MAT5730-Álgebra Linear Primeira Prova 05/04/2011

Justifique todas as suas afirmações e enuncie todas as propriedades e todos os teoremas usados.

Boa prova!

- 1. **(2,0)** Seja V um espaço vetorial de dimensão finita e $T \in L(V)$. Mostre que as seguintes afirmações são equivalentes:
 - (a) $Ker T^2 = Ker T$;
- **(b)** $\text{Im} T^2 = \text{Im} T$;
- (c) $\operatorname{Ker} T \oplus \operatorname{Im} T = V$.

Demonstração:

- (a) \Rightarrow (b) É claro que $\text{Im}T^2 \subset \text{Im}T$. Como $\text{Ker}T^2 = \text{Ker}T$, temos que dim $\text{Ker}T^2 = \text{dim}\text{Ker}T$, o que implica, pelo Teorema do Núcleo e da Imagem, que dim $\text{Im}T^2 = \text{dim}\text{Im}T$. Assim, $\text{Im}T^2$ é um subespaço de ImT com a mesma dimensão de ImT. Logo $\text{Im}T^2 = \text{Im}T$.
- **(b)** \Rightarrow **(a)** Agora, é claro que Ker $T^2 \supset$ KerT, pois se T(v) = 0 então $T^2(v) = T(T(v)) = T(0) = 0$. Como Im $T^2 =$ ImT, segue do Teorema do Núcleo e da Imagem que dimKer $T^2 =$ dimKerT. Logo Ker $T^2 =$ KerT.
- **(b)** \Rightarrow **(c)** Vamos provar que V = KerT + ImT. Para isso, seja $v \in V$. Então $T(v) \in \text{Im}T = \text{Im}T^2$. Assim, existe $u \in V$ tal que $T(v) = T^2(u)$. Podemos então escrever v = v T(u) + T(u). É claro que $T(u) \in \text{Im}T$ e $T(v T(u)) = T(v) T^2(u) = T(v) T(v) = 0$, o que implica que $v T(u) \in \text{Ker}T$.

Do Teorema do Núcleo e da Imagem segue que a soma é direta.

- (c) \Rightarrow (a) Basta provar que $\mathrm{Ker}T^2\subset\mathrm{Ker}T$. Seja $v\in\mathrm{Ker}T^2$. Então $T^2(v)=T(T(v))=0$, de onde temos que $T(v)\in\mathrm{Ker}T\cap\mathrm{Im}T=\{0\}$. Logo T(v)=0 e $v\in\mathrm{Ker}T$.
- 2. **(2,0)** Sejam U e W subespaços de um espaço vetorial V tais que $V=U\oplus W$. Prove que

$$V^* = U^{\circ} \oplus W^{\circ}$$
.

Demonstração Como $U \cap W = \{0\}$, temos que $V^* = \{0\}^\circ = (U \cap W)^\circ = U^\circ + W^\circ$. Também sabemos que V = U + W. Logo $\{0\} = V^\circ = (U + W)^\circ = U^\circ \cap W^\circ$.

- 3. Prove as afirmações a seguir.
 - (a) (1,5) Se V é um espaço vetorial sobre o corpo \mathbb{K} e W é um subespaço de V então

$$(V/W)^* \cong W^\circ \in W^* \cong V^*/W^\circ.$$

Demonstração:

Seja $q:V\to V/W$ a aplicação canônica, isto é, q(v)=v+W para todo $v\in V$. Temos que q é sobrejetora e Kerq=W. Seja $q^t:(V/W)^*\to V^*$ a transposta de q. Temos que ${\rm Im}q^t=({\rm Ker}q)^\circ=W^\circ$ e que ${\rm Ker}q^t=({\rm Im}q)^\circ=(V/W)^\circ=\{0\}$. Logo, pelo Primeiro Teorema do Isomorfismo, segue que $(V/W)^*\cong W^\circ$.

Considere agora $i:W\to V$ a inclusão, isto é, i(w)=w para todo $w\in W$. É claro que i é injetora e Imi=W. Seja $i^t:V^*\to W^*$ a transposta de i. Temos então que Ker $i^t=(\mathrm{Im}i)^\circ=W^\circ$ e Im $i^t=(\mathrm{Ker}i)^\circ=\{0\}^\circ=W^*$. A tese segue do Teorema do Isomorfismo.

(b) **(1,0)** Se V é um espaço vetorial de dimensão finita n sobre o corpo \mathbb{K} e se $f_1,...,f_n \in V^*$ então o conjunto $\{f_1,...,f_n\}$ é linearmente dependente se, e somente se,

$$\bigcap_{i=1}^n \operatorname{Ker} f_i \neq \{0\}.$$

Demonstração:

ser LD.

(\Rightarrow) Suponha que $\{f_1,...,f_n\}\subset V^*$ é LD e suponha por absurdo que $\bigcap_{i=1}^n \operatorname{Ker} f_i=\{0\}.$ Se $f\in V^*$, então $\bigcap_{i=1}^n \operatorname{Ker} f_i\subset \operatorname{Ker} f$. Logo, por um teorema provado em aula, temos que f é combinação linear dos f_i , donde segue que $\{f_1,...,f_n\}$ gera V^* . Como dim $V^*=\dim V=n$, temos que $\{f_1,...,f_n\}$ é uma base de V^* , contrariando o fato de $\{f_1,...,f_n\}$

(\Leftarrow) Seja $0 \neq v \in \bigcap_{i=1}^n \operatorname{Ker} f_i$. Estenda $\{v = v_1, v_2, ..., v_n\}$ uma base de V e defina $f \in V^*$ de modo que f(v) = 1. Se $\{f_1, ..., f_n\}$ fosse LI, seria uma base V. Então existiriam escalares $a_1, ..., a_n$ tais que $f = a_1 f_1 + ... + a_n f_n$. Então $0 = (a_1 f_1 + ... + a_n f_n)(v)$ já que $v \in \bigcap_{i=1}^n \operatorname{Ker} f_i$. Mas f(v) = 1, absurdo. Logo $\{f_1, ..., f_n\}$ é LD.

- 4. As seguintes afirmações são verdadeiras ou falsas? Prove ou dê um contra-exemplo.
 - (a) **(1,0)** Seja V um espaço vetorial sobre o corpo \mathbb{K} e V^* o dual de V. Se W é um subespaço de V^* , então existe um subespaço U de V tal que $U^\circ = W$.

Demonstração:

A afirmação é **falsa**. Se existir $U \subset V$ tal que $U^{\circ} = W$ então $U = \{u \in V | f(u) = 0 \forall f \in W\} = W^{\diamond}$. (Isso foi provado em aula). Vale também que $(U^{\circ})^{\diamond} = U$ para todo subespaço U de V. (Veja o Exercício 15 da Lista 2.) Seja então $W = P(\mathbb{R})$ e $B = \{1, x, x^2, ...\}$ a base canônica de V. Seja $B^* = \{f_0, f_1, ...\}$ o conjunto dual de B. Sabemos que B^* não gera V^* . Seja $W = \langle B^* \rangle \neq V^*$. Se existisse $U \subset V$ tal que $U^{\circ} = W$, então $U = \{p(x) \in P(\mathbb{R}) | f_i(p(x)) = 0 \forall i = 0, 1, 2, ...\} = \{0\}$. Mas $\{0\}^{\circ} = V^* \neq W$.

(b) (1,0) Sejam U e W subespaços de um espaço vetorial V. Então $(U\cap W)^\circ=U^\circ+W^\circ$.

A afirmação é **verdadeira**.

Demonstração:

Seja $f\in U^\circ+W^\circ$. Então existem $g\in U^\circ$ e $h\in W^\circ$ tais que f=g+h. Se $v\in U\cap W$, então f(v)=g(v)+h(v)=0 pois $g\in U^\circ$, $h\in W^\circ$ e $v\in U\cap W$. Logo

$$U^{\circ} + W^{\circ} \subset (U \cap W)^{\circ}$$
.

Vamos agora provar a outra inclusão. Seja $f \in (U \cap W)^\circ$. Vamos provar que existem $g \in U^\circ$ e $h \in W^\circ$ tais que f = g + h. Para isso, seja B uma base de $U \cap W$. Sejam $B_U \subset V$ e $B_W \subset V$ tais que $B \cup B_U$ é base de U e $B \cup B_W$ é base de W. O conjunto $B \cup B_U \cup B_W$ é LI. De fato, suponha que v + u + w = 0, com $v \in \langle B \rangle$, $u \in \langle B_U \rangle$ e com $w \in \langle B_W \rangle$. Então $v + u = -w \in U \cap W$. Logo $w \in \langle B \rangle \cap \langle B_W \rangle = 0$ pois $B \cup B_W$ é LI. Logo 0 = -w = v + u. Mas daí, v = u = 0 pois $B \cup B_U$ é LI. Seja então $C \subset V$ tal que $B \cup B_U \cup B_W \cup C = A$ é uma base de V. Defina $g, h \in V^*$ por:

$$g(v) = \begin{cases} 0 & se \quad v \in B \cup B_U \\ f(v) & se \quad v \in B_W \cup C \end{cases}$$

e

$$h(v) = \begin{cases} 0 & se \ v \in B \cup B_W \cup C \\ f(v) & se \ v \in B_U \end{cases}$$

Então, é claro que $g \in U^{\circ}$, $h \in W^{\circ}$. Se $v \in V$, v = x + u + w + y, onde $x \in U \cap W$, $u \in \langle B_{U} \rangle$, $w \in \langle B_{W} \rangle$ e $y \in \langle C \rangle$. Logo

$$(g+h)(v) = (g+h)(x) + (g+h)(u) + (g+h)(w) + (g+h)(y)$$

$$= g(x) + h(x) + g(u) + h(u) + g(w) + h(w) + g(y) + h(y)$$

$$= 0 + 0 + 0 + f(u) + f(w) + 0 + f(y) + 0 = f(x) + f(u) + f(w) + f(y) = f(v),$$
já que $0 = f(x)$ pois $f \in (U \cap W)^\circ$. Logo $f = g + w$ e
$$U^\circ + W^\circ \supset (U \cap W)^\circ.$$

5. **(1,5)** Seja $V=P(\mathbb{R})$ e seja W o subespaço de V constituído pelos múltiplos do polinômio $f(x)=(x^2-1)^2$. Mostre que $P(\mathbb{R})=W\oplus P_3(\mathbb{R})$. Prove que os funcionais de V^* definidos por

$$p(x) \mapsto p(1), p(x) \mapsto p'(1), p(x) \mapsto p(-1), p(x) \mapsto p'(-1), \ \forall p(x) \in V$$

formam uma base de W°.

Seja $p(x) \in P(\mathbb{R})$. Pelo Algoritmo da Divisão existem polinômios $q(x), r(x) \in P(\mathbb{R})$ tais que $p(x) = (x^2 - 1)^2 q(x) + r(x)$ onde r(x) = 0 ou $0 \le \operatorname{grau} r \le 3$. Daí é claro que $P(\mathbb{R}) = W + P_3(\mathbb{R})$. Para ver que a soma é direta, basta notar que como $\operatorname{grau}(x^2 - 1)^2 = 4$, o grau de um polinômio que pertence a W é maior ou igual a 4. Assim ele não pode estar em $P_3(\mathbb{R})$. Logo $P(\mathbb{R}) = W \oplus P_3(\mathbb{R})$.

Observe agora que os funcionais definidos acima estão em W° pois 1 e -1 são raízes duplas de $(x^2-1)^2$. Pelo Exercício 3(a) temos que $W^{\circ} \cong (P(\mathbb{R})/W)^* \cong (P_3(\mathbb{R}))^*$. Logo dim $W^{\circ} = 4$. Assim só é preciso provar que os funcionais definidos acima são LI!!!! E são, façam as contas!!!!