

Fog Volume Representation

Chengtang Yao^{1,2}, Lidong Yu²

¹Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology ²Autonomous Driving Algorithm, NIO

Stereo Matching

Disparity Estimation

Depth Computation

Problem

Stereo matching in foggy scenes is challenging as the scattering effect of fog blurs the image and makes the matching ambiguous.

Pictures come from [Gruber et. al. 3DV 2019]

Fog is accumulated along the light path between objects and camera following the *physical atmospheric scattering process*.

Different depths will lead to different brightness and blur the image at different levels.

Picture comes from [Bartlomiej SIGGRAPH 2014]

(a) The process and results of rendering.

(a) The process and results of rendering.

(a) The process and results of rendering.

(a) The process and results of rendering.

When we render the image by reversing the process, fog is removed within a selected depth range. Only the depth close to the real depth will lead to a clear image.

(a) The process and results of rendering.

When we render the image by reversing the process, fog is removed within a selected depth range. Only the depth close to the real depth will lead to a clear image.

In other words, the quality of the rendered image indicates the correctness of depth used in the rendering.

0.8 0.7 0.6 0.8 0.7 0.6 0.8 0.9 0.0 0.1 0.2 0.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Depth

(b) The distribution of SSIM ~ Depth.

Contributions

- We introduce a fog volume representation to collect depth hints from the fog.
- We propose to fuse the cost volume and the fog volume to adapt to both foggy areas and good visible areas.

Fog Volume Representation

(1) Rendering The atmospheric scattering effect causes the attenuation of light reflected from objects L_t and the accumulation of environmental light L_c :

$$L_{t}(x) = L_{\infty}\rho(x)T(Z_{x})$$

$$L_{c}(x) = L_{\infty}\left(1 - T(Z_{x})\right)$$

$$T(Z_{x}) = e^{-\int_{0}^{Z_{x}}\beta(z)dz}$$

$$\Rightarrow I(x) = L_{t}(x) + L_{c}(x)$$

$$= J(x)T(Z_{x}) + L_{\infty}\left(1 - T(Z_{x})\right).$$

 L_{∞} is the atmospheric light, ρ is the reflectance of pixel \$x\$ on the object surface. The attenuation T is commonly measured by the Beer-Lambert-Bouguer law, where β is the attenuation coefficient.

Fog Volume Representation

(1) Rendering The atmospheric scattering effect causes the attenuation of light reflected from objects L_t and the accumulation of environmental light L_c :

$$L_{t}(x) = L_{\infty}\rho(x)T(Z_{x})$$

$$L_{c}(x) = L_{\infty}\left(1 - T(Z_{x})\right)$$

$$T(Z_{x}) = e^{-\int_{0}^{Z_{x}}\beta(z)dz}$$

$$\Rightarrow I(x) = L_{t}(x) + L_{c}(x)$$

$$= J(x)T(Z_{x}) + L_{\infty}\left(1 - T(Z_{x})\right).$$

The rendered image R is computed by reversing the atmospheric scattering:

$$R(x,Z_x^i) = \left(I(x) - L_{\infty}\left(1 - T(Z_x^i)\right)\right) / T(Z_x^i).$$

Fog Volume Representation

(1) Rendering The atmospheric scattering effect causes the attenuation of light reflected from objects L_t and the accumulation of environmental light L_c :

$$L_{t}(x) = L_{\infty}\rho(x)T(Z_{x})$$

$$L_{c}(x) = L_{\infty}\left(1 - T(Z_{x})\right)$$

$$T(Z_{x}) = e^{-\int_{0}^{Z_{x}}\beta(z)dz}$$

$$\Rightarrow I(x) = L_{t}(x) + L_{c}(x)$$

$$= J(x)T(Z_{x}) + L_{\infty}\left(1 - T(Z_{x})\right).$$

The rendered image R is computed by reversing the atmospheric scattering:

$$R(x, Z_x^i) = \ln(|I(x) - L_\infty|) + \int_0^{Z_x^i} \beta(z) dz.$$

Fog Volume Representation

(2) Scattering Parameters Estimation We set L_{∞} and β as global parameters under the condition of one single light source and a homogeneous transporting medium. We learn the global parameters from the left image by a fully convolutional network.

Fog Volume Representation

- (3) Disparity Candidates Sampling We sample disparity candidates $\{D_x^i\}_{i=0}^{i=N-1}$ to construct cost volume, and convert them into depth $\{Z_x^i\}_{i=0}^{i=N-1}$ to build fog volume.
- (4) Rendered Images Gathering We build the fog volume representation \mathcal{V}_f by stacking rendered images:

$$\mathcal{V}_f(x,Z) = [R(x,Z_x^0), R(x,Z_x^1), \cdots, R(x,Z_x^{N-1})].$$

Fusion

Cost volume works well in clear areas.

Fog volume works well in foggy areas.

Fusion for adaptation to both clear areas and foggy areas.

We concatenate the cost volume and the fog volume with uncertainty σ which is the variance along disparity dimension:

$$\tilde{\mathcal{V}}(x, D_{\{i\}}) = [\sigma_c(x, D_i)\mathcal{V}_c(x, D_i), \, \sigma_f(x, D_i)\mathcal{V}_f(x, D_i)].$$

The concatenated volume is subsequently input into a 3D convolution network to jointly leverage the beneficial information from both volumes.

Loss Function

• The predicted disparity map \widetilde{D} is supervised by the ground truth disparity map D using L_1 loss:

$$\mathcal{L}_1 = L_1(D, \widetilde{D}).$$

• The estimated \tilde{L}_{∞} and $\tilde{\beta}$ are supervised by the reconstruction loss of clear image J in RGB space and gray space:

$$\mathcal{L}_{2} = L_{1}(\tilde{R}, J') + L_{1}(\tilde{R}_{gray}, J'_{gray}),$$

$$J' = \ln(|J - L_{\infty}|).$$

• We supervise the learning of \tilde{L}_{∞} with the average intensity \bar{L}_{∞} of pixels whose disparity is smaller than 1.5 as $L_{\infty} \approx I_{\chi}$ when Z_{χ} is large:

$$\mathcal{L}_3 = L_1(\overline{L}_{\infty}, \widetilde{L}_{\infty}).$$

SceneFlow dataset. * represents our re-implementation results.

Testing	Metrics	S	tereo	J	oint	Sequential	Ours
		PSMNet* [3]	DeepPruner* [7]	SDNet [32]	SSMDNet [31]	4Kdehazing [41] + DeepPruner [7]	Ours
Clear	EPE	0.99	0.98	-	-	1.19	0.81
Clear	3px (%)	4.1	5.30	-	-	6.2	4.5
Foggy	EPE	1.27	3.77	2.68	2.23	1.49	1.04
	3px (%)	8.1	14.10	26.43	9.71	10.30	7.2

KITTI 2015 and 2012 datasets.

Methods			KITTI	2015		KITTI 2012					
		Foggy		Clear		Foggy		Clear			
		3px (%)	EPE	3px (%)	EPE	3px (%)	EPE	3px (%)	EPE		
Stereo	PSMNet* [3]	1.3	0.54	1.0	0.49	3.3	0.84	3.3	0.86		
Sicreo	DeepPruner* [7]	3.7	0.88	8.8	1.66	4.3	0.94	5.0	1.09		
Joint	SDNet [32]	13.4	1.73	-	-	11.0*	1.63*	10.7*	1.60*		
Joint	SSMDNet [31]	10.8	1.23	-	-	9.7*	1.55*	9.5*	1.53*		
Sequential 4Kdehazing [41] + DeepPruner [7]		7.3	0.951	1.1	0.49	3.2	0.91	3.2	0.89		
	ours		0.51	1.1	0.47	2.7	0.77	2.7	0.78		

The clear data of PixelAccurateDepth dataset.

Method		RMSE↓	tRMSE↓	MAE↓	tMAE↓	logRMSE↓	SRD↓	ARD↓	SIlog↓	δ_1 (%) \uparrow	δ_2 (%) \uparrow	$\delta_3(\%)\uparrow$
Stereo	SGM [14]	1.90	1.40	0.96	0.86	0.14	0.27	8.12	13.32	90.74	98.44	99.50
	PSMNet [3]	2.75	1.96	1.44	1.22	0.18	0.56	9.91	16.07	89.14	97.21	98.80
	DeepPruner* [7]	1.81	1.37	0.80	0.70	0.12	0.21	5.52	11.78	93.57	98.08	99.50
Joint	SDNet* [32]	1.89	1.53	1.03	0.94	0.13	0.26	7.94	12.87	92.52	98.22	99.57
JOIII	SSMDNet* [31]	1.95	1.53	1.00	0.90	0.12	0.22	7.05	12.17	92.75	98.53	99.68
Sequential	Sequential 4Kdehazing [41] + DeepPruner [7]		1.32	0.77	0.67	0.11	0.19	5.12	10.95	94.41	98.45	99.66
Lidar (int.) [11]		1.89	1.36	0.70	0.59	0.13	0.23	4.78	12.58	93.62	98.13	99.36
RGB	RGB+Lidar [11]		2.04	1.61	1.29	0.26	0.53	10.85	24.01	84.69	94.77	97.05
Ours		1.82	1.31	0.75	0.64	0.11	0.20	5.01	11.11	94.07	98.45	99.56

The foggy data of PixelAccurateDepth dataset.

Method		RMSE↓	tRMSE↓	MAE↓	tMAE ↓	logRMSE↓	SRD↓	ARD↓	SIlog↓	δ_1 (%) \uparrow	δ_2 (%) \uparrow	$\delta_3(\%)\uparrow$
Stereo	SGM [14]	3.00	1.81	1.56	1.20	0.21	1.00	14.02	20.75	84.34	94.91	97.22
	PSMNet [3]	3.01	2.10	1.65	1.35	0.19	0.61	11.10	16.94	84.95	96.34	98.65
	DeepPruner* [7]	2.61	1.75	1.30	1.00	0.16	0.40	8.10	15.16	87.24	95.61	98.92
Joint	SDNet* [32]	2.63	1.88	1.48	1.22	0.18	0.47	10.67	16.86	85.83	95.70	98.50
Joint	SSMDNet* [31]	2.69	1.83	1.42	1.13	0.17	0.42	9.23	16.12	87.42	96.13	98.54
Sequential	4Kdehazing [41] + DeepPruner [7]	3.32	1.81	1.69	1.06	0.23	0.76	9.91	20.71	85.08	92.13	95.01
Lid	Lidar (int.) [11]		2.01	1.68	1.13	0.39	0.91	12.21	35.19	80.57	87.27	91.66
RGB+Lidar [11]		3.81	2.52	2.34	1.83	0.35	0.91	16.88	28.67	69.77	85.16	92.74
Ours		2.55	1.64	1.19	0.91	0.15	0.38	7.38	14.77	89.28	96.33	98.66
Ours (PixelAccurateDepth Clear)		1.74	1.20	0.80	0.61	0.10	0.22	4.50	9.04	93.14	97.42	99.72

 The visualization of depth map on PixelAccurateDeth dataset with real foggy scenes.

Influence of fusion.

In the foggy image, red points illustrate areas where the results of fused volume are the best while the results of fog volume are better than that of cost volume.

In probability distribution, the ground truth and final predictions are illustrated through the vertical line in a different color.

- Influence of depth range.
 - 'OURS' represents the distribution result of our method.
 - 'JOINT' represents the result of SSMDNet.
 - 'SEQ' represents the result of 4Kdehazing + DeepPruner.
 - 'STEREO' represents the result of DeepPruner.

- Influence of fog thickness.
 - 'OURS' represents the distribution result of our method.
 - 'JOINT' represents the result of SSMDNet.
 - 'SEQ' represents the result of 4Kdehazing + DeepPruner.
 - 'STEREO' represents the result of DeepPruner.

Limitations and Discussion NIO

- Model
 - the assumption over atmospheric parameters
 - inhomogeneous scattering median
 - multi-light sources
- Scenes
 - other scattering media
 - Haze
 - Rain
 - Water

Thanks for Your Attention

Paper & Code