Islamic University of Technology (IUT) **Organization of Islamic Cooperation (OIC)**

Department of Electrical and Electronic Engineering (EEE)

Course No : Math 4522

Course Name : Numerical Methods Lab

Experiment No : 09

Experiment Name: Differentiation of Continuous Function by Numerical

Techniques

The derivative of a function at x is defined as

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

To be able to find a derivative numerically, one could make Δx finite to give,

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
.

Knowing the value of x at which you want to find the derivative of f(x), we choose a value of Δx to find the value of f'(x). To estimate the value of f'(x), three such approximations are suggested as follows.

Forward Difference Approximation of the First Derivative

From differential calculus, we know

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

For a finite
$$\Delta x$$
,

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

The above is the forward divided difference approximation of the first derivative. It is called forward because you are taking a point ahead of x. To find the value of f'(x) at $x = x_i$, we may choose another point Δx ahead as $x = x_{i+1}$. This gives

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{\Delta x}$$
$$= \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

where

$$\Delta x = x_{i+1} - x_i$$

Figure 1 Graphical representation of forward difference approximation of first derivative.

Backward Difference Approximation of the First Derivative

We know

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

For a finite Δx ,

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

If Δx is chosen as a negative number,

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
$$= \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

This is a backward difference approximation as you are taking a point backward from x. To find the value of f'(x) at $x = x_i$, we may choose another point Δx behind as $x = x_{i-1}$. This gives

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{\Delta x}$$
$$= \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

where

$$\Delta x = x_i - x_{i-1}$$

Figure 2 Graphical representation of backward difference approximation of first derivative.

Central difference approximation of the first derivative.

From the Taylor series

$$f(x_{i+1}) = f(x_i) + f'(x_i) \Delta x + \frac{f''(x_i)}{2!} (\Delta x)^2 + \frac{f'''(x_i)}{3!} (\Delta x)^3 + \dots$$
 (1)

and

$$f(x_{i-1}) = f(x_i) - f'(x_i) \Delta x + \frac{f''(x_i)}{2!} (\Delta x)^2 - \frac{f'''(x_i)}{3!} (\Delta x)^3 + \dots$$
 (2)

Subtracting Equation (2) from Equation (1)

$$f(x_{i+1}) - f(x_{i-1}) = f'(x_i)(2\Delta x) + \frac{2f'''(x_i)}{3!}(\Delta x)^3 + \dots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} - \frac{f'''(x_i)}{3!}(\Delta x)^2 + \dots$$

$$= \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + O(\Delta x)^2$$

hence showing that we have obtained a more accurate formula as the error is of the order of $O(\Delta x)^2$.

Figure 3 Graphical representation of central difference approximation of first derivative.

Code for implementing Forward, Backward and Central difference approximation of first derivative for a function of $f(x)=e^{-x}.\sin(3x)$. For a range of x=0 to x=4.

```
Clc
clear all
close all
Fun = @(x) \exp(-x).*\sin(3*x);
dFun = @(x) -exp(-x).*sin(3*x) + 3*exp(-x).*cos(3*x);
x=linspace(0,4,101);
F=Fun(x);
h=x(2)-x(1);
xCentral=x(2:end-1);
dFCenteral = (F(3:end) - F(1:end-2)) / (2*h);
xForward=x(1:end-1);
dFForward=(F(2:end)-F(1:end-1))/h;
xBackward=x(2:end);
dFBackward=(F(2:end)-F(1:end-1))/h;
plot(x, dFun(x));
hold on
plot(xCentral,dFCenteral,'r')
plot(xForward, dFForward, 'k');
plot(xBackward, dFBackward, 'g');
legend('Analytic','Central','Forward','Backward')
```

Task:

Write a matlab code which will show that error while using central difference method for approximating first derivative of function is $O(\Delta x)^2$ but $O(\Delta x)$ if forward or backward difference method is used.

Additional Note

You can use the 'polyder' function to find the derivative of a polynomial directly using MATLAB. The input to the function is to be a vector containing the coefficients of the polynomial.

Another approach is to use the 'syms' function. Then use the 'diff' command to find the derivatives.