VERMES MIKLÓS Fizikaverseny

2023. március 13. Megyei szakasz

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

Tudod-e?

Karikázd be a helyes választ! Minden helyes válasz 0,1 pontot ér.

Karikazu de a neryes varaszt: wilnden neryes v	varasz 0,1 pomot ci		
Hogyan lehet a dinamika alaptörvényét felírni az impulzussal? (0,1 pont)	$F = \Delta t / \Delta p$	$F = \Delta p/\Delta t$	$\mathbf{F} = \Delta p \cdot \Delta t$
Melyik az impulzus mértékegysége az SI mértékrendszerben? (0,1 pont)	$[p] = 1 \text{ N} \cdot \text{m}$	$[p] = 1 \text{ m/s}^2$	$[p] = 1 \text{ N} \cdot \text{s}$
Melyik a súrlódási erőre vektoriálisan helyesen felírt összefüggés? (0,1 pont)	$\overrightarrow{F_s} = \mu \cdot \overrightarrow{N}$	$\overrightarrow{F}_{S} = -\mu N \frac{\overrightarrow{v}}{v}$	$\overrightarrow{F_s} = \mu \cdot \overrightarrow{G_n}$
Mit értünk a körmozgást végző anyagi pont vonalsebessége alatt? (0,1 pont)	a megtett húr hosszának és az időnek a hányadosa	a megtett körív és a ehhez szükséges idő hányadosa	az időegység alatt megtett körív hossza
Mi a vonalsebesség mértékegysége? (0,1 pont)	1 m/s	1 m/s ²	1 rad/s
Milyen irányba mutat a vonalsebességvektor? (0,1 pont)	érintőleges a körhöz	a kör központjából kifele	a kör központja fele
Melyik a vonalsebesség képlete? (0,1 pont)	$v = \Delta \omega / \Delta t$	$v = \Delta \alpha / \Delta t$	$v = \Delta s/\Delta t$
Melyik a centripetális gyorsulás képlete? (0,1 pont)	$a_{\rm cp} = \omega \cdot v$	$a_{\rm cp} = \omega \cdot r$	$a_{\rm cp} = \omega/v$
Melyik képlet szolgál a radián és a fok közötti átalakításra? (0,1 pont)	2π ·rad = 180 fok	π ·rad = 360 fok	π ·rad = 180 fok
Melyik képlettel lehet kiszámítani az <i>R</i> sugarú kör körívhosszát a hozzá tartozó, radiánban megadott középponti szöggel? (0,1 pont)	$\Delta s = R/\Delta \alpha$	$\Delta s = \Delta \alpha / R$	$\Delta s = R\Delta \alpha$

Összesen: 1 pont

1. Feladat

Egy pontszerű test egyenesvonalú egyenletes mozgást végez az xOy síkban az Ox tengellyel párhuzamosan. A kezdeti időpontban ($t_0 = 0$) az O pontból kiinduló $r_0 = 10$ m nagyságú helyzetvektor $\alpha_0 = 60^{\circ}$ -os szöget alkot a sebességvektorral. A $\Delta t = 10$ s idő eltelte után a t pillanatban a helyzetvektor és a sebességvektor közötti szög $\beta = 45^{\circ}$ -ra csökken. Határozzuk meg:

- a) a helyzetvektor nagyságának az értékét a t = 10 s idő eltelte után;
- b) a pontszerű test sebességének a nagyságát.
- c) Írjuk fel az anyagi pontnak a mozgástörvényét!

Összesen: 2 pont

2. Feladat

A 600 N súlyú ember a 100 emeletes épület 50. emeletén belép a liftbe, és rugós mérlegre áll. Amikor a lift elindul, azt látja, hogy a mérleg 5 s-ig 720 N-t mutat, majd 20 s-ig 600 N-t, végül 5 s-ig 480 N-t. Ekkor a lift megáll.

- a) Az utas a legfelső emeletre vagy a földszintre érkezett-e?
- b) Milyen magas az épület?

Összesen: 3 pont

3. Feladat

Az $\alpha=60^{\circ}$ -os szögű lejtőn, a lejtő síkjával párhuzamos, elhanyagolható tömegű, merev rúddal összekötött, $m_1=200$ g és $m_2=300$ g tömegű testek csúsznak szabadon. Az 1–es test és a lejtő közti súrlódási együttható $\mu_1=0,3$, míg a 2-es test esetében $\mu_2=0,2$. Mekkora a testek gyorsulása és mekkora a rúdban a feszítőerő? Tárgyaljuk az eredményeket!

Összesen: 3 pont

Hivatalból: (1p)

Munkaidő: 2 óra