Lecture 7: Constrained Optimization: Lagrangian Multipliers, Optimality Conditions

- Equality constrained problems
- Basic Lagrange multiplier theorem
- Inequality constrained problems
- Sensitivity analysis
- Farkas lemma
- Linearly constrained problems

Equality Constrained Problem

minimize $f(m{x})$ subject to $h_i(m{x}) = 0, \quad i = 1,...,m.$

where $f: \mathbb{R}^n \to \mathbb{R}$, $h_i: \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m, are continuously differentiable functions.

Lagrange Multiplier Theorem

• Let x^* be a local min and a regular point $[\nabla h_i(x^*)]$: linearly independent]. Then there exist unique scalars $\lambda_1^*,...,\lambda_m^*$ such that

$$\nabla f(\boldsymbol{x}^*) + \sum_{i=1}^{m} \lambda_i^* \nabla h_i(\boldsymbol{x}^*) = 0.$$

• If in addition f and h are twice continuously differentiable,

$$m{y}'\left(
abla^2 f(m{x}^*) + \sum_{i=1}^m \lambda_i^*
abla^2 h_i(m{x}^*)
ight) m{y} \geq 0, \quad orall \ m{y} \ ext{s.t.} \
abla h(m{x}^*)'m{y} = m{0}$$

1

Proof

• Suppose x^* is a local min satisfying $h(x^*) = 0$ and $\alpha > 0$. Consider

$$f^{k}(\mathbf{x}) = f(\mathbf{x}) + k \|\mathbf{h}(\mathbf{x})\|^{2} + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{x}^{*}\|^{2}.$$

- Let x^k be a constrained minimizer of f^k over the ball $||x x^*|| \le 1$. We will show that x^k is an *unconstrained local min* of f^k for all large k.
- Taking limit $k \to \infty$ of

$$f^k(\boldsymbol{x}^k) = f(\boldsymbol{x}^k) + k|h(\boldsymbol{x}^k)|^2 + \frac{\alpha}{2}||\boldsymbol{x}^k - \boldsymbol{x}^*||^2 \le f^k(\boldsymbol{x}^*) = f(\boldsymbol{x}^*),$$

along any convergent subsequence of $\{x^k\}$, we get $h(\bar{x}) = \lim_{k \to \infty} h(x^k) = 0$.

• Furthermore, taking limit of $f(x^k) + \frac{\alpha}{2} ||x^k - x^*||^2 \le f(x^*)$ shows

$$f(\bar{x}) + \frac{\alpha}{2} ||\bar{x} - x^*||^2 \le f(x^*)$$

• Since $h(\bar{x})=0$, it follows that $f(x^*)\leq f(\bar{x})$. Thus, we have $\bar{x}=x^*$ and $f(x^*)=f(\bar{x})$.

- Since \bar{x} is any limit point, we have $x^k \to x^*$, so $||x^k x^*|| < 1$ for large k, $\Rightarrow x^k$ is an unconstrained local min of f^k , $\nabla f^k(x^k) = 0$, $\nabla^2 f^k(x^k) \succeq 0$.
- Taking limit of

$$\mathbf{0} = \nabla f(\mathbf{x}^k) + 2kh(\mathbf{x}^k)\nabla h(\mathbf{x}^k) + \alpha(\mathbf{x}^k - \mathbf{x}^*)$$
 (1)

Since $\nabla h(x^*)$ has rank m, $\nabla h(x^k)$ also has rank m for large k, so $\nabla h(x^k)' \nabla h(x^k)$: invertible. Thus, multiplying (1) w/ $\nabla h(x^k)'$ yields

$$kh(\boldsymbol{x}^k) = -\left(\nabla h(\boldsymbol{x}^k)'\nabla h(\boldsymbol{x}^k)\right)^{-1}\nabla h(\boldsymbol{x}^k)'\left(\nabla f(\boldsymbol{x}^k) + \alpha(\boldsymbol{x}^k - \boldsymbol{x}^*)\right).$$

• Taking limit as $k \to \infty$ and ${m x}^k \to x^*$,

$$\{kh(\boldsymbol{x}^k)\} \to (\nabla h(\boldsymbol{x}^*)'\nabla h(\boldsymbol{x}^*))^{-1}\nabla h(\boldsymbol{x}^*)'\nabla f(\boldsymbol{x}^*) \equiv \boldsymbol{\lambda}.$$

Taking limit as $k \to \infty$ in Eq. (1), we obtain

$$\nabla f(\boldsymbol{x}^*) + \nabla h(\boldsymbol{x}^*) \boldsymbol{\lambda} = 0.$$

• Exercise: 2nd order L-multiplier condition: Use 2nd order unconstrained condition for x^k , and algebra.

Lagrangian Function

Define the Lagrangian function

$$L(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \lambda_i h_i(\boldsymbol{x}).$$

Then, if x^* is a local minimum which is regular, the Lagrange multiplier conditions can be written as

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \boldsymbol{0}, \quad \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{x}^*, \boldsymbol{\lambda}) = \boldsymbol{0}.$$

- System of n + m equations with n + m unknowns.
- 2nd order condition: $m{y}'
 abla^2_{m{x}m{x}} L(m{x}^*, m{\lambda}^*) m{y} \geq 0, \quad orall \ m{y} \ \text{s.t.} \ \nabla h(m{x}^*)' m{y} = m{0}.$
- Example:

minimize
$$\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$

subject to $x_1 + x_2 + x_3 = 3$.

Necessary conditions

$$x_1^* + \lambda^* = 0$$
, $x_2^* + \lambda^* = 0$, $x_3^* + \lambda^* = 0$, $x_1^* + x_2^* + x_3^* = 3$.

Sufficiency Condition

• Second Order Sufficiency Conditions: Let $x^* \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^m$ satisfy

$$\begin{split} \nabla_{\boldsymbol{x}} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) &= \boldsymbol{0}, \quad \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \boldsymbol{0}, \\ \boldsymbol{y}' \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 L(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) \boldsymbol{y} &> 0, \quad \forall \ \boldsymbol{y} \neq \boldsymbol{0} \text{ with } \nabla h(\boldsymbol{x}^*)' \boldsymbol{y} = \boldsymbol{0}. \end{split}$$

Then x^* is a strict local minimum.

Example:

minimize
$$-(x_1x_2 + x_2x_3 + x_1x_3)$$

subject to $x_1 + x_2 + x_3 = 3$.

We have that $x_1^* = x_2^* = x_3^* = 1$ and $\lambda^* = 2$ satisfy the 1st order conditions. Also

$$abla_{m{x}m{x}}^2 L(m{x}^*, m{\lambda}^*) = \left[egin{array}{ccc} 0 & -1 & -1 \ -1 & 0 & -1 \ -1 & -1 & 0 \end{array}
ight]$$

We have for all $\mathbf{y} \neq \mathbf{0}$ with $\nabla h(\mathbf{x}^*)'\mathbf{y} = \mathbf{0}$ or $y_1 + y_2 + y_3 = 0$,

$$\mathbf{y}'\nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}^*, \boldsymbol{\lambda}^*)\mathbf{y} = -y_1(y_2 + y_3) - y_2(y_1 + y_3) - y_3(y_1 + y_2) = y_1^2 + y_2^2 + y_3^2 > 0.$$

Hence, x^* is a strict local minimum.

A Useful Lemma

• Let P and Q be two symmetric matrices. Assume that $Q \succeq 0$ and $P \succ 0$ on the nullspace of Q, i.e., x'Px > 0 for all $x \neq 0$ with x'Qx = 0. Then there exists a scalar c such that

$$P + cQ$$
: positive definite, $\forall c > \overline{c}$.

• Proof: Assume the contrary. Then for every k, there exists a vector \boldsymbol{x}^k with $\|\boldsymbol{x}^k\|=1$ such that

$$(\boldsymbol{x}^k)' \boldsymbol{P} \boldsymbol{x}^k + k(\boldsymbol{x}^k)' \boldsymbol{Q} \boldsymbol{x}^k \le 0.$$

Consider a subsequence $\{x^k\}_{k\in\mathcal{K}}$ converging to some x with ||x||=1. Taking the limit superimum,

$$x'Px + \limsup_{k\to\infty, k\in\mathcal{K}} (k(x^k)'Qx^k) \le 0.$$

We have $(\mathbf{x}^k)'\mathbf{Q}\mathbf{x}^k \geq 0$ (since $\mathbf{Q} \succeq \mathbf{0}$), so

$$\{(\boldsymbol{x}^k)'\boldsymbol{Q}\boldsymbol{x}^k\}_{k\in\mathcal{K}}\to 0.$$

Therefore, x'Qx = 0 and using the hypothesis, x'Px > 0, a contradiction.

Proof of Sufficiency Conditions

Consider the augmented Lagrangian function

$$L_c(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}' \boldsymbol{h}(\boldsymbol{x}) + \frac{c}{2} ||\boldsymbol{h}(\boldsymbol{x})||^2,$$

where *c* is a scalar. We have

$$\nabla_{\boldsymbol{x}} L_c(\boldsymbol{x}, \boldsymbol{\lambda}) = \nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \tilde{\boldsymbol{\lambda}}), \quad \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 L_c(\boldsymbol{x}, \boldsymbol{\lambda}) = \nabla_{\boldsymbol{x}\boldsymbol{x}}^2 L(\boldsymbol{x}, \tilde{\boldsymbol{\lambda}}) + c \nabla \boldsymbol{h}(\boldsymbol{x}) \nabla \boldsymbol{h}(\boldsymbol{x})'$$

where $\tilde{\lambda} = \lambda + ch(x)$. If (x^*, λ^*) satisfy the sufficiency conditions, we have using the lemma,

$$abla_{oldsymbol{x}} L_c(oldsymbol{x}^*, oldsymbol{\lambda}^*) = oldsymbol{0}, \quad
abla_{oldsymbol{x}}^2 L_c(oldsymbol{x}^*, oldsymbol{\lambda}^*) > 0,$$

for sufficiently large c. Hence for some $\gamma > 0$, $\epsilon > 0$,

$$L_c(\boldsymbol{x}, \boldsymbol{\lambda}^*) \ge L_c(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) + \frac{\gamma}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|^2,$$

if $\|\boldsymbol{x}-\boldsymbol{x}^*\|<\epsilon$. Since $L_c(\boldsymbol{x},\boldsymbol{\lambda}^*)=f(\boldsymbol{x})$ when $\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}$,

$$f(x) \ge f(x^*) + \frac{\gamma}{2} ||x - x^*||^2$$
, if $h(x) = 0$, $||x - x^*|| < \epsilon$.

Sensitivity

- Consider the linearly constrained problem $\min_{a'x=b} f(x)$.
- If b is changed to $b + \Delta b$, the minimum x^* will change to $x^* + \Delta x$.
- Since $b + \Delta b = \mathbf{a}'(\mathbf{x}^* + \Delta \mathbf{x}) = \mathbf{a}'\mathbf{x}^* + \mathbf{a}'\Delta\mathbf{x} = b + \mathbf{a}'\Delta\mathbf{x}$, we have $\mathbf{a}'\Delta\mathbf{x} = \Delta b$. Using the condition $\nabla f(\mathbf{x}^*) = -\boldsymbol{\lambda}^*\mathbf{a}$, $\Delta \mathsf{cost} = f(\mathbf{x}^* + \Delta \mathbf{x}) f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)'\Delta\mathbf{x} + o(\|\Delta\mathbf{x}\|) = -\boldsymbol{\lambda}^*\mathbf{a}'\Delta\mathbf{x} + o(\|\Delta\mathbf{x}\|)$
- Thus $\Delta \cos t = -\lambda^* \Delta b + o(\|\Delta x\|)$, so up to first order

$$\lambda^* = -rac{\Delta \mathrm{cost}}{\Delta b}.$$

• For multiple constraints $a_i'x = b_i$, i = 1, ..., n, we have

$$\Delta \mathsf{cost} = -\sum_{i=1}^m \boldsymbol{\lambda}_i^* \Delta b_i + o(\|\Delta \boldsymbol{x}\|).$$

Sensitivity Theorem

Consider the family of problems

$$\min_{\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{u}} f(\boldsymbol{x}) \tag{2}$$

parameterized by $u \in \mathbb{R}^m$. Assume that for u = 0, this problem has a local minimum x^* , which is regular and together with its unique Lagrange multiplier λ^* satisfies the sufficiency conditions. Then there exists an open sphere S centered at u = 0 such that for every $u \in S$, there is an x(u) and a $\lambda(u)$, which are a local minimum-Lagrange multiplier pair of problem (2). Furthermore, $x(\cdot)$ and $\lambda(\cdot)$ are continuously differentiable within S and we have

$$x(0) = x^*, \ \lambda(0) = \lambda^*.$$

In addition, $\nabla p(u) = -\lambda(u)$, $\forall u \in S$ where p(u) is the primal function p(u) = f(x(u)).

Examples

ullet The primal function $p(oldsymbol{u}) = f(oldsymbol{x}(oldsymbol{u}))$ for the two-dimensional problem

minimize
$$f(\mathbf{x}) = \frac{1}{2} (x_1^2 - x_2^2) - x_2$$

subject to $h(\mathbf{x}) = x_2 = 0$.

is given by

$$p(u) = \min_{h(x)=u} f(x) = -\frac{1}{2}u^2 - u$$

and $\lambda^* = -\nabla p(0) = 1$, consistent with the sensitivity theorem.

• Need for regularity of x^* : Change constraint to $h(x) = x_2^2 = 0$. Then $p(u) = -u/2 - \sqrt{u}$ for $u \ge 0$ and is undefined for u < 0.

Proof of Sensitivity Theorem

Apply implicit function theorem to the system

$$\nabla f(x) + \nabla h(x)\lambda = 0, \quad h(x) = u$$

• For u = 0 the system has the solution (x^*, λ^*) , and the corresponding $(n+m) \times (n+m)$ Jacobian

$$J = \left[egin{array}{ccc}
abla^2 f(oldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^*
abla^2 h_i(oldsymbol{x}^*) &
abla h(oldsymbol{x}^*) &$$

is shown nonsingular using the sufficiency conditions.

• Hence, for all u in some open sphere S centered at u=0, there exist x(u) and $\lambda(u)$ such that $x(0)=x^*$, $\lambda(0)=\lambda^*$, the functions $x(\cdot)$ and $\lambda(\cdot)$ are

continuously differentiable, and

$$\nabla f(\mathbf{x}(\mathbf{u})) + \nabla \mathbf{h}(\mathbf{x}(\mathbf{u})) \lambda(\mathbf{u}) = 0, \quad h(\mathbf{x}(\mathbf{u})) = \mathbf{u}$$

- For u close to u = 0, using the sufficiency conditions, x(u) and $\lambda(u)$ are a local minimum-Lagrange multiplier pair for the problem $\min_{h(x)=u} f(x)$.
- To derive $\nabla p(\mathbf{u})$, differentiate $\mathbf{h}(\mathbf{x}(\mathbf{u})) = \mathbf{u}$, to obtain

$$I = \nabla x(u) \nabla h(x(u)),$$

and combine with the relations

$$\nabla x(u)\nabla f(x(u)) + \nabla x(u)\nabla h(x(u))\lambda(u) = 0$$

and

$$\nabla p(\boldsymbol{u}) = \nabla_{\boldsymbol{u}} \left\{ f(\boldsymbol{x}(\boldsymbol{u})) \right\} = \nabla \boldsymbol{x}(\boldsymbol{u}) \nabla f(\boldsymbol{x}(\boldsymbol{u})) = -\boldsymbol{\lambda}(\boldsymbol{u}).$$

Inequality Constrained Problem

```
\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0}, \ \boldsymbol{g}(\boldsymbol{x}) \leq \boldsymbol{0}. \end{array}
```

where $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$, $g: \mathbb{R}^n \to \mathbb{R}^r$ are continuously differentiable. Here $h = (h_1, ..., h_m)$, $g = (g_1, ..., g_r)$.

Consider the set of active inequality constraints

$$A(\boldsymbol{x}) = \{j \mid g_j(\boldsymbol{x}) = \boldsymbol{0}\}$$

- If x^* is a local minimum:
 - \star The active inequality constraints at x^* can be treated as equations
 - \star The inactive constraints at x^* do not matter

 Assuming regularity of x^* and assigning zero Lagrange multipliers to inactive constraints, we have

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}, \quad \mu_j^* = 0, \ \forall j \notin A(\mathbf{x}^*).$$

- Extra property: $\mu_j^* \ge 0$ for all j.
- ullet Intuitive reason: Relax the j-th constraint, $g_j(oldsymbol{x}) \leq u_j$, and notice

$$\mu_j^* = -rac{\Delta {
m cost due to } \ u_j}{u_j}.$$

Karash-Kuhn-Tucker Conditions

• Let x^* be a local minimum and a regular point. Then there exist unique Lagrange multiplier vectors $\lambda^* = (\lambda_1^*, ..., \lambda_m^*)$, $\mu^* = (\mu_1^*, ..., \mu_r^*)$, such that

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \mu^*) = \mathbf{0}, \quad \mu_j^* \ge 0, \ j = 1, ..., r, \quad \mu_j^* = 0, j \notin A(\mathbf{x}^*).$$

• If f, h, and g are twice continuously differentiable,

$$m{y}'
abla^2_{m{x}m{x}}L(m{x}^*,m{\lambda}^*,m{\mu}^*)m{y}\geq 0,\quad ext{for all }m{y}\in V(m{x}^*),$$

where

$$V(\mathbf{x}^*) = \{ \mathbf{y} \mid \nabla \mathbf{h}(\mathbf{x}^*)' \mathbf{y} = 0, \ \nabla g_j(\mathbf{x}^*)' \mathbf{y} = 0, \ j \in A(\mathbf{x}^*) \}.$$

• Similar sufficiency conditions and sensitivity results. They require strict complementarity, i.e.,

$$\mu_j^* > 0, \quad \forall \ j \in A(\boldsymbol{x}^*).$$

Proof of KKT Conditions

• Use equality-constraints result to obtain all the conditions except for $\mu_j^* \geq 0$ for $j \in A(x^*)$.

• Introduce the penalty functions $g_j^+(x) = \max\{0, g_j(x)\}, j = 1, ..., r$, and for k = 1, 2, ..., let x^k minimize

$$|f(x) + \frac{k}{2} ||h(x)||^2 + \frac{k}{2} \sum_{j=1}^{r} (g_j^+(x))^2 + \frac{1}{2} ||x - x^*||^2$$

over a closed sphere of x^* .

• Using the same argument as for equality constraints,

$$\lambda_i^* = \lim_{k \to \infty} k h_i(\boldsymbol{x}^k), \quad i = 1, ..., m,$$

$$\mu_j^* = \lim_{k \to \infty} k g_j^+(\boldsymbol{x}^k), \quad j = 1, ..., r.$$

• Since $g_j^+(\boldsymbol{x}^k) \geq 0$, we obtain $\mu_j^* \geq 0$ for all j.

Linear Constraints

Consider the linearly constrained problem

$$\min_{oldsymbol{a}_j'oldsymbol{x} \leq b_j, \ j=1,...,r} f(oldsymbol{x}).$$

- Remarkable property: No need for regularity.
- Proposition: If x^* is a local minimum, there exist $\mu^* = (\mu_1^*, ..., \mu_r^*)$ with $\mu_i^* \ge 0, \ j = 1, ..., r$, such that

$$\nabla f(\boldsymbol{x}^*) + \sum_{j=1}^r \mu_j^* \boldsymbol{a}_j = \boldsymbol{0}, \quad \mu_j^* = 0, \quad \forall \ j \notin A(\boldsymbol{x}^*).$$

ullet Proof uses Farkas Lemma: Consider the cones C and C^\perp

$$C = \{ \boldsymbol{x} \mid \boldsymbol{x} = \sum_{j=1}^{r} \mu_j \boldsymbol{a}_j, \ \mu_j \ge 0 \}, \quad C^{\perp} = \{ \boldsymbol{y} \mid \boldsymbol{a}_j' \boldsymbol{y} \le 0, \ j = 1, ..., r \}$$

Then

$$\boldsymbol{x} \in C$$
 iff $\boldsymbol{x}' \boldsymbol{y} \leq 0, \ \forall \ \boldsymbol{y} \in C^{\perp}$.

• To see why Farkas' lemma is true, first show that C is closed (nontrivial). Then, let x be such that $x'y \leq 0$, $\forall y \in C^{\perp}$, and consider its projection \tilde{x} on C. We have

$$|\mathbf{x}'(\mathbf{x} - \tilde{\mathbf{x}})| = ||\mathbf{x} - \tilde{\mathbf{x}}||^2, \quad (\mathbf{x} - \tilde{\mathbf{x}})'\mathbf{a}_j \le 0, \quad \forall j.$$

Hence, $(\boldsymbol{x} - \tilde{\boldsymbol{x}}) \in C^{\perp}$, and using the hypothesis,

$$\boldsymbol{x}'(\boldsymbol{x} - \tilde{\boldsymbol{x}}) \leq 0.$$

• From the above two relations, we obtain $x = \tilde{x}$, so $x \in C$.

Proof of Lagrangian Multiplier Theorem

ullet The local min $oldsymbol{x}^*$ of the original problem is also a local min for the problem

$$\min_{oldsymbol{a}_j'oldsymbol{x} \leq b_j, \ j \in A(oldsymbol{x}^*)} f(oldsymbol{x}).$$

Hence

$$\nabla f(\boldsymbol{x}^*)'(\boldsymbol{x}-\boldsymbol{x}^*) \geq 0, \quad \forall \ \boldsymbol{x} \text{ with } \boldsymbol{a}_j'\boldsymbol{x} \leq b_j, \ j \in A(\boldsymbol{x}^*).$$

• Since a constraint $a'_j x \leq b_j$, $j \in A(x^*)$ can also be expressed as $a'_j (x - x^*) \leq 0$, we have

$$\nabla f(\boldsymbol{x}^*)'\boldsymbol{y} \geq 0, \quad \forall \ \boldsymbol{y} \text{ with } \boldsymbol{a}_j'\boldsymbol{y} \leq 0, \ j \in A(\boldsymbol{x}^*).$$

ullet From Farkas' lemma, $-\nabla f(oldsymbol{x}^*)$ has the form

$$\sum_{j \in A(\boldsymbol{x}^*)} \mu_j^* \boldsymbol{a}_j, \quad \text{ for some } \mu_j^* \ge 0, \ j \in A(\boldsymbol{x}^*).$$

• To complete the proof, let $\mu_j^* = 0$ for $j \notin A(x^*)$.