CORRIGÉ

Préparation d'un bromoalcane

1.

a.
$$M(A) = \frac{16}{18,18} \cdot 100 = 88 \text{ g/mol}$$

formule générale : C_nH_{2n+1}OH

$$M(A) = 12n + 2n + 1 + 16 + 1 = 14n + 18 \iff n = 5 \implies \text{ formule brute } C_5H_{11}OH$$

b. 2-méthylbutan-1-ol
$$H_3C-CH_2-CH-CH_2-OH$$

$$OH CH_3$$

$$OH CH_3$$

$$A = A = A = A$$

$$A = A$$

c. B est une cétone, donc A doit être un alcool secondaire ;

il ne peut donc s'agir que du 3-méthylbutan-2-ol

d.

OH
$$-OH > -C_3H_7 > -CH_3 > -H_7C_3$$
 CH_3

2.

Mécanisme réactionnel : substitution nucléophile (SN)

1ère étape : protonation de l'alcool

$$H_7C_3$$
— CH — CH_3 + $|\overline{\underline{Br}}|^{\bigcirc}$
 $|O-H|$
 $|H|$

b. $C_5H_{11}OH + HBr \rightarrow C_5H_{11}Br + H_2O$

$$n(C_5H_{11}Br) = m/M = 10^6/150,9 = 6626,91 \text{ mol}$$

$$n(HBr) = \frac{100}{75} \cdot n(C_5H_{11}Br) = 8835,88 \text{ mol}$$

$$V = n/c = 8835,88/10 = 883,6 L$$

II. Détergents

- a. voir p. 75 (remplacer la palmitine par la stéarine)
- b. voir p. 76

III. Polymères

- 1. L'acide polylactique
- a. L'acide lactique possède deux groupements fonctionnels : –OH et –COOH II se prête donc à la polyestérification (ou polycondensation).

Remarque : deux symbolisations, par une flèche <u>simple</u> ou d'équilibre sont acceptables !

c. formule générale d'une molécule du polymère d'acide polylactique :

Remarque: deux symbolisations, par une flèche simple ou d'équilibre sont acceptables!

- 2. Polyméthacrylate de méthyle.
- a. 2-méthylprop-2-énoate de méthyle
- b. mécanisme : R_1 voir p. 37, remplacer le monomère styrène par $H_2C = C R_1$
- c. B est une cyanhydrine, mécanisme : voir p. 64

IV. Dosage d'une solution de méthylamine (20 points)

1. voir p. 82

$$pH = 5,9$$

b. au (P.E.):
$$c(S_1) \cdot V(S_1) = c(HCI) \cdot V(HCI) \Leftrightarrow c(S_1) = \frac{0.1 \cdot 23}{10} = 0.23 \text{ mol/L}$$

$$\begin{array}{lll} \text{CH}_3-\text{NH}_3^+ & + & \text{H}_2\text{O} & \longleftrightarrow & \text{CH}_3-\text{NH}_2 & + & \text{H}_3\text{O}^+ \\ & & & & \\ \text{x}^2+\text{K}_a\cdot\text{x}+\text{K}_a\cdot\text{c}_0=0 & \text{avec} & \begin{cases} & \text{K}_a=10^{-p\text{K}a}=10^{-10,7} \\ & \text{c}_0=\text{c}_0(\text{m\'ethylamine})_{\text{P.E.}}=\frac{n}{V_{tot}}=\frac{2,3\cdot10^{-3}}{(10+23)\cdot10^{-3}}=0,07 \text{ mol/L} \\ & \text{pH}=\textbf{5,93} \end{cases} \\ & & \text{The extension of the extension of$$

sans le graphique :

au point de demi-équivalence on a un mélange tampon, donc pH = pK_a (puisque $n_A = n_B$)

e. solution So:

calcul à partir des indications : p = 40% $\rho = 0.9$ g/mL = 900 g/L

$$c(S_0) = \frac{p \cdot \rho}{100 \cdot M} = \frac{40 \cdot 900}{100 \cdot 31} = 11,61 \text{ mol/L}$$

calcul à partir du dosage : p = 40% $\rho = 0.9$ g/mL = 900 g/L

$$c(S_0) = 50 \cdot c(S_1) = 50 \cdot 0,23 = 11,5 \text{ mol/L}$$

Conclusion : la valeur indiquée sur l'étiquette est acceptable.

f. Calculer le pH après ajout de 28 mL d'acide chlorhydrique. (AN2)

excès de HCl :
$$V_{\text{excès}} = 28 - 23 = 5 \text{ mL}$$

$$n_{\text{excès}} = c \cdot V_{\text{excès}} = 0, 1 \cdot 5 \cdot 10^{-3} = 5 \cdot 10^{-4} \text{ mol}$$

$$[H_3O^+] = \frac{n_{excès}}{v_{tot}} = \frac{5 \cdot 10^{-4}}{(10 + 28) \cdot 10^{-3}} = 0,013 \text{ mol/L}$$

$$pH = -log[H_3O^+] = 1.88$$

g. $pH = 10 \rightarrow solution tampon$

$$pH = pK_a + \log \frac{n_B}{n_A}$$

soit x la quantité de HCl à ajouter
$$\Rightarrow$$
 V(HCl) = $\frac{x}{c_{HCl}}$

alors

$$n_A = x$$

$$n_B = n_0 - x$$

$$n_0 = c(HCI) \cdot V(HCI)_{P.E.} = 2.3 \cdot 10^{-3} \text{ mol}$$

$$pK_a = 10,7$$

ainsi:
$$\frac{n_0 - x}{x} = 10^{10-10,7} \iff x = \frac{n_0}{10^{-0.7} + 1} = 1,92 \cdot 10^{-3} \text{ mol}$$

$$\Rightarrow$$
 V(HCI) = $\frac{1,9 \cdot 10^{-3}}{0,1}$ = 1,92 · 10⁻² L = 19,2 mL