

Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Bacharelado em Ciência da Computação Engenharia de Computação

Arquitetura e Organização de Computadores I

Aula 10

MIPS pipeline: construção do bloco operativo pipeline, visualização da execução das instruções no pipeline, o bloco de controle pipeline.

Prof. Guilherme Corrêa gcorrea@inf.ufpel.edu.br

Bloco Operativo dos MIPS Monociclo

É possível identificar 5 etapas na execução

Bloco Operativo em Pipeline (Pipeline Datapath)

É necessário separar a parte operativa em cinco partes, cada uma correspondendo a um estágio de execução de uma instrução:

- 1. BI: busca de instrução
- 2. DI: decodificação da instrução e leitura do banco de registradores
- 3. EX: execução ou cálculo de endereço
- 4. MEM: acesso à memória de dados
- 5. ER: escrita no banco de registradores

Até cinco instruções podem estar em execução durante um dado ciclo de clock

Bloco Operativo em Pipeline

- □ Um modo de mostrar a execução em pipeline é imaginar que cada instrução executa em seu próprio bloco operativo
- □ Os blocos operativos são colocados deslocados uns em relação aos outros, a fim de mostrar a relação entre as instruções

Bloco Operativo em Pipeline

Execução das 3 instruções lw pressupondo o uso de pipeline

Bloco Operativo em Pipeline

Bloco Operativo em Pipeline: executando lw

decodificação da instrução

Bloco Operativo em Pipeline: executando sw

decodificação da instrução Idêntico ao 2º estágio do lw BI/DI DI/FX FX/MFM MFM/FR Desl à esq 2 bits [25-21] Reg a ser lido #1 Dado [20-16] Reg a ser lido #1 Zero-Endereço lido #2 ULA Registradores Instrução 15-11] Reg a ser Dado Resultado Endereco escrito Dado lido lido #2 Dado de Memória Memória [15-0] escrita de dados de Instruções Dado a ser escrito

Bloco Operativo em Pipeline

- Cada componente no bloco operativo só pode ser usado em um único estágio do pipeline
- **□** Componentes:
 - Memória de instruções
 - Portas de leitura do banco de registradores
 - ULA
 - Memória de dados
 - Porta de escrita do banco de registradores

Bloco Operativo Pipeline Corrigido

Executando uma sequência de instruções

□ Considere a seguinte sequência de instruções:

```
Iw $10, 20($1)
sub $11, $2, $3
add $12, $2, $4
sw $8, 10($11)
beq $10, $11, pula
```

□ Representá-la usando diagrama de pipeline com múltiplos ciclos de *clock* (relógio)

Executando uma sequência de instruções

Diagrama de Pipeline com Múltiplos Ciclos de Clock: versão 1

Executando uma sequência de instruções

Diagrama de Pipeline com Múltiplos Ciclos de Clock: versão 2

е	ordem de xecução	•	de clock)							
	o programa em instruções)	CC1 CC2		CC3	CC4	CC5	CC6	CC7	CC8	CC9
lw \$10, 20(\$1)		Busca da instrução	Decodificação da instrução	Execução	Acesso a dados	Escrita no banco de registradores				iagrama dicional
	sub \$11, \$2, \$3		Busca da instrução	Decodificação da instrução	Execução	Acesso a dados	Escrita no banco de registradores		Identifica cada estágio pelo	
	add \$12, \$2, \$4			Busca da instrução	Decodificação da instrução	Execução	Acesso a dados Escrita no banco de registradore			nome
	sw \$8, 10(\$11)				Busca da instrução	Decodificação da instrução	Execução	Acesso a dados	Escrita no banco de registradores	
	beq \$10, \$11, p	ula				Busca da instrução	Decodificação da instrução	Execução	Acesso a dados	Escrita no banco de registradores

Bloco Operativo em Pipeline com Sinais de Controle

Projeto do Bloco de Controle

- □ Iremos aproveitar ao máximo os sinais de controle do MIPS monociclo
- □ Isto inclui utilizar a mesma lógica de controle para:
 - A ULA
 - O desvio condicional
 - O multiplexador que controla a fonte do dado do registradordestino
 - E demais linhas de controle mostradas na transparência anterior...

Relembrando o Controle da ULA

Correspondência entre "funct" & "ULAOp" com "controle da ULA"

Instrução	ULAOp	Campo "funct"	Operação da ULA	Operação da ULA	
lw	00	XXXXX	adição	010	
sw	00	XXXXXX	adição	010	
beq	01	XXXXXX	subtração	110	
add	10	100000	adição	010	
sub	10	100010	subtração	110	
and	10	100100	and	000	
or	10	100101	or	001	
slt	10	101010	set on less than	111	

Conclusões:

- Apenas algumas das 64 combinações possíveis a partir dos 6 bits do campo "funct" são de interesse
- O campo "funct" somente interessa quando ULAOp = 10

Projeto do Bloco de Controle

Reagrupando os Sinais de Controle do MIPS monociclo, a fim de reaproveitá-los...

	Sinais de Controle a serem usados no estágio de execução/cálculo do endereço					Sinais de Controle a serem usados no estágio de acesso à memória			Sinais de Controle a serem usados no estágio de escrita no banco de registradores	
instrução	RegDst	ULAOp1	ULAOp0	ULAFonte	DvC	LerMem	EscMem	EscReg	MemParaReg	
Tipo R	1	1	0	0	0	0	0	1	1	
lw	0	0	0	1	0	1	0	1	0	
sw	Х	0	0	1	0	0	1	0	X	
beq	X	0	1	0	1	0	0	0	X	

- □ Conforme pode-se perceber, os sinais de controle são essencialmente os mesmos do MIPS monociclo
- □ A única particularidade é que eles precisam "viajar" pelos estágios juntamente com a instrução

Projeto do Bloco de Controle

Bibliografia recomendada

• PATTERSON, David A.; HENESSY, John L. **Organização e Projeto de Computadores: a interface hardware/software**. 2ª.ed. Rio de Janeiro: LTC, 2000.