Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Wednesday 15 J	anuary 2020
Morning (Time: 2 hours 30 minutes)	Paper Reference WMA02/01
Mathematics International Advanced Lev Core Mathematics C34	rel
You must have: Mathematical Formulae and Statistical	Tables (Blue), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 15 questions in this question paper. The total mark for this paper is 125.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

$$f(x) = 2x^4 + x^2 - 3x + 8$$

The curve with equation y = f(x) has a single turning point when $x = \alpha$

(a) Show that α is a solution of the equation

$$x = \sqrt[3]{\frac{3-2x}{8}} \tag{3}$$

The iterative formula

1.

$$x_{n+1} = \sqrt[3]{\frac{3 - 2x_n}{8}} \qquad x_1 = 0.6$$

is used to find an approximate value for α .

- (b) Calculate the value of x_2 and the value of x_3 giving your answers to 4 decimal places. (2)
- (c) By choosing a suitable interval, show that $\alpha = 0.607$ to 3 decimal places. (2)

stion 1 continued	
	(Total 7 marks)

2. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$\left(\frac{1}{4} - 3x\right)^{\frac{1}{2}}$$

giving each coefficient in its simplest form.

(5)

By substituting $x = \frac{1}{100}$ into the answer for (a),

(b) find an approximation for $\sqrt{22}$, giving your answer to 4 decimal places.

(2)

estion 2 continued	

Figure 1 shows a sketch of the curve with equation $y = \frac{10}{1 + \sqrt{x}}, x \ge 0$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the line with equation x = 4, the x-axis and the line with equation x = 6

(a) Use the trapezium rule, with four strips, to find an estimate for the area of R. Show your working and give your answer to 2 decimal places.

(4)

(b) Using your answer to part (a) and making your method clear, estimate the value of

(i)
$$\int_{2}^{3} \frac{60}{1 + \sqrt{2x}} \, dx$$

(ii)
$$\int_4^6 \frac{13 + 3\sqrt{x}}{1 + \sqrt{x}} \, \mathrm{d}x$$

(Solutions relying entirely on calculator technology are not acceptable.)

(4)

	Leave
	blank
Question 3 continued	

Question 3 continued		

4. (a) Sketch the graph with equation

$$y = |2x - 7| + 1$$

stating the coordinates of the minimum point and the coordinates of the point where the graph cuts the *y*-axis.

(3)

(b) Solve the equation

$$14 - x = |2x - 7| + 1$$

(4)

A straight line *l* has equation $y = \frac{1}{2}x + k$, where *k* is a constant.

Given that *l* does not meet or intersect y = |2x - 7| + 1

(c) find the range of possible values of k.

(2)

10

	Leave
	blank
Question 4 continued	0141111
Question 4 continued	
	1

Question 4 co	itinued	

Question 4 continued		blank
		Q4
	(Total 9 marks)	

Figure 2

The continuous function f is defined by

$$f(x) = \begin{cases} 9 + 3x & x \le 6 \\ B - Ax^2 & x > 6 \end{cases}$$
 where A and B are positive constants

A sketch of y = f(x) is shown in Figure 2.

(a) Find the range of f.

(1)

Given that one of the solutions of the equation f(x) = 0 is 12

- (b) (i) find the other solution,
 - (ii) find the value of A and the value of B.

(4)

(c) Find the value of ff(0).

(2)

	Leave
	blank
Question 5 continued	
Question 5 continued	

uestion 5 contin	iued		

6. Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x\ln x}{y} \qquad x > 0, \quad y > 0$$

and y = 4 when x = 1, find the exact value of y when x = e.

- (7	1
•	('	,

	Leave blank
Question 6 continued	Olalik
	Q6
(Total 7 marks)	
(2001 / 1101 115)	

- 7. Given $y = 3x(2x 5)^4$
 - (a) show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 15(2x - 5)^3(Ax + B)$$

where A and B are integers to be found.

(4)

(b) Hence find the range of values of x for which y is decreasing.

,	_	
1	7	
	,	

Question 7 continued	blank
	Q7
(Total 6 marks)	

(7)

Figure 3

Figure 3 shows a sketch of the curve with parametric equations

$$x = 4\sin t, \quad y = 3\sin 2t, \quad 0 \leqslant t \leqslant \frac{\pi}{2}$$

The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line with equation x = 2

Find the exact area of R.

(Solutions relying entirely on calculator technology are not acceptable.)

Overtion 9 continued	blank
Question 8 continued	
	00
	Q8
(Total 7 marks)	

(6)

9. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1: \quad \mathbf{r} = \begin{pmatrix} 2\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\4 \end{pmatrix}$$

$$l_2: \quad \mathbf{r} = \begin{pmatrix} 10 \\ c \\ 3 \end{pmatrix} + \mu \begin{pmatrix} a \\ b \\ -2 \end{pmatrix}$$

where a, b and c are constants and λ and μ are scalar parameters.

Given that

- l_1 and l_2 meet when $\lambda = -2$
- l_1 and l_2 are perpendicular

find the value of a, the value of b and the value of c.

Question 9 continued	blank
(Total 6 marks)	Q9

10. The curve C has equation

$$y^3 + 4x^2y - 2x = 0$$

(a) Find, in simplest form, $\frac{dy}{dx}$ in terms of x and y.

(5)

Leave blank

(b) Hence find the coordinates of the points on C where $\frac{dy}{dx} = 0$

(6)

	Leave
Question 10 continued	blank
4	

Question 10 co	ontinued		

Question 10 continued	b	Leave blank
		01 4
		Q1(
	(Total 11 marks)	

11. (a) Prove

$$\frac{\cos 3\theta}{2\sin \theta} + \frac{\sin 3\theta}{2\cos \theta} \equiv \cot 2\theta \qquad \theta \neq \frac{n\pi}{2} \ n \in \mathbb{Z}$$

(4)

(b) Hence solve, for $0 < x < \frac{\pi}{2}$

$$\frac{\cos 3x}{2\sin x} + \frac{\sin 3x}{2\cos x} = 5\cos 2x$$

giving your answers to 3 decimal places where appropriate.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(4)

	L
uestion 11 continued	

Question 11 continued		

Question 11 continued		Leave blank
		Q11
	(Total 8 marks)	

	$\int_{1}^{3} \frac{3x^2 + 8}{x^2 - 4x} \mathrm{d}x$	(7

	Leav
	blanl
Question 12 continued	

tinued		

	olank
Q12	12
(Total 7 marks)	14

13. A curve has parametric equations

$$x = t^2 + 3t \qquad y = \frac{2t}{1 - t} \quad t \neq 1$$

(a) Find $\frac{dy}{dx}$ in terms of t, giving your answer as a simplified fraction.

(4)

(b) Find an equation for the tangent to the curve at the point P, where t=2 Write your answer in the form ax + by + c = 0, where a, b and c are integers to be found.

(4)

The tangent to the curve at P cuts the curve at the point Q.

(c) Use algebra to find the coordinates of Q.

(5)

	Leav	ve
	blan	ık
Question 13 continued		

Leave blank

Question 13 continued	

Question 13 continued	Lea bla	nk
		1.0
	(Total 12 monks)	13
	(Total 13 marks)	_

14. A scientist is studying a population of lizards on an island.

The number of lizards, N, in the population, t years after the start of the study, is modelled by the equation

$$N = \frac{1800}{2 + 3e^{-0.2t}} \qquad t \in \mathbb{R}, t \ge 0$$

Use the model to answer parts (a), (b), (c) and (d).

(a) Find the number of lizards in the population at the start of the study.

(1)

The model predicts an upper limit to the number of lizards on the island.

(b) State the value of this limit.

(1)

(c) Find the value of t when N = 780. Give your answer to one decimal place.

(4)

(d) (i) Show that the rate of growth, $\frac{dN}{dt}$, is given by

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(900 - N)}{A}$$

where A is a constant to be found.

(ii) Hence state the value of N at which the rate of growth is a maximum.

	Leave blank
Question 14 continued	

Leave blank

Question 14 continuo	ed		

Question 14 continued	blaı	nk
	Q1	4
	(Total 11 marks)	_

15.

Figure 4

A jet is flying over the sea.

The height above sea level, H metres, of the jet is modelled by the equation

$$H = \frac{8000}{56 + 9\cos t^{\circ} + 40\sin t^{\circ}} \qquad 0 \leqslant t \leqslant 200$$

where t is the time in seconds, measured from when the jet passed over a boat.

Figure 4 is a sketch showing the graph of H against t.

Use the model to answer parts (a), (c) and (d).

(a) Find the height above sea level of the jet as it passed over the boat.

(1)

(b) Write $9\cos t^{\circ} + 40\sin t^{\circ}$ in the form $R\cos(t - \alpha)^{\circ}$ where R > 0 and $0 < \alpha < 90$ Give the exact value of R and the value of α to one decimal place.

(3)

- (c) Find (i) the minimum height of the jet above sea level,
 - (ii) the value of t at which this minimum height occurs.

(3)

(d) Find the value of t when the jet is 150 m above sea level.

(4)

	Leave
O	blank
Question 15 continued	

