

Problem K Permutation

A permutation P of size N is defined as an array $[P_1, P_2, \cdots, P_N]$ where $1 \le P_i \le N$ and $P_i \ne P_i$ for $i \ne j$.

We also define an order of a permutation. If A and B are permutations of size N, then A is less than B if and only if there exists an index i ($1 \le i \le N$) where:

- $A_i < B_i$, and
- $A_j = B_j$ for all $1 \le j < i$

We also define the multiplication of two permutations. If A and B are permutations of size N, then $A \times B$ is a permutation of size N, where the i-th element is A_B .

We also define the exponentiation of a permutation and a positive integer. If P is permutation and z is a positive integer, then P^z is defined as follow:

- $P^z = P$, for z = 1
- $P^z = P^{z-1} \times P$, for z > 1

You are given a permutation P of size N. Let M be the smallest integer greater than 1 such that $P = P^M$. We define A (index starts from 1) as an array consisting of P^i for all $1 \le i < M$ sorted in the increasing order (of permutation). In other words, $A_i < A_i$ for all $1 \le i < j < M$.

For example, suppose P = [2,3,1,5,4]. Therefore:

- $P^1 = [2,3,1,5,4],$
- $P^2 = [3,1,2,4,5]$
- $P^3 = [1,2,3,5,4]$,
- $P^4 = [2,3,1,4,5],$
- $P^5 = [3,1,2,5,4]$.
- $P^6 = [1,2,3,4,5],$
- $P^7 = [2,3,1,5,4]$

Thus, the value of M in this case is 7, and $A = [P^6, P^3, P^4, P^1, P^2, P^5]$.

You are also given Q queries. The i-th query contains an integer K_i . The answer for the i-th query is an integer T_i such that $1 \le T_i < M$ and $P^{T_i} = A_{K_i}$. Can you answer all of the queries?

Input

The first line contains two integers: $N \ Q \ (1 \le N \le 100; \ 1 \le Q \le 300,000)$ in a line denoting the size of the permutation and the number of queries. The second line contains N integers: $P_1 \ P_2 \cdots P_N \ (1 \le P_i \le N)$ in a line denoting the permutation. It is guaranteed that $P_i \ne P_j$ for all $i \ne j$. The next Q lines, each contains an integer; the integer on the i-th line is $K_i \ (1 \le K_i \le M)$, where M is the smallest integer greater than 1 such that $P = P^M$ as explained above. Note that M is not explicitly given in this problem) denoting the query.

Output

Q lines, each contains an integer: T_i in a line denoting the answer of the i-th query.

Sample Input	Output for Sample Input
5 6 2 3 1 5 4	6
1	4
2 3	2
4 5	5
6	

Explanation for the 1st sample case

The permutation given in the first sample is the same as the permutation given in the problem description.