MathorCup 全球大学生数学建模挑战赛

暨 CAA 世界大学生数学建模竞赛

D 题 图像去噪中几类稀疏变换的矩阵表示

假设一幅二维灰度图像 X 受到加性噪声的干扰: Y = X + N , Y 为观察到的噪声图像 N 为噪声。通过对于图像 Y 进行稀疏表示可以达到去除噪声的目的。任务:

1. 将图像Y分割为相互重叠的小块 $\left\{Y_{ij}\right\}$,对于讨论 $Y_{ij}(\sqrt{m}\times\sqrt{m})$ 四类稀疏变换的矩阵表示: 离散余弦变换(DCT),离散小波变换(DWT,用 DB4 小波),主成分分析(PCA)和奇异值分解(SVD)。分为以下两种形式:

(a)
$$(Y_{ij})_{\sqrt{m}\times\sqrt{m}} = U_{\sqrt{m}\times\sqrt{m}}D_{\sqrt{m}\times\sqrt{m}}V_{\sqrt{m}\times\sqrt{m}};$$

(b)
$$(Y_{ij})_{m \times 1} = D_{m \times k} \alpha_{k \times 1}$$
 (将 Y_{ij} 堆垒为列向量的形式);

其中,下标为矩阵或者列向量的行列数。

- 2. 利用 Cameraman 图像中的一个小图像块(见图 1)进行验证。
- 3. 分析稀疏系数矩阵,比较四种方法的硬阈值稀疏去噪性能,并提出可能的新的稀疏去噪方法。

10	13	12	26	82	142	171	173
5	9	31	68	127	174	163	128
8	17	63	117	160	178	133	73
26	57	113	160	156	128	82	37
56	106	154	178	130	68	34	15
99	156	154	126	79	34	15	10
135	181	131	62	30	14	10	13
139	128	80	30	13	10	9	13

28	14	8	29	79	153	170	190
0	6	22	87	125	179	156	129
29	2	64	107	157	182	146	76
26	48	102	172	158	127	80	44
59	94	151	177	123	66	27	16
100	149	146	142	77	22	23	0
138	180	136	60	37	11	16	29
136	127	84	36	18	7	12	9

图 1 实验图像,第一行表示 Cameraman 图像及其噪声干扰图像(高斯噪声,标准偏差为 10); 第二行表示上述两幅图像相同位置的一个图像小块(行数: 144-151,列数: 167-174),数 字为对应位置像素的灰度值。