Umgebungserkennung aus Rauschen

Updates

- Frequenz-Plots waren teilweise falsch (behoben)
 - Ein Plot pro Umgebung
 - Eine Farbe je Aufnahme
- Umgebungserkennung angefangen
 - Vergleich: Aufnahmen zu Umgebung (Details folgen)
 - MSE-Werte für jede mögliche Umgebung

Frequenz-Plots (x: Frequenzen)

P4MF

Stefanie Blümer, Tim Pollandt

WS 2020/21

WS 2020/21

Umgebungs-Erkennung

- Aufteilen aller Aufnahmen einer Umgebung in Fenster
- Energie-Median für jede Frequenz berechnen
- Aufnahmen fensterweise mit Umgebung vergleichen
- Am besten passende Umgebung(en) berechnen

Room 1						Room 1					
1.35E+04	1.10E+06	7.27E+06	1.32E+04	3.12E+04	1.57E+05	1.92E+00	2.99E+00	7.80E+00	1.92E+00	1.97E+00	2.46E+00
1.85E+04	1.03E+06	7.09E+06	1.84E+04	3.97E+04	1.49E+05	1.96E+00	2.91E+00	7.47E+00	1.97E+00	1.99E+00	2.42E+00
4.41E+04	8.66E+05	6.65E+06	4.46E+04	4.50E+04	1.25E+05	1.95E+00	2.76E+00	7.05E+00	1.96E+00	1.98E+00	2.34E+00
1.82E+04	1.03E+06	7.13E+06	1.78E+04	3.67E+04	1.46E+05	2.00E+00	3.09E+00	8.08E+00	2.01E+00	2.05E+00	2.53E+00
1.59E+04	1.08E+06	7.22E+06	1.59E+04	4.02E+04	1.61E+05	1.97E+00	3.03E+00	7.88E+00	1.98E+00	2.03E+00	2.50E+00
Windy place						Windy place					
7.49E+06	3.58E+06	3.90E+06	7.51E+06	6.99E+06	5.87E+06	3.14E+00	2.07E+00	2.78E+00	3.20E+00	2.87E+00	2.32E+00
1.03E+06	5.53E+05	4.05E+06	1.04E+06	8.55E+05	5.19E+05	2.31E+00		4.33E+00	2.34E+00	2.25E+00	2.21E+00
1.24E+06	5.86E+05	3.96E+06	1.25E+06	1.05E+06	6.79E+05	2.46E+00		3.81E+00	2.49E+00	2.37E+00	2.14E+00
1.80E+06	6.71E+05	3.63E+06	1.80E+06	1.59E+06	1.10E+06	2.53E+00		3.58E+00	2.57E+00	2.40E+00	2.12E+00
2.18E+06	7.29E+05	3.64E+06	2.18E+06	1.91E+06	1.35E+06	2.67E+00	2.08E+00	3.45E+00	2.71E+00	2.51E+00	2.14E+00
Street						Street					
1.03E+07	6.92E+06	3.92E+06	1.04E+07	9.95E+06	8.82E+06	6.91E+00		2.11E+00	7.17E+00	6.42E+00	4.29E+00
2.92E+07	2.08E+07	1.10E+07	2.93E+07	2.83E+07	2.59E+07	7.33E+00	3.43E+00	2.04E+00	7.57E+00	6.69E+00	4.42E+00
1.55E+07	1.01E+07	5.19E+06	1.56E+07	1.50E+07	1.34E+07	6.33E+00	3.22E+00	2.07E+00	6.54E+00	5.84E+00	3.98E+00
8.38E+06	4.45E+06	2.87E+06	8.42E+06	8.00E+06	6.80E+06	4.77E+00	2.62E+00	2.13E+00	4.91E+00	4.40E+00	3.14E+00
8.98E+06	5.00E+06	2.95E+06	9.01E+06	8.54E+06	7.31E+06	5.01E+00	2.69E+00	2.12E+00	5.20E+00	4.65E+00	3.27E+00
Room 2						Room 2					
1.95E+04	1.03E+06	7.11E+06	1.91E+04	3.78E+04	1.50E+05	1.94E+00	2.84E+00	7.29E+00	1.94E+00	1.96E+00	2.37E+00
2.59E+04	9.71E+05	6.95E+06	2.61E+04	4.14E+04	1.36E+05	1.92E+00	2.79E+00	7.23E+00	1.92E+00	1.95E+00	2.34E+00
1.92E+04	1.01E+06	7.09E+06	1.87E+04	3.40E+04	1.38E+05	2.08E+00	3.28E+00	8.69E+00	2.06E+00	2.14E+00	2.68E+00
1.92E+04	1.01E+06	7.07E+06	1.90E+04	3.72E+04	1.44E+05	1.95E+00	2.96E+00	7.76E+00	1.94E+00	1.98E+00	2.45E+00
1.45E+04	1.09E+06	7.26E+06	1.43E+04	3.59E+04	1.59E+05	1.93E+00	3.03E+00	7.96E+00	1.93E+00	1.98E+00	2.48E+00
Stairs 4.96E+04	8.27E+05	6.60E+06	4.90E+04	4.16E+04	1.05E+05	Stairs 1.95E+00	2.52E+00	6.30E+00	1.95E+00	1.93E+00	2.15E+00
4.01E+04	8.62E+05	6.70E+06	4.90E+04 3.96E+04	3.59E+04	1.03E+05	1.91E+00	2.80E+00	7.16E+00	1.91E+00	1.92E+00	2.15E+00 2.35E+00
4.95E+04	8.09E+05	6.70E+06	4.95E+04	4.00E+04	1.04E+05	1.91E+00	2.68E+00	6.90E+00	1.91E+00 1.92E+00	1.92E+00 1.92E+00	2.35E+00 2.28E+00
3.47E+04	8.70E+05	6.72E+06	4.93E+04 3.44E+04	3.41E+04	1.02E+05	1.91E+00	2.75E+00	7.07E+00	1.92E+00 1.91E+00	1.92E+00 1.92E+00	2.31E+00
4.40E+04	8.76E+05	6.61E+06	4.36E+04	3.84E+04	1.03E+03 1.04E+05	1.92E+00	2.73E+00 2.72E+00	6.92E+00	1.91E+00 1.92E+00	1.92E+00 1.93E+00	2.31E+00 2.30E+00
Forest	0.00E 100	5.51L - 50	7.002104	OIOTE I OT	1.046 100	Forest	2.121.00	0.022.00	1.022.100	1.000100	2.002100
2.97E+05	5.78E+05	5.32E+06	2.97E+05	2.10E+05	1.47E+05	2.27E+00	2.15E+00	4.38E+00	2.29E+00	2.19E+00	1.99E+00
3.47E+05	5.81E+05	5.19E+06	3.50E+05	2.59E+05	1.59E+05	2.21E+00	2.17E+00	4.57E+00	2.24E+00	2.14E+00	2.01E+00
1.33E+05	7.03E+05	5.98E+06	1.34E+05	8.90E+04	1.23E+05	2.08E+00	2.40E+00	5.55E+00	2.09E+00	2.05E+00	2.12E+00
3.60E+05	6.54E+05	5.38E+06	3.60E+05	2.68E+05	1.98E+05	2.71E+00		4.00E+00	2.74E+00	2.58E+00	2.20E+00
4.30E+05	4.99E+05	4.92E+06	4.33E+05	3.29E+05	1.77E+05	2.10E+00	2.12E+00	4.70E+00	2.12E+00	2.04E+00	2.01E+00
squared error			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			y logarithmic					

Umgebungserkennung: Metrik → hier: Median aller Fenster aller Aufnahmen

- Quadrat / Wurzel der Differenzen
 - Quadrat funktioniert in Tests gut
- Logarithmische y-Skalierung vor Differenzberechnung
 - Beides ähnlich gut, abhängig von anderen Parametern
- Mean oder Median f
 ür Differenzen
 - Aktuell: Mean über Differenzen eines Fensters
 - Aktuell: Median über die Fenster einer Aufnahme
- Gewichtung der Frequenzen (x-Achse)
 - Gleichverteilt oder niedrige Frequenzen bevorzugt → beides gut
 - Außerhalb des Sprachspektrums bevorteilen → weniger gut

Microfon unter Decke / Fenster geöffnet

Blanket			Correct env		
1.40E+04	1.10E+06	7.30E+06	1.36E+04	2.81E+04	1.58E+05
2.13E+04	1.06E+06	7.24E+06	2.10E+04	3.42E+04	1.52E+05
Normal					
1.33E+04	1.15E+06	7.39E+06	1.32E+04	3.52E+04	1.75E+05
1.30E+04	1.16E+06	7.42E+06	1.28E+04	3.56E+04	1.78E+05
Window open	ed				
4.10E+04	8.78E+05	6.61E+06	4.21E+04	4.08E+04	1.05E+05
5.37E+04	8.23E+05	6.44E+06	5.56E+04	4.75E+04	9.65E+04
			Correct env		

P4MF

Stefanie Blümer, Tim Pollandt

WS 2020/21

Umgebungserkennung: Metrik → Weitere Ansätze (Zukunft)

- Bandvergleich
 - Geringerer Einfluss einzelner Frequenzen
 - Geringerer Detailgrad kann positive und negative Einflüsse haben
 - Erkennung von Energie-Anstieg / -Abfall
 - Eventuell besser f
 ür andere Aufnahmeger
 äte mit mehr/weniger Energie
- Gauss-Umgebungen
 - Etwa 500000 könnten ausreichen um eine Gauss-Verteilung pro Frequenz zu approximieren
 - Ausgabe dann direkt Wahrscheinlichkeiten
 - Aber: Frequenzen sind eigentlich nicht unabhängig

Paper-Ansatz

- Umgebungs-Erkennung ähnlich zu unserer
- Umgebungen mit geringen MSEs sind vermutlich in Aufnahme enthalten

Weitere Future Work

- Parameter für Programmaufrufe
- Plots verschönern?
- Dokumentation
- Abgabedokument

•