Answer all parts together.

- A measurement on a particle in a 1D box shows it is 90% time in the ground state and 10% in the first excited state. What is the expectation value of the measured energy for a neutron in a cavity that is 10 nm long? [2]
 - Many proteins contain metal porphyrin molecules. These molecules are approximated as square planar and contain 26 π electrons.
 - If the edge of the molecule is ~1000 pm, then what is the predicted lowest energy absorption of the porphyrin molecule? [1]
 - Without the metals present, comment on the magnetic nature whether these are diamagnetic or paramagnetic? [1]
 - This problem is on a 1-D quantum mechanical harmonic oscillator in a state with energy

$$\frac{7}{2}\hbar\sqrt{\frac{k}{\mu}}\ .$$

- _a. What is the normalized wavefunction describing this state? [2]
- A transition is seen at ~3000 cm⁻¹ for H³⁵Cl molecule when it is in the ground state. At what frequency, ν , does one expect to see the transition if the molecule is in the state whose energy is $\frac{7}{2}\hbar\sqrt{\frac{k}{\mu}}$? [1]
- Calculate the force constant k for the $\mathrm{H}^{35}\mathrm{Cl}$ bond. [2]
- 4. A H-atom is in the state given by,

$$\psi = \frac{1}{81\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(\frac{6r}{a_0} - \frac{r^2}{a_0^2}\right) e^{-r/3a_0} \sin\theta \left(\cos\phi + i\sin\phi\right)$$

- Write the values of n, l, m giving brief justifications. [1]
- b. What is the probability of finding the electron at y = 0, y = 0, z = 2.6? [1]
- Is ψ an eigenfunction of \hat{L}_z ? If yes, determine the eigenvalue. [1]
- Determine the position of the radial nodes. [1] -
- e. Where are the angular nodes? [1]
- To which of these states (2s,2p,4d,4f) would a transition occur from this state? [1]
- . What is the ionization energy of this atom? [1]
- \sim h. Plot the radial part as a function of z. [1]
- 5. Linear combination of two 1s A.O.s gives two M.O.s for H_2^+ denoted as ψ_+ and ψ_- .
 - a. If the overlap integral at some internuclear distance R is 0.5, write the normalized form of ψ_+ and ψ_- . [2]
 - b. What atomic system results when the internuclear distance in H_2^+ is zero? [1]
 - c. To which atomic orbitals do ψ_+ and ψ_- now correspond to? Give a brief reason. [1]

Saisi Saisi

Scanned by CamScanner

Useful information

$$m_n = m_p = 1.67 \times 10^{-27} \ kg; \ h = 6.626 \times 10 - 34 \ Js; \ c = 2.998 \times 108 \ ms^{-1}$$

Harmonic Oscillator

$$\psi_v(x) = N_v H_v(y) e^{-y^2/2} \qquad y = \frac{x}{\alpha} \qquad \alpha = \left(\frac{\hbar^2}{mk}\right)^{1/4}$$

v	$H_{\nu}(y)$
0	1
1	2 <i>y</i>
2	$4y^2 - 2$
3	$8y^3 - 12y$
4	$16y^4 - 48y^2 + 12$
5	$32y^5 - 10y^3 + 120y$
6	$64y^6 - 480y^4 + 720y^2 - 120$

$$\int_{-\infty}^{\infty} H_{\nu} H_{\nu}, e^{-y^2} dy = \begin{cases} 0 & \text{if } \nu \neq \nu' \\ \alpha \sqrt{\pi} 2^{\nu} \nu! & \text{if } \nu = \nu' \end{cases}$$

Rigid rotor

$$Y_l^m(\theta,\phi) = \left[\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}\right]^{1/2} P_l^{|m|}(\cos\theta) e^{im\phi} \quad l = 0,1,2 \dots \quad m = 0, \pm 1, \pm 2 \dots$$

$$P_0^0(x)=1$$

$$P_1^0(x) = x = \cos\theta$$

$$P_1^1(x) = (1 - x^2)^{1/2} = \sin \theta$$

$$P_2^0 = \frac{1}{2}(3x^2 - 1) = \frac{1}{2}(3\cos^2\theta - 1)$$

$$P_2^1(x) = 3x(1-x^2)^{1/2} = 3\cos\theta\sin\theta$$

$$P_2^2(x) = 3(1-x^2) = 3\sin^2\theta$$

H-atom

$$E_n = -\frac{m_e e^4}{8\varepsilon_0^2 h^2 n^2} = -\frac{m_e e^4}{32\pi^2 \varepsilon_0^2 h^2 n^2} \quad n = 1,2,3 \dots$$