МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Машинное обучение»

ТЕМА: Понижение размерности пространства признаков.

Студент гр. 6302	 Барбарич И.Г.
Руководитель	 Жангиров Т. Р

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

1. Загрузка данных

Рисунок 1. Диаграммы рассеивания для пар признаков.

Чтобы определить соответствие цвета на диаграмме и класса в датасете, необходимо воспользоваться функцией scatter, но использовать метки классов (label).

Рисунок 2. Соответствие цвета на диаграмме и класса в датасете.

2. Метод главных компонент

1. Используя метод главных компонент (РСА). Проведите понижение размерности пространства до размерности 2.

```
pca = PCA(n_components_=_2)
pca_data = pca.fit(data).transform(data)
```

Рисунок 3.

2. Выведите значение объясненной дисперсии в процентах и собственные числа, соответствующие компонентам.

```
C:\Users\Lion\PycharmProject
[0.45429569 0.17990097]
[5.1049308 3.21245688]
```

Рисунок 4

3. Постройте диаграмму рассеяния после метода главных компонент

- 4. Проанализируйте и обоснуйте полученные результаты Обнаружено скопление данных 1,2,3, 7. Уменьшение линейной размерности с помощью сингулярного разложения данных, чтобы спроецировать их в пространство с более низкой размерностью. Входные параметры центрируются, но не масштабируются для каждого объекта перед применением SVD.
- 5. Изменяя количество компонент, определите количество, при котором компоненты объясняют не менее 85% дисперсии данных

Рисунок 6. При 2 = 0.63

Рисунок 7. При 3 = 0.76

Рисунок 8. При 4 = 0,86

6. Используя метод inverse_transform восстановите данные, сравните с исходными.

Рисунок 10. Сравнение с исходными. 1 - до, 2 - после.

Данные похожи, но есть отличия, т.к. не были учтены еще 14% дисперсии данных.

7. Исследуйте метод главных компонент при различных параметрах svd_solver

Рисунок 11. svd_solver = 'auto'

Рисунок 12. svd_solver = 'full'

Рисунок 13. svd_solver = 'arpack'

Рисунок 14. svd_solver = 'randomized'

Разницы в результате не замечено. Но т.к. этот параметр отвечает за способ вычисления, есть вероятность, что различается скорость вычислений.

Модификации метода главных компонент

1. По аналогии с PCA исследуйте KernelPCA для различных параметров kernel и различных параметрах для ядра.

Рисунок 17. rbf

Рисунок 18. sigmoid

Отличие – масштаб и центрирования.

- 2. Определите, при каких параметрах KernelPCA работает также как PCA. PCA – линейной преобразование, поэтому на графике при параметре linear будут одинаковы с KPCA.
- 3. Аналогично исследуйте SparcePCA.

Рисунок 20. Alpha = 1

Рисунок 20. Alpha = 0.9

Рисунок 20. Alpha = 0.7

Рисунок 20. Alpha = 0.5

Рисунок 20. Alpha = 0.3

Рисунок 20. Alpha = 0.0

-0.2

0.0

-0.4

0.2

0.4

-0.50

-0.8

-0.6

4. Проанализируйте и обоснуйте полученные результаты.

При понижении alpha до 0 становится немного похоже на результат у PCA только отраженным.

Факторный анализ

1. Проведите понижении размерности используя факторный анализ FactorAnalysis

Рисунок 21. Для 4 компонентов.

Рисунок 21. Для 2 компонентов.

Рисунок 21. РСА для 2 компонентов.

2. Сравните полученные результаты с РСА

График очень отличается от РСА.

3. Объясните в чем разница между методом главных компонент и факторным анализом.

Факторный анализ используется как более широкий метод, предсказывающий наблюдаемые переменные из теоретически скрытых факторов.

Вывод

В результате работы ознакомился с методами предобработки данных из библиотеки Scikit Learn

.