PointNet Experiments

Model net on 3 surfaces 1000 points (όλα τα πειράματα έχουν εκτελεστεί με αλλαγή στη σχετική θέση των σημείων του συνόλου δοκιμής)

Τρόπος Αξιολόγησης

Για την αξιολόγηση του μοντέλου χρησιμοποιούνται οι παρακάτω μετρικές:

Precision (PositivePredictedValue)

$$PPV = \frac{TP}{TP + FP} = 1 - FDR$$

Recall (TruePositiveRate)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

f1-score

F1 score is the harmonic mean of precision and sensitivity $F_1 = 2 \times \frac{PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$

Support

Support είναι ο αριθμός των πραγματικών εμφανίσεων της κλάσης στο καθορισμένο σύνολο δεδομένων. Η ανισορροπημένη υποστήριξη στα δεδομένα εκπαίδευσης μπορεί να υποδηλώνει δομικές αδυναμίες στις αναφερόμενες βαθμολογίες του ταξινομητή και θα μπορούσε να υποδηλώνει την ανάγκη για στρωματοποιημένη δειγματοληψία ή επανεξισορρόπηση. Η υποστήριξη δεν αλλάζει μεταξύ των μοντέλων αλλά αντ 'αυτού διαγνώζει τη διαδικασία αξιολόγησης.

Confusion Matrix

Actual class Pre- dicted class	P	Ņ
P	TP	FP
N	ΕN	TN

Accuracy (overall)

accuracy (ACC)
$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

ModelNet40 (with 40 classes)

Dataset info

Το dataset αποτελείται από 40 κατηγορίες μοντέλων CAD με format ".off".

Είναι ήδη χωρισμένο σε train-test με κάποιες κλάσεις να έχουν 1000 εγγραφές για εκπαίδευση και 100 για έλεγχο και κάποιες άλλες 500 για εκπαίδευση και το ίδιο για τον έλεγχο. Περισσότερες πληροφορίες για το πλήθος των κλάσεων μπορούν να ληφθούν υπόψη και από την κολώνα support στο Classification Report.

Train-Test time

Για την εκπαίδευση του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 40 κλάσεις και για 15 εποχές ο χρόνος εκτέλεσης ήταν περίπου 14 ώρες.

Για τον έλεγχο (testing) του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 40 κλάσεις ο χρόνος εκτέλεσης ήταν περίπου 12 λεπτά.

Results-Performance

Normalized confusion matrix

Class	precision	recall	f1-score	support
airplane	0.94	1	0.97	100
bathtub	0.91	0.84	0.87	50
bed	0.91	0.86	0.88	100
bench	0.52	0.55	0.54	20
bookshelf	0.68	0.8	0.73	100
bottle	0.96	0.86	0.91	100
bowl	0.7	0.95	0.81	20
car	1	0.95	0.97	100
chair	0.95	0.92	0.93	100
cone	1	0.75	0.86	20

cup	0.53	0.5	0.51	20
curtain	0.39	0.55	0.46	20
desk	0.81	0.51	0.63	86
door	0.5	0.6	0.55	20
dresser	0.5	0.51	0.51	86
flower_pot	0	0	0	20
glass_box	0.78	0.84	0.81	100
guitar	0.99	0.79	0.88	100
keyboard	0.48	1	0.65	20
lamp	0.58	0.75	0.65	20
laptop	0.83	1	0.91	20
mantel	0.88	0.73	0.8	100
monitor	0.77	0.94	0.85	100
night_stand	0.75	0.57	0.65	86
person	0.65	0.75	0.7	20
piano	0.92	0.68	0.78	100
plant	0.66	0.91	0.77	100
radio	0.42	0.5	0.45	20
range_hood	1	0.79	0.88	100
sink	0.58	0.55	0.56	20
sofa	0.83	0.95	0.89	100
stairs	0.52	0.55	0.54	20
stool	0.5	0.55	0.52	20
table	0.73	0.95	0.83	100
tent	0.47	0.95	0.63	20
toilet	0.94	0.9	0.92	100
tv_stand	0.65	0.69	0.67	100
vase	0.8	0.73	0.76	100
wardrobe	0	0	0	20
хьох	0.53	0.45	0.49	20
accuracy			0.78	2468
macro avg	0.69	0.72	0.69	2468
weighted avg	0.79	0.78	0.78	2468

ModelNet10 (with 10 classes)

Dataset info

To dataset αποτελείται από 10 κατηγορίες μοντέλων CAD με format ".off".

Είναι ήδη χωρισμένο σε train-test με κάποιες κλάσεις να έχουν 1000 εγγραφές για εκπαίδευση και 100 για έλεγχο και κάποιες άλλες 500 για εκπαίδευση και το ίδιο για τον έλεγχο. Περισσότερες πληροφορίες για το πλήθος των κλάσεων μπορούν να ληφθούν υπόψη και από την κολώνα support στο Classification Report.

Train-Test time

Για την εκπαίδευση του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 10 κλάσεις και για 15 εποχές ο χρόνος εκτέλεσης ήταν περίπου 4 ώρες.

Για τον έλεγχο (testing) του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 10 κλάσεις ο χρόνος εκτέλεσης ήταν περίπου 3 λεπτά.

Results-Performance

Normalized confusion matrix

Class	precision	recall	f1-score	support	
bathtu	b 0	.95	0.82	0.88	50
be	d 0	.91	0.93	0.92	100
cha	ir 0	.98	0.99	0.99	100
des	k 0	.95	0.63	0.76	86
dresse	er	0.8	0.45	0.58	86
monito	or 0	.95	0.96	0.96	100
night_stan	d 0	.59	0.83	0.69	86
sof	a	0.9	0.95	0.93	100
tabl	e 0	.74	0.98	0.84	100
toile	e t 0	.95	0.92	0.93	100
accurac	у			0.86	908
macro av	g 0	.87	0.85	0.85	908
weighted av	g 0	.87	0.86	0.85	908

PointNet model to identify 3 surfaces (1000 points-rotation on all axis-big domain-16 epochs training)

Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

- Function A: z=2+sinx+cosy
- Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4
- Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=1000) στην περιοχή -12 < x < 12 και -12 < y < 12 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση.

File splitting(train-test)

- Ratio: 30%
- Τυχαίο διαχωρισμό από τα αρχεία
 - Number of records on train set: 359
 - Number of records on test set:153

Train-Test time

Για την εκπαίδευση του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 3 κλάσεις και για 16 εποχές ο χρόνος εκτέλεσης ήταν περίπου 4 λεπτά.

Για τον έλεγχο (testing) του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 3 κλάσεις ο χρόνος εκτέλεσης ήταν περίπου 10 δευτερόλεπτα.

Results-Performance (all axis xyz)

Παρατηρούμε ότι μπερδεύει την συνάρτηση Α με Β καθώς όπως βλέπουμε και από τις γραφικές τους αναπαραστάσεις μοιάζουν ιδιαιτέρως.

Classification report

Class	precision	recall	f1-score	support
0	0.9	0.86	0.88	153
1	0.87	0.93	0.9	153
2	1	0.97	0.99	153
accuracy			0.92	459
macro avg	0.92	0.92	0.92	459
weighted avg	0.92	0.92	0.92	459

Results-Performance (rotation only on z axis on test set)

Classification Report

Class	precision	recall	f1-score	support	
)	1	1	1	108
1	1	1	1	1	108
2	2	1	1	1	108
accuracy				1	324
macro avg		1	1	1	324
weighted avg		1	1	1	324

Results-Performance (rotation only on y axis on test set)

class	precision	ı	recall	f1-score	support
(0	0.74	0.88	0.81	108
1	1	0.85	0.69	0.77	108
2	2	1	1	1	108
accuracy				0.86	324
macro avg		0.86	0.86	0.86	324
weighted avg		0.86	0.86	0.86	324

Results-Performance (rotation only on X axis on test set)

Class	precision		recall	f1-score	support
(כ	0.84	0.53	0.65	108
1	1	0.68	1	0.81	108
2	2	1	0.9	0.95	108
accuracy				0.81	324
macro avg		0.84	0.81	0.8	324
weighted avg		0.84	0.81	0.8	324

PointNet model to identify 3 surfaces (without noise-400 points--small domain-15 epochs training)

Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

• Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \ \sigma=8, \ a=4$

• Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < 1 και 1 < y < 3 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση.

File splitting(train-test)

• Ratio: 30%

• Τυχαίο διαχωρισμό από τα αρχεία

Number of records on train set: 359

Number of records on test set:153

Train-Test time

Για την εκπαίδευση του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 3 κλάσεις και για 15 εποχές ο χρόνος εκτέλεσης ήταν περίπου 1 λεπτό.

Για τον έλεγχο (testing) του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 3 κλάσεις ο χρόνος εκτέλεσης ήταν περίπου 5 δευτερόλεπτα.

Results-Performance (all axis xyz)

Classification report

Class	precision	recall	f1-score	support
0	1	0.99	0.99	153
1	0.99	1	0.99	153
2	1	1	1	153
accuracy			1	459
macro avg	1	1	1	459
weighted avg	1	1	1	459

Results-Performance (rotation only on z axis on test set)

Classification Report

Class	precision	recall	f1-score	support	
	0	1	1	1	108
	1	1	1	1	108
	2	1	1	1	108
accuracy				1	324
macro avg		1	1	1	324
weighted avg		1	1	1	324

Results-Performance (rotation only on y axis on test set)

Class	precision	recall	f1-score	support

	0	1	1	1	108
	1	1	1	1	108
	2	1	1	1	108
accuracy				1	324
macro avg		1	1	1	324
weighted avg		1	1	1	324

Results-Performance (rotation only on X axis on test set)

Classification Report

Class	precision	recall	f1-score	support	
	0	1	1	1	108
	1	1	1	1	108
	2	1	1	1	108
accuracy				1	324
macro avg		1	1	1	324
weighted avg		1	1	1	324

PointNet model to identify 3 surfaces (with Noise-400 points- small domain-15 epochs training)

Creation of surfaces and noisy test dataset

Για την εκτέλεση των παρακάτω πειραμάτων έχει προστεθεί θόρυβος στο σύνολο ελέγχου (test set) και στους 3 άξονες *x,y,z*. Η προσθήκη του θορύβου γίνεται μέσω της δημιουργίας ένος διανύσματος με κανονική κατανομή, μέση τιμή 0 και τυπική απόκλιση το γινόμενο

a*meanD, όπου a ένας αριθμός που αλλάζουμε (πχ 0.15, 0.22 κλπ) και meanD η μέση τιμή της ευκλείδιας απόστασης μεταξύ των σημείων του point cloud.

Να σημειωθεί ότι γίνεται η χρήση του ήδη εκπαιδευμένου δικτύου από το προηγούμενο πείραμα.

Results-Performance (all axis xyz, std = 0.1)

Classification report

Class	precision	recall	f1-score	support
0	0.97	0.99	0.98	153
1	1	0.97	0.98	153
2	0.99	1	1	153
accuracy			0.99	459
macro avg	0.99	0.99	0.99	459
weighted avg	0.99	0.99	0.99	459

Results-Performance (all axis xyz, std = 0.15)

Class	precision		recall	f1-score	support
C)	0.91	0.97	0.94	153
1	1	1	0.9	0.95	153
2	2	0.97	1	0.99	153
accuracy				0.96	459
macro avg		0.96	0.96	0.96	459
weighted avg		0.96	0.96	0.96	459

Results-Performance (all axis xyz, std = 0.2)

Class	precision	recall	f1-score	support
0	0.66	0.7	0.68	153
1	1	0.65	0.79	153

	2	0.77	1	0.87	153
accuracy				0.78	459
macro avg		0.81	0.78	0.78	459
weighted avg		0.81	0.78	0.78	459

Results-Performance (all axis xyz, std = 0.25)

Class	precision	recall	f1-score	support
0	0.64	0.69	0.66	153
1	1	0.6	0.75	153
2	0.76	1	0.86	153
accuracy			0.76	459
macro avg	0.8	0.76	0.76	459
weighted avg	0.8	0.76	0.76	459

Results-Performance (all axis xyz, std = 0.3)

Class	precision		recall	f1-score	support
0		0.53	0.56	0.54	153
1		1	0.4	0.57	153
2		0.65	1	0.78	153
accuracy				0.65	459
macro avg		0.72	0.65	0.63	459
weighted avg		0.72	0.65	0.63	459

PointNet model to identify 3 surfaces (without Noise-400 points -occlusion-15 epochs training)

1. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

• Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4

• Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < -0.5 και 0.5 < x < 1, 1 < y < 3 τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Επιλογή με τυχαίο τρόπο του 30% αυτών των αρχείων ως συνόλο δοκιμής (Number of records on test set:153)

Results-Performance

Class	precision	recall	f1-score	support	
(0	1	1	1	153
1	1	1	1	1	153
2	2	1	1	1	153
accuracy				1	459
macro avg		1	1	1	459
weighted avg		1	1	1	459

2. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

- Function A: z=2+sinx+cosy
- Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4
- Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < 1, 1 < y < 1.5 και 2.5 < y < 3 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Επιλογή με τυχαίο τρόπο του 30% αυτών των αρχείων ως συνόλο δοκιμής (Number of records on test set:153)

Results-Performance

Classification report

Class	precision	recall	f1-score	support	
C)	1	1	1	153
1	1	1	1	1	153
2	2	1	1	1	153
accuracy				1	459
macro avg		1	1	1	459
weighted avg		1	1	1	459

3. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

• Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4

Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < -0.5 και 0.5 < x < 1, 1 < y < 1.5 και 2.5 < y < 3 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Επιλογή με τυχαίο τρόπο του 30% αυτών των αρχείων ως συνόλο δοκιμής (Number of records on test set:153)

Results-Performance

Classification report

Class	precision	recall	f1-score	support	
	0	1	1	1	153
	1	1	1	1	153
	2	1	1	1	153
accuracy				1	459
macro avg		1	1	1	459
weighted avg		1	1	1	459

4 .Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \ \sigma=8, a=4$

• Function C : z=x2+0.25*y2

Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < -0.5 και 0.5 < x < 1 , 2 < y < 3 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Επιλογή με τυχαίο τρόπο του 30% αυτών των αρχείων ως συνόλο δοκιμής (Number of records on test set:153)

Results-Performance

Class	precision		recall	f1-score	support
()	0.5	0.99	0.66	153
1	_	0.99	1	1	153
2	<u>.</u>	0	0	0	153
accuracy				0.66	459
macro avg		0.5	0.66	0.55	459

weighted avg	0.5	0.66	0.55	459
Weighted avg	0.5	0.00	0.55	100

PointNet model to identify 3 surfaces (with Noise-400 points -occlusion-15 epochs training)

1. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

• Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4

• Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < -0.5 και 0.5 < x < 1, 1 < y < 3 τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Από αυτά επιλέγονται με τυχαίο τρόπο το 30% και εισάγονται για έλεγχο.

Για την εκτέλεση των παρακάτω πειραμάτων έχει προστεθεί θόρυβος στο σύνολο ελέγχου (test set) και στους 3 άξονες x,y,z. Η προσθήκη του θορύβου γίνεται μέσω της δημιουργίας ένος διανύσματος με κανονική κατανομή, μέση τιμή 0 και τυπική απόκλιση το γινόμενο a*meanD, όπου a ένας αριθμός που αλλάζουμε (πχ 0.15, 0.22 κλπ) και meanD η μέση τιμή της ευκλείδιας απόστασης μεταξύ των σημείων του point cloud.

Να σημειωθεί ότι γίνεται η χρήση του ήδη εκπαιδευμένου δικτύου από το προηγούμενο πείραμα.

Results-Performance (std = 0.1)

Class	precision	recall	f1-score	support
0	0.82	1	0.9	153
1	1	0.78	0.88	153
2	1	1	1	153
accuracy			0.93	459
macro avg	0.94	0.93	0.93	459
weighted avg	0.94	0.93	0.93	459

Results-Performance (std = 0.2)

Classification report

Class	precision	recall	f1-score	support
0	0.62	0.9	0.73	153
1	1	0.44	0.61	153
2	0.91	. 1	0.95	153
accuracy			0.78	459
macro avg	0.84	0.78	0.76	459
weighted avg	0.84	0.78	0.76	459

2. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

• Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4

• Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < 1, 1 < y < 1.5 και 2.5 < y < 3 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Από αυτά επιλέγονται με τυχαίο τρόπο το 30% και εισάγονται για έλεγχο.

Για την εκτέλεση των παρακάτω πειραμάτων έχει προστεθεί θόρυβος στο σύνολο ελέγχου (test set) και στους 3 άξονες *x,y,z*. Η προσθήκη του θορύβου γίνεται μέσω της δημιουργίας ένος διανύσματος με κανονική κατανομή, μέση τιμή 0 και τυπική απόκλιση το γινόμενο a*meanD, όπου a ένας αριθμός που αλλάζουμε (πχ 0.15, 0.22 κλπ) και meanD η μέση τιμή της ευκλείδιας απόστασης μεταξύ των σημείων του point cloud.

Να σημειωθεί ότι γίνεται η χρήση του ήδη εκπαιδευμένου δικτύου από το προηγούμενο πείραμα.

Results-Performance (std = 0.1)

Function A: z=2+sinx+cosy

Class	precis	ion recall	f	1-score	support
	0	0.89	1	0.94	153

	1	1	0.88	0.94	153
	2	1	1	1	153
accuracy				0.96	459
macro avg		0.96	0.96	0.96	459
weighted avg		0.96	0.96	0.96	459

Results-Performance (std = 0.2)

Classification report

Class	precision	recall	f1-score	support
0	0.6	0.84	0.7	153
1	<u>-</u>	L 0.44	0.61	153
2	0.86	5 1	0.93	153
accuracy			0.76	459
macro avg	0.82	0.76	0.75	459
weighted avg	0.82	0.76	0.75	459

3. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

- Function A: z=2+sinx+cosy
- Function B: $z=a*exp(-(x2+y2)/\sigma) \ \sigma=8, \ a=4$

• Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < -0.5 και 0.5 < x < 1, 1 < y < 1.5 και 2.5 < y < 3 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Από αυτά επιλέγονται με τυχαίο τρόπο το 30% και εισάγονται για έλεγχο.

Για την εκτέλεση των παρακάτω πειραμάτων έχει προστεθεί θόρυβος στο σύνολο ελέγχου (test set) και στους 3 άξονες x,y,z. Η προσθήκη του θορύβου γίνεται μέσω της δημιουργίας ένος διανύσματος με κανονική κατανομή, μέση τιμή 0 και τυπική απόκλιση το γινόμενο a*meanD, όπου a ένας αριθμός που αλλάζουμε (πχ 0.15, 0.22 κλπ) και meanD η μέση τιμή της ευκλείδιας απόστασης μεταξύ των σημείων του point cloud.

Να σημειωθεί ότι γίνεται η χρήση του ήδη εκπαιδευμένου δικτύου από το προηγούμενο πείραμα.

Results-Performance (std = 0.1)

Class	precision	recall	f1-score	support	
-------	-----------	--------	----------	---------	--

	0	0.88	1	0.94	153
	1	1	0.87	0.93	153
	2	1	1	1	153
accuracy				0.96	459
macro avg		0.96	0.96	0.96	459
weighted avg		0.96	0.96	0.96	459

Results-Performance (std = 0.2)

Classification report

Class	precision		recall	f1-score	support
C)	0.5	0.67	0.57	153
1		1	0.33	0.49	153
2) -	0.75	1	0.86	153
accuracy				0.66	459
macro avg		0.75	0.66	0.64	459
weighted avg		0.75	0.66	0.64	459

4. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

29

Διαδικασία υλοποίησης

3 συναρτήσεις

- Function A: z=2+sinx+cosy
- Function B: $z=a*exp(-(x2+y2)/\sigma)$ $\sigma=8$, $\alpha=4$
- Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή -1 < x < -0.5 και 0.5 < x < 1, 2 < y < 3 για όλες τις συναρτήσεις με γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Από αυτά επιλέγονται με τυχαίο τρόπο το 30% και εισάγονται για έλεγχο.

Για την εκτέλεση των παρακάτω πειραμάτων έχει προστεθεί θόρυβος στο σύνολο ελέγχου (test set) και στους 3 άξονες x,y,z. Η προσθήκη του θορύβου γίνεται μέσω της δημιουργίας ένος διανύσματος με κανονική κατανομή, μέση τιμή 0 και τυπική απόκλιση το γινόμενο a*meanD, όπου a ένας αριθμός που αλλάζουμε (πχ 0.15, 0.22 κλπ) και meanD η μέση τιμή της ευκλείδιας απόστασης μεταξύ των σημείων του point cloud.

Να σημειωθεί ότι γίνεται η χρήση του ήδη εκπαιδευμένου δικτύου από το προηγούμενο πείραμα.

Results-Performance (std=0.1)

Classification report

Class	precision	recall	f1-score	support
0	0.5	1	0.66	153
1	1	0.98	0.99	153
2	0	0	0	153
accuracy			0.66	459
macro avg	0.5	0.66	0.55	459
weighted avg	0.5	0.66	0.55	459

PointNet model to identify 3 surfaces (without noise-400 points-new domain-15 epochs training)

Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

• Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4

• Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή

- -1<x<3 και -1<y<3, για την συνάρτηση Function A: z=2+sinx+cosy
- -2.4<x<1.6 και -0.5<y<3, για την συνάρτηση Function B: z=a*exp(-(x2+y2)/σ) σ=8, a=4
- -0.5<x<3 και -1.8<y<4.5, για την συνάρτηση Function C : z=x2+0.25*y2

Για την δημιουργία των σημείων χρησιμοποιήθηκε γεννήτρια φευδοτυχαίων αριθμών.

Προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [0, 45, 90, 135, 180, 225, 270, 315] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση.

Train model

- Τυχαίο διαχωρισμό από τα αρχεία
 - Number of records on train set: 512

Validation curve to understand how good is the model generalize and understand on how many epochs to stop:

Train-Test time

Για την εκπαίδευση του δικτύου σε περιβάλλον με κάρτα γραφικών NVIDIA GTX-1060(6GB) για τις 3 κλάσεις και για 15 εποχές ο χρόνος εκτέλεσης ήταν περίπου 3 λεπτά.

Test model

Για τον έλεγχο του μοντέλου δημιουργούνται νέα δεδομένα με την λογική που χρησιμοποιήθηκε παραπάνω μόνο που επιλέγονται μοίρες όπους δεν έχε ξανα-δει το μοντέλο. Συγκεκριμένα γίνεται προσθήκη περιστροφών και στους 3 άξονες (*x,y,z*) κατά [22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, 337.5] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Από αυτά επιλέγεται το 30% τυχαία ως σύνολο ελέγχου. Να σημειωθεί ότι όλες οι εγγραφές του συνόλου ελέγχου εμφανίζονται πρώτη φορά στο μοντέλο(εχει προπονηθει σε διαφορετικές μοιρες)

Results-Performance

Class precision recall	f1-score	support
------------------------	----------	---------

	0	1	1	1	153
	1	1	1	1	153
	2	1	1	1	153
accuracy				1	459
macro avg		1	1	1	459
weighted avg		1	1	1	459

PointNet model to identify 3 surfaces (with Noise-400 points- new domain-15 epochs training)

Creation of surfaces and noisy test dataset

Για την εκτέλεση των παρακάτω πειραμάτων έχει προστεθεί θόρυβος στο σύνολο ελέγχου (test set) και στους 3 άξονες *x,y,z*. Η προσθήκη του θορύβου γίνεται μέσω της δημιουργίας ένος διανύσματος με κανονική κατανομή, μέση τιμή 0 και τυπική απόκλιση το γινόμενο a*meanD, όπου a ένας αριθμός που αλλάζουμε (πχ 0.15, 0.22 κλπ) και meanD η μέση τιμή της ευκλείδιας απόστασης μεταξύ των σημείων του point cloud.

Να σημειωθεί ότι γίνεται η χρήση του ήδη εκπαιδευμένου δικτύου από το προηγούμενο πείραμα.

Results-Performance (std = 0.1)

Class	precision	recall	f1-score	support	
0	1	1	1	1	153
1	1	1	1	1	153
2	1	1	1	1	153
accuracy				1	459
macro avg	1	1	1	1	459
weighted avg	1	1	1	1	459

Results-Performance (std = 0.15)

Class		precision	recall	f1-score	support	
	0	0.94	1.00	0.97		153
	1	1.00	0.94	0.97		153
	2	1.00	1.00	1.00		153
accuracy				0.98		459
macro avg		0.98	0.98	0.98		459
weighted avg		0.98	0.98	0.98		459

Results-Performance (std = 0.2)

Class		precision	recall	f1-score	support	
	0	0.78	1.00	0.88		153
	1	1.00	0.72	0.84		153
	2	1.00	1.00	1.00		153
accuracy				0.91		459
macro avg		0.93	0.91	0.90		459
weighted avg		0.93	0.91	0.90		459

Results-Performance (std = 0.25)

class		precision	recall	f1-score	sup	port	
	0	0.67	1.00	0.80			153
	1	1.00	0.50	0.67			153
	2	1.00	1.00	1.00			153
accuracy				0.83			459
macro avg		0.89	0.83	0.82			459
weighted avg		0.89	0.83	0.82			459

PointNet model to identify 3 surfaces (without Noise-400 points-new domain-occlusion-15 epochs training)

1. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

- Function A: z=2+sinx+cosy
- Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4
- Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή

- -1<x<1 και -1<y<3(200 points), 1<x<3 και -1<y<0(50 points) για την συνάρτηση Function A:
 z=2+sinx+cosy
- -1<x<1.6 και -0.5<y<3(200 points), -2.4<x<-1 και 2<y<3(50 points) για την συνάρτηση Function B:
 z=a*exp(-(x2+y2)/σ) σ=8, a=4
- -0.5<x<1 και -1.8<y<4.5(200 points), 1<x<3 και -1.8<y<0(50 points) για την συνάρτηση Function C : z=x2+0.25*y2

Για τον έλεγχο του μοντέλου δημιουργούνται νέα δεδομένα με την λογική που χρησιμοποιήθηκε παραπάνω μόνο που επιλέγονται μοίρες όπους δεν έχε ξανα-δει το μοντέλο. Συγκεκριμένα γίνεται προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, 337.5] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Από αυτά επιλέγεται το 30% τυχαία ως σύνολο ελέγχου. Να σημειωθεί ότι όλες οι εγγραφές του συνόλου ελέγχου εμφανίζονται πρώτη φορά στο μοντέλο(εχει προπονηθει σε διαφορετικές μοιρες)

Results-Performance

Classification report

class		precision	recall	f1-score	support	
	0	0.82	0.91	0.86		153
	1	0.92	1.00	0.96		153
	2	1.00	0.80	0.89		153
accuracy				0.90		459
macro avg		0.91	0.90	0.90		459
weighted avg		0.91	0.90	0.90		459

PointNet model to identify 3 surfaces (with Noise-400 points-new domain-occlusion-15 epochs training)

1. Creation of surfaces and dataset

Για τις απαιτήσεις της υλοποίησης του έργου δημιουργήθηκε σύνολο δεδομένων που αποτελείται από point clouds σε format ".ply".

Διαδικασία υλοποίησης

3 συναρτήσεις

Function A: z=2+sinx+cosy

• Function B: $z=a*exp(-(x2+y2)/\sigma) \sigma=8$, a=4

• Function C : z=x2+0.25*y2

Δημιουργία πινάκων μορφής numpy N*3 (με N=400) στην περιοχή

- -1<x<1 και -1<y<3(200 points), 1<x<3 και -1<y<0(50 points) για την συνάρτηση Function A:
 z=2+sinx+cosy
- -1<x<1.6 και -0.5<y<3(200 points), -2.4<x<-1 και 2<y<3(50 points) για την συνάρτηση Function B:
 z=a*exp(-(x2+y2)/σ) σ=8, a=4
- -0.5<x<1 και -1.8<y<4.5(200 points), 1<x<3 και -1.8<y<0(50 points) για την συνάρτηση Function C :
 z=x2+0.25*y2

Για τον έλεγχο του μοντέλου δημιουργούνται νέα δεδομένα με την λογική που χρησιμοποιήθηκε παραπάνω μόνο που επιλέγονται μοίρες όπους δεν έχε ξανα-δει το μοντέλο. Συγκεκριμένα γίνεται προσθήκη περιστροφών και στους 3 άξονες (x,y,z) κατά [22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 292.5, 337.5] μοίρες και δημιουργία 512 αρχείων για κάθε κλάση. Για την εκτέλεση των παρακάτω πειραμάτων έχει προστεθεί θόρυβος στο σύνολο ελέγχου (test set) και στους 3 άξονες x,y,z. Η προσθήκη του θορύβου γίνεται μέσω της δημιουργίας ένος διανύσματος με κανονική κατανομή, μέση τιμή 0 και τυπική απόκλιση το γινόμενο a*meanD, όπου a ένας αριθμός που αλλάζουμε (πχ 0.15, 0.22 κλπ) και meanD η μέση τιμή της ευκλείδιας απόστασης μεταξύ των σημείων του point cloud. Από αυτά επιλέγεται το 30% τυχαία ως σύνολο ελέγχου. Να σημειωθεί ότι όλες οι εγγραφές του συνόλου ελέγχου εμφανίζονται πρώτη φορά στο μοντέλο(εχει προπονηθει σε διαφορετικές μοιρες)

Results-Performance (std = 0.1)

class	precision	recall	f1-score	support
0	0.76	0.99	0.86	153

	1 0.99	1.00	0.99	153
	2 1.00	0.68	0.81	153
accuracy			0.89	459
macro avg	0.91	0.89	0.89	459
weighted avg	0.91	0.89	0.89	459

Results-Performance (std = 0.15)

Classification report

class		precision	recall	f1-score	S	upport	
	0	0.71	1.00	0.83			153
	1	1.00	0.90	0.94			153
	2	1.00	0.69	0.81			153
accuracy				0.86			459
macro avg		0.90	0.86	0.86			459
weighted avg		0.90	0.86	0.86			459

Results-Performance (std = 0.2)

class		precision	recall	f1-score	support	
	0	0.56	1.00	0.72		153
	1	1.00	0.48	0.65		153
	2	1.00	0.73	0.84		153
accuracy				0.74		459
macro avg		0.85	0.74	0.74		459
weighted avg		0.85	0.74	0.74		459