

Student Name: Keerthana R

Register Number: 410723104033

Institution: Dhanalakshmi college of engineering

Department: Computer Science and Engineering

Date of Submission: 30-04-2025

1.Problem Statement

AI – POWERED DISEASE PREDICTION

Transforming healthcare with AI-powered disease prediction based on patient data.

2. Objectives of the Project

Project Objective:

To develop an AI-powered system that predicts the risk of diseases using patient data, enabling early diagnosis, personalized care, and better clinical outcomes.

Key Outcomes:

- Train machine learning models to predict diseases based on patient demographics, medical history, and lifestyle factors.
- Classify patients into risk categories for targeted intervention.
- Identify key predictors influencing disease risk.
- Evaluate model accuracy using metrics like precision, recall, and AUC.
- Provide a decision-support tool for clinicians with risk insights and recommendations.

3. Scope of the Project

Features to Analyse/Build:

1. Demographics:

o Age, gender, ethnicity, location

2. Medical History:

o Past diagnoses, family history of diseases, previous hospitalizations

3. Vital Signs & Clinical Metrics:

o Blood pressure, heart rate, BMI, cholesterol, glucose levels

4. Lab Test Results:

o Blood work, urinalysis, liver/kidney function tests

5. Lifestyle Factors:

o Smoking status, alcohol consumption, physical activity, diet

6. Medication & Treatment History:

o Current/past prescriptions, treatment adherence

7. Genetic or Genomic Data (if available)

8. Time-Series Data (for longitudinal analysis):

Trends in vitals or lab values over time

Limitations & Constraints:

1. Data Constraints:

- Use of publicly available or anonymized datasets (e.g., MIMIC-III,
 UCI Health datasets)
- Missing or imbalanced data may affect model performance

2. Model Constraints:

- Limited to interpretable models if required by clinical partners
 (e.g., logistic regression, decision trees)
- Avoid black-box models unless explainability techniques (e.g., SHAP, LIME) are applied

3. Deployment Constraints:

- Prototype may not be deployed in real clinical settings without regulatory approval (e.g., FDA clearance)
- o Compliance with data privacy laws (e.g., HIPAA, GDPR)

4. Tool Constraints:

- Development limited to Python-based frameworks (e.g., scikit-learn, TensorFlow, PyTorch)
- o Visualization using tools like Streamlit, Dash, or Power BI

4.Data Sources

Dataset Description:

Dataset Name : Healthcare DatasetSource : Kaggle (dataset)

Accessibility: PublicType: Static

5. High-Level Methodology

- **Data Collection** The dataset will be obtained through direct download from publicly available source **Kaggle** for disease diagnosis.
- **Data Cleaning** Identify potential issues such as **missing values**, **duplicates**, or **inconsistent formats**.
- Exploratory Data Analysis (EDA) –

Predictive Modeling & Risk Analysis •

Techniques:

- **1. Logistic regression, decision trees, or random forests** for predicting disease risk.
- **2.** Survival analysis (e.g., Kaplan-Meier curves) for analysing time to event (e.g., time until readmission).
- Visualizations:
 - 1. ROC curves / AUC plots to evaluate model performance.
 - **2.** Survival curves to compare patient outcomes by treatment groups.

• Model Building:

Supervised Learning

- 1. Logistic Regression Simple, interpretable, great for binary outcomes.
- 2. **Random Forest** Handles non-linear data, robust to noise.
- 3. **XGBoost/LightGBM** High accuracy, handles complex patterns well.
- 4. **SVM** Good for high-dimensional classification.
- 5. **Neural Networks** Flexible, good for large and complex datasets.

Unsupervised Learning

- 6. **K-Means** Fast and effective for patient clustering.
- 7. **Hierarchical Clustering** Useful for exploring group hierarchies.

Deep Learning (for Images/Text)

CNNs – Best for medical image analysis.

Transformers (e.g., BERT) – Exellent for clinical

text mining.

• Model Evaluation

Metrics

- 1. Classification: Accuracy, Precision, Recall, F1 Score, ROC-AUC
- 2. **Regression:** MAE, RMSE, R²
- 3. **Survival:** C-index, Log-rank Test
- 4. Clustering: Silhouette Score, Clinical relevance

Validation Strategies

- 5. Train-Test Split Simple, quick check
- 6. **k-Fold CV / Stratified k-Fold** Robust, keeps class balance
- 7. **Time Series Split** For time-dependent data
- 8. **Bootstrapping** Good for uncertainty estimation

• Visualization & Interpretation

Visualization & Interpretation

1. Charts: Line, bar, scatter, boxplots, heatmaps

2. **Dashboards:** Interactive summaries (e.g., Power BI, Tableau)

3. Model Explainers: SHAP, LIME, feature importance

4. **Reports:** Clear visuals + insights for stakeholders

6.Tools and Technologies

- **Programming Language** The main language we use is Python.
- Notebook/IDE The platform we use is Google Colob.
- **Libraries** The libraries we use is pandas, NumPy, seaborn, matplotlib.

7. Team Members and Roles

S.No	NAME	ROLE
1	Agnes Selestina S	Data Collection, Data Cleaning
2	Christina Ryka S	Visualization & Interpretation
3	Jeevikasri R	Exploratory Data Analysis (EDA), Feature Engineering
4	Keerthana R	Model Building, Model Evaluation