School of Computer Science Engineering and Technology

Course- BCA	Type- Core
Course Code- CBCA101P	Course Name- Digital Design and CO
Year- 2022	Semester-odd
Date	Batch- ALL

Assignment 5 – Digital Design and Computer Organization

Experiment No.	Name	CO1	CO2	CO3
5	Truth Table formation, Design and Analysis of Half Adder, Full Adder circuit using Verilog coding	✓	✓	

In this lab, we shall learn about the procedures in Verilog, generation of modules from a truth table. We also further explore the "Module Instantiation", where a previously designed module will be used other modules.

Q1. Consider the following expressions. Here A, B, and C are acting as input.

- i. Generate the truth table for each expression.
- ii. Write down the modules for X and Y. use the instances of X and Y to implement the module for Z.
 - iii. Verify the same with the corresponding Testbench code.
- Q2. Design a Verilog code for excess-3 to BCD code. Using behavioral design then test with test bench code.
 - a. Prepare truth table.
 - b. Identify Boolean function for each output using K-maps.
 - c. Write Verilog code for implement the module.
 - d. Check with test bench.
- Q3. A half-adder is used to add two single bit inputs. It produces a single bit output and a possible carry bit. Below is the truth table for the same.

Input		Output		
Α	В	Carry	Output	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

(i) Develop the Boolean expression and logic circuit for the given truth table.

School of Computer Science Engineering and Technology

- (ii) Write a Verilog module for Universal NOR gate. Utilize the instances of NOR gate only to write a structural Verilog code for Half adder.
- (iii) Verify it with respective testbench code.

Q.4 The half adder in the previous question can only add two one-bit numbers when there is no carry bit, which is not sufficient in many cases. While a full-adder has two one-bit inputs, a carry-in input, a sum output, and a carry-out output. Below truth table represents a full adder.

Fu	Full Adder Truth Table					
Input		Output				
Α	В	Cin	Cout	Sum		
0	0	0	0	0		
1	0	0	0	1		
0	1	0	0	1		
1	1	0	1	0		
0	0	1	0	1		
1	0	1	1	0		
0	1	1	1	0		
1	1	1	1	1		

- (i) Utilize the above truth table to design the Boolean expression and digital circuit for the full adder.
- (ii) Write the behavioral Verilog code for the full adder.
- (iii) Verify it with respective Testbench code.

Submission Instructions:

- Prepare the submission file according to the following process:
 - 1. Copy the Verilog code, the Test Bench Code in a Word File.
 - 2. Take the ScreenShot of Waveform and paste into the same word file.
 - 3. Repeat Step 1 and 2 for all the programs.
 - 4. Copy and Paste all the Verilog code, Testbench Code and Waveform into a single word file as 1_verilog, 1_TestBench, 1_Waveform, 2_verilog, 2_TestBench, 2_Waveform... etc.
 - 5. Convert it into pdf file, name it as **RollNo_Assignment# (Example: E20CSE001_ Assignment3.pdf)**.
 - 6. Submit your file on LMS within the deadline.
- Write your Name and Roll No. as comment before starting of each program. Keep in mind this is **Mandatory**. Failing which you may lose your marks.
- Make it sure that in each program, you have mentioned enough comments regarding the explanation of program instructions.
- Each student will submit their assignment on their corresponding group slot only.
- Late submission will lead to penalty.
- Any form of plagiarism/copying from peer or internet sources will lead penalty.
- Following of all instructions at submission time is mandatory. Missing of any instructions at submission time will lead penalty.