

Analyse des Patentportfolios des ETH-Bereichs

Zusammenfassung

Basel, 3. September 2018



# Auftraggeber

ETH-Rat

# Herausgeber

**BAK Economics AG** 

# Projektleitung

Kai Gramke

#### Redaktion

Klaus Jank

## **Produktion**

Roger Fatton, Mücteba Karamustafa

# Kommunikation

Marc Bros de Puechredon

# Copyright

Copyright © 2018 by BAK Economics AG Alle Rechte liegen beim Auftraggeber

# Zusammenfassung

Forschung, Entwicklung und Innovation sind zentrale Grundlagen der Schweizer Wettbewerbsfähigkeit. Der technologische Fortschritt ist gegenwärtig in vielen Industrieländern die wichtigste Herausforderung und zunehmend rückt die Frage nach dem "Return on Investment" in den Mittelpunkt der Diskussion. Obwohl die zum Teil öffentlich finanzierte Grundlagenforschung des ETH-Bereichs nicht direkt mit konkreten Ergebnissen im Sinne von Produkten und Dienstleistungen in Verbindung gebracht werden kann, sind Analysen auf Basis der entstanden Patente durchaus möglich und sinnvoll. Aufgrund des strukturierten Prozesses von Patentanmeldungen und erteilungen sowie der enormen Daten- und Informationsmengen, die in jeder Patentanmeldung zur Verfügung stehen, gelten Patente als einer der vielversprechendsten Analysebereiche.

Die vorliegende Studie widmet sich ganz dem Patentindikator, aber es liegt auf der Hand, dass damit nur der Teil der Innovationsleistung des ETH-Bereichs abgedeckt ist, der marktfähig und patentierbar ist und es sein sollte. Weitere Innovationen des ETH-Bereichs, zum Beispiel im Bereich der öffentlichen Güter oder der Lehrmethodik, können nicht abgedeckt werden.

#### Nationaler und internationaler Vergleich mit Fokus auf Patentqualität

Der Schwerpunkt klassischer Patentanalysen ist die Messung der Patentmenge pro Institution oder Unternehmen, ohne Berücksichtigung der Relevanz der einzelnen Erfindungen - jedes Patent wird gezählt. Die Anwendung von Big-Data-Methoden ermöglicht erstmals eine völlig neue Nutzung und Analyse von Patenten, bei der die Patentqualität für jedes einzelne Patent weltweit bewertet wird. Darüber hinaus können die Patentaktivitäten für die spezifischen Technologieschwerpunkte des ETH-Bereichs analysiert werden.

Die vorliegende Studie wendet diese neuen Konzepte und wissenschaftlichen Ansätze zur Beantwortung der folgenden Fragen an:

- Wie bedeutend ist der ETH-Bereich in spezifischen Technologien für die Wissenschafts- und Forschungslandschaft der Schweiz?
- Wie bedeutend ist der ETH-Bereich in Weltklasse-Patenten in spezifischen Technologien für die Wissenschafts- und Forschungslandschaft in der Schweiz?
- Wo steht der ETH-Bereich im Vergleich zu den wichtigsten internationalen Forschungseinrichtungen in den ausgewählten Technologien?

Die Analyse wurde anhand von 17 spezifisch definierten Technologien durchgeführt und vergleicht die Forschungsqualität in Bezug auf Patente des ETH-Bereichs mit anderen Forschungseinrichtungen und den Unternehmen in der Schweiz sowie mit einer Auswahl der zehn wichtigsten internationalen Forschungseinrichtungen.

#### Zwei Drittel aller Patente des ETH-Bereichs werden mit 17 Technologien abgedeckt

1037 Patente waren Ende 2017 im Besitz des ETH-Bereichs. Basierend auf dieser Stichprobe wurden die Technologien in einem mehrstufigen Prozess über mehrere Monate hinweg unter Beteiligung von Experten aller beteiligten Institutionen des ETH-Bereichs, des ETH-Rates, des Eidgenössischen Instituts für Geistiges Eigentum, von BAK Economics und EconSight definiert. Technologien wurden vorgeschlagen, näherungsweise mit den zugehörigen Patenten berechnet und anschliessend so verändert und verfeinert, dass insgesamt 17 Technologien nach den folgenden Kriterien definiert werden konnten:

- Ein signifikanter Teil der gesamten Patentaktivitäten des ETH-Bereichs sollte abgedeckt sein.
- Die Technologieschwerpunkte der einzelnen Institute des ETH-Bereichs sollten einbezogen sein.
- Die strategischen Schwerpunkte des ETH-Bereichs sollten abgedeckt sein.

671 aktive ETH-Patente wurden den 17 Technologien im Jahr 2017 zugeordnet. Die restlichen 366 Patente stammen aus sehr unterschiedlichen Forschungsbereichen, deren Bandbreite es unmöglich macht, sie zu Technologien mit signifikantem Patent-volumen zu gruppieren, die national und international vergleichbar sind. Somit konnten zwei Drittel aller Patente identifiziert und den 17 Technologien zugeordnet werden. Einige Patente werden mehr als einer Technologie zugeordnet und daher mehrfach gezählt. Diese beabsichtigten Überschneidungen zwischen den Technologien führen zu insgesamt 910 Patentzählungen bei der Aggregation der 17 Technologien.

#### Ein Drittel aller analysierten Patente des ETH Bereichs sind Weltklassepatente

Die 17 Technologien lassen sich grob in Digital-/Datentechnologien, Fertigungs-/Materialtechnologien, Systeme, Life Sciences und Energie unterteilen. Die folgende Tabelle zeigt die Technologien mit den jeweils identifizierten Patenten und Weltklassepatenten.

Tab. 1-1 Technologieprofil des ETH-Bereichs

| Technologiefeld     | Technologie                             | Gesamt-<br>patente | Weltklasse-<br>patente | Patent<br>Effizienz | Rang ETH-<br>Bereich in<br>der Schweiz |
|---------------------|-----------------------------------------|--------------------|------------------------|---------------------|----------------------------------------|
| Digital / Data      | Security Elements                       | 63                 | 17                     | 27%                 | 4                                      |
| Digital / Data      | Quantum Technologies                    | 22                 | 7                      | 32%                 | 1                                      |
| Digital / Data      | Digital Image Analysis                  | 81                 | 19                     | 23%                 | 1                                      |
| Manufact./Materials | Advanced Materials                      | 100                | 57                     | 57%                 | 1                                      |
| Manufact./Materials | Nanostructures                          | 132                | 48                     | 36%                 | 1                                      |
| Manufact./Materials | Additive Manufacturing                  | 34                 | 0                      | 0%                  | - *                                    |
| Systems             | Mass Spectroscopy                       | 59                 | 12                     | 20%                 | 2                                      |
| Systems             | Drones                                  | 11                 | 8                      | 73%                 | 1                                      |
| Systems             | Radiation Detectors                     | 29                 | 16                     | 55%                 | 1                                      |
| Life Sciences       | Biosensors, Lab-on-a-Chip. Bioprinting  | 53                 | 16                     | 30%                 | 2                                      |
| Life Sciences       | Wearables Bionics                       | 40                 | 9                      | 23%                 | 1                                      |
| Life Sciences       | Radiation Diagnosis and Therapy         | 50                 | 22                     | 44%                 | 1                                      |
| Life Sciences       | Protein Engineering                     | 122                | 40                     | 33%                 | 4                                      |
| Life Sciences       | Drug Discovery Systems Biology          | 19                 | 1                      | 5%                  | 7                                      |
| Life Sciences       | Pharmaceutically active Subs.           | 24                 | 1                      | 4%                  | 45                                     |
| Energy              | Organic Perovskite Tandem Photovoltaics | 43                 | 24                     | 56%                 | 2                                      |
| Energy              | Waste Water, Biomass, Carbon Capture    | 28                 | 14                     | 50%                 | 2                                      |
| Total               |                                         | 910                | 311                    | 34%                 |                                        |

<sup>\*</sup> nicht im Rang aufgrund fehlender Weltklassepatente in dieser Technologie Quelle: BAK Economics, IGE, PatentSight

Ein Drittel aller analysierten Patente können als Weltklassepatente eingestuft werden. Weltklassepatente sind die weltweit höchstbewerten 10% der Patente pro Technologie. Die Patentbewertung basiert auf einem neuen Big-Data-Ansatz, der jedes Patent weltweit nach technologischer Relevanz (basierend auf den Zitierungen Dritter) und Marktabdeckung (Anzahl der vom Patentschutz abgedeckten Länder) identifiziert und bewertet. Der Analyseschwerpunkt dieser Studie liegt auf den Weltklassepatenten.

Nationaler Vergleich - ETH-Bereich an erster Stelle in 8 der 17 Technologien im Vergleich zu Schweizer Unternehmen und anderen Forschungseinrichtungen

Der nationale Vergleich des ETH-Bereichs mit Schweizer Unternehmen in Weltklassepatenten zeigt, dass der ETH-Bereich in 8 der 17 Technologien den ersten Platz und in sechs weiteren Technologien einen Platz unter den ersten fünf belegt (Tab. 1-1). Im Vergleich zu Unternehmen und anderen Forschungseinrichtungen in der Schweiz verfügt der ETH-Bereich über die meisten Weltklassepatente in einer Vielzahl von Technologien wie Quantentechnologie, Bildanalyse, Strahlendiagnose und Therapie.

#### Hohe Qualität der Patentstruktur

Die Strukturierung des Patentportfolios in Dezilen, von den besten 10% bis zu den schlechtesten 10%, zeigt in jeder Technologie die überdurchschnittliche Qualität der Patentstruktur des ETH-Bereichs. In 12 Technologien sind 50% der Patente von sehr hoher Qualität und bei den Energietechnologien, Drohnen und Strahlungsdetektoren machen die oberen beiden Dezile mehr als 70% der Patente aus. Darüber hinaus sind in den unteren Dezilen jeweils nur sehr wenige Patente zu finden. Dies zeigt deutlich die überdurchschnittliche Qualität des Patentportfolios des ETH-Bereichs.



Chart 1-1 Patentstruktur des ETH-Bereichs nach Technologie und Qualität, 2017

Quelle: BAK Economics, IGE, PatentSight

## Internationaler Vergleich - Fokus auf Weltklassepatente

Die internationale Analyse wird ausschliesslich für Weltklassepatente durchgeführt. Patentanalysen auf der Grundlage von Gesamtpatentzahlen führen in der Regel zu unbefriedigenden Ergebnissen und Verzerrungseffekten aufgrund länderspezifischer Unterschiede in den Patentierungssystemen. So wird beispielsweise geistiges Eigentum in Japan traditionell viel früher als in anderen Ländern patentiert. In China werden Forscher dazu angeregt, möglichst viel zu patentieren, um die Bedeutung des Forschungsstandorts China zu steigern. Die einfache Messung der Patentaktivität würde die Bedeutung bestimmter Länder überbewerten und das Gesamtbild verzerren.

Die folgende Tabelle zeigt die Anzahl der Gesamtpatente und der Weltklassepatente für die 10 ausgewählten internationalen Forschungsinstitutionen. Diese Institutionen besitzen insgesamt fast 42'000 Patente in den 17 Technologien. Allein die Chinesische Akademie der Wissenschaften besitzt 19'000 dieser Patente und verzerrt die Analyse aufgrund des politischen Drucks hinter den chinesischen Patentaktivitäten.

Tab. 1-2 Patentübersicht für 10 internationale Forschungseinrichtungen und den ETH-Bereich, Weltklassepatente und Gesamtpatente, 2017

| Institution                         | Gesamtpatente | Weltklasse-<br>patente | Patent Effizienz |
|-------------------------------------|---------------|------------------------|------------------|
| Chinese Academy of Sciences         | 19'124        | 441                    | 2%               |
| University of California System     | 5'164         | 949                    | 18%              |
| Tsinghua University                 | 4'968         | 531                    | 11%              |
| CNRS                                | 2'925         | 319                    | 11%              |
| MIT                                 | 2'308         | 868                    | 38%              |
| Fraunhofer                          | 1'820         | 184                    | 10%              |
| Stanford University                 | 1'728         | 255                    | 15%              |
| Harvard                             | 1'563         | 807                    | 52%              |
| Japan Science and Technology Agency | 1'158         | 110                    | 9%               |
| ETH-Bereich                         | 910           | 311                    | 34%              |
| University of Oxford                | 431           | 142                    | 33%              |

Quelle: BAK Economics, IGE, PatentSight

#### ETH-Bereich mit dritthöchster Patenteffizienz

Dennoch liefert der grundsätzliche Vergleich der Gesamtpatente und Weltklassepatente einige wertvolle Erkenntnisse. Obwohl sich die Anzahl der Gesamtpatente im Vergleich der Institutionen sehr stark unterscheidet, sind sie in Bezug auf Weltklassepatente vergleichsweise nahe beieinander. Folglich variiert die Patenteffizienz (Anteil der Weltklassepatente an den Gesamtpatenten) zwischen den Institutionen. Der ETH-Bereich hat nach Harvard und MIT die dritthöchste Patenteffizienz.

# ETH-Bereich in mehr als einem Drittel aller analysierten Technologien unter den Führenden

Der internationale Vergleich mit einigen der renommiertesten Universitäten und Forschungseinrichtungen weltweit zeigt, dass der ETH-Bereich klare Vorteile in Systemtechnologien wie Massenspektroskopie, Drohnen und Strahlungsdetektoren hat. Er ist in den Sicherheitstechnologien führend, in denen es fast keine nennenswerten Wettbewerber gibt. Eine weitere starke Technologie ist die Perowskit Tandem Photovoltaik. Insgesamt gehört der ETH-Bereich bei mehr als einem Drittel aller analysierten Technologien zu den führenden Institutionen.

#### ETH-Bereich vor den europäischen Institutionen

Der internationale Vergleich zeigt die technologische Breite hochwertiger Patente der US-Institutionen MIT, Harvard und Kalifornien, während die europäischen Institutionen in den ausgewählten Technologien deutlich zurückliegen. Der ETH-Bereich ist vor den europäischen Institutionen positioniert, aber deutlich hinter den amerikanischen Institutionen. Weiterhin ist zu beobachten, dass beide chinesischen Institutionen in vielen Technologien gut positioniert sind. Obwohl ihre Patentaktivitäten in den meisten Technologien vor weniger als 10 Jahren begonnen haben, sind sie heute den europäischen Institutionen in vielen Technologien voraus.

Die folgende Tabelle zeigt die internationalen Ergebnisse im Überblick. Die Heatmap ist horizontal strukturiert und kennzeichnet die Institutionen mit der höchsten Anzahl von Weltklassepatenten innerhalb einer Technologie mit grünen Farbverläufen und die Institutionen mit der niedrigsten Anzahl mit roten Farbverläufen. Vertikal zeigt die Menge der ähnlich gefärbten Zellen die Anzahl der hohen (grün) und niedrigen Rankings (rot) pro Institution an. Die grosse Zahl der grünen Felder belegt die führende Position der US-Institutionen in den meisten Technologien.

Tab. 1-3. Internationaler Vergleich der Weltklassepatente pro Technologie, 2017



Quelle: BAK Economics, IGE, PatentSight

### Gemeinsame Forschungsprojekte, Erfindungen und gefragte Erfinder des ETH-Bereichs

Der ETH-Bereich ist sehr aktiv in gemeinsamen Forschungsprojekten mit Unternehmen und anderen Forschungseinrichtungen. 376 Gemeinschaftspatente stammen aus Forschungskooperationen. Der ETH-Bereich beteiligte sich zudem an Forschungskooperationen für weitere 479 Patente, die sich ausschliesslich im Besitz des Partnerunternehmens oder der Partnerinstitution befinden. Darüber hinaus sind ETH-Erfindungen von hoher Relevanz. 1945 Unternehmen und Forschungseinrichtungen weltweit haben Erfindungen des ETH-Bereichs in insgesamt 5041 Drittpatenten zitiert. Ehemalige Erfinder des ETH-Bereichs bleiben sehr aktiv, wenn sie anschliessend in der Schweizer Industrie Forschung betreiben. 3801 Firmenpatente listen mindestens einen Erfinder auf, der vor seinem Eintritt in das jeweilige Unternehmen für den ETH-Bereich gearbeitet und dort bereits patentiert hat.