NOIP2024 模拟赛

题目名称	机器人	可爱捏	总力战	树
题目类型	传统型	传统型	传统型	传统型
可执行文件名	robot	lovely	raid	tree
输入文件名	robot.in	lovely.in	raid.in	tree.in
输出文件名	robot.out	lovely.out	raid.out	tree.out
每个测试点时限	1.0 秒	1.0 秒	2.5 秒	2.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
子任务/测试点数目	10	20	3	20
是否等分	是	是	否	是

提交源文件程序名

对于C++语言	robot.cpp	lovely.cpp	raid.cpp	tree.cpp	
---------	-----------	------------	----------	----------	--

编译选项

注意事项(请仔细阅读)

- 1. 文件名 (程序名和输入输出文件名) 必须使用英文小写。
- 2. C/C++中函数main()的返回类型必须是int,程序正常结束时返回值必须是0。
- 3. 选手提交的程序代码文件请在个人目录下以及子文件夹内各放一份。
- 4. 若无特殊说明, 结果的比较方式为全文比较(过滤行未空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于100KB。
- 6. 程序可使用的栈空间内存限制于题目的内存限制一直。
- 7. 使用std::deque等STL容器时,请注意其内存空间消耗。
- 8. 评测时采用的机器配置为 AMD Ryzen 7 5800H with Radeon Graphics,内存16GiB。上述时限以此配置为准。
- 9. 评测在Windows 10下进行,使用LemonLine进行评测。

机器人 (robot)

【题目描述】

你正在研发一款新的机器人,现在要在一块空地上对它进行调试。

空地可以视作一个无限大的二维平面,初始,机器人位于点 (0,0)。接下来,它会依次接收 n 条指令,每条指令可以用一个大写的英文字母表示:

- L: 令当前位置为 (x,y), 机器人移动到 (x-1,y)。
- R: 令当前位置为 (x,y), 机器人移动到 (x+1,y)。
- D: 令当前位置为 (x,y), 机器人移动到 (x,y-1)。
- U: 令当前位置为 (x,y), 机器人移动到 (x,y+1)。

需要注意的是,平面上的某些位置可能存在着障碍,当一条指令让机器人向目标位置移动时,会先判定目标位置是否存在障碍。如果存在,机器人会忽略该条指令,并保持原地不动;反之机器人会按照当前指令的方向移动。

你弄丢了所有的实验数据,现在你只知道 (0,0) 处,即起点不存在障碍,其余障碍的情况以及机器人的最终位置你全部不知道。请设计一个程序来找到执行完n 条指令后机器人最终可能在的所有位置。

【输入格式】

第一行一个正整数,代表指令条数 n。

接下来一行是一个只包含字符 L, R, D, U 的长度为 n 的字符串,代表所有的指令。

【输出格式】

首先一行输出一个正整数 k,代表所有可能的位置数量。

接下来 k 行,每行两个数 (x,y),代表一个机器人可能到的位置。特别的,若 $k \geq 2$,你需要先将这些 坐标按照 x 从小到大排序,对于 x 相同的情况,则按照 y 从小到大排序,最后输出排序后的结果。

【输入输出样例】

robot.in	robot.out
	4
2	0 0
2	0 1
RU	1 0
	1 1

【输入输出样例1说明】

若 (1,0) 与 (0,1) 同时存在障碍物,则机器人会停在 (0,0);若 (1,0) 存在障碍物,则机器人会停在 (0,1);若 (1,1) 存在障碍物,则机器人会停在 (1,0)。

若不存在障碍物,则机器人会停在(1,1)。

【数据范围与约定】

- 对于前 30% 的测试数据, $n \leq 5$ 。
- 对于所有测试数据,保证 $1 \leq n \leq 20$ 。

可爱捏 (lovely)

【题目描述】

小 C 有许多可爱的数,当她们两两聚在一起时就更可爱了!不过由于小 C 不希望让她们过分可爱,因此她决定选出一些数使得她们两两乘积不为一个完全立方数QAQ。

即现在小 C 有 n 个整数 $a_i (1 \le i \le n)$,现在需要选出若干个 a_i 构成一个最大的集合 S,使 S 中的数两两乘积不为完全立方数。

【输入格式】

第一行输入一个正整数 n。

第二行 n 个正整数,代表题面中的 a_i 。

【输出格式】

一个整数代表最大集合的大小。

【输入输出样例 1】

lovely.in	lovely.out
2 3 9	1

【输入输出样例 2】

lovely.in	lovely.out
5 27 8 6 36 5	3

【数据规模与约定】

Hint: 完全立方数指的是形如 $a=b^3$ 的数,其中 $a,b\in\mathbb{N}$,则称 a 为完全立方数。

- 对于 10% 的测试数据, $n \leq 10^5, a_i \leq 10^6$.
- 另有 20% 的测试数据, $n \leq 10^3, a_i \leq 10^{10}$ 。
- 对于 100% 的测试数据, $1 \le n \le 10^5, 1 \le a_i \le 10^{10}$ 。

总力战(raid)

【题目描述】

C老师正在指挥一场总力战。

总力战的地图可以抽象成一个二维坐标系,并且有一个宽度值 X。地图上有 n 个学生,每个学生都有自己的 a_i,b_i,c_i 。对于第 i 个学生,其可以在连接 $(0,a_i)$ 和 (X,b_i) 的线段上自由移动,速度任意,且坐标可以是任意实数。但是,需要注意,任意一个时刻,**不能有两个不同的学生站在相同的位置**。学生个性差异比较大,所以**满足** a_i **互不相同且** b_i **互不相同。**

每个学生的战力会受到其他学生的影响。加入学生i的位置是 (x_i,y_i) ,那么学生u的战力是所有满足 $x_v=x_u$ 且 $y_v>y_u$ 的学生的 c_v 之和。

C 老师在指挥的过程中,会问你 Q 个问题,用来决定下一步的行动。具体而言,在所有问题之前,他会给你一个参数 $K(K \geq 1)$ 。每个问题,他会给你两个参数 p 和 s。你需要回答对于学生 p,加入她的 x 坐标必须处于 [s,s+K],但其余学生可以任意移动,那么学生 p 的最大战力是多少。可以证明,这个问题的答案和学生的初始位置无关。

【输入格式】

第一行四个正整数 X, K, n, Q。

接下来 n 行每行三个正整数 a_i, b_i, c_i 。

接下来Q行,每行两个正整数p,s。

【输出格式】

对于每个问题,输出一行表示答案。

【输入输出样例 1】

raid.in	raid.out
6233	
274	
4 4 2	1
751	5
1 4	5
2 4	
23	

【输入输出样例1说明】

对于第一个询问,可以选择 $x_1=x_3=5.14, x_2=2.4$ 。

对于第二个询问,可以选择 $x_1=x_2=x_3=4$ 。

对于第三个询问,可以选择 $x_1=x_2=x_3=\pi$ 。

【数据规模与约定】

对于所有测试数据, 保证

 $1 \leq X, a_i, b_i, c_i \leq 10^9, 1 \leq K \leq X, 0 \leq s \leq X-K, 1 \leq p \leq n \leq 2000, 1 \leq Q \leq 8 \times 10^5$

۰

子任务编号	$n \le$	$Q \leq$	$X \leq$	子任务分值	特殊性质
1	5	5	10	15	不存在三线共点
2	2000	2000	10^{9}	40	无
3	2000	$8 imes 10^5$	10^{9}	45	无

树(tree)

【题目描述】

猪猪又种了一棵 N 个节点的树,初始每条边的长度都为 1,定义树的直径为最短距离最远的两个点的距离。

给定 Q 次询问,每次询问给出 K_i ,你必须正好使用 K_i 次魔法,每次魔法可以任意选择一条边并使它的长度增加 1 ,你想要让最终树的直径尽可能短,求最短直径。(询问与询问之间相互独立)

【输入格式】

第一行一个正整数 N。

接下来 N-1 行,每行两个正整数 a_i,b_i 表示一条边。

接下来一行一个正整数Q,表示询问个数。

接下来一行 Q 个正整数 K_1, K_2, \ldots, K_Q 表示询问参数。

【输出格式】

输出Q行,每行一个整数表示答案。

【输入输出样例 1】

tree.in	tree.out
	2
	3
4	4
1 2	5
13	5
1 4	6
10	6
0123456789	7
	8
	8

【输入输出样例 2】

tree.in	tree.out
9	
1 4	6 7
2 4	7
3 4	7
4 5	8
5 6	8
67	8
7 8 8 9	9
10	9
0123456789	9

【数据规模与约定】

- 对于前 15% 的测试数据, $N \leq 10, Q \leq 10$ 。
- 对于前 30% 的测试数据, $N \leq 200, Q \leq 200$ 。
- 对于前 45% 的测试数据, $N \leq 3000, Q \leq 3000, K_i \leq 3 \times 10^6$ 。
- 另有5%的测试数据,树是一条链。
- 另有5%的测试数据,树是一个菊花。
- 另有 20% 的测试数据, 树随机生成。
- 对于 100% 的测试数据, $3 \leq N \leq 2 \times 10^5, 1 \leq a_i, b_i \leq N, 1 \leq Q \leq 2 \times 10^5, 0 \leq K_i \leq 10^{18}.$