Арифметическое сжатие

Напоминание: Вероятностные методы просты, но эффективны только в том случае, когда вероятности появления символов равны числам (1/2)ⁿ (n - любое целое положительное число) — каждому символу алфавита присваивается код с целым числом бит.

Эту проблему решают арифметические методы сжатия.

<u>Идея:</u> Сжимаемая последовательность представляется одним числом (как правило – дробью).

Процедура:

- •последовательно обрабатывается очередной символ сжимаемого текста— на каждом шаге значение дроби уточняется с учетом вероятностного параметра анализируемого символа (нормализация);
- •последовательно восстанавливается каждый символ сжатой последовательности с учетом последнего (конечного) значения дроби и вероятностного параметра извлекаемого символа

Границы интервала

Пример 1. Рассмотрим вычисление дроби на интервале (0, 1). Интервал (0, 1) выбран потому, что он удобен для объяснений. Разбиваем его на подынтервалы с длинами, равными вероятностям (частотам) появления символов в потоке -

диапазоны соответствующих символов **а**і. Пусть n=3.

- Процесс кодирования символов текста начинается со считывания первого символа входного потока (шаг 0) и присвоения ему своего интервала из начального диапазона (0, 1). Этот интервал становится рабочим для следующего этапа т.е. происходит сокращение исходного интервала.
- 1. Считывается второй символ (шаг 1) и присвоивается ему свой интервала из диапазона шага 0. Этот интервал становится рабочим для следующего этапа т.е. опять происходит сокращение исходного интервала (нормализация).

И т.д. Результат – последняя дробь (левая граница интервала).

На каждом шаге і прямого преобразования происходит перерасчет границ интервала:

•
$$H_i = L_{i-1} + (H_{i-1} - L_{i-1}) * H(a_i)_0$$

•
$$L_i = L_{i-1} + (H_{i-1} - L_{i-1}) * L(a_i)_0$$
 (1)

На каждом шаге і обратного пре-я:

• код
$$i = [код (i-1) - L(a_{i-1})_0]/[H(a_{i-1})_0 - L(a_{i-1})_0]$$
 (2)

Пример 2. Известно распределение: **S** – 0,5, **W** – 0,1, **I** – 0,2, **M** – 0,1, «-» 0,1.

Входное сообщение: «SWISS_MISS»

Получим следующие наборы интервалов:

Шаг 1: Процесс кодирования начинается со считывания первого символа входного потока и присвоения ему интервала из начального интервала (0, 1). В данном случае для первого символа **S** получаем интервал (0,5; 1).

Шаг 2: Считывается второй символ — **W**, которому соответствует диапазон ($\mathbf{L}(\mathbf{w})_0 = 0,4$; $\mathbf{H}(\mathbf{w})_0 = 0,5$). Но исходный диапазон (0, 1) уже сократился до (0,5, 1), поэтому символ **W** необходимо представить в этом новом диапазоне (<u>нормализовать</u>): вычислить новые нижнюю и верхнюю границы.

Вычисляем новые нижнюю и верхнюю границы (в соотв. с (1):

- $H_2 = L_1 + (H_1 L_1) * H(w)_0 = 0.5 + (1-0.5) * 0.5 = 0.75$
- $L_2 = L_1 + (H_1 L_1) * L(w)_0 = 0.5 + (1-0.5)*0.4 = 0.7.$

Т.о. :значение 0,4 будет соответствовать значению 0,7, а значение 0,5 — значению 0,75

Шаг 3. Кодируется символ «**I**», для которого **L** (**I**)₀ = 0,2; **H** (**I**)₀ = 0,4:

$$H_3 = L_2 + (H_2 - L_2) * H (I)_0 = 0.7 + (0.75-0.7) * 0.4 = 0.72$$

 $L_3 = L_2 + (H_2 - L_2) * L(I)_0 = 0.7 + (0.75-0.7) * 0.2 = 0.71$

В табл. представлены значения границ при кодировании строки **SWISS_MISS**

Символ		Границы		
S	L	0.0+(1.0-0.0)*0.5=0.5		
	H	0.0 + (1.0 - 0.0) * 1.0 = 1.0		
W	L	0.5+(1.0-0.5)*0.4=0.70		
	H	0.5+(1.0-0.5)*0.5=0.75		
I	L	0.7 + (0.75 - 0.7) * 0.2 = 0.71		
	H	0.7 + (0.75 - 0.7) * 0.4 = 0.72		
S	L	0.71 + (0.72 - 0.71) * 0.5 = 0.715		
	H	0.71+(0.72-0.71)*1.0=0.72		
S	L	0.715+(0.72-0.715)*0.5=0.7175		
	H	0.715 + (0.72 - 0.715) * 1.0 = 0.72		
_	L	0.7175 + (0.72 - 0.7175) * 0.0 = 0.7175		
	H	0.7175 + (0.72 - 0.7175) * 0.1 = 0.71775		
M	L	0.7175+(0.71775-0.7175)*0.1=0.717525		
	H	0.7175 + (0.71775 - 0.7175)*0.2 = 0.717550		
I	L	0.717525+(0.717550-0.717525)*0.4=0.717530		
	H	0.717525+(0.717550-0.717525)*0.5=0.717535		
S	L	0.717530+(0.717535-0.717530)*0.5=0.7175325		
	Н	0.717530+(0.717535-0.717530)*1.0=0.717535		
S	L	0.7175325+(0.717535-0.7175325)*0.5=0.71753375		
	Н	0.7175325+(0.717535-0.7175325)*1.0=0.717535		

- Выходной код (сжатое сообщение) это последнее значение переменной **L** = **0.71753375**.
- Результат кодирования это <u>вещественное число с очень</u> <u>большой точностью</u>.
- Нп, файл объемом 1Мб сжат до 500 Кб, в котором будет записано одно число. Арифметические операции с такими числами реализовать сложно и долго. Поэтому практическая реализация арифметического кодера должна основываться на операциях с целыми числами, которые не должны быть слишком длинными.

Обратное преобразование

На входе:

Статистика: p(S) = 0,5; p(W) = 0,1; p(I) = 0,2; p(M) = 0,1; $p(_) = 0,1$ Шкала (интервалы)

Число: **0.71753375**

• Преобразование

Шаг 1. Число **0.71753375** принадлежит инт-лу (0.5-1) \longrightarrow S

Шаг 2. Интервал (0.5-1) следует преобразовать в стандартный (0-1) и вычислить код второго символа (код 2; в соотв. с (2)):

код 2 = [код 1 - L(S)₀]/[H(S)₀ - L(S)₀] =
$$[0.71753375 - 0.5]/[1-0/5] = 0.4350675 \longrightarrow W$$

Шаг 3. Выполняются вычисления по вышеуказ-му алгоритму:

код 3 =
$$[\text{код 2 - L(W)}_0]/[\text{H(W)}_0 - \text{L(W)}_0] = [4350675 - 0.4]/[0.5-0.4] = 0.350675 \longrightarrow I,$$

T.e.

код i = [код (i-1) - L
$$(a_{i-1})_0$$
]/[H $(a_{i-1})_0$ - L $(a_{i-1})_0$]

Символ	код і-1	код і			
S	0.71753375 - 0.5	= 0.21753375	/ 0.5 = 0.4350675	(w)	
W	0.4350675 - 0.4	= 0.0350675	/ 0.1 = 0.350675	(I)	
I	0.350675 - 0.2	= 0.150675	/ 0.2 = 0.753375	(S)	
S	0.753375 - 0.5	= 0.253375	/ 0.5 = 0.50675	(S)	
S	0.50675 - 0.5	= 0.00675	/ 0.5 = 0.0135	(-)	
	0.0135 - 0	= 0.0135	/ 0.1 = 0.135	(M)	
M	0.135 - 0.1	= 0.035	/ 0.1 = 0.35	(I)	
I	0.35 - 0.2	= 0.15	/ 0.2 = 0.75	(S)	
S	0.75 - 0.5	= 0.25	/ 0.5 = 0.5	(S)	
S	0.5 - 0.5	= 0	/ 0.5 = 0		