Exercise Sheet 7 (theory part)

Exercise 1: CCA and Least Squares Regression (20 P)

The least squares regression problem assumes an input matrix $X \in \mathbb{R}^{d \times N}$ and a vector of outputs $Y \in \mathbb{R}^N$, both centered, and has its solution given by the optimization problem:

$$\min_{oldsymbol{v} \in \mathbb{R}^d} \|X^{ op} oldsymbol{v} - Y\|^2$$

The canonical correlation analysis (CCA), on the other hand. assumes an input matrix $X \in \mathbb{R}^{d_1 \times N}$ and another input matrix $Y \in \mathbb{R}^{d_2 \times N}$, both centered, and the CCA solution is the leading eigenvector of the generalized eigenvalue problem:

$$\begin{bmatrix} 0 & XY^{\top} \\ YX^{\top} & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{w}_x \\ \boldsymbol{w}_y \end{bmatrix} = \lambda \begin{bmatrix} XX^{\top} & 0 \\ 0 & YY^{\top} \end{bmatrix} \begin{bmatrix} \boldsymbol{w}_x \\ \boldsymbol{w}_y \end{bmatrix}$$

We would like to relate the solutions v and (w_x, w_y) of these two analyses for a special case.

(a) Show that if feeding to CCA two matrices $X \in \mathbb{R}^{d \times N}$ and $Y \in \mathbb{R}^{1 \times N}$, then the resulting vector \boldsymbol{w}_x is equivalent (up to a scaling factor) to the solution \boldsymbol{v} of a least square regression problem to which we feed the same matrices X and Y, with the latter represented as a vector.

Exercise 2: Fisher Discriminant (10 + 10 + 10 P)

The objective function to find the Fisher Discriminant has the form

$$\max_{oldsymbol{w}} rac{oldsymbol{w}^ op oldsymbol{S}_B oldsymbol{w}}{oldsymbol{w}^ op oldsymbol{S}_W oldsymbol{w}}$$

where $S_B = (m_2 - m_1)(m_2 - m_1)^{\top}$ is the between-class scatter matrix and S_W is within-class scatter matrix, assumed to be positive definite. Because there are infinitely many solutions (multiplying w by a scalar doesn't change the objective), we can extend the objective with a constraint, e.g. that enforces $w^{\top}S_Ww = 1$.

- (a) Reformulate the problem above as an optimization problem with a quadratic objective and a quadratic constraint.
- (b) Show using the method of Lagrange multipliers that the solution of the reformulated problem is also a solution of the generalized eigenvalue problem:

$$S_B w = \lambda S_W w$$

(c) Show that the solution of this optimization problem is equivalent (up to a scaling factor) to

$$m{w} = m{S}_W^{-1}(m{m}_1 - m{m}_2)$$