MSRI UP 2023 - HW 1 - DAY 1

Due: Wednesday 6/14 by 7:00am. Submit your assignment to your personal dropbox.

Important: You don't have to complete the entire assignment, but do as much of it as possible. Make sure to present your (partial) solutions in a neat and organized manner. Discuss the problems with at least two other people, but write your solutions on your own.

- (1) Let (X, d_X) be a metric space. Show that the following statements are equivalent:
 - (a) (X, d_X) is compact.
 - (b) Every sequence in X has a convergent subsequence. That is, if $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in X, then there exists an strictly increasing function $\eta:\mathbb{N}\to\mathbb{N}$ so that the sequence $\{x_{\eta(k)}\}_{k\in\mathbb{N}}$ converges.
 - (c) X is complete and totally bounded. That is, every Cauchy sequence in X converges, and for any $\epsilon > 0$ there exist $x_1, \ldots, x_N \in X$ so that $X \subset B_{\epsilon}(x_1) \cup \cdots \cup B_{\epsilon}(x_N)$.
- (2) Show that the following metric spaces are **not** complete:
 - (a) $([0,1),d_1)$
 - (b) $(\mathbb{R}^{\infty}, d_2)$
 - (c) (\mathcal{D}_0, d_B)
- (3) A collection K of finite nonempty sets is said to be a *simplicial complex* if the following is true: For any $\sigma \in K$, if $\emptyset \neq \tau \subset \sigma$, then $\tau \in K$. Let (X, d_X) be a metric space and for $\epsilon > 0$ let

$$R_{\epsilon}(X, d_X) = \{ \sigma \subset X : 0 < \#(\sigma) < \infty \text{ and } \mathsf{diam}(\sigma) < \epsilon \}$$

where $diam(\sigma) = max\{d_X(x, x') : x, x' \in \sigma\}$ is the diameter of σ .

- (a) Show that $R_{\epsilon}(X, d_X)$ is a simplicial complex.
- (b) Show that if $0 < \epsilon \le \epsilon'$, then $R_{\epsilon}(X, d_X) \subset R_{\epsilon'}(X, d_X)$.