Catostomus ardens ND2

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 4.4.4(git:v4-series-26-ge85c6ff) [June-1-2019]

Compiled for a SYMMETRIC multiprocessors (Grandcentral)

Program started at Thu May 20 03:39:02 2021

Program finished at Thu May 20 06:55:16 2021 [Runtime:0000:03:16:14]

Options

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3815855740

Start parameters:

Theta values were generated RANDOM start value from the prior

M values were generated RANDOM start value from the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population 1 2 1 Great_Salt_Lake * d

2 Sevier_Desert 0 *

Order of parameters:

 4 $\sigma_{2\rightarrow 1}$ <displayed>

Mutation rate among loci: Mutation rate is constant

Analysis strategy:
-Population size estimation:

Bayesian inference
Exponential Distribution

-Geneflow estimation: Exponential Distribution

-Divergence time estimation: Normal Distribution Shortcut (mean and standard dev.)

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Par	ameter		Prior	Minimum	MeanMa	iximum	Delta	Bins	UpdateFreq
1	Theta ³	* *	Uniform	0.000000	0.050	0.100	0.010	1500	0.12500
2	Theta ³	* *	Uniform	0.000000	0.050	0.100	0.010	1500	0.12500
3	Splittime mean	**	Uniform	0.000000	0.250	0.500	0.050	1500	0.12500
4	Splittime std	* *	Uniform	0.000000	0.250	0.500	0.050	1500	0.12500

^{[* *} means priors were set globally]

Markov chain settings:Long chainNumber of chains1Recorded steps [a]10000Increment (record every x step [b]1000Number of concurrent chains (replicates) [c]2Visited (sampled) parameter values [a*b*c]20000000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures 1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file:
Haplotyping is turned on:
Output file:
Log file:
logfile

Posterior distribution raw histogram file:	bayesfile
Raw data from the MCMC run:	bayesallfile.gz
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Data file: infile

Datatype: Haplotype data

Number of loci:

Mutationmodel:

Locus Sublocus Mutationmodel Mutationmodel parameters

1 1 Kimura [Basefreq: =0.25, kappa=3.7400]

Sites per locus

Locus Sites

1 400

Site rate variation and probabilities:

Locus Sublocus Region type Rate of change Probability Patch size

1	1	1	1.000	1.000	1.000		
Popula	ition				Locus	Gene co	pies
						data	(missing)
1 Grea	t_Salt_La	ıke			1	81	
2 Sevie	er_Desert	,			1	19	
Total o	f all popul	lations			1	100	(0)

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00280	0.00727	0.01297	0.01853	0.02273	0.01317	0.01295
1	Θ_2	0.00420	0.01393	0.01963	0.02493	0.03607	0.01997	0.02021
1	D _{2->1}	0.00000	0.00000	0.00017	0.01733	0.04967	0.01750	0.00467
1	S _{2->1}	0.00233	0.00233	0.00950	0.01600	0.01600	0.02917	0.01235

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution for locus 1

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-1550.881259	(1a)
	-1014.840609	(1b)
Harmonic mean	-890.915664	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Accepted changes	Ratio
1126222/2500561	0.45039
903342/2500465	0.36127
1064422/2498578	0.42601
1019527/2500423	0.40774
3078931/9999973	0.30789
	1126222/2500561 903342/2500465 1064422/2498578 1019527/2500423

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.49637	6744.87
Θ_2	0.25499	11871.85
Δ^2 2->1	0.35215	11174.03
$\sigma_{2\rightarrow 1}$	0.43657	9648.05
Genealogies	0.43657	9648.05

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta
beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have
a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou
tes are estimated poorly because the data contains little or no information for that route. Increasing the range will
not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run