

5

**APPLICATION FOR LETTERS PATENT
UNITED STATES OF AMERICA**

10

Be it known that I, Stephan Hauser, residing at An der Steinkante 15b, 63225
15 Langen, Germany, a citizen of German, have invented certain new and useful
improvements in a

20 **3-DIMENSIONAL MAT-SYSTEM FOR POSITIONING, STAGGERED
ARRANGEMENT AND VARIATION OF AGGREGATE IN CEMENT-BONDED
STRUCTURES**

of which the following is a specification.

25

30 **MYERS & ASSOCIATES,
Intellectual Property Law, P.C.**
1827 Powers Ferry Road
Building 3, Suite 200
Atlanta, Georgia 30339
35 Telephone 770.541.7444
Email: myersiplaw@aol.com

3-DIMENSIONAL MAT-SYSTEM FOR POSITIONING, STAGGERED
ARRANGEMENT AND VARIATION OF AGGREGATE IN CEMENT-BONDED
STRUCTURES

5 Cross-Reference and Priority Claim to Related Applications

To the full extent permitted by law, the present application claims priority to
and the benefit of the following: (1) International Application (no number yet
assigned) entitled "3 Dimensional mesh for Staggering, Positioning, and Variation of
10 Aggregate in Cement Bonded Structures", filed July 25, 2001; (2) European
PCT/IB00/01369 entitled "Gewebematte als räumliche Mikrobewehrung zur
Staffelung, Lagefixierung und Variation der Zuschlagskörnung von
zementgebundenen Bauteilen", filed September 26, 2000 and published in German
April 5, 2001; and (3) Swiss Patent 1788/99 filed September 27, 1999, wherein each
15 is incorporated herein by reference.

Brief summary of the invention

3-dimensional mat systems with integrated aggregate (1) are the basis for a
20 microreinforced high performance concrete. The material performance as high load
capacity, durability, energy absorption, impact resistance, electrical and thermal
conductivity, density against fluids, high plasticity and crack control can be adjusted
precisely by variation of the mesh width and by positioning and variation of the type
and size of aggregate (1). The composite material will be produced by slurry
25 infiltration in a 3-dimensional mat system, performing as sieve and micro-
reinforcement. The precise positioning of the aggregate (1) allows a defined

regulation of the material stiffness in the tension and the compression zone of the member by variation of size and specific gravity of the aggregate. Consequently the deflection, the flow of internal forces and the crack propagation of the concrete member can be controlled as well as the adjustment of weight from extreme

5 lightweight to heavyweight structures. The deformation of the 3-dimensional mat system in combination with a monolithic splicing of the mats allows a simplified sectional system (Fig.5) or any other typical structural profile. The characteristics of the microreinforced, multifunctional material in combination with a simplified execution are the basis for cost effective long term behavior and they open a large

10 spectrum of applications. (table 1.2)

Specification

The invention relates to a microreinforced high performance concrete for the

15 manufacture of structural and impervious members following claim N°1. The structural system is a composite material consisting of a 3-dimensional reinforcing and sieving mat system bonded in concrete. The aggregate can be precisely positioned horizontally and vertically in the member by variation of the mesh width of the single layers (2). The sieving effect by the variation of the mesh width in vertical

20 direction guarantees a positioning of aggregate by size.

System a: positioning of the aggregate (1) can be determined before fabrication of mat systems with integrated coarse aggregate. During the second step a slurry with fine aggregate will be infiltrated.

System b: the prefabricated 3-dimensional mat system contains no aggregate.

The aggregate (1) will be positioned during the slurry infiltration by the sieving effect of the 3-dimensional mat system.

5 The material of the single layers (2) is variable, but preferably metallic or plastic. The optimization of cement bonded materials is guaranteed by the precise positioning of aggregate over the member cross section and by the adjustment of the desired material performance. The combination of the positioning and the variation of aggregate (1) with the load capacity of the 3-dimensional mat system (2) allow
10 structural members with high performance in flexible rotation, abrasion resistance, impact resistance, durability, load capacity, ductility, crack control and fire resistance.

Background of the invention (state of the art)

15 Conventional concrete members will be manufactured with a constant grain size distribution over the cross section of structural members (slabs, walls, girders etc.). The attempt of positioning of the aggregate (1) in different layers already fails during the compaction by vibration. The result is a random distribution of the aggregate (1) over the cross section and a large scattering of the material performance. A stress-strain curve of a loaded beam has in contradiction of theoretical assumptions no consistency of the cross sections. The strain curve of the compression zone and the tension zone are different (see Fig. 6). The strain in the tension zone of the member is larger than in the compression zone. Conventional concrete members have no positioning and variation of the aggregate size and
20 therefore only a more or less constant stiffness (large stiffness) over the cross section. Consequently the members tend to crack by a small strain. The cracks of
25

reinforced concrete members can only be minimized to $w = 0.20\text{mm}$. The minimum crack width of 0.20mm doesn't satisfy the requirements of impervious overlays [Lit.1]. In addition reinforced concrete members have a required concrete cover of the reinforcement of at least 25mm . Consequently the load cannot be taken by the overall cross section of the member and the dead load of the member increases.

Illustration, listing of figures

Fig. 1.1 3-dimensional mat system with integrated aggregate (1) (*perspective view*) Space positioning and variation of aggregate sizes

Fig. 1.2 similar to Fig. 1.1 with 3-dimensional interweaving (4) or other interconnection elements (3)

Fig. 2 3-dimensional mat system with variation of mesh width (*perspective view*) (aggregate positioning by sieving effect (sieve 1 to n) during slurry infiltration)

sieve 1 enclosing mesh layers (2) for staggered arrangement and positioning of aggregate and performing as reinforcement for load and crack control.

sieve 2 single layers (2) with small mesh width= template, positioning of displacement elements (=hollow elements)

sieve n single layers (2) with small mesh width for fine aggregate

Fig. 3 Structural system in prestressing bed with eccentric and center prestress. It performs by prestressing the single layers (2) of the 3-dimensional mat system.

Fig. 4 Positioning of the integrated aggregate (1), performing as displacement elements (i.e. hollow grains, plane view)

Fig. 5 Mat-elementation for sectional systems (*perspective view*)

Fig. 6 Strain relation of a loaded beam

- Fig. 7** Mat system with integrated cable channels
- Fig. 8** Integrated discs with impervious rings
- 5 **Fig. 9** Girder with single mesh layers (sieve)
- Fig. 10** Girder with single mesh layers (sieve) + rebar
- 10 **Fig. 11** Positioning of aggregate in wall members (*section view*)
- Fig. 12** Positioning of aggregate in plane areas (*section view*)

Intention of the Invention

The intention of the invention is the variation and precise positioning of the aggregate (1) over the cross section of a member in order to produce a defined grain size distribution, i.e. for stiffness control. A large stiffness in the compression zone of the member will be achieved by positioning coarse aggregate (1) and a small stiffness in the tension zone will be produced by crushed and fine aggregate (1). For example, for a high-strength concrete (100 MPa) the stiffness can be adjusted from 20,000 MPa (fine grain = 2mm) to 50,000 MPa (coarse grain = 32mm) by positioning the aggregate (1). The large stiffness in the compression zone of a member results in a better load dispersion and a higher load capacity up to the failure strain of a compression member. The small stiffness in the tension zone allows a maximization of the failure strain, so that crack propagation can be avoided even during large torsion, rotation and bending loads until failure. This effect ensures durability and density and consequently a long term behavior of the composite material. In addition the fine aggregate (1) improves the bonding between concrete and rebar. In general, high load capacity in combination with plasticity and crack minimization in a structural member can be achieved by variation of the material stiffness over the cross section.

The development of a specified 3-dimensional mat system, consisting of single layers (2) of micro meshes, is the foundation for positioning and variation of aggregate (1) either in the horizontal or in the vertical cross section. By the exact 5 positioning of aggregate (1) in combination with a 3-dimensional mat system the desired material performance relating to high load capacity, high density, durability, ductility, impact resistance, torsion, rotation, crack control, thermal and electric conductivity, energy absorption etc. can be adjusted precisely. In addition the inconsistency of performance in conventional concrete can be reduced to a 10 minimum.

The advantages of high performance concrete and of 3-dimensional mat systems, performing as microreinforcement and as a sieve, will be superpositioned. These advantages are described in a publication by the inventor [Lit.2].

15 Detailed description of the Invention

i) Composition of the mat system

See Fig. 1 and 2

- single layers (2) enclose the aggregate (1)
- single layers (2) with small mesh width as template for the defined position of the aggregate (1)
- single layers (2) ensure the compression tension capacity of the member
- 3-dimensional tying or interweaving (3, 4) perform as fixation for the single layers (2) and ensure the shear capacity of the member (see Fig. 1)
- the thickness of the 3-dimensional mat system can be defined and adjusted precisely, i.e. for abrasive overlays $h_{mat} = 10$ to 100 mm
- 3-dimensional mat system with integrated aggregate (1) allow in addition the integration of cable channels, heating systems etc. (see Fig. 7)

ii) Material of mat system

The type and the strength capacity of the material can be composed arbitrarily (preferably high strength and normal strength steel)

- Multiple staggered arrangement of mat material with interconnecting elements

5 single layers (2) in expanded metal

single layers (2) in welded or woven meshes

- #### - 3-dimensional set-up

Fabrication of a 3-dimensional mat system by interweaving without additional interconnecting elements

10 iii) Aggregate

General remark: the material stiffness can be adjusted by all different types of aggregate (1), as different types can be combined.

15	Type of aggregate: standard (coarse, stone chips, sand etc. light- and heavyweight hollow core (works as displacement core)
20	Spec. Gravity: extends from extreme light-weight (hollow) to heavy-weight Shape: arbitrary (ball, disc, cubic etc.) Size: arbitrary (regulation of dead load and spacing of the single layers (2))
25	Positioning: arbitrary formation and positioning in the horizontal layer of prefabricated 3-dimensional mat system with integrated aggregate (1) (see. Fig. 4). Vertical positioning of aggregate (1) by sieving effect of the 3-dimensional mat system during slurry infiltration (see Fig. 2)

Specific gravity of aggregate (1)

- 30 • aggregate (1) as hollow core, light-weight \Rightarrow minimization of member dead-load
• aggregate (1) as normal-weight \Rightarrow reduction of the fine particles and the shrinkage of the member, increasing of material stiffness
• aggregate (1) as heavy-weight \Rightarrow i.e. steel or lead for maximization of member dead load, radiation protection and sound insulation by the member

35

Shape of aggregate (1)

- arbitrary shape
 - Round shape will fit into the meshes of the single layers (2) = template (Fig. 4)

- Discs and cubic shapes

For impervious structures additional density rings might be added if needed, in order to minimize the soaking of the infiltrating liquid (see Fig. 8)

5 Size of aggregate (1)

- Arbitrary adjustable (preferably ≤ 50 mm)
- Performing as a spacer of the single layers (2)
- Regulation of stiffness of the member
- Regulation of the dead load of the member

10

Positioning of the aggregate (1)

- a) Prefabricated 3-dimensional mat system with integrated aggregate (1) (Fig. 1.1).

= aggregate (1) is positioned between the single layers (2) before slurry infiltration

- precise positioning of aggregate (1) in the horizontal layer regulates the load dispersion like a beam grid and the dead load of the member variants of positioning in the horizontal layer

20

i) multiaxial beam grid \Rightarrow maximal load capacity of the member (Fig. 4)

ii) diagonal beam grid \Rightarrow minimization of dead load of the member by using hollow aggregate (1) (grains), maximization of dead load of the member by using lead aggregate (1) (see Fig.4)

- precise positioning of aggregate (1) in 3 dimensions controls the stiffness of the member as well as the load bearing capacity, the deflection, the energy absorption and the dead load

- b) Prefabricated 3-dimensional mat system without integrated aggregate (1) (Fig. 2)

30

= the aggregate (1) will be sieved into the defined position during slurry infiltration

- sieving and positioning of aggregate (1) by variation of the mesh width of the single layers (2)

35 Examples of concrete members

a) Beam members

5 a1) concrete beam, consisting of the 3-dimensional mat system

example see Fig. 9

10 a2) concrete beam, consisting of the 3-dimensional mat system and additional conventional rebars

example see Fig. 10

15 **b) Wall members with staggered arrangement and variation of the size of aggregate (1)**

20 advantage: - high material stiffness by positioning coarse aggregate (1) in the compression zone of the member, high bearing load and abrasion resistance

- minimization of crack width by positioning fine aggregate (1) in the tension zone of the member
- crack propagation adjusted by mesh width of the single layers (2), cracks develop at each mesh node

25 example see Fig. 11

30 **c) Abrasive resistant overlays with staggered arrangement and variation of the size of aggregate (1)**

example: 3-dimensional mat system for filtration of aggregate (1), performing as sieve

advantage: - high material stiffness by positioning coarse aggregate (1) near the surface of the overlay (compression zone), results in a high bearing load capacity and high abrasion resistance

- low material stiffness by positioning fine aggregate (1) near the bottom part of the overlay (compression zone), results in a minimization of the crack propagation and in an increase of durability = long term behavior

35 example see Fig. 11

5

10

0 100 200 300 400 500 600 700 800 900 1000

11

Advantages of the described method

Listing of advantages of the described method compared to the state of the art.

Advantages of the 3-dimensional mat system for staggered arrangement, positioning and variation of aggregate

Technical advantages:

- 3-dimensional control of load bearing and deflection of cement bonded members by precise positioning of the 3-dimensional mat system and the aggregate (1)
- Precise positioning of the aggregate (1) in the horizontal layer (beam grid see Fig. 4)
- Precise positioning of the aggregate (1) in 3 dimensions over the cross section of the member (see fig 1.1)
- System without joints by monolithic splicing of the mats
- Minimization of the concrete embedment
 - ⇒ The complete height of the cross section can be taken into account for static analysis,
 - ⇒ Minimization of the member thickness
 - ⇒ No additional spacer for the single layers (2) necessary
 - ⇒ Cost reduction
- 3-dimensional load bearing capacity
- High effectiveness because of maximum distance of single layers (2) to the neutral axis
- Precise alignment of single layers, performing as reinforcement
- 3-dimensional interconnection of the mat system increases the shear load capacity of the member
- steel volume fraction can be adjusted precisely between 0.5 and 15.0 % of volume
- Installation of the 3-dimensional mat system in defined parts of the member, i.e. only near the member surface
- Large variety of mat systems possible
 - i.e. with integrated heating wires, prestress of single layers (2), confinement of structural members
- Characteristics
 - Extremely ductile, high bearing load capacity, minimization of crack development, minimization of inconsistency in material performance by variation and positioning of aggregate (1), 3-dimensional structural performance of the mat system
 - Crack width << 0.03mm during service limit state (conventional concrete $w \geq 0.20\text{mm}$)
 - Multifunctional composite material by multiple layer set-up ⇒ superimposing of a variety of characteristics by one material (i.e. sound protection, insulation, electric and thermal conductivity, impact resistance etc.)

Economic advantages:

- Cost reduction and optimization by variation of the aggregate (1)
- Minimization of the construction work by a simplified placing of the prefabricated 3-dimensional mat system
- monolithic continuous system with high load capacity \Rightarrow no cost intensive joints necessary
- multifunctional material, which covers a variety of performances \Rightarrow no cost intensive additional materials necessary
- integration of hollow aggregate (1) as displacement core
 \Rightarrow minimization of dead weight
 \Rightarrow minimization of cost of transport
 \Rightarrow enlargement of precasted structural members = acceleration of the erection of the structure
 \Rightarrow minimization of duration of the construction
- Simplified elementation
 \Rightarrow sectional system with quality assurance, no specialists for the execution necessary
- no embodiment of the single layers (2) necessary \Rightarrow minimization of thickness \Rightarrow minimization of dead weight \Rightarrow small transporters and cranes

3-dimensional mat system as prestressing element

Using the prefabricated mat system for prestressing of concrete members

5 The difference in existing methods is, that defined single layers of the 3-dimensional mat system can be prestressed especially in extremely thin concrete members. The prestressing allows an increase of the member span and crack-free structure.

10 Structural system

= Prestressing in a prestressing bed

- a) eccentric prestress by prestressing defined single layers (2) consisting of high strength or equivalent material (see Fig. 3.1)

- b) center prestress by prestressing either all single layers (2) or defined layers by

15 keeping the symmetry to the center axis (see Fig. 3.2)

Usability of the invention (application)

Restoration, retrofit and damp proofing of existing structures as well the production of new structures with long term behavior are important projects for the

5 future. Besides the economic advantages the improved characteristics of the composite material, like high load bearing capacity, durability, energy absorption, impact resistance, electrical thermal conductivity, density against fluids, high plasticity and crack control open a large spectrum of applications.

10 Preferred applications of the composite material (mat system + concrete with positioning and variation of aggregate) are abrasive and impervious overlays, blast barriers, precast elements, arbitrary profiles and shapes. The utilization of the thermal conductivity of the 3-dimensional mat system ensures a heatable material. This heating effect can be activated in members or areas, which are supposed to be
15 free of ice and snow. (see table 1.2)

A special monolithic splicing of the 3-dimensional mat system has been developed, which allows structures free of joints. In addition, the deformation of the 3-dimensional mat system in combination with a monolithic splicing of the mats are
20 the foundation for a simplified sectional system (Fig.5), consisting of standard-, angle- and edge-elements. This simplified system ensures an execution with constant high quality and does not require specialized workers.

In addition, precast members will be part of the application. Based on the
25 flexibility of the 3-dimensional mat system the precast members can be produced in

arbitrary shapes (tubes, cylindric tanks and any other typical structural profiles). The prestressing of high loaded thin members allow slim and crack free structures. In addition structures with high energy absorption such as blast barriers, earthquake resistant structures, safes and bunkers, can be created by defined spatial positioning
 5 of the aggregate (1).

The material characteristics open up a wide spread field of applications:

Application
Overlays Highway and airport pavements, bridge deck overlays, runways, coastal environment, stilling pools, settlement ponds, gas stations, industry floor slabs, loading areas etc.
Energy absorption (blast) military shelters, safety rooms, safes, refuse bunkers, bullet-proof and blast barriers, plastic hinge connections, retrofit of existing structures etc.
Precast structures tubes, thin facade plates, sacrifice formwork, structural profiles
Heatable areas runways, ramps, bridges, car-wash, pipes, housing
Others precast panels, any profile shapes, containers for liquids, tubes, chimneys, radiation absorber, tunnel shells, thin panels, confinement, prestressed and composite structures, sound insulation members etc.

Table 1.2 Spectrum of applications of the 3-dimensional mat system with staggered arrangement and positioning of aggregate (1)

10

Literature

[Lit.1] Deutscher Ausschuß für Stahlbeton: DAfStb-Richtlinie für Umgang mit wassergefährdenden Stoffen, 1996 (Germany)

[Lit.2] Hauser, S.: DUCON ein innovativer Hochleistungsbeton, Beton- u. Stahlbetonbau, Febr. + March 1999 (Germany)

List of references (abbreviations)

No.	Content

1	Aggregate
2	Single layers of the 3-dimensional mat system
3	Elements of fixation
4	3-dimensional interweaving
5	High-strength steel

Designation of figures

Figure	Position	Content
1.1	---	
1.2	---	
2	2a	Sieve 1 (large mesh width)
	2b	Sieve 2 (medium mesh width)
	2c	Sieve n (small mesh width)
3	3.1	Eccentric prestressing
	3a	Prestressing anchor
	3.2	Center prestressing
4	A	Defined multiple axial load dispersion (main axis + diagonals)
	B	Maximum utilization of space (diagonal load dispersion)
5	5a	Angle-element
	5b	Edge-element
	5c	Standard-element
6	6a	Compression zone
	6b	Crack
	6c	Tension zone
	6d	Elongation under compression
	6e	Elongation under tension
7	7a	i.e. cable channel, power heating etc.
8	8a	Perimeter lips
	8b	Disc with perimeter lips
9	9.1	Staggered arrangement of the aggregate size over the cross section
	9a	High concrete stiffness ($E_c > 50,000 \text{ N/mm}^2$)
	9b	Medium concrete stiffness ($30,000 < E_c < 50,000 \text{ N/mm}^2$)
	9c	Small concrete stiffness ($E_c < 30,000 \text{ N/mm}^2$)
	9.2	Staggered arrangement and variation of the single layers over the cross section

	9d	i.e. large mesh width (w=16mm)
	9e	Medium mesh width (w=8mm)
	9f	Small mesh width (w<4mm)
10	10.1	Staggered arrangement and variation of the aggregate size over the cross section
	10a	High concrete stiffness ($E_c > 50,000 \text{ N/mm}^2$)
	10b	Medium concrete stiffness ($30,000 < E_c < 50,000 \text{ N/mm}^2$)
	10c	Small concrete stiffness ($E_c < 30,000 \text{ N/mm}^2$)
	10.2	Staggered arrangement and variation of the single mesh layers over the cross section
	10d	i.e. large mesh width (w=16mm)
	10e	Medium mesh width (w=8mm)
	10f	Small mesh width (w<4mm)
	10g	Steel reinforcement, rebars
11	11.1	Cross section of a wall
	11a	Tension zone
	11b	Compression zone
	11c	Slurry infiltration by the side with large aggregate
	11d	Small stiffness
	11e	Large stiffness
	11.2	i.e. horizontally loaded basement wall
	11f	Exposed concrete quality (interior)
	11g	Load (exterior)
12	12.1	Positioning of the single layers over the cross section of a slab
	12a	Large mesh width
	12b	Small mesh width
	12.2	Staggered arrangement and variation of aggregate over the cross section of a slab
	12c	Compression zone
	12d	Tension zone
	12e	Part of member with large stiffness
	12f	Part of member with small stiffness
	12.2	Staggered arrangement and variation of aggregate over the cross section of a slab
	12f	Exposed concrete quality (interior)
	12g	Load (exterior)