

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1978-09

A procedure to facilitate testing of a two-sided composite null hypothesis about the mean of a normally distributed random variable

Davis, Michael William

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/18527

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community. Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

> Dudley Knox Library / Naval Postgraduate School 411 Dyer Road / 1 University Circle Monterey, California USA 93943

http://www.nps.edu/library

A PROCEDURE TO FACILITATE TESTING OF A TWO-SIDED COMPOSITE NULL HYPOTHESIS ABOUT THE MEAN OF A NORMALLY DISTRIBUTED RANDOM VARIABLE.

Michael William Davis

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

A PROCEDURE TO FACILITATE TESTING OF A TWO-SIDED COMPOSITE NULL HYPOTHESIS ABOUT THE MEAN OF A NORMALLY DISTRIBUTED RANDOM VARIABLE

by

Michael William Davis

September 1978

Thesis Advisor:

R. R. Read

Approved for public release; distribution unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date	Entered)	
REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
A Procedure to Facilitate Tes	Master's Thesis;	
Two-Sided Composite Null Hypo		September 1978
the Mean of a Normally Distri Random Variable	TENTONMING ONG. REPORT NUMBER	
7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(*)
Michael William Davis		
Naval Postgraduate School Monterey, California 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Postgraduate School		September 1978
Monterey, California 93940		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & AODRESS(II ditteren	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary and identify by block number)
TWO-Sided Composite Null Hypothesis

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A procedure was developed to aid in the testing of a two-sided composite null hypothesis about the mean of a normally distributed random variable for situations where either the population variance is known or unknown. The procedure was designed to eliminate the requirement for iterative type solution techniques normally used in determining the acceptance or rejection region of the subject hypothesis.

DD 1 JAN 73 1473 EDITION

SECURITY CLASSIFICATION OF THIS PAGE/When Date Entered

(20. ABSTRACT Continued)

This thesis provides guidelines, curves, and tables which will aid in testing a two-sided composite null hypothesis. Provisions were also incorporated into the procedure to permit testing of hypotheses about the relative displacement of the coefficient of variation from zero.

Approved for public release; distribution unlimited.

A Procedure to Facilitate Testing of a Two-Sided Composite Null Hypothesis About The Mean of a Normally Distributed Random Variable

by

Michael William Davis B.S. University of Maryland, 1970

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL September 1978

Thesis D17234 c.1

ABSTRACT

A procedure was developed to aid in the testing of a two-sided composite null hypothesis about the mean of a normally distributed random variable for situations where either the population variance is known or unknown. The procedure was designed to eliminate the requirement for iterative type solution techniques normally used in determining the acceptance or rejection region of the subject hypothesis. This thesis provides guidelines, curves, and tables which will aid in testing a two-sided composite null hypothesis. Provisions were also incorporated into the procedure to permit testing of hypotheses about the relative displacement of the coefficient of variation from zero.

TABLE OF CONTENTS

I.	INTRODUCTION					9	
	A.	BAC	KGRO	JND F	AND PURPOSE	9	
	в.	SCO:	SCOPE				
	c.	SYMBOL AND HYPOTHESIS TESTING CONVENTIONS PECULIAR TO THIS THESIS					
II.	RES	ULTS	AND	DISC	CUSSION	12	
	Α.	CAS	E OF	KNOV	WN POPULATION VARIANCE	12	
		1.	Gene	eral	Remarks	12	
		2.	Pro	cedur	re Description	13	
			a.	For	Controlling a Error Level	13	
			b.	For	Controlling β Error Level	14	
			c.	For	Estimating Tail Probability $(P_{\overline{T}})$	14	
		3.			f Parameter Values Considered		
		4.	Exai	mple	Applications	18	
	в.	CAS	E OF	UNKN	NOWN POPULATION VARIANCE	20	
		1.	Gen	eral	Remarks	20	
		2.	Pro	cedur	re Description	21	
					Testing That $ \mu - \mu_0 \leq r\sigma$		
					Testing that CV < CV		
					Estimating Tail Probability (P _T)		
		3.			f Parameter Values Considered		
		4.			Applications	28	
APPEN	DIX		CURV:	ES FO	OR DETERMINING & OR B CRITICAL	30	

APPENDIX B:	TABLES OF α OR β CRITICAL VALUES AND P _T	- 47
APPENDIX C:	PROCEDURE DERIVATION	- 94
APPENDIX D:	SOLUTION TECHNIQUES AND COMPUTER PROGRAMS	- 104
APPENDIX E:	LIST OF REFERENCES	-116
INITIAL DIST	RIBUTION LIST	-117

SYMBOLOGY

- α = Probability of a Type I error.
- β = Probability of a Type II error.
- C = Critical value defining the rejection or acceptance region centered around μ (σ known case) or zero (σ unknown case).
- C_L, C_R = The lower bound (C_L) and upper bound (C_R) on the critical region.
- $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$
- μ = The true population expected value (mean).
- μ_{O} = A specified value of the true population mean.
- $d_L, d_R = Specified lower (d_L) and upper (d_R) limits for the true population mean (<math>\mu$).
- σ^2 = Population variance (σ = population standard deviation).
- $\hat{\sigma}^2$ = Sample variance used to estimate σ^2 , specifically;

$$\hat{\sigma}^2 = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n-1}.$$

$$\delta = \frac{d_L + d_R}{2}.$$

- n = sample size.
- $C^* = \frac{C\sqrt{n}}{\sigma}.$
- $a = \frac{\delta \sqrt{n}}{\sigma}.$
- CV = Coefficient of variation $(\frac{\sigma}{|\mu|})$.
- CV = A specified value of the CV.
- H_{O} = The null hypothesis of interest.

 H_a = The alternative hypothesis to H_o .

P_T = The tail probability that a value equal to or more extreme than the observed X would have resulted if H_O were in fact true.

T = Desired maximum allowable variation of the true mean from some specified value (μ) in terms of a portion of the population standard deviation (i.e., $|\mu - \mu_0| \le r\sigma$).

= The statistic

$$\left| \frac{\sqrt{n} (\overline{x} - \mu_0)}{\sqrt{\hat{\sigma}^2}} \right| .$$

DF = Degrees of freedom.

 λ = The non-centrality parameter of the non-central T distribution, $\lambda = r\sqrt{n}$.

 $\Phi[x]$ = Normal cumulative distribution function.

I. INTRODUCTION

A. BACKGROUND AND PURPOSE

A procedure was developed to aid in testing a two-sided composite null hypothesis about the mean of a normally distributed random variable. The intent was to eliminate the need for iterative solution techniques when solving for critical values manually. In situations where computer assistance is inappropriate or unavailable, there is a tendency for the analyst to shift from the interval test requirement to the computationally easier two-sided simple hypothesis (i.e., that the mean is equal to the midrange value of the interval). By employing the procedure proposed in this thesis, the time required to test a two-sided composite null hypothesis by hand can be significantly reduced.

B. SCOPE

Procedures were developed for the following test requirements.

1. For Testing That $d_L \leq \mu \leq d_R$

For situations where the population variance is known, a method was developed for testing that the population mean is between two values $(d_{I_{L}}$ and d_{R}).

2. For Testing That $|\mu - \mu_0| \le r\sigma$

For situations where the population variance is unknown, a method was developed to test that the absolute value of the deviation of the population mean from some specified value (μ_0)

is less than or equal to a specified portion (r) of the population standard deviation. By a slight modification, this procedure can be used to test if the coefficient of variation is between zero and some specified value.

Each procedure consists of using relevant situation parameters (i.e., σ , n, δ , α , etc.) to determine the critical region using either interpolation curves or tabulated data. The procedure was designed to be versatile with respect to using Type I (α) and Type II (β) error level control, or using tail probabilities (P_T) for drawing statistical inference.

To simplify use of the procedure, the paper is organized so that the main body contains only 1) minor theoretical context, 2) detailed procedural guidelines, and 3) example applications. The detailed derivation of the procedure is provided in Appendix C for readers so inclined. Appendices A and B provide curves and tables used to find the associated rejection or acceptance regions and the tail area probability. The curves are provided to simplify critical value interpolation for what is considered to be the majority of applicable parameter values. However, the total breadth of parameter ranges considered in this paper is covered in the tabulated data of Appendix B. It should be noted that all explanatory figures in the main body of this paper are schematic in nature and do not represent scale drawings.

C. SYMBOL AND HYPOTHESIS TESTING CONVENTIONS PECULIAR TO THIS THESIS

Whenever possible, symbol and concept conventions which conform to standard hypothesis testing terminology were employed. However, because of requirements which are peculiar to this procedure, it was convenient in some instances to use terminology that may be new to the reader. The following symbol and concept conventions apply throughout this Thesis:

- 1. The Null Hypotheses (H $_{O}$) will always be bounded intervals such as $|\mu-\mu_{O}| \leq \delta$ or $|\mu-\mu_{O}| \leq r\sigma$. All alternative hypotheses are the complements of such intervals.
- 2. The level of significance is customarily a preassigned upper bound on the size of the critical region (i.e., that subset of the sample space reserved for rejection of H_0). This will hereafter be referred to as α error level control.
- 3. By reversing the role played by the null and alternative hypotheses, it is possible to define an acceptance region for the originally formulated interval null hypothesis with a specified preassigned upper bound (β) on the size of a type II error. This procedure is defined as β error level control.

II. RESULTS AND DISCUSSION

A. CASE OF KNOWN POPULATION VARIANCE

1. General Remarks

In order to test the null hypothesis that the population mean falls between two values (i.e., $d_L \le \mu \le d_R$), an iterative solution of equation 1 is required.

(1)
$$\alpha = 1 - \Phi \left[\frac{\delta \sqrt{n}}{\sigma} + \frac{C\sqrt{n}}{\sigma} \right] + \Phi \left[\frac{\delta \sqrt{n}}{\sigma} - \frac{C\sqrt{n}}{\sigma} \right]$$

where,

- σ is the known population standard deviation,
- C is the value of the statistic x which defines the critical region centered around

$$\mu_{o} = \frac{d_{L} + d_{R}}{2},$$

- $\boldsymbol{\alpha}$ is the probability of a Type I error,
- δ is equal to $\frac{d_R d_L}{2}$, and
- $\boldsymbol{\Phi}$ is the integral of the standard normal probability density.

To determine a rejection region for the subject hypothesis, an initial value of C would be guessed and the right side of equation 1 calculated. A new C would then be used iteratively until the desired accuracy in the value of α had been obtained. This solution process is not difficult or time consuming with the assistance of a computer. However, when performed manually, such a process may require more effort than is warranted by the scope of the project.

The procedure developed in this thesis will provide the individual with a method for testing a two-sided composite null hypothesis which circumvents the previously described iterative solution technique. The procedure derivation is provided in Appendix C. In general, it consists of normalizing equation 1 by reparameterizing the terms $\frac{\delta\sqrt{n}}{\sigma}$ and $\frac{C\sqrt{n}}{\sigma}$ as the parameters "a" and C*, respectively. Appropriate values of C* are then obtained according to the prescribed procedure which follows.

2. Procedure Description

The procedure for testing that $d_L \leq \mu \leq d_R$ is outlined in Figure 1 (for α and β error control) and Figure 2 (for estimating P_T). This procedure was developed for situations where symmetric critical regions are of interest. A summary of the procedure follows.

a. For Controlling The α Error Level First calculate $a=\frac{\delta\sqrt{n}}{\sigma}.$ If the value of "a" is less than or equal to 1.7, the associated value of C* is obtained from Figure A-1 of Appendix A. The lower (C_L) and upper (C_R) bounds of the rejection region are then defined using equation 2.

(2)
$$C_L = \mu_O - \frac{C*\sigma}{\sqrt{n}}$$
, $C_R = \mu_O + \frac{C*\sigma}{\sqrt{n}}$ where $\mu_O = \frac{d_L + d_R}{2}$

If the calculated value of "a" is greater than 1.7, the relationship between "a" and C* becomes linear and equation 3 is used to define the rejection region (K_E is obtained from Figure 1). If \overline{x} < C_L or \overline{x} > C_R then reject

the hypothesis with a probability equal to α of rejecting when in fact the hypothesis is true.

(3)
$$C_{L} = \mu_{O} - \frac{(a + K_{E})\sigma}{\sqrt{n}} \text{ and } C_{R} = \mu_{O} + \frac{(a + K_{E})\sigma}{\sqrt{n}}$$

b. For Controlling The β Error Level First calculate $a=\frac{\delta\sqrt{n}}{\sigma}$. If "a" is less than or equal to 3, the associated C* value is obtained from Figure A-2 (.2 \leq a \leq 1.6) or Figure A-3 (1.6 \leq a \leq 3) of Appendix A. The lower (C_L) and upper (C_R) bounds of the acceptance region are then defined using equation 2.

If "a" is greater than 3, the relationship between a and C* becomes linear and equation 4 is used to define the β error level acceptance region. If $C_{L} \leq \overline{x} \leq C_{R}$, the hypothesis that the mean is between d_{L} and d_{R} is accepted with a probability of falsely accepting equal to β .

(4)
$$C_{L} = \mu_{O} - \frac{(a - K_{E})\sigma}{\sqrt{n}}$$
 and $C_{R} = \mu_{O} + \frac{(a - K_{E})\sigma}{\sqrt{n}}$

c. For Estimating Tail Probability (P_T)

The exact value of the tail probability (P $_{\rm T}$) cannot be calculated since it depends on the actual value of the population mean (μ). However, the procedure depicted in Figure 2 will provide an estimate of the maximum possible value of P $_{\rm T}$ for a corresponding value of \overline{x} equal to or more extreme than that observed. The procedure for estimating P $_{\rm T}$ consists of first calculating the values a = $\frac{\delta\sqrt{n}}{\sigma}$ and

Figure 1: Algorithm For Determining α or β Critical Regions for Known σ

Figure 2: Algorithm For Determining The Tail Probability
For σ Known

 $C^* = \left| \frac{(\bar{x} - \mu_0) \sqrt{n}}{\sigma} \right|.$ These values are then used to estimate P_T by employing the interpolation curves of Appendix A or by direct calculation using the equations provided in Figure 2.

3. Range of Parameter Values Considered

The procedure itself is suitable for all possible parameter values. However, a restriction on the range of parameters covered by the curves and tabulated data was necessary. The range of parameter values was selected in a manner which would provide adequate coverage for the majority of conceivable real-world situations.

a. Curves

- 1. For α Error Level Control. Parameter ranges covered are $\alpha(.01, .025, .05, .075, .1, .15, .2, and .25)$ and a(0 to 1.7).
- 2. For β Error Level Control. Parameter ranges covered are $\beta(.01, .025, .05, .075, .1, .15, .2, and .25)$ and a(2 to 3).
- 3. For Estimating P_T . Parameter ranges covered are a(0 to 2.8) and C*(.04 to 5.2).

b. Tables

- 1. For α Error Level Control. Parameter ranges covered are $\alpha(.001, .01, .025, .05, .075, .1, .15, .2, and .25) and <math>\alpha(0 \text{ to } 3)$.
- 2. For β Error Level Control. Parameter ranges covered are β (.001, .01, .025, .05, .075, .1, .15, .2, and .25) and a(0 to 5).

4. Example Applications

a. Example 1

In the production of a certain structural element, a new size has been established as marketable. The expected size of the new element is to be between 16.5 and 17 cm in order to satisfy engineering and management requirements. For example, if the expected size is below 16.5 cm the rejection rate of unacceptable elements will be too high. If the expected size exceeds 17 cm, more material is used than is necessary.

For the first 25 units produced, the average size is 17.03 cm. It is known from previous experience that the element size is normally distributed with a standard deviation equal to .2. In addition, no functional relationship between the mean and standard deviation of the element size has been observed in the range of 10 to 20 cm.

The decision maker is interested in determining if the hypothesis that the expected size is between 16.5 and 17 cm can be rejected with a Type I error equal to .05. The test is conducted with δ equal to .25, $\mu_{\rm O}$ equal to 16.75, and a equal to $\frac{(.25)(5)}{2}$ or 6.25. Since a is greater than 1.7, the rejection region is defined using equation 3, specifically:

$$C_L = 16.75 - \frac{(6.25 + 1.645)(.2)}{5} = 16.434$$

and

$$C_R = 16.75 + .3158 = 17.066.$$

Since \overline{x} is neither greater than C_R or less than C_L , the hypothesis cannot be rejected with a Type I error equal to .05.

b. Example 2

From a sample size of 81 shipping containers selected at random, it is necessary to know if the expected container weight (which appears to be normally distributed) is between 75 and 75.5 kg. The sample average weight and variance are 75.22 and 1.44, respectively. A Type II error equal to .01 is desired. Since the sample size is relatively large, a reasonable estimate of the population variance can be obtained using the sample variance. The test is conducted with δ equal to .25, $\mu_{\rm O}$ equal to 75.25, and a equal to $\frac{(.25)(9)}{1.2}$ or 1.875. Since the value of a is less than 3, a C* value equal to .0726 is obtained from Figure A-3 of Appendix A. Using this value of C*, the values of $C_{\rm L}$ and $C_{\rm R}$ obtained from equation 4 are

$$C_L = 75.25 - \frac{(.07263)(1.2)}{9} = 7.25 - .00975 = 75.24$$

and

$$C_{R} = 75.25 + .00975 = 75.26.$$

Since \overline{x} is not between C_L and C_R , the hypothesis that the mean

is between 75 and 75.5 cannot be accepted with a Type II error equal to .01. However, it may be possible to accept the hypothesis at a somewhat higher risk (β) of falsely accepting. Trying β = .05, the new C* obtained from Figure A-3 of Appendix A is .35 and accordingly C_L = 75.2 and C_R = 75.3. Since \overline{x} is between C_L and C_R , the hypothesis could be accepted with a probability equal to .05 of falsely accepting.

c. Example 3

For the situation of Example 1, the decision maker wants to know for what values of α the hypothesis $16.5 \le \mu \le 17$ could be rejected. The answer can be found by estimating the maximum tail probability associated with the observed \overline{x} using the procedure described in figure 2 with a = 6.25 and $C^* = \left| \frac{(\overline{x} - \mu_0) \sqrt{n}}{\sigma} \right| = 7$. Since $a + C^* > 3.5$, the estimate of P_T would be $P_T = \Phi[.25 - 7] = .227$. Therefore, an α probability greater or equal to .23 would be required before the hypothesis could be rejected.

B. CASE OF UNKNOWN POPULATION VARIANCE

1. General Remarks

A procedure for situations of unknown population variance which would parallel that of the previously discussed variance known procedure cannot be developed without several stage sampling such as Stein's Procedure (reference 1). However, the previously developed methods can be extended directly to the case of unknown variance provided the null hypothesis is scaled by the standard deviation (see below)

and the noncentral t distribution is used in place of the normal. Details follow.

- a. A procedure was developed to test the hypothesis $|\mu-\mu_{0}| \leq r\sigma$ or equivalently $\frac{|\mu-\mu_{0}|}{\sigma} \leq r$ where
 - μ is the true population mean,
 - is some specified value of interest near which the mean is to be tested, and
 - r is the portion of the population σ for which the test is to determine if the true mean is within $r\sigma$ units of μ_{Ω} .
- b. The procedure can be used to conduct tests about the displacement of the coefficient of variation (CV = $\frac{\sigma}{|\mu|}$) from zero.

2. Procedure Description

The procedure for testing that $|\mu-\mu_0| \leq r\sigma$ is provided in figure 3. For testing that CV \leq CV₀, figure 4 should be used. Finally, the method for estimating P_T is provided in figure 5.

As the sample size gets large, the ratio $\frac{C}{\sqrt{n}}$ converges to the test value of r. To take advantage of this result, the curves for α error level control are presented in terms of the value $\frac{C}{\sqrt{n}}$ instead of just C. This provides an indication of the value of r and the sample size n for which the σ^2 unknown curves become close to those of the σ^2 known case. However, since the method of estimating P_T requires repeated table entry and interpolation, the critical values presented in the tables of Appendix B are in terms of C directly. A summary of the procedure follows.

a. For Testing That $|\mu - \mu_0| \le r\sigma$

Select the desired α or β error level. Consult the corresponding curves of Appendix A or tables of Appendix B. If the curves are used, multiply the value obtained for $\frac{C}{\sqrt{n}}$ by the sample size (n). If the tables are used, determine the corresponding value of C directly for the subject values of r and DF. Calculate the statistic

$$\hat{r} = \left| \frac{(\bar{x} - \mu_0) \sqrt{n}}{\sqrt{\hat{\sigma}^2}} \right|.$$

If the test is to control the α error level then reject the hypothesis, with a Type I error equal to α , if the value of \hat{r} is greater than the C value determined from the α curves or tables. For a test to control the β error level accept the hypothesis with a Type II error equal to β if the value of \hat{r} is less than or equal to the C value obtained from the 1- β tables.

b. For Testing That $CV \leq CV_{O}$

To test the null hypothesis that the coefficient of variation does not exceed ${\rm CV}_{\rm O}$ at the α level of significance, one need only apply a role reversal technique to the above procedure. The set equivalences

$$(CV \leq CV_0) = (\frac{\sigma}{|\mu|} \leq CV_0) = (\frac{|\mu|}{\sigma} \geq \frac{1}{CV_0})$$

illustrate the fact that the hypothesis of interest is one of the alternate hypothesis treated previously, and can be managed by reversing the role and interpretation of α and

 β error level control from the previous test for $|\mu - \mu_0| \le r\sigma$.

1. For Controlling The α Error Level. Obtain the C value corresponding to the subject values of r (equal to $\frac{1}{CV_O}$) and DF from the table of Appendix B associated with the value 1- α . Calculate the statistic

$$\hat{r} = \left| \frac{\overline{x} \sqrt{n}}{\sqrt{\hat{\sigma}^2}} \right|.$$

If \hat{r} < C, reject the hypothesis that CV \leq CV with a Type I error equal to α .

- 2. For Controlling The β Error Level. Obtain the C value corresponding to the test values of r and DF from the curves of Appendix A associated with the value β (i.e., for β = .01, consult the curves for an α = .01). Calculate the statistic $\hat{\mathbf{r}}$. If $\hat{\mathbf{r}} \geq$ C, accept the hypothesis with a Type II error = β .
 - c. For Estimating $P_{\overline{T}}$

The actual value of P $_{\widetilde{\mathbf{T}}}$ associated with the observed value of $\hat{\mathbf{r}}$ will depend upon the true value of

$$\left| \frac{(\mu - \mu_0) \sqrt{n}}{\sigma} \right|$$
.

To obtain an estimate of the range of possible values for P_T , the procedure detailed in figure 5 is used to calculate a value for P_T corresponding to r set at zero and r set at the test value (r). The actual value of P_T will be between these two extremes.

Figure 3: Algorithm For Testing The Hypothesis $|\mu - \mu_0| \le r\sigma$

Figure 4: Algorithm For Testing The Hypothesis $CV \leq CV_{O}$

Figure 5: Algorithm For Estimating $P_{\mathbf{T}}$ For σ Unknown

3. Range of Parameter Values Considered

Two general levels of r values, along with selected incrementation, were chosen to parallel the range considered applicable in the majority of situations. For example, in most cases where the test of interest is that $|\mu - \mu_0| \le r\sigma$, r would range between zero and 1. Conversely, most tests concerning the coefficient of variation would require that .143 \le CV $_0$ \le 1 (or equivalently, $7 \ge r \ge 1$). However, the critical values (C) for the total range of r (i.e., o to 7) provided in the curves and tables can be used for either test. The specific parameter ranges covered were:

a. Curves

Curves are provided for α error level control for both low and high values of r.

- 1. For Low r Values $(0 \le r \le 1)$. Curves are provided for α equal to .01, .025, .05, .1, and .2.
- 2. For High r Values $(1 \le r \le 7)$. Curves are provided for α equal to .01, .025, .05, .1, and .2.

b. Tabulated Data

The same tables are used to present critical values for both α and β error level control and for estimating P_T . To obtain C values for β error control, the tables associated with α and P_T equal to 1- β are used. The values covered by the tables are α , P_T , or 1- β equal to .01, .025, .05, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95, .975, and .99. For each value of α , P_T , and 1- β , three tables are provided to cover the range of r from 0 to 7.

4. Example Applications

a. To Test That $|\mu - \mu_0| \le r\sigma$

It is necessary to determine if the output of a new system is between 11.75 and 12 units. The standard deviation in the output of the new system is believed (with confidence) to be between 2/3 and 3/4 of that of the old system ($\sigma = 1.5$). Using the conservative estimate of the improvement in the system deviation (i.e., 3/4), the test parameter r would be set equal to $\frac{(12-11.75)}{(2)(.75)(1.5)}$ or .111. For the first 15 units, the values of the sample mean and deviation were 11.68 and .3, respectively. The desired level of significance (α) is .05.

The test is conducted with μ_{0} equal to 11.875 and \hat{r} equal to 2.517. Using figure A-10 of Appendix A, $\frac{C}{\sqrt{n}}$ is determined to be .6, and accordingly, the critical value equals (.6) ($\sqrt{15}$) or 2.324. Since \hat{r} is greater than C, the hypothesis is rejected with a Type I error equal to .05.

b. To Test That CV \leq CV_o

A relationship is known to exist between the mean and standard deviation of the purity of a certain chemical product. A new method of processing is being considered to improve the expected purity of the product. The decision maker is interested in determining if the same degree of quality control would be obtained with the new process as with the current method which provide a standard deviation equal to .18 of the mean (i.e., a coefficient of variation equal to .18).

Since a relationship between the mean and standard deviation is known to exist, and only 15 batches of the product have been produced by the new process, the population variance is considered unknown. The mean purity of the first 15 batches was 4.6 parts per million with a sample variance equal to .25. The decision maker is concerned that if he does not convert to the new method, he will be rejecting, with a probability (α) equal to .05, an opportunity for a better product. The rejection region associated with a value of r equal to 5.56 (i.e., $\frac{1}{18}$) is found by consulting the critical value table with $1-\beta$ equal .95. Interpolating between the table columns for r equal to 5 and 6, a value of C equal to 17.69 is obtained. The value of \hat{r} is calculated to be 35.63. Since r is greater than C, the hypothesis that the new process provides a quality control equal to or greater than the current method cannot be rejected with a Type I error equal to .05.

APPENDIX A

CURVES FOR DETERMINING α OR β CRITICAL VALUES AND TAIL PROBABILITY (P $_{ m T}$)

I. GENERAL

The curves provided within were developed to simplify procedural calculations in lieu of the tabulated data of Appendix B. They do not cover the total parameter ranges of the data in Appendix B but were designed to maximize interpolation precision while covering what is felt to be the majority of applicable situations. For those cases which are subject to parameter values outside the range of the curves, Appendix B should be used. Figures A-1 through A-5 are relevant to the σ^2 known procedure. Figures A-6 through A-15 deal with the σ^2 unknown situation.

II. ACCURACY

The accuracy achievable in using the curves vs. using the associated tables depends on the interpolation prowess of the individual user. However, to provide a general idea of the accuracy which may be expected, the following statements are considered germane.

A. σ² UNKNOWN PROCEDURE CURVES

a. C* Values For α or β Error Level Control Accurate interpolation to the third digit is possible (i.e., C* true equals C* interpolated \pm .005).

b. P_T Values

Because of the semi log scale and interpolation between curves, the accuracy in the interpolated P_T values is expected to be \approx \pm .02 for .1 \leq P_T \leq .9, and \pm .005 for P_T < .1 or P_T > .9.

- B. σ² UNKNOWN PROCEDURE CURVES
- a. Curves For The Range of r From 0 to 1

 Interpolation accurate to the third digit is possible.
- b. <u>Curves For The Range of r From 1 to 7</u> Interpolation accurate to the second digit is possible.

Figure A-1: C* Values For α Error Level Control With σ Known; $(0 \le a \le 1.7)$

Figure A-2: C* Values For β Error Level Control With σ Known; (.2 < a < 1.6)

Figure A-3: C* Values For β Error Level Control With σ Known; (1.6 \leq a \leq 3)

Figure A-4: Tail Probability for σ Known with $.2 \le a \le 1.5$

Figure A-5: Tail Probability For σ Known With 1.5 \leq a \leq 2.8

Figure A-6: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta=.01$; $(r \le 1)$

Figure A-7: C/\sqrt{n} Values for σ Unknown With α , P_T , or $1-\beta=.01$; $(r \ge 1)$

Figure A-8: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta$ = .025; $(r \le 1)$

Figure A-9: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta=.025$; $(r\geq 1)$

Figure A-10: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta=.05$; $(r \le 1)$

Figure A-ll: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta=.05$; $(r\geq 1)$

Figure A-12: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta=.1$; $(r\leq 1)$

Figure A-13: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta=.1$ $(r\geq 1)$

Figure A-14: C/\sqrt{n} Values For σ Unknown With α , P_T , or 1- β = .2; $(r \le 1)$

Figure A-15: C/\sqrt{n} Values For σ Unknown With α , P_T , or $1-\beta$ = .2; $(r \ge 1)$

APPENDIX B

TABLES OF α OR β CRITICAL VALUES AND P

	0,001	0.01	0.025	0.05	0.075	0,1	0,15	0,2	0,25
įа						•			
0.0	3,29056	2.57583	2,2414	1,95996	1.78046	1.64485	1,43953	1,28155	1,15035
0.1				1,96972					
0.15				1.98182					
0.2	3,35258	2,62564	2.28519	1.99855	1,81567	1.67748	1,4582	1,30715	1,17339
0.25				2,01971					
0.3				2,04505					
0.35	3,46146	2,71871	2.36928	2.07426	1,88565	1,74292	1.52647	1,35964	1,22092
0.4				2,10699					
0,45				2.14286					
0.5				2.10148					1,29-01
0.55				2,22245					1,32301
0,6				2.26539					
0,65	3,74193	2,98166	2,61927	2.30996	2,11024	1,95795	1.72485	1,54327	1,37032
0.7				2.35583					
0.75				2.40275					
0.8	3,89066	3,12796	2,76311	2,45047	2.24773	2.09252	1,85366	1,00020	1,50792
0.85	3,9405			2.4988					
.0.9	3,9904	3,22704	2.86141	2.5476	2,34371	2.18733	1,94598	1,75524	1.59447
0.95	4.04034	3,27579	2.91093	2.59675	2,39247	2,235F8	1,99342		
1,0	4,09031	3,32663	2.9606	2.64615	2,44158	2,28447	2,0415	1,84947	1.69501
1.05	4.14028	3,37653	3.01038	2,69573	2,49094	2.33359	2.09005	1,83735	1.73233
1,1	4.13027	3.42646	3.0€024	2.74544	2,54049	2.38297	2,13901	1,94577	1,78075
1.15	4,24026	3,47642	3.11014	2.79524	2,59018	2,43252	2,18824	1,9946	1,87775
1,2	4,23026	3.52639	3.16007	2.84511	2,63997	2,48221	2,23769	2.04373	1,87777
1,25	4,34026	3,57637	3.21003	2.89502	2.68922	2,532	2,2873	2,0931	1,92683
1.3				2,94436					
1.35				2.03492		2.63175	2,38583		
1.4	4,49025	3,72635	3.35998	3.0449	2,83961	2.68168	2,4357	2,24?1	2,07529
1,45	4,54025	3,77635	3,40997	3.03428	2,88958	2,73163	2,48661	2,29195	2.12504
1.5	4,59025	3,82635	3,45997	3.14487	2,93956	2.7818	2,53855	2,34184	2.17426
1,55	4,64025	3.87635	3.50997	3.19426	2,98955	2.83153	2.52851	2,39177	2.22474
1.6	4,63025	3,92635	3.55996	3.244€€	3,03954	2,88157	2,63648	2,44172	2,27466
1,65	4,74025	3,97635	3,60996	3,29486	3,08954	2,93157	2,68646		
1,7	4,79025	4.02635	3,65996	3, 34486	3.13954	2.98156	2,73545	2,54186	2,3745€
1.75	4,84025	4,07635	3,70996	3,39485	3,18953	3.03156	2,78645	2,59165	2,42454
1.8	4,89025	4,12635	3.75996	3,44485	3,23953	3,08155	2.836,44	2,84164	2,47452
1.85				3.49485					
1.9	4,99025	4.22635	3,85996	3,54485	3,33953	3,18155	2,93644	2,74163	2,5745
1.95				3.59485					
2.0				3.64485					
2,5				4.14485					
3.0	6,09025	5,32635	4,95996	4.64485	4,43953	4.28155	4.03643	3,84162	3,67449

Table B-1: Tabulated C* Values for α Error Level Control With σ Known

.a.β	0,001	0.01	0,025	0.05	0,075	0,1	0,15	0,2	0,25
0.0	0,00125	0,01253	0,03134	0,06271	0,09414	0,12560	0.1891?	0,25335	0.31004
0,1	0,00126	0.0126	0,0315	0.06302	0.00%81	0.12623	0,13007	0,25462	0.32724
0.15							0.19126		
0,2							0.19234		
0,25		0.01233	0.03233				0,10512		0,32274
0.3							0,20105		
0.4							0.20485		
0.45							0,20024		
0,5		0,0142	0.03551				0,21425		
0.55	0,00140						0,21993 0,2263		
0.65							0.23344		
0.7	0,0016						0,24138		
0,75		0.0166					0.2502		
0.8							0,25935		
0,85	0,0018						0,27073 0,2826		0,45412
0.9			0.0402				0.20586		
1,0			0.05166					0,41347	
1.05	0.00218	0.02175	0.35437	0.10673	0.16306	0.21734	0.32574	0.43331	0,54193
1,1	0,0023						0,34397		
1.15							0,36181		
1,2							0,38237 0,40476		0.62827
1,3							0,42208		1,63510
1.35							0,45542		
1.4							0,48005		n,7718
1,45			0.08052				0,51441	0,68704	
1.55			0.1033				0.50104		0.89775
1,6	0.00451	0.04505	0,11273	0.20255	0.323	0,4397	0.01881	0.70004	0,34272
1,65							3,65783		
1.7							0,63227 0,74054		
1,8			0,15620				0.70427		1,1303?
1.85							u, 83926		
1,9							0,87532		
1,95	0.00839	0.00363	0.2057	0,30182	0,5527	0,69161	0,02227	1,1123	1,27767
2,0							0,06003		1,32603
2,1							1,01817		
2,15							1,1159		
2.2							1,16501		1,50500
2,25	0.01575	0.15501	0.36185	0.62446	0.81804	0.37207	1.2147	1,40283	
2,3							1,26435	1,45868 1,50858	1,62565 1,6758
2,4			0.43403				1,35303	,	
2,45							1,41381		
2,5	0.02851	0.2683	0.55871	0.85633	1.00177	1,21202	1,46370	1.05844	1,60553
2,55							1,51307		
2.6 2.65	0.0419						1,50303		1,30550
2,7		0,40788	0.7449	1.0550€	1.28073	1,41856	1,66359	1,85839	2.02551
	0.0548	0.44₽₽	0.79341	1.10571	1,310F4	1,4625?	1,71358	1,00839	2,07551
2,8 2,85							1,76358		
2.9	0.0723 0.08328	0.53672 0.58286	0.8916	1.20539	1.41054	1.61847	1.81357 1.85357	2.00838	17751
2,95	0.03609	0.63005	0.30073	1.30525	1,5105	1.66946	1.91357	2.10038	2.27551
3,0							1,09357		
3,1 3,2							2,06357 2,16357		
3.3	0,26054	0.97401 1.0738	1.34007	1.65515	1.05047	2,01845	2,28357	2,45839	2,62551
3,5			1.54000	1.05515	2.96047	2,01045	2,36357 2,46357	2,55838	2.82551
4.0	0,90986	1,67385	2,04004	2,35515	2.5E 047	2.71845	2,96357	3,15838	3,32551
4.5	1,40375	2.17365	2.54000	2,85515	3,05047	3,21545	3,46357	3.65838	3.22551
5,0	1,909/5	7,67365	3.04004	3,35515	3,56047	0.71845	3,05357	4,15838	4,37551

Table B-2: Tabulated C* Values for β Error Level Control With σ Known

	9.375	.191	.782	.481	.908	.603	. 423	.311	.24	.193	.163	.146	.137	.134	.136	.142	.161	.188	.218	.251	.286	.323	360	1,5	.549	.642	.732	.907	.072	.230	.380	.523	.858	.165	
	7.640	.822	.515	.241	.675	.372	.191	.076	.001	.951	.917	896	.883	.876	.873	.875	.885	.903	.925	.950	.977	.006	.036	\leftarrow	.187	.262	.337	. 480	.616	.746	871	66.	.267	5.5228	
	6.234	.505	.284	.028	. 466	.160	.975	. 856	.775	.72	.681	.654	.636	, f. 2 4	.117	.613	. 6.1 4	.623	.636	653	672	692	. 714	1	.828	.887	944	.056	.163	.266	364	. 459	679	.882	
	5.109	.259	960.	.851	.287	.977	.785	629.	.571	.509	.462	. 429	. 405	386.	.373	364	.354	.352	.356	.362	.372	.384	.397	\sim	.473	.514	,554	.635	.713	.789	.861	.931	400.	.245	
	4.312	.075	.957	.717	.149	.832	.633	864.	. 402	,332	.278	.237	.205	.179	.158	.142	.119	.104	.095	.092	.091	.092	.095		.128	.149	.172	.220	.268	,315	,361	904	.512	611	f.
	.843	.966	.871	.633	.062	.739	.534	.393	.29	.212	.151	.103	.064	.031	1000.	.981	446.	.917	.896	.880	.868	.858	.851	2,8385	.833	.831	.833	.841	.853	.868	.885	.901	ħυ.	9886	, q
	.703	.931	8 43	605	.034	.709	.501	.357	.252	.171	.108	.057	.014	.979	646.	.923	.881	8 48	.822	.800	.782	.767	.754	2.729	.710	.696	.685	.668	92	649.	9 44	639	63	629	
	.703	.925	.841	.605	.032	.708	.500	.356	.250	.169	.106	.054	.012	.977	947	.921	.878	845	.819	.797	.779	.763	.750	2.7242	.704	690	.678	.660	. 648	.639	.632	.626	.616	3	2
	.703	.925	.841	.605	.032	.708	.500	.356	.250	.169	.106	.054	.012	.977	749.	.920	878	845	.819	797	.779	.763	.750	2.7242	.704	.689	.678	.660	849.	633	.632	.626	.61	.609	
DF	₽	2	3	#	5	9	7	ထ	6															35								0		2	Ē

0.3

0.25

0.2

0.15

0.1

0.05

0.01

0.001

0.0

.3] σ^2 Unknown C Values for α , P_T , $1-\beta$ = .01 [0 < r \leq Table B-3:

•	1	8.593	19,910	2,219	.958	.982	.488	.220	.074	966.	.968	.968	.989	.024	.069	.122	8,1812	.310	.447	.591	.736	.882	.027	.172	.528	.873	0.205	0.526	1,136	1,708	2,248	2,759	3,248	.380	5.413	
	•	9,312	8,433	.343	9.25	, 354	,894	.642	.502	. 429	.398	.396	.411	0 4 4 .	479	.525	7,5776	.690	.813	046.	.069	.200	.330	094.	.778	.087	.386	.673	0.222	0,736	1,222	1,681	2.120	.139	4.068	
•	1	0.593	17,003	. 488	8,569	.735	.309	.07	.941	.870	.837	.830	.842	.865	897	936.	6.9807	.078	.185	.297	. 410	.525	640	.754	.036	.309	.573	.829	,315	.770	0.201	0.610	1,000	406.	2,73	
•	(2.625	,632	9,659	.897	.130	.735	.514	.389	,319	.285	.275	.281	.298	.324	.356	6.392F	. 475	.566	.662	.759	.859	.958	.057	.301	.538	.768	.991	.415	.813	.189	.546	.886	76	1:3397	
•		5,312	.337	8,859	.245	.540	.174	.968	848	.780	.743	.729	.729	.740	.760	.784	5,814	.881	.956	.035	.117	.200	.284	.368	.575	.777	.972	.162	.523	.863	.184	064.	.781	. 458	.076	
•	(186°8	.148	.100	.616	.967	.628	434	.320	.251	,213	,194	.189	.194	.206	.224	5.2456	.296	.355	, 419	. 485	.552	620	.688	.857	.024	.185	.342	641	.923	.190	· 11 17 3	.685	.248	.762	
2		.171	2,597	.740	.314	.689	.362	.173	.061	.992	.952	.931	.924	.925	486.	644	4,9651	.009	.059	.114	.172	.231	.292	.352	.503	651	.795	.935	.203	.456	.696	.924	.141	.647	.10	
:	1	. 59	2,082	00h.	.023	.419	.102	.917	.806	.737	.695	.672	.661	659	.664	.674	4.6882	.723	.765	.812	.862	,913	996.	.019	.151	,281	.408	,532	.768	.992	.204	904.	.599	840.	. 45	2
		1,343	,613	.078	.743	.157	ъ8т	.667	.555	. 486	.442	.415	.401	396.	368.	404.	4.4136	0 17 17 .	.475	,513	.555	.599	643	.688	.801	.913	.023	.131	.336	.531	.716	.892	.060	.451	.810	
- !	PF.	Н	2	ဗ	#	S	9	7	80	6	10	11	12	13	14	15	16	18	20	22	24	26	28	30	35	0 1	7t S	20	09	7.0	8 0	0	0	125	5	

 σ^2 Unknown C Values for α , P_T , $1-\beta$ = .01 [.35 < r Table B-4:

																										2	
7.0	1,38	1,91	7.75	1:80	8.87	7.34	6.57	6.23	6.17	6.29	6.54	98.9	7,25	7.69	8.15	9.13	0.17	1.23	2,30	3.36	4.42	5.46	8,01	0.47	2.83	65,111	9.42
6.0	4.137	61,750	9.595	4.492	1,979	0,668	0.003	9.71	9,663	991.6	9.974	0.252	0.588	0,953	1,351	2,200	3.087	3,993	4.907	5,816	6,719	7,615	9.802	1,907	3.938	55,8867	9.582
5.0	6,987	1,608	1.468	7.209	5,107	4,012	3,453	3,210	3.166	3.251	3,421	3,655	3,932	4,239	4.569	5.272	ϵ . 012	5,766	7.527	8.286	9.038	9.784	1,605	3,361	5,050	. (73	9.75
0 • tr	9,837	1,489	3,365	6,949	8,263	7,380	6,932	6.7	6.697	6,762	6,9	7,084	7,305	7.551	7.814	8,376	8.966	9.568	0.176	0.784	1,386	1,980	3.436	4.839	6.189	37,4883	9.953
3.0	2.78	1,453	5,333	2.74	1,473	0.806	0.463	0.314	0.282	0,329	0.428	0.566	0,729	0.912	1.108	1,527	1.969	2.419	2,873	3,328	3,778	4.225	5.314	6.365	7.376	28,351	0.197
2.5	4.32	064.9	1,360	9,192	8.12	7.55	7.26	7,139	7.10	7.146	7.228	7.341	7.476	7.626	7,789	8,138	8.504	8.879	9.255	9,633	0.007	0.379	1.286	2.161	3,003	23,8148	5,351
2.0	5,942	1,598	7.441	5.686	4.814	4,356	4.116	4.00	3,979	4.006	4.069	4.157	4.262	4.381	4.510	4.786	5,077	5,374	5,675	5.976	6.275	6.571	7,294	7.992	8.665	19,3134	0.543
1.5	7.	9	3,615	2,261	1,585	1,224	1,034	0,945	0.917	0,931	0.974	1,037	1,113	1,199	1,293	1.497	1,711	1,932	2,155	2,379	2,601	2.822	3,362	3.884	4.387	14,8716	5.791
1.25	23.755	474.4	1,758	.598	0.015	9.703	.534	• 45	. 424	. 432	4947	.512	.574	4449.	.720	.886	0.063	0.245	0.429	0.614	0.798	0.98	1,429	1.86	2,281	12,684	3.444
ה	5 ~	ဗ	#	2	9	7	8	6																		5 0	

 σ^2 Unknown C Values for α , P_T , 1- β = .01 [1.25 $\le r$ \le 7] Table B-5:

					-																														
	· / I #	.997	.855	.174	.870	,712	.625	.576	.549	.538	3,5359	.540	.549	.562	.577	.594	631	672	.714	.757	.800	11 41 8	.887	.993	.097	.196	.292	.476	.647	.809	.963	.110	450	.761	3]
0	.035	.764	99.	.986	.680	.517	. 424	.369	.336	,319	3,3113	,310	.314	.321	,331	.343	.370	.401	484.	.468	.503	.538	.573	.660	. 7 44	.826	906.	.057	.199	,333	.461	583	.866	.124	\ r \ \
-	7/17	.568	. 495	.821	.509	.339	.238	.176	.136	.111	3.0969	.089	.086	.087	.091	.098	.114	.135	.159	.18	.209	.236	262	32.	.395	. 459	.521	640	.753	.860	.961	.058	.283	684.	= .025 [0
0	.027	. 413	.359	. 684	.365	.187	.077	.005	.957	. 924	2,9015	.885	.875	.87	.867	.866	.870	.880	803.	. 907	C .	.939	.957	.002	040.	.095	.140	.227	.310	.389	464	,53F	.70	.85	P_{T} , $1-\beta$
	.710	.298	.259	.581	.256	.069	.950	.870	.813	.771	2,7398	.716	363.	.684	673	.665	6.55	651	. F51	653	.658	٠ ت	671	69.	.716	.741	767	.820	.872	.922	.970	.017	.126	.228	les for $lpha$
(((.5	.23	.197	.517	.187	466.	.869	.782	.718	689	2,6316	601	.576	.555	.538	. 524	501	.485	. 472	. 463	456	.451	11117	- = .	thi.	t1 t1 i1 .	8 41 41	. 460	. 475	. 491	.50	.525	.570	. 613	wn C Valu
	119tr	.206	·	964.	.164	.97	.842	.752	989.	632	2,5948	.561	. 53и	.511	.492	475	. 447	. 425	. 4 0 8	394	.382	.371	.363	346	.333	324	.317	306.	.298	.293	.290	.287	283	.281	σ ² Unknown
1	. 453	.206	.17	495	.163	.968	.841	.751	. 685	, 634	2,5931	.560	.532	.509	064.	.473	. 445	. 423	.405	.391	.379	.368	.359	.342	.329	.319	.311	.299	.291	. 284	.27	.27	.26	.264	Table B-6:
	. 45	.206	.177	. 495	.163	.968	.841	.751	.685	633	2,5931	.560	.532	.509	064.	. 473	5445	. 423	.405	.39	.378	.368	.359	34	.329	.319	.311	.299	.290	. 28	.279	.27	.26	.26	Ta
DF	← Η	2	က	7	2	9	7	æ	Û	10	11	12	13	14	15	16	18	2.0	2.2	24	2.6	28	3.0	35	0 11	14.5	2 0	0.9	7.0	8 ()	30	\circ	125	S	

0,25

0.2

0.15

0.05

0.01

0.001

	7.39	.501	.844	.712	.238	.021	.927	.900	.912	.948	.000	.063	.133	.208	.286	.366	.530	.697	.862	.027	.188	348	.504	.884	9.2468	.593	.925	0.553	.138	1.688	2.207	2.702	3.847	4.888	
	3.687	.566	.203	.158	.719	.516	.426	.397	.405	.436	.481	.536	.598	.664	.733	804	.951	.100	.248	.395	.540	.683	.824	.164	8.4901	.801	.100	.664	0.190	0.685	,152	1.597	2,627	3.56	$\leq r \leq 1$
	0.21	.66	7.57	61	.20	.01	. 93	9.0	.90	.93	96.	.01	90.	.12	.18	, 2 t	.37	.50	F.	.77	· 8 q	.02	14	. 45	7,7395	.01	. 28	.78	ήζ.	9.68	.10	6 4.0	1.41	2.24	025 [.35
	.007	962.	.965	.083	.708	.530	.447	.415	. 414	.432	. 463	.502	.547	.596	.648	.701	.812	.925	.038	.151	.262	.372	084.	.743	6.9954	.23F	.467	.905	.313	.696	050	· 405	.205	0.932	$1-\beta = .$
	11	. 98	.37	. 56	. 22	.05	. 97	.93	.93	46.	96.	66.	.03	.07	.11	.16	.25	34	+1 +1.	.54	.63	.72	. 82	170.	6.2584	٠ د ی	.66	.03	, 33	.71	.02	.31	.00	.62	for a, P _T
	.570	8.229	.820	.06	.745	.586	.506	741.	. 458	.463	. 478	.501	.528	.560	.593	629	.704	.780	.858	.936	.014	.091	.167	.351	5,5292	699.	.863	.173	.463	.736	.995	.241	811	.330	C Values
	1145	.882	.557	.831	.515	.359	.279	.240	.225	.227	.238	.256	.280	.306	.335	.366	.432	. 5	.569	.638	.707	.776	843	.009	5.1678	.320	.467	.746	0.	.251	h 8 h	.705	.218	.685	Unknown
	. 425	7.560	.307	.600	.291	.136	.055	.014	966.	.993	.000	.015	.033	.055	.080	.106	.162	.221	,281	.342	.403	. 463	.522	.668	4.8087	.943	.073	.320	.551	.768	.975	.171	.626	.0417	$B-7: \sigma^2$
	.511	7.264	.072	.380	.075	.920	.836	.792	.770	.763	766	.776	.789	.807	.827	8 48	.895	945	.996	.048	.100	.152	.203	.329	4.4517	.569	.682	.897	.03	.288	.468	.639	.037	00h.	Table
L	5~	2	က	#	S	9	7	8	6	10	11	1.2	13	14	15	16	18	2.0	22	24	26	28	3.0	35	0 +1	1+5	20	0 9	7.0	8 0	Ο,	100	C.1	Ω	

0.45

7.0	76.4456	5.208	2,281	1,006	0.517	0.451	0.629	0.959	1,387	1,879	2,410	2,971	3.549	4.137	5,334	6,535	7.726	8.901	0.057	1,192	2,306	4.995	7.559	900.0	2,35	6.768
0.9	65,6003 45,023	8.82	6,31	5,21	4.79	14.73	68.4	5,17	5.54	5.96	6.41	68.9	7.39	7.89	8,92	9,95	0.97	1,98	2.96	3,94	4 8 g	7,20	040	1,49	3.50	7.29
5.0	54,7785	2,450	0.352	9.441	9.089	9,039	9,166	9.402	9,707	0.057	0.436	0.836	1,248	1,669	2,523	3.379	4.229	5,069	5,894	6,705	7.500	9.421	1,251	2,999	4.673	7.828
0 • +	43.98 30.2406	6.0	4.42	3.687	3,404	3,365	3.465	3.6	3,895	4.174	4.477	4.796	5,126	5.463	6.145	6.830	7,510	8.181	8.842	064.6	0.125	1,662	3,125	4.523	5.863	8.386
3.0	33.2285 22.9138	9.798	8,533	7,979	7,765	7,731	7.805	7.945	8,126	8,334	8,561	8,800	940.6	9,298	9,809	0.322	0.831	1,334	1,828	2,314	2,790	3,942	5,038	6.087	7,091	8.982
2.5	27.8969	6.681	5,621	5,157	4.975	4.946	5.006	5,120	5,270	5.443	5,631	5,829	6.034	6.243	6.668	7,095	7,519	7,937	8,349	8,753	9.149	0.109	1,022	1.896	2.732	4.308
2.0	22.618 15.7046	3.60	2.747	2,369	2,220	2.194	2,239	2,329	2.447	2.584	2,733	2,891	3,054	3,221	3.560	3,900	4.238	4.572	4,901	5,223	5.540	6.307	7,037	7,735	8,403	9.663
1.5	17.4445	0.597	.937	643	.524	86 h.	.528	.592	678	.779	889	0.005	0.126	0.250	0.502	0.755	1,008	1,257	1,503	1,744	1,981	2.554	3.101	3,623	.12	5.06
r 1.25	14.9283	9.134	.569	.315	.209	.184	.205	.256	, 325	904.	6 47.	.592	.692	.794	.002	.212	. 422	.628	.832	0.032	0.229	0.705	1,160	1,595	.01	2,797
	<u></u> 5 ~ ≈	; =	ಬ	9	7	ස	6	10	11	12	13	14	15	16	18	20	22	24	26	2.8	30	35	0 †1	45	5 0	60

 σ^2 Unknown C Values for α , P_T , l- β = .025 [1.25 \le r \le 7] Table B-8:

ָ ב	•		•	•	ł •	•			
5 ~	.70	.70	.70	.73	.83	6	.212	464.	.83
2	4.303	4,303	4,303	4,3191	4.367	4.4462	4.5549	4.6919	4.854
က	.18	.18	.183	, 19	.245	.3	1127	.556	.706
11	.77	.77	.777	.79	448.	σ,	.038	.173	.328
2	.57	.57	.571	.58	.646	. 7	.857	.000	.163
ပ	† ₇ † ₇ •	11 11 .	. 447	91.	.530	9•	.759	,913	tn 80°
7	.36	.36	.365	.38	. 456	.5	.704	.868	.047
æ	30	.30	.307	.33	90n.	. 5	.673	.846	.033
6	.26	.26	.263	.29	.371		.656	.838	.033
10	. 22	. 22	. 22	.25	.34	~.	· 64	.839	· 0 4
11	.20	.20	.202	.23	.327	₹.	·643	.845	.054
12	.17	.17	.180	.21	.313	≕.	651	.856	.072
13	.16	.16	.161	.19	304		.657	.870	.092
14	.14	. 1 t	.146	.18	.297	⊤ .	.666	.886	.113
15	.13	.13	.133	.17	.292	₹.	677	.903	.136
16	.12	.12	.121	.16	.289	₹.	.688	.921	.160
18	.10	.10	.103	.15	.286	Ξ.	. 714	.958	.208
2.0	.08	.08	.088	.13	.288	.5	.742	.998	.258
22	.07	.07	.076	.13	.292	. 5	.772	.037	.307
24	90.	90.	990.	.12	.298	. 5	.802	.077	.357
26	.05	.05	.058	.12	.305	.5	.832	.117	. 405
28	• 0ф	÷0.	.051	.12	.314	. 5	.861	.156	.453
3.0	t 0 .	10.	.045	11	.323	. 5	.891	.194	.500
35	.03	.03	.033	.11	348	ټ.	496.	.288	.614
0 tr	.02	.02	.025	.12	.375	9	.035	.377	.723
4.5	.01	.01	.018	.12	.402	. 7	.103	tr 9 tr •	.827
5.0	00.	00.	.013	.13	. 430	. 7	.168	.546	.927
0.9	00.	.00	.006	1.1	.485	ε.	.292	.703	.115
7.0	66.	66.	.001	.15	.538	6.	. 408	648.	.291
8 0	66.	66.	998	.17	.590	С.	.517	.986	.456
0	98	.98	966.	.19	639	1	.621	.116	.613
$^{\circ}$.98	96.	466.	.21	.687	. 2	.719	.239	.761
125	. 97	. 97	.991	.25	.799	.3	8 476.	.526	.105
LC)	. 97	. o₁	66.	67.	.901	. 5	.156	.78	. 418

 $[0 \le r \le .30]$.05 σ^2 Unknown C Values for $\alpha_{\text{\tiny I}}$, $l + \beta$ = Table B-9:

<u>5</u>	0.35	ħ •0	0.45	0.5	9.0	0.7	8.0	٥.	
다. 1	. 235	689.	.199	.761	.03	. 477	.080		.820
2	5.0413	5.2485	ß	5,7188	9	9	7.4355		8.0728
က	.87	.060	.257	.465	.90	.369	.851		.347
†	. 498	.681	.873	.073	. 48	.921	.365	2	.819
2	.339	.525	.719	.918	.329	.751	.184		624
9	.267	.458	.655	.856	.269	.692	.123		562
7	.236	.433	.635	048.	. 25	.686	.121	•	63
ස	.229	.431	.638	847	.273	.708	.150	•	99
б	.235	. 443	.655	.869	304	747.	.197	•	#
	.25	.463	.68	.899	344	.796	.255	. 7	\leftarrow
	.270	. 489	.710	.935	.389	.851	.320	. 7	9
	.293	.517	.7 44	479.	. 438	.910	.389	ω.	#
	.319	.548	.781	.015	064.	.972	.461	6.	9
	.346	.581	.818	.058	.543	.035	.534	0.	ð
	374	.614	.857	.102	.597	.099	. f 08	₽.	3
	.403	.648	.896	.146	.651	.163	.682	• 2	9
	.462	.717	975	.235	.76	.291	.830	· 0.	#
	.521	.786	.054	,323	.867	.418	.976	.5	9
	.580	.855	.132	.410	.973	.543	.119	. 7	0.7
	.638	.922	,208	6 tr •	.077	.665	.259	ω.	91
	.696	.989	283	.580	.179	, 78 t _t	396.	0	33
	.752	.054	357	.663	.279	.901	.530	₽.	51
	808	.118	430	.743	.376	.015	.661	Э.	28
	.942	.272	·604	.938	611	.290	.97F	9	78
	.070	.419	.770	.123	,834	.551	.275	С.	+1 +1
14.5	.19	.559	\sim	ь́с.	÷0.	.799	.559	.	9 +
	.309	93	.080	.468	.249	.037	.831	9.	0.5
	.530	ქი∵ •	365	.785	. F31	. 483	.341	.2	2
	.736	$^{\circ}$.631	.081	386.	.898	.816	. 7	9
	.929	0 + .	.880	.358	.319	287	.261	0.2	0
	.11	.612	.115	£ 5.	634	.654	631	0.7	\mathcal{C}_{2}
	.28	.811	3.9	.868	. 932	.003	0.079	1.	$\overline{}$
	.687	.271	S	₹.	.62	.809	.001	1.	\approx
	.05	.6891	27	. 966	.251	5 4	1.839	3.1	$\overline{}$
	Table	B-10: σ ²	Unknown	C Values	for a, P	β , $1-\beta$ =	.05 [.35	и У	

7] **V** | н ∨ I .05 [1.25 Unknown C Values for α , $P_{\rm T}$, $1-\beta$ = σ5 Table B-11:

	e*0	.87 th	.298	.749	.569	.500	476	. 475	.487	.505	.528	.554	.581	.609	.638	9999.	.695	.753	809	.865	.919	.971	.023	.073	.193	306.	. 414	.517	.711	.890	.058	,216	.366	4.7141	.029	
(0.25	.70	.186	.634	17 17 17 .	,364	.329	.318	.319	.329	.343	.361	.380	.401	.423	9 11 11 2	.468	.514	.559	.604	.648	691	.734	.775	.874	396.	.058	.143	,304	. 453	.593	.725	.850	4.1392	.401	ŗ
(0.2	.565	.092	.536	.336	5476	.199	.177	.168	.167	.172	.181	.192	,205	,219	.234	.250	,282	,316	.349	.383	.416	8 4 4 8	034.	.558	.632	.703	.771	899	.018	.129	.235	,334	3.5659	.775	
,	0.15	. 455	.017	. 457	.249	.147	.091	.058	.039	.029	.024	.024	.026	.030	.036	.043	.051	.068	.088	.109	.130	.152	,174	.195	.249	.302	.353	.403	164.	.585	.668	.746	.821		.151	•
	0.1	.377	.963	0047.	.184	.074	.010	969	941	.922	.909	006.	.895	.891	889	.888	.888	,891	.897	406.	.912	.921	.931	.941	.968	960.	.024	.052	.108	.162	,214	.264	.312	2.4253	.528	
	0.05	e.	. 93	.365	.145	.030	.960	.913	.880	.856	.83	.822	.811	.801	406.	.787	.782	.77 th	.769	.766	.763	.762	.761	.762	.764	.768	.773	.779	.793	.809	.825	.841	.857	1,8993	0 1/6.	;
	0.01	, 314	.920	.353	.132	.015	.943	.895	.860	834	œ	797	.783	.772	.762	.754	747	. 7	.726	.719	.713	.708	.703	.7	.692	687	.683	.680	675	.672	670	.669	.668	1,6676	1,667	;
	0,001	.31	. 92	,35	.13	.01	դ6∙	.89	.85	.83	.81	.79	. 78	.77	.76	.75	, 7 th	.73	.72	.71	. 71	.70	.70	.69	.68	.68	· 67	.67	67	99.	999	.66	66	65	.6553	-2
	0.0	,314	.920	.353	.131	.015	943	468.	.859	.833	.81	.795	.782	.771	.761	.753	.745	.734	.724	.717	.710	.705	.701	.697	,689	.683	679.	676	67	667	.664	.662	.660	7	•	
	٦ ٢	5 ←	2	က	+	5	9	7	8	6	10	11	12	13	14	15	16	18	20	22	24	26	28	3.0	35	0 +1	1+5	50	0 9	7.0	8 0	9.0	00	.25	5.0	

.3] **v**| $[0 \le r]$ σ^2 Unknown C Values for α , P_T , $1 \cdot \beta$ = Table B-12:

1.0		.783	.018	.221	.024	.002	.049	.128	.223	,326	. 43	.542	.652	.760	.868	.974	.079	.284	.483	.676	.862	.043	.219	.390	7.7992	.183	.548	.895	† tr 5 *	0.146	.708	1,239	1.741	2,902	3,955	
6 0		.858	.555	.822	0 49.	.618	.658	.729	.813	.905	.001	.099	.197	.294	.391	. 486	.581	.765	ተተ ተ6•	.117	.285	4447	.606	.759	7,1272	. 473	.801	.113	.697	.239	.745	0.222	.674	1.719	2.666	$\leq r \leq 1$
0.8		.991	106	.432	.263	.239	.273	334	11 0 8	684.	574	.660	.746	.833	.918	.003	.086	.250	804.	.562	.711	.855	966.	.132	6.4592	.766	.057	.335	854	.335	.785	.209	,611	0,539	.381	.1 [.35
0.7		.190	67	.052	.892	.866	.893	446.	300.	.078	151	.226	.301	.37E	.450	.524	.597	.739	.878	.012	.142	,268	.391	.510	5.7956	.064	,318	.561	.015	.436	.829	.200	.552	.364	01	$_{\mathrm{T}}$, $_{\mathrm{1-}\beta}$ =
0 . 6		.467	.271	.686	.532	.501	.520	.561	.614	.672	.734	.797	.861	.924	.988	.050	.112	, 23 ш	.352	. 466	.577	.685	.790	.892	5.1367	.366	·584	.792	.181	.541	.878	.196	864.	.19	. 82	for α , P
0.5		.83	ω.	34	.185	.147	.155	.185	.226	.273	3.2	.374	. 426	. 478	.531	.582	633	.734	83	.926	.01	108	.195	.280	4.4832	.674	.855	.028	.352	.652	.933	.197	8 +1 +1 .	.028	.554	C Values
0.45		.554	.729	.177	.019	.975	.977	.001	.035	.076	C^{\downarrow}	.165	211	.258	304	.350	.396	984.	. 57 ц	659	.741	.822	.900	.976		.330	493	6 44 8	.939	209	.462	.700	.926	1+7	6.921	² Unknown
11.0		•	.571	.023	.859	. во	.804	.820	848	.882	.91	.958	366.	.039	.080	.120	.161	.240	.317	.392	.465	.537	.606	.673	3.8352	.987	.132	.270	.528	.768	.992	.204	1t 0 2	98:	.289	В-13: о
0.35		.073	. 1127	.880	.709	649.	.636	449.	.664	691	.721	.754	.788	.822	.857	.892	.927	.995	.062	.127	.191	.253	.313	.372	3.5134	949.	.772	.893	.119	.328	.524	0 9	8 2	.290	.658	Table
٤	PF	⊣	2	က	+	2	c	7	æ	6															35											

<u>د</u> د	1.25	1.5	2.0	2.5	3.0	0 • 11	5.0	0 • 9	7.0
٦ د	. 222	1467	.021	3,620	6.242	1.5	6.821	2,13	7.45
က	244	.295	9,448	1.641	3.857	8,325	2.817	7,323	1,83
=	6.0064	7,0118	9.0692	11,1643	13,2817	17,5525	21,8481	26,1577	30.4739
2	.983	.985	.034	1,119	3,226	7.476	1,751	6.039	0.33
9	11 41 0.	.060	.134	1.244	3,376	7.674	1,998	6,335	0.68
7	.145	.182	.297	1,448	3,620	7.999	2.403	6.821	1.24
83	.265	.327	ζ6ħ°	1,691	3,911	8.386	2,886	7,400	1,92
6	.395	484	.701	1,953	4.225	8.804	3,409	8,027	2.65
10	.530	949.	.918	2,224	4.550	9,238	3.950	8,677	3,41
11	.667	.811	0.138	2.499	088.4	6.677	4.500	9.336	4.18
12	,804	976.	0.358	2,774	5,210	0.117	5.050	966.6	4.95
13	.941	.140	0.577	3,048	5,539	0.555	5,597	0.652	5,71
14	.076	.302	0.794	3,319	5.864	0.988	6.138	1,302	6.47
15	.209	. 463	1,008	3.586	6.185	1.416	6.673	1,943	7.22
16	.341	.621	1.219	3.850	6.501	1.838	7,200	2,576	7.96
18	.598	.930	1.631	4.365	7.119	2,662	8,230	3,812	0 11 6
20	847	,229	2,030	11.864	7,718	3.460	9.228	5,009	0.79
2.2	.088	.518	2.416	5,347	8,297	$\boldsymbol{\mu}$, 23 2	0.193	6.167	2.15
24	.32	.799	,791	5,815	8.859	4.981	1.129	7.29	3,46
26	. 548	0.071	3.153	6,268	9.403	5.707	2.036	8,379	4.73
28	.768	0,335	3.506	6.709	9,932	6.412	2,918	9.437	5,96
3.0	98	.592	3.849	7.137	911110	7.098	3,775	0,465	7,16
35	6 47 •	1,206	14.667	8,161	1.674	8,735	5.821	2,921	0.02
0 tı	.97	1.784	5,437	9.124	2.830	0.276	7.747	5,232	2.72
rt 5	0.431	2,331	6.167	0.036	3,924	1,735	9,571	7.421	5.27
20	98.	2.85	6.862	106.0	4.966	3.124	1,307	9.504	7.70
09	1.677	3.826	3.162	2.529	6.917	5,725	4.559	3.405	2.26

Table B-14: σ^2 Unknown C Values for α , P_T , $1\text{-}\beta$ = .1 [1.25 \le r \le 7]

٤	0.0	0.001	0.01	0.05	0.1	0.15	0.2	0.25	0.3
PF									
П	.077	.077	.078	.08	.108	.14	.200	.268	.352
2	.885	.885	.885	.89	.913	փ6•	.997	.059	.134
က	637	637	638	₩9·	67	.71	.767	.838	.923
† 7	.533	.533	.533	,54	.571	618	.68 u	.766	.863
2	475	475	.476	æ #.	.52	.57	649.	.743	.853
9	.439	.439	0 47 47 .	. 45	64.	.552	.636	.742	.864
7	. 414	414	415	. 4.2	.471	.540	.635	.752	.886
80	.396	396.	.397	. 41	. 459	.536	049.	.768	.913
6	.383	.383	.383	0 4.	.451	.536	.650	.788	944
10	.372	.372	.373	.39	. 4 4 7	.539	.662	.810	.976
11	.363	.363	364	.38	ካካካ.	.543	.676	.834	.009
12	.356	.356	.357	.37	. 443	.550	.692	.859	.042
13	.350	.350	.351	.37	t1 t1 t1 ·	.557	.708	, 88 t	.076
14	345	345	346	.37	. 445	.566	.725	. 91	.109
15	340	340	.341	.36	9 4 4 .	.575	.742	.935	.142
16	.336	.336	.337	.3F	6 11 11 6	.584	.760	960	.174
18	.330	.330	,331	.36	. 455	.604	.795	.011	.238
20	.325	,325	.326	.36	.462	.625	.831	.060	.299
22	1,3213	1,3213	1,3228	1,3591	1.471	1.6472	∞	2,1089	2,3591
24	.317	.317	,319	.35	·479	.669	.902	.155	.416
26	.315	.315	.316	.35	684.	.691	.936	.201	.472
28	,312	.312	,314	38.	664.	.713	.970	.246	.526
3.0	.310	.310	.312	36.	.509	.735	4000.	.289	.578
35	.306	.306	.308	.36	.535	.789	.084	.392	.703
0 4	.303	.303	308	.36	.561	842	.161	6 tr •	.820
4.5	.300	.300	.303	.37	.588	168	. 234	.582	.931
5.0	.298	.298	.302	.38	615	4146.	304	.689	.037
6.0	.295	.295	.299	.39	.668	.030	484.	.833	.234
7.0	.293	.293	.298	0 11 0	.72	.128	.555	.985	.416
80	.292	.292	.297	. 4.2	.770	.212	.668	.126	.586
06	.291	.291	297	. 43	.819	.291	.775	.260	.746
0	.290	.290	96	. 45	.866	.367	.876	.386	.897
125	.288	.288	Ç	. 48	.978	.541	.109	.677	.247
2	.287	.2874	1,297	. 52	.081	669.	.320	.941	.564
	Table	B-15; o ²	Unknown	C Values	for a, P _m	, 1-β =	,2 [0 < r	< .3]	

7 [.35 \leq r \leq σ^2 Unknown C Values for $\alpha_{\textrm{\tiny I}}$, $l\!-\!\beta$ = .2 Table B-16:

7.0	25.7155	744.4	5,121	5,963	6,867	7.788	8,706	9,611	0,499	1,368	2,217	3,046	3,857	4.649	6.183	7,652	9,065	0,426	1.740	3,012	4.245	7.177	9,927	2,522	4,987	9,593
6.0	22.0567	0.975	1,553	2,276	3,052	3,841	4.628	5.404	6,166	6,911	7,638	8,349	440.6	9.724	1,038	2,298	3,509	4.675	5.802	6,892	7.949	0,463	2,819	5.044	7.15	1,105
5.0	18.4012 17.3618	7.507	7,991	8,594	9,241	9,899	0,556	1,203	1,837	2,458	3,065	3,653	4,237	4.803	5,898	6,948	7,958	8,930	9,869	0,777	1,658	3,753	5,717	7,571	9,332	2,622
0.4	14,752	10.4	4,436	4.920	5,438	5,966	6.491	7,009	7.517	8,014	8,500	8,974	9.438	9,891	0,767	1,607	2,415	3,193	3.944	4.671	5,376	7,052	8,623	0,107	1,515	4.147
3.0	11.114	09.0	0.897	1,261	1,651	2,048	2,442	2,831	3,213	3,586	3,951	4.307	4.654	1166° 11	5,652	6,283	6.888	7.472	8.036	8,581	9,110	0.367	1.546	2.658	3,715	5,689
2.5	9.3039	068	.138	.443	.768	0.1	0.429	0.754	1,072	1,383	1,687	1.984	2,274	2,557	3,106	3,631	4.136	4,623	5,093	5,547	5,988	7,036	8,018	8,945	.826	1.471
2.0	7.506	1.9	392	.637	899	.165	.429	.689	4146.	.193	.436	674	906.	0.133	0.572	0.993	1,397	1,786	2,162	2,526	2,879	3,717	4,503	5,245	.950	7.266
1.5	5.7328 5.4584	516	.669	.855	.052	.252	451	646	.838	.025	.208	.386	.560	.731	.060	.376	.679	.971	,253	.526	.791	0.420	1,010	1,566	.095	3,082
r 1.25	4.8655	69	.822	.977	.142	.309	. 475	63	.798	954	.106	.255	004.	.542	.817	.080	.333	.576	.811	.039	.259	.78	.275	.739	0.17	.002
	마 2 8	;	2	ပ	7	8	6																		5 0	

Table B-17: σ^2 Unknown C Values for α , P_T , $1-\beta$ = .2 [1.25 < r < 7]

<u>د</u> ا	0.0	0.001	0.01	0.05	0.1	0.15	0.2	0.25	0.3
5~	.962	.962	.962	.967	.982	00.	.041	.08	.138
2	.386	.386	,386	.391	, 407	. 43	6947.	.51	.57
က	.249	.249	.250	,256	.274	.306	349	0 4.	474.
#	.189	.189	.189	.197	.219	.25F	.308	.375	.456
2	.155	.155	.156	.164	.190	.234	.294	.372	.465
9	.134	.134	.134	. 1 44	.174	.223	.29	.382	184
7	.119	.119	.119	.130	.164	.220	.299	.398	.516
8	.108	.108	.108	.120	.158	.221	.308	.418	.547
6	099	.099	.100	.113	.154	.224	,320	. 441	.581
10	.093	.093	.093	.108	.15	.229	, 334	.465	.616
11	.087	.087	.088	.104	.153	,235	.349	06h.	650
12	.083	.083	.083	.100	.154	.242	.365	.515	685
13	.079	.079	080	.098	,155	.250	,381	.541	.720
14	.076	.076	.077	.096	.157	.259	.398	.567	.754
15	.07	.07	,074	.09	.16	.268	. 41	.592	.788
16	.071	.071	.072	460.	.162	.277	.432	.618	.822
18	.067	.067	.068	.092	.169	.296	.468	.669	.887
20	,064	.064	.065	.092	.176	.316	.503	.719	.950
22	.061	.061	.062	.092	.184	,337	.538	.768	.011
24	.059	.05	.060	.092	.192	.357	.572	.815	.069
26	0.5	.057	.059	.093	.201	.378	.607	.862	.126
28	1,056	1,056	1,0575	1,0944	1,2105	1,3995	1.6407	1,907	2,1818
30	.05	.054	.056	.095	,219	. 420	673	.950	.235
35	.05	.05	.053	.099	.243	. 472	.75	.055	.362
0 11	.050	.050	.052	.104	.267	.523	.830	.154	. 480
4.5	940.	.048	.051	.109	,291	.573	, 904	.247	.592
50	. 047	.047	.05	.114	,315	.622	· 974	.335	669.
60	.045	.045	.048	.125	.364	.716	.105	.501	.897
7.0	440.	1140.	.047	.137	.413	1 804	.227	.653	.080
8 0	.043	.043	047	.149	. 460	.888	340	.795	.251
30	•	.042	С.	,162	.507	96.	† ₁ † ₁ •	.929	.412
0	.041	.041	.047	.174	,552	. 043	.549	.056	.564
125	040.	040.	.047	.206	.661	.218	.783	349	.915
2	1,0401	.0402	1.047	,238	.763	.37	466.	.613	,233
	Table	B-18; σ ²	Unknown	C Values	for a, P.	$1-\beta = $.3 [0 < r	< .3]	
								1	

1.0		.741	080.	, 114	.245	.397	.552	,706	.856	.001	.141	.277	604.4	.536	.660	.781	868	.124	.340	.547	.745	.936	.121	.300	.724	.121	495	.850	.512	.123	.693	0,229	.737	1,907	2,966	
6.0		.436	.818	.845	.962	.099	.24	.378	.513	643	.770	.892	4 . 011	.125	.237	.346	.451	655	849	.035	.214	.386	.552	.713	.095	.452	.789	.108	.704	.254	.767	.249	.707	0,759	.713	r < 1]
0.8		.150	.564	.581	683	804	.929	.052	.172	.288	004.	.509	3,6148	.717	,816	, 912	.006	.187	.360	,525	. 684	.837	.985	.128	. 4F7	.785	·084	.368	.898	.387	÷8+	27	.678	· 614	.461	3 [.35 <
0.7		.887	,321	.324	80 h.	.513	,621	.729	.833	.935	.033	.128	3,2209	,310	.397	. 481	.563	,722	.873	.017	, 156	.290	.419	.544	.841	.119	,381	.630	.093	,521	.920	.295	,651	.470	,211	1-β =
9.0		651	.095	.077	.141	.226	.317	.408	86 h.	.58 ti	.668	.750	2,8293	.905	086.	.052	.123	. 25	.38	.51	,631	.745	.856	.963	, 21	.45G	.681	π 68.	.291	.65	666.	.321	.626	,328	96.	for $lpha_{f r}$ ${ m P}_{f T}$
0.5		11115	.89	847	.88	646.	.020	.093	.166	.237	.307	.374	2.4404	.504	.565	.626	, 684	797	.905	.008	.107	.203	.295	.385	.597	.795	.982	.16	. 491	.7	.081	949	.603	.188	.718	c Values
0.45		,355	.79	.7 40	.766	.81	.876	46.	.003	.066	,128	,188	2,2474	,304	.359	, 41 th	.466	.568	.665	.757	847	.933	,016	.096	,287	465	, 634	.793	091	366	623	198.	092	619	960	Unknown
t1 • 0		.274	.714	.642	.653	690	,738	.790	448.	868	.952	1000	2.056	,106	.155	,202	.249	,339	.425	.507	.587	.663	.737	.808	. ۹78	.136	.286	.428	.693	,937	.165	,379	.582	.050	94746	в-19: о ²
0.35		.20	.63	.553	.549	.572	.607	648	.691	.735	.780	.824	1,8678	.910	.952	.993	.034	.112	.186	,258	,32	.394	. 45	,521	99.	.808	633	.063	,295	.508	.708	.895	.073	. 48	4.8538	Table
<u>s</u>	DF	Н	2	က	#	5	9	7	တ	6			12																				0		2	

7.0	0.321	21.1663	2.174	3,227	4.277	5,306	908.9	7.277	8,219	9,132	0.019	0,882	1,721	2,538	4.113	5,617	7,058	8,443	9,777	1,067	2,315	5,280	8,053	0,669	3,150	7,781
6.0	7.424	18,1531	9,017	9,921	0,822	1,704	2.561	3,394	4,201	1186.11	5,745	484.9	7,203	406.7	9,254	0.543	1,778	2,965	4.109	5,215	6,285	8,826	1,203	3,446	5.572	9,542
0 • 9	4.529	15,1425	5,864	6.618	7.369	8,104	8,819	9,513	0.186	0.839	1,473	2,089	2,689	3,272	4,398	5.472	6,502	7.491	8,1145	9,366	0.25	2,375	4,357	6,225	7,998	1,30
0. 4	1.63	.135	2.71	3,319	3,920	4.509	5.082	5,637	6.176	669.3	7,206	7.699	8,179	8,646	9.547	0.406	1,230	2.022	2,785	3,522	4.23G	5,930	7,515	9,010	0.428	3,075
3.0	ω (• •	.574	0.029	0.481	.924	1.354	1.771	2.176	2,568	2,949	3,319	3,679	4.03	4.705	5,350	5.968	6.562	7,135	7,688	8,223	464.6	0.684	1,805	2,869	4.854
2.5	30	7.6442	.01	939	.76	.13	6 + .	· 8 t	0.18	0.50	0.82	1.13	1,43	1.72	2.29	. 82	3,34	3.84	4.31	14.77	5.22	6.28	7.27	8,20	9.09	0.75
2.0	.876	6.1587	. 453	.759	.062	.359	647	.926	.196	. 458	.713	.960	.200	434	.885	0.316	0.728	1,125	1,507	1,875	2,233	3,080	3.874	4.621	.33	6.654
1.5	. 457	4.4964	,911	.142	.371	.594	.811	.021	.224	. 421	.612	.798	.978	.154	. 493	.816	.126	. 423	.710	.987	.25	.891	0.486	1.047	57	2,572
r 1.25	.759	3,800/	.149	.343	.534	.721	.902	.077	.246	.411	.570	.725	.876	.022	.305	.574	.832	.080	,319	.550	.773	.304	ස •	.267	•	.538
	9F	n #	2	9	7	ထ	9	10	11	12	13	1 4	15	16	18	20	22	24	26	28	30	35	0 11	11.5	20	6.0

Table B-20: σ^2 Unknown C Values for α , P_T , $1-\beta=.3$ [1.25 $\le r \le 7$]

0.3	500	205	1,1583	.158	.175	.201	.230	.262	.296	.330	.364	.398	. 433	.467	.500	.534	.599	.662	.723	.782	833	468.	948	.076	.195	.308	.415	.614	.798	969	.130	.283	.634	.953	
0.25	462	.161	1,1029	.091	960.	.110	.127	.148	.170	.193	.217	.242	,266	.291	.316	341	,391	.439	487	.534	.580	.625	.668	.773	.872	.965	.054	.220	.373	.51F	.650	.777	.070	,335	< .3]
0.2	431	.124	1,0577	.036	.032	.035	.043	.053	.066	.079	.093	,108	.123	.139	,155	.171	.204	.237	.270	.303	336	.368	004.	479	.554	627	.696	.827	†€.	.063	.170	.272	.506	,718	.4 [0 < r
0.15	407	.096	1,0228	466.	.982	.978	826.	086.	. ૧৪	.990	966.	.003	.011	.019	.027	.035	.053	.071	.089	.108	.127	.146	.165	.21	.261	.308	.355	445	.532	,614	693	.768	.943	.102	Γ' 1- β =
0.1	390	076	0,9981	496.	644	.937	.932	.929	.928	.928	.928	.930	.93	934) E o .	.939	9415	952	.959	.966	476.	.982	066.	.01	.031	.053	, 07 u	,118	.162	.205	.249	.291	.395	464.	for a, P
0.05	379	.064	0.9834	946.	.926	,913	.905	368.	1894	.891	.888	983.	.885	, 88 u	.883	.83	.882	.882	.883	.883	.884	.885	.887	.890	, 894	.8999	.903	.913	.923	.933	446.	954	.981	.009	C Values
0.01	376	090	0.9787	.941	.919	906.	968.	.889	.883	.87	.876	.873	.870	868	.867	.865	.8F2	.860	.859	857	.856	.855	855	.85	.852	.851	.851	.850	849	848	849	849	848	0.850	Unknown
0.001	376	090	0,9785	.941	.919	905	.896	.888	.883	879	875	.872	.870	338.	.866	, 864	.862	98.	,858	.856	.855	1854	.853	.85	.850	.849	848	847	†8°	948.	848	845	448.	8441	B-21: 0 ²
0.0	376	090	0.9785	46.	.919	905	.89	.888	.883	.87	875	.872	870	.868	.866	, 864	.862	.86	.858	856	.855	, 854	853	.85	.850	849	848	847	0.84	846	845	845	tr tr 8 *	11 418.	Table
ř.	5 -	10	ဗ	†	2	9	7	8	6	10	11	12	13	14	15	16	18	2.0	22	24	26	28	30	35	0 †1	11.5	5.0	0	0	8 0	06	0.0	25	2 0	

1.0		.677	.473	.608	.782	.959	.130	.295	.453	605	3,7506	.890	.026	.156	.283	.40B	.525	.755	.973	.182	,382	.575	.761	.941	.368	.767	.143	·49η	.163	.776	.347	884	0,393	.564	2,625	
6.0		.450	.249	.366	.522	.682	.836	986	.127	.264		,521	.643	.761	.875	.985	.093	.299	964.	,684	. 864	.038	.205	.368	.752	.111	644.	.770	.368	,919	.433	.916	.374	0.428	,383	\ Н
æ. C		.238	.031	.128	.265	904	1 11 5	.676	.803	,924	41	.153	.261	.366	.467	.566	.661	845	.020	.187	.347	.502	,651	.795	.136	· 455	.756	.041	.573	.063	.520	646.	.35 ƙ	.293	• 1 t	.4 [.35 <
0.7		t th O .	.825	897	012	.134	,253	.369	8 1, .	.586	2,6883	.786	.881	.972	.061	.147	.231	.392	5 45	.691	.831	.966	.097	.223	.522	.801	tr J O .	• 31 4	.779	.208	607	.983	.33	.16	9.	T' $1-\beta =$
o• و		.871	.634	.677	.766	.866	.966	.064	.158	.249	2,3368	. 421	.502	.580	.65C	.730	.802	040.	.071	.196	,317	.432	. 5 4 th	.652	.908	.148	.373	.587	.986	.353	969.	.018	,324	.027	66	for a, P
0.5		.721	. 463	. 475	.534	000.	.686	.765	841	.915	1,9879	.057	.124	.190	,253	.314	374	. 489	,598	.703	.803	899	.993	.083	.296	36ħ°	489.	.862	, 1 9 lt	.500	. 786	.055	.309	ფე	. 425	C Values
0.45		.650	.387	,383	. 427	487	.552	.619	.686	.751	1,8154	.877	.937	966.	.052	.107	.161	.26	.363	• 4 5	.547	63	.717	.79	.991	.170	.339	.50	.799	.074	.331	.573	.802	.329	5.80	2 Unknown
† *0		.597	,319	.299	.327	.373	. 425	. 480	.535	,591	1.6462	669.	.752	.803	.853	.901	646.	040.	.127	,211	.291	.368	. 442	.514	.685	845	.995	.138	.403	849.	.877	.092	,295	9	.188	В-22: о
0,35		.545	.258	,223	.237	.268	.307	34	.393	. 438	1.4828	.527	.571	.614	.656	.698	.739	.817	.893	96.	.036	.103	.168	.23	.380	.520	651	.776	.009	,223	.423	.611	.789	.199	7 0	Table
_	님	- -1	2	ဗ	†7	5	9	. 7	œ	6	10	11	12	13	14	15	16	18	20	22	24	26	28	3.0	35	0 tı	45	20	0.9	7.0	8 0	9.0	0.0	.25	20	

7.0	16,9629 17,7426	8.877	1,234	2.364 3.452	4.499	5,507	6.478	7.417	8,325	9,206	0.061	0.892	2,491	4.013	5,470	6.868	8,215	9,514	0.771	3.753	6.541	9,167	1,658	6.302
0 • 9	14,5393	6.184 7.202	8,204	9.17 0.10	1.004	1.868	2,701	3,506	4.284	5,039	5,772	6.485	7.855	9.160	0,409	1,608	2,762	3,875	4.953	7,509	9.89	2,150	4.28	8,266
5.0	12,1159	3,490	5,176	5.984 6.762	7,510	8,230	8.925	9.595	0.245	0.874	1.485	2,078	3,221	4.309	5,349	6.348	7,310	8,238	9.136	1.267	3,258	5.134	6,913	0.731
0.4	9,6925	0.799 1.480	2,15	.797	4,018	4.595	5,151	5,687	6,207	6,710	7.199	7.675	8,589	9.459	0.292	1.091	1,861	2,603	3,322	5.026	6.62	8,121	9.544	2,198
3.0	7,2698	.110 .623	.126	9.613 0.081	0.530	.963	1,380	1,783	2.173	2,551	2,918	3,275	3,961	4.614	5,239	5,838	6.416	6.973	7.512	8.791	986.6	1,112	2.179	4.170
2.5	6,0593 6,3549	,768 ,197	.618	.024	.789	.150	864.	.834	0.160	0.475	.781	1,078	1.650	2.194	2.715	3,215	3.696	4.161	4.610	5.676	6.672	7.610	8,501	0.160
2.0	4,8508 5,0953	.429	.112	.438 .751	.052	.341	.620	.889	.150	.402	647	.885	.343	.779	0.196	0.596	0.981	1,353	1,712	.565	3,362	4.113	4.825	6.153
1.5	3,6486	.098 .359	.614	98.	,322	.539	.749	.951	.147	.336	.520	.699	.043	.370	.683	.983	.272	.551	.821	.461	0.059	0,622	.156	2.152
r 1.25	3.0546 3.2216	.437 .656	.870	.075	.461	.642	.817	.986	.149	.307	.461	.610	.896	.169	.430	.681	.922	.154	,379	.913	. 411	.881	.32	.156
Ĺ	3 2 E	± ω	9	2	6	10	11	12	13	14	15	16	18	20	22	5 th	26	28	30	35	0 4	1+5	5 0	09

7] σ^2 Unknown C Values for α , P_T , 1- β = .4 [1,25 \le r Table B-23:

0.3	091	.929	.908	.916	.935	.960	.988	.018	640.	.081	1,1138	.146	.179	.211	.244	.276	.339	. 401	.461	.520	.577	.632	.685	.813	.933	9 40.	.153	.353	.537	.708	.869	.022	.374	.692	
0.25	063	₩88°	.863	.861	869	.883	006.	,919	.939	.960		.005	.027	.050	.073	.096	.143	.189	.235	.280	.324	.368	.411	,514	.613	.706	.795	.961	.114	,257	.391	.518	.812	.07	< · 3]
0.2	040	.866	.82	.816	,816	.822	.830	.840	.851	.86	.876	.889	.902	. 91	.931	945	· 974	00.	.034	490°	.095	.125	.155	.229	.302	.373	. 441	.571	.692	.806	.913	.015	.249	.461	5 IO < r
0.15	1.0226	·844	.799	.783	.776	.775	.776	.780	.784	.789	.795	.801	808	,815	.822	.829	11 11 8	.860	.876	.892	606.	.925	. 942	988	.028	.071	.114	.200	.283	.363	0 +1 +1 •	. 514	.688	.846	$1-\beta = .$
0.1	.01	.828	. 7	.759	.748	.743	, 7 th	.738	.738	.73	0,7401	.741	.743	.745	747	.750	.755	.76	.767	.773	.780	.787	.793	,811	.828	847	.86	.903	.941	.980	.019	.057	.154	.24	for a, P _T
0.05	.002	.819	.768	.745	.732	.723	.718	,714	.711	.709	0.708	.706	.706	.705	.705	, 704	.704	.705	.705	.706	.707	.708	.709	.712	.716	.719	.723	.731	. 7 th	.748	.757	.765	.788	.811	c Values
0.01	.000	.816	.765	.740	.726	.717	.711	.706	.703	.700	0.6979	695	t69.	693	691	690	689.	687	.686	.685	.685	.684	.683	.682	.682	.681	681	680	680	.680	680	.680	680	681	Unknown
0.001	•	,816	,764	.740	.726	.717	,711	,706	.702	669.	0.6975	695	.693	.692	691	.690	688	687	.685	.68	, 684	.683	.682	.681	.680	9	.679	678	.678	9	.677	67	.67	.676	$B-24: \sigma^2$
0.0	0	.816	.764	.740	.726	.717	.711	.706	.702	669.	0.6974	.695	.693	692	691	.690	.688	.687	.685	.68	,684	.683	.682	.681	.680	٠ ئ	629.	67	.67	.677	67	677	67	.676	Table
7 7	; 	2	ဗ	†1	2	æ	7	8	6	10	11	1.2	13	1 14	15	16	18	20	22	24	26	28	30	35	0 tr	45	5.0	60	7.0	8 0	06	0.0	25	5.0	

	⊣	6	2	3	#	⇉	2	α	3	\leftarrow	⇉	\vdash	3	$\overline{}$	2	9	7	7	7	∞	C1	6	6	∞	8	⇉	\vdash	9	9	\vdash	9	∞	0	
1.0	0	0	. 2		.5	. 7	٠ 9	• 1	. 2		.5	9	8	6	0	۲.	₹.	9	ယ	0	. 2	⇒	9.	0	44.6	ω.	1	ω.		0.	• 5	0.0	٠ د،	
6.0	.822	.820	·984	.161	.332	° 495	649.	.795	.935	.069	.197	.320	ή † †	.555	.667	.775	.983	.181	.370	.552	,726	9894	.057	.442	5.8026	.141	.462	.061	.613	.127	,611	.069	.124	
8.0	656	62	.766	.920	.072	,216	.35	. 483	.608	.726	.841	.950	.056	.159	.258	.355	.540	.716	.884	.045	.200	.350	46 h.	.837	5.1574	. 458	477.	.276	767	.224	•654	.061	999	
0.7	.504	+1 +1 •	.554	.683	.813	938	.058	.172	.281	.385	†3† ¹	.581	673	,763	.850	932	.097	,251	.398	.539	.674	.805	932	.232	4.5122	.775	.025	. 491	.920	,321	.697	.053	.874	
9.0	.37	. 28	35	. 45	56	.66	.76	86	. 95	t 0 ·	.12	.21	.29	.36	† ₁ † ₁ •	.51	.65	.78	.91	.03	.14	.2E	.37	.62	3.8673	00	30	.70	.07	. 41	. 7 lt	ħ0.	.714	
0.5	. 256	.140	.176	.243	.320	.399	. 478	.556	,631	.704	.775	843	.909	.973	.035	.095	.21.1	, 321	. 426	.527	, 624	.717	.808	.022	3,2225	. 410	.589	.922	.228	.514	.783	.038	.624	
0.45	.207	1,0773	.096	.147	.209	.274	41	. 408	73	37		.660	.719	.77 C	3.2	.886	990	.089	83	.274	,361	. 445	.527	.72	2,9001	.069	230	.529	.805	063	305	3 4	61	
ħ.0	.163	.021	.025	.060	.106	.158	.211	.266	,321	.375	. 428	. 480	,531	.581	.630	.677	.769	.857	.941	.021	.099	,174	.246	.417	2,5778	.728	.871	.137	.382	,611	.826	.030	ს ს Ⴙ	
0.35	.124	. 97	.962	.983	.015	.052	.093	.135	.178	:221	,264	.307	349	,391	.432	.472	.551	.626	669.	.769	.837	.902	.965	.115	2,2555	.387	.512	.745	.959	.160	348	.526	.936	
r C	구 1	2	က	‡7	5	9	7	æ	6	10	11	12	13	14	15	16	18	2.0	22	24	56	28	3.0	35	0 17	45	20	6.0	7.0	8 0	0.6	0	125	

.5 2.	•	7	.5	0.	0.	0.0	6.0	7.0
3.0538 4.7 3.3314 4.1	• •	1034	5.1523 5.5946	6.1994 6.7252	8,2893	10.376 11.2407	12.4606 13.4959	14.544
,6241 4.8	8	∞	.073	.29	.743	.18	4.631	7.07
.9067 5.2	• 2	\mathcal{C}^{J}	,538	.85	0.485	.113	5.741	8,369
,1754 5,57	.57	δ	.983	.38	1,193	.998	6.803	909.6
.4305 5.9	ნ.	∞	·405	.89	1,868	841	7.813	0.785
.6732 6.24	.24		.808	.37	2,510	1149.	8,777	1,909
.9049 6.54	• 5 4		.193	.83	3,125	.411	9.697	2,983
.1268 6.84	8.1		,561	0.27	3,713	.147	0.580	4.013
.3398 7.12	.12	7	, 915	0.70	4.279	854	1,428	5,002
.5451 7.400	004.	ō,	.257	1,11	4.824	.535	2.246	5,955
,7432 7,664	.664	C	.586	1,50	5,351	.193	3.035	6.876
.9348 7.919	.919	6	.905	1,89	5,860	.830	3,799	7,768
.1206 8.167	.167		0.214	2.26	6,355	. 447	4.540	8,632
.301 8.407	107		0.514	2.62	6.834	.047	5,259	9.471
.6474 8.869	.869		1,091	3,31	7,756	.199	6.641	1.084
.9769 9.308	.308		1,639	3.97	8,633	.295	7,956	2,617
.2916 9.727	9.727		2,163	4 · 59	9.471	.342	9,213	4.083
.5934 10,129	0.129		2,665	5,20	0.274	.346	0.418	5,489
.8837 10.516	0.516		3,149	5.78	1,047	,312	1,577	6.842
.1638 10,889	0.889	c	3.615	h E • 9	1,793	.245	2,696	8.146
.4346 11,250	1,250	(C	4.066	6,88	2,514	.146	3.777	9.409
.0765 12,106	2,106		5,135	8,16	4.224	283	6.342	2,400
.676 12,905	2,905		,134	.36	.822	.280	8,737	5,195
0,2406 13,657	3,657	_	7.074	6 1 0	7.326	.160	166.0	7.827
757 14,370	4.370	c	7,966	1,56	8,752	, 942	3,133	0.322
1,7733 15,700	5,700	7	9.628	3,55	1,411	.265	7.120	4.975

Table B-26: σ^2 Unknown C Values for α , P_T , $1-\beta=.5$ [1.25 < r < 7]

																																,			
0.3	0.7934	696	.706	.724	.746	.771	.797	.824	.853	.881	.911	046.	.970	.000	.030	000.	.149	.207	.264	.320	374	. 427	.554	.674	.78	8 94	η60°	.278	644.	.611	.763	.115	.43		
0.25	0.7727	.660	.662	.671	.684	.698	,715	.732	.750	.769	.788	.808	.828	.848	.868	.910	.952	466	.036	.078	.119	.161	,261	.357	† ₁ † ₁	.538	.703	.856	.999	.134	.261	.554	.820	< .3]	•
0.2	0.7559	632	62	.629	.634	.642	.650	.660	.670	.681	.692	.703	.715	.727	.739	.764	.789	,815	.842	.869	.895	.92	.991	.058	.12	.191	,318	. 437	.55	657	.759	.993	.20	6 [0 < r	1
0.15	0.743	61	601	.598	.598	009.	.603	.607	.611	.616	621	627	.633	.638	t ti 9 .	.657	670	.683	969.	.710	.724	,738	. 77 Lt	811	6 48.	.837	496.	.041	.117	.191	,263	484.	.592	1-8 = .	L
0.1	0.7338	596	,583	.576	.573	.571	.570	.571	.572	.573	.574	.57	.578	.58	. 58	.586	,591	.596	601	.606	611	.617	,631	645	ي.	675	.706	.738	.771	. 804	.838	.923	000	for a, P.	• :
0.05	0.7284	587	.572	.563	.558	,554	.552	.550	.549	.548	547	.547	.546	546	.546	.546	.547	.547	.548	.549	.549	.550	.553	.556	.55	.562	.5F8	.575	.582	.588	. 59	613	632	C Values	
0.01	0.7266	584	568	559	553	549	546	543	5 41	5 40	539	537	537	536	535	534	533	532	532	31	531	530	530	529	529	529	28	528	28	28	28	29	2.9	Unknown	
0.001	0.7266	584	.568	.559	.553	.549	. 54	. 54	, 5 41	. 54	.538	.53	.536	.535	.535	.533	.532	.532	,531	.530	.530	.53	.529	.528	.5	.527	.527	.526	.526	.526	.526	.525	.525	$B-27: \sigma^2$	
0.0	0.7266	584	.568	.559	.553	.549	545	.543	.541	.539	.538	.537	.536	.535	.535	.533	.532	.532	.531	.530	.530	.53	.529	.528	. 5	.527	.527	.526	.526	.526	.526	,525	.525	Table	
n DF	40	ı က	4	2	9	7	8	6																	rt 5										

1.0	.512	1,642	.855	.065	.263	8 44 8	.622	.787	446.	160	.237	.375	.508	.637	.762	.883	.114	,335	.545	747	.941	.128	.309	.738	.138	.515	.872	.537	.150	.722	.26	.769	6	.002	
6.0	3666	1.4637	.6495	.8368	.0143	.1809	.3379	4984	.6277	.7625	.8917	.016	.1358	.2517	.3638	. 4727	.6816	.88	.0695	,2511	. 4257 .	.5941	.7569	.1427	.5029	.842	.1633	.7623	3142	.8288	.3126	.7708	.8257 1	.7806 1	$r \le 1$
. 8 . 0	23	1,293	. 444	.609	.765	.913	.052	.184	,310	0 6 4.	.545	.655	.76	.865	. 965	.061	.247	. 424	.592	.753	606	.058	.203	.546	.866	.16	.453	986.	477	, 934	364	.77	.709	.558	.6 [.35 <
0.7	111	1,1342	.252	.386	,518	949.	.767	.882	.992	.097	.197	,294	.388	. 478	.565	.650	.812	.967	.114	,256	.391	.522	649.	ό t₁ ὑ •	.23	. 4 93	.743	.209	.639	.039	.415	.772	.592	.335	T' 1- β =
0·6	900.	0,9923	.073	.173	.278	.383	η8η.	,581	.674	, 7 E. tı	.850	.933	.013	060.	.165	.237	.377	.509	.63F	.757	.873	.986	1094	.352	.592	.818	.032	.432	.800	.143	. 466	.771	. 47	.111	for a, P
0.5	.91	0.8721	.916	.982	.056	.133	.210	.286	.361	.433	.504	.572	.638	.702	.764	825	.941	.051	.15F	.257	.354	844	.539	.753	.953	.14	.320	.653	960	.246	,515	.769	.356	.886	C Values
0.45	880	0.8209	8 4 9	898	.956	.018	.082	.146	.210	.272	,334	498.	. 452	.509	,564	.618	.723	.822	.916	.007	.095	.179	.260	454	,634	03	496.	.264	.540	.797	.039	.268	Ç	5,27	2 Unknown
4.0	847	0.776	.790	,824	.867	.914	.964	.015	.067	,118	.17	,220	.270	.319	.367	414	.505	.593	.677	.757	.835	.910	.982	.154	.314		.608	t L3.	.119	348	.563	.767	.236	099	В-28: О
0.35	818	0.7371	.739	.760	.79	.823	.86	.898	.937	.97	.017	.057	.097	.137	.177	.216	.292	.367	• #39	.508	.575	641	.704	.854	406.	۲.	,251	т8н .	669.	.899	.087	.265	.676	· 0 47	Table
٢.	ጏ [፟] ጘ	C1	3	#	2	9	7	8	6																	45						0		2	

7.0	2,630	4.093	5,533	6.892	8,171	9,378	0.523	1,613	2,655	3,654	4.616	5,543	6.440	27,3101	8,153	9,772	1,312	2.782	4.191	5.546	6.854	8,118	1,113	3,911	6.546	9.042	3,696
6.0	0.8	2,07	3,30	94.4	5.56	6.60	7.58	8.51	04.6	0.26	1.09	1.88	2,65	23,3996	4.12	5,51	6.83	8.08	9:29	0.45	1.58	2.66	5.23	7,62	9.88	2,02	6.01
5.0	. 99	40.0	1.07	2.04	2,95	3,82	и,63	5,41	6.16	6.87	7.56	8,22	8.86	19,4873	0.09	1.24	2.34	3,39	0 11 6 4	5,37	6,30	7.20	9.34	1,34	3,22	5,01	.33
0.4	.176	.014	.838	.616	0.347	1,038	1,692	2,315	2,911	3.482	4.032	4.562	5,075	15,5719	6.054	6.979	7,859	8,699	9.504	0,279	1.026	1.749	3,461	5,060	6.565	7,992	0.652
3.0	347	.97	.598	.182	.731	.249	0 17 2	.207	,654	0.083	0.495	0,893	1,278	11,6512	2,013	2,707	3.367	3,997	4,601	5,182	5,743	6,285	7,569	8,768	9.898	0.968	2,963
2.5	. 428	.956	. 473	.960	.419	.851	.260	.650	.023	.380	.724	.055	.376	9.6872	9.988	0.567	1,117	1.642	2,146	2,630	3,098	3.549	4.62	5,619	6.560	7.452	.115
2.0	.503	.929	344	.735	.102	. 448	.776	.088	.387	673	948	,214	1,70	7,7193	.960	. 423	.864	.284	.687	0.074	81118	0.810	.666	2.466	3,219	3,933	5,263
1,5	.570	895	.209	.503	.780	040.	.286	.521	.745	.960	.166	.366	.558	5,7453	.926	.274	.604	.919	,222	,513	.793	.064	.70	.307	.872	0.407	· 405
r 1,25	.103	375	.638	.884	.115	.332	538	.734	.921	.100	.272	. 438	.599	4.7551	906.	.195	.471	.734	986	.228	.462	688	.224	.724	.195	641	.472
	2 2	က		Ŋ	9	7	æ •	6	10	11	12	13	14	15	16	18	20	22	24	26	28	30	35	0 †1	1+5	20	09

 σ^2 Unknown C Values for α , P_T , $1-\beta$ = .6 [1.25 < r < 7] Table B-29:

	C C	0 001	0 01	0.05	1	0 15	0.0	0.05	0.3
OF.	•	•	•	•	-	•	•	•	•
Н	.50	.50	.509	.510	.514	.52	.53	.54	.556
2	44.	t ₁ † ₇ •	444.	9446	.451	9 11 .	47	.488	.508
က	. 42	42	. 424	426	. 432	.443	, tt 5	8 + *	.506
#	. 41	. 41	.414	.416	424	. 438	• 45	8 47.	.516
5	0 4 0	0 4.	. 408	.411	. 420	. 436	. 45	491	.531
9	04.	0 +1 •	404.	. 407	.418	.437	94.	.501	.549
7	0 17.	0 4.	. 401	.405	.417	.439	· 47	,513	.568
8	.39	.39	.399	t 0 tr	. 417	. 44 41	C # 3	.525	.589
6	.39	.39	.398	.402	.418	17 17 17	. 48	.539	.612
	3.9	.39	388.	.402	.418	8 47 4 8	6 †₁•	,553	.635
	.39	.39	.395	.401	.419	.452	.50	.568	.658
	.39	.39	394	. 401	. 421	.456	.50	.583	.683
	.39	.39	394	004.	.422	.460	.51	.599	.708
	.39	.39	.393	004.	.423	494.	. 52	.615	.733
	.39	.39	.393	004.	.425	.469	.53	.632	.759
	.39	.39	.392	004.	.426	.473	.54	649.	.786
	.39	.39	.391	0047.	.430	.483	.56	.683	.839
	.39	.39	,391	.401	. 433	· 493	.58	.719	.893
	.39	.39	.390	.401	. 437	.503	09.	.755	946.
	.39	.39	.390	. 402	. 441	.513	.62	.792	.000
	.38	.38	.390	. 403	. 445	.524	65	829	.053
	.38	.38	.389	. 403	6 11 11 6	.535	67	.866	.106
	.38	.38	.389	40 tr	.453	.546	69.	406.	.157
35	0,3885	0,3885	0,3892	0.4063	0.4642	0.5746	0,7531	0.9983	1.2822
	.38	.38	.388	80tr.	. 475	to 09.	.81	080.	004.
	38.	.38	.388	. 410	98 t₁•	634	.87	.180	.512
	.38	.38	.388	.413	.497	.666	.93	.266	.619
	.38	.38	.388	. 417	,521	.731	.05	.430	.819
	.38	.38	.388	.422	.546	.798	.16	.583	.003
	.38	.38	.388	. 42	.572	.866	, 28	.726	.174
д	.38	.38	.388	.432	.598	934	.38	.860	.336
	.38	.38	.388	. 438	,625	00.	8 17 .	.988	88 h.
7	.38	.38	.388	. 451	.696	.166	.72	.281	840
2	.38	38	.389	94.	.770	,321	ъ •	.54	.158
	Table	e B-30:	σ ² Unknown	C Value	s for a,	P_m , $1-\beta =$	> 0] 7.	$r \leq .3$	

1.0	1,1187	.299	.524	.739	.939	.126	,302	.467	. 624	٠77 4	,918	.056	.189	,318	. 443	.563	.795	.015	.226	.427	,621	.808	.989	. 417	.817	.193	.550	,215	.827	.399	.936	17 17 17 *	.616	1.676	
6.0	0.9988	.138	,331	.521	.701	86	.026	.176	,317	.452	.582	.706	.826	.942	, 054	.163	.371	.570	.759	046.	.115	.28	944.	.831	.191	.530	,851	644.	.001	,515	966.	.456	.511	9 47 •	$\leq r \leq 1$
8.0	0.8901	986.	.143	.305	. 461	.610	.750	.882	.008	.128	.244	354	. 461	.564	.663	.760	946.	.122	.290	.452	.607	.75	.901	. 244	,564	.865	.150	.682	.172	,629	.059	.466	ty 0 ty •	.25	.7 [.35
0.7	0.7946	849	996.	.095	,225	.352	.473	.588	.698	.803	406.	.001	460.	, 184	.271	.35 f	.519	673	.820	.962	.097	.22	.355	.655	.935	.198	8 4 4 8	,913	.343	.742	.119	. 475	.295	.037	P_{m} , $1-\beta =$
0.6	0.7136	,731	808.	.901	.001	.101	.199	.295	.388	1177	.563	. 646	.725	.803	878	.950	060.	. 222	348	. 469	.586	698	.807	.064	301	.530	, 7 44	.143	.511	.854	.176	. 481	, 184	821	s for a,
0.5	0.6475	632	.678	.736	.801	.871	.942	.014	.085	.156	.225	.292	.357	. 421	.483	.543	.659	.769	874	.975	.072	.16	.257	. 471	.671	.859	.038	.370	677	.963	.231	.486	.072	609.	c Value
0.45	9	.505	.624	.667	.716	.770	.827	.885	h 116 .	.003	.062	.119	.176	.232	.287	340	444	.542	,637	.728	.815	99	.981	.174	354	,523	·684	.983	,259	.517	.758	.987	.515	665	σ ² Unknown
† • 0	0.5956	.561	.577	607	643	.683	.725	.770	.815	.862	.909	.956	.003	.05	.096	1.41	.231	,317	0017.	. 480	.557	,632	.704	.876	.036	.187	.33	.596	.841	.070	.285	. 488	.957	.381	e B-31:
0.35	574	.532	.538	.557	.581	609.	.639	671	.704	.738	.773	.808	418.	.880	.917	.953	.025	.097	.167	.235	,301	•	. 428	.578	,718	. 85	. 97	.20	.422	.622	.81	686.	.399	.770	Tabl
n P	₽	CI	က	†7	5	9	7	ထ	6	10	11	12	13	14	15	16	18	20	22	24	26	28	30	32	0 1	1+5	50	0.9	7.0	8 0	0.6	0	125	2	

7.0	0.997	2,613	4,119	5,514	6.815	8,037	9,191	0.288	21,3353	2,338	3,302	4.232	5,131	6,001	948.9	8,466	0.006	1.476	2,885	4.240	5.547	6,811	9,805	2,602	5,235	7,730	
0.9	8604.	.7949	.0859	.282	.3969	.4439	4334	.3734	8,2707	.1306	.9571	.7541	.5243	,2703	.9942	.3831	.7029	.9631	.171	.3325	.4529	.5359	.1027	.4995	.7563	.8951	
5.0	.819	.9732	6840.0	1,0456	1,9746	2.8472	3,6716	4.455	15,2027 1	5,9193	6,6081	7.2722	7,9141	8,5358	9.1391	0.2964	1,3963	2.4464	3,453	4.421	5,3547	6.2572	8,3962	9868.0	2,2743	4.0567	
0.4	.222	.145	.0062	4808.	.5467	0.2446	0,9042	1,5309	12,1291 1	2,7023	3,2534	3,7847	4.2982	4,7955	5,2782	6,2042	7,084	7,9242	8,7295	9.504	0.2509	0.973	2,6842	4.2821	5,7867	7.2126	
3.0	.614	.307	.952	.550	.107	.6314	.1261	.5962	0.0449	8 4 2 4 .	.8881	0.2866	0.6718	1.0449	1,4069	2,1013	2,7613	3,3915	.9955	4.5763	5.1366	5,6782	6,9617	8,1602	9,2887	0,3581	
2.5	.802	.380	.918	.416	.881	.317	.729	121	7.4955	.853	.198	.530	.851	.162	h9h.	0.042	0,592	1,118	621	2,105	2,572	3.023	4.093	5,092	6,032	6.924	
2.0	.980	11 11 17	.875	.274	.646	.995	,325	.638	5,938	.224	.500	.76	.023	.271	.513	976.	.416	.836	.239	.626	0.000	0.361	1,217	2.016	.768	3,481	
1.5	.143	.493	.818	.118	.397	629.	.907	.142	4.3673	.582	.789	.988	.181	.368	.549	.896	.226	.542	8448	.134	.415	.685	.327	.927	6 47 •	.026	
1.25	.71	.01	. 28	.53	.76	96.	.19	.38	3,5746	.75	.92	.09	.25	0 +1 •	.56	±8.	.12	.38	.63	. 88	.11	34	.87	.37	18	.29	
ع	DF	က	±	2	9	7	8	6	10	11	12	13	1 4	15	16	18	20	22	2 th	26	28	30	35	0 †1	7t 2	5 0	

 σ^2 Unknown C Values for α , P_T , $1-\beta$ = .7 [1.25 \le r \le 7] Table B-32:

e · 0	,355	.330	.330	.338	.349	.361	,375	.39	.405	.422	.43	457	.475	46 tr.	.514	.534	.576	.620	.665	,711	.758	805	,852	.970	.085	.195	,301	.500	.683	.855	.016	.169	2.5204	.83	
0.25	345	.316	,313	,316	.321	,329	.337	346	.355	.365	,375	.386	.397	.408	. 420	.432	.457	.483	.511	.539	.568	.599	.629	.709	,791	874	.956	.115	.266	. 408	.542	.669	9	.227	
0.2	.338	.306	.299	.299	,301	*30H	.308	,313	,318	,323	.329	.335	.341	.347	,353	.360	.373	.388	. 402	.417	.433	644.	994.	.509	.555	·604	.654	.758	.864	.969	.071	.171	1.4034	615	
0.15	,332	.298	,289	.286	,285	.286	.287	,289	,291	.294	.296	.299	.302	,305	.308	,311	.318	.324	,331	,338	345	,353	.360	.380	.401	. 422	4 45	.493	11119	.598	655	.713	0.8623	000.	
0.1	.328	.29	.282	.277	.275	.274	.273	,274	.274	.274	.275	.276	.277	.278	.279	.280	.282	,285	.287	.290	.292	.295	.298	.305	.312	.320	.328	9 4 4	.361	.378	.397	. 416	0.4677	.523	
0.05	,325	.289	.278	.272	.269	.267	,265	,264	.264	.263	,26	.263	.263	,263	.263	.263	.263	.263	.263	.264	.264	.265	.265	.267	.268	.269	.271	.274	.277	.281	482.	.288	0.297	.30	
0.01	.32	.288	.276	.270	.267	.264	,263	.262	.261	.260	.259	.259	.258	.258	.258	.257	.257	,257	.256	,256	.256	.256	.256	.255	.255	.255	.255	.255	.255	.255	.255	.255	0.2555	,255	
0.001	.324	.288	.276	,270	.267	.264	.263	.26	.261	.260	.259	,259	,258	.258	,257	.257	.257	, 25	.256	.256	.256	.255	.255	. 25	.255	.254	.254	.254	.254	.254	.254	.25	0.2539	.253	
0.0	324	.288	,276	.270	.267	.264	.263	.261	.261	.260	, 25	.259	.258	,258	.257	.257	.257	.256	.256	.256	.256	.255	.255	,255	,255	. 254	. 25	.254	.254	,254	.254	. 25	0.2539	.253	
r DF	₹-1	2	က	†1	2	9	7	8	6	10	11	12	13	1 4	15	16	18	20	22	24	26	28	30	35	0 †1	1+5	20	09	7.0	80	9,0	\circ	125	2	

Table B-33: σ^2 Unknown C Values for α , P_T , $1-\beta=8$ [0 < r < .3]

OF	r 0.35	† • 0	0.45	o. o	۵.	• 0	χ. -	n •	٦•٦	
Н	366	.380	396	.415	. 460	.517	. 58	.670	.766	
C4	346	365	.389	.416	tı 8 tı ·	.573	.684	,813	955	
က	.352	.379	.411	6114	.546	673	.826	.997	.177	
#	.36A	004.	.442	. 493	.622	.788	.979	.183	.392	
5	,383	. 426	.479	, 5 tl tl	.707	.908	.131	.361	,591	
S	. 403	. 455	,521	.599	.796	.029	.277	.528	.778	
7	. 424	.487	.565	65	.887	. 1 4	• 41	.685	.952	
8	.447	,521	61:2	.721	.978	.260	.548	, вз4	.117	
6	. 471	.556	,661	. 784	.067	.369	.673	.975	,274	
. 10	76h.	· 594	.712	648.	.154	. 474	.793	.109	. 423	
11	.524	, 632	.764	,913	.239	.574	.907	,238	.566	
12	.551	.672	.816	.977	,321	670	.017	.362	.703	
13	.580	.712	.869	040.	0017	.763	.124	.481	.836	
1,1	609.	,754	,921	.102	177	.853	,226	.596	1961	
15	.639	.795	.973	.163	.551	046.	,325	.708	.088	
16	.670	.837	.024	.222	,624	.024	. 422	,816	.208	
18	.733	.920	.125	.337	.763	.186	.607	.024	· 439	
2.0	.797	.003	.222	3 41 41 6	.895	340	.782	,221	.658	
2.2	.861	.083	.316	.551	.021	. 487	.950	. 410	.867	
24	,925	.162	9017	.652	.141	.628	.111	.591	.068	
26	.988	.238	£6 tr.	.749	.258	.763	.265	.764	,261	
2.8	.051	,312	.577	.842	.369	.893	. 1:14	.932	.447	
30	.112	.384	.658	.932	.478	.02	.558	η60°	627	
32	1.2596	1,5554	1.8514	2.1467	2.7345	3,319	3,9003	4.4787	5,0546	
0 17	.398	.715	.031	346.	476°	.598	.219	.837	.453	
115	.530	.865	.200	.534	199	.861	.519	.175	.828	
20	.654	.008	.360	.712	. 41	.11	808	96 h.	, 184	
6.0	.887	.274	629	11 110.	.811	.574	3332	.092	847	
7.0	.102	.519	.935	.350	.178	.002	,824	649	.459	
8 0	.301	747	.192	635	.520	. 402	.280	.156	.029	
06	684.	.962	.433	106.	. P 42	.777	.709	633	.565	
0	.667	.165	.662	.158	.147	.133	.116	960.	.073	
125	.077	,633	.189	.743	6 H 8 .	· 959	.052	• 1 tt	0.243	
IJ	8448	.057	4.66	.273	.485	69.	899	0.2	305	
	Table	B-34:	σ ² Unknown	C Values	for α_{\prime}	P_{η} , $1-\beta =$.8 [.35	$\leq r \leq 1$		

7.0	.485	1,179	2,714	14,122	5,427	6,649	7.803	8.898	9,942	0.943	1,904	2.831	3,727	4.594	5.436	7.051	8,586	0,052	1.457	2.808	4,111	5,371	8.358	1.148	3,775	6.265	0.908
0.9	.107	.559	0.874	12,0804	3,199	4.246	5,235	6.173	7.068	7,926	8,750	9.544	0,312	1.056	1,777	3,161	1777 tt	5,733	6,937	8,095	9,213	0,293	2,853	5,244	7,495	9,630	9,609
5.0	.72	.93	.029	10,0337	0.965	1.838	2,661	3,443	4,189	406.4	5.590	6,252	6,892	7,512	8,113	9.266	0,362	. 409	2,413	3,378	H .309	5.209	7,342	9,334	1.211	2.99	ь.306
0 • 17	.33	.30	.17	7.9784	.72	.42	0.08	0.70	1,30	1,87	2.42	2.95	3.46	3,95	77 77	5.36	6.23	.07	7.87	8,65	9.39	0.11	1,82	3.41	4.91	6,34	8.99
3.0	6.	9.	.3	5,9068	<i></i> .	6.	₹.	6.	Э	ω,	C1	ω.	0.0	0.3	0.7	1.4	2.1	. 7	3,3	3,9		5.0	6.2	7 . !!	8 5	9.6	1.6
2.5	, 213	,813	,358	4,8595	324	,759	171	.561	934	,290	, 63 t	96.	,284	,594	h68.	9,471	0.019	.5 42	1,043	1,526	1,991	2,441	3.508	4.504	5,442	6,331	7.989
2.0	. 483	.963	.398	3.7986	.170	,518	.847	.159	. 457	.742	.017	,281	.537	.785	.025	, 486	.924	.343	1447.	.130	.502	.862	0,716	,512	2.263	2.974	4.301
1.5	.72	.088	. 414	2,7149	.993	,254	.501	.735	959	.17	,378	.577	• 76	954	.135	.480	.809	.12	424	,713	.993	,263	.903	.500	.06	.597	91
1.25	,339	636	906.	2,1596	.392	.61	.815	.010	.197	.375	.547	.712	,872	.027	.177	.465	.739	.001	,252	.493	,726	,951	484.	.982	. 451	.896	.725
<u>.</u> 1	2 2	ဗ	#	2	9	7	ω	6										22									

Table B-35: σ^2 Unknown C Values for α , P_T , $1-\beta=.8$ [1.25 < r < 7]

0.3		.173	.162	.163	.167	.173	.179	.186	.194	.202	.210	,219	,229	,239	.249	.260	.271	.295	,321	.349	.378	. 410	.443	477	.570	.668	0.7682	.868	.062	. 244	.415	.575	.728	.079	.396	
0.25		.168	,156	.154	.156	.159	,163	.167	.171	.176	.181	.18F	.192	.198	.204	.210	.216	.229	.243	,258	.274	.291	.309	.327	.377	.433	•	.558	469.	,834	9.71	.103	.229	,521	\mathcal{C}	<u>^</u> .3]
0.2		.164	.150	. 14	.147	.149	.150	.152	.155	.157	.16	.163	.166	.169	.172	.175	.179	.186	.193	.200	.208	.217	.225	.234	.258	.283	31.2	.342	. 4110	9 8 11.	56	.65F	.745	96.	.17	ਸ > 0] 6
0.15		.16	.14	, 142	.141	.141	.141	.142	.143	.144	.14	.147	.148	.15	.151	.153	.154	.157	.161	.164	.168	.171	.175	.179	.189	.200	0.2114	.223	.249	.277	308	.343	.38	8 11 8	.602	$1-\beta = 0$
0.1		₽,	144	.139	.137	.136	.135	.135	.135	.135	.136	.136	.137	.137	.137	.138	.139	1.40	.141	.142	.143	.145	.146	.148	.151	.155	0.159	.162	171	.179	. 18R	.198	.208	.235	.265	orα, P _T ,
0.05		.158	.142	.137	.134	.133	.132	.131	.131	.130	.130	.130	.130	.130	.130	.130	.130	.130	.130	.130	.131	.131	,131	.131	.132	.133	0,1339	.134	.13E	.137	.139	.141	.142	.147	.15	Values f
0.01		.158	.142	.136	.133	.132	.131	.130	.129	.129	.129	.128	.128	.128	.128	.127	.127	.127	.127	.127	.127	.127	.127	.126	.126	.126	0.1267	.126	.126	.126	.126	.126	.126	.126	.126	Unknown C
0.001		.158	.142	.136	.133	.132	.131	.130	.129	.129	.128	.128	.128	.128	.128	.127	.127	.127	.127	.127	.127	.126	.126	.126	.126	.126	0.1264	.126	.126	.126	.126	.126	.12	.12	.125	B-36; σ ²
0.0		.158	.142	.136	.133	.132	.131	.130	.129	.129	.128	.128	.128	.128	.128	.127	.127	.127	.127	.127	.127	.126	.126	.126	.126	.126	0.1264	.126	.126	.126	.12E	.12	.126	.12	.125	Table
٤	DF	Н	2	ဗ	7	2	9	7	œ	6	10	11	12	13	14	15	16	18	2.0	22	24	26	28	30	3.5	0 11	45	50	0.9	7.0	8 0	9.0	_	125	ш,	

•	4.07	0.557	.750	.952	.147	.330	.502	·664	.819	996.	.107	.243	.374	.500	.622	.741	.970	.187	.39	.593	.784	. 96	.148	.571	.967	.340	·694	354	.963	.531	.065	.57	.73	9 2	
	345	0.4476	.593	.757	,924	.087	.241	.387	.527	99.	.787	.909	.027	.141	.252	,359	.565	.760	46.	.126	.298	.465	.626	.007	.363	.699	.018	.612	.160	671	,152	608	.658	609.	$r \leq 1$
	295	0.3595	. 458	.578	.710	.845	.978	.107	.231	.349	.462	.571	.676	.778	.876	.972	,155	.329	.495	655	.808	.956	.099	.438	.755	.054	.337	.865	.353	.807	.235	640	.573	, 4,19	.9 [.35 <
	. 256	0.2922	.353	.431	.521	.620	.724	.83	.934	.035	.134	.229	,321	.410	964.	.580	.741	.893	.039	.179	.313	6 4 4 3	.568	.865	.143	11011	.652	.115	.541	.939	,313	.668	. 485	.225	1-β =
	200	0.2425	.277	.322	.376	.437	.504	.577	.653	.731	.809	.887	496.	.039	.112	.184	,321	. 453	.578	969.	.813	.925	.032	.287	.526	.750	.963	.359	.725	.066	.387	691	.301	.02	for $lpha_{f r}$ $_{f T}$
	203	0,2063	.224	.248	.276	.309	345	,385	.428	. 475	.524	.576	.629	.683	.738	.793	.902	.009	.112	.212	.308	. 401	. 491	.704	.903	060.	.268	.598	.90	1.88	. 455	.709	.293	.821	C Values
)	1 93	0.1923	.204	.221	.241	.264	.289	.316	.347	.379	. 414	.451	064.	.530	.572	,616	.704	.794	82	.970	.055	.138	.219	.410	.589	.758	.918	.216	. 491	747	.988	,216	. 741	4.217	2 Unknown
•	α α	0.1806	.187	.199	.213	,228	,245	,264	,284	.306	,329	.353	.379	107	436	994.	.530	.597	.66	.737	808	.879	.948	.116	.275	.425	.567	.832	.076	.304	.518	.721	.189	.6122	B-37: 0
20.	17	0.1707	.17	.181	.190	.200	.212	.224	.237	.251	.265	.281	.297	,315	.333	,352	.393	.437	484	.533	.585	.638	.692	.828	.962	.091	.215	644	.661	.860	.048	. 22	.634	.005	Table
•	OF -	7 2	က	† 7	S	9	7	8	6	10	11	12	13	14	15	16	18	2.0	22	24	26	28	30	35	0 †1	1+5	5.0	6.0	7.0	8.0	0.6	\circ	125	ц,	

0.8

0.45

7.0	0 0	.593	1,114	2,503	3,790	4,995	6,132	17,2128	8,243	9,231	0.180	1,096	1.982	2,839	3,672	5,271	6,791	8,244	9.637	0,977	2,270	3,521	6.488	9,261	1,873	4,351	8,972
0 • 9	734	.190	. 493	0,683	1,785	2,817	3,792	14.7177	5,600	6.447	7,261	8,046	8,804	9,540	0.253	1,623	2,926	4.171	5.36	6.514	7.622	8,695	1,237	3,614	5,853	7,976	1,938
5.0	56	. 78	98.	.85	.77	0.63	1,44	12,2151	2,95	3.65	4,33	4 , 98	5,62	6.23	6.82	7,96	9.05	0.09	1,08	2.04	2.96	3.86	5,97	7,95	9.82	1.59	68°h
0 • 17	.393	.358	.223	.014	.748	.435	.083	8669.6	0.288	0.851	1,393	.916	2.422	2.912	3,387	14,300	5,168	5,998	6.794	7,559	8,298	9,013	0.708	2,292	3.784	5,200	7.840
3.0	1.	٠.	ייי		9	ζ,	<u>.</u>	7,1602	• •	0.	₹.	ω.	5	5	9.9	0.6	1.2	1,8	7.	3.0	3. fi	4.1	5,4	6.5	7.7	8.7	0.7
2.5	.57	.17	.70	.20	.65	.08	±	5,8731	, 24	. 59	.92	.25	.57	.87	.17	.7 u	. 28	.80	0.30	0.78	1,24	1,68	2.74	3.73	4.66	.55	7.20
2.0	935	60h.	.837	.229	.593	.935	.258	4.5656	.858	.139	.410	671	.923	.168	. 405	.861	.294	.709	.106	• 489	.858	,215	0.062	0.853	1,599	.307	3,626
1.5	.252	909.	.927	,221	464.	.750	.993	3,2233	. 443	.653	.856	.052	,241	424.	.602	446.	.269	.580	.878	.165	. 441	.709	446.	.938	.497	.028	.01
1.25	.893	.181	844.	·694	.923	.137	.339	2,5313	.71 H	.890	.059	.222	.380	.533	.681	.966	.237	964.	.745	186.	.21	. 438	.967	911.	.928	.370	.19
ה	5 0	က		2	9	7	æ	9	10	11	12	13	14	15	16	18	20	22	24	26	28	30	35	0 11	1+5	20	6.0

Table B-38: σ^2 Unknown C Values for α , P_T , $1 \text{--}\beta$ = .9 [1.25 \leq r \leq 7]

0.3	0.08612 9.08104 0.08152	.0835 .0863	0895	.0969	.1010	.1054 .11	1148	.1198	.1251	.1307	.1365	.149	.1626	177	.1935	,2109	.2298	.2502	.3078	,3751	.4511	.533	.7090	8848	.0536	,213	.3659	,716	.0337	
0.25	0.08378 0.07776 0.07716	.0780 .0795	.0813	.0857	.0881	060.	.0960	.0989	.1019	.1050	.1082	.1150	.1222	.1298	.1380	.1467	.1559	.1657	.1929	.2241	.2597	.3001	3945	.5048	6247	.7480	.870	,159	42п.	r < .3]
0.2	0.08192 0.07519 0.07377	.0737 .0743	.0752	.0774	.0787	.080	.0830	.0845	.0861	.0878	•080°	.092	.0966	.1004	1044	1085	.1129	.1174	.1295	.1428	.1575	.1737	.2108	.2551	.3068	.366	4327	.620	.8175	.95 IO <
0.15	0.0805 0.07324 0.07123	.0706	070.	0715	.0721	0727	0741	.0748	.0755	.0763	.0771	.0787	080.	.0821	.0839	.0857	.0876	.0896	0346	.1000	1.057	.1117	.1248	.1395	.1558	.1740	.1941	.2541	.3290	η, 1-β =
0.1	0.0795 0.07188 0.06947	.0684	.0677	.0676	.0677	.067	.0683	.0685	.0688	0690.	.0693	.0699	.0705	.0711	.0718	.0724	.0731	.0738	.0756	.0774	.0793	.0813	.0854	.0897	.0942	.0990	.1041	.1178	.1333	for a, P
0.05	0.07891 0.07107 0.06844	.0671 .0664	.0659	.0654	.065	.0652 0651	.065	.0650	.0650	.0650	.0650	.0651	.0652	.0652	.065	.0654	.0656	.0657	.0660	.0664	.0668	.067	.0679	.0687	9690.	.0704	.0713	.0735	.0758	. C Values
0.01	0.07871 0.07082 0.0681	.066 .065	.0654	.064	.0645	.0643	0490	.063	.0638	.0638	.0637	.0636	.0635	.0635	.0634	.0634	.0633	.0633	.0632	.0632	632	. n £ 3	.0631	.0631	.0631	.0631	.0631	.0632	$^{\circ}$	Z Unknown
0.001	0.07871 0.0708 0.06809	.066 .065	.0653	.0647	4490.	0643	0490	.0639	.0638	.0637	.0637	.0635	.0635	.0634	.0633	.0633	.0632	.0632	.0631	.0631	.0630	.0630	.0629	.0629	.0629	.062	.0628	.062	.0628	В-39; о
0.0	0.07871 0.0708 0.06809	.066 .065	.0653	.0647	. 064	.0643 .0641	.064	.0639	.0638	.0637	.0637	.063	.0635	.0634	.063	.0633	.0632	.0632	.0631	.0631	.0630	.063	.0629	.0629	.0629	.0628	.0628	.0628	.0628	Table
ر ت	5 H O B	7 5	9 2	- ω	б	10	12	13	14	15	16	18	2.0	22	24	26	28	30	35	0 tı	11.5	2.0	6.0	7.0	8.0	06	100	125	150	

O• T	0.40	COT7.	.3034	9544.	.6190	,8016	9846.	.1494	.3101	.4626	.6083	.7477	1.88187	.0111	.1362	.2573	.3749	.6008	.8156	.0209	.2180	. 4077	.5907	.7679	.1882	.5814	.9520	.3037	.9601	.5661	.1316	0499.	.1685	.3315	.3855]	
5. 0	1755	0017.	.2338	.326	4492	.5917	.7420	.89	.035	.1726	.3042	4304	1,55164	.6684	,7814	.8908	.9970	.2007	.3945	.5796	.7572	.9282	.0932	,2528	,631	• 9854	.3192	.6329	.2269	.772	,2815	.760	.2148	.2616	.210	5 < r < 1	
ж. С	100	0041.	.1833	.2399	,3160	.4108	.5204	.6387	.7595	879	.9950	.1072	1,21536	.3197	.4206	,5183	.6130	.7948	.9676	.1326	.2909	. 4431	.5900	.7321	.0691	.3841	,6810	.9627	.4883	• 423 h	4261	.8522	,2558	.1865	.0299	= .95 [.3	
/. 0	7 0 0 0	7071.	.1471	.1800	.2236	.2782	.3441	4205	.5056	.5961	.6894	.7831	0.87552	.9658	.0539	.1395	.2227	.3825	.5343	6795	.8182	.9518	.0807	.2053	.5007	.7768	.0369	,2837	.7439	.1686	.565	.9379	.2912	.1058	8439	P., 1-8	: . .
٥.	7 7 0 7	.J. T. Z. /	.1213	.1394	.1632	.1923	.2269	.2673	.3139	.3665	.4246	. 4874	0.55362	.6219	.6914	.7608	.8299	8496.	7 460.	.219	.3387	.4537	.5646	.6718	.925	.1630	.3864	.5981	.9932	.3576	.6976	.017	.3205	.0189	6518	es for α ,	
0.5	7	0107.	.1029	.1121	.1244	.1391	.1561	.1755	.1973	.2218	.2492	.2795	0.31274	.3489	.3879	4294	.4731	.5657	.6621	.7595	.8559	.9504	.0423	.1315	3438	.5421	.7287	.9057	.2356	.5397	8233	.0902	.3430	.9254	.4530	wn C Valu	
0.45		060.	.095	.1020	.1106	.1208	.1325	.1456	1601	.1763	.1940	.2135	0.23488	.2580	,2831	.3102	.3392	.4029	.4728	.5476	, 6254	.7045	.7836	.8617	.050	.2291	.3972	.556	.8541	,1281	.3836	.6239	.8515	.3760	.8510	σ ² Unknown	
4.0		₹.	.09	.0937	.0995	.1054	.1143	.1230	.1326	.1430	.1544	.1666	0.1799	.1941	.7095	.2260	.2436	.2825	.3263	.3749	. 4278	.4845	.5439	.6053	.7619	.9162	.0645	,2061	4707	.7146	.942	.1557	,3583	.8247	.2471	ole B-40:	
0.35	0	. 0887	.0850	.0869	.0906	.0951	.1003	.1060	.1121	.1188	.1259	.1335	0.14159	.1501	.1593	.1689	.1792	.2016	.2265	.2541	.2846	.3180	,3542	.3932	.500	.6172	.7375	.8570	980.	.2992	.4983	.6857	.863	.271	.6414	Tabl	
٢	P.	4	C1	က	#	ಬ	9	7	∞	6	10	11	12	13	14	15	16	18	50	2.5	24	26	28	30	35	0 1	115	20	0.9	7.0	80	_	$\overline{}$	125	u,		

7.0	.885	.545	0.028	1,385	2,643	3,823	986° h	5,998	7,011	7,983	8,917	9,820	0,693	1,539	2,361	3,940	5,443	6.880	8,259	9,587	0,869	2,109	5,053	7,806	0.402	42.8654	7.462
0.9	.864	.284	.55	.715	0.793	1,804	2,759	3,668	4.536	5,368	6,169	6,942	7.690	3.416	9,120	0.473	1,761	2,993	4.175	5,313	6.411	7.475	9,997	2,357	1.582	36,6932	0.634
5.0	835	.015	.071	.037	.934	.776	0.571	1.328	2,050	2.744	3,411	4.055	41.678	5,283	5,869	6.997	8,070	9.096	0,081	1,029	1,044	2,830	4.932	6.898	8,752	30,5116	3,795
0.4	. 79	.730	.572	.343	90.	.732	.367	.972	.549	0.103	0.637	1,152	1,650	2,133	2.602	3.504	4.362	5.182	5,970	6.728	7.460	8,169	9.850	1,423	2,905	24,3129	6.939
3.0	.718	. 41	.043	,618	.154	.656	.132	.584	.017	.432	.831	.217	.590	.952	.304	.979	0.622	1,237	1.828	2.396	2,945	3.476	4.736	5.915	7.027	18.0828	0.052
2.5	.157	.734		.733	.178	.597	.992	.369	.729	.074	107	.728	.038	.340	.633	.195	.731	.243	.735	0.208	0,665	1,108	2,158	3.140	4.067	•	6.586
2.0	.56	.02	· 43	.82	.17	.50	.82	.12	. 41	.69	95	.21	9 47 .	.70	.93	.38	.81	.22	61	99	.36	.71	.55	0,33	1.08	11,7838	3.09
1.5	.91	.256	.5	.856	.12	.374	.61	.836	.052	.259	.459	.651	.838	.018	.194	.531	.852	.16	454.	.738	.012	.27	.907	197	,052	8.5796	.563
1,25	.571	8 4 0	1.00	.341	.566	.776	975	.163	344	.517	.684	11 11 8 .	.000	.151	.297	.578	.846	.102	348	.585	,813	.035	.559	.050	.514	6.9532	.773
<u>_</u>	DF	က		ა	S	7	æ	6	10	11	12	13	1 4	15	16	18	2.0	22	24	26	28	30	35	0 11	45	5.0	09

7] σ^2 Unknown C Values for α , P_T , $1-\beta$ = .95 [1.25 \le r \le Table B-41:

0.3	0430	0,04049	0407	0417	.0431	.0447	.0465	.0484	.0505	0527	.055	.0574	.05	.0626	.0654	.0683	.0746	.0815	.0891	.0973	.1063	.1161	.1268	.1579	.1961	.2421	.2967	.4295	.5837	. 7441	.9015	.0526	.4027	.7197	
0.25	0418	0.03885	.0385	.0389	.0397	0400	.041	.0428	0 17 17 0	.045	.0466	0840.	1640.	.0509	.0525	.0541	.0575	.0611	.0650	.0691	.0735	.0781	.0831	.0970	,1131	.1319	.1536	.2074	.2769	.3625	. 4618	.5700	8476	.110	$\leq r \leq .3$
0.2	0 17 0	375	.036	.0368	.0371	.0375	.0381	.0387	.0393	00400	. 0407	.0415	.0422	.0430	.0438	.0447	.0464	.0482	.0502	.0522	.0542	.0564	.0587	.0648	.0715	.0790	.0872	1062	.1294	.1573	1908	.2306	.3589	.5220	975 [0
0.15	0401	0.03659	.0355	.0352	.0352	.0353	.0355	.0357	.0360	.0363	.0367	.0370	.037	.0377	.0381	.0385	.039	.0401	.0410	.0419	.0428	.0438	0447	.0473	.0500	.0528	.0558	.0624	8690.	.0781	.0873	.0976	1289	.1196	$P_{\rm T}$, 1-8 =
0.1	0396	0.03591	.0347	.0341	.0339	.0338	.0338	.0338	.0338	.0339	.0340	.0341	.0342	.0344	.0345	.0346	.034	.0352	.0355	.0358	.0362	.0365	.0369	.0377	.0387	.0396	040.	.0427	9440.	.0471	049	.0520	.0589	.0667	s for a,
0.05	.0393	0.0355	.0341	.0335	.0331	.0329	.0328	.0327	.0326	.032	.0325	.0325	.0325	.0325	.0325	.0325	.0325	.0325	.0326	.0326	.0327	.0328	.0328	.033	.0332	.0333	.0335	.0339	.034	.0347	.0352	.0356	.0367	.0379	m C Value
0.01	0.3.9	0353	034	.0333	.0329	.0326	.0324	.0323	.0322	.0321	.0320	.0320	.0319	.0319	.0318	.0318	.0318	.0317	.0317	.0317	.0316	.0316	.0316	.0316	.0316	.0315	0315	0315	.0315	.0315	.0315	.0315	.0316	316	σ ² Unknown
0.001	0.3.9	0.03537	1034	.0333	.0329	.0326	.0324	.0323	.0322	.0321	.0320	.0320	.0319	.0319	.0318	.0318	.0317	.0317	.0317	.0316	.0316	.0316	.0316	.0315	.0315	.0315	.0315	.0314	.0314	.0314	.0314	.0314	.0314	.031	Le B-42;
0.0	039	0.03537	034	.0333	.0329	.0326	.0324	.0323	.0322	.0321	.0320	.032	.0319	.0319	.0318	.0318	.0317	.0317	.0317	.0316	.0316	.0316	.0316	.0315	.0315	.0315	.0315	.0314	.031	.0314	.0314	.0314	.031	.031	Table
٤	占	1 (7	ຕ	#	2	9	7	83	6	10	11	12	13	14	15	16	18	2.0	22	24	26	28	3.0	35	0 1	1+5	2 0	6.0	7.0	80	9.0	\mathcal{C}	125	S	

	7 t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1.0		
0.9		5 × r × l
0.8		.975 [.3
0.7		P _T , 1-β =
0.6		s for α, 1
0.5		C Value
0.45		σ ² Unknown
н•0		B-43:
0.35		Table
٤	DF	

89

7.0	6.175	.221	0.54	1,770	2,924	4.016	5,055	ήΟ.	7,004	7,924	8,812	9,672	0.507	1,317	2,877	4.361	5,783	7.147	8.462	9,732	0.962	3,881	6,614	9,193	1,641	6.213
0 • 9	5.2496	856	8,986	0,038	1,026	1,961	2.852	,704	4.522	5,309	6.071	6.808	7,523	8.217	n.553	0.826	2.044	3,214	4.340	5.429	6.482	86.3	1,327	3,537	5,635	9.554
5.0	4.3147 5.4554	·479	. 420	.295	.117	9.896	0,637	.347	2,028	2.684	3,318	3,932	4.527	5,106	6,219	7,279	8,294	9,268	0,207	1.114	1,992	4.076	6,028	7,870	9,618	2,883
0.4	3,3625 4,2691	.085	834	.533	,189	.811	η O ή·	016.	,515	0.039	0.546	1,036	1,512	1,975	2,865	3,713	4.524	5,303	6.054	6.779	7.481	9.148	0,709	2,182	.580	6.192
0 ° E	2,3736 3,0458	653	.212	,734	.225	.690	.133	.557	. 965	.357	.736	.104	.461	.807	474.	0.109	0,717	1,301	1,863	2,407	2,933	4,183	5,353	6.457	.506	94.6
2.5	1.8497	909	,374	.807	.215	.602	.971	.324	.663	066.	.306	.611	908	.197	,752	,281	.787	.273	.742	0.195	0.633	1.674	2,649	3,569	. 442	6.074
2.0	1.283	,12	.500	.846	.172	. 481	.776	.058	.329	.590	.843	.087	.324	.555	999	. 422	.826	.215	.590	.952	.302	.135	,915	0.650	349	2,653
1.5	0.6395	.279	.560	.822	.068	,301	.523	.735	.938	.135	.324	.508	.686	.859	.192	.509	.813	.10	.386	.657	.920	. 5 44	.129	.681	.205	.18
r 1.25	0.3344	811	640.	.270	.478	.674	.860	.038	.209	.373	.532	.685	.834	.979	.257	.522	.775	.018	.253	479	6699	.219	.706	.166	09.	.418
	3 0 E	†1	5	9	7	æ	6	10	11	12	13	1 4	15	16	18	20	22	54	26	28	30	35	0 17	115	2 0	6.0

 σ^2 Unknown C Values for α , P_T , l+ β = .975 [1.25 \le r \le 7] Table B-44;

	.0171	.0161	.0163	.0167	.0172	.0179	.0186	.0193	.0202	.0210	.0220	.0229	.0240	.0250	.0261	.0273	.0298	.0326	.0357	.039	.0426	.0466	.0509	.0637	.0796	4660.	.1239	.1908	.2858	.4083	.5474	.6917	1,03857	,3553	
	.0167	.015	,0154	.0156	.015	.0162	.0165	.0171	.0176	.0181	.0186	.0192	.0198	.0203	.0210	.0216	.0230	.0244	.0260	.0276	.0294	.0313	.0333	.0388	.0454	.0530	.0619	4480.	.1148	.1554	.2087	.2763	64.	7 4	,
	.0163	.0150	.0147	.0147	.0148	.0150	.0152	.0155	.0157	.0160	.01	.0166	.0169	.0172	.0175	.0179	.0185	.0193	.0201	.0209	.0217	.0225	.0235	.0259	.0286	.0316	.0349	.042€	.052	.0634	.0774	.0943	1536	.245	
	.0160	.0146	.0142	.0141	.0141	.0141	.0142	.0143	.0144	.0145	0.	.0148	.0149	.0151	.0152	.0154	.0157	.0160	.0164	.0167	.0171	.0175	.0179	.0189	.02	.0211	.0223	.0250	.0279	.0312	.035	.0391	0.05182	.0685	,
	.0158	.0143	.0138	.0136	.0135	.0135	.0135	.0135	.0135	.0135	.0136	.0136	.0137	.0137	.0138	.0138	.0139	.0141	.0142	,0143	.0144	0146	.0147	.0151	.0155	.0158	.01 C2	.0170	.0179	.0188	.0198	.0208	0.0236	.0267	
	.0157	.0142	.0136	.0134	.0132	.0131	.0131	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0130	.0131	.0131	.0132	.0132	.0133	.0134	.0136	.0137	.0139	.0140	.0142	0.01471	.0151	
	.0157	.01	.0136	.0133	.0131	.0130	.013	.0129	.012	.0128	.0128	.0128	.0127	.0127	.0127	.0127	.0127	.0127	.0127	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	0.01265	.0126	2
	.0157	.0141	.0136	.0133	.0131	.0130	.013	.0129	.0128	.0128	.0128	.0128	.0127	.0127	.0127	.0127	.0127	.0127	.0126	.0126	.0126	.0126	.0126	.0126	.012F	.0126	.0126	.0125	.0125	.0125	.0125	.0125	0.01257	.0125	
	.0157	.01	.0136	.0133	.0131	.0130	.013	.0129	.0128	.0128	.0128	.0128	.0127	.0127	,0127	.0127	.0127	.0127	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0126	.0125	.0125	.0125	.0125	.0125	0.01257	.0125	
占	⊣	C1	ဗ	†	5	9	7	8	6	10	11	12	13	1 14	15	16	18	20	22	24	26	28	30	35	0 +1	115	5.0	6.0	7.0	8 0	06	00	.25	.50	

Table B-45: σ^2 Unknown C Values for α , P_T , $1-\beta$ = .99 [0 \le r \le .3]

0.001

1.0	0.4.2.7	0.06326	3660	.1591	.2492	.3718	.5167	.6683	.8173	,9613	.0993	.231	.3590	.4824	.6014	.7171	.9387	.1500	.3514	.5451	.7315	.9113	.0856	4991	.8866	.252	.5992	.2478	. 8472	. 4072	ф8ь.	.4351	.5898	.6372		
6.0	0353	0.04765	0686	.1004	.1472	,2136	.3026	. 1112	.5321	6564	.7796	.899	.0151	.1272	,2352	.3403	.5417	.7329	,9152	.0903	.2587	. 4213	.5784	.951	.3010	.6306	.9433	.5278	.0676	.5719	.0472	9794.	,536	6624.	5 < r < 1	1
0.8	000	0.03694	0.48	.0659	η680.	.1215	.1646	.2208	.2915	,375	. 468	.5661	.6657	.764	.8606	.9547	.1352	.3066	. 4701	.6267	.7772	.9226	.0632	.396	.7074	.001	.2797	.7998	.2802	.7292	.151	.5524	.4768	.3154	56.] 66. =	
0.7	0.05	0.0295	.0362	.045	.0572	.0724	.0918	.1163	.1470	.185	.2316	.28C	.3493	.4185	. 4921	.5683	.7218	.871	.015	.153	.286	.4146	.5384	.831	.1049	.3627	6074	.0633	3 + 8 + •	8778	.2480	.5988	80tr.	.142	P_{-1} , $1-\beta =$	- , L
0.6	0005	0.02428	.0279	.0328	.0387	.0460	.0547	.0652	.0777	.0926	.1104	.1314	.1561	.1849	.218	.2563	.3457	.4493	.5610	6747	.7873	.8972	.0037	.256	.4926	.714	.9251	.3177	.6795	.0175	.335	,6364	,3311	9096.	es for α,	
0.5	0.201	0.02059	.0224	.0249	.027	.0313	.0353	.0398	6440.	.050	.0574	.0649	.0733	.0829	.0937	.1059	,1351	.1715	.2164	.2702	.3328	. 4028	.4782	675	.8708	.0565	,2330	.5618	.8647	.1470	. 41	.664	.243	.769	c Valu	
0 :45	0100	0.01918	.0204	.0221	.0241	.0265	.0292	.0321	.0354	.0391	.0432	.0477	.0526	.058	.0643	.0710	.086	.1057	.1288	.15F5	.1895	.2283	.2731	. 408	.5650	.726	.8836	.1799	.4531	.7080	.947	.1741	.6967	.1699	σ ² Unknown	i
1.0	0184	0.01799	.0187	.0199	.0213	.0228	.0246	.0265	.0287	.0309	.0335	.0362	.0391	.0423	.0458	.0495	.0580	.0680	.0796	.0932	.1090	.1274	.1486	.216	.3076	.4189	.5427	.7968	.0393	.2663	4794	.6816	.1467	.5678	e B-46:)
0,35	0177	0.01701	.0174	.0181	.0190	.0200	.0212	.0224	.0237	.0252	.0267	.0283	.0301	.032	.0339	.0360	.0407	.0459	.0518	.0585	.0660	.0745	.0841	.113	.1529	.2043	.2689	4354	.6284	.8228	.0092	.1861	.5937	.9628	Table	
٤	片	- C	၂ က	†7	2	9	7	ස	6	10	11	12	13	14	15	16	18	20	22	24	26	28	30	35	0 41	4.5	50	0.9	7.0	80	06	\circ	125	L,		

2 42	± €	1.5 0.3505 0.6544	2.0 0.9835 1.4117	5 537 067	3.0 2.0314 2.6715	4.0 2.9436 3.8079	5.0 3.8104 4.8992	6.0 H.6564 5.9692	0 491 026
0.4891 0. 0.7167 1.		95 23	.800 .158	, 55 , 99	.253 .792	.590	.882	.153 .243	8,41 9,68
.936 1 .1422 1		49 73	.494 .811	.417 .813	.296 .772	.988 .625	.636 .433	9.261 0.220	993
.3363 1		96	.112	.188	, 224	.229	.191	1.129	3.056
.5201 2		17	.399	. 547	6555 060	.806 359	9,913	.997	4.068
.864 2		58	939	.222	. 467	.891	271	3.628	5.972
,0262 2		77	.194	.542	.851	110 11.	1,913	4,399	6,872
.1826 2		96	. 44 41	.851	,222	006.	2,533	5,145	7.742
,3339	က	14	.681	.151	.582	0.381	3,136	5,867	8,585
.4803	က	31	,914	. 442	.932	848	3,720	6,569	404.6
,6232	ť	48	.140	.725	.272	1,302	4.288	7,251	0,201
.8975	33	81	.577	.271	.927	2.177	5,382	8,565	1,733
,1589	⇉	12	.993	.791	9,552	3,011	6.426	9,817	3,195
.4091	77	42	.391	.290	0.151	3,810	7,425	1,017	4.596
.6497	‡	71	,774	.769	.726	4.578	8,386	2,171	5,942
.8811	#	99	.144	,231	1,281	5,319	9,313	3,283	7,240
.1052	5	.26	.501	678	1,818	6,035	0,209	4,358	8,494
.322	2	.52	847	0.111	2,338	6.729	1,076	5,400	9.71
.8373	9	.13	671	1,141	3,574	8,378	3,138	7.875	2,598
,3199	9	.71	. 443	2.106	4.732	9,924	5,070	0.194	5,304
.7759	7	,26	0.171	3.017	5,826	1,383	968.9	2,384	7,360
.2087	-	.78	, 864	.883	988.9	2,770	8,629	4.466	0.289
.0184	ఙ	, 75	2,159	5.502	8,810	5,363	1.871	8,356	4.827

 σ^2 Unknown C Values for α , P_T , l- β = .99 [1.25 \le r \le 7] Table B-47:

APPENDIX C

PROCEDURE DERIVATION

I. KNOWN POPULATION VARIANCE

A. ERROR LEVEL CONTROL

The α rejection region associated with the hypothesis that the mean is between $d_{\tilde{L}}$ and $d_{\tilde{R}}$ is defined by

$$\alpha = P[\overline{x} < C_{I}] + P[\overline{x} > C_{R}]$$

where the rejection region is chosen to be symmetric around μ_{O} (see figure C-1). Since the suprema will occur when

.Figure C-1: Density of \bar{x} with μ at d_L (α = \bar{x}

 μ equals $d_{\rm L}$ or $d_{\rm R}$, the critical region for the specified upper bound on the Type I error (α) can be written as

$$\alpha = P[\overline{x} < C_L | \text{given } \mu = \mu_0 - \delta] + P[\overline{x} > C_R | \text{given } \mu = \mu_0 - \delta].$$

Since the sample mean (\overline{x}) will be normally distributed, this can be expressed in the form of equation (C-1).

$$(C-1) \alpha = P[z < \frac{\{C_L - (\mu_0 - \delta)\}\sqrt{\pi}}{\sigma}] + P[z > \frac{\{C_R - (\mu_0 - \delta)\}\sqrt{\pi}}{\sigma}]$$
where $z = \frac{\sqrt{\pi} \left[\bar{x} - (\mu_0 - \delta)\right]}{\sigma} \sim N(0,1)$

Substituting $C_L = \mu_o - C$ and $C_R = \mu_o + C$, equation C-1 becomes

$$(C-2) \alpha = P[z < \frac{(\delta-C)\sqrt{n}}{\sigma}] + P[z > \frac{(\delta+C)\sqrt{n}}{\sigma}]$$
or
$$\alpha = \Phi[\frac{\delta\sqrt{n}}{\sigma} - \frac{C\sqrt{n}}{\sigma}] + 1 - \Phi[\frac{\delta\sqrt{n}}{\sigma} + \frac{C\sqrt{n}}{\sigma}]$$

By reparameterizing, the number of parameters necessary for solving equation C-2 can be reduced from five to three. Letting a = $\frac{\delta\sqrt{n}}{\sigma}$ and C* = $\frac{C\sqrt{n}}{\sigma}$, equation C-2 becomes

$$(C-3) \alpha = 1 + \Phi[a - C^*] - \Phi[a + C^*]$$

Using the result that $C_L = \mu_O - C$, $C_R = \mu_O + C$, and $C = \frac{\sigma C^*}{\sqrt{n}}$, equation C-4 is obtained and is used to define the rejection region. The hypothesis is then rejected, with a probability of falsely rejecting equal to α , if the sample mean is less than C_L or greater than C_R .

(C-4)
$$C_L = \mu_0 - \frac{C^*\sigma}{\sqrt{n}}$$
 and $C_R = \mu_0 + \frac{C^*\sigma}{\sqrt{n}}$

For each value of α there is a value of "a" such that the relationship between "a" and C* in equation C-8 is nearly linear (i.e., C* = $K_E + a$). For a > 1.7 the relationship is approximately linear (starting with 5 significant digits for the worst case with α = .25, and improving as "a" increases) with slope one for all values of $\alpha \leq$.25. The value of K_E can be obtained by considering that if $\Phi[a + C^*] \approx 1$, then equation C-3 simplifies to equation C-5. This can be rewritten to provide $K_E = \Phi^{-1}[1-\alpha]$. When this linear relationship occurs, C_{T_1} and C_{T_2} can be obtained using equation C-6.

$$(C-5)$$
 $\alpha = 1 + \Phi[a - C^*] - 1$ or $\alpha = \Phi[a - C^*]$

(C-6)
$$C_L = \mu_0 - \frac{(K_E + a)\sqrt{\eta}}{\sigma}$$
 and $C_R = \mu_0 + \frac{(K_E + a)\sqrt{\eta}}{\sigma}$

B. β ERROR LEVEL CONTROL

In order to determine an acceptance region for the hypothesis $d_L \leq \mu \leq d_R$, with a probability no greater than β of falsely accepting, the alternative hypothesis $|\mu - \mu_O| \geq \delta$ is tested. The α rejection region of the alternative hypothesis will be the β acceptance region of the null hypothesis (i.e., $d_L \leq \mu \leq d_R$) and will be defined by $C_L \leq \overline{x} \leq C_R$ (see figure C-2).

The suprema will occur where μ = d_L or d_R . Thus, the upper bound on the Type II error (\$\beta\$) for the hypothesis $d_L \le \mu \le d_R \text{ can be written as}$

Figure C-2: Density of \bar{x} with μ at d_L (β = shaped area) $\sup_{\mu \in H_a} = \beta(\mu) = P[C_L \le \bar{x} \le C_R | \text{given that } \mu = \mu_0 - \delta] .$

This can be expressed in the form of equation C-7.

$$(C-7) \quad \alpha \left(H_{a}\right) = P\left[z < \frac{(C_{R} - \mu_{o} + \delta)\sqrt{n}}{\sigma}\right] - P\left[z < \frac{(C_{L} - \mu_{o} + \delta)\sqrt{n}}{\sigma}\right]$$
where $z = \frac{\left[\bar{x} - (\mu_{o} - \delta)\right]\sqrt{n}}{\sigma}$

By substituting $C_L = {}^{\mu}{}_{O} - C$ and $C_R = {}^{\mu}{}_{O} + C$, and noting that z will be normally distributed (i.e.N(0,1)), equation C-7 reduces to equations C-8.

$$(C-8) \quad \alpha(H_a) = \Phi\left[\frac{(\delta+C) \sqrt{n}}{\sigma}\right] - \Phi\left[\frac{(\delta-C) \sqrt{n}}{\sigma}\right]$$
or
$$\alpha(H_a) = \Phi\left[a + C^*\right] - \Phi\left[a - C^*\right]$$

Equation C-8 can be reformulated to resemble equation C-3 which will permit use of the same solution technique as was used for α error control. Specifically, by multiplying equation C-8 by -1, adding 1 to both sides, and setting

 $1-\alpha(H_a)$ equal to α' , equation C-8 reduces to equation C-3. The solution of this equation with $\alpha'=1-\alpha(H_a)$ will also be the solution for $\alpha'=1-\beta(H_o)$.

For each value of β there is a value of "a" such that the relationship between "a" and C* in equation C-8 is nearly linear (i.e., C* = K_E +a). For a > 3 the relationship is approximately linear (starting with 3 significant digits for the worst case of β = .01, and improving as a increases) with slope one for all values of β > .01. The value for the constant (K_E) can be determined by noting that when Φ [a + C*] \approx 1, equation C-8 reduces to equation C-9.

$$(C-9)$$
 $\alpha' = 1 - \beta = \Phi[a - C^*]$ or $a - C^* = \Phi^{-1}[1 - \beta]$
and $C^* = a - K_E$ where $K_E = \Phi^{-1}[1 - \beta]$

The value of K_E for β error control will be the negative of the value of K_E for α error control. To allow the same K_E value to be used for both α and β error control, equation C-10 would be used for β error control when this linear relationship holds (i.e., $\alpha > 3$ for this procedure).

(C-10)
$$C_{L} = \mu_{O} - \frac{(a - K_{E})\sqrt{n}}{\sigma}$$
 and $C_{R} = \mu_{O} + \frac{(a - K_{E})\sqrt{n}}{\sigma}$

C. ESTIMATING TAIL PROBABILITY

The actual value of P_T for an observed value of \overline{x} will depend upon the true location of μ within the interval d_L to d_R (see figure C-3). Since μ is unknown, the exact value of P_T cannot be calculated. By setting $\mu = \mu_O - \delta$, the maximum possible value of P_T can be obtained from equation C-3 by substituting P_T for α , and $\frac{(x-\mu_O)\sqrt{n}}{\sigma}$ for C*. For large values of a+C*, this reduces to equation C-11.

(C-11)
$$P_{T} = \Phi[a - C^*]$$
 for $a + C^* > 3.5$

Figure C-3: Dependence of P_{T} on Location of True μ Value

II. UNKNOWN POPULATION VARIANCE

A. TO TEST THAT $|\mu - \mu_0| \le r\sigma$

1. α Error Level Control

The statistic

$$\hat{\mathbf{r}} = \left| \frac{(\bar{\mathbf{x}} - \mu_0) \sqrt{n}}{\sqrt{\hat{\mathbf{g}}^2}} \right|$$

is used to perform this test and has the density of the absolute value of a non-central T, as depicted schematically in figure C-4. The associated α error level critical region is defined when the non-central location is at r, resulting in a non-centrality parameter (λ) equal to $r\sqrt{n}$. The corresponding critical value (C) is obtained from equation C-12 and the hypothesis is rejected, with a Type I error equal to α , if \hat{r} is greater than C.

Figure C-4: Density of the Non-central T(Absolute Value)
Distributed r̂

(C-12)
$$\alpha = P[\hat{r} > C/ \text{ given } \lambda = r\sqrt{n}]$$

2. β Error Level Control

The suprema for the value of β will occur when $\lambda = r\sqrt{n}$. Equation C-13 is used to determine the value of C

which will define the acceptance region with a β probability of falsely accepting.

$$(C-13)$$
 $P[|T| < C] = \beta$

By a slight reformulation, the same solution technique employed in solving for α critical values can be used here. Substituting $\alpha' = 1-\beta$ into equation C-12 and solving for C will provide the critical value associated with the desired level of a Type II error = β . This equivalence is shown in equation C-14.

$$(C-14)$$
 $\beta = P[|T| < C] = 1 - P[|T| > C]$ or $P[|T| > C] = 1 - \beta = \alpha$

Because of the equivalence between the C values for α and for 1- β , the critical values for α , $P_{\rm T}$, and β can be presented in the same table provided that for a desired value of a Type II error equal to β , the table corresponding to α = 1- β is used.

B. TO TEST THAT CV < CV

1. β Error Level Control

To formulate the procedure for testing CV \leq CV $_{\text{O}}$, first consider testing the hypothesis $\frac{1}{\text{CV}} \leq r$ or equivalently $\left|\frac{\mu-\mu_{\text{O}}}{\sigma}\right| \leq r$. By setting μ_{O} equal to zero, the null hypothesis can be rewritten as $\left|\frac{\mu}{\sigma}\right| \leq r$. Solving equation C-12 with $\mu_{\text{O}}=0$ and $\hat{r}=\left|\frac{\overline{x}\sqrt{n}}{\sqrt{\hat{\sigma}^2}}\right|$ will provide the rejection region with a

Type I error equal to α . However, rejecting the hypothesis that $\frac{1}{CV} \leq r$, when \hat{r} is greater than C, is equivalent to rejecting that $CV > \frac{1}{r}$. This in turn is equivalent to accepting that $CV \leq CV_O$ with a Type II error equal to the value of α . As a result, it is possible to test the hypothesis that the coefficient of variation is less than some specified value (CV_O) by using the previous test procedure for testing that $|\mu - \mu_O| \leq r\sigma$, provided the following differences are observed:

- a. Obtain the critical value (C) from the α tables (or curves) associated with a value of α equal to the desired value of a Type II error (β) and with r equal to $\frac{1}{CV_{\odot}}$.
- b. If \hat{r} is greater than or equal to this value of C, accept the hypothesis CV \leq CV with a Type II error = β .

2. α Error Level Control

The same general formulation philosophy applies for α error control of the test CV \leq CV $_{O}$ as for β error control. Again, first consider accepting the hypothesis $\frac{1}{CV} \leq r$ with a Type II error = β . This is equivalent to accepting that CV $\geq \frac{1}{r} (\text{or CV}_{O})$. However, accepting the hypothesis CV $\geq \frac{1}{r}$ with Type II error = β is equivalent to rejecting that CV $\leq \frac{1}{r} (\text{or CV}_{O})$ with a Type I error equal to the value β . Thus, the desired test that CV \leq CV $_{O}$ can be conducted for controlling the Type I error level by using the test procedure

for $|\mu - \mu_0| \leq r\sigma$ and observing the following differences:

- a. Obtain the critical value (C) from the β tables (i.e., the table associated with the value $1-\beta$), where the value of β is set equal to the desired value of a Type I error (α) and r is set equal to $\frac{1}{CV_0}$.
- b. If \hat{r} is less than this value of C, reject the hypothesis that CV \leq CV with a Type I error equal to α .

B. ESTIMATING TAIL PROBABILITY (Pm)

The true value of P_T will depend on the actual value of $\left|\frac{\mu-\mu_0}{\sigma}\right|$ which, under the null hypothesis, may vary from zero to r (see figure C-5). The range of possible values for P_T can be estimated by calculating the P_T associated with the observed value of \hat{r} with λ set at the two extremes zero and $r\sqrt{n}$ in the solution of equation C-12.

Figure C-5: Dependence of P_{T} on the True Non-centrality Location

APPENDIX D

SOLUTION TECHNIQUES AND COMPUTER PROGRAMS

I. GENERAL

The same general techniques were used in solving for the critical values in both the known and unknown variance situations. This consisted of a combined proximity interval search and Newton-Raphson technique. A master program was used to monitor and control solutions for C values at various selected combinations of the respective parameter values. Solution accuracy was controlled by stopping the iterative procedure when the desired accuracy in the α or β error level was obtained. The specified accuracy for the case of known σ^2 was .000001. In the case of unknown σ^2 , the specified accuracy was .00001 for all parameter values except the following:

- 1. $\alpha = .01$ with 125 degrees of freedom and r = .9
- 2. α = .1 with 90 degrees of freedom and r = .9
- 3. $\alpha = .3$ with 125 degrees of freedom and r = 1
- 4. α = .3 with 60 degrees of freedom and r = 5 and 6
- 5. α = .4 with 50 degrees of freedom and r = 2.5 The specified accuracy for these latter parameter values was .00005.

II. σ^2 KNOWN SITUATION

The programs used for this case were SIGMAKWN, CINCR, CINCRNEWRAPS, NEWTONRAPS, and NORMPROB. SIGMAKWN was the master problem which stepped solutions along the selected α or β values for each specified "a" value. Controls for switching solution subprograms were necessary for parameter values whose respective C* were too distant to permit solution solely by the Newton-Rapshon method. Equation D-1 was used during proximity interval searching (CINCR and CINCRNEWRAPS).

$$(D-1) F(\alpha,a,C^*) = 1 - \Phi[a + C^*] + \Phi[a - C^*]$$

Equation D-2 was employed when the Newton-Rapshon method was used.

$$(D-2) \quad C_{i}^{*} = C_{i-1}^{*} - \frac{F}{\partial F/\partial C}^{*} = C_{i-1}^{*} + \frac{2.50663 \{1 - \Phi[a + C_{i-1}^{*}] + \Phi[a - C_{i-1}^{*}] - \alpha\}}{Exp[-.5(a + C_{i-1}^{*})^{2}] + Exp[-.5(a - C_{i-1}^{*})^{2}]}$$

III. σ^2 UNKNOWN SITUATION

The programs used for solving for critical values when g was unknown were MHUSIGRATIO, MHUSIGRATIOSOLENR, CINCR2, CINCRNEWRAP2, NCT, IB, and TRUNERR. MHUSIGRATIO was the master program stepping solutions along the selected r values for each specified DF. This permitted sole Newton-Raphson solution once the C for the first r value was determined.

To solve for critical values associated with testing the σ^2 unknown two-sided composite null hypothesis, the equation $P[\hat{r} > C] = \alpha$ (where \hat{r} has a non-central T distribution) was solved for values of r between 0 and 1 using the method discussed in reference 2. This method requires use of equation D-3.

(D-3)
$$P[|T|>C] = \sum_{n=0}^{\infty} \left\{ \frac{e^{-\frac{\lambda^2}{2}} (\frac{\lambda^2}{2})^n}{n!} [\int_{x}^{T} (\frac{DF}{2}-1) (1-y)^{\frac{1}{2}} (n-1) dy] \right\}$$

where $x = C \div (DF + C^2)$

To solve the infinite series of the product of a Poisson and Beta distribution, the length to which the series must be summed in order to maintain a truncation error less than a specified amount (ε) was determined using the conservative estimate provided by equation D-4. Equation D-4 is solved by iterating m (the length of the series) until the left hand side is less than ε (this task is performed by TRUNERR).

$$\left[\frac{\left(e - \frac{\lambda^2}{2}\right)}{m+1} \right]^{m+1} < \varepsilon$$

This method of solving the non-central T is quite adequate for small degrees of freedom (DF \leq 30) and non-centrality

values ($\lambda \leq 3$) but becomes lethargic for higher values. As a result, a second program was written in FORTRAN which used the non-central T subroutine of the IMSL packages.


```
▼ ARRAY+SIGMAKWN;JUNK;I;LOOPS;ALPHO;CSTAR;DIVERG
[1]
        AGLOBAL VARIABLES = ALPYA (VECTOR OF DESIRED ALPYA LIVEL);
[2]
        AASTAR (VECTOR OF DESIRED LITTLE A VALUES); OPTION (O FOR
F37
        PALPHA CONTROL, 1 FOR BETA CONTROL); ERROR (DESIRED ACCURACY)
[47
        JUNK+(I+1),(LOOPS+10),(CSTAR+((1+pALPNA)\times(pASTAR)),0)
[5]
       CSTAR+((pASTAR),(1+pALPHA))pCSTAR
[67
      L1:A+ASTAR[I]
[7]
        \rightarrow L6 \times i T = 1
        \rightarrow L4 \times 12 > | (A - ASTAR[I-1])
[8]
[9]
      L6: C+A CINCRNEWRAP ALPHA[1]
[10] L4:J+2
Γ11 ?
       CST/R[I:1]+ASTAR[I]
[12]
       LL+12
\lceil 13 \rceil L11:ALP+ALPHA[J-1]
       NEWTONRAPS
[ 4]
[15]
       \rightarrow L 7 \times \tau DIVERG = 0
       C+A CINCRMFURAP ALP
[16]
[17] L7:CSTAR[I;J]+C
       \rightarrow L11 \times ((2+\rho ALPHA)) \neq J + J + 1
[18]
[ 3]
       C+CSTAR[I;2]
       \rightarrow L1 \times i(1+\rho ASTAR) \neq I+I+1
[20]
       →L2×10PTION≠1
[21]
T227
       ALPHO+0.1-ALPHA
[23]
       →L3
[24] L2: ALPHO+0, ALPHA
[25] L3:ARRAY+, CSTAR
       ARRAY+ALPRO, ARRAY
[26]
       ARRAY \leftarrow (I, (J-1)) \rho ARRAY
[27]
        *A*VECTOR | +------ALPRA/C VECTOR(S)------
[28]
     ▼ C+A CINCRNEWRAP ALP; DELC; LL; SIGN; F; JUNK; LOOPF
[1]
       JUNK+(DULC+1),(SIGN+1),(LOOPF+0),(C+A),(LL+25)
[2]
[3]
       \rightarrow L2 \times 1ALP \le 0.5
 C+(A-3)
[4]
      L1:C+C+DELC
       +L5 \times 1LL = LOOPF + LOOPF + 1
[5]
[6]
      L2: P+1+((NOR!!PROB(A-C))-NOR!!PROB(A+C))+(-1)\times ALP
[7]
       +L3×1LOOPF≠0
[8]
       +L3\times1F>0
[9]
       STGN+1
[10] L3: +L1 \times :0 < SIGN \times F
[11]
       →L4×1DELC<1
[127
       \rightarrow L1 \times 1L00PF = 0
[13]
       C+C-DELC
[14]
       →L1,DFLC+DELC+2
[15] L4: NEW TONRAPS
[16]
       →0
[17] L5: '***DIVERGENT AT '; LL; 'LOOPS, FINAL C='; C; ' AND DFLC='; DULC
```



```
V NEWTONRAPS ; JUNK ; LL ; LOOP ; DOWN ; UP ; CTEMP
[17]
        JUNK+(LL+12),(LOOP+G),(DIVERG+O)
[2]
       L1: UP+1+((-1)\times NORMPROB(A+C))+(NORMPROB(A-C))+((-1)\times ALP)
[3]
        DOVN+(*(( \ \ 0,5) \times ((A+C) \times 2)))+(*(( \ \ 0,5) \times ((A-C) \times 2)))
[4]
        →L3×1DQWN≠0
[5]
        DIVERG+1
[6]
        →0
[7]
[8]
       L3:C+C+2.50662875×UP*DOWN
         \rightarrow L2 \times 1LL \neq LOOP \leftarrow LCOP + 1
[9]
         C+A CINCR ALP
[10]
        →0
[1 1] L2: \Rightarrow L1 \times 1 ERROR \leq |UP|
      ▼ C+A CINCR ALP; DELC; LL; SIGN; F; JUNK; LOOPF
[1]
        JUNE+(C+A), (LOOPE+0), (SIGU+1), (LL+50)
[2]
        →L2× 1ALP≤0.5
      · C+(A-3)
[3]
[4]
      L1:C+C+DELC
[57
        +L5 \times 1LL = L00PF + L00PF + 1
[6]
      L2:F+1+((NORMPROB(A-C))-NORMPROB(A+C))+(-1)\times ALP
[7]
        \rightarrow L3 \times 1L00PF \neq 0
rs1
        \rightarrow L3 \times \iota F > 0
        SIGN+1
[9]
[10] L3: \rightarrow L1 \times 10 < SIGN \times F
T117
        \rightarrow L4 \times 1 ERROR > | F
[12]
        \rightarrow L1 \times 1L00PF = 0
[8]
        C+C-DELC
[14]
       →L1,DELC+DFLC+2
[15] Lu: 'FIRSTC = ';C;' WITH DFLC=';DELC;' AND LOOPS=';LOOPF
[16]
       →0
[17] L5: '***DIVERGENT AT '; LL; 'LOOPS, FINAL C='; C; ' AND DELC='; DELC
     ▼ P+HORMPROB X:Z
        +3×1~/(|X+~6,5[6,5[X)e 0 6,5
[1]
[2]
        \rightarrow 0, P \leftarrow 0, 5 + 0, 5 \times \times X
[3]
        Z+ 0.31938153 T0.356563782 1.781477937 T1.821255978 1.330274429
        P+(*^{-}0,5\times X\times X)*(02)*0,5
[4]
[5]
        P+0.5+(\times X)\times0.5-P\times((*1+0.2316419\times|X)\circ.*(5)+.\times2
     V
```



```
V C+A CINCPNEWRAP2 ALP; LL; SIGN; F; LOOPF; JUNK; DELC
[1]
        AGLOBAL INPUT: C(INITIAL GUESS), DF
[2]
       JUNK+(SIGN+1),(LOOPF+0),(LL+30),(C+A-DELC),(DELC+1)
       +L1\times_1((ALP\geq0,05)+(DF\geq5))\geq1
[3]
[4]
       JUNK+(LL+60), (C+A-DELC), (DELC+10)
F 5 ]
      L1:C+C+DELC
       +L5 \times 1LL = LOOPF + LOOPF + 1
[6]
[7]
       CI+LAM NCT C
[8]
       F+CI-ALP
[9]
       \rightarrow L3 \times 1 LOOPF \neq 0
       +L3\times iF>0
[10]
[11]
      SIGN+1
[12] L3:\rightarrow L1\times 10 < SIGN\times F
[13]
       \rightarrow L4 \times 1DELC < 0.51
[14] L2:C+C-DELC
[14]
       +L1,DELC+DELC+2
·[16] L4:DERVIAT+(CI-(LAM NCT(C-1E-8)))+1E-8
[17-]
       +L2 \times 1DFRVIAT = 0
[18]
       +L2 \times \setminus DELC < (F + DERVIAT)
[19]
       NEWTONRAPS2
[20] +0
[21] L5: '***DIVERGENT AT '; LL; 'LOOPS IN CINCRNEWRAP2(I=';I; 'J=';J;'
      C+A CINCR2 ALP
[22]

∇ NEWTONRAPS2; LL; CTEMP; JUNK

[1]
       AGLOBAL INPUT: ERROR (DESIRED ACCURACY)
[2]
       JUNK+(LL+12),(LOOP+0),(DIVERG+0)
[3]
       F+CI-ALP
[4]
      L1:FTEMP+F
[5]
       C+C-F+DERVIAT
[6]
       CI+LAM NCT C
[7]
       F+CI-ALP
[8]
       +0\times ERROR > F
[9]
       +L2×1L00P>1
      DERVIAT+(CI-(LAN NCT(C-1E-8))) ÷1E-8
[10]
[11] L2:\rightarrow L1\times \iota LL \neq LOOP+LOOP+1
       '****NEWTONRAPS DID NOT CONVERGE(I=';I;',J=';J;').SWITCHED
[12]
[12]
      DIVERG+1
[14]
      +0× \KILL ≠1
[15] C+CSTAR[I;J-1] CINCR2 ALP
     V PTUPPER+LAM NCT C; POSSO; JUNK; IBZERO; LL; I
[1]
       AGLOBAL INPUT: PF, CYCLE (NUMBER OF LOOPS PFQUIRED TO
[2]
       A CONTROL TRUNCATION ERROR)
[3]
       AGLOBAL INPUT-P=DF : 2;DF+NS-1
       JUEK+(POSSO+(1**LAM)),(IBZFRO+PIFO,5),(XX+DF*(DF+G*2))
[4]
[5]
       JUNK+(PTUPPER+POSSO×IBZERO),(I+1)
[6]
       +0 \times 1 CYCLE = 0
[7]
     L1:LL+POSSO×LA'!+I
[8]
       PTUPPER + PTUPPER + (P IB(I+0,5)) \times IL
[9]
       POSSO+LL
[10]
       +L1\times_1(1+CYCLE) \neq I+I+1
```



```
▼ ARRAY+MHUSIGRATIO;A;NS;DF;P;C;LANV;CYCLE;LAM;LAMV;LAMSQ2;XX;LAM

AGLOBAL VARIABLES=LITTR(VECTOR TEST \MHU/SIG\≤ LITTR)
[1]
       ADFVECT(VECTOR OF DEGREE OF FREEDOM); ALP=LOS: EPROR=DESIRED PRPCISION
[2]
       JUNK+(I+1),(A+LITTR[1]),(KILL+0)
[3]
       DFVECT+ . DFVECT
[4]
[5]
       CSTAR+((1+\rho LTTTR)\times(\rho DFVECT));0
       CSTAR+((oDFVECT),(1+oLITTR))oCSTAR
[67
[7]
       PRECISION+1 + ERROR
[8]
      L1:DF+DFVECT[I]
       'DATA FOR DF = 1: DF : WITH ALPHA = 1: ALP
[9]
           LOOP TIME LITTR
[10]
       P+DF +2
[11]
       LAMV+LITTR\times(DP+1)*0.5
[12]
       CYCVFCT+LAMV TRUNERR ERROR
[13]
       CYCLE+CYCVECT[1]
[14]
       TIMEO+121
[15]
[16]
       LAM+LAMSQ2[1]
[17]
       +L5 \times 1A > 0
       A + 0.0001
T187
[19] L5:C+A CINCRNEWRAP2 ALP
[20]
       +L6 \times 1DIVERG = 0
[21]
       C+A CINCR2 ALP
[22] L6:J+2
       CSTAR[I;1]+DFVECT[I]
[23]
[24] L11:+L13\times (CSTAR[I:J]=1
[25]
       +17×1:J=2
[26]
       TIMEO+121
T277
       CYCLE+CYCVECT[J-1]
[28]
       LAM+LAMSQ2[J-1]
[29]
      CI+LAM NCT C
       DERVIAT+(CI-(LAM NCT(C-1E-8)))+1E-8
[30]
[31]
       NEW TONRAPS2
[32]
       +L7 \times vDIVERG = 0
[33]
       KILL+1
       C+CSTAR[I;J-1] CINCRNEWRAP2 ALP
[34]
[35]
       KILL-0
[36] L7: CSTAR[I; J]+C
[37]
       TIMEJ+(( 121 )-TIMEO ) +60
            '; LOOP; ' '; [TIMEJ; '
[38]
                                             !:LITTR[J-1]:!
                                                                    '; C
[39]
       +L13 \times 1J = 2
[40]
       MULT+1
       +L15 \times 11 \le ((LITTP[J-1] \le 0, 4) + ((J-1) = pLITTR))
[41]
      MULT+(LITTR[J]-LITTR[J-1])+(LITTR[J-1]-LITTR[J-2])
[42]
[43] L15:C+C+!^{\prime}ULT\times(C-CSTAR[I;J-1])
[44] L13:+L11\times((2+\rho L^TTTR))\neq J+J+1
[45]
[46]
       +L1\times (1+\rho DFYECT)\neq I+I+1
       TEMPLITTR+0, LITTR
[47]
       APRAY+, CSTAR
[48]
      APRAY+TEMPLITTR, ARRAY
[49]
```

[50]

٧

 $APRAY \leftarrow (I, (J-1)) \circ APRAY$


```
▼ APPAY+MHUSIGRATIOSOLENR OLDCAPR; A; NS; DT; P; C; CYCLF; LAMV; LAMSO2; XX; LAM
       AGLOBAL VAPIABLES = LITTR (VECTOR TIST | MIU/SIG | S LITTR)
[1]
       ADFVECT (VECTOR OF DEGREE OF FREEDOM); ALP=LOS; ERROR = DESIRED PRECISION
[2]
       AOLDCAPP (2xpDFVECT APRAY OF PREVIOUS C'S WITH ROWAL TO
[3]
       A O, OLD LITTE 1-2 AND 1-1, COL1 EQUAL TO O, DEVECT)
[47
       ACESTIMATE (VECTOR OF ESTIMATED C FOR FIRST ELEMENT OF LITTA IN EACH DE
[5]
       CESTIMATE+LITTR[1] CESTIMATOR OLDCARR
[6]
[7]
       DFVECT+, DFVECT
[8]
       JUNK+(I+1),(A+CESTIMATE[1]),(KILL+0)
197
       CSTAR+((1+oLITTR)×(oDFVECT));0
[10]
       CSTAR+((pDFVECT),(1+pLITTR))pCSTAR
[11]
      PRECISION+1 + ERROR
[12] L1:DF+DFVECT[I]
       'DATA FOR DF=';DF;' WITH AKPHA=';ALP
[13]
[14]
          LOOP
                TIME
                       LITTR
[15]
       P+DF+2
[16]
      LAMV \leftarrow LITTA \times (DF + 1) \times 0.5
      CYCVECT+LANV TRUNERS ERROR
[17]
[18]
      CYCLE+CYCVECT[1]
[19]
       TIMEO+121
[20]
      LAM+LAMSQ2[1]
[21]
      C \leftarrow CESTIMATE[I]
[22]
      CI+LAM NCT C
[23] DERVIAS+(CI-(LAM NCT(C-1E-8)))+1E-8
[24]
      NEWTONRAPS2
[25] L6:J+2
[26]
      CSTAR[I;1]+OLDCARR[I+1;3]
[27] L11:\rightarrow L13\times :CSTAP[I:J]=1
[28]
      +L7×1J=2
[29]
       TIMEO+121
      CYCLE+CYCVECT[J-1]
[30]
[31]
      LAM+LAMSQ2[J-1]
      CI+LAM NCT C
T327
[33]
      DERVIAT+(CI-(LAM NCT(C-1E-8)))+1E-8
[34]
      MEWTONRAPS2
      \rightarrow L7 \times 1DIVERG = 0
[35]
[36]
      KILL+1
      C+CSTAR[I;J-1] CINCRNEWRAP2 ALP
[37]
[38]
      KILL+0
[39] L7: CSTAR[I; J]+C
[40]
      TIMEJ+(( 121 )-TIMEO ) +60
              '; LOOP: '
                                         !:LITTR[J-1]:!
[41]
                        ';[TIMEJ;'
                                                                  1:0
[42]
      MULT+1
[43]
      +L14×1J≠2
[44] MULT+(LITTR[J]-LITTR[J-1])+(LITTR[J-1]-OLDCARR[1:3])
[45]
      →L15
[46] L14: \rightarrow L15 \times 11 \le ((LITTR[J-1] \le 0, 4) + ((J-1) = \rho LITTR))
[47] MULT+(LIMTR[J.]-LITTR[J-1])+(LIMTR[J-1]-LITTR[J-2])
[49] L15:C+C+MULT\times(C-CST\Lambda R[I;J-1])
[49] L13:+L11\times((2+\rho LITTR)\neq J+J+1
[50]
      CSTAR[I;1]+DFVECT[I]
[51]
[52]
      \rightarrow L1 \times i (1 + \rho DFVECT) \neq I + I + 1
[53]
      TFMPLITTR+0, LITTR
[54]
      ARRAY+, CSTAR
      ARRAY+TEMPLITTR. ARRAY
[55]
     ARRAY+(I,(J-1))\circ ARRAY
```



```
▼ M+LAMV TRUNERR ERROP; JUNK; ELAM: N:K: ERR
[1]
        AGLOBAL INPUT: LITTR. ERROR
[2]
        JUNK+(K+1), (M+10), (LAMSQ2+0, 5 \times LAMV \times 2)
      L1: \rightarrow L3 \times : LITTR[K] > 1
[3]
        \rightarrow L11 \times 1 LAMV[K] \leq 6
[4]
[5]
        \rightarrow L4, (N+1), (CSTAR[I;K+1]+^{-}1)
[6]
      L11: \rightarrow L3 \times : LAMV[K] \ge 0.1
[7]
       //←1
        →1,4
[8]
[9]
      L3:N+(((\lceil LAMV[K])*2)+2\times\lceil LAMV[K])-2
       ELAM+LAMSQ2[K]×2,71828183
[10]
[11] L2:ERR+(ELAM+N+1)*N+1
[12]
       N+N+1
        +L2×1ERR >ERROR
[13]
[14] L4:M+M.N-1
[15]
       \rightarrow L1 \times 1(1 + \rho LAMV) \neq K + K + 1
     \nabla R+P IB Q;V;M;A;X;B;BP;H;QQ;I;P;J;PFECIS
        AGLOBAL INPUT: XX(DF + (DF + C + 2)), PRECISION(EQUALS 1 + ERROR)
[1]
[2]
        X+V/WX\times V+XX\leq 0.5
[3]
        J+(I+0),(R+0)
[4]
      L1:A+(Q=LQ)+(Q-LQ)\times Q\neq Q
[5]
        I \leftarrow I + 1
[6]
        \rightarrow L4 \times 1 (+/V) = 0
        M+\lceil P\lceil (@PRECISION*(P!A+P-1)\times(\lceil/X)*P)*0,6931471806
[7].
[8]
        +L3\times 1A=1
[9]
        BB+(1M)o,≥1M
[10]
        B \leftarrow (M, M) \rho ((1M) - A) + 1M
[11]
[12]
        B \leftrightarrow \times / (B \times B B) + 1 - B B
[13]
        B+(H+(X*P)\times P!\Lambda+P-1)\circ .\times B\times P*P+1M
[14]
        B \leftarrow H + + / B \times X \circ , \star 1 M
[15] L3:H+(QQ,QQ)p(Q+1-1QQ)*P+Q-1QQ+[Q
       BB+(1QQ)0,≥1QQ
[16]
        BB+\times/(H\times BB)+1-BB
[17]
        BB+((Q;P+Q-1)\times X*P)\circ,\times BB)\times (1-X)\circ,*Q-iQQ
[18]
[19]
        B \leftarrow B + + /BB
[20]
        R+R+(V\setminus B\times I=1)+(V\setminus 1-B)\times I=2
[21] L4:H+P
        J+(V+\sim V), (O+H), (P+Q)
[22]
Γ231
        X+V/1-XX
[24]
       \rightarrow L1 \times 1(0 < \rho X) \land I = 1
      ▼ CESTIMATE+NEWR1 CESTIMATOR PREVIOUSAPR; LAST2; JUNK; I; DFOLD; MULT
        AGLOBAK INPUT+DEVECT ASSOCIATED WITH NEW LITTR
[1]
[2]
        JUNK+(R+1 to PREVIOUSARR), (I+1), (CESTIMATE+10)
[3]
        LAST2+(R, -2)+PREVIOUSARR
[4]
        DFOLD+.1+PREVIOUSARR[;1]
        MULT + (NEWR1 - LAST2[1;2]) + (LAST2[1;2] - LAST2[1;1])
[5]
[6]
      L1:+L2\times11\neq(+/(DFVECT=DFOLD[I]))
        CESTIMATE + CFSTIMATE, (MULT \times (LAST2[I+1;2]-LAST2[I+1;1])) + LAST2[I+1;2]
[7]
[8]
      L2:+L1\times (1+\rho DFOLD)\neq I+I+1
```


SYNTAX: PTAIL+DFVECT NCT CVECT

THIS FUNCTION CALCULATES THE UPPER AND LOVER TAIL PROBABILITY OF A NON-CENTRAL T DISTRIBUTED R.V. RELATIVE TO A DISTRED VALUE C(FOR EXAMPLE, PTAIL = PROB[[R.V. | > C]], DFVECT IS A VECTOR (OR SCALAR) CONTAINING DEGREES OF FREEDOM OF INTEREST, CVECT IS A VECTOR (OR SCALAR) CONTAINING C VALUES OF INTEREST, FUNCTIONS ASSOC-IATED WITH (AND CALLED AUTOMATICALLY) APE IB (INCOMPLETE RETA) AND TRUNERR (DETERMINES LEVEL TO WHICH THE INFINITE SEPIFS ASSOCIATED WITH THE NCT CDF MUST BE SUMMED IN ORDER TO RESTRICT THE TRUNCATION ERROR TO THE SPECIFIED VALUE). THE CPU TIME REQUIRED TO EXECUTE THIS FUNCTION FOR ONE VALUE IS GREATLY FFFFCTED BY THE SPECIFIED VALUES OF DF, ERROR, C, AND A (AS DEFINED BELOW). THE LARGER THE DF AND A,AND SMALLER THE ERROR THE GREATED THE CPU TIME,AS A ROUGH IDEA-FOR ERROR+,0001,.01≤A≤,2,1≤DF≤16; ,01≤CPU≤2 SEC, PER VALUE,FOR ERROR+,000001,.2 < A < 1,16 < DF < 50,2 < CPU < 120 SEC. PER VALUE, TO COPY ONLY THE FUNCTIONS NECESSARY FOR MCT. COPY GROUP NONCENTRALT

GLOBAL INPUT

- 1. ERROR +DESTRED LEVEL OF ACCURACY(I.E. EPROR +, 0001 WILL PROVIDE RESULTS WITH A TRUNCATION ERROR OF LESS THEN ,0001 FROM THF TRUE TAIL AREA)
- 2,A+LOCATION(DISTANCE) OF THE NCT FROM ZERO(NOTE: THIS DETERMINES. THE NONCENTRALITY PARAMETER -LAM-).
- 3, OPTION+O OR 1(0 WILL READ IN GLOBAL -A- AND CALCULATE -LAM- INTERNALLY .1 WILL READ IN -LAM- GLOBALLY AND CALCULATE -A- INTERNALLY FOR EACH DEGREE OF FREEDOM
- 4, LAM+NONCENTRALITY PARAMETER = A × (DF+1) * .5[NEED ONLY BE SPECIFIED IF OPTION+1]
- 5. HEADING+O OR 1(0 WILL SUSPRESS PRINTING OF A DESCRIPTIVE FEADING ABOVE THE OUTPUT PTAIL ARRAY) . NOTE: SPACING FOR THE DESCRIPTIVE HEADER IS DESIGNED FOR)DIGITS 4,5, OR 6,

OUTPUT

OUTPUT FROM THE FUNCTION WILL CONSIST OF AN APRAY(SCALAR) OF VALUES WITH CVFCT AS THE FIRST ROW, DEVECT AS THE FIRST COLUMN, -A- AS THE SECOND COLUMN, -LAM - AS THE THIPD COLUMN, AND THE ASSOCIATED PTAIL IN THE REMAINDING COLUMNS AND ROWS

- ▼ CYCLE+LAM TRUNEPR ERROR; JUNK; ELAM; N; ERR
 - JUNY+(CYCLE+((LLAM)*2)+3×LLAM),(LAMSQ2+0.5×LAM*2)
- [2] ELAM+LAMSQ2×2.71828183
 - L1:ERR+(ELAM +CYCLE+1) *CYCLE+1
- [4] CYCLE+CYCLE+1
 - →L1× i EPR > ERROR
- [6] CYCLE+CYCLE-1

[1]

[3]

[5]


```
V PTAIL+DFVECT NCT CVECT; JUNK; DF; C; P; L/MSQ2; XX; LL; N; IBRERO; PT
[1]
        JUNK+(I+1), (DFVECT+, DFVECT), (CVECT+, CVECT), (PPECISION+1 *ERROR)
[2]
        PTAIL+0,0,0,CVECT
       L1:JUNK+(P+0,5\times DF),(DF+DFVECT[I])
[3]
[4]
        +L2 \times 10PTION = 1
[5]
        LAM \leftarrow A \times (DF + 1) \star 0.5
        +L3
[6]
[7]
       L2:(A+LA!!+(DF+1)
       L3:PTAIL+PTAIL, DF, A, LAM
[8]
[9]
        CYCLE+LAM TRUNERR ERROR
[10] L4:JUNK+(POSSO+1**LAMSQ2),(J+1)
[11] L5:JUNK+(IBZERO+P IB 0.5),(XX+DF+CVECT[J]+2),(N+1)
[12]
        JUNK+(PT+POSSO×IBZERO),(LL+POSSO)
[13]
        \rightarrow L7 \times 1 CYCLF = 0
[14] L6:LL+LL\times LAMSO2*N
       PT+PT+(PIB(N+0.5))\times LL
[15]
[16]
        \rightarrow L6 \times 1(1+CYCLE) \neq N+N+1
[17] L7:PTAIL+PTAIL,PT
        +L5\times i(1+\rho CVECT) \neq J+J+1
[18]
[19]
        \rightarrow L1 \times i(1+\rho DFVECT) \neq I+I+1
        PTAIL + ((1+\rho DFVECT), (3+\rho CVECT))\rho PTAIL
[20]
        \rightarrow 0 \times 1 HEADING=0
[21]
              DF
[22]
                                              LAM
                                                        +--C AND ASSOCIATED PTAIL --+
     V R+P IB Q; V; M; A; X; B; RB; H; OO; I; P; J; PRECIS
        A INCOMPLETE BETA FNC, - REQUIRES DATA VECTOR XX
[1]
        X+V/XX\times V+XX\leq 0.5
[2]
[3]
        J+(I+0),(R+0)
       L1:A+(Q=LQ)+(Q-LQ)\times Q\neq LQ
[4]
[5]
        I + I + 1
        \rightarrow L4 \times i(+/V) = 0
[6]
        M + \lceil P \lceil (\Theta PRECISION + (P!A + P - 1) \times (\lceil /X) \times P) + 0.6931471806
[7]
[8]
[9]
        +L3\times 1A=1
[10]
        BB+(iM)\circ,\geq iM
        R+(M,M)\rho((iM)-A)+iM
[11]
        B+\times/(B\times BR)+1-BR
[12]
        B+(H+(X*P)\times P!A+P-1)\circ \times B\times P*P+1!!
[13]
[14]
        B+H++/B\times X \circ , \star 1M
\lceil 15 \rceil \sim L3 : H + (QQ, QQ) \rho (Q + 1 - iQQ) + P + Q - iQQ + QQ
        BB+(100) 0. ≥100
[16]
        BB+\times/(H\times BR)+1-BB
[17]
        BB+(((Q!P+Q-1)\times X*P)\circ,\times BB)\times (1-X)\circ,*Q-1QQ
[18]
[19]
        B+B++/BB
        R \leftarrow R + (V \setminus B \times I = 1) + (V \setminus 1 - B) \times I = 2
[20]
[21] L4:H+P
[22]
        J+(V+\sim V), (O+H), (P+Q)
[23]
        X+V/1-XX
[24]
        +L1\times i(0<\rho X)\wedge I=1
```


APPENDIX E

LIST OF REFERENCES

- 1. Stein, C., "A Two Sample Test For A Linear Hypothesis Whose Power is Independent of the Variance," Annals of Mathematics and Statistics, V. 16, p. 243-258, 1945.
- 2. Abramowitz, M. and Stegun, L., Handbook of Mathematical Functions, 2d ed., U.S. Dept. of Commerce, National Bureau of Standards, AMS55, June 1964.
- 3. Resnikoff, G. and Lieberman, G., <u>Tables of the Non-Central</u> t Distribution, Stanford University Press, 1957.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2 .
3.	Department Chairman, Code 55 Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
4.	Dr. R. R. Read, Code 55Re Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
5.	Dr. R. Richards, Code 55Rh Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
6.	Michael W. Davis Naval Air Test Center Patuxent River, Maryland 20670 GSS Branch, SETD	10

178031

Thesis 017234 c.1

Davis

A procedure to facilitate testing of a twosided composite null hypothesis about the mean of a normally distributed random variable.

Thesis D17234

Davis

178031

c.1

A procedure to facilitate testing of a twoside composite null hypotesis about the mean of a normally distributed random variable. thesD17234
A procedure to facilitate testing of a t

3 2768 001 02344 3
DUDLEY KNOX LIBRARY