5MM71 : Méthodes du premier ordre pour l'optimisation non convexe et non lisse Corrigé de l'examen final du 14 janvier 2021 – Durée : 2 heures

Soit $n \in \mathbb{N}^*$. On note $\langle \cdot, \cdot \rangle$ le produit scalaire associé à la base canonique de \mathbb{R}^n et $\| \cdot \|$ la norme euclidienne associée.

Exercice 1

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction L-régulière fortement convexe et $\mathcal{C} \subset \mathbb{R}^n$ un ensemble convexe, borné, fermé et non vide. On s'intéresse à la résolution du problème d'optimisation suivant :

$$\min_{x \in \mathcal{C}} f(x)$$

Soit $\tau > 0$. On considère l'algorithme suivant :

$$x^0 \in \mathcal{C}$$
 et $\forall k \in \mathbb{N}, \quad x^{k+1} = \operatorname{proj}_{\mathcal{C}}(x^k - \tau \nabla f(x^k))$

1. Montrer que

$$\forall k \in \mathbb{N}, \quad f(x^k) \ge f(x^{k+1}) + \frac{1}{2} \left(\frac{2}{\tau} - L\right) \|x^{k+1} - x^k\|^2$$

En déduire que, si $0 < \tau < 2/L$, alors la suite $(f(x_k))_{k \in \mathbb{N}}$ est décroissante et convergente.

Corrigé – Soit $k \in \mathbb{N}^*$. Puisque f est L-régulière, le lemme de descente (proposition 4 du module A_4) assure que

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^k - x^{k+1}\|^2$$

Par ailleurs, on remarque que

$$\operatorname{proj}_{\mathcal{C}} = \operatorname{prox}_{\chi_{\mathcal{C}}}$$

Or, puisque \mathcal{C} est convexe, fermé et non vide, la fonction $\chi_{\mathcal{C}}$ est convexe, s.c.i. et propre. La caractérisation du point proximal dans le cas convexe (proposition 5 du module A₅) assure donc que

$$x^k - \tau \, \nabla f(x^k) - x^{k+1} \in \partial \chi_{\mathcal{C}}(x^{k+1})$$

La définition du sous-gradient pour une fonction convexe entraîne que

$$\chi_{\mathcal{C}}(x^{k+1}) \ge \chi_{\mathcal{C}}(x^k) + \langle x^k - \tau \nabla f(x^k) - x^{k+1}, x^{k+1} - x^k \rangle$$

Puisque $x^0 \in \mathcal{C}$ et que les x^k pour $k \geq 1$ sont des projetés sur \mathcal{C} , on en déduit par définition qu'ils appartiennent à l'ensemble \mathcal{C} ; il en découle que

$$\chi_{\mathcal{C}}(x^{k+1}) = \chi_{\mathcal{C}}(x^k) = 0$$

ce qui implique que l'inégalité précédente se simplifie en

$$\begin{split} 0 & \geq \langle x^k - \tau \, \nabla f(x^k) - x^{k+1}, x^{k+1} - x^k \rangle \\ & = \langle x^k - x^{k+1}, x^{k+1} - x^k \rangle - \tau \, \langle \nabla f(x^k), x^{k+1} - x^k \rangle \\ & = -\|x^k - x^{k+1}\|^2 - \tau \, \langle \nabla f(x^k), x^{k+1} - x^k \rangle \end{split}$$

Page 1 sur 8 Sorbonne Université

On en déduit que

$$\langle \nabla f(x^k), x^{k+1} - x^k \rangle = -\frac{1}{\tau} \|x^k - x^{k+1}\|^2$$

En injectant cette identité dans le lemme de descente écrit plus haut, on obtient que

$$f(x^{k+1}) \le f(x^k)$$

$$-\frac{1}{\tau} \|x^k - x^{k+1}\|^2 + \frac{L}{2} \|x^k - x^{k+1}\|^2 = f(x^k) - \frac{1}{2} \left(\frac{2}{\tau} - L\right) \|x^k - x^{k+1}\|^2$$

On obtient le résultat demandé en réarrangeant les termes.

Puisque $\|x^k - x^{k+1}\|^2$ est positif, il s'ensuit que le second terme du membre de droite dans l'inégalité demandée par l'énoncé est positif dès que $2/\tau - L$ l'est, c'est-à-dire dès que $\tau \leq 2/L$. Ainsi, en particulier, si $0 < \tau < 2/L$, alors

$$f(x^k) \ge f(x^{k+1})$$

Autrement dit, La suite (f(x))

La suite $(f(x^k))_{k\in\mathbb{N}}$ est décroissante.

Par ailleurs, puisque \mathcal{C} est fermé et borné, il s'agit d'un compact de \mathbb{R}^n . Ainsi, la fonction continue f y atteint ses bornes. En particulier, f y est minoré, ce qui implique que la suite $(f(x^k))_{k\in\mathbb{N}}$ est minorée. Comme on vient de montrer qu'elle était également décroissante,

La suite
$$(f(x^k))_{k\in\mathbb{N}}$$
 converge

2. À partir de cette question, $0 < \tau < 2/L$. On note $J = f + \chi_{\mathcal{C}}$. Montrer que la suite $(\|x^{k+1} - x^k\|)_{k \in \mathbb{N}}$ converge vers 0. En déduire qu'il existe une suite $(p_k)_{k \in \mathbb{N}}$ de limite nulle telle que $p_k \in \partial J(x^k)$ pour tout $k \in \mathbb{N}$. On pensera à remarquer que $\chi_{\mathcal{C}} = \tau \chi_{\mathcal{C}}$.

Corrigé – Soit $K \in \mathbb{N}$. Commençons par sommer les inégalités établies à la question précédente pour k entre 0 et K:

$$f(x^0) \ge f(x^{K+1}) + \frac{1}{2} \left(\frac{2}{\tau} - L \right) \sum_{k=0}^{K} \|x^{k+1} - x^k\|^2$$

Puisque f est minorée sur \mathcal{C} (cf. arguments dans la question précédente), on en déduit que $f(x^{K+1}) \geq \min_{\mathcal{C}} f$. Ainsi,

$$f(x^0) - \min_{\mathcal{C}} f \ge \frac{1}{2} \left(\frac{2}{\tau} - L \right) \sum_{k=0}^{K} \|x^{k+1} - x^k\|^2$$

Le membre de droite est minoré par 0 par hypothèse sur τ ; il s'ensuit que la somme partielle de la série de terme général $\|x^{k+1}-x^k\|^2$ est majorée. La série considérée est donc absolument convergente, son terme général converge donc vers 0.

La suite
$$(\|x^{k+1} - x^k\|)_{k \in \mathbb{N}}$$
 converge vers 0.

On peut également remarquer que, puisque la suite $(f(x^k))_{k\in\mathbb{N}}$ converge, la suite des $f(x^{k+1}) - f(x^k)$ converge vers 0. Aussi, par encadrement, on démontre le même résultat.

Page 2 sur 8

On a vu dans la question précédente que la caractérisation du point proximal assure que

$$q_{k+1} = x^k - \tau \nabla f(x^k) - x^{k+1}$$

est un sous-gradient de $\chi_{\mathcal{C}}$ au point x^{k+1} . En utilisant la remarque de l'énoncé, on en déduit que q_{k+1} est également sous-gradient de $\tau \chi_{\mathcal{C}}$ en x^{k+1} . Puisque f est continûment différentiable, il s'ensuit que

$$\tau \, \partial J(x^{k+1}) = \tau \, \nabla f(x^{k+1}) + \partial (\tau \, \chi_{\mathcal{C}})(x^{k+1})$$

Ainsi, on vient de montrer que $\tau \nabla f(x^{k+1}) + q_{k+1}$ est sous-gradient de τJ en x^{k+1} . Par conséquent, puisque $\tau > 0$,

$$p_{k+1} = \frac{1}{\tau} \left(\tau \nabla f(x^{k+1}) + q_{k+1} \right) = \nabla f(x^{k+1}) + \frac{1}{\tau} \left(x^k - \tau \nabla f(x^k) - x^{k+1} \right)$$

est sous-gradient de J en x^{k+1} . Enfin, l'inégalité triangulaire, puis la régularité de f assurent que

$$||p_{k+1}|| \le ||\nabla f(x^{k+1}) - \nabla f(x^k)|| + \frac{1}{\tau} ||x^k - x^{k+1}|| \le L ||x^{k+1} - x^k|| + \frac{1}{\tau} ||x^k - x^{k+1}||$$

La première partie de la question entraîne par comparaison que

La suite $(p_k)_{k\in\mathbb{N}}$ converge vers 0.

3. Justifier que la suite $(x^k)_{k\in\mathbb{N}}$ converge vers une solution du problème étudié. On pourra commencer par considérer les valeurs d'adhérence de cette suite.

Corrigé – Puisque les points x^k appartiennent à l'ensemble \mathcal{C} (cf. arguments dans la première question), et que celui-ci est borné, on en déduit que la suite des x^k admet au moins une valeur d'adhérence. Notons-la x^* . Par définition, il existe donc une sous-suite $(x^{k_j})_{j\in\mathbb{N}}$ qui converge vers x^* . Puisque \mathcal{C} est supposé fermé, le point x^* appartient à \mathcal{C} . Soit $j\in\mathbb{N}$. On a par définition du sous-gradient

$$\forall x \in \mathbb{R}^n, \qquad J(x) \ge J(x^{k_j}) + \langle p_{k_j}, x - x^{k_j} \rangle = f(x^{k_j}) + \langle p_{k_j}, x - x^{k_j} \rangle$$

Passons à la limite lorsque $j \to +\infty$. Par continuité de f, on obtient que

$$\forall x \in \mathbb{R}^n$$
, $J(x) > f(x^*) + \langle 0, x - x^* \rangle = J(x^*)$

Autrement dit, x^* est point critique de J. On vient donc de démontrer que toute valeur d'adhérence de la suite $(x^k)_{k\in\mathbb{N}}$ est point critique de J. Or, J est somme de deux fonctions convexe, elle est donc convexe elle-même. Ses points critiques sont donc (règle de FERMAT) minimiseurs. Par ailleurs, J est la somme d'une fonction fortement convexe (f) et d'une fonction convexe $(\chi_{\mathcal{C}})$. Elle est donc fortement convexe. Par conséquent, elle admet un unique minimiseur. Finalement, on vient de montrer que toute sous-suite convergente de $(x^k)_{k\in\mathbb{N}}$ converge nécessairement vers l'unique minimiseur de J:

La suite des x^k converge vers une solution du problème étudié.

Page 3 sur 8 Sorbonne Université

Exercice 2

Soit $C_1, C_2 \in \mathbb{R}^n$ et $(r_1, r_2) \in \mathbb{R}^2$. On note C_i la boule fermée de centre C_i et de rayon r_i pour tout $i \in \{1, 2\}$. On suppose que l'intersection entre C_1 et C_2 est non vide. Soit $x^0 \in \mathbb{R}^n$. Considérons le problème d'optimisation suivant :

$$\min_{x \in \mathbb{R}^n} \chi_{\mathcal{C}_1}(x) + \chi_{\mathcal{C}_2}(x) + \frac{1}{2} \|x - x^0\|^2$$

1. Justifier que le problème étudié admet une unique solution, que l'on notera x^* .

Corrigé – Puisque $C_1 \cap C_2$ est non vide (par hypothèse), fermée (intersection de ensembles fermés) et convexe (intersection de deux convexes), on en déduit que $\chi_{C_1 \cap C_2} = \chi_{C_1} + \chi_{C_2}$ est une fonction convexe, s.c.i. et propre. Il s'ensuit que la fonction

$$x \mapsto \chi_{\mathcal{C}_1}(x) + \chi_{\mathcal{C}_2}(x) + \frac{1}{2} \|x - x^0\|^2$$

est fortement convexe. Elle admet donc un unique minimiseur. Une autre manière de démontrer ce résultat est de remarquer que le problème étudié est celui de la projection sur $\mathcal{C}_1 \cap \mathcal{C}_2$. Cet ensemble étant convexe, fermé et non vide, le projeté existe et est unique.

2. Montrer que $x^0 - x^* \in \partial \chi_{\mathcal{C}_1}(x^*) + \partial \chi_{\mathcal{C}_2}(x^*)$.

Corrigé – La règle de FERMAT assure que

$$0 \in \partial \left(x \mapsto \chi_{\mathcal{C}_1}(x) + \chi_{\mathcal{C}_2}(x) + \frac{1}{2} \|x - x^0\|^2 \right) (x^*)$$

Or, puisque $x\mapsto \|x-x^0\|^2/2$ est continûment différentiable, on a d'une part que

$$\partial \left(x \mapsto \chi_{\mathcal{C}_1}(x) + \chi_{\mathcal{C}_2}(x) + \frac{1}{2} \|x - x^0\|^2 \right) (x^*) = \partial (\chi_{\mathcal{C}_1} + \chi_{\mathcal{C}_2})(x^*) + x^* - x^0$$

D'autre part, puisque $\operatorname{dom}\chi_{\mathcal{C}_i} = \mathcal{C}_i$ et que pour tout $x \in \mathcal{C}_1 \cap \mathcal{C}_2$, la fonction $\chi_{\mathcal{C}_1}$ est continue (car nulle) en x, il s'ensuit que

$$\partial(\chi_{\mathcal{C}_1} + \chi_{\mathcal{C}_2})(x^*) = \partial\chi_{\mathcal{C}_1}(x^*) + \partial\chi_{\mathcal{C}_2}(x^*)$$

En réarrangeant les termes dans l'inclusion ainsi obtenue, on retrouve le résultat demandé.

Dualité.

3. Soit $i \in \{1, 2\}$. Calculer $(\chi_{\mathcal{C}_i})^*$.

Corrigé – D'après le cours, si on note \mathcal{C}_0 la boule fermée unité de \mathbb{R}^n , on a

$$\forall y \in \mathbb{R}^n, \qquad (\chi_{\mathcal{C}_0})^* = \|y\|$$

Or, on remarque que

$$\chi_{\mathcal{C}_i}(x) = 0 \iff \|x - C_i\| \le r_i \iff \left\| \frac{x - C_i}{r_i} \right\| \le 1 \iff \chi_{\mathcal{C}_0}\left(\frac{x - C_i}{r_i}\right) = 0$$

La proposition 9 du module A8 assure dans un premier temps que

$$(x \mapsto \chi_{\mathcal{C}_0}(x - C_i))^*(y) = (\chi_{\mathcal{C}_0})^*(y) + \langle y, C_i \rangle$$

tandis que la proposition 8 du module A8 assure que

$$\left(x \mapsto \chi_{\mathcal{C}_0}\left(\frac{x - C_i}{r_i}\right)\right)^*(y) = (x \mapsto \chi_{\mathcal{C}_0}(x - C_i))^*(r_i y)$$

Finalement, on obtient que

$$\forall y \in \mathbb{R}^n, \qquad (\chi_{\mathcal{C}_i})^*(y) = (\chi_{\mathcal{C}_0})^*(r_i y) + r_i \langle y, C_i \rangle$$

4. Soit $x \in \mathbb{R}^n$. Montrer que

$$\chi_{\mathcal{C}_1}(x) + \chi_{\mathcal{C}_2}(x) = \sup_{y_1, y_2 \in \mathbb{R}^n} \left\{ \langle y_1 + y_2, x \rangle - (\chi_{\mathcal{C}_1})^*(y_1) - (\chi_{\mathcal{C}_2})^*(y_2) \right\}$$

Corrigé — Puisque $\chi_{\mathcal{C}_i}$ est convexe, s.c.i. et propre, le théorème de Fenchel—Moreau assure que

$$\forall x \in \mathbb{R}^n, \qquad \chi_{\mathcal{C}_i}(x) = \sup_{y_i \in \mathbb{R}^n} \left\{ \langle y_i, x \rangle - (\chi_{\mathcal{C}_i})^*(y_i) \right\}$$

En sommant ces inégalités pour $i \in \{1, 2\}$, on obtient le résultat désiré.

5. En déduire l'expression d'une fonction de couplage $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \cup \{+\infty, -\infty\}$ telle que le problème d'optimisation étudié s'écrive sous la forme

$$\min_{x \in \mathbb{R}^n} \sup_{y_1, y_2 \in \mathbb{R}^n} \mathcal{L}(x; y_1, y_2)$$

Corrigé - Puisque

$$\chi_{\mathcal{C}_1}(x) + \chi_{\mathcal{C}_2}(x) + \frac{1}{2} \|x - x^0\|^2$$

$$= \sup_{y_1, y_2 \in \mathbb{R}^n} \left\{ \langle y_1 + y_2, x \rangle - (\chi_{\mathcal{C}_1})^*(y_1) - (\chi_{\mathcal{C}_2})^*(y_2) \right\} + \frac{1}{2} \|x - x^0\|^2$$

on en déduit que

$$\forall (x, y_1, y_2) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n,$$

$$\mathcal{L}(x; y_1, y_2) = \langle y_1 + y_2, x \rangle - (\chi_{\mathcal{C}_1})^*(y_1) - (\chi_{\mathcal{C}_2})^*(y_2) + \frac{1}{2} \|x - x^0\|^2$$

6. Soit $y_1, y_2 \in \mathbb{R}^n$. Montrer que

$$\min_{x \in \mathbb{R}^n} \left\{ \langle y_1 + y_2, x \rangle + \frac{1}{2} \|x - x^0\|^2 \right\} = \frac{1}{2} \|x^0\|^2 - \frac{1}{2} \|y_1 + y_2 - x^0\|^2$$

Corrigé – Le minimum existe car il s'agit d'un minimum d'une fonction fortement convexe; il est atteint en un point que l'on notera x^* , et qui est caractérisé par la règle de FERMAT, qui s'écrit ici

$$y_1 + y_2 + x^* - x^0 = 0$$
 soit $x^* = x^0 - (y_1 + y_2)$

On en déduit que le minimum vaut

$$\langle y_1 + y_2, x^0 - (y_1 + y_2) \rangle + \frac{1}{2} \|x^0 - (y_1 + y_2) - x^0\|^2 = \langle y_1 + y_2, x^0 \rangle - \frac{1}{2} \|y_1 + y_2\|^2$$

En ajoutant et en soustrayant $||x^0||^2/2$ à l'expression ci-dessus, on reconnaît une identité remarquable qui permet de retrouver l'expression demandée.

7. En déduire que le problème dual associé à la fonction de couplage \mathcal{L} est donné par

$$\min_{y_1, y_2 \in \mathbb{R}^n} (\chi_{\mathcal{C}_1})^* (y_1) + (\chi_{\mathcal{C}_2})^* (y_2) + \frac{1}{2} \|y_1 + y_2 - x^0\|^2$$

Corrigé – Le problème dual associé à la fonction de couplage \mathcal{L} est donné par définition par le problème de maximisation

$$\max_{y_1,y_2\in\mathbb{R}^n} \left(\inf_{x\in\mathbb{R}^n} \mathcal{L}(x;y_1,y_2)\right)$$

La fonction objectif de ce problème s'écrit

$$\inf_{x \in \mathbb{R}^n} \mathcal{L}(x; y_1, y_2) = \inf_{x \in \mathbb{R}^n} \left\{ \langle y_1 + y_2, x \rangle - (\chi_{\mathcal{C}_1})^*(y_1) - (\chi_{\mathcal{C}_2})^*(y_2) + \frac{1}{2} \|x - x^0\|^2 \right\}
= \inf_{x \in \mathbb{R}^n} \left\{ \langle y_1 + y_2, x \rangle + \frac{1}{2} \|x - x^0\|^2 \right\} - (\chi_{\mathcal{C}_1})^*(y_1) - (\chi_{\mathcal{C}_2})^*(y_2)
\inf_{x \in \mathbb{R}^n} \mathcal{L}(x; y_1, y_2) = \frac{1}{2} \|x^0\|^2 - \frac{1}{2} \|y_1 + y_2 - x^0\|^2 - (\chi_{\mathcal{C}_1})^*(y_1) - (\chi_{\mathcal{C}_2})^*(y_2)$$

Le problème dual est donc équivalent au problème de minimisation suivant

$$\min_{y_1, y_2 \in \mathbb{R}^n} \left(-\frac{1}{2} \|x^0\|^2 + \frac{1}{2} \|y_1 + y_2 - x^0\|^2 + (\chi_{\mathcal{C}_1})^*(y_1) + (\chi_{\mathcal{C}_2})^*(y_2) \right)$$

lui-même équivalent au problème suivant

$$\min_{y_1, y_2 \in \mathbb{R}^n} \left(\frac{1}{2} \|y_1 + y_2 - x^0\|^2 + (\chi_{\mathcal{C}_1})^*(y_1) + (\chi_{\mathcal{C}_2})^*(y_2) \right)$$

 $(\operatorname{car} - ||x^0||^2/2 \text{ est constant par rapport à } (y_1, y_2)).$

Problème dual.

8. Montrer que le problème dual admet une unique solution, que l'on note (y_1^*, y_2^*) .

Corrigé – Puisque les conjuguées convexes sont convexes, le problème dual est fortement convexe. Il admet donc une unique solution.

9. Caractériser (y_1^*, y_2^*) au premier ordre. En déduire que

$$\begin{cases} y_1^* \in \partial \chi_{\mathcal{C}_1}(x^0 - y_1^* - y_2^*) \\ y_2^* \in \partial \chi_{\mathcal{C}_2}(x^0 - y_1^* - y_2^*) \end{cases}$$

Corrigé – L'unique solution du problème dual est caractérisée par la règle de FERMAT, qui s'écrit ici

$$0 \in \partial((y_1, y_2) \mapsto (\chi_{\mathcal{C}_1})^*(y_1) + (\chi_{\mathcal{C}_2})^*(y_2))(y_1^*, y_2^*)$$
$$+\nabla\left((y_1, y_2) \mapsto \frac{1}{2} \|y_1 + y_2 - x^0\|^2\right)(y_1^*, y_2^*)$$

car le terme quadratique est continûment différentiable. On a en outre

$$\nabla \left((y_1, y_2) \mapsto \frac{1}{2} \|y_1 + y_2 - x^0\|^2 \right) (y_1^*, y_2^*) = \begin{pmatrix} y_1^* + y_2^* - x^0 \\ y_1^* + y_2^* - x^0 \end{pmatrix}$$

Par ailleurs, le sous-différentiel d'une fonction séparable est le produit cartésien des sous-différentiels de chaque terme, donc

$$\partial((y_1, y_2) \mapsto (\chi_{\mathcal{C}_1})^*(y_1) + (\chi_{\mathcal{C}_2})^*(y_2))(y_1^*, y_2^*) = \partial(\chi_{\mathcal{C}_1})^*(y_1^*) \times \partial(\chi_{\mathcal{C}_2})^*(y_2^*)$$

Il s'ensuit que la règle de FERMAT s'écrit finalement

$$\begin{cases} 0 \in \partial(\chi_{\mathcal{C}_1})^*(y_1^*) + y_1^* + y_2^* - x^0 \\ 0 \in \partial(\chi_{\mathcal{C}_2})^*(y_2^*) + y_1^* + y_2^* - x^0 \end{cases}$$

soit

$$\begin{cases} x^0 - y_1^* - y_2^* \in \partial(\chi_{\mathcal{C}_1})^*(y_1^*) + y_1^* + y_2^* - x^0 \\ x^0 - y_1^* - y_2^* \in \partial(\chi_{\mathcal{C}_2})^*(y_2^*) + y_1^* + y_2^* - x^0 \end{cases}$$

Puisque χ_{C_i} est convexe, s.c.i. et propre, la règle de bascule permet de conclure.

10. Montrer que $x^0 - y_1^* - y_2^*$ est solution du problème primal.

Corrigé – D'après la question précédente,

$$y_1^* + y_2^* \in \partial \chi_{\mathcal{C}_1}(x^0 - y_1^* - y_2^*) + \partial \chi_{\mathcal{C}_2}(x^0 - y_1^* - y_2^*)$$

soit
$$0 \in \partial \chi_{\mathcal{C}_1}(x^0 - y_1^* - y_2^*) + \partial \chi_{\mathcal{C}_2}(x^0 - y_1^* - y_2^*) + x^0 - y_1^* - y_2^* - x^0$$

On reconnaît la règle de FERMAT pour le problème primal. Par conséquent,

$$x^0 - y_1^* - y_2^*$$
 est solution du problème primal.

Résolution du problème dual.

11. Écrire les itérations de l'algorithme de minimisation alternée pour la résolution du problème dual. On notera $((y_1^k, y_2^k))_{k \in \mathbb{N}}$ la suite générée par cet algorithme.

Corrigé – L'algorithme BCD s'écrit (après simplification)

$$y_{2}^{0} \in \mathbb{R}^{n}, \forall k \in \mathbb{N}, \begin{cases} y_{1}^{k+1} \in \arg\min_{y_{1} \in \mathbb{R}^{n}} \left\{ \frac{1}{2} \|y_{1} + y_{2}^{k} - x^{0}\|^{2} + (\chi_{\mathcal{C}_{1}})^{*}(y_{1}) \right\} \\ y_{2}^{k+1} \in \arg\min_{y_{2} \in \mathbb{R}^{n}} \left\{ \frac{1}{2} \|y_{1}^{k+1} + y_{2} - x^{0}\|^{2} + (\chi_{\mathcal{C}_{2}})^{*}(y_{2}) \right\} \end{cases}$$

On notera que les itérées sont définies de manière unique car il s'agit de minimiseurs de fonctions fortement convexes. Par conséquent, on peut remplacer tous les signes " \in " par des égalités.

12. Montrer que cette suite vérifie

$$\begin{cases} y_1^{k+1} = x^0 - y_2^k - \operatorname{proj}_{\mathcal{C}_1}(x^0 - y_2^k) \\ y_2^{k+1} = x^0 - y_1^{k+1} - \operatorname{proj}_{\mathcal{C}_2}(x^0 - y_1^{k+1}) \end{cases}$$

Corrigé – On commence par reconnaître l'expression de points proximaux :

$$\begin{cases} y_1^{k+1} = \operatorname{prox}_{(\chi_{\mathcal{C}_1})^*}(x^0 - y_2^k) \\ y_2^{k+1} = \operatorname{prox}_{(\chi_{\mathcal{C}_2})^*}(x^0 - y_1^{k+1}) \end{cases}$$

Il suffit alors d'appliquer l'identité de MOREAU car $(\chi_{\mathcal{C}_i})^*$ est convexe, s.c.i. et propre.

Page 8 sur 8 Sorbonne Université