The iodine Satellite (iSAT)

7th Annual Government CubeSat TIM
5/12/2015
John Dankanich

Category A: Approved for Public Release – Distribution Unlimited

iSAT Mission Concept Overview

The iSAT Project is the maturation of iodine Hall technology to enable high ΔV primary propulsion for NanoSats (1-10kg), MicroSats (10-100kg) and MiniSats (100-500kg) with the culmination of a technology flight demonstration.

- NASA Glenn is leading the technology development and is the flight propulsion system lead
 - Busek delivering the qualification and flight system hardware
- NASA MSFC is leading the flight system development and operations

The iSAT Project launches a small spacecraft into low-Earth orbit to:

- Validate system performance in space
- Demonstrate high ΔV primary propulsion
- Reduce risk for future higher class iodine missions
- Demonstrate new power system technology for SmallSats
- Demonstrate new class of thermal control for SmallSats
- Perform secondary science phase with contributed payload
 - Increase expectation of follow-on SMD and AF missions
- Demonstrate SmallSat Deorbit
- Validate iodine spacecraft interactions / efficacy

The SmallSat Market

Nano/Microsatellite Launch History and Projection (1 - 50 kg)

Projections based on announced and future plans of developers and programs indicate between 2,000 and 2,750 nano/microsatellites will require a launch from 2014 through 2020

The Full Market Potential dataset is a combination of publically announced launch intentions, market research, and qualitative/quantitative assessments to account for future activities and programs. The SpaceWorks Projection dataset reflects SpaceWorks' expert value judgment on the likely market outcome.

Why Iodine?

Today's SmallSats have limited propulsion capability and most spacecraft have none

- The State of the Art is cold gas propulsion providing 10s of m/s ΔV
- No solutions exist for significant altitude or plane change, or de-orbit from high altitude
- SmallSat secondary payloads have significant constraints
 - · No hazardous propellants allowed
 - Limited stored energy allowed
 - Limited volume available
 - Indefinite quiescent waiting for launch integration

lodine is uniquely suited for SmallSat applications

- Iodine electric propulsion provides the high ISP * Density (i.e. ΔV per unit volume)
 - 1U of iodine on a 12U vehicle can provide more than 5 km/s ΔV
 - Enables transfer to high value operations orbits
 - Enables constellation deployment from a single launch
 - Enables de-orbit from high altitude deployment (ODAR Compliance)
 - Iodine enables > 10km/s for ESPA Class Spacecraft
 - GTO deployment to GEO, Lunar Orbits, Near Earth Asteroids, Mars and Venus
 - Reduces launch access by 90%
 - Reduces mission life cycle cost by 30 80%
- Iodine is a solid at ambient conditions, can launch unpressurized and sit quiescent indefinitely

The technology leverages high heritage xenon Hall systems

- All systems currently at TRL 5 with maturation funded to achieve TRL 6 in FY16
- The iSAT System is planned for launch readiness in early 2017

Iodine vs. Alternatives

Propellant	Storage Density	Boiling Point, °C	Melting Point, °C	Vapor Pressure @ 20°C
Xe (SOA)	1.6 g/cm ³	-108.1 °C	-111.8 °C	Supercritical (>15MPa)
Iodine	4.9 g/cm ³	184.3 °C	113.7 °C	40 Pa (0.0004 atm)
Bismuth	9.8 g/cm ³	1,564 °C	271.4 °C	Solid
Magnesium	1.74 g/cm ³	1,091 °C	650 °C	Solid

Iodine has unique characteristics well suited for mission application

Microsatellite Advantages

Primary mission advantages are due to 1) Increased I_{SP} * Density

2) Low storage pressure

lodine allows very small tanks with manufacturing advantages.

SmallSat Applications: USASMDC / ARSTRAT

Low Cost

- Per-Unit Cost Very Low
- Enables Affordable Satellite Constellations
- Minimal Personnel and Logistics Tail
- Frequent Technology Refresh

Survivability

- Fly Above Threats and Crowded Airspace
- Rapid Augmentation and Reconstitution
- Very Small Target

Responsiveness

- Short-Notice Deployment
- Tasked from Theater
- Persistent and Globally Available
- Can Adapt to the Threat

Geocentric MicroSat Application

Large increase in demand for MicroSat constellations and in-space responsive capabilities.

- The 12U with 5kg of iodine can perform 4km/s ΔV
 - 20,000km altitude change
 - 30° inclination change from LEO
 - 80° inclination change from GEO
- Larger spacecraft can perform even greater ΔV

iSAT Mass Estimation List - 12U LEO	Basic Mass (kg)	MGA (%)	MGA (kg)	Predicted Mass (kg)
1.0 Structures	1.601	30%	0.480	2.081
2.0 M echanisms	0.100	30%	0.030	0.130
3.0 Thermal	0.334	30%	0.100	0.434
4.0 Power	2.052	30%	0.616	2.668
5.0 Guidance Navigation & Control	1.518	10%	0.152	1.670
6.0 Communications	0.090	6.00%	0.005	0.095
7.0 Command and Data Handling	0.324	16%	0.053	0.377
8.0 Propulsion	3.846	25%	0.965	4.811
Dry M ass	9.864	24%	2.401	12.265
9.0 Payload	2.000	30%	0.600	2.600
10.0 Non-Propellant Fluids	0.000	0%	0.000	0.000
Inert Mass	11.864	25%	3.001	14.865
11.0 Propellant (Solid Iodine)	5.135		0.000	5.135
iSAT 12U LE O Total Mass	16.999		3.001	20.000

iSAT Mission Requirements

- \triangleright Demonstrate no less than 100m/s of ΔV
- Determine thrust within 5% uncertainty
- Determine specific impulse within 10% uncertainty
- Perform propulsion altitude change of no less than 250km
- Perform propulsive node change
- Demonstrate no less than 80 hrs of thruster operation *Nearly 2x TacSat-2
- Include instruments to assess thruster plume environment
 *Radiometer from TacSat-2
- Include instruments to assess future payloads environment
 *Photometer from TacSat-2
- De-orbit the spacecraft in less than 90 days following end of mission

iSAT will be the first CubeSat to demonstrate significant post launch maneuverability.

iSAT Propulsion System

BHT-200-I Thruster:

- Heritage to TacSat-2
 - Most studied thruster since SPT-100
- Material changes for iodine compatibility

Cathode:

Electric Cathode

- Minimize power requirements

- 3rd PPU iteration ongoing
- Based on BPU-600
 - 80% Mass reduction
 - 90% Volume reduction
- Initiated under AF ORS SBIR

Feed System and DCIU

(Applicable to future iodine systems)

 Propellant sublimes at low temperature (<100C) to become low pressure (~50 torr) gas source

Iodine PFCV

iSAT CONOPS

Launch in a PSC 12U Deployer on NRO (TBD)
Launch Vehicle (Atlas V)

- Eject from PSC 12U Deployer
- Unfold Solar Arrays
- Checkout/Activation Process

Perform Propulsive Altitude Change

Perform Propulsive Inclination Change

Project Schedule / Milestones

> CDR: Summer, 2015

➤ SIR: Spring, 2016

> TRR: Summer, 2016

> PSR: Spring, 2017

Launch: Fall, 2017 (TBD)

Design Evolution

Bus Future Use

- > The iSAT spacecraft leverages a high performance integrated bus solution in a 12U Package
 - > 100W Solar Array
 - Thermal solution for high power density small spacecraft
 - Large suite of avionics I/O capability
 - Full ACS System with Star Trackers, Reaction Wheels, Mag Torquers, IMU, etc.
 - ➤ Power system for >200W >10min power bursts at 28V

In addition to the propulsion, the bus has future mission applicability.

Summary

- Propulsion remains a key limiting capability for SmallSats that iodine can address
 - \triangleright High I_{SP} * Density (\triangle V per volume)
 - ➤ Indefinite quiescence, unpressurized and non-hazardous as a secondary payload
- The iSAT project is a fast pace high value iodine Hall technology demonstration mission
 - Partnership with NASA GRC and NASA MSFC with industry partner Busek
 - Air Force SMC Sponsored Contract to Busek
 - Aerospace Corporation contributed cameras
 - AFRL contributed instrumentation
 - Delivery for launch spring of 2017
- Preliminary system-level testing complete with SPRITE and additional testing throughout life-cycle development
 - Long duration thruster testing at NASA GRC in May 2015
- ➤ The project has successfully passed mission PDR and is heading towards CDR summer 2015
- > Both the propulsion system and the spacecraft bus have significant future mission potential

Questions?

Backup

iSAT Project Overview

Mission Justification

There is an emerging and rapidly growing market for SmallSats

- SmallSats are significantly limited by primary propulsion
 - Desire to transfer to higher value science / operations orbit and responsive space
 - Desire to extend mission life / perform drag make-up
 - Requirement to deorbit within 25 years of end-of-mission

Limitations on SmallSats limit primary propulsion options

- Requirements imposed by nature of secondary payloads
 - Limitations for volume, mass and power
 - Limitations on hazardous and stored energy from propellants
 - Limitations for high pressure systems
 - Systems must sit quiescent for unknown periods before integration with primary

Why perform flight validation?

- Reduce risk of implementation of iodine for future higher class missions
- Gain experience with condensable propellant spacecraft interactions
- Reduce risk of custom support systems
 - Power generation, storage and distribution
 - Thermal control
- Cost effective risk reduction before maturing higher power systems

System Schematic

Communications

(PDR Design – Currently S-Band Only)

Baseline data volume ~6000 Mbytes/day - science payload generating 98% of the data Baseline to use Near-Earth-Network; only 3/15 stations for the baseline

193 minutes of ground contact per day, assumes access for one-third of the available time conservatively estimate 64 minutes for data transfer

The data transfer requirement 12.7 Mbps leads to S-BD uplink and X-BD downlink architecture.

The stations chosen all have both S-BD and X-BD

PULSAR Radio

Material Testing - Literature

Iodine Vapor Literature Search

A literature search for iodine vapor interaction found two sources that qualitatively and in some cases quantitatively documented the resistance of various materials to iodine.

Systems	Metal or Alloy	Base Elements	Dry Iodine Vapor @ 25 °C	Dry Iodine Vapor @ 100 ° C	Dry Iodine Vapor @ 300 °C, 0.53 atm (Corrosion Rate mm/year)	Dry Iodine Vapor @ 450 °C, 0.53 atm (Corrosion Rate mm/year)
Nichal	Pure Nickel	Ni	Resistant	Resistant	0.27	1.2
Nickel	Inconel 600	Ni-Cr-Fe	Resistant	Resistant	0.107	0.54
Alloys	Inconel 625	Ni-Cr-Mo	Resistant	Resistant	0.057	No Data
Noble	Pure Platinum	Pt	Resistant	Resistant	0	0.006
Metals	Pure Gold	Au	Resistant	Resistant	0	0.024
Refractory Metals	Pure Tungsten	W	Resistant	Resistant	0	0.008
	Pure Molybdenum	Mo	Resistant	Resistant	0.003	0.033
Metals	Pure Tantalum	Ta	Resistant	Resistant	0.005	0.88
Aluminum	Pure Aluminum	A1	Unusable	Unusable	Unusable	Unusable
Copper	Pure Copper	Cu	Resistant	Unusable	Unusable	Unusable
Alloys	Brass	Cu-Zn	Resistant	Unusable	Unusable	Unusable
Iron Allloys	Iron, Cast Iron, Steel	Fe	Resistant	Unusable	Unusable	Unusable
	Enamelled Cast Iron	Fe + Duran or Pyrex	Resistant	Resistant to 200 °C	Unusable	Unusable
	316 Stainless Steel	Fe-Cr-Ni	Resistant	Resistant	0.4 Est.*	2.1
	304 Stainless Steel	Fe-Cr-Ni	Resistant	Resistant	0.6 Est.*	3.2

^{*} Estimated corrosion rate at 300 °C based on extrapolation from 450 °C data

Limited relevant data in the literature.

Material Testing – MSFC Matrix

Sample Matrix for Iodine Exposure Testing

Material Category	Material Identification	Test Specimen ID	
	304 Stainless Steel	S3	
Steel Alloys	316 Stainless Steel	S6	
	4130 Alloy Steel	S4	
	6061 Aluminum	A6	
Aluminum Alloys	7075 Aluminum	A7	
	7075 Aluminum, Anodized	AA	
Copper Alloys	110 Copper	CU	
	Brass	C2	
Titanium Alloys	Titanium 6-Al-4V	Т6	
	Commercially Pure Ti	TI	
	Buna-N	BN	
D 1	Viton	VT	
Polymers	Teflon	TF	
	Kapton Tape	KP	
Composites	Carbon Fiber Composite	CC	
Glass	Plate Glass	GL	
S	Populated Circuit Board	EC	
Circuit Boards &	Potting Compound	PC	
Electronic Materials	Arathane 5750LV Conformal Coating	AC	