

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT ESTÁGIO CURRICULAR SUPERVISIONADO III – ESC3003

A.2 Índice de Refração

Estagiário(a): Rodrigo Ribamar Silva do Nascimento

U.E.: EEB Giovani Pasqualini Faraco

Série: 2° Ano Turma: 2° -5

Aula: 002 **Data:** XX/XX/2022 **Duração:** 45 min

Título: Construindo o conceito de índice de refração

Resumo da aula: Utilizando simulações $PhET^1$, iremos explorar algumas das características da refração da luz em meios diferentes. Os conceitos de índices de refração (relativo e absoluto) serão construídos em conjunto com a turma.

Habilidades BNCC: EF03CI02.

Objetivo de Aprendizagem

- Perceber que quando a luz passa do meio ar para o meio água ou vidro, esta tem a sua trajetória modificada;
- Verificar que a velocidade de deslocamento da luz na água e no vidro são menores que no ar;
- Relacionar o desvio das trajetórias da luz em meios diferentes, com a mudança na sua velocidade de propagação em cada meio;
- Definir os índices de refração relativo e absoluto dos meios estudados;

Dimensão Conceitual: Domínio Epistêmico; Domínio Conceitual.

 $[\]frac{1}{\rm < https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html} > \frac{1}{\rm < https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html} > \frac{1}{\rm < https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html} > \frac{1}{\rm < https://phet.colorado.edu/sims/html/bending-light_en.html} > \frac{1}{\rm < https://phet.colorado.edu/sims/html/bending-light_en.html} > \frac{1}{\rm < https://phet.colorado.edu/sims/html/bending-light_en.html} > \frac{1}{\rm < https://phet.colorado.edu/sims/html/bending-light_en.html} > \frac{1}{\rm < https://phet.colorado.edu/sims/html} > \frac{1}{\rm < https://phet.c$

Procedimento Didático

 1^{o} Momento: Observando os desvios do da luz em diferentes meios.

Tempo previsto: 25 minutos

Dinâmica: Abrir a simulação do PhET, destinar 2 min da aula para explicar a simulação. Durante a simulação, proceder da seguinte forma:

- 1. Variar o ângulo de incidência da luz primeiramente nos meios ar \rightarrow ar.
 - a) Chamar a atenção para o que se observa com relação a trajetória da luz na incidência e na parte refratada;
- 2. Alterar o meio 2 para água de modo que a luz percorra a trajetória ar \rightarrow água, fazer variações na posição do feixe e pedir para que observem o que ocorre.
 - a) Perguntar qual a diferença entre o observado anteriormente e agora;
 - b) Questionar o que esperam que aconteça se alterar o meio 1 para água de modo que a luz percorra os meios água → água;
 - c) Alterar o meio 1 para água e verificar se a previsão dos alunos se concretiza;
 - d) Perguntar o que esperam que aconteça se alterarmos o meio 2 para ar de modo que agora a luz percorra os meios água \rightarrow ar;
 - e) Proceder como anteriormente de modo que agora a luz percorra a trajetória do meio água \rightarrow ar

Antes de prosseguir, fazer os seguintes questionamentos:

Questão 1. O que deve estar ocorrendo com a luz em cada observação para que ela altere a sua trajetória?

Questão 2. Qual a relação existente entre trajetória e velocidade?

Questão 3. Qual a relação entre os meios de propagação da luz e o desvio de sua trajetória?

Questão 4. Conseguem estabelecer alguma relação entre as observações feitas nas simulações e os experimentos conduzidos na aula passada?

Destinar 5 min da aula para que respondam as questões levantadas.

2º Momento: Relacionando os desvios de caminho óptico com a velocidade de propagação da luz em cada meio.

Tempo previsto: 15 minutos

Dinâmica: Neste momento o professor deve responder cada uma das questões utilizando a simulação de forma dialogada com os alunos. Proceder da seguinte forma:

- 1. Setar a simulação para o modo Wave e Slow Motion para facilitar a visualização;
- 2. Medir a velocidade da luz em cada caso observado no 1º momento da aula;
- 3. Pedir para que os alunos calculem a razão entre a velocidade da luz no ar e a velocidade da luz na água;
- 4. Pedir para que comparem o resultado com o índice de refração da água.

Comprimento de Onda $\lambda(nm)$	Índice de Refração n
226,5	1,393 36
361,05	1,34795
404,41	1,343 15
589	1,333
632,8	1,332 11
1013,98	$1,325\ 24$

Tabela 1 – Índices de refração da água (20 °C). Fonte: www.fq.pt

3º Momento: Definindo os índices de refração.

Tempo previsto: 5 minutos

Dinâmica: Colocar no quadro a definição do índice de refração absoluto

Definição A.2.0.1. O índice de refração absoluto da luz em um meio, é a medida da razão entre a velocidade da luz no vácuo c e a velocidade da luz no meio em questão

$$\boxed{n = \frac{c}{v}} \tag{A.1}$$

O professor deve comentar que a velocidade da luz no vácuo c é muito próxima a velocidade da luz no ar e que para fins práticos, o índice de refração absoluto do ar é $n_{\rm ar}=1,00$. É importante deixar claro também que, em virtude da velocidade da luz, nunca deve-se observar um índice de refração absoluto menor do que 1.

Definir o índice de refração relativo a partir da definição acima, como segue:

Se em um determinado meio a luz percorre sua trajetória com velocidade v_1 , e ao passar para um segundo meio essa velocidade se altera para v_2 , podemos estabelecer uma grandeza chamada *índice de refração relativo* $n_{1,2}$ da seguinte forma

$$n_1 = \frac{c}{v_1} \qquad \qquad n_2 = \frac{c}{v_2} \tag{A.2}$$

dividindo n_1 por n_2 obtemos

$$\frac{n_1}{n_2} = \left(\frac{c}{v_1}\right) \left(\frac{v_2}{c}\right) = \frac{v_2}{v_1} \tag{A.3}$$

O índice de refração relativo fica então definido por

$$n_{1,2} = \frac{v_2}{v_1} \tag{A.4}$$