Question 1 (8.97 from the textbook)

Suppose that S^2 is the sample variance based on a sample of size n from a normal population with unknown mean and variance.

- 1. Derive a $100(1-\alpha)\%$ upper confidence limit for σ^2 .
- 2. Derive a $100(1-\alpha)\%$ lower confidence limit for σ^2 .

Review A 100 (1-2) % Confidence Intend for 62 8

Sine
$$\frac{(n-1)s^2}{6^2}$$
 has $\chi^2_{(n-1)}$

Therefore
$$P\left(\chi_{1-\frac{\alpha}{2}}^{2} \leq \frac{(n-1)S^{2}}{6^{2}} \neq \chi_{\frac{\alpha}{2}}^{2}\right) = 1-\alpha$$

Then
$$\left[\frac{(n+1)S^2}{\chi^2_{\frac{d}{2}}} \le 6^2 \le \frac{(n+1)S^2}{\chi^2_{\frac{d}{2}}} \right] = 1-d$$

1.
$$|\omega(+d)|$$
% Upper confidence limit for 6^2 is $\frac{(n+1)5^2}{\chi^2+\frac{d}{2}}$

2.
$$[00(1-d)]$$
 go lower confidence limit for 6^2 is $\frac{(n-1)}{2}$