Math 302 Fall 2011 Homework #13

Due Dec. 12, Mon. in class

 \star Use the standard Euclidean metric on \mathbb{R} , and all x below are in \mathbb{R} unless otherwise indicated.

1. Let

$$f_n(x) = \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!}, \quad x \in \mathbb{R}.$$

It is shown in the last homework that the series $\sum_{n=1}^{\infty} f_n$ uniformly converges on A = [-a, a] with a > 0. Let f_* be the limiting function of the series on A, i.e., $f_*(x) = \sum_{n=1}^{\infty} f_n(x)$.

- (1.1) Is $\int_{-a}^{a} f_*(x) dx = \sum_{n=1}^{\infty} \int_{-a}^{a} f_n(x) dx$? Justify your answer.
- (1.2) Is f_* differentiable on (-a,a)? If so, is $f'_*(x) = \sum_{n=1}^{\infty} f'_n(x)$ on (-a,a)? Prove your answers.
- 2. Textbook, page 282, Exercises 1, 3.
- 3. Let $(V, \|\cdot\|)$ be a complete normed vector space and its induced metric $d(x, y) = \|x y\|$ for $x, y \in V$. Let $f: V \to V$ be a *linear* function, i.e., $f(x + y) = f(x) + f(y), \forall x, y \in V$ and $f(\alpha x) = \alpha f(x)$ for all $x \in V$ and $\alpha \in \mathbb{R}$.
 - (3.1) Show that f(0) = 0 and $f(x y) = f(x) f(y), \forall x, y \in V$. (You may assume x y = x + (-1)y for all $x, y \in V$.)
 - (3.2) Show that f is a contraction if and only if there exists a constant C with 0 < C < 1 such that $||f(x)|| \le C||x||$ for all $x \in V$.
 - (3.3) Suppose that f is a contraction. Let $x_0 \in V$ be arbitrary and define the sequence (x_n) recursively by

$$x_n = f(x_{n-1}), n \in \mathbb{N}.$$

Show that (x_n) converges to the zero vector in V.

(3.4) Let the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ be

$$f(x_1, x_2) = \frac{K}{\sqrt{2}} (x_1 + x_2, x_2 - x_1), \quad \forall \ x := (x_1, x_2) \in \mathbb{R}^2,$$

where the constant K satisfies 0 < K < 1. Show that f is a linear function and f is a contraction when the 2-norm (i.e., $\|\cdot\|_2$) is used.