CONSENSUS AND THE CONSORTIA

KNOW-HOWS

ARUN S M

Senior Software Engineer, Walmart Hyperledger TSC Member Co-Lead Hyperledger India Chapter

AGENDA

- Learn and un-learn consensus
- Consensus in consortium
- Deciding on the consensus algorithm

CONSENSUS ALGORITHMS

Consensus algorithms are a decision-making process to get an agreement on a single data point among distributed systems.

Fully Connected Network of 5 nodes

GUARANTEED AVAILABILITY

Crash Fault Tolerance	Byzantine Fault Tolerance
If a subset of nodes go down, the system is still working.	If a subset of nodes behave wrong, the system still functions normally.
WOI KIIIg.	suil functions normally.

WHAT IS BLOCKCHAIN?

Distributed, Decentralized, Immutable Ledger Of Records

CONSENSUS IN BLOCKCHAIN

Define set of rules for

- Proposing a block with possible state transition
- Validating a block and agreeing upon it
- Commit a block

NAKAMOTO STYLE CONSENSUS ALGORITHMS

Proof of Work

- Proof based on the work done.

Proof of Stake

- Proof with a stake for BFT behaviour.

Proof of Elapsed Time

- Proof based on the random timer and waiting for the period of the timer value.
- * Other variants of Proof of XYZ algorithms are available.

What makes them unique?

- Can scale to larger networks easily
- Susceptible to 51% attack, but such attacks are unrealistic in larger networks

Common Challenges

- Slow commit rate because of forks, solution to address them
 - Example: Agree for all the blocks prior to 50 blocks
 - Get signature from subgroup of nodes, chosen randomly
- What if a node signs two blocks

FAST-FINALITY CONSENSUS ALGORITHMS

Practical Byzantine Fault Tolerance (PBFT)

- Proposal and voting for both leader election and the content commit operation.
- Breaks if minimum 2/3rd are non-Byzantine.

Raft

One node is leader and other nodes follow the instructions.

* Other options are available to consume for advanced use cases.

What makes them unique?

 Faster, when consensus is expected in short interval

Common Challenges

- Requires a fully connected network of nodes
- Cannot be used in larger networks
- Number of messages exchanged between the nodes increase as the size grows

CONSORTIUM

An association of two or more organizations with the objective of participating in a common activity or pooling their resources for achieving a common goal.

DECISION MATRIX

AGREEMENT IN HYPERLEDGER FABRIC

Step

Client receives the transactions

Client asks the network to endorse the transaction

Step 2

Client sends the endorsements to the ordering service cluster

• Ordering service cluster runs the consensus to order the transactions

Step 3

• Ordered transaction block is sent for commitment

CONSENSUS AVAILABLE IN HYPERLEDGER PROJECTS

PoET, RAFT, PBFT, RBFT, Mir-BFT ...

Pluggable & Bring Your Own Consensus

QUESTIONS TO ANSWER

- Privacy of the data
- Size of the network
- Degree of decentralization
- Performance & throughput

QUESTIONS?