

UNIVERSIDAD PRIVADA DE TACNA

FACULTAD DE INGENIERIA

Escuela Profesional de Ingeniería de Sistemas

Proyecto "Infraestructura Tecnológica para el Evento Juegos Florales de la Universidad Privada de Tacna"

Curso: *Tópicos de Base de Datos Avanzados*

Docente: Mag. Patrick Cuadros Quiroga

Integrantes:

Apaza Ccalle, Albert Kenyi (2021071075)

Huallpa Maron, Jesús Antonio (2021071085)

Helbert Andres Condori Loayza (2020067571)

Soledad Noemi Maltrin Yañez (2011040531)

Tacna – Perú

2024

**

**

\pagebreak

CONTROL DE VERSIONES

Versión	Hecha por	Revisada por	Aprobada por	Fecha	Motivo
1.0	MPV	ELV	ARV	10/10/2020	Versión Original

Sistema "Infraestructura Tecnológica para el Evento Juegos Florales de la Universidad Privada de Tacna"

Documento de Arquitectura de Software

Versión {1.0} **

\pagebreak

CONTROL DE VERSIONES

Versión	Hecha por	Revisada por	Aprobada por	Fecha	Motivo
1.0	MPV	ELV	ARV	10/10/2020	Versión Original

\pagebreak

INDICE GENERAL

1. INTRODUCCIÓN

- 1.1 Propósito (Diagrama 4+1)
- 1.2 Alcance
- 1.3 Definición, siglas y abreviaturas
- 1.4 Organización del documento

2. OBJETIVOS Y RESTRICCIONES ARQUITECTONICAS

- 2.1 Requerimientos Funcionales
- 2.2 Requerimientos No Funcionales Atributos de Calidad

3. REPRESENTACIÓN DE LA ARQUITECTURA DEL SISTEMA

- 3.1. Vista de Caso de uso
- 3.1.1. Diagramas de Casos de uso
- 3.2. Vista Lógica
- 3.2.1. Diagrama de Subsistemas (paquetes)
- 3.2.2. Diagrama de Secuencia (vista de diseño)
- 3.2.3. Diagrama de Colaboración (vista de diseño)
- 3.2.4. Diagrama de Objetos
- 3.2.5. Diagrama de Clases
- 3.2.6. Diagrama de Base de datos (relacional o no relacional)
- 3.3. Vista de Implementación (vista de desarrollo)
- 3.3.1. Diagrama de arquitectura software (paquetes)
- 3.3.2. Diagrama de arquitectura del sistema (Diagrama de componentes)
- 3.4. Vista de procesos
- 3.4.1. Diagrama de Procesos del sistema (diagrama de actividad)
- 3.5. Vista de Despliegue (vista física)
- 3.5.1. Diagrama de despliegue

4. ATRIBUTOS DE CALIDAD DEL SOFTWARE

Escenario de Funcionalidad

Escenario de Usabilidad

Escenario de confiabilidad

Escenario de rendimiento

Escenario de mantenibilidad

\pagebreak

Informe Especificacion Requerimientos

1. INTRODUCCIÓN

1.1 Propósito (Diagrama 4+1)

El propósito del proyecto "Infraestructura Tecnológica para el Evento Juegos Florales de la Universidad Privada de Tacna" es diseñar e implementar una infraestructura tecnológica avanzada utilizando el modelo arquitectónico **4+1**, que permita gestionar eficientemente los procesos asociados al evento. Este enfoque contempla las siguientes vistas:

- **Vista Lógica**: Representación de la interacción entre componentes de software, tales como aplicaciones web, bases de datos y sistemas de monitoreo.
- Vista de Desarrollo: Diseño de los módulos que permitirán implementar y mantener el sistema, destacando herramientas como Terraform, AWS y MongoDB Atlas.
- **Vista de Procesos**: Detalle del flujo de trabajo y sincronización entre los servicios de computación, almacenamiento y análisis en tiempo real.
- **Vista Física**: Especificación de los recursos físicos y virtuales que soportarán el sistema, tales como servidores EC2 y almacenamiento S3.
- Casos de Uso: Descripción de los escenarios prácticos que la infraestructura abordará, incluyendo inscripción de participantes, monitoreo del evento y generación de reportes en tiempo real.

1.2 Alcance

El alcance del proyecto incluye la planificación, implementación y gestión de una infraestructura escalable que cumpla con los requisitos del evento Juegos Florales.

Ámbito del proyecto:

- Gestión integral de aplicaciones web y móviles para la interacción de participantes y organizadores.
- Implementación de sistemas de monitoreo y análisis para garantizar el rendimiento en tiempo real.
- Automatización del despliegue y mantenimiento mediante herramientas como Terraform.

Resultados esperados:

o Reducción de tiempos de configuración y gestión de la infraestructura.

- Mejora en la experiencia de los usuarios gracias a una plataforma robusta y accesible.
- Capacidad de escalabilidad para soportar un incremento en la demanda durante el evento.

1.3 Definiciones, Siglas y Abreviaturas

- AWS: Amazon Web Services, proveedor de servicios en la nube.
- **Terraform**: Herramienta para la automatización de infraestructura como código (IaC).
- MongoDB Atlas: Plataforma en la nube para bases de datos NoSQL gestionadas.
- Grafana: Herramienta de monitoreo y visualización de datos en tiempo real.
- EC2: Servicio de cómputo elástico de AWS para ejecutar máquinas virtuales.
- \$3: Servicio de almacenamiento de objetos en la nube de AWS.

1.4 Organización del Documento

El documento está organizado en las siguientes secciones:

- Introducción: Expone los objetivos, alcance y visión general del proyecto.
- **Posicionamiento**: Describe la oportunidad de negocio y los problemas a resolver.
- **Descripción de los Interesados y Usuarios**: Define los perfiles y necesidades de los grupos involucrados.
- Vista General del Producto: Expone las capacidades y perspectivas del sistema.
- Características del Producto: Detalla las funcionalidades principales de la infraestructura.
- Restricciones y Requisitos Adicionales: Especifica limitaciones técnicas y normativas.
- Conclusiones y Recomendaciones: Resumen de los resultados esperados y pasos futuros.

2. Objetivos y Restricciones Arquitectónicas

2.1 Requerimientos Funcionales

ID	Nombre del Requerimiento	Descripción	Prioridad
RF- 01	Monitoreo de Infraestructura	Monitorear el estado de la infraestructura tecnológica (servidores, red, almacenamiento, etc.) en tiempo real.	Alta
RF- 02	Despliegue Automático con Terraform	Configurar y desplegar automáticamente los recursos tecnológicos mediante herramientas de automatización (Terraform).	Alta
RF- 03	Garantía de Disponibilidad y Escalabilidad en AWS	Garantizar la disponibilidad y escalabilidad de la infraestructura mediante el uso de servicios en la nube (AWS).	Alta
RF- 04	Pruebas de Carga y Rendimiento	Realizar pruebas de carga y rendimiento de la infraestructura para asegurar la capacidad durante el evento.	Alta
RF- 05	Integración con Plataformas Universitarias	Configurar el sistema de infraestructura para que pueda integrarse con otras plataformas de la universidad, como la gestión de eventos y bases de datos de usuarios.	Media
RF- 06	Implementación de EC2 con Amazon Linux 2 para Docker	Implementación de un EC2 con Amazon Linux 2 para la Ejecución de Contenedores Docker en AWS mediante Terraform.	Alta
RF- 07	Configuración de Instancia de Grafana Cloud	Configuración de una Instancia de Grafana Cloud mediante Terraform.	Alta
RF- 08	Hospedaje de Aplicación Flutter en S3	Configuración de un Bucket S3 para Hospedar una Aplicación Flutter como Sitio Web Estático.	Media
RF- 09	Configuración de MongoDB Atlas	Configuración de un Cluster y Usuario de MongoDB Atlas mediante Terraform.	Alta

ID	Nombre del Requerimiento	Descripción	Prioridad
RF- 10	Hospedaje de Aplicación React en S3	Configuración de un Bucket S3 para Hospedar una Aplicación React como Sitio Web Estático.	Media

2.2 Requerimientos No Funcionales – Atributos de Calidad

ID	Nombre del Requerimiento	Descripción	Prioridad
RNF- 01	Compatibilidad con Sistemas Operativos	El sistema de infraestructura debe ser compatible con sistemas operativos Linux y Windows para la gestión de servidores.	Alta
RNF- 02	Accesibilidad desde Cualquier Dispositivo	La plataforma debe ser accesible desde cualquier dispositivo con conexión a Internet (navegador web moderno).	Alta
RNF- 03	Seguridad de Datos	La infraestructura debe garantizar la seguridad de los datos mediante protocolos de encriptación y autenticación.	Alta
RNF- 04	Escalabilidad	La infraestructura debe ser escalable y permitir el incremento de recursos en caso de aumento de usuarios o demanda durante el evento.	Alta
RNF- 05	Redundancia y Alta Disponibilidad	La solución debe ofrecer redundancia y alta disponibilidad para los servicios críticos, con un tiempo de inactividad menor al 1%.	Alta
RNF- 06	Respaldo y Recuperación ante Fallos	Los servidores y servicios en la nube deben contar con sistemas de respaldo y recuperación ante fallos automáticos.	Alta

ID	Nombre del Requerimiento	Descripción	Prioridad
RNF- 07	Optimización de Recursos en el Sistema	La infraestructura debe consumir recursos mínimos de CPU y RAM para optimizar el rendimiento de las aplicaciones y servicios del evento.	Media

3. REPRESENTACIÓN DE LA ARQUITECTURA DEL SISTEMA

- 3.1. Vista de Caso de uso
- 3.1.1. Diagramas de Casos de uso

3.2. Vista Lógica

3.2.1. Diagrama de Subsistemas (paquetes)

3.2.2. Diagrama de Secuencia (vista de diseño)

3.2.3. Diagrama de Colaboración (vista de diseño)

3.2.4. Diagrama de Objetos

3.2.5. Diagrama de Clases

3.2.6. Diagrama de Base de datos (relacional o no relacional)

3.3. Vista de Implementación (vista de desarrollo)

3.3.1. Diagrama de arquitectura software (paquetes)

3.3.2. Diagrama de arquitectura del sistema (Diagrama de componentes) }

Infrastructure Diagram

4. ATRIBUTOS DE CALIDAD DEL SOFTWARE (TERRAFORM Y AWS)

Escenario de Funcionalidad

Escenario	Descripción	Prioridad
Funcionalidad	El sistema debe permitir la ejecución de pruebas de carga para garantizar su estabilidad ante picos de demanda.	Alta
Implementación	Usando Terraform, se puede configurar Auto Scaling Groups en AWS junto con Elastic Load Balancing (ELB) para soportar picos de carga. Las pruebas pueden ser realizadas mediante herramientas como AWS Fault Injection Simulator o integradas a un flujo CI/CD con herramientas externas como JMeter, permitiendo evaluar el rendimiento bajo demanda.	

Escenario de Usabilidad

Escenario	Descripción	Prioridad
Usabilidad	La plataforma debe ser intuitiva y accesible desde navegadores modernos, permitiendo una navegación fluida para usuarios administrativos y estudiantes.	Alta
Implementación	Se emplea Amazon S3 para hospedar aplicaciones web estáticas, complementado con CloudFront para asegurar tiempos de carga rápidos y compatibilidad con navegadores modernos. El acceso seguro puede garantizarse mediante la habilitación de HTTPS con certificados gestionados por AWS Certificate Manager (ACM).	

Escenario de Confiabilidad

Escenario	Descripción	Prioridad
Confiabilidad	Debe garantizar un tiempo de inactividad inferior al 1%, asegurando disponibilidad continua mediante redundancia y recuperación automática.	Alta
Implementación	A través del módulo de Terraform para MongoDB Atlas , se habilita una configuración Multi-AZ para	

Escenario	Descripción	Prioridad
	alta disponibilidad en la base de datos.	
	Además, AWS Route 53 con políticas de failover	
	y Amazon S3 Versioning aseguran redundancia y	
	recuperación rápida de servicios críticos.	

Escenario de Rendimiento

Escenario	Descripción	Prioridad
Rendimiento	El sistema debe ser capaz de manejar un alto número de conexiones concurrentes sin comprometer el tiempo de respuesta, incluso en momentos críticos.	Alta
Implementación	Los contenedores backend definidos en el módulo docker_host pueden ser ejecutados en Amazon ECS con Fargate, habilitando escalabilidad automática. Se configura Amazon ElastiCache (Redis) como caché para acelerar las consultas de base de datos y reducir la latencia. Monitoreo de métricas en tiempo real se gestiona con Grafana, configurado mediante su módulo dedicado en Terraform.	

Escenario de Mantenibilidad

Escenario	Descripción	Prioridad
Mantenibilidad	La infraestructura debe permitir actualizaciones y ajustes en caliente, minimizando las interrupciones durante los eventos.	Alta
Implementación	Con Terraform, se facilita la implementación de cambios en infraestructura mediante Zero Downtime Deployments utilizando ECS Blue/Green Deployment para backend y actualizaciones progresivas en los módulos web_app y mobile_app. Se minimizan interrupciones aplicando configuraciones automáticas a través de CloudFormation Change Sets.	

Otros Escenarios

Escenario	Descripción	Prioridad
Integración	Debe integrarse con los sistemas existentes de la universidad, garantizando la seguridad y el manejo eficiente de datos sensibles de los estudiantes.	Media
Implementación	La integración de bases de datos se realiza a través del módulo mongodb, asegurando que los datos sean almacenados en clústeres configurados con cifrado en reposo. El acceso seguro a los servicios se gestiona con AWS IAM Roles y políticas estrictas de permisos para cada recurso. Las auditorías de seguridad se facilitan mediante la integración de AWS Config y Grafana para rastrear el estado de cumplimiento.	