CHARMED, STRANGE MESONS $(C = S = \pm 1)$

 $D_s^+ = c\overline{s}, D_s^- = \overline{c}s$, similarly for D_s^* 's

 D_s^\pm

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.28\pm0.10$$
 MeV $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(500\pm7)\times10^{-15}$ s $~(S=1.3)$ $c\tau=149.9~\mu{\rm m}$

CP-violating decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (5 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}) = (0.08 \pm 0.26)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}) = (-0.5 \pm 0.9)\%$$

$$A_{CP}(\phi\pi^{\pm}) = (-0.38 \pm 0.27)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}\pi^{0}) = (-2 \pm 6)\%$$

$$A_{CP}(2K_{S}^{0}\pi^{\pm}) = (3 \pm 5)\%$$

$$A_{CP}(K^{+}K^{-}\pi^{\pm}\pi^{0}) = (0.0 \pm 3.0)\%$$

$$A_{CP}(K^{\pm}K_{S}^{0}\pi^{+}\pi^{-}) = (-6 \pm 5)\%$$

$$A_{CP}(K_{S}^{0}K^{\mp}2\pi^{\pm}) = (4.1 \pm 2.8)\%$$

$$A_{CP}(\pi^{\pm}\pi^{-}\pi^{\pm}) = (-0.7 \pm 3.1)\%$$

$$A_{CP}(\pi^{\pm}\eta) = (1.1 \pm 3.1)\%$$

$$A_{CP}(\pi^{\pm}\eta') = (-2.2 \pm 2.3)\%$$

$$A_{CP}(\eta^{\pi}\pi^{\pm}\pi^{0}) = (-1 \pm 4)\%$$

$$A_{CP}(\eta'\pi^{\pm}\pi^{0}) = (0 \pm 8)\%$$

$$A_{CP}(K^{0}/K^{0}\pi^{\pm}) = (0.4 \pm 0.5)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}) = (3.1 \pm 2.6)\% \quad (S = 1.7)$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}) = (4 \pm 5)\%$$

$$A_{CP}(K^{\pm}\eta') = (9 \pm 15)\%$$

$$A_{CP}(K^{\pm}\eta'(958)) = (6 \pm 19)\%$$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} [a]$$

$D_s^+ \to \phi \ell^+ \nu_\ell$ form factors

$$r_2 = 0.84 \pm 0.11$$
 (S = 2.4)
 $r_V = 1.80 \pm 0.08$
 $\Gamma_L/\Gamma_T = 0.72 \pm 0.18$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

		Scale factor/	р			
D+ DECAY MODES	Fraction (Γ_i/Γ)	•				
	nclusive modes					
e^+ semileptonic	[b] (6.5 \pm 0.4) %	,)	_			
π^+ anything	$(119.3 \pm 1.4)\%$		_			
π^- anything	(43.2 ±0.9) %		_			
π^0 anything	$(123 \pm 7)\%$		_			
K^- anything	$(18.7 \pm 0.5)\%$, D	_			
K^+ anything	$(28.9 \pm 0.7)\%$, D	_			
K_S^0 anything	$(19.0 \pm 1.1)\%$, D	_			
η anything	[c] (29.9 \pm 2.8)%	, D	_			
ω anything	$(6.1 \pm 1.4)\%$		_			
η' anything	[d] $(10.3 \pm 1.4)\%$		_			
$f_0(980)$ anything, $f_0 ightarrow \pi^+\pi^-$	< 1.3 %	CL=90%	_			
ϕ anything	(15.7 ± 1.0) %	, D	_			
K^+K^- anything	(15.8 ± 0.7) %	,)	_			
$K^0_S K^+$ anything	$(5.8 \pm 0.5)\%$,)	_			
$K_S^{0}K^{-}$ anything	$(1.9 \pm 0.4)\%$, D	_			
$2K_{S}^{0}$ anything	$(1.70\pm0.32)\%$,	_			
$2K^{+}$ anything	,	10^{-3} CL=90%	_			
2K ⁻ anything	< 6 ×		_			
Leptonic and semileptonic modes						
$e^+ u_e$	· · · · · · · · · · · · · · · · · · ·	10^{-5} CL=90%	984			
$\mu^+ u_\mu$	$(5.50\pm0.23) \times$		981			
$\tau^+ u_{ au}$	$(5.48\pm0.23)\%$		182			
$K^+K^-e^+\nu_e$	(3.40±0.23) //	,	851			
$\phi e^+ \nu_e$	[e] (2.39±0.23) %	S=1.8	720			
$\eta e^{+} \nu_{e} + \eta'(958) e^{+} \nu_{e}$	[e] $(2.96\pm0.29)\%$		-			
$\eta e^+ \nu_e$	[e] $(2.29\pm0.19)\%$		908			
$\eta'(958)e^{+}\nu_{e}$	[e] $(7.4 \pm 1.4) \times$		751			
$\omega e^+ \nu_e$		10 ⁻³ CL=90%	829			
$K^0e^+\nu_e$	$(3.9 \pm 0.9) \times$		921			
$K^*(892)^0 e^+ \nu_e$	[e] (1.8 ±0.4)×		782			
	<u></u>					
	modes with a $K\overline{K}$ pa		050			
$K^{+} K_{5}^{0}$ $K^{+} \overline{K}^{0}$	$(1.50\pm0.05)\%$		850			
$K^+K^-\pi^+$	$(2.95\pm0.14)\%$		850			
$\phi \pi^+$	[g] (5.45±0.17) %		805			
$\phi\pi^+$, $\phi \rightarrow K^+K^-$	$[e,h]$ (4.5 \pm 0.4) %		712			
$\psi \pi^+, \ \psi \to \kappa^+ \kappa^-$	[h] $(2.27\pm0.08)\%$)	712			
HTTP://PDG.LBL.GOV	Page 2 Cre	eated: 5/30/201	7 17:13			

$K^+\overline{K}^*(892)^0$, \overline{K}^{*0} $ ightarrow$		(2.61±0.09) %		416
$K^-\pi^+ f_0(980)\pi^+$, $f_0 o K^+K^-$		(1.15±0.32) %		732
$f_0(930)\pi^+$, $f_0 \rightarrow K^+K^-$		•	7 ± 5) $\times 10^{-4}$		132
$f_0(1710)\pi^+$, $f_0 \rightarrow K^+K^-$			$6.7 \pm 2.9 \times 10^{-4}$		198
$K^{+}\overline{K}_{0}^{*}(1430)^{0}, \overline{K}_{0}^{*} \rightarrow$		($1.9 \pm 0.4 \times 10^{-3}$		218
		(1.9 ±0.4) × 10		210
$K^{+}K^{0}_{S}\pi^{0}$		(1.52±0.22) %		805
$2K_S^0\pi^+$		($7.7 \pm 0.6) \times 10^{-3}$		802
$K^0 \overline{K}{}^0 \pi^+$			_		802
$K^*(892)^+ \overline{K}{}^0$	[e]	(5.4 ± 1.2) %		683
$K^+K^-\pi^+\pi^0$			6.3 ± 0.6) %		748
$\phi \rho^+$	[e]	(8.4 $^{+1.9}_{-2.3}$) %		401
$K_S^0 K^- 2\pi^+$		($1.67 \pm 0.10) \%$		744
$K^*(892)^+\overline{K}^*(892)^0$	[e]	(7.2 \pm 2.6) %		416
$K^+K^0_S\pi^+\pi^-$		($1.03\pm0.10)$ %		744
$K^{+}K^{-}2\pi^{+}\pi^{-}$		(8.7 ± 1.5) $\times 10^{-3}$		673
$\phi 2\pi^+\pi^-$	[e]	($1.21 \pm 0.16)$ %		640
$K^+K^- ho^0\pi^+$ non- ϕ		<	2.6×10^{-4}	CL=90%	249
$\phi ho^0 \pi^+$, $\phi ightarrow K^+ K^-$		($6.5 \pm 1.3) \times 10^{-3}$		181
ϕ a ₁ (1260) ⁺ , $\phi \rightarrow K^+K^-$, $a_1^+ \rightarrow \rho^0\pi^+$			7.5 ± 1.2) $\times 10^{-3}$		†
$K^+K^-2\pi^+\pi^-$ nonresonant		(9 ± 7) $\times 10^{-4}$		673
$2K_{S}^{0}2\pi^{+}\pi^{-}$			9 ± 4) $\times 10^{-4}$		669
Hadronic			without K's		
$\pi^+\pi^0$		<	3.5×10^{-4}	CL=90%	975
$2\pi^{+}\pi^{-}$			$1.09\pm0.05)$ %	S=1.1	959
$ ho^0\pi^+$			$2.0 \pm 1.2) \times 10^{-4}$		825
$\pi^+(\pi^+\pi^-)_{S-wave}$	[<i>i</i>]	($9.1 \pm 0.4 \times 10^{-3}$		959
$f_2(1270)\pi^+, f_2 \rightarrow \pi^+\pi^-$		($1.10\pm0.20)\times10^{-3}$		559
$ ho(1450)^0\pi^+$, $ ho^0 o \pi^+\pi^-$		($3.0 \pm 2.0 \times 10^{-4}$		421
$\pi^{+}2\pi^{0}$		(6.5 ± 1.3) $\times 10^{-3}$		960
$2\pi^{+}\pi^{-}\pi^{0}$			_		935
$\eta \pi^+$			$1.70\pm0.09)\%$	S=1.1	902
$\omega \pi^+$	[<i>e</i>]		$2.4 \pm 0.6 \times 10^{-3}$		822
$3\pi^{+}2\pi^{-}$		($8.0 \pm 0.8 \times 10^{-3}$		899
$2\pi^{+}\pi^{-}2\pi^{0}$,			902
$\eta \rho^{+}$	[<i>e</i>]		8.9 ±0.8) %		724
$\eta \pi^+ \pi^0$ $\omega \pi^+ \pi^0$		(9.2 ±1.2) %		885
$\frac{\omega \pi^{+} \pi^{0}}{3\pi^{+} 2\pi^{-} \pi^{0}}$	[e]	(2.8 ± 0.7) %		802
$3\pi^+2\pi^-\pi^ \omega^2\pi^+\pi^-$	[<i>e</i>]	(4.9 ±3.2) %		856
	اما	- ($1.6~\pm0.5$) %		766

η^{\prime} (958) π^{+}	[d,e] (3.94±0.2	5) %		743	
$3\pi^{+}2\pi^{-}2\pi^{0}$		_			803	
$\omega \eta \pi^+$	[e]	2.13	%	CL=90%	654	
$\eta'(958) \rho^{+}$	[d,e] (5.8 ±1.5) %		465	
$\eta'(958)\pi^{+}\pi^{0}$	(*		720	
$\eta'(958)\pi^+\pi^0$ nonresonant	<		%	CL=90%	720	
, ,	•					
$K^+\pi^0$ Modes	with one		-		017	
	($) \times 10^{-4}$		917	
$K_S^0\pi^+$	(6) \times 10 ⁻³		916	
$K^+\eta$		1.77 ± 0.3			835	
$K^+\omega$		2.4		CL=90%	741	
$K^+ \eta'(958)$	[e] (1.8 ± 0.6	$) \times 10^{-3}$		646	
$K^+\pi^+\pi^-$	(6.6 ± 0.4	$) \times 10^{-3}$		900	
$\mathcal{K}^+ ho^{0}$	(2.5 ± 0.4	$) \times 10^{-3}$		745	
$K^+ ho$ (1450) 0 , $ ho^0 ightarrow \ \pi^+\pi^-$	(7.0 ± 2.4	$) \times 10^{-4}$		_	
$K^*(892)^0\pi^+$, $K^{*0}\to$	($(4) \times 10^{-3}$		775	
$K^{+}\pi^{-}$ $K^{*}(1410)^{0}\pi^{+}$, $K^{*0} \rightarrow K^{+}\pi^{-}$	(1.24±0.2	9) \times 10 ⁻³		_	
$K^+\pi^ K^*(1430)^0\pi^+$, $K^{*0} o$ $K^+\pi^-$	(5.0 ±3.5	$)\times10^{-4}$		_	
$K^+\pi^+\pi^-$ nonresonant	(1.04 ± 0.3	$4) \times 10^{-3}$		900	
$K^0\pi^+\pi^0$	(1.00 ± 0.1	8) %		899	
$K_{S}^{0} 2\pi^{+}\pi^{-}$	(3.0 ± 1.1	$) \times 10^{-3}$		870	
$\kappa^+\omega\pi^0$	[e] <		× 10 ⁻³	CL=90%	684	
$K^+ \omega \pi^+ \pi^-$			$\times 10^{-3}$		603	
$K^+\omega\eta$		7.9	2		366	
2K+K-		2.18 ± 0.2		0_ 00/0	627	
$\phi K^+, \phi \rightarrow K^+ K^-$	($) \times 10^{-5}$		021	
$\varphi \mathcal{N}$, $\varphi \rightarrow \mathcal{N}$	(0.9 ±2.0) ^ 10			
Doubly Cabibbo-suppressed modes						
$2K^+\pi^-$	(1.27 ± 0.1	$3) \times 10^{-4}$		805	
K^+K^* (892) 0 , $K^{*0} ightarrow$	(6.0 ± 3.4	$) \times 10^{-5}$		_	
$K^+\pi^-$						
Bary	on-antibar	von mode	2			
•		1.3 ± 0.4	_		205	
p n	(1.5 ±0.4) × 10		295	
$\Delta C = 1$ weak	neutral c	urrent (<i>C</i>	1) modes	,		
Lepton t	family nur	nber (<i>LF</i>)), or			
Lepton nu	$mber\;(L)$	violating	modes			
$\pi^{+} e^{+} e^{-}$	[j] <	1.3	$\times10^{-5}$	CL=90%	979	
$\pi^+\phi$, $\phi ightarrow e^+e^-$		6 +8 -4			_	
$\pi^+\mu^+\mu^-$				CL=90%	968	
$K^+e^+e^-$	\ \ \	3.7	√ 10 ∨ 1∩−6	CL=90% CL=90%	922	
		J. 1	∧ 10 °	CL-90/0	744	
HTTP://PDG.LBL.GOV	Page 4	1	Created:	5/30/2017	17:13	

$K^+\mu^+\mu^-$	C1	<	2.1	$\times10^{-5}$	CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4	$\times 10^{-3}$	CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.2	\times 10 ⁻⁵	CL=90%	976
$\pi^+e^-\mu^+$	LF	<	2.0	\times 10 ⁻⁵	CL=90%	976
$K^+e^+\mu^-$	LF	<	1.4	\times 10 ⁻⁵	CL=90%	919
$K^+e^-\mu^+$	LF	<	9.7	\times 10 ⁻⁶	CL=90%	919
π^-2e^+	L	<	4.1	\times 10 ⁻⁶	CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	1.2	\times 10 ⁻⁷	CL=90%	968
$\pi^-e^+\mu^+$	L	<	8.4	\times 10 ⁻⁶	CL=90%	976
$K^{-}2e^{+}$	L	<	5.2	\times 10 ⁻⁶	CL=90%	922
$K^-2\mu^+$	L	<	1.3	\times 10 ⁻⁵	CL=90%	909
$K^-e^+\mu^+$	L	<	6.1	\times 10 ⁻⁶	CL=90%	919
$K^*(892)^- 2\mu^+$	L	<	1.4	$\times 10^{-3}$	CL=90%	765

$$I(J^P) = 0(??)$$

 J^P is natural, width and decay modes consistent with 1^- .

Mass
$$m=2112.1\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 D_s^{*-} modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{D_s^+ \gamma}$	(93.5±0.7) %	139
$D_s^+ \gamma D_s^+ \pi^0$	(5.8±0.7) %	48
$D_{s}^{+}e^{+}e^{-}$	$(6.7\pm1.6)\times10^{-3}$	139

$$D_{s0}^*(2317)^{\pm}$$

$$I(J^P) = 0(0^+)$$

Created: 5/30/2017 17:13

 $I(J^P) = 0(0^+)$ J, P need confirmation. $J^P \text{ is natural, low mass consistent with } 0^+.$

Mass
$$m=2317.7\pm0.6$$
 MeV (S = 1.1) $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}=349.4\pm0.6$ MeV (S = 1.1) Full width Γ < 3.8 MeV, CL = 95%

 $D_{s0}^{*}(2317)^{-}$ modes are charge conjugates of modes below.

D_{s0}^* (2317) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ \begin{array}{c} D_s^+ \pi^0 \\ D_s^+ \pi^0 \pi^0 \end{array} $	seen	298
$D_s^+ \pi^0 \pi^0$	not seen	205

$$D_{s1}(2460)^{\pm}$$

$$I(J^P) = 0(1^+)$$

Mass
$$m=2459.5\pm0.6$$
 MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{*\pm}}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{\pm}}=491.2\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^{-}$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
92 . ,	. , ,		
$D_{s}^{*+}\pi^{0}$ $D_{s}^{+}\gamma$	(48 ±11) %		297
$D_s^+ \gamma$	$(18 \pm 4)\%$		442
$D_{s}^{+}\pi^{+}\pi^{-}$	(4.3± 1.3) %	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-}$ $\stackrel{5.0}{_{2.4}})$ %		138

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass $m=2535.10\pm0.06$ MeV Full width $\Gamma=0.92\pm0.05$ MeV

 $D_{\rm s1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ±0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	$0.028 \!\pm\! 0.005$		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
$D^+ K^0$	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_{s}^{*+}\gamma$	possibly seen		388
$D_{s}^{+}\pi^{+}\pi^{-}$	seen		437

$D_{s2}^*(2573)$

$$I(J^P)=0(2^+)$$

 ${\it J}^{\it P}$ is natural, width and decay modes consistent with 2^+ .

Mass
$$m=2569.1\pm0.8$$
 MeV (S = 2.4)
Full width $\Gamma=16.9\pm0.8$ MeV

HTTP://PDG.LBL.GOV

Page 6

 $D_{\rm s2}^*(2573)^-$ modes are charge conjugates of the modes below.

D* _{\$2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^0K^+	seen	431
$D^*(2007)^0K^+$	not seen	238

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Mass $m=2708.3^{+4.0}_{-3.4}~{\rm MeV}$ Full width $\Gamma=120\pm11~{\rm MeV}$

NOTES

- [a] See the Particle Listings for the (complicated) definition of this quantity.
- [b] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an η , η' , ϕ , K^0 , K^{*0} , or $f_0(980)$ is $7.0 \pm 0.4 \%$
- [c] This fraction includes η from η' decays.
- [d] Two times (to include μ decays) the $\eta'\,e^+\,\nu_e$ branching fraction, plus the $\eta'\,\pi^+$, $\eta'\,\rho^+$, and $\eta'\,K^+$ fractions, is (18.6 \pm 2.3)%, which considerably exceeds the inclusive η' fraction of (11.7 \pm 1.8)%. Our best guess is that the $\eta'\,\rho^+$ fraction, (12.5 \pm 2.2)%, is too large.
- [e] This branching fraction includes all the decay modes of the final-state resonance.
- [f] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [g] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [h] We decouple the $D_s^+ \to \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ \to \phi \pi^+$, $\phi \to K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ \to K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi \to K^+ K^-$ branching fraction 0.491.
- [i] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.

- [j] This mode is not a useful test for a $\Delta C=1$ weak neutral current because both quarks must change flavor in this decay.
- [k] This is *not* a test for the $\Delta C = 1$ weak neutral current, but leads to the $\pi^+ \ell^+ \ell^-$ final state.