

smbc-comics.com

Topics Today:

- 5-stage Pipeline
 - Basic Design
 - Performance
 - Data Hazards
- Exams

Single Cycle

CPI =

Clock Period =

Single Cycle

Multi-Cycle

CPI = 1

CPI =

Clock Period = long

Clock Period =

Single Cycle

Multi-Cycle

Pipelined

CPI = 1

CPI = >1

CPI =

Clock Period = long

Clock Period = short Clock Period =

Single Cycle	Multi-Cycle	Pipelined
CPI = 1	CPI = >1	CPI≈1
Clock Period = long	Clock Period = short	Clock Period = short

5-stage Pipeline

5-stage Pipeline

Pipeline Example

```
add 1 2 3 nand 4 5 6 lw 0 4 26 add 2 2 2 nand 1 1 1
```

5-stage Pipeline

Key Concept

1000 instructions are run on a 5-stage pipeline (no hazards) How many cycles are needed to complete them?

5-stage Pipeline

Key Concept

1000 instructions are run on a 5-stage pipeline (no hazards) How many cycles are needed to complete them?

1004 cycles

Multi-Cycle Datapath

Timing Example

100 Instructions:

35% lw
15% sw
30% add/nand
20% beg

What is the total execution time? (No Hazards)

Single Cycle: 100 * 60 = 6000 ns

Multi-Cycle: 20 * (35*5 + 15*4 + 30*4 + 20*4) = 8700 ns

Pipelined:

Multi-Cycle Datapath

Timing Example

100 Instructions:

35% lw
15% sw
30% add/nand
20% beg

What is the total execution time? (No Hazards)

Single Cycle: 100 * 60 = 6000 ns

Multi-Cycle: 20 * (35*5 + 15*4 + 30*4 + 20*4) = 8700 ns

Pipelined: 20 * (4 + 100) = 2080 ns

Data Hazards

Key Concepts

In what stage is data read from registers?

In what stage is data written to registers?

Data Hazards

Key Concepts

In what stage is data read from registers?

Decode

In what stage is data written to registers?

Writeback

Data Hazards

The Problem:

```
x = 5*y+3;
```

```
LDR R1 [R0, #wherever y is]
MUL R2 R1 #5
ADD R2 R2 #3
STR R2 [R0, #wherever x is]
```

Data Hazards

Solutions:

Avoidance

Detect and Stall

Detect and Forward

Data Hazards

Pipeline Example

```
add 1 2 3 nand 3 5 6 lw 0 3 26 add 6 2 4 nand 4 3 1
```

Exam Results

- Answer Keys are posted online
- Exams will be returned

now

- Regrade Requests:
 - Submit Scantron + written statement to IA/GSI/Professor
 - Before Friday