- (e1) (7 pts) Compute the expectation of the complete log-likelihood $p(w, y; \mu, \lambda, \beta)$ based on $p(w|y; \mu_{old}, \lambda_{old}, \beta_{old})$. Note that you can simplify the notation using $u_N^{(old)}, \Lambda_N^{(old)}$.
- (e2) (8 pts) Maximize μ, λ, β in (e1) to obtain $\mu_{new}, \lambda_{new}, \beta_{new}$.
- (f) Approximate the posterior p(w|y) with the variational mean-field inference $p(w|y) \approx \prod_{i=1}^{M} q(w_i|y)$.
 - (f1) (7 pts) Find the functional form for $q(w_i|y)$.
 - (f2) (8 pts) Provide fixed-point update equations for their parameters.
- (g) (5 pts) Provide a procedure to perform combined variational inference and learning using the results in (f2) and (e1). Define your notation clearly. [Note: I would encourage you to run computer simulations after the exam to see how this compares against the results obtained by the EM]
- 2. (8 pts) Enumerate and describe the activation functions, as many as you know.
- 3. (6 pts) Use the maxout unit to design the activation function below.

- 4. (8 pts) Enumerate and describe the pooling functions, as many as you know.
- 5. (8 pts) What are the major reasons that contribute to the success of convolutional neural networks?
- 6. (21 pts) For the following algorithm,

Algorithm Policy Iteration .

Initialize $V^{(0)}$ arbitrarily.

for $n = 1, 2, \dots$ until termination condition do.

$$\pi^{(n+1)} = GV^{(n)}$$

$$V^{(n+1)} = \left(T^{\pi^{(n+1)}}\right)^k V^{(n)}, \text{ for integer } k \ge 1. \quad .$$

end

where T^{π} is defined as $[T^{\pi}V](s) = \mathbb{E}_{s'|s,\alpha=\pi(s)}[r+\gamma V(s')]$, and G is a greedy mapping function.

- (a) (6 pts) Show that the value $V^{(n+1)}$ will converge when k is sufficiently large, assuming $\gamma < 1$. (Hint: policy evaluation)
- (b) (6 pts) Show the convergence of $V^{(n+1)}$ assuming $\gamma < 1$, when n is sufficiently large, regardless of k. (Hint: value iteration upon k = 1, and policy iteration upon $k = \infty$)