La excursión más larga

¡Los organizadores de la IOI 2023 están en un gran aprieto! Se han olvidado de preparar la excursión a Ópusztaszer del próximo día. Pero quizás no es demasiado tarde ...

Hay N puntos de interés en Ópusztaszer indexados desde 0 hasta N-1. Algunos pares de estos puntos de interés están conectados por **carreteras** *bidireccionales*. Cada par de puntos de interés estan conectados como mucho por una carretera. Los organizadores *no saben* qué pares de puntos de interés están conectados por carreteras.

Decimos que la **densidad** de una red de carreteras en Ópusztaszer es **como mínimo** δ si para cada 3 puntos de interés distintos tenemos como mínimo δ carreteras entre ellos. En otras palabras, para cada triplete de puntos de interés (u,v,w) tales que $0 \le u < v < w < N$, entre las parejas de puntos de interés (u,v),(v,w) y (u,w) como mínimo δ parejas están conectados por una carretera.

Los organizadores conocen un entero positivo D tal que la densidad de la red de carreteras es como mínimo D. Fíjate que el valor de D no puede ser mayor que 3.

Los organizadores pueden hacer **llamadas** a la centralita de Ópusztaszer para obtener información de las conexiones entre ciertos puntos de interés. En cada llamada, se tienen que especificar dos vectores, no vacíos, de puntos de interes $[A[0],\ldots,A[P-1]]$ y $[B[0],\ldots,B[R-1]]$. Los puntos de interés tienen que ser distintos entre ellos, eso es

- $A[i] \neq A[j]$ para cada i y j tal que $0 \leq i < j < P$;
- $B[i] \neq B[j]$ para cadai y j tal que $0 \leq i < j < R$;
- $\bullet \ \ A[i] \neq B[j] \ \mathsf{para} \ \mathsf{cada} \ i \ \mathsf{y} \ j \ \mathsf{tal} \ \mathsf{que} \ 0 \leq i < P \ \mathsf{y} \ 0 \leq j < R.$

Para cada llamada, la centralita responde si hay alguna carretera entre los puntos de interés de A y los puntos de interés de B. Más precisamente, la centralita itera por todos los pares i y j tal que $0 \le i < P$ y $0 \le j < R$. Si, en alguno de ellos, los puntos de interés A[i] y B[j] están conectados por una carretera, la centralita devuelve true. Alternativamente, la centralita devuelve false.

Una **excursión** de longitud l es una secuencia de *diferentes* puntos de interés $t[0], t[1], \ldots, t[l-1]$, donde para cada i entre 0 y l-2, inclusives, los puntos de interés t[i] y t[i+1] están conectados por una carretera. Una excursión de longitud l se llama **excursión de longitud máxima** si no existe ninguna excursión de longitud como mínimo l+1.

Tu tarea es ayudar a los organizadores a encontrar una excursión de longitud máxima en Ópusztaszer haciendo las llamadas a la centralita.

Detalles de implementación

Tienes que implementar la siguiente función:

```
int[] longest_trip(int N, int D)
```

- N: el número de puntos de interés en Ópusztaszer.
- *D*: la densidad mínima garentida de la red de carreteras.
- La función debe devolver un vector $t=[t[0],t[1],\ldots,t[l-1]]$, representando una excursión de longitud máxima.
- Esta función se puede llamar varias veces en cada caso de prueba.

La función anterior puede hacer llamadas a la siguiente función:

```
bool are_connected(int[] A, int[] B)
```

- *A*: un vector no vacío de puntos de interés distintos.
- *B*: un vector no vacío de puntos de interés distintos.
- *A* y *B* tienen que ser disjuntos.
- ullet La función devuelve true si hay un punto de interés de A y un punto de interés de B conectados por una carretera. Si no, devuelve false.
- Esta función puede ser llamada como mucho $32\,640$ veces en cada llamada de longest_trip, y como mucho $150\,000$ veces en total.
- La suma de las longitudes de los vectores de A y B pasados a esta función sobre todas las llamadas realizadas no puede exceder $1\,500\,000$.

El grader **no es adaptativo**. Cada envío es evaluado en el mismo conjunto de juegos de prueba. Esto es, los valores de N y D, así como los pares de puntos de interés conectados por carreteras, están fijados para cada llamada a longest_trip dentro de cada juego de prueba.

Ejemplos

Ejemplo 1

Considera el escenario en el que N=5, D=1, y las conexiones por carretera se pueden ver en la siguiente figura:

La función longest_trip se llama de la siguiente manera:

La función puede hacer llamadas a are_connected como sigue.

Llamada	Pares conectados por carreteras	Valor devuelto
are_connected([0], [1, 2, 4, 3])	(0,1) y $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	ninguno	false

Después de la cuarta llamada, resulta que *ninguno* de los pares (1,4), (0,4), (1,3) y (0,3) están conectados por una carretera. La densidad de la red es como mínimo D=1, y podemos ver que del triplete (0,3,4), el par (3,4) tienen que estar conectados por una carretera. De manera similar, los puntos de interés de 0 y 1 tienen que estar conectados.

En este momento, podemos concluir que t=[1,0,2,3,4] es una excursión de longitud 5, y que no existe ninguna excursión de longitud superior a 5.

Así pués, la función longest_trip puede devolver [1,0,2,3,4].

Considera otro escenario en el que N=4, D=1, y que las carreteras entre puntos de interés son como las que se muestran en la siguiente figura:

La función longest_trip se llama de la siguiente manera:

En este escenario, la longitud de las excursiones más largas es 2. Así, después de varias llamadas a la función are_connected, la función longest_trip puede devolver cualquiera de [0,1], [1,0], [2,3] o [3,2].

Ejemplo 2

La subtarea 0 contiene un ejemplo adicional con un juego de prueba con N=256 puntos de interés. Este caso de prueba está incluido en el paquete adjunto que puedes bajar del CMS.

Restricciones

- 3 < N < 256
- ullet La suma de N de todas las llamadas a longest_trip no exceden $1\,024$ en cada juego de prueba.
- $1 \le D \le 3$

Subtareas

- 1. (5 puntos) D = 3
- 2. (10 puntos) D=2
- 3. (25 puntos) D=1. Sea l^\star la longitud máxima de una excursión. La función longest_trip no tiene por qué devolver una excursión de longitud l^\star . En vez de eso, puede devolver una excursión de longitud como mínimo $\left\lceil \frac{l^\star}{2} \right\rceil$.
- 4. (60 puntos) $D=1\,$

En la subtarea 4 tu puntuación esta determinada por el número de llamadas a la función are_connected en cada llamada a longest_trip. Sea q el máximo número de llamadas entre todas las longest_trip de todos los juegos de prueba de la subtarea. Tu puntuación para la tarea se calcula en acorde a la siguiente tabla:

Condición	Puntos
$2750 < q \leq 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Si, en alguno de los juegos de prueba, las llamadas a la función are_connected no satisfacen las restricciones descritas en los Detalles de Implementación, o el vector devuelto por longest_trip es incorrecto, la puntuación para esta subtarea será de 0.

Grader de ejemplo

Sea C el número de escenarios, eso es, el número de llamadas a longest_trip. El grader de ejemplo lee el input con el siguiente formato:

• línea 1: *C*

Siguen las descripciones de los ${\cal C}$ escenarios.

El grader de ejemplo lee la descripción de cada escenario en el siguiente formato:

- línea 1: *N D*
- línea 1+i ($1 \leq i < N$): $U_i[0]$ $U_i[1]$ \dots $U_i[i-1]$

Aquí, cada U_i ($1 \le i < N$) es un array de tamaño i, que describe qué pares de puntos de interés están conectados por una carretera. Para cada i y j tal que $1 \le i < N$ y $0 \le j < i$:

- si los puntos de interés j e i están conectados por una carretera, entonces el valor de $U_i[j]$ tiene que ser 1;
- si no hay carretera conectando los puntos de interés j e i, entonces el valor de $U_i[j]$ tiene que ser 0.

En cada escenario, antes de llamar longest_trip, el grader de ejemplo comprueba que la densidad de la red de carreteras es como mínimo D. Si esta condición no se cumple, escribe el mensaje Insufficient Density y acaba.

Si el grader de ejemplo detecta una violación de protocolo, la salida del grader de ejemplo es Protocol Violation: <MSG>, donde <MSG> es uno de los siguientes mensajes de error:

- ullet invalid array: en una llamada a are_connected, como mínimo uno de los arrays A y B
 - o está vacío, o
 - \circ contiene un elemento que no es un entero entre 0 y N-1, inclusive, o
 - o contiene el mismo elemento como mínimo dos veces.

- non-disjoint arrays: en una llamada a are_connected, arrays A y B no son disjuntos.
- too many calls: el número de llamadas a are_connected excede $32\,640$ en la llamada actual a longest trip, o excede $150\,000$ en total.
- too many elements: el número total de puntos de interés pasados a are_connected de todas las llamadas excede $1\,500\,000$.

Alternativamente, sean $t[0], t[1], \ldots, t[l-1]$ los elementos del array devueltos por longest_trip en un escenario para un número no negativo l. El grader de ejemplo imprime tres líneas para este escenario con el siguiente formato:

- línea 1:l
- línea $2: t[0] \ t[1] \ \dots \ t[l-1]$
- línea 3: el número de llamadas a are_connected en este escenario

Finalmente, el grader de ejemplo escribe:

• línea $1+3\cdot C$: el máximo número de llamadas a are_connected de todas las llamadas a longest_trip