TD 6

Exercice 1 [Zéros d'un produit] Soit f_n une suite de fonctions holomorphes sur un ouvert U de \mathbb{C} . On dit que le produit $\prod f_n$ converge normalement sur le compact $K \subset U$ si $f_n \to 1$ uniformément sur K, et si la suite $a_n = f_n - 1$ converge normalement sur K.

Montrer que si $\prod_n f_n$ converge normalement sur tout compact de U, alors la limite $f = \prod_n f_n$ est holomorphe dans U, et l'ensemble de ses zéros est la réunion des ensembles des zéros des f_n , la multiplicité de chaque zéro étant la somme de ses multiplicités comme zéro pour les f_n .

Exercice 2 Soit $(\lambda_k)_{k\geq 1}$ une suite de nombres complexes. On se demande s'il existe une fonction entière sur \mathbb{C} dont les zéros sont exactement les λ_k , comptés avec multiplicité.

- 1. Que dire si la suite (λ_k) est bornée? Si $|\lambda_k| \not\to +\infty$?
- 2. On suppose que tous les λ_k sont non nuls, et que $\sum 1/|\lambda_k|$ converge. Montrer que $f(z) = \prod_{k=1}^{\infty} (1-z/\lambda_k)$ résoud le problème.
- 3. On suppose maintenant que tous les λ_k sont non nuls, et $|\lambda_k| \to +\infty$. On pose $E_k(z) = \exp(z/\lambda_k + z^2/2\lambda_k^2 + \cdots + z^k/k\lambda_k^k)$. Montrer que la suite des fonctions $f_k(z) = (1-z/\lambda_k)E_k(z)$ vérifie les conditions de l'exercice précédent. En déduire que la fonction $f(z) = \prod_{k=1}^{\infty} (1-z/\lambda_k)E_k(z)$ résoud le problème.
- 4. Donner une solution du problème quand $|\lambda_k| \to +\infty$.

On suppose donnée une solution f du problème lorsque $|\lambda_k| \to +\infty$. Que dire de la singularité de f en ∞ ?

Exercice 3 [La fonction ζ : définition] Montrer que la série $\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s}$ converge pour tout $s \in \mathbb{C}$ tel que Re(s) > 1. Montrer que cette formule définit une fonction analytique sur le demi-plan P = Re(s) > 1.

Que vaut $\lim_{s\to 1} \zeta(s)$? $\lim_{s\to 1} (s-1)\zeta(s)$?

Exercice 4 Montrer que sur le demi-plan P = Re(s) > 1, on a

$$\zeta(s) = \prod_{p \text{ premier}} (1 - p^{-s})^{-1}$$

Montrer que ζ ne s'annule pas sur P.

Exercice 5 [Prolongement analytique] Montrer que pour tout $s \in P$, on a $n^{-s}\Gamma(s) = \int_0^{+\infty} e^{-nt} t^{s-1} dt$.

En déduire que $\Gamma(s)\zeta(s)=\int_0^\infty \frac{t^{s-1}}{e^t-1}dt$. Soit γ le contour suivant (avec $r<\pi$):

On définit la fonction f par $f(s) = \int_{\gamma} \frac{(-z)^s}{e^z - 1} dz$ (on a posé $(-z)^s = e^{s \log(-z)}$, log étant la détermination usuelle du logarithme sur $\mathbb{C} \setminus \mathbb{R}_-$). Montrer que f(s) est bien définie pour tout $s \in \mathbb{C}$ et que f est une fonction entière.

Vérifier que pour tout $s \in P$ on a $f(s) = (e^{i\pi s} - e^{-i\pi s}) \int_0^{+\infty} \frac{t^{s-1}}{e^t - 1} dt$. Montrer que pour tout $s \in P$ on a $\zeta(s) = \frac{1}{\Gamma(s)} \frac{1}{2i \sin(\pi s)} f(s) = \frac{\Gamma(1-s)}{2i\pi} f(s)$. En déduire que ζ se prolonge en une fonction holomorphe sur $\mathbb{C} \setminus \{1\}$, qui a un pôle simple en 1.