

Общероссийский математический портал

А. Ю. Евкин, О новом подходе к прогнозированию критического давления выпуклой пологой оболочки с начальными несовершенствами, Исслед. по теор. пластин и оболочек, 1992, выпуск 25, 58–64

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:16:33

Литература

- І. Соонг Цай-чжен. Устойчивость цилиндрических оболочек с эксцентричным спиральным подкреплением // Ракет. техника и космонавтика. 1969. Т.7. № І. С.74 84.
- 2. Маневич А.И. Устойчивость и оптимальное проекти рование подкрепленных оболочек. Киев Донецк, 1979. 152 с.
- 3. Зубков Г.Д., нерубайло Б.В., федин И.И. К определению устойчивости цилиндрических оболочек со спи ральным подкреплением // Численные и экспериментальные методы исследования прочности, устойчивости и колебания конструкций ЛА. Тр. МАИ. 1983. С.21 25.
- 4. Образцов И.Ф., Нерубайло Б.В., Зубков Г.Д., Федик И.И. К выбору оптимальных параметров цилиндрических оболочек с эксцентричным спиральным подкреплением по критерию устойчивости // Расчеты на прочность. 1985. Вып. 26. С.З 19.
- 5. Гавриленко Г.Д. Основные нелинейные и линеари зованные уравнения теории несовершенных ребристых оболочек вращения // Прикл. механика. 1983. № 7. C.55 60.
- 6. Гавриленко Г.Д. Устойчивость несовершенных сферических поясов при внешнем давлении // Докл. АН УССР. 1988. № 7. С.33 36.

А.Ю.Евкин

О НОВОМ ПОДХОДЕ К ПРОТНОЗИРОВАНИЮ КРИТИЧЕСКОГО ДАВЈЕНИЯ ВЫПУКЛОЙ ПОЛОГОЙ ОБОЛОЧКИ С НАЧАЛЕНЫМИ НЕСОВЕРПЕНСТВАМИ

Известные методы определения критических нагрузок оболочек, имеющих несовершенства формы срединной поверхности, в настоящее время, как правило, не используются в инженерной практике [I], поскольку предполагают знание полной картины начальной погиби. Замер поля начальных несовершенств натурных конструкций является трудоемким процессом и должен выполняться для каждой конкретной оболочки. Кроме того, на величину критической нагрузки существенным образом могут влиять остаточные напряжения, возникающие как при изготовлении оболочки, так и в процессе ее эксплуатации.

Эффективные методы их учета в настоящее время отсутствуют. В данной работе на примере сферической оболочки предлагается новый подход, позволяющий прогнозировать величину критического внешнего давления, используя минимальную информацию о начальных несовер — шенствах конструкции. Эффективность методики подтверждается ре — зультатами специально поставленных опытов на моделях с нанесен — ными несовершенствами.

Среди аналитических методов учета начальной погиби при оценке устойчивости оболочек предпочтительным зачастую является под - ход Койтера, который, однако, имеет ряд недостатков. Предполага - ется, что форма погиби совпадает с классической формой потери устойчивости идеальной оболочки. Его применимость ограничена малостью (по сравнению с толщиной к оболочки) амилитуды погиби, что соответствует малому отклонению величины критической нагрузки от классической. На практике же амилитуда погиби изменяется в более широком диапазоне, а нагрузка выпучивания существенно меньше классической критической. Предлагаемый подход лишен указанных ограничений.

Работа базируется на результатах статьи [2], в которой получена асимптотическая зависимость давления ψ от амплитуды прогиба ψ закритической формы равновесия идеальной оболочки в виде

$$\bar{q} = 0.42 \, \& + 0.26 \, \&^3 + 0 \, \&^5) ,$$
(I)

где
$$\bar{q} = \frac{Q}{Q_0} , \quad Q_0 = \frac{2 \, \&}{\sqrt{3(1-\mathbf{v}^2)}} \left(\frac{\mathsf{k}}{\mathsf{R}}\right)^2 , \quad \&^2 = \frac{2 \, \mathsf{k}}{w_0 \sqrt{3(1-\mathbf{v}^2)}}$$
— пара—

метр, малость которого обеспечивается при значительных, по сравнению с толщиной оболочки, амплитудах W_0 . Построение решения, справедливого во всем диапазоне изменения W_0 , осуществляется путем сращивания разложения (I) с асимптотическим представлением, полученным с использованием подхода Койтера при малых W_0 . Окон — чательно имеем соотношение

$$\overline{Q} = F(\mathcal{E}), F(\mathcal{E}) = \frac{A}{1+A}, A = 0.428 + 0.1768^2 + 0.338^3 + 0.28^4,$$
 (2)

которое на рис. І представлено кривой І. Здесь для сопоставления кривой 2 показано соответствующее численное решение [3].

Начальные несовершенства формы срединной поверхности оболочки предлагается учесть при построении асимптотического решения в виде

$$\bar{\mathbb{Q}} = F(\mathcal{E}) + \sum_{n=1}^{5} \alpha_n \left(\frac{\mathcal{E}}{\mathcal{E}_0}\right)^n , \qquad (3)$$
где $\mathcal{E}_0^2 = \frac{2 \, h}{\sqrt{3(1-\delta^2)}}, \, \mathcal{E}$ - амилитуда погиби, α_n - коэффициенты, зави-

сящие от погиби, которые подлежат определению. При этом будем исходить из уравнений среднего изгиба сферической оболочки с погибью в смешанной форме, которые после замены переменных

$$\overline{w} = \frac{w}{w_0}$$
, $\alpha = \frac{r^2}{w_0 R}$, $\overline{\Phi} = \frac{\Phi \sqrt{12(1-\delta^2)}}{E k w_0}$, $\overline{w}_0 = \frac{P}{w_0}$

получают вил

$$\xi^{2} \frac{d^{2}}{dz^{2}} \left[z \frac{d(\bar{w} - \bar{w}_{0})}{dz} \right] = \frac{d\bar{\Phi}}{dz} (1 + 2 \frac{d\bar{w}}{dz}) + \bar{q} ,$$

$$\mathcal{E}^{2} \frac{d^{2}}{dz^{2}} \left(z \frac{d\overline{\Phi}}{dz} \right) = -\left[\frac{d(\overline{w} - \overline{w}_{0})}{dz} + \left(\frac{d\overline{w}}{dz} \right)^{2} - \left(\frac{d\overline{w}_{0}}{dz} \right)^{2} \right], \tag{4}$$

где 🕴 - начальный обусловленный погибыю, а 🔱 - полный прогиб, Φ – функция напряжений, $\overline{W}(0) = I$.

Для определенности предположим, что

где $J_0(\Lambda r)$ - некоторая затухающая на бесконечности функция, $J_0(0)=$ I, $\frac{1}{20}\sim k$. Параметр, характеризующий изменяемость погиби χ $\sim rac{\sqrt[4]{12\left(1-\sqrt[4]{2}
ight)}}{\sqrt{|\mathcal{D}_{h}|}}$. В частном случае, когда форма погиби совпаrрет с

классической формой потери устойчивости, J_{o} - функция Бесселя. Асимптотический анализ уравнений (4) при $\mathcal{E} \to 0$ с учетом (5) позволяет установить, что в выражении (3)

$$\alpha_1 = \alpha_2 = \alpha_3 = 0. \tag{6}$$

Это означает, что при малых ${\mathcal E}$ и больших амплитудах полного прокривые равновесных закритических состояний идеальной оболочки и оболочки с погибых (5) совпадают с точностью до \mathcal{E}^3 . Таким образом устанавливается асимптотическое поведение несовершенной оболочки при больших W_0 . Коэффициенты \propto_4 и \propto_5 определим из условия, чтобы выражение (3) описывало зависимость $\overline{\mathfrak{l}}(\mathfrak{W}_0)$ также на докритической стадии развития формы (при малых дополните льных прогибах). При этом первым очевидным условием является ра-

венство нулю нагрузки при
$$W_0 = l_0(\mathcal{E} = \mathcal{E}_0)$$
. Отсюда
$$\alpha_4 + \alpha_5 = -\Gamma(\mathcal{E}_0). \tag{7}$$

Второе условие может определяться углом наклона касательной к кривой докритического деформирования при ($\overline{\mathbf{Q}} = 0$) и осью абс — цисс (рис. I). Этот угол наклона может бить определен из линей—ных относительно дополнительного прогиба уравнений (если известна картина начальной погиби) либо экспериментальным путем при нагружении конкретной конструкции некоторой не опасной с точки зрения выпучивания нагрузкой $\overline{\mathbf{Q}}_*$ и определении соответствующей величины относительного дополнительного прогиба \mathbf{W}_* . Причем в последнем случае автоматически в первом приближении могут быть учтены остаточные напряжения, оказывающие, очевидно, влияние на податливость конструкции. Если остаточные напряжения отсутствуют, а форма несовершенств совпадает с классической формой выпучива — ния, воспользовавшись известным решением линейных уравнений для оболочки с погибью, получаем выражение

$$\mathcal{E}_{0}F'(\mathcal{E}_{0}) + 4\alpha_{4} + 5\alpha_{5} = -2,$$

$$F'(\mathcal{E}_{0}) = \frac{dF(\mathcal{E})}{d\mathcal{E}} \Big| \mathcal{E} = \mathcal{E}_{0}$$
(8)

где

С учетом (7) приходим к соотношению

$$\overline{q} = F(\mathcal{E}) + \left(\frac{\mathcal{E}}{\mathcal{E}_0}\right)^4 \left[2 - 4F(\mathcal{E}_0) + \mathcal{E}_0 F'(\mathcal{E}_0)\right] \left(1 - \frac{\mathcal{E}}{\mathcal{E}_0}\right)^4 - \left(\frac{\mathcal{E}}{\mathcal{E}_0}\right)^4 F(\mathcal{E}_0), \quad (9)$$

которое при фиксированном значении относительной амплитуды погиом $\bar{\xi}_0 = \xi_0 / \chi$ (либо ξ_0) дает зависимость параметра нагрузки $\bar{\chi}_0$ от относительной амплитуды полного прогиба $\psi^0 = \psi_0 / \chi$.

С использованием формулы (9) построены кривые, представленные на рис. І. Соответствующие предельные точки на кривых дают значения параметра критического давления $\sqrt{}_0$ несовершенной сферической оболочки. На рисунке 2 кривой І показана зависимость $\sqrt{}_0$ от $\sqrt{}_0$. Отметим, что в области $0 \le \sqrt{}_0 \le 1,5$ имеет место резкое парение критической нагрузки с ростом амплитуды погиби. При $\sqrt{}_0 \ge 2,0$ зависимость $\sqrt{}_0$ от $\sqrt{}_0$ достаточно слабая. Поэтому соответствующее значение $\sqrt{}_0 = 0,2$ дает некоторую характерную нагрузку, которую, возможно, следует учитывать при назначении допускаемой. Здесь же для сравнения показаны зависимости 2-4, полученные 8.1.1

вым, Д.В. Хатчинсоном, В.А. Савельевым и приведенные в обзорной работе [4].

Как и в [2], полученные результаты допускают естественное обобщение на случай строго выпуклых пологих оболочек с радиусами главных кривизн R_1 и R_2 . При этом в формулах (3), (7) и других следует положить

$$Q_{0} = \frac{2 E h^{2}}{R_{1}R_{2}\sqrt{3(1-\sqrt{2})}} , \quad \xi^{2} = \frac{(R_{1}+R_{2})^{2}h}{R_{1}R_{2}w_{0}\sqrt{12(1-\sqrt{2})}} , \quad \xi_{0}^{2} = \frac{(R_{1}+R_{2})^{2}h}{R_{1}R_{2}f_{0}\sqrt{12(1-\sqrt{2})}} .$$

С целью оценки предлагаемого подхода к прогнозированию кри — тической нагрузки оболочки, имеющей как несовершенства формы срединной поверхности, так и начальные напряжения, был проведен специально поставленный эксперимент. Объектом исследования являлись сферические оболочки, изготовленные путем штамповки из стальной ленты. Замеры характерных параметров конструкции указывали на их стабильность. Радиус оболочки с составлял 10 мм, толщина = 0,09 мм, радиус окружности в плане $_0 = 60$ мм. Нагружение осуществлялось вакуумированием внутренней полости оболочки вакуум-насосом. Для обеспечения плавности нагружения использовался рессивер. Избиточное давление замерялось образцовым вакууметром. Реа лизовывались граничные условия, близкие к жесткой заделке. Были испитаны две оболочки без специально нанесенных несовершенств. В

обоих случаях выпучивание произошло резким жлопком при одинако — вом значении параметра нагрузки $\bar{\mathfrak{h}}=0.2$.

Несовершенства наносились в полюсе сферы двумя способами (см. табл.). Созданием необходимой формы непосредственно при изготовлении штамповкой (оболочки I - 3). Этот способ предполагал

Таблица

инрогоро								
	' I	١ 2	['] 3	' 4	5	6	7	8
Ī,	7,2	8,1	7,6	25,9	4I,I	31,7	0,83	0,89
₩*	0,324 0,433	0,406 0,666	0,378 0,666	2,26 I0,4	<u>I,54</u> 3,89	1,19 2,90	<u>0,03I</u> 0,280	0,04 0,222
q.	0,045	0,050	0,050	0,088	0,038	0,038	0,038	0,045
Ton To	0,171	0,149	0,143	0,096	0,093	0,096	0,188	0,192
qon	0,160	0,150	0,150	0,IIO	0,100	0,100	0,130	0,160

отсутствие существенных остаточных напряжений. Замер формы погиби и ее амплитуды осуществлялся по двум взаимно перпендикулярным
меридиональным направлениям с использованием индикатора часового
типа с ценой деления 0,01 мм. Форма начальных несовершенств в
этом случае была близка к осесимметричной. Второй способ (оболочки 4 - 8) заключался в задании сосредсточенных в полюсе сферы кинематических воздействий путем перемещения штока индикатора на
определенную глубину и последующего снятия этого возмущения. После многократного повторения процедуры замерялся остаточный про-

При нагружении оболочки внешним давлением при определенном уровне параметра нагрузки $\overline{\psi}_*$ фиксировалась величина относительного дополнительного прогиба \overline{w}_* , который характеризовал подат ливость оболочки. Соответствующие данные представлены в таблице в знаменателе. Для сопоставления в числителе приведены значения \overline{w}_* , полученные теоретически при соответствующих $\overline{\psi}_0$ в предположении, что форма несовершенств совпадает с формой потери устойчивости идеальной оболочки. Разница данных теории и опыта может характеризовать наличие существенных остаточных напряжений.

В эксперименте регистрировалось давление в момент хлопка, которое принималось в качестве критического. Соответствующее значение параметра $\overline{\hat{V}}_0^{\text{OK}}$ сопоставляется с результатом теоретиче ских подсчетов $\overline{\hat{V}}_0$ по предлагаемой методике. В качестве второго условия для определения коэффициентов α_4 и α_5 использовались данные замеров $\overline{\hat{W}}_*$ при $\overline{\hat{V}}_*$. Это условие приобретает вид

$$\overline{\mathbb{Q}}_{*} = F(\mathcal{E}_{*}) + \alpha_{4} \left(\frac{\mathcal{E}_{*}}{\mathcal{E}_{0}}\right)^{4} + \alpha_{5} \left(\frac{\mathcal{E}_{*}}{\mathcal{E}_{0}}\right), \overline{\mathcal{E}}_{*}^{2} = \frac{2}{(f_{0} + \overline{W}_{*})\sqrt{3(1-\delta^{2})}} \cdot (10)$$

Сопоставление данных теории и эксперимента позволяет гово - рить об их хорошем соответствии для оболочек I - 6. Некоторое их расхождение для оболочек 7 - 8 объясняется, по-видимому, наличием существенного поля остаточных напряжений, которые учитываются предлагаемой методикой лишь в первом приближении.

Литература

- І. Б э б л о к Ч.Д. Эксперименты по устойчивости оболочек// Тонкостенные оболочечные конструкции. М.: Машиностроение, 1980. С.355 379.
- 2. Евкин А.Ю. О новом подходе к асимптотическому интегрированию уравнений теории пологих выпуклых оболочек в закритической стадии // ПММ. 1989. Т.53. Вып. I. С. II5 I20.
- 3. Габрильянц А.Г., феодосьев В.И. Об осесимметричных формах равновесия упругой сферической оболочки, находящейся под действием равномерно распределенного давления // IIMM. 1961. Т.25. Вып.6. С.1091 IIOI.
- 4. Григолюк Э.И., Мамай В.И. Механика деформи рования сферических оболочек. М., 1983. II4 с.

А.И.Маневич, С.В.Ракша

НЕЛЬНЕЙНАЯ ЗАДАЧА УСТОЙЧИВОСТИ СЖАТЫХ ТОНКОСТЕННЫХ СТЕРЖНЕЙ ТРАПЕЦИЕВИЛНОГО СЕЧЕНИЯ С УЧЕТОМ ВЗАИМОЛЕЙСТВИЯ ФОРМ

При проектировании сжатых тонкостенных стержней, в частнос - ти, прямоугольного или трапешиевидного сечения, обычно стремятся обеспечить равноустойчивость по общей (эйлеровой) и местной фор -