3.1 Define $\varphi|\psi = \neg \varphi \wedge \neg \psi$. (The Sheffer stroke.). Show that \neg and \wedge can be defined in terms of |.

 $\neg \varphi$ is equivalent to $\varphi | \varphi$. Then $\varphi \wedge \psi$ is equivalent to $(\neg \varphi) | (\neg \psi)$.

3.2 A formula φ involving only S_0, \ldots, S_m determines a function $t_{\varphi}: {}^{m+1}2 \to 2$ defined by $t_{\varphi}(x) = \varphi[x]$ for any $x \in {}^{m+1}2$. Show that any member of $\bigcup_{0 < m < \omega} {}^{(m 2)}2$ can be obtained in this way.

Let $0 < m < \omega$ and let $f \in {}^{m}2$. If f takes on only the value 0, then $f = t_{\varphi}$ with φ the formula $S_0 \wedge \neg S_0$. Suppose that f has at least one value 1. Let $M = \{x \in {}^{m}2 : f(x) = 1\}$. Consider the following formula φ :

$$\bigvee_{x \in M} \bigwedge_{i < m} S_i^{x(i)}.$$

Note that for any $x, y \in {}^{m}2$ we have $\left(\bigwedge_{i < m} S_{i}^{x(i)}\right)[y] = 1$ iff x = y. It follows that $\varphi[y] = 1$ iff $y \in M$. Hence $t_{\varphi} = f$.

3.3 Show that the following formula is a tautology:

$$(\{[(\varphi \to \psi) \to (\neg \chi \to \neg \theta)] \to \chi\} \to \tau) \to [(\tau \to \varphi) \to (\theta \to \varphi)]$$

(This formula can be used as a single axiom in an axiomatic development of sentential logic.)

A truth table for this formula would involve 32 rows; we want to avoid that. We argue by contradiction. Suppose that f is an assignment which gives our formula the value 0; we want to get a contradiction. It follows that

(1)
$$(\{[(\varphi \to \psi) \to (\neg \chi \to \neg \theta)] \to \chi\} \to \tau)[f] = 1$$

and

$$[(\tau \to \varphi) \to (\theta \to \varphi)][f] = 0;$$

from this last condition we get

$$(2) \qquad (\tau \to \varphi)[f] = 1$$

and

$$(\theta \to \varphi)[f] = 0,$$

and the last condition here yields

(3)
$$\theta[f] = 1$$
 and $\varphi[f] = 0$.

Hence from (2) we get

$$\tau[f] = 0.$$

Then (1) yields

$$\{[(\varphi \to \psi) \to (\neg \chi \to \neg \theta)] \to \chi\}[f] = 0,$$

from which we obtain

$$[(\varphi \to \psi) \to (\neg \chi \to \neg \theta)][f] = 1$$

and

$$\chi[f] = 0,$$

which yields

$$(5) \qquad (\neg \chi)[f] = 1.$$

But from (3) we get $(\neg \theta)[f] = 0$, and hence by (5), $(\neg \chi \to \neg \theta)[f] = 0$. So by (4) we have $(\varphi \to \psi)[f] = 0$, so that $\varphi[f] = 1$ and $\psi[f] = 0$. This contradicts (3).