VPI University Program

Photonics Curriculum Version 7.0

Lecture Series

Introduction to Optical Transmitters

Tx1

Module Prerequisites

- Introduction to Fiber-Optic Communications I & II
- Recommended Fibers I

Module Objectives

- Semiconductor lasers as sources for optical transmitters
- How a laser works
 - Functional view: gain medium, energy pump, cavity, losses
 - Basic structure: Fabry-Perot laser
 - Optical absorption and emission processes
- Gain Curve, Lasing conditions (gain and phase)
- Rate Equations, Dynamic Effects of Lasers
- Introduction to DFB Lasers

Sources for Optical Transmitters

- Many types of optical sources are available
 - Light Emitting Diodes (LEDs)
 - Solid state lasers
 - Gas lasers
 - Semiconductor lasers
 - Fiber lasers
- Semiconductor Lasers are preferred
 - Powered by electrical energy
 - Directly converts electrical signals to optical signals
 - Generate coherent light source unlike LEDs

Semiconductor Laser Features

- High modulation bandwidth (> 10 Gbit/s)
- Small size
 - Packaged: ~ 2×1×1 cm
 - Unpackaged: ~ grain of salt, 0.5mm × 200μm × 100μm
- Intense single spatial mode
- Energy efficient
- Narrow spectral linewidth
- Can be single longitudinal mode (monochromatic)
- Reliable operation
- Can be integrated

What does LASER stand for?

LASER is an acronym for:

- How does it work?
- Why amplification?
- What is stimulated emission?

How does a Laser work?

A functional view of a laser: 4 main parts

Basic Laser Structure

Fabry-Perot Laser

A Basic Laser Structure

Fabry-Perot Laser (longitudinal section)

How does a Laser produce Light?

- Need to consider three optical transition processes:
 - Absorption
 - Spontaneous emission
 - Stimulated emission

Energy level diagrams for electrons in the active medium

Optical Absorption Process

- Absorption: a photon with energy $> (E_2 E_1)$
- The photon's energy can be absorbed by an electron in state E_1 , thus exciting it to state E_2

Optical Emission Processes

- Spontaneous Emission: electron in excited state E_2 can spontaneously decay to state E_1
- A photon with energy $hf > (E_2 E_1)$ is emitted

Optical Emission Processes

Light produced by spontaneous emission:

- Random propagation direction
- Random phase
- Random frequency
- is incoherent (broad linewidth)

Optical Emission Processes

- Stimulated Emission
- A photon with energy > $(E_2 E_1)$: triggers transition of an excited electron \rightarrow identical photon is emitted
- Produced light is coherent (desirable)

Optical Transition Processes

- All three processes related (Einstein Relations)
- At thermal equilibrium, absorption = emission
- Electrons mostly in state E_1 : $(N_2 << N_1)$
- Spontaneous emission dominates

Population Inversion

- Stimulated emission coherent light, desirable
- Need electrons to be mostly in state E_2
- Population inversion achieved by electrical pumping
- $N_2 >> N_1$, stimulated emission dominates

Optical Cavity and Feedback

- Light amplification by stimulated emission...
 is not strong, especially if the active region is short
- Optical cavity provides feedback into active region
- Light is reflected repeatedly and greatly amplified

Optical Losses and Laser Output

- One mirror is partially transmitting, to get output
- Photons transmitted out are lost (mirror loss)
- Other losses: scattering in the material, nonradiative processes

Laser Spectrum (Gain vs. λ Curve)

- Laser oscillation (lasing) occurs over a range of λ
- Due to distribution of E_2 and E_1 around mean values

Lasing Conditions

For lasing to initiate in a cavity, two conditions need to be satisfied:

- Gain condition:

The electric field of the light, after completing one round trip inside the cavity, should have the same amplitude

- Phase condition:

The electric field of the light, after completing one round trip inside the cavity, should have the same phase

Gain Condition

Gain Condition: E(t,0) = E(t,2L)

 $E(t,0) = A \exp(j\omega t); E(t, 2L) = Ar_1r_2\exp[2L(g-\alpha i)]\exp[j(\omega t-2\beta L)]$

To satisfy the Gain Condition: $r_1 r_2 exp[(g - \alpha_i)2L] = 1$

The threshold gain: $g_{th} = \alpha_i + \frac{1}{2L} ln \frac{1}{r_1 r_2}$

Phase Condition

Integral number of cycles must fit within the cavity

Phase:
$$exp(-2j\beta L) = exp(\frac{4j\pi nL}{\lambda}) = 1, \frac{4j\pi nL}{\lambda} = 2m\pi$$

Resonant cavity - discrete set of spectral lines

Phase Condition

Discrete modes that can be supported by the cavity are called longitudinal modes

Phase condition:
$$\frac{2n}{3}$$

Thus:
$$\Delta \lambda = \frac{\lambda^2}{2nI}$$

Another Laser Structure:

DFB Laser

Refractive Index Grating

Another Laser Structure:

Rate Equation

Rate equation describe the dynamic interaction between excited electrons and photons

Change in carrier density:

$$\frac{dn}{dt} = \frac{1}{qV} - \frac{n}{\tau} - V_g gs$$
Contribute
from Current

Contribute
$$\frac{dn}{dt} = \frac{1}{qV} - \frac{n}{\tau} - V_g gs$$
Usage of electron by
Stimulated emission

Change in photon density:

$$\frac{ds}{dt} = \Gamma v_g a (n-n_0) s - \frac{s}{\tau_p} + \Gamma \beta \frac{n}{\tau}$$
Photon generated by stimulated emission

Decay of photon Spontaneous emission

Light-Current Characteristics

- The *L-I* curve: output light power vs. input current
- Diode characteristics, threshold current I_{th}
- For $I > I_{th}$, light power increases linearly with I

Direct-Current Modulation

The information is encoded on semiconductor lasers by current modulation

Laser Dynamics: Chirp

- Chirping of the laser output signal (pulses)
- Instantaneous frequency of the signal changes
- Leads to increased dispersion (broadening)

Laser Dynamics: Modulation Bandwidth

- Determines maximum direct modulation speed
- Increases with increasing drive (bias) current
- Within practical limits, get multi-GHz modulation

Laser Dynamics: Turn On Delay

Delay between injection of current and generation of light

Laser Dynamics: Relative Intensity Noise

Frequency shape of RIN depends on laser driving conditions

Summary

- Semiconductor lasers optical transmitters
 - Gain medium, energy pump, cavity, losses
 - Basic structure: Fabry-Perot laser
 - Optical absorption and emission processes
 - Einstein Relations
- Gain Curve, Lasing conditions (gain and phase)
- Introduction to Dynamic Effects of Lasers
 - Rate equations, L-I curve, direct modulation, chirp
 - Modulation bandwidth, turn on delay, RIN

Proceed with the *Interactive Learning Module*