Gépi tanulás

Tanulás fogalma

- Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat jobb eredménnyel, illetve jobb hatékonysággal képes megoldani, mint korábban.
- A tanulás során változhat a feladat
 - reprezentációja (logikai formulák, valószínűségi hálók)
 - megoldó algoritmusa (mély hálók, genetikus programozás)
 - heurisztikája (B' algoritmus)

Tanulási modellek

- □ Ha a megoldandó problémát egy $\phi: X \to Y$ leképezés modellezi, akkor ehhez azt az $f: X \to Y$ leképezést kiszámító algoritmust keressük (tanuljuk meg), amelyre $f \approx \phi$
 - sokszor egy rögzített $f: P \times X \rightarrow Y$ leképezést használunk, és annak azon Θ∈P paraméterét keressük, amelyre $f(\Theta, x) \approx \varphi(x)$
- Induktív tanulási modell
 - f leképezést (illetve annak paraméterét) x_n ∈X (n=1..N) bemenetek (minták) alapján tanuljuk
- Adaptív (inkrementális) tanulás
 - Egy már megtanult f leképezést egy új minta anélkül módosít, hogy a korábbi mintákat újra meg kell vizsgálnunk.

Induktív modellek tanulási módjai

- □ *Felügyelt tanulás*: ismeri a tanuláshoz használt minták elvárt kimenetét is, azaz az $(x_n, \varphi(x_n))$ (n=1..N) input-output párok alapján tanul.
- □ Felügyelet nélküli tanulás: nem ismeri a tanuláshoz használt minták elvárt kimenetét, csak x_n (n=1..N) lehetséges inputokat; a minták illetve az azokra kiszámolt kimenetek közötti összefüggéseket próbálja felismerni, azokat osztályozni.
- *Megerősítéses tanulás*: nem ismeri ugyan a tanuláshoz használt minták elvárt kimenetét, de képes az x_n (n=1..N) inputokra kiszámolt eredményt minősíteni, hogy az mennyire megfelelő.

1. Felügyelt tanulás

A problémát modellező $\varphi: X \to Y$ leképezés közelítéséhez választunk egy $f: P \times X \to Y$ paraméteres leképezést, majd ennek azon $\Theta \in P$ paraméterét keressük (*paraméteres tanulás*), amelyre az (x_n, y_n) (n=1..N) tanító minták mellett (ahol $y_n = \varphi(x_n)$) az alábbi hiba már elég kicsi (ettől reméljük, hogy $f(\Theta, x) \approx \varphi(x)$)

hiba függvény

$$\frac{1}{N} \sum_{n=1}^{N} \ell\left(f(\Theta, x_n), y_n\right)$$
elvárt kimenet

számított kimenet

- $\ \ \ \ \ \ell:Y\times Y\to\mathbb{R}$ hibafüggvény:
 - $\ell(t_n, y_n)$ lehet például $||t_n y_n||_1$, $||t_n y_n||_2^2$, vagy $-\Sigma_i y_n \log t_n$.

Megjegyzés

- □ Fontos, hogy az $f(\Theta, x)$ kiszámítása gyors legyen; nem baj, ha a megfelelő Θ megtalálása lassú, hiszen ezt a tanító minták segítségével előre számoljuk ki.
- A Θ megtanulása akkor működik jól, ha
 - N elég nagy (Ugyanakkor számolni kell azzal, hogy a mintákat drága összegyűjteni, a $\varphi(x_n)$ -eket költséges kiszámolni.)
 - f és ℓ megfelelőek (ehhez tapasztalat, sok próbálkozás kell)
 - Θ közel esik a paraméter globális optimumához
- □ A Θ megtalálása egy nemkonvex optimalizálási feladat: a Θ globális optimumát megtalálni NP-teljes probléma. Szerencsére ez nem is cél, mert ezzel túl mohó módszert kapnánk (túltanulás), amely a tanító mintákra tökéletes, de egyébként nem.

1.1. K legközelebbi szomszéd

□ Az f függvény veszi a minták közül az $x \in X$ bemenethez legközelebb eső bemenettel rendelkező K darab mintát, és ezek kimenetei alapján (pl. átlagolással) határozza meg az x kimenetét:

igaz állításra 1-et, különben 0-t ad
$$f(\Theta, x) = \sum_{n=1}^{N} \frac{\mathbb{I}(x_n \text{ az egyike az } x\text{-hez legközelebb})}{\text{eső } K \text{ darab tanító minta inputjainak})}$$

• a Θ paramétert (ami egyrészt a mintákból, másrészt a $K \in \mathbb{N}$ számból áll) nem kell optimalizálni, hanem előre meg kell adni.

- a legközelebbi szomszédokat az $||x_n-x||_2^2$ távolságok sorba rendezésével választjuk ki
- előny: egyszerű leprogramozni, a "tanulás" gyors
- *hátrány*: ha *N* nagy, a tárolás, és a minták sorba rendezése erőforrásigényes, az *f* kiszámítása lassú

1.2. Döntési fa

- □ Tegyük fel, hogy az $x \in X$ bemeneteknek ugyanazon tulajdonságait (adott attribútumok értékeit) ismerjük, azaz egy bemenet attribútum-érték párok halmazával jellemezhető.
- □ Képzeljük el azt az irányított fát, amelynek
 - belső csúcsai egy-egy attribútumot szimbolizálnak, és az abból kivezető éleket ezen attribútum lehetséges értékei címkézik
 - · ágai attribútum-érték párok halmazát jelölik ki
 - leveleihez azon tanító minták rendelhetők, amelyeket a levélhez vezető út attribútum-érték párjaival rendelkeznek.
- Egy *x* bemenet az attribútum-értéke párjai alapján a döntési fa egyik levelére képezhető le, és ekkor a levélhez tartozó minták kimenetei alapján számítható az *x*-hez tartozó kimenetet.

Példa: Elfogadjuk-e a megajánlott vizsgajegyet?

- ☐ Minták (attribútum-érték párok és a válasz):
 - Ha az ötös, akkor feltétlenül.
 - Ha négyes és kevés vizsgánk van és értettük az előadást, akkor nem; feltéve, hogy a tárgy nem a mesterséges intelligencia.
 - Ha hármas és az átlagot kell javítanunk, akkor nem.
- Attribútumok és lehetséges étékeik:
 - hányast ajánlottak meg (1, 2, 3, 4, 5)
 - kevés vizsgánk van-e (igen, nem)
 - kell-e átlagot javítani? (igen, nem)
 - az MI tárgyról van-e szó? (igen, nem)
 - értettük-e az előadást? (igen, nem)

A példa egy döntési fája

Gregorics Tibor

Mesterséges intelligencia

Döntési fa felépítése

- A döntési fát egy (x_n, y_n) (n=1..N) tanító mintahalmaz segítségével építjük fel (ahol $y_n = φ(x_n)$).
 - Az építés során egy csúcshoz a tanító minták egy részhalmaza tartozik, amelyet a csúcshoz választott attribútum diszjunkt részekre vág szét, és e részeket a csúcs gyermekei kapják meg.
 - Egy levélcsúcs értékét ezen csúcshoz tartozó tanító minták kimenetei adják: ez lehet az átlaguk vagy leggyakoribb értékük.
 (Ha ez nem dönt, akkor a levélcsúcs szülőcsúcsának mintáit vizsgáljuk.)
- Egy tanító mintahalmazhoz több döntési fa is megadható.
- □ A legkisebb (legtömörebb) döntési fa megadása egy NP-teljes probléma.

Étterem probléma (Russel-Norvig)

Pl.	Más	Bár	P/Sz	Éhes	Hány	Ár	Eső	Fogl	Fajt	Idő	Marad
1	I	N	N	I	kevés	drá	N	I	Fra	10	I
2	I	N	N	I	tele	olcs	N	N	Tha	60	N
3	N	I	N	N	kevés	olcs	N	N	Bur	10	I
4	I	N	I	I	tele	olcs	N	N	Tha	30	I
5	I	N	I	N	tele	drá	N	I	Fra	sok	N
6	N	I	N	I	kevés	köz	I	I	Ol	10	I
7	N	I	N	N	senki	olcs	I	N	Bur	10	N
8	N	N	N	I	kevés	köz	I	I	Tha	10	I
9	N	I	I	N	tele	olcs	I	N	Bur	sok	N
10	I	I	I	I	tele	drá	N	I	Ol	30	N
11	N	N	N	N	senki	olcs	N	N	Tha	10	N
12	I	I	I	I	tele	olcs	N	N	Bur	60	I

Döntési fa építésének első lépése

Alternativ lépések

Heurisztika

- □ A döntési fa minél tömörebb, egy-egy ága minél rövidebb lesz, ha
 - egy csúcshoz kiválasztott attribútum (a) a csúcshoz tartozó mintákat olyan részhalmazokra vágja szét, amelyeken belül a minták minél homogénebbek, minél kevésbé különböznek,
 - ezt valamilyen távolság fogalom (2-es norma, kereszt entrópia) alapján vizsgálhatjuk
 - Pl.: a szétvágás információs előnyét a szétvágás előtti minta-halmaz információ tartalmának (entrópiájának) és az utána kapott minta-részhalmazok információ tartalmának (számosságuk szerinti súlyozott) összege közti különbséget – maximalizáljuk.

Információ tartalom (Entrópia)

- □ A *P*-beli minták információtartalma (entrópiája), ha csak kétféle kimenetű minta van:
 - $-E(P) = E(p^+, p^-) = -p^+ \log_2 p^+ p^- \log_2 p^-$
 - ahol p^+ a P-beli pozitív, p^- a negatív minták aránya $(p^++p^-=1)$
- □ Példa:
 - Ha P-ben 2 pozitív és 3 negatív minta van:

$$E(P) = E(2/5, 3/5) = 0.97$$

– Ha *P*-ben 0 pozitív és 3 negatív minta van:

$$E(P) = E(0/3, 3/3) = 0$$

Információs előny számítása

- \Box ahol P a szülő csúcs mintái, a a választott attribútum,
- □ az *Érték(a)* az *a* attribútum által felvett értékek, és
- \Box a $P_{a=v} = \{ p \in P \mid p.a=v \}$

Egy csúcs attribútumának kiválasztása 1.

- Ha a $M\acute{a}s$ attribútumot választjuk, akkor a minták 1:5 arányban ketté válnak: {9} ($M\acute{a}s = hamis$), és {2, 4, 5, 10, 12} ($M\acute{a}s = igaz$),
 - $E({9}) = E(0/1, 1/1) = 0$
 - $E({2,4,5,10,12}) = E(2/5, 3/5) = 0.97$
- □ Az információs előny: $C(\{2,4,5,9,10,12\}, Más) = E(\{2,4,5,9,10,12\}) (1/6 E(\{9\}) + 5/6 E(\{2,4,5,10,12\})) = E(2/6,4/6) (1/6 E(0/1,1/1) + 5/6 E(2/5,3/5)) = 0.92 0.81 = 0.11$

Egy csúcs attribútumának kiválasztása 2.

	$C(\{2,4,5,9,10,12\},a)=0.92$	2 -
Más:	1/6 E(0/1, 1/1) + 5/6 E(2/5, 3/5) =	0.81
Bár:	3/6 E(1/3,2/3) + 3/6 E(1/3,2/3)) =	0.92
P/Sz:	1/6 E(0/1,1/1) + 5/6 E(2/5,3/5) =	0.81
Éhes:	4/6 E(2/4,2/4) + 2/6 E(0/2,2/2) =	0.67
Ár:	4/6 E(2/4,2/4) + 0/6 E(0,0) + 2/6 E(0/2,2/2) =	0.67
Eső:	5/6 E(2/5,3/5) + 1/6 E(0/1,1/1) =	0.81
Fog:	4/6 E(2/4,2/4) + 2/6 E(0/2,2/2) =	0.67
Fajt:	2/6 E(1/2,1/2) + 1/6 E(0/1,1/1) + 1/6 E(0/1,1/1) +	
	+2/6 E(1/2,1/2)=	0.67
Idő:	0/6 E(0,0) + 2/6 E(1/2,1/2) + 2/6 E(1/2,1/2)	
	+ 2/6 E(0/2,2/2) =	0.67

További lépések

Étterem probléma döntési fája

Készítsünk algoritmust

- Egy fokozatosan épülő döntési fában a csúcsokhoz a tanító minták egy részhalmaza, valamint a még választható (a csúcshoz vezető út csúcsainak címkéiben nem szereplő) attribútumok tartoznak. Ezek a csúcsok lehetnek
 - attribútummal címkézett belső csúcsok, amelyekből kivezető élek az attribútum lehetséges értékeit képviselik
 - kiértékelt vagy értékkel nem rendelkező levélcsúcsok
- ☐ Minden lépésben egy értékkel még nem rendelkező levélcsúcsról kell eldönteni, hogy kaphat-e értéket vagy belső csúcs legyen-e.
 - Előbbi esetben az értéke a csúcshoz tartozó minták értékei alapján (átlag vagy leggyakoribb érték) számolható.
 - Utóbbi esetben egy attribútumot választunk címkéjének, és generáljuk a gyerekeit.

Algoritmus

- □ Kezdetben a fa egyetlen címkézettlen csúcsból áll (ez lesz majd a gyökér), amelyhez az összes mintát és attribútumot rendeljük.
- □ Veszünk egy értékeletlen levélcsúcsot:
 - 1. Ha $A = \emptyset$, akkor a mintái alapján kiértékeljük.
 - 2. Ha $P=\emptyset$, akkor a szülőcsúcsának mintái alapján kiértékeljük.
 - 3. Ha *P* csupa azonos kimenetű mintából áll, akkor a mintái alapján kiértékeljük.
 - 4. Egyébként ...

Algoritmus (folytatás)

- 4. Egyébként a legnagyobb információs előnnyel járó $a \in A$ attribútummal címkézzük az adott csúcsot, majd generáljuk a gyerekeit:
 - a) Ezekhez az a lehetséges értékeivel címkézett élek vezetnek.
 - b) Ha az *a* címkéjű csúcsból egy gyerekcsúcsába a *v* címkéjű él vezet, akkor a gyerekcsúcshoz rendelt

• minták:
$$P_{a=v} = \{ p \in P \mid p.a=v \}$$

- választható attribútumok: $A = A \{a\}$
- c) Végül minden gyerekre ismételjük meg rekurzív módon az 1-4 pontokat.

Megjegyzés

- □ Zaj: Két vagy több eltérő besorolású minta attribútum-értékei megegyeznek.
 - Ilyenkor a minták válaszainak átlagolása félrevezethet
- □ Túlzott illeszkedés: A bemenetek olyan attribútumait is figyelembe veszünk, amelyek a kimenetre nincsenek hatással. (Például egy kocka dobás eredményére annak színe és dátuma alapján értelmetlen szabályszerűségeket találunk.)
 - A lényegtelen attribútumokat ($C(P,a) \sim 0$) állítsuk félre.
- ☐ Általánosítások:
 - Hiányzó adatok (attribútum értékek) problémája
 - Folytonos értékű attribútumok

Tanulás döntési fával

□ Egy $x \in X$ bemenethez azon tanító minták kimenetei alapján számol kimenetet, amely minták az előzetesen felépített döntési fában az x-re kiszámolt levélcsúcshoz tartoznak

$$f(\Theta, x) = \sum_{n=1}^{N} \frac{\mathbb{I}(\text{az } x\text{-re kiszámolt levélcsúcs } K' \text{ darab}}{\text{tanító mintájának egyike az } x_n)} \cdot y_n$$

amikor x kimenete a hozzá kiszámolt levélcsúcs mintái kimeneteinek átlaga

- Itt a Θ a döntési fa, optimalizálása annak mohó felépítése
- előny: jól értelmezhető (a mintákra tökéletes eredményt, a mintákhoz hasonló inputokra többnyire jó eredményt ad); a tanító minták helyett csak a döntési fát kell tárolni; *x*-re adott eredmény gyorsan számolható
- hátrány: a faépítés NP-teljes, mohó módszerrel csak lokálisan optimális

1.3. Véletlen erdő

- *K* darab döntési fát építünk a tanító minták alapján úgy, hogy egyegy fa építéséhez a tanító mintáknak is, és a minták attribútumainak is csak egy-egy véletlen kiválasztott részhalmazát használjuk fel. Ez lesz a véletlen erdő.
- □ Egy véletlen erdő minden fájában külön-külön megállapíthatjuk, hogy egy x∈X bemenet a döntési fa melyik levelére képződik le. Ezen levelekhez tartozó tanító mintahalmazok kimeneteinek súlyozott átlagával becsüljük az x kimenetét.

Tanulás véletlen erdővel

□ Egy *x* bemenethez tartozó kimenetet a minták kimeneteinek súlyozott átlaga, ahol a súlyok attól függenek, hogy egy minta a véletlen erdő döntési fáinak *x*-re kiszámolt levélcsúcsaihoz tartozó mintahalmazok közül hányba esik bele, és az a halmaz hány elemű:

$$f(\Theta, x) = \sum_{n=1}^{N} \sum_{k=1}^{K} \frac{\mathbb{I}(\text{az } x_n \text{ a } k\text{-adik fa } x\text{-re kiszámolt levélcsúcsához}}{\text{t artozó } K_k(x) \text{ darab mintának az egyike})} \cdot y_n$$

- a Θ maga a véletlen erdő, optimalizálása az erdő felépítése
- előny: a tanító minták helyett csak az erdőt kell tárolni; a véletlen generálás miatt kevésbé mohó, elkerüli a túltanulást; az *x*-re adott eredmény számolása párhuzamosítható
- hátrány: az eredmény kevésbé értelmezhető; az erdő-építés NP-teljes