1-11 Set Theory (IV): Infinity

魏恒峰

hfwei@nju.edu.cn

2019年12月17日

Georg Cantor (1845 – 1918)

Georg Cantor (1845 – 1918)

Leopold Kronecker (1823 - 1891)

Georg Cantor (1845 – 1918)

Leopold Kronecker (1823 – 1891)

Henri Poincaré (1854 – 1912)

Georg Cantor (1845 – 1918)

Leopold Kronecker (1823 - 1891)

Hengfeng Wei (hfwei@nju.edu.cn)

Henri Poincaré (1854 - 1912)

Ludwig Wittgenstein

Georg Cantor (1845 – 1918)

David Hilbert (1862 – 1943)

Leopold Kronecker (1823 - 1891)

Henri Poincaré (1854 - 1912)

Ludwig Wittgenstein (1889 - 1951)

From his paradise that Cantor with us unfolded, we hold our breath in awe; knowing, we shall not be expelled.

— David Hilbert

"没有人能把我们从 Cantor 创造的乐园中驱逐出去"

From his paradise that Cantor with us unfolded, we hold our breath in awe; knowing, we shall not be expelled.

— David Hilbert

"没有人能把我们从 Cantor 创造的乐园中驱逐出去"

"das wesen der mathematik liegt in ihrer freiheit"

"das wesen der mathematik liegt in ihrer freiheit"

"The essence of mathematics lies in its freedom"

Before Cantor

公理: "整体大于部分"

Galilei (1564 – 1642)

"关于两门新科学的对话" (1638)

Galileo Galilei (1564 – 1642)

"关于两门新科学的对话" (1638)

"用我们有限的心智来讨论无限…"

$$S_1 = \{1, 2, 3, \dots, n, \dots\}$$

 $S_2 = \{1, 4, 9, \dots, n^2, \dots\}$

$$S_1 = \{1, 2, 3, \dots, n, \dots\}$$

 $S_2 = \{1, 4, 9, \dots, n^2, \dots\}$

$$|S_1| = |S_2| \qquad S_2 \subset S_1$$

$$S_1 = \{1, 2, 3, \dots, n, \dots\}$$

 $S_2 = \{1, 4, 9, \dots, n^2, \dots\}$

$$|S_1| = |S_2| \qquad S_2 \subset S_1$$

"部分等于全体"

$$S_1 = \{1, 2, 3, \dots, n, \dots\}$$

 $S_2 = \{1, 4, 9, \dots, n^2, \dots\}$

$$|S_1| = |S_2|$$
 $S_2 \subset S_1$ "部分等于全体"

$$S_1 = \{1, 2, 3, \dots, n, \dots\}$$

 $S_2 = \{1, 4, 9, \dots, n^2, \dots\}$

$$|S_1| = |S_2|$$
 $S_2 \subset S_1$ "部分等于全体"

说到底,"等于"、"大于"和"小于"诸性质不能用于无限,而只能用于有限的数量。 — Galileo Galilei

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ 夕久○

$$S_1 = \{1, 2, 3, \dots, n, \dots\}$$

 $S_2 = \{1, 4, 9, \dots, n^2, \dots\}$

$$|S_1| = |S_2|$$
 $S_2 \subset S_1$ "部分等于全体"

说到底,"等于"、"大于"和"小于"诸性质不能用于无限,而只能用于有限的数量。——Galileo Galilei

无穷数是不可能的。

— Gottfried Wilhelm Leibniz

4□ ト 4回 ト 4 重 ト 4 重 ト 9 へ ()・

这些证明一开始就期望那些数要具有有穷数的一切性质,或者甚至于把有穷数的性质强加于无穷。

相反,这些无穷数,如果它们能够以任何形式被理解的话,倒 是由于它们与有穷数的对应,<mark>它们必须具有完全新的数量特征</mark>。

这些性质完全依赖于事物的本性, ··· 而并非来自我们的主观任意性或我们的偏见。

— Georg Cantor (1885)

Definition (Dedekind-infinite & Dedekind-finite (Dedekind, 1888))

A set A is $\underbrace{\textit{Dedekind-infinite}}$ if there is a bijective function from A onto some proper subset B of A.

A set is *Dedekind-finite* if it is not Dedekind-infinite.

Definition (Dedekind-infinite & Dedekind-finite (Dedekind, 1888))

A set A is $\underbrace{\textit{Dedekind-infinite}}$ if there is a bijective function from A onto some proper subset B of A.

A set is *Dedekind-finite* if it is not Dedekind-infinite.

We will prove this as a theorem in our theory of infinity.

We have not defined "finite" and "infinite"!!!

Comparing Sets

Comparing Sets

Comparing Sets

Function

Definition ($|A| = |B| (A \approx B) (1878)$)

A and B are equipotent if there exists a bijection from A to B.

Definition (
$$|A| = |B| (A \approx B) (1878)$$
)

 $\overline{\overline{A}}$ (two abstractions)

Definition
$$(|A| = |B| \ (A \approx B) \ (1878))$$

 $\overline{\overline{A}}$ (two abstractions)

Abstract from elements: $\{1, 2, 3\}$ vs. $\{a, b, c\}$

Definition (
$$|A| = |B| (A \approx B) (1878)$$
)

 $\overline{\overline{A}}$ (two abstractions)

Abstract from elements: $\{1, 2, 3\}$ vs. $\{a, b, c\}$

Abstract from order: $\{1,2,3,\cdots\}$ vs. $\{1,3,5,\cdots,2,4,6,\cdots\}$

Definition (
$$|A| = |B| (A \approx B) (1878)$$
)

Q: Is " \approx " an equivalence relation?

Definition (
$$|A| = |B| (A \approx B)$$
 (1878))

A and B are equipotent if there exists a bijection from A to B.

Q: Is " \approx " an equivalence relation?

Theorem (

For any sets A, B, C:

- (a) $A \approx B$
- (b) $A \approx B \implies B \approx A$
- (c) $A \approx B \land B \approx C \implies A \approx C$

Definition (
$$|A| = |B| (A \approx B) (1878)$$
)

A and B are equipotent if there exists a bijection from A to B.

Q: Is " \approx " an equivalence relation?

Theorem (The "Equivalence Concept" of Equipotent)

For any sets A, B, C:

- (a) $A \approx B$
- (b) $A \approx B \implies B \approx A$
- (c) $A \approx B \wedge B \approx C \implies A \approx C$

Definition (Finite and Infinite)

For any set X,

Finite

$$\exists n \in \mathbb{N} : |X| = n \qquad (\mathbf{0} \in \mathbb{N})$$

Infinite $(\neg finite)$

$$\forall n \in \mathbb{N} : |X| \neq n$$

Definition (Finite and Infinite)

For any set X,

Countably Infinite

$$|X| = |\mathbb{N}| \triangleq \aleph_0$$

Countable

(finite \lor countably infinite)

Uncountably Infinite

$$(\neg \text{ finite}) \land (\neg \text{ (countably infinite)})$$

$$(\neg \text{ countable})$$

Theorem (\mathbb{Z} is Countable.)

$$|\mathbb{Z}|=|\mathbb{N}|$$

$$|\mathbb{Q}|=|\mathbb{N}|$$

$$|\mathbb{Q}| = |\mathbb{N}|$$

$$|\mathbb{Q}| = |\mathbb{N}|$$
 (UD Problem 23.12)

$$q \in \mathbb{Q}^+ : a/b \ (a, b \in \mathbb{N}^+)$$


```
1/1 1/2 → 1/3 1/4 → 1/5 1/6 → 1/7 1/8 → ...
2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...
3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...
4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...
5/1 5/2 5/3 5/4 5/5 5/6 5/7 5/8 ...
6/1 6/2 6/3 6/4 6/5 6/6 6/7 6/8 ...
7/1 7/2 7/3 7/4 7/5 7/6 7/7 7/8 ...
8/1 8/2 8/3 8/4 8/5 8/6 8/7 8/8 ...
```

Theorem $(\mathbb{N} \times \mathbb{N} \text{ is Countable.})$

$$|\mathbb{N}\times\mathbb{N}|=|\mathbb{N}|$$

Theorem $(\mathbb{N} \times \mathbb{N} \text{ is Countable.})$

$$|\mathbb{N}\times\mathbb{N}|=|\mathbb{N}|$$

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

Theorem $(\mathbb{N} \times \mathbb{N} \text{ is Countable.})$

$$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$f(m,n) = n + \frac{(m+n)(m+n+1)}{2}$$

 $|\mathbb{R}| \neq |\mathbb{N}|$

 $|\mathbb{R}| \neq |\mathbb{N}|$

 $|\mathbb{R}| \neq |\mathbb{N}|$

Different "Sizes" of Infinity

 $|\mathbb{R}| \neq |\mathbb{N}|$

Different "Sizes" of Infinity

Cantor's Diagonal Argument (1890)

 $|\mathbb{R}| \neq |\mathbb{N}|$

 $|\mathbb{R}| \neq |\mathbb{N}|$

By Contradiction.

$$|\mathbb{R}| \neq |\mathbb{N}|$$

By Contradiction.

$$f: \mathbb{R} \xrightarrow[onto]{1-1} \mathbb{N}$$

$$|\mathbb{R}| \neq |\mathbb{N}|$$

By Contradiction.

$$f: \mathbb{R} \xleftarrow{1-1}_{onto} \mathbb{N}$$

$$3.14159...$$

$$1.44421...$$

$$1.73205...$$

$$2.23606...$$

$$2.71828...$$

$$0.14285...$$

$$1$$

$$3.43625...$$

$$1$$

$$2.32514...$$

$$|\mathbb{R}| \neq |\mathbb{N}|$$

By Contradiction.

$$f: \mathbb{R} \xleftarrow{1-1}_{onto} \mathbb{N}$$

$$3.14159...$$

$$1.41421...$$

$$1.73205...$$

$$2.23606...$$

$$2.71828...$$

$$0.14285...$$

$$1$$

$$3.43625...$$

$$1$$

$$2.32514...$$

By Diagonal Argument.

Theorem (Cantor's Theorem (1891))

$$|A| \neq |2^A|$$

Theorem (Cantor's Theorem (1891))

$$|A| \neq |2^A|$$

Theorem (Cantor Theorem (ES Theorem 24.4))

Theorem (Cantor's Theorem (1891))

$$|A| \neq |2^A|$$

Theorem (Cantor Theorem (ES Theorem 24.4))

If $f: A \to 2^A$, then f is not onto.

Proof. Let A be a set and let $f: A \to 2^A$. To show that f is not onto, we must find a $B \in 2^A$ (i.e., $B \subseteq A$) for which there is no $a \in A$ with f(a) = B. In other words, B is a set that f "misses." To this end, let

$$B = \{x \in A : x \notin f(x)\}.$$

We claim there is no $a \in A$ with f(a) = B.

Suppose, for the sake of contradiction, there is an $a \in A$ such that f(a) = B. We ponder: Is $a \in B$?

- If a ∈ B, then, since B = f(a), we have a ∈ f(a). So, by definition of B, a ∉ f(a); that is, a ∉ B.⇒ ←
- If $a \notin B = f(a)$, then, by definition of $B, a \in B. \Rightarrow \Leftarrow$

Both $a \in B$ and $a \notin B$ lead to contradictions, and hence our supposition [there is an $a \in A$ with f(a) = B] is false, and therefore f is not onto.

- ◆□▶ ◆圊▶ ◆葦▶ ◆葦▶ 葦 釣९()

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^{A} = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Onto

$$\forall B \in 2^A : \left(\exists a \in A : f(a) = B\right)$$

If $f: A \to 2^A$, then f is not onto.

Understanding this problem:

$$A = \{1, 2, 3\}$$

$$2^A = \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

Onto

$$\forall B \in 2^A : \left(\exists a \in A : f(a) = B\right)$$

Not Onto

$$\exists B \in 2^A : (\forall a \in A : f(a) \neq B)$$

$$\exists B \in 2^A : \left(\forall a \in A : f(a) \neq B \right)$$

If $f: A \to 2^A$, then f is not onto.

$$\exists B \in 2^A : (\forall a \in A : f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

If $f: A \to 2^A$, then f is not onto.

$$\exists B \in 2^A : (\forall a \in A : f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

If $f: A \to 2^A$, then f is not onto.

$$\exists B \in 2^A : \left(\forall a \in A : f(a) \neq B \right)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A : f(a) = B.$$

If $f: A \to 2^A$, then f is not onto.

$$\exists B \in 2^A : \left(\forall a \in A : f(a) \neq B \right)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A : f(a) = B.$$

 $Q:a\in B\,?$

If $f: A \to 2^A$, then f is not onto.

$$\exists B \in 2^A : (\forall a \in A : f(a) \neq B)$$

ightharpoonup Constructive proof (\exists):

$$B = \{a \in A \mid a \notin f(a)\}$$

▶ By contradiction (\forall) :

$$\exists a \in A : f(a) = B.$$

 $Q: a \in B$?

 $a \in B \iff a \notin B$

If $f: A \to 2^A$, then f is not onto.

 ${\bf Diagonal\ Argument\ .}$

If $f: A \to 2^A$, then f is not onto.

Diagonal Argument .

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	• • •
4	1	1	1	1	1	• • •
5	0	1	0	1	0	
:	:	:	:	:	:	

If $f: A \to 2^A$, then f is not onto.

Diagonal Argument .

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	
3	1	0	0	1	0	• • •
4	1	1	1	1	1	• • •
5	0	1	0	1	0	
:	:	:	:	:	:	

If $f: A \to 2^A$, then f is not onto.

Diagonal Argument .

a	f(a)					
	1	2	3	4	5	• • •
1	1	1	0	0	1	
2	0	0	0	0	0	• • •
3	1	0	0	1	0	
4	1	1	1	1	1	• • •
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

If $f: A \to 2^A$, then f is not onto.

Diagonal Argument (以下仅适用于可数集合 A).

a	f(a)					
	1	2	3	4	5	
1	1	1	0	0	1	
2	0	0	0	0	0	• • •
3	1	0	0	1	0	
4	1	1	1	1	1	• • •
5	0	1	0	1	0	• • •
:	:	:	:	:	:	

$$B = \{0, 1, 1, 0, 1\}$$

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

```
s = 10111010011...
```

By Diagonal Argument.

$$f: \{\{0,1\}^*\} \to \mathbb{N}$$

$$f:\{\{0,1\}^*\}\to\mathbb{N}$$

$$f(x_0x_1\cdots) = \sum_{i=0}^{\infty} x_i 2^i$$

$$f:\{\{0,1\}^*\}\to\mathbb{N}$$

$$f(x_0x_1\cdots) = \sum_{i=0}^{\infty} x_i 2^i$$

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

$$f(x) = \tan \frac{(2x-1)\pi}{2}$$
$$|(0,1)| = |(-\frac{\pi}{2}, \frac{\pi}{2})| = |\mathbb{R}|$$

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

$$f(x) = \tan \frac{(2x-1)\pi}{2}$$
$$|(0,1)| = |(-\frac{\pi}{2}, \frac{\pi}{2})| = |\mathbb{R}|$$

$$(x = 0.a_1a_2a_3\cdots, y = 0.b_1b_2b_3\cdots)$$

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

$$f(x) = \tan \frac{(2x-1)\pi}{2}$$
$$|(0,1)| = |(-\frac{\pi}{2}, \frac{\pi}{2})| = |\mathbb{R}|$$

$$(x = 0.a_1a_2a_3\cdots, y = 0.b_1b_2b_3\cdots) \mapsto 0.a_1b_1a_2b_2a_3b_3\cdots$$

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

"Je le vois, mais je ne le crois pas!"

"I see it, but I don't believe it !"

— Cantor's letter to Dedekind (1877).

$$|(0,1)| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}^{n \in \mathbb{N}}|$$

"Je le vois, mais je ne le crois pas!"

"I see it, but I don't believe it!"

— Cantor's letter to Dedekind (1877).

Q: Then, what is "dimension"?

Definition $(|A| \leq |B|)$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

Definition $(|A| \leq |B|)$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

bijection $f: A \to f(A) \subseteq B$

Definition
$$(|A| \le |B|)$$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

bijection
$$f: A \to f(A) \subseteq B$$

 $Q: What about onto function <math>f: A \rightarrow B$?

Definition
$$(|A| \leq |B|)$$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

bijection
$$f: A \to f(A) \subseteq B$$

$$Q: What about onto function $f: A \rightarrow B$?$$

$$|B| \le |A|$$

Definition
$$(|A| \le |B|)$$

 $|A| \leq |B|$ if there exists an *one-to-one* function f from A into B.

bijection
$$f: A \to f(A) \subseteq B$$

 $Q: What about onto function <math>f: A \rightarrow B$?

$$|B| \le |A|$$
 (Axiom of Choice)

Definition
$$(|A| < |B|)$$

$$|A|<|B|\iff |A|\leq |B|\wedge |A|\neq |B|$$

Definition
$$(|A| < |B|)$$

$$|A| < |B| \iff |A| \le |B| \land |A| \ne |B|$$

$$|\mathbb{N}| < |\mathbb{R}|$$

$$|X| < |2^X|$$

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

Theorem (Proof for Countable (UD Exercise 22.5))

X is countable iff there exists a one-to-one function

$$f:X\to\mathbb{N}.$$

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

Theorem (Proof for Countable (UD Exercise 22.5))

X is countable iff there exists a one-to-one function

$$f:X\to\mathbb{N}.$$

X is countable iff

$$|X| \leq |\mathbb{N}|.$$

X is countable:

$$\exists n \in \mathbb{N} : |X| = n \vee |X| = |\mathbb{N}|$$

Theorem (Proof for Countable (UD Exercise 22.5))

X is countable iff there exists a one-to-one function

$$f: X \to \mathbb{N}$$
.

X is countable iff

$$|X| \leq |\mathbb{N}|$$
.

Subsets of Countable Set (UD Problem 22.6; UD Corollary 22.4)

Every subset B of a countable set A is countable.

Give an example, if possible, of

(c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.

Give an example, if possible, of

- (c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.
- (b) a countably infinite collection of nonempty sets whose union is finite.

Give an example, if possible, of

- (c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.
- b) a countably infinite collection of nonempty sets whose union is finite.

$$(\{A_i : i \in R\} \quad A_i = \{1\}) = \{\{1\}\}$$

Give an example, if possible, of

- (c) a countably infinite collection of *pairwise disjoint* nonempty sets whose union is finite.
- (b) a countably infinite collection of nonempty sets whose union is finite.

$$\left(\left\{ A_i : i \in R \right\} \quad A_i = \left\{ 1 \right\} \right) = \left\{ \left\{ 1 \right\} \right\}$$
$$|A| = n \implies |2^A| = 2^n$$

Slope (UD Problem 22.2(e))

(e) the set of all lines with rational slopes

Slope (UD Problem 22.2(e))

(e) the set of all lines with rational slopes

 (\mathbb{Q}, \mathbb{R})

Slope (UD Problem 22.2(e))

(e) the set of all lines with rational slopes

$$(\mathbb{Q}, \mathbb{R})$$

$$|\mathbb{R}| \le |\mathbb{Q} \times \mathbb{R}| \le |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$$

 $Q: Is \leq "a partial order?"$

 $Q: Is "\leq " a partial order?$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

 $Q: Is "\leq" a partial order?$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

 \exists one-to-one $f: A \to B \land g: B \to A \implies \exists$ bijection $h: A \to B$

$Q: Is "\leq" a partial order?$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

 $\exists \ one\text{-}to\text{-}one \ f: A \rightarrow B \land g: B \rightarrow A \implies \exists \ bijection \ h: A \rightarrow B$

$Q: Is \leq "a partial order?"$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

 \exists one-to-one $f:A \to B \land g:B \to A \implies \exists$ bijection $h:A \to B$

$Q: Is \leq "a partial order?"$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

 \exists one-to-one $f:A \to B \land g:B \to A \implies \exists$ bijection $h:A \to B$

 $Q: \mathit{Is} \ ``\leq" \ \mathit{a total order?}$

 $Q: \mathit{Is} \ ``\leq" \ a \ total \ order?$

Theorem (PCC)

 $\textit{Principle of Cardinal Comparability (PCC)} \iff \textit{Axiom of Choice}$

Finite Sets

Finite Sets

"关于有穷, 我原以为我是懂的"

Definition (Finite)

X is finite if

$$\exists n \in \mathbb{N} : |X| = n$$

Definition (Finite)

X is finite if

$$\exists n \in \mathbb{N} : |X| = n$$

Theorem (Pigeonhole Principle (UD Theorem 21.2))

$$f: \{1, \dots, m\} \to \{1, \dots, n\} \ (m, n \in \mathbb{N}^+, m > n)$$

f is not one-to-one.

Let A be a nonempty finite set with |A| = n and let $a \in A$.

Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

Let A be a nonempty finite set with |A| = n and let $a \in A$. Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

$$f: A \stackrel{1-1}{\longleftrightarrow} \{1, \cdots, n\}$$

Let A be a nonempty finite set with |A| = n and let $a \in A$. Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

$$f: A \stackrel{1-1}{\longleftrightarrow} \{1, \cdots, n\}$$

$$f|_{A\setminus\{a\}}: A\setminus\{a\} \stackrel{1-1}{\underset{onto}{\longleftarrow}} \{1,\cdots,n\}\setminus\{f(a)\}$$

Let A be a nonempty finite set with |A| = n and let $a \in A$. Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

$$f: A \stackrel{1-1}{\longleftrightarrow} \{1, \cdots, n\}$$

$$f|_{A\setminus\{a\}}: A\setminus\{a\} \stackrel{1-1}{\longleftrightarrow} \{1,\cdots,n\}\setminus\{f(a)\} \stackrel{1-1}{\longleftrightarrow} \{1,\cdots,n-1\}$$

 $|A| \leq |B|$ (UD Problem 21.17)

A and B are finite sets and $f:A\to B$ is one-to-one.

Show that $|A| \leq |B|$.

 $|A| \leq |B|$ (UD Problem 21.17)

A and B are finite sets and $f:A\to B$ is one-to-one. Show that $|A|\leq |B|$.

 $|A| \leq |B|$ (UD Problem 21.17)

A and B are finite sets and $f:A\to B$ is one-to-one. Show that $|A|\leq |B|$.

By contradiction and the pigeonhole principle.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \leq |A|$.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \leq |A|$.

one-to-one $f: B \to A$

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \leq |A|$.

one-to-one $f:B\to A$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \leq |A|$.

one-to-one
$$f:B\to A$$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

$$\exists a: a \in A \land a \not\in B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$$

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \leq |A|$.

one-to-one
$$f: B \to A$$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

$$\exists a: a \in A \land a \not \in B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$$

(c) If two finite sets A and B satisfy $B \subseteq A$ and $|A| \le |B|$, then A = B.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 20.11). Show that $|B| \leq |A|$.

one-to-one
$$f: B \to A$$

- (b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.
 - $\exists a: a \in A \land a \notin B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$
- (c) If two finite sets A and B satisfy $B \subseteq A$ and $|A| \le |B|$, then A = B.

By contradiction and (b).

Cardinality of |ran(f)| (UD Problem 21.18)

Let A and B be sets with A finite.

$$f:A\to B$$

Prove that $|\operatorname{ran}(f)| \leq |A|$.

Cardinality of |ran(f)| (UD Problem 21.18)

Let A and B be sets with A finite.

$$f:A\to B$$

Prove that $|\operatorname{ran}(f)| \leq |A|$.

one-to-one
$$g: \operatorname{ran}(f) \to A$$

Cardinality of |ran(f)| (UD Problem 21.18)

Let A and B be sets with A finite.

$$f:A\to B$$

Prove that $|\operatorname{ran}(f)| \leq |A|$.

one-to-one
$$g: \operatorname{ran}(f) \to A$$

(No Axiom of Choice Here)

 $f: A \to A \text{ (UD Problem 21.19)}$

Let A be a finite set.

$$f:A\to A$$

Prove that

f is one-to-one $\iff f$ is onto.

$$f: A \to A \text{ (UD Problem 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$f: A \to A \text{ (UD Problem 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$f': A \to A \setminus \{a\}$$

$$f: A \to A \text{ (UD Problem 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

 \Longrightarrow

$$f': A \to A \setminus \{a\}$$

$$f: A \to A \text{ (UD Problem 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$\leftarrow$$

 \Longrightarrow

$$\forall y \in A \; \exists x \in A : y = f(x)$$

$$f':A\to A\setminus\{a\}$$

$$f: A \to A \text{ (UD Problem 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$\Longrightarrow$$

$$f': A \to A \setminus \{a\}$$

$$\forall y \in A \; \exists x \in A : y = f(x)$$

$$\forall y, \text{choose } x : (g : g(y) = x)$$

$$f: A \to A \text{ (UD Problem 21.19)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$\Longrightarrow$$

By contradiction.

$$f':A\to A\setminus\{a\}$$

$$\forall y \in A \ \exists x \in A : y = f(x)$$

$$\forall y, \text{choose } x : (g : g(y) = x)$$

g is bijective.

 $f: A \to A \text{ (UD Problem 21.19)}$

Let A be a finite set.

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$\Longrightarrow$$

By contradiction.

$$f':A\to A\setminus\{a\}$$

$$\forall y \in A \; \exists x \in A : y = f(x)$$

$$\forall y, \text{choose } x : (g : g(y) = x)$$

g is bijective.

$$f(g(y)) = f(x) = y \implies f = g^{-1}$$

Dangerous Knowledge (BBC 2007)

$$c = \aleph_1$$

$$c = \aleph_1$$

$$c = 2^{\aleph_0} = \aleph_1$$

$$c = \aleph_1$$

$$c = 2^{\aleph_0} = \aleph_1$$

Dangerous Knowledge (22:20)

$$c = \aleph_1$$

$$c = 2^{\aleph_0} = \aleph_1$$

Dangerous Knowledge (22:20)

Independence from ZFC:

Kurt Gödel (1940) CH cannot be disproved from ZF.

Paul Cohen (1964) CH cannot be proven from the ZFC axioms.

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn