哈尔滨工业大学(深圳)

统计机器学习 实验指导书

实验二 构建决策树模型实现银行借贷预测

目录

1.	实验目的
2.	实验内容
3.	实验环境
4.	实验要点
	4.1 Python 自编程(以 C4.5 算法为例)
	4.1.1 导入必要库
	4.1.2 导入数据
	4.1.3 定义节点类
	4.1.4 定义二叉树
	4.1.5 调用生成树
	4.1.6 预测模型
	4.1.7 补充知识
	4.2 使用 Sklearn 库编程(以 CART 算法为例)
	4.2.1 安装依赖库
	4.2.2 导入数据
	4.2.3 转换文字数据集为数字数据集
	4.2.4 划分训练集和测试集
	4.2.5 构建决策树和训练模型
	4.2.6 预测模型
	4.2.7 可视化决策树模型
	4.2.8 补充知识

1. 实验目的

- 1. 学会理解决策树模型的原理并掌握其构建方法;
- 2. 学会调用 Python 自编程、调用 Sklearn 库实现决策树模型的定义、训练与预测功能。

2. 实验内容

- 1. **任务:** 对本次实验给出的**银行借贷数据集**,使用 **Python 自编程**构造出一棵决策树,实现借贷与否的预测。实验要求选用一种合适的算法,来构造决策树模型,结合精确率 P、召回率 R 以及 F1 值来评价模型;
- 2. **附加题:** 对本次实验给出的**银行借贷数据集**,使用 **Sklearn 库编程**完成 决策树模型预测银行借贷与否。实验要求要<mark>有调参过程</mark>,要评价模型,绘制出决策树(选做)。

3. 实验环境

- 1. Windows10
- 2. PyCharm

4. 实验要点

下面以<mark>课本上第71页的样例数据</mark>为例,分别用Python 自编程、调用Sklearn 库两种方式构建一个决策树模型,实现申请贷款批准与否的预测。其中数据集如下:

ID	年龄	有工作	有自己的房子	信贷情况	类别
1	青年	否	否	一般	否
2	青年	否	否	好	否
3	青年	是	否	好	是
4	青年	是	是	一般	是
5	青年	否	否	一般	否
6	中年	否	否	一般	否
7	中年	否	否	好	否
8	中年	是	是	好	是
9	中年	否	是	非常好	是
10	中年	否	是	非常好	是
11	老年	否	是	非常好	是
12	老年	否	是	好	是
13	老年	是	否	好	是
14	老年	是	否	非常好	是
15	老年	否	否	一般	否

4.1 Python 自编程(以 C4.5 算法为例)

4.1.1 导入必要库

```
import numpy as np
import pandas as pd
from math import log
```

4.1.2 导入数据

导入数据,读取 xlsx 文件并查看所有的表头(注意:请根据文件的实际路径获取数据)

```
df = pd.read_excel(r"课本样例数据.xls")
#获取数据集和每个维度的名称
df = df.drop(['ID'], axis=1) #把第1列ID数据去除掉
datasets = df.values
labels = df.columns.values
print(datasets)
print(labels)
return datasets, labels
```

4.1.3 定义节点类

```
class Node:
    def __init__(self, root=True, label=None, feature_name=None,
feature=None):
```

```
self.root = root
self.label = label
self.feature_name = feature_name
self.feature = feature
self.tree = {}
self.result = {'label:': self.label, 'feature': self.feature,
'tree': self.tree}

def __repr__(self):
    return '{}'.format(self.result)

def add_node(self, val, node):
    self.tree[val] = node

def predict(self, features):
    if self.root is True:
        return self.label
    return self.tree[features[self.feature]].predict(features)
```

4.1.4 定义二叉树

模型相关的理论知识:

熵: $H(x) = -\sum_{i=1}^n p_i \log p_i$

条件熵: $H(X|Y) = \sum P(X|Y) \log P(X|Y)$

信息增益: g(D, A) = H(D) - H(D|A)

信息增益比: $g_R(D,A)=rac{g(D,A)}{H(A)}$

代码相关

```
class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self._tree = {}

# 熵

def calc_ent(datasets):
        #####自行定义熵的计算方法######

# 经验条件熵

def cond_ent(self, datasets, axis=0):
```

```
#####自行定义经验条件熵的计算方法######
  # 信息增益比
  def info gain ratio train(self, datasets):
      ######自行定义信息增益比的计算方法,并返回最大值######
  def train(self, train data):
     11 11 11
     input:数据集 D (DataFrame 格式),特征集 A, 阈值 eta
     output:決策树 T
     11 11 11
     , y train, features = train data.iloc[:, :-1],
train data.iloc[:, -1], train data.columns[:-1]
     epsilon = self.epsilon
       ######请自行编程完成 C4.5 算法构建一颗决策树######
# 1 若 D 中实例属于同一类 Ck,则 T 为单节点树,并将类 Ck 作为结点的类标记,返回 T
# 2 若 A 为空,则 T 为单节点树,将 D 中实例树最大的类 Ck 作为该节点的类标记,返回 T
# 3 计算最大信息增益比,选择信息增益比最大的特征 Ag
# 4 如果 Ag 的信息增益小于阈值 eta, 则置 T 为单节点树, 并将 D 中是实例数最大的类 Ck 作为
该节点的类标记,返回 T
#5否则,对Ag的每一个可能的值ai,依照Ag=ai将D分割为若干个非空子集Di,将Di中实
例树最大的类作为标记,构建子节点,由结点及其子节点构成树 T, 返回 T
# 6 对第 i 个子节点,以 Di 为训练集,以 A-/Ag/为新的特征集,递归调用 1~5, 得到树 T, 返
\square T
  def fit(self, train data):
     self. tree = self.train(train data)
     return self. tree
  def predict(self, X test):
     return self. tree.predict(X test)
```

4.1.5 调用生成树

```
datasets, labels = create_data()
train_data = pd.DataFrame(datasets, columns=labels)
print(train_data)
dt = DTree()
tree = dt.fit(train_data)
print(tree)
```

4.1.6 预测模型

预测当输入为['老年','否','否','一般']时,银行是否借贷。(注意:本次实验内容中要同感知机实验任务一样,自行分割出测试集做预测,不能自己编造测试集)

print(dt.predict(['老年', '否', '否', '一般']))

4.1.7 补充知识

在二分类任务中,各指标的计算基础都来自于对正负样本的分类结果,用混淆矩阵表示为:

真实情况	预测	结果
	正例	反例
正例	TP	FN
反例	FP	TN

(1)**精确率**:分类正确的正样本个数占分类器判定为正样本的样本个数的比例。 分类正确的正样本个数:即真正例(TP)。

分类器判定为正样本的个数:包括真正例(TP)和假正例(FP)

$$P = \frac{TP}{TP + FP}$$

召回率: 分类正确的正样本个数占真正的正样本个数的比例。

分类正确的正样本个数:即真正例(TP)。

真正的正样本个数:包括真正例(TP)和假负例(FN)

$$R = \frac{TP}{TP + FN}$$

F1 分数: 精确率和召回率的调和均值。

$$F1 = \frac{2TP}{2TP + FP + FN}$$

注意: 这3个评价指标需自行定义,并用在实验任务中。

4.2 使用 Sklearn 库编程(以 CART 算法为例)

4.2.1 安装依赖库

- (1) pandas 依赖处理 Excel 的 xlrd 模块,安装命令是: pip install xlrd
- (2) 决策树分类器依赖 sklearn 模块,安装命令是: pip install scikit-learn

- (3) 决策树分类器依赖 pydotplus 模块和 Graphviz:
- (4) 安装 pydotplus, 安装命令是: pip install pydotplus
- (5) 安装 Graphviz, 下载 graphviz-install-2.44.1-win64.exe 并安装,下载地址: https://www2.graphviz.org/Packages/stable/windows/10/cmake/Release/x64/ 按照指令安装,并添加安装路径至 PATH 环境变量

4.2.2 导入数据

引入 pandas 模块,导入数据,读取 xlsx 文件并查看所有的表头(<mark>注意:请根据</mark> 文件的实际路径获取数据)

```
import pandas as pd
#读取 xlsx 文件并查看所有的表头
df = pd.read_excel(r"../课本样例数据.xls")
cols=df.columns.values
print(cols)
```

4.2.3 转换文字数据集为数字数据集

将所有分类映射为 0/1 分类 或者 1/2/3 分类,获取所有的数据(除去第一列的 ID 信息,以及第一行的表头信息),并转为二维数组的形式

```
age = {'青年': 1, '中年': 2, '老年': 3}
job = {'是': 1, '否': 0}
housing = {'是': 1, '否': 0}
credit = {'一般': 1, '好': 2, '非常好': 3}
loan = {'是': 1, '否': 0}
df['年龄'] = df['年龄'].map(age)
df['有工作'] = df['有工作'].map(job)
df['有自己的房子'] = df['有自己的房子'].map(housing)
df['信贷情况'] = df['偿债情况'].map(credit)
df['类别'] = df['类别'].map(loan)
df = df.drop(['ID'], axis=1)
datas=df.values
print(datas)
```

4.2.4 划分训练集和测试集

注意:因课本上例子的数据集太少,所以没有做训练集和测试集的分类,而**实验作业中是要数据集分类的,可参考实验一感知机中的内容。**

```
feature =['age','no job','no housing','credit']
classname =['no loan','loan']
#划分数据集
```

```
X = [x[0:4] for x in datas]
#print(X)
Y = [y[-1] for y in datas]
#print(Y)
```

4.2.5 构建决策树和训练模型

引入 sklearn 模型,构建决策树,训练模型

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz

tree_clf = DecisionTreeClassifier(max_depth=4)
tree_clf.fit(X, Y)
```

4.2.6 预测模型

与前面 python 编程一样,预测当输入为 ['老年','否','否','一般']时,银行是否借贷,注意需要转化为数值类型。(注意:本次实验内容中要自行分割出测试集做预测,不能自己编造测试集)

```
print(tree_clf.predict([[3, 0, 0, 1]]))
```

4.2.7 可视化决策树模型

引入 pydotplus 模块,可视化决策树模型(注意:请根据文件的实际路径保存

图片)

运行结果如下:

可能会遇到这样的问题,如下:

21-36AE1111100110

报错信息:

pydotplus.graphviz.InvocationException: Program terminated with status: 1. stderr follows: Format: "png" not recognized. Use one of:

请参考网上的解决方法: https://www.iteye.com/blog/peter1981-2517186

4.2.8 补充知识

1) 如何调参

构建模型中很重要的一步是<mark>调参</mark>。在 sklearn 中,模型的参数是通过方法参数来决定的,以下给出 sklearn 中,决策树的参数:

通常来说,**较为重要的参数有**:

criterion: 用以设置用信息熵还是基尼系数计算

string, optional (default="gini")

- (1).criterion='gini',分裂节点时评价准则是 Gini 指数。
- (2).criterion='entropy',分裂节点时的评价指标是信息增益。

splitter: 指定分支模式

string, optional (default="best")。指定分裂节点时的策略。

- (1).splitter='best',表示选择最优的分裂策略。
- (2).splitter='random',表示选择最好的随机切分策略。

max depth: 最大深度, 防止过拟合

int or None, optional (default=None)。指定树的最大深度。

如果为 None,表示树的深度不限。直到所有的叶子节点都是纯净的,即叶子节点中所有的样本点都属于同一个类别。或者每个叶子节点包含的样本数小于 min_samples_split。

min_samples_leaf: 限定每个节点分枝后子节点至少有多少个数据,否则就不分枝

int, float, optional (default=2)。表示分裂一个内部节点需要的做少样本数。

- (1).如果为整数,则 min samples split 就是最少样本数。
- (2).如果为浮点数(0 到 1 之间),则每次分裂最少样本数为 ceil(min_samples_split * n samples)
- 2) 如何定义评价指标函数

```
from sklearn.tree import DecisionTreeClassifier

clf = DecisionTreeClassifier() #决策树分类器

clf.fit(X_train, y_train) #拟合数据

y_pred = clf.predict(X_test) #得出预测结果,从测试数据集

from sklearn import metrics

p = metrics.precision_score(y_test, y_pred) #计算程回率R

fl = metrics.fl_score(y_test, y_pred) #计算F1
```