# UT1: Interconexión, instalación y configuración de equipos de

red.

Servicios en Red - 2º Curso CFGM SMR

- La finalidad de una red de ordenadores es que los usuarios puedan hacer un mejor uso de la misma mejorando de este modo el rendimiento global de la organización.
- Ejemplos de algunos servicios son:
  - ▶ Transferencia de archivos.
  - Correo y mensajería instantánea.
  - Conexión remota a equipos.
  - Acceso a información en servidores web.
  - ▶ Transferencia de audio y video.

- Los servicios de red se instalan y funcionan sobre una red, así que es necesario tener un conocimiento profundo de la misma para poder trabajar con ellos.
- Los conceptos básicos de redes se obtuvieron en el módulo de Redes Locales, en 1°.
- En esta unidad vamos a repasar los conceptos más importantes y que usaremos durante este módulo.



- Para que dos ordenadores puedan intercambiar información, ¿qué tareas se deben realizar?
  - Formatos de los datos.
  - Comprimir los datos.
  - Conocer el destino.
  - Enviar varios datos a la vez.
  - ¿Y si hay congestión?
  - Conocer el origen.
  - Asegurarse de que ha llegado.
  - Sincronización.
  - Controlar que no hay errores.
  - Proporcionar

- La solución al problema de conectar dos ordenadores es partir el problema en partes.
- Se organizarán las tareas en niveles y cada nivel realizará alguna de las tareas indicadas.
- ¿Con qué criterio se establecen esos niveles?
- ▶ El modelo OSI es una posibilidad.
- Este modelo establece 7 niveles, y en cada uno existe una entidad responsable de realizar una o varias tareas para llevar a cabo la comunicació

### El modelo OSI.

#### Nivel de Aplicación

Servicios de red a aplicaciónes

#### Nivel de Presentación

Representación de los datos

### Nivel de Sesión Comunicación entre

dispositivos de la red

Nivel de Trasporte Conexión extremo-a-extremo y fiabilidad de los datos

#### Nivel de Red

Determinación de ruta e IP (Direccionamiento lógico)

#### Nivel de Enlace de Datos

Direccionamiento fisico (MAC y LLC)

#### Nivel Físico

Señal y transmisión binaria

### El modelo OSI vs TCP/IP.

#### LA PILA OSI

#### Nivel de Aplicación

Servicios de red a aplicaciónes

#### Nivel de Presentación

Representación de los datos

#### Nivel de Sesión

Comunicación entre dispositivos de la red

#### Nivel de Trasporte

Conexión extremo-a-extremo y fiabilidad de los datos

#### Nivel de Red

Determinación de ruta e IP (Direccionamiento lógico)

#### Nivel de Enlace de Datos

Direccionamiento físico (MAC y LLC)

#### Nivel Físico

Señal y transmisión binaria

#### LA PILA TCP/IP

#### Nivel de Aplicación

HTTP, FTP, POP3, TELNET, SSH, ...

#### Nivel de Trasporte

Conexión extremo-a-extremo y fiabilidad de los datos TCP, UDP

#### Nivel de Red

ICMP, IP, ARP, RARP, ...

#### Nivel de Enlace de Datos

Direccionamiento fisico (MAC y LLC)

#### Nivel Físico

Señal y transmisión binaria

### El modelo OSI.



# Redes TCP/IP.



#### Protocolos.

- Conjunto de reglas que utilizan dos computadores para intercambiar información.
- Existen diferentes protocolos según el nivel en el que nos encontremos dentro de una determinada arquitectura de red.
- Ejemplo:
  - ▶ Protocolos de nivel físico: USB, 802. I Ix, RS-232, I00BaseT.
  - Protocolo de nivel de enlace: Ethernet, Wifi
  - Protocolos de nivel de red: IPv4, IPv6, ICMP, RIP, OSPF.
  - ▶ Protocolos de nivel de transporte: TCP, UDP.

#### IP

- IP Internet Protocol o Protocolo de Internet.
- Protocolo de la arquitectura TCP/IP correspondiente al nivel de red o internet.
- ▶ Hay dos versiones: IPv4 e IPv6.

Funciones:

- □ Direccionamiento.
- ☐ Formato de los paquetes.
- Encaminamiento.



Formato paquete IPv4



#### Dirección IPv4

- ldentificador de un equipo dentro de la red.
- Recordar que hay una IP por cada tarjeta de red, no por cada equipo.
- Formato:
  - conjunto de 32 bits
  - agrupados de 8 en 8 y separados por puntos
  - Escritos en decimal.
  - ▶ Ejemplo: 192.168.1.1
  - Cada decimal vale como máximo 255.

#### Direcciones IPv4.

- Una IP tiene dos campos:
  - ▶ Identificador de red o **netid**:
    - ☐ Identifica la red en la que se encuentra nuestro host.
    - □ Todas las máquinas de nuestra red tienen el mismo netid.
  - ldentificador del host o hostid.
    - □ Identifica a la máquina dentro de la red.
    - □ Tiene un valor distinto para cada máquina de la red.



#### Clases de redes IPv4.

- Existen muchas direcciones IPv4 y se organizan en clases.
- ▶ Hay 5 clases de direcciones: A, B, C, D y E.
- La clase a la que pertenece una dirección la da el **netid**.



### Máscara de red.

- Secuencia de 32 bits formada por una serie de 1s segudios de 0s : 255.255.0.0.
- La usan los routers para calcular la dirección de red o subred a la que pertenece una IP.
- Se construye poniendo un 1 por cada bit del netid y un 0 por cada bit del hostid.

| CLASE | MÁSCARA       |
|-------|---------------|
| A     | 255.0.0.0     |
| В     | 255.255.0.0   |
| С     | 255.255.255.0 |

#### Dirección de red.

- ▶ Se utiliza para identificar a toda la red (nunca es destino).
- La dirección de red se obtiene de realizar un AND lógico entre la dirección IP del host y la máscara.
- O también poniendo a 0 los bits del host.
- ▶ El AND lógico se calcula como sigue:

| Α | В | A AND B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 1       |

### Dirección de red.



#### Dirección de broadcast.

- Se utiliza para enviar datos a toda la red (siempre es destino).
- Se obtiene poniendo a 1 todos los bits del host.



# Ejemplo:

- Dada la dirección 192.168.1.1
  - ¿Cuál es la dirección de red?
  - ¿Cuál es la dirección de broadcast?
  - ¿Cuántas máquinas pueden conectarse en la red con dirección 192.168.1.0?
  - ¿Cuál es la dirección de la primera máquina?
  - ¿Cuál es la dirección de la última máquina?

### Número de IPs en una red.

¿Cuán<mark>tos ordednadore</mark>s se podrían conectar en la red 192.168.1.1?

La parte de host sería el último byte así que los host

| 192.168.1.00000000 192.168.1.0 | 1)2.168.1.00000101 192.168.1.5 | 192.168.1.00000100 192.168.1.10  |
|--------------------------------|--------------------------------|----------------------------------|
|                                |                                |                                  |
| 192.168.1.00000001 192.168.1.1 | 192.168.1.00000110 192.168.1.6 |                                  |
|                                |                                |                                  |
| 192.168.1.00000010 192.168.1.2 | 192.168.1.00000111 192.168.1.7 | 192.168.1.11111101 192.168.1.253 |
|                                |                                |                                  |
| 192.168.1.00000011 192.168.1.3 | 192.168.1.00001001 192.168.1.8 | 192.168.1.11111110 192.168.1.254 |

Salvo la dirección de red y la de broadcast, el resto de direcciones pueden usarse como direcciones de máquinas en la red 192.168.1.0.

La primera dirección: 192.168.1.1 La última dirección: 192.168.1.254 68.1.11111111 192.168.1.255

Esta es la dirección de broadcast.

# Cómo calcular el número de máquinas.

2n° de hosts\_2

192.168.1.xxxxxxxx

El número total de máquinas es 28 = 256 porque hay 8 bits de host. Hay que restar 2: la dirección de red y la de broadcast.

# Direcciones IP especiales (no asignables).

| Dirección de red                             | Todos los bits del identificador de host tienen el valor 0                                                              |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Máscara de subred                            | Todos los bits del identificador de red tienen el valor 1 y todos los bits del identificador de host tienen el valor 0. |  |
| Broadcast de una red<br>distante (indirecto) | Todos los bits del identificador de host tienen el valor 1                                                              |  |
| Broadcast local o directo                    | Todos los bits valen 1 (255.255.255.255)                                                                                |  |
| Host de esta red                             | Todos los bits de la parte de red valen 0.                                                                              |  |
| Este host                                    | 0.0.0.0                                                                                                                 |  |
| loopback                                     | Red 127.0.0.0. Dirección de red ficticia local a cada host que se utiliza para pruebas de los protocolos TCP/IP         |  |
| localhost                                    | 127.0.0.1. Se refiere al propio host.                                                                                   |  |

### Tipos de IP.

- PÚBLICAS: presentes en Internet.
- PRIVADAS: no están presentes en Internet.
- FSTÁT/CAS: no cambian.
- DINÁMICAS: cambian en cada conexión. Asignadas por un servidor DHCP.

### Direcciones IP privadas.

- Las direcciones privadas no se pueden utilizar para conectarse a Internet.
- Dentro de cada clase, hay rangos de direcciones que no son asignadas en Internet.
- Permite conectar a Internet muchos hosts usando pocas direcciones públicas. (NAT)
  - Clase A: 10.0.0.0 a 10.255.255.255
  - Clase B: 172.16.0.0 a 172.31.255.255
  - Clase C: 192.168.0.0 a 192.168.255.255



# Antes de seguir ...

- Routers o encaminadores son dispositivos de nivel 3 que encaminan paquetes IP entre redes (interconectan redes).
- Switches o conmutadores son dispositivos de nivel 2 que envían tramas entre máquinas de la misma red (construyen físicamente la red).





- La máscara de red o redes es una combinación de bits que sirve para delimitar el ámbito de una red de ordenadores.
- Su función es indicar a los equipos/dispositivos qué parte de la dirección IP es el número de la red, incluyendo la subred, y qué parte es la correspondiente al host.

| Clase | Máscara de subred | Bits de Red |  |
|-------|-------------------|-------------|--|
| A     | 255.0.0.0         | 8           |  |
| В     | 255.255.0.0       | 16          |  |
| С     | 255.255.255.0     | 24          |  |

Los bits de orden superior (parte RED) de las máscaras de red/subred son números l contiguos, existe solamente una cantidad limitada de valores de subred dentro de un octeto:

```
00000000 = 0

100000000 = 128

11000000 = 192

11100000 = 224

11110000 = 240

111111000 = 248

111111110 = 254

111111111 = 255
```

Ejemplo:

- AND es una de las tres operaciones binarias básicas que se utilizan en la lógica digital. Las otras dos son OR y NOT. Mientras que las tres se usan en redes de datos, AND se usa para determinar la dirección de red. Por tanto, sólo se trataremos aquí la lógica AND.
- La lógica AND es la comparación de dos bits que produce los siguientes resultados:

$$IANDI=I$$
 $IAND0=0$ 

$$0 \text{ AND } I = 0$$
  
 $0 \text{ AND } 0 = 0$ 

Aplicación de la máscara de subred



1 en el host AND 1 en la máscara indica 1 en la dirección de red.

Aplicación de la máscara de subred



0 en el host AND 1 en la máscara indica 0 en la dirección de red.

Aplicación de la máscara de subred



0 en el host AND 0 en la máscara indica 0 en la dirección de red.

Aplicación de la máscara de subred



1 en el host AND 0 en la máscara coloca 0 en la dirección de red.

- La aplicación de AND a la dirección host y a la máscara de subred se realiza mediante dispositivos en una red de datos por diversos motivos:
  - Los **routers** usan AND para determinar una ruta aceptable para un paquete entrante.
  - Un host de origen debe determinar si un paquete debe ser directamente enviado a un host en la red local o si debe ser dirigido a la gateway. Para tomar esta determinación el host primero debe conocer su propia dirección de red y la red de destino.

Utilización de la máscara de subred para determinar la dirección de red para el host 172.16.132.70/20

Convierta la dirección de red binaria en decimal

| Dirección host            | 172      | 16       | 132      | 70       |
|---------------------------|----------|----------|----------|----------|
| Dirección host binaria    | 10101100 | 00010000 | 10000100 | 01000110 |
| Máscara de subred binaria | 11111111 | 11111111 | 11110000 | 00000000 |
| Dirección de red binaria  | 10101100 | 00010000 | 1000000  | 00000000 |
| Dirección de red          | 172      | 16       | 128      | 0        |

# Repaso Dirección de Host, Broadcast y RED

Paso 1

```
Primera dirección host

172 . 16. 20. 1

10101100.00010000.00010100.00000001

|------Red ------|- host -|

0+0+0+0+0+0+1=1

Dirección host más baja = 172.16.20.1
```

Paso 2

Paso 3 Paso 4

## Ejercicio 1

#### Dirección suministrada/prefijo de

158.181.227.211 /24

|          | Para cada fila, ingrese los valores para ese tipo de dirección. |                                         |                                          |                                               |
|----------|-----------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------|
|          | Tipo de dirección                                               | Ingrese el ÚLTIMO octeto<br>en binarios | Ingrese el ÚLTIMO octeto<br>en decimales | Ingrese la dirección<br>completa en decimales |
| -        | Red                                                             |                                         |                                          |                                               |
| -        | Broadcast                                                       |                                         |                                          |                                               |
| -        | Primera dirección host utilizable                               |                                         |                                          |                                               |
| $\vdash$ | Última dirección host utilizable                                |                                         |                                          |                                               |

## Respuesta

#### Dirección suministrada/prefijo de

158.181.227.211 /24

| Para cada fila, ingrese los       | Para cada fila, ingrese los valores para ese tipo de dirección. |                                          |                                               |
|-----------------------------------|-----------------------------------------------------------------|------------------------------------------|-----------------------------------------------|
| Tipo de dirección                 | Ingrese el ÚLTIMO octeto<br>en binarios                         | Ingrese el ÚLTIMO octeto<br>en decimales | Ingrese la dirección<br>completa en decimales |
| Red                               | 00000000                                                        | 0                                        | 158.181.227.0                                 |
| Broadcast                         | 11111111                                                        | 255                                      | 158.181.227.255                               |
| Primera dirección host utilizable | 00000001                                                        | 1                                        | 158.181.227.1                                 |
| Última dirección host utilizable  | 11111110                                                        | 254                                      | 158.181.227.254                               |

## Ejercicio 2

#### Dirección suministrada/prefijo de

182.101.133.210 /25

Para cada fila, ingrese los valores para ese tipo de dirección.

Tipo de dirección

Ingrese el ÚLTIMO octeto en binarios

Red

Broadcast

Primera dirección host utilizable

Última dirección host utilizable

## Respuesta

#### Dirección suministrada/prefijo de

182.101.133.210 /25

| Г        | Para cada fila, ingrese los valores para ese tipo de dirección. |                                         |                                          |                                               |
|----------|-----------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------|
|          | Tipo de dirección                                               | Ingrese el ÚLTIMO octeto<br>en binarios | Ingrese el ÚLTIMO octeto<br>en decimales | Ingrese la dirección<br>completa en decimales |
| -        | Red                                                             | 10000000                                | 128                                      | 182.101.133.128                               |
| -        | Broadcast                                                       | 11111111                                | 255                                      | 182.101.133.255                               |
| <b>-</b> | Primera dirección host utilizable                               | 10000001                                | 129                                      | 182.101.133.129                               |
| L>       | Última dirección host utilizable                                | 11111110                                | 254                                      | 182.101.133.254                               |

# Ejercicio 3

#### Dirección suministrada/prefijo de

157.210.210.110 /20

| $\overline{}$ | Para cada fila, ingrese los valores para ese tipo de dirección. |                                         |                                          |                                               |
|---------------|-----------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------|
|               | Tipo de dirección                                               | Ingrese el ÚLTIMO octeto<br>en binarios | Ingrese el ÚLTIMO octeto<br>en decimales | Ingrese la dirección<br>completa en decimales |
| <b>→</b>      | Red                                                             |                                         |                                          |                                               |
| <b>→</b>      | Broadcast                                                       |                                         |                                          |                                               |
| -             | Primera dirección host utilizable                               |                                         |                                          |                                               |
| $\rightarrow$ | Última dirección host utilizable                                |                                         |                                          |                                               |

## Respuesta

#### Dirección suministrada/prefijo de

157.210.210.110 /20

| $\overline{}$ | <ul> <li>Para cada fila, ingrese los valores para ese tipo de dirección.</li> </ul> |                                      |                                       |                                               |
|---------------|-------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------|
|               | Tipo de dirección                                                                   | Ingrese el ÚLTIMO octeto en binarios | Ingrese el ÚLTIMO octeto en decimales | Ingrese la dirección<br>completa en decimales |
| <b>→</b>      | Red                                                                                 | 00000000                             | 0                                     | 157.210.208.0                                 |
| -             | Broadcast                                                                           | 11111111                             | 255                                   | 157.210.223.255                               |
| <b>-&gt;</b>  | Primera dirección host utilizable                                                   | 0000001                              | 1                                     | 157.210.208.1                                 |
| <b>└</b> →    | Última dirección host utilizable                                                    | 11111110                             | 254                                   | 157.210.223.254                               |

## Ejercicio 4

Dirección suministrada/prefijo de

147.142.227.117 /17

|            | Para cada fila, ingrese los valores para ese tipo de dirección. |                                         |                                          |                                               |
|------------|-----------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------|
|            | Tipo de dirección                                               | Ingrese el ÚLTIMO octeto<br>en binarios | Ingrese el ÚLTIMO octeto<br>en decimales | Ingrese la dirección<br>completa en decimales |
| -          | Red                                                             |                                         |                                          |                                               |
| <b>→</b>   | Broadcast                                                       |                                         |                                          |                                               |
|            | Primera dirección host utilizable                               |                                         |                                          |                                               |
| <b>└</b> → | Última dirección host utilizable                                |                                         |                                          |                                               |

## Respuesta

#### Dirección suministrada/prefijo de

147.142.227.117 /17

|               | Para cada fila, ingrese los valores para ese tipo de dirección. |                                         |                                          |                                               |
|---------------|-----------------------------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------|
| 1             | Tipo de dirección                                               | Ingrese el ÚLTIMO octeto<br>en binarios | Ingrese el ÚLTIMO octeto<br>en decimales | Ingrese la dirección<br>completa en decimales |
| -             | Red                                                             | 00000000                                | 0                                        | 147.142.128.0                                 |
| -             | Broadcast                                                       | 11111111                                | 255                                      | 147.142.255.255                               |
| $\rightarrow$ | Primera dirección host utilizable                               | 00000001                                | 1                                        | 147.142.128.1                                 |
| $\rightarrow$ | Última dirección host utilizable                                | 11111110                                | 254                                      | 147.142.255.254                               |

## Ejercicio 5

Dirección suministrada/prefijo de 175.238.4.193 /26

Para cada fila, ingrese los valores para ese tipo de dirección.

Tipo de dirección

Ingrese el ÚLTIMO octeto en binarios

Red

Broadcast

Primera dirección host utilizable

Última dirección host utilizable

## Ejercicio 6

#### Dirección suministrada/prefijo de

165.124.204.64 /25

|               | Para cada fila, ingrese los v     | alores para ese tipo de direc           | cción.                                   |                                               |
|---------------|-----------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------|
|               | Tipo de dirección                 | Ingrese el ÚLTIMO octeto<br>en binarios | Ingrese el ÚLTIMO octeto<br>en decimales | Ingrese la dirección<br>completa en decimales |
| <b>→</b>      | Red                               |                                         |                                          |                                               |
| <b>→</b>      | Broadcast                         |                                         |                                          |                                               |
| <b>→</b>      | Primera dirección host utilizable |                                         |                                          |                                               |
| $\rightarrow$ | Última dirección host utilizable  |                                         |                                          |                                               |

## El nivel de transporte.

- Será el encargado de llevar los datos de extremo a extremo, de la aplicación origen a la destino.
- Para ello realiza conexiones lógicas entre los extremos (sesiones), estableciendo un flujo de datos entre los extremos.
- Cogerá los datos del nivel de aplicación y los entregará al nivel de red.
- Dividirá los datos en segmentos y los enviará al receptor en el mismo orden.
- Dentro de la conexión, podrá realizar control de errores (<u>extremo</u> a <u>extremo</u>) y control de flujo.

## El nivel de transporte.



#### Direccionamiento.

- La identificación de los usuarios (extremos) se realiza mediante:
  - Dirección IP + número del puerto.
  - TCP denomina socket a esta combinación.
- Un puerto representa a un usuario particular del servicio de transporte.
- ► El número de puerto es valor de 16 bits que se incluye en la cabecera del protocolo de nivel de transporte (desde 1 hasta 65.536)

## Números de puerto.

Los números de puertos se asignan como sigue:

| Rango de números de puerto | Grupo de puertos                  |
|----------------------------|-----------------------------------|
| De 0 a 1023                | Puertos bien conocidos (Contacto) |
| De 1024 a 49151            | Puertos registrados               |
| De 49152 a 65535           | Puertos privados y/o dinámicos    |

- Los host origen: asignan dinámicamente los números de puertos origen (valor >1023).
- Los host destino: utilizan los puertos para seleccionar la aplicación adecuada.

#### Puertos bien conocidos.

Los números de puerto que corresponden a aplicaciones bien conocidas son:

| Número de puerto | <b>Aplicación</b>      |
|------------------|------------------------|
| 20               | Ftp                    |
| 21               | Ftp                    |
| 22               | Ssh                    |
| 23               | Telnet                 |
| 25               | Smtp (correo entrante) |
| 53               | DNS                    |
| 69               | TFTP                   |
| 80               | Web                    |
| - 110            | Pop3 (correo saliente) |

# Direccionamiento en el nivel de transporte.



Los datos de las distintas aplicaciones se dirigen a la aplicación correcta, ya que cada aplicación tiene un número de puerto único.

- Para la comunicación de aplicaciones a través de una red se definen tres paradigmas:
  - Modelo cliente/servidor: en él se distingue un proceso cliente y un proceso servidor.
  - Modelo entre pares o P2P: todos los nodos de la red son responsables por igual en la comunicación de las aplicaciones y no existe ningún elemento que centralice la comunicación.
  - Modelo híbrido: combinación de los dos anteriores y donde el servidor no presta el servicio como tal, sino que generalmente pone en contacto a los clientes para que se comuniquen entre sí.

La comunicación se produce a través de dos procesos que interactúan entre sí:

#### Servidor:

- Proporciona servicios a los clientes.
- Espera que algún cliente se conecte a él con una petición.

#### Cliente:

 Se conecta al servidor para obtener un servicio.







# Servicios orientados y no orientados a conexión.

Cuando dos extremos se comunican pueden pasar dos cosas:

#### Que se establezca una sesión.

- Que se establezca la comunicación en tres pasos.
  - 1. Inicio de la conexión.
  - Envío de los datos.
  - 3. Cierre de la conexión.

Protocolos Orientados a conexión.

Ejemplo: conexión telefónica. Antes de poder hablar (enviar datos) se debe marcar y el otro extremo debe contestar.

# Servicios orientados y no orientados a conexión.

- Que no se establezca una sesión, sin sesión:
  - Que se envíen los datos sin más. Estos pueden ser de dos tipos:
    - "Envía y reza": envío los datos sin avisar y sin preocuparme de si llegan.
    - Envíos con acuse de recibo: envío los datos sin avisar pero al menos espero un acuse de recibo.

Ejemplo: Envío por correos.

Protocolos no orientados a conexión.

## TCP: Transmission Control Protocol.

- Protocolo de nivel de transporte usado en internet.
- Es un protocolo orientado a conexión.
- Esto significa que una conexión TCP se realiza en tres fases:
  - Establecimiento de la conexión.
  - Envío de los datos.
  - Desconexión o terminación de la conexión.
- Se encarga de establecer un flujo de bytes entre extremos que TCP dividirá en segmentos.
- Un segmento estará formado por:
  - Una cabecera
  - Una porción de datos de usuario.
  - Algunos segmentos pueden no llevar datos de usuario. Ejemplo: segmentos usados para establecer o liberar conexiones.
  - Los segmentos viajan contenidos en paquetes IP (encapsulamiento).

## TCP: características.

- TCP es un protocolo fiable:
  - Los segmentos están formados una cantidad de bytes.
  - Cada byte se enumera con un número de secuencia (SN).
  - Envía ACK cuando ha recibido un cierto número de segmentos correctos.
  - Inicia un timer cada vez que envía un segmento. Si expira, se retransmite.
  - Los números de secuencia servirán para que el receptor ordene los datos.
- Control de flujo: La técnica anterior (envío de ACKs) sirve evitar que el receptor se sature (ventana de transmisión).
- Control de errores: mediante checksum.
- Todo lo anterior se realizaba también en nivel de enlace.
  - Nivel de transporte: proporciona servicios <u>extremo a entremo</u>.
  - Nivel de enlace: entre dos conexiones consecutivas.

#### Cabecera TCP.

## Encapsulación



#### Cabecera TCP.



# UDP: User Datagram Protocol.

- Protocolo de nivel de transporte usado en internet.
- Sin conexión:
  - permite enviar datos sin haber establecido una conexión previa.
- No fiable:
  - □ Tiene la responsabilidad de enviar los datos, pero no la obligación de verificar la entrega de los mismos.
  - □ Los paquetes pueden llegar desordenados o duplicados.
- Es un protocolo de <u>nivel de transporte</u> <u>no fiable</u> y <u>no orientado a conexión</u>.
- Ventaja:
  - □ Velocidad: al no enviar ACK, se envía menos cantidad de datos lo que agiliza la transferencia.

#### UDP: Cabecera IP.



## UDP: Aplicaciones.

- UDP se utiliza en los casos en los que la sobrecarga que supone el establecimiento y cierre de la conexión no está justificado.
- Algunas aplicaciones que usan UDP:
  - ▶ Aplicaciones de tiempo real (RTP).
  - Sistemas de denominación de nombres (DNS).
  - Protocolo de administración de redes (SNMP).
  - Protocolo de configuración dinámica (DHCP).
  - Protocolo de transferencia trivial de ficheros (TFTP).

#### El comando netstat.

- Netstat es una herramienta de red que informa sobre:
  - ▶ Tablas de enrutamiento: **netstat -r**
  - Estadísticas de las interfaces: **netstat -i**
  - Conexiones establecidas con una máquina:
    - netstat
    - netstat -a
    - netstat -u
    - netstat -t
- Esta utilidad está disponible en los sistemas operativos: Linux, Windows, Mac OS, ...

#### Netstat



#### Netstat

```
C:\Documents and Settings\aferna 1>netstat -a
Conexiones activas
 Proto
         Dirección local
                                  Dirección remota
                                                          Estado
 TCP
         afernan1-2daec3:ftp
                                 afernan1-2daec3:0
                                                          LISTENING
 TCP
         afernan1-2daec3:epmap afernan1-2daec3:0
                                                          LISTENING
 TCP
         afernan1-2daec3:microsoft-ds afernan1-2daec3:0
                                                                  LISTENING
 TCP
         afernan1-2daec3:38000
                                                          LISTENING
                                 afernan1-2daec3:0
 TCP
                                 afernan1-2daec3:0
         afernan1-2daec3:39000
                                                          LISTENING
 TCP
         afernan1-2daec3:1031
                                 afernan1-2daec3:0
                                                          LISTENING
 TCP
         afernan1-2daec3:1033
                                  localhost:27015
                                                          ESTABLISHED
 ŤČP
         afernan1-2daec3:1100
                                  localhost:39000
                                                          ESTABLISHED
 TCP
         afernan1-2daec3:1101
                                  localhost:39000
                                                          ESTABLISHED
                                 afernan1-2daec3:0
afernan1-2daec3:0
afernan1-2daec3:0
         afernan1-2daec3:5354
afernan1-2daec3:14147
 TCP
                                                          LISTENING
 TCP
                                                          LISTENING
         afernan1-2daec3:27015
 TCP
                                                          LISTENING
         afernan1-2daec3:27015
 TCP
                                                          ESTABLISHED
                                  localhost:1033
 TCP
         afernan1-2daec3:39000
                                 localhost:1100
                                                          ESTABLISHED
 TCP
         afernan1-2daec3:39000
                                                          ESTABLISHED
                                 localhost:1101
 TCP
         afernan1-2daec3:netbios-ssn afernan1-2daec3:0
                                                                 LISTENING
 TCP
         afernan1-2daec3:1156
                                 wy-in-f109.1e100.net:587
                                                             TIME_WAIT
 TCP
         afernan1-2daec3:1159
                                 ww-in-f109.1e100.net:995 TIME_WAIT
         afernan1-2daec3:1161
                                 xglobe.dmarc.si1.atlanticmetro.net:http CLOSE_
         afernan1-2daec3:microsoft-ds
 UDP
 UDP
         afernan1-2daec3:isakmp
 UDP
         afernan1-2daec3:1027
                                 *:*
         afernan1-2daec3:4500
 UDP
                                  *:*
 UDP
         afernan1-2daec3:ntp
                                  *:*
 UDP
         afernan1-2daec3:1025
                                  *:*
         afernan1-2daec3:1026
 UDP
                                  *:*
 UDP
         afernan1-2daec3:1034
                                  *: *
 UDP
         afernan1-2daec3:1035
                                  *:*
         afernan1-2daec3:1040
 UDP
                                  *: *
 UDP
         afernan1-2daec3:1093
                                  *:*
 UDP
         afernan1-2daec3:1102
                                  *:*
         afernan1-2daec3:1900
 UDP
                                  *:*
 UDP
         afernan1-2daec3:ntp
                                  *:*
 UDP
         afernan1-2daec3:netbios-ns
 UDP
         afernan1-2daec3:netbios-dgm
 UDP
         afernan1-2daec3:1900
                                 *:*
         afernan1-2daec3:5353
                                  *:*
```