Real Analysis Qualifying Exam Fall 1991

In what follows (X, \mathcal{A}, μ) is an arbitrary measure space and λ is Lebesgue's outer measure on \mathbb{R} .

- 1. (a) What does it mean to say that a function $f: X \to [-\infty, \infty]$ is \mathcal{A} -measurable?
 - (b) Use your definition given in (a) to prove that if f and q are two such functions, then

$$\{x \in X : f(x) < g(x)\} \in \mathcal{A}$$

and

$$\{x \in X : f(x) = g(x)\} \in \mathcal{A}.$$

- **2.** Suppose $f: X \to [0, \infty]$ is \mathcal{A} -measurable. Discuss how $\int_X f d\mu$ is defined. You should suppose your reader knows about measure spaces and measurable functions, but has never heard of simple functions or integrals.
- 3. What is meant by (a) σ -algebra, (b) Borel set, (c) Lebesgue measurable set? How are these three concepts related?
- **4.** If $\mu(X) = 1$ and $0 , prove that <math>||f||_p \le ||f||_q$ for every \mathcal{A} -measurable $f: X \to \mathbb{C}$. [Hint: Apply Hölder's Inequality with r = q/p > 1.]
- **5.** Prove (a) Fatou's Lemma by applying the Monotone Convergence Theorem, and also (b) the Monotone Convergence Theorem by applying Fatou's Lemma. Begin by clearly stating both results.
- **6.** Prove the completeness of $Lp(\mu)$ for $1 \le p < \infty$.
- 7. Suppose $(f_n)_1^{\infty}$ is a sequence in $L_1(\mu)$, $f \in L_1(\mu)$, and $||f_n f||_{1} \to 0$. Prove that

$$\lim_{n \to \infty} \sup \int \log |f_n| d\mu \le \int \log |f| d\mu,$$

where $\log 0 = -\infty$. [Hints: First show that $(f_n)_1^{\infty}$ has a subsequence with converges pointwise a.e. and then apply Fatou's Lemma to an appropriate subsequence of $(|f_n| - \log |f_n|)_1^{\infty}$.]

- 8. Suppose μ is a σ -finite measure, and \mathcal{C} is a subcollection of \mathcal{A} . Prove that there exists $G_0 \in \mathcal{A}$ such that
 - (i) If $B \in \mathcal{C}$, then $B \subset G_0$ a.e., that is, $\mu(B \setminus G_0) = 0$;
 - (ii) If $G \in \mathcal{A}$ is another set satisfying (i), then $G_0 \subset G$ a.e.

[Hints: Let \mathcal{C}^{\sim} be the collection of all countable unions of sets chosen from \mathcal{C} . For each $E \in \mathcal{A}$ with $\mu(E) < \infty$, show that $\sup\{\mu(B \cap E) : B \in \mathcal{C}^{\sim}\}$ is attained at some $G = G_E \in \mathcal{C}^{\sim}$. Finally consider an appropriate countable union of such G's.]

9. Let $S = \{(x, y) \in \mathbb{R}^2 : 0 < x < 1, 0 < y < 1\}$ and define f on S by

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}.$$

1

Use Fubini's Theorem to prove that f is not Lebesgue integrable over S.

[Hint:
$$\frac{\partial}{\partial y} \frac{y}{x^2 + y^2} = f(x, y)$$
.]