CS420: Operating Systems

File-System Interface

James Moscola Department of Engineering & Computer Science York College of Pennsylvania

File System

- OS provides an abstraction of a file on a physical storage device through a file system
- File is a named collection of related information that is recorded on a storage device
 - File Types:
 - Data (e.g. numeric, character, binary)
 - · Program (e.g. an executable)

File Structure

- Files may have a variety of different structures
 - None simply a sequence of words, bytes
 - Simple record structure consisting of lines of information
 - Complex structures like formatted documents

 Either the operating system or the program that generates the file determines the structure of the file

File Attributes

- Name the symbolic file name; the only information kept in human-readable form
- · Identifier unique tag (number) that identifies file within file system
- Type needed for systems that support different types
- Location pointer to file location on a device
- Size current file size in bytes (or blocks)
- Protection access-control information; controls who can do reading, writing, executing
- Time, date, and user identification Info may be maintained for creation time, last modification time, and last time accessed; data for protection, security, and usage monitoring

File Types – Name, Extension

File names can contain extensions

- Some operating systems use the file type to determine how to handle the file
- Some operating systems don't actually use the extension, they are merely there to provide hints to the user as to what the type of the file is

file type	usual extension	function
executable	exe, com, bin or none	ready-to-run machine- language program
object	obj, o	compiled, machine language, not linked
source code	c, cc, java, pas, asm, a	source code in various languages
batch	bat, sh	commands to the command interpreter
text	txt, doc	textual data, documents
word processor	wp, tex, rtf, doc	various word-processor formats
library	lib, a, so, dll	libraries of routines for programmers
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing
archive	arc, zip, tar	related files grouped into one file, sometimes compressed, for archiving or storage
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information

File Operations

- File is an abstract data type that allows for the following operations:
 - Create
 - Write
 - Read
 - Reposition within file
 - Delete
 - Truncate
- open(F_i) search the directory structure on disk for entry F_i, and move the content of entry to memory
- close(F_i) move the content of entry F_i in memory to directory structure on disk

Open Files

 An open-file table is a system-wide table that contains an entry for each file that is open on the system

- Several pieces of data are needed to manage open files:
 - File pointer pointer to last read/write location, per process that has the file open
 - File-open count counter of number of times a file is open to allow removal of data from open-file table when last processes closes it
 - Disk location of the file cache of data access information
 - Access rights per-process access mode information

Open File Locking

Provided by some operating systems and file systems

Mediates access to a file

- Mandatory or advisory:
 - Mandatory access is denied depending on locks held and requested
 - Advisory processes can find status of locks and decide what to do

Access Methods

- Information stored in files can be accessed in different ways:
 - Sequential Access information in the file is processed in order, one record after another (size of record is dependent on OS, typically a byte)

- Direct Access records in a file can be accessed in any order (very useful for databases)
 - Records are a fixed size
 - Quickly access a record:
 - record_position = record_length * record_number

Directory Structure

- Information about files is kept in the directory structure
 - An entry exists for each file that typically consists of:
 - the filename
 - the file's unique identifier
 - The file identifier is used to locate other attributes of a file

Directory structure is stored on disk

Directory

- Directory is a special type of 'file'
 - Essentially a symbol table that translates file names into an entry on disk
- Both the files and the directory structure reside on disk
- The following are operations that can be performed on a directory
 - Search for a file
 - Create a file
 - Delete a file
 - List a directory
 - Rename a file
 - Traverse the file system

Tree-Structured Directories

File System Mounting

- A file system must be mounted before it can be accessed
 - Provide the operating system with the name of the device and a mount point
 - Mounting point is typically an empty directory on local machine

- The operating system will verify that the device contains a valid file system before mounting
 - On some systems, you must specify the file system on the device being mounted

File Sharing

- Sharing of files on multi-user systems is desirable
 - User IDs identify users, allowing permissions and protections to be per-user
 - Group IDs allow users to be in groups, permitting group access rights

- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network

Protection

- File owner/creator should be able to control access to file
 - What can be done to the file?
 - Who can do what to the file?
- Types of access that are typically controlled
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Access Lists and Groups

- Access Lists can be used to control mode of access to a file (i.e. read, write, execute permissions)
- Three classes of users (use 3 bits per class)
 - a) owner access $7 \Rightarrow 111$
 - b) group access $6 \Rightarrow 110$
 - c) public access $1 \Rightarrow 001$
- Users can be added to a group that allows them access to certain files
- On Unix/Linux systems, mode of access can be changed by owner using chmod command

Windows Access-Control List Management

File Sharing – Remote File Systems

Uses networking to allow file system access between systems

- Manually via programs like FTP
- Automatically, seamlessly using distributed file systems
- Semi automatically via the web

Client-server model allows clients to mount remote file systems from servers

- Server can serve multiple clients
- Client and user-on-client identification is insecure or complicated
- NFS (Network File System) is standard UNIX client-server file sharing protocol
- CIFS (Common Internet File System) is standard Windows protocol
- Standard operating system file calls are translated into remote calls