Matematika I

Séria úloh 4

1. (7b) Daná je všeobecná rovnica kužeľosečky $4x^2+y^2+8x+4y-8=0.$

Doplňte:

a)	(2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je $\ldots \ldots$
b)	(1b) Typ kužeľosečky je
c)	(3b) Napšíte, ak existujú
	c_1) súradnice stredu kužeľosečky:
	c_2) súradnice ohniska resp. ohnísk kužeľosečky:
d)	(1b) Znázornite kužeľosečku a v náčrte popíte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \ln(9 - x^2 - y^2) + \sqrt{x^2 + y^2}$$

b)
$$f(x,y) = \frac{\ln(9 - x^2 - y^2)}{\sqrt{x^2 - y^2}}$$

c)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 - y^2)$$

d)
$$f(x,y) = \frac{\ln(9 - x^2 - y^2)}{\sqrt{y^2 - x^2}}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} x^2 y \, dx dy,$$

kde množina M je obdĺžnik s vrcholmi $A=[1,2],\,B=[2,2],\,C=[2,3]$ a D=[1,3].

Výsledok:....

- 4. (4b) Bod M má v cylindrickej súradnicovej sústave súradnice: $M = \left[2\sqrt{3}, \frac{\pi}{6}, -2\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [3, \sqrt{3}, -2]$$

d)
$$M = [-3, \sqrt{3}, -2]$$

b) (2b) Znázornite tento bod ${\cal M}$ v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčají	ná diferenciálna rovnica (LODR) $y'(x) + y(x) = x + 1$.
a) (2b) Napíšte charakteristic	kú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnic	a je:
b) (2b) Nájdite fundamentálr nou.	ny systém riešení diferenciálnej rovnice s nulovou pravou stra-
Fundamentálny systém	riešení je
c) (2b) Nájdite partikulárne i	riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je	
d) (2b) Napíšte všeobecné rie	šenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie dan	ej LODR je
6. (4b) Vypočítajte	
	$\lim_{[x,y]\to[1,3]} (x^3 - xy + 2y).$
Výsledok:	
7. (6b) Nájdite rovnicu dotykov v bode $T = [1, 1, z_0].$	ej roviny τ ku grafu funkcie $f(x,y) = \sqrt{xy}$
(2b) Nájdite z_0 a uvedte :	súradnice dotykového bodu:
(4b) Všeobecná rovnica d	otykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y)$ =	$= \ln(2x + y)$, bod $A = [1, 1]$ a vektor $\vec{l} = (-1, 2)$.
a) (3b) Nájdite gradient funk	cie $f(x,y)$ v bode A .
Gradient funkcie $f(x, y)$	v bode A je
b) (3b) Vypočítajte deriváciu	funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$	v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=1-4x^2-9y^2$ a oblasť M . Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[-2,-1],\ B=[2,-1],\ C=[2,1]$ a $D=[-2,1].$
a) Načrtnite oblasť M :
Náčrt:
Pomocou matematických vzťahov popíšte hranice oblasti $M\colon$
(a) (2b) <i>AB</i>
(b) (2b) BC
(c) (2b) <i>CD</i>
(d) (2b) AD
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti M . Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode viazané lokálne
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
Najväčšia hodnota funkcie $f(x,y)$ je:
Najmenšia hodnota funkcie $f(x,y)$ je: