	Leve	POKHARA UNIVERSITY	
		ramme: BE Semester: Spring Year : 202 Full Marks: 10 Pass Marks: 45	0
		Candidates are required to give their answers in their own words as far The 6-	rs.
		The figures in the margin indicate full marks. Attempt all the questions.	
1.	a) b)	Define analyticity of a function $f(z)$. Show that the necessary condition for the function $f(z) = u(x, y) + iv(x, y)$ to be analytic	8
2.	a)	State Cauchy's residue theorem and using it, evaluate: $ \oint_{c} \frac{2z}{(z+1)(z-1)^{3}(z+3)} dz \text{ where } c: z = 2 \text{ counter clockwise.} $ Find the expansion of $-\frac{7z-2}{z}$	
		i. $0 < z+1 < 1$. ii. $1 < z+1 < 3$	7
	b)	Define bilinear transformation. Find the bilinear transformation which maps the points $z = 0$	
3.	a)	State and prove first shifting theorem.	8
	ы	2-dansior of e^{-2} and then find $Z(\cos \frac{n\pi}{2})$ and $Z(\sin \frac{n\pi}{2})$	7
	٠,	$y_0 = 0$, $y_1 = 0$ by using Z-transform $y_{n+2} - y_{n+1} + 12y_n = 2n$,	8
4.	a)	Show that $Z[nf(t)] = -z \frac{d}{dz}[F(z)]$, where $F(z) = Z[f(t)]$. Find $Z^{-1}\left[\frac{z}{(z+1)^2(z-1)}\right]$.	7
	b)	Find the solution of one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with initial velocity $g(x)$, initial deflection $f(x)$ and boundary condition $u(0, L) = 0 = u(L, t)$.	8
		Page 1 of 2	and the second

a) Express the Laplacian $\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ in polar coordinates.

7

Derive two-dimensional heat equation completely with necessary

b) Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature 0, assuming that the initial temperature

8

is
$$f(x) = \begin{cases} x & \text{if } 0 < x < \frac{L}{2} \\ L - x & \text{if } \frac{L}{2} < x < L \end{cases}$$

- Find the Fourier cosine transform of $f(x) = e^{-mx}$ for m > 0, and 7 then show that $\int_0^\infty \frac{\cos kx}{1+x^2} dx = \frac{\pi}{2} e^{-k}.$
 - Show that $\int_0^\infty \frac{\cos wx + \dot{w} \sin wx}{1 + w^2} dw = \begin{cases} 0 & \text{if } x < 0 \\ \frac{\pi}{2} & \text{if } x = 0 \\ \pi e^{-x} & \text{if } x > 0 \end{cases}$ 8

Attempt all the questions:

4×2.5

- Check analyticity of $f(z) = z^2$.
- b) Find $Z(a^n)$.
- Find the solution of the partial differential equation $u_{xx} + 9u = 0$.
- Define linear partial differential equation with suitable example. d)