

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年10月 7日
Date of Application:

出願番号 特願2003-348873
Application Number:

[ST. 10/C] : [JP2003-348873]

出願人 TDK株式会社
Applicant(s):

2004年 1月 13日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
 【整理番号】 99P06140
 【提出日】 平成15年10月 7日
 【あて先】 特許庁長官 殿
 【国際特許分類】 H01F 10/08
 【発明者】
 【住所又は居所】 東京都中央区日本橋一丁目 13 番 1 号 TDK 株式会社内
 【氏名】 若山 勝彦
 【発明者】
 【住所又は居所】 東京都中央区日本橋一丁目 13 番 1 号 TDK 株式会社内
 【氏名】 橋本 康雄
 【発明者】
 【住所又は居所】 東京都中央区日本橋一丁目 13 番 1 号 TDK 株式会社内
 【氏名】 柿沼 朗
 【発明者】
 【住所又は居所】 東京都中央区日本橋一丁目 13 番 1 号 TDK 株式会社内
 【氏名】 長 勤
 【発明者】
 【住所又は居所】 東京都中央区日本橋一丁目 13 番 1 号 TDK 株式会社内
 【氏名】 飯島 康
 【発明者】
 【住所又は居所】 東京都中央区日本橋一丁目 13 番 1 号 TDK 株式会社内
 【氏名】 賀屋 雅詔
 【発明者】
 【住所又は居所】 東京都中央区日本橋一丁目 13 番 1 号 TDK 株式会社内
 【氏名】 田崎 和則
 【特許出願人】
 【識別番号】 000003067
 【氏名又は名称】 TDK 株式会社
 【代理人】
 【識別番号】 100100077
 【弁理士】
 【氏名又は名称】 大場 充
 【手数料の表示】
 【予納台帳番号】 085823
 【納付金額】 21,000円
 【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 図面 1
 【物件名】 要約書 1

【書類名】特許請求の範囲**【請求項 1】**

複数の軟磁性金属層と、複数の前記軟磁性金属層の間に介在する絶縁層とを積層させた積層軟磁性部材の製造方法であって、

前記絶縁層を形成する絶縁樹脂フィルム上に前記軟磁性金属層を形成することで軟磁性シートを得るシート生成工程と、

前記軟磁性シートを複数枚積層することで前記積層軟磁性部材を得る積層工程と、

前記シート生成工程で得られた前記軟磁性シートまたは前記積層工程で得られた前記積層軟磁性部材に対し、所定の張力を付与した状態で熱処理を施す熱処理工程と、
を有することを特徴とする積層軟磁性部材の製造方法。

【請求項 2】

前記所定の張力をT、前記絶縁樹脂フィルムの引張り強さを σ とすると、 $0.01\sigma \leq T < 0.1\sigma$ を満足することを特徴とする請求項1に記載の積層軟磁性部材の製造方法。

【請求項 3】

前記熱処理は、前記シート生成工程で得られた前記軟磁性シートまたは前記積層工程で得られた前記積層軟磁性部材を、所定温度に保持されたロールに接触させることにより行うことを特徴とする請求項1又は2に記載の積層軟磁性部材の製造方法。

【請求項 4】

前記熱処理は、少なくとも一方が所定温度に保持された1対のロールを用いて前記シート生成工程で得られた前記軟磁性シートまたは前記積層工程で得られた前記積層軟磁性部材を圧延することを特徴とする請求項1又は2に記載の積層軟磁性部材の製造方法。

【請求項 5】

複数の前記軟磁性シートを重ねた状態で前記圧延を行うことにより、前記積層軟磁性部材を得ることを特徴とする請求項4に記載の積層軟磁性部材の製造方法。

【請求項 6】

絶縁樹脂フィルム上に、軟磁性金属層が直接または間接的に形成された軟磁性シートの製造方法であって、

前記絶縁樹脂フィルム上に、軟磁性金属によるめっきを直接または間接的に施すことで前記軟磁性金属層を形成して前記軟磁性シートを得る工程と、

前記軟磁性シートに対し、所定の張力を付与した状態で熱処理を施す熱処理工程と、
を有することを特徴とする軟磁性シートの製造方法。

【請求項 7】

前記熱処理は、少なくとも一方が所定温度に保持された1対のロール間を、前記軟磁性シートを通過させるものであることを特徴とする請求項6に記載の軟磁性シートの製造方法。

【請求項 8】

前記軟磁性シートを得る工程では、前記絶縁樹脂フィルム上に金属下地層を形成した後、前記金属下地層上に前記軟磁性金属によるめっきを施すことを特徴とする請求項6又は7に記載の軟磁性シートの製造方法。

【書類名】明細書

【発明の名称】積層軟磁性部材の製造方法及び軟磁性シートの製造方法

【技術分野】

【0001】

本発明は、携帯電話等の電子機器に取り付けて使用することができる軟磁性部材の製造方法等に関する。

【背景技術】

【0002】

パソコンコンピュータ、携帯電話機等の電子機器の高速動作処理化、デジタル化の発展に従って、電磁波障害（EMI：Electromagnetic Interference）が増加している。特に、デジタル機器はノイズにより誤動作を起こすこともあることから、デジタル機器から発生するノイズの低減が重要である。

現在も普及率が伸び続けているパソコンコンピュータについてみると、CPUのクロック周波数の高周波化により、発生するノイズの周波数も一段と高くなっている。クロック周波数が1GHzを超えるCPUが実用化されており、ノイズ対策の対象周波数は、5GHz程度の高周波帯域まで広がってきた。

従来、ノイズ対策の1つの手段として磁性材料で構成したノイズフィルタによりノイズを吸収することが行われている。ノイズフィルタを構成する代表的な磁性材料としてスピネル型の結晶構造をもつフェライト材料がある。高周波帯域では電気抵抗の大きい材料ほど渦電流損失が小さくなりノイズ吸収に有利となるから高周波帯域に関してはフェライト材料の中でも電気抵抗の大きいNi系フェライト材料が用いられてきた。しかし、ノイズがギガヘルツの帯域となると、「Snoekeの限界」が問題となる。つまり、フェライト材料のノイズ吸収帯域の上限は1GHzであり、近時の高周波ノイズに対応することは難しい。しかもフェライト材料は脆性材料であることから、落下、衝撃等で破壊されることがあった。

【0003】

1GHzを超える高周波領域でのノイズ吸収特性の優れた材料として、軟磁性金属粉末を樹脂、ゴム中に分散させた複合軟磁性部材が提案されている。例えば、扁平状のFe-Si系軟磁性合金粉末をゴム、樹脂中に配向・配列した複合磁性材料が提案されている（例えば特許文献1、非特許文献1参照。）。

【0004】

【特許文献1】特開平9-35927号公報

【非特許文献1】“工業材料”、平成10年（1998年）10月号、p. 31～35、p. 36～40

【0005】

この複合磁性材料は、高周波、かつ広帯域において優れたノイズ吸収特性を有している。しかも、ベースが可撓性のあるゴム、樹脂から構成されているため、フェライト材料のような落下、衝撃による破損の心配はない。したがって、この複合磁性材料は、極めて実用的なノイズ吸収体であるといえる。

【0006】

複合軟磁性部材は、軟磁性金属粉末をゴム、プラスチック等の絶縁体マトリックスに混合分散させ、プレス成形・押出し成形およびカレンダーロール成形等により作成される。マトリックスおよび加工法を選択することにより、0.25mm程度から数mm程度のシート状あるいはブロック状等種々の形態の部材を作成することができる。また、マトリックスを選択し、かつ厚さを制御することにより、可撓性を付与したり、逆に剛性を高めたりすることもできる。また、マトリックスを選択することにより、250℃程度の高温での使用も可能である。

【0007】

軟磁性金属粉末としては、Fe-Si系、Fe-Si-Al系、ステンレス系の材質が実用化されている。電磁気特性を決定づける要素として、磁性材料自身の特性、磁性粉末

の形状・大きさ、マトリックスに対する粉末の混合比率、配向・配列等が挙げられる。広帯域・高磁気損失特性を得るために主要なポイントの一つは、粉末の形状・大きさと配向度にある。具体的には、扁平状（鱗片状）のアスペクト比（縦と横の寸法比）が大きいほど大きな磁気損失が得られるため、広帯域化への対応が可能となる。ただし、偏平状の粉末を得ることができない磁性材料もあり、また、マトリックスと複合化する場合に粉末に付与される圧縮や引張り応力によって磁歪定数の関係から特性が劣化することもある。

【発明の開示】

【発明が解決しようとする課題】

【0008】

携帯電話機は、年々小型・軽量化されてきており、携帯電話機使用時にそのアンテナの位置は人体、具体的には頭部の極めて近い位置に配置されることになる。このときアンテナの特性は人体の影響を受け、アンテナ性能が低下する傾向にある。つまり、アンテナから放射される電磁波の一部が人体に吸収されることに起因する電力損失が、受信感度の低減、電池の寿命低減を招く。

一方で、人体による電磁波の吸収量が増加し、人体への影響が懸念されている。したがって、日本を含め各国で局所吸収指針が定められている。各国が局所吸収指針において定める人体による電磁波の局所吸収の評価量として、以下の式で定義される SAR (Specific Absorption Rate : 局所吸収量) が用いられている。

$$SAR = \sigma E^2 / 2 \rho$$

(E : 人体に侵入した電界, σ : 人体組織の誘電率, ρ : 人体組織の密度)

そのため、携帯電話機から放射された電磁波の実効的な利用率、つまり放射効率を向上しつつ SAR を低減する方法として、低損失磁性板をアンテナ近傍に配置する方法が提案されている。ところが、磁性微粉と樹脂からなる複合材料を用いた磁性板を使用する方法では、板厚を 5 mm としても放射効率改善効果が 0.6 dB と小さい。携帯電話機の小型・軽量化に対応するため、板厚を 0.2 mm 以下、さらには 0.1 mm 以下にすることが望ましい。したがって、低損失磁性板を携帯電話機へ適用することは困難である。

【0009】

このため放射効率向上および SAR 対策部材として、上記の複合軟磁性部材を携帯電話機の筐体内部または外部に貼り付けることができる。ところが、前述した複合軟磁性部材は、例えば、800 MHz ~ 3 GHz といった高周波数帯域における透磁率が低いため、厚さを 0.2 mm 以下にしたのでは、所望の特性を得ることが困難である。

【0010】

従来の複合軟磁性部材は、前述のように、軟磁性金属粉末をゴム、プラスチック等の絶縁体マトリックスに混合分散させた構造を有している。ここで、マトリックス中に分散された軟磁性金属粉末間には反磁界が生じることになる。また、軟磁性金属粉末は、主に水アトマイズ法によって製造されるため、その後に熱処理を施しても、応力が残留してしまう。のために、複合軟磁性部材は、800 MHz を超える高周波数帯域における透磁率が劣る。

そこで本出願人は、従来の複合軟磁性部材のように軟磁性金属粉末を分散させるのではなく、軟磁性金属からなる複数の層を絶縁層が介在した形態で積層することを検討した。そして、樹脂製のフィルム上にめっき等の手段により軟磁性金属膜を形成したシートを作成し、そのシートを積層することにより、厚さが 0.2 mm 以下の積層軟磁性部材を得ることができ、この積層軟磁性部材は 800 MHz を超える高周波数帯域において従来の複合軟磁性部材に比べて優れた透磁率を示すことを確認するに到り、既に、「複数の軟磁性金属層と、前記複数の軟磁性金属層の間に介在する絶縁層と、が積層する積層体である積層軟磁性部材」、「絶縁樹脂フィルムと、前記絶縁樹脂フィルム上に直接または間接的に形成された軟磁性金属層と、を備えた」ことを主旨とする軟磁性シート等についての出願を為している（特許文献 2）。そして、このような軟磁性部材を、携帯電話機の筐体内部に收めたり外部に貼り付けたりすることで、高周波数帯域における電磁波の放射効率を向上させ、SAR を低減させることができる。

【0011】

【特許文献2】特開2002-359113号公報

【0012】

本発明者らは、上記のような軟磁性部材について、さらに鋭意検討を進めた。

その過程で、P E T (ポリエチレンテレフタレート) 等から形成される絶縁層上に、下地金属層を真空蒸着し、さらにその上に軟磁性金属層をめっきして形成すると、軟磁性金属層に応力が発生し、恐らくこれが原因となって、積層軟磁性部材、軟磁性シートの磁気特性が損なわれていることを見出した。

そこで本発明は、このような技術的課題に基づいてなされたもので、上記のような軟磁性部材の磁気特性を向上させる手法を提供することを目的とする。

【課題を解決するための手段】

【0013】

そこでなされた本発明の積層軟磁性部材の製造方法は、複数の軟磁性金属層と、複数の軟磁性金属層の間に介在する絶縁層とを積層させた積層軟磁性部材の製造方法であって、絶縁層を形成する絶縁樹脂フィルム上に軟磁性金属層を形成することで軟磁性シートを得るシート生成工程と、軟磁性シートを複数枚積層することで積層軟磁性部材を得る積層工程と、シート生成工程で得られた軟磁性シートまたは積層工程で得られた積層軟磁性部材に対し、所定の張力を付与した状態で熱処理を施す熱処理工程とを有することを特徴とする。

シート生成工程で得られた軟磁性シートまたは積層工程で得られた積層軟磁性部材に対し、熱処理を施すと、その温度、時間等の条件に応じ、積層軟磁性部材の磁気特性が変化する。これに基づき、例えば、特定の周波数領域で高い磁気特性を有すること、あるいは特定の方向に高い磁気特性を有すること、逆に異方性の少ない(無い)安定した磁気特性を有すること等、完成状態の積層軟磁性部材の用途等によって求められる磁気特性に応じ、最適な熱処理の条件を設定するのである。そして、この熱処理は、シート生成工程で得られた軟磁性シートまたは積層工程で得られた積層軟磁性部材に張力を付与した状態で実施される。この張力付与によりさらなる磁気特性の向上をなし得る。また、単に熱処理を施したのみでは軟磁性シート又は積層軟磁性部材に皺が入る虞があるのでに対して、張力を付与した状態で熱処理を施すと、磁気特性のさらなる向上を促すとともに、得られる軟磁性シート又は積層軟磁性部材の真直性を確保することができる。ここで完成状態とは、熱処理を経た状態を示すものである。このような熱処理条件は、絶縁層を形成する絶縁樹脂フィルムの厚さや材質、軟磁性金属層の厚さや組成等によっても変わる。

【0014】

このような熱処理工程は、積層工程の前段で行うこともできるし、積層工程の後段で行うこともできる。さらには、熱処理工程を、積層工程と同時に行うこともできる。ここで、熱処理は、シート生成工程で得られた軟磁性シートまたは積層工程で得られた積層軟磁性部材を、所定温度に保持されたロールに接触させることにより行うことができる。また、少なくとも一方が所定温度に保持された1対のロールを用いてシート生成工程で得られた軟磁性シートまたは積層工程で得られた積層軟磁性部材を圧延することもできる。さらに、複数の軟磁性シートを重ねた状態で圧延を行うことにより、熱処理工程と積層工程とを一度に行って積層軟磁性部材を得ることもできる。

このとき付与する張力Tは、絶縁樹脂フィルムの引張り強さを σ とすると、 $0.01\sigma \leq T < 0.1\sigma$ とすることが望ましい。さらに張力Tは、 $0.04\sigma \leq T \leq 0.8\sigma$ である。

ここで、絶縁樹脂フィルムがポリエチレンテレフタレート製である場合、熱処理の温度は70～150℃とするのが好ましく、また一定時間継続して熱処理を行う場合、その継続時間は60秒以上とするのが好ましい。さらに、圧延により加圧処理を行う場合には、加える圧力を180～2000MPaとするのが好ましい。

ところで、このような積層軟磁性部材の軟磁性シートは、絶縁樹脂フィルム上に直接または間接的に軟磁性金属層を形成した構成となっている。絶縁樹脂フィルム上に間接的に

軟磁性金属層を形成する場合、絶縁樹脂フィルム上に金属下地層を形成した後、金属下地層上に軟磁性金属によるめっきを施すことができる。

【0015】

本発明は、絶縁樹脂フィルム上に、軟磁性金属層が形成された軟磁性シートの製造方法として捉えることもできる。この場合、本発明は、絶縁樹脂フィルム上に、軟磁性金属層が直接または間接的に形成された軟磁性シートの製造方法であって、絶縁樹脂フィルム上に、軟磁性金属によるめっきを直接または間接的に施すことで軟磁性金属層を形成して軟磁性シートを得る工程と、軟磁性シートに対し、所定の張力を付与した状態で熱処理を施す熱処理工程と、を有することを特徴とする。

ここで、熱処理としては、少なくとも一方が所定温度に保持された1対のロール間を、軟磁性シートを通過させることにより行うことができる。

このような軟磁性シートは、1枚のみで軟磁性部材を構成することもできるが、複数枚を積層して軟磁性部材（積層軟磁性部材）を構成することもできる。

また、軟磁性シートを得る工程では、絶縁樹脂フィルム上に金属下地層を形成した後、金属下地層上に軟磁性金属によるめっきを施すことができる。

ところで、絶縁樹脂フィルムは、ポリイミド樹脂、ポリアミド樹脂、フッ素樹脂等の耐熱性を有する樹脂材料で形成することもできるが、ポリエチレンテレフタレートまたはポリブチレンテレフタレートによって形成することもできる。

【0016】

また、本発明は、複数の軟磁性金属層と、複数の軟磁性金属層の間に介在する絶縁層とを積層させた積層軟磁性部材に対し、所定の張力を付与した状態で熱処理を施すことを特徴とする積層軟磁性部材の熱処理方法として捉えることもできる。

ここで、上記積層軟磁性部材の製造方法に示したように積層軟磁性部材の製造と熱処理とを連続した工程で行うこともできるし、製造された状態の積層軟磁性部材に対し、熱処理のみを施すようにしてもよい。

このような熱処理は、積層軟磁性部材の磁気特性を調整するために行うことができる。本発明者らは、上記検討の際に、絶縁層上に下地金属層を真空蒸着し、さらにその上に軟磁性金属層をめっきして形成すると、恐らく軟磁性金属層に発生する応力に起因して、積層軟磁性部材、軟磁性シートに反りが発生することも見出した。これは、得られた積層軟磁性部材、軟磁性シートを携帯電話機等に組み込む際のハンドリングの妨げとなり、結果的に作業性を損なう要因となる。このため、熱処理を、積層軟磁性部材の反りを調整するために行うことができる。

【発明の効果】

【0017】

本発明によれば、磁気特性の高いシート状の軟磁性部材を提供することができる。

【発明を実施するための最良の形態】

【0018】

以下本発明の実施の形態を説明する。

<軟磁性シート>

図1および図2は、本発明の積層軟磁性部材に用いられる軟磁性シートの例を示している。

図1に示す軟磁性シート（軟磁性部材）1は、樹脂フィルム（絶縁樹脂フィルム）2と、樹脂フィルム2上に形成された下地金属層3と、下地金属層3上に形成された軟磁性金属層4とから構成される。

樹脂フィルム2は、ポリイミド樹脂、ポリアミド樹脂、フッ素樹脂、ポリアミドイミド樹脂、PPS（ポリフェニレンサルファイド）樹脂等の耐熱性を有する樹脂材料、または、PET（ポリエチレンテレフタレート）、PBT（ポリブチレンテレフタレート）を用いることができるが、本実施の形態ではPETを用いるものとする。

軟磁性金属層4は、軟磁性を示す遷移金属元素のいずれか、あるいは遷移金属元素と他の金属元素とからなる合金により構成することができる。具体的な例としては、Fe、C

o および Ni の一種以上を主成分とする合金であり、 Fe-Ni 系合金、 Fe-Co 系合金、 Co-Ni 系合金が該当する。これらの中で、飽和磁束密度が 1.0 T 以上の合金が望ましい。またこの中で、 Fe を 20~80 wt % 含有する Fe-Ni 系合金が本発明にとって望ましい。特に、 Fe を 30~70 wt %、さらには Fe を 40~65 wt % 含有する Fe-Ni 系合金が望ましい。また、 Fe-Co 系合金、 Co-Ni-Fe 系合金を用いるのが望ましい。これら合金において、 15 wt % 以下の Nb、 Mo、 Ta、 W、 Zr、 Mn、 Ti、 Cr、 Cu、 Co の一種以上を含有することができる。また、軟磁性金属層 4 をめっきで形成する場合には C および S 等の元素を不可避的に含むが、本発明の軟磁性金属層 4 は、そのような元素の含有を許容する。

軟磁性金属層 4 は、結晶質合金および非晶質合金のいずれの態様であっても構わない。非晶質合金としては、 Co 系および Fe 系の非晶質合金を用いることができる。また、 Fe 系の微結晶合金を用いることも本発明は許容する。微結晶合金は、一般的に、結晶粒径が 0.01 μm 以下の微細な結晶が主体をなす合金として知られている。

【0019】

軟磁性金属層 4 は、めっき（電解または無電解）、真空蒸着法、スパッタリング法等の各種の膜形成プロセスによって作成することができる。これらの膜形成プロセスは、単独で行うことができる。したがって、めっきのみで軟磁性金属層 4 を形成することもできるし、蒸着のみで軟磁性金属層 4 を形成することもできる。もちろん、複数の膜形成プロセスを組み合わせることもできる。めっきは、真空蒸着法、スパッタリング法に比べて低温で膜を形成することができる点で本発明にとって好適である。本発明において、軟磁性金属層 4 は樹脂フィルム 2 上に形成するため、樹脂フィルム 2 に熱的な影響を与えないことが望ましいからである。また、めっきは、スパッタリング法に比べて、短時間で所定の厚さの膜を得ることができるメリットがある。なお、めっきにより軟磁性金属層 4 を得る場合、めっき浴中に含まれている S 等の元素が軟磁性金属層 4 に混入することから、他のプロセスによる軟磁性金属層 4 との区別ができる。

【0020】

下地金属層 3 は、軟磁性金属層 4 を電解めっきによって樹脂フィルム 2 上に形成する場合に必要となる導電層としての役割を果たす。下地金属層 3 は、例えば、真空蒸着法によって形成することができる。また、無電解めっきにより下地金属層 3 を形成した後に、電解めっきにより軟磁性金属層 4 を形成することもできる。電解めっき以外の方法で軟磁性金属層 4 を形成する場合には、下地金属層 3 を形成する必要はない。つまり、下地金属層 3 は本発明において選択的な要素である。

【0021】

次に、軟磁性シート 1 において、樹脂フィルム 2 の厚さは、 50 μm 以下とする。樹脂フィルム 2 は、本発明の積層軟磁性部材において、軟磁性金属層 4 同士を絶縁する機能を果たす。しかし、この絶縁層が厚くなると軟磁性金属層 4 の占有率が低下し、ひいては積層軟磁性部材としての透磁率が低下するためである。望ましい樹脂フィルム 2 の厚さは 20 μm 以下である。もっとも、極端に薄い樹脂フィルム 2 は製造が困難であるとともに、軟磁性金属層 4 を形成するための所定の強度を持つことができなくなる。したがって、 0.2 μm 以上あるいは、 2 μm 以上の厚さとすることが推奨される。

【0022】

軟磁性金属層 4 は、 1 μm 以下の厚さとすることが望ましい。これを超える厚さでは、例えば 800 MHz を超える高周波数帯域での渦電流損失が大きくなり、磁性体としての機能が減じてしまうからである。したがって、本実施の形態において、軟磁性金属層 4 の厚さは、 0.5 μm 以下とすることが望ましい。軟磁性金属層 4 は、緻密に形成されている必要性が高く、したがって、各種プロセスによって緻密な膜を形成することができる程度の最低限の膜厚を有していることが必要である。下地金属層 3 は、電解めっき時の導電層として機能するものであり、 0.01 μm 程度の厚さを有していれば足りる。

【0023】

図 2 に示す軟磁性シート（軟磁性部材） 11 は、図 1 に示した軟磁性シート 1 の軟磁性

金属層4が樹脂フィルム2の片面に形成されているのに対して、両面に形成されている点で相違する。つまり、軟磁性シート11は、樹脂フィルム（絶縁樹脂フィルム）12と、樹脂フィルム12の表裏両面に形成された下地金属層13a、13bと、下地金属層13a、13b上に形成された軟磁性金属層14a、14bとから構成される。樹脂フィルム12、下地金属層13a、13bおよび軟磁性金属層14a、14bの材質、寸法および作成プロセスは、軟磁性シート1と同様にすればよい。

また、本発明の軟磁性シート11において、軟磁性金属層14aの上に樹脂層を形成することもできる。

【0024】

<積層軟磁性部材>

図3は本実施の形態による積層軟磁性部材（軟磁性部材）5の一例を示す断面図である。

図3に示すように、積層軟磁性部材5は、絶縁層6と軟磁性金属層7とが交互に積層された断面構造を有している。ここで、積層軟磁性部材5全体としての厚さは、0.5mm以下とすることが重要である。前述のように、携帯電話機に積層軟磁性部材5を貼り付ける場合には、携帯電話機の小型化に対応する必要があるからである。より望ましい厚さは、0.25mm、さらには0.15mm以下である。

図3の(a)および(b)に示すように、図1および図2で示した軟磁性シート1、11を積層することにより積層軟磁性部材5を得ることができる。したがって、軟磁性シート1、11の樹脂フィルム2、12、15が絶縁層6を構成することになる。そのため、絶縁層6の厚さは50μm以下となる。もっとも、軟磁性シート1、11を積層する場合に接着剤を層間に介在させると、絶縁層6が樹脂フィルム2、12、15の厚さより厚くなる場合がある。したがって、接着剤を用いる場合には、絶縁層6の厚さが50μm以下となるように樹脂フィルム2、12、15の厚さを定める必要がある。このとき、接着剤が樹脂で形成されていると、接着剤層も絶縁層6を構成することになる。また、軟磁性金属層7は、軟磁性シート1、11における軟磁性金属層4、14a、14bが該当することになる。

【0025】

<軟磁性シート、積層軟磁性部材の製造方法>

以下、図4及び図5に基づいて、積層軟磁性部材5を得るのに好適な製造方法を説明する。なお、図4は、積層軟磁性部材5を得るための基本的な製造工程の全体を、図5は図1に示した軟磁性シート1を用いて積層軟磁性部材5を得る製造方法を示している。

【0026】

図4(a)又は図5(a)において、まず軟磁性シート1を得るには、真空引きした蒸着装置内の坩堝で、下地金属層3の原料となる金属を溶解した後、この金属を、樹脂フィルム2となるPETフィルムに蒸着させることで、下地金属層3を樹脂フィルム2上に成膜させる（ステップS101）。

続いて、図4(a)又は図5(b)に示すように、下地金属層3が形成された樹脂フィルム2を、めっき装置内で、例えば電解メッキにより軟磁性金属層4を形成する（ステップS102）。

これにより、軟磁性シート1が得られる。なおこのとき、蒸着工程、めっき工程では、樹脂フィルム2として帶状のものをロール状に巻き回したロール体を用い、このロール体から繰り出した樹脂フィルム2に対し、蒸着、メッキ処理を施す。したがって、得られた軟磁性シート1も、帶状でロール状に巻かれたロール体の形態をなしている。

【0027】

この後、図4(a)、(c)又は図5(c)に示すように、得られた複数枚の軟磁性シート1を積層する（ステップS103）。

これには、軟磁性シート1に接着剤を塗布した後（ステップS103-1）、これらを積層して接着する（ステップS103-2）。

積層工程では、例えば、図6に示すように、互いに積層する2枚の軟磁性シート1、1

1を、互いに対向したロール21、22間に導き、ロール21、22で圧延することで2枚の軟磁性シート1、11を積層することができる。

【0028】

さて、本実施の形態では、図4（b）に示すように、軟磁性シート1を得て積層する前の段階、あるいは図4（c）に示すように、軟磁性シート1を積層して積層軟磁性部材5を得た後に、所定の熱処理を施す（ステップS200）。

具体的には、軟磁性シート1あるいは積層軟磁性部材5に対し、予め設定した条件で熱処理を施す。このとき、所定の張力を付与する。また、所定圧力の加圧処理を合わせて行うこともできる。また、熱処理は、例えば軟磁性シート1、11同士の接合に接着剤を用いた場合には、接着剤の乾燥のための加熱を兼ねたものとして行うこともできる。

このような熱処理条件、張力条件、加圧処理条件は、完成状態の積層軟磁性部材5の用途、積層軟磁性部材5を構成する樹脂フィルム2の厚さや材質、下地金属層3や軟磁性金属層4の厚さ、組成、完成状態の積層軟磁性部材5における軟磁性シート1の積層枚数等、種々の条件によって変わるため、これらを鑑み、予め最適な熱処理条件、加圧処理条件を設定しておく。

【0029】

一例を挙げれば、軟磁性シート1、積層軟磁性部材5を構成する樹脂フィルム2が、厚さ $13\mu\text{m}$ のP E Tフィルムであり、下地金属層3として厚さ $0.014\mu\text{m}$ のNi膜を真空蒸着により形成し、軟磁性金属層4として厚さ $0.15\mu\text{m}$ の81wt%Ni-19wt%Fe合金（パーマロイ）膜をめっきにより形成する場合、熱処理温度は、 $70\sim150^\circ\text{C}$ 、温度を所定時間保持する場合には、その保持時間を60秒以上とするのが特に好ましい。また、加圧処理を行う場合、その圧力は $180\sim200\text{MPa}$ とするのが好ましい。

このような熱処理を施すことによって、得られる積層軟磁性部材5の磁気特性を向上させたり、磁気特性の異方性をコントロールしたり、積層軟磁性部材5の反りを防止したりすることが可能となる。

【0030】

なお、このような熱処理は、図6（a）に示すように、軟磁性シート1、11あるいは積層軟磁性部材5に対向するヒータ23や、他のヒータによって雰囲気が加熱された空間に、軟磁性シート1、11あるいは積層軟磁性部材5を導入して行うことができる。また、このとき、軟磁性シート1、11あるいは積層軟磁性部材5に張力を付与する。また、図6（a）に示したように対向するロール21、22間に張力が付与された軟磁性シート1、11あるいは積層軟磁性部材5を通し、ロール21に所定の圧力を發揮させることで行うことができる。

また、図6（b）に示すように、ロール21、22自体をヒータ24、25によって所定の温度に保持し、これらロール21、22間に軟磁性シート1、11あるいは積層軟磁性部材5を通過させることで、軟磁性シート1、11あるいは積層軟磁性部材5に対し熱処理を施すこともできる。以下、この後者の方法をロール法と称する。ロール21、22を所定の温度に保持する他の手段としては、所定の温度に加熱された油をロール21、22のいずれか又は双方に循環させてもよい。

ロール法の場合、ロール21自体の自重により軟磁性シート1、11あるいは積層軟磁性部材5に対して圧力を作用させることもできるが、これ以外にロール21を加圧することで、軟磁性シート1、11あるいは積層軟磁性部材5に対し、熱処理と同時に加圧処理を施すこともできる。また、張力は、軟磁性シート1、11の巻出し装置又は巻取り装置に所定のトルクをかけることにより付与することができる。なお、一対のロール21、22は、一方のロールをステンレス等の金属から構成し、他方のロールを耐熱性ゴムから構成することが望ましい。軟磁性シート1、11がロール21、22間ですべりを生ずるのを抑制するためである。

【0031】

そして、図4（a）に示したように、上記の積層工程および熱処理工程を完了した積層

軟磁性部材5は、プレス加工等によって、所望する形状に加工することもできる。また、切断を行って、所望する寸法に加工することもできる（ステップS104）。

【0032】

上記したような熱処理、加圧処理のより具体的な条件を例示すれば、上記に例示した軟磁性シート1、11、積層軟磁性部材5において、周波数800MHz以上まで μ' の値が一定な磁気特性を得ることを目的とするのであれば、熱処理の温度は85°C以上するのが好ましい。

また、周波数1～3GHzまで μ' が一定な磁気特性を得ることを目的とするのであれば、熱処理の温度は100～150°Cとするのが好ましい。

さらに、上記に例示した軟磁性シート1、11、積層軟磁性部材5において、磁気特性において異方性の無い（少ない）ものとするのであれば、熱処理の温度は70～85°Cとするのが好ましい。

【0033】

また、上記に例示した軟磁性シート1、11、積層軟磁性部材5において、樹脂フィルム2、12、15の厚さを6μmとした場合の処理条件についても例を示す。

周波数800MHz以上で μ' が一定な磁気特性を得ることを目的とするのであれば、熱処理の温度は60～80°Cとするのが好ましい。

また、周波数1～3GHzまで μ' が一定な磁気特性を得ることを目的とするのであれば、熱処理の温度は80～110°Cとするのが好ましい。

さらに、上記に例示した軟磁性シート1、11、積層軟磁性部材5において、磁気特性において異方性の無い（少ない）ものとするのであれば、熱処理の温度は60～70°Cとするのが好ましい。

【0034】

上記したような条件はあくまでも一例である。熱処理、張力、加圧処理の条件は、前述したように、完成状態の積層軟磁性部材5で吸収させたい電磁波の周波数、携帯電話機等の電子機器に対する積層軟磁性部材5の装着位置や向き、積層軟磁性部材5を構成する樹脂フィルム2、12、15の厚さや材質、下地金属層3、13a、13bや軟磁性金属層4、14a、14bの厚さ、組成等によって変わるものである。また、熱処理時における温度保持時間の長さ、加圧処理の有無等によっても条件は変わる。

さらに、上記に例示した条件も、積層軟磁性部材5に求める磁気特性と異方性とのバランス、さらには製造工程における生産効率（熱処理、張力、加圧処理に費やすことのできる時間の長さ）等によって、採用する条件は変動する。

【0035】

また、熱処理、加圧処理は、軟磁性シート1、11を得て積層する前の段階、軟磁性シート1、11を積層して積層軟磁性部材5を得た後、のどちらで行ってもよいが、同条件の熱処理、加圧処理を行ったとしても、積層の前で行うか、積層の後で行うかによって、得られる磁気特性等が変わり得るため、処理のタイミングに応じて条件を設定する必要がある。

例えば、上記に例示した軟磁性シート1、11、積層軟磁性部材5において、軟磁性シート1、11の積層後に熱処理、加圧処理を行う場合の方が、軟磁性シート1、11の積層前に熱処理、加圧処理を行う場合に較べ、同じ処理条件であれば磁気特性に優れる。

【実施例1】

【0036】

膜厚13μmのPETフィルムを用意し、このPETフィルム上（片面）に、真空蒸着により厚さ0.019μmのNi膜を形成した。このとき、PETフィルムは、ロール体から繰り出した帶状のものを用いる。Niを蒸着した後に、以下に示すめっき液を用いてNi膜上に軟磁性合金であるNi-59wt%Fe合金膜を形成し、軟磁性シート1を得た。なおめっき液の条件は、浴温が35～55°C、pHが2.0～3.0である。そして、めっき膜厚が0.2μmになるまで、2A/dm²の電流密度で電解した。なお、めっき膜の欠陥防止およびめっき液の表面張力低減のために、界面活性剤を適宜添加した。

【0037】

薬品名称	化学式	液組成(g/l)
硫酸ニッケル6水和物	NiSO ₄ · 6H ₂ O	150~450
塩化ニッケル6水和物	NiCl ₂ · 6H ₂ O	15~45
硼酸	H ₃ BO ₃	10~40
硫酸第一鉄7水和物	FeSO ₄ · 7H ₂ O	1~20
光沢剤	-	0.1~2

【0038】

得られた軟磁性シート1を1対のロールを用いて圧延を行った。1対のロールは、前述したステンレス製ロールと耐熱性ゴムロールから構成され。ステンレス鋼ロールは内部に所定温度に保持された油を循環させることにより加熱されている。また、ロール径は60mm、回転速度は1.2rpm、圧力は9.3kgf/cm²とした。さらに、圧延は、軟磁性シート1に対して0.1σ(σ=PETフィルムの引張り強度)の張力を付与した場合としない場合の2通りとした。

次いで、図7に示すように、得られた軟磁性シート1を、帯状のPETフィルムが連続する方向(長手方向、繰出し方向、以下この方向をR方向と称する)に3cm、PETフィルムの幅方向(以下、この方向をP方向と称する)に5cmの長方形形状に打ち抜き加工して複素透磁率の測定用試料とした。複素透磁率は凌和電子株式会社製の透磁率測定装置PMF-3000で測定した。測定方向は、各シート1TのP方向とした。

【0039】

その結果を、図8、図9、図10及び図11に示す。図8は張力を付与しない軟磁性シート1における複素透磁率の実数成分μ'、と周波数の関係を示すものであり、図9は張力を付与しない軟磁性シート1における複素透磁率の虚数成分μ''と周波数の関係を示すものである。また、図10は張力を付与した軟磁性シート1における複素透磁率の実数成分μ'、と周波数の関係を示すものであり、図11は張力を付与した軟磁性シート1における複素透磁率の虚数成分μ''と周波数の関係を示すものである。

図8、図9、図10及び図11に示すように、熱処理を行うことにより複素透磁率の虚数成分μ''が低減し、かつ複素透磁率の実数成分μ'が減衰を始める周波数が高周波側に存在することがわかる。特に、張力を付与しつつ熱処理を行った場合には、複素透磁率の虚数成分μ''がより低減され、優れた複素透磁率を示すことがわかった。

このように、張力を付与しつつ熱処理を施することで、得られる軟磁性シート1の磁気特性を向上させることができるのが明らかである。また、熱処理温度を、目的とする周波数帯にあわせて適宜設定することで、より優れた磁気特性を得ることもできる。

【実施例2】

【0040】

実施例1で作製した軟磁性シート1(熱処理前のもの)を所定の長さに切断し、やはり実施例1と同様の条件でロールによる圧延を行うことにより5枚を積層して積層軟磁性部材を得た。この積層軟磁性部材について、実施例1と同様に複素透磁率を測定した。その結果を図12及び図13に示す。なお、図12は複素透磁率の実数成分μ'、と周波数の関係を示すものであり、図13は複素透磁率の虚数成分μ''と周波数の関係を示すものである。

図12及び図13に示すように、複素透磁率の虚数成分μ''が低減し、かつ複素透磁率の実数成分μ'が減衰を始める周波数が高周波側に存在することがわかる。

【図面の簡単な説明】

【0041】

【図1】本実施の形態における軟磁性シートの構成を示す断面図である。

【図2】他の軟磁性シートの構成を示す断面図である。

【図3】積層軟磁性部材の構成を示す断面図である。

【図4】積層軟磁性部材の製造工程を示す図である。

【図5】図1に示した軟磁性シートを用いて積層軟磁性部材を製造する時の流れを示

す図である。

【図6】積層工程で用いる装置の構成を示す図である。

【図7】実施例で用いたシートの例を示す図であり、切り出したシートにおける方向の定義を示す図である。

【図8】実施例1の結果を示す図であり、張力を付与しないで得られた軟磁性シートの μ' と周波数の関係を示す図である。

【図9】実施例1の結果を示す図であり、張力を付与しないで得られた軟磁性シートの μ'' と周波数の関係を示す図である。

【図10】実施例1の結果を示す図であり、張力を付与して得られた軟磁性シートの μ' と周波数の関係を示す図である。

【図11】実施例1の結果を示す図であり、張力を付与して得られた軟磁性シートの μ'' と周波数の関係を示す図である。

【図12】実施例1の結果を示す図であり、張力を付与して得られた積層軟磁性部材の μ' と周波数の関係を示す図である。

【図13】実施例1の結果を示す図であり、張力を付与して得られた積層軟磁性部材の μ'' と周波数の関係を示す図である。

【符号の説明】

【0042】

1、11…軟磁性シート（軟磁性部材）、2、12、15…樹脂フィルム（絶縁樹脂フィルム）、3、13a、13b…下地金属層、4、14a、14b…軟磁性金属層、5…積層軟磁性部材（軟磁性部材）、6…絶縁層、7…軟磁性金属層、21、22…ロール、23、24、25…ヒータ

【書類名】図面
【図1】

【図2】

【図3】

(a)

(b)

【図4】

(a)

(b)

(c)

【図 5】

(a)

(b)

(c)

【図6】

(a)

(b)

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】要約書

【要約】

【課題】 絶縁樹脂フィルムと、絶縁樹脂フィルム上に直接または間接的に形成された軟磁性金属層とを備えた軟磁性部材の磁気特性を向上させる。

【解決手段】 複数の軟磁性金属層と、複数の軟磁性金属層の間に介在する絶縁層とを積層させた積層軟磁性部材5の製造方法であって、絶縁層を形成する絶縁樹脂フィルム上に軟磁性金属層を形成することで軟磁性シート1、11を得るシート生成工程と、軟磁性シート1、11を複数枚積層することで積層軟磁性部材5を得る積層工程と、シート生成工程で得られた軟磁性シート1、11または積層工程で得られた積層軟磁性部材5に対し、所定の張力を付与した状態で熱処理を施す熱処理工程とを有する。

【選択図】図6

特願 2003-348873

出願人履歴情報

識別番号 [000003067]

1. 変更年月日 2003年 6月27日

[変更理由] 名称変更

住 所 東京都中央区日本橋1丁目13番1号
氏 名 TDK株式会社