Curso de Verão de Álgebra Linear Parte 2 - Aula 01

Cleber Barreto dos Santos

28 de janeiro de 2020

Definição 1. Seja V um \mathbb{K} -espaço vetorial e $T:V\longrightarrow V$ um operador. Dizemos que $\lambda\in\mathbb{K}$ é um **autovalor** de T se existe um vetor $v\in V$ não nulo tal que $T(v)=\lambda v$. Neste caso:

- (1) dizemos que cada $v \in V$ tal que $T(v) = \lambda v$ é um **autovetor** associado a λ ;
- (2) definition $\operatorname{Aut}_T(\lambda) = \{ v \in V \mid T(v) = \lambda v \}$

Exemplo 2. Seja $V = \mathbb{R}^2$ o espaço vetorial real com operações usuais. Seja $L: V \longrightarrow V$ a reflexão em V com relação à reta dada por x = y. Então temos dois autovalores $\lambda = 1$ e $\lambda = -1$ com autovetores associados (1,1) e (1,-1), respectivamente.

Exemplo 3. Seja $V = \mathbb{R}^2$ o espaço vetorial real com operações usuais. Seja $R_{\theta}: V \longrightarrow V$ o operador linear determinado pela rotação em torno da origem por um ângulo $0 < \theta < \pi$. Então R_{θ} é um operador linear que não possui autovalores.

Exemplo 4. Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ o operador linear

$$T = \left(\begin{array}{ccc} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2. \end{array}\right)$$

Então os autovalores de T são $\lambda=2$ e $\lambda=3$ respectivamente com autovetores (0,0,1) e (-2,1,1).

Teorema 5. Sejam V um espaço vetorial de dimensão finita e T um operador linear em V. As seguintes afirmações são equivalentes:

- (1) λ é um autovalor de T;
- (2) o operador $T \lambda I$ não é invertível;
- (3) $\det(T \lambda I) = 0$.

Demonstração. (1) \Leftrightarrow (2) Se λ é um autovalor de T, então existe $v \in V$ não nulo tal que $T(v) = \lambda v$. Logo $(T - \lambda I)v = T(v) - \lambda v = 0$. Logo Ker(T) é não trivial e segue que $T - \lambda I$ não é invertível.

Por outro lado, se $T - \lambda I$ não é invertível, temos que $\mathsf{Ker}(T - \lambda I) \neq 0$, ou seja, existe $v \in V$ não nulo tal que $(T - \lambda I)v = 0$, isto é, $T(v) = \lambda v$. Segue que λ é um autovalor de T.

(2) \Leftrightarrow (3) Segue diretamente do fato de que uma matriz A é invertível se, e somente se, $\det(A)$ é não nulo.

Observação 6. Se T é um operador linear no \mathbb{K} -espaço vetorial de dimensão finita V, a expressão $p(x) = \det(xI - T)$ determina um polinômio em $\mathbb{K}[x]$

Definição 7. Para um operador linear T em V, definimos o **polinômio característico** de T como sendo o polinômio dado por $p_T(x) = \det(xI - T)$.

Lema 8. Sejam A e B duas matrizes quadradas de mesma ordem. Se A e B são semelhantes então possuem os mesmos polinômios característicos.

Demonstração. De fato, se A e B são semelhantes, existe uma matriz invertível U de ordem n tal que $B = U^{-1}AU$. Segue que $\det(xI - B) = \det(xI - A)$, i.e., os polinômios característicos de A e B coincidem.

Corolário 9. Seja $T:V\longrightarrow V$ um operador linear no \mathbb{K} -espaço vetorial de dimensão finita V. O polinômio característico de T independe da base escolhida para a qual representamos T.

Demonstração. De fato, se \mathcal{B} e \mathcal{C} são duas bases para o espaço V, temos que $[T]_{\mathcal{B}} = [I]_{\mathcal{C}}^{\mathcal{B}}[T]_{\mathcal{C}}[I]_{\mathcal{B}}^{\mathcal{C}}$.

Definição 10. Seja T um operador linear no espaço vetorial de dimensão finita V. Dizemos que o operador T é **diagonalizável** se existe uma base $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ formada por autovetores de T.

Observação 11. Seja $T: V \longrightarrow V$ um operador diagonalizável, com autovalores $\lambda_1, \lambda_2, \ldots, \lambda_k$ e $\mathcal{B} = \{v_{1,1}, v_{1,2}, \ldots, v_{1,n_1}, v_{2,1}, v_{2,2}, \ldots, v_{2,n_2}, \ldots, v_{k,1}, v_{k,2}, \ldots, v_{k,n_k}\}$ uma base de autovetores de T. Então temos que a matriz $[T]_{\mathcal{B}}$ é uma matriz diagonal, onde os elementos da diagonal são os seus autovalores.

Exemplo 12. Seja $T:V\longrightarrow V$ o operador linear no K-espaço vetorial V dado por

$$[T]_{\mathcal{B}} = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right].$$

O polinômio característico de T é $p_T(x) = x^2 + 1$. Se $\mathbb{K} = \mathbb{R}$ então o operador não possui nenhum autovalor, uma vez que $p_T(x)$ não possuem raízes reais e, por consequência, não possui autovetores. Se $\mathbb{K} = \mathbb{C}$, o polinômio característico é dado por $p_T(x) = (x - i)(x + i)$ e logo T possui dois autovalores $\lambda = i$ e $\lambda = -i$.

Observação 13. Seja T um operador linear no \mathbb{K} -espaço vetorial V e v um autovetor associado ao autovalor λ . Se $f \in \mathbb{K}[x]$ é um polinômio qualquer, temos que $f(T)(v) = f(\lambda)(v)$.

Observação 14. Para qualquer autovalor λ temos que $\mathsf{Aut}_T(\lambda) = \mathsf{Ker}(T - \lambda I)$.

Definição 15. Seja T um autovalor de um operador T em um espaço V de dimensão finita. A **multiplicidade algébrica** de λ é o maior valor $j \doteq \mathsf{ma}(\lambda)$ para o qual o polinômio $(x - \lambda)^j$ divide $p_T(x)$. A **multiplicidade geométrica** de λ é definido por $\mathsf{mg}(\lambda) \doteq \mathsf{dim}\mathsf{Aut}_T(\lambda)$.

Lema 16. Seja T um operador linear em um espaço vetorial V. Para cada autovalor λ de T temos que $\mathsf{ma}(\lambda) \geqslant \mathsf{mg}(\lambda)$.

Demonstração. Basta escolher uma base de $\operatorname{Aut}_T(\lambda)$, completá-la a uma base de V e olhar a matriz da transformação T escrita nessa base.

Lema 17. Seja T um operador linear no espaço vetorial V de dimensão finita com autovalores distintos $\lambda_1, \lambda_2, \ldots, \lambda_k$. Seja $W = \operatorname{Aut}_T(\lambda_1) + \operatorname{Aut}_T(\lambda_2) + \cdots + \operatorname{Aut}_T(\lambda_k)$ um subespaço vetorial. Logo $\dim(W) = \dim(\operatorname{Aut}_T(\lambda_1)) + \dim(\operatorname{Aut}_T(\lambda_2)) + \cdots + \dim(\operatorname{Aut}_T(\lambda_k))$. Em particular, se \mathcal{B}_j é uma base ordenada para $\operatorname{Aut}_T(\lambda_j)$ para cada $j \in \{1, 2, \ldots, k\}$.

Demonstração. Vamos mostrar que podemos escrever $W = \bigoplus_{j=1}^k \operatorname{Aut}_T(\lambda_j)$. Por definição temos que $W = \operatorname{Aut}_T(\lambda_1) + \operatorname{Aut}_T(\lambda_2) + \cdots + \operatorname{Aut}_T(\lambda_k)$. Resta mostrar então que $\operatorname{Aut}_T(\lambda_m) \cap \sum_{j=1, j\neq m}^k \operatorname{Aut}_T(\lambda_j)$ para qualquer $m \in \{1, 2, \dots, k\}$. Mas isto é verdade de acordo com o exercício da lista.

Teorema 18. Seja T um operador linear em um espaço vetorial V de dimensão finita com autovalores distintos $\lambda_1, \lambda_2, \ldots, \lambda_k$. São equivalentes:

- (1) T é diagonalizável;
- (2) o polinômio característico de T é $p_T(x) = (x \lambda_1)^{\mathsf{mg}(\lambda_1)} (x \lambda_2)^{\mathsf{mg}(\lambda_2)} \cdots (x \lambda_k)^{\mathsf{mg}(\lambda_k)};$
- (3) $\operatorname{dim} V = \operatorname{dim} \operatorname{Aut}_T(\lambda_1) + \operatorname{dim} \operatorname{Aut}_T(\lambda_2) + \cdots + \operatorname{dim} \operatorname{Aut}_T(\lambda_k);$

(4)
$$V = \sum_{j=1}^k \operatorname{Aut}_T(\lambda_j)$$
.

Demonstração. (1) \Rightarrow (2) De fato, se T é diagonalizável, existe uma base \mathcal{B} de autovetores para V. Desta forma, podemos separar tal base de acordo com os autovetores associados e, assim, encontrar uma base para cada $\operatorname{Aut}_T(\lambda_j)$. Desta forma temos que uma base para cada autoespaço formada por alguns dos vetores de \mathcal{B} . Como $\operatorname{ma}(\lambda) \geq \operatorname{mg}(\lambda)$ segue que $p_T(x) = (x - \lambda_1)^{\operatorname{mg}(\lambda_1)}(x - \lambda_2)^{\operatorname{mg}(\lambda_2)} \cdots (x - \lambda_k)^{\operatorname{mg}(\lambda_k)}$.

$$(2) \Rightarrow (3) \ \operatorname{Como} \ \operatorname{dim} V = n = \operatorname{deg}(p_T) = \sum_{j=1}^k \operatorname{mg}(\lambda_j) = \sum_{j=1}^k \operatorname{dim} \operatorname{Aut}_T(\lambda_j).$$

 $(3) \Rightarrow (4)$ Seja $W = \sum_{j=1}^k \mathsf{Aut}_T(\lambda_j)$. Obviamente temos que $\mathsf{dim}W \leqslant \mathsf{dim}V$. Por outro lado, como qualquer conjunto de autovetores associados a autovalores distintos é linearmente independente temos que $W = \bigoplus_{j=1}^k \mathsf{Aut}_T(\lambda_j)$ e logo $\mathsf{dim}(W) = \mathsf{dim}V$.

$$(4) \Rightarrow (1)$$
 Exercício.

Observação 19. Se T é uma matriz diagonalizável com matriz A. A matriz P cujas colunas são os autovetores de T é tal que $P^{-1}AP$ é uma matriz diagonal.

Exercícios - 28 de janeiro de 2020

Exercício 1. Seja λ um autovalor do operador $T:V\longrightarrow V$. Mostre que $\mathsf{Aut}_T(\lambda)$ é um subespaço vetorial de V.

Exercício 2. Seja $v \in V$ um vetor não nulo qualquer. Mostre que o conjunto de todos o operadores lineares em V tais que v é um autovetor de T (para algum autovalor) é um subespaço vetorial de $\mathcal{L}(V,V)$.

Exercício 3. Sejam T um operador linear e $\lambda_1, \lambda_2, \ldots, \lambda_k$ autovalores distintos de T. Se $v_j \in V$ é um autovetor associado ao autovalor λ_j para cada $j \in \{1, 2, \ldots, k\}$, mostre que o conjunto $\{v_1, v_2, \ldots, v_k\}$ é linearmente independente.

Exercício 4. Calcule os autovalores e autovetores das seguintes matrizes:

(a)
$$A = \begin{pmatrix} -3 & 4 \\ -1 & 2 \end{pmatrix}$$
;

(b)
$$B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix};$$

(c)
$$C = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$
.

Exercício 5. Mostre que um operador T é diagonalizável se, e somente se, as multiplicidades algébrica e geométrica coincidem para todo autovalor λ e existem autovalores para T.

Exercício 6. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V de dimensão finita n. Mostre que se T possui n autovalores distintos então T é diagonalizável.

Exercício 7. Sejam A uma matriz simétrica de ordem 2. Mostre que A é diagonalizável.

Exercício 8. Seja $T: V \longrightarrow V$ com autovalores $\lambda_1, \lambda_2, \dots, \lambda_k$. Suponha que $V = \bigcup_{j=1}^k \mathsf{Aut}_T(\lambda_j)$.

Mostre que existe um escalar λ tal que $T(v) = \lambda V$ para todo $v \in v$.

Exercício 9. Seja $T:V\longrightarrow V$ um operador linear tal que $T^2=0$. Mostre que Im(T)=Ker(T) e calcule todos os possíveis autovalores de T. O operador T é diagonalizável?

Exercício 10. Seja A a matriz

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ -2 & -3 & 1 \\ 2 & 2 & -2 \end{array}\right).$$

Calcule A^{2020} .

Exercício 11. Seja A uma matriz diagonal de ordem n com polinômio característico $p_T(x) = (x - \lambda_1)^{a_1}(x - \lambda_2)^{a_2} \cdots (x - \lambda_k)^{a_k}$, onde $\lambda_1, \lambda_2, \ldots, \lambda_k$ são distintos. Mostre que o subespaço de $M_n(\mathbb{K})$ formado pelas matrizes que comutam com A possui dimensão $a_1^2 + a_2^2 + \cdots + a_k^2$.

Exercício 12. Seja $A=(a_{ij})$ uma matriz triangular superior. Mostre que os autovalores de A são os escalares a_{jj} para cada $j \in \{1, 2, ..., k\}$.

Exercício 13. Seja $T:V\longrightarrow V$ um operador linear em V de dimensão finita. Mostre que se $T^3=I_V$ então os autovalores de T são raízes terceiras da unidade. Conclua que se V é um espaço vetorial real, então o único autovalor de T é $\lambda=1$.

Exercício 14. Seja $T:V\longrightarrow V$ um operador linear em um \mathbb{K} -espaço vetorial V de dimensão finita n. Suponha que T admite n autovalores distintos. Se $f(x)\in\mathbb{K}[x]$ é um polinômio, calcule todos os autovalores da matriz f(T).

Exercício 15. Seja $T:V\longrightarrow V$ um operador linear em um \mathbb{K} -espaço vetorial de dimensão finita e seja λ um autovalor de T. Se $f(x)\in\mathbb{K}[x]$ é um polinômio, mostre que $\operatorname{\mathsf{Aut}}_T(\lambda)\subseteq\operatorname{\mathsf{Aut}}_{f(T)}(f(\lambda))$. É possível que $\operatorname{\mathsf{Aut}}_T(\lambda)\subsetneq\operatorname{\mathsf{Aut}}_{f(T)}(f(\lambda))$?

Exercício 16. Seja T um operador linear no espaço vetorial V de dimensão finita e $\lambda_1, \lambda_2, \dots, \lambda_k$. Mostre que se $V = \sum_{j=1}^k \mathsf{Aut}_T(\lambda_j)$ então T é um operador diagonalizável.

Exercício 17. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ o operador linear dado pela projeção no eixo x. Encontre o polinômio característico de T e calcule seus autovalores.

Exercício 18. Mostre que se A é uma matriz quadrada, então os autovalores de A e A^t coincidem. Mostre com um exemplo que os autovetores de A e A^t não necessariamente são os mesmos.