AMENDMENTS TO THE CLAIMS:

1	1.	(withdrawn) A method for automatically generating a network replication topology
2		for use by a directory service in replicating the directory, comprising steps of:
3		reading a plurality of router configuration files; and
4		generating the network replication topology representing one or more sites and one or
5		more site links based on information in the plurality of router configuration
6		files.
1	2.	(withdrawn) The method of claim 1, wherein the information in the plurality of router
2		configuration files includes router interface information and the step of generating the
3		network topology is performed based on the router interface information.
1	3.	(withdrawn) The method of claim 2, wherein the step of generating the network
2		topology comprises determining at least one site by identifying a sub-network on a
3		Local Area Network (LAN) interface.
1	4.	(withdrawn) The method of claim 2, wherein the step of generating the network
2		topology comprises determining at least one site link by identifying a Wide Area
3		Network (WAN) interface.
1	5.	(withdrawn) The method of claim 1, wherein the step of generating the network
2		topology comprises determining at least one site by identifying a router interface with
3		a bandwidth exceeding a predefined threshold value.
1	6.	(withdrawn) The method of claim 1, wherein the step of generating the network
2		topology comprises determining at least one site link by identifying a router interface

3

with a bandwidth not exceeding a predefined threshold value.

1	7.	(withdrawn) The method of claim 1, wherein the step of generating the network
2		topology comprises determining at least one site link by identifying a router interface
3		with a packet round-trip-time exceeding a predefined threshold value.
1	8.	(withdrawn) The method of claim 1, further comprising a step of:
2		reading preprocessing information, the preprocessing information including override
3		information for nullifying the information associated with a same one or more
4		sites or site links from the plurality of router configuration files, wherein the
5		network topology is generated based additionally on the override information.
1	9.	(withdrawn) The method of claim 1, wherein the step of reading a plurality of router
2		configuration files includes reading from a network management system.
1	10.	(withdrawn) The method of claim 1, wherein the step of reading a plurality of router
2		configuration files includes reading from a router query result.
1	11.	(withdrawn) A method for automatically populating a directory service with a
2		replication topology, comprising steps of:
3		reading router interface information from a plurality of router configuration files;
4		generating the replication topology representing one or more network sites and one or
5		more network site links based on the router interface information;
6		storing the replication topology in a database; and
7		copying the replication topology from the database to the directory service.
1	12.	(withdrawn) The method of claim 11 wherein the step of generating the replication
2		topology comprises steps of:
3		generating at least one site reference by identifying a sub-network on a Local Area
4		Network (LAN) interface; and
		o. 09/886,851—Conley—GAU 2171 (E. Leroux) ey Docket No. 50325-0553

5		generating at least one site link reference by identifying a Wide Area Network
6		(WAN) interface.
1 2	13.	(original) A method for automatically generating network site and site link
3		information from a router configuration file for use in a directory service, comprising steps of:
4		reading preprocessing information, the preprocessing information including override
5		information for nullifying information associated with one or more sites or
6		one or more site links from one or more router configuration files; and
7		reading touter interface information from a router configuration file associated with
8		each of one or more routers, wherein one or more site references is generated
9		by dentifying a sub-network on a Local Area Network (LAN) interface and
10		one or more site link references is generated by identifying a Wide Area
11		Network (WAN) interface and wherein the override information is applied to
12		the site and site link references.
1	14.	(original) The method of claim 13, wherein the step of reading router interface
2		information from a router configuration file comprises steps of:
3		reading a list of one or more router names from a source, wherein the source is a
4		network management system, a database, or a router query result;
5		generating a router name from the router configuration file associated with each of
6		the one or more routers;
7		comparing the one or more router names from the router configuration files to the list
8		of one or more router names from the source, and
9		upon a router name from the router configuration files not being in the list of one or
10		more router names from the source, generating an exception.

Ser. No. 09/886,851—Conley—GAU 2171 (E. Leroux) Attorney Docket No. 50325-0553

1	15.	(original) The method of claim 14 wherein the step reading router interface
2		information from a router configuration file further comprises steps of:
3		generating a temporary site name for each router name from the router configuration
4		file associated with each of the one or more routers; and
5		associating each of the one or more site references determined from the router
6		configuration file associated with each of the one or more routers with the
7		temporary site name for the associated router.
1	16.	(original) The method of claim 15 wherein the step reading router interface
2		information from a router configuration file further comprises steps of:
3		generating a partial site link for each of the one or more site link references
4		determined from the router configuration file associated with each of the one
5		or more routers; and
6		associating each partial site link with the temporary site name for the associated
7		router.
1	17.	(original) The method of claim 16 wherein the step reading router interface
2		information from a router configuration file further comprises steps of:
3		generating a sub-network reference based on each of one or more "ip route"
4		commands in the router configuration file associated with each of the one or
5		more routers; and
6		associating each sub-network reference with the temporary site name for the
7		associated router.
1	18.	(original) The method of claim 13, wherein the step of reading preprocessing
2		information comprises steps of:

3	reading a list of one or more site names from a data storage associated with a network
4	\management system;
5	reading from the data storage a list of one or more preprocessing site links and
6	associated site link costs;
7	comparing one or more site names parsed from the one or more preprocessing site
8	links to the list of one or more site names from the data storage and discarding
9	one or more preprocessing site links upon a failure to match;
10	reading from the data storage a list of one or more preprocessing address blocks and
11	at least one from a set consisting of a preprocessing site name associated with
12	the one or more preprocessing address blocks or a command to ignore the one
13	or more preprocessing address blocks;
14	comparing the preprocessing site name associated with the one or more preprocessing
15	address blocks to the list of one or more site names from the data storage and
16	discarding one or more preprocessing address blocks upon a failure to match;
17	reading a list of one or more domain controllers from the data storage and associating
18	the one or more domain controllers to an Internet Protocol address and to a
19	site name obtained from a network management system;
20	determining a domain associated with the one or more domain controllers,
21	comparing the Internet Protocol address for each of the listed domain controllers to
22	the list of one or more preprocessing address blocks;
23	whereupon the step of reading preprocessing information aborts if the Internet
24	Protocol address is within one or more preprocessing address blocks and the
25	preprocessing site name associated with the one or more preprocessing
26	address blocks is not the same as the site name obtained from the network
27	management system that is associated with the one or more domain
28	controllers; and
	Ser. No. 09/886,851—Conley—GAU 2171 (E. Leroux) Attorney Docket No. 50325-0553

29		where pon the step of reading preprocessing information continues excluding the one
30		or more domain controllers from further processing if the Internet Protocol
31		address is within one or more preprocessing address blocks associated with
32		the command to ignore the one or more preprocessing address blocks.
1	19.	(original) The method of claim 18, further comprising steps of:
2		comparing an address of each of the one or more site references, one or more site link
3		references, and one or more sub-network references to the one or more
4		preprocessing address blocks;
5		deleting from processing the one or more site references, the one or more site link
6		references, and the one or more sub-network references having an address
7		being a subset or superset of the one or more preprocessing address blocks
8		and deleting from processing the partial site link associated with discontinued
9		one or more site link references; and
10		if the temporary site name contains no site references, deleting from processing the
11		temporary site name and associated one or more router names, partial site
12		links, site link references, and sub-network references.
1	20.	(original) The method of claim 18, further comprising steps of:
2		merging one or more temporary site names and associated partial site links, site links,
3		sub-network references, and router names into one or more newly created
4		complete site names; and
5		deleting from processing the one or more temporary site names merged into the one
6		or more newly created complete site names, thereby reducing the quantity of
7		temporary site names and increasing the quantity of site references associated
8		with one or more temporary site names.

1	21.	(original) The method of claim 18, further comprising steps of:
2		processing the one or more sub-network references to ensure that sub-network
3		references are not duplicated;
4		processing the one or more sub-network references to ensure that the network site
5		information is minimized; and
6		merging the one or more sub-network references associated with one or more
7		temporary site names into the one or more site references associated with the
8		same one of more temporary site names.
1	22.	(original) The method of claim 18, further comprising a step of:
2		generating a site link between one or more temporary site names, comprising the
3		steps of \
4		processing each partial site link associated with each of the one or more
5		temporary site names to generate a valid site link based on matching a
6		first partial site link associated with a first temporary site name with
7		only a second partial site link associated with a second temporary site
8		name,
9		reading a list of one or more site links to determine if an existing site link
10		between the first temporary site name and the second temporary site
11	•	name exists,
12		upon existence of an existing site link, comparing a bandwidth of the existing
13		site link to a bandwidth of the valid site link,
14		upon the bandwidths being equal, summing the bandwidths to create a
15		summed bandwidth and associating the summed bandwidth
16		with the existing site link and discarding the valid site link,

Ser. No. 09/886,851—Conley—GAU 2171 (E. Leroux) Attorney Docket No. 50325-0553

17		upon the bandwidths being unequal, maintaining the existing or valid
18		full site link with a larger bandwidth and discarding the other
19		of the existing or valid full site link,
20		upon non-existence of the existing full site link, generating a valid site link
21		between the first temporary site name and the second temporary site
22		name, the valid site link including a first partial site link associated
23		with the first temporary site name and a second partial site link
24		associated with the second temporary site name,
25		comparing the bandwidth of the first partial site link to the bandwidth
26		of the second partial site link, and
27		upon the bandwidths being equal, generating a first site link cost based
28		on the equal bandwidth and associating the first site link cost
29		with the valid site link,
30		upon the bandwidths being unequal, generating a second site link cost
31		based on the smaller bandwidth and associating the second site
32		link cost with the valid site link.
1	23.	(original) The method of claim 18, further comprising steps of:
2	25.	replacing one or more temporary site names with one or more domain controller site
3		
		names generated from an association of at least one listed domain controller
4		from the data storage and an Internet Protocol address of the domain
5		controller; and
6		comparing the one or more preprocessing site names to the one or more domain
7		controller site names;
8		upon a comparison match, merging the one or more preprocessing address blocks
9		associated with the one or more preprocessing site names with the one or
		1

10		more domain controller site names and deleting from processing the one or
11		more preprocessing site names;
12		generating a single \(\) ist of site names including the one or more temporary site names
13		and the one of more domain controller site names; and
14		ensuring that each site name is associated with another connected site name.
1	24.	(withdrawn) A computer-readable medium carrying one or more sequences of
2	-	instructions for automatically generating a network topology for a directory service,
3		wherein execution of the one or more sequences of instructions by one or more
4		processors causes the one or more processors to perform steps of:
5		reading router interface information from a plurality of router configuration files;
6		generating the network topology representing one or more network sites and one or
7		more network site links based on the router interface information.
1	25.	(withdrawn) The computer-readable medium of claim 24 wherein execution of the
2		one or more sequences of instructions by one or more processors causes the one or
3		more processors to perform the step of generating the network topology by causing
4		the one or more processors to perform a step of:
5		generating at least one site reference by identifying a sub-network on a Local Area
6		Network (LAN) interface.
1	26.	(withdrawn) The computer-readable medium of claim 24 wherein execution of the
2		one or more sequences of instructions by one or more processors causes the one or
3		more processors to perform the step of generating the network topology by causing
4		the one or more processors to perform steps of:
5		generating at least one site link reference by identifying a Wide Area Network
6		(WAN) interface.

Ser. No. 09/886,851—Conley—GAU 2171 (E. Leroux) Attorney Docket No. 50325-0553

1	27.	(withdrawn) A computer system comprising:
2		a network interface; and
3		one or more processors connected to the network interface, the one or more
4		processors configured for
5		reading router interface information from a plurality of router configuration files;
6		generating a network topology representing one or more network sites and one or
7		more network site links based on the router interface information.
1	28.	(withdrawn) The computer system of claim 27 wherein the network topology is
2		generated for use with a directory service and the one or more processors are further
3		configured for generating the network topology by generating one or more network
4		site references by identifying a sub-network on a Local Area Network (LAN)
5		interface.
1	29.	(withdrawn) The computer system of claim 27 wherein the network topology is
2		generated for use with a directory service and the one or more processors are further
3		configured for generating the network topology by generating one or more site link
4		references by identifying a Wide Area Network (WAN) interface.
1	30.	(withdrawn) An apparatus for automatically generating a network topology for a
2		directory service, the apparatus comprising:
3		means for reading a plurality of router configuration files; and
4		means for generating the network topology representing one or more sites and one or
5		more site links based on information in the plurality of router configuration
6		files.
1	31.	(withdrawn) The apparatus of claim 30, further comprising:

Ser. No. 09/886,851—Conley—GAU 2171 (E. Leroux) Attorney Docket No. 50325-0553

2		means for determining at least one site by identifying a sub-network on a Local Area
3		Network (LAN) interface.
1	32.	(withdrawn) The apparatus of claim 30, further comprising:
2		means for determining at least one site link by identifying a Wide Area Network
3		(WAN) interface