

Comparison of Controllers for Trunk Stabilization in a Bipedal Robot

Final Presentation, Master's Thesis

Felix Schausberger

March 21, 2023

Supervisor: *Dr.-Ing. Daniel Renjewski* Examiner: *Dr.-Ing. Daniel Renjewski*

Introduction

- 1. Objective: Stabilize torso
- 2. Goal: Quantify correlations of parameters that influence periodic gait
- Implementation: Neural network controller, trajectory optimization, vertical leg orientation
- 4. Evaluation: Mechanical cost analysis, stability analysis

Trajectory optimization [Rum+10] [Ren13]

$$f = \sum_{i=3}^{7} |q_i(VLO_1) - q_i(VLO_0)| + |\dot{q}_i(VLO_1) - \dot{q}_i(VLO_0)|$$

Vertical leg orientation

Mechanical Cost Analysis [Lee+11]

$$\phi = \lambda + \theta \neq 0$$
:

$$\phi = \arcsin\left(\frac{|GRF \cdot v_{CoM}|}{|GRF| |v_{CoM}|}\right)$$

$$\lambda = \arccos\left(\frac{|\boldsymbol{v}_{CoM_x}|}{|\boldsymbol{v}_{CoM}|}\right), \ \theta = \arccos\left(\frac{|\boldsymbol{GRF}_y|}{|\boldsymbol{GRF}|}\right)$$

Collision fraction [Lee+11]

$$\kappa = \frac{\sum |GRF| |\nu_{CoM}| (\phi/(\theta + \lambda))}{\sum |GRF| |\nu_{CoM}|} = \frac{\Phi}{\Theta + \Lambda}$$

$$\Phi = \frac{\sum |GRF| |\nu_{CoM}| \phi}{\sum |GRF| |\nu_{CoM}|}$$

$$\Lambda = \frac{\sum |\nu_{CoM}| \lambda}{\sum |\nu_{CoM}|}$$

$$\Theta = \frac{\sum |GRF| |\theta}{\sum |GRF|}$$

$$\Phi \approxeq \frac{\sum |\textit{GRF} \cdot \textit{v}_{\textit{CoM}}|}{\sum |\textit{GRF}| |\textit{v}_{\textit{CoM}}|} \approxeq \mathsf{CoT}_{\mathsf{mech}} = \frac{\sum |\textit{GRF} \cdot \textit{v}_{\textit{CoM}}|}{\overline{\textit{v}_{\textit{CoM}_x}} \, m \, g}$$

Horizontal velocity

Displacement

Torso and hip angle

Phase plot over time

Phase plot with ground-state

Summary

- 1. Objective: Stabilize torso
- 2. Goal: Quantify correlations of parameters that influence periodic gait
- 3. Implementation: Neural network controller, trajectory optimization, VLO, MCA
- 4. Result: Asymptotically stable gait found
- 5. Evaluation: Not energy efficient

Comparison of Controllers for Trunk Stabilization in a Bipedal Robot

Final Presentation, Master's Thesis

Felix Schausberger

March 21, 2023

Supervisor: *Dr.-Ing. Daniel Renjewski* Examiner: *Dr.-Ing. Daniel Renjewski*

Control parameters [Ren]

Results

$$\theta_{ES,\;k} = -4.25$$

$$\theta_{FS,\;h} = \; \text{AEA} = \frac{15}{1 + e^{0.2 \cdot \rho + 4}} - 25$$

$$GM_h = 1.6$$

Results II

Symbol	Description	Value	Unit
$\overline{x_{CoM, end}}$	Distance covered	15	[m]
t_{end}	Time required	18.8502	[s]
$\overline{oldsymbol{v}_{CoM_x}}$	Average forward velocity	0.8379	$\left[\frac{m}{s}\right]$
$\mathbf{v}_{CoM_x, max}$	Maximum instantaneous velocity	1.7803	$\left[\frac{m}{s}\right]$
${oldsymbol{v}_{CoM_x, \; min}}$	Minimum instantaneous velocity	-0.7106	$\left[\frac{m}{s}\right]$
$y_{CoM, max}$	Highest vertical displacement	0.2907	[m]
${\cal Y}_{CoM,\;min}$	Lowest vertical displacement	0.2031	[m]
Fr	Froude number	0.2468	_
\sqrt{Fr}	Dimensionless velocity	0.4986	_
Θ	Average force angle	0.7285	[rad]
Λ	Average velocity angle	0.3704	[rad]
Φ	Average collision angle	0.9855	[rad]
CoT_{mech}	Mechanical Cost of Transport	0.5226	$\left[\frac{J}{mN}\right]$
κ	Collision fraction	0.8968	-

Velocity vectors

References I

- [Lee+11] Lee, D. V., Bertram, J. E. A., Anttonen, J. T., Ros, I. G., Harris, S. L., and Biewener, A. A. "A collisional perspective on quadrupedal gait dynamics". In: *Journal of The Royal Society Interface* 8.63 (Apr. 2011), pp. 1480–1486. DOI: 10.1098/rsif.2011.0019.
- [Ren] Renjewski, D. [The extensor and flexor joint angles of the Jenafox robot]. [Applied Biorobotics (Module MW2388): Online; accessed January 22, 2023]. URL: https://www.moodle.tum.de/mod/page/view.php?id=2068770.
- [Ren13] Renjewski, D. *An Engineering Contribution to Human Gait Biomechanics*. Verlag Dr. Kovac, 2013, p. 140. ISBN: 9783830068587.
- [Rum+10] Rummel, J., Blum, Y., Maus, H. M., Rode, C., and Seyfarth, A. "Stable and robust walking with compliant legs". In: *2010 IEEE International Conference on Robotics and Automation*. IEEE, May 2010. DOI: 10.1109/robot.2010.5509500.

Glossary I

- Fr Froude number, 16
- GM Motor gain. 15
 - Λ Average angle associated with v_{CoM} relative to horizontal (°). 6, 16, 19
 - Φ Average collision angle (°). 6, 16, 19
 - Θ Average angle associated with the ground reaction force relative to vertical (°). 6, 16, 19
 - ν Velocity vector $(\frac{m}{s})$. 5, 6, 16, 19, 20
 - κ Collision fraction, calculated as the quotient of Φ and the sum of Θ and Λ . 6, 16
 - λ Instantaneous angle of ν_{CoM} relative to horizontal (°). 5, 6

Glossary II

- ϕ Instantaneous angle of deviation of perpendicularity of force and velocity vectors (collision angle) (°). 5, 6
- ρ Angle of v_{CH} relative to horizontal at touchdown (°). 15
- θ Instantaneous angle of the ground reaction force relative to vertical (°). 5, 6
- θ_{ES} Control parameter of the extensor for the neural controller (°). 15
- θ_{FS} Control parameter of the flexor for the neural controller (°). 15
 - g Acceleration due to gravity $\left(\frac{m}{s^2}\right)$. 6
 - m Mass of the body (kg). 6
 - t Simulation time (s). 16
 - x Horizontal displacement (m). 16

Glossary III

y Vertical displacement (m). 16

GRF Ground Reaction Force 5, 6, 19, 20

AEA Anterior Extreme Angle 15

CoM Center of Mass 5, 6, 16, 19

CoT_{mech} Mechanical Cost of Transport 6, 16

MCA Mechanical Cost Analysis 2, 12

VLO Vertical Leg Orientation 2, 3, 12