ENTENDIMENTO DO PROBLEMA - Ataque Cardiáco em Jovens e Adultos da África do Sul

O dataset abaixo foi retirado da plataforma Kaggle, pode ser encontrado no seguinte link: Heart Attack in Youth vs Adult in South Africa Dataset.

Ele contém fatores de risco de ataque cardíaco relacionados à indivíduos da África do Sul. Inclui detalhes demográficos, histórico médico, hábitos de estilo de vida e medidas clínicas para avaliar resultados de ataque cardíaco.

O conjunto de dados é projetado para modelagem preditiva, análise estatística e aplicações de aprendizado de máquina em pesquisa de saúde.

```
In [2]: #importando pacotes:
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   import statsmodels.formula.api as smf
   import statsmodels.api as sm

from sklearn.tree import DecisionTreeClassifier, plot_tree
   from sklearn.model_selection import train_test_split
   from sklearn import metrics
   from scipy.stats import ks_2samp
```

Nome	Explicação
Patient_ID	Identificador único do paciente.
Age	Idade do paciente em anos.
Gender	Gênero do paciente: Masculino ou Feminino.
Cholesterol_Level	Nível de colesterol total no sangue, medido em miligramas por decilitro (mg/dL).
Blood_Pressure_Systolic	Pressão arterial sistólica do paciente, medida em milímetros de mercúrio (mmHg).
Blood_Pressure_Diastolic	Pressão arterial diastólica do paciente, medida em milímetros de mercúrio (mmHg).
Smoking_Status	Status de tabagismo do paciente: Fumante (Sim) ou Não Fumante (Não).
Alcohol_Intake	Nível de consumo de álcool: Baixo, Moderado ou Alto.
Physical_Activity	Nível de atividade física do paciente: Sedentário, Ativo ou Altamente Ativo.
Obesity_Index	Índice de Massa Corporal (IMC), que é uma medida de obesidade calculada a partir do peso e altura.
Diabetes_Status	Status de diabetes do paciente: Tem diabetes (Sim) ou Não tem diabetes (Não).

Nome	Explicação
Family_History_Heart_Disease	Histórico familiar de doenças cardíacas: Sim (se houver histórico) ou Não (se não houver).
Diet_Quality	Qualidade da dieta do paciente: Ruim, Média ou Boa.
Stress_Level	Nível de estresse do paciente: Baixo, Médio ou Alto.
Heart_Attack_History	Histórico de infarto do miocárdio: Já teve infarto (Sim) ou Nunca teve (Não).
Medication_Usage	Uso de medicação pelo paciente: Sim (usa medicação) ou Não (não usa medicação).
Triglycerides_Level	Nível de triglicerídeos no sangue, medido em miligramas por decilitro (mg/dL).
LDL_Level	Nível de LDL (lipoproteína de baixa densidade), conhecido como "colesterol ruim" (mg/dL).
HDL_Level	Nível de HDL (lipoproteína de alta densidade), conhecido como "colesterol bom" (mg/dL).
Heart_Attack_Outcome	Resultado de um ataque cardíaco: 0 (Não) ou 1 (Sim), indicando se o paciente sofreu um infarto.

In [4]:	<pre>df=pd.read_csv('heart_attack_south_africa.csv')</pre>
	<pre>df.head()</pre>

Out[4]:		Patient_ID	Age	Gender	Cholesterol_Level	Blood_Pressure_Systolic	Blood_Pressure_[
	0	1	76	Female	156	94	
	1	2	39	Female	160	185	
	2	3	85	Male	254	173	
	3	4	45	Female	261	187	
	4	5	48	Male	206	189	
	4						

Como temos uma variável categórica, vamos analisar o balanceamento:

In [6]: df['Heart_Attack_Outcome'].value_counts()

Out[6]: Heart_Attack_Outcome

58732
 41268

Name: count, dtype: int64

Não temos aqui um problema de balanceamento, até que as categorias estão bem equilibradas.

In [8]: df.describe()

Out[8]:

Patient ID Cholesterol_Level Blood_Pressure_Systolic Blood_F count 100000.000000 100000.000000 100000.000000 100000.000000 50000.500000 56.929210 224.578740 144.317750 mean 28867.657797 31.759636 std 18.776713 43.316257 90.000000 1.000000 25.000000 150.000000 min 25% 25000.750000 187.000000 117.000000 41.000000 50% 50000.500000 57.000000 225.000000 144.000000 **75%** 262.000000 172.000000 75000.250000 73.000000 100000.000000 89.000000 299.000000 199.000000

Através da análise descritiva acima, podemos observar que:

- Ausência de dados faltantes: Todas as variáveis têm a mesma quantidade de amostras (100.000), indicando que não há valores ausentes no dataset.
- Idade: A média de idade dos pacientes é 56,9 anos, sendo que 25% têm 41 anos ou menos e 25% têm 73 anos ou mais, indicando uma amostra com predominância de adultos e idosos.

• Pressão Arterial:

- Sistólica: Média de 144,3 mmHg, acima do ideal (<120 mmHg).
- **Diastólica:** Média de **89,6 mmHg**, superior ao recomendado (<80 mmHg).
- 25% da amostra tem pressão sistólica maior que 172 mmHg, sugerindo prevalência de hipertensão.
- Colesterol: O nível médio é 224,6 mg/dL, acima do recomendado (<190 mg/dL), com 75% dos pacientes acima de 187 mg/dL.
- **Índice de Massa Corporal (IMC):** A média é **29,0**, acima do ideal (18,5 24,9), sugerindo uma predominância de sobrepeso/obesidade na amostra.
- Triglicerídeos: Média de 174,6 mg/dL (ideal: <150 mg/dL), com 25% dos pacientes acima de 237 mg/dL, indicando um fator de risco significativo.
- LDL (Colesterol Ruim): Média de 124,3 mg/dL, dentro do limite máximo (130 mg/dL), mas 25% da amostra ultrapassa 162 mg/dL.
- HDL (Colesterol Bom): Média de 49,5 mg/dL, acima do mínimo recomendado (>40 mg/dL), o que pode ser um fator protetor.
- Ocorrência de Infarto: 58,7% da amostra já sofreu um infarto, sugerindo um grupo de alto risco cardiovascular.

Os dados indicam um perfil de pacientes com **fatores de risco significativos para doenças cardiovasculares**, como **hipertensão**, **colesterol elevado**, **obesidade e**

triglicerídeos altos.

Analise Univariada:

```
In [11]:
    def grafico_count_todas(df, limite_categorico=10):
        colunas_categoricas = [col for col in df.columns if df[col].nunique() <= lim
        total = len(colunas_categoricas)
        linhas = (total // 3) + (total % 3 > 0)
        plt.figure(figsize=(15, 5 * linhas))

        for i, col in enumerate(colunas_categoricas, 1):
            plt.subplot(linhas, 3, i)
            sns.countplot(data=df, x=col, hue=col, legend=False)
            plt.title(f'Distribuição de {col}')
            plt.xlabel(col)
            plt.ylabel('Contagem')
            plt.xticks(rotation=45)

        plt.tight_layout()
        plt.show()

grafico_count_todas(df)
```


Analise Bivariada:

```
In [13]:
    def analise_bivariada(df, target='Heart_Attack_Outcome', limite_categorico=10):
        colunas_categoricas = [col for col in df.columns if df[col].nunique() <= lim
        colunas_numericas = [col for col in df.select_dtypes(include=['int64', 'floa

# Variáveis categóricas:
        total = len(colunas_categoricas)
        if total > 0:
            linhas = (total // 3) + (total % 3 > 0)
            plt.figure(figsize=(18, 5 * linhas))
        for i, col in enumerate(colunas_categoricas, 1):
```

```
plt.subplot(linhas, 3, i)
                     sns.countplot(data=df, x=col, hue=target)
                     plt.title(f'{col} x {target}')
                     plt.xticks(rotation=45)
               plt.tight_layout()
               plt.show()
         # Variáveis numéricas:
         total = len(colunas_numericas)
         if total > 0:
               linhas = (total // 3) + (total \% 3 > 0)
               plt.figure(figsize=(18, 5 * linhas))
               for i, col in enumerate(colunas_numericas, 1):
                     plt.subplot(linhas, 3, i)
                     sns.boxplot(data=df, x=target, y=col)
                     plt.title(f'{col} por {target}')
               plt.tight_layout()
               plt.show()
   analise_bivariada(df)
             Gender x Heart_Attack_Outcome
                                                     Smoking_Status x Heart_Attack_Outcome
                                                                                                Alcohol_Intake x Heart_Attack_Outcome
 25000
                                          200000
200000
                                            15000
  5000
                                                             Smoking_Status
                                                                                                        Alcohol Intake
           Physical_Activity x Heart_Attack_Outcome
                                                     Diabetes_Status x Heart_Attack_Outcome
                                                                                           Family_History_Heart_Disease x Heart_Attack_Outcome
 25000
                                            30000
 20000
j 15000
                                           15000
                                                                                      10000
                                                             Diabetes Status
                                                                                                    Family History Heart Disease
                                                                                             Heart_Attack_History x Heart_Attack_Outcome
            Diet_Quality x Heart_Attack_Outcome
                                                      Stress_Level x Heart_Attack_Outcome
                                                                                                                 Heart_Attack_Outcome
0
1
15000
 10000
                                            10000
                    pale age
Diet_Quality
          Medication_Usage x Heart_Attack_Outcome
 10000
```


Veificação de nulos:

```
In [15]:
         df.isna().sum()
Out[15]:
          Patient_ID
                                            0
                                           0
          Age
          Gender
                                            0
          Cholesterol_Level
                                            0
          Blood_Pressure_Systolic
                                           0
          Blood_Pressure_Diastolic
                                            0
          Smoking_Status
                                           0
          Alcohol Intake
                                            0
          Physical_Activity
                                           0
          Obesity_Index
                                           0
          Diabetes_Status
                                           0
          Family_History_Heart_Disease
                                            0
          Diet_Quality
                                           0
          Stress_Level
                                           0
          Heart_Attack_History
                                           0
          Medication_Usage
                                           0
          Triglycerides Level
                                           0
          LDL_Level
                                           0
          HDL Level
                                           0
          Heart_Attack_Outcome
                                           0
          dtype: int64
```

Verificação de duplicados:

```
In [17]: # Verificar duplicatas
duplicates = df[df.duplicated()]
print(duplicates)
```

Empty DataFrame

Columns: [Patient_ID, Age, Gender, Cholesterol_Level, Blood_Pressure_Systolic, Blood_Pressure_Diastolic, Smoking_Status, Alcohol_Intake, Physical_Activity, Obesit y_Index, Diabetes_Status, Family_History_Heart_Disease, Diet_Quality, Stress_Level, Heart_Attack_History, Medication_Usage, Triglycerides_Level, LDL_Level, HDL_Level, Heart_Attack_Outcome]

Index: []

verificação dos tipos de dados:

```
In [19]: df.dtypes
Out[19]: Patient_ID
                                            int64
         Age
                                            int64
         Gender
                                           object
         Cholesterol Level
                                            int64
         Blood_Pressure_Systolic
                                           int64
         Blood_Pressure_Diastolic
                                           int64
         Smoking_Status
                                           object
         Alcohol_Intake
                                           object
         Physical_Activity
                                           object
         Obesity_Index
                                          float64
         Diabetes_Status
                                           object
         Family_History_Heart_Disease
                                           object
         Diet_Quality
                                           object
         Stress_Level
                                           object
         Heart_Attack_History
                                           object
         Medication_Usage
                                           object
         Triglycerides_Level
                                           int64
                                            int64
         LDL_Level
         HDL_Level
                                            int64
         Heart_Attack_Outcome
                                            int64
         dtype: object
```

Vamos verificar os valores unicos para cada variável do tipo object e substituir para numérico, pois assim facilitará a nossa análise.

```
In [21]: #célula utilizada para verificar todos os unique:
    df['Family_History_Heart_Disease'].unique()
```

```
Out[21]: array(['No', 'Yes'], dtype=object)
```

Substituição dos unique para numéricos.

Aqui seguiremos um padrão:

- 0: homem, low e no.
- 1: famele, moderado/médio e yes.
- 2: high, good.

```
In [23]: # Conversão: Masculino -> 0, Feminino -> 1
df['Gender'] = df['Gender'].map({'Male': 0, 'Female': 1})
```

```
# Conversão: Fumante -> 1, Não Fumante -> 0
df['Smoking_Status'] = df['Smoking_Status'].map({'Yes': 1, 'No': 0})
# Conversão: Low -> 0, Moderate -> 1, high -> 2
df['Alcohol_Intake'] = df['Alcohol_Intake'].map({'Low': 0, 'Moderate': 1, 'High'
# Conversão: Sedentary -> 0, Active -> 1, Highly Active -> 2
df['Physical_Activity'] = df['Physical_Activity'].map({'Sedentary': 0, 'Active':
# Conversão: no -> 0, yes -> 1
df['Diabetes_Status'] = df['Diabetes_Status'].map({'No': 0, 'Yes': 1})
# Conversão: no -> 0, yes -> 1
df['Family_History_Heart_Disease'] = df['Family_History_Heart_Disease'].map({'No
# Conversão: Good -> 0, Average -> 1, Poor -> 2
df['Diet_Quality'] = df['Diet_Quality'].map({'Poor': 0, 'Average': 1, 'Good': 2}
# Conversão: Good -> 0, Average -> 1, Poor -> 2
df['Stress_Level'] = df['Stress_Level'].map({'Low': 0, 'Medium': 1, 'High': 2})
# Conversão: no -> 0, yes -> 1
df['Heart_Attack_History'] = df['Heart_Attack_History'].map({'No': 0, 'Yes': 1})
# Conversão: no -> 0, yes -> 1
df['Medication_Usage'] = df['Medication_Usage'].map({'No': 0, 'Yes': 1})
# Exibir o DataFrame
df.head()
```

Out[23]: Patient ID Age Gender Cholesterol Level Blood Pressure Systolic Blood Pressure I 0 76 1 156 94 1 39 160 185 2 3 85 0 254 173 3 4 45 1 261 187 4 5 48 0 206 189

Verificação novamente dos tipos:

```
In [25]: df.dtypes
```

```
Out[25]: Patient_ID
                                           int64
         Age
                                           int64
         Gender
                                           int64
         Cholesterol_Level
                                           int64
         Blood_Pressure_Systolic
                                          int64
         Blood_Pressure_Diastolic
                                           int64
         Smoking_Status
                                           int64
         Alcohol_Intake
                                           int64
         Physical_Activity
                                           int64
         Obesity_Index
                                        float64
         Diabetes_Status
                                           int64
         Family_History_Heart_Disease
                                           int64
         Diet_Quality
                                           int64
         Stress_Level
                                           int64
         Heart_Attack_History
                                           int64
         Medication Usage
                                           int64
         Triglycerides_Level
                                           int64
         LDL_Level
                                           int64
         HDL_Level
                                           int64
         Heart_Attack_Outcome
                                           int64
         dtype: object
```

Podemos deletar a variável que traz o ID do paciente, pois essa não tem poder preditivo:

```
In [27]: df.drop('Patient_ID', axis=1, inplace=True)
```

Agora todas as nossas variáveis são numéricas. A seguir, exibiremos a matriz de correlação:

Out[29]: Age Gender Chole

	Age	Gender	Cholesterol_Level	Blood_Pressure_Sys
Age	1.000000	-0.000265	-0.000364	3.672133
Gender	-0.000265	1.000000	0.001288	1.561311
Cholesterol_Level	-0.000364	0.001288	1.000000	-1.240133
Blood_Pressure_Systolic	0.003672	0.001561	-0.001240	1.000000
Blood_Pressure_Diastolic	-0.001093	-0.000438	0.005179	-1.568419
Smoking_Status	-0.001992	0.003381	-0.002368	-2.310456
Alcohol_Intake	0.001440	0.000312	-0.001211	3.378105
Physical_Activity	0.001244	-0.002084	0.001546	-2.231550
Obesity_Index	-0.001118	0.001526	-0.000109	-3.730381
Diabetes_Status	0.004342	0.001644	-0.002158	-5.901092
Family_History_Heart_Disease	0.001038	0.002607	0.002946	2.520226
Diet_Quality	-0.003163	-0.001768	0.001665	3.930109
Stress_Level	0.000031	-0.000681	0.000613	4.228029
Heart_Attack_History	0.001438	0.001375	0.000608	1.777125
Medication_Usage	-0.000674	0.003214	0.002553	-7.560601
Triglycerides_Level	0.001992	0.001929	0.001935	-2.962143
LDL_Level	0.001466	0.001228	-0.000127	6.897071
HDL_Level	-0.001979	-0.003194	-0.002934	2.398179
Heart_Attack_Outcome	0.298683	0.001068	0.283860	1.485734
4				

A tabela acima está um pouco extensa, por isso, iremos plotar um gráfico que também traz essa correlação e nos permite verificar melhor:

```
In [31]: # Calcular a correlação de todas as variáveis com 'Heart_Attack_Outcome'
    correlation_with_heart_attack = df.corr()['Heart_Attack_Outcome'].drop('Heart_At

# Ordenar as correlações de forma decrescente
    sorted_correlation = correlation_with_heart_attack.abs().sort_values(ascending=F)

# Plotar um gráfico de barras das variáveis com maior correlação
```

```
plt.figure(figsize=(10, 6))
sorted_correlation.plot(kind='bar', color='skyblue')
plt.title('Correlação das variáveis com Heart_Attack_Outcome')
plt.xlabel('Variáveis')
plt.ylabel('Correlação')
plt.xticks(rotation=45)
plt.show()
```


De acordo com o gráfico acima, temos como maiores correlação com a nossa target as seguintes variáveis:

- Age → 0.2987 (correlação positiva)
- Smoking_Status → 0.2990 (correlação positiva)
- Cholesterol_Level → 0.2839 (correlação positiva)
- Obesity_Index → 0.2964 (correlação positiva)
- Diabetes_Status → 0.2508 (correlação positiva)
- Family_History_Heart_Disease → 0.2789 (correlação positiva)
- Blood_Pressure_Systolic → 0.1486 (correlação positiva)
- Blood_Pressure_Diastolic → 0.1402 (correlação positiva)

A seguir, vamos plotar o heatmap da nossa matriz de correlação para identificar possíveis casos de multicolineariedade:

```
In [34]: #matriz de correlação:
  plt.figure(figsize=(12,8))
  sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
  plt.show()
```


Através do plot acima podemos ver que não temos multicolineariedade no nosso df. A seguir criar um metadados para ver o IV das variáveis:

```
In [36]: metadados = pd.DataFrame(df.dtypes, columns=['dtype'])
    metadados['valores_unicos'] = df.nunique()
    metadados['papel'] = 'covariavel'
    metadados.loc['Heart_Attack_Outcome','papel'] = 'resposta'
    metadados
```

Out[36]:

	dtype	valores_unicos	papel
Age	int64	65	covariavel
Gender	int64	2	covariavel
Cholesterol_Level	int64	150	covariavel
Blood_Pressure_Systolic	int64	110	covariavel
Blood_Pressure_Diastolic	int64	60	covariavel
Smoking_Status	int64	2	covariavel
Alcohol_Intake	int64	3	covariavel
Physical_Activity	int64	3	covariavel
Obesity_Index	float64	221	covariavel
Diabetes_Status	int64	2	covariavel
Family_History_Heart_Disease	int64	2	covariavel
Diet_Quality	int64	3	covariavel
Stress_Level	int64	3	covariavel
Heart_Attack_History	int64	2	covariavel
Medication_Usage	int64	2	covariavel
Triglycerides_Level	int64	250	covariavel
LDL_Level	int64	150	covariavel
HDL_Level	int64	60	covariavel
Heart_Attack_Outcome	int64	2	resposta

```
In [37]: #função cálculo IV
def IV(variavel, resposta):
    tab = pd.crosstab(variavel, resposta, margins=True, margins_name='total')

    rótulo_evento = tab.columns[0]
    rótulo_nao_evento = tab.columns[1]

    tab['pct_evento'] = tab[rótulo_evento]/tab.loc['total',rótulo_evento]
    tab['ep'] = tab[rótulo_evento]/tab.loc['total',rótulo_evento]

    tab['pct_nao_evento'] = tab[rótulo_nao_evento]/tab.loc['total',rótulo_nao_evento]'iv_parcial'] = (tab.pct_evento / tab.pct_nao_evento)
    tab['iv_parcial'].sum()
```

```
In [38]: #loop:
    for var in metadados[metadados.papel=='covariavel'].index:
        if (metadados.loc[var, 'valores_unicos']>6): #para mais que 6 valores unico
             metadados.loc[var, 'IV'] = IV(pd.qcut(df[var],5,duplicates='drop'), df.H
        else:
             metadados.loc[var, 'IV'] = IV(df[var], df.Heart_Attack_Outcome)
```

metadados

Out[38]:

	dtype	valores_unicos	papel	IV
Age	int64	65	covariavel	0.462877
Gender	int64	2	covariavel	0.000005
Cholesterol_Level	int64	150	covariavel	0.511672
Blood_Pressure_Systolic	int64	110	covariavel	0.101007
Blood_Pressure_Diastolic	int64	60	covariavel	0.087411
Smoking_Status	int64	2	covariavel	0.417627
Alcohol_Intake	int64	3	covariavel	0.000037
Physical_Activity	int64	3	covariavel	0.000037
Obesity_Index	float64	221	covariavel	0.439663
Diabetes_Status	int64	2	covariavel	0.308958
Family_History_Heart_Disease	int64	2	covariavel	0.372500
Diet_Quality	int64	3	covariavel	0.000218
Stress_Level	int64	3	covariavel	0.000025
Heart_Attack_History	int64	2	covariavel	0.000015
Medication_Usage	int64	2	covariavel	0.000123
Triglycerides_Level	int64	250	covariavel	0.000112
LDL_Level	int64	150	covariavel	0.000061
HDL_Level	int64	60	covariavel	0.000179
Heart_Attack_Outcome	int64	2	resposta	NaN

Geralmente, utiliza-se no modelo, as variáveis com IV maior que 2%, seriam elas:

- Age;
- Cholesterol_Level;
- Blood_Pressure_Systolic;
- Blood_Pressure_Diastolic;
- Smoking_Status;
- Obesity_Index;
- Diabetes_Status;
- Family_History_Heart_Disease.

Treino e Teste:

```
In [41]: # Definir X (features) e y (target)
X = df.drop(columns=['Heart_Attack_Outcome']) # Remove a variável alvo
y = df['Heart_Attack_Outcome'] # Define a variável alvo
```

```
# Separar em treino (80%) e teste (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
# Criar DataFrames completos de treino e teste
df_train = pd.concat([X_train, y_train], axis=1)
df_test = pd.concat([X_test, y_test], axis=1)

# Exibir tamanhos das amostras
print(f"Tamanho do df_train: {df_train.shape}")
print(f"Tamanho do df_test: {df_test.shape}")
```

Tamanho do df_train: (80000, 19)
Tamanho do df_test: (20000, 19)

Equação de Regressão:

```
In [43]: # ajuda para definir a equação da regressão
' + '.join(list(df.columns))
```

Out[43]: 'Age + Gender + Cholesterol_Level + Blood_Pressure_Systolic + Blood_Pressure_Di astolic + Smoking_Status + Alcohol_Intake + Physical_Activity + Obesity_Index + Diabetes_Status + Family_History_Heart_Disease + Diet_Quality + Stress_Level + Heart_Attack_History + Medication_Usage + Triglycerides_Level + LDL_Level + HDL_Level + Heart_Attack_Outcome'

```
In [44]:
    formula= '''
    Heart_Attack_Outcome ~ Age + Gender + Cholesterol_Level + Blood_Pressure_Systoli
    '''
    r1 = smf.glm(formula, data=df_train, family=sm.families.Binomial()).fit()
    r1.summary()
```

Out[44]:

Generalized Linear Model Regression Results

Model:GLMDf Residuals:79981Model Family:BinomialDf Model:18Link Function:LogitScale:1.0000Method:IRLSLog-Likelihood:-21677.Date:Thu, 10 Apr 2025Deviance:43354.Time:20:36:21Pearson chi2:5.38e+04	Dep. Variable:	Heart_Attack_Outcome	No. Observations:	80000
Link Function: Logit Scale: 1.0000 Method: IRLS Log-Likelihood: -21677. Date: Thu, 10 Apr 2025 Deviance: 43354.	Model:	GLM	Df Residuals:	79981
Method: IRLS Log-Likelihood: -21677. Date: Thu, 10 Apr 2025 Deviance: 43354.	Model Family:	Binomial	Df Model:	18
Date: Thu, 10 Apr 2025 Deviance: 43354.	Link Function:	Logit	Scale:	1.0000
	Method:	IRLS	Log-Likelihood:	-21677.
Time: 20:36:21 Pearson chi2: 5.38e+04	Date:	Thu, 10 Apr 2025	Deviance:	43354.
	Time:	20:36:21	Pearson chi2:	5.38e+04
No. Iterations: 7 Pseudo R-squ. (CS): 0.5568	No. Iterations:	7	Pseudo R-squ. (CS):	0.5568

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-31.1586	0.258	-120.689	0.000	-31.665	-30.653
Age	0.0900	0.001	101.856	0.000	0.088	0.092
Gender	-0.0171	0.024	-0.703	0.482	-0.065	0.031
Cholesterol_Level	0.0375	0.000	99.947	0.000	0.037	0.038
Blood_Pressure_Systolic	0.0276	0.000	64.970	0.000	0.027	0.028
Blood_Pressure_Diastolic	0.0467	0.001	60.889	0.000	0.045	0.048
Smoking_Status	3.8858	0.038	102.713	0.000	3.812	3.960
Alcohol_Intake	0.0013	0.016	0.080	0.936	-0.031	0.033
Physical_Activity	-0.0056	0.016	-0.358	0.720	-0.036	0.025
Obesity_Index	0.2670	0.003	102.010	0.000	0.262	0.272
Diabetes_Status	3.8985	0.043	90.917	0.000	3.814	3.983
Family_History_Heart_Disease	3.8907	0.040	97.576	0.000	3.813	3.969
Diet_Quality	-0.0212	0.017	-1.221	0.222	-0.055	0.013
Stress_Level	-0.0088	0.017	-0.505	0.613	-0.043	0.025
Heart_Attack_History	0.0038	0.034	0.112	0.911	-0.063	0.070
Medication_Usage	0.0374	0.024	1.538	0.124	-0.010	0.085
Triglycerides_Level	-0.0003	0.000	-1.681	0.093	-0.001	4.69e-05
LDL_Level	3.278e-06	0.000	0.012	0.991	-0.001	0.001
HDL_Level	0.0003	0.001	0.359	0.720	-0.001	0.002

Obtivemos aqui, que as variáveis estatisticamente significativas para o modelo são as mesmas já citadas anteriormente ao analisar o Information Value, são elas:

- Age;
- Cholesterol_Level;

- Blood_Pressure_Systolic;
- Blood_Pressure_Diastolic;
- Smoking_Status;
- Obesity_Index;
- Diabetes_Status;
- Family_History_Heart_Disease.

Portanto, criaremos o próximo modelo utilizando essas variáveis:

```
In [46]: formula= '''
Heart_Attack_Outcome ~ Age + Cholesterol_Level + Blood_Pressure_Systolic + Blood
'''
r2 = smf.glm(formula, data=df_train, family=sm.families.Binomial()).fit()
r2.summary()
```

Out[46]:

Generalized Linear Model Regression Results

Dep. Variable:	Heart_Attack_Outcome	No. Observations:	80000
Model:	GLM	Df Residuals:	79991
Model Family:	Binomial	Df Model:	8
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-21681.
Date:	Thu, 10 Apr 2025	Deviance:	43362.
Time:	20:36:22	Pearson chi2:	5.37e+04
No. Iterations:	7	Pseudo R-squ. (CS):	0.5567

Covariance Type: nonrobust

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-31.2094	0.250	-124.981	0.000	-31.699	-30.720
Age	0.0900	0.001	101.861	0.000	0.088	0.092
Cholesterol_Level	0.0375	0.000	99.963	0.000	0.037	0.038
Blood_Pressure_Systolic	0.0276	0.000	64.971	0.000	0.027	0.028
Blood_Pressure_Diastolic	0.0467	0.001	60.886	0.000	0.045	0.048
Smoking_Status	3.8860	0.038	102.726	0.000	3.812	3.960
Obesity_Index	0.2670	0.003	102.023	0.000	0.262	0.272
Diabetes_Status	3.8974	0.043	90.919	0.000	3.813	3.981
Family_History_Heart_Disease	3.8903	0.040	97.587	0.000	3.812	3.968

A seguir, utilizaremos uma classificação em árvore com as variáveis acima para observarmos quais dessas variáveis ela traz como principais nós de decisão a fim de as utilizarmos com o objetivo de validar ou simplificar o nosso modelo.

```
In [48]: # Separando features e target
X_train = df_train[['Age', 'Cholesterol_Level', 'Blood_Pressure_Systolic', 'Blood_Status', 'Obesity_Index', 'Diabetes_Status', 'Family_Index', 'Diabetes_Status', 'Diab
```


Nas três primeiras camadas da nossa árvore a gente encontra Idade (nó raiz), Obesidade, Colesterol e Pressão Sistólica, respectivamente nessa ordem de importância. Vamos tentar um novo modelo de regressão com as 3 variáveis principais.

```
In [50]: formula= '''
Heart_Attack_Outcome ~ Age + Cholesterol_Level + Obesity_Index
'''
r3 = smf.glm(formula, data=df_train, family=sm.families.Binomial()).fit()
r3.summary()
```

Out[50]:

Generalized Linear Model Regression Results

Dep. Variable:	Heart_Attack_Outcome	No. Observations:	80000
Model:	GLM	Df Residuals:	79996
Model Family:	Binomial	Df Model:	3
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-42466.
Date:	Thu, 10 Apr 2025	Deviance:	84932.
Time:	20:36:24	Pearson chi2:	7.79e+04
No. Iterations:	5	Pseudo R-squ. (CS):	0.2547
Covariance Type:	nonrobust		

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-9.5448	0.079	-120.190	0.000	-9.700	-9.389
Age	0.0426	0.000	88.166	0.000	0.042	0.044
Cholesterol_Level	0.0177	0.000	85.133	0.000	0.017	0.018
Obesity_Index	0.1251	0.001	87.801	0.000	0.122	0.128

Avaliando as métricas:

Modelo 1: Todas as variáveis:

Treino:

```
In [53]: # Fazer previsões no conjunto de treino
         df_train['score'] = r1.predict(df_train)
         # Acurácia (usando threshold de 0.5 para classificação)
         acc = metrics.accuracy_score(df_train.Heart_Attack_Outcome, df_train.score > 0.5
         # AUC
         fpr, tpr, thresholds = metrics.roc_curve(df_train.Heart_Attack_Outcome, df_train
         auc = metrics.auc(fpr, tpr)
         # Gini (2*AUC -1)
         gini = 2 * auc - 1
         # KS (Kolmogorov-Smirnov)
         ks = ks 2samp(
             df_train.loc[df_train.Heart_Attack_Outcome == 1, 'score'],
             df_train.loc[df_train.Heart_Attack_Outcome == 0, 'score']
         ).statistic
         # Exibir métricas
         print('Acurácia (Treino): {0:.1%} \nAUC (Treino): {1:.1%} \nGINI (Treino): {2:.1
               .format(acc, auc, gini, ks))
```

```
Acurácia (Treino): 87.4%
AUC (Treino): 95.3%
GINI (Treino): 90.6%
KS (Treino): 74.8%
```

Teste:

```
In [55]:
        # Obter as previsões no conjunto de teste
         df_test.loc[:, 'score'] = r1.predict(df_test)
         # Acurácia
         acc_test = metrics.accuracy_score(df_test.Heart_Attack_Outcome, df_test.score >
         # AUC
         fpr_test, tpr_test, thresholds_test = metrics.roc_curve(df_test.Heart_Attack_Out
         auc_test = metrics.auc(fpr_test, tpr_test)
         # GTNT
         gini_test = 2 * auc_test - 1
         # KS
         ks test = ks 2samp(
             df_test.loc[df_test.Heart_Attack_Outcome == 1, 'score'],
             df_test.loc[df_test.Heart_Attack_Outcome == 0, 'score']
         ).statistic
         # Imprimir as métricas para o conjunto de teste
         print('Acurácia (Teste): {0:.1%} \nAUC (Teste): {1:.1%} \nGINI (Teste): {2:.1%}
                .format(acc_test, auc_test, gini_test, ks_test))
        Acurácia (Teste): 87.7%
        AUC (Teste): 95.5%
        GINI (Teste): 91.1%
        KS (Teste): 75.4%
```

Modelo 2: Variáveis com IV (Information Value) > 2%

Treino:

```
In [57]: # Fazer previsões no conjunto de treino
    df_train['score'] = r2.predict(df_train)

# Acurácia (usando threshold de 0.5 para classificação)
acc = metrics.accuracy_score(df_train.Heart_Attack_Outcome, df_train.score > 0.5

# AUC
fpr, tpr, thresholds = metrics.roc_curve(df_train.Heart_Attack_Outcome, df_train auc = metrics.auc(fpr, tpr))

# Gini (2*AUC -1)
gini = 2 * auc - 1

# KS (Kolmogorov-Smirnov)
ks = ks_2samp(
    df_train.loc[df_train.Heart_Attack_Outcome == 1, 'score'],
    df_train.loc[df_train.Heart_Attack_Outcome == 0, 'score']
).statistic

# Exibir métricas
```

Teste:

```
In [59]: # Obter as previsões no conjunto de teste
         df_test.loc[:, 'score'] = r2.predict(df_test)
         # Acurácia
         acc_test = metrics.accuracy_score(df_test.Heart_Attack_Outcome, df_test.score >
         fpr_test, tpr_test, thresholds_test = metrics.roc_curve(df_test.Heart_Attack_Out
         auc_test = metrics.auc(fpr_test, tpr_test)
         # GINI
         gini_test = 2 * auc_test - 1
         # KS
         ks_{test} = ks_{2samp}(
             df_test.loc[df_test.Heart_Attack_Outcome == 1, 'score'],
             df_test.loc[df_test.Heart_Attack_Outcome == 0, 'score']
         ).statistic
         # Imprimir as métricas para o conjunto de teste
         print('Acurácia (Teste): {0:.1%} \nAUC (Teste): {1:.1%} \nGINI (Teste): {2:.1%}
                .format(acc_test, auc_test, gini_test, ks_test))
        Acurácia (Teste): 87.7%
        AUC (Teste): 95.5%
        GINI (Teste): 91.1%
        KS (Teste): 75.3%
```

Modelo 3: 3 maiores preditoras de acordo com a árvore de decisão:

Treino:

ACURACIA (Treino): 72.5% AUC (Treino): 80.1% GINI (Treino): 60.1% KS (Treino): 44.8%

Teste:

```
In [63]: # Obter as previsões no conjunto de teste
         df_test.loc[:, 'score'] = r2.predict(df_test)
         # Acurácia
         acc_test = metrics.accuracy_score(df_test.Heart_Attack_Outcome, df_test.score >
         # AUC
         fpr_test, tpr_test, thresholds_test = metrics.roc_curve(df_test.Heart_Attack_Out
         auc_test = metrics.auc(fpr_test, tpr_test)
         # GINI
         gini_test = 2 * auc_test - 1
         # KS
         ks_{test} = ks_{2samp}(
             df_test.loc[df_test.Heart_Attack_Outcome == 1, 'score'],
             df_test.loc[df_test.Heart_Attack_Outcome == 0, 'score']
         ).statistic
         # Imprimir as métricas para o conjunto de teste
         print('Acurácia (Teste): {0:.1%} \nAUC (Teste): {1:.1%} \nGINI (Teste): {2:.1%}
                .format(acc_test, auc_test, gini_test, ks_test))
```

Acurácia (Teste): 87.7% AUC (Teste): 95.5% GINI (Teste): 91.1% KS (Teste): 75.3%

Conclusão:

Métrica	Modelo 1 (18 variáveis)	Modelo 2 (8 variáveis)	Modelo 3 (3 variáveis)
Acurácia (Treino)	87.4%	87.4%	72.5%
AUC (Treino)	95.3%	95.3%	80.1%
GINI (Treino)	90.6%	90.6%	60.1%
KS (Treino)	74.8%	74.8%	44.8%
	-		
Acurácia (Teste)	87.7%	87.7%	87.7%
AUC (Teste)	95.5%	95.5%	95.5%
GINI (Teste)	91.1%	91.1%	91.1%

Métrica	Modelo 1 (18	Modelo 2 (8	Modelo 3 (3
	variáveis)	variáveis)	variáveis)
KS (Teste)	75.4%	75.3%	75.3%

Modelo 1:

- 18 variáveis;
- Alto desempenho em todas as métricas;
- Difícil interpretar por conta do alto número de variáveis;

Modelo 2:

- 8 variáveis:
- Alto desempenho em todas as métricas;
- Mais simples e interpretável que o modelo 1 e mantém a mesma performance.

Modelo 3:

- 3 variáveis;
- Queda brusca no treino em relação aos modelos anteriores;
- Performance estranhamente boa para teste visto que esse desempenho é muito menor para treino;
- Arriscado para um problema sério como ataque cardiáco.

A nossa escolha final será o Modelo 2, uma vez que é interpretável, simples e tem uma boa performance com alta acurácia, excelente capacidade preditiva (AUC e GINI elevados) e boa separação das classes (KS alto).

Tn Γ 1: