Social Connectedness and Local Contagion

C. Matthew Leister, Yves Zenou and Junjie Zhou('22 RES)

Renjie Zhong

Renmin University of China

November 2023

Outline

- Introduction
- Setup
- Charaterization of Coordination Set and Algorithm

Charaterization of Coordination Set and Algorithm

- Further Characterizations and Discussions
- Conclusion

Introduction

- Introduction

Introduction

- - Network Topology and Coordination Set
 - Intervention Design
 - Comparisons

Introduction

- Setting: a coordination game among agents with private values and binary actions in a network
- Equilibrium Characterization: global games private noisy signal and dominance region (Carlsson and van Damme, 1993; Frankel et al., 2003)
 - ⇒ Classic equilibrium selection: the equilibrium selected in the noiseless limit comes in the form of cut-off strategies

Main Works

Introduction

- Core contributions:
 - explore the role of the network's architecture in determining who coordinates their adoption choices with whom ("coordination set" partition)

Charaterization of Coordination Set and Algorithm

- 2 develop an algorithm called the Sequential Average Network Density (SAND) to fully characterize the equilibrium partitions
- Other discussions: coordination under specific network topology; optimal intervention (values, network structure); comparisons with BCZ(2006) and SS(2012)

•0000

Setup

- Introduction
- 2 Setup
- 3 Charaterization of Coordination Set and Algorithm
- 4 Further Characterizations and Discussions
 - Network Topology and Coordination Set
 - Intervention Design
 - Comparisons
- Conclusion

Setup

• A finite set of agents N simultaneously choose technology adoption $(a_i = 1)$ or reject it $(a_i = 0)$.

Charaterization of Coordination Set and Algorithm

- Agents are connected via a network $\mathcal{G} = (N, E)$, E defines the set of edges between unordered pairs ij taken from N
 - a connected and undirected graph
 - 2 $N_i \equiv \{j : (i,j) \in E\}$ the set of i 's neighbours, and $d_i \equiv |N_i|$ her degree

Setup

• Payoffs from adopting the technology depend on the action profile $\mathbf{a} = (a_1, \dots, a_{|N|}) \in \{0, 1\}^N$ and the underlying fundamental state $\theta \in \Theta$, where Θ is a bounded interval in \mathbb{R}

•
$$u_i(\mathbf{a}, \theta) = \left\{ \begin{array}{ll} v_i + \theta + \phi \sum_{j \in N_i} a_j & \text{if } a_i = 1 \\ 0 & \text{if } a_i = 0 \end{array} \right.$$

where $v_i \in \mathbb{R}$ and $\phi > 0$

Setup: Dominance regions and multiplicity of equilibria

- In the stage game where θ is commonly known among agents \Rightarrow a dominant strategy to adopt (not to adopt) when θ is sufficiently high (low)
- Assume there exist $\underline{\theta}_i$ and $\overline{\theta}_i$ in the interior of Θ for each i
- Dominant regions: $[\min \Theta, \theta]$ and $[\bar{\theta}, \max \Theta]$, with $\theta \equiv \min_{i \in N} \{\theta_i\}$ and $\bar{\theta} \equiv \max_{i \in N} \{\bar{\theta}_i\}$ such that not adopting and adopting the technology (respectively) are dominant strategies for all players.
- In this article, we adopt the global game approach for equilibrium selection (see e.g. Carlsson and van Damme, 1993; Frankel et al., 2003).

Setup: Limiting equilibrium

- Agents share a common prior $\theta \sim H(\cdot)$, which is denoted by the with continuously differentiable density $h(\cdot)>0$
- Private information: $s_i = \theta + \nu \epsilon_i$, where $\nu > 0$ and $\epsilon_i \sim G$ with support [-1,1], independently drawn across agents conditional on θ
- Interested in the perturbed global game Γ^{ν} for ν close to zero
- (Frankel et al., 2003) As ν close to zero, the equilibrium selected in the noiseless limit uniquenessly comes in the form of **cut-off strategies**i.e. there exists a vector of limiting state cutoffs $\boldsymbol{\theta}^* = \left(\theta_1^*, \dots, \theta_{|N|}^*\right)$ fully determines the limiting equilibrium $\pi^* = \left(\pi_1^*, \dots, \pi_{|N|}^*\right)$, with $\pi_i^* = \mathbb{I}\left(\theta \geq \theta_i^*\right)$.

Charaterization of Coordination Set and Algorithm

Charaterization of Coordination Set and Algorithm

- Charaterization of Coordination Set and Algorithm

•00000000000

- Network Topology and Coordination Set
- Intervention Design

Coordination Set

• The cutoffs $\theta^* = \left(\theta_1^*, \dots, \theta_{|N|}^*\right)$ represent the prospensity to adopt

Definition 1 (Coordination sets)

 θ^* map to a unique partition called coordination sets $C^* = \{C_1^*, \dots C_M^*\}$ of N:

Charaterization of Coordination Set and Algorithm

0.0000000000

- 2 For all $(i,j) \in E$ satisfying $\theta_i^* = \theta_i^*$, there is some $m \in \{1,\ldots,M\}$, such that $i, j \in C_m^*$.
- Item (i) guarantees that agents with distinct cutoffs cannot coexist in the same coordination set,
- Item (ii) eliminates the fact that one could have singletons for reasons other than everybody adopting a different threshold

SAND Algorithm

• $F(\cdot): 2^N \to \mathbb{R}$, $F(S) \equiv v(S) + \phi e(S)$, for any $S \subset N$ where $v(S) \equiv \sum_{i \in S} v_i$, and $e(S) \equiv \frac{1}{2} \sum_{i \in S} d_i(S)$, where $d_i(S) \equiv |N_i \cap S|$ denotes the within-degree of i

Sequential Average Network Density (SAND)

Step 1.

$$A_1^* = \underset{S \supset \emptyset}{\operatorname{argmax}} \frac{F(S)}{|S|}.$$

(If there are multiple maximizers, we set A_1^* to the largest maximizer. Step k.

$$A_k^* = \underset{S \supseteq A_{k-1}^*}{\operatorname{argmax}} \frac{F(S) - F(A_{k-1}^*)}{|S| - |A_{k-1}^*|}.$$

(If there are multiple maximizers, we set A_k^* to the largest maximizer.)

Continue until $A_k^* = N$

SAND Algorithm

Sequential Average Network Density (SAND)

000000000000

Charaterization of Coordination Set and Algorithm

Step 1.

Introduction

$$A_1^* = \underset{S \supset \emptyset}{\operatorname{argmax}} \frac{F(S)}{|S|}.$$

(If there are multiple maximizers, we set A_1^* to the largest maximizer. Step k.

$$A_k^* = \underset{S \supseteq A_{k-1}^*}{\operatorname{argmax}} \frac{F(S) - F(A_{k-1}^*)}{|S| - |A_{k-1}^*|}.$$

(If there are multiple maximizers, we set A_k^* to the largest maximizer.)

Continue until $A_k^* = N$

- $\bullet \emptyset \subseteq A_1^* \subseteq A_2^* \subseteq \cdots \subseteq A_K^* = N$
- $t_{[1]}^* > t_{[2]}^* > \cdots > t_{[K]}^*$

 $t_{[k]}^* = \frac{F(A_k^*) - F(A_{k-1}^*)}{|A^*| - |A^*|}$ denote the maximum value obtained in Step k

FIGURE 1

Coordination and network structure.

Example 1 For the star network in Figure 1(a), the SAND algorithm terminates in step 1:²⁵

Example 2 For the quad-core-periphery network in Figure 1(b), the SAND algorithm terminates in two steps. In Step 1, $A_1^* = \{1c, 2c, 3c, 4c\}$, as shown in the table below:

S	$\{1c, 2c, 3c\}$	$\{1c,2c,3c,4c\}$	$\{1c, 2c, 3c, 4c, 1p\}$	N
e(S)/ S	3/3	6/4	7/5	10/8

In Step 2, the algorithm terminates with $A_2^* = N$.²⁶

SAND Algorithm

Thm 1 (Main Equilibrium Characterization)

0000000000000

Suppose agent $i \in A_k^* \backslash A_{k-1}^*$ (defining $A_0^* = \emptyset$) in the SAND algorithm. Then, her equilibrium cutoff θ_i^* satisfies

$$\theta_i^* = -t_{[k]}^*.$$

- Remark1: low computational complexity; confirmation of uniqueness of limiting equilibrium and its independence of noise distribution
- Remark2: A similar alternative equilibrium characterization using the potential function in Leister et al. (2019) – the global game machinery selects the maximizer of the potential $P(a, \theta)$ for generic.

Result Characterization

• Indifferent between adopting or not at her cutoff for i:

Charaterization of Coordination Set and Algorithm

$$\theta_i^* + v_i + \phi \sum_{j \in N_i} w_{ij}^* = 0, \quad \forall i \in N$$
where $w_{ij}^* = \lim_{\nu \to 0} \mathbb{E} \left[\mathbb{I} \left(s_j \ge c_j^{*\nu} \right) \mid s_i = c_i^{*\nu} \right]$

Lemma1 (classical result in global game)

0000000000000

For each $(i, j) \in E$,

The following identity holds:

$$w_{ij}^* + w_{ji}^* = 1,.$$

2 If, in addition, $\theta_i^* < \theta_i^*$, then

$$w_{ii}^* = 0$$
, and $w_{ii}^* = 1$.

Introduction

Result Characterization

• Thm1: $\theta^* = -t^*_{[k]}$.

•
$$0 = \underbrace{\left(\sum_{i \in S} \theta_{i}^{*}\right)}_{\geq |S|\theta_{[1]}} + \underbrace{\left(v(S) + \phi \sum_{i \in S} \sum_{j \in N_{i}} w_{ij}^{*}\right)}_{\geq v(S) + \phi e(S) = F(S)} \Rightarrow \frac{F(S)}{|S|} \leq -\theta_{[1]}$$
where t cutoff $\theta_{[1]} \equiv \min_{j \in N} \theta_{i}^{*}$

Charaterization of Coordination Set and Algorithm

• In fact, the upper bound $-\theta_{[1]}$ is achievable for

$$S = A_1 = \{i \in N \mid \theta_i = \theta_{[1]}\}$$
 (the set of agents with the lowest cutoff): $\frac{F(A_1)}{|A_1|} = -\theta_{[1]} \ge \frac{F(S)}{|S|}, \forall S.$

• The process then continues until it stops when all the players are included.

New Insights

- Katz-Bonacich Centrality (interconnectedness) determines the propensity to adopt (BCZ,2006)
- New insights: interconnectedness + embeddedness jointly determine the propensity

FIGURE 2
Interconnectedness versus Embeddedness.

• The SAND stops in three steps with:

Charaterization of Coordination Set and Algorithm

$$A_1^* = S_1 = \{1, 2, 3, 4, 5, 6\}, A_2^* = S_1 \cup S_2, S_2 = \{i, j, k\}, A_3^* = S_1 \cup S_2 \cup S_3 = N, S_3 = \{i', j', k'\}$$

- What is notable is that agents in S_2 , instead of S_3 , are found in Step 2.
- This implies, in particular, that agent $j \in S_2$ has a higher propensity to adopt than agent $i' \in S_3$, although j has fewer links than i'.

FIGURE 2
Interconnectedness versus Embeddedness.

New Insights

- Define L(S', S'') for $S' \cap S'' = \emptyset$ to be the number of links from agents in $S' \subset N$ to agents in $S'' \subset N$.
- Then, for $S \supseteq A_{k-1}^*$, we have

$$e(S) - e\left(A_{k-1}^*\right) = e\left(S \backslash A_{k-1}^*\right) + L\left(S \backslash A_{k-1}^*, A_{k-1}^*\right),$$

• Step k in SAND can be written in the following manner by setting $T = S \setminus A_{k-1}^*$:

$$\max_{\emptyset \neq T \subseteq N \backslash A_{k-1}^*} \underbrace{\frac{e(T)}{|T|}}^{\text{embeddedness}} + \underbrace{\frac{L\left(T, A_{k-1}^*\right)}{|T|}}^{\text{interconnectedness}}$$

- In BCZ, what matters the most is the complementarity in actions between agents,
 - ⇒ the ones who generate and receive the largest spillovers from their neighbours (same coordination set).
- LZZ additionally has a coordination problem since agents do not know with certainty whether certain neighbours adopt
 - ⇒ the level of spillovers to which they are exposed (different coordination sets).

Further Characterizations and Discussions

Charaterization of Coordination Set and Algorithm

- Further Characterizations and Discussions
 - Network Topology and Coordination Set
 - Intervention Design
 - Comparisons

Single Coordination Set

- Assumption 1 (Homogeneous intrinsic valuations) $v_i = v$ for each $i \in N$ Under Assumption 1, C^* is independent of v and of ϕ .
- Single Coordination Set:
 - **1** if and only if it is balanced, in the sense that for every non-empty $S \subset N$, $\frac{e(S)}{|S|} \le \frac{e(N)}{|N|}$
 - 2) if and only if there exists $\mathbf{w} = \{w_{ij}, (i,j) \in E\}$, such that for all $i, j \in N : (i)w_{ij} \ge 0, (ii)w_{ij} + w_{ji} = 1, \text{ and } (iii) \sum_{k \in N_i} w_{ik} = \frac{e(N)}{|N|}.$ $e(S) = \frac{1}{2} \sum_{i,j \in S: (i,j) \in E} (w_{ij} + w_{ji}) \le \sum_{i \in S} \sum_{j \in N_i} w_{ij} = \sum_{i \in S} \frac{e(N)}{|N|} = |S| \frac{e(N)}{|N|}, \text{ for all } S \subset N$
- A regular network / tree network / regular bipartite network / has a unique cycle / has a maximum of four agents ⇒ single coordination set

The Agents with Highest Propensity

- A_1^* is the unique nonempty set A that simultaneously satisfies the following conditions:
 - For any non-empty subset \underline{A} of A, the average density of \underline{A} is no greater than that of A, that is,

$$\frac{e(\underline{A})}{|A|} \le \frac{e(A)}{|A|}, \quad \forall \emptyset \subsetneq \underline{A} \subseteq A.$$

2 For any nonempty subset T of $N \setminus A$, the average number of links across T and A is smaller than the difference in average densities between A and T, that is,

$$\frac{L(T,A)}{|T|} < \frac{e(A)}{|A|} - \frac{e(T)}{|T|}, \quad \forall \emptyset \subsetneq T \subseteq N \backslash A.$$

Local Contagion

Proposition (Local contagion/ "risk-sharing islands")

- 1 For a generic $\mathbf{v} = (v_1, ..., v_n)$, there exists a nonempty open neighbourhood $\mathcal{N}(\mathbf{v})$ around \mathbf{v} , such that, for any $\mathbf{v}',\mathbf{v}''\in\mathcal{N}(\mathbf{v})$, the coordination sets under \mathbf{v}' are the same as those under \mathbf{v}'' .
- 2 The mapping $\theta^*(\mathbf{v})$ is piecewise linear, Lipschitz continuous, and monotone. For generic **v**, for each $i, j \in C_m^*$, and $k \notin C_m^*$:

$$\frac{\partial \theta_j^*}{\partial v_i} = \frac{-1}{|C_m^*|}, \quad \text{ and } \quad \frac{\partial \theta_k^*}{\partial v_i} = 0$$

- (1) states that, the solution is locally invariant in v
- (2) indicates that, increasing the intrinsic value of agent i, locally reduces the common cutoff value for its coordination set

Changes to intrinsic valuations

- A planner who shares prior $H(\cdot)$ over θ and holds no private information.
- The planner has a fixed budget B to subsidy the users.

feasible set:

$$K(\mathbf{v}, B) \equiv \left\{ \tilde{\mathbf{v}} \in \mathbb{R}^{|N|} : \tilde{v}_j \ge v_j, \forall j \in N, \text{ and } \sum_{j \in N} \tilde{v}_j - v_j \le B \right\}$$

- two types of problems:
 - The expected aggregate adoption:

$$TA(\mathbf{v}) \equiv \sum_{i \in N} \mathbb{E}\left[\pi_i^*(\theta)\right] = \sum_{i \in N} \left(1 - H\left(\theta_i^*\right)\right)$$

2 The expected aggregate welfare: $TW(\mathbf{v}) \equiv \mathbb{E}[W(\pi^*(\theta), \theta)]$, where $W(\mathbf{a},\theta) = \sum_{i \in N} u_i(\mathbf{a},\theta).$

Planner's Optimal Policies

Optimal Policies

For sufficiently small B

- The set of solutions to the A-planner's problem is given by the set of expended $\tilde{\mathbf{v}}$ satisfying $\tilde{\mathbf{v}}_i > \mathbf{v}_i$, if and only if i maximizes $H'(\theta_i^*)$
- 2 The set of solutions to the W-planner's problem is given by the set of expended $\tilde{\mathbf{v}}$ satisfying $\tilde{\mathbf{v}}_i > \mathbf{v}_i$ if and only if $i \in C_m^* \subseteq A_{\iota}^*$ maximizes:

$$1 - H(\theta_i^*) + \phi\left(\frac{L(C_m^*, A_{k-1}^*) + e(C_m^*)}{|C_m^*|}\right) H'(\theta_i^*)$$

Planner's Optimal Policies

Optimal Policies (for sufficiently small B)

- **1)** A-planner's taregt if and only if i maximizes $H'(\theta_i^*)$
- **2** W-planner's taregt if and only if $i \in C_m^* \subseteq A_k^*$ maximizes:

$$1 - H(\theta_i^*) + \phi\left(\frac{L\left(C_m^*, A_{k-1}^*\right) + e(C_m^*)}{|C_m^*|}\right) H'(\theta_i^*)$$

- A-planner cares the direct effect: a subsidy to member i's adoption increases adoption among other members in the same coordination set, while having no influence on members of other coordination sets
- W-planner also values the additional externalities among members of the targeted coordination set

- Two possible changes: removing key player and adding links
- The key players are determined using the SAND algorithm (remove agent *i* and compare)
- \mathcal{G}_{+ii} is defined as the network created by adding the additional link ij in \mathcal{G}
 - **1)** C_{+ii}^* is the limit partition under G_{+ii}
 - 2 Let θ_k^* and $\theta_{k,+ii}^*$ correspond to the cutoffs of agent k under networks \mathcal{G} and \mathcal{G}_{+ii} , respectively.

Further Characterizations and Discussions

Changes to the network structure

linkage

Take i, j with $i \in C_m^*$, $ij \notin E$.

- **1** Assume that $C^*_{+ii} = C^*$. If
 - 1 $j \notin C_m^*$ with $\theta_i^* > \theta_j^*$, then $\theta_i^* \theta_{i,+ij}^* = \phi \frac{1}{|C_m^*|}$, and $\theta_{j,+ij}^* = \theta_j^*$;
 - **2** $j \in C_m^*$, then $\theta_i^* \theta_{i,+ij}^* = \phi \frac{1}{|C_m^*|}$
- 2 Assume that $C_{+ii}^* \neq C^*$. If
 - 1 $j \notin C_m^*$ with $\theta_i^* > \theta_j^*$, then $\theta_i^* > \theta_{i,+ij}^* \ge \theta_{j,+ij}^*$, where $\theta_{j,+ij}^* = \theta_i^*$ if $\theta_{i,+ij}^* \ne \theta_{j,+ij}^*$;
 - $i \in C_m^*$, then i and j are in the same coordination set in C

Ballester et al. (2006) (BCZ)

• Each agent i chooses effort a_i to maximize the following payoff:

$$u_i(\mathbf{a}) = v_i a_i - \frac{1}{2} a_i^2 + \phi \sum_{j \in \mathcal{N}} g_{ij} a_i a_j,$$

where $v_i = r - p$ for each i, where p is the (common) price and r > 0is the marginal private returns of exerting a_i .

• Contrary to LZZ(2022), effort a_i is continuous, i.e., $a_i \in \mathbf{R}_+$.

BCZ(2006)

When $\phi \lambda_{\max}(\mathbf{G}) < 1$, there exists a unique Nash equilibrium given by:

$$\mathbf{a}^*(p) = (a_1^*(p), \dots, a_n^*(p))' = \begin{cases} [\mathbf{I} - \phi \mathbf{G}]^{-1} (r - p) \mathbf{1} & \text{if } p \le r \\ \mathbf{0} & \text{if } p > r, \end{cases}$$

Thus, the aggregate demand is equal to:

$$D^{BCZ}(p) = \sum_{i \in \mathcal{N}} a_i^*(p) = \begin{cases} b(\mathbf{G}, \phi)(r-p) & \text{if } p \leq r \\ 0 & \text{if } p > r, \end{cases}$$

where $b(\mathbf{G}, \phi) = \mathbf{1}'[\mathbf{I} - \phi \mathbf{G}]^{-1}\mathbf{1}$ is the (unweighted) aggregate Katz-Bonacich centrality of \mathbf{G} with parameter ϕ .

FIGURE 3
Aggregate demand in Ballester et al. (2006)

Sákovics and Steiner (2012) (SS)

• The utility of agent *i*:

$$u_i(a,\theta,p) = \begin{cases} \phi_i + v_i - p & \text{if } a \ge 1 - \theta \\ v_i - p & \text{if } a < 1 - \theta \end{cases},$$

where $a = \int_0^m w_i a_i di$, $v_i < 0$, $\phi_i + v_i - p > 0$ for all p, and $w_i > 0$.

- Each group g of players has measure m_g , $\sum_g m_g = m$, $\sum_g w_g m_g = 1$ (a normalization), and each $v_i = v_i$, $\phi_i = \phi_i$ and $w_i = w_i$ for $i, j \in g$.
- Players are endowed with signals $s_i = \theta + \nu \epsilon_i, \nu \in (0, 1]$ and ϵ_i follows $\operatorname{cdf} F(\cdot)$ with support [-1, 1].
- Each player i 's group membership is private information with $\Pr\left(g_i=g\right)=m_\sigma/m.$

SS(2012)

For each $v \in (0,1]$, there is a unique Bayes-Nash equilibrium and each player follows the following threshold strategy:

$$a_i(s_i,g) = \begin{cases} 1 \text{ if } s_i \ge s_g^* \\ 0 \text{ if } s_i < s_g^* \end{cases}.$$

Moreover, as $v \to 0$, all thresholds s_g^* converge to a common limit θ^* , where:

$$\theta^* = \sum_g m_g \frac{w_g}{\phi_g} (p - v_g)$$
.

• For a given realization of θ , as $v \to 0$, the above maps to a p^* such that

$$p \leq p^*$$
 implies $a_i = 1$ and $p > p^*$ implies $a_i = 0$ for all i , with $p^* = \frac{\theta + \sum_g \frac{m_g w_g v_g}{\phi_g}}{\sum_g \frac{m_g w_g}{\phi_g}}$

• Under the assumption that, for all g, $\phi_g = \phi$, p^* becomes:

$$p^* = \theta \phi + \sum_{g} m_g w_g v_g$$
. Social Connectedness and Local Contagion

35/40

• When all players adopt, aggregate demand $D^{SS}(p)$ is equal to m. otherwise demand is 0. That is, for a given realization of the state θ , as $v \to 0$.

$$D^{SS}(p) = \sum_{i \in \mathcal{N}} a_i^*(p) = \begin{cases} m \text{ if } p \leq p^* \\ 0 \text{ if } p > p^* \end{cases}$$

FIGURE 4 Aggregate demand in Sákovics and Steiner (2012)

Leister et al. (2022) (LZZ)

• The utility of agent *i*:

$$u_i(\mathbf{a}, \theta) = \left(v_i + \theta + \phi \sum_{j \in \mathcal{N}} g_{ij} a_j\right) a_i,$$

where a_i is either 0 or 1 and θ is the state.

- Assume $v_i = r p$ for each i, where p is the price and r > 0 is a constant.
- Define $p_{[i]}^* = \theta + r + \phi t_{[i]}^*$ for each coordination set A_i^* .
- The aggregate demand function in this framework is given by:

$$D^{LZZ}(p) = \sum_{i \in \mathcal{N}} a_j^*(p) = \sum_{i \in \mathcal{N}} \mathbf{1}_{\left\{\theta + r - p + \phi q_j^* \ge 0\right\}},$$

Here, $\mathbf{q}^* = (q_1^*, \dots, q_n^*)$ is defined such that $q_k^* = t_{[i]}^*$ if k is in A_i^* .

• In other words, an agent k in coordination set A_i^* will adopt if and only if $p \leq p_{[i]}^*$.

Introduction

The aggregate demand function in this framework is given by:

Charaterization of Coordination Set and Algorithm

$$D^{LZZ}(p) = \sum_{i \in \mathcal{N}} a_j^*(p) = \sum_{i \in \mathcal{N}} \mathbf{1}_{\left\{\theta + r - p + \phi q_i^* \ge 0\right\}},$$

Aggregate demand in our model

Conclusion

- - Network Topology and Coordination Set
 - Intervention Design
 - Comparisons
- Conclusion

Conclusion

- A coordination game among agents with private values and binary actions in a network
 - limiting equilibrium (cut-off threshold strategy) in global games (equilibrium selection)
 - 2 SAND algorithm and coordination set partition
 - 3 some discussions: optimal intervetion, network topology, demand function, ...