HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Applied Algorithm Lab

Range minimum query

ONE LOVE. ONE FUTURE.

- Calculate the sum of the minimal numbers in some intervals of a given sequence
- Given a sequence of n integers a_0 , ..., a_{n-1} .

```
Denote rmq(i, j): the minimum of a_i, a_{i+1}, . . ., a_j.
```

Given m pairs $(i_1, j_1), ..., (i_m, j_m)$

Compute the sum: $Q = rmq(i_1, j_1) + ... + rmq(i_m, j_m)$

- Input: the sequence and the intervals
- Output: the sum

Example

stdin	stdout
16	6
2461687335891264	
4	Explain: 1+1+1+3 = 6
15	
0 9	
1 15	
6 10	

- Idea to solve #1:
 - for each pair of (i, j), find the minimum number in the interval
 - sum over all pair
 - -> easy, but too many comparisons, high complexity as the number of pairs goes higher

- Idea to solve #2: pre-processing and store some minimum for lesscomplicated comparisons for answers (faster lookups)
 - Build a table $M[N][\log_2 N]$ that:

$$M[i][t]$$
 is the index of min $\{a_i, a_{i+1}, \dots, a_{i+2^t-1}\}$

Then we can answer faster:

$$rmq(i,j) = \min\left(a_{M[i][k]}, a_{M[j-2^k+1][k]}\right)$$

with $k = \lfloor \log_2(j - i + 1) \rfloor$

$$i+2^k-1 \ge j-2^k$$

 $\min\{a_i, a_{i+1}, \dots, a_{i+2^k-1}\}$

 $\min\{a_{j-2^k+1},\dots,a_j\}$

- Idea to solve #2: after determine M, it only takes O(1) for each rmq query, compare to O(n) as in idea #1
- To build M: use recursion
 - Base case: M[i][0] = i, storing the index of each element.
 - Recursive case: Uses previous results to compute larger ranges:

$$M[i][j]$$
: the index of $\min(a_{M[i][j-1]}, a_{M[i+2^{j-1}][j-1]})$
$$\min\{a_i, a_{i+1}, \dots, a_{i+2^{j-1}-1}\}$$

$$\min\{a_{i+2^{j-1}}, \dots, a_{i+2^{j-1}}\}$$

Complexity: O(n log n)

THANK YOU!