Neural Networks (Part 1)

CSE 5334 Data Mining Spring 2020

Won Hwa Kim

(Slides courtesy of Mark Craven and David Page Jr. at UW - Madison)

Goals for this lecture

you should understand the following concepts

- perceptrons
- the perceptron training rule
- linear separability
- hidden units
- multilayer neural networks
- gradient descent
- stochastic (online) gradient descent
- activation functions
 - sigmoid, hyperbolic tangent, ReLU
- objective (error, loss) functions
 - squared error, cross entropy

Neural Networks

- a.k.a. artificial neural networks, connectionist models
- inspired by interconnected neurons in biological systems
 - simple processing units
 - each unit receives a number of real-valued inputs
 - each unit produces a single real-valued output

Perceptrons

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

Perceptrons

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

input units: represent given *x*

output unit: represents binary classification

Perceptron example

features, class labels are represented numerically

$$\mathbf{x} = \langle 1, 0, 0, 1 \rangle \qquad w_0 + \sum_{i=1}^n w_i x_i = -0.1 \qquad o = 0$$

$$\mathbf{x} = \langle 1, 0, 1, 1 \rangle \qquad w_0 + \sum_{i=1}^n w_i x_i = 0.2 \qquad o = 1$$

Training a perceptron

- randomly initialize weights
- 2. iterate through training instances until convergence

2a. calculate the output for the given instance

$$o = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^n w_i x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

2b. update each weight

$$\Delta w_i = \eta \big(y - o \big) x_i$$

$$\eta \text{ is } \textit{learning rate};$$

$$\text{set to value} << 1$$

$$w_i \leftarrow w_i + \Delta w_i$$

Representational power of perceptrons

perceptrons can represent only linearly separable concepts

$$o = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^n w_i x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

decision boundary given by:

1 if
$$w_0 + w_1 x_1 + w_2 x_2 > 0$$

$$w_1 x_1 + w_2 x_2 = -w_0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

Representational power of perceptrons

- in previous example, feature space was 2D so decision boundary was a line
- in higher dimensions, decision boundary is a hyperplane

Linearly separable functions

<u>AND</u>

	$x_1 x_2$	\mathcal{Y}
а	0 0	0
b	0 1	0
С	1 0	0
d	1 1	1

<u>OR</u>

	$x_1 x_2$	\mathcal{Y}
а	0 0	0
b	0 1	1
С	1 0	1
d	1 1	1

Is XOR linearly separable?

a multilayer perceptron can represent XOR

assume $w_0 = 0$ for all nodes

Example of multi-layer neural network

figure from Huang & Lippmann, NIPS 1988

input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context "h__d"

Decision regions of a multi-layer NN

input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context "h__d"

Learning in a multi-layer NN

- work on neural nets fizzled in the 1960's
 - single layer networks had representational limitations (linear separability)
 - no effective methods for training multilayer networks

- revived again with the invention of backpropagation method [Rumelhart & McClelland, 1986; also Werbos, 1975]
 - key insight: require neural network to be differentiable; use gradient descent

Gradient descent in weight space

Given a training set $D = \{(x^{(1)}, y^{(1)}) | (x^{(m)}, y^{(m)}) \}$ we can specify an error measure that is a function of our weight vector w

This objective function defines a surface over the model (i.e. weight) space

Gradient descent in weight space

gradient descent is an iterative process aimed at finding a minimum in the error surface

on each iteration

- current weights define a point in this space
- find direction in which error surface descends most steeply
- take a step (i.e. update weights) in that direction

Gradient descent in weight space

calculate the gradient of
$$E$$
: $\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$

The sigmoid function

- to be able to differentiate E with respect to w_i , our network must represent a continuous function
- to do this, we can use *sigmoid functions* instead of threshold functions in our hidden and output units

The sigmoid function

for the case of a single-layer network

Batch NN training

given: network structure and a training set $D = \{(x^{(1)}, y^{(1)}) | (x^{(m)}, y^{(m)}) \}$ initialize all weights in w to small random numbers until stopping criteria met do

initialize the error $E(\mathbf{w}) = 0$

for each $(x^{(d)}, y^{(d)})$ in the training set

input $x^{(d)}$ to the network and compute output $o^{(d)}$

increment the error
$$E(\mathbf{w}) = E(\mathbf{w}) + \frac{1}{2} (y^{(d)} - o^{(d)})^2$$

calculate the gradient

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$$

update the weights

$$\Delta \mathbf{w} = -\eta \ \nabla E(\mathbf{w})$$

Online vs. Batch learning

- Standard gradient descent (batch training): calculates error gradient for the entire training set, before taking a step in weight space
- Stochastic gradient descent (online training): calculates error gradient for a single instance (or a small set of instances, a "mini batch"), then takes a step in weight space
 - much faster convergence
 - less susceptible to local minima

Online NN training (Stochastic Gradient Descent)

given: network structure and a training set $D = \{(x^{(1)}, y^{(1)}) | (x^{(m)}, y^{(m)})\}$ initialize all weights in w to small random numbers until stopping criteria met do

for each $(x^{(d)}, y^{(d)})$ in the training set

input $x^{(d)}$ to the network and compute output $o^{(d)}$

calculate the error
$$E(\mathbf{w}) = \frac{1}{2} (y^{(d)} - o^{(d)})^2$$
 calculate the gradient

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \ \frac{\partial E}{\partial w_1}, \ \cdots, \ \frac{\partial E}{\partial w_n} \right]$$

update the weights

$$\Delta \mathbf{w} = -\eta \ \nabla E(\mathbf{w})$$

Other activation functions

- the sigmoid is just one choice for an activation function
- there are others we can use including

hyperbolic tangent

$$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

rectified linear (ReLU)

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

Other objective functions

- squared error is just one choice for an objective function
- there are others we can use including

cross entropy

$$E(\mathbf{w}) = \sum_{d \in D} -y^{(d)} \ln(o^{(d)}) - (1 - y^{(d)}) \ln(1 - o^{(d)})$$

multiclass cross entropy

$$E(\mathbf{w}) = -\sum_{d \in D} \sum_{i=1}^{\# classes} y_i^{(d)} ln\left(o_i^{(d)}\right)$$

Convergence of gradient descent

- gradient descent will converge to a minimum in the error function
- for a <u>multi-layer network</u>, this may be a *local minimum* (i.e. there may be a "better" solution elsewhere in weight space)

- for a <u>single-layer network</u>, this will be a global minimum (i.e. gradient descent will find the "best" solution)
- Recent analysis suggests that local minima are probably rare in high dimensions; saddle points are more of a challenge [Dauphin et al., NIPS 2014]

Neural Networks (part 2)

CSE4334/5334 Data Mining

Won Hwa Kim

Many of the contents in this lecture are borrowed from Prof. Mark Craven / Prof. David Page Jr. at UW-Madison

Goals

you should understand the following concepts

- gradient descent with a linear output unit + squared error
- gradient descent with a sigmoid output unit + cross entropy
- backpropagation

Derivatives in NN

recall the chain rule from calculus

$$y = f(u)$$

$$u = g(x)$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

we'll make use of this as follows

$$\frac{\partial E}{\partial w_i} = \frac{\partial E}{\partial o} \frac{\partial o}{\partial net} \frac{\partial net}{\partial w_i}$$

$$net = w_0 + \sum_{i=1}^n w_i x_i$$

Consider a simple case of a network with one linear output unit and no hidden units:

$$o^{(d)} = net^{(d)} = w_0 + \sum_{i=1}^{n} w_i x_i^{(d)}$$

let's learn w_i 's that minimize squared error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} (y^{(d)} - o^{(d)})^2$$

batch case

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} \left(y^{(d)} - o^{(d)} \right)^2 \qquad \frac{\partial E^{(d)}}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \left(y^{(d)} - o^{(d)} \right)^2$$

online case

$$\frac{\partial E^{(d)}}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \left(y^{(d)} - o^{(d)} \right)^2$$

let's focus on the online case (stochastic gradient descent):

$$\frac{\partial E^{(d)}}{\partial w_i} = \frac{\partial E^{(d)}}{\partial o^{(d)}} \frac{\partial o^{(d)}}{\partial net^{(d)}} \frac{\partial net^{(d)}}{\partial w_i}$$

$$\frac{\partial E^{(d)}}{\partial o^{(d)}} = -(y^{(d)} - o^{(d)})$$

$$\frac{\partial o^{(d)}}{\partial net^{(d)}} = 1 \qquad \text{(linear output unit)}$$

$$\frac{\partial net^{(d)}}{\partial w_i} = x_i^{(d)}$$

$$\frac{\partial E^{(d)}}{\partial w_i} = (o^{(d)} - y^{(d)})x_i^{(d)}$$

Now let's consider the case in which we have a <u>sigmoid</u> output unit, no hidden units, and <u>cross-entropy</u> objective function:

$$net^{(d)} = w_0 + \sum_{i=1}^{n} w_i x_i^{(d)}$$

$$o^{(d)} = \frac{1}{1 + e^{-net^{(d)}}}$$

$$E(\mathbf{w}) = \sum_{d \in D} -y^{(d)} \ln(o^{(d)}) - (1 - y^{(d)}) \ln(1 - o^{(d)})$$

$$\vdots$$

$$x_n \qquad w_n$$

useful property:

$$\frac{\partial o^{(d)}}{\partial net^{(d)}} = o^{(d)}(1 - o^{(d)})$$

$$\frac{\partial E^{(d)}}{\partial w_i} = \frac{\partial E^{(d)}}{\partial o^{(d)}} \frac{\partial o^{(d)}}{\partial net^{(d)}} \frac{\partial net^{(d)}}{\partial w_i}$$

$$\frac{\partial E^{(d)}}{\partial o^{(d)}} = \frac{o^{(d)} - y^{(d)}}{o^{(d)}(1 - o^{(d)})}$$

$$\frac{\partial o^{(d)}}{\partial net^{(d)}} = o^{(d)}(1 - o^{(d)})$$

$$\frac{\partial net^{(d)}}{\partial w_i} = x_i^{(d)}$$

$$\frac{\partial E^{(d)}}{\partial w_i} = (o^{(d)} - y^{(d)})x_i^{(d)}$$

- now we've covered how to do gradient descent for single-layer networks
- how can we calculate $\frac{\partial E}{\partial w_i}$ for every weight in a multilayer network?
 - → <u>backpropagate</u> errors from the output units to the hidden units

let's consider the online case, but drop the (d) superscripts for simplicity

we'll use

- subscripts on y, o, net to indicate which unit they refer to
- subscripts to indicate the unit a weight emanates from and goes to

each weight is changed by
$$\Delta w_{ji} = -\eta \ \frac{\partial E}{\partial w_{ji}}$$

$$= -\eta \ \frac{\partial E}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

$$= \eta \ \delta_j \ o_i$$
 this term is x_i if i is an input unit

each weight is changed by $\Delta w_{ii} = \eta \ \delta_i \ o_i$

where
$$\delta_j = -\frac{\partial E}{\partial net_j}$$

suppose we're using sigmoids and cross-entropy

$$\delta_j = y_j - o_j$$

$$\delta_j = y_j - o_j \qquad \text{if j is an output unit} \qquad \begin{cases} \text{same as single-layer net} \\ \\ \\ \\ \\ \\ \\ \\ \end{cases} = o_j (1 - o_j) \sum_k \delta_k w_{kj} \qquad \text{if j is a hidden unit} \end{cases}$$

Backpropagation

1. calculate error of output units

$$\delta_j = y_j - o_j$$

2. calculate error for hidden units

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj}$$

Backpropagation

3. determine updates for weights going to output units

$$\Delta w_{ji} = \eta \ \delta_j \ o_i$$

4. determine updates for weights to hidden units using hidden-unit errors

$$\Delta w_{ji} = \eta \ \delta_j \ o_i$$

Backpropagation

- particular derivatives depend on objective and activation functions
- here we show derivatives for squared error and sigmoid functions
- gradient descent and backprop generalize to other cases in which these functions are differentiable

Neural Networks (part 3)

CSE4334/5334 Data Mining

Won Hwa Kim

Many of the contents in this lecture are borrowed from Prof. Mark Craven / Prof. David Page Jr. at UW-Madison

Initializing weights

- For sigmoid/tanh units, weights should be initialized to
 - <u>small values</u> so that the activations are in the range where the derivative is large (learning will be quicker)

- <u>random values</u> to ensure symmetry breaking (i.e. if all weights are the same, the hidden units will all represent the same thing)
- typical initial weight range [-0.01, 0.01]

Setting the learning rate

convergence depends on having an appropriate learning rate

Learning rate and momentum

sometimes a momentum term is added

- keeps weights moving in the same direction as the previous update
 - can help to avoid local minima
 - increases step size in flat regions, speeding convergence

Overfitting

- consider error of model h over
 - training data: $error_{D}(h)$
 - entire distribution of data: $error_{\mathcal{D}}(h)$
- model $h \in H$ overfits the training data if there is an alternative model $h' \in H$ such that

```
error_{D}(h) > error_{D}(h')
error_{D}(h) < error_{D}(h')
```

Overfitting

consider a problem with

- 2 continuous features
- 3 classes
- some noisy training instances

Regularization

- Regularization refers to an approach for avoiding overfitting by biasing the learning process away from completely fitting the training data
- E.g. decision-tree pruning is a regularization method
- some regularization methods for neural networks
 - · early stopping
 - dropout
 - L1 or L2 penalty terms (we'll discuss these later in the semester)
 - expanding training data by creating new instances that are slightly perturbed versions of existing ones (e.g. rotating images)

Stopping criteria

- conventional gradient descent: train until local minimum reached
- empirically better approach: early stopping
 - use a validation set to monitor accuracy during training iterations
 - return the weights that result in minimum validation-set error

Dropout

On each training iteration

- randomly "drop out" a subset of the units and their weights
- do forward and backprop on remaining network

Figures from Srivastava et al., Journal of Machine Learning Research 2014

Dropout

At test time

- use all units and weights in the network
- adjust weights according to the probability that the source unit was dropped out

Figures from Srivastava et al., Journal of Machine Learning Research 2014

Input (feature) encoding for neural networks

nominal features are usually represented using a 1-of-k encoding

$$A = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad G = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad T = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

ordinal features can be represented using a thermometer encoding

$$tiny = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ small} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ medium} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ large} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

real-valued features can be represented using individual input units (we may want to scale/normalize them first though)

precipitation =
$$[0.68]$$

Output encoding for neural networks

regression tasks usually use output units with linear activation functions

binary classification tasks usually use one sigmoid output unit

k-ary classification tasks usually use *k* sigmoid or *softmax* output units

$$O_i = \frac{e^{net_i}}{\sum_{j \in outputs} e^{net_j}}$$

Output encoding for neural networks

Multi-label classification tasks (i.e. multiple binary labels are predicted for each instance) usually use multiple sigmoid output units

Objective function for output codings

regression: squared error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} (y^{(d)} - o^{(d)})^2$$

binary classification, multi-label classification: cross entropy

$$E(\mathbf{w}) = \sum_{d \in D} -y^{(d)} \ln(o^{(d)}) - (1 - y^{(d)}) \ln(1 - o^{(d)})$$

k-ary classification: multiclass cross entropy

$$E(\mathbf{w}) = -\sum_{d \in D} \sum_{i=1}^{\# classes} y_i^{(d)} ln\left(o_i^{(d)}\right)$$

Hidden units

- hidden units transform the input space into a new space where perceptrons suffice
- they numerically represent "constructed" features
- consider learning the target function using the network structure below:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Hidden units

• in this task, hidden units learn a compressed numerical coding of the inputs/outputs (autoencoder)

Input	Hidden					Output		
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Learning representations

- the feature representation provided is often the most significant factor in how well a learning system works
- an appealing aspect of multilayer neural networks is that they are able to change the feature representation
- can think of the nodes in the hidden layer as new features constructed from the original features in the input layer

[Figures from Lee et al., ICML 2009]

Backpropatagion with multiple hidden layers

- in principle, backpropagation can be used to train arbitrarily deep networks (i.e. with multiple hidden layers)
- in practice, this doesn't usually work well with sigmoid units
 - diffusion of gradients leads to slow training in lower layers
- better ways of training deep networks (multiple hidden layers)
 - 1. pretraining: greedy layer-wise unsupervised learning
 - 2. backprop with *rectified linear units*, special architectures and other tricks

DN approach 1: Pretraining

- 1. Use unsupervised learning for greedy layer-wise training
 - allows abstractions to develop from one layer to the next
 - helps initialize network with good parameters
 - enables unlabeled data to be used for training!
- 2. Use supervised learning (gradient descent) to learn the last layer
 - ... and often to refine the other layers

Pretraining: Autoencoders

- one approach for pretraining: use *autoencoders* to learn hidden-unit representations
- in an autoencoder, the network is trained to reconstruct the inputs

Pretraining: Autoencoder variants

- various approaches can be used to encourage the autoencoder to generalize
 - bottleneck: use fewer hidden units than inputs
 - sparsity: use a penalty function that encourages most hidden unit activations to be near 0 [Goodfellow et al. 2009]
 - denoising: train to predict true input from corrupted input [Vincent et al. 2008]
 - contractive: force encoder to have small derivatives [Rifai et al. 2011]

Stacking autoencoders

autoencoders can be stacked to form highly nonlinear representations

each $W^{(i)}$ here represents the matrix of weights between layers, and h_i represents the ith layer of hidden units

Fine tuning

- after completion, can run backpropagation on the entire network to fine-tune weights for the supervised task
- because this backpropagation starts with good weights, its credit assignment is better and the learned model is likely to be better than if we just ran backpropagation initially

DN approach 2: Direct supervised training

- direct supervised training of deep networks commonly uses a few techniques to avoid slow training and overfitting
 - rectified linear units (ReLUs) instead of sigmoids
 - dropout
 - specialized architectures

Rectified linear units (ReLU)

- faster learning than sigmoids because gradients don't vanish as *x* increases
- · more efficient computation because exponential function is not used

$$f(x) = \max(0, x)$$

- well suited to tasks in which the input has spatial structure, such as images or sequences
- based on four key ideas
 - local receptive fields
 - weight sharing
 - pooling
 - multiple layers of hidden units

- suppose we have a task in which are instances are 28×28 pixel images
- we can represent each using 28 × 28 input units

[Figure from neuralnetworksanddeeplearning.com]

• we can connect hidden units so that each has a *local receptive* field (e.g. a 5 × 5 patch of the image).

[Figure from neuralnetworksanddeeplearning.com]

- we can have a set of these units that differ in their local receptive field
- all of the units share the same set of weights
- so the units detect same "feature" in the image, but at different locations

[Figure from neuralnetworksanddeeplearning.com]

- a set of units that detect the same "feature" is called a feature map
- typically we'll have multiple feature maps in each layer

[Figure from neuralnetworksanddeeplearning.com]

- feature-map layers are typically alternated with pooling layers
- each unit in a pooling layer outputs a max, or similar function, of a subset of the units in the previous layer

[Figure from neuralnetworksanddeeplearning.com]

$$f(\mathbf{x}) = max(x_1 \dots x_i \dots)$$

$$f(\mathbf{x}) = \log \sum_{i} e^{x_i}$$

$$f(x) = \sqrt{\sum_{i} x_i^2}$$

· alternating layers of convolutional and pooling layers can be stacked

[Figure from LeCun et al., Nature 2015]

Recurrent Neural Network (RNN)

recurrent networks are sometimes used for tasks that involve making sequences of predictions

- Elman networks: recurrent connections go from hidden units to inputs
- Jordan networks: recurrent connections go from output units to inputs

Comments...

- deep networks have had much recent success due to a combination of tricks and factors
 - rectified linear units to handle the diminishing gradients problem
 - dropout to avoid overfitting
 - sparsely connected architectures (e.g. convolutional networks) to incorporate task-specific bias
 - very large data sets and hardware to enable training with them
- stochastic gradient descent often works well for very large data sets even with simple models (i.e. no hidden units)
 - one pass (or a few passes) through the data set may be sufficient to learn a good model
- gradient descent/backpropagation generalizes to
 - arbitrary numbers of output and hidden units
 - arbitrary layers of hidden units
 - arbitrary connection patterns
 - · multiple activation functions
 - multiple objective functions