

Universidade Federal de Viçosa

Campus Rio Paranaíba

Sistemas de Informação

SIN 392 – Introdução ao processamento de imagens digitais (PER 2020) Prof. João Fernando Mari – joaof.mari@ufv.br

UNIDADE 1 – Atividade extraclasse #2

LISTA DE EXERCÍCIOS – Fundamentos da imagem digital

Considere as seguintes imagens para resolver os exercícios:

Imagem A:

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	0	4	4	0
2	0	1	2	3	0	4	4	0
3	0	1	2	3	0	4	4	0
4	0	2	2	3	0	4	4	0
5	0	3	3	3	0	4	4	0
6	0	0	0	0	0	5	5	0
7	0	0	0	0	0	0	0	0

Imagem B:

	0	1	2	3	4	5	6	7
0	7	7	7	7	7	7	7	7
1	0	1	2	3	4	5	6	7
2	0	0	1	2	3	4	5	6
3	0	0	0	1	2	3	4	5
4	7	6	5	4	3	2	1	0
5	0	7	6	5	4	3	2	1
6	0	0	7	6	5	4	3	2
7	0	0	0	0	0	0	0	0

Imagem C:

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1	0
2	0	1	1	0	0	1	1	0
3	0	1	1	0	0	1	1	0
4	0	0	0	0	0	0	1	0
5	0	0	0	0	1	1	0	0
6	0	0	0	0	1	1	0	0
7	0	0	0	0	0	0	0	0

Imagem D:

	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	1	0	1	1	0	0
2	0	1	1	0	0	1	0	0
3	0	0	1	1	0	1	1	0
4	0	0	0	0	0	0	1	0
5	0	1	0	0	1	1	0	0
6	0	0	1	1	1	0	0	0
7	0	0	0	0	0	0	0	0

- 1) Considerando a imagem A, escreva as coordenadas (x, y) e o valor de intensidade das vizinhanças N_4 , N_D e N_8 dos pixels p listados a seguir.
- a) p em (2, 2)
- b) p em (1, 3)
- c) p em (4, 6)
- d) p em (6, 2)

- e) p em (5, 2)
- 2) Considerando a imagem C e o conjunto V={1} (pixels cujo valor é igual a 1), identifique se existe ou não uma relação de adjacência entre os pares de pixels p e q listados a seguir. Considere as seguintes relações de adjacência: adjacência-4, adjacência-8 e adjacência-m.
- a) p em (1, 4) e q em (1, 5)
- b) p em (1, 4) e q em (2, 5)
- c) p em (4, 6) e q em (5, 5)
- d) p em (3, 2) e q em (3, 3)
- e) p em (1, 1) e q em (3, 1)
- 3) Considerando a imagem C e V={1} identifique se existe, pelo menos um, caminho entre os pixels p e q listados a seguir. Considerando as relações de adjacência: adjacência-4, adjacência-8 e adjacência-m. Se existir, liste os pixels que compõem o caminho em notação de conjuntos.
- a) p em (1, 1) e q em (3, 2)
- b) p em (1, 1) e q em (1, 6)
- c) p em (1, 6) e q em (6, 5)
- d) p em (6, 4) e q em (1, 4)
- e) p em (6, 1) e q em (3, 2)
- 4) Considere a Imagem D e o conjunto $V = \{1\}$. Considerando os dois subconjuntos, S_1 e S_2 , na determine se esses dois subconjuntos são: a) adjacentes-4; b) adjacentes-8 ou c) adjacentes-m. Explique.
- $S_1 = \{(3, 5), (3, 6), (4, 6)\}$
- $S_2 = \{(5, 4), (5, 5), (6, 4)\}$
- (O conceito de adjacência entre pixels pode ser estendido para adjacência entre regiões se considerarmos um que existe uma relação de adjacência entre, pelo menos, um pixel de cada região.)
- 5) Considere a imagem D e o conjunto $V = \{1\}$. Determine se as regiões, R_1 , R_2 e R_3 são: a) região não conectada; b) região conectada não máxima; ou c) região conectada máxima (componente conectado). Repita o exercício considerando adjacencia-4 e adjacência-8. Comente as diferenças entre os resultados considerando critérios de adjacência diferentes.

$$R_1 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

$$R_2 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)\}$$

$$R_3 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$$

- 6) Considere as Imagens C e D e o conjunto V = {1}. Identifique e rotule todos os componentes conectados nas imagens. Descreva cada componente conectado em notação de conjuntos e desenhe a imagem de rótulos. Faça para adjacência-4 e adjacência-8. Comente sobre as diferenças em relação aos critérios de adjacência
- 7) Obtenha as bordas internas dos componentes conectados identificados no exercício 6 (para adjacência-4 e para adjacência-8). Liste os pixels de cada borda em notação de conjuntos.
- 8) Obtenha as bordas externas dos componentes conectados identificados no exercício 6 (para adjacência-4 e para adjacência-8). Liste os pixels de cada borda em notação de conjuntos.
- 9) Considera as imagens A e B, com profundidade de 3 bits (k = 3,L = 8 e [0, 7]) e compute a soma entre as imagens C = A + B. Corrija os *overflows*, criando a imagem C', usando: a) truncamento; b) normalização e c) *wrap-around*.
- 10) Considera as imagens A e B, com profundidade de 3 bits (k = 3, L = 8 e [0, 7]) e compute a subtração entre as imagens C = A B. Corrija os *underflows*, criando a imagem C', usando: a) truncamento, b) valor absoluto; c) normalização e d) *wrap-around*.
- 11) Considera as imagens A e C, A com profundidade de 3 bits (k = 3, L = 8 e [0, 7]) e B com resolução de intensidade de 1 bit (k = 1, L = 2 e [0, 1]), e compute a multiplicação das duas imagens D = A × C. É necessário corrigir *overflows* e *underflows*? Explique.
- 12) Compute as distâncias euclidiana, city block e chessboard entre os pixels p e q na Imagem A. Obs.: Notem que como as medidas de distancia só consideram a posição dos pixels, não importa qual imagem será utilizada como referencia, os resultados serão iguais.

```
a) p em (2, 2) e q em (3,7);
```

b) p em (3, 1) e q em (0,8);

c) p em (2, 1) e q em (2,7);

d) p em (3, 5) e q em (0,5).

Instruções para realização da atividade:

- 1) A lista deve ser resolvida usando caneta azul e/ou preta.
- 2) Utilizar uma folha de sulfite sem pauta dobrada ao meio. Escrever sempre com a folha na orientação retrato.
- 3) Resolver cada exercício em uma ou mais folhas dependendo do tamanho do exercício, nunca dois exercícios em uma única folha.
- 4) Escrever o nome, matricula e turma no topo da folha.
- 5) Tirar uma foto com o celular de cada folha, renomear cada arquivo com o seguinte padrão:

Tirar a foto em local bem iluminado e com bom enquadramento.

6) Reunir todas imagens em um arquivo .pdf (uma página por folha, de preferencia), renomear o arquivo com o seu número de matricula.

Exemplo: Se sua matricula é 1234 então o nome do arquivo será "1234.pdf".

7) Enviar via PVANet até as 23:59 do dia 30/09/2020.