Отчет по домашнему заданию по препроцессингу.

Baseline

Изначально в ходе решения задачи по определению тональности твитов были использованы CountVectorizer и TfidfVectorizer, которым был передан исходный текст (без каких-либо предварительных преобразований), а затем, в качестве классификатора, была применена логистическая регрессия, и получены следующие результаты:

	CountVectorizer	TfidfVectorizer
Макросредняя F1 мера	0.463064212113	0.517616688856
Микросредняя F1 мера	0.638753651412	0.671372930867

В последствии использовался TfidfVectorizer.

Затем, чтобы повысить результаты работы, была проведена нормализация, в том числе очистка текста (от ссылок, сочетаний @username, а также от знаков препинания), токенизация (как очищенного, так и исходного текста), лемматизация (а затем и стемминг), удаление стоп-слов (список со стоп-словами был взят здесь). Однако очистка данных и удаление стоп-слов не дало ощутимого прироста в результатах работы алгоритма (таблица ниже). Возможно, это связано с тем, что некоторые знаки препинания влияют непосредственно на тональность того или иного твита. То же можно сказать и относительно стоп-слов.

Затем был произведен перебор параметров (С и penalty) с помощью GridSearchCV. Лучшими параметрами оказались {'C': 10, 'penalty': '12'}, которые и были использованы в дальнейшей работе.

До перебора (TfidfVectorizer + LogisticRegression):

	Очистка данных	Стоп-слова	Очистка данных + стоп-слова	Без очистки данных и удаления стоп- слов
Макро средн F1 мера	0.55538623173	0.506772934 394	0.5039479551 11	0.54108580 3258
Микро средн F1 мера	0.69376825706	0.657740993 184	0.6499513145	0.68403115 8715

После:
TfidfVectorizer + LogisticRegression(C=10, penalty='12')

	Очистка данных + гиперпараметры	Стоп-слова + гиперпараметры	Очистка данных + стоп-слова + гиперпараметры	Без очистки данных и удаления стоп- слов
Макро средн F1 мера	0.60066893699	0.580613304 041	0.5838320996 76	0.60341512 1571
Микро средн F1 мера	0.69571567673	0.675754625	0.6660175267 77	0.70447906 5239

Таким образом, лучший результат достигается, если мы передаем в TfidfVectorizer исходный текст (без очистки от знаков и стоп-слов), а затем используем LogisticRegression(C=10, penalty='12').

Также неплохо работает замена лемматизации на стемминг:

TfidfVectorizer + SnowballStemmer('russian') +
LogisticRegression(C=10, penalty='12')

```
Макросредняя F1 мера – 0.602751632321
Микросредняя F1 мера – 0.70593962999
```

A параметр ngram_range=(1, 5) для TfidfVectorizer не улучшил результат работы:

```
Макросредняя F1 мера – 0.557303532116
Микросредняя F1 мера – 0.682570593963
```

Важные признаки:

```
Значимые слова для класса – -1 ['оштрафовать', 'говно', 'tele2', 'не', 'сбой', 'восстановление', 'гавный', 'заблокировать', 'прекратить', 'повысить']
Значимые слова для класса – 0 ['восстановление', 'доллар', 'иа', 'гавный', 'оштрафовать', 'говно', 'ловить', 'даже', 'любить', 'beeline_rus']
Значимые слова для класса – 1
```

```
['любить', 'спасибо', 'защита', 'узбекистан', 'радовать', 'бесплатный', 'beeline_rus', 'благодарить', 'подарок', 'приятно']
```

Нетрудно заметить, что некоторые слова являются значимыми сразу для нескольких классов (пересекаются между собой -1 и 0, а также 0 и 1). Именно поэтому могут возникать проблемы в разграничении классов между собой (и, как следствие, в итоге получаем не очень высокий результат работы).