9주차 회귀분석 심화 강의 코드

목차

- 일반화 선형 모형 (GLM)
 - 일반화 선형모형 소개
 - 링크함수 소개
 - 이항 데이터 (로지스틱)
 - 이산형 데이터 (포아송)
- 정규화 회귀분석
 - 정규화란? (Regularization, Penalty)
 - Ridge, Lasso, Elastic 회귀 모형
 - 정규화 회귀의 장점 변수선택
- 비선형 모형 (Non-Linear)
 - 비선형 모형의 필요성 (선형 모형의 한계)
 - 스플라인 회귀 (Spline)
 - 기계학습으로의 확장
- 실제 데이터 분석 하기

```
In [24]: import warnings
# 워닝 메시지 필터링
warnings.filterwarnings("ignore")
```

링크함수 소개

• Identity 링크

```
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(-10, 10, 100)
y = x

plt.plot(x, y, label="Identity Link Function")
plt.xlabel("x")
plt.ylabel("g(\mu)")
plt.title("Identity Link Function")
plt.legend()
plt.grid(True)
plt.show()
```

Identity Link Function

• Logit 링크

```
import matplotlib.pyplot as plt
In [8]:
         import numpy as np
         # p는 0에 가깝게부터 1에 가깝게까지의 범위로 설정
         p = np.linspace(0.001, 0.999, 400)
         # 로짓 함수 계산
         logit = np.log(p / (1 - p))
         plt.figure(figsize=(10, 6))
         # 그래프 그리기
         plt.plot(p, logit, label="Logit Function", color='blue')
         plt.axhline(0, color='grey', linestyle='--', linewidth=0.5)
         plt.axvline(0, color='grey', linestyle='--', linewidth=0.5)
plt.axvline(1, color='grey', linestyle='--', linewidth=0.5)
         plt.xlabel("p (Probability)")
         plt.ylabel("y (Log Odds)")
         plt.title("Logit Function")
         plt.legend()
         plt.grid(True)
         plt.show()
```


• log 링크

```
In [10]: import numpy as np import matplotlib.pyplot as plt

# y 값을 0에서 2까지의 범위로 설정
y_values = np.linspace(0.01, 2, 400) # 0에 가까운 값부터 시작해서 log(0)의 정의되.
log_y_values = np.log(y_values)

plt.figure(figsize=(8, 6))
plt.plot(y_values, log_y_values, label='log(y)', color='blue')
plt.axhline(0, color='red', linestyle='--') # y=0 선
plt.xlabel('y values')
plt.ylabel('log(y) values')
plt.title('Relationship between y and log(y)')
plt.legend()
plt.grid(True)
plt.show()
```

Relationship between y and log(y)

일반화 선형모형(GLM)

• 로지스틱

```
In [12]: import numpy as np import statsmodels.api as sm import pandas as pd

# 가상의 데이터 생성
np.random.seed(123)
n = 100
x1 = np.random.randn(n)
x2 = np.random.randn(n)
y_continuous = 1 + 2*x1 + 3*x2 + np.random.randn(n)
y = (y_continuous > 0.6).astype(int)

# 데이터프레임으로 변환
data = pd.DataFrame({'x1': x1, 'x2': x2, 'y': y})
data
```

```
        Nut [12]:
        x1
        x2
        y

        0
        -1.085631
        0.642055
        1

        1
        0.997345
        -1.977888
        0

        2
        0.282978
        0.712265
        1

        3
        -1.506295
        2.598304
        1

        4
        -0.578600
        -0.024626
        0

        ...
        ...
        ...
        ...

        95
        1.031114
        -3.231055
        0

        96
        -1.084568
        -0.269293
        0

        97
        -1.363472
        -0.110851
        0

        98
        0.379401
        -0.341262
        1

        99
        -0.379176
        -0.217946
        0
```

100 rows × 3 columns

```
In [13]: # 로지스틱 회귀모형 적합
X = sm.add_constant(data[['x1', 'x2']])
model = sm.GLM(data['y'], X, family=sm.families.Binomial())
result = model.fit()

# 결과 출력
print(result.summary())

# 잔차 검정
print("\nResiduals:")
print(result.resid_deviance.head())
```

Generalized Linear Model Regression Results

====							
Dep. Variable: 100			y N	o. 0b	servations:		
Model:		(GLM D	f Res	iduals:		
97 Model Family: 2		Binom	ial D	f Mod	el:		
Link Function: 0000		Log	git S	cale:			1.
Method: .165		II	RLS L	og-Li	kelihood:		-17
Date: .331	Fr	i, 27 Oct 20	023 D	evian	ce:		34
Time: 40.2		13:03	:15 P	earso	n chi2:		
No. Iterations: 6453			8 P	seudo	R-squ. (CS):	0.
Covariance Type		nonrob					
====						========	=====
975]	coef	std err		Z	P> z	[0.025	0.
const (0. 8742	0.492	1.7	77	0.076	-0.090	1
x1 .697	3.8204	0.958	3.9	89	0.000	1.943	5
	5.1775	1.648	3.7	48	0.000	2.947	9

Residuals:

0 0.900588

1 -0.032693

2 0.058925

3 0.005307

4 -0.638016

dtype: float64

포아송 GLM

```
In [16]: # 필요한 라이브러리 임포트
import numpy as np
import pandas as pd
import statsmodels.api as sm

# 데이터 생성
np.random.seed(123) # 재현성을 위한 시드 설정

n_samples = 1000
X = np.linspace(0, 10, n_samples)
# 실제 모델: log(기대값) = intercept + coef * X
```

```
intercept = 1.0
coef = 0.3

# 포아송 분포에서 랜덤하게 샘플 추출
y = np.random.poisson(np.exp(intercept + coef * X))

# 데이터프레임 형태로 변환
data = pd.DataFrame({"X": X, "y": y})

data
```

Out[16]:

```
Х у
  0.00000
            2
  1
   0.01001
           5
  2
     0.02002
    0.03003 0
 4
   0.04004 2
995
    9.95996 47
996 9.96997 46
997 9.97998 57
998 9.98999 48
999 10.00000 47
```

1000 rows × 2 columns

```
In [15]: # 포아송 GLM 모델 적합
exog = sm.add_constant(data["X"]) # 상수항 추가
poisson_model = sm.GLM(data["y"], exog, family=sm.families.Poisson())
result = poisson_model.fit()
# 결과 출력
print(result.summary())
```

Generalized Linear Model Regression Results

=========	=======	=======	=====	=====	========	========	=====
==== Dep. Variable:			У	No. 0	bservations:		
1000 Model:			GLM	Df Re	siduals:		
998							
Model Family: 1		Pois	son	Df Mo	del:		
Link Function: 0000			Log	Scale	:		1.
Method: 44.7		I	RLS	Log-L	ikelihood:		-26
Date: 09.8	Fr	ri, 27 Oct 2	023	Devia	nce:		10
Time:		13:07	:54	Pears	on chi2:		
971.							
No. Iterations .000	5:		5	Pseud	o R-squ. (CS):	1
Covariance Typ	e: 	nonrob	ust 				
====							
975]	coef	std err		Z	P> z	[0.025	0.
const .034	0.9866	0.024	40	374	0.000	0.939	1
X .307	0.3011	0.003	93	3.386	0.000	0.295	0
=======================================	=======	=======	=====	:=====:	========	========	=====

정규화 회귀모형

• 라쏘

```
import numpy as np import statsmodels.api as sm from sklearn.datasets import make_regression

# 데이터 생성
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_s

# statsmodels를 위한 상수항 추가
X_const = sm.add_constant(X)

pd.DataFrame(X_const)
```

Out[22]:		0	1	2	3	4	5	6	
	0	1.0	0.225842	1.551378	-0.107347	0.859695	-0.942963	-1.096625	-1.19
	1	1.0	0.110836	-1.454615	0.263888	-1.654510	0.818549	0.482849	0.35
	2	1.0	0.458600	-0.081280	-0.698474	0.737528	0.860085	0.275249	0.33
	3	1.0	-1.795643	-0.453414	-0.423760	0.155325	0.487775	0.398147	0.73
	4	1.0	-1.180626	0.339530	0.328010	-0.224555	0.963951	-1.058450	0.94
	•••								
	995	1.0	1.726964	-0.372833	0.722381	1.024063	-1.760809	0.592527	0.22
	996	1.0	0.919229	-1.438278	0.113270	2.062525	1.281016	-1.067533	1.87
	997	1.0	-0.512589	1.124777	0.898360	0.906544	-2.301472	0.072252	1.39
	998	1.0	-2.968368	-0.929848	0.055208	1.366747	0.427677	0.313143	0.72
	999	1.0	-0.487167	2.801373	-1.088635	0.288150	0.321653	0.358848	-0.84

1000 rows × 21 columns

```
In [25]: # Lasso 회귀 적합 (statsmodels의 GLM 사용)
         alpha = 0.5 # 정규화 파라미터
         lasso_model = sm.GLM(y, X_const, family=sm.families.Gaussian(), link=sm.g
         lasso_results = lasso_model.fit_regularized(method='elastic_net', L1_wt=1
         # 결과 출력
         print(lasso_results.summary())
         # 변수 선택 결과
         coef = lasso_results.params
         selected_features = np.where(coef != 0)[0]
         print("\nSelected features:")
         for index in selected_features:
             if index == 0:
                 print("Intercept")
                 print(f"Feature {index-1}")
```

Generalized Linear Model Regression Results

```
No. Observations:
Dep. Variable:
1000
                                       Df Residuals:
Model:
                                  GLM
990
                            Gaussian Df Model:
Model Family:
10
Link Function:
                             Identity
                                       Scale:
                                                                      0.01
0377
Method:
                         elastic_net Log-Likelihood:
                                                                        87
0.15
                     Fri, 27 Oct 2023
Date:
                                       Deviance:
                                                                        10
```

.274
Time: 13:23:26 Pearson chi2:

10.3

No. Iterations: 10 Pseudo R-squ. (CS): 1

.000

Covariance Type: nonrobust

Covariance Type:		nonrol 	bust ======			
==== 975] 			Z	P> z	[0 . 025	0.
 const	0	0	nan	nan	0	
0 x1	80.0020	0.003	2.5e+04	0.000	79.996	80
.008 x2	98.5792	0.003	2.9e+04	0.000	98.573	98
.586 x3	5.5671	0.003	1748.798	0.000	5.561	5
.573 x4	0	0	nan	nan	0	
0 x5 .473	86.4662	0.003	2.67e+04	0.000	86.460	86
x6 0	0	0	nan	nan	0	
x7 •437	69.4306	0.003	2.18e+04	0.000	69.424	69
x8 0	0	0	nan	nan	0	
x9 0	0	0	nan	nan	0	
x10 0	0	0	nan	nan	0	
x11 .613	18.6065	0.003	5928.834	0.000	18.600	18
x12 •642	39.6357	0.003	1.23e+04	0.000	39.629	39
x13 0	0	0	nan	nan	0	
x14 •110	3.1033	0.003	950.599	0.000	3.097	3
x15 0	0	0	nan	nan	0	
x16 •393	26.3863	0.003	7891.026	0.000	26.380	26
x17 0	0	0	nan	nan	0	
x18 .889	86.8828	0.003	2.66e+04	0.000	86.876	86
x19 0	0	0	nan	nan	0	
x20 0	0	0	nan	nan	0	

```
Selected features:
Feature 0
Feature 1
Feature 2
Feature 4
Feature 6
Feature 10
Feature 11
Feature 13
Feature 15
Feature 17
```

비선형 회귀모형 소개

• 다항 회귀(Poly Regression)

```
In [32]: import numpy as np
         import pandas as pd
         import statsmodels.api as sm
         from sklearn.datasets import make_regression
         from sklearn.preprocessing import PolynomialFeatures
         # 데이터 생성 (2개의 설명변수)
         X, y = make_regression(n_samples=1000, n_features=2, noise=0.1, random_st
         # 다항식으로 데이터 변환
         poly_transformer = PolynomialFeatures(degree=2, include_bias=False, inter
         X_poly = poly_transformer.fit_transform(X)
         # X1^2와 X1*X2 항 제거
         X_poly = X_poly[:, [0, 1, 3]] # X1, X2, X2^2 항만 선택
         # 변수명 지정
         column_names = ['X1', 'X2', 'X2^2']
         # DataFrame으로 변환
         X_df = pd.DataFrame(X_poly, columns=column_names)
         # statsmodels를 위한 상수항 추가
         X_poly_const = sm.add_constant(X_df)
         # OLS 회귀 모델 적합
         poly_model = sm.OLS(y, X_poly_const).fit()
         # 결과 출력
         print(poly_model.summary())
```

OLS Regression Results

=========	========		====	======	=======	=======	======
Dep. Varia	ble:		У	R-squa	ared:		1
.000 Model:			0LS	Δdi F	R-squared:		1
.000			OLS	Adjii	(Squarea:		_
Method:		Least Squa	ares	F-sta	tistic:		5.407
e+07 Date:	Fr	i, 27 Oct 2	2023	Prob	(F—statistic)	:	
0.00		•					
Time: 9.63		13:30	ð:58	Log-L:	ikelihood:		89
No. Observ	ations:	-	1000	AIC:			-1
791. Df Residua	ls:		996	BIC:			-1
772.							
Df Model:			3				
Covariance	Type:	nonrol	oust				
====							
	coef	std err		t	P> t	[0.025	0.
975]							
const	0.0002	0.003		0.050	0.960	-0.006	0
.006 X1	40 7142	0.003	1 2	50+01	0.000	40.708	40
.721	4017142	0.003	1.2	JC+04	0.000	401700	40
X2	6.6030	0.003	214	8.023	0.000	6.597	6
.609	0 420 05	0 000		0 000	0.077	0.006	
X2^2 .006	9.439e-05	0.003		0.029	0.977	-0.006	0
========		=======	====	======		=======	======
==== Omnibus:		1	006	Durhi	n-Watson:		2
.013		1.	906	ודמוטע	i-watson:		2
Prob(Omnib	us):	0	. 386	Jarque	e-Bera (JB):		1
.791 Skew:		۵	. 066	Prob(3	1R).		0
.408		U	. 000	1100(JU / :		V
Kurtosis: 1.12		3	. 160	Cond.	No.		
========			=====	======			======

====

Notes:

- - 스무딩 스플라인 (Smoothing Spline)

```
In [35]: import numpy as np
    from pygam import LinearGAM, s
    import matplotlib.pyplot as plt
```

```
# 간단한 비선형 데이터 생성
np.random.seed(42)
X = np.linspace(-10, 10, 1000)
y = np.sin(X) + 0.5 * np.random.normal(size=1000)
# 데이터 형태 변환 (2D array로)
X = X[:, np.newaxis]
# 스무딩 스플라인 적합
gam = LinearGAM(s(0)).fit(X, y)
# 결과 출력
print(gam.summary())
# 예측값 및 신뢰구간 플롯
XX = gam.generate_X_grid(term=0)
plt.plot(XX, gam.predict(XX), 'r-')
plt.plot(XX, gam.predict(XX) + gam.confidence_intervals(XX, width=0.95)[:
plt.plot(XX, gam.predict(XX) - gam.confidence_intervals(XX, width=0.95)[:
plt.scatter(X, y, facecolor='gray', edgecolors='none', s=5)
plt.title("Smoothing Spline")
plt.show()
```

______ ____

Distribution: NormalDist Effective DoF:

14.3348

Link Function: IdentityLink Log Likelihood:

-1548.9948

Number of Samples: 1000 AIC:

3128.6592

AICc:

3129.1685

GCV:

0.2455

Scale:

0.2392

Pseudo R-Squared:

0.6836

=========				
Feature Func	tion	Lambda	Rank	EDoF
P > x	Sig. Code			
=========		=======================================	========	=====
======	=======================================			
s(0)		[0.6]	20	14.3
1.11e-16	***			
intercept 9.51e-01			1	0.0

Significance codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

WARNING: Fitting splines and a linear function to a feature introduces a model identifiability problem

which can cause p-values to appear significant when they are not.

WARNING: p-values calculated in this manner behave correctly for un-penali zed models or models with

known smoothing parameters, but when smoothing parameters have be en estimated, the p-values

are typically lower than they should be, meaning that the tests \boldsymbol{r} eject the null too readily.

None

Smoothing Spline

In []: