No. Title	known/Given	Formula Equation
1. To find distance between two points	2- points are given (513) A(x1,41), B(21,42)	$AB = \int (\alpha_1 - \alpha_2)^2 + (y_1 - y_2)^2$
2. Area of Triangle	3-points are given (say) A(x1,41), B(x2,42) C(x3,43)	Area of $\triangle ABC$ $= \frac{1}{2} \left[(x_1 y_2 - \alpha_2 y_1) + (\alpha_2 y_3 - \alpha_3 y_2) + (\alpha_3 y_1 - \alpha_1 y_3) \right]$ $= \frac{1}{2} \left[(x_1 y_2 - \alpha_2 y_1) + (\alpha_2 y_3 - \alpha_3 y_2) + (\alpha_3 y_1 - \alpha_1 y_3) \right]$
3. Internal Division of Line Segment (To determine the co-ordinates of a point of division)	2-points are given (say) A(x1, Y1), B(x2, Y2)	Po-ordinates of P are (x_1,y_1) (x_1,y_2)
4. External Division of Line Segment (To determine the co-ordinates of a point of division)	ار مرانم () ا ه (مرابع) (مرانم) ا ه (مرابع)	P A B (o-ordinates of Pare $\left(\frac{m_{3}c_{2}-nx_{1}}{m-n}, \frac{m_{2}-ny_{1}}{m-n}\right)$ $m-n\neq c$

1.
$$(1, 3)$$
 $(2, 1)$ $(3, 1)$ $(2, 1)$ $(3, 1)$ $(2, 1)$ $(3, 1)$ $(4, 1)$

It is easy to see thus, AB2 = 25, Ac7 Bc2 = 20+5 = 25 Thus, AB2 = Ac2+ Bc2 (2) (i) Let _ (+1,1), (3, -2), (-5,4) $AB = \int (-1-3)^2 + (1+2)^2 = \int 16 + 9 = \int 25 = 5$ $BC = \sqrt{(3+5)^2 + (-2-4)^2} = \sqrt{64+36} = \sqrt{(00)} = 10 / - *$ $A C = \int (-1+5)^2 + (1-4)^2 = \int 16+9 = \int 25 = 5$ It is clear their, BC = AB+AC (:*) ... The given three points are collinear. (ii) $\left(2a + 3(-2) \quad 2b + 3(1)\right) = (2,1)$ $\frac{2a-6}{5} = 2 \quad \text{and} \quad \frac{2b+3}{5} = 1$: 1 2a- 6 = 10 : 2a=18 8 : [a=8]

3

. The co-ordinates of D are (8,1).

		1	Formula Equación
No.	Title		
1.	To find the slope of line	2-points A(21,4,0, B(35,42)	
2.	To find angle between two	3 lopes of polits	land = / m, - m/ / 1+m, m2
3,	Point-slope form of the sequention à line 11.008	slope (say) (x1, y) Am	
4.	Slope-intercept form of	Slope 4 interrept	y=mx+c
	line	(say) m + c	
5.	Two-point form of line	2 points (Say) (x1,41), (7(2,142)	$\frac{y_2 - y_1}{y_2 - y_1} = \frac{3c_2 - x_1}{3c_2 - x_1}$
6.	Indercept form of line with co-ordinate axis	2 "utercept (694) 'a 't'b'	$\frac{x}{a} + \frac{y}{b} = 1$
	Note: Two lines as each off	re parallel e perpendicula er	their slopes are equal." The product of the slopes Ps -1.