

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Bisherige Ergebnisse

- Dijkstras Algorithmus für positive Kantengewichte
- Bellman-Ford für allgemeine Kantengewichte; Laufzeit $\mathbf{O}(|V|^2 + |V| \cdot |E|)$
- Negative Zyklen können erkannt werden

Heute

All Pairs Shortest Paths (mit negativen Kantengewichten)

All Pairs Shortest Path (APSP)

- Eingabe: Gewichteter Graph G = (V, E)
- Ausgabe: Für jedes Paar von Knoten $u, v \in V$ die Distanz von u nach v sowie einen kürzesten Weg

	а	b	С	d	e	f
а	0	1	5	5	10	9
b	∞	0	4	5	10	9
С	∞	-3	0	1	6	5
d	∞	-4	0	0	5	4
e	∞	5	8	9	0	-1
f	∞	∞	∞	∞	∞	0

All Pairs Shortest Path (APSP)

- Eingabe: Gewichteter Graph G = (V, E)
- Ausgabe: Für jedes Paar von Knoten $u, v \in V$ die Distanz von u nach v sowie einen kürzesten Weg

	а	b	С	d	e	f
а	0	1	5	5	10	9
b	∞	0	4	5	10	9
С	∞	-3	0	1	6	5
d	∞	-4	0	0	5	4
e	∞	5	8	9	0	-1
f	∞	∞	∞	∞	∞	0

Eingabe APSP

Matrix
$$W = (w_{ij})$$
, die Graph repräsentiert , we

$$w_{ij} = \begin{cases} 0 & \text{, wenn } i = j \\ \text{Gewicht der ger. Kante } (i,j) \text{, wenn } i \neq j \text{ und } (i,j) \in E \\ \infty & \text{, wenn } i \neq j \text{ und } (i,j) \notin E \end{cases}$$

	а	b	С	d	e	f
а	0	2	8	5	8	8
b	∞	0	4	∞	8	8
С	∞	8	0	1	8	7
d	∞	-4	6	0	5	8
e	∞	∞	8	∞	0	-1
f	∞	∞	∞	∞	∞	0

Eingabe APSP

Matrix
$$W = (w_{ij})$$
, die Graph repräsentiert

$$w_{ij} = \begin{cases} 0 & \text{, wenn } i = j \\ \text{Gewicht der ger. Kante } (i,j) \text{, wenn } i \neq j \text{ und } (i,j) \in E \\ \infty & \text{, wenn } i \neq j \text{ und } (i,j) \notin E \end{cases}$$

	a	b	С	d	e	f
а	0	2	∞	5	8	8
b	∞	0	4	8	8	8
С	∞	∞	0	1	8	7
d	∞	-4	6	0	5	8
e	∞	∞	8	8	0	-1
f	∞	∞	∞	∞	8	0

Annahme: Keine negativen Zyklen!

Eingabe APSP

Matrix $W = (w_{ij})$, die Graph repräsentiert

$$w_{ij} = \begin{cases} 0 & \text{, wenn } i = j \\ \text{Gewicht der ger. Kante } (i,j) \text{, wenn } i \neq j \text{ und } (i,j) \in E \\ \infty & \text{, wenn } i \neq j \text{ und } (i,j) \notin E \end{cases}$$

	а	b	С	d	e	f
а	0	2	8	5	8	8
b	∞	0	4	∞	8	8
С	∞	∞	0	1	8	7
d	∞	-4	6	0	5	8
e	∞	∞	8	∞	0	-1
f	∞	∞	∞	∞	8	0

Eine neue Rekursion:

- Nummeriere Knoten von 1 bis n = |V|
- Betrachte kürzeste i-j-Wege, die nur über Knoten
 1 bis k laufen

	1	2	3	4	5	6
1	0	2	6	5	∞	13
2	∞	0	4	5	∞	11
3	∞	8	0	1	8	7
4	∞	-4	0	0	5	7
5	∞	8	8	14	0	-1
6	∞	8	∞	∞	∞	0

$$k = 3$$

Eine neue Rekursion:

- Nummeriere Knoten von 1 bis n = |V|
- Betrachte kürzeste *i-j*-Wege, die nur über Knoten
 1 bis k laufen

	1	2	3	4	5	6
1	0	2	6	5	∞	13
2	∞	0	4	5	∞	11
3	∞	8	0	1	8	7
4	∞	-4	0	0	5	7
5	∞	∞	8	14	0	-1
6	∞	8	∞	∞	∞	0

$$k = 3$$

Zur Erinnerung

- Sei G ein Graph ohne negative Zyklen und sei j von i aus erreichbar. Dann gibt es einen kürzesten i-j-Weg, der keinen Knoten doppelt benutzt. (Lemma 53)
- Wir können also annehmen, dass jeder Knoten in jedem Weg maximal einmal vorkommt
- Betrachte i-j-Weg, der nur über Knoten aus {1, ..., k} läuft:

Zur Erinnerung

- Sei G ein Graph ohne negative Zyklen und sei j von i aus erreichbar. Dann gibt es einen kürzesten i-j-Weg, der keinen Knoten doppelt benutzt. (Lemma 53)
- Wir können also annehmen, dass jeder Knoten in jedem Weg maximal einmal vorkommt
- Betrachte i-j-Weg, der nur über Knoten aus {1, ..., k} läuft:

Zur Erinnerung

- Sei G ein Graph ohne negative Zyklen und sei j von i aus erreichbar. Dann gibt es einen kürzesten i-j-Weg, der keinen Knoten doppelt benutzt. (Lemma 53)
- Wir können also annehmen, dass jeder Knoten in jedem Weg maximal einmal vorkommt

Zur Erinnerung

- Sei G ein Graph ohne negative Zyklen und sei j von i aus erreichbar. Dann gibt es einen kürzesten i-j-Weg, der keinen Knoten doppelt benutzt. (Lemma 53)
- Wir können also annehmen, dass jeder Knoten in jedem Weg maximal einmal vorkommt

Betrachte i-j-Weg, der nur über Weg von k nach v führt nur über Knoten aus $\{1, \dots, k-1\}$

Die Rekursion

- Kürzester i-j-Weg über Knoten aus {1, ..., k} ist
- (a) kürzester i-j-Weg über Knoten aus $\{1, ..., k-1\}$ oder
- (b) kürzester i-k-Weg über Knoten aus $\{1, ..., k-1\}$ gefolgt von kürzestem k-j-Weg über Knoten aus $\{1, ..., k-1\}$

Die Rekursion

Sei $d_{ij}^{(k)}$ die Länge eines kürzesten i-j-Wegs über Knoten aus $\{1, ..., k\}$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{, falls } k = 0\\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{, falls } k \ge 1 \end{cases}$$

Matrix $D^{(n)} = (d_{ij}^{(n)})$ enthält die gesuchte Lösung

```
Floyd-Warshall(W, n)
```

- 1. $D^{(0)} \leftarrow W$
- 2. for $k \leftarrow 1$ to n do
- 3. **for** $i \leftarrow 1$ **to** n **do**
- 4. **for** $j \leftarrow 1$ **to** n **do**
- 5. $d_{ij}^{(k)} \leftarrow \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right)$
- 6. return D⁽ⁿ⁾

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	4	6	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	8	∞	8	0

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	∞	0	4	∞	8	8
3	8	8	0	1	8	7
4	-3	4	6	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	∞	5	∞	8
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	4	6	0	5	8
5	8	8	8	8	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	∞	5	8	8
2	∞	0	4	∞	∞	∞
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	~	8	0	1	8	7
4	-3	4	6	0	5	8
5	8	8	8	8	0	-1
6	∞	∞	8	8	8	0

	1	2	3	4	5	6
1	0	2	∞	5	8	8
2	∞	0	4	∞	8	8
3	∞	∞	0	1	8	7
4						
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	4	6	0	5	8
5	∞	8	8	∞	0	-1
6	∞	8	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	6	0	5	8
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	4	6	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	6	0	5	8
5	∞	∞	8	∞	0	-1
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	4	6	0	5	8
5	∞	8	8	∞	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	∞	5	∞	8
2	∞	0	4	∞	∞	8
3	∞	∞	0	1	∞	7
4	-3	-1	6	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	∞	∞	0	1	8	7
4	-3	-1	6	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	8
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	-1	6	0	5	8
5	∞	8	8	8	0	-1
6	∞	∞	∞	8	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	6	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	∞	∞	0	1	8	7
4						
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	-1	6	0	5	8
5	8	8	8	8	0	-1
6	∞	8	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	8
5						
6						

	1	2	3	4	5	6
1	0	2	8	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	6	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	8
5	∞	%	8	∞	0	-1
6						

	1	2	3	4	5	6
1	0	2	∞	5	∞	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	-1	6	0	5	8
5	∞	∞	8	8	0	-1
6	∞	∞	∞	8	∞	0

1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	8
5	∞	∞	8	∞	0	-1
6	~	\sim	\sim	\sim	~	

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	∞	8	8
3	8	8	0	1	8	7
4	-3	-1	3	0	5	8
5	∞	∞	8	∞	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	13
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	-1	3	0	5	8
5	∞	∞	8	8	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	∞	0	4	5	∞	11
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	8
5	∞	8	8	8	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	∞	0	4	5	∞	11
3	∞	∞	0	1	8	7
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	8
5	∞	8	8	8	0	-1
6	∞	8	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	∞	0	4	5	8	11
3	∞	∞	0	1	8	7
4	-3	-1	3	0	5	10
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	∞	0	4	8	8	8
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	8
5	∞	8	8	∞	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	∞	13
2	∞	0	4	5	∞	11
3	∞	∞	0	1	8	7
4	-3	-1	3	0	5	10
5	∞	∞	8	9	0	-1
6						

	1	2	3	4	5	6
1	0	2	6	5	8	8
2	8	0	4	8	8	8
3	8	8	0	1	8	7
4	-3	-1	3	0	5	8
5	8	8	8	8	0	-1
6	∞	8	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	∞	0	4	5	∞	11
3	∞	∞	0	1	8	7
4	-3	-1	3	0	5	10
5	∞	∞	8	9	0	-1
6	∞	∞	∞	∞	8	0

 $D^{(4)}$

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	∞	0	4	5	∞	11
3	∞	∞	0	1	∞	7
4	-3	-1	3	0	5	10
5	∞	∞	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	13
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	∞	13
2	8	0	4	5	8	11
3	8	8	0	1	8	7
4	-3	-1	3	0	5	10
5	8	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	8	0	4	5	8	11
3	~	8	0	1	8	7
4	-3	-1	3	0	5	10
5	∞	8	8	9	0	-1
6	∞	∞	8	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	∞	0	4	5	8	11
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	10
5	∞	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	∞	0	4	5	8	11
3	∞	8	0	1	8	7
4	-3	-1	3	0	5	10
5	∞	∞	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6						

 $D^{(3)}$

	1	2	3	4	5	6
1	0	2	6	5	8	13
2	8	0	4	5	8	11
3	8	8	0	1	8	7
4	-3	-1	3	0	5	10
5	∞	∞	8	9	0	-1
6	∞	∞	8	∞	8	0

	l	4)	+)	0
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6	∞	∞	8	∞	8	0

	_)	
1	0	2	6	5	10	()
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3						
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	•	_)	_)	0
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4						
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4	-3	-1	3	0	5	4
5						
6						

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	8	0

	1	2	3	4	5	6
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4	-3	-1	3	0	5	4
5	6	8	8	9	0	-1
6						

	1	2	3	4	5	6
1	0	2	6	5	10	13
2	2	0	4	5	10	11
3	-2	0	0	1	6	7
4	-3	-1	3	0	5	10
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	8	0

	'	_	3	4	5	O
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4	-3	-1	3	0	5	4
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

 $D^{(6)}$

	1	2	3	4	5	6
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4	-3	-1	3	0	5	4
5	6	8	8	9	0	-1
6	∞	8	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4	-3	-1	3	0	5	4
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	8	0

 $D^{(6)}$

	1	2	3	4	5	6
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4	-3	-1	3	0	5	4
5	6	8	8	9	0	-1
6	∞	8	∞	∞	∞	0

	1	2	3	4	5	6
1	0	2	6	5	10	9
2	2	0	4	5	10	9
3	-2	0	0	1	6	5
4	-3	-1	3	0	5	4
5	6	8	8	9	0	-1
6	∞	∞	∞	∞	∞	0

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

Beweis

• Die Laufzeit folgt sofort, da 3 ineinander geschachtelte Schleifen jeweils von 1 bis |V| = n durchlaufen werden.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- Die Laufzeit folgt sofort, da 3 ineinander geschachtelte Schleifen jeweils von 1 bis |V| = n durchlaufen werden.
- Korrektheit per Induktion über k. Z.z. die Matrix $D^{(k)}$ enthält die kürzeste Entfernung zwischen allen Paaren von Knoten, wenn die Pfade nur über die Knoten $\{1, ..., k\}$ verlaufen dürfen.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- Die Laufzeit folgt sofort, da 3 ineinander geschachtelte Schleifen jeweils von 1 bis |V| = n durchlaufen werden.
- Korrektheit per Induktion über k. Z.z. die Matrix $D^{(k)}$ enthält die kürzeste Entfernung zwischen allen Paaren von Knoten, wenn die Pfade nur über die Knoten $\{1, ..., k\}$ verlaufen dürfen.
- (I.A.) Die Matrix $D^{(0)}$ ist gleich der Eingabematrix W und enthält somit alle Wege im Graphen, die keinen Zwischenknoten benutzen.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- Die Laufzeit folgt sofort, da 3 ineinander geschachtelte Schleifen jeweils von 1 bis |V| = n durchlaufen werden.
- Korrektheit per Induktion über k. Z.z. die Matrix $D^{(k)}$ enthält die kürzeste Entfernung zwischen allen Paaren von Knoten, wenn die Pfade nur über die Knoten $\{1, ..., k\}$ verlaufen dürfen.
- (I.A.) Die Matrix $D^{(0)}$ ist gleich der Eingabematrix W und enthält somit alle Wege im Graphen, die keinen Zwischenknoten benutzen.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

Beweis

• (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.
- (I.S.) Die Matrix $D^{(k)}$ soll nun die kürzesten Wege zwischen Knotenpaaren enthalten, die nur über die Knoten $\{1, ..., k\}$ verlaufen.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.
- (I.S.) Die Matrix D^(k) soll nun die kürzesten Wege zwischen Knotenpaaren enthalten, die nur über die Knoten {1, ..., k} verlaufen. Da G keine negativen Zyklen hat, gibt es immer einen kürzesten Weg, der jeden Knoten nur maximal einmal besucht.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.
- (I.S.) Die Matrix D^(k) soll nun die kürzesten Wege zwischen Knotenpaaren enthalten, die nur über die Knoten {1, ..., k} verlaufen. Da G keine negativen Zyklen hat, gibt es immer einen kürzesten Weg, der jeden Knoten nur maximal einmal besucht. Verläuft der kürzeste Weg von i nach j nun über Knoten k, so ist seine Länge nach (I.V.) genau d^(k-1)_{ik} + d^(k-1)_{ki}.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.
- (I.S.) Die Matrix D^(k) soll nun die kürzesten Wege zwischen Knotenpaaren enthalten, die nur über die Knoten {1, ..., k} verlaufen. Da G keine negativen Zyklen hat, gibt es immer einen kürzesten Weg, der jeden Knoten nur maximal einmal besucht. Verläuft der kürzeste Weg von i nach j nun über Knoten k, so ist seine Länge nach (I.V.) genau d^(k-1)_{ik} + d^(k-1)_{kj}. Ansonsten verläuft er nicht über k und somit nur über die Knoten {1, ..., k 1}.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.
- (I.S.) Die Matrix $D^{(k)}$ soll nun die kürzesten Wege zwischen Knotenpaaren enthalten, die nur über die Knoten $\{1, ..., k\}$ verlaufen. Da G keine negativen Zyklen hat, gibt es immer einen kürzesten Weg, der jeden Knoten nur maximal einmal besucht. Verläuft der kürzeste Weg von i nach j nun über Knoten k, so ist seine Länge nach (I.V.) genau $d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$. Ansonsten verläuft er nicht über k und somit nur über die Knoten $\{1, ..., k-1\}$. Damit ist seine Länge $d_{ij}^{(k-1)}$.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.
- (I.S.) Die Matrix $D^{(k)}$ soll nun die kürzesten Wege zwischen Knotenpaaren enthalten, die nur über die Knoten $\{1, ..., k\}$ verlaufen. Da G keine negativen Zyklen hat, gibt es immer einen kürzesten Weg, der jeden Knoten nur maximal einmal besucht. Verläuft der kürzeste Weg von i nach j nun über Knoten k, so ist seine Länge nach (I.V.) genau $d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$. Ansonsten verläuft er nicht über k und somit nur über die Knoten $\{1, ..., k-1\}$. Damit ist seine Länge $d_{ij}^{(k-1)}$. Somit wird die Länge durch die Rekursion korrekt berechnet.

Satz 58

Sei G = (V, E) ein Graph ohne negativen Zyklen. Dann berechnet der Algorithmus von Floyd-Warshall die Entfernung zwischen jedem Knotenpaar in $\mathbf{O}(|V|^3)$ Zeit.

- (I.V.) Die Matrix $D^{(k-1)}$ erfüllt die Aussage.
- (I.S.) Die Matrix $D^{(k)}$ soll nun die kürzesten Wege zwischen Knotenpaaren enthalten, die nur über die Knoten $\{1, ..., k\}$ verlaufen. Da G keine negativen Zyklen hat, gibt es immer einen kürzesten Weg, der jeden Knoten nur maximal einmal besucht. Verläuft der kürzeste Weg von i nach j nun über Knoten k, so ist seine Länge nach (I.V.) genau $d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$. Ansonsten verläuft er nicht über k und somit nur über die Knoten $\{1, ..., k-1\}$. Damit ist seine Länge $d_{ij}^{(k-1)}$. Somit wird die Länge durch die Rekursion korrekt berechnet.

Aufrechterhalten der kürzesten Wege:

- Konstruiere Vorgängermatrix Π
- Dazu konstruiere Sequenz $\Pi^{(1)}, ..., \Pi^{(n)}$ mit $\Pi = \Pi^{(n)}$
- $\Pi^{(k)}$ ist Vorgängermatrix zu $D^{(k)}$
- $\pi_{ij}^{(k)}$ ist Vorgänger von Knoten j auf dem kürzesten Weg von Knoten i über Knoten aus $\{1, \dots, k\}$
- Die Startmatrix:

$$\pi_{ij}^{(0)} = \begin{cases} \mathbf{nil} & \text{, falls } i = j \text{ oder } w_{ij} = \infty \\ i & \text{, falls } i \neq j \text{ und } w_{ij} < \infty \end{cases}$$

Aufrechterhalten der kürzesten Wege:

- Konstruiere Vorgängermatrix Π
- Dazu konstruiere Sequenz $\Pi^{(1)}, ..., \Pi^{(n)}$ mit $\Pi = \Pi^{(n)}$
- $\Pi^{(k)}$ ist Vorgängermatrix zu $D^{(k)}$
- $\pi_{ij}^{(k)}$ ist Vorgänger von Knoten j auf dem kürzesten Weg von Knoten i über Knoten aus $\{1,\dots,k\}$
- Das Aktualisieren:

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{, falls } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ \pi_{kj}^{(k-1)} & \text{, falls } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \end{cases}$$

SSSP (pos. Kantengewichte)

Dijkstra; Laufzeit $\mathbf{O}((|V| + |E|) \log |V|)$

SSSP (allgemeine Kantengewichte)

Bellman-Ford; Laufzeit $\mathbf{O}(|V|^2 + |V| \cdot |E|)$

APSP (allgemeine Kantengewichte, keine negativen Zyklen)

Floyd-Warshall; Laufzeit $O(|V|^3)$

Binäre Relationen

- Eine (binäre) Relation R zwischen Elementen der Mengen A und B ist eine Teilmenge von $A \times B$.
- Ist A = B, so spricht man auch von einer Relation auf der Menge A

Graphen und Relationen

- Sei G = (V, E) ein gerichteter Graph (möglicherweise mit Selbstschleifen, d.h. Kanten von v nach v)
- E ist Teilmenge von $V \times V$
- Also kann man E als Relation auf der Menge V interpretieren

Reflexivität

Eine Relation R auf der Menge V heißt reflexiv, wenn $(v, v) \in R$ für alle $v \in V$.

Interpretation als Graph

Alle Knoten haben Selbstschleifen

Symmetrie

Eine Relation R auf der Menge V heißt symmetrisch, wenn aus $(u, v) \in R$ folgt, dass $(v, u) \in R$ ist.

Interpretation als Graph

- Alle Kanten sind in beiden Richtungen vorhanden (ungerichteter Graph)
- Selbstschleifen erlaubt

Transitivität

Eine Relation R auf der Menge V heißt transitiv, wenn aus $(u, v) \in R$ und $(v, w) \in R$ folgt, dass $(u, w) \in R$ ist.

Interpretation als Graph

- Man kann zwei aufeinanderfolgende Kanten immer abkürzen
- Wiederholtes Anwenden:
 Gibt es Weg von u nach v,
 so gibt es direkte Verbindung

Äquivalenzrelation

Eine Relation R auf der Menge V heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.

Interpretation als Graph

- Ungerichteter Graph mit Selbstschleifen an jedem Knoten
- Zusammenhangskomponenten sind vollständig verbunden

Das transitive Hülle Problem

- Gegeben sei ein gerichteter, ungewichteter Graph G = (V, E)
- Gesucht: Die transitive Hülle $G^* = (V, E^*)$ von G, wobei $E^* = \{(u, v): \text{ es gibt Weg von } u \text{ nach } v \text{ in } G\}$

Transitive Hülle

- in $\mathbf{O}(|V|^3)$ Zeit mit Floyd-Warshall
- In $O(|V|^2 + |V| |E|)$ Zeit mit Breiten- oder Tiefensuche von jedem Knoten
- Geht das auch schneller?

Graphen und Matrixmultiplikation

- Sei A die $n \times n$ -Adjazenzmatrix eines ungerichteten Graphen G mit Knotenmenge $\{1, ..., n\}$
- Was ist $A \cdot A$?

Behauptung 59

Sei $Z = A \cdot A$. Dann gilt $z_{ij} > 0$, g.d.w. es in G einen Pfad der Länge 2 von Knoten i zu Knoten j gibt.

Behauptung 59

Sei $Z = A \cdot A$. Dann gilt $z_{ij} > 0$, g.d.w. es in G einen Pfad der Länge 2 von Knoten i zu Knoten j gibt.

Beweis

" \Rightarrow " Es gilt bei der Matrixmultiplikation, dass $z_{ij} = \sum a_{ik} \cdot a_{kj}$.

Behauptung 59

Sei $Z = A \cdot A$. Dann gilt $z_{ij} > 0$, g.d.w. es in G einen Pfad der Länge 2 von Knoten i zu Knoten j gibt.

Beweis

" \Rightarrow " Es gilt bei der Matrixmultiplikation, dass $z_{ij} = \sum a_{ik} \cdot a_{kj}$. Da die Einträge von A entweder 0 oder 1 sind, folgt aus $z_{ij} > 0$, dass für mindestens einen Index k gilt: $a_{ik} = 1$ und $a_{kj} = 1$.

Behauptung 59

Sei $Z = A \cdot A$. Dann gilt $z_{ij} > 0$, g.d.w. es in G einen Pfad der Länge 2 von Knoten i zu Knoten j gibt.

Beweis

" \Rightarrow " Es gilt bei der Matrixmultiplikation, dass $z_{ij} = \sum a_{ik} \cdot a_{kj}$. Da die Einträge von A entweder 0 oder 1 sind, folgt aus $z_{ij} > 0$, dass für mindestens einen Index k gilt: $a_{ik} = 1$ und $a_{kj} = 1$. Damit gibt es aber eine Kante von i nach k und k nach k also einen Pfad der Länge 2.

Behauptung 59

Sei $Z = A \cdot A$. Dann gilt $z_{ij} > 0$, g.d.w. es in G einen Pfad der Länge 2 von Knoten i zu Knoten j gibt.

- " \Rightarrow " Es gilt bei der Matrixmultiplikation, dass $z_{ij} = \sum a_{ik} \cdot a_{kj}$. Da die Einträge von A entweder 0 oder 1 sind, folgt aus $z_{ij} > 0$, dass für mindestens einen Index k gilt: $a_{ik} = 1$ und $a_{kj} = 1$. Damit gibt es aber eine Kante von i nach k und k nach k also einen Pfad der Länge 2.
- "

 —" Gibt es einen Pfad der Länge 2 von i nach j, so verläuft dieser über einen weiteren Knoten, sagen wir k. Damit ist $a_{ik} = 1$ und $a_{kj} = 1$.

Behauptung 59

Sei $Z = A \cdot A$. Dann gilt $z_{ij} > 0$, g.d.w. es in G einen Pfad der Länge 2 von Knoten i zu Knoten j gibt.

- " \Rightarrow " Es gilt bei der Matrixmultiplikation, dass $z_{ij} = \sum a_{ik} \cdot a_{kj}$. Da die Einträge von A entweder 0 oder 1 sind, folgt aus $z_{ij} > 0$, dass für mindestens einen Index k gilt: $a_{ik} = 1$ und $a_{kj} = 1$. Damit gibt es aber eine Kante von i nach k und k nach k also einen Pfad der Länge 2.
- " \Leftarrow " Gibt es einen Pfad der Länge 2 von i nach j, so verläuft dieser über einen weiteren Knoten, sagen wir k. Damit ist $a_{ik} = 1$ und $a_{kj} = 1$. Da die Einträge von A entweder 0 oder 1 sind, folgt $z_{ij} = \sum a_{ik} \cdot a_{kj}$.

Behauptung 59

Sei $Z = A \cdot A$. Dann gilt $z_{ij} > 0$, g.d.w. es in G einen Pfad der Länge 2 von Knoten i zu Knoten j gibt.

- " \Rightarrow " Es gilt bei der Matrixmultiplikation, dass $z_{ij} = \sum a_{ik} \cdot a_{kj}$. Da die Einträge von A entweder 0 oder 1 sind, folgt aus $z_{ij} > 0$, dass für mindestens einen Index k gilt: $a_{ik} = 1$ und $a_{kj} = 1$. Damit gibt es aber eine Kante von i nach k und k nach k also einen Pfad der Länge 2.
- " \Leftarrow " Gibt es einen Pfad der Länge 2 von i nach j, so verläuft dieser über einen weiteren Knoten, sagen wir k. Damit ist $a_{ik} = 1$ und $a_{kj} = 1$. Da die Einträge von A entweder 0 oder 1 sind, folgt $z_{ij} = \sum a_{ik} \cdot a_{kj}$.

Behauptung 60

Sei $Z' = A \cdot A + A$. Dann gilt, dass $z'_{ij} > 0$, g.d.w. es einen Weg der Länge 1 oder 2 von Knoten i zu Knoten j gibt.

Beweis

Folgt sofort aus dem vorhergehenden Lemma und der Tatsache, dass *A* genau für die Paare *i, j* einen Eintrag 1 hat, die durch eine Kante (einen Weg der Länge 1) verbunden sind

Konstruiere Matrix B mit:

$$b_{ij} = 1 \Leftrightarrow z'_{ij} > 0$$

Behauptung 61

Der durch Matrix *B* definierte Graph hat einen Weg von Knoten *i* nach *j*, g.d.w. der durch Matrix *A* definierte Graph einen Weg der Länge höchstens 2 zwischen *i* und *j* hat.

Beweis

Folgt aus der vorherigen Behauptung.

Behauptung 62

Sei P ein Weg der Länge k > 1 in G (dem Graph mit Adjazenzmatrix A) von Knoten i zu Knoten j. Dann gibt es in dem von Matrix B beschriebenen Graphen G' einen Weg von i nach j mit Länge maximal $\frac{2}{3}k$.

Behauptung 62

Sei P ein Weg der Länge k > 1 in G (dem Graph mit Adjazenzmatrix A) von Knoten i zu Knoten j. Dann gibt es in dem von Matrix B beschriebenen Graphen G' einen Weg von i nach j mit Länge maximal $\frac{2}{3}k$.

Beweis

Sei P ein Weg in G mit k Kanten.

Behauptung 62

Sei P ein Weg der Länge k > 1 in G (dem Graph mit Adjazenzmatrix A) von Knoten i zu Knoten j. Dann gibt es in dem von Matrix B beschriebenen Graphen G' einen Weg von i nach j mit Länge maximal $\frac{2}{3}k$.

- Sei P ein Weg in G mit k Kanten.
- Ist k gerade, dann gibt es in G' einen Weg der Länge k/2, da man jeweils zwei aufeinanderfolgende Kanten von P durch eine Kante in G' ersetzen kann.

Behauptung 62

Sei P ein Weg der Länge k > 1 in G (dem Graph mit Adjazenzmatrix A) von Knoten i zu Knoten j. Dann gibt es in dem von Matrix B beschriebenen Graphen G' einen Weg von i nach j mit Länge maximal $\frac{2}{3}k$.

- Sei P ein Weg in G mit k Kanten.
- Ist k gerade, dann gibt es in G' einen Weg der Länge k/2, da man jeweils zwei aufeinanderfolgende Kanten von P durch eine Kante in G' ersetzen kann.
- Ist k ungerade, dann gibt es in G' einen Weg der Länge [k/2], da man bis auf die letzte Kante jeweils zwei aufeinanderfolgende Kanten von P durch eine Kante in G' ersetzen kann.

Behauptung 62

Sei P ein Weg der Länge k > 1 in G (dem Graph mit Adjazenzmatrix A) von Knoten i zu Knoten j. Dann gibt es in dem von Matrix B beschriebenen Graphen G' einen Weg von i nach j mit Länge maximal $\frac{2}{3}k$.

- Sei P ein Weg in G mit k Kanten.
- Ist k gerade, dann gibt es in G' einen Weg der Länge k/2, da man jeweils zwei aufeinanderfolgende Kanten von P durch eine Kante in G' ersetzen kann.
- Ist k ungerade, dann gibt es in G' einen Weg der Länge $\lceil k/2 \rceil$, da man bis auf die letzte Kante jeweils zwei aufeinanderfolgende Kanten von P durch eine Kante in G' ersetzen kann.
- Somit gilt für k=3, dass die Länge des Weges in G' 2/3 der Länge des Weges in G ist. Für k>3 verkürzt sich die Weglänge entsprechend mehr. ⁸⁷

Behauptung 62

Sei P ein Weg der Länge k > 1 in G (dem Graph mit Adjazenzmatrix A) von Knoten i zu Knoten j. Dann gibt es in dem von Matrix B beschriebenen Graphen G' einen Weg von i nach j mit Länge maximal $\frac{2}{3}k$.

- Sei P ein Weg in G mit k Kanten.
- Ist k gerade, dann gibt es in G' einen Weg der Länge k/2, da man jeweils zwei aufeinanderfolgende Kanten von P durch eine Kante in G' ersetzen kann.
- Ist k ungerade, dann gibt es in G' einen Weg der Länge $\lceil k/2 \rceil$, da man bis auf die letzte Kante jeweils zwei aufeinanderfolgende Kanten von P durch eine Kante in G' ersetzen kann.
- Somit gilt für k=3, dass die Länge des Weges in G' 2/3 der Länge des Weges in G ist. Für k>3 verkürzt sich die Weglänge entsprechend mehr. 80

Konsequenz aus Beh. 61 und 62

Wenn wir die Berechnung von $B \log_{3/2} n$ mal iterieren, haben wir die transitive Hülle berechnet

TransitiveHülle(*A*)

```
for i \leftarrow 1 to \log_{3/2} n do
2. Z' \leftarrow AA + A
3. for i \leftarrow 1 to n do
4. for j \leftarrow 1 to n do
                if z'_{ij} > 0 then b_{ij} \leftarrow 1 else b_{ij} \leftarrow 0
5.
      A \leftarrow B
     return A
```

```
Laufzeit
TransitiveHülle(A)
      for i \leftarrow 1 to \log_{3/2} n do
                                                                                      \mathbf{O}(\log n)
2. Z' \leftarrow AA + A
                                                                                      \mathbf{O}(M(n) \cdot \log n)
3. for i \leftarrow 1 to n do
                                                                                      \mathbf{O}(n \log n)
                                                                                      \mathbf{O}(n^2 \log n)
             for j \leftarrow 1 to n do
                                                                                      \mathbf{O}(n^2 \log n)
5.
                  if z'_{ij} > 0 then b_{ij} \leftarrow 1 else b_{ij} \leftarrow 0
                                                                                      \mathbf{O}(n^2 \log n)
      A \leftarrow B
      return A
                                                                                      0(1)
```

M(n): Zeit um zwei $n \times n$ -Matrizen zu multiplizieren

Satz 63

Der Algorithmus TransitiveHülle berechnet die transitive Hülle eines Graphen G in $\mathbf{O}(M(n)\log n)$ Zeit, wobei M(n) die Laufzeit zur Multiplikation zweier $n\times n$ -Matrizen bezeichnet.