

Master Mathématiques Analyse Numérique Calcul Scientifique

Optimization solver benchmark for 3D topology optimization problems

G.O.AGYEKUM

17 juillet 2019

Optimization solver benchmark for 3D topology optimization problems

G.O.AGYEKUM

17 juillet 2019

Le but du stage est d'évaluer et comparer les performances de plusieurs solveurs d'optimisation, quand appliqués à divers problèmes d'optimisation topologique de structure mécanique sous contraintes dans le cadre de l'élasticité linéaire. Une bibliothèque complète et représentative de minimisation de la compliance d'une structure élastique et de minimisation de volume pour différentes tailles EF est devéloppée pour cette analyse comparative.

La compliance minimale ou la minimisation de volume est en fait un problème "mal posé", c'est à dire qu'en général il n'existe pas de solution optimale et les solutions calculées par des méthodes numériques classiques sont dépendantes d'un choix initial de constrate et du maillage...Mais la méthode SIMP ¹, combinés à la méthode density filter ² basée sur la théorie de l'homogénéisation permet de rendre ce problème biens posé.

Plusieurs solveurs y compris MMA,GCMMA,OC 3 , et les solveurs dans IPOPT, NLOPT sont répertoriés dans la bibliothèque et leurs performances sont évaluées et comparées à l'aide d'une courbe de performance.

Quand c'est possible les solveurs sont comparés quand appliqués à des problèmes aux formulations Nested et/ou aux formulations SAND. Tous les solveurs sont branchés dans le code PETSc TopOpt ⁴ et les tests numériques sont effectués sur HPC.

Table des matières

1	INT	RODU	CTION	3
	1.1	Motiv	ations	3
	1.2	État	le l'art	3
		1.2.1	Optimisation topologique des structures mécaniques	3
		1.2.2	Les diffèrents problèmes d'optimisation topologique des structures mécaniques	4
		1.2.3	La compliance minimale	4
		1.2.4	Minimum Volume	7
		1.2.5	La méthode SIMP : méthode numérique d'optimisation topologique des	
			structures mécaniques	7
		1.2.6	Exemple classique d'optimisation topologique : Top88 et Top3d	8
		1.2.7	Présentation de quelques d'optimiseurs	15
		1.2.8	Exemple de Benchmarking en 2D	15
2	lmp	lément	ation et benchamarking en 3D sur HPC	15
	2.1	Impléi	mentation dans Topopt Petsc	15

- 1. Méthode d'interpolation du matériau
- 2. Méthode numérique qui assure l'existence d'une solution optimale
- 3. Méthodes classiques d'ordre 1
- 4. Bibliothèque en C++ dévelopé par N. Aage, E. Andreassen, B. Lazarov

Con	clusion et	futur travail									15
2.2	Résultats	numériques	du benchmark	ing sur H	PC .	 	 				15

1 INTRODUCTION

1.1 Motivations

Le besoin d'optimiser une fonction objectif est fréquent dans les tâches de conception industrielle et de gestion. Dans la phase de conception d'un nouveau produit, par exemple, l'ingénieur veut non seulement minimiser les coûts, mais aussi probablement maximiser les performances, minimiser le poids ou maximiser la durée de vie du produit. En pratique, la fonction objectif n'est souvent pas donnée sous une forme explicite, mais elle est définie de manière implicite, par exemple comme le résultat d'une simulation.

Dans un tel cas, on peut utiliser des méthodes classiques comme OC, MMA et GCMMA pour résoudre le problème. Cependant, de nombreux algorithmes existants sont disponibles et ce n'est pas simple pour un utilisateur de choisir un algorithme à appliquer à un nouveau problème inconnu.

C'est là que l'analyse des performances des algorithmes rentre en jeu. Si les difficultés observées dans les problèmes pratiques sont couvertes par un ensemble de problèmes test bien compris, les algorithmes peuvent être comparés afin de déterminer quels algorithmes fonctionnent mieux que d'autres. C'est pourquoi, on visera à évaluer des combinaisons de méthodes d'optimisation et de formulations dans les problèmes d'optimisation topologique à l'aide d'une courbe de performances pour déterminer si elles sont efficaces, robustes et fiables pour cette classe de problèmes.

Les solveurs plus généraux dans IPOPT et NLOPT sont comparés aux méthodes d'optimisation topologique plus couramment utilisées (ou classiques) comme OC, MMA et GCMMA.

1.2 État de l'art

1.2.1 Optimisation topologique des structures mécaniques

Pour guider le choix des solutions techniques ou dimensionner des sous-ensembles vers une solution moins mauvaise que les autres , les bureaux d'études emploient de plus en plus des méthodes d'optimisation, et en particulier l'optimisation topologique.

Les outils d'optimisation sont utilisés dans de trés nombreux domaines dont la gestion de production, la finance, les transports aériens et ferroviares entre autres ... ET ces méthodes sont utilisés en particulier dans les bureaux d'études mécaniques en génie civil, construction navale, aéronautiques et automobile entre autres... Et certains outils d'optimisation sont spécifiques à un type de problème, par exemple la méthode ${\rm OC}^{\,5}$ et ont été dévéloppés pour répondre à un besoin précis, d'autres sont plus généraux...

Mais les techniques d'optimisation reposent sur un ensemble de définitions d'objets mathématiques importantes et sont souvent difficiles à comprendre et à utiliser... Les routines d'optimisation nécessitent la formulation analytiques du problème et celui-ci doit se tourner vers le calcul numérique.

Grâce à l'avènement de l'ordinateur, l'idée de conception optimale (ou vers une solution meilleure) des structures mécaniques est possible... Sur la base d'une conception initiale définie par un certain nombre de paramètres de valeur variable, appelés variables de conception, l'optimisation des structures vise à déterminer de manière algorithmique (ou automatique) la conception qui est la meilleure au regard des critères liés à des performances structurales. La conception optimale est trouvée par un procédé itératif altenant analyse structurale et application d'une technique d'optimisation.

^{5.} Optimal criteria

Mais la physique d'un certain problème à optimiser est souvent traduite par des équations aux dérivées partielles dont la solution, si elle existe, est très souvent inconnue... Et utiliser diverses techniques numériques comme par exemple les élements finis permet d'approcher cette solution. Dans ce cadre on en considérera la méthode des éléments Finis (MEF) pour l'analyse structurale afin de déterminer une conception optimale... On ne peut pas faire de l'optimisation sans la maitrise de MEF, de la modélisation et le maillage.

Le problème d'optimisation topologique est formulé comme étant la recherche de la distribution optimale des propriétés matérielles dans un domaine de conception initiale prescrit... Ce type d'optimisation s'applique aux structures discrétisées par des éléments de barres, de poutres (MEF discrets), de membranes, de plaques ou de coques, et de volumes (MEF continues).

Le but de l'optimisation topologique, par exemple dans le cas MEF discrets c'est de déterminer quelles barres ou poutres vont conserver les propriétés mécaniques du matériau les constituant à la solution, les autres éléments structuraux étants, eux affectés de propriétés mécaniques proches du vide (ou zéro). Le maillage est donc figé, seules les propriétés mécaniques de la conception changent et ne subit aucune évolution au fur et mesure des itérations... Donc la topologie des éléments et le raffinement du maillage ont une influence sur la conception (ou solution) optimale.

On en considérera la discrétisation par MEF continues... Dont chaque élément fini e est définie une variable de conception, notée $\rho_e \in \{0,1\}^6$ et appelée pseudo-densité... Le problème est de déterminer l'absence de matière ou non dans chaque élément e à la solution optimale. Mais dans le cas pratique, on travaille en variables continues qui varient dans l'intervalle]0,1]... on évite de prendre des valeurs nulles pour éviter la singularité numérique liée à la suppression complète d'un membre structural... Donc la matrice de rigidité (ou de masse) obtenue par MEF continues est toujours définie positive.

1.2.2 Les diffèrents problèmes d'optimisation topologique des structures mécaniques

Comme nous l'avons dit précedement, l'optimisation topologique des structures mécaniques est la recherche de la distribution optimale de la matière dans un domaine de conception prescrit...Dont la fonction objectif et les contraintes correspondent à des réponses structurales représentant le poids de la structure, et sa raideur. Ces variables de conception, appelée pseudo-densité sont comme l'épaisseur de membres structuraux, les contraintes sur les variables définissent la géométrie de la pièce à concevoir...Celles-ci permettent de paramétrer avec plus ou moins de libérté la structure étudiée... La validité de la solution est fixée par les performances structurales et les restrictions à la conception (ou les contraintes) retenues dans le problème d'optimisation.

En d'autres termes, selon la manière avec laquelle on va paramétrer le problème, on pourra définir différents problèmes d'optimisation...On en considérera deux classes de problèmes d'optimisation topologique des structures mécaniques : la compliance minimale et minimum volume

1.2.3 La compliance minimale

La fonction objectif classique en optimisation topologique est la fonction énergie associée à la force appliquée à la structure mécanique...On maximise la raideur de la structure dont on connait l'encombrement, les conditions limites et les chargements. C'est-à dire qu'on minimise l'énergie associée à la structure... Cette énergie est appelée la compliance. En d'autres termes, on minimise le déplacement sous la charge...La contrainte du problème de minimisation de la compliance est liée au volume de la matière (ou à la masse) à conserver dans le domaine de conception initial...Ainsi le modèle mathématiques du problème continue d'optimisation topologique peut être formulé comme suit :

Etant donné Ω_0 , domaine de conception initiale...Dans le cadre de l'élasticité linéaire, chercher le

^{6.} on parle de Black and white

tenseur optimale des déformations $E_{ijkl}(\mathbf{x})^7:\Omega_0\to\mathbb{R}$ telqu'il minimise :

$$\min_{\tilde{E} \in E_{AD}} l(u(\tilde{E}))$$

, où u(E) est solution du problème variationnelle (PV) : $u \in V$, a(u,v) = l(v) $\forall v \in V$,

avec :

$$a(u,v) = \int_{\Omega_0} E_{ijkl}(x)\epsilon_{ij}(u)\epsilon_{kl}(v)dx$$
$$, \epsilon_{ij}(u) = \frac{1}{2}(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})$$
$$l(v) = \int_{\Omega_0} \Omega f v dx + \int_{\Omega} \Gamma_N t u dx,$$

où f : = le chargement, t := est la traction sur la surface Γ_N

L'espace admissible des tenseurs des déformations est définit comme suit :

$$E_{AD} = \{ \tilde{E} : \Omega_0 \to \mathbb{R} \text{ tq } \exists \Omega \subset \Omega_0 : \tilde{E} = 0 \text{ dans } \Omega_0 \setminus \Omega, \int_{\Omega^{mat}} 1 dx \leq V_f, V_f \text{ est donné } \}$$

Autrement dit, on cherche une conception optimale Ω dans un domaine de conception prescrit Ω_0 dont la contrainte est liée au volume ($|\Omega|$) de la matière (ou masse) à conserver dans le domaine de conception intiale... Et qui minimise la compliance (ou la fonction objective).

L'approche classique d'optimisation topologique des structures mécaniques est souvent faite à l'aide de la MEF...On en considerera parmis les techniques les plus répandues, la méthode d'homogénéisation (Bendsøe et Kikuchi,1988)...Dans cette approche, on associe à chaque élément une densité indiquant la présence ou non de matière. Cette densité, $\rho(x_e)$ est traduite numériquement par une valeur entre 0 et 1 pouvant évoluer de manière discrète (0-1) ou continue ([0,1])...Autrement dit la densité $\rho(x)$ est constante par morceaux, ie $\rho(x) = \chi_{\Omega}(x)$, $\Omega \subset \Omega_0$...Dont L'espace admissible des tenseurs des déformations s'écrit :

$$E_{AD} = \{ E_{ijkl}(x) = E_{ijkl}^{0} \chi_{\Omega}(x), |\Omega| \le V_f \}$$

Cependant cette technique a quelques inconvénients... Tout d'abord, la présence de la densité intermédiare peut être difficile à interpréter pour la réalisation de la pièce...On peut alors pénaliser les densités intermédiaires en considérant que la raideur évolue selon une loi avec un exposant p > 1 pour la densité...Ainsi l'espace admissible des tenseurs des déformations peut se reécrit sous la forme :

$$E_{AD} = \{ E_{ijkl}(x) = E_{ijkl}^0 \rho(x)^p, \int_{\Omega} \rho \le V_f \}$$

Et il a été prouvé que le nombre p est lié au coefficient de Poisson ν^0 (qui a son tour est lié au tenseur E^0) par la relation géometrique :

$$p \geq \max\{15\frac{1-\nu^0}{7-5\nu^0}, 1.5\frac{1-\nu^0}{1-2\nu^0}\}$$

Cette approche permet ainsi à une densité intermédiare de prendre une valeur discrète entre 0-1... Empiriquement, la valeur p=3 est souvent utilisée pour assurer l'existence d'une solution... Mais la solution peut présenter un aspect de damier sur les éléments.

Un filtrage inspiré du traitement d'images fut proposé par Sigmund en 1994 pour éviter l'apparition d'une structure à un aspect de damier (ou plus géneralement de trous en dessous d'une certaine échelle)...Cette technique d'homogénéisation, est appelée la méthode SIMP (Solid Isotropic Material with Penalization) combinée à la méthode de filtrage (density-filter)...Et permet de rendre le problème d'optimisation topologique des structures mécaniques bien posé...

^{7.} c'est un tenseur (ou matrice) symétrique d'ordre 2 servant à décrire l'état de déformation local résultant de contraintes (ou des efforts internes)...Dans le cadre de l'élasticité linéaire le tenseur des déformations est relié au tenseur des contraintes par la loi de Hooke généralisée.

En pratique, le problème d'optimisation topologique est formulé comme suit... C'est la formulation equivalente basé sur MEF (ou méthode de Galerkin).

Le système equivalent associé à la formulation, a(u,v)=l(v) est donné par l'équation d'équilibre d'élasticité linéaire :

$$K(x)U - F = 0,$$

où $U \in \mathbb{R}^d$ est la variable d'états (ou le vecteur déplacement nodal) et $x \in \mathbb{R}^n$ est la variable de conception (ou design)...La variable de design représente la densité du matériau dans chaque élément e du maillage...Deplus $F \in \mathbb{R}^d$ est le vecteur de chargement, d est le nombre de dégrés de liberté, et n le nombre d'éléments...La matrice de raideur (ou rigidité) $K(x) : \mathbb{R}^n \to \mathbb{R}^{d \times d}$, et on supose K(x) définie positive pour tout variable de conception $x \in [0,1]$...une petite valeur E_{min} est inclu dans la définition de la matrice de raideur pour une densité $\rho(x)$ de valeur nulle pour éviter la singularité numérique liée à la suppression complète d'un membre structural.

Il existe différentes manières de modéliser le problème d'optimisation...Dans la première approche la compliance est minimisé sur x (variable de densité ou conception) et U (vecteur de déplacement)...elles sont considérées comme des variables indépendantes.

En outre les équations d'équilibre K(x)U - F=0 sont explicitement inclus en tant que contraintes d'égalité...La formulation (P_S^c) , communément appelé SAND (Simultaneous Analysis and Design) et définie sous la forme :

$$\begin{aligned} & \min_{x,U} \ F^T U \\ \text{sujet à : K(x)U - F} &= 0 \quad (P_S^c) \\ a^T x &\leq V_f \ ; \ 0 \leq x \leq 1 \end{aligned}$$

est une modélisation du problème de compliance minimale... Le volume relatif (ou élémentaire) à chaque variable de conception x, est défini par $a \in \mathbb{R}^n$, avec $a_e > 0$, \forall e=1,...n...Et finalement $0 < V_f \le 1$ est la fraction volumique ⁸...Le problème (P_S^c) ainsi défini, est linéaire avec contraintes égalité (non linéaire) et inégalité (linéaire)...De Tel problème d'optimisation topologique est géneralement caractérisé comme un problème non convexe.

Une autre façon de formuler le problème compliance minimale serait de considérer la fonction objective comme non linéaire et d'exprimer le chargement F comme la solution des équations d'équilibre K(x)U - F=0...Et on peut modéliser le problème de compliance minimale par la formulation (P^c_{SNL}) , qui s'ecrit sous la forme :

$$\begin{aligned} & \min_{x,U} \, U^T K(x) U \\ & \text{sujet } \grave{\mathbf{a}} : \, \mathbf{K}(\mathbf{x}) \mathbf{U} - \mathbf{F} = 0 \quad (P^c_{SNL}) \\ & a^T x \leq V_f \, ; \, 0 \leq x \leq 1 \end{aligned}$$

En pratique on n'utilise pas cette formulation car la performance des solveurs à la formulation SAND est très similaire à cette formulation....Le nombre de contraintes et de variables peut être réduit dans le problème de compliance minimale si le problème est formulé en utilisant uniquement la variable de conception...Le déplacement provoqué par la force est déterminé par l'équation d'équilibre :

$$U(x) = K(x)^{-1}F$$

Par conséquent l'équation d'états $U(x) = K(x)^{-1}F$ est ainsi résolu lors de l'évaluation de la fonction objective....Et la formulation (P_N^c) communément appelé Nested, permet de modéliser le problème de compliance minimale sous la forme :

$$\min_{x} U(x)^T K(x) U(x)$$
 sujet à : $a^T x \leq V_f$; $0 \leq x \leq 1$ (P_N^c)

C'est la formulation classique en optimisation topologique des structures mécaniques...Cependant l'évaluation de la fonction objective, du gradient et de la hessienne est plus coûteuse ⁹.

^{8.} C'est la contrainte volume sur x

^{9.} notamment le calcul de l'inverse de K(x)

On en considérera la formulation Nested pour modéliser le problème d'optimisation topologique des structures mécaniques.

1.2.4 Minimum Volume

Les problèmes d'optimisation topologique des structures mécaniques peuvent également être formulés sous la forme d'une minimisation de la structure avec une contrainte (ou une restriction) sur la compliance...Similaire au problème de compliance minimale (P_S^c) , la formulation SAND au problème de minimum volume (P_S^w) est formulé sous la forme :

$$\min_{x,U} \, a^T x$$
 sujet à : $K(x)U - F = 0$; $F^TU \leq C$; $0 \leq x \leq 1 \quad \ (P^w_S)$

, où C > 0 est une constante donné... C'est la contrainte sur la compliance... Dans la formulation Nested (P_N^w) , l'équation d'équilibre est satisfaite dans la contrainte d'inégalité non linéaire (c'est à dire la contrainte sur la compliance) et est formulé sous la forme :

$$\min_x \, a^T x$$
 sujet à : $U(x)^T K(x) U(x) \leq C$; $0 \leq x \leq 1 \quad (P_N^w)$

Finalement dans la formulation SANDNL (P^w_{SNL}) , la contrainte égalité et la contrainte inégalité sont non linéaires et s'écrit sous la forme :

$$\min_{x,U} \, a^T x$$
 sujet à : $K(x)U-F=0$; $U^TK(x)U\leq C$; $0\leq x\leq 1 \quad (P^w_{SNL})$

Pour les problèmes de volume minimum, la fonction est linéaire et la non linéarité apparaît dans les contraintes.

1.2.5 La méthode SIMP : méthode numérique d'optimisation topologique des structures mécaniques

Les méthodes d'optimisation topologique des structures mécanique est actuellement dominé par des méthodes qui utilisent la distribution des propriétés matérielles dans un domaine de conception prescrit...Ces méthodes sont basées sur la théorie de l'homogénéisation.

Le processus d'optimisation topologique a souvent pour objectif de déterminer quels éléments de la structure vont conserver les propriétés mécaniques du matériau les constituant à la solution, les autres éléments structuraux étants, eux affectés de propriétés mécaniques proches du vide...En d'autres termes on associe à chaque élément une densité $\rho(e)$, indiquant la présence ou non de matière...Cette densité est traduite numériquement par une valeur entre 0 et 1.

Les modèles d'interpolation de matériaux sont très populaires dans d'optimisation topologique pour convertir le problème 0-1 (problème discret) en un problème continue dans l'intervalle [0,1]...Et ces modèles permettent ainsi à une densité intermédiare de prendre une valeur discrète entre 0-1.

La méthode SIMP est l'une des approches les plus courantes...Dans ce modèle, la densité x est remplacée par une loi de puissance...Par contre, la solution du problème continue peut présenter un aspect de damier sur les éléments et que l'approche SIMP ne résout pas...Cependant l'utilisation d'un filtrage inspiré du traitement d'images permet d'éviter l'apparition d'une structure à damier, d'assurer la régularité de la matrice de raideur K(x) et l'existence d'une solution.

Plus précisement, le filter de densité (ou le filtrage) est défini de la manière suivante :

Étant donné un élément fini e, est définie une variable de conception \tilde{x}_e et appeléé densité physique...La variable \tilde{x}_e dépend d'une moyenne pondérée dans un voisinage de rayon r_{min} de centre l'élément e :

$$\tilde{x}_e = \frac{1}{\sum_{i \in N_e \overline{H}_{ei}}} \sum_{i \in N_e} \overline{H}_{ei} x_i$$

$$\overline{H}_{ei} = max(r_{min} - \Delta(e, i))$$

où \tilde{x}_e est la transformée de la variable de densité x_e de l'élément e, N_e est l'ensemble des éléments pour laquelle la distance à l'élément e (définie par $\Delta(e,i)$) est plus petit que le rayon du filter r_{min}En pratique cette valeur concrète est tirée de l'équation $r_{min} = 0.04L_x$. Où L_x est la longueur du domaine de conception dans la direction des abscisses x (du plan cartésien).

La matrice de raideur modifiée utilisant la méthode SIMP et density filter est sous la forme :

$$K(x) = \sum_{e=1}^{n} (E_v + (E_1 - E_v)\tilde{x}_e^p) K_e$$

Où $p \geq 1$ et E_1 et E_v sont les modules de Young du matériau solide et du matériau proche du vide respectivement...Le paramètre E_v est inclu dans définition de K(x) pour éviter la singularité numérique liée à la suppression complète d'un membre structural (c'est le cas lorque la densité x prends une valeur nulle)...Cette formulation s'est révélée particulièrement efficace dans de nombreux cas.

Empiriquement, la valeur p=3 est souvent utilisée pour assurer l'existence d'une solution...En pratique cette valeur est souvent utilisée (dans les expériences numériques).

1.2.6 Exemple classique d'optimisation topologique : Top88 et Top3d

Top88 est un code en Matlab dont les auteurs sont Erik Andreassen, Anders Clausen, Mattias Schevenels, Boyan S. Lazarov et Ole Sigmund... C'est une version améliorer (en termes de performance de calculs) du code Top99 dont l'auteur est Ole Sigmund.

Le code est implanté à l'aide de 88 lignes de code ¹⁰ destiné à résoudre efficacement un problème classique d'optimisation topologique en 2d...Et top3d est version réadapté de Top88 pour 3d...Top88 génére et résoud des problèmes classique de compliance minimale...On considère en exemple l'optimisation de structure de type Michell, "MMB beam" ¹¹ et "Cantilever" ¹²

Problème en 2d : Michell, Cantilever et MBB beam

Le domain de conception prescrit, les conditions limites et le chargement extérieure de la structure de type Michell, Cantilver et "MMB beam" est montré ci-dessous.

^{10.} contrairement Top99 qui lui est implanté à l'aide de 99 lignes de code

^{11.} Problème de Poutre

^{12.} porte-à-faux

Algorithme implanter dans top88

(1) La méthode SIMP modifiée

Le domain de conception est dicrétisé par élément fini carré...A chaque élement e, est associé une densité x_e et à chaque x_e est associée un module de Young E_e définie comme suit :

$$E_e(x_e) = E_{min} + x_e^p (E_0 - E_{min})$$

Avec $x_e \in [0,1]$, E_0 la raideur du matériau, E_{min} une trés petite valeur de raideur associé aux éléments dont la propriété physique est proche du vide...on veut éviter une singularité dans la matrice de raideur...Et p la pénalisation (où la valeur p=3 est souvent utilisée) pour convertir le problème 0-1 en un problème continue.

(2) Formulation:

$$\begin{aligned} & \min_{x,U} \, c(x) = U^T K U = \sum_{e=1}^N E_e(x_e) u_e^T k_0 u_e \\ & \text{sujet à} : V(x)/V_0 = f \, ; \, K U = F \, ; \, 0 \leq x \leq 1 \quad (P_S^c) \end{aligned}$$

Où c est la compliance, U et F sont respectivement les vecteurs globaux de déplacement et de chargement, K la matrice globale de raideur, u_e est le vecteur locale de déplacement... k_0 est la matrice élémentaire de raideur de module young égal à 1 et qui est la même pour tous les éléments, x est vecteur de densité ou conception, N est le nombre d'éléments de discrétisation par élément fini de domain de conception initial, V(x) et V_0 sont respectivement le volume du matériau relatif à la variable de densité x et le volume du domain de conception initial, et f est la fraction volumique prescrit.

(3) Sensibiltés c et V par rapport à la densité x_e

La sensibilité de la fonction objective c et le volume V par rapport à la densité x_e sont donnés par :

$$\frac{\partial c}{\partial x_e} = -px_e^{p-1} (E_0 - E_{min}) u_e^T k_0 u_e$$

$$\frac{\partial V}{\partial x_e} = 1$$
(2)

$$\frac{\partial V}{\partial_{x_e}} = 1 \tag{2}$$

L'équation (2) repose sur l'hypothèse que chaque élément e est associé une densité x_e ...C'est à dire $V(x) = a^T x$, avec a=(1,...,1).

(4) Filtrage

Afin de garantir l'existence de solutions au problème d'optimisation topologique et d'éviter l'apparition d'une structure à damier, certaines restrictions sur la conception doivent être imposées...L'une des approches courantes consiste à appliquer un filtre soit aux sensibilités ou soit aux densités.

Le filtrage de sensibilité modifie les sensibilités $\frac{\partial c}{\partial_{x_e}}$ comme suit :

$$\frac{\hat{\partial c}}{\partial x_e} = \frac{1}{\max(\gamma, x_e) \sum_{i \in N_e} H_{ei}} \sum_{i \in N_e} H_{ei} x_i \frac{\partial c}{\partial x_i}$$
(3)

Où N_e est l'ensemble des éléments pour lequels $\Delta(e,i)$ est inférieure au rayon de filtrage r_{min} et H_{ei} est est un facteur de pondération défini comme :

$$H_{ei} = max(0, r_{min} - \Delta(e, i)) \tag{4}$$

Le terme γ (= 10^{-3}) dans (3) est un petit nombre positif introduit afin d'éviter la division par zéro...Dans l'approche classique de la méthode SIMP la variable de densité x_e est dans (0,1] et donc le terme γ n'est pas requis.

Le filtre de densité est transforme les denstités x_e comme suit :

$$\tilde{x_e} = \frac{1}{\sum_{i \in N_e} H_{ei}} \sum_{i \in N_e} H_{ei} x_i \tag{5}$$

Dans ce qui suit, les densités x_e sont appélées variables de conception...Le filtre de densités $\tilde{x_e}$ sont appelés densités physiques...On en considérera $\tilde{x_e}$ plutôt que x_e comme solution au problème d'optimisation topologique...Dans le cas où un filtre de densité est appliqué, les sensibilités $\frac{\partial c}{\partial x_e}$ (de la fonction objective c) et $\frac{\partial V}{\partial x_e}$ (du volume V du matériau) sont toujours donnés par (1) et (2), à condition que la variable x_e est remplacée par la variable $\tilde{x_e}$.

Les sensibilités vis-à-vis des variables de conception xj sont obtenues au moyen de la règle de dérivation en chaîne ou théorème de dérivation des fonctions composées :

$$\frac{\partial \psi}{x_j} = \sum_{e \in N_j} \frac{\partial \psi}{\partial \tilde{x_e}} \frac{\partial \tilde{x_e}}{\partial x_j} = \sum_{e \in N_j} \frac{1}{\sum_{i \in N_e} H_{ei}} H_{je} \frac{\partial \psi}{\partial \tilde{x_e}}$$
 (6)

Où ψ représente soit la fonction objective c, soit le volume V du matériau.

(5) Implémentation Matlab

Le code est appelé à partir de l'invite MATLAB à l'aide de la ligne suivante :

top88 (nelx,nely,volfrac,penal,rmin,ft)

Où nelx et nely sont le nombre d'éléments dans les directions horizontale et verticale, respectivement, volfrac est la fraction volumique f prescrit, penal est la puissance de pénalisation p, rmin est le rayon du filtre r_{min} et ft spécifie si on veut un filtrage de sensibilité (ft=1) ou si on veut un filtrage de densité (ft=2).

Un exemple de problème d'optimisation topologique en 2d: le "MMB beam" peut être reproduit à l'aide de l'appel de fonction suivant : top88 (60,20,0.5,3,1.5,1)

La structure "MMB beam" optimisée est montré par la fig 1, le Cantilever par la fig 2 et le Michell par la fig 3.

(5.1) Méthode d'éléments finis

Le domaine de conception est supposé rectangulaire et discrétisé par éléments carrés...Un exemple de maillage grossier composé de 12 éléments avec quatre nœuds par élément et deux degrés de liberté (DDL) par nœud est présenté à l'aide du tableau suivante :

Les nœuds et les éléments sont numérotés par colonne, de gauche à droite, et les DDL 2n-1 et 2n correspondent aux déplacements horizontal et vertical du noeud n, respectivement.

La partie prétraitement par MEF commence par la définition des propriétés du matériau : E0 est le module de Young E_0 du matériau, Emin est le module de Young 'artificiel' E_{min} des éléments dont les propriétés caractérisques du matériau est proche du vide et nu est le coefficient de Poisson ν .

Ensuite, la matrice élémentaire k_0 de régidité pour un élément e avec module de Young $E_0 = 1$ est calculée...Cette matrice est notée comme KE...En raison de la régularité du maillage, cette matrice est identique pour tous les éléments.

Afin de permettre un assemblage efficace de la matrice de raideur globale dans la boucle de l'optimiseur, une matrice edof Mat est construite...La i-ème ligne de cette matrice contient les huit indices DDL correspondant au i-ème élément...La matrice edof Mat est construite en trois étapes :

Tout d'abord, une matrice (nely + 1) \times (nelx + 1) avec les numéros des nœuds est définie...La fonction MATLAB Reshape est utilisée; cette fonction retourne une matrice de la taille spécifiée par les deuxième et troisième arguments d'entrée, dont les éléments sont pris à partir du premier argument d'entrée (qui est dans ce cas un vecteur contenant les numéros des nœuds du maillage)...Ensuite, la matrice nodenrs est utilisée pour déterminer le premier indice DDL pour tous les éléments du maillage par EF et qui sont stockés dans un vecteur edofVec...Enfin, la matrice edofVec est utilisée pour déterminer les huit indices DDL pour chaque élément e...Pour cela, la fonction MATLAB repmat est appelée deux fois...Cette fonction copie une matrice en un nombre de fois spécifié dans les sens vertical et horizontal.

Le premier appel à la fonction repmat renvoie une matrice à huit colonnes, qui sont toutes des copies du vecteur edofVec... Le deuxième appel à la fonction repmat renvoie une matrice de même taille où toutes les lignes sont identiques; cette matrice relie les indices des huit DDL d'un élément e à l'indice de son premier DDL stocké dans le vecteur edofVec...Les résultats sont additionnés et rassemblés dans la matrice edofMat.

Pour l'exemple de maillage grossier illustré à la Figure ci-dessus, cette procédure donne le résultat suivant :

$$\texttt{edofMat} = \begin{bmatrix} 3 & 4 & 11 & 12 & 9 & 10 & 1 & 2 \\ 5 & 6 & 13 & 14 & 11 & 12 & 3 & 4 \\ 7 & 8 & 15 & 16 & 13 & 14 & 5 & 6 \\ 11 & 12 & 19 & 20 & 17 & 18 & 9 & 10 \\ \vdots & \vdots & \vdots & \vdots & \vdots & & & & \\ 31 & 32 & 39 & 40 & 37 & 38 & 29 & 30 \end{bmatrix} \leftarrow \begin{array}{l} \leftarrow \text{Element 1} \\ \leftarrow \text{Element 2} \\ \leftarrow \text{Element 4} \\ \leftarrow \text{Element 1} \\ \leftarrow \text{Element 2} \\ \leftarrow \text{Element 3} \\ \leftarrow \text{Element 4} \\ \leftarrow \text{Element 1} \\ \leftarrow \text{Element 1} \\ \leftarrow \text{Element 2} \\ \leftarrow \text{Element 3} \\ \leftarrow \text{Element 4} \\ \leftarrow \text{El$$

A chaque itération de la boucle de l'optimiseur, l'assemblage de la matrice de raideur globale K est effectué à l'aide de la fonction MATLAB sparse... La procédure suivie ici est inspirée de l'approche décrite par Davis (2007)...La fonction sparse prend comme arguments d'entrée trois vecteurs : les premier et second contiennent les index de ligne et de colonne des entrées de matrice non nulles, qui sont collectés dans le troisième vecteur...Les vecteurs d'index de ligne et de colonne (iK et jK, respectivement) sont créés à partir de la matrice edofMat..On utilise un produit matriciel (à l'aide de fonction Matlab Kronecker) avec un vecteur unitaire de longueur 8 suivi d'un "resharping" (à l'aide de la fonction Matlab reshape).

Les vecteurs iK et jK sont structurés de sorte que les indices iK (k) et jK (k) correspondent à la (i,j) ème entrée de la matrice de raideur pour l'élément e, où k = i + 8 (j -1) +64 (e -1)...Le troisième vecteur, contenant les entrées de la matrice de raideur (matrice creuse), est calculé dans la boucle de l'optimiseur, car cela dépend des densités physiques $\tilde{x_e}$...Ce vecteur sK, est obtenu via "reshaping" de la matrice d'élémentaire KE pour obtenir un vecteur colonne...Et en multipliant ce vecteur avec le module de Young $E_e(\tilde{x_e})$ pour chaque élément e, suivi d'opération de concaténation des résultats pour tous les éléments...La multiplication et la concaténation sont mises en œuvre sous forme de produit matriciel suivi d'un "reshaping" (à l'aide de fonction Matlab reshape)...On

fait sorte que la matrice de raideur obtenue soit symétrique via l'opération K = (K + K')/2, où K' est la transposée de K...Et finalement les conditions aux limites et le vecteur de chargement sont calculés et le système d'équations par éléments finis est enfin résolu.

(5.2) Filtrage

L'application d'un filtre de sensibilité selon (3) implique une moyenne pondérée sur différents éléments...C'est une opération linéaire; il peut donc être mis en œuvre en tant que produit matriciel d'une matrice de coefficients et d'un vecteur contenant les sensibilités $\frac{\partial c}{\partial x_i}$ (multiplié par les variables de conception x_i)...Diviser le résultat par un facteur $max(\gamma, x_e) \sum_{i \in N_e} H_{ei}$ donne $\frac{\hat{\partial c}}{\partial x_e}$...La matrice H et le vecteur Hs contiennent les coefficients H_{ei} et les constantes de normalisation $\sum_{i \in N_e} H_{ei}$, repectivement...L'utilisation d'un filtre de densité n'implique pas seulement le filtrage des densités selon (5) mais aussi une modification de la règle de dérivation en chaîne des sensibilités de la fonction objectif et de la contrainte volume selon (6)...Les deux opérations impliquent une moyenne pondérée sur différents éléments du maillage par EF.

La matrice H et le vecteur Hs restent invariants lors de l'optimisation et sont calculés a priori...La matrice H de taille ($\operatorname{nelx} \times \operatorname{nely}$) \times ($\operatorname{nelx} \times \operatorname{nely}$) établit une relation entre tous les éléments...Cependant, comme défini dans (4), le noyau du filtre a un support borné, donc seuls les éléments voisins sont concernés...En conséquence, la majorité des coefficients est nulle et donc H est une matrice creuse...l est construit à l'aide de la fonction MATLAB sparse...Vecteurs d'indexation de lignes et de colonnes iH et jH ainsi qu'un vecteur SH avec des entrées non nulles sont assemblés au moyen de quatre boucles imbriquées.

(5.3) Boucle de l'optimiseur

La partie principale du code top88 est la boucle de l'optimiseur...La boucle est initialisée, toutes les variables de conception x_e sont initialement définies égales à la fraction de volume f prescrite...Les densités physiques $\tilde{x_e}$ sont identiques aux variables x_e ...Si un filtrage de sensibilité est utilsé, cette égalité est toujours valable, alors que si un filtrage de densité est utilisé, elle est valable tant que les variables x_e sont sont homogénéisés...Chaque itération de la boucle de l'optimiseur commence par l'analyse par EF décrite dans (5.1)...Ensuite, la fonction objectif c est calculée, ainsi que les sensibilités de et dv de c (la compliance) et de V par rapport à $\tilde{x_e}$.

La matrice edofMat est utilisée efficacement pour calculer simultanément la compliance c de tous les éléments : elle est utilisée sous forme indices pour le vecteur de déplacement...Il en résulte une matrice de la taille de edofMat contenant les déplacements correspondant aux DDL énumérés dans edofMat...Les sensibilités sont ensuite filtrées (si le filtrage de sensibilité est utilisé) ou modifiées (si le filtrage de densité est utilisé) comme expliqué dans (4).

(5.4) Optimiseur ou Solveur

La structure "MMB beam", a été optimisée par le solveur OC (optimality criteria)...Les images des structures optimisées sont montrés ci-dessous...La méthode OC est utilisée pour mettre à jour les variables de conception...Et enfin, les résultats intermédiaires sont tracés.

Optimisation topologique des structures en 2d dans Matlab à l'aide de Top88

La boucle de l'optimiseur est terminée lorsque la norme L_{∞} de la différence entre deux conceptions consécutives (en termes de variables de conception : x^{k+1} et x^k) est inférieure à 0.01.

Figure 1 – Domain de conception initial

FIGURE 2 – Structure "MBB beam" optimisée et la compliance correspondante c obtenues avec Top88 utilisant le filtrage de sensibilité (en haut) et le filtrage de densité (en bas). Un maillage avec 60×20 éléments (à gauche), 150×50 éléments (au centre) et 300×100 éléments (à droite) a été utilisé

Optimisation topologique des structures en 3d dans Matlab à l'aide de Top3d

Le domaine de conception est supposé un parallélépipède rectangulaire et discrétisé par éléments cubique...Un exemple de maillage grossier composé de 8 éléments avec huits nœuds par élément et trois degrés de liberté (DDL) par nœud est présenté à l'aide du tableau suivante :

Les noeuds sont numérotés et ordonné par colonne de haut en bas, de gauche à droite et de bas en haut...La position de chaque nœud est défini par rapport au système de coordonnée cartésienne avec origine dans le coin gauche en bas à l'arrière...Au sein de chaque élément e, les huit nœuds N1, ..., N8 sont ordonné dans le sens anti-horaire comme indiqué par la figure 3...Notez que la numération "local" des noeuds (Ni) ne suit pas le même règle que numération «global» des noeuds...Étant donné le volume (nelx \times nely \times nelz) du conception initial et les coordonnées globales du noeud N1 (x1, y1, z1), on peut identifier les coordonnées du noeud global et la numérotion globales des sept autres nœuds dans cet élément par la cartographie comme résumé dans le tableau ci-dessous.

Chaque nœud de la structure a trois degrés de liberté correspondant aux déplacements linéaires dans les directions x-y-z (un élément a 24 DDL)...Les degrés de liberté s'organisent dans le vecteur de déplacement nodal U de la façon suivante : $U = [U_{1x}, U_{1y}, U1z, ..., U_{8 \times nz}]$

Node	\$1	\$2	\$ 3		
1	-1	-1	-1		
2	+1	-1	-1		
3	+1	+1	-1		
4	-1	+1	-1		
5	-1	-1	+1		
6	+1	-1	+1		
7	+1	+1	+1		
8	-1	+1	+1		

- 1.2.7 Présentation de quelques d'optimiseurs
- 1.2.7.1 Solveurs d'optimisation topologique classiques
- 1.2.7.2 Solveurs d'optimisation plus généraux
- 1.2.8 Exemple de Benchmarking en 2D
- 2 Implémentation et benchamarking en 3D sur HPC
- 2.1 Implémentation dans Topopt Petsc
- 2.2 Résultats numériques du benchmarking sur HPC
- 3 Conclusion et futur travail