FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuștean, Alexandra Otiman, Andrei Sipoș

Seminar 8

(S8.1) Să se arate că pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \text{ si } \Gamma \cup \{\neg\psi\} \vdash \varphi \ \Rightarrow \ \Gamma \vdash \varphi.$$

(S8.2) Să se arate, folosind substituția, că formula

$$\chi := (((v_0 \to \neg(v_3 \to v_5)) \to v_6) \land (\neg(v_4 \to v_{10}) \to v_2)) \to ((v_0 \to \neg(v_3 \to v_5)) \to v_6)$$
este tautologie.

(S8.3)

- (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
- (ii) Găsiți o mulțime infinită de formule care nu este semantic echivalentă cu nicio mulțime finită de formule.

Definiția 1. Un graf (neorientat) este o pereche (X, E) unde X e o mulțime și E este o relație ireflexivă și simetrică pe X. Spunem că un graf (X, E) este finit (respectiv numărabil) dacă X este finită (respectiv numărabilă).

Definiția 2. Fie (X, E) un graf și $k \in \mathbb{N}$. O k-colorare a lui (X, E) este o funcție $c: X \to \{0, ..., k-1\}$ astfel încât pentru orice $x, y \in X$ cu $(x, y) \in E$ avem $c(x) \neq c(y)$. Spunem că (X, E) este k-colorabil dacă există o k-colorare a lui (X, E).

Definiția 3. Fie (X, E), (X', E') grafuri. Spunem că (X', E') este subgraf al lui (X, E) dacă $X' \subseteq X$ și $E' \subseteq E$.

(S8.4) Fie (X, E) un graf numărabil şi $k \in \mathbb{N}$. Arătaţi că dacă orice subgraf finit al lui (X, E) este k-colorabil, avem că şi (X, E) este k-colorabil.