Lab3_2

задание для самостоятельного выполнения

Вводные замечания

Задание предполагает предварительное выполнение задания Lab3_1 с пошаговыми инструкциями.

Плата для аппаратной реализации проекта

Аппаратная реализация проекта должна быть ориентирована на плату NeeK 10.

Микросхема FPGA - **10M50DAF484C6GES**, семейство MAX10.

Описание проекта

Модуль верхнего уровня в описании проекта - Lab3_2. Файл с описанием - Lab3_2.v.

Модуль параметризированный. Параметр div – модуль счета.

В состав модуля верхнего уровня Lab3 2 входят:

- 1. 3 экземпляра модуля SYNCin.
 - а. **Модуль SYNCin (файл SYNCin.v)** модуль Синхронизации входов:
 - і. Имеет тактовый вход
 - іі. Имеет одноразрядный вход данных
 - ііі. Имеет одноразрядный выход данных
 - iv. Представляет из себя два последовательно включенных триггера.
 - b. Экземпляр SYNCin_RST экземпляр синхронизации сигнала со входа RST.
 - і. Синхронизируется общим для проекта тактовым сигналом СLК
 - іі. На вход подается сигнал RST (со входа модуля)
 - ііі. Формирует общий для проекта сигнал сброса int rst.
 - с. Экземпляр SYNCin_ENA экземпляр синхронизации сигнала со входа ENA.
 - і. Синхронизируется общим для проекта тактовым сигналом СLК
 - іі. На вход подается сигнал ENA (со входа модуля)
 - ііі. Формирует общий для проекта сигнал разрешения работы int_ena.
 - d. Экземпляр SYNCin_DIR экземпляр синхронизации сигнала со входа DIR.
 - і. Синхронизируется общим для проекта тактовым сигналом СLК
 - іі. На вход подается сигнал DIR (со входа модуля)
 - ііі. Формирует общий для проекта сигнал направления счета int_dir.
- 2. Экземпляр CNT DIV inst модуля CNT DIV (Счетчик делитель).
 - а. Модуль CNT DIV (файл CNT DIV.v):
 - i. Параметризированный. Параметр div cnt.
 - i. Модуль счета задается параметром div_cnt.
 - іі. Имеет вход синхронизации.
 - iii. Имеет выход переноса. Сигнал переноса (равный 1) формируется при равенстве счетчика значению div_cnt-1.
 - iv. Имеет вход асинхронного сброса (сбрасывается логическим нулем).
 - v. Имеет вход разрешения работы (работа разрешена логической единицей).
 - b. Подключение экземпляра модуля
 - і. Синхронизируется общим для проекта тактовым сигналом СLК
 - іі. Параметру div_cnt присваивается значение параметра div (это параметр модуля Lab3_2).
 - iii. Выход переноса подключен к общему для проекта сигналу cout.
 - iv. Вход асинхронного сброса подключен к общему сигналу сброса int_rst.
 - v. Вход разрешения работы подключен к общему сигналу разрешения работы int_ena.
- 2. Экземпляр CNT_inst модуля CNT (Двоичный 6- разрядный счетчик).
 - а. Модуль CNT (файл CNT.v):
 - і. Модуль счета фиксированный, равный значению:
 - Ваш номер в списке группы + 14.
 - іі. Имеет вход синхронизации
 - ііі. Имеет вход разрешения работы (работа разрешена логической единицей).
 - iv. Имеет вход асинхронного сброса (сбрасывается логическим нулем).
 - v. Имеет вход задания направления счета.
 - 1. dir = 0 счет на сложение
 - 2. dir = 1 счет на вычитание
 - vi. Имеет выход данных (6 бит).
 - b. Подключение экземпляра модуля
 - і. Синхронизируется общим для проекта тактовым сигналом СLК
 - іі. На вход разрешения работы подается сигнал равный: cout & int_ena.
 - ііі. Вход асинхронного сброса подключен к общему сигналу сброса int_rst.
 - iv. Вход направления счета подключен к сигналу int_dir
 - v. Выход данных (6 бит) подключен к шине cnt_val
- 3. Экземпляр CODER_inst модуля CODER (Кодовый Преобразователь).
 - а. Модуль CODER (файл CODER.v):
 - i. Создается на основе IP модуля **ROM: 1-PORT**.
 - іі. Имеет вход синхронизации
 - ііі. Имеет адресный вход (6 бит)
 - iv. Имеет выход данных (14 бит)
 - v. Преобразует двоичный 6-разрядный код в код для двух разрядов 7-сегментного индикатора.
 - 1. Два разряда 7-сегментного индикатора должны отображать данные в двоичнодесятичном виде: младший разряд 7-сегментного индикатора - единицы; старший разряд 7-сегментного индикатора - десятки. Т.е. на входе модуля (на входе адреса

ROM) — 6-разрядное двоичное число, на выходе (на выходах данных ROM)— два 7-сегментных кода: один для единиц, другой для десятков.

- Подключение экземпляра модуля
 - і. Синхронизируется общим для проекта тактовым сигналом СLК.
 - іі. К адресному входу подключена шина cnt_val (выход данных двоичного счетчика CNT_inst).
 - ііі. К выходу данных подключена шина [6:0] hex_int [1:0].
- 4. Экземпляр SYNCout_inst модуля SYNCout (Синхронизация выходов)
 - a. Модуль SYNCout (файл SYNCout.v):
 - і. Параметризированный. Параметр N разрядность модуля.
 - іі. Имеет тактовый вход.
 - ііі. Имеет N-разрядный вход данных.
 - iv. Имеет N-разрядный выход данных.
 - v. Имеет вход асинхронного сброса (сбрасывается логическим нулем).
 - vi. Имеет вход разрешения работы (работа разрешена логической единицей).
 - vii. Представляет из себя N-разрядный регистр.
 - b. Подключение экземпляра модуля
 - і. Задается фиксированное значение параметра = 14.
 - іі. Синхронизируется общим для проекта тактовым сигналом СLК.
 - ііі. Вход асинхронного сброса подключен к общему сигналу сброса int_rst.
 - iv. Вход разрешения работы подключен к общему сигналу разрешения работы int_ena.
 - v. Вход данных подключен к шине [6:0] hex_int [1:0].
 - vi. Выход данных подключен к выводам [6:0] HEX [1:0] модуля.

Выводы модуля Lab3_2:

- Входы
 - о CLK тактовый вход (на плате подключен к генератору 50МГц, в FPGA вывод V9)
 - DIR вход выбора направления счета (на плате подключен к переключателю SW0, в FPGA вывод N22)
 - ENA вход разрешения работы (на плате подключен к кнопке КЕY0, в FPGA вывод Т22)
 - RST вход асинхронного сброса регистров проекта (на плате подключен к кнопке КЕY4, в FPGA вывод R22).
- Выходы
 - [6:0] НЕХ[1:0] выходы для двух разрядов 7-сегментного индикатора. Левый разряд [6:0] НЕХ[1];
 Правый разряд [6:0] НЕХ[0]. Номера выводов FPGA и стандарт выводов представлены в разделе
 Используемые элементы платы.

Программа работы

- 1. Создать проект в пакете Quartus
 - а. Проект
 - i. Рабочая папка C:\Intel_trn\Quartus_MSim_Deb\Lab3_2
 - іі. Модуль верхнего уровня Lab3_2
 - ііі. Файл с описание проекта Lab3_2.v
 - iv. Микросхема 10M50DAF484C6GES
 - 1. Семейство МАХ 10
 - b. Создать описание модулей на языке Verilog
 - с. Осуществить Analysis and Synthesis
 - d. Проверить отсутствие ошибок и критических предупреждений.
 - e. Проверить структуру, полученную RTL Viewer
- 2. Осуществить моделирование в пакете ModelSim
 - а. Режим работы с пакетом ModelSim режим проекта.
 - b. Создать файл tb_Lab3_2.v с тестом класса 1.
 - і. Тест должен обеспечивать
 - 1. проверку формирования ВСЕХ выходных данных для заданного Вам модуля счета,
 - 2. проверку режимов сложения и вычитания,
 - 3. проверку сброса,
 - 4. проверку сигнала разрешения работы,
 - 5. отображение, при моделировании, 7-сегментных кодов в виде без-знаковых десятичных цифр,
 - а. для этого можно использовать массив, считываемый из внешнего файла, с перекодировкой 7-сегментных кодов в без-знаковые десятичные цифры.
 - с. Провести анализ работоспособности тестируемого модуля и сделать выводы
 - d. При моделировании провести анализ содержимого памяти ROM
 - е. При моделировании провести анализ содержимого массивов памяти, используемых для перекодировки 7-сегментных кодов в без-знаковые десятичные цифры
- 3. Осуществить тестирование и отладку на плате
 - а. Разработать файл db_Lab3_2.v с описанием модуля верхнего уровня для отладки модуля Lab3_2 на плате. Разработанный модуль db_Lab3_2:
 - i. Должен содержать только один внешний вывод вход тактового сигнала СLK, подключенного к генератору на плате.
 - іі. Должен включать экземпляр тестируемого модуля Lab3_2
 - ііі. Должен содержать модуль In System Source and Probe:
 - 1. К нему должны быть подключены как source все входы (кроме CLK) модуля Lab3_2
 - 2. К нему должны быть подключены как probe все выходы модуля Lab3_2
 - 3. Все выходы модуля source должны формироваться синхронно с тактовым сигналом CLK
 - 4. Имя Instance SP_
 - 5. Имя файла Lab3_2.stf
 - iv. Должен содержать экземпляр модуля умножения тактовой частоты, созданный на основе IP функции ALTPLL, обеспечивающий формирование тактовой частоты db_clk_high, равной удвоенной входной частоте.
 - b. Настроить Signal Tap II и подключить его к проекту для отладки на плате.
 - i. Захватываемые данные все входы (включая СLK) и выходы модуля Lab3_2
 - іі. Частота синхронизации db_clk_high удвоенная входная частота
 - iii. Имя Instance SP_
 - iv. Имя файла Lab3_2.stf
 - v. Использовать (или создать) мнемоническую таблицу для отображения (на временных диаграммах) захватываемых 7-сегментных кодов в виде без-знаковых десятичных цифр
 - с. Подключение входа СLК проекта к выводу FPGA осуществить с помощью атрибутов.
 - d. Создать файл sdc c требованиями к временным параметрам.
 - е. При полной компиляции:
 - і. Проверить отсутствие ошибок и критических заменчаний
 - ii. Проверить полученные временные параметры временные требования должны удовлетворяться
 - f. При тестировании проверить:

- i. Управление входами модуля Lab3_2, с фиксацией результатов управления как In System Source and Probe, так и в Signal Тар II. Ниже представлен минимальный набор тестов:
 - 1. Сформировать сигнал сброс => в In System Source and Probe проверить, что на выходе 0 => в Signal Тар II тригтер остановки выставить по активному фронту сигнала Сброс и зафиксировать значения выходов (32 отсчета) до и после момента остановки.
 - 2. Сформировать сигнал запрещения работы => в In System Source and Probe проверить, что на выходе данные не меняются => в Signal Tap II триггер остановки выставить по активному фронту сигнала разрешения работы и зафиксировать значения выходов (32 отсчета) до и после момента остановки.
 - 3. Сформировать сигнал счета на сложение => в In System Source and Probe проверить, что на выходе коды, соответствующие счету на сложение => в Signal Тар II триггер остановки выставить по фронту сигнала направления счета и зафиксировать значения выходов (32 отсчета) до и после момента остановки.
 - 4. Сформировать сигнал счета на вычитание => в In System Source and Probe проверить, что на выходе коды, соответствующие счету на вычитание => в Signal Тар II тригтер остановки выставить по спаду сигнала направления счета и зафиксировать значения выходов (32 отсчета) до и после момента остановки.
 - 5. В Signal Тар II триггер остановки выставить по условию Счетчик Делитель = 0 и зафиксировать значения выходов (32 отсчета) до и после момента остановки.
 - В Signal Тар II триггер остановки выставить по условию Счетчик = Заданный_Вам_модуль_счета -1 и зафиксировать значения выходов (32 отсчета) до и после момента остановки.
 - 7. Могут быть использованы и другие режимы.
- 4. Осуществить реализацию на плате
 - а. Разработать файл impl_Lab3_2.v с описанием модуля верхнего уровня для реализации на плате. Разработанный модуль impl Lab3 2:
 - і. Должен содержать все выводы модуля Lab3_2.
 - іі. Должен включать экземпляр модуля Lab3_2
 - ііі. Подключение всех выводов модуля к выводам FPGA осуществить с помощью атрибутов.
 - b. Создать файл sdc с требованиями к временным параметрам.
 - с. При полной компиляции:
 - і. Проверить отсутствие ошибок и критических замечаний
 - ii. Проверить полученные временные параметры временные требования должны удовлетворяться и не должно оставаться путей с незаданными временными требованиями (unconstrained paths)
 - d. Осуществить проверку на плате BCEX режимов работы модуля.

Требования для получения зачета

Для получения зачета по Lab3_2 необходимо:

- 1. Продемонстрировать преподавателю работу проекта на плате и этапы выполнения задания (по его выбору) из программы работы.
- 2. Загрузить в DL архив с рабочей папкой проекта.
- 3. Загрузить в DL отчет, включающий отображение всех этапов из программы работы
 - а. Отчет должен иметь титульный лист; содержание (собираемое автоматически); список рисунков (собираемый автоматически); задание; разделы отражающие этапы программы работы; заключение (выводы).
 - b. Все страницы д.б. пронумерованы.
 - с. Все рисунки должны иметь подписи и ссылки на них.
 - d. Ко всем рисункам д.б. пояснения в тексте.
 - e. Отчет должен быть в редактируемом формате (doc; docx).

Используемые элементы платы

Figure 3-13 Connections between the slide switches and the MAX 10 FPGA

Signal Name	FPGA Pin No.	Description	I/O Standard
SW[0]	PIN_N22	Slide Switch[0]	1.5V
SW[1]	PIN_M22	Slide Switch[1]	1.5V
SW[2]	PIN_N21	Slide Switch[2]	1.5V
SW[3]	PIN_L22	Slide Switch[3]	1.5V
SW[4]	PIN_J22	Slide Switch[4]	1.5V
SW[5]	PIN_H22	Slide Switch[5]	1.5V
SW[6]	PIN_J21	Slide Switch[6]	1.5V
SW[7]	PIN_C21	Slide Switch[7]	1.5V
SW[8]	PIN_G19	Slide Switch[8]	1.5V
SW[9]	PIN_H21	Slide Switch[9]	1.5V

Signal Name	FPGA Pin No.	Description	I/O Standard
KEY[0]	PIN_T22	Push-button[0]	1.5V
KEY[1]	PIN_U22	Push-button[1]	1.5V
KEY[2]	PIN_AA22	Push-button[2]	1.5V
KEY[3]	PIN_AA21	Push-button[3]	1.5V
KEY[4]	PIN_R22	Push-button[4]	1.5V

Table 3-5 Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR[0]	PIN_C2	LEDR [0]	3.3V
LEDR[1]	PIN_B3	LEDR [1]	3.3V
LEDR[2]	PIN_A3	LEDR [2]	3.3V

LEDR[3]	PIN_C3	LEDR [3]	3.3V	
LEDR[4]	PIN_A4	LEDR [4]	3.3V	
LEDR[5]	PIN_B4	LEDR [5]	3.3V	
LEDR[6]	PIN_C4	LEDR [6]	3.3V	
LEDR[7]	PIN_B5	LEDR [7]	3.3V	
LEDR[8]	PIN_C5	LEDR [8]	3.3V	
LEDR[9]	PIN_D5	LEDR [9]	3.3V	

Signal Name	FPGA Pin No.	Description	I/O Standard
HEX0[0]	PIN_D6	Seven Segment Digit 0[0]	3.3V
HEX0[1]	PIN_A5	Seven Segment Digit 0[1]	3.3V
HEX0[2]	PIN_C6	Seven Segment Digit 0[2]	3.3V
HEX0[3]	PIN_A6	Seven Segment Digit 0[3]	3.3V
HEX0[4]	PIN_F7	Seven Segment Digit 0[4]	3.3V
HEX0[5]	PIN_D7	Seven Segment Digit 0[5]	3.3V

HEX0[6]	PIN_B7	Seven Segment Digit 0[6]	3.3V
HEX1[0]	PIN_C7	Seven Segment Digit 1[0]	3.3V
HEX1[1]	PIN_C8	Seven Segment Digit 1[1]	3.3V
HEX1[2]	PIN_D8	Seven Segment Digit 1[2]	3.3V
HEX1[3]	PIN_D10	Seven Segment Digit 1[3]	3.3V
HEX1[4]	PIN_E10	Seven Segment Digit 1[4]	3.3V
HEX1[5]	PIN_H11	Seven Segment Digit 1[5]	3.3V
HEX1[6]	PIN_E6	Seven Segment Digit 1[6]	3.3V

Signal Name	FPGA Pin No.	Description	I/O Standard
MAX10_CLK1_50	PIN_N5	50 MHz clock input	2.5V
MAX10_CLK2_50	PIN_V9	50 MHz clock input	3.3V
MAX10_CLK3_50	PIN_N14	50 MHz clock input	1.5V
ADC_CLK_10	PIN_M9	10 MHz clock input	3.3V