physics

An Accelerated Macroscopic Forcing Method (MFM) for Determining Eddy Viscosity Operators

Dana Lynn Lansigan*, Danah Park, Ali Mani Department of Mechanical Engineering Stanford University

Introduction

MFM is a rheometer-like method for numerically determining closure operators in turbulent flows [1]. We can use MFM to determine the generalized eddy viscosity [2]:

$$-\overline{u'_j u_i}'(\mathbf{x}) = \int D_{jilk}(\mathbf{x}, \mathbf{y}) \frac{\partial U_k}{\partial x_l} \Big|_{\mathbf{y}} d\mathbf{y}$$

We do this by specifying certain forcings s to the Generalized Momentum Transport (GMT) equation:

$$\frac{\partial v_i}{\partial t} + \frac{\partial}{\partial x_i} u_j v_i = -\frac{\partial q}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 v_i}{\partial x_j \partial x_j} + s_i$$

We can approximate the GMT closure using the leading order moment:

$$\int D_{jilk}(\mathbf{x}, \mathbf{y}) \frac{\partial V_k}{\partial x_l} \Big|_{\mathbf{y}} d\mathbf{y} \approx D_{jilk}^0(\mathbf{x}) \frac{\partial V_k}{\partial x_l}$$
$$D_{jilk}^0(\mathbf{x}) = \int D_{jilk}(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

In MFM, we choose s for the GMT eq. to achieve a certain $\frac{\partial V_k}{\partial x_i}$ that allows us to retrieve D_{iilk}^0 by measuring $\overline{u_i'v_i'}$. Computing all 81 Din, requires 9 highfidelity DNS (1 per $\frac{\partial V_k}{\partial x}$).

In this work, we combine 9 DNS computing D_{iilk}^0 in channel flow into just 1 DNS, reducing the cost of MFM.

Accelerated MFM

In standard MFM, we solve the GMT equation in several separate DNS for different $s_n(\mathbf{x})$ with responses $V_n(\mathbf{x})$. Instead, let us choose $s(\mathbf{x},t) = s_n(\mathbf{x})\cos\left(\frac{2\pi t}{\tau_n}\right)$ and τ_n s.t. $\tau_{response} \ll \tau_n \leq \tau_{sim}$, where $\tau_{response}$ is the timescale of the flow and τ_{sim} is the simulation time. At this τ_n , we make the statistically quasi-steady assumption. The response becomes $V_n(\mathbf{x})\cos\left(\frac{2\pi t}{T}\right)$. Choose $\tau_n = \frac{2\tau_{sim}}{1}$ to generate temporally orthogonal response modes. Assign modes to several s_n and superpose. Decompose

Model Problem: Channel Flow Leading Order Eddy Viscosity

responses in postprocessing.

- D⁰_{int} measured using accelerated MFM agree w/ those measured using standard MFM (2 examples shown above)
- Fastest mode: $\tau = 125 \frac{\delta}{4\pi}$ | MFM cost reduction by a factor of 9

Conclusion

- By superposing DNS, we reduce cost of MFM by an order of magnitude
- Future work: apply accelerated MFM to higher order moments & nonlocal eddy viscosity

Acknowledgements

This work is supported by Boeing and the Charles H. Kruger Stanford Graduate Fellowship.

References

[1] A. Mani and D. Park. (2019). arXiv:1905.08342. [2] F. Hamba. (2005). Physics of Fluids. 17(11). 115102, doi:10.1063/1.2130749.

AN ACCELERATED MACROSCOPIC FORCING METHOD FOR DETERMINING EDDY VISCOSITY OPERATORS

Dana Lynn Lansigan*, Danah Park, & Ali Mani dlol, danah12, alimani @ stanford.edu

> 73rd Meeting of APS DFD November 22-24, 2020

MACROSCOPIC FORCING METHOD (MFM)

MFM¹ is a non-intrusive, rheometer-like method for numerically determining closure operators in turbulent flows. We can use MFM to determine the **generalized eddy viscosity**²

$$-\overline{u_j'u_i'}(\mathbf{x}) = \int D_{jilk}(\mathbf{x}, \mathbf{y}) \left. \frac{\partial U_k}{\partial x_l} \right|_{\mathbf{y}} d\mathbf{y},$$

which we use to model the RANS closure operator. The eddy viscosity kernel D_{jilk} is anisotropic and nonlocal.

¹Mani and Park 2019

²Hamba 2005

GENERALIZED MOMENTUM TRANSPORT EQUATION

We determine D_{jilk} by specifying certain forcings s to the **Generalized Momentum** Transport (GMT) equation,

$$\frac{\partial v_i}{\partial t} + \frac{\partial}{\partial x_j} u_j v_i = -\frac{\partial q}{\partial x_i} + \frac{1}{\text{Re}} \frac{\partial^2 v_i}{\partial x_j \partial x_j} + s_i,$$

whose closure operator is equal to the RANS closure operator.

We use the GMT equation instead of the Navier-Stokes equation, because the GMT equation is linear, and MFM can only be done with linear differential equations.

LEADING ORDER EDDY VISCOSITY TENSOR

 D_{jilk} is very computationally expensive to determine. Instead, we can approximate the generalized eddy viscosity for the GMT equation using the **leading order moment** D_{iilk}^0 :

$$-\overline{u'_{j}v'_{i}}(\mathbf{x}) = \int D_{jilk}(\mathbf{x}, \mathbf{y}) \left. \frac{\partial V_{k}}{\partial x_{l}} \right|_{\mathbf{y}} d\mathbf{y} \approx D_{jilk}^{0}(\mathbf{x}) \frac{\partial V_{k}}{\partial x_{l}}$$
$$D_{jilk}^{0}(\mathbf{x}) = \int D_{jilk}(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

 D_{iilk}^0 is the anisotropic eddy viscosity tensor and consists of 81 coefficients.

00000

00000

LEADING ORDER EDDY VISCOSITY TENSOR EXAMPLE

For example, to compute D_{2121}^0 , choose s in the GMT equation such that

$$V_1 = x_2, \quad V_2 = V_3 = 0 \Rightarrow \frac{\partial V_k}{\partial x_l} = \begin{cases} 1 & k = 1, \quad l = 2 \\ 0 & \text{otherwise} \end{cases}$$

In postprocessing, we obtain D_{2121}^0 by measuring the Reynolds stress:

$$-\overline{u_2'v_1'}(\mathbf{x}) = \int D_{2121}(\mathbf{x}, \mathbf{y}) \frac{\partial V_1}{\partial x_2} d\mathbf{y} = D_{2121}^0(\mathbf{x})$$

Determining D_{iilk}^0 is Still Expensive!

All other D_{ji21}^0 can be obtained by measuring each of the Reynolds stresses $\overline{u_j'v_i'}$. This gives 9 coefficients of the eddy viscosity tensor.

Do this for all 9 average velocity gradients to obtain all 81 coefficients:

$$V_1 = x_1, \quad V_2 = V_3 = 0 \Rightarrow D^0_{ji11}$$

 $V_2 = x_1, \quad V_1 = V_3 = 0 \Rightarrow D^0_{ji12}$
 \vdots
 $V_3 = x_3, \quad V_1 = V_2 = 0 \Rightarrow D^0_{ji33}$

Thus, 9 high-fidelity DNS are needed to determine all D_{iilk}^0 .

⇒ Goal: reduce cost of MFM by combining these 9 DNS into just one DNS.

TEMPORAL MODULATION

In standard MFM, we solve the GMT equation in several separate DNS for different $s_n(\mathbf{x})$ with responses $V_n(\mathbf{x})$.

Accelerated MFM

Instead, let us choose $s(\mathbf{x},t) = s_n(\mathbf{x}) \cos\left(\frac{2\pi}{\tau_n}t\right)$ and τ_n such that

$$\tau_{\text{response}} << \tau_n \le \tau_{\text{sim}},$$

where au_{response} is the timescale of the flow (i.e., timescale for flow to be fully developed) and au_{sim} is the simulation time. At this au_n , we make the **statistically quasi-steady** assumption, so the response becomes $V(\mathbf{x},t) = V_n(\mathbf{x}) \cos\left(\frac{2\pi}{\tau_n}t\right)$.

ORTHOGONAL RESPONSE MODES

Choosing $\tau_n = \frac{2\tau_{\text{sim}}}{n}$ generates **temporally orthogonal response modes**. We can assign each of these temporal modes to a spatial forcing and superpose. By leveraging orthogonality, we can decompose the responses in postprocessing.

Standard MFM:

Accelerated MFM:

MODEL PROBLEM: CHANNEL FLOW

We demonstrate accelerated MFM with channel flow, combining 9 DNS calculating all D^0_{ilk} into just 1 DNS.

Simulation parameters:

•
$$Re_{\tau} = \frac{u_{\tau}\delta}{\nu} = 180$$

·
$$L_x \times L_y \times L_z = 2\pi \times 2 \times \pi$$

$$N_x \times N_y \times N_z = 144 \times 144 \times 144$$

Timescales:

+
$$au_{\rm response} pprox 17 rac{\delta}{u_{ au}}
ightarrow 1/2$$
 channel height $ightarrow$ friction velocity

$$\cdot \ \tau_{\rm sim} = 500 \frac{\delta}{u_{\tau}}$$

- Fastest mode:
$$au=125 rac{\delta}{u_{ au}}$$

RESULTS

 D^0_{jilk} $\frac{\partial V_k}{\partial x_l}$

- Above plots: D^0_{ji11} (associated with $\frac{\partial V_1}{\partial x_1}$) retrieved from decomposed responses
- D^0_{jilk} measured using accelerated MFM agree with those measured using standard MFM in separate simulations \checkmark

RESULTS

 D^0_{jilk} $\frac{\partial V_k}{\partial x_l}$

- Above plots: D^0_{ji21} (associated with $\frac{\partial V_1}{\partial x_2}$) retrieved from decomposed responses
- Noticeable errors for components of small magnitudes $(D^0_{1221},\,D^0_{2121})$
 - · Noise from other modes contaminate results
- · Ultimately, cost of MFM reduced by a factor of 9

CONCLUSION

- · Presented an accelerated MFM for determining closure operators
 - Cost of MFM for full characterization of eddy viscosity operator is reduced by an order of magnitude
 - Showed that, under statistically quasi-steady conditions, temporally orthogonal response modes can be assigned to different spatial forcings and superposed
 - Through **orthogonality**, responses can be separated

$$\sum_{n} s_{n}(\mathbf{x}) \cos \left(\frac{2\pi}{\tau_{n}} t\right) \rightarrow \frac{\partial v_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} u_{j} v_{i} = -\frac{\partial q}{\partial x_{i}} + \frac{1}{\operatorname{Re}} \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}} + s_{i} \rightarrow \sum_{n} V_{n}(\mathbf{x}) \cos \left(\frac{2\pi}{\tau_{n}} t\right)$$

- Demonstrated method w/ turbulent channel flow
 - · Combined 9 DNS computing D_{jilk}^0 into just 1 DNS, greatly reducing cost of MFM
- Future work: apply accelerated MFM to higher-order moments & nonlocal eddy viscosity

^{*}This work is supported by Boeing and the Charles H. Kruger Stanford Graduate Fellowship.

REFERENCES

- [1] A. Mani and D. Park. Macroscopic forcing method: a tool for turbulence modeling and analysis of closures. 2019. arXiv: 1905.08342 [physics.flu-dyn].
- [2] F. Hamba. Nonlocal analysis of the reynolds stress in turbulent shear flow. *Physics of Fluids*, 17(11):115102, 2005. DOI: 10.1063/1.2130749.

