

Esercizi di Reti

Università di Verona Imbriani Paolo -VR500437 Professor Damiano Carra

December 12, 2024

Contents

1	Ese	rcizi in classe	3
	1.1	Esercizi su indirizzamento	3
		1.1.1 Esercizio 1	3
		1.1.2 Esercizio 2	3
		1.1.3 Esercizio 3	4
		1.1.4 Esercizio 4	4
	1.2	Esercizi su TCP	6
		1.2.1 Esercizio 1	6
		1.2.2 Esercizio 2	7
		1.2.3 Esercizio 3	7
		1.2.4 Esercizio 4	8
		1.2.4 List(1210 4	O
2	Ese	rcizi in preparazione all'esame	9
	2.1	Esercizio numero 2 24/9/2019	9
	2.2		11
	2.3	, , , , , , , , , , , , , , , , , , , ,	12
3	Ese	ercizi sul livello 2	13
	3.1	Esercizio su ALOHA	13
	3.2	Esercizio su CSMA persistente	13
	3.3		
		- ,	14

1 Esercizi in classe

1.1 Esercizi su indirizzamento

1.1.1 Esercizio 1

Qual'è l'indiizzo di rete se ho il seguente indirizzo IP?

Primo passo: tradurre in binario l'indirizzo e identificare i bit che appartengono al prefisso.

Secondo passo: azzerrare i bit del suffisso:

Scrivere la subnet mask con notazione decimale puntata:

1.1.2 Esercizio 2

All'insieme delle 3 LAN è stato assegnato il blocco:

Creare 3 sottoreti per le 3 LAN in modo che abbiano tutte lo stesso numero di hosts.

Primo passo:

Devo allungare il prefisso ma un singolo bit non è sufficiente, con 2 bit ho le seguenti combinazioni:

Ciascun blocco ha un numero di indirizzi pari a $2^6=64$. Uso 3 blocchi dei 4 creati per le 3 LAN, e l'ultimo rimane libero per utilizzi futuri.

1.1.3 Esercizio 3

Variante nello specifico \rightarrow LAN ha un numero doppio rispetto alle altre

Una di queste sottoreti andrà alla LAN1. Andiamo a scorporare ulteriormente il suffisso...

Da un blocco /24 (256 indirizzi ottengo:

- 1 blocco /25 (128 ind)
- 2 blocchi /26 (64 ind)

$$\begin{array}{c} \text{LAN1} \Longrightarrow 165.5.1.0/25 \\ \text{LAN2} \Longrightarrow 165.5.1.128/26 \\ \text{LAN3} \Longrightarrow 165.5.1.192/26 \end{array}$$

Altre soluzioni ugualmente valide dati i vincoli erano: dare a L1 0, L2 11, L3, 10 oppure dare L0, L2 10, L3 11 ecc.

1.1.4 Esercizio 4

Testo dell'esercizio. Si consideri la seguente rete suddivisa in 5 sottoreti:

Ci sono due indirizzi già assegnati alla rete:

- 101.75.79.255
- 101.75.80.0

Domande

- 1. Qual è il blocco **CIDR** più piccolo (con il minor numero di indirizzi) che contiene tali indirizzi?
- 2. Dato il blocco **CIDR** del blocco precedente, si creano 5 sottoreti con i seguenti vincoli:
 - LAN 1: deve essere una sottorete /21
 - LAN 2: deve ospitare fino a 1000 host
 - LAN 3: deve essere una sottorete /23
 - LAN 4: deve ospitare fino a 400 host
 - LAN 5: deve ospitare metà host rispetto al blocco iniziale

Prima domanda:

Per prima cosa dobbiamo trovare il prefisso CIDR che può includere entrambi questi indirizzi IP. Converto in binario i due indirizzi e considero solo i bit in comune:

La parte comune è lunga 19 bit. Quindi, il blocco CIDR più piccolo che contiene entrambi gli indirizzi è:

Seconda domanda:

1. La **prima LAN** ha bisogno di una sottorete /21. Per fare ciò basta allungare il prefisso di 2 bit.

In base alla preferenze o al bisogno si potrebbero scegliere le seguenti alternative reti:

2. La seconda LAN ha bisogno di 1000 host. Per indirizzare 1000 utenti abbiamo bisogno di 10 bit poiché 2¹⁰ = 1024. Quindi la rete sarà un /22. (Poiché se ho 32 bit totali e 10 devo riservarli per gli host, mi rimangono 22 bit per la sottorete.) Un tipo di configurazione che potrei scegliere per la sottorete potrebbe essere:

Ma ce ne sono molteplici per questo caso.

3. La **terza LAN** deve essere una sottorete /23. Anche qua ci basta allungare il prefisso di 1 bit.

- 4. Per la **quarta LAN** la procedura è la stessa della seconda LAN solo che in questo caso per indirizzare 400 host basterà riservare 9 bit $\rightarrow 2^9 = 512$.
- 5. Per la **quinta LAN** la procedura è la stessa della seconda LAN. In questo caso se il blocco iniziale doveva ospitare 2^{32-19} host, ovvero 8912 ora se dobbiamo ospitarne la metà ovvero 4096 dovremmo avere bisogno di una sottorete /20.

1.2 Esercizi su TCP

1.2.1 Esercizio 1

Un'applicazione A deve trasferire verso un'applicazione B 96000 byte. Si suppone che la connessioen sia già stata instaurata:

- MSS = 10000 byte
- $\bullet\,$ RCVWND = 320000 byte, costante per l'intero trasferimento dei dati
- SSTHRESH = RCVWND iniziale / 2
- RTT = costante, pari 0,5 secondi
- RTO = 2RTT, raddoppia in caso di perdite sequenziali
- Down di rete (rete fuori uso in cui tutti i segmenti vengono persi)

$$t_1 = 3 \rightarrow t_2 = 3.5$$

$$t_3 = 7 \rightarrow t_4 = 7.5$$

Obiettivo: Valutare l'evoluzione temporale della cwnd fino a fine a trasmissione

$$\#$$
 segmenti da trasmettere $o rac{96000}{1000} = 96$ segmenti RCVWND iniziale $= rac{320000byte}{1000} o 32$ segmenti SSTHRESH $= 16$ segmenti cwnd $= 1$ segmento

1.2.2 Esercizio 2

Un'applicazione A deve trasferire 46500 byte verso un'applicazione B. Si suppone che la connessione sia già stata instaurata:

- MSS = 1500 byte
- \bullet RCVWND (iniziale) = 24000 byte e rimane costante
- STT (iniziale) = RCVWND / 2
- RTT = 0.5 secondi, costante per tutto il tempo di trasmissione
- RTO = 2RTT (raddoppia in caso di perdite sequenziali)
- Down di rete (rete fuori uso in cui tutti i segmenti vengono persi)

$$D_1 = [1.5 \to 3.5]$$

$$D_2 = [7 \rightarrow 7.5]$$

Quindi calcoliamo il numero di segmenti, la RCVWND iniziale e la SSTHRESH iniziale:

- # segmenti = $\frac{46500}{1500}$ = 31
- RCVWND = $\frac{24000}{1500}$ = 16 segmenti
- \bullet STT = 8 segmenti

1.2.3 Esercizio 3

Appl A \rightarrow 104000 byte \rightarrow Appl B

- MSS = 1200 byte
- RCVWND = 24000 byte (costante)
- STT = RCWND
- RTT = 0.5 secondi
- RTO = 2RTT (raddoppia in caso di perdite sequenziali)
- Down di Rete (rete fuori uso in cui tutti i segmenti vengono persi)

$$D_1 = [3.5 \to 4]$$

$$D_2 = [6.5 \rightarrow 10.5]$$

- # segmenti = $\frac{104000}{1200}$ = 87
- RCVWND = $\frac{24000}{1200}$ = 20 segmenti = 20 STT

$$SEG = 1 + 2 + 4 + 8 + 16 + 20 + 20 + 1 + 2 + 4 + 8 + 1 = 87$$

1.2.4 Esercizio 4

Un'applicazione A deve trasferire 104400 byte verso un'applicazione B. Si suppone che la connessione sia già stata instaurata:

- MSS = 1200 byte
- RCVWND (iniziale) = 9600 byte e rimane costante
- \bullet A partire dall'istante $t_a > 4$ la destinazione annuncia una RCWND = 14400 byte
- \bullet A partire dall'istante $t_b>9$ la destinazione annuncia una RCWND = 7200 byte
- STT (iniziale) = RCVWND
- RTT = 1 secondo, costante per tutto il tempo di trasmissione
- RTO = 2RTT (raddoppia in caso di perdite sequenziali)
- Down di rete (rete fuori uso in cui tutti i segmenti vengono persi)

$$D_1 = [11.5 \rightarrow 12.5]$$

- # segmenti = $\frac{104400}{1200}$ = 87
- RCVWND = $\frac{9600}{1200}$ = 8 segmenti = 8 = STT
- RCVWND > $4 = \frac{14400}{1200} = 12$
- RCVWND > $9 = \frac{7200}{1200} = 6$

$$SEG = 1 + 2 + 4 + 8 + 8 + 9 + 10 + 11 + 12 + 6 + 6 + 6 + 6 + 6 + 1 + 2 + 3 = 87$$

$$CWND finale = CWNDold = \frac{\# ACK}{CWND_{old}} = 3 + \frac{1}{3}$$

finisce in t = 16

2 Esercizi in preparazione all'esame

2.1 Esercizio numero 2 24/9/2019

4 LAN

- LAN1 130 host
- LAN2 270
- LAN 3 65
- LAN 4 35

LAN1 contiene l'indirizzo 46.144.141.41

- Blocco CIDR totale
- Indirizzi di rete per le 4 LAN

Ora, cominciamo a calcolare quanti bit servono per ogni LAN e per indirizzare ogni host

- LAN 1 # host = 130 \rightarrow 130 < 28 \rightarrow 8 bit
- LAN 2 # host = 270 \rightarrow 270 < 29 \rightarrow 9 bit

- LAN 3 # host = $65 \to 65 < 2^7 \to 7$ bit
- LAN 4 # host = $35 \rightarrow 35 < 2^6 \rightarrow 6$ bit
- TOTALE # host = $500 \rightarrow 2^9 < 500 < 2^9 \rightarrow 9$ bit

Sappiamo che il blocco CIDR totale è 9 bit. Utilizzando l'indirizzo di rete della LAN1 possiamo calcolare gli indirizzi di rete per le altre LAN. Blocco CIDR totale:

Per la **LAN 2**, quella che contiene più host, abbiamo bisogno di 9 bit. Quindi, il blocco CIDR per la LAN 2 sarà:

$$46.144. \overbrace{1000110 \ 10}^{142} \overbrace{000000000}^{0} \rightarrow 46.144.142.0/23$$

Per la ${\bf LAN~1}$ abbiamo bisogno di 8 bit. Quindi, il blocco CIDR per la LAN 1 sarà:

$$46.144. 100011 01 00000000 \rightarrow 46.144.141.0/24$$

Per la ${\bf LAN~3}$ abbiamo bisogno di 7 bit. Quindi, il blocco CIDR per la LAN 3 sarà:

Per la **LAN 4** abbiamo bisogno di 6 bit. In tutto questo procedimento abbiamo allungato il prefisso praticamente ad ogni LAN. Così abbiamo ottimizzato l'uso degli indirizzi IP.

2.2 Esercizio numero 3 27/6/2019 (TCP)

Applicazione A a B 77500 byte

- MSS 1250 byte
- RCVWND t = 0 10000 byte
- $\bullet\,$ t
 $\dot{\iota}\,$ 4 destinazione annuncia 17500 byte
- $\bullet\,$ t
 $\dot{\epsilon}$ 8 destinazione annuncia 12500 byte
- STT = RCWND
- RTT = 1 sec
- RTO = 2RTT
- $\bullet\,$ DOWN DI RETE: [8, 10] e da [13.5, 14.5]

Quindi:

- $\bullet~\#$ segmenti da mandare: 62 segmenti
- RCWND = 8 = STT
- t > 4 RCWND = 14
- t > 8 RCWND = 10

$$SEG = 1 + 2 + 4 + 8 + 8 + 9 + 10 + 11 + \cancel{12} + 1 + 2 + 4 + \cancel{6} + 1 + \cancel{2} = 62$$

$$CWND_{finale} = CWND_{old} + \#ACK = 3$$

2.3 Esercizio 2 02/07/2020

Tre lan con i seguenti vincoli sul numero di host:

• LAN1: 400

• LAN2: 300

• LAN3: 1200

La LAN1 contiene un host con indirizzo 178.242.85.168

- Blocco CIDR più piccolo
- Indirizzi di rete delle 3 LAN
- Tabella di Routing del Router A considerando come metrica il numero di Hop e assumendo che il router X abbia annunciato di raggiungere tutti gli host su internet con 5 hop

Ora vediamo quanti bit ci servono per indirizzare l'intera rete:

- LAN 1 # host = $400 \rightarrow 400 < 2^9 \rightarrow 9$ bit
- LAN 2 # host = $300 \rightarrow 300 < 2^9 \rightarrow 9$ bit
- LAN 3 # host = $1200 \rightarrow 1200 < 2^{10} \rightarrow 10$ bit
- TOTALE # host = 1900 \rightarrow 29 < 1900 < 2¹² \rightarrow 12 bit (11 bit non sarebbero abbastanza)

Sappiamo che il blocco CIDR totale è 12 bit. Utilizzando l'indirizzo di rete della LAN1 possiamo calcolare gli indirizzi di rete per le altre LAN. Blocco CIDR totale:

Per la LAN 1, abbiamo bisogno di 9 bit. Quindi, il blocco CIDR per la LAN 1 sarà (seguendo le indicazioni date dal testo dell'esercizio dove la LAN1 contiene l'indirizzo 178.242.85.156):

Per la ${\bf LAN}$ 3 abbiamo bisogno di 11 bit. Quindi, il blocco CIDR per la LAN 3 sarà:

Per la ${\bf LAN}$ 2 abbiamo bisogno di 9 bit. Quindi, il blocco CIDR per la LAN 2 sarà:

La tabella di routing del ROUTER A:

Destinazione	Next Hop	\mathbf{Costo}
LAN1	diretto	1
LAN2	diretto	1
LAN3	B	2
Internet	X	6

3 Esercizi sul livello 2

Esercizi su algoritmi di accesso al mezzo condiviso (Aloha, CSMA).

Data una serie di trame generate dalle stazioni determinare l'evoluzione della trasmissione. Osservazione importante: il generatore di numeri casuali che viene utilizzato negli esercizi in realtà è pseudocasuale, il generatore di numeri casuali che utilizzeremo è una versione semplificata che non garantisce le proprietà statistiche di uniformità del campione. La procedura è la seguente: Si usano le cifre che compongono l'istante di inizio trasmissione, si sommano, si moltiplicano per il numero di collisioni consecutive e si aggiunge il tempo di Trama

Esempio

Trama trasmessa a t = 512ms, ho già subito una collisione (questo è il secondo tenativo di trasmissione) e il tempo di trama è T = 10ms.

$$z \rightarrow ((5+1+2)\cdot 2) + 10 = 26$$

3.1 Esercizio su ALOHA

3 stazioni collegate d
 aun mezzo condiviso, $\tau=0$ che generano le seguenti trame:

- $A \rightarrow t_A = 410ms$
- $B \rightarrow t_B = 418ms$
- $C \rightarrow t_C = 454ms$

di cui la velocità di trasmissione $v=2,5\frac{Mbit}{s}$ e lunghezza delle trame L=3750 byte. Tempo di trama $T=\frac{L}{v}$, **Determinare l'evoluzione della trasmissione**: (Guarda OneNote per il continuo)

3.2 Esercizio su CSMA persistente

- $v=2,5\frac{Mbit}{s}$
- L = 3750 byte
- $T = \frac{L}{v} = 12ms$

Per le trame:

- $A \rightarrow 2$ trame, $t_A = 225ms$ e $t_{A2} = 240ms$
- $B \rightarrow 1$ trama, $t_B = 228ms$

3.3 Esercizio con Bridge (Switch a 2 porte)

In questi esercizi viene sempre riportato il comportamento di Bridge. Anche il Bridge ha un processo di "Store and Forward", prima memorizza completamente la trama sulla sua memoria interna e gestisce la trasmissione come se fosse generata dal bridge in quell'istante.

Il comportamento delle due porte del Bridge sono indipendenti. Quindi ci possono essere trasmissioni contemporaneamente nel bridge.

Esempio con ALOHA

$$\tau_1 = \tau_2 = \varnothing$$

$$v_1 = v_2 = 1, 6\frac{Mbit}{s}$$

$$L = 800 byte$$

 $A: t_{A1} = 216ms, \ t_{A2} = 256ms$ entrambe dirette a B

 $B: t_{B1} = 233ms$ diretta ad A

 $C: t_{C1} = 219ms$ diretta ad A

Calcoliamo il tempo della trama:

$$T = \frac{L}{v} = \frac{800 \cdot 8bit}{1.6 \cdot 10^6 \frac{bit}{s}} = 4ms$$

$3.3.1 \quad 24/09/2019 \text{ Esercizio 3 d'esame}$

- Vi è una stazione per ogni segmento di rete
- Il protocollo utilizzato è CSMA Persistent
- $\tau_1 = 1ms$ e $\tau_2 = 2ms$
- L = 1500 byte
- $v = 1, 5 \frac{Mbit}{s}$
- $A: t_{A1} = 713ms, t_{A2} = 715ms$ entrambe dirette a B
- $B: t_{B1} = 719ms, t_{B2} = 730ms$ entrambe dirette a A