Osnovi elektrotehnike 1 (I kolokvijum)

K1

06.10.2021.

ZADACI

Zadatak 1. Tanak, veoma dugačak, štap od izolacionog materijala, savijen kao na slici 1, naelektrisan je ravnomerno podužnom gustinom naelektrisanja Q'. Štap se sastoji od polukruga, poluprečnika a, koji leži u x-y ravni zadatog koordinatnog sistema, i dva veoma duga pravolinijska segmenta, koji leže u y-z ravni. Sredina je vazduh.

- a) Izvesti u opštim brojevima izraz za vektor jačine električnog polja u tački *O* (koordinatni početak), koji potiče od naelektrisanog polukruga.
- b) Izvesti u opštim brojevima izraz za vektor jačine električnog polja u tački *O*, koji potiče od naelektrisanih, veoma dugačkih, pravolinijskih segmenata.
- c) Odrediti količinu tačkastog naelektrisanja Q_1 , postavljenog na z osi, na rastojanju a od koordinatnog početka, tako da rezultantni vektor jačine električnog polja u tački O ima samo x komponentu.

Slika 1.

Brojni podaci su: a = 2 cm, Q' = 30 nC/m, $\varepsilon_0 = 8.85 \cdot 10^{-12} \text{ F/m}$.

Zadatak 2. Na slici 2 je prikazan koaksijalni kabl dužine L = 8 m, ispunjen sa dva sloja dielektrika: čvrsti – relativne permitivnosti $\varepsilon_{r1} = 7$ i tečni – relativne permitivnosti $\varepsilon_{r2} = 4$. Poluprečnici elektroda kabla su a i b = 2,7a. Elektrode kondenzatora su naelektrisane naelektrisanjem +Q i -Q.

- a) Razmotriti granične uslove i odrediti kako se u zavisnosti od rastojanja tačke od centra kondenzatora menjaju intenziteti vektora električnog pomeraja i vektora jačine električnog polja
- b) Odrediti nepoznati poluprečnik unutrašnje elektrode a, ako je maksimalni dozvoljeni napon na koji sme da se priključi kondenzator $U_{max} = 15 \ kV$.
- c) Za koliko će se promeniti kapacitivnost kondenzatora, nakon potpunog ispuštanja tečnog dielektrika?

Slika 2.

PRAVILA POLAGANJA

Za položen kolokvijum neophodno je sakupiti više od 50% poena na svakom od zadataka. Svaki zadatak se boduje sa 25 poena. Kolokvijum traje dva sata.

Osnovi elektrotehnike 1 (II kolokvijum)

K2

06.10.2021.

ZADACI

Zadatak 1. Kada se u mreži sa slike 1 preklopnik P prebaci iz položaja (1) u položaj (2), kroz kondenzator kapacitivnosti $C = 5 \mu F$ protekne naelektrisanje $q = 100 \mu C$, u naznačenom referentnom smeru.

- a) Primenjujući teoremu superpozicije, odrediti nepoznatu struju strujnog generatora, *I*_S.
- b) Odrediti snagu strujnog generatora I_S kada je preklopnik u položaju (2). Kolo rešavati primenom metode konturnih struja.

Brojni podaci su: $R_1 = 100 \ \Omega$, $R_2 = 200 \ \Omega$, $R_3 = 300 \ \Omega$, $R_4 = 100 \ \Omega$, $R_5 = 400 \ \Omega$, $R_6 = 300 \ \Omega$, $R_7 = 540 \ \Omega$, $E_1 = 20 \ V$, $E_2 = 70 \ V$, $E_3 = 100 \ V$.

Slika 1.

Zadatak 2. U mreži sa slike 2 poznate su brojne vrednosti svih elemenata, osim otpornosti otpornika *R*.

- a) Primenjujući teoremu o kompenzaciji, izračunati otpornost otpornika R, tako da jačina struje kroz njegove priključake ima vrednost I = 0,1 A, u naznačenom referentnom smeru.
- b) Izračunati snagu strujnog generatora I_{S2} , kada otpornik R ima otpornost izračunatu pod a).
- c) Izračunati snagu naponskog generatora E_4 , kada otpornik R ima otpornost izračunatu pod a).

Brojni podaci su: $R_1 = 30 \ \Omega$, $R_2 = 10 \ \Omega$, $R_3 = R_4 = 20 \ \Omega$, $I_{S1} = 150 \ mA$, $I_{S2} = 62,5 \ mA$, $E_4 = 4 \ V$.

Slika 2.

PRAVILA POLAGANJA

Za položen kolokvijum neophodno je sakupiti više od 50% poena na svakom od zadataka. Svaki zadatak se boduje sa 25 poena. Kolokvijum traje dva sata.

Ispit iz OET1, 06.10.2021.

I-1

a)

Zbog simetrije je:

$$d\vec{E}_{L1x} + d\vec{E}_{L2y} = 0 \Rightarrow E_{Ly} = 0$$

$$d\vec{E}_{L1x} + d\vec{E}_{L2y} = 0 \Rightarrow E_{Ly} = 0$$

$$d\vec{E}_{L1x} = dE_{L2x} = dE_{L1} \cos \theta = \frac{Q' dl}{4\pi\varepsilon_0 a^2} \cos \theta = \frac{Q' a d\theta}{4\pi\varepsilon_0 a^2} \cos \theta$$

$$dE_{L1x} = \frac{Q'}{4\pi\varepsilon_0 a} \cos \theta d\theta$$

$$dE_{L1x} = \frac{Q'}{4\pi\varepsilon_0 a} \cos \theta d\theta$$

$$E_{L} = \int_{hku}^{p_0} dE_{L1x} = 2 \frac{Q'}{4\pi\varepsilon_0 a} \int_{0}^{\pi/2} \cos \theta d\theta = 2 \frac{Q'}{4\pi\varepsilon_0 a} \left(\sin \frac{\pi}{2} - \sin \theta\right) = \frac{Q'}{2\pi\varepsilon_0 a}$$

$$E_L = \int_{\substack{po\\luku}} dE_{L1x} = 2 \frac{Q'}{4\pi\varepsilon_0 a} \int_0^{\frac{\pi}{2}} \cos\theta \, d\theta = 2 \frac{Q'}{4\pi\varepsilon_0 a} \left(\sin\frac{\pi}{2} - \sin 0 \right) = \frac{Q'}{2\pi\varepsilon_0 a}$$

$$\vec{E}_L = \frac{Q'}{2\pi\varepsilon_0 a} \cdot \left(-\vec{i}_x\right)$$

$$d\vec{E}_{S_{1y}} + d\vec{E}_{S_{2y}} = 0 \quad \Rightarrow \quad \boxed{E_{S_{y}} = 0}$$

$$dE_{S_{1x}} = dE_{S_{2x}} = dE_{S_{1}} \sin \alpha = \frac{dQ}{4\pi\varepsilon_{0}r^{2}} \sin \alpha = \frac{Q'dz}{4\pi\varepsilon_{0}r^{2}} \sin \alpha$$

$$dE_{S1y} + dE_{S2y} = 0 \implies E_{Sy} = 0$$

$$dZ$$

$$dZ$$

$$dZ$$

$$dQ$$

$$dE_{S1x} = dE_{S2x} = dE_{S1} \sin \alpha = \frac{dQ}{4\pi\varepsilon_0 r^2} \sin \alpha = \frac{Q' dz}{4\pi\varepsilon_0 r^2} \sin \alpha$$

$$dE_{S2y} \alpha_{max} = \frac{dQ}{dE_{S1y}} \cos \alpha = \frac{Q' dz}{4\pi\varepsilon_0 r^2} \sin \alpha = 2\frac{Q' \frac{d\alpha}{\cos \alpha}}{4\pi\varepsilon_0 r^2} \sin \alpha = 2\frac{Q' \frac{d\alpha}{\cos$$

$$dE_{S} = 2\frac{Q'}{4\pi\varepsilon_{0}a}\sin\alpha\,d\alpha$$

$$E_{\underline{S}} = \int_{\substack{po \\ \underline{S}tapu}} dE_{\underline{S}} = 2 \frac{Q'}{4\pi\varepsilon_0 a} \int_{0}^{\alpha_{\max} \to \frac{\pi}{2}} \sin \alpha \, d\alpha = 2 \frac{Q'}{4\pi\varepsilon_0 a} \left(\cos 0 - \cos \frac{\pi}{2}\right) = \frac{Q'}{2\pi\varepsilon_0 a}$$

$$\vec{E}_{\vec{s}} = \frac{Q'}{2\pi\varepsilon_0 a} \cdot \left(-\vec{i}_z\right)$$

b)
$$dz dQ dQ dZ dQ dQ$$

$$Q' d\vec{E}_{\underline{S}2y} \alpha_{max} Q \alpha d\vec{E}_{\underline{S}1y} Q'$$

$$d\vec{E}_{\underline{S}2} d\vec{E}_{\underline{S}2z} d\vec{E}_{\underline{S}1z} d\vec{E}_{\underline{S}1}$$

$$\overrightarrow{E}_{i} = -\overrightarrow{E}_{S} \qquad E_{1} = \frac{Q_{1}}{4\pi\varepsilon_{0}a^{2}}$$

$$|\overrightarrow{E}_{oz}| = 0 \qquad \Rightarrow \qquad \overrightarrow{E}_{1} = -\overrightarrow{E}_{S} \qquad \Rightarrow \qquad \overrightarrow{E}_{1} = \frac{Q_{1}}{4\pi\varepsilon_{0}a^{2}} \cdot \overrightarrow{i}_{z}$$

$$E_1 = \frac{Q_1}{4\pi\varepsilon_0 a^2}$$

$$\left| \overrightarrow{E} o_z \right| = 0$$

$$\vec{E}_1 = -\vec{E}_{\check{S}}$$

$$\vec{E}_1 = \frac{Q_1}{4\pi\epsilon_0 a^2} \cdot \vec{i}_z$$

$$\Rightarrow$$
 ζ

$$\frac{Q'}{2\pi\varepsilon_0 a} = \frac{|Q_1|}{4\pi\varepsilon_0 a^2}$$

$$|Q_1| = 2a Q' = 1,2 nC$$

$$Q_1 = -1, 2 nC$$

Granični uslov:

$$E_{t1} = E_{t2} \qquad E_{1} = E_{2} = E$$

$$D_{n1} \neq D_{n2}$$

$$3L/8 \qquad \oint_{S} \overrightarrow{D} \cdot \overrightarrow{ds} = Q_{u S}$$

$$\int_{S_{OM}} D \, ds = Q \qquad \int_{OM_{1}} D_{1} \, ds + \int_{OM_{2}} D_{2} \, ds = Q$$

$$5L/8 \qquad D_{1} \, 2\pi r \, \frac{3L}{8} + D_{2} \, 2\pi r \, \frac{5L}{8} = Q \qquad D_{1} = \varepsilon_{1} E \qquad D_{2} = \varepsilon_{2} E$$

$$E = \frac{Q}{\left(\varepsilon_{1} \, \frac{3L}{8} + \varepsilon_{2} \, \frac{5L}{8}\right) 2\pi r}, \qquad a \leq r \leq b$$

$$D_{1} = \varepsilon_{1} E = \varepsilon_{1} \frac{Q}{\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi r}$$

$$D_{2} = \varepsilon_{2} E = \varepsilon_{2} \frac{Q}{\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi r}, \quad a \leq r \leq b$$

b)

$$E_{\max}\left(r=a\right) = \frac{Q_{\max}}{\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi a} \leq \min\left\{E_{\check{c}_{1}}, E_{\check{c}_{2}}\right\} = E_{\check{c}_{1}}$$

$$Q_{\text{max}} = E_{\text{\'e}_1} \left(\varepsilon_1 \frac{3L}{8} + \varepsilon_2 \frac{5L}{8} \right) 2\pi a$$

$$U_{AB} = \int_{A}^{B} \overrightarrow{E} \cdot \overrightarrow{dl} = \int_{a}^{b} E \, dr = \int_{a}^{b} \frac{Q}{\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi r} \, dr = \frac{Q}{\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi} \ln \frac{b}{a}$$

$$U_{\max} = \frac{Q_{\max}}{\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi} \ln \frac{b}{a} = \frac{E_{\text{č1}}\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi a}{\left(\varepsilon_{1} \frac{3L}{8} + \varepsilon_{2} \frac{5L}{8}\right) 2\pi} \ln \frac{b}{a} = E_{\text{č1}} a \ln \frac{b}{a}$$

$$a = \frac{U_{\text{max}}}{E_{\text{č1}} \ln \frac{b}{a}} = \frac{15 \cdot 10^3}{60 \cdot 10^5 \cdot \ln 2.7} = 0.25 \cdot 10^{-2} \, m = 2.5 \cdot 10^{-3} \, m$$

$$\boxed{a = 2.5}$$

c)

Pre ispuštanja tečnog dielektrika:

$$C = \frac{Q}{U_{AB}}$$

$$C = \frac{Q}{U_{AB}} \qquad C^{PRE} = \frac{\left(\varepsilon_1 \frac{3L}{8} + \varepsilon_2 \frac{5L}{8}\right) 2\pi}{\ln \frac{b}{a}} = 2,28 \, nF$$

Posle ispuštanja tečnog dielektrika:

$$C^{POSLE} = \frac{\left(\varepsilon_1 \frac{3L}{8} + \varepsilon_0 \frac{5L}{8}\right) 2\pi}{\ln \frac{b}{a}} = 1,45 \, nF$$

$$\Delta C = C^{POSLE} - C^{PRE} = 1,45 \, nF - 2,28 \, nF$$

$$\Delta C = -0.83 \ nF$$

$$\frac{C^{POSLE}}{C^{PRE}} = \frac{1,45 \, nF}{2,28 \, nF}$$

$$\frac{C^{POSLE}}{C^{PRE}} = 0,64$$

Ispit iz OET1, 06.10.2021.

$$\begin{split} &U_{C}^{(2)} = U_{C}^{(1)} + U_{C}' \\ &q = C \Big(U_{C}^{(2)} - U_{C}^{(1)} \Big) = C U_{C}' = C \Delta U_{C} \\ &\Delta U_{C} = \frac{q}{C} = \frac{100 \ \mu C}{5 \ \mu F} = 20 \ V \end{split}$$

$$R_{14} = R_1 + R_4 = 200 \,\Omega$$

$$I_1 = \frac{\Delta U_C}{R_{14}} = \frac{20}{200} = 0.1 A$$

$$R_e = R_1 + R_3 + R_{14} = 600 \,\Omega$$

$$U_{13} = I_1 R_e = 0.1 \cdot 600 = 60 V$$

$$R_{13} = R_e \parallel R_5 = 600 \parallel 400 = 240 \Omega$$

$$I_{13} = \frac{U_{13}}{R_{13}} = \frac{60}{240} = 0,25 A$$

$$I_{13} = \frac{R_7}{R_{13} + R_6 + R_7} I_S$$

$$\Rightarrow I_S = \frac{R_{13} + R_6 + R_7}{R_7} I_{13} = \frac{240 + 300 + 540}{540} \cdot 0,25$$

 $I_{s} = 0.5 A$

b)

$$n_g = 6$$
, $n_{\tilde{c}} = 4$, $n_{s.g.} = 1$, $n_{i.n.g.} = 1$

MKS:
$$n_g - (n_c - 1) - n_{s.g.} = 6 - (4 - 1) - 1 = 2$$

$$MP\check{C}: n_{\check{c}} - 1 - n_{i.n.g.} = 4 - 1 - 1 = 2$$

$$K1: I_{K1} = I_S = 0.5 A$$

$$K2: (R_5 + R_6 + R_7)I_{K2} + (R_5 + R_6)I_{K1} - R_5I_{K3} = -E_2$$

K3:
$$(R_1 + R_1 + R_3 + R_4 + R_5)I_{K3} - R_5I_{K1} - R_5I_{K2} = -E_1 + E_2 + E_3$$

K2: $1240I_{K2} - 400I_{K3} = -420$ / ·2,5

$$K2: 1240I_{K2} - 400I_{K3} = -420$$
 /·2,

$$K3: -400I_{K2} + 1000I_{K3} = 350$$

$$K2: 3100I_{K2} - 1000I_{K3} = -1050$$

$$K3: -400I_{K2} + 1000I_{K3} = 350$$

$$2700I_{K2} = -700 \qquad I_{K2} = 0,26 A$$

$$I_{K3} = 0,45 A$$

$$U_S = -E_2 + R_7 I_7 = -E_2 + R_7 (-I_{K2}) = -70 + 540 \cdot (-0,26)$$

$$U_{\rm s} = -210,4 \, V$$

$$P_S = U_S I_S = -210,4 V \cdot 0,5 A$$

$$P_{\rm c} = -105, 2 \, W$$

a)

$$I_{K1} = I_{S1} = 150 \ mA$$

$$I_{K2} = I_{S2} = 62,5 \text{ mA}$$

$$I_{K3} = I = 100 \, mA$$

$$\frac{I_{K4}\left(R_{1}+R_{2}+R_{3}+R_{4}\right)-I_{K1}\left(R_{2}+R_{3}\right)+I_{K2}\left(R_{1}+R_{2}\right)+I_{K4}\,R_{4}=E_{4}}{I_{K4}\left(30+10+20+20\right)-150\,m\cdot\left(10+20\right)+62,5\,m\cdot\left(30+10\right)+100\,m\cdot20=4$$

$$I_{K4}(30+10+20+20)-150 m \cdot (10+20)+62,5 m \cdot (30+10)+100 m \cdot 20=4$$

$$80 I_{K4} = 4 + 4, 5 - 2, 5 - 2 = 4$$

$$I_{K4} = 50 \ mA$$

$$U_{AB} = E_4 - I_4 R_4 = E_4 - (I_{K3} + I_{K4}) R_4 = 4 - (100 m + 50 m) \cdot 20 = 1 V$$

$$R = \frac{U_{AB}}{I} = \frac{1}{0.1}$$

$$R = 10 \Omega$$

b)

$$P_{IS2} = U_{S2} I_{S2} = U_{DB} I_{S2} = (-I_3 R_3 + E_4 - I_4 R_4) I_{S2}$$

$$I_3 = I_{K4} - I_{K1} = 50 \, m - 150 \, m = -100 \, mA$$

$$P_{IS2} = (100 \, m \cdot 20 + 4 - 150 \, m \cdot 20) \cdot 62,5 \, m$$

$$P_{IS2} = 187,5 \ mW$$

c)

$$P_{E4} = E_4 I_4 = 4.150 \, m$$

$$P_{E4} = 600 \ mW$$