School of Engineering

EG5066 Energy Technologies:
Current Issues and Future
Directions

Carbon Capture and Storage

Jeff Gomes November 2013

Outline

- Energy Consumption
- Why CCS
- Capture Technologies
- Transport Technologies
- Storage Technologies
- Risks of Geological Storages

Motivation

Energy Consumption

Industrial CO₂ Emission Projections

- Global Primary:
 - Energy supply: 12267 million tonnes of oil equivalent (Mtoe) with,
 - CO₂ emissions: 29 Gt
- > Total industry and fuel transformation:
 - Energy supply: 4254 Mtoe
 - CO₂ emissions: 7.4 Gt

Source: IEA (2011)

Industrial CO₂ Emissions from Electricity

> 2006: Total 10.5 Mtoe or 79% of all emissions are from power plants to generate electricity.

Source: IEA (2011)

IPCC Conclusions for Emissions Mitigation Potential

- > CO₂ concentration is the highest in the last 650k years
- > Global GHG emissions reduction challenge:
 - To cap CO_2 conc. at 450ppm \rightarrow leading to temperature rise of 2.0-2.4°C;
 - To reduce 2050 emissions to ~75% of 2000 emissions \rightarrow to target reducing annual global emissions to 5 Gt CO₂.

→ So there is no 'silver bullet' to mitigate CO₂ emissions!

IPCC Conclusions for Emissions Mitigation Potential

Source: IPCC (2005)

Carbon Capture and Storage (CCS)

- ➤ CCS are set of process technologies aiming to remove CO₂ from industry fluid stream and reroute it into a contained storage site.
- > Capture
 - Power plants;
 - NG treatment;
 - Oil refineries;
 - etc
- > Transportation
 - Pipelines;
 - Ships;
- Storage
 - Underground geological formations;
 - Ocean.
- ➤ Although it is a relatively expansive process, O&G industry became specially interested on the storage technology in geological formations as an analogue to enhanced oil recovery technology.

Main Carbon Capture and Storage Facilities

Country	Location	Capacity (Mt CO₂/year)	Start Year	Storage Type
USA (Texas)	Val Verde (Gas plant)	1.3	1972	EOR
USA (Oklahoma)	Enid	0.7	1982	EOR
USA (Wyoming)	Shute Creek	7	1986	EOR
Norway (North Sea)	Sleipner	1	1996	LGS
USA (North Dakota)	Great Plains	3	2000	EOR
Algeria	In Saliah	1	2004	LGS
Norway (Barents Sea)	Snohvit	0.7	2008	LGS
USA (Texas)	Century	8.4	2010	EOR
Total		23.1		

LGS: Long-term geological storage

EOR: Enhanced oil recovery

Source: IEA (2013)

Shell CCS Quest in Canada

http://www.youtube.com/watch?v=cZqEfupKlJs

Carbon Capture

Suitable CO₂ sources for Capture

- Large stationary point source (e.g., power generation plants, industrial processes, synthetic fuel production etc);
- ➤ High CO₂ concentration in the waste, flue gas or by-product stream (purity)
- ➢ Pressure of CO₂ stream
- ➤ Distance from suitable storage sites

Global large stationary CO₂ sources with emissions (> 0.1 MtCO₂/ year)

Process		Number of sources	Emissions (MtCO ₂ yr ⁻¹)
Fossil fuels	Power	4,942	10,539
	Cement production	1,175	932
	Refineries	638	798
	Iron & steel industry	269	646
	Petrochemical industry	470	379
	Oil & gas processing	Not available	50
	Other sources	90	33
Biomass	Bioethanol & bioenergy	303	91
Total		7,887	13,466

Technologies for CO₂ Capture

Three main technologies:

- ➤ Post-combustion capture: separation CO₂-N₂;
- Pre-combustion capture: separation CO₂-H₂;
- ➤ Oxyfuel combustion capture : separation O₂-N₂

	Post-comb. (flue gas)	Pre-comb. (shifted syngas)	Oxyfuel comb. (exhaust)
p (bar)	~1 bar	10-80	~1 bar
[CO ₂] (%)	3-15%	20-40%	75-95%

Absorption/Stripping:

$$CO_2 + OH-C_2H_4-NH_2 + B \rightarrow OH-C_2H_4-NH-CO_2 + BH + Heat$$

Ethanolamine (MEA)

- ➤ Absorption of CO₂ by MEA at 40°C
- ➤ MEA recovery by desorption at 120°C
- Reboiler provides heat to desorber in the form of steam from the boiler, reducing plant output and efficiency
- Optimize loading, operating temperature, minimize solvent losses.

- > Flue gas cooled & brought into contact with amine solution
- > CO₂ bound to amine solution & transported to stripper
- Chemical reaction binding CO₂ with amine reversible
- Amine solution regenerated in scrubber
- Captured CO₂ compressed & dehydrated

>Pros:

- •Feasible to retrofit to current industrial plants and power stations.
- Existing technology 60 years
 experience with amine solvents but needs 10x scale-up.
- •Currently in use to capture CO₂ for soft drinks industry.

≻Cons:

- High running costs absorber and degraded solvents replacement.
- Limited large scale operating experience.

- ➤ Toshiba Technology.
- ➤ Pilot plant in Omuta City (Japan).
- ➤ Started on Sept 2009.
- Recovery energy:
 2.6GJ/t-CO₂ for 90%
 CO₂ capture with 12%
 of concentration).

Source: http://www.co2crc.com.au/

 1^{st} stage – to produce syngas (H₂ + CO)

Two routes:

Steam reforming – steam added to primary fuel

$$C_xH_y + xH_2O \longrightarrow xCO + (x + y/2)H_2$$

Partial oxidation of gaseous fuels (gasification)

$$C_xH_y + 0.5xO_2 \longrightarrow xCO + 0.5yH_2$$

2nd stage water gas shift reaction to convert the CO into CO₂

$$CO + H_2O \longleftrightarrow CO_2 + H_2$$

Pros:

- ➤ Proven industrial scale technology in oil refineries, but needs 3x scale-up for power plants.
- > 90-95% of CO₂ emissions can be captured.
- ➤ Applicable to natural gas, and to coal fired Integrated Gas-Coal Combined Cycle (IGCC) power plants.
- Lowest technology risk, and may become the most efficient method.
- ➤ Can produce H₂ as transportable energy vector, or liquid fuels from coal but penalties on efficiency

Cons:

- Requires a chemical plant in front of gas turbine
- ➤ High investment cost of dedicated newbuild plant.
- High NOx emissions will require expensive scrubbers.
- ➤ Efficiency of H₂ burning turbines is lower than conventional turbines.
- May be less flexible under varying electricity generation market requirement, so base load preferred

- Fuel is 'burned' in a mixture of nearly pure O₂ and CO₂ (recycled from the exhaust stream);
- ➤ The output from the combustion is the flue gas containing mainly CO₂ and H₂O;
- From the flue gas by condensation leaving a pure CO2 stream → suitable for compression, transport and storage.

Source: http://www.co2crc.com.au/

- ➤ Eliminates nitrogen from the flue gas by combustion in pure oxygen or mixture of pure oxygen and flue gas so NOx production reduced
- ➤ Combustion temperature of fuel in pure oxygen is too high so temperature is controlled by proportion of process heat being recycled back to combustion chamber
- Combustion products mainly CO₂ + water vapour + O₂
- ➤ Combustion products cooled to condense water vapour giving 80 98% CO₂ depending on process & fuel
- Concentrated CO₂ compressed, dehydated, purified before transport & storage

Chemical Looping Combustion

- **2 stage** reaction of hydrocarbon combustion in 2 separate reactors:
- ➤ Air (oxidiser) Reactor
- > Fuel (reducer) Reactor

*Fuel burns in reducer therefore does not come into contact with air and avoids need for post-combustion capture

Uses metal oxide as a hydrogen carrier

- Metal particles reacted with air to give metal oxide
- Metal oxide particles react with fuel on fluidised bed reactor to produce:
 - Metal particles
 - CO₂ and water vapour
- Water vapour condensed leaving pure CO₂

Pros

- ➤ Potential for 100% CO₂ capture.
- Few other harmful emissions due to more complete combustion.
- ➤ May be possible to retro-fit the oxy-fuel burners onto modified existing coal power plant

Cons

- ➤ High energy penalty without chemical looping combustion.
- Only at large development stage in 2007 first Demonstration plants in planning

Technologies for CO₂ Capture: Summary

Technologies for CO₂ Capture: Summary

Carbon Transport

Technologies for CO₂ Transport

- ightharpoonup Transport CO₂ → Temperature and pressure conditions need to be controlled to prevent solidification (i.e., phase change) and blockages.
- ightharpoonup At T>T_c and P>P_c, CO₂ behaves as a gas but has a very high density (e.g., at 100 atm and 45°C ightharpoonup 463 kg/m³ whereas at 1 atm and 20°C ightharpoonup 1.815 kg/m³).
- >Two main methods:
 - Pipelines (similar to LNG): highpressure (80-150 bar)
 - •Ships: liquid (14 to 17 bar, -25 to -30°C)
 - Advantage: flexibility, avoidance of large investments
 - Disadvantage: high costs for liquefaction and need for buffer storage

Carbon Storage

Technologies for CO₂ Storage

Technologies for CO₂ Storage

Geological Storage

- ➤ Geological storage capacity at least 2,000 GtCO₂ mainly in oil and gas fields and in formations bearing saline water;
- ➤ Upper limit uncertain, especially in saline formations;
- Specific site characteristics need closer evaluation;
- CO₂ injection and reservoir engineering technology for depleted oil & gas fields and saline formations is mature and available;
- ➤ Monitoring of subsurface movement of CO₂ is being successfully conducted at several sites;
- > Similarity with Enhanced Oil Recovery technology (injection of supercritical CO₂).

Technologies for CO₂ Storage

Geological Storage

- Fresh water aquifer
- Saline aquifer
- Depleted Oil and Gas Reservoirs

Criteria for CO₂ Geological Storage Site

- Reservoir: good porosity and permeability.
- Seal/caprock: low permeability, low porosity, preferably unfractured.
- Structural closure (although not essential)
- Formation below 800m: CO₂ exists in its dense phase
- Geologically stable area

Source: EU Directive 2009/31/EC on the geological storage of carbon dioxide.

Source: IPCC

Storage Conditions

- ➤ Porous and permeable rocks that can contain (a mixture of) gas and liquid
- ➤ Rocks with pores of typically 5-30% of volume of the rock (with diameters of nm-mm)
- A sealing by a non permeable rock layer
- ➤ Typical Reservoir size is 0.05-50 km³

Porosity map: contour map (right) and corresponding sandstone cross-seciton.

Immobilization and Trapping Mechanisms

http://www.youtube.com/watch?v=azLVjYij5U4&list=PL9C407E83C278B36F

Immobilization and Trapping Mechanisms: Physical

- Physical blocking by
 - structural traps (anticlines, unconformities or faults)
 - stratigraphic traps (change in type of rock layer)
- Hydrodynamic trapping by extremely slow migration rates of reservoir brine
- Residual gas trapping by capillary forces in pore spaces
- Negative buoyancy in case CO₂ is denser than its host rock

Immobilization and trapping mechanisms: Chemical

- Adsorption onto coal or organic-rich shales: permanently reduced mobility
- Mineralization into carbonate mineral phases: permanently reduced mobility
- ➤ Solubility trapping: CO₂ dissolved in formation waters forming one single phase: greatly reduced mobility

The different types of storage						
CO₂ Capacity (in Gt)		Advantages	Disadvantages			
Hydrocarbon reservoirs	930 Gt	Trapping structures impermeable to non- reactive gases. Well-known structures. Economic potential through EOR.	Generally far from CO ₂ emission sites. Storage capacities often limited.			
Deep saline aquifers	400 to 10,000 Gt	Widespread geographic distribution and vast storage potential. Facilitates the search for storage sites close to the sources of CO ₂ emissions. Water unfit for drinking.	Poorly characterized to date.			
Unmineable coal seams	40 Gt	Near CO ₂ emission sites. Economic potential through methane recovery.	Injection problems due to the poor permeability of coal. Limited storage capacities.			

Technologies for CO₂ Storage: Main Facilities

Technologies for CO₂ Storage: Main Facilities

Country	Location	Capacity (Mt CO₂/year)	Start Year	Storage Type
USA (Texas)	Val Verde (Gas plant)	1.3	1972	EOR
USA (Oklahoma)	Enid	0.7	1982	EOR
USA (Wyoming)	Shute Creek	7	1986	EOR
Norway (North Sea)	Sleipner	1	1996	LGS
USA (North Dakota)	Great Plains	3	2000	EOR
Algeria	In Saliah	1	2004	LGS
Norway (Barents Sea)	Snohvit	0.7	2008	LGS
USA (Texas)	Century	8.4	2010	EOR
Total		23.1		

LGS: Long-term geological storage

EOR: Enhanced oil recovery

Source: IEA (2013)

Technologies for CO₂ Storage: Main Geological and Environmental Risks

- Leakage of CO₂ (and also CH₄) to atmosphere;
- > Stress (and overpressure) in the geological structures can cause micro-seismicity leading to small earthquakes;
- ➤ Migration of CO₂ plumes, displacing brines from the chosen geological formation to others that may contain fresh water (e.g., aquifers);
- Decrease soil's and water's pH causing (a) calcium dissolution,
 (b) increasing in water hardness, and (c) release of metals (trace);
- ➤ Thus monitoring the site is crucial to assess the conditions of the CO₂ plume migration and the reliability of the traping mechanisms.

Technologies for CO₂ Storage: Long-Term

> CO₂ dissolution in brine:

$$CO_2 + H_2O \rightarrow H^+ + HCO_3^-$$

Calcium carbonate dissolution:

$$CaCO3 + H^+ + HCO_3^- \rightarrow Ca(HCO_3)_2$$

Mineral precipitation:

(Ca, Mg, Fe)⁺² + HCO₃⁻
$$\rightarrow$$
 (Ca, Mg, Fe) CO₃ + H⁺
CaAl₂Si₂O₈ + 2H⁺ + H₂O \rightarrow Al₂Si₂O₅(OH)₄

- CO₂ dissolves into the reservoir fluids
- \triangleright CO₂ + H₂O is denser than H₂O
- > CO₂ is 'slowly' sequestrated by the minerals
- ➤ Through time → low probability of CO₂ leakage

Conclusions

- ➤ Increase of energy demands → leading to larger GHG emissions;
- \triangleright There is no easy solution for the CO₂ emission problem;
- CCS is one of the methods to mitigate GHG emissions along with low-carbon energy sources;
- Several technologies for Capture;
- > Options for CO₂ transport: ships or pipelines;
- ➤ CO₂ can be stored for a very long time (10000 yr) under high pressure and low temperature conditions;
- Linkage with EOR technologies.
- Several storage projects have already started
- Leakage and other risk should be monitored carefully

Additional Reading

- M.E. Boot-Handford *et al.* (2013) "Carbon Capture and Storage Update", *Energy & Environmental Science*, published online on Sept/13 (**DOI**: 10.1039/C3EE42350F).
- N. MacDowell *et al.* (2010) "An Overview of CO2 Capture Technologies", *Energy & Environmental Science*, 3:1645-1669 (**DOI**: 10.1039/C004106H).
- B. Nykvist (2013) "Ten times more difficult: Quantifying the carbon capture and storage challenge", *Energy Policy*, 5:683-689 (**DOI**: 10.1016/j.enpol.2012.12.026).
- EU Directive 2009/31/EC on the geological storage of carbon dioxide (http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0114:0135:EN:PDF).
- International Energy Outlook 2013 (DoE/EIA-0484): http://www.eia.gov/forecasts/ieo/pdf/0484(2013).pdf
- Annual Energy Review 2011 (DoE/EIA-0384): http://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf
- J.G.J. Olivier (2013) "Trends in Global CO2 Emissions: 2013 Report", PBL Netherlands Environmental Assessment Agency: http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2013-trends-in-global-co2-emissions-2013-report-1148.pdf
- IEA (2013) "CO2 Capture Facilities and Capacities": http://www.iea.org/etp/tracking/ccs/
- IEA (2011) "Technology Roadmap: Carbon Capture and Storage in Industrial Applications": http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf
- IPCC (2005) "IPCC Special Report on Carbon Dioxide Capture and Storage": http://www.ipcc.ch/pdf/special-reports/srccs/src