Regulation by L-Arabinose

Introduction

A brief description of the L-arabinose regulatory circuit is provided below.

Regulation of the P_{BAD} Promoter

The araBAD promoter used in pBAD-TOPO® is both positively and negatively regulated by the product of the araC gene (Ogden et~al., 1980; Schleif, 1992). AraC is a transcriptional regulator that forms a complex with L-arabinose. In the absence of L-arabinose the AraC dimer contacts the O_2 and I_1 half sites of the araBAD operon, forming a 210 bp DNA loop (see the figure below). For maximum transcriptional activation two events are required.

- L-Arabinose binds to AraC and causes the protein to release the O_2 site and bind the I_2 site which is adjacent to the I_1 site. This releases the DNA loop and allows transcription to begin.
- The cAMP activator protein (CAP)-cAMP complex binds to the DNA and stimulates binding of AraC to I₁ and I₂.

Glucose Repression

Basal expression levels can be repressed by introducing glucose to the growth medium. Glucose acts by lowering cAMP levels, which in turn decreases the binding of CAP. As cAMP levels are lowered, transcriptional activation is decreased.