

Kourosh Davoudi kourosh@ontariotechu.ca

Lecture 6: Dynamic Programming II

CSCI 3070U: Design and Analysis of Algorithms

Learning Outcomes

- Dynamic Programming (DP):
 - Case Study:
 - Longest Common Subsequence (LCS)
 - Case Study: 0/1 Knapsack

Case Study: Longest Common Subsequence (LCS)

- What is the problem?
 - Given two sequences x[1..m] and y[1..n], find the longest subsequence which
 occurs in both

- Example: $x = \langle A | B | C | B | D | A | B \rangle$, $y = \langle B | D | C | A | B | A \rangle$
 - <B C A B> and <B D> are both subsequences of both x and y
 - A subsequence doesn't have to be consecutive

$$LNC = \langle B C A B \rangle or \langle B D A B \rangle or ...$$

Length
$$= 4$$

Case Study: Longest Common Subsequence (LCS)

- Brute-force solution:
 - For every subsequence of x, check if it's a subsequence of y?
 - 2^m subsequences of x to check (why?)
 - Each subsequence takes $\Theta(n)$ time to check

Time =
$$\Theta(n2^m)$$

LCS Optimal Substructure

• Notations:

$$X_i = \operatorname{prefix} \langle x_1, \dots, x_i \rangle$$

 $Y_i = \operatorname{prefix} \langle y_1, \dots, y_i \rangle$
Let $Z = \langle z_1, \dots, z_k \rangle$ be any LCS of X and Y

How we can find the LCS length recursively?

LCS Optimal Substructure

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

$$X \qquad X_{m-1} \qquad X_{m}$$

$$Y \qquad Y_{n-1} \qquad Y_{n}$$

$$Z \qquad Z_{K-1} \qquad Z_{k}$$

2. If $x_m \neq y_n$, then $z_k \neq x_m \Rightarrow Z$ is an LCS of X_{m-1} and Y

$$X$$
 X_{m-1}
 X_m
 Y
 Z
 Z_k

3. If $x_m \neq y_n$, then $z_k \neq y_n \Rightarrow Z$ is an LCS of X and Y_{n-1}

LCS Optimal Substructure

• Notations:

$$X_i$$
 = prefix $\langle x_1, \dots, x_i \rangle$
 Y_i = prefix $\langle y_1, \dots, y_i \rangle$

Let $Z = \langle z_1, \dots, z_k \rangle$ be any LCS of X and Y

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}
- 2. If $x_m \neq y_n$, then $z_k \neq x_m \Rightarrow Z$ is an LCS of X_{m-1} and Y
- 3. If $x_m \neq y_n$, then $z_k \neq y_n \Rightarrow Z$ is an LCS of X and Y_{n-1}

LCS Recursion Formula

• Define: $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$

LCS-Length Algorithm

return c[m, n]

```
c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}
LCS-LENGTH(X, Y, m, n)
     let c[0..m,0..n] be new tables
     for i = 1 to m
           c[i, 0] = 0
     for j = 0 to n
           c[0, j] = 0
                                                                                      Time: \Theta(mn)
     for i = 1 to m
            for j = 1 to n
                 if x_i == y_i
                       c[i, j] = c[i-1, j-1] + 1
                 else if c[i-1, j] \ge c[i, j-1]
                            c[i,j] = c[i-1,j]
                 else c[i, j] = c[i, j - 1]
```


LCS Example (0)

X = ABCB; m = |X| = 4Y = BDCAB; n = |Y| = 5Allocate array c[0..4,0..5]

LCS Example (1)

	j	0	1	2	3	4	5
i		\mathcal{Y}_j	В	D	С	A	В
0	x_i	0	0	0	0	0	0
1	A	0					
2	В	0					
3	С	0					
4	В	0					

for
$$i = 1$$
 to m
 $c[i, 0] = 0$
for $j = 0$ to n
 $c[0, j] = 0$

LCS Example (2)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (3)

ABCB BDCAB

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (4)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (5)

ABCB BDCAB

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (6)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (7)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (8)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (9)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (10)

ABCB BDCAB

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (11)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (12)

ABCB BDCAB

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (13)

ABCB BDCAB

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (14)

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (15)

ABCB BDCAB

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Example (16)

ABCB BDCAB

if
$$x_i == y_j$$

 $c[i, j] = c[i - 1, j - 1] + 1$
else if $c[i - 1, j] \ge c[i, j - 1]$
 $c[i, j] = c[i - 1, j]$
else $c[i, j] = c[i, j - 1]$

LCS Algorithm

```
LCS-LENGTH(X, Y, m, n)
    let c[0..m,0..n] be new tables
    for i = 1 to m
        c[i, 0] = 0
    for j = 0 to n
        c[0, j] = 0
    for i = 1 to m
        for j = 1 to n
           if x_i == y_i
               c[i, j] = c[i-1, j-1] + 1
            else if c[i - 1, j] \ge c[i, j - 1]
                   c[i,j] = c[i-1,j]
           else c[i, j] = c[i, j - 1]
    return c[m, n]
```

Time:

 $\Theta(mn)$

Case Study: Knapsack Algorithm

• Problem:

- We have a knapsack with capacity W, and a number of item, where each item has a weight, and a value
- Objective: select the items with maximum total value and putting them in knapsack

Variations:

- 0/1: We can decide to select / NOT to select (no division)
- Fractional: We can divide items and take a part of them, for part of the value

0/1 - Knapsack Problem:

- Problem Formulation:
 - There are n items available.
 - The knapsack can store W total weight
 - Each *i'th* item has value b_i and weight w_i
 - Goal: Find the maximum value that we put in Knapsack

• Example:

- There are four available items (n=4)
 - W_1 =2kg, b_1 =\$12
 - W_2 =4kg, b_2 =\$24
 - $W_3 = 5 kg$, $b_3 = 28
 - W₄=8kg, b₄=\$41
- The knapsack can hold 11 kg of items

What is the maximum value that we can put in Knapsack?

0/1 - Knapsack problem

- Brute Force Algorithm:
 - Try all combinations of the n items
 - Find the maximum value of the combinations
 - Number of combinations?

$$O(2^n)$$

- Solution:
 - Dynamic Programming (optimum)
 - Branch and Bound (optimum)
 - Greedy (not optimum)

0/1 - Knapsack problem

Idea: choose the items with highest values

Max weight: W = 15

0/1 - Knapsack problem

Idea: choose the items with highest values

$$B = 10 + 8 = 18$$

Max weight: W = 15

Knapsack Optimum Subproblem

The items are labeled 1..n

• Let S_k be an optimal solution for the set items labeled as 1, 2, .. k

• General Idea: The best subset of S_k that has maximum total weight w is:

1. The best subset of S_{k-1} that has total weight w

OR

A) We cannot selectB) We can but we do not select

2. The best subset of S_{k-1} that has maximum total weight w- w_k plus the value of item k

Knapsack Optimum Subproblem

Assume B[k, w] is a best value for the set S_k

0/1 - Knapsack Optimum Subproblem

- Recursive Formulation :
 - Assume that B[k, w] is a best value for the set S_k whose sum of item weights is less than w

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- Case $w_k > w$: Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable
- Case $w_k \le w$: Then the item k can be in the solution,

we choose the case with greater value

0/1 - Knapsack Algorithm

```
KNAPSSACK-0/1(w_{1..n}, b_{1:n}, W)
                                                                    Time Complexity:
    for w = 0 to W
                                  \Theta(W)
                                                                       \Theta(nW)
         B[0, w] = 0
    for i = 0 to n
                                  \Theta(n)
         B[i, 0] = 0
    for i = 0 to n
         for w = 0 to W
 6
              if w_i \leq w
                   if b_i + B[i-1, w-w_i] > B[i-1, w]
 8
                         B[i, w] = b_i + B[i - 1, w - w_i]
 9
10
                   else
                         B[i, w] = B[i - 1, w]
11
                                                            \Theta(nW)
12
              else
                   B[i, w] = B[i - 1, w]
13
    return B[n, w]
```

To know the items that make this maximum value, an addition to this algorithm is necessary

$$n = 4$$
 (# of elements)
 $W = 5$ (max weight)
Elements (weight, benefit):
(2,3), (3,4), (4,5), (5,6)

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

w^{-i}	0	1	2	3	4
0	0				
1	0				
2	0				
3	0				
4	0				
5	0				

1 **for**
$$w = 0$$
 to W
2 $B[0, w] = 0$

w^{-i}	0	1	2	3	4
0	0	0	0	0	0
1	0				
2	0				
3	0				
4	0				
5	0				

3 **for**
$$i = 0$$
 to n
4 $B[i, 0] = 0$

i=1

 b_i =3

 $w_{i=2}$

w=1

if
$$w_i \le w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$

else
$$B[i, w] = B[i - 1, w]$$

$$w$$
- w_i =-1 $\begin{bmatrix} else \\ B[i,w]=B[i-1,w] \end{bmatrix}$

i=1

w=2

w- $w_i=0$

$$\begin{array}{l} \textbf{if} \ w_i \leq w \\ \textbf{if} \ b_i + B[i-1, w-w_i] > B[i-1, w] \\ B[i, w] = b_i + B[i-1, w-w_i] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \end{array}$$

if
$$w_i \le w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$
else
 $B[i, w] = B[i-1, w]$
else
 $B[i, w] = B[i-1, w]$

i=1

$$\begin{array}{l} \textbf{if} \ w_i \leq w \\ \textbf{if} \ b_i + B[i-1, w-w_i] > B[i-1, w] \\ B[i, w] = b_i + B[i-1, w-w_i] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \end{array}$$

$$w = \begin{bmatrix} i & 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & & & & \\ 2 & 0 & 3 & & & & \\ 3 & 0 & 3 & & & & \\ 4 & 0 & 3 & & & & \\ 5 & 0 & 3 & & & & \\ \end{bmatrix}$$

i=1

 b_i =3

 $w_{i=2}$

w=5

w- w_i =3

$$\begin{array}{l} \textbf{if} \ w_i \leq w \\ \textbf{if} \ b_i + B[i-1, w-w_i] > B[i-1, w] \\ B[i, w] = b_i + B[i-1, w-w_i] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \end{array}$$

i=2

 b_i =4

 $w_{i=3}$

w=1

w- w_i =-2

if
$$w_i \le w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$
else
 $B[i, w] = B[i-1, w]$
else
 $B[i, w] = B[i-1, w]$

i=2

 b_i =4

 $w_{i=3}$

w=2

 $w_i = 1$

if
$$w_i \le w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$
else
 $B[i, w] = B[i-1, w]$
else
 $B[i, w] = B[i-1, w]$

w=3

if
$$w_i \le w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$
else
 $B[i, w] = B[i-1, w]$
else
 $B[i, w] = B[i-1, w]$

$$\begin{array}{l} \textbf{if} \ w_i \leq w \\ \textbf{if} \ b_i + B[i-1, w-w_i] > B[i-1, w] \\ B[i, w] = b_i + B[i-1, w-w_i] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \\ \textbf{else} \\ B[i, w] = B[i-1, w] \end{array}$$

w=5

$$\begin{aligned} & \textbf{if} \ \ w_i \leq w \\ & \textbf{if} \ \ b_i + B[i-1,w-w_i] > B[i-1,w] \\ & B[i,w] = b_i + B[i-1,w-w_i] \end{aligned} \\ & \textbf{else} \\ & B[i,w] = B[i-1,w] \\ & \textbf{else} \\ & B[i,w] = B[i-1,w] \end{aligned}$$

 $b_{i}=5$

 $w_{i=4}$

w = 1...3

if
$$w_i \le w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$
else
 $B[i, w] = B[i-1, w]$
else
 $B[i, w] = B[i-1, w]$

w^{-i}	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	
2	0	3	3	3	
3	0	3	4	4	
4	0	3	4	5	
5	0	3	7		

$$i=3$$
 $b_i=5$ $if w_i \leq w$ $B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ $B[i,w] = B[i-1,w]$ $B[i,w] = B[i-1,w]$ $B[i,w] = B[i-1,w]$

w^{-i}	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	
2	0	3	3	3	
3	0	3	4	4	
4	0	3	4	5	
5	0	3	7 _	→ 7	

i=3 $b_i=5$

 w_{i} =4

w = 1..4

if
$$w_i \le w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$
else
 $B[i, w] = B[i-1, w]$
else
 $B[i, w] = B[i-1, w]$

w^{-i}	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	3	3	3	3
3	0	3	4	4	4
4	0	3	4	5	5
5	0	3	7	7	→ (7)

if
$$w_i \leq w$$

if $b_i + B[i-1, w-w_i] > B[i-1, w]$
 $B[i, w] = b_i + B[i-1, w-w_i]$
else
 $B[i, w] = B[i-1, w]$
else
 $B[i, w] = B[i-1, w]$

Wrap-up

- We learned more advance DP techniques using two more case studies:
 - Longest Common Subsequence (LCS)
 - 0/1 Knapsack Problem

