第1章

ドリフトスピード

1.1 水分のドリフトスピードへの影響

本研究では用いた検出ガスは低圧であるため、水分などの不純物からの影響が大きいと考えられる。そこで、チェンバー中の水分をモニターしながらドリフトスピードの変化を測定した。水分は露点計で測定した。露点温度と水分濃度と蒸気密度の対応を表 1.1 に示す。

表 1.1: 露点温度と水分濃度と蒸気密度の対応. ppm は parts par million の略であり, 10,000 ppm = 1% となる.

露点温度 °C	水分濃度 (ppm)	蒸気密度 g/m³
-80	0.540	0.000613
-70	2.581	0.00279
-60	10.67	0.0109
-50	38.84	0.0382
-40	126.7	0.1199
-30	375.0	0.339
-20	1019	0.884
-10	2565	2.14
0	6032	4.85

図 1.1: ドリフトスピードと露点温度の時間変化.

図 1.2: ドリフトスピードの露点温度依存性.