Mining Graph Data

LINK PREDICTION

Lecturer: Le Ngoc Thanh

Email: Inthanh@fit.hcmus.edu.vn

Content

- Link prediction
- Learn in link prediction
 - Unsupervised learning
 - Supervised learning

Link prediction

Link prediction problem:

 Given the links in the graph at time, predict the edges that will be added to the graph between and time ' in the future.

Link inference is missing

- Association prediction differs from missing (hidden) association inference in that:
 - Link prediction to find links that appear over time
 - Missing association inference to find extra links in static graph.

Link prediction

Application

- Suggestions for making friends in social networks
- Predicting connections between members of a terrorist organization
 - facebook
- Proposal for cooperation among researchers
- Suggest the article should be referenced to

Predicting interactions of proteins

Link prediction

- The link prediction process is to calculate the score score(u,v) for each pair of $\langle u,v \rangle$, then rank it to choose the v with the highest measure to connect with u.
- Usually divided into three groups:
 - Estimation method based on neighbor vertex: number of common neighbors, Jaccard coefficient, Adamic-Adar, path, ...
 - Methods based on all paths: PageRank, SimRank
 - From another method: bigram, clustering

General pattern

- Step 1: calculate the vertex distance based on some measurement methods such as Jaccard, shortest path, ...
- Step 2: choose a number of pairs of vertices with the closest distance
- Step 3: predict new edge from selected pairs
- Step 4: evaluate the predicted graph with the original graph

General pattern

9/

Link prediction

graph distance	(negated) length of shortest path between x and y
common neighbors	$ \Gamma(x) \cap \Gamma(y) $
Jaccard's coefficient	$\Gamma(x)\cap\Gamma(y)$ $\Gamma(x)\cup\Gamma(y)$
Adamic/Adar	$\sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log \Gamma(z) }$
preferential attachment	$ \Gamma(x) \cdot \Gamma(y) $
Katz_{eta}	$\sum_{\ell=1}^{\infty} eta^{\ell} \cdot paths_{x,y}^{\langle\ell angle} $
	where $paths_{x,y}^{\langle\ell\rangle} := \{ paths \text{ of length exactly } \ell \text{ from } x \text{ to } y \}$ weighted: $paths_{x,y}^{\langle1\rangle} := number of collaborations between x, y.$ unweighted: $paths_{x,y}^{\langle1\rangle} := 1 \text{ iff } x \text{ and } y \text{ collaborate.}$
hitting time stationary-normed commute time stationary-normed	$-H_{x,y}$ $-H_{x,y} \cdot \pi_y$ $-(H_{x,y} + H_{y,x})$ $-(H_{x,y} \cdot \pi_y + H_{y,x} \cdot \pi_x)$
	where $H_{x,y}$:= expected time for random walk from x to reach y π_y := stationary distribution weight of y (proportion of time the random walk is at node y)
rooted PageRank $_{\alpha}$	stationary distribution weight of y under the following random walk: with probability α , jump to x . with probability $1 - \alpha$, go to random neighbor of current node.
$\operatorname{SimRank}_{\gamma}$	$\begin{cases} 1 & \text{if } x = y \\ \gamma \cdot \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} score(a, b)}{ \Gamma(x) \cdot \Gamma(y) } & \text{otherwise} \end{cases}$

Comparison of methods

Content

- Link prediction
- Learn in link prediction
 - Unsupervised learning
 - Supervised learning

Learn in link prediction

- Learning in link prediction is divided into two types:
 - Unsupervised: No train test
 - Similarity-based: similar vertices are connected
 - Cluster-based: vertices from the same group demonstrate similar connectivity patterns.
 - Supervised: provide a set of associated vertices to train the model

Link prediction based on similarity

- Similarity (unsupervised learning) measures the distance between vertices in a graph.
- Classify:
 - 1-step: neighboring vertices are connected
 - Laplacian: dissimilar vertices are connected (L = D-A)
 - Degree: vertices of similar degree
 - A²: vertices shared with neighbors(2-hop)
 - Closeness: vertices have nearly the same center
 - Betweeness: vertices have the same intermediate center,

Based on neighboring vertices

- Common neighbors proposed by Ahmad Sadrei as the simplest measure.
 - Considered the effect of triangular closure (closing a triangle)
- The first is to find the intersection between two neighbors of two vertices, the measure of similarity between the two vertices is the number of elements in this set.
- $score(u, v) = |N(u) \cap N(v)|$
- If this measurement is greater than the given threshold, a link is created

Based on neighboring vertices

Jaccard coefficient

 The Jaccard coefficient normalizes the number of common neighbors by the total number of neighbors.

•
$$score(u, v) = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

$$\text{jacc_coeff}(A, C) = \frac{|\{B, D\}|}{|\{B, D, E, F\}|} = \frac{2}{4} = \frac{1}{2}$$

Adamic Adar measure

- Measure proposed by Lada Adamic and Eytan Adar (2003)
- In addition to counting the number of common neighbors, the Adamic Adar measure also sums the log inverses of the neighbors' degrees.
 - Counts common neighbors but lowers vertices that have too many neighbors
 - The triangle closure effect is heavily influenced by low-order vertices.

$$score(u, v) = \sum_{z \in N(u) \cap N(v)} \frac{1}{\log(N(z))}$$

Triangle closing effect

 92% of new Facebook friend connections are in friend-of-a-friend

Adamic Adar measure

Adamic Adar measure

adamic_adar(A, C) =
$$\frac{1}{\log(3)} + \frac{1}{\log(3)} = 1.82$$

Preferential attachement

- Preferential attachement proposed by Albert-László Barabási and Réka Albert to describe the phenomenon of vertices with many relationships tending to be interconnected.
- "Rich-get-Richer"

$$score(u, v) = degree(u) \times degree(v)$$

Shortest path

- The pair of vertices with the shortest path will tend to connect
- score(u, v) = -shortestPath(u, v)

Katz measure

- The Katz measure considers not only the shortest path between vertices, but also all paths between them.
- The shorter the path, the more weighted

$$score(u, v) = \sum_{l=1}^{\infty} \beta^l |paths_{u,v}^{\langle l \rangle}|$$

with $paths_{u,v}^{< l>}$ is the set of length paths I between you and v, β is a very small constant to make the path as long as possible with little contribution to the sum.

Katz measure

SimRank

 SimRank Calculated based on the measure of neighbors, meaning that the more similar the neighbors, the more connected those two vertices tend to be.

•
$$score(u, v) = \frac{c}{|N(u)| \cdot |N(v)|} \sum_{z \in N(u)} \sum_{z' \in N(v)} score(z, z')$$

with C is the constant in paragraph [0,1]

SimRank

Hitting Time

- The hitting time from vertex u to v is the random number of steps expected to meet vertex v when starting from u.
- Similar measurement based on hitting time:

$$score(u, v) = -H_{u,v}$$

• However, some vertices with large connections will easily lead to an immediate random walk to it no matter where it comes from. To avoid this phenomenon, we standardize it: $score(u, v) = -H_{u,v}\pi_v$

Commute time

Because the hitting time is asymmetrical, we can

calculate:
$$score(u, v) = -(H_{u,v}\pi_v + H_{v,u}\pi_u)$$

Closeness centrality

- Closeness centrality: An agent I is close center if it can interact easily with all other agents.
- Or, the distance of i to all other agents is short

Closeness centrality (tt)

- The shortest distance from agent i to agent j (symbol d(i,j)) is measured by the number of links on the shortest path.
- The closeness centre of agent i is denoted Cc(i) and is normalized with n-1 as the sum of the shortest distances from i to all other agents.

Closeness centrality (tt)

 For a scalar graph: the center near Cc(i) of agent i is defined as:

$$C_{\mathcal{C}}(i) = \frac{n-1}{\sum_{j=1}^{n} d(i,j)}$$

Note: this expression is only possible in the case of a connected graph

Betweenness centrality

- Betweenness centrality: If two nonadjacent agents j
 and k want to interact and agent i is between j and k,
 then i may have some control over their interactions.
- If i is in the path of many of these kinds of interactions, then i is an important agent.

Betweenness centrality (tt)

For a scalar graph, the intermediate properties of an agent i are defined by the number of shortest paths through i (symbols pjk(i), j ≠ i and k ≠ i) and normalized by the total number of shortest paths of all agent pairs except i:

$$C_B(i) = \sum_{j < k} \frac{p_{jk}(i)}{p_{jk}}$$

Betweenness centrality (tt)

• To ensure that the value is between 0 and 1, CB(i) is normalized with (n-1)(n-2)/2, which is the maximum value of CB(i):

$$C_B(i) = \frac{2\sum_{j < k} \frac{p_{jk}(i)}{p_{jk}}}{(n-1)(n-2)}$$

• Unlike proximity, intermediate can be calculated even if the graph is not connected.

Unseen Bigram

- Bigram (N-gram) Expresses two characters/words standing next to each other in a natural language sentence.
- If the bigram does not appear in the training set but appears in the test set, it is called unseen bigram.
- Use a method in the language model to calculate.

Unseen Bigram

• Put $S_u^{<\delta>}$ is a vertex δ set that is highly similar to you through some measure:

•
$$score_{unweighted}(u, v) = |\{z: z \in N(v) \cap S_u^{<\delta>}\}|$$

$$score_{weighted}(u, v) = \sum_{z \in N(v) \cap S_u^{<\delta>}} score(u, z)$$

Based on grouping

- Apply several grouping methods (e.g. DB-Scan) to perform graph grouping (community detection).
- Connect vertices in a group based on defined criteria.

Unsupervised Method Review

- After an analogue measure is selected, the result is a list of the most similar pairs filtered out.
- Precision, recall, or accuracy can be evaluated using a test graph.
- However, the quality is often very low when used in a realworld network due to multiple edges being created for no logical reason.

Content

- Link prediction
- Learn in link prediction
 - Unsupervised learning
 - Supervised learning

Learn to predict

Learning features

Local cartouche-based learning

Learning on global characteristics

- Learning on global characteristics
 - Use a known subnet to readjust the distance before applying similarity

Embedded-based learning

 It is possible to learn based on conversions to other dimensions to determine similarity (vertex embedding).

original network

embedding space

G -> embedded in vector space -> calculate distance

44

Target function

$$F(\mathbf{A}_{source}) \subseteq \mathbf{A}_{target}$$

$$\min ||F(\mathbf{A}_{source}) - \mathbf{A}_{target}||_{\mathrm{F}}$$

Which is best?

550 structurally diverse networks from six scientific domains

no one predictor or family is best, or worst, across all realistic inputs

References

 http://redalertproject.eu/wpcontent/uploads/2019/05/D3-2-Link-predictionmodels-FINAL.pdf

