Úloha č. 3 Tu kabel

Zpracoval Oskar Petr

Úloha 1

Nejprve začneme nastavením konstanty c=1 a počtem zařízení n=3. Předpokládejme, že algoritmus postupuje podle pořadí zařízení (p_1, p_2, p_3) . Pro tuto instanci kabelového zapojení uvažujme následující situaci:

i	P_i	M	M^*
1	Ø	-	-
2	$\{p_1,p_3\}$	(p_2, p_1)	(p_2, p_3)
3	$\{p_1\}$	-	(p_3, p_1)

Pro mnou zvolenou instanci kabelového zapojení tedy platí $|M|=1,\ |M^*|=2$ a c=1, což splňuje podmínky $1\leq |M|\leq \frac{|M^*|}{c},$ a zároveň, $c\geq 1.$

Úloha 2

V této úloze je našim cílem dokázat, že existuje konstanta $c > \frac{3}{2}$, která platí pro libovolnou instanci kabelového zapojení. Tato konstanta zajistí, že $|M| \ge \frac{|M^*|}{c}$. Tento vztah hodnotí kvalitu algoritmu M ve srovnání s optimálním řešením M^* .

Jedním ze způsobů, jak ověřit efektivitu |M| ve srovnání s $|M^*|$, je pomocí odhadu hranic počtu kabelů. Konkrétně určíme dolní hranici (d) pro algoritmus M a horní hranici (h) pro optimální algoritmus M^* . Tento postup je legitimní, protože umožňuje zohlednit nejhorší možný poměr mezi oběma algoritmy a zaručuje, že porovnání není závislé na konkrétní instanci, ale platí obecně pro všechny možné případy.

Nejprve určeme horní hranici optimálního algoritmu M^* , jelikož je tento výpočet jednodušší. Maximální počet zapojených kabelů bude vždy nanejvýše n, což odpovídá situaci, kdy pro každý výstupní port zařízení p_i existuje odpovídající vstupní port zařízení p_j :

$$|M^*| \le n \implies h = n. \tag{1}$$

Stanovení dolní hranice algoritmu M je složitější, protože musíme zohlednit, jak algoritmus funguje u všech instancí kabelového zapojení. Klíčem k odhadu této hranice je představit si, že algoritmus postupně vytváří graf, kde hrany představují jednotlivá spojení mezi zařízeními.

Při zapojování můžeme uvážit, že pro každou hranu (u, v) v grafu optimálního řešení M^* algoritmus zvažuje alespoň jedno ze zařízení u nebo v. Pokud tento proces zopakujeme pro všechna zařízení, zapojíme minimálně polovinu z celkového počtu zařízení. Z tohoto předpokladu plyne dolní hranice algoritmu M:

$$|M| \ge \frac{n}{2} \implies d = \frac{n}{2}.$$
 (2)

Pokud známe horní hranici h a dolní hranici d, můžeme odhadnout nejhorší možný poměr mezi kvalitou algoritmického řešení M a optimálním řešením M^* :

$$\frac{|M^*|}{|M|} \le \frac{h}{d}$$

$$\frac{|M^*|}{|M|} \le \frac{n}{\frac{n}{2}}$$

$$\frac{|M^*|}{|M|} \le 2$$
(3)

Z tohoto výpočtu jasně vyplývá, že nejhorší možný poměr mezi $|M^*|$ a |M| může být nanejvýše 2. Proto když zvolíme konstantu c=2 bude to znamenat, že algoritmus M zapojí vždy alespoň polovinu kabelů oproti optimálnímu řešení M^* a splníme podmínku $c \geq 2 > \frac{3}{2}$.

Úloha 3

První část této úlohy vychází ze stejných pravidel jako úloha 2, a jelikož jsme již ověřili, že zvolená konstanta c splňuje požadované podmínky, nastavíme c=2.

Abychom mohli jednodušeji ověřit splnění podmínky $1 \leq |M| \leq \frac{|M^*|}{c}$, vytvoříme pravidlo pro všechny kabelové instance (K_1, \ldots, K_n) , kde počet zařízení n bude vždy sudé číslo n = 2k, kde $k \in \mathbb{N} \setminus \{1\}$. Dalším pravidlem je, že každá instance kabelového zapojení musí tvořit řetěz ze svých zařízení podle pořadí (p_1, \ldots, p_n) .

Nastavíme každé $P_i = \{p_{(i+1) \mod n}, p_{(i+2) \mod n}\}$, kde indexace zařízení začíná od 1. Tento postup zajistí, že vytvoříme cyklický řetěz, protože pokud i+1 > n nebo i+2 > n, přejdeme zpět na začátek seznamu P.

Touto konstrukcí docílíme zmíněného řetězu, ale nyní $|M| = |M^*| = n$, což nesplňuje podmínku $|M| \leq \frac{|M^*|}{c}$ pro c > 1. Proto upravíme konstrukci tak, že u každého druhého P_i obrátíme pořadí prvků. Algoritmus M postupuje tak, že pro každé zařízení p_i vybere první dostupný port podle definovaného pořadí P_i . Protože u každého druhého P_i obrátíme pořadí prvků, vznikne situace, kdy pro polovinu zařízení neexistuje odpovídající volný port. Ukázka pro konkrétní případ n = 4:

i	P_i	M	M^*
1	$\{p_2, p_3\}$	(p_1, p_2)	(p_1, p_2)
2	$\{p_4,p_3\}$	(p_2, p_4)	(p_2, p_3)
3	$\{p_4,p_1\}$	-	(p_3,p_4)
4	$\{p_2,p_1\}$	-	(p_4,p_1)

Pro každou takto vytvořenou instanci platí $|M|=\frac{n}{2}$ a $|M^*|=n$. Dosazením do podmínky $1\leq |M|\leq \frac{|M^*|}{c}$ za $|M|,\,|M^*|$ a c získáme:

$$1 \le \frac{n}{2} \le \frac{n}{2}.\tag{4}$$

Podmínka uvedena výše bude vždy splněna, protože konstrukce funguje pro libovolné sudé $n \geq 4$. Definujme tedy množinu \mathcal{G} , která obsahuje všechny instance kabelových zapojení K_n podle uvedených pravidel:

$$\mathcal{G} = \{ K_n \mid n = 2k, \ k \in \mathbb{N} \setminus \{1\} \}. \tag{5}$$