Non-regular Languages §1.4

Which languages cannot be recognized by finite automata?

Example: L={ $0^n1^n \mid n \in \mathbb{N}$ }

- 'Playing around' with FA convinces you that the 'finiteness' of FA is problematic for "all $n \in \mathbb{N}$ "
- The problem occurs between the 0ⁿ and the 1ⁿ
- Informal: the memory of a FA is limited by the the number of states |Q|

Proving non-regularity

- Prove a general statement -- NO DFA exists for a given problem.
- Cannot assume an automaton structure or a specific strategy
- Need an argument that holds for ALL DFA's

Repeating DFA Paths

Consider an accepting DFA M with size |Q|On a string of length p, p+1 states get visited For $p\geq |Q|$, there must be a j such that the computational path looks like: $q_1, \dots, q_i, \dots, q_i, \dots, q_k$

Repeating DFA Paths

The action of the DFA in q_j is always the same. If we repeat (or ignore) the $q_j, ..., q_j$ part, the new path will again be an accepting path

Line of Reasoning

Proof by contradiction:

- Assume that L is regular
- Hence, there is a DFA M that recognizes L
- For strings of length ≥ |Q| the DFA M has to 'repeat itself'
- Show that M will accept strings outside L
- Conclude that the assumption was wrong

Note that we use the simple DFA, not the more elaborate (but equivalent) NFA or GNFA

Pumping Lemma (Thm 1.37)

For every regular language L, there is a <u>pumping length</u> p, such that for any string s∈L and |s|≥p, we can write s=xyz with

- 1) $x y^i z \in L$ for every $i \in \{0, 1, 2, ...\}$
- 2) $|y| \ge 1$
- 3) $|xy| \leq p$

Note that 1) implies that xz ∈ L

2) says that y cannot be the empty string ϵ Condition 3) is not always used

Formal Proof of Pumping Lemma

```
Let M = (Q, \Sigma, \delta, q_1, F) with Q = \{q_1, \dots, q_p\}
Let s = s_1...s_n \in L(M) with |s| = n \ge p
Computational path of M on s is the
sequence r_1, \dots, r_{n+1} \in \mathbb{Q}^{n+1} with
r_1 = q_1, r_{n+1} \in F \text{ and } r_{t+1} = \delta(r_t, s_t) \text{ for } 1 \le t \le n
Because n+1 \ge p+1, there are two states
such that r_i = r_k (with j<k and k \le p+1)
Let x = s_1...s_{i-1}, y = s_i...s_{k-1}, and z = s_k...s_{n+1}
x takes M from q_1=r_1 to r_i, y takes M from r_i to r_i,
and z takes M from r_i to r_{n+1} \in F
As a result: xy^iz takes M from q_1 to r_{n+1} \in F (i \ge 0)
```

Formal Proof of Pumping Lemma

```
Let M = (Q, \Sigma, \delta, q_1, F) with Q = \{q_1, \dots, q_n\}
Let s = s_1...s_n \in L(M) with |s| = n \ge p
Computational path of M on s is the
sequence r_1, \dots, r_{n+1} \in \mathbb{Q}^{n+1} with
r_1 = q_1, r_{n+1} \in F \text{ and } r_{t+1} = \delta(r_t, s_t) \text{ for } 1 \le t \le n
Because n+1 \ge p+1, there are two terms
such that r_i = r_k (\sqrt{|y|} \ge 1 and |xy| \le p)
Let x = s_1...s_{j-1}, y = s_i...s_{k-1}, and z = s_k...s_{n+1}
x takes M from q_1=r_1 to r_i, y takes M from r_i to r_i,
and z takes M from r_i to r_{n+1} \in F
As a result (x, y^i, z \in L(M)) for every i \in \{0, 1, 2, ...\}
```

Pumping 0ⁿ1ⁿ (Ex. 1.38)

Assume that $B = \{0^n1^n \mid n \ge 0\}$ is regular Let p be the pumping length, and $s = 0^p1^p \in B$ P.L.: $s = xyz = 0^p1^p$, with $xy^iz \in B$ for all $i \ge 0$ Three options for y:

- 1) $y=0^k$, hence $xyyz = 0^{p+k}1^p \notin B$
- 2) $y=1^k$, hence $xyyz = 0^p1^{k+p} \notin B$
- 3) $y=0^k1^l$, hence $xyyz=0^p1^l0^k1^p \notin B$

Conclusion: The pumping lemma does not hold, the language B is not regular.

Another example

$$F = \{ ww \mid w \in \{0,1\}^* \} (Ex. 1.40)$$

Let p be the pumping length, and take $s = 0^p10^p1$ Let $s = xyz = 0^p10^p1$ with condition 3) $|xy| \le p$ Only one option: $y=0^k$, with $xyyz = 0^{p+k}10^p1 \notin F$

Without 3) this would have been a pain.

Intersecting Regular Languages

Let $C = \{ w \mid \# \text{ of } 0s \text{ in } w \text{ equals } \# \text{ of } 1s \text{ in } w \}$ Problem: If $xyz \in C$ with $y \in C$, then $xy^iz \in C$ Idea: If C is regular and F is regular then the intersection $C \cap F$ has to be regular as well

Solution: Assume that C is regular Take the regular $F = \{0^n1^m \mid n,m \in \mathbb{N}\}$, then for the intersection: $C \cap F = \{0^n1^n \mid n \in \mathbb{N}\}$ But we know that $C \cap F$ is not regular Conclusion: C is not regular

Pumping Down E = { 0ⁱ1^j | i≥j }

Problem: 'pumping up' $s=0^{p+p}$ with $y=0^k$ gives $xyyz=0^{p+k}1^p$, $xy^3z=0^{p+2k}1^p$, which are all in E (hence do not give contradictions)

Solution: pump down to $xz=0^{p-k}1^p$.

Overall for $s=xyz=0^p1^p$ (with $|xy| \le p$): $y=0^k$, hence $xz=0^{p-k}1^p \notin E$

Contradiction: E is not regular

Pumping lemma usage - steps

- You are given a pumping number
- You choose a string
- There exist x,y,z (satisfying some criteria)
- You choose i in xyⁱz, and show it violates criterion of set for that i.

Alternatives for proving non-regularity

- Simpler technique (not in the text)
 - Based on the Myhill-Nerode Theorem
 - less general