Spectral Rigid Body Dynamics

Mikola Lysenko

May 4, 2010

Rigid Body Dynamics

An approximate model of low energy physics for stiff objects

Rigid Body Dynamics

An approximate model of low energy physics for stiff objects

Pros:

- + Pretty accurate at human energy scales
- + Good for stiff materials (ie metals, plastics etc.)
- + Easy kinematic constraints (useful for mechanisms)
- + Standard animation tool (videogames!)

Rigid Body Dynamics

An approximate model of low energy physics for stiff objects

Pros:

- + Pretty accurate at human energy scales
- + Good for stiff materials (ie metals, plastics etc.)
- + Easy kinematic constraints (useful for mechanisms)
- + Standard animation tool (videogames!)

Cons:

- Inaccurate at extremely large energies
- Bad for materials with low elastic modulus
- Not always solvable! (See: Painleve's paradox)

What is a Rigid Body?

An idealized solid object with elastic modulus $=\infty$

What is a Rigid Body?

An idealized solid object with elastic modulus $= \infty$ We identify a body B with a scalar field, $\varphi : \mathbb{R}^d \to \mathbb{R}^+$

 φ represents the mass distribution of B $\varphi(x)=0$ indicates B does not occupy the space at x W.L.O.G. Assume center of mass at origin:

$$\int_{\mathbb{R}^d} x \varphi(x) dx = 0$$

Configuration Space of a Rigid Body

Transformations rigid mass fields must preserve distance and handedness

Configuration Space of a Rigid Body

Transformations rigid mass fields must preserve distance and handedness

In other words, must be a direct Euclidean isometry

Isomorphic to finite dimensional Lie group, $SE(d) \cong SO(d) \ltimes \mathbb{R}^d$

Configuration Space of a Rigid Body

Transformations rigid mass fields must preserve distance and handedness

In other words, must be a direct Euclidean isometry Isomorphic to finite dimensional Lie group, $SE(d) \cong SO(d) \ltimes \mathbb{R}^d$

Can be parameterized by a translation t and a rotation R

Matrix:
$$\begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix}$$

 $d + {d \choose 2}$ degrees of freedom

Tangent space: $\mathfrak{so}(d+1)$

Motions of rigid objects \cong paths $q(t) \subset SE(d)$

Newton's Equations for Rigid Body Dynamics

Q:Given initial conditions, how do we solve for q?

Newton's Equations for Rigid Body Dynamics

Q:Given initial conditions, how do we solve for q?

A:High-school physics:

$$\frac{dq(t)}{dt} = \dot{q}(t)$$

$$M\frac{d\dot{q}(t)}{dt} = F(t)$$

F(t) is the force vector and M is the mass matrix for the rigid body:

$$M = \int_{\mathbb{D}^d} \varphi(x) dx$$