Image	Pixel center sampling	4x4 subpixed center	Integration over	pixel wide filter
pulygon edge	Jagged edge	partly anti-aliased edge, with 5 colors	smoothly anti- aliased edgs	smoothly anti-
vertical infinitely	visible with probability zero	visible with	visible in one	visible in two
moving vertical infinitely thin live		probability zero	jumps suddenly from one column to the next	fades out from one column, and fades in to the next.
restical infinitely	visible with probability zero	probability zero	or down the line	smoothy anti-aliased cage moves smoothly between alumns
nearly vertical line of width	probability 110	probability about 4	visible mostly in one column, with short transition regions in two	smoothly anti-aliased line, usually two pixels wide, and sometimes three
infinitely small dot	probability zero	probability zero	jumps when moving	moves smoothly
to of a pixel	probability 110	may not be, depending on its stape	object always visible, assuably in a single pinel	object always visible, usually in four prixels
moving object of area to of	object flases on in one frame aut	object usually visible but may flash of 200, jumps when moving	object usually in a ringe pixel, so it jumps when moving	prosent usually in four pixels, and moves smoothly

Fourier Transforms If far is a function legined for all real 2, then its fourier transform, F(u) = F(for) is given by F(u) = \int fa) e -277 ing dx Since $e^{-2\pi i u x} = co(2\pi u x) = i sin(2\pi u x)$, F(u) = \int f(a) cos(271471)dz = i \int f(a) \(\alpha \text{in}(27147)dz. The inverse ferrier transform F-1(F(u)) = far) is given by for = So F(u) e 277iux du. This gives back the original function for, as can be shown formally with double integrals. The 8-function, or "impulse function has the property that $\int_{-\infty}^{\infty} f(u) \, \delta(x-u) = f(\alpha).$ The convolution of two functions for and good is $f(x) * g(x) = \int_{\infty}^{\infty} f(u) g(x-u) du$.

Let
$$S(z) = \sum_{n=0}^{\infty} S(z - j\Delta z)$$

501 1111111 > | = 5x

be a train of impulse functions,

with uniform spacing DX.

Then its fourier transform is

$$S(u) = \sum_{-\infty}^{\infty} S(u - \frac{k}{\Delta x}),$$

 $\begin{array}{c|c}
\uparrow & \uparrow & \uparrow \\
\hline
\uparrow & \uparrow & \uparrow \\
\hline
\downarrow & \downarrow & \downarrow \\
4x & \downarrow & \downarrow \\
\hline
4x & \downarrow & \downarrow \\
\end{array}$

a train of impulse functions with uniform spacing ix

2) Let
$$f(c) = \begin{cases} 1 & \text{if } -\frac{x}{2} \le x \le \frac{x}{2} \\ 0 & \text{otherwise} \end{cases}$$

be a pulse of width X, centered at the origin.

Then the ferrier transform F(u) of for is the "sine" furction

$$F(u) = \frac{\sin \pi u \times}{\pi u}$$

Calculation

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi u x}$$

$$= \int_{-\infty}^{\frac{x}{2}} (\cos(2\pi u x) dx) + i \int_{-\frac{x}{2}}^{\frac{x}{2}} \sin(2\pi u x) dx$$

$$= \frac{\sin 2\pi u x}{2\pi u} \int_{-\frac{x}{2}}^{\frac{x}{2}} \frac{\sin \pi u x}{2\pi u}$$

$$= \frac{\sin 2\pi u x}{2\pi u} \int_{-\frac{x}{2}}^{\frac{x}{2}} \frac{\sin \pi u x}{2\pi u}$$

$$= \frac{\sin 2\pi u x}{2\pi u} \int_{-\frac{x}{2}}^{\frac{x}{2}} \frac{\sin \pi u x}{2\pi u}$$

$$= \frac{\sin \pi u x}{2\pi u}$$

Convolution Theorem

If f(x) and g(x) are functions, with formier transforms F(u) and G(u), then f(x) = F(u) =

Formal verification, with no attention to convergence

F (u) G(u)

4) Shannon Whittaker Sampling Theorem

of for) has no frequency components of frequency greater than W, ie is "band limited" so that

F(u) = 0 if /ul > W

then f(x) can be reconstructed from discrete samples at spacing Δx , whenever $\Delta x \leq \frac{1}{2W}$

Anti-Aliasing

Suppose finels are at spacings of one screen unit, and centered at integers. Then the sample spacing sx is 1, and the sampled picture must contain no frequencies greater than ½, if it is to be reconstructed from the samples. If it does, these frequencies must be removed by a "pre-filter" before sampling.

for)

 $V(z) = \frac{\sin \pi z}{\pi z}$

filter

F(u) = { 0 otherwise

 $f(a) = r(a) \cdot f(a)$

Product R(u) F(u)

This filtering can be accomplished by taking the convolution of f(x) with a smoothing function r(x),

to get a new function f'(x), which new function has all frequencies = 1. The new function f'(G) can now be recenstructed from its sample, by the use of an appropriate "post filter." The ideal function ra) = sin 177 is difficult to use in practice because it has negative components, and infinte extent.

Practical Pre Filters

1) The square filter $r_o(z) = \begin{cases} 1 & \text{if } |x| \leq \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$

ammounts to area averaging. Its forcier transform is $R_0(u) = \frac{\sin \pi u}{\pi u}$.

It can be seen that this filter does not give perfect anti-alianing; frequencies between & and I still appear, and the frequency 1.5 comes out negative, at power 1/(1.57). Also frequencies less than 2 are reproduced with less than full power, causing blurring. 2) The triangular filter

$$r_i(x) = \begin{cases} 1-|x| & \forall |x| \leq 1 \\ 0 & \text{otherwise}, \end{cases}$$

Since $V_1(x) = V_0(x) * V_0(x)$, the annountain of $V_0(x)$ with itself, the transform $R_1(x)$ is the product of $V_0(x)$ with itself, i.e.

$$R_{i}(u) = R_{o}(u)^{2} = \left(\frac{\sin(\pi u)}{\pi u}\right)^{2}$$

This gives greater blurring, but also less aliasing.

a filter made up of pieces of parabolous

$$r_{2}(\hat{x}) = r_{0}(\hat{x}) * r_{1}(\hat{x}) = \begin{cases} \frac{1}{2} (\chi + \frac{3}{2})^{2} & \text{if } -\frac{3}{2} \leq \chi \leq -\frac{1}{2} \\ \frac{2}{4} - \chi^{2} & \text{if } -\frac{1}{2} \leq \chi \leq \frac{1}{2} \\ \frac{1}{2} (\chi - \frac{3}{2})^{2} & \text{if } \frac{1}{2} \leq \chi \leq 1 \end{cases}$$