Point Set Topology

Hoyan Mok

$January\ 22,\ 2020$

Contents

	Topological Spaces and Continuous Mappings		
	1.1	Metric Space	2
		Topological Space and Continuous Mapping	4

1 Topological Spaces and Continuous Mappings

1.1 Metric Space

Definition 1.1. function

$$d \colon X^2 \to \mathbb{R} \tag{1-1}$$

 $\forall x_1, x_2, x_2 \in X$ satisfied:

- a) $d(x_1, x_2) = 0 \Leftrightarrow x_1 = x_2;$
- b) $d(x_1, x_2) = d(x_2, x_1)$ (symmetry);
- c) $d(x_1, x_3) \leq d(x_1, x_2) + d(x_2, x_3)$ (Triangle inequality),

is called a **metric** or **distance** in X. Such X is said to be equiped with metric d, (X; d) is called a **metric space**.

Some examples:

- $(\mathbb{R}^n; d_p)$, where $d_p(x_1, x_2) = \left(\sum_{i=1}^n |x_1^i x_2^i|^p\right)^{1/p}$, while $d_{\infty}(x_1, x_2) = \max_{1 \le i \le n} |x_1^i x_2^i|$.
- Similarly we can define metric spaces as $(C[a,b];d_p)$ or $C_p[a,b]$. $d_p(f,g) = \left(\int_a^b |f-g|^p dx\right)^{\frac{1}{p}}$. C_{∞} is called a **Chebyshev metric**.
- On class $\mathfrak{R}[a,b]$ over $\mathfrak{R}[a,b]$ similar metric can be defined. Functions are considered of one same class if they are equivalent expect on a set not larger than null set.

Hilbert space denoted by $(\mathbb{H}; d)$ is defined as:

$$\mathbb{H} = \left\{ x = (x_1, x_2, \dots) \mid \forall i \in \mathbb{Z}_+ \left(\forall x_i \in \mathbb{R} \land \sum_{i=1}^{\infty} x_1^2 < \infty \right) \right\}$$
 (1-2)

equiped with a metirc d:

$$d: \mathbb{H}^2 \to \mathbb{R}; \ x, y \mapsto \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}.$$
 (1-3)

To justify this definition, we need to introduce a lemma:

Lemma 1.

$$\forall n \in \mathbb{Z} \forall \boldsymbol{u} \in \mathbb{R}^n \forall \boldsymbol{v} \in \mathbb{R}^n \left(\sum_{i=1}^n u_i v_i \le \sqrt{\sum_{i=1}^n u_i^2} \sqrt{\sum_{i=1}^n v_i^2} \right)$$
 (1-4)

This is called Schwarz inequality.

Proof. If $\forall i=1,\cdots,n(v_i=0)$ the equivalence has already been satisfied, therefore the following consider the situation that $\exists i \in \{1,\cdots n\} (v_i \neq 0). \ \forall \lambda \in \mathbb{R}$

$$\sum_{i=1}^{n} (u_i + \lambda v_i)^2 = \sum_{i=1}^{n} u_i^2 + 2\lambda \sum_{i=1}^{n} u_i v_i + \lambda^2 \sum_{i=1}^{n} v_i^2 \ge 0$$

has at most one root. Hence $\Delta \leq 0$ will lead to the inequality 1-4.

Apply this inequality to $\sum_{i=1}^n (u_i+v_i)^2 = \sum_{i=1}^n u_i^2 + \sum_{i=1}^n v_i^2 + 2\sum_{i=1}^n v_i \sum_{i=1}^n u_i$ we can get

$$\sum_{i=1}^{n} (u_i + v_i)^2 \le \sum_{i=1}^{n} u_i^2 + \sum_{i=1}^{n} v_i^2 + 2\sqrt{\sum_{i=1}^{n} u_i^2} \sqrt{\sum_{i=1}^{n} v_i^2} = \left(\sqrt{\sum_{i=1}^{n} u_i^2} + \sqrt{\sum_{i=1}^{n} v_i^2}\right)^2,$$

in which substitude u_i, v_i by $x_i - y_i, x_i + y_i$ will result in triangle inequality. The inequality holds as the n limits to $+\infty$.

A metric space (X; d) is called **discrete** if

$$\forall x \in X \left(\exists \delta_x \in \mathbb{R}_+ \big(\forall y \in X (y \neq x \to d(x, y) > \delta_x) \big) \right).$$

Lemma 2. If (X;d) is a metric space, then $\forall a,b,u,v, |d(a,b)-d(u,v)| \leq d(a,u)+d(b,v)$.

Proof. Without loss of generality, we assume that d(a,b) > d(u,v). According to the triangle inequality (see def. 1.1), $d(a,b) \le d(a,u) + d(u,v) + d(v,b)$, which is to prove.

Definition 1.2. $\delta \in \mathbb{R}_+, a \in X$. Set

$$B(a; \delta) = \{ x \in X \mid d(a, x) < \delta \}$$

is then called a **ball** with centre $a \in X$, and a radius of δ , or a δ -**ball** of point a.

Definition 1.3. An *open set* $G \subset X$ in metric space (X; d) satisfies: $\forall x \in G$, $\exists B(x; \delta)$, s.t. $B(x; \delta) \subset G$.

Definition 1.4. A set $F \subset X$ in metric space (X; d) is said to be a **closed set** if its complement $\mathcal{C}_X(F)$ is open.

It can be proved that \emptyset and X itself is both open and closed.

Proposition 1. a) An infinite union of open sets is an open set.

- b) A finite intersection of open sets is an open set.
- c) A finite union of closed sets is a closed set.
- d) An infinite intersection of closed sets is a closed set.

Proof. a) If open sets $G_{\alpha} \subset X, \forall \alpha \in A, \forall a \in \bigcap_{\alpha \in A} G_{\alpha}, \exists \alpha_0 \in A, a \in G_{\alpha_0}, \exists B(a; \delta) \subset G_{\alpha_0} \subset \bigcap_{\alpha \in A} G_{\alpha}.$

- b) Open sets $G_1 \cup G_2 \subset X$, $a \in G_1 \cap G_2$, therefore $\exists \delta_1, \delta_2 \in \mathbb{R}_+$, $B(a; \delta_1) \subset G_1, B(a; \delta_2) \subset G_2$, without loss of generality, let $\delta_1 \geq \delta_2$, $a \in B(a; \delta_1) \cap B(a; \delta_2) = B(a; \delta_2) \subset G_1 \cap G_2$.
- c) Just consider $\mathcal{C}_X\left(\bigcap_{\alpha\in A}F_\alpha\right)=\bigcup_{\alpha\in A}\mathcal{C}_X(F_\alpha)$ and a).
- d) Similarly, $C_X(F_1 \cup F_2) = C_X(F_1) \cap C_X(F_2)$.

1.2 Topological Space and Continuous Mapping

Definition 1.5. We say X is equiped with a *topological space* or equiped with *topology* if we assigned a $\mathcal{I} \subset 2^X$, which has got the following propoties:

- a) $\emptyset \in \mathcal{T}; X \in \mathcal{T}$.
- b) $\forall \alpha \in A(G_{\alpha} \in \mathscr{T}) \to \bigcup_{\alpha \in A} G_{\alpha} \in \mathscr{T}.$
- c) $G_1 \in \mathcal{T} \land G_2 \in \mathcal{T} \rightarrow G_1 \cap G_2 \in \mathcal{T}$.

Then we call $(X; \mathscr{T})$ a $topological\ space$. Every $G \in \mathscr{T}$ is called an open set.

Definition 1.6. A topology \mathcal{T}_d insisting of the open sets in a metric space (X;d) is called a **topology induced by metric** d.

A trivial example of topological space is **trivial topology**, which consists only of empty set and the space itself, i.e. $\mathscr{T} = \{\varnothing, X\}$. Another trivial example of topological space is **discrete topology**, which consists of all the subsets of the space i.e. $\mathscr{T} = 2^X$.

A $\boldsymbol{cofinite\ space}$ is a base set X equiped with a topology $\mathcal T$ defined as follows:

$$\mathscr{T} = \{ U \in 2^X \mid U = \varnothing \lor \mathsf{C}_X U \text{ is finite} \}$$
 (1-5)

Proposition 2. The set \mathcal{T} under definition 1-5 is a topology.

Proof. a) $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.

- b) $\forall i \in I \left(\left| \mathbb{C}_X A_i \right| \in \mathbb{N} \right) \to \forall i_0 \in I \left(\left| \bigcap_{i \in I} \mathbb{C}_X A_i \right| \le \left| \mathbb{C}_X A_{i_0} \right| \right)$, therefore $\bigcup_{i \in I} A_i \in \mathscr{T}$.
- c) $\forall A \in \mathscr{T} \forall B \in \mathscr{T}(A \cap B = \varnothing \in \mathscr{T} \vee \mathcal{C}_X(A \cap B) = \mathcal{C}_X A \cup \mathcal{C}_X B$ is finite), therefore $\forall A \in \mathscr{T} \forall B \in \mathscr{T}(A \cap B \in \mathscr{T})$.

4

Similarly, countable complement space can be defined.

Definition 1.7. Let $(X; \mathcal{T})$ be a topological space. If there exists a metric $d: X^2 \to \mathbb{R}$ s.t. $(X; \mathcal{T})$ is induced by d then call $(X; \mathcal{T})$ a **metrizable space**, (X; d) is its **metrization**.

Definition 1.8. Let $(X; \mathcal{T})$, $(Y; \mathcal{S})$ be two topological space. A mapping f is said to be continuous if

$$\forall V \in \mathscr{S} \big(\exists U \in \mathscr{T} (U = f^{-1}(V)) \big).$$

Index

```
\delta-ball, 3
Symbols used
     d, 2
     \mathbb{H}, 2
     \mathscr{T}, \frac{4}{}
ball, 3
Chebyshev metric, 2
closed set, 3
cofinite space, 4
countable complement space, 5
discrete, 3
discrete topology, 4
distance, 2
Hilbert space, 2
metric, 2
metric space, 2
metrizable space, 5
metrization, 5
open set, 3, 4
Schwarz inequality, 2
topological space, 4
topology, 4
topology induced by metric, 4
trivial topology, 4
```