THE ISOMETRIC REPRESENTATION THEORY OF A PERFORATED SEMIGROUP

IAIN RAEBURN and SEAN T. VITTADELLO

Communicated by Kenneth R. Davidson

ABSTRACT. We consider the additive subsemigroup $\Sigma:=\mathbb{N}\setminus\{1\}$ of \mathbb{N} , and study representations of Σ by isometries on Hilbert space with commuting range projections. Our main theorem says that each such representation is unitarily equivalent to the direct sum of a unitary representation, a multiple of the Toeplitz representation on $\ell^2(\Sigma)$, and a multiple of a representation by shifts on $\ell^2(\mathbb{N})$. We consider also the C^* -algebra $C^*(\Sigma)$ generated by a universal isometric representation with commuting range projections, and use our main theorem to identify the faithful representations of $C^*(\Sigma)$ and prove a structure theorem for $C^*(\Sigma)$.

KEYWORDS: Perforated semigroup, isometric representation, Wold decomposition.

MSC (2000): 47D05, 47B35.

INTRODUCTION

Coburn proved in 1967 that all C^* -algebras generated by non-unitary isometries are canonically isomorphic [1]. Coburn's result can be viewed as a theorem about the isometric representations of the semigroup $\mathbb N$, and this theorem has been generalised to other semigroups: to the positive cones of ordered subgroups of $\mathbb R$ by Douglas [2], to the positive cones of totally ordered abelian groups by Murphy [5], and to amenable quasi-lattice ordered groups by Nica [6] and Laca-Raeburn [4].

On the other hand, Murphy [5] and Jang [3] have proved that this theorem does not hold for the semigroup $\Sigma := \mathbb{N} \setminus \{1\}$, by writing down explicit isometric representations S on $\ell^2(\mathbb{N})$ and T on $\ell^2(\Sigma)$ such that $C^*(S)$ is not canonically isomorphic to $C^*(T)$. Here we explore this phenomenon by analysing the isometric representations of Σ , and investigating the structure of the C^* -algebras they generate. Our main result says that every isometric representation of Σ with commuting range projections is equivalent to a direct sum of a unitary representation, a multiple of S, and a multiple of T. The assumption that the range projections

commute is a standard one in the area: it is automatic for the positive cones of total orders, and for quasi-lattice ordered groups it is a consequence of the Nica covariance condition used in [6] and [4].

We begin in Section 1 by describing the class of isometric representations of interest to us. We set up our conventions, particularly concerning the two main examples S and T, and establish some basic properties of isometric representations. We prove our main theorem in Section 2. Our main strategy is to analyse how the isometry V_3 interacts with the Wold decomposition of the isometry V_2 . In Section 3 we consider the C^* -algebra $C^*(\Sigma)$ generated by a universal isometric representation with commuting range projections. We use our main theorem to obtain criteria which ensure that a given representation of $C^*(\Sigma)$ is faithful, and describe the structure of $C^*(\Sigma)$ in terms of the usual Toeplitz algebra $\mathcal{T} = C^*(\mathbb{N})$.

1. ISOMETRIC REPRESENTATIONS OF Σ

Throughout this paper, $\mathbb N$ denotes the additive semigroup of non-negative integers (including 0), and Σ denotes the subsemigroup $\mathbb N\setminus\{1\}$. An *isometric representation of* Σ *on a Hilbert space* $\mathcal H$ *with commuting range projections* is a map $V:\Sigma\to \mathcal B(\mathcal H)$ such that each V_n is an isometry, such that $V_{m+n}=V_mV_n$, and such that the range projections $V_nV_n^*$ commute with each other.

We have two main examples in mind.

EXAMPLE 1.1. Let $\{e_{\Sigma,p}:p\in\Sigma\}$ be the usual orthonormal basis for $\ell^2(\Sigma)$. For each $n\in\Sigma$, the set $\{e_{\Sigma,n+p}:p\in\Sigma\}$ is also orthonormal, and hence there is an isometry T_n on $\ell^2(\Sigma)$ such that $T_ne_{\Sigma,p}=e_{\Sigma,n+p}$. It is easy to check that $T_mT_n=T_{m+n}$, and that the range projections commute. We call T the *Toeplitz representation* of Σ .

EXAMPLE 1.2. Let R be the unilateral shift on $\ell^2(\mathbb{N})$, and define $S: \Sigma \to B(\ell^2(\mathbb{N}))$ by $S_n = R^n$. In terms of the usual orthonormal basis $\{e_{\mathbb{N},p}\}$, S_n is characterised by $S_n e_{\mathbb{N},p} = e_{\mathbb{N},n+p}$. Then S is an isometric representation with commuting range projections. (The letter S reminds us that the operators S_n are shifts.)

Murphy and Jang observed that these two representations are not unitarily equivalent. To see this, we just need to note that

$$T_3^*(1-T_2T_2^*)T_3(e_{\Sigma,0})=e_{\Sigma,0},$$

so that $T_3^*(1-T_2T_2^*)T_3$ is non-zero, whereas $S_3^*(1-S_2S_2^*)S_3=0$. (In the proof of Theorem 2.1 it will become clear why we looked at this operator.)

We now investigate general properties of an isometric representation $V: \Sigma \to B(\mathcal{H})$ with commuting range projections. The first and crucial property is that $V_3^2 = V_2^3$, because both are equal to V_6 .

For $m,n\in\Sigma$ such that m-n is also in Σ , the relation $V_m=V_nV_{m-n}$ allows us to cancel $V_n^*V_m=V_{m-n}$ and $V_m^*V_n=V_{m-n}^*$. While we cannot expect to cancel expressions like $V_n^*V_{n+1}$, there are interesting and useful relationships among these elements. We often use the next lemma without comment.

LEMMA 1.3. We have
$$V_3^*V_2^2 = V_2^*V_3$$
 and $V_2^{*2}V_3 = V_3^*V_2$.

Proof. Since the second equation is the adjoint of the first, it suffices to compute

$$V_3^*V_2^2 = V_3^*(V_3^*V_3)V_2^2 = V_3^{*2}V_3V_2^2 = V_2^{*3}V_2^2V_3 = V_2^*V_3. \quad \blacksquare$$

The assumption that the range projections commute implies that there are many other commuting projections around. For example:

LEMMA 1.4. For every $k, n \in \Sigma$, $V_k^* V_n V_n^* V_k$ is a projection which commutes with every range projection $V_m V_m^*$.

Proof. The elements $V_k^* V_n V_n^* V_k$ are certainly self-adjoint, and

$$(V_k^*V_nV_n^*V_k)^2 = V_k^*(V_nV_n^*)V_kV_k^*V_nV_n^*V_k = V_k^*(V_kV_k^*)(V_nV_n^*)^2V_k = V_k^*V_nV_n^*V_k,$$

so they are projections. Then

$$(V_k^* V_n V_n^* V_k)(V_m V_m^*) = V_k^* V_n V_n^* V_{m+k} V_{m+k}^* V_k = V_k^* V_{m+k} V_{m+k}^* V_n V_n^* V_k$$
$$= (V_m V_m^*)(V_k^* V_n V_n^* V_k). \quad \blacksquare$$

Since the semigroup Σ is generated by 2 and 3, it is natural to ask which pairs of isometries W_2 and W_3 generate an isometric representation of Σ .

PROPOSITION 1.5. Suppose that W_2 and W_3 are commuting isometries on \mathcal{H} such that $W_2^3 = W_3^2$ and $W_2W_2^*$ commutes with $W_3W_3^*$. Then there is an isometric representation $V: \Sigma \to \mathcal{B}(\mathcal{H})$ with commuting range projections such that $V_2 = W_2$ and $V_3 = W_3$.

Proof. It is straightforward to check that the formula $V_{2p+3j} = W_2^p W_3^j$ gives a well-defined map of Σ into $B(\mathcal{H})$ such that each V_n is an isometry and $V_m V_n = V_{m+n}$. So we have to prove that the range projections commute. We begin by showing that $V_4 V_4^* = V_2^2 V_2^{*2}$ commutes with $V_3 V_3^*$:

$$\begin{split} (V_2^2V_2^{*2})(V_3V_3^*) &= V_2^*(V_2^3V_2^{*3})(V_2V_3)V_3^* = V_2^*(V_3^2V_3^{*2})(V_3V_2)V_3^* \\ &= V_2^*V_3^2V_3^*V_2V_3^*(V_2^*V_2) = V_2^*V_3(V_3V_3^*)(V_2V_2^*)V_3^*V_2 \\ &= V_2^*V_3(V_2V_2^*)(V_3V_3^*)V_3^*V_2 = (V_2^*V_2)V_3V_2^*V_3V_3^{*2}V_2 \\ &= V_3V_2^*(V_3^*V_3)V_3V_3^{*2}V_2 = V_3(V_2^*V_3^*)V_3^2V_3^{*2}V_2 \\ &= V_3V_3^*V_2^*(V_3^2V_3^{*2})V_2 = V_3V_3^*V_2^*(V_2^3V_2^{*3})V_2 \\ &= (V_3V_3^*)(V_2^2V_2^{*2}). \end{split}$$

Now fix $m, n \in \Sigma$, and assume without loss of generality that m > n > 0. If m - n belongs to Σ then ordinary cancellation shows that

$$(V_m V_m^*)(V_n V_n^*) = V_m V_m^* = (V_n V_n^*)(V_m V_m^*).$$

We are left to handle the case where m = n + 1, and we deal with the cases n = 2p and n = 2p + 1 separately. For n = 2p, we have m = 2p + 1, and

$$\begin{split} (V_m V_m^*)(V_n V_n^*) &= V_{2p+1} V_{2p+1}^* V_{2p} V_{2p}^* = (V_{2(p-1)} V_3) (V_3^* V_{2(p-1)}^*) V_{2p} V_{2p}^* \\ &= V_{2(p-1)} V_3 V_3^* (V_{2(p-1)}^* V_{2p}) (V_2^* V_{2(p-1)}^*) \\ &= V_{2(p-1)} (V_2 V_2^*) (V_3 V_3^*) V_{2(p-1)}^* \\ &= V_{2p} V_2^* V_3 V_{2p+1}^* = V_{2p} V_2^* (V_{2(p-1)}^* V_{2(p-1)}) V_3 V_{2p+1}^* \\ &= V_{2p} V_{2p}^* V_{2p+1} V_{2p+1}^* = (V_n V_n^*) (V_m V_m^*). \end{split}$$

For n = 2p + 1, we have m = 2(p + 1), and we use the result in the first paragraph:

$$\begin{split} (V_mV_m^*)(V_nV_n^*) &= V_{2(p+1)}V_{2(p+1)}^*V_{2p+1}V_{2p+1}^*\\ &= V_{2(p+1)}V_{2(p+1)}^*(V_{2(p-1)}V_3)(V_3^*V_{2(p-1)}^*)\\ &= (V_{2(p-1)}V_2^2)(V_{2(p+1)}^*V_{2(p-1)})V_3V_3^*V_{2(p-1)}^*\\ &= V_{2(p-1)}(V_2^2V_2^{*2})(V_3V_3^*)V_{2(p-1)}^*\\ &= V_{2(p-1)}(V_3V_3^*)(V_2^2V_2^{*2})V_{2(p-1)}^*\\ &= V_{2(p+1)}(V_3V_3^*)V_{2(p+1)}^* = V_{2p+1}V_3^*(V_{2(p-1)}^*V_{2(p-1)})V_2^2V_{2(p+1)}^*\\ &= V_{2p+1}V_3^*V_2^2V_{2(p+1)}^* = V_{2p+1}V_3^*(V_{2(p-1)}^*V_{2(p-1)})V_2^2V_{2(p+1)}^*\\ &= V_{2p+1}V_{2p+1}^*V_{2(p+1)}V_{2(p+1)}^* = (V_nV_n^*)(V_mV_m^*). \quad \blacksquare \end{split}$$

REMARKS 1.6. (i) The subsemigroup Σ is the positive cone for the partial order on \mathbb{Z} defined by $m \geq n \iff m-n \in \Sigma$. The pair (\mathbb{Z}, Σ) , however, is not quasi-lattice ordered in the sense of Nica [6]: while 5 is a common upper bound for 2 and 3, and is the smallest in the usual order on \mathbb{Z} , it is not a least upper bound in (\mathbb{Z}, Σ) because 6 is a common upper bound which is not ≥ 5 in (\mathbb{Z}, Σ) . So the general theory of [6] and [4] does not apply.

(ii) Since Σ is generated by the two elements 2 and 3, the map $\phi:(p,j)\mapsto 2p+3j$ is a surjection of \mathbb{N}^2 onto Σ . If V is an isometric representation of Σ with commuting range projections, then $V\circ\phi$ is also a semigroup homomorphism. One might suspect that our "commuting range projections" hypothesis would imply that $V\circ\phi$ is a Nica covariant representation of $(\mathbb{Z}^2,\mathbb{N}^2)$ (which is equivalent to saying that $V_2^*=(V\circ\phi(1,0))^*$ and $V_3=V\circ\phi(0,1)$ commute). However, this is not the case: when V=S, for example, the operator $S_2^*S_3$ is the unilateral shift, and hence is injective, whereas $S_3S_2^*$ is not (for example, $S_3S_2^*(e_{\mathbb{N},0})=0$). One consequence of our main theorem is that $V\circ\phi$ is only Nica covariant when every V_n is unitary (see Corollary 2.8).

2. THE DECOMPOSITION THEOREM

Suppose that V and W are isometric representations of a semigroup P on Hilbert spaces \mathcal{H}_V and \mathcal{H}_W . We say that V is a multiple of W if there are a Hilbert space \mathcal{H} and a unitary isomorphism $U:\mathcal{H}_V\to\mathcal{H}_W\otimes\mathcal{H}$ such that $UV_pU^*=W_p\otimes 1$ for $p\in P$. For our concrete representations S and T we can identify the tensor products $\ell^2(\mathbb{N})\otimes\mathcal{H}$ and $\ell^2(\Sigma)\otimes\mathcal{H}$ with $\ell^2(\mathbb{N},\mathcal{H})$ and $\ell^2(\Sigma,\mathcal{H})$, and we move freely from one realisation to the other.

THEOREM 2.1. Suppose that $V: \Sigma \to B(\mathcal{H})$ is an isometric representation of $\Sigma := \mathbb{N} \setminus \{1\}$ with commuting range projections. Then there is a unique direct-sum decomposition $\mathcal{H} = \mathcal{H}_U \oplus \mathcal{H}_T \oplus \mathcal{H}_S$ such that \mathcal{H}_U , \mathcal{H}_T and \mathcal{H}_S are reducing for V, such that $V|_{\mathcal{H}_U}$ consists of unitary operators, such that $V|_{\mathcal{H}_T}$ is a multiple of T, and such that $V|_{\mathcal{H}_S}$ is a multiple of S.

Since 2 and 3 generate Σ , the representation V is determined by the two isometries V_2 and V_3 . Our strategy is to apply the following version of the Wold decomposition to the single isometry V_2 , and to analyse how V_3 interacts with this decomposition.

PROPOSITION 2.2 (Wold Decomposition). Let Z be an isometry on a Hilbert space \mathcal{H} . Let $\mathcal{H}_U := \bigcap_{n=0}^{\infty} Z^n(\mathcal{H})$ and $\mathcal{H}_0 := Z(\mathcal{H})^{\perp}$. Then \mathcal{H}_U is a reducing subspace of \mathcal{H} for Z with complement $\mathcal{H}_U^{\perp} = \overline{\operatorname{span}} \Big\{ \bigcup_{n=0}^{\infty} Z^n(\mathcal{H}_0) \Big\}$, $Z|_{\mathcal{H}_U}$ is unitary, and there is a unitary isomorphism $W : \mathcal{H}_U^{\perp} \to \ell^2(\mathbb{N}, \mathcal{H}_0)$ such that $WZW^*(\{k_n\}_{n=0}^{\infty}) = \{0, k_0, k_1, k_2, \ldots\}$ for all $\{k_n\}_{n=0}^{\infty} \in \ell^2(\mathbb{N}, \mathcal{H}_0)$.

As motivation for our argument, we apply the Wold decomposition to S_2 and T_2 . For both isometries we have $\mathcal{H}_U = \{0\}$, and both

$$S_2(\ell^2(\mathbb{N}))^{\perp} = \operatorname{span}\{e_{\mathbb{N},0}, e_{\mathbb{N},1}\} \quad \text{and} \quad T_2(\ell^2(\Sigma))^{\perp} = \operatorname{span}\{e_{\Sigma,0}, e_{\Sigma,3}\}$$

are 2-dimensional. Sending

$$e_{\mathbb{N},i} \mapsto \begin{cases} e_{j0} & \text{if } i = 2j, \\ e_{j1} & \text{if } i = 2j+1, \end{cases}$$
 and $e_{\Sigma,i} \mapsto \begin{cases} e_{j0} & \text{if } i = 2j, \\ e_{j1} & \text{if } i = 2j+3, \end{cases}$

gives unitary isomorphisms of $\ell^2(\mathbb{N})$ and $\ell^2(\Sigma)$ onto $\ell^2(\mathbb{N} \times \{0,1\})$ which carry S and T into the representations determined on

$$f := \begin{pmatrix} f_{01} & f_{11} & f_{21} & f_{31} & \cdots \\ f_{00} & f_{10} & f_{20} & f_{30} & \cdots \end{pmatrix}$$

by

$$(2.1) \quad S_2 f = \begin{pmatrix} 0 & f_{01} & f_{11} & f_{21} & \cdots \\ 0 & f_{00} & f_{10} & f_{20} & \cdots \end{pmatrix} \quad \text{and} \quad S_3 f = \begin{pmatrix} 0 & f_{00} & f_{10} & f_{20} & \cdots \\ 0 & 0 & f_{01} & f_{11} & \cdots \end{pmatrix}$$

and

(2.2)
$$T_2 f = \begin{pmatrix} 0 & f_{01} & f_{11} & f_{21} & \cdots \\ 0 & f_{00} & f_{10} & f_{20} & \cdots \end{pmatrix}$$
 and $T_3 f = \begin{pmatrix} f_{00} & f_{10} & f_{20} & f_{30} & f_{40} & \cdots \\ 0 & 0 & 0 & f_{01} & f_{11} & \cdots \end{pmatrix}$.

We now turn to the proof of Theorem 2.1. Applying the Wold decomposition to the isometry V_2 gives a reducing subspace \mathcal{H}_U such that $V_2|_{\mathcal{H}_U}$ is unitary, and since $V_3^2 = V_2^3$ it follows that V_3 and every other $V_{2p+3j} = V_2^p V_3^j$ are also unitary on \mathcal{H}_U . The Wold decomposition also tells us that the complement \mathcal{H}_U^{\perp} can be identified with $\ell^2(\mathbb{N},\mathcal{H}_0)$ for $\mathcal{H}_0 := V_2(\mathcal{H})^{\perp} = \ker(V_2V_2^*)$. Our goal is to identify the subspaces \mathcal{H}_{00} and \mathcal{K}_{00} of \mathcal{H}_0 consisting of vectors which behave under V_3 as the vector $e_{00} \in \ell^2(\mathbb{N} \times \{0,1\})$ does under T_3 and T_3 . The crucial property we isolate is that T_3e_{00} belongs to $\mathcal{H}_0 = \ker T_2T_2^*$, whereas S_3e_{00} belongs to $S_2(\mathcal{H})$ and is orthogonal to $S_2^2(\mathcal{H})$.

With this motivation, we define:

(2.3)
$$\mathcal{H}_{00} := \{ h \in \mathcal{H}_0 : V_3 h \in \mathcal{H}_0 \}, \text{ and }$$

(2.4)
$$\mathcal{K}_{00} := \{ h \in \mathcal{H}_0 : V_3 h \in V_2(\mathcal{H}) \ominus V_2^2(\mathcal{H}) \}.$$

For the rest of the proof, we write $P_n := V_2^n V_2^{*n} - V_2^{n+1} V_2^{*n+1}$, which is the projection of \mathcal{H} onto the complement of $V_2^{n+1}(\mathcal{H})$ in $V_2^n(\mathcal{H})$. With this notation,

$$\mathcal{H}_{00} = \{ h \in \mathcal{H}_0 : P_0(V_3 h) = V_3 h \} \text{ and } \mathcal{K}_{00} = \{ h \in \mathcal{H}_0 : P_1(V_3 h) = V_3 h \}.$$

PROPOSITION 2.3. We have a direct-sum decomposition

(2.5)
$$\mathcal{H}_0 = V_2(\mathcal{H})^{\perp} = \mathcal{H}_{00} \oplus V_3(\mathcal{H}_{00}) \oplus \mathcal{K}_{00} \oplus V_2^* V_3(\mathcal{K}_{00})$$

in which the orthogonal projections on the summands are given by:

- (i) the projection on \mathcal{H}_{00} is $P_{00} := V_3^* P_0 V_3 = V_3^* P_0 V_3 P_0$;
- (ii) the projection on $V_3(\mathcal{H}_{00})$ is $V_3 P_{00} V_3^* = V_3^* P_3 V_3 P_0$;
- (iii) the projection on \mathcal{K}_{00} is $Q_{00} := V_3^* P_1 V_3 P_0$;
- (iv) the projection on $V_2^*V_3(\mathcal{K}_{00})$ is $V_2^*V_3Q_{00}V_3^*V_2 = V_3^*P_2V_3P_0$.

To compute some of these projections we need the following straightforward lemma.

LEMMA 2.4. Suppose that $S \in B(\mathcal{H})$ is a partial isometry and P is the orthogonal projection onto a closed subspace K of $S^*S(\mathcal{H})$. Then SPS^* is the orthogonal projection onto S(K).

Proof of Proposition 2.3. For every $h \in \mathcal{H}_0$ and $k \in \mathcal{H}$, we have

$$(V_3 h | V_2^4 k) = (V_3 h | V_3^2 V_2 k) = (h | V_3 V_2 k) = (h | V_2 V_3 k) = 0,$$

and hence $V_3h \in V_2^4(\mathcal{H})^{\perp} = \bigoplus_{n=0}^3 P_n \mathcal{H}$. Thus $V_3P_0 = \sum_{n=0}^3 P_n V_3 P_0$ and $P_0 = \sum_{n=0}^3 V_3^* P_n V_3 P_0$. Since $V_3^* P_n V_3$ is self adjoint and

$$(V_3^*P_nV_3)^2 = V_3^*P_n(V_3V_3^*)P_nV_3 = V_3^*(V_3V_3^*)P_n^2V_3 = V_3^*P_nV_3$$

 $V_3^*P_nV_3$ is a projection; since Lemma 1.4 implies that P_0 commutes with $V_3^*P_nV_3$, each $V_3^*P_nV_3P_0$ is also a projection. Since their sum P_0 is also a projection, the projections $V_3^*P_nV_3P_0$ have orthogonal ranges, and we have a direct-sum decomposition.

position $\mathcal{H}_0 = \bigoplus_{n=0}^3 V_3^* P_n V_3 P_0(\mathcal{H})$. So it remains to check that the ranges of these projections are as claimed.

For $h \in \mathcal{H}_{00}$ we have

$$V_3^* P_0 V_3 h = V_3^* (P_0 V_3 h) = V_3^* (V_3 h) = h,$$

so $V_3^* P_0 V_3$ is the identity on \mathcal{H}_{00} . Next, note that

$$V_3^* P_0 V_3 P_0 = V_3^* P_0 V_3 (1 - V_2 V_2^*) = V_3^* P_0 V_3 - V_3^* P_0 V_2 V_3 V_2^* = V_3^* P_0 V_3 - 0,$$

which gives the last equality in (i) and implies that the range of $V_3^*P_0V_3$ is contained in \mathcal{H}_0 . For every $h \in \mathcal{H}$ we have

$$P_0(V_3(V_3^*P_0V_3h)) = (V_3V_3^*)(P_0^2V_3h) = V_3(V_3^*P_0V_3h),$$

so the range of $V_3^* P_0 V_3$ is contained in \mathcal{H}_{00} . Similar calculations show that Q_{00} is the identity on \mathcal{K}_{00} , and that every k of the form $k=Q_{00}h$ satisfies $P_0k=k$ and $P_1(V_3k)=V_3k$, hence is in \mathcal{K}_{00} . This gives (iii).

To establish (ii), we use Lemma 2.4 and part (i) to see that the projection on $V_3(\mathcal{H}_{00})$ is $V_3(V_3^*P_0V_3)V_3^*=V_3V_3^*P_0$. Then we compute

$$V_3^* P_3 V_3 P_0 = V_3^* (V_2^3 P_0 V_2^{*3}) V_3 P_0 = V_3^* (V_3^2 P_0 V_3^{*2}) V_3 P_0 = V_3 P_0 V_3^* P_0$$

= $(V_3 V_3^* - V_3 V_2 V_2^* V_3^*) P_0 = (V_3 V_3^* - V_3 V_2 V_3^* V_2^*) P_0$,

which reduces to $V_3V_3^*P_0$ because $V_2^*P_0 = 0$.

For (iv), we apply Lemma 2.4, and deduce that the projection on $V_2^*V_3(\mathcal{K}_{00})$ is

$$V_2^* V_3 Q_{00} V_3^* V_2 = V_2^* V_3 (V_3^* P_1 V_3 P_0) V_3^* V_2.$$

We now compute using Lemma 1.3:

$$V_2^* V_3 (V_3^* P_1 V_3 P_0) V_3^* V_2 = V_2^* P_1 V_3 V_3^* V_3 P_0 V_3^* V_2 = P_0 V_2^* V_3 P_0 V_3^* V_2$$

= $P_0 V_3^* V_2^2 P_0 V_2^{*2} V_3 = P_0 V_3^* P_2 V_3$,

which is $V_3^* P_2 V_3 P_0$ because Lemma 1.4 implies that $V_3^* P_2 V_3$ and P_0 commute.

Applying the isometry V_2^n to the decomposition (2.5) of $\mathcal{H}_0 = P_0(\mathcal{H})$ gives decompositions

$$P_n(\mathcal{H}) = V_2^n(\mathcal{H}_0) = V_2^n(\mathcal{H}_{00}) \oplus V_2^n V_3(\mathcal{H}_{00}) \oplus V_2^n(\mathcal{K}_{00}) \oplus V_2^n V_2^* V_3(\mathcal{K}_{00}),$$

and since the spaces $P_n\mathcal{H}$ themselves give a direct-sum decomposition of \mathcal{H}_U^{\perp} , we have

$$\mathcal{H} = \mathcal{H}_U \oplus \Big(\bigoplus_{n=0}^{\infty} (V_2^n(\mathcal{H}_{00}) \oplus V_2^n V_3(\mathcal{H}_{00}) \oplus V_2^n (\mathcal{K}_{00}) \oplus V_2^n V_2^* V_3(\mathcal{K}_{00})) \Big).$$

So with

(2.6)
$$\mathcal{H}_T := \bigoplus_{n=0}^{\infty} (V_2^n(\mathcal{H}_{00}) \oplus V_2^n V_3(\mathcal{H}_{00})),$$

(2.7)
$$\mathcal{H}_{S} := \bigoplus_{n=0}^{\infty} (V_{2}^{n}(\mathcal{K}_{00}) \oplus V_{2}^{n}V_{2}^{*}V_{3}(\mathcal{K}_{00})),$$

we certainly have $\mathcal{H} = \mathcal{H}_U \oplus \mathcal{H}_T \oplus \mathcal{H}_S$. Notice also that if we start with a decomposition $\mathcal{H} = \mathcal{K}_U \oplus \mathcal{K}_S \oplus \mathcal{K}_T$ as in the theorem, then this process will yield $\mathcal{H}_T = \mathcal{K}_T$ and $\mathcal{H}_S = \mathcal{K}_S$, so the decomposition is unique.

PROPOSITION 2.5. The subspaces \mathcal{H}_{IJ} , \mathcal{H}_{T} and \mathcal{H}_{S} are reducing for V.

Proof. Since $V_3^* = V_3^{*2}V_3 = V_2^{*3}V_3$, to prove that a subspace \mathcal{K} is reducing for V, it suffices to prove that \mathcal{K} is invariant under V_2 , V_2^* and V_3 . It is obvious that each of our subspaces is invariant under V_2 . Since $\mathcal{H}_U = \bigcap_{n=0}^{\infty} V_2^n(\mathcal{H}) = \bigcup_{n=0}^{\infty} V_2^n(\mathcal{H})$

 $\bigcap_{n=1}^{\infty} V_2^n(\mathcal{H}), \text{ it is invariant under } V_2^*, \text{ and since } V_3(V_2^n(\mathcal{H})) = V_2^n(V_3(\mathcal{H})) \subset V_2^n(\mathcal{H}),$ it is also invariant under V_3 . We have

$$V_2^*(\bigcup_{n\geqslant 1, j=0,1}V_2^nV_3^j(\mathcal{H}_{00}))=\bigcup_{n\geqslant 0, i=0,1}V_2^nV_3^j(\mathcal{H}_{00})\subset\mathcal{H}_T,$$

and since \mathcal{H}_{00} and $V_3(\mathcal{H}_{00})$ are contained in $\mathcal{H}_0 = V_2(\mathcal{H})^{\perp} = \ker V_2^*$, they are trivially invariant under V_2^* . Thus \mathcal{H}_T is invariant under V_2^* , and the same argument shows that \mathcal{H}_S is invariant under V_2^* .

It follows from the identity $V_3^2 = \overline{V_2^3}$ that \mathcal{H}_T is invariant under V_3 . Since $V_3(\mathcal{K}_{00}) \subset V_2V_2^*(\mathcal{H})$, we have $V_3(V_2^n(\mathcal{K}_{00})) = V_2^n(V_2V_2^*V_3(\mathcal{K}_{00})) \subset \mathcal{H}_S$, and

$$V_{3}(V_{2}^{n}V_{2}^{*}V_{3}(\mathcal{K}_{00})) = (V_{2}^{*}V_{2})V_{3}V_{2}^{n}V_{2}^{*}V_{3}(\mathcal{K}_{00}) = V_{2}^{*}V_{3}V_{2}^{n+1}V_{2}^{*}V_{3}(\mathcal{K}_{00})$$

$$= V_{2}^{*}V_{3}V_{2}^{n}(V_{2}V_{2}^{*}V_{3}(\mathcal{K}_{00})) = V_{2}^{*}V_{3}V_{2}^{n}V_{3}(\mathcal{K}_{00})$$

$$= V_{2}^{*}V_{2}^{n}V_{3}^{2}(\mathcal{K}_{00}) = V_{2}^{*}V_{2}^{n}V_{3}^{2}(\mathcal{K}_{00}) = V_{2}^{n+2}(\mathcal{K}_{00})$$

is also contained in \mathcal{H}_S .

We next show that $V|_{\mathcal{H}_T}$ is equivalent to $T \otimes 1_{\mathcal{H}_{00}}$. We identify $\ell^2(\mathbb{N}) \otimes \mathcal{H}_{00}$ with $\ell^2(\mathbb{N} \times \{0,1\}, \mathcal{H}_{00})$, so that on matrices

$$f := \begin{pmatrix} f_{01} & f_{11} & f_{21} & f_{31} & \cdots \\ f_{00} & f_{10} & f_{20} & f_{30} & \cdots \end{pmatrix}$$

with $f_{nj} \in \mathcal{H}_{00}$, $T_2 \otimes 1$ and $T_3 \otimes 1$ are defined by the same formulas (2.2) as T_2 and T_3 . We now recall that the projection P_{00} on \mathcal{H}_{00} is given by $P_{00} = V_3^* P_0 V_3$,

and define $W_T \colon \mathcal{H}_T \to \ell^2(\mathbb{N} \times \{0,1\}, \mathcal{H}_{00})$ by

$$(W_T h)_{nj} = P_{00} V_3^{*j} V_2^{*n} h.$$

Since $V_3^{*j}V_2^{*n}$ is an isometry of $V_2^nV_3^j(\mathcal{H}_{00})$ onto \mathcal{H}_{00} , W_T is a unitary isomorphism of \mathcal{H}_T onto $\ell^2(\mathbb{N}\times\{0,1\},\mathcal{H}_{00})$.

PROPOSITION 2.6. We have $W_T(V|_{\mathcal{H}_T})W_T^* = T \otimes 1$.

Proof. We prove that $W_TV_i|_{\mathcal{H}_T}=(T_i\otimes 1)W_T$ for i=2 and i=3. Let $h\in\mathcal{H}_T$. Then

$$(2.8) W_T V_2 h = \begin{pmatrix} P_{00} V_3^* V_2 h & P_{00} V_3^* V_2^* V_2 h & P_{00} V_3^* V_2^{*2} V_2 h & P_{00} V_3^* V_2^{*3} V_2 h & \cdots \\ P_{00} V_2 h & P_{00} V_2^* V_2 h & P_{00} V_2^{*2} V_2 h & P_{00} V_2^{*3} V_2 h & \cdots \end{pmatrix}$$

and

$$(2.9) (T_2 \otimes 1)W_T h = \begin{pmatrix} 0 & P_{00}V_3^*h & P_{00}V_3^*V_2^*h & P_{00}V_3^*V_2^{*2}h & \cdots \\ 0 & P_{00}h & P_{00}V_2^*h & P_{00}V_2^{*2}h & \cdots \end{pmatrix};$$

since $P_{00}V_2 = 0$ and

$$P_{00}V_3^*V_2 = (V_3^*P_0V_3)V_3^*V_2 = V_3^*(V_3V_3^*)P_0V_2 = 0,$$

the right-hand sides of (2.8) and (2.9) are the same, and $W_T V_2|_{\mathcal{H}_T} = (T_2 \otimes 1)W_T$. Similarly,

$$(2.10) W_T V_3 h = \begin{pmatrix} P_{00} V_3^* V_3 h & P_{00} V_3^* V_2^* V_3 h & P_{00} V_3^* V_2^{*2} V_3 h & P_{00} V_3^* V_2^{*3} V_3 h & \cdots \\ P_{00} V_3 h & P_{00} V_2^* V_3 h & P_{00} V_2^{*2} V_3 h & P_{00} V_2^{*3} V_3 h & \cdots \end{pmatrix}$$

and

$$(2.11) (T_3 \otimes 1)W_T h = \begin{pmatrix} P_{00}h & P_{00}V_2^*h & P_{00}V_2^{*2}h & P_{00}V_2^{*3}h & \cdots \\ 0 & 0 & 0 & P_{00}V_3^*h & \cdots \end{pmatrix}.$$

Since $V_3^*V_2^{*n}V_3 = V_2^{*n}V_3^*V_3 = V_2^{*n}$, the top rows of these last two matrices are the same. To see that the bottom rows are also the same, we compute:

$$\begin{split} P_{00}V_3 &= (V_3^*P_0V_3)V_3 = V_3^*P_0V_2^3 = 0, \\ P_{00}V_2^*V_3 &= P_{00}(V_2^*V_3) = V_3^*P_0V_3(V_3^*V_2^2) = V_3^*V_3V_3^*P_0V_2^2 = 0, \text{ and } \\ P_{00}V_2^{*2}V_3 &= (V_3^*P_0V_3)(V_3^*V_2) = V_3^*V_3V_3^*P_0V_2 = 0; \end{split}$$

and, for $n \ge 3$,

$$P_{00}V_2^{*n}V_3 = P_{00}(V_2^{*(n-3)}V_2^{*3})V_3 = P_{00}V_2^{*(n-3)}V_3^{*2}V_3 = P_{00}V_3^{*(n-3)}V_2^{*(n-3)}V_3^{*2}V_3 = P_{00}V_3^{*(n-3)}V_2^{*(n-3)}V_3^{*(n-3)}$$

which tells us that the nth entry in the bottom rows of (2.10) and (2.11) agree. Thus $W_T V_3|_{\mathcal{H}_T} = (T_3 \otimes 1)W_T$, and the result follows. \blacksquare

To see that $V|_{\mathcal{H}_S}$ is a multiple of S, define $W_S \colon \mathcal{H}_S \to \ell^2(\mathbb{N} \times \{0,1\}, \mathcal{K}_{00})$ by

$$(W_S h)_{nj} = Q_{00} V_3^{*j} V_2^j V_2^{*n} h;$$

It follows from the direct sum decomposition (2.7) that W_S is a unitary isomorphism of \mathcal{H}_S onto $\ell^2(\mathbb{N} \times \{0,1\}, \mathcal{K}_{00})$. On $\ell^2(\mathbb{N} \times \{0,1\}, \mathcal{K}_{00})$, $S \otimes 1$ is given by the formulas (2.1).

Proposition 2.7. We have
$$W_S(V|_{\mathcal{H}_S})W_S^* = S \otimes 1$$
.

Proof. The proof follows the same strategy as that of Proposition 2.6, but some of the calculations are a bit trickier, so we include the details. We prove that $W_S V_i|_{\mathcal{H}_S} = (S_i \otimes 1)W_S$ for i=2 and i=3. Let $h \in \mathcal{H}_S$. Then

$$(2.12) W_S V_2 h = \begin{pmatrix} Q_{00} V_3^* V_2 V_2 h & Q_{00} V_3^* V_2 V_2^* V_2 h & Q_{00} V_3^* V_2 V_2^{*2} V_2 h & \cdots \\ Q_{00} V_2 h & Q_{00} V_2^* V_2 h & Q_{00} V_2^{*2} V_2 h & \cdots \end{pmatrix}$$

and

$$(2.13) \quad (S_2 \otimes 1)W_S h = \begin{pmatrix} 0 & Q_{00}V_3^*V_2h & Q_{00}V_3^*V_2V_2^*h & Q_{00}V_3^*V_2V_2^{*2}h & \cdots \\ 0 & Q_{00}h & Q_{00}V_2^*h & Q_{00}V_2^{*2}h & \cdots \end{pmatrix}.$$

Since $Q_{00}V_2 = V_3^* P_1 V_3 P_0 V_2 = 0$ and

$$Q_{00}V_3^*V_2^2 = (P_0V_3^*P_1V_3)V_3^*V_2^2 = P_0V_3^*(V_3V_3^*)P_1V_2^2 = 0,$$

the right-hand sides of (2.12) and (2.13) are the same, and $W_S V_2 = (S_2 \otimes 1) W_S$ on \mathcal{H}_S . Next we compare

$$(2.14) W_S V_3 h = \begin{pmatrix} Q_{00} V_3^* V_2 V_3 h & Q_{00} V_3^* V_2 V_2^* V_3 h & Q_{00} V_3^* V_2 V_2^{*2} V_3 h & \cdots \\ Q_{00} V_3 h & Q_{00} V_2^* V_3 h & Q_{00} V_2^{*2} V_3 h & \cdots \end{pmatrix}$$

and

$$(2.15) \quad (S_3 \otimes 1)W_S h = \begin{pmatrix} 0 & Q_{00}h & Q_{00}V_2^*h & Q_{00}V_2^{*2}h & Q_{00}V_2^{*3}h & \cdots \\ 0 & 0 & Q_{00}V_3^*V_2h & Q_{00}V_3^*V_2V_2^*h & Q_{00}V_3^*V_2V_2^{*2}h & \cdots \end{pmatrix}.$$

The necessary three entries in (2.14) do indeed vanish:

$$\begin{split} Q_{00}V_3 &= P_0V_3^*P_1V_3^2 = P_0V_3^*P_1V_2^3 = 0,\\ Q_{00}V_3^*V_2V_3 &= Q_{00}V_3^*V_3V_2 = (V_3^*P_1V_3P_0)V_2 = 0, \text{ and}\\ Q_{00}V_2^*V_3 &= (P_0V_3^*P_1V_3)(V_3^*V_2^2) = P_0V_3^*(V_3V_3^*)P_1V_2^2 = 0. \end{split}$$

For $n \ge 1$, we expand the *n*th entry in the top row of (2.14) using the identity $P_1 = P_1 V_2 V_2^*$:

$$\begin{split} Q_{00}V_3^*V_2V_2^{*n}V_3h &= (P_0V_3^*P_1V_3)V_3^*V_2V_2^*V_2^{*(n-1)}V_3h \\ &= P_0V_3^*(V_3V_3^*)P_1V_2V_2^*V_2^{*(n-1)}V_3h \\ &= P_0V_3^*(V_3V_3^*)P_1V_2^{*(n-1)}V_3h = P_0V_3^*P_1(V_3V_3^*)V_2^{*(n-1)}V_3h \\ &= (P_0V_3^*P_1V_3)V_2^{*(n-1)}V_3^*V_3h = Q_{00}V_2^{*(n-1)}h, \end{split}$$

which is the *n*th entry in the top row of (2.15). Now we let $n \ge 2$, and work on the *n*th entry in the bottom row of (2.14), again using $P_1 = P_1 V_2 V_2^*$:

$$\begin{split} Q_{00}V_2^{*n}V_3h &= Q_{00}V_2^{*(n-2)}V_2^{*2}V_3h = Q_{00}V_2^{*(n-2)}V_3^*V_2h = Q_{00}V_3^*V_2^{*(n-2)}V_2h \\ &= (P_0V_3^*P_1V_3)V_3^*V_2^{*(n-2)}V_2h = P_0V_3^*(V_3V_3^*)P_1V_2^{*(n-2)}V_2h \\ &= P_0V_3^*(V_3V_3^*)(P_1V_2V_2^*)V_2^{*(n-2)}V_2h \\ &= (P_0V_3^*P_1V_3)V_3^*V_2V_2^{*(n-1)}V_2h = Q_{00}V_3^*V_2V_2^{*(n-2)}h, \end{split}$$

which is the nth entry in the bottom row of (2.15). We have now proved that $W_S V_2 = (S_3 \otimes 1) W_S$ on \mathcal{H}_S , and the result follows.

Proposition 2.7 completes the proof of Theorem 2.1.

COROLLARY 2.8. Define $\phi: \mathbb{N}^2 \to \Sigma$ by $\phi(p,j) = 2p + 3j$, and suppose V is an isometric representation of Σ on \mathcal{H} with commuting range projections. If $V \circ \phi$ is a Nica covariant representation of $(\mathbb{Z}^2, \mathbb{N}^2)$, then every V_n is unitary.

Proof. For $(\mathbb{Z}^2, \mathbb{N}^2)$, Nica covariance says that $V_2^* = (V \circ \phi(1,0))^*$ commutes with $V_3 = V \circ \phi(0,1)$. For both V = S and V = T, we can write down elements of \mathcal{H} which are in the kernel of $V_3V_2^*$ but not in the kernel of $V_2^*V_3$. So for general V, if either \mathcal{H}_S or \mathcal{H}_T were non-zero, we could find elements of \mathcal{H}_S or \mathcal{H}_T with the same property. Thus $\mathcal{H} = \mathcal{H}_U$, and the result follows from Theorem 2.1. \blacksquare

3. THE C^* -ALGEBRA OF Σ

Modifications of the standard arguments (as in [5], for example) show that there is a unital C^* -algebra $C^*(\Sigma)$ generated by an isometric representation $v:\Sigma\to C^*(\Sigma)$ with commuting range projections which is universal for such representations: for every isometric representation $V:\Sigma\to B$ with commuting range projections, there is a unique homomorphism $\pi_V:C^*(\Sigma)\to B$ such that $V=\pi_V\circ v$. In this section we describe conditions on V which ensure that π_V is faithful, and give a concrete description of $C^*(\Sigma)$ in terms of the usual Toeplitz algebra \mathcal{T} .

THEOREM 3.1. Let $\Sigma := \mathbb{N} \setminus \{1\}$, and let $V \colon \Sigma \to B(\mathcal{H})$ be an isometric representation with commuting range projections. Then the representation π_V of $C^*(\Sigma)$ is faithful if and only if

$$(3.1) V_3^*(V_2V_2^* - V_2^2V_2^{*2})V_3(1 - V_2V_2^*) \neq 0 and V_3^*(1 - V_2V_2^*)V_3 \neq 0.$$

Since $V_3^*(V_2V_2^*-V_2^2V_2^{*2})V_3(1-V_2V_2^*)$ and $V_3^*(1-V_2V_2^*)V_3$ are the projections on \mathcal{K}_{00} and \mathcal{H}_{00} , (3.1) says that the subspaces \mathcal{H}_T and \mathcal{H}_S in the decomposition of Theorem 2.1 are both non-zero. So Theorem 3.1 implies in particular that $\pi_{T\oplus S}$ is faithful.

Proof. First notice that in the representation π_S , the operator

$$\pi_S\big(v_3^*(v_2v_2^*-v_2^2v_2^{*2})v_3(1-v_2v_2^*)\big) = S_3^*(S_2S_2^*-S_2^2S_2^{*2})S_3(1-S_2S_2^*)$$

fixes the vector $e_{\mathbb{N},0}$, and hence $v_3^*(v_2v_2^*-v_2^2v_2^{*2})v_3(1-v_2v_2^*)$ is non-zero in $C^*(\Sigma)$. Similarly, $\pi_T(v_3^*(1-v_2v_2^*)v_3)$ fixes $e_{\Sigma,0}$, and $v_3^*(1-v_2v_2^*)v_3\neq 0$. So if π_V is faithful, the images of both these elements of $C^*(\Sigma)$ must be non-zero, which is exactly what (3.1) says.

Now suppose V satisfies (3.1), and consider the decomposition $\mathcal{H} = \mathcal{H}_U \oplus \mathcal{H}_T \oplus \mathcal{H}_S$ of Theorem 2.1, noticing that (3.1) implies that \mathcal{H}_S and \mathcal{H}_T are non-zero. Write $V_U := V|_{\mathcal{H}_U}$, $V_T := V|_{\mathcal{H}_T}$ and $V_S := V|_{\mathcal{H}_S}$, and fix $a \in C^*(\Sigma)$. Then we can check on generators that $\pi_V = \pi_{V_U} \oplus \pi_{V_T} \oplus \pi_{V_S}$, and hence we have

Since \mathcal{H}_T is non-zero and $V_T \sim T \otimes 1$, and we can check on generators that $\pi_{T \otimes 1} = \pi_T \otimes 1$, we have $\pi_{V_T} \sim \pi_T \otimes 1$. Similarly, $\pi_{V_S} \sim \pi_S \otimes 1$. Thus (3.2) implies that

$$\|\pi_V(a)\| = \max\{\|\pi_{V_U}(a)\|, \|\pi_T(a)\|, \|\pi_S(a)\|\}.$$

The operator $\pi_{V_U}(a) \oplus \pi_S(a)$ belongs to the C^* -algebra generated by $U_1 \oplus R$, where $U_1 = (V_U)_2^{-1}(V_U)_3$ is unitary and $R = S_2^*S_3$ is the unilateral shift, and hence the Lemma on page 724 of [1] implies that $\|\pi_{V_U}(a)\| \leq \|\pi_S(a)\|$. Thus

$$\|\pi_V(a)\| = \max\{\|\pi_T(a)\|, \|\pi_S(a)\|\}.$$

Since every C^* -algebra has a faithful representation and every representation of $C^*(\Sigma)$ has the form π_W , there is a faithful representation of the form π_W , and then \mathcal{H}_T and \mathcal{H}_S are both non-zero by the first part of the proof. We can then deduce from the argument of the previous paragraph that

$$||a|| = ||\pi_W(a)|| = \max\{||\pi_T(a)||, ||\pi_S(a)||\} = ||\pi_V(a)||,$$

which since a is an arbitrary element of $C^*(\Sigma)$ implies that π_V is faithful.

We can view the Toeplitz algebra \mathcal{T} either as the C^* -subalgebra of $B(\ell^2(\mathbb{N}))$ generated by the unilateral shift, or as the C^* -subalgebra of $B(L^2(\mathbb{T}))$ generated by the Toeplitz operators T_ϕ with symbol $\phi \in C(\mathbb{T})$. In either realisation, \mathcal{T} contains the algebra \mathcal{K} of compact operators, and the quotient \mathcal{T}/\mathcal{K} is naturally isomorphic to $C(\mathbb{T})$. In the proof of the following theorem we realise \mathcal{T} as a subalgebra of $B(\ell^2(\mathbb{N}))$.

THEOREM 3.2. Let $\Sigma := \mathbb{N} \setminus \{1\}$ and let $q: \mathcal{T} \to \mathcal{T}/\mathcal{K}$ be the quotient map. Then $C^*(\Sigma)$ is isomorphic to

$$C:=\{(A,B)\in\mathcal{T}\oplus\mathcal{T}:q(A)=q(B)\}.$$

For the proof, we need a lemma.

LEMMA 3.3. Let $U: \ell^2(\mathbb{N}) \to \ell^2(\Sigma)$ be the unitary isomorphism such that $Ue_{\mathbb{N},0} = e_{\Sigma,0}$ and $Ue_{\mathbb{N},n} = e_{\Sigma,n+1}$ for $n \ge 1$. Then $U^*T_pU - S_p$ is a finite-rank operator on $\ell^2(\mathbb{N})$ for every $p \in \Sigma$.

Proof. If p = 0 the result is trivial, so suppose $p \in \Sigma \setminus \{0\}$. We now compute, using the notation $h \otimes \overline{k}$ for the rank-one operator $g \mapsto (g \mid k)h$:

$$(U^*T_pU)e_{\mathbb{N},0}=e_{\mathbb{N},p-1}=(S_p+e_{\mathbb{N},p-1}\otimes \overline{e}_{\mathbb{N},0}-e_{\mathbb{N},p}\otimes \overline{e}_{\mathbb{N},0})e_{\mathbb{N},0},$$

and for $n \ge 1$,

$$(U^*T_pU)e_{\mathbb{N},n}=e_{\mathbb{N},n+p}=(S_p+e_{\mathbb{N},p-1}\otimes \overline{e}_{\mathbb{N},0}-e_{\mathbb{N},p}\otimes \overline{e}_{\mathbb{N},0})e_{\mathbb{N},n}.$$

Thus
$$U^*T_pU - S_p = e_{\mathbb{N},p-1} \otimes \overline{e}_{\mathbb{N},0} - e_{\mathbb{N},p} \otimes \overline{e}_{\mathbb{N},0}$$
.

Proof of Theorem 3.2. Theorem 3.1 implies that $\pi_{S\oplus T}=\pi_S\oplus\pi_T$ is faithful. Take U as in Lemma 3.3, and define $\psi:C^*(\Sigma)\to B(\ell^2(\mathbb{N}))\oplus B(\ell^2(\mathbb{N}))$ by $\psi(a)=(\pi_S(a),U^*\pi_T(a)U)$. We claim that ψ is an isomorphism of $C^*(\Sigma)$ onto C. It is injective because $\pi_S\oplus\pi_T$ is. Since the operators $\pi_S(v_p)=S_p$ are all powers of the unilateral shift, and Lemma 3.3 implies that $U^*\pi_T(v_p)U=U^*T_pU$ differs from S_p by a finite-rank operator, ψ has range in C. So it remains to prove that every element of C is in the range of ψ .

Let $(A, A + K) \in C$. Since $S_2^*S_3 = \pi_S(v_2^*v_3)$ is the unilateral shift, π_S maps $C^*(\Sigma)$ onto \mathcal{T} . Thus there exists $a \in C^*(\Sigma)$ such that $\pi_S(a) = A$, and then

$$A + K = U^* \pi_T(a) U + (\pi_S(a) - U^* \pi_T(a) U) + K,$$

which is $U^*\pi_T(a)U + L$, say, where L is compact. So we need to show that (0, L) is in the range of ψ , and to do this it suffices to show that every rank-one operator $(0, e_{\mathbb{N},i} \otimes \overline{e}_{\mathbb{N},i})$ is in the range of ψ . Computations show that

$$\begin{split} \psi(1-(v_2^*v_3)^*(v_2^*v_3)) &= (0,e_{\mathbb{N},0}\otimes \overline{e}_{\mathbb{N},0}),\\ \psi(v_2v_2^*(1-(v_2^*v_3)(v_2^*v_3)^*)) &= (0,e_{\mathbb{N},1}\otimes \overline{e}_{\mathbb{N},1}), \text{ and }\\ \psi(v_{i+1}v_{i+1}^*(1-v_iv_i^*)) &= (0,e_{\mathbb{N},i}\otimes \overline{e}_{\mathbb{N},i}) \quad \text{for } i\geqslant 2, \end{split}$$

so for each i there exists $b_i \in C^*(\Sigma)$ such that $\psi(b_i) = (0, e_{\mathbb{N},i} \otimes \overline{e}_{\mathbb{N},i})$. Now some more calculations show that if $j \geqslant 1$, then

$$\psi(b_0v_{j+1}^*) = (0, e_{\mathbb{N},0} \otimes \overline{e}_{\mathbb{N},j}), \text{ and}$$

$$\psi(b_iv_{i+1}v_{i+1}^*) = (0, e_{\mathbb{N},i} \otimes \overline{e}_{\mathbb{N},j}) \text{ for every } i \geqslant 1;$$

the adjoint of (3.3) shows that every $(0, e_{\mathbb{N}, j} \otimes \overline{e}_{\mathbb{N}, 0})$ is also in the range of ψ . Thus every $(0, e_{\mathbb{N}, i} \otimes \overline{e}_{\mathbb{N}, i})$ is in the range of ψ , as required.

REMARK 3.4. This structure theorem for $C^*(\Sigma)$, or more precisely the lemma used to prove it, has some interesting implications for Toeplitz operators. Let $e_n: z \mapsto z^n$ be the usual orthonormal basis for $L^2(\mathbb{T})$, let $H^2(\Sigma)$ be the closed span of $\{e_n: n \in \Sigma\}$, let P^Σ be the orthogonal projection of $L^2(\mathbb{T})$ on $H^2(\Sigma)$, and define the Toeplitz operator T^Σ_ϕ with symbol $\phi \in C(\mathbb{T})$ by $T^\Sigma_\phi(f) = P^\Sigma(\phi f)$. The

usual Hardy space $H^2(\mathbb{T})$ is naturally isomorphic to $\ell^2(\mathbb{N})$, and the usual Toeplitz operator T_{e_n} is then equivalent to S_n ; the same isomorphism carries $H^2(\Sigma)$ onto $\ell^2(\Sigma)$, and $T_{e_n}^\Sigma$ into T_n . Let $U:H^2(\mathbb{T})\to H^2(\Sigma)$ be the unitary operator such that $Ue_0=e_0$ and $Ue_n=e_{n+1}$ for $n\geqslant 1$. Then Lemma 3.3 implies that $U^*T_{e_n}^\Sigma U-T_{e_n}$ has finite rank, and we can deduce from the linearity and continuity of the maps $\phi\mapsto T_\phi^\Sigma$ and $\phi\mapsto T_\phi$ that $U^*T_\phi^\Sigma U-T_\phi$ is compact for every $\phi\in C(\mathbb{T})$. It follows that T_ϕ^Σ is Fredholm if and only if T_ϕ is Fredholm, that is, if and only if ϕ is non-vanishing, and the usual index theorem then gives

ind
$$T_{\phi}^{\Sigma} = \operatorname{ind} T_{\phi} = -\operatorname{deg} \phi$$
.

Acknowledgements. Research supported by the Australian Research Council.

REFERENCES

- [1] L.A. COBURN, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc. 73(1967), 722–726.
- [2] R.G. DOUGLAS, On the C*-algebra of a one-parameter semigroup of isometries, Acta Math. 128(1972), 143–152.
- [3] S.Y. JANG, Uniqueness property of *C**-algebras like the Toeplitz algebra, *Trends Math.* **6**(2003), 29–32.
- [4] M. LACA, I. RAEBURN, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, *J. Funct. Anal.* **139**(1996), 415–440.
- [5] G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18(1987), 303–326.
- [6] A. NICA, C*-algebras generated by isometries and Wiener–Hopf operators, *J. Operator Theory* **27**(1992), 17–52.

IAIN RAEBURN, SCHOOL OF MATHEMATICS AND APPLIED STATISTICS, UNIVERSITY OF WOLLONGONG, NSW 2522, AUSTRALIA

E-mail address: raeburn@uow.edu.au

SEAN T. VITTADELLO, SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF NEWCASTLE, CALLAGHAN, NSW 2308, AUSTRALIA

E-mail address: sean.vittadello@newcastle.edu.au

Received February 19, 2007.