Foundations for Inference in Probabilistic Relational Models

Paulius Dilkas

27th May 2020

Outline

•0000

- Introduction
- 2 Equivalence

Introduction

0.000

Markov Logic Network (Richardson and Domingos 2006)

- $\forall x \forall y \forall z \; \text{Friends}(x, y) \land \text{Friends}(y, z) \Rightarrow \text{Friends}(x, z)$
- 2.3 $\forall x \neg \exists y \; \text{Friends}(x, y) \Rightarrow \text{Smokes}(x)$
- $\forall x \; \mathtt{Smokes}(x) \Rightarrow \mathtt{Cancer}(x)$
- $\forall x \forall y \; \text{Friends}(x, y) \Rightarrow (\text{Smokes}(x) \Leftrightarrow \text{Smokes}(y))$

Probabilistic Relational Models

ProbLog (De Raedt, Kimmig and Toivonen 2007)

- 1.0::likes(X, Y):-friend0f(X, Y).
- 0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
- 0.5::friendOf(john, mary).
- 0.5::friendOf(mary, pedro).
- 0.5::friendOf(mary, tom).
- 0.5::friendOf(pedro, tom).

Probabilistic Relational Models

- What do these models have in common?
- When performing inference...
 - do we have to consider every detail?
 - what makes inference challenging?
 - can we do any better?
- How can we learn PRMs from data?

Applications

Introduction

00000

Moldovan and De Raedt 2014

Predicate	Instance	Source(s)
ethnicGroup	Cubans	CSEAL
arthropod	spruce beetles	CPL, CSEAL
female	Kate Mara	CPL, CMC
sport	BMX bicycling	CSEAL, CMC
profession	legal assistants	CPL
magazine	Thrasher	CPL
bird	Buff-throated Warbler	CSEAL
river	Fording River	CPL, CMC
mediaType	chemistry books	CPL, CMC
cityInState	(troy, Michigan)	CSEAL
musicArtistGenre	(Nirvana, Grunge)	CPL
tvStationInCity	(WLS-TV, Chicago)	CPL, CSEAL
sportUsesEquip	(soccer, balls)	CPL
athleteInLeague	(Dan Fouts, NFL)	RL
starredIn	(Will Smith, Seven Pounds)	CPL
productType	(Acrobat Reader, FILE)	CPL
athletePlaysSport	(scott shields, baseball)	RL
cityInCountry	(Dublin Airport, Ireland)	CPL

Table 1: Example beliefs promoted by NELL.

Carlson et al. 2010

Delaney et al. 2010

```
is_malignant(Case):-
        biopsvProcedure(Case.usCore).
        changes_Sizeinc(Case.missing).
        feature_shape(Case).
is_malignant(Case):-
        assoFinding(Case, asymmetry).
        breastDensity(Case.scatteredFDensities).
        vacuumAssisted(Case, yes).
is_malignant(Case):-
        needleGauge(Case,9),
```

Côrte-Real, Dutra and Rocha 2017

offset(Case, 14), vacuumAssisted(Case, yes).

Outline

- 1 Introduction
- 2 Equivalence
- 3 Random Programs
- 4 WMC
- **6** Future Work

```
Husband(joffrey, margaery)
Husband(tommen, margaery)
Husband(renly, margaery)
Parent(cersei, joffrey)
Parent(cersei, myrcella)
Parent(cersei, tommen)
Parent(tywin, cersei)
```

```
Husband(joffrey, margaery)
Husband (tommen, margaery)
 Husband(renly, margaery)
   Parent(cersei, joffrey)
  Parent(cersei, myrcella)
  Parent(cersei, tommen)
   Parent(tywin, cersei)
```

```
Female(cersei),
Female(margaery),
Female(myrcella)
```

Introduction

```
Husband(joffrey, margaery)
Husband(tommen, margaery)
Husband(renly, margaery)
Parent(cersei, joffrey)
Parent(cersei, myrcella)
Parent(cersei, tommen)
Parent(tywin, cersei)
```

```
Female(cersei),
Female(margaery),
Female(myrcella)
```

```
Female(X):-Husband(joffrey, X).
Female(X):-Parent(X, joffrey).
Female(X):-Parent(cersei, X), \negHusband(X, margaery).
```

Main Results

Definition (Equivalence)

Two *n*-tuples of constants a and b are equivalent if

$$(P \circ \rho)(a) = (P \circ \rho)(b)$$

for all atoms $P \circ \rho$ acting on n variables.

Main Results

Definition (Equivalence)

Two *n*-tuples of constants a and b are equivalent if

$$(P \circ \rho)(a) = (P \circ \rho)(b)$$

for all atoms $P \circ \rho$ acting on n variables.

$\mathsf{Theorem}$

There is a logic program $\mathcal{L}: \mathcal{KB}(P_1, C) \to \mathcal{KB}(P_2, C)$ such that $\mathcal{L}(\Delta_1) = \Delta_2$ if and only if \sim_{Δ_2} is coarser than \sim_{Δ_1} .

Outline

- 1 Introduction
- 2 Equivalence
- **3** Random Programs
- 4 WMC
- **6** Future Work

- 1.0::likes(X, Y):-friendOf(X, Y).
- 0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
- 0.5::friendOf(john, mary).
- 0.5::friendOf(mary, pedro).
- 0.5::friendOf(mary, tom).
- 0.5::friendOf(pedro, tom).

```
1.0::likes(X, Y):-friendOf(X, Y).
0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
```

predicates, arities

```
predicates,
1.0::likes(X, Y):-friend0f(X, Y).
                                                     arities
0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
                                                     variables
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
```

1.0::likes(X, Y):-friend0f(X, Y).

```
0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary,tom).
0.5::friendOf(pedro, tom).
```

- predicates, arities
- variables
- constants

```
1.0::likes(X, Y):-friendOf(X, Y).
0.8::likes(X, Y):-friend0f(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
```

- predicates, arities
- variables
- constants
- probabilities

Random Programs

000000

```
1.0::likes(X, Y):-friendOf(X, Y).
0.8::likes(X, Y):-friend0f(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
```

- predicates, arities
- variables
- constants
- probabilities
- length

```
1.0::likes(X, Y):-friendOf(X, Y).
0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
```

Random Programs

000000

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity

```
1.0::likes(X, Y):-friendOf(X, Y).
0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity


```
1.0::likes(X, Y):-friend0f(X, Y).
0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
Also:
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity

- cyclicity
- (conditional) independence
- likes(Z, Y)friendOf(X, Z)
- required subformulas

```
1.0::likes(X, Y):-friend0f(X, Y).
0.8::likes(X, Y):-friendOf(X, Z), likes(Z, Y).
0.5::friendOf(john, mary).
0.5::friendOf(mary, pedro).
0.5::friendOf(mary, tom).
0.5::friendOf(pedro, tom).
Also:
```

- predicates, arities
- variables
- constants
- probabilities
- length
- complexity

- cyclicity
- (conditional) independence
- required subformulas

What Programs Are Hard to Generate?

What Programs Are Hard to Generate?

How Program Features Influence Inference Time

How Program Features Influence Inference Time

Outline

- 1 Introduction
- 2 Equivalence
- 3 Random Programs
- 4 WMC
- **5** Future Work

Defining WMC

Introduction

Definition

Let B be an atomic Boolean algebra. Let $L \subset B$ be such that every atom m can be uniquely expressed as $m = \bigwedge L'$ for some $L' \subseteq L$, and let $w \colon L \to \mathbb{R}_{\geq 0}$ be arbitrary. The weighted model count $\mathsf{WMC}_w \colon \mathsf{B} \to \mathbb{R}_{\geq 0}$ is defined as

$$\mathsf{WMC}_w(x) = \begin{cases} 0 & \text{if } x = 0 \\ \prod_{I \in L'} w(I) & \text{if } x = \bigwedge L' \text{ is an atom} \\ \sum_{\mathsf{atoms} \ a \leq x} \mathsf{WMC}_w(a) & \text{otherwise} \end{cases}$$

for any $x \in \mathbf{B}$.

WMC Requires Independent Literals

$\mathsf{Theorem}$

Introduction

Let **B** be a free Boolean algebra over $\{l_i\}_{i=1}^n$ with measure

$$m \colon \mathsf{B} \to \mathbb{R}_{>0}$$
,

and let

$$L = \{I_i\}_{i=1}^n \cup \{\neg I_i\}_{i=1}^n.$$

Then there exists a weight function $w: L \to \mathbb{R}_{>0}$ such that $m = WMC_w$ if and only if

$$m(I \wedge I') = m(I)m(I')$$

for all distinct $I, I' \in L$ such that $I \neq \neg I'$.

Extending the Algebra

WMC

00000

How Can This Benefit Inference?

Theorem (Sikorski 1969)

If
$$B = \mathcal{F}\{a\} + \mathcal{F}\{b\}$$
, then $Pr(a \wedge b) = Pr(a) Pr(b)$.

How Can This Benefit Inference?

Theorem (Sikorski 1969)

If
$$B = \mathcal{F}\{a\} + \mathcal{F}\{b\}$$
, then $Pr(a \wedge b) = Pr(a) Pr(b)$.

Conjecture

If
$$B = \mathcal{F}\{a\} +_{\mathcal{F}\{c\}} \mathcal{F}\{b\}$$
, then $\Pr(a \wedge b \wedge c) = \Pr(a \wedge c) \Pr(b \wedge c)$.

How Can This Benefit Inference?

Theorem (Sikorski 1969)

If
$$B = \mathcal{F}\{a\} + \mathcal{F}\{b\}$$
, then $Pr(a \wedge b) = Pr(a) Pr(b)$.

Conjecture

If
$$B = \mathcal{F}\{a\} +_{\mathcal{F}\{c\}} \mathcal{F}\{b\}$$
, then $Pr(a \wedge b \wedge c) = Pr(a \wedge c) Pr(b \wedge c)$.

Conjecture

Using coproducts and pushouts, one can encode a Bayesian network into WMC with fewer literals and a shorter theory than before.

WMC

How Can This Benefit Inference?

Theorem (Sikorski 1969)

If
$$B = \mathcal{F}\{a\} + \mathcal{F}\{b\}$$
, then $Pr(a \wedge b) = Pr(a) Pr(b)$.

Conjecture

If
$$B = \mathcal{F}\{a\} +_{\mathcal{F}\{c\}} \mathcal{F}\{b\}$$
, then $Pr(a \land b \land c) = Pr(a \land c) Pr(b \land c)$.

Conjecture

Using coproducts and pushouts, one can encode a Bayesian network into WMC with fewer literals and a shorter theory than before.

Conjecture

A #SAT algorithm can be adapted without sacrificing efficiency.

Outline

- **5** Future Work

Abstraction: After

Plan for the Future

Introduction

- Rework the equivalence paper (2 months)
- 2 Improve and resubmit the random programs paper (done)
- **6** WMC 2.0
 - Design a new encoding for Bayesian networks (2 months)
 - Experimentally compare with other encodings (2 months)
- Abstractions as homomorphisms
 - Find algebraic counterparts for logic-based concepts (1 month)
 - Establish 'iff' results for their preservation (2 months)
 - Develop algorithms for constructing abstractions (2 months)
 - Theorems for the preservation of independence (3 months)
- **6** And lost of writing, editing, and rewriting ($[9, \infty)$ months)