MATD48 – Planejamento de Experimentos A

2021.1

Grupo 1:

Um artigo da Fire Safety Journal (O efeito do desenho da bomba na estabilidade e o desempenho o bico de água turbulenta) descreve um experimento onde considera um fator com diferentes desenhos de bombas com seis níveis de velocidade de fluxo de saída. O interesse concentra-se nas diferencias potenciais entre os desenhos das bombas, sendo a velocidade uma variável perturbadora. Os dados são apresentados a seguir:

Desenho da	Velocidade do fluxo de saída (m/s)						
Bomba	11,73	14,37	16,59	20,43	23,46	28,74	
1	0,78	0,80	0,81	0,75	0,77	0,78	
2	0,85	0,85	0,92	0,86	0,81	0,83	
3	0,93	0,92	0,95	0,89	0,89	0,83	
4	1,14	0,97	0,98	0,88	0,86	0,83	
5	0,97	0,86	0,78	0,76	0,76	0,75	

- a) Qual delineamento experimental seria adequado para o experimento descrito no artigo?
- b) Comparar as bombas de forma descritiva e mediante a análise de variância a um nível de significância de 5%.
- c) Analisar os resíduos do experimento.
- d) Quais desenhos de bombas são diferentes?

Grupo 2:

Um engenheiro investiga o efeito de quatro métodos de montagem (A, B, C e D) sobre o tempo de montagem de um componente de televisores a cor. Selecionam-se quatro operadores para o estudo. Ademais, o engenheiro sabe que todos os métodos de montagem produzem fatiga, de tal forma que o tempo requerido para a última montagem pode ser maior que para o primeiro, independentemente do método. Isto é, desenvolve-se uma tendência do tempo de montagem requerido. Para considerar esta fonte de variabilidade, o engenheiro utiliza um desenho quadrado-latino que é representada a seguir.

Ordem de	Operadores					
montagem	1	2	3	4		
1	C=10	D=14	A=7	B=8		
2	B=7	C=18	D=11	B=8		
3	A=5	B=10	C=11	D=9		
4	D=10	A=10	B=12	C=14		

Analise os dados do experimento e conclua a um 5% de significância.

Grupo 3:

O rendimento de um processo químico é medido utilizando cinco lotes de matéria prima, cinco concentrações de acido, cinco tempos de processamento (A,B,C,D e E) e cinco concentrações do catalizador (α , β , γ , δ e ε). Os dados obtidos no experimento são descritos na tabela a seguir:

Lote	Concentração de ácido						
	1	2	3	4	5		
1	A α=26	B β=16	C γ=19	D δ=16	Ε <i>ε</i> =13		
2	B γ=18	C δ21	D ε=18	E α=11	A β=21		
3	C ε=20	D α=12	E β=16	A γ=25	B δ=13		
4	D <i>β</i> =15	E γ=15	Α δ22	B ε=14	C α=17		
5	E δ10	A ε=24	B α=17	C <i>β</i> =17	D γ=14		

Analise os dados do experimento e conclua a um 5% de significância.