Efficiency of solar cell

☐ The dark current of an p-n junction can be written as:

$$I_D = I_0 \left[e^{(qV/kT)} - 1 \right]$$

Where,

 I_0 is the saturated dark current q is the electron charge k is the boltzmann's constant and T is the absolute temperature (K)

So, the junction current with light can be written as:

$$I_{out} = I_{sc} - I_0 [e^{(qV/kT)} - 1]$$

Where,

 I_{sc} is the short-circuit current

Efficiency of solar cell

When the load is an open circuit ($I_{out} = 0$), corresponding voltage is called the open-circuit voltage (V_{oc})

Thus,

$$\begin{split} V_{oc} &= \frac{kT}{q} ln \left(\frac{I_{sc}}{I_0} + 1 \right) \\ &\approx \frac{kT}{q} ln \left(\frac{I_{sc}}{I_0} \right) \end{split}$$

The output power is $P_{out} = V_{out} \times I_{out}$

Maximum power output, $P_m = V_m \times I_m$

Efficiency of solar cell

- ✓ **Fill factor** is a measure of quality of a solar cell.
- ✓ This is the available power at the maximum power point (Pm) divided by the open circuit voltage (V_{OC}) and the short circuit current (I_{SC}) :

$$FF = \frac{P_m}{V_{oc} \times I_{sc}}$$

$$FF = \frac{V_m \times I_m}{V_{oc} \times I_{sc}}$$

So, the maximum power conversion efficiency is:

$$\eta = \frac{P_m}{P_{in}} = \frac{V_{oc} \times I_{sc} \times FF}{incident \ solar \ power}$$

Efficiency limiting factors

Bandgap Energy (E_g) :

- \checkmark Doping concentration increases the E_g
- \checkmark V_{oc} increases with increasing E_{g} .
- \checkmark On the other hand J_{sc} decreases with increasing E_{g} .
- \checkmark As a result , solar cell efficiency became peak at a certain $E_{\rm g}.$

Temperature:

- ✓ Efficiency decreases with increasing temperature
- ✓ For every 1°C increase in temperature, V_{oc} drop by about 0.4% of its room temperature value.
- ✓ Thermal loss increases.

Efficiency limiting factors

Recombination Lifetime:

- ✓ Long carrier-recombination lifetimes are desirable mainly because they help to achieve large $I_{\rm sc}$
- ✓ The key to achieve long recombination lifetimes is to avoid introducing recombination centers during material preparation and cell fabrication.

Light Intensity:

✓ Directly related to the output power.

Doping Density & Profile:

- \checkmark With increasing doping density the V_{oc} is increasing.
- ✓ As well as the dark saturation current density also increase with increasing doping density.
- ✓ Defect density increase.

Efficiency limiting factors

Surface Recombination Velocities:

- \checkmark Low surface recombination velocities help enhance I_{sc}
- ✓ Back surface filed (BSF) is usually use to minimize surface recombination velocity.
- ✓ Passivation layers also help to decrease it.

Series Resistance:

- ✓ Comes from lead, metal contact grid, bulk cell resistance.
- ✓ Can minimized by spacing the metal lines closely.

Metal Grid and Optical Reflection:

- ✓ Metal grids on the front surface are opaque to sunlight.
- $\checkmark\,$ To maximize $I_{\rm sc}$ the metal grid area should minimize.
- ✓ The reflectivity of the bare silicon surface is about 40%
- ✓ it can be reduced by using antireflection coating.

Design consideration

Steps for designing a typical silicon solar cell:

- ➤ Take a p-type single crystalline silicon.
 - ✓ Usually Czochralski (C-Z) technique is used.
 - ✓ Slicing it to the proper plane.
 - ✓ Chemical etching (by mixture of Nitric, HF, acetic acid) to remove oxidized layer.
 - ✓ Polishing is done by sic and Al₂O₃ slurry.
- > Then dope with thin layer of n-type.
 - ✓ n-region is thin and highly doped
 - ✓ To make ohmic contact easer.
- > Chose a proper material for making electrodes.
 - ✓ Choose proper metal to reduce the series resistance.
 - ✓ Annealing of the metal-semiconductor junction decrease the contact resistance.

Design consideration

- > On top of the cell place finger electrodes.
 - ✓ Maximize light transfer to the substrate.
 - ✓ Reduce the contact resistance.
 - ✓ Increase carrier collection efficiency.
- Series resistance must be low with high sunt resistance.
 - ✓ It reduces the solar cell efficiency.
 - ✓ It reduces the fill factor of the cell
 - ✓ May come from unsmooth metal-semiconductor junction
 - ✓ May due to manufacturing fault.
- > Choose a proper antireflection coating material.
 - ✓ Need so that most of the solar radiation be absorbed by the cell and not reflected back.
 - ✓ Proper dielectric material with proper thickness.
 - ✓ Refractive index of the coating material;

 $\eta = \sqrt{R.I \text{ of the air} \times R.I \text{ of the solar energy material}}$

Design consideration

> Cote the material with proper thickness.

$$Thickness = m.\frac{\lambda}{4}.\frac{1}{\eta}$$

Thickness of the coating material should be the odd multiple of the quarter wavelength.

> Protecting layer of the cell

Solar modules and panels

- □ Solar panel or module is an array of several solar cells.
- ☐ The array can be formed by connecting them in parallel or series connection depending upon the energy required.
- \square In series to increase the output voltage
- ☐ In parallel to increase the output current

Solar modules and panels

❖ Mono-Si:

- ➤ Crystal Lattice of entire sample is continuous.
- ➤ Since they are cut from single crystal, they gives the module a uniform appearance.

Advantages:

- ✓ Highest efficient module till now.
- ✓ Greater heat resistance
- ✓ Large share in the market.
- ✓ Long life time.

Disadvantages:

- ✓ More expensive to produce.
- ✓ High amount of Si is needed.
- ✓ High processing temperature and pressure.

Solar modules and panels

❖ Poly-Si:

- ➤ Composed of a number of different crystals, fused together to make a single cell.
- > Have a non-uniform texture, visible crystal grain present due to manufacturing process.

Advantages:

- ✓ Moderate efficiency.
- ✓ Cost effective manufacture compared to the single crystal.
- ✓ Commonly available in market.

Disadvantages:

- ✓ Not as efficient as mono-crystal.
- ✓ Required large amount of Si.
- ✓ High processing temperature and pressure.

Solar modules and panels

- ❖ Amorphous Si:
- Non-crystalline allotrope of Si with no definite arrangement of atoms.

Advantages:

- ✓ Partially shade tolerant.
- ✓ More effective in hotter climate
- ✓ Uses less silicon-low processing temperature and pressure
- ✓ No aluminum frame is required

Disadvantages:

- ✓ Less efficient compared to mono and poly
- ✓ Less market share
- ✓ Takes up more space for same output
- ✓ Comparatively new technology-less proven reliability.

