Defn Let (X,p) be a nutric space. Let ASX. To say A is

Totally bounded is to say that for even 670, A is

a finite union of sets of director 28. (diam(s)= = up p(x,s))

a finite union of sets of director 28. (diam(s)= = up p(x,s))

Eg Lu A be a bourded = IR. A is totally bounded.

Since As [a,b] for some a,b = R w a < b. Let 1>0, then we can divide the interval up & take intersection of A w divisions

ay A bounded set in \mathbb{R}^d is totally bounded. (same as above but not d-cubes).

By Let X be any set. Define $\rho: X : X \to [0,\infty)$ by $\rho(x,x') = \begin{cases} 1 & x \neq x' \\ 0 & x = x' \end{cases}$ ρ is a metric on X under which X is bounded but the only totally bounded subjets of X are the finite ones.

g let X be an infinite dimensional normed linear space. Let $B = \{x \in X : |X| \neq 1\}$ Then B is bounded, but B is not totally bounded.

Theorem Let (X, p) be a complete, totally bounded metric space. Then X is compact.

Proof Let Q be an open cover of X. If $A \subseteq X$ then to say that A contains a lien means that no finite subcollection of Q covers A. We wis X does not contain a lien. Suppose it does. Observe that If $A = \bigcup_{k=1}^{\infty} (A_k \in X)$ and A contains a lien then some A_k contains a lien. Since X is to fully A both $A \subseteq X$ sit. A contains a lien, and if $A \subseteq X$ then $A \subseteq X$ and $A \subseteq X$ and $A \subseteq X$ sit. Some $A \subseteq X$ contains a lien. Some $A \subseteq X$ contains a lien. So there is a decreasing sequence $A \subseteq X$ subsets of $X \subseteq X$ sit. $A \subseteq X$ subsets of $A \subseteq X$ subsets of

diam $(X_i) < \frac{1}{j}$ and X_i contains a lion. If $X_i \neq X_i \neq$

Conversely one can show that a compact metriz space (X,p) is totally bounded & complete.

Defin: Let $f: X \to \mathbb{R}$ where X is a topological space. To say f is lower semicontinuous means that $\forall y \in \mathbb{R}$, $\{x: f(x) > y\}$ is open.

of 1/A is loc when It is open.

g continuous functions fix = R are iso

eg a pointwise sup of lec firs is (SC, just as a union of open sets is open.

theorem let X be a topological space. Then each coner semicontinuous function on X achieves a minimum iff X is non-empty & countably compact.

Every contable U has there success

Deta Lik (x,p) and (Y, or) be metric spaces. Let f: x - y. Let H \(\in X\).

to say f is uniformy continuous mans that two 3800 s.t. tack, txex, $p(x,y) = 8 \Rightarrow \sigma(t(x), t(y)) \ge \epsilon$

Theorem: Let (X, p) and (Y, σ) be metric Spaces, $f: X \rightarrow Y$, $H \subseteq X$ be compact, and suppose f is continuous on H. Then f is uniformly cts on H.

Vact, $Y \in S_0$, $J \in S_0$,

Proof [Ut 670. Wheth, Let $S_{a} > 0$ s it. $\forall x \in X$, $p(x,a) < S_{a} \Longrightarrow p(f(x),f(a))$. $\mathcal{U} = \{ B(a,S_{a}) : a \in H\} \text{ is an open cover of H. So } \exists \text{ a finite subcover}$ $V \subseteq \mathcal{U}$. Let (Wait this uses $Q \circ C$)

Let $\varepsilon>0$, Let $B=\{B(a_1r): a\in H, r>0, aw \forall x\in B_{\chi}(a_12r), \sigma(f(x),f(a)) < \frac{\varepsilon}{2}\}$.

By an open over of H, since f is its. So thre is a finite subcollection.

So $\exists n\in N$ sit. $\exists a_1,...,a_n\in H$, $\exists r_1,...,r_n\in (o_1\infty)$ sit. for K=1,...,n,

 \Box

 $f\left[B_{\chi}(\alpha_{\kappa},z\gamma_{k})\right]\subseteq B_{\chi}\left(f(\alpha_{\kappa}),\frac{\epsilon}{2}\right)$ and $H\subseteq\bigcup_{k=1}^{h}B_{\chi}(\alpha_{\kappa},\gamma_{k})$

Let $\hat{S} = \min_{1 \le k \le n} r_k$. Let $a \in H$, $x \in X$, and suppose p(a,x) < S.

Then $a \in B(a_{\kappa}, r_{\kappa})$ for some κ , so $\sigma(f(a), f(a_{\kappa})) < \frac{\varepsilon}{2}$ also, $\rho(a_{\kappa}, x) \leq \rho(a_{\kappa}, a) + \rho(a, x) < r_{\kappa} + \delta \in 2r_{\kappa} \quad \delta_{\delta}$ $\sigma(f(a), f(x)) < \frac{\varepsilon}{2}, \quad \delta_{\delta} = \sigma(f(a), f(a)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$