Mass Transfer

Spring 2018

Last updated: 21st May 2018 at 09:28

James Cannon Kyushu University

http://www.jamescannon.net/teaching/mass-transfer

License: CC BY-NC 4.0.

Contents

0	Cou	urse information
	0.1	This course
		0.1.1 What you need to do
		0.1.2 How this works
		0.1.3 Assessment
	0.2	Timetable
	0.3	Hash-generation
1		sh practise
	1.1	Hash practise: Integer
		Hash practise: Decimal
	1.3	Hash practise: String
	1.4	Hash practise: Scientific form

Chapter 0

Course information

0.1 This course

This is the Spring 2018 Mass Transfer graduate course at Kyushu University.

0.1.1 What you need to do

- Borrow the book "Principles of Heat and Mass Transfer", 7th Edition, by Incropera et. al. from the Mechanical Engineering Office on the 4th floor of West 4. The course will be based on that book and you will need to refer to it in class.
- Prepare a challenge-log in the form of a workbook or folder where you can clearly write the calculations you perform to solve each challenge. This will be used in the final assessment and will be occasionally reviewed by the teacher.
- Submit a weekly feedback form by **8am on Monday** before class at https://goo.gl/forms/slmT8LNxM10vtlSs2.
- Please bring a wifi-capable internet device to class, as well as headphones if you need to access online components of the course during class. If you let me know in advance, I can lend computers and provide power extension cables for those who require them (limited number).

0.1.2 How this works

- This booklet forms part of an active-learning segment in the course. The learning is self-directed in contrast to the traditional lecture-style model.
- Learning is guided through solving a series of challenges combined with instant feedback about the correctness of your answer.
- Traditional lectures are replaced by discussion time. Here, you are encouraged to discuss any issues with your peers, teacher and any teaching assistants. You can also learn from explaining concepts to your peers.
- Discussion-time is from 10:30 to 12:00 on Mondays at room Engineering-2.
- Peer discussion is encouraged, however, if you have help to solve a challenge, always make sure you do understand the details yourself. You will need to be able to do this in an exam environment. The questions on the exam will be similar in nature to the challenges.
- Every challenge in the book typically contains a **Challenge** with suggested **Resources** which you are recommended to utilise in order to solve the challenge. **Solutions** will be given. Occasionally the teacher will provide extra **Comments** to help guide your thinking.
- For deep understanding, it is recommended to study the suggested resources beyond the minimum required to complete the challenge.
- The challenge document has many pages and is continuously being developed. Therefore it is advised to view the document on an electronic device rather than print it. The date on the front page denotes the version of the document. You will be notified when the document is updated.
- A target challenge will be set each week. This will set the pace of the course and define the examinable material. It's ok if you can't quite reach the target challenge for a given week, but you should be careful not to fall behind, since the date of the exam cannot be delayed.

0.1.3 Assessment

In order to prove to outside parties that you have learned something from the course, we must perform summative assessments. You will receive a weighted score based on:

- \bullet Challenge-log (10%) final state at the end of the course, showing your calculations for all the challenges in the course.
- Presentation (20%)
- Final exam (70%)

 $\label{eq:final score} Final\ score = MAX(Weighted\ score,\ Final\ exam)$

0.2 Timetable

	Discussion	Target	Note
1	28 May	-	
2	4 June		
3	11 June		
4	18 June		
5	25 June		
6	2 July		Presentations
-	23 July	-	Final exam

0.3 Hash-generation

Some solutions to challenges are encrypted using MD5 hashes. In order to check your solution, you need to generate its MD5 hash and compare it to that provided. MD5 hashes can be generated at the following sites:

- Wolfram alpha: (For example: md5 hash of "q1.00") http://www.wolframalpha.com/input/?i= md5+hash+of+%22q1.00%22
- www.md5hashgenerator.com

Since MD5 hashes are very sensitive to even single-digit variation, you must enter the solution *exactly*. This means maintaining a sufficient level of accuracy when developing your solution, and then entering the solution according to the format suggested by the question. Some special input methods:

Solution	Input
5×10^{-476}	5.00e-476
5.0009×10^{-476}	5.00e-476
$-\infty$	-infinity (never "infinite")
2π	6.28
i	$\operatorname{im}(1)$
2i	$\operatorname{im}(2)$
1+2i	re(1)im(2)
-0.0002548 i	im(-2.55e-4)
1/i = i/-1 = -i	im(-1)
$e^{i2\pi} \left[= \cos(2\pi) + i\sin(2\pi) = 1 + i0 = 1 \right]$	1.00
$e^{i\pi/3} = \cos(\pi/3) + i\sin(\pi/3) = 0.5 + i0.87$	re(0.50)im(0.87)
Choices in order A, B, C, D	abcd

The first 6 digits of the MD5 sum should match the first 6 digits of the given solution.

Chapter 1

Hash practise

1.1 Hash practise: Integer

X = 46.3847Form: Integer.

Place the indicated letter in front of the number. Example: aX where X=46 is entered as a46

hash of aX = e77fac

1.2 Hash practise: Decimal

X = 49

Form: Two decimal places.

Place the indicated letter in front of the number. Example: aX where X=46.00 is entered as a46.00

hash of bX = 82c9e7

1.3 Hash practise: String

X = abcdef Form: String.

Place the indicated letter in front of the number. Example: aX where X = abc is entered as aabc

and cX = 990ba0

1.4 Hash practise: Scientific form

X = 500,765.99

Form: Scientific notation with the mantissa in standard form to 2 decimal place and the exponent in

integer form.

Place the indicated letter in front of the number.

Example: aX where $X = 4 \times 10^{-3}$ is entered as a4.00e-3

and A = be8a0d