

William Beach

CDA3203 - Online Section 12/2/2022 Z23194964

In lab 3, I've implemented data flip-flops to design and build memory. I utilize behavior architecture in lieu of design architecture to abstract the process. 1-Bit register, 16-Bit register, RAM, and program counter are designed and simulated. This report includes the project settings, vector waveform files, VHDL code, and circuit drawings with only NAND gates (drawn using

https://app.diagrams.net/) for each circuit.

Data Flip Flop (DFF)

Vector Waveform Timing Diagram for DFF

1-Bit Register

Vector Waveform Timing Diagram for 1-Bit Register

16-Bit Register

Project settings 16-Bit Register

Vector Waveform Timing Diagram for 16-Bit Register

Program Counter Register

Project settings Program Counter Register

Vector Waveform Timing Diagram PC Register

8 Register RAM

Project settings 8 Register RAM

VHDL 8 Register RAM

