Rétrofit automobile : Conversion optimisée pour une mobilité plus durable

Session 2025

« Transition, transformation, conversion »

Aya TAGHZOUTI

Introduction

Objectif mondial pour 2050 : Remplacer la moitié du parc automobile international dans le cadre de la <u>transition</u> énergétique vers l'électrique.

Figure-1 : Bilan carbone d'une voiture thermique vs électrique

Figure-2 : Détail du bilan carbone d'un véhicule électrique

Figure-3 : Coût en carbone du remplacement radical du parc automobile

Figure-4 : Coût en carbone du remplacement partiel (rétrofit) du parc automobile

Processus du rétrofit électrique d'un véhicule thermique de type citadine

Élément	Poids retiré (kg)	Poids ajouté (kg)
Moteur thermique	107	
Réservoir à carburant	5	
Carburant (≈ plein)	20	
Ligne d'échappement	8	
Radiateurs	9	1
Démarreur	6	_
Divers périphériques	_	30
Batterie de traction		100 à 600
Chargeur embarqué		13
Convertisseur DC/DC		2
Onduleur moteur		4
Total	~155 kg	~210 à 710 kg

Figure-5 : Éléments retirés/ajoutés à un véhicule de type citadine ~1100 kg dans le cadre du rétrofit

Problématique

- La batterie détermine l'autonomie mais aussi le poids ;
- Loi internationale : +20% de masse maximale autorisée après le rétrofit ;
- Le moteur doit encore assurer des performances acceptables.
- → Jusqu'à quelle capacité de batterie un rétrofit reste-t-il pertinent sans dépasser la masse autorisée ni dégrader les performances du véhicule ?

Figure-6 : Trouver le compromis masse/autonomie idéal sans enfreindre la loi

Sommaire

Modélisation mathématique

Objectif = Trouver la capacité de batterie optimale, afin de :

- Maximiser l'autonomie,
- f Éviter une surconsommation due à la masse,
- Respecter la réglementation rétrofit.

Hypothèses:

- Vitesse constante, pas de récupération d'énergie.
- Consommation du véhicule dépend de la masse de la batterie.

consommation d'énergie d'un véhicule électrique par kilomètre (Wh/kg) consommation de base du véhicule (Wh/kg) pénalisation par kg de la masse ajoutée (Wh/kg²) masse de la batterie (kg)

$$\Delta m = \frac{C}{r}$$
 capacité de la batterie (Wh)

densité énergétique (Wh/kg)

Modèle de l'autonomie

- Autonomie croît avec capacité, mais non linéairement;
- À cause du poids, l'autonomie atteint un maximum;
- Objectif: trouver ce compromis optimal dans la zone légale (+20%) = maximum de la fonction rationnelle A.

Intégration de la contrainte légale

La loi impose:

$$m_{total} \leq m_0 + 0, 2 \times m_0$$

Donc:

$$\Delta m \le 0.2 \times m_0 \to \frac{c}{r} \le 0.2 \times m_0$$

$$\to c \le 0.2 \times r \times m_0$$

Limite sur C pour une voiture de type citadine (1100kg):

$$C_{max} = 33 \text{ kW}$$

Figure-7 : Autonomie maximale atteignable dans la limite légale de rétrofit

Expérience à échelle réduite

Objectif de l'expérience : simuler une batterie plus lourde en ajoutant des masses.

 \rightarrow La capacité C_{max} fournit-elle une performance satisfaisante en comparaison aux batteries de capacité inférieure ?

Comment?

- En quantifiant à partir de quelle masse on remarque un déclin de performance significatif;
- En vérifiant si l'ajout de batterie reste rentable en autonomie ;
- F En validant que le modèle théorique s'accorde avec la réalité.

Figure-8 : Composantes du châssis robotique

Figure-9 : Vue de droite du châssis robotique

Figure-10 : Vue de bas du châssis robotique

Figure-11 : Schéma explicatif

Figure-12 : Masses respectives du robot et de l'ensemble ($2 \times Pile$)

Masse du robot avec piles	Masse d'une voiture de type citadine	Échelle
$m_{robot} = 285 \text{ g}$	$m_{voiture}$ = 1 100 000g	e = 3859

Problème de la densité énergétique

f (pile li-on) = 270 kWh/kg > r (batterie de voiture rétrofitée) = 100

kWh/kg.

f On garde la masse m_{piles} = 68 g et on calcule la capacité $C_{piles-th\'eorique}$ qui

leur correspond avec une densité énergétique r = 100 kWh/kg.

 \rightarrow $C_{piles-th\acute{e}orique}$ = 6,8 Wh en échelle réduite (26,3 kWh en échelle 1).

Masse ajoutée (g)	Masse totale (g)	Capacité simulée (kWh)
0	68	26.2
10	78	30.1
20	88	34.0
40	108	41.7
50	118	45.5
60	128	49.4
80	148	57.1
100	168	64.8

Figure-13 : Masses (réelle et en échelle réduite) équivalente à la capacité de chaque batterie simulée

Figure-14 : Détails du protocole expérimental

$$V(m_i) = \frac{d}{X - t_i}$$

Résultats expérimentaux

Masse ajoutée (g)	Temps pour 2 m (s)	Vitesse (m/s)
0	2.60	0.77
10	2.75	0.73
20	2.90	0.69
40	3.40	0.59
50	3.70	0.54
60	4.00	0.50
80	4.50	0.44
100	5.10	0.39

Figure-15 : Vitesse du robot selon la masse ajoutée

Figure-16 : Vitesse du robot selon la masse ajoutée

Figure-17 : Autonomie du robot selon la masse ajoutée

Interprétation des résultats

- Déclin significatif de vitesse (performance) à partir de $m_{critique} = 98$ g, qui correspond à $C_{critique} = 38$ kWh
 - → Limite réglementaire (+20% maximum) justifiée.
- Dans la marge étudiée, l'ajout de batterie reste rentable en autonomie.
- Le rétrofit d'une voiture de type citadine de masse m=1100 kg est pertinent et optimal pour une batterie de type Li-on, de rendement énergétique $r \ge 100 \text{ Wh/kg}$, et de capacité $C_{optimale} = 33 \text{ kW}$.

Confrontation et validation

Figure-18 : Autonomie du robot selon la capacité simulée, en fonction des résultats de l'expérience

Validation du modèle mathématique suggéré

La formule proposée est-elle donc valide?

- D'après le graphe comparatif, le modèle théorique fournit des résultats assez proches de ceux de l'expérience.
- Des écarts dus aux paramètres négligés : inertie, pertes, frottements,...
- → On peut donc valider partiellement le modèle théorique suggéré au début, et s'y appuyer pour juger l'efficacité du rétrofit pour d'autres types de véhicules ou de batteries.

Conclusions

- La tendance générale est confirmée : ajouter de la masse améliore l'autonomie jusqu'à un point, puis la dégrade.
- Les écarts observés entre modèle et expérience sont dus à des effets réels (pertes mécaniques, frottements, simplifications du modèle).
- L'expérience a validé partiellement le modèle proposé, et permis d'illustrer l'intérêt du rétrofit bien dimensionné.

Ce travail pourrait être amélioré par une **étude du cycle complet de vie** d'un véhicule rétrofité, une **modélisation énergétique plus fine**, ou encore par une **optimisation multi-critères** intégrant coût, autonomie, et impact environnemental.

MERCI POUR VOTRE ATTENTION

Fin de la présentation

Annexe : Formule utilisée pour le calcul des masses à ajouter au robot

$$m_{\rm exp} = \frac{C \cdot 1000}{r} \times \frac{m_{\rm robot}}{m_{\rm voiture}}$$

où:

- C: capacité de la batterie à simuler (en **kWh**)
- r : densité énergétique (en Wh/kg)
- m_{robot} : masse totale de ton robot (en **g**)
- $m_{
 m voiture}$: masse réelle du véhicule (en **g**),

Annexe: Modèle de consommation simulée

$$ext{Autonomie simul\'ee} = rac{E_{ ext{batt}}}{ ext{conso}(v)} igg| ext{ où } ext{conso}(v) = a \cdot v + b$$

avec:

- ullet $E_{
 m batt}$: énergie disponible
- ullet conso(v) : consommation simulée (en Wh/km) croissante avec la vitesse
- a = 40, b = -1

Annexe : Code Python pour le tracé de la courbe de l'autonomie A(C)

```
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 m0 = 1100
5 r = 150
6 \text{ eta} = 0.9
7 E0 = 120
8 k = 0.02
10 # Capacité maximale selon la contrainte des +20 %
11 C max = 0.2 * m0 * r # En Wh
12
13 C = np.linspace(1000, C max, 500)
14
15 A = (C * eta) / (E0 + (k * C / r))
16
17 plt.figure(figsize=(8, 5))
18 plt.plot(C / 1000, A, label='Autonomie A(C)', color='green')
19 plt.axvline(x=C_max / 1000, color='red', linestyle='--', label='Limite légale (~33 kWh)')
20 plt.xlabel("Capacité C (kWh)")
21 plt.ylabel("Autonomie A(C) (km)")
22 plt.title("Autonomie en fonction de la capacité (dans la limite réglementaire)")
23 plt.grid(True)
24 plt.legend()
```

Annexes : Code Python pour le tracé du graphe de confrontation

```
1 import numpy as np
 2 import matplotlib.pyplot as plt
4 masses = np.array([0, 10, 20, 30, 40, 50, 60, 80, 100])
 5 temps 2m = np.array([2.6, 2.75, 2.9, 3.1, 3.4, 3.7, 4.0, 4.5, 5.1])
6 vitesses = 2 / temps 2m
7 vitesses kmh = vitesses * 3.6
9 E batt = 6.8
10
11 a, b = 40, -1
12 conso = a * vitesses kmh + b
13 autonomie co = E batt / conso
14 eta, E0, k, r = 0.9, 120, 0.02, 100
15 capacites Wh = (masses + 68) / 1000 * r
16 autonomie theo = (capacites Wh * eta) / (E0 + k * capacites Wh / r)
17
18 plt.plot(masses, autonomie co, marker='o', linestyle='-', color='purple', label="Autonomie expérimentale")
19 plt.plot(masses, autonomie theo, 's--', label='Autonomie théorique', color='green')
20 plt.xlabel("Masse ajoutée (g)")
21 plt.ylabel("Autonomie (km)")
22 plt.title("Autonomie")
23 plt.grid(True)
24 plt.legend()
25 plt.tight layout()
26 plt.show()
```