Machine learning for Pairs Trading in Utilities

Group 9: Chenyang Que, Haoxuan Su, Hongyang Lu, Runyao Tang, Jiahao Zhang

TABLE OF CONTENTS

Motivation

01

02

Data

Trading Execution

03

04

Pairs trading

Cointegration

05

06

Machine Learning

Result

07

80

Future development

Motivation

Machine learning for pairs trading

Assets Price & Return

- High dimensional
- Non-linear

Can Unsupervised Learning find more promising pairs?

Purpose:

- finding the appropriate candidate pairs
- selecting the most promising ones.

Compare with traditional method

- OPTICS
- Correlation

Data

Data: Yahoo finance API (yahooquery)

- US market: 9502 asset
- Stock: 6010 (exclude ETF)
- Sector Utilities: 82 stocks
- Pairs: (82*81)/2 = 3321

Daily data

Train period 2023/03 - 2023/12 Test period 2023/01-2023/04

Ticker	Company	Sector	Industry	Country	Market Cap	P/E	Price	Change	Volume
ADN	Advent Technologies Holdings Inc	Utilities	Utilities - Renewable	USA	11.42M	0.00	0.15	-2.97%	848185.0
AEE	Ameren Corp.	Utilities	Utilities - Regulated Electric	USA	19.82B	17.00	74.36	0.96%	691501.0
AEP	American Electric Power Company Inc.	Utilities	Utilities - Regulated Electric	USA	45.60B	20.40	86.67	1.65%	1900397.0
AES	AES Corp.	Utilities	Utilities - Diversified	USA	12.66B	54.37	17.81	3.46%	5798232.0
AGR	Avangrid Inc	Utilities	Utilities - Regulated Electric	USA	14.15B	15.88	36.58	0.54%	334536.0
VST	Vistra Corp	Utilities	Utilities - Independent Power Producers	USA	27.04B	22.28	77.74	6.93%	3862044.0
WEC	WEC Energy Group Inc	Utilities	Utilities - Regulated Electric	USA	26.07B	19.60	82.63	1.40%	1160992.0
WTRG	Essential Utilities Inc	Utilities	Utilities - Regulated Water	USA	9.98B	19.58	36.47	1.05%	703016.0
XEL	Xcel Energy, Inc.	Utilities	Utilities - Regulated Electric	USA	30.27B	16.38	54.49	0.99%	2732624.0
YORW	York Water Co.	Utilities	Utilities - Regulated Water	USA	509.10M	21.39	35.53	0.44%	28265.0

Trading Execution Threshold-Based Trading Model

- 1. Calculate the spread's (St = Yt Xt) mean μ , and standard deviation σ during the pair's formation period.
- 2. Define the model thresholds: the threshold that triggers a long position **L**, the threshold that triggers a short position **S**, and the exit threshold exit that defines the level at which a position should be exited.
- 3. Monitor the evolution of the spread, St and control if any **threshold is crossed**.
- 4. In case L is crossed, go long the spread by **buying Y and selling X** . If S is triggered, short the spread by **selling Y and buying X** . Exit position when exit is triggered and a position was being held.

Pairs

Cointegration

Mean-Reversion and **Stationarity**

- Mean-reversion is the tendency of a time series to return to its historical average over time.
- Stationarity implies that the statistical properties of a time series, such as mean and variance, do not change over time.
 - **Cointegration Test p-value < 0.05**: Ensures a stable long-term relationship between the pair.
 - **Hurst Exponent < 0.5**: Confirms mean-reverting behavior.
 - 1 < Half-Life < 365: Validates that the mean reversion occurs at a reasonable pace.
 - **Mean-Cross >=12**: Ensures sufficient trading opportunities through frequent mean reversion.

Sarmento, Simão Moraes, and Nuno Horta. A machine learning based pairs trading investment strategy. Springer, 2020.

Machine Learning

Identification of two securities, for example two stocks, for which the corresponding prices series display a similar behaviour, or simply seem to be **linked** to each other.

Normalization & Dimensionality reduction

- We imported, adjusted, standardized these data and find a compact representation for each security
- T-SNE:Non-linear method.

Unsupervised Learning—apply an appropriate clustering algorithm;

- OPTICS: A density-based algorith
- Handles Varying Densities
- Effectively with Noise
- Flexible Clustering

Select pairs—define a set of rules to select pairs for trading.

• Combined with Cointegration, we finally came up with 4 pairs that can meet all our requirements.

Result & Beaktest

1. Correlation

Pair	correlation	pvalue	hurst_exponent	half_life	crossovers	Return	Std Dev	Max Drawdown	Sharpe Ratio	Omega
AGR_ES	0.977222	0.014088	0.371316	6.513701	26	-0.199022	0.084834	-0.075814	-2.346009	1.316523
BKH_POR	0.975519	0.03509	0.230085	36.62348	33	-0.047788	0.049497	-0.023879	-0.965465	1.186399
ES_WTRG	0.974181	0.021631	0.412536	38.71063	26	-0.136136	0.087945	-0.090848	-1.547979	1.34521
CPK_ORA	0.973617	0.001601	0.14878	7.060058	46	0.155662	0.101842	-0.026966	1.52847	1.443658

2. OPTICS

Pair	OPTICS	pvalue	hurst_exponent	half_life	crossovers	Return	Std Dev	Max Drawdown	Sharpe Ratio	Omega
AMPS_SWX	74.49906	0.001184	0.390763	319.1302	24	2.384911	0.286012	-0.049647	8.338499	2.583018
AES_D	44.41755	0.010932	0.361442	265.1005	26	-0.049624	0.154581	-0.105985	-0.321022	1.627348
ARTNA_NWN	49.96095	0.004631	0.349361	49.28517	34	0.093354	0.135373	-0.047971	0.689605	1.455371
NWN_UGI	58.28693	0.040827	0.326623	172.0943	18	-0.192875	0.103003	-0.068142	-1.872517	1.339657

Result & Performance

^{*} When a multi-column DataFrame is passed, the mean of all columns will be used as returns.

To change this behavior, use a pandas Series or pass the column name in the `strategy_col` parameter.

Result & Performance

Cumulative Returns vs Benchmark (Log Scaled) 11% SPY Strategy 0% -2% 2024-02-05 2024-03-05 2024

Key Performance Metrics

Metric	SPY	Strategy
Risk-Free Rate	0.0%	0.0%
Time in Market	100.0%	100.0%
Cumulative Return	6.21%	9.44%
CAGR%	13.72%	21.25%
Sharpe	1.62	3.19
Prob. Sharpe Ratio	82.03%	98.0%
Smart Sharpe	1.49	2.94
Sortino	2.48	6.42
Smart Sortino	2.29	5.91
Sortino/√2	1.75	4.54
Smart Sortino/√2	1.62	4.18
Omega	1.77	1.77
Max Drawdown	-5.35%	-3.09%
Longest DD Days	34	30
Volatility (ann.)	11.84%	8.83%
R^2	0.01	0.01
Information Ratio	0.04	0.04
Calmar	2.56	6.89
Skew	-0.09	1.32
Kurtosis	-0.07	4.97
Expected Daily	0.07%	0.11%
Expected Monthly	1.52%	2.28%
Expected Yearly	6.21%	9.44%
Kelly Criterion	9.15%	15.86%
Risk of Ruin	0.0%	0.0%

Future development

Refining Entry Points

- Threshold-Based Trading Model: One limitation is the lack of precision in defining entry points.
- Deep Learning Model: Implementing Autoencoder LSTM for Time Series
 Forecasting could achieve more robust performance.

Sentiment and Event Analysis

- News Impact: Analyzing how news events cause price jumps.
- Pair Selection: Selecting pairs based on mean-reversion speed and jump behavior to enhance performance.

Empirical Research

- Sector and Asset Variability: Conducting research across different sectors and asset classes.
- Frequency Analysis: Investigating from different frequencies, including microstructure market data

Thanks! Q&A