ChBE 3210 Transport Phenomena II Fall 2012

General Course Information

Instructors:

Dr. Sven Behrens: sbehrens@gatech.edu

Office: Bunger-Henry 409 Phone: (404) 894-3166

Office hours: Monday 2:00-3:00 in ES&T 2354 and Tuesday 11:00-12:30 in ES&T 2229.

Teaching Assistants:

Elaine Tang: elaine.tang@gatech.edu

Cell: (404) 825-8995

Office Hours: Tuesday 2:00-3:30 in ES&T 2320.

Course Prerequisite:

ChBE 2110 (Thermodynamics I), ChBE 3200 (Transport Phenomena I), and Math 2403 (Diff. Eqns.)

Class times and place:

MWF 10 AM, Room L1125 ES&T

Course Objectives:

This course builds on heat transfer concepts developed in ChBE 3200 and introduces basic concepts of mass transfer: (i) theoretical basis for convective heat and mass transfer correlations, (ii) heat exchanger design, (iii) diffusion, interphase mass transport, and chemical reaction, and (iv) analysis of mass transfer equipment, such as packed beds and contact towers. Scaling, dimensional analysis, and design principles are emphasized.

Learning Outcomes:

Upon satisfactory completion of this course, students will be able to:

- 1. Analyze situations involving convective heat transfer in external and internal flow, for both forced and natural convection processes.
- 2. Combine heat-transport resistances in series to obtain overall heat-transfer coefficients and apply these in a variety of design applications, including shell-and tube heat-exchangers.
- 3. Solve steady-state problems in counter-diffusion and uni-molal, uni-directional diffusion using Fick's first law.
- 4. Understand the theoretical basis of convective heat-transfer and mass-transfer, and to use the analogies between momentum, heat, and mass-transfer to interrelate rate constants.
- 5. Use individual mass transfer coefficients to obtain overall mass transfer coefficients in multiphase systems and to apply these in a variety of design applications.
- 6. Develop microscopic and macroscopic mass and energy balances, and solve them for a number of systems.
- 7. Design packed-columns for simultaneous heat- and mass-transfer (i.e., cooling towers, gas absorption, distillation etc.) in terms of number and height of transfer units (NTU & HTU).

Textbook:

Fundamentals of Momentum, Heat and Mass Transfer, 5th ed.

J. R. Welty, C.E. Wicks, R. E. Wilson, G. Rorrer, John Wiley & Sons, Inc. (2008)

Office Hours:

Dr. Behrens' office hours will be coordinated with participants in the Wednesday, August 22 class. Drop-ins and appointments by email are also welcome. Long emails with questions are time-consuming to answer, so please stop by instead and I will be better able to assist you.

Course updates and resources:

Syllabus, class info, homework solutions, additional examples, last year's exams/solutions, and class updates will be on the T-square course page. It is your responsibility to check that website often. Grades will also be posted on that website.

Homework:

Homework assignments are due *in class* on the date indicated on the assignment. Most of the time solutions will be posted on the class website on the day the homework is due. Late homework assignments (after the class is over) will not be accepted.

Students are encouraged to work in groups, but each student must submit an *original* homework. Copying from other students, solution manuals, or other sources is viewed as academic misconduct and will be dealt with according to institute policies. Homework solutions must be in accordance with the provided guidelines. In case of significant violations or illegible/unclear assignments, the homework will not be graded.

Exams:

In addition to the final exam, two exams will be given on **Thursday**, **10/04** and **Thursday**, **11/15** at **6-8 pm in ES&T L1205**. No make-up exams will be offered. Only certified medical emergencies or an equivalent will be accepted for missing exams. No exam grade will be dropped. A student missing an exam should contact the instructors as early as possible and preferably before the exam. Exams will be cumulative.

The use of wireless devices is prohibited on the exams or the final. Programmable calculators are allowed, but relevant content must be erased from the memory. The exams and the final will have a closed book and an open book section.

Pop quizzes:

There will be 5-6 announced quizzes throughout the semester. No make-up quizzes will be given.

Course grade breakdown:

Exam I 20% Exam II 25% Final exam 30% Pop quizzes 10% Homework 15%

Academic Misconduct:

Students in this class are expected to abide by the Georgia Tech Honor Code at all times. All work turned in for grading must be original. Collaboration with other students in the class on the homework and projects are allowed but must be acknowledged on the assignments. References: the complete text of the Honor Code and other resources are available at http://www.honor.gatech.edu/.

ChBE 3210, Fall 2012, Dr. Behrens - tentative course schedule

		Date	Comment	#Hw due	Lecture content	Reading
Week 1	lecture 1	20-Aug			convective heat transfer: fundamentals	Ch. 19.1 -19.5
	lecture 2	22-Aug			convective heat transfer: dimensional analysis	
	lecture 3	24-Aug			convective heat transfer: boundary layer	
Week 2	lecture 4	27-Aug			convective heat transfer: boundary layer	19.5 - 19.7
	lecture 5	29-Aug		1	convective heat transfer: momentum analogy	
	lecture 6	31-Aug			convective heat transfer: turbulence	
Week 3	Labor Day	3-Sep			-	
	lecture 7	5-Sep		2	correlations for natural convection	20.1 - 20.3
	lecture 8	7-Sep			correlations for forced convection	
Week 4	lecture 9	10-Sep			boiling	21.1
	lecture 10	12-Sep		3	condensation	21.2
	lecture 11	14-Sep			heat exchanger design	22.1 - 22.3
Week 5	lecture 12	17-Sep			heat exchanger design	22.4
	lecture 13	19-Sep		4	heat exchanger design	22.5
	lecture 14	21-Sep			mass transfer: fundamentals	24.1
Week 6	lecture 15	24-Sep			mass transfer: diffusion	24.2
	lecture 16	26-Sep		5	mass transfer: diffusion	
	lecture 17	28-Sep			mass transfer: convection	24.3
Week 7	lecture 18	1-Oct			differential balances of mass transfer	25.1
	lecture 19	3-Oct			review, Thursday Oct 4, 6 - 8 PM: EXAM 1	
	lecture 20	5-Oct			differential balances of mass transfer	25.2
Week 8	lecture 21	8-Oct			differential balances of mass transfer	25.3 - 25.4
	lecture 22	10-Oct		6	steady state molecular diffusion	26.1 - 3
	drop day, lect 23	12-Oct			examples of 1-d steady state molecular diffusion	
Week 9	Fall Break	15-Oct			-	
	lecture 24	17-Oct		7	steady state molecular diffusion with reaction	
	lecture 25	19-Oct			transient molecular diffusion	27.1 - 27.2
Week 10	lecture 26	22-Oct			transient molecular diffusion	27.3 - 27.4
	lecture 27	24-Oct		8	convective mass transfer: dimensional analysis	28.1 - 28.3
	lecture 28	26-Oct			convective mass transfer: boundary layer	28.4 - 28.5
Week 11	lecture 29	29-Oct			convective mass transfer: momentum analogies	28.6 - 28.7
	lecture 30	31-Oct			simultaneous momentum, heat and mass transfer	26.4
	lecture 31	2-Nov		9	simultaneous momentum, heat and mass transfer	26.4
Week 12	lecture 32	5-Nov			interphase mass transfer: equilibrium	29.1
	lecture 33	7-Nov			interphase mass transfer	29.2
	lecture 34	9-Nov		10	interphase mass transfer	
Week 13	lecture 35	12-Nov			examples and review	
	lecture 36	14-Nov			review, Thursday Nov 17, 6 - 8 PM: EXAM 2	
	lecture 37	16-Nov		11	mass transfer equipment	31.1
Week 14	lecture 38	19-Nov			continuous contact towers	31.3 - 31.5
	lecture 39	21-Nov			unit operations: contact towers	
	Thanksgiving	23-Nov		12	-	
Week 15	lecture 40	26-Nov			unit operations: stirred tanks	31.2
	lecture 41	28-Nov			mass transfer correlations: spheres and pipes	30.1 - 30.2
	lecture 42	30-Nov		13	mass transfer correlations: columns, packed beds	30.3 - 30.7
Week 16	lecture 43	3-Dec			mass transfer correlations: stirred tanks, towers	
	lecture 44	5-Dec			special topics: transdermal drug delivery	
	lecture 45, last clas	s 7-Dec			review	
	Final exam	10-Dec	11:30 am - 2	:20 pm		

Reading refers to sections in *Fundamentals of Momentum, Heat and Mass Transfer*, 5th edition, J.R. Welty, C.E. Wicks, R.E. Wilson and G. Rorrer, Wiley, (2008).