POLSKO-JAPOŃSKA WYŻSZA SZKOŁA TECHNIK KOMPUTEROWYCH Cw. BADANIE BIERNYCH ELEMENTÓW ELEKTRONICZNYCH Imię i Nazwisko Ocena Prowadzący zajęcia

2.3.1. Badanie właściwości rezystora

2.3.1.1. Pomiar rezystancji omomierzem

Tab.1.

	R _{oznacz}	R_{zakr}	R	δR
	Ω	Ω	Ω	%
R1				
R2				
R3				
R4				

Uwaga:

- odczytać wartość rezystancji z rezystorów i wpisać do kolumny Roznacz
- dla każdego rezystora wybrać najniższy możliwy zakres pomiarowy omomierza
- wynik pomiaru rezystancji podać z precyzją, jaką zapewnia przyrząd

Wzory i obliczenia

Dla multime	etru M4650B	Dla multimetru MX-620		
Dla zakresu 200 Ω :	dla pozostałych zakresów:	Dla zakresu 2 MΩ :	dla pozostałych zakresów	
$\delta R = 0.2\% + \frac{5}{n} \cdot 100\%$	$\delta R = 0.15\% + \frac{3}{n} \cdot 100\%$	$\delta R = 1.5\% + \frac{5}{n} \cdot 100\%$	$\delta R = 0.8\% + \frac{4}{n} \cdot 100\%$	

gdzie:

n – wskazanie multimetru z pominięciem kropki dziesiętnej

2.3.1.2. Obserwacja zależności fazowych między prądem i napięciem dla rezystora

C_x =

C_{y1} =

C_{y2} =

Wnioski

Szkic obrazu z ekranu oscyloskopu

2.3.2.1. Obserwacja zależności fazowych między prądem i napięciem dla kondensatora

 $C_x =$

 $C_{y1} =$

 $C_{y2} =$

Wnioski

Szkic obrazu z ekranu oscyloskopu

2.3.3.1. Obserwacja zależności fazowych między prądem i napięciem dla cewki indukcyjnej

 $C_x =$

 $C_{v1} =$

 $C_{y2} =$

Wnioski

Szkic obrazu z ekranu oscyloskopu

2.3.2. Badanie właściwości kondensatora

2.3.2.2. Pomiar charakterystyki amplitudowej filtru dolnoprzepustowego RC

Tab.2.

Ln	f	а	C _{y1}	U _{we}	b	C _{y2}	U_{wy}	k ₁	k
Lp.	Hz	dz	V/dz	V	dz	V/dz	V	V/V	dB
1									
2									
3									
4									
5									
6									
7									
8									

a – odcinek odpowiadający na ekranie wartości między-szczytowej sygnału wejściowego (określony z precyzją 0.1 dz.)

Wzory i obliczenia

Napięcie wejściowe:	Napięcie wyjściowe:	Wzmocnienie:	Wzmocnienie w dB:
$\mathbf{U}_{\mathrm{we}} = \mathbf{a} \cdot \mathbf{C}_{\mathrm{yl}}$	$\mathbf{U}_{\mathrm{wy}} = \mathbf{b} \cdot \mathbf{C}_{\mathrm{y2}}$	$\mathbf{k}_{1} = \frac{\mathbf{U}_{\text{wy}}}{\mathbf{U}_{\text{we}}}$	$k = 20 \cdot \log k_1$

Charakterystyka amplitudowa filtru dolnoprzepustowego RC

b – odcinek odpowiadający na ekranie wartości między-szczytowej sygnału wyjściowego (określony z precyzją 0.1 dz.)

2.3.3. Badanie właściwości cewki indukcyjnej

2.3.3.2. Pomiar charakterystyki amplitudowej filtru dolnoprzepustowego LR

Tab.3.

Ln	f	а	C _{y1}	U _{we}	b	C _{y2}	U_{wy}	k ₁	k
Lp.	Hz	dz	V/dz	V	dz	V/dz	V	V/V	dB
1									
2									
3									
4									
5									
6									
7									
8									

a – odcinek odpowiadający na ekranie wartości między-szczytowej sygnału wejściowego (określony z precyzją 0.1 dz.)

Wzory i obliczenia

Napięcie wejściowe:	Napięcie wyjściowe:	Wzmocnienie:	Wzmocnienie w dB:	
$\mathbf{U}_{\mathrm{we}} = \mathbf{a} \cdot \mathbf{C}_{\mathrm{yl}}$	$\mathbf{U}_{\mathrm{wy}} = \mathbf{b} \cdot \mathbf{C}_{\mathrm{y2}}$	$k_1 = \frac{U_{wy}}{U_{we}}$	$k = 20 \cdot \log k_1$	

Charakterystyka amplitudowa filtru dolnoprzepustowego LR

Oszacowanie wartości indukcyjności cewki:

b – odcinek odpowiadający na ekranie wartości między-szczytowej sygnału wyjściowego (określony z precyzją 0.1 dz.)

2.3.4. Badanie właściwości diody półprzewodnikowej

2.3.4.1. Pomiar charakterystyki statycznej diody półprzewodnikowej

Tab.4. R1 =

1ab.4. IX1 =						
Lp.	U	\mathbf{U}_{D}	I_D			
Lp.	V	V	mA			
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						

Charakterystyka statyczna diody $I_D=f(U_D)$

Wzory i obliczenia

Natężenie prądu wyliczyć ze wzoru: $I_D = \frac{U - U_D}{R1}$

2.3.4.2. Obserwacja pracy układu prostowniczego

Szkic obrazu z ekranu oscyloskopu