Что у нас было:

IGLV3-17 LL22NC03-22A12.9 SNORD125 CLCP1 PHF5A 1051 682 GGT5 119 135 LL22NC01-81G9.3 0 SEC14L3 14 CRYBA4 HMGB1P10 SLC25A5P1 126 190 IGLJ3 IGLVV-66 1527 TBC1D10A 2077 RNU6-375P 3012 2985 SLC5A1 IGLV1-50 IGLV7-35 IGKV10R22-5 CTA-407F11.8 LL22NC03-75A1.9 264 EMID1 398

Клетки, у которых мало кислорода

Что мы хотим?

• Найти гены, у которых уровень экспрессии различные в различных состояниях

Как?

- Отфильтруем шум
- Посчитаем значение (=статистику), показывающее, как сильно изменяется экспрессия:

$$\frac{a-b}{a+b}$$

Получили:

Gene [‡]	Statistic *
AC002059.10	0.555556
AC006548.28	0.5384615
SHISA8	0.5280899
SDF2L1	0.4706406
VPREB3	0.4545455
CTA-414D7.1	0.4414414
GCAT	0.4354486
MIR3653	0.3751023
AP1B1	0.3715203
GATSL3	0.3630952
PARVB	0.3516820
CRELD2	0.3352144
RP1-102K2.9	0.3333333
APOBEC3B	0.3333333
BPIFC	0.3333333
APOBEC3A	0.3087248
LMF2	0.2992908
AP000354.2	0.2972973
C22orf24	0.2941176
IL2RB	0.2932331
CHCHD10	0.2921811
RP1-102K2.6	0.2903226

Как это делается на самом деле?

Главное: всё ещё считаем какую-то статистику для каждого гена, меняется только процедура отбора

Результат

LINC00898

TTLL8

GAL3ST1

RFPL3

RFPL2

RN7SL280P

SEC14L3

LA16c-60D12.1

AP000344.4

RP1-37E16.12

RP11-191L9.5

CTA-280A3.2

RP11-191L9.4

CPSF1P1

IGLCOR22-2

AP000345.1

IGLVIVOR22-2

CECR1

RP4-539M6.14

SDC4P

AP000349.2

AL008723.1

AC002059.10 column 1: character Ac000348.28

CDESLI

SDF2L1

VPREB3

CTA-414D7.1

GCAT

MIR3653

AP1B1

GATSL3

PARVB

CRELD2

RP1-102K2.9

APOBEC3B

BPIFC

APOBEC3A

LMF2

AP000354.2

C22orf24

IL2RB

CHCHD10

RP1-102K2.6

(Проекты!) Регуляция экспрессии

The Lac Operon

Что регулирует ген Х?

Счастливые клетки

Всё, что мы делали вчера

Клетки, у которых ген X «выключен»

Что регулирует ген Х?

Счастливые клетки

Всё, что мы делали вчера

Клетки, у которых ген X выключен

Что у вас будет?

- Результаты по 12,000 выключениям разных генов в двух раках
- «Каноническая» сеть взаимодействий

Что вы должны сделать

- Построить граф взаимодействий
- Найти интересные гены (вершины) на основании:
- 1. Анализа структуры графа
- 2. Сравнений графов