DEVOIR SURVEILLÉ N° 1

- ▶ La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ▶ Les calculatrices sont interdites.

EXERCICE 1.

Résoudre le système linéaire (S): $\begin{cases} x+y+az=1\\ x+ay+z=1 \end{cases}$ d'inconnue $(x,y,z)\in\mathbb{R}^3$. On distinguera plusieurs cas aux +y+z=1 suivant les valeurs du paramètre réel a.

EXERCICE 2.

Dans tout l'énoncé, n désigne un entier naturel non nul. On pose

$$P_n = \prod_{k=1}^n (2k) \qquad \mathrm{et} \qquad Q_n = \prod_{k=1}^n (2k-1)$$

- 1. Exprimer P_n en fonction de n.
- **2.** Que vaut P_nQ_n ?
- **3.** En déduire Q_n .

EXERCICE 3.

Soit n un entier naturel. Calculer $S_n = \sum_{i=0}^n \sum_{j=i}^n \binom{j}{i}.$

EXERCICE 4.

Pour $n \in \mathbb{N}$, on pose

$$a_n = \frac{1}{n+1} \binom{2n}{n} \qquad S_n = \sum_{k=0}^n a_k a_{n-k} \qquad T_n = \sum_{k=0}^n k a_k a_{n-k}$$

- 1. Calculer a_0 , a_1 , a_2 , a_3 , a_4 ainsi que S_0 , S_1 , S_2 , S_3 , S_4 . Que remarque-t-on?
- **2.** Justifier que pour tout $n \in \mathbb{N}$,

$$T_n = \sum_{k=0}^{n} (n-k) a_{n-k} a_k$$

En déduire que $2T_n = nS_n$.

3. Montrer que pour tout $n \in \mathbb{N}$,

$$(n+2)a_{n+1} = 2(2n+1)a_n$$

4. Déduire des questions précédentes que pour tout $n \in \mathbb{N}$

$$T_{n+1} + S_{n+1} = a_{n+1} + 2(n+1)S_n$$

puis que

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$$

- 5. En déduire par récurrence que $S_n = a_{n+1}$ pour tout $n \in \mathbb{N}$.
- 6. Montrer que a_n est un entier naturel pour tout $n \in \mathbb{N}$.

EXERCICE 5.

- 1. Soient x_1, x_2, y_1, y_2 quatre réels.
 - **a.** Montrer que $(x_1y_1 + x_2y_2)^2 \le (x_1^2 + x_2^2)(y_1^2 + y_2^2)$.
 - **b.** En déduire que $\sqrt{(x_1+y_1)^2+(x_2+y_2)^2} \leqslant \sqrt{x_1^2+x_2^2} + \sqrt{y_1^2+y_2^2}$.
- 2. Soient x_1,\dots,x_n et y_1,\dots,y_n des réels. Pour $\lambda\in\mathbb{R},$ on pose

$$P(\lambda) = \sum_{k=1}^{n} (\lambda x_k + y_k)^2$$

- **a.** Déterminer des réels A, B et C tels que $P(\lambda) = A\lambda^2 + 2B\lambda + C$ pour tout $\lambda \in \mathbb{R}$. On exprimera A, B et C sous forme de sommes.
- **b.** On suppose $A \neq 0$. P est donc un trinôme du second degré. Quel est le signe de $P(\lambda)$ pour tout $\lambda \in \mathbb{R}$? Que peut-on en déduire sur le discriminant Δ de P? En déduire l'inégalité suivante.

$$(CS): \left(\sum_{k=1}^{n} x_k y_k\right)^2 \leqslant \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right)$$

- c. On suppose A=0. Que peut-on en déduire sur les réels x_1,\ldots,x_n ? En déduire que l'inégalité (CS) est encore vraie.
- d. En utilisant (CS), montrer que

$$\sqrt{\sum_{k=1}^{n} (x_k + y_k)^2} \leqslant \sqrt{\sum_{k=1}^{n} x_k^2} + \sqrt{\sum_{k=1}^{n} y_k^2}$$

e. Soient a_1, \ldots, a_n des réels strictement positifs. En utilisant (CS), montrer que

$$\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} \frac{1}{a_k}\right) \geqslant n^2$$