Homework 3: Props 2.3, 2.5, 2.6, 2.8

Prop. 2.3.

 $1 \in \mathbb{N}$

Proof.

Assume $1\notin\mathbb{N}$. By prop. 2.2, and the fact that $1\neq0$, we know $-1\in\mathbb{N}$.

According Axiom 2.1(ii), $1 \in \mathbb{N}$, because (-1)(-1) = 1.

This forms a contradiction with our assumption that $1 \notin \mathbb{N}$.

Therefore, $1 \in \mathbb{N}$, because $1 \neq 0$ and $-1 \notin \mathbb{N}$.

Prop. 2.5.

For each $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that m > n

Proof.

From the definition of m>n, we know $m-n\in\mathbb{N}$, or $m+(-n)\in\mathbb{N}$.

UNFINISHED

Prop. 2.6.

$$(m, n \in \mathbb{Z}) \ m \le n \le m \Rightarrow m = n$$

Proof.

Assume $m \neq n$.

From the definition of $m \leq n$, we know m < n or m = n, but m = n has been assumed false.

We know $n - m \in \mathbb{N}$, by definition of m < n.

From $m \leq n \leq m$, we know $n-m \in \mathbb{N}$ and $m-n \in \mathbb{N}$

By Axiom 2.1(i),

$$(n-m)+(m-n)\in\mathbb{N}$$

$$\Rightarrow (n-n) + (-m+n) \in \mathbb{N}$$

$$\Rightarrow 0+0 \in \mathbb{N}$$

$$\Rightarrow 0 \in \mathbb{N}$$
.

However, by Axiom 2.1(iii), $0 \notin \mathbb{N}$.

Assuming the law of excluded middle, by contradiction, m=n.

Prop. 2.8.

 $(m,n \in \mathbb{Z})$ Exactly one of the following is true: m < n, m = n, m > n

Proof.

First prove m < n and m > n cannot both be true.

UNFINISHED