全国大学生数学建模竞赛论文模板

摘要

摘要

对于问题一,

对于问题二,

对于问题三,

对于问题四,

最后,

关键字: 关键词 关键词 关键词 关键词 关键词

一、问题重述

1.1 问题背景

丝绸之路作为古代中西方文化交流的核心通道,玻璃是早期贸易往来的重要物证。早期西亚和埃及的玻璃多以珠形饰品传入我国,我国古代吸收其技术后,利用本土原料制作玻璃,虽外观与外来品相似,但因助熔剂差异(如铅矿石、草木灰等),化学成分截然不同,形成了铅钡玻璃(我国自创,以楚文化为代表)、高钾玻璃(流行于岭南及东南亚、印度等区域)等本土特色品种。古代玻璃因埋藏环境易风化,风化过程中元素交换导致成分比例改变,影响类别判断,而部分风化文物表面仍保留未风化区域,为成分研究提供了特殊样本,对于研究古代中国社会和玻璃工艺具有很高的价值。

1.2 问题要求

问题 1 分析玻璃文物的表面风化状态与其类型(高钾玻璃/铅钡玻璃)、纹饰、颜色之间的关联;结合玻璃类型,总结文物表面有无风化时化学成分含量的统计规律;并基于风化点的检测数据,预测其风化前的化学成分含量。

问题 2 依据附件数据,提炼高钾玻璃与铅钡玻璃的分类规律;针对这两类玻璃,分别选取合适的化学成分进行亚类划分,明确具体的划分方法及结果,并分析该分类结果的合理性与敏感性。

问题 3 对附件表单 3 中未知类别的玻璃文物,通过分析其化学成分鉴别其所属类型 (高钾玻璃或铅钡玻璃),并对该分类结果的敏感性进行分析。

问题 4 针对高钾玻璃和铅钡玻璃这两类不同的文物样品,分别分析其内部化学成分 之间的关联关系,并比较两类玻璃在化学成分关联关系上的差异性。

二、问题分析

2.1 问题一分析

对于问题一,

2.2 问题二分析

对于问题二,

2.3 问题三分析

对于问题三,

2.4 问题四分析

对于问题四,

三、模型假设

为简化问题,本文做出以下假设:

- 假设1
- 假设 2
- 假设3

四、符号说明

符号	说明	单位
m	质量	kg
V	体积	m^3

五、问题一的模型的建立和求解

5.1 玻璃类型、颜色、纹饰与风化的关系

首先我们对表单2中各文物采样点的化学成分进行累加,其中样本编号为15、17的 文物化学成分总和分别为79.47%、71.89%,不满足题目对成分比例累加和介于85%105% 之间的要求,因此我们将其剔除。

为了分析表面风化与玻璃类型、纹饰、颜色之间的关系,我们分别统计(表面风化,玻璃类型)(表面风化,纹饰)(表面风化,颜色)这三个二元组的列联表数据,并进行了可视化。

表 1 表面风化与颜色的列联表

表面风化				颜色				
- Veimi / Vi B	浅绿	浅蓝	深绿	深蓝	紫	绿	蓝绿	黑
无风化	2	6	3	2	2	1	6	0
风化	1	12	4	0	2	0	9	2

表 2 表面风化与纹饰、玻璃类型的列联表

(a) 表面风化与纹饰的列联表

(b) 表面风化与玻璃类型的列联表

表面风化		纹饰	
	A	В	C
无风化	11	0	11
风化	11	6	17

表面风化	类	型
	铅钡	高钾
无风化	12	10
风化	28	6

图 1 表面风化与玻璃类型

图 2 表面风化与纹饰

图 3 表面风化与颜色

为了量化表面风化与玻璃类型、纹饰、颜色之间的关系,我们引入了卡方检验。卡方检验用于检验两个分类变量是否独立,通过比较观测值与期望值的差异,用 χ^2 统计量判断关联是否显著,适用于计数数据。

$$\chi^2 = \sum \frac{(O-E)^2}{E} \tag{1}$$

其中: χ^2 : 卡方统计量; O: 实际观测频数; E: 理论期望频数; \sum : 对所有单元格求和。

分别带入(表面风化,玻璃类型)(表面风化,纹饰)(表面风化,颜色)的列联表数据可以求出 χ^2 值和 p 值,我们这里取 p < 0.005。从下面的表格中我们可以看出,是否风化与玻璃类型之间存在显著关系,而风化与纹饰、颜色之间则不存在显著关系。

表 3 卡方检验结果

关系	χ^2	df	<i>p</i> 值	是否显著
风化×颜色	7.0114	7	$p \approx 0.426$	否
风化×纹饰	4.9412	2	$p \approx 0.085$	否
风化×类型	5.0610	1	$p \approx 0.024$	是

5.2 玻璃是否风化化学成分含量的统计规律

以文物采样点为单位,以玻璃类型、是否风化为分组依据,将数据分为四个组别:

- 1. 无风化铅钡玻璃
- 2. 无风化高钾玻璃
- 3. 风化铅钡玻璃
- 4. 风化高钾玻璃

我们对预处理后的数据进行统计,计算出了每种组别的化学成分含量的均值、极差、方差、有效样本数。同时,为了更直观的看出化学成分的变化,我们将同一化学成分的风化前后含量做成了柱状图,以下进行部分展示。

表 4 铅钡无风化样本化学成分统计数据

化学成分	均值	极差	方差	有效样本数
二氧化硅 (SiO2)	53.4438	43.5700	212.7885	13
氧化钠 (Na ₂ O)	3.3433	2.0000	1.3008	3
氧化钾 (K2O)	0.4356	1.4600	0.2193	9
氧化钙 (CaO)	1.3909	4.1100	2.2167	11
氧化镁 (MgO)	1.4812	4.9400	2.6958	8
氧化铝 (Al ₂ O ₃)	2.8915	3.5600	1.6320	13
氧化铁 (Fe ₂ O ₃)	2.1240	4.4200	2.8855	5
氧化铜 (CuO)	1.8400	8.3500	6.8727	11
氧化铅 (PbO)	23.5938	29.9200	82.7080	13
氧化钡 (BaO)	24.4662	23.2300	62.8734	13
五氧化二磷 (P2O5)	1.0682	5.6500	2.7670	11
氧化锶 (SrO)	0.4825	0.6800	0.0664	8
氧化锡 (SnO ₂)	0.4000	0.0000	nan	1
二氧化硫 (SO2)	2.0500	3.2200	5.1842	2

表 5 铅钡风化样本化学成分统计数据

化学成分	均值	极差	方差	有效样本数
二氧化硅 (SiO2)	33.6147	64.3600	296.5795	36
氧化钠 (Na ₂ O)	3.1173	7.1200	5.4794	11
氧化钾 (K2O)	0.3937	1.3000	0.1208	16
氧化钙 (CaO)	2.4835	6.0300	2.4015	34
氧化镁 (MgO)	1.0970	2.2600	0.2306	23
氧化铝 (Al ₂ O ₃)	3.8383	13.8900	11.6460	36
氧化铁 (Fe ₂ O ₃)	0.9529	2.5500	0.4407	21
氧化铜 (CuO)	2.1135	10.3800	6.3094	34
氧化铅 (PbO)	36.8719	57.9000	229.9385	36
氧化钡 (BaO)	34.5803	64.8600	297.0158	35
五氧化二磷 (P2O5)	4.9863	14.0600	16.5052	30
氧化锶 (SrO)	0.4122	1.0000	0.0484	32
氧化锡 (SnO ₂)	0.7700	1.0800	0.5832	2
二氧化硫 (SO2)	7.1980	15.4800	57.9916	5

表 6 高钾无风化样本化学成分统计数据

化学成分	均值	极差	方差	有效样本数
二氧化硅 (SiO2)	67.9842	28.0400	76.6518	12
氧化钠 (Na ₂ O)	2.7800	1.2800	0.4144	3
氧化钾 (K ₂ O)	9.7233	9.8100	9.2269	12
氧化钙 (CaO)	6.0500	7.4800	6.6337	10
氧化镁 (MgO)	1.3033	1.4600	0.2784	9
氧化铝 (Al ₂ O ₃)	6.6200	8.1000	6.2076	12
氧化铁 (Fe ₂ O ₃)	2.3180	5.6200	2.4002	10
氧化铜 (CuO)	2.6755	4.6200	2.3750	11
氧化铅 (PbO)	0.7057	1.5100	0.3939	7
氧化钡 (BaO)	1.4360	2.8600	1.1488	5
五氧化二磷 (P2O5)	1.5300	4.3400	2.0473	11
氧化锶 (SrO)	0.0833	0.0800	0.0010	6
氧化锡 (SnO ₂)	2.3600	0.0000	nan	1
二氧化硫 (SO2)	0.4067	0.1100	0.0032	3

表 7 高钾风化样本化学成分统计数据

化学成分	均值	极差	方差	有效样本数
二氧化硅 (SiO2)	93.9633	4.4200	3.0054	6
氧化钾 (K2O)	0.7040	0.7500	0.0879	5
氧化钙 (CaO)	0.8700	1.4500	0.2379	6
氧化镁 (MgO)	0.5900	0.1000	0.0050	2
氧化铝 (Al ₂ O ₃)	1.9300	2.6900	0.9302	6
氧化铁 (Fe ₂ O ₃)	0.2650	0.1800	0.0048	6
氧化铜 (CuO)	1.5617	2.6900	0.8739	6
五氧化二磷 (P ₂ O ₅)	0.3360	0.4600	0.0316	5

图 4 高钾玻璃 - 氧化铝 (Al_2O_3) 风化前后含量分布

图 5 铅钡玻璃 - 氧化铅 (PbO) 风化前后含量分布

通过这些图表,可以直观地观察到:

- 铅钡玻璃在风化后,SiO₂ 含量略微增加,而SrO、Fe₂O₃、CuO、Na₂O、MgO、CaO、K₂O、Al₂O₃、PbO、BaO、P₂O₅和SO₂含量均有不同程度的下降;
- 高钾玻璃在风化后,SiO₂ 含量显著降低,而SrO、Fe₂O₃、CuO、Na₂O、MgO、CaO、K₂O、Al₂O₃、PbO、BaO、P₂O₅和SO₂含量明显增加,SnO₂含量基本不变;

• 风化过程对不同类型玻璃的化学成分影响存在明显差异。

5.3 风化前的化学成分含量的预测

5.3.1 数据分析

通过阅读数据,我们发现,除了编号为49、50的样本具有成对的(风化前,风化后)的化学成分数据,其他的样本都是基于风化前后两群体的横截面数据,可以抽象为(风化前,NULL)或(NULL,风化后)的形式。同时,考虑到需要预测的是化学成分,是总和为1的成分数据,各成分之间彼此依赖,不适宜使用一般的回归模型。

因此,我们基于成分数据分析 CoDA 模型,参考文献 [?],在模型中添加先验正则项,最终建立风化前化学含量预测模型。

5.3.2 模型记号与数据映射

- 模型记号
 - $-\mathbf{a}_i$ (原始成分百分比)
 - $-\mathbf{p}_i$ (闭合后,和为 1 的比例)
 - **z**_i (clr 后的向量)
 - $-\bar{\mathbf{z}}_{\mathrm{w}}, \bar{\mathbf{z}}_{\mathrm{u}}$
 - $-\delta_0$ (按玻璃类型用文献导向值初始化)
 - w (按成分设置权重)
 - λ (正则强度)
 - n (样本数)
- 令成分列为:

$$\mathcal{P} = \{SiO_2, Na_2O, K_2O, \dots, SO_2, unknown\}$$

共D=15个成分

- 将每行按百分比除以 100 进行闭合,得到组成比例矩阵 $\mathbf{p} \in \mathbb{R}^{n \times D}$ 。
 - 样本i 的成分向量为 a_i , 闭合后

$$\mathbf{p}_i = \mathcal{C}(\mathbf{a}_i) = \frac{\mathbf{a}_i}{\sum_{j=1}^{D} a_{ij}}, \quad \sum_{j=1}^{D} p_{ij} = 1.$$

- 为避免 $\log(0)$,在闭合前/或闭合后对零值做微小替换(伪计数) ε 。
- CLR 变换 (把单纯形映到实向量空间): 对每行 i

$$\mathbf{z}_i = \operatorname{clr}(\mathbf{p}_i) = \left(\ln \frac{p_{i1}}{g_i}, \dots, \ln \frac{p_{iD}}{g_i}\right), \quad g_i = \left(\prod_{j=1}^D p_{ij}\right)^{1/D},$$

5.3.3 风化模型

我们在 CLR 空间做建模,主要假设(能使问题可解且可解释):

线性位移假设 对同类玻璃,风化后与风化前在 CLR 空间上满足近似的平移关系(均值差):

$$\mathbf{z}_{\mathrm{w}} pprox \mathbf{z}_{\mathrm{pre}} + \boldsymbol{\delta} + \boldsymbol{\varepsilon},$$

其中 δ 是同类玻璃的平均风化位移向量 (在 CLR 空间), ε 是噪声。

这样就可以得到基于群体差的回推策略而不需要成对样本。

• 设 $\bar{\mathbf{z}}_{w}$ 、 $\bar{\mathbf{z}}_{u}$ 分别为风化与未风化样本在 CLR 空间的均值,观测到的平均位移为:

$$\hat{\boldsymbol{\delta}}_{\mathrm{obs}} = \bar{\mathbf{z}}_{\mathrm{w}} - \bar{\mathbf{z}}_{\mathrm{u}}.$$

• 对任一风化样点 i, 其风化前的 CLR 估计为:

$$\hat{\mathbf{z}}_{ ext{pre}},_{i}^{ ext{(pure)}} = \mathbf{z}_{ ext{w},i} - \hat{oldsymbol{\delta}}_{ ext{obs}}.$$

• 然后逆 CLR 得到比例并乘以 100 得到百分比:

$$\hat{\mathbf{p}}_{\text{pre},i} = \text{clr}^{-1}(\hat{\mathbf{z}}_{\text{pre},i}) = \frac{\exp(\hat{\mathbf{z}}_{\text{pre},i})}{\sum_{k=1}^{D} \exp(\hat{z}_{\text{pre},i,k})}.$$

5.3.4 将文献先验融合进 CoDA 模型

为了把"机理知识"引入(例如高钾玻璃倾向于 K_2O 严重流失、 SiO_2 相对富集;铅 钡体系可能出现 Pb/Ba 比例变化与硫酸盐富集等),我们在 CLR 空间对 δ 加带方向性 的岭惩罚:

• 设观测到的 $d = \hat{\delta}_{obs}$ 。我们引入先验中心向量 δ_0 (来源于机理/文献方向性),以及对每个成分的权重向量 $\mathbf{w} = (w_1, \dots, w_D)$ (表示你对该分量先验的信心和强度),并设正则强度为 $\lambda > 0$ 。最小化目标:

$$\min_{\boldsymbol{\delta}} \|\boldsymbol{\delta} - \boldsymbol{d}\|_2^2 + \lambda \|\mathbf{W}(\boldsymbol{\delta} - \boldsymbol{\delta}_0)\|_2^2,$$

其中 $\mathbf{W} = \operatorname{diag}(\mathbf{w})$ 。这是二次型问题,有闭式解:

$$\hat{oldsymbol{\delta}}_{\mathrm{reg}} = (\mathbf{I} + \lambda \mathbf{W}^2)^{-1} (\boldsymbol{d} + \lambda \mathbf{W}^2 \boldsymbol{\delta}_0).$$

当 $\lambda=0$ 或者 $\mathbf{w}=0$ 时,退化为纯数据驱动($\hat{\boldsymbol{\delta}}=\boldsymbol{d}$)。当 λ 较大且某些 w_j 很大时, $\hat{\boldsymbol{\delta}}$ 会更靠近 $\boldsymbol{\delta}_0$ (先验主导)。

5.3.5 先验权重 λ 和噪声 ϵ 的调优

基于已知文物编号 49、50 风化前后的化学成分变化,我们将其作为测试集,通过 网格搜索来寻找先验权重 λ 和噪声 ϵ 的最优值。我们使用以下公式检验模型性能:

$$\begin{split} \text{MAE}_{\text{prior_percent}} &= \frac{\text{MAE}_{\text{model}}}{\text{MAE}_{\text{prior}}} \times 100\% \end{split}$$
 其中
$$\text{MAE}_{\text{model}} &= \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| \,, \quad \text{MAE}_{\text{prior}} &= \frac{1}{n} \sum_{i=1}^{n} |y_i - p_i| \end{split}$$

经过网格搜索,最终得到化学成分预测模型如下:

$$\widehat{\mathbf{a}}_{i,\text{pre}}^{\text{prior}}(\%) = 100 \cdot \frac{\exp\left(\mathbf{z}_{i} - \widehat{\delta}_{g}^{\text{prior}}\right)}{\mathbf{1}^{\top} \exp\left(\mathbf{z}_{i} - \widehat{\delta}_{g}^{\text{prior}}\right)},\tag{2}$$

其中
$$\widehat{\boldsymbol{\delta}}_{g}^{\text{prior}} = (\mathbf{I} + \lambda \mathbf{W}_{g}^{2})^{-1} \left[\mathbf{d}_{g} + \lambda \mathbf{W}_{g}^{2} \boldsymbol{\delta}_{0,g} \right],$$

$$\begin{cases} \lambda \geq 0, & \mathbf{w}_{g} \in \mathbb{R}_{\geq 0}^{D}, \\ \boldsymbol{\delta}_{0,g} \in \mathcal{H}, & \mathbf{d}_{g} \in \mathcal{H}, & \mathbf{z}_{i} \in \mathcal{H}, \end{cases}$$

$$\mathcal{H} = \left\{ \mathbf{z} \in \mathbb{R}^{D} \middle| \sum_{j=1}^{D} z_{j} = 0 \right\},$$

$$\mathbf{p} \in \mathcal{S}^{D}, \quad \mathcal{S}^{D} = \left\{ \mathbf{p} \in \mathbb{R}_{\geq 0}^{D} \middle| \sum_{j=1}^{D} p_{j} = 1 \right\},$$

$$\mathbf{W}_{g} = \operatorname{diag}(w_{g1}, \dots, w_{gD}), \quad w_{gj} \geq 0, \, \forall j,$$

$$i \in S_{g}^{(w)} \Rightarrow g \, \text{是样本} \, i \, \text{的玻璃类型标签}.$$

$$(4)$$

$$\mathbf{W}_{g} = \operatorname{diag}(w_{g1}, \dots, w_{gD}), \quad w_{gj} \geq 0, \ \forall j,$$
 $i \in S_{g}^{(w)} \Rightarrow g$ 是样本 i 的玻璃类型标签.

参考链接: legest.ufpr.br, econ-papers.upt.edu

这句话引用了文献[?]。 这句话引用了文献[?]。

5.4 模型求解

Step1:

Step2:

Step3:

图 6 单图

5.5 求解结果

六、问题二的模型的建立和求解

6.1 模型建立

引用??, 引用??, 引用??。

图7 双图

6.2 模型求解

Step1:

Step2:	
Step3:	
6.3 求解结果	
	七、 问题三的模型的建立和求解
7.1 模型建立	
7.2 模型求解	
Step1: Step2: Step3:	
7.3 求解结果	
	八、 问题四的模型的建立和求解
8.1 模型建立	
8.2 模型求解	
Step1: Step2:	
Step3:	
8.3 求解结果	
	九、 模型的分析与检验
9.1 灵敏度分析	
9.2 误差分析	
	十、 模型的评价
10.1 模型的优点	
• 优点 1	

优点 2优点 3

10.2 模型的缺点

- 缺点 1
- 缺点 2

附录 A 文件列表

文件名	功能描述
q1.m	问题一程序代码
q2.py	问题二程序代码
q3.c	问题三程序代码
q4.cpp	问题四程序代码

附录 B 代码

```
q1.m
  disp("Hello World!")
  q2.py
  print("Hello World!")
  q3.c
  #include <stdio.h>
2
  int main()
3
4
  {
       printf("Hello World!");
5
       return 0;
6
  }
  q4.cpp
  #include <bits/stdc++.h>
  using namespace std;
3
  int main()
4
5
  {
       cout << "Hello World!" << endl;</pre>
6
7
      return 0;
8
  }
```