Subject Code	Subject Name (Lab oriented Theory Courses)	Category	L	T	P	C
AI19541	FUNDAMENTALS OF DEEP LEARNING	PC	3	0	2	4

Objectives:							
•	To introduce the different activation functions.						
•	To familiarize various Training Techniques.						
•	To learn about Convolutional Neural Network.						
•	To introduce the different models of Deep Learning.						
•	To familiarize generative deep learning.						

UNIT-I INTRODUCTION TO DEEP LEARNING									
Perceptrons to Neural Networks - Activation Function - Calculating Multidimensional Arrays - Implementing a Three-									
Layer Neura	Layer Neural Network - Designing the Output Layer - Identity Function and Softmax Function - Handwritten Digit								
Recognition	Recognition. Neural Network Training: Learning from Data – Loss Function. CHAPTER – 3 & 4 (T1)								
UNIT-II	TRAINING TECHNIQUES	9							
Numerical l	Numerical Differentiation – Gradient – Implementing a Training Algorithm - Stochastic Gradient Descent – Momentum								
– AdaGrad -	- AdaGrad - Adam - Initial Weight Values - Regularization - Validating Hyper parameters. CHAPTER - 4 & 6 (T1)								
UNIT-III	UNIT-III CONVOLUTIONAL NEURAL NETWORKS								
Overall Arc	Overall Architecture – The convolution layer – The pooling layer – Implementing the Convolution and Pooling Layers								
 Implemen 	ting a CNN – Visualizing a CNN – Typical CNNs. CHAPTER – 7 (T1)								
UNIT-IV	UNIT-IV ACCELERATING DEEP LEARNING MODELS								
Making a N	Making a Network Deeper – ImageNet – VGG – GoogLeNet – ResNet – Accelerating Deep Learning – Practical Uses								
of Deep Lea	rning – The Future of Deep Learning. CHAPTER – 8 (T1)								
UNIT-V	UNIT-V GENERATIVE DEEP LEARNING AND BEST PRACTICES 9								
Generative deep learning: Text generation – Deep dream – Neural style transfer – Generating images with variational									
autoencoders – Introduction to Generative Adversarial Networks. Best practices for the real world: Hyperparameter									
optimization - Model ensembling - Scaling up model training. CHAPTER – 12 & 13 (T2)									
	Contact Hours :	45							

List of Experiments											
1.	Implement handwritten digits classification.										
2.	Implement classification model using ImageNet database.										
3.	Study of different frameworks on deep learning (Tensor flow, Keras, PyTorch).										
4.	Implement basic convolutional neural network model for classification using Dogs vs. Cats dataset.										
5.	Implement VGG-16 model for classification using Dogs vs. Cats dataset.										
6.	Implement object recognition using YOLO.										
7.	Implement time series analysis for temperature forecasting using jena weather dataset.										
8.	Implement text processing model using TextVectorization layer for IMDB movie reviews dataset.										
9.											
	Contact Hours :										
	Total Contact Hours : 75										

Co	Course Outcomes:							
On completion of the course, the students will be able to								
•	• Explain the basic concepts of activation function.							
•	Apply various training techniques.							
•	Implement convolutional neural network.							
•	Develop different Deep Learning models.							
•	Construct deep generative model for various applications.							

Text Books:									
1	Koki Saitoh, "Deep Learning from the Basics - Python and Deep Learning: Theory and Implementation", 2021 Packt Publishing.								
2	François Chollet, "Deep Learning with Python" Second Edition, Manning (ISBN 9781617296864).								

- 1 Duda, Richard, Peter Hart, and David Stork. Pattern Classification. 2nd ed. New York, NY: Wiley-Interscience, 2000.
- 2 Satish Kumar, "Neural Networks, A Classroom Approach", Tata McGraw -Hill, 2007.
- 3 Michael Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015.

Web link:

1. https://www.manning.com/books/deep-learning-with-python-second-edition

CO - PO - PSO matrices of course

PO/PSO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
AI19541.1	3	3	2	2	1	-	-	1	-	-	-	1	3	3	1
AI19541.2	3	3	2	2	2	-	-	2	-	-	-	1	3	3	2
AI19541.3	3	3	3	2	2	-	-	2	-	-	-	1	3	3	1
AI19541.4	3	3	3	2	3	1	1	2	1	1	ı	1	3	3	3
AI19541.5	3	3	3	2	3	1	1	2	1	1	ı	1	3	3	3
Average	3	3	2.6	2	2.2	1	1	1.8	1	1	-	1	3	3	2

Correlation levels 1, 2 or 3 are as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

No correlation: "-"