Data Mining: Analyzing and Predicting the Quality of Product online

-110 OM

COMP3503 Project Lei Xie 123800

Introduction

- * Web changed people's behaviour
 - Shopping, leaving comments
 - Amazon, Best Buy
- * Data Analysis
 - Discovering useful information
 - Helping decision making
- Data Mining
 - Process of discovering patterns data
 - Automatic
 - Lead to advantage

Approach

- * Project Plan
 - Cross Industry Standard Process Data mining (CRISP-DM) model
 - Hierarchical process including six Steps: Business understanding, Data understanding, Data preparation, Modelling, Evaluation, Deployment
- * Solution
 - C program to deal with original data
 - WEKA
 - Two models: J48 classifier, NaiveBayesMultinmial classifier
- * Experimental Design
 - Adjust Parameters
 - J48: -C -M value
 - NaiveBayesMultinmial: IDFTransform, TFTransform

***** J48

- ConfidenceFactor Value
- minNumObj Value

$$-M=2$$

$$-C = 0.05 \sim 1.0$$

ConfidenceFactor Value	Correctly Classified Instances
0.05	83.05%
0.1	83.05%
0.2	83.40%
0.3	84.50%
0.4	85.20%
0.5	85.20%
0.6	85.35%
0.7	85.35%
0.8	85.35%
0.9	85.35%
1.0	85.35%

$$-C = 0.6$$

$$-M = 1, 2, 3$$

minNumObj Value	Correctly Classified Instances
1	92.20%
2	85.35%
3	83.84%

- * Best result for J48
- * Correct Rate: 92.20%

	A	В	С
1	ConfidenceFactor Value	minNumObj Value	Correctly Classified Instances
2		1	86.30%
3	0.05	2	83.05%
4		3	81.80%
5		1	86.30%
6	0.1	1 2	83.05%
7		3	81.80%
8		1	88.75%
9	0.2	2	83.40%
10		3	82.15%
11		1	89.65%
12	0.3	2	84.50%
13		3	82.50%
14		1	89.95%
15	0.4	2	85.20%
16		3	82.75%
17		1	90.30%
18	0.5	2	85.20%
19		3	83.20%
20		1	92.20%
21	0.6	2	85.35%
22		3	83.40%
23		1	92.20%
24	0.7	2	85.35%
25		3	83.40%
26		1	92.20%
27	0.8	2	85.35%
28		3	83.40%
29		1	
30	0.9	2	85.35%
31		3	83.40%
32		1	92.20%
33	1	2	85.35%
34		3	83.40%

- * NaiveBayesMultinomial Model
- * Test 1:
 - IDFTransform = False
 - TFTransform = False
- **❖** Test 2:
 - IDFTransform = True
 - TFTransform = True

NaiveBayesMultinomial model	Correctly Classified Instances
TEST 1	95.4%
TEST 2	97.3%

Discussion

- ***** J48
 - best correct rate = 92.20%
- * NaiveBayesMultinomial
 - best correct rate = 97.3%

Conclusion

- * Problem Statment
 - Big data
 - Prediction
- * Approach
 - CRISP-DM
- * Testing
 - Adjusting parameters
- * Final model
 - NaiveBayesMultinoimal

Bibliography

What is the CRISP-DM methodology? (n.d.). Retrieved November 29, 2015 from http://www.sv-europe.com/crisp-dm-methodology/

Chapman, P, & Clinton, J. (n.d.). CRISP-DM 1.0 Step-by-step data mining guide. Retrieved November 29, 2015, from http://www-staff.it.uts.edu.au/~paulk/teaching/dmkdd/ass2/readings/methodology/CRISPWP-0800.pdf

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques: Practical Machine Learning Tools and Techniques. Elsevier.

Liu, B., Hu, M., & Cheng, J. (2005). Opinion Observer: Analyzing and Comparing Opinions on the Web. In Proceedings of the 14th International Conference on World Wide Web (pp. 342–351). New York, NY, USA: ACM. http://doi.org/10.1145/1060745.1060797

"Thanks and Questions?"