CÁC TIÊU CHÍ BAO PHỦ MÃ NGUỒN

VI. Tiêu chí bao phủ lộ trình độc lập – Basic Path Coverage

Thiết kế Testcase sao cho đảm bảo thực thi được tất cả các lộ trình có trong CFG. Hai lộ trình độc lập là 2 lộ trình nếu lt1 có cung này mà lt2 không có (HOĂC ngược lại).

Bước 1: Tính số lộ trình độc lập

- $S\acute{o}$ đỉnh quyết định + 1
- $S\acute{o}$ cung $S\acute{o}$ đỉnh + 2
- $S\hat{o}$ miền kín + 1

Bước 2: Chọn lộ trình bao phủ được nhiều đỉnh quyết định nhất

Bước 3: Thay cung tại từng đỉnh quyết định để tim ra các cung còn lại

<u>Ví dụ 1</u>:

```
int AB (int a, int b){
   int x = 5;
   if ((a > 1) && (b == 0)){
      x = x / a;
   }
   if((a == 2) || (x > 1)){
      x = x + 1;
   }
   return x;
}
```


Số lộ trình độc lập: C = 2 + 1 = 3

Lộ trình		Data test	Out put
1	01 <u>2</u> 3 <u>4</u> 567	a = 2, b = 0	x = 3
2	01 <u>24</u> 567	a = 1, b = 1	x = 6
3	01 <u>2</u> 3 <u>4</u> 67	a = 5, b = 1	x = 1

Basic paths = {01234567, 0124567, 0123467}

<u>Ví dụ 2</u>:

Số lộ trình độc lập: C = 2 + 1 = 3

Lộ trình		Data test	Out put
1	0 <u>12</u> 4 <u>12</u> 36	n=13	return 1
2	0 <u>12</u> 36	n=3	return 1
3	0 <u>12</u> 4 <u>1</u> 56	n=4	return 0

Basic paths ={01241236, 01236, 0124256}

<u>Ví dụ 3</u>:

1. Lộ trình kiểm thử tối thiểu thoả tiêu chí bao phủ quyết định – TC2:

Path: 0123562345678

Input: n = 13

Expected Output: ks = 1 Actural Output: ks = 1

2. Xác định tập lộ trình độc lập:

Số lộ trình độc lập: C = 2 + 1 = 3

Lộ trình		Data test	Out put
1	012 <u>3</u> 5 <u>6</u> 78	n=5	ks = 5
2	012 <u>3</u> 5 <u>6</u> 2 <u>3</u> 45 <u>6</u> 78	n = 13	ks = 1
3	012 <u>3</u> 5 <u>6</u> 2 <u>3</u> 5 <u>6</u> 78	n = 33	ks = 3

Basic paths = {01235678, 0123562345678, 012356235678}

Ví dụ 4:

1. Theo tiêu chí 1

Lộ trình 01234568923457489234892(10)(11) là lộ trình khả thi tối thiểu bao phủ được các đỉnh trong CFG.

Input: a = [1; 1; 2] n = 3

Output:

- -dem = 2 (ER)
- -dem = 3 (AR)
- 2. Xác định tập lộ trình độc lập

Xác định Basic Paths: C = 3 + 1 = 4

Lộ trình		Data test	Out put (AR)
1	01 <u>2</u> 3 <u>45</u> 74892(10)(11)	n = 2, a = [1; 3]	dem = 2
2	012(10)(11)	n = 0, a = []	dem = 0
3	01234892(10)(11)	n = 1, a = [1]	dem = 1
4	0123456892(10)(11)	n = 2, a = [2; 2]	dem = 2

Basic paths = $\{01234574892(10)(11), 012(10)(11), 01234892(10)(11), 0123456892(10)(11)\}$