Exercices

S'entraîner

Démonstrations à un pas

On considère le quadrilatère ABCD ci-dessous où I est le milieu des segments [AC] et [BD].

On se propose de démontrer que le quadrilatère ABCD est un parallélogramme.

① À l'aide de la table des outils, citer toutes les propriétés et/ou définitions que l'on peut utiliser pour démontrer qu'un quadrilatère est un parallélogramme.

② Voici le schéma de **démonstration à un pas** permettant de prouver que ABCD est un parallélogramme.

a. Recopier ce schéma, puis compléter l'encadré bleu par la propriété utilisée dans cette démonstration.

b. Rédiger cette démonstration suivant le modèle :

2 ① Construire un parallélogramme ABCD.

2 a. Le schéma de démonstration à un pas ci-dessous permet de prouver que : AB = CD et AD = BC.

Recopier ce schéma, puis compléter l'encadré bleu par la propriété utilisée dans cette démonstration.

b. Rédiger cette démonstration.

Construire un losange EFGH.

Recopier et compléter le schéma de démonstration à un pas ci-dessous.

On considère un triangle IJK.
On appelle (d) la hauteur issue de I du triangle IJK.
Recopier et compléter le schéma de démonstration à un pas ci-dessous permettant de démontrer que les droites (d) et (JK) sont perpendiculaires.

ABCD est un rectangle.

Recopier et compléter le raisonnement ci-dessous qui permet de démontrer que les segments [AC] et [BD] ont la

même longueur.

- On sait que ABCD est un rectangle.

- Or, si ___, alors ___.
- Donc les segments [AC] et [BD] ont la même longueur.
- 6 IJKL est un parallélogramme tel que IJ = JK. Recopier et compléter le raisonnement ci-dessous qui permet de démontrer que IJKL est un losange.
 - On sait que IJKL est un parallélogramme et que IJ = JK.
 - Or, si ___, alors ___.
 - Donc IJKL est un losange.
- 7 Recopier et compléter chacune des démonstrations à un pas ci-dessous.
 - **1)** On sait que la droite (d_1) est perpendiculaire à chacune des droites (d_2) et (d_3) .
 - Or, si ___, alors ___.
 - Donc ___
 - 2 On sait que les angles \widehat{ABC} et \widehat{DBE} sont opposés par le sommet.
 - Or, si ___, alors ___.
 - Donc ABC = ___.

Démonstrations à deux pas

On considère la figure ci-dessous dans laquelle : $\overrightarrow{ABC} = 70^{\circ}$, la bissectrice de l'angle \overrightarrow{ABC} coupe [AC] en D
et $\overrightarrow{BCD} = 35^{\circ}$.

On se propose de démontrer que le triangle BCD est isocèle.

- **1** a. À l'aide de la table des outils, citer toutes les propriétés et/ou définitions que l'on peut utiliser pour démontrer qu'un triangle est isocèle.
- **b**. Parmi celles-ci, y en a-t-il une qui permet de prouver que le triangle BCD est isocèle avec une démonstration à un pas?
- 2 Deux données de l'énoncé permettent de calculer la mesure de l'angle DBC. Lesquelles ?
- ③ Voici le schéma de **démonstration à deux pas** permettant de prouver que le triangle BCD est isocèle.
- 1^{er} pas de démonstration

2e pas de démonstration

- **a.** Recopier l'ensemble du schéma et compléter l'encadré bleu du premier pas de démonstration.
- **b.** Quelle est la conclusion du premier pas de démonstration ? Que devient-elle dans le deuxième pas de démonstration ?
- c. Compléter l'encadré bleu du deuxième pas de démonstration.
- d. Rédiger cette démonstration.

2 En utilisant les informations portées sur la figure ci-dessous, démontrer que la triangle ABC est isocèle.

10 Dans la figure ci-dessous, ABCD est un parallélogramme.

Démontrer que : $(BD) \perp (CD)$.

III En utilisant les informations portées sur la figure ci-dessous, démontrer que le quadrilatère DEFG est un parallélogramme.

ABC est un triangle isocèle en A tel que : $\widehat{ACB} = 50^{\circ}$.

D et E sont deux points appartenant respectivement aux côtés [BC] et [AB] tels que : $\widehat{EDB} = 50^{\circ}$.

Démontrer que le triangle BED est isocèle.

- 13 On considère la figure ci-dessous dans laquelle :
 - ABCD est un parallélogramme ;
 - PARC est un parallélogramme.

On appelle U le point d'intersection des diagonales du parallélogramme PARC.

Démontrer que le point U est le milieu du segment [BD].

Exercices

Démonstration à plus de deux pas

- 14 On considère la figure ci-contre dans laquelle :
 - ABCD est un losange dont les diagonales se coupent en I;
 - la droite (d) est la médiatrice \mathbb{D} de [IB].

On se propose de démontrer que les droites (AC) et (d) sont parallèles.

Voici un schéma de démonstration, appelé **déducto- gramme** ou **organigramme**, permettant de démontrer que les droites (AC) et (*d*) sont parallèles.

- ① Sur ce schéma, où sont placées les données de l'énoncé ? Où est la conclusion ?
- 2 Quel est le nombre de pas de cette démonstration ?
- 3 Quelles propriétés doit-on écrire dans les encadrés bleus ?
- 4 Rédiger cette démonstration.
- 🚺 🕦 a. Tracer un triangle ABC.
 - **b**. Tracer la droite (d_1) , hauteur issue de C du triangle ABC.
 - **c.** Tracer la droite (d_2) , médiatrice du segment [AB].
 - 2 Démontrer que les droites (d_1) et (d_2) sont parallèles.
- 16 Soit un cercle & de centre O et un point A de ce cercle. La médiatrice de [OA] coupe le cercle & en deux points E et F.
 - Faire une figure.
 - 2 Démontrer que le quadrilatère OEAF est un losange.
- 17 1 Tracer un rectangle ABCD; placer le point E, symétrique du point D par rapport à la droite (BC).
 - 2 Démontrer que : AC = BE.
- 18 ① Construire un parallélogramme CDEF, puis placer le point U tel que CDUE est un parallélogramme.
 - 2 Démontrer que les points F, E et U sont alignés.

- 19 Deux cercles $\mathscr C$ et $\mathscr C'$ de centres respectifs O et O' ont le même rayon et se coupent en deux points A et B.
 - Faire une figure.
 - 2 Démontrer que le quadrilatère OAO'B est un losange.
- 10 a. Construire un losange ABCD; ses diagonales se coupent en O.
 - b. Placer le milieu I de [AD].
 - c. Placer le point E, symétrique de O par rapport à I.
 - ② On se propose de démontrer que AD = OE à l'aide du schéma de démonstration ci-dessous.

- a. Quel est le nombre de pas de cette démonstration ?
- b. Quelle définition doit-on écrire?
- c. Quelles propriétés doit-on écrire?
- d. Rédiger cette démonstration.
- 1 Construire un parallélogramme ABCD tel que : AB = 6 cm et AD = 3 cm.

Placer le point I milieu de [AB].

- 2 a. Comparer les angles \widehat{ADI} et \widehat{AID} .
- b. Comparer les angles AID et IDC.
- c. En déduire que [DI) est la bissectrice de l'angle \widehat{ADC} .
- ① Démontrer de même que [CI) est la bissectrice de l'angle BCD.
- 4 Démontrer que le triangle CDI est rectangle.