Topic Segmentation

Regina Barzilay

February 8, 2004

What is Segmentation?

Segmentation: determining the positions at which topics change in a stream of text or speech.

SEGMENT 1: OKAY

tsk There's a farmer,

he looks like ay uh Chicano American,

he is picking pears.

A-nd u-m he's just picking them,

he comes off the ladder,

a-nd he- u-h puts his pears into the basket.

SEGMENT 2: U-h a number of people are going by,

and one of them is um I don't know,

I can't remember the first ... the first person that goes by

Motivation

- Information Retrieval
- Summarization
- Question-Answering
- Word-sense disambiguation and anaphora resolution

Today's Topics

- Human Agreement on Segmentation and Evaluation
- Segmentation Algorithms:
 - Features: word distribution, cue words, speaker, change,...
 - Methods: classification, clustering, HMMs, ...
- Segmentation for different genres: text, meetings, broadcasts,

Segmentation: Agreement

Percent agreement — ratio between observed agreements and possible agreements

$$\frac{22}{8*3} = 91\%$$

Results on Agreement

Grosz&Hirschbergberg'92	newspaper text	74-95%
Hearst'93	expository text	80%
Passanneau&Litman'93	monologues	82-92%

Cochran's Test

Estimate the null hypothesis that the number of subjects assigning a boundary at any position is randomly distributed

Evaluation Measures

	Boundary	Non-boundary
Alg. Boundary	a	Ъ
Alg. Non-boundary	С	d

Recall $\frac{a}{a+c}$ Precision $\frac{a}{a+b}$ Error $\frac{b+c}{a+b+c+d}$

Simple Algorithm

Passanneau&Litman'93

	Recall	Precision	Error
Cue	72%	15%	50%
Pause	92%	18%	49%
Humans	74%	55%	11%

Text Segmentation

Hearst'94

- Goal: divide text into coherent segments
- Main Idea: change in lexical connectivity patterns signals topic change
 - Linguistic Theory: Text Cohesion

Flow model of discourse

Chafe'76:

"Our data ... suggest that as a speaker moves from focus to focus (or from thought to thought) there are certain points at which they may be a more or less radical change in space, time, character configuration, event structure, or even world ... At points where all these change in a maximal way, an episode boundary is strongly present."

<u>Example</u>

Stargazers Text(from Hearst, 1994)

- Intro the search for life in space
- The moon's chemical composition
- How early proximity of the moon shaped it
- How the moon helped the life evolve on earth
- Improbability of the earth-moon system

Example

```
05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
         1 111 1 1
     form
8 scientist
                   11
                      1 1
5
     space 11 1 1
25
    star
                                             11 22 111112 1 1 1 11 1111
         1
    binary
                                             11 1
                                                       1
   trinary
                                             1 1
                                                      1
                                             1 1
8 astronomer 1
                                                      1 1 1 1
                                               12 1 1
    orbit 1
    pull
                            1 1
                                                 1 1
6
        1 1 11
16
    planet
                          1 1
                                               21 11111
                                          1
                                                      1 11 1
    galaxy
            1 1 1 1
    lunar
    life 1 1 1
19
                                   11 1 11 1
                                              1
                                                1 1 1 111 1 1
                               21
           13 1111 1 1 22 21 21
                                       11 1
     moon
     move
7 continent
                                 2 1 1 2 1
  shoreline
                                   12
                             1 1 1 1
     time
                     1
3
                             11
     water
                                1 11
                             1 1
      say
   species
                                 1 1 1
          05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
```

Segmentation Algorithm

- Preprocessing and Initial segmentation
- Similarity Computation
- Boundary Detection

Preprocessing and Initial Segmentation

- Tokenization
- Morphological analysis
- Token-sequence division

Similarity Computation: Representation

Vector-Space Representation

SENTENCE₁: I like apples

SENTENCE₂: Apples are good for you

Vocabulary	Apples	Are	For	Good	I	Like	you
$Sentence_1$	1	0	0	0	1	1	0
Sentence ₂	1	1	1	1	0	0	1

Similarity Computation: Cosine Measure

Cosine of angle between two vectors in n-dimensional space

$$sim(b_1, b_2) = \frac{\sum_t w_{y,b_1} w_{t,b_2}}{\sqrt{\sum_t w_{t,b_1}^2 \sum_{t=1}^n w_{t,b_2}^2}}$$

SENTENCE₁: 1 0 0 0 1 1 0

SENTENCE₂: 1 1 1 1 0 0 1

$$sim(S_1,S_2) = \frac{1*0+0*1+0*1+0*1+1*0+1*0+0*1}{\sqrt{(1^2+0^2+0^2+0^2+1^2+1^2+0^2)*(1^2+1^2+1^2+1^2+0^2+0^2+1^2)}} = 0.26$$

Boundary Detection

Based on changes in sequence of similarity scores:

Depth Scores: relative depth (in comparison to the closest maximum)

Number of segments: $s - \sigma/2$

Segmentation Evaluation

Comparison with human-annotated segments (Hearst'94):

- 13 articles (1800 and 2500 words)
- 7 judges
- boundary if three judges agree on the same segmentation point

Evaluation Results

Methods	Precision	Recall
Baseline 33%	0.44	0.37
Baseline 41%	0.43	0.42
Chains	0.64	0.58
Blocks	0.66	0.61
Judges	0.81	0.71

More Results

- High sensitivity to change in parameter values
- Thesaural information does not help
- Most of the mistakes are "close misses"

Meeting Segmentation

- Motivation: Facilitate information Access
- Challenges:
 - High error rate in transcription
 - Multi-thread structure

Algorithm for Feature Segmentation

Supervised ML (Galley&McKeown&Fosler-Lussier&Jing'03)

- Combines multiple knowledge source:
 - cue phrases
 - silences
 - overlaps
 - speaker change
 - lexical cohesion
- Uses probabilistic classifier (decision tree) to combine them

Cue Word Selection

Automatic computation of cue words:

- Compute word probability to appear in boundary position
- Select words with the highest probability
- Remove non-cues.

Selected Cue Words

OKAY	93.05
shall	0.44
anyway	0.43
alright	0.64
let's	0.66
good	0.81

Silences

- Pauses speaker silence in the middle of her speech
- Gap silences not attributable to any party

Topic boundaries are typically preceded by gaps

Overlaps

• Average overlap rate within some window

Little overlap in the beginning of segments

Determination of Window Size

Feature	Tag	Size(sec)	Side
Cue phrases	CUE	5	both
Silence (gaps)	SIL	30	left
Overlap	OVR	30	right
Speaker activity	ACT	5	both
Lexical cohesion	LC	30	both

Examples of Derived Rules

Condition	Decision	Conf.	
LC≤0.67, CUE≥1,			
OVR≤1.20, SIL≤3.42	yes	94.1	
LC≤0.35, SIL>3.42,			
OVR≤4.55	yes	92.2	
CUE≥1, ACT>0.1768,			
OVR≤1.20, LC≤0.67	yes	91.6	
•••			
default	no		

Results

Method	P_k	WD
Feature-based	23.00	25.47
Cohesion-based	31.91	35.88