Bisection

- * The user must guarantee that the function is continuous in the given interval
 - 1) Ask the user for a function, a tolerance, and a max number of iterations.
 - 2) Ask the user for the values A and B, these will be the values for the initial interval.
 - 3) We create a variable i to count the number of iterations. We begin with 1.
 - 4) We evaluate A and B in the function to obtain f(A) and f(B). If f(A) or f(B) = 0, we tell the user that this is the root.
 - 5) We make a conditional to being to execute the method... if f(A) * f(B) <= 0 then execute... to verify that in the interval there is a root. In the case that there does not exist a root, we tell the user that one does not exist.
 - 6) Error= $(A+B)/2^{i}$
 - 7) Next, find the middle value of the interval. M=(A+B)/2 and we evaluate this in the function
 - 8) Cycle: while the error > tolerance, i < number of max iterations, $f(M) \neq 0$, f(A) * f(B) < 0, do:
 - a) If f(A) * f(M) < 0:
 - (i) B=M
 - (ii) f(B) = f(M)
 - (iii) M = (A+B)/2
 - (iv) f(M) = the new value of M evaluated in the function
 - (v) i=i+1
 - (vi) Error = $(A+B)/2^{i}$
 - b) If f(M) * f(B) < 0
 - (i) A = M
 - (ii) f(A) = f(M)
 - (iii) M = (A/B)/2
 - (iv) f(M) = the new value of M evaluated in the function
 - (v) i = i + 1
 - (vi) $Error = (A+B)/2^i$

- 9) If error <= tolerance, tell the user that the root is located in the interval [A,B] (with the final values) with an error of : ____(with the final value of the error)
- 10) If f(M) = 0, tell the user that M is the root.
- 11) If i = max number of iterations tell the user that he/she has reached the limit of iterations and the root is in the interval [A,B] (with the final values) with an error of: ___(with the final value of the error).