PGA Tour and Weather Data

PGA ShotLink Data Team

https://github.com/awfuldynne/golf_course_project

Background

- The PGA Tour offers shot level data through the "ShotLink® Intelligence" program
- Does weather have an effect on player performance?
- Quality of weather data provided with ShotLink is lacking
 - o AM/PM wind speed, direction
- Dark Sky API provides hourly, historical weather data
 - o Both qualitative and quantitative measures
 - Type of precipitation
 - Wind speed/direction
 - Temperature
 - Humidity

Goals

- Provide Python package to help data scientists use ShotLink golf and Dark Sky weather data
 - Simplify the process to retrieve corresponding weather data
- Provide example analyses leveraging shot level data with hourly weather data

Data Used

PGA ShotLink

- Overview
 - Collection of shot level and aggregate data from PGA Tour events
 - Focus on Strokes Gained metric
 - How well did a given shot perform based on how the average PGA Tour player plays
- Process
 - Downloaded semicolon delimited files from ShotLink portal
- Limitations
 - Strokes Gained based on 5 year tour average
 - Access to data restricted by application

Dark Sky API

- Overview
 - Provides an API that allows users to query hourly historical weather data
- Process
 - Used <u>darkskylib</u> python package to make calls to the API
- Limitations
 - Hour is the finest granularity provided
 - Needs latitude and longitude to retrieve data
 - 1,000 free calls per day
 - \$1 per 10,000 calls after that

Data Used, continued

Google Geocoding API

- Overview
 - Maps a given address/location name to latitude and longitude
- Process
 - Python script to iterate over unique course names in ShotLink golf course data set
- Limitations
 - Only have course name from ShotLink data set

Use Cases

- Overall Goal
 - Data scientists can analyze PGA ShotLink data and weather data, together.

- Example Research Questions
 - How does the presence of rain/wind/cloud cover affect golfer performance?
 - How does intensity of rain/wind/cloud cover affect golfer performance?
 - Which golfers are most affected by weather events?

Design Spec

Github Repo

Project Repository:

- https://github.com/awfuldynne/golf_course_project

Demo - What We Tried

- Visualization:
 - Plot each important weather features vs StrokesGainedBaseline output
- Models
 - Linear Regression
 - Ridge Regression
 - Feature Crosses
- Reprocess the dataset
 - Scale and standardize the training and test data
 - Includes features with NaN values
 - Convert categorical data into indicator variables
 - Upsample rainy days within the training dataset

Demo

Lessons Learned

- Many gotchas to look out for when working with date/time data
- A simple ML model, such as Linear Regression, is probably not sufficient to deduce how weather conditions affect shot performance, especially with such a narrow output
- The overwhelming majority of our shot events took place during nice weather this makes it difficult to find correlations with the more 'extreme' weather conditions; our training set isn't well-stratified
- The free version of Travis CI (public repo) does work with a private repo dependency, using Git submodules and bespoke encryption/decryption

Future Work

- Further investigation into code coverage solutions
 - Coveralls doesn't always update with coverage data from Travis
 - But we implemented <u>CodeCov</u> and it seems better
- Player-level analyses
 - Are certain players more effective in rain?
- Deduce wind direction relative to shot direction using wind bearing and sequential shot coordinate values
- Unit test all higher-level ShotLink data cleaning/merging scripts right now we test all of the core functionality, but only some of the higher-level scripts that call the core functionality
- Try more ML techniques, such as Neural Networks

