Moka (Mokhwa) Lee

➤ mokhwa.lee@stonybrook.edu | ➤ mokhwa.lee.726@gmail.com in LinkedIn | ❖ Moka's Website

EDUCATION

Stony Brook University

Stony Brook, NY

PhD candidate in Applied Mathematics and Statistics (AMS), Operations Research Track Advanced Certificate: Data and Computational Science $Aug.\ 2019-Present$

Ewha Womans University

Seoul, Korea

MS in Mathematics

Mar. 2017 - Aug. 2019

Ewha Womans University

Seoul, Korea *Mar. 2012 - Feb. 2017*

BS in Mathematics and Computational Science

Programming Skills

• Languages: Python, MATLAB, R, (C, C++)

Technologies: Github, API, LATEX

WORK EXPERIENCE

Utopia Compression Corporation

Los Angeles, California

Research and Development (R&D) Engineer Intern

Jan. 2023 - Aug. 2023, June. 2024 - Aug. 2024

o Mathematical Modeling and Software Engineering

- * Utilized Mixed Integer Programming (MIP) and the branch-and-bound algorithm to solve a constrained minimization problem, using Python Ortool package and the MOSEK optimization software.
- * Enhanced an e-commerce marketplace bid matching algorithm/model and provided end-to-end solutions.
- * Based on buyers' demand from frontend order and sellers' supplies backend information, the algorithm allocates the feasible and optimal solution while minimizing the total order cost.
- * Integrated the optimizer into the BigCommerce API, automating real-time bid solution adjustments while maintaining frontend and backend via GitHub version control.

AlphaCrest Capital Management LLC

New York, Manhattan

Quant Research Intern in Finance

Aug. 2020 - June. 2021

o Convex Optimization in Portfolio and Risk Management

- * Implemented the (simplified) Relaxed Lasso method to address the non-convex feature selection problem in both low and high signal-to-noise ratio (SNR) scenarios, using Python and R (glmnet package).
- * Tuned parameters and preprocessed data to minimize prediction error on the validation set.
- * Trained time series data from 2012 to 2020 for mid-frequency trading, aiming to identify a sparse coefficient solution that selects relevant columns in the predictor matrix X to minimize error.
- * Applied a Polyphase Filter Bank technique on alpha data to calculate a signal's frequency spectrum.

Research

PhD in the OptiML (Optimization and Machine Learning) Lab

Stony Brook University, NY

Advisor: Yifan Sun (CS) and Joseph Mitchell (AMS)

Oct. 2020 - Present

o Advancing Multi-Secant Quasi-Newton Methods for General Convex Functions

- * Journal Submission (In Progress): Journal of Optimization Theory and Applications
- * Extended to a limited-memory version of the multisecant L-BFGS method to reduce computational overhead, enhancing its applicability to large-scale optimization problems (e.g. neural networks).
- * Proved the superlinear convergence rate and integrated the method into a PyTorch extension.
- * Collaborative Research: Quasi-Newton method for bilevel optimization (NeurIPS submission in progress)

o Almost Multisecant Quasi-Newton (QN) Method

- * Solved convex optimization problems using second-order quasi-Newton (QN) methods, leveraging fast curvature approximation techniques and extending the BFGS algorithm.
- * Proposed a robust update scheme by interpolating past iterates to maintain the descent direction for minimizing machine learning problems, using supervised learning methods such as logistic regression.
- * Conference Paper (Accepted, IEEE): 2024 58th Asilomar Conference on Signals, Systems, and Computers – "Almost Multisecant BFGS Quasi-Newton Method."
- Selected Conference Presentations: NeurIPS OPT2023 (Workshop on Optimization for Machine Learning), CMS (Canadian Mathematical Society), and MOPTA (Modeling and Optimization Theory and Applications).

Kim's Numerical Analysis Research Lab

Ewha W. University, South Korea Jan. 2017 - Aug. 2019

Master's Thesis in Mathematics (Advisor: Prof. Sunyoung Kim)

- o Solving Nonconvex Quadratic Constrained Quadratic Problems (QCQP) with Hollow Matrices
 - * Developed a computational method to solve QCQP efficiently by leveraging matrix sparsity.
 - * Evaluated performance on nonconvex quadratic optimization using relaxation techniques, including Linear Programming (LP), Semidefinite Programming (SDP), and Second-Order Cone Programming (SOCP) with the SeDuMi package in MATLAB.
 - * Proved mathematically that the optimal value of the SDP relaxation of the original QCQP is equivalent to that of the new LP, SDP, and SOCP relaxations.

SCHOLARSHIP AND FELLOWSHIP

•	IACS Junior Researcher Award Institute for Advanced Computational Science (IACS)	Stony Brook University, NY Aug. 2023 - Aug. 2025
•	New Coming Graduate Student Fellowship Applied Mathematics and Statistics Department	Stony Brook University, NY $Aug.~2019$

Teaching Experience			
•	Teaching Instructor	Stony Brook University, NY	
	Graph Theory: Managed 22 students including exams, projects, and office hour	s. July. 2020 - Aug. 2020	
•	Teaching Assistant	Stony Brook University, NY	
	Operations Research (Deterministic Models), Graph Theory	Aug. 2019 - June. 2020	
•		rha Womans University, South Korea	
	Calculus 1, Calculus 2, Mathematical Science and Information	Mar. 2017 - June 2018	

Course Work

Machine Learning, Artificial Intelligence, Linear Programming, Operations Research: Stochastic Models, Network flows, Probability, Numerical Analysis, Linear Regression, Numerical Differential Equations (Finite Difference, Finite Element method), and many more Applied Math and Statistics & Computer Science courses.