Tips for LAB3 (LCD, timer and interrupt for Tiva C)

- 1. Read the document lcd-control.pdf.
- 2. If you have read the document then you will know what will the following commands do:

```
* command(0x38); // function set command
* command(0x0f); // display switch command
* command(0x06); // input set command
* command(0x01); // clear screen command
* command(0x80); // Set cursor to second line starting
```

- 3. The following is the basic algorithm for writing to LCD:
 - (a) Set En = 0.
 - (b) Set RS = 1/0 for data/command write to LCD.
 - (c) Set R/W = 1/0 for read and write operation.
 - (d) Put your data on data lines.
 - (e) Make En = 1.
 - (f) Give delay > 20ms.
 - (g) Make En = 0.
- 4. Steps (d) and (e) can be interchanged. It works in both the cases.
- 5. For now, ignore LCD busy checking flag before any operation to LCD. (Not recommended)
- 6. The enable (EN) pulse width must be at least 20ms* for successful write to LCD.

VDD(+ve) should be connected to 5V. (Vbus on Tiva board) VE(Contrast Voltage) should be connected to gnd. Backlight Anode(+ve) can be connected to either 3.3V/5 V.

Figure 1: 16x2 LCD Pinout

Figure 2: LCD connection to Tiva Board

- 7. For generating delay, timer can be used. For timer configuration add the following lines to your hardware_init():
 - * SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER2); // Enable Timer 2 peripheral clock
 - * TimerConfigure(TIMER2_BASE, TIMER_CFG_PERIODIC); // Configure Timer 2 mode periodic
 - * ui32Period = (SysCtlClockGet() /50); // Period = CPU clk div 50
 - * TimerLoadSet(TIMER2_BASE, TIMER_A, ui32Period); // Set Timer 2 period
 - * IntEnable(INT_TIMER2A); // Enable Timer 2 interrupt
 - * TimerIntEnable(TIMER2_BASE, TIMER_TIMA_TIMEOUT); // Enable Timer 2 to interrupt CPU
 - * IntMasterEnable(); // Enable master interrupt
 - * TimerEnable(TIMER2_BASE, TIMER_A); // Enable Timer 2