EC 3303: Econometrics I

Linear Regression with Multiple Regressors (Part 1)

Kelvin Seah

Outline

1. Omitted variable bias

2. Multiple regression and OLS

Initial Policy Question

Suppose new teachers are hired so *STR* falls by one student per class. How will this policy intervention ("treatment") affect test scores?

- What did we find from our (simple) regression analysis?
- Negative relationship between test scores & class size (*STR*).
- But is this relationship *causal*? Will smaller class sizes *cause* test scores to be higher?
- Correlation does not imply causation!

- Reason to worry that the negative relationship is not causal.
- School districts with smaller classes (lower STR) tend also to be the wealthier ones. Hiring teachers costs money!

• ...and students in wealthier school districts tend to come from more affluent families, have more resources, better quality teachers.

• So the negative estimated relationship between test scores and class size could actually be reflecting the influences of these other factors instead.

- These other factors ("omitted variables") could mean that the OLS analysis done so far could be misleading.
- To address the problem, need to isolate the effect on test score of changing the class size, while holding these other factors constant (*Ceteris Paribus*).

• *Multiple regression* allows us to study how changes in one variable affects another while holding other factors constant.

Omitted Variable Bias

$$TestScore_i = \beta_0 + \beta_1 STR_i + u_i$$

- By focusing only on STR, have ignored some potentially important determinants of Testscore by collecting them in u.
- These omitted factors include school characteristics (teacher quality, resources), student characteristics (family background),...
- Consider an omitted student characteristic: prevalence of English learners in the school district.

Background

- In U.S., immigrant communities tend to be less affluent and so attend poorer schools with higher *STR*.
- Immigrant students (English Language Learners/ELL) also tend to perform worse academically than native students.

Background

- Since districts with larger classes also tend to have a higher percentage of ELL, an OLS regression of *TestScore* on *STR* would erroneously find a large negative estimated coefficient, even if the true causal effect of reducing class size may be very small or even zero.
- In other words, OLS estimator $\hat{\beta}_1$ will be biased.

$$E(\hat{\beta}_1) \neq \beta_1$$

Omitted Variable Bias

• Factors not included in the regressor are in the error *u*. So, there are always omitted variables.

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

• Sometimes, **omitted variables** can lead to **bias** in the OLS estimator.

$$Y_i = \beta_0 + \beta_1 X_i + [\beta_2 Z_i + error_i]$$

When?

- If the omitted factor "Z" satisfies 2 conditions:
 - it is a determinant of the dependent variable "Y"
 - it is correlated with the included regressor X (i.e., $corr(Z, X) \neq 0$),

then the omission will cause a bias in the OLS estimator, called *omitted* variable bias.

$$Y_i = \beta_0 + \beta_1 X_i + [\beta_2 Z_i + error_i]$$

violates LSA#1:
$$E[u_i|X_i] = 0$$

Omitted Variable Bias & LSA#1

• Omission of "Z" means that LSA#1 is violated.

Why?

- u_i in the regression model with a single regressor represents all other factors, other than X_i , that are determinants of Y_i .
- If one of those factors is correlated with X_i , then u_i (which contains this factor) is correlated with X_i .
- Since u_i and X_i are correlated, $cov(u_i, X_i) \neq 0 \& E(u_i | X_i = x) \neq 0$

Consequently:

$$E(\hat{\beta}_1) \neq \beta_1$$

bias does not disappear, even in large samples, so the OLS estimator is inconsistent.

Class size example

$$TestScore = 698.9 - 2.28 \times STR$$

Consider Z: Percentage of English Language Learners:

1. Is Z a determinant of Y?

language ability affects standardized test scores so a larger percentage of ELL will affect districtwide test scores.

2. Is Z correlated with X?

In US, immigrant communities tend to be less affluent and thus attend schools with higher *STR*.

Thus, the OLS estimator is biased. What is the direction of this bias?

Omitted Variable Bias: An E.g.

Does classical music make you smart?

$$TestScore_i = \beta_0 + \beta_1 ClassicalMusic_i + u_i$$

• Rauscher et al. (1993): listening to Mozart can raise your intelligence

$$TestScore_i = \beta_0 + \beta_1 ClassicalMusic_i + [\beta_2 Z_i + error_i]$$

Here, the Z_i s could be student's socioeconomic background, innate ability, ...

Omitted Variable Bias: An E.g.

Do more educated people earn a higher salary? $Wage_i = \beta_0 + \beta_1 Education_i + u_i$

```
. reg lwage educ, robust
Linear regression
                                                        Number of obs =
                                                        F(1, 933) = 96.89
                                                        Prob > F = 0.0000
                                                        R-squared = 0.0974
Root MSE = .40032
```

lwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
educ	.0598392	.0060791	9.84	0.000	.047909	.0717694
_cons	5.973063	.0822718	72.60	0.000	5.811603	6.134522

$$Wage_i = \beta_0 + \beta_1 Education_i + [\beta_2 Z_i + error_i]$$

What could the Z_i s be here?

935

$$Wage_i = \beta_0 + \beta_1 Education_i + [\beta_2 Z_i + error_i]$$

What could the Z_i s be here?

- a) Luck
- b) Innate ability
- c) Motivation level
- d) B & C
- e) All of the above

Omitted Variable Bias

- What is the magnitude and direction of the omitted variable bias?
- Let the correlation between X_i and u_i be $Corr(X_i, u_i) = \rho_{Xu}$. Suppose LSA#2 & #3 hold, then

As $n \to \infty$,

$$\hat{\beta}_1 \stackrel{p}{\rightarrow} \beta_1 + \rho_{Xu} \frac{\sigma_u}{\sigma_v}$$

- Because $\hat{\beta}_1$ does not converge in probability to the true value β_1 , $\hat{\beta}_1$ is biased and inconsistent.
- $\rho_{Xu} \frac{\sigma_u}{\sigma_X}$ is the bias in $\hat{\beta}_1$, that persists even in large samples.

$$\hat{\beta}_1 \xrightarrow{p} \beta_1 + \rho_{Xu} \frac{\sigma_u}{\sigma_X}$$

- size of the bias depends on ρ_{Xu} ; the larger $|\rho_{Xu}|$, the larger the bias.
- direction of the bias in $\hat{\beta}_1$ depends on whether X and u are positively or negatively correlated:
 - If X and u are positively correlated: $\hat{\beta}_1$ will have a positive bias (i.e. $E(\hat{\beta}_1) > \beta_1$).
 - If X and u are negatively correlated: $\hat{\beta}_1$ will have a negative bias (i.e. $E(\hat{\beta}_1) < \beta_1$).
- What is the direction of the bias in the class size e.g.?

$$TestScore_i = \beta_0 + \beta_1 STR_i + [\beta_2 Z_i + error_i]$$

- omitted factor -Z percentage of ELL has a negative effect on test scores.
 - So Z enters u_i with a negative sign.
- Meanwhile, the percentage of ELL is positively correlated with STR.
 - hence, STR would be negatively correlated with the error term u.
 - so $\rho_{Xu} < 0$ and $E(\hat{\beta}_1) < \beta_1$
 - in the simple regression of test scores on STR, $\hat{\beta}_1$ would be biased toward a negative number.
 - so one reason why the estimated slope (-2.28) suggests small classes improve test scores may be that districts with small classes have fewer ELL.

Population Multiple Regression Model

Multiple regression helps reduce the omitted variable bias by controlling for other related factors.

• allows us to study the effect on Y of changing one variable (say X_1) while holding other variables (say X_2) constant

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, i = 1,...,n$$

- *Y*: dependent variable
- X_1, X_2 : independent variables
- (Y_i, X_{1i}, X_{2i}) : value of Y, X_1 , and X_2 for the ith observation
- β_0 : unknown population intercept
- β_1 : effect on Y of a unit change in X_1 , holding X_2 constant
- β_2 : effect on Y of a unit change in X_2 , holding X_1 constant
- u_i : population error

• multiple regression allows isolating the effect on test scores (Y) of the class size (X_1) by holding constant the percentage of ELL in the district (X_2)

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- $\beta_0 + \beta_1 X_1 + \beta_2 X_2 = \text{population regression line / function}$
 - summarizes the relationship between Y and the regressors (X_1 & X_2) that holds *on average* in the population.
- u_i = population error
 - observations do not fall exactly on the population regression line because many other factors influence the dependent variable. The influence of these other factors is contained in u_i .

Interpretating Coefficients

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

Consider changing X_1 by ΔX_1 , while holding X_2 constant:

• Population regression line, *before* the change:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \tag{1}$$

Population regression line, after the change:

$$Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2 \qquad (2)$$

$$(2)-(1)$$

$$\Delta Y = \beta_1 \Delta X_1 \qquad (3)$$

$$\beta_1 = \frac{\Delta Y}{\Delta X_1}$$
, holding X_2 constant

$$\beta_2 = \frac{\Delta Y}{\Delta X_2}$$
, holding X_1 constant

 β_0 = predicted value of *Y* when $X_1 = X_2 = 0$.

General Case

- In practice, there might be multiple factors omitted from the singleregressor model.
 - E.g. ignoring students' economic background etc. might result in omitted variable bias, just as ignoring the percentage of English learners does.
- More generally, can have a multiple regression model with k regressors

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$

OLS Estimator in Multiple Regression

- Use OLS to estimate the unknown population intercept and slopes $(\beta_0, \beta_1, \beta_2, ..., \beta_k)$.
- Let $b_0, b_1, ..., b_k$ be some estimators of $\beta_0, \beta_1, ..., \beta_k$. Regression line based on these estimators is $b_0 + b_1 X_1 + \cdots + b_k X_k$.
- value of Y_i predicted using this line is $b_0 + b_1 X_{1i} + \cdots + b_k X_{ki}$ for all $i = 1, \dots n$
- the mistake in predicting the i^{th} observation is

$$Y_i - (b_0 + b_1 X_{1i} + \dots + b_k X_{ki})$$

• sum of the squared prediction mistakes over all n observations is

$$\sum_{i=1}^{n} [Y_i - (b_0 + b_1 X_{1i} + \dots + b_k X_{ki})]^2 \quad (1)$$

• sum of the squared prediction mistakes over all n observations is:

$$\sum_{i=1}^{n} [Y_i - (b_0 + b_1 X_{1i} + \dots + b_k X_{ki})]^2$$
 (1)

• estimators that minimize (1) are the OLS estimators of $\beta_0, \beta_1, ..., \beta_k$.

minimization problem is solved using calculus.

OLS Terminology in Multiple Regression

- Same as before:
- OLS regression line / function:

$$\hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots + \hat{\beta}_k X_k$$

• Predicted value of Y_i given the X_i 's, based on the OLS regression line:

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1i} + \dots + \widehat{\beta}_k X_{ki}$$

residual for the ith observation:

$$\hat{u}_i = Y_i - \hat{Y}_i$$

Application: Test Scores & Class Size

• earlier regression of test scores on *STR* yielded:

$$\widehat{TestScore} = 698.9 - 2.28 \times STR$$

- estimated relationship might be misleading because it may be picking up not only the effect of class size but also the effect of other omitted factors.
- recall: districts with larger classes tend to have a greater percentage of ELL.
- let's control for the percentage of ELL in the district by including it as a regressor.

reg testscr str pctel, robust

Regression with robust standard errors

```
Number of obs = 420

F(2, 417) = 223.82

Prob > F = 0.0000

R-squared = 0.4264

Root MSE = 14.464
```

| Robust testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval] str | -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616 pctel | -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786 _cons | 686.0322 8.728224 78.60 0.000 668.8754 703.189

$$TestScore = 686.0 - 1.10 \times STR - 0.65PctEL$$

More on this printout later...

$$\widehat{TestScore} = 698.9 - 2.28STR \quad (2)$$

$$TestScore = 686.0 - 1.10STR - 0.65PctEL$$
 (3)

- estimated effect on test scores of a change in the *STR* in the second regression is only half as large as the one in the first.
- difference occurs because the coefficient on *STR* in the multiple regression is the effect of a one unit change in *STR*, holding constant (controlling for) *PctEL*, whereas in the single-regressor regression, *PctEL* is not held constant.
- because districts with a high percentage of ELL tend to have both low test scores and high *STR*, omitting *PctEL* from the regression will result in a larger estimated increase in test score from a unit decrease in the *STR*. However, this estimate not only reflects the effect of a decrease in the *STR* but also the (omitted) effect of having fewer ELL in the district.
- if adding another regressor changes the estimated coefficient on the variable of interest, this is indicative of omitted variable bias in the original regression.