Laboratorio 66.02 / Introducción a la Ing. Electrónica 86.02

Evaluación Parcial — 1ra oportunidad — 2do cuatrimestre 2019 — 04-11-2019 — Hojas entregadas _____ Apellidos y Nombres _____ Padrón _____ Turno _____

1) a)	1) b)	2) a)	2) b)	3) a)	3) b)	3) c)	4) a)	4) b)	4) c)	4)d)

Por favor ponga en cada hoja su nombre y apellido, número de padrón y el número de hoja correspondiente. Cuente la cantidad total de hojas entregadas INCLUYENDO ésta, y complete el cuadro de arriba de esta hoja. Resuelva cada ejercicio en HOJAS SEPARADAS. **Indique todos los razonamientos e hipótesis a los que recurre. Justifique las respuestas.**

- 1) En el circuito de la figura, se cierra la llave en t = 0 s y se vuelve a abrir 25 ms después. Antes de t = 0 s el capacitor está descargado. Se pide:
- **a.** Dibujar la tensión sobre el resistor *R1* en función del tiempo hasta 25 ms.
- **b.** Dibujar la corriente en el capacitor en función del tiempo luego de 25 ms.

NOTA: Indique en los gráficos de los puntos \mathbf{a} y \mathbf{b} los valores de tensión y tiempo relevantes (mínimos, máximos, instantes a 1 τ , 5 τ ; τ es la constante de tiempo).

R1

- 2) Dado el circuito de la figura anterior, se remplaza la fuente de tensión continua por un generador de tensión senoidal V = 1 V sen(ωt). Considere que la llave se cerró hace mucho tiempo.
- **a.** Halle la frecuencia de corte y grafique en forma aproximada (cualitativa) el valor de amplitud de tensión senoidal sobre el resistor *R2* en función de la **frecuencia**. Indique la frecuencia de corte, el valor pico mínimo y máximo de la tensión sobre *R2*.
- **b.** Explique cómo mediría la respuesta en frecuencia del punto **2a** utilizando un osciloscopio y asumiendo que *V* es un generador de frecuencia variable. Dibuje el banco de trabajo y enumere la secuencia de pasos a seguir para realizar la medición. Indique la configuración de las escalas vertical y horizontal, el acoplamiento y el disparo.

- **3)** En el circuito de la figura se mide la tensión V_{AB} con un voltímetro ideal. $R1 = R2 = 6.8 \text{ k}\Omega$, $R3 = 1 \text{ M}\Omega$ y $R4 = 900 \text{ k}\Omega$.
- **a.** Calcular la tensión del generador si se midió la tensión V_{AB} = 1 V.
- **b.** Se dispone de dos resistores variables R5 y R6 de valor máximo 5 k Ω y 10 k Ω , respectivamente, para conectar uno de ellos entre A y B. ¿Cuál de los dos resistores variables elegiría para obtener máxima potencia disipada en este resistor agregado? Luego del ajuste ¿cuál sería el valor?
- c. Se desea obtener máxima transferencia de potencia sobre el resistor R2 ¿qué valor de R4 elegiría?
- **4)** Se dispone de los siguientes instrumentos:
- "A" TRUE RMS 3 $\frac{3}{4}$ dígitos. En modo voltímetro [DC, AC, AC+DC]: *Rint* = 10 M Ω , *Incertidumbre* = 1,2% lectura + 3 dígitos.
- "B" Valor Medio, 3 ½ dígitos. En modo voltímetro [DC, AC]: $Rint = 10 \text{ k}\Omega$, Incertidumbre = 0.3% lectura + 1 dígito.
- **a.** Calcular el equivalente de Thévenin en los terminales A–B para $V1 = 5 \text{ V} \cdot \text{sen}(2 \cdot \pi \cdot 300 \cdot t)$ y V2 = 15 V.
- b. ¿Qué se mediría con el multímetro "A" en modo DC? ¿y en modo AC+DC?
- c. ¿Qué se mediría con el multímetro "B" en modo DC? ¿en modo AC? ¿y cuál sería la tensión eficaz total?
- d. Indicar cuál de las dos mediciones de tensión eficaz total obtiene menor incertidumbre y cuál menor error.

 NOTA: Calcular la incertidumbre en cada caso y expresar el resultado con la cantidad correcta de dígitos. No realice corrección de efecto de carga en las mediciones, sólo indique lecturas obtenidas por el voltímetro e incertidumbre.

ACLARACIONES:

Las condiciones que se creen no especificadas deberán ser establecidas explícitamente antes de hacer los cálculos. Si hay errores, indíquelos. Si sobran datos o son incompatibles, justifique cuáles usa. Expresar correctamente las unidades de medida, las incertidumbres y proponer respuestas breves; todos estos factores afectan la calificación. Un error conceptual o una cantidad incorrecta pueden invalidar la respuesta. (*) Las preguntas 1, 2, 3 y 4 evalúan distintos conceptos por lo que la evaluación es global.