Usted se ha identificado como Ignacio Oscar García (Salir)

UTN.BA EDUCACIÓN A DISTANCIA CURSOS Y TALLERES RECURSOS TIC

Página Principal ► Física II (Z2032) - Acosta - 2020 ► Segundo Parcial Física 2 Z2032 ju 10/12/20 ► Segundo Parcial Z2032 jueves 10/12/20 14 hs

Comenzado el	Thursday, 10 de December de 2020, 14:30
Estado	Finalizado
Finalizado en	Thursday, 10 de December de 2020, 16:59
Tiempo empleado	2 horas 28 minutos
Calificación	8,00 de 10,00 (80 %)

Pregunta 1

Incorrecta

Puntúa 0,00 sobre 1,00

Marcar pregunta

Dos cables conductores rectos e indefinidamente largos que transportan corrientes estacionarias I_1 e I_2 (tal que I_1 = 5 I_2), se disponen horizontalmente sobre el plano x-y, separados una distancia D , con el conductor 1 por encima del conductor 2. Si las corrientes circulan en el mismo sentido , decida cuál de las siguientes opciones respecto de la fuerza entre los conductores, es la única correcta.

Seleccione una:

- La fuerza que por unidad de longitud, ambos conductores se ejercen mutuamente, es nula.
- \bigcirc La fuerza que por unidad de longitud, el conductor 2 ejerce sobre el 1 es $-\frac{5\mu_0\ l_2^2}{2\pi D}\hat{j}$
- La fuerza que por unidad de longitud, el conductor 1 ejerce sobre el 2 es $\frac{2.5\mu_0\ {I_2}^2}{\pi D}\hat{j}$
- El módulo de la fuerza que por unidad de longitud, el conductor 1 ejerce sobre el 2 es un quinto de la que el conductor 2 ejerce sobre el 1.
- La fuerza que por unidad de longitud, el conductor 1 ejerce sobre el 2 es $-\frac{\mu_0 I_1^2}{10 \pi D} \hat{j}$
- El módulo de la fuerza que por unidad de longitud, el conductor 1 ejerce sobre el 2 es el quíntuple de la que el conductor 2 ejerce sobre el 1

La respuesta correcta es: La fuerza que por unidad de longitud, el conductor 1 ejerce sobre el

$$2 es - \frac{\mu_0 I_1^2}{10 \pi D} \hat{j}$$

Pregunta 2

Correcta

Puntúa 1,00 sobre 1,00 Un solenoide de 1000 vueltas, 50 cm de longitud y espiras de 0,5 cm de radio transporta una corriente variable i(t) = 3A sen(5 t). Se puede afirmar entonces que su inductancia y el módulo de la fem inducida, valen, respectivamente:

Marcar pregunta

Seleccione una:

- \bigcirc 20 π^2 µHenry y 300 π^2 sen(5 t) µVolt
- \bigcirc 20 π^2 Henry y 300 π^2 sen(5 t) Volt

- \bigcirc 2000000 π^2 Henry y 30000000 $\pi^2 \cos(5 t)$ Volt
- \bigcirc 20 π^2 Henry y 300 π^2 cos(5 t) Volt
- © 20 π^2 μHenry y 300 π^2 cos(5 t) μVolt \checkmark

La respuesta correcta es: 20 π^2 μ Henry y 300 π^2 cos(5 t) μ Volt

Pregunta 3

Correcta

Puntúa 1,00 sobre 1.00

Marcar pregunta

Una partícula de carga $q = -1.6 \times 10^{-19} \, \text{C}$ y masa $m = 1.67 \times 10^{-27} \, \text{kg}$ entra con una velocidad $\vec{V} = v\hat{i}$ en una región del espacio en la que existe un campo magnético uniforme $\vec{B} = 0.5 \, T \, \hat{k}$. El radio de la trayectoria circular que describe es $R = 0.3 \, \text{m}$. Decidir cuál de las siguientes opciones es la única correcta a partir del instante en que ingresa a la región del campo.

Seleccione una:

- La energía cinética de la carga es de 1,07 MeV
- El período del movimiento es de 4,79 x 10-7 s
- La fuerza magnética inicial es 1,149 x 10^{-12} m/s \hat{j}
- \bigcirc La velocidad angular es de 1,437 x 10^7 1/s
- \bigcirc La velocidad de la partícula es constante y de módulo igual a 4,79 x 10^7 m/s
- \bigcirc La frecuencia del movimiento es de 1,149 x 10⁶ Hz

La respuesta correcta es: La energía cinética de la carga es de 1,07 MeV

Pregunta 4

Correcta

Puntúa 1,00 sobre 1,00

Marcar pregunta

En el interior de un solenoide de 2000 vueltas y 80 cm de longitud, y que transporta una corriente variable i(t) = 4 A sen (0,5 t), se introduce una pequeña bobina de 50 vueltas y de espiras rectangulares de 2 cm² de sección. Entonces, se puede afirmar que el coeficiente de inducción mutua M entre el solenoide y la bobina y la fem inducida en la bobina, valen respectivamente:

Seleccione una:

- 10 π μHenry y 20 π cos(0,5 t) μVolt \checkmark
- \bigcirc 1000000 π Henry y 2000000 $\pi \cos(0.5 t)$ Volt
- \bigcirc 100 π Henry y 200 π cos(0,5 t) Volt
- \bigcirc 10 π mHenry y 200 π cos(0,5 t) mVolt
- \bigcirc 10 π mHenry y 20 π cos(0,5 t) mVolt

La respuesta correcta es: $10 \pi \mu Henry$ y $20 \pi \cos(0.5 t) \mu Volt$

Pregunta 5

Incorrecta

Puntúa 0,00 sobre 1,00 En un selector de velocidades actúa un campo eléctrico uniforme, vertical y ascendente ($\vec{E} = E\hat{j}$) y un campo magnético saliente y también uniforme ($\vec{B} = B\hat{k}$). Si ingresa una partícula cargada con una velocidad $\vec{V} = V\hat{i}$ perpendicular al campo eléctrico, tal que $V > \frac{E}{B}$, se puede afirmar como una única opción correcta que:

Marcar pregunta

Seleccione una:

- La partícula se desvía hacia adentro en el sentido del campo B
- Si la partícula es un electrón, su trayectoria se desviará en el sentido del campo E. X
- Para esas condiciones, la partícula cargada no sufrirá desviaciones en su trayectoria
- O Si la partícula es un electrón, su trayectoria se desviará en el sentido de la fuerza eléctrica.
- Si la partícula es un protón, su trayectoria se desviará en el sentido del campo E.
- La partícula se desvía en el sentido de la fuerza eléctrica independientemente del signo de su carga.

La respuesta correcta es: Si la partícula es un protón, su trayectoria se desviará en el sentido del campo E.

Pregunta 6

Correcta

Puntúa 1,00 sobre 1,00

Marcar pregunta

El cable vertical de longitud infinita transporta una corriente variable en el tiempo i(t) = 2 A sen(6 t). Si la espira rectangular ABCD presenta una resistencia de 5 Ω , el módulo de la fem inducida y de la corriente inducida en la espira, valen respectivamente:

Seleccione una:

- \bigcirc 9,6 x 10⁻⁸ ln(0,4). sen(6t) Volt y 1,92 x 10⁻⁸ ln(0,4). sen(6t) Ampere
- \circ 9,6 x 10⁻⁸ ln(1,8). cos(6t) Volt y 1,92 x 10⁻⁸ ln(1,8). cos(6t) Ampere
- \bigcirc 9,6 x 10⁻⁶ ln(1,8). cos(6t) Volt y 1,92 x 10⁻⁶ ln(1,8). cos(6t) Ampere
- \bigcirc 4.32 x 10⁻⁸ ln(0,4). cos(6t) Volt y 0,864 x 10⁻⁸ ln(0,4). cos(6t) Ampere
- \bigcirc 4.32 x 10⁻⁶ ln(0,4). cos(6t) Volt y 0,864 x 10⁻⁶ ln(0,4). cos(6t) Ampere

La respuesta correcta es:

$$9.6 \times 10^{-8} \ln(1.8) \cdot \cos(6t) \text{ Volt}$$
 $y = 1.92 \times 10^{-8} \ln(1.8) \cdot \cos(6t) \text{ Ampere}$

Pregunta 7

Correcta

Puntúa 1,00 sobre

Marcar pregunta

Una varilla metálica conductora CD de 20 cm de longitud se desplaza hacia la derecha con una velocidad $\vec{V}=2$ $\frac{m}{s}$ \vec{i} sobre dos rieles metálicos también conductores, formando un cuadro rectangular cerrado ABCD sobre el plano x-y, de resistencia igual a 2,5 Ω . El cuadro se encuentra inmerso en una región donde actúa un campo de inducción magnética $\vec{B}=0.8$ T \hat{k} como muestra la figura adjunta. Decidir cuál de las siguientes afirmaciones es

la única correcta:

Seleccione una:

- En el cuadro se induce una fem de 0,32 V y el potencial del punto C es menor que el del punto D
- En el cuadro se induce una fem de 0,32 V y el potencial del punto C es igual que el del punto D.
- En el cuadro se induce una fem de 0,32 V y la corriente inducida es horaria y vale 0,128 A.
- En el cuadro se induce una corriente antihoraria de 128 m A y el potencial de C es mayor que el de C
- \bigcirc En el cuadro se induce una fem de 0,32 mV y la corriente inducida es antihoraria y vale 128 mA

La respuesta correcta es: En el cuadro se induce una fem de 0,32 V y la corriente inducida es horaria y vale 0,128 A.

Pregunta 8

Correcta

Puntúa 1,00 sobre 1,00

Marcar pregunta

Una espira circular de radio R = 20 cm ubicado en el plano x-y y con su centro en el origen, transporta una corriente I = 5 mA que circula en sentido antihorario. Entonces puede afirmarse que el campo que ésta produce en un punto sobre el eje z de coordenadas (0,0, 2 m) y la fuerza que una carga q = -3 mC experimenta al pasar por ahí o con una velocidad de

$$6 \frac{m}{s} \vec{j}$$
, valen respectivamente:

Seleccione una:

$$\bigcirc$$
 1,547 x 10⁻¹¹ T \vec{k} y 0 N

$$\bigcirc$$
 -1,547 x 10⁻¹¹ T \vec{k} y 0 N

$$\bigcirc$$
 1,547 x 10⁻¹¹ T \vec{j} y - 2,785 x 10⁻¹² N \vec{i}

ⓐ 1,547 x
$$10^{-11}$$
 T \vec{k} y − 2,785 x 10^{-13} N \vec{i} \checkmark

$$\bigcirc$$
 -1,547 x 10⁻¹¹ T \vec{k} y - 2,785 x 10⁻¹² N \vec{i}

La respuesta correcta es: 1,547 \times 10⁻¹¹ \vec{T} \vec{k} y - 2,785 \times 10⁻¹³ \vec{N} \vec{i}

Pregunta 9

Correcta

Puntúa 1,00 sobre 1,00

Marcar pregunta

Dos alambres rectilíneos e indefinidamente largos que transportan corrientes estacionarias I_A e I_B , se disponen verticalmente sobre el plano x-y, separados una distancia L, con el conductor A a la izquierda del conductor B. Decida cuál de las siguientes opciones respecto del campo magnético provocado por ambos conductores, es la única correcta.

Seleccione una:

- igcup Para que el campo B sea nulo en un punto ubicado a una distancia L/3 a la derecha del alambre B (sobre el mismo plano x-y de los alambres), las corrientes deben circular en el mismo sentido y cumplir que $I_B = 4I_A$
- \odot Si I_A = 3 I_B y ambas circulan en sentido contrario, el módulo del campo resultante en un punto medio entre ambos alambres sobre el plano x-y, vale $\frac{2\mu_0 I_B}{\pi L}$
- $\$ Para que el campo B sea nulo en un punto ubicado a una distancia L/3 a la izquierda del alambre A (sobre el mismo plano x-y de los alambres), las corrientes deben circular en sentido contrario y cumplir que $I_B = 4I_A$
- Si las corrientes son iguales y circulan en el mismo sentido, el campo del alambre A sobre cualquier punto del alambre B es igual en módulo, dirección y sentido, al campo del alambre B sobre cualquier punto del alambre A.
- Si ambas corrientes tienen el mismo valor y circulan en sentido contrario, el campo B se anulará en cualquier punto que equidiste de ambos alambres.
- \odot Si I_A = 3 I_B y ambas circulan en el mismo sentido , el módulo del campo resultante en un punto medio entre ambos alambres sobre el plano x-y, vale $\frac{4\mu_0 I_B}{\pi L}$

La respuesta correcta es: Para que el campo B sea nulo en un punto ubicado a una distancia L/3 a la izquierda del alambre A (sobre el mismo plano x-y de los alambres), las corrientes deben circular en sentido contrario y cumplir que $I_B=4I_A$

Pregunta 10

Correcta

Puntúa 1,00 sobre 1,00

Marcar pregunta

Una espira cuadrada de lado L = 5 cm, ubicada en el plano x-y, transporta una corriente de 2 mA en sentido horario. Entonces, se puede afirmar como única opción correcta, que el campo en centro de la espira y la fuerza que una carga q de 3 mC experimenta cuando pasa por allí

con una velocidad $\overrightarrow{V} = 4 \frac{m}{s} \hat{j}$, valen respectivamente:

Dato:
$$\mu_0 = 4 \pi . 10^{-7} \frac{T.m}{A}$$

Seleccione una:

$$\frac{16}{5}\sqrt{2}.10^{-8} \, T \, \widehat{k} \qquad y \qquad \frac{192}{5}\sqrt{2}.10^{-11} \, N \, \widehat{k}$$

$$-\frac{16}{5}\sqrt{2}.10^{-8} \, T \, \widehat{k} \qquad y \qquad 0N$$

$$-\frac{16}{5}\sqrt{2}.10^{-8} \, T \, \widehat{k} \qquad y \qquad -\frac{192}{5}\sqrt{2}.10^{-11} \, N \, \widehat{k}$$

$$\bigcirc \frac{8}{5}\sqrt{2}.10^{-8} T \hat{k}$$
 y 0 N

La respuesta correcta es:
$$-\frac{16}{5}\sqrt{2}.10^{-8} \ T \ \widehat{k}$$
 $y -\frac{192}{5}\sqrt{2}.10^{-11} \ N \ \widehat{i}$

Finalizar revisión

Navegación Por El Cuestionario

Mostrar una página cada vez

Finalizar revisión

Dirección de Educación a Distancia

Brinda servicios y asesoramiento para la puesta en marcha de propuestas educativas a distancia y de apoyo a la presencialidad, el uso de tecnologías en las aulas de la Universidad y de Organismos externos.

La producción de los materiales de la Dirección de Educación a Distancia, salvo expresa aclaración, se comparten bajo una Licencia Creativa 4.0 Internacional. Pueden utilizarse mencionando su autoría, sin realizar modificaciones y sin fines comerciales.

