Bayesian Optimization

Felix Luong

- Gradient-based methods (Newton's method, BFGS with multi-star, etc.)
- Unable to optimize without gradient X
- Derivative-free methods (DIRECT, Genetic Algorithm, Particle Swarm Optimization, etc.)
- Sample inefficient due to costly evaluations

Bayesian Optimization (BO)

- ✓ Black-box optimization✓ Sample efficiency✓ Global optimization

Introduction

Automotive & Car design

Maximize driving safety Minimize fuel usage

Heat treatment

Maximize alloy's strength
Minimize cost

Hyper-parameter tuning

Maximize accuracy
Minimize training time

Introduction

Real-world optimizations are costly and black-box.

> Require training and testing the model.

$$x = [x_1, ..., x_d]$$
 ? ? Alloy's strength

➤ Need real materials and time for experiments.

Introduction

 BO is an efficient tools for automatically finding the optimal solution of expensive black-box functions.

BO uses a Gaussian process to model the black-box objective function.

Background

Background

Common acquisition functions

Probability of Improvement (PI)

$$\alpha_{\text{PI}} = P(f(x) > f(x^+)) = \Phi\left(\frac{\mu(x) - f(x^+) - \xi}{\sigma(x)}\right)$$

Expected improvement (EI)

$$\alpha_{EI} = \begin{cases} z \, \boldsymbol{\Phi} \left(\frac{z}{\sigma(x)} \right) + \sigma(x) \boldsymbol{\phi} \left(\frac{z}{\sigma(x)} \right) & \text{if } \sigma(x) > 0 \\ 0 & \text{if } \sigma(x) = 0 \end{cases}$$

Upper Confidence Bound (UCB)

$$\alpha_{\text{UCB}} = \mu(x) + \beta \sigma(x)$$

Kernel functions

- Important part of the Gaussian process used to model the objective function.
- Capture the smoothness and correlation between points.

$$x, x' \in \mathbb{R}^d$$

Problem statement

- Consider tuning hyper-parameters of a machine learning model as an expensive black-box function.
- Use BO to find the best configuration of hyper-parameters.
- Some important hyper-parameters:
 - Continuous: Learning rate, momentum, dropout rate,...
 - Discrete: Number of layer/hidden units, batch size, epochs,...
- BO incorporates a Gaussian Process to sample a next configuration by maximizing an acquisition function in a continuous domain.

How to deal with discrete variables?

Discrete variables

• **Discrete variable**: numeric variables. Have a <u>countable</u> number of values between any two values.

Example: number of wheels/legs/arms of a robot; number of hidden units/layers of a neural network model.

Optimization with discrete variables

Assume a discrete variable x has a relation to the function evaluation y.

We want to find the optimal point among **numerous** discrete points.

For example:

Tune a neural network's hyper-parameters:

Hidden layers: 1 – 10

Hidden units: 1 - 1000

- The number of discrete points grows exponentially.
- Expensive to try all settings.

Optimization with discrete variables

Existing methods for dealing with discrete inputs in optimization:

- Bayesian Optimization with Naïve Rounding
- Transformation of inputs [1]
- Sequential model-based optimization (SMAC) [2]
- Tree-Parzen Estimators (TPE) [3]

^[2] Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: LION11. pp. 507{523. Springer (2011)

Existing method 1: BO with Naïve Rounding

- Treat discretes variables as continuous.
- Need to round the continuous value of a discrete variable to the nearest discrete value.

BO with Naïve Rounding Algorithm

- 1. for t = 1, 2, ..., T do
- 2. Build a model GP with D_t
- 3. Select new x_{t+1} by optimizing acquisition α $x_{t+1} = \operatorname{argmax}_{x \in X \subseteq \mathbb{R}^d} \alpha_{UCB} (\beta_t)$
- $4. x_{t+1} = \text{round}(x_{t+1})$
- 5. Query the objective function to obtain y_{t+1}
- 6. Augment data $D_{t+1} = \{D_t, (x_{t+1}, y_{t+1})\}$
- 7. end for

Round the continuous value of discrete variables

Existing method 1: BO with Naïve Rounding

Existing method 2: Transformation of inputs [1]

Transform the input points to k to obtain an alternative covariance.

$$k'(x,x') = k(T(x),T(x')),$$

where T(x) is a transformation of all discrete inputs of $f(\cdot)$.

The values of discrete variables are rounded to the closest discrete value.

Comparison between Naïve and Transformation methods

Existing method 3: Tree-Parzen Estimators [2]

- 1. Sort observations by evaluation.
- 2. Take a percentage of **best observations** for **good** group.
- 3. Remaining observations belong to bad group.

Existing method 3: Tree-Parzen Estimators [2]

$$EI_{y*} = \left(\gamma + \frac{g(x)}{l(x)}(1 - \gamma)\right)^{-1}$$

Advantages:

Sample from the discrete distribution.

Disadvantages:

- Need sufficient amount of observations.
- Randomly draw from distributions.

Proposed method

- ☐ Question: "How to avoid repetition in optimizing functions with discrete inputs? ☐ *Idea:* Unstuck BO from sampling the same point. Observed Unobserved ☐ Solution:
 - Adjust exploration/exploitation trade-off factor of the acquisition function.
 - Adjust length scale of the kernel function.

Proposed method - Adjust $oldsymbol{eta}$

Proposed method - Adjust *l*

Dominated by variance:

$$\alpha_{UCB} = \mu(x) + \beta \sigma(x)$$

Proposed method

Discrete BO Algorithm

```
1. for t = 1, 2, ..., T do
           Build a model GP with D_t
2.
           Sample the next point x_{t+1} = \operatorname{argmax}_{x \in X \subset \mathbb{R}^d} \alpha_{UCB} (\beta_t)
3.
          x_{t+1} = \text{round}(x_{t+1}) 
4.
                                                                \beta^*, l^* = \operatorname{argmin} \boldsymbol{g}(\beta_t + \Delta \beta, l)
     if x_{t+1} \in D_t:
                      Search for opti g(\beta_t + \Delta \beta, l) = \Delta \beta + ||x_{t+1} - x'_{t+1}||_2 + P(x'_{t+1})
                       # Find \beta, l just
6.
7.
                       x_{t+1} = \operatorname{argmax}_{x \in X \subset \mathbb{R}^d} \alpha_{UCB} (p_t) \text{ with } \boldsymbol{p} , \boldsymbol{t}
                       x_{t+1} = \text{round}(x_{t+1})
8.
           Query the objective function to obtain y_{t+1}
9.
           Augment data D_{t+1} = \{D_t, (x_{t+1}, y_{t+1})\}
10.
11. end for
```

Result – Synthetic functions

Synthetic function	Dimension	Range
dSchubert 2D	2	$x_1, x_2 \in \{-10, \dots 10\} \subset \mathbb{Z}$

Result – Synthetic functions

Result – Classifier models

Missing Inputs

Missing Inputs

Case M1: Missing values already in historical data

 \clubsuit Case M2: Missing values in new observed point x' at iteration t

Next query point

$$\mathbf{x}_t = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}$$

What if we have missing values?

- 1. Remove observations which have missing values.
- 2. In case M2, we might **use the suggested point** obtained from maximizing the acquisition α (e.g., EI, UCB).
- 3. **Predict** missing values.

(1) Remove observations (*DropBO*)

Pros:

- Very accurate data in observations set

Cons:

- Have less number of observations
- Inefficient if missing rate is high

(2) <u>Use suggested point</u> (*SuggestBO*)

Pros:

- Perform well when missing noise is *small*
- No need to train a predictive model

Cons:

- Inefficient if missing noise is *high*
- Unable to solve case M1 (missing values in historical data)

Given $x_t \in \mathcal{X}^d$, when evaluate x_t , we obtain $y_t = f(x_t')$ instead of $y_t = f(x_t)$. SuggestBO performs well only when $||x_t - x_t'||_2$ is small.

(3) Predict missing values

How to correctly predict missing values?

Imputations

- Mean/mode: does not consider the correlation between values.
- K-nearest neighbors: depends on available data and distance metric.
- Regression (e.g., random forest, neural network): requires many training data.

BO under uncertain inputs (BO-uGP[1]): unable to work if actual value is unknown.

Find a way which takes into account the **correlation** between values to build the **distribution of missing data**

Bayesian Probabilistic Matrix Factorization (BPMF)

Our method

Consider observations set [X, y] as the matrix R, we can compute the probability distribution of each value R_{ij} in the matrix in the same way as BPMF:

New values R_{ij} can be **directly sampled** from the distributions. However, it is **uncertain** to randomly sample one value as a substitution to the missing value.

Our method

Instead of sampling **one** value for each missing location, we can sample n values.

We use the following acquisition function:

Agreement tradeoff term

Experiments

Comparison on synthetic functions

Experiments

Stability

Experiments – Simulation of real problems

THANK 40U!!