

NPTEL ONLINE CERTIFICATION COURSES

Blockchain and its applications

Prof. Shamik Sural
Department of Computer Science &
Engineering
Indian Institute of Technology Kharagpur
Lecture 06: Basic Cryptographic Primitives - IV

CONCEPTS COVERED

- Basic Concepts of Cryptography
- Public Key Cryptography
- Encryption and Decryption using Public Key Cryptography
- Digital Signature

KEYWORDS

- Public Key Cryptography
- RSA

What we have learnt so far

- Cryptographically Secure Hash Function
 - Collision Free
 - Information Hiding
 - Puzzle Friendly
- Hash Pointers and Data Structures
 - Hashchain
 - Hash Tree Merkle Tree

Basic Concepts of Cryptography

- Symmetric Key Cryptography
 - Same key used for encryption and decryption
 - How to share the key securely
 - Cannot address certain requirements
- Public Key Cryptography
 - One key for encryption, one for decryption
 - Handles several requirements like those in blockchain

Digital Signature

- A digital code, which can be included with an electronically transmitted document to verify
 - The content of the document is authenticated
 - The identity of the sender
 - Prevent non-repudiation sender will not be able to deny about the origin of the document

Purpose of Digital Signature

- Only the signing authority can sign a document, but everyone can verify the signature
- Signature is associated with the particular document
 - Signature of one document cannot be transferred to another document

Public Key Cryptography

- Also known as asymmetrical cryptography or asymmetric key cryptography
- Key: A parameter that determines the functional output of a cryptography algorithm
 - Encryption: The key is used to convert a plain-text to a cypher-text;
 - **Decryption:** The key is used to convert the cypher-text to the original plain text;

Public Key Cryptography

- Properties of a cryptographic key (you need to prevent it from being guessed)
 - Generate the key truly randomly so that the attacker cannot guess it
 - The key should be of sufficient length increasing the length makes the key difficult to guess
 - The key should contain sufficient entropy, all the bits in the key should be equally random

Public Key Cryptography

- Two keys are used
 - Private key: Only Alice has her private key
 - Public key: "Public" to everyone everyone knows Alice's public key

Public Key Encryption - RSA

- Named over (Ron) Rivest (Adi) Shamir (Leonard) Adleman
 inventors of the public key cryptosystem
- The encryption key is public and decryption key is kept secret (private key)
 - Anyone can encrypt the data
 - Only the intended receiver can decrypt the data

RSA Algorithm

- Four phases
 - Key generation
 - Key distribution
 - Encryption
 - Decryption

Image source: https://commons.wikimedia.org/

Public and Private Keys in RSA

- It is feasible to find **three very large positive integers**, and; such that *modular exponentiation* for integers:
- Even if you know, and; it is extremely difficult to find
- Note that
- is used as the public key and is used as the private key. is the message that needs to be encrypted.

RSA Key Generation and Distribution

- Chose two distinct prime integers and
 - and should be chosen at random to ensure tight security
- Compute; is used as the modulus, the length of is called the key length
- Compute (Euler totient function)
- Choose an integer such that and; and are co-prime
- Determine: is the modular multiplicative inverse of [Note]

CONCLUSIONS

- We have discussed the basic concepts of public key cryptography
- How to generate keys in RSA

REFERENCES

 Cryptography and Network Security - Principles and Practice by William Stallings, Pearson (2017)

