

Automata and Logic Engineering 1 (ALE1) Feb 2019

Assignments

1: parse + tree

Due Feb 21 at 12:45pm

2: truth table + hash code

Due Feb 28 at 12:45pm

3: simplify

Due Mar 14 at 12:45pm

4: normalize

Due Mar 21 at 12:45pm

5: nandify

Due Mar 31 at 11:59pm

ALE1 (so far)

 In ALE1, a sentence will be denoted as letter, e.g.:

A, B, p, q, etc.

Logical operators

Logic notation	Operator	ASCII (prefix)
¬ A	Negation	~(A)
$A \Rightarrow B$	Implication	>(A,B)
A ⇔ B	Biimplication	=(A,B)
AΛB	Conjunction	&(A,B)
AVB	Disjunction	I(A,B)

ALE1 (so far)

$$=(>(A,B),C))$$

Variables: A,B,C

Fig.1: Graphical representation

=(>(A,B),C))

Variables: A,B,C

Α	В	C	=(>(A,B),C))
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	~(A)
0	1
1	1

Α	В	>(A,B)
0	0	1
0	1	1
1	0	0
1	1	1

Α	В	&(A,B)
0	0	0
0	1	0
1	0	0
⟨ 1	1	1

Logic notation	ASCII (prefix)
¬ A	~(A)
$A \Rightarrow B$	>(A,B)
$A \Leftrightarrow B$	=(A,B)
AΛB	&(A,B)
AVB	I(A,B)

Α	В	=(A,B)
0	0	1
0	1	0
1	0	0
1	1	1

Α	В	l(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

- Filling up the truth table with 0/1s
 - order variables alphabetically
 - e.g. =(>(A,Z),B): A, B, Z
 - 2^{#variables} rows
 - columns with 0/1 grouped as multiples of power of 2 using the number of variables in descending order

 columns with 0/1 grouped as multiples of power of 2 using the number of variables in descending order

Α	~(A)	
0	1	
1	0	

```
#variables = 1

#rows = 2^{\text{#variables}}

#0/1s = 2^{\text{#variables}-1}
```

```
A B >(A,B)
0 0 1
0 1 1
1 0 0
1 1 1
```

#variables = 2
#rows =
$$2^{\text{#variables}}$$
 = 4
#0/1s = $2^{\text{#variables}-1}$
for A: $2^{\text{#variables}-1}$ = 2^{2-1} = 2
for B: $2^{\text{#variables}-1}$ = 2^{1-1} = 1

Α	В	C	result
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

#variables = 3
#rows =
$$2^{\text{#variables}}$$
 = 8
#0/1s = $2^{\text{#variables}-1}$
for A: $2^{\text{#variables}-1}$ = 2^{3-1} = 4
for B: $2^{\text{#variables}-1}$ = 2^{2-1} = 2
for C: $2^{\text{#variables}-1}$ = 2^{1-1} = 1

Hexadecimal number

=(>(A,B),C))

Variables: A,B,C

Α	В	C	=(>(A,B),C))
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Hexadecimal number

 Concatenate the digits in the last column and print them as a hexadecimal number

A	В	C	=(>(A,B),C))
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Read from bottom up

Hexadecimal

Group binary data in 4 digits and covert

e.g.
$$1001\ 1010 = 9A$$

Fig.1: Conversion binary to hexadecimal

Assignment 1

- Read course description for more info
- Deadline Assignment 2

28th February 12:45h!

