Problem przecinania się odcinków

Planowanie ruchu robota

Nakładanie się map

CAD – operacje boolowskie

Zagadnienia

Zadany zbiór odcinków $S = \{s_1, s_2, \dots, s_n\}$ w R^2

- Czy istnieje para (s_i, s_j) taka, że $i \neq j$ i $s_i \cap s_j \neq \emptyset$?
- Znaleźć wszystkie pary (s_i, s_j) takie, że $i \neq j$ i $s_i \cap s_j \neq \emptyset$.
- Znaleźć wszystkie pary (s_i, s_j) takie, że $i \neq j$ i $s_i \cap s_j \neq \emptyset$ wraz z punktami przecięć.

Czy dwa odcinki się przecinają?

$$s_1(t) = (1-t)a + tb$$
 $0 \le t \le 1$
 $s_2(r) = (1-r)c + rd$ $0 \le r \le 1$

Pierwsze podejście – algorytm "brutalny"

- Sprawdzamy wszystkie pary odcinków
- Wymaga czasu $O(n^2)$

Czy można lepiej?

Gdy każda para odcinków się przecina – $\Omega(n^2)$

W praktyce liczba przecięć jest znacznie mniejsza niż kwadratowa.

Poszukiwany algorytm, którego czas zależy nie tylko od liczby odcinków, ale też od liczby przecięć – im mniejsza liczba przecięć tym czas krótszy → algorytm wrażliwy na przecięcia

Sprawdzać tylko te pary odcinków, których *x*-przedziały na siebie nachodzą

Założenia

- Żaden odcinek nie jest pionowy
- Dwa odcinki przecinają się w co najwyżej jednym punkcie
- Żadne trzy odcinki nie przecinają się w jednym punkcie

Algorytm zamiatania (sweeping)

- Ustalamy pewną hiperpłaszczyznę (np. prostą w R2, płaszczyznę w R3). Nazywamy ją *miotłą*.
- Przesuwamy miotłę w wyznaczonym kierunku (kierunku zamiatania).
- Pozycje, w których miotła zatrzymuje się nazywamy *zdarzeniami*. Informacje o nich przechowujemy w *strukturze zdarzeń*.
- Informacje potrzebne do obliczeń przechowujemy w *strukturze stanu*. Struktura stanu jest aktualizowana w każdym zdarzeniu.

Na "zamiecionym" obszarze znane jest rozwiązanie badanego problemu dla zdarzeń należących do tego obszaru.

Struktura zdarzeń jak i stanu może być różnie zaimplementowana. Ale: powinny zapewniać łatwość i efektywność pewnych operacji (np. włączanie elementu, usuwanie ...)

Metoda zamiatania

Miotła będzie zamiatać wzdłuż osi *x*-ów.

W każdym położeniu miotły:

- odcinki przetworzone odcinki, których końce znajdują się na lewo od miotły,
- odcinki aktywne odcinki aktualnie przecinające miotłę,
- odcinki *oczekujące* odcinki o obu końcach na prawo od miotły.

Miotła

Stan miotły – zbiór odcinków przecinających ją

Miotła zatrzymuje się w **punktach zdarzeń**, którymi są końce odcinków i punkty przecięć.

- ° wykryte przecięcia
- † przyszłe zdarzenia

Wszystkie przecięcia na lewo od miotły są znane. Przecięcia na prawo od miotły są nieznane.

W punktach zdarzeń – aktualizacja stanu miotły, testy przecięć

Uporządkowanie odcinków

Żaden z odcinków nie jest pionowy → każdy z odcinków może przecinać miotłę w co najwyżej jednym punkcie

Dla każdego położenia miotły możemy uporządkować odcinki przecinające ją zgodnie z kolejnością przecięć – ze względu na współrzędne y

dwa odcinki są *porównywalne* w $x=x_0$, jeżeli miotła umieszczona w $x=x_0$ przecina je obydwa

Mówimy, że s_i jest **powyżej** s_k w x i oznaczamy $s_i >_x s_k$, jeżeli s_i i s_k są porównywalne w x oraz przecięcie s_i z miotłą w x jest wyżej niż przecięcie s_k z tą miotłą.

$$s_1 >_a s_2$$
 $s_1 >_b s_2$ $s_1 >_b s_3$ $s_3 >_b s_2$

Porządek ten może być różny dla różnych x, ponieważ:

- dla różnych położeń miotły różne odcinki ją przecinają,
- jeżeli odcinki się przecinają, to ich kolejność po obydwu stronach przecięcia jest różna.

Stan miotły - uporządkowany ciąg odcinków przecinających miotłę

Sprawdzamy odcinki tylko wtedy, gdy sąsiadują ze sobą w porządku pionowym

W punkcie przecięcia:

- zmienia się porządek odcinków
- zmieniają się sąsiedzi

 $\downarrow \downarrow$

Każdy odcinek zyskuje co najwyżej jednego nowego sąsiada

Korzystamy z dwóch **struktur danych**:

Struktura zdarzeń Q

zawiera uporządkowane rosnąco względem *x*-ów końce odcinków oraz punkty przecięć wszystkich par odcinków aktywnych, które kiedykolwiek były sąsiadami w strukturze.

(np. zrównoważone drzewo poszukiwań binarnych)

Struktura stanu T

zbiór odcinków aktywnych uporządkowanych względem współrzędnych *y*-owych. (np. wzbogacone, zrównoważone drzewo poszukiwań)

Po dojściu miotły do kolejnego punktu zdarzenia mamy trzy możliwości.

Zdarzenie jest początkiem odcinka s.

wstaw s do T; uaktualnij dowiązania; if s' jest sąsiadem s w T

then if s' przecina s w punkcie p

then wstaw p do Q;

Zdarzenie jest końcem odcinka s.

usuń s z T; uaktualnij dowiązania;

if s miał w T dwóch sąsiadów s', s''

then if s' przecina s'' w punkcie p

then wstaw p do Q, jeśli go tam
jeszcze nie ma;

Zdarzenie jest punktem przecięcia odcinków s, s'.

```
Zamień kolejność s i s' w T;

if w jest sąsiadem s

then if w przecina s w punkcie p

then wstaw p do Q , jeśli go tam

jeszcze nie ma;

if v jest sąsiadem s'

then if v przecina s' w punkcie q

then wstaw q do Q , jeśli go tam

jeszcze nie ma;
```


Punkt przecięcia s_1 i s_2 wykrywany trzy razy:

- gdy dodajemy lewy koniec s_1
- gdy usuwamy prawy koniec s_3
- gdy usuwamy prawy koniec s_4

Utwórz pustą strukturę stanu T Utwórz strukturę zdarzeń Q – wstaw posortowane wzdłuż *x* końce odcinków

Powtarzaj

- pobierz nowe zdarzenie p z Q
- zaktualizuj T:
 - jeśli p jest lewym końcem odcinka dodaj odcinek do T
 - jeśli p jest prawym końcem odcinka usuń odcinek z T
 - jeśli p jest punktem przecięcia s i s', zmień porządek s i s' w T
- ∘ zaktualizuj Q:
 - dla każdej pary s i s' z T sprawdź, czy s i s' przecinają się po prawej stronie miotły jeśli tak – dodaj punkt przecięcia do Q
 - usuń możliwe duplikaty z Q

aż Q będzie puste

Złożoność przy odpowiednich strukturach:

- inicjowanie $Q O(n \log n)$
- aktualizacja T $O((P+n) \log n)$
- aktualizacja Q O(P log n)gdzie P – liczba przecięć

Całość: $O((P+n) \log n)$