

Školení MATLAB I

SPRÁVA DAT, VÝPOČETNÍ FUNKCE, TVORBA GRAFŮ A ZÁKLADY PROGRAMOVÁNÍ

Obsah

Úvod do prostředí MATLAB	2
Základní příkazy v MATLABu	3
Vektory, matice a pole	4
Výpočetní operace	8
Výpočetní funkce	9
Text	10
Nápověda/dokumentace a správa proměnných	11
Ukládání / Načítání dat	12
Grafika v MATLABu	14
Čárový 2-D graf	14
Skripty v MATLABu	16
Další typy 2-D grafů	18
3-D grafy	19
Live Editor a Live Script	20
Základní datové typy používané v MATLABu	23
Číselné datové typy	23
Datový typ logical a logické operace	23
Indexování maticí logických hodnot	24
Přehled dalších (zajímavých) funkcí	26
Řízení toku programu - cyklus a podmínka	27
Podmínkový příkaz v MATLABu	27
Cyklus For	27
Cyklus While	28
Přerušení jednoho průběhu cyklu, ukončení celého cyklu	28
Rozdělovač	28
Funkce v MATLABu	29
Publikovaní skriptů a funkcí	30
Přizpůsobení prostředí MATLAB – <i>Preferences</i>	31
Kde najít informace o MATLABu	31

Úvod do prostředí MATLAB

• Co je MATLAB?

- Programovací jazyk 4. generace a interaktivní vývojové prostředí pro vědeckotechnické výpočty
 - Numerické výpočty
 - Analýza dat a vizualizace
 - Vývoj a programování algoritmů
 - Vývoj aplikací a jejich nasazení
- Rozšiřující knihovny pro široké spektrum aplikací toolboxy (např. zpracování signálu a komunikace, zpracování obrazu a videa, řídicí systémy, testy a měření dat)
- o MATLAB je plný programovací jazyk, včetně objektově-orientovaného programování

Toolboxy

doplňující knihovny funkcí

• Verze MATLABu

- vychází 2x ročně
- o aktuální R2022a

• Dnes se zaměříme na tyto kroky při práci v prostředí MATLAB

- o vytváření dat a manipulace s daty
 - >> x = 0:0.1:2*pi
- výpočty a analýza dat
 - \blacksquare >> y = sin(x)
- o vizualizace výsledků
 - >> plot(x,y)

Základní příkazy v MATLABu

- MATLAB Desktop
 - o **Uživatelské rozhraní**, přes které ovládáme MATLAB

- Command Window
 - >> příkaz
 - 0 >> 3+6
 - o zadávání příkazů, které se ihned provedou
- Přiřazovací příkaz
 - o proměnná = hodnota
 - \blacksquare >> a = 3.8
 - >> a = 3.8; ... znak ";" za příkazem potlačí výpis výsledku
 - >> c = -2.3e-16 ...-2.3×10⁻¹⁶, exponenciální tvar
- Workspace
 - o seznam proměnných, které jsou aktuálně v paměti
 - ans ... proměnná, výsledek poslední operace bez přímého přiřazení výstupu
- Názvy proměnných
 - o používat jen znaky anglické abecedy, číslice a podtržítko
 - o musí začínat písmenem
 - o MATLAB je case sensitive
- Výrazy a základní matematika
 - výraz může obsahovat
 - konstanty, proměnné
 - operátory: +, -, *, /, ^
 - závorky ()
 - funkce: zadané jménem, argumenty do oblých závorek
 - o priorita jako v matematice
 - \blacksquare >> q1 = 2*(3+1)
 - o příklady vestavěných funkcí:
 - sin, cos, sind, cosd, exp, log, log10, abs, sqrt
 - \blacksquare >> Q1 = log(q1)
 - o příklad vestavěných konstant:
 - pi ... π

- Formát zobrazení čísel ve výpisu do Command Window lze nastavit příkazem format
 - o >> format long ... výpis na více cifer
 - o >> Q1
 - o >> pi
 - o >> format short ... standardní výpis
 - o >> pi
- Command History
 - o prohlížeč historie příkazů spuštěných v Command Window
 - o vyvoláme kurzorovými šipkami ↑↓ (+ zúžení zadáním počátečních písmen)
 - o lze znovu spouštět příkazy (dvojklik), nebo i celé bloky příkazů (CTRL, SHIFT)

Vektory, matice a pole

- proměnné mohou obsahovat více prvků, obecně **pole** (array) o libovolných rozměrech
- speciální případy pole:
 - o dvourozměrné numerické pole (MxN prvků) ... matice
 - o jednorozměrné numerické pole (Nx1 / 1xN prvků)... vektor
 - o jednoprvkové numerické pole (1x1)... skalár
 - o ve školeních MATLAB 1, 2 a 3 se seznámíme i s řadou nenumerických polí, např. pro práci s textem uvidíme pole znaků (*character array*)
- Vektor
 - o jednorozměrné numerické pole
 - o matice s jedním řádkem nebo sloupcem
 - zadání výčtem prvků
 - >> v = [1 2 3] ... řádkový
 - >> v = [5;6;7] ... sloupcový
 - o výběr *n-tého* prvku ... *v*(*n*)
 - >> v(3)
 - přiřazení nové hodnoty
 - > v(3) = 5
 - >> v (5) = 6 ... zvětší vektor
 - vytvoření posloupnosti s krokem 1 znak ":"
 - >> x = 1:5 ... vektor čísel od 1 do 5 s krokem 1
 - •
 - o transpozice
 - >> x' ... ans je sloupcový vektor
 - o funkce lze volat na celé vektory
 - \blacksquare >> y = log(x)
 - >> plot(x,y) ... vykreslení grafu
 - o length(vektor) ... délka vektoru
 - >> length(y)
 - Výpočetní operace s vektory
 - lze provádět s celými vektory
 - operace s vektorem a skalárem
 - >> x+2 ... ke každému prvku vektoru se přičte 2
 - >> 2*x ... všechny prvky vektoru se vynásobí 2
 - maticové operace ... tj. operace z lineární algebry
 - přirozená syntaxe, neboť MATLAB = MATrix LABoratory

• např. skalární součin vektorů *x* a *y*:

operace po prvcích

• např. násobení po prvcích:

- první prvek vektoru *x* vynásobíme s prvním prvkem vektoru *y*, druhý s druhým, ...
- vektory x a y musí mít stejný počet prvků
 - o např. dva sloupce v tabulce
- výstup má stejný počet prvků jako x a y
 - o sloupec s výpočtem
- používat místo cyklu **vektorizace**
 - o přehlednější kód a rychlejší výpočet
- o při vytvoření posloupnosti lze zvolit krok
 - >> x = 1:2:10 ... vektor čísel od 1 do 10 s krokem 2
 - může být libovolný: 0:0.1:5, 10:-2:0
 - \rightarrow >> x = 1:0.1:5;
 - \blacksquare >> y = log(x)
 - >> plot(x,y)
- vytvoření posloupnosti s daným počtem prvků
 - linspace(první prvek, poslední prvek, počet prvků)
 - \rightarrow >> v = linspace(0,1,5)
- zvětšení vektoru o prvek, spojování vektorů
 - \blacksquare >> v = [v 10]
 - >> ∨ = [∨ ∨]
- Variable Editor
 - o poklepání na proměnnou ve Workspace otevře se v tabulkovém zobrazení

Matice

- zadání výčtem prvků
 - prvky zadáváme po řádcích
 - oddělovač prvků v řádku mezera " " nebo čárka ","
 - oddělovač řádků středník ";"
 - \blacksquare >> M = [1 2 3; 4 5 6; 7 8 9; 10 11 12] ... matice 4x3
 - >> M = [1 2 3; 4 5 6; 7 8 9; 10 11 a]
 - hodnota z proměnné *a* se předá do matice *M*
 - >> M = [1 2 3; 4 5 6; 7 8 9; 10 11 sqrt(a)]
 - hodnota odmocniny z a se předá do matice M
 - >> surf (M) ... zobrazíme prvky matice vzhledem k jejich indexům
- Funkce pro tvorbu speciálních matic a vektorů
 - zeros(m,n) ... matice nul ($zeros(n) \sim n \times n$ platí i pro další)
 - ones(m,n) ... matice jedniček
 - eye(m,n) ... jednotková matice
 - magic(n) ... matice přirozených čísel, stejné součty řádků a sloupců
 - rand(m,n) ... matice náhodných čísel s rovnoměrným rozdělením
 - randn(m,n) ... matice náhodných čísel s normálním rozdělením
- Indexování ... M(řádek, sloupec)
 - výběr prvku
 - >> M(2,1) ... v 2. řádku 1. sloupci

- přiřazení nové hodnoty
 - >> M(4,3) = 12
- výběr více prvků
 - indexovat lze i přímo vektorem
 - >> M([1 4],1)
 - >> M([1 4], [1 3]) ... výběr rohových prvků matice 4x3

 $M([1 \ 4],1) \qquad M([1 \ 4],[1 \ 3])$

- znak ":" lze použít pro indexování více prvků
 - >> M(1:3,2)
- výběr všech prvků v dané dimenzi využíváme samotný znak ":"
 - >> M(:,2) ... všechny řádky, druhý sloupec
- Poslední index "end"
 - >> M(2:end,end) ... vybere všechny řádky od druhého, poslední sloupec
- předposlední index: end-1
- o Dotaz na velikost matice
 - *size(proměnná)* ... vrátí velikost
 - >> size(a) ... 1 1
 - >> size (M) ... vrátí vektor dvou čísel počet řádků, sloupců
 - výběr dimenze: size(x,dim) vrací pouze rozměr dané dimenze
 - u vektoru problém s funkcí *size* je řádkový nebo sloupcový?
 - o např.: 1x5 nebo 5x1
 - o o kterou dimenzi si požádat?
 - řeší length vrací delší rozměr = jediné číslo
- Spojování matic
 - >> K = [M; M] ... pod sebe
 - >> K = [M M] ... vedle sebe
 - funkce repmat(matice,m-krát,n-krát)
 - pro velké množství opakování dané matice
 - >> repmat(M, 3, 2)
 - funkce cat(dim,A,B)
- Vícerozměrné pole
 - vytvoření
 - zeros, ones, rand a randn lze použít i pro tvorbu vícerozměrných polí
 - funkce cat(dim,A,B)
 - >> K = cat(3, M, M) ... vytvoření 3-D pole
 - indexování
 - K(i1,i2,i3,...)
- Dynamická změna velikosti vektorů, matic a vícerozměrných polí
 - matici není nutné definovat naráz

- postupné přidávaní prvků pomocí indexování
 - >> u = 1
- ... vytvoří skalár
- >> u(2) = 2
- >> u(5) = 3
- ... přidá další prvek ... přidá 5-tý prvek a mezi prvky s hodnotou 0
- >> u(2,1) = 4
- ... přidá celý nový řádek
- jednoduché, pohodlné, ale může být pomalé
 - vhodné zejména ve fázi vývoje algoritmu
- na počátku můžeme "startovat" i z prázdné matice (u = []) nebo rovnou od prvního prvku (u(1) = 1)
- vymazání prvku přiřazením prázdné hodnoty
 - >> v(3) = []
 - u matic lze smazat jen celý řádek, nebo celý sloupec (M(2,:) = [])

Lineární indexování

- indexováno postupně po sloupcích shora-dolů, zleva-doprava
 - >> M(3)
 - >> M([1 3 6]) ... prvky jsou vráceny ve formě vektoru

(1,1) (1)	(1,2) (5)	(1,3) (9)
(2,1) (2)	(2,2) (6)	(2,3) (10)
(3,1) (3)	(3,2) (7)	(3,3) (11)
(4,1) (4)	(4,2) (8)	(4,3) (12)

indexování prvků (řádek, sloupec) vs. lineární index

- převod matice na vektor
 - M(:) ... celá matice v lineárním indexování

Pozn.:

Indexováním (řádek, sloupec) lze vybrat pouze jeden prvek, nebo obdélníkovou submatici. Pro výběr více konkrétních prvků, které netvoří obdélníkovou oblast, lze použít indexování lineární.

- Přetvarování vektorů, matic a vícerozměrných polí
 - o funkce reshape
- Řazení prvků ve vektorech, maticích a vícerozměrných polích
 - o sort ... seřadí nezávisle jednotlivé sloupce
 - >> M = magic(3)
 - >> sort(M)
 - lze řadit vzestupně i sestupně
 - sortrows ... seřadí matici podle daného sloupce
 - >> sortrows(M)
 - lze volat na vektor nebo matici
 - lze volit sloupec, podle kterého řadíme, primární i další klíče, ...

Výpočetní operace

- Operace s maticí a skalárem
 - 0 +, -, *, /
 - ke všem prvkům matice se přičte nebo odečte skalární hodnota
 - všechny prvky matice se vynásobí nebo vydělí skalární hodnotou
 - $o \gg K = M + 2$
 - o >> K = 2*M
 - o místo matice může být libovolné numerické pole
- Maticové operace
 - 0 +, -, *, /, \, ^
 - o pro matice záleží na velikosti dle pravidel
 - sčítat a odčítat stejně velké matice
 - sečtou se (odečtou) odpovídající prvky
 - >> M M
 - >> M + K
 - o M a K mají stejné rozměry => mohu je přičíst
 - násobit matice s odpovídajícími vnitřními rozměry
 - / = * inv(A), $\backslash = inv(A) *$
 - >> v = 1:5 ... řádkový vektor (matice 1x5)
 - >> v' ... sloupcový vektor (matice 5x1)
 - ... skalár >> v*v'
 - ... matice 5x5 >> v'*v
 - lze provádět s vektory a maticemi

⇒ Úloha:

Máme dvě přímky reprezentované rovnicemi:

o p:
$$y = x + 1$$

o q:
$$y = -2x + 4$$

Najděte bod T, kde se přímky protínají.

⇒ Řešení:

Soustava lineárních rovnic:

o p:
$$y_T = x_T + 1$$

$$\circ$$
 p: $y_T = x_T + 1$... $-x_T + y_T = 1$ \circ q: $y_T = -2x_T + 4$... $2x_T + y_T = 4$

o q:
$$y_T = -2x_T + 4$$

$$-x_T + y_T - 1$$

V maticové podobě:

$$\begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_T \\ y_T \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \dots \qquad \boxed{A\vec{x} = b} \Rightarrow \boxed{\vec{x} = A^{-1}b}$$

$$\boxed{A\vec{x} = b} \Rightarrow \boxed{\vec{x} = A^{-1}b}$$

$$A = \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Výpočet v příkazové řádce MATLABu:

$$>> A = [-1 \ 1; 2 \ 1]$$

$$>> b = [1;4]$$

$$>> T = inv(A)*b$$

Alternativa:

$$>>$$
 T = A\b

• Operace po prvcích

- 0 .* , ./ , .^
- o pro každý prvek zvlášť
- o obě pole musí mít stejné rozměry
- o tzv. vektrorizace namísto cyklů používat vektory
 - >> v.*v
- vykreslení 3d grafu plochy zadané analyticky
 - $z = \sin(r)/r$, kde $r = \sqrt{x^2 + y^2}$ pro $x, y \in \langle -2\pi, 2\pi \rangle$
 - >> x = -2*pi:pi/10:2*pi;
 - >> y = -2*pi:pi/5:2*pi;
 - \blacksquare >> [X,Y] = meshgrid(x,y);
 - funkce meshgrid vytvoří rastr
 - matice X obsahuje v každém řádku vektor x.
 - matice Y obsahuje v každém sloupci vektor y'
 - X a Y mají stejné rozměry
 - >> R = sqrt(X.^2+Y.^2)
 - \blacksquare >> Z = sin(R)./R;
 - \blacksquare >> surf (X, Y, Z) ... graf plochy na níž leží body [X(i,j),Y(i,j),Z(i,j)]
- lze provádět i s vícerozměrnými numerickými poli

Výpočetní funkce

• Volání jménem funkce, vstupní argumenty do kulatých závorek

- \circ out = fun(arg1, arg2)
 - výstup se přiřadí do výstupní proměnné
- o *fun(arg1, arg2)*
 - jako součást složitějšího výrazu
 - samostatně => výsledek se uloží do ans

• Skalární funkce

- o funkce se vypočítá pro jednotlivé prvky pole
- o sin, cos, sind, cosd, exp, log, log10, abs, sqrt
 - >> v = 0:5
 - >> log(v)

• Vektorové funkce

- o pro celý vektor, u matic počítá zvlášť pro jednotlivé sloupce
- o min, max, sum, mean
 - >> min(M)
- o vždy popsáno v dokumentaci dané funkce
- o pokud chci aplikovat na všechny prvky matice převedu matici na vektor
 - >> min(M(:))

• Maticové funkce

- o funkce určené pro celé matice
- o det, inv
 - \blacksquare >> A = [1 2;3 4]
 - >> det(A)

• Seznam funkcí MATLABu

- Otevřít *Help > MATLAB > Functions*
 - seznam všech funkcí základního MATLABu

• seřazeno do skupin podle funkčnosti

• Funkce s více výstupy

- o funkce při volání primárně vrací první (hlavní) výstup
- o některé funkce mohou "na požádání" vracet i více výstupů
 - o další výstupy se požádá tím, že výstup funkce přiřadím více proměnným zadaným v hranatých závorkách
 - [out1, out2] = fun(arg1, arg2)
- o počet a význam výstupů je vždy popsán v dokumentaci
 - >> doc min
 - >> [m, k] = min(M(:)) ... chci získat oba dva výstupy

Pozn.:

Chování funkce se může lišit, vyžádá-li uživatel různý počet výstupů. Popis vždy v dokumentaci, např.:

```
>> doc find
```

Text

- o V MATLABu jsou dva datové typy pro práci s textem
- Oba jsou pole prvků stejně jako numerické datové typy, prvkem pole je buď:
 - jeden znak ... pole znaků
 - libovolný text ... pole řetězců
- Pole znaků (character array, character vector)
 - o vytvoření: znak "' " nebo funkce *char*
 - >> s = 'Hello'
 - o prvkem pole je jeden znak
 - o spojování polí znaků do delšího textu
 - >> s1 = ['Hello',' ','World!']
 - platí pravidla pro spojování polí nelze spojit pod sebe dvě pole s různým počtem prvků, tj. znaků
- **Řetězce a pole řetězců** (string array)
 - o od R2016b
 - o vytvoření: znak "" " nebo funkce string
 - >> r = "Hello World!"
 - o prvkem pole je jeden textový řetězec
 - spojování řetězců do víceprvkového pole

```
>> r2 = ["Hello"," ","World!"]
>> r2 = ["Hello"; "World!"]
```

- o spojování řetězců do delšího textu
 - >> r3 = "Hello" + "World!"
 - při spojování "řetězec + číslo" se číslo automaticky převede na řetězec

```
• >> "a" + 1
```

- o převod pole znaků na řetězec funkce string
- o vhodné pro pokročilejší práci s textovými daty, např. textovou analytiku
- V případě zadávání textu jako vstupního parametru vestavěných funkcí, jsou oba datové typy zaměnitelné

```
o >> min(M,[],'all');
o >> min(M,[],"all");
```

- zobrazení textů v příkazovém okně
 - o *disp(text)* ... zobrazí text

- o >> disp("Hodnota " + sqrt(2) + " je odmocnina ze dvou.")
- konverze: co2naco
 - ... číslo na pole znaků \circ num2str(8)
 - *str2num('8')* ... text (řetězec/pole znaků) na číslo

Nápověda/dokumentace a správa proměnných

- jednoduchá textová nápověda
 - o help fcn
 - ke každé funkci (příkazu)
 - >> help plot
 - na konci helpu nápověda souvisejících funkcí
- hlavní HTML dokumentace
 - doc fcn
 - html dokumentace k dané funkci (příkazu)
 - >> doc plot
 - umístit kurzor do příkazu + F1
 - zobrazí html nápovědu v malém okně
 - lze přepnout do velkého Open Help Bowser
 - otevření okna s dokumentací 💷
 - procházení podle obsahu
 - full-text vyhledávání zadaného výrazu v html dokumentaci
 - Search Documentation
 - rychlý přístup k hledání v html dokumentaci
 - ⇒ chcete řešit lineární rovnice => vyhledat: linear equation
- rychlé vyhledávání funkcí 🤼
- syntaxe automatické zobrazení syntaxe
 - o fcn(... počkat
 - o >> plot(
- dokončování automatické dokončování
 - o klávesa Tab
 - o >> plo + Tab

Příkazy pro správu proměnných

- o who ... seznam aktuálních proměnných
 - >> who
 - whos ... seznam proměnných s dalšími informacemi
- clear proměnnál proměnná2 ... smazání proměnných
 - >> clear c
 - lze i graficky označit proměnné v okně Workspace > klávesa Delete ⇒ (smazat "i" v okně workspace)
- clear ... smazání všech proměnných ve workspce

- >> clear
- clc ... smazání obrazovky 🎑
 - >> clc

Toolstrip s ikonami

- procházení pomocí záložek
- funkce pro správu, vybrané příkazy

smazat data z Workspace 💆 a vyčistit obrazovku 💆

Pozn.:

Syntaxe příkazů v MATLABu:

- A) funkční: fun(arg1, arg2)
 - podporují všechny příkazy
 - umožní předání výstupních parametrů [out1, out2] = fun(arg1, arg2)
- B) příkazová: fun arg1 arg2
 - podporují jen příkazy, které mají vstup textový řetězec, většinou příkazy pro správu souboru, proměnných, ...

Ukládání / Načítání dat

- Current Folder
 - o aktuální složka MATLAB vidí její obsah
 - cesta k aktuální složce napsána v řádku pod toolstripem

- Umístění oken v uživatelském rozhranní
 - o okna lze maximalizovat, udělat plovoucí, zavřít, dokovat volby v menu 🖸
 - zadokovat Command History
 - o zavřená okna a jejich rozložení lze vyvolat pomocí ikony *Layout* (základní nastavení *Layout >Default*)

• Uložení dat do souboru .mat

- o GUI
 - save workspace
 - označit proměnné v okně Workspace > pravý klik > kontextové menu
 Save As ...
- příkazy
 - save jmeno souboru proměnnál proměnná2
 - \blacksquare >> a = 1, b = 2
 - >> save mojeData a b

• Načtení souboru typu .mat

- o GUI

 - poklepání na soubor v okně Current Folder
- příkazy
 - load jmeno_souboru
 - >> load mojeData

• Import dat v jiných formátech

- o GUI
 - Import
 - poklepání na soubor v okně *Current Folder* spustí akci dle typu souboru
 poklepat na soubor *NejvetsiMestaCR.xlsx*

- otevře se import wizard > Text Options = Cell Array of Character Vectors > Import
- dvojklikem v okně *Workspace* otevřít proměnnou *NejvetsiMestaCR* ve *Variable Editoru*
- označit sloupce *PocetObyvatel* a *Mesto* > *PLOTS* > *pie*
- *import wizard > Output Type = Column vectors > Import*
- lze měnit způsob importu, názvy proměnných, filtrovat data, ...

o příkazy

- readtable
 - >> Data = readtable('NejvetsiMestaCR.xlsx')
 - umí importovat formáty MS Excel, textové soubory i formáty s fixní šířkou
 - výstupem proměnná datového typu table
 - o podrobně ve školení MATLAB 2
 - datový typ pro snadnou manipulaci se sloupcově orientovanými nebo tabulkovými daty
 - typickým použitím je držení dat, kde sloupce představují různé měřené proměnné a řádky jednotlivá pozorování
 - vhodné pro data načtená z tabulek ve formátu Microsoft Excel, textových souborů a databází
 - o >> doc table
 - o různé sloupce mohou obsahovat různé datové typy
 - o proměnné (= sloupce) jsou pojmenovány
 - přístup k datům v sloupcích tečkovou notací: *data* = *T.JmenoSloupce*
 - o řádkům lze přiřadit jména volitelně
- writetable
- funkce pro jiné datové typy od *R2019a*:
 - readtimetable / readmatrix / readcell / readvars
 - writetimetable/writematrix/writecell
- funkce pro jiné datové typy existující i před *R2019a*:
 - xlsread / csvread
 - xlswrite / csvwrite

Grafika v MATLABu

- Grafické objekty
 - Figure \rightarrow Axes \rightarrow plot, image, ...

Čárový 2-D graf

- Příkaz
 - o plot (dataX, dataY, '3znaky pro formátování')
 - toto se může opakovat vícekrát
 - >> doc plot ... význam 3 znaků pro formátování
 - >> x = 0:pi/20:2*pi;
 - \blacksquare >> y = sin(x);
 - >> plot(x,y,'r*:')
- Úprava os a popisky grafu
 - Popisky lze vkládat pomocí příkazů nebo interaktivně (menu Insert)
 - lze použít syntaxi TeX
 - o Příkazy
 - >> title('Graf') ... nadpis
 - >> xlabel('osa x') ... popisek osy x
 - >> ylabel('osa y') ... popisek osy y
 - >> axis tight ... nastaví osy těsně ke grafu
 - standardně nechá mezery aby osy končily celým číslem
 - číselné nastavení zobrazení oblasti
 - axis([xmin xmax ymin ymax])
 - v = axis aktuální limity os
 - x lim([xmin xmax]), y lim([ymin ymax]), z lim([zmin zmax])
 - >> grid on ... mřížka
 - >> legend('sin(\alpha)')...legenda
 - \ ... syntaxe TeX
 - o GUI galerie grafů

- záložka PLOTS
- označit proměnné v okně workspace (CTRL)
- vybrat graf > stisknutím obrázku se vykreslí
 - + vypíše do příkazové řádky příslušný příkaz
- \Rightarrow označit x a y > PLOTS > plot
- Toolbar
 - Figure Toolbar

- New Figure, Open File, Save, Print, Link Plot, Insert Colorbar, Legend
- Axes Toolbar

- Data Tips, Rotate 3D, Pan, Zoom, Restore View
- lze přidávat a odebírat nástroje (i vlastní)
- další položky lze ovládat nebo přidávat přes menu Tools
- Interaktivní editace
 - kliknout v menu na ikonu šipky
 - kliknutí na grafický prvek ... výběr prvku
 - pravý klik na grafický prvek > kontextové menu pro změnu vlastností
 ⇒ změna barvy, tloušťky čáry, značek, ...
- Property Inspector
 - kliknout v menu na ikonu

- nastavení vlastností zobrazených objektů (okna, axes, plotů, ...)
- kliknutím na daný prvek se zobrazí jeho vlastnosti a nastavení
 ⇒ změna detailního nastavení značek, popisků os, mřížky, ...
- Alternativní zobrazení nástrojů
 - View > Figure Palette, Plot Browser, Property Editor
- Interaktivní označování a změna vykreslených dat
 - o Data Tips 🗐
 - kliknutí na data = přidá popisek
 - lze posouvat, přidávat další (přes kontextové menu), mazat (delete)
 ⇒ označit datový bod, posunout značku, ..., vymazat
 - o Link Plot 🔜
 - interaktivní sepnutí grafu s proměnnou se zdrojovými daty
 - po změně dat změna zobrazení
- Uložení grafu
 - Save soubor.fig

⇒ uložit jako mujGraf.fig

o File > Save As ... další formáty (bmp, ...)

- Tisk
 - o File > Print Preview, File > Print
 - o print –dps soubor

Skripty v MATLABu

- o namísto zápisu jednotlivých příkazů do příkazové řádky je zapíšeme do textového souboru a spustíme najednou
- o založení nového skriptu
 - New Script
 - komentáře uvozujeme %
 - řádky komentáře od prvního až do prvního vynechaného řádku
 - nápověda, která se zobrazí po zadání >> doc jmeno_skriptu

⇒ P01 v1

- Využití Command History
 - příkazy z okna *Command History* lze přetahovat (=kopírovat) do Editoru
 - pro více řádků CTRL, SHIFT
- Uložení
 - tl. Save soubor.m
 - Priklad1.m
 - označení neuloženého skriptu hvězdička u jména v záhlaví
- Spuštění
 - 🔹 tl. Run 🔎
 - uloží a spustí
 - v příkazové řádce zadáním jména skriptu
 - >> Priklad1
 - Nápověda
 - >> doc Priklad1
 - zobrazí počáteční komentáře ve skriptu po první prázdný řádek
- Sekce
 - skript je možné rozdělit do celků tzv. sekcí, které lze spouštět samostatně
 - sekce začíná znakem %% a zahrnuje příkazy až k dalšímu znaku %%
 - vložení: EDITOR > Section > Section Break nebo ručně zapsat %%
 - jednotlivé sekce lze spouštět tlačítky ze záložky EDITOR
 - Run and Advance ... spustí sekci a přejde na další
 - Run Section 🗀 ... spustí sekci bez přechodu k další sekci

⇒ P01 v2

%% Grafy funkci % % - sinus

⇒ spouštět po sekcích

Pozn.:

Spuštění ručně vybrané části kódu v příkazové řádce ⇒ myší vybrat (označit) úsek kódu a stisknout klávesu **F9**

 \Rightarrow označit figure a plot(x,y) > stisknout F9

• Aktuální figure

- o když mám otevřeno více oken figure, kde se projeví editace
 - graf (plot) se vykreslí vždy v aktuálním figure = v okně figure, na které se naposledy kleplo myší, nebo bylo vyvoláno
 - vyvolání konkrétního okna
 - vytvoření: figure(1)
 - následné zavolání figure(1) udělá tento figure aktuálním

• Více grafů v jenom okně figure

- o do jednoho souřadného systému (axesu)
 - ve výchozím stavu dojde po novém zavolání příkazu plot ke smazání dosavadního grafu a vykreslení nového
 - pro vykreslení nového grafu přes starý
 - hold on
 - hold off ... vypnutí vrátí původní funkčnost s mazáním
 - barvy se přiřazují automaticky nebo je zadá uživatel (plot(x,y,'r'))

⇒ P01 v3

```
% Grafy funkci
%
% - sinus a cosinus

% priprava dat
x = 0:pi/20:2*pi;
y = sin(x);
y1 = cos(x);

figure % nove graficke okno
% vykresleni grafu
plot(x,y)
hold on
plot(x,y1)
```

• *Insert > Legend*, dvojklik na legendu, upravit text

- o více samostatných grafů (axesů) v jednom figure
 - subplot(a,b,c)
 - rozdělí figure na $a \times b$ polí a vezme aktuální c-té pole po řádcích lineárně do kterého vykreslí souřadný systém pro graf
 - >> subplot(2,3,3)

- pro další subplot ve figure ~ *subplot*(*a*,*b*,*d*)
- pro zpětné zaktuálnění c-tého pole ~ znovu subplot(a,b,c)

⇒ P01 v4

```
% Grafy funkci
%    - sinus a cosinus

% priprava dat
x = 0:pi/20:2*pi;
y = sin(x);
y1 = cos(x);

figure % nove graficke okno

% vykresleni grafu
subplot(2,1,1)
plot(x,y) % doplneni - specifikace cary: plot(x,y,'b*:')
hold on
subplot(2,1,2)
plot(x,y1) % doplneni - specifikace cary: plot(x,y1,'ro-')
```

- subplot vždy vymezuje oblast ve figure "znovu"
 - oblasti nemusí být stejně veliké
 - překryté grafy se odstraní
 - >> subplot(2,2,3)
- změna polohy a velkosti axesu editační šipkou
- Nové grafy lze přidávat ke stávajícím také interaktivně v nástrojích Plot Browser a Figure Pallete
 - *View > Figure Palette, Plot Browser*

Pozn.:

Zavření všech okem figure příkazem close all.

Další typy 2-D grafů

o záložka PLOTS

scatter E stairs

Doplňkové nástroje

- statistické údaje o zobrazených datech
- fitování polynomem a interpolace
- poklepat na soubor fit_data.mat
- o >> plot(x,y,'r+')
- o Figure > Tools > Data Statistics
- o Figure > Tools > Basic Fitting > rozbalit šipkou hodnoty parametrů proložení, zaškrtnout linear, quadratic, ..., Show equations, Plot residuals, ...

3-D grafy

- Parametricky dané křivky
 - souřadnice bodů v prostoru x, y, z

- př. šroubovice s proměnným poloměrem

⇒ <u>P02</u>

Plochy - z je funkcí x a y

- x, y, z ... jsou matice o stejném rozměru
 - souřadnice $x_s = [1 \ 2 \ 3], y_s = [0.3 \ 0.4 \ 0.5]$

•
$$x = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$
, $y = \begin{bmatrix} 0.3 & 0.3 & 0.3 \\ 0.4 & 0.4 & 0.4 \\ 0.5 & 0.5 & 0.5 \end{bmatrix}$, $z = \begin{bmatrix} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \\ z_{31} & z_{32} & z_{33} \end{bmatrix}$

pokud máme jen vektory x a $y \Rightarrow$ funkce *meshgrid*

⇒ P03

```
x = -2*pi:pi/10:2*pi;
y = -2*pi:pi/5:2*pi;

[X,Y] = meshgrid(x,y);
R = sqrt(X.^2+Y.^2)
Z = sin(R)./R;

% Plot

subplot(2,2,1)
mesh(X,Y,Z);

subplot(2,2,2)
surf(X,Y,Z);

subplot(2,2,3)
contour(X,Y,Z);

subplot(2,2,4)
contour3(X,Y,Z);
```

Colormap

- barevná mapa = přiřazení barev hodnotám v ose z
 - o výběr přednastavených barevných map
 - o možnost úpravy nebo tvorba vlastních barevných map
- GUI
 - pro celé okno figure: Property Inspector > klik na figure
 Plotting > změnit colormapu
 - pro jednotlivé axes: Property Inspector > klik na axes >
 Color and transparency maps > změnit colormapu
- příkaz colormap
- >> colormap hot

Live Editor a Live Script

- od verze R2016a
- Live Editor umožňuje tvorbu dokumentů obsahujících výsledky a grafické výstupy společně s příslušnými výpočty: *Live Script*
- dokument lze doplnit formátovanými texty, odkazy, obrázky a rovnicemi
- založení nového dokumentu
 - o *HOME* > *New* > *Live Script*
- hotový dokument je možné využívat v MATLABu nebo jej exportovat do HTML, PDF, Word či LaTeXu
 - o LIVE EDITOR > Export > Export to PDF...(HTML.../ Word.../LaTeX...)
- klasický Script lze převést na Live Script a opačně
 - o převod mezi standardním skriptem a Live skriptem
 - Save > Save As > Uložit jako typ *.m, *.mlx

⇒ <u>Př.</u>: MujLiveScript.mlx (otevřít)

HOME > New Live Script

Na Toolstripu přibudou záložky LIVE EDITOR, INSERT a VIEW. Přidáme

nadpis "Grafy" a zarovnáme na střed: LIVE EDITOR > Text, Aa Norma > Title,

obrázek a konec sekce: INSERT > Image, INSERT > Section Break,

podnadpis "3D Graf": LIVE EDITOR > Text, Aa Norma > Heading 1,

Grafy

3D Graf

```
x = -2*pi:pi/10:2*pi;
y = -2*pi:pi/5:2*pi;
[X,Y] = meshgrid(x,y);
```

HUMUSOFT, spol. s r.o.

R = sqrt(X.^2+Y.^2); % zabrani deleni nulou a vzniku NaN
Z = sin(R)./R;
mesh(X,Y,Z);

Základní datové typy používané v MATLABu

Číselné datové typy

- Defaultně jsou všechny numerické hodnoty datového typu double
 - číslo s pohyblivou řádovou čárkou ve dvojnásobné přesnosti (double-precision floating-point), definováno ve Standardu IEEE 754
 - o eps ... relativní přesnost datového typu double, rozdíl 1 a nejbližšího většího čísla
- Krajní případy aritmetických operací
 - o >> 1/0 ... dělení konstanty nulou
 - *Inf* ... ∞
 - o >> -1/Inf
 - **-**0
 - o >> 0/0 ... dělení nuly nulou
 - NaN ... není číslo, není ani rovno samo sobě
 - o konst/0 nebo 0/0 není v MATLABu error
 - ⇒ je definováno jako *Inf* nebo *NaN*
 - o s *Inf* i *NaN* lze počítat
 - lze se na ně dotazovat a takto ošetřit jejich výskyt v programu
 - o >> sqrt (-1) ... odmocnina ze záporného čísla
- Práce s komplexními čísly:
 - o *i,j* ... imaginární jednotka

Poznámka:

Pozor!: předdefinované hodnoty (pi, i, j, ...) lze "přebít" zadáním proměnné stejného jména s jinou hodnotou

```
>> i = 2
```

>> v = 2 + 2i ... zůstane imaginární jednotka

i ... je 4, počítá s $i = 2 \Rightarrow ps$ át v = 2 + 1i

- o real, imag
- o abs, angle ... polární souřadnice
 - >> abs(v)
- číselné datové typy v MATLABu
 - o double, single
 - o int8, int16, int32, int64
 - o uint8, uint16, uint32, uint64
 - logical
- nastavení datových typů:
- >> A = [1 2; 3 4] ... ač je A tvořeno celými čísly, datový typ A je double
- >> A = int8([1 2;3 4]) ... nyní má A datový typ int8
- >> Z = zeros (3, 'logical') ... Z je pole logických hodnot, datový typ logical

Datový typ logical a logické operace

- Skalární datový typ *logical* může nabývat dvou hodnot:
 - o true ... 1 (logical)
 - o false ... 0 (logical)
- vektor, matice a vícerozměrné pole datového typu logical má v každém prvku jednu z těchto dvou hodnot

- Logické operátory, spojky a další funkce
 - Logické operátory

- Logické spojky
 - & ... logický součin (AND)
 - | ... logický součet (OR)
 - ~ ... negace (NOT)
- Logické "dotazy"
 - isnan, isinf, isempty, isequal, ... kontrola různých věcí: is*
- Logické operátory pro všechny prvky vektorů a matic
 - any ... log. 1 když je alespoň jeden prvek vektoru nenulový
 - all ... log. 1 když jsou všechny prvky vektoru nenulové
- Logické operátory a spojky mohou operovat nad skaláry, vektory, maticemi
 - o v případě vektorů a matic se pracuje s odpovídajícími prvky
 - o == vs. isequal
 - == porovnává odpovídající prvky
 - isequal posuzuje rovnost celého pole

Indexování maticí logických hodnot

- indexujeme maticí logických hodnot (1 a 0) stejného rozměru, jako matice, do které indexujeme
 - >> v = 1:5;
 - >> v(logical([1 0 0 1 0]))
 - vypíše jen hodnoty odpovídající jedničkám
 - takto nemá smysl používat (jednodušší je standardní indexování)
- o využití při výběru dle logických podmínek
 - >> M = [1 2 3; 4 5 6; 7 8 9; 10 11 12] ... z Command History
 - >> k = M<5
 - vrátí matici log. hodnot stejného rozměru jako matice M
 - o 1 na místech, kde je podmínka splněna
 - o 0 na místech, kde podmínka splněna není
 - lze využít jako logický index
 - o >> M(k) ... indexování logickým indexem
 - o >> M (M<5) ... zkrácený zápis

matice	М				indexování šedých	pol	í		
		S	loup	ес					_
lineární	index	1	2	3	M([1 4],[1 2])	k:			
	1	(1)	(5)	(9)	M([1 4 5 8])	1	1	0	
(I)	2	(2)	(6)	(10)	M(k)	0	0	0	
řádek	3	(3)	(7)	(11)		0	0	0	
	4	(4)	(8)	(12)		1	1	0	

Porovnání všech tří typů indexování

Indexy nenulových prvků matice (= prvků splňujících podmínku) - příkaz find
 >> doc find

Pozn.:

Indexování pomocí logických hodnot lze kombinovat s indexováním (řádek, sloupec) nebo i s lineárním indexováním. Např.:

- >> idx = M(:, 2) < 8;
- >> M(idx, :)

⇒ <u>Úloha:</u>

• Vytvořte náhodný vektor s 10-ti prvky s hodnotou mezi 0 a 1 (funkce rand) a najděte prvky mezi hodnotami 0,4 a 0,8.

⇒ Řešení:

```
o >> x = rand(10,1)
o >> k = x > 0.4 & x < 0.8
o >> x(k)
```

Význam znaků:

•	desetiny, položky struktur
	systémové příkazy – o úroveň výše
•••	pokračování na dalším řádku
а,	oddělovač: indexů, položek v řádku pole, parametrů ve funkcích
а;	oddělovač řádků v maticích, potlačení výpisu výsledku do příkaz. řádky
a', 'a'	transpozice matice, zadání řetězce
()	priorita ve výrazu, indexování matic, vstupní parametry funkcí
[]	tvorba matic, přiřazení více výstupních proměnných, definice funkcí
{}	pole buněk
:	tvorba číselné řady
+-*/\	aritmetické a maticové operace
۸	umocnění
.* ./ .^	operace "prvek po prvku"
= < >	přiřazovací příkaz =, porovnávací operace <, >, <=, >=, ==, ~=
& ~	AND, OR, NOT
!	systémový příkaz
1	

%	komentář
%%	oddělení sekce ve skriptu

Přehled dalších (zajímavých) funkcí

• **Seznam funkcí MATLABu:** *Help > MATLAB > Functions*

Interpolace

- o interp1, interp2, interp3, interpn ... lineární, 2-D, 3-D, ...
- o griddata ... interpolace bodových dat plochou

• Řešení rovnic a optimalizace

- o fzero ... kořeny nelineární funkce
- o fminsearch, fminbnd ... hledání minima funkcí
- o \ ... řešení lineární úlohy ve smyslu nejmenších čtverců

• Numerická integrace, derivace

- o integral ... numerická integrace
- o integral2, integral3... numerický dvojný trojný integrál
- o diff ... diference, použitelné pro aproximaci derivace

Polynomy

- o reprezentovány vektory $\begin{bmatrix} a_2 & a_1 & a_0 \end{bmatrix} \approx a_2 x^2 + a_1 x + a_0$
- funkce pro práci s polynomy: pracují s vektorem jako s polynomem
 - polyval ... vyhodnocení polynomu v daném bodě
 - conv ... násobení polynomů
 - roots ... kořeny polynomu
 - polyint, polyder ... integrace a derivace polynomu
 - polyfit ... proložení bodů polynomem daného řádu

• Řešení diferenciálních rovnic

- o ode* ... numerické řešení zadané soustavy obyčejných diferenciálních rovnic
- o ode45, ode23, ode113, ode15s, ode23t, ode23s, ...

• Filtrace dat

o filter ... filtrace datového vektoru zadaným filtrem

• Fourierova transformace

o fft, ifft ... rychlá fourierova transformace, zpětná f. transformace

• Statistické funkce

min, max, mean, median, mode, std, var, movmin, movmax, movmean, movmedian, movstd, movvar, movmad, movprod, movsum, cov, corrcoeff, cummax, cummin, mink, maxk, topkrows

• Předzpracování dat

ismissing, fillmissing, rmmissing, standardizeMissing, isoutlier, filloutliers, rmoutliers, ischange, islocalmin, islocalmax, smoothdata, detrend, normalize, rescale, discretize, groupsummary, grouptransform, histcounts, histcounts2, findgroups, splitapply, rowfun, varfun, accumarray

• Zaokrouhlování

- o round, fix, floor, ceil
- Aktuální datum a čas a související funkce

o datetime, clock, now, date, datestr, datenum, datevec, etime

Řízení toku programu - cyklus a podmínka

Podmínkový příkaz v MATLABu

```
if podmínka

příkazy;

end

elseif podmínka

příkazy;

else

if podmínka

příkazy;

else

příkazy;

end

else

příkazy;

end
```

- podmínky
 - <,>,>=,<=,==,~=
 - **■** & , | , ~
 - isnan, isinf, isempty, ... kontrola různých věcí: is*
 - any, all ... alespoň jeden prvek/všechny prvky vektoru nenulové

⇒ Př: Priklad_if.m

```
% ax^2 + bx + c = 0

a = input('Zadej a: '); % MATLAB ceka na vstup z prikazove radky
b = input('Zadej b: '); % MATLAB ceka na vstup z prikazove radky
c = input('Zadej c: '); % MATLAB ceka na vstup z prikazove radky

D = b^2-4*a*c;

if D == 0
    disp('Koren je dvojnasobny.')
elseif D > 0
    disp('Koreny jsou realne ruzne.')
else
    disp('Koreny jsou komplexni.')
end
```

Cyklus For

o cyklus se známým počtem opakování

Cyklus While

- o cyklus s neznámým počtem opakování
- o provádí se dokud platí podmínka

while podmínka

Přerušení jednoho průběhu cyklu, ukončení celého cyklu

- o continue, break
- o *Ctrl* + *C* ... přeruší probíhající příkaz

Rozdělovač

o rozdělení do daného počtu větví podle hodnoty řídicí proměnné


```
switch proměnná
                      case hodnota1
                            příkazy;
                      case hodnota2
                            příkazy;
                      otherwise
                            příkazy;
               end
⇒ Př: Priklad switch.m
      s = input('Zadej pribuzneho: ','s');
      switch s
           case 'otec'
              disp('Je rodic.')
           case 'matka'
              disp('Je rodic.')
           otherwise
              disp('Neni rodic.')
      end
```

Funkce v MATLABu

~ funkcím se podrobně věnuje školení MATLAB 2

- Vytvoření
 - o ze skriptu
 - definice hlavičky v prvním řádku
 - function [výstupní parametry] = jmeno funkce(vstupní parametry)
 - hlavička definuje vstupní a výstupní proměnné
 - výstupní proměnné musí být ve funkci přiřazeny (vyčísleny)

- vytvoří prázdný soubor s předdefinovanou strukturou funkce
- Stejně jako u skriptu:
 - o komentáře od prvního řádku až do prvního vynechaného řádku
 - nápověda, která se zobrazí po zadání >> doc jmeno_funkce
- Soubor musí být uložen pod stejným jménem jako je jméno funkce
- Volání funkce z MATLABu
 - o stejně jako vestavěné funkce
 - >> [out1, out2, ...] = jmeno_funkce(in1, in2, ...)
- Funkce má lokální workspace
 - o předané vstupní proměnné a proměnné vytvořené uvnitř funkce nejsou viditelné zvenčí a po skončení funkce zanikají

29/31

- o uvnitř funkce nejsou vidět proměnné z hlavního workspace
- o parametry dovnitř a ven z funkce se předávají pomocí hlavičky
 - hlavička definuje jednoznačné rozhraní funkce

 přehlednost

⇒ Příklad:

- Řada interaktivních nástrojů umožňuje generovat funkci
 - o Figure, Import Tool aj.
 - o nemusíme opakovaně provádět stejné interakce
 - o Př.: Generování funkce z okna Figure
 - dvojklik na soubor mujGraf.fig v Current Folderu > otevře okno Figure
 - *File > Generate Code*
 - vytvoří funkci, pomocí které lze vytvořit stejně nastavený graf s novými daty
 - generovat kód > (změnit jméno na mujfigure) > uložit > zavolat:

```
o \gg mujfigure(x, y.^2)
```

Publikovaní skriptů a funkcí

- Kód funkcí a skriptů lze automaticky dokumentovat = zachytit texty (komentáře), kód programu, výsledky výpočtů a grafické výstupy do dokumentu zvoleného formátu
- Záložka PUBLISH
 - možnosti pro formátování textu dokumentu (Bold, Italic, ..., Preformatted Text, Code, Display LaTeX)
 - o nastavení co zahrnout do dokumentu, v jaké formě, ...
 - rozbalovací nabídka Publish > Edit Publishig Options...
- Formát výstupních souborů
 - o html, xml, latex, doc, ppt a pdf
- ⇒ Př.: fourier_demo_publish.m (otevřít)
 - Run ... zobrazí výsledky v MATLABu
 - záložka PUBLISH > Publish ... grafický dokument s nadpisy, výsledky, grafy, ...

Přizpůsobení prostředí MATLAB – Preferences

- Nastavení MATLABu

Př.:

Od verze R2021b se změnil vzhled Editoru a přibylo v něm automatické doplňování závorek a uvozovek či zobrazení nápovědy na stisknutí klávesy *Tab*. Toto doplňování jde zrušit či nastavit v *Preferences* > *Editor/Debugger* > *Automatic Completions*.

Kde najít informace o MATLABu

- o dokumentace

 - pdf dokumentace lze stáhnout z webu (<u>www.mathworks.com</u>)
 - nejen syntaxe funkcí, ale také teorie, odkazy na použitou literaturu, ...
- o web www.mathworks.com
- MATLAB Central uživatelská komunita
- o www semináře webinars natočená videa, seznam on-line webinářů do budoucna = ukázkové semináře Čj, Sj, Ang, ...
- o publikace
- o elektronický časopis MATLAB Digest