Zadanie 1 z Analizy Matematycznej dla Informatyków czwartek, 9 XI — czwartek, 16 XI 2023

Autor rozwiązania: Gracjan Barski, indeks: 448189, grupa 2 BEZ

Znajdź granicę ciągu $a=\{a_n\}_{n\geq 1},$ lub wykaż, że granica nie istnieje, jeżeli a jest zadany wzorem:

$$a_n = \left(\frac{999}{1000} + \frac{n^{(1000^{999})}}{\left(\frac{1000}{999}\right)^n}\right)^n, \quad n \in \mathbb{N}.$$

Rozwiązanie: Przeprowadźmy szereg przekształceń:

$$a_n = \left(\frac{999}{1000} + \frac{n^{(1000^{999})}}{\left(\frac{1000}{999}\right)^n}\right)^n$$

$$= \left(\frac{999}{1000} + \left(\frac{999}{1000}\right)^n \cdot n^{(1000^{999})}\right)^n$$

$$= \left(\frac{999}{1000}\right)^n \cdot \left(1 + \left(\frac{999}{1000}\right)^{n-1} \cdot n^{(1000^{999})}\right)^n$$

$$= \left(\frac{999}{1000}\right)^n \cdot \alpha_n$$

Gdzie
$$\alpha_n = \left(1 + \left(\frac{999}{1000}\right)^{n-1} \cdot n^{(1000^{999})}\right)^n$$

Teraz rozważmy granicę ciągu α_n ; przekształćmy go:

$$\alpha_n = \left(1 + \left(\frac{999}{1000}\right)^{n-1} \cdot n^{(1000^{999})}\right)^n$$

$$= \left(1 + \frac{n^{(1000^{999})}}{\left(\frac{1000}{999}\right)^{n-1}}\right)^n$$

$$= \left(1 + \frac{1}{\frac{\left(\frac{1000}{999}\right)^{n-1}}{n^{(1000^{999})}}}\right)^n$$

Teraz oznaczmy:

$$\beta_n = \frac{\left(\frac{1000}{999}\right)^{n-1}}{n^{(1000^{999})}}$$

Oraz:

$$\gamma_n = \frac{n}{\beta_n}$$

A następnie przekształćmy:

$$\alpha_n = \left[\left(1 + \frac{1}{\beta_n} \right)^{\beta_n} \right]^{\gamma_n}$$

Zastanówmy się, co dzieje się z β_n , gdy $n \to \infty$.

Rozważmy granicę ciągu postaci: $\frac{a^n}{n^b}$, gdzie $a,b\in\mathbb{R}$ oraz a,b>1, takim ciągiem jest β_n , a gamma jest odwrotnością takiego ciągu γ_n . Oznaczmy granicę tego ciągu jako L

Weźmy pierwiastek *b*-tego stopnia z wyrazów tego ciągu, otrzymamy: $\frac{\left(a^{1/b}\right)^n}{n}$, granica tego ciągu jest równa $L^{\frac{1}{b}}$ (Z twierdzenia które było dowodzone na ćwiczeniach).

Oznaczmy $c=a^{\frac{1}{b}}$. Wtedy wystarczy pokazać obliczyć granicę $\frac{c^n}{n}$. Weźmy c=d+1. Jasnym jest że c>1, więc d>0. Wtedy ze wzoru Newtona, dla $n\geq 2$ mamy:

$$c^{n} = (d+1)^{n} \ge 1 + \binom{n}{1}d + \binom{n}{2}d^{2} = 1 + n \cdot d + \frac{1}{2}n \cdot (n-1) \cdot d^{2} > \frac{1}{2}n \cdot (n-1) \cdot d^{2}$$

Więc z tego mamy:

$$\frac{c^n}{n} > \frac{\frac{1}{2}n \cdot (n-1) \cdot d^2}{n} = \frac{1}{2}(n-1) \cdot d^2$$

Czyli mamy dolne ograniczenie, które ma granicę w nieskończoności (bo $d \neq 0$), a to oznacza, że ciąg po lewej stronie również ma granicę w nieskończoności, czyli $L^{\frac{1}{b}} = \infty$, co implikuje $L = \infty$ Teraz wróćmy do naszych ciągów β_n i γ_n ; właśnie udowodniliśmy, że:

$$\beta_n \to \infty$$

Oraz jako że γ_n jest odwrotnością ciągu postaci $\frac{a^n}{n^b}$, (gdzie $a,b \in \mathbb{R}$ oraz a,b > 1), to analogiczny dowód jak powyżej pokaże, że

$$\gamma_n \to 0$$

Wróćmy do ciągu α_n :

$$\alpha_n = \left[\left(1 + \frac{1}{\beta_n} \right)^{\beta_n} \right]^{\gamma_n}$$

Z tego co pokazaliśmy wyżej, widać że wyrażenie w środku nawiasu kwadratowego dąży do stałej e, a wykładnik γ_n dąży do 0, więc całość $\alpha_n \to 1$.

Wróćmy do głównego ciągu $a_n = \left(\frac{999}{1000}\right)^n \cdot \alpha_n$. Z oczywistych względów $\left(\frac{999}{1000}\right)^n \to 0$, więc z operacji arytmetycznych na granicach mamy:

$$a_n \to 0 \cdot 1 = 0$$