

Mapping Gaussian Processes to Bayesian Neural Networks

Daniel Flam-Shepherd 1 , James Requeima 23 , David Duvenaud 1 University of Toronto, 2 University of Cambridge, 3 Invenia Labs

Priors in Function Space

- Baysian Neural Network Priors are specified in parameter space. The implications of these priors in function space are hard to interpereate.
- How to we encorporate prior knowledge about function properties in our prior?

Gaussian Processes

Gaussian Processes have a elegant mechanism for incorporating prior beliefs about the underlying function - the mean and covariance functions.

Kernels can be combined using addition and multiplication to construct kernels with desired properties.

Mapping the Prior

We apprioximate the KL divergence between the Gaussian process $p_{\mathsf{GP}}(\boldsymbol{f})$ and the BNN prior over functions $p_{\mathsf{BNN}}(\boldsymbol{f})$.

$$\mathcal{L}_{p(\boldsymbol{X})}(\boldsymbol{\phi}) = \mathbb{E}_{p(\boldsymbol{X})}[\mathcal{KL}[p_{\mathsf{BNN}}(\boldsymbol{f}(\boldsymbol{X})|\boldsymbol{\phi}) \mid p_{\mathsf{GP}}(\boldsymbol{f}(\boldsymbol{X}))]]$$

$$= \mathbb{E}_{p(\boldsymbol{X})}[-\mathcal{H}[p_{\mathsf{BNN}}(\boldsymbol{f}(\boldsymbol{X})|\boldsymbol{\phi})]$$

$$-\mathbb{E}_{p_{\mathsf{BNN}}(\boldsymbol{f}|\boldsymbol{\phi})}[\log p_{\mathsf{GP}}(\boldsymbol{f}(\boldsymbol{X}))]]$$

The second term in this expectation can be approximated using Monte Carlo. The entropy term can be approximated

1

Results: Bayesian Neural Networks

Data sets:

- CEP: Harvard Clean Energy Project data, 2.3M molecules.
- One-dose: percentage cell growth relative to control, 27,000 molecules.
- Malaria: drug concentration giving half max response, 19,000 molecules.

Batch sizes: 500 (CEP) and 200 (Malaria and One-dose).

Comparison with ϵ -greedy sampling

Average rank and standard errors:

Method	Rank
$\epsilon = 0.01$	3.42 ± 0.28
$\epsilon = 0.025$	3.02 ± 0.25
$\epsilon = 0.05$	$2.86 {\pm} 0.23$
$\epsilon = 0.075$	3.20 ± 0.26
Thompson	2.51±0.20

Conclusions

We have proposed a batch BO method that

- runs in a parallel and distributed manner.
- can handle large batch sizes and large molecule libraries.
- is comparable to non-scalable approaches (parallel EI) in small problems with GPs.
- outperforms other alternative scalable approaches in large scale settings with Bayesian neural networks.