Project 1

Niko Hiananto

Question 1. Random Number Generators

The empirical mean of the generated uniform random numbers is

[1] 0.4995044

which is close to the theoretical value of 0.5 and the empirical standard deviation of the generated uniform random numbers is

[1] 0.2883965

which is also pretty close to the theoretical value of $\sqrt{1/12}$.

We will now compare the uniform sequence generated through LGM and the uniform sequence generated by the built-in functions in R runif.

LGM Uniform

None of the second of the seco

Built-In Uniform

The uniform random numbers generated by the LGM method and by the built-in function in R are quite similar as seen by the two histograms plotted above.

Question 2. Discrete Probabilities

The histogram for the 10,000 generated sequence of discrete probabilities is shown below

General Discrete Distribution

The mean of the general discrete sequence of 10,000 numbers is

[1] 0.1992

and the empirical standard deviation of the sequence is

[1] 1.023633

Question 3. Binomial Distribution

The histogram of the 1000 binomial distribution is shown below

The exact probability P(X >= 40) of a Binom(44, 0.64) is

[1] 4.823664e-05

and the empirical probability using 1,000 samples of binomial distribution is

[1] 0

The actual probability is very close to 0, the empirical probability found using 1,000 samples is 0 because the sample of the binomial distribution is too small. If we try again with 1,000,000 samples we get that the empirical probability is

[1] 5.8e-05

which is close to the theoretical value.

Question 4. Exponential Distribution

The empirical probability $P(X \ge 1)$ is

[1] 0.2193

compared to the theoretical value:

[1] 0.2231302

they are close to each other

and the empirical probability $P(X \ge 4)$ is

[1] 0.0027

compared to the theoretical value:

[1] 0.002478752

they are also quite close to each other.

The 10,000 generated exponential distributed random numbers with $\lambda = 1.5$ is shown by the histogram below:

Histogram of exp_rand

The empirical mean is

[1] 0.6617143

and the empirical sandard deviation of the generated sequence is

[1] 0.6657191

Question 5. Normal Distribution

The histogram of the generated $5{,}000$ normals using Box-Mueller is shown below

and the one generated using Polar-Marsaglia is shown below

The time required to generate $5{,}000$ normals using Box-Mueller is

elapsed ## 0.03

whereas using the Polar-Marsaglia method is

```
## elapsed
## 0.09
```

From the results above we can see that the Box-Mueller method can generate sequences faster than the Polar-Marsaglia method. Hence, the time taken to evaluate sin and cos is less than to evaluate the log function and check the unit circle (Polar-Marsaglia).