Assignment 2

Vivek Pandya (vpandya)

Problem 2

Part 1:

$$\frac{1}{\lambda_.x\,\text{val}} \xrightarrow{\text{(D-Lam)}} \frac{1}{\{x \to D\} \vdash (\lambda\,x\,.\lambda_.x)\,L \mapsto \lambda_.x} \xrightarrow{\text{(D-APP-Done)}} \text{(D-APP-Lam)}}{\{x \to D\} \vdash (\lambda\,x\,.\lambda_.x)\,L * \mapsto (\lambda_.x) *} \xrightarrow{\text{(D-APP-Lam)}} \text{(D-APP-Body)}$$
 Step 1:
$$\frac{(x \to D \in \Gamma)}{\{x \to D, _ \to *\} \vdash x \mapsto D} \xrightarrow{\text{(D-Var)}} \frac{(D\text{-Var)}}{\{x \to D\} \vdash (\lambda_.x) * \mapsto (\lambda_.D) *} \xrightarrow{\text{(D-APP-Body)}} \text{(D-APP-Body)}$$
 Step 2:
$$\frac{D\,\text{val}}{\{x \to D\} \vdash (\lambda_.x) * \mapsto D} \xrightarrow{\text{(D-APP-Done)}} \text{(D-APP-Body)}$$
 Step 3:
$$\frac{D\,\text{val}}{\{x \to D\} \vdash (\lambda_.D) * \mapsto D} \xrightarrow{\text{(D-APP-Done)}} \text{(D-APP-Body)}$$
 Step 4:
$$\frac{D\,\text{val}}{\varnothing \vdash (\lambda\,x\,.D)\,D \mapsto D} \xrightarrow{\text{(D-APP-Done)}}$$

Part 2:

Following rules in addition to all rules described in problem 2 are required to support let syntax with dynamic scope:

$$\frac{\Gamma, x \to e_{\mathsf{var}} \vdash e_{\mathsf{body}} \mapsto e'_{\mathsf{body}}}{\Gamma \vdash let \, x \, = \, e_{\mathsf{var}} \, in \, e_{\mathsf{body}} \mapsto e'_{\mathsf{body}}} \; (\text{D-Let1})$$

$$\frac{e_{\mathsf{body}} \, \mathsf{val}}{\Gamma \vdash let \, x \, = \, e_{\mathsf{var}} \, in \, e_{\mathsf{body}} \mapsto e_{\mathsf{body}}} \; (\text{D-Let2})$$

Problem 3

Consider follwing counter example for let construct.

```
letx : (number \mapsto number) = 2 in (x 2))
```

Now given that x : (number \mapsto number) by inversion of T-app rule we can say that (x 2): number

So premise for T-let holds here so we can say that

```
letx : (number \mapsto number) = 2 in (x 2)) : number
```

but now we try to step the above expression by applying D-let rule then we get

 e_{body} = (22) which is a stuck state as we don't have any rule to make a further progress also (22) it self is not a val. Here preservation also don't hold because type of (22) is not number

Note: This can be fixed if we have restriction on the type of $e_{\sf var}$, type of $e_{\sf var}$ should be same as $\tau_{\sf var}$.

For rec construct consider following proofs.

Proof. Preservation: if $\emptyset \vdash e : \tau$ and $e \mapsto e'$ then $\emptyset \vdash e' : \tau$.

Proof. By rule induction on the static semantics.

T-Rec: if $\operatorname{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}) : \tau and \operatorname{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}) \mapsto e`thene`: \mathsf{number}$ Frist by premises

 $e_{\mathsf{arg}} : \mathsf{number}, e_{\mathsf{base}} : \tau, \ x_{\mathsf{num}} : \mathsf{number}, x_{\mathsf{acc}} : \tau \vdash e_{\mathsf{acc}} : \tau$

Induction Hypothesis: For e_{arg} , e_{base} , x_{num} , x_{acc} , e_{acc} preservation rule holds true. Now we have 3 ways for $\mathsf{rec}(e_{\mathsf{base}}; x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}) \mapsto e^{'}$

 $\textbf{(D-Rec-Step)}: \text{Assume } e_{\mathsf{arg}} \mapsto e_{\mathsf{arg}}^{`} \ \, \text{so} \ \, \mathsf{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}) \mapsto \mathsf{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}^{`}) \\$

Now due to Induction Hypothesis we can have $e'_{\sf arg}$: τ and given premises by T-Rec $\mathsf{rec}(e_{\sf base}; \ x_{\sf num}.x_{\sf acc}.e_{\sf acc})(e'_{\sf arg})$: τ

(D-Rec-Base) : Assume $e_{\sf arg} = 0$ then by Inversion T-Num $e_{\sf arg}$: number so rec $(e_{\sf base}; \ x_{\sf num}.x_{\sf acc}.e_{\sf acc})(0)$: τ and rec $(e_{\sf base}; \ x_{\sf num}.x_{\sf acc}.e_{\sf acc})(0) \mapsto e_{\sf base}$, now based on premises $e_{\sf base}$: τ

(**D-Rec-Dec**): Assume $e_{\mathsf{arg}} = n$ and n > 0

 $\operatorname{rec}(e_{\mathsf{base}};\ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(n) \mapsto [x_{\mathsf{num}} \to n, x_{\mathsf{acc}} \to \operatorname{rec}(e_{\mathsf{base}};\ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(n-1)]e_{\mathsf{acc}}$

now if n: number then for (n - 1) by inversion of T-Binop , (n-1): 0 , based on induction hypothesis we get $x_{\mathsf{num}} \mapsto n$ and $x_{\mathsf{acc}} \mapsto \mathsf{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(n-1)$ are type preserving operations, and from premises $\Gamma, x_{\mathsf{num}} : \mathsf{number}, x_{\mathsf{acc}} : \tau \vdash e_{\mathsf{acc}} : \tau$

then by the substitution typing lemma (as reffered in lacture notes (foot note: 6))

$$[x_{\mathsf{num}} \to n, x_{\mathsf{acc}} \to \mathsf{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(n-1)] \ e_{\mathsf{acc}} : \tau$$

Hence, preservation holds in either case.

Proof. Progress: if $\emptyset \vdash e : \tau$ then either e val or $e \mapsto e'$.

Proof: By rule induction on static semantics.

T-Rec: if $e = \text{rec}(e_{\text{base}}; x_{\text{num}}.x_{\text{acc}}.e_{\text{acc}})(e_{\text{arg}}) : \tau$ then either e val or

 $\operatorname{rec}(e_{\mathsf{base}};\ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}) \mapsto e`$

From premises we know that

 $e_{\mathsf{arg}} : \mathsf{number}, e_{\mathsf{base}} : \tau, \ \ x_{\mathsf{num}} : \mathsf{number}, x_{\mathsf{acc}} : \tau \vdash e_{\mathsf{acc}} : \tau$

By the inductive hypothesis (IH), we got to assume that progress holds true for e_{arg} so either $e_{arg}val$ or $e_{arg} \mapsto e'_{arg}$

Now we case on different possible states of e_{arg} derived from IH:

A: $e_{\mathsf{arg}} \mapsto e_{\mathsf{arg}}^{'}$ then by D-Rec-Step $\mathsf{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}) \mapsto \mathsf{rec}(e_{\mathsf{base}}; \ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(e_{\mathsf{arg}}^{'})$

B: $e_{\sf arg}val$ and by premise $e_{\sf arg}$: number then by inversion of D-Num we know that $e_{\sf arg}=n$ Now if n=0 then by D-Rec-Base

 $rec(e_{base}; x_{num}.x_{acc}.e_{acc})(0) \mapsto e_{base}$

if n > 0 then by D-Rec-Dec

 $\operatorname{rec}(e_{\mathsf{base}};\ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(n) \mapsto [x_{\mathsf{num}} \to n, x_{\mathsf{acc}} \to \operatorname{rec}(e_{\mathsf{base}};\ x_{\mathsf{num}}.x_{\mathsf{acc}}.e_{\mathsf{acc}})(n-1)]e_{\mathsf{acc}}$ In each case expression steps, so progress holds.