

Linear Operators 101 - Part 2

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • October 30, 2020

Lecture Agenda Summary

- 2. Lecture 07 Recap
- 3. Vector Space Isomorphisms
- 4. Product of Operators
- 5. Invertible Operators
- 6. Abstract General Linear Group
- 7. Abstract Eigenvectors & Eigenvalues
- 8. Study Materials Comments

Foundation Module Review

Rings and Fields 101 #1

Matrix Algebra #2

Quantum Matrix Operators #2

Group Theory 101 #1

Linear Operators 101 #2

Complex Hilbert Spaces #2

Naive Set Theory Overview #1

Complex Vector spaces 101 #2

Matrix Groups: GL(n, C) & U(n) #2

Completed ____

Ongoing | #n is the number of live lectures

Canonical Example of Linear Operator

▶ Let $V = W = \mathbb{C}^2$ and let $M_2(\mathbb{C})$ be the ring of all 2×2 matrices over \mathbb{C} i.e. $M_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C} \right\}$.

Then for each $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$ we can construct a linear operator $T_A : \mathbb{C}^2 \to \mathbb{C}^2$ as follows:

For any
$$|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{C}^2$$
, let T_A act on $|\psi\rangle$ as $T_A|\psi\rangle = A|\psi\rangle = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix} \alpha + \begin{pmatrix} b \\ d \end{pmatrix} \beta = \begin{pmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{pmatrix}$.

- ▶ Hence, each matrix $A \in M_2(\mathbb{C})$ generates a linear operator for \mathbb{C}^2 .
- ightharpoonup Can we generalise this to \mathbb{C}^n such that any $A \in M_n(\mathbb{C})$ generates a linear operator T_A for \mathbb{C}^n ?
- ightharpoonup Can we also generate a matrix linear operator $A_T \in M_n(\mathbb{C})$ for \mathbb{C}^n given any linear operator $T : \mathbb{C}^n \to \mathbb{C}^n$?
- ▶ By convention we just write A to denote the linear operator generated from $A \in M_n(\mathbb{C})$ instead of writing T_A .

Definition (Lecture 06)

If $T:V\to W$ is a linear operator then the range of T is defined as

 $Ran(T) = \{T|\psi\rangle \mid |\psi\rangle \in V\}.$

Proposition (Lecture 06)

Ran(T) is a linear subspace of W.

Proof: Homework 1.3!

ightharpoonup The dimension of Ran(T) is called the rank of T.

Definition (Lecture 06)

Let $T: V \to W$ be a linear operator. The kernel of T is defined as $Ker(T) = \{|\psi\rangle \in V \mid T|\psi\rangle = |0_W\rangle\}.$

Ker(T) is also often called the null-space of T in the literature.

Proposition (Lecture 06)

Ker(T) is a subspace of V.

Proof: Homework 1.4!

Theorem (Lecture 06)

Let $T: V \to W$ be a linear operator. Then dim(V) = dim Ker(T) + dim Ran(T).

Proof: Homework challenge?

► The theorem above is often called 'the dimension theorem' or sometimes 'the rank-nullity theorem'.

Vector Space Isomorphisms

Definition (1.0)

A linear operator $T: V \longrightarrow W$ is called:

- 1. **Surjective** (onto) if Ran (T) = W i.e. for all $|\psi'\rangle \in W$ there exists a vector $|\psi\rangle \in V$ such that $|\psi'\rangle = T|\psi\rangle$.
- 2. **Injective** (one-to-one) if for all $|\psi_1\rangle$, $|\psi_2\rangle \in V$, $T|\psi_1\rangle = T|\psi_2\rangle$ if only if $|\psi_1\rangle = |\psi_2\rangle$.
- 3. **Bijective** if it's both surjective and injective.

Definition (1.1)

We say that V is isomorphic to W ($V \simeq W$) if there is at least a bijective linear operator $T: V \longrightarrow W$.

▶ Because of the injectivity of T, it follows that T is an isomorphism iff $Ker(T) = \{0_V\}$.

Isomorphism between \mathbb{C}^4 and $M_2(\mathbb{C})$

Lets first recall that
$$\mathbb{C}^4 = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \mid a,b,c,d \in \mathbb{C} \right\}$$
 and $M_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in \mathbb{C} \right\}$.

We can define a linear operator $T: \mathbb{C}^4 \longrightarrow M_2(\mathbb{C})$ naturally as follows:

For each
$$|\psi\rangle=egin{pmatrix} a \ b \ c \ d \end{pmatrix}\in\mathbb{C}^4$$
 define $T|\psi\rangle=egin{pmatrix} a & b \ c & d \end{pmatrix}.$

► The definition above clearly makes *T* into an isomorphism!

Isomorphism Theorems

Theorem (1.0)

Let V and W be vector spaces over \mathbb{C} . Then $V \simeq W$ if and only if dim(V) = dim(W).

Proof: Homework challenge?

- ► A more elegant way of stating the above theorem is to say that the following statements are equivalent:
 - 1. $V \simeq W$
 - 2. dim(V) = dim(W)

Theorem (1.1)

If V is a vector space over $\mathbb C$ and $\dim(V)=n$. Then $V\simeq \mathbb C^n$.

▶ So for example, take $V = \mathbb{C}^2 \otimes \mathbb{C}^2$. Because $\dim(\mathbb{C}^2 \otimes \mathbb{C}^2) = 4$ it then follows that $\mathbb{C}^2 \otimes \mathbb{C}^2 \simeq \mathbb{C}^4$.

Identity Operator

Definition (1.2)

The identity operator $\mathbb{I}_V:V\to V$ is defined as $\mathbb{I}_V|\psi\rangle=|\psi\rangle$ for all $|\psi\rangle\in V$.

- $ightharpoonup \mathbb{I}_V$ is of course a linear operator. What can we say about $\text{Ker}(\mathbb{I}_V)$?
- For $V = \mathbb{C}^2$, the identity operator is of course $\mathbb{I}_V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- ▶ Obviously the example above can be generalised for any \mathbb{C}^n , where \mathbb{I}_V is identified as the $n \times n$ identity matrix of the ring $M_n(\mathbb{C})$.

Convention: Whenever V is understood from the context, we shall just write \mathbb{I} instead of \mathbb{I}_V !

Product of Operators

Definition (1.3)

Let $T_1:V\longrightarrow V$ and $T_2:V\longrightarrow V$ be linear operators. Their composition $T_2\circ T_1:V\longrightarrow V$ is defined as $T_2\circ T_1|\psi\rangle=T_2T_1|\psi\rangle$ for all $|\psi\rangle\in V$.

ightharpoonup We can prove that $T_2 \circ T_1$ is indeed a linear operator.

Convention: We'll just write T_2T_1 instead of $T_2 \circ T_1$ and rename it as 'operator product'!

Definition (1.4)

A linear operator $T: V \longrightarrow V$ is invertible if there exists a linear operator denoted $T^{-1}: V \longrightarrow V$ such that $TT^{-1} = T^{-1}T = \mathbb{I}_V$.

So not every T is invertible. But, is there a necessary and sufficient condition for T to be invertible?

Theorem (1.2)

A linear operator $T: V \longrightarrow V$ is invertible if and only if $Ker(T) = \{0\}$.

Proof : Homework challenge?
Hence, the theorem above implies T is invertible iff T is an
isomorphism from V to V?

Theorem (1.3)

Let $T_1: V \longrightarrow V$ and $T_2: V \longrightarrow V$ be invertible linear operators. Then T_2T_1 is invertible.

Proof: Homework challenge?

▶ If $V = \mathbb{C}^2$ then the following linear operators are invertible:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Do the set of all invertible linear operators acting on V form a group?

Abstract General Linear Group

Definition (1.5)

The set $GL(V) = \{T : V \longrightarrow V \mid T \text{ is invertible } \}$ is called the general linear group of V i.e. GL(V) is the set of all invertible linear operators acting on V.

- As home challenge, verify that GL(V) is a group under the operator product defined previously. Is it abelian or non abelian?
- In the matrix group section, we'll see that if $\dim(V) = n$ then $GL(V) \simeq GL(n, \mathbb{C})!$
- As you'll see, $GL(n, \mathbb{C})$ contains some interesting subgroups such as the unitary group U(n) and the special unitary group SU(n).
- As the name suggests, in quantum mechanics U(n) is mathematically behind the so-called 'unitary evolution'!

Abstract Eigenvectors and Eigenvalues

Definition (1.6)

Let $T:V\longrightarrow V$. A vector $|\psi\rangle\in V$ is said to be an eigenvector of T if there exists a $\lambda\in\mathbb{C}$ such that $T|\psi\rangle=\lambda|\psi\rangle$. The scalar λ is called an eigenvalue of T.

The set of all eigenvalues of T is called the spectrum of T and often denoted $\operatorname{Spec}(T)$ i.e $\operatorname{Spec}(T) = \{\lambda \in \mathbb{C} \mid T|\psi\rangle = \lambda|\psi\rangle\}$ where $|\psi\rangle \in V$ is obviously an eigenvector of T.

Theorem (1.4)

Let $T: V \longrightarrow V$ be a linear operator with distinct set of eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$ with corresponding eigenvectors $|\psi_1\rangle, |\psi_2\rangle, \ldots, |\psi_n\rangle \in V$. Then the vectors $|\psi_1\rangle, |\psi_2\rangle, \ldots, |\psi_n\rangle$ are linearly independent.

- ► Can the eigenvectors of the distinct eigenvalues above form a basis for V if dim(V) = n?
- In quantum mechanics, the eigenvalues and eigenvectors of linear operators encoding physical observables such as the energy (aka the Hamiltonian) are very important!
- ▶ Be aware that physicists often write $|\lambda_1\rangle, |\lambda_2\rangle, \dots, |\lambda_n\rangle$ to denote the eigenvectors of $\lambda_1, \lambda_2, \dots, \lambda_n$!

Home Challenge

Let $V = \mathbb{C}^2$ and consider the following linear operators:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

- Try find the eigenvalues and eigenvectors of each operator above!
- ▶ Do their eigenvectors form a basis for \mathbb{C}^2 ?

Software aid: Feel free to use any suitable software to help you find the answers!

Prof. Sheldon Axler

Where should you focus?

3.D Invertible Linear Maps (Pages 80 - 88)

5.A Eigenvalues & Eigenvectors (131 - 133)

- GitHub (Curated study materials): github.com/quantumformalism
- YouTube: youtube.com/zaikugroup
- Twitter: @ZaikuGroup
- **Gitter:** gitter.im/quantumformalism/community