

Data Science Advanced

Lesson02-Regression, Logistic Regression using Gradient Descent

[Credit: Machine Learning Course, Andrew Ng

Objective

After completing this lesson you will be able to:

Linear Regression:

- Describe hypothesis for a linear regression
- Understand cost function as a measure to derive regression equation.
- Understand gradient descent algorithm and its working to minimize the cost function.

Logistic Regression:

- Describe hypothesis for a logistic regression
- Understand cost function as a measure to derive logistic regression equation.
- Understand gradient descent algorithm and its working to minimize the cost function for a logistic regression

K Means Clustering:

- Understand cost function as a measure to derive K Means Cluster
- Understand Optimization objective for K means cluster

Linear Regression

Linear Regression to predict housing prices for a given size.

- It is a supervised learning problem as the "right answer" for each example in given in the dataset.
- A regression based supervised learning to predict real valued output.

Linear Regression—Data Representation

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

$$(x^{i}, y^{i})$$
 - represents i^{th} training example $x^{1} = 2104$ $y^{1} = 460$ $(x^{1}, y^{1}) = (2104,460)$

Notions: $\mathbf{m} = \text{Number of training examples}$

x's = "input" variable / features

y's = "output" variable / "target" variable

Regression-Hypothesis Formulation

• In case of Linear Regression, the hypothesis function is:

$$h_{\theta}(x) = \theta_0 + \theta_1 * x$$

• How to choose θ s?

Regression-Cost Function

Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for the training examples (x, y).

The cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^i) - y^{(i)})^2$$

Goal: $\min_{\theta_0,\theta_1}(J(\theta_0,\theta_1))$

- Cost function $J(\theta_0, \theta_1)$ for regression is also called squared error function.
- The mean is halved (1/(2*m)) as a convenience for the computation of the gradient descent. The derivative term of the square function will cancel out the 1/2 term.

Regression-Cost Function Intuition with one parameter

A simplified case where $\theta_0 = 0$. The cost function will be minimum for theta equal to zero. This will always be a convex shaped function.

Regression-Cost Function Intuition with two parameter

Gradient Descent

Gradient Descent algorithm:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until a minimum is reached.

Gradient descent is a generic algorithm which can be used to minimize any type of cost function.

The initiation of θ_0 , θ_1 can lead to a different local optima.

Gradient Descent

• The gradient descent algorithm is:

```
repeat until convergence{ \theta_{j} \coloneqq \theta_{j} - \alpha * \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) \ (for \ j = 0 \ and \ j = 1) }
```

• Simultaneous update of θ_0 , θ_1 is needed:

$$temp0 \coloneqq \theta_0 - \alpha * \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 \coloneqq \theta_1 - \alpha * \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq temp0$$

$$\theta_1 \coloneqq temp1$$

- α is the learning rate which decides who big or small the steps of descent will be.
- Near to the local minimum, the gradient descent will automatically take smaller steps.
- At the local optima, the θ_0 , θ_1 does not change as derivative term will equal to zero.

Linear Regression-Gradient Descent

The gradient descent algorithm is:

repeat until convergence{ $\theta_{j} \coloneqq \theta_{j} - \alpha * \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) \ (for \ j = 0 \ and \ j = 1)$ }

The cost function:

$$h_{\theta}(x) = \theta_0 + \theta_1 * x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^i) - y^{(i)} \right)^2$$

Goal: $\min_{\theta_0,\theta_1}(J(\theta_0,\theta_1))$

The derivate term for linear regression will be:

$$(\theta_0)J = 0: \frac{\partial}{\partial \theta_0}J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^i) - y^{(i)}\right)$$

$$(\theta_1)J = 1: \frac{\partial}{\partial \theta_1}J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^i) - y^{(i)}\right) * x^i$$

Logistic Regression

Logistic Regression–Hypothesis Formulation

In case of Logistic Regression, the hypothesis function is:

$$h_{\theta}(x) = g(\theta_0 + \theta_1 * x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Where
$$z = \theta_0 + \theta_1 * x$$

Logistic Regression–Decision Boundary

$$P(y = 1|x)$$
: $h_{\theta}(x) = g(\theta_0 + \theta_1 * x)$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Where
$$z = \theta_0 + \theta_1 * x$$

- Predict y =1 if $h_{\theta}(x) \ge 0.5$
- Predict y =0 if $h_{\theta}(x) < 0.5$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 * x)$$

SO

$$h_{\theta}(x) \ge 0.5 \ when(\theta_0 + \theta_1 * x) \ge 0$$

Logistic Regression – Cost Function

• Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for the training examples (x, y). Rewriting the linear regression cost function.

$$J(\theta) = 1/m \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{i})) \quad where \ Cost(h_{\theta}(x^{(i)}), y^{i}) = 1/2 \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{i})^{2}$$

- Cost depicts the penalty learning algorithm has to pay when it outputs $h_{\theta}(x^{(i)})$ when actual label is y
- The above cost function cannot be used for logistic regression as it will be a non-convex function.

Logistic Regression – Cost Function

• The penalty, learning algorithm has to pay when it outputs $h_{\theta}(x^{(i)})$ when actual label is y is

$$Cost(h_{\theta}(x), y)) = \begin{cases} -\log(h_{\theta}(x) & \text{if } y = 1 \\ -(1 - \log(h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic Regression – Simplified Cost Function

$$Cost(h_{\theta}(x), y)) = \begin{cases} -\log(h_{\theta}(x) & \text{if } y = 1 \\ -(1 - \log(h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

The simplified cost function is

The cost function:

$$J(\theta_0, \theta_1) = -\frac{1}{m} \sum_{i=1}^{m} y^i * \log(h_\theta(x^i)) + (1 - y^{(i)}) * \log(1 - h_\theta(x^i))$$

Goal:
$$\min_{\theta_0,\theta_1}(J(\theta_0,\theta_1))$$

Logistic Regression-Gradient Descent

• The gradient descent algorithm is:

repeat until convergence{
$$\theta_{j} \coloneqq \theta_{j} - \alpha * \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) \ (for \ j = 0 \ and \ j = 1) }$$
}

• Simultaneous update of θ_0 , θ_1 is needed:

$$temp0 \coloneqq \theta_0 - \alpha * \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 \coloneqq \theta_1 - \alpha * \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq temp0$$

$$\theta_1 \coloneqq temp1$$

- α is the learning rate which decides who big or small the steps of descent will be.
- Near to the local minimum, the gradient descent will automatically take smaller steps.
- At the local optima, the θ_0 , θ_1 does not change as derivative term will equal to zero.

Logistic Regression-Gradient Descent

The gradient descent algorithm is:

$$\label{eq:repeat} \begin{split} \textit{repeat} \text{ until convergence} \{ \\ \theta_j &\coloneqq \theta_j - \alpha * \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \\ (\textit{for } j = 0 \textit{ and } j = 1) \\ \} \end{split}$$

The cost function:

$$J(\theta_0, \theta_1) = -\frac{1}{m} \sum_{i=1}^{m} \frac{y^i * \log(h_{\theta}(x^i))}{+(1 - y^{(i)}) * \log(1 - h_{\theta}(x^i))}$$

Goal: $\min_{\theta_0,\theta_1}(J(\theta_0,\theta_1))$

The derivate term for logistic regression will be:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^i) - y^{(i)} \right) * x^{(i)}_j$$

K Means

```
Randomly initialize K Cluster Centroids (\mu_1, \mu_2, \mu_3 \dots \mu_k)
Training set is \{x^{(1)}, x^{(2)}, x^{(3)}, \dots x^{(m)}\}
```

```
Cluster assignment step Repeat \ \{ \ i \ = \ 1 \ to \ m \\ c^{(i)} = index \ from \ 1 \ to \ K \ of \ cluster \ centroid \ closet \ to \ x^{(i)} \}
```

```
Move Centroid
```

```
\label{eq:repeat} \textit{Repeat} \; \{ \, k \; = \; 1 \; to \; K \\ \mu_k = \text{average of points assigned to cluster } k \\ \}
```

Cost function for K Means

 $c^{(i)} = index \ of \ cluster \ (1, 2, ... K) \ to \ which \ x^{(i)} \ is \ currently \ assigned$ $\mu_k = cluster \ centroid \ k \ where \ k = \{1, 2, 3, K\}$ $\mu_{c^{(i)}} = cluster \ centroid \ of \ the \ cluster \ to \ which \ example \ x^{(i)} \ has \ been \ assigned$

Optimization objective

$$J(c^{(1)}, \dots c^{(m)}, \mu_1, \dots \mu_k) = 1/m \sum_{1}^{m} ||x^i - \mu_{c^{(i)}}||^2$$

$$\frac{minimize}{c^{(1)}, \dots, c^{(m)}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_k)$$

$$\mu_1, \dots, \mu_k$$

Random initialization of K clusters

Pick k random training examples and set μ_1, \dots, μ_k equal to these k training examples

Pick the cluster that gives the lowest cost $J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_k)$

Optimal Number of Cluster

Elbow Method: Look for the number of cluster after which the delta change in cost function is not significant

Pick the cluster that gives the lowest cost $J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_k)$

End of Lesson02–Regression, Logistic Regression using Gradient Descent

