Differential Equations and Linear Algebra Spring $2014~\mathrm{Notes}$

Zack Garza

 $March\ 24,\ 2014$

Contents

1	Vec	or Spaces	2
	1.1	Inner Product Spaces (4.11)	2
		1.1.1 Examples	2
	1.2	Gram	3

Chapter 1

Vector Spaces

Next Exam: April 9th?

1.1 Inner Product Spaces (4.11)

March 24, 2014

1.1.1 Axioms

- 4 Axioms of an Inner Product
 - 1. $V_1 \cdot V_1 >= 0$ and $V_1 \cdot V_1$ iff $V_1 = 0$

Check that the scalar result is positive or zero.

Show that $\langle A, A \rangle = 0$ forces the coefficients to be zero.

- 2. $V_1 \cdot V_2 = V_2 \cdot V_1$
- 3. $(cV_1) \cdot V_2 = c(V_1 \cdot V_2)$
- 4. $V_1 \cdot (V_2 + V_3) = V_1 V_2 + V_1 V_3$

1.1.2 Orthogonality

 $\langle p, q \rangle = 0 \Rightarrow$ Orthogonality.

1.1.3 Examples

1.

Let $A, B, C \in M_2(\mathbb{R})$. Define $\langle A, B \rangle = a_{11}b_{11} + 2a_{12}b_{12} + 3a_{21}b_{21}$. Does this define an inner product on $M_2(\mathbb{R})$?

2.

Instead, let $\langle A, B \rangle = a_{11} + b_{22}$. Does this define an inner product on $M_2(\mathbb{R})$?

3.

Let $p = a_0 + a_1 x + a_2 x^2$ and $q = b_0 + b_1 x + b_2 x^2$. Define $\langle p, q \rangle = \sum_{i=0}^{2} (i+1) a_i b_i$. Does this define an inner product on P_2 ?

4.

Let $f, g \in C((-\infty, \infty))$. Define

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx.$$

1.2 Gram