

Algorithmen und Datenstrukturen Kapitel 9: Dynamische Programmierung

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2019/2020

Memory

Quelle: [3]

- Dynamic Programming
 - "Man merkt sich auf "Vorrat" Teilergebnisse!"

Überblick

- Einführung: Fibonacci-Zahlen
- Rod-Cutting
- Längste gemeinsame Teilfolge
- Levenshtein-Editierdistanz

Dynamische Programmierung

Kein Algorithmus, sondern algorithmisches Prinzip

- Häufig verwendet für Optimierungsprobleme
 - Es existieren mehrere Lösungen für ein Problem.
 - Finde davon die beste Lösung, d.h. Lösungen werden bewertet.
- Ähnlichkeit zu Divide-and-Conquer
 - Divide-and-Conquer: Zerlege Problem in unabhängige Teilprobleme.
 - Dynamische Programmierung: Teilprobleme überlappen. Jedes Teilproblem wird dennoch nur einmal gelöst.
- Ansatz: Problemlösen "auf Vorrat"
 - Löse nur Teilprobleme, die auch wirklich für Gesamtproblem benötigt werden.
 - Löse jedes Teilproblem nur einmal.

Fibonacci: Rekursion / Top-Down

\square **Rekursive Definition** der Fibonaccizahlen F_n

- $_{\circ}$ $F_{0}=0$
- $_{\circ}$ $F_{1} = 1$
- $F_i = F_{i-1} + F_{i-2}$

Quellcode: Fibonacci.java
Methode: fibTopDown

Laufzeit der rekursiven Implementierung

- Exponentiell mit der Basis $\frac{1+\sqrt{5}}{2}$, d.h. O(2ⁿ)
- Geht es schneller?

Beobachtung: Im Rekursionsbaum gibt es doppelte Berechnungen!

Fibonacci: Rekursion / Memoisation

Behalte Rekursion bei!

Zusätzlich: Memoisation

- Speichern von bereits berechneten Ergebnissen.
- Z.B. in Array oder in HashMap

Fibonacci: Iterativ / Bottom Up

Idee

- \circ F_0 , F_1 sind bekannt.
- Berechne der Reihe nach F_2 , F_3 , F_4 , ...
 - Man merkt sich jeweils Vorgänger und Vorvorgänger
- Übung: Java-Programm schreiben

Siehe Quellcode

Quellcode: Fibonacci.java Methode: fibBottomUp

Vergleich der Laufzeiten:

Variante	Laufzeit gemessen für n = 50	Laufzeit in O-Notation
Top-Down	86 s	O(2 ⁿ)
Top-Down mit Memoisation	0 s	O(n)
Bottom-Up	0 s	O(n)

Erstes Fazit

- Animation
 - https://www.cs.usfca.edu/~galles/visualization/DPFib.html
- Lehre: Nicht ohne Nachdenken Rekursion verwenden!
 - Wiederholen sich Aufrufe im Rekursionsbaum?
 - Falls ja, führt das evtl. zu ineffizienter Laufzeit.
- Memoisation senkt die Laufzeit dramatisch
 - Auf Kosten des Speichers!
- Dynamische Programmierung
 - Iterativer / Bottom-Up Ansatz.
 - Rekursives Problemlösen wird ersetzt durch Iteration und Abspeichern der bereits berechneten Teilergebnisse.
 - Dynamische Programmierung löst jedes Teilproblem einer Rekursion nur einmal. Speichern des Ergebnisses ähnlich wie bei Memoisation in einer Tabelle.

Überblick

- Einführung: Fibonacci-Zahlen
- Rod-Cutting
- Längste gemeinsame Teilfolge
- Levenshtein-Editierdistanz

Das "Rod-Cutting Problem"

- Deutsch: (1-dimensionales) Zuschnittproblem
- Wie unterteilt man einen langen Stahlstab in kleine Stücke und maximiert gleichzeitig den erzielten Erlös?

Annahmen

- Jeder Schnitt ist kostenlos.
- Die Länge des Ausgangsstabes und der Zuschnitte sind ganzzahlige Zentimeter-Werte.
- Die kleinste Länge eines Zuschnittes ist 1 cm.

Eingabe

- Länge n (in Zentimeter) des originalen Stahlstabes
- Tabelle mit Preisen p_i für ein Stahlstab der Länge i Zentimeter

Ausgabe

- Maximal erzielbarer Erlös (engl. "revenue") r_i
- Zuschnitt gemäß obiger Annahmen!
- Erlös entspricht Summe der Preise für die Zuschnitte.

Rod-Cutting: Beispiel

Länge i	1 (cm)	2	3	4	5	6	7	8
Preis p_i	1	5	8	9	10	17	17	20

- Anzahl Möglichkeiten, um Stab der Länge n=4 zuzuschneiden?
 - $2^{n-1} = 8$ → exponentiell viele Möglichkeiten!
 - Man kann nach jedem Zentimeter teilen oder nicht teilen!
 - $_{\circ}$ Bei einem sehr hohen Preis für p_{8} müsste man unter Umständen gar nicht teilen.
- □ Was ist der maximale Erlös bei einem Stab der Länge n=4?

Rod-Cutting: Beispiel

Länge i	1 (cm)	2	3	4	5	6	7	8
Preis p_i	1	5	8	9	10	17	17	20

Definition r_i:

Maximaler Erlös (engl.: "revenue") für Stab der Länge i

Bestimme die Werte von r_i ("Augenmaß"):

i	r_i	optimale Lösung
1	1	1 (kein Zuschnitt)
2	5	2 (kein Zuschnitt)
3	8	3 (kein Zuschnitt)
4	10	2 + 2 (siehe vorherige Folie)
5	13	2 + 3
6	17	6 (kein Zuschnitt)
7	18	???
8	22	???

Lösung (=Zuschnitt) kann durch Summe der einzelnen Stablängen beschrieben werden.

Beispiel: 2+3 ergibt maximalen Erlös r_5 für Stab der Länge 5

Finde optimale Substruktur (1)

- Beobachtung: Optimale Lösung ist aufgebaut aus optimalen Lösungen von Teilproblemen.
 - Nach einem Schnitt hat man 2 kleinere Teilprobleme.
 - Für beide muss man die optimale Lösung berechnen.
- $lue{}$ Optimaler Erlös r_n ist das $\emph{Maximum}$ aus
 - p_n : Erlös, falls man gar nicht unterteilt.
 - $r_1 + r_{n-1}$: Maximaler Erlös aus Stab der Länge 1 und der Länge n-1
 - $r_2 + r_{n-2}$: Maximaler Erlös aus Stab der Länge 2 und der Länge n-2
 - O ...
 - Kurz: $r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, ..., r_{n-1} + r_1)$
- Beispiel: n=7
 - Mögliche optimale Lösung unterteilt Stab in die Längen 3 und 4.
 - Die optimale Lösung für das Problem der Länge n=4 (siehe Vorvorgängerfolie) wird deshalb in der optimalen Lösung für das Gesamtproblem n=7 wiederverwendet.

Finde optimale Substruktur (2)

- Vereinfachung: Es kommt <u>nich</u>t darauf an, in welcher Reihenfolge man zuschneidet, z.B. egal ob
 - $r_7 = r_4 + r_3 = r_2 + r_2 + r_3$ ("schneide zuerst rechts") oder
 - o $r_7 = r_2 + r_5 = r_2 + r_2 + r_3$ ("schneide zuerst links")
- Idee: Teile immer Stab (gedanklich) in
 - Erstes Stück der Länge i, das links abgeschnitten wird und später nie weiter unterteilt wird.
 - Reststück der Länge n-i, das rechts übrig bleibt und ggfs. weiter unterteilt wird.
 - Rekursion also nur für Reststück!
 - Sonderfall, dass überhaupt kein Zuschnitt nötig ist:
 - Erstes Stück hat Länge n mit Erlös r_n
 - Reststück hat Länge 0 mit Erlös $r_0 = 0$

Rekursive Definition der Lösung

Berechne maximalen Erlös r_n für Stab der Länge n. p sei Array, das Preise speichert.

Methode: cutRodRec

```
CUT-ROD-REC(p,n)

if n == 0

return 0

q = -\infty // store maximum revenue seen so far

for i = 1 to n

q = max(q, p[i] + CUT-ROD(p, n - i))

return q // returns optimal revenue r_n

Quellcode: RodCutting.java
```

- Direkte, rekursive Implementierung der identifizierten, optimalen Substruktur
 - Algorithmus gibt maximalen Erlös r_n aus, aber nicht wie man zuschneiden muss.
- Asymptotische Laufzeit katastrophal: Exponentiell!
 - Grund: Rekursion löst Teilprobleme erneut, obwohl diese vorab bereits gelöst wurden.
 - Übung: Zeichne Rekursionsbaum für das Beispiel von Folie 10 und den Aufruf von n=4

Berechnung der optimalen Lösung

Ziel

Jede Teillösung soll nur einmal berechnet werden.

Idee

- Speichere Ergebnisse der Teillösungen in einer Tabelle.
- Schlage das bereits berechnete Ergebnis nach, und zwar jedes Mal wenn es erneut benötigt wird.

2 Ansätze

- Top-down mit Memoisation (engl. "Memoization")
- Bottom-up / Dynamische Programmierung

Top-Down mit Memoisation

Rekursiver Ansatz

Memoisation:

- Erinnern, was man bereits berechnet hat.
- Bereits berechnete
 Ergebnisse werden hier im Array r gespeichert.

Lösen eines Teilproblems

- Schaue in Tabelle nach ob Lösung bereits existiert.
- Falls nein, berechne Lösung und speichere Lösung in Tabelle.
- **Laufzeit:** $\Theta(n^2)$
 - Ohne Beweis

Berechne maximalen Erlös r_n für Stab der Länge n. p sei Array, das Preise speichert.

```
MEMOIZED-CUT-ROD(p,n)
     let m[0...n] be a new array ("memory")
     for i = 0 to n
        m[i] = -\infty // memo: initialize
     return MEMOIZED-CUT-ROD-AUX(p,n,m)
MEMOIZED-CUT-ROD-AUX(p,n,m)
     if m[n] \ge 0 // memo: already solved?
        return m[n]
    if n == 0
        q=0
     else
10
        g = -\infty
11
        for i = 1 to n
12
           q = max(q, p[i] +
               MEMOIZED-CUT-ROD-AUX(p, n - i, m)
    m[n] = q
                   // memo: save solution
13
     return q
14
```

Bottom-Up, Dynamische Programmierung

Iterativer Ansatz

- Berechne von "unten nach oben", d.h. erst maximaler Erlös für Stab der Länge 1, dann Länge 2, usw.
- Löst man ein Teilproblem, kann man sicher sein, dass man schon alle kleineren Teilprobleme gelöst hat.

Erklärung

- Zeile 3: for-Schleife berechnet Lösung für Teilproblem der Größe j
- Zeile 5: Teste alle möglichen Zerlegungen (an i. ter Position).

Berechne maximalen Erlös r_n für Stab der Länge n. p sei Array, das Preise speichert.

Quellcode: RodCutting.java Methode: cutRodBottomUp

Länge <i>i</i>	1 (cm)	2	3	4
Preis p_i	1	5	8	9

- Laufzeit: $\Theta(n^2)$
 - "2 verschachtelte Schleifen"

Index	0	1	2	3	4
r[i]	0	1	5	8	10

Publikums-Joker: Rod Cutting

Wie hoch (*O-Notation*) ist der Speicherbedarf des "Bottom-Up" Algorithmus beim Rod Cutting Problem, falls der Stab die Länge *n* hat?

- c. O(n)
- $O(n^2)$

Rekonstruktion der Lösung

- \square Bislang wurde nur der optimale Erlös r_n berechnet.
- Woher weiß man aber nun, wie man einen Stahlstab zuschneiden muss (= an welchen Stellen) um den optimalen Erlös zu erhalten?
- Idee: Speichere die Schnittpositionen im Bottom-Up Ansatz mit.
 - Dazu: Gesondertes Array s
 - Speichere die Größe i des ("ersten") linken Stückes (siehe Folie 14), falls gerade Teilproblem der Größe j gelöst wird (Zeile 8)

```
EXTENDED-BOTTOM-UP-CUT-ROD(p,n)
     let r[0..n] and s[0..n] be new arrays
     r[0] = 0
2
     for j = 1 to n
4
         q = -\infty
         for i = 1 to j
             if q < p[i] + r[j - i]
6
                q = p[i] + r[i - i]
                s[i] = i
8
         r[j] = q
9
10
     return r and s
```

Berechne maximalen Erlös r_n sowie Position der Schnitte s für Stab der Länge n.

Rekonstruktion der Lösung (2)

```
EXTENDED-BOTTOM-UP-CUT-ROD(p,n)
     let r[0..n] and s[0..n] be new arrays
     r[0] = 0
3
     for j = 1 to n
         q = -\infty
4
5
         for i = 1 to j
            if q < p[i] + r[j - i]
6
                q = p[i] + r[j - i]
                s[j] = i
8
         r[j] = q
     return r and s
10
```

Im Array r stehen die maximalen Erlöse, im Array s die dazugehörigen Zuschnittpositionen.

Welche Werte werden für das Array r und s beim Aufruf EXTENDED-BOTTOM-UP-CUT-ROD für n = 8 berechnet?

Länge i	1 (cm)	2		3		4		5		6		7		8	
Preis p_i	1	5		8		9		10		17	•	1	7	20	
Index i	0	1	2		3		4		5		6		7	8	
r[i]	0	1	5		8										
s[i]															

Rekonstruktion der Lösung (3)

```
EXTENDED-BOTTOM-UP-CUT-ROD(p,n)

1 let r[0..n] and s[0..n] be new arrays

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 if q < p[i] + r[j - i]

7 q = p[i] + r[j - i]

8 s[j] = i

9 r[j] = q

10 return r and s
```

Gibt aus, in welcher Reihenfolge man in welcher Größe Stücke abschneiden muss, um den maximalen Erlös r[n] zu erhalten.

Ergebnis:

Index i	0	1	2	3	4	5	6	7	8
r[i]	0	1	5	8	10	13	17	18	22
s[i]	0	1	2	3	2	2	6	1	2

- □ Ausgabe von PRINT-CUT-ROD-SOLUTION im konkreten Fall *n*=8?
 - Nachschlagen bei i=8, Ausgabe von 2
 - n um 2 reduzieren.
 - Nachschlagen bei i=6 (kein Schnitt!), Ausgabe 6 ausgegeben,
 - n um 6 reduzieren.
 - o Dann Abbruch, da n = 0.

Dynamische Programmierung: Allgemein

Finde optimale Substruktur der Lösung

 Optimale (Gesamt)Lösung muss sich aus optimalen Teillösungen kleinerer Probleme herleiten lassen.

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

Rekursive Definition der Lösung

- Ergibt sich meist unmittelbar aus optimalen Substruktur.
- Die direkte Variante führt aber meist zu "katastrophalen" Laufzeiten.
- Berechne optimale Lösung
 - Jede Teillösung soll nur einmal berechnet werden → Tabelle.
 - 2 Möglichkeiten: Top-down mit Memoisation oder Bottom-Up.
- Rekonstruktion der Lösung.
 - Zurückhangeln in Tabelle.

Überblick

- Einführung: Fibonacci-Zahlen
- Rod-Cutting
- Längste gemeinsame Teilfolge
- Levenshtein-Editierdistanz

Längste gemeinsame Teilfolge (LGT)

- Englisch: Longest Common Subsequence (LCS)
- Eingabe: Gegeben seien 2 Textsequenzen

$$X = \langle x_1, \dots, x_m \rangle$$

$$Y = < y_1, ..., y_n >$$

Ausgabe:

- Längste gemeinsame Teilfolge
- Ungleich: Längster gemeinsamer Substring!
 - Eine Teilfolge muss nicht aus aufeinanderfolgenden Zeichen bestehen, aber die Zeichen müssen in der korrekten Reihenfolge kommen.

Beispiel

$$X = s pringtime$$

Die längste gemeinsame Teilfolge ist: "pine"

 \circ Y = p i o n e e r

Weitere Beispiele

Beispiel 1

$$X = h o r s e b a c k$$

 $Y = s n o w f l a k e$

Die längste gemeinsame Teilfolge ist: "oak"

Beispiel 2

•
$$X = m$$
 a e I s t r o m
• $Y = b$ e c a I m

Die längste gemeinsame Teilfolge ist z.B.: "elm"

Beispiel 3

Die längste gemeinsame Teilfolge ist: "holly"

Anwendungen in der Praxis

- Sequenzierung von DNA und Proteinen
 - DNA-Sequenz = String über Alphabet {A, C, G, T}.
 - Wie ähnlich sind zwei DNAs?
 - S1= ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
 - S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA
 - LGT = GTCGTCGGAAGCCGGCCGAA
 - Längste gemeinsame Teilfolge kann Maß für Ähnlichkeit sein.

- Grundlage des Tools diff
 - https://en.wikipedia.org/wiki/Diff_utility#Algorithm

- Wird verwendet in Versionsverwaltungssystemem wie git.
 - https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

"Brute-Force" Ansatz

Eingabe

- $X = < x_1, ..., x_m >$
- $Y = < y_1, ..., y_n >$
- Prüfe für jede (!) Teilfolge von X ob sie Teilfolge von Y ist.
- Wie viele mögliche Teilfolgen von X gibt es?
 - o 2^m (ohne Beweis)
- Man müsste also 2^m Teilfolgen prüfen, jede Prüfung benötigt $\Theta(n)$
- Laufzeit insgesamt: $\Theta(n2^m)$

Finde optimale Substruktur

Notation

- $X_i = \text{Präfix} < x_1, ..., x_i >$, d.h. alles bis zur *i*.-ten Position
- $Y_i = \text{Präfix} < y_1, ..., y_i >$, d.h. alles bis zur *i.*-ten Position
- Beispiel: X = maelstrom, dann ist $X_3 = mae$
- **Aussage** (ohne Beweis): Es sei $\mathbb{Z} = \langle z_1, ..., z_k \rangle$ eine mögliche LGT von X und Y.
 - 1. Letzter Buchstabe ist gleich und gehört damit zwingend zur LGT!
 - $x_m = y_n \rightarrow z_k := x_m = y_n$ und Z_{k-1} ist eine LGT von X_{m-1} und Y_{n-1} .
 - Beispiel: X=maelstrom und Y=becalm
 - 2. Letzter Buchstabe verschieden, LGT enthält nicht letzten Buchstaben von X.
 - $x_m \neq y_n \text{ und } z_k \neq x_m \rightarrow Z \text{ ist auch LGT von } X_{m-1} \text{ und } Y.$
 - 3. Letzter Buchstabe verschieden, LGT enthält nicht letzten Buchstaben von Y

 - Beispiel: X=springtime und Y=pioneer
- Man muss alle 3 Fälle untersuchen.
- Mindestens 1 Sequenz wird verkleinert.

Rekursive Definition der Lösung

- Erinnerung: Notation Zusammenfassung
 - $X = \langle x_1, ..., x_m \rangle$, Folge mit **m** Zeichen
 - $Y = \langle y_1, ..., y_n \rangle$, Folge mit **n** Zeichen
 - $X_i = \text{prefix} < x_1, \dots, x_i >$, d.h. alles bis zur i.-ten Position

- **Definition:** $c[i, j] = \text{Länge der LGT von } X_i \text{ und } Y_j$.
 - Länge der LGT falls nur Präfixe der Länge i bzw. der Länge j von X und Y betrachtet werden.
- Gesamtproblem also: c[m,n]Fall 1 der letzten Folie

 Falls 2/3 der letzten Folie

 Rekursion: $c[i,j] = \begin{cases} 0 & \text{falls } i = 0 \text{ oder } j = 0 \\ c[i-1,j-1]+1 & \text{falls } i,j > 0 \text{ und } x_i = y_j \\ \max(c[i-1,j],c[i,j-1]) & \text{falls } i,j > 0 \text{ und } x_i \neq y_j \end{cases}$

Rekursive Definition der Lösung

- Mit der vorherigen Rekursionsformel ließe sich bereits ein Programm schreiben.
- □ Problem: Sehr ineffizient → exponentielle Laufzeit!
 - Viele Teilprobleme werden mehrfach gelöst, siehe Rekursionsbaum!
- Abhilfe: Mitspeichern von Ergebnissen in einer Tabelle.
 - o Beobachtung: Beim Berechnen von c[m, n] gibt es nur m*n verschiedene Teilprobleme.
 - Dynamische Programmierung verspricht also eine effiziente Lösung!

LGT mit dynamischer Programmierung

Berechne LGT für die Zeichenketten X bzw. Y mit den Längen m bzw. n.

```
LCS-LENGTH(X,Y,m,n)
      let b[1..m, 1..n] and c[0..m, 0..n] be new tables
      for i = 1 to m
          c[i, 0] = 0
                                      Initialisierung für Fall, dass eine
      for j = 0 to n
4
                                      der beiden Teilfolgen leer ist.
          c[0, i] = 0
      for i = 1 to m
6
                                      Berechne zeilenweise
          for i = 1 to n
               if x_i == y_i
                   c[i,j] = c[i-1,j-1] + 1
                                                    Fall 1: Letzter Buchstabe
                  aleich
              else
                   if c[i-1,j] \ge c[i,j-1]
10
                       c[i,j] = c[i-1,j]
11
                       b[i,j] = " \uparrow "
12
                   else
13
                                                    Fall 2/3: Letzter Buch-
                        c[i, j] = c[i, j - 1]
14
                                                    stabe verschieden.
                       b[i,j] = " \leftarrow "
15
16
      return c and b
```

Eingabe:

Sequenzen X und Y

c[m,n]: Länge der LGTs

- 2-dimensionales Array.
- c[i,j] speichert in der i.
 Zeile und j. Spalte die
 Länge der LGT falls man i
 Zeichen von X und j
 Zeichen von Y betrachtet.
- Die Tabelle wird zeilenweise berechnet (1. Zeile, dann 2. Zeile, usw.)
- b[1..m, 1..n] erlaubtRekonstruktion der Lösung ("Was ist die LGT")
 - b[i,j] zeigt auf
 Tabelleneintrag, dessen
 Teillösung verwendet
 wurde um c[i,j] zu
 berechnen.
 - Siehe nächste Folie

Beispiel

- \square Berechne LGT von X=<ABCBDAB> und Y=<BDCABA>:
 - Die ersten beiden Zeilen sind bereits vorgegeben.
 - Berechne die nächste 3. Zeile!

```
LCS-LENGTH(X,Y,m,n)
        let b[1..m, 1..n] and c[0..m, 0..n] be tables
        for i = 1 to m
2
             c[i, 0] = 0
3
        for j = 0 to n
             c[0, j] = 0
        for i = 1 to m
6
             for i = 1 to n
8
                  if x_i == y_i
                       c[i,j] = c[i-1,j-1] + 1
                       b[i,i] = " \ \ \ "
8
                  else
9
                       if c[i-1,j] \ge c[i,j-1]
10
                             c[i,j] = c[i-1,j]
11
                          b[i,j] = " \uparrow "
12
13
                        else
                              c[i,j] = c[i,j-1]
14
                           b[i, j] = " \leftarrow "
15
16
        return c and b
```


Rekonstruktion: Wie sieht die LGT aus?

- b[i,j]
 - Pfeile
 - Zeigt auf Teilproblem, das verwendet wurde um die LGT für X_i und Y_i zu bestimmen.
- Starte bei b[m,n]
- Laufe durch die Tabelle
- □ Falls "√"
 - Element gehört zur LGT
 - Fall 1 der optimalen Substruktur (Folie 27)

Ergebnistabelle [1]

- Zahlenwerte: c[i,i], d.h. Länge der LGT
- Pfeile: b[i,], benötigt zur Rekonstruktion der LGT

BCBA ist LGT

Rekonstruktion der LGT

```
PRINT-LCS(b,X,i,j)
1     if i == 0 or j == 0
2     return
3     if b[i,j] == "\\"
4         PRINT-LCS(b,X,i-1,j-1)
5         print x<sub>i</sub>
6     elseif b[i,j] == "\\"
7         PRINT-LCS(b,X,i-1,j)
8     else
9         PRINT-LCS(b,X,i,j-1)
```

- ErgebnisLGT=B C B A
- Man hangelt sich an den Pfeilen ausgehend von b[7,6] zurück.

Publikums-Joker: LGT

Gegeben seien zwei Strings:

1/ "PQRSTPQRS" und

2/ "PRATPBRQRPS"

Welche Länge hat die längste gemeinsame Teilfolge?

C. 7

D. 6

Diskussion

- Animation
 - https://www.cs.usfca.edu/~galles/visualization/DPLCS.html
- Dynamische Programmierung erlaubt hier eine effiziente Lösung des Problems.
- □ Brute Force: $\Theta(n2^m)$
- □ Dynamische Programmierung: $\Theta(mn)$

Überblick

- Einführung: Fibonacci-Zahlen
- Rod-Cutting
- Längste gemeinsame Teilfolge
- Levenshtein-Editierdistanz

Levenshtein – Editierdistanz (LSD)

- Anwendung: Unterschied bzw. Ähnlichkeiten von Zeichenketten
 - Bioinformatik, DNA Vergleich
 - Plagiaterkennung
 - Fuzzy-Suche in Suchmaschinen und Datenbanken
 - Spamfilter
- Definition: Editierdistanz
 - Minimale Anzahl an Editieroperationen, um Zeichenkette X in Zeichenkette Y zu überführen.
 - $X = \langle x_1, ..., x_m \rangle$ und $Y = \langle y_1, ..., y_n \rangle$ Zeichenketten der Länge m bzw. n
 - Editieroperationen: Einfügen, Löschen, Substitution
 - Eng verwandt zur "Längsten Gemeinsamen Teilfolge"
- Beispiel:
 - hello

wello

welto Eöscher

welt

Finde optimale Substruktur

- Betrachte letzten Buchstaben beider Zeichenketten
 - Stimmt überein → keine Aktion nötig!
 - Stimmt nicht überein: Der letzte Buchstabe der 1. Zeichenkette wird entweder eingefügt, gelöscht oder ersetzt, um zur 2. Zeichenkette zu kommen.
- Betrachtet man Zeichenketten ohne letzten Buchstaben, gelangt man zu kleinerem Teilproblem.

Notation

- <u>Eingabe</u>: Zeichenketten $X = \langle x_1, ..., x_m \rangle$ und $Y = \langle y_1, ..., y_n \rangle$ der Länge m bzw. n
- Präfix einer Zeichenkette (hier von X): $X_i = \langle x_1, ..., x_i \rangle$ mit $i \leq m$
- Beispiel: X = hallowelt, dann ist $X_3 = hal$
- **Definition:** D[i,j] = Editierdistanz
 - Kosten falls man nur Präfix der Länge i (=X_i) bzw. Präfix der Länge j (=Y_i) betrachtet.
 - Kosten für Gesamtproblem: D[m, n]

Publikums-Joker: Levenshtein

Wie hoch sind die Editierkosten für D[0, j]?

A. Kann man aufgrund der Angabe nicht sagen, zwischen 0 und *j*.

- B. 0
- c. j/2
- D.

Rekursive Definition der Lösung

- **Erinnerung:** Notation Zusammenfassung
 - $X = \langle x_1, ..., x_m \rangle$, Folge mit **m** Zeichen
 - $Y = \langle y_1, ..., y_n \rangle$, Folge mit **n** Zeichen
 - $X_i = \text{prefix} < x_1, ..., x_i >$, d.h. alles bis zur *i*.-ten Position
- **Definition:** $D[i, j] = \text{Levenshtein-Editierdistanz von } X_i \text{ und } Y_j.$
 - Editierdistanz falls nur Präfixe der Länge *i* bzw. der Länge *j* von *X* und *Y* betrachtet werden.
- **Rekursion:** $\mathbf{D}[i,j] = \begin{cases} D[i-1,j-1] + \mathbf{0} & \textit{Match} \\ D[i-1,j-1] + 1 & \text{Substitution} \\ D[i,j-1] + 1 & \text{Einfügen} \\ D[i-1,j] + 1 & \text{Löschen} \end{cases}$ Fallunterscheidung bzgl.

- **Terminierung**
 - D[0,0] = 0
 - o D[0, j] = j
 - D[i,0] = i

Beispiel: Levenshtein-Editierdistanz

Editierdistanz 3

Beispiel: Rekonstruktion der optimalen Lösung

			Н	Α	L	L	0	W	E	L	Т				
		0	1	2	3	4	5	6	7	8	9				
	A	1	1	1	2	3	4	5	6	7	8				
	L	2	2	2	1	2	3	4	5	6	7				
X	0	3	3	3	2	2	2	3	4	5	6				
	W	4	4	4	3	3	3	2	3	4	5				
4	Z	5	5	5	4	4	4	3	3	4	5				
	E	6	6	6	5	5	5	4	3	4	5				
	L	7	7	7	6	5	6	5	4	3	4				
	T	8	8	8	7	6	6	6	5	4	3				

Editierdistanz 3

Hinweis: Es kann mehrere Lösungen geben.

Weitere Beispiele für dynamische Programmierung

- Rod-Cutting-Problem
- Längste gemeinsame Teilfolge
- Rucksackproblem
- Floyd-Warshall Algorithmus zur Berechnung aller kürzesten Pfade (ASAP)
- Kettenmultiplikation von Matrizen
- Zahlreiche String-Algorithmen
- Optimale binäre Suchbäume, falls bekannt ist wie häufig welche Schlüssel gesucht werden.

Zusammenfassung

- Rekursives Problemlösen wird ersetzt durch Iteration und Abspeichern der bereits berechneten Teilergebnisse.
- "Verbesserung" von Divide-and-Conquer
 - Teilprobleme überlappen. Jedes Teilproblem wird dennoch nur einmal gelöst
 - Viele exponentielle Probleme lassen sich damit in polynomieller Zeit lösen!
- Wird häufig verwendet für Optimierungsprobleme
- Beispiele
 - Fibonacci
 - Rod Cutting
 - Längste gemeinsame Teilfolge
 - Rucksackproblem
 - O ...

Quellenverzeichnis

- [1] Cormen, Leiserson, Rivest and Stein. *Introduction to Algorithms*, Third Edition, The MIT Press, 2009.
- [2] Ottmann, Widmayer. *Algorithmen und Datenstrukturen*, 5. Auflage, Spektrum Akademischer Verlag, 2012.
- [3] https://www.luettundfien.de/shop/out/pictures/master/product/3/omm-memory-3.jpg