الديوان الوطني لامتحانات والمسابقات

وزارة التربية الوطنية

## امتحان شهادة بكالوريا التعليم الثانوي دورة 2008

الشعبة : رياضيات

المدة : 04 ساعات و 30 د

احتبار في مادة : الرياضيات

### على المترشح أن بختار أحد الموضوعين التالبين : الموضوع الأول

تمرين 1: (5 نقاط)

المستوي منسوب إلى معلم متعامد و متجانس  $(O; ec{u}, ec{v})$ . نعتبر النقطتين A و B اللتين

 $\sqrt{3} - i$  لاحقتيهما  $i - \sqrt{3}$  و  $\sqrt{3} + 3i$  على الترتيب

- B إلى A الذي مركزه O و يحول A إلى A الذي مركزه A و يحول A إلى Aثمّ عيّن زاويته ونسبته.
- 2. نعرف متتالية النقط من المستوي المركب كما يأتي:  $A_0 = A_0$  ومن أجل كل عدد  $A_n$  بالرمز الى لاحقة  $A_n$  بالرمز  $A_{n+1} = S(A_n)$  ، مرمز الى لاحقة
  - $A_2$  انشئ في المستوي المركب النقط  $A_0$  و  $A_1$  و  $A_2$

 $z_n = 2\left(\sqrt{3}\right)^n e^{i\left(\frac{n\pi}{2} - \frac{\pi}{6}\right)}$  ب برهن ان:

 $\cdot (OA_1)$  عيّن مجموعة الأعداد الطبيعية n التي تنتمي من أجلها النقطة  $A_n$  إلى المستقيم

- $u_n = A_n A_{n+1}$  و  $u_n = A_n A_{n+1}$  عدد طبيعي  $u_n = A_0 A_1$  عدد طبيعي  $u_n = A_n A_{n+1}$  .3 • q هندسية يطلب تحديد حدّها الأول  $u_0$  وأساسها q
- ب) استنتج عبارة  $u_n$  بدلالة n
- $\lim_{n\to\infty} S_n$  جين  $S_n = u_0 + u_1 + u_2 + \dots + u_n$  عبد المجموع  $S_n$  حيث  $S_n = u_0 + u_1 + u_2 + \dots + u_n$

<u>تمرين 2</u>: (4 نقاط)

 $O(\bar{i}, \bar{j}, \bar{k})$  الفضاء منسوب إلى معلم متعامد ومتجانس

د النقط (1,0,−1)، B(−1,1,−3)، A(0,2,1) لتكن النقط (1,0,−1)،

A النقطة C النقطة C النقطة C النام النقطة C النام النقطة C النام النقطة C

اليكن المستقيم (D) المعرف بالتمثيل الوسيطى:

$$x = -1 - \lambda$$
  $y = 1 + 2\lambda$   $z = -3 + 2\lambda$ 

- (D) اكتب معادلة للمستوي (P) الذي يشمل النقطة C ويعامد المستقيم (D) باخسب المسافة بين النقطة C والمستقيم (D).
- ج) ماذا تستنتج فيما يتعلق بالوضع النسبي لكل من المستقيم (D) وسطح الكرة S

#### تمرين 3: (5 نقاط)

3x-21y=78 نعتبر المعادلة (E) ذات المجهولين الصحيحين x و y حيث: (E) ثقبل حلو (E) تقبل حلو (E) أ- بيّن أنّ (E) تقبل حلو (E)

x = 5[7] فإن (E) فإن (x,y) من  $\mathbb{Z}^2$  حلا للمعادلة (E) فإن (E) استنتج حلول المعادلة (E).

. 7 على n على n على n ، بواقي القسمة الإقليدية للعدد n على n على n = 10 أ- ادرس، حسب قيم العدد الطبيعي n ، بواقي القسمة الإقليدية للعدد n عين الثنائيات (x,y) من n التي هي حلول للمعادلة n وتحقق n = 2 عين الثنائيات n عين

#### تمرين 4: (6 نقاط)

 $f(x)=3+\sqrt{x-1}$  : المعرّفة على المجال [1;+ $\infty$ ] بالعبارة f المعرّفة على المعرّفة على المبتوي المزود بالمعلم المتعامد والمتجانس  $f(x)=3+\sqrt{x-1}$  . (C) إلى منحنى f في المستوي المزود بالمعلم المتعامد والمتجانس ( $f(x)=3+\sqrt{x-1}$  ).

- ا احسب  $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$  وفسر النتيجة هندسيا.
  - ادرس تغيرات الدالة f
- باستعمال منحنى دالة " الجذر التربيعي " ، أنشئ المنحنى (C).
  - y = x: ارسم في نفس المعلم المستقيم (D) الذي معادلته -
    - 2) نعرق المنتالية  $(U_n)$  على المجموعة  $\mathbb{N}$  كالأتى:

$$\begin{cases} U_0 = 2 \\ U_{n+1} = f(U_n) \end{cases}$$

أ – باستعمال (D) و (D)، مثل الحدود  $U_2$ ،  $U_1$ ،  $U_0$  على محور الفواصل.  $V_2$  ضع تخمينا حول اتجاه تغيّر المنتالية  $(U_n)$  وتقاربها.

.  $U_{n+1}>U_n$  و  $2\leqslant U_n\leqslant 5$  : لدينا المن 0 عدد طبيعي الدينا عدد 0 و 0 الدينا - المنتنج أن 0 متقاربة. احسب 0 الحسب 0 المنتنج أن 0 متقاربة. احسب 0 المنتنج أن 0

تمرين 1: (5 نِقَاطِ)

نعتبر في مجموعة الأعداد المركبة  $\mathbb C$  كثير الحدود P(z) المعرف كما يلي :  $P(z) = 2z^4 - 2iz^3 - z^2 - 2iz + 2$ 

- 1 ) بين أنه إذا كان a جذر الكثير الحدود P(z) فإن a جذر له أيضا.
  - P(z) عدقق أن 1+i جذر لكثير الحدود (2
    - P(z) = 0 المعادلة C على في
    - 4 ) اكتب الحلول على الشكل الأسي.

تمرين 2: (4 نقاط)

 $U_{n+1} = \frac{2}{3}U_n + 1 : n$  و من أجل كل عدد طبيعي  $U_n = 2$  المنتالية المعرفة بحدها الأول  $U_n = 2$  و من أجل كل عدد طبيعي  $U_n = 2$  .  $U_n = 2$  احسب  $U_n = 2$  و  $U_n = 2$ 

- $V_n = U_n + \left(\frac{2}{3}\right)^n$ : n بيد طبيعي n عدد طبيعي المنتالية العددية المعرفة من أجل كل عدد طبيعي  $(V_n)$ 
  - برهن بالتراجع أن (٧) منتالية ثابتة .
    - . n استتج عبارة  $U_n$  بدلالة
      - lim U<sub>n</sub> احسب —
- $W_n = \frac{2}{3}n \left(\frac{2}{3}\right)^n$ : n بالمنتالية العددية المعرفة من أجل كل عدد طبيعي m بن  $(W_n) = 3$  .  $S = W_0 + W_1 + W_2 + ... + W_n$  : عيث  $S = W_0 + W_1 + W_2 + ... + W_n$  : مسب المجموع  $S = W_0 + W_1 + W_2 + ... + W_n$

تمرين 3: (4 نقاط)

تعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس  $(0; \vec{i}, \vec{j}, \vec{k})$  المستقيمين  $(\Delta)$  و  $(\Delta')$  المعرفين بالتمثيلين الوسيطيين الأتيين:

$$\begin{cases} x = 6 + \alpha \\ y = 1 - 2\alpha ; \quad \alpha \in \mathbb{R} \\ z = 5 + \alpha \end{cases} \quad \begin{cases} x = 3 + \lambda \\ y = 2 + \frac{1}{2}\lambda ; \quad \lambda \in \mathbb{R} \end{cases}$$

- 1 بين أن المستقيمين ( $\Delta$ ) و ( $\Delta$ ) ليسا من نفس المستوي.
  - Δ') نقطة كيفية من (Δ) و N نقطة كيفية من (Δ') .
- $(\Delta')$  عَيِن إحداثيّات النقطنتين M و N بحيث يكون المستقيم (MN) عموديا على كل من  $(\Delta)$  و  $(\Delta')$  .  $(\Delta')$  باحسب الطول  $(\Delta')$ 
  - -3 عين معادلة للمستوي (P) الذي يشمل المستقيم ( $\Delta$ ) و يوازي المستقيم ( $\Delta$ ) -
    - -4 احسب المسافة بين نقطة كيفية من  $(\Delta')$  و المستوي (P) . ماذا تلاحظ P

## تمرين <u>4:</u> (7 نقاط)

- و ر $C_f$  تمثيلها البياني في المستوي  $f(x) = x 1 + \frac{4}{e^x + 1}$  الدالة العددية المعرفة على  $\mathbb{R}$  بالعبارة  $f(x) = x 1 + \frac{4}{e^x + 1}$  المنسوب إلى المعلم المتعامد المتجانس  $O: \overline{I}, \overline{J}$  .
  - 1 ادرس تغیرات الدالة f
  - .  $\omega$  عند النقطة انعطاف  $\omega$  و اكتب معادلة لمماس  $C_{f}$  يقبل نقطة انعطاف  $\omega$ 
    - .  $C_f$  اثبت أن  $\omega$  مركز تناظر للمنحنى -
    - $\lim_{x \to \infty} [f(x) (x+3)]$  و  $\lim_{x \to \infty} [f(x) (x-1)]$  حسب 3
    - . استنتج أن  $C_r$  يقبل مستقيمين مقاربين يطلب إعطاء معادلة لكل منهما -
  - ]-2,77; -2,76[ يقطع محور الفواصل في نقطة وحيدة فاصلتها  $x_0$  من المجال  $C_f$  -2,77 -2,76] احسب f(1) و f(-1) ( تُدور النتائج إلى  $10^{-2}$  ) ثم ارسم  $C_f$  ومستقيميه المقاربين.
    - . g منحنى الدالة العددية المعرفة على  $\mathbb{R}$  بالعبارة :  $\frac{4}{e^x+1}$  بالعبارة على  $\mathbb{R}$  الدالة العددية المعرفة على  $\mathbb{R}$ 
      - g(x) = f(-x): فإن x فان أجل كل عدد حقيقي x فإن أنه من أجل كل عدد حقيقي
      - استنتج أنه يوجد تحويل نقطي بسيط يحول  $C_{p}$  إلى -
      - . ( g انشئ في نفس المعلم السابق  $C_{g}$  ( دون در اسة الدالة -2

الإجابة النموذجية لموضوع لامتحان: البكالوريا.. دورة: 2008 الختبار مادة: .. الرياضيات الشعبة/ الرياضيات المدة: .. 04 ساعات و 30 د

# الإجابة النموذجية وسلم التنقيط

الموضوع الأول

| العلامة |            | عناصر الإجابة                                                                                                                      | معاور الموضوع |
|---------|------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|
| المجموع | مجزأة      |                                                                                                                                    |               |
|         |            | تمرين 1:(5 نقاط)                                                                                                                   |               |
|         | 0.5        | $z'=\sqrt{3}iz$ : هي $z'=\sqrt{3}iz$ المعادلة المركبة للتشابه                                                                      |               |
|         | 0.25×2     | $\theta \equiv \frac{\pi}{2}[2\pi]$ عناصر $S$ : المركز $O$ ، النسبة $k=\sqrt{3}$ النسبة                                            | عداد مركبة    |
|         | 0.25×3     | $A_2$ و $A_1$ و $A_0$ اینشاء النقط $A_0$ و $A_1$                                                                                   | عريلات نقطية  |
|         | 0.5        | $z_{_{n}}=2\left(\sqrt{3} ight)^{n}e^{i\left(nrac{\pi}{2}-rac{\pi}{6} ight)}$ : ب) بنبات أن $z_{_{n}}=2\left(\sqrt{3} ight)^{n}$ |               |
|         |            | $n\in\mathbb{N}$ $z_{_{n+1}}=\sqrt{3}iz_{_{n}}$ نستعمل البرهان بالتراجع أو العلاقة                                                 |               |
|         |            | $\left(OA_{_{1}} ight)$ ج) تعيين الأعداد الطبيعية $n$ حتى تكون النقطة مر $A_{_{n}}$ من المستقيم                                    |               |
|         | 0.5        | $k \in \mathbb{N}$ مع $n = 2k + 1$                                                                                                 |               |
|         | 0.25×2+0.5 | $q=\sqrt{3}$ وأساسها $q=\sqrt{3}$ وأساسها ويدسية حدّها الأوّل $U_{_0}=4$                                                           |               |
|         | 0.5        | $U_{_{n}}=4\Big(\sqrt{3}\Big)^{n}$ بدلالة $n$ هي $\left(U_{_{n}} ight)$ عبارة $\left(U_{_{n}} ight)$                               |               |
|         | 0.5        | $S_n = \frac{4}{\sqrt{3} - 1} \left[ \left( \sqrt{3} \right)^{n+1} - 1 \right] : حساب المجموع$                                     |               |
| 05      | 0.25       | $\lim_{n\to +\infty} s_n = +\infty$                                                                                                |               |
|         |            | تمرين 2: (4 نقاط)                                                                                                                  | <b>-</b>      |
|         | 0.75       | $(x-1)^2 + y^2 + (z+1)^2 = 9$ هي $S = 1$ . معادلة سطح الكرة                                                                        | ļ             |
|         | 0.75       | x-2y-2z-3=0 هي $(P)$ معادلة المستوي (P)                                                                                            |               |

121

صفحة ......5.. / .....

|               | العلا          | عتبار مادة :الرياضيات الشعبة الرياضيات                                                          | تابع الإجابة ا |
|---------------|----------------|-------------------------------------------------------------------------------------------------|----------------|
| مه<br>المجمور | العلا<br>مجزأة | عناصر الإجابة                                                                                   | محاور الموضوع  |
|               |                |                                                                                                 |                |
|               | 0.75           | (P) و $(D)$ هي نقطة تقاطع $B(-1,1,-3)$ و                                                        |                |
|               | 0.75           | d(C;(D)) = BC = 3                                                                               |                |
| 04            | 0.5+0.5        | S مماس لسطح الكرة $S$ مماس لسطح الكرة                                                           |                |
|               |                | تمرین 3: (5 نقاط)                                                                               |                |
|               |                | والعدد 78 معادلة $(E)$ تقبل حلا في $\mathbb{Z}^2$ لأن 3 $PGCD(3,21)=3$ والعدد 78                |                |
|               | 0.25           | يقبل القسمة على 3                                                                               | الموافقات      |
|               |                | ب) إثبات أنّه إذا كانت الثنائية $(x,y)$ من $\mathbb{Z}^2$ حلا للمعادلة $(E)$ فإن                |                |
|               | 0.75           | $x \equiv 5[7]$                                                                                 | ,              |
| 5             | 0.75           | استنتاج حلول $k \in \mathbb{Z}$ مع $(x,y) = (5+7k,-3+k):(E)$ مع                                 |                |
| 13            | 0.25×6         | <ol> <li>دراسة بواقي قسمة العدد 5<sup>n</sup> على 7</li> </ol>                                  |                |
|               |                | $5^{6m+3} \equiv 6[7]$ , $5^{6m+2} \equiv 4[7]$ , $5^{6m+1} \equiv 5[7]$ , $5^{6m} \equiv 1[7]$ |                |
|               |                | $m \in \mathbb{N}$ , $5^{6m+5} \equiv 3[7]$ , $5^{6m+4} \equiv 2[7]$                            |                |
|               |                | $\mathbb{N}^2$ ب) تعیین الثنائیات $(x,y)$ من                                                    |                |
|               |                | (x,y) = (5+7k,-3+k) : هي (E) هي *                                                               | -              |
|               |                | $k\geqslant 3$ فإن $(x,y)\in \mathbb{N}^2$ وحيث أن                                              |                |
|               | 0.5+0.25       | $k' \in \mathbb{N}$ مع $k = k' + 3$ مع $k \geqslant 3$ مع $k' = k - 3$                          |                |
|               |                | (x,y) = (26 + 7k', k')                                                                          |                |
|               |                | $5^{k'+1} \equiv 3[7] \equiv 5^x + 5^y \equiv 3[7]$ نعوض $x$ و $y$ في $y = 5$                   |                |
|               |                | k'=6m+4 وباستخدام بواقی قسمة $5$ علی $7$ نجد $k'=6m+4$                                          |                |
| :             | 0.5+0.5        | $(x,y) = (42m+54,6m+4)$ مع $m \in \mathbb{N}$ منه                                               |                |
|               |                | (19,5) (12m + 51,0m + 4) = men                                                                  |                |
|               |                | تمرين 4: (6 نقاط)                                                                               |                |
|               | 0.25           | $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = +\infty $ (1                                        |                |
|               |                |                                                                                                 | الدوال العددية |
|               | 0.25           | تفسير النتيجة: يوجد نصف مماس يوازي محور التراتيب * دراسة تغيرات الدالة f حيث:                   | المتوال المصاف |
|               |                | •                                                                                               | المتتاليات     |
|               | 2×0.25+0.5     | التغيرات $f'(x) = \frac{1}{2\sqrt{x-1}}$ - الشارة $f'(x)$ واتجاه التغير - جدول التغيرات *       | العددية        |
|               | 0.25+0.5       | (D) والمستقيم $(C)$ انشاء المنحنى $(C)$                                                         |                |
|               |                | أ- تمثيل الحدود $U_2$ ، $U_1$ ، أ $U_2$ على محور الفواصل باستعمال $U_2$                         |                |
|               | 0.25×4         | المستقيم $(D)$ والمنحنى $(C)$                                                                   |                |
|               |                |                                                                                                 |                |

122

صفحة ......5... / ...2

|   | ياضيات | لشعبة الر | الرياضياتا | مادة: | اختبار | الإجابة | نابع |
|---|--------|-----------|------------|-------|--------|---------|------|
| 4 |        |           |            |       |        |         | _    |

| * N     | •,     | ختبار مادة:الرياضيات الشعبة الرياضيات                                                                           | بع الإجاب ا  |
|---------|--------|-----------------------------------------------------------------------------------------------------------------|--------------|
| العلامة |        | عناصر الإجابة                                                                                                   | حاور الموضوع |
| المجموع | مجز أة |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         | 0.5    | ب- التخمين:                                                                                                     |              |
|         |        | المتتالية $(U_n)$ متزايدة تماما ومحدودة من الأعلى وبالتالي فهي متقاربة                                          |              |
|         | 0.75   | $2 \leqslant U_n \leqslant 5$ . أ- البر هان بالتر أجع على العدد الطبيعي $n$ أنّ : $5 \leqslant U_n \leqslant 5$ |              |
|         |        | البرهان بالتراجع أنّ : $U_{n+1} > U_n$                                                                          |              |
| 1       | 0.75   |                                                                                                                 |              |
|         |        | $(\;U_{n+1}=f(U_n)\;$ يمكن استعمال العلاقة (                                                                    |              |
|         | 0.25   | $(U_n)$ متقاربة:                                                                                                | :            |
|         |        | حسب جو اُبي السؤ الين أو ب من 3 فإن $(U_n)$ محدودة من الأعلى                                                    |              |
|         |        |                                                                                                                 |              |
|         |        | ومتز ايدة تماما وبالتالي فهي متقاربة وهو ما يؤكد صحة المخمنة السابقة                                            |              |
| 06      | 0.5    | $\lim_{n \to +\infty} U_n = 5$                                                                                  |              |
|         |        | $n \rightarrow +\infty$                                                                                         |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        | انتهي                                                                                                           |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        | ``                                                                                                              |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
| ļ       |        |                                                                                                                 |              |
|         |        |                                                                                                                 |              |
|         |        |                                                                                                                 | -            |
|         |        |                                                                                                                 |              |

اختبار مادة: الرياضيات الشعبة: رياضيات دورة: جوان 2008 الموضوء الثاني

| الموضوع الثاني<br>عناصر الإجابة العلامة |                  |                                                                                                              |                    |  |  |
|-----------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------|--------------------|--|--|
|                                         | مجزاة            | عناصر الإجابه                                                                                                | محاور<br>الموضوع   |  |  |
| ·                                       |                  | تمرين 1: (5 نقاط)                                                                                            | الأعداد            |  |  |
| 0.5                                     | 0.5              | ( $P(z)$ ابیان آنه اذا کان $P(a) = 0$ فإن $P(a) = 0$ فإن $P(a) = 0$ بیان آنه اذا کان $P(a) = 0$              | المركبة            |  |  |
| 0.5                                     | 0.5              | P(1+i) = 0 	 (2                                                                                              | \ <del>\</del>     |  |  |
|                                         | 0.25             | $\frac{1-i}{2}$ حلول المعادلة : $i+i$ حل إذا مقلوبه $\frac{1-i}{2}$ حل كذلك                                  |                    |  |  |
| 2                                       | 0.75             | $2z^2 + (3-i)z + 2 = 0$ : الحلان الآخر ان هما حلا المعادلة :                                                 |                    |  |  |
| 1.5                                     | 1                | $z = -1 + i  z = \frac{-1 - i}{2}  \Delta = -8 - 6i = (1 - 3i)^2$                                            |                    |  |  |
| 1.5                                     | 0.25×2<br>0.5×2+ | 4) الشكل الأسي للحلول                                                                                        |                    |  |  |
| 0.5                                     | 0.5              | m=2 مربع من أجل $m=2$ مربع من أجل $M=2$                                                                      |                    |  |  |
| 0.75                                    | 0.75<br>1+0.25   | $U_3 = \frac{73}{27}$ و $U_2 = \frac{23}{9}$ و $U_1 = \frac{7}{3}$ (1) $U_2 = \frac{23}{9}$ البرهان بالتراجع | المئثاليات العددية |  |  |
| 2.25                                    | 0.5              | $U_n = 3 - \left(\frac{2}{3}\right)^n$                                                                       | ، العددية          |  |  |
|                                         | 0.5              | $\lim_{n \to +\infty} U_n = 3$                                                                               |                    |  |  |
| 1                                       | 2×0.5            | $S = \frac{n(n+1)}{3} + 3\left(\frac{2}{3}\right)^{n+1} - 3 $ (3)                                            |                    |  |  |
|                                         |                  |                                                                                                              |                    |  |  |

| العلامة                                |             | عناصر الإجابة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
|----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| المجموع                                | مجزأة       | عناصر الإجاب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ر<br>نوع                       |
| 0.5                                    | 0.5<br>0.25 | تمرین 3: (4 نقاط) $-1 = (\Delta) (\Delta)$ لیسا من نفس المستوي $-1 = (\Delta) (\Delta) (\Delta)$ عند $-1 = (\Delta) (\Delta) (\Delta) (\Delta)$ عند $-1 = (\Delta) (\Delta) (\Delta)$ عند $-1 = (\Delta) (\Delta) (\Delta)$ تعدد $-1 = (\Delta) (\Delta) (\Delta)$ المستوي $-1 $ |                                |
|                                        | 0.25        | $8\alpha + 21\lambda + 46 = 0$ $8\alpha + 21\lambda + 46 = 0$ $(MN) \pm (\Delta')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lairmi                         |
| 1.5                                    | 2×0.25      | $\alpha = -\frac{16}{11}  \text{if } \lambda = -\frac{18}{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | بة الفضائية                    |
|                                        | 2×0.25      | $N\left(\frac{50}{11}, \frac{43}{11}, \frac{39}{11}\right) \downarrow M\left(\frac{15}{11}, \frac{13}{11}, \frac{14}{11}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                             |
| 0.25                                   | 0.25        | $MN = \frac{5\sqrt{110}}{11} \left( -\frac{1}{10} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
|                                        | 1           | 7x + 6y + 5z - 23 = 0 هي $(P)$ هي $(P)$ معادلة المستوي (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| 1.75                                   | 0.5         | $d = \frac{ 42+7\alpha+6-12\alpha+25+5\alpha-23 }{\sqrt{49+36+25}} = 5\frac{\sqrt{110}}{11} : \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| ··                                     | 0.25        | نلاحظ أن : d = MN : نلاحظ أن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |
| ······································ |             | تمرين <u>4:</u> (7 نقاط)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
|                                        | 0.25×2      | $\lim_{x \to +\infty} f(x) = +\infty \; ; \; \lim_{x \to -\infty} f(x) = -\infty  -(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                              |
| 2                                      | 0.5+0.5     | - المشتق و إشارته                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                              |
|                                        | 0.5         | - جدول التغيرات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                              |
| 1                                      | 0.25×2      | $y=1$ الماس $y=1$ نقطة إنعطاف و معادلة الماس $y=1$ نقطة الماس $\omega(0,1)$ الماس                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | うっ                             |
|                                        | 0.5         | - إثبات أن ∞ مركز تناظر للمنحني                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | مددية                          |
| 1                                      | 0.25×2      | $\lim_{x \to +\infty} (f(x) - (x-1)) = 0; \lim_{x \to -\infty} (f(x) - (x+3)) = 0 - (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | در اسة الدوال العددية (الأسية) |
|                                        | 0.25×2      | - استنتاج معادلتي المستقيمين المقاربين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                              |
| 2                                      | 0.5+0.5     | f(x) = 0 للمعادلة $f(x) = 0$ حل وحيد $f(x) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        | 0.25×2      | $f(1) \approx 1.08$ ; $f(-1) \approx 0.92$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| 1                                      | 0.5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        | 0.25+0.25   | $C_g$ هو نظير $C_f$ بالنسبة لحامل محور التراتيب $g(x)=f(-x)$ و $g(x)=f(-x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |
|                                        | 0.5         | 2) إنشاء روع (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |
|                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |