Modeling Rational Agents

Modeling Human Behavior

- What is (mathematical) modeling?
 - A description of a system using mathematical concepts and language
 - May help to
 - explain a system
 - study the effects of different components
 - make predictions about behavior

Modeling Human Behavior

- . What is game theory?
 - The study of mathematical models of conflict and cooperation between intelligent rational decisionmakers

Modeling Human Behavior

 How can we mathematically describe the conflicts between two agents?

Game Theory

- A model of a rational agent
 - Preferences
 - Utility
 - Choice
- Conflicts between agents
 - Game theoretic models

Preferences

Economic Agent

- Which characteristics are required to model an economic agent?
 - Name, age and gender, personal history, brain structure, cognitive abilities, his emotional state etc
- In most of economic theory, an economic agent is modeled <u>only by his attitude</u> toward the elements in some relevant set
- His attitude is expressed in the form of preferences

Preferences

• Which object in the set **X** do you prefer?

Preferences

 A description of preferences should <u>fully specify</u> the attitude of the agent toward each pair of elements in *X*

Q(x,y) (for all distinct x and y in X):

How do you compare x and y? Tick one and only one of the following three options:

- \square I prefer x to y (this answer is denoted as $x \succ y$).
- \square I prefer y to x (this answer is denoted by $y \succ x$).
- \square I am indifferent (this answer is denoted by I).

Q(x,y) (for all distinct x and y in X):

How do you compare x and y? Tick one and only one of the following three options:

- \square I prefer x to y (this answer is denoted as $x \succ y$).
- \square I prefer y to x (this answer is denoted by $y \succ x$).
- \square I am indifferent (this answer is denoted by I).

 A "<u>legal</u>" answer to the questionnaire is a response in which exactly one of the boxes is ticked in each question

 Exclusion of responses that demonstrate a <u>lack of</u> <u>ability to compare</u>, such as:

 \square They are incomparable.

 Exclusion of responses that demonstrate a <u>dependence of other factors</u>, such as:

 \square It depends on what my parents think.

 Exclusion of responses that demonstrate an <u>intensity</u> of <u>preferences</u>, such as:

 \square I somewhat prefer x.

 The elements in the set X are all comparable and the intensity of preferences are ignored

A legal answer to the questionnaire can be formulated as a function *f*,

which assigns to any pair (x, y) of distinct elements in X exactly one of the three "values",

- x > y or
- y > x or
- /,

with the interpretation that f(x, y) is the answer to the question Q(x, y)

$$Q(x, y) \rightarrow f(x, y) \qquad y > x$$

Preference symbol

y > **X**

Preferences

. Definition 1

- Preferences on a set **X** are <u>a function</u> **f**
- that assigns to any pair (x, y) of distinct elements in
 X exactly one of the three "values"
- x > y, y > x, or I
- so that for any three different elements x, y, and z in X, the following two properties hold:
 - No order effect: f(x, y) = f(y, x)
 - Transitivity:
 - if f(x, y) = x > y and f(y, z) = y > z, then f(x, z) = x > z and
 - if f(x, y) = I and f(y, z) = I, then f(x, z) = I

• How would you react if somebody told you she/he prefers x to y, y to z, and z to x?

Questionnaire

Consider the travel options bellow and answer: which one do you prefer?

Open a text file on you computer and write an answer file in the following format. Each line contains your answer for a question. Write **1** if you prefer the first option, **2** if you prefer the second, or **0** if you are indifferent between the options. There is an example of an answer file at the end of this document.

- 1) A weekend at a 3 star hotel in New York with friends for \$574 OR a weekend for \$574 with friends at a 3 star hotel in Paris?
- 2) A weekend in New York with friends at a 3 star hotel for \$574 OR a weekend at a 5 star hotel in New York for \$712 with family?

There is a direct edge from i to j if j > i

 How to check intransitivities from this questionnaire?

• And if I am indifferent between **a** and **c**?

• And if I am indifferent between **a** and **c**?

- How would you react if somebody told you he prefers x to y, y to z, and z to x?
- Out of 6 students who responded questionnaire
 Q1 in 2025/01...
- ...3 (50%) had no intransitivities
- The median number intransitivities per student was 0.5
- The mean was 1.17

Easy questions?

- 6) A weekend at a 5 star hotel with romance for \$842 in New York OR a weekend at a 5 star hotel for \$574 in New York with romance?
- 30) A weekend in New York at a 3 star hotel for \$842 with friends OR a weekend at a 5 star hotel for \$574 in New York with friends?
- 31) A weekend with friends at a 5 star hotel in New York for \$842 OR a weekend for \$842 with friends in New York at a 3 star hotel?
- 37) A weekend with friends in Paris at a 5 star hotel for \$574 OR a weekend at a 3 star hotel for \$574 with friends in Paris?
- 38) A weekend with friends at a 3 star hotel for \$574 in Paris OR a weekend at a 3 star hotel with friends for \$842 in Paris?
- 39) A weekend for \$574 with romance at a 5 star hotel in New York OR a weekend for \$842 at a 3 star hotel in New York with romance?

Easy questions?

- How would you react if somebody fails to answer those easy questions?
- Out of 6 students who responded questionnaire Q1 in 2025/01...
- ...2 (~33%) gave unreasonable answers to the easy questions

Thiago Assis

Number of nodes: 12 Number of cycles: 2

Cycles: [[16, 4, 3, 19], [3, 19, 4]]

Number of edges 31

Laila Melo

Number of nodes: 16 Number of cycles: 1 Cycles: [[2, 6, 4, 3]] Number of edges 40

Henrique Magalhães

Number of nodes: 15 Number of cycles: 0

Cycles: []

Number of edges 37

Haniel Botelho

Number of nodes: 13 Number of cycles: 0

Cycles: []

Number of edges 33

Lorenzo Correa

Number of nodes: 15 Number of cycles: 0

Cycles: []

Number of edges 37

Matheus Farnese

Number of nodes: 10 Number of cycles: 4

Cycles: [[0, 20], [0, 18, 20], [2, 20], [18, 20]]

Number of edges 24

Semestres Anteriores

- How would you react if somebody told you he prefers x to y, y to z, and z to x?
- Out of 13 students who responded questionnaire Q1 in 2024/01...
- ...6 (~46%) had no intransitivities
- The median number intransitivities per student was 1
- The mean was 5.15

Easy questions?

- How would you react if somebody fails to answer those easy questions?
- Out of 13 students who responded questionnaire Q1 in 2024/01...
- ...1 (~8%) gave unreasonable answers to the easy questions

• # of intransitivities: 1 (AV)

[12, 7, 14]

of intransitivities: 0 (AA)

• # of intransitivities: 40 (AB)

[[0, 10, 8, 4, 6, 1, 11, 13, 12, 7, 9, 3], [0, 10, 8, 4, 6, 1, 11, 13, 12, 2, 7, 9, 3], [0, 10, 8, 4, 6, 1, 11, 12, 7, 9, 3], [0, 10, 8, 4, 6, 1, 11, 12, 2, 7, 9, 3], [0, 8, 4, 6, 1, 11, 13, 12, 7, 9, 3], [0, 8, 4, 6, 1, 11, 13, 12, 2, 7, 9, 3], [0, 8, 4, 6, 1, 11, 12, 7, 9, 3], [0, 8, 4, 6, 1, 11, 12, 2, 7, 9, 3], [0, 6, 1, 11, 13, 12, 7, 9, 3], [0, 6, 1, 11, 13, 12, 2, 7, 9, 3], [0, 6, 1, 11, 12, 7, 9, 3], [0, 6, 1, 11, 12, 2, 7, 9, 3], [1, 11, 13, 12, 7, 4, 6], [1, 11, 13, 12, 7, 9, 10, 8, 4, 6], [1, 11, 13, 12, 7, 9, 3, 4, 6], [1, 11, 13, 12, 7, 9, 3, 2, 6], [1, 11, 13, 12, 10, 8, 4, 6], [1, 11, 13, 12, 2, 7, 4, 6], [1, 11, 13, 12, 2, 7, 9, 10, 8, 4, 6], [1, 11, 13, 12, 2, 7, 9, 3, 4, 6], [1, 11, 13, 12, 2, 6], [1, 11, 12, 7, 4, 6], [1, 11, 12, 7, 9, 10, 8, 4, 6], [1, 11, 12, 7, 9, 3, 4, 6], [1, 11, 12, 7, 9, 3, 2, **6**], [1, 11, 12, 10, 8, 4, 6], [1, 11, 12, 2, 7, 4, 6], [1, 11, 12, 2, 7, 9, 10, 8, 4, 6], [1, 11, 12, 2, 7, 9, 3, 4, 6], [1, 11, 12, 2, 6], [1, 11, 6], [1, 8, 4, 6], [1, 10, 8, 4, 6], [2, 7, 9, 11, 13, 12], [2, 7, 9, 11, 12], [2, 7, 9, 3], [2, 7, 9, 12], [7, 9, 11, 13, 12], [7, 9, 11, 12], [7, 9, 12]]

• # of intransitivities: 0 (AD)

• # of intransitivities: 0 (GL)

of intransitivities: 3 (KN)

[20] [9, 20] [9, 10, 20]

of intransitivities: 6 (LD)

[24], [24,23] [24, 20], [24, 2] [24, 2, 23], [24, 2, 20]

• # of intransitivities: 14 (LR)

[24], [24,23]

[24, 20], [24, 2]

[24, 2, 23],

[24, 2, 20]

• # of intransitivities: 0 (LR)

of intransitivities: 1 (MM)

unreasonable answer detected: 6 1

[20]

unreasonable answer detected: 38 2 unreasonable answer detected: 39 2

• # of intransitivities: 2 (MI)

[19] [19, 22]

• # of intransitivities: 0 (PF)

of intransitivities: 0 (PS)

Easy questions?

- How would you react if somebody fails to answer those easy questions?
- Out of 15 students who responded questionnaire Q1 in 2022/01...
- ...3 (20%) gave unreasonable answers to the easy questions

- How would you react if somebody told you he prefers x to y, y to z, and z to x?
- Out of 63 students who responded questionnaire Q1 in 2019/02...
- ...31 (49%) had no intransitivities
- The median number intransitivities per student was 1
- The mean was 6.68 (!)

Easy questions?

- How would you react if somebody fails to answer those easy questions?
- Out of 63 students who responded questionnaire Q1 in 2019/02...
- ...13 (21%) gave unreasonable answers to the easy questions

• # of intransitivities: 0 (I. R.)

- # of intransitivities: 0 (R. C.)
 - 5/6 unreasonable answers

- # of intransitivities: 1 (T. S.)
 - 2/6 unreasonable answers

- # of intransitivities: 126 (A. F.)
 - 3/6 unreasonable answers

- # of intransitivities: 0 (G. F.)
 - 6/6 unreasonable answers

- How would you react if somebody told you he prefers x to y, y to z, and z to x?
- Out of 38 students who responded questionnaire Q1 in 2017/02...
- ...only 4 (10.5%) had no intransitivities
- The median number intransitivities per student was 2.5
- The mean was 13.18 (!)

- How would you react if somebody told you he prefers x to y, y to z, and z to x?
- Out of 39 students who responded questionnaire Q1 in 2016/02...
- ...only 3 (7.7%) had no intransitivities
- The median number intransitivities per student was 4
- The mean was 12.1 (!)

- How would you react if somebody told you he prefers x to y, y to z, and z to x?
- Out of 27 students who responded questionnaire Q1 in 2015/02...
- ...only 4 (14.8%) had no intransitivities
- The median number intransitivities per student was 3
- The mean was 15.4 (!)

- How would you react if somebody told you he prefers x to y, y to z, and z to x?
- Out of 458 students who responded a simple preference questionnaire (details in the book),
- only 57 (12.44%) had no intransitivities in their answers,
- The median number intransitivities per student was 7

• Any ideas?

Being crazy?

Being lazy?

- Aggregation of considerations as a source of intransitivity
 - X = {a, b, c} and the individual has three primitive considerations in mind (eg: price, taste, quality)
 - The individual finds an alternative x better than an alternative y if a majority of considerations supports
 - If the three considerations rank the alternatives as $a \succ_1 b \succ_1 c$, $b \succ_2 c \succ_2 a$, and $c \succ_3 a \succ_3 b$, then...
 - the individual determines a to be preferred over
 b, b over c, and c over a, thus violating transitivity

- The use of similarities as an obstacle to transitivity
 - In some cases, an individual may express <u>indifference</u> in a comparison between two elements that are too "close" to be distinguishable
 - Let X be the set of real numbers
 - Consider an individual whose attitude toward the alternatives is "the larger the better", but he cannot determine whether a is greater than b unless the difference is at least 1
 - He will assign f(x, y) = x > y if x ≥ y + 1 and f(x, y) = I if |x y|
 < 1
 - Is this function always transitive?
 - This is not a preference relation because 1.5 ~ 0.8 and 0.8 ~ 0.3, but it is not true that 1.5 ~ 0.3

Preferences

Definition 1

- Preferences on a set **X** are <u>a function</u> **f**
- that assigns to any pair (x, y) of distinct elements in X exactly one of the three "values"
- x > y, y > x, or I
- so that for any three different elements x, y, and z in X, the following two properties hold:
 - No order effect: f(x, y) = f(y, x)
 - Transitivity:
 - if f(x, y) = x > y and f(y, z) = y > z, then f(x, z) = x > z and
 - if f(x, y) = I and f(y, z) = I, then f(x, z) = I

- Is this definition weak?
- For example, if f(x, y) = x > y and f(y, z) = I, can f(x, z) be different than x > z?
- No! Proof in the book

Questionnaire R

R(x,y) (for all $x,y \in X$, not necessarily distinct):

Is x at least as preferred as y? Tick one and only one of the following two options:

- \square Yes
- \square No

Questionnaire R

- By a "legal" response we mean that the respondent ticks exactly one of the boxes in each question
- To qualify as preferences, a legal response must also satisfy two conditions:
 - The answer to at least one of the questions R(x, y) and R(y, x) must be **Yes**
 - For every $x, y, z \in X$, if the answers to the questions R(x, y) and R(y, z) are Yes, then so is the answer to the question R(x, z)

 If I get a questionnaire Q from "Smith", can I fill questionnaire R for "Smith"?

Q(x,y) (for all distinct x and y in X): How do you compare x and y ? Tick one and only one of the following three options:
\square I prefer x to y (this answer is denoted as $x \succ y$). \square I prefer y to x (this answer is denoted by $y \succ x$). \square I am indifferent (this answer is denoted by I).
$R(x,y)$ (for all $x,y \in X$, not necessarily distinct): Is x at least as preferred as y ? Tick one and only one of the following two options:
\square Yes

No

Reminder: relation

A relation *R* is a set of ordered pairs

Reminder: relation

$$R \subseteq A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

Reminder: relation

$$R = \{(3.4, -4), (200, -4), (200, 108)\}$$

Questionnaire R

- We identify a response to this questionnaire with the binary relation ≥ on the set X defined by x ≥ y if the answer to the question R(x, y) is Yes
- Ex: If x is at least as preferred as y, then $x \gtrsim y$

- An n-ary relation on X is a subset of X^n
- Examples:
 - "Being a parent of" is a binary relation on the set of human beings
 - being a hat" is an unary relation on the set of objects
 - "x + y = z" is a 3-ary relation on the set of numbers
 - " x is better than y more than x' is better than y' " is 4-ary relation on a set of alternatives

- An n-ary relation on X can be thought of as a response to a questionnaire regarding all ntuples of elements of X where each question can get only a Yes answer
- Ex: is $a_1 \gtrsim a_2 \gtrsim a_3 \gtrsim ... \gtrsim a_n$? (Yes)

Preferences

- Definition 2
 - Preferences on a set X is a binary relation ≥ on X satisfying:
 - Completeness: For any x, $y \in X$, $x \gtrsim y$, or $y \gtrsim x$
 - Transitivity: For any x, y, $z \in X$, if $x \gtrsim y$ and $y \gtrsim z$, then $x \gtrsim z$

 If I get a questionnaire Q from "Smith", can I fill questionnaire R for "Smith"?

Q(x,y) (for all distinct x and y in X): How do you compare x and y ? Tick one and only one of the following three options:
\square I prefer x to y (this answer is denoted as $x \succ y$). \square I prefer y to x (this answer is denoted by $y \succ x$). \square I am indifferent (this answer is denoted by I).
$R(x,y)$ (for all $x,y \in X$, not necessarily distinct): Is x at least as preferred as y ? Tick one and only one of the following two options:
\square Yes

No

- The function $f: X \to Y$ is a <u>one-to-one</u> function (or injection) if f(x) = f(y) implies that x = y
 - Ex: Brazilians → CPF number
- The function $f: X \to Y$ is an <u>onto</u> function (or surjection) if for every $y \in Y$ there is an $x \in X$ such that f(x) = y
 - Ex: people → country of birth
- The function $f: X \to Y$ is a <u>one-to-one and onto</u> function (or bijection, or one-to-one correspondence) if for every $y \in Y$ there is a unique $x \in X$ such that f(x) = y
 - Ex: Brazilians → Passport

- If I get a questionnaire Q from "Smith", can I fill questionnaire R for "Smith"?
- We need to construct a <u>one-to-one and onto</u> function answers to Q and answers to R, such that the correspondence preserves the meaning of the responses to the two questionnaires

A response to:	A respons	se to:
Q(x,y) and $Q(y,x)$	R(x,y) ar	and $R(y,x)$
$x \succ y$ I	Yes Yes	No Yes
$y \succ x$	No	Yes

Summary

- Preferences on X are a binary relation ≥ on a set X satisfying completeness and transitivity
- Notate x > y when both $x \ge y$ and not $y \ge x$, and $x \sim y$ when $x \ge y$ and $y \ge x$

Summary

- Now, with one single relation (≥), we can
 describe the full preference relation towards the
 items in X
 - With questionnaire Q, we needed two relations: >
 and I

- Let's listen to the Shepard tone
 - https://www.youtube.com/watch?v=BzNzgsAE4F0
- Can you think of any economic analogies?

 Roll a die and get a prize! Which lottery do you prefer?

	1	2	3	4	5	6
L1	\$1000	\$500	\$600	\$700	\$800	\$900
L2	\$900	\$1000	\$500	\$600	\$700	\$800

 Roll a die and get a prize! Which lottery do you prefer?

	1	2	3	4	5	6
L1	\$1000	\$500	\$600	\$700	\$800	\$900
L2	\$900	\$1000	\$500	\$600	\$700	\$800
L3	\$800	\$900	\$1000	\$500	\$600	\$700

Roll a die and get a prize! Which lottery do you prefer?

	1	2	3	4	5	6
L1	\$1000	\$500	\$600	\$700	\$800	\$900
L2	\$900	\$1000	\$500	\$600	\$700	\$800
L3	\$800	\$900	\$1000	\$500	\$600	\$700
L4	\$700	\$800	\$900	\$1000	\$500	\$600
L5	\$600	\$700	\$800	\$900	\$1000	\$500
L6	\$500	\$600	\$700	\$800	\$900	\$1000