ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ

Συνδυαστικά κυκλώματα

Τα λογικά κυκλώματα μπορεί να είναι συνδυαστικά ή ακολουθιακά. Ένα λογικό κύκλωμα ονομάζεται συνδυαστικό (combinational) εάν οι τιμές των εξόδων του εξαρτώνται αποκλειστικά από τις παρούσες τιμές των εισόδων του.

Ανάλυση συνδυαστικών κυκλωμάτων

- 1. Δίδονται συμβολικά ονόματα σε όλες τις εξόδους των πυλών.
- 2. Γράφονται λογικές εκφράσεις για τις εξόδους των λογικών πυλών.
- 3. Αντικαθίστανται οι εσωτερικές ονομασίες των εξόδων των πυλών μέχρι να προκύψουν λογικές παραστάσεις που να περιλαμβάνουν μόνο τις εισόδους.
- 4. Αυτό το βήμα μπορεί να γίνει με δύο τρόπους. Αρχίζοντας από τις πύλες που είναι κοντά στις εισόδους ή αρχίζοντας από τις πύλες που είναι κοντά στις εξόδους. Συνήθως χρησιμοποιείται ο δεύτερος τρόπος.
- 5. Μετατρέπεται κάθε λογική παράσταση που προέκυψε σε ισοδύναμη κανονική και προσδιορίζεται ο αντίστοιχος πίνακας αληθείας

Παράδειγμα 5.1. Να αναλυθεί το κύκλωμα που δίδεται στην συνέχεια.

Υπόδειξη

$$f = \overline{T_2} \overline{T_3} = \overline{T_2} + \overline{T_3} = \overline{xy} + \overline{T_1} \overline{z} = xy + T_1 z$$

$$= xy + (\overline{zw})z = xy + (\overline{z} + w)z = xy + \overline{zz} + wz$$

$$f = xy + zw$$

Μετατρέπουμε την συνάρτηση στην κανονική της μορφή και εξάγουμε τον πίνακα αληθείας

Σύνθεση ψηφιακών κυκλωμάτων

- 1. Αρχικά γίνεται λειτουργική περιγραφή του κυκλώματος και προσδιορίζονται οι μεταβλητές εισόδου και εξόδου.
- 2. Κατασκευάζεται ο πίνακας αληθείας ή προσδιορίζεται μία λογική παράσταση για κάθε έξοδο.
- 3. Προσδιορίζονται οι απλούστερες λογικές παραστάσεις για κάθε έξοδο.
- 4. Σχεδιάζονται τα λογικά κυκλώματα που αντιστοιχούν στις απλοποιημένες λογικές παραστάσεις που αντιστοιχούν στις εξόδους.

Κύκλωμα ανίχνευσης πλειοψηφίας των 1 με 3 εισόδους

x	у	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Υλοποίηση

$$f = xy+yz+xz$$

Λογικό σύμβολο n → 2ⁿ αποκωδικοποιητή με είσοδο επίτρεψης

Λογικό σύμβολο και πίνακας αληθείας του 2→4 αποκωδικοποιητή

x_1	x_0	\mathcal{Y}_0	y_1	${\mathcal Y}_2$	\mathcal{Y}_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Σχεδίαση του 2->4 αποκωδικοποιητή

x_1	x_0	${\cal Y}_0$	y_1	${\mathcal Y}_2$	y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$y_0 = \overline{x}_1 \cdot \overline{x}_0, \qquad y_1 = \overline{x}_1 \cdot x_0,$$

$$y_2 = x_1 \cdot \overline{x}_0, \qquad y_3 = x_1 \cdot x_0$$

Λογικό σύμβολο και πίνακας αληθείας του 2→4 αποκωδικοποιητή με είσοδο επίτρεψης

e	x_1	x_0	${\cal Y}_0$	y_1	${\mathcal Y}_2$	y_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

X: don't care

Σχεδίαση του 2-34 αποκωδικοποιητή με είσοδο επίτρεψης

e	x_1	x_0	\mathcal{Y}_0	\mathcal{Y}_1	\mathcal{Y}_2	y_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$$y_0 = e \cdot \overline{x}_1 \cdot \overline{x}_0, \quad y_1 = e \cdot \overline{x}_1 \cdot x_0$$
$$y_2 = e \cdot x_1 \cdot \overline{x}_0, \quad y_3 = e \cdot x_1 \cdot x_0$$

Εναλλακτική σχεδίαση 2->4 αποκωδικοποιητή με είσοδο επίτρεψης

e	x_1	x_0	${\cal Y}_0$	\mathcal{Y}_1	\mathcal{Y}_2	y_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

e	x_1	x_0	${\cal Y}_0$	y_1	y_2	y_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

$$y_0 = e + x_1 + x_0 = \overline{e + x_1 + x_0} = \overline{e} \cdot \overline{x_1} \cdot \overline{x_0}$$

$$y_1 = e + x_1 + \overline{x_0} = \overline{e + x_1 + \overline{x_0}} = \overline{e} \cdot \overline{x_1} \cdot \overline{x_0}$$

$$y_2 = e + \overline{x_1} + x_0 = \overline{e + \overline{x_1} + x_0} = \overline{e} \cdot \overline{x_1} \cdot \overline{x_0}$$

$$y_3 = e + \overline{x_1} + \overline{x_0} = \overline{e + \overline{x_1} + \overline{x_0}} = \overline{e} \cdot x_1 \cdot \overline{x_0}$$

74LS139 2x2→4 decoder

N SUFFIX PLASTIC CASE 648-08

D SUFFIX SOIC CASE 751B-03

74LS139 2→4 decoder

LOGIC DIAGRAM

TRUTH TABLE

INPUTS				OUT	PUTS	
ш	A ₀	A ₁	00	01	02	03
Н	Χ	Χ	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	Н	L	Н	L	Н	Н
L	L	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Λογικό σύμβολο και πίνακας αληθείας του 3->8 αποκωδικοποιητή

x_2	x_1	x_0	z_0	z_1	\mathbf{z}_2	<i>Z</i> ₃	<i>Z</i> 4	Z ₅	z_6	<i>Z</i> 7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Πολυπλέκτης 2ⁿ→1 με είσοδο επίτρεψης

Λογικό σύμβολο και πίνακας λειτουργίας του 2->1 πολυπλέκτη

S	Z
0	x_0
1	x_1

Λειτουργία του 2→1 πολυπλέκτη

Σχεδίαση του 2→1 πολυπλέκτη

S	x_0	x_1	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Συνοπτικός πίνακας αληθείας

S	\mathcal{X}_0	x_1	Z
0	0	X	0
0	1	X	1
1	X	0	0
1	X	1	1

$$z = \overline{s} \cdot x_0 + s \cdot x_1$$

Λογικό σύμβολο και πίνακας λειτουργίας του 2→1 πολυπλέκτη με είσοδο επίτρεψης

е	S	Z
0	X	0
1	0	x_0
1	1	x_1

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ

е	S	x_0	$x_0 x_1$	
0	X	X	X	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ

е	S	x_0	x_1	Z
0	X	x	X	0
1	0	0	X	0
1	0	1	X	1
1	1	Х	0	0
1	1	X	1	1

$$z = e\overline{s}x_0 + esx_1$$

IC 74LS157

4x2→1 MUX

Strobe	Select	Α	В	DM74LS157
Н	Х	X	X	L
L	L	L	X	L
L	L	Н	X	Н
L	Н	X	L	L
L	Н	X	Н	Н

Λογικό σύμβολο και πίνακας λειτουργίας του 4->1 πολυπλέκτη

ΛΟΓΙΚΟ ΣΥΜΒΟΛΟ

ΠΙΝΑΚΑΣ ΛΕΙΤΟΥΡΓΙΑΣ

S_1	s_0	Z
0	0	x_0
0	1	x_1
1	0	x_2
1	1	x_3

Υλοποίηση του 4→1 πολυπλέκτη

s_1	s_0	x_0	x_1	x_2	x_3	Z
0	0	0	X	X	X	0
0	0	1	X	X	X	1
0	1	X	0	X	X	0
0	1	X	1	X	X	1
1	0	X	X	0	X	0
1	0	X	X	1	X	1
1	1	X	X	X	0	0
1	1	X	X	X	1	1

$$z = \overline{s_1}\overline{s_0}x_0 + \overline{s_1}s_0x_1 + s_1\overline{s_0}x_2 + s_1s_0x_3$$

Λογικό σύμβολο και πίνακας λειτουργίας του 4 -> 1 πολυπλέκτη με είσοδο επίτρεψης

ΛΟΓΙΚΟ ΣΥΜΒΟΛΟ

ΠΙΝΑΚΑΣ ΛΕΙΤΟΥΡΓΙΑΣ

e	S_1	s_0	Z
0	X	X	0
1	0	0	x_0
1	0	1	x_1
1	1	0	x_2
1	1	1	x_3

Υλοποίηση του 4-> 1 πολυπλέκτη με είσοδο επίτρεψης

Πίνακας Αληθείας

e	S_1	s_0	x_0	x_1	x_2	x_3	Z
0	X	X	X	X	X	X	0
1	0	0	0	X	X	X	0
1	0	0	1	X	X	X	1
1	0	1	X	0	X	X	0
1	0	1	X	1	X	X	1
1	1	0	X	X	0	X	0
1	1	0	X	X	1	X	1
1	1	1	X	X	X	0	0
1	1	1	X	X	X	1	1

$$z = e\bar{s}_1\bar{s}_0x_0 + e\bar{s}_0s_0x_1 + es_1\bar{s}_0x_2 + es_1s_0x_3$$

Σχεδίαση του 3-8 αποκωδικοποιητής με 2-4 αποκωδικοποιητές

x_2	x_1	x_0	z_0	z_1	\mathbf{Z}_2	Z_3	<i>Z</i> 4	Z_5	z_6	<i>Z</i> ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Σχεδίαση του $4\rightarrow 1$ πολυπλέκτη χρησιμοποιώντας σαν στοιχείο σχεδίασης τον $2\rightarrow 1$ πολυπλέκτη.

$$y = \overline{s_1} \cdot \overline{s_0} \cdot x_0 + \overline{s_1} \cdot s_0 \cdot x_1 + s_1 \cdot \overline{s_0} \cdot x_2 + s_1 \cdot s_0 \cdot x_3$$

$$y = \overline{s_1} \cdot (\overline{s_0} \cdot x_0 + s_0 \cdot x_1) + s_1 \cdot (\overline{s_0} \cdot x_2 + s_0 \cdot x_3)$$

$$y = \overline{s_1} \cdot M_0 + s_1 \cdot M_2$$

$$\text{
\'M}_0 = \overline{s_0} \cdot x_0 + s_0 \cdot x_1$$

$$M_2 = \overline{s_0} \cdot x_2 + s_0 \cdot x_3$$

Υλοποίηση των λογικών συναρτήσεων NOT και AND με 2→1 πόλυπλέκτη

Θεώρημα ανάπτυξης του Shannon

$$f(x_{n-1}, x_{n-2}, ..., x_i, ..., x_0) = \bar{x}_i f(x_{n-1}, ..., 0, ..., x_0) + x_i f(x_{n-2}, ..., 1, ..., x_0)$$

Απόδειξη

$$f(x_{n-1}, x_{n-2}, ..., 0_i, ..., x_0) = 1f(x_{n-1}, ..., 0, ..., x_0) + 0f(x_{n-2}, ..., 1, ..., x_0)$$

$$f(x_{n-1}, x_{n-2}, ..., 1_i, ..., x_0) = 0 f(x_{n-1}, ..., 0, ..., x_0) + 1 f(x_{n-2}, ..., 1, ..., x_0)$$

Επομένως

$$f(x_{n-1}, x_{n-2}, ..., x_i, ..., x_0) = \bar{x}_i f(x_{n-1}, ..., 0, ..., x_0) + x_i f(x_{n-2}, ..., 1, ..., x_0)$$

Παράδειγμα 3.52. Να υλοποιηθεί με 2→1 πολυπλέκτες η λογική παράσταση

$$f(x_3, x_2, x_1, x_0) = x_3(x_1 + x_2x_0)$$

$$f(x_3, x_2, x_1, x_0) = f(x_3, x_2, x_1, 0)\overline{x}_0 + f(x_3, x_2, x_1, 1)x_0$$

$$f(x_3, x_2, x_1, x_0) = (x_3 x_1)\overline{x}_0 + x_3(x_1 + x_2)x_0$$

$$x_3(x_1 + x_2) = (x_3 x_2)\overline{x}_1 + x_3 x_1$$

Απομονωτές τριών καταστάσεων

С	A	Y
0	X	Z
1	0	0
1	1	1

С	A	Y
0	X	Z
1	0	1
1	1	0

Λειτουργία απομονωτή τριών καταστάσεων

Σχεδίαση του 2-1 πολυπλέκτη με απομονωτές τριών καταστάσεων

Λειτουργία του 2-λ1 πολυπλέκτη με απομονωτές τριών καταστάσεων

Σχεδίαση 4→1 πολυπλέκτη με απομονωτές τριών καταστάσεων και 2→4 αποκωδικοποιητή

ΑΣΚΗΣΕΙΣ

6.1. Να αναλυθεί το κύκλωμα που δίδεται στην συνέχεια.

$$Y1 = \overline{\overline{A \cdot B} \cdot C} = \overline{\overline{AB}} + \overline{C}$$

$$= AB + \overline{C}$$

$$= AB(C + \overline{C}) + (A + \overline{A})(B + \overline{B})\overline{C} =$$

$$= ABC + AB\overline{C} + (AB + \overline{AB} + A\overline{B} + \overline{AB})\overline{C} =$$

$$= ABC + AB\overline{C} + AB\overline{C} + AB\overline{C} + AB\overline{C} + AB\overline{C} + \overline{AB}\overline{C} =$$

$$= ABC + AB\overline{C} + \overline{ABC} + \overline{ABC} + \overline{ABC} =$$

$$= ABC + AB\overline{C} + \overline{ABC} + \overline{ABC} + \overline{ABC} =$$

$$= \sum_{C} (0, 2, 4, 6, 7)$$

A	В	С	<i>Y</i> 1
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

6.2. Να αναλυθεί το κύκλωμα που δίδεται στην συνέχεια.

A	В	C	<i>Y</i> 1
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

6.3. Να σχεδιασθεί κύκλωμα ανίχνευσης πλειοψηφίας των 1 με τρεις εισόδους μόνο με πύλες NAND.

$$f = xy + yz + xz = \overline{xy + yz + xz} = \overline{xy} \overline{yz} \overline{xz}$$

6.4 Να μετατραπεί η πύλη πλειοψηφίας των 1 με τρεις εισόδους (MG) σε πύλη AND δυο εισόδων.

$$f = xy+yz+xz$$

$$= xy+(x+y)z$$

$$\Gamma \alpha z=0$$

$$f=xy+(x+y)0$$

$$=xy+0$$

$$=xy$$

6.5 Να μετατραπεί η πύλη πλειοψηφίας των 1 με τρεις εισόδους (MG) σε πύλη OR δυο εισόδων.

$$f = xy+yz+xz$$

$$= xy+(x+y)z$$

$$\Gamma \alpha z=1$$

$$f = xy+x+y$$

$$= xy+x1+y$$

$$= x(y+1)+y$$

$$= x1+y$$

$$= x+y$$

6.6. Να σχεδιασθεί ένα κύκλωμα ανίχνευσης μηδενικής τιμής για μη προσημασμένους αριθμούς των 3 bit. Ένδειξη μηδενικής τιμής να θεωρηθεί το λογικό 1.

x	у	z	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$f = \overline{x} \cdot \overline{y} \cdot \overline{z} = \overline{x + y + z}$$

6.7. Να σχεδιασθεί ένα κύκλωμα ανίχνευσης μηδενικής τιμής για προσημασμένους αριθμούς των 3 bit. Ένδειξη του μηδενός να θεωρηθεί το λογικό 1. Θεωρήστε ότι οι αριθμοί είναι σε σύστημα συμπληρώματος του 2.

х	У	Z	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$f = \overline{x} \cdot \overline{y} \cdot \overline{z} = \overline{x + y + z}$$

6.8. Να σχεδιασθεί ένα κύκλωμα ανίχνευσης μηδενικής τιμής για προσημασμένους αριθμούς των 3 bit. Ένδειξη του μηδενός να θεωρηθεί το λογικό 1. Θεωρήστε ότι οι αριθμοί είναι σε παράσταση προσημασμένου μέτρου.

x	у	Z	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$f = \overline{x} \cdot \overline{y} \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} =$$

$$= (\overline{x} + x) \cdot \overline{y} \cdot \overline{z} =$$

$$= \overline{y} \cdot \overline{z} = \overline{y + z}$$

6.9. Να σχεδιασθεί ένα κύκλωμα ανίχνευσης μηδενικής τιμής για προσημασμένους αριθμούς των 3 bit. Ένδειξη του μηδενός να θεωρηθεί το λογικό 1. Θεωρήστε ότι οι αριθμοί είναι σε παράσταση προσημασμένου συμπληρώματος του 1.

x	У	Z	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$f = \overline{x} \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot z$$

6.9. Να μετατραπεί ο 2→1 πολυπλέκτης που δίδεται στην συνέχεια σε πύλη XOR-2 και πύλη XNOR-2.

S	Z
0	x_0
1	x_1

$$z = \bar{s}x_0 + sx_1$$

6.10 Να δοθεί ο πίνακας αληθείας του κυκλώματος που δίδεται στην συνέχεια.

