大數據分析期末報告

一、資料庫

名稱:Netflix Movies and TV Shows

簡介:Netflix 是最受歡迎的影片媒體平台之一,在全球擁有超過 2 億訂閱者,平台上有超過 8000 部電影或電視節目。本資料集為 Netflix 上所有(~2021)的電影Movies和電視節目TV Shows、演員、導演、國家、影片風格、發行年份、片長等資訊。

Data Code (1141) Discussion (63)

Dataset: https://www.kaggle.com/datasets/shivamb/netflix-shows

Code: https://drive.google.com/drive/folders/1bDaESvjnrNgqkOci-ah62itXAVOYwbGK?usp=

sharing

Netflix: https://www.netflix.com/tw/

組員:

M11007324 林政皓 M11010113 張菁蘭 M11015080 湯傑堯

二、摘要總覽

分析問題	關鍵數據	採用方法	實驗結果
近年片長與評分 的關係	Type Date_added	分析工具: Percentage rating	依據影片在Netflix的 上映年份與影片類型 進行排序,找出每年 被上架影片量的趨勢 與類型占比
近年影片發行年 份與影片風格的 關係	. —	 公析工目:	計算近五年發行的影 片各自在電影和節目 兩大類的風格的總數 ,找出數量最多的前 三種風格。
推薦系統 —Content Based Filtering(基於電 影屬性)	description listed_in	分析工具: FAISS TFIDF	使用將不同欄位組成電影關鍵字,利用不同的方式來進行處理,最後再做cosinesimilarity計算相似度,找出與所搜尋的內容相似度最高的前10個結果。

三、說明

(一) 推薦系統—全體平均

Type:影片種類 (Movie, TV Show)

Date_added:影片被加入Netflix的時間

每年上架之 Movie 總數

```
a = df[df['type']=='Movie']['Year']
plt.hist(a.astype(int),bins=14)
plt.xlabel('Year')
plt.ylabel('Amount')
plt.title('Amount of Movie added on Netflix')
```


每年上架之 TV Show 總數

```
b = df[df['type']=='TV Show']['Year']
plt.hist(b.astype(int),bins=14)
plt.xlabel('Year')
plt.ylabel('Amount')
plt.title('Amount of TV Show added on Netflix')
```


每年上架之 Movie 與 TV Show 比較圖

```
c = [a.astype(int),b.astype(int)]
plt.hist(c, histtype='barstacked', bins=14)
plt.xlabel('Year')
plt.ylabel('Amount')
plt.ylabel('Amount')
plt.legend(['Movie','TV Show'])
plt.title('Amount comparison of Movie and TV Show added on Netflix')
```


每年上架之 Movie 在全影片中的占比分析工具: 使用 (上架Movie量)除以(總上架影片量)計算每年上架之 Movie 在全影片中的占比

```
x = []
for i in range(2008,2022):
    df_year = df[df['Year']==str(i)]
    arr = df_year['type']=='Movie'
    x.append(sum(arr == 1)/(sum(arr == 1)+sum(arr == 0)))
plt.plot(range(2008,2022),np.array(x).astype(float)*100)
plt.xlabel('Year')
plt.ylabel('Movie')
plt.ylabel('Rate(%)')
plt.title('Percentage of Movie added on Netflix')
plt.savefig('Percentage of Movie.png')
```


(二) Netflix影片風格

關鍵欄位:

Type 影片種類 (Movie, TV Show)
Release_year 影片的發行年份
Listed_in 影片風格

影片發行總數(依據發行年份)

近五年影片 (Movie, TV Show)發行總數

查看影片風格類型與總數

近五年Movie與TV Show個別發行數量排序

```
genres_movie = list(netflix_Movie['listed_in'])
genres_TV = list(netflix_TV['listed_in'])
gen_movie=[]
gen_TV=[]
for i in genres_movie:
     i=list(i.split(','))
for j in i:
           gen_movie.append(j.replace(' ',""))
for i in genres_TV:
     i=list(i.split(','))
     for j in i:
          gen_TV.append(j.replace(' ',""))
g_movie = Counter(gen_movie)
g_tv = Counter(gen_TV)
text_movie = list(set(gen_movie))
text_tv = list(set(gen_TV))
g_{movie=\{k: v for k, v in sorted(g_{movie.items(), key=lambda item: item[1], reverse= True)\} fig, ax = plt.subplots()
fig = plt.figure(figsize = (10, 10))
x=list(g_movie.keys())
y=list(g_movie.values())
ax.vlines(x, ymin=0, ymax=y)
ax.plot(x,y, "o")
ax.set_xticklabels(x, rotation = 90)
ax.set_ylabel("Count of movies")
ax.set_title("Genres_movies")
```

Movie與TV Show數量排序

結果:近五年Movie與TV Show個別發行數量最多的前三種風格。

```
#TVshow — 數量前三筆風格
first_three_TVshow= list(g_tv.keys())[:3]
print(first_three_TVshow)

['InternationalTVShows', 'TVDramas', 'TVComedies']

#TVshow — 數量前三筆風格
first_three_Movies = list(g_movie.keys())[:3]
print(first_three_Movies)

['InternationalMovies', 'Dramas', 'Comedies']
```

(三) 推薦系統— Content Based Filtering(基於電影屬性)

根據 Movies或TV shows的內容風格(影片類別)推薦近十年的前部類似的影片

關鍵欄位:Release_year 影片的發行年份,Listed_in 影片風格

分析工具:tf-idf, cosine similarity

```
movies_2011 =movies[movies['release_year'] > 2011]
```

篩選近十年的影片

透過listed_in的資訊進行分析後,可以得到每一個listed在整體資料集中每個字的重要性,之後在利用相似度的計算找到每一部電影或影集之間的關係,從而進行推薦。

結果:

輸入一部影片可以找到和該部影片風格相似的 10 部電影。

<pre>#Movies get_recommendation('Ganglands')</pre>		<pre>#TVSHOWS get_recommendation('Castle and Castle')</pre>	
11	Bangkok Breaking	997	Life in Color with David Attenborough Secrets of Great British Castles Alien Worlds Bad Boy Billionaires: India History 101 Sunderland 'Til I Die Greatest Events of WWII in Colour The World's Most Extraordinary Homes Hitler's Circle of Evil The Royal House of Windsor
543	Undercover	1129	
734	Lupin	1603	
1223	Dealer	1885	
2676	Fauda	2476	
3356	Nowhere Man	2742	
3414	Chosen	3294	
3976	The Eagle of El-Se'eed	4183	
4662	Monkey Twins	5030	
4752	Smoking	5251	

關鍵欄位

description 描述

listed in 電影風格

```
1 features = ['description','listed_in']
2 for feature in features:
3    netflix_movies[features] = netflix_movies[features].fillna('')
4 def combine_features(row):
5    return row['description']+" "+row['listed_in']
6 netflix_movies["combined_features"] = netflix_movies.apply(combine_features, axis = 1)
```

先將 desription 及 listed_in合併成合併成新的一欄, 名稱為 combined_feature。

```
1 !pip install sentence_transformers ## Installs the library
2 ##Extracting list of combined_features
3 sentences=netflix_movies['combined_features'].tolist()
4 from sentence_transformers import SentenceTransformer, util
5 ##Loading the pretrained distil Roberta model
6 model = SentenceTransformer('paraphrase-distilroberta-base-v1')
7 ## This model gives us 768 Dimension Vector
8 embeddings=model.encode(sentences) ## Extract the sentenceembeddings
```

載入 pretrained model, 將我們新合併的一欄 combined_feature, 丟到此 model 擷取 combined_feature 的 sentenceembeddings。

最後透過這個 searchFAISSIndex function, 將我們的 query 先轉換成要進行 cosine_similarity 計算的 sentenceembedding。

透過將 query 轉換後的 sentenceembedding 以及剛剛先轉換的 sentenceembeddings 兩兩進行cosine_similarity 的計算,來得到哪些電影的描述是跟我們query較為相像。

為了將此方法與 TFIDF 做比較, 我們使用相同的 query 來進行實驗。

並且在 TFIDF 中, 一樣也選定相同欄位作為特徵。

```
1 query="A seventeen-year-old aristocrat falls in love with a kind but poor artist"
```

以下三個是使用 FAISS 方法所得到的結果:

id	description	title	listed_in	cosine_sim
4722	A young artist falls for an aristocratic young	Fitoor	Dramas, International Movies, Romantic Movies	0.685089
8509	When a young man leaves home to fulfill the wi	The Sinking Of Van Der Wijck	Dramas, International Movies, Romantic Movies	0.631640
7243	A young woman talented at traditional dance fi	Kuppivala	Dramas, International Movies, Romantic Movies	0.627530

index4722: A young artist falls for an aristocratic young woman whose bitter
mother has trained her in the art of breaking hearts.

listed_in: Dramas, International Movies, Romantic Movies

cosine_sim: 0.6850886696038003

index8509: When a young man leaves home to fulfill the wishes of his late father, he meets and falls in love with a woman from a very different background.

listed_in: Dramas, International Movies, Romantic Movies

cosine_sim: 0.6316401164608294

 ${\tt index7243}: \hbox{A young woman talented at traditional dance finds her life changed when her love for a man clashes with the wishes of her father. \\ {\tt listed_in}:$

Dramas, International Movies, Romantic Movies

cosine sim: 0.6275296646700141

以下三個是使用 IFIDF 方法所得到的結果:

index	listed_in	description	cosine_sim
7824	Dramas, International Movies, Romantic Movies	When a poor taxi driver falls in love with a w	0.222315
7437	Dramas, International Movies, Romantic Movies	After recovering from a tragic experience, a y	0.199183
3688	International TV Shows, Romantic TV Shows, TV	A kind computer repairman falls for a street-s	0.188779

index7824: When a poor taxi driver falls in love with a wealthy young woman, he must stand up to her family and contend with his own insecurities.

listed in: Dramas, International Movies, Romantic Movies

cosine sim: 0.22231542739242505

index7437: After recovering from a tragic experience, a young woman makes a
journey to her father's homeland and falls in love with a kind-hearted doctor.

listed in: Dramas, International Movies, Romantic Movies

cosine_sim: 0.1991832451263083

index3688: A kind computer repairman falls for a street-smart graffiti artist
whose multiple personality disorder worsens after she witnesses a double
murder.

listed_in: International TV Shows, Romantic TV Shows, TV Dramas
cosine sim 0.1887788165267757