()SOLUTIONS TO FINAL EXAM (5/17/18) a) penodic if x(t+t) = x(t) for all to or x[n+N] = x[n] for all n (1) x[n] = (-1)n Clearly, we have K[n] = K[n+4] for all n. Thus, $\gamma(n)$ is penudic. The fundamental period is $N_0 = 4$, and the fundamental adian frequency is $W_0 = \frac{\partial \pi}{\partial x} / N_0 = \frac{\pi}{2}$ - Alternatively, -j = e-ju/2 (Euler's)
- Alternatively, -j = e-ju/2 (Euler's)
- Alternatively, -j = e-ju/2 (Euler's) This is penodic if I will retional. In this case, I wolfatt att 14. So, this function is penodic. decaying amplitude To be penodic, (x(t+t) = x(t))
for all t. Clearly, this function
is not penodic since the amplitude
is decaying with time.

\bigcirc	: : :
Fl. cont'l	b) w x28(2-0.5) = x(0.5)8(2-0.5)
	= 1 S(t-0.5)
	= E(+0.5)
	m x1F12(f-02) 9f = 1 x(82) 9(f-0.2) 9f
	(m) (KL) S(t-05) dt = (K) (5) S(t-0.5) dt
	= 1
	(u) the output y(t) is
	(iii) The output y(t) is $y(t) = \chi(t) * h(t)$ $= \chi(t) * [as(t+3) - s(t-3)]$
	$= \chi(t) \star \omega(t+3) - \omega(t-3)$
	$= 3\chi(\pm 13) - \chi(\pm -3)$
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	1 2 3 4 5
	-5 -4 -3 -2 -1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	C) impulse - response of the system to an
	C) impulse - response of the system to an response input which is an impulse
	h 5m = u(m)
	MENT SCHI NEWSON
	= d S(n-1) + B S(n-2]
_(")	

Fl. contil)	d) u) causal > no output betwe input applied" — this is true fix all three
	4
	test cases
	So, the system could be causal.
	w linear = linear combination of
	inputs produces the same
	linear combination of the
	" studitio lengi rupul
	12(t) = 12,(t) + 12,(t-a)
	1 V) \
	y ₃ (t) ≠ y ₁ (t) + y ₁ (t-a)
NEL III	
	So, the system cannot be linear.
劫	impulse impulse response
	impulse system hiti
	LTT
	$Causar \Rightarrow h(t) = 0, t < 0$
	" h(t)= e=tult)
	What is output y(t) for imput $x(t) = u(t-4)$?
	x(t) = ((t-4) (?'
	Convolution yet = x(t)* htt)
()	7 %
	= \ h(r) x(t-r)dr
,	Lot course, you could flip and shift
	Lot course, you could flip and shift (1t) or hit)
	<u>t</u>

\bigcirc	
# <i>i</i> t,	W-a W
	Xi Gw) X=Gw)
	Since convolution in frequency is multiplication in time (see Proporty 4.5), XIE) = attitute (AR)
	Let Y, (yw) = 351nw, then X, (yw)=Y, (y(w-a)), and, using Property 43.6, x, Lt)=y, tt)eixt Inverting Y, (yw), we get
	9,(t)={1, 1+1<1
	Similarly, let $(a(w)) = \frac{a \sin aw}{w}$, then $(x_2(jw)) = \frac{a}{a} e^{-\frac{a}{2}jw} (x_2(jw))$, and using Property 4.3.2, $(x_2(t)) = \frac{a}{a} y_2(t-a)$. Triverting $(x_2(jw))$, we get $(x_2(jw)) = (x_2(jw))$, $(x_2(jw)) = (x_2(jw))$.
	Therefore, KLE)= STIKILIKALE)
	= [atty,(t)e] - [aya(t-a)]
	Tejat, OLZLI O, otherwise

\bigcirc	
tetoontal)	b) $\omega = \frac{2}{x(n)} = \frac{1}{x(n)} = \frac{1}{x(n)$
	$\chi(e^{10}) = \chi(e^{1\omega}) = \frac{8}{n_2 - \infty} \chi(n)$
	= (1) + (2) + (2) + (2) + (2) + (2) + (1) + (2)
	= 5
	$\frac{1}{\sqrt{ X(e^{j\omega}) ^2}} d\omega = \frac{2}{2\pi} \frac{ X(n) ^2}{ x^2-x^2 }$
	= 271/1+4+4+4+4+4+4+4
	a) To solve this problem, use the Initial and Final Value Theorems for Laplace Transforms
	() h(0+) = lim = H(5) 5→00
	5-70 \$ (52+25+5)
	= 0
	(u) lim h(t)= lim 5 H(5) + =00 5-0
	$= \lim_{z \to 0} \frac{10(35+3)}{5 \cdot 10(35+3)}$
	<u> </u>

try april d)	
	must be included in the RDC; also, since the
	Laplace transform is national the ROO does
	not contain any poles.
P. C.	7 4
	ii) left-sided signal?
	If rett is a left-sided signal, the 200
	must be a left-half plane (LHP) and to
	the left of the Leftmost pole, 1-e. Re7534-1/a. So, this RDQ would not include the 100-0x15.
	Since we know it does, x(t) commot be
	a left-sided signal.
	4
	(u) right-sided signal?
	IF NH 15 a nont-sided signal, the ROC
	must be a KHP and to the night of the
	montimost pole, i.e., if this is the only
	pote, Ressis > - /a. 56, 7his RUC apull
	include the w-axis and KLL) can be
	a nant-sided signal. (Any other pole
	Unute either he negative and arealer
	than - la, or on the Rtt P and then
	the function would be true-5ided.)
	e) K(S) (F(S) K Y(S)
	15+20
	1-18
	Y(s) = K F(s)
	Y(5) = K E(5) 5+20
	E(5)= X(5)-BY(5)

#5.	144w) = Jul (jul+2)(jul-4)
	a) $H(yw) = A + B$ $ yw+1 = yw-4 $ $ x-1 = yw-4 = yw-4 = yw-4 $ $ x-1 = yw-4 = yw-4 = yw-4 $ $ x-1 = yw-4 = yw-4 = yw-4 $ $ x-1 = yw-4 = yw-$
	b) Only memoryless if hlt) = KS(t). This system alcorry mas memory. a) Causal => hlt) = D, t < D. This is true. Jo, this system is aausal.
#6	$H(e^{j\omega}) = \frac{1 - 4e^{j\omega} + e^{j\omega}}{1 - 4e^{j\omega} + e^{j\omega}}$
	$\frac{A[u] - \frac{1}{7}A[u-1] - \frac{8}{7}A[u-2] = x[u]}{A(e_{1m})(1 - \frac{1}{7}e_{-3m}) - X(e_{1m})} - X(e_{1m})$ $\frac{A[u] - \frac{1}{7}A[u-1] - \frac{8}{7}e_{-3m} - X(e_{1m})}{A(e_{1m}) - A(e_{1m})} - A(e_{1m})$ $\frac{A[u] - \frac{1}{7}A[u-1] - \frac{8}{7}A[u-2] = x[u]}{A[u-2] - A[u]}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$H(e^{i\omega}) = \frac{1}{1 - 4e^{i\omega} + 8e^{-3i\omega}}$ $= \frac{1}{1 - 4e^{-2i\omega} + 8e^{-3i\omega}}$ $= \frac{1}{1 - 4e^{-2i\omega} + 1e^{-2i\omega}}$ $= \frac{1}{1 - 4e^{-2i\omega}$
$\frac{1}{(1-\frac{1}{2}e^{-j\omega})(1+\frac{1}{4}e^{-j\omega})}$ $=\frac{A}{1-\frac{1}{2}e^{-j\omega}} \frac{3}{(1+\frac{1}{4}e^{-j\omega})}$ $=\frac{A}{1-\frac{1}{2}e^{-j\omega}} \frac{1}{(1+\frac{1}{4}e^{-j\omega})}$
$\frac{15^{-1}(1-\frac{1}{4})^{-1}(1-\frac{1}{4})^{-1}}{1(-\frac{1}{4})^{-1}(1-\frac{1}{4})^{-1}} = \frac{1}{2}\sqrt{3}$ $\frac{1}{1-\frac{1}{4}}e^{-1}\omega + \frac{1}{1+\frac{1}{4}}e^{-1}\omega$ $\frac{1}{1-\frac{1}{4}}e^{-1}\omega + \frac{1}{1+\frac{1}{4}}e^{-1}\omega$
1-36-1+46 1+46
$\frac{\#7}{H(5)} = \frac{-5-4}{5^2 + 35 + 2}$ $-5-4$ $(5+2)(5+1)$
a) $poles \Rightarrow H(s) \rightarrow \infty$ $S=-1, S=-2$ $zeros \Rightarrow H(s) \rightarrow 0$ $S=-4, S=\infty$

\$7. contd)	b) w left of leftmost pole Refs >- 2 (4) night of mantimost pole Refs >- 1 (4) bounded by poles - 2< Refs <-1
	0) $\chi(s) = \frac{\chi(s)}{-5^{-4}}$ $\chi(s) = \frac{5^{2} + 35 + 2}{-5^{-4}}$ $\chi(s) = \frac{\chi(s)(-5^{-4})}{-5^{-4}}$
	day(t) + 3 dy(t) + 2 y(t)
	= - dx(t) - 4x(t) at
#8	(The first part of this problem was part of Problem #2 on Exam #3.)
	(a) y(t)= N(t) COS W.Z. - N(t) (Silbot + E-1Wot) - N(t) (Silbot + R(t) - 1Wot) - N(t) (Silbot + R(t) - 1Wot) - N(t) (Silbot + R(t) - 1Wot)
	Use the frequency shift property (4.3.6)
	= X(j(w) = \frac{1}{2} X(j(w) + w_0)) + \frac{1}{2} X(j(w) + w_0)) Shift up in Shift down frequency in the grency
<i>2</i>	b

