AIM: Given a case study with a data set. You are expected to perform data visualization using Python/R any five different chart/plot. Quote your observations after the visualization.

Name: Meet Dave UID:2018140015 Batch:A TE-IT

```
import pandas as pd
In [1]:
        import seaborn as sns
        import matplotlib.pyplot as plt
        import numpy as np
```

df=pd.read csv('preprocessed dataset.csv')

In [2]:

In [3]: df.head()

Out[3]:

	Unnamed: 0	Age	Overall	Potential	Value	Wage	Special	Preferred Foot	International Reputation	Weak Foot	 Composure	Marking	StandingTackle	SI
0	0	31	94	94	110.5	0.565	2202	0.0	5.0	4.0	 96.0	33.0	28.0	
1	1	33	94	94	77.0	0.405	2228	1.0	5.0	4.0	 95.0	28.0	31.0	
2	2	26	92	93	118.5	0.290	2143	1.0	5.0	5.0	 94.0	27.0	24.0	
3	4	27	91	92	102.0	0.355	2281	1.0	4.0	5.0	 88.0	68.0	58.0	
4	5	27	91	91	93.0	0.340	2142	1.0	4.0	4.0	 91.0	34.0	27.0	

5 rows × 77 columns

pd.set_option('display.max_rows', None) Out[6]:

plt.figure(figsize=(16, 8))

In [6]: pd.set_option('display.max_columns', None)

In [7]:

In [9]:

plt.show()

	Unnamed: 0	Age	Overall	Potential	Value	Wage	Special	Preferred Foot	International Reputation	Weak Foot	Skill Moves	Work Rate	Position	Contract Valid Until	Height	W
0	0	31	94	94	110.5	0.565	2202	0.0	5.0	4.0	4.0	1	RF	2021	67.0	
1	1	33	94	94	77.0	0.405	2228	1.0	5.0	4.0	5.0	6	ST	2022	74.0	
2	2	26	92	93	118.5	0.290	2143	1.0	5.0	5.0	5.0	2	LW	2022	69.0	
3	4	27	91	92	102.0	0.355	2281	1.0	4.0	5.0	4.0	4	RCM	2023	71.0	
4	5	27	91	91	93.0	0.340	2142	1.0	4.0	4.0	4.0	2	LF	2020	68.0	

sns.scatterplot(x=df['Age'],y=df['Potential'])

In [10]: sns.displot(df, x='Age')

Out[10]: <seaborn.axisgrid.FacetGrid at 0x2667d404e20>

Conclusion: Using seaborn library various graphs were plotted for the visualisation of the given dataset