CATEGORY THEORY 2024

IVAN DI LIBERTI

EXERCISES

savoir faire: Yoneda, adjunctions and limits

Leinster 1 (**L**). 6.2.20

Leinster 2 (**E**). 6.2.21

Leinster 3 (**L**). 6.3.21(a)

Leinster 4 (**L**). 6.3.22

Leinster 5 (**L**). 6.3.26

Leinster 6 (**L**). 6.3.27

monad.

Exercise 7 (). Describe the monads (unit and counit) on Set whose algebras are: monoids, groups, semigroups.

Exercise 8 (\blacksquare). Consider the free-forgetful adjunction D: **Set** \leftrightarrows Top: U, where D equips a set with the discrete topology over it. Compute the algebras for the induced monad over **Set**.

Exercise 9 (\blacksquare). Show that the category Suplat whose objects are suplattices and morphisms are suplattices morphisms is monadic over **Set** via forgetful functor \mathbb{U} : Suplat \rightarrow Set. *Hint*: Guess the monad and prove that an algebra is precisely a suplattice.

Exercise 10 (\blacksquare). A monad T on a category C is idempotent if its multiplication if its multiplication is an isomorphism. Show that the fortgetful functor $U_T: \operatorname{Alg}(T) \to C$ of an idempotent monad is fully faithful.

Exercise 11 (\blacksquare). Let *C* be a category with coproducts and a terminal object. Can you always put a monad structure on the *maybe endofunctor* $c \mapsto c \coprod 1$?

Exercise 12 (). Show that the category of fields is not monadic over Set.

Exercise 13 (). Show that there is a monad on directed graphs whose algebras are small categories.

Exercise 14 (). Show that there is a monad on the category of small categories (and functors) whose algebras are posets.

Date: March 2, 2024.

1

Kan extensions

Riehl 15 (Kan extensions have a universal property). Read section 6.1, where a Kan extensions are introduced in a more abstract way and study Thm 6.2.1 which proves that our concrete formula is explicitly computing the Kan extension, when possible.

Riehl 16 (Concepts are Kan extensions). Read section 6.5, where it is shown that many categorical concepts can be phrased in terms of existence of Kan extensions.

Exercise 17 (\blacksquare). Prove^a, when all the functors in the equations are well-defined, that

$$lan_{fg}(h) \cong lan_f(lan_g h).$$

Exercise 18 (\blacksquare). Try to show that if f has a right adjoint g, then

$$lan_f(1) \cong g$$
.

Exercise 19 (**10**). Prove, using our definition, that when g is fully faithful, then $(lan_g f) \circ g \cong f$.

Jiří's *treat* (\triangle , \blacksquare). Let Suplat ∇ be the category of whose objects are suplattices with a unary operation ∇ satisfying $(\forall x)(x \leq \nabla x)$. Morphisms are suplattices morphisms preserving the unary operation. Show that the forgetful functor

$$\mathbb{U}:\mathsf{Suplat}^\nabla\to\mathsf{Set}$$

preserves limits but does not have a left adjoint. *Hint*: Show that a free algebra over 1 does not exist.

rule

- Hand your exercises before your **oral interview** via email. In order to make my life easier, make sure to include the word **CT24** in the subject.
- Pick at least one exercise from each of the yellow groups.
- You must charge at least **2** batteries and a half! *Example*. The vector of exercises [2,7,12,19] would pass this sheet.
- The label **Leinster** refers to the book **Basic Category Theory**, by *Leinster*.
- The label **Riehl** refers to the book **Category Theory in context**, by *Riehl*.

^aHint: use that Kan extensions provide left adjoints to precomposition.