2. The Master Equation. Simulation with the Gillespie Algorithm.

- Stochastic procen: randelle(3) evolving in time in a non-delementative manner.
- Examples: Lighting formation (duclichic breakdown),
 brownian motion, chemical machines, bacterial growth,
 species interaction in ealogy, francial mortets,...
- · Markor power: type of strichastic power in which the probability of each event depends only on the previous event (NO MEMOLY).

Lo modelled through the "Chopman-kolmogoron eq".

• MASTER EQUATION: differential eq. for a stochastic Markov procen with time as a continuous variable: $\vec{n}_{\perp}(t) \equiv \text{state}$ of the system at time t. $P(\vec{n}_{\perp}, t \mid \vec{n}_{0}, t_{0}) \equiv \text{prob. of finding the system at state } \vec{n}_{\parallel}$ at time t, raining the anished conditions $\vec{n}(t=t_{0}) = \vec{n}_{0}$

Note: we will keep \bar{x} for continuous variables and use \bar{n} instead for discreet variables.

EXAMPLE: the succeptible injected-succeptible model:

Well-mixed system of N induviduals in states

Sor I; dynamics evolves stochastically according to

the following processes ("reactions"):

$$I + 1 \stackrel{\mu}{\longleftarrow} 2 + 1 \quad ; \quad 2 \stackrel{\mu}{\longleftarrow} 1$$

where μ , λ are the corresponding "rates" per interaction (see below).

Note: well-mixed = the dynamics is based only on the concentration of our chemical species, not on their specific location. This is a good rimplification when most interactions are "non-reactive" (e.g. ellertic collinors...). Othernix we might need to use a spatially expercit description...

• The Master eq. is a continuity equation for the change of P(n, t | n, t) in time. (see refs. for a more formal derivation).

Note: for convenience I will omit the mitial and.

with $W(\vec{n} \rightarrow \vec{n}') \cdot \Delta t$ the pub. of going from $\vec{n} \rightarrow \vec{n}'$ during a small interval ot $W(\vec{n} \rightarrow \vec{n}') = rate''$ of pub.

Then,
$$a_t P(\bar{n}, t) = \sum_{\bar{n}'} [W(\bar{n}' \rightarrow \bar{n}) P(\bar{n}', t) - W(\bar{n} \rightarrow \bar{n}') P(\bar{n}, t)]$$

Example (Sis): $\vec{n} = (n_I, n_S) = (n_I, N - n_I)$; then for simplicity $n_j = n$.

"reaction") I — S. ("unimoleular reaction")

 $W(n \rightarrow n-1) \propto n$: "the more I incl. I have, the more likely the reaction". I $W(n \rightarrow n-1) = \mu n$, with $\mu = rate$ per perhicle

["reaction" 2] I+S - I+I ("bimolec. reaction")

 $\frac{N(n \rightarrow n+1) \ll n}{\ll \frac{n_s}{N} = \frac{N-n}{N}}$ (this takes into account the pool. that every I when the pool in the system)

with $\lambda \equiv rate of pob. per poir of perhicles.$

Note: Generally, rates W should scale linearly with the system size.

For simplicity,
$$W(n \rightarrow n-1) \equiv W_{-}(n)$$
 ("one-step $W(n \rightarrow n+1) \equiv W_{+}(n)$ process")

Then we write the master equation:

$$a_t P(n_1 t) = W_{+1}(n-1) P(n-1,t) + W_{-1}(n+1) \cdot P(n+1,t) - W_{+1}(n) P(n_1 t) - W_{-1}(n) P(n_1 t)$$

- This is in gral. difficult to solve analytically or even numerically.
- Ly Much better to have an algorithm that gives us stochashic trajectories of n(t) compatible with P(n, t1 no, to).

2.1. The aillespie algorithm.

Main idea In order to track Ti(t), all we need to know is:

- when next reaction will take place.
- which reaction will take place (to update $\bar{n}(t)$ accordingly).

Then, $p(\bar{n}, t \mid \bar{n}_0, t_0) \longrightarrow p(z, j \mid \bar{n}, t)$,

with $p(z, j \mid \bar{n}_1 t) \Delta z \equiv pob$. reaction j occurs

during a small interval $(t + z, t + z + \Delta z)$

· We can compute P(z, j(n, t):

P(z, j | n, t) DZ = prob. nothing happens x prob. reaction j Lumg [t, t+z] happens in

 $\lim_{K\to\infty} P(z,j|\bar{n},t) \Delta z = \left(1 - \sum_{j} W_{j}(\bar{n}) \cdot \Delta t\right)^{K} \cdot W_{j}(\bar{n}) \Delta z$

Por qué elevar a k?

$$\lim_{k\to\infty} P(z,j|\bar{n},t) = (1-\sum_{j} W_{j}(\bar{n}) \frac{z}{k})^{k} W_{j}(\bar{n})$$

$$= \exp(-\sum_{j} W_{j}(\bar{n}) \cdot z) \cdot W_{j}(\bar{n})$$

• If we look at $P(z|\overline{n},t) \equiv \sum P(z,j|\overline{n},t) = prob.$ distrib. ANY reaction of takes place at interval [t+7, t+2+d]

$$P(z|\bar{n},t) = \sum_{j} w_{j}(\bar{n}) \cdot e^{-\sum_{j} w_{j}} \cdot z$$

Ly $z \sim \exp_{i} distribution of mean <math>W_0(\bar{n}) \equiv \sum_{j} W_j(\bar{n})$

$$\frac{p(z,j|\overline{n},t)}{\sum p(z,j|\overline{n},t)} = \frac{pnb.thn)}{rachonj} = \frac{W_j(\overline{n})}{W_0(\overline{n})}.$$

Then we have the following algorithm:

- O. Set withal conditions, $\overline{n} = \overline{n}_0$. Evaluate $W_0(\overline{n})$ for each possible reaction. Compute $W_0(\overline{n}) \equiv \sum W_0(\overline{n})$.
- 2) Sample next reaction time from an exp. dustrib.
 3) choose which reaction occurs with uniform

bups. My / Mo ,

n [0, No]. In this case, reaction will take place.

(4) Update the state of the system accordingly.
Go to step 1.

PRACTICUTE

Generate 5 trajectories of the IIS model with $\mu=1$, $\lambda=2$, N=1000. Set mitial condition $n_{\rm I}=n_{\rm S}=N/2$.

** setting $\mu=1$, N=1000, plot < n/N? evaluated at stationarity as a function of λ . You should see a nort of phase transition.

(I will appear "noisy")