MAT-255	5– Number Theory	Spring 2024	In Class Work January 26
Your Nam	ne:	Group Members:	
		aduction to prove each statemen	
Problem	1 For all $n \in \mathbb{N}$, 3 divides 4	$^{n}-1.$	
Proof W	Te proceed by induction. The	base case is $n = 1$. Since	, we are done.
The inducti	on hypothesis is that if $k \ge 1$	and $n = k$, then	We want to show that
Complete tl	he proof:		
			•
Problem 2	2 Let $p_1, p_2,, p_n$ be n dis	tinct points arranged on a circle	e. Then the number of line segments joining
	points is $\frac{n^2-n}{2}$.		
Proof W	Te proceed by induction. The	base case is $n = 1$. Since	we are done
The inducti	fon hypothesis is that if $k \ge 1$	and $n = k$, then	
We want to	show that		
Complete tl	he proof:		
Complete tl	he proof:		
Complete tl	he proof:		
Complete tl	he proof:		

Problem 3 If n is a positive integer, then

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Proof We proceed by induction. The base case is n = 1. Since ______, we are done. The induction hypothesis is that if $k \ge 1$ and n = k, then

We want to show that

Complete the proof:

Problem 4 If n is an integer with $n \geq 5$, then

$$2^n > n^2$$
.

Proof We proceed by induction. The base case is n = 5. Since ______, we are done. The induction hypothesis is that if $k \ge 5$ and n = k, then _____. We want to show that _____. Complete the proof:

Recall the notation gcd(a, b) = (a, b).

Problem 5 Let $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ with $a_1 \neq 0$. Prove that

$$(a_1,\ldots,a_n)=((a_1,a_2,a_3,\ldots,a_{n-1}),a_n).$$

Proof We proceed by induction. The base case is n = 2, since the statement we are trying to prove requires at least two inputs. Since

we are done.

The induction hypothesis is that if $k \geq 2$ and n = k, then

We want to prove that

 $Complete \ the \ proof:$

Problem 6 Redo the following proofs using induction:		
Problem 6.1 Let $n \in \mathbb{Z}$. Prove that $3 \mid n^3 - n$.		
Proof We proceed by induction. The base case is $n = 1$. Since	, we are done.	
The induction hypothesis is that if $k \geq 1$ and $n = k$, then	We want to show that	
Problem 6.2 Let $n \in \mathbb{Z}$. Prove that $5 \mid n^5 - n$.		
Proof We proceed by induction. The base case is $n = 1$. Since	, we are done.	
The induction hypothesis is that if $k \geq 1$ and $n = k$, then	We want to show that	
		_