Name:	
СНАР	TER 4: Energy from the nucleus review quiz
	le choice
•	 1 The force that holds the nucleus together is called the strong nuclear force. It only acts over a distance of approximately: A 10⁻⁵ m. B 10⁻¹⁰ m. C 10⁻¹⁵ m. D 10⁻²⁰ m.
\$	 2 Nuclear binding energy is: A the energy needed to separate completely all the nucleons in a nuclide from each other. B the force per nucleon needed to separate all the nucleons in a nuclide from each other. C the energy per nucleon needed to separate one nucleon in a nuclide from all the other nucleons. D the strong nuclear force needed to keep nucleons together.
\$	 3 Which of the following statements is correct? A Fission is the process by which a nuclide absorbs a neutron and emits energy. B Fusion is the process by which two heavy nuclides form a new nuclide. C Fission is the process that causes a nuclide to split into two fragments. D Fusion is the process by which two light nuclides emit energy.
\$	 4 On the stability curve of atomic number versus neutron number for nuclides: A light and heavy elements have almost the same number of protons and neutrons. B light elements have almost the same number of protons and neutrons but heavy elements have more neutrons than protons. C positron emitters are found in the region below the stability line. D alpha emitters are found in the region below the stability line.
\$	 5 Absorbed dose is defined as: A the amount of energy absorbed by a body, in joule. B the amount of energy that is carried from a source to a body, in watt. C the amount of energy per kilogram that is incident on a body, in gray. D the amount of energy per kilogram that is incident on a body, multiplied by the radiation weighting factor, in sievert.
\$	6 In a fission or fusion event the mass defect is, approximately: A the difference between the mass of the nuclides involved before and after the event. B the difference between the energy of the nuclides involved before and after the event. C the difference between the mass of the nucleons involved before and after the event. D the difference between the energy of the nucleons involved before and after the event.
\$	 7 In a thermal nuclear power station: A slow neutrons cause fission and are moderated by light elements. B slow neutrons cause fusion and are controlled by neutron poisons. C fast neutrons are produced by the moderator and removed by the control rods. D fast neutrons cause fission and are moderated by neutron poisons in the moderator.

because: A fusion products transfer their kinetic energy to the lithium heat exchanger. B fusion products transfer their kinetic energy to the lithium, which then flows to the heat exchanger. C neutrons produced in the fusion reaction diffuse through the lithium to spread the heat out before it is transferred to the heat exchanger. D neutrons produced in the fusion reaction react with the lithium to produce heat that is transferred to the heat exchanger. 9 A healthy young adult person is exposed to 1.0 Sv of radiation. The likely effects of this will A nausea, followed by recovery with no long-term effects. B nausea, vomiting and confusion followed by recovery, but with no long-term effects. C nausea, vomiting and confusion followed by recovery, but with increased cancer risk some years later. D nausea, vomiting, diarrhoea, anaemia and confusion, followed by relatively rapid death. 10 A fast neutron causes a uranium-238 nuclide to undergo fission. What is the most likely result? A The nuclide splits in half; one neutron is released; neptunium is formed. B The nuclide splits into two fragments; more than one neutron is released; plutonium is formed. C The nuclide splits into two fragments; more than one neutron is released; energy is D The nuclide splits into two fragments; more than one neutron is released; energy is released as gamma rays. 11 One possible daughter nuclide from the fission of 235U is ${}^{141}_{56}$ Ba. This nuclide will later undergo decay to form $^{141}_{57}$ La. What is the other product of this decay? A An alpha particle B A beta minus particle C A gamma ray D None of the above 12 A 100 kg person is irradiated with 240 mSv of slow neutrons $W_{\star} = 3$. With what dose was the person irradiated? A 80 mSv B 80 Gy C 8.0 J D 0.80 Sv \circ 13 What is the mass equivalence of $^{104}_{43}$ Tc in kilograms? Particle | Proton Neutron Mass 1.0078 1.0086 $1 \text{ u} = 1.660 \times 10^{-27} \text{ kg}$

A $7.13 \times 10^{-26} \text{ kg}$

B $1.01 \times 10^{-25} \text{ kg}$

C $1.72 \times 10^{-26} \text{ kg}$

D $1.74 \times 10^{-25} \text{ kg}$

8 An experimental fusion reactor includes liquid lithium in its heat transfer system. This is

- 14 In a nuclear power plant, which of the following transformations best describes the energy transfer from nuclear to electricity?

 A Nuclear → motion → heat → electrical

 B Nuclear → heat → motion → electrical
 - D Nuclear → motion → heat → motion → electrical

 15 In a thermal nuclear power station, a single neutron causes uranium-235 (mass = 235.044 u) to

undergo fission. The fission fragments have masses of 130.896 u and 102.950 u respectively. Two neutrons are released. How much energy, in MeV, is released in this fission reaction?

Particle	Proton	Neutron					
Mass	1.0078	1.0086					
(u)							
1 u = 931.5 MeV							

- A 109.9 MeV
- B 176.4 MeV
- C 200 MeV
- D 1032 MeV
- 16 Boron is used in control rods, usually in metal alloys. The nuclear reaction that is the most important reason for its use is:
 - A ${}^{0}_{1}n + {}^{10}_{5}B \rightarrow {}^{10}_{6}C + \gamma$
 - B ${}^{10}_{5}B \rightarrow {}^{10}_{5}C + {}^{0}_{-1}e + \overline{\nu}$
 - C ${}_{0}^{1}n + {}_{5}^{10}B \rightarrow {}_{3}^{7}Li + {}_{2}^{4}He$
 - D ${}^{10}_{5}B \rightarrow {}^{10}_{4}Be + {}^{1}_{0}n + {}^{0}_{+1}e + v$
- 17 What is the mass defect in the following fusion reaction?

C Nuclear \rightarrow heat \rightarrow motion \rightarrow heat \rightarrow electrical

$${}_{1}^{2}H + {}_{1}^{1}H \rightarrow {}_{2}^{3}He + \gamma$$

Particle	Proton	Neutron	Deuterium	Helium-	Helium-	Electron/Positron
				3	4	
Mass	1.0078	1.0086	2.0141	3.0160	4.00260	0.000549
(u)						

- A 2.0098 u
- B 4.0323 u
- C 0.058 u
- D 0.0059 u
- 18 The operator of a nuclear power plant must take precautions to ensure the safety of workers and the public. These will likely include at least:
 - A low-level waste stored in shielded containers, with radiation levels at 100 mSv at the boundary.
 - B high-level waste diluted and cooled before release to the environment, with radiation levels at 10 Sv at the boundary.
 - C medium-level waste diluted and cooled before release to the environment, with 1 mSv at the boundary.
 - D high-level waste shielded and cooled, with 1 mSv at the boundary.
- 19 When ${}^{3}_{1}H$ (tritium) combines ${}^{2}_{1}H$ (deuterium) in a fusion reaction to produce helium according to the following reaction:

$${}_{1}^{3}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + \gamma$$

If 17.6 MeV of energy is produced, what is the mass loss in the reaction?

- A $1.95 \times 10^{-10} \text{ kg}$
- B $1.95 \times 10^{-16} \text{ kg}$
- C $3.1 \times 10^{-29} \text{ kg}$
- D $3.1 \times 10^{-35} \text{ kg}$
- 20 In a 1500 MW nuclear reactor, what mass of nuclear fuel is used each second?
 - A $1.5 \times 10^{-9} \text{ kg}$
 - B $1.67 \times 10^{-8} \text{ kg}$
 - C $2.1 \times 10^{-8} \text{ kg}^{-1}$
 - D $3.4 \times 10^{-8} \text{ kg}$

