Online Multicalibration and No-Regret Learning

Georgy Noarov

March 17, 2022

Agenda

Motivation

Uncertainty Estimation

Why Uncertainty Estimation is Challenging

Our Contributions

Setting

Multicalibration

Deriving Guarantees via Game Theory

Results

Prediction Intervals

Definition and Derivation

Results

Conclusion

Future Directions

Subsequent Work

No-Regret Learning

No-Regret Classics

Derivations via our Framework

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Why Uncertainty
Estimation is Challenging
Our Contributions

Setting

Multical

Game Theory Results

Prediction Interval

Definition and Derivation

Results

Jonethasion

Future Direction

Subsequent wo

No-Regret Learning No-Regret Classics

No-Regret Classics

Framework

At a Glance

Online Multivalid Learning: Means, Moments and Prediction Intervals (joint with Varun Gupta, Chris Jung, Mallesh Pai and Aaron Roth) (https://arxiv.org/abs/2101.01739)

Our Results ∈ Uncertainty Quantification ∩ Fair ML

- ► We show how to obtain uncertainty guarantees in the contextual online adversarial setting...
- With respect to arbitrary collections of "population groups" (= subsets of context space)

Minimax theorem is the main ingredient

Our Technique = Simple & General Game-Theoretic Framework

Yields many flavors of uncertainty estimates

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Why Uncertainty
Estimation is Challenging
Our Contributions

Multicalil

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions Subsequent Work

No-Regret Learning No-Regret Classics

On Accuracy and Uncertainty

► Traditionally: "Model gets it right most of the time"

Recent focus: "Model knows when it does not know"

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions
Setting

Multical

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions
Subsequent Work

No-Regret Learning No-Regret Classics

On Uncertainties and Subpopulations

Georgy Noarov

Motivation

Uncertainty Estimation
Why Uncertainty

Estimation is Challenging Our Contributions

Multicalil

Deriving Guarantees via Game Theory Results

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions Subsequent Work

No-Regret Learning No-Regret Classics

On Uncertainties and Subpopulations

Georgy Noarov

Motivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions

Multicalib

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions Subsequent Work

No-Regret Learning No-Regret Classics

Derivations via our

 $[\ell(x),u(x)]$ is a 95% marginal prediction interva

But I'm part of a demographi group representing less than 5% of the population...

On Uncertainties and Subpopulations

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions
Setting

Multicalib

Game Theory
Results

Prediction intervals

Definition and Derivation Results

Conclusion

Future Directions Subsequent Work

No-Regret Learning No-Regret Classics

How Strong Can Uncertainty Guarantees Be?

- Ideally: Conditional guarantees
 - $f(x) = \mathbb{E}[y|x]$
 - $g(x) = \mathbb{E}[(y \mathbb{E}[y|x])^2|x]$
 - $ightharpoonup \Pr_{v}[y \in [\ell(x), u(x)]|x] = 0.95$
- Hardly possible in rich feature spaces: any given x probably seen at most once (and probably, never)
 - A "statistical" way out: make a strong parametric assumption, such as $\mathbb{E}[y|x] = \langle \theta, x \rangle$, and estimate uncertainty of θ
- ► More realistically: Marginal guarantees
 - ► Calibration: $f(x) = \mathbb{E}[y|f(x)]$
 - ► Marginal Moment: $\mathbb{E}_{(x,y)}[(y-f(x))^2]$
 - ► Marginal Coverage: $Pr_{(x,y)}[y \in [\ell(x), u(x)]] = 0.95$

Online Multicalibration and No-Regret Learning

Georgy Noarov

lotivation

Uncertainty Estimation

Why Uncertainty Estimation is Challenging

Settina

Multicalib

Deriving Guarantees vi Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions

No-Regret Learning

Distributional Assumptions

- Standard assumption in Conformal Prediction theory:
 - Exchangeability future looks like past
 - Only slightly weaker than iid.
- Such an assumption is often unrealistic:
 - ► Time series data disease severity can change over time, future depends on past
 - Covariate shift as disease moves through population, demographics can change
 - ▶ Label shift better medicine can change outcome distribution conditional on patient's features
 - Strategic effects lending, hiring, admissions classifiers may need to be frequently retrained, as candidates manipulate their features to exploit current deployed version

Online Multicalibration and No-Regret Learning

Georgy Noaroy

Why Uncertainty

Estimation is Challenging

Game Theory

No-Regret Learning

No-Regret Classics

Our Work

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation
Why Uncertainty

Our Contributions

Setting

Multicalibration

Game Theory
Results

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions
Subsequent Work

No-Regret Learning No-Regret Classics

- ▶ We give stronger-than-marginal guarantees:
 - Marginal guarantees (e.g. prediction interval coverage) that hold for every group G (= subset of feature space) in chosen, potentially large/complex, collection G
- ► We assume nothing about the data:
 - ► Data arrives online, potentially adversarially selected
 - ► Allows for correlates, covariate shift, strategic effects, ...

Setting

- ► Space of contexts X
- ▶ A collection of groups $\mathcal{G} \subseteq 2^{\mathcal{X}}$
 - Can be large and overlapping

In rounds $t = 1 \dots T$:

- 1. Adversary picks a joint distribution over context-label pairs $(x_t, y_t) \in \mathcal{X} \times [0, 1]$
- 2. Learner observes realized context x_t
- 3. Learner makes a prediction regarding $y_t|x_t$:
 - ► Mean $\bar{\mu}_t$ (Our guarantee: Multicalibration)
 - Mean & k^{th} moment: $(\bar{\mu}_t, \bar{m}_t^k)$ (Mean-Moment Multicalibration)
 - ▶ Prediction interval: (ℓ_t, u_t) (Prediction Interval Multivalidity)
- 4. Learner observes realized label y_t

Online Multicalibration and No-Regret Learning

Georgy Noarov

lotivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challengin

Setting

Multical

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivatio

onclusion

Future Direction

Subsequent Wo

No-Regret Learning

Our Plan Now...

- Define online multicalibration
- 2. Cast Learner-Adversary interaction as repeated game
- 3. Show multicalibration bounds Learner gets by playing well
- 4. Explicitly show how to efficiently solve repeated game

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Why Uncertainty
Estimation is Challenging

Setting

Multicalibration

Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions

No-Regret Learning

Multicalibration

- ▶ At each round t, Learner predicts mean $\bar{\mu}_t$
- ▶ Partition $[0,1] = B(1) \cup ... \cup B(n)$, where $B(i) = [\frac{i-1}{n}, \frac{i}{n}]$
 - ▶ Roughly, $\bar{\mu}_t \in B(i) \iff \bar{\mu}_t \approx \frac{2i-1}{2n}$
- *Regular" online calibration: For $i \in [n]$, over rounds where Learner predicted $\approx \frac{i}{n}$, the average true label $\approx \frac{i}{n}$
- ▶ Multicalibration [Hebert-Johnson, Kim, Reingold, Rothblum]: For all groups $G \in \mathcal{G}$, be calibrated over rounds where $x_t \in G$

Definition (Online Multicalibration)

▶ For $G \in \mathcal{G}$, $i \in [n]$, $s \in [T]$, let

$$V_s^{G,i} = \sum_{t=1}^{3} 1[x_t \in G, \bar{\mu}_t \in B(i)] \cdot (y_t - \bar{\mu}_t)$$

▶ Learner is (α, n) -multicalibrated if

$$\frac{1}{T} \max_{G \in \mathcal{G}, i \in [n]} |V_T^{G,i}| \le \alpha$$

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions
Setting

12 Multicalibration

Deriving Guarantees v Game Theory

rediction Intervals

Definition and Derivation

Conclusion

Future Directions

No-Regret Learning

Multicalibration Analyzing the Definition

- What is the structure of this definition?
 - ► Asks to satisfy 2|G|n constraints of the form: $\pm V_{\tau}^{G,i} \leq \alpha T$
 - Each constraint is a sum of terms linear in y_1, \ldots, y_T
- ► To make this tractable, there are 3 hurdles to overcome:
 - 1. Overall objective $\max |V_T^{G,i}|$ analytically inconvenient:
 - All constraints are sums over all rounds 1...T but Learner needs to make decisions affecting these constraints at every round
 - 3. At every round, Learner has to predict label mean without any knowledge of Adversary's conditional distribution y_t|x_t — how is this possible?

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Why Uncertainty
Estimation is Challenging
Our Contributions

13 Multicalibration Deriving Guarantees vi Game Theory

Results

Prediction intervals

Definition and Derivation

Conclusion

Future Directions
Subsequent Work

No-Regret Learning

Making Multicalibration Tractable

Pick a Surrogate Loss...

- We are unhappy that overall objective
 - 1. is a *max* of many constraints hence nonsmooth
 - takes into account all of the rounds while Learner's decisions are local to each round
- Let's solve both these issues!
- ► First, instead of $\max_{G \in \mathcal{G}, i \in [n]} |V_T^{G,i}|$, switch to *surrogate* loss

$$L_T = \sum_{G \in \mathcal{G}, i \in [n]} \exp(\eta V_T^{G,i}) + \exp(-\eta V_T^{G,i})$$

- ► Known as *softmax* smoothly approximates maximum
- Now that our loss is smooth, we can bound its increase at any round t via Taylor ($e^x \le 1 + x + x^2$ for $|x| \le \frac{1}{2}$):

$$\begin{split} & \Delta_t(y_t, \bar{\mu}_t) = L_t - L_{t-1} \leq \eta(y_t - \bar{\mu}_t) C_{t-1}^{\text{bucket of } \bar{\mu}_t}(x_t) + 2\eta^2 L_{t-1}, \\ & \text{where for } i \in [n], \text{let } C_{t-1}^i = \sum_{C \in \mathcal{V}} \exp(\eta V_{t-1}^{G,i}) - \exp(-\eta V_{t-1}^{G,i}) \end{split}$$

Online Multicalibration and No-Regret Learning

Georgy Noarov

Viotivation

Why Uncertainty
Estimation is Challenging
Our Contributions

Multicalib

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions Subsequent Work

No-Regret Learning

Making Multicalibration Tractable Be Greedy...

Loss increments bounded as:

$$\Delta_t(y_t, \bar{\mu}_t) \leq A \cdot (y_t - \bar{\mu}_t) C_{t-1}^{\mathsf{bucket} \ \mathsf{of} \ \bar{\mu}_t}(x_t) + B$$

- If at all rounds t, Learner gets prediction $\bar{\mu}_t$ close to true label y_t , then all Δ_t will be small
- ▶ If all Δ_t small, can bound L_T by "telescoping"
- Make Learner greedy at round t, chooses μ̄_t so as to make Δ_t small without regard to future rounds

Let us focus on any round t...

- ► Imagine Learner-Adversary interaction as 2-player game:
 - ► Contested quantity is $u(y_t, \bar{\mu}_t) = (y_t \bar{\mu}_t)C_{t-1}^{\text{bucket of }\bar{\mu}_t}(x_t)$
 - Learner wants it to be small, goes first and plays (distribution over) $\bar{\mu}_t$
 - Adversary wants it to be large, goes second and plays y_t
- Learner seems handicapped here... False impression!

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Estimation is Challenging
Our Contributions

Multical

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Direction

No-Regret Learning

Making Multicalibration Tractable

...And Win the Game!

► Minimax Theorem of Zero-Sum Games: For any 2 player zero sum game with finite action sets A₁, A₂ and utility u, order of play does not matter:

$$\min_{q_1\in\Delta A_1}\max_{a_2\in A_2}u(q_1,a_2)=\max_{q_2\in\Delta A_2}\min_{a_1\in A_1}u(a_1,q_2)=\text{value of game}$$

- ► To use this result, restrict Learner's action set to be finite: $\{0, \frac{1}{rn}, \dots, 1\}$ for some r
- ► Thus despite going first, Learner has a *minimax optimal* strategy, which obtains the best possible bound on Δ_t :
 - ightharpoonup As good as if Learner first got to see Adversary's label y_t
- ▶ But if Learner knew true label, would make $|y_t \bar{\mu}_t| \leq \frac{1}{2rn}$
 - Minimax strategy achieves this even though Learner actually goes first!
- Now unwrap: Plug $\frac{1}{2m}$ back into bound on $\Delta_t \Rightarrow$ bound $L_T \Rightarrow$ bound $\max |V_T^{G,i}| \Rightarrow$ get multicalibration guarantee

Online Multicalibration and No-Regret Learning

Georgy Noarov

Votivation

Why Uncertainty
Estimation is Challenging
Our Contributions

Multicalibr

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions

No-Regret Learning

Existential Guarantees

Theorem

Given: collection of groups \mathcal{G} , n buckets, $\epsilon > 0$. Can make Learner (α, n) -multicalibrated, where:

▶ (High-Probability Bound) $\forall \lambda \in (0, 1)$,

$$\alpha \leq (4 + \epsilon) \sqrt{\frac{2}{7} \ln\left(\frac{2|\mathcal{G}|n}{\lambda}\right)}$$
 with prob. $1 - \lambda$;

► (In-Expectation Bound)

$$\mathbb{E}[\alpha] \leq (2+\epsilon) \sqrt{\frac{2}{T} \ln(2|\mathcal{G}|n)}.$$

▶ If every x_t is in $\leq d$ groups, can replace $|\mathcal{G}|$ with d

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation
Why Uncertainty
Estimation is Challenging
Our Contributions

Multicali

Deriving Guarantees via Game Theory

7 Results

Definition and Derivation

Conclusion

Future Directions

No-Regret Classics

Algorithm: A Multicalibrated Learner

At each round t = 1, ..., T:

For all $i \in [n]$, compute "historical quantities"

$$C_{t-1}^{i}(\textit{X}_{t}) = \sum_{\textit{G} \ni \textit{X}_{t}} \exp \left(\eta \textit{V}_{t-1}^{\textit{G},i} \right) - \exp \left(- \eta \textit{V}_{t-1}^{\textit{G},i} \right)$$

- ► There are 3 cases:
 - $ightharpoonup C_{t-1}^i(x_t) > 0$ for all $i \in [n]$: Predict $\bar{\mu}_t = 1$ with prob. 1
 - $ightharpoonup C_{t-1}^i(x_t) < 0$ for all $i \in [n]$: Predict $\bar{\mu}_t = 0$ with prob. 1
 - ▶ $C_{t-1}^{j}(x_t) \cdot C_{t-1}^{j+1}(x_t) \leq 0$ for some $j \in [n]$:

$$\text{Predict } \bar{\mu}_t = \begin{cases} \frac{j}{n} - \frac{1}{m} & \text{with prob. } q_t = \frac{|\mathcal{C}_{t-1}^{j+1}(x_t)|}{|\mathcal{C}_{t-1}^{j}(x_t)| + |\mathcal{C}_{t-1}^{j+1}(x_t)|}, \\ \frac{j}{n} & \text{with remaining prob.} \end{cases}$$

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Incertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions

Setting

Deriving Guara

Game Theory

Results

Prediction Intervals

Results

Conclusion

Future Directions Subsequent Work

No-Regret Learning

Our Plan Now...

2. Derive existential guarantees — same steps as before

1. Define prediction interval multivalidity

- 3. Display efficient algorithm that achieves these guarantees

Online Multicalibration and No-Regret Learning

Georgy Noaroy

Why Uncertainty

Game Theory

Regulte

No-Regret Learning

No-Regret Classics

Prediction Interval Multivalidity

- ightharpoonup At each round, Learner predicts interval (ℓ_t, u_t)
 - ▶ Bucketing: $(\ell, u) \in B(i, j) \iff \ell \approx \frac{i}{n} \& u \approx \frac{j}{n}$
- ▶ Goal: For $\delta \in (0, 1)$, predict (ℓ, u) s.t. $\Pr[y \in (\ell, u)] \approx 1 \delta$
 - ▶ And this should hold conditional on $x_t \in G$ for all $G \in \mathcal{G}$
- ► For all $G \in \mathcal{G}$, $(i,j) \in [n] \times [n]$, $s \in [T]$, let

$$V_s^{G,(i,j)} = \sum_{t=1}^{s} \mathbf{1}[x_t \in G, (\ell_t, u_t) \in B(i,j)] \cdot (\overbrace{\mathbf{1}[y_t \in (\ell_t, u_t)] - (\mathbf{1} - \delta)}^{\text{coverage} \approx 1 - \delta})$$

Definition (Prediction Interval Multivalidity)

Learner's prediction intervals are (α, n) -multivalid if

$$\frac{1}{T} \max_{G \in \mathcal{G}, (i,j) \in [n] \times [n]} |V_T^{G,(i,j)}| \le \alpha$$

- Also assume Adversary ρ -smooth: $\Pr[y_t \in [a,b] \text{ of len } \leq \frac{1}{m}] \leq \rho$
 - ▶ E.g. if label always 1, any (ℓ, u) has coverage 0/1, not 1 − δ

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Why Uncertainty
Estimation is Challenging
Our Contributions
Setting

Multicalibratio

Deriving Guarantees via Game Theory Results

Prediction Intervals

20 Definition and Derivation

Conclusio

Future Directions Subsequent Work

No-Regret Learning

Derivations via our

35

Deriving Prediction Interval Guarantees

We know the drill:

Switch to softmax loss

$$L_T = \sum_{G,(i,j)} \exp(\eta V_T^{G,(i,j)}) + \exp(-\eta V_T^{G,(i,j)})$$

- ▶ Bound one-step differences $\Delta_t((\ell_t, u_t), y_t) = L_t L_{t-1}$ using $e^x \le 1 + x + x^2$ for $|x| \le \frac{1}{2}$
- ► Consider zero-sum game with payoff = (bound on Δ_t), where Learner is the min player
- Assuming Learner plays minimax optimally, get existential bounds via telescoping
 - Consider: If Learner knew true label distribution, easy to build good prediction interval!
- Give efficient alg for finding minimax optimal strategy

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions

Multical

Deriving Guarantees via Game Theory

Prediction Intervals

Conclusion

Future Directions

No-Regret Learning

Derivations via our Framework

Existential Guarantees

Theorem

Given: *n* buckets, coverage param δ , adversary ρ -smooth. Can get: (α, n) -multivalid $(1 - \delta)$ % prediction intervals, where:

▶ (High-Probability Bound) $\forall \lambda \in (0,1)$,

$$lpha \leq
ho + 4\sqrt{rac{2}{T}\ln\left(rac{2|\mathcal{G}|n^2}{\lambda}
ight)}$$
 with prob. $1-\lambda$;

(In-Expectation Bound)

$$\mathbb{E}[\alpha] \leq \rho + 2\sqrt{\frac{2\ln(2|\mathcal{G}|n^2)}{T}}.$$

Online Multicalibration and No-Regret Learning

Georgy Noaroy

Why Uncertainty

Game Theory

Results

No-Regret Learning No-Regret Classics

Algorithm: Multivalid Prediction Intervals

At each round t = 1, ..., T:

► For all $(i,j) \in [n] \times [n]$, compute "historical quantities"

$$C_{t-1}^{\ell,u}(X_t) = \sum_{G \ni x_t} \exp\left(\eta V_{t-1}^{G,(i,j)}\right) - \exp\left(-\eta V_{t-1}^{G,(i,j)}\right)$$

Solve the following LP (using Ellipsoid with sep. oracle) — "Find distr. Q^L_t over intervals that works against any adversarial distr. Q^A over labels":

$$\begin{aligned} Q_t^{\min} & \gamma \text{ s.t.} \\ \forall Q_t^A \in \hat{\mathcal{Q}}_{\rho,m} : & \sum_{y \in \mathcal{P}_{\text{int}}^m} Q^A(y) \sum_{(\ell,u) \in \mathcal{P}_{\text{int}}^m} Q_t^L(\ell,u) \, \mathcal{O}_{t-1}^{\ell,u}(x_t) \, \left(\mathbb{1}[y \in (\ell,u)] - (1-\delta) \right) \leq \gamma, \\ & \sum_{(\ell,u) \in \mathcal{P}_{\text{int}}^m} Q_t^L(\ell,u) = 1, \\ \forall \, (\ell,u) \in \mathcal{P}_{\text{int}}^m : \, Q_t^L(\ell,u) \geq 0. \end{aligned}$$

Linear Program to compute Learner's round-t minimax strategy.

▶ Predict interval (ℓ_t, u_t) sampled from Q_t^L .

Online Multicalibration and No-Regret Learning

Georgy Noarov

viotivation

Uncertainty Estimation
Why Uncertainty

Estimation is Challenging
Our Contributions
Setting

Multicalibrati

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Besults

Conclusi

Future Directions Subsequent Work

No-Regret Learning No-Regret Classics

Derivations via our Framework

Conclusion

adversarial online setting

We have presented a general technique which obtains stronger-than-marginal uncertainty guarantees in an

- Both in-expectation and high-probability guarantees are available
- Besides providing existential guarantees, our algorithms derived in this framework are efficiently implementable

Online Multicalibration and No-Regret Learning

Georgy Noarov

Wiotivation

Why Uncertainty Estimation is Challenging Our Contributions

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

4)Conclusion

Future Directions Subsequent Work

No-Regret Learning

No-Regret Classics Derivations via our Framework

Future Directions

- We believe our results may be extended along a few directions:
 - From binary to multilabel settings
 - From prediction intervals to prediction sets
- Can the prediction intervals algorithm be implemented even *more* efficiently to make it fully practical?
 - Currently uses Ellipsoid method (efficient but slow!)
- Experimental evaluation of our algorithms
 - Do they empirically perform better on distributional data?

Online Multicalibration and No-Regret Learning

Georgy Noaroy

Why Uncertainty

Game Theory

Future Directions

No-Regret Learning

Subsequent Work

- Our game-theoretic framework can be naturally extended to more general online environments with convex-concave vector losses
- ► See https://arxiv.org/abs/2108.03837
- In the same manner as for multicalibration, it lets one easily design efficient algorithms for:
 - Very general no-regret settings (external, internal, sleeping experts, adaptive, multigroup, ...)
 - Blackwell approachability on polytopes

Online Multicalibration and No-Regret Learning

Georgy Noaroy

Why Uncertainty

Game Theory

Subsequent Work

No-Regret Learning

No-Regret Learning, Classical Setting

Learner has a finite set of pure actions ("experts") A. In rounds $t = 1 \dots T$:

- 1. Learner picks a distribution x_t over actions A
- 2. Adversary picks bounded vector of losses for each action: $r^t \in [0, 1]^A$
- 3. Learner samples action for this round: $a_t \sim x_t$
- **4.** Learner experiences loss $r_{a_t}^t$ for this round, and gets to observe the entire vector of losses r^t .
 - ▶ If Learner could only observe $r_{a_t}^t$ (loss of taken action), that would be called bandit feedback

Learner's goal is to ensure that external regret is sublinear in T:

$$\sum_{t=1}^{T} r_{a_t}^t - \min_{j \in \mathcal{A}} \sum_{t=1}^{T} r_j^t = o(T) \text{ in expectation.}$$

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Estimation is Challenging
Our Contributions
Setting

Multicali

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Direction

No-Regret Learning

No-Regret Classics

Exponential Weights Update

Want algorithm giving Learner sublinear external regret:

$$\sum_{t=1}^{T} r_{a_t}^t - \min_{j \in \mathcal{A}} \sum_{t=1}^{T} r_j^t = o(T) \text{ in expectation}$$

- Take "history" into account
- ▶ The more losses action $a \in A$ accumulates before round t. the less Learner wants to pick a in round t
- Exponential Weights Update with rate $\eta \in (0, 1/2)$: At round t, play action $a \in A$ with prob. proportional to

$$\exp\left(-\eta \sum_{s=1}^{t-1} r_a^s\right)$$

▶ Theorem: With $\eta \approx \frac{1}{\sqrt{\tau}}$, EWU has external regret $O(\sqrt{T})$

Online Multicalibration and No-Regret Learning

Georgy Noaroy

Game Theory

No-Regret Classics

Other Famous No-Regret Benchmarks

▶ Internal Regret: Family of "substitution" maps $\mathcal{M} \subset \mathcal{A}^A$: identity map $\mu_{id}(a) = a$, and for each pair of actions $i \neq j$, map $\mu_{i \to j}$ s.t. $\mu_{i \to j}(i) = j$ and $\mu_{i \to j}(a) = a$ for $a \neq i$.

$$\max_{\mu \in \mathcal{M}} \sum_{t=1}^{T} r_{a_t}^t - r_{\mu(a_t)}^t$$

Adaptive Regret: Do (almost) as well as locally best action on each time interval.

$$\max_{1 \leq t_1 \leq t_2 \leq T} \max_{j \in \mathcal{A}} \sum_{t=t_1}^{t_2} r_{a_t}^t - r_j^t$$

▶ Sleeping Experts Regret: At each round t, only a subset $A_t \subseteq A$ of actions are "awake" (= available to Learner).

$$\max_{j \in \mathcal{A}} \sum_{t: j \in \mathcal{A}_t} r_{a_t}^t - r_j^t.$$

Online Multicalibration and No-Regret Learning

Georgy Noarov

violivation

Why Uncertainty
Estimation is Challenging

Setting

Willicand

Deriving Guarantees via Game Theory Results

Prediction Intervals

Definition and Derivation

Conclusion

Subsequent Work

No-Regret Learning No-Regret Classics

Deriving Sublinear-Regret for All These Benchmarks and More: General Setting

In rounds $t = 1 \dots T$, Learner accumulates a d-dimensional coordinate-wise bounded ($||\cdot||_{\infty} \leq C$) loss vector.

- 1. Before round t, Adversary selects an *environment*:
 - 1.1 Learner's and Adversary's convex compact action sets \mathcal{X}_t , \mathcal{Y}_t embedded into a finite-dimensional Euclidean space:
 - 1.2 Continuous vector loss $\ell^t(\cdot,\cdot): \mathcal{X}_t \times \mathcal{Y}_t \to [-C,C]^d$, with convex-concave coordinates $\ell_i^t(\cdot,\cdot): \mathcal{X}_t \times \mathcal{Y}_t \to [-C,C]$.
- 2. Learner selects some $x_t \in \mathcal{X}^t$.
- 3. Adversary observes x_t , and responds with some $y_t \in \mathcal{Y}^t$.
- **4.** Learner suffers (and observes) loss vector $\ell^t(x_t, y_t)$.

Adversary-Moves-First Regret:

$$\max_{j \in [d]} \sum_{t=1}^{T} \ell_j^t(\mathbf{x}_t, \mathbf{y}_t) - \sum_{t=1}^{T} \mathbf{w}^t,$$
 where $\mathbf{w}^t = \sup_{\mathbf{y}_t \in \mathcal{Y}_t} \min_{\mathbf{x}_t \in \mathcal{X}_t} \max_{j \in [d]} \ell_j^t(\mathbf{x}_t, \mathbf{y}_t).$

and No-Regret Learning

Georgy Noaroy

Game Theory

No-Regret Learning

Adversary-Moves-First Regret

$\max_{j \in [d]} \sum_{t=1}^T \ell_j^t(x_t, y_t) - \sum_{t=1}^T w^t,$

where $w^t = \sup_{y_t \in \mathcal{Y}_t} \min_{x_t \in \mathcal{X}_t} \max_{j \in [d]} \ell_j^t(x_t, y_t)$.

- Encodes that Learner cares about minimizing max coordinate in accumulated (= summed over all rounds) loss vector
- $ightharpoonup \sum_t w^t$ is the benchmark: w^t is the best Learner could do in round t if Adversary told his strategy in advance (Adversary-Moves-First value)

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions

Setting

Multicalil

Deriving Guarantees via Game Theory Results

Prediction Intervals

Definition and Derivation

Conclusion

Future Direction

Subsequent Wo

No-Regret Learning No-Regret Classics

Deriving No-AMF-Regret

► AMF regret is equivalently $\max_{j \in [d]} R_j^T$, where $R_i^t = \sum_{s=1}^t \ell_i^s(x_s, y_s) - \sum_{s=1}^t w^s$

▶ This max is nonsmooth, so instead track softmax loss:

$$L^{t} = \sum_{j \in [d]} \exp\left(\eta R_{j}^{t}\right)$$

► Can show a Taylor bound:

$$L^{t} \leq \left(4\eta^{2}C^{2}+1\right)L^{t-1}+\eta\sum_{j\in[d]}\exp\left(\eta R_{j}^{t-1}\right)\cdot\left(\ell_{j}^{t}\left(x_{t},y_{t}\right)-w^{t}\right)$$

- $:= u^t(x_t, y_t)$
- ▶ Learner should play $x_t \in \arg\min_{x \in \mathcal{X}_t} \max_{y \in \mathcal{Y}_t} u^t(x, y)$
- Via minimax theorem + defn of w^t , turns out: $\min_{x \in \mathcal{X}_t} \max_{y \in \mathcal{Y}_t} u^t(x, y) = 0$
- ► Hence with optimal play, $L^T \leq (4\eta^2 C^2 + 1)^T d$ for all t, and can obtain

AMF Regret $\leq 4C\sqrt{T} \ln d$.

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Estimation is Challenging
Our Contributions
Setting

Multicalibra

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions
Subsequent Work

No-Regret Learning

Derivations via our Framework

35

Reducing External to AMF Regret

- ► External Regret: $\sum_{t=1}^{T} r_{at}^{t} \min_{i \in \mathcal{A}} \sum_{t=1}^{T} r_{i}^{t}$.
- ► Equivalently:

$$\max_{j \in \mathcal{A}} \sum_{t=1}^{I} r_{a_t}^t - r_j^t$$

So define: Learner's space $\mathcal{X}_t =$ distributions over \mathcal{A} , Adversary's space $\mathcal{Y}_t =$ vectors $r^t \in [0,1]^{\mathcal{A}}$, loss vector ℓ^t with $d = |\mathcal{A}|$ dims, with coordinate j equal to:

$$\ell_j^t(a, r^t) = r_a^t - r_j^t.$$

- ► Each Adversary-Moves-First value is: $w^t = \sup_{r^t \in \mathcal{V}_t} \min_{a_t \in \mathcal{A}_t} \max_{i \in [d]} r_a^t r_i^t = 0$
 - If Learner knew action losses r^t for round t, would just pick a = arg min_i r_i^t and get regret 0 in that round

$$\text{AMF Regret } = \max_{j \in \mathcal{A}} \sum_{t=1}^{I} \underbrace{\ell_{j}^{t}(x_{t}, r_{t})}_{\mathbb{E}_{a_{t} \sim x_{t}}[r_{a_{t}}^{t} - r_{j}^{t}]} - \sum_{t=1}^{T} w^{t} \implies \mathbb{E}[\text{External Regret}].$$

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivati

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions
Setting

Multicalibratio

Deriving Guarantees via Game Theory

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions

No-Regret Learning

Derivations via our Framework

What Is This Algorithm?

- ▶ We use the AMF minimization algorithmic procedure, on the "external-regret" loss coordinates $\ell_i^t(a, r^t) = r_{a.}^t r_i^t$
- ► Recall that Learner solves for

$$x_t \in \arg\min_{x \in \mathcal{X}_t} \max_{y \in \mathcal{Y}_t} u^t(x, y)$$
, where $u^t(x_t, y_t) = \sum_{j \in [d]} \exp\left(\eta R_j^{t-1}\right) \cdot \left(\ell_j^t\left(x_t, y_t\right) - w^t\right)$.

► Recall that

Recall that
$$R_j^{t-1} = \sum_{s=1}^{t-1} \ell_j^s(x_s, y_s) - \sum_{s=1}^t w^s = \sum_{s=1}^{t-1} (r_{a_s}^s - r_j^s)$$

$$x_t \in \arg\min_{x \in \Delta A} \max_{r^t \in [0,1]^{|\mathcal{A}|}} \sum_{j \in \mathcal{A}} \frac{\exp\left(\eta \sum_{s=1}^{t-1} (r_{as}^s - r_j^s)\right)}{\sum_{i \in \mathcal{A}} \exp\left(\eta \sum_{s=1}^{t-1} (r_{as}^s - r_i^s)\right)} \underset{a \sim x}{\mathbb{E}}[r_a^t - r_j^t],$$

$$= \arg\min_{\mathbf{x} \in \Delta A} \max_{rt \in [0,1]^{|\mathcal{A}|}} \sum_{j \in \mathcal{A}} \frac{\exp\left(-\eta \sum_{s=1}^{t-1} r_j^s\right)}{\sum_{i \in \mathcal{A}} \exp\left(-\eta \sum_{s=1}^{t-1} r_i^s\right)} \underset{a \sim \mathbf{x}}{\mathbb{E}} [r_a^t - r_j^t],$$

$$= \arg\min_{\mathbf{x} \in \Delta A} \max_{rt \in [0,1]^{|\mathcal{A}|}} \underset{a \sim \mathbf{x}, i \sim \mathrm{EW}_n(\pi^{t-1})}{\mathbb{E}} [r_a^t - r_j^t],$$

► The unique distribution x_t that makes this minimax objective 0 is the EW distribution!

Online Multicalibration and No-Regret Learning

Georgy Noarov

Motivation

Uncertainty Estimation

Why Uncertainty
Estimation is Challenging
Our Contributions
Setting

Multicalibration

Game Theory
Results

Prediction Intervals

Definition and Derivation

Conclusion

Future Directions Subsequent Work

No-Regret Learning

Summary

- The AMF framework is a very general online learning tool for getting low regret relative to vector objectives
- We derived online multicalibration + prediction intervals
- Next, we discovered how this framework results in another motivation for the Exponential Weights algorithm
 - So now you know that EW is just the result of a greedy Learner playing to minimize the short-term increase in the softmax surrogate loss!
- And in fact we can similarly derive efficient No-X-Regret algorithms for every benchmark X that we know of

Online Multicalibration and No-Regret Learning

Georgy Noaroy

Game Theory

No-Regret Learning

