ADVANCED ANALYSIS OF ALGORITHMS CPS 5440

OMAR DIB

UNIT 2: RECURSIVE FUNCTIONS. DIVIDE-AND-CONQUER. THE MASTER THEOREM.

- *O*-notation (upper bounds):
- We write f(n) = O(g(n)) if there exist constants $c > 0, n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

EXAMPLE:

- $f(n) = 2n + 3 = O(n) (c = 5, n_0 = 1)$
 - $2n + 3 \le 2n + 3n \text{ for all } n \ge 1$
 - $2n + 3 \le 5n$
 - f(n) = O(n)
- $1 < logn < \sqrt{n} < n < n logn < n^2 < n^3 < ... < 2^n < 3^n < n^n$
- $f(n) = 2n^2 = O(n^2) (c = 2, n_0 = 1)$ $= O(n^3) (c = 1, n_0 = 2)$

....

- \blacksquare Ω -notation (lower bounds)
- We write $f(n) = \Omega(g(n))$ if there exist constants $c > 0, n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.

EXAMPLE:

- $f(n) = 2n + 3 = \Omega(n) (c = 1, n_0 = 1)$
 - \blacksquare 2n + 3 \geq n for all $n \geq 1$
 - $f(n) = \Omega(n)$
- $f(n) = \sqrt{n} = \Omega(\lg n)(c = 1, n_0 = 16)$

- O-notation (tight bounds)
- We write $f(n) = \Theta(g(n))$ if there exist constants $c_1, c_2, n_0 > 0$ such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
- $\bullet \Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$

EXAMPLE:

- $f(n) = 2n + 3 = \Theta(n) (c_1 = 1, c_2 = 5, n_0 = 1)$
 - $n \le 2n + 3 \le 5n$ for all $n \ge 1$
 - $f(n) = \Theta(n)$

ASYMPTOTIC NOTATION VS (BEST, WORST, AND AVERAGE CASE)

Asymptotic notation and (Best, Worst, and Average case) are different!

SOLVING RECURRENCES

SOLVING RECURRENCES

- The analysis of merge sort from Lecture 1 required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc.
 - Learn a few tricks.

SUBSTITUTION METHOD: CONCEPT

- Substitution method for solving recurrences consists of two steps:
- Guess the form of the solution, e.g., T(n) = O(g(n)), then
- Use mathematical induction to find constants (c and n_0) in the form and show that the solution works
 - Step 1 (Base step) Prove that the guess is true for the initial value
 - **Step 2 (Inductive step)** Prove that if the guess is true for $T(k) \le c g(k)$, $\forall k < n$, then this implies that $T(n) \le c g(n)$, for some c > 0 and $n \ge n_0$
- The inductive hypothesis is applied to smaller values, similar like recursive calls bring us closer to the base case
- The substitution method is a powerful way to establish lower or upper bounds on a recurrence
- It applies in cases when it is easy to guess the form of the solution

SUBSTITUTION METHOD: MAKING A GOOD GUESS

- There is no general way to guess the correct solution to recurrences.
- Guessing a solution takes experience and, occasionally, creativity.
- Some heuristics can help us make a good guess (e, g, Iteration Method, Recursion Tree)
- If a recurrence is similar to a one, we have seen before, then guessing a similar solution is reasonable
- For example, $T(n) = 2T(\left\lfloor \frac{n}{2} \right\rfloor) + 17 + n$, we make the guess that $T(n) = O(n \lg n)$ like Merge Sort
- Another way to make a good guess is to prove the loose upper and lower bounds on the recurrence and then reduce the range of uncertainty. For example:
 - Start with and prove the initial lower bound of $T(n) = \Omega(n)$ for the recurrence
 - Start with and prove the initial upper bound of $T(n) = O(n^2)$ for the recurrence
 - Then gradually lower the upper bound and raise the lower bound until convergence to correct, asymptotically tight solution of $T(n) = \Theta(n \lg n)$
- Sometimes the correct guess at an asymptotic bound on the solution of a recurrence does not work. This can be solved by revising the guess and subtracting a lower-order term in the guess.

SUBSTITUTION METHOD: MERGE SORT

$$T(n) = \begin{cases} 1 & n = 1 \\ 2T(\left\lfloor \frac{n}{2} \right\rfloor) + n & n > 1 \end{cases}$$

- Guess: $T(n) = O(n \lg n)$, or $T(n) \le c \cdot n \lg n$, for some constant c and $n_0 \le n$
- Hypothesis: $T(k) \le c \cdot k \lg k$, $\forall k < n$, we will use $k = \frac{n}{2}$
- Inductive Step:

$$T(n) = 2 T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

$$\leq 2 \cdot c \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor\right) \lg\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

$$\leq c \cdot n \lg\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n$$

$$= c \cdot n \lg n - c \cdot n \lg 2 + n$$

$$= c \cdot n \lg n - c \cdot n + n$$

$$\leq c \cdot n \lg n \qquad if: -c \cdot n + n \leq 0 \Rightarrow c \geq 1$$

SUBSTITUTION METHOD: MERGE SORT

$$T(n) = \begin{cases} 1 & n = 1 \\ 2T(\left\lfloor \frac{n}{2} \right\rfloor) + n & n > 1 \end{cases}$$

- Guess: $T(n) = O(n \lg n)$, or $T(n) \le c \cdot n \lg n$, for some constant c and $n_0 \le n$
- Hypothesis: $T(k) \le c \cdot k \lg k$, $\forall k < n$
- From inductive step: $T(n) \le c \cdot n \lg n$ when $c \ge 1$
- Base step: $T(1) \le c . 1 \lg 1$?
 - Impossible as $T(1) = 1 \le c \cdot 1 \lg 1 = 0$. (Problem!)
 - But we only want to show that $T(n) \le c \cdot n \lg n$ for sufficiently large values of n; i.e., $\forall n \ge n_0$.
 - Solution: Try $n_0 > 1$
- Base steps (check boundaries)
 - We must check both T(2) and T(3) simultaneously because of the nature of the recursive equation
 - Check T(2) and T(3)

SUBSTITUTION METHOD: MERGE SORT

$$T(n) = \begin{cases} 1 & n = 1 \\ 2T(\left\lfloor \frac{n}{2} \right\rfloor) + n & n > 1 \end{cases}$$

- Guess: $T(n) = O(n \lg n)$, or $T(n) \le c \cdot n \lg n$, for some constant c and $n_0 \le n$
- Hypothesis: $T(k) \le c \cdot k \lg k$, $\forall k < n$
- From inductive step: $T(n) \le c \cdot n \lg n$ when $c \ge 1$
- Base step: $T(1) \le c \cdot n \lg n \forall n \ge 1 (n_0 > 1)$
- Base step boundaries:

$$T(1) = 1 \Longrightarrow \begin{cases} T(2) = 4 \\ T(3) = 5 \end{cases}$$

- We want to satisfy simultaneously
- $\begin{cases} 4 = T(2) \le c .2 \lg 2 \\ 5 = T(3) \le c .3 \lg 3 \end{cases} \Rightarrow \begin{cases} c \ge 2 \\ c \ge 1.052 \end{cases} \Rightarrow c \ge 2$
- We prove that $T(n) \le c \cdot n \lg n$, with c = 2, and $n_0 = 2$, So $T(n) = O(n \lg n)$

GUESS THE TIME COMPLEXITY

☐ Recursion-tree method

- It models the costs (time) of a recursive execution of an algorithm.
- It can be unreliable, just like any method that uses ellipses (...).
- It promotes intuition, however.
- Good for generating guesses for the substitution method.

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$

$$T(n)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$

$$T(n/4) \qquad T(n/2)$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$

GUESS THE TIME COMPLEXITY

☐ Iteration method

- Do some iterations to find a pattern
- Use the base step along with the pattern to guess the time complexity
- Finding the pattern might be challenging
 - Tip: Do not rush to simplify the calculation
- Good for generating guesses for the substitution method.

ITERATION METHOD

$$T(n) = \begin{cases} 0 & n = 0 \\ T(n-1) + 2n & n > 0 \end{cases}$$

\boldsymbol{k}	T(n)
1	T(n) = T(n-1) + 2n
2	T(n) = T(n-2) + 2n - 2 + 2n = T(n-2) + 2(2n) - 2
3	T(n) = T(n-3) + 2n - 4 + 2(2n) - 2 = T(n-3) + 3(2n) - 4 - 2
4	T(n) = T(n-4) + 2n - 6 + 3(2n) - 4 - 2 = T(n-4) + 4(2n) - 6 - 4 - 2
lacksquare	
k	$T(n) = T(n-k) + k(2n) - 2[(k-1) + (k-2) + \dots + 2 + 1]$
	$=T(n-k)+k(2n)-2\sum_{i=1}^{n-1}i$

$$T(0) = 0 \Rightarrow T(n - k) = 0 \Rightarrow n = k \Rightarrow$$

$$T(n) = T(0) + n(2n) - 2 \sum_{i=1}^{k-1} i = 0 + 2n^2 - 2 \left[\frac{(n-1)(n)}{2} \right]$$

$$= 2n^2 - n^2 + n = n^2 + n$$

$$= \mathbf{0}(n^2)$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

THE MASTER THEOREM.

MOTIVATION: ASYMPTOTIC BEHAVIOR OF RECURSIVE ALGORITHMS

- When analyzing algorithms, recall that we only care about the <u>asymptotic</u> <u>behavior</u>
- Recursive algorithms are no different
- Rather than <u>solving exactly</u> the recurrence relation associated with the cost of an algorithm, it is sufficient to give an asymptotic characterization
- The main tool for doing this is the master theorem

MASTER THEOREM

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n),$$

where $a \ge 1, b > 1$,

and f is asymptotically positive.

- $\blacksquare T(n) = a T(n/b) + f(n)$, where $a \ge 1, b > 1$,
- Compare f(n) with $n^{\log_b a}$:
- Case I:

If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

• f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).

Then:
$$T(n) = \Theta(n^{\log_b a})$$

$$T(n) = 9 T\left(\frac{n}{3}\right) + n$$

- a = 9
- b = 3
- f(n) = n

$$T(n) = a T(n/b) + f(n)$$
,
where $a \ge 1, b > 1$,

Master theorem can be applied

$$T(n) = 9 T(\frac{n}{3}) + n$$
 //a = 9; b = 3; $f(n) = n$

- Compare f(n) with $n^{\log_b a}$
 - $log_b a = log_3 9 = 2 \Rightarrow n^{log_b a} = n^2$
 - f(n) = n
- $O(n^{\log_b a \varepsilon}) = O(n^{2-\varepsilon}) = O(n) = f(n) \text{ for } \varepsilon = 1$
- Then: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_3 9}) = \Theta(n^2)$

- $\blacksquare T(n) = a T(n/b) + f(n)$, where $a \ge 1, b > 1$,
- Compare f(n) with $n^{\log_b a}$:
- **Case 2:**

If
$$f(n) = \Theta(n^{\log_b a})$$
.

 $f(n)$ and $n^{\log_b a}$ grow at similar rates.

Then: $T(n) = \Theta(n^{\log_b a} \lg n)$

$$T(n) = T\left(\frac{2n}{3}\right) + 1$$

- a = 1
- $b = \frac{3}{2}$
- f(n) = 1

$$T(n) = a T(n/b) + f(n)$$
,
where $a \ge 1, b > 1$,

Master theorem can be applied

$$T(n) = T(\frac{2n}{3}) + 1 // a = 1; b = \frac{3}{2}; f(n) = 1$$

- $\log_b a = \log_{3/2} 1 = 0$
- $\Theta(n^{\log_b a}) = \Theta(n^0) = \Theta(1) = f(n) = 1$

Then:
$$T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(1 \lg n) = \Theta(\lg n)$$

- $\blacksquare T(n) = a T(n/b) + f(n)$, where $a \ge 1, b > 1$,
- Compare f(n) with $n^{\log_b a}$:
- Case 3:

If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor). and f(n) satisfies the regularity condition:

$$a f\left(\frac{n}{b}\right) \le c f(n)$$
 for some constant $c < 1 \ \forall n$.

Then: $T(n) = \Theta(f(n))$

$$T(n) = 3 T\left(\frac{n}{4}\right) + nlgn$$

- a = 3
- b = 4
- f(n) = nlgn

$$T(n) = a T(n/b) + f(n)$$
,
where $a \ge 1, b > 1$,

Master theorem can be applied

- $T(n) = 3 T(\frac{n}{4}) + nlgn // a = 3; b = 4; f(n) = nlgn$
- $log_b a = log_4 3 = 0.793$
- $a f\left(\frac{n}{b}\right) = 3\frac{n}{4}\lg\frac{n}{4} \le c. f(n)$ for some constant $c < 1 \ \forall n$
 - Let assume $c = \sqrt[3]{4} \rightarrow \frac{3}{4}n\lg\frac{n}{4} \le \frac{3}{4}nlgn = True$ for all n

Then:
$$T(n) = \Theta(f(n)) = \Theta(nlgn)$$

$$T(n) = 4 T\left(\frac{n}{2}\right) + n$$

- // a = 4; b = 2; f(n) = n
- $\log_b a = \log_2 4 = 2 \Longrightarrow n^{\log_b a} = n^2$
- $O(n^{\log_b a \varepsilon}) = O(n^{2-\varepsilon}) = O(n) = f(n) \text{ for } \varepsilon = 1 \text{//Case I}$
- Then: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$

$$T(n) = 4 T\left(\frac{n}{2}\right) + n^2$$

- // a = 4; b = 2; $f(n) = n^2$
- $\log_b a = \log_2 4 = 2$
- $\Theta(n^{\log_b a}) = \Theta(n^2) = f(n) \text{ //Case 2}$
- Then: $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n^2 \lg n)$

- $T(n) = 4 T\left(\frac{n}{2}\right) + n^3$
- // a = 4; b = 2; $f(n) = n^3$
- $\log_b a = \log_2 4 = 2 \Longrightarrow n^{\log_b a} = n^2$
- <u>And</u> (regularity condition) $a f\left(\frac{n}{b}\right) = 4 \left(\frac{n}{2}\right)^3 = \frac{n^3}{2} \le c. f(n) \le c. n^3$ for some constant $c = \frac{1}{2} < 1 \ \forall \ n$
- Then: $T(n) = \Theta(f(n)) = \Theta(n^3)$

$$T(n) = 4 T\left(\frac{n}{2}\right) + \frac{n^2}{\lg n}$$

$$-$$
 // $a = 4$; $b = 2$; $f(n) = \frac{n^2}{\lg n}$

- $log_b a = log_2 4 = 2 \Longrightarrow n^{log_b a} = n^2$
- You might mistakenly think that case 1 should apply, since:

$$f(n) = \frac{n^2}{\lg n}$$
 is asymptotically smaller than $n^{\log_b a} = n^2$.

- However, Master method does not apply here.
- In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega (\lg n)$.
- f(n) does not grow polynomially slower than $n^{\log_b a}$ by an n^{ε} factor.
- Consequently, the recurrence falls into the gap between case 1 and case 2.

- $T(n) = 2 T(n/2) + n \lg n$
- // a = 2; b = 2; $f(n) = n \lg n$
- $\log_b a = \log_2 2 = 1 \Longrightarrow n^{\log_b a} = n$

- You might mistakenly think that case 3 should apply, since:
- $f(n) = n \lg n$ is asymptotically larger than $n^{\log_b a} = n$.
- The problem is that it is not <u>polynomially</u> larger.
- Master method does not apply here.
- The ratio $f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$ is asymptotically less than n^{ε} for any positive constant ε .
- Consequently, the recurrence falls into the gap between case 2 and case 3.

T(n) = a T(n/b) + f(n),where $a \ge 1, b > 1,$

$$T\left(\frac{n}{b^k}\right) = T(1) \Rightarrow \frac{n}{b^k} = 1 \Rightarrow n = b^k \Rightarrow k = \log_b n$$

 $I_c = Total\ cost\ of\ Internal\ Nodes$

 $L_c = Total \ cost \ of \ Leaf \ Nodes$

$$\begin{split} Total_c &= I_c + L_c \\ &= \left[f(n) + af\left(\frac{n}{b}\right) + a^2 f\left(\frac{n}{b^2}\right) + \dots + a^{k-1} f\left(\frac{n}{b^{k-1}}\right) \right] + \left[n^{\log_b a} \right] \\ &= \left[\sum_{k=0}^{\log_b n - 1} a^k f(\frac{n}{b^k}) \right] + \left[n^{\log_b a} \right] \end{split}$$

$$Total_{c} = \left[f(n) + af\left(\frac{n}{b}\right) + a^{2}f\left(\frac{n}{b^{2}}\right) + \dots + a^{k-1}f\left(\frac{n}{b^{k-1}}\right) \right] + \left[n^{\log_{b} a} \right]$$

 $Total_{c} = \left| f(n) + af\left(\frac{n}{h}\right) + a^{2}f\left(\frac{n}{h^{2}}\right) + \dots + a^{k-1}f\left(\frac{n}{h^{k-1}}\right) \right| + \left[n^{\log_{b} a}\right]$

 $Total_{c} = \left| f(n) + af\left(\frac{n}{h}\right) + a^{2}f\left(\frac{n}{h^{2}}\right) + \dots + a^{k-1}f\left(\frac{n}{h^{k-1}}\right) \right| + \left[n^{\log_{b} a}\right]$

MASTER THEOREM: PITFALLS

- You cannot use the Master Theorem if
 - T(n) is not monotone, e.g., $T(n) = \sin(x)$
 - f(n) is not a polynomial, e.g., $T(n) = 2T(n/n) + 2^n$
 - b cannot be expressed as a constant, e.g., $T(n) = T(\sqrt{n})$
- Note that the Master Theorem does not solve the recurrence equation

$$T(n) = \begin{bmatrix} C & if n = 0; \\ T(n-1) + C & if n > 0 \\ \Theta(n) & \end{bmatrix}$$

$$T(n) = \begin{bmatrix} C & if n = 0; \\ T(n-1) + n & if n > 0 \end{bmatrix}$$

$$O(n^2)$$

$$T(n) = \begin{bmatrix} C & if \ n = 0; \\ T(n-1) + \log n & if \ n > 0 \\ O(nlogn) & \end{bmatrix}$$

$$T(n) = \begin{bmatrix} C & if \ n = 0; \\ 2T(n-1) + C & if \ n > 0 \end{bmatrix}$$

$$O(2^n)$$

$$T(n) = \begin{bmatrix} C & if n = 1; \\ T(\frac{n}{2}) + C & if n > 1 \end{bmatrix}$$

$$O(\log n)$$

$$T(n) = C if n = 1;$$

$$T(\frac{n}{2}) + n if n > 1$$

$$O(n)$$

$$T(n) = \begin{bmatrix} C & if n = 1; \\ 2T(\frac{n}{2}) + n & if n > 1 \end{bmatrix}$$

$$O(n\log n)$$

QUESTIONS/ANSWERS

