FORMALE SPRACHEN UND AUTOMATEN

MTV: Modelle und Theorie Verteilter Systeme

25.04.2022 - 01.05.2022

Tutorium 2

Aufgabe 1: Abbildungen (Grundlagen)

Gib an: Welche der Eigenschaften (linkstotal, rechtstotal, linkseindeutig, rechtseindeutig) haben die folgenden Relationen?

Gib an: Welche der Eigenschaften (surjektiv, injektiv, bijektiv) haben die folgenden Relationen, bei denen es sich um partielle Abbildungen handelt, außerdem?

1.a) $\sin : \mathbb{R} \to \mathbb{R}$

- Die Relation ist linkstotal.
- Die Relation ist nicht rechtstotal bzw. (als partielle Abbildung) nicht surjektiv: 2 ist nicht im Bild: 2 ∉ sin(ℝ)
- Die Relation ist nicht linkseindeutig bzw. (als partielle Abbildung) nicht injektiv: $\sin(\pi) = 0 = \sin(0)$
- Die Relation ist rechtseindeutig.
- Die Relation ist somit (als partielle Abbildung) nicht bijektiv.

1.b) $tan : \mathbb{R} \to \mathbb{R}$

- Die Relation ist nicht linkstotal: $\pi/2 \notin Def(tan)$.
- Die Relation ist rechtstotal also auch (als partielle Abbildung) surjektiv.
- Die Relation ist nicht linkseindeutig bzw. (als partielle Abbildung) nicht injektiv: $\tan(\pi) = \tan(0) = 0$
- Die Relation ist rechtseindeutig.
- Die Relation ist somit (als partielle Abbildung) nicht bijektiv.

3.a) Widerlege: Für alle totalen Funktionen $f: A \to B$ mit beliebigen Mengen A und B gilt, f^{-1} ist surjektiv.

Wir widerlegen die Aussage durch Angabe eines Gegenbeispiels.

Wir wählen die Mengen A und B mit: $A \triangleq \{1, 2\}, B \triangleq \{0\}$

Wähle
$$f : A \to B$$
 mit $f \triangleq \{ (1, 0), (2, 0) \}.$

f ist per Definition eine totale Funktion. Die Umkehrrelation $f^{-1} \stackrel{\text{Def.}}{=} (0, 1), (0, 2)$ ist nicht rechtseindeutig, da $(0, 1), (0, 2) \in f^{-1}$, aber $1 \neq 2$ und daher keine partielle Abbildung. Surjektivität ist nur für partielle Abbildungen definiert. Somit ist die Aussage widerlegt.

/Lösung

3.b) Beweise: Für alle Mengen X, Y, Z und alle Relationen R: (X, Y) und R': (Y, Z) gilt $(RR')^{-1} = R'^{-1}R^{-1}$.

Seien X, Y, Z Mengen, R eine Relation mit R:(X, Y) und R' eine Relation mit R':(Y, Z).

$$(RR')^{-1}$$

$$\stackrel{Def.}{=}^{-1} \{ (c, a) \mid (a, c) \in RR' \}$$

$$\stackrel{Def.}{=}^{:} \{ (c, a) \mid (a, c) \in \{ (x, z) \mid \exists y . (x, y) \in R \land (y, z) \in R' \} \}$$

$$\stackrel{Prop. \ 0.3.5 \land}{=} \{ (c, a) \mid \exists b . (a, b) \in R \land (b, c) \in R' \}$$

$$\stackrel{Prop. \ 0.3.5 \land}{=} \{ (c, a) \mid \exists b . (b, a) \in \{ (y, x) \mid (x, y) \in R \} \land (c, b) \in \{ (z, y) \mid (y, z) \in R' \} \}$$

$$\stackrel{Def. \ -1}{=} \{ (c, a) \mid \exists b . (b, a) \in R^{-1} \land (c, b) \in R'^{-1} \}$$

$$\stackrel{Komm. \ \land}{=} \{ (c, a) \mid \exists b . (c, b) \in R'^{-1} \land (b, a) \in R^{-1} \}$$

$$\stackrel{Def. \ :}{=} R'^{-1}R^{-1}$$

$$\stackrel{Comm. \ \land}{=} \{ (c, a) \mid \exists b . (c, b) \in R'^{-1} \land (b, a) \in R^{-1} \}$$

Aufgabe 4: Größe von Mengen und Kardinalität

4.a) Wie kann man die Größe von zwei unendlichen Mengen vergleichen?

------(Lösung)-----

Dafür wurde der Begriff Kardinalität eingeführt. Seien A, B zwei Mengen:

- A und B haben die gleiche Kardinalität, card(A) = card(B), falls es eine *Bijektion* vom Typ $A \rightarrow B$ gibt.
- A hat höchstens die Kardinalität von B, $card(A) \leq card(B)$, falls es eine *injektive* Funktion vom Typ $A \rightarrow B$ gibt.
- A hat mindestens die Kardinalität von B, $card(A) \ge card(B)$, falls es eine *surjektive* Funktion vom Typ $A \rightarrow B$ gibt.
- A hat eine echt kleinere Kardinalität als B, card(A) < card(B), falls $card(A) \le card(B)$ und $card(A) \neq card(B)$

Die letzte Zeile heißt, dass damit die Kardinalität von A echt kleiner ist als die von B, also muss es eine injektive Funktion vom Typ $A \rightarrow B$ geben, aber es gibt keine surjektive Funktion $f: A \rightarrow B$ und somit auch keine Bijektion.

4.b) Beweise: $card(\mathbb{N}) = card(\mathbb{Z})$

Behauptung: Wir geben eine Bijektion $f : \mathbb{N} \to \mathbb{Z}$ an.

$$x \mapsto \begin{cases} -\frac{x}{2} & \text{, } x \mod 2 = 0\\ \frac{x+1}{2} & \text{, } x \mod 2 = 1 \end{cases}$$

Die Funktion f ist für jedes $x \in \mathbb{N}$ eindeutig definiert und bildet ausschließlich auf ganze Zahlen ab. (Wir begründen den Typ von f.)

Wir geben eine weitere Funktion $g: \mathbb{Z} \to \mathbb{N}$ an.

$$x \mapsto \begin{cases} -2x & , \ x \leqslant 0 \\ 2x - 1 & , \ x > 0 \end{cases}$$

Die Funktion g ist für jedes $x \in \mathbb{Z}$ eindeutig, da die Fallunterscheidung so gewählt ist, dass für jede ganze Zahl nur eine eindeutige natürliche Zahl als Ergebnis möglich ist.

Zu Zeigen (Z1): Bijektion(f)

Wenn $f \circ g = \Delta_{\mathbb{Z}}$ und $g \circ f = \Delta_{\mathbb{N}}$, dann ist laut Formelsammlung 0.7.8 f eine Bijektion.

Teil 1: Zu Zeigen (Z1.1): $\forall x \in \mathbb{Z}$. $(f \circ g)(x) = \Delta_{\mathbb{Z}}(x)$

Sei $x \in \mathbb{Z}$ (beliebig aber fest).

Fall 1: $x \leq 0$

Fall 2: x > 0

Teil 2: Zu Zeigen (Z2.1): $\forall x \in \mathbb{N}$. $(g \circ f)(x) = \Delta_{\mathbb{N}}(x)$

Sei $x \in \mathbb{N}$ (beliebig aber fest).

Fall 1: $x \mod 2 = 0$

Fall 2: $x \mod 2 = 1$

Da wir Z1.1 und Z2.1 gezeigt haben, gilt: f ist eine Bijektion. Somit gilt die Aussage.

Alternative Lösung:

Wir benutzen die bereits angegebene Bijektion $f: \mathbb{N} \to \mathbb{Z}$

Zu Zeigen (Z1): bijektiv(f)

Wir beweisen injektiv(f) und surjektiv(f). (nach Formelsammlung)

• Zu Zeigen (Z1.1): injektiv(f)

Mit L aus Aufgabe 2.a), wobei $M_1 \triangleq \mathbb{N}$, $M_2 \triangleq \mathbb{Z}$, $h \triangleq f$ gewählt werden, folgt:

Zu Zeigen (Z1.2): $\forall x, y \in \mathbb{N} : \forall b \in \mathbb{Z} : f(x) = b \land f(y) = b \rightarrow x = y$

Seien $x, y \in \mathbb{N}$ und $b \in \mathbb{Z}$ (beliebig aber fest).

Annahme (A1): $f(x) = b \land f(y) = b$.

Zu Zeigen (Z1.3): x = y

Annahme (A2): f(x) = f(y). (aus A1)

Wir machen eine Fallunterscheidung.

Fall 1: $x \mod 2 = 0$, $y \mod 2 = 0$

$$f(x) = f(y)$$

$$\stackrel{\text{Def. } f}{\Rightarrow} -\frac{x}{2} = -\frac{y}{2}$$

$$\Rightarrow x = y$$

Fall 2: $x \mod 2 = 1$, $y \mod 2 = 0$

$$f(x) = f(y)$$

$$\stackrel{\text{Def. f}}{\Rightarrow} \frac{x+1}{2} = -\frac{y}{2}$$

Es gilt
$$0 < \frac{x+1}{2} = -\frac{y}{2} \le 0$$
.

Es gilt $0<\frac{x+1}{2}=-\frac{y}{2}\leqslant 0$. Dies ist offensichtlich falsch. Damit ist dieser Fall trivialerweise erfüllt. Fall 3: $x \mod 2 = 0$, $y \mod 2 = 1$

$$f(x) = f(y)$$

$$\stackrel{\text{Def. f}}{\Rightarrow} -\frac{x}{2} = \frac{y+1}{2}$$

Es gilt
$$0 \geqslant -\frac{x}{2} = \frac{y+1}{2} > 0$$

Es gilt $0\geqslant -\frac{x}{2}=\frac{y+1}{2}>0$. Dies ist offensichtlich falsch. Damit ist dieser Fall trivialerweise erfüllt. Fall 4: $x \mod 2 = 1$, $y \mod 2 = 1$

$$f(x) = f(y)$$

$$\stackrel{\text{Def. f}}{\Rightarrow} \frac{x+1}{2} = \frac{y+1}{2}$$

$$\Rightarrow x = y$$

• Zu Zeigen (Z2.1): surjektiv(f)

Z2.1 Def. surjektiv
$$\forall x \in \mathbb{Z} . \exists n \in \mathbb{N} . f(n) = x$$

Zu Zeigen (Z2.2): $\exists n \in \mathbb{N} \cdot f(n) = x$

Wir machen eine Fallunterscheidung.

Fall 1: $x \le 0$. Wähle $n \triangleq -2x$ mit $-2x \in \mathbb{N}$.

Zu Zeigen (Z2.1.1): f(-2x) = x

$$f(-2x) \stackrel{\text{(}-2x)}{=} \stackrel{\text{Def. f,}}{=} 2 = 0 - \frac{-2x}{2} = x$$

Fall 2: x > 0. Wähle $n \triangleq 2x - 1$ mit $2x - 1 \in \mathbb{N}$. Zu Zeigen (Z2.2.1): f(2x-1) = x

$$f(2x-1) \stackrel{\text{(2x-1)}}{=} \stackrel{\text{Def. f,}}{=} 2 = 1 \quad \frac{2x-1+1}{2} = x$$

Da f total, injektiv und surjektiv ist, ist f eine Bijektion. Somit gilt die Aussage.

/Lösung