1 Лекция 1.

1.1 Определение булевой функции.

Обозначим за E множество $\{0,1\}$.

Определение. $f(x_1, \dots, x_n) \in E$ — функция алгебры логики **(булева функция)** $x_i \in E \ \forall i=1,\dots,n$

Определение. P_2 — множество всех булевых функций.

Определение. $E^n = \{(\sigma_1, \dots, \sigma_n) | \ \sigma_i \in E; \ i = 1, \dots, n \}$

Булева функция задает отображение $f: E^n \to E$. Это можно проиллюстрировать таблицей возможных значений f на различных наборах переменных:

x_1 0 0			x_n 1 1	$f(x_1,\ldots,x_n) \ 0$ или 1 0 или 1
1	 1	 1	1	 0 или 1

Утверждение. $|P_2(x_1,\ldots,x_n)|=2^{2^n}$.

Доказательство. Очевидно.

1.2 Существенные и фиктивные переменные.

Определение. Пусть $f(x_1,\ldots,x_n)$ – булева функция. Тогда x_i называется **существенной** переменной для f, если: $\exists \sigma_1,\sigma_2,\ldots\sigma_{i-1},\sigma_{i+1},\ldots,\sigma_n\in\{0,1\}$, такие, что:

 $f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 0, \sigma_{i+1}, \dots, \sigma_n) \neq f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 1, \sigma_{i+1}, \dots, \sigma_n)$. В противном случае переменная называется фиктивной (пример придумать не очень сложно).

1. Пусть x_i — фиктивная переменная для f.

Рассмотрим функцию g: $g(x_1,x_2,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$: $g(\sigma_1,\sigma_2\ldots\sigma_{i-1},\sigma_{i+1},\ldots,\sigma_n)=f(\sigma_1,\sigma_2\ldots\sigma_{i-1},0,\sigma_{i+1},\ldots,\sigma_n)=f(\sigma_1,\sigma_2\ldots\sigma_{i-1},1,\sigma_{i+1},\ldots,\sigma_n)$ Тогда говорят, что g получена из f удалением фиктивной переменной x_i .

2. Пусть $f(x_1,\ldots,x_n)$ – булева функция. Также, пусть имеется $y\neq x_1,\ldots,x_n$. Рассмотрим функцию $h(x_1,\ldots,x_n,y)$: $h(\sigma_1,\ldots,\sigma_n,\sigma)=f(\sigma_1,\ldots,\sigma_n)$

Тогда говорим, что h получена из f добавлением фиктивной переменной y.

Определение. Две булевы функции называются **равными**, если они могут быть получены друг из друга с помощью некоторого числа операций добавления или удаления фиктивных переменных.

1.3 Элементарные функции:

1. От одной переменной.

x	0	x	\bar{x}	1
0	0	0	1	1
1	0	1	0	1

2. От двух переменных:

x	y	xy	$x \vee y$	$x \oplus y$	$x \sim y$	$x \to y$	x y	$x \downarrow y$
0	0	0	0	0	1	1	1	1
0	1	0	1	1	0	1	1	0
1	0	0	1	1	0	0	1	0
1	1	1	1	0	1	1	0	0

3. От трех переменных (функция "медиана"):

\boldsymbol{x}	y	z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1.4 Формула над системой булевых функций.

 $F = \{f_1(x_1, x_2, ..., x_{n_1}); f_2(x_1, x_2, ..., x_{n_2}); ...; f_n(x_1, x_2, ..., x_{n_n})\} \subseteq P_2$ – некоторое множество булевых функций, таких что каждой булевой функции $f_i(x_1, x_2, ..., x_{n_i})$ сопоставляем функциональный символ f_i .

Определение. Φ ормулой над F называется строка символов, состоящая из любых символовпеременных, обозначающих $f_1,...,f_n$ и вспомогательных символов "(",")", ", определяемое индуктивным образом:

База индукции: символ любой переменной – правильная формула над F.

Индуктивное предположение: пусть $F_1, F_2, ..., F_{n_i}$ – некоторые формулы над F, тогда $f_i(F_1, F_2, ..., F_{n_i})$ – тоже формула над F.

Пример. $((\overline{x \lor y})\&(z \to y))$ — формула над $\{x \lor y; x\&y, x \to y, \overline{x}\}$

Конъюнкция имеет приоритет над дизъюнкцией.

Значения формулы на наборе значений переменных, входящих в формулу, определяется индуктивным образом.

База индукции: если f — тривиальная, то все очевидно.

Индуктивное предположение: пусть F_1, F_2, \ldots, F_n – формулы, для которых данное понятие уже определено.

$$F = f_i(F_1, F_2, \dots, F_{n_i});$$

 x_1, \ldots, x_n – все переменные, содержащиеся в F.

 $\Omega = (\sigma_1, \dots, \sigma_n)$ – набор значений x_1, \dots, x_n .

 Ω_j – поднабор значений из Ω для переменных, содержащихся в формуле F_j .

 b_i – значение функции F_i на наборе Ω_i .

Тогда значение F на наборе Ω равно $f_i(b_1,\ldots,b_{n_i})$

Пусть F – формула над Φ , содержащая символы переменных x_1, \ldots, x_n . Тогда F реализует функцию $f(x_1, \ldots, x_n)$, т.ч для любого набора $(\sigma_1, \ldots, \sigma_n)$ значений x_1, \ldots, x_n значение $f(\sigma_1, \ldots, \sigma_n)$ равно значению формулы F на $\sigma_1, \ldots, \sigma_n$.

f получается из Φ с помощью операции суперпозиции, если F реализуется некоторой нетривиальной формулой над Φ .

Определение. Две формулы F_1 и F_2 называются **эквивалентными**, если они реализуют одинаковые функции.

$$* \in \{\lor, \&, \oplus, \sim\}$$

- 1. x * y = y * x (коммутативность)
- 2. x * (y * z) = (x * y) * z (ассоциативность)
- $3. \ x(y \lor z) = xy \lor xz$

$$x(y \oplus z) = xy \oplus xz$$

$$x \vee (y \& z) = (x \vee y) \& (x \vee z)$$

$$x \lor (y \sim z) = (x \lor y) \sim (x \lor z)$$
 (дистрибутивность)

- 4. $x \lor xy = x$ (поглощение)
- 5. $\overline{\overline{x}} = x$ (двойное отрицание)
- 6. $\overline{x \lor y} = \overline{x} \& \overline{y}$

$$\overline{x\&y} = \overline{x} \vee \overline{y}$$
 (закон де Моргана)

7.
$$x\overline{x} = 0$$
, $x \vee \overline{x} = 1$, $x \oplus \overline{x} = 1$, $x \sim \overline{x} = 0$

$$xx = x$$
, $x \lor x = x$, $x \oplus x = 0$, $x \sim x = 1$

$$x\&1 = x, \ x \lor 1 = 1, \ x \oplus 1 = \overline{x}, \ x \sim 1 = x$$

$$x\&0=0,\ x\vee0=x,\ x\oplus0=x,\ x\sim0=\overline{x}$$

2 Лекция 2 (Замыкания и прочее).

2.1 Определения.

Возьмем множество $F \subseteq P_2$.

Определение. Замыкание [F] множества F — это множество всех булевых функций, получаемых из булевых функций множества F с помощью операций суперпозиции, удаления и добавления фиктивных переменных.

Определение. F — замкнуто, если [F] = F.

- 1. $[\{x \oplus y\}] = \{0, x, x_1 \oplus \ldots \oplus x_t (t \ge 2)\}$
- 2. P_2 замкнуто.

Определение. $P_2(n)$ — все булевы функции, существенно зависящие от не более, чем n переменных.

- 1. $P_2(1)$ замкнуто.
- 2. $P_2(2)$ не замкнуто. $(xy \in P_2(2), xyz \notin P_2(2))$

2.2 Свойства замыкания.

- 1. $F \subseteq [F]$.
- 2. $F_1 \subseteq F_2 \Longrightarrow [F_1] \subseteq [F_2]$
- 3. [[F]] = [F]

Доказательство. 1) $[F] \subseteq [[F]]$ (по 1, 2) $2)[[F]] \subseteq [F]$. $f(x_1, \ldots, x_n) \in [[F]] \Longrightarrow \exists$ формула Φ , реализующая f. Пусть f_1, \ldots, f_s