(FCL) FUTURE
CITIES
LABORATORY
GLOBAL

Harnessing Household Travel Survey with Passively Collected Mobility Data

Prateek Bansal
Assistant Professor
National University of Singapore

Collaborators: Khoa Vo, Seung Woo Ham, Swapnil Mishra, Paolo Santi

Activity-based Travel Demand Model

ID	Synthetic activity schedules				
Index	Location	Time	Duration	Purpose	Mode
1	А	09:00	10 hours	Leisure	Car
N	E	09:00	8 hours	Commute	Bus

	Synthetic population					
	Age Gender Income					
	37	Male	>500			
ı						
	52	Female	300<			

Typical Data Sources

Household Travel Survey (HTS) Data

Collect travel diary of 1-3% of the population.

Limitation of HTS dataset

- Low spatiotemporal heterogeneity due to low sampling rate (~1-3%)
- Low frequency of data collection cannot handle shocks

Low Spatiotemporal Heterogeneity in Household Travel Survey (HTS)

HTS (Total = 20, ~0.4%)

Sample (N=20)

Depart ≤ 9:00

"Zero cell" problem

Depart > 9:00

Population (N=5400)

Depart ≤ 9:00

	а	b	С	Σ
а	300	300	400	1000
b	300	300	400	1000
С	400	200	200	800
Σ	1000	800	1000	2800

Only transit H-W trips

Depart > 9:00

	а	b	С	Σ
a	300	300	200	800
b	300	300	200	800
С	400	400	200	1000
Σ	1000	1000	600	2600

Potential Direction 1: Generative Modeling

 Generate beyond sample: Use generative models to increase the heterogeneity of HTS data

Example of structural zero: children having full-time jobs

Reference: Kim, E. J., & Bansal, P. (2023). A deep generative model for feasible and diverse population synthesis. Transportation Research Part C: Emerging Technologies, 148, 104053.

Potential Direction 1: Generative Modeling

LLMs + Generative Models

	Diversity		Feasibility	Overall Quality
Model	# of combinations	Recall	(Precision)	(F1 Score)
Prototypical agent	30,837	56.4%	100.0%	72.1%
Deep generative model	263,925	80.8%	81.4%	81.1%
LLM-BN	120,541	76.0%	95.3%	84.6%

Potential Direction 2: Data Fusion

 Data Fusion: Fuse HTS data with passively-collected data, such as Transit Smart Card (SC) and cellular signaling Data

Data sources	Socio-demographic	Activity purpose	Travel mode	Spatial attribute	Temporal attribute
HTS	High	High	High	Low	Low
PCM	Unavailable	Unavailable	Unavailable	High	High

Prior Research on **Data Fusion**

- 1) A novel data fusion method to leverage passively-collected mobility data in generating spatially-heterogeneous synthetic population (2025). **Transportation Research Part B: Methodological** 191, 103128.
- Collaborative generative adversarial networks for fusing household travel survey and smart card data to generate heterogeneous activity schedules in urban digital twins (2025).
 Transportation Research Part C: Emerging Technologies 176, 105125.
- 3) Harnessing household travel survey with smart card data to generate spatiotemporally heterogeneous activity schedules for transit users (Available at SSRN 4960458).
- 4) A data fusion framework to infer multi-modal time-dependent origin-destination travel demand matrices (Available at SSRN 5250605).
- 5) Scalable data fusion for generating disaggregate activity schedules (Available at SSRN 5259159).

Analytical Data Fusion of HTS with PCM data

Part 1: Fusion of HTS with SC Data to Derive Time-Dependent Origin-Destination (TD-OD) Matrices for All Travel Modes

Best suited for **cities with high public transit usage** (e.g., Singapore, Seoul, Beijing, London), where detailed TD-OD matrices are lacking for non-transit modes.

Part 2: Fusion of HTS with TD-OD Matrices to Generate Disaggregate Activity Schedules More **globally applicable** and offers a privacy-preserving alternative by relying on aggregated mobility patterns rather than individual-level traces.

A Framework To Generate Activity Schedules Using SC and HTS

Part 1: Mathematical formulation

i: target mode; w: OD; k: time

Sparse and noisy HTS observations

$$\{\ldots,(\beta_{wk}^i,\gamma_{wk}^i),\ldots\}$$

Mode share between target mode i and source mode + Sample count

Comprehensive and reliable PCM observations

$$\{\ldots,n_{wk}^{\mathrm{src}},\ldots\}$$

True travel demand for source mode

We can estimate the travel demand for target mode i

$$\hat{n}_{wk}^i = \hat{eta}_{wk}^i \cdot n_{wk}^{
m src}$$

Finding the mode share between target mode i and source mode $\hat{\beta}_{wk}^i$

We can derive the estimated travel demand for across all modes

$$\hat{n}_{wk} = \left(1 + \sum_{i=1}^{I} \hat{eta}_{wk}^{i}\right) \cdot n_{wk}^{ ext{src}}$$

Part 1: Adaptive multigranularity learning (AdaMGL) approach

Part 1: Validation (Seoul)

Part 1: Validation

Part 1: Validation

Part 2: Potential of TD-OD matrix: Motivation

Time-Dependent Origin-Destination (TD-OD) matrices

- Summarize mobility as trip volumes between locations over time.
- Easily obtained from PCM data.
- Preserves privacy as it is an aggregated form of mobility data.
- Covers higher proportion of the population.

Limitations:

- Lack of trip interdependencies.
- Absence of sociodemographic and trip-chain attribute details.

Balancing data utility and privacy is key for future mobility research.

Solution: Enhancing TD-OD Matrix with HTS data

Part 2: Conventional approach

Part 2: Proposed approach

Conventional:

First tour generation, then data fusion

Proposed:

First data fusion, then activity schedule generation

Part 2: Proposed Approach's Benefits

- **Feasibility**: The <u>activity schedule generation</u> in Stage 2 is be improved due to incorporation of socio-demographics and trip-chain attributes (i.e., trip-chain length and order) when determining the next activity location, start time and duration.
- Distribution preservation: The <u>data fusion</u> in Stage 1 minimizes distance from joint distribution of all attributes in HTS and preserves spatiotemporal distribution of TD-OD from PCM data.

• Spatiotemporal granularity: The <u>data fusion</u> in Stage 1 can decide the <u>efficient granularity</u> of the feature space to bridge the PCM data with the HTS data.

Part 2: Validation (Singapore case study)

Fit of joint distributions between age and spatiotemporal attributes—arrival time, origin, and destination

Part 2: Validation (Seoul case study)

(FCL) FUTURE
CITIES
LABORATORY
GLOBAL

Questions?

LinkedIn Page

(Please follow for updates)