

Aluno:

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba

Data:

Engenharia Mecatrônica – Departamento de Eletrônica (DAELN)
Disciplina: Eletricidade Prof. José Jair Alves Mendes Júnior

Experiência 2 – Lei de Ohm e Potência

Antes da aula de laboratório, cada aluno deve fazer os cálculos e preencher as tabelas com os valores teóricos e, quando for o caso, montar e soldar previamente cada circuito que será testado.

- 1. Objetivos de Aprendizagem
- Utilizar o voltímetro para medidas de tensão contínua;
- Utilizar o amperímetro para medidas de corrente contínua;
- Verificar a Lei de Ohm
- Levantar a curva de tensão em função da corrente e da potência em função da corrente de um resistor
- 2. Componentes utilizados
- Resistores de 1/4W: 680Ω e $2.2k\Omega$.
- Fonte de tensão variável 0V-12V, um multímetro digital e papel milimetrado
- 3. Experiência 2

3.1 Voltímetro e Amperimetro

Um voltímetro real pode ser considerado como um voltímetro ideal (impedância de entrada infinita) em paralelo com uma impedância de entrada muito alta ($R=200k\Omega$, $2M\Omega$ ou $2T\Omega$), conforme apresentado na Figura 1. Considerando o voltímetro ideal, ao ser colocado em paralelo com os pontos do circuito no qual se deseja medir a tensão, o voltímetro não altera o funcionamento do circuito, pois não desvia corrente do circuito.

No entanto, a resistência interna do voltímetro, apesar de valor elevado, na prática altera as características elétricas do circuito que está medindo a tensão, pois desvia uma pequena corrente do circuito. A tensão que ele mede não é exatamente a mesma tensão que existe nos pontos considerados quando o voltímetro não está conectado no circuito.

De maneira análoga, um amperímetro real pode ser considerado um amperímetro ideal (impedância de entrada nula) em série com uma impedância de entrada pequena (Ω , m Ω , ...), como apresentado na Figura 2. Considerando o amperímetro ideal, ao ser colocado em série com o elemento de circuito no qual se deseja medir a corrente, não se altera o funcionamento do circuito, pois apresenta resistência nula.

No entanto, a resistência interna do amperímetro, apesar de muito pequena, altera na prática as características elétricas do circuito que está medindo a corrente, pois muda a resistência total no ramo do circuito no qual está inserido. A corrente que ele mede não é exatamente a mesma corrente que existe no ramo considerado quando o amperímetro não está conectado no circuito.

Figura 2 – Amperímetro

Para se medir a tensão sobre um componente de um circuito elétrico, coloca-se o voltímetro em paralelo com o componente

Para medir a corrente que flui sobre um componente de um circuito, cola-se o amperímetro em série no ramo do circuito em que se encontra o componente

Sabendo que em um bipolo ôhmico, a tensão aplicada aos seus terminais é diretamente proporcional à intensidade de corrente que o atravessa, pode-se escrever V=R. I. Portanto, a curva de tensão em função da corrente para um bipolo ôhmico tem uma característica linear, como apresentado na Figura 3. Da característica linear, tem-se $tg\alpha=\Delta V/\Delta I$, ou seja, $tg\alpha=R$.

Figura 3 – Verificação da Lei de Ohm para um resistor linear.

Aplicando uma tensão aos terminais de um resistor, haverá circulação de uma corrente (movimento de cargas elétricas). O trabalho realizado pelas cargas elétricas em um determinado intervalo de tempo gera uma energia que é transformada em calor por efeito Joule e é definida como potência elétrica. Numericamente, a potência elétrica é igual ao produto da tensão e da corrente, resultando em uma grandeza cuja unidade é o Watt (W). Assim, $P = V.I = V^2/R = R.I^2$. O efeito térmico, produzido pela geração de potência, é aproveitado por inúmeros dispositivos, como chuveiro elétrico, secador, ferro elétrico, soldador, entre outros. Estes dispositivos são constituídos basicamente por resistências, que alimentadas por tensões e percorridas por correntes elétricas, transformam energia elétrica em térmica.

Considerando o circuito da Figura 4:

- Varie o valor da tensão E (conforme a Tabela 1 e 2),
- Calcule e meça a corrente para dois valores de resistores R (680Ω e $2.2k\Omega$);
- Calcule a potência dissipada em cada resistor para cada valor de tensão da fonte E, utilizando a corrente medida;
- Com os valores de corrente medidor, construa (em uma mesma folha de papel milimetrado e com o mesmo sistema de coordenadas), os gráficos V=f(I), para cada um dos resistores.
- Ainda com os valores de correntes medidos, construa (em uma outra folha de papel milimetrado e com o mesmo sistema de coordenadas), os gráficos P=f(I), para os dois resistores
- Meça o valor dos dois resistores com o ohmímetro (LEMBRE-SE QUE NUNCA SE MEDE RESISTÊNCIA EM UM COMPONENTE ENERGIZADO). Determine, por meio do gráfico V=f(I), o valor de cada resistência (R = $\Delta V/\Delta I$), preenchendo a Tabela 3.

Figura 4: Esquema de montagem do circuito

Tabela 1: 680Ω

	I [mA]		P [mW]
E[V]	Calculado	Medido	Utilizar a corrente medida
2			
4			
6			
8			
10			
12			

Tabela 2: 2,2k Ω

	I [mA]		P [mW] Utilizar a corrente
E [V]	Calculado	Medido	Utilizar a corrente medida
2			
4			
6			
8			
10			
12			

Tabela 3:

Valor nominal [Ω]	Valor Medido Multímetro $[\Omega]$	Valor Determinado (no gráfico) [Ω]
680		
2,2k		