Reinforcement Learning Bootcamp

Machine Perception

7 May 2020

Overview

- Motivation
- Dynamic Programming and Planning
- Temporal Difference Learning

Overview Learning Methods

Supervised Learning

- Learn mapping between input and output
- Labelled ground-truth data guides the learning process

Unsupervised Learning

- Learn a structure in a dataset
- No ground-truth data available

Reinforcement Learning

- Learn how to act
- Data revealed through interaction with an environment

[SR-GAN. Ledig et al. CVPR '17]

Convolutional Agent

Image source: pathmind.com

Reinforcement Learning Problem Statement

Reinforcement Learning is a problem, not a method:

- Learning how to map states to actions
- Maximize a numerical reward signal
- Unknown and uncertain environment

Motivation

Games

Attention based models

Robot Control

Logistics and Operations

Example: Atari

Objective: Achieve a high score

State: Images of the game state

Actions: Move the joystick

Reward: Score of the game

[Image source: RLSS summer school – Olivier Pietquin]

We model the environment as a Markov Decision Process

 Assumption: Transitions, initial state, rewards and policies are deterministic

Simpler notation.

An MDP consists of $(S, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)$

- a set of states S
- a set of actions A
- a reward function $r: S \times A \to \mathbb{R}$ (deterministic, can also be a distribution)
- a transition function $p: S \times A \rightarrow S$ (deterministic, can also be a distribution)
- initial state $s_0 \in S$
- Discount factor: γ

Problem

The core problem in solving MDPs is to find a "policy" $\pi(s)$ for the decision maker

- Once we know the optimal policy, for each state of the decision process we know how to act
- The chosen action is fully determined by $\pi(s)$

The optimal policy will maximize some cumulative quantity over the random rewards

Value Function

Important concept: Value function $V_{\pi}: S \to \mathbb{R}$ of a policy π .

 V_{π} expresses the expected cumulative reward (return) for each state that we achieve when following the policy π

$$G_{t} \doteq \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} = \gamma^{\circ} R_{t+1} + \sum_{k=1}^{\infty} \gamma^{k} R_{t+k+1}$$

$$= R_{t+1} + \gamma \sum_{k=1}^{\infty} \gamma^{k} R_{t+k+1}$$

$$= R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$= R_{t+1} + \gamma G_{t+1} | S_{t} = S]$$

$$= \sum_{k=0}^{\infty} \pi(a|s) \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$= R_{t+1} + \gamma G_{t+1} | S_{t} = S]$$

$$= \sum_{k=0}^{\infty} \pi(a|s) \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$= R_{t+1} + \gamma G_{t+1} | S_{t} = S]$$

$$= \sum_{k=0}^{\infty} \pi(a|s) \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$= R_{t+1} + \gamma G_{t+1} | S_{t} = S]$$

$$= \sum_{k=0}^{\infty} \pi(a|s) \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$= R_{t+1} + \gamma G_{t+1} | S_{t} = S]$$

$$G_{t} \doteq \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$v_{\pi}(s) \doteq E_{\pi}[G_{t}|S_{t} = s]$$

$$= E_{\pi} [R_{t+1} + \gamma G_{t+1}|S_{t} = S]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma E_{\pi}[G_{t+1}|S_{t+1} = S']]$$

Probability of taking an action given a state

$$G_{t} \doteq \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$v_{\pi}(s) \doteq E_{\pi}[G_{t}|S_{t} = s]$$

$$= E_{\pi} [R_{t+1} + \gamma G_{t+1}|S_{t} = S]$$

$$= \sum_{a} \pi(a|s) \sum_{S'} \sum_{r} p(s', r|s, a) [r + \gamma E_{\pi}[G_{t+1}|S_{t+1} = S']]$$

Joint probability of next state and the reward given the current state and action.

Transition Matrix

$$G_{t} \doteq \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$v_{\pi}(s) \doteq E_{\pi}[G_{t}|S_{t} = s]$$

$$= E_{\pi} [R_{t+1} + \gamma G_{t+1}|S_{t} = S]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma E_{\pi}[G_{t+1}|S_{t+1} = S']]$$

The expected reward given a new state

$$G_{t} \doteq \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$v_{\pi}(s) \doteq E_{\pi}[G_{t}|S_{t} = s]$$

$$= E_{\pi} [R_{t+1} + \gamma G_{t+1}|S_{t} = S]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma E_{\pi}[G_{t+1}|S_{t+1} = S']]$$

A weighted sum of rewards given the current state and action

$$G_{t} \doteq \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$v_{\pi}(s) \doteq E_{\pi}[G_{t}|S_{t} = s]$$

$$= E_{\pi} [R_{t+1} + \gamma G_{t+1}|S_{t} = S]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma E_{\pi}[G_{t+1}|S_{t+1} = S']]$$

A weighted sum of rewards given the current state

$$G_{t} \doteq \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

$$v_{\pi}(s) \doteq E_{\pi}[G_{t}|S_{t} = s]$$

$$= E_{\pi} [R_{t+1} + \gamma G_{t+1}|S_{t} = S]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r + \gamma E_{\pi}[G_{t+1}|S_{t+1} = S']]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a)[r + \gamma v_{\pi}(s')]$$

Next Steps

How can we solve the Bellman Equation?

- Dynamic Programming
 - Requires MDP with given environment model (transition probabilities)
 - Value function based on estimates of subsequent values
- Monte-Carlo Methods (not covered here)
 - No need to known environment model
 - Value function based on gathered data and only updated along full trajectories
- Temporal-Difference Learning
 - No need to known environment model
 - Combination of DP and MC principles
 - Value function updated based on estimates of subsequent values along trajectory

Dynamic Programming

Overview

- Collection of algorithms that can compute optimal policies given a perfect model of the world (MDP).
- Can be applied to continuous space, we focus on discrete.
- Limited utility, great theoretical importance.
 - All RL methods have a similar goal, with less computation and no perfect model assumption.

Overview – 3 Key ideas

Value Iteration for estimating π_*

Iteration for esumating n_* 1) Compute optimal state value function v_* 1) Obtain policy π based on v_* then we got π^* Initialize Vp

Iterative Policy Evaluation

1) Compute the state value function v_{π} for a given policy π

Policy Iteration for estimating π_*

- 1) Compute the state value function v_{π} for any arbitrary policy π
- 2) Update policy π given $v_{\pi} \rightarrow \pi'$
- 3) Iterate till $\pi \approx \pi'$

Overview - 3 Key ideas

Value Iteration for estimating π_*

- 1) Compute optimal state value function v_*
- 2) Obtain policy π_* based on ν_*

Iterative Policy Evaluation

1) Compute the state value function v_{π} for a given policy π

Policy Iteration for estimating π_*

- 1) Compute the state value function v_{π} for any arbitrary policy π
- 2) Update policy π given $v_{\pi} \rightarrow \pi'$
- 3) Iterate till $\pi \approx \pi'$

Example Environment

0	0	0	Goal 100
0	0	Trap -100	Trap -100
Start	0	0	0

Goal: Find optimal path to goal

States: Grid fields

Start state blue field

Terminal states trap/goal

Actions: Move left/right/up/down

Reward: 100 upon reaching the goal

-100 landing in the trap -5 for each step taken

Other info: $\gamma = 1$

Initial states initialized to 0 Deterministic transitions

Value Function

• Given a value function V_{π} we can derive a greedy policy π' :

$$\pi'(s) = \underset{a \in A}{\operatorname{argmax}}(r(s, a) + \gamma V_{\pi}(p(s, a)))$$

• One can show that $V_{\pi'}(s) \ge V_{\pi}(s)$

Value Function

• For the optimal policy π^* : The greedy policy of V_{π^*} is π^* itself.

• V_{π^*} fulfills the Bellman Optimality Equation:

$$V^*(s) = \max_{a \in A} \{r(s, a) + \gamma V^*(p(s, a))\}$$

Initial value is 0 for every state

0	0	0	Goal 100
0	0	Trap -100	Trap -100
Start 0	0	0	0

Iteration 1

Iteration 2

-10	90	95	Goal 100
-10	-10	Trap -100	Trap -100
Start -10	-10	-10	-10

Iteration 3

85	90	95	Goal 100
-15	85	Trap -100	Trap -100
Start -15	-15	-15	-15

Iteration 4

85	90	95	Goal 100
80	85	Trap -100	Trap -100
Start -20	80	-20	-20

Iteration 4

85	90	95	Goal 100
80	85	Trap -100	Trap -100
Start 75	80	75	-25

Iteration 5. Done as there is no change anymore.

85	90	95	Goal 100
80	85	Trap -100	Trap -100
Start 75	80	75	70

Compute greedy policy

Value Iteration: Step-wise

- 1. $V_0^*(s) = \text{optimal value for state s when H=0}$
 - $V_0^*(s) = 0 \forall s$
- 2. $V_1^*(s) = \text{optimal value for state s when H=1}$
 - $V_1^*(s) = \max_{a \in A} \sum_{s',r} p(s',r|s,a)[r + \gamma V_0^*(s')]$
- 3. $V_2^*(s) = \text{optimal value for state s when H=2}$
 - $V_2^*(s) = \max_{a \in A} \sum_{s',r} p(s',r|s,a)[r + \gamma V_1^*(s')]$
- 4. $V_k^*(s) = \text{optimal value for state s when H=k}$
 - $V_k^*(s) = \max_{a \in A} \sum_{s',r} p(s',r|s,a)[r + \gamma V_{k-1}^*(s')]$

Value Iteration: Algorithm

Instead of continuously doing policy evaluation and policy improvement, we can do the improvement step in each evaluation iteration.

```
i \leftarrow 0
V_0 \leftarrow 0
while \triangle > \theta {
    \triangle \leftarrow 0
                                                             always 1 or 0 in our case due to deterministic environment
    for all s \in S{
               v \leftarrow V(s)
               V(s) \leftarrow \max_{a \in A} \sum_{s' r} p(s', r|s, a) [r + \gamma V(s')]
               \triangle \leftarrow \max(\triangle, |v - V(s)|)
\pi_i \leftarrow \text{greedy policy from } V_i
```

Value Iteration vs. Policy Iteration Algorithm

Value Iteration:

- Iterate until value function converges.
- Obtain optimal policy through the greedy policy.

Policy Iteration:

Initialize arbitrary policy.

Repeat until policy does not improve:

- 2. Evaluate the value function given the current policy.
- 3. Improve the policy.

Pros and Cons of Dynamic Programming

Pros:

- Exact methods
- Policy/Value iteration are guaranteed to converge in finite <u>number</u> of iterations
- Value iteration is typically more efficient

Cons:

- Need to know the transition probability matrix
- Need to iterate over the whole state space (very expensive)
- Requires memory proportional to the size of the state space

Summary

This Lecture

Dynamic Programming

- Uses value of neighbouring states to update current state (given π)
- Visits every state
- Requires knowledge of the transition probabilities

Monte Carlo Methods (not covered in detail)

- Run in episodes, update state values at end of episode.
- Experience based (no need to know system dynamics)
- High Variance

Temporal Differences

- Run in episodes, update state values at each step.
- Combination of DP and MC ideas
- Exploration/Exploitation → Local minima

5/7/2020 41

Next Lecture

- TD-Learning
- Function Approximation
 - Extend the ideas to arbitrary large state spaces (e.g. images).
- Policy based gradient methods
 - Replace action-value methods with parametrised policies.
- Deep Reinforcement Learning applications
- Research in Deep Reinforcement Learning

References

Book by Sutton:

http://incompleteideas.net/book/the-book-2nd.html

Lecture by David Silver:

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Lecture by John Schulman:

https://www.youtube.com/watch?v=aUrX-rP_ss4

5/7/2020 43