Lemme de pompage ultime: Ehrenfeucht, Parikh et Rozenberg

On propose deux versions du lemme de l'étoile pour les langages réguliers. Soit L un langage régulier. Alors L vérifie les deux lemmes suivants:

Lemme 1

Il existe $N\geq 0$ tel que, pour tout mot $x\in L$ avec $|x|\geq N$, il existe une décomposition $x=u_1u_2u_3$ avec $u_2\neq \varepsilon$ telle que $\forall n\in \mathbb{N}, u_1u_2^nu_3\in L$

Lemme 2

Il existe $N \geq 0$ tel que, pour tout mot $x \in L$, pour toute décomposition $x = uv_1v_2...v_Nw$ avec $\forall 1 \leq i \leq N, |v_i| \geq 1$, il existe $0 \leq j < k \leq N$ tel que pour tout $n \geq 0$:

$$uv_1...v_j\big(v_{j+1}...v_k\big)^n...v_Nw\in L$$

Q0) Soit $L = \{u \in \{a, b\}^* \mid u \text{ a le même nombre de a que de b}\}$. Montrez que L vérifie le lemme 1 mais pas le lemme 2.

On ne s'attend pas à des preuves lourdement formelles pour cette question

On dit qu'un langage L vérifie la propriété σ_k (respectivement σ_k ') si pour tout mot $f \in \Sigma^*$ et toute factorisation $f = uv_1...v_kw$ dans laquelle chaque mot v_i est non vide, il existe deux indices i,j avec $0 \le i < j \le k$ tels que :

$$\forall n \geq 0 \quad \left[f \in L \Leftrightarrow uv_1...v_i \left(v_{i+1}...v_j \right)^n v_{j+1}...v_k w \in L \right] \tag{σ_k}$$

$$f \in L \Leftrightarrow uv_1...v_i...v_k w \in L \tag{\sigma_k'}$$

Nous allons montrer le résultat suivant, attribuée à Ehrenfeucht, Parikh et Rozenberg.

Proposition 3

Il existe une équivalence entre:

- (1) L est régulier
- (2) Il existe k>0 tel que L vérifie σ_k
- (3) Il existe k > 0 tel que L vérifie σ_k

Q1) Sans reprouver la dernière version du lemme de l'étoile, justifier rapidement que (1) implique (2) (penser au langage complémentaire) et que (2) implique (3).

Q2) On note, pour tout mot $v \in \Sigma^*$, $v^{-1}L = \{u \mid u.v \in L\}$. Montrer que si L vérifie σ_k ', alors, pour tout mot $v \in \Sigma^*$, $v^{-1}L$ vérifie aussi σ_k '.

On cherche à montrer que pour tout entier non nul k, il existe un nombre fini de langages vérifiant σ_k '. Soient L_1 et L_2 deux tels langages. Pour ce faire, nous invoquons le théorème de Ramsey qui sera admis ici. On note $P_n(E)$ les parties à p élèments de E.

Oraux Blancs 1 of 2

Théorème 4 (Théorème de Ramsey)

Pour tout triplet d'entiers (p, m, r), il existe un entier N(p, m, r), tel que pour tout :

- ensemble E tel que $|E| \ge N(p, m, r)$,
- ensemble C tel que |C| = m,
- function $f: P_n(E) \to C$,

il existe $F \subset E$ tel que :

- $|F| \ge r$,
- $|f(P_n(F))| \leq 1$.

Q3) À quoi vous fait penser ce théorème pour les valeurs p=1 et r=2 (avec m quelconque)? Donner une telle valeur N(1,m,2) minimale.

Q4) Montrer qu'il existe un entier que l'on notera N tel que pour tout ensemble P de paires de $[\![1,N]\!]$, il existe un sous-ensemble F_P de $[\![1,N]\!]$ de cardinal au moins k+1 dont ses paires sont soit toutes dans P, soit toutes hors de P.

Q5) En utilisant la question précédente, montrer que pour tout mot f de taille au moins N, il existe une factorisation $f = uv_1...v_kw$, où tous les mots v_i sont non vides, telle que pour tous $0 \le i < j \le k$:

$$f \in L_1 \Leftrightarrow uv_1...v_iv_{j+1}...v_kw \in L_1$$

- **Q6)** Montrer par récurrence sur la taille des mots que, si les mots de taille au plus N de L_1 sont exactement les mots de taille au plus N de L_2 , alors $L_1=L_2$.
- Q7) En déduire que, pour un k donné, il existe un nombre fini de langages vérifiant σ_k .
- **Q8)** Conclure que L est régulier et achever la preuve du lemme de pompage ultime, à l'aide du théorème suivant:

Théorème 5 (Théorème de Myhill-Nerode)

On note, pour un langage L, l'ensemble de ses résiduels $E = \{u^{-1}L \mid u \in \Sigma^*\}$. Alors:

$$L$$
 est régulier $\Leftrightarrow |E| < \infty$

- **Q9)** Démontrer le sens direct du théorème de Myhill-Nerode.
- **Q10)** Démontrer le sens indirect.

Oraux Blancs 2 of 2