

DESCOMPOSICIÓN ESPECTRAL

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 02) 07.JULI0.2022

Definición

Una **descomposición espectral** de una matriz cuadrada $A \in \mathbb{R}^{n \times n}$ es una factoración de la forma

$$A = X\Lambda X^{-1}$$

donde $X \in \mathbb{R}^{n \times n}$ es no singular, y $\Lambda \in \mathbb{R}^{n \times n}$ es una matriz diagonal, cuyas entradas $\lambda_1, \ldots, \lambda_n$ corresponden a los autovalores de A.

La definición anterior puede escribirse como $AX = X\Lambda$, esto es

$$\begin{pmatrix} & & A & & \\ & & A & & \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \mathbf{x}_1 & \lambda_2 \mathbf{x}_2 & \dots & \lambda_n \mathbf{x}_n \\ & & & \lambda_n \end{pmatrix}.$$

La descomposición espectral expresa un cambio de base en las coordenadas dadas por los autovectores de A.

El conjunto de autovectores correspondientes a un solo autovalor λ de A, junto con el vector cero, forma un subespacio de E_{λ} conocido como el **autoespacio asociado a** λ .

Obs! $E_{\lambda} \subseteq \mathbb{C}^{n}$. Es un subespacio invariante: $AE_{\lambda} \subseteq E_{\lambda}$.

Definición

La multiplicidad geométrica de λ es $\dim_{\mathbb{R}} E_{\lambda} = \dim_{\mathbb{R}} \operatorname{Ker}(\lambda I - A)$.

Recordemos que el polinomio característico de $A \in \mathbb{R}^{n \times n}$ es el polinomio de grado n dado por $p_A(z) = \det(zI - A)$.

Teorema

 λ es un autovalor de A si, y sólo si, $p_A(\lambda) = 0$.

Prueba:

$$\lambda$$
 es autovalor de $A \Leftrightarrow \text{existe } \mathbf{x} \neq \mathbf{0} : A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow \lambda \mathbf{x} - A\mathbf{x} = \mathbf{0}$
 $\Leftrightarrow \lambda I - A \text{ es singular } \Leftrightarrow \det(\lambda I - A) = \mathbf{0}.$

Por el Teorema Fundamental del Álgebra, una consecuencia del teorema anterior es que

$$p_A(z) = (z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n),$$

donde los λ_i son todos autovalores de A.

Definición

La **multiplicidad algebraica** del autovalor λ es su multiplicidad como raíz del polinomio característico $p_A(z)$.

Observaciones:

- Toda matriz cuadrada $A \in \mathbb{R}^{n \times n}$ posee n autovalores (contados con multiplicidad).
- Si las raíces de $p_A(z)$ son todas simples, A posee n autovalores distintos.
- Cuando X es no singular, las matrices A y XAX⁻¹ poseen igual polinomio característico, autovalores, y multiplicidades algebraicas y geométricas, ya que

$$p_{XAX^{-1}}(z) = \det(zI - XAX^{-1}) = \det\left(X(zI - A)X^{-1}\right) = \det X \det(zI - A)(\det X)^{-1} = \det(zI - A) = p_A(z).$$

y E_{λ} es autoespacio para $A \Leftrightarrow X^{-1}E_{\lambda}$ es autoespacio para XAX^{-1} .

Teorema

multiplicidad algebraica $\lambda \geq$ multiplicidad geométrica λ , $\forall \lambda$ autovalor.

<u>Prueba</u>: Sea k la multiplicidad geométrica de λ para la matriz $A \in \mathbb{R}^{n \times n}$. Formamos una matriz $V \in \mathbb{R}^{n \times k}$ cuyas k columnas constituyen una base ortonormal del autoespacio $E_{\lambda} = \{\mathbf{x} : A\mathbf{x} = \lambda \mathbf{x}\}$. Extendemos V a una matriz unitaria cuadrada $V \in \mathbb{R}^{n \times n}$, y obtenemos V^*AV en la forma

$$B = V^*AV = \begin{pmatrix} \lambda I_k & C \\ \mathbf{o} & D \end{pmatrix},$$

donde $C \in \mathbb{R}^{k \times (n-k)}$, $D \in \mathbb{R}^{(n-k) \times (n-k)}$.

Luego,
$$\det(zI - B) = \det(zI - \lambda I_k) \det(zI - D) = (z - \lambda)^k \det(\lambda I - D)$$
.

De ahí que la multiplicidad algebraica de λ como autovalor de B es al menos k, y dado que las transformaciones de semejanza preservan multiplicidades, lo mismo es cierto para A. \Box

Definición

Un autovalor cuya multiplicidad algebraica excede su multiplicidad geométrica es un **autovalor defectuoso**. Una matriz que tiene uno o más autovalores defectuosos se llama una **matriz defectuosa**.

- Las matrices diagonales no son defectuosas.
- Veremos luego que las matrices simétricas no son defectuosas.

Definición

Una matriz cuadrada $A \in \mathbb{R}^{n \times n}$ es **diagonalizable** si admite una descomposición espectral.

Teorema

Una matriz $A \in \mathbb{R}^{n \times n}$ es diagonalizable si, y sólo si, no es defectuosa.

<u>Prueba</u>: (\Rightarrow) Dada una descomposición espectral $A = X \wedge X^{-1}$ para $A, \Rightarrow \Lambda$ es similar a A, con los mismos autovalores y las mismas multiplicidades. Como Λ es diagonal, no es defectuosa y, por lo tanto, lo mismo vale para A.

(\Leftarrow) Una matriz no defectuosa debe tener n autovectores l.i. (ya que autovectores de diferente autovalor son l.i., y cada cada autovalor contribuye exactamente con tantos autovectores l.i. como su multiplicidad geométrica). Si estos n autovectores l.i. se forman en las columnas de una matriz X, entonces X es no singular y tenemos $A = X \Lambda X^{-1}$. \Box

Ejemplo: Considere las matrices

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \text{y} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Tanto A como B tienen un polinomio característico $(z-2)^3$, por lo que hay un solo autovalor $\lambda=2$ de multiplicidad algebraica 3.

En el caso de A, el autoespacio $E_{\lambda} = \langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle$, mientras que para B, $E_{\lambda} = \langle \mathbf{e}_1 \rangle$, de modo que λ es un autovalor defectuoso para B. Portanto, A es diagonalizable, pero B no.

(Ver libro Linear Algebra de Hoffman, Kunze).

En ocasiones, no sólo ocurre que una matriz $A \in \mathbb{R}^{n \times n}$ admite n autovectores l.i., sino que éstos son ortogonales.

Definición

Decimos que A es **unitariamente diagonalizable** si existe una matriz ortogonal U tal que $A = U \Lambda U^T$.

Teorema (Teorema espectral / Descomposición espectral)

Sea $A \in \mathbb{R}^{d \times d}$ una matriz simétrica (operador auto-adjunto). Entonces, A admite una descomposición de la forma

$$A = U \Lambda U^T$$

donde $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$ es la matriz diagonal formada por los autovalores $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d$ de A, y

$$U = \left(\mathbf{u}_1 \quad \mathbf{u}_2 \quad \dots \quad \mathbf{u}_d \right) \in \mathbb{R}^{d \times d}$$

es una matriz ortogonal cuyas columnas son los autovectores de A, con \mathbf{u}_i el autovector correspondiente a λ_i , $i = 1, 2, \dots, d$.

En otras palabras, A es una suma de matrices de rango 1: $A = \sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}$.

Comentarios:

- El teorema espectral dice que toda matriz cuadrada A, real, simétrica, posee una base ortonormal, formada por autovectores de A.
- Para 1 $\leq k \leq d$, la suma $A = \sum \lambda_i \, \mathbf{u}_i \mathbf{u}_i^\mathsf{T}$, es una matriz de rango k.

Observaciones:

- A simétrica y semi-definida positiva, \Rightarrow existe $A^{1/2}$ tal que $A^{1/2}A^{1/2}=A$.
- Si todos los autovalores de A son no-negativos, $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$, entonces $\Lambda^{1/2}$ existe y

$$\Lambda^{1/2} = diag(\lambda_1, \lambda_2, \dots, \lambda_d)^{1/2} = diag(\lambda_1^{1/2}, \lambda_2^{1/2}, \dots, \lambda_d^{1/2}).$$

• A partir de la descomposición espectral podemos calcular $A^{1/2}$. De hecho, si $A = U \Lambda U^T$, definimos $A^{1/2} = U \Lambda^{1/2} U^T$, y

$$A^{1/2}A^{1/2} = (U\Lambda^{1/2}U^{T})(U\Lambda^{1/2}U^{T}) = U\Lambda^{1/2}(U^{T}U)\Lambda^{1/2}U^{T}$$

= $U\Lambda^{1/2}\Lambda^{1/2}U^{T} = U\Lambda U^{T} = A$.

• En general $A \succeq O \Rightarrow A^p = U \Lambda^p U^T$, para todo $p \in \mathbb{R}$.

Teorema Espectral

<u>Prueba</u>: (Teorema espectral).

La prueba es por inducción sobre $n = \dim A$. Para n = 1, el resultado es inmediato pues

$$A = [a] = [1][a][1] = [1][a][1]^T$$
.

Suponga que el resultado es válido para n-1. Mostramos que es posible extenderlo a n. Para n>1, sea $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ una base ortonormal cualquiera para \mathbb{R}^n , y representamos un vector $\mathbf{x}\in\mathbb{R}^n$ arbitrario por

$$\mathbf{X} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \ldots + \alpha_n \mathbf{u}_n.$$

Podemos pensar $\mathbf{w}: \mathbb{R}^n \to \mathbb{R}^n$ como una función de las coordenadas, esto es $\mathbf{w} = \mathbf{w}(\alpha_1, \dots, \alpha_n)$.

Consideramos el problema de optimización:

maximizar
$$\langle \mathbf{w}, A\mathbf{w} \rangle = \mathbf{w}^T A\mathbf{w}$$
, sujeto $\mathbf{a} ||\mathbf{w}||_2 = \mathbf{w}^T \mathbf{w} = 1$. (1)

Teorema Espectral

El lagrangiano de este problema es $\mathcal{L}(\mathbf{w}) = \mathbf{w}^T A \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{w} - 1)$. Del criterio de optimalidad, resulta

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \lambda) = 2A\mathbf{w} - 2\lambda \mathbf{w} = 0, \quad \nabla_{\lambda} \mathcal{L}(\mathbf{w}, \lambda) = \mathbf{w}^{\mathsf{T}} \mathbf{w} - 1 = 0.$$
 (2)

La primera condición en (2) implica que $A\mathbf{w}=\lambda\mathbf{w}$, de modo que el \mathbf{w}^* óptimo debe ser un autovector de A, y λ su autovalor. La segunda condición implica que $||\mathbf{w}^*||_2 = 1$.

De hecho $\max \mathbf{w}^T A \mathbf{w} = \max \mathbf{w}^T (\lambda \mathbf{w}) = \max \lambda ||\mathbf{w}||_2^2 = \max \lambda$, implica que \mathbf{w}^* corresponde al autovector de λ_1 , el mayor autovalor de A.

Hallado el máximo \mathbf{w}^* , hacemos $\mathbf{u}_1 = \frac{\mathbf{w}}{||\mathbf{w}||_2}$ y $\lambda_1 = \lambda$. Consideramos ahora el subespacio $W_2 = (\langle \mathbf{w} \rangle)^{\perp} \equiv \mathbb{R}^{n-1}$. Como $A : \langle \mathbf{w} \rangle \to \langle \mathbf{w} \rangle$, entonces también $A : \langle \mathbf{w} \rangle^{\perp} \to \langle \mathbf{w} \rangle^{\perp}$

Teorema Espectral

Esto se debe a que si $\mathbf{x} \in \langle \mathbf{w} \rangle^{\perp}$, entonces $\langle \mathbf{x}, \mathbf{w} \rangle = \mathbf{0} \Rightarrow \langle \mathbf{A}\mathbf{x}, \mathbf{w} \rangle = \langle \mathbf{x}, \mathbf{A}\mathbf{w} \rangle = \langle \mathbf{x}, \lambda \mathbf{w} \rangle = \lambda \langle \mathbf{x}, \mathbf{w} \rangle = \mathbf{0}$, así $\mathbf{A}\mathbf{x} \in \langle \mathbf{w} \rangle^{\perp}$.

Por inducción, el espacio (n-1)-dimensional W_0 tiene una base ortonormal $\{\mathbf{u}_2,\ldots,\mathbf{u}_n\}$ formada por autovectores de A, cada uno con un autovalor real, y por construcción \mathbf{u}_1 es un vector unitario ortogonal a cada uno de $\{\mathbf{u}_2,\ldots,\mathbf{u}_n\}$.

Entonces $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ es una base ortonormal para \mathbb{R}^n formada por autovectores de A, lo que prueba el teorema. \square