CSE655 – Deep Learning (Spring 2025) Homework #4

Hand-in Policy: Via Teams. Late submission rules are given in the course syllabus. **Collaboration Policy**: You are expected to do your own work. No collaboration is permitted.

Grading: This homework will be graded on the scale 100.

Description: KANs vs MLPs.

Part 1: Theoretical Foundations (Hand Written – 30 points)

1. Kolmogorov–Arnold Representation Theorem (10 points)

- State the theorem and explain its significance in the context of function approximation.
- Describe how it differs from the universal approximation theorem typically associated with neural networks.

2. KAN Architecture (10 points)

- o Explain how KANs use learnable univariate functions instead of weights.
- Discuss how compositions of these univariate functions can approximate multivariate functions.

3. Comparison with DNNs (10 points)

 Discuss potential advantages and limitations of KANs in terms of model interpretability, computational cost, generalization, suitability for high-dimensional inputs

Part 2: Implementation (Coding – 40 points)

1. KAN Implementation (20 points)

- o Implement a simplified version of a KAN using any deep learning using PyTorch.
- o Use piecewise linear functions to model univariate transformations.

2. Training on Toy Dataset (10 points)

Train both your KAN and a standard fully connected neural network to regress the function $f(x,y) = sin(x) + cos(y) + x^2 - y^2$.

3. Analysis (10 points)

- Plot the training and validation loss curves.
- o Compare training time, number of parameters, and accuracy of the two models.

Part 3: Critical Discussion (Essay – 30 points)

Based on your experiments, what are the key takeaways regarding when KANs might be preferable over DNNs?

What to hand in:

- Hand-written PDF report with answers to Part 1 and Part 3
- Jupyter notebook or Python script for Part 2
- All plots and figures embedded in the report