Logical Agents Homework

1. Unicorn Problem

Mythical = M

Mortal = R

Mammal = L

Horned = H

Magical = G

Knowledge Base:

R1: $M \Rightarrow \neg R$

R2: $\neg M \Rightarrow (R \land L)$

R3: $(\neg M \lor L) \Rightarrow H$

R4: $H \Rightarrow G$

Proofs:

R5: $\neg M \lor \neg R$ - implication elimination R1

R6: $(M \lor R) \land (M \lor L)$ - implication elimination R2

 $R7: M \lor R$ - separate compound statement R6

R8: $M \lor L$ - separate compound statement R6

R9: \neg R \lor L - resolution R5, R8

R10: H - Modus Ponens R3, R9

R11: G - Modus Ponens R4, R10

R12: M - Cannot prove

2. True / False

- a. False |= True: TRUE, anything implying True will be True
- b. $(A \land B) \models (A \Leftrightarrow B)$: **TRUE**, this is given by its truth table. In every instance that $(A \land B)$ is True, $(A \Leftrightarrow B)$ is True

A	В	$(\mathbf{A} \wedge \mathbf{B})$	(A ⇔ B)
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	T

c. $A \Leftrightarrow B \models (A \lor B)$: **FALSE**, the last condition leads a non-entailment relationship between these two

A	В	(A ⇔ B)	(A ∨ B)
T	T	T	T
T	F	F	T
F	T	F	T
F	F	T	F

d. $A \Leftrightarrow B \models \neg A \lor B$: **TRUE**, for each True condition leads to a True entailment

A	В	$\neg \mathbf{A}$	$A \Leftrightarrow B$	$\neg A \lor B$
T	T	F	T	T
T	F	F	F	F
F	T	T	F	T
F	F	T	T	T

e. $(A \lor B) \land (\neg A \lor B)$ is satisfiable: TRUE, this is satisfiable by some model since it has true values in 2 positions.

A	В	$\neg \mathbf{A}$	$A \vee B$	$\neg A \lor B$	$(A \vee B) \wedge (\neg A \vee B)$
T	T	F	T	T	T
T	F	F	T	F	F
F	T	T	T	T	T
F	F	T	F	T	F