Introduction to Data Science - 1MS041

Benny Avelin

Department of Mathematics

HT 2023

Setup

- 1. The generator of the data G
- 2. The supervisor *S*
- 3. The learning machine LM.

• Statistical model (Our assumptions of the truth)

- Statistical model (Our assumptions of the truth)
- The model space \mathcal{M} , what the learning machine searches in.

- Statistical model (Our assumptions of the truth)
- The model space \mathcal{M} , what the learning machine searches in.
- The loss function L measuring the performance of a function $g \in \mathcal{M}$ w.r.t data.

- Statistical model (Our assumptions of the truth)
- ullet The model space \mathcal{M} , what the learning machine searches in.
- The loss function L measuring the performance of a function $g \in \mathcal{M}$ w.r.t data.
- The risk which is expected loss.

- Statistical model (Our assumptions of the truth)
- The model space \mathcal{M} , what the learning machine searches in.
- The loss function L measuring the performance of a function $g \in \mathcal{M}$ w.r.t data.
- The risk which is expected loss.
- The main objective of the learning machine is to find $\hat{g} \in \mathcal{M}$ that minimizes risk.

- We talked about the following learning problems
 - Find f
 - Regression
 - Pattern recognition

- We talked about the following learning problems
 - Find f
 - Regression
 - Pattern recognition
- We defined the regression function

$$r(X) = \mathbb{E}[Y \mid X]$$

which is the target to hit with Regression.

Recap

Up to now we have brushed upon a general construction, namely that of an estimator.

Recap

Up to now we have brushed upon a general construction, namely that of an estimator.

Definition (Data)

Assume that $X = (X_1, ..., X_n)$ is a sequence of \mathbb{R}^m valued random variables taking values in the **data space** \mathbb{X} :

Recap

Up to now we have brushed upon a general construction, namely that of an estimator.

Definition (Data)

Assume that $X = (X_1, ..., X_n)$ is a sequence of \mathbb{R}^m valued random variables taking values in the **data space** \mathbb{X} :

$$X(\omega):\Omega\to\mathbb{X}$$
.

Sometimes we call X a **Dataset** or just **Data**.

Recap

Up to now we have brushed upon a general construction, namely that of an estimator.

Definition (Data)

Assume that $X = (X_1, \dots, X_n)$ is a sequence of \mathbb{R}^m valued random variables taking values in the **data space** \mathbb{X} :

$$X(\omega):\Omega\to\mathbb{X}$$
.

Sometimes we call X a **Dataset** or just **Data**. The realisation of the RV X when an experiment is performed is the observation or **data/dataset** $x \in \mathbb{X}$.

Definition (Statistic)

Consider a data space \mathbb{X} . A **statistic** \mathcal{T} is a function on the data space:

$$T: \mathbb{X} \to \mathbb{T}$$
.

Definition (Statistic)

Consider a data space \mathbb{X} . A **statistic** \mathcal{T} is a function on the data space:

$$T: \mathbb{X} \to \mathbb{T}$$
.

Examples of estimators and spaces

• $\mathbb{X} = \mathbb{R}^n$, and $T(x) = \frac{1}{n} \sum_{i=1}^n x_i$. In this case $\mathbb{T} = \mathbb{R}$.

Definition (Statistic)

Consider a data space \mathbb{X} . A **statistic** T is a function on the data space:

$$T: \mathbb{X} \to \mathbb{T}$$
.

Examples of estimators and spaces

- $\mathbb{X} = \mathbb{R}^n$, and $T(x) = \frac{1}{n} \sum_{i=1}^n x_i$. In this case $\mathbb{T} = \mathbb{R}$.
- $\mathbb{X}=(\mathbb{R}^2)^{\otimes n}$, $X=((X_1,Y_1),\ldots,(X_n,Y_n))$. Now consider the linear regression problem, let $T[x]=g^*[x]$ be the best fitting linear function on the dataset $x\in\mathbb{X}$. In this case \mathbb{T} is the set of all linear functions.

See simulations:

More examples

ullet The empirical risk, of a function $g\in\mathcal{M}$

$$\hat{R}(g) = \frac{1}{n} \sum_{i=1}^{n} L(g(X_i), Y_i)$$

More examples

• The empirical risk, of a function $g \in \mathcal{M}$

$$\hat{R}(g) = \frac{1}{n} \sum_{i=1}^{n} L(g(X_i), Y_i)$$

• Let $X_{train} = ((X_1, Y_1), \dots, (X_n, Y_n))$ be training Data, and consider

$$g^* := \arg\min_{g \in \mathcal{M}} \frac{1}{n} \sum_{i=1}^n L(g(X_i), Y_i)$$

Now, consider a new Dataset

 $X_{test} = ((X_{n+1}, Y_{n+1}), \dots, (X_{n+m}, Y_{n+m})),$ then look at

$$\frac{1}{m}\sum_{i=n+1}^{m}L(g^*(X_i),Y_i)$$

Given g^* the above is an estimator w.r.t. the X_{test} Dataset.

Definition

Consider the statistical model

$$\mathcal{E} = \{ F(x; \lambda) : \mathbb{X} \to [0, 1] : \lambda \in \Lambda, \ F \text{ is a DF} \}$$

Let a parameter map be given $\theta: \Lambda \to \Theta$. Consider the Data $X = (X_1, \dots, X_n) \stackrel{\text{IID}}{\sim} F(\cdot; \lambda^*) \in \mathcal{E}$ be \mathbb{R}^m -valued RVs.

Definition

Consider the statistical model

$$\mathcal{E} = \{ F(x; \lambda) : \mathbb{X} \to [0, 1] : \lambda \in \Lambda, \ F \text{ is a DF} \}$$

Let a parameter map be given $\theta: \Lambda \to \Theta$. Consider the Data $X = (X_1, \ldots, X_n) \stackrel{\text{IID}}{\sim} F(\cdot; \lambda^*) \in \mathcal{E}$ be \mathbb{R}^m -valued RVs. A **point estimator** of $\theta^* := \theta(\lambda^*) \in \Theta$ is a statistic, i.e.

$$\hat{\Theta}: \mathbb{X} \to \mathbf{\Theta},$$

sometimes we denote it as $\hat{\Theta}_n$ to highlight that it depends on n values.

Definition

Consider the statistical model

$$\mathcal{E} = \{ F(x; \lambda) : \mathbb{X} \to [0, 1] : \lambda \in \Lambda, \ F \text{ is a DF} \}$$

Let a parameter map be given $\theta: \Lambda \to \Theta$. Consider the Data $X = (X_1, \ldots, X_n) \stackrel{\text{IID}}{\sim} F(\cdot; \lambda^*) \in \mathcal{E}$ be \mathbb{R}^m -valued RVs. A **point estimator** of $\theta^* := \theta(\lambda^*) \in \Theta$ is a statistic, i.e.

$$\hat{\Theta}: \mathbb{X} \to \mathbf{\Theta},$$

sometimes we denote it as $\hat{\Theta}_n$ to highlight that it depends on n values. The bias of an estimator $\hat{\Theta}_n$ of $\theta^* \in \Theta$ is:

$$\mathsf{bias}(\widehat{\Theta}_n(X)) := \mathbb{E}(\widehat{\Theta}_n(X)) - \theta^* = \int \widehat{\Theta}_n(x) \, dF(x; \lambda^*) - \theta(\lambda^*) \; . \quad (1)$$

$$\mathcal{N} = \{N(0, \sigma^2) : \sigma \in (0, \infty)\}$$

$$\mathcal{N} = \{N(0, \sigma^2) : \sigma \in (0, \infty)\}$$

• Here $\Lambda = (0, \infty)$.

$$\mathcal{N} = \{ N(0, \sigma^2) : \sigma \in (0, \infty) \}$$

- Here $\Lambda = (0, \infty)$.
- Data $X = (X_1, \ldots, X_n) \stackrel{\text{IID}}{\sim} N(0, (\sigma^*)^2) \in \mathcal{N}.$

$$\mathcal{N} = \{ N(0, \sigma^2) : \sigma \in (0, \infty) \}$$

- Here $\Lambda = (0, \infty)$.
- Data $X = (X_1, \ldots, X_n) \stackrel{\text{IID}}{\sim} N(0, (\sigma^*)^2) \in \mathcal{N}.$
- The parameter map is just $\theta(\sigma) = \sigma^2$.

$$\mathcal{N} = \{ N(0, \sigma^2) : \sigma \in (0, \infty) \}$$

- Here $\Lambda = (0, \infty)$.
- Data $X = (X_1, \ldots, X_n) \stackrel{\text{IID}}{\sim} N(0, (\sigma^*)^2) \in \mathcal{N}.$
- The parameter map is just $\theta(\sigma) = \sigma^2$.
- An example statistic in this case is

$$\hat{\Theta}(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$

$$\mathcal{N} = \{ N(0, \sigma^2) : \sigma \in (0, \infty) \}$$

- Here $\Lambda = (0, \infty)$.
- Data $X = (X_1, \ldots, X_n) \stackrel{\text{IID}}{\sim} N(0, (\sigma^*)^2) \in \mathcal{N}$.
- The parameter map is just $\theta(\sigma) = \sigma^2$.
- An example statistic in this case is

$$\hat{\Theta}(X) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)^2$$

• We say that $\hat{\Theta}$ is a point-estimator of $(\sigma^*)^2$.

The bias is

$$bias(\hat{\Theta}) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_i - \overline{X}_n)^2\right] - (\sigma^*)^2$$
$$= -\frac{1}{n}(\sigma^*)^2$$

The bias is

$$bias(\hat{\Theta}) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_i - \overline{X}_n)^2\right] - (\sigma^*)^2$$
$$= -\frac{1}{n}(\sigma^*)^2$$

• We call a point estimator **biased** if the bias is not zero.

The bias is

$$bias(\hat{\Theta}) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_i - \overline{X}_n)^2\right] - (\sigma^*)^2$$
$$= -\frac{1}{n}(\sigma^*)^2$$

- We call a point estimator biased if the bias is not zero.
- If the bias is zero we call it unbiased.

The bias is

$$bias(\hat{\Theta}) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_i - \overline{X}_n)^2\right] - (\sigma^*)^2$$
$$= -\frac{1}{n}(\sigma^*)^2$$

- We call a point estimator biased if the bias is not zero.
- If the bias is zero we call it unbiased.
- If $\lim_{n\to\infty} \operatorname{bias}(\hat{\Theta}) = 0$ we say that the estimator is asymptotically unbiased.

The bias is

$$bias(\hat{\Theta}) = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}(X_i - \overline{X}_n)^2\right] - (\sigma^*)^2$$
$$= -\frac{1}{n}(\sigma^*)^2$$

- We call a point estimator **biased** if the bias is not zero.
- If the bias is zero we call it unbiased.
- If $\lim_{n\to\infty} \operatorname{bias}(\hat{\Theta}) = 0$ we say that the estimator is asymptotically unbiased.
- If we change the estimator to

$$\hat{\Theta}_1(X) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

it becomes unbiased.

$$\mathcal{E} = \{ F(x; \lambda) : \mathbb{X} \to [0, 1] : \lambda \in \Lambda, \ F \text{ is a DF} \}$$

- Consider the parameter map $\theta(\lambda) = \int x dF(x; \lambda)$, i.e. the expectation.
- Data $X = (X_1, \ldots, X_n) \stackrel{\text{IID}}{\sim} F(\cdot; \lambda^*) \in \mathcal{E}$.
- An example statistic in this case is

$$\hat{\Theta}(x) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• we say that $\hat{\Theta}$ is a point estimator of $\theta^* = \int x dF(\cdot; \lambda^*)$. Again the bias is defined as

$$\mathsf{bias}(\widehat{\Theta}(X)) := \mathbb{E}(\widehat{\Theta}(X)) - heta^* = 0$$

Thus our estimator is unbiased!

Biased or Unbiased

Traditionally statistics has cared a lot about unbiased estimators, as they will give the correct value in average.

Question

Do you think that having a biased estimator could be better than having an unbiased estimator?

Definition (Standard Error of a Point Estimator)

The standard deviation of the point estimator $\widehat{\Theta}_n(X)$ of $\theta^* \in \Theta$ is called the **standard error**:

$$\operatorname{se}(\widehat{\Theta}_n(X)) := \sqrt{\mathbb{V}_{\lambda^*}(\widehat{\Theta}_n)} := \sqrt{\int \left(\widehat{\Theta}_n(x) - \mathbb{E}_{\lambda^*}(\widehat{\Theta}_n)\right)^2 dF(x; \lambda^*)}.$$
(2)

Bias and variance decomposition

Definition (Mean Squared Error (MSE) of a Point Estimator)

Often, the quality of a point estimator $\widehat{\Theta}$ of $\theta^* \in \mathbf{\Theta}$ is assessed by the **mean squared error** or MSE defined by:

$$\mathsf{MSE}(\widehat{\Theta}(X)) := \mathbb{E}_{\lambda^*} \left((\widehat{\Theta}(X) - \theta^*)^2 \right) \ .$$

$$\mathsf{MSE}(\widehat{\Theta}) = (\mathsf{se}(\widehat{\Theta}))^2 + (\mathsf{bias}(\widehat{\Theta}))^2 \ . \tag{3}$$

Convergence of random variables

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability triple and let X_1, X_2, \ldots , be a sequence of RVs and let X be another RV. We say that X_n converges to m almost surely if

$$\mathbb{P}\left(\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=m\right)=1,$$

denoted as

$$X_n \stackrel{a.s.}{\rightarrow} m$$

Strong law of large numbers

Theorem (Strong law of large numbers)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability triple and let $X_1, X_2, \ldots, \in L^2(\mathbb{P})$ be a sequence of i.i.d. RVs with $\mathbb{E}[X_i] = \mu$. Then

$$\overline{X}_n \stackrel{\textit{a.s.}}{\to} \mu.$$

Convergence in probability

Definition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability triple and let X_1, X_2, \ldots , be a sequence of RVs and let X be another RV. We say that X_n converges to X in probability, and write:

$$X_n \stackrel{\mathbb{P}}{\longrightarrow} X$$

if for every real number $\epsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}(|X_n-X|>\epsilon)=0.$$

Asymptotic consistency

Definition (Asymptotic Consistency of a Point Estimator)

A point estimator $\widehat{\Theta}_n$ of $\theta^* \in \mathbf{\Theta}$ is said to be **asymptotically consistent** if:

$$\widehat{\Theta}_n \stackrel{\mathbb{P}}{\longrightarrow} \theta^*, \quad n \to \infty$$