

Alty Boys Talk

Laurie McClymont

CERN 10/12/2015

*UCL

Who Am I?

- I was at AGSB (2003-2010)
 - Physics A-Level with Dr Squire.

- Now in my second year at UCL
 - PhD in Physics
 - Work on ATLAS
 - Spending 18 months at CERN

2) What I actually do.

3) How I got into it.

		Bosons					
Quarks	U up	C charm	t top	γ photon			
	d down	S strange	b bottom	Z Z boson			
Leptons	V _e electron neutrino	$ u_{\mu} $ muon neutrino	V _τ tau neutrino	W boson			
	electron	$\mu_{ ext{muon}}$	T tau	g gluon			

Force carriers

Higgs boson

- Good Theory!!
- Perfectly predicts all results from Particle Physics so far...

Source: AAAS

Source: AAAS

	Fermions			Bosons	
Quarks	U up	C charm	t top	γ photon	Force carriers
	d down	S strange	b bottom	Z Z boson	
Leptons	V _e electron neutrino		V _τ tau neutrino	W boson	
	electron	$\mu_{ ext{muon}}$	T tau	g gluon	
	+	Higgs boson			

- But...
- There are things that SM doesn't explain
- E.g. Dark Matter
 - Astronomers tell us that there is more mass in the universe than is explained by SM
- There must be Beyond Standard Model Physics!! (BSM)

- LHC
 - Accelerate beam of protons in a 27 km ring.
- ATLAS
 - Smash protons at centre of massive detector
 - See what happens...

- New exotic particles can decay into two quarks
- We can look for this as a signature.

Jets

- Quarks don't like being on their own.
- They will find other quarks and gluons to join with.
- They form a beam of hadronic material
- These are called jets

8 Looking for exotics at ATLAS using Jets

Signature is two jets

Signature is two jets

Here is a real example =>

- Count number of events that you see.
- Make a plot agains the energy of the two jets added together (mjj)
- Look for any deviations from Standard Model (SM) prediction

2) What I actually do.

3) How I got into it.

Physics Analysis

Understand the data that is coming from ATLAS

- Are there any deviations from the SM prediction?
- What are the errors of the measurement?
- Calibration, are the detectors reliable?
- How can we remove backgrounds to our signal?

14 Daily Basis

1) Computing / Coding

- Write a set of commands that computers can follow.
- This allows us to consider huge amounts of data in short periods of time.

2) Meetings

- ATLAS collaboration is huge.
- A lot of data to analyse, people work in groups to get things done.
- Co-ordination is important to actually get things done

3) Service work

- ATLAS is a large and complicated detector.
- Everyone needs to help to get it work
- I help keep the event display running.

2) What I actually do.

3) How I got into it.

- AGSB (2003-2010)
- Undergraduate Physics, Oxford (2010-2014)
 - Degree is a little different to school.
 - More self reliant and independent.
 - Lectures, Problems Sheets, Tutorials, Practicals, Exams.
 - Time to go into much more detail!

Summer Research Internships

- Institute of Astronomy, Cambridge 2nd year
- Project working with CMS, Rutherford-Appleton Lab, Oxfordshire, 3rd year.
- These are a great opportunity to find out what research is like
- Where I learnt a lot of research (computing) skills that I now need.
- Postgraduate Physics, UCL (2014-2017)
- Afterwards... Not sure.

2) What I actually do.

3) How I got into it.