Review

Problem 1: Determining the nature of a span

For each collection of 3-vectors, determine whether its span is a point, a line, a plane, or all of \mathbb{R}^3 . Give a basis of the span in each case. (Keep in mind that if a vector in the collection is a linear combination of others then it can be dropped without affecting the span.)

(a)
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\-1 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$

Problem 2: More recognizing and describing linear subspaces

Which of the following subsets S of \mathbb{R}^3 are linear subspaces? If a set S is a linear subspace, exhibit it as a span. If it is not a linear subspace, describe it geometrically and explain why it is not a linear subspace.

(a) The set S_1 of points (x, y, z) in \mathbf{R}^3 with both z = x + 2y and z = 5x.

(b) The set S_2 of points (x, y, z) in ${\bf R}^3$ with either z = x + 2y or z = 5x.

(c) The set S_3 of points (x, y, z) in \mathbf{R}^3 of the form $t \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t' \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$ for some scalars t and t' (which are allowed to be anything, depending on the point (x, y, z)).

Problem 3: Multiple descriptions as a span (Extra)

Let \mathbf{v}, \mathbf{w} be two vectors in \mathbf{R}^{12} . Show that $\mathrm{span}(\mathbf{v}, \mathbf{w}) = \mathrm{span}(\mathbf{v} + \mathbf{w}, \mathbf{v} - \mathbf{w})$. (Hint: You can show that two sets S and T are equal in two steps: everything belong to S also belong to S, and everything belonging to S.)

Problem 4: Linear subspaces and orthogonality (computations)

Let V be the set of vectors in \mathbf{R}^4 orthogonal to both $\begin{bmatrix} 1 \\ 0 \\ 4 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Find a pair of vectors that span V, so it is a linear subspace.

Problem 5: An orthogonal basis

Let V be the set of vectors $\mathbf{v} \in \mathbf{R}^3$ satisfying $\mathbf{v} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \mathbf{v} \cdot \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ (this says that both of these explicit 3-vectors have the same projection onto \mathbf{v} , or in other words make the same "shadow" onto the line spanned by \mathbf{v}).

(a) Express V as the collection of 3-vectors orthogonal to a single nonzero 3-vector.

(b) By fiddling	with orthogonality eq	uations, build an ort	hogonal basis of V . $^\prime$	There are many possi	ble answers.

(c) Use your answer to (b) to give an orthonormal basis for ${\cal V}.$

Problem 1: Determining the nature of a span

For each collection of 3-vectors, determine whether its span is a point, a line, a plane, or all of \mathbb{R}^3 . Give a basis of the span in each case. (Keep in mind that if a vector in the collection is a linear combination of others then it can be dropped without affecting the span.)

(a)
$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$

$$\text{(a)} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \quad \text{(b)} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \quad \text{(c)} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$

Problem 2: More recognizing and describing linear subspaces

Which of the following subsets S of \mathbb{R}^3 are linear subspaces? If a set S is a linear subspace, exhibit it as a span. If it is not a linear subspace, describe it geometrically and explain why it is not a linear subspace.

- (a) The set S_1 of points (x, y, z) in \mathbb{R}^3 with both z = x + 2y and z = 5x.
- (b) The set S_2 of points (x, y, z) in \mathbf{R}^3 with either z = x + 2y or z = 5x.
- (c) The set S_3 of points (x, y, z) in \mathbf{R}^3 of the form $t \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t' \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$ for some scalars t and t' (which are allowed to be anything, depending on the point (x, y, z)

Problem 3: Multiple descriptions as a span (Extra)

Let \mathbf{v}, \mathbf{w} be two vectors in \mathbf{R}^{12} . Show that $\mathrm{span}(\mathbf{v}, \mathbf{w}) = \mathrm{span}(\mathbf{v} + \mathbf{w}, \mathbf{v} - \mathbf{w})$. (Hint: You can show that two sets S and T are equal in two steps: everything belong to S also belong to T, and everything belonging to T also belongs to S.)

Problem 4: Linear subspaces and orthogonality (computations)

Let V be the set of vectors in \mathbb{R}^4 orthogonal to both $\begin{bmatrix} 1 \\ 0 \\ 4 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Find a pair of vectors that span V, so it is a linear subspace.

Problem 5: An orthogonal basis

Let V be the set of vectors $\mathbf{v} \in \mathbf{R}^3$ satisfying $\mathbf{v} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \mathbf{v} \cdot \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ (this says that both of these explicit 3-vectors have the same projection onto v, or in other words make the same "shadow" onto the line spanned by v).

- (a) Express V as the collection of 3-vectors orthogonal to a single nonzero 3-vector.
- (b) By fiddling with orthogonality equations, build an orthogonal basis of V. There are many possible answers.
- (c) Use your answer to (b) to give an orthonormal basis for V.