Amdt. Dated December 22, 2004

Reply to Office Action of September 22, 2004

CLAIM AMENDMENTS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1 (original). A magnetoresistive semiconductor element, comprising:
- a first contact made of a semi-magnetic material;
- a second contact;
- a layer of a nonmagnetic semiconductor configured between said first contact and said second contact; and
- a tunnel barrier configured between said first contact and said layer of said nonmagnetic semiconductor.
- 2 (original). The magnetoresistive semiconductor element according to claim 1, wherein said semi-magnetic material is a semiconductor.

Amdt. Dated December 22, 2004

Reply to Office Action of September 22, 2004

- 3 (original). The magnetoresistive semiconductor element according to claim 1, wherein said second contact is made of a nonmagnetic material.
- 4 (original). The magnetoresistive semiconductor element according to claim 1, wherein said second contact is made of a semi-magnetic material.
- 5 (original). The magnetoresistive semiconductor element according to claim 4, further comprising a tunnel barrier configured between said second contact and said layer of said nonmagnetic semiconductor.
- 6 (original). The magnetoresistive semiconductor element according to claim 1, wherein said second contact is made of a ferromagnetic material.
- 7 (original). The magnetoresistive semiconductor element according to claim 6, further comprising a tunnel barrier configured between said second contact and said layer of said nonmagnetic semiconductor.
- 8 (original). The magnetoresistive semiconductor element according to claim 1, wherein said semi-magnetic material is a II-IV semiconductor.

Amdt. Dated December 22, 2004

Reply to Office Action of September 22, 2004

9 (original). The magnetoresistive semiconductor element according to claim 8, wherein said II-VI semiconductor is $Be_xMn_vZn_{1-x-v}Se \text{ with } 0< x<1, \ 0< y<1 \ \text{and } 0.0001< y<0.2.$

10 (original). The magnetoresistive semiconductor element according to claim 1, further comprising a Schottky diode for providing a current path for decoupling.

11 (original). The magnetoresistive semiconductor element according to claim 1, further comprising a pn diode for providing a current path for decoupling.

12 (currently amended). A storage element, comprising:

the <u>a</u> magnetoresistive semiconductor element, containing:

according to claim 1; and

a first contact made of a semi-magnetic material;

a second contact;

a layer of a nonmagnetic semiconductor configured
between said first contact and said second contact; and

Amdt. Dated December 22, 2004

Reply to Office Action of September 22, 2004

a tunnel barrier configured between said first contact and said layer of said nonmagnetic semiconductor; and

a ferromagnetic element configured adjacent said first contact.

13 (original). The storage element according to claim 12, further comprising a Schottky diode for decoupling.

14 (original). A field effect transistor, comprising:

a source electrode;

a drain electrode;

a gate electrode;

at least one first contact of a semi-magnetic material for injecting spin-polarized charge carriers into said source electrode and/or for extracting spin-polarized charge carriers from said drain electrode;

a tunnel barrier configured between said first contact and said source electrode; and

Amdt. Dated December 22, 2004

Reply to Office Action of September 22, 2004

a tunnel barrier configured between said first contact and said drain electrode.

15 (original). A bipolar transistor, comprising:

a section acting as an emitter;

a section acting as a collector;

a region configured between said emitter and said collector and acting as a base;

at least one first contact for injecting spin-polarized charge carriers into said emitter and/or for extracting spin-polarized charge carriers from said collector;

a tunnel barrier configured between said first contact and said emitter; and

a tunnel barrier configured between said first contact and said collector.

16 (original). A magnetic sensor, comprising:

Amdt. Dated December 22, 2004

Reply to Office Action of September 22, 2004

a magnetoresistive semiconductor element including: a first contact made of a semi-magnetic material, a second contact, a layer of a nonmagnetic semiconductor configured between said first contact and said second contact, and a tunnel barrier configured between said first contact and said layer of said nonmagnetic semiconductor;

a plurality of electric feed and discharge lines, each one of said plurality of electric feed and discharge lines connected to a respective one of said first contact and said second contact; and

a measuring device connected to said plurality of electric feed and discharge lines for measuring a change in electrical resistance.

17 (original). A read head for reading information stored in magnetic storage media, comprising:

a magnetoresistive semiconductor element including: a first contact made of a semi-magnetic material, a second contact, a layer of a nonmagnetic semiconductor configured between said first contact and said second contact, and a tunnel barrier configured between said first contact and said layer of said nonmagnetic semiconductor;

Amdt. Dated December 22, 2004

Reply to Office Action of September 22, 2004

a plurality of electric feed and discharge lines, each one of said plurality of electric feed and discharge lines connected to a respective one of said first contact and said second contact; and

a measuring device connected to said plurality of electric feed and discharge lines for measuring a change in electrical resistance.

18 (withdrawn). A method of measuring the intensity of a magnetic field, which comprises:

providing a sensor having a first contact, a second contact, and a nonmagnetic semiconductor;

providing a magnetic field acting on the sensor for spin polarizing charge carriers in the first contact;

injecting the spin-polarized charge carriers across a tunnel barrier into the nonmagnetic semiconductor;

extracting the charge carriers from the nonmagnetic semiconductor into the second contact; and

. Appl. No. 10/667,730
Amdt. Dated December 22, 2004
Reply to Office Action of September 22, 2004

measuring a change in resistance with respect to an initial state.

19 (withdrawn). The method according to claim 18, wherein the initial state is formed by a resistance of the sensor without action of a magnetic field.

20 (withdrawn). The method according to claim 18, wherein the charge carriers are electrons.