The rational construction of a (Wheeler) DFA

Giovanni Manzini, <u>Alberto Policriti</u>, Nicola Prezza, and Brian Riccardi

Order is important ...

Order is important ...

Order is important ...

 \dots and some orders are more important than others (e.g. the order of $\mathbb{Q})$

Automata and (Co-lexicographic) Order

$$\mathcal{A}$$
 is input-consistent: $(\forall u, v \in Q)(\delta(u, a_1) = \delta(v, a_2) \rightarrow a_1 = a_2)$.

$$\delta(q) = q'$$
 stands for $\delta(q, \lambda(q')) = q'$.

Definition

A Wheeler DFA (WDFA) $\mathcal{A}=(Q,s,\delta,F,\prec)$ is such that (Q,\prec) is a total order with s as minimum, and letting $v_1=\delta(u_1)$, and $v_2=\delta(u_2)$:

i
$$v_1 < v_2 \Rightarrow \lambda(v_1) \leqslant \lambda(v_2)$$
;

ii
$$(\lambda(v_1) = \lambda(v_2) \wedge v_1 < v_2) \Rightarrow u_1 < u_2$$
.

(Gagie-Manzini-Sirén. TCS 2017) (Alanko-D'Agostino-P.-Prezza. Inf. and Comp. 2021)

(Cotumaccio-D'Agostino-P.-Prezza. JACM. 2023)

Automata and (Co-lexicographic) Order

 \mathcal{A} is input-consistent: $(\forall u, v \in Q)(\delta(u, a_1) = \delta(v, a_2) \rightarrow a_1 = a_2)$.

$$\delta(q) = q'$$
 stands for $\delta(q, \lambda(q')) = q'$.

Definition

A Wheeler DFA (WDFA) $\mathcal{A}=(Q,s,\delta,F,\prec)$ is such that (Q,\prec) is a total order with s as minimum, and letting $v_1=\delta(u_1)$, and $v_2=\delta(u_2)$:

i
$$v_1 < v_2 \Rightarrow \lambda(v_1) \leqslant \lambda(v_2)$$
;

ii
$$(\lambda(v_1) = \lambda(v_2) \wedge v_1 < v_2) \Rightarrow u_1 < u_2.$$

(Gagie-Manzini-Sirén. TCS 2017) (Alanko-D'Agostino-P.-Prezza. Inf. and Comp. 2021)

(Cotumaccio-D'Agostino-P.-Prezza. JACM. 2023)

 $\Sigma = \{a_1, a_2, \dots, a_{\sigma}\}$ is ordered and W(i)-W(ii) extend the ordering to strings reaching states

co-lexicographically

align to the right and compare right-to-left (cbaabba < aaacba)

WDFA: states are intervals of strings

WDFA: states are intervals of strings

DFA

WDFA: states are intervals of strings

DFA

... coordinates

... coordinates

- (substring closure) membership in $\mathcal{L}(\mathcal{A})$ in $O(\operatorname{width}(\mathcal{A})^2)$ per matched character;
- any NFA $\mathcal N$ is equivalent to a DFA $\mathcal D$ with at most $2^{\operatorname{width}(\mathcal N)}(|\mathcal N|-\operatorname{width}(\mathcal N)+1)$ states;
- ▶ any automaton of width p can be encoded in $O(\log p + \log |\Sigma|)$ bits per transition.

(Cotumaccio-D'Agostino-P.-Prezza. JACM. 2023)

Intermezzo: Path coherence

Definition (Path coherence)

Given a NFA \mathcal{A} and an order < over the set of its states, we say that \mathcal{A} is *path coherent* iff strings send intervals (of states) into intervals:

$$\forall q \leq q' \ \forall \alpha \ \exists p \leq p' \ ([q, q'] \stackrel{\alpha}{\leadsto} [p, p']).$$

The rational embedding of strings

Definition (The Rational Embedding of Σ^*)

The Rational Embedding of Σ^* is the map $\mathbb{Q}: \Sigma^* \to \mathbb{Q}[0,1)$ such that, for any $\alpha = \alpha_1 \dots \alpha_m \in \Sigma^*$:

$$\mathbb{Q}(\alpha) = \sum_{i=1}^{m} \alpha_i \cdot (\sigma + 2)^{-(m-i+1)}.$$

Example

$$\mathsf{start} \to (\#) \bullet (4) \bullet (7) \bullet (5) \bullet (3) \qquad \mathsf{Q}(\alpha) = \mathsf{Q}(47753) = 0.35774$$

The rational embedding of strings

Definition (The Rational Embedding of Σ^*)

The Rational Embedding of Σ^* is the map $\mathbb{Q}: \Sigma^* \to \mathbb{Q}[0,1)$ such that, for any $\alpha = \alpha_1 \dots \alpha_m \in \Sigma^*$:

$$q(\alpha) = \sum_{i=1}^{m} \alpha_i \cdot (\sigma + 2)^{-(m-i+1)}.$$

Example

start
$$\rightarrow$$
 (#) \rightarrow (7) \rightarrow (7) \rightarrow (5) \rightarrow (3) \qquad $q(\alpha) = q(47753) = 0.35774$

property:

 $\alpha < \beta$ (in co-lex order) $\Leftrightarrow q(\alpha) < q(\beta)$ (as rational numbers).

Definition

 $I_{\mathbb{Q}[0,1)}$ the collection of convex sets of rationals in $\mathbb{Q}[0,1)$:

Definition (The Rational Embedding of a DFA)

The *Rational Embedding* of $\mathcal{A}=(Q,s,\delta,F)$ is the map $I^{\mathrm{q}}:Q\to I_{\mathbb{Q}[0,1)}$ defined as follows: for any $q\in Q$,

$$I^{\triangleleft}(q) = \bigcap \{J \in I_{\mathbb{Q}[0,1)} \mid (\forall \alpha \in I_q) (\mathbb{q}(\alpha) \in J)\}.$$

 $I^{\mathrm{q}}(q)$ is the convex closure (hull) of I_q . (Notation: $I_q^{\mathrm{q}}=I^{\mathrm{q}}(q)$)

Determinism: $q \neq q' \Rightarrow I_q \cap I_{q'} = \emptyset$. But it might be that $q \neq q' \wedge I_q^{\mathfrak{q}} \cap I_{q'}^{\mathfrak{q}} \neq \emptyset$.

From (Alanko-D'Agostino-P.-Prezza. Inf. and Comp. 2021)[Theorem 4.3]:

$$\mathcal{A}$$
 is Wheeler iff $q \neq q' \Rightarrow \mathit{I}_{q}^{\mathsf{q}} \cap \mathit{I}_{a'}^{\mathsf{q}} = \varnothing$.

Example

There are "solid" collections of rational embeddings of strings accepted by a DFA: Σ^* (non-denumerable set of accumulation points)

Example

There are "solid" collections of rational embeddings of strings accepted by a DFA: Σ^* (non-denumerable set of accumulation points)

Example

Missing largest and smallest digit \Rightarrow (in general) there is a successor but \underline{no} predecessor.

 $0.7348 < \cdots < 0.73488 < \cdots < 0.734888 < \cdots 0.7345 < 0.73451$

Example

There are "solid" collections of rational embeddings of strings accepted by a DFA: Σ^* (non-denumerable set of accumulation points)

Example

Missing largest and smallest digit \Rightarrow (in general) there is a successor but \underline{no} predecessor.

$$0.7348 < \dots < 0.73488 < \dots < 0.734888 < \dots 0.7345 < 0.73451$$

Question: are $I_q^{\mathbb{Q}}$'s left and right limits (ℓ_q, r_q) always in \mathbb{Q} ?

Ordering states: Entanglement

Definition

 $Q'\subseteq Q$ is entangled if there exists a monotone sequence $(\alpha_i)_{i\in\mathbb{N}}$ in $\mathit{Pref}(\mathcal{L}(\mathcal{D}))$ such that:

$$\forall u' \in Q' \ \delta(s, \alpha_i) = u' \ \text{for infinitely many } i's$$

Ordering states: Entanglement

Definition

 $Q' \subseteq Q$ is entangled if there exists a monotone sequence $(\alpha_i)_{i \in \mathbb{N}}$ in $Pref(\mathcal{L}(\mathcal{D}))$ such that:

$$\forall u' \in Q' \ \delta(s, \alpha_i) = u' \ \text{for infinitely many } i's$$

Lemma

If a value x is a left-accumulation point (resp. right-accumulation point) for both the sets $I_q^{\mathfrak{q}}$ and $I_{q'}^{\mathfrak{q}}$ then q and q' are entangled.

Examples

Examples

Finding Left and Right Limits

Lemma

Let $\mathcal{L}=\mathcal{L}(\mathcal{D})$, with \mathcal{L} Wheeler and \mathcal{D} either minimum or Wheeler. For any $q\in Q$ we have:

$$\ell_q = 0.a_{q,1} \cdots a_{q,h} \overline{a_{q,h+1} \cdots a_{q,h+j}},$$

with $h + j \leq |Q|$, and j > 0 if and only if $\ell_q \notin I_q^{\mathbb{Q}}$.

Finding Left and Right Limits

Lemma

Let $\mathcal{L} = \mathcal{L}(\mathcal{D})$, with \mathcal{L} Wheeler and \mathcal{D} either minimum or Wheeler. For any $q \in Q$ we have:

$$\ell_q = 0.a_{q,1} \cdots a_{q,h} \overline{a_{q,h+1} \cdots a_{q,h+j}},$$

with $h+j \leq |Q|$, and j > 0 if and only if $\ell_q \notin I_q^{\mathfrak{q}}$.

Proof's idea

walk backward from q and find α whose rational embedding $q(\alpha)$ is the smallest among those reaching q.

Finding Left and Right Limits

Lemma

Let $\mathcal{L} = \mathcal{L}(\mathcal{D})$, with \mathcal{L} Wheeler and \mathcal{D} either minimum or Wheeler. For any $q \in Q$ we have:

$$\ell_q = 0.a_{q,1} \cdots a_{q,h} \overline{a_{q,h+1} \cdots a_{q,h+j}},$$

with $h+j \leq |Q|$, and j > 0 if and only if $\ell_q \notin I_q^{\mathbb{Q}}$.

Theorem

If $\mathcal{L} = \mathcal{L}(\mathcal{D}) = \mathcal{L}(\mathcal{D}_w)$, with \mathcal{L} Wheeler and \mathcal{D} either minimum or Wheeler, then for all $q \in Q$, we have $\ell_q, r_q \in \mathbb{Q}$.

More on the algorithmic side on $(\mbox{\sc Becker-Cenzato-Kim-Kodric-P.-Prezza.}$ SPIRE 2023.) More on the entanglement: $\mbox{\sc start} \rightarrow \mbox{\sc \#}$

Minimum DFA vs. Minimum Wheeler-DFA

Minimum DFA vs. Minimum Wheeler-DFA

Minimum DFA vs. Minimum Wheeler-DFA

Question: is the $|Q_w|/|Q|$ related to width(\mathcal{D})?

Lower bound

State type	Left limit	Right limit
$s_{i,j}$	0.5 ^j 6675 ^j 67	$0.5^{j}6675^{i-1}667$
$W_{i,j}$	0.5 ^j 675 ^j 67	$0.5^{j}675^{i-1}667\dots$
Xi	0.6675 ⁱ 67	$0.6675^{i-1}667\dots$
Zi	0.675 ⁱ 67	$0.675^{i-1}667\dots$
qi	0.75 ⁱ 67	$0.75^{i-1}667\dots$
t	0.85 ⁿ 67	$0.8875^{n-1}667\dots$
t'	0.875 ⁿ 67	$0.875^{n-1}667$

Theorem

Let $\mathcal{L} = \mathcal{L}(\mathcal{D}) = \mathcal{L}(\mathcal{D}_w)$, with \mathcal{L} Wheeler, \mathcal{D} minimum, \mathcal{D}_w minimum Wheeler, and let $f(\cdot, \cdot)$ be such that $|\mathcal{D}_w| = O(f(|\mathcal{D}|, width(\mathcal{D})))$. Then, for any $k, p \in \mathbb{N}$,

$$f(n,p) \notin O(n^k + 2^p).$$

The arithmetic way

Formally, for the *left* case, we consider the problem of finding the set of all real-valued vectors $x \in \mathbb{R}^Q$ that satisfy the following constraint satisfaction program, that we name \mathcal{P}_{Left} :

(1)
$$x_s = 0$$
,

$$(2) \quad 0 < x_q < 1, \qquad (\forall q \in Q \setminus \{s\})$$

(3)
$$(\sigma + 2) \cdot x_q - \lambda(q) = \min \{x_{q'} \mid \delta(q') = q\}, \quad (\forall q \in Q \setminus \{s\})$$

The arithmetic way

Formally, for the *left* case, we consider the problem of finding the set of all real-valued vectors $x \in \mathbb{R}^Q$ that satisfy the following constraint satisfaction program, that we name \mathcal{P}_{Left} :

- (1) $x_s = 0$,
- $(2) \quad 0 < x_q < 1, \qquad (\forall q \in Q \setminus \{s\})$
- (3) $(\sigma + 2) \cdot x_q \lambda(q) = \min \{x_{q'} \mid \delta(q') = q\}, \quad (\forall q \in Q \setminus \{s\})$

Lemma

Let \mathcal{L} be a Wheeler language, and $\mathcal{D}=(Q,s,\delta,F)$ be either minimum or Wheeler accepting \mathcal{L} , and let $\ell\in\mathbb{Q}^Q$ be the vector of left limits. Then, ℓ is a solution of \mathcal{P}_{Left} .

Theorem

Let $\mathcal{D}=(Q,s,\delta,F)$ be either minimum or Wheeler accepting \mathcal{L} Wheeler, and $\ell\in\mathbb{Q}^Q$ be the vector of left limits. Then, \mathcal{P}_{Left} always admits ℓ as its unique solution.

The arithmetic way

Consider the following linear program \mathcal{P}_{Left}^* :

```
\label{eq:subject} \begin{array}{ll} \text{maximize:} & \sum_{q \in Q} x_q, \\ \text{subject to:} & x_s = 0, \\ & 0 < x_q < 1, & \forall q \in Q \backslash \{s\}, \\ & (\sigma + 2) \cdot x_q - \lambda(q) \leqslant x_{q'}, & \forall q, q' \in Q \text{ s.t. } \delta(q') = q, \end{array}
```

Theorem

Let $\mathcal{D}=(Q,s,\delta,F)$ be either minimum or Wheeler accepting \mathcal{L} Wheeler, and $\ell\in\mathbb{Q}^Q$ be the vector of left limits. Then $\mathcal{P}^*_{\mathsf{Left}}$ always admits ℓ as its unique solution.

Conclusions and Open problems

- A parameter measuring the DFA vs. WDFA growth (finite entanglement)
- On-line splitting of minimum DFA (self-adjusting splitting)
- Optimal disentanglement

Conclusions and Open problems

- ► A parameter measuring the DFA vs. WDFA growth (*finite* entanglement)
- On-line splitting of minimum DFA (self-adjusting splitting)
- Optimal disentanglement

Optimization of the Hasse automaton ${\mathcal H}$ construction

$$\mathsf{width}(\mathcal{L}(\mathcal{H})) = \mathsf{width}(\mathcal{H}) = \mathit{ent}(\mathcal{H})$$

Thank you for your attention.