# Review on Frequentist (vs. Bayesian?) Statistics

20200614

# Frequentist vs. Bayesian

Titan: I think it helps to think about these two side-by-side, to understand how/why they are different.





# Side-by-side comparison, source: 18.05 MIT

### Frequentist

- Only uses conditional distributions of data given specific hypotheses.
  - Presumption: some hypothesis is true and observed data is sampled from that distribution.
- Doesn't depend on a subjective prior that may vary from 1 investigator to another.

### Bayesian

- Models uncertainty by a probability distribution over hypotheses.
- To make inferences, depends
  on one's degree of confidence
  in the chosen prior, and the
  robustness of the findings to
  alternate prior distributions
  may be relevant & important.

# More contrasts between them, source: <u>18.05 MIT</u>

### Frequentist

- Never uses/ gives the probability of a hypothesis (no prior or posterior)
- Depends on the likelihood for both observed & unobserved data
- Doesn't require a prior
- Tends to be less computationally intensive
- Dominated statistical practice in 20th century

## Bayesian

- Uses probabilities for both hypotheses & data
- Depends on the prior & likelihood of observed data
- Requires one to know or construct a 'subjective prior'
- May be computationally intensive
- Dominated statistical practice before 20th century

# In short...



Side notes (unrelated)

# Types of error

|          |                      | True state of nature |                  |
|----------|----------------------|----------------------|------------------|
|          |                      | $H_0$                | $H_A$            |
| Our      | Reject $H_0$         | Type I error         | correct decision |
| decision | 'Don't reject' $H_0$ | correct decision     | Type II error    |

Type I: false rejection of  $H_0$ 

Type II: false non-rejection ('acceptance') of  $H_0$