<u>Warmup</u>	let D : $F[x]$ to $F[x]$ be $D(p) = dp/dx$
what are son	ne D-stable linear subspaces?

e.g., for all n,

$$P_n = \{p \mid p = 0 \text{ or } deg(p) \le n\} \text{ is D-stable}$$

non-example:

$$\{p \mid p(3) = 0\}$$
 is not D-stable $[why?]$

Q

no: cannot solve
$$D(p) = \lambda p$$
 for polynomial p

does D have eigenvectors in F[x]?

<u>Df</u> a formal power series over F (= R, C) is an infinite sum $f(x) = sum_{k \ge 0} a_kx^k$ with a_i in F for all i

the <u>formal derivative</u> on F[[x]] is the F-linear operator D def by

$$D(sum_k a_kx^k) = sum_k ka_kx^{k-1}$$

 \underline{Q} does D have eigenvectors in F[[x]]?

yes: $exp(\alpha x)$ where $exp(x) = sum_k (1/k!)x^k$

Q is F[[x]] iso to a familiar v.s.? [yes: F^N]

(Axler §5B–5C) recap: fix T: V to V

- if V = F[x], then T might have no eigenvals [multiplication by x gives another example]
- if V = R^n, then T might have no eigenvals [example? any rotation of $\theta \neq 0$, π radians]

[stated last time:]

<u>Thm</u> if F = C and V is fin. dim. and not $\{0\}$, then T must have <u>some</u> eigenval

last time: proved thm assuming a lemma about polynomials in T

today: prove lemma in a sharper form

<u>Lem</u> for any F and V fin. dim. and $v \neq 0$:

- 1) there is some p(z) s.t.
 - p(z) nonconst and p(T) v = 0
- 2) if m = minimal deg among such p,then dim $ker(p(T)) \ge m$ for such p

Pf of 1) set n = dim V v, Tv, ..., T^nv must be lin. dep. so there exist a_0, a_1, ..., a_n in C s.t. $(a_0 + a_1T + ... + a_nT^n) v = 0$ if a 1 = ... = a n = 0 then v = 0

Pf of 2) v, Tv, ..., $T^{n}(m-1)v$ must be lin. indep.

but $p(T)(T^i v) = T^i(p(T) v) = T^i(\mathbf{0}) = \mathbf{0}$ for all i so dim $ker(p(T)) \ge dim span(v, Tv, ..., T^i(m-1)v)$

[bootstrap:]

<u>Thm</u> for any F and V of dim n:

there is some poly p(z) of deg $\leq n$ s.t.

p(T) = zero op

 \underline{Pf} if n = 0 or 1, then done

induct on n:

pick $v \neq 0$

by lemma, can pick f(z) of minimal deg s.t.

f(z) nonconst and f(T) $v = \mathbf{0}$ also by lemma, dim $ker(f(T)) \ge deg f(z) > 0$

so dim im(f(T)) = n - dim ker(f(T)) < n

want to apply inductive hypothesis to im(f(T))

set W = im(f(T)). key observation:

W is T-stable [! why?], so get an op T|_W

pick g(z) of deg \leq dim W s.t. $g(T|_W) = zero$

set p(z) = g(z)f(z)

then for all v in V: $p(T) v = g(T) (f(T) v) = \mathbf{0}$

and also deg p = deg f + deg g

 \leq dim ker(f(T)) + dim W

= dim V □

the minimal polynomial is the monic poly p(z) of minimal degree s.t.

p(T) = zero op

we denote it by minpoly_T(z) in C[z]

then minpoly_T(z) = $(z - \lambda \ 1)...(z - \lambda \ k)$ [why?]

including any repetition,

then $(T - \lambda 1)...(T - \lambda n) = zero$

Pf let
$$p(z) = (z - \lambda_1)...(z - \lambda_n)$$

key : the
$$(T - \lambda_j)$$
's commute
so $p(T) = (T - \lambda_{j_1})...(T - \lambda_{j_n})$
for any index reordering j_1, ..., j_n

let e_1, ..., e_n = ordered basis for triangularity

$$(T - \lambda_2)$$
 e_2 in span(e_1), ...,

 $(T - \lambda_1) e_1 = 0$

 $(T - \lambda_j) e_j in span(e_1, e_2, ..., e_{j-1})$

so p(T) e_j = (stuff)(T -
$$\lambda_1$$
)...(T - λ_j) e_j = (stuff)(T - λ_1)(T - λ_2) e_2 = (stuff)(T - λ_1) e_1 = **0**

when does T have a triangular matrix? next time:

Thm if F = C and V is fin. dim.
then any linear op T : V to V has
an upper-triangular matrix