Parallel and Distributed GBT

9/18/2018

Bo Peng

IPCC@Indiana University

Outline

- Problem
- Related work
- Proposal

Building a Tree

- findBestSplit is the bottleneck
 - For each node, go through all instances in the node and all features
 - parallelism: node level, feature level, inside single feature level

- findBestSplit is the bottleneck
 - GHSum is the core data structure
 - for each feature
 - bins, fixed split points
 - g,h summation on instances whose value fall into the bin

Distributed Split

- Partition by rows (samples)
 - need gobal communication to build Bins, once if use global static Bins.
 - need gobal communication to build GHSum for each feature in findBestSplit() → allreduce(GHSum)
- Partition by columns (features)
 - Bins and GHSum are all local, no communication
 - need global communication to select the best feature in findBestSplit() → allreduce(maxscore), also need to broadcast(Split Instance Set)

Issues

- irregular memory access
 - instances in tree nodes are dynamic sets
 - non-continuous memory access to g,h
 - read/write after write dependency, GH[bin[id]] += g[id], will stall when cache miss on access g[id]
- spasity
 - missing values
 - frequent zero entries
 - artifacts of feature engineering such as one-hot-encoding
- high dimensionality
 - |features|

Outline

- Problem
- Related work
- Proposal

XGBoost^[1]

- Standard baseline
- Algorithm
 - approximate algorithm with both local and global proposal methods (Bins)
 - sparsity-aware, only collect statistics of non-missing entries
- System
 - Column Block
 - each block is a subset of rows
 - in each block, data stored in compressed column(CSC) format, with each column sorted by corresponding feature value
 - support feature level parallelism
 - linear scan to find best split
 - Cache-aware access
 - choose correct block size to get gradient statistics(g,h) fit into the CPU cache. (2¹⁶)

Figure 8: Short range data dependency pattern that can cause stall due to cache miss.

LightGBM^{[2][3]}

- high communication costs ~O(|features|*binSize)
 - PV-Tree (Parallel Voting Decision Tree)
 - local voting: select top-k features based on local data
 - global voting: select top-2k features by votings from local candidates
 - collect full-grained histograms of the globally top-2k, and findBestSplit
- high dimensionality
 - Gradient-based One-side sampling
 - exclude a significant proportion of data instances with small gradients in estimate the score
 - better than SGB(Stochastic GB) with the same sampling ratio
- Sparsity
 - Exclusive feature bundling
 - bundle mutually exclusive features(never nonzero values simultaneously) into a single feaure
 - letting exclusive features reside in different bins (adding offsets to original values)

DimBoost^{[4][5]}

- high dimensionality (industry application with 330K features)
- Optimize Communication
 - parameter server
 - claims to be one communication step and take less time (?)
 - two-phase-split finding
 - server-side split
 - round-robin task scheduler
 - schedule the splitting tasks among the workers
 - low-precision gradient histogram
 - each item q in a histogram, encode to a d-bit integer $q'=floor(q/|c|*2^d)$
 - d=8 often enough to obtain no loss on final accuracy
- Optimize Computation
 - parallel batch construction
 - divides a range into batches for the big nodes in the first few layers
 - spare histogram construction
 - only non-zero entries

Figure 9: Node-to-instance Index.

Figure 6: Parameter layout.

GPU-GBDT^[6]

- sparse representation
 - similar to Column Block
- fine-grain parallelism
 - parallelizing the score computation of each split point: segmented prefix sum --> GHSum
 - select best split point: semented reduction
 - splitting a node: maintain values of each feature in the new node in sorted order
- Run-length encoding compression
 - sorted by feature values
 - repeated values can be compressed
 - directly splitting RLE elements
- thread/block workload dynamic allocation
 - under a memory constrain

TABLE I

DENSE AND SPARSE DATA REPRESENTATION Dense Sparse

$$egin{array}{c|cccc} m{x}_1 & \langle 0.0, 0.0, 0.1, 0.0 \rangle & (a_3 \colon 0.1) \\ m{x}_2 & \langle 1.2, 0.0, 0.1, 0.6 \rangle & (a_1 \colon 1.2); (a_3 \colon 0.1); (a_4 \colon 0.6) \\ m{x}_3 & \langle 0.5, 1.0, 0.0, 0.0 \rangle & (a_1 \colon 0.5); (a_2 \colon 1.0) \\ m{x}_4 & \langle 1.2, 0.0, 2.0, 0.0 \rangle & (a_1 \colon 1.2); (a_3 \colon 2.0) \end{array}$$

$$a_1 = (\boldsymbol{x}_2 : 1.2); (\boldsymbol{x}_4 : 1.2); (\boldsymbol{x}_3 : 0.5)$$

 $a_2 = (\boldsymbol{x}_3 : 1.0)$
 $a_3 = (\boldsymbol{x}_4 : 2.0); (\boldsymbol{x}_2 : 0.1); (\boldsymbol{x}_1 : 0.1)$
 $a_4 = (\boldsymbol{x}_2 : 0.6)$

Fig. 1. Example results of segmented prefix sum

Outline

- Problem
- Related work
- Proposal

Assumption

- Assumption:
 - Model: GHSum, (Bins, g, h)
 - Model size << Training Data size
- Training Data N samples, M Features, build tree with L levels
- Model GHSum with bin size B
 - at each node, size: B*M
 - at each level, size: 2^{L-1}*B*M
- Most cases
 - $M < 1K, L < 8, B \sim [20,100]$
 - high dimension can be an issue
 - deep tree can be an issue (GBT prefers shallow trees)

Assumption

- example:
 - Higgs: N = 10m, M = 28
 - L = 6, B = 128; model size at level L, 32*128*28 << 10m
 - KDD10: N=19M, M=29M
 - feature enginering: expand a categorical feature into a set of binary features, combination*

Cache Friendly Data Orgnization

- Issue: non-continuous memory access in feature level parallelism
 - prefer column-wised data orgnization
 - dynamic instance set
 - N is large, (g,h) can not even fit into LLC cache
- Ideas
 - multi-columns to fit one cache line
 - clolumn block to get a small range of (g,h) access cache friendly

Training data access

- Issue: redundent access to training data in node level parallelism
 - prefer row-wised data orgnization, however, it conflicts with feaure level parallelism
- Ideas
 - Keep column-wised orgnization
 - Keep all GHSum of the same level in cache
 - Single pass on train data for each level. (half when reuse GHSum parent)

Sequential Scan on the Instance Set

- Issue:Dynamic instance set
 - move instance id around after node split
- Ideas
 - encode <nodeid, level> into a uniq nodeID, (easy for binary tree)
 - a nodeID vector to maintain the current leaf level instance sets directly
 - sequential access to this vector

Block-based Data Orgnization and Parallelsim


```
for j in column_block:
  for each x<sub>i,j</sub> in the column X<sub>,j</sub>:
    nodeid = nodeIDVec[i]
    bindid = Bins[j][x<sub>i,j</sub>]
    GHSum[nodeid][j][binid] += g[i]
```

• Column Block

- the basic unit for parallelism
- column-wised data orgnization
- dense/sparse support
- sorted by feature values
- Set the block number/size to
 - fit all active <g,h>,nodeIDVec blocks in LLC
 - fit all active GHSum blocks in L2
 - loop order can be optimized

Data and Model Parallelism by Model Rotation

(a) model rotation

- Proposal
 - use computation model : model rotation
- Data partitioned to blocks
 - Data Parallelsim:
 - Model parallelism: GHSum split by feature columns
- Scheduler to avoid update conflicts

Block Dynamic Scheduling in Shared Memory systems

(b) dynamic scheduling

- a low cost solution to remove synchronization overhead
- number of partitions is larger than the number of threads,
- always 'free' rows and columns avaliable when one thread finishes its current task.
- cache-aware block size
- sparse representation ready

Distributed Model Rotation

(a) model rotation

- Training data randomly partitioned among nodes
- Model partitioned among nodes
 - split by feature columns
- Scheduler to avoid update conflicts
 - rotate local model partition to neighbor at each sub-step
 - finish after K sub-steps(K nodes)
 - kind of a ring-allreduce

Pipelining and Timer Control in Distributed Systems

(a) model rotation

- Each sampler only works for the same period of time and then the samplers do synchronization all together.
- They all use a timer to control the synchronization point rather than waiting until all the blocks to finish.
- This adjustment does not change the property of the uniform random selection of blocks.

More to consider

- Feature Bundle
 - deal with category features
- Feature Sampling
 - design scheduler with Gradient-based priority
- Data Compression
 - model compression: low-precision compression
 - traning data compression: RLE

References

- [1]T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794.
- [2]Q. Meng et al., "A communication-efficient parallel algorithm for decision tree," in Advances in Neural Information Processing Systems, 2016, pp. 1279–1287.
- [3]G. Ke et al., "LightGBM: A Highly Efficient Gradient Boosting Decision Tree," in Advances in Neural Information Processing Systems, 2017, pp. 3149–3157.
- [4]J. Jiang, B. Cui, C. Zhang, and F. Fu, "DimBoost: Boosting Gradient Boosting Decision Tree to Higher Dimensions," in Proceedings of the 2018 International Conference on Management of Data, 2018, pp. 1363–1376.
- [5]J. Jiang, J. Jiang, B. Cui, and C. Zhang, "TencentBoost: A Gradient Boosting Tree System with Parameter Server," in 2017 IEEE 33rd International Conference on Data Engineering (ICDE), 2017, pp. 281–284.
- [6]Z. Wen, B. He, R. Kotagiri, S. Lu, and J. Shi, "Efficient Gradient Boosted Decision Tree Training on GPUs," in 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018, pp. 234–243.