(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-332445

(43)公開日 平成5年(1993)12月14日

(51)Int.Cl.⁵

識別記号 庁内整理番号 FΙ

技術表示箇所

F 1 6 H 61/14

H 8917-3 J

審査請求 未請求 請求項の数1(全 8 頁)

(21)出願番号

特願平4-134736

(22)出願日

平成4年(1992)5月27日

(71)出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(71)出願人 000232988

日立オートモテイブエンジニアリング株式

会社

茨城県勝田市大字高場字鹿島谷津2477番地

(72)発明者 岡田 光義

茨城県勝田市大字高場2520番地 株式会社

日立製作所自動車機器事業部内

(74)代理人 弁理士 小川 勝男

最終頁に続く

(54)【発明の名称】 自動車用ベルト式無段変速機のロックアップ制御装置

(57)【要約】

【目的】本発明の目的はロックアップによる伝達トルク 変動分を更に少なくするとともに、エンジン回転数をほ とんど下げずにロックアップさせることができる自動車 用ベルト式無段変速機のロックアップ制御装置を提供す ることにある。

【構成】ロックアップ時に目標変速比を大きくし(ダウ ンシフト)、一次側プーリ回転数を上げることにより、 エンジン回転数との差を少なくして伝達トルク変動分を 抑えるとともに、ロックアップ制御信号により、エンジ ン回転数の吹け上がりを防止しながらロックアップさせ て、エンジン回転数の低下を抑制させる手段を有する制 御装置から構成される。

1

【特許請求の範囲】

【請求項1】電子制御方式の自動車用ベルト式無段変速 機において、ロックアップ時にロックアップ制御信号に 同期して目標変速比を大きくし(ダウンシフト)、一次 側プーリ回転数を上げることにより、エンジン回転数と の差を少なくしてロックアップさせる手段として、目標 一次側プーリ回転数を操作するためにロックアップ制御 信号に対するディレイ時間を与えるディレイ時間計測手 段、およびエンジン回転数と一次側プーリ回転数に対応 変速比算出手段、変速比制御信号算出手段を有すること を特徴とする自動車用ベルト式無段変速機のロックアッ プ制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は自動車用ベルト式無段変 速機におけるロックアップ制御方法および制御装置に関 する。

[0002]

に、ロックアップ制御装置にデューティソレノイドを用 いてデューティ信号を徐々に変化させることにより、ロ ックアップ時の伝達トルク変動分を少なくして、運転者 に対する不快感、違和感を緩和するようにしている。

[0003]

【発明が解決しようとする課題】従来の技術においては デューティ信号を徐々に変化させることにより、ロック アップ時の伝達トルク変動分を少なくしていたが、エン ジン回転数と一次側プーリ回転数との差が大きな状態か らロックアップさせていたため、やはり、かなりの伝達 30 トルク変動分が残ってしまう。と同時にロックアップに よりエンジン回転数が一次側プーリ回転数に向かって下 がっていくため、運転者が若干違和惑を感じてしまう。 【0004】本発明の目的は、ロックアップによる伝達 トルク変動分を更に少なくするとともに、エンジン回転 数をほとんど下げずにロックアップさせることができる 自動車用ベルト式無段変速機のロックアップ制御装置を 提供することにある。

[0005]

【課題を解決するための手段】上記目的を達成するに当 40 たっては、ロックアップ時に目標変速比を大きくし (ダ ウンシフト)、一次側プーリ回転数を上げることによ り、エンジン回転数との差を少なくして伝達トルク変動 分を抑えるとともに、ロックアップ制御信号によりエン ジン回転数の吹け上がりを防止しながらロックアップさ せて、エンジン回転数の低下を抑制させる手段を有する 制御装置から構成される。

[0006]

【作用】ロックアップ時に目標変速比を大きくし(ダウ

数との差を少なくすることにより、ロックアップによる 伝達トルク変動分が少なくなり、運転者に与える不快感 を緩和できる。また、一次側プーリ回転数を上げること により、エンジン回転数を下げずにロックアップさせら れるため運転者に違和感を与えない。

2

[0007]

【実施例】図1は本発明の一実施例が適用されたシステ ム構成である。図1において1はエンジン、2はエンジ ン回転数センサ、3は流体継手、4は一次側プーリ、5 して計算を行う目標一次側プーリ回転数算出手段,目標 10 は二次側プーリ、6はベルト、7は一次側プーリ回転数 センサ、8は二次側プーリ回転数センサ、9は車速セン サ、10はロックアップ制御装置、11は変速比制御装 置、12はベルト式無段変速機制御用コンピュータ、1 3は油圧制御ユニット、14はスロットルセンサ、15 はロックアップクラッチである。

【0008】エンジン1の出力は流体継手3を介し、一 次側プーリ4に入力される。一次側プーリ4と二次側プ ーリ5とはベルト6で結ばれ、ベルト式無段変速機制御 用コンピュータ12は、一次側プーリ4および二次側プ 【従来の技術】特公平2-6947 号に公開されているよう 20 -リ5におけるそれぞれのベルト6の回転半径を変えな がら、任意の変速比iで作り出す。

【0009】ベルト式無段変速機制御用コンピュータ1 2はスロットルセンサ14によって検出されたスロット ル開度θと一次側プーリ4に取り付けられた一次側プー リ回転数センサ7によって検出された一次側プーリ回転 数N1、および二次側プーリ5に取り付けられた二次側 プーリ回転数センサ8によって検出された二次側プーリ 回転数N2、さらには車速センサ9によって検出された 車速Vを取り込み、現在の運転状態を把握し、一次側プ ーリ回転数N1と二次側プーリ回転数N2の比、すなわち 変速比i を無段階に変化させる。そのための変速比制 御信号Iを変速比制御装置11に出力し、油圧制御ユニ ット13は一次側プーリ4,二次側プーリ5に送るべき 適正な油圧を作り出し上記各部に供給する。また、ベル ト式無段変速機制御用コンピュータ12はロックアップ 制御装置10にロックアップ制御信号LUを出力し、油 圧制御ユニット13で油圧を制御して流体継手3に供給 し、ロックアップクラッチ15を締結させることにより ロックアップ制御を行う。図2はベルト式無段変速機制 御用コンピュータ12の構成を示している。ここで10 1はベルト式無段変速機における所定の変速比を記した 変速線図であり、実際には車速V、スロットル開度 θ の 大きさに応じた目標一次側プーリ回転数目標 N₁ が与 えられる。現在ロックアップすべきではない、あるい は、すでにロックアップした後の状況であれば、目標一 次側プーリ回転数算出手段102で目標N1 に置き換え ることで目標Ni が算出される。次に、この目標Ni よ り目標変速比算出手段103で二次側プーリ回転数N2 から目標変速比iを求める。そして、目標変速比iより ンシフト)、一次側プーリ回転数を上げ、エンジン回転 50 変速比制御信号算出手段104で変速比制御信号 I を算 出し、変速比制御手段11に出力することで所定の変速 比i を作り出す。変速比制御信号算出手段104は同 時に実際の一次側プーリ回転数N1 を取り込み、目標N 1 との偏差に応じて偏差を減少させる方向に変速比制御 信号 I を調整する。一方、ロックアップ制御判定手段1 05はスロットル開度 θ 、一次側プーリ回転数 N_1 、車 速Vからロックアップすべきか否かを判定し、ロックア ップすべきと判定すると、ロックアップ信号発生手段1 07で所定のロックアップ制御信号LUを発生させる。 これにより、ロックアップ制御装置10が作動し、ロッ クアップする。本発明では、目標一次側プーリ回転数算 出手段102で目標N1 を算出する際に、変速線図に加 え、エンジン回転数Neとロックアップ制御判定手段1 05でロックアップすべきとなった場合に計測を開始す るディレイ時間計測手段106によって計測されたディ レイ時間とを考慮に入れて最終的な目標Niを決定して いる。以下で具体的な目標NIの決定方法について説明 をする。

【0010】図3は本発明が適用された一実施例に関す る動作説明図である。エンジン回転数Ne,一次側プー 20 リ回転数N1,二次側プーリ回転数N2,車速V,スロッ トル開度のなどからベルト式無段変速機制御用コンピュ ータ12がロックアップすべき運転状態に達したと判断 すると、ロックアップ制御信号LUを出力する。する と、改善後に示すように、この時から時間を測り出し、 ディレイ時間DLYTMR経過後、目標一次側プーリ回転数目 転数DEREVを引いた(Ne-DEREV)まで上げ る.この場合に目標一次側プーリ回転数目標N』を上げ たことは、ベルト式無段変速機の変速比i、すなわ ち、一次側プーリ回転数N1と二次側プーリ回転数N2と の比(N_1/N_2)を大きくすることであり、目標 N_1 と N₂との比を目標変速比iとしたとき、iを大きくする 方向(ダウンシフト)に変速比制御信号Iを出力するこ とになる。これにより、一次側プーリ回転数Niが上昇 し始める。次に、Niがエンジン回転数Neに対しスリ ップ回転数DSSLIPを引いた(Ne-DSSLIP)まで達した ら、目標一次側プーリ回転数目標N1 をそれまでの(N e-DEREV) から、一次側プーリ回転数N1 からオ フセット一次側プーリ回転数DINREVを引いた(N1 -DI NREV)まで下げる。目標N1 が下がったことは目標変速 比iを小さくすることであるから、iを小さくする方向 (アップシフト) に変速比制御信号 I を出力する。これ は、制御系の遅れ要素(油圧制御ユニット13を介して の一次側プーリ4, 二次側プーリ5の動き方)を考慮 し、一度目標N1 を下げることにより、最終的な目標N 1のレベルにN1をオーバシュートさせずに収束させるこ とを狙っている。この後、目標N』は補正回転変化分D IRE Vで徐々に変化させ、エンジン回転数Neから最 終オフセット回転数DSREVを引いた(Ne-DSR 50

EV) に達した後は目標 N_1 を (Ne-DSREV) に固定し、変速線図から求めた目標 N_1 が前記目標 N_1 に達するまで保持する。

【0011】これにより、従来制御方法(改善前)では エンジン回転数Neと一次側プーリ回転数Niとの差が 大きな状態からロックアップさせていたため、ロックア ップによる伝達トルク変動分△Tがかなり残ったが、本 制御方法(改善後)ではNiを上げるように変速比制御 信号Iで制御しNeとNiの差を小さくしてロックアッ 10 プさせるため、△Tがより少なくて済む。したがって、 ロックアップ時の伝達トルク変動により運転者に不快感 を与えることがない。また、エンジン回転数Neはロッ クアップ制御信号LUと同時に従来制御方法(改善前) に示すように一次側プーリ回転数N1 に向かって引き寄 せられるが、本制御方法(改善後)では、引き寄せられ るのと同時に目標変速比 i を大きくする、すなわち、― 次側プーリ回転数N1 を上げようとするため、結局、エ ンジン回転数Neをほぼ水平に推移させることができ る。このことから、本制御方法によればロックアップ時 のNeの変動も抑制できるので運転者に違和感を与えな

【0012】図4は上記実施例における処理を示すフロ ーチャートである。最初にS10でスロットル開度 θ , エンジン回転数Ne,一次側プーリ回転数Ni,二次側 プーリ回転数N2, 車速Vを読み込み、現在の運転状態 を判断し、S11でロックアップすべきかを判定し、ロ ックアップすべきでなければ処理を終了する。逆にロッ クアップすべきと判定したら、S12でロックアップ制 御信号LUをロックアップ制御装置10に出力し、ロッ 30 クアップを徐々に開始する。次にS13でディレイ時間 DLYTMR (所定時間)を計測し、S14で目標一次 側プーリ回転数目標N1 をエンジン回転数Neからオフ セットエンジン回転数DEREVを引いた(Ne-DE REV) まで上げる。ここでS21に移り、目標N1,N 1, N2, θ, Vより目標変速比iを求め、変速比制御信 号Iを算出する。そして、S22で変速比制御信号Iを 変速比制御装置11に出力して戻る。これによりN1は 上昇し始めるが、S15でNeとN1との差(Ne-N1) がスリップ回転数DSSLIPより小さくなったかを判 定し続け、小さくなったらS16で目標NıをNıから オフセット一次側プーリ回転数DINREVを引いた (N1 -DINREV) に変更し、S21, S22で変速比制 御信号 I を算出し、変速比制御装置11に出力し変速さ せる。次にS17で目標N1 に補正回転変化分DIREVを 加え、S21, S22で変速比制御信号 I を算出し変速 比制御装置11に出力し変速させる。この後S18でN eとN1との差(Ne-N1)が最終オフセット回転数DS REVより小さくなったかを判定し続け、大きな場合に はS17に戻り目標N1 にDIREVを加え、S21, S2 2で変速制御を行う。S18で(Ne-N₁) <DSRE

Vとなったら、S19で目標N:を(Ne-DSREV) に固定し、S21,S22で変速制御を行う。最後にS 20において、S19で求めた目標N1 が変速線図から 求めた目標Ni と一致したかを判定し、一致したら処 理を終了する。また一致しない場合にはS19で目標N 1を(Ne-DSREV) に保持する。

[0013]

【発明の効果】本発明によれば、ロックアップ時のエン ジン回転数と一次側プーリ回転数との差を小さくできる くなるとともに、エンジン回転数をほとんど下げずにロ ックアップさせられるため、運転者に不快感、違和感を 与えない。

【図面の簡単な説明】

【図1】本発明の一実施例が適用されたシステム構成を

示した図である。

【図2】ベルト式無段変速機制御用コンピュータを示し た図である。

【図3】本発明が適用された一実施例に関する動作説明 図である。

【図4】上記実施例における処理を示すフローチャート である。

【符号の説明】

1…エンジン、2…エンジン回転数センサ、3…流体維 ため、ロックアップによる伝達トルク変動分がより少な 10 手、4…一次側プーリ、5…二次側プーリ、6…ベル ト、7…一次側プーリ回転数センサ、8…二次側プーリ 回転数センサ、9…車速センサ、10…ロックアップ制 御装置、11…変速比制御装置、12…ベルト式無段変 速機制御用コンピュータ、13…油圧制御ユニット、1 4…スロットルセンサ、15…ロックアップクラッチ。

【図3】

【図1】

図 1

1 … エンジン

2 … エンジン回転数センサ

3 … 液体挺手

4 … 一次側ブーリ

5 … 二次側プーリ

6 … ベルトニ

7 … 一次側プーリ回転数センサ

8 … 二次側プーリ回転数センサ

9 … 車速センサ

10 … ロックアップ制御装置

11 … 変速比制御装置

12 … ベルト式無段変速機制御用コンピュータ

13 … 油圧制御ユニット

14 … スロットルセンサ

15 … ロックアップクランチ

【図2】

図 2

【図4】

図 4

フロントページの続き

(72)発明者 佐藤 一彦

茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内

(72) 発明者 佐藤 丞

茨城県勝田市大字高場字鹿島谷津2477番地 3 日立オートモティブエンジニアリング 株式会社内 (72)発明者 黒岩 弘

茨城県勝田市大字高場2520番地 株式会社 日立製作所自動車機器事業部内 PAT-NO:

JP405332445A

DOCUMENT-IDENTIFIER: JP 05332445 A

TITLE:

LOCK-UP CONTROL DEVICE FOR BELT TYPE CONTINUOUSLY

VARIABLE TRANSMISSION FOR AUTOMOBILE

PUBN-DATE:

December 14, 1993

INVENTOR-INFORMATION: NAME OKADA, MITSUYOSHI SATO, KAZUHIKO SATO, SUSUMU KUROIWA, HIROSHI

INT-CL (IPC): F16H061/14

US-CL-CURRENT: 477/46

ABSTRACT:

PURPOSE: To reduce the fluctuation of transmission torque, and performing the lock-up, preventing the blow-up to restrict the lowering of the rotating speed by increasing a target speed change ratio at the time of lock-up, and increasing the rotating speed of a primary side pulley to reduce a difference between the rotating speed of the primary side pulley and the engine speed.

CONSTITUTION: In a transmission control computer 12, a target primary side pulley rotating speed computing means 102 computes a target N<SB>1</SB> on the basis of a diagram of speed change, which records a predetermined speed change ratio. A target speed change ratio computing means 103 computes a target speed change ratio (i) in accordance with the rotating speed N<SB>2</SB> of a secondary side pulley on the basis of the target N<SB>1</SB>. Furthermore, a transmission control signal computing means 104 computes the speed change ratio control signal I on the basis of the target speed change ratio (i). On the other hand, a lock-up control judging means 105 judges the lock-up on the basis of the throttle open degree θ, the rotating speed N<SB>1</SB> of the primary side pulley and the car speed V. In the case where the lock-up is judged, the final target N<SB>1</SB> is decided in consideration of the engine speed Ne and the output of a **delay time** counting means 106.

COPYRIGHT: (C)1993,JPO&Japi	0

----- KWIC -----

Abstract Text - FPAR (2):

CONSTITUTION: In a transmission control computer 12, a target primary side pulley rotating speed computing means 102 computes a target N<SB>1</SB> on the basis of a diagram of speed change, which records a predetermined speed change **ratio**. A target speed change **ratio** computing means 103 computes a target speed change **ratio** (i) in accordance with the rotating speed N<SB>2</SB> of a secondary side pulley on the basis of the target N<SB>1</SB>. Furthermore, a transmission control signal computing means 104 computes the speed change **ratio** control signal I on the basis of the target speed change **ratio** (i). On the other hand, a lock-up control judging means 105 judges the lock-up on the basis of the throttle open degree θ, the rotating speed N<SB>1</SB> of the primary side pulley and the car speed V. In the case where the lock-up is judged, the final target N<SB>1</SB> is decided in consideration of the engine speed Ne and the output of a **delay time** counting means 106.

Title of Patent Publication - TTL (1):
LOCK-UP CONTROL DEVICE FOR BELT TYPE CONTINUOUSLY VARIABLE
TRANSMISSION FOR
AUTOMOBILE

8/1/2006, EAST Version: 2.0.3.0