Reposiciones de ejercicios semanales Lógica Computacional 2019-2

Mayo 2019

1. Semanal 1

1. Defina recursivamente la función \mathbf{nn} especificada como sigue: Dada una fórmula φ , $\mathbf{nn}(\varphi)$ devuelve el número de símbolos de negación en la fórmula.

Por ejemplo: $nn(\neg(p \to ((\neg q \lor r) \land (\neg p \to s)))) = 3$

2. Demuestre utilizando inducción estructural que para cualquier fórmula $\varphi,$ se cumple:

$$\operatorname{nn}(\varphi) \leq \operatorname{nn}(\operatorname{qi}(\varphi))$$

Donde la función \mathbf{qi} devuelve una fórmula lógicamente equivalente en la que no figura el símbolo de implicación.

Sugerencia: Deje expresadas dobles negaciones, ya que si no, el enunciado de arriba no es correcto.

2. Semanal 2

- 1. Sea $\varphi=\neg(q\wedge((r\to\neg s\vee r)\to p))$. Convierta a φ en una fórmula lógicamente equivalente φ' que se encuentre en forma normal negativa.
- 2. Sea $\Gamma=\{(a\vee b)\wedge c, \neg b\vee \neg c\}$ y $\varphi=a.$ Determine mediante el método de tableux si $\Gamma\models\varphi$

3. Semanal 3

1. De la especificación formal del siguiente argumento, definiendo previamente un glosario adecuado.

Todos los estudiantes cursan al menos una materia.

2. Considere la siguiente expresión.

$$\forall x \exists y (A(y,x) \to M(x,y) \land (\exists z A(x,z) \land M(z,x))) \tag{1}$$

Aplique la siguiente sustitución $\sigma = [u := a][z := x][x := n]$

Nota: Tenga cuidado con las variables ligadas, recuerde qué se puede hacer y qué no se puede hacer cuando algo está libre o ligado. Igual si es necesario haga uso de α -equivalencias.

4. Semanal 4

1. Sea $\Gamma = \{ \forall x (Q(y) \to P(x)) \}$. Utilizando tableaux demuestre lo siguiente:

$$\Gamma \models Q(y) \to \forall x P(x) \tag{2}$$

5. Semanal 5

1. Sea $\varphi = \forall x \exists y (Pxyz \to (Qz \lor Ryx)) \to Qy \land (\exists x \forall z Rxz \lor \exists w Sx)$ Obten fnc de φ .

6. Semanal 6

1. Transforme a finc y decida mediante resolución binaria si se cumple la siguiente consecuencia lógica.

$$\{ \forall x (Pxy \rightarrow \exists y Qy), \exists x \forall y (Qy \rightarrow Pyx \lor Rx), \forall y (Ry \rightarrow \exists x \neg Qa) \} \models \forall x (Qfa \rightarrow Qa)$$

7. Semanal 7

1. Demuestre lo siguiente mediante deducción natural.

$$\exists xFx \rightarrow \forall y(Gy \rightarrow Hy), \exists zJz \rightarrow \exists wGw \vdash \exists z(Fz \land Jz) \rightarrow \exists vHv$$