Material de Apoyo Docente Universidad de Talca Facultad de Psicología

MODELOS LONGITUDINALES CON VARIABLES LATENTES PARA LA INVESTIGACIÓN EN PSICOLOGÍA

Modelos de Curva de Crecimiento Latente (LGCM): modelos condicionales Fabiola Gómez

5 de noviembre 2024

Paquetes a utilizar en esta sesión.

- a. lavaan: Un paquete para la estimación de modelos de variables latentes como CFA, además permite realizar path analysis, modelación de ecuaciones estructurales, curvas de crecimiento latente, etc.
- b. psych: Paquete que incluye funciones útiles para la investigación en psicología. ggplot2: Paquete que incluye funciones útiles gráficos
- c. MVN: Paquete que usaremos para evaluar normalidad multivariada.

Durante esta sesión trabajaremos con una base de datos Tallerclase6.csv (extraídos de Hoffman, 2015). Esta contiene los datos de 200 adolescentes (12 a 18 años de edad) en los que se midieron, anualmente, sus conductas de riesgo (Risky12 a Risky18), su percepción de monitoreo materno (Monit12 a Monit18) y la actitud de sus madres hacia el consumo de alcohol y tabaco (Attitude12). El rango de respuesta de las conductas de riesgo va de 10 a 50 puntos y de 1 a 5 para el monitoreo materno (centrada en 3) y para las actitudes maternas (centrada en 4).

Análisis descriptivos e inspección de datos

```
## seteamos ambiente de trabajo
setwd("/Users/fa/Dropbox/Docencia/2024/Doctorado/Optativo Doctorado UTalca/Clases/Clase
## cargamos la base de datos
base<-read.csv("Taller_clase6.csv", header = T, sep = ";")</pre>
names (base)
                                                           "age14"
    [1] "id"
                     "actitud12" "age12"
                                              "age13"
##
                                                                       "age15"
                                              "riesgo12"
                                                          "riesgo13"
                                                                       "riesgo14"
                     "age17"
                                 "age18"
    [7] "age16"
## [13] "riesgo15"
                     "riesgo16"
                                 "riesgo17"
                                              "riesgo18"
                                                           "monit12"
                                                                       "monit13"
## [19] "monit14"
                     "monit15"
                                 "monit16"
                                              "monit17"
                                                           "monit18"
library(psych)
describe(base, skew = F)
```

##		vars	n	mean	sd	median	min	max	range	se
## id		1	200	100.50	57.88	100.50	1.0	200.0	199.0	4.09
## actitu	d12	2	200	3.95	0.60	3.90	2.4	5.0	2.6	0.04
## age12		3	200	11.99	0.17	12.00	11.5	12.4	0.9	0.01
## age13		4	200	13.02	0.17	13.00	12.4	13.4	1.0	0.01
## age14		5	200	14.01	0.18	14.00	13.5	14.8	1.3	0.01
## age15		6	200	15.01	0.18	15.00	14.5	15.6	1.1	0.01
## age16		7	200	15.96	0.18	16.00	15.4	16.4	1.0	0.01
## age17		8	200	17.01	0.17	17.00	16.5	17.4	0.9	0.01
## age18		9	200	18.00	0.15	18.00	17.6	18.3	0.7	0.01
## riesgo	12	10	200	16.72	4.58	16.10	10.0	33.1	23.1	0.32
## riesgo	13	11	200	17.18	4.43	17.00	10.0	29.2	19.2	0.31
## riesgo	14	12	200	17.86	4.51	17.75	10.0	31.9	21.9	0.32
## riesgo	15	13	200	18.98	4.57	19.20	10.0	29.6	19.6	0.32
## riesgo	16	14	200	19.78	4.69	19.50	10.0	33.0	23.0	0.33
## riesgo	17	15	200	21.65	5.22	21.95	10.1	32.0	21.9	0.37
## riesgo	18	16	200	23.52	5.42	23.85	10.2	36.3	26.1	0.38
## monit1	2	17	200	3.08	0.81	3.15	1.0	5.0	4.0	0.06
## monit1	.3	18	200	3.09	0.76	3.20	1.2	5.0	3.8	0.05
## monit1	4	19	200	3.07	0.67	3.10	1.0	5.0	4.0	0.05
## monit1	5	20	200	3.10	0.61	3.05	1.1	4.6	3.5	0.04
## monit1	6	21	200	3.07	0.54	3.10	1.3	4.6	3.3	0.04
## monit1	7	22	200	3.06	0.52	3.00	1.1	4.4	3.3	0.04
## monit1	8	23	200	3.07	0.56	3.00	1.3	4.4	3.1	0.04

Estimación de Modelos

Modelo Nulo

La estimación de un modelo nulo permite evaluar la pertinencia de modelar el cambio

```
library(lavaan)
## This is lavaan 0.6-19
## lavaan is FREE software! Please report any bugs.
##
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
##
##
       cor2cov
### Especificación del modelo para monitoreo materno
modelo0<- "i=~ 1*monit12 + 1*monit13+ 1*monit14 + 1*monit15 +
               1*monit16 + 1*monit17+ 1*monit18
fit0<- growth(modelo0, data = base,
              missing="fiml", se="robust", estimator="mlr",
              mimic = "mplus")
summary(fit0, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 41 iterations
##
##
    Estimator
                                                        ML
##
    Optimization method
                                                    NLMINB
##
    Number of model parameters
                                                         9
##
    Number of observations
                                                       200
##
    Number of missing patterns
##
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                   288.152
                                                               287.264
##
##
    Degrees of freedom
                                                        26
                                                                    26
    P-value (Chi-square)
##
                                                     0.000
                                                                 0.000
    Scaling correction factor
##
                                                                 1.003
      Yuan-Bentler correction (Mplus variant)
##
```

##				
	Model Test Baseline Model:			
##	Test statistic	1339.191	1395.375	
##		1339.191	21	
##	9	0.000	0.000	
##		0.000	0.960	
##	9			
##	User Model versus Baseline Model:			
##				
##	Comparative Fit Index (CFI)	0.801	0.810	
##	Tucker-Lewis Index (TLI)	0.839	0.846	
##				
##	1		0.801	
##			0.839	
##				
	Loglikelihood and Information Criteria:			
##		-810.998	-810.998	
##		-010.990	0.961	
##			0.301	
##		-666.922	-666.922	
##			0.992	
##	for the MLR correction			
##				
##	Akaike (AIC)	1639.997	1639.997	
##	3	1669.682		
##	Sample-size adjusted Bayesian (SABIC)	1641.169	1641.169	
##				
	Root Mean Square Error of Approximation:			
##	DMCEA	0 005	0.224	
##		0.225 0.202	0.224	
##		0.248		
##	11	0.000	0.000	
##	-	1.000	1.000	
##	_			
##	Robust RMSEA		0.225	
##	90 Percent confidence interval - lower		0.202	
##	90 Percent confidence interval - upper		0.248	
##	-		0.000	
##	P-value H_0: Robust RMSEA >= 0.080		1.000	

##							
##	Standardized Root	Mean Squar	e Residua	1:			
##							
##	SRMR				0.312	0.3	12
##							
##	Parameter Estimate	es:					
##							
##	Standard errors Sandwich						
##	Information brea		Observed				
##	Observed informa	ation based	on		Hessian		
##							
##	Latent Variables:						
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	i =~						
##	monit12	1.000				0.519	
##	monit13	1.000				0.519	
##	monit14	1.000				0.519	
##	monit15	1.000				0.519	
##	monit16	1.000				0.519	
##	monit17	1.000				0.519	
##	monit18	1.000				0.519	0.792
##							
##	Intercepts:				- 4 1 15		
##					P(> z)		
##	i	3.076	0.038	81.146	0.000	5.924	5.924
##	**						
	Variances:		G. 1 F	7	D(>)	G . 1 . 1	Q. 1 33
##	1140				P(> z)		Std.all
##	.monit12		0.025				0.419
##	.monit13		0.019				
##	.monit14		0.013				
##	.monit15	0.082	0.010	8.074	0.000	0.082	0.233
##	.monit16	0.079	0.010	7.953	0.000	0.079	0.227
##	.monit17	0.112	0.013	8.828	0.000	0.112	0.294
##	.monit18	0.160	0.016	9.714	0.000	0.160	0.372
##	i	0.270	0.031	8.698	0.000	1.000	1.000

Modelo Lineal

En este modelo el parámetro de cambio lineal es la pendiente o slope

```
modelo1<- "i=~ 1*monit12 + 1*monit13+ 1*monit14 + 1*monit15 +
               1*monit16 + 1*monit17+ 1*monit18
           s=~ 0*monit12 + 1*monit13+ 2*monit14 + 3*monit15 +
               4*monit16 + 5*monit17+ 6*monit18
fit1<- growth(modelo1, data = base,</pre>
              missing="fiml", se="robust", estimator="mlr")
summary(fit1, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 69 iterations
##
     Estimator
##
                                                        MT.
##
     Optimization method
                                                    NLMINB
     Number of model parameters
##
                                                         12
##
##
     Number of observations
                                                        200
                                                          1
##
     Number of missing patterns
##
## Model Test User Model:
                                                  Standard
##
                                                                 Scaled
##
    Test Statistic
                                                    19.600
                                                                 19.766
##
    Degrees of freedom
                                                         23
                                                                     23
     P-value (Chi-square)
                                                     0.666
                                                                  0.656
##
     Scaling correction factor
                                                                  0.992
##
##
       Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                  1339.191
                                                               1395.375
     Degrees of freedom
                                                                     21
##
                                                         21
##
     P-value
                                                     0.000
                                                                  0.000
##
     Scaling correction factor
                                                                  0.960
##
## User Model versus Baseline Model:
##
                                                     1.000
                                                                  1.000
##
     Comparative Fit Index (CFI)
     Tucker-Lewis Index (TLI)
##
                                                     1.002
                                                                  1.002
##
##
     Robust Comparative Fit Index (CFI)
                                                                  1.000
```

##			1.002
	Loglikelihood and Information Criteria:		
##			
##	Loglikelihood user model (HO)	-676.722	-676.722
##	Scaling correction factor		0.993
##	for the MLR correction		
##	Loglikelihood unrestricted model (H1)	-666.922	-666.922
##	Scaling correction factor		0.992
##	for the MLR correction		
##	!		
##		1377.445	1377.445
##	3	1417.024	
##	3	1379.007	1379.007
##			
	Root Mean Square Error of Approximation:		
##		0.000	0.000
##		0.000	0.000
##		0.000 0.048	
##	11	0.048	
##	_	0.909	0.001
##	_	0.001	0.001
##			0.000
##			0.000
##			0.048
##			0.958
##	_		0.001
##	±		
##	Standardized Root Mean Square Residual:		
##	t e e e e e e e e e e e e e e e e e e e		
##	SRMR	0.040	0.040
##	!		
##	Parameter Estimates:		
##			
##		Sandwich	
##		Observed	
##		Hessian	
##	Latent Variables:		
##	Estimate Std.Err z-value	P(> z)	Std.lv Std.all

##	i =~							
##	monit12	1.000				0.765	0.959	
##	monit13	1.000				0.765	1.022	
##	monit14	1.000				0.765	1.125	
##	monit15	1.000				0.765	1.242	
##	monit16	1.000				0.765	1.361	
##	monit17	1.000				0.765	1.454	
##	monit18	1.000				0.765	1.440	
##	s =~							
##	monit12	0.000				0.000	0.000	
##	monit13	1.000				0.104	0.138	
##	monit14	2.000				0.207	0.305	
##	monit15	3.000				0.311	0.504	
##	monit16	4.000				0.414	0.737	
##	monit17	5.000				0.518	0.984	
##	monit18	6.000				0.621	1.170	
##								
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-0.065	0.009	-7.616	0.000	-0.818	-0.818	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	3.085	0.055	55.634	0.000	4.032	4.032	
##	S	-0.003	0.008	-0.405	0.685	-0.032	-0.032	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.monit12	0.051	0.010	5.128	0.000	0.051	0.081	
##	.monit13	0.094	0.012	8.076	0.000	0.094	0.168	
##	.monit14	0.093	0.011	8.684	0.000	0.093	0.202	
##	.monit15	0.086	0.010	8.767	0.000	0.086	0.228	
##	.monit16	0.077	0.009	8.860	0.000	0.077	0.245	
##	.monit17	0.072	0.010	7.329	0.000	0.072	0.258	
##	.monit18	0.088	0.012	7.245	0.000	0.088	0.313	
##	i	0.585	0.061	9.535	0.000	1.000	1.000	
##	S	0.011	0.001	7.408	0.000	1.000	1.000	

Modelo cuadrático

En este modelo el parámetro de cambio cuadrático es el más relevante

```
modelo2<- "i=~ 1*monit12 + 1*monit13+ 1*monit14 + 1*monit15 +
               1*monit16 + 1*monit17+ 1*monit18
           s=~ 0*monit12 + 1*monit13+ 2*monit14 + 3*monit15 +
               4*monit16 + 5*monit17+ 6*monit18
           q=~ 0*monit12 + 1*monit13+ 4*monit14 + 9*monit15 +
               16*monit16 + 25*monit17+ 36*monit18
fit2<- growth(modelo2, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit2, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 107 iterations
##
##
     Estimator
                                                        ML
##
     Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                        16
##
##
     Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                    11.344
                                                                11.264
##
     Degrees of freedom
                                                        19
                                                                    19
##
     P-value (Chi-square)
                                                     0.912
                                                                 0.915
##
     Scaling correction factor
                                                                 1.007
##
       Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                  1339.191
                                                              1395.375
##
     Degrees of freedom
                                                        21
                                                                    21
     P-value
                                                     0.000
                                                                 0.000
##
##
     Scaling correction factor
                                                                 0.960
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     1.000
                                                                 1.000
    Tucker-Lewis Index (TLI)
                                                     1.006
                                                                 1.006
```

##	Debugt downsorting Fit Index (GFI)		1 000	
##	Robust Comparative Fit Index (CFI)		1.000	
##	Robust Tucker-Lewis Index (TLI)		1.007	
##				
##	Loglikelihood and Information Criteria:			
##		070 504	070 504	
##	Loglikelihood user model (HO)	-672.594		
##	Scaling correction factor		0.975	
##	for the MLR correction			
##	Loglikelihood unrestricted model (H1)	-666.922		
##	Scaling correction factor		0.992	
##	for the MLR correction			
##	44-70			
##	Akaike (AIC)	1377.188		
##	Bayesian (BIC)	1429.961		
##	Sample-size adjusted Bayesian (SABIC)	1379.271	1379.271	
##				
	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.000	0.000	
##	90 Percent confidence interval - lower	0.000	0.000	
##	90 Percent confidence interval - upper	0.024		
##	P-value H_0: RMSEA <= 0.050	0.993		
##	$P-value\ H_0:\ RMSEA >= 0.080$	0.000	0.000	
##				
##	Robust RMSEA		0.000	
##	90 Percent confidence interval - lower		0.000	
##	90 Percent confidence interval - upper		0.023	
##	P-value H_0: Robust RMSEA <= 0.050		0.993	
##	P-value H_0: Robust RMSEA >= 0.080		0.000	
##				
##	Standardized Root Mean Square Residual:			
##				
##	SRMR	0.027	0.027	
##				
	Parameter Estimates:			
##				
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
##				
##	Latent Variables:			

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i =~							
##	monit12	1.000				0.786	0.974	
##	monit13	1.000				0.786	1.050	
##	monit14	1.000				0.786	1.181	
##	monit15	1.000				0.786	1.313	
##	monit16	1.000				0.786	1.428	
##	monit17	1.000				0.786	1.473	
##	monit18	1.000				0.786	1.437	
##	s =~							
##	monit12	0.000				0.000	0.000	
##	monit13	1.000				0.148	0.197	
##	monit14	2.000				0.295	0.443	
##	monit15	3.000				0.443	0.739	
##	monit16	4.000				0.590	1.072	
##	monit17	5.000				0.738	1.382	
##	monit18	6.000				0.885	1.618	
##	q =~							
##	monit12	0.000				0.000	0.000	
##	monit13	1.000				0.016	0.022	
##	monit14	4.000				0.065	0.098	
##	monit15	9.000				0.146	0.245	
##	monit16	16.000				0.260	0.473	
##	monit17	25.000				0.407	0.762	
##	monit18	36.000				0.586	1.071	
##								
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-0.091	0.017	-5.498	0.000	-0.788	-0.788	
##	q	0.004	0.002	2.171	0.030	0.343	0.343	
##	S ~~							
##	q	-0.002	0.001	-1.906	0.057	-0.703	-0.703	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	3.082	0.057	54.165	0.000	3.920	3.920	
##	S	-0.000	0.015	-0.018	0.985	-0.002	-0.002	
##	q	-0.000	0.002	-0.202	0.840	-0.028	-0.028	
##								
##	Variances:							

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.monit12	0.033	0.016	2.079	0.038	0.033	0.051
##	.monit13	0.098	0.012	8.361	0.000	0.098	0.175
##	.monit14	0.091	0.011	8.598	0.000	0.091	0.206
##	.monit15	0.084	0.010	8.653	0.000	0.084	0.234
##	.monit16	0.076	0.009	8.600	0.000	0.076	0.251
##	.monit17	0.074	0.010	7.621	0.000	0.074	0.259
##	.monit18	0.065	0.016	4.049	0.000	0.065	0.216
##	i	0.618	0.067	9.292	0.000	1.000	1.000
##	S	0.022	0.007	3.313	0.001	1.000	1.000
##	q	0.000	0.000	1.974	0.048	1.000	1.000

Comparación de modelos

```
anova(fit0, fit1, fit2)
##
## Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")
## lavaan->lavTestLRT():
     lavaan NOTE: The "Chisq" column contains standard test statistics, not the
     robust test that should be reported per model. A robust difference test is
##
      a function of two standard (not robust) statistics.
                          Chisq Chisq diff Df diff Pr(>Chisq)
##
       Df
             AIC
                    BIC
## fit2 19 1377.2 1430.0
                        11.344
## fit1 23 1377.4 1417.0 19.600
                                     8.993
                                                 4
                                                      0.06128 .
## fit0 26 1640.0 1669.7 288.152
                                 246.140
                                                 3
                                                      < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
modelo0<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
fit0<- growth(modelo0, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit0, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 44 iterations
##
    Estimator
                                                        ML
##
    Optimization method
                                                    NLMINB
    Number of model parameters
##
                                                         9
##
##
    Number of observations
                                                       200
##
    Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                   522.231
##
                                                               532.009
##
    Degrees of freedom
                                                        26
                                                                    26
    P-value (Chi-square)
                                                     0.000
                                                                 0.000
##
##
    Scaling correction factor
                                                                 0.982
      Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                   730.186
                                                               753.359
    Degrees of freedom
##
                                                        21
                                                                    21
    P-value
                                                     0.000
                                                                 0.000
##
     Scaling correction factor
                                                                 0.969
##
##
## User Model versus Baseline Model:
##
##
    Comparative Fit Index (CFI)
                                                     0.300
                                                                 0.309
    Tucker-Lewis Index (TLI)
                                                     0.435
##
                                                                 0.442
##
    Robust Comparative Fit Index (CFI)
                                                                 0.300
##
    Robust Tucker-Lewis Index (TLI)
##
                                                                 0.434
##
## Loglikelihood and Information Criteria:
```

## ##		-4064.120	-4064.120 0.889	
##	for the MLR correction			
##	Loglikelihood unrestricted model (H1)	-3803.004	-3803.004	
##	Scaling correction factor		0.958	
##	for the MLR correction			
##				
##	Akaike (AIC)	8146.240	8146.240	
##	Bayesian (BIC)	8175.924	8175.924	
##	Sample-size adjusted Bayesian (SABIC)	8147.412	8147.412	
##				
##	Root Mean Square Error of Approximation:			
##	•			
##	RMSEA	0.309	0.312	
##	90 Percent confidence interval - lower	0.286	0.289	
##	90 Percent confidence interval - upper	0.332		
##		0.000		
##	_	1.000	1.000	
##				
##	Robust RMSEA		0.309	
##			0.287	
##			0.332	
##	11		0.000	
##	P-value H_0: Robust RMSEA >= 0.080		1.000	
##				
	Standardized Root Mean Square Residual:			
##	1			
##	SRMR	0.280	0.280	
##				
	Parameter Estimates:			
##				
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
##				
	Latent Variables:			
##	Estimate Std.Err z-va	lue P(> z)	Std.lv Std.all	
##	i =~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
##	riesgo12 1.000		3.432 0.614	
##	riesgo13 1.000		3.432 0.677	
##	riesgo14 1.000		3.432 0.739	

##	mi ogmo1E	1 000				2 /20	0.778	
##	riesgo15	1.000				3.432		
##	riesgo16	1.000				3.432	0.763	
##	riesgo17	1.000				3.432	0.599	
##	riesgo18	1.000				3.432	0.482	
##	C							
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	18.941	0.293	64.704	0.000	5.519	5.519	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	19.483	2.022	9.637	0.000	19.483	0.623	
##	.riesgo13	13.894	1.477	9.404	0.000	13.894	0.541	
##	.riesgo14	9.816	1.087	9.031	0.000	9.816	0.455	
##	.riesgo15	7.705	0.932	8.264	0.000	7.705	0.395	
##	.riesgo16	8.443	1.251	6.750	0.000	8.443	0.417	
##	.riesgo17	21.077	2.279	9.250	0.000	21.077	0.641	
##	.riesgo18	38.900	3.705	10.498	0.000	38.900	0.768	
##	i	11.780	1.309	9.000	0.000	1.000	1.000	

Modelo Lineal

```
modelo1<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
           s=~ 0*riesgo12 + 1*riesgo13+ 2*riesgo14 + 3*riesgo15 +
               4*riesgo16 + 5*riesgo17 + 6*riesgo18
fit1<- growth(modelo1, data = base,</pre>
              missing="fiml", se="robust", estimator="mlr")
summary(fit1, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 58 iterations
##
##
    Estimator
                                                       ML
    Optimization method
                                                   NLMINB
##
    Number of model parameters
                                                        12
##
    Number of observations
                                                       200
##
##
    Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                   72.232
##
                                                                75.178
##
    Degrees of freedom
                                                        23
                                                                    23
    P-value (Chi-square)
                                                    0.000
                                                                0.000
##
##
    Scaling correction factor
                                                                 0.961
      Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
    Test statistic
                                                  730.186
                                                              753.359
##
##
    Degrees of freedom
                                                        21
                                                                    21
##
    P-value
                                                    0.000
                                                                 0.000
##
    Scaling correction factor
                                                                 0.969
##
## User Model versus Baseline Model:
##
##
    Comparative Fit Index (CFI)
                                                    0.931
                                                                 0.929
##
    Tucker-Lewis Index (TLI)
                                                    0.937
                                                                 0.935
##
##
    Robust Comparative Fit Index (CFI)
                                                                 0.929
    Robust Tucker-Lewis Index (TLI)
##
                                                                 0.935
##
```

##	Loglikelihood and Information Criteria:							
##	Loglikelihood user model (HO)	-3839.120	-3839.120					
##	<u> </u>	00001220	0.952					
##	for the MLR correction		****					
##	Loglikelihood unrestricted model (H1)	-3803.004	-3803.004					
##			0.958					
##	for the MLR correction							
##								
##	Akaike (AIC)	7702.240	7702.240					
##	Bayesian (BIC)	7741.820	7741.820					
##	Sample-size adjusted Bayesian (SABIC)	7703.803	7703.803					
##								
##	Root Mean Square Error of Approximation:							
##								
##	RMSEA	0.103	0.107					
##		0.077						
##	11	0.131						
##	-	0.001						
##	P-value H_0: RMSEA >= 0.080	0.929	0.948					
##								
##			0.105					
##			0.079 0.131					
##			0.000					
##	P-value H_0: Robust RMSEA >= 0.080		0.944					
##	r value ii_o. nobust mibla > 0.000		0.011					
	Standardized Root Mean Square Residual:							
##								
##	SRMR	0.067	0.067					
##								
##	Parameter Estimates:							
##								
##	Standard errors	Sandwich						
##	Information bread	Observed						
##	Observed information based on	Hessian						
##								
	Latent Variables:	3 34 1 13	G. 1 7 7 7	,				
##	Estimate Std.Err z-va	Iue P(> z)	Std.lv Std.al	.1				
##	i =~		2 520 0 75	- 4				
##	riesgo12 1.000		3.530 0.75					
##	riesgo13 1.000		3.530 0.79) (

##	riesgo14	1.000				3.530	0.791	
##	riesgo15	1.000				3.530	0.783	
##	riesgo16	1.000				3.530	0.757	
##	riesgo17	1.000				3.530	0.695	
##	riesgo18	1.000				3.530	0.613	
##	s =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				0.730	0.165	
##	riesgo14	2.000				1.459	0.327	
##	riesgo15	3.000				2.189	0.485	
##	riesgo16	4.000				2.918	0.626	
##	riesgo17	5.000				3.648	0.718	
##	riesgo18	6.000				4.377	0.759	
##								
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-0.847	0.325	-2.609	0.009	-0.329	-0.329	
##								
##	Intercepts:							
##	•	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	16.042	0.296	54.245	0.000	4.544	4.544	
##	S	1.094	0.070	15.644	0.000	1.500	1.500	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	9.645	1.238	7.791	0.000	9.645	0.436	
##	.riesgo13	8.314	0.880	9.445	0.000	8.314	0.424	
##	.riesgo14	8.726	0.899	9.709	0.000	8.726	0.438	
##	.riesgo15	8.160	0.939	8.687	0.000	8.160	0.401	
##	.riesgo16	7.542	0.929	8.121	0.000	7.542	0.347	
##	riesgo17	8.501	1.250	6.802	0.000	8.501	0.330	
##	riesgo18	11.761	1.649	7.133	0.000	11.761	0.354	
##	i	12.463	2.094	5.952	0.000	1.000	1.000	
##	S	0.532	0.093	5.734	0.000	1.000	1.000	
	-	0.002		2 2 .		_ , 0 0 0	• • •	

Paréntesis

Modelo Lineal: parametrización no ordinal

```
modelo1.1<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
           s=~ -1*riesgo12 + 0*riesgo13+ 1*riesgo14 + 3*riesgo16 +
               4*riesgo17 + 5*riesgo18
fit1.1<- growth(modelo1.1, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit1.1, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 52 iterations
##
     Estimator
##
                                                        MT.
##
     Optimization method
                                                    NLMINB
     Number of model parameters
##
                                                        11
##
##
     Number of observations
                                                       200
                                                         1
##
     Number of missing patterns
##
## Model Test User Model:
                                                  Standard
##
                                                                Scaled
##
    Test Statistic
                                                    54.742
                                                                56.675
##
    Degrees of freedom
                                                        16
                                                                     16
     P-value (Chi-square)
                                                     0.000
                                                                 0.000
##
     Scaling correction factor
                                                                 0.966
##
##
       Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                   556.314
                                                               589.626
     Degrees of freedom
                                                                     15
##
                                                        15
##
     P-value
                                                     0.000
                                                                 0.000
                                                                 0.944
##
     Scaling correction factor
##
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                     0.928
                                                                 0.929
##
     Tucker-Lewis Index (TLI)
##
                                                     0.933
                                                                 0.934
##
##
     Robust Comparative Fit Index (CFI)
                                                                 0.927
```

##	Robust Tucker-Lewis Index (TLI)		0.932	
##	Loglikelihood and Information Criteria:			
##				
##	Loglikelihood user model (HO)	-3329.939	-3329.939	
##	Scaling correction factor		0.926	
##	for the MLR correction			
##	Loglikelihood unrestricted model (H1)	-3302.568	-3302.568	
##	Scaling correction factor		0.950	
##	for the MLR correction			
##				
##	Akaike (AIC)	6681.878	6681.878	
##	Bayesian (BIC)	6718.159	6718.159	
##	Sample-size adjusted Bayesian (SABIC)	6683.310	6683.310	
##				
##	Root Mean Square Error of Approximation:			
##	1			
##	RMSEA	0.110	0.113	
##		0.079		
##		0.143		
##	11	0.001		
##	_	0.944		
##	_	0.00 = =		
##			0.111	
##			0.081	
##			0.143	
##	11		0.001	
##	_		0.955	
##	r varas n_s. nosass naisem s s.ses		0.000	
	Standardized Root Mean Square Residual:			
##	Soundaranean Noor Hour Square Noordaar			
##	SRMR	0.068	0.068	
##	D101110	0.000	0.000	
	Parameter Estimates:			
##	rarameter Ebtimates.			
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
##	SSSCIVER INTOITMENTON DESGREEN	HODSTAIL		
	Latent Variables:			
##	Estimate Std.Err z-valu	P(> z)	S+d lv S+d a	11
пπ	LB of made D tu . Li I Z Valu	1 (4)	Sou. IV Dou. a	

##	i =~							
##	riesgo12	1.000				3.391	0.720	
##	riesgo13	1.000				3.391	0.776	
##	riesgo14	1.000				3.391	0.748	
##	riesgo16	1.000				3.391	0.727	
##	riesgo17	1.000				3.391	0.671	
##	riesgo18	1.000				3.391	0.596	
##	s =~							
##	riesgo12	-1.000				-0.731	-0.155	
##	riesgo13	0.000				0.000	0.000	
##	riesgo14	1.000				0.731	0.161	
##	riesgo16	3.000				2.193	0.470	
##	riesgo17	4.000				2.924	0.579	
##	riesgo18	5.000				3.655	0.642	
##	<u> </u>							
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-0.397	0.282	-1.407	0.159	-0.160	-0.160	
##								
##	Intercepts:							
##	-	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	17.210	0.272	63.301	0.000	5.076	5.076	
##	S	1.095	0.069	15.779	0.000	1.499	1.499	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	9.383	1.270	7.387	0.000	9.383	0.423	
##	.riesgo13	7.583	0.838	9.048	0.000	7.583	0.397	
##	.riesgo14	9.304	0.954	9.751	0.000	9.304	0.453	
##	.riesgo16	7.829	0.997	7.854	0.000	7.829	0.360	
##	riesgo17	8.659	1.185	7.306	0.000	8.659	0.339	
##	riesgo17.	11.497	1.619	7.101	0.000	11.497	0.355	
##	i	11.497	1.710	6.724	0.000	1.000	1.000	
##	S	0.534	0.092	5.783	0.000	1.000	1.000	
ππ	D	0.004	0.032	0.700	0.000	1.000	1.000	

Volvamos a nuestro ejemplo

Modelo cuadrático

```
modelo2<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
           s=~ 0*riesgo12 + 1*riesgo13+ 2*riesgo14 + 3*riesgo15 +
               4*riesgo16 + 5*riesgo17 + 6*riesgo18
           q=~ 0*riesgo12 + 1*riesgo13+ 4*riesgo14 + 9*riesgo15 +
               16*riesgo16 + 25*riesgo17 + 36*riesgo18
fit2<- growth(modelo2, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit2, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 77 iterations
##
##
    Estimator
                                                        ML
##
    Optimization method
                                                    NLMINB
    Number of model parameters
##
                                                        16
##
##
    Number of observations
                                                       200
##
    Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
##
    Test Statistic
                                                    25.719
                                                                26.381
    Degrees of freedom
                                                        19
                                                                    19
##
    P-value (Chi-square)
##
                                                     0.138
                                                                 0.120
##
     Scaling correction factor
                                                                 0.975
      Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                   730.186
                                                               753.359
##
    Degrees of freedom
                                                        21
                                                                    21
##
    P-value
                                                     0.000
                                                                 0.000
##
     Scaling correction factor
                                                                 0.969
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                     0.991
                                                                 0.990
## Tucker-Lewis Index (TLI)
                                                     0.990
                                                                 0.989
```

##				
##	Robust Comparative Fit Index (CFI)		0.989	
##	Robust Tucker-Lewis Index (TLI)		0.988	
##				
	Loglikelihood and Information Criteria:			
##	Loglikelihood user model (HO)	_3015 96/	-3815.864	
##		-3013.004	0.937	
##	for the MLR correction		0.931	
##	Loglikelihood unrestricted model (H1)	-3803 004	-3803.004	
##	Scaling correction factor	0000.001	0.958	
##	for the MLR correction		0.000	
##				
##	Akaike (AIC)	7663.728	7663.728	
##	Bayesian (BIC)	7716.501		
##	Sample-size adjusted Bayesian (SABIC)	7665.811	7665.811	
##				
##	Root Mean Square Error of Approximation:			
##				
##	RMSEA	0.042	0.044	
##	90 Percent confidence interval - lower	0.000	0.000	
##	90 Percent confidence interval - upper	0.080	0.082	
##	-	0.592		
##	$P-value\ H_0:\ RMSEA >= 0.080$	0.048	0.059	
##				
##	Robust RMSEA		0.045	
##	90 Percent confidence interval - lower		0.000	
##	90 Percent confidence interval - upper		0.080	
##	P-value H_0: Robust RMSEA <= 0.050		0.557	
##	P-value H_0: Robust RMSEA >= 0.080		0.053	
	Standardized Root Mean Square Residual:			
##	btandardized noot hear bquare nebrudar.			
##	SRMR	0.033	0.033	
##				
##	Parameter Estimates:			
##				
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
##				
##	Latent Variables:			

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i =~							
##	riesgo12	1.000				3.608	0.799	
##	riesgo13	1.000				3.608	0.802	
##	riesgo14	1.000				3.608	0.801	
##	riesgo15	1.000				3.608	0.785	
##	riesgo16	1.000				3.608	0.768	
##	riesgo17	1.000				3.608	0.706	
##	riesgo18	1.000				3.608	0.663	
##	s =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				1.335	0.297	
##	riesgo14	2.000				2.669	0.593	
##	riesgo15	3.000				4.004	0.871	
##	riesgo16	4.000				5.338	1.137	
##	riesgo17	5.000				6.673	1.306	
##	riesgo18	6.000				8.007	1.471	
##	q =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				0.174	0.039	
##	riesgo14	4.000				0.698	0.155	
##	riesgo15	9.000				1.569	0.341	
##	riesgo16	16.000				2.790	0.594	
##	riesgo17	25.000				4.359	0.853	
##	riesgo18	36.000				6.278	1.153	
##	G							
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-1.447	0.892	-1.622	0.105	-0.301	-0.301	
##	q	0.059	0.121	0.490	0.624	0.094	0.094	
##	s ~~							
##	q	-0.191	0.090	-2.120	0.034	-0.819	-0.819	
##	-							
##	Intercepts:							
##	-	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	16.773	0.307	54.710				
##	S	0.228	0.165	1.383	0.167	0.171	0.171	
##	q		0.025					
##	-							
##	Variances:							

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.riesgo12	7.361	1.499	4.911	0.000	7.361	0.361
##	.riesgo13	8.556	0.896	9.546	0.000	8.556	0.423
##	.riesgo14	8.025	0.912	8.800	0.000	8.025	0.396
##	.riesgo15	7.546	0.891	8.471	0.000	7.546	0.357
##	.riesgo16	6.840	0.862	7.937	0.000	6.840	0.310
##	.riesgo17	8.728	1.220	7.155	0.000	8.728	0.334
##	.riesgo18	8.543	2.006	4.259	0.000	8.543	0.288
##	i	13.015	2.318	5.614	0.000	1.000	1.000
##	S	1.781	0.638	2.791	0.005	1.000	1.000
##	q	0.030	0.015	2.043	0.041	1.000	1.000

Comparación de modelos

```
anova(fit0, fit1, fit2)
##
## Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")
## lavaan->lavTestLRT():
     lavaan NOTE: The "Chisq" column contains standard test statistics, not the
     robust test that should be reported per model. A robust difference test is
##
      a function of two standard (not robust) statistics.
                          Chisq Chisq diff Df diff Pr(>Chisq)
##
       Df
             AIC
                    BIC
## fit2 19 7663.7 7716.5
                        25.719
## fit1 23 7702.2 7741.8 72.232
                                    52.03
                                                 4 1.358e-10 ***
## fit0 26 8146.2 8175.9 522.231
                                    394.34
                                                 3 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Paréntesis

Modelo cuadrático: Parametrización ordinal más espaciada

```
modelo2.1<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
           s=~ 0*riesgo12 + 3*riesgo13+ 6*riesgo14 + 9*riesgo15 +
               12*riesgo16 + 15*riesgo17 + 18*riesgo18
           q=~ 0*riesgo12 + 9*riesgo13+ 36*riesgo14 + 81*riesgo15 +
               144*riesgo16 + 625*riesgo17 + 324*riesgo18
fit2.1<- growth(modelo2.1, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit2.1, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 166 iterations
##
##
     Estimator
                                                        ML
##
     Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                        16
##
##
     Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                    65.282
                                                                67.962
##
     Degrees of freedom
                                                        19
                                                                     19
##
##
     P-value (Chi-square)
                                                     0.000
                                                                 0.000
     Scaling correction factor
                                                                 0.961
##
       Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
##
     Test statistic
                                                   730.186
                                                               753.359
##
     Degrees of freedom
                                                        21
                                                                     21
##
     P-value
                                                     0.000
                                                                 0.000
##
     Scaling correction factor
                                                                 0.969
##
## User Model versus Baseline Model:
##
     Comparative Fit Index (CFI)
                                                     0.935
                                                                 0.933
##
    Tucker-Lewis Index (TLI)
                                                     0.928
                                                                 0.926
```

##				
##	Robust Comparative Fit Index (CFI)		0.933	
##	Robust Tucker-Lewis Index (TLI)		0.926	
##				
##	Loglikelihood and Information Criteria:			
##	I amid-aliband amon model (IIO)	2025 645	2025 645	
##	Loglikelihood user model (HO)	-3035.045	-3835.645 0.954	
##	Scaling correction factor for the MLR correction		0.954	
##	Loglikelihood unrestricted model (H1)	-3803 004	-3803.004	
##	Scaling correction factor	-3003.004	0.958	
##	for the MLR correction		0.300	
##	TOT THE THAT COTTOCOTOR			
##	Akaike (AIC)	7703.291	7703.291	
##	Bayesian (BIC)	7756.064		
##	Sample-size adjusted Bayesian (SABIC)	7705.374		
##	and the second s		.,	
##	Root Mean Square Error of Approximation:			
##	1 11			
##	RMSEA	0.110	0.114	
##	90 Percent confidence interval - lower	0.082	0.085	
##	90 Percent confidence interval - upper	0.140	0.144	
##	P-value H_0: RMSEA <= 0.050	0.001	0.000	
##	$P-value H_0: RMSEA >= 0.080$	0.959	0.970	
##				
##	Robust RMSEA		0.112	
##	90 Percent confidence interval - lower		0.084	
##	90 Percent confidence interval - upper		0.140	
##	P-value H_0: Robust RMSEA <= 0.050		0.000	
##	P-value H_0: Robust RMSEA >= 0.080		0.969	
##				
	Standardized Root Mean Square Residual:			
##	anvn	0.007	0.007	
##	SRMR	0.067	0.067	
##	Domometer Estimates			
##	Parameter Estimates:			
##	Standard errors	Sandwich		
##	Information bread	Observed		
##	Observed information based on	Hessian		
##	Jacob Vol III VI mad I di babba di	110001011		
	Latent Variables:			

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i =~							
##	riesgo12	1.000				3.479	0.744	
##	riesgo13	1.000				3.479	0.784	
##	riesgo14	1.000				3.479	0.782	
##	riesgo15	1.000				3.479	0.773	
##	riesgo16	1.000				3.479	0.755	
##	riesgo17	1.000				3.479	0.674	
##	riesgo18	1.000				3.479	0.599	
##	s =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	3.000				0.628	0.142	
##	riesgo14	6.000				1.255	0.282	
##	riesgo15	9.000				1.883	0.419	
##	riesgo16	12.000				2.511	0.545	
##	riesgo17	15.000				3.139	0.608	
##	riesgo18	18.000				3.766	0.648	
##	q =~							
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	9.000				0.022	0.005	
##	riesgo14	36.000				0.088	0.020	
##	riesgo15	81.000				0.197	0.044	
##	riesgo16	144.000				0.350	0.076	
##	riesgo17	625.000				1.520	0.295	
##	riesgo18	324.000				0.788	0.136	
##								
##	Covariances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~							
##	S	-0.201	0.143	-1.405	0.160	-0.276	-0.276	
##	q	-0.002	0.003	-0.644	0.520	-0.193	-0.193	
##	S ~~							
##	q	0.000	0.000	0.428	0.669	0.383	0.383	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	16.163	0.298	54.227	0.000	4.646	4.646	
##	S	0.324	0.029	11.076	0.000	1.550	1.550	
##	q	0.001	0.001	1.927	0.054	0.520	0.520	
##								
##	Variances:							

##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.riesgo12	9.745	1.245	7.830	0.000	9.745	0.446
##	.riesgo13	8.391	0.899	9.338	0.000	8.391	0.427
##	.riesgo14	8.529	0.881	9.684	0.000	8.529	0.431
##	.riesgo15	8.135	0.943	8.623	0.000	8.135	0.402
##	.riesgo16	7.315	0.899	8.139	0.000	7.315	0.345
##	.riesgo17	6.757	4.586	1.473	0.141	6.757	0.254
##	.riesgo18	12.882	1.945	6.623	0.000	12.882	0.381
##	i	12.101	2.240	5.402	0.000	1.000	1.000
##	S	0.044	0.016	2.697	0.007	1.000	1.000
##	q	0.000	0.000	0.231	0.818	1.000	1.000

Volvamos a nuestro ejemplo

Modelo condicional con covariable cambia en el tiempo: efecto sobre parámetros de cambio

```
modelo3<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
           s=~ 0*riesgo12 + 1*riesgo13+ 2*riesgo14 + 3*riesgo15 +
               4*riesgo16 + 5*riesgo17 + 6*riesgo18
           q=~ 0*riesgo12 + 1*riesgo13+ 4*riesgo14 + 9*riesgo15 +
               16*riesgo16 + 25*riesgo17 + 36*riesgo18
           i ~ actitud12
           s ~ actitud12
           q ~ actitud12
fit3<- growth(modelo3, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit3, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 81 iterations
##
##
    Estimator
                                                        ML
##
    Optimization method
                                                   NLMINB
     Number of model parameters
##
                                                        19
##
##
    Number of observations
                                                       200
    Number of missing patterns
                                                         1
##
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
    Test Statistic
                                                    25.901
##
                                                                26.607
##
    Degrees of freedom
                                                        23
                                                                    23
##
    P-value (Chi-square)
                                                     0.306
                                                                0.273
    Scaling correction factor
                                                                 0.973
##
      Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                   766.764
                                                               798.582
    Degrees of freedom
                                                                    28
##
                                                        28
    P-value
##
                                                     0.000
                                                                0.000
##
     Scaling correction factor
                                                                 0.960
##
```

## Use	r Model versus Baseline Model:			
	Comparative Fit Index (CFI)	0.996	0.995	
	ucker-Lewis Index (TLI)	0.995	0.994	
## 1	dcket_rewip index (iri)	0.995	0.994	
	obust Comparative Fit Index (CFI)		0.995	
	obust Tucker-Lewis Index (TLI)		0.994	
## 10	obust lucker Lewis index (ILI)		0.994	
	likelihood and Information Criteria:			
## LOg	likelihood and information officeria.			
	oglikelihood user model (HO)	-3797.666	-3797.666	
	caling correction factor	0101.000	0.929	
##	for the MLR correction		0.020	
	oglikelihood unrestricted model (H1)	-3784.716	-3784.716	
	caling correction factor	01011110	0.954	
##	for the MLR correction		0.001	
##	101 0110 11210 00110001011			
	kaike (AIC)	7633.332	7633.332	
	ayesian (BIC)	7696.000		
	ample-size adjusted Bayesian (SABIC)	7635.806		
##				
## Roo	t Mean Square Error of Approximation:			
##	1			
## R	MSEA	0.025	0.028	
## 9	O Percent confidence interval - lower	0.000	0.000	
## 9	O Percent confidence interval - upper	0.065	0.067	
## P	-value H_0: RMSEA <= 0.050	0.813	0.784	
## P	-value H_0: RMSEA >= 0.080	0.008	0.010	
##				
## R	obust RMSEA		0.028	
## 9	O Percent confidence interval - lower		0.000	
## 9	O Percent confidence interval - upper		0.066	
## P	-value H_0: Robust RMSEA <= 0.050		0.791	
## P	-value H_0: Robust RMSEA >= 0.080		0.008	
##				
## Sta	ndardized Root Mean Square Residual:			
##				
	RMR	0.031	0.031	
##				
	ameter Estimates:			
##	1 1	G 1 1 1		
## S	tandard errors	Sandwich		

##	Information brea	ad			Observed				
##	Observed informa	ation based	on		Hessian				
##									
	Latent Variables:			_	- ()				
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
##	i =~	4 000				0 000	0.700		
##	riesgo12	1.000				3.606	0.799		
##	riesgo13	1.000				3.606	0.802		
##	riesgo14	1.000				3.606	0.801		
##	riesgo15	1.000				3.606	0.784		
##	riesgo16	1.000				3.606	0.768		
##	riesgo17	1.000				3.606	0.706		
##	riesgo18	1.000				3.606	0.662		
##	S =~	0 000				0 000	0.000		
##	riesgo12	0.000				0.000	0.000		
##	riesgo13	1.000				1.330	0.296		
##	riesgo14	2.000				2.660	0.591		
##	riesgo15	3.000				3.990	0.868		
##	riesgo16	4.000				5.320	1.133		
##	riesgo17	5.000				6.650	1.302		
##	riesgo18	6.000				7.980	1.464		
##	q =~	0 000				0 000	0.000		
##	riesgo12	0.000				0.000	0.000		
##	riesgo13	1.000				0.173	0.038		
##	riesgo14	4.000				0.691	0.153		
##	riesgo15	9.000				1.555	0.338		
##	riesgo16	16.000				2.765	0.589		
##	riesgo17	25.000				4.320	0.846		
##	riesgo18	36.000				6.220	1.141		
##	D								
	Regressions:	Datimata	C+ -1 E]	D(> -)	C+ 1 1	C+4 -11		
##	i ~	Estimate	Sta.Err	z-varue	P(> z)	Sta.IV	Std.all		
##		0.251	0 505	0 605	0 407	0 007	0 050		
##	actitud12	-0.551	0.505	-0.695	0.487	-0.097	-0.059		
##	S ~	0 176	0.052	0 606	0 496	0 120	0 000		
##	actitud12	-0.176	0.253	-0.696	0.486	-0.132	-0.080		
##	q ~	0.057	0 020	1 500	0 121	0 222	0.000		
##	actitud12	-0.057	0.038	-1.508	0.131	-0.333	-0.200		
##	Covariances:								
	COVALIANCES:	Eatimata	C+d Face	7-770 1 110	D(\)	C+4 1	C+d 511		
##	i	ESTIMATE	Stu.EIT	z-varue	P(> z)	Std.IV	Stu.all		
##	.i ~~								

##	.s	-1.460	0.896	-1.630	0.103	-0.306	-0.306	
##	. q	0.051	0.122	0.416	0.678	0.083	0.083	
##	.s ~~							
##	. q	-0.192	0.088	-2.171	0.030	-0.855	-0.855	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.i	18.158	2.004	9.063	0.000	5.035	5.035	
##	.s	0.924	1.042	0.887	0.375	0.694	0.694	
##	.q	0.375	0.156	2.402	0.016	2.168	2.168	
##								
##	Variances:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	7.380	1.504	4.905	0.000	7.380	0.362	
##	.riesgo13	8.543	0.884	9.661	0.000	8.543	0.423	
##	.riesgo14	8.016	0.900	8.909	0.000	8.016	0.395	
##	.riesgo15	7.555	0.893	8.459	0.000	7.555	0.357	
##	.riesgo16	6.827	0.865	7.894	0.000	6.827	0.310	
##	.riesgo17	8.703	1.199	7.260	0.000	8.703	0.334	
##	.riesgo18	8.689	1.877	4.630	0.000	8.689	0.292	
##	.i	12.958	2.322	5.582	0.000	0.997	0.997	
##	. S	1.758	0.630	2.790	0.005	0.994	0.994	
##	.q	0.029	0.014	1.997	0.046	0.960	0.960	

Modelo condicional con covariable cambia en el tiempo: efecto sobre los tiempos

```
modelo4<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
           s=~ 0*riesgo12 + 1*riesgo13+ 2*riesgo14 + 3*riesgo15 +
               4*riesgo16 + 5*riesgo17 + 6*riesgo18
           q=~ 0*riesgo12 + 1*riesgo13+ 4*riesgo14 + 9*riesgo15 +
               16*riesgo16 + 25*riesgo17 + 36*riesgo18
           riesgo12~ a*age12
           riesgo13~ a*age13
           riesgo14~ a*age14
           riesgo15~ a*age15
           riesgo16~ a*age16
           riesgo17~ a*age17
           riesgo18~ a*age18
fit4<- growth(modelo4, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit4, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 72 iterations
##
##
     Estimator
                                                        ML
                                                    NLMINB
##
     Optimization method
##
     Number of model parameters
                                                        23
     Number of equality constraints
                                                         6
##
##
##
     Number of observations
                                                       200
##
     Number of missing patterns
                                                         1
##
## Model Test User Model:
##
                                                  Standard
                                                                Scaled
                                                    72.628
##
    Test Statistic
                                                                74.523
     Degrees of freedom
                                                        67
                                                                    67
##
                                                     0.298
##
     P-value (Chi-square)
                                                                 0.247
##
     Scaling correction factor
                                                                 0.975
##
       Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
                                                   785.500
##
     Test statistic
                                                               805.174
## Degrees of freedom
                                                        70
                                                                    70
```

##	P-value Scaling correction factor	0.000	0.000 0.976	
##	Scaling correction factor		0.970	
## ##	User Model versus Baseline Model:			
##	Comparative Fit Index (CFI)	0.992	0.990	
##	Tucker-Lewis Index (TLI)	0.992	0.989	
##				
##	Robust Comparative Fit Index (CFI)		0.989	
##	Robust Tucker-Lewis Index (TLI)		0.989	
##				
##	Loglikelihood and Information Criteria:			
##				
##		-3811.661		
##	0		0.703	
##		0775 047	0775 047	
##	9	-3775.347		
##	0		0.970	
##				
##		7657.323	7657.323	
##		7713.394		
##	·	7659.536		
##	Sample Sile augustea Eugestan (Sile)	, 000.000	, 000.000	
##	Root Mean Square Error of Approximation:			
##	1			
##	RMSEA	0.020	0.024	
##	90 Percent confidence interval - lower	0.000	0.000	
##	90 Percent confidence interval - upper	0.048	0.050	
##	-	0.966	0.952	
##	-	0.000	0.000	
##				
##			0.024	
##			0.000	
##	11		0.049	
##	-		0.956	
##	P-value H_0: Robust RMSEA >= 0.080		0.000	
	Standardized Root Mean Square Residual:			
##	bullatararzoa 16000 modii bquaro 16051auar.			
##	SRMR	0.039	0.039	
##				

	Parameter Estimate	es:						
##								
##	Standard errors	Sandwich						
##	Information brea	Observed						
##	Observed informa	ation based		Hessian				
##	Introd Wardaham							
	Latent Variables:	Estimata	C+ -1 E		P(> z)	C+ 1 1	C+4 -11	
##	i =~	Estimate	Sta.Err	z-varue	P(> Z)	Std.lv	Std.all	
##	_	1.000				3.629	0.803	
##	riesgo12 riesgo13	1.000				3.629	0.809	
##	•	1.000				3.629	0.804	
##	riesgo14 riesgo15	1.000				3.629	0.788	
	•	1.000				3.629		
##	riesgo16						0.775 0.712	
##	riesgo17	1.000				3.629		
##	riesgo18	1.000				3.629	0.665	
##	S =~	0 000				0 000	0 000	
##	riesgo12	0.000				0.000 1.379	0.000 0.307	
##	riesgo13					2.759		
	riesgo14	2.000					0.611	
##	riesgo15	3.000				4.138	0.899	
##	riesgo16	4.000				5.518	1.179	
##	riesgo17	5.000				6.897	1.354	
##	riesgo18	6.000				8.276	1.516	
##	q =~	0 000				0 000	0.000	
##	riesgo12	0.000				0.000	0.000	
	riesgo13	1.000				0.180	0.040	
##	riesgo14	4.000				0.719	0.159	
##	riesgo15	9.000 16.000				1.617	0.351 0.614	
	riesgo16					2.875 4.492		
##	riesgo17	25.000 36.000				6.468	0.882	
##	riesgo18	36.000				0.400	1.185	
	Regressions:							
##	regressions.	Eatimata	C+d Error	- ····]	P(> z)	C+4 1	C+4 -11	
##	riogra10	Estimate	Std.Err	Z-value	F(> Z)	Std.lv	Std.all	
	riesgo12 ~	1 100	0 540	2.701	0 007	1 /100	0 056	
##	age12 (a) riesgo13 ~	1.480	0.548	2.701	0.007	1.480	0.056	
##	•	1.480	0.548	2.701	0.007	1.480	0.056	
##	age13 (a) riesgo14 ~	1.400	0.548	2.701	0.007	1.400	0.050	
##	•	1 100	0 540	2.701	0.007	1 /100	0.060	
##	•	1.480	0.548	2.701	0.007	1.480	0.000	
##	riesgo15 ~							

##	age15 riesgo16 ~	(a)	1.480	0.548	2.701	0.007	1.480	0.059	
##	age16	(a)	1.480	0.548	2.701	0.007	1.480	0.056	
##	riesgo17 ~ age17	(a)	1.480	0.548	2.701	0.007	1.480	0.049	
##	riesgo18 ~ age18	(a)	1.480	0.548	2.701	0.007	1.480	0.041	
##	ageio	(a)	1.400	0.546	2.701	0.007	1.400	0.041	
##	Covariances:								
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~								
##	S		-1.597	0.898	-1.778	0.075	-0.319	-0.319	
##	q		0.080	0.122	0.658	0.511	0.123	0.123	
##	S ~~								
##	q		-0.206	0.092	-2.237	0.025	-0.833	-0.833	
##									
##	Intercepts:								
##	-		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i		-1.001	6.639	-0.151	0.880	-0.276	-0.276	
##	S		-1.250	0.561	-2.229	0.026	-0.906	-0.906	
##	q		0.148	0.025	5.862	0.000	0.822	0.822	
##	-								
##									
	Variances:								
##	Variances:		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
## ##	.riesgo12		Estimate 7.185	Std.Err	z-value 4.879	P(> z) 0.000	Std.lv 7.185	Std.all 0.352	
##	.riesgo12		7.185	1.473	4.879	0.000	7.185	0.352	
## ##	.riesgo12 .riesgo13		7.185 8.422	1.473 0.880	4.879 9.572	0.000	7.185 8.422	0.352 0.418	
## ## ##	.riesgo12 .riesgo13 .riesgo14		7.185 8.422 8.039	1.473 0.880 0.923	4.879 9.572 8.713	0.000 0.000 0.000	7.185 8.422 8.039	0.352 0.418 0.395	
## ## ## ##	.riesgo12 .riesgo13 .riesgo14 .riesgo15		7.185 8.422 8.039 7.512	1.473 0.880 0.923 0.884	4.879 9.572 8.713 8.497	0.000 0.000 0.000 0.000	7.185 8.422 8.039 7.512	0.352 0.418 0.395 0.354	
## ## ## ##	.riesgo12 .riesgo13 .riesgo14 .riesgo15 .riesgo16		7.185 8.422 8.039 7.512 6.596	1.473 0.880 0.923 0.884 0.854	4.879 9.572 8.713 8.497 7.725	0.000 0.000 0.000 0.000	7.185 8.422 8.039 7.512 6.596	0.352 0.418 0.395 0.354 0.301	
## ## ## ## ##	.riesgo12 .riesgo13 .riesgo14 .riesgo15 .riesgo16		7.185 8.422 8.039 7.512 6.596 8.539	1.473 0.880 0.923 0.884 0.854 1.186	4.879 9.572 8.713 8.497 7.725 7.200	0.000 0.000 0.000 0.000 0.000	7.185 8.422 8.039 7.512 6.596 8.539	0.352 0.418 0.395 0.354 0.301 0.329	
## ## ## ## ## ##	.riesgo12 .riesgo13 .riesgo14 .riesgo15 .riesgo16 .riesgo17 .riesgo18		7.185 8.422 8.039 7.512 6.596 8.539 8.802	1.473 0.880 0.923 0.884 0.854 1.186 1.994	4.879 9.572 8.713 8.497 7.725 7.200 4.415	0.000 0.000 0.000 0.000 0.000 0.000	7.185 8.422 8.039 7.512 6.596 8.539 8.802	0.352 0.418 0.395 0.354 0.301 0.329 0.295	
## ## ## ## ## ##	.riesgo12 .riesgo13 .riesgo14 .riesgo15 .riesgo16 .riesgo17 .riesgo18		7.185 8.422 8.039 7.512 6.596 8.539 8.802 13.167	1.473 0.880 0.923 0.884 0.854 1.186 1.994 2.323	4.879 9.572 8.713 8.497 7.725 7.200 4.415 5.667	0.000 0.000 0.000 0.000 0.000 0.000 0.000	7.185 8.422 8.039 7.512 6.596 8.539 8.802 1.000	0.352 0.418 0.395 0.354 0.301 0.329 0.295 1.000	

Modelo sin restricciones

```
modelo4<- "i=~ 1*riesgo12 + 1*riesgo13+ 1*riesgo14 + 1*riesgo15 +
               1*riesgo16 + 1*riesgo17 + 1*riesgo18
           s=~ 0*riesgo12 + 1*riesgo13+ 2*riesgo14 + 3*riesgo15 +
               4*riesgo16 + 5*riesgo17 + 6*riesgo18
           q=~ 0*riesgo12 + 1*riesgo13+ 4*riesgo14 + 9*riesgo15 +
               16*riesgo16 + 25*riesgo17 + 36*riesgo18
           riesgo12~ age12
          riesgo13~ age13
          riesgo14~ age14
          riesgo15~ age15
           riesgo16~ age16
           riesgo17~ age17
           riesgo18~ age18
fit4<- growth(modelo4, data = base,
              missing="fiml", se="robust", estimator="mlr")
summary(fit4, fit.measures= T, standardized=T)
## lavaan 0.6-19 ended normally after 105 iterations
##
##
    Estimator
                                                       ML
##
    Optimization method
                                                   NLMINB
##
    Number of model parameters
                                                        23
##
    Number of observations
                                                       200
##
##
    Number of missing patterns
                                                         1
## Model Test User Model:
##
                                                 Standard
                                                                Scaled
##
    Test Statistic
                                                   70.003
                                                                72.612
##
    Degrees of freedom
                                                        61
                                                                    61
    P-value (Chi-square)
##
                                                    0.201
                                                                0.147
    Scaling correction factor
##
                                                                 0.964
      Yuan-Bentler correction (Mplus variant)
##
##
## Model Test Baseline Model:
##
##
    Test statistic
                                                  785.500
                                                               805.174
##
    Degrees of freedom
                                                        70
                                                                    70
   P-value
                                                    0.000
                                                              0.000
```

## ##	Scaling correction factor		0.976	
## ##	User Model versus Baseline Model:			
##	Comparative Fit Index (CFI)	0.987	0.984	
##	Tucker-Lewis Index (TLI)	0.986	0.982	
##				
##	1		0.984	
##	Robust Tucker-Lewis Index (TLI)		0.981	
##				
	Loglikelihood and Information Criteria:			
##	Indikalihaad ugar madal (HO)	-3810.349	-3810.349	
##	Loglikelihood user model (H0) Scaling correction factor	-3010.349	0.985	
##	for the MLR correction		0.300	
##		-3775.347	-3775.347	
##			0.970	
##	for the MLR correction			
##				
##	Akaike (AIC)	7666.698	7666.698	
##	Bayesian (BIC)	7742.559	7742.559	
##	Sample-size adjusted Bayesian (SABIC)	7669.693	7669.693	
##				
	Root Mean Square Error of Approximation:			
##	RMSEA	0.027	0.031	
##	90 Percent confidence interval - lower	0.027		
##		0.053		
##	P-value H O: RMSEA <= 0.050	0.925		
##	P-value H 0: RMSEA >= 0.080	0.000	0.000	
##	_			
##	Robust RMSEA		0.031	
##	90 Percent confidence interval - lower		0.000	
##	90 Percent confidence interval - upper		0.054	
##	P-value H_0: Robust RMSEA <= 0.050		0.901	
##	P-value H_0: Robust RMSEA >= 0.080		0.000	
##	Ctondordined Doot Many Courses Doordinel.			
##	Standardized Root Mean Square Residual:			
##	SRMR	0.039	0.039	
##	N/ A VA - AA V	0.003	3.003	
	Parameter Estimates:			

##								
##	Standard errors	Sandwich						
##	Information brea	Observed						
##	Observed informa	Hessian						
##								
	Latent Variables:		a	-	56.1.1	G. 1 7	G. 1 33	
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i =~	4 000				0 007	0.000	
##	riesgo12	1.000				3.627	0.803	
##	riesgo13	1.000				3.627	0.808	
##	riesgo14	1.000				3.627	0.804	
##	riesgo15	1.000				3.627	0.788	
##	riesgo16	1.000				3.627	0.776	
##	riesgo17	1.000				3.627	0.712	
##	riesgo18	1.000				3.627	0.664	
##	S =~	0.000				0 000	0.000	
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				1.379	0.307	
##	riesgo14	2.000				2.757	0.611	
##	riesgo15	3.000				4.136	0.899	
##	riesgo16	4.000				5.515	1.180	
##	riesgo17	5.000				6.894	1.353	
##	riesgo18	6.000				8.272	1.514	
##	q =~	0.000				0 000	0.000	
##	riesgo12	0.000				0.000	0.000	
##	riesgo13	1.000				0.180	0.040	
##	riesgo14	4.000				0.720	0.160	
##	riesgo15	9.000				1.621	0.352	
##	riesgo16	16.000				2.882	0.617	
##	riesgo17	25.000				4.503	0.884	
##	riesgo18	36.000				6.484	1.187	
##	D							
	Regressions:	Б	G. 1 E		D(>)	Q. 1. 7	Q. 1 33	
##	1.0	Estimate	Sta.Err	z-value	P(> z)	Std.lv	Std.all	
##	riesgo12 ~	4 400	4 400	0 705	0 407	4 400	0.040	
##	age12	1.139	1.433	0.795	0.427	1.139	0.043	
##	riesgo13 ~	1 010	0 070	1 001	0.460	4 046	0.046	
##	age13	1.216	0.873	1.394	0.163	1.216	0.046	
##	riesgo14 ~	4 00 4	0.010	4 000	0.400	1 004	0.050	
##	age14	1.304	0.812	1.606	0.108	1.304	0.053	
##	riesgo15 ~	1 110	0 774	1 000	0.007	1 110	0.050	
##	age15	1.412	0.771	1.832	0.067	1.412	0.056	

##	riesgo16 ~							
##	age16	1.494	0.698	2.140	0.032	1.494	0.057	
##	riesgo17 ~							
##	age17	1.624	0.890	1.823	0.068	1.624	0.054	
##	riesgo18 ~	1 7/15	1 101	1 171	0 040	1 7/5	0 040	
##	age18	1.745	1.491	1.171	0.242	1.745	0.049	
##	Covariances:							
##	ooval lances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i ~~		004.221	z varao	1 (121)	504.1	Doalar	
##	S	-1.582	0.894	-1.769	0.077	-0.316	-0.316	
##	q	0.078	0.122	0.644	0.520	0.120	0.120	
##	S ~~							
##	q	-0.207	0.092	-2.254	0.024	-0.832	-0.832	
##								
##	Intercepts:							
##		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	i	3.059	17.201	0.178	0.859	0.843	0.843	
##	S	-1.692	13.780	-0.123	0.902	-1.227	-1.227	
##	q	-0.022	2.462	-0.009	0.993	-0.124	-0.124	
##								
##	Variances:		G. 1 F	-	D(>)	Q. 1. 7	Q. 1 77	
##	10	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all	
##	.riesgo12	7.182	1.476	4.865 9.525	0.000	7.182	0.353	
##	.riesgo13 .riesgo14	8.452 8.018	0.887 0.915	9.525 8.761	0.000	8.452 8.018	0.419 0.394	
##	.riesgo14	7.461	0.895	8.339	0.000	7.461	0.352	
##	.riesgo15	6.520	0.845	7.720	0.000	6.520	0.332	
##	riesgo17	8.526	1.187	7.185	0.000	8.526	0.328	
##	.riesgo17	8.805	2.006	4.390	0.000	8.805	0.295	
##	i	13.152	2.321	5.667	0.000	1.000	1.000	
##	S	1.901	0.643	2.954	0.003	1.000	1.000	
##	q	0.032	0.015	2.126	0.034	1.000	1.000	
	-							