TRANSFINITE ORDINALS

by Jacques Bailhache, January-february 2018

Any ordinal can be defined as the least ordinal strictly greater than all ordinals of a set: the empty set for $0, \{\alpha\}$ for the successor of α , $\{\alpha_0, \alpha_1, \alpha_2, ...\}$ for an ordinal with fundamental sequence $\alpha_0, \alpha_1, \alpha_2, ...$

1 Algebraic notation

- We define the following operations on ordinals:
 addition: $\alpha + 0 = \alpha$; $\alpha + suc(\beta) = suc(\alpha + \beta)$; $\alpha + lim(f) = lim(n \mapsto \alpha + f(n))$ multiplication: $\alpha \times 0 = 0$; $\alpha \times suc(\beta) = (\alpha \times \beta) + \alpha$; $\alpha \times lim(f) = lim(n \mapsto \alpha \times f(n))$ exponentiation: $\alpha^0 = 1$; $\alpha^{suc(\beta)} = \alpha^{\beta} \times \alpha$; $\alpha^{lim(f)} = lim(n \mapsto \alpha^{f(n)})$

Veblen functions

These functions use fixed points enumaration: $\varphi(\ldots,\beta,0,\ldots,0,\gamma)$ represents the $(1+\gamma)^{th}$ common fixed point of the functions $\xi \mapsto \varphi(\dots, \delta, \xi, 0, \dots, 0)$ for all $\delta < \beta$. $\varphi(\alpha_n, \dots, \alpha_0, \beta)$ may also be written $\varphi_{\alpha_n, \dots, \alpha_0}(\beta)$ or $\varphi_{\Omega^n \times \alpha_n + \dots + \alpha_0}(\beta)$ or $\varphi(\Omega^n \times \alpha_n + \dots + \alpha_0, \beta)$ or $\begin{pmatrix} \beta & \alpha_0 & \dots & \alpha_n \\ 0 & 1 & \dots & n+1 \end{pmatrix}$ **3** Simmons notation

 $Fixfz = f^w(z+1) = \text{least fixed point of f strictly greater than } z ; Next = Fix(\alpha \mapsto \omega^{\alpha})$

 $[0]h = Fix(\alpha \mapsto h^{\alpha}\omega) \; ; \; [1]hg = Fix(\alpha \mapsto h^{\alpha}g\omega) \; ; \; [2]hgf = Fix(\alpha \mapsto h^{\alpha}gf\omega) \; ; \; \text{etc...}$

Correspondence with Veblen's $\varphi: \varphi(1+\beta,\alpha) = ([0]^{\beta} Next)^{1+\alpha} \omega$

If $\gamma > 0$, $\varphi(\gamma, \beta, \alpha) = \varphi(\gamma \times \Omega + \beta, \alpha) = ([0]^{\gamma \times \Omega + \beta} Next)^{1+\alpha} \omega = ([0]^{\beta} (([0]^{\Omega})^{\gamma} Next))^{1+\alpha} \omega = ([0]^{\beta} (([1][0])^{\gamma} Next))^{1+\alpha} \omega$

If $\delta > 0$ or $\gamma > 0$, $\varphi(\delta, \gamma, \beta, \alpha) = \varphi(\delta \times \Omega^2 + \gamma \times \Omega + \beta, \alpha) = ([0]^{\Omega^2 \times \delta + \Omega \times \gamma + \beta} Next)^{1+\alpha} \omega = ([0]^{\beta} ([0]^{\Omega})^{\gamma} ([0]^{\Omega^2})^{\delta} Next)))^{1+\alpha} \omega = ([0]^{\beta} (([1][0])^{\gamma} (([1]^2[0])^{\delta} Next)))^{1+\alpha} \omega$, with $[0]^{\Omega^n} = [1]^n [0]$.

Rationalization of $\varphi: \varphi(1+\beta,\alpha) = \varphi'(\beta,1+\alpha) = \varphi'(\beta,\alpha) = ([0]^{\beta} Next)^{\alpha} \omega; \varphi(\gamma,\beta,\alpha) = \varphi'(\gamma,\beta,1+\alpha)$

RHS0 notation 4

We start from 0, if we don(t see any regularity we take the successor, if we see a regularity, if we have a notation for this regularity, we use it, else we invent it, then we jump to the limit.

 $Hfx = \lim x, fx, f(fx), \ldots; R_1fgx = \lim gx, fgx, ffgx, \ldots; R_2fghx = \lim hx, fghx, fgfghx, \ldots$

Correspondence with Simmons notation: ..., [3] $\to R_5$, [2] $\to R_4$, [1] $\to R_3$, [0] $\to R_2$, Next $\to R_1$, $\omega \to Hsuc\ 0$

Ordinal collapsing functions

These functions use uncountable ordinals to define countable ordinals.

We define sets of ordinals that can be built from given ordinals and operations, then we take the least ordinal which is not in this set, or the least ordinal which is greater than all contable ordinals of this set.

These functions are extensions of functions on countable ordinals, whose fixed points can be reached by applying them to an uncountable ordinal, for example :

• Madore's $\psi: \psi(\alpha) = \varepsilon_{\alpha}$ if $\alpha < \zeta_{0}; \psi(\Omega) = \zeta_{0}$ which is the least fixed point of $\alpha \mapsto \varepsilon_{\alpha}$.

• Feferman's $\theta: \theta(\alpha,\beta) = \varphi(\alpha,\beta)$ if $\alpha < \Gamma_{0}$ and $\beta < \Gamma_{0}; \theta(\Omega,0) = \Gamma_{0}$ which is the least fixed point of $\alpha \mapsto \varphi(\alpha,0)$.

• Taranovsky's $C: C(\alpha,\beta) = \beta + \omega^{\alpha}$ if α is countable; $C(\Omega_{1},0) = \varepsilon_{0}$ which is the least fixed point of $\alpha \mapsto \omega^{\alpha}$.

`	,		, ,		_	
Symbole	Algebraic	Veblen	Simmons	RHS0	Madore	Taranovsky
0	0			0		0
1	1	$\varphi(0,0)$		suc 0		C(0,0)
2	2			suc (suc 0)		C(0,C(0,0))
ω	ω	$\varphi(0,1)$	ω	H suc 0		C(1,0)
	$\omega + 1$			suc (H suc 0)		C(0,C(1,0))
	$\omega \times 2$			H suc (H suc 0)		C(1,C(1,0))
		$\varphi(0,2)$		H (H suc) 0		C(C(0,C(0,0)),0)
	ω^{ω}	$\varphi(0,\omega)$		H H suc 0		C(C(1,0),0)
ε_0	ε_0	$\varphi(1,0)$	$Next \omega$	$R_1 H suc 0$	$\psi(0)$	$C(\Omega_1,0)$
	ε_1	$\varphi(1,1)$	$Next^2\omega$	$R_1(R_1H)suc 0$	$\psi(1)$	$C(\Omega_1, C(\Omega_1, 0))$
	ε_{ω}	$\varphi(1,\omega)$	$Next^{\omega}\omega$	$HR_1Hsuc 0$	$\psi(\omega)$	$C(C(0,\Omega_1),0)$
	$\varepsilon_{\varepsilon_0}$	$\varphi(1,\varphi(1,0))$	$Next^{Next\omega}\omega$	$R_1HR_1Hsuc\ 0$	$\psi(\psi(0))$	$C(C(C(\Omega_1,0),\Omega_1),0)$
ζ_0	ζ_0	$\varphi(2,0)$	$[0]Next \omega$	$R_2R_1Hsuc 0$	$\psi(\Omega)$	$C(C(\Omega_1,\Omega_1),0)$
η_0	η_0	$\varphi(3,0)$		` /		$C(C(\Omega, C(\Omega, \Omega)), 0)$
Feferman Γ_0		$\varphi(\omega,0)$				$C(C(C(0,\Omega_1),\Omega_1),0)$
Γ_0	Γ_0	$\varphi(1,0,0)$	$[1][0]Next \omega$	$R_3R_2R_1Hsuc 0$	$\psi(\Omega^{\Omega})$	$C(C(C(\Omega_1,\Omega_1),$
		$=\varphi(2\mapsto 1)$		$=R_{31}Hsuc\ 0$		$\Omega_1),0)$
		$\varphi(1,0,0,0)$	$[1]^2[0]Next \omega$	$R_3(R_3R_2)R_1Hsuc 0$	$\psi(\Omega^{\Omega^2})$	
		$=\varphi(3\mapsto 1)$				
		$\varphi(\omega \mapsto 1)$	$[1]^{\omega}[0]Next \ \omega$	$HR_3R_2R_1Hsuc 0$	$\psi(\Omega^{\Omega^{\omega}})$	$C(\Omega_1^{\omega},0)$
						$= C(C(C(C(0,\Omega_1),$
						$\Omega_1),\Omega_1),0)$
		least ord.	$[2][1][0]Next \omega$	$R_4R_3R_2R_1Hsuc 0$	$\psi(\Omega^{\Omega^{\Omega}})$	$C(\Omega_1^{\Omega_1},0)$
		not rep.		$=R_{41}Hsuc\ 0$		$=C(C(C(C(\Omega_1,\Omega_1),$
						$(\Omega_1), (\Omega_1), (0)$
			least ord.	$R_{\omega1}Hsuc 0$	$\psi(\varepsilon_{\Omega+1})$	$C(C(\Omega_2,\Omega_1),0)$
			not rep.			
	0 1 2 ω ε_0 ζ_0 η_0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$