Teoremă. Dacă este convergentă seria $|a_1| + |a_2| + ... + |a_n| + ... = \sum_{n=1}^{\infty} |a_n|$, atunci este convergentă și seria cu termeni de semne variabile $\sum_{n=1}^{\infty} a_n$.

Teoremă. Dacă seria funcțională $\sum_{n=1}^{\infty} f_n(x)$ este majorată pe mulțimea M, atunci ea este uniform convergentă pe această mulțime.

Teoremă. Dacă termenii seriei funcționale sunt funcții continue și această serie este uniform convergentă pe segmentul [a,b], atunci suma s(x) a ei este o funcție continuă pe acest segment.

Teoremă . Dacă seria funcțională $\sum_{n=1}^{\infty} f_n(x)$ este uniform convergentă pe [a,b], suma ei S(x) și termenii $f_n(x)$, n=1,2,... sunt integrabile pe acest segment, atunci $\int_a^b S(x) dx = \sum_{n=1}^{\infty} \int_a^b f_n(x) dx$.

Teoremă. Fie că seria $\sum_{n=1}^{\infty} f_n(x)$ este convergentă pe segmentul [a,b] și suma ei este S(x), funcțiile $f_n(x)$, n=1,2,..., sunt continuu derivabile pe [a,b]. Dacă seria $\sum_{n=1}^{\infty} f_n(x)$ este uniform convergentă pe [a,b], atunci funcția S(x) este derivabilă pe acest segment și are loc egalitatea $S'(x) = \sum_{n=1}^{\infty} f'_n(x)$.

Serii de puteri. Teorema Abel. Raza de convergență

Definiție. Se numește serie de puteri o serie funcțională de forma

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots,$$

unde x este o variabilă reală, $a_0, a_1, ..., a_n, ...$ sunt constante reale, care se numesc coeficienti ai acestei serii.

Se numește serie de puteri și o serie de forma $\sum_{n=0}^{\infty} a_n (X-a)^n$, care se reduce la seria $\sum_{n=0}^{\infty} a_n x^n$ cu ajutorul substituției x = X - a. Vom studia mai întâi numai convergența seriei $\sum_{n=0}^{\infty} a_n x^n$.

Teoremă. (Abel) Dacă seria de puteri $\sum_{n=0}^{\infty} a_n x^n$ este convergentă pentru careva valoare nenulă x_1 , atunci ea este absolut convergentă pentru orice valoare a lui x care verifică condiția $|x| < |x_1|$.

Dacă seria $\sum_{n=0}^{\infty} a_n x^n$ este divergentă pentru careva valoare x_2 , atunci ea este divergentă și pentru orice valoare a variabilei x, care verifică condiția $|x| > |x_2|$.

$$\mathbf{u} \ R = \lim_{n=\infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

Formule de calcul ale razei de convergență. $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$.

Teoremă. Dacă seria de puteri $\sum_{n=0}^{\infty} a_n x^n$ are raza de convergență R, atunci ea este uniform convergentă pe segmentul [-r,r] pentru orice r care verifică condiția 0 < r < R.

Teoremă. Dacă seria de puteri $\sum_{n=0}^{\infty} a_n x^n$ are raza de convergență R > 0, atunci suma acestei serii este o funcție continue pe segmentul [-r, r] pentru orice $r \in (0, R)$.

Teoremă. Dacă seria de puteri $\sum_{n=0}^{\infty} a_n x^n$ are raza de convergență R > 0 și suma ei este S(x), atunci această serie poate fi integrată termen cu termen pe segmentul $[a,b] \subset [-r,r]$ pentru orice $r \in (0,R)$.

Teoremă. Dacă seria de puteri $\sum_{n=0}^{\infty} a_n x^n$ are raza de convergență R > 0, atunci ea poate fi derivată termen cu termen pe segmentul [-r, r] pentru orice $r \in (0, R)$.

Astfel,
$$C_0 = f(a), C_1 = \frac{f'(a)}{1!}, C_2 = \frac{f''(a)}{2!}, ..., C_n = \frac{f^{(n)}(a)}{n!},$$
 de unde
$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

Criteriul radical Cauchy. Fie că pentru seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ există limita

$$\lim_{n\to\infty} \sqrt[n]{a_n} = l$$
 atunci:

- a) dacă 1<1, atunci seria dată este convergentă;
- b) dacă 1>1, atunci seria este divergentă.

Criteriul integral de convergență. Fie că termenii seriei cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ verifică condiția $a_n \ge a_{n+1}$, n=1,2,..., și fie că există o funcție f(x) continuă și descrescătoare pe $[1,+\infty)$ și care verifică condiția $f(n)=a_n$, n=1,2,... Atunci:

- a) dacă integrala improprie $\int_1^\infty f(x)dx$ este convergentă, atunci este convergentă și seria $\sum_{n=1}^\infty a_n$;
 - b) dacă integrala improprie $\int_{1}^{\infty} f(x)dx$ este divergentă, atunci este divergentă și seria

Criteriul câtului. Fie că pentru seriile cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ și $\sum_{n=1}^{\infty} b_n$ există limita $\lim_{n\to\infty} \frac{a_n}{b_n} = k$. Dacă

- $0 < k < \infty$, atunci seriile date au aceeași natură de convergență,
- k=0 și seria $\sum_{n=1}^{\infty} b_n$ este convergentă, atunci este convergentă și seria $\sum_{n=1}^{\infty} a_n$,
- $k = \infty$ și seria $\sum_{n=1}^{\infty} b_n$ este divergentă, atunci este divergentă și seria $\sum_{n=1}^{\infty} a_n$.

Consecință. Dacă termenii respectivi ai seriilor $\sum_{n=1}^{\infty} a_n$ și $\sum_{n=1}^{\infty} b_n$ sunt echivalenți când $n \to \infty$, adică $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$, atunci seriile date sunt convergente sau divergente simultan.

Criteriul Raabe - Duhamel. Fie că pentru seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ există limita $\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1\right) = \lim_{n\to\infty} n \left(1 - \frac{a_{n+1}}{a_n}\right) = l$. Atunci :

- dacă 1>1, atunci seria este convergentă.
- dacă /<1, atunci seria este divergentă;

5

Teoremă. (Criteriul Leibniz). Dacă termenii seriei alternante $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ verifică condițiile: $a_1 \ge a_2 \ge ... \ge a_n \ge ...$, $\lim_{n \to \infty} a_n = 0$, atunci această serie este convergentă și suma S a ei nu întrece primul termen: $S < a_1$.

Dacă

l'eoremă (Criteriul necesar de

convergentă, atunci $\lim_{n\to\infty} a_n = 0$.

Definiție. Se numește serie numerică o expresie de forma $a_1 + a_2 + ... + a_n + ...$, unde $a_1, a_2, ..., a_n, ...$ sunt numere reale. Seria numerică se mai notează cu $\sum_{n=1}^{\infty} a_n$.

Numerele $a_1, a_2, ..., a_n, ...$ se numesc **termeni** ai seriei, iar a_n se numește **termen general** sau **termen de rang n** al acestei serii.

Definiție. Suma primilor n termeni ai seriei $\sum_{n=1}^{\infty} a_n$ se numește sumă parțială de rang n a acestei serii și se notează cu S_n .

Din definiție rezultă că $S_1 = a_1$, $S_2 = a_1 + a_2$,..., $S_n = a_1 + a_2 + ... + a_n$,...

Definiție. Dacă există limita finită S a șirului sumelor parțiale (S_n) : $S = \lim_{n \to \infty} S_n$,

4) Considerăm seria
$$a + aq + aq^2 + ... + aq^{n-1} + ... = \sum_{n=1}^{\infty} aq^{n-1}$$
, $a \neq 0$.

Această serie reprezintă suma termenilor unei progresii geometrice cu primul termen a și cu rația q. Cum pentru această serie $S_n = a + aq + aq^2 + aq^{n-1} = \frac{a - aq^n}{1 - q}$, avem:

a) dacă
$$|q| < 1$$
, atunci $\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a - aq^n}{1 - q} = \frac{a}{1 - q}$;

b) dacă
$$|q| > 1$$
, atunci $\lim_{n \to \infty} S_n = \infty$;

c) dacă
$$q = 1$$
 atunci $S_n = a + a + ... + a = na \rightarrow \pm \infty$ când $n \rightarrow \infty$;

d) dacă
$$q = -1$$
, atunci $S_n = 0$, dacă n este par, și $S_n = a$, dacă n este impar.

Rețineți !!! Seria $\sum_{n=1}^{\infty} aq^{n-1}$ este convergentă cu suma $S = \frac{a}{1-q}$ dacă |q| < 1.

Altfel, seria dată este divergentă.

Criteriul de comparație. Fie că termenii seriilor $\sum_{n=1} a_n$ și $\sum_{n=1} b_n$ verifică condiția $a_n \ge b_n > 0$, n = 1,2,... Atunci:

- a) dacă seria $\sum_{n=1}^{\infty} a_n$ este convergentă, atunci este convergentă și seria $\sum_{n=1}^{\infty} b_n$;
- b) dacă seria $\sum_{n=1}^{\infty} b_n$ este divergentă, atunci este divergentă și seria $\sum_{n=1}^{\infty} a_n$.

Criteriul D'Alambert. Fie că pentru seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ există limita

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=l.$$
 Atunci:

- a) dacă 1<1, atunci seria este convergentă;
- b) dacă 1>1, atunci seria este divergentă.

Exemple de serii numerice.

1)
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} + ...$$
 (seria armonică)

2)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \dots$$

3)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \dots + \frac{1}{n^{\alpha}} + \dots \text{ (seria Dirichlet)}$$

4)
$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + ... + n + ...$$

5)
$$\sum_{n=1}^{\infty} aq^{n-1} = a + aq + aq^2 + ... + aq^{n-1} + ...$$
 (seria geometrică)

6)
$$\sum_{n=1}^{\infty} (-1)^{n+1} = 1 - 1 + 1 - 1 + \dots$$

7)
$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots$$