a)
$$A_0 = \pi r^2 = \pi \left(\frac{672}{2}\right)^2$$

b)@175°C
$$y_{steel} = 2 \propto_{steel}$$

$$y = 2 (1.2 \times 10^{-5})$$

Thermodynamics #1) T. = 26.4°C = 299.4°F W= SPdV N=6mol $P_f = P$: W= P&V V= nRT W= 1800J $W = P\left(V_{A} - V_{i}\right)$ [800] = P/ (6(8.24)(Tr) - 6(8.314)(2,99.75) 1400J = 6(8.314)(TF-29995) (Te-2995)= 1800 6(8.314) Tr-2998=36.08 Tr= 535 % = 62°C #3) W= SP dv Isotherma/ N=0,315 and w = nBT/ t dv T= 22°= 295% W---332J W= nBT [ln(Vp)-ln(V.)] R= 8.34 J/mol 15 Pc= 1.15 atm W= nBT la (V.) PU= NRT V= MRT

-DV :W	Isobaric - constant Pressure
+DV:+W	$Q = \Delta U + w = \Delta U = P \Delta V$
	Isovolumetric - constant Volume
For Solids	W= Ø U= Q
linear: X	Isothermal - constant Tearp
Area: 8=2d	BU=Ø ST=Ø W=Q
Volume: P = 30	Adiabatic - No energy entering /leaving
	$Q = \emptyset$ $\Delta U = -\omega$