Training a Neural Network with Stochastic Frank-Wolfe

Optimation for Data Science Course Project Data Science–University of Padua

October 8, 2022

Università degli Studi di Padova

Overview

- Introduction
 - Motivation
 - Defining Problem and Constraint
- 2 Methodology
 - Stochastic FW
 - Stochastic Variance-Reduced FW
 - Defining Neural Network
 - Hyperparameter Choice
- Results
 - Loss & Accuracy
 - Fashion Mnist Dataset
 - Moon Dataset
 - Fruit Dataset
- 4 Conclusion

- Stochastic variants
- Regularization
- Projection free algorithm
- $\min_{x \in \Omega} F(x) = \min_{x \in \Omega} \frac{1}{m} \sum_{i=0}^{m} f_i(x)$
- $\min_{\theta \in \Omega} F(\theta) = -\frac{1}{m} \sum_{i=0}^{m} (y^i log(\hat{y}^i) + (1-y^i) log(1-\hat{y}^i))$

- L₁-ball constraint
- $C(radius) = \{x \in R^n : ||x||_1 \le radius\}$
- $v_t = \arg\min_{v \in c} \langle \tilde{\nabla}(F_t, v) \rangle$
- Result of the LMO:

$$v_t = \begin{cases} diameter \times sign(-\nabla_{i_k} f(\theta_k)) \cdot, & \text{if } i_k = \arg\max_i |\nabla_i f(\theta_k)|. \\ 0 & \text{otherwise.} \end{cases}$$

$$\bullet \ \theta_{t+1} = \theta_t + \alpha(v_t - \theta_t)$$

Algorithm Stochastic Frank-Wolfe method for I_1 -ball

```
Require: Starting from a point inside the region for k=1,.... do Uniformly sample i.i.d. i_1.i_2,....,i_b from [1,..,n] \tilde{\nabla} L(\theta_k) \leftarrow \frac{1}{b} \sum_{j=1}^b \nabla f_{i_j}(\theta_k) Set \hat{\theta}_k = diameter \times sign(-\tilde{\nabla}_{i_k} L(\theta_k)), with i_k = \arg\max_i |\tilde{\nabla}_i L(\theta_k)| if \hat{\theta}_k satisfies some specific condition, then STOP Set \theta_{k+1} = \theta_k + \alpha_k (\hat{\theta}_k - \theta_k) end for
```

Algorithm Stochastic Variance Reduced Frank-Wolfe method for I₁-ball

```
Require: Starting from a point inside the region
 for t=0.....S-1 do
    take snapshot \theta_0 = \theta_t and compute \nabla F(\theta_0)
    for k=1,...,m-1 do
        Uniformly sample i.i.d. i_1.i_2,...,i_b from [1,..,n]
        \tilde{\nabla} F(\theta_k) \leftarrow \nabla F(x_0) + \frac{1}{b_k} \sum_{i=1}^{b_k} (\nabla f_{i_i}(x_k) - \nabla f_{i_i}(\theta_0))
        Set \hat{\theta}_k = diameter \times sign(-\tilde{\nabla}_{i_k}F(\theta_k)), with i_k = arg \max_i |\tilde{\nabla}_iF(\theta_k)|
        Set \theta_{k+1} = \theta_k + \alpha_k (\hat{\theta}_k - \theta_k)
    end for
\theta_{t+1} \leftarrow \theta_{K_t}
 end for
```

- Initialization of parameter
- Forward Propagation
- Backward propagation
- Updating Parameters
- Prediction function
- Cost function
- Main function

Table: SFW hyperparameters, with ReLu as the activation function

Data set	Learning rate	Batch size	$\it l_1$ ball diameter	Epochs	Hidden unit size
fashion mnist	0.001	128	5	20	32
moon	0.0008	32	3	10	16
fruit	0.001	32	20	10	64

Table: SVRF hyperparameters, with ReLu as the activation function

Data set	Learning rate	Batch size	I_1 ball diameter	Epochs	Hidden unit size	inner loop size
fashion mnist	0.005	128	5	20	32	20
moon	0.003	32	3	10	16	10
fruit	0.001	32	20	10	64	10

Results

Table: Test Set Accuracy

Dataset	SFW	SVRF
fashion mnist	94.9%	95.2%
moon	87.3%	84.5%
fruit	86.7%	91.9%

Table: Training Loss

Dataset	SFW	SVRF
fashion mnist	0.613	0.4371
moon	0.625	0.508
fruit	0.415	0.095

fashion mnist Dataset Analysis

moon Dataset Analysis

Thank you

