MINIMIZATION aka. Simplification

Claude Elwood Shannon

Mathematician Electrical Engineer Cryptographer

M.Sc. Thesis (1937)
A Symbolic Analysis of Relay and Switching Circuits

Switching Algebra! 2-valued Boolean algebra

SWITCHING ALGEBRA

- Given $S = \{0, 1\}$
- Given $\S = \times (AND)$, $\dagger = + (OR)$
- S is closed, commutative, and distributive w.r.t × , +
- $e_x = 1$ and $e_+ = 0$
- Complement: for any $x \in S$, there is $y \in S$ such that
 - $0 0 \times 1 = e_{+} = 0$
 - $0 0 + 1 = e_{x} = 1$

We denote 0=1', 1=0'

SWITCHING ALGEBRA IS-A BOOLEAN ALGEBRA

It satisfies all conditions of Boolean algebra!

Prove → Book: 2.3 axiomatic definition of Boolean algebra

Another sample of algebra in CS: Relational Algebra (SQL)

Is relational algebra a Boolean algebra? Check this when you take COMP-3150: Database Management Systems!

BASIC THEOREMS

Prove by postulates

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

= $(X + X)$ 1 using identity $e_x = 1$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) 1 \text{ using identity } e_x = 1$$

$$= (X + X) (X + X') \text{ using complement property}$$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) \text{ 1 using identity } e_x = 1$$

$$= (X + X) (X + X') \text{ using complement property}$$

$$= X + (XX') \text{ using distributive property of } + \text{ over } \times$$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) \text{ 1 using identity } e_x = 1$$

$$= (X + X) (X + X') \text{ using complement property}$$

$$= X + (XX') \text{ using distributive property of } + \text{ over } \times$$

$$= X + 0 \text{ using complement property}$$

$$X + X = X$$

 $X + X + X + ... + X = X$

$$X + X =$$

$$= (X + X) \text{ 1 using identity } e_x = 1$$

$$= (X + X) (X + X') \text{ using complement property}$$

$$= X + (XX') \text{ using distributive property of } + \text{ over } \times$$

$$= X + 0 \text{ using complement property}$$

$$= X \text{ using identity property of } e_x = 0$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) 1 using identity e_{\times} = 1$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) 1 using identity e_{*} = 1$$

$$= (X + 1) (X + X') using complement property$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) \text{ 1 using identity } e_x = 1$$

$$= (X + 1) (X + X') \text{ using complement property}$$

$$= X + (1X') \text{ using distributive property of } + \text{ over } \times$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + 1 =$$

$$= (X + 1) \text{ 1 using identity } e_x = 1$$

$$= (X + 1) (X + X') \text{ using complement property}$$

$$= X + (1X') \text{ using distributive property of } + \text{ over } \times$$

$$= X + X' \text{ using identity } e_x = 1$$

$$X + 1 = 1$$

 $X + Y + Z + ... + 1 = 1$

$$X + XY = X$$

$$X + XY + XZW + ... + XWAD = X$$

Absorption

$$X + XY = X$$

$$X + XY + XZW + ... + XWAD = X$$

X + XY =

= X1+XY using identity $e_x=1$

= X(1 + Y) using distributive property of \times over +

= X1 using previous theorem x+1=1

= X using identity $e_x = 1$

 $Dual(F) = OR \rightleftharpoons AND, 1 \rightleftharpoons 0$

Dual(F) may or may not equal to F!

$$X+1 \rightleftarrows X0$$

$$X+X' \rightleftarrows XX'$$

$$(X+Y)' \rightleftarrows (XY)'$$

A postulate or a proved theorem for F Also a postulate or a proved theorem for Dual(F)

$$\{X+1=1\} \rightleftarrows \{X0=0\}$$

$$\{X+X'=1\} \rightleftarrows \{XX'=0\}$$

$$\{(X+Y)'=X'Y'\} \rightleftarrows \{(XY)'=X'+Y'\}$$

$$X(X+Y) = X$$

$$X(X+Y)(X+Z) \dots (X+W) = X$$

$$\{X(X+Y)=X\} \rightleftharpoons \{X+XY=X\}$$

→ Using the duality property, this is also true!

Absorption

BASIC THEOREMS prove by truth table

For equality proof, $F_1=F_2$, for all possibility in the input variables (all rows), both side of equation must have equal value for same input variables.

For inequality proof, $F_1 \neq F_2$, find at least one possibility (a row) that have different values.

MINIMIZATION

Boolean Algebra (algebraically) aka. Algebraic Manipulation

$$F = ZY'X' + ZYX + ZYX' + ZY'X$$

4 × 3-input-AND 1 × 4-input-OR

$$F = \frac{Z}{Y'X'} + \frac{Z}{ZYX} + \frac{Z}{ZYX'} + \frac{Z}{ZYX'}$$

$$F = \frac{Z}{X}(Y'X' + YX + YX' + Y'X)$$

$$F = \frac{Z}{Y'X'} + YX + YX' + Y'X)$$

$$F = \frac{Z}{Y'}(X'+X) + YX + YX')$$

$$F = \frac{Z}{Y'}(X'+X) + YX + YX')$$

$$F = Z(Y'1 + YX + YX')$$

$$F = Z (Y'1 + YX + YX')$$

$$F = Z(Y' + YX + YX')$$

$$F = Z(Y' + YX + YX')$$

$$F = Z(Y' + Y(X+X'))$$

$$F = Z(Y' + Y(X+X'))$$

$$F = Z(Y' + Y1)$$

$$F = Z (Y' + Y)$$

$$F = \frac{Z}{Y'+Y}$$

$$F = \frac{Z1}{2}$$

$$F = Z$$

0 gates!

$$F = ZY'X' + ZYX + ZYX' + ZY'X$$

 4×3 -input-AND 1×4 -input-OR

$$F = \frac{ZY'}{X'}X' + \frac{ZYX}{ZYX'} + \frac{ZY'}{ZY'}X$$

$$F = \frac{ZY'}{(X'+X)} + ZYX + ZYX'$$

$$F = \frac{ZY'}{(X'+X)} + \frac{ZY}{ZY}X + \frac{ZY}{ZY}X'$$

$$F = \frac{ZY'}{(X'+X)} + \frac{ZY}{(X+X')}$$

$$F = \frac{ZY'}{(X'+X)} + \frac{ZY}{(X+X')}$$

$$F = \frac{ZY'1}{2Y'1} + \frac{ZY'1}{2Y'1}$$

$$F = ZY' + ZY$$

$$F = \frac{Z}{Y'+Y}$$

$$F = \frac{Z}{1}$$

$$F = Z$$

0 gates!

$$F = ZY'X' + ZYX + ZYX' + ZY'X$$

 4×3 -input-AND 1×4 -input-OR

$$F = ZY'X' + ZYX' + Z'Y'X$$

$$F = \frac{Z}{Y'}\frac{X'}{X'} + \frac{Z}{Y}\frac{X'}{X'} + \frac{Z'Y'X}{X'}$$

$$F = \frac{ZX'}{(Y'+Y)} + Z'Y'X$$

$$F = \frac{ZX'}{(Y'+Y)} + Z'Y'X$$

$$F = \frac{ZX'}{1} + \frac{Z'Y'X}{1}$$

$$F = ZX' + Z'Y'X$$

1 × 2-input-AND 1 × 3-input-AND 1 × 2-input-OR

$$F = ZYX' + ZYX' + Z'Y'X$$

3 × 3-input-AND 1 × 3-input-OR

MINIMIZATION oloan Algobraically

- I) Boolean Algebra (algebraically)
- o Needs to be smart. It is hard due to guesswork (which rules to apply?)
- o If the number of variables (ABCDEF...) and/or number of minterms (MAXTERMS) grows
- o No Algorithm
- o Is the result minimal?!

MINIMIZATION

II) Map (Karnaugh map, K-map)

aka. Graphical Manipulation

II) Map (Karnaugh map, K-map) aka. Graphical Manipulation

Algorithm; Straightforward, up to six variables

Result is always minimal

TRUTH TABLE

Υ	Χ	F
0	0	?
0	1	?
1	0	?
1	1	?

BOOLEAN FUNCTION Algebraic Expression

$$F_{SOP}(Y,X) = \Sigma \text{ minterms}$$

 $F_{PoS}(Y,X) = \prod MAXTERMs$

LOGIC CIRCUIT

Maurice Karnaugh Physicist Mathematician Inventor

Bell Labs (1954)
"The Map Method for Synthesis of Combinational Logic Circuits"

KARNAUGH MAP

1-Variable KARNAUGH MAP

X	F
0	m_0
1	m_1

2-Variable KARNAUGH MAP

Υ	X	F
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Υ	X	F
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Υ	Χ	F
0	0	1
0	1	0
1	0	0
1	1	0

$$F(Y,X) = m_0 = Y'X'$$

F(Y,X) = Y'X'

Υ	X	F
0	0	0
0	1	1
1	0	0
1	1	0

$$F(Y,X) = m_1 = Y'X$$

F(Y,X) = Y'X

Υ	Χ	F
0	0	0
0	1	0
1	0	1
1	1	0

$$F(Y,X) = m_2 = YX'$$

F(Y,X) = YX'

Υ	X	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F(Y,X) = m_3 = YX$$

F(Y,X) = YX

Υ	Χ	F
0	0	1
0	1	1
1	0	0
1	1	0

$$F(Y,X) = m_0 + m_1 = Y'X' + Y'X = Y'(X' + X) = Y'$$

$$F(Y,X) = Y'$$

Υ	Χ	F
0	0	0
0	1	0
1	0	1
1	1	1

$$F(Y,X) = m_2 + m_3$$

= YX' + YX
= Y(X' + X)
= Y

F(Y,X) = Y

Υ	X	F
0	0	0
0	1	1
1	0	0
1	1	1

$$F(Y,X) = m_1 + m_3$$

= Y'X + YX
= X(Y' + Y)
= X

$$F(Y,X) = X$$

Υ	Χ	F
0	0	1
0	1	0
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_2$$

= Y'X' + YX'
= X'(Y' + Y)
= X'

F(Y,X) = X'

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= \frac{Y'}{X'} + \frac{Y'}{Y}X + YX'$$

$$= Y'(X' + X) + YX'$$

$$= Y' + YX'$$

$$F(Y,X) = Y' + YX'$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= X'(Y' + Y) + Y'X$$

$$= X' + Y'X$$

$$F(Y,X) = X' + Y'X$$

Υ	Χ	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_0 + m_1 + m_2$$

$$= Y'X' + Y'X + YX'$$

$$= Y'X' + Y'X' + Y'X + YX'$$

$$= Y'(X' + X) + Y'X' + YX'$$

$$= Y' + Y'X' + YX'$$

$$= Y' + X'(Y' + Y)$$

$$= Y' + X'$$

$$F(Y,X) = Y' + X'$$

Y	Χ	F
0	0	1
0	1	1
1	0	1
1	1	1

$$F(Y,X) = m_0 + m_1 + m_2 + m_3$$

$$= Y'X' + Y'X + YX' + YX$$

$$= Y'(X' + X) + Y(X' + X)$$

$$= Y' + Y$$

$$= 1$$

$$F(Y,X) = m_0 + m_1 + m_2 + m_3$$

= 1

Υ	Χ	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F(Y,X) = m_1 + m_2$$
$$= Y'X + YX'$$

$$F(Y,X) = m_1 + m_2$$
$$= Y'X + YX'$$

Y	X	F
0	0	1
0	1	0
1	0	0
1	1	1

$$F(Y,X) = m_0 + m_2$$
$$= Y'X' + YX$$

$$F(Y,X) = m_0 + m_2$$
$$= Y'X' + YX$$

3-Variable KARNAUGH MAP

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m ₆
1	1	1	m ₇

		X		
		0	1	
V	0	m_0	m ₁	
Y	1	m_2	m_3	

		ΥX			
	\setminus	00	01	11	10
7	0	m_0	m_1	m_3	m ₂
Ζ	1	m_4	m_5	m ₇	m ₆

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

		X		
, in the second		0	1	
V	0	m_0	m_1	
Y	1	m_2	m_3	

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

Z	Υ	Х	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

Z	Υ	Х	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

Z	Y	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	
1	1	1	m ₆ m ₇

		YX				
	\setminus	00	01	11	10	
7	0	m_0	m_1	m_3	m ₂	
Ζ	1	m_4	m_5	m ₇	m ₆	

X′ ?

Z	Υ	X	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

	YX			
	00	01	11	10
7	m_0	m_1	m_3	m ₂
1	m_4	m_5	m ₇	m ₆

Z	Y	Х	F
0	0	0	m_0
0	0	1	m_1
0	1	0	m ₂
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m ₆ m ₇

Z	Υ	Χ	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \sum m(0,1,2,3,6,7)$$

= Z'Y'X'+Z'Y'X+Z'YX'+Z'YX+ZYX'+ZYX
= ?

		YX				
		00	01	11	10	
7	0	1	1	1	1	
Z	1	0	0	1	1	

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \sum m(0,1,2,3,6,7)$$

= Z'Y'X'+Z'Y'X+Z'YX'+Z'YX+ZYX'+ZYX
= ?

$$F(Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= Z' +

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \sum m(0,1,2,3,6,7)$$

= Z'Y'X'+Z'Y'X+Z'YX'+Z'YX+ZYX'+ZYX
= ?

$$F(Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z' + ZY$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z'Y'X' + Z'Y'X + Z'YX' + Z'YX + ZYX' + ZYX'$
= ?

$$F(Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z' + Y$

Z	Υ	Х	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F(Y,X) = \prod M(4,5)$$

= ?

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F'(Y,X) = \sum_{i=1}^{n} m(4,5)$$
$$= ZY'$$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F(Y,X) = \prod M(4,5)$$

= $(F')'$
= $(ZY')'$
= $Z'+Y$

Z	Υ	X	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F(Y,X) = \sum m(0,1,2,3,6,7)$$

= Z'Y'X'+Z'Y'X+Z'YX'+Z'YX+ZYX'+ZYX
= ?

$$F(Y,X) = \prod M(4,5)$$

= $(Z'+Y+X) (Z'+Y+X')$
= ?

$$F(Y,X) = \sum_{i=1}^{n} m(0,1,2,3,6,7)$$

= $Z' + Y$

		YX			
		00	01	11	10
7	0	1	1	1	1
Ζ	1	0	0	1	1

$$F(Y,X) = \prod M(4,5)$$

= $(F')'$
= $(ZY')'$
= $Z'+Y$

Z	Υ	X	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Y,X) = \sum m(0,2,4,6)$$

= $Z'Y'X' + Z'YX' + ZY'X' + ZYX'$
= ?

		YX			
		00	01	11	10
7	0	1	0	0	1
Ζ	1	1	0	0	1

Z	Υ	X	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Y,X) = \sum m(0,2,4,6)$$

= $Z'Y'X'+Z'YX'+ZY'X'+ZYX'$
= ?

$$F(Y,X) = \sum_{i=1}^{n} m(0,2,4,6)$$

= X'

Z	Υ	Χ	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$F(Y,X) = \prod M(1,3,5,7)$$

$$= (Z+Y+X')(Z+Y'+X')(Z'+Y+X')(Z'+Y'+X')$$

$$= ?$$

$$F(Y,X) = \prod M(1,3,5,7)$$

= $(X)'$
= X'

4-Variable KARNAUGH MAP