

UNIVERSIDADE ESTADUAL PAULISTA "Júlio de Mesquita Filho"

Faculdade de Engenharia - Campus de Ilha Solteira Prof^a Lilian Yuli Isoda - Depto. de Matemática

Geometria Analítica e Álgebra Linear

Lista de Exercícios 2 de Álgebra Linear

Dependência Linear.

- **1.** Mostre que as matrizes $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ e $C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ são LI.
- **2.** Mostre que os polinômios: $p(x)=x^3-5x^2+1$, $q(x)=2x^4+5x-6$ e $r(x)=x^2-5x+2$ são LI.
- **3.** Seja $P_3(\mathbb{R})$ o espaço vetorial dos polinômios de grau ≤ 3 . Estude a dependência linear dos polinômios: $p(x)=x^3-3x^2+5x-1$, $q(x)=x^3-x^2+6x+2$ e $r(x)=x^3-7x^2+4x$.
- **4.** Mostre que os vetores u = (1,1,1), v = (1,2,1) e w = (2,1,2) do \mathbb{R}^3 são LD.
- **5.** Verifique se os conjuntos A, B e C geram o mesmo subespaço do \mathbb{R}^3 , sendo: $A = \{(1,1,5); (2,3,13)\}; \quad B = \{(1,-1,-2); (3,-2,-3)\}; \quad C = \{(1,-1,-1); (4,-3,-1); (3,-1,3)\}.$ Justifique.

Base de um Espaço Vetorial

- **6.** Seja $B = \{(2,1); (1,-1)\}$ uma base do \mathbb{R}^2 . Encontre as coordenadas do vetor em relação à base B. Idem para $B' = \{(3,5); w = (1,1)\}$.
- 7. Mostre que os vetores u=(1,1,1); v=(1,2,3) e w=(1,4,9) formam uma base de \mathbb{R}^3 . Exprima cada um dos vetores da base canônica do \mathbb{R}^3 como combinação linear de u, v e w.
- **8.** Determinar as coordenadas do vetor $u = (4, -5, 3) \in \mathbb{R}^3$ em relação às seguintes bases: **(a)** canônica; **(b)** $\{(1,1,1), (1,2,0), (3,1,0)\};$ **(c)** $\{(1,2,1), (0,3,2), (1,1,4)\}.$
- 9. Mostre que os polinômios $1, x-1, x^2-3x+1$ formam uma base de $P_2(\mathbb{R})$. Exprima o

polinômio $p(x)=2x^2-5x+6$ como combinação linear dessa base.

- 10. Exiba uma base para cada um dos seguintes subespaços do \mathbb{R}^4 :

 - (a) $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = y = z = t\}$ (b) $G = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = y \in z = t\}$

 - (c) $H = \{(x,y,z,t) \in \mathbb{R}^4 / x = y = z\}$ (d) $K = \{(x,y,z,t) \in \mathbb{R}^4 / x + y + z + t = 0\}$

Teorema da Invariância (Dimensão)

- 11. Obtenha uma base e a dimensão para o subespaço vetorial gerado por cada um dos seguintes conjuntos:
 - a) $\{(1,2,3,4); (3,4,7,10); (2,1,3,5)\}$
 - **b)** $\{(1,3,5); (-1,3,-1); (1,21,1)\}$
 - c) $\{(1,2,3); (1,4,9); (1,8,27)\}$
- 12. Determine uma base e a dimensão do subespaço vetorial W de $M_2(\mathbb{R})$, gerado pelos quatro
 - **a)** $A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}; B = \begin{pmatrix} 2 & 5 \\ 1 & -1 \end{pmatrix}; C = \begin{pmatrix} 5 & 12 \\ 1 & 1 \end{pmatrix}; D = \begin{pmatrix} 3 & 4 \\ -2 & 5 \end{pmatrix}.$
 - **b)** $A = \begin{pmatrix} 1 & -5 \\ -1 & 2 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}; \quad C = \begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}; \quad D = \begin{pmatrix} 1 & -7 \\ -5 & 1 \end{pmatrix}.$
- 13. Considere o subespaço U do \mathbb{R}^3 definido por $U = \{(x,y,z) \in \mathbb{R}^3 \mid x-2y+4z=0\}$.

Obtenha uma base $B=\{u_1, u_2, u_3\} \subset \mathbb{R}^3$ tal que u_1 e u_2 pertençam a U.

Dica: Teorema do Completamento

Método Prático para Determinação de Bases de um Subespaço do Rⁿ

14. Dar uma base e a dimensão do subespaço W de \mathbb{R}^4 sendo

$$W = \{(x, y, z, t) \in \mathbb{R}^4 / x - y = y \ e \ x - 3y + t = 0\}$$
.

- 15. Sendo W e U subespaços do \mathbb{R}^4 de dimensão 3, que dimensões pode ter W+U se (1,2,1,0); (-1,1,0,1); (1,5,2,1) é um sistema de geradores de $W \cap U$?
- **16.** Sendo W o subespaço do Exercício 17 e U o subespaço do \mathbb{R}^4 gerado por (1,2,1,3)e (3,1,-1,4), determinar uma base e a dimensão de U+W e de $U\cap W$.

- 17. Achar uma base e a dimensão dos seguintes subespaços do \mathbb{R}^4 :
 - (a) $U = \{(x,y,z,t) \in \mathbb{R}^4 / x y = 0 \text{ e } x + 2y + t = 0\}$,
 - **(b)** $V = \{(x,y,z,t) \in \mathbb{R}^4 | (x-y+z) = -2t \in x+2y+t=0 \}$.
- **18.** No espaço vetorial \mathbb{R}^3 consideremos os seguintes subespaços: $U = \{(x,y,z) \mid x=0\}$, $V = \{(x,y,z) \mid y-2z=0\}$ e W = [(1,1,0),(0,0,2)]. Determine uma base e a dimensão de cada um dos seguintes subespaços: U, V, W, $U \cap V$, V+W e U+V+W.
- **19.** Mostre que os polinômios 1, 1+t, $1-t^2$ e $1-t-t^2-t^3$ formam uma base de $P_3(\mathbb{R})$.
- **20.** Mostre que o conjunto B forma uma base de $M_2(\mathbb{R})$:

$$\mathbf{B} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}; \ \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}; \ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \ \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \right\}.$$

21. Determinar uma base e a dimensão do espaço solução de cada um dos sistemas lineares homogêneos:

a)
$$\begin{cases} x - y = 0 \\ 2x - 3y = 0 \\ 6x + y = 0 \end{cases}$$
 b)
$$\begin{cases} x + y + z = 0 \\ 2x - y - 2z = 0 \\ x + 4y + 5z = 0 \end{cases}$$
 c)
$$\begin{cases} x - y - z - t = 0 \\ 3x - y + 2z - 4t = 0 \\ 2y + 5z + t = 0 \end{cases}$$

- **22.** Ache uma base e a dimensão de cada um dos seguintes subespaços do \mathbb{R}^3 : $U = \{(x,y,z) \ / \ x+y+z=0\}, \qquad V = \{(x,y,z) \ / \ x=y=z\} \quad e \quad W = \{(x,y,z) \ / \ z=3x\}.$
- **23.** Seja W o subespaço do \mathbb{R}^5 gerado pelos vetores $u_1 = (1,2,-1,3,4); u_2 = (2,4,-2,6,8); u_3 = (1,3,2,2,6); u_4 = (1,4,5,1,8)$ e $u_5 = (2,7,3,3,9)$. Encontre uma base para W.
- **24.** Encontre dim(U+W) e $dim(U\cap W)$, sendo que U e W são os seguintes subespaços do \mathbb{R}^4 : U=[(1,1,0,-1),(1,2,3,0),(2,3,3,-1)] e W=[(1,2,2,-1),(2,3,2,-3),(1,3,4,-3)].
- 25. Sejam $U = \{(x,y,z,t) / y+z+t=0\}$ e $W = \{(x,y,z,t) / x+y=0, z=2t\}$ dois subespaços do \mathbb{R}^4 . Ache uma base e a dimensão de U, W, $U \cap W$ e U+W.

Mudança de Base

26. Considere a base $D=\{1,1-t,1-t2\}$ de $P_2(\mathbb{R})$. Encontre a matrizes de mudança das bases $M_{C,D}$ e $M_{D,C}$, sendo C a base canônica de $P_2(\mathbb{R})$.

- 27. Determine a base B do \mathbb{R}^2 , sabendo que a matriz de mudança de base $M_{B,D}$ é $\begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$, sendo $D = \{(1,1); (0,2)\}$.
- **28.** Seja $B=\{1+t,1-t\,2\}$ uma base de $P_2(\mathbb{R})$. Determine a base D, sabendo que a matriz de mudança da base é $M_{B,D}\begin{pmatrix}1&2\\1&-1\end{pmatrix}$.
- **29.** Considere as bases $B = \{e_1, e_2, e_3\}$ e $D = \{g_1, g_2, g_3\}$ de \mathbb{R}^3 assim relacionadas: $g_1 = e_1 e_2 e_3$ $g_2 = 2e_2 + 3e_3$ $g_3 = 3e_1 + e_3$
 - a) Determine as matrizes de mudança de base $M_{B,D}$ e $M_{D,B}$
 - **b)** Se um vetor \mathbf{u} de \mathbb{R}^3 apresenta coordenadas 1, 2 e 3 em relação a B, quais são as coordenadas de \mathbf{u} relativamente a D?
- **30.** Considere o seguinte subespaço vetorial de $M_2(\mathbb{R}): U = \left\{ \begin{pmatrix} x & y \\ z & t \end{pmatrix} / x y z = 0 \right\}$.
 - a) Mostrar que os seguintes subconjuntos de $M_2(\mathbb{R})$ são bases de U:

$$B = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \quad e \quad D = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Importante: Não esqueça de verificar que todas as matrizes pertencem ao subespaço U.

- **b)** Achar as matrizes mudança de base $M_{B,D}$ e $M_{D,B}$.
- c) Achar uma base E de U de tal maneira que a matriz de mudança de base $M_{E,B}$ seja

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 3 & 1 \end{pmatrix}.$$

Junho/2016