МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Розрахункова робота

з дисципліни

«Дискретна математика»

Виконав:

студент групи КН-112

Садовнік Ілля

Викладач:

Мельникова H.I.

Виконати наступні операції над графами: 1) знайти доповнення до першого графу, 2) об'єднання графів, 3) кільцеву сумму G1 та G2 (G1+G2), 4) розмножити вершину у другому графі, 5) виділити підграф A - що скадається з 3-х вершин в G1 6) добуток графів.

1)) знайти доповнення до першого графу

2) об'єднання графів,

3) кільцеву сумму G1 та G2 (G1+G2),

4) розмножити вершину у другому графі,

5) виділити підграф А - що скадається з 3-х вершин в G1

6) добуток графів.

Скласти таблицю суміжності для орграфа.

	1	2	3	4	5	6	7	8
1	0	1	1	1	0	1	1	0
2	1	0	1	1	0	0	1	1
3	1	1	0	1	0	0	1	0
4	1	1	1	0	0	0	1	0
5	0	0	0	0	0	1	1	0
6	1	0	0	0	1	0	1	0
7	1	1	1	1	1	1	0	0
8	0	1	0	0	0	0	0	0

Завдання № 3

Для графа з другого завдання знайти діаметр.

Діаметр = 3.

Завдання № 4

Для графа з другого завдання виконати обхід дерева вглиб (варіант закінчується на непарне число) або вшир (закінчується на парне число).

Пошук вшир

V1	V1	
V2	V1V2	
V3	V1V2V3	
V4	V1V2V3V4	
V6	V1V2V3V4V6	
V7	V1V2V3V4V6V7	
	V2V3V4V7V6	
V8	V2V3V4V7V6V8	
	V3V4V7V6V8	
	V4V7V6V8	
	V7V6V8	
V5	V7V6V8V5	
	V6V8V5	-
	V8V5	
	V5	

```
⊟#include<iostream>
 #include<queue>
 using namespace std;
⊟class n {
     int val;
     int st;
⊡int matrix[v][v] = {
    {0, 1, 1, 1, 0, 1, 1, 0},
    {1, 1, 0, 1, 0, 1, 1, 0 },
    {1, 1, 1, 0, 0, 0, 1,0},
    {0, 0, 0, 0, 0, 1, 7, 0},
    {1, 0, 0, 0, 1, 0, 1, 0},
     {1, 1, 1, 1, 1, 1, 0, 0},
     {0,1,0,0,0,0,0,0,0}
};
⊡void bfs(n* verh, n s) {
     queue<n> que;
         verh[i].st = 0;
     verh[s.val].st = 1;
     que.push(s);
     while (!que.empty()) {
         u = que.front();
         que.pop();
         cout << u.val+1 << " ";
if (matrix[i][u.val]) {
```

```
verh[i].st = 0;
                      verh[s.val].st = 1;
                      que.push(s);
                      while (!que.empty()) {
                             u = que.front();
                             que.pop();
                             cout << u.val+1 << " ";
                                   if (matrix[i][u.val]) {
                                          if (verh[i].st == 0) {
                                                 verh[i].st = 1;
                                                 que.push(verh[i]);
                             u.st = 2;
             int main() {
                      n verh[v];
                      n start;
                      for (int i = 0; i < v; i++) {
                            verh[i].val = i;
                      start.val = s - 65;
                      cout << "bfs: ";</pre>
                      bfs(verh, start);
                      cout << endl;</pre>
🕅 Файл Правка Вид Проект Сборка Отладка Тест Анализ Средства Расшир
    📧 Консоль отладки Microsoft Visual Studio
     C:\Users\CooperFeed\source\repos\shir\Debug\shir.exe (процесс 17736) завершает работу с кодом 0.
Чтобы автоматически закрывать консоль пры остановке отладки, установите параметр "Сервис" -> "Пь
"Матоматически закрыть консоль пры остановке отладки".
Чтобы закрыть это окно, навмите любую клавиюу..
                                                                                                                                                            🔡 🤮 🔑
  85 % 🔻 🕜 Проблемы не н
```

오 배 🤚 🔚 🌏 🔁 🖺 🕸 숙 🍵 🟦 📢 👈

Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Краскал = $\{(1,4),(5,9),(2,7),(4,6),(4,7),(2,5),(6,10),(6,8),(9,11),(3,6)\}$

```
#include "iostream"
     using namespace std;
      #define w 11
     int parent[w];
□int search(int i)
                   while (parent[i] != i)
                                i = parent[i];
□void union1(int i, int j)
                   int a = search(i);
                   int b = search(j);
                   parent[a] = b;
void kruskalMST(int matrisa[][w])
                   int mincost = 0;
                   for (int i = 0; i < w; i++)
                                 parent[i] = i;
                   int edge_count = 0;
                   while (edge_count < w - 1) {</pre>
                                 int min = INT_MAX, a = -1, b = -1;
for (int j = 0; j < w; j++) {
                                                             if (search(i) != search(j) && matrisa[i][j] < min) {</pre>
                                                                          min = matrisa[i][j];
                                                      a = i;
                      union1(a, b);
                      cout << "Edge " << edge_count++ << ":" << "(" << a + 1 << "," << b + 1 << ")" << " cost:" << min << endl;
                      mincost += min;
            cout << " Minimum cost= " << mincost << endl;;</pre>
            int matrisa[][w] = {
                      {INT_MAX,3,6,1,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX,INT_MAX
                      {INT_MAX,3,7,INT_MAX,INT_MAX,INT_MAX,7,1,INT_MAX,INT_MAX},
{INT_MAX,INT_MAX,5,2,INT_MAX,INT_MAX,4,INT_MAX,3,INT_MAX},
                       {INT_MAX,2,INT_MAX,2,INT_MAX,INT_MAX,INT_MAX,4,4,INT_MAX},
                       {INT_MAX,INT_MAX,INT_MAX,INT_MAX,1,INT_MAX,4,INT_MAX,INT_MAX,INT_MAX,4},
            kruskalMST(matrisa);
```


Прима = $\{(1,4),(4,7),(4,6),(7,2),(2,5),(5,9),(6,10),(6,8),(9,11),(6,3)\}$

```
⊟#include <iostream>
 #include <stdio.h>
 #include <stdlib.h>
 #include "Source.h"
 using namespace std;
□int main(void)
     int versh, cnt = 0, min_ = 0, n, m;
     bool c = false;
     cout << "Vershini : "; cin >> versh; cout << "\n";</pre>
     int** graph = new int* [versh];
     for (int i = 0; i < versh; ++i)</pre>
          graph[i] = new int[versh];
     int** rebr = new int* [versh - 1];
     for (int i = 0; i < versh - 1; ++i)
          rebr[i] = new int[2];
      for (int i = 0; i < versh; ++i)</pre>
          for (int j = 0; j < versh; ++j)</pre>
              cin >> graph[i][j];
     int* tops = new int[versh];
     tops[cnt] = 1;
     ++cnt;
     for (int i = 0; cnt < versh; ++i) {</pre>
          for (int j = 0; j < cnt; ++j) {
              for (int x = 0; x < versh; ++x) {
                      if (tops[y] == x + 1)
                          c = true;
```

```
(int y = 0; y < cnt; ++y)
                                                                                                                              if (tops[y] == x + 1)
                                                                                                            if (min_ == 0 && graph[tops[j] - 1][x] > 0)
                                                                                                                           min_ = graph[tops[j] - 1][x];
                                                                                                                           n = rebr[cnt - 1][0] = tops[j];
                                                                                                                          m = rebr[cnt - 1][1] = x + 1;
                                                                                                            if \ (graph[tops[j] \ - \ 1][x] \ > \ 0 \ \&\& \ graph[tops[j] \ - \ 1][x] \ < \ min\_) 
                                                                                                                            min_ = graph[tops[j] - 1][x];
                                                                                                                           n = rebr[cnt - 1][0] = tops[j];
m = rebr[cnt - 1][1] = x + 1;
                                                                         graph[n - 1][m - 1] = 0;
graph[m - 1][n - 1] = 0;
                                                                          tops[cnt] = m;
                                                         cout << endl << "Rebra: ";</pre>
                                                         for (int i = 0; i < versh - 1; ++i)
cout << "(" << rebr[i][0] << ", " << rebr[i][1] << ") ";
                        88 - 🚈 😐 🚜 🤊 - S
                                                                                    🜃 Выбрать Консоль отладки Microsoft Visual Studio
                                                                                                                                                                                                                                                                                                                                                                                     сы ээ graph[ 0 0 0 0 0 0 0 5 0 7 0

вх пем цап{{\bar{N}}} ebras: (1, 4) (4, 6) (4, 7) (7, 2) (6, 10) (2, 5) (5, 9) (6, 8) (9, 11) (6, 3)

{\bar{N}} trois a promative ckm закрывать консоль при остановке отладки, установите параметр "Сервис" -> "Парам

{\bar{L} = 0\); спt. <\runner trois автоматически закрывать консоль при остановке отладки, установите параметр "Сервис" -> "Парам

{\bar{L} = 0\); спt. <\runner trois закрыть это окно, нажиите любую клавишу...

{\bar{L} \tau \times 1 - 0\); (1 t x =

{\bar{L} \times 1 - 0\}; (2 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (3 t x \)

{\bar{L} \times 1 - 0\}; (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         III 않 🔑
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ▼ # ×
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  → 11 ×
            "Prima.exe" (Min32). 3arýyxeno "C:\Mindows\SyskON64\vcruntime148d.dll". Смяюлы загруж
"Prima.exe" (Min32). 3arpyxeno "C:\Mindows\SyskON64\vcruntime148d.dll". Смяюлы загружены.
Потот 8x88d завершилс к одоря 0 (0x8).
                                                                                                                                                                                                                                                                                                                                                                                                                                                               요<sup>R</sup> 스 역고 (윤 덕)) ENG 21:14
13.12.2019
```

Розв'язати задачу комівояжера для повного 8-ми вершинного графа методом «іди у найближчий», матриця вагів якого має вигляд:

10)

	1	1 ∞ 6 5 4 6 5 4	3	4	5	6	7	8
1	00	1	2	3	5	4	2	3
2	1	90	6	5	4	6	5	4
3	2	6	00	3	3	5	2	2
4	3	5	3	90	1	6	1	5
5	5	4	3	1	90	2	4	5
6	4	6	5	6	2	90	6	2
7	2	5	2	1	4	6	90	7
8	3	4	2	5	5	2	7	90

1:

125473861:17

128374561:17

128654731:15

2:

213745682:15

213865472:16

217456832:17

3:

//312745683:

312865473:15

374568123:18

386547123:17

4:

456831274:16

456837124:17

471256834:17

471283564:16

471286534:18

473125684:19

473128654:15

473865124:20

5:

547128365:16

547128635:19

547312865:15

547386125:18

6:

654712836:16

654731286:15

654738126:16

683745216:17

683125476:18

7:

745683127:15

8:

831254678:21

837456128:18

865471238:17

865473128:15

```
⊟#include <stdio.h>
 #include <stdlib.h>
 #include <iostream>
 #include <string>
 #include <algorithm>
 using namespace std;
⊟struct k {
     string n;
     int nb;
⊡void main()
 const int v = 8;

int matrix[v][v] = {

 {100,1,2,3,5,4,2,3},
 {1,100,6,5,4,6,5,4},
 {2,6,100,3,3,5,2,2},
 {3,5,2,100,1,6,1,5},
 {5,4,3,1,100,2,4,5},
 {4,6,5,6,2,100,6,2},
 {2,5,2,1,4,6,100,7},
 {3,4,2,5,5,2,7,100}
     int* a = new int[v];
     for (int i = 0; i < v; i++)
         a[i] = i + 1;
     int n = sizeof(a) / sizeof(a[0]);
     vector<k> Path;
     int min_path = 0;
```

```
a[i] = i + 1;
                  int n = sizeof(a) / sizeof(a[0]);
                  vector<k> Path;
                  int min_path = 0;
                  sort(a, a + v);
                  for (int i = 1; i < v; i++) {
                       min_path += matrix[a[i - 1] - 1][a[i] - 1];
                  min_path += matrix[a[v - 1] - 1][a[0] - 1];
                  do {
                       kt;
                       t.n = to_string(a[0]); t.nb = 0;
                            t.n+= "-" + to_string(a[i]);
                            t.nb += matrix[a[i - 1] - 1][a[i] - 1];
                       t.n += "-" + to_string(a[0]);
                       t.nb += matrix[a[v - 1] - 1][a[0] - 1];
                       Path.push_back(t);
                       if (min_path > t.nb) min_path = t.nb;
                  } while (next_permutation(a, a + v));
                  for (int i = 0; i < Path.size(); i++) {</pre>
                       if (Path[i].nb == min_path) {
                            cout << "P: " << Path[i].n << " " << "vaga: " << Path[i].nb << endl;
М Файл Правка Вид Проект Сборка Отладка Тест Анализ Средства Расширения Окно Справка Поиск в Visual Studio (Ctif-Q)

Ф • © № • № № № • • • Debug • х86 • • № Докальный отладчик Windows • № № № • Поиск в Visual Studio (Ст
                                                                                       III 😂 🔑
      o.exe" (Win32). Загружено "C:\Windows\SysWOW64\sechost.dll". Символы загружены.
рамма "[20124] komo.exe" завершилась с кодом 0 (0x0).
ヸ タ ヸ @ 篇 《 ⊙ 图 & ☆ ◎ 前 刈 👏 🗷 🐠 🛍 際
                                                                                                               R<sup>A</sup> ∧ 15 (= 14:20 (15:12:2019)
```

За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі між парою вершин V0 і V^* .

10)


```
#include "iostream
 #define ver 30 using namespace std;
pvoid dikstra(int matrix[][ver])
      int masivproidenihversin[ver];
     int masivvagivershin[ver];
     int masivrad[ver];
     masivvagivershin[0] = 1000;
         masivvagivershin[i] = 99999;
         masivproidenihversin[i] = 0;
         masivrad[i] = 99;
      int min, mini;
         min = 2000;
              for (int j = 0; j < ver; j++)</pre>
                  if (matrix[i][j] != INT_MAX)
                      masivrad[j] = i;
                      masivvagivershin[j] = matrix[i][j];
              masivproidenihversin[i] = 1;
```

```
masivproidenihversin[i] = 1;
                                                       if (masivvagivershin[m] < min && masivproidenihversin[m]!=1)</pre>
                                                                      min = masivvagivershin[m];
                                                                      mini = m;
                                                       if (matrix[mini][j] != INT_MAX && ((masivvagivershin[mini]+ matrix[mini][j])< masivvagivershin[j]) )</pre>
                                                                       masivrad[j] = mini;
                                                                       masivvagivershin[j] = masivvagivershin[mini] + matrix[mini][j];
                                      masivproidenihversin[mini] = 1;
                      cout << "Shlah:" << endl;</pre>
                     int printer = 29;
for (int i = 0; i < 8; i++)
                                       cout << masivrad[printer]+1<<" ";</pre>
                                     printer = masivrad[printer];
                      cout<< endl;
                     cout << "Vaga:" << endl;
cout << masivvagivershin[29];</pre>
⊡void main()
                      int matrix[][ver] = { {INT MAX.7.NT MAX.1NT MAX.1NT MAX.1NT MAX.8.1NT MAX.1NT MAX.1NT
```


Знайти ейлеровий цикл в ейлеровому графі двома методами: а) Флері; б) елементарних циклів.

а) Флері

10)

1-8-3-6

10)

6-5-12-7-4

10)

4-3-12-11-8-7

10)

7-2-3-10-9-2-11-10-1

10)

1-8-3-6-5-12-7-4-3-12-11-8-7-2-3-10-9-2-11-10-1

```
⊟#include<iostream>
 #include<vector>
  #define v 12
using namespace std;
⊡int matrix[v][v] = {
     \{0,0,0,0,0,0,0,1,0,1,0,0\},
     {0,0,1,0,0,0,1,0,1,0,1,0},
     {0,1,0,1,0,1,0,1,0,1,0,1},
     \{0,0,1,0,0,0,1,0,0,0,0,0,0\},
     \{0,0,0,0,0,1,0,0,0,0,0,1\},
     {0,0,1,0,1,0,0,0,0,0,0,0,0,0},
     {0,1,0,1,0,0,0,1,0,0,0,1},
     {1,0,1,0,0,0,1,0,0,0,1,0},
     \{0,1,0,0,0,0,0,0,0,1,0,0\},
     {1,0,1,0,0,0,0,0,1,0,1,0},
     \{0,1,0,0,0,0,0,1,0,1,0,1\},
     {0,0,1,0,1,0,1,0,0,0,1,0}
[};
 int temp[v][v];
□int findstartvr() {
      for (int i = 0; i < v; i++) {
          int stp = 0;
           for (int j = 0; j < v; j++) {
               if (temp[i][j])
                   stp++;
          if (stp % 2 != 0)
      return 0;
⊡bool most(int u, int vr) {
      int stp = 0;
      for (int i = 0; i < v; i++)
           if (temp[vr][i])
```

```
(int i = 0; i < v; i++)
                 if (temp[vr][i])
                     stp++;
             if (stp > 1) {
             return true;
        <u>int</u> edgecount() {
             int counter = 0;
                 for (int j = i; j < v; j++)
                     if (temp[i][j])
                        counter++;
             return counter;
        _void fleri(int start) {
             static int edge = edgecount();
             for (int i = 0; i < v; i++) {
                 if (temp[start][i]) {
                     if (edge <= 1 || !most(start, i)) {</pre>
                        cout << start+1 << "-" << i+1 << " ";</pre>
                         temp[start][i] = temp[i][start] = 0;
                         edge--;
                         fleri(i);
       ⊡int main() {
            for (int i = 0; i < v; i++)
                 for (int j = 0; j < v; j++)
                     temp[i][j] = matrix[i][j];
             cout << "Euler Path Or Circuit: ";</pre>
             fleri(findstartvr());
III 🕦 🔑
                                                                                     → 1 ×
  오 배 🤚 🔚 🌏 🖸 🔟 🕸 숙 🍵 🟦 刘 👪 🗷 📼
                                                                                  g<sup>A</sup> へ 知 口 (小) ENG 22:54
14.12.2019
```

б) елементарних циклів.

10)

Цикли:

1-10-9-2-11-8-1

10-3-12-11-10

2-3-4-7-2

3-8-7-12-5-6-3

Ейлеровий цикл:

1-10-9-2-3-4-7-2-11-10-3-6-5-12-7-8-3-12-11-8-1

```
#include <iostream>
#include <vector>
#include <algorithm>
#include #inclu
```

```
graf[y].push_back(x);
    ++stp[x];
    ++stp[y];
if (any_of(stp.begin() + 1, stp.end(), [](int i) {return i & 1; }))
   cout << "Vidsutnii eilerovi zikl";</pre>
   head.push(1);
   while (!head.empty())
        while (stp[head.top()])
            int v = graf[head.top()].back();
            graf[head.top()].pop_back();
            graf[v].remove(head.top());
            --stp[head.top()];
            head.push(v);
            --stp[v];
        while (!head.empty() && !stp[head.top()])
            vidpovid.push(head.top());
            head.pop();
   while (!vidpovid.empty())
        cout << vidpovid.top() << ' ';</pre>
        vidpovid.pop();
```


Спростити формули (привести їх до скороченої ДНФ).

10. $xz \lor x\overline{z} \lor yz \lor \overline{x}yz$

 $xz \lor x \neg z \lor yz \lor \neg xyz$ $(xz \lor \neg xyz) \lor (x \neg z \lor yz)$ $yz \lor xy$