A regular triangular pyramid has lateral edge 10 and Example 4 height 6. Find the (a) lateral area and (b) volume.

Solution

a. In rt. $\triangle VOA$, $AO = \sqrt{10^2 - 6^2} = \sqrt{64} = 8$. Since $AO = \frac{2}{3}AM$ (why?), $\frac{2}{3}AM = 8$, AM = 12, and OM = 4. $l = \sqrt{6^2 + 4^2} = \sqrt{52} = 2\sqrt{13}$ In 30°-60°-90° $\triangle AMC$, $CM = \frac{12}{\sqrt{3}} = \frac{12\sqrt{3}}{3} = 4\sqrt{3}$.

In 30°-60°-90°
$$\triangle AMC$$
, $CM = \frac{12}{\sqrt{3}} = \frac{12\sqrt{3}}{3} = 4\sqrt{3}$
Base edge $= BC = 2 \cdot 4\sqrt{3} = 8\sqrt{3}$
L.A. $= \frac{1}{2}pl = \frac{1}{2}(3 \cdot 8\sqrt{3}) \cdot 2\sqrt{13} = 24\sqrt{39}$

b. Area of base =
$$B = \frac{1}{2} \cdot BC \cdot AM = \frac{1}{2} \cdot 8\sqrt{3} \cdot 12 = 48\sqrt{3}$$

 $V = \frac{1}{3}Bh = \frac{1}{3} \cdot 48\sqrt{3} \cdot 6 = 96\sqrt{3}$

Classroom Exercises

- 1. The diagonals of a cube intersect to divide the cube into six congruent pyramids as shown. The base of each pyramid is a face of the cube, and the height of each pyramid is $\frac{1}{2}e$.
 - a. Use the formula for the volume of a cube to explain why the volume of each pyramid is $V = \frac{1}{6}e^3$.
 - **b.** Use the formula in part (a) to show that $V = \frac{1}{3}Bh$. (*Note*: This exercise shows that $V = \frac{1}{3}Bh$ gives the correct result for these pyramids.)

V-ABCD is a regular square pyramid. Find numerical answers.

2.
$$OM = \frac{?}{}$$

3.
$$l = \frac{?}{}$$

4. Area of
$$\triangle VBC = \frac{?}{}$$
 5. L.A. = $\frac{?}{}$

5. L.A. =
$$\frac{?}{}$$

6. Volume =
$$\frac{?}{}$$

7.
$$VC = \frac{?}{}$$

9.
$$XO = \frac{?}{}$$

10.
$$h = \frac{?}{}$$

11. Base area =
$$\frac{?}{}$$

12. Volume =
$$\frac{?}{}$$

13. Slant height =
$$\frac{?}{}$$

15. T.A. =
$$\frac{?}{}$$

- 16. Can the height of a regular pyramid be greater than the slant height? Explain.
- 17. Can the slant height of a regular pyramid be greater than the length of a lateral edge? Explain.
- 18. Can the area of the base of a regular pyramid be greater than the lateral area? Explain.

