Modélisation et Simulation MultiAgents

Rapport de Projet

Maxime Desbois et Simon Lassourreuille ${\it D\'ecembre~2018}$

I – Hypothèses d'implémentation

$\mathcal{H}1$ – Valeur accordée à une utilitée

Dans le modèle, après toute interaction i entre a et b, l'agent a crée un rating r pour chacun des critères c évaluables dans cette interaction. Ce rating prend la forme d'un tuple r = (a, b, c, i, v) où $v \in [-1, 1]$ est la valeur que a donne à b pour le critère c lors de l'interaction i.

Cependant, il n'est nulle part précisé comment l'agent a détermine cette valeur. Nous savons que dans l'implémentation de l'article, a reçoit une utilité $\mathbf{ug} \in [-10, 10]$. Nous ferons donc les hypothèses suivantes :

— On peut exprimer v comme une fonction de l'**ug** obtenue par a lors de cette interaction, et cette fonction est propre à a:

$$v = f_a(\mathbf{ug})$$

— Au vu du manque d'informations, on fera l'hypothèse que cette fonction normalise \mathbf{ug} dans l'intervalle de v, et qu'elle est la même pour chaque agent :

$$f_a(x) = \frac{x}{10}, \forall a$$

Cette hypothèse est triviale, mais pourrait représenter une opportunité d'améliorer le modèle : tous les agents n'ont pas une appréciation linéaire de l'utilité. De même, cette appréciation n'est pas toujours objective. Dans des situations réalistes, certaines personnes notent trop sévèrement, alors que d'autres peuvent être trop indulgentes. Il serait donc intéressant de doter les agents d'utilités non-linéaire dans un premier temps, et peut être par la suite de différencier certains profils d'agents pour intégrer ces disparités dans les notes des différents critères.

Cette amélioration (assez simple à mettre en place) correspond à des comportements réels observés (la subjectivité) et peut venir se placer en complément / extension des comportements de mensonges, qui sont difficiles à distinguer d'un point de vue extérieur.

$\mathcal{H}2$ – Dégradation du service liée à la distance

L'article évoque une dégradation linéaire du service lorsque la distance entre les deux agents en interaction, a et b, dépasse la portée opérationelle $r_o(b)$ de l'agent fournissant le service. Cependant, les détails de cette dégradation linéaire ne sont pas donnés par l'article. Nous allons décrire ci-dessous notre réflexion pour traiter cette hypothèse.

L'utilité perçue est donc une fonction de x=d(a,b) la distance entre a et b. Dans un premier temps, on sait que cette fonction sera constante sur $0 \le x \le r_o$.

$$f_{UG}(x) = \begin{cases} UG, & \text{si } x \le r_o(b) \\ UG + \alpha * (x - r_o), & \text{sinon} \end{cases}$$

Avec alpha < 0 pour obtenir une dégradation.

Cependant, il reste quelque problèmes : avec une expression aussi générale, on peut obtenir $u < UG_{min} = -10$, ce qui n'est pas censé être possible. Ici, deux options s'offrent à nous :

- Etablir un coefficient constant α de dégradation, peu importe l'utilité émise par l'agent. Ce qui veut dire que la portée maximale r_{max} où $u \leq -10$ varie d'une intéraction à l'autre.
- Etablie une portée maximale fixe, r_{max} , et s'arranger pour que chaque agent situé entre r_o et r_{max} reçoive une utilité $u \le -10$, pour toute interaction.

La première option est intéressante, mais pose le problème du choix du coefficient. Il est arbitraire mais assez peu de choix logiques semblent s'imposer. La seconde option permet de simplement fixer r_{max} , potentielement en fonction de r_o , et simplifie alors le paramétrage. Nous avons choisi la deuxième, mais nous détaillerons en fin de section l'impact final attendu de cette partie du modèle.

On ajoute donc la condition $f_{UG}(x) = UG_{min}, \forall \ x \geq r_{max}$. Ayant deux points de cette fonction linéaire, on peut alors déterminer que $\alpha = \frac{UG_{min} - UG}{r_{max} - r_o}$. Ce qui nous donne comme expression finale :

$$f_{UG}(x) = \begin{cases} UG, & \text{si } x \le r_o(b) \\ UG + \alpha * (x - r_o), & \text{si } r_o \le x \le r_{max} \\ UG_{min}, & \text{si } x \ge r_{max} \end{cases}$$

Ou alors, en une seule expression,

$$f_{UG}(x) = \max(UG_{min}, \min(UG, UG + \frac{UG_{min} - UG}{r_{max} - r_o} * (x - r_0)))$$

On peut vérifier avec un graphe que ce comportement correspond à ce qui est attendu, avec : UG=6, $UG_{min}=-10$, $r_o=10$, $r_{max}=50$

Cette méthode revient donc à dire que si a est à mi-distance entre r_o et r_{max} , a recevra toujours $\frac{u-10}{2}$, au lieu de recevoir u-K avec K constant (à distance fixe).

Le choix de r_{max} est arbitraire, nous avons donc introduit un coefficient y0 qui nous donne $r_{max} = r_o * (1 + y)$.

Nous faisons l'hypothèse que dans la figure 5 de l'article, une dégradation linéaire de la distance est utilisée. En effet, dans le cas où chaque provider est à 100% de ses capacités, l'utilité moyenne aléatoire estimée est de 1.5 pour les paramètres de la figure. Cependant, ils affichent une utilité aléatoire à -1, ce qui n'est pas réaliste si ils n'utilisent pas ce mécanisme.

 $\mathcal{H}3$ –

II – Pseudocode

```
INITIALISATION: CONSUMER

pour chaque consumer a faire

initialiser une liste vide de taille H

initialiser r_o

choisir un niveau d'activité alpha ~ U([0.25, 1.00])

choisir une position au hasard

fin pour
```

```
INITIALISATION: PRODUCER

pour chaque provider b faire

déterminer le type de b parmi {good, ok, bad, intermitent}

initialiser r_o

si b n'est pas intermitent alors

initialiser p

choisir au hasard p dans l'intervale correspondant

fin si

fin pour
```

```
DÉROULEMENT D'UN ROUND
pour chaque consumer a faire
    déterminer si a nécessite un service
    si vrai alors
        incrémenter i le compteur d'intéractions
        b <-- choix d'un provider par a
        ug <-- b génère au hasard une utilité entre -10 et 10
        v <-- déterminer la valeur de l'intéraction
        créer un rating r = (a, b, c, i, v)
    fin si
fin pour
# simulation d'instantanéité
pour chaque consumer a faire
    si r existe alors
        enregistrer le rating r dans la liste de a
        envoyer le rating r à b
        b enregistre r si v est meilleur que son moins bon référencement
    fin si
fin pour
```

```
CHOIX D'UN PROVIDER
P <-- récupérer les providers disponibles
pour chaque b dans P faire
    v <-- déterminer la valeur de confiance de b
    si v est défini alors
        insérer b dans la liste NoTrust sinon
        insérer b dans la liste Trust
    fin si
fin pour
trier la liste Trust par valeur de confiance
choisir stratégie (exploration ou exploitation)
si exploration alors
   p <-- choisir un provider au hasard dans NoTrust
    p <-- provider avec la plus grande valeur de confiance
fin si
retourner p
```

```
Déterminer la valeur de confiance de la composante K
Entrée: RK ensemble de ratings pour le calcul de la composante K
Σ <-- 0
\Sigma vi <-- 0
pour chaque ri dans RK faire
      <-- calculer K(ri)
     \Sigma <-- \Sigma +
     \Sigma_{vi} \leftarrow \Sigma + vi
fin pour
T_K \leftarrow \Sigma_vi / \Sigma
_RK <-- 1 - exp(-K * \Sigma)
\Sigma vi T < -- 0
pour chaque ri dans RK faire
     \Sigma_{vi_T} < -- \Sigma_{vi_T} + K(ri) * abs(vi - T_K)
_{\rm DK} = 1 - 0.5 * (\Sigma_{\rm vi_T} / \Sigma)
_K = _RK * _DK
retourner (_K, T_K)
```

DÉTERMINER LA VALEUR DE CONFIANCE GÉNÉRALE
Déterminer RI l'ensemble des ratings d'Intéraction

III – Etude préliminaire

3.1 Résumez en quelque ligne la problématique des auteurs, et les choix de modélisation qu'ils proposent.

Les auteurs proposent un modèle de confiance permettant à un agent de juger de la qualité des services d'autres agents. Plus précisément, ce modèle doit être décentralisé, robuste aux mensonges.

3.2 | Pourquoi? Test.

IV – Etudes progressive du modèle FIRE

Conception de l'interface NetLogo

Est-ce qu'on en parle? Si oui, c'est ici!

V – Modèle avec composante IT seule (FIRE-IT)

5.1 Écrivez en pseudo-code l'intégralité des algorithmes que vous allez implémenter pour simuler le modèle FIRE-IT. Expliquez et Justifiez vos choix (notamment pour l'implémentation de la topologie sphérique en Netlogo).

5.2 Décrivez le protocole expérimental (et votre procédure d'initialisation des agents en particulier), et donnez dans un tableau la valeur de tous les paramètres que vous fixez pour reproduire la Figure 9.

Initialisation des Agents

Comme discuté dans la section

5.3 Affichez votre version de la Figure 9 et commentez les résultats.

VI – Modèle avec composante IT et WR (FIRE-IT-WR)

- **6.1**] Écrivez en pseudo-code l'intégralité des algorithmes que vous allez implémenter pour simuler le modèle FIRE-IT-WR. Expliquez et Justifiez vos choix. Implémentez en Netlogo.
- **6.2** Indiquez le protocole pour simuler la Figure, et les éventuels changements dans les paramètres (modifications des anciennes valeurs, éventuels ajouts de nouveaux paramètres)
- **6.3** Affichez votre version de la figure 9 complète et expliquez les résultats.

VII – Modèle avec composante IT, WR et CR (FIRE-IT-WR-CR)

- 7.1 Écrivez en pseudo-code l'intégralité des algorithmes que vous allez implémenter l'ajout de la composante CR. Expliquez et Justifiez vos choix. Implémentez en Netlogo.
- 7.2 Indiquez le protocole pour simuler ces Figures, et les éventuels changements dans les paramètres (modifications des anciennes valeurs, éventuels ajouts de nouveaux paramètres).
- [7.3] Affichez vos version des Figures 10 et 11 et expliquez les résultats, notamment en comparaison de la Figure 9.

VIII – Analyses de sensibilité du modèle FIRE-IT-WR-CR.

- 8.1 Affichez un graphique 3D (avec un tableur ou grapheur) qui prend comme axes x et y les poids Wc et Ww et en axe z la performance moyenne des UG. Expliquez comment vous avez obtenu ce graphique et commentez les résultats.
- [8.2] Affichez maintenant (avec les paramètres initiaux de [1]) un histogramme montrant la distribution des valeurs des UGs des clients. Commentez.
- **8.3** Faites varier individuellement les paramètres NPG, NPO et NB=NPI+NPB (mais en respectant toujours NPG+NPO+NB=100). Dans des graphes séparés, afficher la moyenne et l'écart type des UG pour chacune 10 ces valeurs. Commentez. Quel est effet de ces paramètres sur la distribution des UG des clients?

IX – Extension –

X – Bonus

10.1 Expliquez en quelques lignes comment le modèle FIRE pourrait être adapté et étendu pour simuler une société telle qu'elle est décrite dans l'épisode Nosedive de la série Black Mirror.