

[25 Points, a-g 3 points each, h 4 points] 1. Simplify each of the following expressions to minimum SOP form.

a.
$$f(a,b,c,d) = (b'+c'+d)(a'+b'+c')(a+b+c)(b+c+d)$$

b.
$$f(a,b,c) = xy + x' yz' + yz$$

c.
$$f(w, x, y, z) = w'x'y' + w'xz' + [(x + y + w'z)(x' + z' + wy')]'$$

d.
$$f(w, x, y, z) = wxy' + (w'y' \equiv x) + (y \oplus wz)$$
. Recall $a \oplus b = a'b + ab'$, and $(a \equiv b) = (a \oplus b)'$

e.
$$f(u, v, w, x, y, z) = (v'+u+w)(wx+y+uz')+(wx+uz'+y)$$

f.
$$f(w,x,y,z) = (w+x')(y+z')(w+y)(x+y)(w+z)(x+z)$$

g. Use QM to simplify 1b. Show your work for full credit.

$$f(a,b,c,d) = a'bc'd + a'b'd + a'cd + abd + abc.$$

h. Assume that ABCD = 0101, ABCD = 1001, ABCD = 1011 never occur.

x 9 2' x 9 2' x 9 2 x 9 2 x 9 2

d + abc

f = (b'+c'+d)(b'+c'+a')(b+c+a)(b+c+d) use (x+y)(x+2) = x+g 2 = (b'+c'+a'd)(b+c+ad) = b'b+b'c+b'ad+c'b+c'c+c'ad + o'db +a'dc +o'dad (E)[(X+y+w'Z)(X'+Z'+wg')]'= (x+y+w/Z)+(x'+2'+wy') = x'g'(w'Z)' + xZ(wg') = x'y'(w+z) + xz(w+y') = x'y'w+ x' y'z'+ Note asb = (a'btab') = (a+b')(a'+b) = abtab == wxj' + (w'g'x + (w'g')/x') + y'wz + g(wz)' w X + X 9 2 + x 'y = wxg' + w'g'x + (w+g)x' + g'wz + g/w'+2') = " > 12 + wx' + w'y + xy' (5) (= (mx ... n3.) [x, +a+m+1) (F) (w+x')(y+2') (w+g) (x+g)(w+2) (x+2) (w+4)(w+2) = w+4 2 (XIM) (XIA) = X1/2 S = (w+x')(y+z')(w+y z)(x+y z) = (w+x'92)(4+2')(x+y2) = (wy+w2'+x'y2y+x'y22')(x+y2) = (wy+w2' + z/y2) (x+y2) = (wyx + wyyz + wz'x + uz'gz + x'yzx + 219242) = $\omega y \times + \omega y + \omega \chi +$ = W42+ Wx21+x142

[26 Points] 2. A combinational network has four inputs (A, B, C, and D), which represent a binary coded decimal digit. The network has two groups of outputs – S, T, U, V, and W, X, Y, Z. Each group represents a BCD digit. The output digits represent a decimal number which is 5 times the input number. For example, if ABCD = 0111, the outputs are 0011 0101. Assume that invalid BCD digits do not occur as inputs (this assumption ought to be reflected in the truth table).

[10] (a) Construct the truth table.

	7	this	15	01.211	m	5.27 from	the homework
	A	В	c	D		STUV	WXYZ
6)		0	0			0000	0 0 0 0
		0	0	1		0000	0 / 0 /
(2.)		0	1	0		0 0 0 1	0 0 0 0
	0	O	7	1		0001	0 1 0 1
(2.)	0	1	0	0		0010	0 0 0 0
2)	S	1	0	(00/0	0 / 0 1
(6)	0	1	1	0		0011	0 0 0 0
(2)	O	,	7			0011	0 1 0 1
8,		ė,	0	0		0100	0 0 0 0
(q)	3	ø	a			0100	0 / 0 /
	1	0	T.	0		× × × ×	X
	P	ø		1 7			don't care -
	7	2	d	0			Invalid digits
	1	7	9	,			news occur
	1		1	3			1 1000
	F	1	1				
						XXXX	× + × ×
C	P)	Flow	n 17	ア 以 \/ =	= 0 = A = B	W = X = Y = E	D W W Y
(can do Kmap Instead)							

[24 Points] 3. Complete the following conversion problems.

- a. Write wxy'+w'x'z+wy'z+w'yz' in minimal POS form.
- b. Given $f'(a,b,c,d) = \prod M(0,1,2,3,7,9,15)$, find the minterm expansion for f (algebraic form)
- c. Given $f(a,b,c,d) = \sum m(0,1,4,5,10,12) + \sum d(1,2,3,4)$, write f in minimum POS form.
- d. Given $f(a,b,c,d) = \prod M(0,1,2,3,7,9,15)$, write f in minimum SOP form.
- e. Draw wxy'+w'x'z+wy'z' using only NAND gates.
- f. Draw wxy'+w'x'z+wy'z' using only NOR gates.
- g. Convert $f(a,b,c,d) = \sum m(0,1,4,5,10,12) + \sum d(1,2,3,4)$ to minimum SOP form.
- h. Convert 1f into POS form.

(b)

[25 Points] 4. A combinational network has four input bits A, B, C, and D. You are to design a network with an output Z (which consists of multiple bits). Z is a binary number whose value represents the number of 1's in the input. For example, if ABCD = 1001, the bits of Z represent the number 2.

[a] (a) How many bits must Z have?

[10] (b) Construct a truth table for the bits of Z.

abed	2, 2, 23
0 0 0 0	000
0001	0 0 1
0010	0 0 1
0011	0 10
	0 0 1
0100	0 10
0101	0 / 0
0110	0 / 1
0111	
1000	0 0 1
1001	0 1 0
1010	010
1011	0 / /
1100	010
1101	0/1
1/10	011
1111	100

