CREATIVE INNOVATION REAMAKE

Background Removal 진행 상황 보고

개발 인턴 김경태

Parameter – Pymatting

Pymatting + PointRend 값 조정 및 향상

```
value = 1e-3
alpha = estimate_alpha_cf(image, trimap, laplacian_kwargs={"epsilon": value},
cg_kwargs= {"maxiter":3000})
```

value2 = 0.5~0.7
foreground= estimate_foreground_ml(image, alpha, regularization = value2)

Pymatting

Inputs ouput

Google Colab with Cuda 10.0

PointRend

```
cfg = get_cfg()
            # Add PointRend-specific config
            point rend.add pointrend config(cfg)
            # Load a config from file
            cfg.merge_from_file("detectron2_repo/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yam!")
            cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
            # Use a model from PointRend model zoo: https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend#oretrained-models
            cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/model_final_3c3198.pk|"
            predictor = DefaultPredictor(cfg)
            outputs = predictor(img)
[] outputs
 [] {'instances': Instances(num_instances=1, image_height=589, image_width=626, fields=[pred_boxes: Boxes(tensor([[ 16.6632, 19.1460, 620.5416, 585.3265]], device='cuda:0')), scores: tensor([0.9886], device='cuda:0')), scores: tensor([0.9886],
                                     [False, False, False, ..., False, False, False],
                                     [False, False, False, ..., False, False, False],
                                     [False, False, False, ..., False, False, False],
                                     [False, False, False, False, False, False].
                                    [False, False, False, ..., False, False, False]]], device='cuda:0')])}
```


Pymatting

Pymatting

```
!pip3 install pymatting
from pymatting import cutout

def gen_matted_image(img_path, trimap_path, cutout_path):
    try:
        cutout(
            # input image path
            img_path,
            # input trimap path
            trimap_path,
            # output cutout path
            cutout_path
    )
    return "success"
    except ValueError as e:
    return e
```

Cutout is for application-oriented users

Pymatting

```
!pip3 install pymatting
from pymatting import *
import numpy as np
scale = 1.0
image_name = 'Hyundai (6).png'
image = load_image("/content/drive/My Drive/remake/matting/main-jpg/Automobile/" + image_name, "RGB", scale, "box")
# image = load_image("/content/drive/My Drive/remake/matting/main-ipg/Automobile/" + image_name, "RGB", scale, "box")
trimap = load_image("/content/drive/My Drive/remake/matting/trimap/Automobile/" + image_name, "GRAY", scale, "nearest")
# trimap = load_image("/content/drive/My Drive/remake/matting/trimap/Automobile/" + image_name, "GRAY", scale, "nearest")
value = 1e-1
alpha = estimate_alpha_cf(image, trimap, laplacian_kwargs={"epsilon": value}, cg_kwargs= {"maxiter":3000})
# alpha = estimate alpha cf(image, trimap)
# background = np.zeros(image.shape)
# background[:, :] = [0.5, 0.5, 0.5]
image.shape
foreground, background = estimate_foreground_ml(image, alpha, return_background=True)
new image = blend(foreground, background, alpha)
new_image
# images = [image, trimap, alpha, new_image]
# grid = make_grid(images)
# save_image("/content/drive/My Drive/remake/matting/pymatting_image/" + image_name[:-4] + "_grid_" + str(value) + ".png", grid)
cutout = stack_images(foreground, alpha)
save_image("/content/drive/My Drive/remake/matting/pymatting_image/" + image_name[:-4] + "_cutout_" + str(value) + ".png", cutout)
save_image("/content/drive/My Drive/remake/matting/pymatting_image/" + image_name[:-4] + "_new_image_" + str(value) + ".png", new_image)
```

Low level

laplacian_kwargs: regularization strength

laplacian_kwargs: 1e-7

laplacian_kwargs: 1e-1

PointRend

Notion Page: Foreground segmentation >> BG removal algorithm

To do

Should trim the exact border of the matted image.

Test pymatting for trimaps with unknown area of several sizes.

Test pymatting adjusting parameters in low level.

To do

Should trim the exact border of the matted image.

Analyze pointrend and adjusting parameters

Learning pointrend

Generate Trimap in other ways

Test using other instance/semantic segmentation models.