Computação Gráfica

Prof. Rodrigo Martins rodrigo.martins@francomontoro.com.br

Este material foi cedido pelo Prof. Jorge Cavalcanti da UNIVASF (UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO)

- Curvas e superfícies desempenham um importante papel na criação de objetos sintéticos e na visualização de fenômenos científicos.
- As curvas são a base tanto da geração de forma simples quanto na criação de projetos complexos.
- Representar curvas por linhas retas pode ser suficiente para várias aplicações. No entanto, curvas e superfícies mais complexas demandam uma maneira mais eficiente de representação.

- Conjunto de Pontos Nessa representação, a curva pode ser gerada pelo uso de uma grande quantidade de pontos ou pela conexão deles por segmentos adequados.
- Quanto maior o número de pontos, melhor a representação e mais suave será a curva.
 - Mais pontos podem ser obtidos por interpolação ou aproximação.

- Representação analítica Nessa representação, são utilizadas uma ou mais equações.
 - É mais precisa, compacta, não requer armazenamento de pontos e facilita o cálculo de novos pontos, sempre exatos.
- É mais fácil também determinar as propriedades da curva, como inclinação, pontos de curvatura etc.
- Essa representação também simplifica a aplicação de mudanças como escala, rotação, projeções e outras.
- Formas não paramétricas Funções do tipo y=f(x) ou vice-versa.
 - $-y = (10^2-x^2)^{1/2}$ Equação de um quarto de círculo de raio 10.
- Polinômios em geral são adequados e mais usados para representar curvas em função da facilidade de derivar, integrar ou avaliar seu valor em algum ponto.

- Formas paramétricas
- Na forma paramétrica, cada coordenada de um ponto em uma curva é representada como uma função de um único parâmetro.
 - A curva fica independente do sistema de coordenadas.
 - Os extremos e o comprimento da curva são fixos pelo intervalo do parâmetro.
 - Facilita manipulações dos objetos nas transformações geométricas.
- A representação espacial 3D é simplificada com a adição de mais uma coordenada pela função z=z(t).

- Formas paramétricas
- •Cada ponto de uma curva genérica em 3D é definido por:
 - Q(t)=[x(t) y(t) z(t)], onde x(t), y(t) e z(t) são denominadas
 Funções-Base.

- Curvas de Hermite
- O uso de polinômios de 3^a ordem para ajuste de curvas foi intensamente descrito pelo matemático francês Charles Hermite (1822-1901).
- Para gerar uma curva de Hermite, são necessários quatro fatores:
 - -Os pontos P1 e P2, que descrevem os pontos inicial e final da curva.
 - -Os vetores T1 e T2, que descrevem as tangentes e seus pesos na curva em P1 e P2.

Curvas de Hermite

- Esses quatro fatores de controle têm participação na composição da geometria da curva de Hermite.
- Como os vetores têm quatro propriedades básicas: módulo, direção, sentido e ponto de aplicação, Hermite usou essas propriedades para dar maior flexibilidade e ao mesmo tempo controle para as definição das curvas.

Curvas de Hermite

Fonte: Prof. Marcelo Walter - UFPE

Representação de Curvas

- Curvas de Bézier
- Desenvolvidas por Pierre Bézier na década de 1960.
- Baseada nos princípios descritos por Hermite, porém usando pontos de controle na curva ao invés de vetores no início e fim da curva.

Curva de Bézier Linear

Curva de Bézier Quadrática

Curva de Bézier Cúbica

- Curvas de Bézier
- Um método adequado para o design de curvas e superfícies de forma livre em ambientes interativos, por isso é bastante usado em softwares gráficos.
- A curva passa pelo primeiro e pelo último ponto de controle e usa pelo menos outros dois para construir sua tangente. Quanto mais pontos de controle, mais flexibilidade no manuseio da curva.

- Curvas B-Spline
- O nome spline é uma alusão à régua flexível usada para gerar curvas livres suaves.
- A curva spline original é formada por vários pontos de controle, cuja alteração em um desses pontos se propaga por todos os demais.
- A curva B-Spline é uma versão com controle local, onde a alteração em um ponto de controle se propaga apenas para os pontos vizinhos.
- Outra característica é que a função não passa pelos pontos de controle.

- Curvas B-Spline
- Ela pode ser gerada por qualquer número de pontos de controle.
- São preferencialmente usada nas aplicações que usam curvas livres para projeto de modelos.
- Em uma mesma curva, podem ser verificadas funções lineares, quadráticas e cúbicas.

Representação de Superfícies

Esfera com centro (x_n,y_n,z_n)

Equação: $(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$

- De um modo geral, as superfícies são uma generalização de curvas.
- Uma superfície pode ser gerada a partir das mesmas formas de representação das curvas.
- A geração de objetos a partir dos seus contornos constituem uma etapa importante da modelagem de objetos gráficos.

Representação de Superfícies

- Superfícies de Revolução
- A rotação de uma curva plana em torno de um eixo produz a mais popular família de superfícies.

 Cada ponto em superfície de revolução é uma função de dois parâmetros: o ângulo de rotação e uma posição na curva t a ser rotacionada, sendo sua descrição definida por P(t,θ).

Representação de Superfícies

- Superfícies de Deslocamento
- Translações e deslocamentos genéricos de curvas produzem superfícies de diversas formas.
 - Esse modo de geração é chamado de sweeping (varredura).
- Essa operação pode ser descrita tanto por uma simples reta quanto por curvas complexas.

Representação de Superfícies

- Superfícies de Hermite
- Extensão das curvas de hermite.
- Definida por duas "bordas" dadas por P₁(t) e P₄(t) e
- um conjunto de cúbicas s que são definidas nos pontos t = 0.0, 0.2, 0.4, 0.6, 0.8 e 1.0 (normalizadas).

Representação de Superfícies

- Superfícies de Bézier
- Usa uma malha com 16 pontos de controle da superfície.
 - Os pontos das extremidades fazem parte da superfície.
- Esta é uma curva que provê grande controle sobre sua forma por parte do usuário.
- http://www.math.tamu.edu/~sottile/research/stories/ControlPolytope/index.html

Representação de Superfícies

- Superfícies B-Spline
- De forma similar às superfícies de Bézier, representamos uma superfície B-Spline bicúbica através de um conjunto de pelo menos 16 pontos de controle.

Resulta em uma aparência mais suave.

Control Polygon Reconstructed BSpline Surface Original Polygon Model

Control Point

Referências desta aula

- AZEVEDO, Eduardo; CONCI, Aura. 2007. Computação Gráfica:
 Teoria e Prática. Elsevier, Vol. 2, 2007.
- Aula montada com base no material do Prof. Jorge Cavalcanti -UNIVASF.