0.2 实数集六大定理

• 确界存在定理

若集合 S 有上界,则其必有上确界,记为 $\alpha = \sup S$.

• 单调有界定理

若数列 $\{a_n\}$ 单调递增且有上界,则 $\{a_n\}$ 收敛.

• 致密性定理

有界数列必有收敛子列。

• 有限覆盖定理

闭区间的任意开覆盖必有有限子覆盖。

• 区间套定理

区间集 $\{[a_n,b_n]|n\in\mathbb{N}^*\}$ 满足 $[a_{n+1},b_{n+1}]\subset[a_n,b_n]$,且 $\lim_{n\to\infty}(b_n-a_n)=0$,那么存在 且只存在一个 ξ 使得对每一个 n 都有 $\xi\in[a_n,b_n]$,并且

$$\lim_{n o\infty}a_n=\lim_{n o\infty}b_n=\xi.$$

• 柯西收敛原理

这六个定理严格互相等价,任意两者之间相互推导,共有 $A_6^2=30$ 个证明。

1. 确界存在定理 → 单调有界定理

令集合 $S=\{a_n|n\in\mathbb{N}^*\}$,记集合 S 的上确界为 α ,下证 $\{a_n\}$ 收敛于 α . 任取一个 $\varepsilon>0$,根据最小上界的性质,存在一个 a_k 满足 $\alpha-\varepsilon< a_k<\alpha$,并且由于 $\{a_n\}$ 单增,对于所有 n>k,有 $|a_n-\alpha|<\varepsilon$,即证明。

2. 确界存在定理 → 柯西收敛原理

如果 $\{a_n\}$ 是一个柯西数列,考虑这样一个集合 $A=\{x|\forall N\in\mathbb{N}^*, \exists n>N$ 使得 $a_n>x\}$,显然这个集合不空且有上界,我们记 $\alpha=\sup A$,现在我们证明 $\{a_n\}$ 收敛于 α .

根据 A 的定义,我们知道,对于每个 $\alpha+\varepsilon$,都 $\exists N_1\in\mathbb{N}^*$ 使得 $\forall n>N_1$,有 $a_n<\alpha+\varepsilon$. 又因为 $\{a_n\}$ 是一个柯西数列,所以对于 ε , $\exists N_2$ 使得 $\forall n\geq N_2$ 满足 $|a_{n_0}-a_n|<\varepsilon$ $(n_0\geq N_2)$.

我们取 $n > \{N_1, N_2\}_{max}$,根据 A 的定义, $\exists n_0 \geq n$ 使得 $\alpha \leq a_{n_0} < \alpha + \varepsilon$,又因为这时恒有 $|a_{n_0} - a_n| < \varepsilon$,从而得到 $|a_n - \alpha| < 2\varepsilon$,于是证明。

3. 确界存在定理 → 有限覆盖定理

假设闭区间 [a,b] 的一个无限开覆盖为 $F=\{E_{\lambda}\}$,考虑集合 $A=\{x|[a,x]$ 可被 F 中有限个区间覆盖 B ,容易说明 A 非空且有上界,因此 $\alpha=\sup A$ 存在。

现在我们证明 $\alpha > b$,采用反证法,如果 $\alpha \leq b$,因为 $\alpha \in [a,b]$,所以存在一个 F 中的开区间 (m,n) 使得 $m < \alpha < n$ 。显然存在一个 β 使得 $\alpha < \beta < n$,这意味着 $[a,\beta]$ 也能被有限个开区间覆盖,与 $\alpha = \sup A$ 矛盾,从而证明。

当 $\alpha > b$ 时,所证自明。

4. 确界存在定理 → 致密性定理

考虑有界数列 $\{a_n\}$,对这样一个集合 $A=\{x| \forall n\in\mathbb{N}, \exists i,j>n, a_i\leq x\leq a_j\}$,显然 A 有界,我们接下来说明 A 非空。

若 A 是空集,则对于任意实数 x,当 $n > N_1$ 时,有 $a_n > x$,这显然和 A 有界矛盾。 $a_n < x$ 的情况显然同理。

从而 A 非空有界,根据确界原理,记 $\alpha = \sup A$,我们证明 $\{a_n\}$ 的一个子列 $\{a_{j_n}\}$ 收敛于 α 。

由于对任意 $\varepsilon > 0$, $\exists N_2$,使得当 $n > N_2$ 时,有 $a_n < \alpha + \varepsilon$,另一方面,由 A 的定义,存在子列 $\{a_{j_n}\}$ 满足 $\alpha < a_{j_n}$ 。我们取 $a_{j_n} > N_2$,所以有 $\alpha < a_{j_n} < \alpha + \varepsilon$,从而证明。

5. 确界存在定理 →单调有界定理 → 区间套定理

用单调有界定理极易证明区间套定理:

显然数列 a_n , b_n 单调有界,分别记其极限为 ξ_1,ξ_2 ,且 $\lim_{n\to\infty}(a_n-b_n)=\xi_1-\xi_2=0$,即证。