Explainable Face Recognition based on Accurate Facial Compositions

Search

컴퓨터과학과 202132033 염지현

01

Introduction

- (1) 하고자 하는 것
- (2) 기존 연구의 한계점
- (3) 해결 방법
- (4) 증명하고자 하는 가설

02

Method

03

Conclusion

- (1) 가설
- (2) 실험
- (3) 요약

01
Introduction

- (1) 하고자 하는 것
- (2) 기존 연구의 한계점
- (3) 해결 방법
- (4) 증명하고자 하는 가설

02

Method

03

- (1) 가설
- (2) 실험
- (3) 요약

Explainable Face Recognition based on Accurate Facial Compositions

01 Introduction (1) 하고자 하는 것

• Explainable Face Recognition(XFR): 설명 가능한 얼굴 인식

"입력 이미지 두 명은 같은 사람이다"

01 Introduction (1) 하고자 하는 것

Explainable Face Recognition(XFR): 설명 가능한 얼굴 인식

AFC-XFR 프레임워크를 제안하여 설명 가능한 얼굴 인식 시스템 제공

01

Introduction

- (1) 하고자 하는 것
- (2) 기존 연구의 한계점
- (3) 해결 방법
- (4) 증명하고자 하는 가설

02

Method

03

Conclusion

- (1) 가설
- (2) 실함
- (3) 요일

Backbone Network 중간 layer feature map + 15개 composition mask 투영

LFRM(Local Feature Refine Module)을 통해 facial compositions 16개 정제

SARM(Self-Attention based Reconstruction Module)을 통해 두 얼굴 비교

SARM(Self-Attention based Reconstruction Module)을 통해 두 얼굴 비교

01

Introduction

- (1) 하고자 하는 것
- (2) 기존 연구의 한계점
- (3) 해결 방법
- (4) 증명하고자 하는 가설

02

Method

03

Conclusion

- (1) 가설
- (2) 실험
- (3) 요약

다양한 얼굴 요소 중에서 눈썹 주변 영역이 인식에서 가장 중요하다.

2

얼굴 특징은 전체론적으로 처리된다.

3

시각 시스템은 익숙하지 않은 얼굴보다 친숙한 얼굴에 더 강력하다.

입증하려는 가설	다양한 얼굴 구성 요소 중 눈썹 주변 영역이 인식에서 가장 중요하다.		
Test 수	LFW(Labeled Faces in the Wild) 에서 4294개의 ID로 구성된 9708 images로 부터 Genuine matching: 156,915, Imposter matching: 46,960,863 중 무작위로 10회 선택하여 평가 진행		
설정	통계 분석 방법	FAR = 1e-5에서 <u>BLUFR verification rate</u> 사용	
	데이터 수집/정제 방법	5개의 facial landmark 기반 정렬 및 crop(144 * 144)	
	데이터 정보화 방법	Final representations (16개 facial component + backbone output feature map)	
해석	눈썹 주변 영역을 가렸을 때 verification rate가 가장 낮음 == 눈썹 주변 영역을 가렸을 때 통과되는 비율이 낮음 == 눈썹 주변 영역은 얼굴 인식에 있어서 큰 영향을 미침		

BLUFR verification rate: 평균 성능과 더불어 표준 편차까지 고려하여 알고리즘의 안정성 까지 고려하는 평가 지표

입증하려는 가설	얼굴 특징은 전체론적으로 처리된다.	
Test 수	LFW(Labeled Faces in the Wild) 에서 4294개의 ID로 구성된 9708 images로 부터 Genuine matching: 156,915, Imposter matching: 46,960,863 중 무작위로 10회 선택하여 평가 진행	
설정	통계 분석 방법	FAR = 1e-5에서 <u>BLUFR verification rate</u> 사용
	데이터 수집/정제 방법	5개의 facial landmark 기반 정렬 및 crop(144 * 144)
	데이터 정보화 방법	Final representations (16개 facial component + backbone output feature map)
해석	가려짐 없는 얼굴의 비율로부터 각 요소를 가렸을 때 verification rate를 뺐을 때 요소별로 균일하게 감소 == 얼굴 인식을 진행하면서 얼굴 요소 일부 특징만 사용하는 것이 아닌 전체 론적으로 처리됨을 알 수 있음	

BLUFR verification rate: 평균 성능과 더불어 표준 편차까지 고려하여 알고리즘의 안정성 까지 고려하는 평가 지표

입증하려는 가설	친숙한 얼굴보다 낯선 얼굴에서 성능저하가 일어난다.	
Test data 수	CASIA-FAM(훈련)	CASIA-WebFace에서 22개 이미지를 갖는 3000개의 ID
	CASIA_UNFAM(훈련)	CASIA-WebFace에서 가장 적은 개수의 이미지를 갖는 3000개의 ID
	LFW	13233개의 이미지
	AgeDB-30	16488개의 이미지(다양한 연령 분포)
	CFP-FP	약 다양한 포즈 분포를 갖는 5000개의 이미지
	CALFW	3000개 ID에 대해 다양한 나이 분포 데이터세트
	CPLFW	3000개 ID에 대해 다양한 포즈 분포 데이터세트
설정	통계 분석 방법	GaussianBlur Kernel size를 조정하여 LFW 프로토콜 기반의 verification accuracy 계산
	데이터 수집/정제 방법	5개의 facial landmark 기반 정렬 및 crop(144 * 144)
	데이터 정보화 방 법	Final representations (16개 facial component + backbone output feature map)
해석	 모든 데이터세트는 blur 정도가 증가함에 따라 동일하게 정확도가 낮아짐. LFW를 제외하고 CAISA-FAM, CASIA_UNFAM 데이터세트의 정확도가 높음. CASIA-FAM과 CASIA_UNFAM 둘 사이 차이가 거의 없어 친숙한 얼굴보다 낯선 얼굴에서 성능 저하가 일어난다는 가설에 모순. 	

Explainability + Transformer AFC-XFR 제안

3D Face
Reconstruction
+
Face parsing
-AFC 버전

일부 가설을 실험을 통해 검증

기존 모델에 쉽게 연결하여 사용 가능 QnA

Search