1.5.2 ปริมาณก๊าซเรือนกระจกบรรลุ เป้าหมาย สรุปและการวิเคราะห์ผล

1.5.2 (1) การเปรียบเทียบก๊าซเรือนกระจกรายเดือน

ตารางที่ 1 ปริมาณก๊าซเรือนกระจกรายเดือน

ม.ค.	ก.พ.	มี.ค.	เม.ย.	พ.ค.	ີ່ ມີ.ຍ.	ก.ค.	ส.ค.	ก.ย.	ต.ค.	พ.ย.	ช.ค.	รวม
6,234.9	7,931.53	8,754.18	9,649.62	9,658.25	11,928.86	13,177.85	4,299.69 (สูงที่สุด)	9,587.78	10,509.15	9,124.81	5,947.35 (น้อยที่สุด)	116,804.00

ภาพที่ 1 แผนภูมิแสดงการเปรียบเทียบปริมาณการปล่อยก๊าซเรือนกระจกรายเดือนตลอดปี 2567

จากการวิเคราะห์ข้อมูลการปล่อยก๊าซเรือนกระจกรายเดือนของปี 2567 พบว่า

วิเคราะห์ปริมาณการปล่อยก๊าซเรือนกระจกรายเดือน

O ปริมาณรวมทั้งปี: 116,804.00 kgCO₂e

ค่าเฉลี่ยต่อเดือน: 9,733.67 kgCO₂e

O เดือนที่มีการปล่อยก๊าซเรือนกระจกสูงสุดคือ เดือนสิงหาคม (14,299.69 kgCO $_{f 2}$ e)

O เดือนที่มีการปล่อยก๊าซเรือนกระจกต่ำสุดคือ เดือนธันวาคม (5,947.35 kgCO $_{f 2}$ e)

O ความแตกต่างระหว่างเดือนสูงสุดและต่ำสุดเท่ากับ 8,352.34 kgCO₂e (คิดเป็น 140.44% เพิ่มขึ้นจาก เดือนที่ต่ำสุด)

วิเคราะห์ปริมาณการปล่อยก๊าซเรือนกระจกช่วงครึ่งปีแรก/ช่วงครึ่งปีหลัง

- O ช่วงครึ่งปีแรก (ม.ค.-มิ.ย.) มีแนวโน้มเพิ่มขึ้นอย่างต่อเนื่อง จาก 6,234.90 kgCO₂e ในเดือนมกราคม ถึง 11,928.86 kgCO₂e ในเดือนมิถุนายน (เพิ่มขึ้น 91.33%)
- O ช่วงครึ่งปีหลัง (ก.ค.-ธ.ค.) มีการเพิ่มขึ้นสูงสุดในเดือนสิงหาคม (14,299.69 kgCO₂e) หลังจากนั้นลดลง อย่างมีนัยสำคัญในเดือนกันยายน (9,587.78 kgCO₂e) และค่อยๆ ลดลงจนถึงเดือนธันวาคม (5,947.35 kgCO₂e)

จากการวิเคราะห์ข้อมูล พบว่ามี **ในช่วงกลางปี** การปล่อยก๊าซเรือนกระจกมีแนวโน้มเพิ่มขึ้นและสูงสุด ในช่วงเดือนกรกฎาคมถึงสิงหาคม ซึ่งอาจเกี่ยวข้องกับกิจกรรมที่เพิ่มขึ้นในช่วงนั้น และ**ในช่วงปลายปี** พบว่ามีการ ลดลงอย่างมีนัยสำคัญ โดยเฉพาะในเดือนธันวาคม ซึ่งมีปริมาณการปล่อยก๊าซเรือนกระจกต่ำที่สุดในรอบปี แม้ว่า จำนวนบุคลากรจะคงที่ที่ 18 คนตลอดทั้งปี แต่การปล่อยก๊าซเรือนกระจกมีความผันผวนสูง แสดงให้เห็นว่าปัจจัย หลักที่ส่งผลคือลักษณะการดำเนินกิจกรรมมากกว่าจำนวนบุคลากรภายในสำนักวิทยบริการ

1.5.2 (2) การเปรียบเทียบก๊าซเรือนกระจกตามประเภท 1 และ 2 และ 3

ตารางที่ 2 การปล่อยก๊าซเรือนกระจก สำนักวิทยบริการ มกราคม-ธันวาคม 2567 แยกตามประเภท

ประเภทก๊าซเรือนกระจก	GHG	คิดเป็น	หน่วย	
		ร้อยละ %		
ประเภทที่ 1 (การปล่อยทางตรง)	3.73	3	tCO2e	
การใช้น้ำมันเชื้อเพลิง (Diesel) / การปล่อยสารมีเทน				
จากระบบ septic tank				
ประเภทที่ 2 (การปล่อยทางอ้อมจากการใช้พลังงาน)	110.56	95	tCO2e	
การใช้พลังงานไฟฟ้า				
ประเภทที่ 3 (การปล่อยทางอ้อมอื่นๆ)	2.51	2	tCO2e	
การใช้กระดาษ A4, การใช้น้ำ , ขยะของเสีย(ฝังกลบ)				
รวม	116.80	100	tCO2e	

ภาพที่ 2 แผนภูมิแสดงปริมาณการปล่อยก๊าซเรือนกระจกแยกตามประเภท

ข้อมูลประเภทการปล่อยก๊าซเรือนกระจก มีทั้งหมด 3 ประเภท ได้แก่

ประเภทที่ 1: การปล่อยก๊าซเรือนกระจกทางตรง เช่น การใช้น้ำมันเชื้อเพลิง (Diesel) / การปล่อยสารมีเทนจาก ระบบ septic tank

ประเภทที่ 2: การปล่อยก๊าซเรือนกระจกทางอ้อมจากการใช้พลังงาน เช่น การใช้พลังงานไฟฟ้า

ประเภทที่ 3: การปล่อยก๊าซเรือนกระจกทางอ้อมอื่นๆ เช่น การใช้กระดาษ A4, การใช้น้ำ , ขยะของเสีย(ฝังกลบ)

สรุปการเปรียบเทียบก๊าซเรือนกระจกตามประเภท 1 และ 2 และ 3

- O การปล่อยก๊าซเรือนกระจกส่วนใหญ่ (95%) มาจากการใช้พลังงานไฟฟ้า (ประเภท 2) ซึ่งเป็นแหล่งปล่อย ก๊าซเรือนกระจกหลักของสำนักวิทยบริการ
- O การปล่อยก๊าซเรือนกระจกทางตรง (ประเภท 1) และการปล่อยทางอ้อมอื่นๆ (ประเภท 3) มีสัดส่วน รวมกันเพียง 5% เท่านั้น

จากการวิเคราะห์ข้อมูล พบว่าสำนักวิทยบริการจะบรรลุมาตรการลดการปล่อยก๊าซเรือนกระจก ต้อง มุ่งเน้นการลดการปล่อยก๊าซเรือนกระจก **ประเภทที่ 2 (การปล่อยทางอ้อมจากการใช้พลังงาน) การใช้พลังงาน ไฟฟ้า** เนื่องจากเป็นประเภทที่ปล่อยก๊าซเรือนกระจกที่มีสัดส่วนสูงถึง 95% ของการปล่อยก๊าซเรือนกระจกทั้งหมด

1.5.2 (3) การเปรียบเทียบก๊าซเรือนกระจกตามกิจกรรม

ตารางที่ 3 การปล่อยก๊าซเรือนกระจก สำนักวิทยบริการ มกราคม-ธันวาคม 2567 แยกตามกิจกรรม

กิจกรรม	ปริมาณการปล่อย (kgCO2e)	ร้อยละ		
การใช้พลังงานไฟฟ้า	110,561.69	94.7%		
การปล่อยมีเทนจากระบบ septic tank	1,923.26	1.6%		
การใช้น้ำมัน Diesel สำหรับการเดินทาง	1,516.87	1.3%		
ขยะของเสีย (ฝังกลบ)	2,251.56	1.9%		
การใช้กระดาษ A4 และ A3 (สีขาว)	257.50	0.2%		
การปล่อยมีเทนจากบ่อบำบัดน้ำเสียแบบไร้อากาศ	243.13	0.2%		
การใช้สารดับเพลิง (CO2)	50.00	0.04%		
จำนวนคนปี 2567	216.00	0.2%		
รวมทั้งสิ้น	116,804.00	100%		

ภาพที่ 3 แผนภูมิแสดงปริมาณการปล่อยก๊าซเรือนกระจกแยกตามกิจกรรม

ภาพที่ 4 แผนภูมิแสดงปริมาณการปล่อยก๊าซเรือนกระจกแยกตามกิจกรรม

สรุปการเปรียบเทียบก๊าซเรือนกระจกตามกิจกรรม

- 1. การใช้พลังงานไฟฟ้า เป็นกิจกรรมที่ปล่อยก๊าซเรือนกระจกมากที่สุด คิดเป็น 94.7% ของการปล่อยทั้งหมด เฉลี่ย 9,213.47 kgCO2e ต่อเดือน
 - O เดือนที่มีการปล่อยสูงสุด: สิงหาคม (13,351.40 kgCO2e)
 - O เดือนที่มีการปล่อยต่ำสุด: มกราคม (5,807.10 kgCO2e)
 - O มีแนวโน้มการปล่อยสูงในช่วงเดือนมิถุนายน-กันยายน ซึ่งเกี่ยวข้องกับการเปิดภาคการศึกษาและการใช้ เครื่องปรับอากาศในช่วงฤดูร้อน
- **2. ขยะของเสีย (ฝังกลบ)** เป็นกิจกรรมที่ปล่อยก๊าซเรือนกระจกมากเป็นอันดับสอง คิดเป็น 1.9% เฉลี่ย 187.63 kgCO2e ต่อเดือน
 - เริ่มมีข้อมูลตั้งแต่เดือนเมษายนเป็นต้นไป
 - O เดือนที่มีการปล่อยสูงสุด: สิงหาคม (450.08 kgCO2e) สอดคล้องกับเดือนที่มีผู้ใช้บริการหนาแน่น

- **3. การปล่อยมีเทนจากระบบ septic tank** คิดเป็น 1.6% ของการปล่อยทั้งหมด เฉลี่ย 160.27 kgCO2e ต่อ เดือน
 - มีการปล่อยค่อนข้างสม่ำเสมอตลอดทั้งปี
 - O เดือนที่มีการปล่อยสูงสุด: มกราคม และ สิงหาคม (181.44 kgCO2e)
- **4. การใช้น้ำมัน Diesel สำหรับการเดินทาง** คิดเป็น 1.3% ของการปล่อยทั้งหมด เฉลี่ย 126.41 kgCO2e ต่อ เดือน
 - O เดือนที่มีการปล่อยสูงสุด: สิงหาคม (278.14 kgCO2e)
- **5. กิจกรรมอื่นๆ** รวมกันคิดเป็นประมาณ 0.5% ของการปล่อยทั้งหมด ได้แก่:
 - O การใช้กระดาษ A4 และ A3 (0.2%)
 - การปล่อยมีเทนจากบ่อบำบัดน้ำเสียแบบไร้อากาศ (0.2%)
 - O การใช้สารดับเพลิง CO2 (0.04%)

จากการวิเคราะห์ข้อมูล พบว่าการใช้พลังงานไฟฟ้าเป็นแหล่งที่มาหลักของการปล่อยก๊าซเรือนกระจกใน สำนักวิทยบริการ ดังนั้น มาตรการลดการปล่อยก๊าซเรือนกระจกควรมุ่งเน้นที่การลดการใช้พลังงานไฟฟ้าเป็นหลัก นอกจากนี้ ยังควรให้ความสำคัญกับการจัดการขยะและระบบบำบัดน้ำเสีย ซึ่งแม้จะมีสัดส่วนน้อยแต่ก็มีผลกระทบ ต่อการปล่อยก๊าซเรือนกระจกเช่นกัน

<u>กรณีไม่บรรลูเป้าหมาย</u>

(1) มีการวิเคราะห์สาเหตุ

จากข้อมูลในรายงานสรุปการปล่อยก๊าซเรือนกระจก พบสาเหตุสำคัญที่ทำให้ไม่สามารถบรรลุเป้าหมาย การลดการปล่อยก๊าซเรือนกระจกได้ นั้นก็คือการใช้พลังงานไฟฟ้าซึ่งมีสัดส่วนสูงถึง 94.7% หรือ เท่ากับ 110,561.69 kgCO₂e ของการปล่อยก๊าซเรือนกระจกทั้งหมด โดยมีสาเหตุ ดังนี้

การใช้มิเตอร์ไฟฟ้าร่วมกับหน่วยงานอื่น

- O สำนักวิทยบริการใช้มิเตอร์ไฟฟ้าร่วมกับอีก 6 หน่วยงานในพื้นที่มรุกขนคร มหาวิทยาลัยนครพนม
- O สำนักวิทยบริการไม่สามารถควบคุมการใช้ไฟฟ้าได้โดยตรง แม้จะดำเนินมาตรการลดการพลังงานไฟฟ้า อย่างรัดกุมก็ตาม
- O การคำนวณปริมาณการใช้ไฟฟ้าทำได้เพียงการประมาณการจากส่วนแบ่งค่าไฟฟ้าที่สำนักวิทยบริการต้อง รับผิดชอบ

(2) แนวทางการแก้ไขในกรณีที่ไม่บรรลุเป้าหมาย การจัดการปัญหาการใช้มิเตอร์ไฟฟ้าร่วมกัน

- O ติดตั้งมิเตอร์ไฟฟ้าย่อย (Sub-meter) เฉพาะสำหรับสำนักวิทยบริการ เพื่อให้วัดปริมาณการใช้ไฟฟ้าได้ อย่างแม่นยำ
- O พัฒนาระบบติดตามการใช้ไฟฟ้า โดยใช้เทคโนโลยี IoT เพื่อให้ทราบปริมาณการใช้ไฟฟ้าแบบเรียลไทม์ การใช้พลังงานทดแทน
- O ติดตั้งระบบผลิตไฟฟ้าจากพลังงานแสงอาทิตย์ (Solar Rooftop) บนหลังคาของสำนักวิทยบริการ
 - O ส่งเสริมให้มีการคัดแยกขยะให้มีประสิทธิภาพมากขึ้น
 - O ส่งเสริมกิจกรรมการอ่าน การเรียนรู้ สร้างควรตระหนักในการคัดแยกขยะ
 - ว ถึงแม้จะมีสัดส่วนน้อยเมื่อเทียบกับการใช้พลังงานไฟฟ้า แต่เป็นแหล่งปล่อยก๊าซเรือนกระจกที่มี
 ความสำคัญอันดับรองลงมา

(3) การติดตามผลหลังการแก้ไข

การติดตามผลการแก้ไขปัญหาการปล่อยก๊าซเรือนกระจกของสำนักวิทยบริการจำเป็นต้องมุ่งเน้นที่การ แยกมิเตอร์ไฟฟ้าเป็นอันดับแรก เนื่องจากการใช้มิเตอร์ร่วมกับ 6 หน่วยงานอื่น ทำให้ไม่สามารถได้ข้อมูลการใช้ ไฟฟ้าที่แท้จริง ส่งผลให้การวางแผนและประเมินประสิทธิภาพของมาตรการต่างๆ ทำได้ยาก กระบวนการติดตาม ผล จึงควรเริ่มจากการติดตั้งมิเตอร์ย่อยเฉพาะของสำนักวิทยบริการ เพื่อให้สามารถเก็บข้อมูลการใช้ไฟฟ้าที่แม่นยำ ซึ่งจะเป็นพื้นฐานสำคัญในการวัดประสิทธิภาพของมาตรการลดการใช้พลังงาน การวางแผนการใช้ไฟฟ้าให้ สอดคล้องกับจำนวนผู้ใช้บริการในแต่ละช่วงเวลา และการประเมินผลสัมฤทธิ์ของการดำเนินงานด้านการลดการ ปล่อยก๊าซเรือนกระจก เมื่อมีข้อมูลที่แท้จริงแล้ว สำนักวิทยบริการจะสามารถกำหนดเป้าหมายที่ชัดเจน ปรับปรุง มาตรการให้ตรงจุด และสามารถพิสูจน์ผลลัพธ์ของการดำเนินงานได้อย่างเป็นรูปธรรม ซึ่งจะนำไปสู่การพัฒนาแนว ทางการลดการปล่อยก๊าซเรือนกระจกที่มีประสิทธิภาพต่อไป

หมายเหตุ

ตารางที่ 4 จำนวนผู้เข้าใช้บริการภายในสำนักวิทยบริการ รายเดือน ประจำปี 2567

ใช้ประกอบการวิเคราะห์ข้อมูลการใช้พลังงานไฟฟ้าร่วมกับจำนวนผู้เข้าใช้บริการภายในสำนักวิทยบริการ

ม.ค.	ก.พ.	มี.ค.	เม.ย.	พ.ค.	ື່ມ.ຍ.	ก.ค.	ส.ค.	ก.ย.	ମ .ନ.	พ.ย.	ช.ค.	รวม
5,692	6,418	6,435	3,087	4,104	6,075	9,055	11,741	9,085	6,889	5,583	9,793	83,954

การคำนวณค่าไฟฟ้าในพื้นที่มรุกขนคร มหาวิทยาลัยนครพนม

ในพื้นที่มรุกขนคร มหาวิทยาลัยนครพนม มีการใช้มิเตอร์ไฟฟ้า (หม้อไฟฟ้า) ร่วมกันระหว่าง 6 หน่วยงาน ได้แก่:

- คณะครุศาสตร์รวมกับโรงเรียนสาธิตแห่งมหาวิทยาลัยนครนพม พนมพิทยพัฒน์
- คณะศิลปศาสตร์และวิทยาศาสตร์
- วิทยาลัยการบินนานาชาติ
- สำนักวิทยบริการ
- สถาบันวิจัยและพัฒนา
- สำนักงานอธิการบดีหลังใหม่

เนื่องจากมีการใช้มิเตอร์ไฟฟ้าร่วมกันกับหน่วยงานอื่น ๆ ทำให้สำนักวิทยบริการไม่สามารถควบคุมปริมาณ การใช้ไฟฟ้าได้โดยตรง ส่งผลให้ถึงแม้ว่าจะดำเนินงานภายใต้มาตรการลดการปล่อยก๊าซเรือนกระจกอย่าง รัดกุม แต่ไม่สามารถวัดประสิทธิภาพได้ เนื่องจากปัจจัยภายนอกที่ควบคุมไม่ได้

วิธีการคำนวณค่าไฟฟ้าสำหรับสำนักวิทยบริการ

- ใช้อัตราค่าไฟฟ้าต่อหน่วยคงที่ (ตามที่สำนักวิทยบริการตกลงกันไว้)
- O นำค่าไฟฟ้าที่สำนักวิทยบริการต้องรับผิดชอบร่วมจ่ายไปในแต่ละเดือน มาหารอัตราค่าไฟฟ้าต่อหน่วยคงที่ ที่เรากำหนด
- ผลลัพธ์ที่ได้คือ ปริมาณการใช้ไฟฟ้าของสำนักวิทยบริการ (จำนวนหน่วย)

สูตรคำนวณ:

ปริมาณการใช้ไฟฟ้าของสำนักวิทยบริการ (หน่วย) = จำนวนเงินค่าไฟที่สำนักวิทยบริการต้องรับผิดชอบ ÷ อัตราค่าไฟต่อหน่วย