Работа 4.3.4. Метод преобразования Фурье в оптике

Цель работы: исследование особенностей применения пространственного преобразования Фурье для анализа дифракционных явлений.

В работе используются: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

Теоретическая часть

1. Принцип Гюйгенса-Френеля:

$$g(x,y) = \frac{1}{i\lambda} \iint_{S} f_0(\xi,\eta) \frac{e^{ikR}}{R} \cos \alpha \, d\xi d\eta$$

2. Дифракция Фраунгофера и преобразование Фурье. Двумерное преобразование Фурье:

$$g(x,y)=rac{e^{ikR_0}}{i\lambda R_0}\iint\limits_S f_0(\xi,\eta)e^{-i(u\xi+v\eta)}\coslpha\,d\xi d\eta$$
, где: $u=rac{kx}{R_0},\ v=rac{ky}{R_0}$

3. Принципы Фурье-оптики:

$$f(x,z)=ae^{i(k_xx+k_zz+arphi)}=ce^{i(ux+\sqrt{k^2-u^2}z)},$$
 где: $k_x=u,\ c=ae^{iarphi}$ $f(x,0)=ce^{iux},\ f(x,z)=f(x,0)e^{i\sqrt{k^2-u^2}z}$

4. Распространение волн:

$$f(x,z) = \int C_0(u)e^{i(ux+\sqrt{k^2-x^2}z)} du$$
 где: $C_0(u)$ — преобразование Фурье граничного поля

5. Передаточная функция:

$$H(u) = e^{i\sqrt{k^2 - x^2}z}$$

Экспериментальная установка:

1. Ширину щели будем определять, используя формулу для увеличения изображения:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1} \tag{1}$$

Рис. 1: Схема для определения ширины щели с помощью линзы

Рис. 2: Схема для определения ширины щели по спектру

Рис. 3: Схема определения периода решётки по увеличенному изображению спектра

2. Для определения ширины щели по спекту b_c будем использовать соотношение:

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{b_c} L \tag{2}$$

3. Для определния периода решеток нам понадобится расстояние X между m-ми максимумами. Тогда:

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{d_c} L \tag{3}$$

4. В этом эксперименте можно рассчитать расстояние между соседними максимумами Δx в плоскости Φ и период сетки d используя формулу:

$$\Delta x = \frac{\Delta X}{\Gamma_3} = \frac{\lambda}{d_l} F_2 \tag{4}$$

Рис. 4: Схема для наблюдения мультиплицирования

5. Периоды "фиктивных" решеток связаны с периодом решеток, определенных по спектру, связаны следующей формулой:

$$\frac{\lambda}{\Delta y}F_2 = d_c \tag{5}$$

Ход работы

А. Определение ширины щели

І. Определение ширины щели по увеличенному изображению

- 1. С помощью короткофокусной линзы L_1 ($F_1 = 38$ mm) получаем на экране изображение щели
- 2. Определим начало отсчета ширины щели по ее открытию $D_0 = -30 \mu {
 m m}$
- 3. Меняя ширину щели будем снимать зависимость размеров изображения D_1 от ширины щели b. Сведем измерения в таблицу:

Ширина щели $\tilde{D}, \mu m$	20	70	120	170	220	270	320	370	420
$\tilde{D} + D_0, \mu m$	50	100	150	200	250	300	350	400	450
Размер изображения D_1, mm	1.5	3	4	5	7	8	9	11	12

4. Измерим расстояния a_1 , b_1 и L для рассчета увеличения системы Γ по формуле 1:

$$a_1 = 4 \pm 0.1cm$$
,

$$b_1 = 134 \pm 0.5cm$$
,

$$L = 139 \pm 0.5cm$$

$$\Gamma = \frac{b_1}{a_1} = \frac{134cm}{4cm} = 33.5 \pm 0.9 \tag{6}$$

5. Зная увеличение линзы и размер изображения, рассчитаем по формуле 1 ширину щели D'. Резульаьты сведем в таблицу:

abibi ebegeni biratting.									
Размер изображения D_1 , mm	1.5	3	4	5	7	8	9	11	12
Рассчитанная ширина D' , μm	45	89	149	208	238	268	327	387	446
Погрешность	1.7	3.8	4.7	5.3	7.8	8.3	9.5	11.6	12.7
Ширина щели <i>D</i> , <i>µm</i>	50	100	150	200	250	300	350	400	450
Относительная погрешность, %	10.8	10.6	0.9	4.1	4.8	10.3	6.5	3.4	0.9

II. Определение ширины щели по её спектру

1. На удаленном экране получим спектр шели. Оценим отнервал, в котором можно наблюдать и измерять спектр:

$$D \in [0\mu m - 45\mu m]$$

2. Измерим ширину спектра для щелей разной ширины. Рассчитаем ширину щели, используя формулу 2, используя значение длинны волны He-Ne-лазера $\lambda = 6328 \text{Å}$. Результаты сведем в таблицу:

Ширина щели <i>D</i> , <i>µm</i>	50	100	150	200	250	300	350	400
Расстояние ΔX	35	20	13	8	6	5	4	3
Ширина щели b_s , μm	42	74	113	184	246	294	368	431
Погрешность	15.7	26.3	24.4	7.8	1.7	1.8	5.3	22

3. На одном графике построим зависимости $b_l = f(b)$ и $b_s = f(b)$:

Рис. 5: Сравнение результатов первого и второго экспериментов

Б. Определение периода решёток

III. Определение периода по спектру на удалённом экране

1. Вычислим расстояние L. К выходу лазера поставим кассету с двумерными решетками. Для каждой сетки измерим расстояние X между m-ми максимумами и рассчитаем ΔX и период каждой решетки d_c по формуле 3. Результаты сведем в табилцу:

$\underline{L} = 138.5cm$					
Решетка	1	2	3	4	6
Pасстояние X, mm	44	37	92	73	80
Порядок минимума т	10	1	5	5	10
$\Delta X, mm$	4.4	37	18.4	14.6	8
$d_c, \mu m$	334	39	80	101	184

IV. Определение периода решёток по увеличенному изображению спектра

- 1. Установим линзу с максимальным фокусным расстоянием ($F_2 = 110mm$) на расстоянии примерно равном фокусному от кассеты. В плоскости Φ мы получиил фурье-образ сетки, а которкофокусная линза ($F_3 = 23mm$) создает на экране увеличенное изображение этого спектра.
- 2. Рассчитаем увеличение короткофокусной линзы:

$$a_3 = 2.8 \pm 0.1cm$$

 $b_3 = 110.5 \pm 0.5cm$

$$\Gamma = \frac{b_3}{a_3} = \frac{110.5cm}{2.8cm} = 39.5 \pm 1.1$$

3. Измерим X и m для всех сеток, где это возможно. Теперь по формуле 4 рассчитаем расстояние между максимумами Δx и период сетки d_l . Результаты сведем в таблицу:

Решетка	1	2	3	4	5	6
Расстояние X, mm	65	103	105	125	126	102
Порядок минимума т	5	1	2	3	3	5
$\Delta X, mm$	13	103	52.5	41.7	42	20.4
$d_l, \mu m$	355	45	88	110	111	226

В. Пространственное преобразование спектров

V. Мультиплицирование

- 1. С помощью линзы с максимальным фокусом получим в резкое изображение щели. В фокальной плоскости линзы установим кассету с сетками, которые будут осуществлять пространственную фильтрацию.
- 2. Подберем такую ширину входной щели D, чтобы на экране можно было наблюдать мультиплицированное изображение для любой сетки. Рассчиаем увеличение линзы.

$$D=140\mu m$$

$$F_2 = 110mm$$

$$a_2 = 10.5 \pm 0.1cm$$

$$b_2 = 127 \pm 0.5cm$$

$$\Gamma_2 = \frac{b_2}{a_2} = \frac{127cm}{10.5cm} = 12.1 \pm 0.2$$

3. Снимем зависимость Y (расстояния между удаленными изображенями щели) и K (число промежутков между изображениями) для каждой из сеток. По полученным данным рассчитаем периоды $\Delta y: \Delta y = \Delta Y/\Gamma_2$, где: $\Delta Y = Y/K$. Запишем результаты:

Решетка	1	2	3	4	5	6
Paccтoяние Y,mm	18	90	75	60	72	30
K	5	3	5	5	6	5
$\Delta Y, mm$	3.6	30	15	12	12	6
$\Delta y, mm$	2.9	24.8	12.4	9.9	9.9	5.0

4. Построим график $\Delta y = f(1/d_c)$:

Рис. 6: Зависимость $\Delta y(1/d_c)$

Вывод: исследовали особенности применения пространственного преобразования Фурье для анализа дифракционных явлений.