Farm Yield Optimization - Documentation

1. Project Overview

The **Farm Yield Optimization** challenge aims to analyze farming operations (farmers, plots, crop yields, and irrigation) to identify opportunities for improving crop productivity and resource usage. The dataset captures multi-year records of harvests, irrigation patterns, and farmer assignments.

Business Goal:

- Understand factors influencing yield (weather, soil type, irrigation).
- Identify trends across seasons and years.
- Provide recommendations to optimize water usage and maximize crop output.

2. Database Schema

farmers

- farmer id (PK) Unique identifier for farmers.
- first name, last name Farmer's name.
- email Contact.
- hire_date Joining date.

plots

- plot id (PK) Unique identifier for farm plots.
- plot_name Name of the plot.
- farmer_id (FK) Owner/manager of the plot.
- crop type Type of crop grown (Wheat, Corn, Soybeans).
- soil_type Soil classification (Loam, Clay, Sand).

yields

- yield id (PK) Unique identifier for harvest.
- plot id (FK) Plot harvested.
- harvest date Date of harvest.
- yield_kg Yield weight in kilograms.
- weather_condition Weather during harvest (Sunny, Rainy, Mild).

irrigation_logs

- log_id (PK) Unique identifier for irrigation.
- plot id (FK) Plot irrigated.
- irrigation_date Date of irrigation.
- water_amount_liters Amount of water used.

3. Dataset Summary

• Farmers: 5

Plots: 8

Yields: 20 harvest records across 2022–2024

Irrigation Logs: 15 records across 2023–2024

Crops covered: Wheat, Corn, Soybeans

• Soil Types: Loam, Clay, Sand

4. Key Business Questions

1. Yield Trends

- How do yields vary across different crops and years?
- o Which weather conditions lead to higher/lower yields?

2. Farmer Performance

- o Which farmers consistently achieve the highest yields?
- o Are some farmers more efficient with irrigation?

3. Irrigation Efficiency

- o Is there a correlation between water usage and yield output?
- o Which soil type requires the most water for optimal results?

4. Crop & Soil Insights

- o Which crop-soil combinations give the best productivity?
- o Does any soil type underperform despite high irrigation?

5. Example SQL Queries

Crop yield trend per year:

SELECT YEAR(harvest_date) AS year, crop_type, SUM(yield_kg) AS total_yield

FROM yields y

JOIN plots p ON y.plot id = p.plot id

GROUP BY YEAR(harvest_date), crop_type

ORDER BY year, crop_type;

• Water usage vs yield per plot:

SELECT p.plot_name, p.crop_type,

SUM(i.water_amount_liters) AS total_water,
SUM(y.yield_kg) AS total_yield

FROM plots p

LEFT JOIN irrigation logs i ON p.plot id = i.plot id

LEFT JOIN yields y ON p.plot_id = y.plot_id

GROUP BY p.plot name, p.crop type;

6. Potential Insights

- Wheat on Loam shows consistently strong yields under Sunny weather.
- Corn on Clay is water-intensive but gives high returns.
- Soybeans on Sand underperform despite irrigation possible inefficiency.
- Some farmers show higher yields with lower irrigation → best practices can be replicated.

7. Next Steps

- Conduct Exploratory Data Analysis (EDA) on yields vs weather, soil, and irrigation.
- Build **predictive models** for yield forecasting.
- Recommend **optimal irrigation schedules** per crop-soil combination.
- Share dashboards for farmer-level and crop-level performance monitoring.

8.Screenshots

