CS 228 : Logic in Computer Science

S. Krishna

Recap: Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

Recap: Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

What we plan to show: L is FO-definable $\Rightarrow L$ is regular. Note that the converse is not true.

- $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:
 - ▶ Begins with a, ends with b, and has a pair of consecutive a's
 - Contains a b and ends with aa
 - Contains abb
 - ▶ There are two occurrences of b between which only a's occur
 - ▶ Right before the last position is an a
 - Even length words

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Contains abb

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Contains abb

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Contains abb

$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

S. Krishna IIT Bombay

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

▶ Right before the last position is an a:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

▶ Right before the last position is an *a* :

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:
Examples: ab, babbaa, bbab
Non examples: ba, bb, aba

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Right before the last position is an *a* :

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$