SBE FIFO Interface Specification for P10 Systems

Version 1.0

Owner: Amit J Tendolkar amit.tendolkar@in.ibm.com

1 Document Control Section

1.1 Document Location

This document is shared at https://github.com/open-power/docs/sbe

The reader (possessor of this document) is responsible for verification that this is the latest version of the document. This may be determined by checking the current version on the Web site.

1.2 Document Completeness

The final page of this document contains the text "End of Document".

1.3 Document Update Process

The document will be updated whenever the functional content has changed in such a manner to impact the OpenPower SBE firmware users, or whenever the functional content has changed significantly.

Page 2 of 82

Change History		
Date	Version	Changes
14/06/23	1.0	Initial version

Table 3: Change History

Copyright and Disclaimer

© Copyright International Business Machines Corporation 2019

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and Service names might be trademarks of IBM or other companies. A current list of IBM Trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others. All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary. While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the design, sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group 2070 Route 52, Bldg. 330 Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®.

Table of Contents

1	DOCI	JMENT CONTROL SECTION	2
	1.1	DOCUMENT LOCATION	
	1.1	DOCUMENT COMPLETENESS	
	1.3	DOCUMENT UPDATE PROCESS	
2	INTR	ODUCTION AND OVERVIEW	7
	2.1	INTRODUCTION	7
	2.1.1	Overview of SBE FIFO Operation	7
	2.1.2		
	2.3	1.2.1 Status/Control Register	
	2.1.3	•	
	2.3	1.3.1 Protocol Version Definition	9
	2.3	L.3.2 Message Format for Command Buffer	9
	2.3	1.3.3 Message Format for Response Buffer	
	2.3	L.3.4 FFDC Package	
	2.1.4		
		I.4.1 SP SBE Small Command Interaction Sequence	
		1.4.2 SP SBE Large Command Interaction Sequence	
	2.1.5	3 71	
	2.1.6		
	2.1.7	, ,	
	2.1.8	9 9 -9	
	2.1.9	SBE Boot Progress Codes	. 17
3	SUM	MARY OF SBE FIFO COMMANDS	. 19
	3.1	RESPONSES TO COMMANDS	2:
	3.2	COMMAND DEFINITIONS	
	3.2.1		
	3.3	RESET / RELOAD CONSIDERATIONS	
	3.4	HANDLING PROTOCOL VIOLATIONS	
4	IPL C	ONTROL MESSAGES	. 30
	4.1	EXECUTE ISTEP	. 30
	4.2	SUSPEND IO	. 32
5	SCON	A ACCESS MESSAGES	. 33
_			
	5.1	GET SCOM	
	5.2	Put SCOM	
	5.3	Modify SCOM	
	5.4	PUT SCOM UNDER MASK	
	5.5	EXECUTE MULTI SCOM	. 37
6	RING	ACCESS MESSAGES	. 42
	6.1	GET RING	1
	6.2	PUT RING.	
7	MEM	IORY ACCESS MESSAGES	. 45

Sl	BE FIFO	O Interface Specification for P10 systems	Version 1.0
	7.1	MEMORY ACCESS MODES	AF
	7.1 7.2	GETMEMORY	
	7.2	PUTMEMORY	
	7.3 7.4	GETSRAM	
	7. 4 7.5	PUTSRAM	
8		GISTER ACCESS MESSAGES	
0			
	8.1	GET ARCHITECTED REGISTER	
	8.2	PUT ARCHITECTED REGISTER	
	8.3	GET HW REGISTER	
	8.4	PUT HW REGISTER	
9	ARF	RAY ACCESS MESSAGES	60
	9.1	CONTROL FAST ARRAY	60
	9.2	CONTROL TRACE ARRAY	62
10) INS	TRUCTION CONTROL MESSAGES	64
	10.1	Control Instructions	64
11	L GEN	NERIC MESSAGES	66
	11.1	GET SBE FFDC	66
	11.2	GET SBE CAPABILITIES	
	11.3	QUIESCE SBE	
	11.4	GET SBE CAPABILITIES 2	
	11.5	GET LPC STATUS	
12	2 MP	IPL MESSAGES	73
	12.1	Enter MPIPL	73
	12.2	CONTINUE MPIPL	
	12.3	STOP CLOCKS	
	12.4	GET TI INFO	
13		MP MESSAGES	
1.			
	13.1	GET DUMP	
14	HO:	ST FIFO COMMANDS	79
	14.1	SBE HALT	79
15	5 TEL	EMETRY COMMANDS	80
	15.1	PMIC HEALTH CHECK	80
16	5 OPE	N ITEMS	81
	16.1	CHIP-OPS TO BE ADDED	Ω1
	16.1	CHIP-OPS TO BE SCRUBBED	
	16.3	MISCELLANEOUS UPDATES	
	16.4	REVIEW REWORK	

2 Introduction and Overview

2.1 Introduction

2.1.1 Overview of SBE FIFO Operation

The SP to SBE communication is via a SBE FIFO device (address CFAM 0x240X, SCOM 0x000B001X) in the P10 processor. The P10 processor has an additional instance of the FIFO device (address CFAM 0x241X, SCOM 0x000B002X) exclusively for Host to communicate with the SBE. Both the FIFO devices are functionally equivalent. Each FIFO is implemented as two circular buffers.

- One circular buffer is used by SP/Host to send commands to SBE. This buffer shall be referred to as "command buffer" henceforth in this document. The write pointer on this buffer is controlled by HW via write operations originating from SP/Host while the read pointer is controlled by HW via read operations originating from SBE
- The other circular buffer is used by SBE to send responses back to SP/Host. This buffer shall be referred to as "response buffer" henceforth in this document. The write pointer on this buffer is controlled by HW via write operations originating from SBE while the read pointer is controlled by HW via read operations originating from SP/Host

Both the buffers are of equal length, and it is the responsibility of the party writing to the buffers to do flow control.

2.1.2 SBE FIFO Hardware Mechanism

Each entry in the command and response buffer consists of the following additional flags:

- End-Of-Transfer (EOT)
- Data Valid (DV)

It is the responsibility of the party holding the write pointer to set these flags appropriately.

2.1.2.1 Status/Control Register

The status / control register has the following functions corresponding to the command buffer for communications from the SP to SBE.

Field	Description	
Parity / Error	Parity/Error	
Requesting FIFO Reset	Indicates that the service processor is requesting for resetting both FIFOs	
End-Of-Transfer	A '1' indicates that the recently dequeued entry has the EOT flag set	
FIFO Full	A '1' indicates that all entries are occupied in the upstream FIFO	
FIFO Empty	A '1' indicates that the upstream FIFO is empty	
Field	Description	

FIFO entry count	represents the number of currently hold FIFO entries
FIFO Valid Flags	represents the valid flags of ALL currently held FIFO entries; one dedicated bit per FIFO entry, starting with bit 16 which reflects the valid flag of first FIFO entry
FIFO EOT Flags	represents the EOT flags of ALL curently hold FIFO entries; one dedicated bit per FIFO entry, starting with bit 24 which reflects the EOT flag of the first FIFO entry

The status / control register has the following functions corresponding to the response buffer for communications from the SBE to SP.

Field	Description	
Parity / Error	Parity/Error	
Requesting FIFO Reset	Indicates that the SBE is requesting Service Processor for resetting both FIFOs	
End-Of-Transfer	A '1' indicates that the recently dequeued entry has the EOT flag set	
FIFO Full	A '1' indicates that all entries are occupied in the upstream FIFO	
FIFO Empty	A '1' indicates that the upstream FIFO is empty	
FIFO entry count	represents the number of currently hold FIFO entries	
FIFO Valid Flags	represents the valid flags of ALL curently hold FIFO entries; one dedicated bit per FIFO entry, starting with bit 16 which reflects the valid flag of first FIFO entry	
FIFO EOT Flags	represents the EOT flags of ALL curently hold FIFO entries; one dedicated bit per FIFO entry, starting with bit 24 which reflects the EOT flag of the first FIFO entry	

2.1.3 Protocol Constraints

- 1. The SP or Host always behave as the initiators of the commands (also called Chip-Ops).
- 2. The SBE always behaves as the receiver of the commands.
- 3. Only one command is accepted in the command buffer until the response for the command is en-queued in the response buffer by SBE and de-queued completely by the initiator and EOT is acknowledged in the response buffer
- 4. Each command from initiator must be explicitly completed with a EOT.
- 5. Each response from SBE must be explicitly completed with a EOT.
- 6. A response cannot be sent back on the response buffer, while the command is still being received on the command buffer. This is not a hardware limitation but a design choice to keep the SP/Host driver as well as the SBE code simple.
- 7. A FIFO reset will always be initiated from the initiator and acknowledged by the SBE.
- 8. As the SBE behaves as a receiver of the command, it will never initiate a FIFO reset.

2.1.3.1 Protocol Version Definition

The Major version will be incremented when a new interface/chip-op is added.

The Minor version will be incremented when a change is made to an existing interface/chip-op.

Major version	2
Minor version	1

2.1.3.2 Message Format for Command Buffer

	Byte 0	Byte 1	Byte 2	Byte 3	
Word 0		Command len	gth in number of words		
Word 1	reserved	reserved	Command-Class	Command	
Word 2	Data Word 0				
Word N+2	Data Word N				

Once this data packet is transferred to the command buffer, the service processor has to signal EOT which will create a dummy entry in the upstream FIFO (command buffer) along with the EOT Flag set.

2.1.3.3 Message Format for Response Buffer

Once this data packet is transferred to the response buffer, the SBE has to signal EOT which will create a dummy entry in the downstream FIFO (response buffer) along with the EOT Flag set.

Note that the primary, secondary status and related FFDC are placed towards the end of the response buffer. This is to accommodate use-cases where a variable length of data may be transferred over the response buffer and errors may be encountered during SBE chip-ops operations.

Words N+1 and N+2 below, comprise the status header. These along with the last word, which indicates distance to the status header, are mandatory for every response from the SBE.

[Entries] = Optional Entries. May not be present in some responses.

	Byte 0	Byte 1	Byte 2	Byte 3		
Word 0		[Response Data Word 0]				
Word N	[Response Data Word N]					

	Byte 0	Byte 1	Byte 2	Byte 3	
Word N+1	Magic Byt	es: 0xC0DE	Command-Class	Command	
Word N+2	Primary Status		Second	lary Status	
Word N+3		[FFD	C Package-0Word-0]		
Word N+M+4	[FFDC Package-0Word-M]				
Word S	[FFDC Package-PWord-0]				
Word S+Q+1	[FFDC Package-PWord-Q]				
Word S+Q+2	S+Q+2 Distance to Status header at Word N+1 including this word.			this word.	

When both the Primary and Secondary Status indicate a success or good response, there would be no FFDC package between the status header and the last word which points to the location of the status word. A bad Primary or Secondary Status in the status header could indicate the presence of zero or one or more FFDC package after the status header.

2.1.3.4 FFDC Package

FFDC Package						
	Byte 0	Byte 1	Byte 2	Byte 3		
Word 0	Magic Byte	Magic Bytes: 0xFFDC		ords (N+4)		
Word 1	[Seque	nce ID]	Command-Class	Command		
Word 2		Return Code 031				
Word 3		FFDC Data – Word 0				
Word N+3	FFDC Data – Word N					

The First Failure Data Capture (FFDC) package is common across the SP side FIFO based interface and Host side PSU based interface. It starts with a header word (Word 0) that has an unique magic identifier code of 0xFFDC followed by the length of the FFDC package including the header itself. Word 1 contains a sequence id, command-class and command fields. The sequence id field is ignored on the SP side FIFO based interface and planned to be used on the Host side PSU based interface. Word 2 contains a 32 bit Return Code which acts like the key to the contents of subsequent FFDC Data Words (0-N).

A FFDC package can typically contain debug data from either:

- 1. A failed hardware procedure (e.g. local variable values at point of failure) or
- 2. SBE firmware (e.g. traces, attributes and other information)

that can assist debug the reason of the failure. The former (hardware procedure failure FFDC) is always returned as a separate FFDC package. The later (firmware debug data) is returned as an additional FFDC package, if the user has set Mailbox Scratch Register#3, bit#5 before starting the SBE. The setting is cached on SBE start-up and any changes when the SBE is running will take effect only after a SBE reset.

The Return Code at word 2 along with the subsequent FFDC Data Words 0-N are expected to be added verbatim, as an opaque blob, to an error log or a dump by the SP for offline parsing and debug.

The success case response "data" returned for the Get SBE FFDC (0xA801) command will also adhere to the same FFDC package definition starting at word 0 and can contain more than one FFDC package.

SBE debug utilities will help parse the FFDC package into user readable debug information.

2.1.4 SP SBE Interaction Sequences

2.1.4.1 SP SBE Small Command Interaction Sequence

2.1.4.2 SP SBE Large Command Interaction Sequence

2.1.5 Target Types and Ids Supported

The SBE chip-ops accept the "Pervasive Chiplet Id" as a consistent input to map target types / ids across different calling entities (HB, HWSV and Cronus) to corresponding target types and instances in the SBE platform. The pervasive chiplet ids are as defined in the table below and map to the pervasive units in the processor hardware. When non-obvious (e.g. no unique mapping between a logical target type and a pervasive chiplet id is available), the SBE will derive a target type and it's instance from a combination of the input target type and pervasive chiplet id, as shown in the table below.

Target Type	Pervasive Chiplet Id(s)	Implied SBE Target	Physical Chiplet(s)	Notes / Comments
TARGET_TYPE_PROC = 0x0000	N.A.	Processor Chip	Any chiplet in the processor	The chiplet id used is a reserved value for processor targets and does not correspond to any particular pervasive chiplet in the processor.
	0x01	Pervasive	TP	
	0x02-0x03	Nest	N0-N1 respectively	
	0x08-0x9	PCI	PCI0-PCI1 respectively	
TARGET_TYPE_PERV = 0x0001	0x0C-0x0xF	MC	MC0 and MC3 respectively	This combination must always be used when there is an unique, one-to-one mapping between the
	0x10-0x14	PAU	PAU0-PAU3 respectively	intended target's type-instance and it's pervasive chiplet id.
	0x18-0x1F	ЮНЅ	IOHS0-IOHS3 respectively	
	0x20-0x27	Cache	EQ0-EQ7 respectively	
TARGET_TYPE_EQ = 0x0002	Oxff	All Caches	All EQ0-EQ7	No such pervasive chiplet id exists in hardware. For the purpose of this interface, represents all cache targets in the chip
TARGET_TYPE_CORE = 0x0003	Oxff	All Cores	All EC00-EC31	No such pervasive chiplet id exists in hardware. For the purpose of this interface, represents all "normal" core targets in the chip
TARGET_TYPE_OCMB = 0x0004	0x00-0x0F	OCMB	OCMB 0-OCMB 15	No such pervasive chiplet id exists in HW, This interface is to read/write registers out of the OCMB chip.

SBE will always accept core ids (0x0-0x1F) as in the table above, irrespective of whether the system is configured to normal (SMT4) or big (SMT8) core mode.

In addition, the SBE will always accept virtual thread numbers (0-3), irrespective of whether the system is configured to normal (SMT4) or big (SMT8) core mode. It is the responsibility of higher level firmware to map logical thread number to the right SMT4 core chiplet and virtual thread number.

Note that composite target types will not be accepted in SBE chip-ops. There is no requirement to accept multicast targets via chip-ops.

2.1.6 SBE States

The SBE firmware transitions through software defined states as shown in the state diagram below. Note that the state diagram below is only indicative and may not show all the state transitions.

SBE updates a 4-bit previous state and 4-bit current state fields in the <u>SBE Messaging Register</u> as it transitions across different states. Please refer to the table below for a comprehensive list and details all the SBE states supported.

State	Value	Description	
Unknown	0x0	Unknown, initial state before SBE is started.	
IPL	0x1	SBE is in a continuous IPL mode. SBE enters runtime state once hostboot is started. In case of any failures encountered in the "Continuous IPL" state, SBE will reach "Dumping" state.	
Istep	0x2	GBE is in istep mode and awaits commands from SP to execute specific isteps. SBE enters runtime state once Hostboot is started. This is a lab only debug configuration and all chip-ops will be allowed as an exception.	
MPIPL	0x3	SBE has entered Memory-Preserving IPL state based on request by SP or Host. SBE will reach Runtime state once Hostboot is re-started.	
Runtime	0x4	SBE is ready to accept any chip-op commands.	
DMT	0x5	Dead Man Timer (transient) State, where primary SBE waits for all the secondary cores across the system to be initialized during system IPL	
Dumping	0x6	SBE encountered an error during any autonomous execution process (e.g., Continuous IPL). This is most likely due to a HW procedure failure during autonomous execution by SBE	
Fail	0x7	SBE encountered an internal failure. A Hard Reset of SBE is required to exit this state.	
Quiesce	0x8	SBE was issued a Quiesce command and has entered a state where it no longer accepts any commands from the SP (over FIFO) or the Host (over PSU). All asynchronous or background operations are stopped. SBE would eventually need a reset to exit this state This state quiesces any SEEPROM access.	
Halted	0x9	SBE halted by Host. SBE needs a reset to exist this state.	

2.1.7 SBE Configuration

During initialization, the values set up in various Mailbox Scratch Registers (CFAM 28XX, SCOM 0x5003X), configure the SBE for multiple functions like role (Primary or Secondary SBE), system type (native SP based or BMC based), boot mode (istep mode or continuous IPL), destination state on boot (e.g. IPL or Runtime or FFDC), enabling internal FFDC package in responses and so on.

2.1.8 SBE Messaging Register

SBE updates information about its current and previous state to the SBE Messaging Register (part of the SP GP Mailbox) at CFAM address **0x2809** or SCOM address **0x00050009**. The SP can read this register to query the SBE state and other auxiliary information like progress in the SBE IPL steps. The table below lists the bit description of the SBE Messaging Register.

Bit(s)	Field	Description
0	SBE Booted	SBE kernel is initialized and SBE is ready to accept chip-ops.

Bit(s)	Field	Description
1	Async FFDC	There was a failure executing asynchronous operations and the SP can collect FFDC via the GetSBEFFDC chip-op. e.g. IPL, MPIPL, DMT. Clears once FFDC is collected.
2-3	Reserved	Reserved
4-7	Previous State	Last state the SBE was in before it entered the current state
8-11	Current State	Current state the SBE is in
12-19	Istep Major	Last major istep executed (irrespective of success or fail). Refer section 'Execute Istep'
20-25	Istep Minor	Last minor istep executed (irrespective of success of fail). Refer section 'Execute Istep'
26-27	Reserved	Reserved
28-31	Boot Progress	4-bit SBE boot progress code, as defined in section 2.1.8 below

2.1.9 SBE Boot Progress Codes

SBE updates a 4-bit boot progress code in the <u>SBE Messaging Register</u> as it boots up to runtime. The boot codes are as defined in the below table.

Boot Code	Description
0x0	SBE not started
0x1	OTPROM boot loader started
0x2	Measurement SEEPROM started
0x3	Measurement SEEPROM PIB memory repair started
0x4	Measurement SEEPROM PIB initialization sequence started
0x5	Measurement SEEPROM TPM reset
0x6	Measurement SEEPROM pibmem started
0x7	Measurement SEEPROM PAU DPLL lock
0x8	Measurement SEEPROM pibmem TPM initialization started
0x9	Measurement SEEPROM SHA512 compute done
Boot Code	Description
0xA	Verification pibmem main start
0xB	SBE FW secure header verification complete

0xC	HBBL secure header verification complete
0xD	Boot See prom L1 loader started
0xE	Boot See prom L2 loader started
0xF	PIBMEM application started

3 Summary of SBE FIFO Commands

There is no priority implied by the Command Class value. Prioritization for sending each message is established by the sender. Prioritization for handling each message is on a FCFS basis by SBE.

The category of timeout for each command is specified in the commands table. If a response exceeds these time-outs, it is considered as a protocol violation. See section "Handling Protocol Violations" for details.

The timeouts for commands are categorized as short, long and very Long. The recommended timeout values for short, long and very long running commands are 10 ms, 30 ms and 120 ms respectively.

Cmd Class (hex)	Cmd (hex)	Name	Changed from P9 to P10	Supported States	Timeout
0xA1		IPL Control Messages			
	0x01	Execute istep	NO	Istep	Long
	0x02	Suspend IO	NO	Istep, SBE runtime	Short
0xA2		SCOM Access Messages			
	0x01	Get SCOM	NO	Istep, SBE runtime, SBE dumping	Short
	0x02	Put SCOM	NO	Istep, SBE runtime, SBE dumping	Short
	0x03	Modify SCOM	NO	Istep, SBE runtime, SBE dumping	Short
	0x04	Put SCOM under mask	NO	Istep, SBE runtime, SBE dumping	Short
0xA3		Ring Access Messages			
	0x01	Get Ring	NO	Istep, SBE runtime, SBE MPIPL, SBE dumping	Long
	0x02	Put Ring	NO	Istep, SBE runtime, SBE MPIPL, SBE dumping	Long

Page 19 of 82

0xA4		Memory Access Messages			
	0x01	GetMemory	YES	Istep, SBE runtime, SBE dumping	Long
	0x02	PutMemory	YES	Istep, SBE runtime, SBE dumping	Long
	0x03	GetSRAM	YES	Istep, SBE runtime, SBE dumping	Long
	0x04	PutSRAM	YES	Istep, SBE runtime, SBE dumping	Long
0xA5		Register Access Messages			
	0x01	Get Architected Register	YES	Istep, SBE runtime, SBE dumping	Long
	0x02	Put Architected Register	YES	Istep, SBE runtime, SBE dumping	Long
	0x03	Get Hw Register	YES	Istep, SBE runtime, SBE dumping	Short
	0x04	Put Hw Register	YES	Istep, SBE runtime, SBE dumping	Short
0xA6		Array Access Messages			
	0x01	Control Fast Array	YES	Istep, SBE runtime, SBE dumping, SBE MPIPL	Long
	0x02	Control Trace Array	YES	Istep, SBE runtime, SBE dumping, SBE MPIPL	Long
0xA7		Instruction Control Messages			

	0x01	Control Instructions	YES [Core Chiplet to Core Instance & no special wake up mode]	Istep, SBE runtime	Short
0xA8		Generic Messages			
	0x01	Get SBE FFDC	NO	Istep, SBE runtime, SBE dumping, SBE MPIPL, SBE Failure, FFDC Collection	Short
	0x02	Get SBE Capabilities	NO	All States	Short
	0x03	Get Supported Frequencies	Not Supported	N.A.	Short
	0x06	Quiesce SBE	NO	All States	Long
	0x07	Get SBE Capabilities 2	YES	All States	Short
	0x08	Get LPC Status	YES	SBE runtime	Short
0xA9		MPIPL Commands			
	0x01	Enter MPIPL	NO	SBE runtime	Long
	0x02	Continue MPIPL	NO	SBE MPIPL	Long
	0x03	Stop Clocks	YES	SBE runtime, SBE MPIPL	Short
	0x4	Get TI Info	YES	SBE runtime	Long
0xAA		Dump Commands			
	0x01	Get Dump	YES	SBE runtime	Very Long

0xAB		Host FIFO Commands			
	0x01	SBE Halt	YES	SBE runtime	Short
0xAC		Telemetry Commands			
	0x01	PMIC Health Check	YES	SBE runtime	Short

3.1 Responses to Commands

All message with responses have a number of valid primary and secondary status values returned with the response. Primary status codes are one of the following:

The primary and secondary status fields have to be decoded as follows

Primary Status	Bits 015 : Primary status codes as defined in Table 4
Secondary Status	Bits 015 : Secondary status codes as defined in Table 5

The following table defines the primary status responses

Value	Definition
0x0000	Operation Successful.
0x0001	invalid or unsupported command
0x0002	Invalid data passed
0x0003	User Error
0x0004	SBE Internal Error
0x0005	Unsecure Access Denied
0x00FE	Generic Failure in Execution

Table 4: Primary Status Codes

The following table defines the secondary status responses.

Value	Definition
0x0000	Operation successful.
0x0001	Command Class not supported
0x0002	Command not supported

0x0003	Invalid address passed
0x0004	Invalid Target Type passed
0x0005	Invalid Chiplet Id passed
0x0006	Target not present
0x0007	Target not functional
0x0008	Command not allowed in current state.
0x0009	Functionality not Supported
0x000A	Generic failure in execution
0x000B	Blacklisted register accessed
0x000C	SBE Operating System Failure
0x000D	SBE FIFO Access Failure
0x000E	Insufficient data passed as part of command
0x000F	Excess data passed as part of command
0x0010	Hardware timeout
0x0011	PCB-PIB Error
0x0012	SBE FIFO Parity Error
0x0013	Unused
0x0014	Blacklisted memory accessed
0x0015	Unsecured memory region not found
0x0016	Exceeded maximum supported unsecured memory regions
0x0017	Unsecured memory region amend attempted

0x0018	Input buffer overflow
0x0019	Invalid parameters
0x0020	Blacklisted chip-op access
0x0021	Deadman Timer time out
0x0022	System check-stop
0x0023	Blacklisted register access blocked
0x0024	Start MPIPL Failed (SP less MPIPL)
0x0025	Stop Clock Failed (SP less MPIPL)
0x0026	Continue MPIPL Failed (SP less MPIPL)
0x027	Periodic IO Toggle failed
0x028	Special Wakeup time out
0x029	Special Wakeup Scom failure
0x02A	Architecture Register dump fail
0x02B	Lpc Access fail
0x02C	Hardware Procedure Fail
0x02D	Special Attention Core Scratch Read Fail
0x02E	Special Attention Data Read Fail
0x02F	Put Sram Fail
0x030	Get Sram Fail
0x031	Thread Control instruction Fail
0x032	Ram Core Setup Fail

0x033	Ram Core Access Fail
0x034	Ram Core Cleanup Fail
0x035	Suspend IO Procedure Fail
0x036	Enter Mpipl Fail
0x037	Stop Clock Fail
0x38	OCMB SCOM Failed
0x39	Get Dump Failed
0x40	Invalid Dump Type Input
0x41	Invalid OCMB Instance
0x42	Failed to trigger check stop
0x43	Get Dump Stream failed
0x44	MPIPL Dump invalid input parameters
0x45	OCMB target not present
0x46	OCMB target not functional
0x47	Invalid fast array collection info
0x48	PMIC Health Check failed
0x49	Invalid I2C config version
0x4A	Invalid I2C target
0x4B	LPC error
0x4C	Command not privileged on this FIFO interface

Table 5: Secondary Status Codes

3.2 Command Definitions

The remainder of this document details the messages and responses. It is organized by function. Many sections contain a protocol flow or other overall description of the functions and message sequences involved. Note that all flows are at the protocol level and do not include the hardware level acknowledgments.

3.2.1 General Notes on Message Parameters

For most messages, there is some amount of data transferred with the message. This data is packaged along with the command in the same message. The length field specified in the message should indicate the total size of the message buffer passed via the command buffer including the length field itself.

3.3 Reset / Reload Considerations

It is possible for a reset / reload to occur during a data transfer process. Once the service processor is back from reset/reload condition, it has to issue a SBE FIFO reset request to SBE to clear all pending operations.

3.4 Handling Protocol Violations

Two types of reset requests are supported by SBE.

- 1. FIFO Reset: The SP can trigger a FIFO reset request by writing to the Upstream Reset Request register of the SBE FIFO device (CFAM 0x2403), which will be acknowledged by the SBE. This mechanism will flush the command and response buffers and re-initialize the hardware state of the FIFO device to accept a new command. Any operation over the FIFO device, which was still in progress, will be aborted by the SBE as a result of the FIFO reset request. As this mechanism requires the SBE to acknowledge the FIFO reset request, it cannot work when the SBE itself is halted or hung due to an unrecoverable error condition. In such cases, where the FIFO reset times out, the SP can choose to use the Hard Reset mechanism described below to recover a belly-up SBE.
- 2. Hard Reset: The SP can trigger a hard reset of the SBE, by setting bit 12 of the Self-boot Control / Status (SBCS) Register (CFAM 0x2808) in the FSI GP Mailbox device. The SBE stops executing instructions, resets it hardware logic and reboots from the OTPROM. Prior to performing a hard reset of the SBE:
 - as a hard reset of the SBE flushes out the hardware state of the SBE, which is critical for debug, the SP must collect all possible debug data from the SBE hardware, via the legacy FSI2PIB SCOM engine after unlocked the SBE by setting the Secure Debug Bit. The mechanism to collect the FFDC of a belly-up SBE from the SP is out-of-band to the SBE and hence beyond the scope of this document.
 - b) the SP must set the appropriate destination state bits in the Mailbox Scratch Register as described in section 2.1.6. Based on the overall state of the system at the time of the hard reset, the SBE can be configured to reboot in Istep mode, or Continuous IPL mode, or directly enter the runtime state.

Use-case	Actions from SBE	Actions from SP
Command times out at SBE. SBE has dequeued command buffer and acknowledged EOT but no data populated in the response buffer	Linear massiving request for EUCO	

Page 27 of 82

		Upon completion of FIFO reset, SP then requests for SBE FFDC. If SBE does not reset the FIFOs or if SBE FFDC collection fails, then SP will perform a SBE Hard reset.
SBE does not send EOT as part of response buffer		SP keeps waiting for more data which results in the command timing out at the SP end resulting in the SP requesting a SBE FIFO reset.
	Upon receiving request for FIFO reset, SBE will collect its FFDC and perform a FIFO reset	Upon completion of FIFO reset, SP
		then requests for SBE FFDC.
		If SBE does not reset the FIFOs or if SBE FFDC collection fails, then SP will perform a SBE Hard reset
SP does not send EOT as part of command buffer	SBE continues to process command until EOT arrives.	This will result in the command timing out at the service processor end resulting in the service processor requesting a SBE FIFO reset.
	Upon receiving FIFO reset request from SP, SBE will collect its FFDC and reset the FIFO	Upon completion of FIFO reset, SP will collect SBE FFDC.
		If SBE does not reset the FIFOs or if SBE FFDC collection fails, then SP will perform a SBE Hard reset
SP does not dequeue from response buffer	SBE waits indefinitely for SP to pull data.	This will result in the command timing out at the service processor end resulting in the service processor requesting a SBE FIFO reset.
		Upon completion of FIFO reset, SP will collect SBE FFDC.
	Upon receiving FIFO reset request from SP, SBE will collect its FFDC and reset the FIFO	If SBE does not reset the FIFOs or if SBE FFDC collection fails, then SP will perform a SBE Hard reset
SBE does not dequeue data from command buffer		This will result in the command timing out at the service processor end resulting in the service processor requesting a SBE FIFO Reset.
<u> </u>	1	D 20 002

	Upon receiving FIFO reset request from SP, SBE will collect its FFDC and reset the FIFO	Upon completion of FIFO reset, SP will collect SBE FFDC. If SBE does not reset the FIFOs or if SBE FFDC collection fails, then SP will perform a SBE Hard reset
SP does not acknowledge EOT in response buffer	SBE waits indefinitely for SP to acknowledge EOT in response buffer. Upon receiving FIFO reset request from SP, SBE will collect its FFDC and reset the FIFO	This will result in the command timing out at the service processor end resulting in the service processor requesting a SBE FIFO reset.
		Upon completion of FIFO reset, SP will collect SBE FFDC.
SBE does not acknowledge EOT in command buffer	H EIFO	This will result in the command timing out at the service processor end resulting in the service processor requesting a SBE FIFO Reset.
	Upon receiving FIFO reset request from SP, SBE will collect its FFDC and reset the FIFO	Upon completion of FIFO reset, SP will collect SBE FFDC.
		If SBE does not reset the FIFOs or if SBE FFDC collection fails, then SP will perform a SBE Hard reset
SP sends invalid command class or command or an inconsistent payload.	Upon detecting invalid command- class and/or invalid command or inconsistent command payload, SBE will read the upstream FIFO until EOT is received and discard the entries from upstream FIFO. Once EOT is acknowledged, SBE will send response data with appropriate status.	

4 IPL Control Messages

4.1 Execute Istep

This command is sent by SP to SBE to execute a specific istep. The istep to execute is specified by the istep Major and Minor numbers passed as part of the command. This is a synchronous command. SBE will enqueue the response buffer after completing execution of the command. Note that this chip-op is debug only to support lab testing and bring-up. This command is accepted only when the SBE started after configuring it in the istep mode, by setting bit 0 of the FW Control flags register (Mailbox scratch 3 - CFAM 283A, SCOM 0x5003A).

	Message (request) from SP				
		0x03	3		
reserved	resei	rved	0xA1	0x01	
reserved		o Major aber	reserved	Istep Minor Number	
Istep	Major		ers 2	Number to 5	
Istep MPIPL M	Minor Iinor Nu	Nu mbers: p	mbers A	Number : xy not ready to	
accept c	hip-ops	up to is	step 2.1.	Hence only is command.	

Response from SBE				
0xC0DE	0xA1	0x01		
Primary Status Secondary Status				
[FFDC Package0]				
[]				
[FFDC PackageN]				
Distance to status header word with magic byte 0xC0DE				
Primary Status, Secondary Status : See section 3.1				

SBE FIFO Interface Specification for P10 systems	Version 1.0

4.2 Suspend IO

This command is sent by SP to SBE to suspend IO traffic from and to the processor chip on which the SBE is located. This is a synchronous command where SBE en queues the response after completing the operation.

Message (request) from SP			
0x02			
reserved	reserved	0xA1	0x02

Response from SBE					
0xC0DE	0xA1	0x02			
Primary Status	Primary Status Secondary Status				
[FFDC Package0]					
[]					
[FFDC PackageN]					
Distance to status header word with magic byte 0xC0DE					
Primary Status, Secondary Status: See section 3.1					

5 SCOM Access Messages

Note that within the context of a chip-op, the SBE will atomically attempt a retry / recovery for SCOM accesses failing with timeout or parity errors on the PCB/PIB network. On errors, PCB/PIB error code will be returned in the chip-op response as part of its FFDC package.

5.1 Get SCOM

This command is sent by SP to SBE to perform a SCOM read operation on a specified address. It should be noted that no address translation is performed on SBE. Hence, absolute SCOM addresses must be passed in this command.

Message (request) from SP					
0x04					
reserved reserved 0xA2 0x01					
Register Address (031)					
Register Address (3263)					
Register Address (3263)					

Response from SBE			
Register Data (031)			
Register Data (3263)			
0xC0DE	0xA2	0x01	
Primary Status	Secondary Status		
[FFDC Package0]			
[]			
[FFDC PackageN]			
Distance to status header word with magic byte 0xC0DE			
Primary Status, Secondary Status : See section 3.1			

5.2 Put SCOM

This command is sent by SP to SBE to perform a SCOM write operation on a specified register address.

Message (request) from SP 0x06			
Register Address (031)			
Register Address (3263)			
Register Data (031)			
Register Data (3263)			

Response from SBE			
0xC0DE	0xA2	0x02	
Primary Status	Secondary Statu		
[FFDC Package0]			
ı	[]		
[FFDC P	ackageN]		
Distance to status header word with magic byte 0xC0DE			
Primary Status, Secondary Status : See section 3.1			

5.3 Modify SCOM

This command is sent by SP to SBE to execute read+modify+write operation to a SCOM register.

	Message (req	uest) from S	P
0x07			
reserved	reserved	0xA2	0x03
reserved	reserved	reserved	Operation
	Register Ad	dress (031)	
Register Address (3263)			
Modifying Data (031)			
Modifying Data (3263)			
Bits 28-31: Operation			
0 - No Operation. Same as Put SCOM			
1 – OR			
2 – AND 3 - XOR			

Response from SBE			
0xC0DE	0xA2	0x03	
Primary Status	Secon	ndary Status	
[FFDC	Package0]		
	[]		
[FFDC	PackageN]		
Distance to status hea	nder word with xC0DE	magic byte	
Primary Status, Seconda	rv Status : Se	e section 3.1	

5.4 Put SCOM Under Mask

This command is sent by SP to SBE to execute a SCOM write operation under mask. This is a synchronous command where SBE enqueues the response after completing the operation.

The following steps are done as part of this command

- 1. Read Register Data
- 2. 'AND' the Mask with the data read from register
- 3. 'OR' the modifying data with the result of step 2
- 4. Write the result of step 3 into the register

	The the result	•		
	Message (request) from SP			
	(0x08		
reserved	reserved	0xA2	0x04	
	Register Address (031)			
Register Address (3263)				
Modifying Data (031)				
Modifying Data (3263)				
Mask Data (031)				
Mask Data (3263)				

Response from SBE			
0xC0DE	0xA2	0x04	
Primary Status	Secondary Status		
[FFDC Package0]			
[]			
[FFDC PackageN]			
Distance to status header word with magic byte 0xC0DE			
Primary Status, Secondary Status : See section 3.1			

5.5 Execute Multi SCOM

This command is sent by SP to SBE to execute a group of SCOM operations. This is a synchronous command where SBE will start populating the response buffer once the operation is completed. Only the following SCOM operations are allowed as part of this command.

- 1. Get SCOM
- 2. Put SCOM
- 3. Modify SCOM
- 4. Put SCOM Under Mask

A maximum of 32 SCOM operations (any combination of the above mentioned operations) are allowed as part of this command. SBE will stop executing the operations upon encountering the first failure.

Message (request) from SP				
	Length			
reserved reserved 0xA2 0x05				
Num	ber of SCOM	Operations	s (M)	
SC	SCOM Operation Package11			
SCOM Operation Package1N				
SCOM Operation PackageM1				
SCOM Operation PackageMX				
SCOM Operation Package : See the tables below				

Get SCOM Operation Package					
Magic Bytes: 0xFACE Length 0x01					
reserved	reserved	Operation Sequence #			
Register Address (031)					

Register Address (32..63)

Length: Includes the word containing the length itself

Put SCOM Operation Package				
Magic Bytes : 0xFACE		Length	0x02	
reserved	reserved	Operation Sequence #		
	PCBPIB E	Crror Mask		
	Register Address (031)			
Register Address (3263)				
Register Data (031)				
Register Data (3263)				
Length: Includes the word containing the length itself				

Modify SCOM Operation Package					
Magic Bytes	Magic Bytes: 0xFACE Length 0x03				
reserved reserved Operation			Operation		
reserved	reserved	Operation	Sequence #		
	Operatio	onal Mode			
	PCBPIB I	Error Mask			
	Register Address (031)				
	Register Address (3263)				
Register Data (031)					
Register Data (3263)					

I
Modifying Data (031)
Modifying Data (3263)
Length: Includes the word containing the length itself
Bits 28-31: Operation:
0 - No Operation, Same as Put SCOM
1 – OR
2 – AND
3 - XOR

Put SCOM Under Mask Operation Package					
Magic Bytes	Magic Bytes: 0xFACE Length 0x04				
reserved	reserved	Operation Sequence #			
	PCBPIB F	Error Mask			
	Register Ad	dress (031)			
	Register Address (3263)				
Register Data (031)					
Register Data (3263)					
Modifying Data (031)					
	Modifying l	Data (3263)			
Mask Data (031)					
Mask Data (3263)					
Length: Includes the word containing the length itself					

Response from SBE
Response data for SCOM Operation Package11

Response data for SCOM (Operation P	ackage1N	
Response data for SCOM (Operation Pa	ackageM1	
Response data for SCOM C	peration Pa	nckageMX	
0xC0DE	0xA2	0x05	
Primary Status	Primary Status Secondary Status		
Number of SCOM Op	erations exe	ecuted	
First Failed SCOM	Address (0.	.31)	
First Failed SCOM	Address (32.	63)	
[FFDC Pac	kage 0]		
[]			
[FFDC Paci	kage Y]		
Distance to status header 0xC0D		nagic byte	
Primary Status, Secondary Status, Secondary Status, Secondary Status, If the all the operations were Failed SCOM Address field w	successful, t	then the First	

Response data package for Get SCOM Operation				
Magic Bytes : 0xFACE length 0x01				
reserved	erved reserved Operation Sequence #			
Register Data (031)				
Register Data (3263)				

Response data package for Put SCOM Operation				
Magic Bytes : 0xFACE length 0x02				
reserved	reserved	Operation Sequence #		

Response data package for Modify SCOM Operation				
Magic Bytes : 0xFACE length 0x03				
reserved	reserved	Operation Sequence #		

Response data package for Put SCOM Under Mask Operation			
Magic Bytes : 0xFACE length 0x04			
reserved	reserved	Operation Sequence #	

6 Ring Access Messages

6.1 Get Ring

This command is sent by SP to SBE to scan read from a ring specified by the ring address on a target corresponding to the target type on the processor where the SBE is placed. The SBE will not do scan address translation and hence does not expect a target type or chiplet id in the command. The higher level firmware is expected to pass a fully translated, absolute ring address. The SBE will stream back the ring data in 64 bit granules or multiples of that.

reserved	reserved Ring Addr	0xA3	0x01	
	Ring Addı	ress (031)	0.007	
			64 bits (N)	
	the Ring in	multiple of	64 bits (N)	
Length of the Ring in multiple of 64 bits (N)				
Reserved Ring Mode				
Ring Address: Absolute address of the ring from engineering data.				
0x0004: S	Set Pulse Set Pulse Pulse with	Header no OPCG with with	Check conditioning NSL pulse	

Response from SBE				
Ring Data(031)				
Ring Data(3263)				
•				
Ring Data(N-32N-1)				
Length of the ring data returned in bits				
0xC0DE				
Primary Status Secondary Status				
[FFDC Package0]				

6.2 Put Ring

This command is sent by SP to SBE to scan write into a ring specified by the RS4 ring container. The RS4 header should have all details like ring address, region, type and length to scan in a particular chiplet on the processor where the SBE is placed. The RS4 container will also have the compressed data payload to be scanned in to the chip.. It is the responsibility of the caller to ensure that the RS4 header has a fully translated, absolute ring address for the instance of the chiplet being scanned. This is a synchronous command where SBE starts to enqueue the response buffer once the operation is completed.

Message (request) from SP						
Length (N+3)						
reserved	l reserved	0xA3 0x02				
Reserved Ring Mode						
	RS4 Ring Container Word0					
RS4 Ring Container WordN-1						
Bits	Bits 16-31: Ring Mode:					
0x0001:		Header				
0x0002:	Set Pulse with	no OPCG	conditioning			
0x0004:	Set Pulse	with N	ISL pulse			
0x0008:	Set Pulse	with	SL pulse			
0x0010:	Set Pulse with	pulse to all	l hold types			
0x0040:	Арр	oly	Overrides			

Response from SBE				
0xC0DE	0xA3	0x02		
Primary Status Secondary Status				
[FFDC Package0]				
[]				

[FFDC Package..N]

Distance to status header word with magic byte 0xC0DE

Primary Status, Secondary Status : See section 3.1

7 Memory Access Messages

7.1 Memory Access Modes

Main-store memory and cache can be accessed via the ADU or PBA hardware blocks. The below table summarizes the various flags used by the memory access chip-ops (0xA401 and 0xA402) to select the required hardware interface, access type and other access modes

Flag	Value	Comments	Interface	Access	Constraints	
ADU	0x0001	Use Alter/Display Unit to access memory	ADU	R+W	Default data sizes supported are in multiples of 8 bytes granule size	
PBA	0x0002	Use the Power Bus Access Unit to access memory	PBA	R+W	Default data sizes supported are in multiples of 128 bytes granule size	
Auto Increment	0x0004	Enable automatic address increment in hardware	ADU / PBA	R+W	Not applicable on Cache Inhibited ADU write access	
ECC Required / ECC Override	0x0008	On reads, every 8 bytes of data is followed by 1 byte of ECC. On writes, user specified ECC byte overrides HW generated ECC	ADU	R/W	If both ECC and TAG flags are set every 8 bytes of data (byte#0- byte#7) is followed by 1 byte (byte#8) of TAG data followed by 1 byte (byte#9) of ECC data.	
TAG Required	0x0010	Every 8 bytes of data is followed by 1 byte of TAG data	ADU	R+W		
Fast Mode	0x0020	Enable fast mode in hardware	ADU / PBA	R+W	None	
LCO	0x0040	Enable lateral cast out mode	PBA	W	Applicable only to PBA writes	
Cache Inhibit	0x0080	Bypass the cache e.g. for memory or registers of an IO adapter	ADU	R+W	Only 1, 2, 4 and 8 byte data access supported in this mode. This mode does not support the default data access sizes of multiples of 8 bytes.	
Host Pass-through	0x0100	Read-from / write-to a pre known address and notify the Host on writes	PBA	R+W	Host has already set the Pass- through command / response address via the PSU 'SetFFDCAddress' chip-op	
Cache Inject	0x0200	Use the cache inject mode	PBA	W	Applicable only to PBA writes	
Pre switch AB	0x0400	Do no issue PB cmd, pre-set for AB operation	ADU	W	Applicable only to ADU writes	
Pre switch CD	0x0800	Do no issue PB cmd, pre-set for CD operation	ADU	W	Applicable only to ADU writes	

Page 45 of 82

Flag	Value	Comments	Interface	Access	Constraints
Post switch	0x1000	Clear switch CD/AB flags	ADU	W	Applicable only to ADU writes

7.2 GetMemory

This command is sent by SP to SBE to read data starting at a specified address from the mainstore memory attached to the processor on which this SBE is placed or from L3 cache in the processor in which this SBE is placed. SP must ensure that clocks are running. The base or start address must be granule size aligned and the length of data to be read should be a multiple of the granule size.

0x06				
reserved reserved 0xA4 0x01				
Reserved Flags				
Memory address (031)				
Memory address (3263)				
Length of data to be read in bytes				
Bits 0-15: Reserved				
Bits 16-31: Flags :				
Refer section 7.1 for details of the flags supported and their intended usage.				
LCO (0x0040) and Cache Inject (0x0200): Not applicable on read access.				

Response from SBE				
Memory Data1				
				
Memory DataN				
Length of Data read in bytes (includes ECC and Tag data)				
0xC0DE	0xA4	0x01		

Primary Status	Secondary Status
[FFDC Pa	ackage0]
	•
[FFDC Pac	ickageN]
Distance to status header 0xC0	
imary Status, Secondary	Status : See section 3.1

7.3 PutMemory

This command is sent by SP to SBE to write data starting at a specified address in the mainstore memory attached to the processor on which this SBE is placed or in the L3 cache attached to the processor on which this SBE is placed. SP must ensure that clocks are running. The base or start address must be granule size aligned and the length of data to be written should be a multiple of the granule size.

Message (request) from SP Length					
					reserved reserved 0xA4 0x02
[Core [ECC Flags Chiplet Id] Override byte]					
Memory address (031)					
	Memory add	lress (3263))		
Length of		ritten in bytes e ECC)	s (Does not		
Mainstore Data1					
	Mainsto	re dataN			

Bits 0-7: Core instance Id:

0x00-0x1F: The core id (even or odd core) belonging to the logical EQ target on which the memory is to be written. Note that this is applicable only on PBA write-only operations with the LCO flag asserted

Bits 8-15: ECC Override Byte:

The ECC value which will be inserted as ECC for every 8 bytes of data written. Applicable only when the ECC Override flag is set on ADU operations.

Bits 16-31: Flags:

Refer section 7.1 for details of the flags supported and their intended usage.

Response from SBE					
Length of Mainstore Data actually written in bytes (includes ECC and TAG)					
0xC0DE 0xA4 0x02					
Primary Status Secondary Status					
[FFDC Package0]					
[FFDC PackageN]					
Distance to status header word with magic byte 0xC0DE					
Primary Status, Secondary Status : See section 3.1					

7.4 GetSRAM

This command is sent by SP to SBE to read data from different SRAM chips of the processor in which this SBE is placed. SP must ensure that clocks are running. The support SRAM which SBE can read are IOPPEs, QMEs, PCIs and OCC. The SRAM address from where data is to be read must be 8B aligned.

Note: User is required to pass the mode and channel to be used for the Occ Sram access.

N	lessage (req	uest) from S	SP
	0x	06	
reserved	reserved	0xA4	0x03
Perv Chi	plet Id	reserved	Mode
	SRAM Add	lress (031)	
	SRAM Add	ress (3263))
Length of	data to be r	ead in mult	iples of 8B
Perv Chiplet (and Proc Targ		ipports PA	UC, EQ, PCI
Reserved (bit 1	16-23)		
Mode (bit 24-3	1): [Applica	ble for OC	C & PCI]
For OCC : Bit	0b01 0b10	le Normal Debug Circular	
Bit	t 26-28 : Cha	nnel Numb	oer
	0b01 0b01	01: OCB_C1 10: OCB_C1 11: OCB_C1 00: OCB_C1	HAN1 HAN2
Bi	t 29-31 : Un	used	
For PCI: Bit 2	24 : io_top_n	umber	
	0b0 : io 0b1 : io		
Bit	25 : PHYP		
	0b0 : P1 0b1 : P1		
Bit	t 26-31 : Uni	ised	

Response fro	om SBE	
SRAM Da	ata1	
SRAM Da	ıtaN	
Length of SRAM	A Data read	
0xC0DE	0xA4	0x03
Primary Status	Secondary	Status
[FFDC Paci	kage0]	
[FFDC Pack	(ageN	
Distance to status header of 0xC0D		agic byte
Primary Status, Secondary St	tatus : See se	ction 3.1

7.5 PutSRAM

This command is sent by SP to SBE to write data to different SRAM of the processor in which this SBE is placed. The support SRAM which SBE can write are IOPPEs, QMEs, PCIs and OCC. SP must ensure that clocks are running. The SRAM address at which data is to be written must be 8B aligned.

The address range at which data is to be written must be from a white-listed secure window. In circular access mode, the address field will be ignored.

Note: User is required to pass the mode and channel to be used for the Occ Sram access.

	Message (1		fuom Cl	D
	Message (1	request)	Hom Si	
	0	0x6 + N		
reserved	reserved	erved 0xA4 0x04		
Perv Ch	iplet Id	Mcast Bit	reser ved	Mode
	SRAM :	address ((031)	
	SRAM a	ddress (3263)	
Length o	of data to be	written	in mult	tiples of 8B
	SRA	M Data	1	
	SRA	M data.	.N	
Perv Chiple and Proc Ta			ts PAU	C, EQ, PCIe
M-Cast (bit and PCIe ch		applical	ole for P	PAUC, QME
		- UniCa – Multic		
Reserved (B	Bit 17-23)			
Mode (bit 2	4-31): [App	licable fo	or OCC	& PCI]
For OCC: 1	0b0 0b10	Mode 1: Norma 0: Debug 1: Circul		
	Bit 26-28 : 0	Channel	Numbe	er
	0b0	01: OCE 10: OCE 11: OCE	_ CHAN	N 1

0b100: OCB_CHAN3

Bit 29-31 : Unused

For PCIe: Bit 24: io_top_number

0b0 : io_top_0 0b1 : io_top_1

Bit 25: PHYP

0b0 : Phyp0 0b1 : Phyp1

Bit 26-31 : Unused

Response fro	om SBE	
Length of SRAM Dat	a actually wr	itten
0xC0DE	0xA4	0x04
Primary Status	Seconda	ry Status
[FFDC Pac	kage0]	
[FFDC Pack	ageM]	
Distance to status header 0xC0E		agic byte
Primary Status, Secondary S	tatus : See se	ction 3.1

8 Register Access Messages

8.1 Get Architected Register

This command is sent by SP to SBE to read a list of architected registers of a specified type (Special Purpose, General purpose, Floating Point) in a SMT thread of a Core Instance Id. This is a synchronous command where SBE en-queues the response buffer upon collecting data from the registers.

	Lengtl	h (3+N)	
Reserved	Reserved	0x	A5	0x01
Reserved	Core Instance Id	Thr ead Nr.	Reg Typ e	Nr. of Registers

Register Nr..1

..

Register Nr..N

Bits 0-7: Reserved

Bits 8-15: Core Instance Id

0x00 - 0x1F: SMT4 Core Instance Id

Bits 16-19: SMT Thread Number

0x0: Thread 0 0x1: Thread 1 0x2: Thread 2 0x3: Thread 3

Bits 20-23: Register Type

0x0: GPR 0x1: SPR 0x2: FPR

Bit 24-31: Number of Registers (0<N<=64)

Total number of registers to be read as part of this command. Current memory limitations in the SBE allow up to a maximum of 64 registers of a given type.

Register Number(s):

Register number(s) should be related to the register type and are as specified in the POWER ISA at https://openpowerfoundation.org/specifications/isa/

Register Data Package
Register Data (bits 0-31)
Register Data (bits 32-63)

Response f	rom SBE	
Register Data	a Package 1	
Register Data	a Package N	
0xC0DE	0xA5	0x01
Primary Status	Seconda	ry Status
[FFDC Pa	ckage0]	
[FFDC Pac	ckageM]	
Distance to status heade 0xC0		agic byte
Primary Status, Secondary Register Data 1N will be r of register numbers passed	eturned in th	e same order

8.2 Put Architected Register

This command is sent by SP to SBE to write to a list of architected registers of a specified type (Special Purpose, General purpose, Floating Point) in a SMT thread of a Core instance Id. This is a synchronous command where SBE en-queues response buffer after writing data to the register(s).

Register Package
Register Number
Register Data (bits 0-31)
Register Data (bits 32-63)

L				
1	Message (req	uest) f	rom SI	?
	Length 3	+ (N [*]	* 3)	
Reserved	Reserved	0x	A5	0x02
Reserved	Core Instance Id	Thr ead Nr,	Reg. Typ e	Nr. of Registers (N)
	Register l	Packag	ge1	
		•		
	Register I	Packag	eN	
Bits 0-7: Re	served			
Bits 8-	15: Co	re	Insta	nce Id
0x00 -	0x1F: SMT4	Core I	nstance	e Id
Bits 16-	19: SMT	T	hread	Number
0x0:		Threa	ıd	0
0x1:		Threa		1
0x2:		Threa	ıd	2
0x3: Tl	nread 3			
Bits 20-23:]	Register Type	e		
0x0: G		_		
0x1: Sl	PR			
0x2: FP	R			
Bit 24-31: N	umber of Re	oister	s (0 <n-< th=""><th><=64)</th></n-<>	<=64)
	r of registers			
	d. Current m			•
	p to a maxim			
given type.				
Register				Package(s):

Contains register number (related to the register type and as specified in the POWER ISA / Programmer's Manual) and 64 bit data to be written.

Response fro	om SBE	
0xC0DE	0xA5	0x02
Primary Status	Seconda	ry Status
[FFDC Pacl	kage0]	
[FFDC Pack	ageM]	
Distance to status header 0xC0D		agic byte
Primary Status, Secondary S	tatus : See se	ction 3.1

8.3 Get HW Register

This command is sent by SP to SBE to perform a direct HW register read operation on a specified address. Based on the target type, SBE will call direct scom for proc chip or OCMB chip basis the instance Id. It should be noted that no address translation is performed by SBE. Hence, absolute HW addresses must be passed in this command.

1	Message (req	uest) from S	SP
	02	:05	
Reserved	Reserved	0xA5	0x03
Targe	t Type	reserved	Instance Id
	W Register A	`	
	arget Type ction 2.1.4 ted Targets a	re Proc and C	<u>Ocmb</u>
	Ocmb Instand range for a		hip

Response	from SBE	
HW Register	Data (031)	
HW Register	Data (3263)	
0xC0DE	0xA5	0x03
Primary Status	Secondary Status	
[FFDC Pa	ickage0]	
•	•	
[FFDC Pa	ckageM]	
Distance to status heade 0xC0		agic byte
Primary Status, Secondary	Status : See se	ction 3.1

8.4 Put HW Register

This command is sent by SP to SBE to perform a direct HW register write operation on a specified address. Based on the target type, SBE will call direct scom for proc chip or OCMB chip basis the instance Id. It should be noted that no address translation is performed by SBE. Hence, absolute HW addresses must be passed in this command.

0v04					
0×04					
0v04					
Reserved Reserved 0xA5 0x04					
Target Type reserved Instance Id					
HW Register Address (031)					
HW Register Address (3263)					
HW Register Data (031)					
HW Register Data (3263)					
Bits 0-15: Target Type					
See section 2.1.4 Supported Targets are Proc and Ocmb					
Bits 15-23 : Reserved					
Bits 24-31: Ocmb Instance Id					
Ocmb Id range for a processor Chip 0x00 - 0x0F					

Response from SBE				
0xC0DE 0xA5 0x0				
Primary Status Secondary Status				
[FFDC Package0]				
[FFDC Pac	ckageM]			
Distance to status header word with magic byte 0xC0DE				
Primary Status, Secondary Status : See section 3.1				

9 Array Access Messages

9.1 Control Fast Array

This command is sent by SP to SBE to stream out a specified fast array from a specified EC/Pervasive Target. This is a synchronous command where SBE en-queues the response buffer upon executing the requested action on from the specified Fast arrays.

SP must ensure that the Core is powered ON, clocks to the Core are turned OFF and Core is functional.

Message (request) from SP							
0x04 + N							
Reserved	Reserved Reserved 0xA6 0x01						
Targe	Target Type Chiplet Id Control_set						
Length	of Custom O	verride Data	in Bytes				
	Custom Ov	erride Data1					
		•••					
	Custom Ov	erride DataN	I				
Word 2 Bits 0-15: Target Type Fast arrays will be supported for Core and Pervasive targets. See section 2.1.4 Word 2 Bits 16-23: ChipletId for Pervasive Targets, Instance Id for Core Target See section 2.1.4							
Word 2 Bits 24-31: Control_set 0x00: Custom Data 0x01: ec_cl2_far 0x02: ec_mma_far							
Words 3: Lo	ength of custo	om override	data				
Custom override data length pass by the user							
Word 44+N: Custom Override Data							
Note: if Control_set is ec_cl2_far / ec_mma_far, length field to be 0 and no custom data expected.							
Custom Data & length field is only to be used with control_set as 0.							

Response from SBE

Fast Array Data 1								
Fast Array Data N Length of the Fast Array Data in Bytes								
				0xC0DE				
				Primary Status Secondary Status				
[FFDC Package0]								
[FFDC Pa	ckageN]							
Distance to status header word with magic byte 0xC0DE								
Primary Status, Secondary Status : See section 3.1								

9.2 Control Trace Array

This command is sent by SP to SBE to reset/restart/stop/collect a Trace Array pointed to by the Trace Array Id from the target indicated by the Target Type and Chiplet Id. This is a synchronous command and SBE enqueues the response after completing the specified operation on the specified trace array.

Message (request) from SP					
0x04					
Reserved Reserved 0xA6 0x02					
Target Type Reserved Chiplet Id					
Trace A	array Id	Oper	ation		
Word 3, Bit Refer enume proc_getta	s 0-15: Trace ration racearray_kips/p9/proc	Array Id			
0x0001: 0x0002: 0x0004: 0x0008:	Reset Restart Stop Collect	16-31: Trace Trace Trace Trace	Operation Array Array Array Dump		
0x0010: Other Values	Ignore : Reserved	Mux	Setting		

Response from SBE					
[Trace Array Data Word 0]					
[Trace Array Data Word N]					
Length of the data read in words (N+1)					
0xC0DE	0xC0DE				
Primary Status Secondary Status					
[FFDC Package0]					

[FFDC Package..N]

Distance to status header word with magic byte 0xC0DE

Primary Status, Secondary Status: See section 3.1

10 Instruction Control Messages

10.1 Control Instructions

This command is sent by SP to SBE to start/stop/sreset/step instructions on a specific SMT thread of a specific Core Target. This is a synchronous command where SBE will enqueue its response after completing the specified operation. The special wakeup mode is taken off from the user control and will be handled by SBE within the chip-op. Here are the use-case how SBE is going to handle the special wakeup on cores -

During stop instruction chip-op, SBE asserts the special awake up on the requested core and does stop instruction on the requested core. Keeps the special wakeup asserted.

During start/sreset instruction chip-op, SBE does starts / sreset instruction on the requested core and de-asserts the special wakeup on the request core if it is already asserted.

During step instruction chip-op, SBE does step instruction on the requested core. No special wakeup assert/de-assert.

Message (request) from SP						
	0x03					
Reserved	Reserved 0xA7 0x01				:01	
Reserve	d	Mod e	Core Instance Io		Thre ad Op.	
Bits 0-11: Reserved						
<u>Bits</u>						
	il			first	error	
0x1: Ignore hardware errors, attempt best case Bits 16-23:						
Core Chiplet Id:						
0x00-0x1F:	SM	T4	Core	Instance	Id	
0xFF: All SMT4 Cores						
Bits	24-27	:	Thread	I	Nr.:	
0x0-3:	SMT	<u>`</u> 4	thread	r	number	
0xF: All 4 thre	0xF: All 4 threads in the SMT4 core					
Bits	28-31	:	Thread		Op.:	
0x0:		Start			uctions	
0x1:		Stop		Instr	uctions	
0x2:		Step		Instr	uctions	
0x3: Sreset In	structio					

Response from SBE					
0xC0DE					
Primary Status Secondary Status					

[FFDC PackageN]	
Distance to status header word with magic 0xC0DE	byte

11 Generic Messages

11.1 Get SBE FFDC

This command is sent by SP to SBE to retrieve SBE FFDC. This is a synchronous command where SBE will enqueue its response after completing the command. This command returns FFDC corresponding to the internal SBE operations and internal hardware procedure FFDC, if available. The response data sent back conforms to the same FFDC package format as described in FFDC Package section of this document.

The typical use-case of this command is to get FFDC from any asynchronous operation failure in the SBE, when the SBE enters the Dumping state. In the Dumping state, if processing this command also fails, there would be no additional FFDC package(s) in the response that point to the reason of this command's failure. This can be considered as a double-fault in the SBE.

Message (request) from SP					
0x02					
reserved reserved 0xA8 0x01					

Response from SBE			
FFDC Package0			
[FFDC PackageN]			
0xC0DE			
Primary Status Secondary Status			
Distance to status header word with magic byte 0xC0DE			
Primary Status, Secondary Status : See section 3.1			

11.2 Get SBE Capabilities

This command is sent by SP to SBE to retrieve the SBE Protocol Version as defined in this document. The SBE also responds with additional information like the shorthand (first eight hexadecimal characters) commit ID, a twenty character (5 words) alphanumeric string representing the SBE firmware release tag and the various capabilities supported by the level of firmware running on the SBE. Please refer to the table below for details on the various capabilities planned to be supported by the SBE. This is a synchronous command where SBE will enqueue its response after completing the command.

Message (request) from SP						
0x02						
reserved reserved 0xA8 0x02						

	Response from SBE			
Byte 0	Byte 1	Byte 2 Byte 3		
Major Version Minor Version			Version	
8 Hex Character SBE Firmware GIT Commit ID				
S	BE Firmware	Release Tag	0	
	••			
S	BE Firmware	Release Tag	4	
	Capabil	ities0		
	Capabilities23			
0x0	0xC0DE			
Prima	Primary Status Secondary Status			
	[FFDC Package0]			
	[FFDC Pa	ckageN]		
Distance t	Distance to status header word with magic byte 0xC0DE			
Primary Stat	us, Secondary	Status : See s	ection 3.1	
Major Versio chip-op adde	n : Increment	s whenever tl	here is a new	
	u on : Increment	s whenever t	he format of	
existing Chip	op is changed			
Both Major a	and Minor vers	sions are defin	ned in section	

2.1.2.3

	0xC0000001	HWP FFDC Collection supported
	0xC0000002	SBE FFDC Collection supported
Capabilities0	0xC0000004	Address Blacklisting supported
	0xC0000008	FIFO Reset supported
	0xC0000010	Host command interface supported
	0xC0000020	Service Processor less MPIPL supported
Capabilities1	0xC8000000	Reserved for generic capabilities
Capabilities2	0xA1000001	Execute Istep - Supported
	0xA1000002	Suspend IO Supported
Capabilities3	0xA1800000	Reserved for capabilities of A1 class
	0xA2000001	Get Scom - Supported
	0xA2000002	Put Scom - Supported
Capabilities4	0xA2000004	Modify Scom - Supported
	0xA2000008	Put Scom Under Mask - Supported
	0xA2000010	Multi Scom - Supported
Capabilities5	0xA2800000	Reserved for capabilities of A2 class
	0xA3000001	Get Ring - Supported
Capabilities6	0xA3000002	Put Ring - Supported
	0xA3000004	Put Ring from Image - Supported
Capabilities7	0xA3800000	Reserved for capabilities of A3 class
	0xA4000001	Get Memory - Supported
Capabilities8	0xA4000002	Put Memory - Supported
	0xA4000004	Get OCC SRAM - Supported

	0xA4000008	Put OCC SRAM – Supported
Capabilities9	0xA4800000	Reserved for capabilities of A4 class
Canabilities 40	0xA5000001	Get Register Supported
Capabilities10	0xA5000002	Put Register Supported
Capabilities11	0xA5800000	Reserved for capabilities of A5 class
Capabilities12	0xA6000001	Read Fast Array Supported
Capabilities12	0xA6000002	Control Trace Array Supported
Capabilities13	0xA6800000	Reserved for capabilities of A6 class
Capabilities14	0xA7000001	Control Instructions Supported
Capabilities15	0xA7800000	Reserved for capabilities of A7 class
Capabilities16	0xA8000001	Get SBE FFDC Supported
Capabilities16	0xA8000002	Quiesce SBE Supported
Capabilities17	0xA8800000	Reserved for capabilities of A8 class
	0xA9000001	Enter MPIPL Supported
Capabilities18	0xA9000002	Continue MPIPL Supported
	0xA9000004	Stop Clocks Supported
Capabilities19	0xA9800000	Reserved for capabilities of A9 class
Capabilities20	0xAA000001	Get Dump Supported
Capabilities21	0xAA800000	Reserved for capabilities of AA class
Capabilities22	0xAB000001	SBE Halt Supported
Capabilities23	0xAB800000	Reserved for capabilities of AB class

11.3 Quiesce SBE

This command is sent by SP to place the SBE into a quiescent state. Note that this command cannot be used to quiesce a previously issued command from SP. The SBE will stop all ongoing operations and enter a state where it cannot accept any further chip-ops from the SP FIFO interface as well as the Host PSU interface. This is a synchronous command where SBE will enqueue its response after completing the command. The Quiesce command should never fail with a bad response and hence does not provide for FFDC package in the response.

Message (request) from SP					
0x02					
reserved reserved 0xA8 0x06					

Response from SBE				
0xC0DE	0xA8	0x06		
Primary Status Secondary Status				
[FFDC Package0]				
[FFDC PackageN]				
Distance to status header word with magic byte 0xC0DE				
Primary Status, Secondary Status : See section 3.1				

11.4 Get SBE Capabilities 2

This command is sent by SP to SBE to retrieve the (extended) capabilities supported beyond what the Get SBE Capabilities (0xA802) command retrieves. The response is compatible with that for command 0xA802, however, with additional capability words starting with the capability word 24. Please refer to the table below for details on the extended capabilities supported by the SBE. This is a synchronous command where SBE will enqueue its response after completing the command.

Message (request) from SP		
0x02		

Response from SBE					
Byte 0	Byte 1	Byte 2	Byte 3		
Major '	Major Version Minor Version				
8 Hex Ch	aracter SBE Fin	rmware GIT Co	ommit ID		
1	SBE Firmware	Release Tag0			
1	SBE Firmware	Release Tag4			
	Capabilities0				
	Capabilities25				
0x0	0xC0DE				
Prima	Primary Status Secondary Status				
	[FFDC Package0]				
	··				
[FFDC PackageN]					
Distance to status header word with magic byte 0xC0DE					
Primary Status, Secondary Status: See section 3.1					

Capabilities0-23	Same as response to command 0xA802	See section 11.2 (Same as command 0xA802)
Capabilities24	0xAC000001	PMIC Health Check Supported
Capabilities25	0xAC800000	Reserved for capabilities of AC class

11.5 Get LPC Status

This command is sent by SP to the SBE to determine the LPC status. This is a synchronous command where SBE will enqueue its response after completing the command. SBE does lpc read operations on the LPC OPB Primay Status register, to determine if the LPC hardware logic is good or hung.

Message (request) from SP				
0x02				
reserved reserved 0xA8 0x08				

Response from SBE LPC Status			
Primary Status Secondary Status		ry Status	
[FFDC Package0]			
[FFDC PackageN]			
Distance to status header word with magic byte 0xC0DE			
Primary Status, Secondary Status: See section 3.1 LPC Status: 0x0: LPC logic is good 0x1: LPC logic is in error state			

12 MPIPL Messages

12.1 Enter MPIPL

This command is sent by SP to SBE to enter a Memory Preserving IPL. This is a synchronous command where SBE will enqueue its response after completing the MPIPL quiesce sequence and is ready to accept chip-ops for dumping hardware facilities. Note that this command is supported only on native service processor (SP) based systems.

Message (request) from SP 0x02				

Response from SBE			
0xC0DE	0xA9	0x01	
Primary Status	Seconda	ry Status	
[FFDC Pa	ckage0]		
	,		
[FFDC Pa	ckageN]		
Distance to status heade 0xC0		agic byte	
Primary Status, Secondary	Status : See se	ction 3.1	

12.2 Continue MPIPL

This command is sent by SP to the primary SBE to continue MPIPL after the SP completed dumping any hardware facilities. This is a synchronous command where SBE will en queue its response after loading and starting the Hostboot boot loader in MPIPL mode. Note that this chip-op is supported only on native service processor (SP) based systems. Any updates in the core and cache gard records will be picked up by the SBE, as in the normal IPL flow, from the Mailbox Scratch Register 1 (CFAM 0x2838 or SCOM 0x500038). On the secondary SBEs, Hostboot will use the same command to get the secondary SBEs out of MPIPL state to runtime state, after updating any core and cache gard records in Mailbox Scratch Register 1 as above..

Message (request) from SP				
0x02				
Reserved Reserved 0xA9 0x02				

Response from SBE			
0xC0DE	0xA9	0x02	
Primary Status	Secondary Status		
[FFDC Pa	[FFDC Package0]		
[FFDC Pac	ckageN]		
Distance to status header word with magic byte 0xC0DE			
Primary Status, Secondary Status : See section 3.1			

12.3 Stop Clocks

This command is sent by SP to SBE to stop clocks on the specified chiplets in the processor on which the SBE is placed. This is a synchronous command where SBE will enqueue its response after completing the operation. The SBE stops specific clock domains on the chiplets based on the target type and chiplet id passed in this command.

Message (request) from SP				
0x03				
Reserved Reserved 0xA9 0x03				
Target Type Reserved Chiplet Id				
· ·				

Bits 0-15: Target Type See section 2.1.4

Bits 16-23: Reserved

Bits 24-31: Chiplet Id See section 2.1.4

Response from SBE				
0xC0DE				
Primary Status Secondary Status				
[FFDC Package0]				
[FFDC PackageN]				
Distance to status header word with magic byte 0xC0DE				
Primary Status, Secondary Status: See section 3.1				

Note that only the target types listed in the table below are supported in this command.

Target Type	Chiplet Id	Clock Domains	Comments
TARGET_TYPE_PROC = 0x0000	N.A.	All except refresh clocks	Stop clocks on the whole processor except tp, sbe & vital
TARGET_TYPE_EQ = 0x0002	Oxff	eq clock regions.	Stop EQ clocks with region all
TARGET_TYPE_CORE = 0x0003	Oxff	core clock regions	Stop core clocks

12.4 Get TI Info

This command is sent by SP to SBE to get data from mainstore memory for a host initiated terminate immediate exception (TI). SBE will not retry on errors trying to collect data. This is a synchronous command where SBE will enqueue its response after completing the operation. The format, contents and interpretation of the data returned is contracted between the SP and Host subsystems and not in scope of this document

Message (request) from SP				
0x02				
Reserved Reserved 0xA9 0x04				

Response from SBE				
TI data wo	TI data word 0			
TI data wo	rd M			
Length of TI data in words (M+1)				
0xC0DE	0xC0DE			
Primary Status	Seconda	ry Status		
[FFDC Pack	age0]			
[FFDC PackageN]				
Distance to status header word with magic byte 0xC0DE				
Primary Status, Secondary	Statu : See s	ection 3.1		

13 Dump Messages

13.1 Get Dump

This command is sent by SP to SBE to collect different types of dumps. This is a synchronous command where SBE will stream out its response as it collects the dump data from the system. For each dump type, SBE collects data from various hardware facilities like SCOM registers, SRAMs, fast arrays and so on, as specified in the hardware dump collection table (HDCT) schema.

Message (request) from SP			
0x03			
Reserved	Reserved	0xAA	0x01
Reserved	Collect FastArray	Clock State	Dump Type

Collect FastArray:

0x00: Collect Fast Arrays 0x01: Skip Fast Arrays

Clock State:

0x01: Clocks On 0x02: Clocks Off

Dump Type:

0x01: System Check Stop Dump 0x02: Memory Preserving IPL Dump 0x03: System Performance Dump 0x04: Core Check Stop Dump 0x05: Hostboot Dump

	Response from SBE			
SBE section version	Reserved	Reserved	Reserved	
	HDCT ver	sion word 0		
	HDCT ver	sion word 1		
	HDCT Row 0	- Data word 0		
	•	••		
	HDCT Row 0	- Data word P		
		••		
	HDCT Row M	I - Data word 0		
	•	••		
	HDCT Row M	- Data word Q		
0xC0	DE	0xAA	0x01	
	[FFDC Package 0]			
	[]			
	[FFDC Package N]			
Distance to status header word with magic byte 0xC0DE				
Primary Status, Secondary Status: See section 3.1				

14 Host FIFO Commands

14.1 SBE Halt

This command is sent by the host to the halt the SBE. This command is not accepted from the service processor and returns with a failure response. A failure to halt the SBE, will return with a failure response on the FIFO.

On success, the SBE Messaging and Status Register (section 2.1.7) Current State field (bits 8-11) will reflect the SBE state as Halted (0x9). There will be no chip-op response as the SBE halts itself.

Message (request) from SP				
0x02				
reserved reserved 0xAB 0x01				

Response from SBE (only on failure)				
0xC0DE	0xAB	0x01		
Primary Status	Secondary Status			
[FFDC Package0]				
[FFDC PackageN]				
Distance to status header word with magic byte 0xC0DE				
Primary Status, Secondary Status: See section 3.1				

15 Telemetry Commands

15.1 PMIC Health Check

This command is sent by SP to SBE to collect PMIC Health and related telemetry data of DIMMs connected to the processor chip on which the SBE is placed. This is a synchronous command where SBE will enqueue its response after completing the operation. The format, contents and interpretation of the response data are governed by the hardware procedure team and beyond the scope of this document.

Message (request) from SP			
0x03			
Reserved Reserved 0xAC 0x01			
Target Type Reserved Instance ID			

Bits 0-15: Target Type

See section 2.1.4. Only TARGET_TYPE_OCMB supported.

Bits 16-23: Reserved

Bits 24-31: Instance Id See section 2.1.4. 0x00-0x0F

Response from SBE		
Data wor	rd 0	
Data wor	d N	
Length of Data in b	ytes ((N+1)*4	1)
0xC0DE	0xAC	0x01
Primary Status	Secondary Status	
[FFDC Package0]		
[FFDC Packs	ageM]	
Distance to status header word	with magic b	yte 0xC0DE
Primary Status, Secondary Sta	tus. See sect	ion 3.1

16 Open Items

16.1	Chip-Ops to be added
None.	
16.2	Chip-Ops to be scrubbed

None

16.3 Miscellaneous updates

None

16.4 Review Rework

1. None

1

2

₃ End

4

of

6

7 Document