We write $u \leftarrow \mu_{\delta}^k$ to denote a tuple u of length k which each element is independently drawn from the Bernoulli distribution with parameter δ . The protocol execution between probabilistic algorithms A and B is denoted by $\langle A, B \rangle$. Additionally, the output of A in such protocol execution is denoted by $\langle A, B \rangle_A$, and the transcript of the communication by $\langle A, B \rangle_{\text{trans}}$.

Definition 1.1 (Dynamic weakly verifiable puzzle.) A dynamic weakly verifiable puzzle (DWVP) is defined by a probabilistic algorithm P called a problem poser. A problem solver $S := (S_1, S_2)$ for P is a probabilistic two phase algorithm. We write $P(\pi)$ to denote the execution of P with the randomness fixed to $\pi \in \{0,1\}^n$, and $(S_1, S_2)(\rho)$ to denote the execution of S with the randomness fixed to $\rho \in \{0,1\}^*$. The poser $P(\pi)$ and the solver $S_1(\rho)$ interact. We denote by x the transcript of the interaction. As the result of the interaction $P(\pi)$ outputs a verification circuit Γ_V and a hint circuit Γ_H . The algorithm $S_1(\rho)$ produces no output. The circuit Γ_V takes as input $q \in Q$, an answer $q \in \{0,1\}^*$, and outputs a bit. An answer $q \in \{0,1\}^*$ is a correct solution if and only if $\Gamma_V(q,q) = 1$. The circuit Γ_H on input $q \in Q$ outputs a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$.

In the second phase S_2 takes as input x, and has oracle access to Γ_V and Γ_H . The execution of S_2 with the input x and the randomness fixed to ρ is denoted by $S_2(x,\rho)$. The queries of S_2 to Γ_V are called verification queries, and to Γ_H hint queries. The algorithm S_2 can ask at most h hint queries, v verification queries, and succeeds if and only if it makes a verification query (q,y) such that $\Gamma_V(q,y)=1$, and it has not previously asked for a hint query on q.

Definition 1.2 (k-wise direct-product of DWVPs.) Let $g: \{0,1\}^k \to \{0,1\}$ be a monotone function and $P^{(1)}$ a problem poser as in Definition 1.1. The k-wise direct product of $P^{(1)}$ is a DWVP defined by a probabilistic algorithm $P^{(g)}$. We write $P^{(g)}(\pi^{(k)})$ to denote the execution of $P^{(g)}$ with the randomness fixed to $\pi^{(k)} := (\pi_1, \ldots, \pi_k)$. Let $(S_1, S_2)(\rho)$ be a solver for $P^{(g)}$ as in Definition 1.1. The algorithm $S_1(\rho)$ sequentially interacts in k rounds with $P^{(g)}(\pi^{(k)})$. In the i-th round $S_1(\rho)$ interacts with $P^{(1)}(\pi_i)$, and as the result $P^{(g)}(\pi^{(k)})$ generates circuits Γ^i_V, Γ^i_H . Finally, $P^{(g)}$ outputs a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^1(q, y_1), \dots, \Gamma_V^k(q, y_k))$$

and a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^1(q), \dots, \Gamma_H^k(q)).$$

Let C be a random circuit that corresponds to a solver S as in Definition 1.1. Similarly as for two phase algorithm, we write $C := (C_1, C_2)$ to denote that C in the first phase uses C_1 , and in the second phase C_2 . A verification query (q, y) of C for which a hint query on this q has been asked before can not be a successfully verification query. Therefore, without loss of generality, we make an assumption that C does not ask verification queries on $q \in Q$, for which a hint query has been asked before.

Experiment $Success^{P,C^{(\cdot,\cdot)}}(\pi,\rho)$

Oracle: A problem poser P, a solver circuit $C^{(\cdot,\cdot)}$ for P.

Input: Bitstrings π , ρ . Output: A bit $b \in \{0, 1\}$.

Run
$$\langle P(\pi), C_1(\rho) \rangle$$

Let $(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$
Let $x := \langle P(\pi), C_1(\rho) \rangle_{\text{trans}}$

Run
$$C_2^{\Gamma_V,\Gamma_H}(x,\rho)$$

 $\mbox{if } C_2^{\Gamma_V,\Gamma_H} \mbox{ asks a verification query } (q,y) \mbox{ such that } \Gamma_V(q,y)=1 \mbox{ then } \\ \mbox{ return } 1 \\ \mbox{ return } 0$

The success probability of C in solving a puzzle defined by P in the experiment Success is

$$\Pr_{\pi,\rho}[Success^{P,C^{(\cdot,\cdot)}}(\pi,\rho)=1]. \tag{0.0.1}$$

Theorem 1.3 (Security amplification for a dynamic weakly verifiable puzzle.) Let $P^{(1)}$ be a fixed problem poser as in Definition 1.1, and $P^{(g)}$ be the poser for the k-wise direct product of $P^{(1)}$. There exists a probabilistic algorithm $Gen(C, g, \varepsilon, \delta, n, v, h)$ which takes as input: a solver circuit C for $P^{(g)}$, a monotone function $g: \{0,1\}^k \to \{0,1\}$, parameters ε, δ, n , the number of verification queries v, and hint queries h asked by C, and outputs a random circuit D such that the following holds:

If C is such that

$$\Pr_{\pi^{(k)},\rho}\left[Success^{P^{(g)},C}(\pi^{(k)},\rho)=1\right] \geq 8(h+v)\left(\Pr_{u \leftarrow \mu^k_{\delta}}\left[g(u)=1\right]+\varepsilon\right)$$

then D satisfies almost surely

$$\Pr_{\pi,\rho} \left[Success^{P^{(1)},D}(\pi,\rho) = 1 \right] \ge (\delta + \frac{\varepsilon}{6k}).$$

Additionally, Gen and D require oracle access to g, $P^{(1)}$, C. Furthermore, D requires also oracle access to Γ_V and Γ_H , and asks at most h hint queries and v verification queries. Finally, $Size(D) \leq Size(C) \cdot \frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

The Theorem 1.3 implies that if there is no good solver for a puzzle defined by $P^{(1)}$, then a good solver for a k-wise direct product of $P^{(1)}$ does not exist.

Let $hash: Q \to \{0, 1, \ldots, 2(h+v)-1\}$, then a set $P_{hash} \subseteq Q$, defined with respect to hash, is the set of preimages of 0 for hash. The idea is that P_{hash} contains $q \in Q$ on which C is not allowed to ask hint queries, and the first successful verification query (q, y) of C is such that $q \in P_{hash}$. Therefore, if C makes a verification query (q, y) such that $q \in P_{hash}$, then we know that no hint query is ever asked on this q. In the experiment CanonicalSuccess a circuit C succeeds if and only if it asks a successful verification query (q, y) such that $q \in P_{hash}$, and no hint query is asked on $q \in P_{hash}$.

In the following experiment Canonical Success we denote the *i*-th query of C by q_i if it is a hint query, and by (q_i, y_i) if it is a verification query.

Experiment $Canonical Success^{P,C^{(\cdot,\cdot)},hash}(\pi,\rho)$

Oracle: A problem poser P, a solver circuit $C^{(\cdot,\cdot)}$ for P.

A function $hash: Q \to \{0, \dots, 2(h+v)-1\}.$

Input: Bitstrings: π , ρ . Output: A bit $b \in \{0, 1\}$.

Run $\langle P(\pi), C_1(\rho) \rangle$ Let $(\Gamma_V, \Gamma_H) := \langle P(\pi), C_1(\rho) \rangle_P$ Let $x := \langle P(\pi), C_1(\rho) \rangle_{\text{trans}}$

Run $C^{\Gamma_V,\Gamma_H}(x,\rho)$

Let (q_j, y_j) be the first verification query such that $C_2^{\Gamma_V, \Gamma_H}(q_j, y_j) = 1$, or an arbitrary verification query if C_2 does not succeed.

If
$$(\forall i < j : q_i \notin P_{hash})$$
 and $q_j \in P_{hash}$ and $\Gamma_V(q_j, y_j) = 1$ then return 1 else return 0

Similarly as for the experiment Success, we define the success probability of a solver C for P with respect to a function hash in the experiment CanonicalSuccess as

$$\Pr_{\pi,\rho}[CanonicalSuccess^{P,C^{(\cdot,\cdot)},hash}(\pi,\rho)=1]. \tag{0.0.2}$$

For fixed hash and $P^{(g)}$ a canonical success of C for $\pi^{(k)}, \rho$ is a situation when $CanonicalSuccess^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi^{(k)},\rho)=1$. We show that if for a fixed $P^{(1)}$ a solver circuit C often succeeds in the experiment Success for $P^{(g)}$, then it also often successful in the experiment CanonicalSuccess for $P^{(g)}$.

Lemma 1.4 (Success probability in solving a k-wise direct product of $P^{(1)}$ with respect to a function hash.) For fixed $P^{(g)}$ let C succeed in the experiment Success for $P^{(g)}$ with probability γ , asking at most h hint queries and v verification queries. There exists a probabilistic algorithm **FindHash** that takes as input: a set \mathcal{H} of pairwise independent hash functions $Q \to \{0,1,\ldots,2(h+v)-1\}$, parameters γ,n , the number of verification queries v and hint queries v, and has oracle access to v and v and v are function hash v and v are function v and v are function hash v and v are function hash v and v are function hash v are function hash v and v are function hash v are function hash v and v are function hash v and v are function hash v and v are function hash v are function h

Proof. We fix $P^{(g)}$ and a solver C for $P^{(h)}$ in the whole proof of Lemma 1.4. Let \mathcal{H} be a family of pairwise independent hash functions $Q \to \{0, 1, \dots, 2(h+v)-1\}$. For all $i \neq j \in \{1, \dots, (h+v)\}$ and $k, l \in \{0, 1, \dots, 2(h+v)-1\}$ by pairwise independence property of \mathcal{H} , we have

$$\forall q_i, q_j \in Q : \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k \mid hash(q_j) = l] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k] = \frac{1}{2(h+v)}. \quad (0.0.3)$$

Let $\pi^{(k)}$, ρ be fixed. We consider the experiment CanonicalSuccess for $P^{(g)}$ and C in which we define a binary random variable X for the event that $hash(q_j) = 0$, and for every query q_i asked before q_j we have $hash(q_i) \neq 0$. Conditioned on the event $hash(q_i) = 0$, we get

$$\begin{split} \Pr_{hash \leftarrow \mathcal{H}}[X = 1] &= \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0 \land (\forall i < j : hash(q_i) \neq 0)] \\ &= \Pr_{hash \leftarrow \mathcal{H}}[\forall i < j : hash(q_i) \neq 0 \mid hash(q_j) = 0] \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0]. \end{split}$$

Now we use (0.0.3) twice and obtain

$$\begin{aligned} \Pr_{hash \leftarrow \mathcal{H}}[X=1] &= \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0 \mid hash(q_j) = 0] \right) \\ &= \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0] \right). \end{aligned}$$

Finally, we use union bound and the fact that $j \leq (h + v)$ to get

$$\Pr_{hash \leftarrow \mathcal{H}}[X=1] \ge \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = 0] \right) \ge \frac{1}{4(h+v)}.$$

Let $\mathcal{P}_{Success}$ be the set of all $(\pi^{(k)}, \rho)$ for which C succeeds in the random experiment Success for $P^{(g)}$. Furthermore, we denote the set of those $(\pi^{(k)}, \rho)$ for which $CanonicalSuccess^{P^{(g)}, C(\cdot, \cdot), hash}(\pi^{(k)}) = 1$ by $\mathcal{P}_{Canonical}$. For fixed $\pi^{(k)}$ and ρ if C succeeds canonically, then it also succeeds in the experiment Success for $P^{(g)}$. Hence, $\mathcal{P}_{Canonical} \subseteq \mathcal{P}_{Success}$, and we conclude

$$\Pr_{\substack{hash \leftarrow \mathcal{H} \\ \pi^{(k)}, \rho}} \left[Canonical Success^{P^{(g)}, C^{(\cdot, \cdot)}, hash}(\pi^{(k)}, \rho) = 1 \right] = \mathbb{E}_{(\pi^{(k)}, \rho) \in \mathcal{P}_{Success}} \left[\Pr_{hash \leftarrow \mathcal{H}}[X = 1] \right] \\
\geq \frac{\gamma}{4(h + v)}. \tag{0.0.4}$$

```
Algorithm: FindHash(\mathcal{H}, h, v, \gamma, n)
```

Oracle: A solver circuit $C^{(\cdot,\cdot)}$ for the k-wise direct product of $P^{(1)}$.

Input: A set \mathcal{H} , parametersh, v, γ, n

Output: A function $hash \in \mathcal{H}$.

```
\begin{aligned} & \textbf{for } i = 1 \textbf{ to } 32(h+v)^2/\gamma^2 \\ & hash \overset{\$}{\leftarrow} \mathcal{H} \\ & count := 0 \\ & \textbf{for } j := 1 \textbf{ to } 32(h+v)^2/\gamma^2 \\ & \pi^{(k)} \overset{\$}{\leftarrow} \{0,1\}^{kn} \\ & \textbf{ if } CanonicalSuccess^{P(g)}, C^{(\cdot,\cdot)}, hash(\pi^{(k)}) = 1 \textbf{ then} \\ & count := count + 1 \\ & \textbf{ if } \frac{\gamma^2}{32(h+v)^2} count \geq \frac{\gamma}{6(h+v)} \\ & \textbf{ return } hash \end{aligned}
```

We show that **FindHash** chooses hash such that the canonical success probability of C with respect to P_{hash} is at least $\frac{\gamma}{4(h+v)}$ almost surely. Let \mathcal{H}_{Good} denote a family of functions $hash \in \mathcal{H}$ for which

$$\Pr_{\pi^{(k)},\rho}\left[CanonicalSuccess^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi^{(k)},\rho)=1\right] \geq \frac{\gamma}{4(h+v)},$$

and \mathcal{H}_{Bad} be the family of functions $hash \in \mathcal{H}$ such that

$$\Pr_{\pi^{(k)},\rho}\left[CanonicalSuccess^{P^{(g)},C^{(\cdot,\cdot)},hash}(\pi^{(k)},\rho)=1\right] \leq \frac{\gamma}{8(h+v)}.$$

Additionally, for a fixed hash, we define binary random variables X_1, \ldots, X_N such that

$$X_i = \begin{cases} 1 & \text{if in the } i\text{-th iteration variable } count \text{ is increased} \\ 0 & \text{otherwise} \end{cases}$$

We first show that it is unlikely that **FindHash** returns $hash \in \mathcal{H}_{Bad}$. For $hash \in \mathcal{H}_{Bad}$ we have $\mathbb{E}_{\pi^{(k)},\rho}[X_i] < \frac{\gamma}{8(h+v)}$. Therefore, for any fixed $hash \in \mathcal{H}_{Bad}$ using the Chernoff bound we get

$$\Pr_{\pi^{(k)}, \rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge \frac{\gamma}{6(h+v)} \right] \le \Pr_{\pi^{(k)}, \rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \ge (1 + \frac{1}{3}) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{4(h+v)}N/27}.$$

The probability that $hash \in \mathcal{H}_{Good}$, when picked, is not returned amounts

$$\Pr_{\pi^{(k)},\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \leq \frac{\gamma}{6(h+v)} \right] \leq \Pr_{\pi^{(k)},\rho} \left[\frac{1}{N} \sum_{i=1}^{N} X_i \leq (1-\frac{1}{3}) \mathbb{E}[X_i] \right] \leq e^{-\frac{\gamma}{4(h+v)}N/27}.$$

Finally, we show that **FindHash** picks in one of its iteration $hash \in \mathcal{H}_{Good}$ almost surely. Let Y_i be a binary random variable such that

$$Y_i = \begin{cases} 1 & \text{if in the } i\text{-th iteration } hash \in \mathcal{H}_{Good} \text{ is picked} \\ 0 & \text{otherwise} \end{cases}$$

From equation (0.0.4) we know that $\Pr_{hash \leftarrow \mathcal{H}}[Y_i = 1] = \mathbb{E}[Y_i] \ge \frac{\gamma}{4(h+v)}$, almost surely. Thus, we get

$$\Pr_{hash \leftarrow \mathcal{H}} \left[\sum_{i=1}^{K} Y_i = 0 \right] \le \left(1 - \frac{\gamma}{4(h+v)} \right)^K \le e^{-\frac{\gamma}{4(h+v)}K}.$$

The bound stated in the Lemma 1.4 is achieved for $K = N = 32(h+v)^2/\gamma^2$.

We define the following solver circuit \widetilde{C} .

```
Circuit \widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},C,hash}(x,\rho)
Oracle: \Gamma_V^{(g)}, \Gamma_H^{(k)}, hash, C
Input: A transcript x, a bitstring \rho.
Output: A tuple (q, y_1, \ldots, y_k) or \perp.
Run C_2^{\Gamma_V^{(g)},\Gamma_H^{(k)}}(x,\rho)
      if C_2 asks a hint query on q then
            if q \in P_{hash} then
                   return \perp
            else
                  answer the query using \Gamma_H^{(k)}(q)
      if C_2 asks a verification query (q, y_1, \ldots, y_k) then
            if q \in P_{hash} then
                   return (q, y_1, \ldots, y_k)
            else
                   answer the verification query with 0
return \perp
```

Lemma 1.5 For fixed $P^{(g)}$, C and hash the following statement is true

$$\begin{split} \Pr_{\boldsymbol{\pi}^{(k)}, \boldsymbol{\rho}}[Canonical Success^{P^{(g)}, C, hash}(\boldsymbol{\pi}^{(k)}, \boldsymbol{\rho}) = 1] \\ &\leq \Pr_{\boldsymbol{\pi}^{(k)}, \boldsymbol{\rho}} \left[\Gamma_{V}^{(g)}(\widetilde{C}^{\Gamma_{V}^{(g)}, \Gamma_{H}^{(k)}, hash}(\boldsymbol{x}, \boldsymbol{\rho})) = 1 \right]. \\ & \qquad \qquad (\Gamma_{V}^{(g)}, \Gamma_{H}^{(k)}) := \langle P^{(g)}(\boldsymbol{\pi}^{(k)}), S(\boldsymbol{\rho}) \rangle_{P^{(g)}} \\ & \qquad \qquad x := \langle P^{(g)}(\boldsymbol{\pi}^{(k)}), S(\boldsymbol{\rho}) \rangle_{trans} \end{split}$$

Proof. We fix $\pi^{(k)}$, ρ . Then for $(\Gamma_V^{(g)}, \Gamma_H^{(g)}) := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}$ and $x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{\text{trans}}$, $C(\rho)$ succeeds canonically, if and only if

$$\Gamma_V^{(g)}(\widetilde{C}_2^{\Gamma_V^{(g)},\Gamma_H^{(g)},hash}(x,\rho)) = 1.$$

Using this observation, we conclude that

$$\begin{split} \Pr_{\pi^{(k)},\rho} \left[Canonical Success^{P^{(g)},C,hash}(\pi^{(k)},\rho) &= 1 \right] \\ &= \underset{\pi^{(k)},\rho}{\mathbb{E}} \left[\Pr\left[Canonical Success^{P^{(g)},C,hash}(\pi^{(k)},\rho) &= 1 \right] \right] \\ &= \underset{\pi^{(k)},\rho}{\Pr} \left[\Gamma_{V}^{(g)}(\widetilde{C}^{\Gamma_{V}^{(g)},\Gamma_{H}^{(k)},hash}(x,\rho)) &= 1 \right]. \\ & \left(\Gamma_{V}^{(g)},\Gamma_{H}^{(k)} \right) &:= \langle P^{(g)}(\pi^{(k)}),C_{1}(\rho) \rangle_{P^{(g)}} \\ & x := \langle P^{(g)}(\pi^{(k)}),C_{1}(\rho) \rangle_{trans} \end{split}$$

Therefore, from a circuit C we can build a circuit \widetilde{C} that outputs \bot or (q, y_1, \ldots, y_k) such that $q \in P_{hash}$. Furthermore, the circuit \widetilde{C} asks no verification queries, and every hint query on q is such that $q \notin P_{hash}$.

Lemma 1.6 (Security amplification of a dynamic weakly verifiable puzzle with respect to P_{hash} .) For fixed $P^{(1)}$ there exists an algorithm Gen, which takes as input a solver circuit C for $P^{(g)}$, a monotone function $g: \{0,1\}^{(k)} \to \{0,1\}$, a function hash $: Q \to \{0,\ldots,2(h+v)-1\}$, parameters ε,δ,n , number of verification queries v and hint queries h asked by C, and outputs a circuit D such that the following holds: If C is such that

$$\Pr_{\pi^{(k)},\rho}\left[CanonicalSuccess^{P^{(g)},C,hash}(\pi^{(k)},\rho)=1\right] \geq \Pr_{\mu \leftarrow \mu_{\delta}^{k}}[g(\mu)=1] + \varepsilon,$$

then D satisfies almost surely

$$\Pr_{\substack{\pi,\sigma\\ (\Gamma_V,\Gamma_H):=\langle P^{(1)}(\pi),D(\rho)\rangle_{P^{(1)}}\\ x:=\langle P^{(1)}(\pi),D(\rho)\rangle_{trans}}} \left[\Gamma_V(D^{P^{(1)},C,\Gamma_V,\Gamma_H,hash}(x,\sigma))=1\right] \geq (\delta+\frac{\varepsilon}{6k}).$$

Additionally, Gen and D requires oracle access to g, $P^{(1)}$ and C. Furthermore, D requires also oracle access to Γ_V and Γ_H , and asks at most $\frac{6k}{\varepsilon}\log\left(\frac{6k}{\varepsilon}\right)h$ hint queries and no verification queries. Finally, $Size(D) \leq Size(C)\frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

Proof. The following procedure estimates the function g with the first bit set to $b \in \{0, 1\}$.

EvaluateFunctionProbability $^g(b, \varepsilon, \delta)$

Oracle: A function g.

Input: A bit $b \in \{0,1\}$, an integer k, ε

Output: A number $\widetilde{g} \in [0, 1]$.

For
$$i := 1$$
 to $\frac{16k^2}{\varepsilon^2} \log(n)$ do: $(b_2, \dots, b_k) \leftarrow \mu_{\delta}^{(k-1)}$

$$\widetilde{g}_i := g(b, b_2, \dots, b_k) ext{ then}$$
 return $rac{arepsilon^2}{16k^2\log(n)} \sum_{i=1}^{rac{16k^2}{arepsilon^2}\log(n)} g_i$

Lemma 1.7 (Estimate of function g.) The procedure EvaluteFunctionProbability outputs an estimate \widetilde{g} for the function $g:\{0,1\}^n \to \{0,1\}$ with the first bit fixed to $b \in \{0,1\}$ such that $|\widetilde{g} - \Pr_{(u_2,\dots,u_k) \leftarrow \mu_{\delta}^k} [g(b,u_2,\dots,u_k) = 1]| \le \frac{\varepsilon}{4k} \text{ almost surely.}$

Proof. We define binary random variable K_i for the event that $g_i = 1$ and set $N = \frac{\varepsilon}{4k} \log(n)$. By Chernoff bound we get

$$\Pr\left[\left|\frac{1}{N}\sum_{i=1}^{N}\widetilde{g}_{i} - \mathbb{E}[X]\right| \ge \frac{\varepsilon}{4k}\right] \le 2e^{\log(n)/3}.$$

We define helper procedures EvalutePuzzles and EvaluateSurplus.

EvaluatePuzzles $P^{(1)}, C, hash(\pi^{(k)}, \rho)$

Oracle: A circuit C, an algorithm $P^{(1)}$, a function hash.

Input: Bitstrings $\pi^{(k)}$, ρ .

Output: A tuple (c_1, \ldots, c_k) .

Run $\langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle$ $(\Gamma_V^{(g)}, \Gamma_H^{(g)}) := \langle P(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}$ $x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{\text{trans}}$

 $(q, y^{(k)}) := \widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(k)}, C, hash}(x, \rho)$

for i := 1 to k do: //simulate k rounds of sequential interaction

 $(\Gamma_V^i, \Gamma_H^i) := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{P^{(1)}}$

for i := 1 to k do:

 $c_i := \Gamma_v^i(q, y_i)$

return (c_1,\ldots,c_k)

EvaluateSurplus $P^{(1)},C,hash(\pi^*,b)$

Oracle: An algorithm $P^{(1)}$, a circuit C, a function hash, a function g.

Input: A bistring π^* , a bit b, an integer k.

Output: A circuit D.

 $\widetilde{g}_b := \mathbf{EvaluteFunctionProbability}^g(b, \varepsilon, \delta)$

For i := 1 to $\frac{16k^2}{\varepsilon^2} \log(n)$ do:

 $(\pi_{m+1}, \dots, \pi_k) \stackrel{\$}{\leftarrow} \{0, 1\}^{(k-m-1)n}$

 $(c_1,\ldots,c_k) := \mathbf{EvalutePuzzles}^{P^{(1)},C,hash}(\pi_1,\ldots,\pi_m,\pi^*,\ldots,\pi_k,
ho)$ $\widetilde{s}^i_{\pi^*,b} := g(b,c_{m+1},\ldots,c_k)$

```
return \frac{\varepsilon^2\log(n)}{16k^2}\sum_{i=1}^{\frac{16k^2}{\varepsilon^2}\log(n)}\widetilde{S}^i_{\pi^*,b}-\widetilde{g}_b
```

```
Circuit D = (D_1, D_2)(\sigma)
Phase I D_1^{P^{(1)},C}(\sigma)
Oracle: A poser P^{(1)}, a circuit C, a function hash.
Input: A bitstring \sigma \in \{0, 1\}^*.
Hard coded: Bitstrings \pi_1, \ldots, \pi_{m-1}.
Output: Transcripts x_1, \ldots, x_{m-1}, x^*.
for i := 1 \text{ to } m - 1 \text{ do:}
        Simulate \langle P^{(1)}(\pi_i), C_1(\rho) \rangle
        Let x_i := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{\text{trans}}
Let (\Gamma_V^i, \Gamma_H^i) := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{P^{(1)}}
Interact with the problem poser using C_1(\rho).
        Let x^* be the transcript of the interaction
        Let \Gamma_V^*, \Gamma_H^* be the verification and hint oracles output by the problem poser.
Let \Gamma_V^{(m-1)} := (\Gamma_V^1, \dots, \Gamma_V^{m-1})

Let \Gamma_H^{(m-1)} := (\Gamma_H^1, \dots, \Gamma_H^{m-1})

Let x^{(m-1)} := (x_1, \dots, x_{m-1})
Phase II D_2^{P^{(1)},C}(x^*,\sigma)
Oracle: A poser P^{(1)}, a circuit C, a function hash, circuits \Gamma_V^* and \Gamma_H^*.
Input: A transcript x^*, a bitstring \sigma \in \{0,1\}^*.
Output: A circuit D.
Let \Gamma_V^{(m-1)}, \Gamma_H^{(m-1)} and x_1, \ldots, x_{k-1} be the same as in the Phase I. for at most \frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon}) iterations do:
        \pi^{(k)} \leftarrow \text{read } k \cdot n \text{ bits from } \sigma
        for i := 1 \text{ to } m - 1 \text{ do:}
                                                                         // finish remaining simulation of puzzles
                 Simulate \langle P^{(1)}(\pi_i), C_1(\rho) \rangle
                 Let x_i := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle_{\text{trans}}
        Let \Gamma_V^{(g)} := g(\Gamma_V^1, \dots, \Gamma_V^{m-1}, \Gamma_V^*, \Gamma_V^{m+1}, \dots, \Gamma_V^k)

Let \Gamma_H^{(k)} := (\Gamma_H^1, \dots, \Gamma_H^{m-1}, \Gamma_H^*, \Gamma_H^{m+1}, \dots, \Gamma_H^k)

(q, y_1, \dots, y_{m-1}, y^*, \dots, y_k) := \widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(k)}, C, hash}((x_1, \dots, x_{m-1}, x^*, \dots, x_k), \rho)
        if g(1, c_{m+1}, \dots, c_k) = 1 \wedge g(0, c_{m+1}, \dots, c_k) = 0 then
                 return (q, y^*)
return \perp
```

Let m be the global variable with the initial value 0.

```
Algorithm Gen(C, g, \varepsilon, \delta, n, v, h, hash)
Oracle: P^{(1)}, C, g, hash
Input: \varepsilon, \delta, n, v, h
Output: A circuit D
Let m be the recursion depth of Gen.
for i := 1 to \frac{6k}{\varepsilon} \log(n)
       \pi^* \leftarrow \{0, 1\}^n
       \widetilde{S}_{\pi^*,0} := \mathbf{EvaluateSurplus}^{P^{(1)},C,hash}(\pi^*,0)
       \widetilde{S}_{\pi^*,1} := \mathbf{EvaluateSurplus}^{P^{(1)},C,hash}(\pi^*,1)
       if \exists b \in \{0,1\} : \widetilde{S}_{\pi^*,b} \ge (1 - \frac{3}{4k})\varepsilon
              Fix \pi_m := \pi^*
              g'(b_2,\ldots,b_k):=g(b,b_2,\ldots,b_k)
              m := m + 1
              return Gen(\widetilde{C}, g', \varepsilon, \delta, n, v, h, hash)
// all estimates are lower than (1-\frac{3}{4k})\varepsilon
Hard code \pi_1, \ldots, \pi_{m-1} into the circuit D.
return D^{\widetilde{C}}
```

For k=1 the function $g:\{0,1\} \to \{0,1\}$ is either the identity or a constant function. If g is the identity function then the success probability of C in the random experiment CanonicalSuccess is as least $\delta + \varepsilon$, and D runs circuit C to obtain (q,y). In case g is a constant function the statement is vacuously true.

For fixed $\pi^{(k)}$, ρ let $(\Gamma_V^{(g)}, \Gamma_H^{(k)}) := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{P^{(g)}}$ and $x := \langle P^{(g)}(\pi^{(k)}), C_1(\rho) \rangle_{\text{trans}}$. Additionally, for the *i*-th round of interaction between $P^{(g)}(\pi^{(k)})$ and $C_1(\rho)$ let us denote $(\Gamma_V^i, \Gamma_H^i) := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle$, and $x_i := \langle P^{(1)}(\pi_i), C_1(\rho) \rangle$. Finally, for $(q, y_1, \dots, y_k) := \widetilde{C}(x^{(k)}, \rho)$ let $c_i := \Gamma_V^i(q, y_i)$. We define the surplus:

$$S_{\pi^*,b} = \Pr_{\pi^{(k)}} \left[g(b, c_2, \dots, c_k) = 1 \right] - \Pr_{\mu^{(k)}} \left[g(b, u_2, \dots, u_k) = 1 \right]$$

$$(0.0.5)$$

The surplus $S_{\pi^*,b}$ tells us how good \widetilde{C} performs when the first randomness π_1 of the poser is fixed, and the fact whether \widetilde{C} succeeds in solving the puzzle defined by $P^{(1)}(\pi_1)$ is disregarded. Instead, the bit b is used as the first input to g.

The procedure **EvaluateSurplus** returns the estimate $\widetilde{S}_{\pi^*,b}$ for $S_{\pi^*,b}$. All puzzles used during obtaining the estimate are generated internally. Therefore, it is possible to answer all hint and verification queries, without calls to the verification oracles.

Lemma 1.8 The estimate $\widetilde{S}_{\pi^*,b}$ returned by EvaluteEstimate differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{2k}$ almost surely.

Proof. First we define a random variable K_i for the event that $\widetilde{s}_{\pi^*,b}^i = 1$. Then using union bound and similar argument as in Lemma 1.7 we obtain that $\frac{\varepsilon^2 \log(n)}{16k^2} \sum_{i=1}^{\frac{16k^2}{\varepsilon^2}} \log(n) \widetilde{s}_{\pi^*,b}^i$ differs from $\mathbb{E}[g(b, c_2, \dots, c_k)]$ by at most $\frac{\varepsilon}{4k}$ almost surely. Together, with Lemma 1.7 we conclude that the surplus estimate returned by **EstimateSurplus** differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{2k}$, almost surely.

From Lemma 1.8 we conclude that if $\widetilde{S}_{\pi^*,b} \geq (1 - \frac{3}{4k})\varepsilon$, then $S_{\pi^*,b} \geq (1 - \frac{1}{k})\varepsilon$ almost surely.

Let us assume that Gen manages to find an estimate that satisfies $\widetilde{S}_{\pi^*,b} \geq (1 - \frac{3}{4k})\varepsilon$. In this case we define a new monotone function $g'(b_2,\ldots,b_k) := g(b,b_2,\ldots,b_k)$, and fix the m-th randomness used by problem poser to π_m . The circuit \widetilde{C} satisfies the conditions of Lemma 1.6 for the remaining k-1 puzzles and we recurse using g'.

If all estimates are less than $(1-\frac{3}{4k})\varepsilon$, then intuitively C does not perform much better on the remaining k-1 puzzles than an algorithm that solves each puzzle independent with probability δ . However, from the assumption we know that on all k puzzles \widetilde{C} has higher success probability. Therefore, it is likely that the first puzzle is correctly solved with the probability higher than δ . We now show that this intuition is indeed correct. For a fixed π^* using (0.0.5), we get

$$\Pr_{u \leftarrow \mu_{\delta}^{k}}[g(1, u_{2}, \dots, u_{k}) = 1] - \Pr_{u \leftarrow \mu_{\delta}^{k}}[g(0, u_{2}, \dots, u_{k}) = 1] =$$

$$\Pr_{\pi^{(k)}, \rho}[g(1, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{(k)}, \rho}[g(0, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
(0.0.6)

From the monotonicity of g we know that for any set of tuples (b_1, \ldots, b_k) and sets $\mathcal{B}_0 = \{(b_1, b_2, \ldots, b_k) : g(0, b_2, \ldots, b_k) = 1\}$, $\mathcal{B}_1 = \{(b_1, b_2, \ldots, b_k) : g(1, b_2, \ldots, b_k) = 1\}$ we have $\mathcal{B}_0 \subseteq \mathcal{B}_1$. Hence, we can write (0.0.6):

$$\Pr_{u \leftarrow \mu_{\delta}^{k}} [g(1, u_{2}, \dots, u_{k}) = 1 \land g(0, u_{2}, \dots, u_{k}) = 0] =
\Pr_{\pi^{(k)}, \rho} [g(1, c_{2}, \dots, c_{k}) = 1 \land g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
(0.0.7)

Let $G_{u^{(k)}}$ denote the event $g(1, u_2, \ldots, u_k) = 1 \land g(0, u_2, \ldots, u_k) = 0$, and correspondingly $G_{\pi^{(k)}} := g(1, c_2, \ldots, c_k) = 1) \land (g(0, c_2, \ldots, c_k) = 0$. From (0.0.7) for $\pi = \pi^*$ fixed we obtain

$$\Pr_{\substack{\rho \\ (\Gamma_{V}, \Gamma_{H}) := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{P^{(1)}} \\ x^{*} := \langle P^{(1)}(\pi^{*}), D_{1}(\rho) \rangle_{\text{trans}}}} [\Gamma_{V}(D_{2}(x^{*}, \rho)) = 1] = \frac{\Pr_{\rho}[\Gamma_{V}(D_{2}(x^{*}, \rho)) = 1 \mid \pi_{1} = \pi^{*}] \Pr_{\rho}[G_{\pi} \mid \pi_{1} = \pi^{*}]}{\Pr_{u \leftarrow \mu_{\delta}^{k}}[G_{\mu}]} - \frac{\Pr_{v \leftarrow \mu_{\delta}^{k}}[G_{\mu}]}{\Pr_{u \leftarrow \mu_{\delta}^{k}}[G_{\mu}]}$$

$$- \frac{\Pr_{v \leftarrow \mu_{\delta}^{k}}[G_{\mu}]}{\Pr_{v \leftarrow \mu_{\delta}^{k}}[G_{\mu}]}$$

$$(0.0.8)$$

We can write the first summand of (0.0.8) as

$$\Pr_{\rho}[\Gamma_{V}(D_{2}(x^{*},\rho)) = 1 \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}] =
\Pr_{\rho}[D_{2}(x^{*},\rho) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]$$
(0.0.9)

where we make use of the fact that the event G_{π} implies $D(x^*, r) \neq \bot$. We consider two cases. For $\Pr_{\pi^k}[g(1, c_2, \ldots, c_k) = 1 \land g(0, c_2, \ldots, c_k) = 0 \mid \pi_1 = \pi^*] \leq \frac{\varepsilon}{6k}$ then

$$\Pr_{\pi^{(k)}}[c_1 = 1 \mid G_{\pi}, \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_1 = \pi^*] \le \frac{\varepsilon}{6k}, \tag{0.0.10}$$

and when $\Pr_{\pi^k}[g(1,c_2,\ldots,c_k)=1 \land g(0,c_2,\ldots,c_k)=0] > \frac{\varepsilon}{6k}$ then circuit D outputs \bot only if it fails in all $\frac{6k}{\varepsilon}\log(\frac{6k}{\varepsilon})$ iterations to find $\pi^{(k)}$ such that $g(1,c_2,\ldots,c_k)=1 \land g(0,c_2,\ldots,c_k)=0$ which happens with probability

$$\Pr_{r}[D(x^*, r) = \bot \mid \pi_1 = \pi^*] \le (1 - \frac{\varepsilon}{6k})^{\frac{6k}{\varepsilon} \log(\frac{\varepsilon}{6k})} \le \frac{\varepsilon}{6k}.$$
 (0.0.11)

We conclude that in both cases:

$$\Pr_{r}[D(x^{*}, r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]
\geq \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}.$$
(0.0.12)

Therefore, we have

$$\begin{aligned} &\Pr_{r}[D(x^*,r) \neq \bot \mid \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[c_1 = 1 \mid G_{\pi}, \pi_1 = \pi^*] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_1 = \pi^*] \\ &= \Pr_{\pi^{(k)}}[c_1 = 1 \land g(1,c_2,\ldots,c_k) = 1 \land g(0,c_2,\ldots,c_k) = 0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k} \\ &= \Pr_{\pi^{(k)}}[g(c_1,c_2,\ldots,c_k) = 1 \land g(0,c_2,\ldots,c_k) = 0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k} \\ &= \Pr_{\pi^{(k)}}[g(c_1,c_2,\ldots,c_k) = 1 \mid \pi_1 = \pi^*] - \Pr_{\pi^{(k)}}[g(0,c_2,\ldots,c_k) = 0 \mid \pi_1 = \pi^*] - \frac{\varepsilon}{6k}, \end{aligned}$$

and finally by (0.0.5)

$$\Pr_{r}[D(x^{*}, r) \neq \bot \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[c_{1} = 1 \mid G_{\pi}, \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]$$

$$= \Pr_{\pi^{(k)}}[g(c_{1}, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0, \mu_{2}, \dots, \mu_{k}) = 0 \mid \pi_{1} = \pi^{*}] - S_{\pi^{*}, 0} - \frac{\varepsilon}{6k}.$$

$$(0.0.13)$$

Inserting this result into the equation (0.0.8) yields

$$\Pr_{r,\pi}[\Gamma_{V}(D(x,r)) = 1] = \mathbb{E}_{\pi} \left[\Pr_{r}[D(x,r) = 1 \mid \pi_{1} = \pi^{*}] \right] \\
= \mathbb{E}_{\pi} \left[\frac{\Pr_{\pi^{(k)}}[g(c) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_{2},\dots,\mu_{k}) = 0 \mid \pi_{1} = \pi^{*}] - \frac{\varepsilon}{6k}}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right] \\
- \mathbb{E}_{\pi} \left[\frac{S_{\pi^{*},0} + \Pr_{r}[\Gamma_{V}^{(g)}(D(x^{*},r)) = 1 \mid \pi_{1} = \pi^{*}](S_{\pi^{*},1} - S_{\pi^{*},0})}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right] \tag{0.0.14}$$

For the second summand we show that if we do not recurse, then almost surely majority of estimates is low. Let assume

$$\Pr_{\pi} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] < 1 - \frac{\varepsilon}{6k}, \tag{0.0.15}$$

then the algorithm recurses almost surely. Therefore, under the assumption that Gen does not recurse, we have almost surely

$$\Pr_{\pi} \left[\left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \wedge \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right] \ge 1 - \frac{\varepsilon}{6k}. \tag{0.0.16}$$

Let us define a set

$$W = \left\{ \pi : \left(S_{\pi,0} \le (1 - \frac{1}{2k})\varepsilon \right) \land \left(S_{\pi,1} \le (1 - \frac{1}{2k})\varepsilon \right) \right\}$$
 (0.0.17)

and use \mathcal{W}^c to denote the complement of \mathcal{W} . We bound the second summand in (0.0.14)

$$\mathbb{E}_{\pi} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi_{1} = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \\
= \mathbb{E}_{\pi \in \mathcal{W}^{c}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \\
+ \mathbb{E}_{\pi \in \mathcal{W}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] (S_{\pi^*,1} - S_{\pi^*,0}) \right] \qquad (0.0.18) \\
\leq \frac{\varepsilon}{6k} + \mathbb{E}_{\pi \in \mathcal{W}^{c}} \left[S_{\pi^*,0} + \Pr_{r} [\Gamma_{V}^{(g)}(D(x^*,r)) = 1 \mid \pi = \pi^*] ((1 - \frac{1}{2k})\varepsilon - S_{\pi^*,0}) \right] \qquad (0.0.19) \\
\leq \frac{\varepsilon}{6k} + 1 - \frac{\varepsilon}{2k} = 1 - \frac{\varepsilon}{3k} \qquad (0.0.20)$$

Finally, we insert this result into equation (0.0.14) and make use of the fact

$$\Pr[g(u) = 1] = \Pr[(g(0, \mu_2, \dots, \mu_k) = 1) \lor (g(1, \mu_2, \dots, \mu_k) = 1 \land g(0, \mu_2, \dots, \mu_k) = 0 \land \mu_1 = 1)]$$

$$= \Pr[g(0, \mu_2, \dots, \mu_k) = 1] + \Pr[g(1, \mu_2, \dots, \mu_k) = 1 \land g(0, \mu_2, \dots, \mu_k) = 0] \Pr[\mu_1 = 1]$$

which yields

$$\Pr_{r,\pi}[D(x,r)=1] \ge \mathbb{E}_{\pi} \left[\frac{\Pr_{\pi^{(k)}}[g(c)=1 \mid \pi_{1}=\pi^{*}] - \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_{2},\dots,\mu_{k})=0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \right]$$

Using the assumptions of Lemma 1.6, we get

$$\Pr_{r,\pi}[\Gamma_{V}(D(x,r)) = 1] \ge \frac{\Pr_{\mu_{\delta}^{(k)}}[g(\mu) = 1] + \varepsilon + \Pr_{\mu_{\delta}^{(k)}}[g(0,\mu_{2},\dots,\mu_{k}) = 0] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{(k)}}[G_{\mu}]}$$

$$\ge \frac{\varepsilon + \delta \Pr_{\mu_{\delta}^{(k)}}[G_{\mu}] - (1 - \frac{1}{6k})\varepsilon}{\Pr_{\mu_{\delta}^{(k)}}[G_{\mu}]} \ge \delta + \frac{\varepsilon}{6k} \qquad (0.0.21)$$

Now, we can show that the Theorem 1.1 follows by Lemma 1.4 and Lemma 1.6. First we define the following circuit:

 \mathbf{E}

Oracle: Circuit D from Lemma 1.6

Input: A bitstring $\rho \in \{0,1\}^*$

Run circuit $(q, y) = D(\rho)$

if $(q,y) \neq \bot$ then

make a verification query (q, y)

The circuit E is output by the following algorithm Gen.

Gen

Oracle: $C, P^{(1)}, g$ **Input:** $\varepsilon, \delta, n, h, v$

Let \mathcal{H} be a set of pairwise independent hash functions $Q \to \{0, 1, \dots, 2(h+v) - 1\}$

 $hash := \mathbf{FindHash}(\mathcal{H}, h + v)$

$$\begin{split} D := Gen(C, g, \varepsilon, \delta, n, h, v, hash) \\ \mathbf{return} \ \ D^{P^1, C, hash}(\rho) \end{split}$$

From the assumptions of Theorem 1.3 we know that success probability of C is at least

$$8(h+v)\left(\Pr_{u\leftarrow\mu_{\delta}^{k}}[g(u)=1]+\varepsilon\right),\,$$

then by Lemma 1.4, the canonical success probability of \widetilde{C} with respect to function hash is at least

$$\left(\Pr_{u \leftarrow \mu_{\delta}^{k}} \left[g(u) = 1 \right] + \varepsilon \right).$$

Then we apply Lemma 1.6 with respect to \widetilde{C} and hash which yields a circuit D that outputs (q,y) such that

that
$$\Pr_{\substack{\pi,\sigma \\ (\Gamma_V,\Gamma_H):=\langle P^{(1)}(\pi),D(\rho)\rangle_{P^{(1)}}\\ x:=\langle P^{(1)}(\pi),D(\rho)\rangle_{\text{trans}}}} \left[\Gamma_V(D^{P^{(1)},C,\Gamma_V,\Gamma_H,hash}(x,\sigma))=1\right] \geq (\delta+\frac{\varepsilon}{6k}).$$

Hence, the probability that the verification query made by E is successful is at least $(\delta + \frac{\varepsilon}{6k})$.