Slide 1_X-ray imaging overview Radiography & Mammography: X-ray imaging page 2 History of X-ray What is X-ray and X-ray tube? Mast common technology in mm? New rechnology? **Attenuation Coefficient** page 7 Page 8. Indirect exposure vs direct exposure and second second second second $I = I_{o} e^{(-\mu z)}$ X-ray tube vs X-ray cone μ Silde 2 X-Ray CT Fundamentals 2021-2022: CAT: Computerized Axial Tomography Advantage and disadvantage of Computed Digital radiography and digital + No maintenance of chemical use & dark room & storage space of films + Image processing capability - Spatial resolution is a bit lower than analog film - Contrast resolution is better than analog film Dynamic Range (Analog Film) page 10 Evaluate the film characteristic curve? **Dynamic Range (Digital Detector)** page 11 **Digital Detector Characteristic Curve** Radiography (Rad) page 12 What is Radiography? olution by, Uniform spatial resolution, Sc Profile of General Radiography? What Procedure, Reimb, Diseases, Challenges for Spine/head/neck/abdominal/thoracic/extremities and hip? page 16 Radiography is used for? page 18 Radiation Dose in X-Ray exams What Effective radiation dose and comparable to natural background radiation for? Lieu cao, lieu that nery do radiation page 19 Advanced Applications of X-ray Dual Energy (two technologies, bone or soft-tissue images may be obtained...) / dose page 20 bone low energy; no men high energy page 21 Single exposure page 22 **Dual exposure** page 23 Auto Image Paste page 24 Computer Aided Detectioni (CAD) page 27 – page 31 **Clinical Performace Terms** What is the percentage/the formula for estimating the Sensitivity, Specificity, positive/negative predictive value, accuracy? What is P-value? Sunsitivity substract cti lay high energy và low energy Sunsitivity.

Sunsitivity v specificity: bai toai. ctaul giá binaryrestimat /2T_Recall trê category (-)

Luny duy specificity: Specificaty

Temporal Subtraction (highlight change between presidus and current, potential applications)

Radon transform

Temporal Subtraction (highlight about the second suggest potential applications)	page 34
RAD Tomosynthesis (Goal, Acquisition,) Source chay, Ladiny year	page 35
Radiography and Elypsonous (DS E)	page 37 – 38
Radiography and Fluoroscopy (R&F)	21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
How many types of geometry? What is the major application? What substance is used Mammography	ilde 1 X-ray imaging ove
	page 41
What is breast cancer?	page 41
How many breast cancer types?	page 43
Breast cancer statistics in 2013	page 45
Breast imaging modalities	page 46 % vs - 4 3 166V
What is mammography? Most common technology in mm? New technology?	page 47-48
History + Sign of breast cancers	
How to procedure performed?	page 49
Digital Breast Tomosynthesis (DBT)	page 50
SOTA of DBT reconstruction (advantage)	page 53
Slide 2_X-Ray CT Fundamentals 2021-2022:	
- CT: Computed Tomography	
- CAT: Computerized Axial Tomography	
- CAT: Computer Assisted Tomography	
ise of Commuted Digital radiography	
Beer's law Emin to apage space & moon with & early land	page 9
du 1t	readity at 1552001 d elleum
dx lo	Special resolution is a new
I I+dl	ed a neu leser Retino.)
x	
"Linear attenuation coefficient" "Beer's law"	lynamic Range (Analog F
04 IU 1 20 JO 11	Evaluate the film
$\mu = -\frac{\partial I/\partial x}{I} \qquad I(x) = I(0) \cdot \exp\left[-\int \mu(t)dt\right]$	
II van	O latigitt) vansa timeny
Sinogram	page 11
Filtered Backprojection	page 16 – 17
Why iterative reconstruction?	page 21
What is CT system and component, X-ray tube?	page 28 – 29
Spatial resolution (How to increase spatial resolution by; Uniform spatial resolution; Boost	page 35
Spatial resolution and reduce allasing artifacts by?	
Temporal resolution (cardiac CT)	page 36
	page 38
Image noise:	Shot bezu al yrige golbs
$\sigma_p \sim \exp(p/2) / \operatorname{sqrt}(I_0) \cdot \operatorname{resolution}^2$	adiation Dose in X-Ray ex
abondo	What Effective rad
	thanced Applications of X
	ual Energy (two technolog
Slow-gaptry cardiac CT	page 43 o slam2

page 46

page 48 page 53 MA to fugmo?

Slow-gantry cardiac CT

Spectral CT; Dual kVp CT

Multi-tube multi-detector CT (Benefit, challenges,...)

Multi-source inverse-geometry CT (X-ray source, detector, recon&cal)

Calculez les coefficients d'atténuation de l'objet dans l'exemple ci-dessous.

On utilise la formule: I = Io*exp(-Integrale(mu*dx)) (Calculer la surface) $100*\exp(-3) = 100 \exp(-(mu_11*1 + mu_12*1'))$ => mu_11 + mu_12 = 3

En pareil avec les autres dimension:

mu_11 + mu_21 = 4 mu_21 + mu_22 = 4

 $mu_12 + mu_22 = 3$ => mu_11=1; mu_22=1; mu_12=2; mu_21=3

Stereo Vision Algorithms - Definition of stero vision - Disparity and depth - Sterco vision system page 42 + Problem

page 4 page 12 page 20 - calibration (offline) /21

Pactification /25

Stelle correspondence / 26

triangulation / 27

+ Naive approach page 46-47 officed window page 55-59

1. Les systèmes d'imagerie analogiques ont une muilleure résolution spaticle que les systèmes numériques: Via 19 bis: résolution misure en pinel - résoluté dans les détecteurs numérique est limitée par la taille de pruel, dans l'analog » pas notion de pixel, le film est contenue / depand on pixel size of pixel depth 2. Contrast resolution images analogiques > numérique Faux

Intensity transfer function of analogo is custe => trade of for short dynamic digital is linear =>

les détectants image ont one réponse linéaire + ve hus