MAHOUT-817 PCA options for SSVD working notes

November 29, 2011

1 Mean of rows

1.1 Recap of SSVD flow.

Modified SSVD Algorithm. Given an $m \times n$ matrix **A**, a target rank $k \in \mathbb{N}_1$, an oversampling parameter $p \in \mathbb{N}_1$, and the number of additional power iterations $q \in \mathbb{N}_0$, this procedure computes an $m \times (k+p)$ SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ (some notations are adjusted):

- 1. Create seed for random $n \times (k+p)$ matrix Ω . The seed defines matrix Ω using Gaussian unit vectors per one of suggestions in [?].
- 2. $\mathbf{Y} = \mathbf{A}\mathbf{\Omega}, \ \mathbf{Y} \in \mathbb{R}^{m \times (k+p)}$.
- 3. Column-orthonormalize $\mathbf{Y} \to \mathbf{Q}$ by computing thin decomposition $\mathbf{Y} = \mathbf{Q}\mathbf{R}$. Also, $\mathbf{Q} \in \mathbb{R}^{m \times (k+p)}$, $\mathbf{R} \in \mathbb{R}^{(k+p) \times (k+p)}$. I denote this as $\mathbf{Q} = \operatorname{qr}(\mathbf{Y}) \cdot \mathbf{Q}$.
- 4. $\mathbf{B}_0 = \mathbf{Q}^{\top} \mathbf{A} : \mathbf{B} \in \mathbb{R}^{(k+p) \times n}$. (Another way is $\mathbf{R}^{-1} \mathbf{Y}^{\top} \mathbf{A}$, depending on whether we beleive if size of A less than size of Q).
- 5. If q>0 repeat: for i=1..q: $\mathbf{B}_i^\top=\mathbf{A}^\top\mathrm{qr}\left(\mathbf{A}\mathbf{B}_{i-1}^\top\right).\mathbf{Q}$ (power iterations step)
- 6. Compute Eigensolution of a small Hermitian $\mathbf{B}_q \mathbf{B}_q^\top = \hat{\mathbf{U}} \Lambda \hat{\mathbf{U}}^\top$. $\mathbf{B}_q \mathbf{B}_q^\top \in \mathbb{R}^{(k+p)\times(k+p)}$.
- 7. Singular values $\Sigma = \Lambda^{0.5}$, or, in other words, $s_i = \sqrt{\sigma_i}$.
- 8. If needed, compute $\mathbf{U} = \mathbf{Q}\hat{\mathbf{U}}$.
- 9. If needed, compute $\mathbf{V} = \mathbf{B}_q^{\top} \hat{\mathbf{U}} \mathbf{\Sigma}^{-1}$. Another way is $\mathbf{V} = \mathbf{A}^{\top} \mathbf{U} \mathbf{\Sigma}^{-1}$.

1.2 B₀ pipeline mods

This option considers that data points are rows in the $m \times n$ input matrix

$$\mathbf{A} = egin{pmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ dots \ \mathbf{a}_m \end{pmatrix}$$

Mean of rows is n-vector

$$\boldsymbol{\xi} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix}$$
$$= \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_i.$$

Let $\tilde{\mathbf{A}}$ be \mathbf{A} with the mean subtracted.

$$ilde{\mathbf{A}} = egin{pmatrix} \mathbf{a_1} - oldsymbol{\xi} \ \mathbf{a_2} - oldsymbol{\xi} \ dots \ \mathbf{a}_m - oldsymbol{\xi} \end{pmatrix}.$$

We denote $m \times n$ mean matrix

$$oldsymbol{\Xi} = egin{pmatrix} oldsymbol{\xi} \ oldsymbol{\xi} \ dots \ oldsymbol{\xi} \end{pmatrix}$$

 ${\bf B}_0$ pipeline starts with notion that since $\tilde{\bf A}$ is dense, its mutliplications are very expensive. Hence, we factorize ${\bf Y}$ as

$$\mathbf{Y} = \tilde{\mathbf{A}}\Omega$$

= $\mathbf{A}\Omega - \Xi\Omega$

Current \mathbf{B}_0 pipeline already takes care of $\mathbf{A}\Omega$, but the term $\mathbf{\Xi}\Omega$ will need more work.

The term $\Xi\Omega$ will have identical rows $\xi\Omega$ so we need to precompute just one dense n-vector $\xi\Omega$. This computation is very expensive since matrix Ω is dense (potentially several orders of magnitude bigger than input \mathbf{A}) and the median $\boldsymbol{\xi}$ is dense as well, even that we don't actually have to materialize any of Ω . Question is whether we could just ignore it since $\mathbb{E}(\boldsymbol{\xi}\Omega) = 0$. Alternatively, we could just brute-force it by creating a separate distributed

←Outstanding issue!!!

computation of this over n.

Moving onto \mathbf{B} and $\mathbf{B}\mathbf{B}^{\top}$. Here and on we assume $\mathbf{B} \equiv \mathbf{B}_0$ and omit the index

for compactness.

$$\mathbf{B} = \mathbf{Q}^{\top} \tilde{\mathbf{A}}$$
(1)
= $\mathbf{Q}^{\top} \mathbf{A} - \mathbf{Q}^{\top} \mathbf{\Xi}.$ (2)

Again, current pipeline takes care of $\mathbf{Q}^{\top}\mathbf{A}$ but product $\mathbf{Q}^{\top}\Xi$ would need more work

Let $\mathbf{W} = \mathbf{Q}^{\top} \mathbf{\Xi}$.

We see that all columns of **W** are identical, and, more specifically*,

$$\begin{aligned} \mathbf{W}_{*,i} &= \mathbf{w} \\ &= \left(\mathbf{Q}^{\top} \mathbf{\Xi}\right)_{*,i} \\ &= \left[\sum_{i=1}^{m} \mathbf{Q}_{i,*}\right] \circ \boldsymbol{\xi} \\ &= \mathbf{s}_{Q} \circ \boldsymbol{\xi} \quad \forall i \in [1, n], \end{aligned}$$

where $\mathbf{s}_Q = \sum_{i=1}^m \mathbf{Q}_{i,*}$ is sum of all rows of \mathbf{Q} .

Since B_0 pipeline computes $\mathbf{Q}^{\top}\mathbf{A}$ column-wise over columns of \mathbf{Q} and \mathbf{A} , the first thought is that (2) can be computed column-wise as well with computation seeded by the \mathbf{w} vector.

One problem with our first thought is that the \mathbf{s}_Q term is not yet known at the time of formation of \mathbf{B} columns because formation of final \mathbf{Q} blocks happens in the same distributed map task that produces initial $\mathbf{Q}^{\top}\mathbf{A}$ blocks. Hence, the sum of \mathbf{Q} rows at that moment would not be available. But we probably can fix our output later at the time when \mathbf{s}_Q would already have been known.

*Let also
$$\mathbf{a} \circ \mathbf{b} = \begin{pmatrix} a_1b_1 \\ a_2b_2 \\ \vdots \\ a_kb_k \end{pmatrix}$$
 to be a notation for element-wise vector product (Hadamard product?).

Let $\mathbf{b}_i = \mathbf{B}_{*,i}$, $\tilde{\mathbf{b}}_i = (\mathbf{Q}^{\top} \mathbf{A})_{*,i}$. Then correction for **B** output would be

$$\mathbf{b}_i = \tilde{\mathbf{b}}_i - \mathbf{w}. \tag{3}$$

Moving on to $\mathbf{B}\mathbf{B}^{\top}$:

$$\mathbf{B}\mathbf{B}^ op = \sum_i^n \mathbf{b}_i \mathbf{b}_i^ op$$

$$\begin{aligned} \mathbf{b}_{i} \mathbf{b}_{i}^{\top} &= & \left(\tilde{\mathbf{b}}_{i} - \mathbf{w}\right) \left(\tilde{\mathbf{b}}_{i} - \mathbf{w}\right)^{\top} \\ &= & \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} - \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top} - \mathbf{w} \tilde{\mathbf{b}}_{i}^{\top} - \mathbf{w} \mathbf{w}^{\top} \\ &= & \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} - \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top} - \left(\tilde{\mathbf{b}}_{i} \mathbf{w}^{\top}\right)^{\top} + \mathbf{w} \mathbf{w}^{\top}. \end{aligned}$$

$$\mathbf{B}\mathbf{B}^{\top} = \sum_{i}^{n} \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} \tag{4}$$

$$-\sum_{i}^{n} \left[\tilde{\mathbf{b}}_{i} \mathbf{w}^{\top} + \left(\tilde{\mathbf{b}}_{i} \mathbf{w}^{\top} \right)^{\top} \right]$$
 (5)

$$+ n \cdot \mathbf{w} \mathbf{w}^{\mathsf{T}}.$$
 (6)

Let $k \times k$ matrix $\mathbf{C} = \sum_{i=1}^{n} \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top}$, and then we can rewrite (5) as

$$\mathbf{B}\mathbf{B}^{\top} = \sum_{i}^{n} \tilde{\mathbf{b}}_{i} \tilde{\mathbf{b}}_{i}^{\top} - \mathbf{C} - \mathbf{C}^{\top} + n \cdot \mathbf{w} \mathbf{w}^{\top}.$$

So we can compute $\tilde{\mathbf{B}} = \sum_i \tilde{\mathbf{b}}_i \tilde{\mathbf{b}}_i^{\mathsf{T}}$ right away, that's what Bt-job does. We also can add $n \cdot \mathbf{w} \mathbf{w}^{\mathsf{T}}$ in front end before we do eigendecomposition since it is a tiny matrix and at that point \mathbf{w} is already known. The task boils down to computing small $(k+p) \times (k+p)$ matrix \mathbf{C} and then subtracting $[\mathbf{C} + \mathbf{C}^{\mathsf{T}}]$ in the front end as well. Note that

$$\mathbf{C} = \sum_{i}^{n} \tilde{\mathbf{b}}_{i} \mathbf{w}^{\top}$$
$$= \left(\sum_{i}^{n} \tilde{\mathbf{b}}_{i}\right) \mathbf{w}^{\top}$$
$$= \mathbf{s}_{\tilde{B}} \mathbf{w}^{\top}.$$

In this case, $\mathbf{s}_{\tilde{B}} = \sum_{i=1}^{n} \tilde{\mathbf{b}}_{i}$ can be output by Bt job as well. Hence **C** can be computed as an outer product of two small k-vectors in the front end as well.

PCA would be primarily interested in \mathbf{V} or \mathbf{V}_{σ} output of the decomposition in order to fold in new items back into PCA space, so we need to correct \mathbf{V} job as well in this case to fix output of Bt-job per (3).

1.3 Power Iterations (aka B_i pipeline) additions

Power iterations pipeline produces $\mathbf{B}_{i}^{\top} = \tilde{\mathbf{A}}^{\top} \operatorname{qr} \left(\tilde{\mathbf{A}} \mathbf{B}_{i-1}^{\top} \right) \cdot \mathbf{Q}$. Similarly to versions of \mathbf{B} , each iteration would produce corrective vector \mathbf{w}_{i-1} .

First, we need to amend power iteration work flow to fix output of previous Bt-job on the fly with \mathbf{w}_{i-1} to reconstruct correct \mathbf{B}_{i-1} similarly to what is done in the \mathbf{V} per (3):

$$\mathbf{B}_{i-1} = \tilde{\mathbf{B}}_{i-1} - \mathbf{W}_{i-1}.$$

Second, again, $\tilde{\mathbf{A}}$ multipliers are a problem because they would be dense and perhaps should be decomposed in a way similar to \mathbf{B}_0 pipeline.

=======> to be ctd. <========

Another note is that we run eigendecomposition only after the last iteration so the term $\mathbf{s}_{\tilde{B}}$ needs to be computed only during the last iteration.