Data Quality Report:

The dataset contains a list of COVID-19 cases provided by the CDC, with 12 variables per case, including the target variable, death status.

There are 10,000 rows and 12 columns.

I changed the date columns (the first 4 columns) from strings to datetime objects. I treated these as categorical in the tables and plots, but I didn't want to remove the exact dates from the dataset, so I kept the data as datetime objects but plotted a bar chart with months on the x axis.

I changed age_group to continuous, by replacing strings with ints, e.g. "20-29 Years" to '25'.

I split the race_ethnicity_combined column into two columns, race and ethnicity.

I replaced all missing values with None, but kept the 'Unknown' values as this is valid data.

Then I produced the following tables and graphs.

	count	mea	an	std	min	25%	50%	75%	max	%missing	card
age_group	9993.0	41.85	78 20.7	79566	5.0	25.0	45.0	55.0	85.0	0.07	9
		count	unique		top	freq	fir	st	las	t %missing	card
cdc_case_ea	rliest_dt	10000	321	2021-	01-04	135	2020-01-0	3 20)21-01-16	0.00	321
cdc_re	eport_dt	7677	320	2020-	06-10	166	2020-01-0	3 20)21-01-3	23.23	320
pos_	spec_dt	2832	310	2021-	01-04	36	2020-03-0)4 20)21-01-2 ⁻	1 71.68	310
c	onset_dt	5054	322	2020-	11-11	49	2020-01-0	3 20)21-01-19	9 49.46	322

	count	unique	top	freq	%missing	card
current_status	10000	2	Confirmed	9332	0.00	2
sex	9992	3	Female	5263	0.08	3
hosp_yn	7645	4	No	5180	23.55	4
icu_yn	2374	3	Unknown	1358	76.26	3
death_yn	10000	2	No	9670	0.00	2
medcond_yn	2572	3	No	900	74.28	3
race	9906	7	Unknown	5067	0.94	7
ethnicity	9906	3	Non-Hispanic	4839	0.94	3

There were 3 features with no missing values, earliest date, current status and death. These features won't require more handling.

There were 4 features with less than 1% missing values, age, sex, race and ethnicity. These features won't require much more handling.

There were 3 features missing over 70% of their values, positive specimen date, ICU admission status and underlying medical condition. Onset date is missing 49%, and both hospitalization status and CDC report date are missing 23%. These features will need to be dealt with, particularly the ones with over 70%, which are likely to be dropped.

Hospitalization had 2 rows with the value "OTH", which I think means "other hospital", but it doesn't really matter as it only appears twice.

There are 442 duplicate rows, all of them had 'No' for death status and 438 of them were laboratory confirmed cases. As there is no way to know for sure if these duplicates are errors or not, I decided to keep them.

There were no constant columns.

In my code, I originally set the correct data types at the start and then saved the dataframe as cleaned_v1.csv, but when I imported it, the data types were reset back to object, so I had to set the data types after importing the cleaned_1.csv instead.