# Distribuição t de Student

Origem: Wikipédia, a enciclopédia livre.

A **distribuição** *t* **de Student** é uma <u>distribuição</u> de probabilidade estatística, publicada por um autor que se chamou de *Student*, pseudônimo de <u>William Sealy Gosset</u>, que não podia usar seu nome verdadeiro para publicar trabalhos enquanto trabalhasse para a cervejaria Guinness. [1][2]

A distribuição t é uma distribuição de probabilidade teórica. É simétrica, campaniforme, e semelhante à <u>curva normal padrão</u>, porém com caudas mais largas, ou seja, uma simulação da t de Student pode gerar valores mais extremos que uma simulação da normal. O único parâmetro *v* que a define e caracteriza a sua forma é o número de *graus de liberdade*. Quanto maior for esse parâmetro, mais próxima da normal ela será.



A função densidade da distribuição de Student para alguns valores de *v* e da distribuição normal (a preto).

#### Índice

Definição

Função densidade de probabilidade

**Aplicações** 

Tabela com alguns valores selecionados

Exemplo

Ver também

Referências

# Definição

Suponha Z, uma variável aleatória de <u>distribuição normal</u> padrão com média 0 e variância 1, e V, uma variável aleatória com distribuição <u>Chi-quadrado</u> com v graus de liberdade. Se Z e V são independentes, então a distribuição da variável aleatória t será[3]:

$$t=rac{Z}{\sqrt{V/
u}}$$

Essa é a **distribuição** *t* **de Student** com *v* graus de liberdade.

# Função densidade de probabilidade

A função densidade de probabilidade é:

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-(rac{
u+1}{2})},$$

em que  $\Gamma$  é a <u>função gama</u>. Usando-se a <u>função beta</u> B, a função densidade de probabilidade pode ser escrita como:

$$f(t)=rac{1}{\sqrt{
u}\,B\left(rac{1}{2},rac{
u}{2}
ight)}igg(1+rac{t^2}{
u}igg)^{-(rac{
u+1}{2})},$$

# **Aplicações**

A distribuição t de Student aparece naturalmente no problema de se determinar a média de uma população (que segue a distribuição normal) a partir de uma amostra. Neste problema, não se sabe qual é a média ou o desvio padrão da população, mas ela deve ser normal.

Supondo que o tamanho da amostra n seja muito menor que o tamanho da população, temos que a amostra é dada por n variáveis aleatórias normais independentes  $X_1$ , ...,  $X_n$ , cuja média  $\overline{X}_n = (X_1 + \dots + X_n)/n$  é o melhor estimador para a média da população.

Considerando  ${S_n}^2=rac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}_n
ight)^2$  como a variância amostral, temos o seguinte resultado:

A variável aleatória *t* dada por:

$$t=rac{\overline{X}_n-\mu}{S_n/\sqrt{
u}},$$

ou : $t=\sqrt{
u}rac{\overline{X}_n-\mu}{S_n}$ , segue uma distribuição t de Student com u=n-1 graus de liberdade.

# Tabela com alguns valores selecionados

Grande parte dos livros estatísticos trazem uma tabela com valores para a distribuição t de Student. Essas tabelas apresentam valores arredondados e esses arredondamentos podem ser grosseiros demais, dependendo do tipo de análise que está sendo feita. Softwares estatísticos e planilhas como <u>Microsoft</u> Excel e OpenOffice Calc possuem técnicas mais precisas para a estimação desses valores.

A tabela abaixo lista alguns valores selecionados para a distribuição t de Student com  $\nu$  graus de liberdade (números no início de cada linha) para as regiões críticas com uma ou duas caudas (unicaudal ou bicaudal). Por exemplo, se estamos fazendo uma análise em que a distribuição t de Student apresenta 4 graus de liberdade e queremos usar um nível de confiança de 95% unicaudal, consultamos a tabela e percebemos que t deve ser de 2,132. Isso quer dizer que a probabilidade de  $-\infty < t < 2,132$  é de 95%.

| Unicaudal | 75%   | 80%   | 85%   | 90%   | 95%   | 97,5% | 99%   | 99,5% | 99,75% | 99,9% | 99,95% |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|--------|
| Bicaudal  | 50%   | 60%   | 70%   | 80%   | 90%   | 95%   | 98%   | 99%   | 99,5%  | 99,8% | 99,9%  |
| 1         | 1,000 | 1,376 | 1,963 | 3,078 | 6,314 | 12,71 | 31,82 | 63,66 | 127,3  | 318,3 | 636,6  |
| 2         | 0,816 | 1,061 | 1,386 | 1,886 | 2,920 | 4,303 | 6,965 | 9,925 | 14,09  | 22,33 | 31,60  |
| 3         | 0,765 | 0,978 | 1,250 | 1,638 | 2,353 | 3,182 | 4,541 | 5,841 | 7,453  | 10,21 | 12,92  |
| 4         | 0,741 | 0,941 | 1,190 | 1,533 | 2,132 | 2,776 | 3,747 | 4,604 | 5,598  | 7,173 | 8,610  |
| 5         | 0,727 | 0,920 | 1,156 | 1,476 | 2,015 | 2,571 | 3,365 | 4,032 | 4,773  | 5,893 | 6,869  |
| 6         | 0,718 | 0,906 | 1,134 | 1,440 | 1,943 | 2,447 | 3,143 | 3,707 | 4,317  | 5,208 | 5,959  |
| 7         | 0,711 | 0,896 | 1,119 | 1,415 | 1,895 | 2,365 | 2,998 | 3,499 | 4,029  | 4,785 | 5,408  |
| 8         | 0,706 | 0,889 | 1,108 | 1,397 | 1,860 | 2,306 | 2,896 | 3,355 | 3,833  | 4,501 | 5,041  |
| 9         | 0,703 | 0,883 | 1,100 | 1,383 | 1,833 | 2,262 | 2,821 | 3,250 | 3,690  | 4,297 | 4,781  |
| 10        | 0,700 | 0,879 | 1,093 | 1,372 | 1,812 | 2,228 | 2,764 | 3,169 | 3,581  | 4,144 | 4,587  |
| 11        | 0,697 | 0,876 | 1,088 | 1,363 | 1,796 | 2,201 | 2,718 | 3,106 | 3,497  | 4,025 | 4,437  |
| 12        | 0,695 | 0,873 | 1,083 | 1,356 | 1,782 | 2,179 | 2,681 | 3,055 | 3,428  | 3,930 | 4,318  |
| 13        | 0,694 | 0,870 | 1,079 | 1,350 | 1,771 | 2,160 | 2,650 | 3,012 | 3,372  | 3,852 | 4,221  |
| 14        | 0,692 | 0,868 | 1,076 | 1,345 | 1,761 | 2,145 | 2,624 | 2,977 | 3,326  | 3,787 | 4,140  |
| 15        | 0,691 | 0,866 | 1,074 | 1,341 | 1,753 | 2,131 | 2,602 | 2,947 | 3,286  | 3,733 | 4,073  |
| 16        | 0,690 | 0,865 | 1,071 | 1,337 | 1,746 | 2,120 | 2,583 | 2,921 | 3,252  | 3,686 | 4,015  |
| 17        | 0,689 | 0,863 | 1,069 | 1,333 | 1,740 | 2,110 | 2,567 | 2,898 | 3,222  | 3,646 | 3,965  |
| 18        | 0,688 | 0,862 | 1,067 | 1,330 | 1,734 | 2,101 | 2,552 | 2,878 | 3,197  | 3,610 | 3,922  |
| 19        | 0,688 | 0,861 | 1,066 | 1,328 | 1,729 | 2,093 | 2,539 | 2,861 | 3,174  | 3,579 | 3,883  |
| 20        | 0,687 | 0,860 | 1,064 | 1,325 | 1,725 | 2,086 | 2,528 | 2,845 | 3,153  | 3,552 | 3,850  |
| 21        | 0,686 | 0,859 | 1,063 | 1,323 | 1,721 | 2,080 | 2,518 | 2,831 | 3,135  | 3,527 | 3,819  |
| 22        | 0,686 | 0,858 | 1,061 | 1,321 | 1,717 | 2,074 | 2,508 | 2,819 | 3,119  | 3,505 | 3,792  |
| 23        | 0,685 | 0,858 | 1,060 | 1,319 | 1,714 | 2,069 | 2,500 | 2,807 | 3,104  | 3,485 | 3,767  |
| 24        | 0,685 | 0,857 | 1,059 | 1,318 | 1,711 | 2,064 | 2,492 | 2,797 | 3,091  | 3,467 | 3,745  |
| 25        | 0,684 | 0,856 | 1,058 | 1,316 | 1,708 | 2,060 | 2,485 | 2,787 | 3,078  | 3,450 | 3,725  |
| 26        | 0,684 | 0,856 | 1,058 | 1,315 | 1,706 | 2,056 | 2,479 | 2,779 | 3,067  | 3,435 | 3,707  |
| 27        | 0,684 | 0,855 | 1,057 | 1,314 | 1,703 | 2,052 | 2,473 | 2,771 | 3,057  | 3,421 | 3,690  |
| 28        | 0,683 | 0,855 | 1,056 | 1,313 | 1,701 | 2,048 | 2,467 | 2,763 | 3,047  | 3,408 | 3,674  |
| 29        | 0,683 | 0,854 | 1,055 | 1,311 | 1,699 | 2,045 | 2,462 | 2,756 | 3,038  | 3,396 | 3,659  |
| 30        | 0,683 | 0,854 | 1,055 | 1,310 | 1,697 | 2,042 | 2,457 | 2,750 | 3,030  | 3,385 | 3,646  |
| 40        | 0,681 | 0,851 | 1,050 | 1,303 | 1,684 | 2,021 | 2,423 | 2,704 | 2,971  | 3,307 | 3,551  |
| 50        | 0,679 | 0,849 | 1,047 | 1,299 | 1,676 | 2,009 | 2,403 | 2,678 | 2,937  | 3,261 | 3,496  |
| 60        | 0,679 | 0,848 | 1,045 | 1,296 | 1,671 | 2,000 | 2,390 | 2,660 | 2,915  | 3,232 | 3,460  |
| 80        | 0,678 | 0,846 | 1,043 | 1,292 | 1,664 | 1,990 | 2,374 | 2,639 | 2,887  | 3,195 | 3,416  |
| 100       | 0,677 | 0,845 | 1,042 | 1,290 | 1,660 | 1,984 | 2,364 | 2,626 | 2,871  | 3,174 | 3,390  |
| 120       | 0,677 | 0,845 | 1,041 | 1,289 | 1,658 | 1,980 | 2,358 | 2,617 | 2,860  | 3,160 | 3,373  |

#### **Exemplo**

 $\infty$ 

Um fabricante de aparelhos celulares afirma que a duração média de sua bateria nos primeiros 6 meses de uso é de 120 horas, ou seja, 5 dias. Analisando uma amostra de 25 aparelhos, obteve-se uma média de duração de 116 horas, com desvio padrão de 12 horas. Verifique se a afirmação é verdadeira, utilizando um nível de confiança de 95% bicaudal.

#### Resolução:

**1º** Utilizando a tabela de distribuição t student, definem-se os pontos críticos através do grau de liberdade (24) e o nível de confiança (95%).

Nesse caso, os pontos críticos são  $\pm$  **2,064**, ou seja, **P(-2,064** < **t** < **2,064**). Se o valor de t estiver dentro desses limites a afirmação é verdadeira.

2º Na sequência calcula-se o valor de t para a amostra:

Dados:

$$\overline{X} = 116$$
:

$$\mu = 120;$$

$$S = 12;$$

$$n = 25;$$

Fórmula: 
$$t=rac{\overline{X}-\mu}{S/\sqrt{n}}=rac{116-120}{12/\sqrt{25}}=-1,667$$

3º Conclusão: Como  $\mathbf{t} = -1,667$ , encontra-se dentro dos limites críticos,  $\mathbf{P}(-2,064 < \mathbf{t} < 2,064)$ , a afirmação do fabricante de celular que a duração média da sua bateria é de 120 horas, a um nível de confiança de 95%, é verdadeira.

#### Ver também

Distribuição normal

#### Referências

- 1. William Gosset (http://alea-estp.ine.pt/html/nomesedatas/swf/biografias.asp?art=9), site da Acção Local Estatística Aplicada (http://alea.ine.pt)
- 2. <u>História da Estatística no mundo (http://www.estatistica.ccet.ufrn.br/historia.php)</u>, *site* da UFRN
- 3. Myers, Raymond H. (2009). *Probabilidade e estatística para engenharia e ciências (8a Edição*). São Paulo: Pearson Education do Brasil. pp. 162–163. ISBN 978-85-430-1440-1

Esta página foi editada pela última vez às 16h16min de 25 de novembro de 2019.

Este texto é disponibilizado nos termos da licença <u>Atribuição-Compartilhalgual 3.0 Não Adaptada (CC BY-SA 3.0) da Creative Commons</u>; pode estar sujeito a condições adicionais. Para mais detalhes, consulte as <u>condições de utilização</u>.