

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 699 753 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 06.03.1996 Patentblatt 1996/10
- (21) Anmeldenummer: 95110631.9
- (22) Anmeldetag: 07.07.1995

- (51) Int. CI.⁶: **C12N 15/12**, C07K 14/705, C12N 5/10, C07K 16/18, C12N 15/11, C12Q 1/00, G01N 33/50
- (84) Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE
- (30) Priorität: 13.07.1994 DE 4424577
- (71) Anmelder: HOECHST AKTIENGESELLSCHAFT D-65929 Frankfurt am Main (DE)
- (72) Erfinder:
 - Koepsell, Hermann, Prof Dr. D-97072 Würzburg (DE)
 - Gründeman, Dirk, Dr. D-69123 Heidelberg (DE)
 - Gorboulev, Valentin, Dr. D-97078 Würzburg (DE)

Bemerkungen:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

- (54) Transportprotein, das den Transport von kationischen Xenobiotika und/oder Pharmaka bewirkt, dafür kodierende DNA-Sequenzen und deren Verwendung
- (57) Es wurde ein Transportprotein kloniert, das in Leber- und Nierenepithelzellen sowie in Darmzellen vorkommt und für den Transport von kationischen Pharmaka und/oder Xenobiotika verantwortlich ist. Dieses Transportprotein wurde durch die DNA und die Amino-

säuresequenz näher beschrieben und es werden verschiedene Verwendungen offenbart, die insbesondere für die Entwicklung von neuen Medikamenten von großer Bedeutung sind.

Fig. 201

	GCAGGCCTGGCTAAACTGGTGAGGGCCCTACCCAGCCATGCCCACCGTGGATGATGTCCT
	MetProThrValAspAspValLeu
1	GGAGCAAGTTGGAGAGTTTGGCTGGTTCCAGAAACAAGCCTTCCTGTTGCTATGCCTGAT
1	GluGlnValGlyGluPheGlyTrpPheGlnLysGlnAlaPheLeuLeuCysLeuIle
21	CTCAGCTTCTTTAGCTCCCATCTATGTGGGCATCGTCTTCCTGGGCTTCACCCCTGGACA
9	SerAlaSerLeuAlaProIleTyrValGlyIleValPheLeuGlyPheThrProGlyHis
81	TTATTGCCAGAATCCTGGGGTGGCTGAGCTGAGCCAGCGGTGTGCCTGGAGCCAGGCAGA
9	TyrCysGlnAsnProGlyValAlaGluLeuSerGlnArgCysGlyTrpSerGlnAlaGlu
41	GGAGCTGAACTACACTGTGCCGGGCCTGGGACCTTCGGACGAGGCCTCCTTCCT
9	GluLeuAsnTyrThrValProGlyLeuGlyProSerAspGluAlaSerPheLeuSerGln *
01	GTGCATGAGGTATGAGGTGGACTGGAACCAGAGCACCCTTGACTGTGTGGACCCACTGTC
9	CysMetArgTyrGluValAspTrpAsnGlnSerThrLeuAspCysValAspProLeuSer *
61	CAGCCTGGTTGCCAACAGGAGTCAGTTGCCATTGGGCCCCTGCGAGCATGGCTGGGTATA
09	ScrLcuValAlaAsnArgSerGlnLeuProLeuGlyProCysGluHisGlyTrpValTyr
21	CGACACTCCCGGCTCCTCCATCGTCACTGAGTTTAACCTGGTGTGTGGAGACGCCTGGAA
29	AspThrProGlySerSerIleValThrGluPheAsnLeuValCysGlyAspAlaTrpLys
81	AGTGGACCTTTTTCAGTCCTGTGTGAACTTGGGCTTCTTCCTGGGCTCCCTGGTTGTGGG
49	ValAspLeuPheGlnSerCysValAsnLeuGlyPhePheLeuGlySerLeuValValGly
41	TTACATTGCAGACAGGTTTGGCCGTAAGCTCTGTCTCTTGGTGACCACGCTGGTCACATC
69	TyrIleAlaAspArgPheClyArgLysLeuCysLeuLeuValThrThrLeuValThrSer

Fin. 201 (Forts.)

601	TGTGTCCGGTGTGCTAACAGCGGTGGCCCCAGACTATACATCCATGTTGCTCTTTCGCCT
189	ValSerGlyValLouThrAlaValAlaProAspTyrThrSerMetLouLouPhoArqLou
661	GCTGCAGGGCATGGTCAGCAAGGGCAGCTGGGTGTCCGGCTATACCTTGATCACAGAGTT
209	LeuGlnGlyMetValSerLysGlySerTrpValSerGlyTyrThrLeuIleThrGluPho
721	TCTCGCCTCTGGCTACAGGAGAACGACGGCCATTTCTACCAGATGGCCTTCACAGTGGG
229	ValGlySerGlyTyrArgArgThrThrAlaIleLeuTyrGlnMetAlaPheThrValGly
781	CCTAGTGGGGCTTGCCGGGGTGGCCTATCCACACTGCCGCCCTCGCTCCAGCTAGC
249	LeuValGlyLeuAlaGlyValAlaTyrAlaIleProAspTrpArgTrpLeuGlnLeuAla
841	TGTGTCCCTGCCTACCTTCCTCTTCCTGCTGTATTACTGGTFTGTCCCAGAATCCCCCCG
269	ValSerLeuProThrPheLeuPheLeuLeuTyrTyrTrpPheValProGluSerProArg
901	GTGGCTGTTGTCCCAGAAGAGAACCACGCGAGCTGTCAGGATAATGGAGCAAATTGCACA
289	TrpLouLouSorCinLycArgThrThrArgAlaValArgIleMetGluGlnIleAlaGln
961	GAAGAACGGGAAGGTGCCTCCTGCTGACCTGAAGATGCTCTGCCTTGAGGAGGATGCCTC
309	LysksnGlyLysValProProAlaAspLeuLysMetLeuCysLeuGluGluAspAlaSer
1021	AGAAAAGCGAAGTCCTTCGTTTGCCGACCTGTTCCGCACTCCCAACCTGAGGAAGCACAC
329	GluLysArgSerProSerPheAlsAspLeuPheArgThrProAsnLeuArgLysHisThr
1081	CGTCATCCTGATGTATCTATGGTTCTCTTGTGCTGTGCT
349	ValileLeuMetTyrLeuTrpPheSerCysAlaValLeuTyrClnGlyLeuIleMetHis
1141	CGTGGGAGCCACAGGGGCCAACCTCTACCTGGACTTCTTTTATTCTTCTCTGGTGGAATT
369	ValCivAlaThrClvAlaAshLouTyrLouAcpPhothoTyrSorSorLouValCluPho

Hin. 201 (Forts.)

1201 389	CCCCGCGGCCTTCATCATCCTGGTCACCATTGACCGCATTGGCCGCATCTACCCAATAGC PTOAlaAlaPheIleIleLeuValThrIleAspArgIleGlyArgIleTyrProIleAla
1261	GGCCTCGAATCTGGTGACGGGGGCAGCCTGCCTCCTCATGATCTTTATCCCGCATGACCT
409	AleSerAsnLeuVelThrGlyAleAleCyoLeuLeuHetIlePheIleProHisGluLeu
1321 429	${\tt GCACTGGTfGAACGTTACCCTCGCCTCTTCGCCCTATGGCGCCCACCATTGTCCTCCA}\\ {\tt HisTTpLeuAsnValThrLeuAlaCysLeuGlyArgMetGlyAlaThrIleValLeuGlu}$
1381	GATGGTCTGCCTGAACGCTGAGCTGTACCCTACATTCATCAGGAATCTTGGGATGAT
449	MetValCysLeuValAsnAlaGluLeuTyrProThrPheileArgAsnLeuGlyMetMat
1441	GGTATGCTCTGCCTGTGTGACCTGGGTGGGATCTTCACCCCCTTCATGGTGTTCAGGCT
469	ValCysSerAlaLeuCysAspLeuGlyGlyIloPheThrProPheMetValPheArgLeu
1501	GATGGAAGTTTGGCAAGCCCTGCCCCTCATTTTGTTTGGGGTTTTGGGCCTGACTGCTGG
489	MetGluValTTpGlnAlaLeuProLeuIleLeuPheGlyValLeuGlyLeuThrAlaGly
1561 509	${\tt GGCCATGACTCTTCTCCCCAGAGACCAAGGGTGTGGCTFTGCCTGAGACTATTGAAGAALAMetthrLeuLeuLeuProGluthrLygGlyValAlaleuProGluthrlleGluGlu}$
1621	AGCAGAGAACCTGGGGAGGAAATCLLAAGGCCAAAGAAACACGATFTACCTTCAGGT
529	AlaGluasnlouglyargarglysSerlysalalysGluasnThrileTyrlouglnVal
1681	CCAAACAGGCAAGTCCTCAAGTACCTGACAGGGATGCTGTGCCAGGAGCTGAGTGGCAGA
549	GlnthrGlyLysSerSerSerThr
1741	GAGAAAGGAOGACTTGCCACTTGGAGGATTCCCAGAAGCCTTTGCCTTTCCAGACTCTTG
1801	TATATATGCACCAGGITCCAAATGAACTACCAACCTTAAAGACTTTTCTGAAAGCCCAAA
1861	*********

Beschreibung

Bei den Säugetieren und insbesondere beim Menschen werden kationische Pharmaka und Xenobiotika mit unterschiedlicher molekularer Struktur, Katecholamine und andere endogene Kationen durch polyspezifische Transportproteine in der Niere und Leber ausgeschieden, die in luminalen und basolateralen Plasmamembranen lokalisiert sind. Diese Transportproteine unterscheiden sich in funktioneller Hinsicht von den bereits bekannten Monoamintransportproteinen in neuronalen Plasmamembranen und synaptischen Vesikeln und von den ATP-abhängigen Exportproteinen für hydrophobe Pharmaka ("Multidrug"-Transportproteine).

Im Rahmen der vorliegenden Erfindung wurde zunächst eine komplementäre DNA-Sequenz aus Rattennieren isoliert, die für ein 556 Aminosäuren langes Membranprotein kodiert, das im folgenden als OCT1 bezeichnet wird. Dieses Transportprotein wirkt in der basolateralen Membran der proximalen Nierentubuli (Nierenkanälchen) und in Hepatozyten als Kationentransporter für verschiedene Zielmoleküle.

Das mit OCT1 bezeichnete Transportprotein ist nicht homolog zu irgendeinem anderen bisher bekannten Protein, weist eine bisher einzigartige Verteilung von hydrophoben und negativ geladenen Aminosäuren auf und wird ausschließlich in Nieren, Leber und Darm gefunden. Das OCT1-Transportprotein transportiert Kationen mit unterschiedlicher Struktur, wird durch eine Vielzahl von kationischen Substanzen mit unterschiedlicher Hydrophobizität gehemmt und besitzt andere funktionelle Eigenschaften als ein schon bekanntes polyspezifisches Transportprotein ("Multidrug-Transporter"), welches ausschließlich sehr hydrophobe Substanzen transportieren kann. Das Transportprotein OCT1 wird als ein neuer Prototyp eines polyspezifischen Transportproteins in Säugetieren angesehen.

Viele organische Kationen einschließlich häufig verwendeter Pharmaka wie Antihistaminika, Antiarrhythmika, Sedativa, Optiate, Diuretika, Zytostatika und Antibiotika werden in den Urin und in die Galle mittels aktiven Transports durch Nierenepithelzellen und Hepatozyten ausgeschieden. Bei der aktiven Sekretion in der Niere werden die Kationen durch polyspezifische Transportsysteme in der basolateralen und luminalen Plasmamembran der proximalen Nierentubuli transportiert. Beide Systeme unterscheiden sich in funktioneller Hinsicht. Die Transportproteine in der basolateralen Membran, die strukturell verschiedene Kationen wie Tetraethylammonium (TEA), N¹-Methylnicotinamid (NMN) und N-Methyl-4-phenylpyridinium (MPP) transportieren können, werden durch eine Vielzahl von strukturell unterschiedlichen extrazellulären Kationen inhibiert. Diese Transportproteine können durch ein im Inneren negatives Membranpotential und durch einen Gegentransport von intrazellulären Substraten angetrieben werden. In der luminalen Membran wurden zwei Transportsysteme beschrieben, die durch einen nach außer gerichteten Protonengradienten angetrieben werden, aber durch das Membranpotential nicht beeinflußt werden. Das eine dieser Transportsysteme hat eine breite Substratspezifität, die mit der des Kationentransportsystems in der basolateralen Membran von proximalen Nierentubuli vergleichbar ist. Aufgrund funktioneller Ähnlichkeiten wird angenommen, daß dieses polyspezifische Transportsystem der luminalen Membran mit dem extraneuronalen Transportsystem für Noradrenalin im Herzen identisch ist.

Gegenstand der vorliegenden Erfindung sind daher Transportproteine, die für den Transport von kationischen Xenobiotika und/oder Pharmaka aus dem Blut in die Leber- oder Nierenepithelzellen oder für den Transport von kationischen Xenobiotika oder Pharmaka aus dem Darm in den Blutkreislauf zuständig sind.

Die erfindungsgemäßen Transportproteine sind dadurch gekennzeichnet, daß sie eine Teilsequenz von wenigstens sieben Aminosäuren ausgewählt aus der Aminosäuresequenz aufweisen, die in Figur 2a₁, Figur 2a₂ oder Figur 2a₃ dargestellt ist. In bevorzugter Ausführungsform weist die Teilsequenz aus der Figur 2a₁, 2a₂ oder 2a₃ eine Länge von wenigstens 10 Aminosäuren und in einer besonders bevorzugten Ausführungsform eine Länge von wenigstens 14 Aminosäuren auf.

Gegenstand der vorliegenden Erfindung sind auch DNA-Sequenzen, die für ein erfindungsgemäßes Transportprotein kodieren. Die erfindungsgemäßen DNA-Sequenzen weisen eine Teilsequenz von wenigstens 21 Basen ausgewählt aus der in Figuren 2a₁, 2a₂ oder 2a₃ gezeigten Sequenz auf. In einer besonders bevorzugten Ausführungsform ist die Teilsequenz wenigstens 30 Basen und in einer ganz besonders bevorzugten Ausführungsform wenigstens 42 Basen lang.

Von besonderer Bedeutung sind die erfindungsgemäßen Transportproteine und DNA-Sequenzen in der medizinischen und pharmakologischen Forschung. Mit Hilfe der erfindungsgemäßen DNA-Sequenzen ist es beispielsweise möglich, epitheliale Zellinien herzustellen, die ein erfindungsgemäßes Transportprotein permanent exprimieren. Hierzu wird mit an sich bekannten gentechnologischen Methoden die für das Transportprotein kodierende DNA-Sequenz in einen geeigneten Vektor eingebaut, mit dem eine geeignete epitheliale Zellinie, die das Transportprotein bisher nicht exprimierte, transformiert wird. Dadurch können Zellinien erhalten werden, die ein erfindungsgemäßes Transportprotein konstant exprimieren.

Derartige epitheliale Zellinien, die die Transportproteine exprimieren, können zur Testung der zu erwartenden renalen und biliären Ausscheidung sowie der intestinalen Resorption von kationischen Pharmaka und/oder Xenobiotika in vitro eingesetzt werden. Mit Hilfe derartiger Zellinien kann also bereits in vitro, d.h. ohne aufwendige Tierexperimente, festgestellt werden, ob und wenn ja in welchem Ausmaß Pharmaka oder auch andere biologisch aktive Wirkstoffe ausgeschieden oder aus dem Darm in den Blutkreislauf resorbiert werden.

Mit Hilfe der erfindungsgemäßen DNA-Sequenzen können solche Transportproteine isoliert werden, die zu den erfindungsgemäßen Transportproteinen homolog sind. Es ist daher möglich, die entsprechenden Transportproteine aus allen Säugerspezies und aus dem Menschen zu isolieren, die zu den erfindungsgemäß offenbarten Transportproteinen homolog sind. Zwei entsprechende humane Sequenzen wurden bereits ermittelt. Eine Möglichkeit, wie eine derartige Isolierung erfolgen kann, ist die inzwischen allseits bekannte Polymerase Kettenreaktion. Es müssen daher nur geeignete DNA-Sequenzen aus der in Fig. 2a₁, 2a₂ oder 2a₃ gezeigten Sequenz ausgewählt werden, die als Primer für die Polymerase Kettenreaktion dienen können. Mit Hilfe dieser Primer kann die Isolierung von homologen Transportproteinen ohne Schwierigkeiten erfolgen.

Eine weitere Verwendungsmöglichkeit der erfindungsgemäßen Transportproteine und/oder der erfindungsgemäßen epithelialen Zellinien ist die Entwicklung von kationischen Signalmolekülen, die an biologisch aktive Verbindungen, wie Pharmaka, angehängt werden können, um deren renale und biliäre Ausscheidung oder ihre intestinale Resorption zu verändern. Es ist hierdurch möglich, verschiedene chemische Strukturen dahingehend zu überprüfen, ob sie eine Ausscheidung des damit verbundenen Moleküls über die Niere bzw. Leber begünstigen und eine Resorption aus dem Darm in den Blutkreislauf fördern, ober ob sie das jeweilige Gegenteil bewirken.

Insbesondere können die erfindungsgemäßen Transportproteine auch zur Entwicklung von Antikörpern, insbesondere monoklonalen Antikörper, dienen, mit deren Hilfe die Aufnahme von Pharmaka in Nierentubuluszellen blockiert werden kann, um die Nephrotoxizität von kationischen Pharmaka zu erniedrigen.

Weiterhin kann aufgrund der erfindungsgemäßen Offenbarung die Entwicklung von spezifischen Pharmaka erfolgen, die die Ausscheidung von bestimmten anderen kationischen Pharmaka und/oder Xenobiotika beeinflussen. Hierdurch ist es möglich, pharmakologisch wirksame Substanzen zu entwickeln, die die Aufnahme von anderen Wirkstoffen beeinflussen. Eine derartige Beeinflussung kann entweder darin bestehen, daß die Aufnahme eines Wirkstoffes aus dem Darm gefördert oder verhindert wird oder daß die Ausscheidung eines Wirkstoffes in der Niere und Leber gefördert oder verhindert wird.

Eine weitere bevorzugte Verwendung der erfindungsgemäßen DNA-Sequenzen ist die Entwicklung von Antisense-Nucleotidsequenzen. Hierbei können Nucleotidsequenzen entwickelt werden, die die Transkription und/oder Translation der entsprechenden Gene dadurch verhindern, daß sie an die entsprechenden natürlich vorkommenden komplementären Nucleotidsequenzen binden.

Eine weitere bevorzugte Verwendung der erfindungsgemäßen DNA-Sequenzen ist ihre Verwendung in molekularen Testkits zur Diagnose von molekularen genomischen Defekten in renalen und/oder biliären Kationenausscheidungsmechanismen. In solchen molekularen Testkits können die DNA-Sequenzen in einer besonders bevorzugten Ausführungsform zur Durchführung der Polymerase Kettenreaktion verwendet werden. Dabei werden anhand der bekannten DNA-Sequenz Primersequenzen ausgesucht und synthetisiert, mit deren Hilfe in der Polymerase-Kettenreaktion das für den Kationentransporter des jeweiligen Patienten kodierende Gen amplifiziert und bezüglich genetischer Mutationen untersucht werden kann.

Anhand der nachfolgenden Beispiele, die jedoch die Erfindung nicht einschränken sollen, wird das Wesen der vorliegenden Erfindung näher erläutert.

Beispiel 1

35

Für die Klonierung der für das Transportprotein kodierenden Gene wurden zunächst doppelsträngige cDNA mit glatten Enden von Poly(A)* RNA aus Rattennieren hergestellt, wobei ein Notl-Oligo(dT)Primer für die Synthese des ersten Stranges verwendet wurde. Nachdem EcoRl-Adaptoren, die einen SP6 RNA Polymerase Promotor enthalten, an die cDNA angebracht wurden, wurde mit Notl verdaut, der Größe nach aufgetrennt (1,5 bis 2,3 kb) und in die EcoRl Restriktionsschnittstelle des Vektors pBluescript (Stratagene) eingebaut und anschließend in den E.coli-Stamm DH10B elektroporiert. Aus Transformantenpools wurde die Plasmid-DNA isoliert, mit Notl linearisiert und mit Hilfe der SP6-RNA Polymerase transkribiert. Die cRNA wurde durch Poly(A)* Selektion gereinigt und in einer Konzentration von 20 bis 40 ng pro Oozyte injiziert. Die Oozyten wurden inkubiert und die durch NMN inhibierbare ¹⁴C-TEA-Aufnahme wurde gemessen. Durch ein gezieltes Suchverfahren wurde aus der Genbibliothek ein einzelner Klon isoliert, der das für einen Kationentransporter aus der Niere kodierende Gen enthielt. Die Isolierung dieses Klons war nur nach Optimierung und teilweiser Veränderung der angewandten Methoden möglich. Zum Sequenzieren identifizierter DNA wurden überlappende Restriktionsfragmente von OCT1 subkloniert und an beiden Strängen vollständig sequenziert.

Das aus einer Ratten-Nieren-Genbank isolierte Gen OCT1, welches aus einem 1.882 Basenpaar langen cDNA-Fragment bestand, wurde in Xenopus laevis Oozyten exprimiert. Hierbei wurden die Oozyten nach RNA-Injektion drei Tage mit 5 mM Hepes-Tris-Puffer, pH 7,5, 110 mM NaCl, 3 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂ (im folgenden als ORi bezeichnet) inkubiert. Der Transport wurde durch Inkubation der Oozyten mit ¹⁴C-TEA (Tetraethylammonium) gemessen, das in ORi (22°C) gelöst wurde. Weiterhin wurden Versuche mit unterschiedlichen Na* und K* Konzentrationen sowie Versuche in der Gegenwart von Ba**, bei verschiedenen pH-Werten und in Gegenwart unterschiedlicher Inhibitoren durchgeführt. Da bei den verwendeten ¹⁴C-TEA-Konzentrationen die durch exprimiertes OCT1-Protein verursachte Aufnahme in ORi-Puffer für mehr als 90 Minuten linear war, wurden die Aufnahmeraten nach 90-minütiger

Inkubation bestimmt. Für die Messungen mit veränderten Konzentrationen an Na*, K*, H* und in Gegenwart von Inhibitoren wurden die Oozyten zuerst 30 Minuten unter den entsprechenden Pufferbedingungen inkubiert und die Aufnahmeraten wurden dann während einer 30-minütigen Inkubationsperiode mit ¹4C-TEA bestimmt. Nach der Inkubation mit ¹4C-TEA wurde die Aufnahme unterbrochen und die Oozyten gewaschen und hinsichtlich der aufgenommenen Radioaktivität untersucht.

Es wurde also das 1.882 Basenpaar lange cDNA-Fragment unter Verwendung von Xenopus laevis Oozyten (wie oben beschrieben) exprimiert; das so exprimierte OCT1-Protein induzierte eine ¹⁴C-Tetraethylammonium (¹⁴C-TEA) Aufnahme, die durch NMN (N¹-Methylnicotinamid) inhibiert werden konnte, wobei die Aufnahme mehr als 250-fach über den Kontrollwerten lag, bei denen Wasser in die Oozyten injiziert wurde. Die Ergebnisse sind in Figur 1a graphisch dargestellt.

Die klonierte OCT1 cDNA enthält einen offenen Leserahmen, der für ein Membranprotein mit 556 Aminosäuren kodiert. Die Aminosäuresequenz ist in der Figur 2a₁ dargestellt. Sie zeigt keine Ähnlichkeiten mit den Proteinen in Datenbanken

Die Expression der 14 C-TEA-Aufnahme war abhängig von der Menge der injizierten OCT1-cRNA. Diese Ergebnisse sind in der Figur 1b dargestellt. Die cRNA-Abhängigkeit der exprimierten Aufnahme konnte durch die Hill-Gleichung mit n = etwa 2 beschrieben werden.

Die Substratabhängigkeit der von dem Transportprotein OCT1 bewirkten 14 C-TEA-Aufnahme folgte der Michaelis Menten-Gleichung. Diese Ergebnisse sind in der Figur 1c dargestellt. Der geschätzte K_m -Wert von 95 \pm μ M ähnelte dem K_m -Wert (160 μ M), der in früheren Versuchen für den Kationentransport über die basolaterale Membran proximaler Nierentubuli von Ratten bestimmt worden war. Er war 14 mal geringer als der scheinbare K_m -Wert für den polyspezifischen H^* -Kationen-Gegentransporter in der Bürstensaummembran proximaler Nierentubuli von Ratten.

Beispiel 2

Um weiterhin festzustellen, ob es sich bei dem OCT1-Transportprotein um das potentialabhängige polyspezifische Kationentransportsystem aus der basolateralen Membran oder um das potentialunabhängige polyspezifische H*-Kationen-Gegentransportsystem der Bürstensaummembran handelt, wurde untersucht, ob die von dem Transportprotein OCT1 bewirkte Aufnahme von dem Membranpotential bzw. von einem Protonengradienten über die Membran abhängig ist. Außerdem wurde die Hemmung der exprimierten 14C-TEA-Aufnahme durch verschiedene Inhibitoren untersucht.

Die Figuren 1d und 1e zeigen, daß die durch das Transportprotein OCT1 vermittelte ¹⁴C-TEA-Aufnahme vom Membranpotential abhängig ist, aber nicht wesentlich geändert wird, wenn ein nach innen oder außen gerichteter Protonengradient von einer pH-Einheit angelegt wird. Das OCT1-Transportprotein hat also die gleichen Grundcharakteristiken wie der über die basolaterale Membran der proximalen Nierentubuli gemessene Kationentransport.

Figur 1f und Tabelle 1 zeigen, daß die durch OCT1 bewirkte ¹⁴C-TEA-Aufnahme durch organische Kationen mit verschiedener molekularer Struktur inhibiert wird. Diese Strukturen schließen mehrere häufig verwendete Pharmaka wie Chinin, Desipramin, Procainamid und O-Methyl-isoprenalin ein. Die geschätzten K_i-Werte liegen zwischen 0,13 µM für 1-Ethyl-2([1,4-dimethyl-2-phenyl-6-pyrimidinyliden]methyl)chinoliniumchlorid (Cyanin 863) und 1 mM für Tetrame-

40

25

30

45

50

thylammonium (TMA).

Tabelle 1

Inhibitor	K _i (μM)
Cyanin 863	0,13 ± 0,02
Decynium 22	$0,36 \pm 0,08$
Tetrapentylammonium	$0,43 \pm 0,09$
Chinin	$0,93 \pm 0,08$
Desipramin	2,8 ± 0,6
Mepiperphenidol	5,2 ± 0,3
Procainamid	13 ± 2
1-Methyl-4-phenylpyridinium	13 ± 2
Corticosteron	> 10
Reserpin	> 20
O-Methyl-isoprenalin	43 ± 5
Tetramethylammonium	1000 ± 100
N1-Methylnicotinamid	1000 ± 200

Tabelle 1 zeigt die Empfindlichkeit der ¹⁴C-TEA-Aufnahme in Xenopus laevis Oozyten, denen die cRNA des Nierentransportproteins OCT1 injiziert wurde.

Bei der Durchführung der Inhibitionsexperimente wurden den Xenopus laevis Oozyten 5 ng OCT1-cRNA injiziert und die Auswirkungen der in Tabelle 1 aufgeführten Inhibitoren bei 5 bis 8 unterschiedlichen Inhibitor-Konzentrationen auf die Aufnahme von 95 µM in die Oozyten gemessen. Die Werte wurden auch in Figur 1f dargestellt. Die Inhibierungskurven wurden durch nichtlineare Regressionsanalyse angepaßt und die K_i-Werte (± SD) wurden bestimmt.

Im Unterschied zu dem schon bekannten polyspezifischen Transportprotein, dem sogenannten Multidrug-Transporter, welches ausschließlich durch hydrophobe Substanzen inhibiert wird, wurde das erfindungsgemäße Transportprotein OCT1 auch durch hydrophile Verbindungen wie TMA und NMN gehemmt. Desipramin inhibierte den durch OCT1 bewirkten Transport mit einem 700-fach höheren K_i-Wert als den neuronalen Noradrenalin-Transport in Plasmamembranen von Nervenzellen. 5 µM Reserpin beeinflußt den durch OCT1 bewirkten Transport nicht, während das neuronale Monoamin-Transportprotein in synaptischen Vesikeln durch subnanomolare Reserpin-Konzentrationen inhibiert wird.

Beispiel 3

15

20

25

Durch Vergleich der K_i-Werte von OCT1 mit früher erhaltenen funktionellen Daten von Membranvesikeln und von Messungen mit kultivierten Nierenepithelzellen konnte die Identität des OCT1-Transportproteins mit dem basolateralen kationischen Transportprotein bestätigt werden. Bei solch einem Vergleich müssen die Spezies-abhängigen Unterschiede bei dem Kationentransport und die methodischen Beschränkungen der unterschiedlichen Verfahren zur Messung der Inhibierung des Kationentransports berücksichtigt werden. In früheren Untersuchungen wurde der Kationentransport in Rattennieren durch Mikroperfusionsexperimente bestimmt, die mit kurzen Inkubationszeiten (4 Sekunden) durchgeführt werden müssen. Da mit dieser Methode keine Diffusions-unabhängige K_i-Bestimmung von Inhibitoren mit hoher Affinität möglich ist, haben wir uns auf den Vergleich niederaffiner Hemmstoffe beschränkt. Bei einem Vergleich der niederaffinen Inhibitoren TMA und NMN fanden wir, daß die K_j-Werte des OCT1-exprimierten Transportproteins (etwa 1 mM) den K_i-werten (TMA 1,4 mM, NMN 0,54 mM), die für die basolaterale TEA-Aufnahme in den proximalen Nierentubuli von Ratten gemessen wurden, entsprechen. Sie unterschieden sich deutlich von den K_i-Werten (TMA 70 mM, NMN 8,3 mM), die für die luminale TEA-Aufnahme bestimmt wurden.

Beispiel 4

55

Die basolaterale Lokalisierung von OCT1 wird zusätzlich durch den K_i -Wert (0,4 μ M) gestützt, der für die Inhibierung der von OCT1 bewirkten Aufnahme durch 1,1'-Diethyl-2,2'-cyaninjodid (Decynium 22) erhalten wurde. In LLC-PK1-Zellen wurde für den TEA-Transport über die luminale Membran ein K_i -Wert von 5,6 nM bestimmt, während der K_i -Wert für

den TEA-Transport über die basolaterale Membran mit > 0,1 μ M geschätzt wurde. Um das OCT1-Transportprotein weiter zu charakterisierten, wurde getestet, ob MPP, das eine etwa 10-fach höhere Affinität hat als TEA, ebenfalls durch OCT1 transportiert wird. Nach Injektion von 8 ng OCT1-cRNA in Oozyten wurde eine spezifische 3 H-MPP-Aufnahme exprimiert, die durch Chinin inhibierbar war. In einem Ansatz von Oozyten wurden ähnliche V_{max} -Werte für die exprimierte Aufnahme von 1 4C-TEA (1 48 \pm 4 pmol x Oozyten $^-$ 1 x h $^-$ 1) und 3 H-MPP (3 7 \pm 5 pmol x Oozyten $^-$ 1 x h $^-$ 1] bestimmt. In Leberzellen ist die Existenz von polyspezifischen Kationentransportern beschrieben worden. Kürzlich wurde die MPP-Aufnahme in kultivierte Heptozyten gemessen. Dabei zeigte sich, daß etwa 90 % der MPP-Aufnahme durch die gleichen Hemmstoffe gehemmt werden konnten wie der durch OCT1 exprimierte Kationentransport. Die an den Hepatozyten für die MPP-Aufnahme bestimmten K_i -Werte (O-Methylisoprenalin 7 8 μ M, MPP 13 μ M, Chinin 0,8 μ M, Decynium 22 0,23 μ M und Cyanin 863 0,10 μ M) waren nahezu identisch mit den Werten, die für die TEA-Aufnahme durch das von Xenopus Oozyten exprimierte OCT1-Protein erhalten wurden. Diese Daten lassen vermuten, daß das OCT1-Transportprotein oder ein hochhomologes Transportprotein in der Plasmamembran von Hepatozyten vorhanden ist.

Beispiel 5

15

25

Die Nucleotidsequenz und die Aminosäuresequenz von OCT1 ist in Figur 2a₁ dargestellt. Vor dem offenen Leserahmen sind Stoppkodons zu finden und eine Initiationsstelle der Translation von Kozak-Typ (ACGCCATG).

Eine Analyse der Hydrophilie/Hydrophobie von OCT1 ließ 11 hydrophobe α-helikale Bereiche erkennen, die die Membran voraussichtlich durchqueren. Eine Darstellung der Hydrophobie/Hydrophilie-Indices findet sich in Figur 2b. Die voraussichtlich membranspannenden Bereiche sind 17 bis 27 Aminosäuren lang. Sie sind durch einen langen, zwei mittellange und sieben kurze hydrophile Bereiche miteinander verbunden. Da drei potentielle N-Glycosilierungsstellen an dem hydrophilen Bereich zwischen den beiden ersten die Membran durchquerenden Proteinbereichen vorausgesagt wurden, wurde die in Figur 2c dargestellt Orientierung von OCT1 vorgeschlagen. Der erste hydrophile Bereich enthält 14 negativ geladene Aminosäuren, die für die Kationenbindung an OCT1 wichtig sein können.

Beispiel 6

Verschiedene Rattengewebe und einige Zellinien wurden bezüglich der Lokalisation von für Transportprotein OCT1 spezifischer mRNA mit Hilfe des sogenannten Northern Blots analysiert. Hierzu wurde die gesamte RNA durch die Guanidinium-Phenol-Chloroform-Methode isoliert und die mRNA wurde unter Verwendung der Oligo(dT)-Zellulose-Chromatographie gereinigt. Die mRNA wurde mit Hilfe von Formaldehyd-Agarosegel-Elektrophorese fraktioniert, auf eine Hybond-N-Membran (Amersham) übertragen und anschließend hybridisiert. Hierzu wurden von den Rattenzellen und aus der Zellinie 293 5 μg und aus den Zellinien Caki-1 und LLC-PKI1 1,5 μg mRNA auf das Formaldehyd-Agarosegel aufgetragen. Die Hybridisierung erfolgte mit einem ³²P-markierten cDNA-Fragment der erfindungsgemäßen DNA-Sequenz von dem Plasmid pOCT1 (es wurden die Nucleotide 285 bis 1196 verwendet. Die Hybridisierung wurde für 18 Stunden bei 42°C in der Hybridisierungslösung durchgeführt (50 % Formamid, 5 x SSPE, 5 x Denhardt's Lösung, 0,5 % SDS und 20 μg Lachssperma DNA). Die Membran wurde in mehreren Schritten zu einer endgültigen Stringenz von 0,25 x SSPE, 0,1 % SDS bei 60°C gewaschen. Zur Darstellung der Zellinie LLC-PK1 erfolge eine Exponierung des Films für 24 Stunden und für die anderen Spuren erfolgte eine Exponierung des Films für sechs Stunden. Zur Ermittlung der Größe der RNA-Fragmente wurde ein RNA-Standard (0,14 bis 9,5 Kilobasen-Bereich von GIBCO/BRL) verwendet. Die Größen sind in der Figur 3 angegeben.

In Figur 3 ist die durch die Northern Blot Analyse erhaltene Autoradiographie dargestellt. Bei der Nierenrinde, dem Nierenmark, der Leber und dem Darm wurden deutliche Banden bei 1,9 Kilobasen und weitere Banden bei 3,4 und 4,8 Kilobasen beobachtet. In der Zellinie LLC-PK1 konnte nur eine Hybridisierung in dem Bereich von 3,4 Kilobasen beobachtet werden. Keine Signale für OCT1 konnten dagegen in der Nieren-Papille, im Skelettmuskel, im Herzmuskel, im Gehirn, in der menschlichen embryonalen Nierenzellinie 293 und in Caki-1-Zellen beobachtet werden. Da Herz- und Caki-1-Zellen das extraneuronale Noradrenalin-Transportprotein enthalten, welches wahrscheinlich mit dem H*-Kationen-Gegentransportprotein auf luminalen Nierenmembranen identisch ist, gehören die Kationen-Transportproteine in der basolaterialen und luminalen Membran der proximalen Nierentubuli wahrscheinlich zu verschiedenen genetischen Familien. In situ-Hybridisierungen zeigten, daß das OCT1-Transportprotein in den proximalen Nierentubuli, in den Epithelzellen der Leber und in den Enterozyten des Dünndarms exprimiert werden.

Die obigen Beispiele zeigen, daß ein neues und einzigartiges Protein kloniert wurde, das eine bedeutende Role bei der Eliminierung von kationischen Pharmaka in Niere und Leber spielt. Vermutlich ist dieses Protein auch an der Reabsorption von kationischen Verbindungen im Darm beteiligt. Obwohl der Kationentransport und die Exkretion von Pharmaka seit mehr als 30 Jahren intensiv untersucht werden, konnten in der Vergangenheit nur geringe Fortschritte erzielt werden. Der Grund dafür ist, daß die Ausscheidung von Pharmaka in Leber und Nieren den Transport über die basolaterale und die luminale Plasmamembran der epithelialen Zellen einschließt und daß diese Transportprozesse durch funktionell verschiedene Kationen-Transportproteine bewirkt werden. Darüber hinaus kann nicht ausgeschlossen werden, daß sowohl in der luminalen als auch in der basolateralen Nierenmembran verschiedene Kationen-Transport-

proteine mit ähnlicher Substratspezifität existieren. Durch die Klonierung des erfindungsgemäßen OCT1-Transportproteins wurde ein Typ des Kationen-Transportproteins identifiziert. Damit wurden viele Möglichkeiten zur weiteren Erforschung der Ausscheidung kationischer Pharmaka eröffnet.

Beispiel 7

15

20

25

30

35

40

45

50

Mit Hilfe der in der vorliegenden Anmeldung beschriebenen Techniken konnten zwei zu OCT1 homologe menschliche Gene kloniert und vollständig bzw. teilweise sequenziert werden. Das vollständig sequenzierte Gen (HOCT1) besteht aus 1885 Basen und kodiert für ein Protein mit 553 Aminosäuren. Es ist in Figur 2a₂ dargestellt. Zwischen den Aminosäuren von OCT1 und HOCT1 besteht 78 % Identität. Das andere menschliche Gen (HOCT2) besteht aus 1896 Basen und kodiert für ein Protein mit 555 Aminosäuren. Die Nucleotidsequenz und die abgeleitete Aminosäuresequenz von OCT2 ist in Figur 2a3 dargestellt. Zwischen den Aminosäuren von OCT1 und HOCT2 besteht eine Identität von 68 %.

Erläuterung der Zeichnungen

Figur 1 zeigt die Expression von OCT1 in Xenopus laevis Oozyten. Die angegebenen 14C-TEA-Aufnahmeraten stellen die Mittelwerte von 10 bis 20 Messungen ± Standardabweichung dar.

Figur 1a zeigt einen Vergleich der NMN-inhibierten 14C-TEA-Aufnahme, die nach Injektion von Wasser, 20 ng Rattennieren mRNA oder 10 ng cRNA von OCT1 beobachtet wurde. Die Konzentrationen an ¹⁴C-TEA und NMN in den Inkubationsmedien betrugen 200 µM bzw. 10 mM.

Figur 1b zeigt die Aufnahmeraten von 200 µM 14C-TEA nach Injektion von verschiedenen Mengen an cRNA von OCT1. Die Kurve wurde durch Anpassung der Hill-Gleichung an die erhaltenen Daten errechnet ($n = 1.9 \pm 0.2$). Figur 1c zeigt die Substratabhängigkeit der 14C-TEA-Aufnahme, die nach Injektion von 3 ng OCT1-cRNA pro Oozyte

exprimiert wurde. Die durchgehende Linie zeigt die Gesamtaufnahme, die eine sättigbare Komponente und eine lineare Komponente enthält, die in mit Wasser injizierten Kontrolloozyten bestimmt wurde. Die lineare Komponente wurde mittels linearer Regression angepaßt (gestrichelte Linie, 30 fmol x h⁻¹ x Oozyte⁻¹ x μM⁻¹). Die sättigbare Komponente wurde durch die Michaelis Menten Gleichung angepaßt (K_m 95 ± 10 μ M, V_{max} 81 ± 5 pmol x h⁻¹ x Oocyte-1). Die ausgezogene Linie wurde durch Anpassung an eine Gleichung, welche beide Komponenten enthält,

errechnet.

Figur 1d zeigt die Potentialabhängigkeit der 14C-TEA-Aufnahme in Oozyten, denen 3 ng OCT1-cRNA injiziert wurden. Die Aufnahme von 95 µM 14C-TEA wurde in Gegenwart der angegebenen Konzentrationen von Na*, K* und Ba2* gemessen. Unter diesen Bedingungen lagen die Membranpotentiale zwischen -40 und -60 mV (100 mM Na*, 3 mM K*), 0 bis -10 mV (1 mM Na*, 102 mM K*) und zwischen -18 und -22 mV (100 mM Na*, 3 mM K*, 10 mM Ba2*). Figur 1e zeigt die Aufnahme von 95 μΜ ¹⁴C-TEA in Anwesenheit und Abwesenheit von Protonengradienten bei Oozyten, denen 3 ng OCT1-cRNA injiziert wurden. Um durch Protonengradienten verursachte Änderungen des Membranpotentials zu verhindern, welche die 14C-TEA-Aufnahme verändern würden, wurden die Messungen in Gegenwart von 102 mM K* und 1 mM Na* im Inkubationsmedium durchgeführt. Dadurch wurde das Membranpotential auf etwa 0 mV gebracht. pH-Messungen mit Mikroelektroden zeigten, daß sich während der 30-minütigen Aufnahmeperiode der pH-Wert um weniger als 0,1 Einheiten änderte.

Figur 1f zeigt die Inhibierung der durch OCT1 bewirkten 14C-TEA-Aufnahme durch Decynium 22 (o), Chinin (a), Desipramin (□), Procainiamid (●), O-Methylisoprenalin (◊) und Tetramethylammonium (♦). Den Oozyten wurden 5 ng QCT1-cRNA injiziert und die Messungen wurden mit 95 μM 14C-TEA durchgeführt.

Figur 2a₁ zeigt die Nucleotidsequenz und die davon abgeleitete Aminosäuresequenz von OCT1. Diejenigen Bereiche, die vermutlich Transmembranbereiche sind, wurden unterstrichen und potentielle N-Glycosilierungsstellen vom Typ NXT/S werden durch Sternchen angegeben.

Figur 2a₂ zeigt die Nucleotid- und Aminosäuresequenz eines homologen Human-Genes aus der Niere (HOCT1). Das dargestellte Genstück umfaßt 1885 Basen und kodiert für 553 Aminosäuren.

Figur 2a3 zeigt eine Nucleotid- und Aminosäuresequenz eines zweiten homologen Human-Genes aus der Niere (HOCT2). Das dargestellte Genstück umfaßt 1856 Basen und kodiert für 555 Aminosäuren.

Figur 2b zeigt eine Kyte-Doolittle Hydrophobie/Hydrophilie-Analyse von OCT1 unter Verwendung eines Fensters von 9 Aminosäuren. Die Bereiche, die vermutlich Transmembranbereiche sind, wurden mit 1 bis 11 numeriert.

Figur 2c stellt eine schematische Darstellung von OCT1 dar. Die Aminosäurereste Arg, Lys und His werden durch Pluszeichen angegeben und die Aminosäurereste Glu und Asp durch Minuszeichen gekennzeichnet. Potentielle Glycosilierungsstellen in der ersten hydrophilen Schleife sind kenntlich gemacht.

55 Figur 3 zeigt die Lokalisierung von für OCT1 spezifischer mRNA in verschiedenen Rattengeweb n und in einigen Zellinien.

SEQUENZPROTOKOLL

5		(1)	ALLC	SEME	INE :	NFO	RMAT:	ION:										
10			(i)	(E (C (E (F (C	A) N# B) ST C) OF C) BU C) L# F) PC G) TE	ME: TRASS RT: I INDES AND: OSTLE CLEPE CLEPE	SE: - Frank SLANG Deut EITZI ON:	cfurt D: - Sschl AHL: 069-	and 6592	26		Lscha	nft					
15			(ii)	ANM	kati	onis.	cher	rans Xen	obio	tika	und	1/ode	r Ph	arma	ka b	ewir		dafu
		(iii)	ANZ	AHL	DER	SEQU	ENZE	N: 6	, .	-				,			
20			(iv)	(A (B (C) DA) CO) BE	TENT MPUT TRIE	RÄGE ER: BSSY	RE FO R: F IBM STEM Pate	lopp PC c : PC	ompa -DOS	tibl /MS-	DOS	o, v	ersi	on#	1.25	(EP	A)
25	((2)	INFO	RMAT	ION	zu s	EQ-I	D NO	: 1:									
			(i)	(A (B (C) LÄ) AR) ST	NGE: T: A RANG	556 mino FORM	ERIS Ami säur : Ei lin	nosä e nzel		ı							
30			(ii)	ART	DES	MOL	EKÜL	S: P	epti	d								
35			(ix)	(A) NA	ME/S	СНLÜ 15	SSEL 56	: Pe	ptid	e							
			(×i)	SEQ	UENZ	BESC.	HREI	BUNG	: SE	Q ID	NO:	1:						
			Met 1	Pro	Thr	Val	Asp 5	Asp	Val	Leu	Glu	Gln 10	Val	Gly	Glu	Phe	Gly 15	Trp
40			Phe	Gln	Lys	Gln 20	Ala	Phe	Leu	Leu	Leu 25	Cys	Leu	Ile	Ser	Ala 30	Ser	Leu
			Ala	Pro	Ile 35	Tyr	Val	Gly	Ile	Val 40	Phe	Leu	Gly	Phe	Thr 45	Pro	Gly	His
45	٠.		Tyr	Cys 50	Gln	Asn	Pro	Gly	Val 55	Ala	Glu	Leu	Ser	Gln 60	Arg	Cys	Gly	Trp
			<i>S</i> er 65	Gln	Ala	Glu	Glu	Leu 70	Asn	Tyr	Thr	Val	Pro 75	Gly	Leu	Gly	Pro	Ser 80
50			Asp	Glu	Ala	Ser	Phe 85	Leu	Ser	Gl'n	Cys	Met 90	Arg	Tyr	Glu	Val	Asp 95	Trp
			Asn	Gln	Ser	Thr 100	Leu	Asp	Cys	Val	Asp 105	Pro	Leu	Ser	Ser	Leu 110	Val	Ala

9

		Asn	Arg	Ser 115	Gln	Leu	Pro	Leu	Gly 120	Pro	Cys	Glu	His	Gly 125	Trp	Val	Tyr
5	•	Asp	Thr 130	Pro	Gly	Ser	Ser	Ile 135	Val	Thr	Glu	Phe	Asn 140	Leŭ	Val	Cys	Gly
		Asp 145	Ala	Trp	Lys	Val	Asp 150	Leu	Phe	Gln	Ser	Cys 155	Val	Asn	Leu	Gly	Phe 160
10		Phe	Leu	Gly	Ser	Leu 165	Val	Val	Gly	Tyr	Ile 170	Ala	Asp	Arg	Phe	Gly 175	Arg
		Lys	Leu	CÀR	Leu 180	Leu	Val	Thr	Thr	Leu 185	Val	Thr	Ser	Val	Ser 190	Gly	Val
15		Leu	Thr	Ala 195	Val	Ala	Pro	Asp	Tyr 200	Thr	Ser	Met	Leu	Leu 205	Phe	Arg	Leu
		Leu	Gln 210	Gly	Met	Val	Ser	Lys 215	Gly	Ser	Trp	Val	Ser 220	Gly	Tyr	Thr	Leu
20		11e 225	Thr	Glu	Phe	Val	Gly 230	Ser	Gly	Tyr	Arg	Arg 235	Thr	Thr	Ala	Ile	Leu 240
		Tyr	Gln	Met	Ala	Phe 245	Thr	Val	Gly	Leu	Val 250	Gly	Leu	Ala	Gly	Val 255	Ala
25		Tyr	Ala	Ile	Pro 260	Asp	Trp	Arg	Trp	Leu 265	Gln	Leu	Ala	Val	Ser 270	Leu	Pro
		Thr	Phe	Leu 275	Phe	Leu	Leu	Tyr	Tyr 280	Trp	Phe	Val	Pro	Glu 285	Ser	Pro	Arg
		Trp	Leu 290	Leu	Ser	Gln	Lys	Arg 295	Thr	Thr	Arg	Ala	Val 300	Arg	Ile	Met	Glu
30		Gln 305	Ile	Ala	Gln	Lys	Asn 310	Gly	Lys	Val	Pro	Pro 315	Ala	Asp	Leu	Lys	Met 320
		Leu	Cys	Leu	Glu	Glu 325	Asp	Ala	Ser	Glu	330 Lys	Arg	Ser	Pro	Ser	Phe 335	Ala
35		Asp	Leu	Phe	Arg 340	Thr	Pro	Asn	Leu	Arg 345	Lys	His	Thr		11e 350	Leu	Met
		Tyr	Leu	Trp 355	Phe	Ser	Cys	Ala	Val 360	Leu	Tyr	Gln	Gly	Leu 365	Ile	Met	His
40		Val	Gly 370	Ala	Thr	Gly	Ala	Asn 375	Leu	Tyr	Leu	Asp	Phe 380	Phe	Tyr	Ser	Ser
		Leu 385	Val	Glu	Phe	Pro	Ala 390	Ala	Phe	Ile	Ile	Leu 395	Val	Thr	Ile	Asp	Arg 400
45		Ile	Gly	Arg	Ile	Tyr 405	Pro	Ile	Ala	Ala	Ser 410	Asn	Leu	Val	Thr	Gly 415	Ala
		Ala	Cys	Leu	Leu 420	Met	Ile	Phe	Ile	Pro 425	His	Glu	Leu	His	Trp 430	Leu	Asn
50		Val	Thr	Leu 435	Ala	Cys	Leu	Gly	Arg 440	Met	Gly	Ala	Thr	11e 445	Val	Leu	Glu
		Met	Val 450	Cys	Leu	Val	Asn	Ala 455	Glu	Leu	Tyr	Pro	Thr 460	Phe	Ile	Arg	Asn

	465		Met	Met	Val	Cys 470		Ala	Leu	Cys	475		Gly	Gly	Ile	Phe 480
5	Thr	Pro	Phe	Met	Val 485		Arg	Leu	Met	Glu 490	Val	Trp	Gln	Ala	Leu 495	
,	Leu	Ile	Leu	Phe 500	Gly	Val	Leu	Gly	Leu 505	Thr	Ala	Gly	Ala	Met 510		Leu
10	Leu	Leu	Pro 515	Glu	Thr	Lys	Gly	Val 520	Ala	Leu	Pro	Glu	Thr 525		Glu	Glu
	Ala	Glu 530	Asn	Leu	Gly	Arg	Arg 535	Lys	Ser	Lys	Ala	Lys 540	Glu	Asn	Thr	Ile
15	Tyr 545	Leu	Gln	Val	Gln	Thr 550	Gly	Lys	Ser	Ser	Ser 555	Thr				
(2) INFO	RMAT	ION 2	zu si	EQ I	ои о	: 2:									
20	(i)	(A (B (C	UENZ) LÄN) ART) STN) TON	NGE: C: Ar RANG	553 mino: FORM	Ami: säure Ei:	nosä: e nzel							•		
	(ii)	ART	DES	MOL	EKÜL.	5: Pe	eptio	i								
25	(ix)	(A)	KMALE) NAN) LAC	Æ/S			: Per	ptide	9	÷	•					
	(xi)	SEQ	JENZE	BESCH	REI	BUNG:	SEÇ	DI Ç	NO:	2:						
30	Met 1	Pro	Thr	Val	Asp 5	Asp	Ile	Leu	Glu	Gln 10	Val	Gly	Glu	Ser	Gly 15	Trp
,	Phe	Gln	Lys	Gln 20	Ala	Phe	Leu	Ile	Leu [.] 25	Cys	Leu	Leu	Ser	Ala 30	Ala	Phe
35			Lys Ile 35	20					25	_				30		
35	Ala	Pro	Ile	20 Cys	Val	Gly	Ile	Val 40	25 Phe	Leu	Gly	Phe	Thr 45	30 Pro	Asp	His
35	Ala His	Pro Cys 50	Ile 35	20 Cys Ser	Val Pro	Gly Gly	Ile Val 55	Val 40 Ala	25 Phe Glu	Leu Leu	Gly Ser	Phe Gln 60	Thr 45 Arg	30 Pro Cys	Asp Gly	His Trp
	Ala His Ser 65	Pro Cys 50 Pro	Ile 35 Gln	20 Cys Ser Glu	Val Pro Glu	Gly Gly Leu 70	Ile Val 55 Asn	Val 40 Ala Tyr	25 Phe Glu Thr	Leu Leu Val	Gly Ser Pro	Phe Gln 60 Gly	Thr 45 Arg Leu	30 Pro Cys Gly	Asp Gly Pro	His Trp Ala 80
	Ala His Ser 65 Gly	Pro Cys 50 Pro Glu	Ile 35 Gln Ala	20 Cys Ser Glu Phe	Val Pro Glu Leu 85	Gly Gly Leu 70 Gly	Ile Val 55 Asn Gln	Val 40 Ala Tyr	25 Phe Glu Thr	Leu Leu Val Arg	Gly Ser Pro 75	Phe Gln 60 Gly Glu	Thr 45 Arg Leu Val	30 Pro Cys Gly Asp	Asp Gly Pro Trp 95	His Trp Ala 80 Asn
40	Ala His Ser 65 Gly Gln	Pro Cys 50 Pro Glu Ser	Ile 35 Gln Ala Ala	20 Cys Ser Glu Phe Leu 100	Val Pro Glu Leu 85 Ser	Gly Cleu Gly Gly Cys	Ile Val 55 Asn Gln Val	Val 40 Ala Tyr Cys	Phe Glu Thr Arg Pro 105	Leu Leu Val Arg 90 Leu	Gly Ser Pro 75 Tyr	Phe Gln 60 Gly Glu Ser	Thr 45 Arg Leu Val	30 Pro Cys Gly Asp Ala	Asp Gly Pro Trp 95	His Trp Ala 80 Asn
40	Ala His Ser 65 Gly Gln Arg	Pro Cys 50 Pro Glu Ser Ser Pro 130	Ile 35 Gln Ala Ala Ala	20 Cys Ser Glu Phe Leu 100 Leu	Val Pro Glu Leu 85 Ser Pro	Gly Leu 70 Gly Cys Leu Ile	Val S5 Asn Gln Val Gly Val	Val 40 Ala Tyr Cys Asp Pro 120	Phe Glu Thr Arg Pro 105 Cys	Leu Val Arg 90 Leu Gln	Gly Ser Pro 75 Tyr Ala Asp	Phe Gln 60 Gly Glu Ser Gly Leu 140	Thr 45 Arg Leu Val Leu Trp 125 Val	OPTO Cys Gly Asp Ala 110 Val Cys	Asp Gly Pro Trp 95 Thr	His Trp Ala 80 Asn Asn Asp

11

-	Phe	Gly	Ser	Leu	Gly 165		. Gly	Tyr	Phe	2 Ala 170		Arg	Phe	Gly	Arg 175	
5	Leu	Cys	Leu	Leu 180		Thr	Val	Leu	Val		Ala	Val	Ser	Gly 190		Leu
	Met	Ala	Phe 195		Pro	Asn	Tyr	Met 200		Met	Leu	Leu	Phe 205	Arg	Leu	Leu
10	Gln	Gly 210		Val	Ser	Lys	Gly 215		Trp	Met	Ala	Gly 220		Thr	Leu	Ile
	Thr 225		Phe	Val	Gly	Ser 230		Ser	Arg	Arg	Thr 235	Val	Ala	Ile	Met	Tyr 240
15	Gln	Met	Ala	Phe	Thr 245		Gly	Leu	Val	Ala 250	Leu	Thr	Gly	Leu	Ala 255	Tyr
	Ala	Leu	Pro	His 260	Trp	Arg	Trp	Leu	Gln 265		Ala	Val	Ser	Leu 270	Pro	Thr
20	Phe	Leu	Phe 275		Leu	Tyr	Tyr	Trp 280		Val	Pro	Glu	Ser 285	Pro	Arg	Trp
	Leu	Leu 290	Ser	Gln	Lys	Arg	Asn 295	Thr	Glu	Ala	Ile	JOO Lys	Ile	Met	Asp	His
25	Ile 305	Ala	GÌn	Lys	Asn	Gly 310	Lys	Leu	Pro	Pro	Ala 315	_	Leu	Lys	Met	Leu 320
25	Ser	Leu	Glu	Glu	Asp 325	Val	Thr	Glu	Lys	Leu 330	Ser	Pro	Ser	Phe	Ala 335	Asp
	Leu	Phe	Arg	Thr 340	Pro	Arg	Leu	Arg	Lys 345	Arg	Thr	Phe		Leu 350	Met	Tyr
30	Leu	Trp	Phe 355	Thr	Asp	Ser	Val	Leu 360	Tyr	Gln	Gly	Leu	11e 365	Leu	His	Met
	Gly	Ala 370	Thr	Ser	Gly	Asn	Leu 375	Tyr	Leu	Asp	Phe	Leu 380	Tyr	Ser	Ala	Leu
35	Val 385	Glu	Ile	Pro	Gly	Ala 390	Phe	Ile	Ala	Leu	Ile 395	Thr	Ile	Asp	Arg	Val 400
	Gly	Arg	Ile	Tyr	Pro 405	Met	Ala	Val	Ser	Asn 410	Leu	Leu	Ala	Gly	Ala 415	Ala
40	Cys	Leu	Val	Ile 420	Phe	Ile	Ser	Pro	Asp 425	Leu	His	Trp	Leu	Asn 430	Ile	Ile
	Ile	Met	Cys 435	Val	Gly	Arg	Met	Gly 440	Ile	Thr	Ile	Ala	Ile 445	Gln	Met	Ile
45	Cys	Leu 450	Val	Asn	Ala	Glu	Leu 455	Tyr	Pro	Thr	Phe	Val 460	Arg	Asn	Leu	Arg
	Val 465	Met	Val	Cys	Ser	Ser 470	Leu	Cys	Asp		Gly 475	Gly	Ile	Ile	Thr	Pro 480
50	Phe	Ile	Val	Phe	Arg 485	Leu	Arg	Glu	Val	Trp 490	Gln	Ala	Leu	Pro	Leu 495	Ile
	Leu	Phe		Val 500	Leu	Gly	Leu	Leu	Ala 505	Ala	Gly	Val		Leu 510	Leu	Leu

		Pro	Glu	Thr 515		G C L	/ Asp	Ala	Leu 520		Glu	Thr	Met	Lys 525		Ala	Glu
5		Asn	Leu 530		Arg	, Lys	ala.	Lys 535		Lys	Glu	Asn	Thr 540		туг	Lev	Lys
		Val 545	Gln	Thr	Ser	Glu	9rc 550		Gly	Thr							
10	(2)	INFO	RMAT	NOI	zu s	EQ I	D NO	: 3:									
15		(i)	(A (B (C	UENZ) LÄ) AR) ST) TO	NGE: T: A RANG	555 mino FORM	Ami säur : Ei	nosä e nzel	uren	ı		•					
		(ii)	ART	DES	MOL	EKÜL	S: P	epti	d								
20		(ix)	(A		ME/S			: Pe	ptid	e					-		
		(xi)	SEQ	UENZ	BESC	HREI	BUNG	: SE	Q ID	NO:	3:						
		Met 1	Pro	Thr	Thr	Va1 5	Asp	Asp	Val	Leu	Glu 10	His	Gly	Gly	Glu	Phe 15	His
25		Phe	Phe	Gln	Lys 20	Gln	Met	Phe	Phe	Leu 25	Leu	Ala	Leu	Leu	Ser 30	Ala	Thr
		Phe	Ala	Pro 35	Ile	Tyr	Val	Gly	Ile 40	Val	Phe	Leu	Gly	Phe 45	Thr	Pro	Asp
30	٠	His	Arg 50	Cys	Arg	Ser	Pro	Gly 55	Val	Ala	Glu	Leu	Ser 60	Leu	Arg	Cys	Gly
		Trp 65	Ser	Pro	Ala	Glu	Glu 70	Leu	Asn	Tyr	Thr	Val 75	Pro	Gly	Pro	Gly	Pro 80
35		Ala	Gly	Glu	Ala	Ser 85	Pro	Arg	Gln	Cys	Arg 90	Arg	Tyr	Glu	Val	Asp 95	Trp
		Asn	Gln	Ser	Thr 100	Phe	Asp	Cys	Val	Asp 105	Pro	Leu	Ala	Ser	Leu 110	Asp	Thr
40		Asn	Arg	Ser 115	Arg	Leu	Pro	Leu	Gly 120	Pro	Cys	Arg	Asp	Gly 125	Trp	Val	Tyr
		Glu	Thr 130	Pro	Gly	Ser	Ser	11e 135	Val	Thr	Glu	Phe	Asn 140	Leu	Val	Cys	Ala
45		Asn 145	Ser	Trp	Met	Leu	Asp 150	Leu	Phe	Gln	Ser	Ser 155	Val	Asn	Val	Gly	Phe 160
		Phe	Ile	Gly	Ser	Met 165	Ser	Ile	Gly	Tyr	Ile 170	Ala	Asp	Arg	Phe	Gly 175	Arg
50		Lys :	Leu	Cys	Leu 180	Leu	Thr	Thr	Val	Leu 185	Ile	Asn	Ala	Ala	Ala 190	Gly	Val
		Leu l	Met	Ala 195	Ile	Ser	Pro	Thr	Туг 200	Thr	Trp	Met	Leu	11e 205	Phe	Arg	Leu

	Ile	Gln 210	Gly	Leu	Val	Ser	Lys 215	Ala	Gly	Trp	Leu	Ile 220	Gly	Tyr	Ile	Leu
5	Ile 225		Glu	Phe	Val	Gly 230	Gly	Arg	Tyr	Arg	Arg 235	Thr	Val	Gly	Ile	Phe 240
	Tyr	Gln	Val	Ala	Tyr 245		Val	Gly	Leu	Leu 250	Val	Leu	Ala	Gly	Val 255	Ala
10	Tyr	Ala	Leu	Pro 260	His	Trp	Arg	Trp	Leu 265	Gln	Phe	Thr	Val	Ala 270	Leu	Pro
	Asn	Phe	Phe 275	Phe	Leu	Leu	Tyr	Tyr 280	Trp	CÀa	Ile	Pro	Glu 285	Ser	Pro	Arg
15	Trp	Leu 290	Ile	Ser	Gln	Asn	Lys 295	Asn	Ala	Glu	Ala	Met 300	Arg	Ile.	Ile	Lys
	His 305	Ile	Ala	rys	Lys	Asn 310	Gly	Lys	Ser	Leu	Pro 315	Ala	Ser	Leu	Gln	Arg 320
20	Leu	Arg	Leu	Glu	Glu 325	Glu	Thr	Gly	Lys	Lys 330	Leu	Asn	Pro	Ser	Phe 335	Leu
	Asp	Leu	Val	Arg 340	Thr	Pro	Gln	Ile	Arg 345	Lys	His	Thr	Met	11e 350	Leu	Met
25	Tyr	Asn	Trp 355	Phe	Thr	Ser	Ser	Val 360	Leu	Tyr	Gln	Gly	Leu 365	Ile	Met	His
25	Met	Gly 370	Leu	Ala	Gly	Asp	Asn 375	Ile	Tyr	Leu	Asp	Phe 380	Phe	Tyr	Ser	Ala
	Leu 385		Glu	Phe	Pro	Ala 390	Ala	Phe	Met	Ile	11e 395	Leu	Ile	Ile	Asp	Arg 400
30	Ile	Gly	Arg	Arg	Tyr 405	Pro	Trp	Ala	Ala	Ser 410	Asn	Met	Val	Ala	Gly 415	Ala
	Ala	Cys	Leu	Ala 420	Ser	Val	Phe	Ile	Pro 425	Gly	Asp	Leu	Gln	Trp 430	Leu	Lys
35	Ile	Ile	Ile 435	Ser	Суѕ	Leu	Gly	Arg 440	Met	Gly	Ile	Thr	Met 445	Ala	Tyr	Glu
	Ile	Val 450	Cys	Leu	Val	Asn	Ala 455	Glu	Leu	Tyr	Pro	Thr 460	Phe	Ile	Arg	Asn
40	Leu 465	Gly	Val	His	Ile	Cys 470	Ser	Ser	Met	Суз	Asp 475	Ile	Gly	Gly	Ile	11e 480
٠	Thr	Pro	Phe	Leu	Val 485	Tyr	Arg	Leu.	Thr	Asn 490	Ile	Trp	Leu	Glu	Leu 495	Pro
45	Leu	Met	Val	Phe 500	Gly	Val	Leu		Leu 505	Val	Ala	Gly	Gly	Leu 510	Ala	Leu
	Leu	Leu	Pro 515	Glu	Thr	Lys	Gly	Lys 520	Ala	Leu	Pro	Glu	Thr 525	Ile	Glu	Glu
50	Ala	Glu 530	Asn	Met	Gln	Arg	Pro 535	Arg	Lys	Asn	Lys	Glu 540	Lys	Met	Ile	Tyr
	Leu 545	Gln	Val.	Gln	Lys	Leu 550	Asp	Ile	Pro	Leu	Asn 555					

(2) INFORMATION ZU SEQ ID NO: 4:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 1882 Basenpaare

 - (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)
- (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: exon (B) LAGE: 1..1882

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

GCAGGCCTGG	CTAAACTGGT	GAGGGCCCTA	CCCAGCCATG	CCCACCGTGG	ATGATGTCCT	60
GGAGCAAGTT	GGAGAGTTTG	GCTGGTTCCA	GAAACAAGCC	TTCCTGTTGC	TATGCCTGAT	120
CTCAGCTTCT	TTAGCTCCCA	TCTATGTGGG	CATCGTCTTC	CTGGGCTTCA	CCCCTGGACA	180
TTATTGCCAG	AATCCTGGGG	TGGCTGAGCT	GAGCCAGCGG	TGTGGCTGGA	GCCAGGCAGA	240
GGAGCTGAAC	TACACTGTGC	CGGCCTGGG	ACCTTCGGAC	GAGGCCTCCT	TCCTCAGCCA	300
GTGCATGAGG	TATGAGGTGG	ACTGGAACCA	GAGCACCCTT	GACTGTGTGG	ACCCACTGTC	360
CAGCCTGGTT	GCCAACAGGA	GTCAGTTGCC	ATTGGGCCCC	TGCGAGCATG	CCTGGGTATA	420
CGACACTCCC	GGCTCCTCCA	TCGTCACTGA	GTTTAACCTG	GTGTGTGGAG	ACGCCTGGAA	480
AGTGGACCTT	TTTCAGTCCT	GTGTGAACTT	GGGCTTCTTC	CTGGGCTCCC	TGGTTGTGGG	540
TTACATTGCA	GACAGGTTTG	GCCGTAAGCT	CTGTCTCTTG	GTGACCACGC	TGGTCACATC	600
TGTGTCCGGT	GTGCTAACAG	CGGTGGCCCC	AGACTATACA	TCCATGTTGC	TCTTTCGCCT	660
GCTGCAGGGC	ATGGTCAGCA	AGGGCAGCTG	GGTGTCCGGC	TATACCTTGA	TCACAGAGTT	720
TGTCGGCTCT	GGCTACAGGA	GAACGACGGC	CATTTTGTAC	CAGATGGCCT	TCACAGTGGG	780
GCTAGTGGGG	CTTGCCGGGG	TGGCCTATGC	CATTCCAGAC	TGGCGCTGGC	TCCAGCTAGC	840
TGTGTCCCTG	CCTACCTTCC	TCTTCCTGCT	GTATTACTGG	TTTGTCCCAG	AATCCCCCCG	900
GTGGCTGTTG	TCCCAGAAGA	GAACCACGCG	AGCTGTCAGG	ATAATGGAGC	AAATTGCACA	960
GAAGAACGGG	AAGGTGCCTC	CTGCTGACCT	GAAGATGCTC	TGCCTTGAGG	AGGATGCCTC	1020
AGAAAAGCGA	AGTCCTTCGT	TTGCCGACCT	GTTCCGCACT	CCCAACCTGA	GGAAGCACAC	. 1080
CGTCATCCTG	ATGTATCTAT	GGTTCTCTTG	TGCTGTGCTG	TACCAGGGTC	TCATCATGCA	1140
CGTGGGAGCC	ACAGGGGCCA	ACCTCTACCT	GGACTTCTTT	TATTCTTCTC	TGGTGGAATT	1200
CCCCGCGGCC	TTCATCATCC	TGGTCACCAT	TGACCGCATT	GGCCGCATCT	ACCCAATAGC	1260
GGCCTCGAAT	CTGGTGACGG	GGGCAGCCTG	CCTCCTCATG	ATCTTTATCC	CGCATGAGCT	1320
GCACTGGTTG	AACGTTACCC	TCGCCTGTCT	TGGCCGTATG	GGGGCCACCA	TTGTGCTGCA	1380
GATGGTCTGC	CTGGTGAACG	CTGAGCTGTA	CCCTACATTC	ATCAGGAATC	TTGGGATGAT	1440
GGATTGCTCT	GCCCTGTGTG	ACCTGGGTGG	GATCTTCACC	CCCTTCATGG	TGTTCAGGCT	1500

5

15

20

25

30

35

45

GATGGAAGTT TGGCAAGCCC TGCCCTCAT TTTGTTTGGG GTTTTGGGCC TGACTGCTGG 1560
GGCCATGACT CTTCTTCCC CAGAGACCAA GGGTGTGGCT TTGCCTGAGA CTATTGAAGA 1620
AGCAGAGAAC CTGGGGAGGA GGAAATCAAA GGCCAAAGAA AACACGATTT ACCTTCAGGT 1680
CCAAACAGGC AAGTCCTCAA GTACCTGACA GGGATGCTGT GCCAGGAGCT GAGTGGCAGA 1740
GAGAAAGGAG GACTTGCCAC TTGGAGGATT CCCAGAAGCC TTTGCCTTTC CAGACTCTTG 1800
TATATATGCA CCAGGTTCCA AATGAACTAC CAACCTTAAA GACTTTCTG AAAGCCCAAA 1860
AAAAAAAAAA AAAAAAAAA AA

(2) INFORMATION 2U SEQ ID NO: 5:

15

5

10

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 1885 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear

20

- (ii) ART DES MOLEKÜLS: DNS (genomisch)
- (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: exon
 - (B) LAGE: 1..1885

25

30

35

40

45

50

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

GAGGGAGACA TTGCACCTGG CCACTGCAGC CCAGAGCAGG TCTGGCCACG GCCATGAGCA 60 TGCTGAGCCA TCATGCCCAC CGTGGATGAC ATTCTGGAGC AGGTTGGGGA GTCTGGCTGG 120 TTCCAGAAGC AAGCCTTCCT CATCTTATGC CTGCTGTCGG CTGCCTTTGC GCCCATCTGT 180 GTGGGCATCG TCTTCCTGGG TTTCACACCT GACCACCACT GCCAGAGCCC TGGGGTGGCT 240 300 GAGCTGAGCC AGCGCTGTGG CTGGAGCCCT GCGGAGGAGC TGAACTATAC AGTGCCAGGC CTGGGGCCCG CGGGCGAGGC CTTCCTTGGC CAGTGCAGGC GCTATGAAGT GGACTGGAAC 360 CAGAGCGCCC TCAGCTGTGT AGACCCCCTG GCTAGCCTGG CCACCAACAG GAGCCACCTG 420 CCGCTGGGTC CCTGCCAGGA TGGCTGGGTG TATGACACGC CCGGCTCTTC CATCGTCACT 480 GAGTTCAACC TGGTGTGTGC TGACTCCTGG AAGCTGGACC TCTTTCAGTC CTGTTTGAAT 540 GCGGGCTTCT TCTTTGGCTC TCTCGGTGTT GGCTACTTTG CAGACAGGTT TGGCCGTAAG 600 CTGTGTCTCC TGGGAACTGT GCTGGTCAAC GCGGTGTCGG GCGTGCTCAT GGCCTTCTCG 660 CCCAACTACA TGTCCATGCT GCTCTTCCGC CTGCTGCAGG GCCTGGTCAG CAAGGGCAAC 720 TGGATGCTG CCTACACCCT AATCACAGAA TTTGTTGGCT CGGGCTCCAG AAGAACGGTG 780 GCGATCATGT ACCAGATGGC CTTCACGGTG GGGCTGGTGG CGCTTACCGG GCTGGCCTAC 840 GCCCTGCCTC ACTGGCGCTG GCTGCAGCTG GCAGTCTCCC TGCCCACCTT CCTCTTCCTG 900 CTCTACTACT GGTGTGTGCC GGAGTCCCCT CGGTGGCTGT TATCACAAAA AAGAAACACT 960 GAAGCAATAA AGATAATGGA CCACATCGCT CAAAAGAATG GGAAGTTGCC TCCTGCTGAT 1020 TTAAAGATGC TTTCCCTCGA AGAGGATGTC ACCGAAAAGC TGAGCCCTTC ATTTGCAGAC 1080

	CTGTTCCGCA CGCCGCGCCT GAGGAAGCGC ACCTTCATCC TGATGTACCT GTGGTTCACG	1140
5	GACTCTGTGC TCTATCAGGG GCTCATCCTG CACATGGGCG CCACCAGCGG GAACCTCTAC	1200
	CTGGATTTCC TTTACTCCGC TCTGGTCGAA ATCCCGGGGG CCTTCATAGC CCTCATCACC	1260
	ATTGACCGCG TGGGCCGCAT CTACCCCATG GCCGTGTCAA ATTTGTTGGC GGGGGCAGCC	1320
10	TGCCTCGTCA TTTTTATCTC ACCTGACCTG CACTGGTTAA ACATCATAAT CATGTGTGTT	1380
10	GGCCGAATGG GAATCACCAT TGCAATACAA ATGATCTGCC TGGTGAATGC TGAGCTGTAC	1440
	CCCACATTCG TCAGGAACCT CAGAGTGATG GTGTGTTCCT CCCTGTGTGA CATAGGTGGG	1500
	ATAATCACCC CCTTCATAGT CTTCAGGCTG AGGGAGGTCT GGCAAGCCTT GCCCCTCATT	1560
15	TTGTTTGCGG TGTTGGGCCT GCTTGCCGCG GGAGTGACGC TACTTCTTCC AGAGACCAAG	1620
	GGGGACGCTT TGCCAGAGAC CATGAAGGAC GCCGAGAACC TTGGGAGAAA AGCAAAGCCC	1680
	AAAGAAAACA CGATTTACCT TAAGGTCCAA ACCTCAGAAC CCTCGGGCAC CTGAGAGAGA	1740
20	TGTTTTGCGG CGATGTCGTG TTGGAGGGAT GAAGATGGAG TTATCCTCTG CAGAAATTCC	1800
	TAGACGCCTT CACTTCTCTG TATTCTTCCT CATACTTGCC TACCCCCAAA TTAATATCAG	1860
	ТССТАЛАСЛА АЛАЛАЛАЛА АЛАЛА	1885
25	(2) INFORMATION ZU SEQ ID NO: 6:	
	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 1896 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
30	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
35	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 11896	
	(B) LAGE: 11070	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
		60
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	60 120
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA	
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCAGCC	120
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCACC TCGGGCAGCC TCGGGCCCTC CTGCCTGCAG GATCATGCCC ACCACCGTGG ACGATGTCCT GGAGCATGGA	120 180
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCACC TCGGGCAGCC TCGGGCCCTC CTGCCTGCAG GATCATGCCC ACCACCGTGG ACGATGTCCT GGAGCATGGA GGGGAGTTTC ACTTTTCCA GAAGCAAATG TTTTTCCTCT TGGCTCTGCT CTCGGCTACC	120 180 240
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCAGCC TCGGGCCCTC CTGCCTGCAG GATCATGCCC ACCACCGTGG ACGATGTCCT GGAGCATGGA GGGGAGTTTC ACTTTTTCCA GAAGCAAATG TTTTTCCTCT TGGCTCTGCT CTCGGCTACC TTCGCGCCCCA TCTACGTGGG CATCGTCTTC CTGGGCTTCA CCCCTGACCA CCGCTGCCGG	120 180 240 300
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCACG TCGGGCAGCC TCGGGCCCTC CTGCCTGCAG GATCATGCCC ACCACCGTGG ACGATGTCCT GGAGCATGGA GGGGAGTTTC ACTTTTCCA GAAGCAAATG TTTTTCCTCT TGGCTCTGCT CTCGGCTACC TTCGCGCCCA TCTACGTGGG CATCGTCTTC CTGGGCTTCA CCCCTGACCA CCGCTGCCGG AGCCCCGGAG TGGCCGAGCT GAGTCTGCGC TCCGGCTGGA GTCCTGCAGA GGAACTGAAC	120 180 240 300 360
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCACG TCGGGCAGCC TCGGGCCCTC CTGCCTGCAG GATCATGCCC ACCACCGTGG ACGATGTCCT GGAGCATGGA GGGGAGTTTC ACTTTTCCA GAAGCAAATG TTTTTCCTCT TGGCTCTGCT CTCGGCTACC TTCGCGCCCA TCTACGTGGG CATCGTCTTC CTGGGCTTCA CCCCTGACCA CCGCTGCCGG AGCCCCGGAG TGGCCGAGCT GAGTCTGCGC TCCGGCTGGA GTCCTGCAGA GGAACTGAAC TACACGGTGC CGGGCCCAGG ACCTGCGGGC GAAGCCTCCC CAAGACAGTG TAGGCGCTAC	120 180 240 300 360 420
45	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCACG TCGGGCAGCC TCGGGCCCTC CTGCCTGCAG GATCATGCCC ACCACCGTGG ACGATGTCCT GGAGCATGGA GGGGAGTTTC ACTTTTTCCA GAAGCAAATG TTTTTCCTCT TGGCTCTGCT CTCGGCTACC TTCGCGCCCA TCTACGTGGG CATCGTCTTC CTGGGCTTCA CCCCTGACCA CCGCTGCCGG AGCCCCGGAG TGGCCGAGCT GAGTCTGCGC TCCGGCTGGA GTCCTGCAGA GGAACTGAAC TACACCGGTGC CGGGCCCAGG ACCTCCGGGC GAAGCCTCCC CAAGACAGTG TAGGCGCTAC GAGGTGGACT GGAACCAGAG CACCTTTGAC TGCGTGGACC CCCTGGCCAG CCTGGACACC	120 180 240 300 360 420
45	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: GGCCCTGCCC TGAAGGCTGG TCACTTGCAG AGGTAAACTC CCCTCTTTGA CTTCTGGCCA GGGTTTGTGC TGAGCTGGCT GCAGCCGCTC TCAGCCTCGC TCCGGGCACG TCGGGCAGCC TCGGGCCCTC CTGCCTGCAG GATCATGCCC ACCACCGTGG ACGATGTCCT GGAGCATGGA GGGGAGTTTC ACTTTTCCA GAAGCAAATG TTTTTCCTCT TGCCTCTGCT CTCGGCTACC TTCGCGCCCA TCTACGTGGG CATCGTCTTC CTGGGCTTCA CCCCTGACCA CCGCTGCCGG AGCCCCGGAG TGGCCGAGCT GAGTCTGCGC TGCGGCTGGA GTCCTGCAGA GGAACTGAAC TACACGGTGC CGGGCCCAGG ACCTGCGGGC GAAGCCTCCC CAAGACAGTG TAGGCGCTAC GAGGTGGACT GGAACCAGAG CACCTTTGAC TGCGTGGACC CCCTGGCCAG CCTGGACACC AACAGGAGCC GCCTGCCACT GGGCCCCTGC CGGGACGGCT GGGTGTACGA GACGCCTGGC	120 180 240 300 360 420 480 540

	AGGTTTGGCC	GTAAGCTCTG	CCTCCTAACT	ACAGTCCTCA	TAAATGCTGC	AGCTGGAGTT	720
	CTCATGGCCA	TTTCCCCAAC	CTATACGTGG	ATGTTAATTT	TTCGCTTAAT	CCAAGGACTG	780
	GTCAGCAAAG	CAGGCTGGTT	AATAGGCTAC	ATCCTGATTA	CAGAATTTGT	TGGGGGGAGA	840
	TATCGGAGAA	CAGTGGGGAT	TTTTTACCAA	GTTGCCTATA	CAGTTGGGCT	CCTGGTGCTA	900
0	GCTGGGGTGG	CTTACGCACT	TCCTCACTGG	AGGTGGTTGC	AGTTCACAGT	TGCTCTGCCC	960
·	AACTTCTTCT	TCTTGCTCTA	TTACTGGTGC	ATACCTGAGT	CTCCCAGGTG	GCTGATCTCC	1020
	CAGAATAAGA	ATGCTGAAGC	CATGAGAATC	ATTAAGCACA	TCGCAAAGAA	AAATGGAAAA	1080
	TCTCTACCCG	CCTCCCTTCA	GCGCCTGAGA	CTTGAAGAGG	AAACTGGCAA	GAAATTGAAC	1140
5	CCTTCATTTC	TTGACTTGGT	CAGAACTCCT	CAGATAAGGA	AACATACTAT	GATATTGATG	1200
	TACAACTGGT	TCACGAGCTC	TGTGCTCTAC	CAGGGCCTCA	TCATGCACAT	GGGCCTTGCA	1260
	GGTGACAATA	TCTACCTGGA	TTTCTTCTAC	TCTGCCCTGG	TTGAATTCCC	AGCTGCCTTC	1320
o	ATGATCATCC	TCATTATCGA	CCGCATCGGA	CGCCGTTACC	CTTGGGCTGC	ATCAAATATG	1380
	GTTGCAGGGG	CAGCCTGTCT	GGCCTCAGTT	TTTATACCTG	GTGATCTACA	ATGGCTAAAA	1440
	ATTATTATCT	CATGCTTGGG	AAGAATGGGG	ATCACAATGG	CCTATGAGAT	AGTCTGCCTG	1500
5	GTCAATGCTG	AGCTGTACCC	CACATTCATT	AGGAATCTTG	GCGTCCACAT	CTGTTCCTCA	1560
	ATGTGTGACA	TTGGTGGCAT	CATCACGCCA	TTCCTGGTCT	ACCGGCTCAC	TAACATCTGG	1620
	CTTGAGCTCC	CGCTGATGGT	TTTCGGCGTA	CTTGGCTTGG	TTGCTGGAGG	TCTGGTGCTG	1680
	TTGCTTCCAG	AAACTAAAGG	GAAAGCTTTG	CCTGAGACCA	TCGAGGAAGC	CGAAAATATG	1740
	CAAAGACCAA	GAAAAAATAA	AGAAAAGATG	ATTTACCTCC	AAGTTCAGAA	ACTAGACATT	1800
	CCATTGAACT	AAGAAGAGAG	ACCGTTGCTG	CTGTCATGAC	CTAGCTTTAT	GGCAGCAAGA	1860
	CCAAAAGTAG	AAATCCCTGC	ACTCATCACA	AAGCCC			1896

35

2

3

Patentansprüche

40

Transportprotein, das für den Transport von kationischen Xenobiotika und/oder Pharmaka aus dem Blut in die Leberoder Nierenepithelzellen oder für den Transport von kationischen Xenobiotika und/oder Pharmaka aus dem Darm
zuständig ist, dadurch gekennzeichnet, daß es eine Teilsequenz von wenigstens sieben Aminosäuren, ausgewählt
aus den in Figur 2a₁, 2a₂ oder 2a₃ dargestellten Aminosäuresequenzen aufweist.

- Transportprotein nach Anspruch 1, dadurch gekennzeichnet, daß es eine Teilsequenz von wenigstens 10 Aminosäuren, ausgewählt aus den in Figur 2a₁, 2a₂ oder 2a₃ dargestellten Aminosäuresequenzen aufweist.
- 3. Transportprotein nach Anspruch 1, dadurch gekennzeichnet, daß es eine Teilsequenz von wenigstens 14 Aminosäuren, ausgewählt aus den in Figur 2a₁, 2a₂ oder 2a₃ dargestellten Aminosäuresequenzen aufweist.
 - 4. Transportprotein nach Anspruch 1, dadurch gekennzeichnet, daß es die in Figur 2a₁, 2a₂ oder 2a₃ dargestellten Aminosäuresequenzen aufweist.
- 55 5. DNA-Sequenz, dadurch gekennzeichnet, daß sie für ein Transportprotein nach einem der Ansprüche 1 bis 4 kodiert.
 - 6. DNA-Sequenz nach Anspruch 5, dadurch gekennzeichnet, daß sie eine Teilsequenz von wenigstens 21 Basen aus den in Figur 2a₁, 2a₂ oder 2a₃ gezeigten DNA-Sequenzen aufweist.

- DNA-Sequenz nach Anspruch 5, dadurch gekennzeichnet, daß sie eine Teilsequenz von wenigstens 30 Basen aus den in Figur 2a₁, 2a₂ oder 2a₃ gezeigten DNA-Sequenzen aufweist.
- DNA-Sequenz nach Anspruch 5, dadurch gekennzeichnet, daß sie eine Teilsequenz von wenigstens 42 Basen aus den in Figur 2a₁, 2a₂ oder 2a₃ gezeigten DNA-Sequenzen aufweist.
 - Verwendung einer DNA-Sequenz nach einem der Ansprüche 5 bis 8 zur Herstellung einer epithelialen Zellinie, die ein Transportprotein nach einem der Ansprüche 1 bis 4 konstant exprimiert.
- 10. Epitheliale Zellinie, die ein Transportprotein nach einem der Ansprüche 1 bis 4 konstant exprimiert.
 - 11. Epitheliale Zellinie nach Anspruch 10 zur Testung der zu erwärtenden renalen und biliären Ausscheidung sowie der intestinalen Resorption von kationischen Pharmaka und/oder Xenobiotika in vitro.
- 15 12. Verwendung einer DNA-Sequenz nach einem der Ansprüche 5 bis 8 zur Isolierung von zu Transportproteinen gemäß den Ansprüchen 1 bis 4 homologen Transportproteinen.
 - 13. Verwendung nach Anspruch 12, dadurch gekennzeichnet, daß die Isolierung mit Hilfe der Polymerase Kettenreaktion erfolgt.
 - 14. Verwendung der Transportproteine nach einem der Ansprüche 1 bis 4 und/oder der epithelialen Zellinie nach den Ansprüchen 10 oder 11 zur Entwicklung von kationischen Signalmolekülen, die an biologisch aktive Verbindungen, wie Pharmaka, angehängt werden können, um deren renale und biliäre Ausscheidung oder ihre intestinale Resorption zu verändern.
 - 15. Verwendung der Transportproteine nach einem der Ansprüche 1 bis 4 und/oder der epithelialen Zellinie nach den Ansprüchen 10 oder 11 zur Entwicklung von Antikörpern, mit deren Hilfe die Aufnahme von Pharmaka in Nierentubuluszellen blockiert werden kann, um die Nephrotoxizität von kationischen Pharmaka und/oder Xenobiotika zu erniedrigen.
 - 16. Verwendung der Transportproteine nach einem der Ansprüche 1 bis 4 und/oder der epithelialen Zellinie nach den Ansprüchen 10 oder 11 zur Entwicklung von spezifischen Pharmaka, mit deren Hilfe die Aufnahme von anderen Pharmaka und/oder Xenobiotika in Nierentubuluszellen blockiert werden kann, um die Nephrotoxizität von kationischen Pharmaka zu erniedrigen.
 - 17. Verwendung einer DNA-Sequenz nach einem der Ansprüche 5 bis 8 zur Entwicklung einer Antisense-Nucleotidsequenz, mit deren Hilfe die Aufnahme von Pharmaka und/oder Xenobiotika in Nierentubuluszellen blockiert werden kann, um die Nephrotoxizität von kationischen Pharmaka zu erniedrigen.
- 40 18. Verwendung einer DNA-Sequenz nach einem der Ansprüche 5 bis 8 in molekularen Testkits zur Diagnose von molekularen genetischen Defekten in renalen und biliären Kationenausscheidungsmechanismen.
 - 19. Verwendung nach Anspruch 18, dadurch gekennzeichnet, daß das molekulare Testkit diejenigen Komponenten enthält, die zur Durchführung der Polymerase Kettenreaktion benötigt werden.

19

20

25

30

35

45

50

(Forts.)

Hig. 1

Na⁺(mM) 100 1 100 K⁺(mM) 3 102 3 Ba²⁺(mM) 0 0 10

Hig: 1f

Fig. 1 (Forts.)

Hig. Za,

TTACATTGCAGACAGGTTTGGCCGTAAGCTCTGTCTTGGTGACCACGCTGGTCACATC TYLIleAlaAspArqPheGlyArqLysLeuCysLeuLeuValThrThrLeuValThrSer	541 169
ValAspLeuPheGlnSerCysValAsnLeuGlyPhePheLeuGlySerLeuValValGly	149
AGTGGACCTTTTTCAGTCCTGTGTAACTTGGGCTTCTTCCTGGGCTCCCTGGTTGTGGG	481
AspThrProGlySerSerIleValThrGluPheAsnLeuValCysGlyAspAlaTrpLys	129
CGACACTCCCGGCTCCTCCATCGTCACTGAGTTTAACCTGGTGTGTGGAGACGCCTGGAA	421
SerLeuValAlaAsnArgSerGlnLeuProLeuGlyProCysGluHisGlyTrpValTyr *	109
CAGCCTGGTTGCCAACAGGAGTCAGTTGCCATTGGGCCCCTGCGAGCATGGCTGGGTATA	361
CysMetArgTyrGluValAspTrpAsnGlnSerThrLeuAspCysValAspProLeuSer *	89
である。 これの まいかい かんかい かんしょく かんしょく かんしょく かんしょく かんしょく かんしょく しゅんしょ しゅうしょ かんしょ かんしょく かんしょく かんしょく かんしょく かんしょく かんしょく かんしょく かんしょく しゅんしょく しゅんしゃく しゃんしゃく しゅんしゃく しゃんしゃく しゃんしゃんしゃく しゃんしゃく しゃんしゃく しゃんしゃく しゃんしゃく しゃんしゃく しゃんしゃんしゃく しゃんしゃんしゃんしゃんしゃんしゃんしゃんしゃんしゃんしゃんしゃんしゃんしゃんし	נטנ
GGAGCTGAACTACACTGTGCCGGCCTGGGACCTTCGGACGAGGCCTCCTTCCT	241 69
TyrCysGlnAsnProGlyValAlaGluLeuSerGlnArgCysGlyTrpSerGlnAlaGlu	49
TTATTGCCAGAATCCTGGGGTGGCTGAGCTGAGCCAGGGGGTGTGGCTGGAGCCAGGCAGA	181
SerAlaSerLeuAlaProIleTyrValGlyIleValPheLeuGlyPheThrProGlyHis	29
CTCAGCTTCTTTAGCTCCCATCTATGTGGGCATCGTCTTCCTGGGCTTCACCCCTGGACA	121
GluGlnValGlyGluPheGlyTrpPheGlnLysGlnAlaPheLeuLeuCeuCysLeuIle	6
GGAGCAAGTTGGAGAGTTTGGCTGGTTCCAGAACAAGCCTTCCTGTTGCTATGCCTGAT	61
GCAGGCCTGGCTAAACTGGTGAGGGCCCTACCCAGCCATGCCCACCGTGGATGATGTCCT MetProThrValAspValLeu	с

Hig. Za (Forts.)

CGTGGGAGCCACAGGGGCCAACCTCTACCTGGACTTCTTTTATTCTTCTGGTGGAATT valGlyAlaThrGlyAlaAsnLeuTyrLeuAspPhePheTyrSerSerLeuValGluPhe	1141
CGTCATCCTGATGTATGTTCTCTTGTGCTGTGCTGTACCAGGGTCTCATCATGCA	1081 349
AGAAAAGCGAAGTCCTTCGTTTGCCGACCTGTTCCGCACTCCCAACCTGAGGAAGCACACACA	1021 329
GAAGAACGGGAAGGTGCCTCCTGCTGACCTGAAGATGCTCTGCCTTGAGGAGGATGCCTC LysAsnGlyLysValProProAlaAspLeuLysMetLeuCysLeuGluGluAspAlaSer	961 309
GTGGCTGTTGTCCCAGAAGAACCACGCGAGCTGTCAGGATAATGGAGCAAATTGCACA TrpLeuLeuSerGlnLysArgThrThrArgAlaValArgIleMetGluGlnIleAlaGln	901 289
TGTGTCCCTGCCTACCTTCCTTCCTGCTGTATTACTGGTTTGTCCCAGAATCCCCCCG	841 269
GCTAGTGGGGCTTGCCGGGGTGGCCTATGCCATTCCAGACTGGCGCTGGCTCCAGCTAGC LeuValGlyLeuAlaGlyValAlaTyrAlaIleProAspTrpArgTrpLeuGlnLeuAla	781 249
TGTCGGCTCTGGCTACAGGAGGACGACGGCCATTTTGTACCAGATGGCCTTCACAGTGGG	721 229
GCTGCAGGGCATGGTCAGCAAGGGCAGCTGGGTGTCCGGCTATACCTTGATCACAGAGTT LeuGlnGlyMetValSerLysGlySerTrpValSerGlyTyrThrLeuIleThrGluPhe	661 209
TGTGTCCGGTGTGCTAACAGCGGTGGCCCCAGACTATACATCCATGTTGCTCTTTCGCCT ValSerGlyValLeuThrAlaValAlaProAspTyrThrSerMetLeuLeuPheArgLeu	601 189

Hig. Za, (Forts.)

1201	CCCCGCGCCCTTCATCATCCTGGTCACCATTGACCGCATTGGCCGCATCTACCCAATAGC ProAlaAlaPheIleIleLeuValThrIleAspArgIleGlyArgIleTyrProIleAla	
1.261 409	GGCCTCGAATCTGGTGACGGGGCAGCCTGCCTCCTCATGATCTTTATCCCGCATGAGCTALaSerAsnLeuValThrGlyAlaAlaCysLeuLeuMetIlePheIleProHisGluLeu	
1321	GCACTGGTTGAACGTTACCCTCGCCTGTCTTGGCCGTATGGGGGCCACCATTGTGCTGCAA HisTrpLeuAsnValThrLeuAlaCysLeuGlyArgMetGlyAlaThrIleValLeuGlu	
1381 449	A GATGGTCTGCCTGGTGAACGCTGAGCTGTACCTACATTCATCAGGAATCTTGGGATGAT MetValCysLeuValAsnAlaGluLeuTyrProThrPheIleArgAsnLeuGlyMetMet	
1441	GGTATGCTCTGCCTGTGTGACCTGGGTGGGATCTTCACCCCCTTCATGGTGTTCAGGCT	-
1501 489	GATGGAAGTTTGGCAAGCCCTGCCCTCATTTTGTTTGGGGTTTTGGGCCTGACTGCTGG MetGluValTrpGlnAlaLeuProLeuIleLeuPheGlyValLeuGlyLeuThrAlaGly	
1561 509	GGCCATGACTCTTCTTCTCCCAGAGACCAAGGGTGTGGCTTTTGCCTGAGACTATTGAAGAAlaMetThrLeuLeuLeuProGluThrLysGlyValAlaLeuProGluThrIleGluGlu	
1621 529	AGCAGAGAACCTGGGGAGGAAATCAAAGGCCAAAGAAAACACGATTTACCTTCAGGTAlaGluAsnLeuGlyArgArgLysSerLysAlaLysGluAsnThrIleTyrLeuGlnVal	
1681 549	CCAAACAGGCAAGTCCTCAAGTACCTGACAGGGATGCTGTGCCAGGAGCTGAGTGGCAGAGAGInThrGlyLysSerSerSerThr	
1741	GAGAAAGGAGACTTGCCACTTGGAGGATTCCCAGAAGCCTTTTGCCTTTTCCAGACTCTTG	
1801	TATATATGCACCAGGTTCCAAATGAACTACCAACCTTAAAGACTTTTCTGAAAGCCCAAA	
ושמו	22222222222222222222222222222222222222	

Hig. Zaz

Hig: Zaz (Forts.)

Hig: Zaz (Forts.)

Hig: 203

Hig: Za3 (Forts.)

Hig: Za3 (Forts.)

Hig. 3

Europäisches Patentamt

Eur pean Patent Office

Office européen des brevets

EP 0 699 753 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(88) Veröffentlichungstag A3: 18.11.1998 Patentblatt 1998/47

(43) Veröffentlichungstag A2: 06.03.1996 Patentblatt 1996/10

(21) Anmeldenummer: 95110631.9

(22) Anmeldetag: 07.07.1995

(51) Int. Cl.⁵: **C12N 15/12**, C07K 14/705, C12N 5/10, C07K 16/18, C12N 15/11, C12Q 1/00, G01N 33/50

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

SE

(30) Priorität: 13.07.1994 DE 4424577

(71) Anmelder: HOECHST AKTIENGESELLSCHAFT 65929 Frankfurt am Main (DE) (72) Erfinder:

- Koepsell, Hermann, Prof Dr. D-97072 Würzburg (DE)
- Gründeman, Dirk, Dr.
 D-69123 Heidelberg (DE)

(11)

 Gorboulev, Valentin, Dr. D-97078 Würzburg (DE)

(54) Transportprotein, das den Transport von kationischen Xenobiotika und/oder Pharmaka bewirkt, dafür kodierende DNA-Sequenzen und deren Verwendung

(57) Es wurde ein Transportprotein kloniert, das in Leber- und Nierenepithelzellen sowie in Darmzellen vorkommt und für den Transport von kationischen Pharmaka und/oder Xenobiotika verantwortlich ist. Dieses Transportprotein wurde durch die DNA und die Amino-

säuresequenz näher beschrieben und es werden verschiedene Verwendungen offenbart, die insbesondere für die Entwicklung von neuen Medikamenten von gro-Ber Bedeutung sind.

Fig. 2a1

	MetProThrValAspAspValLeu
51	GGAGCAAGTTGGAGAGTTTGGCTGGTTCCAGAAACAAGCCTTCCTGTTGCTATGCCTGAT
)	GluGlnValGlyGluPheGlyTrpPheGlnLysGlnAlaPheLeuLeuLeuCysLeuIle
21	CTCAGCTTCTTTAGCTCCCATCTATGTGGGCATCGTCTTCCTGGGCTTCACCCCTGGACA
29	SerAlaSerLeuAlaProIleTyrValGlyIleValPheLeuGlyPheThrProGlyHis
81	TTATTGCCAGAATCCTGGGGTGGCTGAGCTGAGCCAGCGGTGTGGCTGGAGCCAGGCAGA
9	TyrCysGlnAsnProGlyValAlaGluLøuSerGlnArgCysGlyTrpSerGlnAlaGlu
241 59	GGAGCTGAACTACACTGTGCCGGGCCTGGGACCTTCGGACGACGCCTCCTTCCT
101 19	GTGCATGAGGTATGAGGTGGACTGGAACCAGAGCACCCTTGACTGTGGGACCCACTGTC CysMetArgTyrGluValAspTrgAsnGlnSerThrLeuAspCysValAspProLeuSer
161	CAGCCTGGTTGCCAACAGGAGTCAGTTGCCATTGGGCCCTGCGAGCATGGCTACGA
109	SerLeuValalaanArgSerGlnLeuProLeuGlyProCysGluHisGlyTrpValTyr
21	CGACACTCCCGGCTCCTCCATCGTCACTGAGTTTAACCTGGTGTGTGGAGACGCCTGGAA
29	ASpThrProGlySerSerIleValThrGluPheAsnLeuValCysGlyAspAlaTrpLys
81	AGTGGACCTTTTTCAGTCCTGTGTGAACTTCGGCTTCTTCCTGGGCTCCCTGGTTGTGGG
49	ValaspleuPheGlnSerCysValAsnleuGlyPhePheLeuGlySerLeuValValGly
69	TTACATTGCAGACAGGTTTGGCCGTAAGCTCTGTCTCTTGGTGACCACGCTGGTCACATC TyrilealaaspargPhaglyargLysLauCysLauLauValThrThrLauValThrSar

GCAGGCCTGGCTAAACTGGTGAGGGCCCTACCCAGCCATGCCCACCGTGGATGATGTCCT

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 95 11 0631

	EINSCHLÄGIGE DOKUMENTE Kennzeichnung des Dokuments mit Angabe, soweit erforderlich,	Betrifft	KLASSIFIKATION DER
Kategorie	der maßgeblichen Teile	Anspruch	ANMELDUNG (Int.Cl.6)
P, X	GRUNDEMANN D ET AL: "Drug excretion mediated by a new prototype of polyspecific *transporter*." NATURE, DEC 8 1994, 372 (6506) P549-52, ENGLAND, XP002077625 * das ganze Dokument *	1-19	C12N15/12 C07K14/705 C12N5/10 C07K16/18 C12N15/11 C1201/00 G01N33/50
Α	WO 93 08261 A (UNIV EMORY ;UNIV DUKE (US)) 29 April 1993 * das ganze Dokument *	1.	
9			RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
			C12N C07K C12Q G01N
			·
		*	
	•		
Der vo	rliegende Recherchenbericht wurde für alle Patentansprüche erstellt		
	Recherchenort Abschlußdatum der Recherche		Prüfer
	MÜNCHEN 16.September 1998	Hil	lenbrand, G

EPO FORM 1503 03.82 (P04C03)

- anderen Veröffentlichung derselben Kategorie
 A : technologischer Hintergrund
 O : nichtschriftliche Offenbarung
 P : Zwischenliteratur

- L : aus anderen Gründen angeführtes Dokument
- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument