Aula 14: Complexidade de Tempo

Prof. Lucio A. Rocha

Engenharia de Computação Universidade Tecnológica Federal do Paraná, UTFPR Campus Apucarana, Brasil

 2^{o} semestre / 2023

Sumário

Seção 1

Leitura complementar: tinyurl.com/cch-parte2

- Um problema é decidível se existe uma MT que o resolve.
- Por exemplo, seja a linguagem:

$$L = \{0^n 1^n \mid n \ge 0\}$$

• L é decidível.

•
$$L = \{0^n 1^n \mid n \ge 0\}$$

- Algoritmo da MT: Sobre a cadeia de entrada w:
 - Leia a fita e REJEITA se 0 à direita de 1.
 - Enquanto há símbolos na fita:
 - Risque um 0 e risque um 1.
 - Se restou símbolo, então REJEITA. Caso contrário, ACEITA.

- Por simplicidade, computamos o tempo de execução de um algoritmo em função do comprimento da cadeia de entrada.
- Pior caso: maior tempo de execução de todas as entradas de comprimento específico.
- Caso médio: tempo médio de execução de todas as entradas de comprimento específico.
- Melhor caso: menor tempo de execução de todas as entradas de comprimento específico.

Def.: Complexidade de Tempo (ou Tempo de Execução)

Complexidade de Tempo é uma função $f: \mathbb{N} \to \mathbb{N} \mid n \in N$, onde f(n) é o número máximo de passos que uma MT determinística finita usa sobre qualquer entrada de comprimento n.

- Análise assintótica: é uma estimativa do tempo de execução do algoritmo.
- Considera somente o tempo de mais alta ordem do algoritmo.
 - Por exemplo: $f(n) = 7n^3 + 5n^2 + 7$
 - $f(n) = O(n^3)$

Def.: Notação Assintótica (Notação O)

Seja as funções f e g, tal que $f,g:\mathbb{N}\to\mathbb{R}^+$. Então, f(n)=O(g(n)) se existem inteiros positivos c e n_0 tais que, $\forall n\geq n_0$:

$$f(n) \le c g(n)$$

• Classe P: é a classe das linguagens decidíveis em tempo polinomial sobre uma MT determinística de uma única fita.

 Classe NP: é a classe das linguagens verificáveis em tempo polinomial, mas "provavelmente" decidíveis em tempo polinominal sobre uma MT não-determinística.

- Uma linguagem B é NP-completa se:
 - B está em NP
 - ② toda A em NP é redutível, em tempo polinomial, a B.
- Hipótese: Se B é NP-completa e $B \in NP$, então P = NP.

- Exemplo: Caminho Hamiltoniano *B* é NP-completo:
 - B está em NP
 - ② toda A em NP é redutível, em tempo polinomial, a B.
- Hipótese: Se B é NP-completa e $B \in NP$, então P = NP.

- Exemplo: Clique de um grafo não-direcionado é um subgrafo, no qual dois nós são conectados por uma aresta. Um k-clique é um clique que contém k nós.
- Clique *B* é NP-completo:
 - B está em NP
 - toda A em NP é redutível, em tempo polinomial, a B.
- Hipótese: Se B é NP-completa e $B \in NP$, então P = NP.