Комп'ютерний практикум № 5

Cisco Server. Типи серверів

Як правило, *сервер* віддає в *мережу* свої ресурси, а клієнт ці ресурси використовує. Також, на серверах встановлюються спеціалізоване програмне та *апаратне забезпечення*. На одному комп'ютері може працювати одночасно кілька програм-серверів. Сервіси серверів часто визначають їх назву:

Cisco HTTP (WEB) сервер - дозволяє створювати найпростіші веб-сторінки і перевіряти проходження пакетів на 80-й *порт* сервера. Ці сервери надають *доструп* до веб-сторінок і супутнім ресурсів, наприклад, картинкам.

DHCP сервер - дозволяє організовувати пули мережевих налаштувань для автоматичної конфігурації мережевих інтерфейсів. *Dynamic Host Configuration Protocol* забезпечує автоматичний розподіл *IP*-адрес між комп'ютерами в мережі. Така технологія широко застосовується в локальних мережах з загальним вихо-

DNS сервер - дозволяє організувати службу розв'язання доменних імен. Φ ункція DNS -сервера полягає в перетворенні доменних імен серверів в IP -адреси.

дом в Інтернет.

Cisco EMAIL - *поштовий сервер*, для перевірки поштових правил. Електронний *лист* не можна послати безпосередньо одержувачу - спочатку він потрапляє на *сервер*, на якому зареєстрований обліковий *запис* відправника. Той, в свою *чергу*, відправляє "посилку" сервера одержувача, з якого останній і забирає повідомлення.

FTP - файловий *сервер*. У його завдання входить зберігання файлів і забезпечення доступу до них клієнтських ПК, наприклад, за протоколом *FTP* ресурси файл - сервера можуть бути або відкриті для всіх комп'ютерів в мережі, або захищені системою ідентифікації та правами доступу.

Отже, мережевий емулятор середовища Cisco *Packet Tracer* дозволяє проводити налаштування таких мережевих сервісів, як: *HTTP*, *DHCP*, *DNS*, *EMAIL*, *FTP* і ряду інших в складі сервера мережі. Розглянемо налаштування деяких з них.

Хід роботи

Завдання №1

Налаштовуємо WEB-сервер

Топологія для наших досліджень приведена на рис. 5.1.

Рис. 5.1. Схема мережі

Створюємо WEB-документ на сервері

Для створення HTTP-сервера відкриваємо на сервері вкладку HTTP і редагуємо першу сторінку сайту з назвою **index.html** . Включаємо службу HTTP перемикачем On(рис. 5.2).

Рис. 5.2. Вкладка Config, служба серверу HTTP

У вікні html-коду створюємо текст першої сторніки сайту **index.html**. Варіант 1 (рис 5.3).

```
<html>
<body>
<h1>Welcome to WEB-Server CISCO!</h1>
Server working: <font color="red"><b>OK!</b></font>
</body>
</html>
```


Рис. 5.3. Текст web-сторінки, варіант 1

Або варіант 2 (рис. 5.4).

Рис. 5.4. Текст web-сторінки, варіант 2

Порада: текст можна переносити в це вікно через буфер обміну. Він може бути тільки англійською мовою.

Для того, щоб перевірити працездатність нашого сервера, відкриваємо клієнтську машину (10.0.0.2 або 10.0.0.3) і на вкладці **Desktop** (Робочий стіл) запускаємо додаток **Web Browser** . Після чого набираємо адресу нашого WEB-сервера 10.0.0.1 і натискаємо на кнопку GO . Переконуємося, що наш веб-сервер працює.

Описана вище і повністю налаштованої мережу з WEB-сервером (файл task-6-1.pkt) додається.

Завдання №2 Налаштування мережевих сервісів DNS, DHCP і Web

Створіть схему мережі, представлену на рис 5.5.

Рис. 5.5. Схема мережі

Завдання полягає в тому, щоб налаштувати Server1 як DNS і Web-сервер, а Server2 як DHCP сервер. Робота DNS-сервера полягає в перетворенні доменних імен серверів у ІР-адреси. DHCP сервер дозволяє організовувати пули для автоматичної конфігурації мережевих інтерфейсів, тобто, забезпечує автоматичний розподіл ІР-адрес між комп'ютерами в мережі. Інакше кажучи, у нашому випадку комп'ютери отримують ІР-адреси завдяки сервісу DHCP Server2 і відкривають, наприклад, сайт на Server1.

Налаштовуємо IP адреси серверів і DHCP на ПК

Увійдіть в конфігурацію PC1 і PC2 і встановіть налаштування IP через DHCP сервер рис. 5.6.

Рис. 5.6. Налаштування IP на PC1

Задайте в конфігурації серверів настройки IP: Server1 - 10.0.0.1(рис. 5.7), Server2 - 10.0.0.2 (рис. 5.8). Маска підмережі встановиться автоматично як 255.0.0.0.

Рис. 5.7.

Рис. 5.8.

У конфігурації Server1 увійдіть вкладку DNS і задайте два ресурсні записи (Resource Records) у прямій зоні DNS.

Зона DNS - частина дерева доменних імен (включаючи ресурсні записи), що розміщується як єдине ціле на сервері доменних імен (DNS-сервері). У зоні прямого перегляду на запит доменного імені йде відповідь у вигляді ІР адреси. У зоні зворотного перегляду по ІР ми дізнаємося доменне ім'я ПК.

Спочатку в ресурсному записи типу **A Record** зв'яжіть доменне ім'я комп'ютера **server1.yandex.ru** з його **IP-адресою 10.0.0.1** і натисніть на кнопку **Add** (додати) і активуйте перемикач **On** - рис. 5.9.

Рис. 5.9. Введення ресурсного запису типу A Record

Далі в ресурсному запису типу **CNAME** зв'яжіть назву сайту з сервером і натисніть на кнопку **Add** (добати) – рис 5.10.

Рис. 5.10. Введення ресурсного запису типу CNAME

У результаті має вийти наступне (рис. 5.11).

Рис. 5.11. Служба DNS у прямій зоні

Тепер налаштуємо службу НТТР. У конфігурації Server1 увійдіть на вкладку НТТР і створіть стартову сторінку сайту (рис. 5.12).

```
<html>
<center><font size='+2' color='green'>Web Server</font></center>
www.yandex.ru

Hello!<br/>I am Server1
</html>
```

Рис. 5.12. Стартова сторінка сайту

Увімкніть командний рядок на Server1 і перевірте роботу служби DNS. Для перевірки правильності роботи прямої зони DNS сервера введіть команду SERVER> nslookup. Якщо все правильно налаштовано, то отримаємо відгук на запит із зазначенням доменного імені DNS-сервера в мережі і його IP-адреси (рис. 5.13)

Примітка: команда **nslookup** слугує для визначення IP-адреси за доменним ім'ям (і навпаки).

Рис. 5.13. Служба DNS у прямій зоні DNS на Server1 налаштована правильно

Налаштування служби DHCP на Server2

Увійдіть в конфігурацію Server2 і на вкладці DHCP налаштуйте службу DHCP. Для цього наберіть нові значення пулу, встановіть перемикач **On** і натисніть на кнопку **Save** (Зберегти) - рис. 5.14.

Рис. 5.14. Налаштування DHCP-сервера.

Перевірка роботи клієнтів

Увійдіть у конфігурацію хостів PC1 і PC2 і в командному рядку сконфігуруйте протокол TCP/IP. Для цього командою PC> ipconfig /release скиньте(очистіть) старі параметри IP адреси (рис. 5.15).

Рис. 5.15. Видалення конфігурації ІР-адрес для всіх адаптерів

Примітка: команда **ipconfig** /**release** надсилає повідомлення **DHCP RELEASE** серверу DHCP для звільнення поточної конфігурації DHCP і видалення конфігурації IP- адрес для всіх адаптерів (якщо адаптер НЕ заданий). Цей ключ від-ключає протокол TCP / IP для адаптерів , налаштованих для автоматичного отримання IP-адреси.

Командою PC> ipconfig /renew отримайте нові параметри від DHCP серверу (рис.5.16).

Рис. 5.16. Конфігурація протокол TCP/IP клієнта від DHCP серверу Аналогічно виконуємо для PC2 (рис. 5.17).

Рис. 5.17. PC2 отримав IP адрес від DHCP серверу Server2

Залишилося перевірити роботу WEB-сервера Server1 і відкрити сайт в браузері на PC1 або PC2 (рис. 5.18).

Рис. 5.18. Перевірка роботи служби HTTP на Server1

Описана в даному прикладі і повністю працездатна мережу з налаштуваннями мережевих сервісів DNS, DHCP і Web (файл task-6-2.pkt) додається.

Приклади роботи маршрутизатора у ролі DHCP сервера

Маршрутизація (routing) — процес визначення маршруту проходження інформації в мережах зв'язку. Завдання маршрутизації полягає у визначенні послідовності транзитних вузлів для передачі пакета від джерела до адресата. Визначення маршруту слідування і просування ІР-пакетів виконують спеціалізовані мережеві пристрої - маршрутизатори. Кожен маршрутизатор має від двох і більше мережевих інтерфейсів, до яких підключені локальні мережі або маршрутизатори сусідніх мереж.

Маршрутизатор (router, poymep) — мережевий пристрій третього рівня моделі OSI, що володіє як мінімум двома мережевими інтерфейсами, які знаходяться в різних мережах. Маршрутизатор може мати інтерфейси: для роботи по мідному кабелю, оптичному кабелю, так і по бездротовим "лініях" зв'язку.

Вибір маршруту *маршрутиза*мор здійснює на основі таблиці маршрутизації. Таблиці маршрутизації містять інформацію про мережі, і інтерфейсів, через які здійснюється безпосередньо підключення, а також містяться відомості про маршрути чи шляхи, по яким *маршрутизатор* зв'язується з віддаленими мережами, які до нього безпосередньо не підключені. Ці маршрути можуть призначатися адміністратором статично чи визначатись динамічно за допомогою програмного протоколу маршрутизації. *Таблиця* маршрутизації містить набір правил — записів, що складається з певних полів. Кожне правило містить наступні основні поля-компоненти:

- адресу ІР-мережі отримувача;
- маску;
- адресу наступного вузла, якому потрібно передати пакети;
- адміністративна відстань ступінь довіри до джерела маршруту;
- метрику деяку вагу вартість маршруту;
- інтерфейс, через який будуть просуватися дані.

Приклад таблиці маршрутизації:

Протокол DHCP ϵ cmandapmнum npomokonom, який дозволя ϵ серверу динамічно присвоювати клієнтам IP-адреси і відомості про конфігурацію. Ідея роботи DHCP сервісу така: на ПК задані налаштування отримання IP-адреси автоматично. Після включення і завантаження кожен ПК відправля ϵ широкомовний sanum в своїй мережі з питанням « ϵ тут sanum sanum

запит отримують всі комп'ютери в підмережі, але відповість на цей запит тільки *DHCP-сервер*, який відправить комп'ютеру вільну *IP-адресу* з пулу, а також маску і *адресу* шлюзу. *Комп'ютер* отримує параметри від *DHCP*-сервера і застосовує їх. Після перезавантаження ПК знову відправляє широкомовний запит і може отримати інші *IP-адреси* (перша вільна, яка знайдеться в пулі адрес на *DHCP* сервері).

Маршрутизатор можна конфігурувати як *DHCP-сервер*. Інакше кажучи, можна запрограмувати *інтерфейс* маршрутизатора на роздачу налаштувань для хостів. Системний *адміністратор* налаштовує на сервері *DHCP* параметри, які передаються клієнтові. Як правило, *сервер DHCP* надає клієнтам щонайменше: *IP-адресу*, маску підмережі і основний *шлюз*. Однак надаються і додаткові відомості, такі, наприклад, як *адреса* сервера *DNS*.

Завдання №3

Конфігурування DHCP сервера на маршрутизаторі

Схема мережі наведена на рис. 5.19. За допомогою налаштувань ПК, що представлені на рисунку, вказуємо хосту, що він має отримувати IP-*adpecy*, *adpecy* основного шлюзу *adpecy DNS* сервера від *DHCP*-сервера.

Рис. 5.19 Схема мережі

Проведемо налаштування R0:

Router (config)#ip dhcp pool TST створюємо *пул IP*-адрес для *DHCP* сервера з ім'ям *TST*.

Router (dhcp-config)#network 192.168.1.0 255.255.255.0 вказуємо з якої мережі будемо роздавати *IP*-адреси (перший *параметр - адреса* даної мережі, а другий *параметр* її *маска*).

Router (dhcp-config)#default-router 192.168.1.1 вказуємо адресу основного шлюзу, який буде розсилати в повідомленнях *DHCP*.

Router (dhcp-config)#dns-server 5.5.5 вказуємо *адресу DNS* сервера, який так само буде розсилатися хостам в повідомленнях *DHCP*.

Router (dhcp-config)#exit.

Router (config)#ip dhcp excluded-address 192.168.1.1 цей *хост* виключений з пулу, тобто, жоден з хостів мережі не отримає від *DHCP* сервера цю *адресу*.

Повний лістинг цих команд приведений на рис. 5.20.

Рис. 5.20. Команди для конфігурування R0

Перевіримо результат отримання динамічних параметрі в для РС0(рис. 5.21).

Рис. 5.21. DHCP працює

Перевіримо працездатніть DHCP-серверу на хості PC0 командою **ipconfig /all** (рис. 5.22).

Рис. 5.22. Хост отримав налаштування від DHCP-сервера

Хост успішно отримав *IP адресу*, *адресу* шлюзу і *адресу DNS*-сервера від *DHCP*-сервера R0.

Завдання №4

Приклад налаштування інтерфейсу маршрутизатора в якості DHCP клієнта

Схема мережі показана на рис 5.23.

Рис. 5.23. Схема мережі

Конфігуруємо *інтерфейс* Fa0/0 для R1(рис. 5.24).

Рис. 5.24. Конфігуруємо інтерфейс маршрутизатора Спостерігаємо результат(рис. 5.25).

Рис. 5.25. DHCP не працює

Після налаштування інтерфейсу роутера на отримання налаштувань по DHCP, DHCP клієнт на PC1 перестав отримувати IP-адреси - IP з діапазону 169.254.xx / 16 призначається автоматично самим ПК при проблемах з отриманням адреси по DHCP. Інтерфейс роутера IP-адреса так само не отримає, тому в даній підмережі немає DHCP-серверів.

Описані вище схеми представлені у вигляді одного файлу - Etask-6-3.pkt.

Завдання №5

DHCP сервіс на маршрутизаторі 2811

У цьому прикладі проконфігуруємо маршрутизатор 2811, а саме, налаштуємо на ньому DHCP-сервер, який буде видавати по DHCP адреси з мережі 192.168.1.0 (рис. 5.26). PC1 і PC2 будуть отримувати налаштування динамічно, а для сервера бажано мати постійну адресу, тобто, коли він заданий статично.

Рис. 5.26. Схема мережі

Примітка: як пристрій з постійною адресою можна включити ще і принтер.

1. Резервуємо 10 адрес

R1 (config)#ip dhcp excluded-address 192.168.1.1 192.168.1.10

Примітка: при виконанні цієї команди маршрутизатор R1 зобов'язаний не видавати адреси з 192.168.1.1 по 192.168.1.10 тому, що адреса 192.168.1.1 буде використовуватися самим маршрутизатором як шлюз, а решту адрес зарезервуємо під різні хости цієї мережі. Таким чином, перша *DHCP-адреса*, яка видасть R1 дорівнює **192.168.1.11**.

2. Створюємо пул адрес, які будуть видаватися з мережі 192.168.1.0

R1 (config)#ip dhcp pool POOL1

R1 (dhcp-config)#network 192.168.1.0 255.255.255.0

R1 (dhcp-config)#default-router 192.168.1.1

R1 (dhcp-config)#domain-name my-domain.com

R1 (dhcp-config)#dns-server 192.168.1.5

Примітка: згідно з налаштуваннями видавати адресу з мережі 192.168.1.0 (крім виключених) буде маршрутизатор R1 через шлюз 192.168.1.1.

3. Налаштовуємо інтерфейс маршрутизатора

R1 (config)#interfacefa0/0

R1 (config-if)#ip address 192.168.1.1 255.255.255.0

R1 (config-if)#no shutdown

R1 (config-if)#exit

R1(config)#exit

R1#

Примітка: команда по shut (скорочення від по shutdown) використовується для того, щоб інтерфейс був активним. Зворотня команда - shut, вимкне інтерфейс.

4. Перевірка результату

Тепер обидва ПК отримали налаштування і командою R1#show ip dhcp binding можна переглянути *список* виданих роутером адрес (рис. 5.27).

Рис. 5.27. Адреси видаються автоматично, починаючи з адреси 192.168.1.11

Отже, бачимо, що протокол DHCP дозволяє проводити автоматичне налаштування мережі на всіх комп'ютерах (рис. 5.28).

Рис. 5.28. PC1 і PC2 отримують IP адреси від DHCP сервера

Робоча *мережа* даного прикладу додається у вигляді файлу - <u>task-6-4.pkt</u>.