

面向MES系统的CAPP开发

学院:工程与设计学院 专业:机械工程

学号: 201580180367 专业类别: 工程硕士

答辩人: 高星 指导老师: 许第洪

目录

contents

PART 01 选题背景与意义

PART 02 研究思路与方法

PART 03 研究内容与成果

PART 04 总结与展望

01/选题背景

德国工业4.0

01/选题背景

德国工业4.0

政策层面分析

- 1. 中国制造2025
- 2. 两化融合
- 3. "互联网+"行动计划
- 4. 智能制造"十三五"

规划

技术层面分析

- 1. 自动化、数字化普及
- 2. 工业互联网,协同
- (云)制造
- 3. 物联网,大数据,人工智能

需求驱动的制造 方式变革

经济层面分析

- 1. 消费需求升级
 - 2. 市场竞争加剧
 - 3. 供给侧出清,产业升级

社会层面分析

- 1. 生活方式改变
- 2. 适龄劳动力减少,劳动力成本持续增长
- 3. 生态文明建设,绿色发展 理念

01/ 选题背景

德国工业4.0

01/选题背景

中国制造2025

01/ 选题背景

CAPP需求与目标变化

MES需要数据

面向 MES系统CAPP

01/选题背景

制造企业生产过程执行系统 车间信息化管理系统 车间生产管理系统 智能制造的基础

可大可小 中国智能制造大赛

01/研究现状(国内)

- 1、武汉开目信息技术责任公司的KMCAPP
- 2、陕西金叶西大软件股份有限公司的

CAPPFramework

- 3、北京清华京渝天河软件公司的TH-CAPP
- 4、北京艾克斯特科技股份有限公司的XTCAPP
- 5、武汉天喻信息产业股份有限公的IntelCAPP
- 6、大恒信息技术公司的DHCAPP5.0
- 7、上海思普信息技术有限公司的SIPM/CAPP
- 8、南京新模式软件集成有限公司的新模式工艺图表、新模式工艺汇总表
- 9、CAXA(北京北航海尔有限公司)CAXA工艺图
- 表、CAXA工艺汇总表
- 10、杭州浙大大天信息有限公司的GS-CAPP

- 11、山东山大华特软件有限公司的WIT-CAPP
- 12、南京东大软件工程有限公司的东大CAPP
- 13、重庆宏声新思维信息产业有限责任公司的

SYSWAY CAPP

14、北京斯泰普产品数据技术中心(C-STEP)的

LeadCAPP

- 15、湃睿科技的PI-3D CAPP系统
- 16、瑞恩CAPP软件系统
- 17、Extech CAPP工艺数据管理系统
- 18、武汉开目信息技术责任公司的3D 装配工艺

CAPP

- 19、WinKanCAPP
- 20. cappwork

01/研究现状(国内)

序号	类别	目标	典型软件	备注
1	简易式CAPP	电子化取代纸质化	AutoCAD Excel Word	
2	工具型CAPP	帮助工艺人员更方便 的进行工艺设计	CAXA工艺设计师 开目CAPP	
3	自动型CAPP	研究自动生成工艺 文件	无成熟产品	
4	插件式CAPP	依托其他CAD软件 二次开发的工具	WinKanCAPP基于 solidWork 湃睿科技三维工艺 基于Por/E	
5	数据库驱动CAPP	提取工艺数据	天河CAPP CAPPFramework	
6	智能型CAPP	使用人工智能等 研究自动生成工艺	无成熟产品	

01/研究现状(国外)

年份	提出者	简介
1965年	NiebelBW	首次提出 CAPP 思想
1969 年	挪威	世界上第一个具有实用价值的 CAPP 系统,即AUTOPROS 系统。
1976年	美国 CAM- I 公司	美国 CAM-I 设计并研发的 CAM-I's AutomatedProcess Planning 系统,简写为 CAPP。该系统在 CAPP发展史上具有十分深远意义
1977 年	Wysk	研发出一套创成式 CAPP 系统,即 APPAS 系统, 该系统采用详细工艺路线选择描述。 此系统是对CAPP 系统深入研究的结果
1985年1月	CIRP	由国际生产工程协会(CIRP)举办了第一场 关于CAPP 系统的专题研究会议
1985年11月	ASME	美国机械工程师协会(ASME)将"计算机辅助/智能工 艺过程设计"作为该协会冬季会议的主要议题
1987年6月	CIRP	国际生产工程协会(CIRP)再次召开了一场关于 CAPP 系统的学术专题研讨会, 引领 CAPP 技术的发展达到了一个全新的高度

01/存在问题与意义

信息孤岛,未底层设计 (物料编码)

工艺数据信息不完整

常规CAPP功能 为MES提供基础数据 为无人车间提供工艺数据

02 研究思路与方法

对制造系统进行分析

进行CAPP架构设计

编写CAPP程序并进行验证

以MES需求为出发点进行分析

传统的工艺卡片的数据转化

对本CAPP软件功能需求进行分析

PART THREE

01

德国工业4.0核心思想

02

制造系统组成

03

需求分析

04

框架设计

编程应用

德国工业4.0核心思想

1个系统:

CPS赛博物理系统

三项集成:

纵向集成 横向集成 端对端集成

2个主题: 智能工厂 智能生产

制造系统及组成

离散型制造系统的典型结构

03

需求分析 (MES)

物料清单BOM

工艺数据(更具体)

设备控制程序

需求分析 (MES)

03

需求分析(工人)

03

需求分析 (工艺员)

分 人机界面

分 工艺资源库

企业资源库

安全

框架设计

数据库驱动

物料编码支撑

基于用户角色的权限设定

CAPP系统的输入与输出

易操作的软件界面

框架设计

编程应用

用户名	组名	组说明	ERP用户代码
admin	管理员组	admin	
李贤清	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
袁俊	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
王友欢	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
唐曙光	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
傅雷	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
张任旭	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
张若斌	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
王笃志	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
李振凯	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
唐福杰	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
但佩	PDM专员组	新建BOM、修改BOM、审核BOM、用…	
李利芳	人事组		
肖衡	人事组		

编辑	×
🔚 保存并关闭 🚪 取消并退出	
用 户 名: <mark>傅雷</mark> 密 码: [用 户 组: PDM专员组	•

登入与用户

05

编程应用

编程应用

编程应用

▼ I艺BOM导入外部文件管理				X
🌄 驳回 🎒 审核通过 📵 查看结构	🧳 刷新 🔋 退出			
□ 显示数量 □ 显示代号 □ 显示	详细字段			4 Þ
编码筛选:	文件名:	物料编码:		
□ 🔢 0101040004[钢板]	代号/规格:	名称:		
	材料:	数里:		
	单重:	总重:		
	制造属性:	规格:		

工艺审核

编程应用

工艺管理

总结与展望

04/总结与展望

成就和创新点:

- 1、以数据库驱动的CAPP;
- 2、兼顾传统的CAPP功能;
- 3、从底层考虑了MES与ERP等所需数据;
- 4、CAPP系统易用、实用;
- 5、为智能制造提供数据支撑。

04 总结与展望

展望

- 1、结合大数据进行智能制造;
- 2、结合虚拟仿真进行工艺验证;
- 3、结合3D框架进行CAPP设计;

感谢恩师

感谢各位评委老师提出宝贵意见

THANKS