4 A student made measurements on a rubber band as shown.



The rubber band has a rectangular cross-section.

- (a) The student used a micrometer screw gauge to measure the thickness t.
  - (i) Explain **one** technique she should use to measure t.

(2)

(ii) The student recorded the following measurements.

| <i>t</i> / mm | 1.02 | 1.06 | 1.05 | 1.01 |  |
|---------------|------|------|------|------|--|
|---------------|------|------|------|------|--|

Calculate the mean value of *t* in mm.

(1)

Mean value of t = ...... mm

(iii) Determine the percentage uncertainty in t.

(2

Percentage uncertainty in t =

| (iv) | Folding the rubber band and measuring the total thickness of four layers would reduce the percentage uncertainty in <i>t</i> .  Explain the effect of folding the rubber band on the percentage uncertainty in <i>t</i> . | (2) |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <br> |                                                                                                                                                                                                                           |     |
| <br> |                                                                                                                                                                                                                           |     |
|      |                                                                                                                                                                                                                           |     |
| (v)  | The student used a metre rule to measure the length $x$ and used the micrometer screw gauge to measure the width $w$ of the rubber band.                                                                                  |     |
|      | She determined the volume of the rubber band using the formula                                                                                                                                                            |     |
|      | V = 2xwt                                                                                                                                                                                                                  |     |
|      | Suggest <b>two</b> reasons why the calculated volume may <b>not</b> be accurate.                                                                                                                                          | (2) |
|      |                                                                                                                                                                                                                           |     |
|      |                                                                                                                                                                                                                           |     |
| <br> |                                                                                                                                                                                                                           |     |
|      |                                                                                                                                                                                                                           |     |



(b) The student made measurements on a rubber bung as shown.



Not to scale

The average cross-sectional area A of the bung is given by

$$A = \frac{\pi}{12}(D^2 + d^2 + Dd)$$

(i) Show that the uncertainty in  $D^2$  is about  $0.07 \,\mathrm{cm}^2$ .

$$D = 3.45 \,\mathrm{cm} \pm 0.01 \,\mathrm{cm}$$

(2)

(ii) Show that the uncertainty in A is about  $0.05 \,\mathrm{cm}^2$ .

$$d^2 = 9.36 \,\mathrm{cm}^2 \pm 0.06 \,\mathrm{cm}^2$$
  
 $Dd = 10.56 \,\mathrm{cm}^2 \pm 0.07 \,\mathrm{cm}^2$ 

(2)

(c) The student determined the density of the rubber band and the density of the rubber bung. She also determined the corresponding percentage uncertainty in each value, as shown.

|                              | Rubber band | Rubber bung |
|------------------------------|-------------|-------------|
| Density / g cm <sup>-3</sup> | 1.15        | 1.52        |
| Percentage uncertainty       | 4.3         | 1.2         |

Deduce whether the rubber band and the rubber bung could be made of the same type of rubber.

| ŀ |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

(Total for Question 4 = 16 marks)

(3)