PROGRAMLAMA UYGULAMALARIYLA SAYISAL YÖNTEMLER

Dr. Öğr. Üyesi Adnan SONDAŞ

asondas@kocaeli.edu.tr

0262-303 22 58

3. Hafta

DENKLEM ÇÖZÜMLERİ (Devam)

İÇİNDEKİLER

1. Denklem Çözümleri

- A. Doğrusal Olmayan Denklem Çözümleri
 - **□** Açık Yöntemler
 - Basit İterasyon
 - Newton-Raphson Yöntemi
 - Newton'un 2. Yöntemi
 - Kiriş (Secant) Yöntemi
 - Teğet-Kiriş Birleştirilmiş Yöntem

Denklem Çözümünde Açık Yöntemler

- Bu yöntem, x'in yalnızca başlangıç değeri kullanılan ya da kökü kapsayan bir aralık kullanılması gerekmez.
- Açık yöntemler hızlı sonuç vermesine karşın, başlangıç değeri uygun seçilmediğinde ıraksayabilir.
- □ Kökü iki başlangıç değeri arasında kıskaca alma (f(x_a).f(x_ü) <0) sorgulaması yok
- ☐ Tüm açık yöntemler, kökün bulunması için matematiksel bir formül kullanır.

Serhat Yılmaz'ın Sunusundan Alınmıştır.

- f(x) fonksiyonu f(x)=0 denkliği x=g(x) formuna getirilir.

 - □ Bu eşitliğin anlamı y=x doğrusu ile y=g(x) fonksiyonunun kesişim noktasını bulmaktır.
- Bir x₀ başlangıç değeri seçilir,
 - \Box x_0 , $|g'(x_0)| < 1$ şartını sağlar ise köke yakınsama olur.
- \mathbf{S} $\mathbf{x}_{n+1} = \mathbf{g}(\mathbf{x}_n)$ formu ile iterasyon gerçekleştirilir.
 - \Box $x_1=g(x_0)$
 - \Box $x_2=g(x_1)$
 - **.**..
 - \Box $x_n=g(x_{n-1})$
- Ourdurma şartı
 - \square I x_{n+1} x_n I < ε_s sağlanıncaya kadar
 - ☐ Ya da belirli iterasyonda durdurulabilir

Örnek : $f(x) = x^2 - 3x + 1$ denkleminin kökünü mutlak hata $\delta_a = 0.1$ sınırlamasına göre Basit İterasyon yöntemini kullanarak $x_0 = 2$ değerinden başlayarak çözünüz.

•
$$f(x) = x^2 - 3x + 1 \implies g(x) = \sqrt{3x - 1}$$

$$x_0 = 2$$
 'den başlayarak köke doğru yaklaşalım

$$x_{i+1} = g(x_i)$$

$$x_1 = g(x_0) = \sqrt{3.2 - 1} = \sqrt{5} = 2,2361$$

$$x_2 = g(x_1) = \sqrt{3 \cdot 2.2361 - 1} = 2,3892$$

$$x_3 = g(x_2) = \sqrt{3 \cdot 2.3892 - 1} = 2,4835$$

3 Durdurma Kriteri (Hata Sınırlaması)

$$I x_{i+1} - x_i I < \varepsilon_s$$
 yada iterasyon

$$|x_1 - x_0| = |2,2361 - 2| = 0.2361$$

$$|x_2 - x_1| = |2,3892 - 2,2361| = 0.1531$$

$$|x_3 - x_2| = |2,4835 - 2,3892| = 0.0943$$

$$x_{k\ddot{o}k} = 2.4835 \implies f(x_{k\ddot{o}k}) = -0.2828$$

- □ Örnek: $f(x)=3e^{-0.5x}-x$ fonksiyonunun kökünü mutlak hata $\delta_a=0.07$ sınırlamasına göre $x_0=8$ değerinden başlayarak hesaplayınız.
 - ☐ Her adım (iterasyon) için yeni x, g(x) ve hatayı hesaplayınız.
- f(x)=0 denkliği x=g(x) formuna getirilir.
 - $x = 3e^{-0.5x}$
- g(x) = $3e^{-0.5x}$ fonksiyonu x_0 = 8 başlangıç değeri ve ε_a = 0.07 hata sınırlamasına göre iterasyona tabi tutuluyor.
- 13. iterasyondan sonra ε_a = 0.07 hata ile kök değeri x=1.4 elde edilir. (Yakınsak iterasyon)

iterasyon sayısı	х	g(x)	h= x _n -x _{n-1}
1	8	0,054946917	7,945053083
2	0,054946917	2,918701514	2,863754597
3	2,918701514	0,697161304	2,221540209
4	0,697161304	2,117066992	1,419905688
5	2,117066992	1,040892786	1,076174206
6	1,040892786	1,782765652	0,741872867
7	1,782765652	1,230264839	0,552500813
8	1,230264839	1,621707926	0,391443087
9	1,621707926	1,333435008	0,288272918
10	1,333435008	1,540173057	0,206738049
11	1,540173057	1,388919019	0,151254038
12	1,388919019	1,498032798	0,109113779
13	1,498032798	1,418494205	0,079538593
14	1,418494205	1,476043484	

 \bullet Örnek: $f(x) = 3e^{-0.5x} - x$ fonksiyonunun kökünü mutlak hata $\delta_a = 0.07$ sınırlamasına göre $x_0 = 8$ değerinden başlayarak hesaplayan MATLAB programını Basit iterasyon

yöntemine göre yazınız.

```
Editor - C:\Users\asondas\Documents\OKUL\20...
File Edit Text Go Cell Tools Debug
          clc; close all; clear all;
       tol=0.07;
       hata=1;
       x0=8;
       n=0;
     \squarewhile hata>tol
         n=n+1;
         x1=3*exp(-0.5*x0);
         hata=abs(x1-x0);
           x0=x1;
11
12 -
       end
13
       hata
       x = x0
       fx=3*exp(-0.5*x)-x
                      Ln 17
                                  OVR
                            Col 19
   script
```

- En çok kullanılan yöntemlerden biridir.
- Köke, teğetler ile yaklaşılır.
 - Başlangıç değerinin fonksiyonu kestiği noktadan, çizilen teğetin yatay ekseni kestiği yeni nokta başlangıç değeri ile değiştirilerek köke yaklaşmaya çalışmaktır.
 - Bir noktadaki türev, o noktadan geçen teğetin eğimine eşittir.

□ Başlangıç değeri (x₀) belirlenirken, fonksiyonun ikinci türevinin aynı işaretli olduğu sınır değeri alınabilir.

$$f(a).f''(a) > 0 \implies x_0 = a$$

 $f(b).f''(b) > 0 \implies x_0 = b$

* Yakınsaklık Koşulu

Başlangıç noktasındaki türev ile köke yaklaşma 0

$$\operatorname{Tan}(\alpha_1) = \frac{f(x_0)}{(x_0 - x_1)} = f'(x_0)$$

x, yalnız bırakılırsa, ifade basit iterasyondaki 2 gibi $x_{n+1} = g(x_n)$ formuna dönüştürülür

$$x_1 = \underbrace{x_0 - \frac{f(x_0)}{f'(x_0)}}_{g(x_0)}$$

Yakınsaklık koşulu, 8

$$|g'(x_0)| \langle 1$$

$$|g'(x_0)| \langle 1|$$

$$g'(x_0) = (x_0 - \frac{f(x_0)}{f'(x_0)})' = \left| \frac{f''(x_0) \cdot f(x_0)}{(f'(x_0))^2} \right| \langle 1|$$

❖ Örnek: f(x) = x² - 10 denklemini Newton-Raphson yöntemini kullanarak x₀ = 3
değerinden başlayarak, tol=0.05 için çözünüz.

•
$$f(x) = x^2 - 10$$
 $\Rightarrow f'(x) = 2x$

$$x_0 = 3$$
 'ten başlayarak köke doğru yaklaşalım

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

B

$$I x_{i+1} - x_i I < \varepsilon_s$$
 yada iterasyon

Durdurma Kriteri (Hata Sınırlaması)

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3 - \frac{(-1)}{6} = \frac{19}{6} = 3,166$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 3,166 - \frac{(0,023556)}{6,332} = 3,162$$

$$|x_1 - x_0| = |3,166 - 3| = 0.166$$

$$|x_2 - x_1| = |3,162 - 3,166| = 0.04$$

Serhat Yılmaz'ın Sunusundan Alınmıştır.

Örnek: $f(x) = x^3 + 4x^2 - 3$ denklemini Newton-Raphson yöntemini kullanarak $x_0 = 0.7$ • değerinden başlayarak, tol=5e-5 için çözünüz?

$$f(x) = x^3 + 4x^2 - 3 \Rightarrow f'(x) = 3x^2 + 8x$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$| x_{i+1} - x_i | < \varepsilon_s$$
 yada iterasyon

$$x_1 = 0.7 - \frac{f(0.7)}{f'(0.7)} = 0.7 - \frac{(-0.6970)}{7.07} = 0.7986$$
 $|x_1 - x_0| = |0.7986 - 0.7| = 0.0986$

$$|x_1 - x_0| = |0,7986 - 0.7| = 0.0986$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0,7986 - \frac{0,0602}{8,3019} = 0,7913$$

$$|x_2 - x_1| = |0,7913 - 0,7986| = 0.0073$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0,7913 - \frac{0,0003}{8,2092} = 0,7913$$

$$|x_3 - x_2| = |0,7913 - 0,7913| = 0.00004$$

Örnek : $f(x) = x^3 + 4x^2 - 3$ fonksiyonunun kökünü mutlak hata $\delta_a = 5e-5$ sınırlamasına göre $x_0 = 0.7$ değerinden başlayarak hesaplayan MATLAB programını Newton-Raphson

yöntemine göre yazınız.

```
Editor - C:\Users\asondas\Documents\OKUL\20...
      Text Go Cell Tools Debug
                        × | % % % 0 0
       clc; close all; clear all;
       x0=0.7;
       hata=1;
       tol=0.001;
       i=0;
      fx=x0^3+4*x0^2-3;
           dfx=3*x0^2+8*x0;
           x1=x0-(fx/dfx)
           hata=abs(x1-x0)
            x0=x1;
       end
15
       x0
16 -
17 -
       hata
18
                       Ln 5
                              Col 11
                                    OVR
   script
```

ÖDEV

- - Newton-Raphson
 - Basit iterasyon metotlarını kullanarak çözünüz?

KAYNAKLAR

❖ Diğer Kaynaklar

- Bülent ORUÇ, Adnan SONDAŞ, "Sayısal Çözümleme", Umuttepe Yayınları
- Fahri VATANSEVER, "Sayısal Hesaplama ve Programlama", Seçkin Yayınları, 2018.
- Steven C. Chapra, Raymond P. Canale (Çev. H. Heperkan ve U. Kesgin), "Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler", Literatür Yayıncılık.
- Serhat YILMAZ, "Bilgisayar ile Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- Ilyas ÇANKAYA, Devrim AKGÜN, Sezgin KAÇAR "Mühendislik Uygulamaları İçin MATLAB", Seçkin Yayıncılık
- Irfan Karagöz, "Sayısal Analiz ve Mühendislik Uygulamaları", VİPAŞ Yayınevi, 2001.
- Cüneyt Bayılmış, Sayısal Analiz Ders Notları, Sakarya Üniversitesi