An overview of gradient descent optimization algorithms

Pandu Raharja

Siemens Corporate Technology (CT RDA BAM SMR-DE)
Technische Universität München
Ludwig-Maximillians-Universität München

May 24, 2017

- Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).
- Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." Proceedings of the 3rd International Conference on Learning Representations (ICLR). 2015

Optimization problem in machine learning

Machine learning is an optimization problem.

Optimization problem in machine learning

Machine learning is an optimization problem.

Sometimes it's convex:

- ▶ Support Vector Machine: $\min_{w} ||w|| s.t. y_n(w^T x_n) \le 1, \forall n$
- Linear Regression with L1-Regularization: $\min_{n} \frac{1}{n} ||Xw Y|| + \lambda ||w||_1$

Optimization problem in machine learning

Machine learning is an optimization problem.

Sometimes it's convex:

- ▶ Support Vector Machine: $\min_{w} ||w|| s.t. y_n(w^T x_n) \le 1, \forall n$
- Linear Regression with L1-Regularization: $\min_{n} \frac{1}{n} ||Xw Y|| + \lambda ||w||_1$

Often times it's non-convex:

Neural networks

"Hardness" of non-convex optimization

- ▶ No unique global minimum guaranteed
- Hard to model asymptotic behaviour

(First order) Strategies in Non-Convex Optimization

- Gradient descent variants:
 - Batch gradient descent
 - Stochastic gradient descent
 - Mini-batch gradient descent

(First order) Strategies in Non-Convex Optimization

- Gradient descent variants:
 - Batch gradient descent
 - Stochastic gradient descent
 - ► Mini-batch gradient descent
- Gradient descent optimizations:
 - Momentum
 - Nesterov accelerated gradient
 - Adagrad
 - RMSprop
 - Adadelta
 - Adam

Batch Gradient Descent (vanilla)

Compute the gradient for the entire training dataset:

$$\theta \leftarrow \theta - \eta . \nabla_{\theta} J(\theta)$$

- Slow
- Intractable for datasets larger than memory capacity
- ▶ Redundant gradient computations for each parameter update

Batch Gradient Descent (vanilla)

Compute the gradient for the entire training dataset:

$$\theta \leftarrow \theta - \eta . \nabla_{\theta} J(\theta)$$

- Slow
- Intractable for datasets larger than memory capacity
- ▶ Redundant gradient computations for each parameter update

Batch gradient descent is a **first-order but not stochastic method**.

Define general minimization problem:

$$\min_{\theta} \{ J(\theta) := \frac{1}{m} \sum_{i=1}^{m} I(\theta; x_i, y_i) + \lambda r(\theta) \}$$

- \bullet θ network parameters to learn
- ▶ $I(\theta; x, y)$ loss function
- $ightharpoonup r(\theta)$ regularization function

In deep learning, we usually have:

- Many network parameters $(\dim(\theta) >> 10^8)$ computing Hessian (second derivative) is expensive
- ► Many training examples (m >> 10⁶) computing full objective function per iteration is expensive

In deep learning, we usually have:

- Many network parameters $(\dim(\theta) >> 10^8)$ computing Hessian (second derivative) is expensive
- ► Many training examples (m >> 10⁶) computing full objective function per iteration is expensive

Thus, a gradient optimization method should be **first order stochastic**:

- First order update based on objective value and gradient only
- ► Stochastic update based on subset of training examples

In deep learning, we usually have:

- Many network parameters $(\dim(\theta) >> 10^8)$ computing Hessian (second derivative) is expensive
- ► Many training examples (m >> 10⁶) computing full objective function per iteration is expensive

Thus, a gradient optimization method should be **first order stochastic**:

- First order update based on objective value and gradient only
- ► **Stochastic** update based on subset of training examples

There are several second-order methods developed (e.g. Martens, 2010, ICML & LM-BFGS), but it's not within the scope of presentation.

Stochastic Gradient Descent (SGD)

$$\theta \leftarrow \theta - \eta . \nabla_{\theta} \boldsymbol{J}(\boldsymbol{\theta}; \boldsymbol{x^{(i)}}; \boldsymbol{y^{(i)}})$$

- Frequent gradient updates on higher variance data
- Variance-induced fluctuation exposes new local minima
- ► Slowly decreasing learning rate shown to show convergence behaviour as vanila GD

Mini-batch Gradient Descent

$$\theta \leftarrow \theta - \eta . \nabla_{\theta} J(\theta; \mathbf{x^{(i:i+n)}}; \mathbf{y^{(i:i+n)}})$$

- ▶ Update with n training samples at a time
- Reduced variance leading to more stable convergence behaviour

How to properly select learning rate?

- How to properly select learning rate?
- ► How to embed apropriate learning rate scheduling, i.e. how and when to adjust the learning rate?

- How to properly select learning rate?
- ► How to embed apropriate learning rate scheduling, i.e. how and when to adjust the learning rate?
- ► Features have very different frequency and yet are updated with same learning rate

- How to properly select learning rate?
- ► How to embed apropriate learning rate scheduling, i.e. how and when to adjust the learning rate?
- ► Features have very different frequency and yet are updated with same learning rate
- ▶ Suboptimal local minima might pose a risk. Moreover, sattle points are notoriously hard due to zero gradients.

Momentum SGD

$$v_{t} = \gamma v_{t-1} + \eta . \nabla \theta J(\theta)$$
$$\theta \leftarrow \theta - v_{t}$$

- Accelerates SGD in relevant direction:
 - Updates increased for dimensions with same direction to gradient's
 - Decreased for dimensions with opposite direction to gradient's

Momentum SGD

$$v_t = \gamma v_{t-1} + \eta . \nabla \theta J(\theta)$$
$$\theta \leftarrow \theta - v_t$$

- Accelerates SGD in relevant direction:
 - Updates increased for dimensions with same direction to gradient's
 - Decreased for dimensions with opposite direction to gradient's
- ▶ Faster convergence and reduced oscillation
- Useful for landscape of unequal gradient (e.g. ravine around local minimum)

Nesterov Accelerated Gradient (NAG)

- Momentum does not anticipate gradient change in the near future
- Adjust the momentum by looking at the future:
 - First make a big jump in the direction of the previous accumulated gradient
 - Then measure the gradient where you end up and make correction

Nesterov Accelerated Gradient (NAG)

- Momentum does not anticipate gradient change in the near future
- Adjust the momentum by looking at the future:
 - 1. **First** make a big jump in the direction of the previous accumulated gradient
 - Then measure the gradient where you end up and make correction

$$v_{t} = \gamma v_{t-1} + \eta \cdot \nabla \theta J(\theta - \gamma v_{t-1})$$
$$\theta \leftarrow \theta - v_{t}$$

- ▶ Embeds the response of future gradient change
- Reduces oscillation

Nesterov Accelerated Gradient (NAG)

brown vector = jump, red vector = correction, green vector = accumulated gradient

blue vectors = standard momentum

$$v_t = \gamma v_{t-1} + \eta \cdot \nabla \theta J(\theta - \gamma v_{t-1})$$
$$\theta \leftarrow \theta - v_t$$

- So far, NAG manages to adapt the rate to slope of error function.
- ▶ We'd like to adapt the rate to how often a parameter is updated – important so that sparse representation could also be learned

- So far, NAG manages to adapt the rate to slope of error function.
- ▶ We'd like to adapt the rate to how often a parameter is updated – important so that sparse representation could also be learned

Idea: normalize update of parameter θ_i to the magnitude of update for θ_i so far

$$\theta_{t,i} \leftarrow \theta_{t-1,i} - \eta. \frac{\nabla_{\theta_i J_t(\theta)}}{\sqrt{\sum_{t'=1}^t \nabla_{\theta_i} J_{t'}(\theta)^2 + \epsilon}}$$

- So far, NAG manages to adapt the rate to slope of error function.
- ▶ We'd like to adapt the rate to how often a parameter is updated – important so that sparse representation could also be learned

Idea: normalize update of parameter θ_i to the magnitude of update for θ_i so far

$$\theta_{t,i} \leftarrow \theta_{t-1,i} - \eta \cdot \frac{\nabla_{\theta_i J_t(\theta)}}{\sqrt{\sum_{t'=1}^t \nabla_{\theta_i} J_{t'}(\theta)^2 + \epsilon}}$$

Surpresses frequently updated parameters and enchances rarely updated parameters

$$\theta_{t,i} \leftarrow \theta_{t-1,i} - \eta \cdot \frac{\nabla_{\theta_i J_t(\theta)}}{\sqrt{\sum_{t'=1}^t \nabla_{\theta_i} J_{t'}(\theta)^2 + \epsilon}}$$

▶ Main problem: learning rate keeps falling due to denominator

AdaDelta

- Restrict the accumulated past gradients to some fixed size w
- ▶ **Problem:** storing and updating last w gradients for each θ_i is not very efficient
- ▶ **Idea:** recursively define running average of gradient $g := \nabla_{\theta} J(\theta)$:

$$E[g^2]_t = \gamma . E[g^2]_{t-1} + (1 - \gamma) . g_t^2$$

AdaDelta

- Restrict the accumulated past gradients to some fixed size w
- ▶ **Problem:** storing and updating last w gradients for each θ_i is not very efficient
- ▶ **Idea:** recursively define running average of gradient $g := \nabla_{\theta} J(\theta)$:

$$E[g^2]_t = \gamma . E[g^2]_{t-1} + (1 - \gamma) . g_t^2$$

The parameter update at time t is thus defined as:

$$egin{aligned} \Delta heta_t := -rac{\eta}{\sqrt{ extit{ extit{ extit{ extit{ extit{ extit{g}}}^2]_t + \epsilon}}} extit{ extit{ extit{g}}_t} = -rac{\eta}{ extit{ extit{ extit{RMS}[g]_t}}} extit{ extit{g}_t} \ & heta_{t,i} \leftarrow heta_{t-1,i} + \Delta heta_t \end{aligned}$$

Root Mean Square Propagation (RMSProp)

Independently proposed by Hinton at the same time of AdaDelta:

$$E[g^{2}]_{t} = 0.9E[g^{2}]_{t-1} + 0.1g_{t}^{2}$$

$$\theta_{t,i} \leftarrow \theta_{t-1,i} - \frac{0.001}{RMS[g]_{t}}g_{t}$$

Combine the advantages of:

- ▶ AdaGrad, which works well with sparse gradients
- ▶ RMSProp, which works well with non-stationary setting

Combine the advantages of:

- ▶ AdaGrad, which works well with sparse gradients
- ▶ RMSProp, which works well with non-stationary setting

Idea:

- ► Maintain exponential of gradients and its square
- ► Update proportional to = average gradient average squared gradient

Keeps exponential decaying average of past gradients m_t and momentum v_t (the *first* and *second* moment of g):

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

 $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$

Problem: Since m_t and v_t are initialized as zero vectors, they are biased towards zero, especially in initial time steps.

Keeps exponential decaying average of past gradients m_t and momentum v_t (the *first* and *second* moment of g):

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

Problem: Since m_t and v_t are initialized as zero vectors, they are biased towards zero, especially in initial time steps.

Solution: Bias correction of m_t and v_t

$$\hat{m_t} = rac{m_t}{1-eta_1^t}$$
 $\hat{v_t} = rac{v_t}{1-eta_2^t}$

Adaptive Moment Estimation (ADAM)

$$heta_t \leftarrow heta_{t-1} - rac{\eta}{\sqrt{\hat{v}_t + \epsilon}} \hat{m}_t$$

with

$$\hat{m_t} = rac{m_t}{1-eta_1^t}$$
 (first moment correction) $\hat{v_t} = rac{v_t}{1-eta_2^t}$ (second moment correction)

and

$$m_t = eta_1 m_{t-1} + (1 - eta_1) g_t$$
 (first moment estimate) $v_t = eta_2 v_{t-1} + (1 - eta_2) g_t^2$ (second moment estimate)

ADAM: Experiments

Logistic regression on MNIST and IMDB Bag of Words

Figure 1: Logistic regression training negative log likelihood on MNIST images and IMDB movie reviews with 10,000 bag-of-words (BoW) feature vectors.

ADAM: Experiments

NN + dropout on MNIST

ADAM: Experiments

CNN on CIFAR10

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs. (right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

Methods evolution

ADAM: Extension (AdaMax)

Recall ADAM's update rule:

$$\theta_t \leftarrow \theta_{t-1} - \frac{\eta}{\sqrt{\hat{\mathbf{v_t}} + \epsilon}} \hat{m_t}$$

- ▶ We could generalize the L_2 norm into L_p norm for $p \to \infty$
- ► This surpisingly stabilizes and simplifies the algorithm

$$heta_t \leftarrow heta_{t-1} - rac{\eta}{(\hat{m{v_t}} + \epsilon)^{1/m{p}}} \hat{m_t}$$

with

$$\hat{m_t} = rac{m_t}{1 - eta_1^t}$$

$$\hat{v_t} = rac{v_t}{1 - eta_2^{pt}}$$

(first moment bias correction)

(p-th moment bias correction)

and

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

 $v_t = \beta_2 v_{t-1} + (1 - \beta_2^p) g_t^p$

(first moment estimate)
(p-th moment estimate)

Recall the definition of L_p norm:

$$||x||_p := (x_1^p + \cdots + x_n^p)^{1/p}$$

Recall the definition of L_p norm:

$$||x||_p := (x_1^p + \cdots + x_n^p)^{1/p}$$

For $p \to \infty$, this becomes maximum function. Hence we can rewrite the $(\hat{v_t} + \epsilon)^{1/p}$ -part:

$$\begin{split} \hat{v_t}^{1/p} &= (\frac{v_t}{1 - \beta_2^{pt}})^{1/p} = (\frac{\beta_2 v_{t-1} + (1 - \beta_2^p) g_t^p}{1 - \beta_2^{pt}})^{1/p} \\ &\stackrel{\text{inf. p}}{=} (\beta_2 v_{t-1} + g_t^p)^{1/p \text{inf. p}} \max\{\beta_2 u_{t-1}, |g_{t-1}|\} \end{split}$$

$$heta_t \leftarrow heta_{t-1} - rac{\eta}{oldsymbol{u_t}} \hat{m_t}$$

with

$$\hat{m_t} = rac{m_t}{1-eta_1^t}$$
 (first moment bias correction) $\hat{u_t} = max\{eta_2 u_{t-1}, |g_{t-1}|\}$ (∞ -th moment etimate) $m_t = eta_1 m_{t-1} + (1-eta_1)g_t$ (first moment estimate)

Additional Strategies

- Shuffling and curriculum learning
- Batch norm
- Early stopping
- Gradient noise

Example

http://imgur.com/a/Hqolp

References

- Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).
- Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." Proceedings of the 3rd International Conference on Learning Representations (ICLR). 2015.
- Martens, James. "Deep learning via Hessian-free optimization." Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010.
- ▶ Qian, Ning. "On the momentum term in gradient descent learning algorithms." Neural networks 12.1 (1999): 145-151.
- ▶ Nesterov, Yurii. "A method of solving a convex programming problem with convergence rate O (1/k2)." Soviet Mathematics Doklady. Vol. 27. No. 2. 1983.

References

- ▶ Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization." Journal of Machine Learning Research 12.Jul (2011): 2121-2159.
- ➤ Zeiler, Matthew D. "ADADELTA: an adaptive learning rate method." arXiv preprint arXiv:1212.5701 (2012).