Énoncés

Sommes de séries à termes réels

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Sachant que
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, calculer $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ et $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$.

Exercice 2 [Indication] [Correction]

Pour tout
$$x$$
 de] $-1,1[$, montrer que $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x)$.

Exercice 3 [Indication] [Correction]

- 1. Calculer la limite quand n tend vers l'infini de $s_n = \sum_{k=n+1}^{2n} \frac{1}{k}$. 2. Retrouver ainsi la valeur de la somme $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$.

Exercice 4 [Indication] [Correction]

Nature et somme de la série
$$\sum_{n=1}^{+\infty} \frac{1}{n} \cos \frac{2n\pi}{3}$$
.

EXERCICE 5 | [Indication] [Correction]

Nature et somme de la série de terme général $u_n = \frac{(-1)^n}{2n+1}, n \ge 0.$

EXERCICE 6 [Indication] [Correction]

Nature et somme de la série de terme général $u_n = \ln\left(1 + \frac{(-1)^n}{n}\right), n \ge 2.$

Sommes de séries à termes réels Indications, résultats

Indications ou résultats

Indication pour l'exercice 1 [Retour à l'énoncé]

Poser
$$S_N = \sum_{n=1}^N \frac{1}{n^2}$$
, $T_N = \sum_{n=1}^N \frac{1}{(2n-1)^2}$ et $U_N = \sum_{n=1}^N \frac{(-1)^n}{n^2}$.

Vérifier que
$$S_{2N} = \frac{1}{4}S_N + T_N$$
 et que $U_{2N} = \frac{1}{4}S_N - T_N$.

En déduire
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$
 et $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$.

INDICATION POUR L'EXERCICE 2 [Retour à l'énoncé]

Poser
$$\varphi_N(x) = \ln(1-x) + \sum_{n=1}^{N} \frac{x^n}{n} \text{ sur }] - 1, 1[.$$

Avec l'inégalité des accroissements finis, montrer que $|\varphi_N(x)| = \le \frac{|x|^{N+1}}{1-|x|}$.

INDICATION POUR L'EXERCICE 3 [Retour à l'énoncé]

- 1. Utiliser une somme de Riemann. On trouve $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n+k}=\ln 2$.
- 2. Montrer que si $n \ge 1$, $S_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = s_n$.

Indication pour l'exercice 4 [Retour à l'énoncé]

Vérifier que $S_{3N} = -\frac{1}{2} \sum_{n=N+1}^{3N} \frac{1}{n}$, puis (somme de Riemann) que $\lim_{N \to \infty} S_{3N} = -\frac{1}{2} \ln 3$.

Obtenir finalement l'égalité $\sum_{n=1}^{+\infty} \frac{1}{n} \cos \frac{2n\pi}{3} = -\frac{1}{2} \ln 3.$

Indication pour l'exercice 5 [Retour à l'énoncé]

Évoquer tout d'abord le critère spécial des séries alternées.

Prouver que
$$S_N = \frac{\pi}{4} - \int_0^1 \frac{(-x^2)^{n+1}}{1+x^2} dx$$
. En déduire $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.

Indication pour l'exercice 6 [Retour à l'énoncé]

Remarquer que
$$u_{2n} + u_{2n+1} = 0$$
. En déduire $\sum_{n=2}^{\infty} \ln \left(1 + \frac{(-1)^n}{n}\right) = 0$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

Pour tout
$$N \ge 1$$
, posons $S_N = \sum_{n=1}^N \frac{1}{n^2}$, $T_N = \sum_{n=1}^N \frac{1}{(2n-1)^2}$ et $U_N = \sum_{n=1}^N \frac{(-1)^n}{n^2}$.

On voit que
$$S_{2N} = \sum_{n=1}^{2N} \frac{1}{n^2} = \sum_{n=1}^{N} \frac{1}{(2n)^2} + \sum_{n=1}^{N} \frac{1}{(2n-1)^2} = \frac{1}{4}S_N + T_N.$$

Quand N tend vers
$$+\infty$$
, on trouve : $\lim_{N\to\infty} T_N = \frac{3}{4} \frac{\pi^2}{6}$. Ainsi $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$.

Enfin,
$$U_{2N} = \sum_{n=1}^{2N} \frac{(-1)^n}{n^2} = \sum_{n=1}^{N} \frac{1}{(2n)^2} - \sum_{n=1}^{N} \frac{1}{(2n-1)^2} = \frac{1}{4}S_N - T_N.$$

On en déduit
$$\lim_{N\to\infty} U_{2N} = \frac{1}{4} \frac{\pi^2}{6} - \frac{\pi^2}{8} = -\frac{\pi^2}{12}$$
. Finalement $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}$.

Corrigé de l'exercice 2 [Retour à l'énoncé]

$$x \to \varphi_N(x) = \ln(1-x) + \sum_{n=1}^N \frac{x^n}{n}$$
 est dérivable sur $]-1,1[$ et $\varphi_N(0)=0.$

Pour tout
$$x$$
 de $]-1,1[:\varphi_n'(x)=-\frac{1}{1-x}+\sum_{n=1}^N x^{n-1}=-\frac{1}{1-x}+\frac{1-x^N}{1-x}=-\frac{x^N}{1-x}.$

Si on fixe
$$x$$
 dans $]-1,1[$ alors un majorant de $|\varphi_N'(t)|$ sur $[0,x]$ est $\frac{|x|^N}{1-|x|}$

On en déduit, avec l'inégalité des accroissements finis : $|\varphi_N(x)| = |\varphi_N(x) - \varphi_N(0)| \le \frac{|x|^{N+1}}{1-|x|}$.

Il en découle
$$\lim_{N\to\infty} \varphi_N(x) = 0$$
, c'est-à-dire $\sum_{n=1}^{\infty} \frac{x^n}{n} = \lim_{N\to\infty} \sum_{n=1}^{N} \frac{x^n}{n} = -\ln(1-x)$.

Corrigé de l'exercice 3 [Retour à l'énoncé]

1. Pour tout
$$n \ge 1$$
, $s_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}} = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$ avec $f(x) \equiv \frac{1}{1+x}$.

C'est une somme de Riemann. On en déduit $\lim_{n\to\infty} s_n = \int_0^1 f(x) dx = [\ln(1+x)]_0^1 = \ln 2$.

2. On sait que la série proposée est convergente (critère spécial des séries alternées).

Pour tout
$$n \ge 1$$
, $S_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{2n} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{2k} = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} = s_n$.

Ainsi
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} S_{2n} = \lim_{n \to \infty} s_n = \ln(2).$$

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Sommes de séries à termes réels

Corrigé de l'exercice 4 [Retour à l'énoncé]

On pose $u_n = \frac{1}{n}\cos\frac{2n\pi}{3}$ et $S_N = \sum_{n=1}^N u_n$. Nous allons calculer $\lim_{N\to\infty} S_{3N}$.

L'application $n \mapsto v_n = \cos \frac{2n\pi}{3}$ est 3-périodique.

On a donc $v_{3n-2} = v_1 = -\frac{1}{2}$, $v_{3n-1} = v_2 = -\frac{1}{2}$ et $v_{3n} = v_0 = 1$. On en déduit :

$$S_{3N} = \sum_{n=1}^{N} (u_{3n-2} + u_{3n-1} + u_{3n}) = \sum_{n=1}^{N} \frac{1}{3n} - \frac{1}{2} \sum_{n=1}^{N} \left(\frac{1}{3n-2} + \frac{1}{3n-1} \right)$$
$$= \frac{3}{2} \sum_{n=1}^{N} \frac{1}{3n} - \frac{1}{2} \sum_{n=1}^{N} \left(\frac{1}{3n-2} + \frac{1}{3n-1} + \frac{1}{3n} \right) = \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n} - \frac{1}{2} \sum_{n=1}^{3N} \frac{1}{n} = -\frac{1}{2} \sum_{n=N+1}^{3N} \frac{1}{n}.$$

Ainsi, avec a = 0, b = 2 et $f(x) = \frac{1}{1+x}$:

$$S_{3N} = -\frac{1}{2} \sum_{k=1}^{2N} \frac{1}{N+k} = -\frac{1}{2N} \sum_{k=1}^{2N} \frac{1}{1+\frac{k}{N}} = -\frac{1}{2N} \sum_{k=1}^{2N} f\left(a+k\frac{b-a}{2N}\right)$$

C'est une somme de Riemann :

$$\lim_{N \to \infty} S_{3N} = -\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x = \frac{1}{2} \int_0^2 f(x) \, \mathrm{d}x = -\frac{1}{2} [\ln(1+x)]_0^2 = -\frac{1}{2} \ln 3$$

Puisque $\lim_{n\to\infty} u_n = 0$, les suites de terme général S_{3N+1} et S_{3N+2} ont la même limite.

Finalement
$$\sum_{n=1}^{+\infty} \frac{1}{n} \cos \frac{2n\pi}{3} = -\frac{1}{2} \ln 3.$$

Remarque:

Il y a une variante dans les calculs précédents qui n'utilise pas de somme de Riemman, mais le résultat classique selon lequel la suite de terme général $\sum_{n=1}^{N} \frac{1}{n} - \ln N$ est convergente (sa limite est la constante d'Euler $\gamma \approx 0.5772156649$).

On peut donc écrire, en posant $s_N = \sum_{n=1}^N \frac{1}{n} : s_N = \ln N + \gamma + o(1).$

On en déduit, en reprenant les notations (et une partie des calculs) de la première méthode :

$$S_{3N} = \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n} - \frac{1}{2} \sum_{n=1}^{3N} \frac{1}{n} = \frac{1}{2} (s_N - s_{3N})$$
$$= \frac{1}{2} (\ln N + \gamma - \ln(3N) - \gamma + o(1)) = -\frac{1}{2} \ln 3 + o(1)$$

Quand $N \to +\infty$, on trouve encore $\lim_{N \to \infty} S_{3N} = -\frac{1}{2} \ln 3$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

CORRIGÉ DE L'EXERCICE 5 [Retour à l'énoncé]

La série $\sum u_n$ converge en vertu du critère spécial des séries alternées.

Pour tout $N \ge 0$:

$$S_N = \sum_{n=0}^N \frac{(-1)^n}{2n+1} = \sum_{n=0}^N (-1)^n \int_0^1 x^{2n} \, \mathrm{d}x = \int_0^1 \sum_{n=0}^N (-x^2)^n \, \mathrm{d}x = \int_0^1 \frac{1 - (-x^2)^{n+1}}{1 + x^2} \, \mathrm{d}x.$$

Ainsi
$$S_N = I - J_N$$
, avec $I = \int_0^1 \frac{1}{1+x^2} dx = [\arctan x]_0^1 = \frac{\pi}{4}$.

Or
$$|J_N| \le \int_0^1 \frac{x^{2(n+1)}}{1+x^2} dx \le \int_0^1 x^{2(n+1)} dx = \frac{1}{2n+3}.$$

On en déduit
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \lim_{N \to \infty} S_N = \frac{\pi}{4}.$$

Corrigé de l'exercice 6 [Retour à l'énoncé]

Le développement limité $\ln(1+x) = x + O(x^2)$ donne $u_n = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right)$.

$$\sum \frac{(-1)^n}{n}$$
 (critère spécial) et $\sum O\left(\frac{1}{n^2}\right)$ (Riemann) sont convergentes.

Il en est donc de même de $\sum u_n$.

On remarque que
$$u_{2n} + u_{2n+1} = \ln\left(1 + \frac{1}{2n}\right) + \ln\left(1 - \frac{1}{2n+1}\right) = \ln\left(\frac{2n+1}{2n}\right) + \ln\left(\frac{2n}{2n+1}\right) = 0.$$

Ainsi
$$S_{2N+1} = \sum_{n=2}^{2N+1} u_n = \sum_{n=1}^{N} (u_{2n} + u_{2n+1}) = 0.$$

Donc
$$\sum_{n=2}^{\infty} \ln\left(1 + \frac{(-1)^n}{n}\right) = \lim_{N \to \infty} S_N = \lim_{N \to \infty} S_{2N+1} = 0.$$