

Mathematics Methods Units 3/4 Test 4 2017

Section 1 Calculator Free Calculus involving Logarithmic Functions, Continuous Random Variables

STUE	DENT'S NAME		
DATI	E: Thursday 20 July	TIME: 25 minutes	MARKS: 26
	RUCTIONS: rd Items: Pens, pencils.	, drawing templates, eraser	
Questic	ons or parts of questions worth me	ore than 2 marks require working to be shown to recei-	ve full marks.
1.	(4 marks)		
	Determine the equation of	the tangent to the curve, $y = x^2 \ln x^2$ at the po	oint $r=1$

2. (7 marks)

(a) (i) Determine the coordinates of the point of intersection between the curve $y = \frac{1}{x}$ and the line y = 1 [1]

(ii) Hence or otherwise, determine the exact area of the region trapped between the curve $y = \frac{1}{x}$, the line x = 3, the *x-axis*, the *y-axis* and the line y = 1. [4]

$$\int \frac{5x}{x^2 - 1} dx$$
 [2]

3. (11 marks)

(a) Differentiate each of the following with respect to x.

$$(i) y = \frac{\ln x}{x^3}$$

(ii)
$$y = (x + \ln \sin x)^4$$
 [3]

(iii)
$$y = \ln \sqrt{\frac{e^{5x}}{x^2 - 1}}$$
 [3]

(b) If
$$f(x) = \int_{1}^{x} \ln \sqrt{t} \, dt$$
, determine $f'(e^2)$

4. (4 marks)

A continuous random variable, X, has a probability density function given by

$$f(x) = \begin{cases} \frac{1}{5}e^{-\frac{x}{5}} & x \ge 0\\ 0 & x < 0 \end{cases}$$

The median of X is m. Determine the exact value of m.

Mathematics Methods Units 3/4 Test 4 2017

Section 2 Calculator Assumed Calculus involving Logarithmic Functions, Continuous Random Variables

STUI	DENT'S	S NAMI	<u> </u>			
DAT	E: Thu	rsday 20	July	TIME:	25 minutes	MARKS: 29
Standa	RUCT: rd Items: l Items:			awing templates, eras s, notes on one side o		se notes to be handed in with this
Questi	ons or pa	rts of ques	stions worth more	than 2 marks require	working to be shown t	o receive full marks.
5.	(6 ma	rks)				
	Let x	$=\log_n 5$	and $y = \log_n 4$.			
	(a)	Write	$x - \frac{y}{2}$ as a singl	le logarithmic terr	n.	[2]
	(b)	Expres	ss the following	in terms of x and	/or y.	
		(i)	$\log_n 100$			[2]
		(ii)	log ₅ 4			[2]

6. (15 marks)

The time (in minutes) that it takes a student to complete a puzzle is a random variable X with a probability density function given by:

$$f(x) = \begin{cases} \frac{20x - x^2}{1125} & 5 \le x \le 20\\ 0 & elsewhere \end{cases}$$

- (a) Determine the probability that it takes exactly 6 minutes to complete the puzzle. [1]
- (b) Determine the probability that it takes less than 10 minutes to complete the puzzle. [2]
- (c) Determine the probability that it takes between 8 and 10 minutes to complete the puzzle given that it takes less than 10 minutes. [2]

(d) Determine the expected time it takes to complete the puzzle. [2]

(e) Determine the standard deviation of the random variable X. [2]

1	F	Determine the	maan and	vorionas of	- 5	γV
l	f)	Determine the	mean and	variance or	<i>5</i> –	$\Delta \Lambda$.

[2]

The time (in minutes) that it takes a student to complete a second more challenging puzzle is a random variable Y with a cumulative probability distribution function given by

$$F(y) = 1 - \frac{10}{y}$$

(g) Determine the probability that it takes a student longer than 25 minutes to complete the second (more challenging) puzzle. [2]

(h) Determine the quickest possible time for solving this second (more challenging) puzzle. [2]

7. (8 marks)

The decibel scale for sound, measured in decibels (dB), is defined as $D = 20\log_{10}\left(\frac{P}{P_0}\right)$, where P is the pressure of the sound being measured and P_0 is a fixed reference pressure.

(a) Complete the table below, giving values rounded to one decimal place.

P	$0.5P_0$	P_0	$2P_0$	$4P_0$	8P ₀
D	-6.0				

(b) Sketch the graph of $D = 20\log_{10}\left(\frac{P}{P_0}\right)$ on the axes below labelling all key features [3]

(c) When measured at similar distances, the sound produced by a dishwashing machine measures 47 dB, while that produced by lawn mower measures 96 dB. How many times greater is the sound pressure of the mower to that of the dishwasher? [3]

[2]