Textless NLP towards language processing from raw audio

Emmanuel Dupoux

What

TEXTLESS NLP | Our research

Standard NLP

Textless NLP

Spoken language generation

Training AI models directly from raw audio recordings - no text or labels

^{2.} Nguyen et al. (2022)

Standard NLP

Textless NLP

Spoken language generation

Training AI models directly from raw audio recordings - no text or labels

Human infants

Textless NLP

1. Fisher dataset

2. Nguyen et al. (2022)

Textless NLP

Spoken language generation

Training AI models directly from raw audio recordings - no text or labels

Spoken language is the primary means of human communication¹

Yet, internet services are text based and struggle to capture nuances and richness of the oral modality.

Textless NLP

Spoken language generation

Training AI models directly from raw audio recordings - no text or labels

Spoken language is the primary means of human communication¹

Yet, internet services are text based and struggle to capture nuances and richness of the oral modality.

A simple solution? ASR+LM+TTS

Reproduce semantic aspect of the dialogue, but the expressivity and timing is wrong

Generating spoken dialogues with gSLM²

The model reproduces naturalistic turn taking behavior including laughter and backchanneling, which is important for smooth human/agents interactions.

- 1. Fisher dataset
- 2. Nguyen et al. (2022)

HOW

ASR+LM+TTS

Generative spoken language modeling

Self-supervised learning!

Zero Resource Speech Challenge (ZRC) series

Generative spoken language modeling

Evaluation

https://www.zerospeech.com

Zero Resource Speech Challenge (ZRC) series

Generative spoken language modeling

Evaluation

https://www.zerospeech.com

Zero Resource Speech Challenge (ZRC) series

Generative spoken language modeling

Evaluation

Chall.	Tasks	Train Data
2015 [9]	T1, T2	English (Buckeye 5h),
		Xitsonga (2h30)
2017	T1, T2	English (45h), French (24h),
		Mandarin (2h30), German
		(25h), Wolof (10h)
2019	T3.	English (15h+4h40), Indone-
		sian (15h+1h30)
2020	T1,T2,T3	reboot of ZR17, ZR19
2021a	T1,T4	English (Librispeech 960 or
		100)
2021b	T1,T4	idem plus speech coco

https://www.zerospeech.com

Audio Representation Learning

Audio Representation Learning

ZRC TASK 1:

Learning representations that encode linguistic information, and disregard non linguistic ones

TEXTLESS NLP | How

The encoder

Audio Representation Learning

ZRC TASK 1:

Learning representations that encode linguistic information, and disregard non linguistic ones

Evaluation: ABX discrimination

$$\underline{a}$$
 \underline{b} \underline{x} \underline{b} \underline{t}_{T1} \underline{b} \underline{t}_{T2}

$$d(a,x) < d(b,x)$$
?

Audio Representation Learning

ZRC TASK 1:

Learning representations that encode linguistic information, and disregard non linguistic ones

Evaluation: ABX discrimination

$$\frac{a \quad b \quad x}{bit_{T1} bet_{T1} bit_{T2}}$$

$$d(a,x) < d(b,x) ?$$

Main idea: information compression

- Spectral information (MFCC):
 20kbit/sec
- Telephone, speech codec:
 8kbit/sec (2.5x reduction)
- Text (phonemes):
 40bits/sec (200x reduction!)

TEXTLESS NLP | How

The encoder

Audio Representation Learning

- 1. Heck et al, 2015, 2017
- 2. Chorowski et al. 2019
- 3. Van den Oord, 2018; Kharitonov et al. 2020;
- 4. Hsu et al, 2021
- 5. Baevsky et al, 2020

Audio Representation Learning

Leaderboard

Dunbar, Hamilakis, Dupoux (submitted)

Dunba, Hamilakis, Dupoux (2022)

TEXTLESS NLP | How

Acoustic Unit Discovery (discrete representation learning)

Tied phone states?

The language model

Spoken Language Modeling

ZRC Task 4Learn the probabilistic distribution of speech

Evaluation:

Levels	Tasks
Syntactic	accept . judgment "they like" vs "they likes"
Lexical	spot-the-word "blick" vs "brick"

The language model

Spoken Language Modeling

Leaderboard

Nguyen et al (2022)

The language model

Spoken Language Modeling

Leaderboard

Nguyen et al (2022)

Discrete resynthesis

ZRC Task 3Resynthetize speech from a discrete code

Discrete resynthesis

ZRC Task 3Resynthetize speech from a discrete code

Evaluation:

• PER

Correlation between PER and MOS, R = .90-.95

Generative Spoken Language Modeling

Putting all together

Generative Spoken Language Modeling

Putting all together

Prosodic Generative Spoken Language Modeling

Expressive language modeling

Speech-tospeech applications

Emotion conversion

Conditional samples

Challenges

Noise and variability of real-world audio¹

Meaningful segment discovery

Data collection & curation

Noise robust invariant representations

Noise robust invariant representations

Something is wrong with frame based units!

	sWUGGY	sBLIMP	sSIMI
System			synth. libri.
CPC-big+km50+BERT-small	65.81	52.91	3.88 5.56
	65.94	53.02	3.02 0.06
CPC-big+km50+LSTM	66.13	53.32	4.42 7.56
	66.22	52.89	7.35 6.66
CPC-small+km50+BERT	70.69	54.26	2.99 6.68
	70.50	54.61	8.96 -1.55
CPC-big+km50+BERT	75.56	56.14	6.25 8.72
	75.51	56.16	5.17 1.75
Forced align BERT	92.19	63.72	7.92 4.54
	91.88	63.16	8.52 2.41
Phone BERT	97.90	66.78	9.86 16.11
	97.67	66.91	12.23 20.16
RoBERTa large	96.58	81.56	32.28 28.96
	96.25	82.11	33.16 27.82

ZRC Task 2Discover spoken terms and segment with it

ZRC Task 2Discover spoken terms and segment with it

ZRC Task 2Discover spoken terms and segment with it


```
+ le'vən
+ levən
+ levən
+ levən
ə levən
ə levən
ə levən
1 evən
levən
2 evən
2
```


ZRC Task 2Discover spoken terms and segment with it

Data

Most of existing speech data is text-based

Librispeech, common voice, Librilight (audiobooks)

Or formal speech

VoxPopuli, Oyez

The internet has a lot of casual speech

Podcasts, local radios, interactive video games

But large open source dataset have not yet been done

What is a second of the second

Why it matters

TEXT-BASED SERVICES

- Search
- Translate
- Question & Answer
- Recommend
- Describe

Trend of research publications on text-based NLP

Why it matters

SPEECH TO SPEECH SERVICES

- Search
- Translate
- Question & Answer
- Recommend
- Describe

More inclusive

Most languages have no written presence on the web.

More expressive

Intonation, rhythm, sarcasms, laughters, yawning, etc.

More ubiquitous

Online games, local radios, podcasts, metaverse.

Related projects

References

Zero resource speech challenge: Now rolling submissions!

Review paper: Dunbar, Hamilakis & Dupoux (2022). Self-supervised language learning from raw audio: Lessons from the Zero Resource Speech Challenge. JSTSP.

WebSite: www.zerospeech.com

Textless project at Meta

Blog post: https://ai.facebook.com/blog/generating-chit-chat-including-laughs-yawns-ums-and-other-nonverbal-cues-from-raw-audio/

Review paper. In progress!

<u>Textless library</u>: https://github.com/facebookresearch/textlesslib

Samples, papers and code: https://speechbot.github.io

Self supervised audio representations

Review paper: https://arxiv.org/abs/2205.10643

Speech to speech translation

Blog Post: https://ai.facebook.com/blog/advancing-direct-speech-to-speech-modeling-with-discrete-units/