Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convocatoria extraordinaria

Ejercicio 1. (2.5 puntos) Sea U un entorno reducido de un punto $a \in \mathbb{C}$ y supongamos que $f \in \mathcal{H}(U)$ tiene un polo en a. Probar que existe R > 0 de modo que $\mathbb{C} \setminus D(0, R) \subset f(U)$.

Ejercicio 2. (2.5 puntos) Integrando una conveniente función sobre la poligonal $[-R, R, R + i\pi, -R + i\pi, -R]$, con $R \in \mathbb{R}^+$, calcular la integral

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{e^x + e^{-x}} dx.$$

Ejercicio 3. (2.5 puntos) Sea f una función entera verificando que f(f(z)) = f(z) para todo $z \in \mathbb{C}$. ¿Qué se puede afirmar sobre f?

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\cos(t+z)}{1+t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en $\mathbb C$ y que su suma es una función entera.

Ejercicio 4. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\cos(t+z)}{1+t^2} dt \quad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en \mathbb{C} y que su suma es una función entera.

a)
$$\sigma: [n, n+1] \longrightarrow \mathbb{C}$$
 (arw)

$$\int_{r}^{r+\frac{\Lambda}{2}} \frac{\cos(t+\varepsilon)}{\Delta + t^{2}} dt = \int_{\sigma} \frac{\cos(t+\varepsilon)}{\Delta + t^{2}} dt$$

Sea
$$\phi: (n, n+1) \times C$$
 dada por $\phi(t, \epsilon) = \frac{\cos(t+\epsilon)}{1+t^2}$. Es una

Eunción continua y
$$\phi_{t} \in H(C)$$
. Por el T^{ma} de holomorfia de