In [1]: import pandas as pd
import numpy as np

In [2]: from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression

In [3]: from sklearn.model_selection import train_test_split

In [4]: data=pd.read_csv("Final_USHousing_DataSet.csv")
 data

Out[4]:

	Unnamed: 0	DATE	Num_Households	Const_complt	un_constr	Cnstr_not_Strtd	UNRATE	Price_fact	Year	Month
0	0	2001-07-01	305.0	76.0	186.0	43.0	4.6	113.491	2001	7
1	1	2001-08-01	308.0	77.0	187.0	44.0	4.9	114.167	2001	8
2	2	2001-09-01	310.0	79.0	191.0	40.0	5.0	114.812	2001	9
3	3	2001-10-01	308.0	78.0	189.0	41.0	5.3	115.310	2001	10
4	4	2001-11-01	308.0	77.0	191.0	40.0	5.5	115.857	2001	11
262	262	2023-05-01	426.0	66.0	268.0	92.0	3.7	302.566	2023	5
263	263	2023-06-01	429.0	70.0	266.0	93.0	3.6	304.593	2023	6
264	264	2023-07-01	429.0	73.0	260.0	96.0	3.5	306.767	2023	7
265	265	2023-08-01	430.0	75.0	258.0	97.0	3.8	309.155	2023	8
266	266	2023-09-01	433.0	75.0	257.0	101.0	3.8	311.175	2023	9

267 rows × 10 columns

```
In [5]: data_df_new=data.drop(columns=['Unnamed: 0','DATE','Const_complt','un_constr','Cnstr_not_Strtd','Year','Month'],axis
data_df_new
```

Out[5]:	Num_Households	UNRATE	Price_fact
0	305.0	4.6	113.491
1	308.0	4.9	114.167
2	310.0	5.0	114.812
3	308.0	5.3	115.310
4	308.0	5.5	115.857
262	426.0	3.7	302.566
263	429.0	3.6	304.593
264	429.0	3.5	306.767
265	430.0	3.8	309.155
266	433.0	3.8	311.175

267 rows × 3 columns

```
In [6]: X=data_df_new.drop(columns=['Price_fact'],axis=1)
Y=data_df_new['Price_fact']
```

```
In [7]: x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.2)
```

```
In [8]: | lr_model=LinearRegression().fit(x_train,y_train)
```

```
In [9]: | lr_model.fit(x_train,y_train)
```

Out[9]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [10]: x_test.head()
Out[10]:
              Num Households UNRATE
                       337.0
                                3.7
          214
           80
                       470.0
                                5.1
                       211.0
                                5.6
          166
          112
                       195.0
                                9.8
                                8.3
          126
                       149.0
In [11]: Y pred=lr model.predict(x test)
In [12]: Y_pred
Out[12]: array([209.69854528, 199.53897303, 179.25985575, 126.23614741,
                142.363793 , 117.0390151 , 170.38096757, 183.40399223,
                183.04683795, 202.4027978, 210.17976524, 210.95536195,
                 211.22698835, 192.77180794, 200.73450156, 183.28763411,
                 143.3339405 , 172.83368512 , 72.45151278 , 151.97936773 ,
                 209.93126152, 184.64576613, 183.07804054, 149.97741225,
                148.3010361 , 164.2965361 , 218.86410264, 201.70427671,
                186.65580153, 198.98838501, 188.07596639, 166.91956471,
                181.36312659, 154.61047626, 169.72906419, 208.29379553,
                 143.22528993, 184.60722832, 211.82456644, 196.78417117,
                 146.0891147 , 132.12677279, 207.47891632, 207.38530853,
                190.66082955, 193.22182531, 192.93478379, 208.56542194,
                 207.01273912, 211.00968723, 203.58291121, 209.44196164,
                196.93906711, 196.93906711])
In [ ]:
```