

LOG2810

STRUCTURES DISCRÈTES

TD 4: ENSEMBLES ET FONCTIONS

A2022

Directives pour la remise :

- Répondez directement sur ce document papier.
- La remise est individuelle, mais le travail en équipe est encouragé.
- La remise se fait à la fin de la séance de TD.
- Aucun retard ne sera accepté.
- Le non-respect des consignes entraînera automatiquement la note 0 pour ce TD.

Identification

Veuillez inscrire votre section, nom, prénom et matricule ainsi que les non
des collègues avec lesquels vous avez collaboré pour le TD

des collègues avec lesquels vous avez collaboré pour le TD
Section:
Nom:
Prénom :
Matricule:
Collègues :

Exercice 1:

Dans cet exercice, on définit pour chaque question une relation f d'un domaine S vers un codomaine T. Dans chaque cas, dites si la relation f est une fonction, une fonction injective, une fonction surjective, ou une fonction bijective. Justifiez votre réponse.

Réponse :

- f est une fonction, car au plus un élément de T est affecté à chaque élément de S.
- f est injective car chaque image a un antécédent distinct
- f n'est pas surjective car t₅ n'as pas d'antécédant
- f n'est pas bijective car elle n'est pas surjective

Réponse:

• f n'est pas une fonction, car 2 éléments de T sont associés à s_1 , un élément de S

Réponse :

- f est une fonction, car au plus un élément de T est affecté à chaque élément de S.
- f n'est pas injective car $t_3 = f(s_3) = f(s_4)$ et $s_3 \neq s_4$
- f est surjective car chaque image a un antécédent.
- f n'est pas bijective car elle n'est pas injective

Réponse :

- f est une fonction, car au plus un élément de T est affecté à chaque élément de S.
- f est injective car chaque image a un antécédent distinct.
- f est surjective car chaque image a un antécédent.
- f est bijective car elle est injective et surjective

Réponse :

- f est une fonction, car au plus un élément de T est affecté à chaque élément de S.
- f n'est pas injective car $t_4 = f(s_2) = f(s_4)$ et $s_2 \neq s_4$
- f n'est pas surjective car t₃ n'as pas d'antécédant
- f n'est pas bijective car elle n'est ni injective ni surjective

Exercice 2:

Définition : \mathbb{R}_+ est l'ensemble des réels positifs.

On définit deux fonctions :

 $f_1: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$

 $f_2\colon \mathbb{R} \xrightarrow{} \mathbb{R}_+$, $x \mapsto \! x^2$

a) f_1 est-elle injective ? f_2 est-elle injective ?

Réponse :

- f_1 n'est pas injective, car $f_1(-1) = f_1(1) = 1$.
- f₂ n'est pas injective pour la même raison.

b) f_1 est-elle surjective ? f_2 est-elle surjective ?

Réponse :

- f_1 n'est pas surjective, car -1 n'est l'image d'aucune valeur de \mathbb{R} par f_1 .
- Montrons que f₂ est surjective.

Soit $a \in \mathbb{R}_+$, quelconque.

a est positif ou nul donc on a le droit de poser $b=\sqrt{a}$ où $b\in\mathbb{R}$. Ainsi, il existe un réel $b\in\mathbb{R}$ tel que $f_2(b)$ =a. On peut en conclure que f_2 est surjective.

c) f₁ est-elle bijective ? f₂ est-elle bijective ?

Réponse :

- f₁ n'est ni injective ni surjective, donc elle n'est pas bijective.
- f₂ n'est pas surjective, , donc elle n'est pas bijective non plus

Exercice 3:

Soit A, B et C trois sous-ensembles d'un ensemble E. Simplifier chacune des expressions.

a)
$$\overline{A \cup B} \cap C \cup \overline{A}$$

Réponse : $\overline{A \cup B} \cap \overline{C \cup \overline{A}} = (\overline{A} \cap \overline{B}) \cap (\overline{C} \cap A)$
 $\overline{A \cup B} \cap \overline{C \cup \overline{A}} = (\overline{A} \cap A) \cap (\overline{B} \cap \overline{C})$
 $\overline{A \cup B} \cap \overline{C \cup \overline{A}} = \emptyset \cap (\overline{B} \cap \overline{C})$
 $\overline{A \cup B} \cap \overline{C \cup \overline{A}} = \emptyset$

b)
$$\overline{A \cap B} \cup \overline{C \cap \overline{A}}$$

Réponse : $\overline{A \cap B} \cup \overline{C \cap \overline{A}} = (\overline{A} \cup \overline{B}) \cup (\overline{C} \cup A)$
 $\overline{A \cap B} \cup \overline{C \cap \overline{A}} = (\overline{A} \cup A) \cup (\overline{B} \cup \overline{C})$
 $\overline{A \cap B} \cup \overline{C \cap \overline{A}} = E \cup (\overline{B} \cup C)$
 $\overline{A \cap B} \cup \overline{C \cap \overline{A}} = E$

c)
$$(A \cap B) \cap \overline{A \cap C}$$

Réponse :
$$(A \cap B) \cap \overline{A \cap C} = (A \cap B) \cap (\overline{A} \cup \overline{C})$$

$$(A \cap B) \cap \overline{A \cap C} = [(A \cap B) \cap \overline{A}] \cup [(A \cap B) \cap \overline{C}]$$

$$(A \cap B) \cap \overline{A \cap C} = (A \cap \overline{A} \cap B) \cup [(A \cap B) \cap \overline{C}]$$

$$(A \cap B) \cap \overline{A \cap C} = \emptyset \cup [(A \cap B) \cap \overline{C}]$$

$$(A \cap B) \cap \overline{A \cap C} = (A \cap B) \cap \overline{C}$$

Exercice 4:

Soit A et B deux sous-ensembles d'un ensemble E. On pose :

$$A \Delta B = (A - B) \cup (B - A)$$

Montrez que A \triangle B = \overline{A} \triangle \overline{B} .

 $(A \cap B) \cap \overline{A \cap C} = A \cap B \cap \overline{C}$

Réponse:

Soit x un élément de E.

$$x \in \overline{A} \Delta \overline{B} \Leftrightarrow (x \in (\overline{A} - \overline{B})) \lor (x \in (\overline{B} - \overline{A}))$$

$$\Leftrightarrow [(x \in \overline{A}) \land (x \notin \overline{B})] \lor [(x \in \overline{B}) \land (x \notin \overline{A})]$$

$$\Leftrightarrow [(x \notin A) \land (x \in B)] \lor [(x \notin B) \land (x \in A)]$$

$$\Leftrightarrow [(x \in B) \land (x \notin A)] \lor [(x \in A) \land (x \notin B)]$$

$$\Leftrightarrow (x \in (B - A)) \lor (x \in (A - B))$$

$$\Leftrightarrow x \in ((B - A) \cup (A - B))$$

$$\Leftrightarrow x \in ((A - B) \cup (B - A))$$

$$\Leftrightarrow x \in A \Delta B$$

$$D'où A \Delta B = \overline{A} \Delta \overline{B}$$

Exercice 5

Pour tout entier naturel n, on définit U_n une suite arithmétique de raison r. On donne $U_5 = 8$ et $U_{12} = 29$.

1. Trouver les valeurs de U₀ et r.

Réponse :

 $\begin{array}{l} U_n \, \text{est une suite arithm\'etique, donc on a } U_5 = U_0 + r^* 5 \, \text{et} \quad U_{12} = U_0 + r^* 12 \, . \\ U_{12} - U_5 = \left(U_0 + r^* 12\right) - \left(U_0 + r^* 5\right) \\ = r * \left(12 - 5\right) \\ = r * 7 \end{array}$ $\begin{array}{l} \text{Et } U_{12} - U_5 = 29 - 8 = 21 \\ \text{D'où } r * 7 = 21 \\ r = \frac{21}{7} = 3 \end{array}$

On peut maintenant trouver U₀:

$$U_5 = 8 = U_0 + 3*5 = U_0 + 15$$

Donc $U_0 = 8 - 15 = -7$

2.Exprimez U_n en fonction de n.

Réponse :

$$U_n = -7 + 3n$$

Exercice 6

On considère la suite $V_n : V_n = \frac{5^n}{2^{2n}}$ avec $n \in \mathbb{N}$

En mettant en évidence le premier terme ainsi que la raison, justifier que V_n est une suite géométrique.

Réponse:

Regardons le premier terme :

$$V_0 = \frac{5^0}{2^{2*0}} = \frac{1}{1} = 1$$

Identifions maintenant la raison.

$$V_{n} = \frac{5^{n}}{2^{2n}}$$

$$V_{n+1} = \frac{5^{n+1}}{2^{2*(n+1)}}$$

$$= \frac{5^{n+1}}{2^{2n+2}}$$

$$= \frac{5^{n}}{2^{2n}} * \frac{5^{1}}{2^{2}}$$

$$= V_{n} * \frac{5}{4}$$

Donc
$$V_n = 1 * \left(\frac{5}{4}\right)^n$$

C'est une suite géométrique de raison $\frac{5}{4}$ et de premier terme 1 .