

PR-730 / 735 SpectraScan[®] Users Manual

PHOTO RESEARCH INC. The Light Measurement People® 9731 Topanga Canyon Place

Chatsworth, CA 91311-4135 Phone: (818) 725 - 9750

FAX: (818) 725 - 9770

Email: <u>sales.pr@photoresearch.com</u>
URL: <u>www.photoresearch.com</u>

Notice

The information contained in this document is subject to change without notice. If there are

any questions pertaining to the use of this system, contact PHOTO RESEARCH.

PHOTO RESEARCH shall not be liable for errors contained herein or for incidental consequential

damages in connection with the furnishing, performance, or use of this system.

This document contains proprietary information that is protected by copyright. All rights are

reserved worldwide. No part of this document may be reproduced photographically, electronically or by any other means without the express written permission of the President of

PHOTO RESEARCH. Patents Pending.

©2009 by PHOTO RESEARCH, Inc. All rights reserved worldwide.

PR is a registered trademark of PHOTO RESEARCH, Inc.

PHOTO RESEARCH, Inc. is a registered trademark of PHOTO RESEARCH, Inc.

Pritchard is a registered trademark of PHOTO RESEARCH, Inc.

Automatic Adaptive Sensitivity is a registered trademark of PHOTO RESEARCH, Inc.

Windows is a registered trademark of Microsoft.

Document #: 9903-0006-77 REV. A

Version Date: 13 APRIL 2009

Printed in Chatsworth, California U.S.A.

Customer Support

PHOTO RESEARCH, Inc. has support services available to users in case of problems using the /670.

PHOTO RESEARCH, Inc. personnel are available from 8:00 AM to 4:30 PM (Pacific Time) Monday through Friday, except legal holidays, to aid in technical support.

Call (818) 725-9750, FAX: (818) 725-9770 or e-mail: for technical support - support.pr@photoresearch.com for instrument repair or calibration service.pr@photoresearch.com for technical support. If calling, please have the following information ready:

- Instrument Model
- Instrument Serial Number
- This manual
- Any printed data you feel might aid in resolving the problem such as test data.

Table of Contents

Introduction	11
Standard Equipment	11
System overview	12
LCD screen	14
Graphical User Interface (GUI)	14
Title Bar	17
System Status Icons	17
Command Bar	18
Back Button	18
Making Measurements	18
Viewing Measurements	18
System Information	19
I/O ports	19
External Trigger Connector (1)	20
RS-232 Connector - optional (2)	22
Mini USB 1.1 Connector (3)	23
Power Connector (4)	23
Connecting the AC Adapter	23
Standard Objective Lens	23
Installing and /Removing the Standard Lens	24
Removing the Objective Lens	25
Installing the Objective Lens	25
Software	26
SpectraWin™ 2 Software	26
Optical Accessories	27
Variable Focus Lenses	29

Fixed Focus Lenses	29
Theory of Operation	30
Basic Setup Procedures	34
Introduction	34
Before you Begin Using the Instrument	34
Calibrating the Touch Screen Display	34
Setting Instrument Preferences	35
How to Adjust Power Savings Settings	36
How to Adjust Brightness and Contrast	37
How to Enable and Disable Instrument Sounds and Alerts	37
How to Change Connectivity Options	38
Setting the Date and Time	39
Changing Units	40
RS-232 Connectivity	42
Reset to Default	43
Making Measurements	44
Instrument Setup Instructions	44
How to Select the Bandwidth	45
Show to Select an Aperture	45
How to Select Primary Accessory	46
How to Select an Add-on Accessory	46
How to Set the Number of Measurements to Average	46
How to Set the Adaptive Exposure Time	47
How to Set a Fixed Exposure Time	47
How to Set the Instrument Sensitivity Range	48
How to Set the Measurement Speed (PR-730/735 Only)	48
How to Set the SYNC Mode	49
How to Set Smart Dark Mode (PR-730/735 Only)	50

Utilities Functions	52
How to Restore Calibration/Illuminant files	52
Restore Procedure	52
How to Update the Firmware	53
Requirements Secure Digital (SD) card	53
Update Procedure	53
File Settings	55
How to Access the File Setting Screen	55
SD File Field	55
How to Rename a Measurement File	57
How to Set Auto Save on Shutdown	58
Explorer Settings	59
Accessing the Explorer Settings Screen	59
Current View	59
SD File	59
How to Recall measurements stored on SD card	60
Measurement Types	60
Luminance / Radiance	60
How to Make a Luminance / Radiance Measurement	61
Illuminance / Irradiance	65
How to Make an Illuminance / Irradiance Measurement	
Luminous / Radiant Intensity	69
How to Make Luminous Intensity / Radiant Intensity Measurements	70
Luminous / Radiant Flux	73
Overview	73
Measurement Modes	76
Standard Mode	76
L*u*v* / L*a*b* Modes	76
RGB Display Cal	80

Standard Illuminants	87
Timed Measurements	88
How to	89
Set Timed Measurements Parameters	89
Timed Measurements	89
Continuous Measurements	90
Connectivity	91
USB	91
Installing the USB Driver	91
USB Hub Type	94
Determining USB Hub Power on Windows XP	94
Setting USB Hub Type	95
Bluetooth* (optional)	96
Installing the (Photo Research supplied) Bluetooth Adapter Driver on Host	96
Enable/Disable Bluetooth	104
Bluetooth Discovery Mode	105
Pairing PR-730/735 with a HOST	106
RS-232 (optional)	111
Hardware Protocol	111
Selecting RS-232 Baud Rate	112
Remote Control Mode	113
Installing the USB Driver	113
Using Remote Control Commands	114
Entering Remote Mode	117
Remote Control Command Summary	118
Remote Control Command Detail	119
Setup Commands	121
Measurement and Data Send Codes	126
Data Code Summary	129

Data Code Details	130
Remote Control Error Codes	137
Remote Control Measurement Errors	137
Remote Control Parsing Errors	137
Routine Maintenance	139
Cleaning Lenses / Optical Accessories	139
Cleaning Exterior Surfaces	139
Recalibration	139
Factory Repair	139
In-Warranty Repair	139
Specifications	141
General Specifications	141
PR-730/735 Lens Chart	142
Sensitivity	143
Sensitivity Chart (cd/m²)	143
PR-730/735 Sensitivity Chart	143

Table of Figures

FIGURE 1 - PR-730 SPECTRASCAN SIDE VIEW
FIGURE 2 - I/O PANEL ENLARGEMENT
FIGURE 3 - PR-730 REAR VIEW
FIGURE 4 - 5 WAY FUNCTION SWITCH
FIGURE 5 - PR-730 SYSTEM MENU
FIGURE 6 - PR-730/735 TITLE BAR
FIGURE 7: PR-730/735 MEASUREMENT COMMAND BAR
FIGURE 8 - PR-730/735 MEASUREMENT VIEW COMMAND BAR
FIGURE 9 - PR-730/735 STARTUP / SYSTEM INFORMATION SCREEN
FIGURE 10 - PR-730/735 I/O CONNECTOR PANEL
FIGURE 12 - SAMPLE EXTERNAL TRIGGER INPUT CIRCUIT DRIVERS
FIGURE 13 - SAMPLE EXTERNAL TRIGGER OUTPUT CIRCUIT
FIGURE 14 - PR-730/735 RS-232 OPTION
FIGURE 15 - MINI-B USB CONNECTOR. 23
FIGURE 16 - MS-75 OBJECTIVE LENS. 24
FIGURE 17 – SPECTRUM MEASURED BY THE AND PR-730/735
FIGURE 18 - PR-730/735 SIMPLIFIED BLOCK DIAGRAM
FIGURE 19 – PR-730/735 SPECTROMETER
FIGURE 20 - CIE 1931 TRISTIMULUS FUNCTIONS
FIGURE 21 - INITIAL SCREEN
FIGURE 22 - SYSTEM MENU
FIGURE 23 - CALIBRATE TOUCH SCREEN

FIGURE 26 - POWER SAVING MENU	36
FIGURE 27 - BRIGHTNESS AND CONTRAST SCREEN	37
FIGURE 28 - SOUNDS AND ALERTS SCREEN	38
FIGURE 29 - CONNECTIVITY MENU	39
FIGURE 30 - DATE AND TIME SCREEN	40
FIGURE 31 - UNITS MENU	41
FIGURE 32 - RS-232 CONNECTIVITY	42
FIGURE 33 - MAIN SCREEN FIGURE 34 - SYSTEM MENU	44
FIGURE 35 - PR-730/735 INSTRUMENT SETUP	45
FIGURE 36 – MEASUREMENT AVERAGE ENTRY SCREEN	47
FIGURE 37 – EXPOSURE TIME ENTRY SCREEN	48
FIGURE 38 - SYNC PERIOD DATA ENTRY SCREEN	50
FIGURE 39 - UTILITIES MENU	52
FIGURE 40. PR-730/735 UTILITIES MENU.	53
FIGURE 41 - PR-730/735 FIRMWARE UPDATE PROMPT.	54
FIGURE 42 - SECURE DIGITAL CARD FILE SETTINGS.	55
FIGURE 43 - MEASUREMENT FILE DOES NOT EXIST ON SD CARD.	56
FIGURE 45 - SECOND CHARACTERS SET.	57
FIGURE 46 - MEASUREMENT FILE RENAME.	58
FIGURE 47 - AUTO SAVE ON SHUTDOWN PROMPT.	58
FIGURE 48 - EXPLORER SETTINGS.	59
FIGURE 49. FILE EXPLORER.	59
FIGURE 50 - ILLUMINANCE / LUMINANCE CONCEPT	61
FIGURE 51 - MS-75 LENS	61
FIGURE 52 - APERTURE AUGNMENT	62

FIGURE 53 - INSTRUMENT SETUP MENU	63
FIGURE 54 - FP-655 / FP-670	63
FIGURE 55 - LA-730 LUMINANCE ADAPTOR	64
FIGURE 56 - ILLUSTRATION OF ILLUMINANCE	65
FIGURE 57 - CR-730	66
FIGURE 58 - ICC-655 / 670 INTEGRATING SPHERE	67
FIGURE 60 - LR-730 LED RECEPTOR	70
FIGURE 61 - LR-127	72
FIGURE 62 - IS-730 OUTER VIEW	73
FIGURE 63 – IS-730 INSIDE VIEW	74
FIGURE 64 – IS-730 HEIGHT ADJUSTMENT	75
FIGURE 65 - L*u*v* SETUP SCREEN FIGURE 66 - FILE RECALL SCREEN	77
FIGURE 67 - STANDARD ILLUMINANTS SCREEN	77
FIGURE 68 - L*U*V* SETUP SCREEN	78
FIGURE 69 - L*U*V* RESULT SCREEN	79
FIGURE 70 - RGB DISPLAY CAL SETUP SCREEN	80
FIGURE 72 - SELECT RGB ILLUMINANT SCREEN	83
FIGURE 75 - RGB DATA ENTRY	86
FIGURE 76 - RGB MEASUREMENT SCREEN	87
FIGURE 77 - STANDARD ILLUMINANTS SCREEN	88
FIGURE 78 - TIMED MEASUREMENTS SCREEN	89
FIGURE 79 - MEASUREMENT INTERVAL ENTRY FIELD	89
FIGURE 82 - WINDOWS XP COMPATIBILITY WARNING FOR PR-730/735 USB DRIVER	92
FIGURE 83 - PR-730/735 USB DRIVER INSTALL COMPLETE	93
FIGURE 84 - SYSTEM PROPERTIES SCREEN	94

FIGURE 85 - USB POWER SCREEN	95
FIGURE 87: BLUETOOTH TOPOLOGY.	96
FIGURE 88 - PR-7xx Installer.	97
FIGURE 89 - PR-7xx Installer License agreement screen.	97
FIGURE 90 - USB DRIVER INSTALL LOCATION README.	98
FIGURE 91 - INSTALL DIRECTORY SELECTION.	98
FIGURE 92 - PR-7xx Installer non default directory selection.	99
FIGURE 93 - PR-7XX UTILITIES COMPONENT SELECTION	99
FIGURE 94 - PR-7xx Installer start installation.	100
FIGURE 95 - PR-7XX UTILITIES INSTALLATION FINISH.	100
FIGURE 96 - WIDCOMM BLUETOOTH SOFTWARE INSTALLER.	101
FIGURE 97 - WIDCOMM DRIVER INSTALLATION COMPLETED.	101
FIGURE 98 - MY BLUETOOTH PLACES ICON	101
FIGURE 99 - INITIAL BLUETOOTH CONFIGURATION WIZARD.	102
FIGURE 100 - DEVICE NAME AND TYPE SELECTION.	102
FIGURE 101 - BLUETOOTH SERVICE SELECTION.	103
FIGURE 102 - BLUETOOTH FIND DEVICE PROMPT	103
FIGURE 103 - INITIAL CONFIGURATION WIZARD COMPLETE.	104
FIGURE 104 - BLUETOOTH/USB CONNECTIVITY MENU	104
FIGURE 105 - BLUETOOTH/USB CONNECTIVITY MENU	105
FIGURE 106 - BLUETOOTH DISCOVERABLE DURATION INPUT.	106
FIGURE 107 - BLUETOOTH CONNECTIVITY SETUP WINDOW	107
FIGURE 108 - MY BLUETOOTH PLACES.	107
FIGURE 109 - BLUETOOTH DRIVER SETUP WIZARD	108
FIGURE 110 - REMOTE HOST DEVICE SEARCH WIZARD.	108

FIGURE 111 - BLUETOOTH SETUP WIZARD DEVICE NAME AND COM SELECTION SCREEN.	109
FIGURE 112 - BLUETOOTH PIN CODE REQUEST	110
FIGURE 113 PR-730/735 ICON IN MY BLUETOOTH PLACES, WHEN NOT CONNECTED TO THE INSTRUM	
FIGURE 114 - PR-730/735 RS-232 OPTION	111
FIGURE 115 – RS-232 CONNECTIVITY, BAUD RATE SETUP	112
FIGURE 117 - COM PORT SELECTION IN HYPER TERMINAL.	115
FIGURE 119. SYSTEM PROPERTIES MENU	116
FIGURE 121. WINDOWS XP COM PROPERTIES WINDOW.	117

INTRODUCTION

The PR-730 / PR-735 SpectraScans are the newest additions to the already world renowned SpectraScan colorimeter series of instruments. These laboratory grade spectroradiometers utilize a cooled fast-scanning photo diode array, a 3.5" color touch screen display, and AutoSync* for automatically synchronizing the exposure time to the source refresh rate insuring the utmost accuracy. Other features include an external trigger port allowing remote measurement activation from a push button or peripheral device, an RS232 Interface and a Secure Digital (SD) card for measurement storage. The spectral range of the PR-730 is 380 nm to 780 nm (visible) while the PR-735 extends the spectral range into the near IR (380 nm to 1100 nm).

STANDARD EQUIPMENT

The standard PR-730 includes:

- o SpectraScan (PR-730 or PR-735).
- o MS-75 Lens.
- o USB 1.1 Port.
- Secure Digital (SD) Card.
- AC-6730-6 6' Universal input AC Adapter.
- CD with drivers and Instruction Manual.
- NIST Traceable Calibration (certified for six months).

SYSTEM OVERVIEW

FIGURE 2 - I/O PANEL ENLARGEMENT

FIGURE 3 - PR-730 REAR VIEW

Reference	Description	Function	Reference	Description	Function
1	Objective Lens	Focusing on target	8	3.5 in. Color Touch Screen Display	System Menus / Measurement Results
2	View Finder Shutter Control	Open/Close view finder	9	SD Card Slot	Data Storage
3	View Finder	View target / measuring aperture / focus on aperture	10	SD Slot	Data storage
4	Measure Switch	Execute measurement	11	I/O Connector Panel	Interface / Power connection
5	Power Switch	Turn On (I) / Off (O) unit	12	RS232 Connector (Optional)	Serial Communication
	Status Indicators				
6	P- Power	Instrument	13	USB Connector	USB
	C - Charge	status indicators			Communications
	F - Fault				
7	5 way function	Menu navigation	14	DC Power	Power in
	switch			connector	. 5 6

TABLE 1 - PR-730/735FUNCTIONAL OVERVIEW.

LCD SCREEN

The PR-730/735 features an on-board, 3.5" high resolution, full color touch screen LCD display. The area visible to the user is called the active area. The active area of the LCD display contains the graphical user interface of the PR-730/735. All setup options and measurements including spectral and CIE graphs can now be controlled and viewed directly on the vivid color display.

GRAPHICAL USER INTERFACE (GUI)

The Graphical User Interface (GUI) is what is presented on the active area of the display. The GUI allows the user to navigate through the PR-730/735 menu system. Menu items can be selected simply by touching the screen on the item of choice, or by using the 5 Way Function Switch. To use the 5 Way Switch, press the arrow keys to highlight the selection, then press the Enter (center) key to apply.

FIGURE 4 - 5 WAY FUNCTION SWITCH

FIGURE 5 - PR-730 SYSTEM MENU.

The Graphical User Interface consists of three major panes:

Item	Description	
1	Title bar	
2	Active pane	
3	Command bar	

TABLE 2 - GUI PANE DESCRIPTION.

The flow of the menu navigation on the PR-730/735 is similar to that of a tree structure. In a tree structure there are roots and from the roots exist branches (sub menus), indicated by the following icon (▶) which have more branches or end nodes (leafs). Traversing back to the root is as simple as clicking on the back (Back) icon, located at the bottom right corner of the GUI.

The following example depicts the tree structure mentioned, by navigating to the *Date & Time* setup screen from *System Menu*.

Navigation Steps:

Preferences → Date & Time

Root

From **System Menu** navigate to and select *Preferences.*

Branch

From **Preferences** navigate to and select **Date** & **Time**.

End Node (Leaf)

To traverse back to the *System Menu* simply press the **Back** button twice.

TITLE BAR

The title bar displays the current active menu location (1) and critical system information status (2). A detailed list of system status icons can be found in the system status section of this manual.

Figure 6 - PR-730/735 Title bar.

SYSTEM STATUS ICONS

The system status icons display current instrument state and status. They are triggered either by a selection made in the instrument setup section or by the instrument. Below are all system status icons and their corresponding indication.

	ICON	DESCRIPTION
Battery Charge %	Green w/ 2½ bars	100% Charge
	Green w/ 1½ bars	66% Charge
	Yellow w/½ bar	33% Charge
	Orange w/½ bar blinking	Low Battery
	No Icon	Manual Sync Mode (20 – 400 Hz)
Sync		Sync Disabled
	7	Automatic Sync
	No Icon	Auto Save to SD card disabled.
Auto Save	₩	Auto Save On & SD Card Detected.
	⊗	Auto Save on & No SD card detected.

Table 3 - PR-730/735 Status Icon List

Detailed information pertaining to the system status icons can be found in their respective sections of the manual.

COMMAND BAR

The command bar is located at the bottom of the GUI, and displays the active navigation and control buttons based on the active pane. There are three main expected command bar views:

BACK BUTTON

Whenever the back button Back is displayed the user can traverse back to the previous menu or, if desired, back to the root. The Back button also serves Saves current selections when in *Instrument Setup and Preferences*.

MAKING MEASUREMENTS

After a measurement is executed or while it is in progress, the *Command Bar* displays the following icons. The following functions can be executed:

FIGURE 7: PR-730/735 MEASUREMENT COMMAND BAR.

- 1) Navigate **Back** to the previous menu screen.
- 2) Abort a measurement.
- 3) Save measurements to the SD card (if inserted)
- 4) Navigate through measurement result screens < >.
- 5) Display *Line* or *Hist*. (histogram) formatted spectral plots in the Spectral screen.

VIEWING MEASUREMENTS

When at the root *Measurement Screen*, the user can navigate through the measurements using the following command bar. Note that all measurements in RAM will be lost when the unit is powered off.

FIGURE 8 - PR-730/735 MEASUREMENT VIEW COMMAND BAR.

From the command bar, the user can execute the following:

- 1) Navigate to *Prev* (previous) measurement in RAM or SD card.
- 2) Navigate to **Next** measurement in RAM or SD card.
- 3) Jump to a particular measurement in RAM or SD card using Go To.
- 4) Navigate through measurement results screen < > .
- 5) Display *Line* or *Hist*. (histogram) plot when in the Spectral screen

SYSTEM INFORMATION

The system status screen, is displayed when the unit is powered on, and shows system information such as serial number, calibration due date, firmware version, and instrument bandwidth. This screen can be viewed at any time by navigating to

Menu → System Information.

FIGURE 9 - PR-730/735 STARTUP / SYSTEM INFORMATION SCREEN.

I/O PORTS

The connector panel is located on the right side of the PR-730/735 instrument when looking from the view finder side of the instrument (see Figure 1). The panel consists of the following connectors:

FIGURE 10 - PR-730/735 I/O CONNECTOR PANEL.

Item	Description
1	External Trigger Connector
2	RS232 Connector (optional)
3	USB Connector
4	Power Connector

EXTERNAL TRIGGER CONNECTOR (1)

The PR-730/735 is equipped with a 6 pin mini-din connector that can be utilized for externally triggering a measurement, and subsequently sending a signal (simple DC signal or pulse) to a source capable of being externally triggered - such as a xenon strobe lamp.

FIGURE 11 - EXTERNAL TRIGGER PIN-OUT.

The pin designations for the connector are:

PIN#	NAME	FUNCTION	
1	VDD	+5V @ 25mA Max.	
2	GND	Ground	
3	IN	Trigger Input – Contact Closure,	
4	SPARE	N/C	
5	OUT+	Trigger Output high side	
6	OUT -	Trigger Output low side	

Table 4 - PR-730/735 external trigger pin out.

The following are sample driving circuits for the external trigger input and output.

FIGURE 12 - SAMPLE EXTERNAL TRIGGER INPUT CIRCUIT DRIVERS.

Figure 13 - Sample external trigger output circuit.

RS-232 CONNECTOR - OPTIONAL (2)

For Remote Mode applications requiring traditional RS-232 communications, an optional RS-232 interface can be provided. This option adds an RJ-12 jack to the PR-730/735 system allowing the user to connect the PR-730/735 to a PC's RS-232 port via the included RJ-12 to DB-9 adapter.

Figure 14 - PR-730/735 RS-232 option.

Items Included with the RS-232 Option:

- 1) RJ-12 Jack on /670.
- 2) RJ-12 to DB-9 adapter.
- 3) 6ft. RJ-12 cable.

Please contact factory for custom RJ-12 cable lengths.

MINI USB 1.1 CONNECTOR (3)

The PR-730/735 is equipped with a Mini-B USB connector, providing remote communication. The USB interface can also be used to charge the instrument battery when plugged into an active PC.

Figure 15 - Mini-B USB connector.

Power Connector (4)

The PR-730/735 power (AC Adapter) supply connector.

CONNECTING THE AC ADAPTER

- 1. Insert the AC power cord into an appropriate AC source.
- 2. Insert the AC power cord into the AC Adapter body.
- 3. Insert the DC connector located on the opposite end of the adapter into the AC Adapter receptacle.
- 4. The P (Power) status indicator on the rear control panel should be illuminated.

STANDARD OBJECTIVE LENS

The standard objective lens for the PR-730/735 is the MS-75 - a 75mm f/2.8 MacroSpectar® lens that focuses from 1:4 magnification (at 14" from from the target) to infinity. This objective lens enables the PR-730/735 to perform a variety of measurements including: luminance, radiance, spectral radiance, chromaticity, correlated color temperature (CCT), Color Rendering Index (CRI), dominant wavelength, etc. For applications other than radiance or luminance the PR-730/735 can be supplied with optical accessories such as a cosine receptor for irradiance / illuminance, LR-127 LED Analyzer for testing LED's for CIE 127 conformity, fiber probe for remote non-line-of-sight luminance testing, and a series of magnification lens for small spot size analysis. Refer to Optional Accessory section for more information on all available optical accessories.

Figure 16 - MS-75 objective lens.

INSTALLING AND / REMOVING THE STANDARD LENS

The standard objective lens is installed by aligning the thread from the OBJECTIVE lens with the instrument's lens mount and rotating clockwise while grasping the rubber ring toward the rear of the lens (see **Figure 16**). The thread should offer minimum resistance during installation.

Full details including spot size versus working distance for all available lenses for the PR-730/735 can be found

REMOVING THE OBJECTIVE LENS

1. Grasping the rear rubber ring (see **Figure 16**) turn the lens counter-clock-wise until the lens separates from the lens mount.

INSTALLING THE OBJECTIVE LENS

1. Grasping the rear rubber ring (see **Figure 16**) turn the lens clock-wise until the lens seats on the lens mount.

Warning: Hand tighten only! Do not over tighten as permanent damage may occur.

SOFTWARE

Following are all optional software packages that are available for the PR-730/735 systems.

SPECTRAWIN™ 2 SOFTWARE

LITE VERSION

Full featured, menu driven, Windows software that calculates luminance, CIE chromaticity, correlated color temperature, dominant wavelength and excitation purity (saturation) from measured spectral data and provides features such as graphically represented spectral distribution and CIE color space (1931 and 1976), data manipulation (math functions) save/recall binary or ASCII files, print graphics screens or tabular data, reflectance / transmittance, L*a*b*u*v* measurements, ΔE Color Difference and Color Rendering Indices (CRI) of lamp sources.

PRO VERSION

Includes all of the capabilities of SpectraWin Lite and adds support for Macro scripting allowing the end user to create macros that can generate automated test sequences.

Note: For the best performance and compatibility, SpectraWin 2 software should be run under the Microsoft Windows XP or Vista systems.

All software is serialized to an instrument. One licensed copy is required per instrument.

SpectraWin 2 RGB Display Cal Module

SpectraWin Lite or Pro optional module designed for spectrally based white point calibrations of CRT's, LCD's, PDP's and digital projectors. Calibration is based on "learned" RGB values or user entered Y, xy, values. Calibration is facilitated by on-screen graphical feedback of an RGB bar graph or a moving color point within a CIE diagram - must be purchased with SpectraWin 2.

All software is serialized to an instrument. One licensed copy is required per instrument.

Windows Software Development Kit (SDK)

Fully documented library API that can be used in C++, Visual Basic, and LabView programming that allows for measurement control and data transfer from the PR-730/735 and is designed for development of customer software for integration with the /670. Includes SpectraWin 2 Lite software.

All software is serialized to an instrument. One licensed copy is required per instrument.

User Self Calibration Software

Single License

Provides complete recalibration capabilities for the PR-730/735 including wavelength accuracy, spectral intensity, linearity and accessory calibration. This option requires a helium wavelength calibration source (WC-600 or equivalent) and variable spectral radiance/ luminance standard (LRS-455 or equivalent).

5 Unit License

Same capabilities as single unit license but for 5 PR-730/735 instruments. The instrument's serial numbers must be specified at time of purchase.

10 Unit License

Same capabilities as single unit license but for 10 PR-730/735 instruments. The instrument's serial numbers must be specified at time of purchase.

OPTICAL ACCESSORIES

The following optical accessories can be added to your existing PR-730/735. They require calibration with the instrument to provide accurate results. They can be calibrated by the user using the User Self Calibration software.

Neutral Density (ND) Filters

Neutral density filters are used to attenuate the incoming optical radiation (light level). They can be used on applications where the light source may saturate the instrument causing the PR-730/735 to report a "Light Overload" condition. ND filters can be mounted on the standard MS-75 lens or the optional SL-1X lens.

The following table lists all available ND filters and their respective characteristics.

Neutral Density Filter	Signal Attenuation	% Transmission
ND-0.3	2	50
ND-0.7	5	20
ND-1	10	10
ND-2	100	1
ND-3	1000	0.1

Table 5 - Neutral density filters for the /670.

Reflectance Standard

The 2" diameter (51 mm) PTFE reflectance standard can be used for making ambient light measurements, measurements of point sources (e.g. lamps) or measurements of the illuminating source for reflectance or L*a*b* calculations. The reflectance standard features a Society of Automotive (SAE) ¼ - 20 threads, black anodized, aluminum case for mounting to an optical table.

RS-3

The RS-3 is an un-calibrated reflectance standard - all spectral reflectance correction factors are set to 1.00.

SRS-3

Spectrally Calibrated Reflectance Standard for absolute spectral reflectance - includes reflectance factors and certificate of calibration.

IS-730 Integrating Sphere

An integrating sphere is designed to measure the total luminous and radiant power of small point sources such as miniature lamps, light emitting diodes (LED's) and etc. over 4π steradians. Using this accessory, Radiant and Luminous Flux (lumens), correlated color temperature (CCT) and chromaticity coordinates can be measured. The input of the integrating sphere accepts virtually any discrete LED or small lamp with two leads. This accessory replaces the MS-75 during use.

Please consult factory for other special sizes.

CR-730 Cosine Receptor

The cosine receptor can be used for applications where it required to know the amount of light incident on a surface or object. For example, irradiance or illuminance measurements of light incident on a projector screen or to design light fixturing for a building or office space. The cosine receptor replaces the standard MS-75 lens and reports irradiance in watts/m² and illuminance measurements in footcandles (fc) or lux depending on the unit type selected.

LA-730 Luminance Adapter

For contact measurements of radiance and luminance. Adapter covers 0.52" (13.2 mm) diameter and replaces the MS-75 during use.

FP-730 Flexible Probe

A 2 foot (60.9 cm) long probe designed for contact measurements of luminance and radiance. Probe tip is 0.125" (3.18 mm) diameter and replaces the MS-75 during use. 4 foot and 10 foot versions are also available.

LR-127 Light Emitting Diode (LED) Analyzer

This patented optical accessory is designed to test discrete LED's for compliance to CIE 127 specification. With this add-on accessory both CIE 127 conditions A (far) and B (near) can be measured. Both conditions can be tested with the flip of a lever from 'A' to 'B'. No need to change tubes or even remove the LED between tests. The accessory is calibrated for radiant and luminous intensity (millicandelas) and accepts T1 (3 mm) packages - replaces the MS-75 during use. *Consult factory for alternate LED sizes*.

VARIABLE FOCUS LENSES

MS-7.5 mm - MacroSpectar Wide-Field Lens

A C mount MacroSpectar® Wide-Field lens with a 3.94" (10 cm) to infinity working distance. Suitable for large area coverage at short distance for non-contact color quality control (L*a*b*) measurements. See the Specifications section for field coverage and working distance. Replaces the MS-75 during use

SL-0.5X - Supplementary Lens

A 0.5X magnification lens that provides a field coverage halfway between the MS-75 and SL-1X lenses. Threads into the MS-75 during use. See the Specifications section for field coverage and working distance.

SL-1X - Supplementary Lens

A 1X magnification, fixed focus lens for luminance/radiance measurements. Threads into the MS-75 lens during use. See the Specifications section for field coverage and working distance.

FIXED FOCUS LENSES

MS-2.5X - MicroSpectar™ Lens

A 2.5X magnification, fixed focus lens for luminance/radiance measurements - replaces the MS-75 lens during use. See the Specifications section for field coverage and working distance.

MS-5X - MicroSpectar™ Lens

A 5X magnification, fixed focus lens for luminance/radiance measurements - replaces the MS-75 lens during use. See Table 1 for focus distance and field coverage (spot size) information.

THEORY OF OPERATION

The PR-730/735 are true Spectroradiometers. They collect the optical radiation (light) through the objective lens or other optical accessory. The signal then passes through the aperture (hole) in the aperture mirror to the diffraction grating (see Figure 19). The grating breaks up the light into its component wavelengths much like a prism turns white light into a rainbow. A broad band light such as sunlight is composed of a large number of different wavelengths of light. When the diffraction grating is exposed to this type of light, it will refract the light at several angles thus creating a dispersed spectrum much like a rainbow. Similarly, if the grating is exposed to a source such as a laser which emits a nearly monochromatic wavelength of light, only the wavelength(s) of the laser will be refracted.

FIGURE 17 - SPECTRUM MEASURED BY THE AND PR-730/735

For the PR-730/735, the measurement wavelength range is 380 nanometers (nm) (violet) to 780 nm (deep red) – the visible spectrum of the electromagnetic spectrum (see Figure 17).

The diffracted spectrum is then dispersed onto the detector. The detector is comprised of 512 individual elements. The . Each of the detector elements in both instruments samples a unique color.

During a measurement, the optical radiation (light) is sampled for a period of time determined by the Adaptive Sensitivity™ algorithm. Adaptive Sensitivity automatically determines the correct integration (exposure) time based on the available signal. Following the light measurement, a measurement of the dark current of the detector is made for the same length of time that was used for the light measurement. The dark measurement is then subtracted from the light measurement yielding the contribution of light for each detector element.

FIGURE 18 - PR-730/735 SIMPLIFIED BLOCK DIAGRAM

The uncorrected or 'raw' spectrum is corrected using factors established during the factory calibration of the instrument. These factors include wavelength accuracy correction, spectral distribution correction and photometric correction. The wavelength calibration is performed using a helium spectral line source. The line source provides known spectral emission lines that the software uses to map the dispersion of the grating to the multi-element detector. The helium lines used during the wavelength calibration are 388.6 nm, 447.1 nm, 471.3 nm, 587.6 nm, 667.8 nm, 706.5 nm and 728.13 nm.

Next, the data is corrected by spectral factors. These factors insure that the spectral power distribution (SPD) of the target is and calculated values such as CIE Chromaticity are accurately reported. Lastly, a scaling factor (photometric factor) is applied ensuring the proper photometric levels such as luminance or illuminance are displayed.

Calculations

The corrected spectral data is then used to calculate photometric and colorimetric values including luminance, CIE 1931 x, y and 1976 u', v' chromaticity coordinates, correlated color temperature and dominant. Following are some of the basic calculations used to generate photometric and colorimetric parameters:

FIGURE 20 - CIE 1931 TRISTIMULUS FUNCTIONS

CIE XYZ Tristimulus and Photometric Values

$$X = 683 \int_{380}^{780} S \, \mathbf{Q} \, \mathbf{T} \, \mathbf{Q} \, \mathbf{Q} \, \mathbf{Q}$$

Where X, Y, and Z are the three CIE Tristimulus values. X represents the red component, Y is the green component and Z is the blue component.

Y also serves as the photometric value – when using the standard MS-75 lens, Y gives candelas / meter 2 - the SI unit for luminance. To find footlamberts (English unit of luminance), multiply cd/m 2 by 0.2919.

683 is a constant used to convert lumens to watts. There are 683 lumens per watt at 555 nm for photopic (daylight) vision.

$$Z = 683 \int_{380}^{780} S \mathbf{Q} \mathbf{J} \mathbf{Q} \mathbf{Q} \mathbf{Q}$$

 $S(\lambda)$ = the corrected spectral data, $\overline{X} \triangleleft \overline{Y} \triangleleft \overline{Z} \triangleleft \overline{Z}$ are the three CIE Tristimulus functions (curves) and $\Delta(\lambda)$ is the data increment – for the the increment is 4(nm) and 2 (nm) for the PR-715/735.

Once the three Tristimulus values have been derived, useful colorimetric values such as CIE 1931 x, y and 1976 u', v' can be calculated by the following formulae:

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$u' = 4X / (X + 15Y + 3Z)$$

$$v' = 9Y / (Y + 15Y + 3Z)$$

BASIC SETUP PROCEDURES

INTRODUCTION

This section provides instructions and procedures for setting up general instrument settings of the PR-730/735 prior to making measurements. For the location of components referred to in this section, please see the **Introduction** section of this manual.

BEFORE YOU BEGIN USING THE INSTRUMENT

Prior to beginning operations, we suggest a couple of steps to help maximize the functionality and longevity of your new instrument. Namely, calibrating the touch screen.

CALIBRATING THE TOUCH SCREEN DISPLAY

The touch screen display for the PR-730/735 should be calibrated prior to general use to ensure that it responds properly to requested commands. To calibrate the screen:

FIGURE 21 - INITIAL SCREEN

1. Turn the instrument on. After initialization, touch Menu in the upper left hand corner of the screen. The following screen appears:

FIGURE 22 - SYSTEM MENU

- 2. Click on UTILITIES.
- 3. Click on Calibrate Touch Screen. The following screen appears:

FIGURE 23 - CALIBRATE TOUCH SCREEN

- 4. Using a pointed object, begin the calibration by touching the center of the **X** in the upper-left-hand corner of the screen.
- 5. You will be prompted to touch 8 additional areas of the screen during the process.
- 6. Touch **Back** when finished.

SETTING INSTRUMENT PREFERENCES

Several hardware parameters of the PR-730/735 can be adjusted to the users liking. They include *Power Saving, Brightness and Contrast, Sounds and Alerts, Connectivity, Date and Time, Units, and RS-232 Connectivity (Optional)*.

 To access the Preferences menu, navigate to the System Menu by either touching Menu in the upper left corner of the display, or Back in the lower left corner of the display until the menu appears.

FIGURE 24 - SYSTEM MENU

FIGURE 25 - PREFERENCES MENU

HOW TO ADJUST POWER SAVINGS SETTINGS

The *Power Saving* feature is used to automatically turn off the display if the instrument is left on and unattended. The user can select to enable or disable this feature.

1. Touch **Power Saving** from the *Preferences* menu.

FIGURE 26 - POWER SAVING MENU

- 2. The current status of the Power Saving feature is displayed in the window adjacent to *Power Saving*. In the preceding example, *Power Saving* is enabled. Touch this field to **Disable** Power Saving. It will then read **Disabled**.
- 3. To instruct the instrument to shut down after a pre-defined amount of time, touch the ▼ or ▲ icons adjacent to the *Turn power off after* field. Choices are *1 to 30 minutes* or *Never*.

- 4. If you wish the screen to turn off after a pre-determined time, touch the ▼ or ▲ icons adjacent to the *Turn screen off after* field. Choices are 1 to 10 minutes or Never.
- 5. Touch **Back** when finished making selections.

HOW TO ADJUST BRIGHTNESS AND CONTRAST

BrigHtness and **Contrast** control the appearance on the display under various ambient lighting conditions. To access and adjust Brightness and Contrast:

FIGURE 27 - BRIGHTNESS AND CONTRAST SCREEN

- 1. From the Preferences menu, touch Brightness and Contrast.
- 2. To adjust the brightness of the PR-730/735 display, touch the ▼ or ▲ icons on either side of the Brightness field. The brightness level is adjustable from 0% to 100%.
- 3. To adjust the screen contrast, touch the ▼ or ▲ icons next to the *Contrast* field. The contrast is adjustable from 0% to 100*.
- 4. The PR-730/735 screen brightness during a measurement can be set by touching the ▼ or ▲ icons adjacent to the *Brightness during measure* field. Settings range from 0% (off) to 100%.
- 5. Touch Back when finished.

HOW TO ENABLE AND DISABLE INSTRUMENT SOUNDS AND ALERTS

The PR-730/735 can audibly alert the user to various conditions of the instrument including *audible* button click feedback, measure shutter sounds, measurement complete alerts and low battery warning. To enable and disable these features:

FIGURE 28 - SOUNDS AND ALERTS SCREEN

- 1. From the *Preferences* menu, touch **Sounds & Alerts.**
- 2. The field to the right of the field descriptor displays the status of that feature. To enable or disable all sounds, touch the Sounds & Alerts field. This field must be set to Enabled in order to gain access to the fields below it.
- **3.** If **Sounds & Alerts** is enabled, touch any field next to its descriptor to toggle between enabled and disabled.
- 4. Touch Back when finished.

How to Change Connectivity Options

Connectivity options allow you to define the USB Power type. Choices are **High Power (default), Low Power** and **None.** With **High Power** selected, the PR-730/735 expects the PC to supply 500 ma at the USB interface. **Low Power** is for devices that support 100 ma or less. Most modern computers support the **High Power** mode.

FIGURE 29 - CONNECTIVITY MENU

To change the USB Hub Type

- 1. From the *Preferences* menu, touch Connectivity.
- 2. To scroll through choices, touch the ▼ or ▲ arrows adjacent to the USB Hub Type field until the preferred choice appears.
- 3. Touch Back when finished.

SETTING THE DATE AND TIME

The PR-730/735 is set to US Pacific Coast date and time at the factory. If the power is disconnected from the instrument, the date and time will be maintained for at least 1 year. To reset the date and time:

FIGURE 30 - DATE AND TIME SCREEN

- 1. Touch **Date and Time** from the *Preferences* menu.
- 2. Touch the ▼ or ▲ icons adjacent to the or below the field of interest (e.g. Dec. in Figure 30) to scroll to the desired value. The range for the *Year* field is 2005 to 2025.
- 3. Touch Back when finished.

CHANGING UNITS

English (footlamberts, footcandles as applicable) and **Metric** (cd/m², lux) are set globally in this *Preferences* item. If your PR-730/735 is equipped with a luminous intensity accessory such as the LR-127, Candelas or millicandelas.

NOTE: The Units type may be changed following a measurement. Doing so will automatically update all existing measurement values.

FIGURE 31 - UNITS MENU

To change measurement units:

- 1. Touch **Units** from the *Preferences* menu.
- 2. To scroll through choices, touch the ▼ or ▲ arrows adjacent to the **Measurement Units** or **Lum. Intensity** Units fields until the preferred choice appears.
- 3. Touch **Back** when finished.

RS-232 CONNECTIVITY

If your PR-730/735 is equipped with the optional RS-232 interface, this menu item configure the baud rate of the interface. Choices are *9600*, *19200*, *38400*, *57600* and *115200* baud.

FIGURE 32 - RS-232 CONNECTIVITY

Other unchangeable RS-232 parameters are:

Parameter	Setting
Parity	None
Data Bits	8
Stop Bits	1
Handshake	None

To set the RS-232 Baud rate:

- 1. Touch **RS-232 Connectivity** from the *Preferences* menu.
- 2. To scroll through choices, touch the ▼ or ▲ arrows adjacent to the RS-232 Baud Rate field until the preferred choice appears.
- 3. Touch Back when finished.

RESET TO DEFAULT

Resets all *Preferences* to their factory default settings. Factory values are:

Parameter	Setting
Power Saving	Enabled
	Brightness: 50%
Brightness and Contrast	Contrast: 50%
	Brightness during measure: 25%
Sounds and Alerts	All Enabled
Connectivity	High Power
Date and Time	PC Date and Time
Units	Measurement Units: Metric
	Lum. Intensity: Candelas
RS-232 Connectivity	Baud Rate: 115200

Setting the Default Parameters:

1. Touch **Reset to Default** from the *Preferences* menu. The following screen appears.

2. Touch **OK** to reset all Preferences, or **Cancel** to exit without making changes.

MAKING MEASUREMENTS

INSTRUMENT SETUP INSTRUCTIONS

Prior to making a measurement, it is necessary to insure that the instrument is aware of the accessory and aperture, the exposure (integration time), the sensitivity mode, the number of measurements to average, the SYNC mode and the Dark Current mode during the upcoming test to insure that proper calibration factors are applied following a measurement.

FIGURE 33 - MAIN SCREEN

FIGURE 34 - SYSTEM MENU

FIGURE 35 - PR-730/735 INSTRUMENT SETUP

- 1. From the main screen, touch Menu (or use the navigation keys). The System Menu appears.
- 2. Touch Setup.
- **3.** The *Instrument Setup* menu appears.

How to Select the Bandwidth

For those instruments supplied with the variable bandwidth option, this field provides a means for selecting the desired option. If your PR-730/735 has a single bandwidth, no choices are available in this field.

To select the Bandwidth:

- To scroll through choices, touch the ▼ or ▲ arrows adjacent to the BW field until the preferred choice appears.
- 2. Touch Back when finished.

SHOW TO SELECT AN APERTURE

1. Touch the ▼ or ▲ icon adjacent to the field named **Aperture** to scroll through aperture selections until the aperture of choice is displayed.

HOW TO SELECT PRIMARY ACCESSORY

A **Primary Accessory** is one that replaces the standard MS-75 lens during use. Primary accessories include the MS-75, MS-2.5X, MS-7.5, CR-655 (CR-670), FP-655 (FP-670), IS-655 (IS-670), ICC-655 (ICC-670), LA-655 (LA-670), CR-655 (CR-670) and LR-127.

1) Touch the ▼ or ▲ icon adjacent to the field named **Primary Accessory** to select the accessory to be used in the upcoming measurement.

Warning: Failure to select the proper accessory in use prior to a measurement will cause the instrument to produce erroneous results..

How to Select an Add-on Accessory

An **Add-on** Accessory is one that is used in conjunction with a Primary Accessory, usually an objective lens. Up to 3 **Add-on Accessories** may be used during a measurement. Examples of Add-on Accessories include all ND filters, the RS-3, SRS-3 SL-0.5X and SL-1X lenses.

 To select an Add-on Accessory, touch the ▼ or ▲ icon next to the Add-on Accessory field to scroll through calibrated selections until the accessory of choice appears. A maximum of 3 Addon accessories may be used during a measurement.

How to Set the Number of Measurements to Average

To help improve measurement results, especially measurements where low light levels are being tested, the PR-730/735 can be instructed to make consecutive measurements (1 - 99) and average the results. Following a multiple measurement sequence, the spectra are averaged, and resultant photometric and colorimetric values calculated from the averaged spectra.

1. To set the number of measurements to average, touch the field next to **Average**. The following serene appears:

FIGURE 36 - MEASUREMENT AVERAGE ENTRY SCREEN

- 2. Enter the number of measurements to average. The range is 1 to 99.
- 3. Touch the Back key when done.

HOW TO SET THE ADAPTIVE EXPOSURE TIME

The exposure time is the amount of time the detector is exposed to light. The PR-730/735 utilizes the patented $Adaptive\ Sensitivity^{TM}$ algorithm that automatically selects the proper exposure time for the available signal insuring the most accurate measurement for the available light. Use the following procedure to set Adaptive Sensitivity to ON.

 To set the instrument to Adaptive Sensitivity, make sure the field next to Adaptive reads Enabled.

HOW TO SET A FIXED EXPOSURE TIME

It may be desirable to set a fixed exposure time for an application. For example, when measuring a display for luminance uniformity, the exposure time will be the virtually identical for each measurement since the luminance levels are very similar for every part of the display. In this example, using Adaptive Sensitivity will make the measurement time longer because of the overhead the algorithm creates in its iterative process to find the ideal exposure time. Use the following procedure to set a fixed exposure time.

- 1. If the field immediately to the right of **Adaptive** reads *Enabled*, touch the field to set **Adaptive** to *Disabled*.
- **2.** Touch the field adjacent to *Exposure* to display the following data entry menu:

FIGURE 37 - EXPOSURE TIME ENTRY SCREEN

3. Enter the desired exposure time. The range is 12 ms to 120,000 ms (Standard Sensitivity) for the and 12 to 300,000 ms (Extended Sensitivity).

Note: The sensitivity range must be set to *Extended* to use the maximum value of 300,000 ms (5 mins.).

4. Touch Back when done.

HOW TO SET THE INSTRUMENT SENSITIVITY RANGE

The PR-730/735 has two *Adaptive* sensitivity ranges – *Standard* and *Extended*. You can set which range the *Adaptive Sensitivity* algorithm uses. For *Standard* sensitivity, the exposure time range is 6 ms to 6,000 ms. For *Extended* sensitivity, the exposure time ranges from 6 ms to 30,000 ms thus *extending* the sensitivity. To set the *Sensitivity* range:

- 1. Make sure Adaptive is set to Enabled.
- 2. Touch the ▼ or ▲ icon in the Sensitivity field to toggle between Standard and Extended.

HOW TO SET THE MEASUREMENT SPEED (PR-730/735 ONLY)

The total time needed to complete a measurement is certainly an important issue. This feature can help speed up measurements by changing the way the Adaptive Sensitivity determines when a measurement is completed. In the *Fast* mode, the total measurement time will be approximately halved. In *2X Fast*, total measurement time will be reduced approximately 4 times and in *4X Fast* by approximately 8 times.

 \triangle

Caution: To insure measurement quality (accuracy and repeatability) is not adversely affected while using one of the optional measurement speeds (Fast, 2X Fast or 4X

Fast), we strongly recommend running tests for accuracy and repeatability prior to using these modes for critical measurements. This is most easily achieved by comparing results with measurements made in the Normal mode.

To select a Speed mode:

- 1. Make sure Adaptive is set to Enabled.
- 2. Touch the ▼ or ▲ icon in the Speed field to toggle between Normal, Fast, 2X Fast and 4X Fast.

How to Set the SYNC Mode

The PR-730/735 can be instructed to automatically adjust the exposure time to the frequency of the source. This can significantly improve the accuracy and precision of the measurement of repetitive, intense sources. When measuring these types of sources, the instrument may only be exposed to a very few "pulses" of light. Since the instrument has no way of knowing at what point in the pulse train the measurement started (e.g. leading edge or trailing edge) two successive measurements of the same stimuli may yield unacceptably different results. By knowing the frequency of the source, the exposure time can be adjusted to an even multiple of the pulse rate thereby insuring that entire pulses are captured improving the accuracy and repeatability of the measurements. This is not an issue if the repetitive source being measured is relatively low level yielding a long (> 1 second) exposure time.

There are three SYNC modes, *None, Automatic* and *Manual*. If set to *None,* obviously no modification of the exposure time will occur. In *Automatic* mode, the instrument samples the rate of the source and in *Manual* mode the user inputs the frequency of the device under test.

To set the SYNC mode:

- 1. Make sure Adaptive is set to Enabled.
- 2. Touch the ▼ or ▲ icon in the SYNC field to toggle between None, Manual, and Automatic.
- **3.** If **Manual** is selected, touch the field adjacent to *Frequency to* access the following data entry screen:

FIGURE 38 - SYNC PERIOD DATA ENTRY SCREEN

- **4.** Touch the numeric keys to enter the SYNC period. The range is 20 to 400 Hz.
- **5.** Touch **Back** when finished.

How to Set Smart Dark Mode (PR-730/735 Only)

During a measurement the PR-730/735 make two separate measurements – one of the optical signal (**Light**), and a second measurement of the detector dark current (**Dark**). By enabling the **Smart Dark** feature, the PR-730/735 will attempt to use the same dark current values for more than one measurement thus reducing total measurement time by approximately half. The *Smart Dark* feature is used when the instrument determines that the (second or successive) measurement in a series is using the same exposure time as the first measurement. If a fixed exposure time is used for a measurement, *Smart Dark* will be used until the exposure time is changed.

Smart Dark is a useful tool for applications such as display uniformity, or other testing where multiple measurements of the same light level are performed.

To enable Smart Dark:

1. Touch the field next to **Smart dark** to toggle between *Enabled* and *Disabled*.

UTILITIES FUNCTIONS

FIGURE 39 - UTILITIES MENU

The Utilities functions include, in addition to calibrating the touch screen described earlier, seldom used features such as **Restoring the Calibration files**, **Restoring Standard Illuminants** and **Updating Firmware**. The **Services** item is has a factory only accessibility status.

HOW TO RESTORE CALIBRATION/ILLUMINANT FILES

This feature should only be used to restore all calibration factors and standard illuminant files to the factory default settings.

Requirements:

- 1. Secure Digital (SD) card.
- 2. SD card reader.
- 3. Zip file with calibration/illuminant information from Photo Research.

RESTORE PROCEDURE

- 1. Connect the USB card reader to the PC.
- 2. Copy all calibration and illuminant files (contact Photo Research to obtain these files) to the SD card.
- 3. Power on the PR-730/735.
- 4. Insert the SD card into the instrument.
- 5. Touch *Menu*.
- 6. Touch Utilities.

FIGURE 40. PR-730/735 UTILITIES MENU.

- 7. Touch **Restore Calibration** to restore all calibration factors. If restoring standard illuminants, touch **Restore Illuminants**.
- 8. Once the restore process is successfully completed the instrument will power down.

Note: If any errors occurs during this restore process consult factory immediately.

HOW TO UPDATE THE FIRMWARE

The firmware can be easily updated in the field. Simply insert the SD card with the latest firmware revision and instruct the instrument to update.

Note: Calibration and Illuminant factors DO NOT have to be reloaded after a firmware update.

REQUIREMENTS

SECURE DIGITAL (SD) CARD.

- 1. SD card reader.
- 2. Latest firmware PR7XXHW.hex file from Photo Research.

UPDATE PROCEDURE

- 1. Connect the USB card reader to the PC.
- 2. Copy the file **PR7xxHW.HEX** supplied by Photo Research on to the SD card.
- 3. Power on the PR-730/735.
- 4. Insert the SD card.
- 5. Touch Menu.
- 6. Touch Utilities.
- 7. Touch *Update Firmware*.
- 8. In the confirmation screen that appears, touch **Yes** to continue, or **No** to return to the **Utilities** menu.

FIGURE 41 - PR-730/735 FIRMWARE UPDATE PROMPT.

- 9. If **Yes** was selected, the firmware is automatically updated.
- 10. At the screen that appears following the completion of the update, press **OK** to restart the instrument and initialize the new firmware.

FILE SETTINGS

The *File Settings* options pertain to accessing the Secure Digital (SD) card installed in the card slot of the PR-730/735. If no card is inserted in the slot, these options are not available for change (grayed out). The *File Settings* option allows the user to setup the following features:

- Auto Save Allows files to be automatically saved to an SD card(when available).
- SD File Field Select measurement file to store measurements in.
- Create/Delete/Rename measurements files.
- Prompt user for SD card during shutdown if measurements exists in RAM.

HOW TO ACCESS THE FILE SETTING SCREEN

- 1. Touch Menu.
- **2.** Touch *File Settings*.
- 3. Touch *Back* to exit to the *Main Manu* after all options have been selected.

FIGURE 42 - SECURE DIGITAL CARD FILE SETTINGS.

AUTO SAVE

With **Auto Save** set to ON, measurements are automatically saved to the file name in the **SD Field** in addition to the internal RAM memory area. Use the \blacktriangledown or \blacktriangle icons to toggle between **Auto Save ON** or **Auto Save OFF**.

SD FILE FIELD

The **SD File** field shows the current measurement file name that measurements are being saved to when **Auto Save** is enabled.

- **1.** The ∇ or \triangle icons are used to scroll through the available files until the file of choice appears.
- 2. If you wish to create a new file, it can be created using the New File function. Refer to the Creating New Measurement File section for information. If no SD card is present the SD File field will show the last accessed file (grayed out).
- **3.** If the last accessed measurement file does not exist on the SD card, the following prompt will appear:

FIGURE 43 - MEASUREMENT FILE DOES NOT EXIST ON SD CARD.

4. To create the file touch OK.

OR

To create a new measurement file touch **New File** If **Cancel** is pressed this screen will appear after every successful measurement unless **Auto Save** is disabled.

HOW TO CREATE A NEW MEASUREMENT FILE

Multiple measurements files with up to 200 measurements per file can be saved on the SD card. The file name can be up to 8 characters long with no spaces or extensions.

To Create a new file:

1. Touch New File

FIGURE 44 - SD CARD NEW MEASUREMENT FILE NAME ENTRY.

2. Enter the desired file name – 8 characters max with no extension. As the characters are pressed, they appear in the window at the top of the screen. Press Shift to display a second set of characters as shown in following example.

FIGURE 45 - SECOND CHARACTERS SET.

- 3. Touch *Back* to finish and save the file.
- **4.** From this point as long as **Auto Save** is enabled, all measurements are saved to the selected file.

HOW TO DELETE A MEASUREMENT FILE

To delete a measurement file:

- 1. Insert the SD card with the measurement file to be deleted.
- 2. Select the desired file to be deleted in the *SD File* field using the ▼or ▲ icons.
- 3. Touch Delete

Note: All measurements in the file will be lost.

HOW TO RENAME A MEASUREMENT FILE

- 1. Insert SD card with the measurement file to be renamed.
- 2. Select the desired file to be renamed in the **SD File** field using the ▼or ▲ icons.
- 3. Touch Rename.
- 4. Enter the new name for the file.

FIGURE 46 - MEASUREMENT FILE RENAME.

5. Touch *Back* to complete the process.

How to Set Auto Save on Shutdown

When "Save unsaved measurements to SD card on shutdown" is enabled the instrument will prompt the user to save all measurements in RAM to the SD Card before shutting down. The user will have 5 minutes (300 sec.) to select one of the following options.

- 1. To save measurements on SD card, touch Yes.
- 2. To shut down without saving, touch No.
- 3. To go back to the previous menu and not shut down, touch Cancel.

This prompt will not appear if **Auto Save** is enabled, as the measurements are automatically stored following a measurement.

FIGURE 47 - AUTO SAVE ON SHUTDOWN PROMPT.

If no decision is made within 300 seconds (5min.) the instrument will power down and all current measurements will be lost.

EXPLORER SETTINGS

Explorer Settings determine the memory location (Internal RAM or External SD card) and file name (if SD is selected) for viewing stored measurements.

ACCESSING THE EXPLORER SETTINGS SCREEN

- Step 1) Touch Menu.
- Step 2) Touch Explorer Settings.

FIGURE 48 - EXPLORER SETTINGS.

CURRENT VIEW

The *Current View* option selects the memory location (Internal RAM or External SD). Touch the ▼ or ▲ icons to toggle between *Internal RAM* and *External SD Card*.

SD FILE

If *External SD Card* has been selected as the *Current View*, the user can select a measurement file to view in the *File Explorer*. The measurement file can be selected by touching on the ∇ or \triangle icons. Once the desired measurement file has been selected simply navigate back to the *File Explorer* to start viewing the measurements contained in the file.

Measurement file on SD card - name and measurement number being viewed.

FIGURE 49. FILE EXPLORER.

HOW TO RECALL MEASUREMENTS STORED ON SD CARD

Measurements stored on the SD card can be recalled in three ways. 1) Using the instrument explorer, see section for more information, 2) Using SpectraWin 2.0 (optional) *Import* feature, refer to SpectraWin 2 manual for more information 3) Using the in-built *Remote Control Mode* capability, see Remote Control Command Detail section for more information.

MEASUREMENT TYPES

The PR-730/735 can make several types of measurements depending on the type of accessory being utilized. They include Lumens (Watts), Luminous Intensity (Radiant Intensity), Luminous Flux (Radiant Flux) Luminance (Radiance) and Illuminance (Irradiance). The most typical measurement is one of radiance in watts / steradian / meter² and luminance in footlamberts and cd/m².

LUMINANCE / RADIANCE

Luminance is defined as luminous flux (lumens) per solid angle (steradians) per unit area being emitted in a given direction and is calculated from *Radiance* (watts/steradian/meter²).

The SI equation for luminance is cd/m^2 (lumens/steradian/meter²). The English equivalent is footlamberts ($1/\pi$ lumens/steradian/foot²). The relationship between cd/m² and footlamberts is: 1 footlambert = 3.426 cd/m². Luminance is measured whenever it is desirable to know the photometric brightness of self-emitting devices, transmissive objects or a surface upon which light is being reflected. Typical applications include display brightness, projector screen brightness etc. Ideally, the object being measured exhibits a uniform emittance pattern over the entire emitting surface.

Luminance measurements with and the PR-730/735 are made with any of the objective lenses, or with the fiber probe (FP-655 / FP-670) or with the luminance probe (LA-655 / LA-670)only. The lenses include the MS-75, SL-0.5X, SL-1X, SL 2.5X and SL-5X.

In the following example, let's say a projector screen, the light incident on the surface is illuminance, and the light being reflected from the surface is luminance.

FIGURE 50 - ILLUMINANCE / LUMINANCE CONCEPT

HOW TO MAKE A LUMINANCE / RADIANCE MEASUREMENT

If using an objective lens, the first step is to align and focus the optical system (lens and eyepiece) on the target.

FIGURE 51 - MS-75 LENS

USING AN OBJECTIVE LENSES

Aligning and focusing the Optical System (Both and PR-730/735)

- 1. If using the MS-75, make sure the target is out of focus by defocusing the lens. If using a fixed focus lens, such as the MS-2.5X, move either the target or instrument until the target is out of focus.
- 2. Turn the eyepiece until the measuring aperture (black spot in the center of the field of view) is in sharp focus. If the entire aperture does not focus simultaneously, make sure the **top** and **bottom** of the aperture are in focus.
- **3.** Focus on the target. If using the MS-75 lens, rotate the lens focusing ring until the target is in focus. If using a fixed focus lens, move either the instrument or the target until sharp focus is achieved. **Do not use the eyepiece adjustment to focus on the target.**
- **4.** Make sure the measuring aperture falls within the lit area of the target. Failure to adhere to this step will result in erroneous readings. If possible, or unless otherwise specified, we recommend that the diameter of the aperture cover 50% to 80% of the smallest dimension of the object (e.g. character '1' in Figure 52).

FIGURE 52 - APERTURE ALIGNMENT

- **5.** From the **Instrument Setup** menu, touch the ▲ ▼ icons adjacent to *Primary Accessory* until the installed lens appears.
- **6.** Make any other changes in the *Setup* menu such as *Sensitivity, Speed, Average* etc.
- **7.** Touch the **MEASURE button** to begin a measurement.

FIGURE 53 - INSTRUMENT SETUP MENU

USING THE FP-730

FIGURE 54 - FP-655 / FP-670

The FP-730 Flexible Probe enables the PR-730/735 to measure surface luminance and radiance of backlit sources (e.g. cathode ray tubes, fluorescent lamps and self-luminous displays) that can be placed in contact with the tip of the Probe.

The Flexible Probe is particularly useful for measuring in nearly inaccessible locations. The probe consists of a 24-inch (0.6 meter), flexible fiber bundle and a threaded mounting adaptor. 4 foot and 10 foot versions are available – contact Photo Research for details.

It can also be used to approximate the luminance of more distant sources, averaged over a circular field. (The acceptance angle of the probe is approximately 30° at the half-power points and 50° at the 10%

response points. The measuring area is 0.125 inch (3 mm) in diameter when the tip of the probe is placed in contact with a Lambertian source.

Warning: The FP-730 is not recommended for use when measuring LCDs as the act of coming in contact with the device may distort the surface and yield erroneous readings and may cause damage to the display.

- 1. Remove the MS-75 Objective lens or other accessory by turning it counter-clock-wise.
- 2. Install the FP-730 by screwing in clock-wise. **Do not over-tighten!**
- 3. From the **Instrument Setup** menu, touch the ▲ ▼ icons adjacent to *Primary Accessory* until **FP-730** appears. Note that only the largest aperture can be used for this accessory. The instrument will automatically set the **Aperture** selection to the largest system configured aperture.
- 4. Make any other changes such as Sensitivity, Speed, Average etc.
- 5. Place the front surface of the probe tip in contact with the target. Make sure it is within the lit area of the device.
- 6. Touch the **MEASURE button** to begin a measurement.

USING THE LA-730 LUMINANCE ADAPTOR

FIGURE 55 - LA-730 LUMINANCE ADAPTOR

The Luminance Adaptor enables the PR-730/735 to measure surface luminance and radiance of backlit sources (e.g. cathode ray tubes, fluorescent lamps and self-luminous displays) that can be placed in contact with the rubber cup of the Adaptor. It can also be used to approximate the luminance of more distant sources, averaged over a circular field. (The acceptance angle of the adaptor is approximately 12.5° at the half-power points and 14° at the 10% response points. The measuring area is 0.52 inch (13.2 mm) in diameter when the cup of the accessory is placed in contact with a Lambertian source.

The LA-730 is not recommended for use when measuring LCDs as the act of coming in contact with the device may distort the surface and yield erroneous readings and may cause damage to the display.

- 1. Remove the MS-75 Objective lens or other accessory by turning it counter-clock-wise.
- 2. Install the Luminance Adaptor by screwing in clock-wise. **Do not over-tighten!**
- 3. From the **Instrument Setup** menu, touch the ▲ ▼ icons adjacent to *Primary Accessory* until **LA-730** appears.
- 4. Make any other changes such as Aperture, Sensitivity, Speed, Average etc.
- 5. Place the front surface of the rubber cup of the Luminance Adaptor in contact with the target. Make sure it is within the lit area or the device.
- 6. Touch the **MEASURE button** to begin a measurement.

ILLUMINANCE / IRRADIANCE

Illuminance is defined as the density of luminous flux incident on a surface, or light falling on a surface and is calculated from Irradiance ($watts/meter^2$). Three factors help determine illuminance: the luminous flux of the source, the angle of incidence of the light falling on the plane and the distance from the source to the measured plane. Illuminance is given by lux (lumens per $meter^2$) and footcandles ($lumens/foot^2$). The relationship between footcandles and lux is: 1 footcandle = 10.76 lux. In the following example, the light falling on the measured plane is the illuminance.

FIGURE 56 - ILLUSTRATION OF ILLUMINANCE

For the PR-730/735, the (optional) accessories used to measure illuminance are the CR-730, and the RS-3 or SRS-3. The CR-730 is a diffuser that serves as the surface upon which the incident light falls. During calibration these accessories are photometrically calibrated using a standard lamp whose candela rating has been certified to NIST standards. By knowing the candelas of the lamp, the illuminance can be calculated by:

$$I = \frac{cd}{d^2}$$

EQUATION 1 - ILLUMINANCE FROM CANDELAS

Where: *I* = Illuminance in *lux* or *footcandles*.

d = Distance in feet (footcandles) or meters (lux).

Following a measurement, candelas can be calculated by:

$$cd = I * d^2$$

EQUATION 2 - CANDELAS FROM ILLUMINANCE

HOW TO MAKE AN ILLUMINANCE / IRRADIANCE MEASUREMENT

Illuminance measurements are made one of two ways with the PR-730/735. The first method involves the use of the CR-730 cosine receptor. The second method utilizes the use of a reflectance standard such as the RS-3 or SRS-3.

USING THE CR-730

FIGURE 57 - CR-730

 From the Instrument Setup menu, touch the ▲ ▼icons beneath Primary Accessory to scroll to CR-730, depending on the instrument being used. Make any other setup changes (exposure, sensitivity etc.) at this time. Note that only the largest aperture can be used for this accessory.

The instrument will automatically set the **Aperture** selection to the largest system configured aperture.

- 2. Remove the current *Primary Accessory* from the instrument turning the accessory counter-clockwise.
- 3. Install the CR-730 by turning clock-wise. Hand tighten only. Do not over-tighten!
- 4. Set the white diffuse surface of the CR-730 at the desired distance from the source.
- 5. Press the **MEASURE** button to begin a measurement.

USING THE ICC-730 INTEGRATING SPHERE

FIGURE 58 - ICC-655 / 670 INTEGRATING SPHERE

The ICC-730 is a 3" (76.2 mm) integrating sphere with a 1 inch (25.4 mm) measuring port. It is used to make illuminance measurements typically of point sources such as lamps.

MEASURING PROCEDURE

- 1. From the **Instrument Setup** menu, touch the ▲ ▼icons beneath *Primary Accessory* to scroll to ICC-730, depending on the instrument being used. Make any other setup changes (exposure, sensitivity etc.) at this time.
- 2. Remove the current *Primary Accessory* from the instrument turning the accessory counter-clockwise.
- 3. Install the ICC-730 by turning clock-wise. Hand tighten only. Do not over-tighten!
- 4. Set the front edge of the measuring port at the desired distance from the source. For the best results, the measuring port should be set so that it is perpendicular to the source.
- **5.** Press the **MEASURE** button to begin a measurement.

USING THE RS-3 OR SRS-3 REFLECTANCE STANDARD

The RS-3 Reflectance Standard has an absolute reflectance of 99% (± 1%) from 370 to 780 nanometers. Focusing the PR-730/735 on the plaque allows the resultant luminance reading, in footlamberts (or candelas, meter²), to be converted directly into illuminance values, in footcandles (or lux). It can also be used to establish the 100% level for relative reflectance of materials or to measure the Source part of an L*a*b* test of *Illuminated* samples.

The technique is based on the definition that in the English System, the luminance (in footlamberts) of a perfect Lambertian-diffusing surface is mathematically equal to the illuminance in footcandles which falls on its surface. In metric SI units, illuminance in lux, equals π (3.1416) * luminance (in cd/m²). $lux = \pi * cd / m^2$

This method of measuring illuminance/chrominance is most convenient when physical conditions necessitate remote source measurement, such as ambient light falling on a display surface. Since the illuminance measurement is made in the plane of the RS-3 plaque, the measuring instrument does not need to measure the source directly.

Never touch the surface of the plaque. Any surface damage or discoloration will result in igwedge erroneous readings. Always keep the plaque cover closed when not in use.

Refer to the Cleaning and Handling Instructions for the RS-3 (and SRS-3) at the end of this section.

MEASURING PROCEDURE

The procedure for making illuminance/chrominance, irradiance and reflectance measurements with the RS-3 plaque is as follows:

Remove the protective cover from the reflectance standard and set it in the plane in which it is desired to measure the illuminance/ chrominance, irradiance or reflectance.

1. For direct single source measurements place the RS-3 in the measurement plane, then arrange the instrument so that it is oriented at approximately 45° to the white surface of the plaque, and is sufficiently close so that the measuring aperture is smaller than the image of the light falling on the plaque as seen in the viewfinder.

OR

- 2b) For display surface ambient light measurements, hold the RS-3 plaque against the display screen in the area to be measured.
- 2. Arrange the PR-730/735 so that it is oriented perpendicular to the white surface of the plaque (or at the required angle for the display under test), and is sufficiently close so that the measuring aperture is smaller than the image of the light falling on the plaque as seen in the viewfinder.

- **3.** Place the PR-730/735 on a sturdy tripod or other suitable support.
- **4.** Align and focus the instrument on the reflectance standard. Make sure the measuring aperture is within the illuminated area on the plaque.

Note: For reflectance measurements, it is not necessary to select RS-3 as an accessory since the measurements are *relative* rather than *absolute*.

- **5.** Select the RS-3 (or SRS-3) as **Add-on Accessory 1** in the *Instrument Setup* menu.
- **6.** Press the **MEASURE** button to make a measurement.

CLEANING AND HANDLING INSTRUCTIONS FOR THE RS-3 (AND SRS-3)

Use the following procedure to maintain the unique optical and reflectance properties of the Reflectance Standard. If the material becomes soiled, use a jet of clean dry air to blow the soil off, or rinse with distilled water. A soft bristle brush may be used.

OR

If the material becomes grossly contaminated or scratched, restore its original optical condition by sanding the surface under a stream of running water using a 220-240 grit waterproof emery cloth.

Sand until the surface is totally hydrophobic (water beads and runs off the material immediately).

Rinse with distilled water.

Note: If the emery cloth grit is too fine the finish will be inadequate as the surface may become too smooth and reflect a high level of specular component (mirror image). Also, if the SRS-3 is refinished, it will be necessary to recalibrate if the standard for optimum accuracy.

LUMINOUS / RADIANT INTENSITY

Luminous Intensity is the luminous flux per unit solid angle in a given direction and is calculated from *Radiant Intensity (watts/steradian)*. It can be easily thought of as luminous flux (lumens) traveling through a cone (solid angle) in a given direction (for example the forward 180°). Luminous intensity is given in *candelas (lumens / steradian)* or *millicandelas* (1 candela = 1000 millicandelas).

FIGURE 59 - ILLUSTRATION OF LUMINOUS INTENSITY

FIGURE 60 - LR-730 LED RECEPTOR

Typical applications for the measurement of luminous intensity include lamps (candelas) and LED's (millicandelas). For the measurement of luminous intensity, the PR-730/735 can be equipped with the LR-730 LED Receptor and or the LR-127 CIE LED Analyzer. During calibration, these accessories are calibrated using sources where the precise area being sampled is used in calculating candelas as given by $candelas = cd/m^2 * area$ where area is the total emitting area of the source.

HOW TO MAKE LUMINOUS INTENSITY / RADIANT INTENSITY MEASUREMENTS

DESCRIPTION

The **LR-730 LED Receptor** enables the PR-730/735 to measure the axial spectral radiant intensity (watts / steradian) and luminous intensity (millicandelas) and color of light emitting diodes (LED's).

The **LR-55** consists of a 2.5 inch (63.5 mm) long tube with an LED port on one end and a mounting thread at the other end. The threaded end is installed into the lens mount of the PR-730/735.

During use, the LED's are inserted into the LED port at the open end of the accessory. Two different sized LED ports are supplied with the **LR-55**. One is designed to accept 0.118" (2.99 mm) diameter LED's, and the other accepts 0.205" (5.21 mm) diameter LED's.

Note: Special adapters can be fabricated for LED's that do not exceed 0.275" (7 mm) in diameter.

Contact Photo Research for details.

GEOMETRICAL CONSIDERATIONS

The **LR-730** is designed to measure the emittance of LED's over an 8.3° acceptance cone.

It is important to note that since the spatial distribution of LED's varies with angle, LED's measured using acceptance cones other than 8.3° will produce different results. Generally, measurements through smaller cones will yield higher values, while LED's sampled over larger cones will produce measurements with lower radiant and luminous intensity values. Therefore, as part of the measurement report it is important to note the acceptance cone sampled during the test.

PROCEDURE - LED ADAPTER CAP REPLACEMENT

If it becomes desirable to switch LED Adapter caps supplied with the LR-730, proceed as follows:

- 1. Loosen and remove the two SAE 4-40 hex cap screws that secure the LED Adapter cap to the main tube.
- 2. Remove the LED Adapter cap.
- 3. Insert the new adapter cap making sure to align the threaded holes in the adapter with the through holes in the tube.
- 4. Replace and tighten the screws. DO NOT OVER TIGHTEN THE SCREWS!!

MAKING MEASUREMENTS

- 1. Remove the MS-75 lens or other accessory by turning counter clockwise.
- 2. Install the **LR-730** by threading it clockwise into the PR-730/735 lens mount. **Do not over tighten.**
- 3. From the *Instrument Setup* menu, select **LR-730** from the Primary Accessory window by touching the ▲ or ▼ icons in the Primary Accessory window.
- 4. Insert the LED into the adapter port and allow at least a 5 minute warm-up (unless otherwise specified).
- 5. Make sure the LED is properly seated in the adapter.
- 6. Touch the **MEASURE button** to begin a measurement.

USING THE LR-127

OVERVIEW

The LR-127 is designed to characterize discrete LEDs per the CIE 127 Technical Report – *Measurement of LEDs*. It satisfies the report's requirement of average luminous intensity by providing both Condition A (2°) and Condition B (6.5°) measurement capabilities. This is achieved by actuating a slide from the **A** position to the **B** setting. There is no need to remove the LED from the fixture during the test insuring the accurate determination of average luminous intensity.

INSTALLING THE LR-127

- 1. Remove the current optical accessory from the PR-730/735 by turning counter-clockwise.
- 2. Remove the lens mount (Instrument Side see Figure 61) by loosening the thumb screw that secures the mount to the main section of the LR-127.
- 3. Screw the lens mount into the PR-650 lens ring. **DO NOT OVERTIGHTEN** the mount.
- 4. Slide the main section of the LR-127 onto the lens mount.
- 5. Rotate the main section until the slide is approximately horizontal and tighten the thumb screw.

INSERTING THE LED

- 1. Tighten the small screw in the LED adapter until the ball tip slightly protrudes into the channel. This will insure a snug fit of the LED by pushing it against the opposite wall of the adapter.
- 2. Insert the LED adapter into the main section of the LR-127 (LED Side see Figure 61) then tighten the thumb screw to secure it.
- 3. Gently insert the T1.75 (5 mm) LED into the acceptance port of the adapter.
- 4. Energize the LED to the desired current and allow sufficient warm up.

MAKING A MEASUREMENT

- 1. Turn on the PR-730/735. Allow at least 5 minute warm up before making critical measurements.
- 2. From the *Instrument Setup* menu, touch the ▲ ▼ icons adjacent to the *Primary Accessory* field to select LR-127A.
- 3. Modify other settings (aperture etc.) as necessary.
- 4. Press the **MEASURE** button to make a measurement and display the results. The photometric values for the LR-127 are given in luminous intensity (millicandelas).
- 5. Record the reading.
- 6. Repeat Step 2 and select LR-127B.
- 7. Touch the **MEASURE** button to make a measurement. Record the results.
- 8. Find the average of the readings from Steps 4 and 7.

LUMINOUS / RADIANT FLUX

Luminous Flux (*given in lumens*) is the basic unit of photometry and is calculated from *Radiant flux* (*given in watts*). It represents the total luminous or radiant output of a source over 360° and is analogous. Typical applications for luminous flux measurements include florescent or incandescent lamps and LEDs where it is required to know the total output of the source.

The correct way to measure luminous (or radiant) flux is by utilizing an integrating sphere. Integrating spheres possess the ability of (as the name implies) integrating or homogenizing the light over the entire 360° emittance pattern of the device under test.

For the PR-730/735, the IS-730 integrating sphere is available for measuring the luminous and radiant flux of LEDs.

OVERVIEW

Figure 62 - IS-730 Outer View

The IS-730 is a 3 inch sphere designed to measure the total luminous flux (lumens) or radiant flux (watts) of LEDs or other small source such as miniature lamps. This accessory consists of a sphere with baffle and LED Mounting Tube (See Figure 63). During operation, the LED is inserted into the interior end of the Mounting Tube, the Adjustment Screw is set so that the tip of the LED protrudes precisely 0.100 inches into the sphere, and the measurement is conducted. The power cables for the LED (plus and minus current) are connected via mini banana jacks located on the anterior end of the mounting tube.

FIGURE 63 - IS-730 INSIDE VIEW

INSTALLING THE IS-730

- 1. Remove the current optical accessory from the PR-730/735 by turning counter-clockwise.
- 2. Install the IS-730 by carefully threading clockwise into the C mount ring located in the front of the instrument.

MOUNTING THE LED

- 1. Loosen the Set Screw (see Figure 63) by turning it counter-clockwise.
- 2. Remove the Mounting Tube from the Collar by gently pulling away from the sphere. If there is any resistance, further loosen the Set Screw.
- 3. Insert the leads of the LED into the two miniature sockets located on the interior end of the Mounting Tube. Push the LED in as far as possible. Take care to note the polarization of the leads. For simplicity, the POSITIVE LEAD should be inserted into the socket corresponding to the RED Banana Jack located on the opposite end of the Mounting Tube.

ADJUSTING THE MOUNTING TUBE HEIGHT

- 1. Referring to Figure 63, position the tip of the LED so that it is directly adjacent to the Height Adjustment Screw, and resting on the outside surface of the Collar.
- 2. Adjust the Height Adjustment Screw so that it is just touching the end of the Mounting Tube next to the LED.
- 3. Attach the LED current source (not supplied) to the Mounting Tube using appropriate miniature banana plugs paying attention to the polarity.
- 4. Supply the appropriate current to the LED and allow at least 10 minutes warm-up. Make sure the LED is properly lit.

- 5. Insert the Mounting Tube into the Collar until the Mounting Tube just touches the top of the Height Adjustment Screw.
- 6. Tighten the Set Screw to hold the Mounting Tube in place. **DO NOT OVER TIGHTEN!**

FIGURE 64 – IS-730 HEIGHT ADJUSTMENT

MAKING A MEASUREMENT

- 1. Touch MENU then Setup then Instrument Setup.
- 2. Touch the ▲ ▼ icons in the *Primary Accessory* field to select IS-730.
- 3. Press the MEASURE button to make a measurement.

MEASUREMENT MODES

Four Measurement Modes are available to the user: Standard, L*u*v*, L*a*b* and RGB Display Cal

STANDARD MODE

In Standard Mode the PR-730/735 performs a measurement then calculates standard photometric and colorimetric values.

L*U*V* / L*A*B* MODES

L*u*v* and L*a*b* measurements use photometric and colorimetric values for CIE L*u*v* or L*a*b* three dimensional color difference calculations.

L*u*v* tests are usually made of self-luminous samples such as LCD's, PDP's, EL, OLED and CRT displays. Therefore, they are best made in a dark environment, free of ambient lighting that might influence the results.

L*a*b* tests on the other hand are typically performed of reflective or transmissive materials such as paint or optical filters where it is necessary to provide an external light in order to measure the object. Therefore *Illuminated* samples must be selected in the L*u*v* or L*a*b* mode. Following the measurement, the light used to illuminate the object is mathematically removed from the measurement. The resultant spectra are then weighted by the white reference (e.g. CIE D-65) as if the sample were being illuminated by the white stimulus. Finally, before color coordinates and eventually L*a*b* are calculated are calculated on the modified spectrum.

Color coordinates of a white reference are used during the calculation of both L*u*v* and L*a*b*. White references stored in the PR-730/735 include D65 (daylight at 6500 Kelvins), Illuminant A (Black body radiator at 2856 Kelvins), Illuminant B (daylight at 4875 Kelvins), Illuminant C (daylight at 6772 Kelvins), Illuminant D50 (daylight at 5000 Kelvins), Illuminant D55 (daylight @ 5500 Kelvins) and Illuminant D75 (daylight at 7500 Kelvins).

Following the measurement(s), L*u*v* and L*a*b* values are calculated as follows:

$$L^* = 116 \ \text{(}/Y_o \ \text{)}^{3} - 16$$

$$u^* = 113 L^* \ \text{(}'-u'_o \ \text{)}$$

$$v^* = 13 L^* \ \text{(}'-v'_o \ \text{)}$$

$$b^* = 200 \ \text{(}/Y_o \ \text{)}^{3} - \text{(}/Y_o \ \text{)}^{3} \ \text{)}$$
EQUATION 3 - L*U*V*
$$EQUATION 4 - L*A*B*$$

Where X, Y, Z are the measured Tristimulus values, X_0, Y_0 and Z_0 are the Tristimulus values of the white illuminant, u'_0 and v'_0 are the CIE 1976 u'v' values of the white illuminant.

HOW TO MAKE L*U*V* OR L*A*B* MEASUREMENTS

- 1. Touch the ▼ or ▲ icons in the Measurement Mode field to select L*u*v* or L*a*b*.
- 2. To make L*u*v* or L*a*b* measurements, it is necessary to first select a white reference (Illuminant). Touch Select at the bottom of the Illuminant column. A screen similar to the following appears:

FIGURE 65 - L*U*V* SETUP SCREEN

FIGURE 66 - FILE RECALL SCREEN

3. To access factory stored illuminants, touch the ▼ or ▲ icons in the Current View field until Standard Illuminants appears. An Illuminant may also be a previously measured AND STORED file – for example a florescent lamp. If it is desirable to use a previous measurement then select Internal RAM or External SD Card (if an SD card is inserted).

OR

Press the MEASURE button then touch Back then Recall to accept the measured data.

FIGURE 67 - STANDARD ILLUMINANTS SCREEN

4. If using a pre-stored illuminant, at the top of the screen that pops up, the title of the *lluminant appears*. Touch **Next** (or **Previous**) to scroll through available choices.

- 5. Touch Back.
- **6.** Touch **Recall** to select the illuminant of choice. The *Standard Illuminant* screen updates to show the data of the illuminant selected.

FIGURE 68 - L*U*V* SETUP SCREEN

Touch **Delta E Disabled** to *enable* color difference measurements if desired. If **Delta E** is enabled, **Select** under the *Reference* column becomes activated. The Reference is the "Golden Sample" against which all subsequent samples are compared for color difference calculations. Delta E (CIE Δ E*ab or Δ E*uv) calculates color difference in the respective color systems using the following equations:

$$\Delta E * ab = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$$

$$\Delta E * uv = \sqrt{(\Delta L^*)^2 + (\Delta u^*)^2 + (\Delta v^*)^2}$$

EQUATION 5 - Δ E*AB EQUATION 6 - Δ E*UV

7. To make a *Reference* or *Source* measurement:

In most cases, a *Source* or *Reference* measurement is a *Luminance* measurement. Therefore, the instrument should be set up to perform this type of measurement.

In the case of a *Source* measurement, a diffuse reflectance standard, such as the Photo Research RS-3 or SRS-3, is placed in the exact location of the measurement area of the device under test – for example the face of a display. For making measurements of test samples, the reflectance standard is replaced by the device under test without disturbing or changing the position of the measurement instrument (or PR-730/735) or the light source.

a. Touch **Select** under the *Reference* or *Source* column. The following screen appears:

- b. Make sure Internal RAM is selected in the Current View field.
- c. Press the MEASURE button.
- d. At the completion of the measurement, touch Back.
- e. To use this measurement, touch **Recall**. To use a previously stored measurement, touch **Prev** or **Next** until the measurement of choice appears then touch **Recall**.
- **8.** Once the *Illuminant* and *Source* and optional *Reference* have been selected and or measured, the PR-730/735 is ready to perform L*u*v*, L*a*b* and optional Delta E measurements. To perform these measurements:
 - a. Press the **MEASURE button**. A result screen similar to the following appears:

FIGURE 69 - L*U*V* RESULT SCREEN

In this example, **Delta E** has been selected in the *Measurement Mode* setup screen. The displayed values of x, y, u', v', u, v, CCT, mk-1, and dev are the measured values of the sample.

RGB DISPLAY CAL

The **PR-730 RGB** measurement mode is designed to provide the user with a convenient, spectrally based interactive method of performing white point calibrations of CRT's, LCD's PDP's and digital projectors or any other display technology that features adjustable RGB channels.

During use, the user is presented with a bar graph and numerical levels indicating the deviation amplitude and direction of the three **RGB** primaries from the target settings. Once the RGB levels of the display are adjusted to the target values set by the **RGB** algorithm, the white point is properly adjusted.

Since the **PR-730/735** are spectrally based systems, color matching can be achieved without having a "golden sample" available as a reference. White point calibrations can be based on user entered target values including luminance and CIE chromaticity coordinates (CIE 1931 x, y values). The user can also select pre-stored phosphor sets (NTSC, EBU, CIE, HDTV and SMPTE) or create user phosphor values through measurement or data entry.

SETTING UP RGB MEASUREMENTS

Prior to making **RGB** measurements, the proper parameters must be entered into the **RGB** setup menu to insure correct results.

FIGURE 70 - RGB DISPLAY CAL SETUP SCREEN

Mode

Two options are available in this field: Match Sample and Match Data.

In the **Match Sample** mode, white point calibrations are based on a measured reference display.

Match Data mode allows the user to enter target values in terms of luminance (Y) and CIE 1931 x, y values.

Whichever method is chosen, all **RGB** measurements require that a phosphor (either stored or custom) be selected and that a reference white point is set.

SELECTING A PHOSPHOR

Proper white point calibration is dependent on the color characteristics of the display primaries. Phosphor is used as a historical reference to CRT's. The data for several types of phosphors are prestored in the PR-730/735. They are CIE, NTSC, EBU (PAL / SECAM), SMPTE and HDTV. The user may also enter display primary chromaticity values, or used measured values.

1. To select a phosphor set touch **Select** located to the right of the **Phosphors** window. The following screen appears:

FIGURE 71 - RGB PHOSPHOR SELECT SCREEN

1. Touch the ▲ ▼ icons in the Phosphors field to select pre-stored values or Custom. If Custom is selected, the user may enter the values in the Red, Green and Blue fields by touching the field located to the right of the field title. For example, touch the field next to xr to display a data entry window as in the following example:

- 2. Touch the desired values, then touch **Back** when finished.
- **3.** Repeat for both chromaticity (x, y) values for each primary. If the values are not known, they may first be measured by turning on only one primary at a time (3 measurements total) and noting the resultant CIE x, y values for entry into these fields.

SETTING THE WHITE POINT

The White Point (White Pt.) is the background or ambient illumination under which the display is viewed and has an effect on the perceived color of the display. Several pre-stored CIE recommended illuminants and daylight simulators can be selected. They include CIE Illuminants D65, A, B, C, D-50 and D-55.

Alternately, ambient sources (room lighting for example) may be measured and used as the White Pt. values.

1. Touch **Select** next to the **White Point** window. The following screen appears:

FIGURE 72 - SELECT RGB ILLUMINANT SCREEN

Touch the ▲ ▼ icons adjacent to Current View to scroll through available selections. Select Standard Illuminants, then touch Prev or Next to scroll through available choices. The title of the currently displayed data set appears at the top of the screen – in this example, CIE Illuminant

OR

Touch the $\blacktriangle \blacktriangledown$ icons adjacent to **Current View** to scroll through available selections. Select **Internal RAM** or **External SD Card**, then touch **Prev** or **Next** to scroll through selections. The title of the currently displayed data set appears at the top of the screen – in this example CIE Illuminant D75.

OR

Press the **MEASURE** button to make a measurement of the illuminant.

- 3. Touch **Recall** to accept the selection.
- 4. When finished, touch Back.

MATCH SAMPLE PROCEDURE

FIGURE 73 - RGB DISPLAY CAL SETUP SCREEN

- 1. Touch the ▲ ▼ icons adjacent to the **Match Method** field to select **Match Sample**.
- 2. Touch **Select** located next to **White Point**. The Measurement screen appears.
- 3. Set up the display to be measured, then press the **MEASURE** then touch **Recall**, or just touch **Recall** to select the currently displayed values.
- 4. Touch **Back** to return without making changes.

OR

If measurements are stored in RAM or on an SD card, they can be accessed and recalled.

In the preceding example, measurement number 2 of 3 is displayed.

Y x, y (OR x, y) DATA ENTRY PROCEDURE

FIGURE 74 - Y XY DATA ENTRY SCREEN

Since the PR-730/735 measures the spectral content of the sample, it is possible for the instrument to calibrate the display white point based on user entered values for luminance and CIE chromaticity. The user can select to enter **Y x**,**y** (luminance and CIE 1931 X, y values) or **x**,**y**. If **Y x**,**y** is selected, after calibration of the display, the luminance is properly adjusted to the entered value for **Y**. If **x**,**y** is chosen, the absolute luminance value is ignored and the display is calibrated to chromaticity values only.

Y x, y Procedure

- 1. Touch the ▲ ▼icons adjacent to **Mode** to select **Match Data**.
- 2. Touch the ▲ ▼icons adjacent to Match Method to display either Y x,y or x,y.
- 3. Enter the desired values for **Y**, **x** and **y** in the fields directly below the **Factory** field by touching any of the fields. This action brings up a data entry screen like the following example for **Y**:

FIGURE 75 - RGB DATA ENTRY

Note: If xy is selected, data entry for Y is unavailable.

- 4. Enter the value for Y, and then touch Back.
- 5. Repeat for x and y.

MAKING AN RGB MEASUREMENT

When all parameters have been successfully set, white point calibration can commence.

1. Press the **MEASURE** button to begin the **RGB** measurement sequence. A screen similar to the following appears:

FIGURE 76 - RGB MEASUREMENT SCREEN

- 2. The instrument will make continuous measurements until the **Abort** key is touched. Adjust the primaries of the display until the vertical indicator bars for **R**, **G** and **B** are all at the center of the respective colored bars and the % deviation (values to the right of the bars) reads 0.00.
 - Note that updated *Luminance, CCT* and *chromaticity* values are continuously displayed during the calibration sequence.
- 3. Touch **Abort to** stop the measurement.
- 4. Touch **Back** to exit this screen and return to the Measurement Setup Screen at the completion of the calibration.

STANDARD ILLUMINANTS

A Standard Illuminant is a spectral file of a white or near white stimulus that is used for L*a*b*, L*v*v* and RGB. These illuminants were obtained from the CIE (Commission Internationale d'Eclairge) and included Illuminant A (blackbody radiator at 2856 Kelvins), Illuminant B (Daylight simulator at 4850 Kelvins), Illuminant C (Daylight Simulator at 6772 Kelvins), Illuminant D50 (Daylight Simulator at 5,000 Kelvins), Illuminant D55 (Daylight Simulator at 5,500 Kelvins, Illuminant D65 (Daylight Simulator at 6,500 Kelvins), and Illuminant D75 (Daylight Simulator at 7,500 Kelvins) and E (equal energy at all wavelengths).

This feature is informational only. No illuminants can be added or deleted using this function.

1. Touch **Menu** then **Setup** then **Standard Illuminants**. A screen similar to the following appears:

FIGURE 77 - STANDARD ILLUMINANTS SCREEN

- 1. Touch **Prev** or **Next** to scroll through illuminants.
- 2. Touch the | > | icons to scroll through various data screens for the currently displayed illuminant.

TIMED MEASUREMENTS

It may become desirable to make periodic (timed measurements) to, for example, check the drift characteristics at pre-defined intervals for a certain period of time. You may also want to make continuous (repetitive) measurements or a fixed number of measurements. This can be accomplished using the **Timed Measurements** feature.

Note: The *Continuous Measurements* feature should not be confused with the *Measurements to Average* function.

FIGURE 78 - TIMED MEASUREMENTS SCREEN

HOW TO SET TIMED MEASUREMENTS PARAMETERS

TIMED MEASUREMENTS

- 1. Navigate to the **Timed Measurements** screen by touching Menu, then Setup then Timed Measurements.
- 2. If it is desirable to repeat the timed measurement sequence, set **Continuous Measurements** to **Enabled.**
- 3. Set the time between measurements by touching the **Measurement Interval** filed. The following data entry screen appears:

FIGURE 79 - MEASUREMENT INTERVAL ENTRY FIELD

- 4. Enter the measurement interval (range is 1 to 86400 seconds [24 hours]) then press **Back**.
- 5. Press the **Measurement Button** to initiate the Timed Measurement Sequence.

CONTINUOUS MEASUREMENTS

- 1. Navigate to the **Timed Measurements** screen by touching **Menu**, then **Setup** then **Timed Measurements**.
- 2. Touch the **Timed Measurements** field to that it displays **Enabled.**
- 3. Touch the Continuous Measurements filed until Enabled appears.
- 4. Press the **Measure button** to initiate a continuous measurements.

CONNECTIVITY

USB

The PR-730/735 is equipped with a Mini-B USB connector allowing for communication with the optional SpectraWin 2° software, or to control the instrument using Remote Mode commands.

INSTALLING THE USB DRIVER

Prior to using Remote Control commands or SpectraWin 2° software, the USB driver must be installed on your personal computer.

- 1. Turn on the PR-730/735.
- 2. Connect the PR-730/735 to the PC via the USB interface cable.
- 3. The following screen will appear:

FIGURE 80 - NEW HARDWARE WIZARD.

- 4. Choose No, not at this time and click Next.
- 1. Choose Install from a list or specific location (Advanced) and click Next.

FIGURE 81 - PR-730/735 USB DRIVER INSTALL.

- 5. Insert the CD supplied with PR-730/735 into an appropriate CD drive.
- 6. Click Next.
- 7. Click on Continue Anyway.

FIGURE 82 - WINDOWS XP COMPATIBILITY WARNING FOR PR-730/735 USB DRIVER.

8. Click Finish

FIGURE 83 - PR-730/735 USB DRIVER INSTALL COMPLETE.

USB HUB TYPE

Virtually all modern computers today supply current through the Universal Serial Bus (USB) hub to power external devices when necessary. Typically, the current supplied is 500 mA. Some external USB hubs supply only 100 mA or no current at all. The *USB Hub Type* option provides the means of selecting the power available to the instrument via the PC. If there is insufficient current available for the USB device (/670), Windows will issue a warning and disable the device.

DETERMINING USB HUB POWER ON WINDOWS XP

- 1. Click on start
- 2. Right click on **My Computer** in the *start* menu.
- 3. Click on **Properties** to access the *System Properties* screen.
- 4. Click on Hardware.

FIGURE 84 - SYSTEM PROPERTIES SCREEN

- 5. Click on **Device** Manager.
- 6. Expand the Universal Serial Bus controllers selection by clicking on the +. icon.
- 7. Right click on USB Root Hub.
- 8. Click on Properties.
- 9. Click on **Power**. The **Total power available** is displayed as illustrated in *Figure* 85.

FIGURE 85 - USB POWER SCREEN

SETTING USB HUB TYPE

The **USB Hub Type** option can be accessed via the **Connectivity** preference option.

Navigate to *Menu* → *Preferences* → *Connectivity*.

FIGURE 86 - USB CONNECTIVITY MENU.

No Power

Press the ▲ or ▼ icons adjacent to USB Hub Type until **No Power** appears. With No Power selected, the instrument runs entirely on the battery and draws no power from the USB hub.

Low Power (100mA)

Press the ▲ or ▼ icons adjacent to **USB Hub Type** until **Low Power** appears.

High Power (500mA)

Press the ▲ or ▼ icons adjacent to USB Hub Type until High Power appears.

BLUETOOTH* (OPTIONAL)

FIGURE 87: BLUETOOTH TOPOLOGY.

The optional Bluetooth feature allows the PR-730/735 to be wirelessly controlled by a remote host using Remote Mode commands from a user developed application or terminal emulator such as HyperTerminal or SpectraWin 2 control software up to 100 meters¹ away. When installed, the supplied driver creates a virtual RS-232 port that operates like a traditional port with respect to programming.

Installing the (Photo Research supplied) Bluetooth Adapter Driver on Host

The USB Bluetooth adapter enables Bluetooth connectivity on the PC host side. The adapter allows the Host to communicate with the PR-730/735 wirelessly. Before Bluetooth communication can commence between the Host PC and the /670, adapter drivers need to be installed on the PC. This section will guide in installation of the drivers found on the *PR-7xx Utilities CD*. This procedure is designed for *Windows XP* only.

- 1. Insert the CD supplied with the PR-730/735 into an appropriate CD drive.
- 2. Click on the start icon.
- 3. Click Run.
- 4. Click Browse.

¹100 meter range is in open space using the Linksys USBBT100 Bluetooth adapter.

5. Navigate to the drive containing the PR-7xx Installer CD, and double click on **Setup**.

Note: Do not insert the Bluetooth adapter into a USB port until prompted by the Driver Setup Wizard.

Click on Next.

FIGURE 88 - PR-7XX INSTALLER.

6. Choose I Agree and click Next.

FIGURE 89 - PR-7XX INSTALLER LICENSE AGREEMENT SCREEN.

7. The following ReadMe screen appears.

FIGURE 90 - USB DRIVER INSTALL LOCATION README.

8. Click *Next*. The following software Destination location screen appears:

FIGURE 91 - INSTALL DIRECTORY SELECTION.

9. Click **Next** (then go to Step 11) to install the driver to the default directory (Photo Research) or click **Browse** to bring up the following screen and select a different folder.

FIGURE 92 - PR-7XX INSTALLER NON DEFAULT DIRECTORY SELECTION.

- 10. Navigate to and select the drive and folder of choice, and then click OK.
- **11.** From the screen that appears, select the **Windows XP Bluetooth Drive.** A demo version of SpectraWin2 can also be installed if desired. .

FIGURE 93 - PR-7XX UTILITIES COMPONENT SELECTION.

12. Click Next to start the installation.

FIGURE 94 - PR-7XX INSTALLER START INSTALLATION.

13. The WIDCOMM Bluetooth software installation will start.

FIGURE 95 - PR-7XX UTILITIES INSTALLATION FINISH.

- 14. Click on o accept the terms in the license agreement and click Next.
- 15. Click Next
- 16. Click Install.

FIGURE 96 - WIDCOMM BLUETOOTH SOFTWARE INSTALLER.

- **17.** During the Setup the driver will prompt for the USB dongle. **DO NOT INSERT DONGLE UNTIL PROMPTED TO DO SO.**
- 18. Click Finish.

FIGURE 97 - WIDCOMM DRIVER INSTALLATION COMPLETED.

19. The *My Bluetooth Places* icon appears on the desktop after a successful installation.

FIGURE 98 - MY BLUETOOTH PLACES ICON.

20. The Initial Bluetooth Configuration Wizard will appear.

FIGURE 99 - INITIAL BLUETOOTH CONFIGURATION WIZARD.

- 21. Click Next.
- 22. Click Next allowing the default settings.

FIGURE 100 - DEVICE NAME AND TYPE SELECTION.

23. Make sure that only Bluetooth Serial Port is checked.

FIGURE 101 - BLUETOOTH SERVICE SELECTION.

24. Click Skip.

FIGURE 102 - BLUETOOTH FIND DEVICE PROMPT.

25. Click *Finish* to complete the *Initial Bluetooth Configuration Wizard* setup.

FIGURE 103 - INITIAL CONFIGURATION WIZARD COMPLETE.

26. The Bluetooth hardware is now ready to use.

ENABLE/DISABLE BLUETOOTH

Bluetooth communications is enabled via the connectivity preferences menu.

1. Navigate to *Menu*→ *Preferences* → *Connectivity*.

 $\label{eq:figure 104-bluetooth/usb} \textbf{Connectivity Menu.}$

- 2. The PR-730/735 displays the current Bluetooth status. When the DISABLED icon is viewable, Bluetooth is disabled. Clicking on the DISABLED icon turns Enables Bluetooth.
- 3. The following table describes the four Bluetooth modes of operation.

Bluetooth Status Bluetooth Icon		Functionality		
Disabled No Icon		Bluetooth Off		
Enabled	*			
Ellableu	•	paired remote host.		
Enabled & Discoverable	(Blinking)	Bluetooth enabled and discoverable by any remot		
Eliabled & Discoverable	1 (2	Bluetooth enabled and connectable by previously paired remote host. Bluetooth enabled and discoverable by any remote host.		
Bluetooth Link Established	(Green)	Successful connection made with a remote host.		

TABLE 6 - PR-730/735 BLUETOOTH MODES

BLUETOOTH DISCOVERY MODE

Once Bluetooth has been enabled (refer to Enable/Disable Bluetooth section) the PR-730/735 must be made discoverable in order for a remote host to find and pair to the instrument. The instrument can be made discoverable by clicking on the DISABLED icon to Enable Bluetooth. Once discoverable, the icon will blink (for the specified duration) indicating that the unit is discoverable by a host computer.

FIGURE 105 - BLUETOOTH/USB CONNECTIVITY MENU.

FIGURE 106 - BLUETOOTH DISCOVERABLE DURATION INPUT.

By default the instrument will be discoverable for up to 30 seconds by a host computer. If a longer duration is required simply click on the icon next to *Discoverable Duration* and choose the desired duration up to 3 minutes (see Figure 42).

PAIRING PR-730/735 WITH A HOST

This section describes how to successfully pair the PR-730/735 with a remote host using the Bluetooth Adapter provided by Photo Research. The PR-730/735 needs to be paired with a remote host only once, once pairing has occurred both the remote host and the PR-730/735 will remember there pairing information. This allows the remote host to automatically (when Bluetooth enabled on the instrument) connect to the PR-730/735 next time around without having the need to re-authenticate it.

Pairing for the first time

- 1. Enable Bluetooth.
- 2. Set the PR-730/735 *Discoverable Duration* for 120 seconds.
- 3. Click **DISABLED** icon to enable Bluetooth.
- 4. Bluetooth Icon will blink signifying that the PR-730/735 is now discoverable by a new remote host. From this point you have 120 seconds to go to the Remote Host and pair with the /670. If a longer period is required please set the *Discoverable Duration* to a longer period.

FIGURE 107 - BLUETOOTH CONNECTIVITY SETUP WINDOW.

Host

- 1. Double click on the
- My Bluetooth Places

icon located on the desktop.

2. Click on *Add a Bluetooth Device* located in the top right corner of the window.

FIGURE 108 - MY BLUETOOTH PLACES.

3. The *Bluetooth Setup Wizard* will appear.

FIGURE 109 - BLUETOOTH DRIVER SETUP WIZARD.

- 4. Click Next.
- 5. The wizard will attempt to find the /670

FIGURE 110 - REMOTE HOST DEVICE SEARCH WIZARD.

✓ Make sure that Show printers, cameras and scanners is selected via the drop down menu.

6. When the PR-730/735 is successfully discovered a camera icon will appear with the serial number of the PR-730/735 below the icon.

- 7. Select the instrument and then click on Next.
- 8. Give a name for the PR-730/735 instrument. It's recommended that you use the serial number of the instrument.

FIGURE 111 - BLUETOOTH SETUP WIZARD DEVICE NAME AND COM SELECTION SCREEN.

- 9. A default virtual COM port will be assigned by the wizard for this communication link. The COM port address can be attained by clicking on *Configure*. This information will also be available later after successfully pairing with the /670.
- 10. Click Finish.
- 11. An informational balloon will appear

12. Click on the Balloon to allow the PR-730/735 to connect to the Remote Host.

13. A window appears prompting for the Bluetooth PIN Code for the /670. Enter the serial number of the instrument as the PIN code and click **OK**.

FIGURE 112 - BLUETOOTH PIN CODE REQUEST.

14. If successfully paired a serial connector icon will appear in My Bluetooth Places. The PR-730/735 will also indicate a successful pairing and connection by displaying the icon and the name of the Remote Host.

Note: The virtual COM port for this connection is also displayed under the serial number of the PR-730/735.

✓ Wireless communication link has been established between the PR-730/735 and the Remote Host. HyperTerminal or SpectraWin 2 can be launched at this point to communicate with the PR-730/735 wirelessly.

Connecting to PR-730/735 after Pairing

After successfully pairing with the PR-730/735 there is no need to go through the *Bluetooth Setup Wizard* under *My Bluetooth Place*. Simply open *My Bluetooth Places* then right click on the serial connector icon shown below and choose *Connect*.

FIGURE 113 - - PR-730/735 ICON IN MY BLUETOOTH PLACES, WHEN NOT CONNECTED TO THE INSTRUMENT.

The host will attempt to re-connect with the /670. When connected the above icon will change to green and a Connected indicator will be shown. The instrument will also indicate a successful link by displaying a green Bluetooth icon and the name of the Remote Host (in Hexadecimal).

RS-232 (OPTIONAL)

The traditional RS-232 I/F allows for interfacing to ATE environments and older generation PC systems. The below diagrams depicts the connection between the PR-730/735 and the host computer. To establish a connection between the PR-730/735 simply open the appropriate port (using the specified protocol settings) and enter "**PHOTO**", no other hardware handshakes are necessary.

FIGURE 114 - PR-730/735 RS-232 OPTION.

HARDWARE PROTOCOL

The RS-232 hardware protocol settings are:

• Baud Rate: Selectable (9600, 19.2 Kbps 38.4 Kbps, 57.6 Kbps, 115.2 Kbps)

Parity: NoneData Bits: 8Stop Bits: 1

_

¹ Default baud rate.

SELECTING RS-232 BAUD RATE

- 1. Navigate to RS-232 Connectivity, by touching on Menu, then Preferences.
- 2. Touch RS-232 Connectivity.
- **3.** The following screen will appear.

Figure 115 – RS-232 Connectivity, Baud Rate Setup.

4. Touch the ▲ ▼ next to the **RS-232 Baud Rate** text field to select the desired speed.

Selectable Speeds:

- 9600 bps
- 19.2 Kbps
- 38.4 Kbps
- 57.6 Kbps
- 115.2 Kbps (**default**)

REMOTE CONTROL MODE

Remote Control of the PR-730/735 is accomplished using commands sent from the PC in ASCII (text) strings to the instrument. These commands are then executed and the requested information including measured values or instrument setup parameters are returned to the PC.

The PR-730/735 is controlled from a personal computer over the Universal Serial Bus (USB) interface. This is achieved by using a driver that parses appropriate ASCII (text) commands from the PC application then transmits them over the USB I/F to the /670.

Communication protocol is identical to RS-232 communications. The USB driver emulates an RS-232 interface including opening a COM: port, setting a baud rate, parity, stop bits and flow control. This makes Remote Control operations available for application software written in Microsoft Visual Basic, Microsoft C++ or any other language that is capable of opening a COM: port.

Note: While the PR-730/735 is in Remote Mode, the instrument's touch screen is disabled.

INSTALLING THE USB DRIVER

Prior to commencing *Remote Mode* operations, the **PR-7xx Utilities** software including the USB driver must be installed on your Windows based PC running Windows XP (or later) operating systems. Please refer to the USB portion of the *Connectivity* section for complete installation instructions.

USING REMOTE CONTROL COMMANDS

Note: The following steps are for Windows XP only.

- **1.** Turn on the PR-730/735.
- **2.** Set **Power Saving** to **Off.** This will prevent the PR-730/735 from powering off when idle for extended period of time. See the **Power Savings** section for more options.
- 3. Connect the PR-730/735 to the PC via the USB interface cable.
- 4. Click on on your computer desktop.
- 5. Click on All Programs then Accessories then Communications then HyperTerminal.
- **6.** In the screen that appears, assign a name (e.g. or PR-730/735).

FIGURE 116 - HYPER TERMINAL CONNECTION DESCRIPTION MENU.

- **7.** Click on *OK*.
- **6.** In the screen that appears, select the appropriate COM port for communications. The COM port assigned by the USB driver is listed in the drop down window that appears.

FIGURE 117 - COM PORT SELECTION IN HYPER TERMINAL.

If in doubt about which COM port is correct, the proper port can be identified in the **Device Manager** system screen. To access this screen:

1. From the XP desktop, right mouse click on My Computer.

FIGURE 118 - MY COMPUTER PROPERTIES RIGHT CLICK DROP DOWN OPTION.

- 2. Click on Properties.
- 3. Click on Hardware.

FIGURE 119. SYSTEM PROPERTIES MENU.

- 4. Click on Device Manager.
- **5.** Note the COM port assigned to the **PR Instrument**.

FIGURE 120 - WINDOWS XP DEVICE MANAGER.

8. The next screen is a form used for entering RS232 communications. Since the USB driver sets these parameters, no changes are required. Click on **OK.**

FIGURE 121. WINDOWS XP COM PROPERTIES WINDOW.

- **9.** The main HyperTerminal appears. Type **PHOTO** (case sensitive).
- **10. REMOTE MODE** is displayed in the HyperTerminal window. The PR-730/735 is now ready to accept Remote Control Commands.
- 11. Type **E** then press **Enter** to put the PR-730/735 in *Echo* or *Full Duplex* mode This enables display of characters sent to the instrument on the HyperTerminal window.

ENTERING REMOTE MODE

When communicating with the PR-730/735 using remote mode commands in the following environments, C++, Visual Basic, MatLab, and LabView please note that **single characters and not Strings** must be sent to the instrument. Some examples are given below.

Entering Remote Mode

To enter remote mode "P" "H" "O" "T" "O" must be sent as single characters and not as a single string.

Making a Measurement

For example to have the instrument make a measurement and return spectral data, the following command must be sent "M" "5" "[CR]" as single characters, not as a single string.

REMOTE CONTROL COMMAND SUMMARY

The following table summarizes all valid Remote Control commands and responses from the /670. Detailed descriptions including parameters passed with each command are detailed in the **Commands** section.

Command	Description
В	Sets LCD backlight level
С	Clears current session instrument errors
D	Downloads data from the /670
E	Toggles the Echo (full duplex) mode
F	Measure frequency of light source
1	Requests instrument status or / error report from /670
L	Defines measurement title – Maximum of 20 characters.
M	Measure command for the /670. Returned datum depends on the accompanying parameters.
Q	Quit (exit) remote mode.
R	Recall stored measurement
S	Set up measurement parameters
X	Sets LCD contrast level.

TABLE 7 - PR-730/735 REMOTE MODE COMMAND SUMMARY.

Usage:

- <...> Optional Entry,
- [...] Mandatory entry
- (...) Comment, NOT PART OF THE COMMAND

Note: The default values, e.g. apertures, exposure time etc. are those used for the measurement before the instrument was set to Remote Control Mode or, if in Remote Mode, the value from the previous command.

REMOTE CONTROL COMMAND DETAIL

Command	Description
	Purpose: Set LCD backlight level
В	Syntax: Bnn[CR]
	Bnn = Backlight / Brightness level in percentage.
	Range of nn = 0 to 100%
	Response: Backlight set to nn %
	Purpose: Clears the current instrument error
С	Syntax: C[CR]
	Response: None
	Purpose: Download data from the PR-7xx
	Syntax: D <data code="">[CR]</data>
D	Response: 0000, <data>[CR][LF] If all OK, else</data>
	NNNN[CR][LF] (NNNNN = Error code)
	Note: <data> in response code refers to the specific measurement data set returned based on</data>
	the data code sent to the instrument. Refer to the Data Code section for details
	Purpose: Full Duplex (Echo) ON / OFF
E	Syntax: E[CR]
	Response: None
	Purpose: Measure frequency of light source
F	Syntax: F[CR]
	Response: 0000,ff.ff Hertz (Period = nnnnn milliseconds) If all OK else
	NNNN[CR][LF] (NNNN = Error code)
	Purpose: Return instrument status / error report
	Syntax: I[CR]
•	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)
	Purpose: Assign measurement description
	Syntax: L <character 20="" characters="" length="" max="" of="" string="" with="">[CR]</character>
	Response: 0000[CR][LF] If all OK, else
L	NNNN[CR][LF] (NNNN = Error code)
	Note: Entry remains valid for the duration of the current Remote Mode session or until a
	new L command is issued. If L[CR] is issued with an empty string, the current
	description is returned.
	Purpose: Make a Measurement with the PR-7xx
	Syntax: M <data code="">[CR]</data>
M	Response: 0000, <data>[CR][LF] If all OK, else</data>
	NNNN[CR][LF] (NNNN = Error code)
	Note: <data> in response code refers to the specific measurement data set returned based on</data>
	the data code sent to the instrument. Refer to the Data Code section for specific
	information.
	Purpose: Quit (Exit) Remote mode
Q	Syntax: Q
	Response: None

Command	Description
	Purpose: Recall stored measurement data from the PR-7xx
	Syntax: R <data code="">,<measurement #="">,<filename.ext>[CR]</filename.ext></measurement></data>
	Response: 0000, <data>[CR][LF] If all OK, else</data>
	NNNN[CR][LF] (NNNN = Error code)
	Special Syntax 1 (Recall from RAM only):
	Syntax: R <data code="">,0[CR] Recall last written measurement</data>
	Response: 0000, <data>[CR][LF] If all OK, else</data>
	NNNN[CR][LF] (NNNN = Error code)
R	Special Syntax 2 (Recall from RAM only):
, ii	Syntax : R <data code="">,+[CR] Increments the Measurement ID (measurement number) and recalls the data.</data>
	Response: 0000, <data>[CR][LF] If all OK, else</data>
	NNNN[CR][LF] (NNNN = Error code)
	Note: If data code is not specified, code 1 will be sent. If filename.ext is not specified, data
	returned will be that stored in the internal memory (RAM) of the instrument instead of
	the SD card.
	<data> in response code refers to the specific measurement data set returned based on the</data>
	data code sent to the instrument. Refer to the Data Code section for specific information.
	Purpose: Assign instrument and measurement set up parameters
S	Syntax: S[specifier][CR]
	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)
	Purpose: Set the display contrast. Syntax: Xnnn where nnn is the contrast in % - Range 0 to 100%
X	Response: "Contrast to nnn %"
	See the Setup Command section for complete details
	Purpose: Enable Reset Command Mode
	Syntax: ZEnableReset
	Response: 00000,Reset Commands Enabled
Z	Reset Commands:
2	ZResetPreferences – Reset all Preferences values to factory default.
	ZResetSetup – Reset all Setup values to factory default.
	NOTE: All Reset Commands will shut down the instrument after they are executed.

SETUP COMMANDS

Setup Commands are used to specify instrument and measurement parameters for the next measurement. To specify more than one parameter, sequential setup commands may be sent to the instrument before the measurement is initiated.

The default parameters are those used during the measurement immediately before Remote Mode operations are initiated. If Remote Mode operations are under way, the default setup values for the upcoming measuring are those defined in the last Setup (S_command).

Setup Command	Description
	Select Add-on Accessory 1
	An Add-on accessory is one that is used in conjunction with a primary accessory. For example, a neutral density filter (Add-on Accessory) used with the MS-75 (Primary Accessory). Up to 3 Add-on accessories can be specified for a measurement.
	Syntax: SAn[CR]
SA	Where: n = Accessory code
3 A	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)
	Note: Accessory Codes can be found by running report 116 (command D116). See the Data Codes section for specific details.
	Note: To deselect Add-on accessories, send the command SA-1. Selecting a different Primary accessory also deselects Add-on accessories.
	Select Add-on Accessory 2
	An Add-on accessory is one that is used in conjunction with a primary accessory. For example, a neutral density filter (Add-on Accessory) used with the MS-75 (Primary Accessory). Up to 3 Add-on accessories can be specified for a measurement. Syntax: SBn[CR]
0.5	Where: n = Accessory code
SB	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)
	Note: Accessory Codes can be found by running report 116 (command D116). See the Data Codes section for specific details.
	Note: To deselect Add-on accessories, send the command SA-1. Selecting a different Primary accessory also deselects Add-on accessories.

Setup Command	Description
	Select Add-on Accessory 3
	An Add-on accessory is one that is used in conjunction with a primary accessory. For example, a neutral density filter (Add-on Accessory) used with the MS-75 (Primary Accessory). Up to 3 Add-on accessories can be specified for a measurement.
	Syntax: SCn[CR]
SC	Where: n = Accessory code
30	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)
	Note: Accessory Codes can be found by running report 116 (command D116). See the Data Codes section for specific details.
	Note: To deselect Add-on accessories, send the command SA-1. Selecting a different Primary accessory also deselects Add-on accessories.
	Select Dark Current Mode (PR-730/735 only)
	Two dark current modes are available – Standard and Smart Dark. In Standard Mode, the instrument measures the detector dark current after each light measurement.
	If Smart Dark is enabled and two successive measurements yield the same exposure time then the dark current values from the first measurement are used for the second (and possibly successive) measurements.
SD	Syntax: SDn[CR]
	Where: n=Dark Current Mode
	0 = Disable Smart Dark
	1 = Enable Smart Dark
	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)

Setup Command	Description
SE	Select Exposure Time Enter the Exposure (Integration) time for the next measurement in milliseconds. Possible values are 12 – 120,000 (6 sec.) for Standard Mode, and 12 - 300,000 (5 min.) for Extended Mode. See the H specifier for more information on setting Standard or Extended Modes. To set the instrument to Adaptive Exposure, send SEO (ttttt = 0) Syntax: SEttttt[CR]
	Where: ttttt = exposure time in milliseconds Response: 0000[CR][LF] If all OK, else NNNN[CR][LF] (NNNN = Error code)
SF	Aperture Select Select the aperture to be used for the next measurement. Syntax: SFa[CR] Where: a = aperture code Response: 0000[CR][LF] If all OK, else NNNN[CR][LF] (NNNN = Error code) Note: See Data Code 117 for details on aperture codes.
SG	Speed Mode Select the Speed Mode for the next measurement. Choices are Normal, 1X Fast, 2X Fast and 4X Fast. Syntax: SGg[CR] Where: g = Gain 0 = Normal (DEFAULT), 1 = Fast 2 = 2X Fast 3 = 4X Fast Response: 0000[CR][LF] If all OK, else NNNN[CR][LF] (NNNN = Error code)

Setup Command	Description
SH	Sensitivity Mode Select the Sensitivity Mode for the next measurement. The two available modes are Standard and Extended. In Standard Mode, the exposure time range is 12 ms to 120,000 ms (6 sec.). In Extended Mode, the upper limit is extended to 300,000 ms (5 min.). Syntax: SHm[CR] Where: m = Sensitivity Mode 0 = Standard Mode 1 = Extended Mode Response: 0000[CR][LF] If all OK, else
SK	User Sync Frequency Enter the frequency (in Hertz) of the source being measured. The range is 20 to 400 Hz. This command works in unison with the SYNC Mode setting. See the S specifier for complete details on setting the SYNC Mode. Syntax: SKfff[CR] Where: fff = frequency in Hertz. Range is 20 to 400 Response: 0000[CR][LF] If all OK, else NNNN[CR][LF] (NNNN = Error code)
SN	Cycles to Average Defines the number of measurements (cycles) to average when calculating photometric and colorimetric values. The average of the spectra are used to calculate other values. The range of cycles to average is 1 to 99. The default is 1. Syntax: SNaa[CR] Where: aa = Cycles to Average Range 1 to 99 Response: 0000[CR][LF] If all OK, else NNNN[CR][LF] (NNNN = Error code)

Setup Command	Description
	CIE Observer
	Photometric and Colorimetric values can be calculated using either CIE 2° or 10° Standard Observer data sets. Use this specifier to choose the CIE data set for calculations for the next measurement. The default is 2° .
	Syntax: SOn[CR]
SO	Where: n = CIE Observer
	2 = 2°
	10 = 10°
	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)
	Primary Accessory
	A Primary Accessory is one that replaces the standard objective lens (typically the MS-75) during use and can be used in conjunction with an Add-on Accessory.
	Syntax: SPnn[CR]
SP	Where: nn = Accessory Code
	Response: 0000[CR][LF] If all OK, else
	NNNN[CR][LF] (NNNN = Error code)
	Note: Accessory Codes can be found by running report 116 (command D116). See the Data Codes section for specific details.

Setup Command	Description		
	Sync Mode		
	Instructs the instrument to adjust the exposure time, when using Adaptive Sensitivity mode, to the nearest even multiple of the refresh rate (frequency) of the source. Choices are No Sync, Auto Sync, and User Frequency.		
	In <i>Auto Sync</i> mode, the instrument measures the frequency of the source to determine its period. The exposure time is then automatically altered so that it is an even multiple of the source period (1/frequency).		
SS	User Frequency will adjust the exposure time based on a user enter frequency in Hertz as entered using the SK command. See the User Sync Frequency section for more details on defining the Sync frequency.		
	Syntax: SQf[CR]		
	Where: f = Sync mode		
	0 = No Sync		
	1 = Auto Sync		
	3 = User Frequency		
	Response: 0000[CR][LF] If all OK, else		
	NNNN[CR][LF] (NNNN = Error code)		
	Photometric Units		
	Select <i>English</i> or <i>Metric (SI)</i> photometric values to be reported in the applicable Data Codes.		
	Syntax: SUn[CR]		
SU	Where: n = Units type		
	0 = English		
	1 = Metric (SI)		
	Response: 0000[CR][LF] If all OK, else		
	NNNN[CR][LF] (NNNN = Error code)		

MEASUREMENT AND DATA SEND CODES

Measurement and Data Send Codes are used to measure (**M** Command) and then specify returned data or acquire values without making a measurement (**D** command).

Either a **D** or an **M** can precede any of the following codes. For example, M1 or D1 - M602 or D602. If an M command is sent, a measurement will always be made even if the Data Code does not request

measured values. For example, if *M116* is sent to the instrument, a measurement is made then a list of accessories is returned from the instrument.

In the following table, **qqqq** is the returned error code. If **qqqq** is all zeros (00000) no error has occurred during the request. All other values for **qqqq** relate to an error condition. Refer to the Remote Mode Error Code section of the manual for a complete list of error codes and their meanings. **UUUU** in the output format is the photometric unit type of the measurement per the following table:

Туре	Code	Units	
Luminance	0	fL	cd/m²
Illuminance	1	fc	lux
Luminous Intensity	2	mcd	
Luminous Flux	3	lumens	

TABLE 8 - PHOTOMETRIC UNITS CODES

Note: Both qqqqq and UUUU are contained in every output and are not annotated below.

All data fields are fixed length (except where otherwise noted) and comma delimited. Commas also serve as placeholders for empty fields.

DATA CODE SUMMARY

The following table summarizes Data Codes and their meanings. For full details, please see the Expanded Code table following.

Data Code	Description
0	status (Write to disk most recent, unsaved, measurement)
1	status, units, Photometric brightness, CIE 1931 x,y
2	status, units, CIE 1931 Tristimulus Values
3	status, units, Photometric brightness, CIE 1976 u', v'
4	status, units, Photometric brightness, Correlated Color Temperature, Deviation from Plancks Locus in 1960 u,v units
5	status, units, Peak Wavelength, Integrated Power, Integrated Photon, WL, Spectral Data at each WL
6	status, units, Photometric brightness, CIE 1931 x, y, CIE 1976 u', v'
7	status, units, Photometric brightness, CIE 1960 x, y
8	status, Raw (uncorrected) light per pixel
9	status, Raw (uncorrected) Dark Current per pixel
11	status, units, Scotopic Brightness
12	status, units, Photometric brightness, CIE 1931 x, y, CIE 1960u, v
13	status, Gain description, exposure time in milliseconds
14	status, Sync mode description, sync period in milliseconds
110	status, Instrument Serial Number
111	status, Instrument Name
112	status, Number of Accessories, Number of Apertures
114	status, Software Version
116	status, Accessory List
117	status, Aperture List
120	status, Hardware configuration
401	status, Number of stored measurements in RAM
402	status, Directory of stored measurements in RAM
411	status, List of files in SD Card and number of stored measurements per file.
412	filename ,status, Directory of stored measurements in file "filename" in SD card.
502	status, Current System Timing & Environment Info.
503	status, Stored System Timing & Environment Info.
601	status, Current Setup Report – comma delimited
602	status, Current Setup Report, Verbose

TABLE 9 - DATA CODE SUMMARY

DATA CODE DETAILS

The following table details available Data Codes including data examples. Each field is comma delimited. Most fields are fixed length, however some are variable length and are indicated as such.

As mentioned earlier in this section, these commands may be attached to a **D** or **M** command - for example, **M5** or **D5**. Commands may not be combined.

To make a measurement and return more than one data type, first send the **M** command with the first response code, the send successive codes using the **D** command until all required data types have been returned.

Data Code	Description					
	Output Format: qqqqq,U,Y.YYYe+ee,x.xxxx,y.yyyy[CRLF]					
	where: Y = Photometric brightness (e.g. Luminance or Illuminance etc.)					
	e = exponent					
1	x = CIE 1931 x					
	y = 1931 y					
	Output Example:					
	00000,0,1.865e+01,0.4035,0.4202					
	Output Format: qqqqq,U,X.XXXe+ee, Y.YYYe+ee, Z.ZZZe+ee CRLF					
	where:					
	X = CIE 1931 Tristimulus X (Red)					
2	Y = CIE 1931 Tristimulus Y (Green)					
-	Z = CIE 1931 Z (Blue)					
	Output Example:					
	00000,0,6.136e+01,1.865e+01,2.681e+01					
	Output Format: qqqqq,U,Y.YYYe+ee,u'.u'u',v'.v'v' CRLF					
	where: Y = Photometric brightness (e.g. Luminance or Illuminance etc.)					
	e = exponent					
3	u'=CIE 1976 u'					
	v'=CIE 1976 v'					
	Output Example:					
	00000,0,1.865e+01,0.2231,0.5227					

	Output Format: qqqqq,U,Y.YYYe+ee,CCCCC,d.dddd CRLF				
	where: Y = Photometric brightness (e.g. Luminance or Illuminance etc.)				
	e = exponent				
4	CCCCC = Correlated Color Temperature in Kelvins				
	d.dddd = CIE 1960 deviation from Planck's Black Body Radiator locus				
	Output Example				
	00000,0,1.865e+01, 3757,0.0129				
	Output Format: qqqqq,U,w.wwwe+eee,i.iiie-ee,p.pppe+eeCRLF				
	where: w.www = peak wavelength				
	e = exponent				
	i.iii = integrated radiometric value (sum of all spectral data times WL increment)				
	p.ppp = integrated photon radiometric value				
	wl,spectral dataCRLF				
	wl,spectral dataCRLF				
	wl,spectral dataCRLF				
5					
	Output Example:				
	380,1.627e-				
	382,9.910e-07				
	384,5.356e-06				
	386,5.725e-06				
	388,8.989e-06				
	390,1.127e-05				
	Output Format: qqqqq,U,Y.YYYe+ee,x.xxxx,y.yyyy,u'.u'u'u'u', v'.v'v'v'CRLF				
	where: Y.YYY = Photometric brightness (e.g. Luminance or Illuminance etc.)				
	e.ee = exponent				
	x,xxxx = CIE 1931 x				
C	y.yyyy = CIE 1931 y				
6	u'.u'u'u' = CIE 1976 u'				
	v'.v'v'v' = CIE 1976 v'				
	V.V V V = GIL 1370 V				
	Output Example:				
	00000,0,2.041e+01,0.4089,0.4151,0.2283,0.5215				
	00000,0,2.0-10-01,01000,01101,0.2200,0.0210				

	Output Format: qqqqq,U,Y.YYYe+ee,u.uuuu,v.vvvv CRLF				
	where: Y.YYY = Photometric brightness (e.g. Luminance or Illuminance etc.)				
	e.ee = exponent				
<u>_</u>	u.uuuu = CIE 1976 u				
7	v.vvv = CIE 1976 v				
	V.VVVV = CIE 1976 V				
	Output Evernale:				
	Output Example:				
	00000,0,2.646e+03,0.2081,0.3519				
	Output Format: qqqqq, CRLF, IIIII CRLF, IIIII CRLF, IIIII CRLF				
	where: IIIII = Raw signal (light) data (variable length from 1 to 5 digits) for all detector				
	pixels from 0 to 255.				
	Output Evample:				
	Output Example:				
8	00000,				
	3475				
	3426				
	3477				
	3451				
	3483				
	3459				
	Output Format: qqqqq, CRLF, ddddd CRLF, ddddd CRLF				
	where: ddddd = Raw signal (dark current) data (variable length from 1 to 5 digits) for				
	all detector pixels from 0 to 255.				
	Output Evample:				
	Output Example: 00000,				
9	120				
	135				
	122				
	130				
	131				
	123 Output Format: ggggg II S SSSQLQQCPI F				
	Output Format: qqqqq,U,S.SSSe+eeCRLF				
	where: S.SSS = scotopic luminance,				
11	e+ee = exponent				
	Output Example:				
	00000,0,3.668e+01				
	00000,0,3.0000101				

	Output Format: qqqqq,U,Y.YYYe+ee,x.xxxx,y.yyyy,u'.u'u'u'u', v'.v'v'v'v'CRLF				
	where: Y.YYY = Photometric brightness (e.g. Luminance or Illuminance etc.)				
	e.ee = exponent				
	x.xxxx = CIE 1931 x, y.yyyy = CIE 1931 y				
12	u.uuuu = CIE 1960 u				
	v.vvvv = CIE 1960 v				
	V.VVV - CIL 1300 V				
	Output Example:				
	00000,0,2.041e+01,0.4089,0.4151,0.2283,0.3477				
	Output Format: qqqqq,Gain description,nnnnnn msec CRLF				
	where: Gain Description is a text description of the Gain Used Possibilities are: Normal,				
40	Fast, 2X Fast and 4X Fast				
13	nnnnnn = Last exposure time in milliseconds				
	Output Example:				
	00000,Fast,16500 msec				
	Output Format: qqqqq,Sync mode description,nnnnnn Hertz CRLF				
	where: Sync mode description = Sync mode in use. Possibilities are: Auto Sync, User				
	Sync, None				
14	nnnnnn = Sync Frequency in Hertz				
	Output Example:				
	00000,User Sync,120.00 Hertz				
	Output Format: qqqqq,ssssssss CRLF				
110	where: ssssssss = Instrument Serial Number				
	Output Example:				
	00000,67065106				
	Output Format: qqqqq,mmmmmmCRLF				
111	where: mmmmmm = Instrument Model				
	Output Example:				
	00000,PR-730/735				
	Output Format: qqqqq,ac,ap CRLF				
	where: ac = number of calibrated accessories				
112	ap = number of calibrated apertures				
	Output Example:				
	00000,1,4				

	Output Format: qqqqq,vvvvv CRLF
	where: vvvvv = Software version
114	where. vvvv – Software version
	Output Example:
	00000,2.22D
	Output Format: qqqqq,nn,ss,tt,pp,rr CRLF
	where: nn = ID number of accessory
	ss = Accessory name (variable length)
	tt = Accessory type – Possibilities are: Primary or Addon
116	pp = Photometry Mode – Possibilities are: Luminance, Illuminance, Luminous
	Intensity, or Luminous Flux
	rr = Radiometry Mode — Possibilities are: Radiance Irradiance Radiant Intensity
	or Radiant Flux
	Output Example:
	00000,0,MS-75,Primary,Luminance,Radiance
	Output Format: qqqqq,nn,ss,bw CRLF
	where: nn = ID number of aperture
	ss = Aperture Name
	bw = Effective Bandwidth
	bw - Effective Bandwidth
117	Output Example:
	00000,0,1 deg,0.00
	00000,1,1/2 deg,0.00
	00000,2,1/4 deg,0.00
	00000,3,1/8 deg,0.00
	Output Format: qqqqq,pp,bw,bb,ee,ii,nrp,frp,lrp CRLF
	where: pp = Number of spectral data points.
	bw = Bandwidth of instrument
	bb = Starting WL
	ee = Ending WL
120	ii = WL Increment
	nrp = Number of detector elements pixels
	frp = First useable raw pixel number
	Irp = Last useable raw pixel number
	Output Example:
	00000,201,0.00,380,780,2,256,7,247

	Output Format: qqqqq CRLF						
401	where: qq - Number of stored measurements in RAM						
401	Output Example:						
	Output Example: 6						
	Output Format: qqqqq,dt,tm CRLF Directory of stored Measurements in RAM						
	where: qq - ID of measurement						
	dt = Date tm = Time						
402	tm = 11me						
	Output Example:						
	1,01-30-2007 13:48:26						
	2,01-30-2007 13:49:09						
	3,01-30-2007 13:51:03						
	Output Format: filename.ext,qqqqq CRLF (List of files in SD Card).						
	where: filename.ext = Filename with extension.						
	qq = Number of stored measurements in file.						
411							
	Output Example:						
	MK.mea, 1						
	TSTSAMP.mea, 2						
	Output Format: qqqqq,dt,tm,ffffffff.eee CRLF (Directory of stored Measurements in						
	file).						
	where: qqqqqq = ID of measurement						
412	dt = Date						
412	tm = Time						
	ffffffff.eee = filename.ext						
	Output Example:						

601	Output Format: qqqqq, <primary lens="">, <addon1>, <addon2>, <addon3>, <aperture>,</aperture></addon3></addon2></addon1></primary>				
	Output Example: 00000,0,-1,-1,-1,0,0,0,0,0,1,2,0,0,0,60.00				
	Output Format: Current set report with text labels.				
	Dark mode values: for reports [601] and [602]				
	0 Disable Smart Dark				
602	1 Enable Smart Dark				
	O to 15 and				
	Output Example:				
	00000,MS-75,None,None,None,1 deg,English,Adaptive,0 msec,Normal,1 cycles,2 deg,No				
	Smart Dark,No Sync,Standard Sensitivity,60.00 Hertz				

REMOTE CONTROL ERROR CODES

REMOTE CONTROL MEASUREMENT ERRORS

Error	Meaning				
-1	Light source not constant.				
-2	Light overload – signal too intense.				
-3	Cannot Sync to light source. Light source frequency below 20Hz, above 400				
	Hz or signal too low to Sync.				
-4	Adaptive mode error.				
-8	Weak light – insufficient signal.				
-9	Sync Error.				
-10	Cannot Auto Sync to light source.				
-12	Adaptive mode time out. Light source not constant.				

REMOTE CONTROL PARSING ERRORS

Error	Meaning	Valid Values				
-1000	Illegal command					
-1001	Too many fields in setup command					
-1002	Invalid primary accessory code					
-1003	Invalid Addon 1 accessory code					
-1004	Invalid Addon 2 accessory code					
-1005	Accessory is not a primary accessory					
-1006	Accessory is not an Addon accessory					
-1007	Accessory already selected					
-1008	Invalid Aperture index (PR-730/735 only)					
4000	to all the standard	0 = English				
-1009	Invalid units code	1 = Metric (SI)				
		3 to 6000 ms				
-1010	Invalid Exposure value	DD 700/705				
		PR-730/735				
		6 to 30,000 ms				

Error	Meaning	Valid Values	
-1011	Invalid Gain code	0 = Normal 1 = 1X for AC sources 2 = 10X 3 = 100X	
-1012	Invalid average cycles	1 to 99	
-1015	Invalid CIE observer	2 or 10	
-1017	Invalid Dark measurement mode	0 = Disable Smart Dark 1 = Enable Smart Dark	
-1019	Invalid Sync mode	0 = No Sync 1 = Auto Sync 3 = User Frequency	
-1021	Measurement title too long	> 20 characters	
-1022	Measurement title field empty after sending L command		
-1023	Invalid user Sync period	20 to 400 Hz	
-1024	Invalid R command		
-1025	Invalid Addon 3 accessory code		
-1026	Invalid sensitivity mode	0 = Standard Mode 1 = Extended Mode	
-1035	Parameter not applicable to this instrument		
-2000	This error code is returned whenever a response code is requested that does not exist, or when no other D command has been sent previously.		

ROUTINE MAINTENANCE

The PR-730/735 have been designed to give long, trouble-free service requiring minimal routine maintenance. This section gives guidelines for insuring optimum service from your instrument.

CLEANING LENSES / OPTICAL ACCESSORIES

1. Keep the PR-730/735 clean and dust-free. Store the instrument in a clean, dry environment, preferably in a storage case when not in use. Dust optical surfaces with a soft camel's-hair brush or blow them off with clean, dry air.

Note: Avoid touching optical surfaces.

2. If the exterior optical surfaces become dirty, clean them as you would any high-quality coated lens. Use lens cleaning fluid or anhydrous alcohol on a piece of lens cleaning tissue or cotton. Do not soak.

Do not use acetone or other organic solvents or excessive pressure! Do not soak or allow water to enter the instrument!

CLEANING EXTERIOR SURFACES

If the exterior plastic surfaces, such as the display face plate or instrument case becomes dirty or full of fingerprints, use a mild dish washing liquid and a slightly damp, non abrasive cloth to gently remove fingerprints and dirt. **Do not use acetone or other organic solvents or excessive pressure!** Do not soak or allow water to enter instrument!

RECALIBRATION

The PR-730/735 is designed to maintain stable calibration for long periods of time and is certified for six months from the factory. However, changes in calibration are inevitable, due to the effects of aging, temperature and dirt accumulation. Therefore, for best results, periodic recalibration is recommended.

To maintain the instrument's accuracy, recalibration checks or recalibration is recommended at six-month intervals. Please consult factory for availability of optional user self-calibration.

Please contact the Customer Service Department for a Return Material Authorization (RMA) number, before returning the instrument.

FACTORY REPAIR

IN-WARRANTY REPAIR

If the instrument malfunctions within the one-year warranty period, it will be repaired at no charge to the customer (provided the warranty has not been voided by tampering, physical damage or other abuse).

Note: Any *unauthorized* tampering with the instrument, including opening of the case, automatically voids the warranty. Batteries are not covered under the warranty.

Visit our web site, www.photoresearch.com to assign a Returned Material Authorization (RMA) number to your instrument before returning it to Photo Research for service. The entire instrument including all accessories, should be brought or shipped prepaid to the Photo Research Service Department in Chatsworth, CA, USA (or contact Photo Research for information concerning authorized repair facilities in your area).

Pack the instrument and all attachments and accessories in suitable protective packaging, along with a note describing the nature of the malfunction.

The instrument will be returned by a commercial surface transportation method of Photo Research's choice.

If Air Freight or other rapid delivery is desired, the user should include a check or money order to cover the cost of return shipping, or contact Photo Research and supply a shipper account number (e.g. FedX, UPS etc.) to expedite collect delivery.

OUT-OF-WARRANTY REPAIR

If the instrument is out of warranty, Visit our web site, www.photoresearch.com to assign a Returned Material Authorization (RMA) number to your instrument before returning it to Photo Research for service. The instrument should be brought or shipped prepaid to the Photo Research Service Department (or call Photo Research for locations of authorized repair facilities in your area).

Pack the PR-650 and *all* attachments and accessories in suitable protective packaging along with a note describing the nature of the malfunction.

Photo Research will evaluate the damage and advise the user of the estimated repair and recalibration costs before proceeding.

SPECIFICATIONS

GENERAL SPECIFICATIONS

Parameter	Specification	
Detector	256 detector array	
Aperture	1°,1/2°, 1/4°, 1/8°	
Wavelength Range	380 to 780 nm	
Optics	Pritchard viewing and measuring system.	
Digital Resolution	16 bits	
Spectral Resolution	1.56 nm / pixel	
Spectral bandwidth	8 nm (5 nm optional)	
Spectral Accuracy	± 1 nm	
Luminance accuracy (Against NIST luminance	± 2%	
standard)	± 2/6	
Luminance repeatability	± 1% at 3 cd/m ²	
Color Accuracy (for Illuminant A)	±0.0015 in CIE 1931 x,y	
	Luminance, Illuminance, luminous intensity,	
Measurement Capabilities	chromaticity, correlated color temperature, dominant	
	wavelength.	
Measurement Time	6 ms to 30 secs.	
Battery	Rechargeable Lithium-Ion.	
Datter y	(>12 hours continuous operation)	
Secure Digital (SD) Card	Supports cards up to 1GB	
Weight	3.75 lbs (1.7 kg)	
Operating Temperature	34° to 95° F (1° to 35° C)	

PR-730/735 LENS CHART

		Aperture			
Accessory	Working Distance	1°	1/2° (Optional for)	1/4°(PR-730/735 Only)	1/8° (PR-730/735 Only)
MS-75 55mm to ∞)	355 mm to 305 m	5.25 mm 5.32 m	2.63 mm 2.66 m	1.315 mm 1.33 m	0.658 mm 665 mm
SL-0.5X	91.4 mm to 137 mm	1.5 mm to 2.54 mm	0.75 mm to 1.27 mm	0.375 mm to 0.635 mm	0.188 mm to 0.318 mm
SL-1X	46 mm to 66 mm	0.890 mm to 1.32 mm	0.445 mm to 0.660 mm	0.226 mm to 0.330 mm	0.111 mm to 0.165 mm
MS-2.5X	46 mm	0.51 mm	0.225 mm	0.128 mm	0.064 mm
MS-5X	28 mm	0.289 mm	0.145 mm	0.072 mm	0.036 mm
MS-7.5 00mm to ∞)	100 mm 3.05 m	17.5 mm 530 mm	4.38 mm 133 mm	1.09 mm 33.1 mm	0.273 mm 0.828 mm
LA-600	Contact	13.2 mm	13.2 mm	13.2 mm	13.2 mm
FP-600	Contact	3.17 mm	3.17 mm	3.17 mm	3.17 mm

TABLE 10. PR-730/735 MEASUREMENT SPOT SIZES

SENSITIVITY

SENSITIVITY CHART (CD/M²)

	Aperture			
Accessory	1°	1/2° (optional)		
MS-75	3.4 to 102,800	13.6 to 411,100		
SL-0.5X	3.4 to 102,800	13.6 to 411,100		
SL-1X	3.4 to 102,800	13.6 to 411,100		
MS-2.5X	10.3 to 310,700	41.2 to 1,243,000		
MS-5X	13.7 to 310,700	54,800 to 1,243,000		
MS-7.5	3.4 to 102,800	13.6 to 411,100		
LA-600	3.4 to 102,800	13.6 to 411,100		
FP-600	8.6 to 260,000	34.4 to 1,040,000		
CR-600	21.5 to 651,000 lux	86 to 2,604,500 lux		

TABLE 11 - SENSITIVITY

PR-730/735 SENSITIVITY CHART

	Aperture			
Accessory	1 °	1/2°	1/4°	1/8°
MS-75	0.2 to	0.80 to	3.20 to	12.8 to
	17,190 cd/m²	68,750 cd/m ²	275,000 cd/m ²	1,100,000 cd/m ²
SL-0.5X	0.2 to	0.80 to	3.20 to	12.8 to
	17,190 cd/m²	68,750 cd/m ²	275,000 cd/m ²	1,100,000 cd/m ²
SL-1X	0.2 to	0.80 to	3.20 to	12.8 to
	17,190 cd/m ²	68,750 cd/m ²	275,000 cd/m ²	1,100,000 cd/m ²
MS-2.5X	1.25 to	5.00 to	20.0 to	80.0 to
	50,000 cd/m ²	200,000 cd/m ²	800,000 cd/m ²	3,200,000 cd/m ²
MS-5X	1.75 to	7.00 to	28.0 to	112 to
	70,000 cd/m ²	280,000 cd/m ²	1,120,000 cd/m ²	4,480,000 cd/m ²
MS-7.5	0.2 to	0.80 to	3.20 to	12.8 to
	17,190 cd/m ²	68,750 cd/m ²	275,000 cd/m ²	1,100,000 cd/m ²
LA-600	0.2 to	0.80 to	3.20 to	12.8 to
	17,190 cd/m ²	68,750 cd/m ²	275,000 cd/m ²	1,100,000 cd/m ²
FP-600	1.00 to	N/A		
	40,000			

CR-600	2.5 to	N/A
	107,500 lux	N/A

TABLE 12 - PR-730/735 SENSITIVITY TABLE