20104016

DEENA

Importing Libraries

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

Importing Datasets

In [2]: df=pd.read_csv("madrid_2009.csv")

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2009-10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.2
1	2009-10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.5
2	2009-10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.1
3	2009-10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.5
4	2009-10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.7
215683	2009-06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.8
215684	2009-06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.9
215685	2009-06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.4
215686	2009-06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.0
215687	2009-06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.3

215688 rows × 17 columns

Data Cleaning and Data Preprocessing

```
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', '0_3
                    'PM10', 'PM25', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
                  dtype='object')
In [5]:
           <class 'pandas.core.frame.DataFrame'>
          Int64Index: 24717 entries, 3 to 215687
           Data columns (total 17 columns):
                 Column Non-Null Count Dtype
           --- ----- ------ -----
                date 24717 non-null object
BEN 24717 non-null float64
CO 24717 non-null float64
            0
            1
            2
            3
                 EBE
                          24717 non-null float64
                       24717 non-null float64
24717 non-null float64
24717 non-null float64
24717 non-null float64
            4
                 MXY
                            24717 non-null float64
            5
                 NMHC
            6
                 NO_2
            7
                 NOx
            8 OXY 24717 non-null float64
9 O_3 24717 non-null float64
10 PM10 24717 non-null float64
11 PM25 24717 non-null float64
12 PXY 24717 non-null float64
            13 SO_2 24717 non-null float64
14 TCH 24717 non-null float64
                        24717 non-null float64
            15 TOL
            16 station 24717 non-null int64
           dtypes: float64(15), int64(1), object(1)
           memory usage: 3.4+ MB
```

In [6]: data=df[['CO' ,'station']]

Out[6]:

	СО	station		
3	0.33	28079006		
20	0.32	28079024		
24	0.24	28079099		
28	0.21	28079006		
45	0.30	28079024		
215659	0.27	28079024		
215663	0.35	28079099		
215667	0.29	28079006		
215683	0.22	28079024		
215687	0.32	28079099		

24717 rows × 2 columns

Line chart

In [7]:

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

Out[8]: <AxesSubplot:>

Bar chart

Histogram

2.0

2.5

le7

1.5

Area chart

0.0

0.5

1.0

Box chart

station

Pie chart

0.5

0.0

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

```
In [15]: (162)
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 24717 entries, 3 to 215687
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	date	24717 non-null	object
1	BEN	24717 non-null	float64
2	CO	24717 non-null	float64
3	EBE	24717 non-null	float64
4	MXY	24717 non-null	float64
5	NMHC	24717 non-null	float64
6	NO_2	24717 non-null	float64
7	NOx	24717 non-null	float64
8	OXY	24717 non-null	float64
9	0_3	24717 non-null	float64
10	PM10	24717 non-null	float64
11	PM25	24717 non-null	float64
12	PXY	24717 non-null	float64
13	S0_2	24717 non-null	float64
4.4	TOU	2474711	C1 + C 4

In [17]:	16 1	/>						
Out[17]:		BEN	со	EBE	MXY	NMHC	NO_2	
	count	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000	24717.000000	247
	mean	1.010583	0.448056	1.262430	2.244469	0.219582	55.563929	
	std	1.007345	0.291706	1.074768	2.242214	0.141661	38.911677	
	min	0.170000	0.060000	0.250000	0.240000	0.000000	0.600000	
	25%	0.460000	0.270000	0.720000	0.990000	0.140000	26.510000	
	50%	0.670000	0.370000	1.000000	1.490000	0.190000	47.930000	
	75%	1.180000	0.570000	1.430000	2.820000	0.260000	76.269997	1
	max	22.379999	5.570000	47.669998	56.500000	2.580000	477.399994	14
In [18]:	df1=df	[['BEN', 'C	O', 'EBE', '	MXY', 'NMHC	', 'NO_2', '	NOx', 'OXY'	, '0_3',	

EDA AND VISUALIZATION

In [19]:

Out[19]: <seaborn.axisgrid.PairGrid at 0x19b08992280>


```
In [20]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [21]:

Out[21]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

```
In [24]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[24]: LinearRegression()
In [25]:
Out[25]: 28078910.857585404
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[26]:
                  Co-efficient
            BEN
                  -36.203443
             CO
                  -30.648171
             EBE
                    6.488422
            MXY
                   -0.905931
           NMHC
                   -16.617460
            NO_2
                   -0.170997
            NOx
                    0.213958
            OXY
                   13.118534
                    0.010307
             O_3
            PM10
                   -0.053681
             PXY
                    3.870440
            SO_2
                   -0.332929
            TCH
                  111.370403
             TOL
                   -1.288304
```

```
In [27]: prediction =lr.predict(x_test)
```

Out[27]: <matplotlib.collections.PathCollection at 0x19b127da580>

ACCURACY

```
In [28]: 0.29852823000409645
```

Out[29]: 0.2819204013446853

Ridge and Lasso

```
In [30]:
In [31]: rr=Ridge(alpha=10)
Out[31]: Ridge(alpha=10)
```

Accuracy(Ridge)

```
In [34]: la=Lasso(alpha=10)
Out[34]: Lasso(alpha=10)
In [35]:
Out[35]: 0.03737806206447625
        Accuracy(Lasso)
In [36]:
Out[36]: 0.03407271577982274
In [37]: from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[37]: ElasticNet()
In [38]:
Out[38]: array([-6.99357656, -0.70564139, 0.3459839, 2.25400319, -0.
               -0.20897486, 0.11926181, 1.21581674, -0.14525936, 0.07281443,
               1.9480131 , -0.77200717, 1.39621687, -2.06358417])
Out[39]: 28079063.86754315
Out[41]: 0.1051779453553251
        Evaluation Metrics
In [42]: from sklearn import metrics
        print(metrics.mean_absolute_error(y_test,prediction))
        print(metrics.mean_squared_error(y_test,prediction))
        35.91039339833247
        1470.1634656890203
        38.342710724321776
```

Logistic Regression

```
In [43]:
In [45]:
Out[45]: (24717, 14)
Out[46]: (24717,)
In [47]:
In [48]:
In [49]: logr=LogisticRegression(max_iter=10000)
Out[49]: LogisticRegression(max_iter=10000)
In [51]: prediction=logr.predict(observation)
    [28079099]
In [52]:
Out[52]: array([28079006, 28079024, 28079099], dtype=int64)
In [53]:
Out[53]: 0.8951733624630821
In [54]:
Out[54]: 5.447205522232353e-13
In [55]:
Out[55]: array([[5.44720552e-13, 8.28692830e-44, 1.00000000e+00]])
     Random Forest
In [57]: rfc=RandomForestClassifier()
out[57]: RandomForestClassifier()
```

```
In [62]: from sklearn.tree import plot_tree
               plt.figure(figsize=(80,40))
Out[62]: [Text(2152.285714285714, 1993.2, 'SO_2 <= 6.875\ngini = 0.665\nsamples = 1086</pre>
               7\nvalue = [5248, 5918, 6135]\nclass = c'),
                Text(1116.0, 1630.8000000000002, 'NMHC <= 0.185\ngini = 0.177\nsamples = 203
               1\nvalue = [53, 2915, 258]\nclass = b'),
                Text(637.7142857142857, 1268.4, 'MXY <= 1.015\ngini = 0.37\nsamples = 808\nv
               alue = [53, 995, 245]\nclass = b'),
                Text(318.85714285714283, 906.0, 'TCH <= 1.325\ngini = 0.266\nsamples = 580\n
               value = [12, 787, 133]\nclass = b'),
                Text(159.42857142857142, 543.599999999999, 'TCH <= 1.295\ngini = 0.093\nsam
               ples = 477\nvalue = [11, 727, 26]\nclass = b'),
                Text(79.71428571, 181.1999999999982, 'gini = 0.016\nsamples = 402\nva
               lue = [5, 635, 0] \setminus class = b'),
                Text(239.1428571428571, 181.199999999999, 'gini = 0.403\nsamples = 75\nval
               ue = [6, 92, 26] \setminus class = b'),
                Text(478.2857142857142, 543.599999999999, 'EBE <= 0.585\ngini = 0.467\nsamp
               les = 103\nvalue = [1, 60, 107]\nclass = c'),
                Text(398.57142857142856, 181.199999999999, 'gini = 0.142\nsamples = 28\nva
               lue = [1, 49, 3] \setminus ass = b'),
                Text(558.0, 181.1999999999982, 'gini = 0.173\nsamples = 75\nvalue = [0, 11,
               104\nclass = c'),
                Text(956.5714285714284, 906.0, 'CO <= 0.305\ngini = 0.559\nsamples = 228\nva
               lue = [41, 208, 112]\nclass = b'),
                es = 174\nvalue = [41, 119, 108]\nclass = b'),
                 Text(717.4285714285713, 181.1999999999982, 'gini = 0.064\nsamples = 57\nval
               ue = [0, 87, 3] \setminus ass = b'),
                Text(876.8571428571428, 181.199999999999, 'gini = 0.567\nsamples = 117\nva
               lue = [41, 32, 105] \setminus class = c'),
                Text(1116.0, 543.59999999999, 'MXY <= 1.605\ngini = 0.082\nsamples = 54\nv
               alue = [0, 89, 4] \setminus class = b'),
                Text(1036.2857142857142, 181.199999999999, 'gini = 0.202\nsamples = 20\nva
               lue = [0, 31, 4] \setminus class = b'),
                Text(1195.7142857142856, 181.199999999999, 'gini = 0.0\nsamples = 34\nvalu
               e = [0, 58, 0] \setminus class = b'),
                Text(1594.2857142857142, 1268.4, 'TOL <= 1.425\ngini = 0.013\nsamples = 122
               3\nvalue = [0, 1920, 13]\nclass = b'),
                Text(1355.142857142857, 906.0, 'SO_2 <= 6.725\ngini = 0.003\nsamples = 870\n
               value = [0, 1370, 2]\nclass = b'),
                Text(1275.4285714285713, 543.59999999999, 'gini = 0.0\nsamples = 792\nvalu
               e = [0, 1244, 0] \setminus class = b'),
                ples = 78\nvalue = [0, 126, 2]\nclass = b'),
                Text(1355.142857142857, 181.19999999999982, 'gini = 0.111\nsamples = 20\nval
               ue = [0, 32, 2] \setminus class = b'),
                Text(1514.5714285714284, 181.199999999999, 'gini = 0.0\nsamples = 58\nvalu
               e = [0, 94, 0] \setminus class = b'),
                Text(1833.4285714285713, 906.0, 'NOx <= 43.27 \ngini = 0.038 \nsamples = 353 \nsampl
               value = [0, 550, 11]\nclass = b'),
                 Text(1753.7142857142856, 543.599999999999, 'NMHC <= 0.225\ngini = 0.07\nsam
               ples = 198\nvalue = [0, 294, 11]\nclass = b'),
                Text(1673.9999999999, 181.19999999999, 'gini = 0.415\nsamples = 23\nva
               lue = [0, 24, 10] \setminus class = b'),
```

```
Text(1833.4285714285713, 181.199999999999, 'gini = 0.007\nsamples = 175\nv
alue = [0, 270, 1] \setminus nclass = b'),
Text(1913.1428571428569, 543.599999999999, 'gini = 0.0\nsamples = 155\nvalu
e = [0, 256, 0]\nclass = b'),
Text(3188.5714285714284, 1630.8000000000000, 'BEN <= 1.155\ngini = 0.644\nsa
mples = 8836\nvalue = [5195, 3003, 5877]\nclass = c'),
 Text(2550.8571428571427, 1268.4, 'OXY <= 1.005\ngini = 0.608\nsamples = 604
6\nvalue = [1975, 2558, 5058]\nclass = c'),
Text(2232.0, 906.0, 'NMHC <= 0.105\ngini = 0.654\nsamples = 3827\nvalue = [1
461, 2392, 2171]\nclass = b'),
Text(2072.5714285714284, 543.599999999999, 'TOL <= 1.055\ngini = 0.361\nsam
ples = 870\nvalue = [1059, 299, 19]\nclass = a'),
Text(1992.8571428571427, 181.199999999999, 'gini = 0.317\nsamples = 122\nv
alue = [34, 155, 3]\nclass = b'),
Text(2152.285714285714, 181.1999999999982, 'gini = 0.237\nsamples = 748\nva
lue = [1025, 144, 16] \setminus nclass = a'),
 Text(2391.428571428571, 543.599999999999, 'NOx <= 20.71\ngini = 0.575\nsamp
les = 2957\nvalue = [402, 2093, 2152]\nclass = c'),
Text(2311.7142857142853, 181.19999999999982, 'gini = 0.249 \nsamples = 449 \nv
alue = [13, 632, 92]\nclass = b'),
Text(2471.142857142857, 181.199999999999, 'gini = 0.573\nsamples = 2508\nv
alue = [389, 1461, 2060]\nclass = c'),
Text(2869.7142857142853, 906.0, 'NO_2 <= 18.37\ngini = 0.322\nsamples = 221
9\nvalue = [514, 166, 2887]\nclass = c'),
Text(2710.285714285714, 543.599999999999, 'TOL <= 1.15\ngini = 0.217\nsampl
es = 62 \ln e = [2, 80, 9] \ln e = b'),
 Text(2630.5714285714284, 181.199999999999, 'gini = 0.035\nsamples = 38\nva
lue = [0, 55, 1]\nclass = b'),
Text(2790.0, 181.199999999999, 'gini = 0.434\nsamples = 24\nvalue = [2, 2]
5, 8] \setminus ass = b'),
ples = 2157\nvalue = [512, 86, 2878]\nclass = c'),
Text(2949.428571428571, 181.199999999999, 'gini = 0.208\nsamples = 239\nva
lue = [348, 12, 33] \setminus class = a'),
Text(3108.8571428571427, 181.19999999999982, 'gini = 0.145\nsamples = 1918\n
value = [164, 74, 2845]\nclass = c'),
 Text(3826.2857142857138, 1268.4, 'OXY <= 1.145\ngini = 0.441\nsamples = 279
0\nvalue = [3220, 445, 819]\nclass = a'),
Text(3507.428571428571, 906.0, '0_3 <= 5.055\ngini = 0.655\nsamples = 529\nv
alue = [274, 358, 229]\nclass = b'),
Text(3347.99999999995, 543.599999999999, 'SO_2 <= 16.26\ngini = 0.192\nsa
mples = 130\nvalue = [22, 183, 0]\nclass = b'),
Text(3268.285714285714, 181.1999999999992, 'gini = 0.069\nsamples = 105\nva
lue = [6, 162, 0] \setminus class = b'),
Text(3427.7142857142853, 181.199999999999, 'gini = 0.491\nsamples = 25\nva
lue = [16, 21, 0]\nclass = b'),
Text(3666.8571428571427, 543.599999999999, 'PM10 <= 43.23\ngini = 0.659\nsa
mples = 399\nvalue = [252, 175, 229]\nclass = a'),
Text(3587.142857142857, 181.199999999999, 'gini = 0.631\nsamples = 330\nva
lue = [227, 97, 213]\nclass = a'),
Text(3746.5714285714284, 181.199999999999, 'gini = 0.508\nsamples = 69\nva
lue = [25, 78, 16]\nclass = b'),
Text(4145.142857142857, 906.0, 'NOx <= 203.2\ngini = 0.312\nsamples = 2261\n
value = [2946, 87, 590]\nclass = a'),
Text(3985.7142857142853, 543.59999999999, 'NMHC <= 0.205\ngini = 0.244\nsa
mples = 1422\nvalue = [1964, 67, 247]\nclass = a'),
```

```
Text(3905.99999999995, 181.199999999982, 'gini = 0.044\nsamples = 941\nv alue = [1457, 19, 14]\nclass = a'),

Text(4065.428571428571, 181.199999999982, 'gini = 0.495\nsamples = 481\nva lue = [507, 48, 233]\nclass = a'),

Text(4304.571428571428, 543.59999999999, 'OXY <= 2.795\ngini = 0.402\nsamples = 839\nvalue = [982, 20, 343]\nclass = a'),

Text(4224.857142857142, 181.1999999999982, 'gini = 0.498\nsamples = 401\nva lue = [385, 20, 225]\nclass = a'),

Text(4384.285714285714, 181.1999999999982, 'gini = 0.276\nsamples = 438\nva
```


Conclusion

Accuracy

Linear Regression :0.2819204013446853

lue = [597, 0, 118]\nclass = a')]

Ridge Regression: 0.03737806206447625

Lasso Regression: 0.03407271577982274

ElasticNet Regression: 0.1051779453553251

Logistic Regression :0.8951733624630821

Random Forest :0.8949199430985626

Random Forest is suitable for this dataset

20 of 20