Note for the Virtual Fundamental Class

Xiaolong Liu

April 15, 2024

Contents

1	Int	roduction	1
2	Review of Basic Intersection Theory 2.1 Basic Facts of Refined Gysin Pullback		2
	2.2	Localized Chern Class	
3	Fundations of Virtual Fundamental Class		8
	3.1	About Cones	8
	3.2	Cone Stack	12
	3.3	A Stack of Special Type	12
	3.4	A Brief of Cotangent Complexes	12
	3.5	Intrinsic Normal Cone	12
	3.6	Obstruction Theory and Virtual Class	12
	3.7	Examples	12
4	Atiyah-Bott Localization		12
5	5 Localization of Virtual Fundamental Class		12
\mathbf{R}	References		

1 Introduction

We will follows [BF97][AB84][GP99] and we will also use [Ric22]. We need [Har77][Ful98][EH16].

Here we will consider $\mathbb{P}(-) = \mathbf{Proj} \operatorname{Sym}(-)^{\vee}$ for bundles and the vector bundle is both space and sheaf via $\operatorname{Spec} \operatorname{Sym}(-)^{\vee}$. For a cone $C = \operatorname{Spec}_X \mathscr{S}^*$, we define $\mathbb{P}(C) := \operatorname{Proj}_X \mathscr{S}^*$ and $\mathbb{P}(C \oplus \mathscr{O}) := \operatorname{Proj}_X \mathscr{S}^*[z]$ which is the projective cone and projective completion, respectively. For more details we refer Appendix B.5 of [Ful98].

2 Review of Basic Intersection Theory

We will follows [Ful98]. We will omit the basic things such as Segre classes of bundles and cones, Chern classes of bundles and the technique of the deformation to the normal cone. We refer Chapter 1-5 in [Ful98]. We work over schemes of finite type over some field k.

2.1 Basic Facts of Refined Gysin Pullback

Here we will follows Chapter 6,8,9 of [Ful98]. We will state the results without the most of the proof.

Definition 2.1 (Intersection Product). Let $i: X \hookrightarrow Y$ be a closed regular embedding of codimension d with normal bundle $N_{X/Y}$. Pick V be a scheme of pure dimension k. Consider the cartesian diagram

$$\begin{array}{ccc}
W & \stackrel{j}{\longleftrightarrow} V \\
\downarrow g & \uparrow & \downarrow \\
X & \stackrel{i}{\longleftrightarrow} Y
\end{array}$$

Let $\mathscr I$ be the ideal of i and $\mathscr J$ be the ideal of j, then we have surjection

$$\bigoplus_n f^*(\mathscr{I}^n/\mathscr{I}^{n+1}) \to \bigoplus_n \mathscr{J}^n/\mathscr{J}^{n+1} \to 0$$

which induce embedding $C_{W/V} \hookrightarrow g^*N_{X/Y}$. Note that $C_{W/V}$ is also a scheme of pure dimension k since $\mathbb{P}(C_{W/V} \oplus \mathcal{O})$ is the exceptional divisor of $\mathrm{Bl}_W(Y \times \mathbb{A}^1)$. Let $0: W \to g^*N_{X/Y}$ be the zero-section of $\pi: g^*N_{X/Y} \to W$, then we define

$$X \cdot V := 0^* [C_{W/V}] := (\pi^*)^{-1} [C_{W/V}] \in \mathsf{CH}_{k-d}(W)$$

as the intersection class.

Proposition 2.2. Consider the situation of Definition 2.1.

- (a) We have $X \cdot V = \{c(g^*N_{X/Y}) \cap s(W, V)\}_{k-d}$.
- (b) Let \mathcal{Q} be the universal quotient bundle of $q: \mathbb{P}(g^*N_{X/Y} \oplus \mathscr{O}) \to W$, then

$$X \cdot V = q_*(c_d(\mathcal{Q}) \cap [\mathbb{P}(C_{W/V} \oplus \mathcal{O})]).$$

(c) If $j: W \hookrightarrow V$ is a regular embedding of codimension d', then $X \cdot V = c_{d-d'}(g^*N_{X/Y}/N_{W/V}) \cap [W]$.

Proof. Easy, one omitted. See Proposition 6.1 and Example 6.1.7 in [Ful98].

Definition 2.3 (Refined Gysin Pullback). Let $i: X \hookrightarrow Y$ be a closed regular embedding of codimension d with normal bundle $N_{X/Y}$. Pick $f: Y' \to Y$ be a morphism. Consider the cartesian diagram

$$X' \xrightarrow{j} Y'$$

$$g \downarrow \qquad f \downarrow$$

$$X \xrightarrow{i} Y$$

Then we define $i^!: \mathsf{Z}_k Y' \to \mathsf{CH}_{k-d} X'$ as $\sum_i n_i [V_i] \mapsto \sum_i n_i X \cdot V_i$. Now $i^!$ can be decomposed as:

$$i^!: \mathsf{Z}_k \, Y' \stackrel{\sigma}{\to} \mathsf{Z}_k \, C_{X'/Y'} \to \mathsf{CH}_k(g^*N_{X/Y}) \stackrel{0^*}{\to} \mathsf{CH}_{k-d} \, X'$$

where $\sigma: \mathsf{Z}_k \, Y' \to \mathsf{Z}_k \, C_{X'/Y'}$ given by $[V] \mapsto [C_{V \cap X'/V}]$. By the technique of deformation to the normal cone, this can be descend to the Chow-group level as $\sigma: \mathsf{CH}_k \, Y' \to \mathsf{CH}_k \, C_{X'/Y'}$ (see Proposition 5.2 in [Ful98]) which is called the specialization to the normal cone. Hence this induce the refined Gysin pullback

$$i^!: \operatorname{CH}_k Y' \to \operatorname{CH}_{k-d} X', \quad \sum_i n_i[V_i] \mapsto \sum_i n_i X \cdot V_i.$$

Proposition 2.4. Consider the situation of Definition 2.3. Consider

$$X'' \stackrel{i''}{\hookrightarrow} Y''$$

$$q \downarrow \qquad \qquad p \downarrow$$

$$X' \stackrel{i'}{\hookrightarrow} Y'$$

$$g \downarrow \qquad \qquad f \downarrow$$

$$X \stackrel{i}{\hookrightarrow} Y$$

- (a) If p proper and $\alpha \in \mathsf{CH}_k(Y'')$, then $i^!p_*(\alpha) = q_*i^!(\alpha) \in \mathsf{CH}_{k-d}(X')$.
- (b) If p is flat of relative dimension n and $\alpha \in \mathsf{CH}_k(Y'')$, then $i^!p^*(\alpha) = q^*i^!(\alpha) \in \mathsf{CH}_{k+n-d}(X'')$.
- (c) If i' is also a regular embedding of codimension d and $\alpha \in \mathsf{CH}_k(Y'')$, then $i^!\alpha = (i')^!(\alpha) \in \mathsf{CH}_{k-d}(X'')$.
- (d) If i' is a regular embedding of codimension d', then for $\alpha \in \mathsf{CH}_k(Y'')$ we have

$$i^!(\alpha) = c_{d-d'}(q^*(g^*N_{X/Y}/N_{X'/Y'})) \cap (i')^!(\alpha) \in \mathsf{CH}_{k-d}(X'').$$

We call $g^*N_{X/Y}/N_{X'/Y'}$ the excess normal bundle.

(e) Let F be any vector bundle on Y', then for $\alpha \in \mathsf{CH}_k(Y'')$ we have

$$i^!(c_m(F) \cap \alpha) = c_m((i')^*F) \cap i^!(\alpha) \in \mathsf{CH}_{k-d-m}(X').$$

Proof. See Theorem 6.2, Theorem 6.3 and Proposition 6.3 in [Ful98]. \Box

Corollary 2.5. Let $i: X \hookrightarrow Y$ be a regular embedding of codimension d, then

$$i^*i_*(\alpha) = c_d(N_{X/Y}) \cap \alpha \in \mathsf{CH}_*(X).$$

Proof. By Proposition 2.4(d) directly.

Proposition 2.6. The refined Gysin pullback have the following properties.

(a) Let $i: X \hookrightarrow Y$ and $j: S \hookrightarrow T$ are regular embeddings of codimension d, e, respectively. Consider cartesians:

Then for any $\alpha \in \mathsf{CH}_k(Y'')$, we have

$$j^!i^!(\alpha) = i^!j^!(\alpha) \in \mathsf{CH}_{k-d-e}(X'').$$

(b) Let $i: X \hookrightarrow Y$ and $j: Y \hookrightarrow Z$ are regular embeddings of codimension d, e, respectively. Consider cartesians:

$$X' \stackrel{i'}{\hookrightarrow} Y' \stackrel{j'}{\hookrightarrow} Z'$$

$$\downarrow_h \stackrel{g}{\searrow} \stackrel{f}{\searrow} f \downarrow$$

$$X \stackrel{i}{\hookrightarrow} Y \stackrel{j}{\hookrightarrow} Z$$

Then ji is a regular embedding of codimension d + e and for all $\alpha \in \mathsf{CH}_k(Z')$ we have

$$(ji)^!(\alpha) = i^!j^!(\alpha) \in \mathsf{CH}_{k-d-e}(X').$$

Proof. See Theorem 6.4 and Theorem 6.5 in [Ful98].

Proposition 2.7. Consider cartesians:

$$X' \xrightarrow{i'} Y' \xrightarrow{p'} Z'$$

$$\downarrow^{h} \qquad g \downarrow \qquad f \downarrow$$

$$X \xrightarrow{i} Y \xrightarrow{p} Z$$

(a) If i is a regular embedding of codimension d and p and p are flat of relative dimension n, n-d, respectively. Then i' is a regular embedding of codimension d and p', p'i' are flat, and for $\alpha \in \mathsf{CH}_k(Z')$ we have

$$(p'i')^*(\alpha) = (i')^*((p')^*\alpha) = i!((p')^*\alpha).$$

(b) If i is a regular embedding of codimension d and p is smooth of relative dimension n, and pi is a regular embedding of codimension d-n Then for $\alpha \in \mathsf{CH}_k(Z')$ we have

$$(pi)!(\alpha) = i!((p')^*\alpha).$$

Proof. See Proposition 6.5 in [Ful98].

Remark 2.8. Some remarks.

- (a) For local complete intersection morphism $f: X \to Y$, we can decompose it into $f: X \xrightarrow{i} P \xrightarrow{p} Y$ where i is a closed regular embedding of constant codimension and p is smooth of constant relative dimension. Then we can define $f^! := i^!(p')^*$. See Section 6.6 in [Ful98] for more properties.
- (b) If Y is nonsingular of dimension n, then we can define the following intersection product: Let $f: X \to Y$ and $p: X' \to X$ and $q: Y' \to Y$. Let $x \in \mathsf{CH}_k(X')$ and $y \in \mathsf{CH}_l(Y')$, consider the cartesian

$$\begin{array}{ccc} X' \times_Y Y' & \longrightarrow X' \times Y' \\ \downarrow & & \downarrow^{p \times q} \\ X & \xrightarrow{\gamma_f} & X \times Y \end{array}$$

and define $x \cdot_f y := \gamma_f^!(x \times y) \in \mathsf{CH}_{k+l-n}(X' \times_Y Y').$

So when $x, y \in \mathsf{CH}_*(Y)$, then let X = Y and X' = |x|, Y' = |y|, then we get the new intersection product. Note that this is compactible as the definition before. See Chapter 8 in [Ful98] for more properties. In this case $CH_*(Y)$ is a ring which is called Chow ring.

Finally we will discuss something about equivalence and supportness.

Definition 2.9. Let $i: X \hookrightarrow Y$ be a closed regular embedding of codimension d with normal bundle $N_{X/Y}$. Pick V be a scheme of pure dimension k. Consider the cartesian diagram

$$\begin{array}{ccc}
W & \xrightarrow{j} V \\
g \downarrow & & f \downarrow \\
X & \xrightarrow{i} Y
\end{array}$$

Let $C_1, ..., C_r$ be the irreducible components of $C_{W/V}$, then $[C_{W/V}] = \sum_{i=1}^r m_i [C_i]$. Let $Z_i = \pi(C_i)$ where $\pi: g^*N_{X/Y} \to W$ and we call them the distinguished varieties of the intersection of V by X. Let $N_i := (g^*N_{X/Y})|_{Z_i}$ and let $0_i: Z_i \to N_i$ be the zero-sections. Let $\alpha_i: = 0_i^*[C_i] \in \mathsf{CH}_{k-d}(Z_i)$ and hence we have $X \cdot V = \sum_{i=1}^r m_i \alpha_i \in \mathsf{CH}_{k-d}(W)$.

Pick any closed set $S \subset W$, we define

$$(X \cdot V)^S := \sum_{Z_i \subset S} m_i \alpha_i \in \mathsf{CH}_{k-d}(S)$$

as the part of $X \cdot V$ supported on S.

Definition 2.10. Let $X_i \hookrightarrow Y$ be closed regular embeddings of codimension d_i . Let $V \subset Y$ be a k-dimensional subvariety. Consider

$$\bigcap_{i} X_{i} \cap V & \longrightarrow V \\
\downarrow \qquad \qquad \qquad \downarrow \delta \\
X_{1} \times \cdots \times X_{r} & \longrightarrow Y \times \cdots \times Y$$

Then we can get $X_1 \cdot \ldots \cdot x_r \cdot V \in \mathsf{CH}_{\dim V - \sum_i d_i}(\bigcap_i X_i \cap V)$. Let Z be a connected component of $\bigcap_i X_i \cap V$, we will consider

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z \in \mathsf{CH}_{\dim V - \sum_i d_i}(Z)$$

as before.

Proposition 2.11. As in the previous situation, we have

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z = \left\{ \prod_{i=1}^r c(N_{X_i/Y}|_Z) \cap s(Z,V) \right\}_{\dim V - \sum_i d_i}.$$

If $Z \hookrightarrow V$ is a regular embedding, then

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z = \left\{ \prod_{i=1}^r c(N_{X_i/Y}|_Z) \cdot c(N_{Z/V})^{-1} \cap [Z] \right\}_{\dim V - \sum_i d_i}.$$

If V, Z are both non-singular, then

$$(X_1 \cdot \ldots \cdot X_r \cdot V)^Z = \left\{ \prod_{i=1}^r c(N_{X_i/Y}|_Z) c(T_V|_Z)^{-1} c(T_Z) \cap [Z] \right\}_{\dim V - \sum_i d_i}.$$

Proof. See Proposition 9.1.1 in [Ful98].

2.2 Localized Chern Class

Here we will follows Chapter 14.1 of [Ful98]. This is the most important part which is the local case of the virtual fundamental class.

Definition 2.12. Let $E \to X$ be a vector bundle of rank e over a purely n-dimensional scheme X. Let $s: X \to E$ be a section, consider the cartesian

$$Z(s) \xrightarrow{} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

with zero-section $0: X \to E$ which is a regular section by trivial reason. We define

$$c_{\text{loc}}(E, s) := 0!([X]) = 0^*(C_{Z(s)/X}) \in \mathsf{CH}_{n-e}(Z(s))$$

be the localized (top) Chern class of E with respect to s.

Proposition 2.13. Consider the situation of Definition 2.12.

- (a) We have $i_*(c_{loc}(E, s)) = c_e(E) \cap [X]$.
- (b) Each irreducible component of Z(s) has codimension at most e in X. If $\operatorname{codim}_{Z(s)}X = e$, then $c_{\operatorname{loc}}(E,s)$ is a positive cycle whose support is Z(s).
- (c) If s is a regular section, then $c_{loc}(E, s) = [Z(s)]$.
- (d) Let $f: X' \to X$ be a morphism, $s' = f^*s$ be a induced section of f^*E . Let $g: Z(s') \to Z(s)$ be the induced morphism.
 - (d1) If f flat, then $g^*c_{loc}(E,s) = c_{loc}(f^*E,s')$.
 - (d2) If f is proper of varieties, then $g_*c_{loc}(f^*E, s') = \deg(X'/X)c_{loc}(E, s)$.

Proof. For (a), by Proposition 2.4(a) and Corollary 2.5, we have

$$i_*0![X] = 0^*s_*[X] = s^*s_*[X] = c_e(E) \cap [X].$$

For (b),(c), these follows from the trivial arguments of intersection multiplicities, see Lemma 7.1 and Proposition 7.1 in [Ful98]. Finally (d) follows from the following cartesians

and Proposition 2.4.

3 Fundations of Virtual Fundamental Class

We will follows [BF97]. Here an algebraic stack (or Artin stack) over a field k is assumed to be quasi-separated and locally of finite type over k.

3.1 About Cones

We will let X be a Deligne-Mumford stack now.

Definition 3.1. Let X be a DM-stack.

- (a) We call an affine X-scheme $C = \underline{\operatorname{Spec}}_X \mathscr{S}$ is a cone over X if the quasi-coherent algebra \mathscr{S} is graded as $\mathscr{S} = \bigoplus_{i \geq 0} \mathscr{S}^i$ with $\mathscr{S}^0 = \mathscr{O}_X$ and \mathscr{S}^1 is coherent and \mathscr{S} is generated by \mathscr{S}^1 .
- (b) A morphism of cones over X is an X-morphism induced by a graded morphism of graded sheaves of \mathcal{O}_X -algebras. A closed subcone is the image of a closed immersion of cones.

Remark 3.2. (a) The fiber product of cones over X is still a cone over X.

- (b) For every cone $C \to X$, it has a zero section $0: X \to C$ induced by $\mathscr{S} \to \mathscr{S}^0$.
- (c) For every cone $C \to X$, the grade induce a \mathbb{G}_m -action $\mathbb{G}_m \times C = \underbrace{\operatorname{Spec}}_X \mathscr{S}[t,t^{-1}] \to C$ induced by $\mathscr{S} \to \mathscr{S}[t,t^{-1}]$ via $s_0 + \cdots s_d \mapsto \sum_i a_i t^i$ where $s_i \in \mathscr{S}^i$. Since no negative power of t occurs, we can in fact replace \mathbb{G}_m by \mathbb{A}^1 . So we have the \mathbb{A}^1 -action $\gamma : \mathbb{A}^1 \times C \to C$ induced by $\mathscr{S} \to \mathscr{S}[x]$ via $\mathscr{S}^i \ni s \mapsto sx^i$. Note that here \mathbb{A}^1 is not a

group scheme and the action here, as expected, to be the commutativity of the following diagrams:

where m(x, y) = xy.

(d) So a morphism of cones $f: C \to D$ over X is just the \mathbb{A}^1 -equivariant X-morphism respecting the zero section, that is, the following commutativity of the diagram:

$$\begin{array}{cccc}
\mathbb{A}^1 \times C & \longrightarrow C & \stackrel{0_C}{\longleftrightarrow} X \\
\downarrow^{id \times f} & & \downarrow^{id \times f} & \downarrow^{id \times f}
\end{array}$$

$$\begin{array}{cccc}
\mathbb{A}^1 \times D & \longrightarrow D
\end{array}$$

Definition 3.3. Let \mathscr{F} be a coherent sheaf of X, then we can define $C(\mathscr{F}) := \frac{\operatorname{Spec}_X \operatorname{Sym}(\mathscr{F})}{\operatorname{as} C(\mathscr{F})(T)}$ which is a group scheme over X since it can be represented as $C(\mathscr{F})(T) = \operatorname{Hom}(\mathscr{F}_T, \mathscr{O}_T)$. We call a cone of this form is an abelian cone over X.

Remark 3.4. (a) A fibered product of abelian cones is an abelian cone.

- (b) A vector bundle $E = \operatorname{Spec}_{\mathbf{v}} \operatorname{Sym}(\mathscr{E}^{\vee})$ is a special case.
- (c) Any cone $C = \underline{\operatorname{Spec}}_X \bigoplus_{i \geq 0} \mathscr{S}^i$ is canonically a closed subcone of an abelian cone $A(C) = \underline{\operatorname{Spec}}_X \operatorname{Sym} \mathscr{S}^1$, called the abelian hull of C. The abelian hull is a vector bundle if and only if \mathscr{S}^1 is locally free.
- (d) The abelianization $C \mapsto A(C)$ is a functor has the forgetful functor as a right adjoint. So we have

$$\operatorname{Hom}_{\mathbf{AbCone}_X}(A(C),A) \cong \operatorname{Hom}_{\mathbf{Cone}_X}(C,A).$$

(e) Let \mathbf{Alg}_X^o as the category of quasicoherent graded \mathcal{O}_X -algebras satisfying the condition in the definition of cones. So we have the following commutative diagram of functors:

$$\begin{array}{ccc} \mathbf{Alg}_X^o & \xrightarrow{\underline{\operatorname{Spec}}_X} & \mathbf{Cone}_X^{\operatorname{op}} \\ & & & & & & & \\ \operatorname{Sym}^{\uparrow} & & & & & & \\ \mathbf{LocFree}_X & \xrightarrow{\underline{\operatorname{Spec}}_X \operatorname{Sym}(-)^{\vee}} & \mathbf{Vect}_X^{\operatorname{op}} \\ & & & & & & & \\ & & & & & & & \\ \mathbf{Coh}_X & \xrightarrow{\underline{\operatorname{Spec}}_X \operatorname{Sym}} & \mathbf{AbCone}_X^{\operatorname{op}} \end{array}$$

Lemma 3.5. A cone C over X is a vector bundle if and only if it is smooth over X.

Proof. Let $C = \underline{\operatorname{Spec}}_X \bigoplus_{i \geq 0} \mathscr{S}^i$ and assume that $C \to X$ has constant relative dimension r. Then $\mathscr{S}^1 = 0^*\Omega_{C/X}$ is locally free of rank r. As $C \hookrightarrow A(C)$ where A(C) is a vector bundle and $\dim C = \dim A(C)$, we know that C is a vector bundle.

Example 3.6. Tow important examples. Let $X \hookrightarrow Y$ be a closed immersion of ideal \mathscr{I} . Then $C_{X/Y} := \underline{\operatorname{Spec}}_X \bigoplus_{n \geq 0} \mathscr{I}^n/\mathscr{I}^{n+1}$ is called the normal cone of X in Y. The associated abelian cone $N_{X/Y} = \underline{\operatorname{Spec}}_X \operatorname{Sym} \mathscr{I}/\mathscr{I}^2$ is called the normal sheaf of X in Y.

Definition 3.7. A sequence of cone morphisms

$$0 \to E \xrightarrow{i} C \to D \to 0$$

is called exact if E is a vector bundle and locally over X there is a morphism of cones $C \to E$ splitting i and inducing an isomorphism $C \cong E \times_X D$.

Lemma 3.8. We have the following useful results.

- (a) Given a short exact sequence $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{E} \to 0$ of coherent sheaves on X, with \mathscr{E} locally free, then $0 \to C(\mathscr{E}) \to C(\mathscr{F}) \to C(\mathscr{F}') \to 0$ is exact, and conversely is also true.
- (b) Let $C \to D$ be a smooth, surjective morphism of cones, and let $E = C \times_{D,0} X$. Then the sequence

$$0 \to E \to C \to D \to 0$$

is exact.

Proof. For (a) we refer Example 4.1.6 and Example 4.1.7 in [Ful98]. Now we consider (b).

For (b), let $C = \underline{\operatorname{Spec}}_X \bigoplus_{i \geq 0} \mathscr{S}^i$ and $D = \underline{\operatorname{Spec}}_X \bigoplus_{i \geq 0} \mathscr{T}^i$. We first claim that

$$0 \to E \to A(C) \to A(D) \to 0$$

exact. Indeed, as now $E \to X$ smooth, hence $E = \underline{\operatorname{Spec}}_X \operatorname{Sym} \mathscr{E}$ is a vector bundle by Lemma 3.5. Moreover, by base change we may assume $\mathscr{T}^i = 0$ for $i \geq 2$ (why??). Hence $E = \underline{\operatorname{Spec}}_X \bigoplus_{i \geq 0} (\mathscr{S}^i/\mathscr{T}^1\mathscr{S}^{i-1})$. So $0 \to \mathscr{T}^1 \to \mathscr{E} \to 0$ exact. By (a) we get the claim.

For general case, as $C \to A(C) \times_{A(D)} D$ is a closed immersion by trivial reason and both these schemes are smooth of the same relative dimension over D. Well done.

- **Definition 3.9.** (a) If E is a vector bundle and $f: E \to C(\mathscr{F})$ a morphism of abelian cones. The there is an E-action as $E \times_X C(\mathscr{F}) \to C(\mathscr{F})$ as $(\nu, \gamma) \mapsto f\nu + \gamma$.
 - (b) If E is a vector bundle and $d: E \to C$ a morphism of cones, we say that C is an E-cone, if C is invariant under the action of E on A(C).
 - (c) A morphism ϕ from an E-cone C to an F-cone D is a commutative diagram of cones

$$E \xrightarrow{d_E} C$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi}$$

$$F \xrightarrow{d_F} D$$

(d) If $\phi: (E, d_E, C) \to (F, d_F, D)$ and $\psi: (E, d_E, C) \to (F, d_F, D)$ are morphisms, we call them homotopic, if there exists a morphism of cones $k: C \to F$, such that $kd_E = \psi - \phi = d_F k$.

Proposition 3.10. Let X be a DM-stack.

(a) Let E be a vector bundle. Then a sequence of cone morphisms $0 \to E \xrightarrow{i} C \xrightarrow{\phi} D \to 0$ is exact if and only if C is a E-cone, $\phi: C \to D$ is surjective and the diagram

$$\begin{array}{ccc} E \times C & \stackrel{\sigma}{\longrightarrow} & C \\ \downarrow^p & & \downarrow^\phi \\ C & \stackrel{\phi}{\longrightarrow} & D \end{array}$$

is cartesian with projection p and action σ .

(b) Let $(C,0,\gamma)$ and $(D,0,\gamma)$ be algebraic X-spaces with sections and \mathbb{A}^1 -actions and let $\phi: C \to D$ be an \mathbb{A}^1 -equivariant X-morphism, which is smooth and surjective. Let $E = C \times_{D,0} X$. Assume that E is a vector bundle. Then C is an E-cone over X if and only if D is a cone over X. Moreover, C is abelian (resp. vector bundle) if and only if D is.

Proof. For (a), if it is exact, locally we have $C \cong E \times_X D$. So E act on C locally as $E \times E \times_X D \to E \times_X D$ given by $(f, (e, d)) \mapsto (i(f) + e, d)$. So C is a E-cone. Now $\phi : C \to D$ is surjective is trivial. The cartesian diagram follows from local case.

Conversely, we need to find that $C \cong E \times_X D$ in local.

For (b), let C is an E-cone over X. By faithfully flat descent, we know that D is a relative spectrum over X. As $(D,0,\gamma)$ be algebraic X-spaces with sections and \mathbb{A}^1 -actions, we know that D is a relative spectrum of graded algebra with zero section and $\phi:C\to D$ induced by graded morphism and preserving zero sections which is smooth and surjective.

We first assume C is abelian, that is, $C = \operatorname{Spec}_X \operatorname{Sym} \mathscr{F}$. Let $E = \operatorname{Spec}_X \operatorname{Sym} \mathscr{E}^\vee$. Hence we have surjection $\mathscr{F} \to \mathscr{E}^\vee$. So we have $0 \to \mathscr{G} \to \mathscr{F} \to \mathscr{E}^\vee \to 0$ exact. Hence $0 \to E \to C \to C(\mathscr{G}) \to 0$ exact. So by ??? we know that $D = C(\mathscr{G})$ which is an abelian cone.

In the general case, we have $C \subset A(C)$ defined by a homogeneous ideal $\mathscr{I} \subset \operatorname{Sym} \mathscr{S}^1$ where $C = \operatorname{\underline{Spec}}_X \mathscr{S}$ and $\mathscr{S} = \bigoplus_{i \geq 0} \mathscr{S}^i$. Now we have an exact sequence $0 \to \mathscr{G} \to \mathscr{S}^1 \to \mathscr{E}^\vee \to 0$. Let $\mathscr{J} = \mathscr{I} \cap \operatorname{Sym} \mathscr{G}$ and let $C' = \operatorname{\underline{Spec}}_X((\operatorname{Sym} \mathscr{G})/\mathscr{J})$ which is the scheme-theoric image of C in $C(\mathscr{G})$. Hence C' is the quotient of C by E.

- 3.2 Cone Stack
- 3.3 A Stack of Special Type
- 3.4 A Brief of Cotangent Complexes
- 3.5 Intrinsic Normal Cone
- 3.6 Obstruction Theory and Virtual Class
- 3.7 Examples

4 Atiyah-Bott Localization

We will follows [AB84].

5 Localization of Virtual Fundamental Class

We will follows [GP99].

References

- [AB84] M. Atiyah and R. Bott. The moment map and equivariant cohomology. *Topology*, 23:1–28, 1984.
- [BF97] K. Behrend and B. Fantechi. The intrinsic normal cone. *Invent. Math.*, 128:45–88, 1997.
- [EH16] David Eisenbud and Joe Harris. 3264 and All That: A Second Course in Algebraic Geometry. Cambridge University Press, 2016.
- [Ful98] William Fulton. Intersection Theory. Springer New York, 1998.

- [GP99] T. Graber and R. Pandharipande. Localization of virtual classes. $Invent.\ Math.,\ 135:487–518,\ 1999.$
- [Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977.
- [Ric22] Andrea Ricolfi. An Invitation to Modern Enumerative Geometry. Springer Cham, 2022.