Applications linéaires en dimension finie

Applications linéaires, rangs, dimensions

Exercice 1 (Un automorphisme)

Soit
$$f: \begin{array}{ccc} \mathbb{R}^3 & \to & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (x+y+z,-2x+y,-x+z) \end{array}$$
.

Montrer de deux façons différentes que $f \in GL(\mathbb{R}^3)$.

Exercice 2 (Endomorphisme nilpotent)

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f \neq 0$ et $f^2 = 0$.

- 1. Comparer Ker(f) et Im(f) pour l'inclusion.
- 2. Déterminer le rang de f.

Exercice 3 $(rg(f) = rg(f^2))$

Soit E un espace vectoriel de dimension finie. Soit $f \in \mathcal{L}(E)$. On suppose que $rg(f) = rg(f^2)$.

- 1. (a) Montrer les inclusions $Im(f^2) \subset Im(f)$ et $Ker(f) \subset Ker(f^2)$.
- (b) En déduire les égalités $Im(f^2) = Im(f)$ et $Ker(f^2) = Ker(f)$.
- 2. Montrer que $E = Im(f) \oplus Ker(f)$.

Exercice 4 (Polynôme annulateur #1)

Soit E de dimension finie $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$.

1. Montrer que f admet toujours un polynôme annulateur $P \in \mathbb{R}[X]$ non-nul.

Indication : étudier la liberté de la famillle (f^0, f^1, \dots, f^k) dans $\mathcal{L}(E)$ pour $k \in \mathbb{N}^*$

2. Soit $P \in \mathbb{R}[X]$ une polynôme annulateur de f. On suppose qu'il existe un vecteur $v \in E \setminus \{0_E\}$ tel que $f(v) = \lambda v$, avec $\lambda \in \mathbb{R}$.

(On dit que v est un **vecteur propre** de f, associé à la **valeur propre** λ).

Montrer que λ est une racine du polynôme P.

Exercice 5 (Polynôme annulateur #2)

Soit E un espace vectoriel de dimension $n \ge 2$. Soit $u \in \mathcal{L}(E)$ vérifiant $u^2 - 2u + Id_E = 0$.

- 1. Montrer que $u \in GL(E)$ et préciser u^{-1} .
- 2. Montrer que $(u Id_E)^2 = 0$ puis que $Im(u Id_E) \subset Ker(u Id_E)$.
- 3. En déduire que $dim(Ker(u-Id_E)) \geqslant \frac{n}{2}$.

Exercice 6 (Polynôme annulateur #3)

Soit E un espace vectoriel de dimension finie. Soit $f \in \mathcal{L}(E)$ vérifiant $f^2 - 3f + 2Id_E = 0$.

- 1. En "factorisant" $f^2 3f + 2Id_E$, montrer que $Im(f Id_E) \subset Ker(f 2Id_E)$.
- 2. Montrer que $Ker(f-Id_E)\cap Ker(f-2Id_E)=\{0_E\}$
- 3. Déduire $E = Ker(f Id_E) \oplus Ker(f 2Id_E)$.

Applications linéaires et matrices

Exercice 7 (Noyau et d'image via la matrice)

Déterminer une base du noyau, de l'image, et le rang des endomorphismes de \mathbb{R}^3 (ou \mathbb{R}^4) dont les matrices dans la base canonique sont les suivantes :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix},$$

$$C = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ -1 & 0 & -1 & 0 \end{pmatrix}.$$

Exercice 8 (Deux matrices dans deux bases?)

Soient
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}$.

- 1. Déterminer l'expression de $f \in \mathcal{L}(\mathbb{R}^3)$ admettant la matrice A dans la base canonique.
- 2. Calculer rg(A). Qu'en déduit-on sur f?
- 3. Calculer rg(B).

Existe-t-il une base \mathcal{B} de \mathbb{R}^3 telle que $Mat_{\mathcal{B}}(f) = B$?

Exercice 9 (Un endomorphisme de $\mathcal{M}_2(\mathbb{R})$)

Soit $A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$ et $\forall M \in \mathcal{M}_2(\mathbb{R}), \varphi(M) = AM$.

- 1. Montrer que φ est un automorphisme de $\mathcal{M}_2(\mathbb{R})$.
- 2. Donner la matrice de φ dans la base canonique de $\mathcal{M}_2(\mathbb{R})$ et retrouver le fait que φ est bijective.

Exercice 10 (Un endomorphisme de $\mathbb{R}_4[X]$)

Soit $f \in \mathcal{L}(\mathbb{R}_4[X])$ définie par : $\forall P \in \mathbb{R}_4[X], \ f(P) = P(X+1) - P(X).$

- 1. Déterminer la matrice de f dans la base canonique. En déduire le rang de f.
- 2. Déterminer le noyau de f.

Exercice 11 (Calcul de rangs de matrices)

Calculer le rang des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & -1 & 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 0 \\ 1 & 3 & -2 \end{pmatrix}$$
$$C = \begin{pmatrix} 1 & 1 & -1 & 3 \\ 1 & 2 & -4 & 7 \\ 1 & -1 & 5 & -5 \end{pmatrix}.$$

Exercice 12 (Matrice à paramètre)

Déterminer le rang de la matrice

$$\begin{pmatrix}
1 & 1 & -1 & 2 \\
\lambda & 1 & 1 & 1 \\
1 & -1 & 3 & -3 \\
4 & 2 & 0 & \lambda
\end{pmatrix}$$

en distinguant les cas selon la valeur de $\lambda \in \mathbb{R}$.

Exercice 13 (Réduction d'un endomorphisme nilpotent)

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f^2 \neq 0$ et $f^3 = 0$.

1. Soit $x \in \mathbb{R}^3$ tel que $f^2(x) \neq 0$.

Montrer que $\mathcal{B} = (x, f(x), f^2(x))$ est une base de \mathbb{R}^3 .

- 2. Déterminer la matrice de f dans cette base.
- 3. En déduire rg(f).

Exercice 14 (Réduction d'un projecteur)

Soit
$$A = \begin{pmatrix} 1/2 & 1 & -1/2 \\ 0 & 1 & 0 \\ -1/2 & 1 & 1/2 \end{pmatrix}$$
.

- 1. Montrer que A est la matrice d'un projecteur $p \in \mathcal{L}(\mathbb{R}^3)$ dans la base canonique de \mathbb{R}^3 .
- 2. Déterminer des SEVs F et G de \mathbb{R}^3 tels que p soit le projecteur sur F parallèlement à G.
- 3. En déduire une base \mathcal{B} de \mathbb{R}^3 telle que la matrice

de p dans cette base soit $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- 4. Quelle est la matrice du projecteur q associé à pdans cette base \mathcal{B} ?
- 5. Généralisation : Montrer que si E est un espace vectoriel de dimension finie n et $p \in \mathcal{L}(E)$ est un projecteur, il existe une base de E dans laquelle la matrice de p est diagonale de la forme : $diag(1, 1, \dots, 1, 0, 0, \dots, 0).$

Exercice 15 (Isomorphismes et matrices classiques)

1. Pour $n \in \mathbb{N}$ et $a \in \mathbb{R}$ fixés, on considère

$$f: \begin{array}{ccc} \mathbb{R}_n[X] & \to & \mathbb{R}^{n+1} \\ P & \mapsto & (P(a), P'(a), ..., P^{(n)}(a)) \end{array}$$

- (a) Écrire (avec des pointillés...) la matrice de f dans les bases canoniques de $\mathbb{R}_n[X]$ et \mathbb{R}^{n+1} .
- (b) En déduire que f est un isomorphisme.
- 2. Pour $n \in \mathbb{N}^*$ et $x_1, \ldots, x_n \in \mathbb{R}$ on considère la matrice dite "de Vandermonde":

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- (a) Reconnaître l'application $g \in \mathcal{L}(\mathbb{R}_{n-1}[X], \mathbb{R}^n)$ admettant la matrice V dans les bases canoniques.
- (b) En déduire que V est inversible si et seulement si les réels x_1, \ldots, x_n sont deux à deux distincts.
- 3. Pour $n \in \mathbb{N}$, on considère la matrice $M = {\binom{j}{i}}_{0 \le i,j \le n}$, c'est à dire :

$$M = \begin{pmatrix} \binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \dots & \binom{n}{0} \\ 0 & \binom{1}{1} & \binom{2}{1} & \dots & \binom{n}{1} \\ 0 & 0 & \binom{2}{2} & \dots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \binom{n}{n} \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

- (a) Justifier que $M \in GL_{n+1}(\mathbb{R})$.
- (b) Reconnaître l'application $h \in \mathcal{L}(\mathbb{R}_n[X])$ admettant la matrice M dans la base canonique.
- (c) Déterminer h^{-1} et en déduire la matrice M^{-1} .

EDHEC 2012

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 est : $A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -3 \\ -2 & 2 & -2 \end{pmatrix}$.

- 1. (a) Déterminer Ker(f), Im(f) et montrer que $Ker(f) \subset Im(f)$.
 - (b) Déterminer explicitement $Ker(f 2Id_E) = \{x \in \mathbb{R}^3 \mid f(x) = 2x\}.$
 - (c) Déterminer explicitement $Rer(f-2IaE) = \{x \in \mathbb{R} \mid f(x) = 2x\}.$ $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$ Déduire rg(f).
- 2. Calculer A^2 et A^3 . En déduire un polynôme annulateur de f.
- 3. À l'aide de la base \mathcal{B} trouvée en 1.(c), montrer que $\mathbb{R}^3 = Ker(f^2) \oplus Ker(f-2\mathrm{Id})$.
- 4. On veut montrer qu'il n'existe pas d'endomorphisme q de \mathbb{R}^3 vérifiant : $q^2 = f$. On suppose pour cela qu'un tel endomorphisme existe.

(a) Montrer que : $\forall v \in Ker(f^2), \ g(v) \in Ker(f^2).$ (b) En déduire que la matrice de g dans la base \mathcal{B} est de la forme : $G = \begin{pmatrix} a & a' & a'' \\ b & b' & b'' \\ 0 & 0 & c'' \end{pmatrix}$.

(c) En utilisant la matrice de f dans cette même base, trouver une contradiction et conclure.