A Vanilla Rao-Blackwellization of Metropolis-Hastings Algorithms

Randal Duoc and Christian P. Robert

Emilie Campos

University of California, Los Angeles

June 12, 2018

Gibbs Sampling Algorithm

Suppose $\theta_1,...,\theta_d$ have some joint target distribution. Let $\theta^{(0)}=\left(\theta_1^{(0)},...,\theta_d^{(0)}\right)$ be some intial values. For s=1,...,S do:

- Sample $\theta_1^{(s)}$ from $\theta_1|\theta_2^{(s-1)},...,\theta_d^{(s-1)}$ (the full conditional of θ_1 given all of the other θ_i s)
- Sample $\theta_2^{(s)}$ from $\theta_2|\theta_1^{(s)},\theta_3^{(s-1)},...,\theta_d^{(s-1)}$ (using updated θ_1 !)
- . . .
- Sample $\theta_d^{(s)}$ from $\theta_d | \theta_1^{(s)}, ..., \theta_{d-1}^{(s)}$

then loop over again for S iterations.

Metropolis

The Metropolis algorithm is an adaptation of a random walk with an accept/reject rule. [1]

The Algorithm

- Starting point $\theta^{(0)}$ for which $p(\theta^{(0)}) > 0$ (a good guess), from a starting distribution $p_0(\theta)$
- For t = 1, 2, ...
 - Sample a proposal θ^* from "jumping"/"proposal" distribution $J_t(\theta^*|\theta^{(t-1)})$ where J MUST be symmetric.
 - Calculate $r = \frac{p(\theta^*|y)}{p(\theta^{(t-1)}|y)}$
 - Set $\theta^{(t)} = \theta^*$ if a random uniform is less than $\min(r,1)$ and $\theta^{(t-1)}$ otherwise.

Metropolis - Hastings

Generalizes the Metropolis algorithm, J_t need not be symmetric

Correct for asymmetry with

$$r = \frac{p(\theta^*|y)/J_t(\theta^*|\theta^{t-1})}{p(\theta^{t-1}|y)/J_t(\theta^{t-1}|\theta^*)}$$

- A good jumping distribution J_t is one that
 - for any θ , it's easy to sample $J(\theta^*|\theta)$
 - easy to compute r
 - each jump goes a reasonable distance (otherwise slow to settle)
 - does not reject jumps frequently

Rao-Blackwellization of Metropolis-Hastings

Theorem (Rao-Blackwell)

If g(X) is any kind of estimator of a parameter θ , then the conditional expectation of g(X) given T(X), where T(X) is a sufficient statistic, is typically a better estimator of θ , and never worse.

Casella and Robert (1996)

- Metropolis-Hastings relies on the generation of uniform variables, which are extraneous noise
- Casella and Robert [2] tried integrating out the random uniforms conditional on the simulated ys
- This had a nonnegligible cost of $O(N^2)$

Duoc and Robert reproduce the Rao-Blackwellization process from Casella and Robert but by means of an independent representation that allows the variance to be reduced at a fixed computational cost [3].

• The outcome of a Metropolis - Hastings experiment – $(x^{(t)})_t$, the accepted y's – is used in Monte Carlo approximation as

$$\delta = \frac{1}{N} \sum_{t=1}^{N} h(x^{(t)})$$

Alternative estimator:

$$\delta = \frac{1}{N} \sum_{i=1}^{M} n_i h(z_i)$$

where

- y_i 's are the proposed moves from the Metropolis-Hastings algorithm
- z_i 's are the accepted y_i 's
- M is the number of accepted y_i's up to time N
- n_i is the number of times z_i appears in the sequence $(x^{(t)})_t$

Lemma

The sequence (z_i, n_i) is such that:

- (z_i, n_i) is a Markov chain;
- 2 z_{i+1} and n_i are independent given z_i ;

$$p(z_i) := \int \alpha(z_i, y) q(y|z_i) dy; \qquad (1)$$

1 $(z_i)_i$ is a Markov chain with transition kernel $\tilde{Q}(z, dy) = \tilde{q}(y|z)dy$ and stationary distribution $\tilde{\pi}$ such that

$$\tilde{q}(\cdot,z) \propto \alpha(z,\cdot)$$
 and $\tilde{\pi}(\cdot) \propto \pi(\cdot)p(\cdot)$.

Only the accepted y_j 's are involved in the Metropolis-Hastings estimator δ so an optimal weight is $1/p(z_i)$, but this is typically not available in closed form and needs to be estimated. The estimator proposed earlier, n_i , is the obvious solution but others exist with smaller variance

Proposal

$$\hat{\xi}_i = 1 + \sum_{i=1}^{\infty} \prod_{\ell < i} \{1 - \alpha(\mathbf{z}_i, \mathbf{y}_\ell)\}$$

is an unbiased estimator of $1/p(z_i)$, the variance of which, conditional on z_i , is lower than the conditional variance of n_i , $\{1-p(z_i)\}/p^2(z_i)$.

It's possible for $\hat{\xi}_i$ to be infinite since $\alpha(z_i,y_i)$ involves a ratio of probability densities and can therefore take on the value 1 with positive probability. However, this would take forever. Thus an intermediate estimator:

Proposal 2.0

$$\hat{\xi}_i^k = 1 + \sum_{j=1}^{\infty} \prod_{1 \le \ell \le k \land j} \{1 - \alpha(z_i, y_j)\} \prod_{k+1 \le \ell \le j} \mathbb{I}\{u_\ell \ge \alpha(z_i, y_\ell)\}$$
(2)

is an unbiased estimator of $1/p(z_i)$ with an almost sure finite number of terms.

Moreover, for $k \geq 1$,

$$\mathbb{V}[\hat{\xi}_{i}^{k}|z_{i}] = \frac{1 - p(z_{i})}{p^{2}(z_{i})} - \frac{1 - (1 - 2p(z_{i}) + r(z_{i}))^{k}}{2p(z_{i}) - r(z_{i})} \times \left(\frac{2 - p(z_{i})}{p^{2}(z_{i})}\right) (p(z_{i}) - r(z_{i})),$$

where p is defined in (1) and $r(z_i) := \int \alpha^2(z_i, y) q(y|z_i) dy$. Therefore, we have

$$\mathbb{V}[\hat{\xi}_i|z_i] \leq \mathbb{V}[\hat{\xi}_i^k|z_i] \leq \mathbb{V}[\hat{\xi}_i^0|z_i] = \mathbb{V}[n_i|z_i].$$

Convergence Properties

The estimator of $E_{\pi}[h(X)]$ is now for any M > 0,

$$\delta_{M}^{k} = \frac{\sum_{i=1}^{M} \hat{\xi}_{i}^{k} h(z_{i})}{\sum_{i=1}^{M} \hat{\xi}_{i}^{k}}$$

For any positive function φ , denote C_{φ} as the set of functions bounded by φ up to a constant. Assume the reference important sampling estimator is sufficiently well behaved.

Convergence Properties

Theorem

Under the assumption that $\pi(p) > 0$, the following convergence properties hold:

1 if h is in C_{φ} , then

$$\delta_M^k \xrightarrow[M \to \infty]{\mathbb{P}} \pi(h);$$

② if, in addition, $h^2/p \in C_{\varphi}$ and $h \in C_{\psi}$, then

$$\sqrt{M}(\delta_M^k - \pi(h)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, V_k[h - \pi(h)]),$$
 (3)

where
$$V_k(h) := \pi(p) \int \pi(d_z) \mathbb{V}[\hat{\xi}_i^k | z] h^2(z) p(z) + \Gamma(h)$$
.

Asymptotically, the correlation between the ξ_i 's vanishes

Convergence Properties

Theorem

In addition to the assumptions of the previous theorem, assume that h is a measurable function such that $h/p \in C_{\zeta}$ and $\{C_{h/p}, h^2/p^2\} \subset C_{\phi}$. Assume, moreover, that

$$\sqrt{M}(\delta_M^0 - \pi(h)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, V_0[h - \pi(h)]).$$

Then, for any starting point x,

$$\sqrt{M_N}\left(\frac{\sum_{t=1}^N h(x^{(t)})}{N} - \pi(h)\right) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N}(0, V_0[h - \pi(h)]),$$

where M_N is defined by

$$\sum_{i=1}^{M_N} \hat{\xi}_i^0 \le N < \sum_{i=1}^{M_N+1} \hat{\xi}_i^0.$$

Example - Random Walk Proposal

Target: N(0,1)

Proposal: $q(y|x) = \varphi(x - y; \tau)$

FIG. 1. Overlay of the variations of 250 i.i.d. realizations of the estimates δ (gold) and δ^{∞} (grey) of $\mathbb{E}[X] = 0$ for 1000 iterations, along with the 90% interquantile range for the estimates δ (brown) and δ^{∞} (pink), in the setting of a random walk Gaussian proposal with scale $\tau = 10$.

Example - Random Walk Proposal

TABLE 1

Ratios of the empirical variances of the components of the estimators δ[∞] and δ of E{h(X)} for 100 MCMC iterations over 10³ replications, in the setting of a random walk Gaussian proposal with scale τ, when started with a normal simulation

h(x)	x	x ²	$\mathbb{I}_{X>0}$	p(x)	
$\tau = 0.1$	0.971	0.953	0.957	0.207	
$\tau = 2$	0.965	0.942	0.875	0.861	
$\tau = 5$	0.913	0.982	0.785	0.826	
$\tau = 7$	0.899	0.982	0.768	0.820	

Example - Random Walk Proposal

TABLE 2

Evaluations of the additional computing effort due to the use of the Rao-Blackwell correction: median and mean numbers of additional iterations, 80% and 90% quantiles for the additional iterations, and ratio of the average R computing times obtained over 10³ simulations in the same setting as Table 1

	Median	Mean	90.8	90.9	Time
$\tau = 0.1$	1.0	6.49	5.0	11	2.33
$\tau = 2$	0.0	7.06	4.3	11	6.5
$\tau = 5$	0.0	9.02	4.6	13	8.4
$\tau = 7$	0.0	9.47	4.8	13	3.5

Example - Cauchy proposal

Target: N(0,1)

Proposal: Cauchy C(0, 0.25)

Fig. 2. Overlay of the variations of 250 i.i.d. realizations of the estimates δ (gold) and δ^{∞} (grey) of $\mathbb{E}[X] = 0$ for 1000 iterations, along with the 90% interquantile range for the estimates δ (brown) and δ^{∞} (pink), in the setting of an independent Cauchy proposal with scale 0.25.

Example - Cauchy proposal

TABLE 3
Ratios of the empirical variances of the components of the estimators δ^{∞} and δ of $\mathbb{E}[h(X)]$ for 100 MCMC iterations over 10^3 replications, in the setting of an independent Cauchy proposal with scale τ started with a normal simulation

h(x)	x	x ²	$I_{X>0}$	p(x)
$\tau = 0.25$	0.677	0.630	0.663	0.599
$\tau = 0.5$	0.790	0.773	0.716	0.603
$\tau = 1$	0.937	0.945	0.889	0.835
$\tau = 2$	0.781	0.771	0.694	0.591

Example - Cauchy proposal

TABLE 4

Evaluations of the additional computing effort due to the use of the Rao-Blackwell correction: median and mean numbers of additional iterations, 80% and 90% quantiles for the additional iterations, and ratio of the average R computing times obtained over 10⁵ simulations in the same setting as Table 3

	Median	Mean	<i>q</i> _{0.8}	<i>q</i> _{0.9}	Time
$\tau = 0.25$	0.0	8.85	4.9	13	4.2
$\tau = 0.50$	0.0	6.76	4	11	2.25
$\tau = 1.0$	0.25	6.15	4	10	2.5
$\tau = 2.0$	0.20	5.90	3.5	8.5	4.5

References

- [1] A. Gelman, J. Carlin, H. S. Stern, et al. *Bayesian data analysis*. Third. Boca Raton, FL: Chapman and Hall, 2004, p. 668. ISBN: 9781439840955. DOI: 10.1002/wcs.72. eprint: arXiv:1011.1669v3.
- [2] G. Casella and C. P. Robert. "Rao-Blackwellisation of sampling schemes". In: *Biometrika* 83.1 (1996), pp. 81-94. ISSN: 0006-3444. DOI: 10.1093/biomet/83.1.81.
- [3] R. Douc and C. P. Robert. "A Vanilla Rao-Blackwellization of Metropolis-Hastings Algorithms". In: *Source: The Annals of Statistics* 39.1 (2011). DOI: 10.1214/10-AOS838.