Package 'GWEX'

February 2, 2024

,
Type Package
Date 2024-02-02
License GPL-3
Title Multi-Site Stochastic Models for Daily Precipitation and Temperature
Version 1.1.3
Author Guillaume Evin [aut, cre]
Maintainer Guillaume Evin <guillaume.evin@inrae.fr></guillaume.evin@inrae.fr>
Imports Rcpp (>= 1.0.11), EnvStats, MASS, mvtnorm, nleqslv, fGarch, parallel, abind, foreach, doParallel, Renext, Imomco, methods, stats
LinkingTo Rcpp, RcppArmadillo
Description Application of multi-site models for daily precipitation and temperature data. This package is designed for an application to 105 precipitation and 26 temperature gauges located in Switzerland. It applies fitting procedures and provides weather generators described in the following references - Evin, G., AC. Favre, and B. Hingray. (2018) <doi:10.5194 hess-22-655-2018=""> Evin, G., AC. Favre, and B. Hingray. (2018) <doi:10.1007 s00704-018-2404-x="">.</doi:10.1007></doi:10.5194>
Depends R (>= 2.10)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-02-02 09:00:02 UTC
R topics documented:
agg.matrix

or.emp.int	
or.emp.occ	. 5
cor.obs.occ	
lailyPrecipGWEX	
lailyTemperGWEX	
lisag.3D.to.1D	
list.functions.EGPD.GI	. 8
lry.day.frequency	. 9
EGPD.GI.fit.PWM	. 9
EGPD.GI.fPWM	. 10
ind.autocor	. 11
ind.omega	. 11
ind.zeta	. 12
it.copula.amount	. 13
it.GWex.prec	. 13
it.MAR1.amount	. 15
it.margin.cdf	. 16
itGwexModel	. 16
functions.EGPD.GI	. 18
get.df.Student	. 19
get.emp.cdf.matrix	. 20
get.list.month	. 20
get.list.season	. 20
get.listOption	. 21
get.M0	. 21
get.mat.omega	. 22
get.period.fitting.month	. 23
get.vec.autocor	. 23
getGwexFitPrec	. 24
Gwex-class	. 25
GwexFit-class	. 25
GwexObs	. 25
GwexObs-class	. 26
GwexSim-class	. 27
nfer.autocor.amount	. 27
nfer.dep.amount	. 28
nfer.mat.omega	. 29
oint.proba.occ	. 30
agTransProbaMatrix	. 31
agTransProbaVector	. 31
nask.GWex.Yt	. 32
nodify.cor.matrix	. 33
nonth2season	. 33
orint,Gwex-method	. 34
PWM.EGPD.GI	. 34
QtransMat2Array	. 35
how,Gwex-method	. 36
im.GWex.occ	

agg.matrix 3

	sim.GWex.prec.1it	37
	sim.GWex.Yt	38
	sim.GWex.Yt.Pr	38
	sim.GWex.Yt.Pr.get.param	39
	sim.Zt.MAR	39
	sim.Zt.Spatial	40
	simGwexModel	40
	simPrecipOcc	42
	unif.to.prec	43
	wet.day.frequency	43
Index		45

Description

 ${\tt agg.matrix}$

Simple accumulation of a matrix of precipitation

agg.matrix

Usage

```
agg.matrix(mat, k, average = F)
```

Arguments

mat matrix nDates x nStations to be aggregated
k number of days for the accumulation
average logical: should we average over the different periods (default=F)

Value

aggregated matrix

Author(s)

4 cor.emp.int

autocor.emp.int auto

autocor.emp.int

Description

Finds empirical autocorrelations (lag-1) between intensities corresponding to a degree of autocorrelation of an AR(1) process

Usage

```
autocor.emp.int(rho, nChainFit, Xt, parMargin, typeMargin)
```

Arguments

rho autocorrelation of the AR(1) process

nChainFit number of simulated variates

Xt simulated occurrences, nChainFit x 2 matrix

parMargin parameters of the margins 2 x 3

typeMargin type of marginal distribution: 'EGPD' or 'mixExp'

Value

scalar correlation between simulated intensities

Author(s)

Guillaume Evin

cor.emp.int cor.emp.int

Description

Finds observed correlations between intensities corresponding to a degree of correlation of Gaussian multivariate random numbers

Usage

```
cor.emp.int(zeta, nChainFit, Xt, parMargin, typeMargin)
```

cor.emp.occ 5

Arguments

zeta correlation of Gaussian multivariates

nChainFit number of simulated variates

Xt simulated occurrences, n x 2 matrix parMargin parameters of the margins 2 x 3

typeMargin type of marginal distribution: 'EGPD' or 'mixExp'

Value

scalar correlation between simulated intensities

Author(s)

Guillaume Evin

Description

Finds observed correlations between occurrences corresponding to a degree of correlation of Gaussian multivariate random numbers

Usage

```
cor.emp.occ(w, Qtrans.mat, mat.comb, nLag, nChainFit, myseed = 1)
```

Arguments

w correlation of Gaussian multivariates
Qtrans.mat transition probabilities, 2 x ncomb matrix

mat.comb matrix of logical: ncomb x nlag
nLag order of the Markov chain
nChainFit number of simulated variates
myseed seed of random variates

Value

scalar correlation between occurrences

Author(s)

6 dailyPrecipGWEX

cor	.obs	$\cap \cap \cap$	
COI	. 000		

cor.obs.occ

Description

provide observed correlations between occurrences for all pairs of stations see Mhanna et al. (2012)

Usage

```
cor.obs.occ(pi00, pi0, pi1)
```

Arguments

pi00	joint probability of having dry states
pi0	probability of having a dry state
pi1	probability of having a wet state

Value

scalar matrix of observed correlations

Author(s)

Guillaume Evin

References

Mhanna, Muamaraldin, and Willy Bauwens. "A Stochastic Space-Time Model for the Generation of Daily Rainfall in the Gaza Strip." International Journal of Climatology 32, no. 7 (June 15, 2012): 1098–1112. doi:10.1002/joc.2305.

dailyPrecipGWEX

daily observations of precipitation data

Description

Example of daily observations of precipitation (mm) for three fictive stations, for a period of ten years.

Usage

```
data(dailyPrecipGWEX)
```

Format

matrix of Observed precipitation: 3652 days x 3 stations

dailyTemperGWEX 7

Author(s)

Guillaume Evin <guillaume.evin@irstea.fr>

References

Evin, G., A.-C. Favre, and B. Hingray. 2018. "Stochastic Generation of Multi-Site Daily Precipitation Focusing on Extreme Events". Hydrol. Earth Syst. Sci. 22 (1): 655–672.

dailyTemperGWEX

daily observations of temperature data

Description

Example of daily observations of temperature (mm) for three fictive stations, for a period of ten years.

Usage

data(dailyTemperGWEX)

Format

matrix of Observed temperature: 3652 days x 3 stations

Author(s)

Guillaume Evin <guillaume.evin@irstea.fr>

References

Evin G., A.C. Favre, and B. Hingray. 2018. Stochastic Generators of Multi Site Daily Temperature: Comparison of Performances in Various Applications. Theoretical and Applied Climatology.

disag.3D.to.1D

disag.3D.to.1D

Description

disag.3D.to.1D

Usage

```
disag.3D.to.1D(Yobs, YObsAgg, mObsAgg, YSimAgg, mSimAgg, prob.class)
```

8 dist.functions.EGPD.GI

Arguments

Yobs	matrix of observed intensities at 24h: (nTobs*3) x nStation
YObsAgg	matrix of observed 3-day intensities: nTobs x nStation
mObsAgg	vector of season corresponding to YobsAgg
YSimAgg	matrix of simulated intensities per 3-day period: nTsim x nStation
mSimAgg	vector of season corresponding to the period simulated
prob.class	vector of probabilities indicating class of "similar" mean intensities

Value

1ist Ysim matrix of disagregated daily precipitation, codeDisag matrix of disagrega-

tion codes

Author(s)

Guillaume Evin

```
dist.functions.EGPD.GI
```

dEGPD.GI, pEGPD.GI, qEGPD.GI, rEGPD.GI

Description

Density function, distribution function, quantile function, random generation for the unified EGPD distribution

Usage

```
dEGPD.GI(x, kappa, sig, xi)
pEGPD.GI(x, kappa, sig, xi)
qEGPD.GI(p, kappa, sig, xi)
rEGPD.GI(n, kappa, sig, xi)
```

Arguments

X	Vector of quantiles
kappa	transformation parameter greater than 0
sig	Scale parameter
xi	Shape parameter
p	Vector of probabilities
n	Number of observations

dry.day.frequency 9

Value

dEGPD.GI gives the density function, pEGPD.GI gives the distribution function, qEGPD.GI gives the quantile function, and rEGPD.GI generates random deviates.

Author(s)

Guillaume Evin

dry.day.frequency

dry.day.frequency

Description

Estimate the dry day frequency (proportion of dry days) for all stations

Usage

```
dry.day.frequency(mat.prec, th)
```

Arguments

mat.prec matrix of precipitation (possibly for one month/period)

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

Value

vector of numeric

dry day frequencies

Author(s)

Guillaume Evin

EGPD.GI.fit.PWM

EGPD.GI.fit.PWM

Description

Parameter estimation of the unified EGPD distribution with the PWM method. Numerical solver of the system of nonlinear equations

Usage

```
EGPD.GI.fit.PWM(x, xi = 0.05)
```

10 EGPD.GI.fPWM

Arguments

x vector of parameters kappa, sig

xi shape parameter

Value

estimated parameters kappa, sig, xi

Author(s)

Guillaume Evin

EGPD.GI.fPWM

EGPD.GI.fPWM

Description

Parameter estimation of the unified EGPD distribution with the PWM method. Set of equations which have to be equal to zero

Usage

```
EGPD.GI.fPWM(par, pwm, xi)
```

Arguments

par vector of parameters kappa, sig, xi

pwm set of probability weighted moments of order 0, 1 and 2

xi shape parameter

Value

differences between expected and target weighted moments

Author(s)

find.autocor 11

Description

finds the autocorrelation leading to observed autocorrelation

Usage

```
find.autocor(autocor.emp, nChainFit, Xt, parMargin, typeMargin)
```

Arguments

autocor.emp target correlation between intensities

nChainFit number of simulations

Xt simulated occurrences, nChainFit x 2 matrix

parMargin parameters of the margins 2 x 3

typeMargin type of marginal distribution: 'EGPD' or 'mixExp'

Value

scalar needed correlation

Author(s)

Guillaume Evin

Description

finds the correlation between normal variates leading to correlation between occurrences

Usage

```
find.omega(rho.emp, Qtrans.mat, mat.comb, nLag, nChainFit)
```

Arguments

rho.emp target correlation between occurences
Qtrans.mat transition probabilities, 2 x ncomb matrix

mat.comb matrix of logical: ncomb x nlag nLag order of the Markov chain

nChainFit length of the simulated chains used during the fitting

12 find.zeta

Value

scalar needed correlation

Author(s)

Guillaume Evin

find.zeta

find.zeta

Description

finds the correlation between normal variates leading to correlation between intensities

Usage

```
find.zeta(eta.emp, nChainFit, Xt, parMargin, typeMargin)
```

Arguments

eta.emp target correlation between intensities

nChainFit number of simulations

Xt simulated occurrences, n x 2 matrix parMargin parameters of the margins 2 x 3

typeMargin type of marginal distribution: 'EGPD' or 'mixExp'

Value

scalar needed correlation

Author(s)

fit.copula.amount 13

fit.copula.amount	fit.copula.amoun
TIL.CODULA.alliount	н.сорина.атои

Description

estimate parameters which control the spatial dependence between intensities using a copula

Usage

```
fit.copula.amount(P.mat, isPeriod, th, copulaInt, M0)
```

Arguments

P.mat	precipitation matrix
isPeriod	vector of logical n x 1 indicating the days concerned by a 3-month period
th	threshold above which we consider that a day is wet (e.g. 0.2 mm)
copulaInt	type of dependence between inter-site amounts: 'Gaussian' or 'Student'
M0	covariance matrix of gaussianized prec. amounts for all pairs of stations

Value

list of estimates (e.g., M0, dfStudent)

Author(s)

Guillaume Evin

```
fit.GWex.prec fit.GWex.prec
```

Description

estimate all the parameters for the G-Wex model of precipitation

Usage

```
fit.GWex.prec(objGwexObs, parMargin, listOption = NULL)
```

14 fit.GWex.prec

Arguments

objGwex0bs

object of class GwexObs

parMargin

if not NULL, list where each element parMargin[[iM]] corresponds to a month iM=1...12 and contains a matrix nStation x 3 of estimated parameters of the marginal distributions (EGPD or mixture of exponentials)

listOption

list with the following fields:

- **th**: threshold value in mm above which precipitation observations are considered to be non-zero (=0.2 by default)
- nLag: order of he Markov chain for the transitions between dry and wet states (=2 by default)
- **typeMargin**: 'EGPD' (Extended GPD) or 'mixExp' (Mixture of Exponentials). 'EGPD' by default
- copulaInt: 'Gaussian' or 'Student': type of dependence for amounts (='Student' by default)
- **isMAR**: logical value, do we apply a Autoregressive Multivariate Autoregressive model (order 1) =TRUE by default
- **is3Damount**: logical value, do we apply the model on 3D-amount. =FALSE by default
- **nChainFit**: integer, length of the runs used during the fitting procedure. =100000 by default
- nCluster: integer, number of clusters which can be used for the parallel computation

Value

a list containing the list of options listOption and the list of estimated parameters listPar. The parameters of the occurrence process are contained in parOcc and the parameters related to the precipitation amounts are contained in parInt. Each type of parameter is a list containing the estimates for each month. In parOcc, we find:

- p01: For each station, the probability of transition from a dry state to a wet state.
- p11: For each station, the probability of staying in a wet state.
- list.pr.state: For each station, the probabilities of transitions for a Markov chain with lag p.
- **list.mat.omega**: The spatial correlation matrix of occurrences Ω (see Evin et al., 2018).

In parInt, we have:

- **parMargin**: list of matrices nStation x nPar of parameters for the marginal distributions (one element per Class).
- **cor.int**: Matrices nStation x nStation M_0 , A, Ω_Z representing the spatial and temporal correlations between all the stations (see Evin et al., 2018). For the Student copula, dfStudent indicates the ν parameter.

Author(s)

fit.MAR1.amount

References

Evin, G., A.-C. Favre, and B. Hingray. 2018. 'Stochastic Generation of Multi-Site Daily Precipitation Focusing on Extreme Events.' Hydrol. Earth Syst. Sci. 22 (1): 655-672. doi.org/10.5194/hess-22-655-2018.

fit.MAR1.amount fit.MAR1.amount

Description

estimate parameters which control the dependence between intensities with a MAR(1) process

Usage

```
fit.MAR1.amount(P.mat, isPeriod, th, copulaInt, M0, A)
```

Arguments

P.mat	precipitation matrix
isPeriod	vector of logical n x 1 indicating the days concerned by a 3-month period
th	threshold above which we consider that a day is wet (e.g. 0.2 mm)
copulaInt	type of dependance between inter-site amounts: 'Gaussian' or 'Student'
MØ	covariance matrix of gaussianized prec. amounts for all pairs of stations
A	Matrix containing the autocorrelation (temporal) correlations

Value

list with the following items

- M0 covariance matrix of gaussianized prec. amounts for all pairs of stations
- A omega correlations for all pairs of stations
- covZ covariance matrix of the MAR(1) process
- sdZ standard deviation of the diagonal elements
- corZ correlation matrix of the MAR(1) process
- dfStudent degrees of freedom for the Student copula if CopulaInt is equal to "Student"

Author(s)

Guillaume Evin

References

Matalas, N. C. 1967. "Mathematical Assessment of Synthetic Hydrology." Water Resources Research 3 (4): 937–45. https://doi.org/10.1029/WR003i004p00937.

Bárdossy, A., and G. G. S. Pegram. 2009. "Copula Based Multisite Model for Daily Precipitation Simulation." Hydrology and Earth System Sciences 13 (12): 2299–2314. https://doi.org/10.5194/hess-13-2299-2009.

16 fitGwexModel

fit.margin.cdf

fit.margin.cdf

Description

estimate parameters which control the marginal distribution of precipitation amounts

Usage

```
fit.margin.cdf(P.mat, isPeriod, th, type = c("EGPD", "mixExp"))
```

Arguments

P.mat precipitation matrix

isPeriod vector of logical n x 1 indicating the days concerned by a 3-month period

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

type distribution: 'EGPD' or 'mixExp'

Value

matrix matrix of estimates p x 3

Author(s)

Guillaume Evin

fitGwexModel

fitGwexModel: fit a GWex model to observations.

Description

fitGwexModel: fit a GWex model to observations.

Usage

```
fitGwexModel(objGwexObs, parMargin = NULL, listOption = NULL)
```

fitGwexModel 17

Arguments

objGwex0bs

an object of class GwexObs

parMargin

(not required for temperature) list parMargin where and each element corresponds to a month (1...12) and contains a matrix nStation x 3 of pre-estimated parameters of the marginal distributions (EGPD or Mixture of Exponentials)

listOption

for precipitation, a list with the following fields:

- **th**: threshold value in mm above which precipitation observations are considered to be non-zero (=0.2 by default)
- **nLag**: order of the Markov chain for the transitions between dry and wet states (=2 by default)
- **typeMargin**: 'EGPD' (Extended GPD) or 'mixExp' (Mixture of Exponentials). 'mixExp' by default
- **copulaInt**: 'Gaussian' or 'Student': type of dependence for amounts (='Gaussian' by default)
- **isMAR**: logical value, do we apply a Autoregressive Multivariate Autoregressive model (order 1) = FALSE by default
- is3Damount: logical value, do we apply the model on 3D-amount. =FALSE by default
- nChainFit: integer, length of the runs which are generated during the fitting procedure. =100000 by default
- nCluster: integer, number of clusters which can be used for the parallel computation

and for temperature, a list with the following fields:

- hasTrend: logical value, do we fit a linear trend for the long-term change, =FALSE by default
- **objGwexPrec**: object of class GwexObs containing precipitation observations. If provided, we assume that temperature must be modelled and simulated according to the precipitation states 'dry' and 'wet'. For each state, a seasonal cycle is fitted (mean and sd).
- **typeMargin**: 'SGED' (default) or 'Gaussian': type of marginal distribution.
- **depStation**: 'MAR1' (default) or 'Gaussian': MAR1 (Multivariate Autoregressive model order 1) for the spatial and temporal dependence or 'Gaussian' for the spatial dependence only.

Value

Return an object of class GwexFit with:

- p: The number of station,
- version: package version,
- variable: the type of variable,
- fit: a list containing the list of options listOption and the list of estimated parameters listPar.

18 functions.EGPD.GI

Author(s)

Guillaume Evin

Examples

```
# Format dates corresponding to daily observations of precipitation and temperature
vecDates = seq(from=as.Date("01/01/2005", format="%d/%m/%Y"),
to=as.Date("31/12/2014",format="%d/%m/%Y"),by='day')
FIT THE PRECIPITATION MODEL
# Format observations: create a Gwex object for one station only to show a quick
# example. The syntax is similar for multi-site applications.
myObsPrec = GwexObs(variable='Prec',date=vecDates,obs=dailyPrecipGWEX[,1,drop=FALSE])
# Fit precipitation model with a threshold of 0.5 mm to distinguish wet and dry
# states (th) and keep default options otherwise, e.g. a Gaussian
# copula for the spatial dependence (copulaInt) and a mixExp distribution for
# marginal intensities ('typeMargin')
myParPrec = fitGwexModel(myObsPrec,listOption=list(th=0.5))
myParPrec # print object
FIT THE TEMPERATURE MODEL, COND. TO PRECIPITATION
# Format observations: create a G-Wex object
myObsTemp = GwexObs(variable='Temp',date=vecDates,obs=dailyTemperGWEX)
# Fit temperature model with a long-term linear trend ('hasTrend'), Gaussian margins
# ('typeMargin') and Gaussian spatial dependence ('depStation')
myParTemp = fitGwexModel(myObsTemp,listOption=list(hasTrend=TRUE,typeMargin='Gaussian',
depStation='Gaussian'))
myParTemp # print object
```

Description

First parametric family for $G(v) = v^{\lambda}$ distribution, density and quantile function

EGPD.pGI, EGPD.dGI, EGPD.qGI

Usage

```
EGPD.pGI(v, kappa)
EGPD.dGI(v, kappa)
EGPD.qGI(p, kappa)
```

functions.EGPD.GI

get.df.Student 19

Arguments

v probability

kappa transformation parameter greater than 0

p probability

Value

distribution, density and quantile of EGPD

Author(s)

Guillaume Evin

get.df.Student

get.df.Student

Description

Estimates the nu parameter (degrees of freedom) of the multivariate Student distribution when the correlation matrix Sig is given

Usage

```
get.df.Student(P, Sig, max.df = 20)
```

Arguments

P matrix of non-zero precipitation (zero precipitation are set to NA)

Sig correlation matrix

max.df maximum degrees of freedom tested (default=20)

Value

nu estimate

Author(s)

Guillaume Evin

References

McNeil et al. (2005) "Quantitative Risk Management"

20 get.list.season

Description

get the cdf values (empirical distribution) of positive precipitation

Usage

```
get.emp.cdf.matrix(X)
```

Arguments

Χ

matrix of positive precipitation

Value

matrix with cdf values (NA if zero precipitation)

Author(s)

Guillaume Evin

get.list.month

get.list.month

Description

return a vector of 3-char tags of the 12 months

Usage

```
get.list.month()
```

 ${\tt get.list.season}$

get.list.season

Description

```
get the vector of the four seasons c('DJF','MAM','JJA','SON')
```

Usage

```
get.list.season()
```

Author(s)

get.listOption 21

get.listOption get.listOption

Description

get default options and check values proposed by the user

Usage

```
get.listOption(listOption)
```

Arguments

listOption list containing fields corr. to the different options. Can be NULL if no options

are set

Value

listOption list of options

Author(s)

Guillaume Evin

get.M0 get.M0

Description

find matrix of correlations leading to estimates cor between intensities

Usage

```
get.M0(
  cor.obs,
  infer.mat.omega.out,
  nLag,
  parMargin,
  typeMargin,
  nChainFit,
  isParallel
)
```

22 get.mat.omega

Arguments

cor.obs matrix p x p of observed correlations between intensities for all pairs of stations infer.mat.omega.out

output of infer.mat.omega

nLag order of the Markov chain

parMargin parameters of the margins p x 3

typeMargin type of marginal distribution: 'EGPD' or 'mixExp' nChainFit integer indicating the length of simulated chains

isParallel logical: indicate computation in parallel or not (easier for debugging)

Value

list with two items

- Xt long simulation of the wet/dry states according to the model
- M0 covariance matrix of gaussianized prec. amounts for all pairs of stations

Author(s)

Guillaume Evin

get.mat.omega get.mat.omega

Description

find omega correlation leading to estimates cor between occurrences

Usage

```
get.mat.omega(cor.obs, Qtrans.mat, mat.comb, nLag, nChainFit, isParallel)
```

Arguments

cor.obs matrix p x p of observed correlations between occurrences for all pairs of sta-

tions

Qtrans.mat transition probabilities, 2 x ncomb matrix

mat.comb matrix of logical: ncomb x nlag nLag order of the Markov chain

nChainFit length of the simulated chains used during the fitting

isParallel logical: indicate computation in parallel or not (easier for debugging)

Value

matrix omega correlations for all pairs of stations

get.period.fitting.month

Author(s)

Guillaume Evin

```
{\it get.period.fitting.month} \\ {\it get.period.fitting.month}
```

Description

get.period.fitting.month

Usage

```
get.period.fitting.month(m.char)
```

Arguments

m. char 3-letter name of a month (e.g. 'JAN')

return the 3 indices corresponding to the 3-month period of a month ('JAN')

23

get.vec.autocor

Description

find rho autocorrelation leading to empirical estimates

Usage

```
get.vec.autocor(vec.ar1.obs, Xt, parMargin, typeMargin, nChainFit, isParallel)
```

Arguments

vec.ar1.obs vector of observed autocorrelations for all stations

Xt simulated occurrences given model parameters of wet/dry states

parMargin parameters of the margins p x 3

typeMargin type of marginal distribution: 'EGPD' or 'mixExp' nChainFit integer indicating the length of the simulated chains

isParallel logical: indicate computation in parallel or not (easier for debugging)

Value

vector vector of rho parameters to simulate the MAR process

Author(s)

24 getGwexFitPrec

getGwexFitPrec

getGwexFitPrec

Description

get object GwexFit derived from the parameters replicated for each month

Usage

```
getGwexFitPrec(
   listOption = NULL,
   p,
   condProbaWDstates,
   parMargin,
   vec.ar1 = NULL,
   M0 = NULL,
   mat.omega = NULL
)
```

Arguments

listOption list of options (see fitGwexModel)

p number of stations

condProbaWDstates

vector of length nLag 2 of transition probabilities corresponding to the nlag possible transitions between dry/wet states expand.grid(lapply(numeric(nLag),

function(x) c(F,T)))

parMargin parameters of the margins: vector of length 3 vec.ar1 vector of observed autocorrelations for all stations

M0: covariance matrix of gaussianized prec. amounts for all pairs of stations

mat.omega: The spatial correlation matrix of occurrences Ω

Value

Return an object of class GwexFit with:

- p: The number of station,
- version: package version,
- variable: the type of variable,
- fit: a list containing the list of options listOption and the list of estimated parameters listPar.

Examples

```
exFitGwexPrec = getGwexFitPrec(p=2,condProbaWDstates=c(0.7,0.3,0.2,0.1), parMargin=c(0.5,0.1,0.4),vec.ar1=rep(0.7,2),M0=rbind(c(1,0.6),c(0.6,1)), mat.omega=rbind(c(1,0.8),c(0.8,1)))
```

Gwex-class 25

Gwex-class

Class Gwex

Description

Defines a generic Gwex object. GWex objects contain two slots: - the version ('vX.X.X') - the type of variable ('Prec' or 'Temp')

Author(s)

Guillaume Evin

GwexFit-class

Class GwexFit

Description

Defines a GwexFit object which is a Gwex object containing 'fit', a list containing the fitted parameters, and 'p', the number of stations. See fitGwexModel for some examples.

Author(s)

Guillaume Evin

Gwex0bs

Constructor

Description

Constructor of class [GwexObs]

Usage

```
GwexObs(variable, date, obs)
```

Arguments

variable 'Prec' or 'Temp' date vector of class 'Date'

obs matrix nTime x nStations of observations

Value

An object of class [Gwex0bs]

26 GwexObs-class

Examples

```
# Format dates corresponding to daily observations of precipitation and temperature
vecDates = seq(from=as.Date("01/01/2005",format="%d/%m/%Y"),
to=as.Date("31/12/2014",format="%d/%m/%Y"),by='day')

# build GwexObs object with precipitation data
myObsPrec = GwexObs(variable='Prec',date=vecDates,obs=dailyPrecipGWEX)

# print GwexObs object
myObsPrec

# build GwexObs object with temperature data
myObsTemp = GwexObs(variable='Temp',date=vecDates,obs=dailyTemperGWEX)

# print GwexObs object
myObsTemp
```

GwexObs-class

Class GwexObs

Description

Defines a GwexObs object which is a Gwex object containing dates and a matrix of observations.

Author(s)

Guillaume Evin

Examples

```
# Format dates corresponding to daily observations of precipitation and temperature
vecDates = seq(from=as.Date("01/01/2005",format="%d/%m/%Y"),
to=as.Date("31/12/2014",format="%d/%m/%Y"),by='day')

# build GwexObs object with precipitation data
myObsPrec = GwexObs(variable='Prec',date=vecDates,obs=dailyPrecipGWEX)

# print GwexObs object
myObsPrec

# build GwexObs object with temperature data
myObsTemp = GwexObs(variable='Temp',date=vecDates,obs=dailyTemperGWEX)

# print GwexObs object
myObsTemp
```

GwexSim-class 27

GwexSim-class	Defines a GwexSim object which is a Gwex object containing 'sim', an array containing the simulations, and 'dates', a vector of dates. See
	simGwexModel for some examples.

Description

Defines a GwexSim object which is a Gwex object containing 'sim', an array containing the simulations, and 'dates', a vector of dates. See simGwexModel for some examples.

Author(s)

Guillaume Evin

```
infer.autocor.amount infer.autocor.amount
```

Description

special case of infer.dep.amount where there is only one station

Usage

```
infer.autocor.amount(
  P.mat,
  pr.state,
  isPeriod,
  nLag,
  th,
  parMargin,
  typeMargin,
  nChainFit,
  isMAR,
  isParallel
)
```

Arguments

P.mat	precipitation matrix
pr.state	probabilities of transitions for a Markov chain with lag p.
isPeriod	vector of logical n x 1 indicating the days concerned by a 3-month period
nLag	order of he Markov chain for the transitions between dry and wet states (=2 by default)
th	threshold above which we consider that a day is wet (e.g. 0.2 mm)

28 infer.dep.amount

parMargin parameters of the margins 2 x 3

typeMargin 'EGPD' (Extended GPD) or 'mixExp' (Mixture of Exponentials). 'EGPD' by

default

nChainFit integer, length of the runs used during the fitting procedure. =100000 by default

isMAR logical value, do we apply a Autoregressive Multivariate Autoregressive model

(order 1) =TRUE by default

isParallel logical: indicate computation in parallel or not (easier for debugging)

Value

list of estimates (e.g., M0, dfStudent)

Author(s)

Guillaume Evin

infer.dep.amount

infer.dep.amount

Description

estimate parameters which control the spatial dependence between intensities using a copula

Usage

```
infer.dep.amount(
  P.mat,
  isPeriod,
  infer.mat.omega.out,
  nLag,
  th,
  parMargin,
  typeMargin,
  nChainFit,
  isMAR,
  copulaInt,
  isParallel
)
```

Arguments

```
P.mat precipitation matrix
```

isPeriod vector of logical n x 1 indicating the days concerned by a 3-month period

infer.mat.omega.out

output of infer.mat.omega

infer.mat.omega 29

nLag order of he Markov chain for the transitions between dry and wet states (=2 by

default)

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

parMargin parameters of the margins 2 x 3

typeMargin 'EGPD' (Extended GPD) or 'mixExp' (Mixture of Exponentials). 'EGPD' by

default

nChainFit integer, length of the runs used during the fitting procedure. =100000 by default

isMAR logical value, do we apply a Autoregressive Multivariate Autoregressive model

(order 1) = TRUE by default

copulaInt 'Gaussian' or 'Student': type of dependence for amounts (='Student' by default)

isParallel logical: indicate computation in parallel or not (easier for debugging)

Value

list of estimates (e.g., M0, dfStudent)

Author(s)

Guillaume Evin

Description

find omega correlation leading to estimates cor between occurrences

Usage

```
infer.mat.omega(P.mat, isPeriod, th, nLag, pr.state, nChainFit, isParallel)
```

Arguments

P.mat matrix of precipitation n x p

isPeriod vector of logical n x 1 indicating the days concerned by a 3-month period

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

nLag order of the Markov chain

nChainFit length of the simulated chains used during the fitting

isParallel logical: indicate computation in parallel or not (easier for debugging)

joint.proba.occ

Value

A list with different objects

• **Qtrans.mat**: matrix nStation x n.comb of transition probabilites

• mat.comb: matrix of possible combination n.comb x nLag

• mat.omega: The spatial correlation matrix of occurrences Ω (see Evin et al., 2018).

Author(s)

Guillaume Evin

joint.proba.occ

joint.proba.occ

Description

joint probabilities of occurrences for all pairs of stations

Usage

```
joint.proba.occ(P, th)
```

Arguments

P matrix of precipitation

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

Value

list list of joint probabilities

Author(s)

lagTransProbaMatrix 31

Description

Estimate the transition probabilities between wet and dry states, for nlag previous days, for all stations

Usage

lagTransProbaMatrix(mat.prec, isPeriod, th, nlag)

Arguments

mat.prec matrix of precipitation

isPeriod vector of logical n x 1 indicating the days concerned by a 3-month period

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

nlag number of lag days

Value

list list with one item per station, where each item is a matrix nLag^2 x (nLag+1)

of transition probability between dry/wet state. The first nLag columns indicate

the wet/dry states for the previous nLag days

Author(s)

Guillaume Evin

lagTransProbaVector lagTransProbaVector

Description

Estimate the transition probabilities between wet and dry states, for nlag previous days, for one station

Usage

lagTransProbaVector(vec.prec, isPeriod, th, nlag)

32 mask.GWex.Yt

Arguments

vec.prec vector nx1 of precipitation for one station

isPeriod vector of logical n x 1 indicating the days concerned by a 3-month period

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

nlag number of lag days

Value

matrix matrix nLag^2 x (nLag+1) of transition probability between dry/wet state. The

first nLag columns indicate the wet/dry states for the previous nLag days

Author(s)

Guillaume Evin

mask.GWex.Yt mask.GWex.Yt

Description

Mask intensities where there is no occurrence

Usage

```
mask.GWex.Yt(Xt, Yt)
```

Arguments

Xt simulated occurrences
Yt simulated intensities

Value

matrix matrix n x p of simulated precipitations

Author(s)

modify.cor.matrix 33

modify.cor.matrix

modify.cor.matrix

Description

Modify a non-positive definite correlation matrix in order to have a positive definite matrix

Usage

```
modify.cor.matrix(cor.matrix)
```

Arguments

cor.matrix

possibly non-positive definite correlation matrix

Value

positive definite correlation matrix

Author(s)

Guillaume Evin

References

Rousseeuw, P. J. and G. Molenberghs. 1993. Transformation of non positive semidefinite correlation matrices. Communications in Statistics: Theory and Methods 22(4):965-984.

Rebonato, R., & Jackel, P. (2000). The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. J. Risk, 2(2), 17-26.

month2season

month2season

Description

transform vector of months to seasons

Usage

month2season(vecMonth)

Arguments

vecMonth

a vector of months given as integers 1:12

Author(s)

34 PWM.EGPD.GI

print,Gwex-method

print-methods: Create a method to print Gwex objects.

Description

print-methods: Create a method to print Gwex objects.

Usage

```
## S4 method for signature 'Gwex'
print(x)

## S4 method for signature 'GwexObs'
print(x)

## S4 method for signature 'GwexFit'
print(x)

## S4 method for signature 'GwexSim'
print(x)
```

Arguments

Х

Gwex object

Examples

```
# Format dates corresponding to daily observations of precipitation and temperature
vecDates = seq(from=as.Date("01/01/2005",format="%d/%m/%Y"),
to=as.Date("31/12/2014",format="%d/%m/%Y"),by='day')

# build GwexObs object with temperature data
myObsTemp = GwexObs(variable='Temp',date=vecDates,obs=dailyTemperGWEX)

# print GwexObs object
myObsTemp
```

PWM.EGPD.GI

EGPD.GI.mu0, EGPD.GI.mu1, EGPD.GI.mu2

Description

Probability Weighted Moments of order 0, 1 and 2 of the unified EGPD distribution

QtransMat2Array 35

Usage

```
EGPD.GI.mu0(kappa, sig, xi)
EGPD.GI.mu1(kappa, sig, xi)
EGPD.GI.mu2(kappa, sig, xi)
```

Arguments

kappa transformation parameter greater than 0

sig Scale parameter xi Shape parameter

Value

Probability Weighted Moments

Author(s)

Guillaume Evin

QtransMat2Array

QtransMat2Array

Description

reshape Qtrans.mat to an array

Usage

```
QtransMat2Array(n, p, Qtrans.mat)
```

Arguments

n matrix of precipitation p number of stations

Qtrans.mat transition probabilities, 2 x ncomb matrix

Value

array of transition probabilities with dimension n x p x n.comb

Author(s)

36 sim.GWex.occ

show, Gwex-method

show-methods: Create a method to show Gwex objects.

Description

show-methods: Create a method to show Gwex objects.

Usage

```
## S4 method for signature 'Gwex'
show(object)

## S4 method for signature 'GwexObs'
show(object)

## S4 method for signature 'GwexFit'
show(object)

## S4 method for signature 'GwexSim'
show(object)
```

Arguments

object

Gwex object

Examples

```
# Format dates corresponding to daily observations of precipitation and temperature
vecDates = seq(from=as.Date("01/01/2005",format="%d/%m/%Y"),
to=as.Date("31/12/2014",format="%d/%m/%Y"),by='day')

# build GwexObs object with temperature data
myObsTemp = GwexObs(variable='Temp',date=vecDates,obs=dailyTemperGWEX)

# show GwexObs object
myObsTemp
```

sim.GWex.occ

sim.GWex.occ

Description

generate boolean variates which describe the dependence between intersite occurrence correlations and wet/dry persistence

sim.GWex.prec.1it

Usage

```
sim.GWex.occ(objGwexFit, vecMonth)
```

Arguments

objGwexFit object of class GwexFit

vecMonth vector n x 1 of integers indicating the months

Value

```
matrix of logical
```

occurrences simulated

Author(s)

Guillaume Evin

sim.GWex.prec.1it sim.GWex.prec.1it

Description

Simulate one scenario of precipitation from the GWex model

Usage

```
sim.GWex.prec.1it(objGwexFit, vecDates, myseed, objGwexObs, prob.class)
```

Arguments

objGwexFit object of class GwexFit vecDates vector of continuous dates

myseed seed of the random generation, to be fixed if the results need to be replicated objGwexObs optional: necessary if we need observations to simulate (e.g. disaggregation of

3-day periods)

prob. class vector of probabilities indicating class of "similar" mean intensities

Value

matrix Precipitation simulated for the dates contained in vec.Dates at the different sta-

tions

Author(s)

38 sim.GWex.Yt.Pr

sim.GWex.Yt sim.GWex.Yt

Description

Inverse PIT: from the probability space to the precipitation space

Usage

```
sim.GWex.Yt(objGwexFit, vecMonth, Yt.Pr)
```

Arguments

objGwexFit object of class GwexFit

vecMonth vector of integer indicating the months

Yt.Pr uniform variates describing dependence between inter-site amounts

Value

matrix matrix n x p of simulated non-zero precipitation intensities

Author(s)

Guillaume Evin

sim.GWex.Yt.Pr sim.GWex.Yt.Pr

Description

generate uniform variates which describe the dependence between intersite amount correlations

Usage

```
sim.GWex.Yt.Pr(objGwexFit, vecMonth)
```

Arguments

objGwexFit object of class GwexFit

vecMonth vector n x 1 of integer indicating the months

Value

matrix matrix n x p of uniform dependent variates

Author(s)

Description

get relevant parameters

Usage

```
sim.GWex.Yt.Pr.get.param(objGwexFit, iM)
```

Arguments

objGwexFit object of class GwexFit
iM integer indicating the month

Value

list list of parameters

Author(s)

Guillaume Evin

sim.Zt.MAR sim.Zt.MAR

Description

generate gaussian variates which describe the spatial and temporal dependence between the sites $(MAR(1)\ process)$

Usage

```
sim.Zt.MAR(PAR, copulaInt, Zprev, p)
```

Arguments

PAR parameters for this class copulaInt 'Gaussian' or 'Student'
Zprev previous Gaussian variate

p number of stations

40 simGwexModel

Value

matrix matrix n x p of uniform dependent variates

Author(s)

Guillaume Evin

sim.Zt.Spatial

sim.Zt.Spatial

Description

generate gaussian variates which describe the spatial dependence between the sites

Usage

```
sim.Zt.Spatial(PAR, copulaInt, p)
```

Arguments

PAR parameters for a class copulaInt 'Gaussian' or 'Student' p number of stations

Value

matrix matrix n x p of uniform dependent variates

Author(s)

Guillaume Evin

simGwexModel

simGwexModel

Description

Simulate from a GWex model

simGwexModel 41

Usage

```
simGwexModel(
  objGwexFit,
  nb.rep = 10,
  d.start = as.Date("01011900", "%d%m%Y"),
  d.end = as.Date("31121999", "%d%m%Y"),
  objGwexObs = NULL,
  prob.class = c(0.5, 0.75, 0.9, 0.99),
  objGwexSim = NULL,
  nCluster = 1
)
```

Arguments

objGwexFit an object of class GwexFit nb.rep number of repetitions of scenarios d.start a starting date for the simulation d.end an ending date for the simulation optional: an object of class GwexObs if we need the observations to simulate objGwex0bs (disaggregation prec 3D -> 1D) prob.class vector of probabilities indicating class of "similar" mean intensities objGwexSim optional: an object of class GwexSim if we need simulations to simulate (temp conditional to prec) nCluster optional, number of clusters which can be used for the parallel computation

Value

GwexSim an object of class GwexSim. Contains sim (3D-array with the simulations) and a

vector of dates

Author(s)

Guillaume Evin

Examples

42 simPrecipOcc

```
# Generate 2 scenarios for one year, using the 'GwexFit' object
mySimPrec = simGwexModel(objGwexFit=myParPrec, nb.rep=2, d.start=vecDates[1],
d.end=vecDates[10])
mySimPrec # print object
FIT AND SIMULATE FROM THE TEMPERATURE MODEL
# Format observations: create a G-Wex object
myObsTemp = GwexObs(variable='Temp',date=vecDates,obs=dailyTemperGWEX)
# Fit GWEX temperature model
myParTemp = fitGwexModel(myObsTemp,listOption=list(hasTrend=TRUE,typeMargin='Gaussian',
depStation='Gaussian'))
# Generate 2 scenarios for one year, using an existing 'GwexFit' object
mySimTemp = simGwexModel(objGwexFit=myParTemp, nb.rep=2, d.start=vecDates[1],
                      d.end=vecDates[365],objGwexObs=myObsPrec)
mySimTemp # print object
```

simPrecipOcc

simPrecipOcc

Description

find matrix of correlations leading to estimates cor between intensities

Usage

```
simPrecipOcc(nLag, n, pr)
```

Arguments

nLag order of the Markov chain

n integer indicating the length of simulated chains

pr vector of probabilies corr. to the conditional transition probabilities

Value

a vector Xt of length n with values 0/1 corr. to dry/wet states

Author(s)

unif.to.prec 43

unif.to.prec unif.to.prec

Description

from uniform variates to precipitation variates

Usage

```
unif.to.prec(pI, typeMargin, U)
```

Arguments

pI vector of three parameters of the marginal distributions typeMargin type of marginal distribution: 'EGPD' or 'mixExp' U vector of uniform variates

Value

matrix matrix of estimates p x 3

Author(s)

Guillaume Evin

wet.day.frequency

Description

Estimate the wet day frequency (proportion of wet days) for all stations

Usage

```
wet.day.frequency(mat.prec, th)
```

Arguments

mat.prec matrix of precipitation (possibly for one month/period)

th threshold above which we consider that a day is wet (e.g. 0.2 mm)

Value

```
vector of numeric
```

wet day frequencies

44 wet.day.frequency

Author(s)

Index

* datasets dailyPrecipGWEX, 6	get.listOption, 21 get.M0, 21
dailyTemperGWEX,7	
daily remper GWEX, /	get.mat.omega, 22 get.period.fitting.month, 23
agg.matrix, 3	get.vec.autocor, 23
autocor.emp.int,4	getGwexFitPrec, 24
, ,	Gwex, 25–27, 34, 36
cor.emp.int,4	Gwex-class, 25
cor.emp.occ,5	GwexFit, 17, 24, 25, 41
cor.obs.occ, 6	GwexFit-class, 25
de ide Decesia CWEV. C	GwexObs, 14, 17, 25, 25, 26, 41
dailyPrecipGWEX, 6	GwexObs-class, 26
dailyTemperGWEX, 7	GwexSim, 27, 41
dEGPD.GI (dist.functions.EGPD.GI), 8	GwexSim-class, 27
<pre>disag.3D.to.1D, 7 dist.functions.EGPD.GI, 8</pre>	,
dry.day.frequency, 9	infer.autocor.amount, 27
di y. day. 11 equency, 9	infer.dep.amount, 27, 28
EGPD.dGI (functions.EGPD.GI), 18	infer.mat.omega, 22, 28, 29
EGPD.GI.fit.PWM, 9	
EGPD.GI.fPWM, 10	joint.proba.occ, 30
EGPD.GI.mu0 (PWM.EGPD.GI), 34	
EGPD.GI.mu1 (PWM.EGPD.GI), 34	lagTransProbaMatrix, 29, 31
EGPD.GI.mu2 (PWM.EGPD.GI), 34	lagTransProbaVector, 31
EGPD.pGI (functions.EGPD.GI), 18	mark Ollan VI 22
EGPD.qGI (functions.EGPD.GI), 18	mask.GWex.Yt, 32
	modify.cor.matrix, 33
find.autocor, 11	month2season, 33
find.omega, 11	pEGPD.GI (dist.functions.EGPD.GI), 8
find.zeta, 12	print, Gwex-method, 34
fit.copula.amount, 13 fit.GWex.prec, 13	print, GwexFit-method
fit.MAR1.amount, 15	(print, Gwex-method), 34
fit.margin.cdf, 16	print, GwexObs-method
fitGwexModel, 16, 24, 25	(print, Gwex-method), 34
functions.EGPD.GI, 18	print, GwexSim-method
Tance1313.231 5.31, 10	(print, Gwex-method), 34
get.df.Student, 19	PWM.EGPD.GI, 34
get.emp.cdf.matrix, 20	•
get.list.month, 20	qEGPD.GI(dist.functions.EGPD.GI), 8
get.list.season, 20	QtransMat2Array, 35

46 INDEX

```
rEGPD.GI (dist.functions.EGPD.GI), 8
show, Gwex-method, 36
show, GwexFit-method (show, Gwex-method),
show, GwexObs-method (show, Gwex-method),
         36
show, GwexSim-method (show, Gwex-method),
         36
\mathtt{sim}.\,\mathsf{GWex}.\,\mathsf{occ},\, \textcolor{red}{\mathbf{36}}
sim.GWex.prec.1it, 37
sim.GWex.Yt, 38
sim.GWex.Yt.Pr, 38
sim.GWex.Yt.Pr.get.param, 39
sim.Zt.MAR, 39
sim.Zt.Spatial, 40
simGwexModel, 27, 40
simPrecipOcc, 42
unif.to.prec, 43
wet.day.frequency, 43
```