CSCI567TA1

Youzhi Qu USCID: 5045807938

September 2019

1 Problem 1 Nearest Neighbor Classification

Proof: if $C(x_i, x_j) \le C(x_i, x_o)$, then $E(x_i, x_j) \le E(x_i, x_o)$, where $||x_i||_2 = ||x_j||_2 = ||x_o||_2 = 1$.

$$\begin{split} E(\boldsymbol{x_i}, \boldsymbol{x_j}) &= \|\boldsymbol{x_i} - \boldsymbol{x_j}\|_2^2 \\ &= \sum_{d=1}^D (x_{id} - x_{jd})^2 \\ &= \sum_{d=1}^D (x_{id}^2 - 2 \cdot x_{id} \cdot x_{jd} + x_{jd}^2) \\ &= \sum_{d=1}^D x_{id}^2 + \sum_{d=1}^D x_{jd}^2 - \sum_{d=1}^D 2 \cdot x_{id} \cdot x_{jd} \\ &= \|\boldsymbol{x_i}\|_2^2 + \|\boldsymbol{x_j}\|_2^2 - \sum_{d=1}^D 2 \cdot x_{id} \cdot x_{jd} \\ &= 2 - 2 \cdot \sum_{d=1}^D x_{id} \cdot x_{jd} \\ &= 2(1 - \sum_{d=1}^D x_{id} \cdot x_{jd}) \\ &= 2(1 - \frac{\sum_{d=1}^D x_{id} \cdot x_{jd}}{\|\boldsymbol{x_i}\|_2 \|\boldsymbol{x_j}\|_2} \\ &= 2 \cdot C(\boldsymbol{x_i}, \boldsymbol{x_j}) \end{split}$$
 if $C(\boldsymbol{x_i}, \boldsymbol{x_j}) \leq C(\boldsymbol{x_i}, \boldsymbol{x_o})$, then $2 \cdot C(\boldsymbol{x_i}, \boldsymbol{x_j}) \leq 2 \cdot C(\boldsymbol{x_i}, \boldsymbol{x_o})$.

According to $E(x_i, x_j) = 2 \cdot C(x_i, x_j)$, therefore $E(x_i, x_j) \leq E(x_i, x_o)$.

2 Problem 2 Nearest Neighbor Classification and Decision Trees

1. Can we have a decision tree to classify the dataset with zero classification error?

Yes. Because data x is 100 dimensional binary vector, we can use perfect binary tree with depth 100 to classify the dataset with zero classification error.

2. Can we specify a 1-NN to result in exactly the same classification as our decision tree?

Yes. Because K=1, we always choose the nearest point in the training dataset. when we use training dataset to test, we always get the point itself without error. Therefore, 1-NN can get zero training error.

3 Problem 3 Nearest Neighbor Classification and Decision Trees

Yes, we can use Feature $\{\{A+1,B+1\},\{A+1,B-1\},\{A-1,B+1\},\{A-1,B-1\}\}$, Label $\{\{class1\},\{class0\},\{class0\},\{class1\}\}$ to be 1-NN training dataset.

4 Problem 4 Decision Tree

4.1

test error is 0.

4.2

test error is $\frac{1}{2}$.

4.3

(1)yes (2)no

4.4

No. We can not get zero classification error by using depth-1 decision tree. linear combination of variables x_1 and x_2 can only divide plate into two parts not four parts which we need in order to get zero classification error.

5 Problem 5 Decision Trees

5.1

classification error:

 τ_1 left leaf = 0.25

 τ_1 right leaf = 0.25

 τ_2 left leaf = 0

 τ_2 right leaf = 0.33

entropy:

$$\tau_1$$
 left leaf: $-\frac{150}{200} \times \log_e \frac{150}{200} - \frac{50}{200} \times \log_e \frac{50}{200} = 0.56$

$$\tau_1$$
right leaf: $-\frac{50}{200} \times \log_e \frac{50}{200} - \frac{150}{200} \times \log_e \frac{150}{200} = 0.56$

 τ_2 left leaf: $-\frac{100}{100} \times \log_e \frac{100}{100} = 0$

$$\tau_2$$
right leaf: $-\frac{100}{300} \times \log_e \frac{100}{300} - \frac{200}{300} \times \log_e \frac{200}{300} = 0.64$

Gini impurity

$$\tau_1$$
 left leaf: $\frac{150}{200} \times (1 - \frac{150}{200}) + \frac{50}{200} \times (1 - \frac{50}{200}) = 0.38$

$$\tau_1$$
 right leaf: $\frac{50}{200} \times (1 - \frac{50}{200}) + \frac{150}{200} \times (1 - \frac{150}{200}) = 0.38$

 τ_2 left leaf: 0

$$\tau_2$$
 right leaf: $\frac{200}{300} \times (1 - \frac{200}{300}) + \frac{100}{300} \times (1 - \frac{100}{300}) = 0.44$

5.2

Classification error rate:

 $\tau_1: \frac{100}{400} = 0.25$

$$\tau_2: \frac{100}{400} = 0.25$$

In terms of Classification error rate, τ_2 is equal to τ_1

Conditional entropy:

$$\tau_1: \frac{200}{400} \times 0.56 + \frac{200}{400} \times 0.56 = 0.56$$

$$\tau_2: \frac{100}{400} \times 0 + \frac{300}{400} \times 0.64 = 0.48$$

In terms of Conditional entropy, τ_2 is better than τ_1

Weighted Gini impurity:

$$\tau_1: \frac{200}{400} \times 0.38 + \frac{200}{400} \times 0.38 = 0.38$$

$$\tau_2 : \frac{100}{400} \times 0 + \frac{300}{400} \times 0.45 = 0.34$$

In terms of Weighted Gini impurity, τ_2 is better than τ_1

6 Problem 6 Naive Bayes

6.1

$$P(PlayTennis = Yes) = \frac{2}{3}$$

$$P(PlayTennis = No) = \frac{1}{3}$$

6.2

$$P(Weather = Sunny|PlayTennis = Yes) = \tfrac{1}{2}$$

$$P(Emotion = Normal|PlayTennis = Yes) = \frac{1}{4}$$

$$P(Homework = Much|PlayTennis = Yes) = \frac{1}{4}$$

6.3

$$P(Weather = Sunny|PlayTennis = No) = \frac{1}{2}$$

$$P(Emotion = Normal|PlayTennis = No) = \frac{1}{2}$$

$$P(Homework = Much|PlayTennis = No) = \frac{1}{2}$$

$$P(x|PlayTennis = Yes) = \frac{1}{32}$$

$$P(x|PlayTennis = No) = \frac{1}{8}$$

$$P(x) = \frac{1}{16}$$

$$P(PlayTennis = Yes|x) = \frac{P(x|PlayTennis = Yes)P(PlayTennis = Yes)}{P(x)}$$

$$=$$
 $\frac{1}{2}$

$$P(PlayTennis = No|x) = \frac{P(x|PlayTennis = No)P(PlayTennis = No)}{P(x)}$$

$$=\frac{2}{3}$$