

Universidad Europea Proyecto de Fin de Grado

Reverse Proxy con capacidades de Firewall de aplicación web y aceleración TLS

Alumno: Pedro Pozuelo Rodríguez

Directora: Ana del Valle Corrales Paredes Titulación: Grado en Ingeniería Informática

Fecha: 20 de abril de 2019

Índice general

1	Esta	Estado del arte						
	1.1	Soluciones WAF privativas						
		1.1.1	Soluciones WAF SaaS	3				
		1.1.2	Soluciones WAF tipo Appliance	5				
	1.2	Soluci	ones WAF de software libre	9				
Acrónimos								
Gl	osario			11				
Bibliografía								

Estado del arte

En los últimos años, la mayoría de los ataques en Internet se realizan contra aplicaciones web, con lo que es cada vez más importante contar con una solución que sea capaz de analizar el tráfico web y proteger las aplicaciones.

Las soluciones de firewall tradicional son capaces de analizar el tráfico de red en capa 3 del modelo TCP/IP (equivalentas a las capas 3 y 4 del *modelo OSI[1]*). Sin embargo, carecen de la funcionalidad necesaria para analizar el tráfico en capa 7. Esto implica que, una vez se publica un servicio web, dichos firewalls permitirán todo el tráfico dirigido a estos servicios, con independencia de que se trate de una petición legítima, una petición malformada o un ataque.

Para proteger estos servicios y poder diferencias entre estas peticiones es necesario disponer de tecnologías que entiendan analicen el tráfico en la capa de aplicación siguiendo la lógica propia del servicio a proteger.

Actualmente existen diversas soluciones de firewall de aplicación web (en adelante WAF, de sus siglas en inglés, Web Application Firewall).

Dentro de las soluciones disponibles, podemos distinguir principalmente entre soluciones privativas y soluciones de software libre. Este criterio no se circunscribe exclusivamente al modelo de licencias si no que está íntimamente ligado al coste asociado tal como veremos.

1.1 Soluciones WAF privativas

Las soluciones de WAF privativas se caracterizan por emplear un modelo de *licenciamiento privativo*[2]. Se trata de soluciones con un elevado coste y con la imposibilidad de acceder al código o modificarlo. Así mismo, ofrecen una serie de funcionalidades adicionales y una mayor capacidad de procesamiento.

Existen dos arquitecturas principales en este tipo de WAF:

Por un lado tenemos modelos WAF desplegados en las instalaciones del fabricante y gestionados por él. Este tipo de soluciones suelen estás alojadas en el Cloud (en el modelo de distribución de software conocido como *software como servicio* (en adelante SaaS, de sus siglas en inglés, Software as a Service).

En segundo lugar, tenemos WAF de tipo appliance o máquina virtual. Se trata de máquinas dedicadas en las que el software requiere de una máquina específica proporcionada por el fabricante. Si bien hardware y software se adquieren conjuntamente, es posible acceder a nuevas funcionalidades adquiriendo nuevas licencias.

1.1.1 Soluciones WAF SaaS

Dentro de las soluciones WAF SaaS, destacan y se han analizado *Cloud Web Application Firewall* [3] de Cloudflare[4] (*Cloudflare* en adelante), *Kona WAF[5*] de *Akamai[6*] e *Incapsula[7*].

Habitualmente, estos proveedores no se limitan a ofrecer servicios WAF, pues por su infraestructura permite añadir funcionalidades adicionales como son las siguientes.

- Red de distribución de contenidos (en adelante CDN, de sus siglas en inglés, Content Delivery Network).
- Protección contra ataques de denegación de servicio (en adelante DoS, de sus siglas en inglés, Denial-of-service) en capa de aplicación.
- Habilitar el caché de contenido estático.
- Suscripción a listas de reputación de IP, dominios o URL.
- Bloqueo de bots maliciosos.
- Sistema de creación de informes.

De hecho, la funcionalidad CDN es el servicio mínimo que se puede contratar a Akamai y Cloudflare; pues es su nicho mercado y su producto principal, siendo el servicio WAF una funcionalidad que ofrecen a sus cliente para dar un valor añadido. Incapsula, por el contrario, proviene de soluciones WAF tipo appliance y su modelo de negocio está más enfocado a estos servicios.

Uno de las principales características que comparten estos proveedores es el modelo de negocio. En todos los casos el coste está asociado al volumen de tráfico que se genere, ya sea en caudal de datos (en adelante Throughput), como es el caso de Incapsula, o por volumen mensual de datos en el caso de Akamai y Cloudflare.

Modo de licenciamiento y coste

En la mayoría de las soluciones no existe un precio oficial de mercado proporcionado por los proveedores. En estos casos se ha optado por incluir referencias externas con el fin de disponer información del coste aproximado de estas soluciones.

A modo de referencia, se puede consultar los precios de Akamai y Cloudflare en la tabla de precios CDN. Estos precios se corresponden con sus servicios de CDN y podrá ser superior si se añaden funcionalidades como WAF. Adicionalmente, se debe tener en cuenta que se trata de precios estimativos proporcionados por terceros, pues en el caso de Akamai la lista de precios no es pública y ofrecen un coste ajustado a cada cliente.

	Akamai CDN	CloudFlare CDN
6 TB plan	900 USD al mes aprox.	750 USD al mes aprox.
25 TB plan	2800 USD al mes aprox.	2800 USD al mes aprox.
50 TB plan	5500 USD al mes aprox.	5000+ USD al mes aprox.
100 TB plan	8000 USD al mes aprox.	5000+ USD al mes aprox.
•		

Cuadro 1.1: Precios de CDN[8] (consultado en abril de 2019)

En el caso de Incapsula, su solución más económica - el plan *PRO* - tiene un coste de 59 USD por web al mes[9]. Dicha solución soporta SSL de manera limitada y es necesario contratar un plan superior en caso de que se requiera dar servicio a clientes que no soporten la extensión TLS SNI o se requieran

certificados con validación extendida (en adelante EV, de sus siglas en inglés, Extended Validation). En esta situación habría que contratar el plan *business* que tiene un coste de 299 USD por web al mes[9].

Implementación y operación

Independientemente de la solución, grosso modo estos son los pasos a realizar para implantar este tipo de soluciones:

- 1. Cambio en la gestión de certificados SSL.
 - Dado que la mayoría de las aplicaciones web deben soportar SSL, es necesario generar nuevos certificados para que el proveedor pueda publicar los servicios web de manera confiable. En la mayoría de los casos el fabricante será responsable del mantenimiento y la operación de dichos certificados.
- 2. Preparación de un entorno de pruebas *staging* en el que se puedan probar las aplicaciones web de manera interna sin impactar a los clientes. Para ello, habitualmente, se redireccionan los dominios a probar en el fichero *hosts* de la máquina cliente.
- 3. Cambio del direccionamiento DNS.

Una ya se ha validado que la solución web y el WAF funcionan adecuadamente, se procede a cambiar el direccionamiento ofrecido a nivel DNS para que los clientes se conecten a la plataforma WAF en lugar de a la aplicación web.

La operación de estas plataformas es realizada por el proveedor, por lo que como clientes no necesitamos disponer del conocimiento o el tiempo necesario para mantener o actualizar la plataforma WAF.

Ventajas

Una de las principales ventajas que tiene este tipo de soluciones consiste en su independencia respecto a la infraestructura de la aplicación web.

Esta independencia nos permite realizar cambios en cualquier de las soluciones - WAF o plataforma Web - sin que afecte a la otra. Ya sean cambios en la operación diaria, migraciones de software o rediseño de la arquitectura.

La mencionada independencia no se limita a independencia tecnológica; el hecho de que el WAF y la plataforma web sean completamente independientes también permite asignar roles independientes a cada entorno, lo cual permite implementar seguridad basada en roles (en adelante RBAC, de sus siglas en inglés, role-based access control). Esto no sólo nos permite mejorar la seguridad del entorno, si no que además evita que el desarrollador web o el administrador de la plataforma web tenga que conocer en detalle la configuración del WAF y viceversa.

Por otro lado, este tipo de soluciones son las muy sencillas de implementar, tal como se ha visto en la sección anterior.

Otra ventaja radica en la aplicación de nuevas reglas de seguridad de forma transparente para el cliente. No necesitaremos dar seguimiento a las últimas vulnerabilidades web que se publican o idear qué reglas o firmas son necesarias, pues el proveedor se hará cargo de su implementación y mantenimiento.

Las soluciones WAF SaaS también nos permiten contratar diversas modalidades de soporte que garanticen respuesta 24/7 en caso de que se produzca un incidente con el servicio.

Por último, nos podemos beneficiar de las funcionalidades adicionales ya mencionadas para mejorar el estado de la seguridad de nuestra plataforma o mejorar la experiencia del usuario.

Desventajas

Una de las principales desventajas radica en el coste económico. Este tipo de soluciones tienen un elevado coste. Esto implica que este tipo de WAF sólo son viables económicamente en portales que generen un beneficio económico importante o aquellos en los que la empresa/entidad responsable de la aplicación pueda asumir su inversión.

Aunque este tipo de soluciones disponen de modalidades relativamente económicas (ver Modo de licenciamiento y coste), lo cierto es que estas soluciones están muy limitadas y es necesario contratar funcionalidades adicionales en la mayoría de los casos. Es un modelo económico muy dirigido a las ofertas personalizadas y suele ser habitual requerir el modelo de licenciamiento *Enterprise* junto con ciertas licencias adicionales, lo cual encarece todavía más el servicio.

En cualquier caso, este tipo de soluciones no están al alcance de pequeñas o medianas empresas o de particulares.

Otra desventaja que tienen este tipo de soluciones consiste en la pocas posibilidades que tenemos de personalizar las reglas o las firmas a nuestras necesidades. La arquitectura de este tipo de plataformas SaaS consiste en que múltiples clientes comparten la misma plataforma, para lo cual el proveedor requiere mantener un sistema homogéneo para todos los clientes y esto evita que se pueda personalizar el WAF según nuestras necesidades. A modo de ejemplo, en los servicios estándar de este tipo de soluciones no podremos configurar reglas para filtrar las cabeceras HTTP o los parámetros de tipo query en las URL si nuestra aplicación utilizada *Path Parameters* o *URL Routing*, lo que dejaría expuesta la aplicación web a ataques de inyección de código.

1.1.2 Soluciones WAF tipo Appliance

Otra modalidad de soluciones WAF son los de tipo appliance. Dentro de las opciones disponibles en el mercado se han analizado *Imperva WAF Gateway*[10] (*Imperva* en adelante) y *Fortiweb*[11] de la empresa *Fortinet*[12].

El modelo de negocio tradicional consiste en adquirir máquina física junto con un paquete de licencias, aunque en los últimos años se han incorporado soluciones virtuales en los catálogos de los principales proveedores de Cloud.

Al igual que sucede con las soluciones SaaS, los proveedores de este tipo de WAF también incluyen mecanismos de seguridad adicionales que no son propiamente funcionalidades WAF. Si bien estas funcionalidades dependen en gran medida del proveedor, a continuación se enumeran algunas de las más interesantes:

- Crear perfiles de las aplicaciones web y filtrar las peticiones web en función de los parámetros permitidos.
- Parcheo virtual de vulnerabilidades mediante la integración del WAF con programas de escaneo de vulnerabilidades.
- Suscripción a listas de reputación de IP, dominios o URL.
- · Aceleración TLS.

Dado que el dispositivo suele estar en la misma red que la aplicación web, es posible que el WAF realice el descifrado del tráfico SSL/TLS y envíe el tráfico sin cifrar a la aplicación web, lo que permite liberar los recursos asignados al cifrado y descifrado en la aplicación web.

- Bloqueo de bots maliciosos.
- Sistema de creación de informes.
- · Antivirus.

Modo de licenciamiento y coste

Al igual que sucede con las soluciones SaaS, en las soluciones appliance los proveedores no publican abiertamente el coste que tienen sus productos y optan por realizar presupuestos personalizados dependiendo de las necesidades de cada cliente. Al igual que en el análisis del modelo SaaS se ha optado por incluir referencias externas con el fin de mostrar el coste que tienen este tipo de soluciones.

En el caso de Imperva, su oferta está enfocada a soluciones WAF y firewall de base de datos (en adelante DBF, de sus siglas en inglés, Database Firewall). Se trata de la misma compañía que ha desarrollado y comercializa Incapsula, siendo ésta la alternativa SaaS a Imperva.

Imperva ofrece diversos modelos de appliances según el throughput que son capaces de gestionar, desde 500 Mbps en el modelo más básico - X2010 o X2020 - hasta los 10 Gbps en el modelo X10K.

El coste del appliance de 500 Mbps es de 4200 USD (según [13] y [14]), a lo que hay que sumar el coste anual de licencias y mantenimiento. La licencia necesaria para este modelo tiene un coste que puede ir desde 4800 USD[15] hasta 9600 USD[16]. Por lo tanto, la opción más económica requiere una inversión inicial de 9000 USD y un coste anual mínimo de 4800 USD.

En el caso de que la plataforma web esté alojada en el Cloud (por ejemplo AWS), la opción más económica ofrecida por Imperva tiene un coste mínimo de 8927 USD anuales para una instancia con capacidad de hasta 100 Mbps[17] o 21567 USD por año para el equivalente de la opción appliance de 500 Mbps[18].

Otra solución appliance que se ha analizado es Fortiweb. Si bien sigue un modelo de negocio similar a Imperva, dispone de modelos más económicos. En la tabla de precios Fortiweb se recogen los modelos appliance más económicos ofrecidos por Fortinet.

Modelo	Throughput	Coste de appliance	Coste licencia básica	Coste total
FortiWeb-100D	25 Mbps	5034 USD[19]	755 USD[19]	5789 USD
FortiWeb-400D	100 Mbps	9194 USD[20]	1572 USD[20]	10766 USD
FortiWeb-600D	250 Mbps	14000 USD[21]	2100 USD[21]	16100 USD

Cuadro 1.2: Precios de Fortiweb

La solución AWS de Fortiweb tiene un coste de 5374 USD[22] al año.

Implementación y operación

La implementación de las soluciones tipo appliance es más compleja que en el modelo SaaS debido a que el WAF será parte de nuestra arquitectura y es necesario analizarla y adaptarla con el fin de incluir este nuevo elemento.

Los pasos que se deben realizar para implantar un WAF de tipo appliance en una arquitectura son los siguientes:

1. Evaluar la arquitectura actual e identificar los potenciales puntos en los que se podría desplegar el WAF.

Algunos de los punto de conexión donde se suelen desplegar WAF de este tipo son inmediatamente después del firewall red o inmediatamente antes de los balanceadores de carga de aplicación, pero puede variar significativamente según la arquitectura. Especialmente se debe tener en cuenta los siguientes elementos:

- Tolerancia frente a fallos (en adelante failover).
- Tipo de enrutamiento: estático o dinámico, unicast o multicast, etc.
- Sistemas distribuidos o redundantes.
- Balanceadores de red o de aplicación.
- Volumen de tráfico en los distintos puntos de red a evaluar.
 Por ejemplo, si se instala el WAF en el punto de entrada de una DMZ, el appliance debe ser capaz de gestionar el throughput agregado de todos los servicios publicados en dicha

DMZ. Sin embargo, si se instala inmediatamente antes de una aplicación web, el WAF sólo debe analizar el tráfico de dicha aplicación. Por contra, si se despliega una nueva aplicación web es posible que ésta no esté protegida por el WAF.

• Lógica de la aplicación web.

A modo de ejemplo, en una arquitectura en la que se disponga de un servidor web para servir contenido estático, es posible configurar el WAF para que no acepte el paso de parámetros o que sólo proteja el servidor web de contenido dinámico si se decide aceptar el riesgo asociado.

- Aplicación alojada en un único centro de datos (en adelante CPD) o en varios.
- 2. Analizar dichos puntos y evaluar el modo de despliegue en el que se desplegará el WAF. Los modos más comunes son modo transparente, en el que el WAF no participa en las capas 3 a 7 del modelo OSI, o como proxy web explícito, en cuyo caso el WAF participa en las capas 3 y 4 y opcionalmente en la capa de aplicación.
- 3. Evaluar el impacto que este cambio tendrá en el desempeño de la aplicación web, entre otros se debe evaluar la latencia que añade a la red y a la aplicación o cómo afecta al throughput que deben soportar los distintos componentes.
- 4. Adaptar el diseño de red incluyendo los nuevos elementos.
- 5. Elegir el o los modelos de appliance que mejor cumple las necesidades del nuevo diseño.
- 6. Desplegar los nuevos elementos. Típicamente este punto comprende las siguientes actividades:
 - (a) Instalación de la solución en el bastidor del CPD (en adelante rack).
 - (b) Conexión y configuración de las interfaces de gestión y de los elementos de red necesarios.
 - (c) Instalación de los certificados SSL y configuración inicial de las funcionalidades WAF.
 - (d) Preparación de un entorno de pruebas de forma similar a la indicada para WAF de tipo SaaS.
 - (e) Cambio del direccionamiento de DNS o de IP según proceda.

Una ya se ha validado que la solución web y el WAF funcionan adecuadamente, se procede a cambiar el direccionamiento ofrecido a nivel de red para que el tráfico de la aplicación web se enrute a través del WAF.

Si se comparan estas actividades con las equivalente de la solución WAF SaaS, esta solución es más compleja de desplegar y se deben tener en cuenta más factores. Esto es así debido a que al elegir esta solución se debe modificar la arquitectura de red y debemos tener en cuenta cómo WAF va a impactar a la plataforma web.

Por otro lado, dado que la administración y mantenimiento no están delegados en una empresa externa, debemos disponer de las personas adecuadas - con conocimiento, experiencia y tiempo - para administrar y operar el WAF.

Ventajas

Las soluciones WAF de tipo appliance son más personalizables que las soluciones WAF SaaS. Esto es así debido a que disponemos de unos dispositivos dedicados para nuestra plataforma web, y por lo tanto podemos crear reglas específicas que se adapten a nuestras necesidades.

Estas soluciones también cuenta como ventaja que toda la información está en nuestras instalaciones, lo cual nos permite tener mayor control de la información y puede simplificar el cumplimiento de ciertas regulaciones, como son el reglamento europeo RGDP o el Estándar de Seguridad de Datos para la Industria de Tarjeta de Pago (en adelante PCI DSS, de sus siglas en inglés, Payment Card Industry Data Security Standard).

Una ventaja que comparten con las soluciones SaaS es su independencia del software utilizado en la plataforma web. Esto es así debido a que se despliegan como un elemento perimetral y no está conectado con la plataforma web a nivel de aplicación.

Igualmente, comparten las ventajas de independencia operacional; aunque en el caso de los WAF de appliance esta independencia es prácticamente obligatoria debido a que requiere un mayor conocimiento especializado tal como se verá en la siguiente sección.

Al igual que los WAF SaaS, en este tipo de soluciones requiere un servicio de mantenimiento o de suscripción; esto permite que no sea necesario mantenerse al día de las últimas vulnerabilidades y podamos abstraernos parcialmente de cómo proteger la plataforma, pues lo proveedores mantienen las reglas actualizadas como parte del servicio contratado.

Por último, las soluciones WAF de tipo appliance también nos permiten añadir algunos de los mecanismos de seguridad que no son propiamente de WAF que se han comentado anteriormente.

Desventajas

Tal como se ha anticipado, implementar y administrar este tipo de soluciones requiere de ciertos conocimientos en materia de seguridad, tanto acerca de las técnicas ofensivas más frecuentes, como los mecanismos necesarios para proteger la infraestructura.

Por otro lado, la capacidad de crear nuevas reglas en este tipo de entornos es limitada. Si bien se menciona como ventaja que estos WAF permiten mayor versatilidad que las soluciones SaaS, hay que tener en cuenta que todas las soluciones de este tipo hacen uso de licencias de software privativas, con las restricciones que este tipo de licencias implica: No es posible acceder al código fuente o modificarlo para implantar nuevas funcionalidades o solucionar fallos y el ciclo de vida del appliance es el que el fabricante impone.

Este problema se agrava en las soluciones de tipo appliance debido a que no es infrecuente que el fabricante imponga la renovación de hardware o software de forma agresiva y nos veamos obligados a realizar inversiones adicionales no planificadas.

Otra desventaja de este tipo de soluciones es su elevado coste económico. Si bien el coste recurrente suele ser inferior a las soluciones SaaS equivalentes, sigue siendo un coste elevado; por otro lado, las soluciones WAF de tipo appliance requieren la compra de los dispositivos, lo que supone un mayor coste de inversión inicial que en las soluciones SaaS.

Al igual que sucede con las soluciones SaaS, este tipo de soluciones no están al alcance de pequeñas o medianas empresas o de particulares.

1.2 Soluciones WAF de software libre

Dentro de las soluciones WAF de software libre, se han analizado las siguientes por ser las más extendidas:ModSecurity [23], WebKnight[24] o Shadow Daemon[25].

Otras soluciones han sido descartadas por los motivos que se indican a continuación:

Soluciones que están discontinuadas desde hace tiempo: IronBee[26] sin actualizar desde hace más de 3 años y WebCastellum[27] desde hace 5 años.

Soluciones que se ha considerado que no cumplen los requisitos básicos que debe tener un WAF actualmente. Por ejemplo, RAPTOR[28] no soporta tráfico SSL/TLS y está en versión Beta o NAXSI[29] sólo protege ataques de tipo *Cross-site scripting* (en adelante XSS[30]) e inyecciones SQL (en adelante SQLi[31]). Además, se han producido duras críticas acerca de las funcionalidades que ofrece [32].

Mención aparte merecen las iniciativas OpenWAF[33] y FreeWAF[34]. OpenWAF es una iniciativa con un planteamiento y unas funcionalidades muy interesantes, pero que lleva más de dos años sin publicar una nueva versión y además carece de suficiente madurez para considerarse su uso en un entorno de producción (la última versión publicada es la 0.0.4). Respecto a FreeWAF (también conocido como *lua-resty-waf*) está en una situación muy similar, pues su última versión tiene más de 2 años y se trata de la versión 0.11.1[35].

Acrónimos

```
CDN Content Delivery Network. 3

DBF Database Firewall. 6

DoS Denial-of-service. 3

EV Extended Validation. 4

PCI DSS Payment Card Industry Data Security Standard. 8

RBAC role-based access control. 4

RGDP Reglamento General de Protección de Datos. 8

SaaS Software as a Service. 2

SNI Server Name Indication. 4

SQLi SQL injection[31, Artículo en OWASP]. 9

WAF Web Application Firewall. 2

XSS Cross-site scripting[30, Artículo en OWASP]. 9
```

Glosario

Throughput La tasa de transferencia efectiva (en inglés throughput) es el volumen de trabajo o de información neto que fluye a través de un sistema, como puede ser una red de computadoras. [36, Wikipedia]. 3

Bibliografía

```
[1] Estándar del modelo OSI, del inglés Open Systems Interconnection model. ISO/IEC standard 7498-
     .URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_
     IEC_7498-1_1994(E).zip.
 [2] Software propietario o privativo
     . URL: https://www.definicionabc.com/tecnologia/software-propietario.php.
 [3] Cloudflare WAF
     . URL: https://www.cloudflare.com/waf/.
 [4] Cloudflare
     .URL: https://www.cloudflare.com/.
 [5] Kona WAF
     . URL: https://www.akamai.com/uk/en/resources/waf.jsp.
 [6] Akamai
     . URL: https://www.akamai.com/es/es/.
 [7] Incapsula Web Application Firewall
     . URL: https://www.incapsula.com/website-security/web-application-firewall.
     html.
 [8] CDN Cost Comparison - Global Traffic Monthly Plans
     . URL: https://www.cdn77.com/compare-cdn-providers.
 [9] Imperva Incapsula. Pricing and plans
     . URL: https://www.incapsula.com/pricing-and-plans.html.
[10] Imperva WAF Gateway
     . URL: https://www.imperva.com/products/on-premises-waf/.
[11] FortiWeb: Web Application Firewall
     . URL: https://www.fortinet.com/products/web-application-firewall/fortiweb.
     html.
[12] Fortinet
     . URL: https://www.fortinet.com/.
[13] Precio de appliance Imperva, modelo X2020
     . URL: https://www.comparitech.com/net-admin/best-web-application-firewall/.
[14] Precio de appliance Imperva, modelo X2010
     . URL: https://searchsecurity.techtarget.com/feature/Comparing-the-best-
     Web-application-firewalls-in-the-industry.
[15] Precio de licencias anuales de Imperva, modelo X2010
```

. URL: https://www.globenetstore.com/shop/search.aspx?search=SS-WAF-X21-SL.

```
    [16] Precio de licencias anuales de Imperva, modelos X2500 y X4500 (fichero de Microsoft Excel)
        . URL: https://cdn2.hubspot.net/hubfs/2539908/Imperva%20Price%20List.xlsx.
    [17] SecureSphere WAF AV1000 Gateway for AWS
        . URL: https://aws.amazon.com/marketplace/pp/B00UAWMZ1U?qid=1555322432672.
```

- [18] SecureSphere WAF AV2500 Gateway for AWS
 . URL: https://aws.amazon.com/marketplace/pp/B00UAWN0FU?qid=1555323193972.
- [19] AVFirewalls.com. Fortinet FortiWeb 100D
 . URL: http://www.avfirewalls.com/FortiWeb-100D.asp.
- [20] AVFirewalls.com. Fortinet FortiWeb 400D
 . URL: http://www.avfirewalls.com/FortiWeb-400D.asp.
- [21] Real Data Solutions. Fortinet FortiWeb 600D
 . URL: http://realdatasolutions.net/index.php?id_product=220&controller=product.
- [22] AWS Marketplace. Fortinet FortiWeb Web Application Firewall WAF VM
 . URL: https://aws.amazon.com/marketplace/pp/BOOL9JODAE?ref=_ptnr_ftnt_web_
 fortiweb.
- [23] Página oficial de Modsecurity
 . URL: https://www.modsecurity.org/.
- [24] Página oficial de WebKnight
 . URL: https://www.aqtronix.com/?PageID=99.
- [25] Página oficial de Shadow Daemon
 . URL: https://shadowd.zecure.org/overview/introduction/.
- [26] Página oficial de IronBee . URL: https://github.com/ironbee/ironbee.
- [27] Repositorio de código oficial de WebCastellum
 . URL: https://sourceforge.net/p/webcastellum/code/HEAD/tree/.
- [28] Repositorio de código oficial de Raptor WAF
 . URL: https://github.com/CoolerVoid/raptor_waf.
- [29] Página oficial de NAXSI
 . URL: https://github.com/nbs-system/naxsi.
- [30] Artículo en OWASP de ataques CSS
 . URL: https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29.
- [31] Artículo en OWASP de ataques de inyección SQL
 . URL: https://www.owasp.org/index.php/SQL_Injection.
- [32] Exploring Naxsi (A Bit
). URL: https://www.cryptobells.com/exploring-naxsi-a-bit/.
- [33] Página oficial de OpenWAF
 . URL: https://github.com/titansec/OpenWAF.
- [34] Blog oficial de FreeWAF / lua-resty-waf
 . URL: https://www.cryptobells.com/reintroducing-lua-resty-waf/.
- [35] FreeWAF changelog
 . URL: https://github.com/p0pr0ck5/lua-resty-waf/releases.
- [36] Wikipedia. Throughput
 . URL: https://es.wikipedia.org/wiki/Throughput.