基数不変量のゲーム理論的バ リエーション

後藤 達哉

神戸大学

2023 年 9 月 23 日 日本数学会秋季総合分科会 2023 @ 東北大学

本研究は Jorge Antonio Cruz Chapital および林祐亮との共同研究である 本研究は JSPS 科研費 JP22J20021 の助成を受けたものである

集合論

集合論は無限集合,特にその濃度について様々な考察をする分野である.

可算濃度を ℵ₀ とし,連続体濃度 を c と書く. 可算濃度の一個次 の基数を ℵ₁ と書く.

 $\aleph_0 < \mathbf{c}$ は ZFC の定理 (Cantor) だが, \mathbf{c} が \aleph_1 かどうかであるかは ZFC で決定できない (Gödel, Cohen).

基数不变量

連続体の基数不変量は実数の構造から定まる基数である.それらは典型的には \aleph_1 以上c以下の値を取る.それらの多くは \aleph_1 と等しいこともcと等しいこともZFCでは証明できないものである.

無限ゲーム

ターン数が無限 (ω) の 2 人が対戦するゲーム (無限ゲーム) は,集合論において非常に重要.

特に,決定公理は無限ゲームに関する重要な公理だが,選択公理 と互いに排反である.今回は特に決定公理のことは考えず,普 段どおり選択公理を仮定する.

本研究は基数不変量をゲーム理論的に修正して得られるものを 調べることにより,基数不変量とゲーム理論の二つの分野を接続 する.

splitting numberの定義

自然数の無限集合 A, B について A が B を 分割するとは,

$$|B \cap A| = |B \setminus A| = \aleph_0$$

を満たすこと、自然数の無限集合の集合Sについて

• \mathcal{S} が splitting family

$$:\iff (\forall B\in [\omega]^\omega)(\exists A\in\mathcal{S})(A\,$$
が $B\,$ を分割する $)$

次の s を splitting number という:

• $\mathbf{s} := \min\{|\mathcal{S}| : \mathcal{S} \mid \mathbf{t} \text{ splitting family}\}$

sと基数不変量

s は連続体の基数不変量の典型例である.

splitting game

集合 $A \subseteq \mathcal{P}(\omega)$ を固定.次のゲームを A に関する splitting game と呼ぶ:

 $n_0 < n_1 < n_2 < \cdots < n_k < \cdots$ は単調増大な自然数列で, $i_0, i_1, \ldots, i_k, \ldots$ は $\{0, 1\}$ の元の列. プレイヤー $\|$ が勝つ \Leftrightarrow プレイヤー $\|$ が0と1をそれぞれ無限回プレイしていて,かつある $A \in \mathcal{A}$ が存在して,

 $\{n_k: k \in \omega\} \cap A = \{n_k: k \in \omega \text{ and } i_k = 1\}.$

splitting game に関する基数不変量の定義

定義

```
\mathbf{s}_{\mathrm{game}}^{1} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{P}(\omega), \}
                             プレイヤー I が A に関する splitting game で
                             必勝戦略を持たない }
\mathbf{s}_{\mathrm{game}}^{\mathrm{II}} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{P}(\omega), \}
                             プレイヤー II が A に関する splitting game で
                             必勝戦略を持つ }
```

splitting game に関する定理

次はかんたんにわかる.

命題

$$\mathbf{s} \leq \mathbf{s}_{\mathrm{game}}^{\mathrm{I}} \leq \mathbf{s}_{\mathrm{game}}^{\mathrm{II}} \leq \mathbf{c}.$$

次は議論が必要.

定理

$$\mathbf{s}_{\mathrm{game}}^{\mathrm{I}} = \mathbf{s}_{\sigma}$$
 かつ $\mathbf{s}_{\mathrm{game}}^{\mathrm{II}} = \mathbf{c}$.

(s_σの定義は次のページ)

σ -splitting number の定義

自然数の無限集合 A と $f: \omega \to [\omega]^\omega$ について A が f を σ -分割するとは,

任意のnに対してAがf(n)を分割する

ということ、自然数の無限集合の集合 S について

• \mathcal{S} \not σ -splitting family

 $:\iff (\forall f:\omega \to [\omega]^\omega)(\exists A\in\mathcal{S})(A\, \text{が}\, f\, \, \text{を}\, \sigma\, \text{分割する})$

次の \mathbf{s}_{σ} を σ -splitting number という:

• $\mathbf{s}_{\sigma} := \min\{|\mathcal{S}| : \mathcal{S} \mathsf{tt} \sigma\text{-splitting family}\}$

 $s \ c \ s_\sigma$ が ZFC で等しいことが示せるかどうかは長年の未解決問題!

splitting* game

集合 $A\subseteq \mathcal{P}(\omega)$ を固定.次のゲームを A に関する splitting* game と呼ぶ:

 $i_0, i_1, \ldots, i_k, \ldots$ と $j_0, j_1, \ldots, j_k, \ldots$ はどちらも $\{0, 1\}$ の元の列. プレイヤー $\|$ が勝つのはプレイヤー $\|$ が有限回しか1 を言わなかったとき,または,

 $\{k \in \omega : j_k = 1\}$ は \mathcal{A} の元でかつ $\{k \in \omega : i_k = 1\}$ を分割する

となるとき.

splitting* game に関する基数不変量の定義

定義

```
\mathbf{s}_{\mathrm{game}^*}^1 = \min\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega), \}
                             プレイヤー I が A に関する splitting* game で
                            必勝戦略を持たない }
\mathbf{s}_{\mathrm{came}^*}^{\mathrm{II}} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{P}(\omega), \}
                             プレイヤー II が A に関する splitting* game で
                            必勝戦略を持つ }
```

splitting* game についての考察

```
splitting* game はプレイヤーII にとって splitting game より難しいゲーム.
したがって,\mathbf{s}_{\mathrm{game}}^{\mathrm{I}} \leq \mathbf{s}_{\mathrm{game}^*}^{\mathrm{I}} かつ\mathbf{s}_{\mathrm{game}}^{\mathrm{II}} \leq \mathbf{s}_{\mathrm{game}^*}^{\mathrm{II}}. つまり,\mathbf{s}_{\sigma} \leq \mathbf{s}_{\mathrm{game}^*}^{\mathrm{I}} かつ\mathbf{s}_{\mathrm{game}^*}^{\mathrm{II}} = \mathbf{c}.
```

splitting* game についての定理

定理

命題 $\mathbf{s} < \mathbf{s}_{\mathrm{game}^*}^{\mathrm{I}}$ は ZFC から相対的に無矛盾.

定理

 $\mathbf{s}^{\mathrm{I}}_{\mathrm{game}^*} \leq \mathsf{non}(\mathcal{M}), \mathfrak{d}, \mathsf{non}(\mathcal{N}).$

$\mathbf{s}_{\mathrm{game}}^{\mathrm{I}}$ を追加した図式

参考文献

[Bar10] Tomek Bartoszynski. "Invariants of measure and category". In: *Handbook of Set Theory*. Springer, 2010, pp. 491–555.

[BJ95] Tomek Bartoszyński and Haim Judah. Set Theory: on the structure of the real line. CRC Press, 1995.

[Bla10] Andreas Blass. "Combinatorial cardinal characteristics of the continuum". In: Handbook of set theory. Springer, 2010, pp. 395–489.

[HMM10] Michael Hrušák, David Meza-Alcántara, and Hiroaki Minami. "Pair-splitting, pair-reaping and cardinal invariants of $F\sigma$ -ideals". In: The Journal of Symbolic Logic 75.2 (2010), pp. 661–677.

[IS88] Jaime I. Ihoda and Saharon Shelah. "Souslin Forcing". In: Journal of Symbolic Logic 53.4 (1988), pp. 1188–1207.

我々のプレプリント: arXiv:2308.12136