17. Bounded Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Module syllabus

- Modelling sequential and parallel systems
 - labelled transitions systems, parallel composition
- Temporal logic
 - LTL, CTL and CTL*, etc.
- Model checking
 - CTL model checking algorithms
 - automata-theoretic model checking (LTL)
- Verification tools: SPIN
- Advanced verification techniques
 - bounded model checking via propositional satisfiability
 - (symbolic execution), symbolic model checking
- Quantitative verification
 - (real-time systems), probabilistic systems

Overview (next 2 lectures)

- Motivation & overview
 - model checking & scalability
 - bounded model checking via satisfiability
- Propositional logic and satisfiability (SAT)
- Encoding simple (Boolean variable) models with prop. logic
 - model checking invariants via SAT solving
- Software model checking via bounded model checking & SAT
 - loop unwinding
 - single static assignment
 - predicate logic

Scalability of model checking

- Model checking complexity
 - $O(|M| \cdot |\varphi|)$ for CTL and $O(|M| \cdot 2^{|\psi|})$ for LTL
- Key issue: "state space explosion problem"
 - the size of the model M for real systems (e.g. software)
 - model size is exponential in the size of the model description
- Many model checking problems reduce to reachability
 - standard graph traversal,
 - e.g. depth-first/breadth-first search
- Efficiency & scalability
 - storage/look-up of visited states crucial
 - SPIN uses hash table of lists of states

Scalability of model checking

- Many solutions for scalability (and efficiency) proposed
 - abstraction (and automated generation of)
 - symmetry reduction
 - partial order reduction
 - symbolic model checking (binary decision diagrams)
 - on-the fly model checking
 - bounded model checking via propositional satisfiability

Issues to consider:

- symbolic vs. explicit-state model checking
- verification vs falsification (bug hunting)
- soundness, completeness

Bounded model checking

Key idea

- unroll model (e.g. control flow graph) for fixed number of steps k
- construct a propositional formula which is satisfiable if and only if there is an error within k steps
- reduce model checking problem to satisfiability (SAT) problem
- check (efficiently) using SAT solver

Bounded model checking (BMC) via SAT

- originally proposed for hardware model checking
- subsequently adapted to software verification
- example software: CBMC (BMC for C and C++ programs)
- many industrial applications, e.g. hardware, embedded software

Propositional logic and satisfiability

Propositional logic formulae Φ:

- Φ ::= true | false | b | Φ∧Φ | Φ∨Φ | ¬Φ | Φ→Φ | Φ↔Φ | ...
- where b is a Boolean variable
- e.g. true, b, \neg b, \neg (b₁ \wedge b₂), b₁ \wedge (b₂ \vee \neg b₃)

Satisfiability

- given propositional formula Φ over variables $b_1,...,b_n$
- Φ is satisfiable if there exists a valuation of $b_1,...,b_n$ such that $\Phi(b_1,...,b_n)$ evaluates to true

Example

- $\Phi(b_1,b_2,b_3) = (b_1 \leftrightarrow \neg b_2) \wedge (b_2 \rightarrow b_3) \wedge (b_3 \lor b_1)$
- <u>is</u> satisfiable: b_1 =true, b_2 =false, b_3 =true

Propositional satisfiability (SAT)

- Propositional satisfiability problem (SAT)
 - (or Boolean satisfiability problem)
 - "is propositional formula Φ satisfiable?"

Theoretically important

- one of the first problems to be proved to be NP-complete
- (i.e. good example of a "hard" problem)

Practically important

- many practical (search) problems can be reduced to SAT
- many efficient algorithms, tools (SAT solvers) exist
- huge progress in recent years (big research field in own right)

Example: Z3 solver

- Example: $(b_1 \leftrightarrow \neg b_2) \land (b_2 \rightarrow b_3) \land (b_3 \lor b_1)$
- Z3 solver: http://rise4fun.com/Z3/

```
(declare-const b1 Bool)
(declare-const b2 Bool)
(declare-const b3 Bool)
(define-fun conjecture () Bool
 (and
  (= b1 (not b2))
  (and
   (=> b2 b3)
   (or b3 b1)
(assert conjecture)
(check-sat)
(get-model)
```

Conjunctive normal form

- Conjunctive normal form (CNF)
 - Φ is a conjunction of disjunctions, e.g. $(\neg b_1 \lor b_2) \land (b_2 \lor b_3)$
 - i.e. $\Phi = \wedge_{i=1...n} \vee_{j=1..m_n} lit_{ij}$
 - where lit_{ij} is a literal b_k or $\neg b_k$
- We will assume the use of propositional formula in CNF
 - in practice, solvers require inputs to be in CNF
- Can always convert to CNF
 - (de Morgan, double negation, distributive laws)
 - e.g. $\neg((\neg b_1 \rightarrow \neg b_2) \land b_3) \implies (\neg b_1 \lor b_2) \land (b_2 \lor b_3)$

Encoding a model

- Simple example: 2-bit counter
- Encode states in propositional logic:
 - using two Boolean variables I, r
 - e.g. state 10 (representing binary encoding of 2) has l=1,r=0
 - (use true=1, false=0)

- Encode model in propositional logic:
 - initial state(s): $Init(I_0, r_0) = \neg I_0 \land \neg r_0$
 - transition relation: $T(I_i, r_i, I_{i+1}, r_{i+1}) = (I_{i+1} = (I_i \neq r_i)) \land (r_{i+1} = \neg r_i)$

Encoding a path

- Using same example...
- Path of length k:
 - $(l_0, r_0), (l_1, r_1), ..., (l_k, r_k)$

- Encoding paths of length k (in propositional logic)
 - Init \wedge T₁ \wedge ... \wedge T_k
 - $\Phi_{k} = Init(I_{0}, r_{0}) \wedge T(I_{0}, r_{0}, I_{1}, r_{1}) \wedge T(I_{1}, r_{1}, I_{2}, r_{2}) \wedge ... \wedge T(I_{k-1}, r_{k-1}, I_{k}, r_{k})$
 - e.g. $\Phi_2 = (\neg I_0 \land \neg r_0) \land (I_1 = (I_0 \neq r_0) \land r_1 = \neg r_0) \land (I_2 = (I_1 \neq r_1) \land r_2 = \neg r_1)$
- There is a path of length k...
 - if and only if Φ_k is satisfiable
 - e.g. (for k=2): $l_0=0, r_0=0, l_1=0, r_1=1, l_2=1, r_2=0$

Encoding model checking

• Example:

- invariant: "the counter is always less than 3"
- i.e. "always P_i ", where $P_i = \neg (l_i \wedge r_i)$ ("not 11")

Encoding in propositional logic

- property is false if there exists a counterexample
- Init \wedge $(T_1 \wedge ... \wedge T_k) \wedge (\neg P_0 \vee \neg P_1 \vee ... \vee \neg P_k)$

Example (k=2):

- $(\neg l_0 \land \neg r_0) \land (l_1 = (l_0 \neq r_0) \land r_1 = \neg r_0) \land (l_2 = (l_1 \neq r_1) \land r_2 = \neg r_1) \land ((l_0 \land r_0) \lor (l_1 \land r_1) \lor (l_2 \land r_2))$
- (but is satisfiable for k=3)

In Z3

```
(declare-const I0 Bool)
(declare-const r0 Bool)
(declare-const I1 Bool)
(declare-const r1 Bool)
(declare-const I2 Bool)
(declare-const r2 Bool)
(define-fun init ((I Bool) (r Bool)) Bool
    (and (not I) (not r))
(define-fun trans ((li Bool) (ri Bool) (lj Bool) (rj Bool)) Bool
    (and
         (= Ij (not (= Ii ri)))
         (= rj (not ri))
(assert (and (init I0 r0) and (trans I0 r0 I1 r1) (trans I1 r1 I2 r2)))
(check-sat)
(get-model)
```

Software model checking

- Simple example program
 - x and y are integer variables

```
x = x + y;
if (x \neq 1) {
x := 2;
} else {
x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y + y = x + y = x + y = x + y + y = x + y = x + y = x + y = x + y = x +
```

Notice

- simple imperative language (close to Java, C++)
- variables can be uninitialised
- properties specified as assertions (invariants?)