КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

фізичний факультет

(назва факультету)

Кафедра фізики функціональних матеріалів

жатвеличник деканаз навчальної роботи

размений размена момот

размений размена момот

2022 року

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

КОМП'ЮТЕРНА ФІЗИКА МАТЕРІАЛІВ

(повна назва навчальної дисципліни)

галузь знань 10. Природничі науки (шифр і назва) спеціальність 104. Фізика та астрономія	
(шифр і назва)	
спеціальність 104. Фізика та астрономія	
(шифр і назва спеціальності)	
освітній рівень бакалавр	
(молодиний бакалавр, бакалавр, магістр)	0
освітня програма <u>Фізичне матеріалознавство / неметалічне матеріалознавств</u>	0
спеціалізація	
(за наявності) (назва спеціалізації)	
вид дисципліни вибіркова (ВК 1.2.2)	
Форма навчання денна	
Навчальний рік <u>2023/2</u>	024
Семестр <u>4</u>	
Кількість кредитів ECTS $\underline{4}$	
Мова викладання, навчання	
та оцінювання україн	ська
Форма заключного контролю залік	
•	
Викладачі: Момот Андрій Іванович (Науково-педагогічні працівники, які забезпечують викладання даної дисципліни у відповідному навчальному році)	
Пролонговано: на 20/20 н.р(
на 20/20 н.р(

КИЇВ – 2022

 $^{^1}$ Робоча програма навчальної дисципліни є нормативним документом вищого навчального закладу і містить виклад конкретного змісту навчальної дисципліни, послідовність, організаційні форми її вивчення та їх обсяг, визначає форми та засоби поточного і підсумкового контролів.

Розробники¹:

Момот А.І. доктор фіз.-мат. наук, доцент.

доцент кафедри кафедри фізики функціональних матеріалів

ЗАТВЕРДЖЕНО

Зав. кафедри фізики функціональних матеріалів

(Куліш М.П) (прізвище та ініціали)

Протокол від «23» травня 2022 р. за №10

Схвалено науково-методичною комісією факультету/інституту²

Протокол від «10» <u>червня</u> 2022 року за № 11

Голова науково-методичної комісії

(Оліх О.5

(прізвище та ініціали)

¹ Розробляється лектором. Робоча програма навчальної дисципліни розглядається на засіданні кафедри (циклової комісії — для коледжів), науково-методичної комісії факультету/інституту (раді навчального закладу коледжу), підписується завідувачем кафедри (головою циклової комісії), головою науково-методичної комісії факультету/інституту (головою ради) і затверджується заступником декана/директора інституту з навчальної роботи (заступником директора коледжу).

факультетулнетитуту (толовою ради) і затверджується заступником декана/директора інституту з нав-зальног роботи (заступником директора коледжу).

² У випадку читання дисципліни, яка не є профільною для факультету чи інституту обов'язковим є погодження з науково-методичною комісією профільного факультету. У випадку економічних та юридичних наук погодження із предметною комісією з економічних та юридичних наук при Науково-методичній раді Університету.

ВСТУП

1. Мета дисципліни — отримання студентами теоретичного підгрунтя та практичних навиків дослідження фізичних і хімічних властивостей матеріалів, в програмному комплексі Gaussian з використанням графічного інтерфейсу GaussView.

2. Попередні вимоги до опанування або вибору навчальної дисципліни:

- Знати основні принципи і математичний апарат квантової механіки, елементи квантової механіки багатьох частинок і статистичної фізики. Пам'ятати рівняння Шрьодінгера і його застосування для опису атому водню. Оператор моменту імпульсу і його власні значення.
- Вміти застосовувати знання з квантової механіки, математичного аналізу, диференційних рівнянь, лінійної алгебри для виконання математичних перетворень і розв'язування диференціальних рівнянь.
- Володіти елементарними навичками математичних перетворень, знаходження похідних та інтегралів, дій з векторами та матрицями.

3. Анотація навчальної дисципліни:

Дисципліна «Комп'ютерна фізика матеріалів» є вибірковою компонентою освітньо-професійної програми «Фізичне матеріалознавство / неметалічне матеріалознавство». В рамках курсу розглядаються: загальні питання розв'язування молекулярних задач, метод Хартрі-Фока, метод лінійної комбінації атомних орбіталей, методи квантової хімії, що враховують електрону кореляцію і моделювання молекул у збуджених станах. Курс передбачає виконання переліку завдань з дослідження фізичних і хімічних властивостей матеріалів, в програмному комплексі Gaussian з використанням графічного інтерфейсу Gauss View.

4. Завдання (навчальні цілі) — вивчення теоретичних підходів до квантово-механічного опису матеріалів та наноструктур. Вивчення методів, які застосовуються у комп'ютерній фізиці матеріалів. Отримання практичних вмінь дослідження фізичних та хімічних властивостей матеріалів, в програмному комплексі Gaussian з використанням графічного інтерфейсу Gauss View.

Згідно освітньо-професійної програми дисципліна забезпечує набуття здобувачами освіти наступних компетентностей:

загальних:

- Здатність до абстрактного мислення, аналізу та синтезу (ЗК1).
- Здатність застосовувати знання у практичних ситуаціях (ЗК2).
- Навички використання інформаційних і комунікаційних технологій (ЗКЗ).
- Навички використання інформаційних і комунікаційних технологій (3К8). *спеціальних:*
- Знання і розуміння теоретичного та експериментального базису сучасної фізики та астрономії. (ФК1).
- Здатність оцінювати порядок величин у різних дослідженнях, так само як точності та значимості результатів. (ФКЗ).
- Здатність виконувати обчислювальні експерименти, використовувати чисельні методи для розв'язування фізичних та астрономічних задач і моделювання фізичних систем (ФК5).
- Здатність моделювати фізичні системи та астрономічні явища і процеси (ФК6).

5. Результати навчання за дисципліною:

(Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)					Методи викладання і	Методи	Відсоток у підсумковій
Код			Результат н	авчання		навчання	оцінювання	оцінці з дисципліни
1	1.1	Знати	постулати	квантової	механіки,	Лекції,	Колоквіум	10

	1		1	
	властивості самоспряжених операторів. Молекулярне рівняння Шрьодінгера, електронний гамільтоніан. Адіабатичне наближення та наближення Борна-Опенгаймера. Поняття поверхні потенціальної енергії молекули. Розподіл заселеності конформерів. Матрицю Гессе, масштабні множники для коливальних спектрів.	самостійна робота		
	1.2 Знати загальні властивості хвильових функцій багатоелектронних систем. Принцип Паулі, детермінант Слетера. Середнє значення електронного гамільтоніану, кулонівський та обмінний інтеграли. Варіаційний принцип. Рівняння Хартрі-Фока. Кулонівський та обмінний оператори. Теорему Купменса.	Лекції, самостійна робота	Колоквіум	10
	1.3 Знати обмежений та необмежений метод ХФ. Метод лінійної комбінації атомних орбіталей. Рівняння Рутана-Хола. Вирази для радіальної і кутової частин хвильової функції атома гідрогену. Енергію основного стану атома гідрогену на гауссовій функції. Базисні функції слетерівського та гауссового типів. Базисні функції Дж. Попла і їх властивості.	Лекції, самостійна робота	Залік	10
	1.4 Знати поняття кореляційна енергія, метод конфігураційної взаємодії. Теорію функціоналу густини: теорему Хоенберга — Кона, метод Кона — Шама, кореляційно-обмінні функціонали. Термохімічний аналіз, поступальну, обертальну та коливальну складові теплоємності молекул. Знати методи моделювання молекул у розчинах. Напівемпіричні методи квантової хімії. Теорію збурень Меллера — Плессета. Метод зв'язаних кластерів	Лекції, самостійна робота	Залік	10
2	2.1 Вміти виконувати оптимізацію геометрії молекули і знаходити її конформери. Аналізувати заселеність конформаційних станів. Обчислювати коливальні спектри молекул і знаходити перехідні стани, будувати сумарний спектр конформерів та ізотопологів. Виконувати сканування поверхні потенціальної енергії молекули.	Практичні заняття, самостійна робота	Виконання індивідуальних самостійних завдань	20
	2.2. Вміти досліджувати фізичні та хімічні властивості іонів, обчислювати енергії іонізації та дисоціації молекул, а також спорідненість до електрона. Вміти використовувати різні квантово-хімічні методи та базисні набори.	Практичні заняття, самостійна робота	Виконання індивідуальних самостійних завдань	20
	2.3 Вміти обчислювати електронні спектри молекул, та оптимізувати геометрію молекули у збудженому стані. Вміти використовувати періодичні граничні умови. Вміти досліджувати властивості молекул у розчинах. Вміти обчислювати термохімічні властивості молекул.	Практичні заняття, самостійна робота	Виконання індивідуальних самостійних завдань	20

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін)

Розун тоти нариания писинпліни							
Результати навчання дисципліни Програмні результати навчання	1.1	1.2	1.3	1.4	2.1	2.2	2.3
Tipot pairini pesysibitati nabitanini							
ПРН1. Знати, розуміти та вміти застосовувати основні положення	+	+	+	+			
загальної та теоретичної фізики, зокрема, класичної, релятивістської та							
квантової механіки, молекулярної фізики та термодинаміки,							
електромагнетизму, хвильової та квантової оптики, фізики атома та							
атомного ядра для встановлення, аналізу, тлумачення, пояснення й							
класифікації суті та механізмів різноманітних фізичних явищ і процесів							
для розв'язування складних спеціалізованих задач та практичних проблем							
з фізики.							
ПРН11. Вміти упорядковувати, тлумачити та узагальнювати одержані					+	+	+
наукові та практичні результати, робити висновки.							
ПРН16. Мати навички роботи із сучасною обчислювальною технікою,					+	+	+
вміти використовувати стандартні пакети прикладних програм і							
програмувати на рівні, достатньому для реалізації чисельних методів							
розв'язування фізичних задач, комп'ютерного моделювання фізичних та							
астрономічних явищ і процесів, виконання обчислювальних							
експериментів.							
ПРН26. Знати основні сучасні фізичні теорії, що пов'язані з поясненням	+	+	+	+			
властивостей матеріалів; вміти застосовувати їх до пояснення							
властивостей неметалічних систем з різним функціональним							
призначенням.							

7. Схема формування оцінки:

7.1 Форми оцінювання студентів:

- семестрове оцінювання:
 - 1. Виконання індивідуальних самостійних завдань: РН 2.1-2.3 60 балів / 30 балів.
- 2. Колоквіум: РН 1.1-1.2. Білет містить одне теоретичні питання з частини 1 на яке необхідністю дати у відповідь у письмовій формі, а потім пояснити в усній формі. На колоквіумі студент може отримати максимально 20 балів.
 - підсумкове оцінювання у формі заліку:

Залік проводиться в письмово-усній формі і оцінює РН 1.2-1.4. Білет містить одне теоретичні питання з частини 2 на яке необхідністю дати у відповідь у письмовій формі, а потім пояснити в усній формі. На заліку студент може отримати максимально 20 балів.

- умови допуску до заліку: набрати не менше 50 балів за семестрове оцінювання.
- **7.2 Організація оцінювання:** (обов'язково зазначається порядок організації передбачених робочою навчальною програмою форм оцінювання із зазначенням орієнтовного графіку оцінювання).

На практичних заняттях студенти отримують індивідуальні завдання, які вони повинні самостійно виконати у програмному комплексі Gaussian з використанням графічного інтерфейсу GaussView і наступного тижня здають ці завдання. Всього 12 завдань, кожне з яких оцінюється у 5 балів. Якщо завдання не здано вчасно, то його можна здати на будь-якій наступній парі впродовж семестру.

7.3 Шкала відповідності оцінок

Відмінно / Excellent	90-100
Добре / Good	75-89
Задовільно / Satisfactory	60-74
Незадовільно / Fail	0-59

8. Структура навчальної дисципліни Тематичний план лекцій та самостійних робіт

№	Полот : т	Кількість годин		
п/п	Номер і назва теми	лекції	C/P	
	Частина 1			
	Тема 1. Вступ. Постулати квантової механіки. Хвильова функція,			
1.	оператори фізичних величин. Властивості ермітових операторів.	2	2	
	Рівняння Шрьодінгера.			
	Тема 2. Молекулярне рівняння Шрьодінгера, електронний			
2.	гамільтоніан. Адіабатичне наближення та наближення Борна-	2	2	
	Опенгаймера.			
	Тема 3. Внутрішні координати молекули. Поверхня потенціальної			
3.	енергії молекули: глобальні та локальні мінімуми, перехідні стани.	2	2	
	Оптимізації геометрії молекули. Ізомери.			
	Тема 4. Загальні властивості хвильових функцій багаточастинкових			
4.	систем. Одноелектронне наближення, детермінант Слетера,	2	2	
	принцип Паулі.			
5.	Тема 5. Середнє значення електронного гамільтоніану на	2	2	
٦.	детермінанті Слетера. Кулонівський та обмінний інтеграли.	2	<i>L</i>	
6.	Тема 6. Варіаційний принцип, виведення рівняння Шрьодінгера	2	2	
0.	варіаційним методом.	2		
7.	Тема 7. Виведення рівняння Хартрі-Фока. Оператори Фока,	2	2	
, · <u> </u>	кулонівської та обмінної взаємодії. Метод самоузгодженого поля.	2		
	Частина 2			
	Тема 8. Теорема Купменса, енергія іонізації молекул. Спін			
8.	електрона, матриці Паулі. Координатна і спінова частини хвильової	2	2	
	функції. Обмежений та необмежений за спіном метод Хартрі-Фока			
	Тема 9. Метод лінійної комбінації атомних орбіталей. Рівняння	_		
9.	Рутана-Хола. Двоелектронні інтеграли. Розв'язування рівняння	2	2	
	Рутана-Хола на прикладі молекули Н2.			
	Тема 10. Рівняння Шрьодінгера для атома гідрогену. Вирази для			
4.0	радіальної і кутової частин хвильової функції Квантові числа.		_	
10.	1 1 1	2	2	
	вигляду. Енергія основного стану атома гідрогену на 1s та			
	гауссовій функції.			
	Тема 11. Орбіталі Слетера-Зенера. Базисні функції гауссового типу,			
11.	їх нормування. Згруповані базисні функції. Мінімальний базисний	2	2	
	набір. Розширені базисні набори: валентно-розщеплені,			
	поляризовані, дифузні . Базисні функції Попла Тема 12. Обмеженість однодетермінантного наближення. Енергія			
12.	електронної кореляції. Метод конфігураційної взаємодії.	2	2	
	Тема 13. Теорія функціоналу електронної густини: теорема			
13.	Хоенберга-Кона, метод Кона-Шема. Наближення локальної густини	2	2	
13.	та методи градієнтної корекції. Гібридні функціонали густини.		∠	
	Тема 14. Теорія збурень у квантовій механіці. Методи Меллера-			
14.	Плессе (МР2, МР4). Багатоконфігураційні методи самоузгодженого			
	поля. Напівемпіричні методи квантової хімії. Метод зв'язаних	2	2	
	кластерів.			
	Тема 15. Термохімічний аналіз, поступальна, обертальна та			
15.	коливальна складові теплоємності молекул.	2	2	
	ВСЬОГО	30	30	
	202010	20	20	

Тематичний план практичних занять та самостійних робіт

	Тематичнии план практичних занять та самостіиних	^			
No	***	Кількість годин			
п/п	Номер і назва теми	Практичн і заняття	C/P		
1.	Тема 1. Знайомство з програмним пакетом Gaussian і графічним інтерфейсом GaussView. Вхідні та вихідні файли Gaussian. Оптимізація геометрії та енергія основного стану. С.Р.С. 1 Побудувати молекулу у GaussView. Виконати оптимізацію геометрії і порівняти зі структурою та енергією неоптимізованої молекули.	2	2		
2.	Тема 2. Критерії оптимізації геометрії у Gaussian. Пошук конформерів і заселеність конформаційних станів. С.Р.С. 2 Знайти три конформери молекули і розрахувати заселеність цих конформаційних станів	2	2		
3.	Тема 3. Матриця Гессе, нормальні координати і коливання, частоти власних коливань молекули. Коливальні спектри, масштабні множники. С.Р.С. 3 Обчислити частоти коливань молекули. Застосувати масштабування і експортувати дані у текстовий файл. Побудувати спектри ІЧ поглинання і КРС	2	2		
4.	Тема 4. Обчислення частот власних коливань молекул і візуалізація власних коливань. Побудова коливальних спектрів: інфрачервоного (ІЧ) поглинання на комбінаційного розсіяння світла (КРС) С.Р.С. 4 Обрати два конформери (див. СРС 2), які відрізняються поворотом навколо одного одинарного зв'язку. Обчислити частоти коливань для кожного з них, знайти різницю частот власних коливань. Оптимізувати геометрію молекули до перехідного стану і обчислити частоти коливань, пересвідчитись, що у списку частот перша частота має від'ємне значення. Знайти висоту енергетичного бар'єру між конформерами.	2	2		
5.	Тема 5. Сумарний спектр конформерів та ізотопологів. С.Р.С. 5 Обчислити коливальні спектри трьох конформерів. Порівняти спектри ІЧ поглинання конформерів і побудувати сумарний спектр, враховуючи заселеність конформаційних станів. Обчислити як змінюється спектр молекули при заміні одного з атомів вуглецю на ізотоп ¹³ С.	2	2		
6.	Тема 6. Сканування поверхні потенціальної енергії. С.Р.С. 6 Виконати сканування по двогранному куту і довжині зв'язку. Побудувати залежність енергії від координати (кута, довжини зв'язку).	2	2		
7.	Тема 7. Дослідження властивостей іонів та аніонів у Gaussian (структура, коливальні спектри та інше). С.Р.С. 7 Виконати оптимізацію геометрії іона. Порівняти структури (довжини зв'язків, валентні та двогранні кути) іона та нейтральної молекули. Обчислити енергію іонізації молекули (різниця енергій іона і нейтральної молекули) із урахуванням поправки на енергію нульових коливань. Порівняти енергію іонізації з енергією найвищої зайнятої молекулярної орбіталі (перевірка теореми Купменса) та експериментальним значенням	2	2		
8.	Тема 8. Моделювання молекул у збуджених станах, природа оптичного спектру. Сила осцилятора. С.Р.С. 8 Обчислити оптичний спектр молекули. Оптимізувати геометрію молекули в основному і збудженому станах, порівняти їх	2	2		
	7				

	будову (довжини зав'язків і кути).		
9.	Тема 9. Базисні функції Попла С.Р.С. 9 Виконати оптимізацію геометрії молекули методом Хартрі-Фока у різних базисах: STO-3G, 3-21G, 6-31G, 6-31G(d), 6-31G++(3df,3pd), і скласти таблицю для довжин зв'язків, валентних кутів, енергії основного стану та часу обчислень. Проаналізувати отримані результати.	2	2
10.	Тема 10. Моделювання молекул у розчинах. С.Р.С. 10 Оптимізувати геометрію молекулу у розчині води і розрахувати коливальний спектр. Порівняти дипольний момент, геометрію молекули і частоти коливань з розчинником і без. Розрахувати оптичні спектр (UV-VIS) молекули з урахуванням розчинника і без, порівняти спектри.	2	2
11.	Тема 11. Обчислення термохімічних характеристик молекул у Gaussian. С.Р.С. 11 Обчислити залежність теплоємності від температури і побудувати графік цієї залежності. Обчислення провести не менше як для семи значень температури.	2	2
12.	Тема 12. Використання періодичних граничних умов у Gaussian. С.Р.С. 12 Побудувати полімер в GaussView з використанням періодичних граничних умов і виконати оптимізацію геометрії.	2	2
13.	Тема 13. Заняття для здачі самостійних робіт які виконані невчасно	4	4
14.	Тема 14. Підсумкове заняття	2	2
	ВСЬОГО	30	30

Загальний обсяг $120 \, cod^1$, в тому числі (вибрати необхідне):

Лекції – **30** год.

Практичні заняття – 30 год.

Самостійна робота – 60 год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна: (Базова)

- 1. Вакарчук І. О. Квантова механіка: підручник / І. О. Вакарчук. 4-те вид., доп. Львів: ЛНУ імені Івана Франка, 2012. 872 с.
- 2. Hutter J. Lecture Notes in Computational Chemistry: Electronic Structure Theory / J. Hutter. University of Zurich, 2005.-152~p.
- 3. Foresman J. B. Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian, 3rd ed. / J. B. Foresman, A. Frisch Wallingford: Gaussian Inc., 2015.-531 p.
- 4. June Gunn Lee Computational Materials Science: An Introduction CRC Press, 2016. 375 p.
- 5. Giustino F. Materials Modelling using Density Functional Theory: Properties and Predictions / F. Giustino Oxford University Press, 2014. 286 p.

Додаткова:

- 6. Jensen F. Introduction to computational chemistry/ F. Jensen. Wiley. 2007. 599 c.
- 7. GaussView Help
- 8. Pople J.A. Quantum Chemical Models (Nobel Lecture). 1998. https://www.nobelprize.org/uploads/2018/06/pople-lecture.pdf
- 9. Ochterski J.W. Thermochemistry in gaussian. Gaussian Inc. 2000. https://gaussian.com/wp-content/uploads/dl/thermo.pdf

 $^{^{1}}$ Загальна кількість годин, відведених на дану дисципліну згідно навчального плану.