Carnegie Mellon University

Energy T&S in Kenya

Project Proposal | 11.24.2020 Adrielle Cailipan; Yash Gokhale

Kenya

Carnegie Mellon University

Energy Resources

Total final consumption (TFC) by sector, Kenya 1990-2018

Energy Resources

Electricity generation by source, Kenya 1990-2018

Energy Resources: Geothermal

Installed geothermal capacity: **690 MW**

The Grid

Installed capacity connected to the grid: **1429 MW**

New connections by 2030

- On-grid
- Mini-grids
- Stand-alone systems

Transmission lines (>69 kV)

- —Existing
- ---Planned

Current demographics

Kenya transitioned from primary biomass-based country to using fossil fuels to renewable energy!

Programme for Infrastructure
Development in Africa:
Kenya's share of 13,852 MW of planned
peak demand by 2038 (increase of 11000
MW over the 20 year period)

Comparatively higher costs pose a major obstacle to provide low-income households and small businesses

Infrastructure Overview in Kenya

Olkaria I-V Geothermal Plants (727 MW)

Gitaru Hydroelectric Plant (225 MW)

Lamu Coal plant (960 MW)

Planned: Lake Turkana Wind Farm (310 MW), Largest in Africa

Planned: Garissa Solar Farm (55 MW), Largest in Kenya

Policy Overview in Kenya

Major threats to Kenya's policies

- Stagnating residential demand
- Rise of captive power
- Poor reliability
- High pricing
- Corruption
- Uncertainty in Regulation

Policies in Kenya

- Energy Act 2006 planned to fulfill Kenya's vision of emerging as a newly industrialized nation
- Energy Regulatory Commission (ERC) was established in 2006 for economic and technical regulation of electric power & renewable energy
- New Energy Policy, drafted in 2015, to ensure provision of adequate, quality, cost-effective, affordable supply of energy with environmental consideration

Initiatives for Electrification in Kenya

Source: EED Advisory (https://www.seforall.org/system/files/2020-02/ESN_Kenya-SEforALL.pdf)

Proposed Methods of Analysis

Case I: Use Homer to input existing power plants and existing grid capacity to model energy demand and supply in a business as usual scenario

Case II: Project what the future of Kenya's energy systems may be if the goal was to reduce emissions by 50%

- a) Replace coal plants with renewable energy
 - i) geothermal
 - ii) hydro
 - iii) PV solar
- b) Optimize the levelized cost of electricity

Carnegie Mellon University

Thank you! Questions?

References

- 1. Map of Kenya: https://www.britannica.com/place/Kenya
- IEA TFC by source, by sector; electricity generation charts: https://www.iea.org/data-and-statistics?country=KENYA&fuel=Energy%20consumption&indicator=TFC ShareBySector
- 3. Kenya Geothermal Map:
 https://www.researchgate.net/publication/305659183 Stable Isotopic Composition of Geothermal Fields and Kenya Rift Lakes Waters
- 4. Kenya Grid: https://www.iea.org/articles/kenya-energy-outlook
- 5. https://energypedia.info/wiki/Kenya Energy Situation#Geothermal Energy
- 6. https://www.nationalgeographic.com/environment/2018/10/geothermal-energy-kenya-photography/

Business Case #1: No major change in business

Future needs:

- Growing demand for electricity and rapid industrialization
- Urbanization would further cause increase in demand
- Require a reliant grid to accommodate the growing demand
- Development of new power plants or scale-up of existing plants

Challenges:

- Rural and low-income households are yet to use grid electricity
- Low demand is compounded by high price
- Due to rise of captive power, some customers are migrating off the grid citing high prices
- Not including such factors will lead to overly rosy projections of demand

Shortfall:

- Stagnant demand might lead to longer time of investments
- Non-diversification of resources might lead to grid failure due to unexpected mishap
- Reliance on hydro-power could be met with environmental changes and policy changes

Total CO₂ emissions (millions of tonnes)

Objectives

- Analysis of distribution of Energy Resources (Renewables vs Non-Renewables)-A
- Review of current infrastructure in Kenya-A
- Proposed future developments and policies-Y
 - Apparently Kenya wants to build a <u>coal plant</u> using imports of coal and eventually domestic coal however Kenya's overall coal use is very small and every time I try to google "Kenya's coal source" I get articles about this proposed Lamu Coal Plant.
- Energy Modeling using HomerPro/Excel-Y
- Business Case I vs II
 - \circ \rightarrow
 - II → I think we can use Homer to model some geothermal plants and figure out a way to get the lowest levelized cost of electricity, and figure out what configuration will make the cost of electricity low enough to be attractive to the people of Kenya.

