

Weather radar data processing: open source tools

Jordi Figueras i Ventura Pyrad course

Contents

- Introduction
- A typical radar data processing chain
- Radar data file formats
- Open source software packages

1. Introduction

What is Open Source Software?

- A software package is open source if :
 - Allows free (senza pagare) redistribution
 - Includes the source code (or it is easily accessible) and allows distribution of both compiled and source code.
 - Allows modifications and derived works, allows distributing them under the same terms as the licence of the original software
 - No discrimination against persons or groups
 - No discrimination against fields of use (e.g. business, genetic research)
 - No need for any other licence (appart from the one of the package) to use it
 - The licence is not specific to a product, software within a distribution can be used and distributed independently
 - The licence does not restrict the use of other software
 - The licence is technology-neutral

https://opensource.org

Open source for weather radar?

- Since the late 2000s (and even before) there has been a number of major open source projects released (see e.g. https://openradarscience.org).
- Some of them are in a mature stage and are widely used in an academic (mostly) but also operational environment
- Most make use of modern tools (e.g. github, conda, docker) and practices (e.g. Continuous Integration, automatic tests) that make them easy to evolve and deploy
- Most are <u>backed by major weather services</u> or academic institutions
- Projects are not competing among them but collaborating: Best practices and inter-operability are discussed regularly and joint open source courses have been organized for years at major radar conferences (AMS, ERAD)

The weather radar business

Metadata generation

Beam blockage Scattering simulations PSDs Calibration/monitoring

Solar monitoring Sphere calibration Inter-comparison

The weather radar business

Metadata generation

Pyrad
Py-Tmatrix
PyDSD

wradlib LROSE PyBlock Calibration/monitoring
Pyrad BALTRAD

Pyrad B LROSE

wradlib

2. A typical radar data processing chain

IQ data processing

Moment correction

Gate-based products

Radar-based products

3. Radar data file formats

Radar Data Formats

Radar data takes different formats at each processing stage:

- IQ data: Time series of complex numbers
- Moments: Polar coordinates (azimuth, elevation, range)
- Composites: Cartesian/geo-referenced grids
- Radar-based products: Grids but also time-height, time-range, etc.
- Radar-derived products: ??????

There is no formally accepted standard yet for radar data at any stage

Most radar manufacturers and major Met services use their own proprietary formats

There are 3 de-facto standards for **moment data** file formats:

- ODIM_H5
- CfRadial
- NEXRAD-AR2

NetCDF Climate and forecast (CF) Conventions for RADAR and LIDAR data in polar coordinates

Based on Network Common Data Form (NetCDF)

Maintained by NCAR

De-facto standard for the research community

Two major versions:

• CfRadial Version 1: (Since 2010) Classic model using NetCDF3 => Py-ART data model

- Data stored in regular 2D (time, range) format
- Metadata: range, time, elevation, azimuth, (ray_n_gates, ray_start_index)
- CfRadial version 2: (Since 2016) uses NetCDF4 (based on HDF5) and groups
 - Hierarchical grouping volume=>sweep=>dataset (time, range)
 - Candidate for WMO radar data standard (FM301)

Readers: wradlib, BALTRAD, Py-ART (V1), LROSE, Pyrad (V1 and (partially)

V2)

https://ncar.github.io/CfRadial/

range

CFRadial

CFRadial 1

CFRadial 2

time

elevation azimuth ray_n_gates ray_start_index

OPERA Data Information Model for HDF5

Based on HDF5

Maintained by the OPERA programme of EUMETNET European standard for the exchange of radar data Defined for exchange of polar AND Cartesian data Uses groups

Readers: wradlib, Py-ART, Pyrad, BALTRAD, LROSE

ODIM

Data from the US Weather radar network

NEXRAD Level-II (Base) Data: reflectivity, mean radial velocity, spectrum width, (differential reflectivity, correlation coefficient, differential phase)

NEXRAD Level-III Products: More than 75 products

Readers: wradlib, Py-ART, Pyrad (level II), LROSE

4. Open source software packages

wradlib

Philosophy: Keep the magic to the minimum (and let the user decide)

- One of the oldest packages (2011)
- Open platform for collaborative development of algorithms
- Python-based
- Linux/Windows/Mac
- Flat data model that allows maximum flexibility to interact with the data. xarray readers available
- Comprehensively addresses the full radar processing chain
- Mainly geared to interactive use in research but used in operations too
- Easy to install (PyPI, conda, Docker Hub)
- https://wradlib.org

Wradlib functionality

Module	Functionality	Comments
adjust	Gage adjustment	
atten	Attenuation Correction	Hitschfeld, PIA from KDP
classify	Hydrometeor Classification	Fuzzy logic classifier
clutter	Clutter Identification	
comp	Composition	Multiple Radar compositing
dp	Dual-Pol and Differential Phase	KDP retrieval, texture computation, de-polarization ratio computation
georef	Georeferencing	
io	Raw data I/O	Many readers, some put data in xarrays
ipol	Interpolation	Interpolation functions
qual	Data Quality	Beam blockage calculations, Bright band contamination
trafo	Data Transformation	e.g. linear to dB
util	Utility Functions	Despeckle, derivate, etc.
verify	Verification	Comparison between radar-base precipitation and ground truth
vis	Visualization	PPI, RHI, etc.
vpr	Vertical Profile of Reflectivity	Create and work with 3D grids
zonalstats	Zonal Statistics	
zr	Z-R Conversions	

LROSE

Philosophy: High quality building blocks for complex workflows

- Based on legacy of NCAR and CSU tools
- Fast native cross-platform applications
- Mostly C++
- Linux/Mac/partially Windows
- Many stand-alone tools
- Stores data in CF/Radial
- http://lrose.net/

LROSE tools

Convert	RadxPrint: Print file properties and determine if it is supported by Radx RadxConvert and RadxBufr: Conversion from 25 formats to CfRadial		
Display	HawkEye		
Quality Control	14 tools: compare merge and filter fields Detect sun hits and analyse them		
Grid	Radx2Grid		
Echo	23 tools: KDP and Attenuation Particle Identification, hydrometeor classification Rain rate and rainfall accumulation Beam blockage estimation Convective/stratiform Mesocyclones Refractivity and moisture Titan (Thunderstorm Identification, Tracking, Analysis and Nowcasting)		
Wind	5 tools: VAD Multi-Doppler retrieval Vortex Optical Flow		

Philosophy: Advanced Weather Radar Network

- Heritage from the Nordic Network NORDRAD. Partly funded by the EU. BALTRAD and BALTRAD+ projects (2009-2014). 13 partners in 10 countries
- Real-time data exchange and data processing
- Sub-packages written in different languages
 - Data exchange: JAVA
 - Data processing: C and Python
- Linux/Mac
- Distributed networking, partners exchange polar data and process them using a common toolbox
- Uses ODIM-H5
- Docu: https://baltrad.github.io/
- Code: https://github.com/baltrad

BALTRAD packages

Package	Environment	Description
baltrad-db	Python, Java	Database manager subsystem
BaltradDex	Java	Distribution and Exchange subsystem
baltrad_wms	OGC Map Server	Web map services
bbufr	C, Python	BALTRAD interface to EUMETNET OPERA's BUFR Software
beamb	C, Python	Beam blockage correction
beast	Java	Task manager/scheduler subsystem
bRopo	C, Python	Anomaly (non-precipitation echo) detection and removal
GoogleMapsPlugin	Python	Creation of PNG images to use in Google Maps
node-installer	Python	Installation wizard
OdimH5	Java	Data injector using ODIM_H5 and Rainbow file formats
RAVE	C, Python	Product generation framework and toolbox
baltrad_wrwp	C, Python	Wind products
baltrad-ppc	C, Python	Polarimetric processing chain

Other useful meteorological software

Py-TROLL: satellite data processing

WRF: weather Research and Forecasting Model

MetPy: weather data visualization

Metview: Meteorological workstation

MetWork Framework: Useful modules to build meteorological applications

