Graphic Lasso: Clustering accuracy for precision matrix model

Jiaxin Hu

February 17, 2021

1 With convex penalty L_1 norm

The precision model is stated as

$$\mathbb{E}[S^k] = \Omega^k = \sum_{l=1}^r u_{kl} \Theta^l, \quad k \in [K].$$

Consider the following penalized optimization problem

$$\max_{\boldsymbol{U},\Theta^l} \mathcal{L}_S(\boldsymbol{U},\Theta^l) = -\sum_{k=1}^K \operatorname{tr}(S^k \Omega^k) + \log \det(\Omega^k) + \lambda \left\| \Omega^k \right\|,$$

where U is a membership matrix, and $\{\Theta^l\}$ are irreducible and invertible.

Proposition 1. The loss function \mathcal{L}_S satisfies the conditions for Theorem 1.1, and thus the clustering accuracy for precision matrix model is guaranteed.

Proof. First, we introduce some useful notations.

Given the membership U', let $\hat{\Theta}^l(U') = \arg\max_{U' \Theta^l}$. Particularly, for each $l \in [r]$, we have

$$\hat{\Theta}^l(\boldsymbol{U}') = \underset{\Theta}{\arg\max} - \sum_{k \in I'_l} \langle S^k, \Theta \rangle + |I'_l| \log \det(\Theta) + \lambda |I'_l| \left\| \Theta \right\|_1,$$

where $I'_l = \{k : u'_{kl} \neq 0\}$ is the index set for the *l*-th group based on the membership U'. The sample-based loss is defined as

$$F(\mathbf{U}') = \mathcal{L}_S(\mathbf{U}', \hat{\Theta}^l(\mathbf{U}')).$$

Correspondingly, define the population-based loss function as

$$l(\boldsymbol{U}, \boldsymbol{\Theta}^l) = \mathbb{E}_S[\mathcal{L}_S(\boldsymbol{U}, \boldsymbol{\Theta}^l)] = -\sum_{k=1}^K \operatorname{tr}(\boldsymbol{\Sigma}^k \boldsymbol{\Omega}^k) + \log \det(\boldsymbol{\Omega}^k) + \lambda \sum_{k=1}^K \left\| \boldsymbol{\Omega}^k \right\|_1.$$

Given the membership U', let $\tilde{\Theta}^l(U') = \arg \max_{U', \Theta^l}$. Particularly, for each $l \in [r]$, we have

$$\tilde{\Theta}^{l}(U') = \underset{\Theta}{\operatorname{arg\,max}} - \sum_{k \in I'_{l}} \langle \Sigma^{k}, \Theta \rangle + |I'_{l}| \log \det(\Theta) + \lambda |I'_{l}| \|\Theta\|_{1}. \tag{1}$$

Then, the population-based loss is defined as

$$G(\mathbf{U}') = l(\mathbf{U}', \tilde{\Theta}^l(\mathbf{U}')).$$

Note that $\hat{\Theta}^l(U')$ and $\tilde{\Theta}^l(U')$ do not have closed forms. But both of them only utilize $|I'_l|$ sample covariance(true covariance) matrices based on the membership.

Next, we verify the functions $F(\cdot)$ and $G(\cdot)$ satisfy the conditions in the Theorem 1.1. Let $\{U, \Theta^l\}$ denote the true membership and precision matrices, and define $\hat{U} = \arg \max_{\boldsymbol{U}} F(\boldsymbol{U})$. We also define the confusion matrix $D = [\![D_{ij}]\!] \in \mathbb{R}^{r \times r}$, where $D_{ij} = \sum_{k=1}^K \boldsymbol{I}\{u_{ki} = \hat{u}_{kj} = 1\}$.

1. (Self-consistency) First, we consider the explicit formulas for $G(\hat{U})$ and G(U).

$$G(\hat{\boldsymbol{U}}) = l(\hat{\boldsymbol{U}}, \tilde{\Theta}^{l}(\hat{\boldsymbol{U}}))$$

$$= \sum_{l=1}^{r} \left[\sum_{k \in \hat{I}_{l}} -\langle \Sigma^{k}, \tilde{\Theta}^{l}(\hat{\boldsymbol{U}}) \rangle + |\hat{I}_{l}| \log \det(\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})) - \lambda |\hat{I}_{l}| \|\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})\|_{1} \right]$$

$$= \sum_{l=1}^{r} \left[\sum_{a=1}^{r} D_{al} \left(-\langle \Sigma^{a}, \tilde{\Theta}^{l}(\hat{\boldsymbol{U}}) \rangle + \log \det(\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})) - \lambda \|\tilde{\Theta}^{l}(\hat{\boldsymbol{U}})\|_{1} \right) \right],$$

and

$$G(\boldsymbol{U}) = l(\boldsymbol{U}, \tilde{\Theta}^{l}(\boldsymbol{U}))$$

$$= \sum_{l=1}^{r} \left[-|I_{l}|\langle \Sigma^{k}, \tilde{\Theta}^{l}(\boldsymbol{U}) \rangle + |I_{l}| \log \det(\tilde{\Theta}^{l}(\boldsymbol{U})) - \lambda |I_{l}| \|\tilde{\Theta}^{l}(\boldsymbol{U})\|_{1} \right]$$

$$= \sum_{l=1}^{r} \left[\sum_{a=1}^{r} D_{al} \left(-\langle \Sigma^{a}, \tilde{\Theta}^{a}(\boldsymbol{U}) \rangle + \log \det(\tilde{\Theta}^{a}(\boldsymbol{U})) - \lambda \|\tilde{\Theta}^{a}(\boldsymbol{U})\| \right) \right].$$

Define the function

$$h^k(\Theta) = -\langle \Sigma^k, \Theta \rangle + \log \det(\Theta) - \lambda \left\| \Theta \right\|_1.$$

By the definition (1), we know that

$$\tilde{\Theta}^k(\boldsymbol{U}) = \operatorname*{arg\,max}_{\Theta} h^k(\Theta), k = 1, ..., r.$$

Therefore, we have the self-consistency of U, i.e., $G(U') \leq G(U)$.

Next, we want to find the function which links the subtraction $G(\hat{U}) - G(U)$ with the misclassification rate $MCR(\hat{U}, U)$, where $MCR(\hat{U}, U) = \max_{l,a \neq a' \in [r]} \min\{D_{al}, D_{a'l}\}$.

Suppose $MCR(\hat{U}, U) \ge \epsilon$. There exist $l, k \ne k' \in [r]$ such that $\min\{D_{kl}, D_{k'l}\} \ge \epsilon$. Then, we have

$$G(\hat{\boldsymbol{U}}) - G(\boldsymbol{U}) \leq D_{kl} \left(h^k(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^k(\tilde{\Theta}^k(\boldsymbol{U})) \right) + D_{k'l} \left(h^k(\tilde{\Theta}^l(\hat{\boldsymbol{U}})) - h^k(\tilde{\Theta}^{k'}(\boldsymbol{U})) \right)$$

$$\leq \epsilon C(\boldsymbol{U}, \boldsymbol{\Theta}^l, \lambda),$$

where C is a function of the true parameters $\{U, \Theta^l\}$. Need to figure our the explicit form of C in next step.

2. (Bounded difference between sample- and population-based loss) For arbitrary U, consider the absolute subtraction

$$|F(\boldsymbol{U}) - G(\boldsymbol{U})| = |\mathcal{L}_S(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U})) - l(\boldsymbol{U}, \tilde{\Theta}^l(\boldsymbol{U}))|$$

$$\leq |\mathcal{L}_S(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U})) - l(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U}))| + |l(\boldsymbol{U}, \hat{\Theta}^l(\boldsymbol{U})) - l(\boldsymbol{U}, \tilde{\Theta}^l(\boldsymbol{U}))|$$

$$= M_1 + M_2.$$

Conjecture:

For M_1 ,

$$M_{1} = |\sum_{l=1}^{r} \sum_{k \in L} \langle (\Sigma^{k} - S^{k}), \hat{\Theta}^{l}(\boldsymbol{U}) \rangle| = \max_{k, (ij)} |\Sigma_{ij}^{k} - S_{ij}^{k}| C_{1}(\boldsymbol{U}, \Theta^{l}, p),$$

where C_1 is a function of the true parameters $\{U, \Theta^l\}$ and the dimension p.

For M_2 , note that $l(U,\Theta)$ is a convex function of Θ and thus l is local Lipschitz. We may have

$$M_2 \le \max_{l \in [r]} \sup_{\Theta^l} \left| \frac{\partial}{\partial \Theta^l} l(\boldsymbol{U}, \Theta^l) \right| \left\| \hat{\Theta}^l(\boldsymbol{U}) - \tilde{\Theta}^l(\boldsymbol{U}) \right\|_{\max}$$

Also, we can consider $\max_{l \in [r]} \sup_{\Theta^l} \left| \frac{\partial}{\partial \Theta^l} l(\boldsymbol{U}, \Theta^l) \right| = C_2(\boldsymbol{U}, \Theta^l, \lambda)$, where C_2 is the function of the true parameters $\{\boldsymbol{U}, \Theta^l\}$ and tuning parameter λ . Since $\hat{\Theta}^l$ is the sample-based estimation and $\tilde{\Theta}^l$ is the population-based estimation, my conjecture is that $\left\| \hat{\Theta}^l(\boldsymbol{U}) - \tilde{\Theta}^l(\boldsymbol{U}) \right\|_{\max} = C_3(\max_{k,(ij)} |\Sigma_{ij}^k - S_{ij}^k|)$.

Therefore, we bound the difference as

$$|F(\boldsymbol{U}) - G(\boldsymbol{U})| \le C'(\boldsymbol{U}, \Theta^l, p, \lambda)C''(\max_{k,(ij)} |\Sigma_{ij}^k - S_{ij}^k|),$$

and then we can utilize of residual to find a $p(t) = \mathbb{P}(|F(U) - G(U)| \ge t) \to 0$ as $t \to \infty$.

Theorem 1.1 (General property for loss function to guarantee the clustering accuracy). Let $\{C, M_k\}$ denote the true parameters, and $\mathcal{L}_{\mathcal{Y}}(C', M_k')$ denote the sample-based loss function. Define the sample-based loss function with respect to M_k' as

$$F(\mathbf{M}'_k) = \mathcal{L}_{\mathcal{Y}}(\hat{\mathcal{C}}(\mathbf{M}'_k), \mathbf{M}'_k),$$

where

$$\hat{\mathcal{C}}(\mathbf{M}'_k) = \underset{\mathcal{C}}{\operatorname{arg max}} \mathcal{L}_{\mathcal{Y}}(\mathcal{C}, \mathbf{M}'_k).$$

Correspondingly, define the population-based loss function with respect to M'_k as

$$G(\mathbf{M}'_k) = l(\tilde{\mathcal{C}}(\mathbf{M}'_k), \mathbf{M}'_k),$$

where

$$l(\mathcal{C}, M_k) = \mathbb{E}_{\mathcal{Y}}[\mathcal{L}_{\mathcal{Y}}(\mathcal{C}, M_k)], \quad and \quad \tilde{\mathcal{C}}(M_k') = \arg\max_{\mathcal{C}} l(\mathcal{C}, M_k').$$

Suppose the loss function satisfies the following properties

1. (Self-consistency to M_k) Suppose $MCR(M'_k, M_k) \ge \epsilon$ for $\epsilon > 0$. We have

$$G(M'_k) - G(M_k) \le -C(\epsilon),$$

where $C(\cdot)$ takes positive values.

2. (Bounded difference between sample- and population-based loss) The difference between sample-based and population-based loss function is bounded in probability, i.e.,

$$p(t) = \mathbb{P}(|F(\mathbf{M}'_k) - G(\mathbf{M}'_k)| \ge t) \to 0, \quad as \quad t \to \infty.$$

Let $\{\hat{M}_k\}$ be the maximizer of $F(M_k)$. Then, we have the following clustering accuracy, for any $\epsilon > 0$,

$$\mathbb{P}(MCR(\hat{M}_k, M_k) \ge \epsilon) \le p\left(\frac{C(\epsilon)}{2}\right).$$