SRN			
O 1 01			

PES University, Bengaluru

(Established under Karnataka Act No. 16 of 2013)

UE18EC202 / UE15EC252 / UE17EC204

December 2019: END SEMESTER ASSESSMENT B.Tech. ECE III Semester ESA

${\tt UE18EC202/UE15EC252/UE17EC204-SIGNALS~\&~SYSTEMS}$

Time: 3 hours Answer All Questions Max Marks: 100

			11
	a	Calculate the Energy and Average Power of (i) $x_1(t) = e^{j(2t + \frac{\pi}{4})}$ and (ii) $x_2[n] = (\frac{1}{4})^n u[n]$. Identify whether they are Energy or Power signal.	7m
1	b	A continuous-time signal $x(t)$ is as shown. Sketch and label (i) $x(t+2)$, (ii) $x(-t)$ and (iii) $x(-t-2)$.	6m
	С	A discrete-time system has the following input - output relation; $y[n] = 0.6^n x[n]$ Determine whether the system thus defined is (i) Memoryless, (ii) Stable, (iii) Causal, (iv) Linear and (v) Time-Invariant.	7m
2	a	Find the convolution of $x_1(t) = \cos(t) \ u(t)$ and $x_2(t) = t \ u(t)$.	6m
	b	An LTI Discrete-time system has an Impulse response given by; $h[n] = \left(\frac{3}{4}\right)^n u[n]$ If this system is energised by a Unit Step Input, what will be its output $y[n]$?	6m
	с	Find the total response of an LTI discrete-time system described by; $y[n]-2y[n-1]-3y[n-2]=x[n]+4x[n-1]$ with $x[n]=2^nu[n],\ y[-1]=5$ and $y[-2]=0.$	8m

		A continuous-time periodic signal with a fundamental period (T) and fundamental frequency ($\omega_0 = \frac{2\pi}{T}$) is defined as;			
3	a	$x(t) = \begin{cases} A + \frac{2At}{T}; & -\frac{T}{2} \le t \le 0\\ A - \frac{2At}{T}; & 0 \le t \le \frac{T}{2} \end{cases}$	8m		
		Evaluate its Fourier Series co-efficients (a_k) . Also express the given $x(t)$ in terms of its Fourier Series co-efficients.			
	b	Evaluate $x[n]$, if its Fourier Series co-efficients are periodic with a period of $N=17$ and given by;	6m		
		$a_k = \cos\left(\frac{6\pi}{17}k\right)$			
		Evaluate $y(t)$ whose Fourier Series co-efficients are periodic with $T=4$ are given by;	*		
	с	$a_k = \begin{cases} jk; & k < 3\\ 0; & \text{elsewhere} \end{cases}$	6m		
L		•			
4	a	Evaluate the Fourier Transform of an aperiodic signal defined as: $x(t) = \begin{cases} 1+\frac{t}{T}; & -T \leq t \leq 0\\ 1-\frac{t}{T}; & 0 \leq t \leq T \end{cases}$	7m		
	ь	Determine the Fourier Transform of an aperiodic Discrete-time signal defined by; $x[n] = a^{ n }; \qquad -1 < a < 1$	7m		
	С	Determine the convolution of $x_1(t) = e^{-2t}u(t)$ and $x_2(t) = e^{-6t}u(t)$, using the property of Fourier Transform.			
_	a	Evaluate the z - transform and indicate the ROC of; $x[n] = 0.5^n u[n] + 0.8^n u[-n-1]$	7m		
5		Consider the following z - transform of a discrete-time sequence $x[n]$;			
	b	$X(z) = \frac{1}{1 - 0.8z^{-1} + 0.12z^{-2}}$	8m		
		Determine the sequence $x[n]$ for (i) $ z >0.6$, (ii) $0.2< z <0.6$ and (iii) $ z <0.2$.	The same		
	Evaluate the Unilteral z - transform of;				
	с	$x[n] = \left(\frac{1}{4}\right)^n u[3-n]$	5m		