Исследование объявлений о продаже квартир

В нашем распоряжении данные сервиса Яндекс. Недвижимость — архив объявлений о продаже квартир в Санкт-Петербурге и соседних населённых пунктов за несколько лет. Нужно научиться определять рыночную стоимость объектов недвижимости.

По каждой квартире на продажу доступны два вида данных. Первые вписаны пользователем, вторые — получены автоматически на основе картографических данных. Например, расстояние до центра, аэропорта, ближайшего парка и водоёма.

В рамках проекта выполним следущие шаги:

- 1. Выгрузка данных и изучение общей информации
- 2. Предобработка данных
- 3. Расчет дополнительных показателей
- 4. Исследовательский анализ данных
 - Изучение площади, цены, числа комнат, высоты потолков
 - Изучение времени продажи квартиры
 - Очистка данных
 - Выявление факторов, которые больше всего влияют на стоимость квартиры
 - Выявление взаимосвязи между этажом квартиры и ценой, а также взаимосвязи этакжка квартиры и других факторов
 - Выявление 10 населённых пунктов с наибольшим числом объявлений
 - Выявление квартир, которые находится в центре
 - Выявление, влияют ли на стоимость квартир в центре те же факторы, что и в квартирах на окраине и в пригороде
- 5. Вывод

Шаг 1. Выгрузка данных и изучение общей информации

На данном этапе необходимо выгрузить данные, ознакомиться с кими в общих чертах, оценить, насколько много пропусков и что данные их себя предствляют.

```
In [1]: import pandas as pd
    pd.options.display.float_format = '{:.2f}'.format
    import seaborn as sns
    from matplotlib import pyplot as plt
    import numpy as np
```

Out[2]:

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height	floors_
(20	13000000.00	108.00	2019-03- 07T00:00:00	3	2.70	1
1	7	3350000.00	40.40	2018-12- 04T00:00:00	1	nan	1
2	2 10	5196000.00	56.00	2015-08- 20T00:00:00	2	nan	
3	0	64900000.00	159.00	2015-07- 24T00:00:00	3	nan	1
4	2	10000000.00	100.00	2018-06- 19T00:00:00	2	3.03	1

5 rows × 22 columns

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23699 entries, 0 to 23698
Data columns (total 22 columns):

#	Column (total 22 Cot	Non-Null Count	Dtype		
0	total_images	23699 non-null	 int64		
1	last_price	23699 non-null	float64		
2	total_area	23699 non-null	float64		
3	first_day_exposition	23699 non-null	object		
4	rooms	23699 non-null	int64		
5	ceiling_height	14504 non-null	float64		
6	floors_total	23613 non-null	float64		
7	living_area	21796 non-null	float64		
8	floor	23699 non-null	int64		
9	is_apartment	2775 non-null	object		
10	studio	23699 non-null	bool		
11	open_plan	23699 non-null	bool		
12	kitchen_area	21421 non-null	float64		
13	balcony	12180 non-null	float64		
14	locality_name	23650 non-null	object		
15	airports_nearest	18157 non-null	float64		
16	cityCenters_nearest	18180 non-null	float64		
17	parks_around3000	18181 non-null	float64		
18	parks_nearest	8079 non-null	float64		
19	ponds_around3000	18181 non-null	float64		
20	ponds_nearest	9110 non-null			
21	days_exposition	20518 non-null			
dtypes: bool(2), float64(14), int64(3), object(3)					
memory usage: 3.7+ MB					

Данные в корректных форматах. Много пропущенных значений, изучим их подробнее

```
In [4]: # Создали фрейм, в котором указано количество заполеннеых данных по filled_data = data.count().to_frame().reset_index() filled_data.columns = ['index', 'filled']

filled_data['empty']=len(data)-filled_data['filled'] # Рассчитали к

# Рассчитали процент пропусков по показателям filled_data['empty_percent'] = (1-(filled_data['filled']/len(data)) # Оставим только значения с пропусками data_with_drops = filled_data.sort_values(by='empty_percent').query data_with_drops # Создали фрем, где остались только показатели с пр
```

Out[4]:

	index	filled	empty	empty_percent
14	locality_name	23650	49	0.00
6	floors_total	23613	86	0.00
7	living_area	21796	1903	0.08
12	kitchen_area	21421	2278	0.10
21	days_exposition	20518	3181	0.13
15	airports_nearest	18157	5542	0.23
16	cityCenters_nearest	18180	5519	0.23
17	parks_around3000	18181	5518	0.23
19	ponds_around3000	18181	5518	0.23
5	ceiling_height	14504	9195	0.39
13	balcony	12180	11519	0.49
20	ponds_nearest	9110	14589	0.62
18	parks_nearest	8079	15620	0.66
9	is_apartment	2775	20924	0.88

Наибольший объем данных пропущен в показателях, где есть пропуск с наибольшей долей вероятности означает отсутствие конкретного признака, например в столбце is_apartment пропуск скорее всего означает, что это не апартаменты, а пропуск в столбце parks_nearest означает что никакого парка рядом нет.

Конечно есть и такие столбцы, где пропуски сложно отнести тем или иным значениям так просто, например высоту потолков, где доля пропусков составляет 39%, а также расстояние до центра или аэропорта. Как поступать с такими пропусками решим при проведении дальнейшего анализа.

Вывод шаг 1

Датасет представлен довольно большим количеством объявлений о продаже недвижимости: 23 700 штук. Данные представлены в 23 столбцах. Судить о чистоте данных пока рано, но можно сказать, что пропусков не очень много, всего в 14 из 23 столбцов есть пропуски в принципе, во многих столбцах довольно легко предположить с чем может быть связан пропуск и как данные должны быть заполнены, где-то вполне реально оценить, а где то можно их удалить. Будем смотреть по конкретным случаям.

Шаг 2. Предобработка данных

На данном этапе необходимо произвести предобработку данных. Проверим данные на дубликаты, решим, что делать с пропусками, поменяем форматы данных, если это требуется.

In [5]: columns_with_drops = data_with_drops['index'].unique().tolist()
Создадим список столбцов с пропусками

In [6]: data[columns_with_drops].head()

Out[6]:

	locality_name	floors_total	living_area	kitchen_area	days_exposition	airports_nearest	С
0	Санкт- Петербург	16.00	51.00	25.00	nan	18863.00	
1	посёлок Шушары	11.00	18.60	11.00	81.00	12817.00	
2	Санкт- Петербург	5.00	34.30	8.30	558.00	21741.00	
3	Санкт- Петербург	14.00	nan	nan	424.00	28098.00	
4	Санкт- Петербург	14.00	32.00	41.00	121.00	31856.00	

In [7]: data[columns_with_drops].describe()

Out[7]:

	floors_total	living_area	kitchen_area	days_exposition	airports_nearest	cityCenters_
count	23613.00	21796.00	21421.00	20518.00	18157.00	1
mean	10.67	34.46	10.57	180.89	28793.67	1
std	6.60	22.03	5.91	219.73	12630.88	
min	1.00	2.00	1.30	1.00	0.00	
25%	5.00	18.60	7.00	45.00	18585.00	
50%	9.00	30.00	9.10	95.00	26726.00	1
75%	16.00	42.30	12.00	232.00	37273.00	1
max	60.00	409.70	112.00	1580.00	84869.00	6

In [8]: data['is_apartment'].value_counts()

Out[8]: False 2725 True 50

Name: is_apartment, dtype: int64

Видно, что апартаментов не так много, наиболее вероятно что пропущенные данные - это случаи, в которых люди просто не стали заполнять поля, т.к. данная недвижимость не апартаменты

In [9]: data['is_apartment']=data['is_apartment'].fillna(False)
Заменили пропуски на False

In [10]: data[data['parks_nearest'].isnull()]['parks_around3000'].value_coun

Out[10]: 0.00 10102

Name: parks_around3000, dtype: int64

In [11]: data[data['parks_around3000'].isnull()]['parks_nearest'].value_coun

Out[11]: Series([], Name: parks_nearest, dtype: int64)

Проверили пересечения по показателям, связанным с парками, вдруг были данные, где наличие парка рядом не указано, а расстояние указано, и наоборот. Таких не оказалось

```
In [12]: data[data['ponds_nearest'].isnull()]['ponds_around3000'].value_coun
Out[12]: 0.00 9071
```

Name: ponds_around3000, dtype: int64

```
In [13]: data[data['ponds_around3000'].isnull()]['ponds_nearest'].value_coun
```

```
Out[13]: Series([], Name: ponds_nearest, dtype: int64)
```

С парками аналогично....

Можно достаточно спокойно заменить проспуски в значениях по наличию прудов и парков заменить на нули, а данные с расстояниями трогать не будем. Это не результирующие данные, чтобы их удалять, а оценить мы их врят ли сможем

```
In [14]: data['ponds_around3000']=data['ponds_around3000'].fillna(0)
data['parks_around3000']=data['parks_around3000'].fillna(0)
```

```
In [15]: data['balcony'] = data['balcony'].fillna(0)
```

Предположим, что в пропущенных данных по балкону ничего не указано, т.к. балконов нет

```
In [16]: data['locality_name'] = data['locality_name'].fillna('Неизвестно')
```

По неуказанным локациям так и поставим "Неизвестно"

Проведем оценку пропущенныз значений в столбцах:

- floors total
- kitchen_area
- living_area

Пропущенных данных по этим значения не так много и они не являются наиболее важными для проведения анализа, так что внесенные мной изменения даже в случае не полной корректности не будут нести тотального ущерба для резултатов анализа. Кроме того, эти данные попробуем достаточно объективно

Данные по **days_expositions** я оценивать не буду, т.к. это один из ключевых факторово, тут важнее те цифры которые есть реально, чем моя оценка.

Оставим данные в исходном виде и в столбцах cityCenters_nearest и airports_nearest. Это не результирующие данные, чтобы их удалять, а оценить мы их врят ли сможем сейчас.

Также оставим в без изменений данные по ceiling_height. Этот показатель лучше иметь в том виде, в котором он есть и из него лучше почерпнуть интересные данные в будующем.

```
In [17]: spb_median_floor = data[data['locality_name']=='Санкт-Петербург']['nonspb_median_floor = data[data['locality_name']!='Санкт-Петербург' print('Медианная этажность в Санкт-Петербурге составляет {:.0f} эта print('Медианная этажность за пределами Санкт-Петербурга составляет
```

Медианная этажность в Санкт-Петербурге составляет 9 этажей Медианная этажность за пределами Санкт-Петербурга составляет 5 эта жей

```
In [19]: def square(arrea):
    if arrea > 300:
        return 'огромное'
    if arrea > 70:
        return 'большое'
    if arrea > 45:
        return 'среднее'
    if arrea > 30:
        return 'меньше среднего'
    return 'меньше среднего'
    return 'маленькое'
# Для замен разобьём жилье по категориям в зависимости от площади
```

```
In [20]: data['square_category'] = data['total_area'].apply(square)
    data['square_category'].value_counts()
```

```
Out[20]: среднее 8858
меньше среднего 8204
большое 5677
маленькое 899
огромное 61
```

Name: square_category, dtype: int64

```
In [21]: data['med_ar'] = data['living_area']/data['total_area']
    median_living_arrea_perc = data['med_ar'].median()
    print('Медианная доля жилой площади составляет:{:.2%}'.format(media
```

Медианная доля жилой площади составляет:56.79%

Рассчитаем медианное значение доли жилой площади в кваритарах в зависимости от категории

```
In [22]: # Определили функцию, которая рассчитывает медианное значение доли
# от категории
def liv_area_perc(category):
    mid_part = data[data['square_category'] == category]['med_ar'].
    return print('Медианная доля жилой площади в жилье категории {}
```

Медианная доля жилой площади в жилье категории большое составляет: 59.46%

Медианная доля жилой площади в жилье категории меньше среднего сос тавляет: 50.40%

Медианная доля жилой площади в жилье категории среднее составляет: 59.51%

Медианная доля жилой площади в жилье категории маленькое составляе т: 58.62%

Медианная доля жилой площади в жилье категории огромное составляет : 58.45%

```
In [24]: data.loc[data['living_area'].isna(), 'living_area'] = data.loc[data
     * median_living_arrea_perc
     # заменили значения living_area
```

Колебания доли жилой площади от изменения категории площади квартир крайне несущественные, при этом у маленьких квартир % жилой части наибольший, что странно. Поэтому для замены взяли медиану по всем данным

```
In [25]: data['med_kitchen'] = data['kitchen_area']/data['total_area']
    median_kitchen_arrea_perc = data['med_kitchen'].median()
    print('Медианная доля жилой площади составляет:{:.2%}'.format(media)
```

Медианная доля жилой площади составляет:17.24%

Рассчитаеи медианное значение доли жилой площади в кваритарах в зависимости от категории

```
In [26]: # Определили функцию, которая рассчитывает медианное значение доли # в зависимости от категории def kitch_area_perc(category):
    mid_part = data[data['square_category'] == category]['med_kitch print('Медианная доля площади кухни в жилье категории {} состав return mid_part
```

```
In [27]: # заменили пропуски по слолбцу kitchen_area на произведение медианн
# по категории и жилой площади
data.loc[(data['kitchen_area'].isnull()) & (data['square_category']
data.loc[(data['kitchen_area'].isnull()) & (data['square_category']
data.loc[(data['kitchen_area'].isnull()) & (data['square_category']
data.loc[(data['kitchen_area'].isnull()) & (data['square_category']
```

Медианная доля площади кухни в жилье категории маленькое составляе т: 21.43%

Медианная доля площади кухни в жилье категории меньше_среднего сос тавляет: nan%

Медианная доля площади кухни в жилье категории среднее составляет: 15.65%

Медианная доля площади кухни в жилье категории большое составляет: 13.81%

Медианная доля площади кухни в жилье категории огромное составляет: 8.74%

Тут уже динамика очень заметна изменения доли площади кухни в зависимости от площади жилья видна. Чем больше квартира, тем меньше доля кухни. Замены были сделаны по категриям

```
In [28]: data['first_day_exposition'] = pd.to_datetime(data['first_day_expos # Привели даты к формату datetime64[ns]
```

```
In [29]: data['floors_total'] = data['floors_total'].astype('int64')
    data['balcony'] = data['balcony'].astype('int64')
    data['parks_around3000'] = data['parks_around3000'].astype('int64')
    data['ponds_around3000'] = data['ponds_around3000'].astype('int64')
# Привели целочисленные признаки с типу int64
```

In [30]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23699 entries, 0 to 23698
Data columns (total 25 columns):
```

#	Column	Non-Null Count	Dtype		
0	total_images	23699 non-null	int64		
1	last_price	23699 non-null	float64		
2	total_area	23699 non-null	float64		
3	first_day_exposition	23699 non-null	datetime64[ns]		
4	rooms	23699 non-null	int64		
5	ceiling_height	14504 non-null	float64		
6	floors_total	23699 non-null	int64		
7	living_area	23699 non-null	float64		
8	floor	23699 non-null	int64		
9	is_apartment	23699 non-null	bool		
10	studio	23699 non-null	bool		
11	open_plan	23699 non-null	bool		
12	kitchen_area	22989 non-null			
13	balcony	23699 non-null			
14	locality_name		•		
15	airports_nearest	18157 non-null			
16	cityCenters_nearest				
17	parks_around3000	23699 non-null			
18	parks_nearest	8079 non-null			
19	ponds_around3000				
20	. —	9110 non-null			
21	days_exposition				
22	square_category	23699 non-null	_		
23	med_ar				
24		21421 non-null			
	<pre>dtypes: bool(3), datetime64[ns](1), float64(12), int64(7), object(</pre>				
2)					
memory usage: 4.0+ MB					

In [31]: data[data.duplicated()]

полностью дублирующихся строк нет

Out[31]:

total_images last_price total_area first_day_exposition rooms ceiling_height floors_tota

0 rows × 25 columns

Вывод. Предобработка данных

По результатам предобработки данных мы изучили подробно 14 столбцов. Ниже представлены решения, которые были приняты в отношении каждого из эти столбцов. Мотивация решения по каждогму конкретному можно увидеть в комментиариях к коду.

- is_apartment: заменили на False;
- ponds_around3000, parks_around3000, balcony: заменили на 0;
- ponds_nearest, parks_nearest, cityCenters_nearest, airports_nearest, days_exposition, ceiling_height : оставали в исходном виде;
- locality_name: проставили "Неизвестно" для пустых значений;
- floors_total, kitchen_area, living_area:произвели оценку

Таким образом из 14 столбцов с пропусками мы смогли тем или иным способом заполнить данные в 8 и еще 6 оставили в изначальном виде. Некорректные форматы были только в 5 столбцах, и то большинство это ошибки, когда вместо типа int использовался float, что не очень страшно.

В целом данные сложно назвать чистыми. Если бы это была внутрянняя база какой-нибудь компании, то их можно было бы счиатать дейсвительно грязными. Например, если бы это было информаци по квартирам, которые продает застройщик. Но так как это данные с сервиса, где люди сами оставляют информаци, то ничего удивительно в пропусках нет. И пропусков в таком контексте не так уж и много. Люди по большей части заполняют важную для формирования цены информаци, а всякие нюансы или то, что не добавит недвижимости стоимость, опускают

К сожалению, нельзя достаточно объективно оценить количество дублирующихся заявок. Нет какого то уникального ID для каждого объявления, что не дает нам определить дубли по формальному признаку. Если говорить о фактически одном и том же объявлении, то в явном виде строк, где все данные дублируются нет. Но понятно есть данные вроде расстояния до аэропорта, где можно изменить уисло не единицу и по строке уже не будет дубля. Более конкретных же данных не очень достаточно. Если искать дубли только по этажу, названию города, общей этажности и площади, мы найдем очень много дублей, которые не будут ими фактически. Нужна хотя бы разбика по по райнам или улицам.

Шаг 3. Расчет дополнительных показателей

На данном этапе необходимо рассчитать следующие показатели:

- цену квадратного метра;
- день недели, месяц и год публикации объявления;
- этаж квартиры; варианты первый, последний, другой;
- соотношение жилой и общей площади, а также отношение площади кухни к общей

```
In [32]: data['price_met'] = data['last_price']/data['total_area']
    data[['last_price', 'total_area', 'price_met']].head()#рассчитали ц
```

Out[32]:

	last_price	total_area	price_met
0	13000000.00	108.00	120370.37
1	3350000.00	40.40	82920.79
2	5196000.00	56.00	92785.71
3	64900000.00	159.00	408176.10
4	10000000.00	100.00	100000.00

```
In [33]: print('Средння цена квадратного метра в Санкт-Петербурге составляет
               .format(data[data['locality name'] == 'Caнκτ-Πετερδγργ'].pric
         #рассчитали среднюю цену за кв.м. по Питеру
         print('Средння цена квадратного метра за пределами Санкт-Петербурга
               .format(data[data['locality_name'] != 'Санкт-Петербург'].pric
         #рассчитали среднюю цену за кв.м. по Питеру
```

Средння цена квадратного метра в Санкт-Петербурге составляет 11484 9**.**01 рублей

Средння цена квадратного метра за пределами Санкт-Петербурга соста вляет 69021.38 рублей

```
In [34]:

def floor_cat(floor_liv):
    if floor_liv['floor'] == 1:
        return 'первый'
    if floor_liv['floor'] == floor_liv['floors_total']:
        return 'последний'
    return 'другое'
    #Определили функцию, которая будет определять категорию этажа data['floor_cat'] = data.apply(floor_cat, axis = 1)
# Созадали столбец с категорией этажа
```

Out [35]:

	noor_cat	number_or_announcements	mean_price_for_meter
0	другое	17439	103489.92
2	последний	3343	93415.22
1	первый	2917	81983.56

Жилье на первых и последних этажа представлено чуть больше чкм в 25% объясвлений, также видно что жилье там в среднем дешевле чем на прочих этажах. Самое дешевое жилье на первом этаже

```
In [36]: data['med_ar'] = data['living_area']/data['total_area']
    data['med_kitchen'] = data['kitchen_area']/data['total_area']
    data = data.rename(columns = {'med_ar': 'living_part', 'med_kitchen
```

Данные по доли жилой площади и площади кухни уже были рассчитаны ранее, но мы их обновим, чтобы избавить от пропусков. Мы уже рассчитывали пропуски на основании эти данных, так что обновление ни на что не повлияет в расчетах

Out[37]:

	square_category	days_exposition	median_kitchen_part	last_price	median_living_part
3	огромное	190.50	0.09	59800000.00	0.57
0	большое	138.00	0.14	9206000.00	0.59
4	среднее	93.00	0.16	5000000.00	0.59
2	меньше среднего	81.00	0.23	3590000.00	0.51
1	маленькое	63.00	0.21	2740000.00	0.57

Как мы уже замечали ранее доля жилого пространства почти не меняется в зависимости от размера жилья, а вот доля кухни меняется заментно. Также можно заметить, что чем выше метраж квартиры, тем дороже она стоит, что логично. А вот скорость продажи жилье увеличивается с уменьшением площади

```
In [38]: data['weekday'] = data['first_day_exposition'].dt.weekday
    data['day'] = data['first_day_exposition'].dt.day
    data['year'] = data['first_day_exposition'].dt.year
    data['month'] = data['first_day_exposition'].dt.month
    data[['weekday', 'day', 'year', 'month']].head()
```

Out[38]:

	weekday	day	year	month
0	3	7	2019	3
1	1	4	2018	12
2	3	20	2015	8
3	4	24	2015	7
4	1	19	2018	6

Out[39]:

	weekday	number_of_announcements	median_price_for_meter
6	6	1699	94501.72
5	5	1936	93545.72
4	4	4000	94616.16
3	3	4295	95143.88
2	2	3974	95473.81
1	1	4183	95634.10
0	0	3612	94688.91

```
In [40]: year_table = data.\
    pivot_table(index = 'year', values = 'price_met', aggfunc = {'price_reset_index().sort_values(by = 'year', ascending = False)
    year_table['median']=year_table['median'].round(2)

year_table.rename(columns = {'count': 'number_of_announcements', 'm
```

Out[40]:

		year	number_of_announcements	median_price_for_meter
-	5	2019	2879	103305.79
	4	2018	8519	95689.66
	3	2017	8190	92565.09
	2	2016	2783	91743.12
	1	2015	1191	93414.63
	0	2014	137	107000.00

Вывод. Расчет значений

Жилье на первых и последних этажа представлено чуть больше чем в 25% объясвлений, также видно что жилье там в среднем дешевле чем на прочих этажах (81 983 и 93 415 против 103 489 соответственно).

Доля кухни в среднем составляет 19%, но она сильно различается в зависимости от млощади жилья. Например в очень больших кваритраз она может быть всего лишь 9%, а в маленьком жилье составлять 20-25%. Доля же жилой площади, как правило, 56% от общей вне зависимости от категории.

В 2018 году также было опубликовано больше всего объйявлений - 8519, а объявления с самой высокой медианной ценой за квадратный метр были опубликованы в 2014 и 2019 гг. (107 000 и 103 305 соответственно). Это были единственные два года, когда медианная цена за кв. м превысилы 100 тысяч.

Наиболее часто объявлени публиковали в понедельник(4 183), среду(4 295) и четверг(4 000). Наиболее редко в субботу (1699). Но зависимость между ценой за квадратной метр и днем недели не наблюдается.

Шаг 4. Исследовательский анализ данных

На данном этапе необходимо произвести следующие действия:

- изучить площадь, цену, число комнат, высоту потолков;
- изучить время продажи квартиры;
- убрать редкие и выбивающиеся значения;
- <u>определить факторы, которые больше всего влияют на стоимость</u> квартиры;
- <u>определить, влияет ли этаж квартиры на цену и на какие-либо другие</u> факторы;
- определить 10 населённых пунктов с наибольшим числом объявлений;
- определить квартиры, которые находится в центре;
- <u>определить, влияют ли на стоимость квартир в центре те же факторы, что и в квартирах на окраине и в пригороде</u>

Шаг 4.1 Изучение площади, цены, числа комнат, высоты потолков

In [41]: data_main = data[['last_price', 'total_area', 'ceiling_height', 'ro data_main.head() #вывели изучаемы данные в отдельный DataFrame

Out [41]:

	last_price	total_area	ceiling_height	rooms
0	13000000.00	108.00	2.70	3
1	3350000.00	40.40	nan	1
2	5196000.00	56.00	nan	2
3	64900000.00	159.00	nan	3
4	10000000.00	100.00	3.03	2

```
In [42]: # Установим палитру
sns.set_palette('Dark2')

# Установим стиль
sns.set_style('darkgrid')
sns.set_context('notebook', font_scale=1.25)
```

```
In [43]: def kde_box(dataframe, column):
    plt.figure(figsize = (10,5))

    ax1 = plt.subplot(1,2,1)
    sns.histplot(data=dataframe, x=column)#sns.distplot(dataframe[c
    plt.title('Hist-KDE plot of '+column)

    ax2 = plt.subplot(1,2,2)
    sns.boxplot(data = dataframe, y = column)
    plt.title('Boxplot of '+column)

    plt.subplots_adjust(right = 1)
    plt.show()
# Определили функцию которая будет выводить график плотности и бокс
```

In [44]: kde_box(data, 'last_price')

In [45]: kde_box(data, 'rooms')

In [46]: kde_box(data, 'total_area')

In [47]: kde_box(data, 'ceiling_height')

In [48]: data_main.describe()

Out[48]:

	last_price	total_area	ceiling_height	rooms
count	23699.00	23699.00	14504.00	23699.00
mean	6541548.77	60.35	2.77	2.07
std	10887013.27	35.65	1.26	1.08
min	12190.00	12.00	1.00	0.00
25%	3400000.00	40.00	2.52	1.00
50%	4650000.00	52.00	2.65	2.00
75%	6800000.00	69.90	2.80	3.00
max	763000000.00	900.00	100.00	19.00

По графикам плотности и боксплотам видно, что в данных довольно большое количество выбросов. Хоть эти данные и помогают нам понять полную картину, но выбросы будут мешать нам объективно оценить от чего зависит цена. Выбросы в нашей датасете - это по своей сути объявления, которые могут не поддаваться общей логике ценообразования, но при этом могут сильно влиять на корелляцию между показателями. Это также могут быть некоректно заполненные данные. Потому в при дальнейшем проведении исследования нам может понадобиться изабвиться от таких некорректных данных.

Почти все цены находиятся в диапазоне от 3 до 6 млн.рублей. Площадь квартир держится в диапазоне от 40 до 70 кв. метров. Высота потолков почти всегда одинакова и составляет 2.6-2.7 метра. Число комнат держится в диапазоне от 1 до 3.

Среди странных данных или выбросов мы можем увидеть недвижимость стоимостью 763 млн, хотя основная масса данных не превышвет 7 млн. Есть квартира площадью 900 кв. м., стоэтажный дом и квартира с 19 комнтамами. И есть квартиры с потолками как 1м так и 100.

Шаг 4.2 Изучение времени продажи квартиры

```
In [49]: plt.figure(figsize =(10,5))

ax = sns.violinplot(
    data = data,
    x = 'days_exposition')
    ax.set_title('Days exposition distribution')
    plt.show()
# Отрисовали violinplot для days_exposition
```


In [50]: data['days_exposition'].describe().to_frame().reset_index()

Out [50]:

		index	days_exposition
	0	count	20518.00
	1	mean	180.89
	2	std	219.73
;	3	min	1.00
	4	25%	45.00
	5	50%	95.00
	6	75%	232.00
	7	max	1580.00

Видно, что разброс значений достаточно большой. Стандартное отклоение 180. Максимальное количество дней продажи квартиры 1580 дней (около 4,5 года), хотя 75 процентиль всего 232 дня,а в полтора межквартильных размаза входят объявление с количеством дней, в течение которых они были выставлены на продажу составляет 500 дней. Медиана очень отличается от средней, это связано как раз с тем, что существует ряд данных которые очень сильно отличаются от основных. Среднее количество дней продажи квартиры 180 при медиане 95 обозночает, что есть ряд данных, которые очень портят среднюю и данные скошены вправо.

Шаг 4.3 Очистка данных

```
In [51]: data.days exposition.quantile(0.25)
Out [51]: 45.000000000000001
In [52]: data.days_exposition.max()
Out[52]: 1580.0
In [53]: def discrete_distributions(dataframe, column, kind):
             if dataframe[column].quantile(0.25) - 1.5*(dataframe[column].qu
                <dataframe(column).min():</pre>
                 gr1=dataframe[column].min()
             else:
                 gr1 = dataframe[column].quantile(0.25) - 1.5*(dataframe[col
             if dataframe[column].quantile(0.75) + 1.5*(dataframe[column].qu
                >= dataframe(column).max():
                 gr2=dataframe[column].max()
             else:
                 gr2 = dataframe[column].guantile(0.75) + 1.5*(dataframe[col
             qrs = [qr1, qr2]
             return qrs[kind-1]
         # Определили функцию, которая возвращает нижнее или верхнее значени
In [54]: | discrete_distributions(data, 'total_area', 2)
```

Out[54]: 114.750000000000001

Отсекать редкие в выбивающиеся значения будем по "усам" боксплота. А так же будем убирать нереальные значения

In [55]: main_columns = ['last_price', 'total_area','rooms', 'ceiling_height # определили ключевые столбцы, которые будем чистить. Это столбцы, # которые в наибольшей степени влияют на цену

In [56]: data[main_columns].describe() #изучим распределение данных

Out [56]:

	last_price	total_area	rooms	ceiling_height	floors_total	days_exposition
count	23699.00	23699.00	23699.00	14504.00	23699.00	20518.00
mean	6541548.77	60.35	2.07	2.77	10.67	180.89
std	10887013.27	35.65	1.08	1.26	6.59	219.73
min	12190.00	12.00	0.00	1.00	1.00	1.00
25%	3400000.00	40.00	1.00	2.52	5.00	45.00
50%	4650000.00	52.00	2.00	2.65	9.00	95.00
75%	6800000.00	69.90	3.00	2.80	16.00	232.00
max	763000000.00	900.00	19.00	100.00	60.00	1580.00

In [57]: # Определили функцию для удаления выбросов
def delete_data(dataframe, column):
 return dataframe[((dataframe[column]<=discrete_distributions(dataframe[column]>=discrete_distributions(dataframe]

In [59]: clear_data[main_columns].describe()

Out [59]:

	last_price	total_area	rooms	ceiling_height	floors_total	days_exposition
count	19769.00	19769.00	19769.00	11969.00	19769.00	17179.00
mean	4829338.47	53.29	1.94	2.69	10.67	126.25
std	2169625.72	18.40	0.89	0.25	6.53	120.09
min	12190.00	25.07	1.00	2.25	1.00	1.00
25%	3350000.00	39.30	1.00	2.50	5.00	40.00
50%	4400000.00	49.50	2.00	2.60	9.00	82.00
75%	5990000.00	63.10	3.00	2.75	16.00	180.00
max	11640000.00	230.00	7.00	8.30	29.00	512.00

In [60]: print('Объем данных, который был изначально:{}'.format(data.last_pr print('Объем данных после очистки:{}'.format(clear_data.last_price.print('Данных ушло:{}'.format(data.last_price.count()-clear_data.laprint('Осталось данных ушло:{:.2%}'.format(clear_data.last_price.co

Объем данных, который был изначально:23699

Объем данных после очистки:19769

Данных ушло:3930

Осталось данных ушло:83.42%

Шаг 4.4 Определение факторов, которые больше всего влияют на стоимость квартиры

Всего отобрали 11 параметров

In [62]: clear_data[analysis_columns].corr()

Out[62]:

	last_price	days_exposition	total_area	rooms	ceiling_height	floors_tol
last_price	1.00	0.04	0.68	0.44	0.40	0.1
days_exposition	0.04	1.00	0.09	0.07	0.07	-0.1
total_area	0.68	0.09	1.00	0.80	0.31	-0.0
rooms	0.44	0.07	0.80	1.00	0.10	-0.1
ceiling_height	0.40	0.07	0.31	0.10	1.00	-0.0
floors_total	0.21	-0.05	-0.03	-0.23	-0.03	1.0
parks_around3000	0.25	0.02	0.08	0.06	0.21	-0. ·
ponds_around3000	0.28	0.02	0.11	0.04	0.20	-0.1
cityCenters_nearest	-0.34	0.00	-0.12	-0.08	-0.26	-0.1
total_images	0.16	0.01	0.09	0.07	0.01	0.0
price_met	0.63	-0.04	-0.09	-0.23	0.22	0.4

```
In [63]: plt.figure(figsize = (12,8))
    plt.title('Colleration')
    sns.heatmap(clear_data[analysis_columns].corr(), annot=True, fmt='.
    plt.xticks(rotation = 45)
    plt.show()
```



```
In [64]: plt.figure(figsize = (18,9))
         ax1 = plt.subplot(2,2,1)
         plt.scatter(clear_data['last_price'], clear_data['total_area'])
         plt.xlabel('')
         plt.ylabel('Area')
         ax2 = plt.subplot(2,2,2)
         plt.scatter(clear_data['last_price'], clear_data['rooms'])
         plt.xlabel('')
         plt.ylabel('Rooms')
         ax3 = plt.subplot(2,2,3)
         plt.scatter(clear_data['last_price'], clear_data['ceiling_height'])
         plt.xlabel('Price')
         plt.ylabel('Ceiling height')
         ax4 = plt.subplot(2,2,4)
         plt.scatter(clear_data['last_price'], clear_data['cityCenters_neare
         plt.xlabel('Price')
         plt.ylabel('Distnse to centre')
         plt.suptitle('Scatter plots for price')
         plt.show()
         #clear_data.plot(x = 'last_price', y = 'total_area', kind='scatter'
```

Scatter plots for price

Наиболее сильная положительная корелляция наблюдаеся между ценой и общей площадью (68%), а также числом комнат и высотой потолков (43% и 40% соответственно). Наиболее сильная отрицательная корелляция наблюдается между ценой и удаленностью от центра (34%).

На точечных графиках очень хорошо видно, как что дорогих квартир с маленькой площадью почти нет, также очень заметно что среди дороги квартир почти нет тех, что расположены былее чем в 20 км от центра.

Шаг 4.5 Выявление взаимосвязи между этажом квартиры и ценой, а также взаимосвязи этажка квартиры и других факторов

```
In [65]: plt.figure(figsize = (18,9))
         ax1 = plt.subplot(2,2,1)
         plt.title('Stripplot Floor-last_price')
         sns.stripplot(x = "floor_cat", y = "last_price", data = clear_data)
         plt.xlabel('')
         ax2 = plt.subplot(2,2,2)
         plt.title('Stripplot Floor-total_area')
         sns.stripplot(x = "floor_cat", y = "total_area", data = clear_data)
         plt.xlabel('')
         ax3 = plt.subplot(2,2,3)
         plt.title('Stripplot Floor-days_exposition')
         sns.stripplot(x = "floor_cat", y = "days_exposition", data = clear_
         ax4 = plt.subplot(2,2,4)
         plt.title('Stripplot Floor-price_met')
         sns.stripplot(x = "floor_cat", y = "price_met", data = clear_data)
         #plt.tight_layout()
         plt.subplots_adjust(right = 1, hspace = 0.3)
         plt.suptitle('Stripplots for floor category')
         plt.show()
```

Stripplots for floor category


```
In [66]: |plt.figure(figsize = (18,9))
         ax1 = plt.subplot(2,2,1)
         plt.title('Median last_price fo floor category')
         sns.barplot(x="floor_cat", y="last_price", data=clear_data, estimat
         plt.xlabel('')
         ax2 = plt.subplot(2,2,2)
         plt.title('Median total_area fo floor category')
         sns.barplot(x="floor cat", y="total area", data=clear data, estimat
         plt.xlabel('')
         ax3 = plt.subplot(2,2,3)
         plt.title('Median days_exposition fo floor category')
         sns.barplot(x="floor_cat", y="days_exposition", data=clear_data, es
         ax4 = plt.subplot(2,2,4)
         plt.title('Median price met fo floor category')
         sns.barplot(x="floor_cat", y="price_met", data=clear_data, estimato
         #plt.tight_layout()
         plt.subplots_adjust(right = 1, hspace = 0.3)
         plt.suptitle('Barplots for floor category')
         plt.show()
```

Barplots for floor category

На графике распределения видно, что квартиры, которе расположены на первом и последнем этаже редко бывают такими же дорогими как и те, что находятся между первым и последнем этажом. Разница также хорошо прослеживается на графике, где указаны цены за квадратный метр в зависимости от категории этажа.

Интересно, что среди квартир, которые расположены не на первом или последнем этаже, также больше всего тех квартир, которые долго продаются, скорее всего это связано с тем, что на точечном графике разница не очень хорошо видна, т.к. квартир которые между этажами значительно больше. В связи с этим мы построили столбчатые диаграммы с медианным значением каждого показателя.

Теперь хорошо видно, что квартиры между первым и последним этажом продаются значительно быстрее остальных (менее 80 дней при 100 днях на первом этаже и 90 на последнем). Медианная цена за квадратный метр также значительно выше (более 95 тыс. при 80 тыс. на первом этаже и 85 на последнем.

Шаг 4.6 Определение 10 населённых пунктов с наибольшим числом объявлений

```
In [67]: top_cities = clear_data\
    .pivot_table(index = 'locality_name', values = 'price_met', aggfunc
    .reset_index().sort_values(by = 'count', ascending = False)

top_cities.columns = ['locality_name', 'number_of_advertisments', 'm
top_cities.head(10)
```

Out [67]:

	locality_name	number_of_advertisments	mean_price_for meter
34	Санкт-Петербург	12554	105090.75
286	посёлок Мурино	449	84859.15
320	посёлок Шушары	411	77959.52
3	Всеволожск	356	67200.87
13	Колпино	321	74994.02
33	Пушкин	311	99938.48
291	посёлок Парголово	309	90006.43
6	Гатчина	280	68594.91
92	деревня Кудрово	242	92113.59
4	Выборг	214	57609.93

In [68]: top_cities.loc[top_cities["number_of_advertisments"] < 200, "locali #Заменим города с количеством заявок меньше 200 top_cities=top_cities.pivot_table(index = 'locality_name', values = .reset_index().sort_values(by = 'number_of_advertisments', ascendin #Сгруппируем все "Прочие" и посчитаем их количество

```
In [69]: plt.figure(figsize = (10,8))

plt.pie(top_cities['number_of_advertisments'], labels = top_cities[
   plt.axis('equal')
   plt.title('Top number_of_advertisments')
   #plt.savefig('my_pie_chart.png')
   plt.show()
```


Подавляющее большинство квартир находятся в Санк-Петербурге (67%). Все остальные распределены по разным населенным пунткам Ленинградской области, населенные пункты, которые занимаю второе и третье места по количеству объясвлений: поселки Мурино и Шушары, но там всего по 2% объявлений. С полной десяткой можно ознакомиться в таблице чуть выше.

Шаг 4.7 Определение квартир, которые находится в центре

```
In [70]: clear_data['km'] = clear_data['cityCenters_nearest']/1000#привел к
    clear_data['km'] = clear_data['km'].round()#округлил
    clear_data.head()
```

Out [70]:

	total_images	last_price	total_area	first_day_exposition	rooms	ceiling_height	floors_
1	7	3350000.00	40.40	2018-12-04	1	nan	
4	2	10000000.00	100.00	2018-06-19	2	3.03	
5	10	2890000.00	30.40	2018-09-10	1	nan	
6	6	3700000.00	37.30	2017-11-02	1	nan	
7	5	7915000.00	71.60	2019-04-18	2	nan	

5 rows × 32 columns

Out[71]:

	km	mean_price	median_price
0	0.00	8398000.00	7600000.00
1	1.00	8212671.04	8450000.00
2	2.00	7895941.18	8200000.00
3	3.00	7329868.61	7300000.00
4	4.00	7552947.14	7500000.00

Сильный пик на 43 и 55 км. Также рост идет когда расстояние до центра становится менее 10 км

In [73]: clear_data[clear_data['km']==9]['locality_name'].value_counts()

Out[73]: Санкт-Петербург 472 Неизвестно 5

Name: locality_name, dtype: int64

```
In [74]: clear_data[clear_data['km']==43][['km','last_price','locality_name'
Out[74]:
                        last_price
                                   locality_name
                   km
            5659 43.00 11067416.00 посёлок Репино
           17162 43.00
                       6100000.00
                                    Сестрорецк
           19984 43.00
                       7990000.00
                                    Сестрорецк
In [75]: clear_data[clear_data['km']==55][['km','last_price','locality_name'
Out [75]:
                       last price locality name
                  km
            376 55.00 8400000.00
                                Зеленогорск
           6247 55.00 9600000.00
                                Зеленогорск
In [76]: def place(distance):
               if distance<=10:</pre>
                   return 'centre'
              else:
                   return 'outskirts'
In [77]: clear_data['locality_type'] = clear_data['km'].apply(place)
In [78]: clear_data.loc[clear_data["locality_name"] != 'Санкт-Петербург', "l
```

Резкий рост рост цен начинается после расстояния до центра в 10 километров, установим именно это расстояние как центральную зону. Определенный рост заметен и после 20, но это явно еще далеко до центра. Также заметны два резких всплеска цены примерно на 43 и 55 километрах. Вполне вероятно что в этих местах находятся либо какие-то элитные поселки, либо там может находиться отдельная дорогая квартира.

Шаг 4.8 Определить, влияют ли на стоимость квартир в центре те же факторы, что и в квартирах на окраине и в пригороде

```
In [79]: |plt.figure(figsize = (16,8))
           ax1 = plt.subplot(2,2,1)
           sns.regplot(x="total_area", y="last_price", data=clear_data.query('
           sns.regplot(x="total_area", y="last_price", data=clear_data.query('
           sns.regplot(x="total_area", y="last_price", data=clear_data.query('
           #plt.ylim(10, 150)
           plt.legend(['centre','outskirts','suburb'])
           plt.title('Relationship between price and total area')
           ax2 = plt.subplot(2,2,2)
           sns.regplot(x="rooms", y="last_price", data=clear_data.query('local
sns.regplot(x="rooms", y="last_price", data=clear_data.query('local
sns.regplot(x="rooms", y="last_price", data=clear_data.query('local
           plt.legend(['centre','outskirts','suburb'])
           plt.title('Relationship between price and number of rooms')
           ax3 = plt.subplot(2,2,3)
           sns.regplot(x="ceiling_height", y="last_price", data=clear_data.que
           sns.regplot(x="ceiling_height", y="last_price", data=clear_data.que
sns.regplot(x="ceiling_height", y="last_price", data=clear_data.que
           plt.legend(['centre','outskirts','suburb'])
           plt.title('Relationship between price and ceiling height')
           ax4 = plt.subplot(2,2,4)
           sns.regplot(x="floors_total", y="last_price", data=clear_data.query
           sns.regplot(x="floors_total", y="last_price", data=clear_data.query
sns.regplot(x="floors_total", y="last_price", data=clear_data.query
           plt.legend(['centre','outskirts','suburb'])
           plt.title('Relationship between price and floors total')
           plt.subplots_adjust(right = 1, hspace = 0.5)
           plt.suptitle('Price dependence on different different factors')
           plt.show()
```

Price depenndence on different different factors

На стоимость квартир в центре те же факторы, что и в квартирах на окраине и в пригороде, причем степень их влияния примерно одинаковая. Однако, есть небольшие различия, так общая облощадь жилья немного больше влияет на цену жилья на окраине, чем в центре, но число комнат немного важнее для квартир в центре чем на окраине. Хотя различия несущественны.

Из существенных различий видно, что на цену квартир в центре почти не влияет этажность, такое же влияние на квартиры загородом есть, но тоже невелико, а вот квартиры на окраине демонстирую уже заметную зависимомость от количества этажей. Это может быть связано не совсем с тем, что люди предпочитают именно многоэтажное жилье, а скорее с тем, что многоэтажные дома как правило более новые, в то врем как малоэтажное жилье, например пятиэтажки, довольно старое.

Вывод. Исследовательский анализ данных

При проведении исследовательского анализа данных мы выявили следующие закономерности:

- 1. Почти все цены находиятся в диапазоне от 3 до 6 млн.рублей. Площадь квартир держится в диапазоне от 40 до 70 кв. метров. Высота потолков почти всегда одинакова и составляет 2.6-2.7 метра. Число комнат держится в диапазоне от 1 до 3.
- 2. Среди странных данных или выбросов мы можем увидеть недвижимость стоимостью 763 млн, хотя основная масса данных не превышвет 7 млн. Есть квартира площадью 900 кв. м., стоэтажный дом и квартира с 19 комнтамами. И есть квартиры с потолками как 1м так и 100м.
- 3. Среднее количество дней продажи квартиры составляет 180 дней, медианное время продажи квартир 95, значит основная масса квартир продается примерно за 3 месяца, однако есть какие-то квартиры, которые продаются гораздно дольше. Максимальное количество дней продажи квартиры 1580 дней.

Далее мы провели очистку данных от вбросов и сомнительных значений. К выбрсам отнесли все значения, которые выходят за пределы полутора межквартильных размаха.

4. Наиболее сильная положительная корелляция наблюдаеся между ценой и общей площадью (68%), а также числом комнат и высотой потолков (43% и 40% соответственно). Наиболее сильная отрицательная

- корелляция наблюдается между ценой и удаленностью от центра (34%)
- 5. Квартиры между первым и последним этажом продаются значительно быстрее остальных (менее 80 дней при 100 днях на первом этаже и 90 на последнем). Медианная цена за квадратный метр также значительно выше (более 95 тыс. при 80 тыс. на первом этаже и 85 на последнем.
- 6. Подавляющее большинство квартир находятся в Санк-Петербурге (67%). Все остальные распределены по разным населенным пунткам Ленинградской области, населенные пункты, которые занимаю второе и третье места по количеству объясвлений: поселки Мурино и Шушары, но там всего по 2% объявлений
- 7. Резкий рост рост цен начинается после расстояния до центра в 10 километров, эту зону обозначили как центральную
- 8. В целом, на стоимость квартир в центре влияютте же факторы, что и в квартирах на окраине и в пригороде, причем степень их влияния примерно одинаковая.

Вывод по проекту

Мы провели исследование объявлений о продаже квартир. В нашем распоряжении был архив объявлений о продаже квартир в Санкт-Петербурге и соседних населённых пунктов за несколько лет.

Датасет представлен довольно большим количеством объявлений о продаже недвижимости: 23 700 штук. Данные представлены в 23 столбцах. Данные были достаточно "грязными", было много пропусков и выбросов, также необходимо было корректировать форматы данных. Из 14 столбцов с пропусками мы смогли тем или иным способом заполнить данные в 8 и еще 6 оставили в изначальном виде. Некорректные форматы были только в 5 столбцах, и то большинство это ошибки, когда вместо типа int использовался float, что не очень страшно.

Мы дополнительно рассчитали следующие показатели:

- цену квадратного метра;
- день недели, месяц и год публикации объявления;
- этаж квартиры; варианты первый, последний, другой;
- соотношение жилой и общей площади, а также отношение площади кухни к общей

Выводы относительно данных:

- 1. Жилье на первых и последних этажа представлено чуть больше чем в 25% объясвлений, также видно что жилье там в среднем дешевле чем на прочих этажах (81 983 и 93 415 против 103 489 соответственно).
- 2. Доля кухни в среднем составляет 19%, но она сильно различается в зависимости от млощади жилья. Например в очень больших кваритраз она может быть всего лишь 9%, а в маленьком жилье составлять 20-25%. Доля же жилой площади, как правило, 56% от общей вне зависимости от категории.
- 3. В 2018 году также было опубликовано больше всего объйявлений 8519, а объявления с самой высокой медианной ценой за квадратный метр были опубликованы в 2014 и 2019 гг. (107 000 и 103 305 соответственно). Это были единственные два года, когда медианная цена за кв. м превысилы 100 тысяч.
- 4. Наиболее часто объявлени публиковали в понедельник(4 183), среду(4 295) и четверг(4 000). Наиболее редко в субботу (1699). Но зависимость между ценой за квадратной метр и днем недели не наблюдается.
- 5. Почти все цены находиятся в диапазоне от 3 до 6 млн.рублей. Площадь квартир держится в диапазоне от 40 до 70 кв. метров. Высота потолков почти всегда одинакова и составляет 2.6-2.7 метра. Число комнат держится в диапазоне от 1 до 3.
- 6. Среди странных данных или выбросов мы можем увидеть недвижимость стоимостью 763 млн, хотя основная масса данных не превышвет 7 млн. Есть квартира площадью 900 кв. м., стоэтажный дом и квартира с 19 комнтамами. И есть квартиры с потолками как 1м так и 100м.
- 7. Среднее количество дней продажи квартиры составляет 180 дней, медианное время продажи квартир 95, значит основная масса квартир продается примерно за 3 месяца, однако есть какие-то квартиры, которые продаются гораздно дольше. Максимальное количество дней продажи квартиры 1580 дней.
- 8. Также была проведена "очистка данных". Были удалены выбросы и сомнительные значения. К выбрсам отнесли все значения, которые выходят за пределы полутора межквартильных размаха.
- 9. Наиболее сильная положительная корелляция наблюдаеся между ценой и общей площадью (68%), а также числом комнат и высотой потолков (43% и 40% соответственно). Наиболее сильная отрицательная корелляция наблюдается между ценой и удаленностью от центра (34%)
- 10. Квартиры между первым и последним этажом продаются значительно быстрее остальных (менее 80 дней при 100 днях на первом этаже и 90 на последнем). Медианная цена за квадратный метр также значительно выше (более 95 тыс. при 80 тыс. на первом этаже и 85 на последнем.
- 11. Подавляющее большинство квартир находятся в Санк-Петербурге (67%). Все остальные распределены по разным населенным пунткам Ленинградской области, населенные пункты, которые занимаю второе и

- третье места по количеству объясвлений: поселки Мурино и Шушары, но там всего по 2% объявлений
- 12. Резкий рост рост цен начинается после расстояния до центра в 10 километров, эту зону обозначили как центральную
- 13. В целом, на стоимость квартир в центре влияютте же факторы, что и в квартирах на окраине и в пригороде, причем степень их влияния примерно одинаковая.