几种估计量准确性的 R 模拟

数 41 李博扬 2014012118

【模拟目的】

对某一参数未知的总体,往往这一参数可由关于其随机样本的函数作为估计量来估计,并且这样的估计量不唯一,于是我们希望用这些估计量关于参数真值的偏差(bias)、标准差(sd)以及均方根误差(RMSE)来判断这些估计量的可靠性。

本次模拟考虑两种不同的总体: N(u,1)(真值 u=0)和 Cauchy(u,1)(真值 u=0)。 利用几种不同估计量对 u 进行估计,并判断可靠性。

【模拟步骤】

对某个固定总体

- (1) 对 n=10,50,100 分别产生服从对应总体的随机样本 X₁,X₂,...Xn
- (2) 计算 X_i (i=1,2,...,n)的均值 \bar{X} 、中位数 median(X)、第一项 X_1 、中间若干项均值 $S_L = \frac{1}{n-2L} \sum_{i=L+1}^{n-L} X_{(i)}$ (L 给定)、中程数($X_{(1)} + X_{(n)}$)/2、最大值 $X_{(n)}$ 共 6个估计量。
- (3) 将(1)、(2) 重复 1000 次,每种估计量得到 1000 个值。
- (4) 计算每种估计量得到的 1000 个偏差(bias)、标准差(sd)以及均方根误差(RMSE),比较这 6 种估计量的可靠性。

【模拟结果】

1、 标准正态分布总体

n=10	BIAS	SD	RMSE
均值	0. 000997	0. 326755	0. 326756
中位数	0. 001202	0. 379308	0. 37931
第一项	-0. 02701	1. 005209	1.005572
中间均值(L=2)	0. 008158	0. 412861	0. 412941
中程数	0. 013383	0. 435659	0. 435865
最大值	1. 536093	0. 582453	1.642813
n=50	BIAS	SD	RMSE
均值	0. 00719	0. 142766	0. 142947
中位数	0. 007776	0. 176111	0. 176283
第一项	0. 013399	0. 993263	0. 993353

中间均值(L=10)	0. 012293	0. 188253	0. 188654	
中程数	0. 003563	0. 33989	0. 339908	
最大值	2. 264394	0. 449961	2. 308668	
n=100	BIAS	SD	RMSE	
均值	1.82E-03	0. 103978	0. 103994	
中位数	4. 21E-05	0. 130775	0. 130775	
第一项	2. 58E-02	0. 971854	0. 972195	
中间均值(L=20)	3. 64E-03	0. 132617	0. 132667	
中程数	7. 05E-03	0. 302943	0.303025	
最大值	2. 50E+00	0. 418382	2. 537446	
2、 柯西分布总体				
n=10	BIAS	SD	RMSE	
均值	-8 40F-01	16 73121	16 75226	

n=10	BIAS	SD	RMSE
均值	-8. 40E-01	16. 73121	16. 75226
中位数	-7. 86E-03	0. 570788	0. 570842
第一项	1. 07E+00	25. 48983	25. 51244
中间均值(L=2)	-1.21E+00	26. 53753	26. 56525
中程数	-4. 31E+00	82. 02226	82. 13553
最大值	1. 85E+01	71. 53766	73. 89982
n=50	BIAS	SD	RMSE
均值	1. 59E+00	47. 97988	48. 00615
中位数	8.86E-03	0. 220582	0. 22076

第一项	2. 91E+00	95. 08442	95. 12904
中间均值(L=10)	2. 26E-01	31. 337	31. 33781
中程数	4. 00E+01	1191.85	1192. 52
最大值	1. 92E+02	2319. 275	2327. 225
n=100	BIAS	SD	RMSE
均值	-6. 37E-02	8. 555598	8. 555835
中位数	-1.62E-03	0. 157178	0. 157186
第一项	1. 67E+00	70. 41292	70. 43264
中间均值(L=20)	-2. 22E-01	11. 69557	11. 69768
中程数	-3. 14E+00	415. 105	415. 1169
最大值	1. 67E+02	572. 6331	596. 419

【模拟结论】

- 1、对于正态总体,固定 n 时,最大值估计量的偏差 bias 最大,均方根误差 RMSE 也最大,且明显大于其他估计量,所以用最大值估计参数 u 并不精确。第一项估计量的标准差 sd 最大,且明显大于其余估计量,所以这一估计了并不可靠,也不可取。其余四种估计量对比来看,显然均值估计量 sd、RMSE 均最小,且 bias 也较小,是一个相对不错的估计量。
 - 随着 n 增大, 六种估计量的 bias、sd、RMSE 较为平稳, 没有显著变化。
- 2、对于柯西分布总体,固定 n 时,依旧是最大值估计量的 bias 最大,均方误差 RMSE 也最大,且明显大于其余估计量,所以用最大值估计参数 u 不可取。而中位数的 bias、sd、RMSE 明显比其余估计量小,可见在估计柯西分布参数 u 的估计量中,中位数是最准确的估计量,此时其余估计量都有较大的均方根误差。
 - 随着 n 增大,除了中位数估计量 bias、sd、RMSE 很小很平稳,其余估计量的 sd、RMSE 都有很大波动,因此其余估计量并不可靠。
 - (由于 R 中 cauchy 随机变量生成的波动程度很大, 所以均值等其他估计量均方根误差很大, 不稳定。而中位数可以避免极端情况的影响, 可以更好的估计。)
- 3、于是我们得出结论:在估计正态分布参数 u 时,均值估计量是最可靠的估计量;在估计柯西分布参数 u 时,中位数似乎是最可靠的估计量。(这或许与柯西分布期望不存在有关,因此均值并不能随 n 增大趋于期望,所以均值不能

成为很好的估计)