経済統計:前期期末試験

村澤 康友

2011年8月3日

注意:3問とも解答すること.

- 1. (20点)以下の用語の定義を式または言葉で書きなさい(各20字程度).
 - (a)統計的仮説
 - (b) 対立仮説
 - (c) 第2種の誤り
 - (d)有意水準
- $2. (30 点) Bin(1, p_X), Bin(1, p_Y)$ から独立に抽出した大きさ m, n の無作為標本の標本比率(標本平均)を \hat{p}_X, \hat{p}_Y とする.次の片側検定問題を考える.

$$H_0: p_X = p_Y$$
 vs. $H_1: p_X > p_Y$.

- (a) \hat{p}_X,\hat{p}_Y の漸近分布を求めなさい.また $\hat{p}_X-\hat{p}_Y$ の漸近分布を求めなさい.
- (b) 検定統計量を与えなさい(プールした標本比率 \hat{p} を使っても使わなくてもよい). それは H_0 の下でどのような分布に近似的に従うか?
- (c) 検定統計量の値は 1.78 であった .p 値を求めなさい . また有意水準 5 %の検定を実行しなさい .
- 3. (50点)男女の相性は血液型で決まるとの俗説がある.その真偽を科学的に検証したい.そこで無作為に選んだ 117 組の夫婦の血液型を調べたところ,次表の結果が得られた(数値は百分率を四捨五入).

夫\妻					計	
A	0.15	0.14	0.06	0.07	0.41	
O	0.10	0.07	0.10	0.03	0.30	
В	0.08	0.09	0.04	0.03 0.01 0.00	0.22	
AB	0.04	0.00	0.03	0.00	0.07	
計	0.37	0.30	0.23	0.10	1.00	

夫の血液型を X , 妻の血液型を Y とし , 夫婦の血液型の同時確率関数を $p_{X,Y}(.,.)$, その周辺確率関数 を $p_{X}(.),p_{Y}(.)$ とする .

- (a) 検定問題を定式化しなさい(言葉でなく数式で).
- (b) H_0 の下で期待される各欄の相対度数を表で示しなさい(小数第 4 位まで).
- (c) 独立性の χ^2 検定統計量は H_0 の下でどのような分布に近似的に従うか?(証明不要)
- (d) 有意水準 5 %の検定の棄却域を定めなさい.
- (e) χ^2 検定統計量の値は 14.2309624 であった. 有意水準 5 %の検定を実行しなさい.

解答例

- 1. 仮説検定の基本用語
 - (a) 母集団分布に関する仮説.
 - ●「母集団」がなければ 0点.
 - (b)帰無仮説を棄却するとき代わりに採択する仮説.
 - ●「帰無仮説以外の仮説」は不十分なので2点(例えば片側検定).
 - (c) H_1 が真なのに H_0 を採択する誤り.
 - (d)許容する第1種の誤りの確率.
- 2.2 標本の母比率の差の検定

(a)

$$\begin{split} \hat{p}_X &\stackrel{a}{\sim} \mathrm{N}\left(p_X, \frac{p_X(1-p_X)}{m}\right), \\ \hat{p}_Y &\stackrel{a}{\sim} \mathrm{N}\left(p_Y, \frac{p_Y(1-p_Y)}{n}\right). \end{split}$$

両者は独立なので

$$\hat{p}_X - \hat{p}_Y \stackrel{a}{\sim} N\left(p_X - p_Y, \frac{p_X(1 - p_X)}{m} + \frac{p_Y(1 - p_Y)}{n}\right).$$

- 各5点.
- 後半は前半と整合的なら OK.
- 母数を統計量にしたら 0 点 .
- (b)検定統計量は

$$Z := \frac{\hat{p}_X - \hat{p}_Y}{\sqrt{\hat{p}_X(1 - \hat{p}_X)/m + \hat{p}_Y(1 - \hat{p}_Y)/n}},$$

または

$$Z := \frac{\hat{p}_X - \hat{p}_Y}{\sqrt{\hat{p}(1-\hat{p})(1/m + 1/n)}}.$$

 H_0 の下で $Z \stackrel{a}{\sim} \mathrm{N}(0,1)$.

- 統計量で5点,分布で5点.
- 統計量に未知母数を残したら 0 点 .
- 厳密には誤りではないかもしれないが,t分布は不可とする.
- (c) ${
 m p}$ 値は 0.037538 . ${
 m p}$ 値が有意水準以下なので H_0 は棄却 .
- 3. 独立性の χ^2 検定

(a)

$$H_0: p_{X,Y}(.,.) = p_X(.)p_Y(.)$$
 vs. $H_1: p_{X,Y}(.,.) \neq p_X(.)p_Y(.)$.

(b) 次表の通り.

	夫\妻	A	O	В	AB	計			
	A	0.1517	0.1230	0.0943	0.0410	0.41			
	O	0.1110	0.0900	0.0690	0.0300	0.30			
	В	0.0814	0.0660	0.0506	0.0220	0.22			
	AB	0.0259	0.0210	0.0161	0.0070	0.07			
	計	0.37	0.30	0.23	0.10	1.00			
(c) $\chi^2(9)$.									
- ウカ麻がかけかげのよ									

- 自由度がなければ 0 点 .
- (d) $[16.919, \infty)$.
 - ullet 前問の解答と整合的なら OK (ただし χ^2 分布のみ).
- (e) 検定統計量の値が採択域に入るので H_0 を採択 .
 - ullet 前問の解答と整合的なら ${
 m OK}$ (ただし χ^2 分布の右側棄却域のみ).

答案は返却します、採点や成績に関する質問にも応じます、オフィスアワーの時間に研究室まで来てくだ さい(夏季休業中は随時).