Ekonometria Finansowa

Jednowymiarowe modele szeregów czasowych

mgr Paweł Jamer¹

11 października 2015

¹pawel.jamer@gmail.com

Biały szum

Biały szum

Białym szumem nazwiemy szereg czasowy ϵ_t niezależnych zmiennych losowych o tym samym rozkładzie taki, że

$$\mathbb{E}(\epsilon_t) = 0,$$

$$Var(\epsilon_t) = \sigma^2.$$

Biały szum oznaczać będziemy symbolem WN $(0, \sigma^2)$.

Uwaga Bardziej złożone modele szeregów czasowych wykorzystują biały szum do opisu niepewności pomiaru opisywanych przez nie wielkości.

Błądzenie losowe

Błądzenie losowe (bez dryftu)

Szereg czasowy p_t nazwiemy błądzeniem losowym bez dryftu, jeżeli spełnia on równanie

$$p_t = p_{t-1} + \epsilon_t,$$

gdzie

• ϵ_t — biały szum.

Uwaga. Uzupełniając powyższy wzór o niezerową stałą lpha

$$p_t = \alpha + p_{t-1} + \epsilon_t$$

uzyskujemy proces błądzenia losowego z dryftem.

Ceny instrumentów finansowych

Hipoteza

Cena instrumentu finansowego p_t jest błądzeniem losowym.

Rozważmy model

$$p_t = \alpha + \rho p_{t-1} + \epsilon_t.$$

Prawdziwość powyższej hipotezy jest równoznaczna z tym, że:

- $oldsymbol{\hat{
 ho}}$ statystycznie nie różni się od jedności,
- ullet ϵ_t jest białym szumem.

Ponadto, jeżeli na zadanym poziomie istotności zachodzi:

- $\hat{\alpha} = 0$, to p_t jest błądzeniem losowym bez dryfu,
- $\hat{\alpha} \neq 0$, to p_t jest błądzeniem losowym z dryfem.

Uwaga. Z powodu możliwej niestacjonarności p_t estymacja powyższego równania jest problematyczna.

Właściwości błądzenia losowego

Błądzenie losowe bez dryftu Błądzenie losowe z dryftem

$$p_t = p_{t-1} + \epsilon_t,$$
 $p_t = \alpha + p_{t-1} + \epsilon_t,$ $p_t = p_0 + \sum_{h=0}^t \epsilon_{t-h},$ $p_t = p_0 + t\alpha + \sum_{h=0}^t \epsilon_{t-h},$ $\mathbb{E}(p_t) = p_0,$ $\mathbb{E}(p_t) = p_0 + t\alpha,$ $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$ $\mathbb{Var}(p_t) = t\sigma_{\epsilon_t}^2.$

Stopy zwrotu instrumentów finansowych

Rozważmy model błądzenia losowego bez dryftu dla logarytmu cen pewnego instrumentu finansowego

$$\log(p_t) = \log(p_{t-1}) + \epsilon_t.$$

Model ten przekształcić możemy do postaci

$$r_t = \log\left(\frac{p_t}{p_{t-1}}\right) = \epsilon_t.$$

Uwaga. Badanie czy logarytm cen p_t instrumentu finansowego jest błądzeniem losowym sprowadza się do ustalenia, czy logarytmiczne stopy zwrotu r_t tego instrumentu są białym szumem.

Krytyka

Optymalna prognoza ceny instrumentu finansowego na okres przyszły, to przyjęcie ceny tego instrumentu z okresu bieżącego.

Nie uwzględnia się rentowności zależnej od ryzyka.

Proces MA

Zdefiniujmy operator

$$\theta(B) = I + \theta_1 B + \ldots + \theta_q B^q,$$

gdzie $q \in \mathbb{Z}_+$.

Proces MA

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem MA (średniej ruchomej) rzędu q, jeżeli spełnia on równanie

$$X_{t}=\theta\left(B\right) \epsilon_{t},$$

gdzie $\epsilon_t \sim \text{WN}(0, \sigma^2)$.

Oznaczenie. Proces MA rzędu q oznacza się symbolem MA (q).

Proces AR

Zdefiniujmy operator

$$\varphi(B) = I - \varphi_1 B - \ldots - \varphi_p B^p,$$

gdzie $p \in \mathbb{Z}_+$.

Proces AR

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem AR (autoregresyjnym) rzędu p, jeżeli spełnia on równanie

$$\varphi(B)X_t=\epsilon_t,$$

gdzie $\epsilon_t \sim \text{WN}(0, \sigma^2)$.

Oznaczenie. Proces AR rzędu p oznacza się symbolem AR (p).

Proces ARMA

Proces ARMA

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem ARMA (p,q), jeżeli spełnia on równanie

$$\varphi(B)X_{t}=\theta(B)\epsilon_{t},$$

gdzie $\epsilon_t \sim \text{WN}(0, \sigma^2)$.

Proces ARIMA

Proces ARIMA

Szereg czasowy X_t nazwiemy procesem ARIMA (p, d, q), jeżeli szereg czasowy $\Delta^d X_t$ jest procesem ARMA (p, q).

Bezpośrednio z powyższej definicji wynika, że proces ARIMA (p, d, q) charakteryzuje następujące równanie:

$$\varphi(B)\left(\Delta^{d}X_{t}\right)=\theta(B)\epsilon_{t}.$$

Proces SARIMA

Proces ARIMA

Szereg czasowy X_t nazwiemy procesem ARIMA (p, d, q), jeżeli szereg czasowy $\Delta^d X_t$ jest procesem ARMA (p, q).

Bezpośrednio z powyższej definicji wynika, że proces ARIMA (p, d, q) charakteryzuje następujące równanie:

$$\varphi(B)\left(\Delta^{d}X_{t}\right)=\theta(B)\epsilon_{t}.$$

Multiplikatywny proces ARMA

Proces ARIMA

Szereg czasowy X_t nazwiemy procesem ARIMA (p, d, q), jeżeli szereg czasowy $\Delta^d X_t$ jest procesem ARMA (p, q).

Bezpośrednio z powyższej definicji wynika, że proces ARIMA (p, d, q) charakteryzuje następujące równanie:

$$\varphi(B)\left(\Delta^{d}X_{t}\right)=\theta(B)\epsilon_{t}.$$

Model ARCH

Model GARCH

Model GARCH-M

Model EGARCH

Model TGARCH

Definicja

Model korekty błędem (ECM)

$$\Delta y_{t} = \mu + \alpha (y_{t-1} - \beta_{0} - \beta_{1} x_{t-1}) + \sum_{i=1}^{k-1} \theta_{i} \Delta y_{t-i} + \sum_{i=0}^{k-1} \gamma_{i} \Delta x_{t-i} + \epsilon_{t}$$

Interpretacja:

- $y_{t-1} = \beta_0 + \beta_1 x_{t-1}$ równanie równowagi długookresowej,
- $y_{t-1} \beta_0 \beta_1 x_{t-1}$ odchylenie od równowagi długookr.,
- α współczynnik opisujący szybkość dostosowywania się zmiennej objaśnianej do poziomu równowagi długookresowej (w stabilnym modelu $\alpha < 0$).
- θ_i, γ_i współczynniki opisujące dynamikę krótkookresową.

Stosowalność

Uwaga. Twierdzenie Grangera o reprezentacji gwarantuje nam możliwość zastosowania mechanizmu korekty błędem względem skointegrowanych szeregów czasowych.

Estymacja

Estymacja parametrów równania równowagi długookresowej

$$y_{t-1} = \beta_0 + \beta_1 x_{t-1}.$$

Skonstruowanie szeregów czasowych

$$\epsilon_t = y_t - \beta_0 - \beta_1 x_t,
\Delta x_t = x_t - x_{t-1},
\Delta y_t = y_t - y_{t-1}.$$

3 Estymacja parametrów równania modelu korekty błędem

$$\Delta y_t = \mu + \alpha \epsilon_{t-1} + \sum_{i=1}^{k-1} \theta_i \Delta y_{t-i} + \sum_{i=0}^{k-1} \gamma_i \Delta x_{t-i} + \epsilon_t$$

Pytania?

Dziękuję za uwagę!