ARJUNA-NEET(Physics)

PRACTICE TEST-01

- Find the value of sin 60°
 - (A) $\frac{1}{\sqrt{2}}$
- (C) $\frac{1}{2}$
- (D) 1
- If $\tan \theta = \frac{3}{4}$ then value of θ is
 - (A) 37°
- (B) 90°
- (C) 0°
- (D) 45°
- If $\tan \theta = 2$ then $\sin \theta$ will be
 - (A) $\frac{2}{\sqrt{5}}$ (B) $\frac{\sqrt{5}}{2}$
 - (C) $\frac{1}{\sqrt{2}}$ (D) $\frac{\sqrt{3}}{2}$
- Value of cos (2°) will be
- (C) $\frac{1}{\sqrt{2}}$
- (D) $\frac{\sqrt{3}}{2}$
- Find value of $\sin \theta + \cos \theta$ at $\theta = 45^{\circ}$
 - (A) $\frac{1}{\sqrt{2}}$
- (B) 1
- (C) $\sqrt{2}$
- (D) $\frac{\sqrt{3}}{2}$
- $\sin (90 \theta)$ can be written as
 - (A) $\cos \theta$
- (B) $\tan \theta$
- (C) $\sin \theta$
- (D) 1
- If y = 3x + 4 then graph between y and x will be
 - (A) straight line
- (B) parabola
- (C) circle
- (D) hyperbola

Which of the following graph is correct between y and x where $y = \frac{4}{x^2}$

Displacement of object given as $S = \frac{1}{2}at^2$ where a = constant acceleration then correct graph between s and t will be

10. Graph between y and x given as: then relation between y and x will be

- (A) y = x
- (C) $y = x^2$
- 11. Time period simple of $rac{\ell}{\ell}$ then graph between 'T' and ' ℓ '

- 12. If $y = \frac{1}{x^2}$ then find $\frac{dy}{dx}$
 - (A) $-\frac{1}{x}$ (B) $\frac{-2}{x^3}$
 - (C) x^2
- 13. If $y = \sin \theta$ then find $\frac{dy}{dx}$ at $\theta = 45^{\circ}$
- (B) $\sqrt{2}$

- 14. If $y = x^2 + 2x 4$ then find $\frac{dy}{dx}$
 - (A) $x^2 + x$
- (B) 2x + 2
- (C) $x^2 4$
- (D) 2x + 2
- **15.** If $y = \sin(2x)$ then find $\frac{dy}{dx}$
 - (A) $2\sin(2x)$
- (B) $2\cos(2x)$
- (C) $\sin(2x)$
- (D) cos(2x)
- **16.** If $y = e^{2x}$ then find $\frac{dy}{dx}$
 - (A) e^{2x}
- (B) $2 e^{2x}$
- (C) $2e^x$
- (D) $2x e^2$
- 17. If $y = A \sin(kx)$ then find double differential of 'y'
 - $(A) AK^2 \sin(kx)$
- (B) $-AK \cos(kx)$
- (C) $+ AK^2 \cos(kx)$ (D) $AK \sin(kx)$
- **18.** At minima slope must be
 - (A) zero
- (B) -ve
- (C) +ve
- (D) High
- 19. At maxima slope of graph will be
 - (A) zero
- (B) -ve
- (C) +ve
- (D) low

- **20.** At maxima double differential will be:
 - (A) zero
- (B) -ve
- (C) +ve
- (D) maximum
- **21.** If $y = 3 \sin \theta + 4 \cos \theta$ then maximum value of y will be
 - (A) 5
- (B) 3
- (C) 4
- (D) 7
- **22.** Find value of $\int_{0}^{\pi} \sin \theta \, d\theta$
 - (A) 2
- (B) 0
- (C) 1
- (D) π
- 23. Find dimension of universal gravitational constant 'G'.
 - (A) ML^3T^{-2}
- (B) $M^{-1}L^3T^{-2}$
- (C) $M^{-1}L^2T^3$
- (D) ML^2T^{-1}
- 24. Find dimension of surface Tension 's'
 - (A) ML^2T^{-2}
- (B) MLT^{-2}
- (C) MT^{-2}
- (D) ML^{-2}
- 25. A physical quantity is dimensionally correct then it:
 - (A) must be physically correct
 - (B) may be physically correct
 - (C) must be physically wrong
 - (D) may be physically wrong
- **26.** A physical quantity have unit then it
 - (A) must have dimension
 - (B) may have dimension
 - (C) No dimension
 - (D) can't say
- 27. In an experiment expression of planks constant is given as $h = \frac{\lambda^3}{\Delta}$ where λ is wavelength then find dimension of constant 'A'.
 - (A) ML^2T^{+2}
- (B) $ML^{-1}T^{-1}$

- (C) $M^{-1}L^{1}T^{1}$
- (D) $M^{-1}L^{-5}T^{+2}$
- **28.** If the unit of force is 10N, the unit of acceleration 2 m/s and unit of velocity is 5 m/s then unit of momentum is
 - (A) 25 kgm/s
- (B) 40 kgm/s
- (C) 2 kgm/s
- (D) 10 kgm/s
- 29. The respective number of significant figures for the number
 - 24.403, 2.1×10^{-3} , 0.0003 and 0.4×10^{4}
 - (A) 5, 2, 1, 1
- (B) 5, 2, 1, 2
- (C) 5, 2, 4, 2
- (D) 5, 5, 4, 1
- 30. Time of 80 oscillation of spring Mass system is measured with stop watch of least count $\frac{1}{2}$ second is 2.5 s, then the permissible error in the measurement is
 - (A) 10%
- (B) 20%
- (C) 25%
- (D) 30%
- **31.** True value of Mass of pure gold is 46.294 grm. Its Mass of measured by using two different instruments are (1) 46.278 grm and (2) 46.30 grm then:-
 - (A) 1 is more accurate and precise
 - (B) 2 is more accurate and precise
 - (C) 1 is more precise and less accurate
 - (D) 2 is less accurate more precise
- **32.** If the percentage errors in the measurement of physical quantities A, B and C are a, b and c respectively, then total percentage error in the product ABC is
 - (A) abc
- (B) a + b + c
- (C) ab + bc + ac (D) $\frac{a}{b} + \frac{b}{c} + \frac{c}{a}$
- **33.** Which of the following equation can be derived dimensionally?
 - (A) $s = Vt \frac{1}{2}at^2$ (B) $F = 6\pi \eta rv$
 - (C) $I = I_0 e^{-\lambda t}$ (D) $V = \frac{d}{t}$

34. A force is given as $F = \frac{\alpha^2}{\beta} \cos\left(\frac{v}{\beta}\right)$ where F

is force, V is velocity, then dimensional formula of $\alpha^4\beta^{-2}$ is:-

- (A) MLT^{-2}
- (B) $M^2L^2T^{-2}$
- (C) $M^2L^2T^{-4}$
- (D) ML^2T^{-2}
- **35.** Which of the following graphs has positive slope (m) and negative intercept (c) on y-axis?

36. The slope of v - t is zero at point :

- (A) A
- (B) B
- (C) C
- (D) D
- **37.** In an experiment four quantities a, b, c and d are measured with percentage error 1%, 2%, 3% and 4% respectively. Quantity P is calculated as follows

$$P = \frac{a^3b^2}{cd}$$
% error in P is:

- (A) 10%
- (B) 7%
- (C) 4%
- (D) 14%
- **38.** The amplitude of a damped oscillator of mass m varies with time t as

$$A = A_0 e^{(-at / m)}$$

The dimensions of a are

- (A) $ML^{0}T^{-1}$
- (B) $M^{0}LT^{-1}$
- (C) MLT⁻¹
- (D) $ML^{-1}T$

- **39.** If energy E, velocity V and time T are chosen as the fundamental units, the dimensional formula for surface tension will be
 - (A) EV^2T^{-2}
- (B) $EV^{-1}T^{-2}$
- (C) $EV^{-2}T^{-2}$
- (D) $E^2V^{-1}T^{-2}$
- **40.** The velocity of a particle is given by

$$v = a + \frac{b}{t} + ct^2$$

The unit of b will be

- (A) m
- (B) ms^2
- (C) ms⁻¹
- (D) ms⁻²
- **41.** What is the dimensional formula of Planck's constant t ?

linear momentum

- (A) $[M^0L^0T^0]$
- (B) $[M^0L^0T]$
- (C) $[M^0LT^0]$
- (D) [MLT⁻¹]
- **42.** The force F is given in terms of time t and displacement x by the equation

 $F = A \cos Bx + C \sin DT$. The dimensional formula of D/B is

- (A) $[M^0L^0T^0]$
- (B) $[M^0L^0T^{-1}]$
- (C) $[M^0L^{-1}T^0]$
- (D) $[M^0L^1T^{-1}]$
- **43.** In wave equation $y = a \sin (At Bx)$, the dimensions of the ratio A/B are
 - (A) [LT]
- (B) $[LT^{-1}]$
- $(C) \ [L^{\scriptscriptstyle -1}T]$
- (D) $[L^0T^0]$
- **44.** The dimensional formula ML²T⁻² represents
 - (A) pressure
 - (B) Linear momentum
 - (C) Power
 - (D) Energy
- **45.** Error in the measurement of radius of a sphere is 2%. Then error in the measurement of volume is
 - (A) 2%
- (B) 4%
- (C) 8%
- (D) 6%

ANSWERS KEY

1.	(B)
2.	(A)
3.	(A)
4.	(A)
5.	(C)
6.	(A)
7.	(A)
8.	(D)
9.	(A)
10.	(D)
11.	(C)
12.	(B)
13.	(A)
14.	(B)
15.	(B)

16.	(B)
17.	(A)
18.	(A)
19.	(A)
20.	(B)
21.	(A)
22.	(A)
23.	(B)
24.	(C)
25.	(B)
26.	(B)
27.	(C)
28.	(A)
29.	(A)
30.	(B)

31.	(C)
32.	(B)
33.	(D)
34.	(C)
35.	(C)
36.	(B)
37.	(D)
38.	(A)
39.	(C)
40.	(A)
41.	(C)
42.	(D)
43.	(B)
44.	(D)
45.	(D)

HINTS & SOLUTIONS

$$\tan \theta = \frac{P}{B} = \frac{2}{1}$$

$$\sin\theta = \frac{2}{\sqrt{5}}$$

4. (A) For
$$\theta < 5^{\circ}$$

$$\cos(\theta) = 1$$

Sin
$$45^{\circ} = \frac{1}{\sqrt{2}}$$
 cos $45^{\circ} = = \frac{1}{\sqrt{2}}$

$$\sin(90 - \theta) = \cos\theta$$

[All +ve in 1st quadrant]

$$y = mx + c$$

Straight Line

8.

$$y \propto \frac{\ell}{x^2}$$
 As $x \uparrow y \downarrow$

As
$$x \uparrow y$$

 $\mathbf{(A)}$ $\mathbf{S} \propto \mathbf{t}^2$

[parabola symmetric to S-axis]

$$y \propto \frac{1}{x}$$

 $T \propto \sqrt{\ell}$ [parabola symmetric to ℓ -axis]

$$\frac{d}{dx}(x^{-2}) = -2x^{-2-1} = \frac{-2}{x^3}$$

$$\frac{d}{d\theta}(\sin\theta) = \cos\theta$$

$$\frac{d}{dx}(\sin 2x) = \cos 2x \frac{d}{dx}(2x) = 2\cos 2x$$

$$\frac{d}{dx}(e^{2x}) = e^{2x} \frac{d}{dx}(2x) = 2e^{2x}$$

$$\frac{dy}{dx} = Ak\cos kx \Rightarrow \frac{d^2y}{dx^2} = -AK^2\sin kx$$

At Minima slope = 0

(A) 19.

At Maxima slope = 0

$$\frac{d^2y}{dx^2} = -ve \text{ at maxima}$$

$$y = 3\sin\theta + 4\cos\theta$$

$$\frac{dy}{d\theta} = 0 \Rightarrow 3\cos\theta + 4\sin\theta = 0$$

$$\tan \theta = \frac{3}{4}$$
 : $\theta = 37^{\circ}$

$$y_{\text{max}} = 3 \times \frac{3}{5} + \frac{4 \times 4}{5} = 5$$

$$\int_{0}^{\pi} \sin \theta . d\theta = \left[-\cos \theta \right]_{0}^{\pi}$$

$$G = \frac{Fr^2}{m^2} = \frac{(MLT^{-2})L^2}{M^2}$$

24. (C)
$$S = \frac{F}{\ell} = \frac{MLT^{-2}}{L}$$

27. (C)

$$E = hv : h = \frac{E}{v} = \frac{MLT^{-2}}{T^{-1}}$$

$$h = \frac{\gamma^{3}}{A} : A = \frac{\lambda^{3}}{h} = \frac{L^{3}}{MLT^{-1}}$$

28. (A)

$$P = \text{m.v.} = \left(\frac{10N}{2m/s^2}\right) 5 = 25 \text{ kgm/s}$$

30. (B)
$$\frac{\Delta T}{T} = \frac{0.5}{2.5} \times 100 = 20\%$$

32. (B)
$$\frac{\Delta E}{E} = \frac{\Delta A}{A} + \frac{\Delta B}{B} + \frac{\Delta C}{C} = a + b + c$$

(C)
$$F = \frac{\alpha^2}{\beta} \cos\left(\frac{v}{\beta}\right)$$
dimensionless
dimensionless

$$F = \left[\frac{\alpha^2}{\beta}\right] : \text{ same dimension.}$$

37. **(D)**
$$\frac{\Delta P}{P} = \frac{3\Delta a}{a} + \frac{2\Delta b}{b} + \frac{\Delta c}{c} + \frac{\Delta d}{d}$$

38. (A)
$$A = A_0 \qquad e^{\frac{-at}{m}} \Rightarrow \text{dimensionless}$$

39. (C)

$$S = \frac{F}{\ell} = \frac{E}{\ell^2} = \frac{E}{(VT)^2} = EV^{-2}T^{-2}$$

40. (A)
$$[V] = \left[\frac{b}{t} \right]$$

41. (C)

$$E = hv h = \frac{E}{v} = \frac{ML^2T^{-2}}{T^{-1}} = ML^2T^{-1}$$

42. (**D**)
$$Bx = 1 & D T = 1 \\ B = L^{-1} & D = T^{-1}$$

43. (B)
$$At = 1$$
 $Bx = 1$ $A = T^{-1}$ $B = L^{-1}$

45. (**D**)
$$\frac{\Delta V}{V} = \frac{3\Delta r}{r}$$