Last Name: _		 	
First name: .		 	
Student Num	nber:		

CHM 1311 B Final Exam December 2013

Professor: Dr. Goto

There are 13 pages in this test. A periodic table, data tables, and a formula sheet are provided at the end. You may rip these pages off of the exam.

Please show all work to receive partial credit.

Marks may be deducted if an unreasonable number of sig figs are shown in your final answer.

You have 180 minutes to complete the exam.

Question	Points Possible	Points Earned
1	22	
2	10	
3	10	
4	10	
5	8	
6	10	
7	10	
8	10	
TOTAL	90	

Question 1. (22 marks)

Pro	otons:	30	Electrons: 28	
b)	Give the nar	me for K ₂ CO ₃ ·2H ₂ O: <u>pota</u>	assium carbonate dihydrate	
c)	The molecu	lar formula for cupric chlor	ride is: CuCl ₂	
d)		lition of a strong acid lead t lution of Ag ₂ SO ₄ ?	to some precipitation of silver sulphate from a pure)
		YES	NO	
e)	What volum KMnO ₄ ?	ne of 1.00 mol/L KMnO ₄ is	required prepare a 50 mL solution of 0.100 mol/L	
		Volume =	<u>5 mL</u>	
f)	Write the fu formed by F		n configuration of the monoatomic ion most likely	to be
f)		Br.	p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶	to be
	At the top o	1s ² 2s ² 2 ₁	p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ pressure is approximately 0.300 atm. The height o	
	At the top o	f Mt. Everest atmospheric parabarometer be at the top of	p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ pressure is approximately 0.300 atm. The height o	
g)	At the top o mercury in a	f Mt. Everest atmospheric parabarometer be at the top of	p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ pressure is approximately 0.300 atm. The height of this mountain is: 228 mm Hg	
g) h)	At the top o mercury in a	f Mt. Everest atmospheric parabarometer be at the top of	p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ pressure is approximately 0.300 atm. The height of this mountain is: 228 mm Hg	
g) h)	At the top o mercury in a	Is ² 2s ² 2p If Mt. Everest atmospheric parabarometer be at the top of a barometer be at the top of the top o	p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ pressure is approximately 0.300 atm. The height of this mountain is: 228 mm Hg etion:	f

j)		ed to transfer energy from ify the material that the paone.)				3
	aluminum	gold	glass (SiC	O_2	graphite)
k)	Circle the allowed	combination from the op	tions below:			
n=1, l	$=0 m_l=-1$	$n=2, l=1, m_l=+1$	n = 7, l = 1,	$m_l = +2$	n = 3, l = 1, m	$t_l = -2$
1)	When the volume	of the reaction vessel is in	_		ion	
	1:0-41-41	, , .	Arr CaCO ₃ (s) + CC) (g)		
	shifts towards the:	PRODUCTS		REACTAN	NTS	
m)	NH ₃ , the strong an	d such as HCl is added to nmonia smell is eliminate uilibrium constant for this	d. Write the	K = [NH ₄ +]/([NH3][H3O+])	
n)	Circle one of the f	ollowing combinations th	at will NOT produ	uce a buffer.		
NI	$H_3 + HNO_3$	$NH_4^+ + NH_3$	NH₄Cl + HCl		NH ₄ ⁺ + NaOH	
o)	If a plot of $\frac{1}{[A]_t}$	versus time yields a straig	ht line then the rea	action is	second	
	order in A.					
p)		in the chemical reaction b ant K for this reaction is <		rongest acid,	, given that the	
	$H_2PO_4^-$ (a	$(aq) + HNO_2(aq)$	\leftrightarrows H_3PO_4	(aq) +	NO_2^- (aq)	
q)	Increasing the tem	perature of an exothermic	e reaction will:			
i) Incr	ease the yield and ra	ate	ii) Decrease the	yield and inc	rease the rate	
iii) Inc	crease the yield and	decrease the rate	iv) Decrease the	yield and rat	te	
r)	How many orbital	s make up the 3d sublevel	1?5_			
s)	How many nodal p	planes are in the d orbital?	?2			

Question 2.

a) A buffer that contains 0.150 mol/L NaF and 0.210 mol/L HF has a pH of 3.33. What is the pKa of HF? (2 marks)

$$pH = pKa + log[F-]/[HF]$$

$$pKa = pH - log[F-]/[HF] = 3.33 - log(0.150)/(.210) = 3.48$$

$$pKa = \underline{3.48}$$

b) If 35.00 mL of a 0.150 mol/L solution of HF is titrated with 0.1000 mol/L NaOH, what volume of this NaOH solution will be required to reach the equivalence point? (3 marks)

$$n_{HF} = (0.150 \text{ M})(0.035 \text{ L}) = 0.0525 \text{ mol} = n_{OH}.$$

 $V_{OH} = n_{OH}/c_{OH} = 0.0525 \text{ mol}/0.1000 \text{ M} = 0.525 \text{ L}$

Answer: <u>52.5 mL</u>

c) What will be the pH of the solution at the equivalence point? (5 marks)

$$[F-] = n_F/(V_{HF} + V_{OH}) = 0.00525 \text{ mol}/(0.0525 + 0.035)L = 0.06 \text{ M}$$

$$Kb = Kw/Ka = 10^{-14}/10^{-3.48} = 3.02 \times 10^{-11}$$

	F- +	H_2O	\leftrightarrows	HF	+	OH-
Initial	0.06 M			0		0
Change	-x			X		X
Equilibrium	0.06 - x			X		X

Since $[F]_{initial}/Kb >> 400$, therefore $[F-]_{equilibrium} \sim 0.06 M$.

$$Kb = [HF][OH-]/[F-] = x^2/0.06$$
 $x = (Kb*0.06)^{0.5} = 1.35 \times 10^{-6}$

$$pOH = -log(1.35 \times 10^{-6}) = 5.87$$

$$pH = pKw - pOH = 14 - 5.87 = 8.13$$

Question 3.

Ammonium carbamate (NH₂COONH₄) is a salt of carbamic acid that is found in the blood and urine of mammals. At 250° C $Kc = 1.58 \times 10^{-8}$ for the following equilibrium

$$NH_2COONH_4(s) \rightleftharpoons 2 NH_3(g) + CO_2(g)$$

a) If 7.80 g of ammonium carbamate is put into a 0.500 L evacuated container, what is the total pressure at equilibrium? (6 marks)

	2 NH_3	CO_2
Initial	0	0
Change	2x	X
Equilibrium	2x	\boldsymbol{x}

$$Kc = [NH_3]^2[CO_2] = (2x)^2(x) = 4x^3$$

$$x = (Kc/4)^{1/3} = 1.58 \times 10^{-3} \text{ M} = c_{\text{CO}2}$$

$$p_{\text{CO2}} = cRT = (1.58 \text{ x } 10^{-3} \text{ mol/L})(0.08206 \text{ atm L /K mol})(523 \text{ K}) = 0.0679 \text{ atm}$$

$$p_{\text{Total}} = p_{\text{CO2}} + p_{\text{NH3}} = 3p_{\text{CO2}} = 3(0.0679 \text{ atm}) = 0.206 \text{ atm}$$

Answer: 0.206 atm

b) What is the percent yield for this reaction? (3 marks)

 $c_{\text{carbamate}} = m/MV = 7.80 \text{ g/}(78.05 \text{ g/mol})(0.500 \text{ L}) = 0.200 \text{ mol/L} = \text{theoretical yield of CO}_2$

% yield = actual yield/theoretical yield x $100\% = 1.58 \times 10^{-3} \text{ M} / 0.200 \text{ M} \times 100\% = 0.79\%$

Answer: 0.79%

c) If this reaction had been done under constant pressure conditions, would the work be positive, negative or zero? (1 mark)

The gas that is produce must expand to fill the container therefore volume is increasing Since volume is increasing, $(\Delta V > 0)$ and $w = -p\Delta V$, therefore work is negative.

Question 4.

a) An electron in the n=5 level of an H atom emits a photon wavelength 1281 nm. Calculate the energy level to which it moves. (5 marks)

$$\Delta E = E_f - E_i = -R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = \frac{hc}{\lambda}$$

$$= \frac{\left(6.62608 \times 10^{-34} \text{ J s} \right) \left(2.9979 \times 10^8 \text{ m/s} \right)}{\left(1281 \text{ nm} \right) \left(10^{-9} \text{ m/nm} \right)}$$

$$= 1.55 \times 10^{-19} \text{ J}$$

$$\frac{1}{n_f^2} = \frac{1}{n_i^2} - \frac{\Delta E}{R_H} = \frac{1}{5^2} - \frac{1.55 \times 10^{-19} \text{ J}}{-2.179 \times 10^{-18} \text{ J}} = 0.11113$$

$$n_f = 3$$

Answer:	3
Allowel.	<u>J</u>

b) i) Draw a partial (valence–shell) orbital diagram for [Ar] $3d^8 4s^2$, and; ii) state the element that the neutral species corresponds to. (3 marks)

- ii) Nickel
 - c) Draw Lewis structures for three resonance forms of CO₃²⁻. (2 marks)

Question 5.

The toxic gas phosgene is prepared by the reaction:

$$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$$

A kinetics study of this reaction gave the following data:

Experiment	Initial rate (mol/L•s)	Initial [CO] (mol/L)	Initial [Cl ₂] (mol/L)
1	1.29 x 10 ⁻²⁹	1.00	0.100
2	1.33 x 10 ⁻³⁰	0.100	0.100
3	1.30 x 10 ⁻²⁹	0.100	1.00

a) Using the data provided, write the rate law for this reaction. (3 marks)

$$\frac{\text{Rate 1}}{\text{Rate 2}} = \frac{\left[\text{CO}\right]_{1}^{m} \left[\text{Cl}_{2}\right]_{1}^{n}}{\left[\text{CO}\right]_{2}^{m} \left[\text{Cl}_{2}\right]_{2}^{n}} \qquad \frac{\text{Rate 1}}{\text{Rate 2}} = \frac{\left[\text{CO}\right]_{1}^{m} \left[\text{Cl}_{2}\right]_{1}^{n}}{\left[\text{CO}\right]_{2}^{m} \left[\text{Cl}_{2}\right]_{2}^{n}}$$

$$\frac{1.29 \times 10^{-29}}{1.33 \times 10^{-30}} = \left(\frac{1.00}{0.100}\right)^{m} \qquad \frac{1.33 \times 10^{-30}}{1.30 \times 10^{-29}} = \left(\frac{0.100}{1.00}\right)^{n}$$

$$10 = 10^{m} \text{ Therefore m = 1}$$

$$10 = 10^{n} \text{ Therefore n = 1}$$

Answer: $Rate = k[CO][Cl_2]$

b) What is the rate constant (including units) for this reaction? (2 marks)

 $\begin{aligned} &Rate = k[CO][Cl_2] \\ &k = rate/[CO][Cl_2] = 1.29 \times 10^{-29} \ mol/L \bullet s/(1.00 \ mol/L) (0.100 \ mol/L) = 1.3 \ \times \ 10^{-28} \ L/mol \bullet s \end{aligned}$

Answer: $1.3 \times 10^{-28} \text{ L/mol} \cdot \text{s}$

c) Adsorption of Cl₂ gas to a platinum surface can reduce the activation energy of this reaction by 16.5 kJ/mol at 50°C. How much faster will the reaction go in the presence of this catalyst? (3 marks)

$$\frac{k_1}{k_2} = \frac{Ae^{\frac{-E_{a_1}}{RT}}}{Ae^{\frac{-E_{a_2}}{RT}}} = e^{-(Ea_1 - Ea_2)RT} = e^{-\frac{(-16500 \text{ J/mol})}{(8.314 \text{ J/K/mol})(273+50)K}} = 466$$

Answer: 466 times faster

Question 6.

When 50.0 mL of 0.250 mol/L Ba(OH)₂ is mixed with 45 mL of 0.380 mol/L HCl in a coffee-cup calorimeter, the heat of the solution is 1.850 kJ.

- a) Is this reaction exothermic or endothermic? (1 mark) Exothermic
 - b) What is ΔT for the solution in reaction? (3 marks)

$$q_{\text{solution}} = m_{\text{H}_2\text{O}} c_{\text{H}_2\text{O}} \Delta T$$

$$\Delta T = \frac{q_{\text{solution}}}{m_{\text{H}_2\text{O}} c_{\text{H}_2\text{O}}} = \frac{1850 \text{ J}}{(95 \text{ g})(4.184 \text{ J/g/°C})} = 4.65^{\circ} \text{C}$$

Answer: <u>4.65°C</u>

c) What is the ΔH of the reaction in kJ/mol of H₂O formed? (6 marks)

$$Ba(OH)_2(aq) + 2 HCl(aq) \rightarrow BaCl2(aq) + 2 H_2O(l)$$

 $n_{\text{Ba(OH)2}} = cV = (0.250 \text{ M})(0.050 \text{ L})$ $n_{\text{HCl}} = cV = (0.380 \text{ M})(0.045 \text{ L})$ $= 0.0125 \text{ mol} = 0.5n_{\text{H2O}}$ $= 0.0171 \text{ mol} = n_{\text{H2O}}$

Therefore HCl is limiting reagent.

 $\Delta H_{\text{reaction}} = -\Delta H_{\text{solution}} = -1.850 \text{ kJ}$

 $\Delta H_{reaction}$ / mol H₂O = -1.850 kJ / 0.0171 mol H₂O formed = -108 kJ/mol H₂O formed

Question 7.

A steel tank at 21°C has a volume of 438 L and is filled with 1.257 kg of Ar. However, the valve was not completely closed, giving rise to a slow leak until it was discovered 6 hours later. According to the pressure gauge, the new pressure is 1.39 bar.

a) What mass of Ar was lost from the tank? (3 marks)

$$m_{lost} = m_{initial} - m_{final} = m_{initial} - n_{final} M_{Ar} = m_{initial} - \frac{pV}{RT} M_{Ar}$$

$$= 1.257 \text{ kg} (10^{-3} \text{ g/kg}) - \frac{(1.39 \text{ bar})(438 \text{ L})(39.95 \text{ g/mol})}{(0.08314 \text{ bar L/K/mol})(294 \text{ K})}$$

$$= 1257 \text{ g} - 995 \text{ g} = 262 \text{ g}$$

Answer: 262 g

b) How many atoms of argon were lost in a)? (1 mark)

$$N_{\text{Ar}} = nN_A = \frac{m_{\text{Ar}}}{M_{\text{Ar}}}N_A = \frac{262 \text{ g}}{39.95 \text{ g/mol}} \times 6.023 \times 10^{23} \text{ molecules/mol} = 3.95 \times 10^{24} \text{ molecules}$$

c) Calculate the rate of effusion. (1 mark)

$$rate = \frac{\text{Ar lost}}{\text{time}} = \frac{3.95 \times 10^{24} \text{ molecules}}{6 \text{ hours}} = 6.58 \times 10^{23} \text{ molecules/hour}$$

d) If the tank had contained N_2 in place of Ar, how many grams of N_2 would have been lost from the tank in this 6 hour period? (5 marks)

$$\frac{\text{rate N}_2}{\text{rate Ar}} = \sqrt{\frac{M_{\text{Ar}}}{M_{\text{N}_2}}}$$

rate N₂ = rate Ar
$$\sqrt{\frac{M_{\rm Ar}}{M_{\rm N_2}}}$$
 = 6.58×10²³ molecules/hour × $\sqrt{\frac{39.95}{28.00}}$ = 7.86×10²⁴ molecules/hour

In 6 hours: N_2 lost = rate $N_2 \times \text{time} = 7.86 \times 10^{23}$ molecules/hour $\times 6$ hours = 4.71×10^{24} molecules

mass N₂ lost =
$$nM = \frac{N_{\text{N}_2} M_{\text{N}_2}}{N_A} = \frac{(4.71 \times 10^{24} \text{ molecules})(28.00 \text{ g/mol})}{6.022 \times 10^{23} \text{ molecules/mol}} = 219 \text{ g}$$

Answer:	<u>219 g</u>
---------	--------------

Question 8.

The skeleton ionic equation for the reaction between KMnO₄ and K₂SO₃ is:

$$MnO_4^{-}(aq) + SO_3^{2-}(aq) \rightarrow MnO_2(s) + SO_4^{2-}(aq)$$

- a) Which <u>compound</u> is the reducing agent in the reaction? (Do not just give the element.) (1 mark) SO_3^{2-}
- b) The solid product of this reaction is an oxide of manganese. What is the mass percent of manganese in this product? (1 mark)

$$mass\% = \frac{M_{\text{Mn}}}{M_{\text{MnO}_2}} \times 100\% = \frac{54.94 \text{ g/mol}}{54.94 \text{ g/mol} + 2(16.00 \text{ g/mol})} \times 100\% = 63.2\%$$

c) Write the balanced molecular equation for this reaction in basic solution. (8 marks)

$$H_2O(l) + 3 SO_3^{2-}(aq) + 2 MnO_4^{-}(aq) \rightarrow 3 SO_4^{2-}(aq) + 2 MnO_2(s) + 2 OH-(aq)$$

Constants and Conversion Factors

1 mmHg = 1 torr	760 mmHg = 1 atm	1 atm = 101.325 kPa	
$1 \text{ cm}^3 = 1 \text{ mL}$	$1 \text{ dm}^3 = 1 \text{ L}$	= 1000 mL	$1 \text{ m}^3 = 1000 \text{ L}$
1 cal = 4.184 J			
Avogadro's Numb	er N	$6.022 \times 10^{23} \text{mol}^{-1}$	
Atomic mass unit	u	1.66054x10 ⁻²⁷ kg	
Gas constant	R	8.31451 J·K ⁻¹ ·mol ⁻¹	
	R	$0.08206 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{m}$	
	R	$8.31451 \text{ m}^3 \text{ Pa} \cdot \text{K}^{-1} \cdot \text{m}$	ol ⁻¹
	R	$0.0831451 \text{ bar L} \cdot \text{K}^{-1}$	mol ⁻¹
Planck's constant	h	6.62608×10^{-34}	
Speed of Light	c	2.99792458×10^8 1	$\mathbf{m} \cdot \mathbf{s}^{-1}$
Rydberg constant	R_H	$2.18 \times 10^{-18} \text{ J}$	

Data For Water

Density = 1.00 g/mL (at 25° C)	$K_W = 1.0 \times 10^{-14}$	
$c = 4.184 \text{ J g}^{-1} \text{ K}^{-1} \text{ (liquid)}$	$\Delta H^{\circ}_{fus} = 6.02 \text{ kJ mol}^{-1}$	$\Delta H^{\circ}_{vap} = 40.7 \text{ kJ mol}^{-1}$

Heat Capacity Data

graphite: 8.52 J/mol/K SiO₂: 44.4 J/mol/K gold: 25.4 J/mol/K aluminum: 24.4 J/mol/K

Post-Midterm 2 Equations

$$pH = pK_a + log \frac{A-1}{HA}$$

$$c = \lambda \times v \qquad \Delta E = nhv$$

$$c = \lambda \times v$$

$$\Delta E = nhv$$

$$\lambda = \frac{h}{mv}$$

$$E_n = -\frac{R_H}{n^2}$$

Midterm 2 Equations

$$\Delta_r H^o = \sum_f m \Delta_f H^o \text{ (products)} - \sum_f n \Delta_f H^o \text{ (reactants)}$$

$$\Delta_r H^o = \sum_f m \text{BE} \text{ (reactants)} - \sum_f n \text{BE} \text{ (products)}$$

$$\Delta_r H^o = \sum m BE(reactants) - \sum n BE(products)$$

$$q = c \times m \times \Delta T$$

$$Rate = \frac{1}{v_x} \frac{\Delta[X]}{\Delta t}$$

Rate =
$$k[A]^m[B]^n \dots$$

$$k = Ae^{-\frac{E_a}{RT}}$$

$$\left[\mathbf{A}\right]_{t} - \left[\mathbf{A}\right]_{o} = -kt$$

$$\ln \frac{\left[A\right]_o}{\left[A\right]_t} = kt$$

$$\frac{1}{\left[A\right]_{t}} - \frac{1}{\left[A\right]_{0}} = kt$$

$$\ln\left(\frac{k_2}{k_1}\right) = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$K = K_c \left(RT \right)^{\Delta n \left(\text{gas} \right)}$$

$$\ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta_r H^o}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$pH = -log[H_3O^+]$$

$$pOH = -\log[OH^{-}]$$

$$pH + pOH = 14$$

$$K_a \times K_b = K_w$$

$$pK_a = -\log K_a$$

$$pK_b = -\log K_b$$

Midterm 1 Equations

$$T(\text{in K}) = T(\text{in }^{\circ}\text{C}) + 273.15 \text{ K}$$

$$T(\text{in K}) = T(\text{in }^{\circ}\text{C}) + 273.15 \text{ K}$$

$$c(\operatorname{mol}/\operatorname{L}) = \frac{n}{V}$$

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

$$p_A = X_A \times p_T$$

$$E_K = \frac{1}{2}m\mathbf{v}^2$$

$$\left(p + \frac{n^2 a}{V^2}\right) \left(V - nb\right) = nRT$$

$$\Delta H = \Delta U + p \Delta V$$

$$n = \frac{m}{M}$$

$$m(\text{mol}/kg) = \frac{n_{solute}}{m_{galaxies}}$$

$$pV = nRT$$

$$X_A = \frac{n_A}{n_T}$$

$$u_{rms} = \sqrt{\frac{3RT}{M}}$$

$$w = -p\Delta V$$

% Yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}}$$

$$c_1 V_1 = c_2 V_2 = n$$

$$p_T = p_1 + p_2 + p_3 + \dots$$

$$d = \frac{m}{V} = \frac{p \cdot MM}{RT}$$

$$\frac{Rate\ A}{Rate\ B} = \sqrt{\frac{M_B}{M_A}}$$

$$\Delta U = U_{final} - U_{initial} = q + w$$