

Introducción a la Ingeniería Electrónica (86.02)

2021 - Primer cuatrimestre

Introducción

Preparado por Ricardo A. Veiga

Agenda

Introducción

- Los desafíos de este curso
- Estrategia
- Presentación de los docentes
 - Función de los docentes
- Medios de comunicación

La asignatura

- Presentación de la asignatura
- Actividades
- Consideraciones genéricas

Anexo

• Contenidos de la asignatura

Los desafíos de este curso...

Situación especial para todos...

Los desafíos de este curso...

Cambio de paradigma.

- Dificultad para actividades con circuitos electrónicos reales.
- Eventuales dificultades técnicas.
- Despersonalización.

Función de los docentes

Guiar el proceso de aprendizaje.

Moderar el intercambio de ideas entre los estudiantes.

Dar información.

Evaluar y acreditar conocimientos y habilidades adquiridas.

Si observan dificultades, pidan ayuda a los docentes de su turno

Medios de comunicación

Hay información de la asignatura en el campus de la Facultad

• https://campus.fi.uba.ar/course/view.php?id=3262

Éste es el medio de comunicación principal de la asignatura a través de:

- Actividades, lecturas y otros dispositivos de enseñanza.
- Foros.
- Chat.

Tendremos otros medios de comunicación adicionales:

- Telegram para intercambio entre estudiantes con moderación de los docentes.
- Correo electrónico para complementar comunicaciones varias y administrativas.
 - Recomendamos fuertemente que tengan una cuenta xxx@fi.uba.ar

La asignatura

Presentación de la asignatura

Nombre: Introducción a la Ingeniería Electrónica (IIE).

- Asignatura del Plan de Estudios 2009 y su modificación del 2018.
- Ubicada en el segundo cuatrimestre del Plan de Estudios de la carrera de Ingeniería Electrónica.

Código: 86.02

Correlativa: Física I

- Física II: cursar simultáneamente.
 - Detalles relacionados con los circuitos eléctricos.
 - Haremos una introducción durante el curso.

Créditos: 6

- Requiere en total unas 12 hs. de estudio semanales entre actividades sincrónicas (los días de clase) y
 asincrónicas de dedicación en otros momentos que decide el estudiante según sus otras obligaciones.
 - » Exige dedicación.

Evaluación integradora: individual, definitoria.

Actividades

Hay documentos electrónicos disponibles que deberán leerse antes de la clase.

A continuación de la presentación del tema, se pueden proponer diversas actividades de elaboración propia o en grupo con moderación y seguimiento de los docentes.

- Enunciación y resolución de problemas.
- Discusión de resultados de los problemas a la luz de la teoría.

Habrán actividades obligatorias que tendrán vencimiento:

- Con calificación:
 - Desarrollo y documentación de un Trabajo Práctico.
 - Presentaciones orales e informes.
- Sin calificación:
 - Informe de problemas resueltos.
 - Autoevaluaciones u otras actividades definidas por los docentes.

También habrán actividades opcionales.

Habrán charlas de Ingenieros Electrónicos que comentarán los diversos campos de esta profesión.

Consideraciones genéricas

Todos los documentos deben entregarse en soporte electrónico al menos en formato PDF.

Cada Trabajo Práctico se deberá identificar como:

- "TP# <apellido o Grupo XX>"
 - Donde # indica el número de TP y XX indica el número de Grupo

Estructura del informe

- Carátula.
- Contenido propiamente dicho.
- Conclusiones.
- Referencias bibliográficas.

Elementos constructivos

- Fórmulas (numerar las referidas en el texto).
- Figuras y Tablas numeradas.

Anexo

Contenidos

Contenido I

¿Qué es la Ingeniería Electrónica? - Los problemas de la Ingeniería Electrónica.

 Panorama histórico, actual y futuro de la Ingeniería Electrónica, local y mundial - Plan de estudios en la FIUBA.

Modelos - Simulación de sistemas.

Teoría de circuitos eléctricos.

• Ohm, Kirchhoff, Thévenin, principio de superposición, máxima transferencia de potencia.

Funciones electrónicas.

• Conocimiento de componentes. Marcación. Tolerancias. Campo de uso.

Resolución de circuitos eléctricos en Corriente Continua y Alterna.

- Dominio del tiempo y dominio de la frecuencia.
- Valor eficaz.

Bloque de circuito como herramienta para trabajar. Transferencia.

Contenido II

Mediciones. Errores sistemáticos.

- Incertidumbre de las mediciones y propagación en las mediciones indirectas.
- Concepto de Trazabilidad. Validación del experimento.

Instrumentos. Multímetros.

- Diagrama básico de bloques. Características Manuales. Campo de uso. Limitaciones.
- Efecto de carga. Validez de la medida.

Osciloscopios.

• Cables. Conectores. Puntas. Ajuste. Cuidados.

Bancos de medición. Diferencia entre banco de medición y circuito eléctrico.

Contenido III

Presentación de la idea y los resultados de las medidas.

- · Calidad de la presentación.
- · Tablas de valores. Gráficos.
- Tratamiento numérico.
- Elaboración de informes.
- Análisis de resultados y obtención de conclusiones.

Planteo de un proyecto.

- Especificaciones. Acotación de expectativas. Limitaciones.
- Necesidad de validación de las especificaciones a través de medidas o experimentos.

Consigna

Encuesta inicial - Parte I

• Completar el cuestionario indicado en el campus

Encuesta inicial - Parte II

• Resolver los dos problemas de matemática en el campus

86.02 - Introducción a la Ingeniería Electrónica - Segundo cuatrimestre 2020 (86.02_IIE -2do 2020)

https://campus.fi.uba.ar/course/view.php?id=3262

Muchas gracias por su atención

www.ingenieria.uba.ar f > ② the /ingenieriauba /FIUBAoficial