Homework 1 Solution

Exercise 1. Study whether the following kernels are positive definite:

1.
$$\chi = \mathbb{N}, \ K(x, x') = 2^{(x+x')}$$

2.
$$\chi = \mathbb{R}, \ K(x, x') = \cos(x + x')$$

2.
$$\chi = \mathbb{R}, \ K(x, x') = \cos(x + x')$$

3. $\chi = \mathbb{R}, \ K(x, x') = \cos(x - x')$

Assume we have a set of points $X = \{x_1, \dots, x_n\}$.

- 1. We can represent the matrix of K(x,y) with respect to X as VV^{\top} where $V = [2^{x_1}, \dots, 2^{x_n}]^{\top}$, which is positive semi-definite. Further, it is also symmetric since $2^{(x+y)} = 2^{(y+x)}$. Considering these facts, K is positive semi-definite.
- 2. K is not a PD kernel.

Consider $X = \{\pi, -\frac{\pi}{2}\}$. The matrix of K with respect to X is not positive semi-definite since it has eigenvalues 1 and -1.

3. For every $x_i \in X$, define $v_i = [\cos(x_i), \sin(x_i)]$, and set

$$V = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$$

it is easy to check that the matrix of K with respect to X is equal to VV^{\top} , which is positive semi-definite. as for symmetry, we know that $\cos(x-y) = \cos(-(x-y)) = \cos(y-x)$. Putting the two together implies that K is a PD kernel.

Exercise 2. Consider a p.d. kernel $K: X \times X \to \mathbb{R}$ such that $K(x,z) \leq b^2$ for all x,z in X. Show that $||f||_{\infty} = \sup_{x \in \chi} |f(x)| \leq b$ for any function f in the unit ball of the corresponding RKHS.

Let \mathbb{H} be the RKHS given by the kernel. We know that $K(x,y) = \langle K_x, K_y \rangle$. Setting x = y:

$$\langle K_x, K_x \rangle = ||K_x||_{\mathbb{H}}^2 \le b^2 \Rightarrow ||K_x||_{\mathbb{H}} \le b$$

for all $x \in \chi$. On the other hand, $f(x) = \langle f, K_x \rangle$ and $||f||_{\mathbb{H}} \leq 1$. We have:

$$\sup_{x \in \chi} |f(x)| = \sup_{x \in \chi} |\langle f, K_x \rangle| \le \sup_{x \in \chi} ||f||_{\mathbb{H}} ||K_x||_{\mathbb{H}} \le b$$

Exercise 3. Consider the Gaussian kernel $K : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ such that for all pair of points x, x' in \mathbb{R}^p ,

$$K(x, x') = e^{-\frac{\alpha}{2}||x - x'||^2}$$

where $\|.\|$ is the Euclidean norm on \mathbb{R}^p . Call \mathcal{H} the RKHS of K and consider its RKHS mapping $\varphi : \mathbb{R}^p \to \mathcal{H}$ such that $K(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$ for all x, x' in \mathbb{R}^p . Show that

$$\|\varphi(x) - \varphi(x')\|_{\mathcal{H}} \le \sqrt{\alpha} \|x - x'\|$$

The mapping is called non-expansive whenever $\alpha \leq 1$.

$$\begin{split} \|\varphi(x) - \varphi(y)\|_{\mathcal{H}}^2 &= \langle \varphi(x) - \varphi(y), \varphi(x) - \varphi(y) \rangle_{\mathcal{H}} \\ &= 2(1 - exp(-\frac{\alpha}{2} \|x - y\|^2)) \\ &\leq 2(1 - (1 - \frac{\alpha}{2} \|x - y\|^2)) \\ &= \alpha \|x - y\|^2 \end{split}$$

taking the square root would complete the proof.