In [1]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns sns.set(color_codes=True) from sklearn.preprocessing import LabelEncoder</pre>
In [2]: In [3]:	<pre>Importing the dataset dataset = pd.read_csv("Social_Network_Ads.csv")</pre>
Out[3]:	dataset.nead()
In [4]:	2 15668575 Female 26 43000 0 3 15603246 Female 27 57000 0 4 15804002 Male 19 76000 0
	(400, 5)
Out[5]: In [6]: Out[6]:	
In [8]:	Age False EstimatedSalary False Purchased False dtype: bool dataset.isna().sum()
Out[8]:	User ID 0 Gender 0 Age 0 EstimatedSalary 0 Purchased 0 dtype: int64
In [10]: In [11]:	<pre>from sklearn.preprocessing import LabelEncoder</pre> Gender=LabelEncoder()
In [12]: In [13]: Out[13]:	dataset
	0 15624510 1 19 19000 0 1 15810944 1 35 20000 0 2 15668575 0 26 43000 0 3 15603246 0 27 57000 0
	4 15804002 1 19 76000 0 395 15691863 0 46 41000 1 396 15706071 1 51 23000 1
	397 15654296 0 50 20000 1 398 15755018 1 36 33000 0 399 15594041 0 49 36000 1
In [14]:	<pre>X=dataset[['Gender','Age','EstimatedSalary']] y=dataset['Purchased']</pre>
In [15]: Out[15]:	
	2 0 26 43000 3 0 27 57000 4 1 19 76000
	 395 0 46 41000 396 1 51 23000 397 0 50 20000 398 1 36 33000
In [16]:	399
Out[16]:	0
	395 1 396 1 397 1 398 0 399 1 Name: Purchased, Length: 400, dtype: int64 Splitting the dataset into the Training set and Test set
In [17]: In [18]:	
In [19]: Out[19]: In [20]:	<pre>len(X_train) 280 len(X_test)</pre>
Out[20]:	120 Feature Scaling
In [21]: In [22]: In [23]:	<pre>sc= StandardScaler() X_train = sc.fit_transform(X_train)</pre>
In [24]:	<pre>X_test = sc.transform(X_test)</pre> Fitting Random Forest to the Training set from sklearn.ensemble import RandomForestClassifier
	<pre>clf=RandomForestClassifier(n_estimators=100,criterion='gini',random_state=0) clf.fit(X_train,y_train)</pre>
In [27]:	cii.predict(x_test)
	array([0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	<pre>X_test array([[-1.07417231, 0.13230684, 0.14773116], [0.93094934, -1.84222166, 0.41887648], [-1.07417231, 0.79048301, -1.38875897], [0.93094934, 1.82475984, -0.24392319], [-1.07417231, -1.65417132, -1.35863172],</pre>
	[-1.07417231, 1.73073467, 1.08167614], [-1.07417231, 0.88450817, -0.63557754], [0.93094934, 0.41438234, 0.35862196], [-1.07417231, -1.84222166, 0.53938551], [-1.07417231, -0.33781899, 0.1176039], [-1.07417231, 0.32035717, -0.51506851], [-1.07417231, 0.22633201, 0.1176039],
	[0.93094934, -1.37209582, -1.44901349], [-1.07417231, 1.16658367, -0.96697737], [-1.07417231, 0.97853334, 1.98549387], [-1.07417231, -1.27807066, -1.0874864], [-1.07417231, -0.61989449, -0.00290513], [0.93094934, 0.22633201, -0.27405045], [0.93094934, 2.01281017, 1.86498484],
	[0.93094934,
	[0.93094934,
	[0.93094934, 1.44865917, 0.1176039], [0.93094934, -0.24379382, 1.20218517], [0.93094934, -1.09002032, 0.38874922], [0.93094934, 0.32035717, -0.27405045], [0.93094934, -0.14976866, 2.28676644], [-1.07417231, 1.26060884, 2.34702096], [0.93094934, 0.69645784, 0.3284947],
	[-1.07417231, 1.91878501, 0.99129437], [0.93094934, 1.73073467, 1.95536661], [-1.07417231, -0.43184416, -0.51506851], [-1.07417231, -1.27807066, -1.23812269], [-1.07417231, 1.35463401, 2.1060029], [-1.07417231, 0.32035717, 0.35862196], [-1.07417231, 0.69645784, 1.89511209],
	[0.93094934, -1.18404549,
	[0.93094934, -1.27807066, -1.47914075], [-1.07417231, 1.07255851, 2.19638467], [0.93094934, 0.13230684, -0.78621382], [-1.07417231, 0.79048301, 0.41887648], [0.93094934, 0.97853334, -1.05735914], [0.93094934, 0.03828167, -0.21379593], [0.93094934, 0.03828167, -0.21379593],
	[-1.07417231, -0.90196999, -0.39455948], [-1.07417231, 0.03828167, 0.35862196], [-1.07417231, 1.26060884, 1.98549387], [0.93094934, 2.10683534, -1.02723188], [0.93094934, -0.52586932, 1.56371226], [0.93094934, 0.13230684, 1.14193066], [-1.07417231, -1.09002032, 0.47913099],
	[-1.07417231, -0.52586932, 2.46752999], [0.93094934, -1.84222166, -0.48494125], [0.93094934, -0.14976866, 1.71434855], [0.93094934, -0.33781899, 1.3226942], [-1.07417231, -0.05574349, 0.29836745], [-1.07417231, -0.71391966, 1.44320323], [0.93094934, 1.82475984, 0.17785842],
	[-1.07417231, 0.03828167, -0.54519576], [-1.07417231, -1.46612099, -0.39455948], [-1.07417231, -1.09002032, -1.59964977], [-1.07417231, 0.22633201, 0.20798567], [-1.07417231, 0.69645784, -1.38875897], [0.93094934, 0.41438234, -0.42468673], [0.93094934, 1.26060884, -1.35863172], [-1.07417231, -0.05574349, 2.07587564],
	[-1.07417231, -0.52586932, 1.47333049], [-0.93094934, -0.43184416, -1.11761366], [-1.07417231, -1.27807066, -0.39455948], [-1.07417231, 0.13230684, 0.20798567], [-1.07417231, -0.24379382, -0.33430496], [0.93094934, 1.07255851, -1.20799543], [-1.07417231, 0.13230684, -0.27405045],
	[-1.07417231, -0.24379382, 2.37714821], [-1.07417231, -0.24379382, 0.26824019], [-1.07417231, -0.80794482, -0.63557754], [-1.07417231, -0.80794482, 0.44900373], [-1.07417231, -0.61989449, -1.02723188], [-1.07417231, -0.24379382, -0.54519576], [-1.07417231, -0.90196999, -0.27405045],
	[-1.07417231, 0.79048301, 0.17785842], [0.93094934, -0.05574349, 0.1176039], [-1.07417231, -0.05574349, -1.05735914], [-1.07417231, -0.99599516, -1.53939526], [-1.07417231, -1.09002032, 0.35862196], [-1.07417231, -0.078621382], [-1.07417231, -1.09002032, 0.1176039], [0.93094934, 1.07255851, 0.59964002],
	[-1.07417231, -0.24379382, 0.08747664], [-1.07417231, -0.43184416, 2.43740273], [-1.07417231, 0.32035717, -0.24392319], [-1.07417231, 0.13230684, 0.08747664], [-1.07417231, 0.88450817, 2.28676644], [-1.07417231, -1.56014616, -0.00290513], [-1.07417231, -0.71391966, -0.18366867],
	[0.93094934, -0.05574349, -0.48494125], [-1.07417231, 0.03828167, -0.39455948], [-1.07417231, -0.61989449, 0.08747664], [-1.07417231, 0.41438234, 1.20218517], [0.93094934, -0.80794482, 0.35862196], [-1.07417231, -1.37209582, -0.60545028]])
	0.85833333333333333333333333333333333333
In [30]: In [31]: In [32]:	<pre>from sklearn.metrics import confusion_matrix</pre>
In [33]:	Cm = confusion_matrix(y_test, y_pred)
In [40]:	<pre>Visualising the Training set results to_hist = ['Gender', 'Age', 'EstimatedSalary'] plt.figure(figsize=(16,10)) for idx, col in enumerate(to_hist): plt.subplot(3, 4, idx+1)</pre>
	<pre>plt.hist(dataset[col]) plt.title(col) plt.tight_layout();</pre> Gender Age EstimatedSalary 200 70 80
	175 150 125 100 75
T- ~	50 25 0 0.0 0.2 0.4 0.6 0.8 1.0 20 30 40 50 60 25000 50000 75000 100000 125000 150000
In [47]: Out[47]:	Control at 1 ib and leathing a Dath Callestian at 0x210x5520xx0
	-1 -2 -2 -1 0 1 2 Visualising the Test set results
In [48]:	<pre>to_hist = ['Purchased'] plt.figure(figsize=(16,10)) for idx, col in enumerate(to_hist): plt.subplot(3, 4, idx+1) plt.hist(dataset[col])</pre>
	<pre>plt.title(col) plt.tight_layout(); Purchased 250</pre>
	200 150 100
In [50]:	50 0 0.0 0.2 0.4 0.6 0.8 1.0 plt.scatter(X_test, X_test, color='blue')
Out[50]:	
	-2 -2 -1 0 1 2

Random_Forest_Assignment16

Importing the libraries