SYDE 556/750

Simulating Neurobiological Systems Lecture 9: Analysing Representations

Andreas Stöckel

March 5, 2020

Decoding Polynomials

LIF Tuning Curve Principal Components

ReLU Tuning Curve Principal Components

ReLU Tuning Curve Principal Components

Reminder: Legendre Polynomials

$$\varphi_i(x) = \frac{1}{2^i} \sum_{k=0}^n {i \choose k}^2 (x-1)^{i-k} (x+1)^k$$

Modifying the Basis – Same Maximum Rate (I)

Modifying the Basis – Same Maximum Rate (I)

Modifying the Basis – Equidistant *x*-Intercepts (II)

Modifying the Basis – Limited *x*-Intercepts (III)

Modifying the Basis – Symmetric Tuning Curves (IV)

Gaussian Tuning Curve Principal Components

Gaussian Tuning Curve Principal Components

PCA of 2D Tuning Curves

PCA of 2D Tuning Curves

Combination of 2D Polynomials

Conclusions

- ► Can use **PCA** to find the basis functions underlying neural representations
- ► Singular values inversely proportional to noise
- Basis function shape depends on
 - x-intercept distributions
 - Neuron response curve G[J]
- Finding optimal tuning curves for representations
 - ⇒ Full network optimization (must use gradient descent)

Image sources

Title slide

Maurice Denis: Homage to Cézanne, 1900

From Wikimedia.