SAYISAL İNTEGRAL ÖRNEK

A)
$$I = \int_{1}^{4} \frac{13(x-x^2)}{\sqrt{e^{3x}}} dx$$
 integralini h=0.5 olmakla Sol, Sağ

dikdörtgenler ve Yamuk Yöntemi yardımı ile hesaplayınız.

Bu durumda
$$n = \frac{b-a}{h} = \frac{4-1}{0.5} = \frac{3}{0.5} = 6$$
 olur

Ve ya
$$I=\int\limits_{1}^{4}\frac{13(x-x^2)}{\sqrt{e^{3x}}}dx$$
 n=6 olmakla hesaplayınız . Bu durumda
$$h=\frac{b-a}{n}=\frac{4-1}{6}=\frac{3}{6}=0.5 \text{ olur}.$$

i		Xi		$F_i = F(x_i)$	
0	\mathbf{x}_0	=	1	$f_0 = 0$	
	X _{1/2}			$f_{1/2} =$	**
1	\mathbf{X}_1	=	1.5	f ₁ = -1.0276	
	X _{3/2}			$f_{3/2} =$	**
2	\mathbf{X}_{2}	=	2	f ₂ = -1.2945	
	X _{5/2}			$f_{5/2} =$	**
3	\mathbf{x}_3	=	2.5	$f_3 = -1.1465$	
	X _{7/2}			$f_{7/2} =$	**
4	X 4	=	3	f ₄ = - 0.8665	
	X _{9/2}			$f_{9/2} =$	**
5	X ₅	=	3.5	f ₅ = -0.5969	
	X _{11/2}			f _{11/2} =	**
6	X 6	=	4	f ₆ = -0.3867	

i		Xi		$F_i = F(x_i)$	
0	\mathbf{x}_0	=	1	$f_0 = 0$	
	X _{1/2}			$f_{1/2} =$	**
1	X ₁	=	1.5	f ₁ = -1.0276	
	X _{3/2}			$f_{3/2} =$	**
2	X 2	=	2	f ₂ = -1.2945	
	X _{5/2}			$f_{5/2} =$	**
3	X ₃	=	2.5	f ₃ = -1.1465	
	X _{7/2}			f _{7/2} =	**
4	X 4	=	3	f ₄ = -0.8665	
	X _{9/2}			$f_{9/2} =$	**
5	X ₅	=	3.5	f ₅ = - 0.5969	
	X _{11/2}			$f_{11/2} =$	**
6	X ₆	=	4	f ₆ = - 0.3867	

$$I_{sol} = \int_{1}^{4} \frac{13(x - x^{2})}{\sqrt{e^{3x}}} dx = h \sum_{i=1}^{n-1} f_{i} = h(f_{0} + f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) =$$

= 0.5x[0 - 1.0276 - 1.2945 - 1.1465 - 0.8665 - 0.5969] = 0.5x(-4.9320) = -2.466

$$I_{\text{sag}} = \int_{1}^{4} \frac{13(x - x^{2})}{\sqrt{e^{3x}}} dx = h \sum_{i=1}^{n} f_{i} = h(f_{1} + f_{2} + f_{3} + f_{4} + f_{5} + f_{6}) =$$

= 0.5x[-1.0276-1.2945-1.1465-0.8665-0.5969-0.3867] = 0.5x(-5.3187) = -2.6594

$$I_{yamuk} = \int_{1}^{4} \frac{13(x - x^{2})}{\sqrt{e^{3x}}} dx = \frac{h}{2} \left[f_{0} + 2 \sum_{i=1}^{n-1} f_{i} + f_{n} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right] = \frac{h}{2} \left[f_{0} + 2(f_{1} + f_{2} + f_{3} + f_{4} + f_{5}) + f_{6} \right]$$

= 0.25x[0-2x(1.0276+1.2945+1.1465+0.8665+0.5969)-0.3867]=-2.5627

i		Xi		$F_i = F(x_i)$	
0	\mathbf{x}_0	=	1	$f_0 = 0$	
	X _{1/2}		1.25	$f_{1/2} = -0.623$	**
1	\mathbf{x}_1	=	1.5	f ₁ = -1.0276	
	X _{3/2}		1.75	$f_{3/2} = -1.236$	**
2	\mathbf{X}_{2}	=	2	f ₂ = -1.2945	
	X _{5/2}		2.25	$f_{5/2} = -1.2511$	**
3	X ₃	=	2.5	$f_3 = -1.1465$	
	X _{7/2}		2.75	$f_{7/2} = -1.0112$	**
4	X 4	=	3	f ₄ = - 0.8665	
	X _{9/2}		3.25	$f_{9/2} = -0.7259$	**
5	X ₅	=	3.5	f ₅ = - 0.5969	
	X _{11/2}		3.75	$f_{11/2} = -0.4835$	**
6	X ₆	=	4	f ₆ = - 0.3867	

Merkez dikdöretgenler Yöntemi

$$I_{\text{mer}} = \int_{1}^{4} \frac{13(x-x^{2})}{\sqrt{e^{3x}}} dx = h \sum_{i=0}^{n-1} f\left(x_{i+\frac{1}{2}}\right) = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{3}{2}}\right) + f\left(x_{\frac{5}{2}}\right) + ... + f\left(x_{n-\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{3}{2}}\right) + f\left(x_{\frac{5}{2}}\right) + ... + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{3}{2}}\right) + f\left(x_{\frac{5}{2}}\right) + ... + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{3}{2}}\right) + f\left(x_{\frac{5}{2}}\right) + ... + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right] = h \left[f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right) + f\left(x_{\frac{1}{2}}\right)\right]$$

=0.5*[-0.623-1.236-1.2511-1.0112-0.72581-0.4835] = -2.6653