

MAM3 # Mathématiques de l'ingénieur.
e 1 # 2024-25

TD 10 - Équation de la chaleur

Exo 1

Soit

$$G_{\sigma}: x \mapsto \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$$

et soit \widehat{G}_{σ} sa transformée de Fourier.

1.1

Montrer que \widehat{G}_{σ} est dérivable sur \mathbf{R} .

1.2

En déduire que \hat{G}_{σ} est solution une équation différentielle linéaire et la résoudre en s'appuyant sur le problème de Cauchy de condition initiale $\hat{G}_{\sigma}(0)$ (que l'on calculera).

Exo 2

Soit $f \in L^1(\mathbf{R})$ telle que

$$f(t) = \int_{-\infty}^{t} g(s) \, \mathrm{d}s$$

avec $g \in L^1(\mathbf{R})$. On définit alors et on note f' := g. Montrer que pour tout $\xi \in \mathbf{R}$,

$$\widehat{f}'(\xi) = 2i\pi\xi \widehat{f}(\xi).$$

Exo 3

On considère une fonction qui à tout $(t,x) \in [0, +\infty[\times \mathbf{R}, \text{ associe } u(t,x) \in \mathbf{R}.$ On suppose que pour $t \geq 0$, $u(t,\cdot)$, $\partial_x u(t,\cdot)$, $\partial_{xx} u(t,\cdot)$ sont toutes dans $L^1(\mathbf{R})$ (au sens de l'exercice 2). On cherche à décrire un tel u vérifiant l'équation de la chaleur unidimensionnelle

$$\partial_t u(t,x) = \partial_{xx} u(t,x), \quad (t,x) \in]0, +\infty[\times \mathbf{R},$$

$$u(0,x) = u_0(x).$$

3.1

Pour tout t>0 fixé, exprimer $\widehat{\partial_{xx}u(t,\cdot)}$ en fonction de $\widehat{u(t,\cdot)}$.

3.2

Montrer que pour tout $\xi \in \mathbf{R}$, $t \mapsto \widehat{u}(t,\xi)$ satisfait une équation différentielle linéaire. En déduire la valeur de $\widehat{u}(t,\xi)$ en fonction de $\widehat{u}_0(\xi)$.

3.3

En déduire u(t,x) pour tout t>0 et $x\in\mathbf{R}$. (Indication : on rappelle la formule $\widehat{f*g}=\widehat{f}\cdot\widehat{g}$ pour tout $f,g\in L^1(\mathbf{R})$.)