Tutorial # 6

Turing Machine

Exercise 1

Let $M = (Q, \Sigma, \Gamma, \#, q0, F, \delta)$ be a Turing machine where:

•
$$Q = \{q0, q1, q2\}$$
 • $\Gamma = \{a, b, c, \#\}$

•
$$\Gamma = \{a,b,c,\#\}$$

•
$$\Sigma$$
={ a,b,c }

$$\bullet F = \{q2\}$$

δ	а	b	С	#
q0	q0,a,R	q0,c,R	q0,c,R	q1,#,L
q1	q1,c,L	-	q1, b, L	q2,#,R
<i>q</i> 2	-	-	-	-

Trace the computation for the input string aabca.

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	δ	а	b	С	#		
	q0	q0, a, R	q0,c,R	q0,c,R	q1,#,L		
a2	<i>q</i> 1	q1, c, L	-	q1, b, L	q2, #, R		
42	<i>q</i> 2	Ī	-	-	-		

$$q0$$
 $aabca > a$ $q0$ $abca > aa$ $q0$ $bca > aac$ $q0$ ca $> aacc$ $q0$ $a > aacca$ $q0 > aacc$ $q1$ $a > aac$ $q1$ cc $> aa$ $q1$ $cbc > a$ $q1$ $abbc > q1$ $acbbc > q1$ $ccbbc$ $> q2$ $ccbbc$

Trace the computation for the input string bcbc

δ	а	b	С	#								
q0	q0, a, R	q0,c,R	q0,c,R	<i>q</i> 1,#, <i>L</i> ┌	#	b	С	b	С	#	#	
<i>q</i> 1	q1, c, L	-	q1, b, L	q2,#,R	 "	1.5		1.0		1		
q2		-	-	-								

```
# q0 bcbc# > #c q0 cbc# > #cc q0 bc# > #ccc q0 c# > #ccc q0 #
> #ccc q1 c#> #cc q1 cb# > #c q1 cbb# > # q1 cbbb# > q1 #bbbb#
> # q2 bbbb#
```

Give the state diagram of M.

δ	а	b	С	#
q0	q0, a, R	q0,c,R	q0,c,R	q1,#,L
<i>q</i> 1	q1, c, L	-	q1, b, L	q2,#,R
q2	-	-	-	-

• Describe the result of a computation in M.

• The result of the computation is to replace the a's in the input string with c's, and the c's with b's.

Construct a Turing machine with input alphabet $\{a, b\}$ to perform each of the following operation:

Return *E* if the length of the input string is even, and *O* if the length is odd.

Construct a Turing machine with input alphabet $\{a, b\}$ to perform each of the following operation:

Construct a copy of the reversed input string and concatenate it to

the input.

baa →baaaab

Construct a Turing machine with input alphabet $\{a, b\}$ to perform each of the following operation:

• Erase the b's from the input.

