О монадическом законе нуля и единицы для графа G(n,p)

Анастасия Ремизова 15 декабря 2016 г.

1 Определения

Рассмотрим модель случайных графов Эрдеша-Реньи. Пусть \mathfrak{G} — множество, содержащее все конечные неориентированные графы $G = \langle |G|, E \rangle$. Определим функцию $p = p(n), \ p : \omega \mapsto [0,1]$. Определим вероятностную модель $\mathfrak{G}(n,p) = \langle \mathfrak{G}, \mathsf{P}_p \rangle$: для графа G с числом ребер ϵ определим $\mathsf{P}(\mathfrak{G}(n,p) = G) = p^{\epsilon}(1-p)^{\binom{n}{2}-\epsilon}$.

Рассмотрим формулы логики первого порядка и монадической логики второго порядка над случайными графами: сигнатура σ содержит символы равенства = и смежности \sim . Формулы логики первого порядка построены из атомарных переменных x, y, x_1, \ldots и двух предикатных символов, упомянутых выше, логических связок \neg , \wedge , \vee , \rightarrow и кванторов \forall , \exists по переменным. Формулы монадической логики (второго порядка), помимо этого, могут содержать переменные, обозначающие множества, в форме $x \in X$, и кванторы по ним.

Будем рассматривать только конечные формулы. Назовем **кванторной глубиной** $q(\varphi)$ формулы φ число вложенных кванторов в самой длинной цепи вложенных кванторов в этой формуле.

Нас интересуют асимптотические свойства вероятности выполнения свойства φ для случайного графа $\mathfrak{G}(n,p)$ — обозначим эту вероятность $\mathsf{P}_{n,p}(\varphi)$, а особенно существование предела этой вероятности при $n\to\infty$, который мы назовем асимптотической вероятностью $\varphi-\mathsf{P}_p(\varphi)=\lim_{n\to\infty}\mathsf{P}_{n,p}(\varphi)$. Если этот предел существует для любой формулы логики L, то мы говорим, что выполняется закон сходимости для L и p. Если, к тому же, для каждой формулы асимптотическая вероятность равна 0 или 1, мы говорим, что выполняется закон 0 и 1. Если асимптотическая вероятность равна 1, мы говорим, что φ выполняется асимптотически почти наверное (а.п.н.). В случае, когда для всех формул логики L, имеющих глубину не более чем k, асимптотическая вероятность равна 0 или 1, мы говорим, что выполняется k-закон 0 и 1. Разумеется, закон 0 и 1 (для логики k) выполняется тогда и только тогда, когда для любого натурального k выполняется k-закон 0 и 1.

В частности, если L — логика первого порядка, то мы называем эти законы **FO-законами** (из-за того, что в английском языке логика первого порядка называется first order logic), а если L — монадическая логика второго порядка — то **MSO-законами** (monadic second order logic).

2 Известные результаты

Теорема 1 (Глебский, Коган, Лиогонький, Таланов, Фагин [1]). При p=const FO-закон 0 и 1 выполнен.

Теорема 2 (Кауфман, Шелах [3], Тишкиевич [4]). При p = const граф G(n,p) не подчиняется MSO-закону сходимости.

Надо заметить, что доказательство ниже было приведено Тишкиевичем. Оно имеет преимущество перед более ранним доказательством Кауфмана и Шелаха: его легче перенести на случай $p=n^{-\alpha},\ \alpha\in(0,1],$ для которого закон сходимости, как доказал Тишкиевич в упомянутой работе, также не выполнен.

Наша задача состоит в нахождении минимальной кванторной глубины, при которой MSO-закон 0 и 1 не выполнен для некоторого p, равного константе. Для получения верхней оценки мы постараемся найти кванторную глубину формулы, которая не имеет асимптотической вероятности и описана в доказательстве ниже. Однако она не приведена явно. В следующем разделе мы осуществим явную конструкцию этой формулы, чтобы оценить ее кванторную глубину.

Идея доказательства: Рассмотрим пару графов $(G, H), G \subseteq H; |G| = \{0, ..., k-1\}, |H| \setminus |G| = \{k, ..., l-1\}$

Обозначим следующую формулу, назовем ее аксиомой расширения, Ext(G, H):

$$\forall x_0, ..., x_{k-1} ([\{x_0, ..., x_{k-1}\} \simeq G] \to (\exists x_k, ..., x_{l-1} [\{x_0, ..., x_{l-1}\} \simeq H],$$

которая выражает свойство, заключающееся в том, что каждый граф, изоморфный G, можно дополнить до графа, изоморфного H. При этом сохраняется порядок вершин: изоморфизм, переводящий $x_0, ..., x_{l-1}$ в H, переводит $x_0, ..., x_{k-1}$ в G.

Фагин [2] доказал, что для произвольных двух графов $G\subseteq H$ выполнено равенство: $\mathsf{P}_p(Ext(G,H))=1$, в частности, $\mathsf{P}_p(Ext(\varnothing,H))=1$. При этом $\mathsf{P}_{n,p}(Ext(G,H))$ равна 1 при n<|G| и $\mathsf{P}_{p,n}(Ext(G,H))=1-\mathsf{P}_{n,p}(Ext(\varnothing,G))$ при n<|H|.

Можно выбрать последовательность (G_i,H_i) такую, что с ростом i мощности $|G_i|$ и $|H_i|$ бы очень быстро возрастали: $|H_i|$ был бы много больше $|G_i|$ и $|H_{i-1}|$, и при достижении n значения $|H_i|$ $\mathsf{P}_{p,n}(\bigwedge_{j < i}(Ext(G_j,H_j))) \approx 1$. Тогда формула, выражающая $\bigwedge_{i \in \omega} Ext(G_i,H_i)$, не имела бы асимптотической вероятности, так как:

$$\mathsf{P}_{p,n}(\bigwedge_{i\in\omega}Ext(G_i,H_i))\approx \min_{i\in\omega}\mathsf{P}_{p,n}(Ext(G_i,H_i)).$$

Зададим такую последовательность с помощью монадической формулы.

Доказательство: Пусть M — детерминированная одноленточная машина Тьюринга, которая на вход принимает число в его унарном разложении и всегда останавливается.

Определим функцию из ω в ω :

$$size_M(m) = m + space_M(m) \cdot time_M(m),$$

где $time_M(m)$ — число шагов вычисления машиной M при входе $m, space_M(m)$ — число клеток, в которых побывала головка до завершения работы машины M.

Построим монадическую формулу $\varphi(X)$ такую, что если верно, что $G \models \varphi(X)$, то мощность X равна $size_M(m)$ при некотором m. Мы еще вернемся к этой формуле позже.

Возьмем $\varphi(X)$ таким образом:

$$\exists L, U \exists EC, OC, ER, OR \tilde{\varphi}(L, U, EC, OC, ER, OR),$$

где $\tilde{\varphi}$ — соединение следующих условий:

- 1. $L, U \subseteq X$
- 2. $EC, OC, ER, OR \subseteq U$
- 3. $L \cap U = \emptyset, L \cup U = X$
- 4. $EC \cap OC = \emptyset$, $EC \cup OC = U$
- 5. $ER \cap OR = \varnothing, ER \cup OR = U$
- 6. $\langle U, E \rangle$ прямоугольная решетка такая, что EC и OC (ER и OR, соответственно) объединения несвязанных цепей, которые являются четными и нечетными столбцами (строками) этой решетки.
- 7. E биекция из L на первые |L| элементов первой строки решетки.
- 8. Других ребер не существует, кроме, возможно, ребер между вершинами L.

Мы назовем граф X решеточным расширением, если для него выполняются предыдущие 8 условий, и говорим, что он — решеточное расширение L', если в качестве L можно взять L'.

Сделаем так, чтобы получившийся граф X соответствал вычислению машины Тьюринга M на входе 1...1 длины |L|. Поясним, как это будет реализовано. Считаем, что имеем алфавит $A=\{a_1,...,a_m\}$ и множество состояний $Q=\{q_1,...,q_k\}$. Выберем подмножества вершин графа X $X(q_i,a_j)$ — это вершины, которые будут соответствовать пребыванию головки в состоянии q_i в ячейке, которая содержит a_j . $Y=\bigcup_{i\in\{1,...,k\},j\in\{1,...,m\}}X(q_i,a_j)$. Каждая строка решетки U будет соответствовать некоторому моменту времени, таким образом, в каждой строке должна быть ровно одна вершина из Y. В первой строке должна быть вершина из $X(q_1,a_j)$, где q_1 — начальное состояние.

Каждый столбец решетки U будет соответствовать некоторой ячейке ленты. Переходы вида $< q_i, a_i > \to < q_{i'}, a_{j'}, d >$ будут соответствовать вершинам из двух соседних строк: вершина из верхней строки будет лежать в $X(q_i, a_i)$, а из нижней — $X(q_{i'}, a_{j''})$, где $a_{j''}$ — ранее записанная буква в ячейку, соответствующую этой строке (правильная последовательность записи букв тоже должна будет поддерживаться некоторым способом). Вершина из нижней строки будет находиться на один столбец левее, правее или в том же столбце, если d=L,R или N соответственно. При этом во всех столбцах должна быть хотя бы одна вершина из Y. Тогда ширина решетки U — число столбцов — будет равна $space_M(|L|)$, высота решетки — число строк — будет равна $time_M(|L|)$ (на самом деле, $time_M(|L|)+1$, но это можно исправить тем, что мы не переходим на уровень ниже, если происходит переход в завершающее состояние). Чтобы получился граф, удовлетворяющий данным условиям, добавим к $\tilde{\varphi}$ конъюнкцию с $\exists X(q_1, a_1) \dots \exists X(q_1, a_m) \dots \exists X(q_k, a_1)$... $\exists X(q_k, a_m) \ \psi(L, U, EC, OC, ER, OR, X(q_1, a_1), ..., X(q_1, a_m), ..., X(q_k, a_1),$... $X(q_k, a_m)$). ψ должна быть записана так, чтобы выражать предыдущие условия.

Для другой детерминированной одноленточной машины Тьюринга N мы запишем формулу $\gamma(X,Y)$ такую, что если $G \models \gamma(X,Y)$, то $|Y| = size_N(|X|)$. Ее можно построить аналогично φ , где вместо множества L мы будем строить расширение множества X, но уже не ставя по нему кванторов.

Теперь определим функцию $g:\omega\to\omega$:

g(m)=1+(наименьшее n>g(m-1) такое, что $\mu_n(\bigwedge Ext(G,H))\geq 1-1/m;$ конъюнкция проходит по всем решеточным расширениям (G,H) таким, что $|H|\leq m)$

Очевидно, что g является рекурсивной строго возрастающей функцией. Пусть машина Тьюринга N принимает унарное разложение числа m, выводит строку из единиц и вычисляет некоторую функцию h > g такую, что она удовлетворяет условию: $h(m) = space_N(m)$.

Пусть машина Тьюринга M принимает унарное разложение числа m и выводит строку из единиц. Более того, M вычисляет всюду определенную на множестве унарных последовательностей функцию f такую, что для m>0:

$$f(m) > g(size_N(size_M(m-1)))$$

Окончательно, искомой формулой будет:

$$Ext \equiv \forall X(\varphi(X) \to \gamma(X,Y))$$

Заметим, что Ext эквивалентна $\bigwedge_{m\in\omega} Ext(G_m,H_m)$, где G_m — решеточное расширение \varnothing размера $size_M(m)$, H_m — решеточное расширение G_m размера $size_N(size_M(m))$.

Утверждение: Не существует $P_p(Ext)$.

Пусть $n = g(size_M(m)) - 1$ для некоторого m. Тогда, по построению g,

$$P_{n,n}Ext(\varnothing, H) \ge 1 - 1/m$$

для всех решеточных расширений (\varnothing,H) с $|H| \leq size_M(m)$. Поэтому вероятность выбора графа X, удовлетворяющего $\phi(X)$, с мощностью |X|, не меньше 1-1/m. Но тогда Y, удовлетворяющего $\gamma(X,Y)$, не существует, так как тогда $|Y\backslash X|\geq g(size_M(m))>n$, а это не так. Поэтому $\mu_n(Ext)\leq 1/m$.

Значит, нижний предел $\mathsf{P}_{n,p}(Ext(G_m,H_m))$ равен 0.

Теперь, пусть $n=g(size_N(size_M(m-1)))$ для некоторого m. Так как $size_M(m)>n$, все X, которые могут удовлетворять $\phi(X)$, должны иметь мощности: $size_M(0)$, ..., $size_M(m-1)$. Но $\mathsf{P}_{n,p}(\bigwedge Ext(G,H)) \geq 1-1/m$, где конъюнкция происходит по всем (G,H), H — расширение $G, |H| \leq size_N(size_M(m-1))$, следовательно, для каждого X, удовлетворяющего $\varphi(X)$, есть Y, удовлетворяющий $\gamma(X,Y)$, с вероятностью не меньшей 1-1/m. А значит, $\mathsf{P}_{n,p}(Ext) \geq (1-1/m)$.

Значит, верхний предел $\mathsf{P}_{n,p}(Ext(G_m,H_m))$ равен 1. А потому MSO-закон сходимости не выполняется.

3 Полученные результаты

Мы желаем найти минимальную кванторную глубину монадической формулы, при которой MSO-закон 0 и 1 не выполняется.

Из доказательства утверждения следует идея для верхней оценки глубины монадической формулы, при которой для p=const не выполняется закон 0 и 1 — собственно, оценить глубину формулы Ext. Для этого построим ее явно.

Сначала построим формулу, которая показывает, что граф удовлетворяет свойствам 1)-8).

```
1) L, U \subseteq X:
```

 $\forall x (x \in L \to x \in X)$ — глубина 1.

Аналогично для $U \subseteq X$ и 2).

- 2) $EC, OC, ER, OR \subseteq U$
- 3) $L \cap U = \emptyset, L \cup U = X$

 $\forall x \neg (x \in L \land x \in U) \land (x \in X \rightarrow x \in L \lor x \in U)$ — глубина 1.

Аналогично для 4), 5).

- 4) $EC \cap OC = \emptyset, EC \cup OC = U$
- 5) $ER \cap OR = \emptyset, ER \cup OR = U$
- 6) $\langle U,E \rangle$ решетка. EC,OC(ER,OR) объединения разъединённых цепей, представляющих собой чётные и нечётные столбцы (строки) решётки.

Обозначим число соседей вершины v из множества V как deg(V,v):

```
deg(v,V) = 0 — глубины 1:
```

 $\forall v_1(v_1 \in V \to (v \nsim v_1))$

deg(v,V) = 1 — глубины 2:

 $\exists v_1(v_1 \in V \land v \sim v_1 \land \forall v_2((v_2 \in V \land v \sim v_2) \rightarrow v_1 = v_2))$

deg(v,V) = 2 — глубины $\widehat{3}$:

```
\exists v_1 \exists v_2 (v_1 \in V \land v_2 \in V \land v_1 \neq v_2 \land v \sim v_1 \land v \sim v_2 \land \forall v_3 ((v_3 \in V \land v \sim v_3) \rightarrow (v_3 = v_1 \lor v_3 = v_2)))
```

Множество V и ребра между его вершинами представляют собой объединение разъединённых цепей; обозначим формулу UnionChains(V) — она глубины 4

 $\forall v(v \in V \to (deg(v, V) = 1 \lor deg(v, V) = 2)) \land$

$$\forall V_1(V_1 \subseteq V \to \exists v_1(v_1 \in V_1 \land (deg(v_1, V_1) = 0 \lor deg(v_1, V_1) = 1)))$$

Вторая часть формулы отвечает за отсутствие циклов в множестве.

Нуж но просто подставить EC (ER, OC, OR) в формулу UnionChains(V), чтобы получить, что они - объединения разъединённых цепей.

Формула, показывающая, что V является множеством, состоящим из одной цепи, при условии, что V — подмножество вершин объединения разъединённых цепей, — ChainInUnion(V) — глубины 4:

$$\forall v((v \in BE \rightarrow deg(v, BE) = 1) \land ((v \in V \land v \notin BE) \rightarrow \neg (deg(v, V) = 1 \lor deg(v, V) = 0))$$

BE — множество, состоящее из начала и конца цепи.

Формула, показывающая, что можно построить инъекцию из V_1 в V_2 , которая отображает вершину из V_1 в ее единственного соседа из V_2 — $Injection(V_1, V_2)$ — глубины 3:

 $\forall v_1(v_1 \in V_1 \to \exists v_2(v_2 \in V_2 \land v_1 \sim v_2 \land \forall v_3((v_3 \in V_2 \land v_1 \sim v_3) \to (v_3 = v_2))))$

Тогда можно определить биекцию из V_1 в $V_2-Bijection(V_1,V_2)$ — глубины 3:

 $Injection(V_1, V_2) \wedge Injection(V_2, V_1)$

Дополнительное условие для цепей — чтобы биекция имела правильный вид и соединяла соседей в цепи с соседями в другой цепи — $CorrectConnection(V_1, V_2)$ — глубины 4:

 $\forall v_1 \forall v_2 \forall v_3 \forall v_4 ((v_1 \in V_1 \land v_2 \in V_2 \land v_3 \in V_1 \land v_4 \in V_2 \land v_1 \sim v_2 \land v_1 \sim v_3 \land v_3 \sim v_4) \rightarrow v_2 \sim v_4)$

Формула, означающая, что цепи соединены правильным образом — $Connected(V_1, V_2)$ — глубины 4:

 $Bijection(V_1, V_2) \wedge CorrectConnection(V_1, V_2)$

Формула, показывающая, что любые 2 цепи из подмножеств цепей в четных и нечетных столбцах либо соединены, либо не имеют общих ребер — AllChainConnection(EC, OC) — глубины 6.

 $\forall C_1 \forall C_2 ((((C_1 \subseteq EC \land C_2 \subseteq OC) \lor (C_1 \subseteq OC \land C_2 \subseteq EC)) \land ChainInUnion(C_1) \land ChainInUnion(C_2)) \rightarrow (Connected(C_1, C_2) \lor (\forall v(v \in C_1 \rightarrow deg(v, C_2) = 0)))))$

Формула, показывающая, что C — крайняя цепь из EC-LastChain(C, EC, OC) — глубины 4:

 $ChainInUnion(C) \land C \subseteq EC \land \forall v((v \in C) \rightarrow deg(v, OC) = 1)$

Формула, показывающая, что любая цепь из EC, не совпадающая с C_1 и C_2 , соединена с 2 другими из $OC-Other Chains(EC,OC,C_1,C_2)$ —глубины 4:

 $\forall v ((EC(v) \land v \notin C_1 \land v \notin C_2) \to deg(v, OC) = 2))$

Формула, определяющая решетку — Grid(EC, OC) — глубины 6:

 $AllChainConnection(EC,OC) \land \exists C_1 \exists C_2((LastChain(C_1,EC,OC) \lor LastChain(C_1,OC,EC)) \land (LastChain(C_2,EC,OC) \lor LastChain(C_2,OC,EC)) \land OtherChains(CC,CC,C_1,C_2) \land OtherChains(OC,EC,C_1,C_2))$

Аналогично можно записать Grid(ER, OR).

- 7. E биекция из L на первые |L| элементов первой строки.
- $\exists R_1(LastChain(C_1, ER, OR) \land Injection(L, C_1) \land CorrectConnection(L, C_1) \land \exists v (deg(v, C_1) = 1 \land \exists v_1(v_1 \in L \land v_1 \sim v))$
- 8. Не существует иных ребер, кроме, возможно, между вершинами L следует уже из 7.

Дальнейшая работа состоит в том, чтобы построить формулу, определяющую соответствие данного графа некоторой конкретной машине Тьюринга.

4 Список литературы

- [1] Ю.В. Глебский, Д.И. Коган, М.И. Лиогонький, В.А.Таланов, Объем и доля выполнимости формул узкого исчисления предикатов, *Кибернетика*, 1969, **2**: 17-26.
- [2] R. Fagin, Probabilities in finite models, J. Symbolic Logic, 1976, 41: 50-58.
- [3] M. Kaufmann, S. Shelah, On random models of finite power and monadic logic, *Discrete Mathematics*, 1985, **54(3)**: 285-293.
- [4] J. Tyszkiewicz, On Asymptotic Probabilities of Monadic Second Order Properties, *Lecture Notes in Computer Science*, 1993, **702**: 425-439.