Coding together week 2 - Introduction

Formative exercises for lesson 1

Exploring RStudio

1 . Find the keyboard shortcuts menu:

Tools > Keyboard shortcuts help

2. Change the appearance to something different.

Installing packages and using functions

1 .Install cowsay and make it talk:

```
install.packages("cowsay")
library(cowsay)
cowsay::say("I are programmer. I make computer go beep beep boop boop")

Make a cow say "Hello world!"
say(by = "cow")

2. Roundhouse

install.packages("roundhouse")
library(roundhouse)
randomfact()
kick()
```

Creating folders

1 .Create a folder called R and folder called outputs in your project folder

R notebooks

Read and follow the instructions, and then preview

mpg dataset

- 1. Find out about the mtcars package:
- what is it?
- and what kind of data does it contain?
- 2. Let's make a plot and answer a question about the relationship between engine size (displ) and (highway) miles per gallon:

```
mpg %>% ggplot(aes(x = displ,y = hwy)) + geom_point()
```

• your turn, repeat the plot but add a colour aesthetic for class

```
mpg %>% ggplot(aes(x = displ,y = hwy, colour = class)) + geom_point()
```

• Add a size aesthetic for number of cylinders

```
mpg %% ggplot(aes(x = displ,y = hwy, colour = class, size = cyl)) + geom_point()
```

3. Let's look at the object, it's a tidy structure:

```
glimpse()
str()
```

4. Let's look at the data types in mtcars:

#A tibble: 234	x 11									
manufacturer	model	${\tt displ}$	year	cyl	trans	drv	cty	hwy	fl	class
<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
1 audi	a4	1.8	1999	4	auto(15)	f	18	29	p	compact
2 audi	a4	1.8	1999	4	manual(m5)	f	21	29	p	compact
3 audi	a4	2	2008	4	manual(m6)	f	20	31	p	compact
4 audi	a4	2	2008	4	auto(av)	f	21	30	p	compact
5 audi	a4	2.8	1999	6	auto(15)	f	16	26	p	compact
6 audi	a4	2.8	1999	6	manual(m5)	f	18	26	p	compact
7 audi	a4	3.1	2008	6	auto(av)	f	18	27	p	compact
8 audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	р	compact
9 audi	a4 quattro	1.8	1999	4	auto(15)	4	16	25	р	compact
10 audi	a4 quattro	2	2008	3 4	4 manual(m6) 4	20) 28	3 p	compact
# with 224 more rows										

5. Let's save it and read it back in:

```
write_excel_csv(mpg,"data/mpg-dataset-10-10-2019.csv")
mpg_dat <- read_csv("")</pre>
```

Vectors and assignment

- 1. Create a character vector of your name and assign it to an object called my_name
- 2. Create a sequence of numbers from 1 to 10 and assign it to an object called my_seq

Data frames/tibble

knitr::knit_exit()

Summative assessment

Using the heights dataset from library()

- 1. Create a new project called 'coding-assessment-01'
- 2. Create two folders in this project: R and outputs
- 3. Create a R script using best naming practices i.e. name-date.R
- 4. In the script, write some comments at the top e.g. name, date, description
- 5. Load the dslabs package and inspect the heights dataset:
- How many variable?
- What data types are they?
- How many observations?
- 6. Create a density plot with ggplot2: $ggplot(data = heights, aes(x = height, fill = sex)) + geom_density()$
- 7. Save the plot as pdf and the tibble as csv file to the output folder. ggsave("outputs/height-plot-02-05-2019.pdf") write_csv_excel(dat,"outputs/example-table-02-05-2019.csv")