MAST30001 Stochastic Modelling

Tutorial Sheet 8

- 1. Consider a population consisting of particles arriving from outside according to a Poisson process with rate λ . The lifetime of each particle (after it arrives) is exponential with rate α and the lifetimes are all independent.
 - (a) Model the system as a birth-death process and find the birth and death rates.
 - (b) Show that the process is ergodic and find its stationary distribution.
 - (c) What is the expected number of living particles in the population in stationary?

Ans.

- (a) If X_t is the number of particles alive at time t, then X_t is a birth-death process with birth rates $\lambda_i = \lambda$ (due to arrivals) and death rates $\mu_i = \alpha i$ since if there are currently i particles, then the time until the next death is the minimum of i independent exponential rate α variables.
- (b) Birth death processes are ergodic if and only if for $K_j = \prod_{\ell=1}^j \frac{\lambda_{\ell-1}}{\mu_{\ell}}$,

$$\sum_{j\geq 0} K_j < \infty$$

and in this case the stationary distribution π has $\pi_i = K_i / \sum_{j \geq 0} K_j$. For this example, $K_j = (\lambda/\alpha)^j / j!$ and the sum above is $e^{\lambda/\alpha}$ and so the stationary distribution is Poisson with mean λ/α .

- (c) From part (b), the average number of particles in stationary is λ/α .
- 2. A system has N particles each of which at any given time are in one of the two energy states α or β . The particles switch between states α and β according to the following rules. When a particle enters state α , it switches to state β after an exponentially distributed with rate $\mu > 0$ amount of time, independent of the other particles' behaviour and the time the particle entered state α . Similarly, when a particle enters state β , it switches to state α after an exponentially distributed with rate $\lambda > 0$ amount of time, independent of the other particles' behaviour and the time the particle entered state β .
 - (a) Model the number of particles in the energy state α as a continuous time Markov chain and define its generator.
 - (b) Describe the long run behaviour of the chain.
 - (c) If the chain starts with N particles in the α energy state and X_t is the number of α particles at time t, find the mean and variance of X_t as $t \to \infty$. Your answer should be a tidy formula.

Ans.

(a) Given the system has k particles in energy state α and thus N-k particles in energy state β , one of two things can happen. Either a β particle switches to an α particle or vice versa. Since all the exponential clocks are independent, the α

particles' clocks ring at rate $k\mu$ and the β particles' clocks ring at rate $(N-k)\lambda$. From this description we see the generator A has entries

$$a_{k,k+1} = (N - k)\lambda$$

$$a_{k,k-1} = k\mu$$

$$a_{k,k} = -(k\mu + (N - k)\lambda).$$

Note these formulas are correct for k = 0 and k = N.

(b) We have a birth-death chain on $\{0, \ldots, N\}$ with birth rates $\lambda_k = a_{k,k+1}$ and death rates $\mu_k = a_{k,k-1}$. The process is ergodic with long run distribution π satisfying $\pi A = 0$. The usual arguments imply this system of equations has unique probability distribution solution

$$\pi_k = \binom{N}{k} \left(\frac{\lambda}{\mu + \lambda}\right)^k \left(\frac{\mu}{\mu + \lambda}\right)^{N-k};$$

that is π has a binomial distribution with parameters N and $\lambda/(\mu + \lambda)$.

(c) Since the distribution of X_t tends to the stationary distribution π as t tends to infinity, we expect the mean and variance to do the same. Since the stationary distribution is binomial we have the formulas

$$\lim_{t \to \infty} \mathbb{E} X_t = \frac{N\lambda}{\lambda + \mu}, \quad \lim_{t \to \infty} \text{Var}(X_t) = \frac{N\lambda\mu}{(\lambda + \mu)^2}.$$

- 3. The following continuous time Markov chain is used to model population growth without death. The basic assumption of the model is that every member of the population gives birth to a new member with rate λ (that is, at times with distribution exponential with rate λ), independently of the other members of the population. Let X_t be the size of the population at time t.
 - (a) What is $\mathbb{P}(X_t = n | X_0 = 1)$?
 - (b) If U is uniform on the interval (0,1), independent of X_t , find the distribution of $X_U|X_0=1$.

Ans.

(a) The first thing to notice is that since the minimum of i independent exponential variables is exponential and the rates add, the generator A of the chain has $a_{ii+1} = i\lambda$ and $a_{ii} = -i\lambda$. If $P_n(t) = \mathbb{P}(X_t = n|X_0 = 1)$, then according to forward equation, for $n \geq 1$

$$P'_n(t) = -\lambda n P_n(t) + \lambda (n-1) P_{n-1}(t),$$

and note $P_n(0) = 0$ if $n \neq 1$, $P_1(0) = 1$, and $P_0(t) = 0$. So taking n = 1 in the ODE above we have

$$P_1'(t) = -\lambda n P_1(t)$$

and the initial condition $P_1(0) = 1$ implies that $P_1(t) = e^{-\lambda t}$. Moving forward we see find taking n = 2 in the ODE above

$$P_2'(t) = -2\lambda P_2(t) + \lambda e^{-\lambda t};$$

or

$$\frac{d}{dt}(e^{2\lambda t}P_2(t)) = \lambda e^{\lambda t},$$

SO

$$P_2(t) = e^{-\lambda t} + Ce^{-2\lambda t}.$$

Using the initial conditions shows that C = -1 and so we have

$$P_2(t) = e^{-\lambda t} (1 - e^{-\lambda t}),$$

and we now guess the formula

$$P_n(t) = e^{-\lambda t} (1 - e^{-\lambda t})^{n-1}.$$

To check this is correct we see it satisfies the initial conditions and then check it satisfies the ODE above which it does. So X_t given $X_0 = 1$ is geometric $e^{-\lambda t}$.

(b) For n = 1, 2, ...,

$$\mathbb{P}(X_U = n | X_0 = 1) = \int_0^1 e^{-\lambda t} (1 - e^{-\lambda t})^{n-1} dt = \frac{(1 - e^{-\lambda})^n}{n\lambda}.$$

4. Show that in in M/M/1 queue with arrival rate λ and service rate $\mu > \lambda$, the expected lengths of the idle and busy periods are $1/\lambda$ and $1/(\mu - \lambda)$, respectively. [Hint: the proportion of time the server is idle is equal to the stationary chance the system is empty.]

Ans. Since the arrivals follow a Poisson process (using in particular the memoryless property of the exponential), the time between the moment the system clears and the next arrival is exponential rate λ and so the expected length of an idle period is the expectation of this exponential, that is, $1/\lambda$. If ℓ is the expected length of a busy period and $\pi_0 = 1 - \lambda/\mu$ is the long run proportion of time the system is empty, then

$$\pi_0 = \frac{1/\lambda}{1/\lambda + \ell},$$

or $\ell = 1/(\mu - \lambda)$.