The Chromatic Function

For any graph G, let P(G, k) denote the *number* of proper colorings of G that use up to k colors (think of having k colors in your crayon box you can use to color the vertices; you don't have to use all of them). For a fixed graph G, P(G, k) is a function of k.

1. For each graph G below, find P(G,2), P(G,3), and P(G,4). Note, these graphs are *labeled*, so coloring vertex a red and b blue is a different coloring than coloring a blue and b red.

2. Generalize: Find $P(P_3, k)$ for any k (recall P_3 is the path with 4 vertices and 3 edges) and $P(C_3, k)$ for any k (where C_3 is a 3-edge cycle, the same as K_3). That is, find a closed formula for each of these.

$$P(P_{3}, k) = k \cdot (k-1)^3$$
 $P(C_{3}, k) = k(k-1)(k-2)$
 $= (\frac{1}{3}) \cdot 3!$

3. Use your answers to the previous problem to find $P(C_4, k)$. Hint: If there wasn't an edge between a and d, then we this would be coloring P_3 . The colorings that we don't want to allow are those in which a and d are the same: how many of those are there?

