専門科目(午前)

10 大修

時間 午前 9時30分~11時00分

電気・情報系A群

電気·電子工学 電子物理工学

注意事項

- 1. つぎの3題の中から2題を選択して解答せよ。3題以上解答した場合はすべて無効とする。 なお、問題3には、AとBの2種類の問題が用意されているので、いずれか一方のみを解答せよ。
- 2. 解答は一題毎に別々の解答用紙に記入せよ。
- 3. 各解答用紙に問題の番号及び受験番号を必ず記入せよ。

電子回路

- 1. 相互インダクタンスが M、一次および二次側のインダクタンスがそれぞれ L_1 および L_2 の変成器を含む図 1.1 の回路について、以下の間に答えよ。一次側端子 1-1'間に加わる複素電圧を V_1 、端子 1 側から変成器に流れ込む複素電流を I_1 、二次側端子 2-2'に加わる複素電圧を V_2 、端子 2 側から変成器に流れ込む複素電流を I_2 と定義する。巻線の抵抗は無視できると仮定して、角周波数を α とする。このとき、 V_1 は次式のように表せる。 V_1 = $i\omega L_1 I_1$ + $j\omega M I_2$
 - 1) V₂をI₁とI₂とを用いて表せ。
 - 2) 図 1.2 に示す T 型等価回路のインダクタンス L_a 、 L_b 及び L_c を L_l 、 L_b 及び M を用いて表せ。
 - 3) キャパシタ C を端子 2-2'間に接続した。一次側(端子 1-1') から見込んだリアクタンス X を求めよ。
 - 4) 共振角周波数ω1及びω2 (0<ω1<ω2<∞)を求めよ。
 - 5) X とω との関係を描け(X を縦軸、ω を横軸に選ぶこと)。
 - 6) ω_1 $\langle \omega_2 \rangle$ と見なせるとき、 χ δ の関数として求めよ。
 - 7) $L_1L_2=M^2$ である場合には、 ω_1 及び ω_2 はどう表せるか。
 - 8) 理想変成器 $(L_1L_2=M^2$ であって M が無限に大きい)の場合には、 $\omega_1 \succeq \omega_2$ はどう表せるか。
 - 9) 理想変成器の場合に X どう表せるか。
 - 10) 理想変成器の二次側に対する一次側の巻数比がnの場合には、X はどう表せるか。

