Lista 2: Widmo i promień spektralny. Charaktery i ideały.

Matematyka nieprzemienna 2024/25

Niech A będzie algebrą C* (z jedynką) i niech $x \in A$. Spektrum/widmem elementu x nazywamy zbiór

$$\sigma(x) := \{ \lambda \in \mathbb{C} : \lambda 1_A - x \notin G(A) \} \subset \mathbb{C}.$$

Promieniem spektralnym elementu x nazywamy liczbę

$$r(x) := \sup\{|\lambda| : \lambda \in \sigma(x)\}.$$

Charakterem na A nazywamy funkcjonał $h:A\to\mathbb{C}$, który jest liniowy, multiplikatywny i nie wszędzie równy zero. Przez Δ oznezamy zbiór wszystkich charakterów na A.

Niech A będzie przemienną algebrą C^* (z jedynką). Podzbiór J algebry A nazywamy idealem, jeśli jest poprzestrzenią liniową A oraz dla dowolnych $x \in A$ i $y \in J$ zachodzi $xy \in J$. Ideal nazywamy wlaściwym, gdy $J \neq A$. Ideal nazywamy maksymalnym, gdy jest właściwy i nie jest zawarty w żadnym większym ideale właściwym.

- 1. Wykazać następujące własności widma i promienia spektralnego:
 - (a) $\sigma(x) \subset \bar{K}(0, ||x||), r(x) \le ||x||,$
 - (b) $\sigma(x^*) = \overline{\sigma(x)} := {\bar{\lambda} : \lambda \in \sigma(x)},$
 - (c) $x \in G(A) \Rightarrow \sigma(x^{-1}) = \left(\sigma(x)\right)^{-1} := \left\{\frac{1}{\lambda} : \lambda \in \sigma(x)\right\},\$
 - (d) $xx^* = x^*x \Rightarrow r(x) = ||x||,$
 - (e) $xx^* = x^*x = 1 \Rightarrow \sigma(x) \subset \{\lambda \in \mathbb{C} \colon |\lambda| = 1\}.$
- 2. Wykazać, że w przemiennej algebrze C*:
 - (a) żaden ideał właściwy nie zawiera elementów odwracalnych;
 - (b) domknięcie ideału jest ideałem;
 - (c) ideał maksymalny jest domknięty.
- 3. Wykazać, że jeśli h jest charakterem na A (algebrze C^*), to
 - (a) $h(1_A) = 1$ oraz $h(x) \neq 0$ dla dowolnego $x \in G(A)$;
 - (b) $\ker h$ jest idealem maksymalnym w A.
- 4. Pokazać, że w algebrze C(X) ewaluacje (czyli odwzorowania $C(X) \ni f \to f(x_0) \in \mathbb{C}$, gdzie $x_0 \in X$) są charakterami.
- 5. Niech A będzie przemienną algebrą C^* , $\phi: A \to \mathbb{C}$ funkcjonałem liniowym. Pokaż, że $V_{\phi} := \{y \in A : \phi(xy) = 0 \text{ dla każdego } x \in A\}$ jest największym (w sensie inkluzji) ideałem w A, zawartym w ker ϕ .
- 6. Niech F(X) oznacza przestrzeń funkcji z X do \mathbb{C} z działaniami dodawania, mnożenia i mnożenia przez skalar po współrzędnych. Pokazać, że odwzorowanie

$$\Phi: A \ni x \to \hat{x} \in F(\Delta), \quad \hat{x}(h) = h(x)$$

jest liniowe, multiplikatywne i zachowuje jedynkę.