

Distracted Driver Behavior Classification

Elmer Atienza, Yining Feng, Narmada Gomatam

The AI Consulting Group

What is distracted driving?

Distracted driving is any activity that could divert attention from the primary task of driving.

Problem Statement

Develop a computer vision model that distinguishes distracted driving behaviors from safe driving posture

Business Applications:

- Facilitate faster claims processing and assessing the liability of claims
- Minimize insurance disputes with more accurate damage inspection
- Usage-Based Auto Insurance (UBI)
- Inference-based Driving Risk Prediction

Image Classification

Image classification models

Modeling techniques:

- Convolutional Neural Network (CNN)
- Transfer Learning Models
 - o VGG-16
 - ResNet
 - Xception
 - MobileNet
 - K-NN ensemble
- AutoML

Baseline CNN & Transfer Learning Models

Baseline CNN

A 2-layer CNN neural network with 100 neurons in the hidden layer

- Hidden Layer: Rectified linear unit (ReLU)
- Output Layer: Softmax

VGG-16

A 16-layer CNN neural network with 3 × 3 filters used for all convolutional layers

Multilayer perceptron
 (MLP) classifier + 3 fully connected (FC) layers

ResNet50

A 34-layer CNN neural network with mostly 3 × 3 filters used for all convolutional layers

 A shortcut connection is added to each building block

Xception

A 36-layer CNN neural network with 60,000 parameters

 4 residual depth-wise separable convolution layers with residual connections

MobileNet

A 28-layer CNN neural network with 3 × 3 depthwise convolutional layers

Depth wise separable convolutions

K-NN Ensemble Model
Combining (averaging) the results of baseline CNN,
VGG-16, ResNet, Xception, and MobileNet models

Baseline CNN & Transfer Learning Models

Baseline CNN

- Overfitting: training 90% validation 65%
- Misclassifications between the class 'talking to passengers' and other classes

VGG-16

 Misclassifications between the class 'talking on the phone – left' and 'hair and makeup'

ResNet50

 Misclassifications between the class 'texting right' and 'hair and makeup'

Xception

 Misclassifications between the class 'texting left' and 'safe driving' & between 'talking on the phone – left' and 'texting left' or 'hair and makeup'

MobileNet

- Misclassifications between the class 'texting left' and 'safe driving' & between 'talking on the phone – left' and 'hair and makeup'
- Request the least amount of training time

K-NN Ensemble Model

- Mitigate misclassification problems
- Outperform all the other stand-alone models
- K-NN helps smoothen predicted probabilities for each class

Model Type	Extra Dense	Filters/ Units	Batch Normalization	Dropout (0.5 rate)		Classification Output Accuracy Loss					Training Time
	Layers				Train	Valid	Test	Train	Valid	Test	(second /epoch)
Baseline CNN	No	32	Yes	No	0.91	0.63	0.62	0.34	1.32	1.35	224
VGG-16	No	64	Yes	Yes	0.78	0.85	0.82	0.62	0.50	0.56	181
VGG-16	Yes	64	Yes	Yes	0.86	0.82	0.79	0.42	0.57	0.69	178
ResNet	No	64	Yes	Yes	0.88	0.85	0.84	0.34	0.55	0.67	201
ResNet	Yes	64	Yes	Yes	0.89	0.86	0.85	0.32	0.47	0.56	214
Xception	No	64	Yes	Yes	0.80	0.83	0.82	0.61	0.55	0.58	241
Xception	Yes	64	Yes	Yes	0.86	0.84	0.82	0.39	0.52	0.57	236
MobileNet	No	64	Yes	Yes	0.91	0.86	0.85	0.28	0.39	0.40	167
MobileNet	Yes	64	Yes	Yes	0.89	0.83	0.80	0.32	0.63	0.65	171
K-NN Ensemble	No	64	Yes	Yes	0.94	0.92	0.89	0.18	0.24	0.30	797

Performance Comparison

- K-NN Ensemble Model
 - The highest classification accuracy (92% validation accuracy) and the lowest output loss (0.24)
- MobileNet
 - The best stand-alone transfer learning model
 - Requires the least amount of training time (167 seconds per epoch)
 - 86% validation accuracy

Table 1: Comparison of baseline CNN's & transfer learning models' performance and running speed.

Performance Comparison

	VGG-16	MobileNet	Xception	ResNet	K-NN Ensemble	 K-NN Ensemble
Safe Driving	54.4%	92.5%	78.9%	78.2%	95.3%	○ > 90% clas
Texting-Right	96.2%	92.3%	93.2%	89.1%	96.6%	accuracy f
Talking-Right	95.1%	94.3%	99.4%	97.4%	96.5%	classes
Texting-Left	98.5%	98.2%	98.2%	98.5%	96.2%	 MobileNet
Talking-Left	87.9%	75.8%	76.5%	77.3%	94.8%	 The best s
Operating the Radio	96.8%	99.0%	94.8%	97.5%	95.1%	transfer le
Drinking	90.3%	86.2%	80.4%	79.3%	98.0%	across mo
Reaching Behind	81.1%	99.4%	99.1%	99.7%	95.4%	99.4% valifor the 're
Hair and Makeup	63.6%	53.3%	40.1%	59.6%	92.8%	class
Talking to passenger	83.1%	68.5%	58.8%	79.5%	97.7%	Table 2 : Comparison of tr prediction accuracy per cl

e Model

ssification for each of the 10

- stand-alone earning model
- alidation accuracy ost classes
- lidation accuracy eaching behind'

transfer learning models' class.

AutoML Model Performance Summary

DISTRACTION CLASS		Google Cl	oud Platform	(GCP) Auto	ML Vision	Apple CreateML						
	TRA	AIN	VALID	ATION	TE	ST	TRA	TRAIN VALIDATION			TEST	
	PRECISION	RECALL	PRECISION	RECALL	PRECISION	RECALL	PRECISION	RECALL	PRECISION	RECALL	PRECISION	RECALL
			w	ITH IMAGE I	EXPOSURE AI	ND BLUR DA	TA AUGMEN	TATION (20	0 ITERATIONS	S)		
		TRAINING ACCURACY: 99.4% VALIDATION ACCURACY: 95%						TRAINING ACCURACY: 99.6% VALIDATION ACCURACY: 95.3%				
	TRAINING TIME: 8 hours						TRAINING TIME: 8 hours					
Safe Driving	0.99	0.98	0.92	0.9	0.7	0.61	0.99	0.99	0.92	0.89	0.71	0.51
Texting - right	1	1	0.98	0.95	0.89	0.55	1	1	0.98	0.92	0.89	0.53
Talking on the phone - right	0.99	1	0.98	0.98	0.84	0.78	1	1	0.98	0.98	0.83	0.76
Texting - left	1	1	0.97	94	0.73	0.73	1	1	0.98	0.92	0.71	0.71
Talking on the phone - left	1	1	0.98	0.98	0.81	0.72	1	1	0.97	0.97	0.8	0.7
Operating the radio	0.99	0.98	0.97	0.96	0.77	0.7	1	1	0.95	0.98	0.75	0.69
Drinking	1	1	0.97	0.97	0.63	0.58	1	1	0.96	0.96	0.62	0.57
Reaching behind	1	1	0.98	0.97	0.88	0.84	1	1	0.96	0.98	0.87	0.85
Hair and makeup	0.99	0.99	0.95	0.94	0.48	0.81	0.99	0.99	0.92	0.96	0.44	0.79
Talking to passenger	0.99	0.99	0.9	0.98	0.46	0.68	0.99	0.99	0.9	0.97	0.45	0.67

AutoML Model Performance Summary

	Predicted La	Del Cleft	exting left of	en.	eaching behind	sking right	perate radio	sking right	Hirid Dassen	get gait makeup sait makeup
True Label	Predi	alkines	extines &	rinking (zach.	Kime	Dela.	alkines .	AKINS	airn. sa
talking left	100%	-	-	-	-	-	-	-	-	-
texting left	-	100%	-	-	-	-	-	-		-
drinking	-	-	100%	-	-	-	-	-		-
reaching behind		-	-	100%	-	-	-			-
texting right	-	-	-	-	100%	-	-	-	-	-
operate radio	-	-	-	-	-	99%	-	-	0%	1%
talking right	-	-	0%	-	-	-	100%	-	-	-
alking passenger	-	-	-	-	-	-	-	99%	1%	-
hair makeup	-	-	0%	-	-	-	0%	-	99%	-
safe driving				-	-				0%	100%

True positives

Your model correctly predicted texting left on these images

Score: 0.67843133

Score: 0.7372549

Score: 0.77254903

Score: 0.7764706

False negatives

Your model should have predicted hair makeup on these images

Score(s): 0.29803923

Score(s): 0.33333334

Score(s): 0.3529412

Score(s): 0.44313726

DDBC Solution Prototypes

Inferences on New/Unseen Data

CLASS	Google Cloud Platform (GCP) AutoML Vision	Apple CreateML	CLASS	Google Cloud Platform (GCP) AutoML Vision	Apple CreateML
	Texting - left (0.63)	Texting - left (0.88)		Operating the radio (0.74)	Operating the radio (0.85)
	Texting - right (0.72)	Texting - right (0.99)		Drinking (0.30)	Drinking (0.92)
	Talking on the phone - right (0.81)	Talking on the phone - right (0.99)		Reaching behind (0.73)	Talking to passenger (0.70)
	Texting - left (0.85)	Safe driving (0.79)		Hair and makeup (0.77)	Hair and makeup (0.98)
	Talking on the phone - left (0.83)	Talking on the phone - left (0.99)		Operating the radio (0.31)	Operating the radio (0.51)

^{*} Green means correct classification, red means incorrect classification

Predictive Risks of DDBC

CLASS	PREDICTION	RISK
	Safe driving (0.79)	 Prediction as driving safely even if the driver is not False sense of security Safe driver record despite behavior violations
	Texting - left (0.88)	 Prediction of distracted driver even if the driver is in safe driving position Annoying and irritating incorrect distracted behavior alerts Unjustifiable unfavorable driving record

Recommendations for future study

Our project provided a baseline performance and accuracy to benchmark against for future research.

Future recommendations include:

- Data augmentation using color shifting and rotation of images for improved accuracy and to prevent overfitting
- A better methodology to improve detection of face, hands, and skin
- Training using a more powerful computing platform
- Interfacing with Amazon assistant Alexa and all the Internet of Things (IoT) devices that Alexa interfaces with such as the Amazon Echo's suite of personal assistant products.

Questions?