Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

1. Дослідження суматора напруги на резисторі

а. Під час лабораторного заняття було складено суматор напруги за наступною схемою:

У якості джерел напруги було використано керовані джерела, включенні в плату Analog Discovery 2. Опір було вибрано R1 = 74,4 кОм та R2 = 76,2 кОм які значно більші за внутрішній опор джерел.

Напруги джерел було налаштовано як показано на зображенні :

Щуп вольтметру Analog Discovery було підключено до точки V_{out} .

Oltmeter	Scope 1 Wavegen 1				
048 kHz					
Channel 1				Channel 2	
		2.874 V			
		2.874 V			
		1 mV			

Результати вимірювань склали 2,874V, що з урахуванням похибок, відповідає теоретичним передбаченням

Симуляція суматора в LTspice для постійного сигналу

 $V_1 = 4V$

 $V_2 = 2V$

 $V_{out} = 3V$

Результати симуляції відповідають формулі Uвих = (U1 + U2)/2 з теоретичного опису суматора.

На суматор було подано два сигналу – імпульсний, амплітудою 1В, частотою 1 к Γ ц, та синусоїдальний, амплітудою 1В та частотою 5 к Γ ц:

До виходу суматора було під'єднано один із входів осцилографу:

На виході суматора спостерігали комбінацію двох вхідних сигналів, що відповідає теоретичним очікуванням.

Симуляція суматора в LTspice для змінного сигналу:

Джерела налаштовано аналогічно до налаштувань генератору під час лабораторного дослідження. Отриманий вихідний сигнал відповідає за формою сигналу, такому що було отримано у лабораторних дослідженнях:

2. Дослідження RC-ланцюжка.

- а. Під час лабораторної роботи було складено інтегруючий RC-ланцюжок с наступними параметрами:
 - $C = 101,6 \ H\Phi$
 - R = 0.997 kOm
- b. Тривалість заряду/розряду до 99% складає:

$$t = 5\tau = 5 \times R \times C = 5 \times 101,6 \times 10^{-9} \times 0,997 \times 10^{3} = 0,506 \text{ MC}$$

с. На вхід RC-ланцюжка подали імпульсний сигнал з частотою 0,395 кГц, амплітудою 1В та коефіцієнтом заповнення 50%.

Два щупи осцилографа було підключено відповідно до входу та виходу RC-ланцюжка:

Було проведено симуляцію схеми в LTspice, результати якої також відповідають теоретичним очікуванням:

3. Дослідження RC-фільтру низької частоти

а. Під час лабораторної роботи будо складено RC-ФНЧ з наступними параметрами:

$$C = 82 \text{ H}\Phi$$

$$R = 3.9 \text{ kOm}$$

Частота зрізу такого фільтру:

$$f_3 = \frac{1}{2\pi \times R \times C} = \frac{1}{2 \times 3,14 \times 0,997 \times 10^3 \times 101,6 \times 10^{-9}} \approx 1,571 \text{ к}$$
Гц

b. Для визначення АЧХ фільтру, що було складено, використали Network Analyzer у складі плати Analog Discovery. Було отримано наступні результати:

Загальна форма АЧХ відповідає формі з теоретичної бази.

Точка частоти зрізу (-3 дБ) знаходиться на частоті 1,574 к Γ ц, що, з урахуванням похибки, відповідає очікуванням.

с. Було розраховано ряд значень K_u теоретичного фільтру та порівняно з даними, отриманими експериментально. Результати наведено у таблиці:

Nº	<i>f</i> , Гц	K _u теоретичне	K _u експеримент.	Похибка, %
1	0	1,000	1	0
2	0,3	0,982	0,983	0,07
3	0,6	0,934	0,935	0,08
4	0,9	0,869	0,88	1,27
5	1,2	0,795	0,801	0,72
6	1,574	0,708	0,709	0,15
7	1,8	0,656	0,662	0,89
8	2,1	0,599	0,601	0,32
9	2,4	0,548	0,55	0,43
10	2,7	0,502	0,505	0,53

Виділено К_и на частоті зрізу. Аналіз похибки вимірювань свідчить про коректність отриманих даних.

d. Було проведено моделювання RC-ФНЧ в LTspice, під час якого було отримано AЧX:

Форма АЧХ відповідає теоретичній та загалом співпадає з виміряною з урахуванням масштабу.

Висновки

Було проведено дослідження роботи суматору на резисторах та RC-ланцюжка. Під час проведення лабораторної роботи зняли вихідну осцилограму суматора при постійному та змінному сигналі на вході, частотну та перехідну характеристики RC-фільтру. Такі ж самі експерименти повторили у LTspice XVII та порівняли результати. Те що данні отримані в наслідок експеременту та симуляції збігаются, за винятком похибки вимірюваннь та розрахунків, підтверджує правильне виконання експерименту.