

χ^2 -Distribution

Suppose we are given a die and we want to know whether it biased or unbiased or suppose in a cholera

epidemic, we inoculated a group and we want to know whether inoculation is effective in preventing the attack of cholera.

In such situation chi-square test is used to test the hypothesis the die is based or the inoculation is effective

The test statistic χ^2 is defined by

$$\chi^2 = \sum_{i=1}^n \left[\frac{(O_i - E_i)^2}{E_i} \right]$$

O_i = Observed frequency,

 E_i = expected frequency $\chi \chi$

If the calculated value of χ^2 is greater than the tabulated value, then we conclude that the difference between the observed values and the expected frequencies is significant and the hypothesis is rejected, If on the other hand the calculated value of χ^2 is less than tabulated value, we conclude that the difference between the observed values and the expected frequencies is not significant and the hypothesis is accepted.

Use of χ^2 -test:

1) To determine association between two or more attributes

 χ^2 - Test is used to determine whether there is association between

1) The color of mother's eye and daughter's eye. 2) Between inoculation and prevention of disease. In such cases null hypothesis is,

H₀: There is no association between attributes

Or H₀: Two given attributes are independent

2) To test the goodness of fit:

 χ^2 - Test is used to judge whether a given sample may be regarded as a simple sample from a certain hypothetical population.

 χ^2 - Test enables us to ascertain how the theoretical distribution such as binomial, Poisson, or normal fit the observed frequencies

H₀: The theory support the observations or fit is good

3) The test the difference between observed frequencies and expected frequencies:

 χ^2 - Test can also be used to ascertain where the difference between observed frequencies and the expected frequencies is purely due to inadequancy in the theory applied

4) To test equality of several proportions:

 χ^2 - Test can also be used to test whether the populations p_1,p_2,p_3,p_4 in different populations are equal i.e. χ^2 - test can also be used to test hypothesis that $p_1=p_2=p_3=p_4$

5) To test the hypothesis about σ^2 :

 χ^2 - Test is also used to test the population variance

Condition for χ^2 -test

- 1) The number of observation, N must be sufficiently large i.e. $N \ge 50$
- 2) **Frequency of every cell must be greater than 10**, if any frequency is less than 10, it combine with neighboring frequency so that the combined frequency is greater than 10 and the degree of freedom reduced accordingly
- 3) The number of class, n must not be to small nor to large preferable $4 \le n \le 16$

Yates correction: In a 2 ×2 table degree of freedom is (2-1) × (2-1) = 1. If any of the cell frequency is less than **5** we have to use pooling method. But this will result in χ^2 with zero degree of freedom. This is meaningless in this case Yates suggested to used

$$\chi^{2} = \sum_{i=1}^{n} \left[\frac{(|O_{i} - E_{i}| - 0.5)^{2}}{E_{i}} \right]$$

Note: Even if Yates correction is not made we would have arrive at the same conclusion χ^2 - **Test of independency of attributes**

If the population is known to have two attributes. A and B, then A can be divided in to m-categories A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 ,, A_m and B can be divide into n-categories B_1 , B_2 , B_3 , B_4 , B_5 , B_6 , B_7 ... B_n accordingly the members of the populations and hence those of the samples can be divided in to mn classes. In this case the sample data may be presented in the form of a matrix containing m- rows and n-columns and hence mn cell shows the observed frequencies, O_{ij} in the various cells where i=1,2,3,...,m & j=1,2,3,....,n O_{ij} -be the observed frequencies possessing the attributes A_i and B_j

A↓ \ B→	B ₁	B ₂	B ₃	 B _n	Row total
A ₁	O ₁₁	O ₁₂	O ₁₃	 O _{1n}	O _{1*}
A_2	O _{21/E21=}	O ₂₂	O ₂₃	O _{1n}	O _{2*}
A_3	O ₃₁	O ₃₂	O ₃₃	 O _{3n}	O _{3*}
:				:	
	:	:			. :
A _m	O _{m1}	O _{m2}	O _{m3}	 O _{mn}	O _{m*}
Column	O*1	O*2	O*3	 O*n	N
total					

Null Hypothesis, H₀: Two attributes A and B are independent

or There is no association between attributes A and B

We compute the expected frequencies E ij for varies cell using the formula

$$E_{ij} = \frac{o_{i*} \times o_{*j}}{N}$$
, i=1,2,3,....,m & j=1,2,3,....,n

We compute

$$\chi^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \right]$$

The number of degree if freedom for this χ^2 computed from the m×n contingency table is $\nu = (m-1) \times (n-1)$

If $\chi^2 < \chi^2_{\nu}(\alpha)$, H₀ is accepted at $\alpha\%$ LOS, \therefore A & B are independent.

If $\chi^2 > \chi^2_n(\alpha)$, H₀ is rejected at $\alpha\%$ LOS, \therefore A & B are dependent.

Note;

$A \downarrow \setminus B \rightarrow$	B1	B ₂	Total
A ₁	a	b	a+ b
A_2	С	d	c+ d·
Total	a+ c	b+ d	N=a+ b+ c+ d

$$\chi^2 = \frac{N \times (ad - bc)^2}{(a+b)(a+c)(d+c)(d+b)}$$

In this case Yates correction is

$$\chi^{2} = \frac{N \times (|ad-bc|-N/2)^{2}}{(a+b)(a+c)(d+c)(d+b)}$$

Example on uniformity:-

1) The following table gives the number of accident in district during a week. Test whether the **accident are uniformly distributed over the week**.

Day	Sun	Mon	Tue	Wed	Thu	Fri	Sat
No. of accident	13	12	11	10	14	10	14

Solution:-

 H_0 : Accident are uniformally distributed over a week

Day	No. of Accident (0_i)	Expected No.	$(O_i - E_i)^2$	$(O_i - E_i)^2$
		of accident		$\overline{E_i}$
Sun	13	12	1	1/12
Mon	12	12	0	0
Tue•	11	12	1	1/12
Wed	10	12	4	4/12
Thur	14	12	4	4/12
Fri	10	12	4	4/12
Sat	14	12	4	4/12
	Total=84			$\chi^2 = \sum_{i=1}^n \left[\frac{(O_i - E_i)^2}{E_i} \right] = \frac{18}{12} = 1.5$

$$v = degree \ of \ freedom = n - 1 = 7 - 1 = 6$$

Thus
$$\chi^2_{cal} = 1.5$$

 $\chi^2_{v}(\alpha) = \chi^2_{6}(5\%) = 12.592$
Since $\chi^2_{cal} < \chi^2_{v}(\alpha)$
 H_0 is accepted
We can concluded that

Accident are uniformally distributed.

2) A die was thrown 132 times and the following frequencies were obtained:

Number obtained	d 1	2	3	4	5	6
Frequency	15	20	25	15	29	28

Test whether the die is unbiased.

Solution:-

 H_0 : Die is unbiased

Number	Frequency	Expected	$(O_i - E_i)^2$	$(O_i - E_i)^2$
Obtained	(0_i)	frequency(E_i)		E_i
1	15	- 22	4 9	49/22
2	20	22	4	4/22
3	25	22	9•	9/22
4	15	22	49	49/22
5	29	22	49	49/22
6	28	22	36	36/22
Total frequ	uency=132			$\chi^2 = \sum_{i=1}^n \left[\frac{(o_i - E_i)^2}{E_i} \right] = 8.9091$

$$v = degree\ of\ freedom = n-1 = 6-1 = 5$$

Thus
$$\chi^2_{cal} = 8.9091$$

 $\chi^2_{v}(\alpha) = \chi^2_{5}(5\%) = 11.07$
Since $\chi^2_{cal} < \chi^2_{v}(\alpha)$
 H_0 is accepted

Since
$$\chi^2_{cal} < \chi^2_{n}(\alpha)$$

We can concluded that die is unbiased die

3) 300 digits were chosen at random from a table of random numbers. The frequency of digits is as follows:

digit	0	1	2	3	4	5	6	7	8	9
Frequency	28	29	33	31	26	35	32	30	31	25

Using chi-square test examination the hypothesis that the digit were distribution in equal in the table

Solution:-

 H_0 : Digits are uniformely distributed

Digits	Observed	Expected	$(O_i - E_i)^2$	$(O_i - E_i)^2$
	$frequency(O_i)$	frequency(E_i)		$\overline{E_i}$
0	28	30	4	4/30
1	29	30	1	1/30
2	33	30	9	9/30
3	31	30	1	1/30
4	26	30	16	16/30
5	35	30	25	25/30
6	32	30	4	4/30
7	30	30	0	0/30
8	31	30	1	1/30
9	25	30	25	25/30
Total f	requency=300			$\chi^2 = \sum_{i=1}^n \left[\frac{(o_i - E_i)^2}{E_i} \right] = 2.866667$

$$v = degree \ of \ freedom = n - 1 = 10 - 1 = 9$$

Thus
$$\chi^2_{cal} = 2.866667$$

 $\chi^2_{v}(\alpha) = \chi^2_{9}(5\%) = 16.919$
Since $\chi^2_{cal} < \chi^2_{v}(\alpha)$
 H_0 is accepted

We can concluded that digits are uniformally distributed.

Fitting of binomial distribution

1) In a study designed to determine patient acceptance of a new pain reliever, 100 physicians each selected a sample of 25 patients, to participate in the study. Each patient, after trying the new pain reliever for a special period of time was asked whether it was preferable to the pain reliever used regularly in the past. The results of the study are as shown below.

Number of patient out of	0	1	2	3	4	5	6	7	8	9	10>
25,referring new pain reliever											
Number of doctors reporting the	5	6	8	10	10	15	17	10	10	9	0
patients											

We are interested in determining whether or not these data are compatible with the hypothesis that they were drawn from a population that follows a binomial distribution. Again we employ a Chi- square test for good of fit.

Solution:-df=n-k, k=No. of constraints

 H_0 : Fitting of Binomial distribution is good for the given data.

		_	$P(Y = x) = x x^{X} \times x^{n-X}$	$E_i = N \times P(X = x)$
x_i	f_i	$x_i f_i$	$P(X=x)=\boldsymbol{n}_{c_x}\boldsymbol{p}^x\times\boldsymbol{q}^{n-x}$, , ,
			$=25_{c_x}0.2^x \times 0.8^{25-x}$	$= 100 \times P(X = x)$
			c_{χ}	$= 100 \times 25_{c_x} 0.2^x \times 0.8^{25-x}$
0	5	0	0.003778	0.3778≈ 0
1	6	6	0.023612	2.3612≈ 2
2	8	16	0.070835	7.0835≈7
3	10	30	0.135768	13.5768≈14
4	10	40	0.186681	18.6681≈19
5	15	75	0.196015	19.6015≈20
6	17	102	0.163346	16.3346≈16
7	10	70	0.110842	11.0842≈11
8	10	80	0.062349	6.2349≈6
9	9	81	0.029442	2.9442≈ 3
>10	0	0	0.017332	1.1778≈2
	$N = \sum (f_i) =$	$\sum (x_i \times f_i)$		
	100	1		
		=500		

$$Mean = \frac{1}{N} \times \sum (x_i \times f_i) = \frac{1}{100} \times 500 = 5$$

By given for every doctor there are 25 patients i.e. n=25?

But in Binomial distribution mean = n p

$$5 = 25 \times p : p = \frac{5}{25} = \frac{1}{5} = 0.2 : q = 1 - p = 1 - 0.2 = 0.8$$

O_i	E_i	$O_i - E_i$	$(O_i - E_i)^2$	$(O_i - E_i)^2$
				$\overline{E_i}$
29	23	6	36	1.565217
10	19	-9	81	4.263158
15	20	-5	25	1.25
17	16	1	1	0.0625
10	11	-1	1	0.090909
19	11	8	64	5.818182
				$\chi^2 = \sum_{i=1}^n \left[\frac{(o_i - E_i)^2}{E_i} \right] = 13.04997$

Thus
$$\chi^2_{cal}$$
=13.049966
 $v = degree \ of \ freedom = n - k = 6 - 2 = 4$
 $\chi^2_{v}(\alpha) = \chi^2_{4}(5\%) = 9.4877$
Since $\chi^2_{cal} > \chi^2_{v}(\alpha)$
 $H_0 \ is \ rejected$
Therefore fitting of Ringmial distribution is no

Therefore fitting of Binomial distribution is not good for the given data. i.e. Binomial distribution is not suitable for the given data.

2) The face sheet of patients record maintained in a local health department contains 10 entries. A sample of 100 records revealed the following distribution of erroneous entries

Number of	0	1	2	3	4	5 or more	Total
erroneous entries							
out of 10							
Number of records	8	25	32	24	10	01	100

Test the goodness of fit of these data to the binomial distribution with P=.20 Solution:- By given P=.20, q=0.8, n=10

 H_0 : Fitting of Binomial distribution is good for the given data.

h ₀ . Fitting of Binomial distribution is good for the given data.								
x_i	f_i	$P(X = x) = n_{c_x} p^x \times q^{n-x}$	$E_i = N \times P(X = x)$					
		$=10_{c_x}0.2^x \times 0.8^{10-x}$	$= 100 \times P(X = x)$					
		$-10c_{\chi}$ 0.2 \times 0.0	$= 100 \times 10_{c_x} 0.2^x \times 0.8^{10-x}$					
			- X					
0	8	0.107374	10.7374≈11					
1	25	0.268435	26.8435≈27					
2	32	0.301990	30.1990≈30					
3	24	0.201327	20.1327≈20					
4	10	0.088080	8.8080≈9					
5≥ 0	1	0.032794	2.6424≈3					
	$N=\sum (f_i)=$							
	100							

O_i	E_i	$O_i - E_i$	$(O_i - E_i)^2$	$(O_i - E_i)^2$
				$\overline{E_i}$
33	38	-5	25	0.657895
32	30	2	4	0.133333
24	20	4	16	0.8
11	12	-1	1	0.083333
				$\chi^2 = \sum_{i=1}^n \left[\frac{(o_i - E_i)^2}{E_i} \right] = 1.674561$

Thus
$$\chi^2_{cal}$$
 = 1.674561 $v = degree\ of\ freedom = n - k = 4 - 1 = 3$ $\chi^2_{v}(\alpha) = \chi^2_{3}(5\%) = 7.8147$ Since $\chi^2_{cal} < \chi^2_{v}(\alpha)$

 H_0 is accepted

Therefore fitting of Binomial distribution is good for the given data.

i.e. Binomial distribution is suitable for the given data.

FITTING OF POISSON DISTRIBUTION

1) A hospital administrator wishes to test the null hypothesis that emergency admission follows Poisson distribution with λ =3, Suppose that over a period of 90 days the number of emergency admissions were as shown in the following table

Number of emergency	0	1	2	3	4	5	6	7	8	9	10&	Total
admission in a day											above	
Number of days this number of	5	14	15	23	16	9	S	S	1	1	0	90
emergency admission occurred												

Test the goodness of these data to the Poisson distribution.

Df=n-k, n is number of observation, k=no. of constraints

Solution: H_0 : Fitting of Poisson distribution is good for the given data

By given mean of Poisson distribution $\lambda = 3$ Total frequency N = 90

by given incan or rois.	Jon distribution $\lambda = 3$ Te	by given mean of rollson distribution $x = 3$ rotal frequency $10 = 30$								
x_i	f_i	$P(X = x) = \frac{e^{-\lambda} \times \lambda^{x}}{x!}$ $= \frac{e^{-3} \times 3^{x}}{x!}$	$E_i = N \times P(X = x)$ $= 90 \times P(X = x)$ $= 90 \times \frac{e^{-3} \times 3^x}{x!}$							
0	5	0.049787	4.48083≈5							
1	14	0.149361	13.44249≈13							
2	15	0.224042	20.16378≈20							
3	23	0.224042	20.16378≈20							
4	16	0.168031	15.12279≈15							
5	9	0.100819	9.07371≈9							
6	3	0.050409	4.53681≈5							
7	3	0.021604	1.94436≈2							
8	1	0.008102	0.72918≈1							
9	1	0.002701	0.24309≈0							
≥ 10	0	0.001102	0.09918≈0							

O_i	E_i	$O_i - E_i$	$(O_i - E_i)^2$	$\frac{(O_i - E_i)^2}{E_i}$
19	18	1	1	0.05556
15	20	-5	25	1.25
23	20	3	9	0.45
16	15	1	1	0.066667
17	17	0	0	0
				$\chi^2 = \sum_{i=1}^n \left[\frac{(o_i - E_i)^2}{E_i} \right] = 1.822223$

Thus
$$\chi^2_{cal}$$
 = 1.822223

$$v = degree \ of \ freedom = n - k = 5 - 1 = 4$$

$$\chi^2_{v}(\alpha) = \chi^2_{4}(5\%) = 9.4877$$

Since
$$\chi^2_{cal} < \chi^2_{v}(\alpha)$$

 H_0 is accepted

Therefore fitting of Poisson distribution is good for the given data.

i.e. Poisson distribution is suitable for the given data.

2) The following are the number of a particular organism found in 100 samples of water from a pound

Frequency of organisms per sample	0	1	2	3	4	5	6	7	Total
Frequency	15	30	25	20	5	4	1	0	100

Test the null hypothesis that data were drawn from a Poisson distribution.

Solution: Fitting of Poisson distribution is good for the given data

By given Total frequency N = 100

x_i	f_i	$x_i \times f_i$	$P(X = x) = \frac{e^{-\lambda \times \lambda^x}}{x!}$ $= \frac{e^{-1.86 \times 1.86^x}}{x!}$	$E_i = N \times P(X = x)$ $= 100 \times P(X = x)$ $= 100 \times \frac{e^{-1.86 \times 1.86^x}}{x!}$
0	15	0	0.155673	15.5673≈ 15
1	30	30	0.289551	28.9551≈29
2	25	50	0.269283	26.9283≈27
3	20	60	0.166955	16.6955≈17
4	5	20	0.077634	7.7634≈8
5	4	20	0.028880	2.888≈3
6	1	6	0.008953	0.8953≈1
7	0	0	0.002379	0.2379≈0
Total	$N = \sum (f_i) = 100$	$\sum (x_i \times f_i) = 186$		

Mean =
$$\frac{1}{N} \times \sum (x_i \times f_i) = \frac{1}{100} \times 186 = 1.86$$

o_i	E_i	$O_i - E_i$	$(\boldsymbol{O_i} - \boldsymbol{E_i})^2$	$(\boldsymbol{O}_i - \boldsymbol{E}_i)^2$
				E_{i}
15	15	0	0	0
30	29	1	1	0.034483
25	27	-2	4	0.148148
20	17	3	9	0.529412
10	12	-2	4	0.333333
				$\chi^2 = \sum_{i=1}^n \left[\frac{(o_i - E_i)^2}{E_i} \right] = 1.0635$

Thus
$$\chi^2_{cal}$$
=1.045376

$$v = degree \ of \ freedom = n - k = 5 - 2 = 3$$

$$\chi^2_{v}(\alpha) = \chi^2_{3}(5\%) = 7.8147$$

Since
$$\chi^2_{cal} < \chi^2_{v}(\alpha)$$

 H_0 is accepted

Therefore fitting of Poisson distribution is good for the given data.

i.e. Poisson distribution is suitable for the given data.

Test of independency

1) A sample of 500 college students participated in a study designed to evaluate the level of college student's knowledge of a certain group of common disease. The following tables shows the students classified by major field of study and level of knowledge of the group of disease

Major	Knowledge of	disease	Total
	Good	Poor	
Premedical	31	91	122
Other	19	359	378
Total	50	450	500

Do these data suggest that there is a relationship between **knowledge of the group of disease** and **major field of study** the college students from which the present sample was drawn?

Solution:-There is no association between two attributes or two attribites are independent

 H_0 : There is no association between knowledge of group of disease and major field of study

0		3 3 1	
Major	Knowledge of c	disease	Total
	Good	Poor	
Premedical	31=a	91=b	122=a+b
Other	19=c	359=d	378=c+d
Total	50=a+c	450=b+d	500=a+b+c+d

: every cell frequency is greater than 5

$$\therefore \chi^2_{cal} = \frac{N \times (ad - bc)^2}{(a+b)(a+c)(d+c)(d+b)} = \frac{500 \times [(31 \times 359) - (19 \times 91)]^2}{(122) \times (50) \times (378) \times (450)} = 42.578618$$

Degree of freedom $v=(m-1)\times (n-1)=1\times 1=1$

$$\chi^2_{\nu}(\alpha) = \chi^2_{1}(5\%) = 3.84146$$

Since
$$\chi^2_{cal} > \chi^2_{v}(\alpha)$$

 H_0 is rejected

Therefore we can conclude that there is some association between knowledge of group of disease and major field of study

2) Investigate the association between the darkness of eye color in father and son from the following data

	Dark	Non Dark
Dark	44	90
Not Dark	80	786

Solution: -

 H_0 : There is no association between darkness of eye color in father and son.

	Dark	Non Dark	Total
Dark	44=a	90=b	134=a+b
Not Dark	80=c	786=d	866=c+d
Total	124=a+c	876=b+d	1000=N=a+b+c+d

: every cell frequency is greater than 5

Degree of freedom
$$v=(m-1)\times (n-1)=1\times 1=1$$

$$\chi^2_{v}(\alpha) = \chi^2_{1}(5\%) = 3.84146$$

Since
$$\chi^2_{cal} > \chi^2_{v}(\alpha)$$

 H_0 is rejected

: we can conclude that there is some association between darkness of eye color in father and son.

Homework

3) The following data is collected on two characters. Based on this, can you say that there is no relation between smoking and literacy:

ne relation between smoking and heraely.					
	Smokers	Non-smokers			
Literates	83	57			
Illiterates	45	68			

01/08/2020

3) Two batches each of 12 animals are taken for the test of inoculation, one batch was inoculated and the other batch was not inoculated. The numbers of dead and surviving animals are given in the following table for both cases. Can the inoculation be regarded as effective against the disease?

_	Dead	survived	Total
Inoculated	2	10	12
Non-inoculated	8	4	12
Total	10	14	24

Solution: -

 H_0 : There is no association between inoculation and survival.

OR We can-not say that inoculation be regarded as effective against the disease

	Dead	survived	Total
Inoculated	2=a	10=b	12=a+b
Non-inoculated	8=c	4=d	12=c+d
Total	10=a+c	14=b+d	24=N=a+b+c+d

: every cell frequency is not greater than 5

$$\chi^{-}_{v}(\alpha) = \chi^{-}_{1}(5\%) = 3.$$

Since $\chi^2_{cal} > \chi^2_{v}(\alpha)$

 H_0 is rejected

We can conclude that there is some association between inoculation and survival.

4) The following information was obtained in a sample of 50 small general shops

	Shops in urban area	Shops in rural area	Total
Owned by men	17	18	35
Owned by women	3	12	15
Total	20	30	50

Can it be said that there are more women owners in rural areas than urban areas Solution: -

 H_0 : There is no association between area and gender.

	Shops in urban area	Shops in rural area	Total
Owned by men	17=a	18=b	35=a+b=35
Owned by women	3=c	12=d	15=c+d=15
Total	20=a+c	30=b+d	50=N=a+b+c+d

: every cell frequency is not greater than 5

Degree of freedom
$$v=(m-1)\times(n-1)=1\times 1=1$$

$$\chi^2_{v}(\alpha) = \chi^2_{1}(5\%) = 3.84146$$

Since
$$\chi^2_{cal} < \chi^2_{v}(\alpha)$$

 H_0 is accepted

We can conclude that there is no association between area and gender.

i.e. We cannot conclude that there are more women owners in rural areas than urban areas.

5) The purpose of a study by Vermund et al. was to investigate the hypothesis that HIV-infected women who are also infected with human papillomavirus (HPV), detected by molecular hybridization are more likely to have cervical cytologic abnormalities than are women with only one or neither virous. The data shown in the following table were reported the investigators. **We wish to know if we may conclude that there is a relationship**

between HPV status and stage of HIV infection

HPV↓ \ HIV→	Seropositive,	Seropositive,	Seronegative	Total
	symptomatic	asymptomatic		
Positive	23	04	10	37
Negative	10	14	35	59
Total	33	18	45	96

Solution:

 H_0 = There is a no relationship between HPV status and stage of HIV infection Take $E_{ij} = \frac{o_{i*} \times o_{*j}}{N}$

HPV↓\ HIV→		positive, ptomatic	_	oositive, ptomatic	Sero	onegative	Total
Positive	<i>O</i> ₁₁ =23	$E_{11} = 12.72$ ≈ 13	0 ₁₂ =04	$E_{12} = 6.94$ ≈ 7	0 ₁₃ = 10	$E_{13} = 17.34$ ≈ 17	37= <i>0</i> _{1*}
Negativ e	0 ₂₁ =10	$E_{21} = 20.28$ ≈ 20	0 ₂₂ =14	$E_{22} = 11.06$ ≈ 11	0 ₂₃ = 35	$E_{23} = 27.66$ ≈ 28	59= <i>0</i> _{2*}
Total	33	B= 0 _{*1}	18	B=0 _{*2}	4	5 =0 _{*3}	96=N

$$\chi^{2}_{cal} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{(o_{ij} - E_{ij})^{2}}{E_{ij}} \right] = \frac{(23 - 13)^{2}}{13} + \frac{(4 - 7)^{2}}{7} + \frac{(10 - 17)^{2}}{17} + \frac{(10 - 20)^{2}}{20} + \frac{(14 - 11)^{2}}{11} + \frac{(35 - 28)^{2}}{28} = 19.42856$$

Thus $\chi^2_{cal} = 19.42856$

Degree of freedom $v=(m-1)\times (n-1)=1\times 2=2$

$$\chi^2_{v}(\alpha) = \chi^2_{2}(5\%) = 5.991$$

Since
$$\chi^2_{cal} > \chi^2_{v}(\alpha)$$

 H_0 is rejected

We can conclude that there is a relationship between HPV status and stage of HIV infection.

6) The sharing of injection equipment among drug users was investigated by Klee et al. As part of their research they collected the following information regarding use of needle exchange of injection drug users who were located either through treatment agency files or through outreach work designed to involve those not receiving counseling treatment.

Users↓	Use of nee	Use of needle exchange					
	Regular	Regular Occasional never Not					
				known			
Agency	56	15	20	24	115		
Non-agency	19	06	16	53	94		
Total	75	21	36	77	209		

May we conclude from these data that use of needle exchange and agency status is related? Solution:

 H_0 : There is no relation between use of needle exchange and agency status.

Take
$$E_{ij} = \frac{o_{i*} \times o_{*j}}{N}$$

Users↓	Use of	Use of needle exchange					Total		
	Regula	r	Occasio	onal	never		Not k	nown	
Agenc y	0 ₁₁ =56	$E_{11} = 41.27$ ≈ 41	0 ₁₂ =15	$E_{12} = 11.56$ ≈ 12	0 ₁₃ =20	$E_{13} = 19.81$ ≈ 20	0 ₁₄ =24	$E_{14} = 42.37$ ≈ 42	115=0 _{1*}
Non- agency	0 ₂₁ =19	$E_{21} = 33.73$ ≈ 34	0 ₂₂ =06	$E_{22} = 9.44$ ≈ 9	0 ₂₃ =16	$E_{23} = 16.19$ ≈ 16	0 ₂₄ =53	$E_{24} = $ 34.63 ≈ 35	94=02*
Total	75	S=0 _{*1}	21=	0*2	36	S=0 _{*3}	77	=O _{*4}	209

$$\chi^{2}_{cal} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \right]$$

$$\chi^{2}_{cal} = \frac{(56 - 41)^{2}}{41} + \frac{(15 - 12)^{2}}{12} + \frac{(20 - 20)^{2}}{20} + \frac{(24 - 42)^{2}}{42} + \frac{(19 - 34)^{2}}{34} + \frac{(6 - 9)^{2}}{9} + \frac{(16 - 16)^{2}}{16} + \frac{(53 - 35)^{2}}{35} = 30.82688$$

Thus
$$\chi^2_{cal}$$
=30.82688

Degree of freedom
$$v=(m-1)\times (n-1)=1\times 3=3$$

$$\chi^2_{v}(\alpha) = \chi^2_{3}(5\%) = 7.815$$

Since
$$\chi^2_{cal} > \chi^2_{v}(\alpha)$$

 H_0 is rejected

We can conclude that there is some relation between use of needle exchange and agency status.

i.e. we can conclude from these data that use of needle exchange and agency status is related

7) Concern about acquired immunodeficiency syndrome (AID) was the motivation for a survey conducted by Professor Patty J. Hale of the University of Virginia. She used a mailed questionnaire to survey business. Among the information she collected were size of business and whether or not the employer had provided AIDS education for employees. The following results we reported.

Number of	YES	NO	Total
employees ↓\ AIDS			
education provided→			
0-10	2	20	22
50-500	5	11	16
More than 500	11	5	16
Total	18	36	54

May we concluded on the basis of these data that whether or not a business provides AIDS education is independent of the size of the business? Let $\alpha = 0.5$

Solution:-

 H_0 : AIDS education is independent of the size of the business

Since table is of size 3×2

Since every cell frequency is not greater than 5

So we combine first and second row

Number of employees/AIDS education	C_1	<i>C</i> ₂	Total
provided			
R_1	7=a	31=b	38= a+b
R ₂	11=c	5=d	16= c+d
Total	18= a+c	36=b+d	54=N=a+b+c+
			d

: every cell frequency is greater than 5

$$\therefore \chi^2_{cal} = \frac{N \times (ad - bc)^2}{(a+b)(a+c)(d+c)(d+b)} = \frac{54 \times [(7 \times 5) - (11 \times 31)]^2}{(38) \times (18) \times (16) \times (36)} = 12.833882$$

Degree of freedom $v=(m-1)\times (n-1)=1\times 1=1$

$$\chi^2_{\nu}(\alpha) = \chi^2_{1}(5\%) = 3.84146$$

Since
$$\chi^2_{cal} > \chi^2_{v}(\alpha)$$

 H_0 is rejected

AIDS education is not independent of the size of the business

Chi-square test of homogeneity

Null hypothesis is

H₀:- Are the samples drawn from populations that **are homogeneous** with respect to some criterion of classification

1)Kodama et al. studied the relationship between age and several prognostic factors in squamous cell carcinoma of the cervix among the data collected were the frequencies of histologic cell type in four age groups. The results are shown in the following table

Age group		Total		
	Large cell non	keratinizing cell	Small cell non	Number
	keratinizing cell	type	keratinizing cell	
	type		type	
30-39	18	7	9	34
40-49	56	29	12	97
50-59	83	38	23	144
60-69	62	25	18	105
Total	219	99	62	380

We wish to know if we may conclude that the populations represented by the four age-group samples are not homogenous with respect to cell type Solution:

 H_0 : Four age groups are homogeneous with respect to cell type

Age group		<u> </u>		Cell type			Total
	Large cell non		keratinizing cell		Small cell non		Number
	keratiniz	ing cell	type		keratinizing cell		
	type				type		
30-39	O_{11}	E_{11}	0 ₁₂	E_{12}	O_{13}	E_{13}	34
	=18	=19.59	=7	=8.86	=9	=5.54	
		≈ 19		≈ 9		≈ 6	
40-49	021	E_{21}	O_{22}	$\boldsymbol{E_{22}}$	O_{23}	E_{23}	97
	=56	=55.90	=29	=25.27	=	=15.83	
		≈ 56		≈ 25	12	≈16	
50-59	031	E ₃₁	032	E ₃₂	033	E ₃₃	144
	=83	=82.99	=38	=37.52	=23	=23.49	
		≈83		≈38		≈23	
60-69	041	E ₄₁	042	E ₄₂	043	E_{43}	105
	=62	=60.51	=25	=27.36	=18	=17.13	
		≈ 61		≈27		≈ 17	
Total	2	219		99 62		380	

$$\chi^{2}_{cal} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \right]$$

$$+\frac{(83-83)^2}{83}+\frac{(38-38)^2}{35}+\frac{(23-23)^2}{23}+\frac{(62-61)^2}{61}+\frac{(25-27)^2}{27}+\frac{(18-17)^2}{17}=3.860441$$
 Thus $\chi^2_{\ cal}=3.860441$

Degree of freedom $v=(m-1)\times (n-1)=3\times 2=6$

$$\chi^2_{v}(\alpha) = \chi^2_{6}(5\%) = 12.592$$

Since $\chi^2_{cal} < \chi^2_{v}(\alpha)$
 H_0 is accepted

Since
$$\chi^2_{cal} < \chi^2_{n}(\alpha)$$

We can conclude that Four age groups are homogeneous with respect to cell type

2) In a telephone survey conducted by professor Bikram Garcha(A-9) responds were asked to indicate their level of agreement with the statement "Cigarette smoking should be banned in public places" The results were as follows

Gender	Level of agreement					
	Strongly agree	Agree	neutral	Disagree	Strongly disagree	
Female	40	38	16	37	5	136
Male	16	25	11	25	10	87
Total	56	63	27	62	15	223

Can we conclude on the basis of these data that males and females differ with respect to their level of agreement on the banning of cigarette smoking in public place?

 H_0 : — Male and female are homogeneous with respect to their level of agreement on the banning of cigarette smoking in public place.

Gender	Level of agreement								Total		
		ongly gree	Ag	jree		ıtral		gree		ongly agree	
Female	<i>O</i> ₁₁ =40	E_{11} = 34.1 5 ≈ 34	0 ₁₂ =38	E_{12} = 38. 42 ≈ 38	0 ₁₃ = 16	<i>E</i> ₁₃ = 16. 47 ≈ 17	0 ₁₄ = 37	<i>E</i> ₁₄ = 37. 81 ≈ 38	0 ₁₅ =5	$E_{15} = 9.1$ 4 ≈ 9	136
Male	0 ₂₁ =16	E_{21} = 21.8 5 ≈ 22	0 ₂₂ =25	E ₂₂ =24. 58 ≈ 25	0 ₂₃ =11	<i>E</i> ₂₃ = 10. 53 ≈ 10	0 ₂₄ =25	E_{24} = 24. 19 ≈ 24	<i>O</i> ₂₅ =10	<i>E</i> ₂₅ = 5.8 5 ≈ 6	87
Total	į	56	6	53	2	27	6	2		15	223

$$\begin{split} \chi^2_{\ cal} &= \sum_{i=1}^m \sum_{j=1}^n \left[\frac{\left(\textit{O}_{ij} - \textit{E}_{ij} \right)^2}{\textit{E}_{ij}} \right] \\ \chi^2_{\ cal} &= \frac{(40-34)^2}{34} + \frac{(38-38)^2}{38} + \frac{(16-17)^2}{17} + \frac{(37-38)^2}{38} + \frac{(5-9)^2}{9} + \\ &\quad + \frac{(16-22)^2}{22} + \frac{(25-25)^2}{25} + \frac{(11-10)^2}{10} + \frac{(25-24)^2}{24} + \frac{(10-6)^2}{6} = \textbf{7.366438} \\ \text{Thus } \chi^2_{\ cal} &= \textbf{7.366438} \\ \text{Degree of freedom } v = (m-1) \times (n-1) = 1 \times 4 = 4 \\ \chi^2_{\ v}(\alpha) &= \chi^2_{\ 4}(5\%) = 9.488 \\ \text{Since } \chi^2_{\ cal} &< \chi^2_{\ v}(\alpha) \\ H_0 \ is \ accepted \end{split}$$

We can conclude that male and female are homogeneous with respect to their level of agreement on the banning of cigarette smoking in public place.

3) In an air pollution study, a sample of 200 house holds was selected from each of two communities. A respondent in each household was asked whether or not anyone in the household was bothered by air pollution. The response were as follows

Community	Any member of househo	Any member of household bothered by air pollution				
	Yes	Yes No				
Α	43	157	200			
В	81	119	200			
Total	124	276	400			

If there is communities differ with respect to variable of interest?

Solution:-

 H_0 : Communities are homogeneous with respect to variable of interest

Sine every cell frequencies is greater than 5

Given table is of order 2×2

Therefore

Community	Any member of hou pol	Total	
	Yes		
Α	43=a	157=b	200=a+b
В	81=c	119=d	200=c+d
Total	124=a+c	276=b+d	400=N=a+b+c+d

We can conclude that

 ${\it communities}\ are\ not\ homogeneous\ with\ respect\ to\ variable\ of\ interest$

i.e. there is communities differ with respect to variable of interest

4) In a simple random sample of 250 industrial workers with cancer researchers found that 102 had worked at jobs classified "high exposure" with respect to suspected cancer agents. Of the remainder, 84 had worked at "Moderate exposure" jobs, In an independent simple random sample of 250 industrial workers from the same area who had no history of cancer, 31 worked in "high exposure" job 60 worked in "moderate exposure" jobs and 159 worked in job involving no known exposure to suspected cancer causing agents. Does it appear from these data that person working in jobs that expose them to suspect cancer causing agents have an increased risk of contracting cancer? Solution:-

 H_0 :Person working in jobs that not expose them to suspect cancer causing agents have an increased risk of contracting cancer

Sample	high		Moderate		no known exposure		Total
	exposu	ire	exposure				
Sample-1	011	E ₁₁	012	E_{12}	0 ₁₃	E_{13}	250
-	=102	=66.5	=84	=72	=64	=111.5	
Sample-2	021	E ₂₁	022	E ₂₂	023	E_{23}	250
•	=31	=66.5	=60	=72	=159	=111.5	
Total	13	33	14	44	2.	23	500

$$\chi^{2}_{cal} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \right]$$

$$\chi^2_{\ cal} = \frac{(102-66.5)^2}{66.5} + \frac{(84-72)^2}{72} + \frac{(64-111.5)^2}{111.5} + \frac{(31-66.5)^2}{66.5} + \frac{(60-72)^2}{72} + \frac{(159-111.5)^2}{111.5} = \textbf{20.235}$$
 Thus $\chi^2_{\ cal} = \textbf{20.235}$

Thus
$$\chi^2_{cal} = 20.235$$

Degree of freedom
$$v=(m-1)\times (n-1)=1\times 2=2$$

$$\chi^2_{v}(\alpha) = \chi^2_{2}(5\%) = 5.991$$

Since
$$\chi^2_{cal} > \chi^2_{v}(\alpha)$$

 H_0 is are jected

We can conclude that Person working in jobs that expose them to suspect cancer causing agents have an increased risk of contracting cancer.

5) The objective of a study by Sutker et al. describe the long-term psychological and psychiatric sequence of prisoner of war confinement against the backdrop of psychiatric evaluation of Korean conflict repatriates more than 35 years in the past. Subjects were 22 (POW) and 22 combat veteran survivors (CVS) of the Korean conflict. They were compared on measures of problem solving. Personality characteristics mood states and psychiatric clinical diagnoses. **Nineteen of the POWs reported problem with depression**. The number of combat veterans reporting **problem with depression was 9.** Do these data provide sufficient evidence for us to conclude that the two populations are not homogeneous with respect to the incidence of problem of depression?

Solution:-

 H_0 : Two population are homogeneous with respect to the incidence of problem of depression

	Problem with depression	problem without depression	Total
POW	19=a	3=b	22=a+b
CVS	9=c	13=d	22=c+d
Total	28=a+c	16=b+d	44=N=a+b+c+d

Since given contingency table is of order 2×2 and one of the cell frequency is less than 5 So we use the formula

$$\chi^2_{\ cal} = \frac{N \times (|ad-bc|-N/2)^2}{(a+b)(a+c)(d+c)(d+b)} = \frac{44 \times (|(19 \times 13) - (9 \times 3)| - 22)^2}{(22)(28)(22)(16)} = \textbf{7.955357}$$

Degree of freedom $v=(m-1)\times (n-1)=1\times 1=1$

$$\chi^2_{\nu}(\alpha) = \chi^2_{1}(5\%) = 3.84146$$

Since
$$\chi^2_{cal} > \chi^2_{v}(\alpha)$$

 H_0 is rejected

: we can conclude that

two populations are not homogeneous with respect to the incidence of problem of depression.