Análise Complexa e Equações Diferenciais

Problemas propostos para as aulas práticas

Semana 5 - 19 a 23 de Outubro de 2020

1. Determine se as seguintes funções são primitiváveis no domínio indicado e em caso afirmativo determine uma primitiva.

a)
$$z^2 e^z$$
 em \mathbb{C}

b)
$$\frac{\cos z}{z}$$
 em $\mathbb{C} \setminus \{0\}$

a)
$$z^2 e^z$$
 em \mathbb{C} b) $\frac{\cos z}{z}$ em $\mathbb{C} \setminus \{0\}$ c) $\frac{1}{z(z-1)}$ em $\mathbb{C} \setminus \{0,1\}$

d)
$$\frac{1}{z(z-1)}$$
 em $\mathbb{C} \setminus \{x+0i : 0 \le x \le 1\}$ e) $f(x+iy) = 3y + x^2 - y^2 + i(2xy - 3x)$ em \mathbb{C}

2. Seja f holomorfa numa aberto A e γ um caminho fechado em A. Mostre que, para todo o z_0 que não está sobre a curva percorrida por γ se tem

$$\oint_{\gamma} \frac{f'(z)}{z - z_0} dz = \oint_{\gamma} \frac{f(z)}{(z - z_0)^2} dz.$$

Obs: O caminho não é necessariamente homotópico a um ponto em A nem $z_0 \in A$.

3. Determine todos os possíveis valores do integral

$$\oint_C \frac{z \cos z}{z^2 + 1} \, dz,$$

onde C é uma qualquer curva de Jordan, seccionalmente regular, contida em $\mathbb{C} \setminus \{i, -i\}$.

4. Para $a \in \mathbb{C}$ e r > 0, designe-se por $\gamma(a, r)$ o caminho $\gamma(t) = a + re^{it}$, $(t \in [0, 2\pi])$. Calcule $\oint_{\gamma(a,r)} (z^2+1)^{-1} dz$ para:

a)
$$\gamma(1,1)$$

b)
$$\gamma(i,1)$$

$$\gamma(1,1)$$
 b) $\gamma(i,1)$ c) $\gamma(-i,1)$ d) $\gamma(0,2)$ e) $\gamma(3i,\pi)$

d)
$$\gamma(0,2)$$

e)
$$\gamma(3i,\pi)$$

5. Calcule o seguinte integral

$$\oint_{|z+i|=2} \frac{z^3 + e^z}{z^2 + z - 2} \ dz,$$

em que a curva é percorrida uma vez no sentido directo.

6. Seja $\Gamma \subset \mathbb{C}$ a elipse $|z - \pi i| + |z - 2\pi i| = \frac{7\pi}{2}$, percorrida no sentido positivo. Calcule

a)
$$\oint_{\Gamma} z^3 \cosh z \, dz$$

b)
$$\oint_{\Gamma} e^{\cos^3 z} \, dz$$

c)
$$\oint_{\Gamma} \frac{ze^{-z}}{z - \frac{i}{2}} dz$$

a)
$$\oint_{\Gamma} z^3 \cosh z \, dz$$
 b) $\oint_{\Gamma} e^{\cos^3 z} \, dz$ c) $\oint_{\Gamma} \frac{ze^{-z}}{z - \frac{i}{2}} \, dz$ d) $\oint_{\Gamma} \frac{1}{z^2 + \pi^2} \, dz$

e)
$$\oint_{\Gamma} \frac{5z - \pi i}{z^2 (2z - \pi i)} dz$$
 f) $\oint_{\Gamma} \frac{dz}{z^2 (z - 2\pi i)^3}$ g) $\oint_{\Gamma} \frac{\cos z}{(z - i\pi)^{11}} dz$

$$\oint_{\Gamma} \frac{dz}{z^2 (z - 2\pi i)^3}$$

g)
$$\oint_{\Gamma} \frac{\cos z}{(z - i\pi)^{11}} dz$$

7. Usando o valor do integral $\oint_{|z|=1} \frac{e^z}{z} dz$, prove que

$$\int_0^{\pi} e^{\cos \theta} \cos (\sin \theta) d\theta = \pi.$$

8. Considere a função complexa definida por

$$f(z) = f(x+iy) = x^2 - y^2 - 2xy + 2y + i(x^2 - y^2 + 2xy - 2x).$$

Justificando pormenorizadamente a sua resposta, determine o valor do integral

$$\oint_C \frac{f(z)}{(z-2)^2} \, dz,$$

onde $C = \{z \in \mathbb{C} : |z - i| = 4\}$ é percorrida uma vez no sentido directo.

9. Poderá existir uma função analítica em \mathbb{C} cuja parte real seja $u(x,y)=e^{-y}x+e^xy$?

10. Decida se existem, ou não, funções analíticas $f:\mathbb{C}\to\mathbb{C}$ satisfazendo as seguintes condições, e em caso afirmativo determine-as:

- a) $\operatorname{Re} f(x + iy) + \operatorname{Im} f(x + iy) = x^2 y^2$.
- b) $\operatorname{Im} f(x+iy) = 3x^3y + x + \alpha xy^3$ para algum $\alpha \in \mathbb{R}$, e satisfazendo f(i) = 2.

11. Determine funções harmónicas conjugadas para as seguintes funções:

- a) $u(x,y) = x^2 + xy y^2$;
- b) $u(x,y) = \frac{x}{x^2 + y^2}$;
- c) $u(x,y) = e^{-y}(x \cos x y \sin x);$
- d) $u(x,y) = \log(\sqrt{x^2 + y^2}) + 2y$.

12. Sejam $\alpha, \beta: \mathbb{R} \to \mathbb{R}$, funções diferenciáveis, e $f: \mathbb{C} \to \mathbb{C}$ a função definida por

$$f(x + iy) = \alpha(x) - 3xy^{2} + i(3x^{2}y + \beta(y))$$

para $x, y \in \mathbb{R}$. Decida se pode ou não escolher α , β de modo a que f seja uma função inteira. Em caso afirmativo, determine α , β de maneira a f(1) = i.

13. Considere a seguinte função $u: \mathbb{R}^2 \to \mathbb{R}$:

$$u(x,y) = x^3 + y^3 - 3xy(x+y)$$

- a) Mostre que u é uma função harmónica.
- b) Determine a função harmónica conjugada v tal que v(0,0) = 0.
- c) Calcule

$$\oint_C \frac{f(z)}{(z-1)^2} dz \qquad e \qquad \oint_C \frac{f(z)}{z^3} dz$$

onde $f(z)=u(x,y)+iv(x,y),\ z=x+iy$ e C é a curva $\{z\in\mathbb{C}:|z|=2\}$ percorrida no sentido positivo.

2

- 14. Considere a função $g: \mathbb{C} \to \mathbb{C}$ definida por $g(z) = z(z^2 + \overline{z}^2 |z|^2)$, e sejam u e v funções de \mathbb{R}^2 em \mathbb{R} tais que $u(x,y) = \text{Re}\left[g(x+iy)\right]$ e $v(x,y) = \text{Im}\left[g(x+iy)\right]$.
 - a) Determine o conjunto dos pontos onde u e v satisfazem as equações de Cauchy-Riemann. O que pode concluir sobre a analiticidade da função g?
 - b) Mostre que u é uma função harmónica.
 - c) Determine uma função $f: \mathbb{C} \to \mathbb{C}$, analítica em \mathbb{C} , tal que Re(f) = u.
- 15. Seja $f: \mathbb{C} \to \mathbb{C}$ uma função inteira tal que existe um M > 0 para o qual $|f(z)| \geq M$, para todo o $z \in C$. Prove que então f é constante.
- 16. Seja $f: \mathbb{C} \to \mathbb{C}$ uma função inteira, tal que existem M, R > 0 e um inteiro $n \in \mathbb{N}$ satisfazendo $|f(z)| \leq M|z|^n$, para |z| > R. Mostre que então f é um polinómio de grau $\leq n$.

Obs: Este resultado mostra que funções inteiras, não polinomiais, têm necessariamente de crescer em módulo mais rapidamente que qualquer polinómio, quando $z \to \infty$. Como se justifica esta afirmação, por exemplo, no caso da função inteira (e não polinomial) $\cos z$?