Statistika

2. predavanje

Barbara Boldin

Fakulteta za matematiko, naravoslovje in informacijske tehnologije Univerza na Primorskem

Frekvenčna porazdelitev

Opisne spremenljivke

Naj ima opisna spremenljivka X končen nabor vrednosti, npr.: a_1, \ldots, a_n .

Npr.: za spremenljivko $X = \text{krvna skupina so možne vrednosti } 0^+, A^+, B^+, 0^-, A^-, B^-, AB^+, AB^-$

Število pojavljanj vrednosti a_j (j = 1, ..., n) je frekvenca enote a_j ,

$$f_j = \#(X = a_j)$$

Relativna frekvenca j-te enote je

$$f_j^{\circ} = \frac{f_i}{f_1 + \ldots + f_n}$$

izražena v odstotkih

$$f_j\%=100\cdot rac{f_i}{f_1+...+f_n}$$

Porazdelitev frekvenc predstavimo v tabeli

Vrednosti	Frekvenca (f_j)	Relativna frekvenca (f_j %)
a ₁	f_1	f ₁ %
a ₂	f ₂	f ₂ %
:	:	:
a _n	f _n	f _n %

in jih grafično predstavimo s stolpičnim ali tortnim diagramom.

Primer. 60 naključno izbranih povprašamo po njihovem najljubšem okusu sladoleda. Dobimo naslednje odgovore:

Č = čokolada, V = vanilija, J = jagoda, L= lešnik, P = pistacija

Okus	fj	fj%
Čokolada		
Vanilija		
Jagoda		
Lešnik		
Pistacija		

Primer. 60 naključno izbranih povprašamo po njihovem najljubšem okusu sladoleda. Dobimo naslednje odgovore:

 $V,\ \check{C},\ J,\ V,\ P,\ J,\ L,\ \check{C},\ P,\ V,\ J,\ \check{C},\ V,\ P,\ \check{C},\ L,\ \check{C},\ J,\ \check{C},\ V,\ P,\ \check{C},\ \check{C},\ P,\ \check{J},\ \check{C},\ \check{C},\ P,\ J,\ \check{C},\ V,\ L,\ \check{C},\ P,\ V,\ J,\ V,\ P,\ \check{C},\ \check{C},\ P,\ \check{C},\ \check{C},\ P,\ \check{C},\ \check{C},\ P,\ V,\ \check{C},\ \check{C},\ P,\ \check{C},\ \check{C}$

Č = čokolada, V = vanilija, J = jagoda, L= lešnik, P = pistacija

Okus	fj	fj%
Čokolada	19	
Vanilija	14	
Jagoda	9	
Lešnik	7	
Pistacija	11	

Primer. 60 naključno izbranih povprašamo po njihovem najljubšem okusu sladoleda. Dobimo naslednje odgovore:

 $V,\,\check{C},\,J,\,V,\,P,\,J,\,L,\,\check{C},\,P,\,V,\,J,\,\check{C},\,V,\,P,\,\check{C},\,L,\,\check{C},\,J,\,\check{C},\,V,\,P,\,L,\,V,\,\check{C},\,P,\,\check{C},\,J,\,\check{C},\,\check{C},\,P,\,J,\,\check{C},\,V,\,L,\,\check{C},\,P,\,V,\,\check{C},\,\check{C},\,L,\,J,\,\check{C},\,P,\,V,\,V,\,J,\,L,\,V,\,P,\,\check{C},\,\check{C},\,P,\,\check{C},\,V,\,L,\,\check{C},\,V,\,J,\,V,\,P$

Č = čokolada, V = vanilija, J = jagoda, L= lešnik, P = pistacija

Okus	fj	$f_j\%$
Čokolada	19	32
Vanilija	14	23
Jagoda	9	15
Lešnik	7	12
Pistacija	11	18

Tortni diagram

Frekvenčna porazdelitev

Urejenostne in številske spremenljivke

Naj ima urejenostna ali številska spremenljivka X končen nabor vrednosti. Le te lahko uredimo po velikosti, npr.: $a_1 < a_2 < \cdots < a_n$ ter poleg frekvenc f_j izračunamo še **kumulativne frekvence**

$$F_j = \#(X \leq a_j) = f_1 + \ldots + f_j$$

 F_i je torej število enot, ki imajo vrednost X največ a_i .

Relativne kumulativne frekvence (v odstotkih) so

$$F_j\%=100\cdot \tfrac{F_j}{f_1+...+f_n}.$$

 F_i % je odstotek enot, ki imajo vrednost X največ a_i .

Frekvenčna tabela:

Vrednosti	Frekvenca	Relativna frekvenca	F _j	F _j %
a ₁	f ₁	f ₁ %	$F_1 = f_1$	$F_1\% = f_1\%$
a ₂	f ₂	f ₂ %	$F_2 = F_1 + f_2$	$F_2\% = F_1\% + f_2\%$
:	:	:		
a _n	f _n	f _n %	$F_n = F_{n-1} + f_n$	$F_n\% = F_{n-1}\% + f_n\% = 100$

Ocene	fj	fj%	Fj	F _j %
5	22			
6	17			
7	14			
8	9			
9	6			
10	7			
Skupaj				

Ocene	fj	fj%	Fj	F _j %
5	22	29.3		
6	17	22.7		
7	14	18.7		
8	9	12		
9	6	8		
10	7	9.3		
Skupaj	75			

Ocene	fj	fj%	Fj	$F_j\%$
5	22	29.3	22	29.3
6	17	22.7	39	52
7	14	18.7	53	70.7
8	9	12	62	82.7
9	6	8	68	90.7
10	7	9.3	75	100
Skupaj	75			

- Kakšen odstotek študentov je dosegel oceno največ 8?
- Kakšen odstotek študentov je dosegel oceno več kot 7?
- Kakšen odstotek študentov je dobil oceno 7 ali 8?

Ocene	fj	fj%	F_{j}	$F_j\%$
5	22	29.3	22	29.3
6	17	22.7	39	52
7	14	18.7	53	70.7
8	9	12	62	82.7
9	6	8	68	90.7
10	7	9.3	75	100
Skupaj	75			

- Kakšen odstotek študentov je dosegel oceno največ 8? 82.7%
- Kakšen odstotek študentov je dosegel oceno več kot 7? 29.3%
- Kakšen odstotek študentov je dobil oceno 7 ali 8? 30.7%

Grafična predstavitev

Tortni diagram

Tortni diagram je v primeru urejenostnih spremenljivk manj primeren, saj ne prikazuje urejenosti.

Kadar je možnih vrednosti veliko (ali pa X zavzame kontinuum vrednosti), vrednosti razdelimo v nekaj intervalov. Recimo, da so vrednosti številske spremenljivke razvrščene v K intervalov. Potem frekvenčno porazdelitev opremimo še s

spodnjo in zgorno mejo razredov x_{i,min} in x_{i,max}, da je za
 i = 1,..., K

$$x_{i,max} = x_{i+1,min}$$
.

Z besedo: zgornja meja razreda je spodnja meja naslednjega razreda.

sredino razredov

$$x_i = \frac{x_{i,max} + x_{i,min}}{2}.$$

širino razredov

$$d_i = x_{i,max} - x_{i,min}$$
.

Kadar so razredi različno široki, frekvence po razredih niso primerljive. Tedaj za vsak razred izračunamo gostoto frekvenc

$$g_i = \frac{f_i}{d_i}$$
.

Odsotnost (h)	X _{i,min}	X _{i,max}	di	Xi	fi	f _i %	Fi	F _i %
20-39	19.5	39.5	20	29.5				
40-59	39.5	59.5	20	49.5				
60-79	59.5	79.5	20	69.5				
80-99	79.5	99.5	20	89.5				

Odsotnost (h)	X _{i,min}	X _{i,max}	di	Xi	fi	f _i %	Fi	F _i %
20-39	19.5	39.5	20	29.5	2	6.7		
40-59	39.5	59.5	20	49.5	10	33.3		
60-79	59.5	79.5	20	69.5	15	50		
80-99	79.5	99.5	20	89.5	3	10		

Odsotnost (h)	X _{i,min}	X _{i,max}	di	Xi	fi	f _i %	Fi	F _i %
20-39	19.5	39.5	20	29.5	2	6.7	2	6.7
40-59	39.5	59.5	20	49.5	10	33.3	12	40
60-79	59.5	79.5	20	69.5	15	50	27	90
80-99	79.5	99.5	20	89.5	3	10	30	100

Grafično lahko podatke predstavimo s histogramom ali s poligonom.

Poligon dobimo tako, da za vsak razred narišemo točko (x_i, f_i) , dodamo še točki $(x_0, 0)$, $(x_{K+1}, 0)$ ter točke povežemo v linijski grafikon.

Še en grafični prikaz je **ogiva**, pri kateri na abscisno os narišemo zgornje meje razredov, na ordinatno os pa pripadajoče relativne kumulativne frekvence. Za vsak razred narišemo točko $(x_{i,max}, F_i\%)$, dodamo še točko $(x_{1,min}, 0)$ in povežemo točke.

Iz ogive lahko razberemo (približne) odgovore na vprašanja kot so: kakšen odstotek učencev ima največ 50 ur odsotnosti? Katero število ur odsotnosti preseže vsaj 30% učencev? Itd.

Ranžirna vrsta in rangi

Če vrednosti x_1, \ldots, x_n urejenostne oz. številske spremenljivke x uredimo po velikosti rečemo, da smo jih razvrstili v **ranžirno vrsto**

$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}.$$

Elementi $x_{(i)}$ so vrstilne statistike.

Rang dane vrednosti je njen položaj v ranžirni vrsti: rang vrednosti x (oznaka R(x)) je enak i, če je $x = x_{(i)}$. Ali je rang enolično določen?

Primer. $x_1 = 5, x_2 = 3, x_3 = 9, x_4 = 6, x_5 = 12, x_6 = 1$. Potem je

 $x_{(1)} = 1, x_{(2)} = 3, x_{(3)} = 5, x_{(4)} = 6, x_{(5)} = 9, x_{(6)} = 12$

ter R(1) = 1, R(3) = 2, R(5) = 3, R(6) = 4, R(9) = 5, R(12) = 6.

Primer. $x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$. Potem je

 $x_{(1)} = 0, x_{(2)} = 0, x_{(3)} = 1, x_{(4)} = 1, x_{(5)} = 1, x_{(6)} = 2.$

Velia R(2) = 6, rang elementa 0 je lahko 1 ali 2, rang elementa 1 pa je lahko 3, 4 ali 5,

Ranžirna vrsta in rangi

Če vrednosti x_1, \ldots, x_n urejenostne oz. številske spremenljivke x uredimo po velikosti rečemo, da smo jih razvrstili v **ranžirno vrsto**

$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$$
.

Elementi $x_{(i)}$ so vrstilne statistike.

Rang dane vrednosti je njen položaj v ranžirni vrsti: rang vrednosti x (oznaka R(x)) je enak i, če je $x = x_{(i)}$. Ali je rang enolično določen?

Primer. $x_1 = 5, x_2 = 3, x_3 = 9, x_4 = 6, x_5 = 12, x_6 = 1$. Potem je

$$x_{(1)} = 1, x_{(2)} = 3, x_{(3)} = 5, x_{(4)} = 6, x_{(5)} = 9, x_{(6)} = 12$$

ter
$$R(1) = 1$$
, $R(3) = 2$, $R(5) = 3$, $R(6) = 4$, $R(9) = 5$, $R(12) = 6$.

Primer. $x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$. Potem je

 $x_{(1)} = 0, x_{(2)} = 0, x_{(3)} = 1, x_{(4)} = 1, x_{(5)} = 1, x_{(6)} = 2.$

Velia R(2) = 6, rang elementa 0 je lahko 1 ali 2, rang elementa 1 pa je lahko 3, 4 ali 5.

Ranžirna vrsta in rangi

Če vrednosti x_1, \ldots, x_n urejenostne oz. številske spremenljivke x uredimo po velikosti rečemo, da smo jih razvrstili v **ranžirno vrsto**

$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}.$$

Elementi $x_{(i)}$ so vrstilne statistike.

Rang dane vrednosti je njen položaj v ranžirni vrsti: rang vrednosti x (oznaka R(x)) je enak i, če je $x = x_{(i)}$. Ali je rang enolično določen?

Primer. $x_1 = 5, x_2 = 3, x_3 = 9, x_4 = 6, x_5 = 12, x_6 = 1$. Potem je

$$x_{(1)} = 1, x_{(2)} = 3, x_{(3)} = 5, x_{(4)} = 6, x_{(5)} = 9, x_{(6)} = 12$$

ter
$$R(1) = 1$$
, $R(3) = 2$, $R(5) = 3$, $R(6) = 4$, $R(9) = 5$, $R(12) = 6$.

Primer. $x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$. Potem je

$$x_{(1)} = 0, x_{(2)} = 0, x_{(3)} = 1, x_{(4)} = 1, x_{(5)} = 1, x_{(6)} = 2.$$

Velja R(2) = 6, rang elementa 0 je lahko 1 ali 2, rang elementa 1 pa je lahko 3, 4 ali 5.

Rang torej ni nujno enolično določen. Vsem možnim rangom dane vrednosti rečemo *surovi* rangi. *Spodnji rang* je najmanjši surovi rang, *zgornji rang* pa največji surovi rang.

Vezani rang R(x) je artimetična sredina zgornjega in spodnjega ranga.

$$R(x) = \frac{\text{spodnji surovi rang} + zgornji surovi rang}{2}$$

Primer. $x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$. Potem je

 $x_{(1)} = 0, x_{(2)} = 0, x_{(3)} = 1, x_{(4)} = 1, x_{(5)} = 1, x_{(6)} = 2.$

Velja R(0) = 1.5, R(1) = 4, R(2) = 6

Relativni ali kvartilni rang elementa x je

$$r(x) = \frac{R(x) - \frac{1}{2}}{n}$$

Za preišnii primer je $r(0) = \frac{1}{2}$, $r(1) = \frac{7}{2}$, $r(2) = \frac{11}{2}$

Rang torej ni nujno enolično določen. Vsem možnim rangom dane vrednosti rečemo *surovi* rangi. *Spodnji rang* je najmanjši surovi rang, *zgornji rang* pa največji surovi rang.

Vezani rang R(x) je artimetična sredina zgornjega in spodnjega ranga.

$$R(x) = \frac{\text{spodnji surovi rang} + zgornji surovi rang}}{2}$$

Primer.
$$x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$$
. Potem je

$$x_{(1)} = 0, x_{(2)} = 0, x_{(3)} = 1, x_{(4)} = 1, x_{(5)} = 1, x_{(6)} = 2.$$

Velja
$$R(0) = 1.5$$
, $R(1) = 4$, $R(2) = 6$

Relativni ali kvartilni rang elementa x je

$$r(x) = \frac{R(x) - \frac{1}{2}}{n}$$

Za preišnji primer je $r(0) = \frac{1}{6}$, $r(1) = \frac{7}{12}$, $r(2) = \frac{11}{12}$

Rang torej ni nujno enolično določen. Vsem možnim rangom dane vrednosti rečemo *surovi* rangi. *Spodnji rang* je najmanjši surovi rang, *zgornji rang* pa največji surovi rang.

Vezani rang R(x) je artimetična sredina zgornjega in spodnjega ranga.

$$R(x) = \frac{\text{spodnji surovi rang} + z\text{gornji surovi rang}}{2}$$

Primer.
$$x_1 = 1, x_2 = 2, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 0$$
. Potem je

$$x_{(1)} = 0, x_{(2)} = 0, x_{(3)} = 1, x_{(4)} = 1, x_{(5)} = 1, x_{(6)} = 2.$$

Velja
$$R(0) = 1.5$$
, $R(1) = 4$, $R(2) = 6$

Relativni ali kvartilni rang elementa x je

$$r(x) = \frac{R(x) - \frac{1}{2}}{n}$$

Za prejšnji primer je $r(0) = \frac{1}{6}$, $r(1) = \frac{7}{12}$, $r(2) = \frac{11}{12}$.

Kako določimo vrstilne statistike in range za frekvenčne porazdelitve, npr.:

Ocene	fj	fj%	Fj	F_j %
5	22	29	22	29
6	17	23	39	52
7	14	19	53	71
8	9	12	62	83
9	6	8	68	91
10	7	9	75	100

Vrstilne statistike razberemo iz kumulativnih frekvenc in sicer

$$x_{(i)} = a_j$$
, če je 1 + $F_{j-1} \le i \le F_j$

Za *i-*to vrstilno statistiko moramo torej poiskati prvo kumulativno frekvenco, ki je enaka vsaj *i*.

V zgornjem primeru dobimo npr.:: $x_{(50)} = 7, x_{(60)} = 8, x_{(70)} = 10$

Kako določimo vrstilne statistike in range za frekvenčne porazdelitve, npr.:

Ocene	fj	$f_j\%$	F_j	F_j %
5	22	29	22	29
6	17	23	39	52
7	14	19	53	71
8	9	12	62	83
9	6	8	68	91
10	7	9	75	100

Vrstilne statistike razberemo iz kumulativnih frekvenc in sicer

$$x_{(i)} = a_j$$
, če je 1 + $F_{j-1} \le i \le F_j$

Za *i*-to vrstilno statistiko moramo torej poiskati prvo kumulativno frekvenco, ki je enaka vsaj *i*.

V zgornjem primeru dobimo npr.:: $x_{(50)} = 7, x_{(60)} = 8, x_{(70)} = 10.$

Tudi range določimo iz kumulativnih frekvenc: vrednost a_j ima surove range od $F_{j-1} + 1$ do F_j in **vezani rang**

$$R(a_j) = \frac{F_{j-1} + F_j + 1}{2}$$

ter relativni rang

$$r(a_j) = \frac{F_{j-1} + F_j}{2n}$$

Primer.

Dobimo vezane range R(5) = 11.5, R(6) = 31, R(7) = 46.5, R(8) = 58, R(9) = 65.5, R(10) = 72 in relativne range r(5) = 0.147, r(6) = 0.407, r(7) = 0.613, r(8) = 0.767, r(9) = 0.867, r(10) = 0.953.

Tudi range določimo iz kumulativnih frekvenc: vrednost a_j ima surove range od $F_{i-1} + 1$ do F_i in **vezani rang**

$$R(a_j) = \frac{F_{j-1} + F_j + 1}{2}$$

ter relativni rang

$$r(a_j) = \frac{F_{j-1} + F_j}{2n}$$

Primer.

Ocene	fj	fj%	Fj	F _j %
5	22	29	22	29
6	17	23	39	52
7	14	19	53	71
8	9	12	62	83
9	6	8	68	91
10	7	9	75	100

Dobimo vezane range R(5) = 11.5, R(6) = 31, R(7) = 46.5, R(8) = 58, R(9) = 65.5, R(10) = 72 in relativne range r(5) = 0.147, r(6) = 0.407, r(7) = 0.613, r(8) = 0.767, r(9) = 0.867, r(10) = 0.953.

Kvantili

Kvantil statistične spremenljivke za določen delež je vrednost, pod katero leži približno dani delež podatkov. Najbolj pomembni kvantili so:

- Kvantil za delež ¹/₂, ki mu pravimo mediana in ga označimo z Me.
 Mediana razdeli ranžirno vrsto na dve polovici: približno polovica podatkov leži pod mediano, približno polovico nad njo.
- Kvantila za deleža ¹/₃ in ²/₃ imenujemo tercila.
 Tercila razdelita ranžirno vrsto na tri približno enake dele: približno tretjina vrednosti leži pod 1. tercilom, približno tretjina med 1. in 2. tercilom in približno tretjina nad 2. tercilom.
- Kvantili za deleže ¹/₄, ²/₄ in ³/₄ so kvartili.
 Drugi kvartil je enak mediani.
- Kvantilom za deleže $\frac{j}{10}$ (j = 1, ..., 9) pravimo decili.
- Kvantilom za deleže $\frac{j}{100}$ $(j=1,\ldots,99)$ pravimo centili.

Mediana je eno od meril *srednje vrednosti* oz. *centralne tendence*. Tudi aritmetična sredina in modus (vrednost oz. razred z najvišjo frekvenco) sta meri centralne tendence.

Definicija kvantila žal ni enotna. Matematična definicija: rečemo, da je vrednost Q_{γ} kvantil spremenljivke X za delež γ ,če je

$$\frac{\#(X < Q_{\gamma})}{n} \le \gamma \text{ in } \frac{\#(X \le Q_{\gamma})}{n} \ge \gamma$$

Primer. Za ranžirno vrsto

1, 2, 3, 3, 7, 15, 32, 47, 69

na oko opazimo, da je Me=7. Izračun po definiciji pove, da je mediana število, ki zadošča pogojema $\frac{\#(X<Q_{0.5})}{9}\leq 0.5$ in $\frac{\#(X\leq Q_{0.5})}{9}\geq 0.5$, oz. $\#(X<Q_{0.5})\leq 4.5$ in $\#(X\leq Q_{0.5})\geq 4.5$. Prvi pogoj izpolnjujejo vrednosti do vključno 7, drugega pa od vključno 7 dalje. Edina možnost za mediano je torej 7.

Primer. Za ranžirno vrsto

1, 2, 3, 3, 7, 15, 32, 47, 69, 91

je mediana število, ki zadošča pogojema $\#(X < Q_{0.5}) \le 5$ in $\#(X \le Q_{0.5}) \ge 5$. Prvi pogoj izpolnjujejo vrednosti do vključno 15, drugega pa od vključno 7 dalje. Vsako število med 7 in 15 je torej lahko mediana. Kvantili torej niso enolično določeni.

Kai opazite za ranžirne vrste s sodim/lihim številom podatkov?

Definicija kvantila žal ni enotna. Matematična definicija: rečemo, da je vrednost Q_{γ} kvantil spremenljivke X za delež γ ,če je

$$\frac{\#(X < Q_{\gamma})}{n} \le \gamma \text{ in } \frac{\#(X \le Q_{\gamma})}{n} \ge \gamma.$$

Primer. Za ranžirno vrsto

1, 2, 3, 3, 7, 15, 32, 47, 69

na oko opazimo, da je Me=7. Izračun po definiciji pove, da je mediana število, ki zadošča pogojema $\frac{\#(X < Q_{0.5})}{9} \le 0.5$ in $\frac{\#(X \le Q_{0.5})}{9} \ge 0.5$, oz. $\#(X < Q_{0.5}) \le 4.5$ in $\#(X \le Q_{0.5}) \ge 4.5$. Prvi pogoj izpolnjujejo vrednosti do vključno 7, drugega pa od vključno 7 dalje. Edina možnost za mediano je torej 7.

Primer. Za ranžirno vrsto

1, 2, 3, 3, 7, 15, 32, 47, 69, 91

je mediana število, ki zadošča pogojema $\#(X < Q_{0.5}) \le 5$ in $\#(X \le Q_{0.5}) \ge 5$. Prvi pogoj izpolnjujejo vrednosti do vključno 15, drugega pa od vključno 7 dalje. Vsako število med 7 in 15 je torej lahko mediana. Kvantili torej niso enolično določeni.

Kai opazite za ranžirne vrste s sodim/lihim številom podatkov?

Primer. Izračunajmo kvartile za ranžirno vrsto:

Uporabimo dejstvo $R = \gamma n + 0.5$ in z upoštevanjem n = 15

- $R(Q_{0.25}) = 0.25 \cdot 15 + 0.5 = 4.25$. Prvi kvartil je torej katerokoli število na intervalu [3,7].
- $R(Q_{0.5}) = 0.5 \cdot 15 + 0.5 = 8$. Drugi kvartil (oz. mediana) je torej število 47.
- $R(Q_{0.75}) = 0.75 \cdot 15 + 0.5 = 11.75$. Tretji kvartil je torej katerokoli število na intervalu [112,250].

Medkvartilni razmik je $Q=Q_{0.75}-Q_{0.25}$. Interval $[Q_{0.25},Q_{0.75}]$ vsebuje torej približno polovico sredinskih vrednosti.

Kadar kvantil ni enolično določen lahko predstavnika izberemo z interpolacijo: če kvantil leži med vrednostima a in b in za rang kvantila velja R(a) < R(Q) < R(b) = R(a) + 1, potem Q določimo z

$$Q = a + (R(Q) - R(a))(b - a)$$

Za prejšnji primer je predstavnik 1. kvartila $Q_{0.25} = 3 + (4.25 - 4)(7 - 3) = 4$, predstavnik 3. kvartila pa $Q_{0.75} = 112 + (11.75 - 11)(250 - 112) = 215.5$.

Primer. Izračunajmo kvartile za ranžirno vrsto:

Uporabimo dejstvo $R = \gamma n + 0.5$ in z upoštevanjem n = 15

- $R(Q_{0.25}) = 0.25 \cdot 15 + 0.5 = 4.25$. Prvi kvartil je torej katerokoli število na intervalu [3,7].
- $R(Q_{0.5}) = 0.5 \cdot 15 + 0.5 = 8$. Drugi kvartil (oz. mediana) je torej število 47.
- $R(Q_{0.75}) = 0.75 \cdot 15 + 0.5 = 11.75$. Tretji kvartil je torej katerokoli število na intervalu [112,250].

Medkvartilni razmik je $Q=Q_{0.75}-Q_{0.25}$. Interval $[Q_{0.25},Q_{0.75}]$ vsebuje torej približno polovico sredinskih vrednosti.

Kadar kvantil ni enolično določen lahko predstavnika izberemo z *interpolacijo*: če kvantil leži med vrednostima a in b in za rang kvantila velja R(a) < R(Q) < R(b) = R(a) + 1, potem Q določimo z

$$Q = a + (R(Q) - R(a))(b - a).$$

Za prejšnji primer je predstavnik 1. kvartila $Q_{0.25} = 3 + (4.25 - 4)(7 - 3) = 4$, predstavnik 3. kvartila pa $Q_{0.75} = 112 + (11.75 - 11)(250 - 112) = 215.5$.

Urejenostne spremenljivke lahko grafično predstavimo s **škatlo z brki** (angl. box plot), kjer so prikazani minimalna in maksimalna vrednost ter kvartili.

Primer. Rezultati obeh kolokvijev Statistike so:

1. kolokvij: 9, 11, 12, 15, 16, 17, 26, 30, 34, 35, 36, 37, 42, 45, 49, 50, 51, 54, 57, 62, 63, 65, 69, 81 2. kolokvij: 19, 19, 20, 24, 27, 27, 36, 45, 47, 47, 48, 48, 49, 57, 57, 60, 61, 63, 64, 65, 69, 92

- Določi število točk na 1. kolokviju, ki ga je presegla ena četrtina študentov.
- Med katerimi vrednostimi najdemo sredinskih 50% rezultatov 1. in 2. kolokvija?

Kadar so podatki dani le s frekvenčno tabelo, potem osnovnih podatkov nimamo in kvantile izračunamo iz kumulativnih frekvenc s pomočjo interpolacije.

Primer.									
1 11111011	Odsotnost (h)	X _{i,min}	X _{i,max}	di	Xi	fi	f _i %	Fi	F _i %
	20-39	19.5	39.5	20	29.5	2	6.7	2	6.7
	40-59	39.5	59.5	20	49.5	10	33.3	12	40
	60-79	59.5	79.5	20	69.5	15	50	27	90
	80-99	79.5	99.5	20	89.5	3	10	30	100

Jasno je, da je 1. kvartil med 40 in 59, mediana in 3. kvartil pa med 60 in 79

Če kvantil Q_y leži v razredu s spodnjo mejo $x_{0,min}$, zgornjo mejo $x_{0,max}$, frekvenco f_0 ter širino d_0 , potem Q_y izračunamo z

$$Q_{y} = x_{0,min} + \frac{F(Q_{y}) - F(x_{0,min})}{f_{0}} \cdot d_{0}$$

kier ie

$$F(Q_{\gamma}) = n \cdot \gamma + 0.5$$

Za zgornji primer: za prvi kvartil $Q_{0.25}$ je $x_{0.min} = 39.5$, $x_{0.max} = 59.5$, $d_0 = 20$, $f_0 = 10$ in $F(Q_{0.25}) = 8$, torsi $Q_{0.25} = 51.5$. Dobimo še $Q_{0.25} = Me = 64.2$ in $Q_{0.25} = 74.2$. Interpretacija?

Kadar so podatki dani le s frekvenčno tabelo, potem osnovnih podatkov nimamo in kvantile izračunamo iz kumulativnih frekvenc s pomočjo interpolacije.

Primer.									
1 11111011	Odsotnost (h)	X _{i,min}	X _{i,max}	di	Xi	fį	f _i %	Fi	F _i %
	20-39	19.5	39.5	20	29.5	2	6.7	2	6.7
	40-59	39.5	59.5	20	49.5	10	33.3	12	40
	60-79	59.5	79.5	20	69.5	15	50	27	90
	80-99	79.5	99.5	20	89.5	3	10	30	100

Jasno je, da je 1. kvartil med 40 in 59, mediana in 3. kvartil pa med 60 in 79.

Če kvantil Q_{γ} leži v razredu s spodnjo mejo $x_{0,min}$, zgornjo mejo $x_{0,max}$, frekvenco f_0 ter širino d_0 , potem Q_{γ} izračunamo z

$$Q_{\gamma} = x_{0, extit{min}} + rac{F(Q_{\gamma}) - F(x_{0, extit{min}})}{f_0} \cdot d_0$$

kjer je

$$F(Q_{\gamma}) = n \cdot \gamma + 0.5$$
.

Za zgornji primer: za prvi kvartil $Q_{0.25}$ je $x_{0,min} = 39.5$, $x_{0,max} = 59.5$, $d_0 = 20$, $f_0 = 10$ in $F(Q_{0.25}) = 8$, torej $Q_{0.25} = 51.5$. Dobimo še $Q_{0.5} = Me = 64.2$ in $Q_{0.75} = 74.2$. Interpretacija?