Atividade Radix

Considere o algoritmo de ordenação Radix Sort:

- a. Elabore uma descrição e uma exemplificação teórica para 6 números
- b. Elabore um Fluxograma para implementação serial e para paralela
- c. Realize a implementação serial para os seguintes casos: 100, 1.000, 10.000, 100.000, 1.000.000 e 10.000.000
- d. Considere a letra c paralelizada
- e. Elabora a tabela comparativa

Respostas:

- a. Considerando os números [5, 3, 8, 6, 7, 2] em base decimal para binário. Vamos trabalhar com números binários de 4 bits, em que cada número será representado com quatro dígitos.

Decimal Binário:

- 5 0101
- 3 0011
- 8 1000
- 6 0110
- 7 0111
- 2 0010

Passo 1 (Bit menos significativo - LSB):

Consideramos o primeiro bit (mais à direita) de cada número binário e organizamos os números em dois buckets:

Bucket 0: 8 (1000), 6 (0110), 2 (0010)

Bucket 1: 5 (0101), 3 (0011), 7 (0111)

Após recolher, temos a sequência: [8, 6, 2, 5, 3, 7]

Passo 2 (Segundo bit):

Agora, organizamos os números com base no segundo bit (da direita para a esquerda):

Bucket 0: 8 (1000), 2 (0010)

Bucket 1: 6 (0110), 5 (0101), 3 (0011), 7 (0111)

Após recolher, temos a sequência: [8, 2, 6, 5, 3, 7]

Passo 3 (Terceiro bit):

Organizamos agora usando o terceiro bit:

Bucket 0: 8 (1000), 5 (0101), 3 (0011), 2 (0010)

Bucket 1: 6 (0110), 7 (0111)

Após recolher, temos a sequência: [8, 5, 3, 2, 6, 7]

Passo 4 (Bit mais significativo - MSB):

Finalmente, organizamos com base no quarto e último bit (mais à esquerda):

Bucket 0: 5 (0101), 3 (0011), 2 (0010), 6 (0110), 7 (0111)

Bucket 1: 8 (1000)

Após recolher, temos a lista final e ordenada: [2, 3, 5, 6, 7, 8]

- c & d estão no arquivo ipynb

- e. Tabela Comparativa:

Casos	Tempo de execução Serial	Tempo de execução Paralelo
100	0.0003 segundos	0.194449 segundos
1.000	0.0015 segundos	0.000486 segundos
10.000	0.0149 segundos	0.001313 segundos
100.000	0.2481 segundos	0.009575 segundos
1.000.000	4.0370 segundos	0.091958 segundos
10.000.000	37.9137 segundos	0.660813 segundos