handout 123

Содержание

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
## speed dist
## Min. : 4.0 Min. : 2
## 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4 Mean : 43
## 3rd Qu.:19.0 3rd Qu.: 56
## Max. :25.0 Max. :120
```

Тут картинка.

Столбца матрицы регрессоров X ортогональны остаткам регрессии, вектору $\hat{\varepsilon}$:

$$X'\hat{\varepsilon} = 0$$

Заметим, что здесь 0 — это вектор размера $k \times 1$. Подставляем формулу для остатков, $\hat{\varepsilon} = y - X'\hat{\beta}$:

$$X'(y - X\hat{\beta}) = 0$$

Раскрываем скобки и переносим в разные стороны уравнения:

$$X'y - X'X\hat{\beta} = 0$$

$$X'X\hat{\beta} = X'y$$

Матрица X' имеет размер $k \times n$, поэтому на неё сокращать нельзя. Хотя иногда хочется :) А вот обратная матрица к матрице X'X существует, если среди столбцов X нет линейно зависимых и $n \ge k$. Домножаем обе части уравнения слева на $(X'X)^{-1}$:

$$\hat{\beta} = (X'X)^{-1}X'y$$

Ура! Мы получили формулу для МНК-оценок множественной регрессии! Заметьте, что она подозрительно похожа на формулу МНК-оценки для случая одного оцениваемого параметра. В модели $y_i = \beta x_i + \varepsilon_i$ МНК-оценка коэффициента β имела вид $\hat{\beta} = \sum x_i y_i / \sum x_i^2$.