Série 14

Exercice 1. On a defini un polygone generalise \mathbf{P} a $n \geq 3$ cotes comme etant le polygone generalise donc les sommets (ordonnes) sont les points

$$P_1 = P, P_2 = r(P), P_3 = r^2(P), \cdots, P_n = r^{n-1}(P), P_{n+1} = r^n(P) = P$$

ou r est une rotation qui engendre un groupe fini G^+ de rotations affines d'ordre n,

$$G^+ = r^{\mathbb{Z}} = \{ \mathrm{Id}, r, r^2, \cdots, r^{n-1} \}$$

et $P \in \mathbb{R}^2$ n'est pas le centre de la rotation r (et donc de toutes les rotations de G^+).

- 1. Montrer que $\mathbf{0}$ est le barycentre des sommets de \mathbf{P} .
- 2. Montrer que le translate **P** est l'image par une translation convenable d'un polygone generalise regulier dont tous les sommets sont situes sur un cercle centre en l'origine **0**. On peut donc se ramener et on supposera dans la suite que **P** est de cette derniere forme.
- 3. Soit s la symetrie d'axe (0, z). Pour tout entier i que vaut sr^is^{-1} ?
- 4. Montrer (sans avoir a faire de calculs trop explicites) que \mathbf{P} est invariant par s puis par tout le groupe dihedral d'ordre 2n, $G = \langle s, r \rangle$; on commencera par remarquer que P est invariant par s, puis que l'ensemble des sommets est globalement invariant par s et qu'un cote est envoye sur un (autre) cote.
- 5. Soit $z_1 \in \mathbb{C} \{0\}$ le nombre complexe representant P, quels sont les nombres complexes

$$z_2, \cdots, z_n, z_{n+1} = z_1$$

representant les autres sommes de \mathbf{P} ?

- 6. Montrer que pour tout $i=1,\cdots,n$ les cotes $[P_iP_{i+1}]$ sont de meme longueur.
- 7. Montrer que pour tout $i=1,\dots,n$, les angles (representes par des complexes de module 1) $\widehat{P_{i}P_{i+1}P_{i+2}}$ (on pose $P_{n+2}=P_2$) sont tous egaux.

Exercice 2. (sur les Polygones reguliers generalises)

1. Le logo suivant est le logo de la London Mathematical Society : qu'est ce qu'il represente geometriquement ? et en terme de groupes ?

- 2. Combien existe-t-il de (formes geometriques de) polygones generalises reguliers (croises ou non) a 10 cotes inscrits dans le cercle unite et dont un des sommets est le nombre complexe 1?.
- 3. Meme question pour 17 cotes?
- 4. Pour un nombres quelconque n de cotes?

Définition 1. Soint $\{P_0, \dots, P_n\}$ un ensemble fini de points du plan (qu'on identifiera au corps des nombres complexes \mathbb{C}). On dit qu'un point P est constructible a la regle et au compas (ou simplement constructible) a partir des points P_1, \dots, P_n si il est a l'intersection de deux droites, deux cercles ou de une droite et un cercle tels que

- les droites passent par deux points distincts de $\{P_0, \dots, P_n\}$,
- les cercles sont centres sur l'un des P_i et de rayon l'une des distance $d(P_j, P_k)$ pour $i, j, k \leq n$.

On dit qu'un point P est constructible a la regle et au compas (ou simplement constructible) si il existe une suite de points $\{P_0, \dots, P_n\}$ telle que

- $-P_0 = (0,0), P_1 = (1,0),$
- Pour $i \geqslant 1$, P_{i+1} est constructible a partir de $\{P_0, \dots, P_i\}$,
- P est constructible a partir de $\{P_0, \dots, P_n\}$.

Un nombre complexe z = x + iy est dit constructible si le point P = (x, y), l'est.

Exercice 3. Expliquer pourquoi les dessins ci-dessous fournit une construction a la regle et au compas du pentagone regulier . Pour cela, on pourra se reporter a l'exercice de la serie precedent qui montre que si

$$\omega_5 = \exp(2\pi i/5)$$

est la racine 5-ieme de l'unite la plus proche de 1 et de partie imaginaire positive $\Re e(\omega_5)$ est une racine du polynome

$$4X^2 + 2X - 1$$
.

Exercice 4. Montrer que

- Si x et $x' \neq 0$ des reels, sont constructibles alors x + x', x x', xx', x/x' le sont.
- Si z et $z' \neq 0$ des complexes, sont constructibles alors z + z', z z', zz', z/z' le sont.
- Montrer que si b, c des nombres reels sont constructibles, les racines dans \mathbb{C} du polynome

$$X^2 + bX + c$$

sont constructibles.

FIGURE 1 – Logo de la ...

FIGURE 2 – Construction de Duerer

FIGURE 3 – Une autre Construction