QCOMP103-B: Hello World

L'algorithme de Deutsch, démonstration de la supériorité quantique

Plan du cours

Le probleme

Premier essai

Second essai

The best of both worlds

Computer science is no more about computers than astronomy is about telescopes

$$f: \{0, 1\} \longrightarrow \{0, 1\}$$

$$0 \bullet \longrightarrow \bullet 0 \quad 0 \bullet \longrightarrow \bullet 0 \quad 0 \bullet \longrightarrow \bullet 0$$

$$f(0) \neq f(1)$$
 $f(0) = f(1)$

Balanced

Constant

Kahoot

- 1. Prenez votre téléphone ou votre laptop
- 2. Allez à l'adresse kahoot.it
- 3. Rentrez le code PIN donné au tableau
- 4. Tenez vous prêt à jouer

$$|x\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \quad H * |0\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$

$$|\psi_0\rangle \quad |\psi_1\rangle \quad |\psi_2\rangle$$

$$|0\rangle \quad H \quad U_f \quad W_f \quad W$$

$$|\psi_{0}\rangle |\psi_{1}\rangle \qquad |\psi_{2}\rangle \qquad |\psi_{0}\rangle = |0\rangle \otimes |0\rangle = |0, 0\rangle$$

$$|0\rangle \qquad |U_{f}\rangle \qquad |\psi_{1}\rangle = \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \otimes |0\rangle = \frac{|0, 0\rangle + |1, 0\rangle}{\sqrt{2}}$$

$$|\psi_2\rangle = \frac{|0, f(0)\rangle + |1, f(1)\rangle}{\sqrt{2}}$$

$$|\psi_0\rangle \quad |\psi_1\rangle \qquad |\psi_2\rangle$$

$$|1\rangle \qquad H \qquad |U_f|$$

$$|0\rangle - |1\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

$$U_f * (I \otimes H) * |x, 1\rangle$$

$$|\psi_2\rangle = |x\rangle \otimes \left[\frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}}\right] = |x\rangle \otimes \left[\frac{|f(x)\rangle - \overline{|f(x)\rangle}}{\sqrt{2}}\right]$$

$$|\psi_2\rangle = |x\rangle \otimes \left[\frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}}\right] = |x\rangle \otimes \left[\frac{|f(x)\rangle - \overline{|f(x)\rangle}}{\sqrt{2}}\right]$$

$$|\psi_2\rangle = \begin{cases} |x\rangle \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f(x) = 0\\ |x\rangle \otimes \left[\frac{|1\rangle - |0\rangle}{\sqrt{2}}\right], & \text{if } f(x) = 1 \end{cases} \quad a - b = (-1)(b - a)$$

$$|\psi_2\rangle = (-1)^{f(x)} |x\rangle \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] = (-1)^{f(x)} \frac{|x, 0\rangle - |x, 1\rangle}{\sqrt{2}}$$

Kahoot

- 1. Prenez votre téléphone ou votre laptop
- 2. Allez à l'adresse kahoot.it
- 3. Rentrez le code PIN donné au tableau
- 4. Tenez vous prêt à jouer

$$|\psi_{0}\rangle \quad |\psi_{1}\rangle \quad |\psi_{2}\rangle \quad |\psi_{3}\rangle$$

$$|0\rangle \quad H \quad 00 \quad 01 \quad 10 \quad 01 \quad 10 \quad 01 \quad 10 \quad 01 \quad 10 \quad 01 \quad$$

$$|\psi_0\rangle = |0, 1\rangle \qquad |\psi_0\rangle |\psi_1\rangle \qquad |\psi_2\rangle |\psi_3\rangle$$

$$|\psi_1\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}} \qquad |0\rangle \qquad H \qquad U_f \qquad H$$

On se souvient que quand le **qubit du haut** était **fixé** dans l'état **x** on avait:

$$(-1)^{f(x)} |x\rangle \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

Mais maintenant le qubit du haut est en superposition, on a donc:

$$|\psi_2\rangle = \left[\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right] \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

$$|\psi_2\rangle = \left[\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right] \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right]$$

Si
$$f$$
 est "constant" $f(0) = f(1)$ $+1(|0\rangle + |1\rangle)$ or $-1(|0\rangle + |1\rangle)$

Si
$$f$$
 est "balanced" $f(0) \neq f(1)$ $+1(|0\rangle - |1\rangle)$ or $-1(|0\rangle - |1\rangle)$

$$|\psi_2\rangle = \begin{cases} (\pm 1) \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is constant.} \\ (\pm 1) \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right] \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is balanced.} \end{cases}$$

$$|\psi_{2}\rangle = \begin{cases} (\pm 1) \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is constant.} \\ (\pm 1) \frac{|0\rangle - |1\rangle}{\sqrt{2}} \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is balanced.} \end{cases}$$

On applique la porte d'Hadamard sur le qubit du haut et on obtient:

$$|\psi_3\rangle = \begin{cases} (\pm 1) |0\rangle \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is constant.} \\ (\pm 1) |1\rangle \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is balanced.} \end{cases}$$

$$|\psi_3\rangle = \begin{cases} (\pm 1) |0\rangle \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is constant.} \\ (\pm 1) |1\rangle \otimes \left[\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right], & \text{if } f \text{ is balanced.} \end{cases}$$

Kahoot

- 1. Prenez votre téléphone ou votre laptop
- Allez à l'adresse <u>kahoot.it</u>
- 3. Rentrez le code PIN donné au tableau
- 4. Tenez vous prêt à jouer