PROBLÉME II

Pseudo-inverse et matrice stochastique

Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on note $\mathcal{M}_{n,m}(\mathbb{K})$ l'ensemble des matrices à n lignes et m colonnes à coefficients dans \mathbb{K} . Pour toute matrice $M \in \mathcal{M}_{n,n}(\mathbb{R})$, on appelle endomorphisme canoniquement associé à M, l'endomorphisme de \mathbb{R}^n , noté m, dont M est la matrice dans la base canonique de \mathbb{R}^n .

Si $M \in \mathcal{M}_{n,m}(\mathbb{K})$, M(i,j) représente le coefficient en ligne i et colonne j de la matrice M. On note I_n la matrice identité de $\mathcal{M}_{n,n}(\mathbb{R})$. La matrice (colonne) de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients valent 1 est notée J_n . Pour $M \in \mathcal{M}_{n,m}(\mathbb{K})$, on considère la norme

$$||M|| = \max_{1 \le i \le n} \sum_{j=1}^{m} |M(i,j)|$$

(on ne demande pas de vérifier qu'il s'agit bien d'une norme).

Définition 1 On dit qu'une matrice $M \in \mathcal{M}_{n,m}(\mathbb{R})$ est positive (respectivement strictement positive), lorsque tous ses coefficients sont positifs (respectivement strictement positifs).

Une matrice positive $M \in \mathcal{M}_{n,m}(\mathbb{R})$ est dite stochastique lorsque $MJ_m = J_n$.

On désigne par $\mathcal{K}_n \subset \mathcal{M}_{1,n}(\mathbb{R})$ l'ensemble des matrices lignes stochastiques.

Définition 2 Soit $A \in \mathcal{M}_{n,n}(\mathbb{R})$, une matrice $A' \in \mathcal{M}_{n,n}(\mathbb{R})$ est un pseudo-inverse de A lorsque les trois propriétés suivantes sont satisfaites :

$$AA' = A'A \tag{1}$$

$$A = AA'A \tag{2}$$

$$A' = A'AA' \tag{3}$$

Dans tout le problème, P est une matrice stochastique, strictement positive, de $\mathcal{M}_{n,n}(\mathbb{R})$.

I. Préliminaires.

- **1.** Montrer que $||MN|| \leq ||M||.||N||$ pour toutes les matrices $M \in \mathcal{M}_{n,r}(\mathbb{K})$ et $N \in \mathcal{M}_{r,m}(\mathbb{K})$.
- **2.** Montrer que ||P|| = 1.
- **3.** Montrer que pour tout $k \ge 1$, P^k est une matrice stochastique.

II. Pseudo-inverses.

Soit A une matrice de $\mathcal{M}_{n,n}(\mathbb{R})$ et a l'endomorphisme de \mathbb{R}^n canoniquement associé.

4. Montrer que l'existence d'un pseudo inverse implique que

$$rang(a) = rang(a^2)$$

Inversement, on suppose maintenant que rang $(a) = \operatorname{rang}(a^2)$. On note r cet entier.

5. Montrer que le noyau et l'image de a sont en somme directe :

$$\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$$

6. Montrer qu'il existe $B \in \mathcal{M}_{r,r}(\mathbb{R})$, B inversible et $W \in \mathcal{M}_{n,n}(\mathbb{R})$, W inversible, telles que

$$A = W \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} W^{-1}$$

7. Montrer que A admet au moins un pseudo-inverse.

Considérons un pseudo-inverse quelconque A' de A et a' l'endomorphisme canoniquement associé à A'.

8. Montrer que $\operatorname{Ker}(a)$ et $\operatorname{Im}(a)$ sont stables par a' et montrer qu'il existe $D \in \mathcal{M}_{r,r}(\mathbb{R})$ telle que

$$A' = W \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} W^{-1}$$

- 9. Montrer que aa' est un projecteur dont on précisera le noyau et l'image en fonction de ceux de a et préciser ce que vaut $W^{-1}(AA')W$.
- **10.** Montrer que A admet au plus un pseudo-inverse.

III. Détermination des vecteurs invariants par tP .

Dans les questions suivantes, on note a l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique de \mathbb{R}^n est $A = I_n - P$.

11. Montrer que Ker a est la droite vectorielle engendrée par le vecteur $(1,1,\ldots,1)$.

(Indication : si $X = {}^t(x_1, \ldots, x_n) \in \mathcal{M}_{n,1}(\mathbb{R})$, non nul, est tel que PX = X, considérer un indice $k \in [1; n]$ tel que $|x_k| = \max_{1 \le i \le n} |x_i|$).

12. Montrer que le noyau et l'image de a sont en somme directe :

$$\mathbb{R}^n = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$$

(Indication: si $x \in \text{Ker } a \cap \text{Im } a$, montrer qu'il existe un vecteur $y \in \mathbb{R}^n$ tel que pour tout entier $k \in \mathbb{N}^*$ on ait $kx = y - p^k(y)$, où p est l'endomorphisme de \mathbb{R}^n dont la matrice dans la base canonique de \mathbb{R}^n est P.)

13. En déduire que rang $(a) = \operatorname{rang}(a^2) = n - 1$.

On note A' le pseudo-inverse de A, dont l'existence et l'unicité sont garanties par ce qui précède.

14. Soit $C \in \mathcal{M}_{n,n}(\mathbb{R})$ inversible. Établir, pour tout entier non nul k, l'identité

$$\sum_{j=0}^{k-1} (I_n - C)^j = (I_n - (I_n - C)^k)C^{-1}$$

15. Etablir, pour tout entier naturel non nul k, l'identité suivante :

$$\sum_{j=0}^{k-1} P^j = (I_n - P^k)A' + k(I_n - AA')$$

(Indication: on pourra utiliser les questions 6 et 14, ou bien raisonner par récurrence sur k).

16. Montrer que

$$\lim_{k \to +\infty} \frac{1}{k} \sum_{i=0}^{k-1} P^j$$

existe et donner sa valeur.

- 17. Montrer que $(I_n AA')$ est stochastique et que $(I_n AA')A = 0$.
- 18. Montrer que chaque ligne L_i de la matrice $I_n AA'$ vérifie $L_iP = L_i$. En déduire qu'il existe une et une seule matrice ligne stochastique $L \in \mathcal{K}_n$ telle que LP = L.