
Wykład

- -Cyfrowy zapis koloru
- -Zapis i kompresja obrazu statycznego
- -Kompresja filmu

Barwa i kolor

W fizyce:

- ✓ Barwa, to względny parametr oceny światła monochromatycznego (o dokładnie jednej długości fali).
- ✓ Kolor, to względny parametr oceny światła złożonego (o różnych długościach fali)

W poligrafii:

- ✓ Barwa własność materiału, np. barwnika
- ✓ Kolor subiektywne wrażenie obserwatora

Kolor może być biały lub czarny, barwa – NIGDY

Barwa

Barwę definiują trzy atrybuty:

Odcień barwy (kolor, ton, *Hue*) - różnica jakościowa barwy (np. czerwony, zielony) określana w fizyce przez dominującą długość fali.

Nasycenie (Saturation) - odstępstwo barwy od bieli (np. czerwień, róż, biel) określane w fizyce przez czystość pobudzenia ((e_2-e_1) na rysunku)

Jasność (wartość, Value) - wskazuje czy barwa jest bliższa bieli czy czerni (np. czysta biel, szarości, czerń), w fizyce jest proporcjonalna do całki z widmowego rozkładu energii.

Dodawanie światła

Światło sumacyjne – addytywne, odbierane przez oko bezpośrednio ze źródeł promieniowania (nawet jeśli użyte są filtry).

Podstawowy model koloru → RGB – nałożenie wszystkich barw składowych – kolor biały.

Światło różnicowe – substraktywne, odbierane przez oko po odbiciu od różnych powierzchni (różne zdolności do odbijania i pochłaniania różnych składowych widma światła białego).

Podstawowy model koloru → CMY – nałożenie wszystkich barw – kolor czarny.

B

Modele barw

"Jeżeli w grafice komputerowej chcemy korzystać z barw w sposób precyzyjny, to musimy umieć je określić i mierzyć"

Modele barw:

- Ukierunkowane na użytkownika HSV
- Ukierunkowane na sprzęt RGB, CMY, CMYK
- ➤ Niezależne od urządzenia CIE La*b*

Modele barw

Prawo Grassmana

Każdą dowolnie wybraną barwę można otrzymać za pomocą trzech liniowo niezależnych barw. Trzy barwy tworzą układ niezależnych liniowo barw jeżeli dowolne zsumowanie dwóch z nich nie może dać trzeciej barwy układu.

RGB

CMYK

- C CYAN;
- M MAGENTA;
- Y YELLOW;
- K KEY COLOUR (kolor kluczowy)

I. Przestrzenie barw

Aby poprawić kolorystykę druku do atramentów C, M, Y dołączono atrament czarny K (*blacK*), który zastępuje (całkowicie lub częściowo) tą część atramentów C, M, Y, które w barwie CMY tworzą neutralną szarość.

$$K_{mx} = \{c, m, y\}_{min}$$

Aby czarny atrament nie powodował brudnego wyglądu świateł, zamianę stosuje się od określonego poziomu neutralnej szarości (0.5 - 0.6). Przykład zamiany koloru CMY na kolor CMYK:

$$CMY = (0.4, 0.6, 0.9)$$

$$(c,m,y,k) = (c - K_{mx}, m - K_{mx}, y - K_{mx}, K_{mx})$$

$$K_{mx} = \{0.4, 0.6, 0.9\} \text{min} = 0.4$$

$$CMYK = (0.0, 0.2, 0.5, 0.4)$$

ilość atramentu:
$$CMY = 40\% + 60\% + 90\% = 190\%$$

$$CMYK = 0\% + 20\% + 50\% + 40\% = 110\%$$

HSV

Systemy wyboru kolorów bazujące na modelu HSV

CIE L*, a*, b* Color

L – jasność,

a – przesunięcie od zielonego do czerwonego,

b – przesunięcie od niebieskiego do żółtego

Kodowanie obrazu statycznego

Grafika rastrowa

Reprezentacja siatki pikseli na monitorze komputera, drukarce lub innym urządzeniu wyjściowym

Grafika rastrowa

Kodowanie bitmapy monochromatycznej

Grafika rastrowa

Kodowanie bitmapy wielobarwnej

B

Głębia kolorów

1 bit

4 bity

8 bitów

4 bity

8 bitów

16 bitów

24 bity

Głębia kolorów

Głębia koloru – liczba bitów użytych do reprezentacji koloru danego piksela Wyrażana zwykle w jednostce bpp (ang. bits per pixel) - bitów na piksel.

Liczba bitów	Liczba kolorów
1	2
4	16
8	256
16	65 536
24	16 777 216
32	16 777 216

Grafika wektorowa

- ✓ Rysunek zapisany wektorowo jest przechowywany jako zespół standardowych elementów, takich jak linie (proste bądź krzywe), obszary, napisy, znaczniki itp.
- ✓ Obraz przedstawiany na urządzeniu (monitor, drukarka, ploter) jest kreślony element po elemencie.
- ✓ Każdy element obrazu jest opisany za pomocą pewnej liczby cech (atrybutów), których wartości można zmieniać podczas edycji.
- ✓ Cechy ich nazwy, właściwości i zasady edycji zależą od środowiska, w którym powstaje rysunek. Poszczególne elementy rysunku mogą się wzajemnie przesłaniać lub przenikać.

Grafika wektorowa

Poniższy przykład przedstawia zapis wektorowy prostego rysunku dokonany w pewnym fikcyjnym języku.

```
rozmiar (-100, -100, 100, 100)
kolor (czarny)
okrąg (0, 0, 50)
półokrąg górny (25, 0, 25)
półokrąg dolny (-25, 0, 25)
wypełnij obszar (0, -25)
```


B

Grafika wektorowa

```
<?xml version="1.0" ?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"
"http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-
20001102.dtd" >
<svg xmlns="http://www.w3.org/2000/svg" width="230"</pre>
height="180" viewBox="0 0 460 360" >
  <g style="fill-opacity: 0.7; stroke:black; stroke-</pre>
width: 0.1cm;" >
    <circle cx="6cm" cy="2cm" r="100" style="fill:</pre>
red;" transform="translate(0,50)" />
    <circle cx="6cm" cy="2cm" r="100" style="fill:</pre>
blue; " transform="translate(70,150)" />
    <circle cx="6cm" cy="2cm" r="100" style="fill:</pre>
green; " transform="translate(-70,150)" />
  </q>
</svq>
```

Nawet w tak prostym przykładzie wyraźnie widać problem przenośności grafiki wektorowej pomiędzy programami

Kompresja obrazu statycznego

Formaty zapisu obrazu

Używające kompresji stratnej:

- **JPEG** (*Joint Photographic Experts Group*) niewątpliwie najpopularniejszy format plików graficznych z kompresją stratną; używany zarówno w sieci Internet (obsługiwany przez prawie wszystkie przeglądarki), jak i w aparatach cyfrowych
- JPEG 2000 nowsza wersja formatu JPEG, oferująca lepszą kompresję,
- **DjVu** format stworzony do przechowywania zeskanowanych dokumentów w formie elektronicznej,
- TIFF (Tagged Image File Format) popularny format plików graficznych udostępniający wiele rodzajów kompresji (zarówno stratnej jak i bezstratnej) oraz umożliwiający przechowywanie kanału alpha.

Formaty zapisu obrazu

Używające kompresji bezstratnej:

- **PNG** (*Portable Network Graphics*) popularny format grafiki (szczególnie internetowej); obsługiwany przez większość przeglądarek WWW; obsługuje przezroczystość,
- **GIF** (*Graphics Interchange Format*) popularny format grafiki (szczególnie internetowej); obsługiwany przez prawie wszystkie przeglądarki WWW; może przechowywać wiele obrazków w jednym pliku tworząc z nich animację,
- TIFF patrz wyżej.
- Bez kompresji:
- **XCF** (*eXperimental Computing Facility*) mapa bitowa programu GIMP; może przechowywać wiele warstw,
- XPM format zapisu plików przy pomocy znaków ASCII,
- BMP

Kompresja LZW

Wartościom wejściowym o zmiennej długości (tzn. poziomym ciągom pikseli tworzących powtarzający się wzór) przypisane są kody o stałej długości

Wszystkie przykładowe próbki są 8-o bitowe, rozmiaru 90x90 pikseli (8100 bajtów bez kompresji). Zauważmy, że dłuższe ciągi poziome dają lepsza kompresję.

Algorytm kompresji JPEG

- 1. Konwersja obrazu do modelu YIQ (obrazy barwne)
- 2. Podział obrazu na bloki
- 3. Obliczenie transformaty kosinusowej dla bloków
- 4. Kwantyzacja współczynników transformaty
- 5. Konwersja tablicy współczynników do postaci wektora
- 6. Kodowanie wektora współczynników

Przykłady transformaty DCT obrazów

Przykłady transformaty DCT obrazów

JPEG - jakość maksymalna 117 kB

JPEG - jakość średnia 25,5 kB

JPEG – kompresja 100% 1,96 kB

TIFF – (Tagged Image Format – znacznikowy format pliku obrazowego)

Kodowany kolor	Obraz 2-kolorowy, indeksowana paleta kolorów, pełnokolorowy RGB lub CMYK, YCbCr (model oparty na systemie telewizji kolorowej), CIE La*b*
Kompresja	Bez kompresji (mimo to format stosunkowo wydajny) lub bezstratna kompresja LZW.
Zastosowanie	Najpopularniejszy format obrazów skanowanych przeznaczonych do druku oraz do prac DTP.
Uwagi	 Pliki TIFF są praktycznie niezależne od platformy, więc można je przenosić np. między platformami Maintosh i Windows (programy edycji obrazów powinny otworzyć każdy plik TIFF). Część programów prezentacyjnych lub multimedialnych nie
	obsługuje formatu TIFF.

JPEG vs TIFF

GIF – Standardowa metoda kodowania skanowanych i generowanych komputerowo obrazów zdefiniowana przez CompuServe w 1987r.

Czym jest GIF?	 Format plików (*.gif) Format strumienia danych przesyłanych z komputera głównego do terminala graficznego
Ilość kodowanych kolorów	Maksymalnie 256 barw. Piksele są zapisywane przy użyciu najmniejszej koniecznej liczby bitów: 256 barw – 8 bitów/piksel, 2 barwy – 1 bit/piksel.
Kompresja	LZW – bezstratna, średni współczynnik kompresji 4:1
Zastosowanie	 Skanowane obrazy 2-kolorowe, w skali szarości, z paletą do 256 kolorów, z dużą ilością szczegółów, linii, krawędzi (wykres, siatka, szkic, diagram, logo, napis, itp.). Obrazy generowane komputerowo (max 256 barw) z dużymi polami jednobarwnych wypełnień i wzorów oraz z ostrymi krawędziami, które powinny być zachowane.
Uwagi:	Obraz zawierający więcej niż 256 barw jest przybliżany paletą 256 barw przed kodowaniem GIF.

PNG

PNG – bezpłatny standard, który powstał w 1995r. jako odpowiedź na zapowiedź firm UNISYS i CompuServe o planowanym pobieraniu opłat za korzystanie z oprogramowania do kompresji plików GIF.

Czym jest PNG ?	1. Format plików (*.png)
Ilość kodowanych kolorów	Maksymalna głębia piksela 48 bitów, skala szarości do 16 bitów, pełny 8-bitowy kanał Alfa.
Kompresja	LZW – bezstratna (nie opatentowana wersja, lepsza niż w GIF)
Zastosowanie	W programach multimedialnych, gdy obraz wymaga efektów przezroczystości, maskowania i przechowywania innych informacji.
Uwagi:	 Obsługuje dwukierunkowy przeplot, korekcję gamma w celu kontroli jasności obrazka na różnych platformach, sprawdzenie poprawności pliku. Pozwala dodać do pliku ilustracji dowolnie określony obszar przeznaczony na tekstową metainformację, włączając w to adres URL i informacje związane z bazami
	danych.

JPEG vs TIFF

M-JPEG

M-JPEG (Motion JPEG) to "ruchoma" odmiana statycznego JPEG-a. Stosuje się tu ten sam algorytm kompresji.

- ✓ Pierwotnie stworzony do kompresji pojedynczych klatek.
- ✓ M-JPEG stosuje wyłącznie kompresję wewnątrzklatkową, czyli kompresuje każdą klatkę oddzielnie.

Schemat kompresji wygląda następująco:

RGB --> Konwersja do YUV --> Dyskretna transformacja kosinusowa --> Kodowanie Huffmana --> Plik AVI

Po dokonaniu konwersji obrazu z formatu RGB na YUV każdy z trzech obrazów jest dzielony na bloki o wielkości 8x8 pikseli. Następnie na każdym z tych bloków dokonywana jest seria obliczeń, nazywana dyskretną transformacją kosinusową

M-JPEG

B

Szacowanie ruchu (motion compensation)

Przy JPEG umyka nam jednak ważny aspekt obrazu ruchomego, a mianowicie fakt znacznego wzajemnego podobieństwa kolejnych klatek.

- ✓ Niezbędne jest więc zastosowanie kompresji, dzięki której te nadmiarowe informacje zostałyby wyeliminowane.
- ✓ Takie działanie pozwala na 3-4krotne zwiększenie współczynnika kompresji i osiągnięcie wartości od 150:1 do 200:1

Szacowanie ruchu (motion compensation)

Podobieństwa pomiędzy ramkami

Szacowanie ruchu (motion compensation)

Podobieństwa pomiędzy ramkami

Szacowanie ruchu – kompresja międzyklatkowa

Wychwytywanie zmian pomiędzy poszczególnymi klatkami, które wynikają z przesunięcia obiektów.

Zalety:

pozwala na znacznie lepszą kompresję dzięki zredukowaniu ilości informacji opisujących różnice pomiędzy klatkami.

Wady:

- wymaga czasochłonnych obliczeń,
- wymaga dostarczenia bloku danych "naprzód"

MPEG-1 to stary standard kompresji danych audiowizualnych do zastosowań multimedialnych.

- ✓ Strumień danych MPEG-1 może zawierać zakodowaną (skompresowaną) sekwencje wideo, dźwięk lub obydwa te składniki jednocześnie.
- ✓ Strumienie wizyjny i dźwiękowy są dzielone na tzw. ramki (krótkie fragmenty), które mogą być przeplatane między sobą w celu uzyskania synchronizacji obrazu i dźwięku.
- ✓ Kompresja danych jest stratna, tzn. wprowadza nieodwracalne zniekształcenia (to cena, jaką płacimy za silną kompresję). Im większy stopień kompresji, (czyli mniejsza objętość wynikowego strumienia/pliku) tym gorsza jakość zrekonstruowanego sygnału.

- ✓ MPEG "wychwytuje" ruch wewnątrz bloków o rozmiarach 16 na 16 pikseli i koduje go w postaci wektorów ruchu.
- ✓ Na podstawie tych wektorów system dekompresujący jest w stanie przewidzieć kolejną klatkę.
- ✓ Żeby nie dopuścić do **zafałszowania obrazu w trakcie dekompresji**, do systemu dekodującego przekazywane są również dane o rzeczywistym wyglądzie klatki.
- ✓ Aby zyskać na rozmiarze danych, przekazywane są jedynie te z nich, które różnią się od przewidywanych. Te dane różnicowe, informujące o odchyleniach obrazu rzeczywistego od przewidzianego określa się błędem MCPE (Motion-Compensation-Prediction-Error).

Sekwencja ramek w MPEG

Ramki I

 kodowane niezależnie od reszty danych wideo (stanowią one punkty) swobodnego dostępu), kompresowane są w najmniejszym stopniu.

Ramki P

 kodowane na podstawie predykcji (przewidywania) z ostatniej ramki I bądź P (tej, która była bliższa), klatki o średnim stopniu kompresji – umożliwiają płynne przewijanie w tył.

Ramki typów I i P to tzw. ramki kotwiczne

Ramki B

– to obrazy o najwyższym stopniu skompresowania, są one interpolowane na podstawie sąsiadujących z nimi z obu stron klatek.

Literatura:

W prezentacji wykorzystano fragmenty i grafikę z książek i stron internetowych:

• Dominik Nasiłowski, *Jakościowe aspekty kompresji obrazu i dźwięku*, MIKOM, Warszawa 2004, ISBN83-7279-408-1

Grafiki pochodzą z:

www.wikipedia.org.pl