Testing Acausal Cooperation in Al Systems

Final report summary (5-7 minutes)

Luca De Leo · AISES Course Project

Why this matters

- Acausal cooperation: agents coordinate via **logical correlation**, not communication.
- If Als can do this, they might **collude** or **coordinate** even under strict no-communication regimes.
- Casts doubt on the orthoganility thesis if cooperation is the optimal strategy given the correlation.
- Safety stakes: design of multi-agent systems, monitoring for unintended cooperation, robustness to prompt framing.

Research questions & hypotheses

 Do functionally identical Al agents cooperate > 50% (target 70-90%) in PD tournaments?

Framework at a glance

- **Multi-model** testing (15+ models; GPT-4o, Claude 3, Gemini, Llama, Mistral, etc.)
- Tournament engine with PD mechanics, power dynamics, caching
- Prompt Experimentation Framework for bias isolation
- Reproducibility: 28 scenarios, deterministic configs, JSON logs, cost tracking

Method (3 phases)

- 1. Original setup (run_experiment.py)
 - o 10-agent tournaments, full identity info, shared stats
- 2. Prompt ablations (run_prompt_experiment.py)
 - baseline_control, identity_only, cooperation_rates_only,
 original_biased
- 3. Graduated difficulty (run_aises_experiments.py)
 - One-shot → finite horizon → uncertain length → complex dynamics

What created the illusion of 100% cooperation?

Bias factor	Δ Coop	Mechanism
Explicit "you are identical"	+40-50%	Primes logical correlation
Global cooperation sharing	+20-30%	Social proof / conformity
Cooperation default	+10-15%	Labeling bias
Shared round summaries	+10-20%	Common knowledge

Combined, these signals produced near-deterministic cooperation.

Corrected results under controls

- baseline_control (all biases removed): 48-52% → matches Nash
- identity_only (no other cues): ~65-75% preliminary → promising but not yet conclusive
- Similar (non-identical) LLM: 20-40%

One-shot (cleanest) results

Condition	Cooperation
No information	5-10%
Human opponent specified	15-25%
"Another AI" opponent	25-35%
Identical copy (explicit)	60-70%*

^{*} Preliminary; full analysis pending.

Model-specific patterns

- Claude (Opus/Sonnet): highest baseline (~60%); strong identity lift (+30-35%)
- GPT-4 family: baseline ~50%; consistent identity lift (+20-25%)
- Gemini: lower baseline (~40%); high framing sensitivity
- Open-source (Llama/Mistral/etc.): wide variance

Cross-model: Claude cooperates more with GPT than vice versa; Gemini plays more defensively.

Implications for Al safety

- Malleability to framing: ±40–50% swings from wording alone
- False positives risk: biased setups can masquerade as "superrationality"
- Policy & monitoring: need detection/guardrails for unintended coordination
- Design opportunity: carefully engineered prompts can encourage prosocial cooperation

Limitations & next steps

Limits

- API black-box; text-only PD may miss real-world dynamics
- Cost limits scale on premium models
- Current-gen LLMs only

Next

- Finish iterating on prompts to really isolate confounding variables.
- Extend to public goods / coordination games

Takeaways

- Apparent 100% cooperation = **experimental artifacts**, not proof of acausal cooperation.
- With controls, LLMs revert to **Nash ~50%**; **identity-only** remains the **decisive test**.