Filters and Delays

Scott McCoid Greg Tronel

Basic Filters

Lowpass (LP)
Highpass (HP)
Bandpass (BP)
Bandreject (BR)
Allpass

Canonical Filters

	b_0	b_1	a_1
Lowpass	K/(K+1)	K/(K+1)	(K-1)/(K+1)
Highpass Allpass	1/(K+1) (K-1)/(K+1)	-1/(K+1)	(K-1)/(K+1) (K-1)/(K+1)

$$K = \tan(\pi f_c/f_S)$$
.

Allpass Filters

$$A(z) = \frac{z^{-1} + c}{1 + cz^{-1}}$$
$$c = \frac{\tan(\pi f_c/f_S) - 1}{\tan(\pi f_c/f_S) + 1}.$$

Magnitude response, Phase response, Group delay 0 Magnitude in dB -100.1 0.2 0.3 0.4 0.5 Phase in degrees -50 -100-150-200 0.1 0 0.2 0.3 0.4 0.5 Group delay in samples 2

0.1

0

0.2

0.3

 $f/f_S \rightarrow$

0.4

0.5

Allpass Low/Highpass

Universal Comb

Figure 2.29 Universal comb filter.

Table 2.6 Parameters for universal comb filter.

	BL	FB	FF
FIR comb filter	1	0	g
IIR comb filter	c	g	0
Allpass	a	-a	1
Delay	0	0	1

Equalizers

- EQs shape the spectrum by enhancing (boost/cut) certain frequencies while others remain unaffected
- Usually built as a series of independently controlled 1st order Shelving and Peak filters

Figure 2.15 Series connection of shelving and peak filters.

Shelving Filter

- 1st-order design:
 - Can be constructed based on a 1st-order allpass

$$H(z) = 1 + \frac{H_0}{2} [1 + \pm A(z)]$$
 (LF/HF + /-)

leads to the difference equation:

$$x_h(n) = x(n) - c_{B/C}x_h(n-1)$$

$$y_1(n) = c_{B/C}x_h(n) + x_h(n-1)$$

$$y(n) = \frac{H_0}{2} [x(n) \pm y_1(n)] + x(n).$$

Gain (dB) can be adjusted through:

$$H_0 = V_0 - 1$$
 with $V_0 = 10^{G/20}$.

Frequency response slope limited to 6 dB / octave

Shelving coeffs

Other parameters can be adjusted:

Figure 2.17 Frequency responses for first-order and second-order shelving filters.

Peak Filter

• 2nd order difference equation:

$$y(n) = \frac{H_0}{2} [x(n) - y_1(n)] + x(n).$$

- Offers almost independent control over the 3 musical parameters: fc, fb, G
- Q factor = fb/fc

Delay-based effects

- Example: Vibrato effect
 - Similar to Doppler, the idea that varying the distance (i.e. time delay) will affect the pitch
 - Periodical variation of the time delay produces a periodical pitch variation
 - Need a delay-line and LFO to drive delay time
 - typical params: LFO = 5-->14Hz / Width = 5-->10ms
 - Others effects include flanger, chorus, slapback, echo... Typical delay-based effects.

Delay range (ms) (Typ.)	Modulation (Typ.)	Effect name
020 015 1025 2550 > 50	Sinusoidal Random -	Resonator Flanging Chorus Slapback Echo