Fondamenti di Elettronica Ingegneria Informatica 2021-2022 prima prova intermedia 5/11/2021. Tema A

Tre esercizi da risolvere in due ore. Scrivere nome e numero di matricola su tutti i fogli con le soluzioni e numerare le pagine.

Esercizio 1 Amplificatore operazionale con rete a T.

Nel circuito in figura A1 è un amplificatore operazionale ideale.

- 1.1 Calcolare le correnti I₁, I₂, e I₃
- 1.2 Calcolare la tensione V_x
- 1.3 Calcolare la corrente I_L e la corrente erogata dall'uscita dell'amplificatore I_{out}
- 1.4 Determinare il massimo valore di R₁ per il quale V₀ è maggiore di -13 V
- 1.5 Nel caso in cui R_L vari nell'intervallo da 100 ohm a 1 kohm, qual è la corrispondente variazione di I_L e V_o ?
- 1.6 Qual è la resistenza di uscita vista tra V_x e V₀?
- 1.7 Qual è la resistenza di uscita vista tra Vo e massa?
- 1.8 Qual è la resistenza di ingresso vista dal generatore V_s ?
- 1.9 Collegare una resistenza da 1 kohm tra V_o e massa. Di quanto cambiano V_o , I_L e I_{out}?
- 1.10 Scrivere l'espressione del guadagno I_L/V_s . Di che tipo di guadagno si tratta? Qual è l'unità di misura corrispondente ?

SOLUZIONE

- 1.1 Calcolare le correnti I₁, I₂, e I₃
- 1.1 La rete di feedback realizza una retroazione negativa; l'ampificatore operazionale è ideale, quindi vale il principio di massa virtuale e $V_- = V_+ = V_n$.

La corrente I_1 è quindi pari a $(V_s - V_n)/R_1 = V_s/R_1 = 1V/10$ kohm =0.1 mA. La corrente I_2 ha valore identico, perchè la corrente entrante nell'amplificatore è nulla.

La tensione V_x è data da $V_n - I_2R_2 = 0 - I_2R_2 = -0.1$ mA x 10kohm = -1V; di conseguenza $I_3 = -V_x/R_3 = 1V/0.1$ kohm = 10 mA; $I_L = I_2 + I_3 = 10.1$ mA.

- 1.2 Calcolare la tensione V_x
- $1.2 V_x = -1 V$, vedi sopra

- 1.3 Calcolare la corrente I_L e la corrente erogata dall'uscita dell'amplificatore I_{out} 1.3 I_L = 10.1 mA = $-I_{out}$
- 1.4 Determinare il massimo valore di R_L per il quale V₀ è maggiore di -13 V
- $1.4 \text{ V}_{0} = \text{V}_{x} \text{I}_{L}\text{R}_{L} > -13 \text{ V}; -1 \text{I}_{L}\text{R}_{L} > -13 \text{ V}; 12\text{V} > 10.1 \text{ mA x R}_{L} : \text{R}_{L} < 12\text{V}/10.1 \text{ mA}; \text{R}_{L} < 1188 \text{ ohm}$
- 1.5 Nel caso in cui R_L vari nell'intervallo da 100 ohm a 1 kohm, qual è la corrispondente variazione di I_L e V_o ?
- 1.5 I_L non dipende da R_L . Per R_L = 100 ohm, $V_0 = V_x I_L R_L = -1V$ -10.1mA x 0.1 kohm = -1 -1.01 V = -2.01 V.

Per $R_L = 1000$ ohm $V_0 = V_x - I_L R_L = -1V - 10.1 \text{ mA} \times 1 \text{ kohm} = -1 - 10.1 \text{ V} = -11.1 \text{ V}$

- 1.6 Qual è la resistenza di uscita vista tra V_x e V_o?
- 1.6 Per calcolare la resistenza vista tra V_x e V_0 si toglie R_L e la si sostituisce con un generatore di test V_{test} ; si annulla (cortocircuita) V_s . Di conseguenza $I_1 = 0 = I_2$ e $V_x = 0$ V. Perciò anche I_3 è nulla e I_{test} non può che essere nulla. Di conseguenza $R_{out} = V_{test}/I_{test} = \infty$, come ci si attendeva, dato che la corrente di uscita I_L è indipendente dal valore della resistenza R_L .
- 1.7 Qual è la resistenza di uscita vista tra V₀ e massa?
- 1.7 Per calcolare la resistenza vista tra uscita e massa si applica un generatore di corrente I_{test} all'uscita e si annulla il generatore di ingresso. Come riportato al punto precedente, $I_2=I_3=0$ e di conseguenza anche I_L è nulla e $V_0=0$ V. Ma V_0 coincide con V_{test} , perciò $V_{test}/I_{test}=0/I_{test}=0$ = R_{out}
- 1.8 Qual è la resistenza di ingresso vista dal generatore V_s ?
- 1.8 La resistenza di ingresso vista da V_s è R₁ cioè 10 kohm
- 1.9 Collegare una resistenza da 1 kohm tra V_o e massa. Di quanto cambiano V_o , I_L e I_{out} ? 1.9 Vx = $-V_s$ = -1 V e I_L = 10.1 mA non dipendono da R_L o da una resistenza connessa tra V_o e massa. Di conseguenza, data R_L , V_0 non cambia quando si connette una resistenza tra V_o e massa (d'altra parte la resistenza di uscita tra V_o e massa è 0, quindi V_0 non dipende dal carico). I_L + I_{R1k} = I_{out} = I_L + V_0/R_{1k} . Con V_s = 1V, I_L = 10.1 mA; poniamo I_L = 1 kohm, quindi I_D = -11.1 V; I_D (dall'uscita dell'amplificatore verso I_D quindi una corrente pari a 21.2 mA entra nell'amplificatore.
- 1.10 Scrivere l'espressione del guadagno I_L/V_s . Di che tipo di guadagno si tratta? Qual è l'unità di misura corrispondente ?
- 1.10 $I_L = I_2 + I_3 = V_s/R_2 + V_s/R_3$; $G_m = I_L/V_s = 1/R_2 + 1/R_3 = [A/V]$ or [Siemens].

E' un guadagno di transconduttanza.

Il guadagno in tensione è invece $A_V = V_0/V_s$

 $V_0 = V_x - (I_2 + I_3)R_L = -V_s - ((V_s/R_2) + (V_s/R_3))R_L$

 $A_V = -(1+(R_L/R_2)+(R_L/R_3)$

Simulazione SPICE

Per la simulazione utilizziamo il modello di default dell'operazionale in LTSpice, modificando il valore del guadagno ad anello aperto Aol. Scegliamo un valore pari a 10⁹ V/V, come approssimazione del guadagno infinito dell'opamp ideale.

Le istruzioni da inserire sono .lib opamp.sub *per richiamare il sottocircuito che rappresenta l'opamp .op *per simulare correnti e tensioni in DC con la tensione V_s applicata

Poniamo inizialmente R_L = 1 kohm

Il listato SPICE corrispondente è il seguente:

```
*opamp con rete di feedback a T
XA1 Vn 0 V0 opamp Aol=1000MEG GBW=10Meg
R2 Vn Vx 10kohm
RL Vx V0 1kohm
R3 0 Vx 100ohm
R1 Vn N001 10kohm
Vs N001 0 1V
.lib opamp.sub
.op
.backanno
.end
```

I risultati della simulazione con R_L =1kohm sono:

--- Operating Point ---

V(v0):	-11.1	voltage
V(vn):	1.11101e-008	voltage
V(vx):	-1	voltage
V(n001):	1	voltage
I(R1):	-0.0001	device_current
I(R3):	0.01	device_current
I(R1):	0.0101	device_current
I(R2):	0.0001	device_current
I(Vs):	-0.0001	device_current
<pre>Ix(a1:3):</pre>	0.0101	subckt_current

Come avevamo calcolato, la tensione di uscita V_0 è -11.1 V, V_x = -1V, la corrente nelle resistenze R_1 e R_2 è 0.1 mA, la corrente nella resistenza R_3 è 10mA. la corrente nella resistenza R_L è 10.1 mA. La corrente di uscita dell'amplificatore è 10.1 mA.

I risultati della simulazione con R_L = 100 ohm sono:

```
--- Operating Point ---
```

```
V(v0):
                -2.01
                                voltage
                2.0201e-009
V(vn):
                                voltage
                -1
                                voltage
V(vx):
V(n001):
                                voltage
                -0.0001
I(R1):
                                device_current
I(R3):
                0.01
                                device current
I(R1):
                0.0101
                                device current
                0.0001
I(R2):
                                device current
I(Vs):
                -0.0001
                                device current
Ix(a1:3):
                0.0101
                                subckt current
```

La tensione di uscita V₀ diventa -2.01V. Si noti che le correnti non cambiano.

Ora colleghiamo una resistenza R_4 da 1kohm tra V_0 e massa con R_L = 1kohm; il risultato della simulazione è il seguente. Come trovato precedentemente V_0 , I(R3), I(R1) e I(RL) non cambiano

```
--- Operating Point ---
```

V(v0):	-11.1	voltage
V(vn):	1.11212e-008	voltage
V(vx):	-1	voltage
V(n001):	1	voltage
I(R4):	-0.0111	device current
I(R1):	-0.0001	device current
I(R3):	0.01	device_current
I(R1):	0.0101	device_current
I(R2):	0.0001	device_current
I(Vs):	-0.0001	device_current
Ix(a1:3):	0.0212	subckt_current

La corrente I(R4) (da V_0 a massa) è data da V_0/R_4 = -11.1/1000 =-11.1 mA. La corrente all'uscita dell'amplificatore, entrante nell'amplificatore e quindi positiva, è data da I_{out} = I_L – I(R4) = 10.1 mA + 11.1 mA = 21.2 mA.

Esercizio 2 Amplificatore differenziale

Nel circuito in figura, A1 e A2 sono due amplificatori operazionali ideali.

- 2.1 Utilizzando il principio di sovrapposizione degli effetti, scrivere l'espressione di V_{o1} e V_{o2} = V_{out} in funzione di R_A , R_B , R_C , R_D .
- 2.2 Scrivere V_1 e V_2 in funzione di $V_{id}/2$ e V_{cm} . Scrivere l'espressione del guadagno differenziale e del guadagno di modo comune secondo la formula $V_{out} = A_d v_{ld} + A_{cm} v_{cm}$
- 2.3 Sia R_D/R_C =10. Trovare il valore di R_B/R_A per il quale il guadagno differenziale Ad vale 30. Quanto vale il guadagno di modo comune A_{cm} ? Quanto vale il fattore di reiezione di modo comune CMRR?

2.4 Sia R_A = 1kohm, R_B = 2kohm, R_C = 3kohm, R_D = 4kohm, V_1 = 2V e V_2 = 3V. Calcolare V_{out} , I_A , I_B , I_C , I_D , e la corrente erogata/assorbita dall'uscita degli amplificatori operazionali

2.5 Trovare la condizione corrispondente ad $A_{cm} = 0$

Soluzione

- 2.1 Utilizzando il principio di sovrapposizione degli effetti, scrivere l'espressione di V_{o1} e V_{o2} = V_{out} in funzione di R_A , R_B , R_C , R_D .
- 2.1 Poniamo $V_1 \neq 0$ e $V_2 = 0V$. La tensione al morsetto invertente del 1mo amplificatore, V_{-1} è uguale a V1 per il principio di massa virtuale. La corrente I_A è data da $-V_1/R_A$ ed è uguale a I_B . Ma $I_B = (V_1-V_{01})/R_B$. Quindi $-V_1/R_A = V_1/R_B-V_{01}/R_B$. Perciò $V_{01}=V_1 \times R_B(1/R_A+1/R_B)$ ovvero $V_{01}=V_1(1+R_B/R_A)$. Poichè $V_2=0$ V, $V_{-2}=0$ V. $I_C=V_{01}/R_C=I_D=-V_{out}/R_D$. Quindi $V_{out}=-V_{01}(R_D/R_C)=-V_1(1+R_B/R_A)$ (R_D/R_C)

Ora poniamo $V_1=0$ e $V_2\neq 0$. Dato che I_A e I_B sono nulle, V_{01} è pari a 0V. Quindi I_C è data da $-V_2/R_C$ (per il principio di massa virtuale) ed è uguale a I_D (perchè nell'ingresso invertente dell'opamp non può entrare corrente). $V_{out} = V_2 - I_D R_D = V_2 + V_2 (R_D/R_C) = V_2 (1 + R_D/R_C)$.

Le due espressioni di V₀₁, V_{out} nei due casi potevano essere ricavate direttamente dalle espressioni del guadagno della configurazione invertente e non invertente.

Sommando le due soluzioni, secondo il principio di sovrapposizione degli effetti si ottiene

$$V_{out} = V_2 \left(1 + \frac{R_D}{R_C} \right) - V_1 \left(1 + \frac{R_B}{R_A} \right) \left(\frac{R_D}{R_C} \right) = V_2 \left(1 + \frac{R_D}{R_C} \right) - V_1 \left(\frac{R_B}{R_A} \frac{R_D}{R_C} + \frac{R_D}{R_C} \right)$$

E' evidente che le condizioni di bilanciamento dell'amplificatore differenziale sono date da

$$\frac{R_B}{R_A}\frac{R_D}{R_C} = 1$$
, ovvero $\frac{R_B}{R_A} = \frac{R_C}{R_D}$

- 2.2 Scrivere V_1 e V_2 in funzione di $V_{id}/2$ e V_{cm} . Scrivere l'espressione del guadagno differenziale e del guadagno di modo comune secondo la formula $V_{out} = A_d V_{ld} + A_{cm} V_{cm}$
- 2.2 Scrivo V₁ e V₂ in funzione di v_{id} e v_{icm} :

$$V_1 = v_{icm} - v_{id}/2$$

 $V_2 = v_{icm} + v_{id}/2$

in questo modo V_2 - V_1 = v_{id} e $(V_1+V_2)/2=v_{icm}$

Sostituisco nell'espressione della tensione di uscita V_{out} e trovo il guadagno differenziale e di modo comune:

$$V_{out} = V_2 \left(1 + \frac{R_D}{R_C} \right) - V_1 \left(\frac{R_B}{R_A} \frac{R_D}{R_C} + \frac{R_D}{R_C} \right) = \left(v_{icm} + \frac{v_{id}}{2} \right) \left(1 + \frac{R_D}{R_C} \right) - \left(v_{icm} - \frac{v_{id}}{2} \right) \left(\frac{R_B}{R_A} \frac{R_D}{R_C} + \frac{R_D}{R_C} \right)$$

$$V_{out} = v_{icm} \left(1 + \frac{R_D}{R_C} \right) + \frac{v_{id}}{2} \left(1 + \frac{R_D}{R_C} \right) - v_{icm} \left(\frac{R_B}{R_A} \frac{R_D}{R_C} + \frac{R_D}{R_C} \right) + \frac{v_{id}}{2} \left(\frac{R_B}{R_A} \frac{R_D}{R_C} + \frac{R_D}{R_C} \right)$$

$$V_{out} = v_{icm} \left(1 + \frac{R_D}{R_C} - \frac{R_B}{R_A} \frac{R_D}{R_C} - \frac{R_D}{R_C} \right) + \frac{v_{id}}{2} \left(1 + \frac{R_D}{R_C} + \frac{R_B}{R_A} \frac{R_D}{R_C} + \frac{R_D}{R_C} \right)$$

$$V_{out} = v_{icm} \left(1 - \frac{R_B}{R_A} \frac{R_D}{R_C} \right) + \frac{v_{id}}{2} \left(1 + 2 \frac{R_D}{R_C} + \frac{R_B}{R_A} \frac{R_D}{R_C} \right)$$

quindi il guadagno di modo comune è $A_{cm}=\left(1-\frac{R_B}{R_A}\frac{R_D}{R_C}\right)$ mentre quello differenziale è dato da $A_d=\frac{1}{2}\left(1+2\frac{R_D}{R_C}+\frac{R_B}{R_A}\frac{R_D}{R_C}\right)$. La condizione perchè il guadagno di modo comune sia nullo è $\frac{R_B}{R_A}\frac{R_D}{R_C}=1$. Sotto questa condizione $A_d=1+\frac{R_D}{R_C}$

 $2.3 \, \text{Sia} \, R_D/R_C = 10$. Trovare il valore di R_B/R_A per il quale il guadagno differenziale Ad vale 30. Quanto vale il guadagno di modo comune A_{cm} ? Quanto vale il fattore di reiezione di modo comune CMRR?

2.3 Poniamo R_D/R_C = 10. Poichè deve essere
$$A_d = \frac{1}{2} \left(1 + 2 \frac{R_D}{R_C} + \frac{R_B}{R_A} \frac{R_D}{R_C} \right) = 30 \text{ V/V si ha}$$
 $30 = \frac{1}{2} \left(1 + 20 + 10 \frac{R_B}{R_A} \right)$, quindi $\frac{R_B}{R_A} = \frac{60 - 1 - 20}{10} = 3.9$. Di conseguenza $A_{cm} = \left(1 - \frac{R_B}{R_A} \frac{R_D}{R_C} \right) = 1 - 10 \times 3.9 = -38 \text{ V/V}$.

Il rapporto di reiezione di modo comune è dato da CMRR = $20 \log (|A_D|/|A_{cm}|) = 20 \log(30/38) = 20 \log(0.789) = -2.05dB - 0.11dB.$

2.3.1 Simulazione SPICE

Nel seguito sono presentati i circuiti utilizzati per la simulazione SPICE e i risultati della simulazione nel punto operativo (DC) relativi rispettivamente a un segnale differenziale puro $v_{id} = 1V$ e a un segnale di modo comune della stessa ampiezza.

Circuito utilizzato per valutare l'amplificazione differenziale nelle condizioni richieste nella domanda 2.3

```
--- Operating Point ---
V(v-1):
                -0.5
                                voltage
V(vol):
                -2.45
                                voltage
V(v-2):
                0.5
                                voltage
V(vout):
                30
                                voltage
V(n001):
                -0.5
                                voltage
V(n002):
                0.5
                                voltage
V(n003):
                0
                                voltage
I(Rd):
                0.00295
                                device current
I(Rc):
                0.00295
                                device current
I(Rb):
                -0.0005
                                device current
I(Ra):
                -0.0005
                                device current
                                device_current
I(Vicm):
I(+vid/2):
                0
                                device_current
I(-vid/2):
                0
                                device_current
                0.00345001
Ix(a1:3):
                                subckt_current
Ix(a2:3):
             -0.00294999
                                subckt current
```

Risultato della simulazione di correnti e tensioni nel punto operativo del circuito relativo alla domanda 2 3 quando è applicato un segnale differenziale puro pari a 1V

Circuito utilizzato per la simulazione delle correnti e tensioni risultanti dall'applicazione di un segnale di modo comune pari a 1V

--- Operating Point ---

```
V(v-1):
                1
                                voltage
V(vo1):
                4.9
                                voltage
V(v-2):
                1
                                voltage
                -38
V(vout):
                                voltage
V(n001):
                1
                                voltage
V(n002):
                1
                                voltage
V(n003):
                                voltage
                -0.0039
I(Rd):
                                device current
                -0.0039
I(Rc):
                                device current
                0.001
I(Rb):
                                device current
                0.001
I(Ra):
                                device current
I(Vicm):
                0
                                device current
                0
I(+vid/2):
                                device current
I(-vid/2):
                                device current
Ix(a1:3):
                -0.00490007
                                subckt current
Ix(a2:3):
                0.00390008
                                subckt current
```

Risultato della simulazione del comportamento del circuito conseguente alla applicazione di un segnale di modo comune pari a 1V.

2.4 Sia R_A = 1kohm, R_B = 2kohm, R_C = 3kohm, R_D = 4kohm, V_1 = 2V e V_2 = 3V. Calcolare V_{out} , I_A , I_B , I_C , I_D , e la corrente erogata/assorbita dall'uscita degli amplificatori operazionali

2.4
$$R_A$$
 = 1kohm, R_B = 2kohm, R_C = 3kohm, R_D = 4kohm, V_1 = 2V e V_2 = 3V

$$V_{out} = V_2 \left(1 + \frac{R_D}{R_C} \right) - V_1 \left(\frac{R_B}{R_A} \frac{R_D}{R_C} + \frac{R_D}{R_C} \right) = 3 \left(1 + \frac{4}{3} \right) - 2 \left(\frac{24}{13} + \frac{4}{3} \right) = 3 \left(\frac{7}{3} \right) - 2 \left(\frac{12}{3} \right) = 7 - 8$$

$$= -1V$$

$$V_{-1}=V_1=2V$$
; $I_A=-2V/1$ kohm = -2 mA = I_B ; $V_{01}=V_1(1+R_B/R_A)=3V_1=6V$

$$V_{-2}=V_2=3V$$
; $I_C=(V_{01}-V_2)/R_C=(6-3)/3$ kohm= 1 mA

 $I_{out}(A1)$ eroga una corrente uscente pari alla somma di I_B e I_C , cioè 3mA. I_D = I_C = 1mA

Iout(A2) assorbe una corrente entrante pari a 1 mA

2.4.1 Simulazione SPICE

Circuito utilizzato per la simulazione SPICE con i dati della domanda 2.4

Il listato SPICE corrispondente è il seguente:

```
*domanda 2_4
RA V-1 0 1kohm
RB Vo1 V-1 2kohm
RC V-2 Vo1 3kohm
RD Vout V-2 4kohm
XA1 V-1 N001 Vo1 opamp Aol=1000MEG GBW=10000Meg
XA2 V-2 N002 Vout opamp Aol=1000MEG GBW=10000Meg
V1 N001 0 2V
V2 N002 0 3V
.lib opamp.sub
.op
.backanno
.end
```

La simulazione conferma i risultati ottenuti analiticamente:

```
--- Operating Point ---
```

```
V(v-1):
                            voltage
V(vol):
             6
                           voltage
             3
V(v-2):
                            voltage
V(vout): -1
V(n001): 2
                            voltage
                            voltage
             3
V(n002):
                           voltage
           3
-0.001
-0.001
0.002
0.002
                          device_current
device_current
device_current
device_current
I(Rd):
I(Rc):
I(Rb):
I(Ra):
I(V2):
                           device current
I(V1):
             0
                           device current
```

2.5 Trovare la condizione corrispondente ad A_{cm} = 0 si veda la soluzione della domanda 2.1

Esercizio 3 Convertitore digitale/analogico

La figura mostra un circuito per un convertitore digitale/analogico (DAC). Il circuito di ingresso è composto da 4 interruttori comandati da una parola binaria a 4 bit $[a_3 \ a_2 \ a_1 \ a_0]$ dove $a_3 \ a_2 \ a_1 \ e \ a_0$ assumono il valore 0 (= ingresso collegato a 0 V) oppure 1 (= ingresso collegato a 5V). a_3 è il bit più significativo.

L'uscita è rappresentata da una tensione analogica Vout proporzionale al valore dell'ingresso digitale; l'effetto di ogni ingresso sull'uscita è determinato dal valore della resistenza in serie all'ingresso stesso.

- 3.1 Dimostrare che V_{out} è dato da $V_{out} = -\frac{R_F}{16} [2^0 a_0 + 2^1 a_1 + 2^2 a_2 + 2^3 a_3]$ dove R_f è in kohm.
- 3.2 Si determini il valore di R_F tale che V_{out} vari tra 0 e -12 V.
- 3.1 Il circuito rappresenta un sommatore invertente; per ogni ingresso il guadagno è dato da $-R_F/R_{in}$. Inoltre, applicando il principio di sovrapposizione degli effetti, si nota che gli ingressi collegati a massa sono ininfluenti, dato che, per il principio di massa virtuale $V_+=V_-=0V$; di conseguenza, se l'ingresso è connesso a massa nella resistenza corrispondente non passa corrente. La tensione di uscita, data dalla sovrapposizione degli effetti, è quindi

$$\begin{split} &V_{out}\text{=-5V}(a_0R_F/R_0+\,a_1R_F/R_0+\,a_2R_F/R_0+\,a_3R_F/R_0)\text{=-5}(a_0R_F/80+\,a_1R_F/40+\,a_2R_F/20+\,a_3R_F/10) =\\ &-(a_0R_F/16+\,a_1R_F/8+\,a_2R_F/4+\,a_3R_F/2)=-\left(R_F/16\right)*(a_02^0+\,a_12^1+\,a_22^2+\,a_32^3)\\ &\text{quindi }V_{out}=-\left(R_F/16\right)*(a_02^0+\,a_12^1+\,a_22^2+\,a_32^3)\text{ c.v.d.} \end{split}$$

3.2 Al valore digitale 1111 deve corrispondere il valore analogico più alto, ovvero -12V quindi deve essere $R_F=(16*V_{out})/(2^0+2^1+2^2+2^3)=(16*V_{out})/15~k\Omega=(16*12/15)=12.8~k\Omega$

3.2.1 Simulazione SPICE

Il circuito del convertitore D/A è il seguente:

sono stati omessi gli switch digitali; agli ingressi sono presenti le tensioni corrispondenti al valore digitale 1111. La simulazione mostra che con R_F = 12.8 k Ω , la tensione di uscita corrispondente a 1111 è effettivamente -12V.

```
--- Operating Point ---
```

Questo circuito converte un valore binario a 4 bit in una tensione compresa tra 0V (per $a_3a_2a_1a_0 = 0000$) e -12V (per $a_3a_2a_1a_0 = 1111$). L'intervallo di tensioni tra 0 e -12V è suddiviso in 2^4 -1 parti, ciascuna corrispondente alla cifra binaria $a_3a_2a_1a_0$ secondo l'equazione

$$V_{out} = -\frac{12.8}{16} [2^0 a_0 + 2^1 a_1 + 2^2 a_2 + 2^3 a_3]$$

Di conseguenza, a titolo di esempio, la cifra binaria 0001 corrisponde a -12.8/16 = -800mV, mentre 0100 corrisponde a -4*12.8/16 = -3.2 V.

Per studiare il comportamento del convertitore in SPICE, si applica un segnale a onda quadra al bit meno significativo, e si dimezza la frequenza passando al bit successivo. In questo modo tutte le parole binarie da 1111 a 0000 vengono applicate in sequenza; la forma d'onda della tensione di uscita permette di verificare l'esattezza della conversione. Nel seguito viene mostrato lo schema circuitale utilizzato per la conversione, e il risultato della simulazione della tensione di uscita in funzione del valore digitale applicato all'ingresso, dove '1' corrisponde a V_{in}=5V, e '0' corrisponde a 0V.

Circuito utilizzato per la simulazione SPICE del convertitore digitale-analogico. Per l'amplificatore operazionale sono stati utilizzati i valori di default della libreria. Il periodo della forma d'onda rettangolare applicata agli ingressi è di 20ms per a_0 , 40ms per a_1 , 80 ms per a_2 e 160 ms per a_3 .

Forme d'onda di tensione risultanti per V_{out} (in alto) e $V_3...V_0$. Alla base della figura sono riportati i valori binari corrispondenti a ciascun semiperiodo di V_0 , la tensione a frequenza maggiore