Valószínűségszámítás és statisztika Statisztika témakör jegyzet

Készült Zempléni András előadásai és Kovács Ágnes gyakorlatai alapján

Sárközi Gergő, 2021-22-2. félév Nincsen lektorálva!

Tartalomjegyzék

1.	Előa	adás 7: Statisztika bevezetés	4
	1.1.	Leíró statisztika alapfogalmak	4
		1.1.1. Ismérvek típusai	4
		1.1.2. Mérési skálák (mérési szintek)	5
		1.1.3. Statisztikai tábla	5
	1.2.	Statisztikai elemzés lépései	6
	1.3.	Mennyiségi sorok elemzése	6
	1.4.	Középértékek számolása	6
	1.5.	Kvantilisek	7
	1.6.	Tapasztalati eloszlás	7
	1.7.	Szóródási mutatók számolása	8
	1.8.	Grafikus megjelenítés	9
		1.8.1. Hisztogram	9
		1.8.2. Boxplot ábra (Box & Whiskers diagram)	9
			J
2.	Előa	adás 8: Matematikai statisztika, becsléselmélet	
2.	Elő a 2.1.	- ,	10 10
2.	2.1.	adás 8: Matematikai statisztika, becsléselmélet	10
2.	2.1.	adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika	10
2.	2.1.	Adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika	10 10 10
2.	2.1.	adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika	10 10 10 10 11
2.	2.1.	Adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika	10 10 10 10 11 11
2.	2.1. 2.2.	Adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika	10 10 10 10
2.	2.1.2.2.2.3.	Adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika	10 10 10 10 11 11 12
2.	2.1. 2.2. 2.3. 2.4.	Adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika	10 10 10 10 11 11 12 12
2.	2.1. 2.2. 2.3. 2.4. 2.5.	Adás 8: Matematikai statisztika, becsléselmélet Matematikai statisztika Becsléselmélet 2.2.1. Bevezetés, motiváció 2.2.2. Alapdefiníciók 2.2.3. Likelihood függvények Maximum likelihood becslés (ML-módszer) (pontbecslés) Nevezetes diszkrét eloszlások ML-becslése Momentum módszer (pontbecslés)	10 10 10 10 11 11 12 12

		2.7.2. Egyoldali, alsó, $1-\alpha$ megbízhatóságú konfidencia intervall	um 1	4
3.	Előa	adás 9: Hipotézisvizsgálat, próbák	15	
	3.1.	Hipotézisvizsgálat	15	
	3.2.	Hiba valószínűségek, erőfüggvény, terjedelem	16	
	3.3.	Próbák bevezetés	16	
	3.4.	Hipotézisvizsgálat menete	17	
		3.4.1. Döntés minta és tartományok alapján	17	
		3.4.2. Döntés p-érték segítségével	17	
		3.4.3. Elsőfajú, másodfajú hiba csökkentése	17	
4.	Előa	adás 10: Próbák normális eloszlás paramétereire	18	
	4.1.	Használt jelölések, emlékeztetők	18	
	4.2.	Próbákról tudnivalók	18	
	4.3.	Próbák normális eloszlás várható értékére (m)	19	
		4.3.1. Egymintás u-próba (z-test)	20	
		4.3.2. Egymintás t-próba (Student's t-test)	21	
		4.3.3. Kétmintás u-próba	22	
		4.3.4. Kétmintás t-próba	23	
		4.3.5. Welch-próba	24	
	4.4.	Próbák normális eloszlás szórásnégyzetére (σ^2)	25	
		4.4.1. F-próba	25	
		4.4.2. χ^2 -próba	26	
5 .	Előa	adás 11: illeszkedés-, homogenitás- és		
	függ	getlenségvizsgálat; regresszióelemzés	27	
	5.1.	Diszkrét illeszkedésvizsgálat (χ^2 -próba)	27	
		5.1.1. Diszkrét illeszkedésvizsgálat R-ben egyszerűen	27	
		5.1.2. Diszkrét illeszkedésvizsgálat R-ben manuálisan	27	
	5.2.	Folytonos illeszkedésvizsgálat Kolmogorov-Szmirnov próbával .	28	
	5.3.	Homogenitásvizsgálat	28	
		5.3.1. Homogenitásvizsgálat R-ben	28	
		5.3.2. Homogenitásvizsgálat R-ben manuálisan	28	
	5.4.	Függetlenségvizsgálat	29	
		5.4.1. Függetlenségvizsgálat R-ben	29	
		5.4.2. Függetlenségvizsgálat R-ben manuálisan	30	
	5.5.	Korreláció- és regresszióelemzés	31	
	J.J.	5.5.1. Korreláció	31	
		5.5.2 Regresszió	31	

6.	Előadás 12: lineáris modell, logisztikus regresszió, vegye kapcsolat	s 33
7.	R jegyzet	34
	7.1. Hasznos R függvények	. 34
	7.2. Grafikonok, plot-ok	. 34
	7.3. Matematikai függvények	. 34
	7.4. Adathalmaz	. 35
	7.5. Táblázat, mátrix	. 35

1. Előadás 7: Statisztika bevezetés

- Két fő ág: leíró (újságokba), matematikai (becsléselmélet, hipotizéselmélet)
- Lényeges, hogy válaszainkat értelmezzük, mondatban válaszoljunk: laikusuk is értsék meg az eredményt.

1.1. Leíró statisztika alapfogalmak

- Statisztikai egység: vizsgálat tárgyát képező egység
- Statisztikai sokaság (populáció): egységek összessége, halmaza
 - Lehet hipotetikus is: gyár által jelenleg tervezett gyártandó termékek
- Statisztikai adat: sokaságra vonatkozó számszerű jellemző, mérési eredmény
- Statisztikai ismérv: sokaság egyedeit jellemző tulajdonság
- Ismérvváltozatok: ismérvek lehetséges kimenetelei
- Minta: sokaság véges számosságú részhalmaza
- Statisztikai következtetés: teljes sokaságot nem ismerjük, de a minta alapján következtetünk valamit a teljes sokaságról

1.1.1. Ismérvek típusai

- Első kategória
 - Minőségi: számszerűen nem mérhető
 - Mennyiségi: számszerűen mérhető, lehet diszkrét vagy folytonos
 - Időbeli
 - Területi
- Második kategória
 - Közös: sokaság egyedei között egyformák
 - Megkülönböztető: sokaság egyedei között eltérőek

1.1.2. Mérési skálák (mérési szintek)

- Névleges (nominális): hozzárendelt számok csak megkülönböztetnek, műveleteket végezni rajtuk értelmetlen (pl. személy neme)
- Sorrendi (ordinális): valamilyen tulajdonság alapján sorba rendezünk, egyedek tulajdonsága közötti különbséget nem tudjuk mérni (pl. érdemjegy)
- Intervallumskála: skálaértekek különbségei is valós infót adnak, a nullpont meghatározása a skálán önkényes (pl. hőmérséklet C-ben)
- Aranyskála: skálának van valódi nullpontja és minden matematikai művelet végezhető (pl. személyek magassága)
- Metrikus skála (ritkán használt): intervallum és aranyskála közös neve

1.1.3. Statisztikai tábla

- Statisztikai sorok összefüggő rendszere
- Egyszerű tábla: nincsenek csoportok, összegző sorok
- Csoportosító tábla:
 - Egyetlen csoportosító szempont
 - Gyakoriság van csak benne: hányan esnek a csoportba
- Kombinációs tábla, kontingenciatábla, kereszttábla:
 - Legalább két csoportosító szempont
 - Gyakoriságok vannak csak benne

1.2. Statisztikai elemzés lépései

- Tervezés: mit vizsgálunk, hogyan gyűjtünk adatot, előzetes sejtések/hipotézis
- Adatgyűjtés
- Adatbevitel
- Adatok validálása: nyilván rossz értékek kiszűrése (pl. negatív életkor)
- Adatelemezés, adatellenőrzés (leíró statisztika, grafikonok)
- Hibás adatok kijavítása vagy kihagyása
 - Lehetőleg ki kell javítani, nem pedig kidobni (nehéz feladat)
- Adatelemzés, statisztikai következtetések levonása (matematikai statisztika)
- Eredmények értelmezése, visszacsatolás

1.3. Mennyiségi sorok elemzése

- Ismérv diszkrét \implies gyakorisági sort készítünk
- Ismérv folytonos vagy sok van belőle: osztályközös gyakorisági sor
 - Összevonunk több ismérvet: A_i és B_i közötti gyakoriságot számolunk
- Gyakori jelölések: n a minta mérete, k az ismérvértékek (sorok) száma, f_i a gyakoriság és x_i (vagy $x_{i,a} x_{i,f}$ ha nem diszkrét) az ismérvérték
 - Osztályköz
ös esetén x_i az osztályközepet jelöli: $x_i = \frac{x_{i,a} + x_{i,f}}{2}$

1.4. Középértékek számolása

- Mintaátlag, közvetlen adatból: $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{x_i}$
- Mintaátlag, osztályközös gyakorisági sorokból: $\overline{x} = \frac{\sum_{i=1}^n f_i * x_i}{n}$
- Módusz: legtöbbször előforduló ismérvérték
- Medián: sorba rendezés után középső elem (rendezett minta: X^*)

$$- Me = \begin{cases} x^* [\frac{n+1}{2}] & \text{ha } n \text{ p\'aratlan} \\ \frac{1}{2} * (x^* [\frac{n}{2}] + x^* [\frac{n}{2} + 1]) & \text{ha } n \text{ p\'aros} \end{cases}$$

1.5. Kvantilisek

- y-kvantilis: $q_y = \inf\{x \mid F(x) \ge y\}$
 - Ha F invertálható: $q_y = F^{-1}(y)$
- Tapasztalati y-kvanatilis: ismérvérték; mintaelemek y-ad része \leq nála
 - Sokféleképpen számolható, interpolációs módszer az egyik:
 - Sorszám megállapítása (e egészrész, t törtrész): (n+1)y = e + t
 - Kvantilis kiszámolása: $q_z = X_e^* + t(X_{e+1}^* X_e^*)$
- $\bullet\,$ Jelölje q_y a tapasztalati y-kvantilist
- Tercilisek: $T_1 = q_{1/3}, T_2 = q_{2/3}$
- Kvartilisek: $Q_1 = q_{1/4}$ (alsó), $Q_2 = Me = q_{2/4}$, $Q_3 = q_{3/4}$ (felső)
- Percentilisek: $P_i = q_{i/100}$ ahol i = 1, 2, ..., 99

1.6. Tapasztalati eloszlás

- $\bullet\,$ Minden megfigyeléshez $\frac{1}{n}$ súlyt rendelünk \implies diszkrét eloszlás
- $\overline{X} = E(X)$
- Tapasztalati eloszlásfüggvény: $F_n(x) = \frac{1}{n} * \sum_{i=1}^n I(x_i < x)$
 - I az indikátor, értéke 0 (ha $X_i < x$) vagy 1 (ha $X_i \ge x$)
 - Ábrázolva: ahol szakadás van, azt az értéket tudja felvenni (az ugrás mértéke a valószínűség)
- k-adik tapasztalati momentum: $m_k = \frac{1}{n} * \sum_{i=1}^n X_i^k$
- Glivenko-Cantelli tétel: tapasztalati eloszlásfüggvény $(F_n(x))$ és az elméleti eloszlásfüggvény (F(x)) közötti eltérés maximuma 1 valószínűséggel 0-hoz konvergál
 - Következmény: $F_n(x)$ közelít F(x)-hez ($\forall x \text{ esetén}$) a minta növésével
 - Elég nagy mintával tetszőleges közelséget el lehet érni

1.7. Szóródási mutatók számolása

- Terjedelem (range): $R = x_n^* x_1^*$
- Interkvartilis terjedelem: $IQR = Q_3 Q_1$
- Tapasztalati szórás:
 - Átlagtól való átlagos négyzetes eltérés négyzetgyöke
 - Közvetlenül: $S_n = \sqrt{\frac{1}{n} * \sum_{i=1}^n (x_i \overline{x})^2}$
 - Osztályközös gyakoriságból: $S_n = \sqrt{\frac{1}{n} * \sum_{i=1}^k f_i(x_i \overline{x})^2}$
- Korrigált tapasztalati szórás:
 - Átlagtól való korrigált átlagos négyzetes eltérés négyzetgyöke
 - Ez az alapértelmezett általában
 - Számítás: ugyan az, csak n helyett n-1-gyel osztunk (Jele: S_n^*)
 - Kis s-sel jelölés jelentése: nem a valószínűségi változóról, hanem a konkrét értékről van szó (nem nagyon számít, csak így helyesebb)
- Szórási együttható, relatív szórás: $V = S_n/\overline{X} \ (*100\%)$

1.8. Grafikus megjelenítés

• Kördiagram rossz

1.8.1. Hisztogram

- \bullet Osztályok gyakoriságát ábrázolja (y az f_i gyakoriság, x az ismérv)
- Osztályok száma k,hosszuk (ha azonos): $h = \frac{x_n^* x_1^*}{k}$
- Sűrűséghisztogram: $g_i = \frac{f_i}{n*h_i}$
 - Relatív gyakoriság / intervallumhossz értéket ábrázoljuk
 - Területarányos, összterület=1

1.8.2. Boxplot ábra (Box & Whiskers diagram)

- $A = max\{x_1^*; Q_1 1.5 * IQR\}$
- $E = min\{x_n^*; Q_3 + 1.5 * IQR\}$

2. Előadás 8: Matematikai statisztika, becsléselmélet

2.1. Matematikai statisztika

- Minta alapján teljes populáció tulajdonságaira következtetés
- Paramétertér: Θ (1 vagy több dimenziós, akár végtelen) ($\vartheta \in \Theta$)
- Minta: $X = (X_1, X_2, ..., X_n)$ i.i.d. valószínűségi változók sorozata
 - Minta realizációja $(x_1,...,x_n)$: konkrét értékeket kap
- Mintatér: $\mathcal{X}: \mathbb{R}^n$, ide eshetnek a mintaelemek
- Mintaelemek eloszlása (F) ismeretlen, de paraméterezhető: F_{ϑ}
- Gyakori feladat: minta alapján adott eloszlás paraméterjének megállapítása

2.2. Becsléselmélet

2.2.1. Bevezetés, motiváció

- Legyen X egy minta
- \bullet Illeszkedésvizsgálat: milyen eloszlású lehet X?
- Pontbecslés: ismert eloszlás esetén mi az eloszlás paramétere?
 - Mintából számoljuk, így valamennyi hiba van benne
 - A kapott eredményben nincs benne, hogy mennyire biztos a becslés
 - Példák erre: Maximum Likelihood, Momentum-módszer
- Intervallumbecslés: milyen intervalban lesz nagy valószínűséggel ϑ ?
 - Csak egyetlen szám helyett egy intervallum az eredmény
 - Intervallum hosszából következtethető, hogy mennyi biztos a becslés
 - Példa erre: konfidenciaintervallum (következő EA)

2.2.2. Alapdefiníciók

- Legyen $X=(X_1,...,X_n)$ i.i.d. minta egy $\vartheta\in\mathbb{R}$ paraméterű eloszláscsaládból
- $T: \mathcal{X} \to \mathbb{R}$ becslés θ -ra
 - Torzítatlan $\Leftrightarrow E_{\vartheta}(T(X)) = \vartheta \quad (\forall \vartheta \in \Theta)$
 - Aszimptotikusan torzítat $\Leftrightarrow E_{\vartheta}(T_n(X)) \to \vartheta$ ha $n \to \infty \ (\forall \vartheta \in \Theta)$
 - Konzisztens $\Leftrightarrow T_n(X) \to \vartheta$ sztochasztikusan ha $n \to \infty \ (\forall \vartheta \in \Theta)$
 - * Elégséges, ha T_n aszimptotikusan torzítatlan és $D^2(T_n) \to 0$

Mit be- csülünk?	Mivel becsüljük?	Torzí- tatlan?	Aszimptotikusan torzítatlan?	Gyengén/ erősen
$g(\vartheta)$	$T_n(X)$			konzisztens?
$E_{\vartheta}X_1$	$\overline{X} = \sum_{n=1}^{\infty} X_n$	igen	igen	igen
$D^2_{\vartheta}X_1$	$S_n^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$	nem	igen	igen
$D_{\vartheta}^2 X_1$	$(S_n^*)^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{\sum_{i=1}^n n - 1}$	igen	igen	igen
$F_{\vartheta}(x)$	$F_n(x) = \frac{\sum_{i=1}^n I(X_i < x)}{n}$	igen	igen	igen
$E_{\vartheta}h(X_1)$	$\frac{\sum_{i=1}^{n} h(X_i)}{n}$	igen	igen	igen

2.2.3. Likelihood függvények

- Likelihood függvény: $L(\vartheta; x)$
 - Folytonos eloszlás: $L(\vartheta;x) = f_{\vartheta}(x) = \prod_{i=1}^n f_{\vartheta}(x_i)$
 - Diszkrét eloszlás: $L(\vartheta; x) = P_{\vartheta}(X = x) = \prod_{i=1}^{n} P_{\vartheta}(X_i = x_i)$
 - * $\implies x_i$ gyakorisága g, akkor $P_{\vartheta}(X_i = x_i)^g$ -ként jelenik meg
- Log-likelihood függvény (latex: ell): $\ell(\vartheta; x) = ln(L(\vartheta; x))$
- $\sum_{i=1}^{n} x_i$ felírható $n * \overline{x}$ alakban (szebb)
- $f_{\vartheta}(x)$ -ban van elágazás és x függ ϑ -tól (pl. $0 \le x \le \vartheta$), akkor indikátor fv-t vegyünk be f_{ϑ} -ba: ...* $I(0 \le x_i \le \vartheta) \implies ...*I(0 \le x_1^*)*I(x_n^* \le \vartheta)$
 - Maximumot keresünk ⇒ indikátor értéke legyen 1

2.3. Maximum likelihood becslés (ML-módszer) (pontbecslés)

- $L(\vartheta;x)$ maximumát keressük (ugyan ott van, mint $\ell(\vartheta;x)$ maximuma)
- Maximum keresése deriválttal: $\partial_{\vartheta}\ell(\vartheta;x)=0$
 - Nem szükséges további ellenőrzés: ahol 0, ott a max
 - Több dimenziós ϑ esetén: $\partial_{\vartheta_i}\ell(\vartheta;x)=0$
- ML-becslés invariánsa: ϑ ML becslése $\hat{\vartheta} \implies g(\vartheta)$ ML-becslése $g(\hat{\vartheta})$

2.4. Nevezetes diszkrét eloszlások ML-becslése

- Egyes vizsgálatokhoz szükségünk lesz eloszlások paraméterének becslésére
- Binomiális: $p = \frac{\overline{X}}{m} = \frac{0*db_1 + \dots + m*db_m}{m*\sum_{i=1}^m db_i}$ ahol m a másik paraméter
- Poisson: $\lambda = \overline{X} = \frac{1}{n} * \sum_{i=1}^{n} k_i$ ahol $k_i \ge 0$ az érték (nem gyakoriság)
- Geometriai, Pascal: $\frac{1}{X} = \frac{n}{\sum_{i=1}^{n} k_i}$ ahol $k_i \geq 1$ az érték (nem gyakoriság)
- Negatív binomiális, hipergeometriaia: nem találtam

2.5. Momentum módszer (pontbecslés)

- Tapasztalati és elméleti momentumokat egyenlővé tesszük
 - Tapasztalati momentum (mintából származik): $m_i = \frac{1}{n} \sum_{j=1}^n x_j^i$
 - Elméleti momentum: $M_i(\vartheta) = E_{\vartheta}(X^i)$
- i értékei: 1, ..., p ahol p a ϑ dimenzióinak száma (egyenletrendszer lesz)
 - Egy dimenziós ϑ esetén: $\overline{x} = m_1 = M_1 = E_{\vartheta}(X)$
 - Két dimhez segítség: $E(X^2) = D^2(X) + E^2(X)$ $(D^2(X) = \dots ból)$

2.6. Becslés hibája, standard hiba

- Becslés standard hibája a becslés szórása
- $s.e.(\overline{X}) = \frac{\sigma}{\sqrt{n}}$ (azaz 0-hoz tart, ahogy az elemszám nő)
- σ ismeretlen \implies becsüljük: $\widehat{s.e.}(\overline{X}) = \frac{\widehat{\sigma}}{\sqrt{n}}$
 - Nem torzítatlan, csak aszimptotikusan

2.7. Konfidenciaintervallum (intervallumbecslés)

- Intervallum, ami legalább $1-\alpha$ valószínűséggel tartalmazza a paramétert minden ϑ értékre
 - Azaz a valódi m vagy σ ekkora valószínűséggel van az intervallumban
 - -100 szimulációból kb. $(1-\alpha)*100$ -szor lesz az intervallumban
- Mi elsősorban normál eloszlással fogunk csak dolgozni
- Emlékeztető: $\frac{\overline{X}-m}{\frac{\sigma}{\sqrt{n}}} \sim N(0;1)$
- u_x jelentése: x-hez tartozó N(0;1) eloszlás kvantilis $(\Phi(u_x)=x)$
- t_x jelentése: x-hez tartozó n-1 szabadsági fokú t eloszlás kvantilis
- \bullet Intervallum hossza csökken, ha n nő és ha σ csökken
- \bullet Intervallum hossző nő, ha α csökken

2.7.1. Kétoldali $1-\alpha$ megbízhatóságú konfidenciaintervallum

- m-re, ha σ ismert: $\overline{X} \pm u_{1-\frac{\alpha}{2}} * \frac{\sigma}{\sqrt{n}}$
 - ci_also <- mean(sample) qnorm(1 alpha / 2) * sigma / sqrt(n)
 ci_felso <- mean(sample) + qnorm(1 alpha / 2) * sigma / sqrt(n)</pre>
 - Szükséges elemszám adott intervallum hosszhoz:

- m-re, ha σ ismeretlen: $\overline{X} \pm t_{n-1;1-\frac{\alpha}{2}} * \frac{S_n^*}{\sqrt{n}}$
 - sd <- sd(sample)
 ci_also <- mean(sample) qt(1 alpha / 2, df=n-1) * sd / sqrt(n)
 ci_felso <- mean(sample) + qt(1 alpha / 2, df=n-1) * sd / sqrt(n)</pre>
- σ^2 -re: $\left[\frac{(n-1)*(S_n^*)^2}{\chi_{n-1;1-\frac{\alpha}{2}}^2}; \frac{(n-1)*(S_n^*)^2}{\chi_{n-1;\frac{\alpha}{2}}^2}\right]$

2.7.2. Egyoldali, alsó, $1-\alpha$ megbízhatóságú konfidencia
intervallum

- *m*-re, ha σ is mert: $(-\infty; \overline{X} + u_{1-\alpha} * \frac{\sigma}{\sqrt{n}})$
 - ci_felso <- mean(sample) + qnorm(1 alpha) * sigma / sqrt(n)</pre>
 - Szükséges elemszám adott intervallum hosszhoz:

- m-re, ha σ is
meretlen: $(-\infty; \overline{X} + t_{n-1;1-\alpha} * \frac{S_n^*}{\sqrt{n}})$
 - sd <- sd(sample) ci_felso <- mean(sample) + qt(1 alpha, df=n-1) * sd / sqrt(n)
- σ^2 -re: $(0; \frac{(n-1)*(S_n^*)^2}{\chi^2_{n-1;\alpha}})$

3. Előadás 9: Hipotézisvizsgálat, próbák

3.1. Hipotézisvizsgálat

- Hipotézis: állítás aminek igazságát vizsgálni szeretnénk: elfogadjuk/elutasítjuk
- Paraméterteret diszjunkt részekre bontjuk: $\Theta = \Theta_0 \cup^* \Theta_1$
- Nullhipotézis: $H_0: \vartheta \in \Theta_0$ Ellenhipotézis, alternatív hipotézis: $H_1: \vartheta \in \Theta_1$
- Nullhipotézist nem "elfogadjuk", hanem "nem tudjuk elvetni". Viszont elutasítani el tudjuk.
- Nullhipotézis megválasztása: sok éves tapasztalatnak feleljen meg, reméljük teljesülését, aminek elutasítása negatív következménnyel jár (pl. bírság)
 - Az ellenhipotézis a lényeg, arról fogunk dönteni.
 - Egyenlőségjel mindig a nullhipotézisbe kerül.
- Próba: segítségével döntés hozás a hipotézisről
 - Statisztikai próba vagy próba: minta alapján hozunk döntést
 - Paraméteres próba: eloszlás típusa ismert, a nullhipotézis az eloszlás paraméterére (vagy annak egy függvényére) vonatkozik
 - * Továbbiakban ezzel fogunk általában foglalkozni
 - * Továbbiakban legyen $\Theta \subset \mathbb{R}$, azaz a paraméter valós
- Mintateret diszjunkt részekre bontjuk: $\chi = \chi_e \cup^* \chi_k$
 - $-\chi_k$, kritikus tartomány: megfigyelések, amikre elutasítjuk H_0 -t
 - $-\chi_e$, elfogadási tartomány: megfigyelések, amikre elfogadjuk H_0 -t
- Döntési mátrix hipotézisvizsgálat esetén:

\downarrow valóság \mid döntés \rightarrow	elfogadjuk (χ_e)	elutasítjuk (χ_k)
H_0 teljesül (Θ_0)	helyes döntés	elsőfajú hiba
H_0 nem teljesül (Θ_1)	másodfajú hiba	helyes döntés

3.2. Hiba valószínűségek, erőfüggvény, terjedelem

- Elsőfajú hiba valószínűsége:
 - Egyszerű H_0 , $|\Theta_0| = 1$: $\alpha(\vartheta) = P_{\vartheta}(X \in \chi_k) = P_0(\chi_k) \quad (\vartheta \in \Theta_0)$
 - Összetett H_0 , $|\Theta_0| > 1$: $\alpha \ge P_{\vartheta}(X \in \gamma_k)$ $(\forall \vartheta \in \Theta_0)$
- Másodfajú hiba valószínűsége:

$$\beta(\vartheta) = P_{\vartheta}(X \in \chi_e) = P_1(\chi_e) = 1 - P_{\vartheta}(\chi_k) \quad (\vartheta \in \Theta_1)$$

- Erőfüggvény: $\psi(\vartheta)=1-P_{\vartheta}(\chi_e)=P_{\vartheta}(\chi_k)$ ahol $\vartheta\in\Theta_1$
 - Jelentése: valószínűsége H_0 elvetésének, amikor az hamis
 - Valószínűsége annak, hogy egy adott különbséget egy adott mintanagyság és terjedelem mellett ki egy statisztikai próba kimutat
- Terjedelem, pontos terjedelem, szignifikanciaszint: $\alpha = \sup_{\vartheta \in \Theta_0} \alpha(\vartheta)$
 - -Általában feladat elejekor 5%-on (vagy 1% és 10% között) rögzített
 - Megbízhatósági szint, konfidenciaszint: 1α (*100%)
 - * Valószínűsége, hogy H_0 -t elfogadjuk, amikor az igaz
 - Másképp: elsőfajú hiba valószínűsége α lesz

3.3. Próbák bevezetés

- Kétoldali próba: $H_0: \vartheta = \vartheta_0$ és $H_1: \vartheta \neq \vartheta_0$
- Egyoldali próba: $H_0: \vartheta = \vartheta_0$ és $H_1: \vartheta < \vartheta_0 \text{ (vagy >)}$
- Próbastatisztika: alkalmas T statisztika, amivel a χ_k -t meghatározzuk
 - Kétoldali próbához: $\chi_k = \{x \in \chi : |T(X)| > c\}$
 - Egyoldali próbához: $\chi_k = \{x \in \chi : T(X) \leq c\}$
 - -c neve: kritikus érték
 - * Jellemzően függ a próba terjedelmétől $\implies c_{\alpha}$ -val jelöljük
 - * c_{α} jelölés jelentése: c_{α} a T(X) val. változó α -kvantilise
 - Próba meghatározása: előre rögzített α terjedelemhez keressük azt a c_α értéket, amire a próba pontos terjedelme éppen α

*
$$\sup_{\vartheta \in \Theta_0} P_{\vartheta}(T(X) > c_{\alpha}) = \alpha$$

3.4. Hipotézisvizsgálat menete

- Terjedelem (α) lefixálása, általában 5%-on (megbízhatóság: $1-\alpha$)
- Nullhipotézis: sokévi tapasztalatnak megfelelő paramétertartomány
 - Az egyenlőség (pl. \leq) mindig ide kerül
- Alternatív hipotézis: feladat kérdéséhez megfelelő paramétertartomány
 - Erről be tudjuk látni, hogy igaz (H_0 -ról csak "nem tudjuk elvetni")
 - Ezért a cél H_1 igazolása, azaz H_0 elvetése
- Problémához alkalmas próba/próbák választása (egy/két oldali, stb.)
- Próbastatisztika kiszámítása

3.4.1. Döntés minta és tartományok alapján

- Kritikus érték kiszámítása, kritikus tartomány megállapítása
 - Számolása általában: eloszlás kvantilis függvény "meghívása" α -ra
- $x \in \chi_k \Leftrightarrow H_1$ -et elfogadjuk
- Probléma: nem derül ki, hogy mennyire voltunk közel az elfogadáshoz

3.4.2. Döntés p-érték segítségével

- p-érték kiszámolása (számítógépes számolás esetén lehetőség)
 - Számolása általában: eloszlásfüggvény "meghívása" próbastatisztikával
 - Kétoldali próba esetén bonyolultabb (általában: 2*pDist(-|T|))
- p-érték $< \alpha \iff x \in \chi_k \iff H_1$ -et elfogadjuk
- p-érték jelentése: terjedelem, amire a kritikus érték megegyezik a próbastatisztikával
 - Máshogy: legkisebb α , amire az adott minta esetén elvetjük H_0 -t
 - Máshogy: igaz H_0 mellett annak a valószínűsége, hogy a tapasztalt eltérést, vagy annál nagyobb eltérést kapunk

3.4.3. Elsőfajú, másodfajú hiba csökkentése

- α csökkentése β növekedésével jár (ha minden más marad)
- Mindkét hiba valószínűségének csökkentése: mintaelemszám növelése

4. Előadás 10: Próbák normális eloszlás paramétereire

4.1. Használt jelölések, emlékeztetők

- Emlékeztető: $\frac{\overline{X}-m}{\frac{\sigma}{\sqrt{n}}}=\sqrt{n}*\frac{\overline{X}-m}{\sigma}\sim N(0;1)$
- u_x jelentése: x-hez tartozó N(0;1) eloszlás kvantilis $(\Phi(u_x)=x)$
- t_x jelentése: x-hez tartozó n-1 szabadsági fokú t eloszlás kvantilis
- S_n^* jelentése: korrigált tapasztalati szórás, $S_n^* = \sqrt{\frac{1}{n-1} * \sum_{i=1}^n (x_i \overline{x})^2}$

4.2. Próbákról tudnivalók

- Kétmintás próba: két (összefüggő vagy független) mintánk van
- Összefüggő (párosított) minták: vettünk egy mintát, valami megváltozott (pl. gépen valamit állítottunk) és veszünk még egy mintát ugyan onnan
 - Cél: változtatás hatásának vizsgálata (pl. működik-e a gyógyszer)
- Kétoldali próba: egyenlőséget ellenőrzünk (pl. m tényleg az-e)
- Egyoldali próba: gyanúnk, hogy pl. m valaminél kisebb/nagyobb

4.3. Próbák normális eloszlás várható értékére (m)

- Egymintás próba
 - Szórás ismert: egymintás u-próba
 - Szórás ismeretlen: egymintás t-próba
- Kétmintás próba, két minta független
 - Szórások ismertek: kétmintás u-próba
 - Szórások ismeretlenek: előzetes F-próba szükséges
 - * Szórások megegyeznek: kétmintás t-próba
 - * Szórások eltérnek: Welch-próba
- Kétmintás próba, két minta párosított (összefüggő)
 - Szórások ismertek: egymintás u-próba a különbségekre
 - Szórások ismeretlenek: egymintás t-próba a különbségekre

4.3.1. Egymintás u-próba (z-test)

- $X_1,...,X_n \sim N(m,\sigma^2)$ ahol σ ismert és m=?
- Próbastatisztika: $T(X) = u = \sqrt{n} * \frac{\overline{X} m_0}{\sigma} \quad (H_0 \text{ esetén } u \sim N(0, 1))$
 - u <- sqrt(n) * (mean(sample) mu0) / sigma
- Kétoldali: $H_0: m = m_0$ és $H_1: m \neq m_0$ és $\chi_k = \{x: |u| > u_{1-\alpha/2}\}$
 - pertek <- 2*pnorm(-abs(u))</pre>
 - krit <- qnorm(c(alpha/2, 1-alpha/2)) #1.alatt és 2.felett
- Egyoldali: $H_0: m = m_0$ és
 - $-H_1: m < m_0 \text{ és } \chi_k = \{x : u < u_\alpha\}$
 - * pertek <- pnorm(u)
 - * krit <- qnorm(alpha)</pre>
 - $-H_1: m > m_0 \text{ és } \chi_k = \{x : u > u_{1-\alpha}\}$
 - * pertek <- pnorm(-u)
 - * krit <- qnorm(1-alpha)
- Kapcsolat konfidenciaintervallummal:
 - $-|u| > u_{1-\alpha/2} \iff m_0 \notin (\overline{X} u_{1-\alpha/2} * \frac{\sigma}{\sqrt{n}}, \ \overline{X} + u_{1-\alpha/2} * \frac{\sigma}{\sqrt{n}})$
 - Máshogy: H_0 -t pontosan akkor utasítjuk el, ha az $1-\alpha$ konfidenciaintervallum nem tartalmazza m_0 -t
- library(TeachingDemos)

4.3.2. Egymintás t-próba (Student's t-test)

- $X_1, ..., X_n \sim N(m, \sigma^2)$ ahol σ és m ismeretlen; m = ?
- Próbastatisztika: $T(X) = t = \sqrt{n} * \frac{\overline{X} m_0}{S_n^*}$ $(H_0 \text{ eset\'en } t \sim t_{n-1})$
 - t <- sqrt(n) * (mean(sample) mu0) / sd(sample)</pre>
- Kétoldali: $H_0: m = m_0$ és $H_1: m \neq m_0$ és $\chi_k = \{x: |t| > t_{n-1,1-\alpha/2}\}$
 - pertek <- 2*pt(-abs(t), df=n-1)</pre>
 - krit <- qt(c(alpha/2, 1-alpha/2), df=n-1) #1.alatt és 2.felett
- Egyoldali: $H_0: m = m_0$ és
 - $H_1 : m < m_0 \text{ és } \chi_k = \{x : t < t_{n-1,\alpha}\}$
 - * pertek <- pt(t, df=n-1)</pre>
 - * krit <- qt(alpha, df=n-1)
 - $-H_1: m > m_0 \text{ és } \chi_k = \{x : t > t_{n-1,1-\alpha}\}$
 - * pertek <- pt(-t, df=n-1)
 - * krit <- qt(1-alpha, df=n-1)
- t.test(x, alternative = "two.sided/less/greater", mu = mu0, conf.level = 1 - alpha)

4.3.3. Kétmintás u-próba

```
• Független minták: X_{1..n} \sim N(m_1, \sigma_1^2) és Y_{1..m} \sim N(m_2, \sigma_2^2)
    -\sigma_1, \sigma_2 ismert és m_1, m_2 ismeretlen (relációjuk a kérdés)
• Próbastatisztika: T(X,Y) = u = (\overline{X} - \overline{Y}) / \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}
    -H_0 esetén u \sim N(0,1)
    - u <- (mean(sampleA) - mean(sampleB))</pre>
              / sqrt(sigmaA^2/n + sigmaB^2/m)
• Kétoldali: H_0: m_1 = m_2; H_1: m_1 \neq m_2 és \chi_k = \{(x,y): |u| > u_{1-\alpha/2}\}
    - pertek <- 2*pnorm(-abs(u))</pre>
    - krit <- qnorm(c(alpha/2, 1-alpha/2)) #1.alatt és 2.felett
• Egyoldali: H_0: m_1 = m_2 és
    - H_1 : m_1 < m_2 \text{ és } \chi_k = \{(x, y) : u < u_\alpha\}
         * pertek <- pnorm(u)
         * krit <- qnorm(alpha)
    -H_1: m_1 > m_2 \text{ és } \chi_k = \{(x,y): u > u_{1-\alpha}\}
         * pertek <- pnorm(-u)
         * krit <- qnorm(1-alpha)
• two_sample_u_test <- function(sampleA, sampleB, sigmaA, sigmaB,
                                      alternative, conf_level) {
    alpha <- 1 - conf_level; n <- length(sampleA); m <- length(sampleB)
    u <- (mean(sampleA) - mean(sampleB)) / sqrt(sigmaA^2 / n + sigmaB^2 / m)
    if (alternative == "t" || alternative == "two.sided") {
       krit <- qnorm(c(alpha/2, 1 - alpha/2)); pertek <- 2 * pnorm(-abs(u))</pre>
    } else if (alternative == "l" || alternative == "less") {
       krit <- qnorm(alpha); pertek <- pnorm(u)</pre>
    } else if (alternative == "g" || alternative == "greater") {
       krit <- qnorm(1 - alpha); pertek <- pnorm(-u)</pre>
    } else { cat("Invalid alternative: " + alternative); return() }
    cat("Próbastatisztika:", u,
         "\nKritikus tartomány:", krit[1], "alatt és", krit[2], "felett",
         "\nP-érték:", pertek, "\nDöntés:", if (pertek < alpha)
             { "HO elutasítva" } else { "HO-t nem sikerült elvetni" }, "\n")
  } %sampleA, sampleB sorrendje: lásd jegyzet PDF, kétmintás t-próba
```

4.3.4. Kétmintás t-próba

- Független minták: $X_{1..n} \sim N(m_1, \sigma_1^2)$ és $Y_{1..m} \sim N(m_2, \sigma_2^2)$
 - $-\sigma_1=\sigma_2$ ismeretlen és $m_1,\,m_2$ ismeretlen (relációjuk a kérdés)
- Próbastatisztika: $T(X,Y)=t=\sqrt{\frac{n*m}{n+m}}*(\overline{X}-\overline{Y})/\sqrt{\frac{(n-1)(S_1^*)^2+(m-1)(S_2^*)^2}{n+m-2}}$
 - $-H_0$ esetén $t \sim t_{n+m-2}$
 - t <- sqrt((n*m)/(n+m)) * (mean(sampleA) mean(sampleB)) $/ <math>sqrt(((n-1)*sd(sampleA)^2 + (m-1)*sd(sampleB)^2) / (n+m-2))$
- Kétoldali: $H_0: m_1 = m_2$ és $H_1: m_1 \neq m_2$ és $\chi_k = \{(x,y): |t| > t_{n+m-2,1-\alpha/2}\}$
- Egyoldali: $H_0: m_1 = m_2$ és
 - $H_1 : m_1 < m_2$ és $\chi_k = \{(x,y) : t < t_{n+m-2,\alpha}\}$ * pertek <- pt(t)
 - * krit <- qt(alpha)
 - $-H_1: m_1 > m_2 \text{ és } \chi_k = \{(x,y): t > t_{n+m-2,1-\alpha}\}$
 - * pertek <- pt(-t)
 - * krit <- qt(1-alpha)
- t.test(sampleA, sampleB, alternative="two.sided/less/greater", paired=FALSE, var.equal=TRUE)
 - A minta sorrend és a reláció egyezzen meg az ellenhipotézissel
 - Ez a kettő ekvivalens: sampleA,sampleB,less ⇔ sampleB,sampleA,greater

4.3.5. Welch-próba

- Független minták: $X_{1..n} \sim N(m_1, \sigma_1^2)$ és $Y_{1..m} \sim N(m_2, \sigma_2^2)$
 - $-\ \sigma_1 \neq \sigma_2$ ismeretlen és $m_1,\ m_2$ ismeretlen (relációjuk a kérdés)
- Próbastatisztika: $T(X,Y)=t'=(\overline{X}-\overline{Y})/\sqrt{\frac{(S_1^*)^2}{n}+\frac{(S_2^*)^2}{m}}$
 - H_0 esetén $t' \sim t_f$ ahol $\frac{1}{f} = \frac{c^2}{n-1} + \frac{(1-c)^2}{m-1}$
 - $S_1^* > S_2^*$ (így válasszuk) $\implies c = (\frac{(S_1^*)^2}{n})/(\frac{(S_1^*)^2}{n} + \frac{(S_2^*)^2}{n})$
- Kétoldali: $H_0: m_1 = m_2$ és $H_1: m_1 \neq m_2$ és $\chi_k = \{(x,y): |t'| > t_{f,\alpha/2}\}$
- Egyoldali: $H_0: m_1 = m_2$ és
 - $H_1: m_1 < m_2 \text{ és } \chi_k = \{(x, y) : t < -t_{f,\alpha}\}$
 - $-H_1: m_1 > m_2 \text{ és } \chi_k = \{(x,y) : t > t_{f,\alpha}\}$
- t.test(sampleA, sampleB, alternative="two.sided/less/greater", paired=FALSE, var.equal=FALSE)
 - Két minta (sampleA, sampleB) sorrendje: lásd kétmintás t-próba

4.4. Próbák normális eloszlás szórásnégyzetére (σ^2)

- Gyakorlaton nem foglalkozunk ilyennel, kivéve az (előzetes) F-próba
- Egymintás próba: χ^2 -próba
- Kétmintás próba: F-próba

4.4.1. F-próba

- Független minták: $X_{1..n} \sim N(m_1, \sigma_1^2)$ és $Y_{1..m} \sim N(m_2, \sigma_2^2)$
 - $-m_1, m_2$ ismeretlen és σ_1, σ_2 ismeretlen (relációjuk a kérdés)
- Próbastatisztika: $T(X,Y) = F = \frac{(S_2^*)^2}{(S_1^*)^2}$ ha $S_1^* < S_2^*$
 - $-H_0$ esetén $F \sim F_{n-1,m-1}$
- Kétoldali: $H_0: \sigma_1 = \sigma_2$ és $H_1: \sigma_1 \neq \sigma_2$

- vagy
$$\chi_k = \{(x, y) : F < F_{n-1, m-1, \alpha/2}\}$$

- vagy
$$\chi_k = \{(x, y) : F > F_{n-1, m-1, 1-\alpha/2}\}$$

- Attól függ, hogy S_1^* vagy S_2^* a nagyobb
- Egyoldali: $H_0: \sigma_1 = \sigma_2$ és

$$- H_1 : \sigma_1 < \sigma_2 \text{ és } \chi_k = \{(x, y) : F < F_{n-1, m-1, \alpha}\}$$

$$-H_1: \sigma_1 > \sigma_2 \text{ és } \chi_k = \{(x,y) : F > F_{n-1,m-1,1-\alpha}\}$$

- Előzetes F-próba:
 - Mindig kétoldali
 - Nem számít a minták sorrendje (p-érték nem változik)
 - p-érték nagy ⇒ nincs bizonyíték, hogy különböznek a szórások
 - * Ha nem tudunk dönteni, inkább tekintsük a szórásokat egyenlőnek
 - var.test(mintaA, mintaB, alternative="two.sided")

4.4.2. χ^2 -próba

- $X_1, ..., X_n \sim N(m, \sigma^2)$ ahol σ és m ismeretlen; $\sigma = ?$
- Próbastatisztika: $T(X) = h = \frac{(n-1)(S_n^*)^2}{\sigma_0^2}$ $(H_0 \text{ eset\'en } h \sim \chi_{n-1}^2)$
- Kétoldali: $H_0: \sigma = \sigma_0$ és $H_1: \sigma \neq \sigma_0$

- vagy
$$\chi_k = \{x : h < \chi^2_{n-1,\alpha/2}\}$$

- vagy
$$\chi_k = \{x : h > \chi^2_{n-1,1-\alpha/2}\}$$

- Attól függ, hogy S_1^* vagy S_2^* a nagyobb
- Egyoldali: $H_0: m = m_0$ és

$$-H_1: \sigma < \sigma_0 \text{ és } \chi_k = \{x : h < \chi^2_{n-1,\alpha}\}$$

$$- H_1: \sigma > \sigma_0 \text{ és } \chi_k = \{x : h > \chi^2_{n-1,1-\alpha}\}$$

- Nem tételezünk fel normális eloszlást (a mintáról)
- TODO teljes eseményrendszerről a dolgok
- Alkalmazások: TODO
- Nincs minden osztályban elég mennyiség: R adhat warning-ot
 - Ökölszabály: min. 5db minden osztályban (n * p szorzás után)
 - Ha nincs elég, akkor vonjunk össze osztályokat:
 - * chisq.test(c(gyakorisag[1:3], sum(gyakorisag[4:5])),
 - p = c(p[1:3], sum(p[4:5]))) #utolsó 2 összevonva
 - * tbl2 <- cbind(tbl1[,"Left"] + tbl1[,"Neither"], tbl1[,"Right"])
 colnames(tbl2) <- c("Left+Neither", "Right")</pre>

5. Előadás 11: illeszkedés-, homogenitás- és függetlenségvizsgálat; regresszióelemzés

5.1. Diszkrét illeszkedésvizsgálat (χ^2 -próba)

- H_0 : minta egy adott eloszlásból származik (valószínűségek egyeznek)
- H_1 : minta nem ilyen eloszlású (min 1x: várt, tap. valószínűségek \neq)

– Próbastat.:
$$T_n(X) = \sum_{i=1}^r \frac{(N_i - np_i)^2}{np_i} \to \chi^2_{r-1}$$
 (ha H_0 és $n \to \infty$)

- Kritikus tartomány: $\chi_k = \{x \mid T_n(x) > \chi^2_{r-1,1-\alpha}\}$
- Tiszta illeszkedésvizsgálat: feltételezett eloszlás ismert
- Becsléses illeszkedésvizsgálat: eloszlás paramétere ismeretlen
 - ML-módszerrel s darab paramétert meg kell becsülni
 - Próbastatisztika ekkor H_0 esetén χ^2_{r-1-s} -be tart

Osztály	1	 r	Összesen
Gyakoriság	v_1	 v_r	n
Valószínűség	p_1	 p_r	1

5.1.1. Diszkrét illeszkedésvizsgálat R-ben egyszerűen

- Legyen gyakorisag és fejek_szama egy-egy vektor
- Példa p-re: p <- dbinom(fejek_szama, size = 4, p = 0.25)
- chisq.test(gyakorisag, p = p)

5.1.2. Diszkrét illeszkedésvizsgálat R-ben manuálisan

5.2. Folytonos illeszkedésvizsgálat Kolmogorov-Szmirnov próbával

- TODO 11. előadás 5. oldal
- Gyakorlaton nem vettük, ZH-ban benne volt

5.3. Homogenitásvizsgálat

- ullet Két független minta, 1 közös szemponttal r osztályba soroljuk őket
- H_0 : két eloszlás megegyezik $(p_i = q_i)$
- H_1 : két eloszlás nem egyezik meg (legalább egy helyen)
- Próbastatisztika: $nm\sum_{i=1}^r \frac{(N_i/n-M_i/m)^2}{N_i+M_i} \to \chi^2_{r-1}$ (ha H_0 és $n\to\infty$)
- Kritikus tartomány: $\chi_k = \{(X,Y) \ : \ T_{n,m}(X,Y) > \chi^2_{r-1,1-\alpha}\}$

Osztály	1	 r	Összesen
1. minta: gyakoriság	N_1	 N_r	n
1. minta: valószínűség	p_1	 p_r	1
2. minta: gyakoriság	μ_1	 μ_r	m
2. minta: valószínűség	M_1	 M_r	1

5.3.1. Homogenitásvizsgálat R-ben

- chisq.test(matrix(c(15, 10, 10, 10), ncol=2, byrow=TRUE))
 - Értelmes táblázat/mátrix kezelés: lásd R jegyzet (lejjebb)

5.3.2. Homogenitásvizsgálat R-ben manuálisan

```
n <- sum(x); m <- sum(y)
probastat <- n * m * sum((x / n - y / m)^2 / (x + y))
pertek <- 1 - pchisq(probastat, length(x) - 1)
cat('Probastatisztika:', probastat,
    '\nKritikus érték', qchisq(1 - alpha, length(x) - 1),
    '\nP-érték:', pertek,
    '\nDöntés:', if (pertek < alpha) { 'HO elutasítva' }
    else { 'HO-t nem sikerült elvetni' }, '\n')</pre>
```

5.4. Függetlenségvizsgálat

- Egy mintát két szempont alapján osztályokba sorolunk
 - Táblázat: osztály-osztály metszet gyakoriság van benne
- H_0 : két szempont független egymástól $(p_{i,j} = p_{i\circ} * p_{\circ j})$
- \bullet H_1 : két szempont nem független (nincs egyenlőség legalább egy helyen)
- Próbastatisztika: $\sum_{i=1}^r \sum_{j=1}^s \frac{(N_{i,j} N_{i\circ}N_{\circ j}/n)^2}{N_{i\circ}N_{\circ j}/n} \to \chi^2_{(r-1)(s-1)}$ (H_0 és $n \to \infty$ esetén)
- Kritikus tartomány: $\chi_k = \{(X,Y) : T_n(X,Y) > \chi^2_{(r-1)(s-1),1-\alpha}\}$
- r = s = 2 esetén
 - Próbastatisztika: $T_n = n \frac{(N_{11}N_{22} N_{12}N_{21})^2}{N_{1\circ}N_{2\circ}N_{\circ 1}N_{\circ 2}}$
 - Szabadsági foka χ^2 -nek pedig 1

		2. szempont					
		1		j		S	Összesen
	1	N ₁₁		N_{1j}		N_{1s}	N_{1ullet}
	:	:		:		:	:
1. szempont	i	N_{i1}		N_{ij}		N_{is}	$N_{i\bullet}$
	:	;		:		:	:
	r	N_{r1}		N_{rj}		N_{rs}	$N_{r\bullet}$
Összesen		N _{•1}		N _{●j}		N _{•s}	n

5.4.1. Függetlenségvizsgálat R-ben

- chisq.test(matrix(c(15, 10, 10, 10), ncol=2, byrow=TRUE))
 - Értelmes táblázat/mátrix kezelés: lásd R jegyzet (lejjebb)

5.4.2. Függetlenségvizsgálat R-ben manuálisan

```
rows <- nrow(tablazat); cols <- ncol(tablazat)
probastat <- 0; for (i in 1:rows) for (j in 1:cols) {
  tmp <- sum(tablazat[i,]) * sum(tablazat[, j]) / sum(tablazat)
  probastat <- probastat + (tablazat[i, j] - tmp)^2 / tmp }
pertek <- 1 - pchisq(probastat, (rows - 1) * (cols - 1))
cat('Próbastatisztika:', probastat,
    '\nKritikus érték', qchisq(1 - alpha, (rows - 1) * (cols - 1)),
    '\nP-érték:', pertek,
    '\nDöntés:', if (pertek < alpha) { 'HO elutasítva' }
    else { 'HO-t nem sikerült elvetni' }, '\n')</pre>
```

5.5. Korreláció- és regresszióelemzés

5.5.1. Korreláció

- Korreláció: szimmetrikus, két változó lineáris kapcsolatának erőssége
- Értéke: -1 és 1 között, ahol -1 az erős negatív kapcsolat
 - Függetlenség esetén az együttható 0 (visszafelé nem igaz)
- Elméleti korrelációs együttható: $R(X,Y) = \frac{cov(X,Y)}{D(X)D(Y)} = \frac{E((X-E(X))(Y-E(Y)))}{D(X)D(Y)}$
- Pearson tapasztalati korreláció: $r_{X,Y} = \frac{\sum_{1}^{n}(X_i \overline{X})(Y_i \overline{Y})}{(n-1)S_X S_Y} = \frac{\sum_{1}^{n}(X_i \overline{X})(Y_i \overline{Y})}{\sqrt{\sum (x_i \overline{X})^2 * \sum (y_i \overline{Y})^2}}$
 - R-ben: cor(x,y)vagy sum((x-mean(x))*(y-mean(y))) / ((length(x)-1)*sd(x)*sd(y))

5.5.2. Regresszió

- Regresszió: két vagy több változó között fennálló kapcsolat modellezése
 - Egyszerű lineáris regresszió: két változó irányított lineáris kapcsolata
- $y_i = a + bx_i + \epsilon_i$ ahol y függő/eredmény és x magyarázó
 - $E(\epsilon)=0$ és $D^2(\epsilon)=\sigma^2<\infty$ (normál eloszlás)
 - X legyen hiba nélküli (vagy elhanyagolható hibájú)
- Bármely jelölésen kalap: konkrét értéket jelent (pl. $\widehat{\epsilon_i} = y_i \widehat{y_i}$)
- Legkisebb négyzetek módszer: min $\sum_{i=1}^{n} (y_i (a + bx_i))^2$

- \bullet Reziduális: becsült és valós y függőleges távolsága adott x esetén
- Hiba szórásnégyzet becslés: $\widehat{\sigma}^2 = \frac{\sum (y_i \widehat{y_i})^2}{n-2}$ (residual standard error)
- Determinációs együttható:
 - $-\ 0 \le R^2 \le 1,$ minél nagyobb, annál jobb a modell
 - Megadja, hogy Y változásainak hány százalék magyarázza a modell
 - Sima: $R^2 = 1 \frac{\sum (y_i \hat{y_i})^2}{\sum (y_i \bar{y})^2}$
 - * Nő, ha több magyarázó változót használunk, tehát nem ideális
 - Korrigált: $R_{\it adj}^2 = 1 (1-R^2) \frac{n-1}{n-p}$ aholpa változók száma (itt: 2)
- R-ben: summary(lm(függő ~ magyarázó)) (két vektor)
 - Residuals: kevés adat esetén az értékek, sok esetén összesítés
 - Intercept sor: a értéke (függőleges eltolás)
 - Estimate oszlop: a, b értéke (szorzó)
 - Pr(>|t|) oszlop: mennyire fontos ez a változó a modellbenó
 - * H_0 : lehetne 0, el lehetne hagyni a változót
 - * H_1 : nem 0, azaz fontos a változó
 - * Pr(>|t|) $< \alpha = 0.05 \implies$ fontos a változó, H_0 elvetve
 - Residual standard error: reziduális szórás becslése, $\sqrt{\widehat{\sigma}^2}$
 - Multiple/Adjusted R-squared: (korrigált) determinációs együttható
- Hasznos R függvények:
 - Legyen reg <- $lm(y \sim x)$
 - Abrázolás: plot(x,y); lines(x, reg\$fitted.values)
 - Kiszámolás adott x-re: reg\$coefficients[1] + adottX * reg\$coefficients[2]
- Manuális "megoldása" y = a + bx-nek
 - $\hat{b} = \frac{cov(X,Y)}{D^2(X)}$ (R-ben: cov(x,y) / sd(x)^2)
 - $D^2(\hat{b}) = \frac{\sigma^2}{\sum (x_i \overline{X})^2}$
 - $-\hat{a} = EY \hat{b}EX$ (R-ben: mean(y) \hat{b} *mean(x))
 - $D^{2}(\hat{a}) = \sigma^{2}(\frac{1}{n} + \frac{\overline{X}^{2}}{\sum (x_{i} \overline{X})^{2}})$

6. Előadás 12: lineáris modell, logisztikus regresszió, vegyes kapcsolat

- TODO 12. előadás
- $\bullet\,$ Remélhetőleg nem lesz benne a ZH-ban: gyakorlaton se néztük

7. R jegyzet

7.1. Hasznos R függvények

• Indexek, ahol TRUE van: which(x == max(x))

7.2. Grafikonok, plot-ok

- plot(c(...))
- plot(x, y, type = "1", ...)
- plot(seq(from, to, 0.01), sapply(..., f), ...)
- barplot(f(0:100), names.arg=0:100, ...)
- boxplot(wt ~ cyl, data = mtcars, ...)
 - \$out: outlier values
- hist(x, breaks=5)
 - \$counts: gyakoriságok osztályokban

7.3. Matematikai függvények

- sum(x), sort(x), min(x), max(x), round(x, 4)
- Mintaátlag, \overline{X} : mean(x)
- Korrigált tapasztalati szórás, S_n^* : sd(x)
- Tapasztalati k-adik momentum, m_k : mean(x^2)
- Statisztikák (min, max, átlag, kvartilisek): summary(x)
- Kvartilis: quantile(x, probs = c(1/4, 1/2, 3/4), type = 6)
- Tapasztalati eloszlásfüggvény: plot(ecdf(x), ...)

7.4. Adathalmaz

- \bullet mtcars egy adathalmaz, aminek van cyl és wt oszlopa
- subset(mtcars, cyl == 4)\$wt
- mtcars[mtcars\$cyl == 4,]\$wt
- Érték-gyakoriság táblázat: table(vektor)
 - Oszlop, ahol <valami> igaz: names(tábla)[tábla==max(tábla)]

7.5. Táblázat, mátrix

```
ido <- matrix(c(15, 10, 5, 10, 10, 20, 5, 20, 5), ncol=3, byrow=TRUE)
colnames(ido) <- c("kevés", "átlagos", "sok")
rownames(ido) <- c("hüvös", "átlagos", "meleg")
ido <- as.table(ido)</pre>
```