Machine Learning Lecture 5 — Convolutional Neural Network (CNN)

A piece of advice

Do not feel overwhelmed by the mathematics – this is just to give you an overview of the knowledge of what is happening in the backend/background.

Computer Vision

Image Representation

- An image consist of a grid of pixels, with each pixel having a value or a set of values
 - Greyscale: 1 value per pixel (0-255 / 0-1)
 - Colour images (RGB): 3 values per pixel
- Pixel values are considered to be the image features
- 2D grid is represented in code as a matrix

Image Features

- Using each image pixel as input value to a MLP results in extremely big networks
 - Image of 512 by 512 pixel: 262,144 input values
- If we look at images we do not observe individual pixel values but we look at the whole context (edges, areas with similar colour, connected lines)

Inspiration from Nature

- We have individual neurons in the visual cortex of the brain that respond to seeing specific patterns
- Cats placed in a cylinder with only vertical lines directly after birth, could for the rest of their lives only see vertical lines*
- This shows that vision is learned, and that we have different visual neurons in the brain for specific patterns (e.g. horizontal lines, vertical lines)

^{*} Blakemore and Cooper 1970: https://www.youtube.com/watch?v=RSNofraG8ZE

Feature extraction

- Can we use the idea of detecting specific patterns individually in computer vision?
- Obtain more meaningful image features than the pixel values
 - Horizontal edge detection
 - Vertical edge detection
 - Noise removal

Convolutions

- In a convolution, a matrix with certain weights is moved over the whole image to obtain a filtered image
- This (usually small) matrix is called the kernel or filter

10	10	10	0	0
0	10	10	10	0
0	0	10	10	10
0	0	10	10	0
0	10	10	0	0

Imaae

• Convolution of image f(x, y) with kernel w is written as:

$$g(x,y) = w * f(x,y)$$

Kernel Design

- New pixel values are determined by multiplying the kernel values with the pixel values and summing these together for each position
- The kernel can have a variable size (3x3 in the example)

Kernel Design

- New pixel values are determined by multiplying the kernel values with the pixel values and summing these together for each position
- The kernel can have a variable size (3x3 in the example)

10	10	10	0	0	
0	10	10	10	0	
0	0	10	10	10	
0	0	10	10	0	
0	10	10	0	0	

Kernel

Convolved feature

Vertical Edge Detector

- Kernel stride: shift of kernel
 - Usually stride of 1

- Kernel stride: shift of kernel
 - Usually stride of 1

- Kernel stride: shift of kernel
 - Usually stride of 1

$$Stride = 1$$

- Kernel stride: shift of kernel
 - Usually stride of 1

- Kernel stride: shift of kernel
 - Usually stride of 1

and so on..

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2

No stride

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2

Out of image bounds - Problem?

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2
- Kernel padding:
 - Usually zero padding

Out of image bounds - Problem?

Solved by padding

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2
- Kernel padding:
 - Usually zero padding

No stride

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2
- Kernel padding:
 - Usually zero padding

Stride = 2

0 0 0 0 0

Padding of 2 around the image

- Kernel stride: shift of kernel
 - Usually stride of 1
 - Sometimes stride of 2
- Kernel padding:
 - Usually zero padding

Stride = 2

Padding of 2 around the image

0

0

0

and so on..

Convolution demo

Live demo: http://setosa.io/ev/image-kernels/

Convolutional Neural Network

- Combine multiple convolutions into a network
 - o In each layer, a number of kernels is applied
 - Each kernel results in a feature map (i.e. edge map)
- Values of the kernels are the weights of the network
 - Learned by training

Down-Sampling

Down-Sampling

- Feature maps resulting from convolutional layers need to be eventually aggregated into a single prediction
- This can be done by down-sampling between conv layers to gradually reduce dimensionality
- Most commonly used down-sampling operation: max-pool
 - Move kernel over image and keep maximum value
 - Usually kernel size of 2x2 and stride of 2

1				
	8	2	1	4
Мах-р	1	7	2	9
	1	3	5	2
	2	1	3	0

Dense Layers

Dense Layers

- To aggregate information into prediction after the final convolutional layer dense layers can be used
- Dense layer connect all input to all output (= standard layer in MLP), can also be called fully-connected layer
- Before a dense layer, the feature maps are converted into a 1D array, which is sometimes referred to as **flattening**

Activation Function

Activation Function

- As for standard MLP networks, every convolution layer has an activation function
 - Introduces non-linearity in the network
- Rectified Linear Unit (ReLU) is most commonly used, is defined as:

$$R(z) = max(0, z)$$

Output Layer

Output layer

- Output layer size and activation function depend on task
- Raw output of last layer (before any activation function takes place) are called **logits**
- Binary classification
 - Classifying an image x as either 'dog' or 'cat'
 - We need 1 output neuron, as:
 - Output probability should be between 0 and 1:
 - **Sigmoid** function (squeezes output between 0 and 1)

$$P(x = cat) = 1 - P(x = dog)$$

Sigmoid Function

Output layer

- Output layer size and activation function depend on task
- Raw output of last layer (before any activation function takes place) are called **logits**
- Multi-class classification
 - Classifying an image x as digit 0-9
 - Number of output neurons is equal to number of classes
 - Probabilities of individual output neurons should sum up to 1
 - **Soft-Max** function, given by:

$$\sigma(\overrightarrow{z})_i = \frac{e^{z_i}}{\sum_{j=1}^{z_j}}$$

output layer activation

CNN architecture

- The depth of a network refers to the number of layers
- The width of a conv layer refers to the number of feature maps in the layer. This corresponds to the number of learned filters in the layer.

CNN architecture

 The receptive field shows which input pixels have influence over a given neuron in the feature map. As we go deeper in the neural network the receptive field grows larger and larger

CNN architecture

 The receptive field shows which input pixels have influence over a given neuron in the feature map. As we go deeper in the neural network the receptive field grows larger and larger

CNN architecture

 The receptive field shows which input pixels have influence over a given neuron in the feature map. As we go deeper in the neural network the receptive field grows larger and larger

Image Dimensions

The dimensions of an image are: [C, H, W]

- **C** is the channel dimension
- **H** is the height of the image
- **W** is the width of the image

For greyscale images the **C** is 1, because we have 1 value per location: **[1, H, W]**

This is equal to a dimension of [H,W] but for Pytorch computation we need the channel dimension

For color images the C can vary:

• For RGB the C is 3, as we have a Red, Green and Blue component: [3, H, W]

k = 1 .. C

Convolution Dimensions single-channel

Input: [1, H, W]

0	-1	0
-1	4	-1
0	-1	0

	0	1	2
	-1	1	1
*	-2	-1	0

Weight: [2, 1, 3, 3]

Output: [2, H, W]

Convolution Dimensions multi-channel

	-1	0	1
k	-1	0	1
	-1	0	1

*

*

Input: [3, H, W]

1/9	1/9	1/9	
1/9	1/9	1/9	
1/9	1/9	1/9	

Weight: [1, 3, 3, 3]

General convolution 1/9 1/9 1/9 1/9 1/9 1/ 1/ 1/ 1/9 Weight: Input: Output: [3, H, W] [**2**, **3**, **3**, **3**] [2, H, W]

General convolution 1/9 1/9 1/9 1/9 1/9 1/ 1/ 1/ 1/9 Weight: Input: Output: [**2**, **3**, **3**, **3**] [2, H, W] [3, H, W]

General convolution

Downsampling layers

Downsampling layers only affect the image dimensions

Input: [C_{in},**H**, **W**]

Output: [C_{in,} **H/2, W/2**]

CNN dimensions

- In Pytorch we need to specify the number of input and output channels for each convolutional layer (C_{in} , C_{out}).
- It is important to match the number of input channels with the number of output channels of the previous layer

First layer:

- Set C_{in} equal to the number of channels of your input images (1 for greyscale, 3 for RGB)
- Choose C_{out} based on the number of feature maps you want in the first layer
- For subsequent layers:
 - Set the C_{in} to the C_{out} of the previous layer
 - Choose C_{out} based on the number of feature maps you want

Training a CNN

- Passing all our data through the network is computationally very expensive and not memory efficient (datasets can contain millions of images)
- Instead we divide our data in multiple subsets, and pass these subsets after each other through our network. One subset of data is called a batch.
- For each batch we perform a forward and backward pass
- Passing all batches of the dataset through the network once is called an epoch

The Training Loop

- Define the network
- Load all training data into a PyTorch Tensor
- For number of epochs:
 - For number of batches:
 - Give the data to the network to obtain a prediction
 - Compute the loss value
 - Perform backpropagation to obtain the gradients of the loss

 Backward
 - Update the network parameters (the weights) based on the gradient Pass

Data augmentation

We need a lot of images to get good predictions

If we have too little images, our networks will "remember" the training images and not generalize well to a validation set **overfitting**)

We can enlarge our dataset by applying **data augmentation** to the training images.

Scaling, Rotation, Flipping, etc.

See you soon

Thank You