CSCI599 - FormBuddy

Abel John | MS CS DS 2020

Cole Heflin | MS DS 2019

Chrissy Acojedo | MS DS 2020

Varun Vegi | MS DS 2020

Richie Gowtham | MS CS 2020

Zili Zhou | MS CS 2020, PhD CE 2023

Project Overview - FormBuddy

- Goal: Create an application that can evaluate and give advice on correcting a user's lifting form in real time
- Motivation: In an effort to provide assistance to others, we sought to develop an application called FormBuddy that could track a person's movements while weightlifting and provide feedback as to whether a person's form was good or bad.

Desired Outcome

Exercise: DEADLIFT **Evaluation:** GOOD

Reminders

- Grab the bar at approximately shoulder width apart
- Keep your back straight
- Keep your chest up
- Stand straight
- Breathe

High Level Architecture Diagram

Architecture - Short Term & Long Term

Short Term:

- User defined exercise (i.e. user identifies their own exercise)
- Classifying exercise form correctness with CNNs

Long Term:

- Exercise Classification (Neural Network)
- Real time Form feedback (Neural Network)

Short Term Architecture - CNNs

Long Term Architecture - Pre-Trained Models

OpenPose

Demo - Bad Bench Press

Captured with OpenPose

Demo - Good Deadlift

PoseNet Data

NOTE: Each row is a periodic data frame (image) from the exercise video

Long Term Architecture - Exercise Classification

Pre-Trained **Neural Networks**

Way Ahead

Current Efforts

- Refine the exercise classification model
- Video background noise removal
- Use outputs from both PoseNet & OpenPose into the exercise evaluation model and compare results in an effort to improve accuracy
- Two exercise evaluation model efforts
 - CNN model using frames (images) from the videos
 - HTM or other NNs using the 2D coordinates & confidence scores

Future State

- Exercise classification and evaluation models are integrated to provide acceptable user feedback
- User interface built out to accept input, process data, and provide feedback

Timeline

9/10

- Project selection and initial presentation
- Research pose estimation & neural networks

9/17

- Data collection complete
- System setup complete
- · Continue research

9/24

- Initial exercise classification neural network complete
- PoseNet operational and ready for data extraction

10/8

- PoseNet data extraction script complete
- Exercise evaluation neural network operational

12/3

- Final Presentation
- Final EDD

11/19

 User interface complete and integrated with exercise classification and evaluation models

11/5

 Exercise classification model integrated with exercise evaluation model and ready for user interface

10/22

- Midterm Presentation
- Midterm EDD

Questions?

