KDD 2020 paper reading 10/15

Houquan Zhou

October 15, 2020

1/20

Information

- **Title**: Data Compression as a Comprehensive Framework for Graph Drawing and Representation Learning
- Authors: Claudia Plant, Sonja Biedermann, Christian Böhm
- Affliations: Univerity of Vienna, LMU Munich

Data Compression as a Comprehensive Framework for Graph Drawing and Representation Learning

Claudia Plant Faculty of Computer Science, ds:UniVie University of Vienna, Vienna, Austria claudia.plant@univie.ac.at Sonja Biedermann Faculty of Computer Science University of Vienna, Vienna, Austria sonja.biedermann@univie.ac.at Christian Böhm Institute of Informatics, MCML LMU Munich, Germany boehm@ifi.lmu.de

Overview

- Problem: Representation learning.
- Idea: A novel objective function from a data compression perspective: Predictive Entropy (PE).
- Algorithm: A novel representation learning algorithm GEMPE.
- Experiments: Graph drawing & Reprenentation learning.

Predictive Entropy

Embedings quality: The more effectively the low-dimensional embeddings allow to compress the adjacency matrix, the better is the quality of the embedding.

Based on the idea, the authors proposed a novel information-theoretic evaluation function: Predictive Entropy (PE).

PE is based on a probabilistic model, which predicts the probability $\Pr((i,j) \in E)$ from their embeddings x_i, x_j .

Ideal case: $\Pr((i,j) \in E)$ close to 1 for $(i,j) \in E$, and close to 0 for $(i,j) \notin E$.

Probalistic model

Edge probability of (i, j) related to the Euclidean distance of x_i and x_j . The smaller $||x_i - x_j||$ is, the more possible i and j are connected.

$$s_{\mu,\sigma}^{+}(\delta) := P((i,j) \in E \mid ||x_i - x_j|| = \delta) = \frac{1}{2} - \frac{1}{2}\operatorname{erf}(\frac{\delta - \mu}{\sqrt{2}\sigma})$$
 (1)

$$s_{\mu,\sigma}^{-}(\delta) := P((i,j) \notin E \mid ||x_i - x_j|| = \delta) = \frac{1}{2} + \frac{1}{2}\operatorname{erf}(\frac{\delta - \mu}{\sqrt{2}\sigma})$$
 (2)

erf function

$$\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$
 (3)

Related to cumulative probability function of Gaussian distribution:

$$\Phi(x) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}(\frac{x}{\sqrt{2}}) \tag{4}$$

Demonstration

1-1 erf(X)

Predictive Entropy

Encoding length of (i, j) entry of the adjacency matrix:

$$\begin{split} dl_{\mu,\sigma}(i,j) &= \begin{cases} dl_{\mu,\sigma}^+(\delta) & \text{if } (i,j) \in E \\ dl_{\mu,\sigma}^-(\delta) & \text{otherwise} \end{cases} \\ dl_{\mu,\sigma}^+(\delta) &= -\log\left(\frac{1}{2} - \frac{1}{2}\operatorname{erf}(\frac{\delta - \mu}{\sqrt{2}\sigma})\right) \\ dl_{\mu,\sigma}^-(\delta) &= -\log\left(\frac{1}{2} + \frac{1}{2}\operatorname{erf}(\frac{\delta - \mu}{\sqrt{2}\sigma})\right) \end{split}$$

Total objective function PE:

$$PE_G(x_1, ..., x_n) = \frac{1}{N} \min_{\mu, \sigma} \sum_{1 \le i \le n} \sum_{i \le j \le n} dl_{\mu, \sigma}(i, j),$$
 (5)

where $N=\frac{n(n+1)}{2}$, x_1,\ldots,x_n are embeddings of nodes.

Summary: PE

- ullet Learn embedding from G.
- Use embeddings to predict the edges.
- Encoding cost \Rightarrow PE.

Weighted Majorization¹

Definition (Weighted Majorization)

- Given n objectes, distance matrix $d_{i,j}$ and weights $w_{i,j}$;
- Find embeddings $x_i, i = 1, 2, \ldots, n$;
- To minimize the following objective:

$$wm(x_1, \dots, x_n) = \sum_{1 \le i \le n} \sum_{i < j \le n} w_{i,j} (\|x_i - x_j\| - d_{i,j})^2$$
 (6)

WM aims at finding low-dimensional coordinates x_i that minimize the squared difference between the distance in the input matrix $d_{i,j}$ and the Euclidean distance $||x_i - x_j||$ of the generated vectors.

10/20

¹Brandes and Pich 2009; Gansner, Koren, and North 2004.

Optimizing PE using WM

Focusing on one pair (i,j): $w_{i,j}(||x_i-x_j||-d_{i,j})^2$.

We want the WM objective function to approximate our objective function. \Rightarrow Two-order approximation.

$$\frac{\mathrm{d}}{\mathrm{d}\delta} dl_{\mu,\sigma}^+(\delta) = \frac{\mathrm{d}}{\mathrm{d}\delta} w_{i,j} (\delta - d_{i,j})^2$$
$$\frac{\mathrm{d}^2}{\mathrm{d}\delta^2} dl_{\mu,\sigma}^+(\delta) = \frac{\mathrm{d}^2}{\mathrm{d}\delta^2} w_{i,j} (\delta - d_{i,j})^2$$

Optimizing PE using WM

$$w_{i,j}^{+} = \frac{\frac{2}{\pi \ln 2} e^{-\frac{(\delta - \mu)^{2}}{\sigma^{2}}}}{\sigma^{2} (1 - \operatorname{erf}(\frac{\delta - \mu}{\sqrt{2}\sigma}))^{2}} - \frac{\frac{1}{\sqrt{2\pi \ln 2}} (\delta - \mu) e^{-\frac{(\delta - \mu)^{2}}{2\sigma^{2}}}}{\sigma^{3} (1 - \operatorname{erf}(\frac{\delta - \mu}{\sqrt{2}\sigma}))}$$
$$d_{i,j}^{+} = \delta - \frac{\frac{1}{\sqrt{2\pi \ln 2}} e^{-\frac{(\delta - \mu)^{2}}{2\sigma^{2}}}}{w_{i,j} \sigma (1 - \operatorname{erf}(\frac{\delta_{i,j} - \mu}{\sqrt{2}\sigma}))}$$

Update embeddings

$$x_{i} := \frac{\sum_{j \neq i} w_{i,j} (x_{j} + s_{i,j} (x_{i} - x_{j}))}{\sum_{j \neq i} w_{i,j}},$$

$$/\|x_{i} - x_{j}\| \quad \text{if } \|x_{i} - x_{j}\| \neq 0$$
(7)

where $s_{i,j} = \begin{cases} d_{i,j}/\|x_i - x_j\| & \text{if } \|x_i - x_j\| \neq 0 \\ 0 & \text{otherwise} \end{cases}$

- \bullet $s_{i,j} = 0 \Rightarrow d_{i,j} = 0$ $x_i \leftarrow x_i$
- $s_{i,j} = 1 \Rightarrow d_{i,j} = ||x_i x_j||$ $x_i \leftarrow x_i$
- $s_{i,j} = \frac{1}{2} \Rightarrow d_{i,j} = \frac{1}{2} ||x_i x_j||$ $x_i \leftarrow \frac{x_i + x_j}{2}$

Finding μ and σ

Meaning of μ : Boundary of Euclidean distance.

In the experiment, μ is fixed to a value between 1 and 2.

The optimal σ is found by a simple bisection search.

Algorithm

```
algorithm GEMPE (V, E, d) \to \mathbb{R}^{n \times d}
         \forall i \in V: initialize \mathbf{x}_i \in \mathbb{R}^d randomly (uniform distribution);
weighted Majorization Step (i, j);
                       // negative sampling:
                       sample k \in V such that k \neq i and (k, i) \notin E;
determine parabola (d_{k,i}^-, w_{k,i}^-) acc. to Eq. (5) and (6); weightedMajorizationStep (k, i); sample k \in V such that k \neq j and (k, j) \notin E; determine parabola (d_{k,j}^-, w_{k,j}^-) acc. to Eq. (5) and (6); weightedMajorizationStep (k, j);
               \forall i \in V : \mathbf{x}_i := \frac{1}{z_i} \cdot \mathbf{y}_i;
         until convergence:
         return (\mathbf{x}_1, \ldots, \mathbf{x}_n);
```

Algorithm

```
procedure weighted Majorization Step (a, b)

// one step of weighted majorization for \mathbf{x}_a and \mathbf{x}_b:

\mathbf{y}_a := \mathbf{y}_a + w_{a,b} \cdot \mathbf{x}_b;

\mathbf{y}_b := \mathbf{y}_b + w_{a,b} \cdot \mathbf{x}_a;

\mathbf{z}_a := \mathbf{z}_a + w_{a,b};

\mathbf{z}_b := \mathbf{z}_b + w_{a,b};

if ||\mathbf{x}_a - \mathbf{x}_b|| \neq 0 then

\mathbf{y}_a := \mathbf{y}_a + w_{a,b} \cdot \frac{d_{a,b}}{||\mathbf{x}_a - \mathbf{x}_b||} \cdot (\mathbf{x}_a - \mathbf{x}_b);

\mathbf{y}_b := \mathbf{y}_b + w_{a,b} \cdot \frac{d_{a,b}}{||\mathbf{x}_a - \mathbf{x}_b||} \cdot (\mathbf{x}_b - \mathbf{x}_a);
```

Experiments: Repr. Learning

Test embedding quality on downstream task: node classification.

Figure 4: Comparison to Representation Learning Methods: Node Classification.

Experiments: Clustering

	DBLP f.	DBLP c.	Email	PubMed
GEMPE	0.38	0.27	0.67	0.29
AROPE	0.02	0.09	0.50	$\overline{0.03}$
deepWalk	0.35	0.26	0.69	0.30
LINE	0.00	$\overline{0.00}$	0.55	0.00
SDNE	0.02	0.04	0.62	0.02
node2vec	0.09	0.21	0.70	0.14
struct2vec	0.00	0.00	0.22	0.00
VERSE	<u>0.36</u>	0.25	0.67	0.28

Table 1: Comparison of Clustering Results (NMI) in 128D.

Experiments: Graph Drawing

Figure 7: Visualization of DBLP Co-authorship Graph.

Figure 8: PE as a Quality Measure for Graph Drawing: Clear drawings of the Minnesota road network tend to have a low PE.

October 15, 2020

References I

Ulrik Brandes and Christian Pich. "An Experimental Study on Distance-Based Graph Drawing". In: *Graph Drawing*. Ed. by Ioannis G. Tollis and Maurizio Patrignani. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 218–229. ISBN: 978-3-642-00219-9.

Emden R. Gansner, Yehuda Koren, and Stephen North. "Graph Drawing by Stress Majorization". In: *Proceedings of the 12th International Conference on Graph Drawing*. GD'04. New York, NY: Springer-Verlag, 2004, pp. 239–250. ISBN: 3540245286. DOI: 10.1007/978-3-540-31843-9_25. URL: https://doi.org/10.1007/978-3-540-31843-9_25.