数学物理方法笔记

Guotao He

2025-09-22

目录

	Part I 复分析	3
Chapte	er 1 复变函数	4
1.1	复变函数的导数和微分	4
1.2	解析函数和多值函数	5
Chapte	er 2 复变积分	7
2.1	定义	7
2.2	Cauchy 定理	9
2.3	Cauchy 积分公式	9
Chapte	er 3 复变级数	11
3.1	级数	11
3.2	幂级数	12
3.3	Taylor 展开	12
3.4	Laurent 展开	13
3.5	奇点的分类	13
Chapte	er 4 留数定理	14
4.1	留数和留数定理	14
4.2	留数法因式分解	15
4.3	有理三角函数积分	15
4.4	无穷积分	16
4.5	含三角函数的无穷积分	16
4.6	实轴上有奇点的积分	17
4.7	多值函数的积分	17
	Part II 积分变换	18
	Part III 数学物理方程	19
	Part IV 杂七杂八	20
Chapte	er 5 Lame 系数与任意正交坐标系下算符	21
5.1	Lame 系数介绍	21
5.2		22
5.3	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
	5.3.1 梯度	23
	5.3.2 旋度	23

		散度	
Chapter	6 Fe	eynman 积分法	26
Chapter	7 G	lasser 主定理	27
Chapter	8 Lo	obachevsky 积分法	28

复变函数

1.1 复变函数的导数和微分

Definition 1.1.1 (导数). 设函数 f(z) 是区域 G 上定义的单值函数, 若在点 z 处存在极限:

$$\lim_{\Delta z \to 0} \frac{f\left(z + \Delta z\right) - f\left(z\right)}{\Delta z}$$

且与 $\Delta z \to 0$ 的方式无关,则称函数 f(z) 在 z 点的导数存在.

Definition 1.1.2 (可微). 若函数 w = f(z) 在 z 处的改变量 $\Delta w = f(z + \Delta z) - f(z)$ 可以写为:

$$\Delta w = A(z) \Delta z + \rho(\Delta), \quad \lim_{\Delta z \to 0} \frac{\rho(z)}{\Delta z} = 0$$

则函数 f(z) 在 z 处可微, 其线性部分被称为函数的微分.

可以证明,函数在 z 处可导和可微互为充要条件,因此 $\mathrm{d}f(z) = f'(z)\,\mathrm{d}z$.

上述式子中我们可以得到复变函数的导数的几何意义: 若函数 f(z) 在 z_0 处可导,则在 z_0 处的小邻域经过函数 f(z) 的变换相当于乘上一个固定的复数 $f'(z_0)$. 又因为乘上一个固定的复数相当于进行了拉伸和旋转两步,其不会经历剪切过程,因此此变换是一个保角变换¹.

Theorem 1.1.1 (Cauchy - Riemann 条件). 设复变函数 f(z) = u(x,y) + iv(x,y) 可导,则其一个必要不充分条件是函数 f(z) 满足:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

若在极座标下,则满足:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

C-R 条件其实可以借助几何直观的推出. 若函数在 z_0 可导,则该函数在 z_0 处的小邻域内是保角变换,因此,其实轴的基矢的位移与虚轴的基矢的位移模长相等,方向正交. 也就是:

$$dv = i \cdot du$$

例如,在直角坐标下,我们先写出 u,v 的全微分:

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$
$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

同时, 我们知道直角坐标下 dx 和 dy 的关系: $dy = i \cdot dx$. 因此:

¹当然,这要求 $f'(z_0) \neq 0$, f(z) = 0 的保角性需要额外讨论.

$$dv = \left(\frac{\partial v}{\partial x} + i\frac{\partial v}{\partial y}\right) dx = \left(-\frac{\partial u}{\partial y} + i\frac{\partial u}{\partial x}\right) dx = idu$$

故:

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}, \quad \frac{\partial v}{y} = \frac{\partial u}{\partial x}$$

即直角坐标下 C-R 条件. 同理, 在极座标下:

$$du = \frac{\partial u}{\partial r} dr + \frac{\partial u}{\partial \theta} d\theta$$
$$dv = \frac{\partial v}{\partial r} dr + \frac{\partial v}{\partial \theta} d\theta$$

同时, 在极座标下 dr 和 d θ 的关系: $rd\theta = idr$, 因此:

$$dv = \left(\frac{\partial v}{\partial r} + \frac{i}{r}\frac{\partial v}{\partial \theta}\right)dr = \left(-\frac{1}{r}\frac{\partial u}{\partial \theta} + i\frac{\partial u}{\partial r}\right) = idu$$

故:

$$\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}, \quad \frac{1}{r} \frac{\partial v}{\partial \theta} = \frac{\partial u}{\partial r}$$

如果一个函数 f(z) 在 z_0 处满足 C-R 条件,仍不能说明 f(z) 在 z_0 处可导,C-R 条件只是可导的必要条件并不是充分条件,C-R 条件只保证了 Δz 以平行于实轴和虚轴这两种特殊方式趋近于 0 时,极限逼近与同一个值.

一个可导的充分条件是,函数 f(z) = u + iv 的实部和虚部在 $z_0 = (x, y)$ 处均可微,也就是 $\partial_x u, \partial_u u, \partial_x v, \partial_u v$ 四个偏导数存在且连续,同时满足 C-R 条件,则该函数在 z_0 可导.

1.2 解析函数和多值函数

Definition 1.2.1 (解析函数). 若函数 f(z) 在区域 G 内处处可导,则函数 f(z) 在 G 内解析.

- 解析函数的实部和虚部不是独立的,知道了其中之一,根据 C-R 条件就可以唯一地确定另外一个.(当然有可能相差一个常数)
- 不是任意的二元函数都可以作为解析函数的实部和虚部,它们必须是调和函数,即 f(z) = u + iv 的 u 和 v 需要满足 Laplace 方程.

$$\nabla^2 u = 0, \quad \nabla^2 v = 0$$

• 如果一个函数 f(z) 是解析函数,则这一个函数必定是单值函数,也就是对于定义域中任意一个自变量 z,有且只有一个对应的函数值 f(z). 这是因为如果函数是多值函数,则当 Δz 从不同路径趋于 0 时, $f(z+\Delta z)$ 有可能会到不同的分支上,从而使得极限依赖于 Δz 趋近于 0 的路径.

Definition 1.2.2 (多值函数). 若在区域 G 内,复数 $z \in G$ 有多个复数 w_0, \ldots, w_n 与之对应,w 和 z 的映射关系记为 f,则 f 称为定义在 G 上的多值函数.

实际上,我们所接触的多值函数就三种: $\sqrt[7]{z}$, $\ln z$, z^{α} . 多值函数虽然名字中叫"函数",实际上根本不是函数. 函数要求是一个自变量被映射到唯一的另一个自变量,显然多值函数不满足这一点. 多值函数的多值性来自于宗量相位的多值性. 因此多值函数中可以定义分支点.

Definition 1.2.3 (分支点). 对于多值函数 w = f(z), $\exists r > 0$, 当自变量 z 绕圆周 $|z - z_0| = r$ 一周回到原处时,因变量 w 值不还原,且 $r \to 0$ 时,w 仍旧不还原,则 z_0 就是一个分支点. 当 z 绕 z_0 点 n 周时 w 复原,则称该点为多值函数的 n-1 阶分支点.

无穷远点也可以是分支点,只需要作变换 z = 1/t ,考察 t = 0 是否是分支点即可.

我们不难发现,只要我们限制自变量不要在分支点上绕圈圈,就不会产生多值现象.同时,多值函数之所以不是函数,是因为其将一个点映射到多个点,因此,我们可以"稀释"一下定义域,将定义域变成多个复平面,从而使得定义域到值域变成是一一对应的,这样我们就可以用解析函数的各种性质了.

因此,我们人为在两个分支点之间连线(不一定是直线),从而得到割线,并要求如果自变量 z 经过了割线,就要变更复平面. 我们可以想象不同的复平面是不同的层,割线就是不同层的"楼梯",经过割线就会升降层从而进入不同的复平面,在可视化上就相当于将不同层的割线"粘"起来. 这样得到东西就是所谓的 Riemann 面.

图 1.1: \sqrt{z} 的 Riemann 面可视化

常见的多值函数的分支点和割线如下:

- 根式函数 $\sqrt[n]{z}$: 分支点: $0,\infty$, 割线: $\{z|\arg z=0\}$
- 对数函数 $\ln z$: 分支点: $0, \infty$, 割线: $\{z | \arg z = 0\}$
- 幂函数 z^{α} : 分支点: $0, \infty$, 割线: $\{z | \arg z = 0\}$

复变积分

2.1 定义

Definition 2.1.1 (复变积分). 设 C 是分段光滑的曲线,则复变积分可以定义为两个实变线积分的组合:

$$\int_{C} f(z) dz = \int_{C} (u + iv) (dx + idy)$$
$$= \int_{C} (udx - vdy) + i \int_{C} (vdx + udy)$$

一般说来, 复变积分的数值, 不仅依赖于被积函数和积分路径的端点, 而且还依赖于积分路径本身.

Definition 2.1.2 (不定积分). 设 f(z) 及 $\Phi(z)$ 是区域 G 内的连续函数,如果在 G 中恒有 $\Phi'(z)=f(z)$,则称 $\Phi(z)$ 为 f(z) 在区域 G 内的一个不定积分或原函数.

- $\Phi(z)$ 显然为 G 内的解析函数
- 除去可能相差一个常数外,原函数是唯一确定的.

Theorem 2.1.1 (微积分基本定理). 设 C 的端点 $a,b,\ f(z)$ 的某个原函数为 $\Phi(z),\ 则:$

$$\int_{C} f(z) dz = \Phi(b) - \Phi(a)$$

Theorem 2.1.2. 在区域 G 内,下列命题等价:

• 复变积分与路径无关

$$\int_{C} f(z) dz = \int_{a}^{b} f(z) dz$$

• 围道积分恒为 0

$$\oint_C f(z) \, \mathrm{d}z = 0$$

• 函数的原函数存在

$$f\left(z\right) = \Phi'\left(z\right)$$

一个经常用到的结论如下:

Example 2.1.1. 计算

$$\oint_C z^n \mathrm{d}z$$

其中 $n \in \mathbb{Z}$, C 为一逆时针方向的简单闭合围道.

Solution. 设 $f(z) = z^n$, 不难得到原函数为:

$$\Phi(z) = \begin{cases} \frac{1}{n+1} z^{n+1} & n \neq -1\\ \ln z & n = -1 \end{cases}$$

 $n \ge 0$ 时, $\Phi(z)$ 是 \mathbb{C} 上的解析函数, 因此:

$$\oint_C z^n \mathrm{d}z = 0, \quad n \ge 0$$

n < -1 时, $\Phi(z)$ 是 $\mathbb{C} \setminus \{z = 0\}$ 上的解析函数,因此对于任意不经过原点的围道,有:

$$\oint_C z^n \mathrm{d}z = 0, \quad n < -1$$

n=-1 时, $\Phi(z)$ 为多值函数,其分支点为原点和无穷远点,因此围道可以分成两种情况:

图 2.1: n = -1 时的两种情况

• 围道不包围原点,则总可以做割线连接原点和无穷远点,使得围道仍在解析区域内,则:

$$\oint_C \frac{\mathrm{d}z}{z} = 0$$

• 围道包围原点,则围道一定与割线相交,因此,我们可以从割线的一端出发到另一端,于是有:

$$\oint_C \frac{\mathrm{d}z}{z} = \int_{a_+}^{a_-} \frac{\mathrm{d}z}{z} = \ln a_- - \ln a_+$$

规定 $0 \le \arg z \le 2\pi$, 因此:

$$\oint_C \frac{\mathrm{d}z}{z} = (\ln a + 2\pi \mathrm{i}) - \ln a = 2\pi \mathrm{i}$$

综上:

$$\oint_C z^n dz = \begin{cases} 2\pi i & n = -1 \\ 0 & \text{其他情况} \end{cases}$$

2.2 Cauchy 定理

下面我们将某个包含奇点(如果有奇点的话)的单连通区域记为 G (没有加上方的横线),用小围道去除奇点后的复连通区域记为 \bar{G} (在上方加上一条横线).

Theorem 2.2.1 ((单连通区域的)Cauchy 定理). 如果函数 f(z) 在单连通区域 G 中解析,则沿 G 中任何一个简单闭合围道 C,有:

$$\oint_C f(z) \, \mathrm{d}z = 0$$

上述定理用 Green 公式 + C-R 条件可以很容易地证明, 在此不再叙述,

图 2.2: 复连通区域 Cauchy 定理围道示意图

若区域 G 中不是处处解析的,而是存在一些奇点,于是我们可以用一系列小围道 C_1, \ldots, C_n 将 奇点绕开,从而得到一个在上面解析的复连通区域 \bar{G} ,在上面作适当割线将其转化为单连通区域 G',因此,根据单连通区域的 Cauchy 定理,有:

Theorem 2.2.2 ((复连通区域的)Cauchy 定理). 如果 f(z) 是复连通区域 \bar{G} 中的解析函数,则:

$$\oint_{C_0} f(z) dz + \sum_{k=1}^n \oint_{C_k} f(z) dz = 0$$

其中 C_0 是外部的最大的围道, C_1, \ldots, C_n 是内部的小围道. 所有围道取正向.

注意这里围道正向指的是"左手在内"准则的正向,也就是在围道上面多围道正向,左手边是内部,右手边是外部,也就是对于外部,正向是逆时针,对于内部,正向是顺时针.有些书籍的 Cauchy 定理使用的是全逆时针的围道(无论内外),需要注意区分.

上面 f(z) 在闭区域 \bar{G} 中解析,不仅要求 f(z) 在 \bar{G} 中无奇点,还要求其在积分围道上也解析无奇点.

2.3 Cauchy 积分公式

复变函数的积分的另一个及其重要的关系式是 Cauchy 积分公式.

Theorem 2.3.1 (Cauchy 积分公式). 设 C 为一简单的闭合围道, G 是其内部, α 为 G 内一点. 若 f(z) 是区域 \bar{G} 上的解析函数, 则:

$$f(\alpha) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - \alpha} dz$$

其中围道积分沿正向,也就是逆时针方向.

实际上 Cauchy 积分公式是之后的留数定理的一种特殊情况,可以视为留数定理的只有一个一阶极点的情况. Cauchy 积分公式的应用到之后留数定理再介绍.

Cauchy 积分公式中给出 G 内的任意一点的函数值 f(z) 可以用边界 C 上的积分表示,而 f'(z) 也可以由边界 C 上的积分表示.

Theorem 2.3.2 (解析函数的高阶导数). 设 C 为一简单的闭合围道, G 是其内部, α 为 G 内一点. 若 f(z) 是区域 \bar{G} 上的解析函数, 则:

$$f^{(n)}(\alpha) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-\alpha)^{n+1}} dz$$

同样,上述也是留数定理的只有一个高阶极点的情况.

Corollary 2.3.3. 设 f(z) 是区域 G 内的解析函数,则在区域 G 内 f(z) 的任意阶导数都存在,且 也是 G 内的解析函数.

Theorem 2.3.4 (Morera 定理). 设 f(z) 在区域 G 内连续,若 G 中的任意闭合围道 C,都有:

$$\oint_C f(z) \, \mathrm{d}z = 0$$

则 f(z) 在 G 内解析.

复变级数

3.1 级数

复变级数和高数中的实变级数的很多性质相似,我们不加证明地给出下面结论:

Theorem 3.1.1 (比较判别法). 若 $|u_n| < v_n$ 而 $\sum v_n$ 收敛,则 $\sum |u_n|$ 收敛. 若 $|u_n| > v_n$ 而 $\sum v_n$ 发散,则 $\sum |u_n|$ 发散.

Theorem 3.1.2 (比值判别法). 如果存在常数 ρ , 满足:

$$\left| \frac{u_{n+1}}{u_n} \right| \le \rho < 1$$

则级数 $\sum |u_n|$ 收敛. 若:

$$\left| \frac{u_{n+1}}{u_n} \right| \ge 1$$

则级数 $\sum u_n$ 发散.

Theorem 3.1.3 (根式判别法). 如果存在常数 ρ , 满足:

$$\left|u_n\right|^{1/n} \le \rho < 1$$

则级数 $\sum |u_n|$ 收敛. 若:

$$\left|u_n\right|^{1/n} > 1$$

则级数 $\sum u_n$ 发散.

由于级数的前面有限项与整个级数的收敛性无关,则可以从 n 项开始,令 $n \to \infty$,可得:

Theorem 3.1.4 (d'Alembert 判别法). 如果:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1$$

则级数 $\sum |u_n|$ 收敛. 若:

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| > 1$$

则级数 $\sum u_n$ 发散.

Theorem 3.1.5 (Cauchy 判别法). 如果:

$$\lim_{n \to \infty} |u_n|^{1/n} < 1$$

则级数 $\sum |u_n|$ 收敛. 若:

$$\lim_{n \to \infty} \left| u_n \right|^{1/n} < 1$$

则级数 $\sum u_n$ 发散.

3.2 幂级数

Theorem 3.2.1 (Abel 第一定理). 如果级数 $\sum_{n=0}^{\infty} c_n (z-a)^n$ 在某点 z_0 收敛,则在以 n 点为圆心, $|z_0-a|$ 为半径的圆 $|z-a|<|z_0-a|$ 绝对收敛,在 $|z-a|\leq r<|z_0-a|$ 的闭圆内一致收敛.

求幂级数的收敛半径一般遵循以下方法:

• 根据 Cauchy 判别法:

$$R = \lim_{n \to \infty} \left| \frac{1}{c_n} \right|^{1/r}$$

• 根据 d' Alembert 判别法:

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|$$

3.3 Taylor 展开

一个幂级数在它的收敛圆内代表一个解析函数. 相反地,可以将一个解析函数表示成为幂级数.

Theorem 3.3.1 (Taylor 展开). 设函数 f(z) 在以 z_0 为圆心的圆内 $|z-z_0| < R$ 解析,则对于 圆内任何 z 点,有 f(z) 可用 Taylor 展开为:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

其中

$$a_n = \frac{f^{(n)}\left(z_0\right)}{n!}$$

我们同样可以对无穷远点 ∞ 进行 Taylor 展开,只需要做变换 $z \to 1/z$ 然后对 z=0 的邻域展开即可.

这里 Taylor 展开的形式和实变函数中的 Taylor 公式相同, 但是条件不同.

• 在复变函数中,解析的要求就足以保证 Taylor 级数收敛.

Taylor 展开是唯一的,因此我们可以用各种其他方法来求解 Taylor 展开.

3.4 Laurent 展开

解析函数在解析点可展开成 Taylor 级数. 有时,还需要将它在奇点附近展开成幂级数,这时就得到 Laurent 展开.

Theorem 3.4.1 (Laurent 展开). 设函数 f(z) 在以 z_0 为圆心的环域 $r < |z - z_0| < R$ 中单值解析,则对于环域内任何的 z 点,f(z) 可以用包括负幂级数的展开为:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

其中:

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$

C 是环域内绕内圆一周的任意一条曲线.

我们同样可以对无穷远点 ∞ 进行 Laurent 展开,只需要做变换 $z \to 1/z$ 然后对 z=0 的环域 展开即可.

Laurent 展开与 Taylor 展开不同,一方面其展开区域(收敛区域)不同,另一方面,即使是正幂项系数:

$$a_n \neq \frac{1}{n!} f^{(n)}\left(z_0\right)$$

Taylor 展开是唯一的,因此我们可以用各种其他方法来求解 Taylor 展开.

3.5 奇点的分类

Definition 3.5.1 (孤立奇点). 设 z_0 为函数 f(z) 的一个奇点. 如果存在 z_0 的空心邻域,在该邻域内 $0<|z-z_0|< r$,f(z) 解析,则称 z_0 为 f(z) 的孤立奇点. 否则称为非孤立奇点.

如果 $z=z_0$ 是函数 f(z) 的一个孤立奇点,则存在一个环域 $r<|z-z_0|< R$,在环域内 f(z) 解析,则可以展开成 Laurent 级数:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

可能出现三种情况:

- 级数展开式不含负幂项. ⇒ 可去奇点.
- 级数展开式含有限负幂项. ⇒ 极点.
- 级数展开式含无穷多个负幂项. ⇒ 本性奇点.

留数定理

4.1 留数和留数定理

Definition 4.1.1 (留数). 若点 z_0 为函数 f(z) 的孤立奇点. 定义函数 f(z) 在孤立奇点 z_0 的留数等于 (z) 在 z_0 的空心邻域内 Laurent 展开式中 $(z-z_0)^{-1}$ 幂的系数 a_{-1} , 记作 $resf(z_0)$ 或者 $res[f(z),z_0]$.

$$a_{-1} = resf(z_0) = res[f(z), z_0]$$

Theorem 4.1.1 (留数定理). 设 C 为一简单闭合围道, G 为 C 的内区域, 若 G 中除了有限个孤立奇点 $b_k, k=1,2,\ldots,n$ 外, 函数在 \bar{G} 内解析, 则:

$$\oint_{C} f(z) dz = 2\pi i \sum_{k=1}^{n} resf(b_{k})$$

Proof. 证明其实也是复联通区域的 Cauchy 定理的直接应用. 作小圆 $\gamma_k, k = 1, \ldots, n$ 将每一个奇点包围(全部取逆时针方向),则:

图 4.1: 留数定理证明示意图

$$\oint_C f(z) dz = \sum_{k=1}^n \oint_{\gamma_k} f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{res} f(b_k)$$

对于 m 阶极点,有如下求留数的方法:

$$res f(z_0) = \lim_{z \to z_0} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-z_0) f(z)] \Big|_{z=z_0}$$

特别的,对于m=1,有:

$$res f(z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

若 f(z) = P(z)/Q(z),其中 P,Q 均为多项式, z_0 为 f(z) 的一阶极点,则 f(z) 的留数有一个方便的求法:

Corollary 4.1.2 (有理分式一阶极点的留数).

$$\operatorname{res} f(z_0) = \frac{P(z_0)}{Q'(z_0)}$$

Proof. 上述证明也很简单:

$$\operatorname{res} f\left(z_{0}\right) = \underbrace{\lim_{z \to z_{0}} \frac{\left(z - z_{0}\right) P\left(z\right)}{Q\left(z\right)}}_{\operatorname{L' Hopital} \not \exists \emptyset \mid 0} = \underbrace{\lim_{z \to z_{0}} \frac{P\left(z\right) - \left(z - z_{0}\right) P'\left(z\right)}{Q'\left(z\right)}}_{\operatorname{L' Hopital} \not \exists \emptyset \mid 0} = \underbrace{\frac{P\left(z_{0}\right)}{Q'\left(z\right)}}_{\operatorname{L' Hopital} \not \exists \emptyset \mid 0}$$

我们同样可以对无穷远点求留数,对于无穷远点的留数,有如下推论:

Corollary 4.1.3 (无穷原点留数推论 1).

$$\operatorname{res} f\left(\infty\right) = -\operatorname{res}\left[\frac{1}{z^2} f\left(\frac{1}{z}\right), 0\right]$$

Proof. 我们选取一个足够大的圆形围道 C, 以逆时针为正方向,则由留数定理:

$$\operatorname{res} f(\infty) = -\frac{1}{2\pi i} \oint_C f(z) \, \mathrm{d}z$$

这里的负号是因为包围无穷远点的围道方向为顺时针,这里取逆时针. 因此多一个负号. 换元 z = 1/w, $dz = -1/w^2 \cdot dw$, **注意变换后要保持围道的方向,因此多一个负号**, 故:

$$\operatorname{res} f\left(\infty\right) = -\frac{1}{2\pi \mathrm{i}} \oint_{C} \frac{f\left(1/w\right)}{w^{2}} \mathrm{d}w = -\operatorname{res}\left[\frac{1}{w^{2}} f\left(\frac{1}{w}\right), 0\right]$$

证毕.

Corollary 4.1.4 (无穷原点留数推论 2).

Corollary 4.1.5 (全平面留数和).

4.2 留数法因式分解

4.3 有理三角函数积分

考虑积分

$$I = \int_0^{2\pi} R(\sin \theta, \cos \theta) \, \mathrm{d}\theta$$

其中 $R \in \sin \theta$, $\cos \theta$ 的有理函数.

做变换:

$$z = e^{i\theta}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z^2 - 1}{2iz}$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z^2 + 1}{2z}$$

$$d\theta = \frac{dz}{iz}$$

积分路径变换为 z 平面上单位圆 |z|=1, 于是:

$$I = \oint_{|z|=1} R\left(\frac{z^2 - 1}{2iz}, \frac{z^2 + 1}{2z}\right) \frac{\mathrm{d}z}{iz}$$

4.4 无穷积分

考虑积分:

$$I = \int_{-\infty}^{+\infty} R(x) \, \mathrm{d}x$$

为了应用留数定理,必须先构造适当的围道。我们补上以原点为圆心,R 为半径的上半圆 C_R ,再令 $R \to \infty$.

为了求出补充的圆弧的积分,这里给出非常常用的大圆弧引理.

Lemma 4.4.1 (大圆弧引理). 若函数 f(z) 在 $z=\infty$ 的邻域连续,且当 $\theta_1 \leq argz \leq \theta_2, |z| \to \infty$ 时,zf(z) 一致地趋向 K,则:

$$\lim_{R \to \infty} \int_{C_R} f(z) dz = iK (\theta_2 - \theta_1)$$

其中 C_R 是以原点为圆心, R 为半径, 夹角为 $\theta_2 - \theta_1$ 的圆弧, 即:

$$C_R = \{|z| = R \& \theta_1 \le \arg(z - a) \le \theta_2\}$$

与大圆弧引理对应的是小圆弧引理,这里一并给出:

Lemma 4.4.2 (小圆弧引理). 若函数 f(z) 在 z=a 的空心邻域内连续,且当 $\theta_1 \leq arg(z-a) \leq \theta_2$, $|z-a| \to 0$ 时,(z-a) f(z) 一致地趋向 k,则:

$$\lim_{R \to 0} \int_{C_{\mathcal{D}}} f(z) \, \mathrm{d}z = \mathrm{i}k \left(\theta_2 - \theta_1\right)$$

其中 C_R 是以 a 为圆心, R 为半径, 夹角为 $\theta_2 - \theta_1$ 的圆弧, 即:

$$C_R = \{|z - a| = R \& \theta_1 \le arg(z - a) \le \theta_2\}$$

4.5 含三角函数的无穷积分

对于形如:

$$I = \int_{-\infty}^{+\infty} P(x) \cos(px) dx, \quad I = \int_{-\infty}^{+\infty} P(x) \sin(px) dx$$

我们构造:

$$I = \oint_{T} P(z) e^{ipz} dz$$

其中 L 是包围上半平面的围道. 对于多引入的半圆形围道 C_R , 我们有如下引理:

CHAPTER 4 留数定理

17

Lemma 4.5.1 (Jordan 引理). 设 $0 \le argz \le \pi$,当 $|z| \to \infty$ 时,Q(z) 一致趋向于 0,则:

$$\lim_{R\to\infty}\int_{C_{R}}Q\left(z\right) \mathrm{e}^{\mathrm{i}pz}\mathrm{d}z=0$$

其中 p>0, C_R 是以原点为圆心, R 为半径的上半圆.

4.6 实轴上有奇点的积分

Part III 数学物理方程

Lame 系数与任意正交坐标系下算符

5.1 Lame 系数介绍

作为开始,我们知道三维直角坐标下的梯度、旋度、散度、Laplace 算符:

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

我们希望能直接写出任意曲线坐标(主要是球坐标、柱坐标)的上述四个算符的形式.这里我们对曲线坐标提出一些要求:**坐标中任意位置的基矢相互正交.**也就是要求坐标系是正交坐标系.不难验证,球坐标,柱坐标都满足此要求.

对于任意三维的正交坐标系,我们总可以将某一位置邻域的线元写成如下形式(这是由基矢相 互正交的性质保证的):

$$ds = \sqrt{(h_1 dq_1)^2 + (h_2 dq_2)^2 + (h_3 dq_3)^2}$$

其中, $\mathrm{d}q_i$ 是沿着 e_i 方向的小位移, h_i 就是 q_i 对应的 Lame 系数.

上述介绍比较抽象,这里以常用的坐标系作为例子.对于直角坐标,其线元写成:

$$ds = \sqrt{(dx)^2 + (dy)^2 + (dz)^2}$$

因此 x, y, z 的 Lame 系数分别是 1, 1, 1.

对于柱坐标, 其线元写成:

$$ds = \sqrt{(dr)^2 + (rd\theta)^2 + (dz)^2}$$

因此 r, θ, z 的 Lame 系数分别是 1, r, 1.

同理,对于球坐标(这里遵循物理的习惯,令 ω 为天顶角),其线元写成:

$$ds = \sqrt{(dr)^2 + (rd\theta)^2 + (r\sin\theta d\phi)^2}$$

因此 r, ω, ϕ 的 Lame 系数分别是 $1, r, r \sin \omega$.

我们可以证明,一旦我们为某个正交坐标系 (q_1,q_2,q_3) 找到了其 Lame 系数 $h_1,h_2.h_3$ 则可以直接得到:

$$\nabla f = \frac{1}{h_1} \frac{\partial f_1}{\partial q_1} \mathbf{e}_1 + \frac{1}{h_2} \frac{\partial f_2}{\partial q_2} \mathbf{e}_2 + \frac{1}{h_3} \frac{\partial f_3}{\partial q_3} \mathbf{e}_3$$

$$\nabla \cdot \mathbf{F} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} (F_1 h_2 h_3) + \frac{\partial}{\partial q_2} (F_2 h_1 h_3) + \frac{\partial}{\partial q_3} (F_3 h_1 h_2) \right]$$

$$\nabla \times \mathbf{F} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \mathbf{e}_1 & h_2 \mathbf{e}_2 & h_3 \mathbf{e}_3 \\ \frac{\partial}{\partial q_1} & \frac{\partial}{\partial q_2} & \frac{\partial}{\partial q_3} \\ F_1 h_1 & F_2 h_2 & F_3 h_3 \end{vmatrix}$$

$$\nabla^2 f = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial f}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial q_3} \right) \right]$$

下面我们给出一个几何上的直观理解,并通过微分形式推导上述结论1.

5.2 几何理解

5.3 使用微分形式推导

我们考虑一个任意的正交坐标系 (q^1,q^2,q^3) . 位置矢量 r 可以表示为 $r(q^1,q^2,q^3)$.Lame 系数 h_i (也称为尺度因子) 定义为切矢量基底的模长:

$$h_i = \sqrt{rac{\partial m{r}}{\partial q^i} \cdot rac{\partial m{r}}{\partial q^i}}$$

由此,我们可以定义一组标准正交基 $\hat{e_i} = e_i/h_i$. 线元矢量为 $\mathrm{d} \boldsymbol{l} = e_i \mathrm{d} q^i = h_i e_i \mathrm{d} q^i$. 弧长微元为:

$$ds^2 = (\mathbf{e}_i \cdot \mathbf{e}_j) dq^i dq^j = (h_i dq^i)^2$$

此时度规张量 $g_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j$ 在这个正交基下是对角的:

$$g = \begin{pmatrix} h_1^2 & 0 & 0 \\ 0 & h_2^2 & 0 \\ 0 & 0 & h_3^2 \end{pmatrix}, \quad g_{ii} = h_i^2$$

与切矢量基底 e_i 对偶的 1-形式基底是 $\mathrm{d}q^i$. 我们引入一组归一化的 1-形式基底 $\omega^i = h_i \mathrm{d}q^i$. 这组基是正交归一的,满足 $\langle \omega^i, \omega^j \rangle = \delta^{ij}$. 其体积形式是:

$$vol = \omega^1 \wedge \omega^2 \wedge \omega^3 = h_1 h_2 h_3 dq^1 \wedge dq^2 \wedge dq^3$$

霍奇星算子 \star 是一个从 k-形式到 (n-k)-形式的映射. 在当前的三维正交坐标系下,使用归一化的基底 ω^i ,其作用如下:

- $\star 1 = \omega^1 \wedge \omega^2 \wedge \omega^3 = \text{vol}$
- $\star \omega^1 = \omega^2 \wedge \omega^3$
- $\star(\omega^1 \wedge \omega^2) = \omega^3$

 $^{^{1}}$ 当然,肯定有不这么"高级"的证明方法,只是我比较喜欢通过微分形式来证明,同时通过微分形式证明是比较本质的(微分形式不依赖坐标系).

•
$$\star(\omega^1 \wedge \omega^2 \wedge \omega^3) = 1$$

一个重要的性质是 ** $\omega = (-1)^{k(n-k)}\omega$. 在三维空间中 (n=3), 对 1-形式 (k=1) 和 2-形式 (k=2), 我们有 ** $\omega = \omega$.

通过度规, 我们可以建立矢量场和微分形式之间的对应关系, 这被称为**音乐同构 (Musical Isomorphism)**.

• **降号** (flat) \flat : 从矢量场 V 得到 1-形式 V^{\flat} . 给定矢量场 $V = V^1 \hat{\mathbf{e}}_1 + V^2 \hat{\mathbf{e}}_2 + V^3 \hat{\mathbf{e}}_3$,其对应的 1-形式为:

$$V^{\flat} = V_1 \omega^1 + V_2 \omega^2 + V_3 \omega^3$$

在正交坐标系中,由于基底是正交的,协变分量 V_i 和逆变分量 V^i 是相同的,即 $V_i = V^i$. 所以我们写作:

$$V^{\flat} = V_1 h_1 dq^1 + V_2 h_2 dq^2 + V_3 h_3 dq^3$$

其中 V_i 是矢量场 V 在标准正交基 $\hat{\mathbf{e}}_i$ 下的分量.

升号 (sharp) #: 从 1-形式 ω 得到矢量场 ω[#].

5.3.1 梯度

梯度 ∇f 是一个矢量场, 其定义来自于标量函数 f (一个 0-形式) 的外微分 df (一个 1-形式).

$$\nabla f \equiv (df)^{\sharp}$$

首先, 我们计算 f 的外微分:

$$df = \frac{\partial f}{\partial q^1} dq^1 + \frac{\partial f}{\partial q^2} dq^2 + \frac{\partial f}{\partial q^3} dq^3$$

为了将其转换为矢量场,我们需要将其表示为 $\sum_i V_i \omega^i = \sum_i V_i h_i dq^i$ 的形式.

$$df = \frac{1}{h_1} \frac{\partial f}{\partial q^1} (h_1 dq^1) + \frac{1}{h_2} \frac{\partial f}{\partial q^2} (h_2 dq^2) + \frac{1}{h_3} \frac{\partial f}{\partial q^3} (h_3 dq^3)$$
$$df = \left(\frac{1}{h_1} \frac{\partial f}{\partial q^1}\right) \omega^1 + \left(\frac{1}{h_2} \frac{\partial f}{\partial q^2}\right) \omega^2 + \left(\frac{1}{h_3} \frac{\partial f}{\partial q^3}\right) \omega^3$$

这是一个 1-形式,其在基底 ω^i 下的分量为 $\frac{1}{h_i} \frac{\partial f}{\partial q^i}$. 通过升号运算 \sharp ,我们得到对应的矢量场,其在标准正交基 $\hat{\mathbf{e}}_i$ 下的分量就是这些系数. 因此,梯度为:

$$\nabla f = \frac{1}{h_1} \frac{\partial f}{\partial q^1} \hat{\mathbf{e}}_1 + \frac{1}{h_2} \frac{\partial f}{\partial q^2} \hat{\mathbf{e}}_2 + \frac{1}{h_3} \frac{\partial f}{\partial q^3} \hat{\mathbf{e}}_3$$

5.3.2 旋度

旋度 $\nabla \times \mathbf{F}$ 作用于一个矢量场 \mathbf{F} , 产生另一个矢量场. 在微分形式中, 它通过以下两步定义:

- 1. 将矢量场 F 转换为其对应的 1-形式 F^{\flat} .
- 2. 对这个 1-形式取外微分,得到一个 2-形式 $d(F^{\flat})$.
- 3. 将得到的 2-形式通过霍奇星算子 ★ 转换为一个 1-形式, 再通过升号 # 转换为矢量场.

$$\nabla \times \mathbf{F} \equiv (\star (d(F^{\flat})))^{\sharp}$$

给定矢量场 $\mathbf{F} = F_1 \hat{\mathbf{e}}_1 + F_2 \hat{\mathbf{e}}_2 + F_3 \hat{\mathbf{e}}_3$.

第一步: 转换为 1-形式.

$$F^{\flat} = F_1 \omega^1 + F_2 \omega^2 + F_3 \omega^3 = (F_1 h_1) dq^1 + (F_2 h_2) dq^2 + (F_3 h_3) dq^3$$

第二步: 取外微分.

$$d(F^{\flat}) = d(F_1 h_1 dq^1 + F_2 h_2 dq^2 + F_3 h_3 dq^3)$$

利用 $d(fg) = df \wedge g + fdg$ 和 $d(dq^i) = 0$, 我们得到:

$$d(F^{\flat}) = d(F_1h_1) \wedge dq^1 + d(F_2h_2) \wedge dq^2 + d(F_3h_3) \wedge dq^3$$

展开 $d(F_i h_i) = \sum_i \frac{\partial (F_i h_i)}{\partial q^j} dq^j$ 并利用 $dq^j \wedge dq^i = -dq^i \wedge dq^j$ 和 $dq^i \wedge dq^i = 0$:

$$d(F^{\flat}) = \left(\frac{\partial (F_3 h_3)}{\partial q^2} - \frac{\partial (F_2 h_2)}{\partial q^3}\right) dq^2 \wedge dq^3$$

$$+ \left(\frac{\partial (F_1 h_1)}{\partial q^3} - \frac{\partial (F_3 h_3)}{\partial q^1}\right) dq^3 \wedge dq^1$$

$$+ \left(\frac{\partial (F_2 h_2)}{\partial q^1} - \frac{\partial (F_1 h_1)}{\partial q^2}\right) dq^1 \wedge dq^2$$

第三步: 应用霍奇星算子并转换回矢量场. 我们将上式用归一化的 2-形式基底 $\omega^i \wedge \omega^j = (h_i h_j) dq^i \wedge dq^j$ 表示.

$$\begin{split} d(F^{\flat}) &= \frac{1}{h_2 h_3} \left(\frac{\partial (F_3 h_3)}{\partial q^2} - \frac{\partial (F_2 h_2)}{\partial q^3} \right) \omega^2 \wedge \omega^3 \\ &+ \frac{1}{h_3 h_1} \left(\frac{\partial (F_1 h_1)}{\partial q^3} - \frac{\partial (F_3 h_3)}{\partial q^1} \right) \omega^3 \wedge \omega^1 \\ &+ \frac{1}{h_1 h_2} \left(\frac{\partial (F_2 h_2)}{\partial q^1} - \frac{\partial (F_1 h_1)}{\partial q^2} \right) \omega^1 \wedge \omega^2 \end{split}$$

现在应用霍奇星算子 $\star(\omega^2 \wedge \omega^3) = \omega^1$ 等:

$$\star(d(F^{\flat})) = \frac{1}{h_2 h_3} \left(\frac{\partial (F_3 h_3)}{\partial q^2} - \frac{\partial (F_2 h_2)}{\partial q^3} \right) \omega^1$$

$$+ \frac{1}{h_3 h_1} \left(\frac{\partial (F_1 h_1)}{\partial q^3} - \frac{\partial (F_3 h_3)}{\partial q^1} \right) \omega^2$$

$$+ \frac{1}{h_1 h_2} \left(\frac{\partial (F_2 h_2)}{\partial q^1} - \frac{\partial (F_1 h_1)}{\partial q^2} \right) \omega^3$$

这是一个 1-形式. 通过升号 # 运算, 我们得到旋度矢量场的表达式:

$$\nabla \times \boldsymbol{F} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{\mathbf{e}}_1 & h_2 \hat{\mathbf{e}}_2 & h_3 \hat{\mathbf{e}}_3 \\ \frac{\partial}{\partial q^1} & \frac{\partial}{\partial q^2} & \frac{\partial}{\partial q^3} \\ F_1 h_1 & F_2 h_2 & F_3 h_3 \end{vmatrix}$$

5.3.3 散度

散度 $\nabla \cdot \mathbf{F}$ 作用于一个矢量场 \mathbf{F} , 产生一个标量函数 (0-形式). 其定义如下:

$$\nabla \cdot \mathbf{F} \equiv \star d(\star(F^{\flat}))$$

给定矢量场 $\mathbf{F} = F_1 \hat{\mathbf{e}}_1 + F_2 \hat{\mathbf{e}}_2 + F_3 \hat{\mathbf{e}}_3$.

第一步: 将 F 转换为 1-形式 F^{\flat} .

$$F^{\flat} = F_1 \omega^1 + F_2 \omega^2 + F_3 \omega^3$$

第二步: 对 F^{\flat} 应用霍奇星算子,得到一个 2-形式.

$$\star (F^{\flat}) = F_1(\star \omega^1) + F_2(\star \omega^2) + F_3(\star \omega^3) = F_1(\omega^2 \wedge \omega^3) + F_2(\omega^3 \wedge \omega^1) + F_3(\omega^1 \wedge \omega^2)$$

用 dq 基底表示:

$$\star (F^{\flat}) = (F_1 h_2 h_3) dq^2 \wedge dq^3 + (F_2 h_3 h_1) dq^3 \wedge dq^1 + (F_3 h_1 h_2) dq^1 \wedge dq^2$$

第三步: 取外微分,得到一个 3-形式.

$$d(\star(F^{\flat})) = \frac{\partial (F_1 h_2 h_3)}{\partial q^1} dq^1 \wedge dq^2 \wedge dq^3 + \frac{\partial (F_2 h_3 h_1)}{\partial q^2} dq^2 \wedge dq^3 \wedge dq^1 + \frac{\partial (F_3 h_1 h_2)}{\partial q^3} dq^3 \wedge dq^1 \wedge dq^2$$

整理 wedge product 的顺序:

$$d(\star(F^{\flat})) = \left(\frac{\partial(F_1 h_2 h_3)}{\partial q^1} + \frac{\partial(F_2 h_3 h_1)}{\partial q^2} + \frac{\partial(F_3 h_1 h_2)}{\partial q^3}\right) dq^1 \wedge dq^2 \wedge dq^3$$

第四步: 再次应用霍奇星算子,将 3-形式转换为 0-形式(标量). 我们知道 $dq^1 \wedge dq^2 \wedge dq^3 = \frac{1}{h_1h_2h_3}$ vol. 所以 $\star (dq^1 \wedge dq^2 \wedge dq^3) = \frac{1}{h_1h_2h_3} \star (\text{vol}) = \frac{1}{h_1h_2h_3}.$ 因此,

$$\star d(\star(F^{\flat})) = \frac{1}{h_1h_2h_3} \left(\frac{\partial (F_1h_2h_3)}{\partial q^1} + \frac{\partial (F_2h_3h_1)}{\partial q^2} + \frac{\partial (F_3h_1h_2)}{\partial q^3} \right)$$

这就是散度的最终表达式:

$$abla \cdot oldsymbol{F} = rac{1}{h_1 h_2 h_3} \sum_{i=1}^3 rac{\partial}{\partial q^i} \left(F_i rac{h_1 h_2 h_3}{h_i}
ight)$$

5.3.4 Laplace 算子

拉普拉斯算子 $\nabla^2 f$ 作用于一个标量函数 f. 它被定义为梯度的散度 $\nabla^2 f \equiv \nabla \cdot (\nabla f)$. 在微分形式的语言中,这可以表示为:

$$\nabla^2 f \equiv \star d \star df$$

我们已经推导了梯度和散度的表达式,现在只需将它们结合起来. 令矢量场 $F = \nabla f$. 那么 F 的分量是:

$$F_i = \frac{1}{h_i} \frac{\partial f}{\partial q^i}$$

现在,将这个 F_i 代入我们上面得到的散度公式中:

$$\nabla^2 f = \nabla \cdot (\nabla f) = \frac{1}{h_1 h_2 h_3} \sum_{i=1}^3 \frac{\partial}{\partial q^i} \left(\left(\frac{1}{h_i} \frac{\partial f}{\partial q^i} \right) \frac{h_1 h_2 h_3}{h_i} \right)$$

$$\nabla^2 f = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q^1} \left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial q^1} \right) + \frac{\partial}{\partial q^2} \left(\frac{h_3 h_1}{h_2} \frac{\partial f}{\partial q^2} \right) + \frac{\partial}{\partial q^3} \left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial q^3} \right) \right]$$

这就是在任意正交坐标系下,拉普拉斯算子作用于标量函数 f 的最终表达式.

Feynman 积分法

Glasser 主定理

Lobachevsky 积分法

