

U.S. ARMY, CERC

U.S. Army
Coast. Eng. Res. Ctr.
CETA

CETA 82-4

Hand-Held Calculator Algorithms for Coastal Engineering (Second Series)

by

Todd L. Walton, Jr.

WHOI
DOCUMENT
COLLECTION

COASTAL ENGINEERING TECHNICAL AID NO. 82-4

NOVEMBER 1982

Approved for public release;
distribution unlimited.

U.S. ARMY, CORPS OF ENGINEERS
COASTAL ENGINEERING
RESEARCH CENTER

Kingman Building

Fort Belvoir, Va. 22060

TC
330
.U8
no. 82-4

Reprint or republication of any of this material shall give appropriate credit to the U.S. Army Coastal Engineering Research Center.

Limited free distribution within the United States of single copies of this publication has been made by this Center. Additional copies are available from:

National Technical Information Service
ATTN: Operations Division
5285 Port Royal Road
Springfield, Virginia 22161

Contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This report provides coastal engineers a second series of algorithms for a number of hand-held calculator programs for coastal engineering, primarily in the area of wave transformations and wave generation. These algorithms were developed under the U.S. Army Coastal Engineering Research Center's (CERC) Littoral Data Collection Methods and Their Engineering Application work unit, Shore Protection and Restoration Program, Coastal Engineering Area of Civil Works Research and Development.

The report was prepared by Dr. Todd L. Walton, Jr., Hydraulic Engineer, under the general supervision of Dr. J.R. Weggel, Chief, Evaluation Branch, and Mr. N. Parker, Chief, Engineering Development Division.

The author acknowledges the assistance of J. Dean in preparing the manuscript. The review by Dr. J.R. Weggel is appreciated.

Technical Director of CERC was Dr. Robert W. Whalin, P.E., upon publication of this report.

Comments on this publication are invited.

Approved for publication in accordance with Public Law 166, 79th Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th Congress, approved 7 November 1963.

Ted E. Bishop
TED E. BISHOP
Colonel, Corps of Engineers
Commander and Director

CONTENTS

	Page
CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)	5
I INTRODUCTION	7
II PROGRAMS	7
1. 100R41CV Linear Wave Theory Wavelength (RPN Logic)	9
2. 101R41CV Calculation of Wave Parameters from Linear Theory (RPN Logic)	12
3. 102R41CV Wave Approximation to Breaking Wave Height and Breaking Wave Angle (RPN Logic)	18
4. 103R41CV Shallow-Water Wave Forecasting Equations (RPN Logic)	24
5. 104R41CV Depth-Limited Design Breaking Wave Height at Structure (RPN Logic)	29
6. 105R41CV Wave Transmission - Fuchs' Equation (RPN Logic) .	33
APPENDIX BLANK PROGRAM FORMS.	37

CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	by	To obtain
inches	25.4	millimeters
	2.54	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	30.48	centimeters
	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.0283	cubic meters
yards	0.9144	meters
square yards	0.836	square meters
cubic yards	0.7646	cubic meters
miles	1.6093	kilometers
square miles	259.0	hectares
knots	1.852	kilometers per hour
acres	0.4047	hectares
foot-pounds	1.3558	newton meters
millibars	1.0197×10^{-3}	kilograms per square centimeter
ounces	28.35	grams
pounds	453.6	grams
	0.4536	kilograms
ton, long	1.0160	metric tons
ton, short	0.9072	metric tons
degrees (angle)	0.01745	radians
Fahrenheit degrees	5/9	Celsius degrees or Kelvins ¹

¹To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: $C = (5/9) (F - 32)$.

To obtain Kelvin (K) readings, use formula: $K = (5/9) (F - 32) + 273.15$.

HAND-HELD CALCULATOR ALGORITHMS FOR COASTAL
ENGINEERING (Second Series)

by
Todd L. Walton, Jr.

I. INTRODUCTION

The advent of the hand-held programmable calculator has led to the development of numerous programs in various fields of engineering and science. Coastal engineering is no exception. This report provides algorithms for a number of calculator programs useful in performing coastal engineering calculations, primarily in the area of wave transformations and wave generation.

There are basically two types of hand-held programmable calculators: those that use algebraic logic, such as Texas Instruments, Algebraic Operating System (AOS) notation, and those that use Reverse Polish Notation (RPN), such as Hewlett-Packard. The six programs presented herein are versions of RPN logic suitable for use on HP41CV programmable calculators with or without accessory printer. Each program is documented, the assumptions are briefly described, and references to more detailed presentations of the theory are given. This same set of algorithms was programmed for the TI-59 (AOS logic) and HP67 (RPN logic) calculators in an earlier report with the same title (Walton, Birkemeier, and Weggel, 1982)¹.

Each of the RPN programs incorporates HP41 compatible print routines which print and label all input and output parameters. The user only has to enter the input parameters and the results are automatically computed and printed. Since the printing routines increase program length by as much as 25 percent, use of a magnetic card for permanent program storage is recommended. All print steps are marked with asterisks and need not be entered if printing is not desired.

II. PROGRAMS

Six programs (100, 101, 102, 103, 104, and 105) are presented in this report. Program 100, a simple program that computes linear wave theory wavelength for a given depth, is designed to be used as the basis for any program that requires wavelength; in fact, it has been incorporated into programs 101, 102, and 105.

Program 101 is another basic program which computes not only wavelength but also a number of other linear wave theory parameters. This program forms the basis for program 102 and can be adapted to other programs as well.

¹WALTON, T.L., BIRKEMEIER, W.A., and WEGGEL, J.R., "Hand-Held Calculator Algorithms for Coastal Engineering," CETA 82-1, U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Jan. 1982.

Program 102 computes linear wave parameters and breaking wave height and direction based on nearshore or deepwater wave information. Program 103 can be used to forecast wave height and period in shallow water. Program 104 and 105 address wave conditions at structures--program 104 predicts the depth-limited design breaking wave height at a structure; 105 uses Fuchs' equation to predict wave transmission over a thin barrier.

Each program allows either English or metric input and output. Program listings are annotated, making it possible to follow the logic of the algorithm and to make modifications if desired.

There are undoubtedly many calculator programs not included here that have been developed on coastal engineering subjects. Practicing engineers who would like to disseminate such programs (in either AOS or RPN) to other users are encouraged to submit them to the Coastal Engineering Research Center (CERC). If the response is great enough, additional reports presenting the programs will be prepared. Comments, programs, or suggestions for programs should be sent to:

Commander and Director
US Army Coastal Engineering Research Center
ATTN: Evaluation Branch
Kingman Building
Fort Belvoir, VA 22060

These programs and future programs will generally correspond to the following numbering scheme:

Miscellaneous	0-99
Waves and currents	100-299
Inlets	300-499
Beaches	500-699
Geology	700-899
Structures	900-1099

In general, the documentation of programs submitted should be in a format paralleling that of the programs presented in this report. A blank set of forms which can be reproduced is included in the Appendix.

Program Description

Program Title	100R-41CV Linear Wave Theory Wavelength (RPN Logic)	Date	1/82
Name	T.L. Walton, Jr.		
Address	Coastal Engineering Research Center		
City	Kingman Building	State	Virginia
	Fort Belvoir,	Zip Code	22060

Program Description, Equations, Variables, etc.

This algorithm takes deepwater wavelength as input and using the depth at a given site iterates to obtain wavelength by linear wave theory. Algorithm uses English or metric system of units.

REFERENCE

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vol. I, Eq. (2-4), Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977.

Operating Limits and Warnings

User Instructions

100R-41CV LINEAR THEORY WAVELENGTH (RPN LOGIC)

SIZE: *00*

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (WAVEL)		[XEQ] "WAVEL"	E OR M?
	TO CALCULATE L IN ENGLISH	UNITS:		
2	PRESS GTO "E"		GTO "E"	
3	PRESS R/S		[R/S]	PERIOD?
4	ENTER PERIOD T, PRESS R/S	T(sec)	[R/S]	DEPTH?
5	ENTER DEPTH D, PRESS R/S	d(ft)	[R/S]	L(ft)
	TO CALCULATE L IN METRIC	UNITS:		
2a	PRESS GTO "M"		GTO "M"	
3a	PRESS R/S		[R/S]	PERIOD?
4a	ENTER PERIOD T, PRESS R/S	T(sec)	[R/S]	DEPTH?
5a	ENTER DEPTH D, PRESS R/S	d(meters)	[R/S]	L(meters)
	Example 1 and 1a			
	$T = 10\text{sec}$, $d = 10\text{ft}$ (3.05m)			
	ENGLISH AND METRIC PRINTOUTS			
	ENGLISH			
	PERIOD= 10.0000 ***			
	DEPTH= 10.0000 ***			
	LENGTH= 175.7738 ***			
	METRIC			
	PERIOD= 10.0000 ***			
	DEPTH= 3.0500 ***			
	LENGTH= 53.6063 ***			
	note: " = [ALPHA]			

100R-41CV-2

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
81	LBL "WAVEL"			57	EMX		
82	"E OR M ?"			58	+		
83	PROMPT			59	/		
84	LBL E			60	RCL 01		
85	32.2			61	*		
86	STO 06			62	PCL 03		
87	"ENGLISH"		<i>g(English) → R06</i>	63	+		
88	PRA			64	2		
89	GTO 01			65	/		
10	LBL "M"			66	STO 02		
11	"METRIC"			67	PCL 03		
12	PRA			68	-		
13	9.81			69	RBS		
14	STO 06			70	1		
15	LBL 01			71	X?Y?		
16	"PERIOD=			72	GTO 05		
17	PRA			73	RCL 02		
18	"PERIOD?"			74	GTO "ITERAT"		
19	PROMPT			75	LBL 05		
20	PRX			76	RCL 02		
21	STO 07		<i>T → R07</i>	77	"LENGTH=		
22	X?2			78	PRA		
23	RCL 06			79	PRX		
24	*			80	STOP		
25	2			81	,END.		
26	/						
27	PI						
28	/						
29	STO 01						
30	"DEPTH=						
31	PRA						
32	"DEPTH?"						
33	PROMPT						
34	PRX						
35	ENTER†						
36	2						
37	*						
38	PI						
39	=						
40	STO 05		<i>2πd → R05</i>				
41	RCL 01						
42	LBL "ITERAT"						
43	STO 03		<i>Lold → R03</i>				
44	1/X						
45	PCL 05						
46	*						
47	STO 04						
48	EMX						
49	PCL 04						
50	CHS						
51	EMX						
52	-						
53	PCL 04						
54	EMX						
55	PCL 04						
56	CHS						

100R-41CV-3

* THESE STEPS MUST BE DELETED IF NO PRINTER IS AVAILABLE

Program Description

Program Title	101R-41CY Calculation of Wave Parameters from Linear Theory (RPN Logic)		
Name	T.L. Walton, Jr.		1/82
Address	Coastal Engineering Research Center		
City	Kingman Building	State	
	Fort Belvoir,	Virginia	Zip Code 22060

Program Description, Equations, Variables, etc.

This program calculates the product of the wave number and depth, kd , the ratio of group wave speed to wave celerity, $n = 0.5 (1+2kd/\sinh 2kd)$, the group wave speed, C_g , the shoaling coefficient, K_s , the refraction coefficient, K_r , horizontal orbital velocity, u , and vertical orbital velocity, w .

Program input includes wave period, T , deepwater wave angle, α_0 , deepwater wave height, H_0 , wave phase angle, θ , depth of water, d , at which results are desired, and depth from surface, z , at which velocities are calculated. This program assumes straight and parallel offshore bottom contours for assumption of Snell's law of refraction. Algorithm uses English or metric system of units.

REFERENCE

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vol. I, Ch. 2, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977.

Operating Limits and Warnings

If printer is not used, R/S must be inserted where output values are desired (i.e., where printer output steps are deleted).

User Instructions

101R-41CV CALCULATION OF WAVE PARAMETERS FROM LINEAR THEORY (RPN LOGIC) SIZE: 021

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (LINEAR)		[XEQ] "LINEAR"	E OR M?
	TO COMPUTE IN ENGLISH UNITS:			
2	PRESS GTO "E"		GTO "E"	
3	PRESS R/S		[R/S]	PERIOD?
4	ENTER PERIOD T, PRESS R/S	T(sec)	[R/S]	DEPTH?
5	ENTER DEPTH D, PRESS R/S	d(ft.)	[R/S]	AO?
6	ENTER WAVE ANGLE α_0 , PRESS R/S	α_0 (deg)	[R/S]	HO?
7	ENTER WAVE HEIGHT H_0 , PRESS R/S, H_0 (ft.)	[R/S]		Z?
8	ENTER DEPTH BELOW SURFACE, Z, PRESS R/S	z(ft.)	[R/S]	PHASE?
9	ENTER WAVE PHASE ANGLE θ , PRESS R/S.	θ (deg).	[R/S]	
10	READ kd (wave number x depth)			kd
11	READ n (ratio of group wave speed to wave celerity)			n
12	READ C_g (group wave speed)			C_g (ft/sec)
13	READ K_s (shoaling coefficient)			K_s
14	READ K_r (refraction coefficient)			K_r
15	READ H (wave height)			H (ft.)
16	READ U (horizontal orbital velocity)			U (ft/sec)
17	READ W (vertical orbital velocity)			W (ft/sec)
	note: " = [ALPHA]			

101R-41CV-2

User Instructions

STEP	INSTRUCTIONS	INPUT	FUNCTION	SIZE:
				DISPLAY
	TO COMPUTE IN METRIC UNITS:			
2a	PRESS GTO "M"		GTO "M"	
	STEPS 3a-17a ARE THE SAME AS			
	STEPS 3-17 EXCEPT			
	INPUT H_0 , z in METERS			
	OUTPUT H (meters)			
	C_g , U , W IN METERS/SEC			
	EXAMPLES 1 and 1a:			
	$T = 8 \text{ SEC}$, $d = 50 \text{ ft}$ (15.244 m), $\alpha_0 = 30^\circ$			
	$H_0 = 18 \text{ ft}$ (5.4878 m), $z = -15 \text{ ft}$ (-4.5732 m), $\theta = 60^\circ$			
	PRINTOUTS:			
	ENGLISH		METRIC	
	PERIOD=	8.0000 ***	PERIOD=	8.0000 ***
	DEPTH=	50.0000 ***	DEPTH=	15.2440 ***
	AG=	30.0000 ***	AG=	30.0000 ***
	HO=	18.0000 ***	HO=	5.4878 ***
	Z=	-15.0000 ***	Z=	-4.5732 ***
	PHASE=	60.0000 ***	PHASE=	60.0000 ***
	KD=	1.1631 ***	KD=	1.1600 ***
	N=	0.7294 ***	N=	0.7302 ***
	CG=	24.6248 ***	CG=	7.5367 ***
	KS=	0.9124 ***	KS=	0.9103 ***
	KP=	0.9746 ***	KR=	0.9752 ***
	H=	16.0095 ***	H=	4.8716 ***
	U=	2.9437 ***	U=	0.9008 ***
	W=	7.4258 ***	W=	1.0465 ***

101R-41CV-3

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
81	LBL "LINEAR"	56	STO 15	57	LBL "MAIN"	58	XEQ 00
82	E OR M ?	59	2	60	*	61	STO 11
83	PROMPT	62	XEQ 01	63	1/X	64	RCL 11
84	LBL E	65	*	66	1	67	+
85	32.2	68	2	69	/		
86	STO 14	70	"H="	71	PRA	72	PRX
87	"ENGLISH"	73	STO 11	74	RCL 04	75	*
88	PRR	76	PCL 02	77	/		
89	CTO 03	78	"CG="	79	PRA	80	PRX
90	LBL "M"	81	1/X	82	RCL 02	83	*
91	"METRIC"	84	RCL 14	85	*	86	4
92	PRR	87	/	88	PT	89	/
93	13 9.81	90	SQRT	91	"Kg="	92	PRA
94	STO 14	93	PRX	94	STO 11	95	RCL 00
95	LBL 03	96	RCL 01	97	*	98	RCL 03
96	"PERIOD?"	99	/	100	PCL 09	101	/
97	PROMPT	102	X ^{1/2}	103	1	104	-
98	"PERIOD="	105	CHS	106	1/X	107	1
99	PRR	108	ENTER	109	RCL 00	110	X ^{1/2}
100	PRX	111	-				
101	21 STO 02						
102	"DEPTH?"						
103	PROMPT						
104	"DEPTH=?"						
105	PRA						
106	PRX						
107	PI						
108	*						
109	2						
110	*						
111	31 STO 01						
112	"AO?"						
113	PROMPT						
114	"AO=?"						
115	PRA						
116	PRX						
117	SIN						
118	38 STO 00						
119	"HO?"						
120	PROMPT						
121	"HO=?"						
122	PRA						
123	PRX						
124	44 STO 88						
125	"Z?"						
126	PROMPT						
127	"Z=?"						
128	PRA						
129	PRX						
130	58 STO 12						
131	"PHASE?"						
132	PROMPT						
133	"PHASE=?"						
134	PRA						
135	PRX						
136	55 PRX						

*DELETE THESE LINES IF A PRINTER IS NOT AVAILABLE. 101R-41CV-4
ALSO SEE 'OPERATING LIMITS AND WARNINGS' ON PAGE 101R-41CV-1.

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
112 *				168 "W="			
113 SQRT				169 PRR			
114 SQRT				170 PRX			
115 STO 10				171 RTN			
* 116 "KR="			K _r → R ₁₀	172LBL 00			
* 117 PRR			K _r → R _x	173 RCL 02			"kd" subroutine lines 172-218
* 118 PRX				174 X#2			
119 RCL 08				175 RCL 14			
120 RCL 10				176 *			
121 *				177 2			
122 RCL 11				178 /			
123 *				179 PI			
* 124 "H="				180 /			
* 125 PRA			H → R _x	181 STO 03			L ₀ → R ₀₃
* 126 PRX				182LBL "ITERRT"			L _{old} → R ₁₁
127 PCL 14				183 STO 11			
128 *				184 1/X			
129 PCL 02				185 PCL 01			
130 *				186 *			
131 2				187 STO 13			2πd → R ₁₃
132 /				188 XEQ 02			L _{old}
133 RCL 04				189 STO 06			cosh(R ₁₃) → R ₀₆
134 /				190 RCL 13			
135 PCL 06				191 RCL 01			
136 /				192 STO 05			
137 STO 08				193 RCL 06			
138 PCL 01				194 /			
139 2				195 PCL 03			
140 /				196 *			
141 PI				197 PCL 11			
142 *				198 +			
143 RCL 12				199 2			
144 *				200 /			
145 2				201 STO 04			L' → R ₀₄
146 *				202 PCL 11			
147 PI				203 -			
148 *				204 ABS			
149 RCL 04				205 1			
150 /				206 X?Y?			
151 STO 05				207 GTO 25			
152 XEQ 02				208 RCL 04			
153 RCL 08				209 GTO "ITERAT"			
154 *				210LBL 25			
155 RCL 15				211 RCL 01			
156 COS				212 PCL 04			
157 *				213 /			
* 158 "I="				214 STO 09			
* 159 PFA			U → R _x	* 215 "KD="			
* 160 PRX				* 216 PRA			
161 PCL 05				* 217 PRX			
162 XEQ 01				218 RTN			
163 PCL 09				219LBL 01			
164 *				220 STO 07			
165 PCL 15				221 ETX			
166 SIN				222 RCL 07			
167 *				223 CHS			

* DELETE THESE LINES IF A PRINTER IS NOT AVAILABLE. 101R-41CV-5
ALSO SEE 'OPERATING LIMITS AND WARNINGS' ON PAGE 101R-41CV-1.

Program Listing

*DELETE THESE LINES IF A PRINTER IS NOT AVAILABLE. 101R-41CV-6
ALSO SEE 'OPERATING LIMITS AND WARNINGS' ON PAGE 101R-41CV-1.

Program Description

Program Title	102R-41CV Linear Wave Approximation to Breaking Wave Height and Breaking Wave Angle (RPN Logic)		
Name	T.L. Walton, Jr.	Date	1/82
Address	Coastal Engineering Research Center		
City	Kingman Building Fort Belvoir,	State	Virginia 22060

Program Description, Equations, Variables, etc.

This program calculates breaking wave height, H_b , and breaking wave angle, α_b , using linear wave theory approximations combined with the shallow-water breaking assumption. Input parameters are wave height, H , wave period, T , wave angle, α , and the water depth, d , where the preceding three variables are measured. An additional input parameter is nearshore beach slope, m . The ratio of the breaking wave height to the water depth at breaking is predicted using the equation

$$\kappa = H_b/d_b = 1.16 \left(\frac{m}{\sqrt{H_o^4/L_o}} \right)^{0.22}$$

from Singamsetti and Wind (1980), where d_b is the water depth at breaking, H_o the deepwater wave height, and L_o the deepwater wavelength. This solution requires the assumption of straight and parallel offshore bottom contours for the application of Snell's law of refraction. Input wave parameters H , T , and α can be in any depth of water, d . Algorithm uses English or metric system of units. The development of the equation is derived on the attached solution sheet.

REFERENCES

SINGAMSETTI, S.R., and WIND, H.G., "Characteristics of Shoaling and Breaking Periodic Waves Normally Incident to Plane Beaches of Constant Slope," Report No. M1371, Toegepast Onberzoek Waterstaat, July 1980.

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vol. I, Ch. 2, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977.

Operating Limits and Warnings

102R-41CV-1

Development of the equation:

From conservations of energy

$$\frac{\gamma H^2}{8} C_g \cos \alpha = \frac{\gamma H_i^2}{8} C_{gi} \cos \alpha_i \quad (1)$$

where the subscript *i* indicates incident wave parameters.

If left-hand side of above equation represents conditions at breaking then

$$C_g = C = C_b = \sqrt{gd_b} = \sqrt{gH_b/\kappa} \quad (2)$$

where

$$\kappa = \frac{H_b}{d_b} \quad (3)$$

Now assume

$$\kappa = 1.16 \left(\frac{m}{\sqrt{H_o'/L_o}} \right)^{0.22} \quad (4)$$

where H_o' is unrefracted deepwater wave height.

Using (1), (2), (3), and (4) it can be found

$$H_b = \left\{ \left(\frac{\kappa}{g} \right)^{1/2} H_i^2 C_{gi} \cos \alpha_i \right\}^{2/5} \quad (5)$$

From Snell's law of refraction

$$\frac{\sin \alpha_b}{C_b} = \frac{\sin \alpha_i}{C_i} \quad (6)$$

therefore,

$$\sin \alpha_b = \left(\frac{\sin \alpha_i}{C_i} \right) \left\{ \left(\frac{g}{\kappa} H_b \right)^{1/2} \right\} \quad (7)$$

User Instructions

102R-41CV LINEAR APPROXIMATION TO BREAKING
WAVE HEIGHT AND BREAKING WAVE ANGLE (RPN LOGIC)

SIZE: 021

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (ANGLE B)		[XEQ] "ANGLEB"	EORM?
	TO CALCULATE H_b, α_b IN ENGLISH UNITS:			
2	PRESS GTO "E"		GTO "E"	
3	PRESS R/S		[R/S]	SLOPE?
4	ENTER SLOPE m , PRESS R/S	m	[R/S]	DEPTH?
5	ENTER DEPTH D , PRESS R/S	d (ft.)	[R/S]	ANGLE?
6	ENTER ANGLE α , PRESS R/S	α (deg.)	[R/S]	H ?
7	ENTER WAVE HEIGHT, H , PRESS R/S	H (ft.)	[R/S]	PERIOD?
8	ENTER WAVE PERIOD T , PRESS R/S	T (sec)	[R/S]	
9	READ K_d			K_d
10	PRESS R/S, READ n		[R/S]	n
11	PRESS R/S, READ C_g		[R/S]	C_g (ft/sec)
12	PRESS R/S, READ K_s		[R/S]	K_s
13	PRESS R/S, READ $H_o' = H_o K_r$		[R/S]	H_o' (ft.)
14	PRESS R/S, READ H_b		[R/S]	H_b (ft.)
15	PRESS R/S, READ α_b		[R/S]	α_b (deg.)
	TO CALCULATE H_b, α_b IN METRIC UNITS:			
	FOLLOW THE SAME INSTRUCTIONS AS ABOVE EXCEPT:			
	PRESS GTO "M" AT STEP 20.			
	INPUT D AND H IN METERS.			
	C_g, H_o', H_b ARE OUTPUT IN M/S, M, M RESPECTIVELY.			
	note: " = [ALPHA]			

102R-41CV-3

User Instructions

102R-41CV-4

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
81	LBL "ANGLE"			57	/		
82	"E-OR M ?"			58	STO 03		$L_0 \rightarrow R_{03}$
83	PROMPT			59	LBL "ITERAT"		$L_{old} \rightarrow R_{11}$
84	LBL E			60	STO 11		
85	32.2			61	1/X		
86	STO 14			62	RCL 12		
87	* "ENGLISH"		$g(English) \rightarrow R_{14}$	63	*		
88	PRA			64	STO 13		$2\pi d \over Load \rightarrow R_{13}$
89	GTO B1			65	XEQ 82		
10	LBL "M"			66	STO 06		$cosh(R_{13}) \rightarrow R_{06}$
11	* "METRIC"			67	RCL 13		
12	PRA			68	XEQ 83		
13	9.81			69	STO 05		
14	STO 14			70	RCL 06		
15	LBL B1			71	/		
16	* "SLOPE=?"		$g(Metric) \rightarrow R_{14}$	72	RCL 03		
17	PRA			73	*		
18	"SLOPE?"			74	RCL 11		
19	PROMPT			75	+		
20	PPX			76	2		
21	STO 15			77	/		
22	* "DEPTH=?"			78	STO 04		
23	PRA			79	RCL 11		
24	"DEPTH?"			80	-		
25	PROMPT			81	RBS		
26	PRX			82	1		
27	STO B1			83	X?Y?		
28	PI			84	GTO 13		
29	*			85	RCL 04		
30	2			86	GTO "ITERAT"		
31	*			87	LBL 13		
32	STO 12			88	RCL 12		
33	* "ANGLE=?"			89	RCL 04		
34	PRA			90	/		
35	* "ANGLE?"			91	STO 09		
36	PROMPT			92	*"KD=?"		$kd \rightarrow R_{09}$
37	PRX			93	PRA		$\rightarrow display$
38	STO 00			94	PRA		
39	* "H=?"			95	STOP		
40	PRA			96	2		
41	"H?"			97	*		
42	PROMPT			98	STO 11		
43	PRX			99	XEQ 83		
44	STO 08			100	1/X		
45	* "PERIOD=?"			101	RCL 11		
46	PRA			102	*		
47	* "PERIOD?"			103	1		
48	PROMPT			104	+		
49	PPX			105	2		
50	STO B2			106	/		
51	Y12			107	STO 01		
52	RCL 14			108	*"H=?"		
53	*			109	PRA		
54	2			110	PPX		
55	*			111	STOP		
56	PT			112	RCL 04		

*DELETE THESE STEPS IF A PRINTER IS NOT AVAILABLE. 102R-41CV-5

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
113 *				169 *HB=*			
114 RCL 02				178 PRA			
115 /				171 PRX			
116 STO 04				172 STOP			
*117 *CC=*			<i>Cg → R09 → display</i>	173 RCL 06			
*118 PRR				174 1/X			
*119 PRX				175 *			
120 STOP				176 SRT			
121 1/X				177 RCL 08			
122 PCL 02				178 SIN			
123 *				179 *			
124 PCL 14				180 RCL 04			
125 *				181 /			
126 4				182 RCL 61			
127 /				183 *			
128 PI				184 ASIN			
129 /				*185 *OB=*			
130 SQRT				*186 PRA			
131 STO 11				*187 PRX			
*132 *KS=*				188 STOP			
*133 PRA				189 RTN			
*134 PRX				190LBL 03			
135 STOP				191 STO 07			
136 RCL 08				192 ETX			
137 RCL 11				193 RCL 07			
138 /				194 CHS			
*139 *HOKR=*				195 ETX			
*140 PRR				196 -			
*141 PRX				197 2			
142 STOP				198 /			
143 RCL 03				199 RTN			
144 /				200LBL 02			
145 SQRT				201 STO 07			
146 PCL 15				202 ETX			
147 /				203 RCL 07			
148 1/X				204 CHS			
149 .22				205 ETX			
150 Y*X				206 +			
151 1,16				207 2			
152 *				208 /			
153 RCL 14				209 .END.			
154 /							
155 STO 06							
156 RCL 08							
157 X*2							
158 PCL 04							
159 *							
160 RCL 08							
161 COS							
162 *							
163 .4							
164 Y*X							
165 RCL 06							
166 .2							
167 Y*X							
168 *							

* DELETE THESE STEPS IF A PRINTER IS NOT AVAILABLE.

102R-41CV-6

Program Description

Program Title	103R-41C Shallow-Water Wave Forecasting Equations (RPN Logic)	
Name	T.L. Walton, Jr.	Date 1/82
Address	Coastal Engineering Research Center	
City	Kingman Building Fort Belvoir,	State Virginia Zip Code 22060

Program Description, Equations, Variables, etc.

This algorithm computes the wave height, H , wave period, T , and minimum duration, t , from input values of the water depth, d , fetch length, F , and adjusted windspeed, U_A , using equations (1), (2), and (3) of CETN-I-6. Equations (1) and (2) are for constant water depth and unlimited wind duration and have been revised from equations (3-25) and (3-26) of the Shore Protection Manual. Wave height and period in this algorithm are significant wave height and period. Algorithm uses English or metric system of units.

REFERENCES

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vols. I, II, and III, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, 1,262 pp.

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, "Method for Determining Adjusted Windspeed, U_A , for Wave Forecasting," CETN-I-5, Fort Belvoir, Va., 1981.

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, "Revised Method for Wave Forecasting in Shallow Water," CETN-I-6, Fort Belvoir, Va., 1981.

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, "Revised Method for Wave Forecasting in Deep Water," CETN-I-7, Fort Belvoir, Va., 1981.

Operating Limits and Warnings

If a printer is not used, R/S must be inserted where output values are desired (i.e., where printer output steps are deleted).

User Instructions

103R-41CV SHALLOW WATER WAVE FORECASTING EQUATIONS (RPN LOGIC)

SIZE: 021

note: " = [ALPHA]

103R-41CV-2

User Instructions

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
	EXAMPLES 1 and 1a			
	1. ENGLISH UNITS, USING			
	$U_A = 40 \text{ mph}$, $F = 300 \text{ miles}$			
	$d = 20 \text{ ft.}$			
	1a. METRIC UNITS, USING			
	$U_A = 64.416 \text{ km/hr}$, $F = 483.12 \text{ km}$			
	$d = 6.1 \text{ m}$			
	PRINTOUTS			
	ENGLISH UNITS:		METRIC UNITS:	
	ENGLISH		METRIC	
	$U_A =$	40.0000 ***	$U_A =$	64.4160 ***
	FETCH=	300.0000 ***	FETCH=	483.1200 ***
	DEPTH=	20.0000 ***	DEPTH=	6.1000 ***
	H=	4.5315 ft. ***	H=	1.3809 m. ***
	T=	5.6032 SEC***	T=	5.6032 SEC***
	TIME=	3.7253 hrs***	TIME=	3.7387 hrs***

103R-41CV-3

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
81+LBL "FOCAST"				57 RCL 05			
82 "E OF M ?"				58 *			
83 PROMPT				59 STO 01			
84+LBL E				60 RCL 00			
85 32.2				61 .75			
86 STO 09				62 YX			
87 1.47				63 .53			
88 STO 07				64 *			
89 5280				65 XEQ 03			
10 STO 01				66 STO 04			
*11 "ENGLISH"				67 RCL 01			
*12 PRA				68 SORT			
13 GTO 01				69 .00565			
14LBL "M"				70 *			
*15 "METRIC"				71 RCL 04			
*16 PRA				72 /			
17 9.81				73 XEQ 03			
18 STO 09				74 RCL 04			
19 .2778				75 *			
20 STO 07				76 .283			
21 1400				77 *			
22 STO 01				78 RCL 08			
23+LBL 01				79 /			
24 "UR?"				*80 "H="			
25 PROMPT				*81 PRA			
*26 "UR="				*82 PRX			
*27 PRA				83 RCL 00			
*28 PPX				84 .375			
29 STO 03				85 YX			
30 "FETCH?"				86 .833			
31 PROMPT				87 *			
*32 "FETCH="				88 XEQ 03			
*33 PPA				89 STO 04			
*34 PRX				90 PCL 01			
35 STO 05				91 .333			
36 "DEPTH?"				92 YX			
37 PROMPT				93 .0379			
*38 "DEPTH="				94 *			
*39 PPA				95 RCL 04			
*40 PRX				96 /			
41 STO 06				97 XEQ 03			
42 PCL 03				98 RCL 04			
43 PCL 07				99 *			
44 *				100 7.54			
45 STO 07				101 *			
46 PCL 09				102 PCL 08			
47 PCL 07				103 /			
48 X12				104 RCL 07			
49 /				105 /			
50 STO 08				*106 "T="			
51 PCL 06				*107 PRA			
52 *				*108 PPX			
53 STO 08				109 RCL 09			
54 PCL 08				110 *			
55 PCL 01				111 RCL 07			
56 *				112 *			
$g(U_A) \rightarrow R_{09}$				$g/U_A^2 \rightarrow R_{01}$			
English Conversion → R_{09}				$\tanh[.53(\frac{gd}{U_A^2})^{0.75}]$ → R_{01}			
English Conversion → R_{01}				$\tanh[.53(\frac{gd}{U_A^2})^{0.75}]$ → R_{09}			
$g(Metric) \rightarrow R_{09}$				$\tanh[\frac{.00565(gE)}{R_{09}}(\frac{gd}{U_A^2})^{0.5}]$ → R_{08}			
metric conversion → R_{09}				$\tanh[\frac{.00565(gE)}{R_{09}}(\frac{gd}{U_A^2})^{0.5}]$ → R_{01}			
metric conversion → R_{01}				$\tanh[\frac{.00565(gE)}{R_{09}}(\frac{gd}{U_A^2})^{0.5}]$ → R_{09}			
$U_A \rightarrow R_{03}$				$\tanh[0.833(\frac{gd}{U_A^2})^{0.379}]$ → R_{09}			
$F \rightarrow R_{05}$				$\tanh[0.833(\frac{gd}{U_A^2})^{0.379}]$ → R_{09}			
$d \rightarrow R_{06}$				$\tanh[\frac{0.0379(gF)}{R_{06}}(\frac{gd}{U_A^2})^{0.333}]$			
converted $U_A \rightarrow R_{07}$				$\tanh[\frac{0.0379(gF)}{R_{06}}(\frac{gd}{U_A^2})^{0.333}]$			
$g/U_A^2 \rightarrow R_{08}$							
$gd/U_A^2 \rightarrow R_{01}$							

* DELETE IF PRINTER IS NOT AVAILABLE
ALSO SEE 'Operating Limits and Warnings' on p. 103R-41CV-1

103R-41CV-4

Program Listing

* DELETE IF PRINTER IS NOT AVAILABLE.
ALSO SEE 'Operating Limits and Warnings' ON P. 103R-41CV-1.

103R-41 CV-5

Program Description

Program Title	104R-41CV Depth-Limited Design Breaking Wave Height at Structure (RPN Logic)	Date	1/82
Name	T.L. Walton, Jr.		
Address	Coastal Engineering Research Center		
City	Kingman Building Fort Belvoir,	State	Virginia 22060

Program Description, Equations, Variables, etc.

This algorithm computes the depth-limited breaking wave height at a structure for design purposes. It can be used in lieu of Figure 7-4 of the Shore Protection Manual. The equation for the curves in Figure 7-4 is not given in the SPM but can be found by simultaneous solution of SPM equations (2-91), (2-92), (2-93), (7-3), and (7-4). Input is wave period, T, and water depth at the structure toe, d_s . The development of the equation is derived on the attached solution sheet. Algorithm uses English or metric system of units.

REFERENCE

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vols. I and II, Chs, 2 and 7, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977.

Operating Limits and Warnings

104R-41CV-1

The following equations are given in the Shore Protection Manual:

$$\frac{d_b}{H_b} = \frac{1}{b - (aH_b/gT^2)} \quad (2-91)$$

$$a = 43.75(1 - e^{-1.9m}) \quad (2-92)$$

$$b = \frac{1.56}{(1 + e^{-1.9 \cdot 5m})} \quad (2-93)$$

$$x_p = \tau_p H_b = (4.0 - 9.25 m) H_b \quad (7-3)$$

$$H_b = \frac{d_s}{\beta - m\tau_p} \quad (7-4)$$

Equation (7-4) can be rewritten in dimensionless form as:

$$\hat{H}_b = \frac{\hat{d}_s}{[(b - a\hat{H}_b)^{-1} - m\tau_p]} \quad (7-4)$$

where

$$\hat{H}_b = H_b/gT^2 \text{ and } \hat{d}_s = d_s/gT^2$$

The above equation can then be solved via the quadratic formula for \hat{H}_b in terms of \hat{d}_s , τ_p , m , a , and b where the positive root provides useful results.

$$\hat{H}_b = \left\{ (m\tau_p b - a\hat{d}_s - 1) + \left[(m\tau_p b - a\hat{d}_s - 1)^2 + 4am\tau_p b\hat{d}_s \right]^{1/2} \right\} \cdot (2am\tau_p)^{-1}$$

This is the equation used in the program for design breaking wave height.

User Instructions

104R-41CV DEPTH-LIMITED DESIGN BREAKING
WAVE HEIGHT AT STRUCTURE (RPN LOGIC)

SIZE: 021

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (HB)		[XEQ] "HB"	E OR M?
	TO CALCULATE H_b IN ENGLISH UNITS:			
2	PRESS GTO "E"		GTO "E"	
3	PRESS R/S		[R/S]	SLOPE?
4	ENTER SLOPE m , PRESS R/S	m	[R/S]	DEPTH?
5	ENTER DEPTH d , PRESS R/S	d (ft)	[R/S]	PERIOD?
6	ENTER PERIOD T , PRESS R/S	T (sec)	[R/S]	
7	READ H_b IN FEET			H_b (ft)
	TO CALCULATE H_b IN METRIC UNITS:			
2a	PRESS GTO "M"		GTO "M"	
3a	PRESS R/S		[R/S]	SLOPE?
4a	ENTER SLOPE m , PRESS R/S	m	[R/S]	DEPTH?
5a	ENTER DEPTH d , PRESS R/S	d (meters)	[R/S]	PERIOD?
6a	ENTER PERIOD T , PRESS R/S	T (sec)	[R/S]	
7a	READ H_b IN METERS			H_b (meters)
	Example 1 and 1a			
	$m = 0.10$, $d = 10\text{ft}$ (3.05m), $T = 10\text{sec}$			
	ENGLISH PRINTOUT: METRIC PRINTOUT:			
	ENGLISH	METRIC		
SLOPE=	0.1000 ***	SLOPE=		
DEPTH=	10.0000 ***	DEPTH=	3.0500 ***	
PERIOD=	10.0000 ***	PERIOD=	10.0000 ***	
α =	17.9818 ***	H_b =	5.4831 ***	
				note: " = [ALPHA]

104R-41CV-3

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
81	LBL "HB"			57	1		
82	"E OR M ?"			58	+		
83	PROMPT			59	1.56		
84	LBL E			60	/		
85	32.2			61	1/X		
86	STO 08			62	STO 04		
87	"ENGLISH"		$g(\text{English}) \rightarrow R_{08}$	63	RCL 00		
88	PRA			64	ENTER†		
89	GTO 01			65	9.25		
10	LBL "M"			66	*		
11	"METRIC"			67	4		
12	PRA		$g(\text{Metric}) \rightarrow R_{08}$	68	-		
13	9.81			69	CHS		
14	STO 08			70	RCL 00		
15	LBL 01			71	*		
16	"SLOPE=?"			72	STO 05		$m_J_p = m(4-9.25m)$
17	PRA			73	PCL 04		$\rightarrow R_{05}$
18	"SLOPE?"			74	*		
19	PROMPT			75	!		
20	PRX			76	-		
21	STO 00		$m \rightarrow R_{00}$	77	PCL 01		
22	"DEPTH=?"			78	RCL 03		
23	PRX			79	*		
24	"DEPTH?"			80	-		
25	PROMPT			81	STO 06		
26	PRX			82	X ²		
27	STO 07			83	4		
28	"PERIOD=?"			84	RCL 03		
29	PRA			85	*		
30	"PERIOD?"			86	PCL 04		
31	PROMPT			87	*		
32	PRX			88	RCL 05		
33	STO 09		$T \rightarrow R_{09}$	89	*		
34	X ²			90	PCL 01		
35	RCL 08			91	*		
36	*			92	+		
37	1/X			93	SQRT		
38	RCL 07			94	RCL 06		
39	*			95	+		
40	STO 01		$ds \rightarrow R_{01}$	96	2		
41	PCL 00		$9T^2$	97	/		
42	19			98	RCL 03		
43	*			99	/		
44	CHS			100	RCL 05		
45	E ^{1X}			101	/		
46	CHS			102	RCL 01		
47	1			103	/		
48	+			104	RCL 07		
49	43.75			105	*		
50	*		$43.75(1-e^{-19m}) \rightarrow R_{03}$	106	LBL "HB"		H_b in display
51	STO 07			107	PRA		
52	PCL 00			108	PRX		
53	19.5			109	STOP		
54	*			110	.END.		
55	CHS						
56	E ^{1X}						

* THESE STEPS MUST BE DELETED IF NO PRINTER IS AVAILABLE 101R-41CV-4

Program Description

Program Title	105R-41CV Wave Transmission - Fuchs' Equation (RPN Logic)		
Name	T.L. Walton, Jr.		
Address	Coastal Engineering Research Center		
City	Kingman Building	State	Virginia
	Fort Belvoir,	Zip Code	22060

Date 1/82

Program Description, Equations, Variables, etc.

This algorithm computes wavelength, L, in water depth, d, given the wave period, T. The program then computes wave transmission over a thin vertical barrier in water depth, d, using Fuchs' equation:

$$\frac{H_t}{H_i} = \sqrt{1 - \frac{\frac{4\pi h}{L} + \sinh \frac{4\pi h}{L}}{\frac{4\pi d}{L} + \sinh \frac{4\pi d}{L}}}$$

where H_t is the transmitted wave height, H_i the incident wave height, and h the height of barrier. Note that this equation *cannot* be used when wave transmission is by overtopping of a structure. Algorithm uses English or metric system of units.

REFERENCE

U.S. ARMY, CORPS OF ENGINEERS, COASTAL ENGINEERING RESEARCH CENTER, *Shore Protection Manual*, 3d ed., Vol. II, Ch. 7, Stock No. 008-022-00113-1, U.S. Government Printing Office, Washington, D.C., 1977, p. 7-62.

Operating Limits and Warnings

105R-41CV-1

User Instructions

105R-41CV WAVE TRANSMISSION - FUCHS' EQUATION (RPN logic)

SIZE: 021

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	LOAD PROGRAM (FUCH)		[XEQ] "FUCH"	
	TO CALCULATE IN ENGLISH UNITS:			
2	PRESS GTO "E"		GTO "E"	
3	PRESS R/S		[R/S]	DEPTH?
4	ENTER DEPTH D, PRESS R/S	d (ft.)	[R/S]	SIL HT?
5	ENTER SILL HEIGHT H, PRESS R/S h (ft)	[R/S]		PERIOD?
6	ENTER PERIOD T, PRESS R/S	T (sec)	[R/S]	
7	READ $K_t = H_t / H_i$ (TRANSMISSION COEFFICIENT)			K_t
	TO CALCULATE IN METRIC UNITS:			
2a	PRESS GTO "M"		GTO "M"	
	STEPS 3a - 7a ARE THE SAME AS STEPS 3 - 7 ABOVE EXCEPT			
	INPUT d, h, IN METERS			
	OUTPUT L (PRINTER ONLY) METERS			
	Example 1 and 1a:			
	Values used: $d = 15\text{ft}$ (4.5732m), $h = 10\text{ft}$ (3.0488m), $T = 10\text{sec}$			
	PRINTOUTS:			
	ENGLISH		METRIC	
	DEPTH= 15.0000 ***		DEPTH= 4.5732 ***	
	SIL HT= 10.0000 ***		SIL HT= 3.0488 ***	
	PERIOD= 10.0000 ***		PERIOD= 10.0000 ***	
	L= 213.9238 ***		L= 64.9450 ***	
	$K_t = 0.5977$ ***		$K_t = 0.5977$ ***	
	note: " = [ALPHA]			

105R-41CV-2

Program Listing

STEP	KEY ENTRY	KEY CODE	COMMENTS	STEP	KEY ENTRY	KEY CODE	COMMENTS
81	LBL "FUCH"			57	E ^{1X}		
82	"E OF N ?"			58	PCL 84		
83	PROMPT			59	CHS		
84	LBL E			60	E ^{1X}		
85	32.2			61	+		
86	STO 86			62	/		
87	"ENGLISH"		$g(\text{English}) \rightarrow R_{06}$	63	RCL 81		
88	PRA			64	*		
89	GTO 81			65	RCL 83		$\tanh\left(\frac{2\pi d}{L_{\text{old}}}\right)$
10	LBL "M"			66	+		
11	"METRIC"			67	2		
12	PRA			68	/		
13	9.81			69	STO 82		
14	STO 86			70	PCL 83		
15	LBL 81			71	-		
16	"DEPTH?"			72	ABS		
17	PROMPT			73	1		
18	"DEPTH=			74	XY?		
19	PRA			75	GTO 13		
20	PRX			76	PCL 82		
21	2			77	GTO "LITERAT"		
22	*			78	LBL 13		
23	PI			79	RCL 82		
24	*			80	"L="		
25	STO 88		$2\pi d \rightarrow R_{00}$	81	PRA		
26	"SIL HT?"			82	PRX		
27	PROMPT			83	1/X		
28	"SIL HT=			84	PCL 89		
29	PRA			85	*		
30	PRX			86	2		
31	STO 88			87	*		
32	"PERIOD?"		$h \rightarrow R_{08}$	88	STO 86		
33	PROMPT			89	XEQ 83		
34	"PERIOD=			90	RCL 86		
35	PRA			91	+		
36	PRX			92	STO 87		
37	XY2			93	4		
38	RCL 86			94	ENTER		
39	*			95	PI		
40	2			96	*		
41	/			97	RCL 88		
42	PI			98	*		
43	/			99	PCL 82		
44	STO 81		$L_0 \rightarrow R_{01}$	100	/		
45	LBL "ITERAT"			101	STO 89		
46	STO 83		$L_{\text{old}} \rightarrow R_{03}$	102	XEQ 83		
47	1/X			103	PCL 89		
48	PCL 88			104	+		
49	*		$2\pi d \rightarrow R_{04}$	105	PCL 87		
50	STO 84		$\frac{2\pi d}{L_{\text{old}}} :$	106	/		
51	E ^{1X}			107	CHS		
52	PCL 84			108	1		
53	CHS			109	+		
54	E ^{1X}			110	SQRT		
55	-			111	"KT=		
56	PCL 84			112	PRA		
				113	PPX		
							$H_t/H_c = K_t \text{ in display}$

* THESE LINES MUST BE DELETED IF A PRINTER IS NOT AVAILABLE.

105R-41CV-3

Program Listing

105R-41CV-4

* THESE LINES MUST BE DELETED IF A PRINTER IS NOT AVAILABLE.

APPENDIX
BLANK PROGRAM FORMS

Program Description

User Instructions

Program Title

Program Listing

