

Caso de estudio

27 September, 2021

This report is generated by WaterProof (http://water-proof.org/) in order to ptovide an indicate pre-feasibility assessment regarding the potential of NbS.

From this documento you can have a synthesis of the result of indicators

Disclaimer: As stated in the terms conditions, WaterProof is suported by global data sets models generated by ther initiatives, therefore, it is not responsible for the availability of such sites and accuracy of the calculations, The user can go directly to the data sources when required and use said sited in accordance with the appropriate terms of use, WaterProof does not guarantee and therefore not responsible for the legality, accuracy, completeness, timeliness of the fata, as well as the handling that user gives to the information generated

This case study is based on:

CS_1_Tester_27-08-2021			
City: Lima	Number of water intakes that are part of the analysis: 2		
Country: Perú	Number of DWTP in the analysis: 2		
Region: Americas	Currency: USD		
Time frame (years): 30			

Water intakes that are part of the analysis

Water Intake	System caracteristics
	River
	Extraction connection
Intake_1_Tester_27-08-2021, to see click here	Side Intake
Intake_1_Tester_27-00-2021, to see click field	Pipeline
	Desander
	Pipeline
	River
	Extraction connection
Intake_2_Tester_27-08-2021, to see click here	Side Intake
	Pipeline
	Desander
	Pipeline

Caracteristics case study (Drinking water systems)

Drinking water Tratament plant	Nombre intake	
	Filtration by membranes - Level 1	
	Sludge Treatment	
	Quick mix	
	Sedimentation	
	PTAP Input	
	Filtration by membranes - Level 2	
PTAP_1_Tester_27-08-2021, to see click here	Filtration by membranes - Level 4	
	Ion exchange	
	Slow mix	
	Filtration	
	Filtration by membranes - Level 3	
	Disinfection	
	Dosign of chemical products	
	Filtration by membranes - Level 4	
	Ion exchange	
	Filtration	
	Slow mix	
	Dosign of chemical products	
	PTAP Input	
PTAP_2_Tester_27-08-2021, to see click here	Sedimentation	
	Filtration by membranes - Level 1	
	Filtration by membranes - Level 3	
	Sludge Treatment	
	Disinfection	
	Filtration by membranes - Level 2	
	Quick mix	
	Filtration by membranes - Level 2	
	Sludge Treatment	
	Filtration by membranes - Level 3	
	Ion exchange	
	Sedimentation	
	Dosign of chemical products	
PTAP_3_Tester_27-08-2021, to see click here	PTAP Input	
	Slow mix	
	Filtration by membranes - Level 1	
	Filtration by membranes - Level 4	
	Filtration	
	Disinfection	
	Quick mix	

Nature Based Solutions Conservation Activities

Name	Percentage of benefit associated with intervenctions at time t=0	Benefit	Implementa tion cost	Matenance cost	Periodicity maintenance	Opportunity cost
00002_Restauracion Pasiva (Tes	Combinación de acciones que fa					
ter Alpha V3)	cilitan la regeneración natura	20.000	2.800.00	360.00	1.00	F 000 00
	l de los sistemas. Estas accio	20.000	2,000.00	360.00	1.00	5,000.00
	nes buscan principalmente reti					
00001_Conservacion del Bosque	Acciones que buscan conservar					
(Tester Alpha V3)	la cobertura actual mediante l	1.000	2.800.00	360.00	1.00	5.000.00
	a firma de acuerdos de conserv	1.000	2,000.00	360.00	1.00	5,000.00
	ación, el pago a guardabosques					

Financial parameters

Financial parameters

Porfolio objetives

Platform cost year 1 (US\$/yr)	250,310.06	Erosion Control for Drinking Water Quality
Discount rate (%)	0.05	Erosion Control for Reservoir Maintenance
Sensivity analysis - Minimum discount ra	ate (%) 0.03	Nutrient Retention (Phosphorus)
Sensivity analysis - Maximum discount r	rate (%) 0.07	Nutrient Retention (Nitrogen)

Analysis parameters

Implementation time of Nature-Based solution (yr)	3
ROI analysis time (yr)	30
Climate selection for baseline and NBS scenario analysis	HISTORIC

Comparative graph of costs and benefits for the analysis period

Cost and benefits chart

This chart has been built with the data from the following table:

Time period	Total cost	Total discounted cost	Total benefits	Total disc benefits
1.00	15,647,049.24	5,250,010.73	14,901,951.66	5,000,010.22
2.00	41,253,440.34	6,517,078.58	37,418,086.47	5,911,182.39
3.00	52,237,512.70	8,225,208.81	45,124,727.52	7,105,244.63
4.00	52,828,962.94	5,848,031.68	43,462,518.55	4,811,190.14
5.00	52,736,900.47	5,848,031.68	41,320,741.46	4,582,085.85
6.00	52,721,787.54	5,848,031.68	39,341,809.60	4,363,891.28
7.00	52,738,716.80	5,848,031.68	37,480,421.40	4,156,086.94
8.00	52,762,572.27	5,848,031.68	35,711,785.75	3,958,178.03
9.00	52,788,166.42	5,848,031.68	34,027,722.74	3,769,693.37
10.00	52,814,369.52	5,848,031.68	32,423,441.42	3,590,184.16
11.00	52,840,848.13	5,848,031.68	30,894,949.52	3,419,223.01
12.00	52,867,375.78	5,848,031.68	29,438,533.04	3,256,402.86
13.00	52,893,916.78	5,848,031.68	28,050,773.39	3,101,336.06
14.00	52,920,471.99	5,848,031.68	26,728,434.46	2,953,653.39
15.00	52,946,951.63	5,848,031.68	25,468,389.03	2,813,003.23
16.00	52,973,383.63	5,848,031.68	24,267,717.40	2,679,050.70
17.00	52,999,800.13	5,848,031.68	23,123,637.24	2,551,476.85
18.00	53,026,127.59	5,848,031.68	22,033,451.26	2,429,977.96
19.00	53,052,401.63	5,848,031.68	20,994,636.83	2,314,264.72
20.00	53,078,658.13	5,848,031.68	20,004,788.01	2,204,061.64
21.00	53,104,825.97	5,848,031.68	19,061,571.81	2,099,106.32
22.00	53,130,941.54	5,848,031.68	18,162,805.52	1,999,148.88
23.00	53,157,040.97	5,848,031.68	17,306,407.24	1,903,951.31
24.00	53,183,053.80	5,848,031.68	16,490,358.35	1,813,286.96
25.00	53,209,016.26	5,848,031.68	15,712,769.98	1,726,939.97
26.00	53,234,964.32	5,848,031.68	14,971,840.49	1,644,704.73
27.00	53,260,827.93	5,848,031.68	14,265,823.23	1,566,385.46
28.00	53,286,643.08	5,848,031.68	13,593,083.60	1,491,795.67
29.00	53,312,445.53	5,848,031.68	12,952,062.51	1,420,757.78
30.00	53,338,165.57	5,848,031.68	12,341,248.66	1,353,102.65

Comparative chart of costs and benefits:

This graph allows you to compare your investment in the implementation and maintenance of the selected NbS, with respect to the economic benefits, which are obtained from the savings in the maintenance of the water intakes systems and casa study infrastructure

Cost and Benefits

Comparative chart of costs and benefits:

Cost	91,989,377.16
Benefits	767,076,488.14

In the graph you can see i) each type of cost NPV, ii) benefits NPV and iii) total NPV which is the difference between costs and benefits

Net present value sumary	
Implementation cost: cost requiere to implement the activities including materials, supplies and labor	-5,744,751.93
Maintance cost: costo to manintain NBS	-16,767,542.80
Oportunity cost: foregone benefits that would have been derived from and option another than NBS	-50,938,953.62
Transaction cost: refers to administrative expenses	-14,690,249.67
Platform cost: these are fored expenses for the conservation program, shich include staff, office, equipment, vehicles, among others.	-3,847,879.14
Benefit	767,076,488.14
Total	675,087,110.99

Sensitivity analysis

Next, a simple sensitivity analysis is presented through the variation of the discount rate under the defined lower and upper limits. Remember that the discount rate is the cost of capital that is applied to determine the present value of a future payment.

Sensibility analysis - total discounted benefit (TDB)

This graph is constructed with the data from the following table:

Total discounted benefit	Discounted benefit minimum	Discounted benefit medium	Discounted benefit maximum
1.00	15,191,309.94	14,901,951.66	14,623,410.51
2.00	38,885,324.10	37,418,086.47	36,032,352.46
3.00	47,804,724.05	45,124,727.52	42,641,370.71
4.00	46,937,849.32	43,462,518.55	40,302,962.88
5.00	45,491,313.61	41,320,741.46	37,600,681.19
6.00	44,153,667.05	39,341,809.60	35,130,753.15
7.00	42,881,402.95	37,480,421.40	32,843,022.27
8.00	41,651,261.78	35,711,785.75	30,708,297.44
9.00	40,457,734.01	34,027,722.74	28,713,264.92
10.00	39,298,850.98	32,423,441.42	26,848,147.36
11.00	38,173,352.96	30,894,949.52	25,104,306.30
12.00	37,080,113.69	29,438,533.04	23,473,747.10
13.00	36,018,183.51	28,050,773.39	21,949,094.97
14.00	34,986,666.33	26,728,434.46	20,523,471.44
15.00	33,984,633.48	25,468,389.03	19,190,411.87
16.00	33,011,261.34	24,267,717.40	17,943,917.80
17.00	32,065,750.71	23,123,637.24	16,778,379.42
18.00	31,147,261.41	22,033,451.26	15,688,517.78
19.00	30,255,043.34	20,994,636.83	14,669,431.14
20.00	29,388,366.07	20,004,788.01	13,716,533.90
21.00	28,546,460.75	19,061,571.81	12,825,510.44
22.00	27,728,639.96	18,162,805.52	11,992,352.98
23.00	26,934,234.03	17,306,407.24	11,213,312.12
24.00	26,162,538.36	16,490,358.35	10,484,859.29
25.00	25,412,922.50	15,712,769.98	9,803,717.48
26.00	24,684,772.27	14,971,840.49	9,166,820.93
27.00	23,977,441.83	14,265,823.23	8,571,284.60
28.00	23,290,352.95	13,593,083.60	8,014,429.01
29.00	22,622,942.33	12,952,062.51	7,493,747.44
30.00	21,974,617.99	12,341,248.66	7,006,881.04

Sensitivity analysis – total discounted cost (TDC)

This graph is constructed with the data from the following table:

Total discounted cost	Discounted cost minimum	Discounted cost medium	Discounted cost maximum
1.00	5,097,097.80	5,000,010.22	4,906,552.09
2.00	6,142,971.61	5,911,182.39	5,692,268.83
3.00	7,527,231.24	7,105,244.63	6,714,220.49
4.00	5,195,900.41	4,811,190.14	4,461,435.37
5.00	5,044,563.50	4,582,085.85	4,169,565.77
6.00	4,897,634.47	4,363,891.28	3,896,790.44
7.00	4,754,984.92	4,156,086.94	3,641,860.22
8.00	4,616,490.21	3,958,178.03	3,403,607.68
9.00	4,482,029.33	3,769,693.37	3,180,941.76
10.00	4,351,484.79	3,590,184.16	2,972,842.77
11.00	4,224,742.52	3,419,223.01	2,778,357.73
12.00	4,101,691.76	3,256,402.86	2,596,596.01
13.00	3,982,225.01	3,101,336.06	2,426,725.24
14.00	3,866,237.88	2,953,653.39	2,267,967.51
15.00	3,753,629.01	2,813,003.23	2,119,595.81
16.00	3,644,300.01	2,679,050.70	1,980,930.66
17.00	3,538,155.35	2,551,476.85	1,851,337.07
18.00	3,435,102.28	2,429,977.96	1,730,221.56
19.00	3,335,050.75	2,314,264.72	1,617,029.49
20.00	3,237,913.35	2,204,061.64	1,511,242.52
21.00	3,143,605.20	2,099,106.32	1,412,376.18
22.00	3,052,043.88	1,999,148.88	1,319,977.74
23.00	2,963,149.40	1,903,951.31	1,233,624.06
24.00	2,876,844.08	1,813,286.96	1,152,919.68
25.00	2,793,052.50	1,726,939.97	1,077,495.03
26.00	2,711,701.46	1,644,704.73	1,007,004.70
27.00	2,632,719.86	1,566,385.46	941,125.89
28.00	2,556,038.70	1,491,795.67	879,556.90
29.00	2,481,590.97	1,420,757.78	822,015.80
30.00	2,409,311.62	1,353,102.65	768,239.06

Return on investment calculation

Canculated ROI

8.34

ROI on nature based solutions opportunity

Total estimated investment 767,076,488.14

Total treatment cost savings 91,989,377.16

Total area investment size 2,057.55

Time frame (Years) 30.00

Estimated change in ecosustem services by basin

Change in volume of water yield: Do changes in landscape affect the annual average water yield? Note that the model helps to establish changes in the annual water yield by analyzing the Bussiness as Usual (BaU) scenario and the Nature based Solutions scenario

Change in base flow: Do landscape changes affect the basin runoff and recharge? The value presented depends on the connectivity and land use and cover components, so that the recharge is influenced by variables sich as vegetation cover and connectivity.

Change in total sediments: Do you see changes in the amount od sediments yield from in tge basin? significant changes will result in erosion and water quality impacts.

Change in total Nitrogen - Cah ge in total Phosphorous: Do you notice significant changes in the load of these nutrients? With this analysis you can assess the nutrient retention service by natural vegetation. It also allows you to identify potential treatment cost or improve water safety through access to clean water

Change in Carbon storage: Are you seeing change in carbon storage? Carbon storage in a land parcel (pixel) depends n four carbon pools: aboveground biomass, underground biomass, soil and dead organic matter.

Intake_1_Tester_27-08-2021

Physical risk quantity

Physical risk quantity measures risk related to too little or too much water by aggregating all selected indicators from the physical risk quantity category

MEDIUM HIGH

Physical risk quality

Physical risk quantity measures risk related to water that in unfit for use by aggregating all selected indicators from the physical risk quantity category

LOW

Regulatory and reputational

Risk regulatory and reputational risk measures risk related to uncertainty in regulatory chance, as well as conflich with re public regarding water issues

MEDIUM LOW

Overall water risk score

Overall water risk measures all water related risk, by aggregating all selected indicators from the physical risjk quantity, physical risk quality, and regulatory and reputational risk categories

MEDIUM LOW

Intake_2_Tester_27-08-2021

Physical risk quantity

Physical risk quantity measures risk related to too little or too much water by aggregating all selected indicators from the physical risk quantity category

MEDIUM HIGH

Physical risk quality

Physical risk quantity measures risk related to water that in unfit for use by aggregating all selected indicators from the physical risk quantity category

LOW

Regulatory and reputational

Risk regulatory and reputational risk measures risk related to uncertainty in regulatory chance, as well as conflich with re public regarding water issues

MEDIUM LOW

Overall water risk score

Overall water risk measures all water related risk, by aggregating all selected indicators from the physical risk quantity, physical risk quality, and regulatory and reputational risk categories

MEDIUM LOW

Estimated change in ecosystem services (BaU vs NbS)

Anual water yield Seasonal water Sediment delivery Nutrient delivery Nutrient delivery Carbon storage yield ratio ratio - nitrogen ratio - phosphorus and sequestration

Intervention and budget summary

Intake_1_Tester_27-08-2021

Nature based Solution	Actual spend	Area converted (Ha)
00001_conservacion-del-bosque- tester-alpha-v3	1,520,481.42	490.35
00002_restauracion-pasiva-test er-alpha-v3	477,013.78	153.84
00003_restauracion-activa-enri quecimiento-tester-alpha-v3	115,453.70	19.23
00004_agroforesteria-tester-al pha-v3	1,478,611.19	548.04
00004_sistemas-silvopastoriles -tester-alpha-v3	169,526.96	38.46

Intake_2_Tester_27-08-2021

Nature based Solution	Actual spend	Area converted (Ha)
00001_conservacion-del-bosque- tester-alpha-v3	1,520,481.42	490.35
00002_restauracion-pasiva-test er-alpha-v3	1,431,041.34	461.51
00003_restauracion-activa-enri quecimiento-tester-alpha-v3	1,385,444.43	230.75
00004_agroforesteria-tester-al pha-v3	1,478,611.19	548.04
00004_sistemas-silvopastoriles -tester-alpha-v3	1,398,597.39	317.29

Physical indicators

Intake_1_Tester_27-08-2021

Indicator	Sigla	Description	Value
	F_10_UT	Demanda de Agua	3
Future 10 years	F_10_SV	Variabilidad Estacional	2
Future 10 years	F_10_WS	Estrés hídrico	1
	F_10_BT	Suministro de Agua	4

Intake_2_Tester_27-08-2021

Indicator	Sigla	Description	Value
	F_10_UT	Demanda de Agua	3
Future 10 years	F_10_BT	Suministro de Agua	4
Future 10 years	F_10_WS	Estrés hídrico	1
	F_10_SV	Variabilidad Estacional	2

Intake_1_Tester_27-08-2021

Indicator	Sigla	Description	Value
	F_20_BT	Suministro de Agua	4
Futuro 20 vooro	F_20_WS	Estrés hídrico	1
Future 20 years	F_20_SV	Variabilidad Estacional	2
	F_20_UT	Demanda de Agua	3

Intake_2_Tester_27-08-2021

Indicator	Sigla	Description	Value
	F_20_WS	Estrés hídrico	1
Future 20 years	F_20_UT	Demanda de Agua	3
Future 20 years	F_20_BT	Suministro de Agua	4
	F_20_SV	Variabilidad Estacional	2

Intake_1_Tester_27-08-2021

Indicator	Sigla	Description	Value
	H_BWS	Baseline water stress	1
	H_CFR	Drought risk	1
	H_RFR	Riverine flood risk	2
Physical Risk associated with Amount of Water	H_GTD	Groundwater table decline	1
	H_SEV	Seasonal variability	1
	H_IAV	Interannual variability	2
	H_BWD	Baseline water depletion	1

Baseline water stress measures the ratio of total water withdrawals to available renewable surface and groundwater supplies. Higher values indicate more competition between users.

Baseline water depletion measures the total water consumption of available renewable water supplies. Higher values indicate a greater impact on the local water supply and decreased water availability for downstream users.

Interannual variability measures the average between-year variability of available water supply, including both renewable surface and groundwater supplies. Highervalues indicate wider variations in available supply from year to year.

Seasonal variability measures the average within-year variability of available water supply, including renewable surface and ground water supplies. Higher values indicate wider variations in the supply available within a year.

Water table decline measures the average water table decline as the average change for the study period (1990-2014). The result is expressed in centimeters per year (cm / year). Higher values indicate higher levels of unsustainable groundwater.

River flood risk measures the percentage of the population expected to be affected by river flooding in an average year, taking into account existing flood protection standards. Higher values indicate that, on average, a greater proportion of the population is expected to be affected by river flooding.

Intake 2 Tester 27-08-2021

Indicator	Sigla	Description	Value
	H_RFR	Riverine flood risk	2
	H_SEV	Seasonal variability	1
	H_GTD	Groundwater table decline	1
Physical Risk associated with Amount of Water	H_CFR	Drought risk	1
	H_BWD	Baseline water depletion	1
	H_BWS	Baseline water stress	1
	H_IAV	Interannual variability	2

Baseline water stress measures the ratio of total water withdrawals to available renewable surface and groundwater supplies. Higher values indicate more competition between users.

Baseline water depletion measures the total water consumption of available renewable water supplies. Higher values indicate a greater impact on the local water supply and decreased water availability for downstream users.

Interannual variability measures the average between-year variability of available water supply, including both renewable surface and groundwater supplies. Highervalues indicate wider variations in available supply from year to year.

Seasonal variability measures the average within-year variability of available water supply, including renewable surface and ground water supplies. Higher values indicate wider variations in the supply available within a year.

Water table decline measures the average water table decline as the average change for the study period (1990-2014). The result is expressed in centimeters per year (cm / year). Higher values indicate higher levels of unsustainable groundwater.

River flood risk measures the percentage of the population expected to be affected by river flooding in an average year, taking into account existing flood protection standards. Higher values indicate that, on average, a greater proportion of the population is expected to be affected by river flooding.

Intake_1_Tester_27-08-2021

Indicator	Sigla	Description	Value
Physical risk quantity	H_DRR	Aguas Residuales Conectadas sin Tratar	2

Untreated connected wastewater measures the percentage of domestic wastewater that is connected through a sewer system and is not treated to at least a primary treatment level. Discharging wastewater without adequate treatment could expose water bodies, the general public, and ecosystems to pollutants such as pathogens and nutrients. Higher values indicate higher percentages of point source wastewater discharged without treatment.

Intake_2_Tester_27-08-2021

Indicator	Sigla	Description	Value
Physical risk quantity	H_DRR	Aguas Residuales Conectadas sin Tratar	2

Untreated connected wastewater measures the percentage of domestic wastewater that is connected through a sewer system and is not treated to at least a primary treatment level. Discharging wastewater without adequate treatment could expose water bodies, the general public, and ecosystems to pollutants such as pathogens and nutrients. Higher values indicate higher percentages of point source wastewater discharged without treatment.

Intake_1_Tester_27-08-2021

Indicator	Sigla	Description	Value
	H_UDW	Riesgo Pico RepRisk Country ESG	4
Regulatory and reputational	H_UCW	Sin Mejorar / Sin Agua Potable	3
	H_CEP	Sin Mejorar / Sin Saneamiento	1

Unimproved / no drinking water reflects the percentage of the population that collects drinking water from an unprotected dug well or spring, or directly from a river, dam, lake, pond, stream, canal or irrigation canal (WHO and UNICEF 2017). Higher values indicate areas where people have less access to clean water supplies.

Intake_2_Tester_27-08-2021

Indicator	Sigla	Description	Value
	H_CEP	Sin Mejorar / Sin Saneamiento	1
Regulatory and reputational	H_UDW	Riesgo Pico RepRisk Country ESG	4
	H_UCW	Sin Mejorar / Sin Agua Potable	3

Unimproved / no drinking water reflects the percentage of the population that collects drinking water from an unprotected dug well or spring, or directly from a river, dam, lake, pond, stream, canal or irrigation canal (WHO and UNICEF 2017). Higher values indicate areas where people have less access to clean water supplies.

Decision indicators

Disinfection	32,383.79
Dosign of chemical products	42,500.31
Filtration	521,304.52
Filtration by membranes - Level 1	23,169,104.57
Filtration by membranes - Level 4	7,954,517.29
Quick mix	31,735.65
Sedimentation	106,117.18
Slow mix	39,849.49
Sludge Treatment	3,345,777.38

Identify the elements that will yield the most benefits

Desander	14,755.33
Pipeline	70,987.71
Side intake	1,874.37

Identify the elements that will yield the most benefits

CARBON	708,657,486.66
PTAP	35,243,290.11
INTAKE	87,617.41

This is a disaggregated view of the benefits by elements

Implementación	5,744,751.93
Mantenimiento	16,767,542.80
Oportunidad	50,938,953.62
Plataforma	3,847,879.14
Transacción	14,690,249.67

In this graph you can identify the magnitudes of the costs, in order to help identify where greater investments are needed

00001_Conservacion del Bosque (Tester Alp	29,781,424.28
00002_Restauracion Pasiva (Tester Alpha V	18,987,364.50

Identify the proportion of costs for each of the activities of your interest

Geographic resources

The analysis run includes geographic outputs that you can consult at the following link

Intake_1_Tester_27-08-2021

http://apps.skaphe.com:8000/reports/compare-maps/?folder=1000_469_2021-8-27&intake=481®ion=SA_1&year=3&study_case_id=469¢er=1.94, -76.4

Intake_2_Tester_27-08-2021

http://apps.skaphe.com:8000/reports/compare-maps/?folder=1000_469_2021-8-27&intake=481®ion=SA_1&year=3&study_case_id=469¢er=1.94, -76.4