1.	This problem is motivated from the Introduction section of the Notes circulated last week. Find the area of a unit circle (circle with unit radius), i.e. value of pi
a.	Generate x_i and y_i randomly, each in the range [-1,1] with uniform distribution for i=1,2,n (n=1000) [All these points lie in a square of side 2 units].
b.	For all values of i, check if $x_i^2 + y_i^2 <= 1$ (i.e. the point is within the circle inscribed within the above mentioned square. Think why we used this formula)
C.	if the condition is true, a counter Naccept = Naccept +1 [initial point Naccept=0, number of points lying within a circle]
d.	area of the circle = area of the square * Naccept / n
e.	Repeat steps a-d for M=10 times so that you get 10 values of the "area of the circle";
f.	Plot frequency distribution of area obtained from step "e"
g.	Calculate Mean and Standard Deviation (SD) of this distribution. Use the statistical formula for SD.
h.	In step "e", change the value of M=10, 50, 100, 200, 500, and plot both Mean and Standard Deviation as a function of M [for each M value, you get one value of Mean and SD]