Математическая статистика

Практическое задание 3

В данном задании рассматриваются свойства условного математического ожидания. В частности, рассматривается модель смеси гауссовских распределений.

Правила:

- Выполненную работу нужно отправить на почту probability.diht@yandex.ru, указав тему письма "[номер группы] Фамилия Имя - Задание 3". Квадратные скобки обязательны. Вместо Фамилия Имя нужно подставить свои фамилию и имя.
- Прислать нужно ноутбук и его pdf-версию. Названия файлов должны быть такими: 3.N.ipynb и 3.N.pdf, где N ваш номер из таблицы с оценками.
- Никакой код из данного задания при проверке запускаться не будет.
- Некоторые задачи отмечены символом 沐. Эти задачи являются дополнительными. Успешное выполнение большей части таких задач (за все задания) является необходимым условием получения бонусного балла за практическую часть курса.
- Баллы за каждую задачу указаны далее. Если сумма баллов за задание меньше 25% (без учета доп. задач), то все задание оценивается в 0 баллов.

Баллы за задание:

- Задача 1 3 балла
- Задача 2 1 балл
- Задача 3 2 балла
- Задача 4 7 баллов
- Задача 5***** 10 баллов

Задача 1. На вероятностном пространстве $(R_+, \mathcal{B}(R_+), P)$, где P --- экспоненциальное распределение с параметром λ , задана случайная величина ξ по правилу $\xi(\omega) = \omega$. Сигма-алгебра \mathcal{G} порождена счетной системой событий $\{B_n\}_{n\geq 1}$, где $B_n = \mathbb{C}$

- плотности распределения Р для $\lambda \in \{1, 3, 10\}$
- ξ и $\mathsf{E}(\xi | \mathcal{G})$ как функции от ω для $\lambda \in \{1, 3, 10\}$
- ξ^2 и $\mathsf{E}(\xi^2|\mathcal{G})$ как функции от ω для $\lambda \in \{1, 3, 10\}$

Используйте приведенный ниже шаблон. Одному и тому же значению λ во всех графиках должен соответствовать один и тот же цвет.

$$\mathsf{E}(\xi \mid \mathcal{G}) = \sum_{n \in \mathbb{N}} \frac{\mathsf{E}(\xi I_{\xi \in [n-1;n)})}{\mathsf{P}(\xi \in [n-1;n))} I_{B_n} = \frac{\int\limits_{n-1}^{n} x \lambda e^{-\lambda x} dx}{\int\limits_{n-1}^{n} \lambda e^{-\lambda x} dx} = \frac{\frac{1}{\lambda} \int\limits_{\lambda(n-1)}^{\lambda n} u e^{-u} du}{\int\limits_{\lambda(n-1)}^{\lambda n} e^{-u} du} = \frac{\frac{1}{\lambda} \int\limits_{\lambda(n-1)}^{\lambda n} u e^{-u} du}{\int\limits_{\lambda(n-1)}^{\lambda n} e^{-u} du} = \frac{\frac{1}{\lambda} \int\limits_{\lambda(n-1)}^{\lambda n} u e^{-u} du}{\int\limits_{\lambda(n-1)}^{n} e^{-u} du} = \frac{\frac{1}{\lambda} (\lambda(-e^{-\lambda n}n + e^{-\lambda(n-1)}(n-1)) - e^{-\lambda n} + e^{-\lambda(n-1)}}{e^{-\lambda(n-1)} - e^{\lambda n}}$$

$$\mathsf{E}(\xi^{2} | \mathcal{G}) = \sum_{n \in \mathbb{N}} \frac{\mathsf{E}(\xi^{2} I_{\xi \in [n-1;n)})}{\mathsf{P}(\xi \in [n-1;n))} I_{B_{n}} = \frac{\int\limits_{n-1}^{n} x^{2} \lambda e^{-\lambda x} dx}{\int\limits_{n-1}^{n} \lambda e^{-\lambda x} dx} = \frac{-\frac{x^{2}e^{-\lambda x}}{\lambda} \left| \int\limits_{n-1}^{n} x^{2} \lambda e^{-\lambda x} dx}{\int\limits_{n-1}^{n} \lambda e^{-\lambda x} dx} = \frac{-\frac{x^{2}e^{-\lambda x}}{\lambda} \left| \int\limits_{n-1}^{n} x^{2} \lambda e^{-\lambda x} dx}{\int\limits_{n-1}^{n} \lambda e^{-\lambda x} dx} = \frac{-\frac{n^{2}e^{-\lambda n}}{\lambda} + \frac{(n-1)^{2}e^{-\lambda(n-1)}}{\lambda} + \frac{2}{\lambda} \frac{1}{\lambda} (\lambda(-e^{-\lambda n} n + e^{-\lambda(n-1)} (n-1)) - e^{-\lambda n} + e^{-\lambda(n-1)}}{\int\limits_{n-1}^{n} \lambda e^{-\lambda x} dx}$$

```
In [3]: grid = np.linspace(0, 5, 500)
# Γραφικ 1
plt.figure(figsize=(15, 4))
for l, color in params:
    plt.plot(grid, sps.expon.pdf(grid, scale=1/1), lw=3, color=color, label='$\\lambda=
{}$'.format(l))
plt.legend(fontsize=16)
plt.ylim((0, 2))
plt.grid(ls=':')
```



```
In [4]: B = [i \text{ for } i \text{ in } range(0, 5)]
        # График 2
        plt.figure(figsize=(15, 5))
        plt.plot(grid, grid, lw=3, label='$\\xi$', color='black')
        for 1, color in params:
            for i in B: # события из сигма-алгебры
                 a = i
                 b = i+1
                 Ex = -b*np.exp(-l*b)+a*np.exp(-l*a)-1/l*(np.exp(-l*b)-np.exp(-l*a))
                 Px = np.exp(-1*a)-np.exp(-1*b)
                 plt.hlines(xmin=i, xmax=(i+1), y=Ex/Px, color=color, lw=3,
                            label=('$\m $\\mathsf{E}(\\xi|\\mathcal{G})$ при $\\lambda = ' + str(1)
                                    + '$') if i == 1 else '')
        plt.xlabel('$\\0mega$', fontsize=20)
        plt.legend(fontsize=16)
        plt.grid(ls=':')
```



```
In [5]: # График 3 для xi^2 аналогичен графику 2
        plt.figure(figsize=(15, 5))
        plt.plot(grid, grid**2, lw=3, label='$\\xi^2$', color='black')
        for 1, color in params:
            for i in B: # события из сигма-алгебры
                a = i
                b = i+1
                Ex2 = -(b**2 * np.exp(-1*b)-a**2 * np.exp(-1*a))
                    -2/1*(b*np.exp(-1*b)-a*np.exp(-1*a))
                    -2/1**2* (np.exp(-1*b)-np.exp(-1*a))
                Px = np.exp(-1*a)-np.exp(-1*b)
                plt.hlines(xmin=i, xmax=(i+1), y=Ex2/Px, color=color, lw=3,
                           label=('$\m thsf{E}(\\xi^2|\\mathcal{G})$ при $\\lambda = ' + str(1)
                                  + '$') if i == 1 else '')
        plt.xlabel('$\\0mega$', fontsize=20)
        plt.legend(fontsize=16)
        plt.grid(ls=':')
```


Вывод: Условное матожидание есть величина, содержащая некоторую информацию о распределении и по сути являющаяся усреднением по одному из элементов разбиения сигма-алгебры.

Задача 2. Пусть $\xi = (\xi_1, \xi_2) \sim \mathcal{N}(a, \Sigma)$, где a = 0 и $\Sigma = \begin{pmatrix} 10 & 8 \\ 8 & 10 \end{pmatrix}$. Для $y \in \{-3, 0, 1, 5\}$ постройте графики условной плотности $f_{\xi_1 \mid \xi_2}(x \mid y)$.

$$f_{\xi_1 \mid \xi_2}(x|y) = \frac{f_{(\xi_1, \xi_2)}(x, y)}{f_{\xi_2}(y)}$$

$$f_{(\xi_1,\xi_2)}(x,y) = \frac{e^{-\frac{1}{2}(x-a)^T \Sigma^{-1}(x-a)}}{\sqrt{|2\pi\Sigma|}} = \frac{1}{2\pi 6} e^{-\frac{1}{36}(5(x^2+y^2)-8xy)}$$

$$f_{\xi_2}(y) = \int_{-\infty}^{\infty} f_{(\xi_1, \xi_2)}(x, y) dx = \frac{1}{12\pi} e^{-\frac{y^2}{20}} 6\sqrt{\frac{\pi}{5}} = \frac{1}{2\sqrt{5\pi}} e^{-\frac{y^2}{20}}$$

```
In [6]: conditions = [
          (-3, 'red'),
          (0, 'green'),
          (1, 'blue'),
          (5, 'purple')
       grid = np.linspace(-9, 11, 5000)
       # График 1
       plt.figure(figsize=(18, 6))
       for y, color in conditions:
          Pjoint = 1/(12*np.pi)*np.exp(-1/36*(5*(grid**2)+5*(y**2)-8*grid*y))
          Pxi_2 = 1/(2*np.sqrt(5*np.pi))*np.exp(-(y**2)/20)
          plt.plot(grid, Pjoint/Pxi_2, lw=3, color=color, label='$y={}$'.format(y))
       plt.legend(fontsize=16)
       #plt.ylim((0, 2))
       plt.grid(ls=':')
```


Вывод: Условная плотность сильно зависит от условия. По графику кажется, что на ширину кривой это влияет мало, но зато значительно влияет на сдвиг.

Задача 3. Имеется множество серверов, которые периодически выходят из строя. Обозначим ξ_i время между i-м моментом выхода из строя сервера и (i+1)-м. Известно, что величины ξ_i независимы в совокупности и имеют экспоненциальное распределение с параметром λ .

Обозначим N_t --- количество серверов, которые вышли из строя к моменту времени t (в начальный момент времени N_0 = 0). В курсе случайных процессов будет доказано, что для любых s < t величина $N_t - N_s \sim Pois(\lambda(t-s))$ и независима с N_s . При этом N_t как функция от t будет называться пуассоновским процессом интенсивности λ .

Вам нужно знать, сколько серверов нужно докупить к моменту времени t взамен вышедших из строя. В момент времени s предсказанием количества серверов, вышедших из строя к моменту времени t, будем считать величину $\mathsf{E}(N_t|N_s)$.

Сгенерируйте выборку случайных величин ξ_i для $\lambda=1/4$ в количестве, чтобы их сумма была больше 100. Для t=100 постройте графики зависимости величины $\mathrm{E}(N_t|N_s)$ от s в предополжении, что условное математическое ожидание было посчитано при значении $\lambda \in \{1/10, 1/4, 1/2, 1\}$. Нарисуйте также на графике горизонтальную прямую уровня N_{100} .

 $\mathsf{E}(N_t|N_s) = \mathsf{E}(N_s + N_t - N_s|N_s) = \mathsf{E}(N_s|N_s) + \mathsf{E}(N_t - N_s|N_s) = \mathsf{E}(N_s) + \mathsf{E}(N_t - N_s) = N_s + \lambda(t-s)$ (т. к. N_s является N_s -измеримой и т. к. $N_t - N_s$ независима с N_s .

In [7]: from statsmodels.distributions.empirical_distribution import ECDF

```
In [8]: lambd = 1./4.
        sum = 0
        # Разницы во времени между выходом серверов из стороя
        deltas = sps.expon.rvs(scale=1/lambd, size = 10)
        while (deltas.sum() < 100):</pre>
            deltas = np.append(deltas, sps.expon.rvs(scale=1/lambd, size = 10))
        print("%d значений с суммой %f"%(len(deltas), deltas.sum()))
        sample = deltas.cumsum()
        print(sample)
        30 значений с суммой 105.782871
           3.96986901
                        10.43318682
                                      12.94121448
                                                    13.06275331
                                                                  14.17508492
           14.81582322
                        17.85366966
                                      20.21972593
                                                    21.44884279
                                                                  23.97211429
           28.88698584 32.55147082
                                                    44.81839626 49.90871333
                                      38.39922255
           58.18200424 62.53874942
                                      64.8195506
                                                    66.68431116 80.05924999
```

82.90085562

98.4269854

84.7888405

105.78287097]

81.70772989

96.93877456

80.12447372 80.89319214

90.34117645 94.39360852

```
In [11]: lambdas = [1/10, 1/4, 1/2, 1]
    predicted_count = lambda t: ECDF(sample)(t)*len(sample)
    conditional_expectation = lambda t, 1 : predicted_count(t)+l*(100-t)

grid = np.linspace(0, 110, 5000)
    plt.figure(figsize=(18, 6))
    plt.title('Прогноз числа упавших серверов')
    for 1 in lambdas:
        plt.plot(grid, conditional_expectation(grid,1), label='$\\mathsf{E}( N_t | N_s)$ при
$\\\ambda=\%.2f$\%1)
    plt.hlnes(predicted_count(100), 0, grid[-1], label='$N_{100}$')
    plt.legend(fontsize=16)
    plt.xlabel('t', fontsize=16)
    plt.ylabel('$\\mathsf{E}( N_t | N_s)$', fontsize=16)
    #plt.ylim((0, 2))
    plt.grid(ls=':')
```


Вывод: На графике в момент времени t показывается наше предсказание насчёт количества упавших серверов в момент времени 100. Заметим, что чем ближе к t=100 (и, соответственно, чем больше значений, по которым мы можем предсказывать), тем ближе друг к другу и тем ближе к истинному значению предсказания с разными значениями λ . При этом какие-то значения λ (в нашем случае $\frac{1}{4}$ довольно точны изначально, и нет значительного увеличения точности с приближением к t=100.

Задача 4. Рассмотрим модель смеси многомерных гауссовских распределений, то есть распределение, имеющее плотность $p(x) = \sum\limits_{k=1}^{K} p_k(x) \mathsf{P}(T=k)$, где T --- случайная величина, принимающая значения $\{1,\dots,K\}$ и имеющая смысл номера компоненты смеси, а $p_k(x)$ --- плотность распределения $N(a_k,\Sigma_k)$.

Загрузите датасет "Ирисы Фишера", используя следующий код.

В предположении, что каждый класс имеет гауссовское распределение, оцените его параметры. Используйте для этого функции numpy.mean и numpy.cov. Проверьте, что матрица ковариаций получилась правильной --- возможно, придется предварительно поменять порядок осей (транспонировать). Напечатайте полученные оценки.

```
In [13]: features = data.data.T
         means = []
         covs = []
         for i in range(0, 3):
             cluster = data.data[data.target==i]
             print("For cluster %d:"%i)
             print("Mean:")
             mean = np.apply_along_axis(np.mean, 0, (cluster))
             print(mean)
             means.append(mean)
             print("Covariation matrix:")
             cov = np.cov(cluster.T)
             print(cov)
             covs.append(cov)
             print()
         #print(clusters)
```

```
For cluster 0:
Mean:
[ 5.006  3.418  1.464  0.244]
Covariation matrix:
[ 0.10029796  0.14517959  0.01168163  0.01143673]
[ 0.01613878  0.01168163  0.03010612  0.00569796]
[ 0.01054694  0.01143673  0.00569796  0.01149388]]
For cluster 1:
Mean:
[ 5.936 2.77 4.26 1.326]
Covariation matrix:
[ 0.08518367  0.09846939  0.08265306  0.04120408]
[ 0.18289796  0.08265306  0.22081633  0.07310204]
[ 0.05577959  0.04120408  0.07310204  0.03910612]]
For cluster 2:
Mean:
[ 6.588  2.974  5.552  2.026]
Covariation matrix:
[[ 0.40434286  0.09376327  0.3032898
                               0.04909388]
[ 0.09376327  0.10400408  0.07137959  0.04762857]
[ 0.04909388  0.04762857  0.04882449  0.07543265]]
```

Нарисуйте график плотности (тепловую карту) в проекции на первые две координаты и нанесите на график точки выборки. При выполнении задания полезно вспомнить решение части 3 задачи 1 задания 1. Используйте шаблон ниже.

Вычислите условное математическое ожидание $\mathsf{E}(X|I\{T\neq k\}=1)$ для всех k=1,2,3, где X --- случайный вектор, имеющий распределение смеси. Постройте графики условной плотности $p_{X|I\{T\neq k\}}(x|1)$ в проекции на первые две координаты. Подберите хорошие значения линий уровня.

То есть для каждого значения k получаем $\frac{1}{3}$.

Посчитаем матожидание для k=1, для k=2,3 --- аналогично. $I_{T\neq 1}$ порождает σ -алгебру $\{\emptyset, \Omega, T\neq 1, T\neq 1\}$, которая также порождается разбиением $\{T\neq 1, T=1\}$, а значит можно воспользоваться формулой для разбиений.

$$\mathsf{E}(X | I\{T \neq k\}) = \frac{\mathsf{E}(XI_{T=1})}{\mathsf{P}(T=1)} I_{T=1} + \frac{\mathsf{E}(XI_{T\neq 1})}{\mathsf{P}(T\neq 1)} I_{T\neq 1} = 3\mathsf{E}(XI_{T=1})(1 - I_{T\neq 1}) + \frac{1}{2}(3\mathsf{E}(XI_{T=2}) + 3\mathsf{E}(XI_{T=3})) I_{T\neq 1} = a_1(1 - I_{T\neq 1}) + \frac{1}{2}(a_2 + a_3) I_{T\neq 1}$$

$$E(X|I\{T \neq k\} = 1) = \frac{1}{2}(a_2 + a_3)$$

Условная плотность же $p_{X|I\{T\neq k\}}(x|y) = p_k(x)(1-y) + \frac{1}{2} \left(\sum_{i\in\{1,2,3\}\setminus\{k\}} p_i(x)\right)y$

Построить требуется $p_{X|I\set{T\neq k}}(x|1)=\frac{1}{2}\left(\sum\limits_{i\in\set{1,2,3}}p_i(x)\right)$

```
In [16]: I = np.array([0, 1]) # это можно передавать в качестве индексов
grid = np.mgrid[features[0].min():features[0].max():0.01, features[1].min():features[1].max():0.01]

for k in range(1, 4):
    plt.figure(figsize=(13, 7))
    plt.title("График условной плотности $p_{X|I\\{T \ne k\\}}\left(x \left| 1\\right.\\right)$ в
проекции на первые две координаты при $k=%d$"%k)
    density = 1/2*(densities[k-1]+densities[k-2])
    plt.pcolormesh(grid[0], grid[1], density, cmap='Oranges')
    plt.scatter(features[0], features[1], alpha=0.2)
    CS = plt.contour(grid[0], grid[1], density, [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5])
    plt.clabel(CS, fontsize=14, inline=1, fmt='%1.2f', cmap='Set3')
    plt.show()
```

График условной плотности $p_{X|I\{T\neq k\}}(x|1)$ в проекции на первые две координаты при k=1

График условной плотности $p_{X|I|\{T\neq k\}}(x|1)$ в проекции на первые две координаты при k=2

Классифицируйте все пространство по принципу $k = \underset{k}{\arg\max} \; p_{X|I\{T=k\}}(x|1)$. Посчитайте долю ошибок на выборке. Нарисуйте классификацию всего пространства в проекции на пары координат (0, 1), (1, 3) и (2, 3), где закрасьте разными цветами области, которые образовались в результате классификации.

Аналогично вышеприведённому, получаем:

$$p_{X|I\{T=k\}}(x|y) = p_k(x)y + \frac{1}{2} \left(\sum_{i \in \{1,2,3\}} p_i(x) \right) (1-y)$$

$$p_{X|I\{T=k\}}(x|1) = p_k(x)$$

Доля ошибок на выборке: 0.020000

Классификация по argmax $p_{X|I|\{T=k\}}(x|1)$ в проекции на координаты [0, 1]

Классификация по argmax $p_{X|I|\{T=k\}}(x|1)$ в проекции на координаты [1, 3]

Вывод: Приближение с помощью смеси гауссовских распределений оказалось довольно хорошим. Ошибка составила 2%. Если смотреть в проекциях на оси, то по осям (0, 1) было много ошибок, но это компенсировалось тем, что по другим осям их было мало.

Задача 5 **. В предыдущей задача информация о принадлежности наблюдения конкретной компоненте смеси была известна заранее. Как выть в случае, если такой информации нет? Задача оценки параметров распределения смеси может быть решена с помощью иттерационного EM-алгоритма.

Опишите, как работает EM-алгоритм (это обязательное условие, при котором эта задача будет проверяться). Затем примените EM-алгоритм к Ирисам Фишера и к некоторым искусственно сгенерированным датасетам. Исследуйте, как результат зависит от параметров алгоритма. Сделайте вывод.

Разобраться в ЕМ-алгоритме помогут:

https://basegroup.ru/community/articles/em (https://basegroup.ru/community/articles/em)

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm (https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm)

Bishop, C.M. Pattern Recognition and Machine Learning, глава 9.

Реализация ЕМ-алгоритма для смеси гауссовских распределений:

http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture (http://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture)