Content Moderation in Presence of Fringe Platforms

Iván Rendo (TSE)

- Online extreme/unsafe content bad per se, and:
 - e.g. Jiménez-Durán (2022) links online hate to offline violence
 - e.g. 20% of terrorists radicalized exclusively online
 - bullying, food disorders, pornography...

(Hamiz and Ariza, 2022)

- Online extreme/unsafe content bad per se, and:
 - e.g. Jiménez-Durán (2022) links online hate to offline violence
 - e.g. 20% of terrorists radicalized exclusively online
 - bullying, food disorders, pornography...

(Hamiz and Ariza, 2022)

- Online extreme/unsafe content bad per se, and:
 - e.g. Jiménez-Durán (2022) links online hate to offline violence
 - e.g. 20% of terrorists radicalized exclusively online
 - bullying, food disorders, pornography...

(Hamiz and Ariza, 2022)

But... users may migrate to small (fringe) platforms!

- Online extreme/unsafe content bad per se, and:
 - e.g. Jiménez-Durán (2022) links online hate to offline violence
 - e.g. 20% of terrorists radicalized exclusively online
 - bullying, food disorders, pornography...

(Hamiz and Ariza, 2022)

But... users may migrate to small (fringe) platforms!

4Chan, Parler, Truth... ~ 6% of the US market

(Stocking et al., 2022)

- Online extreme/unsafe content bad per se, and:
 - e.g. Jiménez-Durán (2022) links online hate to offline violence
 - e.g. 20% of terrorists radicalized exclusively online
 - bullying, food disorders, pornography...

(Hamiz and Ariza, 2022)

But... users may migrate to small (fringe) platforms!

4Chan, Parler, Truth...

~ 6% of the US market

(Stocking et al., 2022)

(Rizzi, 2023; Agarwal et al., 2022)

↑ moderation on Twitter = ↑ migration to fringe platforms

- Online extreme/unsafe content bad per se, and:
 - e.g. Jiménez-Durán (2022) links online hate to offline violence
 - e.g. 20% of terrorists radicalized exclusively online
 - bullying, food disorders, pornography...

(Hamiz and Ariza, 2022)

But... users may migrate to small (fringe) platforms!

4Chan, Parler, Truth... ~ 6% of the US market (Stocking et al., 2022)

(Rizzi, 2023; Agarwal et al., 2022)

↑ moderation on Twitter = ↑ migration to fringe platforms

Broad question: consequences of content moderation?

Platforms' competition model to analyze the **net effect** of

Content Moderation on the level of Content Unsafety

...while allowing for Migration* to a fringe, unmoderated platform

Platforms' competition model to analyze the **net effect** of

Content Moderation on the level of Content Unsafety

...while allowing for Migration* to a fringe, unmoderated platform

Questions:

- → How users choice is affected by content moderation policies
- → How the level of unsafe content is determined by users choice

Platforms' competition model to analyze the **net effect** of

Content Moderation on the level of Content Unsafety

...while allowing for Migration* to a fringe, unmoderated platform

Questions:

- → How users choice is affected by content moderation policies
- → How the level of unsafe content is determined by users choice
- → What incentives do platforms have to self-regulate?
- **→** Characterize the optimal regulation to minimize unsafe content

Preview of the Main Results

1. More content moderation

→ Less unsafety

2. W Large network effects, platform over-self-moderates

Preview of the Main Results

- More content moderation

 ⇒ Less unsafety
 Due to migration
- 2. W Large network effects, platform over-self-moderates

Preview of the Main Results

- More content moderation

 ⇒ Less unsafety
 Due to migration
- 2. W Large network effects, platform over-self-moderates

 Mainstream doesn't internalizes what happens on the fringe

• A unit mass of **users**, heterogeneous in their preferences for unsafe content: $\theta_i \sim U(0,1)$. High θ = Unsafe content

- A unit mass of **users**, heterogeneous in their preferences for unsafe content: $\theta_i \sim U(0,1)$. High θ = Unsafe content
- 2 platforms j = 1,2
 - with $K_j = \max \text{ unsafety level allowed}$
 - Assumed $K_2 = 1$, No Content Moderation on the Fringe

- A unit mass of **users**, heterogeneous in their preferences for unsafe content: $\theta_i \sim U(0,1)$. High θ = Unsafe content
- 2 platforms j = 1,2
 - with $K_j = \max$ unsafety level allowed
 - Assumed $K_2 = 1$, No Content Moderation on the Fringe
- User i in platform j creates 1 piece of content of type θ_i^C $\theta_i^C = \min\{\theta_i, K_i\}$

- A unit mass of **users**, heterogeneous in their preferences for unsafe content: $\theta_i \sim U(0,1)$. High θ = Unsafe content
- 2 platforms j = 1,2
 - with K_i = max unsafety level allowed
 - Assumed $K_2 = 1$, No Content Moderation on the Fringe
- User i in platform j creates 1 piece of content of type θ_i^C $\theta_i^C = \min\{\theta_i, K_j\}$
- User i in platform j **reads** a random sample of the content, of avg type $\bar{\theta}_j$

$$\bar{\theta}_j = \int_{i \in j} \theta_i^C di$$
 = average type of content in platform j

• Platform 1, moderated, is intrinsically better than 2, unmoderated

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j=1,2 are defined as:

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j = 1,2 are defined as:

$$U_1(\theta_i) = \alpha N_1 - |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = \alpha N_2 - |\theta_i - \bar{\theta}_2|$$

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j = 1,2 are defined as:

$$U_1(\theta_i) = \alpha N_1 - |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = \alpha N_2 - |\theta_i - \bar{\theta}_2|$$

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j = 1,2 are defined as:

Average "Unsafety" of the Content

$$U_1(\theta_i) = \alpha N_1 - |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = \alpha N_2 - |\theta_i - \bar{\theta}_2|$$

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j=1,2 are defined as:

Average "Unsafety" of the Content

$$U_1(\theta_i) = \alpha N_1 - |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = \alpha N_2 - \|\theta_i - \bar{\theta}_2\|^{ ext{Quality Premium of the Moderated}}$$

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j = 1,2 are defined as:

Average "Unsafety" of the Content

$$U_1(\theta_i) = \alpha N_1 - |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = \alpha N_2 - \|\theta_i - \bar{\theta}_2\|^{\text{Quality Premium of the Moderated}}$$

Strength of network effects

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j = 1,2 are defined as:

Average "Unsafety" of the Content

$$U_1(\theta_i) = \alpha N_1 - |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = \alpha N_2 - \|\theta_i - \bar{\theta}_2\|^{\text{Quality Premium of the Moderated}}$$

Strength of network effects

Users single-home

- Platform 1, moderated, is intrinsically better than 2, unmoderated
- Utilities of user i joining j=1,2 are defined as:

Average "Unsafety" of the Content

$$U_1(\theta_i) = \alpha N_1 - |\theta_i - \bar{\theta}_1| + \Delta$$

$$U_2(\theta_i) = \alpha N_2 - \|\theta_i - \bar{\theta}_2\|^{\text{Quality Premium of the Moderated}}$$

Strength of network effects

Users single-home

Rk: No outside option!

Buy a fixed amount of ads in the moderated platform (1)

Buy a fixed amount of ads in the **moderated** platform (1)

Are averse to unsafe content

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Buy a fixed amount of ads in the **moderated** platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Platform (1) chooses a content moderation policy

 $K \in [0,1]$: perfectly and costlessly bans any content $\theta_i > K$

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Platform (1) chooses a content moderation policy

 $K \in [0,1]$: perfectly and costlessly bans any content $\theta_i > K$

$$\Pi(K) = N_1(K) \times (1 - b\bar{\theta}_1(K))$$

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Platform (1) chooses a content moderation policy

 $K \in [0,1]$: perfectly and costlessly bans any content $\theta_i > K$

$$\Pi(K) = N_1(K) \times (1 - b\bar{\theta}_1(K))$$

users in platform

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Platform (1) chooses a content moderation policy

 $K \in [0,1]$: perfectly and costlessly bans any content $\theta_i > K$

$$\Pi(K) = N_1(K) \times (1 - b\bar{\theta}_1(K))$$
Price of ads
users in platform

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Platform (1) chooses a content moderation policy

 $K \in [0,1]$: perfectly and costlessly bans any content $\theta_i > K$

Advertisers aversion to unsafe content

$$\Pi(K) = N_1(K) \times (1 - b\bar{\theta}_1(K))$$
Price of ads
users in platform

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Platform (1) chooses a content moderation policy

 $K \in [0,1]$: perfectly and costlessly bans any content $\theta_i > K$

Advertisers aversion to unsafe content

$$\Pi(K) = N_1(K) \times (1 - b\bar{\theta}_1(K))$$
 Average content unsafety Price of ads

Buy a fixed amount of ads in the moderated platform (1)

Are averse to unsafe content

Price of ads: $1 - b\bar{\theta}_1$

Moderated Platform

Platform (1) chooses a content moderation policy

 $K \in [0,1]$: perfectly and costlessly bans any content $\theta_i > K$

Advertisers aversion to unsafe content

$$\Pi(K) = N_1(K) \times (1 - b\bar{\theta}_1(K))$$
 Average content unsafety

Price of ads

users in platform

...platform (2) just exists with $K_2 = 1$

1. Platform (1) chooses K

1. Platform (1) chooses K

2. Users choose which platform to join. I focus on threshold equilibria

- 1. Platform (1) chooses K
- 2. Users choose which platform to join. I focus on threshold equilibria
- 3. Profits and payoffs are realized

(Assumed) User i joins platform (1) iff $\theta_i < t^*$, otherwise, they join (2)

(Assumed) User i joins platform (1) iff $\theta_i < t^*$, otherwise, they join (2)

Under some assumptions on α , Δ ; and given K, there exist a **unique** threshold **equilibrium**

(Assumed) User i joins platform (1) iff $\theta_i < t^*$, otherwise, they join (2)

Under some assumptions on α , Δ ; and given K, there exist a **unique** threshold **equilibrium**

(Assumed) User i joins platform (1) iff $\theta_i < t^*$, otherwise, they join (2)

Under some assumptions on α , Δ ; and given K, there exist a **unique** threshold **equilibrium**

If policy lenient enough...

Comparative statics: (excluding corner solutions)

Comparative statics: (excluding corner solutions)

I) As N.E. ↑, moderation strictness ↓ for platform and regulator

Comparative statics: (excluding corner solutions)

- I) As N.E. ↑, moderation strictness ↓ for platform and regulator
- II) It decreases more for the regulator

Comparative statics: (excluding corner solutions)

- I) As N.E. ↑, moderation strictness ↓ for platform and regulator
- II) It decreases more for the regulator
- III) As quality prem ↑, strictness ↑ for platform but ↓ for regulator

Imposing a minimal content moderation:

Imposing a minimal content moderation:

Blue Area:

Beneficial for the regulator to impose a minimal moderation policy

Imposing a minimal content moderation:

Blue Area:

Beneficial for the regulator to impose a minimal moderation policy

Orange Area: such a policy wouldn't bind. Regulators would like to impose a maximal moderation policy to attract users from the fringe platform.

MULTIHOMING

MULTIHOMING

Multihoming increases incentives of the platform and the regulator (more) to moderate content

MULTIHOMING

Multihoming increases incentives of the platform and the regulator (more) to moderate content

1. Multihoming \approx Soften Network Effects = $\downarrow \alpha$

Result in the literature (cf. Crémer et al 2019's report for the EU)

MULTIHOMING

Multihoming increases incentives of the platform and the regulator (more) to moderate content

1. Multihoming \approx Soften Network Effects = $\downarrow \alpha$

Result in the literature (cf. Crémer et al 2019's report for the EU)

OFFLINE VIOLENCE

MULTIHOMING

Multihoming increases incentives of the platform and the regulator (more) to moderate content

1. Multihoming \approx Soften Network Effects = $\downarrow \alpha$

Result in the literature (cf. Crémer et al 2019's report for the EU)

OFFLINE VIOLENCE

Model Extension:

t=3. Users preferences align (oppose) unsafety of the content they read

t=4. Prob[violence] increases (decreases) with new preference for unsafety

MULTIHOMING

Multihoming increases incentives of the platform and the regulator (more) to moderate content

1. Multihoming \approx Soften Network Effects = $\downarrow \alpha$

Result in the literature (cf. Crémer et al 2019's report for the EU)

OFFLINE VIOLENCE

Model Extension:

t=3. Users preferences align (oppose) unsafety of the content they read

t=4. Prob[violence] increases (decreases) with new preference for unsafety

Main Result:

Moderate content moderation can reduce (increase) offline violence

Users are attracted to safer platforms and converge to the safer content they find there

THANKS!

P.S. Working on a **Structural** Empirical Model Feel free to reach out!