eGaN® FET DATASHEET EPC2024

EPC2024 – Enhancement Mode Power Transistor

 V_{DS} , 40 V $R_{DS(on)}$, 1.5 $m\Omega$ I_D, 90 A

Revised August 29, 2024

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low R_{DS(on)}, while its lateral device structure and majority carrier diode provide exceptionally low $\boldsymbol{Q}_{\boldsymbol{G}}$ and zero $\boldsymbol{Q}_{\boldsymbol{R}\boldsymbol{R}}.$ The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

	Maximum Ratings					
	PARAMETER	VALUE	UNIT			
V	Drain-to-Source Voltage (Continuous)	40				
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	48	V			
I _D	Continuous ($T_A = 25$ °C, $R_{\theta JA} = 6$ °C/W)	90	Α			
	Pulsed (25°C, T _{PULSE} = 300 μs)	560				
V _{GS}	Gate-to-Source Voltage	6	V			
	Gate-to-Source Voltage	-4				
T	Operating Temperature	-40 to 150	°C			
T _{STG}	Storage Temperature	-40 to 150				

Thermal Characteristics					
PARAMETER TYP UNIT					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	0.4			
$R_{\theta JB}$	Thermal Resistance, Junction-to-Board 1.1 °C/		°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	42			

Note 1: R_{BJA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

	Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 1.1 \text{mA}$	40			V	
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 32 \text{ V}$		0.1	0.9	mA	
I _{GSS}	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		1	9	mA	
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		0.1	0.9	mA	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 19 \text{ mA}$	0.8	1.4	2.5	V	
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 37 \text{ A}$		1.2	1.5	mΩ	
V_{SD}	Source-Drain Forward Voltage#	$V_{GS} = 0 \text{ V, } I_S = 0.5 \text{ A}$		1.8		V	

[#] Defined by design. Not subject to production test.

All measurements were done with substrate connected to source.

Die size: 6.05 x 2.3 mm

EPC2024 eGaN® FETs are supplied only in passivated die form with solder bumps.

Applications

- High speed DC-DC conversion
- · Motor drive
- Industrial automation
- · Synchronous rectification
- · Inrush protection
- · Point-of-Load (POL) converters

Scan OR code or click link below for more information including reliability reports, device models, demo boards!

https://l.ead.me/EPC2024

EPC2024 eGaN® FET DATASHEET

Dynamic Characteristics# (T _J = 25°C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			1920	2300	
Coss	Output Capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}$		1620	2430	
C _{RSS}	Reverse Transfer Capacitance			29		pF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 0VV 0. 00V		2050		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ to } 20 \text{ V}$		2240		
R _G	Gate Resistance			0.3		Ω
Q _G	Total Gate Charge	$V_{GS} = 5 \text{ V}, V_{DS} = 20 \text{ V}, I_D = 37 \text{ A}$		18	24	
Q _{GS}	Gate-to-Source Charge			5.1		
Q _{GD}	Gate-to-Drain Charge	$V_{DS} = 20 \text{ V}, I_D = 37 \text{ A}$		2.4		nC
Q _{G(TH)}	Gate Charge at Threshold			3.8		IIC IIC
Qoss	Output Charge	$V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}$		45	68	
Q _{RR}	Source-Drain Recovery Charge			0		

[#] Defined by design. Not subject to production test.

Figure 1: Typical Output Characteristics at 25°C

Figure 3: Typical $R_{DS(on)}\, vs.\, V_{GS}\, for\, Various\, Drain\, Currents$

Figure 2: Typical Transfer Characteristics

Figure 4: Typical $R_{\text{DS(on)}}\,\text{vs.}\,V_{\text{GS}}\,\text{for Various Temperatures}$

All measurements were done with substrate connected to source. Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}. Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

eGan® FET DATASHEET EPC2024

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Gate Charge

Figure 7: Typical Reverse Drain-Source Characteristics

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 8: Typical Normalized On-State Resistance vs. Temp.

Figure 9: Typical Normalized Threshold Voltage vs. Temp.

eGaN® FET DATASHEET EPC2024

Figure 10: Typical Gate Leakage Current

Figure 11: Typical Transient Thermal Response Curves

t₁, Rectangular Pulse Duration, seconds

t₁, Rectangular Pulse Duration, seconds

eGaN® FET DATASHEET EPC2024

Figure 12: Safe Operating Area

TAPE AND REEL CONFIGURATION

	Dimension (mm)		
EPC2024 (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
c (Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	8.00	7.90	8.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60
h	1.50	1.50	1.75

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Dave		Laser Markings	Lot_Date Code Marking Line 3	
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2		
EPC2024	2024	YYYY	ZZZZ	

eGaN® FET DATASHEET EPC2024

DIE OUTLINE

Solder Bump View

		Micrometers	;		
DIM	MIN	Nominal	MAX		
Α	6020	6050	6080		
В	2270	2300	2330		
c	2047	2050	2053		
d	717	720	723		
e	210	225	240		
f	195	200	205		
g	400	400	400		

Pad 1 is Gate;

Pads 2,5,6,9,10,13,14,17,18,21,22, 25,26,29 are Source;

Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24, 27, 28 are Drain;

Pad 30 is Substrate.*

*Substrate pin should be connected to Source

RECOMMENDED LAND PATTERN

Side View

(units in μ m)

Land pattern is solder mask defined.

Pad 1 is Gate;

Pads 2, 5, 6, 9,10,13,14, 17, 18, 21, 22,

25, 26, 29 are Source;

Pads 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23,

24, 27, 28 are Drain;

Pad 30 is Substrate.*

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING

(units in µm)

Recommended stencil should be 4 mil (100 μ m) thick, must be laser cut, openings per drawing.

Intended for use with SAC305 Type 4 solder, reference 88.5% metals content.

Additional assembly resources available at https://epc-co.com/epc/design-support

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

 $eGaN^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation.

EPC Patent Listing: https://epc-co.com/epc/about-epc/patents

Information subject to change without notice.