## Identifying heterogenous brain regions

### Model: RDPG (Random Dot Product Graph)

### ullet We know brain regions i and j will be connected with probability $p_{ij}$

Think: an unfair coin

ullet We don't know the true value of  $p_{ij}$ 

• Assume: all brain regions have a latent position in some d-dimensional space

• That is, the i-th brain region is associated with a vector  $x_i \in \mathbb{R}^d$ 

## • Then, $p_{ij} = x_i \cdot x_j$

• Great! But how we calculate  $x_i$ ?

# Identifying heterogenous brain regions

### Model: RDPG (Random Dot Product Graph)

- We know brain regions i and j will be connected with probability  $p_{ij}$ 
  - Think: an unfair coin
- We don't know the true value of  $p_{ij}$ 
  - Assume: all brain regions have a latent position in some d-dimensional space
  - That is, the i-th brain region is associated with a vector  $x_i \in \mathbb{R}^d$
  - Then,  $p_{ij} = x_i \cdot x_j$
- Great! But how we calculate  $x_i$ ?

## Identifying heterogenous brain regions

Model: RDPG (Random Dot Product Graph)

