行列式的性质

则转置行列式为

$$D^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}$$

性质1: $D = D^T$

由行列式的定义即可证明这条性质。

在行列式中, 行和列的位置是对称的,

对行成立的,对列也成立。

因此下面只介绍关于行列式的行的性质。

性质2: 互换两行, 行列式变号。即

$ a_{11} $	• • •	a_{1n}	6	u_{11}	• • •	a_{1n}
•	• • •				• • •	
a_{i1}	• • •	a_{in}	C	u_{j1}	• • •	a_{jn}
	• • •		=-		• • •	
a_{j1}	• • •	a_{jn}	(a_{i1}	•••	a_{in}
	• • •	•			• • •	
$ a_{n1} $		a_{nn}	C	u_{n1}	• • •	a_{nn}

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \end{vmatrix}$$
$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

$$D_{1} = \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{12}a_{21}a_{33} + a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} \\ -a_{11}a_{22}a_{33} - a_{13}a_{21}a_{32} - a_{12}a_{23}a_{31} \end{vmatrix}$$
$$= -a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} - a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

推论: 若行列式中有两行元素完全相同,则行列式为零。

设A_{ij}为元素a_{ij}的代数余子式,则有:

$$a_{j1}A_{i1} + a_{j2}A_{i2} + \dots + a_{jn}A_{in} = 0 \quad (i \neq j)$$

$$a_{1j}A_{1i} + a_{2j}A_{2i} + \dots + a_{nj}A_{ni} = 0 \quad (i \neq j)$$

怎么证明呢?

我们考虑下面的行列式

a_{11} :	• • •	a_{1n} :
a_{i1}	• • •	a_{in}
	• • •	
a_{i1} :		a_{in}
a_{n1}		a_{nn}

两行相同行列式的值为0.

将行列式按第i行展开。

$$a_{j1}A_{i1} + a_{j2}A_{i2} + \dots + a_{jn}A_{in} = \begin{cases} D, & (i = j). \\ 0, & (i \neq j). \end{cases}$$

$$a_{1j}A_{1i} + a_{2j}A_{2i} + \dots + a_{nj}A_{ni} = \begin{cases} D, & (i = j). \\ 0, & (i \neq j). \end{cases}$$

这是非常有用的两个公式,应该记住。

性质3: 用数k乘行列式某一行中所有元素, 等于用k乘此行列式。即:

推论:某一行的所有元素的公因子可以提到行列式符号的外面。

$$\begin{vmatrix} -8 & 4 & -6 \\ 2 & 1 & -1 \\ 16 & -2 & 7 \end{vmatrix} = 2 \begin{vmatrix} -4 & 2 & -3 \\ 2 & 1 & -1 \\ 16 & -2 & 7 \end{vmatrix}$$

$$\begin{vmatrix} -2 & 2 & -3 \\ = 4 & 1 & 1 & -1 \\ 8 & -2 & 7 \end{vmatrix}$$

性质4: 行列式某一行元素加上另一行对应元素的k倍, 行列式的值不变。即:

 a_{11} $a_{i1} + ka_{j1}$ $a_{in} + ka_{jn}$ a_{i1} a_{in} a_{j1} a_{n1} a_{nn}

 $a_{i1} + ka_{j1}$ $a_{in} + ka_{jn}$ a_{j1} a_{jn} a_{nn} a_{n1}

$ a_{11} $	•••	a_{1n}		a_{11}		a_{1n}
•	• • •			•	• • •	•
$ a_{i1} $	• • •	a_{in}		ka_{j1}	• • •	ka_{jn}
•	• • •		+	•	• • •	
$ a_{j1} $	• • •	a_{jn}		a_{j1}	• • •	a_{jn}
	• • •				• • •	
$ a_{n1} $	• • •	a_{nn}		a_{n1}	• • •	a_{nn}

问题

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{i1} + b_1 & \cdots & a_{in} + b_n \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = ?$$

性质5: 若行列式某一行的元素是两数之和,则行列式可拆成两个行列式的和。

推论: 若行列式某一行的元素都是m 个元素的和,则行列式可以写成m个 行列式的和。 练习

写出行列式的性质。

证明你写出的行列式的性质。

性质2: 互换两行,行列式变号。

性质3: 用数k乘行列式某一行中所有元素, 等于用k乘此行列式。

性质4: 行列式某一行元素加上另一行对应元素的k倍, 行列式的值不变。

最重要的三个性质。