## MA0505 - Análisis I

Lección II: Repaso

Pedro Méndez<sup>1</sup>

<sup>1</sup>Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021



## **Outline**

- Espacios normados
  - Normas en  $\mathbb{R}^d$
- Conexidad
  - Arcoconexidad
  - Conexidad

## Las normas en $\mathbb{R}^d$

En  $\mathbb{R}^d$  tenemos las normas:

- Euclídea:  $||(x_1,...,x_d)|| = (x_1^2 + \cdots + x_d^2)^{\frac{1}{2}}$ .
- ③  $\|(x_1,\ldots,x_d)\|_p = (x_1^p + \cdots + x_d^p)^{\frac{1}{p}}$ . Note que el caso de p = 2 coincide con la norma Euclídea.

En base a estas normas definimos:

$$B_p(x_0, r) = \{ x \in \mathbb{R}^d : \|x - x_0\|_p < r \}.$$

Si G es un abierto respecto a la norma  $\|\cdot\|$ , es abierto respecto a la norma  $\|\cdot\|_p$ ?

# Estudiamos la pregunta

Si vale que para  $x \in G$ , existe r > 0 tal que  $B_2(x, r) \subseteq G$ , entonces es cierto que también existe  $r_p > 0$  tal que  $B_p(x, r_p) \subseteq G$ ? Basta probar que dado r > 0, existe  $r_p > 0$  tal que

$$B_{p}(x, r_{p}) \subseteq B_{2}(x, r)$$

$$\iff \{ y \in \mathbb{R}^{d} : \|x - y\|_{p} < r_{p} \} \subseteq \{ y \in \mathbb{R}^{d} : \|x - y\| < r \}.$$

Hay una relación entre  $\|\cdot\|_{p}$  y  $\|\cdot\|$ ?

### Relación entre normas

Consideremos  $p = \infty$ , entonces

$$\|(x_1, ..., x_d)\| = \sqrt{x_1^2 + \dots + x_d^2}$$

$$\leq (d \max_{1 \leq i \leq d} |x_i|^2)^{\frac{1}{2}}$$

$$= \sqrt{d} \|(x_1, ..., x_d)\|_{\infty}.$$

Note que  $|x_i| \leq ||(x_1, \dots, x_d)||$  para  $1 \leq i \leq d$ . Es decir

$$\|(x_1,\ldots,x_d)\|_{\infty} \leq \|(x_1,\ldots,x_d)\|.$$

# Ahora con p general

De igual forma

$$\|(x_1,\ldots,x_d)\|_p \leqslant d^{\frac{1}{p}} \|(x_1,\ldots,x_d)\|_{\infty}$$

У

$$\|(x_1,\ldots,x_d)\|_{\infty} \leq \|(x_1,\ldots,x_d)\|_{p}$$
.

Por lo que

$$\|(x_1,\ldots,x_d)\| \leqslant \sqrt{d} \|(x_1,\ldots,x_d)\|_p$$
.

# Ya podemos responder la pregunta!

Si ocurre que  $||x - y||_p < r_p$  entonces

$$||x-y|| \leqslant \sqrt{d} ||x-y||_p < \sqrt{d} r_p.$$

De manera que si tomamos  $r_p = \frac{r}{\sqrt{d}}$ , tenemos

$$B_p(x,r_p) = B_p\left(x,\frac{r}{\sqrt{d}}\right) \subseteq B(x,r).$$

De igual forma

$$B\left(x,\frac{r}{d^{\frac{1}{p}}}\right)\subseteq B_p(x,r).$$

#### Lema

Las normas  $\|\cdot\|_p$  definen los mismos abiertos en  $\mathbb{R}^d$ .



# Curvas y conjuntos arcoconexos

Una curva es un función  $\gamma: [a,b] \to \mathbb{R}^d$  continua.

#### Definición

Decimos que  $E \subseteq \mathbb{R}^d$  es arcoconexo si dados  $x_0, x_1$  en E, existe  $\gamma$  una curva tal que  $\gamma(a) = x_0, \ \gamma(b) = x$  y  $\gamma(t) \in E$  para  $t \in [a, b]$ .

Si  $\gamma:[a,b]\to\mathbb{R}^d$  es continua, entonces  $\gamma_1:[0,1]\to\mathbb{R}^d$  dada por  $\gamma_1(s)=\gamma((b-a)s+a)$  es continua. Es decir, podemos tomar a=0 y b=1 en la definición.

## Podemos desconectar un arcoconexo?

Si E es arcoconexo, pueden existir  $G_0$ ,  $G_1$  abiertos no vacíos tales que

$$E = G_0 \cup G_1$$
 y  $G_0 \cap G_1 = \emptyset$ ?

Tome  $x_0 \in G_0$   $x_1 \in G_1$ . Entonces existe  $\gamma : [0, 1] \to E$  tal que  $\gamma(0) = x_0$  y  $\gamma(1) = x_1$ .

Como  $G_0$  es abierto, existe r>0 tal que  $B(x_0,r)\subseteq G_0$ . Al ser  $\gamma$  continua, existe  $\delta>0$  tal que  $\|\gamma(0)-\gamma(t)\|< r$  cuando  $|t|<\delta$ . Es decir  $\|x_0-\gamma(t)\|< r$  y por tanto  $\gamma(t)\in B(x_0,r)\subseteq G_0$  para  $0< t<\delta$ .

# Un dibujo...

#### Considere

$$t_0 = \sup\{ t > 0 : \gamma(s) \in G_0, \ 0 \leqslant s \leqslant t \}.$$

Noe que  $\frac{\delta}{2} \leqslant t_0$ . si  $\gamma(t_0) \in G_0$ , existe  $r_1$  tal que  $B(\gamma(t_0), r_1) \subseteq G_0$ . Por continuidad, existe  $\delta_1 > 0$  tal que

$$|t_0 - s| < \delta_1 \Rightarrow ||\gamma(t_0) - \gamma(s)|| < r_1.$$

### Luego

$$t_0 - \delta_1 < s < t_0 + \delta_1 \Rightarrow \gamma(s) \in B(\gamma(t_0), r_1) \subseteq G_0.$$

### Ejercicio

Si  $s_1 < t_0$ , entonces  $\gamma(s) \in G_0$  para  $0 < s < s_1$ .



De lo anterior vale que

$$0 < s \leqslant t_0 - \frac{\delta_1}{2}, \ t_0 + \frac{\delta_1}{2} \Rightarrow \gamma(s) \in G_0.$$

Esto contradice que  $t_0$  sea el supremo por lo que  $\gamma(t_0) \in E \setminus G_0 = G_1$ .

Con un argumento similar mostramos que si  $\gamma(t_0) \in G_1$ , existen  $r_2, \delta_2$  tales que

$$t_0 - \delta_2 < s < t_0 + \delta_2 \Rightarrow \gamma(s) \in B(\gamma(t_0), r_2) \subseteq G_1.$$

En particular  $t_0 - \delta_2 < s < t_0 \Rightarrow \gamma(s) \in G_1 \setminus G_0$  lo que es una contradicción.

## El resultado en cuestión

#### Lema

Sea G arcoconexo y abierto. Entonces no existen  $G_0$ ,  $G_1$  abiertos no vacíos tales que  $G = G_0 \cup G_1$  y  $G_0 \cap G_1 = \emptyset$ .

Hace falta que G sea abierto?

No, pero hay que tomar  $G = G \cap (G_0 \cup G_1)$ .

# Conjuntos conexos

#### Definición

G es disconexo si existen  $G_0$ ,  $G_1$  tales que

$$G_0 \cap G$$
,  $G_1 \cap G \neq \emptyset = G_0 \cap G_1$ 

y  $G \subseteq G_0 \cup G_1$ . Un conjunto se dice conexo si no es disconexo.

#### Teorema

- Si G es arcoconexo, es conexo.
- 2 Si G es abierto y conexo, es arcoconexo.

### Resumen

- Definición de normas en  $\mathbb{R}^d$ .
- Equivalencia de normas y su consecuencia.
- Definición de camino y arcoconexo.
- Un conjunto arcoconexo no es disconexo.
- Definción de conexidad y resultados.
- Ejercicios
  - Detalle en prueba sobre que los arcoconexos no son disconexos.



### Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.RojasNotas MA0505.2018.

Existen más pruebas que muestran que un arcoconexo es conexo. Investigue!