Kaggle Competition: Spinal Fracture Detection

Jacob Schneider-Martin

Overview

Clinical Background

4. Model Development

2. Competition Background

5. Conclusion

3. Clinical Datase

Clinical Background

Spinal Fractures

Clinical Background

- 1.5 million annual spinal fractures in U.S. result in 17k spinal cord injuries
- Most common site of vertebrae fracture is cervical spine (neck)
- Increased rate of spinal fractures in older populations

Spinal Fractures

Diagnosis

- Diagnosis of adult spinal fractures is performed with CT scan capture
- In elderly patients, spinal fractures can be difficult to detect on imaging
 - Due to superimposed degenerative disease and osteoporosis
- Critical to quickly detect and determine location of vertebral fractures
- Prevent neurologic deterioration & trauma

Competition Background

Kaggle Competition

- Al models can detect and localize spinal fractures, which may improve clinical outcomes
- Deep learning classification models require well-labeled image data for development, but datasets are not widely available for spinal fracture CT images
- Kaggle competition dataset¹ was released for the development of deep learning models for spinal fracture detection and localization
- Kaggle competition consisted of 880+ teams and \$30k in prize money

Background

- Dataset organized by Radiological Society of North America, American Society of Neuroradiology and American Society of Spine Radiology
- 12 research institutions from 9 countries contributed to dataset
- Dataset focused on fractures in cervical vertebrae C1-C7
 - Images annotated by medical experts
- Dataset
 - Public dataset contains n=2,019 CT scans
 - Hidden test contains n=1,500 CT scans

Background

- N=2019 patients have scan-level fracture information for vertebrae C1-C7
 - Large dataset: 700k+ image slices
- CT scans: 0.5 to 1mm slice thickness, axial orientation, bone kernel
- Image slice size: 512 x 512 pixels
- DICOM format

StudyInstanceUID	patient_overall	C1	C2	C3	C4	C5	C6	C7
1.2.826.0.1.3680043.25891	1	0	0	0	0	1	1	0
1.2.826.0.1.3680043.17325	1	0	0	0	1	1	0	0
1.2.826.0.1.3680043.30177	1	0	0	1	0	0	1	1
1.2.826.0.1.3680043.23052	0	0	0	0	0	0	0	0
1.2.826.0.1.3680043.27299	1	0	0	0	0	0	0	1

- N=235 scans with fractures have slice-level bounding boxes that show fracture location
- Bounding boxes are in .csv format in axial orientation

Slice: 90

- N=87 scans have **slice-level** segmentations for vertebrae
 - Semantic segmentation: label each pixel with its class
- Segmentations are in NIFTI format in sagittal orientation

Segmentations in Sagittal Orientation

Exploratory Analysis

- N=7 different cervical vertebrae shown in images, as well as other anatomical structures, such as thoracic spine, neck and skull
- Similar number of CT scans for fractured and non-fractured patients
- Similar number of fractures across different vertebrae
- CT scans most frequently have ~300 image slices, although certain patients have 800+ slices
- Most fractured patients have a fracture in only a single vertebra
- Scans with multiple fractures indicate that adjacent vertebrae are more likely to both be fractured

Technical Challenges

- Differences in patient position and size, as well as image quality and field of view, across scans
- Class imbalance
 - Based on fractured patients with bounding boxes, fractures show up in only ~25 slices out of ~300 total slices per scan
- Lack of annotated data: ground truth data gives scanlevel fracture information, but slice-level ground truth data is limited
 - Slice-level segmentations available for 4% of patients
 - Slice-level fracture bounding boxes available for 24% of patients with fractures
- Segmentation data: Certain classes consist of small numbers of pixels

Model Development

Model Development Steps

Model Development Approach

- Problem: Scan-level fracture annotations are available, but slice-level fracture annotations are not readily available
- Training scan-level fracture detection model would most likely not be successful due to minimal annotated data
- Solution: Leverage bounding box data (n=235 patients) to train slice-level fracture detection model
- For patients with bounding box annotations, make an educated **assumption** that all **slices without bounding boxes do not contain fractured vertebrae**
- Use bounding box information to provide slice-level (axial) localization to model

Orange indicates scan-level annotations available for entire dataset and corresponding ROI for model. Blue indicates slice-level annotations and corresponding ROI for model. Bounding box information was leveraged to provide axial localization, rather than in sagittal and coronal directions.

Model Development Steps

Data Loading Pipeline

Data storage

- Save images in online directory
- Change orientation of segmentations from sagittal to axial
- Create CSV with image filenames and ground truth metadata targets
- Data split: 80% training,
 10% validation, 10% test
- Validation and test set patient scans not included in training

Dataset class

- Iterate through CSV and load individual images and ground truth targets
- Apply transformation & normalization to image

Sampling

- Determine order of data that is loaded into model
- Training data randomly shuffled each epoch
- Validation data loaded in identical order each epoch using manual seed
- Custom Sampler allows for oversampling

Dataloaders

- Parallelize data loading process to increase speed and memory
- Individual dataloaders for training, validation and test
- Different transformations for training, validation and test

Data Loading

- Extract metadata (which vertebrae are fractured in each slice) from bounding box data to use as ground truth targets for fracture detection model
- Train fracture detection model using n=235 fractured patients with bounding boxes and n=235 non-fractured patients
 - Use all image slices (110k+ images) from this patient cohort to train model

Input Images

Targets

StudyInstanceUID	Slice	C1	C2	C3	C4	C5	C6	C7
1.2.826.0.1.3680043.1363	90	0	0	0	0	1	0	0

No Fracture

Fracture

StudyInstanceUID	Slice	C1	C2	C3	C4	C5	C6	C7
1.2.826.0.1.3680043.10051	. 85	0	0	0	0	0	0	0

Model Development Steps

Model Training

Fracture Detection

- Use pre-trained EfficientNetV2 as feature extractor to create fracture detection model
 - Finetune final layer using challenge dataset

Model Training

Fracture Detection

- Training conducted with Nvidia P100 GPU in Kaggle environment
- Computational constraints: 16GB memory
 - Increased batch size to maximum possible number of images
- Loss and metrics recorded with Weights & Biases
- Tech stack: PyTorch & torch, torchvision, albumentations, pandas, sk-image, pydicom and numpy packages

Model Training

- Augmentations: dataset is not very large, so very heavy augmentations were not applied
 - N=6 augmentations were applied, most with 30% probability: random resized crop, vertical and horizontal flips, rotations, RGB shift, CLAHE (contrast adjustment)
- Metric: Per competition rules, weighted binary cross entropy used to evaluate submissions
- Metric favors a more conservative model: sensitivity more important than specificity

$$L_{ij} = -w_j * [y_{ij} * log(p_{ij}) + (1 - y_{ij}) * log(1 - p_{ij})]$$
 $w_j = \begin{cases} 1, & \text{if vertebrae negative} \\ 2, & \text{if vertebrae positive} \\ 7, & \text{if patient negative} \\ 14, & \text{if patient positive} \end{cases}$

- Loss: Weighted binary cross-entropy, identical to metric
- Additional metric :
 - Fracture accuracy: correctly classified vertebrae/total vertebrae

Model Training & Evaluation

Fracture Detection

- Due to computational constraints, used "babysitting" process
 - Models saved at frequent checkpoints
- Models loaded at checkpoint with different hyperparameters
- Hyperparameter optimization
 - Model: EfficientNetV2
 - Optimizer: Adam
 - Learning rate: 1E-3
 - Loss: weighted BCE
 - Regularization: 20% dropout

Results: 90% accuracy for fracture detection

Model Development Steps

Model Inference

Fracture Detection

- Fracture detection model inference performed on rest of fractured dataset (n=734 patients without bounding boxes) to generate slice-level predictions of vertebrae fracture
 - Not necessary to perform slice-level inference on non-fractured patients, as no slices contain fractures
- Generated pseudo-labels for all image slices in dataset that predict probability of fractured vertebrae
 - Probabilities were binarized in post-processing
 - Colors below correspond to binarized probability of fracture for 7 different vertebra in all image slices for a particular patient

Model Development Steps

Model Re-trained with Entire Dataset

Semi-supervised Learning

- With labels and pseudo-labels generated for all slices in dataset, EfficientNetV2 network was re-trained
 - Semi-supervised learning: combination of supervised and unsupervised learning

- Network re-trained using n=2019 patients with all 700k+ image slices and slice-level labels/pseudo-labels
- Data split: 90% training, 10% validation, hidden public test set from Kaggle (n=420 patients)

Model Re-trained & Evaluation

Fracture Detection

- Augmentations: dataset is large, so heavier augmentations were applied
 - N=6 augmentations were applied, most with 40% probability: random resized crop, vertical and horizontal flips, rotations, RGB shift, CLAHE
- Loss & metric: Weighted binary cross-entropy
- Additional metric: fracture accuracy
- Hyperparameters from earlier training worked well
 - Model: EfficientNetV2
 - Optimizer: Adam
 - Learning rate: 1E-3
 - Loss: weighted BCE
 - Regularization: 20% dropout
- **Final score:** 0.45 public and 0.50 private
 - Top 7% submission

Results: 94% evaluation accuracy for fracture detection +4% increase with semi-supervised learning

Model Development Steps

Conclusion

Summary

- Results were quite predictive, with 94% evaluation accuracy and 0.50 weighted BCE for hidden test set
- Potential Improvements
 - Calculate sensitivity and specificity, as well as accuracy, to aid in error analysis
 - Model more robust at predicting non-fractures than at predicting fractures
 - Improved use of oversampling, or implementing focal loss, may help mitigate accuracy differences between classes, which would be key for a clinical product
 - Ensemble modeling
- Constraints:
 - Time: started three month-long competition with one month left
 - · Limited computational power prevented pursuing additional hyperparameter tuning
 - Kaggle weekly GPU quota led to highest scoring model submission coming in slightly after competition deadline

Discussion & Conclusion

- During competition, Kaggle discussion topics and notebooks were helpful for initial data exploration and model development
- Post-competition, notebooks of highest scoring submissions were helpful for lessons learned
- Highest scoring notebooks used various approaches:
 - Semantic segmentation: train model based on limited segmentation data and leverage localization information
 - 2D: with 2D masks generated, train object detector to determine bounding boxes for all vertebrae
 - 3D: train 3D U-Net to create masks & bounding boxes for all vertebrae
 - Utilize contextual information
 - Surprisingly, most 3D CNN classification models were not very successful
 - However, the most successful of these submissions emphasized the importance of tuning patch size to match the model receptive field
 - 2.5D approach was most successful: each 2D input slice to model also had information from several adjacent slices
 - Number of adjacent slices was an important hyperparameter that needed to be tuned
 - Sequential models (RNN, LSTM, transformer) were used to learn features of entire vertebrae
 - Heavy augmentations: Mixup, random brightness were particularly helpful
- Results suggest that deep learning fracture detection models have the potential to be used as powerful tools to aid clinicians in rapidly diagnosing the location of cervical spinal fractures
- In the future, models may be helpful in prioritizing positive CT scans for reviews in high volume hospitals and in underserviced areas