

## **8086 Address and Data Bus Concepts**

#### 1. Multiplexed Address/Data Bus

- The 8086 has a 16-bit multiplexed address/data bus (AD15-AD0).
  - During T1 cycle: these lines carry the lower 16 bits of the address (A15–A0).
  - During T2-T4 cycles: the same lines are used to transfer data (D15-D0).
- This multiplexing reduces pin count but requires **demultiplexing** using external latches.



### 2. Role of ALE (Address Latch Enable)

- ALE is a control signal generated by the 8086 during T1 cycle.
- ALE is connected to a latch device (e.g., 8282/8283).
- When ALE = HIGH → the latch captures the address present on AD15–AD0.
- When ALE goes LOW → the address is held stable for the rest of the bus cycle, while AD15–AD0 are released for data.
- This ensures that the address remains valid for memory/IO chip selection during the full bus cycle.

### 3. Higher Address Lines (A19-A16)

- The 8086 provides **20-bit physical addressing** (1 MB address space).
- The higher 4 address lines A19—A16 are not multiplexed and remain valid throughout the cycle.

#### 4. Memory Address Space and Bank Concept

- Total addressable memory = 1 MB (00000H FFFFFH).
- Divided into two 512 KB banks:

Lower Bank (even addresses) → connected to D7–D0.

Dipper Bank (odd addresses) → connected to D15–D8.

 The bank selection is controlled by A0 and BHE' (Bus High Enable, active LOW):

| BHE' | A0 | Data Transfer                     |
|------|----|-----------------------------------|
| 1    | 0  | Lower bank (even address, D7–D0)  |
| 0    | 1  | Upper bank (odd address, D15–D8)  |
| 0    | 0  | Both banks (word at even address) |
| 1    | 1  | No transfer                       |









**Examples of Byte and Word Access** 

# Byte Access – Even Address

Suppose the instruction is:

MOV DH, BX]

and physical address = 20004H (even).

- A0 =  $0 \rightarrow$  selects even bank.
- BHE' =  $1 \rightarrow$  disables upper bank.
- Data comes from D7-D0 lines only.
- Result → 8-bit data loaded into DH.



## 2 Byte Access - Odd Address

Suppose address = 20005H (odd).

- A0 =  $1 \rightarrow$  disables even bank.
- BHE' =  $0 \rightarrow \text{selects}$  odd bank.
- Data comes from D15-D8 lines only.
- Result → 8-bit data loaded into register.

## Word Access + Even Address

Suppose instruction: MOV [BX] CX

and physical address = 20004H (even).

- A0 = 0, BHE' = 0 → both banks enabled.
- CL low byte) written to even bank (20004H  $\rightarrow$  D7–D0).
- CH (high byte) written to odd bank (20005H → D15–D8). CH
- Entire word transferred in one bus cycle.



Suppose address = 20005H (odd).

- Requires two bus cycles:
  - 1. First cycle: A0 = 1, BHE' =  $0 \rightarrow \text{odd}$  bank selected. Data  $\rightarrow$  [20005H] from D15–D8.
- 2. Second cycle: A0 = 0,  $BHE' = 1 \rightarrow even bank selected$ . Data  $\rightarrow$  [20006H] from D7–D0.
- Word transfer completed in two cycles because of misalignment.





FIGURE 3.12 Even-addressed word transfer



SECOND BUS CYCLE



FIGURE 3.13. Odd-addressed word transfer

