Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Практикум на ЭВМ Отчёт № 3

Параллельная программа на MPI и OpenMP, реализующая однокубитное квантовое преобразование с шумами

Работу выполнил

Сайбель Т. А.

Описание функций, типов и переменных библиотеки quantum.h

complexd ~ std::complex<double>

complexd *read(const char *f, int *n)

Читает вектор состояний из файла file.

void write(const char *f, const complexd *A, unsigned int n)

Записывает вектор состояний A для n кубитов в файл file.

int convert(const complexd *A, complexd *B, unsigned int n, unsigned int i, complexd **P, const unsigned int *k, complexd *BUF = nullptr)

Производит і-кубитное квантовое преобразование вектора состояний A для n кубитов квантовым вентилем P (указатель на двумерный complexd массив размера $2^i \times 2^i$) над кубитами k (указатель на unsigned int массив размера i). Записывает полученный вектор (участок для каждого процесса) в B. Позволяет для оптимизации напрямую указывать буфер BUF для хранения данных, присылаемых с других процессов (должен быть не меньше необходимого размера). Возвращает 0, если не возникло ошибок.

complexd *qubitConvert(const complexd *A, unsigned int n, unsigned int i, complexd **P, const unsigned int *k)

Производит і-кубитное квантовое преобразование вектора состояний A для n кубитов квантовым вентилем P (указатель на двумерный complexd массив размера $2\ i \times 2\ i$) над кубитами k (указатель на unsigned int массив размера i). Возвращает каждому процессу указатель на complex d массив — участок полученного вектора.

complexd *Hadamard(const complexd *A, unsigned int n, unsigned int k)

Производит однокубитное квантовое преобразование Адамара вектора состояний А для n кубитов над кубитом k. Возвращает каждому процессу указатель на complexd массив – участок полученного вектора.

complexd *nHadamard(const complexd *A, unsigned int n)

Производит n-Адамар преобразование вектора состояний А для n кубитов.

Возвращает каждому процессу указатель на complexd массив – участок полученного вектора.

complexd *NOT(const complexd *A, unsigned int n, unsigned int k)

Производит отрицание вектора состояний A для n кубитов над кубитом k. Возвращает каждому процессу указатель на complexd массив — участок полученного вектора.

complexd *CNOT(const complexd *A, unsigned int n, unsigned int k1, unsigned int k2)

Производит контролируемое отрицание вектора состояний А для n кубитов над кубитами k1 и k2. Возвращает каждому процессу указатель на complexd массив – участок полученного вектора.

complexd *ROT(const complexd *A, unsigned int n, unsigned int k, double a)

Производит фазовый сдвиг на угол alfa вектора состояний A для n кубитов над кубитом k. Возвращает каждому процессу указатель на complexd массив — участок полученного вектора.

complexd *CROT(const complexd *A, unsigned int n, unsigned int k1, unsigned int k2, double a)

Производит контролируемый поворот на угол alfa вектора состояний A для n кубитов над кубитами k1 и k2. Возвращает каждому процессу указатель на complexd массив – участок полученного вектора.

void init()

Инициализирует библиотеку. Устанавливает значения переменных, указанных ниже.

int rank номер MPI процесса

int size количество MPI процессов (должно быть 2ⁿ)

int logSizeдвоичный логарифм от sizeint threadsколичество OpenMP потоковbool initFlagtrue, если init() уже вызывалась

unsigned long long numOfDoubles(int n)

Вычисляет размер участка вектора состояний для п кубитов на процессе (размер массива).

unsigned long long *getMasks(unsigned int i, const unsigned int *k, unsigned int len)

Вычисляет побитовые маски, последовательно переключая биты с номерами из массива k длины i (нумерация начиная с позиции len слева направо). Возвращает указатель на массив размера 2^{i} .

unsigned int *getRanks(unsigned int i, const unsigned int *k)

Вычисляет номера MPI процессов, с которыми текущему процессу необходимо совершить обмен данными, для выполнения i-кубитного квантового преобразования над кубитами k. Возвращает указатель на массив, нулевой элемент которого – количество процессов n, остальные n элементов – номера этих процессов.

Результаты выполнения