Modeling Soccer Dynamics and Predicting Scores with Potential Functions

Adhvaith, Sifan, Nick

Advisor: Kostas Pelechrinis

2021/07/30

Introduction / Motivation

- To encapsulate the complex movement and forces acting on the ball into a much simpler, useful object
- Use this to approximate final game outcomes
- \$\$\$

StasbombR Data

team	time	type	location.x	location.y
Barcelona	00:02:40.501	Dribble	66.2	11.1
Barcelona	00:00:37.890	Foul Committed	57.2	66.3
Getafe	00:01:39.139	Interception	27.7	41.8
Valencia	00:48:06.967	Offside	86.3	23.9
Barcelona	00:00:00.229	Pass	61.0	40.1
Barcelona	00:11:44.435	Shot	93.2	44.4

Data provided by Statsbomb

Random Walk

A sequence of some steps in random directions on some mathematical space.

- A point randomly moves along the integer line
- A point randomly moves on x-y plane

Potential Function

• Idea: The ball is a randomly drifting ball that is attracted to the goal by some "force".

Potential Function

- We can try to model this underlying force based on the movements of the ball
- Our Potential Functions
 - Gravity

$$V(x,y) = -rac{G}{\sqrt{x^2+y^2}}$$

Random Walk under Harmonic Potential Function

Using potential function as a guidance for random walk

• A step by the random particle under a force.

$$r(t_{i+1}) - r(t_i) = -
abla V(r(t_i))(t_{t+1} - t_i) + \sigma \sqrt{(t_{i+1} - t_i)} Z_{i+1}$$

• Small_Change = Estimated_Velocity x TimeStep + Noise

Learning Potential Functions from Trajectories

- Learning a Potential Function from a Trajectory Brillinger
- Assumptions
 - Overdamped system, so force affects the velocity, not acceleration.
 - $\circ V(x,y)$ can be approximated as a linear combination of basis functions

The Basis Functions

- Our basis functions are a set of gravitational points on the field
- The Coefficients Scale the strength of the hole (Attractive or Repulsive)

$$V(x_i,y_i) = \sum -rac{eta_i}{\sqrt{(x-x_i)^2+(y-y_i)^2}}$$

Overview of the Potential Fitting Model

$$V(x,y) = \phi(x,y)^Teta$$
 $Force = -
abla V(x,y) = -
abla \phi(x,y)^Teta$

$$\phi(x,y) = [a(x,y),b(x,y),c(x,y)]^T$$

 $Velocity \sim Force$

$$rac{dx}{dt}=eta_1 a_x + eta_2 b_x + eta_3 c_x$$

$$rac{dy}{dt}=eta_1 a_y + eta_2 b_y + eta_3 c_y$$

In essence, the fitting the potential is just two simple linear regression models.

Learning Potential Functions from Trajectories

Simulating Games using the learned Potential Functions

• Overlay the potential coefficients (additive) and simulating

Potential Surface Contour

- Contour Map of Arsenal's Defensive and Manchester's Offensive
- Showing the maps change over time

2D Contour of Manchester_City WFC and Arsenal WFC

3D Potential Function

- Contour Map of Arsenal's Defensive and Manchester's Offensive
- Showing the maps change over time

Simulating the Game with the changing

• Heatmap of the simulated Game Trajectory

2D Contour of Manchester_City WFC and Arsenal WFC

Simulated Game Gif

- Manchester City WFC (Home) vs Arsenal WFC (Away)
- Score at Minute 17

Web App to Generate Simulations

• :)

Other Baseline Comparisons

- Average has an MSE of 3.597692
- Fails to capture higher score differentials

Other Baselines and Our Results

- Poisson has an MSE of 3.607477
- Categorical GLM fit with Poisson Family, covariates are home, team and opponent.

Other Baselines and Our Results

- Our model MSE = 3.379572 after 200 sims per game
- Arrives at the same conclusions as models trained exclusively on the data.

Potential Model Captures higher score differentials well and has slightly lower error than poisson

Discussion and Future Work

- A proof of concept that potential functions can capture team dynamics, as can be seen by the score predictions.
- Lots of potential to improve the framework with more accurate submodels
 - Shot Decision model and Goal Decision model
 - Incorporate team formation and score differential into the potential function
- This framework can be used to determine other things such as:
 - Player-based potential functions to determine player impacts
 - Real-Time Game Evaluation

Appendix: Game Simulation

