OPIS RAČUNARSKOG SISTEMA

Računarski sistem se sastoji od procesora, operativne memorije, tajmera i terminala. Sve komponente računarskog sistema su međusobno povezane preko sistemske magistrale. Tajmer i terminal, kao periferije, su povezani sa procesorom i preko linija za slanje zahteva za prekid. Slika 1. predstavlja uprošćen šematski prikaz posmatranog računarskog sistema.

Slika 1. Šematski prikaz računarskog sistema

Opis procesora

U nastavku je opisan deo 16-bitnog dvoadresnog procesora sa Von-Neuman arhitekturom. Adresibilna jedinica je jedan bajt, a raspored bajtova u reči je little-endian. Veličina memorijskog adresnog prostora je $2^{16}B$. Počev od adrese $0 \times FF00$ memorijskog adresnog prostora nalazi se prostor veličine 256 bajtova rezervisan za memorijski mapirane registre (registri kojima se pristupa instrukcijama za pristup memorijskom adresnom prostoru). Počev od adrese 0×0000 memorijskog adresnog prostora nalazi se IVT (interrupt vector table) sa osam ulaza. Svaki ulaz zauzima dva bajta i sadrži adresu odgovarajuće prekidne rutine. Ulazi u IVT odgovaraju sledećim prekidnim rutinama:

- ulaz 0 sadrži adresu <u>prekidne rutine koja se izvršava prilikom pokretanja odnosno resetovanja</u>
 <u>čitavog procesora</u> (ne izvodi se kompletna sekvenca obrade prekida već se samo vrši skok na
 adresu koja se nalazi u okviru datog ulaza),
- ulaz 1 sadrži adresu prekidne rutine koja se izvršava ukoliko se pokuša izvršavanje nekorektne instrukcije (nepostojeći operacioni kod, neispravan način adresiranja itd.),
- ulaz 2 sadrži adresu prekidne rutine koja se izvršava kada stigne zahtev za prekid od tajmera (opis principa rada tajmera i način njegove konfiguracije dat je u zasebnom poglavlju),
- ulaz 3 sadrži adresu prekidne rutine koja se izvršava kada stigne zahtev za prekid od terminala (opis principa rada terminala dat je u zasebnom poglavlju) i
- ostali ulazi su slobodni za korišćenje od strane programera.

Procesor poseduje osam opštenamenskih 16-bitnih registara označenih sa r<num> gde <num> može imati vrednosti od nula do sedam. Moguće je zasebno koristiti viših ili nižih osam bita svakog od opštenamenskih registara kao 8-bitni registar označen sa r<num>h ili r<num>1, respektivno. Registar r7

se koristi kao pc registar (pokazuje na instrukciju koja se u memoriji nalazi neposredno iza trenutno izvršavane instrukcije). Registar r6 se koristi kao sp registar (pokazuje na zauzetu lokaciju na vrhu steka, a stek raste ka nižim adresama). Pored opštenamenskih registara postoji psw registar (statusna reč procesora).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	Tl	Tr										N	С	0	Z

Značenje flegova u psw registru:

- Z (Zero) rezultat prethodne operacije je nula,
- O(Overflow) prekoračenje,
- C (Carry) prenos,
- N (Negative) rezultat je negativan,
- Tr (Timer) maskiranje prekida od tajmera (0 omogućen, 1 maskiran),
- Tl (Terminal) maskiranje prekida od terminala (0 omogućen, 1 maskiran) i
- I (Interrupt) globalno maskiranje spoljašnjih prekida (0 omogućeni, 1 maskirani).

Instrukcije mogu biti veličine od jedan do sedam bajtova. Instrukcija u najopštijem slučaju ima sledeći format:

	I	II	III	IV	V	VI	VII
Ins	strDescr	Op1Descr	Im/Di/Ad	Im/Di/Ad	Op2Descr	Im/Di/Ad	Im/Di/Ad

Prvi bajt instrukcije sadrži operacioni kod i dodatne informacije o instrukciji. Naredni bajtovi instrukcije koriste se za kodiranje operanada. Pojedinačni operand može zahtevati jedan, dva ili tri bajta za kodiranje u zavisnosti od načina adresiranja. Detaljan opis InstrDescr i Op<num>Descr bajtova instrukcije dat je u nastavku.

7	6	5	4	3	2	1	0
OC ₄	OC ₃	OC ₂	OC ₁	OC ₀	S	Un	Un

Značenje bitova InstrDescr bajta instrukcije:

- OC4OC3OC2OC1OC0 operacioni kod instrukcije,
- S (Size) veličina operanada instrukcije (0 jedan bajt; 1 dva bajta) i
- Un (Unused) neiskorišćeni bitovi koji imaju fiksnu vrednost nula.

7	6	5	4	3	2	1	0
AM_2	AM_1	AM_0	R ₃	R_2	R ₁	R ₀	L/H

Značenje bitova Op<num>Descr bajta instrukcije:

- AM₂AM₁AM₀ kodiran način adresiranja pri čemu adresiranje može biti:
 - o 0x0 neposredno; vrednost operanda je kodirana u okviru instrukcije pomoću jednog ili dva Im/Di/Ad bajta u zavisnosti od veličine operanda; neposredno adresiranje nije validan način adresiranja za destinacioni operand,

- o 0x1 <u>registarsko direktno</u>; vrednost operanda nalazi se u registru čiji je broj kodiran u okviru instrukcije (nema Im/Di/Ad bajtova),
- 0x2 <u>registarsko indirektno bez pomeraja</u>; vrednost operanda nalazi se u memoriji na adresi ukazanoj vrednošću registra čiji je broj kodiran u okviru instrukcije (nema Im/Di/Ad bajtova),
- o 0x3 <u>registarsko indirektno sa 16-bitnim označenim pomerajem</u>; vrednost operanda nalazi se u memoriji na adresi ukazanoj zbirom vrednosti registra, čiji je broj kodiran u okviru instrukcije, i vrednosti koja se nalazi u dva Im/Di/Ad bajta i
- o 0x4 memorijsko; vrednost operanda nalazi se u memoriji na adresi ukazanoj vrednošću koja se nalazi u dva Im/Di/Ad bajta,
- R₃R₂R₁R₀ kodiran broj korišćenog registra (psw registar se kodira vrednošću 0xF) i
- L/H (Low/High) naznaka da li se koristi nižih ili viših osam bita registra (0 nižih; 1 viših) u slučaju registarskog direktnog adresiranja za operand veličine jednog bajta.

Mnemonik	ОС	Efekat	Flegovi koji se menjaju			
halt	0	Zaustavlja izvršavanje instrukcija	-			
iret	ret 1 pop psw; pop pc;					
ret	2	pop pc;	-			
int dst	3	<pre>push psw; pc<=mem16[(dst mod 8)*2];</pre>	_			
call dst	4	<pre>push pc; pc<=dst;</pre>	-			
jmp dst	5	pc<=dst;	_			
jeq dst	6	if (equal) pc<=dst;	-			
jne dst	7	<pre>if (not_equal) pc<=dst;</pre>	-			
jgt dst	8	if (signed_greater) pc<=dst;	-			
push src	9	sp<=sp-2; mem16[sp]<=src;	-			
pop dst	10	dst<=mem16[sp]; sp<=sp+2;	-			
xchg src, dst	11	<pre>temp<=dst; dst<=src; src<=temp;</pre>	_			
mov src, dst	12	dst<=src;	Z N			
add src, dst	13	dst<=dst+src;	Z O C N			
sub src, dst	14	dst<=dst-src;	Z O C N			
mul src, dst	15	dst<=dst*src;	Z N			
div src, dst	16	dst<=dst/src;	Z N			
cmp src, dst	17	temp<=dst-src;	Z O C N			
not src, dst	18	dst<=~src;	Z N			
and src, dst	19	dst<=dst&src	Z N			
or src, dst	20	dst<=dst src;	ZN			

xor src, dst	21	dst<=dst^src;	Z N	
test src, dst	22	temp<=dst&src	Z N	
shl src, dst	23	dst<=dst< <src;< td=""><td>Z C N</td></src;<>	Z C N	
shr dst, src	24	dst<=dst>>src;	Z C N	

Sintaksa operanada u okviru asemblerskih naredbi koje pristupaju podacima:

- \$teral> neposredna vrednost <literal>
- \$<simbol> neposredna vrednost <simbol>
- %r<num> vrednost iz registra r<num>
- (%r<num>) vrednost iz memorije na adresi iz registra %r<num>
- •
- <simbol>(%r<num>) vrednost iz memorije na adresi <simbol> + r<num>
- <simbol>(%pc/%r7) vrednost iz memorije na adresi <simbol> (PC relativno)
- teral> vrednost iz memorije na adresi teral> (apsolutno)
- <simbol> vrednost iz memorije na adresi <simbol> (apsolutno)

Sintaksa operanada u okviru asemblerskih naredbi predstavljaju skok:

- teral> skok na adresu teral>
- <simbol> skok na adresu <simbol>
- *%r<num> skok na adresu iz registra r<num>
- * (%r<num>) skok na adresu iz memorije na adresi iz registra %r<num>
- ***(%r<num>) skok na adresu iz memorije na adresi iteral> + r<num>
- *<simbol>(%r<num>) skok na adresu iz memorije na adresi <simbol> + r<num>
- *<simbol>(%pc/%r7) skok na adresu iz memorije na adresi <simbol> (PC relativno)
- *teral> skok na adresu iz memorije na adresi literal> (apsolutno)
- *<simbol> skok na adresu iz memorije na adresi <simbol> (apsolutno)

Dodatne napomene:

- sve aritmetičke operacije se izvode tako da odgovaraju označenim celim brojevima,
- iza mnemonika asemblerske naredbe, bez belih znakova, može se navesti sufiks b ili w kako bi se eksplicitno naznačila veličina operanada date instrukcije,
- instrukcije cmp i test nigde ne čuvaju direktni rezultat odgovarajuće operacije, već samo u skladu sa rezultatom postavljaju nove vrednosti flegova u psw registru i
- kombinacije instrukcija i operanada, za koje ne postoji razumno tumačenje, proglasiti greškom.

Opis terminala

Terminal predstavlja ulazno/izlaznu periferiju koja se sastoji od displeja i tastature. Terminal poseduje dva memorijski mapirana registra. Na adresi 0xFF00 memorijskog adresnog prostora nalazi se data_out registar izlaznih podataka. Upisom vrednosti u data_out registar na tekućoj poziciji displeja ispisuje se znak koji prema ASCII tabeli odgovara upisanoj vrednosti. Na adresi 0xFF02 memorijskog adresnog prostora nalazi se data_in registar ulaznih podataka. Kada se pritisne neki taster (1) upisuje se ASCII kod pritisnutog tastera u data_in registar i (2) terminal, kao periferija posmatranog procesora, generiše zahtev za prekid (u okviru prekidne rutine, koja obrađuje ovaj zahtev za prekid, čitanjem vrednosti data in registra može se saznati koji taster je pritisnut).

Opis tajmera

Tajmer kao periferija periodično generiše zahtev za prekid. Perioda generisanja zahteva za prekid definisana je sadržajem $timer_cfg$ konfiguracionog registra tajmera. Registar $timer_cfg$ je memorijski mapiran registar i nalazi se na adresi 0xFF10 memorijskog adresnog prostora. Njegova inicijalna vrednost nakon pokretanja odnosno resetovanja računarskog sistema jeste 0x0000.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													T_2	T_1	To

Perioda generisanja zahteva za prekid u zavisnosti od $T_2T_1T_0$ vrednosti je sledeća: $0 \times 0 \rightarrow 500$ ms, $0 \times 1 \rightarrow 1000$ ms, $0 \times 2 \rightarrow 1500$ ms, $0 \times 3 \rightarrow 2000$ ms, $0 \times 4 \rightarrow 500$ 0ms, $0 \times 5 \rightarrow 10$ s, $0 \times 6 \rightarrow 30$ s i $0 \times 7 \rightarrow 60$ s.