

	<u>EXAME</u>														
CURSO:	ENGENHARIA DE SISTEMAS INFORMÁTICOS														
UNIDADE CURRICULAR:	MATEMÁTICA DISCRETA E ÁLGEBRA LINEAR														
ANO CURRICULAR:	1º SEMESTRE: 1º														
DOCENTE:	TERESA ABREU														
☐ Época Normal 🛚	Época Normal 🗵 Época Exames 🗌 Época 🔲 Exame Especial (a) 🔲 Justificação de Faltas Especial														
Com consulta	Sem consulta Duração: 2 hora 15 minutos Tolerância: 00 minutos														
 Identifique as suas folla Numere as suas folha Identifique as suas res Utilize uma caligrafia le Apresente todos os cá 	spostas de acordo com a numeração das questões; egível; alculos e justificações convenientes.														
 Não troque a ord 	lem das questões														

- 1. Considere a proposição $[(p \Rightarrow q) \land \neg q] \lor p(I)$.
 - 1.1 Usando as tautologias adequadas simplifique a negação da proposição anterior.
 - 1.2 Diga justificando se $(\neg q \lor p)$ é logicamente equivalente à proposição (I)
 - Averigue, justificando todos os passos, se o seguinte argumento é válido.
 "Se estudo aprendo lógica. Não estudar é condição suficiente para me divertir. Não aprendi lógica. Logo diverti-me."
 - 3. Considere a proposição $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}: [p(x) \Longrightarrow q(x,y)](II), \text{ com } p(x): "x \text{ \'e múltiplo de 6" e } q(x,y): "x = 2y".$
 - 3.1 Diga justificando o valor lógico de $p(10) \Rightarrow q(10,3)$.
 - 3.2 Indique, em linguagem corrente, a negação da proposição (II).
 - 4. Considere os seguintes conjuntos: $A = \{x: x \in Presidente \ da \ Lua\} \in B = \{\emptyset, a, \{a, b\}\}.$
 - 4.1 Determine $card(A \cup B)$.
 - 4.2 Determine $A \cap \mathcal{P}(B)$.
 - 5. Seja $A = \{1,2,3,4\}$ e seja e $\mathcal R$ uma relação definida em A, tal que:

$$\mathcal{R} = \{(1,1),(2,2),(3,3),(4,4)\,,(2,1),(3,1),(1,2),(1,3),(2,3),(3,2)\}$$

- 5.1 Mostre que $\mathcal R$ é uma relação de equivalência em A.
- 5.2 Determine o conjunto quociente.
- 6. Um grupo de 4 rapazes e 3 raparigas estiveram a jogar xadrez. Responda à seguintes questões com base em teoria de grafos, indicando sempre os vértices as arestas e o conceito envolvido.
 - 6.1 Se cada rapariga tiver realizado 2 jogos e cada rapaz 3 jogos. Quantas partidas houve no total.
 - 6.2 Sabendo que cada jogador tiver jogado 4 jogos é possível ter existido uma sequência de jogos em que um jogador (j_1) jogue com um segundo jogador (j_2) , depois este joge com o terceiro (j_3) e assim sucessivamente até que o jogador (j_7) jogue com o (j_1) .

7. Considere o seguinte o digrafo D:

- 7.1 Indique as componentes fortemente conexas de D.
- 7.2 Diga justificando se o D tem um ciclo euleriano.
- 7.3 Encontre a representação planar de \underline{D} e ilustre a fórmula de Euler.
- 8. O Grupo Central do arquipélago dos açores é constituído por cinco ilhas Terceira, Graciosa, São Jorge, Pico e Faial. Uma empresa local pretende efetuar travessias de barco entre estas ilhas. Na seguinte tabela constam os preços (em euros) entre os portos principais de cada uma das ilhas, considerando as rotas a delinear.

	Terceira	Graciosa	São Jorge	Pico	Faial
Terceira	0	13	33	9	75
Graciosa	13	0	11	0	0
São Jorge	33	11	0	13	8
Pico	9	0	13	0	36
Faial	75	0	8	36	0

- 8.1 Indique o fecho transitivo direto do vértice "Graciosa". No contexto da situação, apresente uma interpretação sobre o significado do fecho transitivo direto deste vértice.
- 8.2 Por meio do algoritmo de Diikstra, determine o custo mínimo de uma viagem entre o Faial e o Pico.
- 8.3 Por meio de um algoritmo adequado, a partir da matriz, determine o conjunto de travessias com custo mínimo que a empresa deve assegurar de forma que, numa situação de temporal, nenhuma ilha fique inacessível pelo uso estrito dos serviços desta empresa. Indique também o custo mínimo obtido.
- 9. Considere mdc(120,185) = 120x + 185y
 - 9.1 Determine, recorrendo ao algoritmo de Euclides, possíveis inteiros x e y que verifiquem a igualdade.
 - 9.2 Determine a solução geral da equação diofantina 120x + 185y = 70
 - 10. Considere a = 375.
 - 10.1 Decomponha a em fatores primos.
 - 10.2 Determine $\phi(a)$.
 - 10.3 . Recorrendo ao Teorema de Euler, mostre que $19^{1201} \equiv 19 \pmod{375}$.
 - 11. Apresente, caso exista, a solução geral
 - 11.1 da congruência linear $3x \equiv 6 \pmod{14}$.

11.2 do sistema de congruências lineares
$$\begin{cases} x \equiv 3 \pmod{2} \\ x \equiv 4 \pmod{3}. \\ x \equiv 6 \pmod{7} \end{cases}$$

12. Os alunos de uma escola usam um cartão para adquirirem refeições, acedendo a uma máquina para o efeito. Para não haver erros de leitura do cartão, foi acrescentado um dígito de controlo ao número de aluno que consta no cartão. Nesta medida a máquina valida o acesso se

$$7x_1 + 3x_2 + 7x_3 + 3x_4 + 7x_5 \equiv 0 \pmod{10}$$

Determine o dígito de controlo do aluno número 3221.

1.1	1.2	2	3.1	3.2	4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	7.3	8.1	8.2	8.3	9.1	9.2	10.1	10.2	10.3	11.1	11.2	12
10	8	10	8	8	8	8	8	7	4	6	4	6	4	6	10	10	10	10	5	6	8	12	12	12