Module 5: Methods of Communication in the Brain

Arnold Bakker

Department of Psychiatry and Behavioral Sciences
Division of Psychiatric Neuroimaging
Johns Hopkins University School of Medicine

Neurons form the fundamental processing unit of the brain

Reticular theory (Golgi):

 Neurons form a continuous reticular net and are continuously connected.

Neuron doctrine (Cajal):

 Neurons are structurally independent units that interact by contiguity and not by continuity

Neurons:

- Receive, process information
- Transmits information both chemically and electrically
- Pass information to downstream neurons
- Form neural networks that collectively support brain function

Three types of neurons:

- Sensory neuron convert external stimuli into electrical signals
- Interneuron process and relay information
- Motor neuron convert electrical signals into muscle or gland movement

- Ion channels and ion pumps establish a difference in concentration of sodium, potassium, chloride and calcium within the cell versus outside the cell
- This establishes an electrical charge or a resting state potential in the neuron

- Axonal nerve endings form synapses with dendrites of adjoining neurons.
- The synapse forms the site where an electrical or chemical signal is transferred from one neuron to another.
- Synapses form the primary site of interneuronal communication

Synaptic transmission:

1. An influx of calcium through ion channels causes available synaptic vesicles to fuse with the pre-synaptic membrane

Synaptic transmission:

2. Transmitter is released into the synaptic cleft

- 3. Transmitter binds receptor molecules on the post-synaptic membrane
- 4. Post-synaptic channels either open or close based on this binding

- 5. The opening of ion channels causes either an influx of ions in to the post-synaptic neuron
- 6. Change in balance of postsynaptic ions causes the post-synaptic to depolarize or hyper polarize

- 7. If the post-synaptic voltage changes are large enough an electrochemical pulse is generated called an action potential
- 8. The electrical action potential travels rapidly along the axon where it can activate synaptic vesicle release in synapses with other neurons

- 9. Simultaneously the used synaptic vesicle is retrieved from the membrane and recycled
- 10. New transmitter is synthesized by the cell's metabolic apparatus and stored in vesicles for future synaptic transmission

Post-synaptic stimulation changes the excitability of the post-synaptic cell:

- Excitatory depolarizes the membrane potential and making it easier to reach action potential threshold
- Inhibitory hyper polarizes the membrane potential and making it harder to reach the action potential threshold

Excitatory post-synaptic potential (EPSP):

- Single EPSPs do not always cause a post-synaptic action potential
- Neurons form many synapses with adjoining cells
- Summation of EPSP's is often necessary to generate an action potential

Excitatory post-synaptic potential (EPSP):

- Can be recorded by placement of electrode:
 - 1. Inside neuron
 - 2. Outside neuron

Local Field Potential (LFP):

- Neurons are densely packages and highly interconnected
- Extracellular electrode cannot assess which neuron is causing voltage change
- Extracellular recordings thus measure activity of local neuronal environment

