  $T_{23}$  is the  $\vec{u}$  is length  $\vec{v}$  and  $\vec{v}$  length of the cross product vector  $\vec{v}$  and  $\vec{v}$  length of the cross product vector  $\vec{v}$  and  $\vec{v}$  length of  $\vec{v}$  length  $\vec{v}$  and  $\vec{v}$  length  $\vec{v}$  length

Projection of u, v onto the x,x3 Recall that area of the  $119^m$  determined by  $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ plane  $(\text{Area of})^{2} = (u_{1}V_{2} - u_{2}V_{1})^{2} + (u_{3}V_{1} - u_{1}V_{3})^{2} + (u_{2}V_{3} - u_{3}V_{2})^{2} + (u_{2}V_{3} - u_{3}V_{2})^{2}$ Area of the parallelogram, determines by there & vectors is  $|u_3v_1-u_1v_3\rangle$ . Area of  $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area of 11gm)^2 + (Area of \chi^2 + Area)^2$   $\chi^2 = (Area)^2$   $\chi^2$ 





 $\|\vec{\chi}\|^2 = \|\vec{\chi}_{x_1}\|^2 + \|\vec{\chi}_{x_2}\|^2$ 

Pythagoras Theorem:

Squared length of ? = Sum of Equared length
a vector S of its projecto coordinate
axes.

Properties of cross product of 2 vectors.

(i)  $\vec{u} \times \vec{u} = \vec{0}$  for any vector  $\vec{u}$   $\vec{u} : \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$   $\vec{u} \times \vec{u} = \vec{0}$ 

(ii) 
$$\vec{V} \times \vec{u} = -(\vec{u} \times \vec{v})$$
 for every  $\vec{u}, \vec{v}$ 

$$\vec{V} = \begin{bmatrix} V_1 & \vec{u} : & U_1 \\ V_2 & V_3 \end{bmatrix}$$

$$\vec{V} \times \vec{u} : \begin{bmatrix} V_2 u_3 - V_3 u_2 \\ V_1 u_3 - V_3 u_1 \\ V_1 u_2 - V_2 u_1 \end{bmatrix}$$

$$\vec{v} \times \vec{v} : \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_1 v_3 - u_3 v_1 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

$$\vec{V} \times \vec{u} : = -(\vec{u} \times \vec{v})$$

(iii)  $(t \vec{u}) \times \vec{v} = t (\vec{u} \times \vec{v})$  for t scalar.

(iv)  $\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$ (v) If  $\vec{u} \times \vec{v} = \vec{0}$ , then  $\vec{u}$  and  $\vec{v}$ are linearly dependent

Conversely,  $\vec{u} \times \vec{v} = \vec{0}$ dependent,  $\vec{u} \times \vec{v} = \vec{0}$ 

Suppose we have 3 linearly indep vectors  $\vec{u}$ ,  $\vec{v} \approx \vec{w}$  in  $\mathbb{R}^3$ What is the vol of this parallelopiped?