TSIA202A – Booklet of Exercises

Marco Cagnazzo, François Roueff

Contents

1	General reminders and notation		
	1.1 Gaussian r.v.'s, vectors, processes	1	
	1.2 Functions of r.v.'s and of random processes	1	
	1.2.1 Example: inversion of a FIR	2	
	1.3 Autocovariance		
	1.4 Noise	4	
2	Gaussian vectors	4	
3	Stationarity	4	
4	Covariance, spectral measure and spectral density	5	
5	Linear filtering, ARMA processes	6	
6	Solutions	9	

1 General reminders and notation

1.1 Gaussian r.v.'s, vectors, processes

Except for the zero-variance case, a real valued **Gaussian random variable** X has the following probability density function (pdf):

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

A random vector $\mathbf{X} = [X_1, X_2, \dots, X_n]^T$ is a **Gaussian random vector** if and only if, $\forall u \in \mathbb{R}^n, Y = u^T \mathbf{X} = \sum_{i=1}^n u_i X_i$ is a Gaussian r.v. The pdf of a Gaussian vector is completely defined by the mean vector $\mu = \mathbb{E}[\mathbf{X}]$ and the covariance matrix $\Gamma = \mathbb{E}[\mathbf{X}^c \mathbf{X}^{cT}]$

A random process $\{X_t, t \in \mathbb{Z}\}$ is a **Gaussian random process** if and only if for all finite set of indexes $I \subset \mathbb{Z}, I = \{t_1, t_2, \dots, t_n\}$, the random vector $[X_{t_1}, X_{t_2}, \dots, X_{t_n}]^T$ is a Gaussian vector.

1.2 Functions of r.v.'s and of random processes

Let X be a real-valued r.v. and let g a real function. Let us suppose that g is derivable over \mathbb{R} , except for a set whose measure is zero, e.g., a numerable set of points. If we define a new r.v. Y = g(X), the pdf of Y is related to that of X as follows:

$$p_Y(y) = \begin{cases} 0 & \text{if the equation in the variable } x, \ g(x) = y, \ \text{has no solution} \\ \sum_{i=1}^{N_y} \frac{p_X(x_i(y))}{|g'(x_i(y))|} & \text{if } g(x) = y \ \text{has } N_y \geq 1 \ \text{solutions, referred to as} \ \{x_i(y)\}_{i=1,\dots,N_y} \end{cases}$$

We can also consider function of multiple r.v.'s. A particularly interesting case is when a random process is obtained by applying a function to another random process:

$$X_t = g_t(\{Z_s, s \in \mathbb{Z}\})$$

Shortcut	Meaning
\overline{X}	Conjugate of X
A^T	Transpose pf A
A^H	Hermitian of A, i.e. $\overline{A^T}$
\mathbb{N}_0	Natural numbers including zero
\mathbb{R}^+	Positive real numbers: $\{x \in \mathbb{R} x > 0\}$
\mathbb{R}_0^+	Non-negative real numbers: $\{x \in \mathbb{R} x \ge 0\}$
$1_A(x)$	Indicator function of set A: $1_A(x) = 1$ if and only if $x \in A$; otherwise, $1_A(x) = 0$
r.v.	random variable
pdf	probability density function
$X \sim P$	X is a r.v. distributed with law P
$\mathcal{N}\left(\mu,\sigma^2\right)$	Gaussian r.v. with mean μ and variance σ^2
$\mathbb{E}\left[X\right]$	Expectation of the r.v. X
X^c	Centered version of $X: X^c = X - \mathbb{E}[X]$
Var(X)	Variance of the r.v. $X: \operatorname{\sf Var}(X) = \mathbb{E}\left[X^c ^2\right]$
$Cov\left(X,Y ight)$	$\mathbb{E}\left[X^{c}\overline{Y^{c}} ight]$
$\{X_t, t \in \mathbb{Z}\}$	Discrete random process
s.o.1	A process $\{X_t, t \in \mathbb{Z}\}$ is stationary at order 1 if and only if $\mathbb{E}[X_t]$ does not depend on t
s.o.2	A process $\{X_t, t \in \mathbb{Z}\}$ is stationary at order 2, if and only if $\forall t \in \mathbb{Z}$, $\mathbb{E}[X_t ^2] < +\infty$ and
	$\forall t, h \in \mathbb{Z}, Cov\left(X_t, X_{t+h}\right) \text{ does not depend on } t$
w.s.	weakly stationary, i.e., s.o.1 and s.o.2
$\gamma_X(h)$	For $\{X_t, t \in \mathbb{Z}\}$ s.o.2, $\gamma_X(h) = Cov(X_{t+h}, X_t) = Cov(X_h, X_0)$
δ_h	The Kronecker's delta: $\delta: h \in \mathbb{Z} \to \delta_h$; if $h = 0, \delta_h = 1$; otherwise, $\delta_h = 0$

Table 1: Shortcuts and notation used throughout this document.

A special case is when the transformation is the same at each time (i.e. g does not depend on t) and it has a finite number of inputs. Apart from a time shift, this can be written as:

$$X_t = g(Z_t, Z_{t-1}, \dots, Z_{t-k+1})$$

This is called a moving transformation. It can be shown that, for a moving transformation, if g is measurable and $\{Z_t, t \in \mathbb{Z}\}$ i.i.d., then $\{X_t, t \in \mathbb{Z}\}$ is strictly stationary.

A particularly interesting case of moving transformation is a linear filter:

$$Y_t = \sum_{n \in \mathbb{Z}} \alpha_n X_{t-n}$$

If the support of α is finite, this filter is called Finite Impulse Response (FIR); otherwise it is an Infinite Impulse Response (IIR).

1.2.1 Example: inversion of a FIR

Let us remember a particularly simple case of invertible filter. Let $\theta \in \mathbb{C}$ and $|\theta| < 1$. We introduce the following L^1 sequences:

$$a: n \in \mathbb{Z} \to \delta_n - \theta \delta_{n-1}$$
$$b: n \in \mathbb{Z} \to \begin{cases} \theta^n & \text{if } n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
$$c = (a*b): n \in \mathbb{Z} \to \sum_{k \in \mathbb{Z}} a_k b_{n-k}$$

It is easy to find that $(a * b) = \delta$. In that case, we say that a FIR having a as impulse response, can be inverted by an IIR having b as impulse response, since the cascade of a and b will not change an input signal.

Let us show that $c = \delta$.

$$c_n = \sum_{k \in \mathbb{Z}} a_k b_{n-k} = b_n - \theta \cdot b_{n-1} = \begin{cases} 0 - \theta \cdot 0 = 0 & \text{if } n < 0 \\ 1 - \theta \cdot 0 = 1 & \text{if } n = 0 \\ \theta^n - \theta \cdot \theta^{n-1} = 0 & \text{if } n > 0 \end{cases} = \delta_n$$

1.3 Autocovariance

$$\begin{aligned} &\operatorname{Cov}\left(X,Y\right) \!\!=\!\! \mathbb{E}\left[X^{c}\overline{Y^{c}}\right] \\ &\operatorname{Cov}\left(X,Y\right) \!\!=\!\! \mathbb{E}\left[X\overline{Y}\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[\overline{Y}\right] \\ &\overline{\operatorname{Cov}\left(X,Y\right)} \!\!=\!\! \operatorname{Cov}\left(Y,X\right) \\ &\operatorname{Cov}\left(X+a,Y\right) \!\!=\!\! \operatorname{Cov}\left(X,Y\right) \\ &\operatorname{Cov}\left(X,Y+a\right) \!\!=\!\! \operatorname{Cov}\left(X,Y\right) \\ &\operatorname{Cov}\left(aX,Y\right) \!\!=\!\! a\!\! \operatorname{Cov}\left(X,Y\right) \\ &\operatorname{Cov}\left(X,aY\right) \!\!=\!\! a\!\! \operatorname{Cov}\left(X,Y\right) \\ &\operatorname{Cov}\left(X,aY\right) \!\!=\!\! a\!\! \operatorname{Cov}\left(X,Y\right) \\ &\operatorname{Cov}\left(X_{1}+X_{2},Y\right) \!\!=\!\! \operatorname{Cov}\left(X_{1},Y\right) + \operatorname{Cov}\left(X_{2},Y\right) \\ &\operatorname{Cov}\left(X,Y_{1}+Y_{2}\right) \!\!=\!\! \operatorname{Cov}\left(X,Y_{1}\right) + \operatorname{Cov}\left(X,Y_{2}\right) \end{aligned}$$

Table 2: Covariance properties. X, X_1, X_2, Y are complex or real r.v.'s; $a \in \mathbb{C}$.

The covariance of two r.v.'s has several interesting properties resumed in Tab. 2. Two real r.v. with null covariance are said to be *uncorrelated*. Two complex r.v. with null covariance are said to be *orthogonal*, while if also the *pseudo-covariance* $\mathbb{E}[XY]$ is null, they are said *uncorrelated*. Independent r.v.'s are uncorrelated while the converse is not true in general. A notable exception is when (X,Y) is a Gaussian vector (but not when X and Y are marginally Gaussian and not jointly Gaussian): in that case, uncorrelatedness implies independence.

The covariance allows to define a scalar product between two r.v.'s: $\langle X_t, X_s \rangle = \text{Cov}(X_t, X_s)$. The (squared) norm of a r.v.'s is then its variance. Note that this scalar product is not affected by the mean of the r.v.'s, since neither the covariance is. For example, a zero-norm r.v. has a null variance, but can have any mean.

We can also introduce the concept of linear independent r.v.'s. (X_1, \ldots, X_k) is a set of linearly independent r.v.'s if and only if $\forall a \in \mathbb{R}^k - \{\mathbf{0}\}, \|\sum_{i=1}^k a_i X_i\|^2 = \mathsf{Var}\left(\sum_{i=1}^k a_i X_i\right) > 0$.

Note also that, if (X_1, \ldots, X_k) are not linearly independent, this means that one of the X_i can be expressed as a linear combination of the other r.v.'s, up to an additive constant, which does not affect the covariance. This constant is null in the case $\mathbb{E}[(X_1, \ldots, X_k)] = \mathbf{0}$.

For the sake of simplicity, let us prove that for some i, X_i is a linear combination of the other r.v.'s only in the case of a centered vector. In this case it must exist $a \in \mathbb{R}^k - \{\mathbf{0}\}$ such that $\mathsf{Var}\left(\sum_{i=1}^k a_i X_i\right) = 0$. The vector a must have at least one non-zero component, let it be a_j . Let also $Y = \sum_{i=1}^k a_i X_i$; since its variance is zero, $Y = \mathbb{E}\left[Y\right] = 0$. This implies:

$$0 = \sum_{i=1}^{k} a_i X_i = a_j X_j + \sum_{i \neq j} a_i X_i$$
$$a_j X_j = -\sum_{i \neq j} a_i X_i$$
$$X_j = -\sum_{i \neq j} \frac{a_i}{a_j} X_i$$

Then X_j is a linear combination of other r.v.'s. It can be shown that, if the X_i are not centered, the same result holds up to a constant: $X_j = -\sum_{i \neq j} \frac{a_i}{a_j} X_i + \sum_{i=1}^k \frac{a_i}{a_j} \mathbb{E}[X_i]$.

The **covariance matrix** of a complex-valued random vector $\mathbf{X} = [X_1, X_2, \dots, X_n]^T$ is $\Gamma = \mathbb{E}\left[\mathbf{X}^c \mathbf{X}^{cH}\right]$. In other words, $\Gamma_{i,j} = \mathsf{Cov}\left(X_i, X_j\right)$. It is an Hermitian, non-negative matrix, since for all $u \in \mathbb{C}^n$ the random

variable $Y = u^H X$ shall have a non negative variance:

$$\begin{split} 0 &\leq \mathsf{Var}\left(Y\right) = \mathbb{E}\left[\|u^H\mathbf{X} - \mathbb{E}\left[u^H\mathbf{X}\right]\|^2\right] = \mathbb{E}\left[\|u^H(\mathbf{X} - \mathbb{E}\left[\mathbf{X}\right]\|^2\right] \\ &= \mathbb{E}\left[\|u^H\mathbf{X}^c\|^2\right] = \mathbb{E}\left[u^H\mathbf{X}^c\mathbf{X}^{cH}u\right] \\ &= u^H\mathbb{E}\left[\mathbf{X}^c\mathbf{X}^{cH}\right]u = u^H\Gamma u \end{split}$$

The autocovariance function (acf) of a random process $\{X_t, t \in \mathbb{Z}\}$ is a function of two discrete variables t and s:

$$\gamma(t,s) = \mathsf{Cov}(X_t, X_s)$$

A weakly stationary process is a process s.o.1 and s.o.2, therefore, all X_t have finite quadratic mean, the mean of X_t is the same for all t and the autocovariance function only depend on the delay t-s:

$$\gamma(t,s) = \gamma(t-s) = \mathsf{Cov}\left(X_{t-s}, X_0\right)$$

In that case, we use a single-parameter notation for γ :

$$\gamma(h) = \mathsf{Cov}\left(X_h, X_0\right)$$

The acf of weakly stationary processes is an Hermitian and non-negative function. The maximum of $|\gamma|$ is in 0. The normalized acf, $\rho(h) = \frac{\gamma(h)}{\gamma(0)}$ is referred to as autocorrelation function.

1.4 Noise

A weak white noise is a real-valued, weakly stationary process $\{X_t, t \in \mathbb{Z}\}$, with zero-mean and impulsive acf: $\gamma_X(h) = \sigma^2 \delta(h)$. In other words, for all $t \neq s$, X_t and X_s are uncorrelated variables.

A **strong white noise** is a real-valued, zero-mean, i.i.d. process. Note that a strong white noise is also a weak white noise, since i.i.d. implies weak stationarity and impulsive acf. On the contrary, a weak white noise is not necessarily a strong one, since uncorrelated r.v.'s may be dependent.

In both cases, we usually consider finite, positive variance $\sigma^2 = \text{Var}(X_t)$.

2 Gaussian vectors

Exercise 2.1 (Functions of Gaussian random variables). Let $X \sim \mathcal{N}(0,1)$, $a \in \mathbb{R}^+$ and $Y^a = X\mathbf{1}_{\{|X| < a\}} - X\mathbf{1}_{\{|X| \ge a\}}$.

- 1. Give the law of Y^a
- 2. Compute $Cov(X, Y^a)$. For which value a_0 of a the covariance is null? Are X and Y^{a_0} independent?
- 3. Is (X, Y^{a_0}) a Gaussian vector?
- 4. For $a \neq a_0$, is (X, Y^a) a Gaussian vector?

3 Stationarity

Exercise 3.1 (Uncorrelated processes). Let $\{X_t, t \in \mathbb{Z}\}$ and $\{Y_t, t \in \mathbb{Z}\}$ be two weakly stationary (w.s.), uncorrelated random processes. Show that $\{Z_t = X_t + Y_t, t \in \mathbb{Z}\}$ is weakly stationary. Find the covariance function of Z_t from those of X_t and Y_t and the spectral measure of Z_t from those of X_t and Y_t

Exercise 3.2 (Functions of strong white noise). Let $\{\epsilon_t, t \in \mathbb{Z}\}$ be a strong white noise with $\mathbb{E}\left[\epsilon_0^2\right] < \infty$. For each of the following processes (functions of the white noise), find out if they are weakly stationary or strictly stationary.

1. $W_t = a + b\epsilon_t + c\epsilon_{t-1}$, with a, b, c real numbers

$$2. X_t = \epsilon_t \epsilon_{t-1}$$

3.
$$Y_t = (-1)^t \epsilon_t$$

4.
$$Z_t = \epsilon_t + Y_t$$

Exercise 3.3 (Structured covariance matrix). Let us consider a real number ρ ; we define $\Sigma_2 = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$. Moreover, let $\forall t \in \mathbb{Z}$, Σ_t be a $t \times t$ matrix with diagonal elements equal to 1, and out-of-diagonal elements equal to ρ :

$$\Sigma_t = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \rho & \rho & 1 & \dots & \rho \\ \dots & \dots & \dots & \dots & \dots \\ \rho & \rho & \rho & \dots & 1 \end{bmatrix}$$

- 1. Which condition on ρ must be imposed such that Σ_t is a covariance matrix for all t? Suggestion: decompose $\Sigma_t = \alpha I + A$, where A is matrix with easy-to-find eigenvalues.
- 2. Build a stationary process having Σ_t as auto-covariance matrix for all t.

4 Covariance, spectral measure and spectral density

Exercise 4.1 (Functions of weak white noise). Let $\{Z_t, t \in \mathbb{Z}\}$ be a weak white noise, centered, with variance σ^2 . Let $a, b, c \in \mathbb{R}$. Are the following processes s.o.2? If yes, compute the autocovariance function and the spectral measure.

$$1. \ X_t = a + bZ_0$$

2.
$$X_t = Z_0 \cos(ct)$$

3.
$$X_t = a + bZ_t + cZ_{t-1}$$

4.
$$X_t = Z_1 \cos(ct) + Z_2 \sin(ct)$$

5.
$$X_t = Z_t \cos(ct) + Z_{t-1} \sin(ct)$$

Reminders:

$$\begin{split} \gamma(h) &= \int_{-\pi}^{\pi} e^{ih\lambda} \nu(d\lambda) \\ \gamma(h) &= \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda \qquad \qquad \text{if the density } f(\cdot) \text{ exists} \\ f(\lambda) &= \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma(h) e^{-ih\lambda} \qquad \qquad \text{if } \gamma \in L^1(\mathbb{Z}) \end{split}$$

Exercise 4.2 (Autocovariance function characterization). Let us introduce the following sequence on the integers:

$$\gamma: h \in \to \mathbb{Z}\gamma(h) = \begin{cases} 1 & \text{if } h = 0\\ \rho & \text{if } |h| = 1\\ 0 & \text{if } |h| > 1 \end{cases}$$

We want to show that such a function is an autocovariance function if and only if $|\rho| \leq \frac{1}{2}$.

1. Let Γ_k be a $k \times k$ matrix such that $\forall i, j \in \{1, 2, \dots, k\}, \Gamma_k(i, j) = \gamma(i - j)$.

$$\Gamma_k = \begin{bmatrix} 1 & \rho & 0 & 0 & \dots & 0 & 0 \\ \rho & 1 & \rho & 0 & \dots & 0 & 0 \\ 0 & \rho & 1 & \rho & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & \rho & 1 \end{bmatrix}$$

Find the recurrence equation among the determinants of matrices Γ_k

- 2. Show that if ρ is not greater than a given value, Γ_k is positive definite for all k. Use or the previous point or the Herglotz theorem.
- 3. Build a s.o.2 process having $\gamma(h)$ as autocovariance function.

Exercise 4.3 (Band-limited stationary process). Let $S(f) = \mathbf{1}_{(-f_0, f_0)}(f)$, with $f_0 \in (0, \pi)$ be the spectral density of a stationary process.

- 1. Compute the autocovariance function.
- 2. Is it L^{1} ?

Exercise 4.4 (Process generated by linear combination). Let γ be the autocovariance function of a stationary, zero-mean process. Let us suppose that it exist a finite subset of this process such that the corresponding autocovariance matrix is not invertible, *i.e.*, it is not full rank.

- 1. Show that either $\gamma(0) = 0$, or it exists $k \ge 1$ such that:
 - $X_{k+1} \in \text{Vect}(X_1, ..., X_k)$; and
 - (X_1,\ldots,X_k) is a set of linearly independent vectors: $\forall a\in\mathbb{R}^k-\{\mathbf{0}\}, \mathsf{Var}\left(\sum_{i=1}^k a_iX_i\right)>0.$
- 2. Let Γ_k be the autocovariance matrix of X_1, \ldots, X_k . Find a property of its minimum eigenvalue.
- 3. Show that the process $\{X_t, t \in \mathbb{Z}\}$ is linearly predictable, *i.e.*, for all $p \geq 1$, there exists a set of k scalars $\phi_{p,1}, \phi_{p,2}, \ldots, \phi_{p,k}$ such that:

$$X_{k+p} = \sum_{\ell=1}^{k} \phi_{p,\ell} X_{\ell}.$$
 (1)

- 4. Show that $\sup_{p\geq 1} \sum_{\ell=1}^k |\phi_{p,\ell}|^2 < \infty$.
- 5. Deduce that, if in addition $\lim_{|t|\to\infty} \gamma(t) = 0$, then $\gamma(0) = 0$.

5 Linear filtering, ARMA processes

Exercise 5.1 (Linear filtering and stationarity). Let $\beta \in \mathbb{R}$, $\{S_t, t \in \mathbb{Z}\}$ a w.s., periodical (period = 4) real process, and $\{X_t, t \in \mathbb{Z}\}$ a w.s. real process, uncorrelated with S_t .

Let us consider the process $\{Y_t = \beta t + S_t + X_t, t \in \mathbb{Z}\}.$

- 1. Is $\{Y_t, t \in \mathbb{Z}\}$ w.s.?
- 2. Let us refer to the back-shift operator as B, and let us consider the process $\{\bar{S}_t = (1 + B + B^2 + B^3) \circ S_t, t \in \mathbb{Z}\}$. Show that γ is periodic and that $\bar{S}_t = S_0 + S_1 + S_2 + S_3$
- 3. Let us consider the process $\{Z_t = (1 B) \circ (1 + B + B^2 + B^3) \circ S_t, t \in \mathbb{Z}\}$. Show that $\{Z_t, t \in \mathbb{Z}\}$ is w.s. and compute γ_Z as a function of γ_X (autocovariance functions).
- 4. Find the shape of the spectral measure μ of $\{S_t, t \in \mathbb{Z}\}$.

5. Find the spectral measure of $(1 - B^4) \circ Y_t$ as a function of the spectral measure of $\{X_t, t \in \mathbb{Z}\}$.

Exercise 5.2 (Characterization of MA(q)). Let $q \in \mathbb{Z}$ and q > 0. Let $\{X_t, t \in \mathbb{Z}\}$ be a centered w.s. real process and let γ be its autocovariance function. Let us suppose that γ has a compact support, *i.e.* $\forall t > q, \gamma(t) = 0$.

We also introduce

$$\mathcal{H}_t = \operatorname{Vect}(X_s, s \leq t)$$

 $\widetilde{X}_t = \operatorname{Proj}(X_t | \mathcal{H}_{t-1})$

- 1. Recall why $Z_t = X_t \widetilde{X}_t$ is a white noise.
- 2. Show that $X_t \perp \mathcal{H}_{t-q-1}$.
- 3. Deduce that $X_t \in \text{Vect}(Z_s, s \in \{t, t-1, \dots t-q\})$.
- 4. Show that $\{X_t, t \in \mathbb{Z}\}$ is a MA(q) process.

Exercise 5.3 (Sum of MA processes). Let $\{X_t, t \in \mathbb{Z}\}$ and $\{Y_t, t \in \mathbb{Z}\}$ be two real uncorrelated MA processes of order q and p respectively:

$$X_t = \epsilon_t + \sum_{n=1}^q \theta_n \epsilon_{t-n}$$

$$Y_t = \eta_t + \sum_{n=1}^p \rho_n \eta_{t-n}$$

where $\forall n \in \{1, ..., q\}, \theta_n \in \mathbb{R}, \forall n \in \{1, ..., p\}, \rho_n \in \mathbb{R}, \{\epsilon_t, t \in \mathbb{Z}\} \text{ and } \{\eta_t, t \in \mathbb{Z}\} \text{ are white noises whose variances are respectively noted as } \sigma_{\epsilon}^2 \text{ and } \sigma_{\eta}^2. \text{ Let us also introduce } \{Z_t = X_t + Y_t, t \in \mathbb{Z}\}.$

- 1. Which kind of process is $\{Z_t, t \in \mathbb{Z}\}$?
- 2. Let us consider the case p=1, q=1, $0<\theta_1<1$ and $0<\rho_1<1$. Show that $\{\epsilon_t,t\in\mathbb{Z}\}$ and $\{\eta_t,t\in\mathbb{Z}\}$ are uncorrelated
- 3. For p=1, q=1, $\theta_1=\rho_1=\theta$ and $0<\theta<1$, what is the innovation process for $\{Z_t, t\in \mathbb{Z}\}$?
- 4. For p=1, q=1, $0<\theta_1<1$ and $0<\rho_1<1$, compute the variance of the innovation of $\{Z_t, t\in \mathbb{Z}\}$.

Exercise 5.4 (Sum of AR processes). Let $\{X_t, t \in \mathbb{Z}\}$ and $\{Y_t, t \in \mathbb{Z}\}$ be two real uncorrelated AR(1) processes such that

$$X_t = aX_{t-1} + \epsilon_t$$
$$Y_t = bY_{t-1} + \eta_t$$

where $a \in]0,1[, b \in]0,1[$. Moreover, $\{\epsilon_t, t \in \mathbb{Z}\}$ and $\{\eta_t, t \in \mathbb{Z}\}$ are white noises whose variances are respectively noted as σ_{ϵ}^2 and σ_{η}^2 . Let us also introduce $\{Z_t = X_t + Y_t, t \in \mathbb{Z}\}$.

1. Show that there exists a white noise $\{\xi_t, t \in \mathbb{Z}\}$ and a real number $\theta \in]-1,1[$ such that:

$$Z_t - (a+b)Z_{t-1} + abZ_{t-2} = \xi_t - \theta \xi_{t-1}.$$

2. Show that:

$$\xi_t = \epsilon_t + (\theta - b) \sum_{k=0}^{\infty} \theta^k \epsilon_{t-1-k} + \eta_t + (\theta - a) \sum_{h=0}^{\infty} \theta^h \eta_{t-1-h}.$$

- 3. Compute the prediction of Z_{t+1} when $(X_s, s \leq t)$ and $(Y_s, s \leq t)$ are all known.
- 4. Compute the prediction of Z_{t+1} when $(Z_s, s \leq t)$ are all known.

5. Compare the variances of the prediction errors in the two previous cases.

Exercise 5.5 (Forward/backward prediction of a MA(1) process). Let $\{X_t = Z_t + \theta Z_{t-1}, t \in \mathbb{Z}\}$ be a real w.s. process, with $\{Z_t, t \in \mathbb{Z}\}$ centered white noise and $\theta \in]-1,1[$.

- 1. Find the best (in terms of MSE) linear prediction of X_3 as a function of X_1 and X_2 .
- 2. Find the best linear prediction of X_3 as a function of X_4 and X_5 .
- 3. Find the best linear prediction of X_3 as a function of X_1 , X_2 , X_4 and X_5 .

Exercise 5.6 (Canonical representation of an ARMA process). Let $\{X_t, t \in \mathbb{Z}\}$ be a centered, s.o.2 process satisfying the recurrence equation

$$X_t - 2X_{t-1} = \epsilon_t + 4\epsilon_{t-1}$$

where $\{\epsilon_t, t \in \mathbb{Z}\}$ is a white noise with variance σ^2 .

- 1. Compute the spectral density of $\{X_t, t \in \mathbb{Z}\}$.
- 2. Compute the canonical representation of $\{X_t, t \in \mathbb{Z}\}$.
- 3. What is the variance of the innovation of $\{X_t, t \in \mathbb{Z}\}$?
- 4. Find a representation of X_t as a function of $(\epsilon_s, s \leq t)$.

Figure 1: $f_Z(\lambda) = \frac{\sigma^2}{2\pi} \frac{8\cos\lambda + 17}{5 - 4\cos\lambda}$

Exercise 5.7 (ACF of an AR(1) process). Let $\{X_t, t \in \mathbb{Z}\}$ be a w.s. process defined by:

$$X_t - \phi X_{t-1} = \epsilon_t$$

where $\phi \in]-1,1[$ and $\{\epsilon_t, t \in \mathbb{Z}\}$ is a centered WN with variance σ_{ϵ}^2 .

1. Compute the weights ψ_i of the representation

$$X_t = \sum_{k \in \mathbb{Z}} \psi_k \epsilon_{t-k}$$

2. Deduce the autocovariance function of $\{X_t, t \in \mathbb{Z}\}$.

6 Solutions

Solution of Exercise 2.1 1. The r.v. Y satisfies the following equation: $Y = \begin{cases} X & \text{if } |X| < a \\ -X & \text{if } |X| > a \end{cases}$

Figure 2: Y = g(X)

If
$$|y| < a$$

$$p_Y(y) = p_X(y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}}$$
 If $|y| > a$
$$p_Y(y) = p_X(-y) = \frac{e^{-\frac{(-y)^2}{2}}}{\sqrt{2\pi}}$$

Thus, $Y \sim \mathcal{N}(0, 1)$

2. Let us compute the covariance of X and Y^a :

$$\begin{split} \operatorname{Cov}\left(X,Y^{a}\right) &= \mathbb{E}\left[XY^{a}\right] = \mathbb{E}\left[X^{2}\mathbf{1}_{\{|X| < a\}} - X^{2}\mathbf{1}_{\{|X| \geq a\}}\right] \\ &= \mathbb{E}\left[X^{2}\left(\mathbf{1}_{\{|X| < a\}} - \mathbf{1}_{\{|X| \geq a\}}\right)\right] = \mathbb{E}\left[X^{2}\left(2\mathbf{1}_{\{|X| < a\}} - 1\right)\right] \\ &= 2\mathbb{E}\left[X^{2}\mathbf{1}_{\{|X| < a\}}\right] - \mathbb{E}\left[X^{2}\right] = \sqrt{\frac{2}{\pi}}\int_{-a}^{a}x^{2}e^{-\frac{x^{2}}{2}}\,dx - 1 = h(a) \end{split}$$

The function $h: a \to h(a)$ is continuous and strictly increasing. Moreover h(0) = -1 and $\lim_{a \to +\infty} h(a) = \mathbb{E}\left[X^2\right] = 1$. Therefore, $\exists a_0 \in]0, +\infty[: h(a_0) = 0$. For such a value a_0, X and Y^{a_0} are uncorrelated but they are not independent, since Y|X is deterministic. Another way to show that X and Y^{a_0} are not independent is the following. Since they are both Gaussian, if they were independent, the vector (X, Y^{a_0}) would be a Gaussian Vector, therefore $X + Y^{a_0}$ would be Gaussian. But this is impossible, since $X + Y^{a_0} = 2X\mathbf{1}_{|X| < a_0}$ cannot be larger than $2a_0$. This also answers to points 3. As for point 4, the since $X + Y^a$ is not a Gaussian r.v. for any real positive a, the vector (X, Y^a) cannot be a Gaussian vector.

Figure 3: Function $h(a) = Cov(X, Y^a)$

Solution of Exercise 3.1 First, since $\{X_t, t \in \mathbb{Z}\}$ and $\{Y_t, t \in \mathbb{Z}\}$ are w.s.,

$$\begin{split} \mathbb{E}\left[X_{t}\right] &= \mu_{X} \\ \operatorname{Cov}\left(X_{t}, X_{s}\right) &= \gamma_{X}(t-s) \end{split} \qquad \begin{split} \mathbb{E}\left[Y_{t}\right] &= \mu_{Y} \\ \operatorname{Cov}\left(Y_{t}, Y_{s}\right) &= \gamma_{Y}(t-s) \end{split}$$

Moreover, $\{X_t, t \in \mathbb{Z}\}$ and $\{Y_t, t \in \mathbb{Z}\}$ are uncorrelated, meaning that $\forall t, s, \mathsf{Cov}(X_t, Y_s) = 0$, therefore we find:

$$\begin{split} \mathbb{E}\left[Z_{t}\right] &= \mathbb{E}\left[X_{t} + Y_{t}\right] = \mu_{X} + \mu_{Y} \\ \mathsf{Cov}\left(Z_{t}, Z_{s}\right) &= \mathsf{Cov}\left(X_{t} + Y_{t}, X_{s} + Y_{s}\right) = \mathsf{Cov}\left(X_{t}, X_{s}\right) + \mathsf{Cov}\left(X_{t}, Y_{s}\right) + \mathsf{Cov}\left(Y_{t}, X_{s}\right) + \mathsf{Cov}\left(Y_{t}, X_{$$

Therefore $\{Z_t, t \in \mathbb{Z}\}$ is w.s. with $\mathbb{E}[Z_t] = \mu_X + \mu_Y$ and $\gamma_Z(h) = \gamma_X(h) + \gamma_Y(h)$. From the previous point we deduce that the spectral measure of $\{Z_t, t \in \mathbb{Z}\}$ is the sum of those of $\{X_t, t \in \mathbb{Z}\}$ and $\{Y_t, t \in \mathbb{Z}\}$.

Solution of Exercise 3.2 We remind that if g is a measurable moving transformation, it preserves the strict stationarity, meaning that, since $\{\epsilon_t, t \in \mathbb{Z}\}$ is strictly stationary, so $g(\epsilon)$ is.

- 1. and 2. We are in the case of a moving transformation. In both cases g is measurable, so $\{W_t, t \in \mathbb{Z}\}$ and $\{X_t, t \in \mathbb{Z}\}$ are strictly stationary.
- 3. This is not a moving transformation. Actually, Y_t is alternatively equal to ϵ_t and $-\epsilon_t$. Since $\{\epsilon_t, t \in \mathbb{Z}\}$ is iid, the pdf of Y_t is

$$p_Y(y) = \begin{cases} p_{\epsilon}(y) & \text{if } t \text{ is even} \\ p_{\epsilon}(-y) & \text{if } t \text{ is odd} \end{cases}$$

Therefore, if the pdf of ϵ_t is symmetric, $\{Y_t, t \in \mathbb{Z}\}$ is iid; otherwise, it is not strictly stationary.

As for weak stationarity, it is achieved if $\mathbb{E}\left[\epsilon_{t}\right]=0$. This actually implies that $\mathbb{E}\left[Y_{t}\right]=0$. Moreover,

$$\mathsf{Cov}\left(Y_{t}, Y_{s}\right) = \begin{cases} \mathbb{E}\left[\epsilon_{0}^{2}\right] & \text{if } t = s\\ \mathsf{Cov}\left(\pm\epsilon_{t}, \pm\epsilon_{s}\right) = 0 & \text{otherwise} \end{cases}$$

Thus, Y_t is w.s. if $\mathbb{E}\left[\epsilon_t\right] = 0$.

4. In that case, $Z_t = 2\epsilon_t$ if t is even, and $Z_t = 0$ if t is odd, implying that:

$$\mathbb{E}\left[Z_{t}\right] = \begin{cases} 0 & \text{if } t \text{ is even} \\ 0 & \text{if } t \text{ is odd} \end{cases} \qquad \qquad \mathsf{Var}\left(Z_{t}\right) = \begin{cases} 4\sigma_{\epsilon}^{2} & \text{if } t \text{ is even} \\ 0 & \text{if } t \text{ is odd} \end{cases}$$

Therefore $\{Z_t, t \in \mathbb{Z}\}$ is s.o.1, but it is s.o.2 if and only if $\sigma_{\epsilon}^2 = 0$: in that case, $\epsilon_t = Z_t = 0$ for all t.

Solution of Exercise 3.3 1. A covariance matrix is an Hermitian, non-negative matrix. Since ρ is real, matrices Σ_t are Hermitian. As for non-negativity, it is equivalent to the fact that the eigenvalues of Σ_t , let them be $\{\lambda_1, \lambda_2, \dots, \lambda_t\}$, are all non-negative.

Let us define A as a $t \times t$ matrix such that $A_{i,j} = \rho$ for all i and j. Then we have $\Sigma_t = (1 - \rho)I_t + A$. Now, $\lambda_i = (1 - \rho) + \omega_i$, where ω_i is the i-th eigenvalue of A. Since the rank of A is 1, t - 1 of its eigenvalues are equal to 0. Let us say that ω_t is the remaining, non null eigenvalue. Moreover, $\text{Tr}(A) = \sum_{i=1}^t \omega_i = \omega_t$, but also $\text{Tr}(A) = t\rho$, thus $\omega_t = t\rho$. In conclusions we have

$$\forall i \in \{1, 2, \dots, t - 1\}, \lambda_i = 1 - \rho$$

 $\lambda_t = 1 - \rho + t\rho = 1 + (t - 1)\rho$

The non-negativity conditions are:

$$1-\rho \geq 0 \qquad \qquad 1+(t-1)\rho \geq 0$$

$$\rho \leq 1 \qquad \qquad \rho \geq -\frac{1}{t-1} \to_{t\to +\infty} 0^-$$

In conclusion, $0 \le \rho \le 1$.

2. Let us consider a process $\{X_t = \alpha \epsilon_t + \beta Z, t \in \mathbb{Z}\}$, with $\{\epsilon_t, t \in \mathbb{Z}\}$ being a real-valued, zero-mean, unitary-variance strong white noise, Z a real-valued, zero-mean, unitary-variance r.v. independent from any ϵ_t , and $\alpha, \beta \in \mathbb{R}$. We would have:

$$\operatorname{Cov}(X_{t}, X_{t+h}) = \mathbb{E}\left[(\alpha \epsilon_{t} + \beta Z)(\alpha \epsilon_{t+h} + \beta Z)\right] = \alpha^{2} \mathbb{E}\left[\epsilon_{t} \epsilon_{t+h}\right] + \beta^{2} \mathbb{E}\left[Z^{2}\right] = \alpha^{2} \delta_{h} + \beta_{2}$$

$$\Sigma_{t} = \begin{bmatrix} \alpha^{2} + \beta^{2} & \beta^{2} & \beta^{2} & \dots & \beta^{2} \\ \beta^{2} & \alpha^{2} + \beta^{2} & \beta^{2} & \dots & \beta^{2} \\ \beta^{2} & \beta^{2} & \alpha^{2} + \beta^{2} & \dots & \beta^{2} \\ \dots & \dots & \dots & \dots & \dots \\ \beta^{2} & \beta^{2} & \beta^{2} & \dots & \alpha^{2} + \beta^{2} \end{bmatrix}$$

$$\alpha^{2} + \beta^{2} = 1$$

$$\alpha^{2} = 1 - \rho$$

$$\alpha = \sqrt{1 - \rho}$$

$$\beta^{2} = \rho$$

$$\beta = \sqrt{\rho}$$

$$\beta = \sqrt{\rho}$$

Since $\rho \in [0, 1]$, then also $\alpha, \beta \in [0, 1]$.

Solution of Exercise 4.1 1. $X_t = a + bZ_0$ is a constant with respect to t, thus strictly stationary.

$$\mathbb{E}\left[X_{t}\right] = a \qquad \operatorname{Cov}\left(X_{t}, X_{t+h}\right) = \operatorname{Cov}\left(a + bZ_{0}, a + bZ_{0}\right) = b^{2}\sigma^{2} < +\infty$$

Since the acf is a constant, the spectral measure is $\nu(d\lambda) = b^2 \sigma^2 \delta(d\lambda)$.

 $2. X_t = Z_0 \cos(ct)$

$$\mathbb{E}[X_t] = 0 \qquad \text{Cov}(X_t, X_{t+h}) = \mathbb{E}[|Z_0|^2 \cos(ct) \cos(ch + ct)]$$
$$= \frac{\sigma^2}{2} [\cos(ch) + \cos(c(2t+h))]$$

The covariance of X_t and X_{t+h} depends on t, thus the process is not s.o.2.

3.
$$X_t = a + bZ_t + cZ_{t-1}$$

$$\mathbb{E}[X_t] = a \qquad \text{Cov}(X_t, X_{t+h}) = \text{Cov}(bZ_t + cZ_{t-1}, bZ_{t+h} + cZ_{t+h-1})$$

$$= (c^2 + b^2)\gamma_Z(h) + bc\gamma_Z(h-1) + bc\gamma_Z(h+1)$$

$$= (c^2 + b^2)\delta_h + bc\delta_{h-1} + bc\delta_{h+1}$$

Thus, $Cov(X_t, X_{t+h})$ does not depend on t and $Var(X_t) = \gamma_X(0) = c^2 + b^2 < +\infty$. Therefore, it is a w.s. process. Finally,

$$f(\lambda) = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma(h) e^{-ih\lambda} = \frac{1}{2\pi} \left(b^2 + c^2 + 2bc \cos \lambda \right)$$

4. $X_t = Z_1 \cos(ct) + Z_2 \sin(ct)$

$$\begin{split} \mathbb{E}\left[X_t\right] &= 0 \quad \operatorname{Cov}\left(X_t, X_{t+h}\right) = \operatorname{Cov}\left(Z_1 \cos(ct) + Z_2 \sin(ct), Z_1 \cos(c(t+h)) + Z_2 \sin(c(t+h))\right) \\ &= \sigma^2 \left[\cos(ct) \cos(c(t+h)) + \sin(ct) \sin(c(t+h))\right] \\ &= \frac{1}{2}\sigma^2 \left[\cos(2ct + 2ch) + \cos(ch) + \cos(ch) - \cos(2ct + 2ch)\right] = \sigma^2 \cos(ch) \end{split}$$

Thus, $Cov(X_t, X_{t+h})$ does not depend on t and $Var(X_t) = \sigma^2 < +\infty$. Therefore, it is a w.s. process. Finally,

$$\nu(d\lambda) = \frac{\sigma^2}{2} \left[\delta(d\lambda - c) + \delta(d\lambda + c) \right]$$

5.
$$X_t = Z_t \cos(ct) + Z_{t-1} \sin(ct) \Rightarrow \mathbb{E}[X_t] = 0$$

$$\begin{split} \mathsf{Cov} \left(X_t, X_{t+h} \right) &= \mathsf{Cov} \left(Z_t \cos(ct) + Z_{t-1} \sin(ct), Z_{t+h} \cos(c(t+h)) + Z_{t+h-1} \sin(c(t+h)) \right) \\ &= \sigma^2 \left[\delta_h \cos(ct) \cos(c(t+h)) + \delta_{h-1} \cos(ct) \sin(c(t+h)) + \delta_{h+1} \sin(ct) \cos(c(t+h)) + \delta_h \sin(ct) \sin(c(t+h)) \right] \\ &+ \delta_h \sin(ct) \sin(c(t+h)) \right] \\ &= \sigma^2 \left[\delta_h \cos(ch) + \delta_{h-1} \frac{1}{2} (\sin(c(2t+h)) + \sin(ch)) + \delta_{h+1} \frac{1}{2} (\sin(c(2t+h)) - \sin(ch)) \right] \end{split}$$

Thus, $Cov(X_t, X_{t+h})$ depends on t, the process is not s.o.2.

Solution of Exercise 4.2 Let us define the sequence $d: k \in \mathbb{N}_0 \to \det(\Gamma_{k+1})$. We have the following:

$$k=0$$

$$\Gamma_1=[1] \qquad \qquad d_0=\det(\Gamma_1)=1$$

$$k=1 \qquad \qquad \Gamma_2=\left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right] \qquad \qquad d_1=\det(\Gamma_2)=1-\rho^2$$

For $k \geq 2$, we can write Γ_{k+1} as a block matrix:

$$\Gamma_{k+1} = \left[\begin{array}{c|cccc} 1 & \rho & 0 & 0 & \dots & 0 & 0 \\ \rho & & & & & \\ 0 & & & & & \\ \dots & & & & & \\ 0 & & & & & \\ \end{array} \right] = \left[\begin{array}{c|cccc} 1 & \rho & 0 & 0 & \dots & 0 & 0 \\ \rho & 1 & \rho & 0 & \dots & 0 & 0 \\ 0 & \rho & & & & \\ \dots & & \dots & & & \\ 0 & 0 & & & & \\ \end{array} \right]$$

Therefore we have:

$$d_k = \det(\Gamma_{k+1}) = \det(\Gamma_k) - \rho \det \left[\begin{array}{cccc} \rho & \rho & 0 & 0 & \dots & 0 & 0 \\ 0 & & & & & \\ 0 & & & & & \\ & \ddots & & & & \\ 0 & & & & & \\ & & & & & \\ \end{array} \right] = d_{k-1} - \rho^2 d_{k-2}$$

Thus we have that the sequence d is the solution of the following recurrent equation:

$$\begin{cases}
 d_k = d_{k-1} - \rho^2 d_{k-2} \\
 d_0 = 0 \\
 d_1 = 1 - \rho^2
\end{cases}$$
(2)

The characteristic equation is $x^2 - x + \rho^2 = 0$, with solutions

$$x_0 = \frac{1 - \sqrt{1 - 4\rho^2}}{2} \qquad \qquad x_1 = \frac{1 + \sqrt{1 - 4\rho^2}}{2}$$

Therefore, the sequence d_k has the following form:

$$d_k = \begin{cases} \alpha x_0^k + \beta x_1^k & \text{if } x_0 \neq x_1 \Leftrightarrow |\rho| \neq \frac{1}{2} \\ (\alpha + \beta k) x_0^k & \text{if } x_0 = x_1 \Leftrightarrow |\rho| = \frac{1}{2} \Rightarrow x_0 = x_1 = \frac{1}{2} \end{cases}$$

where α and β are defined by the initial conditions.

2. We have now to show that the matrices Γ_k are positive definite given some condition on ρ . Using the expression Eq. (2) for the sequence of determinants, we have to find under which conditions on ρ , the determinants are all positive: $d_k > 0 \forall k \in \mathbb{N}_0$.

We have to consider three cases, with respect to the discriminant of the characteristic equation $x^2 - x + \rho^2 = 0$: positive, null and negative discriminant. Since $\Delta = 1 - 4\rho^2$, these conditions correspond respectively to $|\rho| < \frac{1}{2}$, $|\rho| = \frac{1}{2}$, and $|\rho| > \frac{1}{2}$.

If $\rho = |1/2|$, by applying the initial condition, one can easily find that $\alpha = 1$ and $\beta = 1/2$. In that case $d_k = (1 + \frac{k}{2}) \left(\frac{1}{2}\right)^k > 0 \forall k$. Then the Γ_k matrices are all definite positive, thus they can be autocovariance matrices.

If $|\rho| \neq \frac{1}{2}$, one can find that $\alpha = \frac{\rho^2 - x_0}{\sqrt{\Delta}} = \frac{1}{2} - \sqrt{\Delta} \left(\frac{1}{2} + \frac{\rho^2}{\Delta} \right)$ and $\beta = \frac{x_1 - \rho^2}{\sqrt{\Delta}} = \frac{1}{2} + \sqrt{\Delta} \left(\frac{1}{2} + \frac{\rho^2}{\Delta} \right)$. Now, if $|\rho| < \frac{1}{2}$ then $\Delta > 0$ and both α and β are real. It can also be proven that $\beta > 1$, $\alpha < 0$ and $|\beta| - |\alpha| > |1$. Since $0 < x_0 < x_1$, $|\beta| |x_1|^n > |\alpha| |x_0|^n$, proving that $\forall k \in \mathbb{N}_0, d_k > 0$, q.d.e..

Finally, if $|\rho| > \frac{1}{2}$, it can be shown that d_k has sinusoidal terms, hence it can be negative, which prevents Γ_k from being an autocovariance matrix.

As alternative method, we can use the **Herglotz theorem**, stating that $\gamma(h)$ is positive if and only if it exists a positive measure ν such that $\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} \nu(d\lambda)$. Here we can use the density: $\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda$ where

$$f(\lambda) = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \gamma(h) e^{-ih\lambda} \frac{1}{2\pi} \left(1 + 2\rho \cos \lambda \right)$$

The density is non-negative for all λ if and only if $|\rho| leq \frac{1}{2}$, q.d.e..

3. Let us consider a weak white noise $\{\epsilon_t, t \in \mathbb{Z}\}$ and a process $\{X_t = a\epsilon_t + b\epsilon_{t-1}, t \in \mathbb{Z}\}$, with $a, b \in \mathbb{R}$. Then, the new process is real-valued and centered: $\mathbb{E}[X_t] = 0$. Moreover,

$$\operatorname{Cov}\left(X_{t}, X_{t+h}\right) = \mathbb{E}\left[X_{t} X_{t+h}\right] = \mathbb{E}\left[a^{2} \epsilon_{t} \epsilon_{t+h} + b^{2} \epsilon_{t-1} \epsilon_{t-1+h} + a b \epsilon_{t+h} \epsilon_{t-1} + a b \epsilon_{t} \epsilon_{t-1+h}\right]$$
$$= \left(a^{2} + b^{2}\right) \delta_{h} + a b \left(\delta_{h-1} + \delta_{h+1}\right)$$

Finally, we find a and b by setting:

$$(a^2 + b^2) = 1$$
$$ab = \rho$$

Figure 4: Example of autocovariance function for a band-limited stationary process, Exercise 4.3.

implying $(a^2 + b^2) + 2ab = 1 + 2\rho$ and thus $a + b = \sqrt{1 + 2\rho}$. Then we have:

$$b = \sqrt{1 + 2\rho} - a$$

$$b^2 = a^2 + 1 + 2\rho - 2a\sqrt{1 + 2\rho}$$

$$a^2 + b^2 = 2a^2 + 1 + 2\rho - 2a\sqrt{1 + 2\rho}$$

$$1 = 2a^2 + 1 + 2\rho - 2a\sqrt{1 + 2\rho}$$

$$2a^2 + 2\rho - 2a\sqrt{1 + 2\rho} = 0$$

$$a = \frac{\sqrt{1 + 2\rho} \pm \sqrt{1 - 2\rho}}{2}$$

$$b = \frac{\sqrt{1 + 2\rho} \mp \sqrt{1 - 2\rho}}{2}$$

Note that, since $|\rho| \leq \frac{1}{2}$, $a, b \in \mathbb{R}$.

Solution of Exercise 4.3

$$\begin{split} \gamma(h) &= \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda \\ &= \int_{-f_0}^{f_0} e^{ih\lambda} d\lambda \\ &= \frac{1}{ih} \left(e^{ihf_0} - e^{-ihf_0} \right) \\ &= 2 \frac{\sin(hf_0)}{h} = 2 f_0 \mathsf{Sinc}(f_0 h) \end{split}$$

An example of this function is given in Fig. 4. It is not L^1 since in that case its density would have been continuous.

Solution of Exercise 4.4 1. Let $W = \{\ell \in \mathbb{Z}^+ | (X_1, \dots, X_\ell) \text{ is a set of linearly independent vectors} \}$. If this set is empty, this means that even (X_1) is not a set of linearly independent vectors, thus $\exists a \in \mathbb{R}^+$ such that $\mathsf{Var}(aX_1) = 0$. Since $a \neq 0$, $\gamma(0) = \mathsf{Var}(X_1) = 0/a = 0$.

If W is not empty, we define k as the maximum value in W. Since the elements of W are drawn from \mathbb{Z}^+ , we have $k \geq 1$. Then, by our choice of k, (X_1, \ldots, X_{k+1}) is a not set of linearly independent vectors, while (X_1, \ldots, X_k) is such. This imply $X_{k+1} \in \text{Vect}(X_1, \ldots, X_k)$.

- 2. Since the autocovariance matrix is invertible, its smallest eigenvalue is positive
- 3. We have to show that, $\forall p \geq 1, X_{k+p} \in \text{Vect}(X_1, \dots, X_k)$. If $\gamma(0) = 0$ this is trivial. Otherwise, we will prove it by recurrence.
 - 3.1. The basis of the recurrence is already proved: $X_{k+1} \in \text{Vect}(X_1, \dots, X_k)$
 - 3.2. We have to prove that, if $\forall \ell < p, X_{k+\ell} \in \text{Vect}(X_1, \dots, X_k)$, then, also $X_{k+p} \in \text{Vect}(X_1, \dots, X_k)$.

By stationarity, $X_{k+1} \in \text{Vect}(X_1, \dots, X_k) \Rightarrow X_{k+p} \in \text{Vect}(X_p, \dots, X_{p+k-1})$.

By recurrence hypothesis, each of (X_p, \ldots, X_{p+k-1}) is in $\text{Vect}(X_1, \ldots, X_k)$. Therefore, the same for X_{k+p} , q.e.d.

4. We rewrite Eq.(1) as $X_{k+p} = \varphi_p^T \mathbf{X} = \mathbf{X}^T \varphi_p$, where φ_p is the vector of the scalars $\phi_{p,1}, \dots, \phi_{p,k}$ and \mathbf{X} is the random vector $[X_1, \dots, X_k]^T$. We have

$$\gamma(0) = \mathbb{E}\left[|X_{k+p}|^2\right] = \mathbb{E}\left[\varphi_p^H \mathbf{X} \, \mathbf{X}^H \varphi_p\right] = \varphi_p^H \Gamma_k \varphi_p \ge \lambda_{\min} \|\varphi_p\|^2 \Leftrightarrow \|\varphi_p\|^2 \le \frac{\gamma(0)}{\lambda_{\min}} < +\infty$$

5.

$$\begin{split} \gamma(0) &= \mathsf{Cov}\left(X_{k+p}, X_{k+p}\right) = \mathsf{Cov}\left(X_{k+p}, \sum_{\ell=1}^k \phi_{p,\ell} X_\ell\right) = \sum_{\ell=1}^k \mathsf{Cov}\left(X_{k+p}, \phi_{p,\ell} X_\ell\right) \\ &= \sum_{\ell=1}^k \phi_{p,\ell} \gamma(p+k-\ell) \leq \sum_{\ell=1}^k \sqrt{\frac{\gamma(0)}{\lambda_{\min}}} \gamma(p+k-\ell) \end{split}$$

By passing to the limit for $p \to +\infty$, we obtain $\gamma(0)$ for the left-hand term and 0 for the right-hand term.

Solution of Exercise 5.1 We know that, $\forall t, k \in \mathbb{Z}, S_{t+4k} = S_t$

1. $\mathbb{E}[Y_t] = \mathbb{E}[\beta t + S_t + X_t] = \beta t + \mu_S + \mu_X$. Therefore $\{Y_t, t \in \mathbb{Z}\}$ is not w.s. unless $\beta = 0$. 2.1.

$$\forall k \in \mathbb{Z}, \qquad \gamma_S(h) = \mathsf{Cov}(S_t, S_{t+h}) = \mathsf{Cov}(S_t, S_{t+h+4k}) = \gamma_S(h+4k)$$

Therefore γ_S is periodic with period equal to 4.

2.2. By applying the operator $(1 + B + B^2 + B^3)$ on S, we obtain:

$$\forall t \in \mathbb{Z}, \qquad \bar{S}_t = S_t + S_{t-1} + S_{t-2} + S_{t-3} \qquad \Rightarrow$$

$$\forall t \in \mathbb{Z}, \qquad \bar{S}_t - \bar{S}_{t-1} = S_t - S_{t-4} = 0 \qquad \Rightarrow$$

$$\forall t \in \mathbb{Z}, \qquad \bar{S}_t = \bar{S}_0 = S_0 + S_1 + S_2 + S_3$$

3. First, we observe that, given a process $\{W_t, t \in \mathbb{Z}\}$, $(1-B) \circ (1+B+B^2+B^3) \circ W_t = (1-B^4) \circ W_t$. Therefore,

$$Z_t = (1 - B^4) \circ (\beta t + S_t + X_t) = \beta t + S_t + X_t - \beta (t - 4) - S_{t-4} - X_{t-4} = 4\beta + X_t - X_{t-4}$$

Then, $\mathbb{E}[Z_t] = 4\beta$ and:

$$\mathsf{Cov}\left(Z_{t}, Z_{t+h}\right) = \mathsf{Cov}\left(X_{t} - X_{t-4}, X_{t+h} - X_{t+h-4}\right) = 2\gamma_{X}(h) - \gamma_{X}(h-4) - \gamma_{X}(h+4)$$

Therefore $\{Z_t, t \in \mathbb{Z}\}$ is w.s. and $\gamma_Z(h) = 2\gamma_X(h) - \gamma_X(h-4) - \gamma_X(h+4)$.

4. As an autocovariance function, γ_S is Hermitian, but since $\{S_t, t \in \mathbb{Z}\}$ is real, it is symmetric: $\gamma_S(-h) = \gamma_S(h)$. Moreover, we have shown that γ_S is periodic, thus defined by the values of its period. We set:

$$\gamma_S(0) = \gamma_0$$

$$\gamma_S(1) = \gamma_1$$

$$\gamma_S(2) = \gamma_2$$

$$\gamma_S(3) = \gamma_S(-1) = \gamma_S(1) = \gamma_1$$

Thus γ_S has three degrees of freedom. Let us now show that a function

$$\eta(h) = a + b\cos\left(\frac{\pi}{2}h\right) + c\cos\left(\pi h\right)$$

satisfies all the constraint of γ_S . First we observe that η is real, periodical of period 4 and symmetric. Moreover,

$$\eta(0) = a + b + c$$

$$\eta(1) = a - c$$

$$\eta(2) = a - b + c$$

Finally, the parameters a, b, c are found by solving

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 1 \end{bmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \gamma_0 \\ \gamma_1 \\ \gamma_2 \end{pmatrix} \Rightarrow \begin{array}{l} a = \frac{\gamma_0}{4} + \frac{\gamma_1}{2} + \frac{\gamma_2}{4} \\ b = \frac{\gamma_0}{4} - \frac{\gamma_1}{2} \\ c = \frac{\gamma_0}{2} - \frac{\gamma_2}{2} \\ c = \frac{\gamma_0}{4} - \frac{\gamma_1}{2} + \frac{\gamma_2}{4} \end{array}$$

As for the spectral measure, from $\gamma_S(h) = a + b \cos\left(\frac{\pi}{2}h\right) + c \cos\left(\pi h\right)$, we have that $\nu_S(d\lambda) = a\delta_0(d\lambda) + \frac{b}{2}\delta_{\frac{\pi}{2}}(d\lambda) + \frac{b}{2}\delta_{-\frac{\pi}{2}}(d\lambda) + c\delta_{\pi}(d\lambda)$.

$$\begin{split} \gamma_Z(h) &= 2\gamma_X(h) - \gamma_X(h-4) - \gamma_X(h+4) \Rightarrow \\ f_Z(\lambda) &= 2f_X(\lambda) - f_X(\lambda)e^{-i4\lambda} - f_X(\lambda)e^{i4\lambda} \\ &= 2f_X(\lambda) \left(1 - \frac{e^{i4\lambda} + e^{-i4\lambda}}{2}\right) = 2f_X(\lambda) \left[1 - \cos(4\lambda)\right] = 4f_X(\lambda)\sin^2(2\lambda) \end{split}$$

Solution of Exercise 5.2 1. For a centered w.s. process $\{X_t, t \in \mathbb{Z}\}$, the innovation process is defined at each t as the difference between X_t and its projection on the *linear past* of the process. Thus, $\{Z_t, t \in \mathbb{Z}\}$ is the innovation process of $\{X_t, t \in \mathbb{Z}\}$, and as such, it is a white noise (Corollary 2.4.1 in the text book). Let us prove that in this special case.

It is easy to see that $\mathbb{E}[Z_t] = 0$. We also have that $Z_t \in \mathcal{H}_t$, since both X_t and \widetilde{X}_t are in \mathcal{H}_t .

$$\begin{aligned} \operatorname{Proj}(Z_{t}|\mathcal{H}_{t-1}) &= \operatorname{Proj}(X_{t} - \widetilde{X}_{t}|\mathcal{H}_{t-1}) = \widetilde{X}_{t} - \widetilde{X}_{t} = 0 \Rightarrow Z_{t} \perp \mathcal{H}_{t-1} \Rightarrow Z_{t} \perp \widetilde{X}_{t} \Rightarrow \\ \mathbb{E}\left[|X_{t}|^{2}\right] &= \mathbb{E}\left[|Z_{t}|^{2} + |\widetilde{X}_{t}|^{2}\right] = \mathbb{E}\left[|Z_{t}|^{2}\right] + \mathbb{E}\left[|\widetilde{X}_{t}|^{2}\right] \Rightarrow \mathbb{E}\left[|Z_{t}|^{2}\right] = \mathbb{E}\left[|X_{t}|^{2}\right] - \mathbb{E}\left[|\widetilde{X}_{t}|^{2}\right] \\ \forall s < t, Z_{s} \in \mathcal{H}_{s} \subseteq \mathcal{H}_{t-1} \Rightarrow Z_{t} \perp Z_{s} \Leftrightarrow \operatorname{Cov}(Z_{t}, Z_{s}) = 0 \end{aligned} \tag{4}$$

Eq. (3) shows that $Cov(Z_t, Z_t)$ does not depend on t and Eq. (3) shows that $Cov(Z_t, Z_{t+h})$ does not depend on t neither, and is null. Therefore, $\{Z_t, t \in \mathbb{Z}\}$ is a weak white noise.

- 2. $\forall s \leq t-q-1$, $\mathsf{Cov}\left(X_t, X_s\right) = \gamma_X(t-s) = 0$ since t-s > q. This means that $\forall s \leq t-q-1, X_t \perp X_s$, q.e.d.
- 3. We know that $X_t \perp \mathcal{H}_{t-q-1}$ and $X_t \in \mathcal{H}_t$, i.e., X_t is in the orthogonal complement of \mathcal{H}_{t-q-1} in \mathcal{H}_t , which is a space with q+1 dimensions. In this space, the set $(Z_s, s \in \{t, t-1, \ldots, t-q\})$ is made up of orthogonal vectors, so it is a basis, implying $X_t \in \text{Vect}(Z_s, s \in \{t, t-1, \ldots, t-q\})$.
- 4. From the previous, we can write $X_t = \sum_{p=0}^q \theta_{t,p} Z_{t-p}$. The coefficients of the projection on the orthogonal basis are found as:

$$\begin{split} \theta_{t,p} &= \mathsf{Cov}\left(X_t, Z_{t-p}\right) = \mathsf{Cov}\left(X_t, X_{t-p} - \widetilde{X}_{t-p}\right) \\ &= \gamma_X(p) - \mathsf{Cov}\left(X_t, \widetilde{X}_{t-p}\right) \end{split}$$

By stationarity, $Cov(X_t, \widetilde{X}_{t-p})$ does not depend on t, thus $\theta_{t,p}$ also only depends on p, and can be referred to as θ_p . In conclusion, we can write:

$$\forall t \in \mathbb{Z} X_t = \sum_{p=0}^q \theta_p Z_{t-p},$$

with $\{Z_t, t \in \mathbb{Z}\}$ a white noise: this is the definition of MA(q) process.

Solution of Exercise 5.3 1. Let us compute the average and the covariance for the sum of the MA processes:

$$\mathbb{E}\left[Z_{t}\right] = \mathbb{E}\left[X_{t}\right] + \mathbb{E}\left[Y_{t}\right] = 0$$

$$\mathsf{Cov}\left(Z_{t+h}, Z_{t}\right) = \mathsf{Cov}\left(X_{t+h} + Y_{t+h}, X_{t} + Y_{t}\right) = \gamma_{X}(h) + \gamma_{\ell}(h)$$

Thus, $\{Z_t, t \in \mathbb{Z}\}$ is a w.s. process. Moreover, since $\gamma_Z(h) = \gamma_X(h) + \gamma_I(h)$, the support of $\gamma_Z(h)$ is $s = \max\{p, q\}$. As shown in Exercise 5.2, this implies that $\{Z_t, t \in \mathbb{Z}\}$ is an MA(s) process.

2. Let us use the shortcuts $\theta = \theta_1$ and $\rho = \rho_1$. The process X can be seen as the filtering of the WN ϵ with an FIR filter with impulse response $a: n \in \mathbb{Z} \to \delta_n + \theta \delta_{n-1}$. This means that ϵ can be recovered from X by applying the inverse filter with impulse response

$$b:n\in\mathbb{Z}\to\begin{cases} \left(-\theta\right)^n & \text{if } n\geq 0\\ 0 & \text{otherwise} \end{cases}$$

Similarly, we can recover η from Y. We have

$$\epsilon_{t} = \sum_{k=0}^{+\infty} (-\theta)^{k} X_{t-k} \qquad \eta_{t} = \sum_{k=0}^{+\infty} (-\rho)^{k} Y_{t-k}$$

$$\mathbb{E}\left[\epsilon_{t}, \eta_{s}\right] = \mathbb{E}\left[\sum_{k=0}^{+\infty} (-\theta)^{k} X_{t-k} \sum_{\ell=0}^{+\infty} (-\rho)^{\ell} Y_{s-\ell}\right] \qquad = \sum_{k=0}^{+\infty} \sum_{\ell=0}^{+\infty} (-\theta)^{k} (-\rho)^{\ell} \mathbb{E}\left[X_{t-k} Y_{s-\ell}\right] = 0 \text{ q.e.d.}$$

3. In this case, introducing $\xi_t = \epsilon_t + \eta_t$, we have $Z_t = \epsilon_t + \eta_t + \theta \left(\epsilon_{t-1} + \eta_{t-1} \right) = \xi_t + \theta \xi_{t-1}$. Now

$$\mathbb{E}\left[\xi_{t}\right] = \mathbb{E}\left[\epsilon_{t}\right] + \mathbb{E}\left[\eta_{t}\right] = 0 \tag{5}$$

$$Cov(\xi_t, \xi_s) = Cov(\epsilon_t, \epsilon_s) + Cov(\epsilon_t, \eta_s) + Cov(\eta_t, \epsilon_s) + Cov(\eta_t, \eta_s) = (\sigma_\epsilon^2 + \sigma_n^2)\delta_{t-s}$$
(6)

$$\xi_t = \sum_{k=0}^{+\infty} (-\theta)^k (X_{t-k} + Y_{t-k}) = \sum_{k=0}^{+\infty} (-\theta)^k Z_{t-k} \in \mathcal{H}_Z^t$$
 (7)

We observe that by Eqs. (5) and (6), ξ is WN; moreover, by Eq. (7), $\forall s < t$, $\mathsf{Cov}(\xi_t, Z_s) = \mathsf{Cov}(\xi_t, Z_s) = \mathsf{Cov}\left(\sum_{k=0}^{+\infty} (-\theta)^k Z_{t-k} \in \mathcal{H}_Z^t, Z_s\right) = 0$, thus $\xi_t \perp \mathcal{H}_Z^{t-1}$. Again by Eq. (7), $\theta \xi_{t-1} \in \mathcal{H}_Z^{t-1}$.

Therefore, $Z_t = \xi_t + \theta \xi_{t-1}$ expresses Z_t as a term independent from its linear past and a term in the linear past. In conclusion ξ is the innovation process of Z (and we already proved that it is WN).

4. In this case we have:

$$X_{t} = \epsilon_{t} + \theta \epsilon_{t-1} \qquad Y_{t} = \eta_{t} + \rho \eta_{t-1} \Rightarrow$$

$$\gamma_{X}(h) = \sigma_{\epsilon}^{2} \left[(1 + \theta^{2}) \delta_{h} + \theta \delta_{h-1} + \theta \delta_{h+1} \right] \qquad \gamma_{Y}(h) = \sigma_{\eta}^{2} \left[(1 + \rho^{2}) \delta_{h} + \rho \delta_{h-1} + \rho \delta_{h+1} \right]$$

In Question 1 we have shown that Z must be MA(1). This means that it must exist a WN ϕ and a real number α such that ϕ is the innovation of Z and

$$Z_t = \phi_t + \alpha \phi_{t-1}$$
$$\gamma_Z(h) = \sigma_\phi^2 \left[(1 + \alpha^2) \delta_h + \delta_{h-1} + \delta_{h+1} \right]$$

The unknown α and σ_{ϕ}^2 can be found by the identity $\gamma_Z(h) = \gamma_X(h) + \gamma_Y(h)$:

$$\begin{split} \sigma_{\phi}^2 \left[(1+\alpha^2)\delta_h + \delta_{h-1} + \delta_{h+1} \right] &= \sigma_{\epsilon}^2 \left[(1+\theta^2)\delta_h + \theta \delta_{h-1} + \theta \delta_{h+1} \right] + \sigma_{\eta}^2 \left[(1+\rho^2)\delta_h + \rho \delta_{h-1} + \rho \delta_{h+1} \right] \\ \left\{ \begin{array}{c} \sigma_{\phi}^2 (1+\alpha^2) = \sigma_{\epsilon}^2 (1+\theta^2) + \sigma_{\eta}^2 (1+\rho^2) \\ \sigma_{\phi}^2 \alpha = \sigma_{\epsilon}^2 \theta + \sigma_{\eta}^2 \rho \end{array} \right. \end{split}$$

Let us first set $a = \sigma_{\epsilon}^2(1+\theta^2) + \sigma_{\eta}^2(1+\rho^2)$ and $b = \sigma_{\epsilon}^2\theta + \sigma_{\eta}^2\rho$. We find that $\alpha = \frac{b}{\sigma_{\phi}^2}$ and then:

$$\begin{split} \sigma_{\phi}^2 \left(1 + \frac{b^2}{\sigma_{\phi}^4} \right) &= a & \sigma_{\phi}^2 + \frac{b^2}{\sigma_{\phi}^2} - a = 0 \\ \sigma_{\phi}^4 - a \sigma_{\phi}^2 + b^2 &= 0 & \sigma_{\phi}^2 = \frac{1}{2} \left(a \pm \sqrt{a^2 - 4b^2} \right) \\ \sigma_{\phi}^2 &= \frac{1}{2} \left[\sigma_{\epsilon}^2 (1 + \theta^2) + \sigma_{\eta}^2 (1 + \rho^2) \pm \sqrt{\sigma_{\epsilon}^4 (1 - \theta^2)^2 + \sigma_{\eta}^4 (1 - \rho^2)^2 + 2\sigma_{\epsilon}^2 \sigma_{\eta}^2 (1 + \theta^2) (1 + \rho^2)} \right] \end{split}$$

Solution of Exercise 5.4 Let us observe that $\epsilon_t = X_t - aX_{t-1}$ and $\eta_t = Y_t - bY_{t-1}$. We can write the following:

$$\begin{split} Z_t - (a+b)Z_{t-1} + abZ_{t-2} &= X_t + Y_t - aX_{t-1} - aY_{t-1} - bX_{t-1} - bY_{t-1} + abX_{t-2} + abY_{t-2} \\ &= X_t - aX_{t-1} - b(X_{t-1} - bX_{t-2}) + Y_t - bY_{t-1} - a(Y_{t-1} - bY_{t-2}) \\ &= \epsilon_t - b\epsilon_{t-1} + \eta_t - a\eta_{t-1} = W_t + V_t \end{split}$$

Now, both $\{W_t = \epsilon_t - b\epsilon_{t-1}, t \in \mathbb{Z}\}$ and $\{V_t = \eta_t - a\eta_{t-1}, t \in \mathbb{Z}\}$ are MA(1) processes, and thus their sum is also a MA(1) process, meaning that it exists a WN ξ and a real number $\theta \in]-1,1[$ such that $Z_t - (a+b)Z_{t-1} + abZ_{t-2} = \xi_t - \theta\xi_{t-1}, q.e.d.$

2. From the previous point, we can write

$$\xi_t - \theta \xi_{t-1} = \epsilon_t - b\epsilon_{t-1} + \eta_t - a\eta_{t-1} \tag{8}$$

$$(1 - \theta B) \circ \xi_t = (1 - bB) \circ \epsilon_t + (1 - aB) \circ \eta_t \tag{9}$$

where we use the back-shift operator B. The left-hand term of this equation can be read as the filtering of ξ with a FIR with impulse response $h_k = \delta_k - \theta \delta_{k-1}$. As shown in Exercise 5.3, this filter can be inversed by applying a filter with impulse response

$$g: n \in \mathbb{Z} \to \begin{cases} (\theta)^n & \text{if } n \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Apply the inverse filter to both members of Eq. (9), we get:

$$\begin{split} \xi_t &= (1-bB) \sum_{n \geq 0} \theta^n \epsilon_{t-n} + (1-aB) \sum_{n \geq 0} \theta^n \eta_{t-n} \\ &= (1-bB) \left(\epsilon_t + \sum_{n \geq 1} \theta^n \epsilon_{t-n} \right) + (1-aB) \left(\eta_t + \sum_{n \geq 1} \theta^n \eta_{t-n} \right) \\ &= \epsilon_t + \sum_{n \geq 1} \theta^n \epsilon_{t-n} - b \sum_{n \geq 0} \theta^n \epsilon_{t-1-n} + \eta_t + \sum_{n \geq 1} \theta^n \eta_{t-n} - a \sum_{n \geq 0} \theta^n \eta_{t-1-n} \\ &= \epsilon_t + \sum_{m \geq 0} \theta^{m+1} \epsilon_{t-1-m} - b \sum_{n \geq 0} \theta^n \epsilon_{t-1-n} + \eta_t + \sum_{m \geq 0} \theta^{m+1} \eta_{t-1-m} - a \sum_{n \geq 0} \theta^n \eta_{t-1-n} \\ &= \epsilon_t + (\theta - b) \sum_{k \geq 0} \theta^k \epsilon_{t-1-k} + \eta_t + (\theta - a) \sum_{k \geq 0} \theta^k \eta_{t-1-k} \quad q.e.d. \end{split}$$

3. We write the following:

$$Z_{t+1} = (a+b)Z_t - abZ_{t-1} + \xi_{t+1} - \theta\xi_t$$

$$= (a+b)Z_t - abZ_{t-1} + \epsilon_{t+1} + (\theta-b)\sum_{k\geq 0} \theta^k \epsilon_{t-k} + \eta_{t+1} + (\theta-a)\sum_{k\geq 0} \theta^h \eta_{t-h} - \theta\xi_t$$

$$= [\epsilon_{t+1} + \eta_{t+1}] + \left[(a+b)Z_t - abZ_{t-1} + (\theta-b)\sum_{k\geq 0} \theta^k \epsilon_{t-k} + (\theta-a)\sum_{k\geq 0} \theta^h \eta_{t-h} - \theta\xi_t \right]$$
(10)

If we know $(X_s \forall s \leq t)$ and $(Y_s \forall s \leq t)$, we also know Z_t , Z_{t-1} . Moreover, by applying an inverse filtering, we know also $\epsilon_{t-k} \forall k \geq 0$ and $\eta_{t-h} \forall h \geq 0$. On the contrary, we do not know ϵ_{t+1} nor η_{t+1} , and both are uncorrelated with $(X_s \forall s \leq t)$ and $(Y_s \forall s \leq t)$ Therefor the first term in the right-hand part of Eq. (10) is the innovation, while the second term is the prediction.

4. In this case we do not know separately $(X_s \forall s \leq t)$ and $(Y_s \forall s \leq t)$, but only their sum. We write therefore:

$$Z_{t+1} = (a+b)Z_t - abZ_{t-1} + \xi_{t+1} - \theta \xi_t$$

= $\xi_{t+1} + (a+b)Z_t - abZ_{t-1} - \theta \xi_t$
= $\xi_{t+1} + \widetilde{Z}_t$

Thus ξ_{t+1} is the innovation and $\widetilde{Z}_t = (a+b)Z_t - abZ_{t-1} - \theta \xi_t$ is the prediction. Again, ξ_t is obtained by inverse filtering of $Z_t - (a+b)Z_{t-1} + abZ_{t-2}$.

5. In the first case,

$$\mathbb{E}\left[\left|\eta_{t+1} + \epsilon_{t+1}\right|^2\right] = \sigma_{\eta}^2 + \sigma_{\epsilon}^2.$$

In the second we have:

$$\xi_t = \epsilon_t + (\theta - b) \sum_{k \ge 0} \theta^k \epsilon_{t-1-k} + \eta_t + (\theta - a) \sum_{k \ge 0} \theta^k \eta_{t-1-k}$$
$$= \epsilon_t + (\theta - b) \alpha_t + \eta_t + (\theta - a) \beta_t$$

with:

$$\alpha_t = \sum_{k>0} \theta^k \epsilon_{t-1-k} \qquad \beta_t = \sum_{k>0} \theta^k \eta_{t-1-k}$$

Therefore ξ is expressed as the sum of four uncorrelated processes. We can then compute its variance, referred to as σ^2 , as the sum of the four variances:

$$\sigma^2 = \mathsf{Var}(\xi_t) = \sigma_\epsilon^2 + (\theta - b)^2 \mathsf{Var}(\alpha_t) + \sigma_n^2 + (\theta - a)^2 \mathsf{Var}(\beta_t)$$

We have:

$$\begin{aligned} \operatorname{Var}\left(\alpha_{t}\right) &= \mathbb{E}\left[\sum_{k \geq 0} \theta^{k} \epsilon_{t-1-k} \sum_{\ell \geq 0} \theta^{\ell} \epsilon_{t-1-\ell}\right] = \sum_{k \geq 0} \sum_{\ell \geq 0} \theta^{k} \theta^{\ell} \gamma_{\epsilon}(k-\ell) \\ &= \sum_{k \geq 0} \sum_{\ell \geq 0} \theta^{k} \theta^{\ell} \sigma_{\epsilon}^{2} \delta_{k-\ell} = \sigma_{\epsilon}^{2} \sum_{k \geq 0} \theta^{2} k = \frac{\sigma_{\epsilon}^{2}}{1-\theta^{2}} \end{aligned}$$

and, likewise, $Var(\beta_t) = \frac{\sigma_{\eta}^2}{1-\theta^2}$. In conclusion,

$$\sigma^{2} = \text{Var}(\xi_{t}) = \sigma_{\epsilon}^{2} + (\theta - b)^{2} \frac{\sigma_{\epsilon}^{2}}{1 - \theta^{2}} + \sigma_{\eta}^{2} + (\theta - a)^{2} \frac{\sigma_{\eta}^{2}}{1 - \theta^{2}}$$
$$= \sigma_{\epsilon}^{2} \left[1 + \frac{(\theta - b)^{2}}{1 - \theta^{2}} \right] + \sigma_{\eta}^{2} \left[1 + \frac{(\theta - a)^{2}}{1 - \theta^{2}} \right]$$

Thus we see that the variance of the innovation in the second case is always larger than that of the first case, unless $\theta = a = b$.

Solution of Exercise 5.5 We observe that $\{X_t, t \in \mathbb{Z}\}$ is a MA(1) process, thus, if γ be the autocovariance function of $\{X_t, t \in \mathbb{Z}\}$, its support is $\{-1, 0, +1\}$. In facts, we have:

$$\gamma(h) = \mathbb{E}\left[(Z_t + \theta Z_{t-1})(Z_{t+h} + \theta Z_{t+h-1}) \right] = \sigma^2 \left[(1 + \theta^2)\delta_h + \theta \delta_{h-1} + \theta \delta_{h+1} \right]$$

1. The linear prediction of X_3 is written as:

$$\widehat{X}_3 = \alpha X_1 + \beta X_2.$$

Our problem consists in minimizing the mean square error $\mathbb{E}\left[\left(X_3 - \widehat{X}_3\right)^2\right]$. The optimal solution is found the the error $(X_3 - \widehat{X}_3)$ is orthogonal to data (X_1, X_2) . Thus we have:

$$\begin{aligned} \operatorname{Cov}\left(X_3-\widehat{X}_3,X_1\right) &= 0 & \operatorname{Cov}\left(X_3-\widehat{X}_3,X_2\right) &= 0 \\ \operatorname{Cov}\left(X_3-\alpha X_1-\beta X_2,X_1\right) &= 0 & \operatorname{Cov}\left(X_3-\alpha X_1-\beta X_2,X_2\right) &= 0 \\ \gamma(2)-\alpha\gamma(0)-\beta\gamma(1) &= 0 & \gamma(-1)-\alpha\gamma(1)-\beta\gamma(0) &= 0 \\ -\alpha\sigma^2(1+\theta^2)-\beta\sigma^2\theta &= 0 & \sigma^2\theta-\beta\sigma^2(1+\theta^2) &= 0 \end{aligned}$$

This is a linear system, and we can actually get rid of σ^2 :

$$\begin{bmatrix} (1+\theta^2) & \theta \\ \theta & (1+\theta^2) \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ \theta \end{bmatrix}$$

We find:

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{\theta^4 + \theta^2 + 1} \begin{bmatrix} (1 + \theta^2) & -\theta \\ -\theta & (1 + \theta^2) \end{bmatrix} \begin{bmatrix} 0 \\ \theta \end{bmatrix} = \begin{bmatrix} \frac{-\theta^2}{\theta^4 + \theta^2 + 1} \\ \frac{\theta + \theta^3}{\theta^4 + \theta^2 + 1} \end{bmatrix}$$

2. If we now set

$$\widehat{X}_3 = \alpha X_5 + \beta X_4.$$

and we look for α, β minimizing the MSE, we end up exactly with the same equation as before, since for real processes, $\gamma(h) = \gamma(-h)$. Therefore, the same optimal values of the coefficients are found:

$$\alpha = \frac{-\theta^2}{\theta^4 + \theta^2 + 1} \qquad \beta = \frac{\theta + \theta^3}{\theta^4 + \theta^2 + 1}$$

3. Let us define the spaces $V_1 = \text{Vect}(X_1, X_2)$ and $V_2 = \text{Vect}(X_4, X_5)$. Any element of V_1 is uncorrelated to any element of V_2 (*i.e.*, they are orthogonal):

$$\begin{split} &\operatorname{Cov}\left(aX_{1}+bX_{2},cX_{4}+dX_{5}\right)\\ =∾\operatorname{Cov}\left(X_{1},X_{4}\right)+ad\operatorname{Cov}\left(X_{1},X_{5}\right)+bc\operatorname{Cov}\left(X_{2},X_{4}\right)+bd\operatorname{Cov}\left(X_{2},X_{5}\right)\\ =∾\gamma(-3)+ad\gamma(-4)+bc\gamma(-2)+bd\gamma(-3)=0 \end{split}$$

Thus, $Vect(X_1, X_2, X_4, X_5) = V_1 \oplus V_2$, which implies that

$$\widehat{X}_3 = \text{Proj}(X_3|V_1 \oplus V_2) = \text{Proj}(X_3|V_1) + \text{Proj}(X_3|V_2) = \widehat{X}_{3,1} + \widehat{X}_{3,2}$$

Since $\widehat{X}_{3,1}$ and $\widehat{X}_{3,2}$ are orthogonal, when we impose $\operatorname{Cov}\left(X_3-\widehat{X}_3,X_i\right)=0$, with $i\in\{1,2,4,5\}$, only one between $\widehat{X}_{3,1}$ and $\widehat{X}_{3,2}$ gives a non-zero covariance (depending on i). Therefore, we end up with $\operatorname{Cov}\left(X_3-\widehat{X}_{3,1},X_i\right)=0$ or $\operatorname{Cov}\left(X_3-\widehat{X}_{3,2},X_i\right)=0$, *i.e.*, the same equations as in Questions 1 and 2. Therefore we find the same partial solutions. In conclusion:

$$\widehat{X}_3 = \frac{-\theta^2}{\theta^4 + \theta^2 + 1} X_1 + \frac{\theta + \theta^3}{\theta^4 + \theta^2 + 1} X_2 + \frac{\theta + \theta^3}{\theta^4 + \theta^2 + 1} X_4 + \frac{-\theta^2}{\theta^4 + \theta^2 + 1} X_5$$

$$= \frac{\theta + \theta^3}{\theta^4 + \theta^2 + 1} (X_2 + X_4) - \frac{\theta^2}{\theta^4 + \theta^2 + 1} (X_1 + X_5)$$

Solution of Exercise 1 1. Let us first rewrite the equation defining X as an ARMA(p,q) equation:

$$X_t - \sum_{k=1}^p \phi_k X_{t-k} = \epsilon_t + \sum_{k=1}^p \theta_k \epsilon_{t-k}$$
(11)

Let us introduce the polynomials $\Phi(z)$, $\Theta(z)$:

$$\Phi(z) = 1 - \sum_{k=1}^{p} \phi_k z^k \qquad \qquad \Theta(z) = 1 + \sum_{k=1}^{p} \theta_k z^k$$

Introducing the backshift operator B, the ARMA equation (Eq. (11)) can be written as:

$$\Phi(B)X = \Theta(B)\epsilon \tag{12}$$

Now we have just to check that a) $\Phi(z)$ and $\Theta(z)$ do not have common roots and that b) $\Phi(z)$ does not vanish on the unit circle of \mathbb{C} . This is straighforward since the only root of Φ is 1/2 while the only root of Θ is -1/4. We can then apply theorem 3.3.2: X is the unique w.s. solution of Eq. (11), and it admits a spectral density function given by:

$$f_Z(\lambda) = \frac{\sigma^2}{2\pi} \frac{\left|\Theta(e^{-i\lambda})\right|^2}{\left|\Phi(e^{-i\lambda})\right|^2}$$

In our case we have the following function, shown in Fig. 1:

$$f_Z(\lambda) = \frac{\sigma^2}{2\pi} \frac{\left|1 + 4e^{-i\lambda}\right|^2}{\left|1 - 2e^{-i\lambda}\right|^2} = \frac{\sigma^2}{2\pi} \frac{8\cos\lambda + 17}{5 - 4\cos\lambda}.$$

2. We remind that a canonical representation of an ARMA process is characterized by the fact that X is a causal and invertible filtering of weak noise. This is equivalent to say that neither Φ nor Θ vanish on the closed unit disk $\Delta_1 = \{z \in \mathbb{C} : |z| \leq 1\}$.

A given representation of an ARMA process is not necessarily canonical but it is possible to get a canonical representation by using an *all-pass filter*. We recall that, given $\psi \in \ell^1$, the filter F_{ψ} is an all-pass filter if and only if:

$$\forall z \in \Gamma_1, \left| \sum_{k \in \mathbb{Z}} \psi_k z^k \right| = c,$$

where $\Gamma_1 = \{\{z \in \mathbb{C} : |z| = 1\}$ is the complex unit circle and c > 0 is a constant.

A key property of all-pass filters is that they transform a WN process A_t into another WN process B_t . To prove this, let us first recall that, since $\psi \in \ell^1$, then theorem 3.1.2 and corollary 3.1.3 apply. Thus $B = F_{\psi}(A)$ is a w.s. centered process, with spectral density function

$$f_B(\lambda) = \frac{\sigma_A^2}{2\pi} \left| \sum_{k \in \mathbb{Z}} \psi_k e^{-ik\lambda} \right|^2 = \frac{\sigma_A^2}{2\pi} c^2,$$

where we applied the definition of all-pass filter for $z = e^{-i\lambda} \in \Gamma_1$. We also have that:

$$f_B(\lambda) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \gamma_B(h) e^{-ik\lambda}$$

Comparing the two last equations and remembering that the Discrete-Time Fourier Transform is injective for ℓ^1 sequences, we get $\gamma_B(h) = c^2 \sigma_A^2 \delta_h$,

A second, crucial property of all-pass filters is that they can be used to invert the moduli of the roots of a polynomial (example 3.2.2): let Q be a polynomial defined by $Q(z) = \prod_{k=1}^{q} (1 - \nu_k z)$, such that none of the ν_k have neither unitary nor zero modulus. We observe that Q(0) = 1 and that the q roots of Q are ν_k^{-1} for $k = 1, \ldots, q$.

Now we define the polinomial $\widetilde{Q}(z) = \prod_{k=1}^n \left(1 - \overline{\nu_k^{-1}}z\right)$ and the function $\Xi: z = \frac{Q}{\widetilde{Q}}(z)$. Ξ is a rational function with poles $\overline{\nu_k} \neq \Gamma_1$. Then we know that it exists a unique ℓ^1 sequence ξ_k such that $\Xi(z) = \sum_{k \in \mathbb{Z}} \xi_k z^k$. Let us now prove that the filter F_{ξ} is then an all-pass. First, we have:

$$\left| \sum_{k \in \mathbb{Z}} \xi_k z^k \right| = \prod_{k=1}^n \frac{|1 - \nu_k z|}{\left| 1 - \overline{\nu_k^{-1}} z \right|}.$$
 (13)

Now, since $z \in \Gamma_1 \Rightarrow \overline{z} = z^{-1}$, for any k = 1, ..., n and for $z \in \Gamma_1$ we have:

$$\left| 1 - \overline{\nu_k^{-1}} z \right| = \left| -\overline{\nu_k^{-1}} z \right| \left| -\overline{\nu_k} z^{-1} + 1 \right| = \left| \overline{\nu_k^{-1}} \right| |z| \left| 1 - \overline{\nu_k} z^{-1} \right| = \left| \overline{\nu_k^{-1}} \right| |z| \left| 1 - \overline{\nu_k} z \right|
= \left| \overline{\nu_k^{-1}} \right| \left| \overline{1 - \nu_k} z \right| = \left| \overline{\nu_k^{-1}} \right| |1 - \nu_k z|.$$

Replacing in Eq. (13), we get:

$$\left| \sum_{k \in \mathbb{Z}} \xi_k z^k \right| = \prod_{k=1}^n \frac{|1 - \nu_k z|}{\left| \overline{\nu_k^{-1}} \right| |1 - \nu_k z|} = \prod_{k=1}^n |\nu_k| = c > 0 \qquad \Box$$

Equipped with the all-pass filter properties, we can rewrite an ARMA filter in canonical form. Let us consider an all-pass filter in the form $\Xi = a\frac{Q}{\bar{Q}}$. The roots ν_k^{-1} and the constant a will be defined later on. If Φ has no roots on Γ_1 we know that F_{ϕ} is invertible. Likewise, by construction Ξ is invertible. Using a fraction notation to refer to inverse filters, we can formally rewrite Eq. (12) as:

$$X = \frac{\Theta}{\Phi} \circ \epsilon = \frac{\Theta}{\Phi} \circ \frac{\Xi}{\Xi} \circ \epsilon = \left(\frac{\Theta}{\Phi\Xi}\right) \circ (\Xi \circ \epsilon) = \frac{\widetilde{\Theta}}{\widetilde{\Phi}} \circ \eta$$

with:

$$\frac{\widetilde{\Theta}}{\widetilde{\Phi}} = \frac{\Theta}{\Phi \Xi} \qquad \qquad \eta = \Xi \circ \epsilon.$$

We already know that η is a WN process, since it is an all-pass filtering of a WN. We have to show that we can build such a $\Xi(B) = a \frac{Q}{\widetilde{Q}}(B)$ that $\widetilde{\Theta}$ and $\widetilde{\Phi}$ do not have roots in the closed unit disk Δ_1 . This is always possible since we can write:

$$\frac{\widetilde{\Theta}(z)}{\widetilde{\Phi}(z)} = \frac{\Theta(z)}{\Phi(z)} \frac{1}{\Xi(z)} = \frac{\prod_{k=1}^q (1-\nu_k^{(\theta)}z)}{\prod_{k=1}^p (1-\nu_k^{(\phi)}z)} \frac{1}{a} \prod_{k=1}^n \frac{1-\overline{\nu_k^{-1}}z}{1-\nu_k z}$$

where $\nu_k^{(\phi)}$ (resp. $\nu_k^{(\theta)}$) are the inverse of the roots of Φ (resp. of Θ). Now we build Ξ such that we cancel out the roots of Φ and of Θ in Δ_1 . More precisely, to cancel out a given $\nu_k^{(\theta)}$ we introduce as a root of Q the number $\nu_k = \nu_k^{(\theta)}$ and to cancel out a given $\nu_k^{(\phi)}$ we introduce as a root of Q the number $\nu_k = \left(\overline{\nu_k^{(\theta)}}\right)^{-1}$.

In our case, we have: $\frac{\Theta(z)}{\Phi(z)} = \frac{1+4z}{1-2z}$ with roots $-\frac{1}{4}$ and $\frac{1}{2}$. To cancel out these roots, we set:

$$\begin{split} \frac{\widetilde{\Theta}(z)}{\widetilde{\Phi}(z)} &= \frac{\Theta(z)}{\Phi(z)} \frac{1}{\Xi(z)} = \frac{1+4z}{1-2z} \cdot \frac{1}{a} \frac{1+\frac{1}{4}z}{1+4z} \frac{1-2z}{1-\frac{1}{2}z} = \frac{1}{a} \frac{1+\frac{1}{4}z}{1-\frac{1}{2}z} \\ \Xi(z) &= a \frac{1+4z}{1+\frac{1}{4}z} \frac{1-\frac{1}{2}z}{1-2z} \end{split}$$

Since $\forall z \in \Gamma_1, |\Xi(z)| = c$, given that $\Xi(1) = a \frac{5}{5/4} \frac{1/2}{-1} = -2a$, choosing a = -1/2 we get $\forall z \in \Gamma_1 |\Xi(z)| = -2a$

 $|\Xi(1)|=1$. This also implies $f_{\eta}(\lambda)=f_{\epsilon}(\lambda)$ and thus $\mathsf{Var}\,(\eta)=\mathsf{Var}\,(\epsilon)$. In conclusion,

$$\frac{\widetilde{\Theta}(z)}{\widetilde{\Phi}(z)} = \frac{-2 - \frac{1}{2}z}{1 - \frac{1}{2}z}$$

$$\eta = -\frac{1}{2} \frac{1 + 4z}{1 + \frac{1}{4}z} \frac{1 - \frac{1}{2}z}{1 - 2z} \epsilon$$

$$X_t - \frac{1}{2}X_{t-1} = -2\eta_t - \frac{1}{2}\eta_{t-1}$$

3. Let us recall here the results of theorem 3.5.1. The canonical representation of an ARMA process is desirable since it express the former as an *causal* and *inversible* filtering of WN:

$$X_t = \widetilde{\phi}_1 X_{t-1} + \ldots + \widetilde{\phi}_p X_{t-p} + \widetilde{\theta}_0 \eta_t + \widetilde{\theta}_1 \eta_{t-1} + \ldots + \widetilde{\theta}_q \eta_{t-q}$$

This means that there exist two causal ℓ^1 sequences, ξ and $\widetilde{\xi}$, such that:

$$X = F_{\varepsilon}(\eta) \tag{14}$$

$$\eta = F_{\widetilde{\varepsilon}}(X) \tag{15}$$

From Eq. (14), since ξ is causal, we deduce that $\mathcal{H}_X^t \subseteq \mathcal{H}_Z^t$. From Eq. (15), since $\widetilde{\xi}$ is causal, we deduce that $\mathcal{H}_Z^t \subseteq \mathcal{H}_Z^t$. In conclusion, $\mathcal{H}_X^t = \mathcal{H}_Z^t$. If we set:

$$\widehat{X}_t = \widetilde{\phi}_1 X_{t-1} + \ldots + \widetilde{\phi}_p X_{t-p} + + \widetilde{\theta}_1 \eta_{t-1} + \ldots + \widetilde{\theta}_q \eta_{t-q}$$

we see that $X_t - \widehat{X}_t = \widetilde{\theta}_0 \eta_t$. Since η is WN, $X_t - \widehat{X}_t \perp \mathcal{H}_{\eta}^{t-1}$ but then $X_t - \widehat{X}_t \perp \mathcal{H}_X^{t-1}$. This means that \widehat{X}_t is the projection of X_t onto its linear past, and therefore $\widetilde{\theta}_0 \eta_t$ is the innovation process of X.

The canonical form gives therefore a direct access to the innovation of an ARMA process.

Now we can answer immediately to the question. The variance of the innovation is:

$$Var(-2\eta_t) = 4Var(\eta_t) = 4Var(\epsilon_t)$$
.

4. From the definition of X we can write: $(1-2B)X_t = (1+4B)\epsilon_t$. Setting the AR process W_t such that $(1-2B)W_t = \epsilon_t$, we have $X_t = (1+4B)W_t$.

$$\begin{split} W_t &= \frac{1}{1 - 2B} \epsilon_t = -\frac{1}{2B} \frac{1}{1 - \frac{1}{2}B^{-1}} \epsilon_t = -\left(\frac{1}{2}B^{-1}\right) \sum_{k \geq 0} \left(\frac{1}{2}B^{-1}\right)^k \epsilon_t \\ &= -\sum_{k \geq 1} \left(\frac{1}{2}B^{-1}\right)^k \epsilon_t = -\sum_{k \geq 1} \left(\frac{1}{2}\right)^k \epsilon_{t+k} \\ X_t &= W_t + 4W_{t-1} = -\left[\sum_{k \geq 1} \left(\frac{1}{2}\right)^k \epsilon_{t+k}\right] - 4\left[\sum_{n \geq 1} \left(\frac{1}{2}\right)^n \epsilon_{t+n-1}\right] \quad \text{set } \ell = n-1 \\ &= -\left[\sum_{k \geq 1} \left(\frac{1}{2}\right)^k \epsilon_{t+k}\right] - 4\left[\sum_{\ell \geq 0} \left(\frac{1}{2}\right)^\ell \frac{1}{2} \epsilon_{t+\ell}\right] \\ &= -\left[\sum_{k \geq 1} \left(\frac{1}{2}\right)^k \epsilon_{t+k}\right] - 4\left[\frac{1}{2} \epsilon_t + \sum_{\ell \geq 1} \left(\frac{1}{2}\right)^\ell \frac{1}{2} \epsilon_{t+\ell}\right] \\ &= -2\epsilon_t - \left[\sum_{k \geq 1} \left(\frac{1}{2}\right)^k \epsilon_{t+k}\right] - 2\left[\sum_{\ell \geq 1} \left(\frac{1}{2}\right)^\ell \epsilon_{t+\ell}\right] \\ &= -2\epsilon_t - \sum_{k \geq 1} \frac{3}{2^k} \epsilon_{t+k} \end{split}$$

Solution of Exercise 5.7 We have to compute the impulse response of a recursive filter. Since $|\phi| < 1$, a stable, causal solution exists. The weights ψ_k are such that:

$$\sum_{k \in \mathbb{Z}} \psi_k z^k = \frac{1}{1 - \phi z} = \sum_{k \ge 0} \phi^k z^k \Rightarrow \psi_k = \begin{cases} \phi^k & \text{if } k \ge 0 \\ 0 & \text{if } k < 0 \end{cases}$$

Therefore, $X_t = \sum_{k \geq 0} \phi^k \epsilon_{t-k}$ 2. We can apply Corollary 3.1.3 on the linear filtering of WN. Therefore, observing that ψ_k is real,

$$\begin{split} \gamma_X(h) &= \sigma_\epsilon^2 \sum_{k \in \mathbb{Z}} \psi_{k+h} \psi_k = \\ &= \begin{cases} \sigma_\epsilon^2 \phi^h \sum_{k \geq 0} \phi^{2k} = \frac{\sigma_\epsilon^2 \phi^h}{1 - \phi^2} & \text{if } h \geq 0 \\ \sigma_\epsilon^2 \sum_{k \geq -h} \phi^{k+h} \phi^k = \sigma_\epsilon^2 \sum_{n \geq 0} \phi^n \phi^{n-h} = \sigma_\epsilon^2 \phi^{-h} \sum_{k \geq 0} \phi^{2k} = \frac{\sigma_\epsilon^2 \phi^{-h}}{1 - \phi^2} & \text{if } h < 0 \end{cases} \\ &= \frac{\sigma_\epsilon^2 \phi^{|h|}}{1 - \phi^2} \end{split}$$