MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 June 15		
Standard: This student is able to S04: Kinematics. Compute and apply position, velocity, and acceleration vector functions.		Mark:
3/3 * reat	tempt due on:	

Recall that position in ideal projectile motion is given by $\mathbf{r}(t) = P_0 + \mathbf{v}_0 t - \frac{1}{2}g\hat{\jmath}t^2$ where P_0 is the initial position, \mathbf{v}_0 is initial velocity, and g is acceleration due to gravity.

Assume g = 10 meters per second squared. Prove that a projectile launched from a height of 60 meters with initial velocity $\langle 7, 20 \rangle$ meters per second will land on the ground after 6 seconds and travel a total of 42 meters horizontally.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	ype:
J#:	Quiz	
Date: 2017 June 15		
Standard: This student is able to C05: VectFuncSTNB. Compute and apply the arclength parameter and TNB frame for a vector function.		Mark:
1/4 * reat	tempt due on:	

Find the arclength parameter s(t) for the curve given by $\mathbf{r}(t) = \langle \sin t + \cos t, \sqrt{2}t, \sin t - \cos t \rangle$. Then give the arclength from t = 0 to t = 3.