Machine Learning

Métodos de Classificação Binária Aplicados à Duas Bases de Dados

Lineu Alberto C. de Freitas Leonardo Henrique B. Kruger

Fonte dos Problemas

- IPARDES
- Classificação do Sexo do Indivíduo pela Voz (Kaggle)

Pacote

Pacote usado - caret: Classification and Regression Training

- 70% foram separadas para treino
- 30% foram separadas para teste

Nos dados de treino, na fase de ajuste, fez-se um **5-fold** que foi repetido **5 vezes**

O critério de seleção do melhor modelo foi baseado na área sob a curva $\mathsf{ROC}\ (\mathbf{AUC})$

Métodos

	Modelo	Método caret
1	CART	rpart
2	Bagging	treebag
3	Random Forest	ranger
4	Random Forest Rand.	extra Trees
5	Boosting	adaboost
6	SVM polynomial kernel	svmPoly
7	SVM radial kernel	svmRadial
8	SVM linear kernel	svmLinear
9	k-Nearest Neighbors	kknn
10	glmnet	glmnet
11	glm	glm
12	An. disc. linear	lda
13	An. disc. quadrático	qda

Dados IPARDES

Características

- Número de Linhas 2394
- 2 Número de Colunas 48

- **o** cid cidade
- ano
- aaua Abastecimento de Água Unidades Atendidas
- nvt Nascidos Vivos
- abt Agências Bancárias
- o eec Consumo de Energia Elétrica (Mwh)
- cmp Crianças Menores de 2 anos Pesadas
- pibpc Produto Interno Bruto per Capita
- 9 att Número de Acidentes de Trânsito
- mert Matrículas no Ensino Regular
- dd Densidade Demográfica (hab/km²)
- at Área Territorial (km²)
- dsmc Distância da Sede Municipal à Capital (km)
- fvt Frota de Veículos
- meit Matrículas na Educação Infantil

- mct Matrículas na Creche
- cavt Consumo de Água Volume Faturado (m3)
- 🚇 mpet Matrículas na Pré-Escola
- vhd Vítimas de Homicídio Doloso
- meft Matrículas no Ensino Fundamental
- lat Vítimas de Roubo com Resultado de Morte (Latrocínio)
- vlc Vítimas de Lesão Corporal com Resultado de Morte
- vhct Vítimas de Homicídio Culposo no Trânsito
- mem Matrículas no Ensino Médio
- 🥝 **ipdm** Índice Ipardes de Desempenho Municipal (IPDM)
- mep Matrículas na Educação Profissional
- hiv Número de Casos por HIV / AIDS
- obit Óbitos
- bcg Cobertura Vacinal BCG (Tuberculose) (%)
- 🗕 hepa Cobertura Vacinal Hepatite A (%)

- hepb Cobertura Vacinal Hepatite B (%)
- poli- Cobertura Vacinal Poliomielite (%)
- f 3 f fa Cobertura Vacinal Febre Amarela (%)
- 🚳 rota Cobertura Vacinal Rotavírus Humano (%)
- 🚳 meni Cobertura Vacinal Meningocócica Conjugada (%)
- pne Cobertura Vacinal Pneumocócica 10V (%)
- 7 tri Cobertura Vacinal Tríplice Viral (%)
- 🥸 tet Cobertura Vacinal Tetra Viral (%)
- dtp Cobertura Vacinal Tríplice (%)
- tpb Tetra / Penta Bacteriana (%)
- f 0 f pent Cobertura Vacinal Penta Bacteriana ((%)
- 🥝 papi Cobertura Vacinal Papilomavírus Humano (%)
- © cvdt Cobertura Vacinal Dupla Adulto e Tríplice Acelular Gestante
- 🚳 🕻 cvta Cobertura Vacinal Tríplice Acelular Gestante (%)
- **aaq** Aeroportos e Aeródromos

- Muitas das variáveis possuiam elevada quantidade de missing (NA)
- Antes da aplicação dos métodos, as variáveis menos NAs foram selecionadas
- Restaram 24 preditoras

Resposta

- rm Receitas Municipais
- dmt Despesas Municipais
- saldo (rm dmt)
- class risco (saldo < mediana); ok (saldo > mediana)

Objetivo

• Classificar, com base em preditoras, um município em duas classes de acordo com o balanço final da cidade.

Resultados

Métodos

	Modelo	Método caret	
1	CART	rpart	ok
2	Bagging	treebag	ok
3	Random Forest	ranger	ok
4	Random Forest Rand.	extra Trees	Χ
5	Boosting	adaboost	ok
6	SVM polynomial kernel	svmPoly	Χ
7	SVM radial kernel	svmRadial	Χ
8	SVM linear kernel	svmLinear	ok
9	k-Nearest Neighbors	kknn	ok
10	glmnet	glmnet	ok
11	glm	glm	ok
12	An. disc. linear	lda	ok
13	An. disc. quadrático	qda	ok

Tabela de classificações corretas e incorretas (valores absolutos)

	Modelo	ok;ok	ok;risco	risco;risco	risco;ok
1	CART	283	214	104	50
2	Bagging	192	134	184	141
3	R Forest	197	138	180	136
5	Boosting	190	144	174	143
8	SVMLinear Kernel	160	102	216	173
9	k-Nearest Neighbors	174	152	166	159
10	glmnet	172	116	202	161
11	glm	160	105	213	173
12	An. disc. linear	157	114	204	176
13	An. disc. quadrático	57	26	292	276

Tabela de classificações corretas e incorretas (proporções)

	Modelo	ok;ok	ok;risco	risco;risco	risco;ok
1	CART	0.435	0.329	0.160	0.077
2	Bagging	0.295	0.206	0.283	0.217
3	R Forest	0.303	0.212	0.276	0.209
5	Boosting	0.292	0.221	0.267	0.220
8	SVMLinear Kernel	0.246	0.157	0.332	0.266
9	k-Nearest Neighbors	0.267	0.233	0.255	0.244
10	glmnet	0.264	0.178	0.310	0.247
11	glm	0.246	0.161	0.327	0.266
12	An. disc. linear	0.241	0.175	0.313	0.270
13	An. disc. quadrático	0.088	0.040	0.449	0.424

Tabela de medidas de qualidade preditiva

	Modelo	Sens.	Espec.	Acur.	AUC
1	CART	0.850	0.327	0.594	0.588
2	Bagging	0.577	0.579	0.578	0.609
3	R Forest	0.592	0.566	0.579	0.610
5	Boosting	0.571	0.547	0.559	0.592
8	SVMLinear Kernel	0.480	0.679	0.578	0.610
9	k-Nearest Neighbors	0.523	0.522	0.522	0.539
10	glmnet	0.517	0.635	0.575	0.597
11	glm	0.480	0.670	0.573	0.596
12	An. disc. linear	0.471	0.642	0.555	0.594
13	An. disc. quadrático	0.171	0.918	0.536	0.582

Curva ROC

Classificação do Sexo do Indivíduo pela Voz (Kaggle)

Características

- Número de Linhas 3168
- 2 Número de Colunas 15

- meanfreq Frequencia Media (kHz)
- sd Desvio padrao da Frequencia
- sp.ent Entropia Espectral
- 🕚 sfm Planicidade Espectral (Planeza)
- mode Frequencia Modal
- o centroid Centroide de Frequencia
- peakf Frequencia de Pico (Amplitude)
- o meanfun Frequencia Media Fundamental
- o minfun Frequencia Minima Fundamental
- maxfun Frequencia Maxima Fundamental
- meandom Frequencia Media Dominante
- mindom Frequencia Minima Dominante
- maxdom Frequencia Maxima Dominante
- frange Amplitude de Frequencia Dominante
- modindx Indice de Modulação

Resposta

• label - Sexo do indivíduo

Objetivo

• Classificar, com base em preditoras, o sexo do indivíduo pelas características vocais.

Resultados

Métodos

	Modelo	Método caret	
	iviodeio	ivietouo caret	
1	CART	rpart	ok
2	Bagging	treebag	ok
3	Random Forest	ranger	ok
4	Random Forest Rand.	extra Trees	Χ
5	Boosting	adaboost	ok
6	SVM polynomial kernel	svmPoly	Χ
7	SVM radial kernel	svmRadial	ok
8	SVM linear kernel	svmLinear	ok
9	k-Nearest Neighbors	kknn	ok
10	glmnet	glmnet	ok
11	glm	glm	ok
12	An. disc. linear	lda	ok
13	An. disc. quadrático	qda	Χ

Tabela de classificações corretas e incorretas (valores absolutos)

	Modelo	M;M	M;F	F;F	F;M
1	CART	461	28	442	20
2	Bagging	468	18	452	13
3	R Forest	471	13	457	10
5	Boosting	467	16	454	14
7	SVM Radial Basis Kernel	469	19	451	12
8	SVMLinear Kernel	466	13	457	15
9	k-Nearest Neighbors	464	16	454	17
10	glmnet	467	15	455	14
11	glm	467	15	455	14
12	An. disc. linear	454	10	460	27

Tabela de classificações corretas e incorretas (proporções)

	Modelo	M;M	M;F	F;F	F;M
1	CART	0.485	0.029	0.465	0.021
2	Bagging	0.492	0.019	0.475	0.014
3	R Forest	0.495	0.014	0.481	0.011
5	Boosting	0.491	0.017	0.477	0.015
7	SVM Radial Basis Kernel	0.493	0.020	0.474	0.013
8	SVMLinear Kernel	0.490	0.014	0.481	0.016
9	k-Nearest Neighbors	0.488	0.017	0.477	0.018
10	glmnet	0.491	0.016	0.478	0.015
11	glm	0.491	0.016	0.478	0.015
12	An. disc. linear	0.477	0.011	0.484	0.028

Tabela de medidas de qualidade preditiva

	Modelo	Sens.	Espec.	Acur.	AUC
1	CART	0.958	0.940	0.950	0.957
2	Bagging	0.973	0.962	0.967	0.990
3	R Forest	0.979	0.972	0.976	0.998
5	Boosting	0.971	0.966	0.968	0.996
7	SVM Radial Basis Kernel	0.975	0.960	0.967	0.994
8	SVMLinear Kernel	0.969	0.972	0.971	0.992
9	k-Nearest Neighbors	0.965	0.966	0.965	0.988
10	glmnet	0.971	0.968	0.970	0.993
11	glm	0.971	0.968	0.970	0.993
12	An. disc. linear	0.944	0.979	0.961	0.991

Curva ROC

Considerações finais

Diferenças nos Resultados das Duas Bases

 O que explica um resultado tão ruim em uma base e tão bom em outra (em termos de qualidade preditiva)?

Natureza diferentes das bases

- **IPARDES**: proveniente de consulta online, montada sem conhecimento do problema.
- Voice: proveniente de um estudo real.

Natureza das variáveis resposta

- IPARDES: variável resposta contínua que foi dicotomizada
- Voice: variável resposta originalmente com dois níveis.

Tamanho da base

• IPARDES: 2394 linhas

• Voice: 3168 linhas

Diferença de 774 observações; diferença que aumentou após os ajustes na base di IPARDES devido aos dados faltantes (NAs)

• Garbage in, garbage out (George Fuechsel)

Links de Referência

- IPARDES
- Kaggle
- The caret Package

Dúvidas