Syntax	Semantics	\mathcal{FL}_0	\mathcal{FL}_{\perp}	\mathcal{FL}_{\neg}	ALN
Τ	$\Delta^{\mathcal{I}}$	X	X	X	X
$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$	X	X	X	X
$\forall r.C$	$\{x \in \Delta^{\mathcal{I}} \mid \forall y \colon (x, y) \in r^{\mathcal{I}} \to y \in C^{\mathcal{I}}\}$	X	X	X	X
上	Ø		X	X	X
$\neg P, P \in N_C$	$\Delta^{\mathcal{I}} \setminus P^{\mathcal{I}}$			X	X
$(\geq n r), n \in \mathbb{N}$	$\{x \in \Delta^{\mathcal{I}} \mid \#\{y \mid (x,y) \in r^{\mathcal{I}}\} \ge n\}$				X
$(\leq n \ r), n \in \mathbb{N}$	$\{x \in \Delta^{\mathcal{I}} \mid \#\{y \mid (x,y) \in r^{\mathcal{I}}\} \le n\}$				X

Table 1: Syntax and semantics of concept descriptions.

is a finite set of side conditions. If the set S contains only subsumption conditions, then M is called matching problem under subsumption conditions. The substitution σ is a solution (matcher) of M iff it is a matcher of $C \equiv^? D$ that satisfies every side condition in S.

In the next section, we will restrict the attention to matching problems under subsumption conditions. Section 4 then treats matching problems under acyclic side conditions.

In order to define matching problems under acyclic side conditions, we say that a variable X directly depends on a variable Y in S iff S contains a side condition X ρ E such that Y occurs in E. If there are $n \geq 1$ variables X_1, \ldots, X_n such that X_i directly depends on X_{i+1} in S ($1 \leq i \leq n-1$), then we say that X_1 depends on X_n in S. The set of side conditions S is cyclic iff there is a variable X that depends on itself in S; otherwise, S is acyclic.

3 Matching under subsumption conditions

Let \mathcal{L} be one of the DLs \mathcal{FL}_{\perp} , \mathcal{FL}_{\neg} , \mathcal{ALN} . We present a polynomial time algorithm that, given an \mathcal{L} -matching problems under subsumption conditions, returns a least matcher (w.r.t. the ordering \sqsubseteq on substitutions) if the problem is solvable, and "fail" otherwise. In principle, the algorithm iterates the application of MATCH $_{\mathcal{L}}$ until a fixpoint is reached. However, the matcher computed in one step is used to modify the matching problem to be solved in the next step. Given an \mathcal{L} -matching problem under subsumption conditions $M := \langle C \equiv^? D, S \rangle$ and a substitution σ , we define

$$M_{\sigma} := \{ C \equiv^? D \} \cup \{ \sigma(X) \sqsubseteq^? E \mid X \sqsubseteq^? E \in S \}.$$

Recall that $\sigma(X) \sqsubseteq^? E$ abbreviates the matching problem $\sigma(X) \equiv^? \sigma(X) \sqcap E$. Thus M_σ is a system of $\mathcal L$ -matching problems without side conditions, to which MATCH $_{\mathcal L}$ can be applied.

Algorithm 4 Let $M := \langle C \equiv^? D, S \rangle$ be an \mathcal{L} -matching problem under subsumption conditions. Then, the algorithm MATCH $^{\sqsubseteq}_{\mathcal{L}}(M)$ works as follows:

- 1. $\sigma(X) := \bot$ for all variables X;
- 2. If $MATCH_{\mathcal{L}}(M_{\sigma})$ returns "fail", then return "fail"; else if $\sigma \equiv MATCH_{\mathcal{L}}(M_{\sigma})$, then return σ ; else $\sigma := MATCH_{\mathcal{L}}(M_{\sigma})$; continue with 2.

Let σ_0 denote the substitution defined in step 1 of the algorithm, and σ_t $(t \ge 1)$ the matcher computed in the t-th iteration of Step 2. Note that σ_t is undefined if MATCH $_{\mathcal{L}}$ returns

"fail" in the t-th iteration or if the algorithm has stopped before the t-th iteration.

To show that the algorithm is correct, we must show soundness, completeness, and termination, i.e., i) if the algorithm terminates and returns a substitution, then this substitution in fact solves the problem; ii) if the algorithm terminates and returns "fail", then there indeed is no solution; and iii) the algorithm halts on every input. The following lemma proves soundness and completeness of the algorithm. The first two items establish a loop invariant.

Lemma 5 Let $M := \langle C \equiv^? D, S \rangle$ be an \mathcal{L} -matching problem under subsumption conditions.

- 1. If σ_t is defined and τ is a solution of M, then $\sigma_t \sqsubseteq \tau$.
- 2. If σ_t , σ_{t+1} are defined, then $\sigma_t \sqsubseteq \sigma_{t+1}$.
- 3. If MATCH $\overline{L}(M)$ returns the substitution σ , then σ solves M (soundness).
- 4. If MATCH $_{\mathcal{L}}^{\sqsubseteq}(M)$ returns "fail", then M has no solution (completeness).

PROOF. 1. Obviously, the claim is true for σ_0 . Assume that $\sigma_t \sqsubseteq \tau$, and that σ_{t+1} is defined. To prove $\sigma_{t+1} \sqsubseteq \tau$, it is sufficient to show that τ solves M_{σ_t} since σ_{t+1} is the least solution of M_{σ_t} . Since τ solves M, we know that it solves $C \equiv^? D$ and that $\tau(X) \sqsubseteq \tau(E)$ for all $X \sqsubseteq^? E \in S$. The induction assumption $\sigma_t \sqsubseteq \tau$ implies $\sigma_t(X) \sqsubseteq \tau(X)$, and thus $\sigma_t(X) \sqsubseteq \tau(E)$, which shows that τ solves M_{σ_t} .

- 2. Obviously, $\sigma_0 \sqsubseteq \sigma_1$. Now assume that $\sigma_{t-1} \sqsubseteq \sigma_t$. Together with the fact that σ_t solves $M_{\sigma_{t-1}}$, this implies that σ_{t+1} solves the system $M_{\sigma_{t-1}}$. Since σ_t is the least solution of $M_{\sigma_{t-1}}$, we can conclude $\sigma_t \sqsubseteq \sigma_{t+1}$.
- 3. Assume that $\sigma = \sigma_t$. By definition of MATCH \overline{L} , $C \equiv \sigma_t(D)$. It remains to show that σ_t solves the side conditions. We know that $\sigma_t \equiv \sigma_{t+1}$ and σ_{t+1} solves M_{σ_t} . Thus, $\sigma_t(X) \sqsubseteq \sigma_{t+1}(E) \equiv \sigma_t(E)$ for every $X \sqsubseteq^? E \in S$.
- 4. Assume that MATCH $_{\overline{L}}(M)$ returns "fail," and that σ_t is the last substitution computed by the algorithm. Now assume that τ solves M. As in the proof of 1. we can show that τ solves M_{σ_t} . Consequently, M_{σ_t} is solvable, and thus MATCH (M_{σ_t}) returns the least matcher of this system, in contradiction to the assumption that MATCH $_{\overline{L}}(M)$ returns "fail" in this step of the iteration.