Package 'inferr'

November 11, 2024

Type Package

```
Title Inferential Statistics
Version 0.3.2
Description
      Select set of parametric and non-parametric statistical tests. 'inferr' builds upon the solid set of
      statistical tests provided in 'stats' package by including additional data types as inputs, expand-
      ing and
      restructuring the test results. The tests included are t tests, variance tests, propor-
      tion tests, chi square tests, Levene's test, McNemar Test, Cochran's Q test and Runs test.
Depends R(>=3.2)
License MIT + file LICENSE
URL https://rsquaredacademy.github.io/inferr/,
      https://github.com/rsquaredacademy/inferr
BugReports https://github.com/rsquaredacademy/inferr/issues
Imports data.table, magrittr, Rcpp, stats, utils
Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0), xplorerr
Encoding UTF-8
LazyData true
VignetteBuilder knitr
RoxygenNote 7.3.2
LinkingTo Rcpp
Config/testthat/edition 3
NeedsCompilation yes
Author Aravind Hebbali [aut, cre] (<a href="https://orcid.org/0000-0001-9220-9669">https://orcid.org/0000-0001-9220-9669</a>)
Maintainer Aravind Hebbali < hebbali.aravind@gmail.com>
Repository CRAN
Date/Publication 2024-11-11 12:10:06 UTC
```

2 exam

Contents

	exam	2
	hsb	3
	ifr_binom_calc	3
	ifr_chisq_assoc_test	5
	ifr_chisq_gof_test	6
	ifr_cochran_qtest	7
	ifr_launch_shiny_app	8
	ifr_levene_test	9
	ifr_mcnemar_test	10
	ifr_oneway_anova	12
	ifr_os_prop_test	13
	ifr_os_t_test	15
	ifr_os_var_test	16
	ifr_runs_test	18
	ifr_ts_ind_ttest	
	ifr_ts_paired_ttest	
	ifr_ts_prop_test	
	ifr_ts_var_test	
	treatment	
	treatment2	28
Index		29
exam	Dummy data set for Cochran's Q test	

Description

A dataset containing information about results of three exams.

Usage

exam

Format

A data frame with 15 rows and 3 variables:

exam1 result of exam1exam2 result of exam2exam3 result of exam3

Source

https://www.spss-tutorials.com/spss-cochran-q-test/

hsb 3

hsb

High School and Beyond Data Set

Description

A dataset containing demographic information and standardized test scores of high school students.

Usage

hsb

Format

A data frame with 200 rows and 10 variables:

id id of the student

female gender of the student

race ethnic background of the student

ses socio-economic status of the student

schtyp school type

prog program type

read scores from test of reading

write scores from test of writing

math scores from test of math

science scores from test of science

socst scores from test of social studies

Source

```
https://nces.ed.gov/surveys/hsb/
```

ifr_binom_calc

Binomial Test

Description

Test whether the proportion of successes on a two-level categorical dependent variable significantly differs from a hypothesized value.

Usage

```
ifr_binom_calc(n, success, prob = 0.5, ...)
ifr_binom_test(data, variable, prob = 0.5)
```

4 ifr_binom_calc

Arguments

n number of observations success number of successes

prob assumed probability of success on a trial

... additional arguments passed to or from other methods

data a data.frame or a tibble variable factor; column in data

Value

ifr_binom_test returns an object of class "ifr_binom_test". An object of class "ifr_binom_test" is a list containing the following components:

exp_k expected number of successes exp_p expected probability of success

k number of successesn number of observations

obs_p assumed probability of success

pval_lower one sided p value pval_upper upper one sided p value

Deprecated Functions

infer_binom_calc() and infer_binom_test() have been deprecated. Instead use ifr_binom_cal()
and ifr_binom_test().

References

Hoel, P. G. 1984. Introduction to Mathematical Statistics. 5th ed. New York: Wiley.

See Also

binom.test

```
# using calculator
ifr_binom_calc(32, 13, prob = 0.5)
# using data set
ifr_binom_test(hsb, female, prob = 0.5)
```

ifr_chisq_assoc_test 5

Description

Chi Square test of association to examine if there is a relationship between two categorical variables.

Usage

```
ifr_chisq_assoc_test(data, x, y)
```

Arguments

data a data.frame or tibble x factor; column in data y factor; column in data

Value

```
ifr_chisq_assoc_test returns an object of class "ifr_chisq_assoc_test". An object of class
"ifr_chisq_assoc_test" is a list containing the following components:
chisquare
                 chi square
chisquare_lr
                 likelihood ratio chi square
chisquare_mantel_haenszel
                 mantel haenszel chi square
chisquare_adjusted
                 continuity adjusted chi square
contingency_coefficient
                 contingency coefficient
                 cramer's v
cramers_v
df
                 degrees of freedom
                 product of dimensions of the table of x and y
phi_coefficient
                 phi coefficient
pval_chisquare p-value of chi square
pval_chisquare_adjusted
                 p-value of continuity adjusted chi square
pval_chisquare_lr
                 p-value of likelihood ratio chi square
pval_chisquare_mantel_haenszel
                 p-value of mantel haenszel chi square
```

6 ifr_chisq_gof_test

Deprecated Function

```
infer_chisq_assoc_test() has been deprecated. Instead use ifr_chisq_assoc_test().
```

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
chisq.test
```

Examples

```
ifr_chisq_assoc_test(hsb, female, schtyp)
ifr_chisq_assoc_test(hsb, female, ses)
```

ifr_chisq_gof_test

Chi Square Goodness of Fit Test

Description

Test whether the observed proportions for a categorical variable differ from hypothesized proportions

Usage

```
ifr_chisq_gof_test(data, x, y, correct = FALSE)
```

Arguments

data a data.frame or tibble x factor; column in data y expected proportions

correct logical; if TRUE continuity correction is applied

Value

ifr_chisq_gof_test returns an object of class "ifr_chisq_gof_test". An object of class "ifr_chisq_gof_test" is a list containing the following components:

categories levels of x

chi square statistic

deviation deviation of observed from frequency

ifr_cochran_qtest 7

```
degrees_of_freedom
```

chi square degrees of freedom

expected_frequency

expected frequency/proportion

n_levels number of levels of x

observed_frequency

observed frequency/proportion

pvalue p-value

sample_size number of observations std_residuals standardized residuals varname name of categorical variable

Deprecated Function

```
infer_chisq_gof_test() has been deprecated. Instead use ifr_chisq_gof_test()
```

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
chisq.test
```

Examples

```
ifr_chisq_gof_test(hsb, race, c(20, 20, 20, 140))
# apply continuity correction
ifr_chisq_gof_test(hsb, race, c(20, 20, 20, 140), correct = TRUE)
```

ifr_cochran_qtest

Cochran Q Test

Description

Test if the proportions of 3 or more dichotomous variables are equal in the same population.

Usage

```
ifr_cochran_qtest(data, ...)
```

Arguments

```
data a data.frame or tibble ... columns in data
```

Value

ifr_cochran_qtest returns an object of class "ifr_cochran_qtest". An object of class "ifr_cochran_qtest" is a list containing the following components:

df degrees of freedom
n number of observations

pvalue p value

q cochran's q statistic

Deprecated Function

```
infer_cochran_test() has been deprecated. Instead use ifr_cochran_qtest().
```

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

Examples

```
ifr_cochran_qtest(exam, exam1, exam2, exam3)
```

Description

Launches shiny app

Usage

```
ifr_launch_shiny_app()
```

Deprecated Function

```
infer_launch_shiny_app() has been deprecated. Instead use ifr_launch_shiny_app().
```

```
## Not run:
ifr_launch_shiny_app()
## End(Not run)
```

ifr_levene_test 9

ifr_levene_test	Levene's test for equality of variances
-----------------	---

Description

ifr_levene_test reports Levene's robust test statistic for the equality of variances and the two statistics proposed by Brown and Forsythe that replace the mean in Levene's formula with alternative location estimators. The first alternative replaces the mean with the median. The second alternative replaces the mean with the 10

Usage

```
ifr_levene_test(data, ...)
## Default S3 method:
ifr_levene_test(data, ..., group_var = NULL, trim_mean = 0.1)
```

Arguments

data a data.frame or tibble numeric; columns in data group_var factor; column in data trim_mean trimmed mean

Value

ifr_levene_test returns an object of class "ifr_levene_test". An object of class "ifr_levene_test" is a list containing the following components:

bf	Brown and Forsythe f statistic
p_bf	p-value for Brown and Forsythe f statistic
lev	Levene's f statistic
p_lev	p-value for Levene's f statistic
bft	Brown and Forsythe f statistic using trimmed mean
p_bft	p-value for Brown and Forsythe f statistic using trimmed mean
avgs	mean for each level of the grouping variable
sds	standard deviations for each level of the grouping variable
avg	combined mean
sd	combined standard deviation
n	number of observations
n_df	numerator degrees of freedom
d_df	denominator degrees of freedom
levs	levels of the grouping variable
lens	number of observations for each level of the grouping variable
type	alternative hypothesis

10 ifr_mcnemar_test

Deprecated Function

```
infer_levene_test() has been deprecated. Instead use ifr_levene_test().
```

References

Bland, M. 2000. An Introduction to Medical Statistics. 3rd ed. Oxford: Oxford University Press.

Brown, M. B., and A. B. Forsythe. 1974. Robust tests for the equality of variances. Journal of the American Statistical Association 69: 364–367.

Carroll, R. J., and H. Schneider. 1985. A note on Levene's tests for equality of variances. Statistics and Probability Letters 3: 191–194.

Examples

```
# using grouping variable
ifr_levene_test(hsb, read, group_var = race)
# using variables
ifr_levene_test(hsb, read, write, socst)
```

ifr_mcnemar_test

McNemar Test

Description

Test if the proportions of two dichotomous variables are equal in the same population.

Usage

```
ifr_mcnemar_test(data, x = NULL, y = NULL)
```

Arguments

data a data.frame or tibble
x factor; column in data
y factor; column in data

Value

ifr_mcnemar_test returns an object of class "ifr_mcnemar_test". An object of class "ifr_mcnemar_test" is a list containing the following components:

statistic chi square statistic
df degrees of freedom

pvalue p-value exact p-value

ifr_mcnemar_test 11

cstat continuity correction chi square statistic

cpvalue continuity correction p-value

kappa kappa coefficient; measure of interrater agreement

std_err asymptotic standard error

kappa_cil 95% kappa lower confidence limit kappa_ciu 95% kappa upper confidence limit

cases cases
controls controls

ratio ratio of proportion with factor

odratio odds ratio tbl two way table

Deprecated Function

infer_mcnermar_test() has been deprecated. Instead use ifr_mcnemar_test().

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
mcnemar.test
```

```
# using variables from data
hb <- hsb
hb$himath <- ifelse(hsb$math > 60, 1, 0)
hb$hiread <- ifelse(hsb$read > 60, 1, 0)
ifr_mcnemar_test(hb, himath, hiread)

# test if the proportion of students in himath and hiread group is same
himath <- ifelse(hsb$math > 60, 1, 0)
hiread <- ifelse(hsb$read > 60, 1, 0)
ifr_mcnemar_test(table(himath, hiread))

# using matrix
ifr_mcnemar_test(matrix(c(135, 18, 21, 26), nrow = 2))
```

ifr_oneway_anova

ifr_oneway_anova	One Way ANOVA

Description

One way analysis of variance

Usage

```
ifr_oneway_anova(data, x, y, ...)
```

Arguments

data a data.frame or a tibble x numeric; column in data y factor; column in data

... additional arguments passed to or from other methods

Value

ifr_oneway_anova returns an object of class "ifr_oneway_anova". An object of class "ifr_oneway_anova" is a list containing the following components:

adjusted_r2 adjusted r squared value

df_btw between groups degress of freedom df_within within groups degress of freedom

df_total total degress of freedom

fstat f value

group_stats group statistics

ms_btw between groups mean square
ms_within within groups mean square
obs number of observations

pval p value

r2 r squared value

rmse root mean squared error

ss_between between group sum of squares ss_within within group sum of squares

ss_total total sum of squares

Deprecated Function

infer_oneway_anova() has been deprecated. Instead use ifr_oneway_anova()

ifr_os_prop_test 13

References

Kutner, M. H., Nachtsheim, C., Neter, J., & Li, W. (2005). Applied linear statistical models. Boston: McGraw-Hill Irwin.

See Also

anova

Examples

```
ifr_oneway_anova(mtcars, mpg, cyl)
ifr_oneway_anova(hsb, write, prog)
```

ifr_os_prop_test

One Sample Test of Proportion

Description

ifr_os_prop_test compares proportion in one group to a specified population proportion.

Usage

```
ifr_os_prop_test(
  data,
  variable = NULL,
  prob = 0.5,
  phat = 0.5,
  alternative = c("both", "less", "greater", "all")
)

## Default S3 method:
  ifr_os_prop_test(
   data,
   variable = NULL,
   prob = 0.5,
   phat = 0.5,
   alternative = c("both", "less", "greater", "all")
)
```

Arguments

data numeric vector of length 1 or a data.frame or tibble variable factor; column in data prob hypothesised proportion observed proportion

alternative a character string specifying the alternative hypothesis, must be one of "both"

(default), "greater", "less" or "all". You can specify just the initial letter.

ifr_os_prop_test

Value

ifr_os_prop_test returns an object of class "ifr_os_prop_test". An object of class "ifr_os_prop_test" is a list containing the following components:

n	number of observations
phat	proportion of 1's
р	assumed probability of success
Z	z statistic
sig	p-value for z statistic
alt	alternative hypothesis
obs	observed number of 0's and 1's
exp	expected number of 0's and 1's
deviation	deviation of observed from expected
std	standardized resiudals

Deprecated Function

```
infer_os_prop_test() has been deprecated. Instead use ifr_os_prop_test().
```

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
prop.test binom.test
```

```
# use as a calculator
ifr_os_prop_test(200, prob = 0.5, phat = 0.3)
# using data set
ifr_os_prop_test(hsb, female, prob = 0.5)
```

ifr_os_t_test

Description

ifr_os_t_test performs t tests on the equality of means. It tests the hypothesis that a sample has a mean equal to a hypothesized value.

Usage

```
ifr_os_t_test(
   data,
   x,
   mu = 0,
   alpha = 0.05,
   alternative = c("both", "less", "greater", "all"),
   ...
)
```

Arguments

data a data.frame or tibble x numeric; column in data

mu a number indicating the true value of the mean

alpha acceptable tolerance for type I error

alternative a character string specifying the alternative hypothesis, must be one of "both"

(default), "greater", "less" or "all". You can specify just the initial letter

... additional arguments passed to or from other methods

Value

ifr_os_t_test returns an object of class "ifr_os_t_test". An object of class "ifr_os_t_test" is a list containing the following components:

mu a number indicating the true value of the mean

n number of observations

df degrees of freedom

Mean observed mean of x

stddev standard deviation of x

std_err estimate of standard error

test_stat t statistic

confint confidence interval for the mean

mean_diff mean difference

ifr_os_var_test

```
mean_diff_1 lower confidence limit for mean difference
mean_diff_u upper confidence limit for mean difference
p_1 lower one-sided p-value
p_u upper one-sided p-value
p two sided p-value
conf confidence level
type alternative hypothesis
var_name name of x
```

Deprecated Function

```
infer_os_t_test() has been deprecated. Instead use ifr_os_t_test().
```

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
t.test
```

Examples

```
# lower tail
ifr_os_t_test(hsb, write, mu = 50, alternative = 'less')
# upper tail
ifr_os_t_test(hsb, write, mu = 50, alternative = 'greater')
# both tails
ifr_os_t_test(hsb, write, mu = 50, alternative = 'both')
# all tails
ifr_os_t_test(hsb, write, mu = 50, alternative = 'all')
```

ifr_os_var_test

One Sample Variance Comparison Test

Description

ifr_os_var_test performs tests on the equality of standard deviations (variances). It tests that the standard deviation of a sample is equal to a hypothesized value.

ifr_os_var_test 17

Usage

```
ifr_os_var_test(
  data,
  x,
  sd,
  confint = 0.95,
  alternative = c("both", "less", "greater", "all"),
  ...
)
```

Arguments

data a data.frame or tibble x numeric; column in data

sd hypothesised standard deviation

confint confidence level

alternative a character string specifying the alternative hypothesis, must be one of "both"

(default), "greater", "less" or "all". You can specify just the initial letter

... additional arguments passed to or from other methods

Value

ifr_os_var_test returns an object of class "ifr_os_var_test". An object of class "ifr_os_var_test" is a list containing the following components:

n number of observations

sd hypothesised standard deviation of x

sigma observed standard deviation
se estimated standard error
chi chi-square statistic
df degrees of freedom
p_lower lower one-sided p-value
p_upper upper one-sided p-value
p_two two-sided p-value

xbar mean of x

c_lwr lower confidence limit of standard deviation c_upr upper confidence limit of standard deviation

var_name name of x
conf confidence level
type alternative hypothesis

Deprecated Function

infer_os_var_test() has been deprecated. Instead use ifr_os_var_test().

ifr_runs_test

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
var.test
```

Examples

```
# lower tail
ifr_os_var_test(mtcars, mpg, 5, alternative = 'less')
# upper tail
ifr_os_var_test(mtcars, mpg, 5, alternative = 'greater')
# both tails
ifr_os_var_test(mtcars, mpg, 5, alternative = 'both')
# all tails
ifr_os_var_test(mtcars, mpg, 5, alternative = 'all')
```

ifr_runs_test

Test for Random Order

Description

runtest tests whether the observations of x are serially independent i.e. whether they occur in a random order, by counting how many runs there are above and below a threshold. By default, the median is used as the threshold. A small number of runs indicates positive serial correlation; a large number indicates negative serial correlation.

Usage

```
ifr_runs_test(
  data,
  X,
  drop = FALSE,
  split = FALSE,
  mean = FALSE,
  threshold = NA
)
```

ifr_runs_test 19

Arguments

data	a data.frame or tibble
X	numeric; column in data

drop logical; if TRUE, values equal to the threshold will be dropped from x

split logical; if TRUE, data will be recoded in binary format

mean logical; if TRUE, mean will be used as threshold

threshold threshold to be used for counting runs, specify 0 if data is coded as a binary.

Value

infer_runs_test returns an object of class "ifr_runs_test". An object of class "ifr_runs_test" is a list containing the following components:

n number of observations
threshold within group sum of squares
n_below number below the threshold
n_above number above the threshold
mean expected number of runs

var variance of the number of runs

n_runs number of runs
z z statistic
p p-value of z

Deprecated Function

runs_test() has been deprecated. Instead use ifr_runs_test().

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

Edgington, E. S. 1961. Probability table for number of runs of signs of first differences in ordered series. Journal of the American Statistical Association 56: 156–159.

Madansky, A. 1988. Prescriptions for Working Statisticians. New York: Springer.

Swed, F. S., and C. Eisenhart. 1943. Tables for testing randomness of grouping in a sequence of alternatives. Annals of Mathematical Statistics 14: 66–87.

```
ifr_runs_test(hsb, read)
ifr_runs_test(hsb, read, drop = TRUE)
ifr_runs_test(hsb, read, split = TRUE)
```

20 ifr_ts_ind_ttest

```
ifr_runs_test(hsb, read, mean = TRUE)
ifr_runs_test(hsb, read, threshold = 0)
```

ifr_ts_ind_ttest

Two Independent Sample t Test

Description

ifr_ts_ind_ttest compares the means of two independent groups in order to determine whether there is statistical evidence that the associated population means are significantly different.

Usage

```
ifr_ts_ind_ttest(
  data,
    x,
    y,
  confint = 0.95,
  alternative = c("both", "less", "greater", "all"),
    ...
)
```

Arguments

data	a data frame
x	factor; a column in data
У	numeric; a column in data
confint	confidence level
alternative	a character string specifying the alternative hypothesis, must be one of "both" (default), "greater", "less" or "all". You can specify just the initial letter
	additional arguments passed to or from other methods

Value

ifr_ts_ind_ttest returns an object of class "ifr_ts_ind_ttest". An object of class "ifr_ts_ind_ttest" is a list containing the following components:

levels	levels of x
obs	number of observations of y for each level of x
n	total number of observations
mean	mean of y for each level of x
sd	standard deviation of y for each level of x
se	estimate of standard error of y for each level of x

ifr_ts_ind_ttest 21

lower lower limit for the mean of y for each level of x upper upper limit for the mean of y for each level of x

combined a data frame; mean, standard deviation, standard error and confidence limit of

mean of y

mean_diff difference in mean of y for the two groups of x

se_dif estimate of the standard error for difference in mean of y for the two groups of x

sd_dif degrees of freedom

conf_diff confidence interval for mean_diff

df_pooled degrees of freedom for the pooled method

df_satterthwaite

degrees of freedom for the Satterthwaite method

t_pooled t statistic for the pooled method

t_satterthwaite

t statistic for the Satterthwaite method

sig_pooled two-sided p-value for the pooled method sig_pooled_l lower one-sided p-value for the pooled method

sig_pooled_u upper one-sided p-value for the pooled method two-sided p-value for the Satterthwaite method

sig_1 lower one-sided p-value for the Satterthwaite method sig_u upper one-sided p-value for the Satterthwaite method

num_df numerator degrees of freedom for folded f test
den_df denominator degrees of freedom for folded f test

f f value for the equality of variances test

f_sig p-value for the folded f test

var_y name of y confidence level

alternative alternative hypothesis

Deprecated Function

infer_ts_ind_ttest() has been deprecated. Instead use ifr_ts_ind_ttest().

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

t.test

22 ifr_ts_paired_ttest

Examples

```
# lower tail
ifr_ts_ind_ttest(hsb, female, write, alternative = 'less')
# upper tail
ifr_ts_ind_ttest(hsb, female, write, alternative = 'greater')
# both tails
ifr_ts_ind_ttest(hsb, female, write, alternative = 'both')
# all tails
ifr_ts_ind_ttest(hsb, female, write, alternative = 'all')
```

Description

ifr_ts_paired_ttest tests that two samples have the same mean, assuming paired data.

Usage

```
ifr_ts_paired_ttest(
  data,
  x,
  y,
  confint = 0.95,
  alternative = c("both", "less", "greater", "all")
)
```

Arguments

data a data.frame or tibble
x numeric; column in data
y numeric; column in data

confint confidence level

alternative a character string specifying the alternative hypothesis, must be one of "both" (default), "greater", "less" or "all". You can specify just the initial letter.

Value

ifr_ts_paired_ttest returns an object of class "ifr_ts_paired_ttest". An object of class "ifr_ts_paired_ttest" is a list containing the following components:

Obs number of observations

ifr_ts_paired_ttest 23

mean, standard deviation and standard error of x, y and their difference

tstat t statistic lower one-sided p-value p_lower upper one-sided p-value p_upper two sided p-value p_two_tail Correlation of x and y corr p-value of correlation test corsig conf_int1 confidence interval for mean of x conf_int2 confidence interval for mean of y conf_int_diff confidence interval for mean of difference of x and y df degrees of freedom confint

confint confidence level alternative alternative hypothesis var_names names of x and y

xy string used in printing results of the test

Deprecated Function

```
infer_ts_paired_ttest() has been deprecated. Instead use ifr_ts_paired_ttest().
```

References

b

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

t.test

```
# lower tail
ifr_ts_paired_ttest(hsb, read, write, alternative = 'less')
# upper tail
ifr_ts_paired_ttest(hsb, read, write, alternative = 'greater')
# both tails
ifr_ts_paired_ttest(hsb, read, write, alternative = 'both')
# all tails
ifr_ts_paired_ttest(hsb, read, write, alternative = 'all')
```

24 ifr_ts_prop_test

ifr_ts_prop_test

Two Sample Test of Proportion

Description

Tests on the equality of proportions using large-sample statistics. It tests that a sample has the same proportion within two independent groups or two samples have the same proportion.

Usage

```
ifr_ts_prop_test(
 data,
 var1,
 var2,
 alternative = c("both", "less", "greater", "all"),
)
ifr_ts_prop_group(
 data,
  var,
 group,
 alternative = c("both", "less", "greater", "all")
)
ifr_ts_prop_calc(
  n1,
 n2,
 р1,
 p2,
 alternative = c("both", "less", "greater", "all"),
)
```

Arguments

```
data
                  a data.frame or tibble
var1
                  factor; column in data
                  factor; column in data
var2
alternative
                   a character string specifying the alternative hypothesis, must be one of "both"
                   (default), "greater", "less" or "all". You can specify just the initial letter
                  additional arguments passed to or from other methods
. . .
                  factor; column in data
var
                  factor; column in data
group
                  sample 1 size
n1
```

ifr_ts_prop_test 25

```
n2 sample 2 size
p1 sample 1 proportion
p2 sample 2 proportion
```

Value

an object of class "ifr_ts_prop_test". An object of class "ifr_ts_prop_test" is a list containing the following components:

```
n1 sample 1 size

n2 sample 2 size

phat1 sample 1 proportion

phat2 sample 2 proportion

z z statistic

sig p-value for z statistic

alt alternative hypothesis
```

Deprecated Functions

```
infer_ts_prop_test(), infer_ts_prop_grp() and infer_ts_prop_calc() have been deprecated. Instead use ifr_ts_prop_test(), ifr_ts_prop_group() and ifr_ts_prop_calc().
```

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
prop.test
```

```
# using variables
# lower tail
ifr_ts_prop_test(treatment, treatment1, treatment2,
alternative = 'less')

# using groups
# lower tail
ifr_ts_prop_group(treatment2, outcome, female,
alternative = 'less')

# using sample size and proportions
# lower tail
ifr_ts_prop_calc(n1 = 30, n2 = 25, p1 = 0.3, p2 = 0.5, alternative = 'less')
```

26 ifr_ts_var_test

ifr_ts_var_test

Two Sample Variance Comparison Test

Description

ifr_ts_var_test performs tests on the equality of standard deviations (variances).

Usage

```
ifr_ts_var_test(
  data,
  ...,
  group_var = NULL,
  alternative = c("less", "greater", "all")
)
```

Arguments

data a data.frame or tibble ... numeric; column(s) in data group_var factor; column in data

alternative a character string specifying the alternative hypothesis, must be one of "both"

(default), "greater", "less" or "all". You can specify just the initial letter.

Value

ifr_ts_var_test returns an object of class "ifr_ts_var_test". An object of class "ifr_ts_var_test" is a list containing the following components:

f f statistic

lower one-sided p-value upper upper one-sided p-value

two_tail two-sided p-value

vars variances for each level of the grouping variable avgs means for each level of the grouping variable

sds standard deviations for each level of the grouping variable ses standard errors for each level of the grouping variable

avg combined mean

sd combined standard deviation
se estimated combined standard error
n1 numerator degrees of freedom
n2 denominator degrees of freedom

treatment 27

lens	number of observations for each level of grouping variable
len	number of observations
lev	levels of the grouping variable
type	alternative hypothesis

Deprecated Function

```
infer_ts_var_test() has been deprecated. Instead use ifr_ts_var_test().
```

References

Sheskin, D. J. 2007. Handbook of Parametric and Nonparametric Statistical Procedures, 4th edition. : Chapman & Hall/CRC.

See Also

```
var.test
```

Examples

```
# using grouping variable
ifr_ts_var_test(hsb, read, group_var = female, alternative = 'less')
# using two variables
ifr_ts_var_test(hsb, read, write, alternative = 'less')
```

treatment

Dummy data set for 2 Sample Proportion test

Description

A dataset containing information about two treatments

Usage

treatment

Format

A data frame with 50 rows and 2 variables:

```
treatment1 result of treatment type 1
treatment2 result of treatment type 2
```

28 treatment2

treatment2

Dummy data set for 2 Sample Proportion test

Description

A dataset containing information about treatment outcomes

Usage

treatment2

Format

A data frame with 200 rows and 2 variables:

outcome of treatment

female gender of patient, 0 for male and 1 for female

Index

* datasets	infer_cochran_qtest
exam, 2	(ifr_cochran_qtest), 7
hsb, 3	infer_launch_shiny_app
treatment, 27	<pre>(ifr_launch_shiny_app), 8</pre>
treatment2, 28	<pre>infer_levene_test(ifr_levene_test), 9</pre>
anova, <i>13</i>	<pre>infer_mcnemar_test(ifr_mcnemar_test),</pre>
binom.test, <i>4</i> , <i>14</i>	<pre>infer_oneway_anova (ifr_oneway_anova),</pre>
chisq.test, 6, 7	<pre>infer_os_prop_test(ifr_os_prop_test),</pre>
exam, 2	<pre>infer_os_t_test(ifr_os_t_test), 15 infer_os_var_test(ifr_os_var_test), 16</pre>
hsb, 3	<pre>infer_runs_test(ifr_runs_test), 18 infer_ts_ind_ttest(ifr_ts_ind_ttest),</pre>
<pre>ifr_binom_calc, 3</pre>	20
<pre>ifr_binom_test(ifr_binom_calc), 3</pre>	infer_ts_paired_ttest
<pre>ifr_chisq_assoc_test, 5</pre>	<pre>(ifr_ts_paired_ttest), 22</pre>
<pre>ifr_chisq_gof_test, 6</pre>	<pre>infer_ts_prop_calc(ifr_ts_prop_test),</pre>
ifr_cochran_qtest, 7	24
ifr_launch_shiny_app, 8	<pre>infer_ts_prop_grp (ifr_ts_prop_test), 24</pre>
ifr_levene_test, 9	<pre>infer_ts_prop_test(ifr_ts_prop_test),</pre>
ifr_mcnemar_test, 10	24
ifr_oneway_anova, 12	<pre>infer_ts_var_test (ifr_ts_var_test), 26</pre>
ifr_os_prop_test, 13	
ifr_os_t_test, 15	mcnemar.test, 11
ifr_os_var_test, 16	nnen toot 14.25
ifr_runs_test, 18	prop.test, <i>14</i> , <i>25</i>
ifr_ts_ind_ttest, 20	t.test, 16, 21, 23
<pre>ifr_ts_paired_ttest, 22</pre>	treatment, 27
<pre>ifr_ts_prop_calc (ifr_ts_prop_test), 24</pre>	treatment2, 28
<pre>ifr_ts_prop_group(ifr_ts_prop_test), 24</pre>	treatments, 20
ifr_ts_prop_test, 24	var.test, 18, 27
ifr_ts_var_test, 26	
<pre>infer_binom_calc(ifr_binom_calc), 3</pre>	
<pre>infer_binom_test(ifr_binom_calc), 3</pre>	
infer_chisq_assoc_test	
(ifr_chisq_assoc_test), 5	
infer_chisq_gof_test	
(ifr_chisq_gof_test), 6	