Pitch Detector

ISPR - Midterm 1 Assignment 3

Filippo Baroni

March 30, 2021

Autocorrelogram

► The autocorrelogram Auto_y measures the correlation of a signal y with itself at different time lags:

$$\mathsf{Auto}_{\mathbf{y}}[\tau] = \frac{1}{\|\mathbf{y}\|^2} \sum_{t=0}^{N-\tau-1} \mathbf{y}[t] \cdot \mathbf{y}[t+\tau].$$

lt can be computed as the convolution between **y** and reverse(**y**).

```
def autocorrelogram(y):
a = np.convolve(y, y[: : -1], 'same')
a = a[a.size // 2 :]
return a / np.dot(y, y)
```

Finding the Pitch

- Peaks in the autocorrelogram correspond to periods of the signal y.
- ▶ The minimal period τ_0 of **y** is the smallest maximum point of the autocorrelogram **after 0**.


```
def find_pitch(y, sr):
a = autocorrelogram(y)
peaks = []
for b in np.split(np.arange(a.size),
    np.nonzero(a < 0)[0].tolist())[1 :]:
    if b:= [i for i in b if a[i] > .01]:
        peaks.append(max(b, key = lambda i: a[i]))
highest_peak = max(a[p] for p in peaks)
f = np.array([p for p in peaks
    if a[p] >= .95 * highest_peak][: 10])
tau = np.average(f / np.arange(1, f.size + 1), 0, a[f])
return sr / tau
```

Results

Instrument	Note	Autocorrelogram	Pitch	Error
Oboe	C6		1046 Hz	0.03%
Clarinet	C6	0 40 60 80 100	1049 Hz	0.3 %
Keyboard (homemade)	G3	0 100 200 300 400 500 600	196.7 Hz	0.3%
Voice (homemade)	D3	0 200 400 600 800 1000	145.1 Hz	1%

Real-time Pitch Detection

- ▶ This algorithm is fast enough to run in real-time.
- pyaudio for microphone input, pyglet for graphics.
- ► And now, a live demonstration!

