Lec 2. Fabrication

Zida Li associate professor

Lecture overview

- 1. Photolithography using SU-8
- 2. Soft lithography

Process Overview

Clean room

- Clean
- Yellow light
 - minimal UV exposure

Clean room-Why

Clean room class

A class X clean room is usually defined to be one that has a dust count of X particles (diameters of 0.5 μm or larger) per cubic foot

Figure 5.3: Particle-size distribution curve.

- What if you don't have a clean room for fabrication?
 - Lower resolution: probably OK!
 - Try to keep things clean minimize contamination

Silicon wafer

Wafer comes with various size

- 4-inch (100mm): $\sim \pm 50$ /piece; 25 pieces per box.
- 5-inch (125mm)
- 6-inch (150mm)
- 8-inch (200mm)
- 12-inch (300mm)

Tips

• Use new wafer for each fabrication

Spin Coating

A. Rotating stage B. Target surface C. Coating fluid

Spin Coating

https://www.bilibili.com/video/BV1q467YSEVu/

https://www.bilibili.com/video/BV1j467YSE8s/

Edge bead

Photoresist

 A photoresist is a lightsensitive material, usually a polymer, used in photolithography to create precise patterns on a substrate's surface, like a silicon wafer, for electronics manufacturing.

Photoresist

Photoresist

Typical three components

Resin

 a binder that provides physical properties such as adhesion, chemical resistance, etc)

Sensitizer

 which has a photoactive compound)

Solvent

which keeps the resist liquid).

Positive photoresist

Photo-sensitizer

(PAG)

Negative photoresist

- SU-8
- Resin: SU-8 oligomers (an epoxybased novolac resin, multifunctional glycidyl ether with eight epoxy groups per monomer).
- Sensitizer (PAG): A triarylsulfonium salt (like triphenylsulfonium hexafluoroantimonate or hexafluorophosphate).
- **Solvent**: Typically cyclopentanone, γ-butyrolactone, or similar, to allow spin-coating.

Typical process of SU-8

Photolithography

- Photomasks
- UV exposure

Photomasks

Film photomasks

~¥100

• Description:

- A transparent plastic sheet (polyester or PET) with the desired pattern printed in black (usually by a high-resolution laser printer or photoplotter).
- The black regions are opaque to UV light, while the transparent regions let UV pass through to expose the SU-8.

Advantages:

- Low cost inexpensive to produce.
- **Fast turnaround** can be designed and printed within hours.
- Good for prototyping and iterative design changes.

Limitations:

- Lower resolution (~10–20 μm features typically).
- Edge roughness and defects due to printing quality.
- Not very durable; prone to scratches, dust, and warping.
- UV transmission can be inconsistent if the film is not perfectly flat against the resist.

Applications:

• Early-stage research, rapid prototyping, proof-of-concept experiments, or when feature sizes are relatively large (>20 μ m).

Photomasks

Chrome photomask

~¥ 1000

Description:

- A high-precision glass (quartz or soda-lime) plate coated with an opaque **chromium layer**.
- The chromium is patterned via photolithography or e-beam lithography to create highly accurate transparent and opaque regions.

Advantages:

- High resolution (sub-micron features possible).
- Excellent edge definition and pattern fidelity.
- **Durable** resistant to scratches and stable over many exposures.
- Uniform UV transmission through the transparent glass areas.

Limitations:

- High cost fabrication is expensive compared to film masks.
- Longer lead time requires professional mask fabrication services.

Applications:

 Critical patterning in MEMS, microfluidics, photonics, and high-resolution microfabrication where precision is essential.

Film Chrome

Exposure

contact printing, proximity printing

Fresnel diffraction

contact printing, proximity printing

The resolution b depends on the wavelength and the distance s between the mask and the photoresist layer

$$b = 1.5\sqrt{\lambda s}$$

Table 3.1Spectrum of Mercury Lamps

Types	I-line	H-line	G-line	E-line			_
Wavelength (nm)	365.0	404.7	435.8	546.1	577.0	579.1	623.4

Example 3.1: Resolution of Proximity Photolithography

A resist layer at the bottom of a 5-mm-deep channel and a 20-mm-deep channel is to be patterned. The photoresist is exposed to ultraviolet (UV) light of a 400-nm wavelength. Compare the resolutions at the bottom of the two channels.

Solution. Following (3.1), the resolutions at the bottom of the two channels can be estimated as:

$$b_1 = 1.5\sqrt{\lambda s_1} = 1.5\sqrt{0.4 \times 5} = 2.1 \text{ }\mu\text{m}$$

 $b_2 = 1.5\sqrt{\lambda s_2} = 1.5\sqrt{0.4 \times 20} = 4.2 \text{ }\mu\text{m}$

Numerical aperture

$$NA = n_1 \sin \theta_1 = n_2 \sin \theta_2.$$

where n is the <u>index of refraction</u> of the medium in which the lens is working (1.00 for <u>air</u>, 1.33 for pure <u>water</u>, and typically 1.52 for <u>immersion oil</u>; 11 see also <u>list of refractive indices</u>), and ϑ is the <u>half-angle</u> of the maximum cone of light that can enter or exit the lens.

Projection printing

The resolution of projection printing system is estimated as:

$$b = \frac{\lambda}{2NA}$$

Light source

Table 3.1Spectrum of Mercury Lamps

Types	I-line	H-line	G-line	E-line	_	_	_
Wavelength (nm)	365.0	404.7	435.8	546.1	577.0	579.1	623.4

Various light sources

Deep UV

Excimer Laser Basics

- Excimer = "excited dimer"
 - These are molecules that exist only in an excited (high-energy) state, not in a stable ground state.
 - Common pairs: Krypton + Fluorine (KrF) and Argon + Fluorine (ArF).

Process:

- 1. A **gas mixture** (rare gas + halogen + buffer gas like neon or helium) is placed in the laser chamber.
- 2. A high-voltage electrical discharge excites the gas, creating excimer molecules (e.g., KrF*).
- 3. When these unstable molecules decay back to their separate atoms, they release a photon with a precise wavelength:
 - KrF → 248 nm
 - ArF → 193 nm

Extreme ultraviolet (EUV)

• 13.5 nm

Extreme ultraviolet (EUV)

Process Overview

Surface treatment: oxygen plasma

Principle of Oxygen Plasma Treatment

- Plasma is a partially ionized gas containing electrons, ions, and reactive species.
- When oxygen gas (O_2) is energized in a plasma chamber (typically by RF power), it forms **reactive oxygen species** $(O \cdot , O_2^+, O_3, etc.)$.
- These highly reactive species bombard the surface, breaking chemical bonds and introducing new functional groups.

On PDMS Surfaces

- Untreated PDMS is hydrophobic because its surface is dominated by -Si(CH₃)₂ groups (siloxane backbone with methyl side groups).
- Oxygen plasma:
 - Breaks the -Si-CH₃ bonds on the surface.
 - Converts them into silanol groups (-Si-OH).
- Result: PDMS surface also becomes hydrophilic and chemically active.

Limitations

- The hydrophilic effect on PDMS is not permanent:
 - The surface gradually recovers its hydrophobicity due to reorientation of polymer chains and migration of unmodified PDMS oligomers to the surface.
 - This process is called **hydrophobic recovery** (happens within hours to days).
- To extend bonding effectiveness:
 - Use freshly treated surfaces.
 - Bond immediately after plasma treatment.
 - Store treated PDMS in water or perform further surface coatings (e.g., PEG, silanes).

Silanization

- Why Silanization is Needed
- When fabricating PDMS microfluidic devices, PDMS prepolymer is poured over a **master mold** (often made of SU-8 patterned on silicon).
- **Problem:** PDMS strongly adheres to SU-8 and glass after curing, making demolding difficult and risking damage to the fragile SU-8 structures.
- **Solution**: Silanization coats the master with a thin **anti-adhesive monolayer**, preventing bonding and allowing easy PDMS release.

Silanization

Methods of silanization

Methods of Silanization

- Vapor-phase silanization (common for SU-8 molds):
 - Place the substrate in a desiccator with a few drops of silane.
 - Under vacuum, silane vapor coats the surface uniformly.
- Liquid-phase silanization:
 - Immerse the substrate in a dilute silane solution (in ethanol or toluene).
 - · Rinse and dry after reaction.

Soft lithography

Key materials: PDMS

- Polymer
 - Monomer + cross-linker
 - Base + curing agent (hardener)

Crosslinking of PDMS

Reaction (Hydrosilylation)

- Reaction type: Platinum-catalyzed hydrosilylation.
- Catalyst: A Pt-based catalyst (e.g., Karstedt's catalyst, platinum divinyltetramethyldisiloxane complex).
- Mechanism:
- A Si-H group from the crosslinker reacts with a vinyl group (-CH=CH₂) on PDMS.
- The Pt catalyst facilitates addition of Si-H across the C=C double bond.
- Result: a new Si-C bond, effectively linking two polymer chains.

Result of Curing

- Multiple crosslinking reactions occur throughout the bulk material.
- The PDMS chains become interconnected into a **3D elastomeric** network.
- This network gives PDMS its characteristic properties:
 - Elasticity (soft, rubbery).
 - Transparency.
 - Chemical inertness.
 - Gas permeability.
- Different base:curing agent ratio:
 - 10:1 vs 20:1
 - More curing agent makes stiffer PDMS

Degassing

Before After Degassing Degassing

Why Degassing is Needed

- PDMS is supplied as a two-part kit:
 - Base polymer (vinyl-terminated PDMS oligomer).
 - Crosslinker (siloxane with Si-H groups + Pt catalyst).
- When these two are mixed:
 - Air bubbles are introduced (by stirring/handling).
 - The mixture has relatively high viscosity, so bubbles cannot escape easily.
- If not removed:
 - Bubbles remain trapped in the cured PDMS → weak spots, optical distortions, microchannel blockages.

Mechanism of Bubble Removal

- Gas solubility principle: At lower pressure, gases are less soluble in liquids (Henry's law). Vacuum lowers the partial pressure of air above PDMS, so dissolved gases escape.
- Bubble growth & release:
 - Trapped bubbles expand under vacuum (Boyle's law).
 - Expanded bubbles experience buoyancy and rise to the surface, where they burst.
- Viscous medium: PDMS is thick, so bubbles move slowly → vacuum must be applied long enough.
- Observation: During degassing, the mixture often "foams up" initially (bubbles expand greatly), then collapses as bubbles escape.

Bonding

Tips

• Keep surface as clean as possible

Experimental setup

PDMS is gas permeable

Microcontact printing

Steps in Microcontact Printing

Master Fabrication

- A rigid master mold is created using photolithography (commonly SU-8 on silicon).
- This master contains the relief features (raised and recessed regions).

Stamp Preparation

- PDMS prepolymer is poured over the master and cured.
- After peeling, you obtain a PDMS stamp with the negative relief pattern of the master.

Inking

- The PDMS stamp is coated with "ink," typically:
 - Alkanethiols for gold substrates.
 - Proteins, DNA, polymers, or silanes for other applications.
- Inking is done by dipping or dropping a solution onto the stamp.

Printing (Contacting)

- The inked PDMS stamp is gently placed in contact with the target substrate.
- Molecules transfer from the raised regions of the stamp to the surface.
- · This creates a chemical pattern that matches the relief features of the stamp.

Proteins for Cell Patterning (Biointerfaces)

- Ink: Extracellular matrix proteins (e.g., fibronectin, laminin, collagen).
- Substrate: Glass, PDMS, or tissue-culture plastics.
- Goal:
 - Pattern adhesive proteins on a non-fouling background (e.g., PEG-coated surface).
 - Cells only attach where proteins are present.
 - Used to **control cell shape**, **migration**, **and differentiation** in tissue engineering.
 - Example: Printing fibronectin islands to guide stem cell differentiation based on cell geometry.

DNA Oligonucleotides (Biosensing)

- Ink: Single-stranded DNA (ssDNA) probes.
- **Substrate:** Glass or silicon oxide functionalized with silanes (e.g., APTES).

Goal:

- Pattern capture probes in arrays.
- Used to create **DNA microarrays** for gene expression analysis or biosensors.
- Example: Complementary fluorescently labeled DNA hybridizes only to printed regions.

Practice:

Design the fabrication flow for microcontact printing