Dennis Mao, Julian Rodemann, Michael Kobl

Besprechung 27.06.2022/29.06.2022

Aufgabe 1

Bestimmen Sie die momenterzeugende Funktion der Zufallsvariablen X, wenn

- a) X diskret gleichverteilt ist auf $\{1, \ldots, n\}, n \in$
- b) X stetig gleichverteilt ist auf dem Intervall (a, b), a < b.

Aufgabe 2

Es sei $X:\Omega\to\mathbb{R}$ eine beliebige Zufallsvariable sowie $a,b\in\mathbb{R}$. Zeigen Sie folgende Aussagen für die charakteristische Funktion $\varphi_X:\mathbb{R}\to\mathbb{C}$ von X.

- a) Die charakteristische Funktion ist, im Gegensatz zur momenterzeugenden Funktion M, stets auf der gesamten rellen Achse wohldefiniert und insbesondere gilt, dass $|\varphi_X(t)| \leq 1$ für alle $t \in \mathbb{R}$.
- b) Es gilt, dass $\varphi_X(-t) = \overline{\varphi_X(t)}$, wobei $\overline{z} = a by$ die komplex konjugierte zu z = a + ib mit $a, b \in \mathbb{R}$ ist.
- c) Für die Charakteristische Funktion φ_Y von Y = a + bX gilt $\varphi_Y(t) = e^{itb}\varphi_X(at)$.

Aufgabe 3

Die negative Binomialverteilung (n, p) ist eine diskrete Verteilung mit Werten in $_0 = \{0, 1, 2, \ldots\}$. Sie beschreibt die Anzahl der Versuche, die in einer Folge von unabhängigen Bernoulli-Experimenten mit Trefferwahrscheinlichkeit $p \in (0, 1)$ erforderlich sind, um $n \in$ Erfolge zu erzielen. Ihre Zähldichte ist gegeben durch

$$f(k) = {k+n-1 \choose k} p^k (1-p)^n, \quad k \in_0.$$

a) Zeigen Sie, dass die momenterzeugende Funktion einer Zufallsvariablen $X \sim (n,p)$ gegeben ist durch

$$M_X(s) = \left(\frac{1-p}{1-\exp(s)p}\right)^n, \quad s \in \mathcal{D}$$

und dass $\mathcal{D} = (-\infty, -\log(p)).$

b) Es seien $X \sim (n_X, p), Y \sim (n_Y, p)$ zwei unabhängige Zufallsvariablen mit $n_X, n_Y \in \text{und } p \in (0, 1).$

Bestimmen Sie die Verteilung von Z := X + Y.

Hinweise:

• Binomische Reihe:
$$\frac{1}{(1-x)^m} = \sum_{k=0}^{\infty} \binom{k+m-1}{k} x^k, \quad 0 \le x < 1, \ m \in .$$

• Haben zwei Zufallsvariablen die gleiche momenterzeugende Funktion, so folgen sie derselben Verteilung.

Aufgabe 4

Es seien X_1, \ldots, X_n u.i.v. Zufallsvariablen mit $X_i \sim U(0,1)$ für alle $i=1,\ldots,n$. Zeigen Sie, dass

$$\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}} \stackrel{\mathbb{P}}{\to} c$$

und bestimmen Sie die Konstante c.