MAT8010 Homework #6

BY YUEJIAN MO June 7, 2018

1. Show that if an S(3,6,v) exists, then $v \equiv 2$ or $6 \pmod{20}$.

Prove:
Calculate b_i , $i = 3, 2, 1, 0$; $b_1 \notin \mathbb{Z}$
2.
3. Let $S = (P, B)$ be a $t - (v, k, \lambda)$ design, and let $x_1, x_2,, x_{t+1}$ be points of P . Suppose that μ blocks of S contain all these points. Use the PIE to show that the number of blocks containing none of points $x_1, x_2,, x_{t+1}$ is $N + (-1)^{t+1}\mu$, where N depends on t, v, k, λ only. Deduce that if t is even and $v = 2k + 1$, then $(P \cup \{y\}, \{B \cup \{y\}, P \land \} B \in B)$ is a $(t+1) - (v+1, k+1, \lambda)$ -design.
Prove:
4. Let X be a v -set, and let $0 \le t \le k \le v$ be integers. The subset inclusion matrix $W_{tk}(v)$ is a $(0, 1)$ -matrix whose rows are indexed by the t -subsets T of X and whose columns are indexed by the k -subsets K of X , with the (T, K) -entry being 1 if $T \subseteq K$, and 0 otherwise. Prove that $W_{tk}(v)$ has full rand over \mathbf{Q} ; that is $\operatorname{rank}_{\mathbf{Q}}(W_{tk}(v)) = \min\{\binom{v}{t}, \binom{v}{k}\}$.
Prove:
5. Let O be a subset of the points of a projective plane of order n such that no three points of O are on one line. Show that $ O \le n+1$ if n is odd and that $ O \le n+2$ if n is even. A set of $n+1$ points, no three on a line, is called an oval; a set of $n+2$ points, no three on a line, is a hyperoval. Two constructions of $PG_2(4)$ were given in Example 19.7 and Problem 19F. In each case, construct a hyperoval.
Prove:
6. Let G be simple graph and let A be the adjacency matrix of G . The eigenvalues of A are called the eigenvalues of G . Also we denote the largest vertex degree of G by $\Delta(G)$. Prove that (i) the eigenvalue of G with the largest absolute value is $\Delta(G)$ if and only if some connected component of G is $\Delta(G)$ -regular; (ii) The multiplicity of $\Delta(G)$ as an eigenvalue of G is the number of $\Delta(G)$ -regular components of G .
Prove:
(i)
(ii)