Cloud conversión tool – Escenario 2

A continuación, encontrará información sobre como configurar y correr el escenario 2 de pruebas.

1. Pre-requisitos:

- Deben existir y estar funcionando por lo menos las instancias de VM monitoring-worker y worker.
- Debe existir la instancia db1 de Cloud SQL.
- El repositorio debe estar clonado en Cloud Shell.
- Debe existir por lo menos un usuario registrado en la base de datos: se puede hacer una petición a /api/auth/signup por medio de postman para lograr esto.

2. Componentes:

- a. **trigger:** Disparador encargado de enviar tareas a la cola de tareas.
 - Variables importantes:
 - NUM PARALLEL TASKS: Cantidad de peticiones paralelas a correr
 - NUM_CYCLES: Cantidad de veces que se quiere mandar las peticiones paralelas.
 NUM_PARALLEL_TASKS * NUM_CYCLES = total peticiones.
 - OLD FORMAT: Formato original del video a utilizar.
 - NEW FORMAT: Formato a convertir el video
 - DEMO_VIDEO = Video a utilizar para el experimento.
- b. **monitor**: Encargado de monitorear diferentes eventos que dispara una tarea y sacar las métricas solicitadas.
 - Eventos:
 - TASK SENT: Cuando la tarea fue enviada a la cola de tareas.
 - TASK RECEIVED: Cuando la tarea fue recibida.
 - TASK STARTED: Cuando la tarea comenzó su procesamiento.
 - TASK SUCCEEDED: Cuando la tarea fue finalizada con éxito.

3. Pasos para correr el escenario:

a. Copiar las carpetas trigger y monitor dentro de la instancia monitoring-worker, para eso ubicarse en MISW4204/gcp y poner los siguientes comandos:

```
cd MISW4204/gcp/
export ZONE=us-central1-c

gcloud compute scp --recurse ../monitor monitoring-worker:/tmp/monitor
--zone $ZONE
```

```
gcloud compute scp --recurse ../trigger monitoring-worker:/tmp/trigger
--zone $ZONE
```

- b. Entrar con SSH a la instancia de monitoring-worker, y cambiar las variables a conveniencia en el archivo /etc/api.env.
- c. Dentro de la instancia de monitoring-worker, construir la imagen y el contenedor del monitoring, para eso correr con sudo su los siguientes comandos:

```
cd /tmp/monitor

docker build -t monitoring-image .

docker run -d --env-file /etc/api.env --name monitoring-container
monitoring-image

docker logs -f monitoring-container
```

d. En otra terminal, entrar con SSH a la instancia de monitoring-worker, construir la imagen y el contenedor del trigger y correr con sudo su los siguientes comandos (Es importante que antes de hacer eso se asegure que el contenedor del monitor está corriendo correctamente):

```
cd /tmp/trigger

docker build -t trigger-image .

docker run -d --env-file /etc/api.env --name trigger-container -v
/mnt/video:/video trigger-image

docker logs -f trigger-container
```

e. Lo anterior empezará a correr el experimento. Esperar a que termine, cuando eso pase, la terminal donde se está corriendo el contenedor del monitor le debe arrojar las métricas de los resultados del experimiento, algo por el estilo:

```
Reporte

Total peticiones: 10

Peticiones concurrentes: 5

Tiempo de respuesta por petición promedio (ms): 411499.30

Tiempo de respuesta (ms) P95: 709008.52
```

P	2 (. 1	C	Τ(וכ	ıe	5		þ	וכ	•	II	ıΤ	П	u	L	U	((Throughp	ut):	0.81
			_				_	_				_	_	_	_	_			_		

f. Para volver a correr el experimento, borrar los contenedores y volverlos a correr.