Statistics 2

Analysis of Variance (ANOVA)

Casper Albers & Jorge Tendeiro Lecture 11, 2019 – 2020

Overview

Two-way ANOVA

Types of effect

Visualizing

Hypotheses tested

Partitioning the variance

Effect size in ANOVA models

Three, four, more way ANOVA

Literature for this lecture

Read:

Agresti, Section 12.4

Principle:

Study differences in the means of g independent groups.

$$y_i \sim \mathcal{N}(\mu_i, \sigma)$$

Test:

$$\mathcal{H}_0: \mu_1 = \mu_2 = \cdots = \mu_g$$

versus

 \mathcal{H}_a : Not all μ 's are equal.

Procedure:

Compare the between and the within group variances using the F-test

Residual MS also denoted as 'Mean Square Error' (MSE).

- ▶ *F* large \longrightarrow Reject \mathcal{H}_0 \longrightarrow There are differences between groups.
- ightharpoonup But where are these differences? \longrightarrow Use contrasts (Lecture 9)

$[\mathsf{Two} \ \mathsf{way} \ \mathsf{ANOVA} \longrightarrow \mathsf{Two} \ \mathsf{factors} \ (= \mathsf{categorical} \ \mathsf{IVs})]$

- Group membership is defined by 2 factors, say A and B.
- ▶ A has I categories, B has J categories.
 - ✓ In total there are $I \times J$ groups.
- ln each (i, j) group:

- ► Test effects:
 - ✓ Main effects: Factor A, Factor B.
 - ✓ Interaction effect: Between factors A and B.

Two way ANOVA: Example

- Small-scale (n = 77 undergraduate students) follow-up study¹ on the 'anger expression' theory by Bushman et al. (JPSP; 2001).
- DV: Anger Expression (to what extend does one express it when one has an angry mood).
- ► IVs:
 - √ GENDER (male vs. female).
 - ✓ ATHLETE (student is vs. is not an athlete).

	Anger Expression				
	Female	Male			
Valid	48	30			
Missing	0	0			
Mean	36.90	37.17			
Std. Deviation	13.11	12.89			
Minimum	7.000	14.00			
Maximum	68.00	67.00			

Anger Expression Athlete Non-athlete Valid 53 25 Missing Mean 30.96 39.85 Std Deviation 10.54 13.07 Minimum 14.00 7.000 Maximum 50.00 68.00

Main effect A:

Main effect B:

Differences between A's marginal means

Differences between B's marginal means

¹http://onlinestatbook.com/2/case_studies/angry_moods.html

Two way ANOVA: Example

- DV: Anger Expression (to what extend does one express it when one has an angry mood).
- ► IVs:
 - ✓ GENDER (1 = Male, 2 = Female).
 - ✓ ATHLETE (is the student an athlete?; 1 = Yes; 2 = No).

Gender	Sports	Mean	SD	N
Female	Athlete	30.21	10.75	14
	Non-athlete	39.65	13.13	34
Male	Athlete	31.91	10.70	11
	Non-athlete	40.21	13.32	19

Interaction effect $A \times B$:

Differences between the 2×2 group means.

Two way ANOVA: Main effect I

Use a cross table to display the means.

		SPO	SPORTS			
		Athl.	Non			
GENDER	Male	31.91 $(n = 11)$	40.21 (n = 19)	37.17 (n = 30)		
GEN	Female	30.21 ($n = 14$)	39.65 (<i>n</i> = 34)	36.90 (<i>n</i> = 48)		
		30.96 (<i>n</i> = 25)	39.85 (<i>n</i> = 53)	37.00 (n = 78)		

Main effect SPORTS:

Are these two marginal means significantly different from each other? These are means weighted by sample size:

✓ Athletes: $30.96 = (11 \times 31.91 + 14 \times 30.21)/25$.

✓ Non-athletes: $39.85 = (19 \times 40.21 + 34 \times 39.65)/53$.

Use a cross table to display the means.

		SPO		
		Athl.	Non	
GENDER	Male	31.91 (n = 11)	40.21 (n = 19)	37.17 (n = 30)
GEN	Female	30.21 (n = 14)	39.65	36.90 (n = 48)
		30.96 (n = 25)	39.85 (<i>n</i> = 53)	37.00 (n = 78)

Main effect GENDER:

Are these two marginal means significantly different from each other? These are means weighted by sample size:

- ✓ Men: $37.17 = (11 \times 31.91 + 19 \times 40.21)/30$.
- ✓ Women: $36.90 = (14 \times 30.21 + 34 \times 39.65)/48$.

Use a cross table to display the means.

Interaction effect:

Are there differences between differences in means?

- The Athlete vs. Non-Athlete difference is not the same for men and women.
- The gender difference is not the same for athletes and non-athletes.

Two way ANOVA: Visualize

Means plot: Visualize model effects.

Interaction effect:

"Is the change of Anger_Expression scores across the levels of SPORTS the same for both GENDERs?"

Slope of o-line and •-line not parallel.

Two way ANOVA: Visualize

Means plot: Visualize model effects including error bars.

Slope of o-line and •-line not parallel. Some differences in slope exist.

Two way ANOVA: Hypotheses testing

Two way ANOVA tests the significance of three effects.

1. Main effect A

 \mathcal{H}_0 : There is no main effect for factor A.

 \mathcal{H}_a : There is a main effect for factor A.

2. Main effect B

 \mathcal{H}_0 : There is no main effect for factor B.

 \mathcal{H}_a : There is a main effect for factor B.

3. Interaction effect

 \mathcal{H}_0 : There is no interaction effect $A \times B$.

 \mathcal{H}_a : There is an interaction effect $A \times B$.

Two way ANOVA: Partitioning the variance

Recall One-way ANOVA (*i* for the factor, *j* for the person):

$$\underbrace{\sum_{ij} (y_{ij} - \overline{y})^2}_{\text{TSS}} = \underbrace{\sum_{ij} (\overline{y}_i - \overline{y})^2}_{\text{GSS}} + \underbrace{\sum_{ij} (y_{ij} - \overline{y}_i)^2}_{\text{RSS}}$$

Two way ANOVA is analogous:

$$TSS = \underbrace{A SS + B SS + A \times B SS}_{\text{explained}} + \underbrace{RSS}_{\text{error}}$$

Two way ANOVA: Partitioning the variance

Factor A with I levels; Factor B with J levels.

Source	SS	df	MS	F	
Factor A	A SS	I-1	A SS/df_A	A MS/RMS	
Factor B	B SS	J-1	$B \; SS/df_{B}$	B MS/RMS	
Factor $A \times B$	$A \times \; B \; SS$	(I-1)(J-1)	$A\timesBSS/df_{\mathit{AB}}$	$A \times ~B~MS/RMS$	
Residual	RSS	n-IJ	$RMS = RSS/df_R$		
Total	TSS	n-1	Var(y)		

Statistics 2 (2019-20) Lecture 11 15/30

Two way ANOVA: Partitioning the variance

Q: How do the SS's of one- and two way ANOVA relate?

One way ANOVA:

A: Very tricky question!

Two way ANOVA:

- ► The SST's coincide, of course.
- ▶ If all n_{ij} are equal: A $SS_{one\ way} = A\ SS_{two\ way}$.
- Otherwise: A SS and RSS depend on the so-called types of SS.
 - √ In Stats II we will typically use Type III SS.
 - More on this topic: Statistics III.
- ▶ In general: The RSS is reduced when factor B is added.

Two way ANOVA: \mathcal{H}_0 rejected, now what?

Rejecting \mathcal{H}_0 implies:

- Significant difference between groups.
- At least one groups is different from the others.

Q: But which group(s) is(are) different?

Which factor(s) is (are) responsible for these differences?

A: Further investigation is required:

- Visually use plots.
- Perform statistical inference.
 - ▶ Planned comparisons: Contrasts (more details in Stats III).
 - Post hoc comparisons: Multiple comparisons (only for main effects).

 $\left(\text{Interpret main effect factor } A \right)$

Interpret main effect factor B

Two way ANOVA: Visual inspection (means plots)

Two way ANOVA: Visual inspection (means plots)

Remember: Take within-groups variance into account (sampling variation).

Two way ANOVA: Visual inspection (means plots)

There are several effect size indices for ANOVA models.

ightharpoonup Eta squared (η^2)

Proportion of the total sample variance explained by the effect.

$$\eta^2 = \frac{\mathsf{SS}_{\mathsf{effect}}}{\mathsf{SST}}$$

- $\checkmark \eta^2 = R^2$ in one way ANOVA.
- \checkmark Advantage: Effects are additive for balanced designs (same n per group).

$$\sum_{\mathsf{All\ effects}} \mathit{SS}_{\mathsf{effect}} = \mathsf{SSM}$$

- ✓ Disadvantages:
 - $ightharpoonup \eta^2$ depends on the number and size of the remaining effects.
 - $\blacktriangleright \ \eta^2$ does not estimate the proportion of variance accounted for in the population: biased estimator

There are several effect size indices for ANOVA models.

▶ Partial eta squared (η_p^2)

Proportion of the (effect + error) sample variance explained by the effect.

$$\eta_{p}^{2} = \frac{\text{Effect SS}}{\text{Effect SS} + \text{RSS}}$$

- \checkmark $\eta_p^2 = R^2$ in one way ANOVA.
- **Advantage:** η_p^2 does not depend so much on the remaining effects.
- Disadvantage:
 - Effects are not additive for balanced designs.
 - ρ_p^2 does not estimate the proportion of variance accounted for in the population.

There are several effect size indices for ANOVA models.

Omega squared (ω²)
 Estimate of the proportion of the variance explained by the effect in the population (no repeated measures, balanced design).

$$\omega^2 = \frac{\text{Effect SS} - \text{Effect df} \times \text{RMS}}{\text{RMS} + \text{TSS}}$$

- ✓ **Advantage:** It no longer overestimates the population effects, as η^2 and η_p^2 did.
- ✓ **Disadvantages:** Effects are not additive. Estimate can be negative.

In general, $\omega^2 < \eta^2 < \eta_p^2$.

How to interpret an effect size?

- ▶ As 'Percentage variance accounted for' (holds for η^2 , η_p^2 , and ω^2).
- Don't rely on rules of thumb! Context matters.

Cases	SS	df	MS	F	р	η^2	η_p^2	ω^2
Gender	20.868	1	20.868	0.134	0.715	0.002	0.002	0.000
Sports	1286.934	1	1286.934	8.258	0.005	0.100	0.100	0.087
$Gender \times Sports$	5.237	1	5.237	0.034	0.855	0.000	0.000	0.000
Residual	11532.189	74	155.840					
Total	12845.228	77						

E.g., for 'SPORTS':

$$\eta^2 = \frac{\text{Effect SS}}{\text{TSS}} = \frac{1286.934}{12845.228} = .100.$$

$$\eta_p^2 = \frac{\text{Effect SS}}{\text{Effect SS+RSS}} = \frac{1286.934}{1286.934+11532.189} = .100.$$

Report finding:

There is evidence for a difference in anger expression between athletes and non-athletes, F(1,74)=8.258, p=.005, $\omega^2=.087$.

Statistics 2 (2019-20) Lecture 11 28/

Three, four, more way ANOVA

- ► ANOVA also possible with more than two factors.
- The underlying principles are unchanged.
- The 'interaction' concept is extended.
 E.g., with three factors A, B, and C:
 ✓ Second-order effects: A × B, A × C, B × C
 - ✓ Third-order effects: $A \times B \times C$
 - V Tillid-order effects. $A \times B \times C$.
- Higher-order effects (say, above 3rd order) are hard to interpret. Avoid if possible.
- Analysis straightforward in JASP: Similar as two way, but with more factors.

For the next lecture

Contents:

Bayesian Statistics

Reading material:

Kruschke, J. K. & Liddell, T. M. (2018). Bayesian data analysis for newcomers. *Psychonomic Bulletin & Review*, *25*, 155-177. doi:10.3758/s13423-017-1272-1