AAKASH GHOSH (19MS129)

ANALYSIS 5

Contents

1	Sign	gned Measure					
	1.1	Introduction	5				
	1.2	Upper and lower continuity	5				
	1.3	Positive, Negetive and Null Set	5				
	1.4	Hahn Decomposition	6				
	1.5	Jordan Decomposition	6				
	1.6	Total Variation Measure	7				
1.7 Absolute Continuity							
	1.8	Radon-Nikodym theorem \dots	8				
	1.9	Solutions to Real Analysis By Folland, Section 3.1,3.2 $$	9				
		1.9.1 Solutions to problems in section 3.1	9				
Bi	ibliog	graphy	13				

1 Signed Measure

1.1 Introduction

Definition 1 (Signed Measure). Given a measurable space (X, \mathcal{M}) , a signed measure is a function $\nu : \mathcal{M} \to [-\infty, \infty]$ with the following properties:

- 1. $\nu(\phi) = 0$
- 2. ν can assume either ∞ or $-\infty$ but not both
- 3. If $\{E_j\}$ is a sequence of disjoint sets in \mathcal{M} , then $\sum_{i=1}^{\infty} \nu(E_i) = \nu(\bigcup_{i=1}^{\infty} E_i)$

1.2 Upper and lower continuity

Theorem 1 (Uppercontinuity). Let $\{E_i\}$ be a countable collection of measurable set with $E_i \subseteq E_{i+1}$. Then:

$$\lim_{i \to \infty} \nu(E_i) = \nu\left(\bigcup_{i=1}^{\infty} E_i\right) \tag{1.1}$$

Theorem 2 (Lowercontinuity). Let $\{E_i\}$ be a countable collection of measurable set with $E_{i+1} \subseteq E_i$. Then:

$$\lim_{i \to \infty} \nu(E_i) = \nu\left(\bigcap_{i=1}^{\infty} E_i\right) \tag{1.2}$$

Proof. Same as what we do for unsigned measure

1.3 Positive, Negetive and Null Set

Definition 2 (Positive set). A set whose every mesurable subset E satisfies $\nu(E) \geq 0$ is called a positive set.

In a similar fashion we define:

Definition 3 (Negetive set). A set whose every mesurable subset E satisfies $\nu(E) \leq 0$ is called a positive set.

One should note that normal measures are also signed measure, the only difference is the extension of the range of the measure function to cover almost all of \mathbb{R} .

Definition 4 (Null set). A set whose every mesurable subset E satisfies $\nu(E) = 0$ is called a positive set.

We consider an example. Let μ be an unsigned measure and let f be a measurable L^1 function . Let us define a measure nu as:

$$\nu(E) = \int_{E} f d\mu \tag{1.3}$$

Then ν is a signed measure. If E is a set such that $f \geq 0$ $\mu.a.e$ on E then E is a positive set. Similarly we can find negetive and null sets.

Lemma 3. 1. Subsets of positive sets are positive

2. Countable¹ union of positive sets are positive Similar results are also valid for null and negetive sets.

The next lemma will be required for the proof of **Hahn Decomposition Theorem** in the next section.

Lemma 4. Let ν be a signed measure which doesn't attain ∞ . A set with a positive measure has a positive subset.

¹ A countable union is needed as in case of uncountable union, there will be a chance that the union will not belong to the sigma algebra; a sigma algebra is closed in countable union and not under arbitary union

1.4 Hahn Decomposition

Theorem 5 (Hahn Decomposition Theorem). If ν is a signed measure on (X, \mathcal{M}) , there exist a positive set P and a negative set N for ν such that $P \cup N = X$ and $P \cap N = \phi$ Moreover if P', N' is another such pair, then $P\Delta P'(=N\Delta N')$ is null in ν .

$Proof\ Outline:$

- 1. Define $m = \sup_{\text{positive sets}} \nu(P)$
- 2. Take a sequence $\{p_i\}$ such that $\lim_{i\to\infty} \nu(p_i) = m$
- 3. Show if $P = \bigcup p_i$ then $\nu(P) = m$
- 4. Show if $N = P^c$ and if N has a set with positive measure, then by lemma 4, there is contradiction.
- 5. If $E \subseteq P\Delta P'$ and $\nu(E) \neq 0$. Without loss of generality assume $E' = E \cap P$ is not null. Then $E' \subseteq P'^c = N'$ which contradicts negetivity of N'

1.5 Jordan Decomposition

Definition 5 (Mutually singular measures). Two measures ν and μ are said to be mutually singular if there exists a partition of X in E and F such that $X = E \sqcup F$ and E is null in μ and F is null in ν^2

 $^{^2}$ That is to say that the measures ν and μ "lives" on different sets.

Notation: If ν and μ are mutually singular, then we denote it as:

$$\nu \perp \mu$$

Theorem 6 (Jordan Decomposition Theorem). Given a (signed) measure ν there exists unique positive measures ν^+, ν^- such that:

$$\nu = \nu^{+} - \nu^{-} \quad \nu^{+} \perp \nu^{-} \tag{1.4}$$

Proof Outline: 3

- 1. Existance follows by Hahn decomposition.
- 2. Start by assuming the decomposition is not unique and theere exists two such decomposition $\nu = \nu^+ \nu^- = \mu^+ \mu^-$.
- 3. There exists partition of X in E, F due to μ^+, μ^- and in P, N due to ν^+, ν^- . If A is measurable, show that

$$\mu^+(A) = \nu(A \cap E) = \nu(A \cap E \cap P) + \nu(A \cap E \cap N)$$

- 4. As E is positive and N is negetive, show that $A \cap E \cap N$ is a null set. Repeat or ν^+ and get similar results
- 5. Show $\nu^+ = \mu^+$ and in a similar way $\mu^- = \nu^-$

1.6 Total Variation Measure

Definition 6 (Total Variation Measure). If a measure ν decomposes in singular ν^+ and ν^- then we define the total variation measure $|\nu|$ as

$$|\nu| = \nu^+ + \nu^- \tag{1.5}$$

Lemma 7. The following statements are equivalent:

- 1. E is null in ν
- 2. $\nu^+(E) = 0$ and $\nu^-(E) = 0^4$
- 3. $|\nu|(E) = 0$

Lemma 8. The following statemwents are equivalent:

- 1. $\nu \perp \mu$
- 2. $\nu^+ \perp \mu$ and $\nu^- \perp \mu$
- 3. $|\nu| \perp \mu$

Proof for lemma 7 and 8 is at the end, they are given as exercise in Folland, ch3. Other properties which gets reflected are finiteness and σ -finiteness.

- ³ As I understand it, the main idea is if there is two decomposition as outlined in step 2 and 3, then we have 4 sets to deal with:
- $P \cap F$ and $E \cap N$: which are null as they are intersection of positive and negetive sets
- $P \cap E$ where μ^+ and ν^+ agree and $\mu^-, \nu^- = 0$
- $N \cap F$ where μ^- and ν^- agree and $\mu^+, \nu^+ = 0$

Make this nice and you get the proof outlined.

This works before as by Hahn-Jordan, the decomposition is unique. The definition is important as by Lemma 7 and Lemma 8, we see that properties of ν is reflected in $|\nu|$

⁴ For unsigned measures, being null and having a measure 0 is same.

1.7 Absolute Continuity

Definition 7 (Absolute Continuity). Let μ be an unsigned measure. We say ν is absolutely continuous with respect to μ if for any measurable set E, $\mu(E) = 0 \implies \nu(E) = 0$

Notation: ν is absolutely continious with respect to μ is denoted by:

$$\nu \ll \mu$$

Unlike mutual singulaity, $\nu \ll \mu$ doesn't imply $\mu \ll \nu$. In a sense, being mutually singular and being absolutely continious are exclusive concepts. If $\nu \perp \mu$ and $\nu \ll \mu$ then $\nu = 0$

Lemma 9. The following statements are equivalent:

- 1. $\nu \ll \mu$
- 2. $\nu^+ \ll \mu$ and $\nu^- \ll \mu$
- $3. |\nu| \ll \mu$

Lemma 10. If ν and μ are finite measures, $\nu \ll \mu$ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ usch that $|\nu(E)| < \epsilon$ whenever $\mu(E) < \delta$

Proof Outline:

- 1. By Lemma 9, we need to show this is true for $|\nu|$ and we will be done. This is why, without loss of generality, we can assume ν is unsigned.
- 2. Don't understand why this is trivial
- 3. Make a decresing sequence of mesurable sets
- 4. Show if there exists ϵ with no such δ then μ of intersection goes to 0 but ν of intersection stays above ϵ . This contradicts absolute continuity.

Radon-Nikodym theorem

Theorem 11 (Radon-Nikodym theorem). The theorem has two parts:

- 1. For a measure space, with σ -finite measures ν (unsigned) and μ (unsigned), there is a unique decomposition of ν in ν_1 and ν_2 such that $\nu_1 \ll \mu$ and $\nu_2 \perp \mu$
- 2. There exists a function f which is integrable in the etended sense such that $\nu_1(E) = \int_E f d\mu$. Moreover, if there are two such functions f_1, f_2 then $f_1 = f_2 \mu.a.e.$

⁵ This lemma gives some motivation for the nomenclature of absolute continuity

Proof Outline:

1. Step 1: ν , μ are finite

- (a) Note that $\nu(E) = \int_E f d\mu + \nu_2(E) \Rightarrow \nu(E) \geq \int_E f d\mu$
- (b) Make a family of function \mathcal{F} which satisfy this.
- (c) Let α be suprema of the integral of f in family. Find f_n whose integral approach α . Set $g_n(x) = \max\{f_1(x), f_2(x) \dots f_n(x)\}$. Show g_n is increasing and is in \mathcal{F} . Find limit of g_n as g. Use MCT to show that α is attained by g.
- (d) Set $\nu_2 = \nu \nu_1$. Show $\nu_2 \perp \mu$.
- 2. Step 2: Assume σ, μ are σ -finite.
 - (a) Divide X in disjoint countable B_i each with finite measure.
 - (b) Restrict μ and ν in B_i to get μ_i, ν_i . Repeat step 1 to get f_i, ν_i^1, ν_i^2 in B_i . Set $f = \sum f_i, \nu^1 = \sum \nu_i^1, \nu^2 = \sum \nu_i^2$
- 3. Step 3: Uniqueness of decomposition: If ν_1, ν_2 and $\hat{\nu}_1, \hat{\nu}_2$ are two decomposition then $\nu_1 \hat{\nu}_1 = \hat{\nu}_2 \nu_2$. Now $(\nu_1 \hat{\nu}_1) \ll \mu$ and $\nu_2 \hat{\nu}_2 \perp \mu$. So $\nu_1 \hat{\nu}_1 = 0$
- 4. Step 4: Uniqueness of f: If f, g are two such functions then $\int_E (f-g) = 0$ or $f = g \ \mu.a.e.$
- 1.9 Solutions to Real Analysis By Folland, Section 3.1,3.2
- 1.9.1 Solutions to problems in section 3.1

Problem 3.1

Prove Proposition 3.1.

Propotion 3.1 is Theorem 1&2 mentioned here.

Solution 1 outline: We do it as instructed in the book, by copying Theorem 1.8 from the book.

Solution 2 outline: Decompose μ by Hahn Decomposition and apply upper/lower continuity on each of them individually.⁷

Proof 1:

By the second condition of definition 1, we can assume $\mu > -\infty$.

Proving Uppercontinuity: If some $E_i = \infty$ we are done. Else, set $E_0 = \phi$. Define $F_i = E_i \setminus E_{i-1}$. Not that any two F_i, F_j is disjoint. Then $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} F_i$. It follows that:

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \mu\left(\bigcup_{i=1}^{\infty} F_i\right) = \sum_{i=1}^{\infty} \mu\left(F_i\right) = \lim_{i \to \infty} \mu(E_i)$$

⁶ The reason to take a in first place is because we don't know if f_n converges. The reason we take such a g_n is sothat we can intechange the limit and integral by applying MCT.

⁷ Proof of Hahn decomposition doesn't assume upper/lower continuity

The last step follows by countable additivity.

Proving Lowercontinuity: Set $F_j = E_1 \setminus E_j$. Then $F_i \subseteq F_{i+1}$ and $\mu(E_1) = \mu(F_j) + \mu(E_j)$. Also, $\bigcup_{i=1}^{\infty} F_j = E_1 \setminus (\bigcap_{i=1}^{\infty} E_j)$. Apply uppercontinuity to get:

$$\mu(E_1) = \mu\left(\bigcap_{i=1}^{\infty} E_j\right) + \lim_{j \to \infty} \mu(F_j) = \mu\left(\bigcap_{i=1}^{\infty} E_j\right) + \mu(E_1) - \lim_{j \to \infty} \mu(E_j)$$

$$\Rightarrow \lim_{j \to \infty} \mu(E_j) = \mu\left(\bigcap_{i=1}^{\infty} E_j\right)$$

Problem 3.2

If ν is a signed measure, E is ν -null iff $|\nu|(E)=0$. Also, if ν and μ are signed measures, $\nu \perp \mu$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$

Solution outline: This the problem corresponding to lemma 7 and 8. In both case we shall show $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.

Solution part-1(Proof of lemma 7):

The Steps are based on lemma 7.

Step 1: 1 ⇒ 2
 Let P, N be the decomposition of N in positive and negetive sets using HJD[Hahn Jordan Decomposition]. Let E be a null set.

Then:

$$\nu^{+}(E) = \nu^{+}(E \cap P) - \nu^{-}(E \cap N)$$
$$= \nu^{+}(E \cap P)$$
$$= \nu(E \cap P) - \nu^{-}(E \cap P)$$
$$= \nu(E \cap P) = 0$$

Similar reult is obtained for ν^- . For unsigned measures, a measure zero set is null set, so we are done.

• Step 2: $2 \Rightarrow 3$ This is the easy step.

$$|\nu|(E) = \nu^{+}(E) + \nu^{-}(E) = 0$$

• Step 3: $3 \Rightarrow 1$ Note that for any measurable subset A of E we have $|\nu|(A) = 0$. We also have:

$$|\nu(A)| = |\nu^+(A) - \nu^-(A)| \le \nu^+(A) + \nu^-(A) = |\nu|(A) = 0$$

$$\Rightarrow \nu(A) = 0$$

Therefore, E is null in ν

Solution part-2(Proof of lemma 8):

The Steps are based on lemma 8.

• Step 1: $1 \Rightarrow 2$

Let P,N be the decomposition of N in positive and negetive sets using HJD[Hahn Jordan Decomposition]. Let A,B be the disjoint decomposition of X for ν and μ . Then it is easy to check every element lies in one of the four sets: $A\cap P, A\cap N, B\cap P, B\cap N$. Now note,

- Decomposition of X for ν^+ and μ is achived by $A \cap P$ and $(A \cap N) \cup (B \cap P) \cup (B \cap N)$
- Decomposition of X for ν^- and μ is achived by $A \cap N$ and $(A \cap P) \cup (B \cap P) \cup (B \cap N)$

• Step 2: $2 \Rightarrow 3$

Let decomposition of X for ν^+ and μ be E_1, F_1 and for ν^- and μ be E_2, F_2 . We calim the decomposition of X for $|\nu|$ and μ is given by $E_1 \cup E_2$ and $F_1 \cap F_2$.⁸ Note that $|\nu|$ is null in $F_1 \cap F_2$ both ν^+ and ν^- is null in F_1, F_2 . μ is null in both E_1 and E_2 . By lemma 3, part 2, μ is null in $E_1 \cup E_2$.

⁸ This is low-key motivated by the decomposition in step 1.

• Step 3: $3 \Rightarrow 1$

Let A, B be the disjoint decomposition of X for $|\nu|$ and μ . We claim this is the appropriate decomposition for ν and μ as well. It is already known μ is null in A. As $|\nu|$ is null in B, ν is null in B follows from lemma $7(3 \Rightarrow 1)$.

Problem 3.3

Let ν be a signed measure on (X, \mathcal{M}) . Prove

1.
$$\mathcal{L}^1(\nu) = \mathcal{L}^1(|\nu|)$$

2. If
$$f \in \mathcal{L}^1(\nu)$$
, $|\int f d\nu| \leq \int |f| d|\nu|$

3. If
$$e \in \mathcal{M}$$
, $|\nu|(E)| = \sup\{|\int_E f d\nu| : |f| \le 1\}$

Solution outline: Our main goal will be to study f on the decomposition of X made by HJD due to ν

Solution part-1:

Let X be decomposed into positive set P and negetive set N. We assume $\nu > -\infty$. Let $f \in \mathcal{L}^1(\nu)$. Let χ_E denote the characteristic function on E. Then we have:

$$\int |f|d|\nu| = \int |f|(\chi_P + \chi_N)d(\nu^+ + \nu^-) = \int |f|d\nu^+ + \int |f|d\nu^- < \infty$$
(1.6)

Therefore, $f \in \mathcal{L}^1(|\nu|)$. Now assume $f \in \mathcal{L}^1(|\nu|)$. Then as before,

$$\infty > \int |f|d|\nu| = \int |f|(\chi_P + \chi_N)d(\nu^+ + \nu^-) = \int |f|d\nu^+ + \int |f|d\nu^-$$
(1.7)

But as $\nu+, \nu^-$ are both unsigned we can conclude that $\int |f| d\nu^+, \int |f| d\nu^- < \infty$. Therefore, $f \in \mathcal{L}^1(\nu)$

Solution part-2:

$$\left| \int f d\nu \right| = \left| \int f(\chi_P + \chi_N) d(\nu^+ - \nu^-) \right|$$

$$= \left| \int f d\nu^+ - \int f d\nu^- \right|$$

$$\leq \left| \int f d\nu^+ \right| + \left| \int f d\nu^- \right|$$

$$\leq \int |f| d\nu^+ + \int |f| d\nu^- = \int |f| d|\nu|$$

Solution part-2:

Firt we show that $|\nu|(E)$ is an upper bound and then we show that it is attained. For any measurable f with $|f| \le 1$ we have:

$$\left| \int_{E} f d\nu \right| \le \int_{E} |f| d|\nu| \le \int_{E} d|\nu| = |\nu|(E)$$

Therefore, $|\nu|(E)$ is an upper bound. Now set $f = \chi_P - \chi_N$. For any $x \in X$, either $x \in P$ or $x \in N$. Therefore $f(x) \in \{1, -1\}$.

$$\left| \int f_E d\nu \right| = \left| \int_E (\chi_P - \chi_N)(\chi_P + \chi_N) d(\nu^+ - \nu^-) \right|$$

$$= \left| \int_E (\chi_P^2 - \chi_N^2) d(\nu^+ - \nu^-) \right|$$

$$= \left| \int_E \chi_P^2 d\nu^+ + \int_E \chi_N^2 d\nu^- \right|$$

$$= \left| \int_E \chi_P d\nu^+ + \int_E \chi_N d\nu^- \right|$$

$$= \left| \nu^+ (E \cap P) + \nu^+ (E \cap N) \right|$$

$$= \left| \nu^+ (E \cap P) + \nu^+ (E \cap N) + \nu^+ (E \cap N) + \nu^+ (E \cap P) \right|$$

$$= \nu^+ (E) + \nu^- (E) = |\nu| (E)$$

Bibliography