Segmentation as Clustering

K-Means Clustering

Visual Similarity

- Intensity
- Color
- Position
- Depth
- Motion
- Texture etc.

Pixels in Euclidean Space

• Euclidean Space: Generalization of 3D Cartesian space to higher dimensions.

Pixels as feature vector: [R, G, B, x, y, d, ...]

Let i and j be two pixels whose features are \mathbf{f}_i and \mathbf{f}_j .

 \mathcal{L}^2 Distance between \mathbf{f}_i and \mathbf{f}_j :

$$S_{s}(\mathbf{f}_{i},\mathbf{f}_{j}) = \sqrt{\sum_{k} (f_{ik} - f_{jk})^{2}}$$

Smaller the Distance, Greater the Similarity

Pixel Similarity

Clustering Similar Pixels

3-Means Clustering

Problem: Segment the given pixel feature distribution into 3 clusters.

Solution:

Step 1: Randomly generate the initial centroids (means) of the 3 clusters.

3-Means Clustering

Step 2: Create 3 clusters by assigning each feature point to the nearest mean.

Step 3: Recompute the mean of each cluster.

Step 4: Repeat steps 2 and 3 until convergence.

K-Means Clustering

Given: Image with N pixels and number of clusters k.

Task: Find the k clusters.

Clustering:

- 1: Pick k points randomly as the initial centroids (means) $\{\mathbf{m}_1, \mathbf{m}_2, ..., \mathbf{m}_k\}$ of the k clusters in feature space.
- 2: For each pixel x_j find nearest cluster mean m_i to pixel's feature f_i and assign pixel to cluster i.
- Recompute mean for each cluster using its assigned pixels.
- 4: If changes in all k means is less than a threshold ϵ , stop. Else go to step 2.

K-Means Initialization methods

 Method 1: Select k random feature points as initial centroids. If two points are very close, resample.

 Method 2: Select k uniformly distributed means within the range of distribution.

• Method 3: Perform k-means clustering on a subset of pixels and use the result as the initial means.

K-Means Clustering Results (k=2)

K-Means Clustering Results (k=8)

K-Means Clustering Results (k=16)

K-Means Clustering: Remarks

Simple and reasonably fast

- Need to pick the number of clusters k
- Sensitive to initialization
- Sensitive to outliers