Layer 2 Technologies Advanced

Lecture 1

SoftUni TeamTechnical Trainers

https://softuni.bg

Table of Contents

- 1. Spanning tree protocol advanced:
 - MSTP and PVST+
- 2. Link aggregation
- 3. Device stacking: IRF

Have a Question?

Spanning Tree Protocol Advanced

The Problem with Layer 2 Network Redundancy

- Normally, the switches will build and use MAC address tables to help them with the forwarding decisions
- When redundant paths are present, the switches are confused and will forward the received packet everywhere
 - Their MAC address tables become unstable
 - Multiple copies of the same frame (data) are received by all devices, endlessly
 - The links are overloaded
 - This is known as Layer 2 loop and is very bad situation!

Switch2 MAC Table

MAC address	Port
1111-1111-1111	g0/4
2222-2222-2222	g0/6

Switch2 MAC Table

MAC address	Port	
1111-1111-1111	g 0/4 , g 0/7 , g 0/4 ?	
2222-2222-2222	g0/6 , g0/7 , g0/4 ?	

The STP Algorithm

- 1. Elect the Root switch (a.k.a. Root bridge or just Root)
 - This is the switch with the lowest BID (Bridge ID)
 - BID = Switch Priority and MAC
 - Default priority = 32768
- 2. Select the root ports
 - They have the best (lowest) cost to the Root
 - Selected <u>per switch maximum one</u>
 - Only the non-Root switches have root ports
- 3. Select the designated ports
 - They have the best (lowest) cost to the Root
 - Selected <u>per segment (connection) exactly one</u>
- 4. All other ports go to blocking state
 - The role of these ports is called "alternate"

The STP tie-breakers

- If there is a tie situation the same path cost via different paths, use the following tie-breakers:
 - When selecting Root port or Designated port, chose the neighboring switch which has the lowest Bridge ID
 - If the Bridge ID is the same, select the lowest Port ID (PID)
- Port ID = Port priority and port number

History and Flavors

- STP The original Spanning Tree Protocol, IEEE 802.1D
 - Problem very slow convergence (between 30 and 50 seconds)
 - Problem single Root for the entire Layer 2 topology
- RSTP Rapid STP, IEEE 802.1W
 - Much faster convergence (no more timers, introducing the concept of an "edge" port)
 - Still have the issue with single Root for the entire Layer 2 topology
- PVST+ Per-VLAN STP, Cisco proprietary
 - Calculates STP for each particular VLAN independently can have multiple Roots
 - It is also "rapid"
- MSTP Multiple STP, IEEE 802.1S
 - Calculates STP for each "instance" (group of VLANs) can have multiple Roots
 - It is also "rapid"

MSTP

- Multiple Spanning Tree Protocol
- Creates multiple instances of the physical STP topology
- Can have different Root switches one for each instance
- Provides load-sharing because of the multiple Roots
- It is also "rapid"
- One instance is mapped to one or multiple VLANs
- Needs additional configuration

PVST+: Root Switch Per VLAN

MSTP: Root Switch Per Instance

IST (Internal Spanning tree): All VLANs without 5,6,7,8

MSTP Instances

- By default, all VLANs exist inside Instance 0 (a.k.a. IST)
- The benefit of MSTP comes when:
 - There are multiple VLANs
 - Other (custom) instances are created
 - VLANs are distributed across instances
 - Different priorities are set for the different instances
 - All switches are in the same region

MSTP Configuration

- All switches in the MSTP domain must be in the same region
- Three parameters should be configured equally on all switches:
 - Configuration Name (region name)
 - Revision number
 - VLAN-to-instance mappings
- The priorities are configured on a per instance basis

MSTP: All Switches in the Same Region

Switch0:

- 1. Configuration name: SoftUni
- 2. Revision: 1
- 3. Instance 1 = vlan 5 and vlan 6 Instance 2 = vlan 7 and vlan 8

Switch1:

- 1. Configuration name: SoftUni
- 2. Revision: 1
- 3. Instance 1 = vlan 5 and vlan 6 Instance 2 = vlan 7 and vlan 8

Switch2:

- 1. Configuration name: SoftUni
- 2. Revision: 1
- 3. Instance 1 = vlan 5 and vlan 6 Instance 2 = vlan 7 and vlan 8

MSTP: Multiple Regions

2. Revision: 5

3. Instance 1 = vlan 15 and vlan 16 Instance 2 = vlan 98 and vlan 3

Region1:

- 1. Configuration name: SoftUni
- 2. Revision: 1
- 3. Instance 1 = vlan 5 and vlan 6 Instance 2 = vlan 7 and vlan 8

Region2:

- 1. Configuration name: Region2
- 2. Revision: 1
- 3. Instance 1 = vlan 5 and vlan 6 Instance 2 = vlan 7 and vlan 8

MSTP Defaults

- On many switches, when spanning tree is enabled, they use
 MSTP by default
 - ...but there is no custom MSTP configuration
- So each switch will be in its own region and CST (RSTP) will run between these switches

MSTP Defaults (2)

Switch0:

1. Configuration name: MAC000

2. Revision: 0

3. IST = All vlans

MSTP vs PVST+

- Two similar protocols, which one is better?
- PVST+ advantages:
 - triggers STP calculation only if there is a potential loop in a particular VLAN
 - detailed "look" of the network does not block ports when there is no loop on the trunks for a given VLAN
- PVST+ disadvantages
 - generates a lot of overhead in the network
 - proprietary protocol

MSTP vs PVST+ (2)

- MSTP advantages:
 - uses less BPDUs and generates less overhead
 - open standard
- MSTP disadvantages:
 - not VLAN aware (does not look which VLANs are on the trunk ports)
 - Harder to configure
- Recommendation: use MSTP if you have more than 100 VLANs

What is Link Aggregation?

- Combination of <u>two or more physical</u> interfaces to create <u>one logical</u> link or port
- Other terms with the same meaning:
 - Port trunking (HPE Provision)
 - EtherChannel (Cisco)
 - Link bundling
 - NIC bonding/teaming
 - etc.

Why to Use Link Aggregation?

- To increase the bandwidth
- To provide redundancy

Link Aggregation Protocols

- Static (no protocol) option for link aggregation
- LACP IEEE 802.1AX (formerly 802.3ad)
 - Static
 - Dynamic
- PAgP Cisco Proprietary
- Each protocol has configuration options for different scenarios
- LACP configuration and naming can be interpret (slightly)
 different between the vendors

Interface Requirements

- In general, the physical interfaces which participate in a link aggregation group, should have the same:
 - Speed
 - Duplex
 - VLAN
 - All other settings recommended

Load Sharing Modes

- Multiple physical links form one logical but at the end the traffic uses the physical links
- Which exact link to use random decision based on "conversations"
- Conversations depend on the load sharing mode

```
Switch(config) #port-channel load-balance ?
dst-ip Dst IP Addr
dst-mac Dst Mac Addr
src-dst-ip Src XOR Dst IP Addr
src-dst-mac Src XOR Dst Mac Addr
src-ip Src IP Addr
src-mac Src Mac Addr
```


What is Device Stacking?

Combination of two or more physical devices to form one logical

One logical device

Why Device Stacking?

- More resilient
- Does not block ports (like STP)
- Simple management
- Simple design

What is IRF?

- IRF Intelligent Resilient Framework
- HPE proprietary stacking technology
- Uses HPE Comware switches (or routers) only
- The devices need to be from the same type
- One device is elected as a <u>master</u>
- The stack takes the master's configuration

Master Election

- When creating the IRF stack:
 - The member with highest priority wins
 - If no member has a higher priority, the member with the longest system up-time wins (rounded to 10 minutes)
 - If no member has a longer up-time, the member with the lowest bridge MAC address wins
- When joining another device to the IRF stack:
 - The current master wins

IRF Topologies

Daisy chain:

Ring:

IRF Ports and Connections

Single physical cable

Must be at least 10Gbps

x/y IRF port – memberID/port

Only connect IRF port 1 to IRF port 2!

Possible connections	1/1 -> 2/2	1/2 -> 2/1
Not possible connections	1/1 -> 2/1	1/2 -> 2/2

IRF Split Stack

- When there is a split stack situation, each of the two parts assumes "I am the new master"
- This can create problems
- Additional Multi Active Detection (MAD) algorithm needs to be configured:
 - LACP MAD
 - BFD MAD
 - ARP MAD

Detect IRF Split Stack with LACP MAD

- AdditionalComware switch is required
- Extended LACPDU are exchanged
- If split stack, MAD triggers election
- Smaller member ID wins
- The other device(s) put in recovery

Summary

- 1. Spanning tree protocol advanced:
 - MSTP and PVST+
- 2. Link aggregation
- 3. Device stacking technologies IRF

Questions?

SoftUni Diamond Partners

Coca-Cola HBC Bulgaria

Решения за твоето утре

Educational Partners

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

