Kim Yun Seong

Portfolio

Phone 010.7220.3531

Email lovyou135@naver.com

Index

01 Profile

02 이수 현황

03 활동사항

04 향후 연구 계획

Profile

Name 김윤성 / Kim YunSeong

Birth 2000.01.01

Credit **Total: 3.73 / 4.5**

Major: 3.9 / 4.5

11///

Education

2019 안양 신성고등학교 졸업

2025 전북대학교 전자공학부 졸업 예정

Completion Status

졸업 전공 학점: 63

총 전공 이수 학점: 60

미이수 전공 학점: 3

Awards

Profile

성적 우수 장학금 2종 (1회)

성적 우수 장학금 5종 (3회)

어학 능력 우수 장학금 (2회)

핵심인력 총장상 (1회)

Skills

Launguage skills TOEIC 845A, TOEIC SPEAKING 160A (AL)

Computer skills Python (상), C (중), ROS1&2 (상)

이수 현황

전공 관련 과목 위주

외부 강좌 수료 현황

1 학년

관련: 컴퓨터프로그래밍의기초(재), 창의적공학설계입문

2 학년

관련: 데이터구조및프로그래밍실습, 선형대수학(재)

그외: 전자기학1&2, 회로이론1&2, 기초회로실험, 전자회로1

3 학년

관련: 신호및시스템, 제어공학기초, 딥러닝, C언어기초, 확률및 통계

그외: 전자회로2, 반도체물리전자, 전자회로실험

4 학년

관련: 자료구조, 로봇공학, 운영체제, IT융복합설계, 영상처리(예정), 로봇비전, 임베디드 프로그래밍(예정), 자율주행차제어(예정), 인공지능 (예정)

WeGo Robotics:

- ROS 기본 & 심화 강의
- 자율주행 자동차의 이해
- 차선 인식 알고리즘 구현
- GPS에 의한 네비게이션 이해
- LiDAR를 통한 전방 장애물 감지

한국기술대학교 온라인 평생 교육원 :

- 자율 주행차 메커니즘의 이해
- 시퀀스제어 1&2
- PLC제어 프로그램 테스트
- 펌웨어구현

활동 사항

Experience

2023 Katri 대학생 창작 모빌리티 대회

학부연구생 (AI & Robotics Lab)

IT <mark>융복</mark>합설계

2024 Katri 대학생 창작 모빌리티 대회

December 2022 ~ October 2023

May 2023 ~ Present

March 2024 ~ April 2024

December 2023~ Present

2023 Katri 대학생 창작 모빌리티 대회

IT 융복합설계

학부연구생 (AI & Robotics Lab)

2024 Katri 대학생 창작 모빌리티 대회

학부연구생

Lab: Al & Robotics

Professor: 조형기

Main topic: understand the concept of computational intelligence and to design intelligent systems.

Research Area: robot perception, autonomous navigation and multi-robot systems.

프로젝트 수행:

- 목표 및 배경:
 - i. 2D LiDAR를 이용한 플로리다의 한 산업 공장 내부의 SLAM Mapping
 - ii. 매핑된 공장에서의 Pure Localization
- 기술 및 도구:
 - i. Used Algorithm: cartographer_ros, pointcloud_to_laserscan
 - ii. Software: ROS2 (foxy), Rviz2
 - iii. Hardware: 2D LiDAR sensor(VLR-270), IMU sensor, wonbot500(robot model)
- 도전 과제:
 - i. Pointcloud로 데이터를 발행하는 2D LiDAR를 Laserscan으로 변경
 - ii. TF가 만들어지지 않은 로봇 상태에서 정확한 위치 추정
 - iii. 복잡한 공장 환경에서의 센서 데이터 노이즈 처리
 - iv. 실시간 데이터 처리 및 맵핑의 성능 최적화
 - v. 초기 위치 추정 정확도 및 속도 향상
- 결과 및 성과:
 - i. 공장 내부를 성공적으로 매핑완료
 - ii. 로봇의 자율 주행을 위한 정확한 Pure Localization 수행
 - iii. 90% 이상의 위치 인식률 달성, 10초 내외의 초기 인식 성공

- SLAM Mapping & Pure Localization

김윤성 labtop rosbag2_2024_02_01-13_55_01_0.db	Time(sep) #1 ▼	Time(sep) #2 🔻	Time(sep) #3	Time(sep) #4 🔻	Time(sep) #5
Case #2	6.35	4	13.59	18.33	6.79
Case #3	6.14	4.04	13.37	17.81	6.68
Case #4	6	3.86	13.62	17.78	6.66
Case #5	5.85	3.83	13.05	17.84	6.45
Case #6	5.78	3.98	13.32	18.19	6.66
Case #7	5.71	3.66	13.38	18.09	6.35
Case #8	5.62	3.86	13.33	18.21	6.24
Case #9	5.7	3.59	13.14	17.85	6.55
Case #10	5.84	3.88	13.41	18.09	6.36
Success rate	100.00%	100.00%	100.00%	100.00%	100.00%
Failure rate	0.00%	0.00%	0.00%	0.00%	0.00%
Average Recognition Time	5.88	3.945	13.389	18.097	6.584

- 초기 인식 성공률 및 인식까지 걸린 시간

Precise Location Tracking System using Camera-LiDAR Fusion with QR code detection

Contents 03

팀 팩토리얼 (youtube.com)

작품 설명:

- 본 작품은 로봇 내부 센서의 주행 시간에 따른 누적 오차로 인한 위치인식 부정확성을 보정하는 시스템이다.
- Camera와 2D LiDAR만을 이용하여 QR코드의 Global 좌표를 구하고 로봇의 Local 좌표를 Global로 Mapping하는 방식이다.
- 모든 QR코드의 Global TF를 Map에 표시한다.
- 카메라에 QR코드가 인식되면 Global TF와의 변환 행렬을 구하여 실시간으로 위치 보정을 실시한다.
- SLAM(Cartographer)에서의 초기 위치인식 부정확성을 개선 가능하다.

작품 설계 과정:

- 1. 사전 카메라 캘리브레이션으로 정확한 카메라 내부 파라미터 확보.
- 2. QR 코드에 인덱스 숫자를 부여하여 벽면에 부착.
- 3. OpenCV 및 Zbar로 QR 코드 인식 및 내부 인덱스 값 획득.
- 4. 카메라와 라이다 센서 퓨전을 통해 QR 코드까지의 거리와 방향 획득 후 QR 코드의 전역 좌표 계산.
- 5. Camera -> LiDAR -> Robot base link -> QR 코드로의 변환 수행.
- 6. QR 코드와 로봇 전역 좌표의 기하학적 변환 관계로 로봇 위치 보정.
- 7. Cartographer로 SLAM 수행 및 QR 코드와 캘리브레이션 결과로 전역 위치 추정 정확도 및 초기 위치 인식 속도 향상.

IT 융복합설계

Precise Location Tracking System using Camera-LiDAR Fusion with QR code detection

<u>팀 팩토리얼 (youtube.com)</u>

결과

- 실시간 위치 추정: QR 코드 기반 위치 보정 시스템을 통해 로봇의 실시간 위치 추정이 가능해졌으며, 이는 실내 환경에서 특히 효과적이었음.
- 위치 추정 정확도 향상: 기존 방식에 비해 위치 추정의 정확도가 눈에 띄게 향상됨.
- 시스템 안정성 향상: QR 코드가 인식되는 한 시스템의 위치 추정이 항상 성공하여 안정적인 로봇 운용이 가능했음.
- 데이터 저장 및 분석: 로봇의 위치 데이터를 텍스트 파일로 저장하여 후속 분석 및 검증이 가능해졌음.

나의 역할:

리더:

팀장으로서 전반적인 프로젝트 흐름을 결정하고 관리. 팀원들 간의 역할 배분, 일정 조율, 회의 주도 등을 담당.

카메라 및 2D LiDAR 센서 퓨전 적용:

카메라와 2D LiDAR 센서의 데이터를 융합하여 QR 코드의 위치와 방향을 추정하는 알고리즘을 개발. 이를 통해 카메라의 시야각으로부터 QR 코드의 절대 좌표를 효과적으로 계산.

로봇 Localization:

QR Global Frame과 QR Local Frame 간의 Transformation을 계산하여 로봇의 Local Position으로부터 Global Position을 추정하는 Localization 알고리즘을 개발. 이를 통해 로봇의 위치를 정확하게 파악.

Katri 대학생 창작 모빌리티 대회

장 소: 한국교통안전공단 자동차안전연구원 (화성)

주 최: 한국교통안전공단 (KATRI), (사)한국자동차안전학회

소 개: ERP-42 모듈을 활용하여 자율 주행 자동차를 직접 제작한 뒤, 주어진 미션을

완수하고 코스를 성공적으로 완주하는 대회

Story and Annual Control of the Cont

프로젝트 수행:

● 목표 및 배경:

i. 예선 : 톨게이트 미션, 터널 미션 등을 수행하며 완주

ii. 본선 : 주차, 배달, 어린이보호구역, 버스전용차로 미션 등을 수행하며 완주

iii. sub mission : 고깔 사이를 이동하며 제한시간내에 부딪히지 않고 완주

● 기술 및 도구:

i. Software: ROS1 (noetic),

ii. Hardware: 3D LiDAR sensor(Velodyne VLP16), 2D LiDAR sensor(RPLiDAR, Sick LiDAR), IMU sensor, Encoder, GPS sensor, ERP-42 (Car model)

Katri 대학생 창작 모빌리티 대회

2023년도

- 나의 역할: 인지팀 팀원
 - 딥러닝 활용(차선, 고깔 검출)
 - i. 딥러닝을 이용하여 차선을 인식
 - ii. 인식한 차선중 right_closest_lane과 left_closest_lane을 가져옴
 - iii. 두 차선 사이의 중앙값 도출까지 완료
 - a. GPU 성능이 좋지 않아 버퍼가 너무 심함
 - b. 차선 옆의 인도와의 경계선도 차선으로 인식함
 - iv. 고깔을 딥러닝을 이용하여 인식
 - v. 고깔 사이의 중앙값을 도출
- 대회 결과 및 성과:
 - i. GPS 통신 문제로 예선, 본선 완주를 하지 못함
 - ii. sub_mission인 고깔 미션만 완수

2024년도

- 나의 역할: 총 부팀장 및 인지팀 팀장
 - OpenCV 활용(차선 검출)
 - i. 카메라 보정 및 왜곡 보정
 - ii. 원근 변환 (bird-eye view) 및 이진화 이미지 생성
 - iii. 차선 검출 및 곡률 추정
 - iv. 차선 경계 시각화 및 결과 출력
 - v. 좌, 우 차선과의 중앙값 도출 완료
 - vi. PID 제어를 활용해서 차량과 중앙값 까지의 오차 계산
- 현재 진행 상황:
 - 차선에 따른 차량 제어는 완료
 - 악천기등 좋지 않은 환경에서도 가능하도록 구현중
 - 3D LiDAR 를 이용하여 돌발, 정지 장애물 인식 완료
 - 인식한 장애물을 피해가는 회피 알고리즘 개발중

향후 연구 계획

1

GPS가 되지 않는실내 공간에서 정확한 Localization 및 Navigation

● 목표:

 GPS가 되지 않는 실내 공간, 특히 지하 주차장과 같은 환경에서 자율 주행 차량이 정확한 위치 파악과 목적지까지 안전하게 이동할 수 있는 기술을 개발하는 것

● 도전 과제:

- GPS 신호 부재: GPS가 되지 않는 환경에서의 정확한 위치 파악이 필요.
- 환경 모델링: 환경의 동적인 변화에 대응하며 실시간으로 모델을 업데이트
- **장애물 감지와 회피:** 주행 중 갑작스러운 장애물이 발생하는 상황에서 안전한 회피가 필요. 센서 데이터를 신속하게 분석하여 장애물을 감지하고, 회피 경로를 결정하는 알고리즘이 필요.

● 연구 과정:

- 1. 다양한 센서 데이터 수집: imu, encoder, 레이더, 카메라, LiDAR 등 다양한 센서로부터 데이터를 수집
- 2. 센서 퓨전: 수집된 다양한 센서 데이터를 효과적으로 결합하여 환경 모델을 생성합니다. 위치 추정 및 장애물 감지에 활용
- 3. 실시간 데이터 처리: 실시간으로 수집된 센서 데이터를 처리하고 분석하여 주변 환경의 변화를 감지
- 4. 알고리즘 개발: GPS가 되지 않는 환경에서의 정확한 위치 추정 및 장애물 회피를 위한 알고리즘을 개발
- 5. 시뮬레이션 및 실험: 개발한 알고리즘을 시뮬레이션 환경과 실제 차량에서 실험하여 성능을 검증

향후 연구 계획

2

빠르고 정확한 장애물 회피 알고리즘 개발

● 목표:

 자율 주행 차량이 주행 중 발생하는 장애물을 빠르고 정확하게 감지하여 안전한 회피 조치를 수행할 수 있는 신속한 장애물 회피 알고리즘을 개발

● 도전 과제:

- 빠른 장애물 감지: 주행 중 발생하는 장애물을 신속하게 감지하는 것이 필요.
- 정확한 장애물 위치 파악: 장애물의 위치를 정확하게 파악하여 회피 경로를 결정.
- **안전한 회피 경로 결정:** 주변 환경을 고려하여 안전하고 최적의 회피 경로를 결정. 날씨, 도로 표면 상태, 밝기 등 다양한 환경 요소를 고려

● 연구 과정:

- 1. 데이터 수집 및 전처리: 다양한 도로 및 환경 조건에서의 장애물 데이터를 수집하고, 이를 효과적으로 전처리하여 알고리즘 학습에 활용
- 2. 머신 러닝 및 딥러닝 기법 적용: 머신 러닝 및 딥러닝 기법을 활용하여 장애물을 식별하고 회피 전략을 학습
- 3. 실시간 시스템 구현: 실시간 환경에서 빠르게 처리할 수 있는 알고리즘을 개발하기 위해 하드웨어 및 소프트웨어 시스템을 구현
- 4. 시뮬레이션 및 실험: 실제 도로 환경에서의 실험을 통해 알고리즘의 성능을 평가하고, 시뮬레이션을 통해 다양한 시나리오에서의 동작을 검증

2019 - 2024

ThankYou

Kim YunSeong Portfolio