Algorithm: K Nearest Neighbor

Simple Analogy

Tell me about your friends(who your neighbor are) and *I will* tell you who you are

How We Human Learn

Instance Based learning

What is KNN

- Classification Algorithm
- Distance Based or Similarity based algorithm
- It says check how many neighborhood having positive or negative values.

Distance Measurement

Euclidean
$$\sqrt{\sum_{l=1}^{k} (x_{l} - y_{l})^{2}}$$

Manhattan
$$\sum_{i=1}^{k} |x_i - y_i|$$

Minkowski
$$\left(\sum_{i=1}^{k} (|x_i - y_i|)^q\right)^{1/q}$$

Hamming Distance:

This distance is used to get the distance between categorical variable or strings. This distance is used for same length strings.

Cosine Distance:

If we have angle between two data points in 2D then we can use cosine similarity/distnace to get the relationship between them

Classification Approach

- ➤ Object(New instance) classified based on majority votes from its neighbor.
- The object is classified its most common class among its K Nearest neighbor(Measured by a distance function)

Example of Distance calculation

Customer	Age	Income	No. credit cards	Class
George	35	35K	3	No
Rachel	22	50K	2	Yes
Steve	63	200K	1	No
Tom	59	170K	1	No
Anne	25	40K	4	Yes
John	37	50K	2	YES

Distance from John		
sqrt [(35 2) ²]=15.3	-37) ² +(35-50) ² +(3-	
sqrt [(22 2) ²]=15	-37)2+(50-50)2 +(2-	
sqrt [(63 2) ²]=152	-37) ² +(200-50) ² +(1- .23	
sqrt [(59 2) ²]=122	-37)2+(170-50)2 +(1-	
sqrt [(25 2) ²]=15.7	-37) ² +(40-50) ² +(4-	

How to choose Hyper parameter K

- ➤ Hyper parameter tuning: We will do hyper parameter tuning based on cross validation then decide what should be the perfect value of K.
- > Small value of K can over fit the model.

Over fitting and under fitting

Decision Surface

- ➤ Its is a curve in 2D which separates the positive and negative points
- ➤In 3D it will be a surface
- ➤In nD it will be a hyper plane

Limitations of KNN

- Time complexity is very high
- ➤ Space complexity is also very high
- Cannot use in low latency projects

Fact : In KNN we does not make model or train the data we simply use train data to estimate the class label of given test data