МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

ЛАБОРАТОРНАЯ РАБОТА №2.1

"Атака на алгоритм шифрования RSA, посредством метода Ферма"

по дисциплине "Информационная безопасность"

Студент:

Алексеев Даниил Иннокентьевич

Группа Р34302

Преподаватель:

Рыбаков Степан Дмитриевич

Санкт-Петербург 2023

Цели работы:

- Изучить атаку на алгоритм шифрования RSA посредством Китайской теоремы об остатках
- Найти открытый текст шифротекста

Задание (вариант 26)

Для имеющихся значений **N**, **e** и шифрованного сообщения выполнить атаку на алгоритм шифрования, используя уязвимость плохо подобранных чисел **p** и **q**.

N	е	Шифротекст
40874866482797	4890013	30098470920348 10084491526640 23441958595352 33281521148728 37973385618526 9343475069587 2406343345685 7678583166238 37712932671543 31339429556436 26029018118292 35429221689605

Алгоритм RSA

При шифровании алгоритмом RSA исходное сообщение представляется в виде набора блоков-чисел, каждое из которых лежит в [0; N-1]. При отправке сообщение шифруется при помощи открытого ключа — пары чисел (N, e). Получатель должен воспользоваться секретным ключом (N, d). Числа N, e, d удовлетворяют условиям:

- 1. $N = p \cdot q$, где р и q простые числа
- 2. $gcd(e,\varphi(N))=1$, т.е. е взаимопростое с значением функции Эйлера для N
- 3. $e \cdot d \equiv 1 \mod \varphi(N)$

Числа $p,\ q,\$ и, соответственно, $\varphi(N)$ в дальнейшем не используется и должны быть уничтожены.

Например:

А отправляет В сообщение х

A (N, e)	B (N, d)
$y = x^e \mod N$ $y - зашифрованный блок$	Сообщение х получается в результате операции: $x = y^d mod N$

Доказательство второго равенства такое:

Из $e\cdot d\equiv 1 \mod \varphi(N)$ следует что $e\cdot d=\varphi(N)\cdot k+1, k\in \mathbb{Z}$. Поэтому можно выполнить преобразование:

$$y^d \equiv (x^e)^d \equiv x^{ed} \equiv x^{\varphi(N) \cdot k+1} \equiv (x^{\varphi(N)})^k \cdot x \pmod{N}$$
 (1)

Также можно показать, что:

 $x \cdot x^{\varphi(N) \cdot k} \equiv x \cdot x^{(p-1) \cdot (q-1) \cdot k} \equiv x \cdot (x^{p-1})^{(q-1) \cdot k} \equiv x (1)^{(q-1) \cdot k} \equiv x \mod(p)$, согласно малой теореме Ферма Аналогично:

$$x \cdot x^{\varphi(N) \cdot k} \equiv x \cdot x^{(p-1) \cdot (q-1) \cdot k} \equiv x \cdot (x^{q-1})^{(p-1) \cdot k} \equiv x (1)^{(p-1) \cdot k} \equiv x \mod(q)$$

Т.к **р**, **q**, **N** попарно взаимопростые, то по китайской теореме об остатках получим:

$$x \cdot x^{\varphi(N) \cdot k} \equiv x \mod(N)$$

тогда (1) превращается в:

$$y^d \equiv x \pmod{N}$$

Неудачный выбор параметров

Атака на алгоритм RSA подразумевает выполнение крайне трудоёмкой операции разложения большого числа **N** на простые множители **p** и **q**. Если злоумышленнику удастся получить такое разложение, то он сможет получить секретный ключ и расшифровать сообщение. Стойкость алгоритма RSA напрямую зависит от выбора параметров.

В данный работе рассматривается случай, когда **р** и **q** довольно близки друг другу. Что позволяет выразить N так:

$$N = p \cdot q \approx p^2 \approx q^2 \approx \frac{p^2 + q^2}{2} = \frac{(p+q)^2}{2} \dot{\iota} + \frac{(p-q)^2}{2}$$
, если $p \approx q$

Такой выбор параметров сильно упрощает задачу факторизации числа N.

Пусть
$$t = \frac{(p+q)^2}{2}$$
; $S = \frac{(p-q)^2}{2}$

Можно начать искать число t прямо с $t = \sqrt{N}$, и увеличвать его на 1 пока не выполнится равенство: $t^2 - N = S^2$.

Именно так работает метод Ферма по факторизации числа.

Решение задачи

Метод можно перевести в код на Kotlin и выполнить дешифрацию полученного шифрованного сообщения.

```
import java.io.File
import java.math.BigInteger
fun main(args: Array<String>) {
   val text = File(args[0]).readText().split("\n")
   val blocks_n = text[0].toInt()
   val N: BigInteger = BigInteger.valueOf(text[1].toLong())
   val e: BigInteger = BigInteger.valueOf(text[2].toLong())
   val verbose = false
   val secretD = hack(N,e, verbose)
   for(i in 0..<blocks_n){</pre>
       val C: BigInteger = BigInteger.valueOf(text[3 + i].toLong())
       if(verbose){
           println("----")
           println(String.format("block [%2d] %d", i + 1, C.toLong()))
       val msg = C.modPow(secretD, N)
       if(verbose)
           println(String.format("msg = %d\n-----", msg.toLong()))
           println(msg.toLong())
fun hack(N: BigInteger, e: BigInteger, verbose: Boolean): BigInteger {
   val p = fermαFαctorize(N).second
   val q = N.divide(p)
   if(verbose)
   println(String.format("N Factorization: N = %d * %d", p.toInt(), q.toInt()))
   val phi = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE))
   if(verbose)
   println(String.format("\phi(N)=\phi(p)*\phi(q)=(p-1)(q-1): \phi(N) = %d", phi.toLong()))
   val secret_d = e.modInverse(phi)
   println(String.format("d=invmod_phi(e): d = %d", secret_d.toLong()))
   return secret_d
```

```
fun fermaFactorize(N: BigInteger): Pair<Boolean, BigInteger> {
   var x = N.sqrt() + BigInteger.ONE

  var y = BigInteger.ZER0
  var r = ((x.multiply(x)).subtract(y.multiply(y))).subtract(N)

  while (true) {
     val cmp = r.compareTo(BigInteger.ZER0)
     if (cmp = 0){
        return if (x.compareTo(y) ≠ 0) Pair(true, x.subtract(y)) else Pair(true, x.add(y))
     } else if(cmp > 0) {
        r = r.subtract(y).subtract(y).subtract(BigInteger.ONE)
        y = y.add(BigInteger.ONE)
     } else{
        r = r.add(x).add(x).add(BigInteger.ONE)
        x = x.add(BigInteger.ONE)
     }
}
```

Значение полученных **p**,**q**, и **d**:

```
N Factorization: N = p*q = 6384953 * 6401749
\phi(N)=\phi(p)*\phi(q)=(p-1)(q-1): \phi(N) = 40874853696096
d=invmod_phi(e): d = 27434000421013
```

После исполнения програмым получены расшифрованные блоки:

```
3940607216
4213188845
3760255984
4007849445
541346883
690022432
4024824037
4059818976
4277334527
552594976
3991859688
4075154430
```

Воспользуемся программой BCalc для преобразования чисел в текст:

BCalc	
A	
3940607216	
В	
1	
c	
1	
D	
кадр	
	adi DVSKV
BCalc BCalc	
Ā	
4213188845	
В	
1	
C	
1	
D	
ы(н	
15.01	
B Calc	
A	
3760255984	
å. B	
1	
C	
1	
D	
аур	
1 - 20	

и т.д.

Полученный текст

кадры (на уровне DLC) и пересылаются по носителю

Вывод

В ходе выполнения лабораторной работы я ознакомился с основами шифрования RSA и способом атаки на алгоритм посредством метода Ферма.