Iterative methods for systems of linear equations

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{b} \in \mathbb{R}^m$, \mathbf{A} is $m \times m$

Jacobi iteration:
$$\mathbf{D}\mathbf{x}^{(n+1)} + (\mathbf{L} + \mathbf{U})\mathbf{x}^{(n)} = \mathbf{b}$$

Seidel's iteration: $\mathbf{D}\mathbf{x}^{(n+1)} + \mathbf{L}\mathbf{x}^{(n+1)} + \mathbf{U}\mathbf{x}^{(n)} = \mathbf{b}$
S.O.R.: $\mathbf{D}\mathbf{x}^{(n+1)} = (1-\omega)\mathbf{D}\mathbf{x}^{(n)} + \omega(-\mathbf{L}\mathbf{x}^{(n+1)} - \mathbf{U}\mathbf{x}^{(n)} + \mathbf{b})$

A canonical form of a single-step method of solving

$$Ax = b$$

is defined by $\mathbf{P}_{n+1} \in \mathbb{R}^{m,m}$ and $au_{n+1} \in \mathbb{R}$:

$$\mathbf{P}_{n+1} \frac{\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}}{\tau_{n+1}} + \mathbf{A}\mathbf{x}^{(n)} = \mathbf{b}$$

A canonical form of a single-step method of solving

$$Ax = b$$

is defined by $\mathbf{P}_{n+1} \in \mathbb{R}^{m,m}$ and $au_{n+1} \in \mathbb{R}$:

$$\mathbf{P}_{n+1} \frac{\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}}{\tau_{n+1}} + \mathbf{A}\mathbf{x}^{(n)} = \mathbf{b}$$

- ▶ If $P_{n+1} = P$ and $\tau_{n+1} = \tau$ are n-independent, the method is stationary
- If $P = \hat{1}$, the method is *explicit*.

Iterative methods for systems of linear equations

For an explicit method, the iteration is

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \tau_{n+1} \left[\mathbf{b} - \mathbf{A} \mathbf{x}^{(n)} \right]$$

For an implicit method, we have to solve an additional system of equations at each step:

$$\mathbf{P}_{n+1}\mathbf{x}^{(n+1)} = \mathbf{P}_{n+1}\mathbf{x}^{(n)} + \tau_{n+1} \left[\mathbf{b} - \mathbf{A}\mathbf{x}^{(n)} \right]$$

In practice

- ightharpoonup Compute the residual $\mathbf{r}^{(n)} = \mathbf{b} \mathbf{A}\mathbf{x}^{(n)}$
- Solve $\mathbf{P}_{n+1}\mathbf{z} = \mathbf{r}^{(n)}$
- ► Then $\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} + \tau_{n+1}\mathbf{z}$

Jacobi iteration

$$\mathbf{D}\mathbf{x}^{(n+1)} - \mathbf{D}\mathbf{x}^{(n)} + \underbrace{\mathbf{D}\mathbf{x}^{(n)} + (\mathbf{L} + \mathbf{U})\mathbf{x}^{(n)}}_{\mathbf{A}\mathbf{x}^{(n)}} = \mathbf{b}$$

 \Rightarrow $\mathbf{P} = \mathbf{D}$ and $\tau = 1$

Jacobi iteration

$$\mathbf{D}\mathbf{x}^{(n+1)} - \mathbf{D}\mathbf{x}^{(n)} + \underbrace{\mathbf{D}\mathbf{x}^{(n)} + (\mathbf{L} + \mathbf{U})\mathbf{x}^{(n)}}_{\mathbf{A}\mathbf{x}^{(n)}} = \mathbf{b}$$

$$\Rightarrow$$
 $\mathbf{P} = \mathbf{D}$ and $\tau = 1$

Seidel iteration

$$(\mathbf{D} + \mathbf{L})\mathbf{x}^{(n+1)} - (\mathbf{D} + \mathbf{L})\mathbf{x}^{(n)} + \underbrace{(\mathbf{D} + \mathbf{L})\mathbf{x}^{(n)} + \mathbf{U}\mathbf{x}^{(n)}}_{\mathbf{A}\mathbf{x}^{(n)}} = \mathbf{b}$$

$$\Rightarrow$$
 $\mathbf{P} = \mathbf{D} + \mathbf{L}$, and $\tau = 1$

S.O.R.
$$\mathbf{P} = \mathbf{D} + \omega \mathbf{L} \text{, and } \tau = \omega$$

Convergence analysis of iterative methods

If iterations converge, then $\mathbf{x}^{(n)} o \widehat{\mathbf{x}}$, the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

Convergence analysis of iterative methods

If iterations converge, then $\mathbf{x}^{(n)} o \widehat{\mathbf{x}}$, the solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$

Define

$$\mathbf{e}^{(n)} = \mathbf{x}^{(n)} - \widehat{\mathbf{x}}$$

Then, iterations are

$$\mathbf{e}^{(n+1)} = \mathbf{S}_{n+1} \mathbf{e}^{(n)}$$

where the transition matrix

$$\mathbf{S}_{n+1} = \mathbf{1} - \tau_{n+1} \mathbf{P}_{n+1}^{-1} \mathbf{A}$$

Convergence analysis of iterative methods

For symmetric positive definite A, a stationary iteration ($S_n = S$) converges if and only if

$$\rho(\mathbf{S}) < 1$$

where
$$\rho(\mathbf{S}) = \max_{1 \leqslant j \leqslant m} |\lambda_j|$$

Variational approaches

Let $\hat{\mathbf{x}}$ is the solution of $\mathbf{A}\hat{\mathbf{x}} = \mathbf{b}$.

Consider

$$\frac{\mathbf{x}_{n+1} - \mathbf{x}_n}{\tau_{n+1}} + \mathbf{A}\mathbf{x}_n = \mathbf{b}$$

The main idea

Choose τ_{n+1} to minimize $\|\mathbf{x}_{n+1} - \widehat{\mathbf{x}}\|$ given $\|\mathbf{x}_n - \widehat{\mathbf{x}}\|$.

Variational approaches

Let $\hat{\mathbf{x}}$ is the solution of $\mathbf{A}\hat{\mathbf{x}} = \mathbf{b}$.

Consider

$$\frac{\mathbf{x}_{n+1} - \mathbf{x}_n}{\tau_{n+1}} + \mathbf{A}\mathbf{x}_n = \mathbf{b}$$

The main idea

Choose au_{n+1} to minimize $\|\mathbf{x}_{n+1} - \widehat{\mathbf{x}}\|$ given $\|\mathbf{x}_n - \widehat{\mathbf{x}}\|$.

Alternatively, minimize the *residual* $\mathbf{r}_n = \mathbf{A}\mathbf{x}_n - \mathbf{b}$:

$$\|\mathbf{r}_{n+1}\| \Rightarrow \min \quad \mathsf{given} \|\mathbf{r}_n\|$$

Minimum residual method

Rewrite the iteration as

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \tau_{n+1} \mathbf{r}_n$$

Multiply by A and subtract b:

$$\mathbf{r}_{n+1} = \mathbf{r}_n - \tau_{n+1} \mathbf{A} \mathbf{r}_n$$

Minimize the 2-norm of \mathbf{r}_{n+1} :

$$\|\mathbf{r}_{n+1}\|^2 = \|\mathbf{r}_n - \tau_{n+1}\mathbf{A}\mathbf{r}_n\|^2$$
$$= \|\mathbf{r}_n\|^2 + \tau_{n+1}^2 \|\mathbf{A}\mathbf{r}_n\|^2 - 2\tau_{n+1} \langle \mathbf{r}_n \cdot \mathbf{A}\mathbf{r}_n \rangle$$

Minimum residual method

So that the n-th iteration of the algorithm is

- 1. Compute $\mathbf{r}_n = \mathbf{A}\mathbf{x}_n \mathbf{b}$
- 2. Compute

$$\tau_{n+1} = \frac{\langle \mathbf{r}_n \cdot \mathbf{A} \mathbf{r}_n \rangle}{\|\mathbf{A} \mathbf{r}_n\|^2}$$

3. Compute $\mathbf{x}_{n+1} = \mathbf{x}_n - \tau_{n+1} \mathbf{r}_n$