Accepted Manuscript

Classification of Autism Spectrum Disorder by Combining Brain Connectivity and Deep Neural Network Classifier

Yazhou Kong, Jianliang Gao, Yunpei Xu, Yi Pan, Jianxin Wang, Jin Liu

PII: \$0925-2312(18)30623-4

DOI: 10.1016/j.neucom.2018.04.080

Reference: NEUCOM 19601

To appear in: Neurocomputing

Received date: 31 December 2017
Revised date: 10 March 2018
Accepted date: 3 April 2018

Please cite this article as: Yazhou Kong, Jianliang Gao, Yunpei Xu, Yi Pan, Jianxin Wang, Jin Liu, Classification of Autism Spectrum Disorder by Combining Brain Connectivity and Deep Neural Network Classifier, *Neurocomputing* (2018), doi: 10.1016/j.neucom.2018.04.080

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Classification of Autism Spectrum Disorder by Combining Brain Connectivity and Deep Neural Network Classifier

Yazhou Kong^a, Jianliang Gao^a, Yunpei Xu^a, Yi Pan^{a,b}, Jianxin Wang^a, Jin Liu^{a,*}

Abstract

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that seriously affects communication and sociality of patients. It is crucial to accurately identify patients with ASD from typical controls (TC). Conventional methods for the classification of ASD/TC mainly extract morphological features independently at different regions of interest (ROIs), rarely considering the connectivity between these ROIs. In this study, we construct an individual brain network as feature representation, and use a deep neural network (DNN) classifier to perform ASD/TC classification. Firstly, we construct an individual brain network for each subject, and extract connectivity features between each pair of ROIs. Secondly, the connectivity features are ranked in descending order using F-score, and the top ranked features are selected. Finally, the selected 3000 top features are used to perform ASD/TC classification via a DNN classifier. An evaluation of the proposed method has been conducted with T1-weighted MRI images from the Autism Brain Imaging Data Exchange I (ABIDE I) by using ten-fold cross validation. Experimental results show that our proposed method can achieve the accuracy of 90.39% and the area under receiver operating characteristic curve (AUC) of 0.9738 for ASD/TC classification. Comparison of

Email address: liujin06@csu.edu.cn (Jin Liu)

^aSchool of Information Science and Engineering, Central South University, Changsha, 410083, China.

^bDepartment of Computer Science, Georgia State University, Atlanta, GA30303, USA

^{*}Corresponding author

experimental results illustrates that our proposed method outperforms some state-of-the-art methods in ${\rm ASD/TC}$ classification.

Keywords: ASD, morphological features, individual network, deep neural network, classification

1. Introduction

Autism spectrum disorder (ASD) is a common complex neurodevelopmental disorder. It is associated with several comorbid disorders, including intellectual impairment, seizures and anxiety [1, 2]. The 2013 report showed that 1 in 55 children aged 6-17 years had been identified with ASD [3]. These who have ASD behave mild to severe impairments in social interaction and communication along with restricted, repetitive of behaviors and interests [4]. It is a crucial step to accurately identify patients with ASD from typical controls (TC).

At present, neuroimaging technology has widely been used in the study of various brain diseases, such as ASD [5, 6], alzheimer's disease [7, 8] and schizophrenia classification [9, 10]. Magnetic resonance imaging (MRI) is a powerful and safe technique, which provides high quality three-dimensional (3D) images of brain structures and detailed structural information. Morphological studies based on MRI images have been applied to the related diseases, and have achieved good results. For example, Akshoomoff et al. [11] used six preselected brain volume-based features to perform ASD classification, and the results indicated that variability in cerebellar and cerebral size is correlated with ASD. Jiao et al. [12] used regional cortical thickness extracted from surface-based morphology to perform ASD classification and achieved good classification performance. Wee et al. [13] extracted morphological features of different ROIs (including mean cortical thickness, regional cortical volume etc.) to perform alzheimer's disease classification. Han et al. [14] extracted the morphological features of MRI data to classify schizophrenia and showed that the gray matter density of frontal lobes in the schizophrenic patients is lower than that in the normal control groups [15, 16]. In this study, we use the morphological fea-

tures derived from T1w MRI to investigate the predictive power in ${\rm ASD/TC}$ classification.

Traditional machine learning methods are widely used in disease classification [17, 18, 19, 20, 21]. For example, Ecker et al. [18] used SVM classifier to investigate the predictive value of whole-brain structural volumetric changes in ASD. Xiao et al. [21] applied three popular machine learning classifiers including RF, NB and SVM to perform ASD classification. Due to the deep feature representation can be extracted from the deep neural network, the DNN framework has been widely used for medical image classification[22, 23]. For example, Hinton et al. [24] proposed the first deep autoencoder network to effectively address some of most challenging problems in computer vision learning. Cruz-Roa et al. [25] proposed convolutional autoencoder neural network architecture for histopathological image representation learning. It can be seen that the combination of deep learning technology and MRI images will become a research trend [26]. In this study, we propose a deep neural network classifier based on stacked autoencoder to perform ASD classification. The DNN classifier consists of two autoencoders and a softmax function. First of all, we construct an individual brain network to extract cortical gray matter volume (CGMV) from the structural MRI image. Then, all features are ranked by F-score in descending order, and the top ranked features are selected. Finally, the selected 3000 top features are used to perform ASD/TC classification via the DNN classifier.

The rest of the article is organized as follows. First, we describe the details of our proposed ASD/TC classification method in Section Materials and Methods. Then, we illustrate the experiments of ASD/TC classification and discuss comparison results in Section Results and Discussion. Finally, we draw conclusions in Section Conclusion.

2. Materials and Methods

2.1. Image Acquisition and Preprocessing

A subset of the T1w MRI images from the Autism Brain Imaging Data Exchange I (ABIDE I) site: NYU Langone Medical Center is used to evaluate our proposed method. This subset includes 182 subjects with T1w MRI images, which are composed of 78 subjects with ASD and 104 TC subjects. The demographic information of 182 subjects is shown in Table 1. It is worth mentioning that the average age of subjects with ASD and TC subjects in this study are about 15 years old, and male subjects are significantly more than female subjects. For more details with the ABIDE I, please see http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html.

All T1w MRI images are preprocessed by using FreeSurfer image analysis suite [27]. The preprocessing procedures in this study mainly include motion correction, intensity normalization, skull stripping and cerebellum removal.

Table 1: Demographic information of 182 subjects from NYU Langone Medical Center

Type	Number	Age	Gender(M/F)
ASD	78	14.54 ± 5.29	68/10
TC	104	15.87 ± 5.04	78/26

M: Male; F: Female. The values are denoted as mean \pm standard deviation.

2.2. Construction of individual networks

In order to parcellate the whole brain, Destrieux atlas proposed by Destrieux et al. [28] is used in this study. This atlas parcellates the brain into 148 cortical regions (74 in each hemisphere). Details of the Destrieux atlas are shown in Table 2. For more details with Destrieux atlas, please see http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation.

Since brain network can unravel the extraordinary complexity of neuronal connectivity, it plays an important role in the studies of brain disease [29, 30]. In this study, we propose to construct an individual network based on cortical

Regions ID Regions ID G.and.S.frontomargin 1 G.temporal_middle 38 G.and.S.occipital.inf 2 Lat_Fis-ant-Horizont 39 G.and.S.paracentral 3 Lat_Fis-ant-Vertical 40 G.and.S.subcentral 4 Lat_Fis-post 41 G.and.S.transv.frontopol 5 Pole_occipital 42 G.and.S.cingul-Ant 6 Pole_temporal 43 G.and.S.cingul-Mid-Ant 7 S.calcarine 44 G.and.S.cingul-Mid-Post 8 S.central 45 G.cingul-Post-dorsal 9 S.cingul-Marginalis 46 G.cingul-Post-dorsal <	Table 2: Cortical regions	define	ed in this study	
G.and.S.frontomargin 1 G.temporal_middle 38 G.and.S.occipital.inf 2 Lat.Fis-ant-Horizont 39 G.and.S.paracentral 3 Lat.Fis-ant-Vertical 40 G.and.S.subcentral 4 Lat.Fis-post 41 G.and.S.transv.frontopol 5 Pole.occipital 42 G.and.S.cingul-Mid-Ant 6 Pole.temporal 43 G.and.S.cingul-Mid-Ant 7 S.calcarine 44 G.and.S.cingul-Mid-Post 8 S.central 45 G.cingul-Post-dorsal 9 S.cingul-Marginalis 46 G.cingul-Post-dorsal 10 S.cirgul-Marginalis 47 G.cingul-Post-dorsal 11	Cortical Regions (74 in each hemisphere)			
G.and.S.occipital.inf 2 Lat.Fis-ant-Horizont 39 G.and.S.paracentral 3 Lat.Fis-post 41 G.and.S.subcentral 4 Lat.Fis-post 41 G.and.S.cingul-Ant 6 Pole_occipital 42 G.and.S.cingul-Mid-Ant 7 S.calcarine 44 G.and.S.cingul-Mid-Post 8 S.central 45 G.cingul-Post-dorsal 9 S.cingul-Marginalis 46 G.cingul-Post-ventral 10 S.circular_insula_ant 47 G.cuneus 11 S.circular_insula_inf 48 G.front.inf-Opercular 12 S.circular_insula_sup 49 G.front.inf-Opercular 12 S.circular_insula_sup 49 G.front.inf-Opercular 12 S.circular_insula_sup 49 G.front.inf-Opercular 12 S.circular_insula_sup 49 G.front.inf-Opercular 12 S.cingul-Insula_sup 50 G.front.inf-Opercular 12 S.circular_insula_sup 50 G.front.inf-Triangul 14	Regions	ID	Regions	ID
G.and.S.paracentral 3 Lat.Fis-ant-Vertical 40 G.and.S.subcentral 4 Lat.Fis-post 41 G.and.S.transv.frontopol 5 Pole.occipital 42 G.and.S.cingul-Ant 6 Pole.temporal 43 G.and.S.cingul-Mid-Ant 7 S.calcarine 44 G.and.S.cingul-Mid-Post 8 S.central 45 G.cingul-Post-dorsal 9 S.cingul-Marginalis 46 G.cingul-Post-dorsal 10 S.cirgul-Marginalis 46 G.cingul-Post-dorsal 12 S.cingul-Marginalis 46 G.front.inf-Orbital 12	$G_{and}S_{frontomargin}$	1	$G_temporal_middle$	38
G. and S. subcentral 4 Lat_Fis-post 41 G. and S. transv frontopol 5 Pole_occipital 42 G. and S. cingul-Ant 6 Pole_temporal 43 G. and S. cingul-Mid-Ant 7 S. calcarine 44 G. and S. cingul-Mid-Post 8 S. central 45 G. cingul-Post-dorsal 9 S. cingul-Marginalis 46 G. front_inf-Orbital 10 S. cingul-Marginalis 42 G. front_inf-Orbital	$G_and_S_occipital_inf$	2	Lat_Fis-ant-Horizont	39
G.and.S.cingul-Ant 6 Pole_temporal 43 G.and.S.cingul-Mid-Ant 7 S.calcarine 44 G.and.S.cingul-Mid-Post 8 S.central 45 G.cingul-Post-dorsal 9 S.cingul-Marginalis 46 G.cingul-Post-ventral 10 S.circular_insula_ant 47 G.cuneus 11 S.circular_insula_ant 47 G.cuneus 11 S.circular_insula_ant 47 G.cuneus 11 S.circular_insula_ant 47 G.cuneus 11 S.circular_insula_ant 49 G.front_inf-Opercular 12 S.circular_insula_ant 49 G.front_inf-Opercular 12 S.collat_transv_ant 50 G.front_inf-Opercular 12 S.collat_transv_ant 50 G.front_inf-Orbital 13 S.collat_transv_ant 50 G.front_inf-Orbital 14 S.collat_transv_post 51 G.front_inf-Orbital 15 S.front_inf 52 G.front_inf-Orbital 15 S.front_inf	G_{-} and_ S_{-} paracentral	3	Lat_Fis-ant-Vertical	40
G.and.S.cingul-Ant 6 Pole.temporal 43 G.and.S.cingul-Mid-Ant 7 S.calcarine 44 G.and.S.cingul-Mid-Post 8 S.central 45 G.cingul-Post-dorsal 9 S.cingul-Marginalis 46 G.cingul-Post-ventral 10 S.circular insula_ant 47 G.cuneus 11 S.circular insula_inf 48 G.front_inf-Opercular 12 S.circular insula_sup 49 G.front_inf-Opercular 12 S.collat_transv_ant 50 G.front_inf-Opercular 12 S.collat_transv_ant 50 G.front_inf-Opercular 12 S.collat_transv_ant 50 G.front_inf-Opercular 13 S.collat_transv_ant 51 G.front_inf-Opercular 15 S.front_inf 52 G.front_inf-Opercular <	$G_{and}_{S_{aut}}$	4	Lat_Fis-post	41
G.and.S.cingul-Mid-Post 8 S.central 45 G.and.S.cingul-Mid-Post 8 S.central 45 G.cingul-Post-dorsal 9 S.cingul-Marginalis 46 G.cingul-Post-ventral 10 S.circular insula_ant 47 G.cuneus 11 S.circular insula_inf 48 G.front_inf-Opercular 12 S.circular insula_sup 49 G.front_inf-Opercular 12 S.collat_transv_ant 50 G.front_inf-Opercular 12 S.collat_transv_ant 50 G.front_inf-Opercular 14 S.collat_transv_ant 50 G.front_inf-Opercular 14 S.collat_transv_ant 50 G.front_inf-Opercular 15 S.front_inf 52 G.front_inf-Opercular 15 S.front_inf 52 G.front_inf-Opercular	$G_and_S_transv_frontopol$	5	Pole_occipital	42
G_and_S_cingul-Mid-Post 8 S_central 45 G_cingul-Post-dorsal 9 S_cingul-Marginalis 46 G_cingul-Post-ventral 10 S_circular_insula_ant 47 G_cuneus 11 S_circular_insula_ant 48 G_front_inf-Opercular 12 S_circular_insula_sup 49 G_front_inf-Opercular 12 S_circular_insula_sup 49 G_front_inf-Opercular 12 S_circular_insula_sup 49 G_front_inf-Opercular 12 S_collat_transv_ant 50 G_front_inf-Opercular 12 S_collat_transv_ant 50 G_front_inf-Opercular 13 S_collat_transv_ant 50 G_front_inf-Opercular 14 S_collat_transv_ant 50 G_front_inf-Opercular 14 S_collat_transv_ant 50 G_front_inf-Opercular 15 S_front_inf 52 G_front_inf-Opercular 18 S_circular_insula_sup 53 G_fort_tinf-Opercular 18 S_cor_tindlelar 52 G_opercentral	$G_and_S_cingul-Ant$	6	Pole_temporal	43
G_cingul-Post-dorsal 9 S_cingul-Marginalis 46 G_cingul-Post-ventral 10 S_circular_insula_ant 47 G_cuneus 11 S_circular_insula_ant 48 G_front_inf-Opercular 12 S_circular_insula_sup 49 G_front_inf-Opercular 13 S_collat_transv_ant 50 G_front_inf-Opercular 14 S_collat_transv_ant 50 G_front_inf-Opercular 12 S_circular_insula_sup_and 51 G_front_inf-Opercular 12 S_collat_transv_ant 50 G_front_inf-Opercular 14 S_collat_transv_ant 50 G_front_inf-Opercular 14 S_collat_transv_ant 50 G_front_inf-Opercular 15 S_front_inf 52 G_front_inf-Opercular 15 S_front_inf 52 G_front_inf-Opercular 16 S_front_inf 52 G_front_inf-Opercular 18 S_intransv_post 51 G_front_inf-Opercular 18 S_intransv_post 52 G_occipital_middle <	$G_and_S_cingul-Mid-Ant$	7	S_calcarine	44
G_cingul-Post-ventral 10 S_circular_insula_ant 47 G_cuneus 11 S_circular_insula_inf 48 G_front_inf-Opercular 12 S_circular_insula_sup 49 G_front_inf-Orbital 13 S_collat_transv_ant 50 G_front_inf-Triangul 14 S_collat_transv_post 51 G_front_middle 15 S_front_inf 52 G_front_sup 16 S_front_middle 53 G_Ins_lg_and_S_cent_ins 17 S_front_sup 54 G_insular_short 18 S_interm_prim_Jensen 55 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_sup 20 S_oc_sup_and_transversal 58 G_oc-temp_med_Lingual 22 S_oc_temp_lat 60 G_orbital 24 S_oc_temp_med_and_Lingual 61 G_pariet_inf-Angular 25	$G_and_S_cingul-Mid-Post$	8	S_central	45
G_cuneus 11 S_circular_insula_inf 48 G_front_inf-Opercular 12 S_circular_insula_sup 49 G_front_inf-Orbital 13 S_collat_transv_ant 50 G_front_inf-Triangul 14 S_collat_transv_post 51 G_front_middle 15 S_front_inf 52 G_front_sup 16 S_front_middle 53 G_Ins_lg_and_S_cent_ins 17 S_front_sup 54 G_insular_short 18 S_interm_prim_Jensen 55 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_oc-temp_lat-fusifor 21 S_oc_sup_and_transversal 58 G_oc-temp_med-Lingual 22 S_occipital_ant 59 G_oc-temp_med-Parahip 23 S_oc_temp_lat 60 G_orbital 24 S_oc_temp_lat_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 <td< td=""><td>G_{-}cingul-Post-dorsal</td><td>9</td><td>S_{-}cingul-Marginalis</td><td>46</td></td<>	G_{-} cingul-Post-dorsal	9	S_{-} cingul-Marginalis	46
G.front.inf-Opercular 12 S.pircular.insula.sup 49 G.front.inf-Orbital 13 S.collat.transv.ant 50 G.front.inf-Triangul 14 S.collat.transv.post 51 G.front.middle 15 S.front.inf 52 G.front.sup 16 S.front.middle 53 G.Ins.lg.and.S.cent.ins 17 S.front.sup 54 G.insular.short 18 S.interm.prim-Jensen 55 G.occipital.middle 19 S.intrapariet.and.P.trans 56 G.occipital.sup 20 S.oc.middle.and.Lunatus 57 G.oc-temp.lat-fusifor 21 S.oc.sup.and.transversal 58 G.oc-temp.med-Lingual 22 S.occipital.ant 59 G.oc-temp.med-Parahip 23 S.oc-temp.lat 60 G.pariet.inf-Angular 25 S.orbital.lateral 62 G.pariet.inf-Supramar 26 S.orbital.med-olfact 63 G.parietal.sup 27 S.orbital-H.Shaped 64 G.postcentral 28 S.	G_cingul -Post-ventral	10	$S_circular_insula_ant$	47
G.front_inf-Orbital 13 S_collat_transv_ant 50 G.front_inf-Triangul 14 S_collat_transv_post 51 G.front_middle 15 S_front_inf 52 G.front_sup 16 S_front_middle 53 G.Ins_lg_and_S_cent_ins 17 S_front_sup 54 G.insular_short 18 S_interm_prim_Jensen 55 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_sup 20 S_oc_middle_and_Lunatus 57 G_oc-temp_med_fusion 21 S_oc_sup_and_transversal 58 G_oc-temp_med_Lingual 22 S_occipital_ant 59 G_oc-temp_med_Parahip 23 S_oc-temp_med_and_Lingual 61 G_orbital 24 S_oc-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_med_olfact 63 G_parietal_sup 27 S_orbital_H_Shaped 64 G_postcentral 28	G_{-} cuneus	11	S_circular_insula_inf	48
G.front_inf-Triangul 14 S_collat_transv_post 51 G.front_middle 15 S_front_inf 52 G.front_sup 16 S_front_middle 53 G_Ins_lg_and_S_cent_ins 17 S_front_sup 54 G_insular_short 18 S_interm_prim-Jensen 55 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_middle 19 S_oc_middle_and_Lunatus 57 G_oc-temp_lat-fusifor 21 S_oc_sup_and_transversal 58 G_oc-temp_med-Lingual 22 S_oc_ipital_ant 59 G_oc-temp_med-Parahip 23 S_oc-temp_lat 60 G_orbital 24 S_oc-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_orbital_losal 65	G_{front_inf} -Opercular	12	S_circular_insula_sup	49
G.front_middle 15 S.front_inf 52 G.front_sup 16 S.front_middle 53 G.Ins_lg_and_S_cent_ins 17 S.front_sup 54 G.insular_short 18 S.interm_prim-Jensen 55 G.occipital_middle 19 S.intrapariet_and_P_trans 56 G.occipital_middle 19 S.oc_middle_and_Lunatus 57 G.occipital_sup 20 S.oc_sup_and_transversal 58 G.oc-temp_med_Lingual 22 S.occipital_ant 59 G.oc-temp_med_Parahip 23 S.oc-temp_lat 60 G.orbital 24 S.oc-temp_med_and_Lingual 61 G.pariet_inf-Angular 25 S.orbital_lateral 62 G.parietal_sup 27 S.orbital_med-olfact 63 G.postcentral 28 S.parieto_occipital 65 G.precentral 29 S.pericallosal 66	G_front_inf-Orbital	13	S_collat_transv_ant	50
G_front_sup G_Ins_lg_and_S_cent_ins G_ins_lg_and_S_cent_ins G_ins_lg_and_S_cent_ins 17	G_front_inf-Triangul	14	$S_collat_transv_post$	51
G_Ins_lg_and_S_cent_ins 17 S_front_sup 54 G_insular_short 18 S_interm_prim-Jensen 55 G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_sup 20 S_oc_middle_and_Lunatus 57 G_oc-temp_lat-fusifor 21 S_oc_sup_and_transversal 58 G_oc-temp_med-Lingual 22 S_occipital_ant 59 G_oc-temp_med-Parahip 23 S_oc-temp_lat 60 G_orbital 24 S_oc-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_front_middle	15	S_{-} front_inf	52
G.insular_short 18 S.interm_prim-Jensen 55 G.occipital_middle 19 S.intrapariet_and_P_trans 56 G.occipital_sup 20 S_oc_middle_and_Lunatus 57 G_occ-temp_lat-fusifor 21 S_occ_sup_and_transversal 58 G_occ-temp_med-Lingual 22 S_occipital_ant 59 G_occ-temp_med-Parahip 23 S_occ-temp_lat 60 G_orbital 24 S_occ-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital_H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_front_sup	16	S_front_middle	53
G_occipital_middle 19 S_intrapariet_and_P_trans 56 G_occipital_sup 20 S_oc_middle_and_Lunatus 57 G_oc-temp_lat-fusifor 21 S_oc_sup_and_transversal 58 G_oc-temp_med-Lingual 22 S_occipital_ant 59 G_oc-temp_med-Parahip 23 S_oc-temp_lat 60 G_orbital 24 S_oc-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_Ins_lg_and_S_cent_ins	17	S_front_sup	54
G_occipital_sup 20 S_oc_middle_and_Lunatus 57 G_oc_temp_lat_fusifor 21 S_oc_sup_and_transversal 58 G_oc_temp_med_Lingual 22 S_occipital_ant 59 G_oc_temp_med_Parahip 23 S_oc_temp_lat 60 G_orbital 24 S_oc_temp_med_and_Lingual 61 G_pariet_inf_Angular 25 S_orbital_lateral 62 G_pariet_inf_Supramar 26 S_orbital_med_olfact 63 G_parietal_sup 27 S_orbital_H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_insular_short	18	S_{interm_prim} -Jensen	55
G_oc-temp_lat-fusifor 21 S_oc_sup_and_transversal 58 G_oc-temp_med-Lingual 22 S_occipital_ant 59 G_oc-temp_med-Parahip 23 S_oc-temp_lat 60 G_orbital 24 S_oc-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_{-} occipital_middle	19	$S_intrapariet_and_P_trans$	56
G_oc-temp_med-Lingual 22 S_occipital_ant 59 G_oc-temp_med-Parahip 23 S_oc-temp_lat 60 G_orbital 24 S_oc-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_{-} occipital sup	20	$S_oc_middle_and_Lunatus$	57
G_oc-temp_med-Parahip G_orbital G_orbital G_pariet_inf-Angular G_pariet_inf-Supramar G_parietal_sup G_postcentral G_postcentral C_postcentral C_precentral C_postcentral C_post	$G_{oc-temp_lat-fusifor}$	21	$S_oc_sup_and_transversal$	58
G_orbital 24 S_oc-temp_med_and_Lingual 61 G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_oc -temp_med-Lingual	22	S_{-} occipital_ant	59
G_pariet_inf-Angular 25 S_orbital_lateral 62 G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_{-} oc-temp_med-Parahip	23	S_{-} oc-temp_lat	60
G_pariet_inf-Supramar 26 S_orbital_med-olfact 63 G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_{-} orbital	24	$S_oc\text{-}temp_med_and_Lingual$	61
G_parietal_sup 27 S_orbital-H_Shaped 64 G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_pariet_inf-Angular	25	$S_orbital_lateral$	62
G_postcentral 28 S_parieto_occipital 65 G_precentral 29 S_pericallosal 66	G_{pariet_inf} -Supramar	26	$S_orbital_med\text{-}olfact$	63
G-precentral 29 S-pericallosal 66	$G_{parietal_sup}$	27	$S_orbital\text{-}H_Shaped$	64
	$G_{-postcentral}$	28	$S_parieto_occipital$	65
G_precuneus 30 S_postcentral 67	G_{-} precentral	29	S_{-} pericallosal	66
	G_{-} precuneus	30	$S_{-}postcentral$	67
G_rectus 31 S_precentral-inf-part 68	G_rectus	31	S_{-} precentral-inf-part	68
G_subcallosal $\frac{1}{5}$ 32 S_precentral-sup-part 69	G_subcallosal 5	32	S_{-} precentral-sup-part	69
G_temp_sup-G_T_transv 33 S_suborbital 70		33	$S_suborbital$	70
G_temp_sup-Lateral 34 S_subparietal 71	G_{temp_sup} -Lateral	34	$S_subparietal$	71
G_temp_sup-Plan_polar 35 S_temporal_inf 72	$G_temp_sup-Plan_polar$	35	$S_{-temporal_inf}$	72
G_temp_sup-Plan_tempo 36 S_temporal_sup 73	$G_temp_sup-Plan_tempo$	36	$S_temporal_sup$	73
G_temporal_inf 37 S_temporal_transverse 74	G_temporal_inf	37	$S_temporal_transverse$	74

regions of Destrieux atlas, denoted G_{CGMV} . For G_{CGMV} , the gray matter volume of each ROI is defined as the node of the individual network. The correlation between each pair of ROIs is defined as the edge of the individual network. The correlation is calculated as follows:

$$c(a,b) = \frac{1}{d(a,b)+1}, (a \neq b)$$
 (1)

$$d(a,b) = |t(a) - t(b)|^2$$
(2)

where d(a,b) is defined as the difference between ROIs a and b, and t(a) and t(b) are the gray matter volume of ROIs a and b, respectively. Finally, each subject can be represented by a $148 \times (148 - 1)/2 = 10878$ dimensional vector.

2.3. Feature Ranking

Solving classification problems with data of high dimensionality is a challenging task due to the curse of dimensionality. It is particularly obvious for neuroimaging classification problems. With the presence of uninformative, irrelevant or redundant features, learning models tend to overfit and become less generalizable. Feature ranking is a useful and important means to identify relevant features for dimensionality reduction and improving generalization performance [31, 32]. In this study, we use the F-score [33] to rank all features extracted above.

F-score is a simple technique which measures the discrimination of two sets of real numbers. Given training vectors \boldsymbol{x}_k , k=1,...,m, if the number of positive instances and negative instances are n_+ and n_- , respectively, then the F-score of the i-th feature is defined as:

$$F(i) = \frac{(\overline{x}_i^{(+)} - \overline{x}_i)^2 + (\overline{x}_i^{(-)} - \overline{x}_i)^2}{\frac{1}{n_+ - 1} \sum_{k=1}^{n_+} (x_{k,i}^{(+)} - \overline{x}_i^{(+)})^2 + \frac{1}{n_- - 1} \sum_{k=1}^{n_-} (x_{k,i}^{(-)} - \overline{x}_i^{(-)})^2}$$
(3)

where $\overline{\boldsymbol{x}}_i$, $\overline{\boldsymbol{x}}_i^{(+)}$, $\overline{\boldsymbol{x}}_i^{(-)}$ are the average of the *i*-th feature of the whole, positive, and negative data sets, respectively; $\boldsymbol{x}_{k,i}^{(+)}$ is the *i*-th feature of the *k*-th positive instance, and $\boldsymbol{x}_{k,i}^{(-)}$ is the *i*-th feature of the *k*-th negative instance. The

numerator indicates the discrimination between the positive and negative sets, and the denominator indicates the one within each of the two sets. The greater the F-score value, the more the discernment of this feature may be.

2.4. Deep Neural Network classifier

An autoencoder (AE) is a simple neural network which can reconstruct the input as much as possible, that is, tries to learning a function model of $h_{w,b}(\boldsymbol{x}) \approx \boldsymbol{x}$. As is shown in Figure 1, an autoencoder is composed with an encoder and a decoder. Firstly, the raw signal \boldsymbol{x} is input to the encoder, which corresponds to a lower dimensional hidden layer representation \boldsymbol{c} . Then, the representation \boldsymbol{c} is input into the decoder, and accordingly there is an output $h_{w,b}(\boldsymbol{x})$. Finally, we continue to adjust the parameters of model by back-propagation to minimize the error between the input \boldsymbol{x} and the output $h_{w,b}(\boldsymbol{x})$. There are many kinds of autoencoder, such as sparse autoencoder [34], denoising autoencoder [35], contractive autoencoder [36], etc. Sparse autoencoder often can better learn the representation of the raw data. The loss function of the sparse autoencoder is defined as follow:

Figure 1: An example of an autoencoder.

$$J_{sparse}(W,b) = J(W,b) + \beta * \sum_{i}^{n} KL(\rho \parallel \widehat{\rho}_{i}) + \frac{\lambda}{2} \sum_{k}^{2} \sum_{i}^{k} \sum_{j}^{k+1} (w_{ij}^{(k)})^{2}$$
 (4)

$$J(W,b) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{2} \left\| h_{w,b}(x^{(i)}) - y^{(i)} \right\|^2 \right)$$
 (5)

$$KL(\rho \parallel \widehat{\rho}_j) = \rho \log \frac{\rho}{\widehat{\rho}_j} + (1 - \rho) \log \frac{1 - \rho}{1 - \widehat{\rho}_j}$$
 (6)

$$\widehat{\rho}_j = \frac{1}{m} \sum_{i=1}^m \left[a_j^{(2)}(x^{(i)}) \right] \tag{7}$$

where $J_{sparse}(W,b)$ represents the loss function of the input and reconstructed output, J(W,b) is the mean square error, m is the number of samples, $h_{w,h}(x^{(i)})$ denotes the output of the i-th sample, $x^{(i)}$ denotes the input of the i-th sample, $KL(\rho \parallel \hat{\rho}_j)$ a sparse penalty term, which can learn relatively sparse features, ρ denotes a sparse penalty parameter, $\hat{\rho}_j$ denotes the average activation level of hidden layer neuron j, $a_j^{(2)}(x^{(i)})$ denotes the output of the j-th neuron in the hidden layer of the i-th sample, $w_{ij}^{(k)}$ denotes the weight decay term.

Compared to single autoencoder, stacked autoencoder has stronger learning ability [37]. Therefore, stacked autoencoder is widely used in complicated problems. For example, Wei et al. [38] proposed a deep learning based predictor by using stacked autoencoder. As shown in Figure 2, a stacked autoencoder neural network is stacked by n autoencoders. For the raw data x, we obtain the hidden layer representation c_1 by AE_1 , then put the representation c_1 as the raw data of AE_2 , until to the last layer. The whole network is trained through greedy layer-wise method.

125

$$\xrightarrow{x} AE_1 \xrightarrow{c_1} AE_2 \xrightarrow{c_2} \cdots \xrightarrow{c_{n-1}} AE_n \xrightarrow{c_n}$$

Figure 2: An example of an stacked autoencoder.

Based on the above analysis, we propose to use two sparse autoencoder and a softmax layer to form a deep neural network classifier as shown in the Figure 3. The input represents the top ranked features. The two hidden layer represent two autoencoder, which are trained in an unsupervised manner to obtain the hidden features and to decrease the features dimension. The softmax layer is trained in a supervised manner with the features obtained from the hidden layer and label to perform ASD/TC classification. The output represents the class identified by the DNN classifier.

Figure 3: Our proposed deep neural network classifier.

2.5. Evaluation

An overview of the proposed ASD/TC classification framework is depicted in Figure 4. Firstly, we construct an individual network for each subject, and extract connectivity features of each pair of ROIs. Next, we use F-score to rank all features in descending order and select top features to identify subjects with ASD from TC subjects via a DNN classifier.

Figure 4: An overall flowchart for ASD/TC classification in this study.

Four indicators including accuracy (ACC), sensitivity (SEN), specificity (SPE), and the area under receiver operating characteristic curve (AUC) are calculated

to evaluate the performance of our proposed ASD/TC classification method.

The accuracy, sensitivity and specificity can be formulated as follows:

$$Accuracy = \frac{TN + TP}{TN + FN + TP + FP} \tag{8}$$

$$Sensitivity = \frac{TP}{TP + FN} \tag{9}$$

$$Specificity = \frac{FN}{TN + FP} \tag{10}$$

where TP, FP, TN and FN are the number of true positive subjects, false positive subjects, true negative subjects and false negative subjects, respectively. The larger the AUC, the better the classification performance.

3. Results and Discussion

3.1. Classification performance

We use a ten-fold cross-validation strategy and repeat twenty times to evaluate our proposed method. To avoid overfitting, firstly, all subjects for each classification are randomly equally partitioned into 10 subjects $\{S1, S2, ..., S10\}$ and S1 is selected to as testing set. Then, $\{S2, ..., S10\}$ as a whole data set is further randomly equally into 10 subsets, and one subset is randomly selected as validation set and the other 9 subsets are used to train a classifier. We have done a series of experiments based on different numbers of top ranked features as shown in Figure 5. As can be seen from Figure 5, when we select 3000 top features, our proposed method achieves the highest classification accuracy, and its accuracy, sensitivity, specificity and AUC are 90.39%, 84.37%, 95.88% and 0.9738, respectively.

3.2. Comparison with different morphological representation

In this section, we investigate the performance of different morphological features (CGMV, cortical thickness (CT) and standard deviation of cortical thickness (CTstd)) based on our proposed framework for ASD/TC classification.

Figure 5: The classification accuracy of different numbers of top ranked features.

The experimental results are shown in Table 3. As can be seen from Table 3, CGMV outperforms other morphogical features (CT and CTstd) in terms of ACC, SEN, SPE, AUC. Therefore, it is more reasonable to use CGMV for ASD/TC classification.

 ${\it Table 3: Comparison of different morphological representation for ASD/TC classification}$

Type $ACC(\%)$	SEN(%)	$\mathrm{SPE}(\%)$	AUC
CT 67.58	56.66	75.46	0.7150
CTstd 69.17	57.94	77.33	0.7832
CGMV 90.39	84.37	95.88	0.9738

3.3. Comparison with Existing Classification Methods

Recently, some existing methods have achieved relatively good results for ASD/TC classification. Katuwal et al. [39] investigated the predictive power in ASD classification with brain morphological features and random forest. Xiao et al. [21] proposed to generate relatively stable predictive model based on anatomical brain features to perform ASD/TC classification. To demonstrate the superiority of our proposed method in ASD/TC classification, we compare

the above two methods with the same dataset. The experimental results are shown in Table 4. As can be seen in Table 4, our proposed method is superior to the other two method.

Table 4: Comparison to existing methods using NYU dataset for ASD/TC classification

Type	$\mathrm{ACC}(\%)$	$\mathrm{SEN}(\%)$	$\mathrm{SPE}(\%)$	AUC
Xiao et al. [21]	59.56	72.68	42.05	0.6226
Katuwal et al. [39]	74.46	63.97	82.62	0.8389
Our proposed	90.39	84.37	95.88	0.9738

To further prove the superiority of our proposed method, we repeat the same experiment with T1w images from ABIDE I: Kennedy Krieger Institute (KKI) site for ASD/TC classification as shown in Table 5. As ean be seem from Table 5, our proposed method is also better than the other two existing methods.

Table 5: Comparison to existing methods using KKI dataset for ASD/TC classification

Type	ACC(%)	SEN(%)	$\mathrm{SPE}(\%)$	AUC
Xiao et al. [21]	52.35	75.61	17.56	0.4626
Katuwal et al. [39]	71.60	38.88	95.25	0.8309
Our proposed	86.70	67.76	100.00	0.9803

4. Conclusion

In this study, we propose an ASD aided diagnosis method based on deep neural network classifier. We firstly construct an individual network for each subject and extract gray matter volume as features. Then, we use F-score algorithm to rank all features in descend order. Afterwards, the top ranked features are applied to the DNN classifier to obtain the best classification accuracy. The experimental results illustration that our proposed method is an effective assistant diagnostic strategy in ASD/TC classification.

Acknowledgements

The authors would like to express their gratitude for the support from the National Natural Science Foundation of China under Grant No.61672536, No.61420106009 and No.61622213.

References

References

- [1] D. G. Amaral, C. M. Schumann, C. W. Nordahl, Neuroanatomy of autism, Trends in neurosciences 31 (3) (2008) 137–145.
 - [2] K. C. Turner, L. Frost, D. Linsenbardt, J. R. McIlroy, R.-A. Müller, Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism, Behavioral and Brain Functions 2 (1) (2006) 34.
- [3] S. J. Blumberg, M. D. Bramlett, M. D. Kogan, L. A. Schieve, J. R. Jones, M. C. Lu, Changes in prevalence of parent-reported autism spectrum disorder in school-aged US children: 2007 to 2011-2012, no. 65, US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, 2013.
- [4] M. Langen, S. Durston, W. G. Staal, S. J. Palmen, H. van Engeland, Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism, Biological psychiatry 62 (3) (2007) 262–266.
 - [5] C. Ecker, A. Marquand, J. Mourão-Miranda, P. Johnston, E. M. Daly, M. J. Brammer, S. Maltezos, C. M. Murphy, D. Robertson, S. C. Williams, et al., Describing the brain in autism in five dimensionsmagnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach, Journal of Neuroscience 30 (32) (2010) 10612–10623.

[6] D. M. N. S. Y. Developmental, . P. Investigators, et al., Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, united states, 2010., Morbidity and mortality weekly report. Surveillance summaries (Washington, DC: 2002) 63 (2) (2014) 1.

225

235

- [7] J. Liu, M. Li, W. Lan, F.-X. Wu, Y. Pan, J. Wang, Classification of alzheimers disease using whole brain hierarchical network, IEEE/ACM Transactions on Computational Biology and Bioinformatics DOI:10.1109/TCBB.2016.2635144.
 - [8] J. Liu, J. Wang, Z. Tang, B. Hu, F.-X. Wu, Y. Pan, Improving alzheimeres disease classification by combining multiple measures, IEEE/ACM Transactions on Computational Biology and Bioinformatics DOI:10.1109/TCBB.2017.2731849.
 - [9] J. Liu, M. Li, Y. Pan, F.-X. Wu, X. Chen, J. Wang, Classification of schizophrenia based on individual hierarchical brain networks constructed from structural mri images, IEEE Transactions on NanoBioscience 16 (7) (2017) 600–608.
 - [10] J. Liu, X. Wang, X. Zhang, Y. Pan, X. Wang, J. Wang, Mmm: classification of schizophrenia using multi-modality multi-atlas feature representation and multi-kernel learning, Multimedia Tools and Applications DOI:10.1007/s11042-017-5470-7.
- [11] N. Akshoomoff, C. Lord, A. J. Lincoln, R. Y. Courchesne, R. A. Carper, J. Townsend, E. Courchesne, Outcome classification of preschool children with autism spectrum disorders using mri brain measures, Journal of the American Academy of Child & Adolescent Psychiatry 43 (3) (2004) 349–357.
- [12] Y. Jiao, R. Chen, X. Ke, K. Chu, Z. Lu, E. H. Herskovits, Predictive models of autism spectrum disorder based on brain regional cortical thickness, Neuroimage 50 (2) (2010) 589–599.

- [13] C.-Y. Wee, P.-T. Yap, D. Shen, Prediction of alzheimer's disease and mild cognitive impairment using cortical morphological patterns, Human brain mapping 34 (12) (2013) 3411–3425.
- [14] X. Han, J. Jovicich, D. Salat, A. van der Kouwe, B. Quinn, S. Czanner, E. Busa, J. Pacheco, M. Albert, R. Killiany, et al., Reliability of mriderived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer, Neuroimage 32 (1) (2006) 180–194.

260

- [15] M. Nieuwenhuis, N. E. van Haren, H. E. H. Pol, W. Cahn, R. S. Kahn, H. G. Schnack, Classification of schizophrenia patients and healthy controls from structural mri scans in two large independent samples, Neuroimage 61 (3) (2012) 606–612.
- [16] M. N. I. Qureshi, J. Oh, D. Cho, H. J. Jo, B. Lee, Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine, Frontiers in neuroinformatics 11 (2017) 59.
- [17] C. Cortes, V. Vapnik, Support-vector networks, Machine learning 20 (3) (1995) 273–297.
 - [18] C. Ecker, V. Rocha-Rego, P. Johnston, J. Mourao-Miranda, A. Marquand, E. M. Daly, M. J. Brammer, C. Murphy, D. G. Murphy, M. A. Consortium, et al., Investigating the predictive value of whole-brain structural mr scans in autism: a pattern classification approach, Neuroimage 49 (1) (2010) 44–56.
 - [19] W. Lan, M. Li, K. Zhao, J. Liu, F.-X. Wu, Y. Pan, J. Wang, Ldap: a web server for lncrna-disease association prediction, Bioinformatics 33 (3) (2016) 458–460.
- [20] W. Lan, J. Wang, M. Li, J. Liu, F.-X. Wu, Y. Pan, Predicting micrornadisease associations based on improved microrna and disease similarities,

- IEEE/ACM Transactions on computational biology and bioinformatics DOI:10.1109/TCBB.2016.2586190.
- [21] X. Xiao, H. Fang, J. Wu, C. Xiao, T. Xiao, L. Qian, F. Liang, Z. Xiao, K. K. Chu, X. Ke, Diagnostic model generated by mri-derived brain features in toddlers with autism spectrum disorder, Autism Research 10 (4) (2017) 620–630.
- [22] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, 2012, pp. 1097–1105.
- [23] J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, A. Madabhushi, Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images, IEEE transactions on medical imaging 35 (1) (2016) 119–130.
- [24] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data
 with neural networks, science 313 (5786) (2006) 504–507.
 - [25] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, F. A. G. Osorio, A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2013, pp. 403–410.
 - [26] J. Liu, Y. Pan, M. Li, Z. Chen, L. Tang, C. Lu, J. Wang, Applications of deep learning to mri images: a survey, Big Data Mining and Analytics 1 (1) (2018) 1–18.
 - [27] B. Fischl, Freesurfer, Neuroimage 62 (2) (2012) 774–781.
 - [28] C. Destrieux, B. Fischl, A. Dale, E. Halgren, Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature, Neuroimage 53 (1) (2010) 1–15.

- [29] U. Braun, S. F. Muldoon, D. S. Bassett, On human brain networks in health and disease, eLS DOI:10.1002/9780470015902.a0025783.
- ju [30] J. Liu, M. Li, Y. Pan, W. Lan, R. Zheng, F.-X. Wu, J. Wang, Complex brain network analysis and its applications to brain disorders: a survey, Complexity DOI:10.1155/2017/8362741.
 - [31] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Journal of machine learning research 3 (Mar) (2003) 1157–1182.
- [32] H. Liu, L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Transactions on knowledge and data engineering 17 (4) (2005) 491–502.
 - [33] Y.-W. Chen, C.-J. Lin, Combining syms with various feature selection strategies, in: Feature extraction, Springer, 2006, pp. 315–324.
- [34] A. Ng, Sparse autoencoder, CS294A Lecture notes 72 (2011) (2011) 1–19.
 - [35] X. Lu, Y. Tsao, S. Matsuda, C. Hori, Speech enhancement based on deep denoising autoencoder., in: Interspeech, 2013, pp. 436–440.
 - [36] S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, Contractive autoencoders: Explicit invariance during feature extraction, in: Proceedings of the 28th International Conference on International Conference on Machine Learning, Omnipress, 2011, pp. 833–840.
 - [37] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, in: Advances in neural information processing systems, 2007, pp. 153–160.
 - [38] L. Wei, Y. Ding, R. Su, J. Tang, Q. Zou, Prediction of human protein subcellular localization using deep learning, Journal of Parallel and Distributed Computing.
 - [39] G. J. Katuwal, N. D. Cahill, S. A. Baum, A. M. Michael, The predictive power of structural mri in autism diagnosis, in: Engineering in Medicine

and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, IEEE, 2015, pp. 4270–4273.

335

Yazhou Kong is a MS Candidate in School of Information Science and Engineering, Central South University, Changsha, Hunan, P.R. China. His current research interests include medical image analysis and machine learning.

Jianliang Gao received the PhD degree in Computer System Structure from Institute of Computing Technology, Chinese Academy of Sciences, China, in 2011. He is currently an associate professor at the School of Information Science and Engineering, Central South University, Changsha, Hunan, P.R. China. His main research interests include big data process technology, machine learning and large scale image data process.

Yunpei Xu is a MS Candidate in School of Information Science and Engineering, Central South University, Changsha, Hunan, P.R. China. His current research interests include medical image analysis and machine learning.

Yi Pan is a Regents' Professor of Computer Science and an Interim Associate Dean and Chair of Biology at Georgia State University, USA. Dr. Pan joined Georgia State University in 2000 and was promoted to full professor in 2004, named a Distinguished University Professor in 2013 and designated a Regents' Professor (the highest recognition given to a faculty member by the University System of Georgia) in 2015. He served as the Chair of Computer Science Department from 2005-2013. He is also a visiting Changjiang Chair Professor at Central South University, China. Dr. Pan received his B.Eng. and M.Eng. degrees in computer engineering from Tsinghua University, China, in 1982 and 1984, respectively, and his Ph.D. degree in computer science from the University of Pittsburgh, USA, in 1991. His profile has been featured as a distinguished alumnus in both Tsinghua Alumni Newsletter and University of Pittsburgh CS Alumni Newsletter. Dr. Pan's re-search interests include parallel and cloud computing, wire-less networks, and bioinformatics. Dr. Pan has published more than 330 papers including over 180 SCI journal papers and 60 IEEE/ACM Transactions papers. In addition, he has edited/authored 40 books. His work has been cited more than 8800 times. Dr. Pan has served as

an editor-in-chief or editorial board member for 15 journals including 7 IEEE Transactions. He is the recipient of many awards including IEEE Transactions Best Paper Award, 4 other international conference or journal Best Paper Awards, 4 IBM Faculty Awards, 2 JSPS Senior Invitation Fellowships, IEEE BIBE Outstanding Achievement Award, NSF Research Opportunity Award, and AFOSR Summer Faculty Research Fellowship. He has organized many international conferences and delivered keynote speeches at over 50 international conferences around the world.

Jianxin Wang received the BEng and MEng degrees in computer engineering from Central South University, China, in 1992 and 1996, respectively, and the PhD degree in computer science from Central South University, China, in 2001. He is the chair of and a professor in Department of Computer Science, Central South University, Changsha, Hunan, P.R. China. His current research interests include algorithm analysis and optimization, parameterized algorithm, Bioinformatics and computer network.

Jin Liu received the PhD degree in computer science from Central South University, China, in 2017. He is currently a lecturer at the School of Information Science and Engineering, Central South University, Changsha, Hunan, P.R. China. His current research interests include medical image analysis, bioinformatics and machine learning.

Author Photographic

1. Yazhou Kong

2. Jianliang Gao

3. Yunpei Xu

4. Yi Pan

5. Jianxin Wang

