Laborübungen: Mechanik und Wärme

15. Februar 2012

Bestimmung der Oberflächenspannung von Flüssigkeiten

1 Aufgabenstellung

Bestimmung der Oberflächenspannung von Wasser und einer Seifenlösung:

- 1. Mit der Bügelmethode nach Lenard bzw. mit dem Ring.
- 2. Aus der Steighöhe in einer Kapillare.

2 Grundlagen

Die Oberflächenspannung σ_0 einer Flüssigkeit ist als Quotient der am Rand der Flüssigkeit tangential zur Oberfläche angreifenden Kraft F_R und der Randlänge l_R definiert.

$$\sigma_0 = F_R/l_R \tag{1}$$

Dies wird bei der Messung der Oberflächenspannung nach Lenard (siehe Abb. 1) realisiert. Die Kraft F_{VR} wird mit einer Federwaage gemessen, die Randlänge l_{VR} ist durch die Geometrie des Bügels gegeben. Bei der Messung mit dem Ring wird anstelle von l_{VR} dessen Umfang eingesetzt. Da bei dieser Methode auf zwei Seiten der Flüssigkeitshaut neue Oberfläche geschaffen wird, ergibt sich für die Oberflächenspannung

$$\sigma_0 = \frac{F_{VR}}{2l_{VR}} \tag{2}$$

Weiters kann die Oberflächenspannung auch über die Kapillaraszension (bzw. -depression) gemessen werden (siehe Abb. 2). Für eine vollständig die Innenwand der Kapillare benetzende Flüssigkeit ergibt sich für kleine Steighöhen h der Flüssigkeit

$$\sigma_0 = \frac{1}{2} r \rho g h \tag{3}$$

wobei r der Innenradius der Kapillare, ρ die Dichte der Flüssigkeit und $g=9.81~\mathrm{m\,s^{-2}}$ ist.

3 Versuchsaufbauten

Abbildung 1: Zur Messung mit dem Lenardbügel. Wird der Bügel mit Länge l_{VR} aus dem Wasser gezogen, so bildet sich eine Lamelle A. Die dabei angreifende Kraft F_{VR} wird mit einer Federwaage F bestimmt.

Abbildung 2: Zur Messung nach der Kapillarmethode. r Radius der Kapillare, h Steighöhe, ρ Dichte der Flüssigkeit. Für vollständig benetztende Flüssigkeiten ist der Randwinkel $\alpha=0$.