Теорема Эйлера

Теорема 1 (Эйлера) Для натуральных взаимно простых а, т, верно сравнение

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

- П Найдите 3 последние цифры чисел (а) 7^{2000} ; (b) 7^{2003} .
- 2 Докажите, что существует натуральная степень тройки, заканчивающаяся на 00001. Найдите явно эту степень.
- $\boxed{3}$ Найдите последние две цифры в десятичной записи числа 3^{219} .
- 4 Докажите, что для любого натурального числа a верно, что $a^{17} a$ делится на 510;
- $\boxed{5}$ Докажите, что для любого натурального n число $n^{84} n^4$ делится на 20400.
- [6] Докажите, что если n нечётно, то $2^{n!} 1$ делится на n;
- 7 Докажите, что если n чётно, то $2^{n!} 1$ делится на $n^2 1$.
- [8] Докажите, что $2^{3^k} + 1$ делится на 3^{k+1} .
- 9 Докажите, что существует бесконечно много натуральных n таких, что 2^n-1 имеет хотя бы 1000 различных простых делителей.
- 10 Докажите, что если число n имеет два различных нечетных простых делителя, то для любого a, взаимно простого с n, верно, что $a^{\varphi(n)/2} 1$ делится на n.
- [11] (Усиление теоремы Эйлера) Если $p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$ разложение числа m на простые множители и x наименьшее общее кратное чисел $\varphi(p_1^{a_1}), \varphi(p_2^{a_2}), \dots, \varphi(p_k^{a_k})$, то для любого a, взаимно простого с m, выполняется сравнение $a^x \equiv 1 \pmod{m}$.
- 12 Дано число 2^{2021} . Докажите, что можно дописать слева от него несколько цифр так, чтобы получилась степень двойки.
- 13 Обозначим через L(m) длину периода дроби 1/m. Докажите, что если (m,10)=1, то L(m) является делителем числа $\phi(m)$.
- 14 Докажите, что если (a, p!) = 1, то $a^{(p-1)!} \equiv 1 \pmod{p!}$.
- 15 Докажите, что для каждого n существует число с суммой цифр n, делящееся на n.