Pattern Recognition and Machine Learning Lab 2 Assignment

Decision Tree Regressor and Classifier

Jatin Lohar B21CS091

Question 1

Part 1

I imported 'numpy', 'pandas' and 'test_train_split' to do the question. The read the csv file using 'pd.read_csv()'. Then printed to 5 entries.

I then split the dataset into X and Y using 'drop'. Then split X and Y into 'X_train', 'Y_train', 'X_test', 'Y_test', 'X_val', 'Y_val' using 'test_train_split' in the ratio 70:20:10.

Part 2

I trained 4 different Decision Trees by different hyperparametes...

- DecisionTreeRegressor(random_state=1) Mean squared error = 0.3620592105263157
- DecisionTreeRegressor(criterion='squared_error', max_depth = 7, min_samples_split=4)
 Mean squared error = 0.2830112724214286
- ❖ DecisionTreeRegressor(criterion='absolute_error', min_samples_split = 4, max_depth = 7)
 Mean squared error = 0.38552368421052685
- ❖ DecisionTreeRegressor(criterion='squared_error', max_depth = 8, min_samples_split=4)
 Mean squared error = 0.30285302353875765

The Decision Tree in second case performed best.

Part 3

♦ Hold-out Validation **→** MSE = 0.40884854838709683

❖ 5-Fold Validation

- , 5-Fold Cross-Validation without Shuffling = 2.93327659578983 5-Fold Cross-Validation with Shuffling = 0.3781359653255241
- ❖ RepeatedKFold Cross Validation Used 'n_splits = 5' and 'n_repeats = 5'
 MSE of Repeated KFold Cross Validation = 0.37849752699261535
- ❖ Decision Tree plotted the Decision Tree using **plot_tree** from 'sklearn.tree'

Question 2

Imported **numpy**, **pandas** and **train_test_split**. Then imported the dataset using 'datasets' from sklearn. And then 'datasets.load_iris()'. Then split it into X and Y. The shapes of X and Y matrix are:

(150, 2) (150,)

Part 1

Imported the DecisionTreeClassifer with $max_depth = 2$. And then fitted it on X_train and Y_train . Then used 'DecisionBoundaryDisplay' to plot the decision boundary.

Part 2

Deleted the entries with petal_length = 4.8 cm and petal_width = 1.8 cm. Then train new DecisionTreeClassifier for it, and plotted the Decision Boundary.

Part 3

Making new Decision Tree Classifier with default entries and then plotting the Decision Boundary. We can see, that the classifier has overfitted every point.

Part 4

Made a random dataset using random.uniform. I made two datasets. One with X_1 from $\mathbf{0}$ to $\mathbf{2.5}$ and other from $\mathbf{2.5}$ to $\mathbf{5}$. So as to ensure equal distribution.

The concatenated both the datasets and shuffled it. Then, I made the Y dataset using X_1 . The decision boundary of the points is...

Using mathematical formula for rotation of point about origin by 45° . I got the new points. Again plotted the decision boundary for it with max_depth = 2. The decision boundary I got is...

Part 5

The conclusion I can make are...

- * The decision boundary of the Decision Trees and either horizontal or vertical.
- ❖ It tends to overfit in case the max_depth is not pre-defined.

Regression

Part 1

Training model for different max_depth and ploting the plots.

For $max_depth = 2$

For $max_depth = 3$

Part 2

For min_samples_leaf = 1, the Decision Tree overfits the dataset.

For min_samples_leaf = 10, the Decision Tree generalises the dataset very well.

Question 3

Part 1

I imported the data using online GitHub link, then kept the data in variable 'data'. Then checked for null values and found the following classes has null values

```
species 0
island 0
bill_length_mm 2
bill_depth_mm 2
flipper_length_mm 2
body_mass_g 2
sex 11
year 0
dtype: int64
```

Then I dropped the values using 'dropna()'. Then I used 'LabelEncoder' to encode the categorical features using fit_transform. I then split the function into X and Y respectively.

Part 2

I firstly calculated the unique values in X and Y. Then partitioned the data according to X_values. And found the probabilities of respective Y_values in that dataset. The by Gini index formula, I calculated the gini index for that group. Later, finding the gini index for entire column, I multiplied the gini index with the respective class probabilities. To find the final 'gini_index'.

```
gini_index(X[:, 1], Y)
0.39703404111897544
```

Part 3

To make the function count_to_cat, I used the thinking that gini index is minimum if the randomness in the dataset is minimum. Hence it allotted the values of X according to the Y_values. Later, I converted all the continuous dataset into binary dataset.

Part 4

Made a function best_split(), that finds the gini index of each column and then return the gini indexes found and the index with minimum gini index.

Part 5

Firstly made a TreeNode that will hold the values. The made a class DecisionTree with parameter as value, children, index. Then made the function train, which makes the decision tree using another function **fit**. Here **fit** function runs recursively until the max_depth has not reached to all the elements have the same class. I the chose the best split using the function made above and ran the fit function again with neglecting the function found here.

Part 6

In the **predict** function, I simply traversed the tree, according to the index of the TreeNode until a leaf node is been achieved. The printing value of the leaf node.

Part 7

Trained a new DecisionTree using X_train and Y_train. The made a list that carries the predicted values of the decision tree. Later found the accuracy by comparing the predicted value and original value and finding number of correct prediction.

```
Correctly predicted elements [20. 11. 22.]
Original number of elements [32. 13. 22.]

Overall Accuracy of the Model is 0.7910447761194029:
Classwise Accuracy of the Model is 0.8237179487179488:
```