Практика по дифференциальным уравнениям, 3 сем

(преподаватель Звягинцева Т. Е.) Записал Костин П.А.

Данный документ неидеальный, прошу сообщать о найденных недочетах в вконтакте

Содержание

1	Введение	2
2	Геометрические уравнения	5
3	Однородные уравнения	7
4	Метод вариации произвольной переменной 4.1 Уравнения в полных дифференциалах. Интегрирующий множитель	9 13
5	ПРОПУЩЕННАЯ ПАРА	15
6	В ожидании кр	15
7	Уравнения первого порядка, не разряшенные относи- тельно производной	18

1 Введение

Разрешимо в квадратурах=разрешимо в интеграллах y(x) - неизв. функция $F(x,y,y',y'',...,y^{(n)})=0$ $y^{(n)}=f(x,y,...,y^{(n-1)})$ (1) y'=f(x,y) - дифференциальное уравнение 1-го порядка

Пример

$$y'=y$$
, решение $y=ce^x$

Опр

Задача Коши: найти решение $y = \phi(x)$: $\phi(x_0) = y_0$ ((2) (x_0, y_0))

Считаем, что $f(x,y) \in C(G)$

И пока что предполагаем, что $df(x,y) \in C(G)$ (решение существует), $dy \in C(G)$ (решение единственное)

 $(x_0,y_0) \in G$ $y = \phi(x)$ - решение $(1) \Rightarrow \phi'(x_0) = f(x_0,y_0) \; (y_0 = \phi(x_0))$

В каждой точке области G определено направление касательной к кривой, проходящей через эту точку

Опр

Кривые, в которых направление поля постоянно называются изоклины

Пример (стоим изоклины)

$$y' = \frac{y}{x}$$

$$x \neq 0$$
, $\frac{y}{x} = c (= tg\alpha)$ - уравнение изоклин $(y' = f(x,y) \Rightarrow y' = c \Rightarrow f(x,y) = c)$ $\Rightarrow y = cx$

При
$$c=0$$
 $(\operatorname{ctg}\alpha=0\Rightarrow\alpha=0)\Rightarrow y=0$
При $c=1$ $(\operatorname{ctg}\alpha=1\Rightarrow\alpha=\frac{\pi}{4})\Rightarrow y=x$
3. Коши для (-1,1): $y=-x,\ x<0$

Пример (больше изоклин)

$$y' = -\frac{y}{x} \Rightarrow -\frac{y}{x} = c$$
 - уравнение изоклин $\Rightarrow c = 0 \ (tg\alpha = 0) \Rightarrow y = 0$ $\Rightarrow c = 1 \ (\alpha = \frac{\pi}{4}) \Rightarrow y = -x$ $\Rightarrow c = \sqrt{3} \ (\alpha = \frac{\pi}{3}) \Rightarrow y = -\sqrt{3}x$

Пример (16, дополнительно)

Написать уравнение геометрического места точек перегиба графиков решений уравнений:

$$a) \quad y' = y - x^2$$

b)
$$y' = f(x, y)$$

Решение

Условие переги
ьа графика y=f(x) - это y''=0

a)
$$y' = y - x^2$$

 $y'' = y' - 2x = (y - x^2) - 2x = 0 \Rightarrow y = x^2 + 2x$

b) Возьмем полный лифференциал от обеих частей равенства:

$$dy' = df(x, y) \Rightarrow dy' = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \Rightarrow \frac{dy'}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f dy}{\partial y dx}$$
$$\Rightarrow y'' = f'_x + f'_y y' = 0 \Rightarrow f'_x + f'_y y' = 0$$

Пример (замена переменной спасёт)

$$y'=\sqrt{4x+2y-1}$$
 Пусть $z=4x+2y-1\Rightarrow z'=4+2y'\Rightarrow \frac{z'-4}{2}=\sqrt{z}$ $\frac{z'}{2}=\sqrt{z}+2\Rightarrow \frac{dz}{\sqrt{z}+2}=2dx$ (дорешать)

Пример (не пугаться замен)

$$y' = \cos(y - x)$$

$$y - x = z \Rightarrow z' = y' - 1$$

$$z' = \cos z - 1$$

$$\frac{dz}{\cos z - 1} = dx$$

$$\cos z = 1$$

$$z = 2\pi k, \quad k \in \mathbb{Z}$$

$$y = x + 2\pi k$$

Пример (асимптота)

$$y' = y^{2} - 1, \quad y \equiv 1, \ y \equiv -1$$

$$y' > 0 \Leftrightarrow y^{2} > 1$$

$$y' < 0 \Leftrightarrow y^{2} < 1$$

$$y'' = 2yy'$$

$$y'' = 2yy(y^{2} - 1)$$

Пример (теоретическая задача)

Доказатать, что решение ограничено сверху или снизу

$$Y' = P_n(y), \ n = 2m - 1, \ m \in \mathbb{N}$$

У многочлена нечетной степени всегда есть вещественный корень, y_j - корень, $j=1,...,k,\ y=y_j$ - реш. Значит остальные решения не пересекают на графике это \Rightarrow те котороые снизу, ограничены сверху, те

которые сверху ограничены снизу

Пример (24, дополнительно)

Составить диф. уравнение для семейства линий $y = ax^2 + be^x$

$$\Rightarrow \begin{cases} y' = 2ax + be^x \\ y' = 2a + be^x \end{cases}$$

Нетрудно найти:

$$a = \frac{y' - y''}{2(x-1)}$$

Подставляя во второе уравнение:

$$b = \frac{y''x - y'}{e^x(x - 1)}$$

После подстановки в исходное:

$$y''x(x-2) - y'(x^2 - 2) + 2(x - 1)y = 0$$

2 Геометрические уравнения

Пример

$$y' = \frac{y}{x+y}$$
$$y \neq x$$

$$y \equiv 0$$
 - pem

$$y+x>0\equiv y>-x$$
 $y>0$
$$\frac{y}{z+y}=c$$
 - ур-ие изоклин $c=1$ $y=x+y$
$$y=cx+cy$$
 $y(1-c)=cx$
$$y=\frac{c}{1-c}x,\quad c\neq 1$$

(упр.) Подставить точки

$$y' = y - x^2 \Rightarrow y = x^2 + c$$

Сократится тогда, когда уравнение второй степени $y=x^2+ax+b$, подставим: $2x+a=ax+b \Rightarrow a=2$ b=2, значит $y=x^2+2x+2$ - решение

$$y'' = y' - 2x = y - x^2 - 2x, \quad y = x^2 + 2x$$

Найти кривые, для которых площадь треугольника, образованного касательной, ординатой точки касания и осью абсцисс, есть величина постоянная, равная a^2 .

$$\frac{y^2}{2}=a^2y'.$$

Считая $y \neq 0$ и разделяя переменные, получаем

$$\frac{2\,dy}{y^2}=\frac{dx}{a^2}.$$

Отсюда находим $-\frac{2}{y} = \frac{x}{a^2} + C$, или

$$y = -\frac{2a^2}{Ca^2 + x}.$$

Рис. 1

Если y' < 0 (см. рис. 2), то $S = -\frac{y^2}{2y'} = a^2$. Интегрируя это уравнение, получаем

$$y = \frac{2a^2}{x - Ca^2}.$$

Наконец, обозначив $Ca^2=-\widetilde{C}$, оба ответа объединяем в один:

$$y = \frac{2a^2}{\tilde{C} \pm x}. \blacktriangleright$$

3 Однородные уравнения

Опр

M(x,y) - однор. ур-ие степени k, если $\forall \lambda > 0$ $M(\lambda x, \lambda y) = \lambda^k M(x,y)$

Опр

Уравнение M(x,y)dx+N(x,y)dy=0 - однородное, если M,N - однородное одинаковой степени ${\bf k}$

Опр

Уравнение y' = f(x,y) - однородное, если f(x,y) - однородное степени 0

Пример (однородное уравнение)

$$xy' - y = x \operatorname{tg} \frac{y}{x}$$

 $y' = \frac{y}{x} + \operatorname{tg} \frac{y}{x}$
Замена $y = tx$

То есть мы подставляем сперва y = ay, x = ax и если а сокращаются, то уравнение однородное и можно сделать замену y = tx

$$y' = t'x + t$$
$$dy = tdx + xdt$$
$$t'x = \operatorname{tg} t$$

Дз: 73, 76, 80, 84, 107, 109, 110, 101-112 (выбрать любую), 113

Пример (пересекающиеся прямые)

(2x-4+6)dx+(x+y-3)dy=0, чтобы сделать его однородным сделаем замену из системы (они не 0)

$$\begin{cases} 2x - 4 + 6 = 0 \\ x + y - 3 = 0 \end{cases} \Rightarrow \begin{cases} x = \widetilde{x} + 1 \\ y = \widetilde{y} + 2 \end{cases}$$
$$(2\widetilde{x} - 4\widetilde{y})d\widetilde{x} + (\widetilde{x} + \widetilde{y})dy = 0$$
$$\widetilde{y} = t\widetilde{x} \Rightarrow d\widetilde{y} = \widetilde{x}dt + td\widetilde{x}$$
И так далее

Пример (параллельные прямые)

$$(2x + y + 1)dx + (4x + 2y - 3)dy = 0$$
$$2x + y + 1 = z \Rightarrow 4x + 2y - 3 = 2z - 5$$
$$2dx + dy = dz \Rightarrow dy = dz - 2dx$$
$$zdx - (2z - 5)(dz - 2dx) = 0$$

Решаем уравнение для $\frac{dz}{dx}$ и возващаемся к прежним переменным

Пример (страшное выражение)

$$2xdy + (\underbrace{x^2y^4} + \underbrace{1})ydx = 0$$

Степени должны быть равны при замене $y = z^m$, если это однородное, то есть $2 + 4m = 0 \Rightarrow m = -\frac{1}{2}$

$$y = \frac{1}{\sqrt{z}}$$
, если y>0
 $y = -\frac{1}{\sqrt{z}}$, если y<0

Но при такой замене теряем решение $y \equiv 0$

При замене
$$y_0$$
 на $-y_0$ получается то же самое $x=\frac{t}{y^2}\Rightarrow\ dx=\frac{y^2dt-2ytdy}{y^4}$ $\Rightarrow 2tdy+(t^2+1)(ydt-2tdy)=0$

ДЗ: 119, 120, 124, 127, 131, 132, 135 (любой из а-в)

Теорема

$$y'=p(x)y+q(x) \quad p(x), q(x)\in C(a,b)$$
 $\Rightarrow \exists !$ реш. з. Коши $(x_0,y_0):x_0\in (a,b) \quad y_0\in \mathbb{R}$

Замечание

1.
$$y' = p(x)y + q(x)$$
 - лин. неоднородное $(q(x) \not\equiv 0)$

2.
$$y' = p(x)y$$
 - лин. однородное

Если
$$y_1, y_2$$
 - реш (2), $y_{1,2} \not\equiv 0 \Rightarrow \exists c = \text{const}: y_2 = cy_1$

Док-во

$$y'_1 = p(x)y_1$$

$$y'_2 = p(x)y_2$$

$$(\frac{y_2}{y_1})' = \frac{y'_2y_1 - y'_1y_2}{y_1^2} = \frac{py_2 - py_2}{y_1} = 0$$

Действительно, y_1, y_2 отличаются на константу Решение однор. $y = cy_1 \ \forall$ частн. решение $y_1 \neq \equiv 0$

ЗДЕСЬ ЧТО-ТО ПРОПУЩЕНО, Я ОТВЛЕКСЯ НА ОБДУМЫ-ВАНИЕ ПРОШЛОГО ДОК-ВА

4 Метод вариации произвольной переменной

- 1) Решаем однородное
- 2) Варьируем const

Найдем общее решение л.о.у.:

I)
$$\frac{dy}{y} = p(x)dx$$
$$\ln|y| = \int p(x)dx + \ln|c|$$
$$y = ce^{\int p(x)dx}$$

II)
$$c' e^{\int p(x)dx} + c e^{\int p(x)dx} p(x) = p(x) c e^{\int p(x)dx} + q(x)$$

 $x' = q(x)e^{-\int p(x)dx} \Rightarrow c(x) = \int q(x)e^{-\int p(x)dx} dx + \widetilde{c}$
 $y = e^{\int p(x)dx} (\int q(x)e^{-\int p(x)dx} dx + \widetilde{c})$
3. K. (x_0, y_0) $y = e^{\int_{x_0}^x p(\tau)d\tau} (y_0 + \int_{x_0}^x q(\tau)e^{-\int_{x_0}^\tau p(s)ds} d\tau)$

$$(2x+1)y' = 4x + 2y$$

I) Решим сперва такое уравнение: (2x + 1)y' = 2y

$$\frac{dy}{y} = \frac{2dx}{2x+1} \Rightarrow \ln|y| = \ln|x+1| + \ln|c|$$

$$y = c(2x+1)$$

II)
$$(2x+1)(2c+(2x+1)c') = 4x + 2c(2x+1)$$

$$c'\frac{4x}{(2x+1)^2}$$

$$c = \int \frac{4x}{(2x+1)^2} dx = /u = 2x + 1/ = \int \frac{u-1}{u^2} du =$$

$$= \int (\frac{1}{u} - \frac{1}{u^2}) du = \ln|u| + \frac{1}{u} + \widetilde{c} = \ln|2x+1| + \frac{1}{2x+1} + \widetilde{c}$$

Ответ:
$$y = (\ln|2x+1| + \frac{1}{2x+1} + \widetilde{c})(2x+1)$$

$$y$$
 = $(2x+1) \ln |2x+1| + 1 + \widetilde{c}(2x+1)$ общее н. частное н.

Опр (уравнение Бернулли)

$$y' = p(x)y + q(x)y^{\alpha} \quad \alpha \neq 0, \quad \alpha \neq 1$$

 $\alpha > 0 \Rightarrow$ особое реш. $y \equiv 0$

Варьируем константу! Не делаем как в Филиппове

$$y'+2y=y^2e^x$$

$$y'=-2y\Rightarrow y=ce^{-2x}\text{ - подставим}$$

$$c'=c^2e^{-x}\text{ - нужно разделить переменные}$$

$$\int\frac{dc}{c^2}=\int e^{-x}dx\Rightarrow \frac{1}{c}=e^{-x}+\widetilde{c}\Rightarrow c=\frac{1}{e^{-x}+\widetilde{c}}$$
 Ответ: $y=\frac{1}{e^{-x}+\widetilde{e}}e^{-2x},\quad y\equiv 0$

ДЗ: 136-160 (найти интересные), 146/148, 161-164, 178, 173/174

Пример (162)

$$(x+1)(yy'-1) = y^{2}$$
$$y^{2} = z \Rightarrow 2yy' = z'$$
$$(x+1)(\frac{z'}{z} - 1) = z$$

Пример (174, геометрическая задача)

Найти кривые, у которых площадь треугольника, ограниченного касательной, осью абсцисс и отрезком от начала координат до точки касания, есть величина постоянная, равная a^2

$$tg \beta = -tg \alpha = -y'$$

$$\frac{1}{2}(x - \frac{y}{y'})y = a^2$$

$$xy - 2a^2 = y^2 \frac{dx}{dy}$$

Пример (178, мат. анализ наносит ответный удар)

Найти то решение дифференциального уравнения

$$y'sin2x = 2(y + cosx),$$

которое остается ограниченным при $x \to \frac{\pi}{2}$

Решение

$$y = C \operatorname{tg} x + \frac{1}{\cos x}$$

Следует, что

Опр (Риккати)

$$y' = a(x)y^2 + b(x)y + c(x)$$
 (1)

В общем случае не интегрируется в квадратурах.

$$y = y_1(x)$$
 - реш (1) \Rightarrow замена $y = z + y_1$
 $z' + y_1' = a(z^2 + 2zy_1 + y_1^2) + b(z + y_1) + c$
 $z' + y_1' = a(z^2 + 2zy_1 + y_1^2) + bz + ay_1^2 + by_1 + c$
 $z' = (2ay_1 + b)z + az^2$ - уравнение Бернулли

Пример

Как подбирать? $y' + y^2 = x^2 + 2$

Попробуем подобрать степень х для у: $a^2x^{2n} + ... = x^2 - 2x$

$$a = 1, \quad n = 1$$

 $y = x + c, \quad -1 + x^2 + 2xc + c^2 = x^2 - 2x \Rightarrow c = 1$
 $y = x - 1 \Rightarrow -1 + x^2 - 2x + 1 = x^2 - 2x$

Пример (ещё пример)

$$y' + 2y^{2} = \frac{6}{x^{2}}$$

$$y = \frac{a}{x} \Rightarrow -\frac{a}{x^{2}} + \frac{2a^{2}}{x^{2}} = \frac{6}{x^{2}}$$

$$2a^{2} - a - 6 = 0 \Rightarrow a = 2$$

Пример (171)

$$y' + 2ye^{x} - y^{2} = e^{2x} + e^{x}$$
$$y = e^{x} + z \Rightarrow z' = z^{2} \Rightarrow \frac{dz}{dx} = z^{2} \stackrel{z \neq 0}{\Rightarrow} z = -\frac{1}{x + C}$$

Ho при z=0 полуаем решение $y=e^x$

Other: $y = e^x - \frac{1}{x+C}, \quad y = e^x$

4.1 Уравнения в полных дифференциалах. Интегрирующий множитель

Опр

$$M(x,y)dx+N(x,y)dy=0$$
 - уравнение в полных дифф, если $M,N\in C^1(G)$
$$\exists u(x,y):du=\underbrace{M}_{\frac{\partial u}{\partial x}=u'_x}dx+\underbrace{N}_{\frac{\partial u}{\partial y}=u'_y}dy$$

$$\frac{\partial M}{\partial y}=u''_{xy}=u''_{yx}=\frac{\partial N}{\partial x}$$

Пример (187)

Проверить, что данное уравнение является уравнением в полных дифференциалах, и решить его:

$$\underbrace{(2-9xy^2)x}_{M} dx + \underbrace{(4y^2-6x^3)y}_{N} dy = 0$$

$$M'_y = -18x^2y \qquad N'_x = -19x^2y$$

$$M = u'_x \Rightarrow u = \int (2x - 9x^2y^2) dx + \varphi(y) = x^2 - 3x^2y^2 + \varphi(y)$$

$$u'_y = -6x^3y + \varphi'(y) = N = 4y^3 - 6x^3y$$

$$\varphi'(y) = 4y^3 \Rightarrow \varphi(y) = y^4$$

$$u(x,y) = x^2 - 3x^3y^2 + y^4$$
Other: $x^2 - 3x^3y^2 + y^4 = c$, t.k. $du = 0 \Rightarrow u = c$

Для сравнения:

$$\underbrace{2xdx}_{d(x^2)} - \underbrace{9x^2y^2dx - 6x^3ydy}_{-3(y^2} + \underbrace{4y^3dy}_{d(y^3)} + \underbrace{4y^3dy}_{d(y^4)} = 0$$

Дифференциал произведения $d(x^3y^2)$

Пример (193)

Проверить, что данное уравнение является уравнением в полных дифференциалах, и решить его:

$$\underbrace{3x^{2}dx}_{d(x^{3})}(1+\ln y) = \underbrace{2ydy}_{-d(y^{2})} -x^{3}\underbrace{\frac{1}{y}dy}_{d(\ln y)}$$

Опр

$$M(x,y)dx+N(x,y)dy=0$$
 - уравнение в полных дифф (1) $\mu=\mu(x,y)$ - инт. мн-ль (1), если $(\mu M)dx+(\mu N)dy=0$ - ур. в полных лиф.

<u>Пример</u> (195, фокус) Решить уравнение, найдя каким-либо способом интегрирующий множитель или сделав замену переменных:

$$(x^2+y^2+x)dx+ydy=0$$

$$(x^2+y^2)dx+\underbrace{xdx+ydy}_{\frac{1}{2}d(x^2+y^2)}=0$$

$$dx+\frac{1}{2}\frac{d(x^2+y^2)}{x^2+y^2}=0$$
 Значит $\mu=\frac{1}{x^2+y^2}$
$$dx+\frac{1}{2}d\ln(x^2+y^2)=0$$
 Ответ: $x+\frac{1}{2}\ln(x^2+y^2)=c$

<u>Пример</u> (196, фокус) Решить уравнение, найдя каким-либо способом интегрирующий множитель или сделав замену переменных:

$$(x^{2} + y^{2} + x)dx - xdy = 0$$

$$(x^{2} + y^{2})dx + ydx - xdy = 0 \quad d\left(\frac{y}{x}\right) = \frac{dyx - ydx}{x^{2}}$$

$$(1 + \left(\frac{y}{x}\right)^{2})dx - \underbrace{\frac{xdy - ydx}{x^{2}}}_{d\left(\frac{y}{x}\right)}$$

$$\mu = \frac{1}{x^{2}(1 + \left(\frac{y}{x}\right)^{2})} = \frac{1}{x^{2} + y^{2}}$$

ДЗ: 167-170 (интересные), 188-194 (интересные), 196, 201, 203

5 ПРОПУЩЕННАЯ ПАРА

6 В ожидании кр...

Пример

$$xy^2(xy'+y)=1$$
 Заметим, что $xy'+y=(xy)'$
 $xy'+y-\frac{1}{xy^2}=0$ $xy=z\Rightarrow \frac{z^2}{x}z'=1$
 $xdy+\frac{xy^3-1}{xy^2}dx=0$
 $x^2y^2dy+xy^3dx-dx=0$
 $\mu=?$
 $xdy+ydx-\frac{dx}{xy^2}=0$
 $xdy+ydx-\frac{dx}{xy^2}=0$

Пример (203)

$$y(x+y)dx + (xy+1)dy = 0$$

$$yxdx + y^{2}dx + xydy + dy = 0$$

$$yxdx + y(\underbrace{ydx + xdy}) + dy = 0 | \cdot \frac{1}{y}$$

$$xdx + d(xy) + \frac{dy}{y} = 0$$

$$\frac{x^{2}}{2} + xy + \ln|y| + c = 0$$

Пример (301)

$$xy' + x^2 + xy - y$$

Док-во (похоже на частного, на однородное не тянет, но замена проходит

$$\frac{xy' - y}{x^2} + 1\frac{y}{x} = 0$$
$$y' = \frac{y}{x} + \frac{y^2}{x^2}$$

Пример (308)

$$x^2y' = y(x+y)$$

Док-во (однородное/Бернулли)

$$y' = \frac{x}{y} + \frac{y^2}{x^2}$$

Пример (309)

$$(1-x^2)dy + xydx$$

Док-во (уравнение с разделяющимися переменными)

Пример (311)

$$(y + y' \ln^2 y = (x + 2 \ln y)y'$$

Док-во (линейное уравнение)

$$y'_x = \frac{1}{x'_y}$$

$$x'_y y = x + 2 \ln y \cdot 0 \ln^2 y$$

$$y dx - x dy (2 \ln y - \ln^2 y) dy$$

 $\underline{\Pi}$ ример (320)

$$2x^3yy' + 3x^2y^2 + 7 = 0$$

Док-во (производная произведения)

$$(x^3y^2)' + 7 = 0'$$

Пример (330)

$$(1 - x^2)y^2 - 2xy^2 = xy$$

Док-во (переменные разделяются, Бернелли)

Пример (333)

$$(\sin x + y)dy + (y\cos x - x^2)dx = 0$$

Док-во (уравнение в полных дифференциалах)

$$\underbrace{\sin x dy + y \cos x dx}_{d(y \sin x)} - y dy - x^2 dx = 0$$

Пример (338)

$$x(x+1)(y'-1) = y$$

Пример (349)

$$xy' = 2\sqrt{y}\cos x - 2y$$

Док-во (Бернулли, вариация переменной)

Пример (359)

$$xy'(\ln y - \ln x) = y$$

Док-во (однородное)

$$y' \ln \frac{y}{x} = \frac{y}{x}$$

Пример (361)

$$(2x^2y - 3y^2)y' = 6x^2 - 2xy^2 + 1$$

Пример (368)

$$y' = \sqrt[3]{2x - y} + 2$$

Пример (371)

$$2(x^2y + \sqrt{1 + x^4y^2})dx + x^3dy$$

Пример (374)

$$(2x + 3y - 1)dx + (4x + 6y - 5)dy = 0$$

Док-во (параллельные прямые)

$$2x + 3y - 1 = z \Rightarrow 2dx + 3dy = dz$$

Пример (414)

$$(x^2 - 1)y' + y^2 - 2xy + 1 = 0$$

Пример (438)

$$(2x + y + 5)y' = 3x + 6$$

Док-во (пересекающиеся прямые)

$$(2x + y + 5)dy - (3x + 6)dx = 0$$

Замена
$$x + 2 = \widetilde{x}$$
 $y + 1 = \widetilde{y}$

7 Уравнения первого порядка, не разряшенные относительно производной

2 способа решения:

1. (a)
$$(y')^2 = y^2 \to \begin{bmatrix} y' = y \\ y' = -y \end{bmatrix}$$
???
(b) $\sin(y' - 1) = 0$???

2. Метод введения параметра

$$f(x, y, y') = 0$$

$$y = g(x, y') \qquad x = h(y, y')$$

$$y' = \frac{gy}{gx} = p$$

$$y = g(x, p) \qquad x = h(y, p)$$

$$dy = dg(x, p) \qquad dx = dh(y, p)$$

$$dy = dy \qquad dy = dy \qquad (y, p)$$

$$f(x, y, y') = 0$$

$$y = g(x, y) \qquad x = h(y, p)$$

$$dy = dy \qquad (y, p) \qquad dy = dy \qquad (y, p)$$

$$dy = dy \qquad (y, p) \qquad (y, p)$$

$$dy = dy \qquad (y, p) \qquad (y, p)$$

$$dy = dy \qquad (y, p) \qquad (y, p)$$

$$dy = dy \qquad (y, p) \qquad (y, p)$$

Пример (267-286)

$$y'(x - \ln y') = 1$$

$$x = \ln y' + \frac{1}{y'}$$

$$y' = p \quad y' > 0$$

$$x = \ln p + \frac{1}{p}$$

$$\frac{dy}{p} = dx = \frac{dp}{p} - \frac{dp}{p^2}$$

$$\int dy = \int (1 - \frac{1}{p})dp$$

$$\begin{cases} y = p - \ln|p| + C \\ x = \ln p + \frac{1}{p} \end{cases}$$

Пример (280)

$$x^{2}(y')^{2} = xyy' + 1$$

$$y = \frac{x^{2}(y')^{2} - 1}{xy'} = xy' - \frac{1}{xy'}$$

$$y' = p$$

$$y'[x - \frac{1}{xp}]$$

$$dy = xdppdx - \frac{1}{x^{2}p^{2}}(xdp + pdx)$$

$$pdx = xdp + pdx + \frac{1}{x^{2}p^{2}}(xdp + pdx) \quad |x^{2}p^{2}|$$

$$0 = x^{3}pdp + xdp + pdx$$

$$pdx = -(x^{3}p^{2} + x)dp - \text{уравнение Бернулли}$$

$$\frac{dx}{dp} = -(x^{3}p + \frac{x}{p})$$

$$\frac{dx}{dp} = -\frac{x}{p}$$

$$\int \frac{dp}{x} = -\int \frac{dp}{p} \Rightarrow \ln|x| = \ln|\frac{1}{p}| + \ln|C|$$

$$x \neq 0 \quad p \neq 0$$

$$x = \frac{C(p)}{p}$$

$$\frac{C'p - C}{p^{2}} = \frac{-C^{3}}{p^{2}} - \frac{C}{p^{2}} \Rightarrow C'p = -C^{3}$$

$$\frac{dc}{dp}p = -c^{3} \Rightarrow \int \frac{dc}{c^{3}} = -\int \frac{dp}{p}$$

$$\frac{C^{-2}}{2} = \ln|p| + C^{*} \Rightarrow \frac{1}{C^{2}} = 2\ln|p| + C^{**}$$

$$C = \pm(\sqrt{2\ln|p| + C^{**}})^{-1}$$

$$\begin{cases} x = \pm \frac{1}{\sqrt{2\ln|p| + C^{**}}} \\ y = \pm \frac{1}{\sqrt{2}} > + \frac{1}{\sqrt{2}} > -\frac{1}{\sqrt{2}} > -\frac{1}{\sqrt{2}}$$

$$y = y'x + \varphi(y')$$
 - ур. Клеро

Всегда касается решения?

$$y = f(y')x + g(y')$$
 - ур. Лагранжа

Всегда имеет вид линейного уравнения

Док-во (Клеро)

$$y=xy'-(y')^2$$
 $y'=p$ $dy=pdx$ $y=xp-p^2$ $pdx=pdx+xdp-2pdp$ (всегда сокращается) $0=dp(x-2p)$

1.
$$dp = 0 \Rightarrow p = C \Rightarrow y = Cx - C^2$$
 - общее решение

2.
$$x=2p \Rightarrow y=2p^2-p^2=p^2 \Rightarrow \begin{cases} x=2p \\ y=p^2 \end{cases}$$
 $y=\frac{x^2}{4}$ - особое решение

Прямые образуют параболу

Через каждую точку параболы проходит бесконечно решений

$$(y')^{2} - xy^{2} + y = 0$$
$$y' = \frac{x \pm \sqrt{x^{2} - 4y}}{2}$$

7 УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА, НЕ РАЗРЯШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ

Дз: 264 - 267, 282, 269, 271, 289, 290, 292 (Лагранж)

Пример (292)

$$y = x(y')^2 - 2(y')^3$$

$$y' = p \quad y = xp^2 - 2p^3$$

$$pdx = p^2dx + 2xpdp - 6p^2dp$$

$$(p - p^2)dx = (2xp - 6p^2)dp$$

$$p = 0 \Rightarrow y = 0$$

$$p = 1 \Rightarrow y = x - 2$$

$$\frac{dx}{dp} = \frac{2x}{1 - p} - \frac{6p}{1 - p}$$
 - линейное уравнение