MATH 152 - Unofficial Formula Sheet

Vectors

Basics

Direction Vector $\vec{ab} = \vec{b} - \vec{a}$

Norm $||x|| = \sqrt{a_1^2 + a_2^2 + \dots + a_a^2}$ Unit Vector $\hat{u} = \frac{\vec{u}}{||u||}$ Perpendicular $\vec{a}^{\perp} = \det \begin{bmatrix} \hat{i} & \hat{j} \\ a_1 & a_2 \end{bmatrix}$

Dot Product

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

 $\vec{a} \cdot \vec{b} = ||a|| ||b|| \cos \theta$

 $\vec{a} \perp \vec{b}$ if $\vec{a} \cdot \vec{b} = 0$

Cross Product

$$\vec{a} \times \vec{b} = \det \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = \vec{n}_{\vec{a}, \vec{b}}$$

 $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin \theta$

 $\vec{a} \parallel \vec{b} \text{ if } \vec{a} \times \vec{b} = 0$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \det \begin{bmatrix} -\vec{a} - \\ -\vec{b} - \\ -\vec{c} - \end{bmatrix}$$

Projection and Perpendicular

$$\begin{aligned} \operatorname{proj}_{\vec{b}}(\vec{a}) &= \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^2} \vec{b} = (\vec{a} \cdot \hat{b}) \hat{b} \\ \operatorname{perp}_{\vec{\iota}}(\vec{a}) &= \vec{a} - \operatorname{proj}_{\vec{\iota}}(\vec{a}) \end{aligned}$$

Area and Volume

$$A = \|\vec{a} \times \vec{b}\|$$

$$A = \begin{vmatrix} \det \begin{bmatrix} -\vec{a} - \\ -\vec{b} - \end{bmatrix} \end{vmatrix}$$

$$V = |\vec{a} \cdot (\vec{b} \times \vec{c})| = \begin{vmatrix} \det \begin{bmatrix} -\vec{a} - \\ -\vec{b} - \end{bmatrix} \end{vmatrix}$$

Lines and Planes

Line Equations

Parametric $\vec{x} = \vec{a}t + \vec{p}$

Equation Form in \mathbb{R}^2 $\vec{x} \cdot \vec{a}^{\perp} = x_1 a_1^{\perp} + x_2 a_2^{\perp} = d$

Equation Form in \mathbb{R}^3 $\begin{cases} \vec{x} \cdot \vec{a}^{\perp} = x_1 a_1^{\perp} + x_2 a_2^{\perp} = d_1 \\ \vec{x} \cdot \vec{b}^{\perp} = x_1 b_1^{\perp} + x_2 b_2^{\perp} = d_2 \end{cases}$

Plane Equations

 $\vec{x} = \vec{a}s + \vec{b}t + \vec{p}$ Parametric

Equation Form in \mathbb{R}^3 $\vec{x} \cdot \vec{n} = d$

Intersection of Objects

Intersection of Planes:

Solve
$$\begin{bmatrix} n_1 & n_2 & n_3 \\ m_1 & m_2 & m_3 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

Distance Between Objects

Distance between point \vec{q} and Line $\vec{x} = \vec{p} + \vec{a}t$:

 $d = \|\operatorname{perp}_{\vec{q}}(\vec{pq})\| = \|\operatorname{proj}_{\vec{q}^{\perp}}(\vec{pq})\|$

Distance between point \vec{q} and plane $\vec{x} = \vec{p} + \vec{a}s + \vec{b}t$:

 $d = \|\operatorname{proj}_{\vec{n}}(\vec{pq})\|$

General Procedure:

set $d = \|\vec{x}_1 - \vec{x}_2\|$ using parametric forms of \vec{x}

solve for t_1, t_2, \dots using $\vec{\nabla} d = \vec{0}$

plug back in values of t_1, t_2, \dots and solve for d

Gaussian Elimination

Step 1: Set the top left entry to 1 (or as the LCD of the first column)

Step 2: Use the first row to 'kill off' all other entries in the first column

Step 3: For column 2, use one row to 'kill off' all the other entries in that column

Step 4: Repeat process until finished

Linear Independence

 \vec{a} , \vec{b} , and \vec{c} are linearly dependent if:

$$\det\begin{pmatrix} -\vec{a} - \\ -\vec{b} - \\ -\vec{c} - \end{pmatrix} = 0$$
or if
$$\begin{bmatrix} | & | & | \\ \vec{a} & \vec{b} & \vec{c} \\ | & | & | \end{bmatrix}$$
 has no unique solution.

Linear Transformations

Rules

$$T(\vec{x}) = A\vec{x}$$

$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$

$$T(s\vec{x}) = sT(\vec{x})$$

$$(S \circ T)\vec{x} = BA\vec{x}$$

$$A = [T(\vec{e}_1)|T(\vec{e}_2)|\cdots|T(\vec{e}_n)]$$

Rotations

$$Rot_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$Rot_{\theta}^{2}(\vec{x}) = Rot_{2\theta}(\vec{x})$$

Projections

$$\operatorname{Proj}_{\hat{a}} = \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix}$$
$$\operatorname{Proj}_{\theta} = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$

Reflections

$$Ref=2Proj-I$$

 $\text{Proj}^2(\vec{x}) = \text{Proj}(\vec{x})$

$$Ref_{\theta} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

$$Ref_{\hat{a}} = \begin{bmatrix} 2a_1^2 - 1 & 2a_1a_2 \\ 2a_1a_2 & 2a_2^2 - 1 \end{bmatrix}$$

$$\operatorname{Ref}^2(\vec{x}) = \vec{x}$$

Transpose

Identities

$$(A^T)^T = A$$
$$(A+B)^T = A^T + B^T$$
$$(kA)^T = kA^T$$
$$(AB)^T = B^T A^T$$

Decomposition of a Matrix

$$\begin{aligned} \mathbf{j}^{th} & \text{column} = A \vec{e}_j \\ \mathbf{i}^{th} & \text{row} = \vec{e}_i^T A \\ & \text{Entry } a_{ij} = \vec{e}_i^T A \vec{e}_j \end{aligned}$$

Dot Product

$$\vec{a} \cdot \vec{b} = \vec{a}^T \vec{b}$$

Determinants

2x2 and 3x3 Determinants

$$\det(A) = |A|$$

$$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - cb$$

$$\det\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

General

$$\det(A) = \det(A^T)$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(A^x) = \det(A)^x$$

$$\det(AB) = \det(A) \det(B)$$

$$\det(kA) = k^n \det(A) \text{ where } n \text{ is the matrix size}$$

$$\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$$

Simplifying Determinants

Swap Rows
$$\det(B) = -\det(A)$$

Multiply Row by k: $\det(B) = k \det(A)$
Add Factor of a Row $\det(B) = \det(A)$

The determinant of a triangular matrix is the product of the diagonals

${f Inverse}$

A is invertible iff $det(A) \neq 0$ If A is invertible then: $A^{-1}A = AA^{-1} = I$ $(A^{-1})^{-1} = A$ $(kA)^{-1} = \frac{1}{L}A^{-1}$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^T)^{-1} = (A^{-1})^T$

Complex Numbers

Definitions

Imaginary Number $i^2 = -1$ Complex Number z = a + ib $\overline{z} = a - ib$ Conjugate $\Re(z) = \frac{z+\overline{z}}{2}$ Real Part $\Im(z) = \frac{z - \overline{z}}{2}$ Imaginary Part $|z| = \sqrt{a^2 + b^2}$ Norm

Operations and Identities

$$\begin{split} & \overline{z\overline{u}} = \overline{z} \cdot \overline{u} \\ & \overline{(z \pm u)} = \overline{z} \pm \overline{u} \\ & z \cdot \overline{z} = |z|^2 \\ & |zu| = |z||u| \\ & \frac{u}{z} = \frac{u\overline{z}}{|z|^2} \end{split}$$

Polar Form

$$e^{i\theta} = \cos \theta + i \sin \theta =$$

 $z = |z|e^{i\theta}$
 $\arg(z) = \theta = \arctan(\frac{b}{a})$

Eigen-Analysis

General Formulas (to be updated by Friday)

$$\det(A - I\lambda) = 0$$
$$A\vec{v} = \lambda\vec{v}$$

\mathbf{S}

(Step 6:)

 $2\Re(c_i\lambda_i^n\vec{v}_i)$

Solving Method	
Step 1:	Use $\det(A - I\lambda) = 0$ to solve for λ
Step 2:	Use $[A-I\lambda_i][\vec{v}_i] = \vec{0}$ to solve for each eigen-
	vector \vec{v}_i
Step 3:	To find $A^n \vec{x}$, set $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots$
Step 4:	Solve $\vec{v}_1 \ \vec{v}_2 \ \cdots \][\vec{c}] = \vec{x}$ to solve for coeffi-
	cients
Step 5:	Set $A^n \vec{x} = c_1 \lambda_1^n \vec{v}_2 + c_2 \lambda_2^n \vec{v}_2 + \cdots$

Each conjugate pair can be expressed as

Differential Equations

Solving Method

- Step 1: Set $\frac{d\vec{x}}{dt} = A\vec{x}$
- Step 2: Find eigenvalues and eigenvectors of A
- Step 3: Write $\vec{x}(t) = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2 + \cdots$ as the general form of the solution.
- Step 4: If imaginary, express conjugate pairs as $c_1\vec{P}(t) + c_2\vec{Q}(t)$ Where $\vec{P}(t) = \Re(e^{\alpha t} \vec{v}_1(\cos(\beta t) + i\sin(\beta t))$ and $\vec{Q}(t) = \Im(e^{\alpha t} \vec{v}_1(\cos(\beta t) + i\sin(\beta t))$
- Use initial conditions to solve for coeffi-Step 5: cients

LCR Circuits

- Step 1: Write voltage and current equations
- Step 2: Express i and E in terms of I and V
- Step 3: Write differential equations of form $\frac{dV}{dt}$ = $\pm \frac{i}{C}$ and $\frac{dI}{dt} = \pm \frac{E}{L}$
- Step 4: Express system of differential equations in matrix form
- Solve differential equation for various I(t)and V(t)

Compiled by Tyler Wilson 2021