

Sintesi Sequenziale Sincrona

Sintesi comportamentale di reti sequenziali sincrone

Riduzione del numero degli stati per Macchine Completamente Specificate

> Indistinguibilità & Equivalenza Irragiungibilità

versione del 12/12/2004

- La sintesi si svolge nei seguenti passi:
 - 1. Realizzazione del *diagramma degli stati* a partire dalle specifiche informali del problema
 - 2. Costruzione della tabella degli stati
 - 3. Riduzione del numero degli stati: ottimizzazione
 - 4. Costruzione della tabella delle transizioni
 - Assegnamento degli stati: Codice & codifica
 - 5. Costruzione della tabella delle eccitazioni
 - Scelta degli elementi di memoria
 - 6. Sintesi sia della rete combinatoria che realizza la funzione stato prossimo sia della rete combinatoria che realizza la funzione d'uscita

- 2 -

Riduzione del numero degli stati

 Il numero minimo di elementi di memoria (flip-flop) necessari a memorizzare tutti gli stati dell'insieme S è:

$$N_{FF min} = \lceil log_2 / S / \rceil$$

- Nel modello di una macchina a stati possono esistere stati ridondanti
- L'identificazione ed eliminazione di tali stati comporta:
 - Numero minore di elementi di memoria
 - Reti combinatorie meno costose
 - · per aumento dei gradi di libertà nella sintesi combinatoria
 - condizioni di indifferenza dovute all'utilizzo parziale delle configurazioni che possono codificare lo stato
 - per riduzione del numero di bit necessari per codificare gli stati
 - Minore numero di ingressi e di uscite alle reti combinatorie che realizzano la funzione stato futuro e la funzione d'uscita.

Riduzione del numero degli stati

Esempio

Macchina con 8 stati, 1 ingresso ed 1 uscita Macchina con 3 stati, 1 ingresso ed 1 uscita

Riduzione del numero degli stati

- Lo scopo della riduzione del numero degli stati consiste nell'individuare la macchina minima equivalente a quella data
- □ La *macchina minima equivalente* è quella macchina:
 - Funzionalmente equivalente alla macchina data
 - Avente il minimo numero di stati
- Il problema della riduzione del numero di stati è distinto per macchine
 - completamente specificate: identificazione di stati indistinguibili o equivalenti
 - non completamente specificate: identificazione di stati compatibili
 - macchina non completamente specificata: se in corrispondenza di qualche coppia (stato presente, configurazione di ingresso) o il simbolo di uscita, o lo stato prossimo o entrambi non sono specificati
- Inoltre, deve essere prevista l'eliminazione degli stati non raggiungibili dallo stato di reset, se questo è specificato

- 5 -

Riduzione del numero degli stati:

macchine equivalenti

- Date due macchine completamente specificate M1 e M2 queste si dicono equivalenti se e solo se:
 - per ogni stato s_i di M1, esiste uno stato s_j di M2 tale che ponendo la macchina M1 in s_j e la macchina M2 in s_j
 - e applicando alle due macchine una qualunque sequenza di ingresso l
 - le due sequenze di uscita sono identiche.
 - E viceversa per M2 rispetto ad M1
- Nota: nella definizione di equivalenza sono considerate solo le relazioni ingresso-uscita quindi le due macchine possono avere un insieme di stati diverso e in particolare di diversa cardinalità

- 6

Riduzione del numero degli stati: stati indistinguibili di una stessa macchina

- Data una macchina completamente specificata, siano:
- I_{α} una generica sequenza di ingresso i_{α} , ..., i_{α}
- \mathbb{U}_a la sequenza d'uscita ad essa associata ottenuta attraverso λ .
- s_i, s_i-due generici stati

$$\mathbf{U}_{\alpha,i} = \lambda(\mathbf{s}_{i}, \mathbf{I}_{\alpha}) = \lambda(\mathbf{s}_{j}, \mathbf{I}_{\alpha}) = \mathbf{U}_{\alpha,j} \qquad \forall \mathbf{I}_{\alpha}$$

- ponendo la macchina in s_i oppure in s_j e applicando una qualsiasi sequenza di ingresso, le uscite sono identiche.
- \Box L'indistinguibilità tra s_i e s_j si indica con: $s_i \sim s_j$

Riduzione del numero degli stati:

stati equivalenti di una stessa macchina

□ La relazione di *indistinguibilità* gode di tre proprietà:

Riflessiva: s_i~s_i

Simmetrica: $s_i \sim s_i \leftrightarrow s_i \sim s_i$

Transitiva: $s_i \sim s_i \wedge s_j \sim s_k \rightarrow s_i \sim s_k$

- Quindi, la relazione di indistinguibilità è una relazione d'equivalenza
 - Due stati indistinguibili sono equivalenti e possono essere sostituiti con un solo stato.
- In generale, un gruppo di stati tra loro equivalenti può essere raggruppato in unica classe di equivalenza
- L'insieme delle classi di equivalenza determina l'insieme degli stati della macchina minima equivalente

Riduzione del numero degli stati:

partizione di equivalenza

- □ Formalmente, una *relazione di equivalenza* induce sull'insieme degli stati una *partizione* Π_e *di equivalenza* tale che
 - due stati appartengono alla stessa classe se e solo se sono equivalenti
 - due stati appartengono a classi diverse se e solo se non sono equivalenti
 - l'insieme S si dice partizionato nelle m classi C₁, ..., C_m se:

$$C_1 \cup C_2 \cup \ldots \cup C_m = S$$

$$C_i \cap C_j = \emptyset \quad \forall i, j : i \neq j$$

Il nuovo insieme degli stati è formato dalle classi della partizione

Esempio:

- 9 -

Riduzione del numero degli stati:

macchina minima

- Una macchina M è minima se non esiste nel suo insieme degli stati nessuna coppia di stati equivalenti
- Il problema della riduzione degli stati può quindi essere ricondotto a quello della "costruzione" di una macchina equivalente minima a quella data.
- Identificazione della macchina equivalente minima:
 - data una macchina M e la sua partizione di equivalenza indotta dall'indistinguibilità tra stati
 - la macchina M' il cui insieme degli stati è costituito dai blocchi della partizione di equivalenza è la macchina minima equivalente a quella data ed è unica
 - · equivalente per costruzione
 - minima per costruzione
 - unica per le caratteristiche di equivalenza

- 10 -

Riduzione del numero degli stati:

identificazione degli stati equivalenti

- La definizione di indistinguibilità tra stati è di difficile applicabilità poiché richiederebbe di considerare tutte le sequenze di ingresso (a priori infinite)
- Si ricorre ad una regola introdotta da Paull Unger
 - Due stati $\mathbf{s}_{\mathtt{i}}$ e $\mathbf{s}_{\mathtt{j}}$ appartenenti ad S sono indistinguibili se e solo se per ogni simbolo di ingresso $\mathtt{i}_{\mathtt{a}}$:

 λ (s_i , i_a) = λ (s_j , i_a) (Le uscite sono uguali per ogni simbolo di ingresso)

 $\delta(s_i, i_a) \sim \delta(s_i, i_a)$ (Gli stati prossimi sono indistinguibili)

La regola di Paull - Unger è iterativa

Riduzione del numero degli stati:

identificazione degli stati equivalenti (i)

- Applicando la regola di Paull Unger agli stati di una macchina, si possono ottenere tre casi
- 1. $s_i \neq s_j$
 - Se i simboli d'uscita sono diversi e/o
 - Se gli stati prossimi sono già stati verificati come distinguibili
- 2. s_i ~ s_j
 - Se i simboli di uscita sono uguali e
 - Se gli stati prossimi sono già stati verificati come indistinguibili
- 3. $s_i \sim s_j$ se $s_k \sim s_h$ (vincolo)
 - Se i simboli di uscita sono uguali e
 - Se gli stati prossimi non sono ancora stati verificati come indistinguibili

- Poiché gli insiemi S ed I hanno cardinalità finita, dopo un certo numero di passi i vincoli vengono risolti e ci si troverà in una delle due condizioni:
- 1. s_i # s_i
- 2. s_i ~ s_i
- L'analisi del caso 3. può portare a costruire dei vincoli nei quali è presente circolarità del vincolo: l'indistinguibilità di una coppia di stati è vincolata dall'indistinguibilità della stessa coppia di stati

- 13 -

Riduzione del numero degli stati: tabella delle implicazioni (ii)

- Ogni elemento della tabella contiene:
 - Il simbolo di non equivalenza;
 - Il simbolo di equivalenza
 - gli stati corrispondenti sono equivalenti
 - Le coppie di stati a cui si rimanda la verifica, se non è possibile pronunciarsi sulla equivalenza degli stati corrispondenti
- Sulla tabella così ottenuta si procede ad una analisi di tutte le coppie di stati.

Esempio:

MLASO

Riduzione del numero degli stati:

tabella delle implicazioni (i)

- Le relazioni di indistinguibilità o equivalenze possono essere identificate attraverso l'uso della Tabella delle Implicazioni
- □ La tabella ha le seguenti caratteristiche:
 - Mette in relazione ogni coppia di stati
 - E' triangolare (proprietà simmetrica) e priva della diagonale principale (proprietà riflessiva)
- Esempio

- 14 -

MLANO

Riduzione del numero degli stati:

tabella delle implicazioni (iii)

- Analisi delle coppie di stati
 - Per ogni coppia di stati:
 - Una coppia marcata come equivalente non richiede alcuna ulteriore verifica
 - Se si trova un rimando ad un'altra coppia:
 - Se questi stati sono equivalenti anche gli stati della coppia in esame sono equivalenti
 - Se questi non sono equivalenti anche gli stati della coppia in esame non sono equivalenti
 - Se gli stati della coppia cui si rimanda dipendono da una ulteriore coppia di stati si ripete il procedimento in modo iterativo fino a quando ci si riconduce ad uno dei due casi precedenti (ricordarsi la circolarità del vincolo)
 - L'algoritmo termina quando non sono più possibili eliminazioni
 - Le coppie rimaste sono equivalenti

Riduzione del numero degli stati: Esempio

Tabella degli Tabella delle stati b х implicazioni 0 С х ae h/0 a/1 c/0 e/0 х х Х d b/0 a/0 dg х х х e/1 c/0 е h/0 d/1 х х ch £ x e/1 h/0 c/0 ae х х ae х Х ch **h** d/0 f/1 dh dh х х х х x fq df d £ а b С

- 17 -

Riduzione del numero degli stati: Esempio

 $\begin{array}{ll} \text{Coppia d;f} & \text{d;f} \rightarrow \text{c;h} \\ \cdot & \text{ma c;h distinguibile: risultato d;f distinguibile} \\ \text{(X)} \end{array}$

Coppia f;g f;g \rightarrow a;e e f;g \rightarrow c;h. c;h è distinguibile: risultato f;g distinguibile (X)

Coppia a;h $a;h \rightarrow d;h \in a;h \rightarrow f;q$.

d;h è distinguibile: risultato a;h distinguibile (X)

Coppia e;h e;h \rightarrow d;h e e;h \rightarrow d;f.

d;h è distinguibile: Risultato e;h distinguibile (X)

Coppia a;e $a;e \rightarrow d;g \text{ ma } d;g \rightarrow a;e.$

. Quindi a;e \rightarrow d;g \rightarrow a;e: risultato a~e e d~g

Coppia d;g $d;g \rightarrow a;e$.

è indistinguibile d~g (passo 1)

Coppia b;c b;c \rightarrow a;e

poiché a~e (passo 1) anche b~c;

SUITE CHOO

Riduzione del numero degli stati: costruzione della partizione di equivalenza e della macchina minima

- Le relazioni d'equivalenza sono rappresentabili su un grafo di equivalenza:
 - Vertice: rappresenta uno stato
 - Lato: due vertici sono uniti da un lato se e solo se sono equivalenti
- Le classi di equivalenza sono i sottografi completi del grafo (o clique):

Riduzione del numero degli stati: Esempio 1

- 18 -

Diagramma degli stati

Tabella degli stati

	0	1
a	g/00	c/01
b	g/00	d/01
С	d/10	a/11
d	c/10	b/11
е	g/00	f/01
£	f/10	e/11
g	a/01	f/11

Riduzione del numero degli stati: Esempio 1

Tabella degli stati

	0	1
a	g/00	c/01
b	g/00	d/01
С	d/10	a/11
d	c/10	b/11
е	g/00	f/01
f	f/10	e/11
g	a/01	f/11

Tabella delle implicazioni

1

- 21 -

Riduzione del numero degli stati: Esempio 1

Analisi della tabella delle implicazioni

Coppia a:b $a:b \rightarrow c:d \text{ ma } c:d \rightarrow a:b$ quindi a;b \rightarrow c;d \rightarrow a;b: risultato a~b e c~d

Coppia a;e

a:e \rightarrow c:f ma c:f \rightarrow a:e e c:f \rightarrow d:f quindi $a; e \rightarrow c; f \rightarrow d; f \text{ ma } d; f \rightarrow b; e e d; f \rightarrow c; f$

 $a; e \rightarrow c; f \rightarrow d; f \rightarrow b; e \text{ ma b}; e \rightarrow d; f \text{ quindi}$ $a;e \rightarrow c;f \rightarrow d;f \rightarrow b;e$ quindi

a~e, c~f, d~feb~e

A questo punto, l'analisi delle altre coppie è già risolta

Riduzione del numero degli stati: Esempio 1

Sintesi: Esempio 2

- Sintetizzare una macchina di Moore secondo le specifiche:
 - La FSM ha due ingressi A e B
 - La FSM ha una uscita Z, che assume valore iniziale 1
 - Quando A=1, l'uscita assume il valore di B e tale specifica permane fino a quando si presenta la condizione A = B = Z = 1

- 22 -

- Al presentarsi della condizione, il ruolo assunto da A e B viene scambiato
- Il primo passo consiste nel disegnare il diagramma delle transizioni e nel costruire la corrispondente tabella degli stati

- 23 -

Sintesi: Esempio 2

Tabella degli stati

Tabella delle implicazioni

S2

s0

	00	01	11	10		Z		
S 0	S0	S0	S2	S1		1		S1
s1	S1	S1	S0	S1		0		s2
s2	S2	S3	S0	S2		1	/	
S 3	S3	S3	S2	S3		0		ន3
					,			

- 26 -

Riduzione del numero degli stati: Esempio 3

Tabella degli stati

	00	01	11	10
s1	S2/0	S8/1	S6/0	S3/0
S2	S7/0	S1/1	S5/1	S8/1
s 3	S4/0	S8/1	S7/0	S5/0
S4	S6/0	S3/1	S1/1	S8/1
S 5	S2/0	S8/1	S7/0	S1/0
S 6	S1/1	S6/0	S3/1	S7/1
S7	S3/1	S6/0	S5/1	S7/1
S8	S1/1	S2/1	S8/1	S7/1

Tabella delle implicazioni

Riduzione del numero degli stati: Esempio 3

Tabella delle implicazioni

Grafo di equivalenza

Partizione

 Π_e = { {S1, S3, S5}, {S2, S4}, {S6, S7}, S8 } = ={ a, b, c, S8 }

Riduzione del numero degli stati: Esempio 3

Grafo di equivalenza

Tabella ridotta degli stati

	00	01	11	10
a	b/0	S8/1	c/0	a/0
b	c/0	a/1	a/1	S8/1
С	a/1	c/0	a/1	c/1
s8	a/1	b/1	S8/1	c/1

 $\Pi_e = \{ \{S1, S3, S5\}, \{S2, S4\}, \{S6, S7\}, S8 \} = \{ a, b, c, S8 \}$

Partizione

- 29 -

Riduzione del numero degli stati: eliminazione degli stati irraggiungibili

- Eliminazione degli stati irraggiungibili
 - Un modo differente per ottenere lo stesso risultato, ma che utilizza la tabella degli stati, è il seguente:
 - A partire dallo stato di reset si indicano gli stati a cui rimanda.

- 31 -

- Iterativamente, si svolge la stessa operazione per tutti gli stati successivi non indicando quelli che sono già presenti.
- Quando non è più possibile identificare nuovi stati, il risultato è l'insieme degli stati raggiungibili.
- Esempio:

	0	1
Reset	g/00	g/00
b	g/00	d/01
С	-/	Reset/11
đ	c/10	d/11
е	g/00	f/11
£	f/10	e/10
g	Reset/01	f/11

- 1: $\{Reset\{g,g\}\}=\{Reset\{g\}\}$
- $2:{Reset{g{Reset,f}}}={Reset{g{f}}}$
- $3:{Reset{g{f{f,e}}}}} = {Reset{g{f{e}}}}}$
- $4: \{ Reset \{ g \{ f \{ e \{ g, f \} \} \} \} \} = \{ Reset \{ g \{ f \{ e \} \} \} \}$

Da cui si ricavano i soli stati raggiungibili: Reset, g, f, e. Gli altri possono essere eliminati dalla tabella

R e

Riduzione del numero degli stati:

eliminazione degli stati irraggiungibili

- Eliminazione degli stati irraggiungibili
 - Uno stato non è raggiungibile se non esiste alcuna sequenza di transizioni di stato che porti dallo stato RESET in tale stato.

- 30 -