

自动控制 Automatic Control 原理 Theory

西南交通大学电气工程学院

Chapter 5 Frequency domain analysis of control systems 控制系统频率域分析

- 5.1 Frequency Characteristic 频率特性
- 5.2 Frequency Response Plot 频率特性图
- 5.3 Nyquist Stability Criteria 奈奎斯特稳定性判据
- 5.4 Stability Margins 控制系统的稳定裕量

Summary

3

Frequency Response: The frequency response of a system is defined as the steady-state response of the system to a sinusoidal input signal. The sinusoid is a unique input signal, and the resulting output signal for a linear system, as well as signals throughout the system, is sinusoidal in the steady state; it differs from the input waveform only in amplitude and phase angle.

频率响应—系统的频率响应定义为系统对正弦输入信号的稳态响应。在这种情况下,系统的输入信号是正弦信号,系统的内部信号以及系统的输出信号也都是稳态的正弦信号,这些信号频率相同,幅值和相角则各有不同。

4

- The advantages of the frequency response method 频率响应法的优点:
- 1) The experimental determination of the frequency response of a system is easy and reliable.

 易于试验和测量,可用试验方法测量出系统的频率特性
- 2) Frequency response can be used for the stability analysis of the system (Nyquist Criterion). 可用于系统的稳定性分析(应用Nyquist稳定性判据)
- 3) The magnitude and phase angle of $T(j\omega)$ can be represented by the graphical plots that provide significant insight into the analysis and design of control system.
 - 是一种图解法,形象直观揭示系统的内涵

5

The disadvantage of the frequency response method 频率响应法的缺点:

The indirect link between the frequency domain and time domain, only for LTI system.

频率域和时间域之间没有直接的联系,且仅适用于LTI系统

Example> Analysis the frequency response of the *RC* filter

分析下图RC滤波电路频率响应

Input
$$u_i(t) = U_m \sin \omega t$$

西南交通大學

6

Output
$$\dot{U}_o = \dot{U}_i \frac{1/j\omega C}{R+1/j\omega C} = \frac{\dot{U}_i}{1+j\omega RC} = \frac{\dot{U}_i}{\sqrt{1+(\omega RC)^2}} \angle \varphi$$
 输出:
where $\varphi = -tg^{-1}\omega RC$

$$\frac{\dot{U}_o}{\dot{U}_i} = \frac{1}{1+j\omega RC} = G(j\omega) = A(\omega)e^{j\varphi(\omega)}$$

Magnitude 辐值
$$\left| \frac{\dot{U}_o}{\dot{U}_i} \right| = A(\omega) = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

Phase angle
$$\# \#$$
 $\varphi(\omega) = -tg^{-1}\omega RC$

The magnitude and the phase angle are the function of the input frequency ω

Fig. Relationship between amplitude and phase angle with input frequency 幅值、相位与频率关系图

Frequency Characteristic can be seen from the figure that: 由图可以得到频率特性如下:

As ω increase ↑ { Amplitude decrease 增益下降 Phase lag increase | φ | 滞后增大

$$\omega$$
, R , C :
$$\begin{cases} T=RC \\ \omega \end{cases}$$

 ω , R, C: $\begin{cases} T=RC & \text{Time constant, system parameter} \\ छ间常数,系统参数 \\ \hline \omega & \text{Frequency of input sinusoid signal} \end{cases}$ 输入正弦信号的频率

Fig. Relationship between **amplitude** and **phase angle** with input frequency 幅值、相位与频率关系图

定义: 将频率特性的幅值下降到零频率幅值的0.707处的频率 ω_b , 称为系统的带宽频率;

$$\left| \frac{\dot{U}_o}{\dot{U}_i} \right| = \frac{1}{\sqrt{1 + (\omega_b RC)^2}} = 0.707 = \frac{1}{\sqrt{2}} \Rightarrow 1 + (\omega_b RC)^2 = 2 \Rightarrow \omega_b = 1/RC = 1/T$$

可以直接根据频率特性的形状及其特征量来分析系统的特性,而不必对系统的数学模型进行繁琐的求解,这正是频率响应法工程实用性的一个特点

9

Frequency characteristic of LTI system

线性定常系统的频率特性

Transfer function of the LTI system:

线性定常系统的传递函数:

$$G(s) = \frac{Y(s)}{R(s)} = \frac{M(s)}{N(s)} = \frac{M(s)}{\prod_{i=1}^{n} (s+p_i)}, p_i \neq p_j, i \neq j$$

Where $-p_i$ (i = 1,2, ...,n) are assumed to be distinct poles.

假设- p_i (i = 1, 2, ..., n)为不相等极点

输入
$$r(t) = A \sin \omega t$$
Input $R(s) = \frac{A\omega}{s^2 + \omega^2} = \frac{A\omega}{(s + j\omega)(s - j\omega)}$

西古交通大學

Output
$$Y(s) = G(s)R(s) = \frac{M(s)}{N(s)} \frac{A\omega}{s^2 + \omega^2}$$

$$= \frac{\beta}{s + j\omega} + \frac{\beta^*}{s - j\omega} + \sum_{i=1}^n \frac{\alpha_i}{s + p_i}$$

$$y(t) = \beta e^{-j\omega t} + \beta^* e^{j\omega t} + \sum_{i=1}^n \alpha_i e^{-p_i t}$$
 (5.1)

If G(s) contains m_i poles at $s=-p_i$, thus y(t) contains 如果G(s)含有 m_i 重极点 $s=-p_i$, 则 y(t) 中含有 $t^{hi}e^{-s_it}$ $(h_i=0,1,2,\cdots,m-1)$

Steady state response (Stable system)

稳态响应 (稳定系统)

$$y_s(t) = L^{-1} \left[\frac{\beta}{s + j\omega} + \frac{\beta^*}{s - j\omega} \right] = \beta e^{-j\omega t} + \beta^* e^{j\omega t}$$
 (5.2)

where
$$\beta = G(s) \frac{A\omega}{s^2 + \omega^2} (s + j\omega) \bigg|_{s = -j\omega} = -\frac{A}{2j} G(-j\omega)$$
 (5.3)

$$\beta^* = G(s) \frac{A\omega}{s^2 + \omega^2} (s - j\omega) \bigg|_{s = j\omega} = \frac{A}{2j} G(j\omega)$$
 (5.4)

 β and β * are conjugate 可以知道 β 与 β * 互为一对共轭复数

Let
$$G(j\omega) = P(\omega) + jQ(\omega)$$

that
$$G(-j\omega) = P(\omega) - jQ(\omega)$$

$$\beta = -\frac{A}{2j}G(-j\omega) = \frac{A}{2}[Q(\omega) + jP(\omega)]$$

$$\beta^* = \frac{A}{2j}G(j\omega) = \frac{A}{2}[Q(\omega) - jP(\omega)]$$

$$\beta + \beta^* = AQ(\omega)$$

Where $AQ(\omega)$ is a real number 实数

 $G(j\omega)$ can be written as

 $G(j\omega)$ 可以表示为

$$G(j\omega) = P(\omega) + jQ(\omega) = A(\omega)e^{j\varphi(\omega)}$$

$$|A(\omega) = |G(j\omega)| = \sqrt{P^2(\omega) + Q^2(\omega)} - G(j\omega) \text{ for all } (5.5)$$

$$\begin{cases} A(\omega) = |G(j\omega)| = \sqrt{P^2(\omega) + Q^2(\omega)} - G(j\omega) \text{ in fig. (5.5)} \\ \varphi(\omega) = \angle G(j\omega) = tg^{-1} \frac{Q(\omega)}{P(\omega)} - G(j\omega) \text{ in fig. (5.6)} \end{cases}$$

$$G(-j\omega) = |G(-j\omega)|e^{-j\varphi(\omega)} = |G(j\omega)|e^{-j\varphi(\omega)} = A(\omega)e^{-j\varphi(\omega)}$$

thus
$$y_s(t) = \beta e^{-j\omega t} + \beta^* e^{j\omega t}$$

$$= A |G(j\omega)| \left[\frac{e^{j(\omega t + \varphi(\omega))} - e^{-j(\omega t + \varphi(\omega))}}{2j} \right]$$

$$= A |G(j\omega)| \sin[\omega t + \varphi(\omega)]$$
(5.7)

历由交通大學

Frequency characteristic, that is transfer function in the frequency domain, is the ratio of the output to the input signal where the input is a sinusoid. It is expressed as $G(j\omega)$.

频率特性,也称频率特性函数,是指在正弦输入信号作用下,输出与输入的傅立叶变换之比,用 $G(j\omega)$ 表示。

$$\frac{Y(j\omega)}{R(j\omega)} = |G(j\omega)|e^{j\phi} = |G(j\omega)|e^{j\angle G(j\omega)} = G(j\omega)$$

$$G(j\omega) = G(s)\big|_{s=j\omega}$$

5.2 Frequency Response Plots

15

Frequency characteristic

$$G(j\omega) = P(\omega) + jQ(\omega) = \sqrt{P^2(\omega) + Q^2(\omega)} \angle tg^{-1} \frac{Q(\omega)}{P(\omega)} = A(\omega)e^{j\varphi(\omega)}$$

The most widely used graphical tools for analyzing and designing control system are **Bode Plot** and **Polar Plot**

工程上应用最广泛的频率特性图是Bode图(对数坐标图)和极坐标图 (Nyquist图、幅相频率特性图)

16

Polar plot: is a plot of the real part of $G(j\omega)$ versus the imaginary part of $G(j\omega)$.

极坐标图 是 $G(j\omega)$ 的实部与虚部的关系图

<E5.1> Plot the polar plot of the *RC* filter

$$G(s) = \frac{1}{RCs + 1}$$

$$G(j\omega) = \frac{1}{j\omega(RC) + 1} = \frac{1}{j\omega\tau + 1}$$

西南交通大學

where $\tau = RC$

17

The polar plot can be obtained from:

$$G(j\omega) = R(\omega) + jX(\omega)$$

$$G(j\omega) = \frac{1}{1+j\omega\tau} = \frac{1}{1+\omega^2\tau^2} - \frac{j\omega\tau}{1+\omega^2\tau^2}$$

$$\omega = 0$$
 $R(\omega) = 1$ $X(\omega) = 0$

$$\omega = \frac{1}{\tau} \quad R(\omega) = \frac{1}{2} \quad X(\omega) = -\frac{1}{2} \quad \omega = -\infty$$

$$\omega = +\infty$$
 $R(\omega) = 0$ $X(\omega) = 0$ $-\frac{1}{2}$

西南交通大學

The polar plot can also be obtained from:

$$G(j\omega) = A(\omega)e^{j\varphi(\omega)}$$

$$G(j\omega) = \frac{1}{1 + j\omega\tau} = A(\omega)e^{j\varphi(\omega)} = \frac{1}{\sqrt{1 + \omega^2\tau^2}}e^{-jtg^{-1}\omega\tau}$$

$$\omega = 0$$
 $|G(j\omega)| = 1$ $\varphi(\omega) = 0$

$$\omega = \frac{1}{\tau} |G(j\omega)| = \frac{1}{\sqrt{2}} \quad \varphi(\omega) = -45^{\circ} \quad \omega = -\infty$$

$$|\omega \to +\infty \quad |G(j\omega)| \to 0 \quad \varphi(\omega) = -90^{\circ} \quad -\frac{1}{2}$$

19

Bode Plot: The logarithm of the magnitude of the frequency characteristic $G(j\omega)$ is plotted versus the logarithm of ω . The phase, φ , of the frequency characteristic $G(j\omega)$ is separately plotted versus the logarithm of the frequency.

波特图:频率特性 $G(j\omega)$ 的对数幅值与对数频率之间的关系图以及 $G(j\omega)$ 的相角 φ 与对数频率之间的关系图。

20

- Bode Plot:将频率特性分为Amplitude characteristic幅频特性和Phase characteristic相频特性,分别绘于(半)对数坐标上;
- a) 频率 ω (横)坐标:用 $\lg \omega$ 分度;
- b) 幅值 $A(\omega)$ 用 $20\lg A(\omega)$ [dB]分度: $20\lg A(\omega) \sim \lg \omega$
- c) 相角 $\varphi(\omega)$ 用线性分度: $\varphi(\omega) \sim \lg \omega$

Relationship between $\omega \& \lg \omega$

ω	1	2	3	4	5 6		7	8	9	
lgω	0	0.301	0.477	0.602	0.699	0.778	0.845	0.903	0.954	
ω	10	20	30	40	50	60	70	80	90	
lgω	1	1.301	1.477	1.602	1.699	1.778	1.845	1.903	1.954	

A decade 十倍频程

A decade is an interval of two frequencies on xcoordinate of Bode plot with a ratio equal to 10.

在波特图的横坐标上,若两个频率之比为10,则其间隔为一个十 倍频程,用dec来表示。

An octave 二倍频程

Advantages of using Bode Plot:

The use of a logarithmic scale of frequency is convenient.

The primary advantage of the **Bode plot** is the conversion of multiplicative factors (因式相乘) into addictive factors (因式相顶) by virtue of the definition of logarithmic gain.

$$G(j\omega) = \frac{K_b \prod_{i=1}^{Q} (1 + j\omega\tau_i)}{(j\omega)^N \prod_{m=1}^{M} (1 + j\omega T_m) \prod_{k=1}^{R} \left[1 + (2\zeta_k / \omega_{nk}) j\omega + (j\omega / \omega_{nk})^2 \right]}$$

Transfer function include Q zeros, N poles at the origin, M poles on the real axis and R pairs of complex conjugate poles

The logarithmic magnitude of $G(j\omega)$:

$$20\lg|G(j\omega)| = 20\lg K_b + 20\sum_{i=1}^{Q} \lg|1 + j\omega\tau_i|$$

$$-20\lg|(j\omega)^N| - 20\sum_{m=1}^{M} \lg|1 + j\omega T_m|$$

$$-20\sum_{k=1}^{R} \lg|1 + (2\zeta_k/\omega_{nk})j\omega + (j\omega/\omega_{nk})^2|$$

The phase angle of $G(j\omega)$:

$$\varphi(\omega) = \sum_{i=1}^{Q} \tan^{-1} \omega \tau_{i} - N(90^{\circ}) - \sum_{m=1}^{M} \tan^{-1} \omega T_{m}$$
$$- \sum_{k=1}^{R} \tan^{-1} \left(\frac{2\zeta_{k} \omega_{nk} \omega}{\omega_{nk}^{2} - \omega^{2}} \right)$$

1. Constant gain 比例环节/常数增益项

$$G(j\omega) = K_b \tag{5.8}$$

The logarithmic magnitude:

$$20\lg|G(j\omega)| = 20\lg K_b$$

The phase angle:

$$\varphi(\omega) = 0$$

Bode Plot

2. Poles and Zeros at the origin 积分环节和微分环节

$$G(j\omega) = (j\omega)^{\mp 1}$$

1) Poles at the origin 原点处极点项/积分环节

$$G(j\omega) = \frac{1}{j\omega} \tag{5.9}$$

The logarithmic magnitude

$$20\lg|G(j\omega)| = 20\lg\left|\frac{1}{j\omega}\right| = -20\lg\omega$$
 (dB)

$$\omega = 1$$
, $20 \lg A(\omega) = 0$ (dB)

$$\omega = 10$$
, $20 \lg A(\omega) = -20$ (dB)

The slope of the straight line -20 dB/dec

• The phase angle: $\varphi(\omega) = -90^{\circ}$

历由交通大學

Zeros at the origin 原点处零点项/微分环节

$$G(j\omega) = j\omega \tag{5.10}$$

微分环节的Bode图与积分环节的Bode图关于横轴对称

20dB/dec

100 -20dB/dec

(a)极坐标图

西南交通大學

3. Poles and Zeros on the real axis

实轴上的极点和零点/惯性环节和一阶微分环节

$$G(j\omega) = (1 + j\omega T)^{\mp 1}$$

1) Poles on the real axis 实轴上的极点/惯性环节

$$G(j\omega) = \frac{1}{1 + j\omega T} \tag{5.11}$$

The logarithmic magnitude:

$$20 \lg A(\omega) = 20 \lg \left| \frac{1}{1 + j\omega T} \right| = -20 \lg \sqrt{1 + \omega^2 T^2}$$

$$20 \lg A(\omega) = 20 \lg \left| \frac{1}{1 + j\omega T} \right| = -20 \lg \sqrt{1 + \omega^2 T^2}$$

- a) $\omega \ll 1/T$ 低频段 $20 \lg A(\omega) \approx -20 \lg 1 = 0 (dB)$
- b) $\omega >> 1/T$ 高频段 $20 \lg A(\omega) \approx -20 \lg \omega T(dB)$

Break/Corner Frequency 转折频率 $\omega = 1/T = \omega_n$

Asymptotic Curve 渐近线

$$\omega < \frac{1}{T}$$
, $20 \lg A(\omega) = 0$ dB;
 $\omega > \frac{1}{T}$, $20 \lg A(\omega) = -20 \lg(\omega T)$ dB;

Error between exact values and approximation values:

• At $\omega=1/T$ break frequency

$$20 \lg A(\frac{1}{T}) = -20 \lg \sqrt{2} = -3.01 \text{ (dB)}$$

 \bullet At $\omega=10/T$

$$20\lg A(\frac{10}{T}) = -20\lg\sqrt{1+100} = -20.043 \text{ (dB)} \approx -20 \text{ (dB)}$$

 \bullet At $\omega=0.1/T$

$$20\lg A(\frac{0.1}{T}) = -20\lg\sqrt{1+0.01} = -0.043 \text{ (dB)} \approx 0 \text{ (dB)}$$

幅频特性误差修正表

频率相对值 $\frac{\omega}{1/T} = \omega T$	0.1	0.25	0.5	1	2	4	10
误差 ΔL(ω)/ dB	-0.04	-0.26	-0.97	-3.01	-0.97	-0.26	-0.04

幅频特性误差修正曲线

• The Phase Angle $\varphi(\omega) = -tg^{-1}\omega T$

$$\varphi(0) = 0^{\circ}, \quad \varphi(\infty) = -90^{\circ}, \quad \varphi(\frac{1}{T}) = -45^{\circ}$$

相频特性的几个函数值

频率相对值 $\frac{\omega}{1/T} = \omega T$	0.01	0.05	0.1	0.2	0.5	1	2	5	10	20	100
相位移 $\varphi(\omega)$ (度)	-0.06	-2.9	-5.7	-11.3	-26.6	-45	-63.4	-78.7	-84.3	-87.1	-89.4

Asymptote
$$\omega < \frac{0.1}{T}$$
, $\varphi(\omega) = 0^{\circ}$; $\omega > \frac{10}{T}$, $\varphi(\omega) = -90^{\circ}$; $\frac{0.1}{T} < \omega < \frac{10}{T}$, Slope $-45^{\circ}/\text{dec}$

最大误差出现在 ω =0.1/T和 ω =10/T处, $\triangle \varphi = 5.7$ °

次大误差出现在 ω =0.4/T和 ω =2.5/T处, $\triangle \varphi$ = 5.3°

按等距分度:

0.4/T 距 0.1/T 的相对距离: $lg(0.4/0.1) = 0.6021 \approx 0.6$

2.5/T 距 1/T 的相对距离: $lg(2.5/1) = 0.3979 \approx 0.4$

与折线相交:

 $\omega = 0.16/T \text{ for } \omega = 6.3/T$

Bode Diagram

zhaoduo@home.swjtu.edu.cn

西南交通大學

2) Zeros on the real axis 实轴上的零点/一阶微分环节

$$G(j\omega) = 1 + j\omega T \tag{5.12}$$

其Bode图与一阶惯性环节的Bode图关于横轴对称

- 3. Complex conjugate Poles/ Complex conjugate Zeros 振荡环节和二阶微分环节
- 1) Complex conjugate Poles 二阶振荡环节

$$G(j\omega) = \frac{1}{1 + \left(\frac{2\zeta}{\omega_n}\right) j\omega + \left(\frac{j\omega}{\omega_n}\right)^2}$$

$$= \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2 + j2\zeta\frac{\omega}{\omega_n}} \qquad (0 \le \zeta < 1)$$

$$1 - \left(\frac{\omega}{\omega_n}\right)^2 + j2\zeta\frac{\omega}{\omega_n}$$

• The logarithmic magnitude:

$$20 \lg A(\omega) = -20 \lg \sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta \frac{\omega}{\omega_n}\right]^2}$$

- a) When $\omega << \omega_n$ (低频段): $20 \lg A(\omega) \approx -20 \lg 1 = 0 (dB)$
- b) When $\omega >> \omega_n$ (高频段): $20 \lg A(\omega) \approx -20 \lg \left(\frac{\omega}{\omega_n}\right)^2 = -40 \lg \frac{\omega}{\omega_n}$ (dB)

Break/Corner Frequency 转折频率 $\omega = 1/T = \omega_n$

The slope of the asymptote -40dB/dec.

The Phase Angle:

$$\varphi(\omega) = -tg^{-1} \frac{2\zeta \frac{\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2}$$

(b)

幅频特性误差修正曲线幅频特性中, *ζ*=0.5~0.7, 渐近线(折线)近似效果较好;相频特性, 渐近线(折线)近似效果不好;

2) Resonant Frequency 谐振频率 ω_r Resonant Peaks 谐振峰值 $M_{p\omega}$

在 ω_n 附近,幅频特性出现谐振峰值 $M_{p\omega}$,其大小与 ζ 有关。

Definition: Resonant Frequency ω_r is the frequency where the Resonant Peaks $M_{p\omega}$ occurs.

谐振频率 ω_r ,谐振峰值 $M_{p\omega}$ 处的频率

$$A(\omega) = |G(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\frac{\omega}{\omega_n}\right]^2}}$$
Let $f(\omega) = \left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left[2\zeta\left(\frac{\omega}{\omega_n}\right)\right]^2 = \left(\frac{\omega}{\omega_n}\right)^4 - 2\left(\frac{\omega}{\omega_n}\right)^2 (1 - 2\zeta^2) + 1$

$$\frac{\mathrm{d}f(\omega)}{\mathrm{d}\omega} = \frac{1}{\omega_n^4} \Big[4\omega^3 - 4\omega\omega_n^2 (1 - 2\zeta^2) \Big] = \frac{4\omega}{\omega_n^4} \Big[\omega^2 - \omega_n^2 (1 - 2\zeta^2) \Big] = 0$$

$$\omega = \omega_n \sqrt{1 - 2\zeta^2}$$
, $(\omega = 0, \text{ omited})$

$$\frac{\mathrm{d}^2 f(\omega)}{\mathrm{d}\omega^2} = \frac{4}{\omega_n^4} \left[3\omega^2 - \omega_n^2 (1 - 2\zeta^2) \right]$$

$$\frac{\mathrm{d}^2 f(\omega)}{\mathrm{d}\omega^2}\bigg|_{\omega=\omega_n\sqrt{1-2\zeta^2}} = \frac{8}{\omega_n^2} (1-2\zeta^2)$$

when
$$1-2\zeta^2 > 0$$
, $\frac{d^2 f(\omega)}{d\omega^2}\Big|_{\omega=\omega_n\sqrt{1-2\zeta^2}} > 0$

$$\omega = \omega_n \sqrt{1 - 2\zeta^2}, \quad f(\omega) \min \Rightarrow A(\omega) = |G(j\omega)| \max$$

谐振频率
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}, 0 \le \zeta \le 0.707$$
 (5.14)

谐振峰值
$$M_{p\omega} = \left| G(j\omega_{p\omega}) \right| = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$$
 (5.15)

条件
$$1-2\zeta^2 > 0, \zeta < 0.707$$

即 $0 < \zeta < 0.707$

3) Complex Conjugate Zeros 二阶微分环节

$$G(j\omega) = 1 - \left(\frac{\omega}{\omega_n}\right)^2 + j2\zeta \left(\frac{\omega}{\omega_n}\right), (0 \le \zeta < 1)$$
 (5.16)

其Bode图与二阶振荡环节的Bode图关于横轴对称

Draw the Bode diagram according the basic factors.

由基本(典型)环节的幅频、相频曲线,绘制系统的Bode图曲线

E5.1>
$$G(s) = \frac{2500(s+10)}{s(s+2)(s^2+30s+2500)}$$
 draw the Bode diagram

$$G(j\omega) = \frac{2500(j\omega + 10)}{j\omega(j\omega + 2)[(j\omega)^{2} + j30\omega + 2500]}$$
$$= \frac{5(1+j0.1\omega)}{j\omega(1+j0.5\omega) \left[1 - \left(\frac{\omega}{50}\right)^{2} + j0.6\frac{\omega}{50}\right]}$$

5 different factors in the transfer function:

1, 5; 2,
$$\frac{1}{j\omega}$$
; 3, $\frac{1}{1+j0.5\omega}$; 4, $1+j0.1\omega$; 5, $\frac{1}{1-\left(\frac{\omega}{50}\right)^2+j0.6\frac{\omega}{50}}$

- 幅频特性 (The logarithmic magnitude)
- 画每个环节(不包括比例环节)的渐近线(折线),代数相加; (1)
- 20lg5=14(dB), 将0dB线下移14dB(即在原坐标上加14dB);
- 误差修正: (第(2)/(3)步可交换)

(着重转折点)

记:

可计算几个点
$$\omega_n = 2$$
: $L_2 = -20 \lg \sqrt{1 + \left(\frac{\omega}{2}\right)^2}$

$$\omega_n = 10: L_{10} = 20 \lg \sqrt{1 + \left(\frac{\omega}{10}\right)^2}$$

$$\omega_n = 50: L_{50} = -20 \lg \sqrt{\left[1 - \left(\frac{\omega}{50}\right)^2\right]^2 + \left(\frac{0.6\omega}{50}\right)^2}$$

积分
$$\frac{1}{j\omega}$$
: $L_I = -20 \lg \omega$

原坐标下	(a) ω=2 处	(b) ω= 10 处	(c) ω= 50 处	(d) ω=30 处
	$L_2 = -3.01$	$L_2 = -14.15$	$L_2 = -27.97$	$L_2 = -23.54$
	$L_{10} = 0.17$	$L_{10} = 3.01$	$L_{10} = 14.15$	$L_{10} = 10$
	$L_{50} = 0.01$	$L_{50} = 0.29$	$L_{50} = 4.44$	$L_{50} = 2.68$
	L_I = -6.02	$L_I = -20$	$L_I = -33.98$	L_I = -29.54
	L = -8.85	L = -30.85	L = -43.36	L = -40.40
+ 14				
新坐标下	=5.15	= -16.85	= -29.36	= -26.40

The logarithmic magnitude:

2. The phase angle

相频特性曲线可以直接计算几个点:

ω < 50	$90^{\circ} + \varphi(\omega) = tg^{-1}0.1\omega - tg^{-1}0.5\omega - tg^{-1}\frac{0.6\omega/50}{1 - (\omega/50)^2}$									
ω	0.2	1	2	5	10	20	30	50		
$\varphi(\omega)$	-94.4°	-111.5°	-125.1°	-135.1°	-130.8°	-126.8°	-140.0°	-189.0°		
ω > 50	$90^{\circ} + \varphi(\omega) = tg^{-1}0.1\omega - tg^{-1}0.5\omega - 180^{\circ} + tg^{-1}\frac{0.6\omega/50}{(\omega/50)^2 - 1}$									
ω	70	100	500							
$\varphi(\omega)$	-235.3°	-252.8°	-267.4°							

The Phase angle

Frequency (rad/sec)

• Bode Diagram of $G(j\omega)$

5.3 Nyquist Stability Criterion 奈奎斯特稳定性判据⁵¹

1932, H.Nyquist proposed the **Nyquist** Criterion.

The methods to determine the stability of a system *without* resolving the characteristic equation.

- Routh-Hurwitz: 适用于特征方程为代数方程 的系统,不适用于时滞系统;
- Root Locus:对于时滞系统有效,但很麻烦;
- Nyquist Criterion: 利用开环频率特性 $(G(j\omega)H(j\omega))$ 判断闭环系统稳定性的一种图解方法;

5.3 Nyquist Stability Criterion 奈奎斯特稳定性判据⁵²

Nyquist判据特点:

- 1) 应用方便:分析时滞系统的稳定性也较方便,也可推广到多变量系统,以及分析某类非线性系统的稳定性;
- 2) 开环频率特性可以通过试验测取,这对于不易建模的系统很有意义。

Nyquist判据判断特征方程1+G(s)H(s)=0在s右半平面内特征根的数目,其理论基础是复变函数的映射定理(Cauchy定理)。

5.3.1 Cauchy's Theorem

Let

$$F(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{b_m \prod_{i=1}^m (s + z_i)}{a_n \prod_{i=1}^n (s + p_i)}$$
+i\omega is a complex number

 $s = \sigma + j\omega$ is a complex number

Cauchy's Theorem: If a contour Γ_S in the s-plane encircles Ppoles and \mathbb{Z} zeros of F(s) and does **not** pass through any poles or zeros of F(s) and the traversal is in the clockwise direction along the contour, the corresponding contour Γ_F in the F(s)-plane encircles the origin of the F(s)-plane N=Z-Ptimes in the clockwise direction.

N 的方向: 顺时针方向为正, 逆时针方向为负

5.3.1 Cauchy's Theorem

设

接
$$F(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{b_m \prod_{i=1}^m (s + z_i)}{a_n \prod_{j=1}^n (s + p_j)}$$

$$s = \sigma + j\omega$$
 是复变量

映射定理: 若F(s)在S平面上的闭曲线 Γ_s 的内部共有P个极点 和Z个零点。设 Γ_S **不经过**F(S)的任何零点和极点,则 Γ_S 唯一 的映射到F(s)平面上的一条闭曲线 Γ_F , 当 s 按顺时针方向沿 Γ_{S} 变化一周时,在F(s)平面上,轨迹F(s)按顺时针方向沿 Γ_{F} 包围原点的周数N等于Z-P

N 的方向: 顺时针方向为正, 逆时针方向为负

5.3.1 Cauchy's Theorem

According to the *Cauchy's theorem*, we can get the number of difference of the poles and zeros encircled in the contour Γ_s in the s-plane from the number that the corresponding contour in the F(s)-plane encircles the origin in the clockwise direction

根据*映射定理*,由F平面上 Γ_F 包围原点的周数,可知S平面上 Γ_S 中的零点数与极点数之差

 Γ_F contour

For example, let

$$F(s) = \frac{(s+z_1)(s+z_2)}{(s+p_1)(s+p_2)} \xrightarrow{-p_2} 0 \xrightarrow{0-p_1} 0$$

$$F(s) = |F(s)| \angle F(s)$$

[F]

In the figure: 1 zero is enclosed within Γ_S , as s traverses 360° around Γ_S clockwise, $\Delta\phi_{z1}=2\pi$, $\Delta\phi_{z2}=0$, $\Delta\phi_{p1}=0$, $\Delta\phi_{p2}=0$.

[S]

Thus the net angle $\Delta \angle F(s) = 2\pi$, on [F]-plane Γ_F encircles the origin once in clockwise direction.

If Γ_S encloses \mathbb{Z} zeros and \mathbb{P} poles.

The net angle of Γ_F of the contour in the

F(s)-plane is:

$$\Delta \phi_F = \Delta \phi_Z - \Delta \phi_P = 2\pi Z - 2\pi P$$

即当S沿 Γ_S 顺时针方向移动一周时,映射曲线 Γ_F 在 Γ_F 2平面的相角变化为:

$$2\pi N = 2\pi Z - 2\pi P$$

The net number of encirclements of the F(s)-plane is:

因此, Γ_F 顺时针包围原点的周数为:

$$N = Z - P$$

根据开环幅相频率特性图判断闭环系统的稳定性

对于闭环控制系统:

িই
$$G(s) = \frac{K_1 P_1(s)}{Q_1(s)}$$
 $H(s) = \frac{K_2 P_2(s)}{Q_2(s)}$

开环传述:
$$G(s)H(s) = \frac{K_1P_1(s)}{Q_1(s)} \frac{K_2P_2(s)}{Q_2(s)} = \frac{KP(s)}{Q(s)} = K \frac{\prod_{i=1}^{m} (s+z_{oi})}{\prod_{i=1}^{n} (s+p_{oj})}$$

河坏传**派**:
$$\frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{K_1 P_1(s)Q_2(s)}{Q(s) + KP(s)} = \frac{K_1 P_1(s)Q_2(s)}{D(s)}$$

特征多项式: D(s) = Q(s) + KP(s)

——开环传函G(s)H(s)的分母与分子之和

Let
$$F(s) = \frac{D(s)}{Q(s)} = 1 + \frac{KP(s)}{Q(s)} = 1 + G(s)H(s)$$

The **Nyquist contour** that encloses the entire right-hand s-plane clockwise. Nyquist contour passes along the $j\omega$ -axis and completed by a semicircular path of radius r, where r approaches infinity.

在s平面上做闭曲线 Γ_S :整个虚轴和s右半平面上半径为无穷大的半圆—称为Nyquist曲线(按顺时针方向),也称为"D形围线"(形状象字母D)

According to Cauchy's theorem: the net number N of encirclements of the origin of the F(s)-plane as s traverses along Nyquist contour a circle $(\omega:-\infty\to\infty)$, is:

由映射定理: s 顺时针沿着D形围线 Γ_S 变化一周时(ω :- $\infty \to \infty$), F(s)在[F]平面上的轨迹 Γ_F 顺时针包围原点的周数N为:

$$N = Z - P \tag{5.17}$$

$$F(s) = \frac{D(s)}{Q(s)} = 1 + \frac{KP(s)}{Q(s)} = 1 + G(s)H(s)$$

Z = F(s)在S右半平面的零点数

= 特征多项式D(s)在S右半平面的零点数(即在S右半平面的特征根数)

P = F(s)在S右半平面的极点数

= 开环传函在S右半平面的极点数(Q(s)的零点)

If we know P, $N \rightarrow$ we can get ZClosed loop system stable — Z = 0,

闭环系统稳定的充要条件

$$N = -P \tag{5.18}$$

即 s 顺时针沿 D 形围线 Γ_S 变化一周时,在[1+GH]平面上,1+G(s)H(s) 的轨迹 Γ_F 须逆时针包围原点 P 周。这就是Nyquist稳定判据的基本内容。

- 几点注记
- 1. 在[1+*GH*]平面上轨迹 1+*G*(*s*)*H*(*s*) 对原点的包围周数,等于在[*GH*] 平面上轨迹 *G*(*s*)*H*(*s*)对(-1,0)点的包围周数;

Nyquist稳定性判据 [G(s)H(s) 在 $j\omega$ 轴上无零点、极点的情况]: G(s)H(s) 在 s 右半平面有 P 个极点,且 $\lim_{s\to\infty}G(s)H(s)$ = 常量,闭环系统稳定的充要条件为,当 s 顺时针沿 D 形围线变化一周时,[GH]平面上G(s)H(s) 的轨迹须逆时针包围 (-1,0) 点 P 周。

2. n > m时, $\lim_{s \to \infty} G(s)H(s) = 0$,当s沿D形围线的无穷大半 圆变化时,G(s)H(s)映射为[GH]平面上一点——原点。因此,当n > m时,只需要考虑s沿虚轴变化($s = j\omega$, $-\infty < \omega < \infty$) 时, $G(j\omega)H(j\omega)$ 的轨迹——用频率特性代替传函。并且, $G(j\omega)H(j\omega)$ 和 $G(-j\omega)H(-j\omega)$ 关于实轴对称;

- 3. A. 开环不稳定, $P \neq 0$ 。要使闭环稳定,须 $Z = 0 \rightarrow N = -P$,即 G(s)H(s)轨迹须逆时针包围(-1,0)点P周;
 - B. 开环稳定, P=0。要使闭环稳定,须Z=0→N =0, 即 G(s)H(s)轨迹须不包围(-1,0)点;

对于闭环不稳定系统,由Nyquist判据可知s右半平面上的特征根数为:

$$Z = N + P$$

(5.19)

4. G(s)H(s)在s平面的虚轴上有极点或者零点时

问题: D形围线不能通过G(s)H(s)的零点或极点。

处理方法:

对于G(s)H(s)在s平面上的原点或虚轴上有极(零)点,在s平面上作**D**形围线时应避开这些点——在这些点的右侧用半径为 $\varepsilon(\varepsilon \to 0)$ 的半圆绕过这些点。(若在这些点的左侧画 ε -半圆,则这些点要记入**D**形围线中的开环极(零)点数。)

<**E5.2**> The Open-loop transfer function of a unit feedback

66

system is
$$G(s)H(s) = \frac{K}{(T_1s+1)(T_2s+1)}$$
, where $T_1, T_2 > 0$

Determine whether the system is stable by using the Nyquist stability criterion.

Solution:

- (1) Determine the Γ_{GH} -contour: Determine N, the number of encirclements of the (-1,0) point of the GH(s)-plane
 - ① Select the Nyquist contour
 - 2 Map the Nyquist contour into the GH(s)-plane

$$GH(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)}$$

$$A: s = 0e^{j90^{\circ}} \longrightarrow A': GH(s) = Ke^{j0^{\circ}}$$

$$B: s = \infty e^{j90^{\circ}} \longrightarrow B': GH(s) = \frac{K}{T_1 T_2 s^2} = \frac{K}{\infty e^{j90^{\circ} \times 2}} = 0e^{-j180^{\circ}}$$

$$C: s = \infty e^{j0^{\circ}} \longrightarrow C': GH(s) = 0e^{j0^{\circ}}$$

$$C: s = \infty e^{j0}$$
 \longrightarrow $C': GH(s) = 0e^{j0}$

$$A \to B$$
: $s = j\omega(\omega: 0^+ \to \infty)$

$$A' \to B'$$
: $GH(s) = \frac{K}{(1+j\omega T_1)(1+j\omega T_2)}$

$$= \frac{K}{\sqrt{1 + (\omega T_1)^2} \sqrt{1 + (\omega T_2)^2}} \left(\left(-tg^{-1} \omega T_1 - tg^{-1} \omega T_2 \right) \right)$$

$$\left(-tg^{-1}\omega T_1 - tg^{-1}\omega T_2\right)$$

$$GH(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)}$$

$$D: s = \infty e^{-j90^{\circ}} \longrightarrow D': GH(s) = \frac{K}{T_1 T_2 s^2} = \frac{K}{\infty e^{-j90^{\circ} \times 2}} = 0 e^{j180^{\circ}}$$

$$E: s = 0 e^{-j90^{\circ}} \longrightarrow E': GH(s) = K e^{j0^{\circ}}$$

$$E: s = 0e^{-j90^{\circ}} \quad \longrightarrow \quad E': GH(s) = Ke^{j}$$

GH(s)Mapping

$$D \rightarrow E$$
: $s = -j\omega(\omega : -\infty \rightarrow 0^{-})$

$$D' \to E': \quad GH(s) = \frac{K}{(1+j\omega T_1)(1+j\omega T_2)}$$

$$= \frac{K}{\sqrt{1 + (\omega T_1)^2} \sqrt{1 + (\omega T_2)^2}} L \left(-tg^{-1}\omega T_1 - tg^{-1}\omega T_2\right)$$

Locates on the 1st and 2nd quadrants

$$\left(-tg^{-1}\omega T_1 - tg^{-1}\omega T_2\right)$$

(2) Determine the stability of the system

71

The open –loop transfer function has no poles in the right-hand s-plane, therefore P=0

The GH(s) – *contour does not encircle the* -1 *point,*

thus

$$N = 0$$

Therefore

$$Z = N + P = 0$$

The system is stable.

73

< E5.3 > The Open-loop transfer function of a unit feedback system is

$$G(s)H(s) = \frac{K}{s(Ts+1)}$$

Determine whether the system

is stable by using the Nyquist

stability criterion.

$$A: s = \infty e^{-j90^{\circ}}$$

$$A': G(s)H(s) = \frac{K}{Ts^2}$$

$$=\frac{K}{\infty e^{-j90^{\circ}\times 2}}=0e^{j180^{\circ}}$$

$$P = 0, N = 0,$$

$$Z = N + P = 0$$

$$B: s = \varepsilon e^{-j90^{\circ}}$$

$$B': G(s)H(s) = \frac{K}{s} = \infty e^{j90^{\circ}} \stackrel{\text{def}}{\Leftarrow} : F: s = \varepsilon e^{\pm j180^{\circ}}$$

$$C: s = \varepsilon e^{j0^{\circ}}$$

$$C': G(s)H(s) = \infty e^{j0^{\circ}}$$

$$C: s = \varepsilon e^{j0^{\circ}} \qquad C': G(s)H(s) = \infty e^{j0^{\circ}} \qquad F': G(s)H(s) = \infty e^{\mp j180^{\circ}}$$

$$D: s = \varepsilon e^{j90^{\circ}}$$

$$D': G(s)H(s) = \infty e^{-j90^{\circ}}$$
 $\mathbb{N} = 1, N = -1,$

$$P = 1, N = -1$$

$$E: s = \infty e^{j90}$$

$$E: s = \infty e^{j90^{\circ}}$$
 $E': G(s)H(s) = 0e^{-j180^{\circ}}$

$$Z = N + P = 0$$

75

<E5.4> The Open-loop transfer function of a unit feedback system is

$$G(s)H(s) = \frac{K}{s(0.2s+1)(0.5s+1)}$$
 [s]

 $\begin{bmatrix} GH \end{bmatrix}$ $\begin{bmatrix} GH \end{bmatrix}$ $\begin{bmatrix} GH \end{bmatrix}$

Determine whether the system is stable by using the Nyquist

stability criterion.

(2)
$$B: s = \varepsilon e^{-j90^{\circ}}$$
 $B': G(s)H(s) = \frac{K}{s} = \infty e^{j90^{\circ}}$

(3) Determine the point where the GH(s)-locus intersects the real axis

Let
$$g(s) = s(0.2s + 1)(0.5s + 1) = 0.1s^3 + 0.7s^2 + s$$

 $v = \text{Im}[g(j\omega)] = 0$
 $v = \text{Im}[-0.1 j\omega^3 - 0.7\omega^2 + j\omega] = \omega(1-0.1\omega^2) = 0$
 $\omega = -\sqrt{10}$, $G(j\omega)H(j\omega)|_{\omega = -\sqrt{10}} = -K/7$

(4) $C: s = \varepsilon e^{j0^{\circ}}$

(6) $E: s = \infty e^{j90^{\circ}}$ $E': G(s)H(s) = 0e^{-j270^{\circ}}$

Determine the stability of the system:

a) When K < 7, N=0 and P=0, thus Z=N+P=0, System is stable.

[s]

b) When K>7, GH(s) contour encircles the -1 point twice, thus N=2 and P=0, thus Z=N+P=2, which means there are two poles on the right hand of s-plane, system is unstable. 有两个 闭环极点(特征根)在s右半平面,闭环系统不稳定

77

78

< E5.5 The Open-loop transfer function of a unit feedback system is

$$G(s)H(s) = \frac{K(s+3)}{s(s-1)}$$

 $\begin{array}{c|c}
 & j\omega \\
\hline
 & D \\
\hline
 & D \\
\hline
 & O \\
\end{array}$

stability criterion.

(1)
$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{K}{s} = 0e^{j90^{\circ}}$

(2)
$$B: s = \varepsilon e^{-j90^{\circ}}$$
 $B': G(s)H(s) = -\frac{K}{s} = \infty e^{j270^{\circ}}$

(3) Determine the point where the GH(s)-locus intersects the real axis

$$G(j\omega)H(j\omega) = \frac{K(j\omega+3)}{j\omega(j\omega-1)} = -\frac{K(\omega-3j)(1+j\omega)}{\omega(\omega^2+1)} = -\frac{K}{\omega(\omega^2+1)} \left[4\omega + j(\omega^2-3)\right]$$

$$v = \text{Im}[G(j\omega)H(j\omega)] = 0, \omega^2 - 3 = 0, \omega = \pm\sqrt{3}$$

$$u = \text{Re}[G(j\omega)H(j\omega)]\Big|_{\omega = \pm\sqrt{3}} = \frac{K4\omega}{\omega(\omega^2 + 1)}\Big|_{\omega = \pm\sqrt{3}} = -K$$

(4) $C: s = \varepsilon e^{j0^{\circ}}$ $C': G(s)H(s) = -\frac{K}{s} = \infty e^{j180^{\circ}}$ $B = \int_{C'}^{j\omega} G(s) ds$ $C' : G(s)H(s) = -\frac{K}{s} = \infty e^{j180^{\circ}}$

(5) Because the *GH*(s) contour is symmetric to the real axis. 由"对称于实轴",可得到另一半Nyquist轨

Determine the stability of the system:

- a) When K>1, N=-1 and P=1, thus Z=N+P=0, open-loop system is unstable, the closed-loop system is stable
- b) When K<1, N=1 and P=1, thus Z=N+P=2, the closed-loop system is unstable

80

zhaoduo@home.swjtu.edu.cn

< E5.6 The Open-loop transfer function of a unit feedback system is

81

$$G(s)H(s) = \frac{K(0.5s+1)(s+1)}{(10s+1)(s-1)},$$
 Determine the range of K for which the

system is stable by using the Nyquist criterion.

$$A: s = \infty e^{-j90^{\circ}}$$

$$A: s = \infty e^{-j90^{\circ}}$$
 $A': G(s)H(s) = \frac{K}{20}e^{j0^{\circ}}$
 $B: s = 0e^{-j90^{\circ}}$ $B': G(s)H(s) = -K = Ke^{j180^{\circ}}$

$$B: s = 0e^{-j90^{\circ}}$$

$$B': G(s)H(s) = -K = Ke^{j180^{\circ}}$$

$$C: s = 0e^{j90^{\circ}}$$

C':
$$G(s)H(s) = -K = Ke^{j180^{\circ}}$$

$$D: s = \infty e^{j90}$$

$$D': G(s)H(s) = \frac{K}{20}e^{j0^{\circ}}$$

$$E: s = \infty e^{j0^{\circ}}$$

$$C: s = 0e^{j90^{\circ}} \qquad C': G(s)H(s) = -K = Ke^{j180^{\circ}}$$

$$D: s = \infty e^{j90^{\circ}} \qquad D': G(s)H(s) = \frac{K}{20}e^{j0^{\circ}}$$

$$E: s = \infty e^{j0^{\circ}} \qquad E': G(s)H(s) = \frac{K}{20}e^{j0^{\circ}}$$

 $\checkmark 10s+1$

82 Bode Diagram Magnitude (dB) -135 10² Frequency (rad/sec)

Determine the point that between A'-B' where the GH(s)-locus intersects the real axis. $A' \rightarrow B'$ 之间,与实轴的交点:

$$G(j\omega)H(j\omega) = \frac{0.5K(2-\omega^2+j3\omega)}{-(1+10\omega^2+j9\omega)} \cdot \frac{1+10\omega^2-j9\omega^2}{1+10\omega^2-j9\omega} \cdot \frac{1+10\omega^2-j9\omega^2}{1+10\omega^2-j9\omega}$$
 Frequency (rad/sec)

$$= \frac{0.5K[2 + 46\omega^2 - 10\omega^4 + j\omega(39\omega^2 - 15)]}{(1 + 10\omega^2)^2 + (9\omega)^2}$$

$$\varphi(\omega) = \tan^{-1}(0.5\omega) + \tan^{-1}(\omega) - \tan^{-1}(10\omega) - [\pi - \tan^{-1}(\omega)]$$
$$= \tan^{-1}(0.5\omega) + 2\tan^{-1}(\omega) - \tan^{-1}(10\omega) - \pi$$

$$v = \text{Im}[G(j\omega)H(j\omega)] = 0, \omega^2 = \frac{15}{39} = \frac{5}{13}$$

$$v = \text{Im}[G(j\omega)H(j\omega)] = 0, \omega^{2} = \frac{15}{39} = \frac{5}{13}$$

$$u = \text{Re}[G(j\omega)H(j\omega)]_{\omega^{2} = \frac{5}{13}} = \frac{0.5K[2 + 46 \times \frac{5}{13} - 10 \times \left(\frac{5}{13}\right)^{2}]}{(1 + 10 \times \frac{5}{13})^{2} + 81 \times \frac{5}{13}} = -\frac{K}{6}$$

Determine the stability of the system:

Because P=1; when K>6, N=-1, Z=N+P=0.

So the range of K for which the system is stable is $6 < K < \infty$

闭环系统稳定的K值的范围: $6 < K < \infty$

5.4 Stability margin of control system

- 84
- Stability Margin: is the measure of the relative stability of system which represents the "distance" between the critical stable work point.
- 稳定裕量:系统相对稳定性的一种度量,反映系统离临界稳定点的"距离"。
 - 一个工程上可用的控制系统,不仅应稳定,而且应有相当的稳 定裕量。

最小相位系统的稳定裕量与频率特性的关系是确定的。这里主要讨论最小相位系统的稳定裕量的计算。非最小相位系统可类似于最小相位系统进行定义和计算稳定裕量。

Minimum Phase System: A system with transfer function G(s) is called minimum phase if it has no pole or zero in the right half s-plane.

最小相位系统:

在s右半平面没有极点和零点,且不含时滞环节的传递函数称为最小相位传递函数,反之称为非最小相位传递函数数

具有最小相位传递函数的系统称为最小相位系统系统

Key Words:

Minimum Phase System

Non-minimum Phase System

Stability Margin (Phase Margin/Gain Margin)

The characteristics of a minimum phase system:

1) When ω varies from zero to infinity, the range of phase shift of a minimum phase system is the least possible corresponding to systems with same amplitude frequency characteristics.

在具有相同幅频特性的系统中, $\omega:0\to\infty$ 时,最小相位系统相角变化最小

<E5.7> Consider the following two system.

$$G_1(s) = \frac{1 + T_2 s}{1 + T_1 s}, \quad G_2(s) = \frac{1 - T_2 s}{1 + T_1 s}, \quad T_1 > T_2 > 0$$

A minimum phase system

A non-minimum phase system

The frequency characteristics of the two systems are

$$G_{1}(j\omega) = \frac{1+j\omega T_{2}}{1+j\omega T_{1}}$$

$$G_{2}(j\omega) = \frac{1-j\omega T_{2}}{1+j\omega T_{1}}$$

89

$$G_1(j\omega) = \frac{1 + j\omega T_2}{1 + j\omega T_1}$$

$$\begin{cases} \left| G_1(j\omega) \right| = \sqrt{\frac{1 + \omega^2 T_2^2}{1 + \omega^2 T_1^2}} \\ \phi_1(\omega) = tg^{-1}\omega T_2 - tg^{-1}\omega T_1 \end{cases}$$

$$G_2(j\omega) = \frac{1 - j\omega T_2}{1 + j\omega T_1}$$

$$G_2(j\omega) = \frac{1 - j\omega T_2}{1 + j\omega T_1}$$

$$\begin{cases}
|G_{1}(j\omega)| = \sqrt{\frac{1+\omega^{2}T_{2}^{2}}{1+\omega^{2}T_{1}^{2}}} \\
\phi_{1}(\omega) = tg^{-1}\omega T_{2} - tg^{-1}\omega T_{1}
\end{cases}
\begin{cases}
|G_{2}(j\omega)| = \sqrt{\frac{1+\omega^{2}T_{2}^{2}}{1+\omega^{2}T_{1}^{2}}} \\
\phi_{2}(\omega) = tg^{-1}(-\omega T_{2}) - tg^{-1}\omega T_{1}
\end{cases}$$

When $\omega: 0 \to \infty$, we have

$$|G_1(j\omega)| = |G_2(j\omega)|$$

$$\Delta \varphi_1(\omega) < \Delta \varphi_2(\omega)$$

西南交通大學

zhaoduo@home.swjtu.edu.cn

时滞环节是非最小相位的, 其频率特性

$$e^{-\tau s}\Big|_{s=j\omega} = e^{-j\omega\tau} = A(\omega)e^{j\varphi(\omega)}$$

$$A(\omega) = 1, \varphi(\omega) = -\omega \tau$$
(弧度) = -57.3 $\omega \tau$ (度)

系统的**相位滞后越大**,其稳定性问题就越复杂,所以控制系统尽可能避免具有非最小相位传函的元件

2) When ω is going to infinity, the slope of logarithm amplitude characteristic and the phase angle of a minimum phase system are respectively:

当 ω →∞时,最小相位系统对数幅频特性的斜率和相角分别为:

Slope
$$-20(n-m)dB/dec$$

Phase angle $-90^{\circ}(n-m)$

n: The order of the denominator polynomial of transfer function

m: The order of the numerator polynomial of transfer function

$\omega = \infty$	最小相位系统	非最小相位系统
幅频特性的斜率	-20(<i>n</i> - <i>m</i>)dB/dec	-20(<i>n</i> - <i>m</i>)dB/dec
相频	相角为-90°(n-m)	相角滞后大于90°(n-m)

3) For minimum phase systems, the phase of the frequency response is uniquely determined by its magnitude.

对于最小相位系统, 其相频特性由它的幅频特性唯一确定

With the above characteristics, the phase of a minimum phase system can be sketched versus frequency using the information contained in the magnitude plot.

The stability margins of a stable minimum phase margin system can be represented as **Phase Margin** and **Gain Margin** respectively.

最小相位系统的稳定裕量,分为相角裕量和增益裕量。

1. **Phase Margin** Φ_{pm} : Phase margin is defined as the amount of phase shift of the $GH(j\omega)$ at unity magnitude that will result in a marginally stable system with intersections of the (-1,0) point on the Nyquist diagram.

相角裕量给出了保证系统稳定的最大冗余相角。

当开环频率特性的幅值等于 $|G(j\omega)H(j\omega)|=1$ 时,其相角与 -180° 之差称为 "系统的相角裕量 Φ_{pm} "。

$$\phi_{pm} = \varphi(\omega_c) - (-180^\circ) = 180^\circ + \varphi(\omega_c)$$
 (5.20)

其中, $\varphi(\omega_c) = \angle G(j\omega_c) H(j\omega_c)$,由正实轴顺时针转到矢量 $G(j\omega_c)$ $H(j\omega_c)$ 的角度 $(\varphi(\omega_c)$ 是一个负角)

 ω_c : 幅穿频率,由 $|G(j\omega_c)H(j\omega_c)|=1$ 确定

Phase margin $\phi_{pm} > 0$

闭环系统稳定

Phase margin $\phi_{DM} < 0$

闭环系统不稳定

2. Gain Margin GM: The gain margin is defined as the reciprocal of the gain $|GH(j\omega)|$ at the frequency at which the phase angle reaches -180°.

增益裕量定义为当 $GH(j\omega)$ 的相角为-180°时 $GH(j\omega)$ 幅值的倒数:

$$g_m = \frac{1}{|GH(j\omega_g)|} \tag{5.21}$$

or

$$GM = 20 \lg g_m = -20 \lg |GH(j\omega_g)|$$
 (dB) (5.22)

 ω_g : 相穿频率,由 $\varphi(\omega_g) = \angle G(j\omega_g)H(j\omega_g) = -180$ ° 确定

96

 $\begin{array}{c}
Im \\
\hline
\frac{1}{g_m} \\
\hline
-1 \\
GH(j\omega)
\end{array}$ Re

Gain margin $g_m > 1$, GM > 0

称为正增益裕量 $(20lg|G(j\omega_g)H(j\omega_g)|<0)$ 闭环系统稳定

Gain margin $g_m < 1$, GM < 0

称为负增益裕量 (20lg| $G(j\omega_g)H(j\omega_g)$ |> 0) **闭环系统不稳定**

最小相位系统,相角裕量 γ 和增益裕量 g_m 均为正值时,闭环系统稳定

稳定系统

正相角裕量 $\Phi_{pm}>0$ °

正增益裕量 GM>0dB

不稳定系统

负相角裕量 Φ_{pm} <0°

负增益裕量 GM<0dB

<E5.7> *The open-loop transfer function of a unity*

feedback system is
$$G(s) = \frac{K}{s(0.2s+1)(0.05s+1)}$$

Determine the phase margin and gain margin of the system when K=1.

Solution

When K=1, the open-loop frequency characteristic of the system is

$$GH(j\omega) = \frac{1}{j\omega(0.2j\omega+1)(0.05j\omega+1)}$$

<E5.7> 某单位反馈控制系统其开环传递函数为

$$G(s) = \frac{K}{s(0.2s+1)(0.05s+1)}$$

当K=1时,确定该系统增益裕量和相位裕量.

解:

当K=1,系统开环频率特性如下:

$$GH(j\omega) = \frac{1}{j\omega(0.2j\omega+1)(0.05j\omega+1)}$$

(1) 确定系统的相位裕量 Determine the phase margin

$$GH(j\omega) = \frac{1}{j\omega(0.2j\omega+1)(0.05j\omega+1)}$$

$$|GH(j\omega_c)| = \frac{1}{\omega_c \sqrt{(0.2\omega_c)^2 + 1} \sqrt{(0.05\omega_c)^2 + 1}} = 1$$

$$\rightarrow \omega_c \approx 1 rad / sec$$

$$\phi(\omega_c) = -90^{\circ} - tg^{-1}0.2\omega_c - tg^{-1}0.05\omega_c = -104.17^{\circ}$$

$$\phi_{pm} = 180^{\circ} + \phi(\omega_c) \approx 76^{\circ}$$

(2)确定系统的增益裕量 Determine the gain margin

$$GH(j\omega) = \frac{1}{j\omega(0.2j\omega+1)(0.05j\omega+1)}$$

$$\phi(\omega) = -90^{\circ} - tg^{-1}0.2\omega - tg^{-1}0.05\omega$$

$$\phi(\omega_g) = -90^{\circ} - tg^{-1}0.2\omega_g - tg^{-1}0.05\omega_g = -180^{\circ}$$

$$tg^{-1}0.2\omega_g + tg^{-1}0.05\omega_g = 90^\circ$$

对上式两边同时进行正切运算。Operating tangent at the both sides of the equation, we have

$$\frac{0.2\omega_g + 0.05\omega_g}{1 - 0.2\omega_g \times 0.05\omega_g} = \infty$$

$$1 - 0.2\omega_g \times 0.05\omega_g = 0$$

$$\rightarrow \omega_g = 10 rad / sec$$

$$|GH(j\omega_g)| = \frac{1}{\omega_g \sqrt{(0.2\omega_g)^2 + 1} \sqrt{(0.05\omega_g)^2 + 1}} = 0.04$$

$$GM = -20 \lg |GH(j\omega_g)| = 28 dB$$

Frequency (rad/sec)

西南交通大學

zhaoduo@home.swjtu.edu.cn

Summary

频率响应法是经典控制理论的重要组成部分,是控制系统分析和综合的一种实用工程方法。要求:

- 掌握频率响应法的概念;
- 熟悉系统Bode图;
- 熟练应用Nyquist稳定性判据;
- > 熟练掌握 γ , g_m , ω_c , ω_g 的概念与定义,以及 M_r , ω_r 的概念与定义

Homework

1、绘制下列传递函数的Bode图

$$G(s)H(s) = \frac{1}{(1+0.5s)(1+2s)}$$

$$G(s)H(s) = \frac{(1+0.5s)}{s^2}$$

$$G(s)H(s) = \frac{s+10}{s^2+6s+10}$$

$$G(s)H(s) = \frac{s+10}{s^2+6s+10}$$

$$G(s)H(s) = \frac{30(s+8)}{s(s+2)(s+4)}$$

2、考虑题1给出的各个传递函数,用Nyquist判据判断每个 系统的稳定性,并给出N,P,Z的取值。

3、考虑下列的两个开环传递函数,画出其极坐标图,并用 Nyquist判据判断闭环系统的稳定性。针对稳定的系统, 通过考察极坐标图与实轴的交点,判断*K*的取值范围:

$$G(s)H(s) = \frac{K}{s(s^2 + s + 4)}$$

$$G(s)H(s) = \frac{K(s+2)}{s^2(s+4)}$$

- 4、某条件稳定的系统的极坐标图如下图所示
- a、已知系统的在s右半平面上无极点,试判断系统是否稳定,并确定s右半平面上是否有闭环特征根,如果有,有多少个;
- b、当图中圆点处表示-1 时,请判断系统是否 稳定;

5、某单位反馈系统的传递函数为:

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

- a、当K=4时,验证系统的增益裕度为3.5dB;
- b、如果希望增益裕度为16dB,请求出对应的K值;
- c、计算当 时,系统的相角裕度; $K = \sqrt{10}$

- 6、某集成电路的Bode图如下图所示:
- a、读图求出系统的增益 裕量和相角裕量;
- b、为了使相角裕量达到 60度,系统的增益应 该下降多少dB?

