Tarea 2

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Instrucciones. Resuelve los siguientes ejercicios. Esta tarea es individual y deberá ser entregada presencialmente, durante la clase del **martes 24 de junio**.

Ej. 1 (1 pt) Sean I, J, K conjuntos no vacíos y supongamos que $J \cup K = I$. Si $\{X_i \mid i \in I\}$ es una familia indexada de conjuntos, demuestra que:

$$\bigcap_{i \in I} X_i = \Big(\bigcap_{i \in J} X_i\Big) \cap \Big(\bigcap_{i \in K} X_i\Big)$$

Ej. 2 (1 pt) Sean A, B, X y Y conjuntos no vacíos. Demuestra:

- i) $A \times B \subseteq X \times Y$ si y sólo si $A \subseteq X$ y $B \subseteq Y$.
- ii) $A \times B = X \times Y$ si y sólo si A = X y B = Y.
- iii) $(A \setminus X) \times B = (A \times B) \setminus (X \times B)$.

Sugerencia: Para (ii), utiliza el inciso (i) y el hecho de que dos conjuntos son iguales si y sólo si, uno está contenido en el otro y el otro en el uno.

Ej. 3 (1 pt) Sean A un conjunto y $R, S \subseteq A \times A$ relaciones sobre A. Demuestra que:

- i) $R \cap S$ es reflexiva si y solamente si R y S son reflexivas.
- ii) R es simétrica si y sólo si $R = R^{-1}$.
- **Ej. 4 (1 pt)** Sea R una relación cualquiera. Prueba que, si $dom(R) \cap im(R) = \emptyset$, entonces R es antisimétrica. ¿Qué ocurre con el recíproco de lo anterior? Es decir, ¿Si R es antisimétrica, entonces $dom(R) \cap im(R) = \emptyset$?
- **Ej. 5 (1 pt)** En cada inciso R es una relación sobre un conjunto A. Indica en cada caso, si R es: reflexiva, simétrica, transitiva, antireflexiva o antisimétrica. Si en algún caso R es relación de orden parcial, o de equivalencia, indícalo. No es necesario justificar.
 - i) A es el conjunto $\{0, 1, 2\}$ y $R := \{(1, 1), (2, 2), (0, 1), (1, 0)\}.$
 - ii) Aes el conjunto {Piedra, Papel, Tijeras} y $R \subseteq A \times A$ la relación:

 $R := \{(Piedra, Tijeras), (Tijeras, Papel), (Papel, Piedra)\}$

- iii) A es cualquier conjunto y $R = id_A$.
- iv) A es el conjunto de todas las rectas del plano (digamos, \mathbb{R}^2) y $R \subseteq A \times A$ es la relación $R := \{(x, y) \in A \times A \mid x \text{ es paralela a } y\}.$
- v) $A = \mathbb{Z} y R \subseteq A \times A$ está dada por: n R m si y sólo si $n^2 \leq m^2$.
- vi) $A = \mathcal{P}(\{0, 1, 2, ..., 1534\})$ y R está dada por: a R b si y sólo si a tiene (estrictamente) menos elementos que b.
- **Ej. 6 (1 pt)** Sea R una relación de equivalencia sobre un conjunto A. Demuestra que R es la diagonal de A si y sólo si para cualesquiera $a, b \in A$ se tiene que [a] = [b] implica a = b.
- **Ej. 7 (1 pt)** Sean A, B conjuntos y $\{f_i \mid i \in I\}$ una familia indexada de funciones tal que para cada $i \in I$, f_i es una función de A en B. Demuestra que la relación R sobre A definida por:

$$x R y \text{ si y sólo si } \forall i \in I(f_i(x) = f_i(y))$$

es de equivalencia.

- **Ej. 8 (1 pt)** Sean A, B, C cualesquiera conjuntos y $f: A \to B, g: B \to C$ funciones arbitrarias. Entre las siguientes implicaciones, hay una que es falsa, demuestra las dos verdaderas y da un contraejemplo para la falsa.
 - i) Si $g \circ f$ es sobreyectiva, entonces g es sobreyectiva.
 - ii) Si f es biyectiva, entonces $g \circ f$ es biyectiva.
 - iii) Si $g \circ f$ es inyectiva, entonces f es inyectiva.
- **Ej. 9 (1 pt)** En cada inciso f es una función de A en B. Indica en cada caso, si f es: inyectiva, sobreyectiva o biyectiva. No es necesario justificar.
 - i) $A = \mathbb{N}, B = \mathbb{N}$ y, para cada $a \in A$, f(a) = a.
 - ii) $A = \mathcal{P}(\{0, 2, 4, 6, ..., 30\}), B = A$ y, para cada $a \in A$, f(a) es el mínimo de a.
 - iii) $A = \mathbb{N}, B = \mathbb{Z}$ y, para cada $a \in A$, f(a) = a.
 - iv) $A = \mathbb{R}, B = \mathbb{R}^+ \cup \{0\}$ y, para cada $a \in A$, $f(a) = a^2$.
 - v) $A = \mathbb{R}^+ \cup \{0\}, B = \mathbb{R}^+ \cup \{0\}$ y, para cada $a \in A$, $f(a) = a^2$.
 - vi) $A = \mathbb{N} \times \mathbb{N}$, $B = \mathbb{N}$ y, para cada $(a, b) \in A$, $f(a, b) = 2^a \cdot 3^b$.
 - vii) $A = \{0, 1, 2, 3, \dots, 10\}, B = \mathcal{P}(\mathbb{R}^2)$ y, para cada $a \in A$, $f(a) = \{(x, y) \in \mathbb{R}^2 \mid x y = 2\}$.

viii) $A = \mathbb{R}, B = \{0, 1\}$ y, para cada $a \in A$; si $a \in \mathbb{Q}, f(a) = 1$; y, si $a \notin \mathbb{Q}, f(a) = 0$.

Ej. 10 (1 pt) Sean A,B conjuntos y $f:A\to B$ una función. La relación $\sim\subseteq A\times A$ definida por $x\sim y\iff f(x)=f(y)$ es de equivalencia (¿por qué?). Sea $q:A\to A/\sim$ definida por q(x)=[x]. Demuestre que q es biyectiva si y sólo si $\sim=\operatorname{id}_A$.