Университет ИТМО

Кафедра вычислительной техники

Отчет по прохождению практики

Студента
Р3311 группы
Морозова С.Д.
Руководитель
Соснин В.В.

Санкт-Петербург 2016

Содержание

1	Вве	едение	3
2	Сис	стема компьютерной верстки T _E X(I ^A T _E X)	4
	2.1	Краткое описание	4
	2.2	Сравнение LATEX и MS Word	6
	2.3	Выбор инструмента редактирования	7
3	Сис	стемы контроля версий	9
	3.1	Краткое описание	9
	3.2	Достоинста и недостатки Git	9
	3.3	GitHub	9
4	Пар	ралельные вычисления	10
	4.1	История	10
	4.2	Что-нибудь из теории	10
	4.3	Что-нибудь еще	10
5	Φy_1	нкции замера времени	11
	5.1	Принцип работы	11
	5.2	Windows	11
		5.2.1 func1	11
		$5.2.2 \text{func} 2 \dots \dots \dots \dots \dots \dots$	11
		5.2.3	11

	5.3	Linux	11
		5.3.1 func4	11
		5.3.2 func5	11
		5.3.3	11
	5.4	Кросплатформенные	12
		5.4.1 func7	12
		5.4.2 func8	12
		5.4.3	12
	5.5	Проблемы и сложности замеров времени	
		при параллельный вычислениях	12
6	Пра	актическая часть?	13
	6.1	Описание эксперементальной программы	13
	6.2	Результаты работы программы	13
	6.3	Выводы	13
7	Вы	вод по производственной практике	14
8	Спи	исок литературы	15

1 Введение

Тема прохождения практики— параллельные вычисления. Цель задания—сравнить различные функции в языке C, которые можно использовать для измерения времени работы параллельных программ.

Однако требования руководителя практики таковы, что перед тем как приступить к выполнению основного задания нужно ознакомиться с системой компьютерной вёрстки TeX (LaTeX), которая должна использоваться для написания отчёта, и ознакомиться с системой контроля версий Git, с последующим созданием учетной записи на сайте GitHub или анагичном.

2 Система компьютерной верстки ТЕХ(ИТЕХ)

2.1 Краткое описание

 $T_{\rm E}X$ —система компьютерной вёрстки с формулами, разработанная американским профессором информатики Дональдом Кнутом. Название происходит от греческого слова $\tau \varepsilon \chi \upsilon \eta$ — «искусство», «мастерство», поэтому последняя буква читается как русская X. Хотя ТеХ является системой набора и верстки, развитые возможности макроязыка ТеХ делают его Тьюринг-полным языком программирования.

Тех работает с боксами (box) и клеем (glue). Бокс — двумерный объект прямоугольной формы, характеризуется тремя величинами (высота, ширина, глубина). Элементарные боксы — это буквы, которые объединяются в боксы-слова, которые в свою очередь сливаются в боксы-строчки, боксы-абзацы и т.д.

Между боксами располагается клей, который имеет некоторую ширину по умолчанию и степени увеличения/уменьшения этой ширины. Объединяясь в бокс более высокого порядка, боксы могут шевелиться, но после того как найдено оптимальное решение, это состояние закрепляется, и полученный бокс выступает как единое целое.

Инетересный факт. На версии 3.0 дизайн был заморожен, поэтому в новых версиях не будет добавления новой функциональности, только исправление ошибок. Версия Т_ГХ'а ассимтотически прибли-

жается к числу π . Это факт говорит о том, что последняя версия 3.14159265 (январь 2014) является крайне стабильной и возможны лишь мелькие исправления. Дональд Кнут заявил, что последнее обновление (сделанное после его смерти) сменит номер версии на π , и с этого момента все ошибки станут особенностями.

№ТЕХ — созданный Лесли Лэмпортом набор макрорасширений (или макропакет) системы компьютерной вёрстки ТЕХ, который облегчает набор сложных документов. Стоит отметить, что как и любой другой макропакет РЕТЕХ не может расширить возможности ТЕХ (все, что можно сделать в одном пакете можно сделать и в любом другом). Пакет позволяет автоматизировать многие задачи набора текста и подготовки статей, включая набор текста на нескольких языках, нумерацию разделов и формул, размещение иллюстраций и таблиц на странице, ведение библиографии и др. Все это делает РЕХ крайне удобным инструментом для написания научных статей, диссертаций и т.п..

¹ Так же существуют Plain TeX, AMS-TeX, AMS-LaTeX и т.д.

2.2 Сравнение LATEX и MS Word

В качестве сравнения— перечислим плюсы и минусы L^AT_EX перед MS Word(а так же всеми его аналогами). Плюсы L^AT_EX:

- Проста работы с любыми математическими формулами
- Кроссплатформенность
- Без особых трудностей можно получить сноски, список литературы, оглавление, список таблиц, указатель и т. п.
- Имеется несколько стандартных стилей (книга, статья, доклад, письмо), с помощью которых получаются документы очень высокого полиграфического качества
- Гибкая работа с логикической структурой текста
- Язык международного обмена по математике и физике (большинство научных издательств принимают тексты в печать только в этом формате)

Минусы ВТЕХ:

- ullet Не является системой типа WYSIWYG 2
- При серьезных отклонениях от стандартных стилей документов требуется достаточно сложное программирование

То есть, выбирая между I^AT_EX и MS Word, стоит обратить внимание на то, какой текст вы собираетесь печатать, насколько нестандартный будет стиль текста, на его примерный объем. В некоторый случаях достаточно использовать MS Word, в других — использование I^AT_EX может заметно упростить работу.

2.3 Выбор инструмента редактирования

В ходе изучения всех возможных вариантов работа с I^AT_EX для создния данного отчета, была выбрана программа Textmaker ³. Выбор Textmaker ³ обусловлен следующими его особенностями:

- Автоматическая подсветка синтаксиса
- Функция автодополнения команд РТЕХ
- Сокрытие блоков кода (Code folding)

 $^{^2}$ What You See Is What You Get(Что видишь, то и получишь). Стоит отметить, что существуют дистрибутивы T_EX в которых есть попытки реализовать WYSIWYG. Например платный дистрибутив BaKoMa TeX + текстовый редактор BaKoMa TeX Word.

³Оффициальный сай Textmaker: http://www.xm1math.net/texmaker/

- Быстрая навигация по структуре документа
- Указание на строку с ошибкой, для быстрой отладки
- Интегрированный просмотр PDF

3 Системы контроля версий

3.1 Краткое описание

Система контроля версий (СКВ) — это система, регистрирующая изменения в одном или нескольких файлах с тем, чтобы в дальнейшем была возможность вернуться к определённым старым версиям этих файлов.

СКВ широко используются при разработке программного обеспечения, для хранения кодов разрабатываемых программ. Однако данные системы подходят не только программистам. Художники, которые хотят сохранять каждое изображение/эксиз своей работы, писатели пишущие книги или научные статьи, бухгалтеры, которые хранять разные версии отчетов и т.д., все они могут использовать СКВ для достижения своих целей.

Иначе говоря СКВ можно применять в любых областях в которых ведётся работа с большим количеством непрерывно изменяющихся электронных документов.

3.2 Достоинста и недостатки Git

3.3 GitHub

- 4 Паралельные вычисления
- 4.1 История
- 4.2 Что-нибудь из теории
- 4.3 Что-нибудь еще...

5 Функции замера времени

- 5.1 Принцип работы
- 5.2 Windows
- 5.2.1 func1
- 5.2.2 func2
- 5.2.3 ...
- 5.3 Linux
- 5.3.1 func4
- 5.3.2 func5
- 5.3.3 ...

- 5.4 Кросплатформенные
- 5.4.1 func7
- 5.4.2 func8
- 5.4.3 ...
- 5.5 Проблемы и сложности замеров времени при параллельный вычислениях

- 6 Практическая часть?
- 6.1 Описание эксперементальной программы
- 6.2 Результаты работы программы
- 6.3 Выводы

7 Вывод по производственной практике

8 Список литературы