CSE250: Circuits and Electronics Spring 2023 Practice Problems Set 3

Thevenin's Theorem, Norton's Theorem, and Maximum Power Transfer Theorem

Measurements made on terminals B - B' of a linear circuit in **Answer**: (a), which is known to be made up only of independent voltage $V_{Th} = -3 V$ sources and current sources, and resistors, yield the current- $R_{Th} = \frac{3}{20} k\Omega$ voltage characteristics shown in figure (b).

Answer:

$$V_{Th} = -3 V$$

$$R_{Th} = \frac{3}{2} k\Omega$$

Find the Thevenin equivalent of this circuit.

Find the Thevenin equivalent circuit with respect to the terminals a, b for the circuit shown.

Answer:

$$V_{Th} = 64.8 V$$

$$R_{Th} = 6 \Omega$$

3. Find the Norton equivalent at the terminals marked x - x in the circuit below.

Answer: $V_{Th} = 2 V$ $R_{Th} = 2 \Omega$

4. For the network shown below, find the Thevenin equivalent circuit for the network external to the 300 resistor.

Answer:

$$V_{Th} = 1.5 V$$

$$R_{Th} = 2 \Omega$$

- **5.**
- i. Find the Norton equivalent circuit external to points *a* and *b*.
- ii. Find the magnitude and polarity of the voltage across the $100 \land \text{resistor}$ using the results of part (a).

Answer:

$$I_N = 5 A$$

 $R_{Th} = 3 \Omega$
 $V_{100} = \mp 55.34 V$

6. Find the Thevenin equivalent with respect to the terminals a - b.

7. Find the Thevenin equivalent at terminals a - b of the circuit shown below.

$$V_{Th} = 60 V$$

$$R_{Th} = \frac{20}{7} k\Omega$$

8. Find the Thevenin equivalent with respect to the terminals a - b.

$$V_{Th} = 0 V R_{Th} = 8 \Omega$$

9. The variable resistor (R_o) is adjusted for maximum power transfer to R_o .

Answer:

- i. $R_o = 6.4 k\Omega$
- ii. $P_{max} = 0.90 W$

- i. Find the value of R_o .
- ii. Find the maximum power that can be delivered to R_o .

10. The variable resistor (R_o) is adjusted for maximum power transfer to R_o .

Answer:

- i. $R_o = 5 k$
- ii. $P_{max} = 0.957 mW$

- i. Find the value of R_o .
- ii. Find the maximum power that can be delivered to R_o

