Set Theory

Hoyan Mok $^{\rm 1}$

2020年10月14日

 $^{^{1}\}mathrm{E\text{-}mail:}$ victoriesmo@hotmail.com

笔记说明

该笔记是笔者学习集合论的笔记, 主要是为了数学服务 (而非哲学). 主要的参考资料是[2].

笔者曾疑惑于逻辑公理和集合论公理的先后关系,查阅资料后,初步得出这样的结论:我 们必须选择朴素的集合论或者简单的一阶逻辑作为前置,而它们是在我们的元语言中得到保证 的.

本笔记尽量做到自足.

你可以在https://github.com/HoyanMok/NotesOnMathematics/tree/master/SetTheory获得本笔记最新的 PDF 与 TEX 源文档. 封面来源: https://commons.wikimedia.org/wiki/File:Omega-exp-omega-labeled.svg

目录

笔记说明	·····································	i		
目录		ij		
§ 1	集合与公理 数理逻辑准备	1		
§ 2	ZFC 公理	2		
第二章	关系与函数	5		
§ 3	关系	5		
§ 4	函数	6		
§ 5	等价和划分	9		
§ 6	序	9		
第三章	实数	11		
§ 7	自然数	11		
§ 8	递归定理	12		
§ 9	势	13		
参考文献	参考文献			
符号列表	符号列表			
索引				

第一章 集合与公理

在介绍集合论的 ZFC 公理之前, 需要先介绍一些数理逻辑的概念.

§1 数理逻辑准备

句法概念如**形式语言**, **逻辑符号**, 非**逻辑符号**, 项, 公式, 自由变元, 约束变元, 语句等主要见 [1].

设 Σ 是一个公式集, φ 是一个公式.

Definition 1.1. 有穷公式序列 $\varphi_1, \dots, \varphi_n$ 表示从 Σ 到 φ 的一个**推演**, 如果其中的任意 φ_i 要 么是属于 Σ 的,要么可从之前的公式 φ_j 和 $\varphi_k = \varphi_j \to \varphi_i$ 得到,而且 $\varphi_n = \varphi$. 记作 $\Sigma \vdash \varphi$. 特别地,如果 T 是语句集,而 σ 是语句,如果 $T \vdash \sigma$,就称存在从 T 到 σ 的一个证明.

如果语句集 T 满足: 对任意语句 σ , $T \vdash \sigma$ 当且仅当 $\sigma \in T$, 即 T 是一个对证明封闭的语句集, 就称 T 为**理论**. 假设 T 是理论, 如果存在一个语句集 $A \subseteq T$ 使得对任意的 $\sigma \in T$ 都有 $A \vdash \sigma$, 就称 A 为 T 的一集**公理**.

如果理论 T 的公理 A 是**递归的** (**可判定的**, **可计算的**) i.e. 任给一语句, 总可以在有穷步骤内完全机械地判定它是否属于 A, 就称 T 是可公理化的. 理论 T 往往不是递归的, 但如果任给 $\sigma \in T$, 我们可在有穷的步骤内得出结论, 但如果 $\sigma \notin T$, 我们可能不能在有穷步骤内得出结论, 则称其为**递归可枚举的**.

一个理论是**一致的**当且仅当没有语句 σ s.t. $T \vdash \sigma \land \neg \sigma$.

Definition 1.2. 若 ψ 是性质.

$$\exists! x \psi(x) := \exists x \psi(x) \land \forall x \forall y (\psi(x) \land \psi(y) \to x = y) \tag{1-1}$$

§2 ZFC 公理

Axiom 0 (存在公理, Exi). 存在一个集合, i.e.

$$\exists x(x=x). \tag{2-1}$$

Axiom 1 (外延公理, Ext). 两个有相同元素的集合相等, i.e.

$$\forall X \forall Y \forall u (u \in X \leftrightarrow u \in Y) \to X = Y. \tag{2-2}$$

而逻辑上有 $X = Y \rightarrow \forall X \forall Y \forall u (u \in X \leftrightarrow u \in Y)$, 所以:

$$\forall X \forall Y \forall u (u \in X \leftrightarrow u \in Y) \leftrightarrow X = Y \tag{2-3}$$

记 $\neg(X=Y)=:X\neq Y.$

Axiom 2 (分离公理模式, Sep). 令 $\varphi(u)$ 为公式. 对任意集合 X, 存在一个集合 $Y = \{u \in X \mid \varphi(u)\}, i.e.$

$$\forall X \exists Y \forall u (u \in Y \leftrightarrow u \in X \land \varphi(u)). \tag{2-4}$$

Corollary 1.

$$\forall X \exists R_X (R_X \notin R_X). \tag{2-5}$$

Proof. $\diamondsuit R_X = \{x \in X \mid x \notin x\} \ \mathbb{P} \mathbb{I} \mathbb{I}$.

令 $\varphi(u)$ 为一个性质. 倘若 $\exists X \forall u (\varphi(u) \to u \in X)$, 则 $u \mid \varphi(u) = u \mid \varphi(u)$, 根据 Sep (axiom 2), $\exists \varnothing = u \mid \varphi(u)$. 分离于不同的集合 X 和 X' 的 \varnothing 是相同的. 考虑到 $x \neq x \to x \in X$ 是重言式, 再根据 Exi (axiom 0), 可以得出:

Definition 2.1. $\emptyset = \{x \mid x \neq x\}$ 是集合, 称为**空集**.

Definition 2.2. $\varphi(u)$ 是一个性质. 称 $\{u \mid u(u)\}$ 为一个类 (class). 若一个类不是集合, 则称 其为真类 (proper class).

如所有集合的类 V 就是一个真类 (根据 Corollary 1).

Definition 2.3. 由 Sep, 两个集合的交和差也是集合:

$$X \cap Y = \{ u \in X \mid u \in Y \}$$
 $X - Y = \{ u \in X \mid u \notin Y \}$ (2-6)

§2 **ZFC** 公理 3

Corollary 2. 而非空集 $X \neq \emptyset$ 的任意交

$$\bigcap X = \{ u \mid \forall Y \in X (u \in Y) \}$$
 (2-7)

也是集合.

Proof. $\boxtimes X \neq \emptyset$, $\exists x_0 \in X$. \boxplus Sep,

$$Y = \{ y \in x_0 \mid \forall x \in X (y \in x) \}$$

是集合.

Axiom 3 (对集公理, Pai).

$$\forall a \forall b \exists c \forall x (x \in c \leftrightarrow x = a \lor x = b). \tag{2-8}$$

这样的 c 可记为 $\{a,b\}$.

Axiom 4 (并集公理, Uni).

$$\forall X \exists Y \forall u (u \in Y \leftrightarrow \exists z \in X (u \in z). \tag{2-9}$$

Definition 2.4. 子集和真子集关系定义如下:

$$X \subseteq Y := \forall x \in X (x \in Y), \tag{2-10}$$

$$X \supseteq Y := Y \subseteq X,\tag{2-11}$$

$$X \subset Y := X \subseteq Y \land X \neq Y, \tag{2-12}$$

$$X \supset Y := X. \tag{2-13}$$

Corollary 3. $\forall X (\varnothing \subseteq X)$.

Axiom 5 (幂集公理, Pow).

$$\forall X \exists Y \forall u (u \in Y \leftrightarrow u \subseteq X). \tag{2-14}$$

这样的 Y 称为 X 的幂集, 记为 $\mathcal{P}(X)$ 或 2^{X} .

Definition 2.5. 对任意集合 $x, x \cup \{x\}$ 称为其后继, 记为 S(x) 或 x^+ .

Axiom 6 (无穷公理, Inf).

$$\exists X (\varnothing \in X \land \forall x (x \in X \to S(x) \in X)). \tag{2-15}$$

Axiom 7 (基础公理, Fnd).

$$\forall x (x \neq \varnothing \to \exists y \in x (x \cap y = \varnothing)). \tag{2-16}$$

Theorem 2.1.

$$\forall x (x \notin x). \tag{2-17}$$

Proof. 考虑 $X = \{x\}$. 与 Fnd 矛盾.

Theorem 2.2.

Proof.

Find
$$\land \forall x \in X (\exists y \in X (y \in x \cap X)) \to \bot$$
.

Axiom 8 (替换公理模式, *Rep*). 对公式 $\psi(x,y)$, $\forall x$ 都存在唯一的 y s.t. $\psi(x,y)$ 成立. 那么 $\forall A \in \mathbf{V}$, 存在集合:

$$B = \{ y \mid \exists x \in A \,\psi(x, y) \} \tag{2-19}$$

i.e.

$$\forall A \forall x \in A \exists ! y \, \psi(x, y) \to \exists B \forall x \in A \, \exists y \in B \, \psi(x, y) \tag{2-20}$$

Axiom 9 (选择公理, AC II). 对任意非空集合 $X \neq \emptyset$, 若

- $(1) \varnothing \notin X$,
- (2) X 中两两不交, 即 $\forall x \in X \forall y \in X$ 且 $x \neq y$, 那么 $x \cap y = \emptyset$, 则存在集合 S, 对 $\forall x \in S$, $S \cap x$ 是单点集. *i.e.*

$$\forall X \big(\varnothing \in X \land \forall x \in X \, \forall y \in X (x = y \lor x \cap y = \varnothing)$$

$$\rightarrow \exists S \forall x \in X \, \exists! y (S \cap x = \{y\}) \big).$$

$$(2-21)$$

Axiom 0 到 8 构成的公理系统称为 **Zermelo-Fraenkel 系统**, 记为 **ZF**, 加上选择公理则记为 **ZFC**.

第二章 关系与函数

§**3** 关系

Definition 3.1. 集合 a, b 的有序对 $(a, b) := \{\{a\}, \{a, b\}\}.$

Theorem 3.1.

$$(a,b) = (a',b') \leftrightarrow a = a' \land b = b'.$$

Proof. 只证明"→":

- (1) a = b. $(a,b) = \{\{a\}\} = (a',b')$, $\not\bowtie (a',b') = \{\{a\}\} = \{\{a'\},\{a',b'\}\}$, $\not\bowtie \text{Ext (axiom 1)}$, $\{a'\} = \{a',b'\} = \{a\}$, $\not\bowtie a = b = a' = b'$.
- (2) $a \neq b$. 假设 $\{a,b\} = \{a'\}$, 得 $\forall x \in \{a,b\}(x=a')$ 即 a = b = a' 与 $a \neq b$ 矛盾. 从而只有 $\{a,b\} = \{a',b'\} \land \{a\} = \{a'\}$, 仍然由 Ext 易证.

Definition 3.2. 令 X 和 Y 是集合, 其**直**积或 *Cartesian* 积定义为:

$$X \times Y := \{(x, y) \mid x \in X \land y \in Y\}. \tag{3-1}$$

简记 $X \times X =: X^2$.

Theorem 3.2. 对于 $\forall X \forall Y, X \times Y$ 是集合.

Proof. 令 $\varphi(z) = \exists x \in X \exists y \in Y((x,y) = z)$, 取 $Z = \{z \in \mathscr{P}(X \cup Y) \mid \varphi(z)\}$, 由 Ext 和 Sep (axiom 2) 即可知 $X \times Y = Z$.

Definition 3.3. 如果存在集合 X, Y s.t. $R \subseteq X \times Y$, 则称集合 R 是二元关系. 通常记 $(x, y) \in R =: R(x, y)X$, 或 xRyxRy. dom $R := \{x \mid \exists yR(x, y)\}$ 称为其定义域, $\operatorname{ran} R = \{y \mid \exists xR(x, y)\}$ 称为其值域.

特别地, 如果 $R \subseteq X^2$, 则称其为 X 上的二元关系.

Definition 3.4. 集合 X 在关系 R 的像R[X] 定义为 $\{y \in \text{ran } R \mid \exists x \in X (R(x,y))\}$. 集合 Y 的逆像 $R^{-1}[Y]$ 则定义为 $\{x \in \text{dom } R \mid \exists y \in Y (R(x,y))\}$. 二元关系 R 的逆 R^{-1} 是 $\{(x,y) \mid R(y,x)\}$. 两个二元关系 R, S 的复合 $S \circ R$ 则定义为 $\{(x,z) \mid \exists y (R(x,y) \land S(y,z))\}$.

Theorem 3.3. 令 R 是二元关系,A, B 是集合. $R[A \cup B] = R[A] \cup R[B]$, $R[A \cap B] \subseteq R[A] \cap R[B]$, $R[A - B] \supseteq R[A] - R[B]$.

Cartesian 积可递归地推广到 n 元:

$$(x_1, \dots, x_{n+1}) = ((x_1, \dots, x_n), x_{n+1});$$
 (3-2)

$$X_1 \times \dots \times X_n = \{(x_1, \dots, x_n) \mid x_1 \in X_1 \wedge \dots \wedge x_n \in X_n\}$$
(3-3)

n 元 Cartesian 积的子集可类似地定义n 元关系.

Theorem 3.4. n 元 Cartesian 积 $X_1 \times X_2 \times \cdots \times X_n$ 是空集, 则存在 $X_i = \emptyset$.

§4 函数

Definition 4.1 (函数). 二元关系 f 倘满足:

$$\forall x ((x,y) \in f \land (x,z) \in f \rightarrow y = z),$$

则称 f 是**函数**, y 是 f 在 x 处的**值**, 记为 f(x) = y, 或 $f: x \mapsto y$. 倘若 $\mathrm{dom}\, f = X$, $\mathrm{ran}\, f \subseteq Y$, 则称 f 是 X 到 Y 的函数, 记为 $f: X \to Y$.

对任意集合 X 定义 $id_X: X \to X$ 为 $\forall x \in X(id_X(x) = x)$, 称为**等同函数**.

Theorem 4.1. $\Diamond f, g$ 都是函数.

$$f = g \leftrightarrow \operatorname{dom} f = \operatorname{dom} g \land \forall x \in \operatorname{dom} f(f(x) = g(x)).$$

Proof. 只证明"←":

$$\forall (x,y) \in f(x \in \text{dom } f \land y = f(x)) \land \text{dom } f = \text{dom } g \land \forall x \in \text{dom } f(f(x) = g(x))$$
$$\rightarrow \forall (x,y) \in f(x \in \text{dom } g \land y = g(x)).$$

同理, $\forall (x,y) \in g(x \in \text{dom } f \land y = f(x))$, 即 $\forall (x,y)(y = f(x) \leftrightarrow y = g(x))$. 由 Ext, f = g.

通常以集合为值的函数 $i\mapsto X_i$, 其中 $i\in I$, 可视为指标系统, I 是指标集. 记为 $X=\{X_i\mid i\in I\}$ 或 $\{X_i\}_{i\in I}$.

§4 函数 7

Theorem 4.2. 设 $\psi(i,x)$ 是公式. $\forall I \forall X$,

$$\bigcup_{i \in I} \{x \in X \mid \psi(i, x)\} = \{x \in X \mid \exists i \in I(\psi(i, x))\},$$
$$\bigcap_{i \in I} \{x \in X \mid \psi(i, x)\} = \{x \in X \mid \forall i \in I(\psi(i, x))\}.$$

Definition 4.2 (一般 Cartesian 积). 令 $X = \{X_i \mid i \in I\}$ 是一个指标系统. 我们定义 X 的一般 *Cartesian* 积为:

$$\prod_{i \in I} X_i := \{ f \mid f \colon I \to X_i \}.$$

 $\mathcal{F}_i: \prod_{i\in I} X_i \to X_i$ 称为指标函数.

注: 虽然这样的定义和 Cartesian 积不同, 但接下来的概念确保了, 两者之间可以一一对应, 从而是等同的.

Definition 4.3 (单射, 满射, 双射和逆). 令 $f: X \to Y$ 是函数. 若 $f(x_1) = f(x_2) \leftrightarrow x_1 = x_2$ 则称 f 为单射 (injection). 若 $\operatorname{ran} f = Y$ 则称其为满射 (surjection). 既单又满的函数称为**双射** (bijection). 如果函数的逆 f^{-1} 也是函数, 则函数 f 称为**可逆**的.

作为例子, 若空映射 $\operatorname{ran} f = \operatorname{dom} f = \varnothing$, $f = \varnothing$ 总是单的, $f^{-1} = \{(y, x) \mid y = f(x)\} = \varnothing$ 也是空映射.

注: 这里函数的逆的定义与通常不同, 因 $\operatorname{dom} f^{-1} = \operatorname{ran} f$ 而非 Y. 因而下面的定理在这样的定义下是成立的 (否则还要加上满射的条件):

记
$$Y^X := \{f \mid f \colon X \to Y\}. \ \forall Y (Y^\varnothing = \{\varnothing_Y\}), \ 而若 \ X \neq \varnothing, \ \varnothing^X = \varnothing.$$

Theorem 4.3 (函数可逆的条件). 函数 f 可逆 iff f 是单射.

Proof. 可逆意味着 $(y, x_1) \in f^{-1} \land (y, x_2) \in f^{-1} \leftrightarrow x_1 = x_2$, 又由逆的定义, $y = f(x_1) \land y = f(x_2) \leftrightarrow x_1 = x_2$, 这即是单射的定义.

Theorem 4.4 (函数的逆也可逆). 函数 f 若可逆, 则 f^{-1} 可逆, 且 $(f^{-1})^{-1} = f$.

证明从略.

Theorem 4.5. 如果 f 和 g 是函数,它们的复合 $h = g \circ f$ 也是函数. 而且 $dom h = f^{-1}(dom g)$.

注: 这里的复合和通常的定义有细微不同, 但保持了与二元关系的统一.

Proof. 复合的定义: $h = g \circ f \leftrightarrow \forall (x,z) \in h \Big(\exists y \big(y = f(x) \land z = g(y) \big) \Big)$. 倘若 $(x,u) \in h \land (x,u) \in h$, 有 $\exists ! y$ s.t. y = f(x), 且 u = v = g(y). 因而 h 也是函数.

其定义域 $\operatorname{dom} h = \{x \mid \exists z (z = h(x))\}, \ \operatorname{X因} \exists z (z = h(x)) \leftrightarrow \exists z \exists y (y = f(x) \land z = g(y)),$ 后者又等价于 $\exists y (y = f(x) \land \exists z (z = g(y))),$ i.e. $\exists y \in \operatorname{dom} g(y = f(x)),$

$$\operatorname{dom} h = \{x \mid \exists y \in \operatorname{dom} g(y = f(x))\} = f^{-1}(\operatorname{dom} g).$$

Definition 4.4 (限制和扩张). 令 f 是任意函数, A 是任意集合. 函数 $f \upharpoonright A = \{(x,y) \in f \mid x \in A\}$ 是 f 在 A 上的限制. 若 $g = f \upharpoonright A$, 则称 f 是 g 在 dom f 的扩张.

Definition 4.5 (相容). 函数 f, g 被认为是相容的, 如果:

$$\forall x \in \operatorname{dom} f \cap \operatorname{dom} g(f(x) = g(x))$$

指标系统 $\mathcal{F} = \{f_i \mid i \in I\}$ 被称为相容系统, 如果

$$\forall f_i \in \mathcal{F} \forall f_j \in \mathcal{F} (f_i \text{ fi } f_j \text{ flaw}.)$$

Theorem 4.6. f 和 g 是函数. 以下的命题是等价的:

- (1) f 与 g 相容;
- (2) $f \cup g$ 是函数;
- (3) $f \upharpoonright (\operatorname{dom} f \cap \operatorname{dom} g) = g \upharpoonright (\operatorname{dom} f \cap \operatorname{dom} g)$.

Proof. (1) \leftrightarrow (3): 注意到 dom $\Big(f \upharpoonright \Big(\operatorname{dom} f \cap \operatorname{dom} g\Big)\Big) = \operatorname{dom} f \cap \operatorname{dom} g$. 由相容的定义和定理 4.1 可得证.

 $(2)\leftrightarrow(1)$: 假设 f 与 g 不相容,即 $\exists x\in \mathrm{dom}\, f\cap \mathrm{dom}\, g\subseteq \mathrm{dom}\, f\cup g$ s.t. $f(x)\neq g(x)$, 这与函数 $f\cup g$ 的定义不相符.若 $f\cup g$ 不是函数,它至少是 $\mathrm{dom}\, f\cup \mathrm{dom}\, g\times \mathrm{ran}\, f\cup \mathrm{ran}\, g$ 上的二元关系,由函数的定义, $\exists x\in \mathrm{dom}\, f\cup g$ s.t. $\exists y_1\exists y_2\big((x,y_1)\in f\cup g\wedge (x,y_2)\in f\cup g\wedge y_1\neq y_2\big)$. 通过对 x 在 $\mathrm{dom}\, f-\mathrm{dom}\, g$, $\mathrm{dom}\, g-\mathrm{dom}\, f$, $\mathrm{dom}\, g\cap \mathrm{dom}\, g$ 讨论,可以得出要么 f 或 g 不是函数 (从而与题设矛盾),要么 f,g 不相容.

Axiom 9 (选择公理 (第二形式), AC II).

$$\forall \mathcal{F} \Big(\varnothing \notin \mathcal{F} \land \mathcal{F} \neq \varnothing \land \exists f \colon \mathcal{F} \to \cup \mathcal{F} \big(\forall F \in \mathcal{F} (f(F) \in F) \big) \Big)$$

其中这样的 f 通常被称为选择函数.

对于任意非空 ω (尤其是当 ω 是无穷集时), $\prod_{i\in\omega X_i}=\varnothing\to\exists i\in\omega(X_i=\varnothing)$ 与选择公理等价.\frac{1}{2}

¹维基百科页面

§5 等价和划分 9

§5 等价和划分

Definition 5.1. 令 $R \subseteq X^2$ 是 X 上的二元关系. R 是:

- (1) **自反**的, 若 $\forall x \in X(xRx)$;
- (2) **对称**的, 若 $\forall x \in X \forall y \in X(xRy \rightarrow yRx)$;
- (3) **传递**的, 若 $\forall x \in X \forall y \in X \forall z \in X (xRy \land yRz \rightarrow xRz)$;
- (4) **等价关系或等价**的, 若 R 自反, 对称, 传递. 记为 \sim .

Definition 5.2. 令 \sim 是 X 上的等价关系, $x \in X$. x 关于 \sim 的等价类定义为:

$$[x]_{\sim} := \{ t \in X \mid t \sim x \}.$$

注:由 Sep,等价类是集合而不是真类.

Theorem 5.1. $\diamond \sim \exists X$ 上的等价关系.

$$\forall x \in X \forall y \in Y ([x]_{\sim} = [y]_{\sim} \land [x]_{\sim} \cap [y]_{\sim} = \varnothing)$$

Definition 5.3. 令 X 是一集合, $S \subset \mathcal{P}(X)$. S 被称为 X 的一个划分如果:

$$\forall a \in S \forall b \in S (a = b \lor a \cap b = \varnothing) \land \cup S = X.$$

Definition 5.4. 令 ~ 是 X 上的等价关系. $X/\sim:=\{[x]_{\sim}\mid x\in X\}$ 称为 X 的**商集**.

Theorem 5.2. 令 \sim 是 X 上的等价关系. X/\sim 是 X 的一个划分.

Theorem 5.3. 令 $S \rightarrow X$ 的划分, 定义二元关系:

$$\sim_S := \{(x,y) \in X^2 \mid \exists s \in S(x \in s \land y \in s)\}.$$

那么, \sim_S 是等价关系, $X/\sim_S=S$. 若 X 上的等价关系 \sim 满足 $X/\sim=S$, 则 $\sim_S=\sim$.

Proof. $\cup S = X \rightarrow \forall x \in X \exists s \in S(x \in s)$, 即 \sim_S 是自反的. 对称和传递性显然. 从而, \sim_S 是等价关系.

依商集和等价类的定义, $\forall s \in X/\sim_S \exists x \in X \forall t \big(t \in s \leftrightarrow \exists s' \in S(x \in s' \land t \in s')\big)$. 这之后我遇到了困难.

§**6** 序

Definition 6.1. 如果 X 上的二元关系 \leq 满足:

- a) 自反 i.e. $\forall x \in X(x \leq x)$;
- b) 反对称 i.e. $\forall x \in X \forall y \in X (x \leq y \land y \leq x \rightarrow x = y)$;
- c) 传递 i.e. $\forall x \in X \forall y \in X \forall z \in X (x \le y \land y \le z \to x \le z)$,

则称其为 X 上的偏序 (partial order) 或序, 记 (X, \leq) , 并称 X 是一个偏序集 (partially ordered set, appr. poset). 如果它还是连接的 i.e. $\forall x \in X \forall y \in X (x \leq y \vee y \leq x)$, 那么它是 X 上的线序或全序 (total order), 此时也称 X 是一个线序集.

通常记 $\geq := \leq^{-1}, <:= \leq \cap \neq, >:= <^{-1}.$

Definition 6.2. 如果 X 上的关系 \leq 只满足传递和自反, 称其为 X 上的**拟序** (quasi-order) 或 预序 (preorder). $\succeq := \preceq^{-1}$.

Theorem 6.1. 令 \leq 是 X 上的拟序,等价关系 \sim 可由 $\sim=\leq\cap$ 定义,且商集 X/\sim 上的 偏序关系 \leq 可定义为

$$[x] \leq [y] \leftrightarrow x \leq y.$$

Definition 6.3. 如果对于 $a \in X$ 满足 $\forall x \in X(\neg(a > x))$, 则称 a 为 X 的极小元. 如果对于 $a \in X$ 满足 $\forall x \in X(a \le x)$, 则称 a 为 X 的最小元. 相反则有极大元和最大元.

令 $X_0 \subseteq X$. 如果 $\exists a \in X \forall x \in X_0 (a \le x)$, 则称 X_0 在 X 中有下界, a 是 X_0 在 X 中的下界. 如果这样的下界 a 的集合有最大元 a_0 , 称其为下确界 (infimun, appr. inf), 记为 inf X_0 . 同理有上界和上确界 (supremun, appr. sup) sup X_0 .

作为例子, 令 $X \neq \emptyset$, $(\mathscr{P}(X), \subseteq)$ 是偏序集. 对于 $\forall S \subseteq \mathscr{P}(X)$, S 有上下确界, $\sup S = \cup S$, $\inf S = \cap S$.

Definition 6.4. 如果 X 和其上的线序 (X, \leq) 满足任意 $X_0 \in \mathcal{P}(X)$, X_0 都有最小元, 则称 \leq 为 X 上的**良序**, X 被称为**良序集**.

第三章 实数

§7 自然数

根据 Inf (axiom 6), 这样的集合是存在的:

Definition 7.1. 如果集合 X 满足:

$$\emptyset \in X \land \forall x (x \in X \to x^+ \in X)$$

则称其为归纳集.

容易知道 $0 := \emptyset$ 属于任何归纳集, $1 := 0^+$ 也属于任何归纳集, ..., 以此类推. 最小的归纳集被称为**自然数集**, 它的严格定义如下:

Definition 7.2.

№ 是自然数集, 其元素是自然数.

从定义上可以看出, № 是归纳集, 而且是任何归纳集的子集.

Theorem 7.1. 归纳原理 $\varphi(n)$ 是一个性质. 如果

- $a) \varphi(0)$ 成立;
- $b) \forall n \in \mathbb{N}(\varphi(n) \to \varphi(n^+))$ 成立,

那么, $\forall n \in \mathbb{N} \varphi(n)$ 成立.

Proof. 构造集合 $M = \{n \in \mathbb{N} \mid \varphi(n)\}$, 根据它是归纳集, 可知 $\mathbb{N} \subseteq M$, 但 M 是根据 Sep 从 \mathbb{N} 中分离出来的, 得知 $M = \mathbb{N}$.

在 № 上定义偏序关系 ≤= ∈ ∪ =, 而且可以证明, 这是一个良序.

$$\forall n \in \mathbb{N} (\forall k \in n \, \varphi(k) \to \varphi(n)) \to \forall n \in \mathbb{N} \, \varphi(n)$$

§8 递归定理

接下来我们要定义一些二元函数,即我们熟悉的自然数集上的运算.我们可以递归地给出它们的定义,但这种定义的合理性需要递归定理的辩护.

Definition 8.1 (序列). 以 $n \in \mathbb{N}$ 或 \mathbb{N} 为定义域的函数称为**序列**, 其中前者称为长度为 n 的**有穷序列**, 后者称为**无穷序列**, 通常分别记为 $\langle a_k \mid k \in \mathbb{N} \rangle$, 或简记为 $\langle a_k \rangle_{k \in \mathbb{N}}$. 值域通常记为 $\{x_k \mid k < n\}$ 或 $\{x_k \mid k \in \mathbb{N}\}$, 或简记为 $\{a_k\}_{k < n}$ 或 $\{a_k\}_{k < n}$. 特别地, 长度为 0 的序列称为**空序列**.

若序列的到达域是 A, 则通常称为 A 内的序列. 集合 A 内所有有穷序列的集合可记为 $A^{<\mathbb{N}} := \bigcup_{n\in\mathbb{N}} A^n$.

Theorem 8.1. 递归定理

 $\forall A \forall a \in A \forall g \in A^{A \times \mathbb{N}} \exists ! f \in A^{\mathbb{N}} \big(f(0) = a \land \forall n \in \mathbb{N} \big(f(n^+) = g(f(n), n) \big) \big).$

这里的 g 扮演了一个"递推式"的角色.

Proof. 首先, 我们需要证明 f 的存在性.

注意到 f 是 A 中的无穷序列,我们考虑用满足条件的有穷序列去逼近它. 基于 a 和 g 的m-近似定义为有穷序列 $t\colon m^+\to A$ 满足

$$t_0 = a \land \forall k \in m^+(t_{k^+} = g(t_k, k)).$$

并记 $\mathcal{F} = \{t \in \mathcal{P}(\mathbb{N} \times A) \mid t \in m$ -近似},及 $f = \cup \mathcal{F}$. 接下来我们证明这个 f 是所寻找的函数. 首先证明它是函数. 由 theorem 4.6,知这当且仅当 \mathcal{F} 相容. 令 $t, u \in \mathcal{F}$. 记 m = dom t,n = dom u. 不妨设 $m \leq n$. t, u 相容 $iff \ \forall k \in m(t_k = u_k)$. 这由 1) $t_0 = u_0 = a$; 2) $t_k = u_k \to t_{k+} = g(t_k, k) = g(u_k, k) = u_{k+}$ 的成立和归纳原理保证.

接着确定 $f \in A^{\mathbb{N}}$. $\operatorname{dom} f \subseteq \mathbb{N}$ 和 $\operatorname{ran} f \subseteq A$ 是显然的. 下证 $\mathbb{N} \subseteq \operatorname{dom} f$. 注意到 $\operatorname{dom} f = \bigcup \{n \in \mathbb{N} \mid \text{存在 } n\text{-近似}\}$. 接下来就是证明 $\operatorname{dom} f$ 是归纳集, 即 $\forall n \in \mathbb{N}$ 存在 n-近似. 0-近似由 $\{(0,a)\}$ 给出; k-近似 t 存在时, 只需为之并上 $\{(k^+,g(t_k,k))\}$ 即可得到 k^+ 近似.

至于 f 满足 f(0) = a 与 $\forall n \in \mathbb{N}(f(n^+) = g(f(n), n))$, 用其任意近似证明即可, 只需想到 f 与近似的相容性.

如此我们确定了 f 的存在性, 然后来证明它的唯一性. 假设有 $h: \mathbb{N} \to A$ 也满足定理, 只需用归纳法证明 h(n) = f(n) 对任意 $n \in \mathbb{N}$ 成立即可.

这样的 f 只能是一元函数, 定义运算需要带参数的版本:

Theorem 8.2 (带参数的递归定理).

$$\forall A \forall P \forall a \in A^P \forall g \in A^{P \times A \times \mathbb{N}} \exists ! f \in A^{P \times \mathbb{N}} ($$

$$\forall p \in P \ f(p, 0) = a(p) \land \forall n \in \mathbb{N} \forall p \in P (f(p, n^+) = g(p, f(n, p), n))).$$

注: 如果固定 p, 这个定理与递归定理几乎一致, 从而我们需要考虑以 p 为变元的函数作为递归定理中的到达域.

Proof. 令 $G: A^P \times \mathbb{N} \to A^P$; $(t,n) \mapsto h$, 其中 h 满足 $\forall p \in P(h(p) = g(p,t(p),n))$. 考虑到 t 和 g 都是函数, 复合的 h 当然是函数, 而且唯一.

由递归定理, 有这样的函数 $F: \mathbb{N} \to A^P$ 满足 1) $\forall p \in P(F(0) = a \in A^P)$; 2) $\forall n \in \mathbb{N}(F(n^+) = G(F(n), n))$.

可以验证
$$f(p,n) = F(n)(p)$$
 即是我们想找的函数.

有了带参数的递归定理, 自然数上的运算可以看作以下存在而且唯一的二元函数:

Definition 8.2 (加法). 加法+: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, 满足 1) $\forall m \in \mathbb{N} \big(+ (m, 0) = m \big)$; 2) $\forall m \in \mathbb{N} \forall n \in \mathbb{N} \big(+ (m, n^+) = (+(m, n))^+ \big)$. 通常记 +(m, n) = m + n.

Definition 8.3 (乘法). 乘法·: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, 满足 1) $\forall m \in \mathbb{N} \big(\cdot (m,0) = m \big)$; 2) $\forall m \in \mathbb{N} \forall n \in \mathbb{N} \big(\cdot (m,n^+) = (\cdot (m,n))^+ \big)$. 通常记·(m,n) 为 mn 或 $m \cdot n$.

我们熟悉的关于乘法和加法的性质都可以由归纳原理证出,此处不再赘述.

§**9** 势

Definition 9.1 (等势). 两个集合 X, Y **等势** (equinumerous) 指的是 $\exists f \in Y^X(f$ 是双射), 记为 |X| = |Y|.

Definition 9.2 (势). 若存在 $f \in Y^X$ s.t. f 是单射, 则称 $|X| \le |Y|$. 当 $|X| \le |Y|$ 而 $|X| \ne |Y|$ 时, 我们就称 X 的势小于 Y 的势, 记为 |X| < |Y|.

Theorem 9.1.

$$|X| \le |Y| \leftrightarrow \exists Y_0 \in \mathscr{P}(Y)(|X| = |Y_0|).$$

Proof. 对于 $f \in Y^X$ 且 f 是单的, 取 $Y_0 = \operatorname{ran} f$ 即可.

下面我们将介绍 Cantor-Bernstein-Schröeder 定理, 它的证明当中最重要的一部分是以下引理的证明:

14 第三章 实数

Lemma 1.

$$A' \subseteq B \subseteq A \land |A'| = |A| \rightarrow |B| = |A|.$$

注: 我们已经知道有 A 到 B 的单射了,怎么找到一个同时是满的呢?这要求这个双射 h 要把 A-B 和 B 映射到 B 的分划上,可 h[A-B] 在 B 之中,它在 h 下必须映射到 h[B] 里;同理 h[h[A-B]] 必须映射到 h[B]-h[h[A-B]] 中...

也就是说: A 和 A-B 在 h^n 即 h 的任意个复合中, 总是映射到一对不相交的集合 $h^n[A]$, $h^n[A-B]$ 中 (否则不可能是单的), 而且 $h^n[A-B]$ 在 h 的映射下, 又只能落到 $h^n[B]$ 中. 从而: $h^n[B]$ 不断在缩小, 给 $h^n[A-B]$ 腾出空间. 这是以下证明的重要思路.

Proof. 令 h 见证了 A' 和 A 的等势, 即 $h \in A'^A$ 且 h 是双射. 记:

$$A_0 := A, \qquad B_0 := B,$$

并定义序列:

$$A_{n+1} = h[A_n],$$
 $B_{n+1} = h[B_n].$

我们可以归纳地证出:

$$\forall n \in \mathbb{N}(A_{n+1} \subseteq B_n \subseteq A_n),$$

只需认识到 $A_1 \subseteq A' \subseteq B_0 \subseteq A_0$,且对于任意 $k \subseteq \mathbb{N}$ 只要 $A_{k+1} \subseteq B_k \subseteq A_k$,则 $h[A_{k+1}] \subseteq h[B_k] \subseteq h[A_k]$.

定义 $C_n = A_n - B_n$, 下验证 $h[C_n] = C_{n+1}$:

$$h[C_n] = h[A_n - B_n] = h[A_n] - h[B_n] = A_{n+1} - B_{n+1} = C_{n+1},$$

其中第二个等式的成立依赖于 h 是一个单射, 因为: $h[A_n]$ 中 $h[B_n]$ 全部由 B_n 映射而来, 这是单性要求的; 从而 $h[A_n] - h[B_n]$ 是 $A_n - B_n$ 的像, 因为映射到自身的值域总是满的.

将这些所有的 C_n 并起来:

$$C := \bigcup_{n=0}^{\infty} C_n,$$

从而

$$h[C] = h\left[\bigcup_{n=0}^{\infty} C_n\right] = \bigcup_{n=1}^{\infty} C_n = C - C_0 = C - (A - B).$$

§9 势

我们可以看到 C 中的元素有这样的性质, 它含于某个 C_n 中, 并将被 h 映射到下一个 C_{n+1} 中; 而且要么它是 $C_0 = A - B$ 中的元素, 要么是 C_{n-1} 中某个元素的在 h 下的像. 这有些像 Hilbert 的无限旅馆. $h \upharpoonright C$ 到是从 C 到它的子集 h[C] 的满射, 而它的单性已由 h 自身的单性保证了.

而 h 在 A-C 的限制却不一定是满的, 因为 $h[A]=A'\subseteq B$ 本身就不一定是到 B 的满射. 因为

$$A - C = (A - C_0) \cap (A - h[C]) \subset A - C_0 = A - (A - B) = B$$

所以 A-C 和 h[C] 构成了 B 的分划.

因而我们可以这样定义 A 到 B 的双射:

$$i(x) = \begin{cases} h(x), & x \in C; \\ x, & x \in A - C. \end{cases}$$

Theorem 9.2 (*Cantor-Bernstein-Schröeder* 定理). 如果 $|X| \leq |Y|$ 且 $|Y| \leq |X|$, 则 |X| = |Y|.

Proof. $|X| \leq |Y|$ 和 $|Y| \leq |X|$ 分别蕴含了单射 $f \in Y^X$ 和 $g \in X^Y$ 的存在, 且有

$$g[f[X]] \subseteq g[Y] \subseteq X$$
,

和 |g[Y]| = |Y|, |g[f[X]]| = |f[X]| = |X|. 由引理1, 这意味着 |X| = |Y|.

注: 早先的 Cantor-Bernstein-Schröeder 定理利用了 AC, 但这里的证明避免了它.

这个定理说明了 \leq 拥有传递性, 这意味着 \leq 是一个偏序. 而且, 在 \mathbb{N} 中, 它和先前定义的自然数的偏序 \leq 是等同的. 这暗示我们可以这样做: 记 |n|=n, 只要 $n\in\mathbb{N}$.

Definition 9.3 (有穷与无穷). 设 X 是一个集合. 倘若 $\exists n \in \mathbb{N}$ s.t. |X| = n, 则称 X 是**有穷**的. 反之, 不是有穷的集合就是**无穷的** i.e. $\forall n \in \mathbb{N}, |X| \neq n$.

我们把与 № 等势的集合称为**可数的**或**可数无穷的**, 并合称有穷或可数的集合为**至多可数**的.

最后, 不是可数的无穷集合称为不可数的.

Theorem 9.3 (抽屉原理). $\forall n \in \mathbb{N}, \forall X \in \mathcal{P}(n) - \{n\}, |X| \neq |n|.$

Proof. 首先, $1^0 := \{\emptyset\}^{\emptyset}$ 是空集, 因而 $\forall X \in \mathcal{P}(1) - \{1\} = \{\emptyset\}, |X| = 0 \neq |1|$ 成立.

16 第三章 实数

其次, 假设命题对 $n \in \mathbb{N}$ 成立, 但对 n^+ 不成立, 那么 $\exists m \in \mathcal{P}(n^+) - \{n^+\}$, $|m| = |n^+|$. 我们设有这么一个双射 $f \colon n^+ \to m$. 假设 $n \notin m$, $f \upharpoonright n$ 就是 n 到其真子集 $m - \{f(n)\}$ 的一个双射 (真子集的事实可由 $m - \{f(n)\} \subseteq n - \{f(n)\}$ 确认). 这和我们假设命题对 n 成立矛盾.

设 $n \in m$, 因为 $n^+ - m \neq \emptyset$, $\exists k \in m$, 那么对换 $\sigma := (k, n) \in S_{n+}^{-1}$ 和 f 的复合 $\sigma \circ f$ 将是一个双射, 而且作为双射的限制 $\sigma \circ f \upharpoonright n$ 的值域 $\operatorname{ran}(\sigma \circ f \upharpoonright n)$ 将是 n 的真子集. 这和我们假设命题对 n 成立矛盾.

Theorem 9.4 (最小的无穷集). 每一个无穷集合都有一个可数子集.

Proof. 令 A 是一个无穷集合. 由 **ACII** 9, 存在选择函数 $f: \mathcal{P}(A) \to A$. 我们递归地定义: $a_0 = f(A), a_n = f(A - \{a_i\}_{i \in n})$, 将得到 A 的可数子集 $\{a_n\}_{n \in \mathbb{N}}$.

Theorem 9.5 (可数集的并). 设 A, B 是两个可数集, 那么它们的并 $A \cup B$ 也是可数的.

Proof. 将 A 和 B 分别编号为 $\langle a_n \rangle_{n \in \mathbb{N}}$ 和 $\langle b_n \rangle_{n \in \mathbb{N}}$. $\langle c_n \rangle_{n \in \mathbb{N}}$ 可定义为 $c_{2k} = a_k$, $c_{2k+1} = b_k$, $k \in \mathbb{N}$. 而 $\{c_n\}_{n \in \mathbb{N}} = A \cup B$.

Corollary 4 (可数集的有限并). 设 $n \in \mathbb{N}$. 如果 $\forall i \in n$, A_i 都是可数的, 那么 $\bigcup_{i \in n} A_i$ 也是可数的.

Theorem 9.6 (可数集的 Cartesian 积). 如果 $A \rightarrow B$ 是可数集, 它们的 Cartesian 积 $A \times B$ 也是可数的.

Proof. 我们考虑这样的序列 (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ..., 也就是先按照 (m,n) 的和从小到大排列, 再根据 m 从小到大排列. 这个序列可以严格地定义为:

设 $k \in \mathbb{N}$. 令

$$\ell(k) := \max\{\ell' \in \mathbb{N} \mid \sum_{i=0}^{\ell'} i \le k\}.$$

双射 $f: \mathbb{N} \to \mathbb{N}^2$ 定义为 $f(k) = (m_k, n_k)$, 其中 $m_k = k - \sum_{i=0}^{\ell(k)} i$, $n_k = \ell(k) - m_k = \ell - k + \sum_{i=0}^{\ell(k)} i$.

Corollary 5 (有限个可数集的 Cartesian 积). 若 $\forall n \in \mathbb{N}$, A_n 都可数, 那么 $\prod_{n \in \mathbb{N}} A_n$ 也可数.

Corollary 6 (可数集的可数并). 若 $\forall n \in \mathbb{N}, A_n$ 都可数, 那么 $\bigcup_{n \in \mathbb{N}} A_n$ 也可数.

Proof. 对所有的 A_i 的元素进行编号得到 $(a_{ij})_{j\in\mathbb{N}}$, 根据定理 9.6, 我们能找到双射 $k\mapsto (i,j)$, 从而 $c_k:=a_{ij}$ 将是 $\bigcup_{n\in\mathbb{N}}A_n$ 中的序列.

¹这是指 n^+ 阶置换群 i.e. n^+ 到自身的双射, 对换意味着 $\sigma(k) = n$, $\sigma(n) = k$, $\sigma(i) = i$ 对于 $i \in n^+ - \{n, k\}$

考虑到 $\forall c \in \bigcup_{n \in \mathbb{N}} A_n$, 取最小的 $i \in \mathbb{N}$, $a_{ij} = c$, 我们找到了一个 $c \mapsto (i,j) \mapsto k$ 的映射, 不难验证这个映射是单射, 只需要考虑 $c \mapsto (i,j)$ 是单的即可.

由势的定义 9.2, $|\bigcup_{n\in\mathbb{N}}A_n|\leq |\mathbb{N}|$, 又显然 $|\bigcup_{n\in\mathbb{N}}A_n|\geq |\mathbb{N}|$, 根据 9.2 我们知道了 $|\bigcup_{n\in\mathbb{N}}A_n|=|\mathbb{N}|$.

Corollary 7 (可数集中的有限序列可数). 若 A 可数, 那么 $A^{<\mathbb{N}}$ 也可数.

Proof. 注意 $A^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} A^n$,而 A^n 由推论 5 是可数的,它们的可数并由推论 6 也是可数的. □

Corollary 8 (可数集的有穷子集可数). 若 A 可数, $X := \{x \in \mathcal{P}(A) \mid \exists n \in \mathbb{N} (|x| = n)\}$ 也可数.

Proof. 记 $X_n = \{x \in \mathcal{P}(A) \mid |x| = n\}$, 我们能注意到单射 $X_n \to A^n$; $x = \{x_i\}_{i \in n} \mapsto (x_i)_{i \in n}$, 也就是 $|X_n| \le A^n = |\mathbb{N}|$. 通过反证法可以验证 X_n 是无穷的, 从而是可数无穷的, 除非 n = 0. 所以, 根据推论 6,

$$X = X_0 \cup \bigcup_{n \in \mathbb{N}^*} X_n = \{\emptyset\} \cup \bigcup_{n \in \mathbb{N}^*} X_n = |\mathbb{N}|.$$

接下来给出一些有穷的等价条件.

Theorem 9.7 (有穷当且仅当存在有最元的线序). 集合 X 是有穷的 iff 存在线序 $\leq_X \in \mathscr{P}(X^2)$ s.t. $\forall A \in \mathscr{P}(X) - \{\emptyset\}$, $\exists a, b \in A(a = \max A \land b = \min A)$.

Proof. \rightarrow : 令 $f: X \rightarrow n$ 见证了 X 和 n 的等势, 那么 $\leq_X = \{(x,y) \in X^2 \mid f(x) \leq f(y)\}$ 即是我们要找的有最大, 最小元的线序.

 \leftarrow : 假设我们得到了一个 X 中的严格单调无穷序列 $(x_n)_{n\in\mathbb{N}}$ (即 $x_{n+} > x_n$ 对 $\forall n \in \mathbb{N}$ 都成立), $\{x_n\}_{n\in\mathbb{N}}$ 应当有最大元, 也就是应当 $\exists N \in \mathbb{N}$ s.t. $x_N = \max\{x_n\}_{n\in\mathbb{N}}$, 可是按照定义 $x_{N+} > x_N$ 矛盾, 我们得到结论: 这样的单调无穷序列是不存在的.

我们令 $x_0 = \min X$, 并令 $x_{n^+} = \min(X - \{x_i\}_{i \in n})$ 如果 $X - \{x_i\}_{i \in n}$ 不是一个空集. 不难验证这是一个单调的序列, 而且前已证明不可能是无穷的, 也就是说 $\exists N \in \mathbb{N}, X - \{x_n\}_{n \in N} = \emptyset$, 于是乎 |X| = N.

Theorem 9.8 (有穷当且仅当非空子集族有极大元). X 是有穷的 $iff \forall \mathcal{X} \in \mathcal{P}(X) - \{\emptyset\}$, \mathcal{X} 都有 \subseteq 下的极大元.

18 第三章 实数

Proof. →: X 是有穷的那么 $\mathscr{P}(X)$ 也是有穷的, 那么根据定理 9.7 \mathscr{X} 肯定有最大元, 最大元 当然也是极大元.

 \leftarrow : 令 $\mathscr{X} := \{Y \in \mathscr{P}(X) - \{\varnothing\} \mid Y \text{ 是有穷的}\}$, 那么它有极大元 M, 也就是说 $\forall Y \in \mathscr{X}$, $\neg(M \subsetneq Y)$. 假设 $X \notin \mathscr{X}$ 即 X 是无穷的, 那么 X - M 依然是无穷集, 那么 $\exists x \in X - M$. 显然 $\{x\} \cup M$ 依然是有穷的, 但是 $M \subseteq \{x\} \cup M$, 这和极大元的定义相违背. 结论: X 是有穷的.

Definition 9.4 (Dedekind 无穷). 若 $\exists Y \in \mathcal{P}(X) - \{X\}, |Y| = |X|, 我们称 X 是$ **Dedekind**无穷的. 若 X 不是 Dedekind 无穷的, 那么 X 被称为**Dedekind**有穷的.

Theorem 9.9 (有穷当且仅当 Dedekind 有穷). 集合 X 是有穷的 iff X 是 Dedekind 有穷的.

Proof. →: 若 $|X| = n \in \mathbb{N}$, 令 $f: n \to X$ 见证了这个等势, 那么 $\forall Y \subsetneq X$, $f^{-1}(Y) \subsetneq n$ 从而 $|Y| = m \in n$.

 \leftarrow : 若 X 无穷, 那么根据定理 9.4 (注意, 这个定理依赖 AC), 我们将能找到 X 的一个可数无穷的子集 $Y := \{x_n\}_{n \in \mathbb{N}}$. 注意到 $g(x_n) = x_{n+}$ 是 Y 到 $Y - \{x_0\}$ 的双射. 我们定义 X 到 $X - \{x_0\}$ 双射:

$$f(x) = \begin{cases} x, & x \in X - Y, \\ g(x), & x \in Y. \end{cases}$$

这个双射就是 X 是 Dedekind 无穷的证据.

参考文献

- [1] 数理逻辑: 证明及其限度. 逻辑与形而上学教科书系列. 上海: 复旦大学出版社, 2014. ISBN: 9787309110258. URL: https://books.google.co.jp/books?id=WDPqjgEACAAJ.
- [2] 集合论:对无穷概念的探索.逻辑与形而上学教科书系列.复旦大学出版社,2014. ISBN: 9787309107104. URL: https://books.google.co.jp/books?id=Su2-nQAACAAJ.

符号列表

这里列出了笔记中出现的重要符号.

$2^X, 3$	$\Sigma \vdash \varphi, 1$
$(a,b), \frac{5}{2}$	$T \vdash \sigma, 1$
$f \upharpoonright A, \frac{8}{}$	V, 2
N, <mark>11</mark>	$X^2, \frac{5}{5}$
$\mathscr{P}(X)$, 3	$x^{+}, \frac{3}{3}$
≼ , 10	xRy, 5
$R(x,y), \frac{5}{5}$	$X \times Y$, 5
$S(x), \frac{3}{3}$	$Y^X, 7$

索引

<i>m</i> -近似, 12	一般 Cartesian 积, <mark>7</mark>
n 元关系, 6	上界, 10
AC II, 4, 8	上确界, 10 下界, 10
Cantor-Bernstein-Schröeder 定理, 15	下确界, 10
Cartesian 积, 5	不可数的, 15
Dedekind 无穷, 18 Dedekind 有穷的, 18	乘法, 13 二元关系, 5 交, 2
Exi, 2	任意交, <mark>3</mark>
Ext, 2	传递, <mark>9</mark>
Fnd, 4	值, <mark>6</mark> 值域, <u>5</u>
Inf, 3	偏序, <u>10</u>
Pai, 3 Pow, 3	偏序集, 10 像, 6
Rep, 4	全序, 10 公式, 1
Sep, 2	公理, 1
Uni, 3	函数, 6 分离公理模式, 2 划分, 9
Zermelo-Fraenkel 系统, 4	加法, 13
一致的, 1	单射,7

22 索引

双射, <mark>7</mark>	指标集, 6
反对称, 10	推演, 1
可公理化的, 1	无穷公理,3
可判定的, 1	无穷序列, <u>12</u>
可数无穷的, 15	无穷的, <mark>15</mark>
可数的, 15	替换公理模式,4
可计算的, 1	最大元, 10
可逆, <mark>7</mark>	最小元, 10
后继, <mark>3</mark>	有序对,5
商集, 9	有穷序列, 12
基础公理, 4	有穷的, 15
复合, <mark>6</mark>	极大元, 10
外延公理, 2	极小元, 10
子集, 3	满射, 7
存在公理, 2	理论, <u>1</u>
定义域, 5	互积, 5
对称, 9	相容, 8
对集公理,3	相容系统,8
差, <mark>2</mark>	真子集, 3
带参数的递归定理, 13	真类, <mark>2</mark>
幂集, 3	文 次, 2 空序列, <u>12</u>
幂集公理,3	空集, <mark>2</mark>
并集公理,3	第二归纳原理, 11
序, <u>10</u>	等价, 9
序列, <mark>12</mark>	等价关系,9
归纳原理, <mark>11</mark>	等价类, 9
归纳集, <mark>11</mark>	等势, 13
形式语言, 1	等同函数, 6
	类, <mark>2</mark>
扩张, 8	约束变元, 1
抽屉原理, 15	线序, 10
拟序, 10	线序集, <u>10</u>
指标函数, 7	,
指标系统, 6	自反, 9

逆,6

自然数, 11 自然数集, 11 自由变元, 1 至多可数的, 15 良序, 10 良序集, 10 证明, 1 语句, 1 连接, 10 选择公理, 4, 8 选择函数, 8 递归可枚举的, 1 递归定理, 12 递归的, 1 逻辑符号, 1 限制, 8 非逻辑符号, 1 项, 1