Topological Data Analysis

10 December 2019

10 Stability for smooth functions

10.1 Sublevel sets

For a continuous function $f: [a, b] \to \mathbb{R}$ denote, for each $t \in \mathbb{R}$,

$$L_t(f) = \{x \in [a, b] : f(x) \le t\},\$$

and observe that $L_s(f) \subseteq L_t(f)$ if $s \le t$, and $L_t(f) = \emptyset$ if $t < t_0$ and f is bounded below by t_0 . The sets $L_t(f)$ are called *sublevel sets* of f.

Assuming that the function f is differentiable, a *critical point* of f is a point x_0 with $a < x_0 < b$ and $f'(x_0) = 0$. The *critical values* of f are the values of f at critical points, together with f(a) and f(b). If f is differentiable and has finitely many critical points, then we obtain a persistence module over \mathbb{R} by defining

$$V_t(f) = H_0(L_t(f); \mathbb{R}),$$

and letting $\pi_{s,t}: V_s(f) \to V_t(f)$ be induced by the inclusion $L_s(f) \subseteq L_t(f)$ if $s \le t$. The spectrum of $(V(f), \pi)$ is contained in the set of critical values of f.

Note that $V(f)[\delta] = V(f - \delta)$ for every $\delta \in \mathbb{R}$. From this fact if follows that

$$d_{\text{int}}(V(f), V(g)) \le ||f - g||_{\infty}$$

where d_{int} is the interleaving distance and $\|f - g\|_{\infty} = \sup\{|f(x) - g(x)| \ : \ x \in [a, b]\}.$

10.2 Morse persistence modules

Let M be a closed smooth manifold (that is, a compact smooth manifold without boundary). For a smooth function $f: M \to \mathbb{R}$, a *critical point* of f is a point $p \in M$ such that $(\partial f/\partial x_i)(p) = 0$ for all i, where (x_1, \ldots, x_n) are coordinates on some neighbourhood of p.

Similarly as above, if f is a smooth function on M with finitely many critical points, then we obtain a persistence module, called a *Morse persistence module*, by defining

$$L_t(f) = \{x \in M \mid f(x) \le t\}$$

and

$$V_t(f) = H_*(L_t(f); \mathbb{R}),$$

with $\pi_{s,t}: V_s(f) \to V_t(f)$ induced by the inclusion $L_s(f) \subseteq L_t(f)$ if $s \le t$. Then the following inequality holds:

$$d_{\text{int}}(V(f), V(g)) \le ||f - g||_{\infty}$$

where $||f - g||_{\infty} = \sup\{|f(x) - g(x)| : x \in M\}.$

Short exercise

(1) Consider the functions $f, g: [-1, 1] \to \mathbb{R}$ given by

$$f(x) = x^5 - x,$$
 $g(x) = \frac{1}{5}(x^9 + 7x^5 - 10x).$

- (a) Find the persistence modules V(f) and V(g) and the spectrum of each.
- (b) Compute the interleaving distance $d_{int}(V(f), V(g))$.
- (c) Prove that $d_{\text{int}}(V(f), V(g)) \leq ||f g||_{\infty}$ on [-1, 1].

Longer exercises

- (1) Prove that $d_{\text{int}}(V(f), V(g)) \leq ||f g||_{\infty}$ for any two differentiable functions $f, g: [a, b] \to \mathbb{R}$, where a < b, assuming that f and g have finitely many critical points.
- (2) Find information about the PHAT software library (*Persistent Homology Algorithm Toolbox*) at https://bitbucket.org/phat-code/phat/src/master/. For a descriptive reference, see the article [U. Bauer, M. Kerber, J. Reininghaus, H. Wagner, PHAT Persistent Homology Algorithms Toolbox, *J. Symb. Comput.* 78 (2017), 76–90].