Formálny jazyk

21. septembra 2013

21.15

Abeceda je ľubovoľná konečná množina.

Slovo nad abecedou Σ je ľubovoľná konečná postúpnosť znakov tejto abecedy.

Jazyk nad abecedou Σ je ľubovoľná množina slov nad Σ .

Slovo u je **podslovom** slova v, ak existujú slova x, y také, že v = x.u.y.

Gramatika G je štvorica (N, Σ , P, S), kde

- N je neprázdna konečná množina neterminálnych symbolov (neterminálov).
- Σ je konečná množina **terminálnych symbolov (terminálov)** také, že N \cap Σ = \emptyset . Zjednotením N a Σ obdržíme množinu **všetkých symbolov** gramatiky, ktorú obvykle označujeme symbolom V.
- $P \subseteq V^*NV^* \times V^*$ je konečná množina **pravidiel**. Pravidlo (α, β) obvykle zapisujeme v tvare $\alpha \to \beta$ (α prepíš na β).
- **S** ∈ N je špeciálny **počiatočný neterminál** (koreň gramatiky).

Gramatika $G = (N, \Sigma, P, S)$ určuje reláciu \Rightarrow_G **krok odvodenia** na množine V^* , $\gamma \Rightarrow_G \delta$ práve vtedy, keď existuje pravidlo $\alpha \to \beta \in P$ a slová γ , $\gamma \in V$ také, že platí $\gamma = \gamma \alpha \sigma$ a $\delta = \gamma \beta \sigma$.

Vetná forma gramatiky G je každý reťazec z množiny V^* , ktorý je možné odvodiť z počiatočného neterminálu gramatiky.

Veta gramatiky *G* je každá vetná forma, ktorá obsahuje iba terminály.

Jazyk generovaný gramatikou G, L(G) je množina všetkých viet gramatiky. $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}$

Chomského hierarchia gramatík

Typ 0 = frázové gramatiky

Typ 1 = **kontextové gramatiky**, pre každé pravidlo $\alpha \rightarrow \beta$ platí $|\alpha| \le |\beta|$ s eventuálnou výnimkou pravidla $S \rightarrow \varepsilon$, ak sa S nevyskytuje na pravej strane žiadneho pravidla.

Typ 2 = bezkontextové gramatiky, každé pravidlo je v tvare $A \to \alpha$ platí $|\alpha| \ge 1$ s eventuálnou výnimkou pravidla $S \to \varepsilon$, ak sa S nevyskytuje na pravej strane žiadneho pravidla.

Typ 3 = regulárne gramatiky, každé pravidlo je v tvare $A \to aB$ alebo $A \to a$ s eventuálnou výnimkou pravidla $S \to \varepsilon$, ak sa S nevyskytuje na pravej strane žiadneho pravidla.

 L_0 = trieda všetkých rekurzívne spočetných jazykov L_1 = trieda všetkých kontextových jazykov

L₂ = trieda všetkých bezkontextových jazykov

L₃ = trieda všetkých regulárych jazykov

Platí: $L_0 \supset L_1 \supset L_2 \supset L_3$

Konečné automaty

30. septembra 2013

Deterministický konečný automat (DFA) M je pätica (Q, Σ , δ , q₀, F), kde

- **Q** je neprázdna konečná množina **stavov**.
- Σ je konečná vstupná abeceda.
- $\delta : Q \times \Sigma \rightarrow Q$ je parciálna **prechodová funkcia**.
 - $\delta^{\hat{}}$: Q × Σ^* → Q je parciálna rozšírená prechodová funkcia.
- q₀ ∈ Q je počiatočný (iniciálny) stav.
- **F** ⊆ Q je množina **koncových (akceptujúcich) stavov**.

Jazyk, ktorý je rozpoznateľný deterministickým konečným automatom, nazývame **regulárny**.

Trieda regulárnych jazykov je uzavrená na operáciach:

- prienik ∩
- prienik s regulárnym jazykom ∩^R
- zjednotenie ∪
- rozdiel \
- iterácia *
- kladná iterácia +
- reverse R
- zreťazenie .
- doplnok co-

Pumping lemma.

```
L je regulárny jazyk \Rightarrow \exists n \in \mathbb{N}  \forall w \in L \colon |w| \ge n   \exists x, y, z \colon w = xyz \land y \ne \epsilon \land |xy| \le n   \forall i \ge 0 \colon xy^iz \in L
```

L nie je regulárny jazyk $\Rightarrow \forall n \in \mathbb{N}$

```
\exists w \in L: |w| \ge n
\forall x, y, z: w = xyz \land y \ne \varepsilon \land |xy| \le n
\exists i \ge 0: xy^iz \notin L
```

Ekvivalencia ~ je **pravá kongruencia**, ak pre každé *u, v, w* $\in \Sigma^*$ platí: u ~ v \Rightarrow uw ~ vw.

Index ekvivalencie \sim je počet tried rozkladu Σ^*/\sim .

Nech L je ľubovoľný jazyk nad abecedou Σ . Na množine Σ^* definujeme \sim_L nazvanú **prefixová ekvivalencia** pre L takto: u \sim_L v $\Leftrightarrow \forall w \in \Sigma^*$: uw \in L \Leftrightarrow vw \in L.

Myhill-Nerodová veta:

Nech L je jazyk nad Σ. Tak tieto tvrdenia sú ekvivalentné:

- L je rozpoznateľný deterministickým konečným atomatom.
- L je zjednotením niektorých tried rozkladu určeného pravou kongruenciou nad Σ* s konečným indexom.
- Relácia ~∟ má konečný index.

Nech $M = (Q, \Sigma, \delta, q_0, F)$ je DFA. Stav $q \in Q$ nazveme **dosiahnuteľný**, ak existuje $w \in \Sigma^*$ také, že $\delta^*(q_0, w) = q$. Stav je **nedosiahnuteľný**, ak nie je dosiahnuteľný.

Stavy p,q nazývame **jazykovo ekvivalentné**, ak: $p \equiv q \Leftrightarrow \forall w \in \Sigma : (\delta^{(p, w)} \in F \Leftrightarrow \delta^{(q, w)} \in F)$.

Nedeterministický konečný automat (NFA) M je pätica (Q, Σ , δ , q_0 , F), kde význam všetkých zložiek je rovnaký ako v definícií DFA s výnimkou prechodovej funkcie

- $\delta : Q \times \Sigma \rightarrow 2^Q$ je totálna prechodová funkcia.
 - $\delta^{\hat{}}$: Q × $\Sigma^* \rightarrow 2^Q$ je totálna rozšírená prechodová funkcia.

Nedeterministický konečný automat s ε-**krokmi (NFA)** M je pätica (Q, Σ , δ, q₀, F), kde význam všetkých zložiek je rovnaký ako v definícií NFA s výnimkou prechodovej funkcie

- $\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$ je totálna **prechodová funkcia**.
 - $\circ \quad \textbf{D}_{\epsilon}:Q\rightarrow 2^Q \text{ je } \textbf{ϵ okolie}.$
 - $\delta^{\hat{}}$: Q × $\Sigma^* \rightarrow 2^Q$ je totálna rozšírená prechodová funkcia.

Regulárny prechodový graf (RE) M je pätica (Q, Σ , δ , I, F), kde

- **Q** je neprázdna konečná množina **stavov**.
- Σ je vstupná abeceda.
- δ : Q × Q \rightarrow RE(Σ) je parciálna **prechodová funkcia**.
- I ⊆ Q je množina počiatočných stavov.
- **F** ⊆ Q je množina **koncových stavov**.

Problém **ekvivalencie**: L(M) = L(M'). Problém **inklúzie**: $L(M) \subseteq L(M')$.

Problém **príslušnosti**: $w \in \Sigma$, $w \in L(M)$.

Problém **prázdnosti**: $L(M) = \emptyset$. Problém **univerzality**: $L(M) = \Sigma$.

Problém konečnosti: L(G) je konečný jazyk.

Bezkontextové gramatiky

21. októbra 2013 11:02

Bezkontextová gramatiky (CFG) G je štvorica (N, Σ , P, S), kde

- N je neprázdna konečná množina neterminálnych symbolov.
- Σ je konečná množina **terminálnych symbolov** taká, že N \cap $\Sigma = \emptyset$.
- **S** ∈ N je počiatočný neterminál.
- **P** ⊆ N × V* je konečná množina **pravidiel**.

Jazyk je **bezkontextový**, ak je generovaný nejakou bezkontextovou gramatikou.

Trieda bezkontextových jazykov **je uzavrená** na operáciach:

- prienik s regulárnym jazykom \cap^R
- zjednotenie ∪
- iterácia *
- kladná iterácia †
- reverse R
- zreťazenie.

Nech $G = (N, \Sigma, P, S)$ je CFG. Tak pre ľubovoľné $\alpha \in (N \cup \Sigma)^*$ platí $S \Rightarrow^* \alpha$ práve vtedy, keď v G existuje **derivačný strom** s výsledkom α .

CFG G sa nazýva **viacznačná** práve vtedy, keď existuje $w \in L(G)$ majúce aspoň dva rôzne stromy. V opačnom prípade hovoríme, že G je **jednoznačná**.

Bezkontextový jazyk *L* sa nazýva **vnútorne viacznačný** práve vtedy, keď každá bezkontextová gramatika, ktorá ho generuje, je viacznačná.

Symbol $X \in \mathbb{N} \cup \Sigma$ je **nepoužiteľný** v CFG $G = (\mathbb{N}, \Sigma, P, S)$ práve vtedy, keď v G neexistuje derivácia tvaru $S \Rightarrow^* wXy \Rightarrow^* wxy$ pre žiadne w, x, y $\in \Sigma^*$. Povedzme, že G je **redukovaná**, ak neobsahuje žiadne nepoužiteľné symboly.

Jednoduchým pravidlom nazývame každé pravidlo tvaru $A \rightarrow B$, kde A, $B \in N$.

CFG $G = (N, \Sigma, P, S)$ sa nazýva **necyklická** práve vtedy, keď neexistuje $A \in N$ také, že $A \Rightarrow^+ A$.

G sa nazýva **vlastná** práve vtedy, keď je bez nepoužiteľných symbolov, bez ε-pravidiel a necyklická.

Bezkontextová gramatika $G = (N, \Sigma, P, S)$ je v **Chomského normálne forme (CNF)** \Leftrightarrow G je bez ε-pravidiel a každé pravidlo z P má jeden z týchto tvarov:

- $A \rightarrow BC$, kde B, $C \in N$
- $A \rightarrow a$, $kde \ a \in \Sigma$
- $S \rightarrow \epsilon$

Pumping lemma pre CFL.

```
Full ping lemma pre CFL:  |z| \ge n   \forall z \in L: |z| \ge n   \exists u, v, w, x, y: z = uvwxy \land (v \ne \epsilon \lor x \ne \epsilon) \land |vwx| \le n   \forall i \ge 0: uv^iwx^iy \in L   L \text{ nie je CFL} \Rightarrow \forall n \in \mathbb{N}   \exists z \in L: |z| \ge n   \forall u, v, w, x, y: z = uvwxy \land (v \ne \epsilon \lor x \ne \epsilon) \land |vwx| \le n   \exists i \ge 0: uv^iwx^iy \notin L
```

Neterminál A v CFG $G = (N, \Sigma, P, S)$ sa nazýva **ľavorekurzívny**, ak v G existuje derivácia A \Rightarrow ⁺ A β . CFG bez ľavorekurzívnych neterminálov sa nazýva **neľavorekurzívny**.

Bezkontextová gramatika $G = (N, \Sigma, P, S)$ je v **Greibachovej normálna forme (GNF)** \Leftrightarrow G je bez ε -pravidiel a každé pravidlo z P má jeden z týchto tvarov:

• $A \rightarrow a\alpha$, kde $a \in \Sigma$, $\alpha \in N^*$

S prípadnou výnimkou pravidla S $\rightarrow \epsilon$.

Rozhodnuteľné problémy pre CFL:

- problém príslušnosti: Existuje algoritmus, ktorý pre ľubovoľnú CFG G a slovo w rozhoduje, či w ∈ L(G).
- problém prázdnosti: Existuje algoritmus, ktorý pre ľubovoľnú CFG G a slovo w rozhoduje, či L(G) = Ø.
- **problém konečnosti**: Existuje algoritmus, ktorý pre ľubovoľnú CFG *G* a slovo w rozhoduje, či L(*G*) je konečný.
- **problém regularity**: **Ne**existuje algoritmus, ktorý pre ľubovoľnú CFG *G* a slovo w rozhoduje, či L(*G*) je regulárny.
- problém univerzality: Neexistuje algoritmus, ktorý pre ľubovoľnú CFG G a slovo w rozhoduje, či
 L(G) = Σ*.
- **problém ekvivalencie a inklúzie**: Nie sú rozhodnuteľné (plynie z nerozhodnuteľnosti problému univerzality).

Zásobníkové automaty

4. novembra 2013 10:

Nedeterministický zásobníkový automat (PushDown Automaton, PDA) je sedmica $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde

- **Q** je konečná množina, ktorej prvky nazývame **stavy**.
- Σ je konečná množina, tzv. vstupná abeceda.
- Γ je konečná množina, tzv. zásobníková abeceda.
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow P_{Fin}(Q \times \Gamma^*)$, tzv. parciálna **prechodová funkcia**.
- q₀ ∈ Q je počiatočný stav.
- Z₀ ∈ Γ je počiatočný symbol v zásobníku.
- **F** ⊆ Q je množina **koncových stavov**.

Konfiguráciu nazývame ľubovoľný prvok (p, w, a) $\in Q \times \Sigma^* \times \Gamma^*$.

Na množine všetkých konfigurácií automatu M definujeme binárnu reláciu **krok výpočtu** \vdash_M takto: $(p, aw, Z\alpha) \vdash_M (q, w, \gamma\alpha) \Leftrightarrow \exists (q, \gamma) \in \delta(p, a, Z), a \in \Sigma \cup \{\epsilon\}.$

Rozšírený zásobníkový automat je sedmica $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde význam všetkých zložiek je rovnaký ako v definícií PDA s výnimkou prechodovej funkcie

• $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma^* \rightarrow Q \times \Gamma^*$.

Krok výpočtu \vdash_R pre rozšírený PDA definujeme takto: $(p, aw, \gamma_1 \alpha) \vdash_R (q, w, \gamma_2 \alpha) \Leftrightarrow \exists (q, \gamma_2) \in \delta(p, a, \gamma_1), a \in \Sigma \cup \{\epsilon\}.$

Deterministický zásobníkový automat (Deterministic PushDown Automaton, DPDA) je sedmica

 $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, kde význam všetkých zložiek je rovnaký ako v definícií PDA a platia tieto podmienky:

- $\forall q \in Q \text{ a } \forall Z \in \Gamma$: $\delta(q, \epsilon, Z) \neq \emptyset \Rightarrow \delta(q, a, Z) = \emptyset \text{ pre všetky a } \in \Sigma$.
- Pre žiadne $q \in Q$, $\forall Z \in \Gamma$ a $a \in \Sigma \cup \{\epsilon\}$ neobsahuje $\delta(q, a, Z)$ viac než jeden prvok.

Trieda deterministických bezkontextových jazykov (DCFL) je uzavrená na operáciach:

- prienik s regulárnym jazykom ∩^R
- doplnok co-

Turingov stroj

11. novembra 2013

Turingov stroj (TM) je $M = (Q, \Sigma, \Gamma, \triangleright, \sqcup, \delta, q_0, q_{acc}, q_{rej})$, kde

- **Q** je konečná množina, ktorej prvky nazývame **stavy**.
- **Σ** je konečná množina, tzv. **vstupná abeceda**.
- Γ je konečná množina, tzv. **pracovná abeceda** $\Sigma \subseteq \Gamma$.
- ▷ ∈ Γ \ ∑ je ľavá koncová značka.
- $\sqcup \in \Gamma \setminus \Sigma$ je symbol označujúci **prázdne políčko**.
- $\delta: (Q \setminus \{q_{acc}, q_{rei}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$, tzv. totálna **prechodová funkcia**.
- q₀ ∈ Q je počiatočný stav.
- q_{acc} ∈ Q je akceptujúci stav.
- q_{rej} ∈ Q je zamietajúci stav.

Konfigurácia Turingového stroja je trojica $(q, z, n) \in Q \times \{y \sqcup^{\omega} \mid y \in \Gamma \} \times \mathbb{N}_0$, kde

- q je stav.
- **y**⊔^ω je obsah pásky.
- n značí pozíciu hlavy na páske.

Počiatočná konfigurácia pre vstup $w \in \Sigma^*$ je trojica $(q_0, \triangleright w \sqcup^{\omega}, 0)$.

Akceptujúca konfigurácia je každá trojica tvaru (q_{acc}, z, n).

Zamietajúca konfigurácia je každá trojica tvaru (q_{rej}, z, n).

k-páskový Turingov stroj je $M = (Q, \Sigma, \Gamma, \triangleright, \sqcup, \delta, q_0, q_{acc}, q_{rej})$, kde význam všetkých zložiek je rovnaký ako v definícií TM s výnimkou prechodovej funkcie:

• δ : (Q \ {q_{acc}, q_{rej}}) × Γ ^k \rightarrow Q × Γ ^k × {L, R}^k, tzv. totálna **prechodová funkcia**.

Nedeterministický Turingov stroj je $M = (Q, \Sigma, \Gamma, \triangleright, \sqcup, \delta, q_0, q_{acc}, q_{rej})$, kde význam všetkých zložiek je rovnaký ako v definícií TM s výnimkou prechodovej funkcie:

• $\delta: (Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L, R\}}$, tzv. totálna **prechodová funkcia**.

Churchova-Turingova téza: Každý proces, ktorý ide nazvať algoritmom, je možné realizovať na Turingovom stroji.

TM M akceptuje/rozpoznáva/príjima jazyk L(M).

Jazyk L(M) je rekurzívne vyčislíteľný.

Ak je TM *M* úplny, hovoríme, že *M* **rozhoduje** jazyk L(*M*).

Jazyk L(M) je **rekurzívny**.

Trieda rekurzívne vyčislíteľných a rekurzívnych jazykov **je uzavrená** na operáciach:

- prienik ∩
- zjednotenie ∪
- zreťazenie.
- iterácia *
- doplnok co- (neplatí pre rekurzívne spočetné jazyky)

Problém P odpovedajúci jazyku L ={<O> | O má vlastnosť P} je:

- rozhodnuteľný práve vtedy, keď L je rekurzívny.
- nerozhodnuteľný práve vtedy, keď L je nie rekurzívny.
- čiastočne rozhodnuteľný (semirozhodnuteľný) práve vtedy, keď L je rekurzívne spočetný.

Problém akceptovania (problém príslušnosti pre Turingov stroj) je problém rozhodnúť, či daný TM *M* akceptuje dané slovo w nad jeho vstupnou abecedou.

 $ACC = \{ \langle M, w \rangle \mid M \text{ je TM a } M \text{ akceptuje } w \}.$

Problém zastavenia (halting problem) je problém rozhodnúť, či daný TM *M* akceptuje dané slovo w nad jeho vstupnou abecedou.

 $HALT = \{ \langle M, w \rangle \mid M \text{ je TM, výpočet } M \text{ na w je konečný} \}.$

Funkcia $f: \Sigma^* \to \Phi^*$ je **vyčislíteľná**, ak existuje TM M, ktorý na vstupu w zastaví, práve keď f(w) je definovaná a naviac f(w) = M(w).

Funkcia je totálne vyčislíteľná, ak je vyčislíteľná a totálna.

Nech $A \subseteq \Sigma^*$ a $B \subseteq \Phi^*$ sú jazyky. Povedzme, že A sa **m-redukuje** na B, píšeme $A \leq_m B$, práve keď existuje totálne vyčislíteľná funkcia $f: \Sigma^* \to \Phi^*$ taká, že:

 $w \in A \Leftrightarrow f(w) \in B$.

Funkciu f nazývame **redukcia** A na B.

A a B sú **m-ekvivalentné**, píšeme $A \equiv_m B$, ak $A \leq_m B$ a $B \leq_m A$.

Problém neprázdnosti je problém rozhodnúť, či daný TM akceptuje neprázdny jazyk. $NONEMPTY = \{ \langle M \rangle \mid M \text{ je TM a L}(M) \neq \emptyset \}.$

Postov systém P nad abecedou Σ je konečná množina dvojíc:

 $P = \{(\alpha_i, \beta_i) \mid \alpha_i, \beta_i \in \Sigma^*, 1 \le i \le n\}.$

Postov korešpondenčný problém (PCP) je problém rozhodnúť, či má Postov systém *P* nejaké riešenie. *PCP* = {<*P*> | *P* je Postov systém, ktorý má nejaké riešenie}.

Iniciálny Postov korešpondenčný problém (inPCP) je problém rozhodnúť, či má Postov systém *P* nejaké riešenie začínajúce číslom 1.

 $inPCP = \{ < P > \mid P \text{ je Postov systém, ktorý má riešenie začínajúce číslom 1} \}.$

Teóra vyčísliteľnosti a zložitosti

2. decembra 2013

9:20

Nech M je **úplny deterministický Turingov** stroj so vstupnou abecedou Σ. Pre každé $w \in \Sigma^*$ definujeme $t_M(w)$ ako počet krokov výpočtu stroja M na vstupu w.

Časová zložitosť stroja *M* je funkcia $T_M : \mathbb{N}_0 \to \mathbb{N}$ definovaná vzťahom:

 $T_M(n) = \max\{t_M(w) \mid w \in \Sigma^n\}.$

O-notácia:

Nech f, g : $\mathbb{N}_0 \to \mathbb{R}^+$ sú funkcie. Povedzme, že g je **asymptotická horná závora** pre f, a píšeme f \in O(g) alebo f = O(g), ak existujú konštanty c, $n_0 \in \mathbb{N}$ také, že:

 $\forall n \geq n_0 : f(n) \leq cg(n)$.

o-notácia:

Nech f, g : $\mathbb{N}_0 \to \mathbb{R}^+$ sú funkcie. Povedzme, že g rastie asymptoticky rýchlejšie než f, a píšeme $f \in o(g)$ alebo f = o(g), ak

$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)} \right) = 0.$$

Časová zložitosť problému je najmenšia časová zložitosť, s akou je možné daný problém rozhodnúť.

Nech M je **úplny nedeterministický Turingov** stroj so vstupnou abecedou Σ. Pre každé $w \in \Sigma^*$ definujeme $t_M(w)$ ako počet krokov najdlhšieho výpočtu stroja M na vstupu w.

Časová zložitosť stroja M je funkcia $T_M : \mathbb{N}_0 \to \mathbb{N}$ definovaná vzťahom:

 $T_M(n) = \max\{t_M(w) \mid w \in \Sigma^n\}.$

Problém existencie cesty je problém rozhodnúť, či v danom orienotvanom grafe G existuje cesta z S do t. PATH = $\{ \langle G, S, t \rangle \mid G$ je orientovaný graf obsahujúci cestu z S do S.

Hamiltonovská cesta je cesta prechadzajúca každým uzlom práve jeden krát.

Problém Hamiltonovskej cesty je problém rozhodnúť, či v danom orienotvanom grafe G existuje Hamiltonovská cesta z S do S.

 $\mathsf{HAMPATH} = \{ \langle G, s, t \rangle \mid G \text{ je orientovaný graf obsahujúci Hamiltonovskú cestu z } s \text{ do } t \}.$

Problém zložených čísel je problém rozhodnúť, či je dané číslo *x* zložené, teda či je súčinom dvoch čísel väčších než 1.

COMPOSITES = $\{ \langle x \rangle \mid x = pq \text{ pre nejaké prirodzené čísla } p, q > 1 \}$.

Polynomiálny verifikátor pre jazyk L je deterministický TM *V* splňujúci

w ∈ L ⇔ existuje reťazec c taký, že V akceptuje <w, c> a pracujúci v polynomiálnom čase vzhľadom k |w|.

Nech $A \subseteq \Sigma^*$ a $B \subseteq \Phi^*$ sú jazyky. Povedzme, že A sa **polynomiálne redukuje** na B, píšeme $A \le_p B$, práve keď $A \le_m B$ a redukčná funkcia f je vyčislíteľná Turingovým strojom pracujúcim v polynomiálnom čase. Funkcia f nazývame **redukcia** A na B **v polynomiálnom čase.**

Nech C je zložitostná trieda. Jazyk L nazveme **ťažký** v triede C (C-ťažky), práve keď pre každý jazyk L' $\in C$ platí L' $\leq_{0} C$.

Povedzme, že L je **úplny** v triede C (C-**úplny**), ak naviac L $\in C$.

Problém splniteľnosti je problém rozhodnúť, či je daná Booleovská formula splniteľná. SAT = $\{ < \phi > \mid \phi \text{ je splniteľná Booleovská formula} \}$.

Konjuktívna normálna forma (cnf) formulí

- literál je premenná alebo jej negácia
- klauzula je disjunkcia literálov
- formula v cnf je konjunkcia klauzulí
- formula v 3cnf je formula v cnf, kde všetky klauzule obsahujú 3 literály

Problém rozhodnuteľnosti je problém rozhodnúť, či je daná Booleovská formula v 3cnf forme splniteľná. $3SAT = {\langle \phi \rangle \mid \phi \text{ je splniteľná formula v 3cnf}}.$

```
    Φ = Φ<sub>cell</sub> ∧ Φ<sub>start</sub> ∧ Φ<sub>move</sub> ∧ Φ<sub>accept</sub>
    Φ<sub>cell</sub>

            každé x<sub>i,j,s</sub> platí ⇔ v tabuľke na pozícii i, j je symbol s, kde s ∈ C = Q ∪ Γ ∪ {#}
            O(n<sup>2k</sup>)

    Φ<sub>start</sub>

            na prvom riadku je iniciálna konfigurácia pre w = w<sub>1</sub>w<sub>2</sub> ... w<sub>n</sub>
            O(n<sup>k</sup>)

    Φ<sub>move</sub>

            každé okno tabuľky je legálne
            O(n<sup>2k</sup>)

    Φ<sub>accept</sub>

            v tabuľke je stav q<sub>acc</sub>
```

 \circ O(n^{2k}) | Φ | = O(n^{2k}) + O(n^k) + O(n^{2k}) + O(n^{2k}) = O(n^{2k})

Nech M je **úplny deterministický Turingov** stroj so vstupnou abecedou Σ . Pre každé $w \in \Sigma^*$ definujeme $s_M(w)$ ako **počet políčok pásky**, ktoré stroj M číta pri výpočtu na vstupu w. **Priestorová zložitosť** stroja M je funkcia $S_M : N_0 \to N$ definovaná vzťahom: $S_M(n) = \max\{s_M(w) \mid w \in \Sigma^n\}$.

U úplneho nedeterministického Turingového stroja $s_M(w)$ označuje maximálny počet políčok pásky.

Priestorová zložitosť problému je najmenšia piestorová zložitosť, s akou je možné problém rozhodnúť. Každá funkcia $f: N \to N$ definuje **priestorovú zložitostnú triedu problémov**: SPACE(f(n)) = {L| L je rozhodovaný deterministickým TM M s priestorovou zložitosťou $S_M(n) = O(f(n))$ }. NSPACE(f(n)) = {L| L je rozhodovaný nedeterministickým TM N s priestorovou zložitosťou $S_N(n) = O(f(n))$ }.

Savitchova veta: pre každú funkciu $f: N \to N$ splňujúcu $f(n) \ge n$ platí: NSPACE(f(n)) \subseteq SPACE($f^2(n)$).

Vzťahy priestorových a časových tried:

 $P \subseteq NP \subseteq PSPACE = NSPACE \subseteq EXPTIME \subseteq NEXPTIME$

QBF je kvantifikovaná Booleovská formula.

Problém TQBF je problém rozhodnúť, či je daná QBF formula bez voľných premenných pravdivá. $TQBF = \{ \langle \phi \rangle \mid \phi \text{ je pravdivá QBF formula bez voľných premenných} \}.$

Zhrnutie

6. februára 2014 15:27

Uzáverové vlastnosti

Jazyk	Množinové operácie		
RE	$\cap \cap^{R} \cup \setminus^{*+R}$. co-		
CFL	∩ ^R U * + ^R .		
CSL	∩ U *.		
DCFL	∩ ^R co-		
Rekurzívny	∩ U * . co-		
Rekurzívne spočetný	∩ U * .		
Р	U . co-		
NP	U.		

Prechodové funkcie

Automat	δ	Rozšírená δ		typ
DFA	$Q\times\Sigma\to Q$	$Q\times \Sigma^*\to Q$		parciálna
NFA	$Q \times \Sigma \rightarrow 2^Q$	$Q\times \Sigma^*\to 2^Q$		totálna
NFA s ε	$Q\times (\Sigma\cup\{\epsilon\})\to 2^Q$	$Q\times \Sigma^*\to 2^Q$	$\boldsymbol{D}_{\epsilon}:Q\rightarrow 2^Q$	totálna
RE	$Q \times Q \rightarrow RE(\Sigma)$			parciálna
PDA	$Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \rightarrow P_{Fin}(Q \times \Gamma^*)$			parciálna
Rozšírený PDA	$Q\times (\Sigma\cup\{\epsilon\})\times \Gamma^*\to Q\times \Gamma^*$			parciálna
DPDA	$Q \times (\Sigma \cup {\epsilon}) \times \Gamma \rightarrow P_{Fin}(Q \times \Gamma^*)$			parciálna
TM	$(Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$			totálna
k-páskový TM	$(Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$			totálna
NTM	$(Q \setminus \{q_{acc}, q_{rej}\}) \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L, R\}}$			totálna

Inklúzie

 $P \subseteq NP$

 $P \subseteq TIME$

 $P \subseteq PSPACE$

P ⊊ EXPSPACE

 $P \subseteq EXPTIME$

 $\mathsf{TIME} \subseteq \mathsf{SPACE}$

 $\mathsf{TIME} \subseteq \mathsf{NTIME}$

NTIME ⊆ NSPACE

 $NP \subseteq PSPACE$

 $NP \subseteq EXPTIME$

 $PSPACE \subseteq EXPSPACE$

NSPACE ⊆ PSPACE (Savitchová veta)

 $NSPACE(f(n)) \subseteq SPACE(f(n)^2)$

 $P \subseteq NP \subseteq PSPACE = NSPACE \subseteq EXPTIME \subseteq NEXPTIME$