

MATH 5470 Final Project (Re-)Imag(in)ing Price Trends

Hu, Mingyun Ma, Wanteng Zhang, Jiaxin

Youtube link: https://youtu.be/9Ydl NMriSw

Introduction

- Literature has proven the feasibility of using past prices to predict future returns.
- Jiang et al. use the convolutional neural network (CNN) to learn about the behavior of price trend based on pattern recognition.

Tesla OHLC chart with daily trading volume

Data Preprocessing

"Imaging" Market Data:

The key idea is to transfer 1-D market data to 2-D OHLC images.

High price, low price, open price and close are shown in each day.

We investigate the 20-day return with image data which are of size 64x60 and each one features moving average line (MA) and volume bar (VB).

The labels are the returns of the next time horizon with 1 indicating positive return and 0 otherwise.

Digital market data: OHLC+volume

OHLC and image sample

CNN Baseline Model


```
> 3 layers
each layer contains
5 x 3 convolution
batch normalization
leaky ReLU activation
2 x 1 max pooling
output an 1D vector
```

- > dropout
- > a fully connected layer output the probabilities of all classes
- > softmax

Sensitivity Analysis of Model Structure

Model		Validation	Validation	Test
Wiodei		Loss	Accuracy	Accuracy
Baseline	<u> </u>	0.693	0.546	0.528
Duseim	0.00	0.687	0.545	0.518
Dropout (0.50)	0.25	0.688	0.547	0.533
	0.75	0.694	0.548	0.531
Xavier (yes)	no	0.690	0.544	0.531
Filter Size	(3×3)	0.691	0.547	0.498
(5×3)	(7×3)	0.690	0.543	0.511
Filters (64)	32	0.714	0.545	0.548
` /	128	0.689	0.542	0.542
Layers (3)	2	0.754	0.526	0.533
BN (yes)	no	0.697	0.544	0.445
Activation (LReLU)	ReLU	0.697	0.540	0.551
Max-pool Size (2×1)	(2×2)	0.702	0.538	0.525

The highest validation accuracy appears when the dropout probability equals to 0.75, which indicates the robustness of CNN model.

Decreasing the number of layers meaningfully reduces the model performance.

Sensitivity to Model Structure

Sensitivity Analysis of Model Structure

Model		Validation	Validation	Test
		Loss	Accuracy	Accuracy
Baseline		0.693	0.546	0.528
	0.00	0.687	0.545	0.518
Dropout (0.50)	0.25	0.688	0.547	0.533
	0.75	0.694	0.548	0.531
Xavier (yes)	no	0.690	0.544	0.518
Filter Size	(3×3)	0.691	0.547	0.498
(5×3)	(7×3)	0.690	0.543	0.511
Filters (64)	32	0.714	0.545	0.548
	128	0.689	0.542	0.542
Layers (3)	2	0.754	0.526	0.533
BN (yes)	no	0.697	0.544	0.445
Activation (LReLU)	ReLU	0.697	0.540	0.551
Max-pool Size (2×1)	(2×2)	0.702	0.538	0.525

The model performance is fairly sensitive to the use of batch normalization.

The optimal structure is when we transition from leaky ReLU to ReLU.

Sensitivity to Model Structure

CNN Model Interpretation

Samples classified as 0

Samples classified as 1

We try to visualize and interpret the model by leveraging grad-CAM.

- (1) the first layer can capture the inflection points of the trends;
- (2) Open and close prices are of interest by model;
- (3) The volume information can be reflected in the second and last layers. The trends are highlighted by the volume bar of days.

CNN Regression Model

Loss Function: Mean Square Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Accuracy: R² statistic

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
where
$$TSS = \sum (y_{i} - \bar{y})^{2}, RSS = \sum (y_{i} - \hat{y}_{i})^{2}$$

Regression Model		Validation Loss	Test Loss	
Baseline		0.05248	0.02665	
	0.00	0.05231	0.02669	
Dropout(0.5)	0.25	0.05262	0.02668	
	0.75	0.05260	0.02650	
BN(yes)	no	0.05239	0.02663	
Activation(LReLU)	ReLU	0.05242	0.02649	

Thank You