КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Факультет комп'ютерних наук та кібернетики Кафедра інтелектуальних програмних систем

Екзамен

з предмету «Математичні основи захисту інформації» $Bapiahm\ N\!\!\!_{\,}{}^{\,}\!\!\!_{\,}{}^{\,}\!\!\!_{\,}$

Підготував:

Грищенко Юрій, ІПС-42

1. Довести, що повноциклічна група є циклічною групою. Навести приклади таких груп.

Нехай задана деяка скінченна множина цілих чисел, наприклад, $N_5 = \{0, 1, 2, 3, 4\}$. Оскільки ми хочемо побудувати адитивну абелеву групу, то ця множина обов'язково повинна включати 0. Для того, щоб N_5 перетворити в групу GN_5 , необхідно коректно задати значення для операції додавання з одним із елементів групи, скажімо з 1. Дійсно, оскільки а +0= а для довільного а $\in GN_5$, то перший рядок таблиці додавання елементів групи визначений (таблиця 1), а на підставі комутативності (оскільки GN_5 абелева) і перший стовпчик цієї таблиці. Нехай, наприклад, задано 0+1=1, 1+1=4, 1+4=2, 1+2=3, 1+3=0. Таке задання коректне, оскільки має місце єдиність результату (але єдиність результату, як буде показано нижче, не достатня умова гарантії коректності). Тепер послідовно знаходимо результати додавання з елементом 4, оскільки 4=1+1:

$$4 + 2 = (1+1)+2=1+(1+2)=1+3=0, 4+3=(1+1)+3=1+(1+3)=1,$$

 $4+4=(1+1)+4=1+(1+4)=1+2=3,$

Далі знаходимо значення 4+1=2 і обчислюємо операцію додавання з елементом 2:

$$2+2=(1+4)+2=1+(4+2)=1+0=1$$
, $2+3=(1+4)+3=1+(4+3)=1+1=4$, $2+4=(1+4)+4=1+(4+4)=1+3=0$.

Далі знаходимо значення 2+1=3 і обчислюємо операцію додавання з елементом 3:

$$3+2=(1+2)+2=1+(2+2)=1+1=4$$
, $3+3=(1+2)+3=1+(2+3)=1+4=2$, $3+4=(1+2)+4=1+(2+4)=1+0=1$.

Заносимо ці значення в таблицю і на цьому закінчуємо побудову групи GN_5 .

+	0	1	2	3	4
0	0	1	2	3	4
1	1	4	3	0	2
2	2	3	1	4	0
3	3	0	4	2	1
4	4	2	0	1	3

Аналогічно можна задати і довільну іншу групу GN₅. Дійсно, для цього задамо рядок таблиці додавання таким:

$$1+0=1$$
, $1+1=3$, $1+2=0$, $1+3=4$, $1+4=2$

Таблиця будується аналогічно.

Зауважимо, що для побудови групи GN_k , мало вимагати тільки однозначності операції додавання. Якщо визначити додавання в групі так:

$$0 + 1 = 1$$
, $1 + 1 = 0$, $1 + 2 = 3$, $1 + 3 = 4$, $1 + 4 = 2$,

то,обчислюючи 1+3, отримаємо

$$1 + 3 = 1 + (1 + 2) = (1 + 1) + 2 = 0 + 2 = 2$$
,

що не збігається з визначеним вище. Справа в тім, що так визначена операція додавання не охоплює весь цикл елементів групи, тому що має елемент скінченного порядку 2 < 5 (1+1=0).

Всі три групи, побудовані вище, циклічні на підставі теореми Лагранжа (вони мають порядок 5). В перших двох групах твірним був елемент 1, а в третій групі – елемент 3. Неважко переконатися, що всі три групи ізоморфні.

Поставимо у відповідність операції додавання з елементом групи а1, за допомогою якого визначається група, підстановку

$$fa_1 = \begin{pmatrix} 0 & a_1 & a_2 & \dots & a_{k-1} \\ a_1 & a_{i_1} & a_{i_2} & \dots & a_{i_k} \end{pmatrix}.$$

Ця підстановка означає, що $f_{a1}(0)=0+a_1=a_1$, $f_{a1}(a_1)=a_1+a_1=a_{i1}$, $f_{a1}(a_{i1})=a_{i1}+a_1=a_{i1}$, $f_{a1}(a_{i2})=a_{i1}+a_1=a_{i1}$ т. д

Назвемо групу GN_k **повноциклічною**, якщо підстановка f_{a1} є повним циклом довжини k. Справедлива

Теорема. Всі скінченні повноциклічні абелеві групи одного і того порядку ізоморфні між собою.

Неважко довести, що повноциклічна група ϵ окремим випадком циклічної групи, оскільки якщо існу ϵ підстановка f_{a1} , що ϵ повним циклом довжини k, то:

- Підставляючи a_1 в f_{a1} отримаємо k елементів 0, $f_{a1}(0)=a_1$, $f_{a1}(a_1)=a_{i1}$, $f_{ai}(a_{i1})=a_{ij},...,f_{a1}(a_{...})=0$
- За визначенням циклу всі k елементів будуть різними, отже це всі елементи повноциклічної групи GN_k .
- $f_{a1}(0) = a_1$, $f_{a1}(a_1) = a_1 + a_1$, $f_{a1}(a_1 + a_1) = a_1 + a_1 + a_1$, бачимо, що всі породжені елементи мають вигляд па₁, де п— натуральне число.
- Таким чином, всі елементи даної повноциклічної групи можна записати у вигляді па₁, отже **група GN**_k **є циклічною** групою з породжуючою множиною {a₁}.

2. За яких умов порівняння $x^2 \equiv a \pmod{p}$ матиме розв'язок?

Розглянемо конгруенцію:

$$x^2 \equiv a \pmod{p}$$

де p — непарне просте число і HCД(a,p)=1. Випадок p=2 тривіальний і тому його не розглядаємо. Якщо $a\equiv 0\ (mod\ p)$, то очевидно єдиним її розв'язком буде $x\equiv 0\ (mod\ p)$. Тому далі p буде непарним простим числом і a — цілим числом, взаємно простим з p.

Якщо конгруенція $x^2 \equiv a \pmod{p}$ має хоча б один розв'язок, то число а називається *квадратичним лишком*, інакше а називається *квадратичним нелишком*.

Критерій Ойлера: При простому p і a, не кратному p, a є квадратичним лишком тоді і тільки тоді, коли має місце конгруенція:

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

I буде квадратичним нелишком тоді і тільки тоді, коли:

$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$$

Приклад: Чи має розв'язки конгруентність $x^2 \equiv 12 \ (mod \ 13)$?

$$12^{\frac{13-1}{2}} = 12^6 = (-1)^6 = 1 \pmod{13}$$

Отже, 12 – квадратичний лишок і тому дана конгруенція має розв'язок.

3. Зашифрувати шифром Шаміра повідомлення ATTAK IN TEN за допомогою ключа такої самої довжини, що і повідомлення.

Маємо повідомлення ATTAK IN TEN = $\{1,20,20,1,11,0,9,14,0,20,5,14\}$

А вибирає випадково велике просте число p і відкрито передає його B: Нехай p = 29

А вибирає два числа:

 $c_A d_A = 1 \pmod{p-1}$

Ці числа A тримає в секреті і нікому їх не передає. B теж вибирає два числа c_B і d_B такі, що

 $c_Bd_B = 1 \pmod{p-1}$

і теж тримає їх в секреті.

Оскільки в англійському алфавіті 26 літер + 1 пробіл, повідомлення, що складається з 12 символів, не вдасться передати одразу, тому для кожної літери доведеться підбирати випадково нові пари (c_A, d_A) , (c_B, d_B) . Фактично таким чином отримаємо ключ тієї ж довжини, що й повідомлення.

р-1=28, отже підбираємо с, д взаємно прості з 28

Передамо першу літеру ('A' = 1):

$$c_A d_A = 1 \pmod{28} = 3 * 19$$

 $c_B d_B = 1 \pmod{28} = 5 * 17$

Крок 1. А обчислює

 $x_1 = m^{cA} \pmod{p} = 1^3 \pmod{29} = 1$ і передає його В

Крок 2. В обчислює

 $x_2 = x_1^{cB} \pmod{p} = 1^5 \pmod{29} = 1$ і передає його A

Крок 3. А обчислює

 $x_3 \equiv x_2^{dA} \pmod{p} = 1^{19} \pmod{29} = 1$ і передає його В.

Крок 4. В, отримавши х3, обчислює число

 $x_4 \equiv x_3^{dB} \pmod{p} = 1^{17} \pmod{29} = 1 = A'$

Наступна л**ітера** ('T' = 20):

$$c_A d_A = 1 \pmod{28} = 11 * 23$$

 $c_B d_B = 1 \pmod{28} = 13 * 13$

$$20^{11} \mod 29 = 7$$

$$7^{13} \mod 29 = 25$$

$$25^{23} \mod 29 = 16$$

$$16^{13} \mod 29 = 20 = \text{`T'}$$

Наступна л**ітера** ('T' = 20):

$$c_A d_A = 1 \pmod{28} = 15 * 15$$

$$c_B d_B = 1 \pmod{28} = 9 * 25$$

$$20^{15} \mod 29 = 20$$

```
20^9 \mod 29 = 23

23^{15} \mod 29 = 23

23^{25} \mod 29 = 20 = 'T'
```

Наступна л**ітера** ('A' = 1):

$$c_A d_A = 1 \pmod{28} = 11 * 23$$

 $c_B d_B = 1 \pmod{28} = 9 * 25$

1¹¹ mod 29 = 1 1⁹ mod 29 = 1 1¹⁵ mod 29 = 1 1²⁵ mod 29 = 1 = 'A'

Наступна л**ітера** (**'K**' = 11):

$$c_A d_A = 1 \pmod{28} = 13 * 13$$

 $c_B d_B = 1 \pmod{28} = 3 * 19$

3¹³ mod 29 = 21 21³ mod 29 = 10 10¹³ mod 29 = 26 26¹⁹ mod 29 = 11 = 'K'

І так далі

Бачимо, що

А має приватний ключ c_A = {3, 11, 15, 11, 13, ...}

В має приватний ключ $c_B = \{5, 13, 9, 9, 3, ...\}$

В успішно отримує та розшифровує повідомлення {'A', 'T', 'A', 'K', ... }