研究室会議

2025/03/14

佐野、原田、真鍋

自己紹介:原田彗矢

趣味:ギター、麻雀

出身:東京→一瞬和歌山→千葉

サークル:軽音(佐野と同じ)

自己紹介: 佐野由汰

出身:新潟県

サークル:軽音

趣味:バスケ、ゲーム、散歩など…

自己紹介:真鍋小春

出身地:

神奈川→東京→千葉(実家ごと)

趣味:

軟式/硬式テニス

好きなもの:

動物、魚(食べ物)、プリン、化石、ゲーム、ドラえもん

ミンククジラの骨格標本→

今週(20250310~)やったこと

- -霧箱の作成
- ・飛跡の撮影
- ・霧箱の原理の確認
- ・見えた飛跡の粒子の特定
- ・予想される相互作用
- ・多重極散乱、電離損失で エネルギー測定

霧箱の原理

見えた飛跡(粒子)の種類、粒子の特定方法

- ・濃さ エネルギー↓、電荷↑、質量↑、ほど濃くなる(~100GeVまで)
- ・曲がり具合 エネルギー↑、電荷↓、質量↑、ほどまっすぐになる
- 長さ エネルギー↑、電荷↓、質量↓、ほど長くなる

アルファ線

- 濃い
- ・曲がらない
- 短い

ベータ線

- •薄め
- ・よく曲がる
- 長さはいろいろ

ミューオン

- 薄め
- ・曲がらない
- 長い

いろいろな飛跡と、予想される相互作用

光電効果:ベータ線:薄い、良く曲がる、長め

コンプトン散乱:ベータ線:薄い、良く曲がる、短い

デルタ線:ベータ線:高エネのミューオン付近から、短い

枝分かれ(Y字)?

多重極散乱、エネルギーの測定

	beta1	beta2	beta3	beta4	beta5	beta6	beta7	beta8	beta9	beta10	muon1	muon2	muon3	muon4	muon5
x [cm]	3.41	12.95	5.68	1.59	7.27	6.82	6.36	10.68	8.86	5.91	15.23	10.68	10.00	11.82	10.91
θplane [rad]	0.59	0.19	0.84	1.01	0.59	0.96	0.30	1.12	0.21	0.12	0.23	0.002	0.07	0.09	0.10
yplane [cm]	1.59	3.41	3.18	1.36	0.45	4.77	1.14	1.82	2.27	2.05	2.27	0.11	0.11	0.34	0.68
beta	0.534	0.915	0.519	0.355	0.627	0.512	0.763	0.532	0.869	0.918	0.105	0.756	0.166	0.154	0.143
kinetic energy [MeV]	0.093	0.754	0.087	0.036	0.145	0.084	0.280	0.092	0.522	0.776	0.589	55.741	1.485	1.273	1.103
total energy [MeV]	0.604	1.265	0.598	0.547	0.656	0.595	0.791	0.603	1.033	1.287	106.25	161.40	107.15	106.93	106.76

$$egin{aligned} heta_0 &= heta_{
m plane}^{
m rms} = rac{13.6\,{
m MeV}}{eta cp}z\sqrt{rac{x}{X_0}}\left[1 + 0.038\ln\left(rac{xz^2}{X_0eta^2}
ight)
ight] & ext{(PDG sec34.3)} \ &= rac{13.6\,{
m MeV}}{mc^2}rac{\sqrt{1-eta^2}}{eta^2}z\sqrt{rac{x}{X_0}}\left[1 + 0.038\ln\left(rac{xz^2}{X_0eta^2}
ight)
ight] \end{aligned}$$

- ・ミューオンが遅すぎる?
- ・電子にこの式を適用していいの?
- ・エタノール考慮したらX。はどのくらい変わるか?

電離損失(Bethe-Bloch)、エネルギーと飛程の概算

$$<-rac{dE}{dx}>=Kz^2rac{Z}{A}rac{1}{eta^2}\Big[rac{1}{2}\lnrac{2m_ec^2eta^2\gamma^2W_{max}}{I^2}-eta^2\Big]$$
 $ightarrow$ $ightarrow$

- 電子はエネルギーのわりに飛ばない
- →Betheの式は、エネルギー損失の重み付け平均だからなんか違う、最確値はより小さくなる

1.75

1.50

今後できそうなこと

- ●多重極散乱:同じ飛跡で、複数ヶ所でエネルギーを測定してみる
- ■電離損失:最確値を計算する方法を調べる
- •電子について原理を考え直す
- エタノール考慮
- •線源使って同じことして、測定のばらつきを調べる
- 磁場かけて運動量測る