NATIONAL UNIVERSITY OF SINGAPORE

MA1301 Introductory Mathematics

Tutorial 4

- 1. Find the tangent and normal lines of the following curves at the indicated points.
 - (a) $y = 4x x^3 + 2$ at x = -1.
 - (b) $x^2 + y^2 6x + 2y = 0$ at the origin (0,0).
- 2. Use the method of linear approximation to estimate the following numbers.
 - (a) $\sqrt[3]{8.01}$;

- (b) $\sin^{-1}(0.49)$.
- 3. Water is poured into an inverted right circular conical container of base radius $5 \,\mathrm{m}$ and height $15 \,\mathrm{m}$ at a rate of $12 \,\mathrm{m}^3/\mathrm{min}$. Find the rate at which the water level is rising when the radius of the water surface is $2 \,\mathrm{m}$.

- 4. The volume of a cube is increasing at a constant rate of $5\,\mathrm{cm}^3$ per second. Find the rate at which the total surface of the cube is increasing at the instant when the volume is $216\,\mathrm{cm}^3$.
- 5. The volume of a spherical balloon is increasing at a rate of $10 \,\mathrm{m}^3$ per second. Find the rate at which its surface area is increasing at the instant when the radius is $5 \,\mathrm{m}$.
- **6.** Find two nonnegative numbers whose sum is 20 and the sum of whose cubes is a minimum.
- 7. A solid cylinder with a volume of $128\pi\,\mathrm{cm}^3$ is to be manufactured with minimum total surface area. Find the base radius and the height of the cylinder.

8. A solid cylinder of radius r cm is surmounted by a solid hemisphere of the same radius. If the volume of this solid is to be fixed at 576π cm³, determine the value of r for which the total surface area of the solid has the least value.

SOLUTIONS AND HINTS

1. (a)
$$y = x$$
, $y = -x - 2$; (b) $y = 3x$, $y = -\frac{1}{3}x$.

2. (a)
$$\frac{2401}{1200}$$
. Hint: Use $f(x) = x^{1/3}$ at $x = 8$.

(b)
$$\frac{\pi}{6} - \frac{\sqrt{3}}{150}$$
. Hint: Use $f(x) = \sin^{-1} x$ at $x = 0.5$.

- 3. $\frac{3}{\pi} \approx 0.955 \,\text{m/min}$. Hint: At time t, let r and h be the base radius and the height of the cone respectively. Then use similar triangles to express r in h, and hence express the volume V in terms of h.
- 4. $\frac{10}{3} \approx 3.33 \,\mathrm{cm^2/s}$. Hint: At time t, let x be the side of the cube. Then express the volume and the surface area of the cube in terms of x.
- **5.** $4 \text{ m}^2/\text{s}$. *Hint*: At time r, let r be the radius of the sphere. Then express the volume and the surface area of the sphere in terms of r.

For Questions 6, 7 and 8, it is necessary to verify the maximality/minimality by the second derivative test.

- **6.** 10, 10. Hint: Let one number be x. Then the other is 20-x. Minimize $x^3+(20-x)^3$.
- 7. Radius 4 cm, height 8 cm. *Hint*: Let r and h be the base radius and height respectively. Use the given volume to express h in terms of r. Then express $2 \cdot \pi r^2 + 2\pi r h$ in terms of r and find its minimum.
- 8. $\frac{12}{\sqrt[3]{5}} \approx 7.02 \,\mathrm{cm}$. Hint: Let r and h be the base radius and height respectively. Use the given volume to express h in terms of r. Then express $\pi r^2 + 2\pi r h + \frac{1}{2} \cdot 4\pi r^2$ in terms of r and find its minimum.