Complementos de Bases de Dados

– Segurança – (MS SS)

> Engenharia Informática 2º Ano / 1º Semestre

Cláudio Miguel Sapateiro claudio.sapateiro@estsetubal.ips.pt

DSI :: Escola Superior de Tecnologia de Setúbal :: Instituto Politécnico de Setúbal

Sumário

- Introdução
- Modalidades de Autenticação
- Autorização: Permissões e Roles
- Hierarquia de *Securables*
- Hierarquia de Permissões
- Discussão/Distinção de Conceitos

Encriptação: Conceitos e Aplicação

Motivação

Proteger ...

i.e. manter operacional e de acesso controlado

- Dados
- Objetos
- Regras/Lógica
- BD(s)
- SGBD

Introdução

Várias Dimensões da Segurança

- Segurança Física (espaço/localizações, acessos,...)
- Segurança da Rede (firewall,...)
- Modalidades de Autenticação (MSSS mode, Windows mode,)
- Esquemas de Autorização (Privilégios e Roles)
- Opções na definição e atribuição de (tipo de) contas
- Auditoria/Monitorização regular e pró-ativa
- ...

Introdução

Várias Dimensões da Segurança II

- Politica de Backups (offsite, regularidade, cobertura, ...)
- Validação de dados submetidos pelo(s) "utilizador(es)"
 (e modalidade, e.g. via sp's)
- Ponderação das alternativas exequíveis de encriptação
- Desativação de serviços desnecessários
- Eventual alteração de portos default (e.g. DBA backdoor 1434)
- ...

Autenticação

Definição

- Processo de verificação de que um utilizador é genuíno
- Modos de Autenticação MSSS (Login):
 - Windows

Modo integrado com o SO, as contas e grupos do SO são confiáveis na autenticação perante o MSSS

- Adequado quando existe um domain controller
- Ou, quando a aplicação e a BD correm na mesma maquina
- Misto (Mixed)

Modo Windows +

Credenciais (utilizador + senha) definidos e armazenados no MSSS

 Utilização típica quando as aplicações se ligam a partir de outros domínios (e e.g. Internet)

Autorização

Definição

- Processo que especifica os direitos de acesso de determinado utilizador/grupo relativamente aos objetos da BD
 - Privileges & Roles
 São especificados os privilégios sobre os objetos (sistema + específicos) da BD
- Logins (acesso ao servidor)vs Users (operações na BD)
 - Faculta o acesso ao MSSS
 (estabelece a relação entre nível de acesso ao servidor e o nível de utilizador da BD)
 - Podem estar associados a contas Windows ou MSSS
 - São armazenados na BD master

Roles

Definição

- Modelo flexível de administração de segurança
- Conjunto agregado de privilégios
- Podem ser geridos/alterados "dinamicamente"
- Preferível a atribuição de permissões/privilégios a Roles do que a users
- Um user pode pertencer a múltiplos roles
- Disponíveis no MSSS:
 - Fixed Server Roles (Dbcreator, Diskadmin, Sysadmin, ...)
 - Custom Server Roles (since 2012)
 - Fixed Database Roles [Criados com cada BD]
 (Db_owner, Db_denydatareader/writer, Db_datareader/writer,...)
 - Custom Database Roles » Mais granular

Server Level

> DB Level

SERVER LEVEL ROLES AND PERMISSIONS

https://msdn.microsoft.com/en-us/library/ms188659.aspx

Permissões no MSSS

Vocabulário

Securable

 Resource within SQL Server, such as a database, table, procedure, or feature.

Principal

 Object to which permissions can be assigned, such as a login or certificate.

Permission

 Activity on the securable that is granted to the principal, such as read or view. **GRANT**

DENY

REVOKE

Permissões no MSSS

GRANT

Confere permissão ao Principal sobre o Securable em determinada acção

DENY

- Nega determinada acção ao Principal sobre o Securable
- Se houver conflito com existência de GRANT e DENY simultaneamente,
 - ❖ o DENY sobrepõe-se sempre

REVOKE

- Repõe no estado anterior à ultima "permissão" concedida
 - ❖ Seja esta GRANT ou DENY

Hierarquia de Securables

DSI::EST-IPS

```
USE TestDB;

GO

CREATE ROLE TestRole;

GO

CREATE USER TestUser WITHOUT LOGIN;

GO

EXEC sp_addrolemember @rolename = 'TestRole', @membername = 'TestUser';

GO
```

```
CREATE SCHEMA Test;

GO

CREATE TABLE Test.TestTable (TableID int);

GO

GRANT SELECT ON OBJECT::Test.TestTable TO TestRole;

GO

CREATE TABLE Test.TestTable2 (TableID int);

GO
```

```
EXECUTE AS USER = 'TestUser';

GO

SELECT * FROM Test.TestTable;

GO

REVERT;

GO

-- Test Harness to verify how permissions work for Test.TestTable2.

EXECUTE AS USER = 'TestUser';

GO

-- This should fail initially, as there is no permission for this table

SELECT * FROM Test.TestTable2;

GO

REVERT;

GO
```

```
-- Let's undo the permission using REVOKE;
REVOKE SELECT ON OBJECT::Test.TestTable FROM TestRole;
```

```
-- Permission at the schema level
GRANT SELECT ON SCHEMA: Test TO TestRole;
GO
```

```
-- Specific DENY will block the GRANT
DENY SELECT ON OBJECT::Test.TestTable TO TestUser;
```

» Agora será possível ao TestUser fazer o SELECT à TestTtable2 mas não à TestTable

Discussão

Como se articulam então os vários conceitos?

Related Catalog Views

Database-Level Views

sys.database_permissions	sys.database_scoped_credentials
sys.database_principals	sys.master_key_passwords
sys.database_role_members	sys.user_token

Server-Level Views

sys.credentials	sys.server_principals
sys.login_token	sys.server_role_members
sys.securable_classes	sys.sql_logins
sys.server_permissions	sys.system_components_surface_area_configuration

```
select distinct
    spr.principal_id,
    spr.name as principal_name,
    spr.type as principal_type,
    spr.type_desc as principal_type_desc,
    spm.permission_name,
    spm.state_desc
from sys.server_principals spr
inner join sys.server_permissions spm
on spr.principal_id = spm.grantee_principal_id
where spr.type in ('s', 'u', 'r')
```

principal_id	principal_name	principal_type	principal_type_desc	pemission_name	state_desc
1	sa	S	SQL_LOGIN	CONNECT SQL	GRANT
2	public	R	SERVER_ROLE	CONNECT	GRANT
2	public	R	SERVER_ROLE	VIEW ANY DATABASE	GRANT
257	##MS_PolicyTsqlExecutionLogin##	S	SQL_LOGIN	CONNECT SQL	GRANT
257	##MS_PolicyTsqlExecutionLogin##	S	SQL_LOGIN	VIEW ANY DEFINITION	GRANT
257	##MS_PolicyTsqlExecutionLogin##	S	SQL_LOGIN	VIEW SERVER STATE	GRANT
259	Claudio-PC\Claudio	U	WINDOWS_LOGIN	CONNECT SQL	GRANT
260	NT SERVICE\SQLWriter	U	WINDOWS_LOGIN	CONNECT SQL	GRANT
261	NT SERVICE\Winmgmt	U	WINDOWS_LOGIN	CONNECT SQL	GRANT
262	NT Service\MSSQLSERVER	U	WINDOWS_LOGIN	CONNECT SQL	GRANT
263	NT AUTHORITY\SYSTEM	U	WINDOWS_LOGIN	ALTER ANY AVAILABILITY GROUP	GRANT
263	NT AUTHORITY\SYSTEM	U	WINDOWS_LOGIN	CONNECT SQL	GRANT
263	NT AUTHORITY\SYSTEM	U	WINDOWS_LOGIN	VIEW SERVER STATE	GRANT
264	NT SERVICE\SQLSERVERAGENT	U	WINDOWS_LOGIN	CONNECT SQL	GRANT
265	NT SERVICE\ReportServer	U	WINDOWS_LOGIN	CONNECT SQL	GRANT
266	##MS_PolicyEventProcessingLogin##	S	SQL_LOGIN	CONNECT SQL	GRANT
268	distributor_admin	S	SQL_LOGIN	CONNECT SQL	GRANT

mini Sumário

- 1. Autenticação vs autorização
- 2. Principals, Securables & Permissions
- 3. Users and Logins

Exercícios

Responda aos exercícios que serão apresentados no final da Demo

DEMO

ENCRIPTAÇÃO

Introdução

- Uma forma adicional de proteger dados
- Adequado para informação particularmente sensível (email, password, nº cartão de crédito, ...)
- Pode ser considerada uma hierarquia:
 - Nível SO (e.g. Windows BitLocker)
 - Nível SGBD
 - Nível BD
- e adicionalmente considerar também a encriptação na transmissão dos dados (SSL)

Modos de Encriptação

Chaves Simétricas

o emissor e recetor partilham uma única e comum chave usada para encriptar e desencriptar os dados

- Mais simples e preformante
- Mas, a chave tem de ser transmitida!
- e.g. DES, 3DES, AES

Modos de Encriptação

- Chaves Assimétricas
 - Utilizam-se duas chaves uma para encriptar e outra para desencriptar
- O par é gerado conjuntamente e é constituído por:
 - uma chave public-key que será distribuída
 - uma chave private-key
- O emissor utiliza a chave publica para realizar a encriptação o recetor utiliza a sua chave privada correspondente para desencriptar
 - Assim a chave publica não permite a desencriptação!

Modos de Encriptação

Chaves Assimétricas

Modos de Encriptação

Chaves Assimétricas

- Exemplos algoritmos
 - RSA, DSA (w/ SHA-1), ...
- Notas
 - Mais poderoso
 - Mais complexo
 - Menos performante!
- > Tipicamente utiliza-se modo assimétrico para encriptar chaves do modo simétrico, estas ultimas usadas então na encriptação dos dados

<u>Desempenho</u>

Symmetric Key

Asymmetric Key

Texto livre vs encriptado

Processing Time Differences Between Selecting Plain Text Versus Decrypting

https://www.mssqltips.com

MS SQL

- Encriptação ao nível da BD (MS SQL Enterprise TDE)
 Possibilita a encriptação da totalidade dos dados (data files)
 - Ler e Escrever precisa do processo de desencriptação/encriptação
 - Degradação da performance
- Encriptação ao nível da(s) coluna(s)
 Somente colunas que persistem dados sensíveis são encriptadas
 - Melhor performance, mas
 » Atenção se a(s) coluna(s) em causa são chaves, ou alvo das clausulas where ou Join on de queries; degradará a performance dessas queries
 - ✓ Mais comumente utilizado

```
MS SQL
Exemplo
```

```
/* Create Database */
USE master
GO

CREATE DATABASE EncryptTest
ON PRIMARY ( NAME = N'EncryptTest', FILENAME = N'C:\EncryptTest.mdf')
LOG ON ( NAME = N'EncryptTest_log', FILENAME =
N'C:\EncryptTest_log.ldf')
GO
```

CREATE TABLE TestTable (FirstCol INT, SecondCol VARCHAR(50))

TestTable

	FirstCol	SecondCol
1	1	First
2	2	Second
3	3	Third
4	4	Fourth
5	5	Fifth

MS SQL

Exemplo

- DB MasterKey
 utilizada para proteger as asymmetric-key
 e certificados
 (rely on 3DES/AES w/ user-provided password)
 (DMK not directly encripting data, but keys!)
 (stored on both DB and master)
- Certificate (ou asymmetric key)
 Objeto (modo assimétrico) digitalmente assinado por autoridade emissora confiável que é utilizado para encriptar chaves ou dados

Symetric Key | Data

```
/* Create Database Master Key */
USE EncryptTest
GO
CREATE MASTER KEY ENCRYPTION
BY PASSWORD =
                 'Pwd123'
GO
                     Self-signed
                  MS SQL certificates
/* Create Encryption Certificate */
USE EncryptTest
GΟ
CREATE CERTIFICATE EncryptTestCert
                'Protect Data'
WITH SUBJECT =
GO
```

```
/ Create Symmetric Key /
     MS SQL
                                  USE EncryptTest
     Exemplo
                                  GO
                                  CREATE SYMMETRIC KEY TestTableKey
                                  WITH ALGORITHM = TRIPLE_DES ENCRYPTION
                                  BY CERTIFICATE EncryptTestCert
                                  GO
/* Encrypt Data using Key and Certificate
Add Columns which will hold the encrypted data in binary */
USE EncryptTest
GO
ALTER TABLE TestTable
ADD EncryptSecondCol VARBINARY(256)
                                        /* Update binary column with encrypted data created by certificate and key
GO
                                        USE EncryptTest
                                        GO
                                        OPEN SYMMETRIC KEY TestTableKey DECRYPTION
                                        BY CERTIFICATE EncryptTestCert
                                        UPDATE TestTable
                                                                  EncryptSecondCol
                                        SET
                                        ENCRYPTBYKEY(KEY_GUID('TestTableKey'), SecondCol)
                                        GO
```

MS SQL

Exemplo

```
/* DROP original column which was encrypted for protect the data */
USE EncryptTest
GO
ALTER TABLE TestTable
DROP COLUMN SecondCol
GO
```

/* Check the content of the TestTable */

USE EncryptTest

GO

SELECT *

FROM TestTable

GΟ

	FirstCol	EncryptSecondCol
1	1	0x003B444CCFA3B040AEE7FF980C76B82301000000CEFE6F
2	2	0x003B444CCFA3B040AEE7FF980C76B823010000007C11369
3	3	0x003B444CCFA3B040AEE7FF980C76B82301000000BA407B
4	4	0x003B444CCFA3B040AEE7FF980C76B823010000004623AC
5	5	0x003B444CCFA3B040AEE7FF980C76B823010000002886EB

```
MS SQL
                                Requires an
Exemplo
                              authorized user!
/* Decrypt the data of the SecondCol */
USE EncryptTest
GO
OPEN SYMMETRIC KEY TestTableKey DECRYPTION
BY CERTIFICATE EncryptTestCert
SELECT CONVERT(VARCHAR(50),DECRYPTBYKEY(EncryptSecondCol))
AS DecryptSecondCol
FROM TestTable
GO
USE EncryptTest
GO
CLOSE SYMMETRIC KEY TestTableKey
GΟ
```

	FirstCol	DecryptSecondCol
1	1	First
2	2	Second
3	3	Third
4	4	Fourth
5	5	Fifth

Síntese

Related Catalog Views

Encryption Views

sys.asymmetric_keys	sys.cryptographic_providers
sys.certificates	sys.key_encryptions
sys.column_encryption_key_values	sys.openkeys
sys.column_encryption_keys	sys.security_policies (Transact-SQL)
sys.column_master_key_definitions	sys.security_predicates (Transact-SQL)
sys.crypt_properties	sys.symmetric_keys

https://docs.microsoft.com

Encryption vs Hashing

- Diferença principal:
 - dados encriptado podem ser desencriptados
 - Dados sob Hashing não
 - Utilidade: Se dados não são processados e.g. password
- A encriptação pode produzir resultados diferentes para os mesmos dados.
 - Com Hashing não.
 - Assim apesar de irrecuperável é comparável.
- Fator de decisão:
 - é necessário ou não processar os dados encriptados guardados?
 e.g. cartão de crédito
 - Se é então segurança é via encriptação;
 Se não então via Hashing

```
Insert into testTable (usr, hashed_password)
 values (usr1, HashBytes('MD5', 'Pass1'));
-- Password check
If exists (
    SELECT *
    FROM testTable
    WHERE id= 'usr1' AND hashed password = HashBytes('MD5', 'Pass1'))
     BEGIN
        SELECT 'Password Matched'
     END
    ELSE
     BEGIN
      SELECT 'Password Did Not Match'
      END
```

DEMO

mini Sumário

- 1. Conceitos de chaves publica e privada
- 2. Encriptação em SQL Server:

hierarquia de Keys

3. Encriptação vs *Hashing*

10:00

Exercícios

 Distinga a utlização de chaves simétricas vs chaves assimétricas

2. Em que situações é adequada a utilização de encriptação

3. Em que situações é adequada a utilização de Hashing

Complementos de Bases de Dados

– Segurança – (MS SS)

> Engenharia Informática 2º Ano / 1º Semestre

Cláudio Miguel Sapateiro claudio.sapateiro@estsetubal.ips.pt

DSI :: Escola Superior de Tecnologia de Setúbal :: Instituto Politécnico de Setúbal