Soham Chatterjee & Rishav Gupta

Assignment - 2

Email: sohamc@cmi.ac.in & rishavg@cmi.ac.in Roll: BMC202175 & BMC202145

Course: Complexity Theory Date: March 25, 2023

Problem 1

Give a full proof that $AM \subseteq \Pi_2$

Solution: We will use the following steps to prove -:

- Let $L \in AM$.
- To show that $AM \subseteq \Pi_2$ we will use a similar idea as $BPP \subseteq \Pi_2 \cap \Sigma_2$.
- So if $L \in AM$ then we know that $\exists p(n), q(n)$ polynomials in n and a DTIME machine R such that $x \in L \iff$ For a random choice of $y_1 \in \{0,1\}^{p(n)} \exists y_2 \in \{0,1\}^{q(n)}$ such that $R(x,y_1,y_2) = 1$ with probability $\geq \frac{3}{4}$ over random y_1 .
- Now with a similar approach as we used in the error reduction of BPP we will reduce the error of our AM protocol (by parallely giving multiple instances and accepting the majority) from $\frac{1}{4}$ to $\frac{1}{2^n}$.
- Let S_x be the set of all random strings $y_1 \in \{0,1\}^{p'(n)}$ such that $\forall y_2 \in \{0,1\}^{(q'(n))}$ for which $R(x,y_1,y_2)=0$. (We are doing this after the error reductions.)
- Now we will shift S_x using some k vectors $u_1, u_2 \cdots u_k$ then we will show for some $k, x \in L$ then $\bigcup_{i=1}^k (S_x + u_i)$ covers the entire $\{0,1\}^{p'(n)}$ otherwise it wont cover it.
- Let $A_x = \bigcup_{i=1}^k (S_x + u_i)$
- We claim if $|S_x| \leq 2^{(p'(n)-n)}$ then there is no set of k vectors such that $A_x = \{0,1\}^{p'(n)}$ if $k < 2^n$
- Because $|\bigcup_{i=1}^{k} (S_x + u_i)| \le k \cdot |S| \le 2^{(p'(n)-n)} \cdot k < 2^m$.
- $\bullet :: A_x \neq \{0,1\}^{p'(n)}$
- If $|S| \ge (1-2^{-n}) \cdot 2^{(p'(n))}$ then \exists vectors $u_1, u_2 \cdots u_k$ such that $A_x = \{0, 1\}^{p'(n)}$ for $k > \frac{2^{(p'(n))}}{n}$.
- For $r \in 0, 1^{p'(n)}$,we need to find the probability $r \notin A_x$.
- $r \notin S_x + u_i \iff r + u_i \notin S_x$, so let $r_i = r + u_i$, so $r \notin A_x \iff \forall i, r_i \notin S_x$.
- So now we have that $Pr(r \notin A_x) = (1 \frac{|S_x|}{2^{(p'(n))}})^k \le \frac{1}{2^{nk}}$.
- Now $Pr(A_x \neq \{0,1\}^{(p'(n))}) \leq \sum_{j=1}^{2^{(p'(n))}} Pr(w_j \notin A_x) \leq \frac{2^{(p'(n))}}{2^{nk}}$, where the words in $\{0,1\}^{(p'(n))}$ are indexed using the $w_j's$ (follows from the union bound).
- Now if $k > \frac{2^{(p'(n))}}{n}$ then the above probability over random $\{u_1, u_2 \cdots u_k\} < 1$. So we get that for this k, \exists such k vectors for which A_x cover the set .
- \bullet So choose a k such that $\frac{2^{(p'(n))}}{n} < k < 2^n$.
- Now look at the following instance of Σ_2 $x \in L' \iff \exists \{u_1, u_2 \cdots u_k\}$ such that $\forall r \in \{0, 1\}^{(p'(n))}, \forall y_2 \in \{0, 1\}^{(q'(n))}$

$$\bigvee_{i=1}^{k} R(x, r + u_i, y_2) = 0$$

Equivalently

$$\bigvee_{i=1}^{k} ((r+u_i) \in S_x)$$

- Now we claim $x \in L' \iff x \notin L$ this is because if $x \notin L$ then $|S_x| \ge (1 2^{-n}) \cdot 2^{(p'(n))}$ and if $x \in L$ then $|S_x| \le 2^{(p'(n)-n)}$, so by above argument $L' = L^c$.
- Since we found a Σ_2 formula for $L^c \implies L \in \Pi_2$.

Hence we proved $AM \subseteq \Pi_2$.

Problem 2

Prove that $MA \subseteq \Pi_2 \cap \Sigma_2$

Solution: We will use the following steps and motivation and results from **Problem 1**: We know that $MA \subseteq AM$ and from **Problem 1** we know $AM \subseteq \Pi_2 \implies MA \subseteq \Pi_2$.

Now we only need to show $MA \subseteq \Sigma_2$.

- For this let $L \in MA$ then we know that $\exists, p(n), q(n)$ polynomials in n and \exists a DTIME machine R, such that $x \in L \iff \exists y_1 \in \{0,1\}^{(p(n))}$ such that for a random selection of $y_2 \in \{0,1\}^{(q(n))}$ $R(x, y_1, y_2) = 1$ with probability $\geq \frac{3}{4}$.
- Now we will derive an instance of BPP from L.
- Now consider the language $\{L': \langle x, y_1 \rangle \text{ such that } R(x, y_1, y_2) = 1 \text{ with probability } \geq \frac{3}{4} \text{ over random } y_2.\}$.
- It is easy to see that $L' \in BPP$.
- By Sipser Gaccs Theorem we know that $BPP \subseteq \Sigma_2$.
- Hence we know that $L' \subseteq \Sigma_2$.
- Now $x \in L$, $n = |x| \iff$, \exists , y_1 such that $\langle x, y_1 \rangle \in L'$.
- Now let the Σ_2 form of L' be $\langle x, y_1 \rangle$ such that $\exists u \in \{0, 1\}^{(a(n))}$ such that $\forall v \in \{0, 1\}^{(b(n))}$, $D(x, y_1, u, v) = 1$.
- Now it is easy to see that $L \in \Sigma_2$, as we will just the club the there exist quantifiers into one there exist quantifier.
- Now the Σ_2 form of L is x such that $\exists (y_1, u) \in \{0, 1\}^{(a(n) + p(n))}$ such that $\forall v \in \{0, 1\}^{(b(n))}$, $D(x, y_1, u, v) = 1$.

Hence we proved that $MA \subseteq \Sigma_2$. Hence we proved $MA \subseteq \Pi_2 \cap \Sigma_2$.

Problem 3

Let $k \leq n$. Prove that the following family $\mathcal{H}_{n,k}$ is a collection of pairwise independent function from $\{0,1\}^n \to \{0,1\}^k$: For each $k \times n$ matrix A with entries in GF(2), and $b \in (GF(2))^k$, the family $\mathcal{H}_{n,k}$ contains functions $h_{A,b}(x) = Ax + b$

Solution: The proof is as follows -:

- A pair-wise disjoint hash family is a set of functions $H = \{h : P \to Q\}$ such that $\forall u, v \in P$ and $\forall x, y \in Q$, we have $Pr_h[(h(u) = x) \land (h(v) = y)] = \frac{1}{|Q|^2}$ where the probability is taken uniformly over $h \in H$.
- $h_{(A,b)(x)} = Ax + b$. Now fix u, v, x, y for the proof.
- We need to calculate $Pr_{(A,b)}[Au + b = x \wedge Av + b = y]$.
- Notice that for each row the calculation is independent as we take the dot product of the vector with ith row of A and then add the ith element of the vector b to get the ith row element in the vector Ax + b.
- So we will prove for one row the rest will follow .
- Hence we will prove that $Pr_{(a_i \in \{0,1\}^n, b_i \in \{0,1\})}[(\langle a_i, u \rangle + b_i = x_i) \land (\langle a_i, v \rangle + b_i = y_i)] = \frac{1}{4}$.
- Lets convert the probability into $Pr_{(a_i \in \{0,1\}^n, b_i \in \{0,1\})}[(\langle a_i, u+v \rangle = x_i + y_i) \land (\langle a_i, v \rangle + b_i = y_i)]$.
- For proving this we will first prove $Pr_a[\langle x, a \rangle = 1] = \frac{1}{2}$ where $x \neq 0$.
- Now for a given x we have that if suppose x has k ones then number of strings for which it gives dot product as one is $\sum_{i=1}^{\left\lceil \frac{k}{2} \right\rceil} \binom{k}{2i-1} \cdot 2^{(n-k)} = 2^{(n-k)} \cdot \frac{(2^k)}{2} = 2^{(n-1)}$. (This sum arises because we can have anything in the (n-k) places where the bit is 0 and 1's in odd number of places from the remaining k places).
- Now size of sample space will be $2^n \cdot 2 = 2^{(n+1)}$.
- Now for the event $E = [(\langle a_i, u+v \rangle = x_i + y_i) \land (\langle a_i, v \rangle + b_i = y_i)]$ where $(a_i \in \{0, 1\}^n, b_i \in \{0, 1\})$ to occur we will have to satisfy the first condition before \land we get that a_i should come from a certain set of size $2^{(n-1)}$ as we proved in the last point because (u, v, x_i, y_i) are fixed ,and for the second clause to satisfy for a choice of a_i only one of b_i 0 or 1 will satisfy th second condition hence the probability of event E happening is $\frac{2^{(n-1)}}{2^{(n+1)}} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$.
- Since each row is independent the probability $Pr_{(A,b)}[Au + b = x \land Av + b = y] = \frac{1}{4^k} = \frac{1}{2^{2k}} = \frac{1}{|Q|^2}$.

Hence proved.

Problem 4

Prove that if P = NP then EXP = NEXP

Solution: We know $EXP \subseteq NEXP$. Let P = NP. Hence it is enough to show for any $L \in NEXP$, $L \in EXP$. Suppose $L \in NTIME\left(2^{n^c}\right)$ and L is accepted by a nondeterministic turing machine \mathcal{N} . Then the language

$$L_{pad} = \left\{ \left\langle x, 1^{2^{|x|^c}} \right\rangle \mid x \in L \right\}$$

is in NP because we construct a nondeterministic turing machine M which for any input string y first checks if there is a string z such that $y = \left\langle z, 1^{2^{|z|^c}} \right\rangle$. If not then M rejects y otherwise M simulates $\mathcal N$ on z for $2^{|z|^c}$ steps non-deterministically and accepts if $\mathcal N$ accepts otherwise reject. Hence $\mathcal L(M) = L_{pad}$.

Now P = NP and $L_{pad} \in P$. Hence there exists a deterministic turing machine \mathcal{M} for which $L_{pad} \in DTIME(n^c)$. Therefore \mathcal{M} take $|y|^c$ time for any input y. Since $y = \left\langle x, 1^{2^{|x|^c}} \right\rangle \mathcal{M}$ takes $O\left(2^{|x|^c}\right)$ time to accepts or reject y which means \mathcal{M} accepts or rejects x in $O\left(2^{|x|^c}\right)$ time. Hence L is in EXP. Therefore NEXP = EXP

Problem 5

Show that if $NP \subseteq BPP$ then NP = RP

Solution: Assume $NP \subseteq BPP$. Note that $RP \subseteq NP$ unconditionally, hence we just need to show that $NP \subseteq RP$. Since SAT is NP - complete it is enough to show that SAT is in RP. By assumption SAT is in BPP. Let M be a probabilistic Turing machine running in polynomial time and accepting SAT with error at most $1/2^n$.

Now we will give an algorithm A using M for SAT

Algorithm 1 RP Algorithm for \overline{SAT}

```
Input: \varphi
\varphi' \leftarrow \varphi
for k = 1, \dots, n do
x_k \leftarrow 0
\varphi' \leftarrow \varphi'
if M(\varphi') == 0 then
x_k \leftarrow 1
end if
end for
if M accepts \varphi with the setting of n variables then
Accept
else
Reject
end if
```

If φ is not satisfiable then no assignment of the variables satisfies φ . Hence the algorithm rejects φ with probability 1 i.e.

$$\varphi \notin SAT \implies Pr[\mathcal{A}(\varphi) = 1] = 0$$

. If φ is satisfiable. Let \mathcal{A} rejects φ . Then in the n iterations M at least gave one wrong answer at some point. Now probability of M at least gives one wrong answer in n iterations is $\frac{n}{2^n} < \frac{1}{2}$. Hence

$$\varphi \in SAT \implies Pr[\mathcal{A}(\varphi) = 1] > 1 - \frac{1}{2} = \frac{1}{2}$$

Hence $SAT \in RP$. Therefore NP = RP

Problem 6

If PSPACE has polynomial size circuits then, show that PSPACE = MA

Solution: We will follow the given steps to prove this -:

- First we will prove that $MA \subseteq PSPACE$.
- Let $L \in MA$.

- We need to describe a PSPACE algorithm for L.
- For doing this we will use the fact that $L \in MA$ then \exists , p(n), q(n) polynomials in n and \exists a DTIME machine R, such that $x \in L \iff \exists y_1 \in \{0,1\}^{(p(n))}$ such that for a random selection of $y_2 \in \{0,1\}^{(q(n))}$ $R(x,y_1,y_2) = 1$ with probability $\geq \frac{3}{4}$.
- Now what we will do is look over all $y_1 \in \{0,1\}^{p(n)}$ and then calculate probability of success over y_2 by keeping a counter, if it is high enough we will accept x otherwise we will keep searching for such an y_1 until we exhaust the set $\{0,1\}^{(p(n))}$ if we are not able to find such y_1 then we will reject and for each branch described by y_1 and y_2 we will reuse the space while doing so also we will clean the counter space after evaluating all possible y_2 's for a given y_1 .
- Now the calculation of the work space will take polynomial space and the counters will also take at most q(n) (since we clean the counter after every y_1 's all branches computation) bits so the total space would b polynomial in n.
- Hence we proved that $MA \subseteq PSPACE$.
- Now if $MA \in P/poly$ we need to show that $PSPACE \in MA$.
- For this we will use the fact that PSPACE = IP, we will in fact use a more stronger result that a problem in PSPACE can be simulated using an IP-protocol where whatever computation the prover does is in PSPACE, that is the prover can be replaced by an PSPACE machine.
- The stronger result follows from IP = PSPACE as the prover always outputs a polynomially bounded output in every round and at every step the prover can go over all possibilities in PSPACE and check if there is a string which will make the protocol accept with high probability.
- Now what we will do is in the first round Merlin will send a polysized circuit family $\{C_i\}_{i=1}^{p(|x|)}$ upto some polynomially bounded length (snce in the IP-protocol the length of the messages will be bounded by some polynomial p(|x|)) for Arthur to simulate this circuit family as the prover in the IP-protocol whose prover is a PSPACE machine and will accept iff at last the IP-protocol simulation will accept it.
- Notice that the simulation will be polytime as the IP-protocol has polynomially many rounds and we are substituting the prover by a poly sized circuit so prover's computation can be done in polytime and the verifier is running in polytime by the definition of IP-protocol. (The overall computation is polytime as we are doing polytime computations for polynomially many rounds .)
- Now the circuit will be polysized in length of input, now if $x \in L$ then \exists a prover for which the IP-protocol accepts with a high probability then Merlin will send the circuit of this prover which is honest to Arthur, now Arthur will run the IP-protocol with assuming this circuit as the prover, now Arthur accepts iff this IP-protocol accepts. Now by the completeness of the IP protocol it will accept with a probability $\geq \frac{3}{4}$.
- If $x \notin L$ then we get that by the soundness of the IP-protocol that for any prover the acceptance probability is $\leq \frac{1}{4}$, hence it will accept with a probability $\leq \frac{1}{4}$.