Cap.:25-26: Corriente eléctrica - circuitos

- 25.12. Un alambre de cobre tiene una sección transversal cuadrada de 2.3 mm por lado. El alambre mide 4.0 m de longitud y conduce una corriente de 3.6 A. La densidad de los electrones libres es 8.5 10^{28} /m³. Calcule las magnitudes de a) la densidad de la corriente en el alambre, b) el campo eléctrico en el alambre y c) ¿Cuánto tiempo se requiere para que un electrón recorra la longitud del alambre?
- 25.25. Un alambre de oro de 0.84 mm de diámetro conduce una corriente eléctrica. El campo eléctrico en el alambre es de 0.49 V/m. ¿Cuáles son a) la corriente que conduce el alambre; b) la diferencia de potencial entre dos puntos del alambre separados por una distancia de 6.4 m; c) la resistencia de un trozo de ese alambre de 6.4 m de longitud?
- 25.32. Considere el circuito que se ilustra en la figura 25.33. El voltaje terminal de la batería de 24.0 V es de 21.2 V. ¿Cuáles son a) la resistencia interna r de la batería y b) la resistencia R del resistor en el circuito?

25.34. Se conecta un amperímetro idealizado a una batería, como se ilustra en la figura 25.35. Determine a) la lectura del amperímetro, b) la corriente a través del resistor de 4.00 V y c) el voltaje terminal de la batería.

25.36. El circuito que se ilustra en la figura 25.37 incluye dos baterías, cada una con fem y resistencia interna, y dos resistores. Determine a) la corriente en el circuito (magnitud y dirección); b) el voltaje terminal Vab de la batería de 16.0 V; c) la diferencia de potencial Vac del punto a con respecto al punto c. d) Con base en la figura 25.21 como modelo, elabore la gráfica de los aumentos y las caídas del potencial en este circuito.

25.37. Cuando se abre el interruptor S de la figura 25.38, el voltímetro V de la batería da una lectura de 3.08 V. Cuando se cierra el interruptor, la lectura del voltímetro cae a 2.97 V, y la del amperímetro es de 1.65 A. Determine la fem, la resistencia interna de la batería y la resistencia del circuito R. Suponga que los dos instrumentos son ideales, por lo que no afectan el circuito.

25.42. Un resistor con diferencia de potencial de 15.0 V a través de sus extremos desarrolla energía térmica a una tasa de 327 W. a) ¿Cuál es su resistencia? b) ¿Cuál es la corriente en el resistor?

Circuitos

26.6. Para el circuito que se presenta en la figura 26.40, los dos medidores son ideales, la batería no tiene resistencia interna apreciable y el amperímetro da una lectura de 1.25 A. a) ¿Cuál es la lectura del voltímetro? b) ¿Cuál es la fem E de la batería?

- 26.8. Tres resistores con resistencias de $1.60~\Omega$, $2.40~\Omega$ y $4.80~\Omega$ están conectados en paralelo a una batería de 28.0~V que tiene resistencia interna despreciable. Calcule a) la resistencia equivalente de la combinación; b) la corriente en cada resistor; c) la corriente total a través de la batería; d) el voltaje a través de cada resistor; e) la potencia disipada en cada resistor. f) ¿Cuál resistor disipa la mayor cantidad de potencia: el de mayor resistencia o el de menor resistencia? Explique por qué debería ser así.
- 26.12. Calcule la resistencia equivalente de la red de la figura 26.43, y determine la corriente en cada resistor. La batería tiene una resistencia interna despreciable.

- 26.21. En el circuito que se aprecia en la figura 26.49, obtenga a) la corriente en el resistor R;
- b) la resistencia R; c) la fem desconocida E. d) Si el circuito se rompe en el punto x, ¿cuál es la corriente en el resistor R?

26.22. Encuentre las fem E_1 y E_2 en el circuito de la figura 26.50, y obtenga la diferencia de potencial del punto b en relación con el punto a.

26.48. En el circuito que se ilustra en la figura 26.61, C =5.90 μ F, ϵ =28.0 V, y la fem tiene una resistencia despreciable. Inicialmente, el capacitor está descargado y el interruptor S está en

la posición 1. Luego, el interruptor se mueve a la posición 2, por lo que el capacitor comienza a cargarse. a) ¿Cuál será la carga en el capacitor mucho tiempo después de que el interruptor se movió a la posición 2? b) Después de haber movido el interruptor a la posición 2 durante 3.00 ms se mide la carga en el capacitor y resulta ser de 110 μC. ¿Cuál es el valor de la resistencia R? c) ¿Cuánto tiempo después de haber movido el interruptor a la posición 2, la carga en el capacitor será igual al 99.0% del valor final calculado en el inciso a)?

26.72. El capacitor de la figura 26.74 está inicialmente descargado. El interruptor se cierra en t=0. a) Inmediatamente después de cerrar el interruptor, ¿cuál es la corriente a través de cada resistor? b) ¿Cuál es la carga final en el capacitor?

Problemas de examen

1. El circuito de la figura, donde R=3 M Ω y C=1 μF , se cierra a t=0 con el capacitor cargado con 10 μC . Prediga las lecturas del voltímetro y del amperímetro (ambos ideales) para t=0, t=RC, y $t\to\infty$.

2. En el circuito de la figura, $R1 = R2 = R3 = 100 \Omega$, y las resistencias internas de la fuentes V1 y V2 son 3 y 4 Ω , respectivamente. Calcule la corriente en todas las ramas del circuito.

3. En el circuito de la figura 26.60, todos los capacitores están descargados al principio, la batería no tiene resistencia interna y el amperímetro es ideal. Calcule la lectura del amperímetro a) inmediatamente después de haber cerrado el interruptor S y b) mucho tiempo después de que se cerró el interruptor.

