

NCERT Solutions For Class 10 Chapter 6 Triangles Exercise 6.6

1. In figure, PS is the bisector of \angle QPR of \triangle PQR. Prove that $\frac{QS}{SR} = \frac{PQ}{PR}$.

Ans. Given: PQR is a triangle and PS is the internal bisector of \angle QPR meeting QR at S.

$$\therefore \angle QPS = \angle SPR$$

$$\frac{QS}{SR} = \frac{PQ}{PR}$$

To prove: $\overline{SR} = \overline{PR}$

Construction: Draw RT \parallel SP to cut QP produced at T.

Proof: Since PS | TR and PR cuts them, hence,

 \angle SPR = \angle PRT(i) [Alternate \angle s]

And $\angle QPS = \angle PTR \dots (ii)[Corresponding$

But \angle QPS = \angle SPR [Given]

 $\therefore \angle PRT = \angle PTR[From eq. (i) \& (ii)]$

 \Rightarrow PT = PR....(iii)

[Sides opposite to equal angles are equal]

Now, in \triangle QRT,

 $RT \parallel SP[By \ construction]$

 $\frac{QS}{SR} = \frac{PQ}{PT}$ [Thales theorem]

$$\Rightarrow \frac{QS}{SR} = \frac{PQ}{PR} [From eq. (iii)]$$

2. In figure, D is a point on hypotenuse AC of \triangle ABC, BD $^{\perp}$ AC, DM $^{\perp}$ BC and DN $^{\perp}$ AB. Prove that:

(i)
$$DM^2 = DN.MC$$

(ii)
$$\mathbf{DN}^2 = \mathbf{DM.AN}$$

Ans. Since, AB^{\perp} BC and DM^{\perp} BC

$$\Rightarrow_{AB} \parallel_{DM}$$

Similarly, BC $^{\perp}$ AB and DN $^{\perp}$ AB

$$\Rightarrow$$
 CB \parallel DN

i quadrilateral BMDN is a rectangle.

$$\therefore$$
 BM = ND

(i) In
$$\triangle$$
 BMD, \angle 1 + \angle BMD + \angle 2 = 180°

$$\Rightarrow \angle 1 + 90^{\circ} + \angle 2 = 180^{\circ}$$

$$\Rightarrow \angle_{1} + \angle_{2} = 90^{\circ}$$

Similarly, in \triangle DMC, $\angle 3 + \angle 4 = 90^{\circ}$

Since BD^{\perp} AC,

$$\therefore \angle 2 + \angle 3 = 90^{\circ}$$

Now,
$$\angle 1 + \angle 2 = 90^{\circ}$$
 and $\angle 2 + \angle 3 = 90^{\circ}$

$$\Rightarrow \angle_{1} + \angle_{2} = \angle_{2} + \angle_{3}$$

$$\Rightarrow \angle_1 = \angle_3$$

Also,
$$\angle 3 + \angle 4 = 90^{\circ}$$
 and $\angle 2 + \angle 3 = 90^{\circ}$

$$\Rightarrow \angle 3 + \angle 4 = \angle 2 + \angle 3$$

$$\Rightarrow \angle_4 = \angle_2$$

Thus, in \triangle BMD and \triangle DMC,

$$\angle$$
 1 = \angle 3 and \angle 4 = \angle 2

$$\triangle \Delta BMD \sim \Delta DMC$$

$$\Rightarrow \frac{BM}{DM} = \frac{MD}{MC}$$

$$\Rightarrow \frac{\rm DN}{\rm DM} = \frac{\rm DM}{\rm MC} \left[{\rm BM = ND} \right]$$

$$\Rightarrow DM^2 = DN.MC$$

(ii) Processing as in (i), we can prove that

$$\Delta$$
 BND $\sim \Delta$ DNA

$$\Rightarrow \frac{BN}{DN} = \frac{ND}{NA}$$

$$\Rightarrow \frac{DM}{DN} = \frac{DN}{AN} [BN = DM]$$

$$\Rightarrow DN^2 = DM.AN$$

3. In figure, ABC is a triangle in which ∠ABC > 90° and AD ⊥ CB produced. Prove that:

$$AC^2 = AB^2 + BC^2 + 2BC BD$$

Ans. Given: ABC is a triangle in which \angle ABC > 90° and AD \perp CB produced.

To prove:
$$AC^2 = AB^2 + BC^2 + 2BC$$
.BD

Proof: Since \triangle ADB is a right triangle, right angled at D, therefore, by Pythagoras theorem,

$$AB^2 = AD^2 + DB^2$$
(i)

Again, \triangle ADB is a right triangle, right angled at D, therefore, by Pythagoras theorem,

$$AC^{2} = AD^{2} + DC^{2}$$

$$\Rightarrow AC^{2} = AD^{2} + (DB + BC)^{2}$$

$$\Rightarrow AC^{2} = AD^{2} + DB^{2} + BC^{2} + 2DB .BC$$

$$\Rightarrow AC^{2} = (AD^{2} + DB^{2}) + BC^{2} + 2DB .BC$$

$$\Rightarrow AC^{2} = (AD^{2} + DB^{2}) + BC^{2} + 2DB .BC$$

$$\Rightarrow AC^{2} = AB^{2} + BC^{2} + 2DB .BC$$
[Using eq. (i)]

4. In figure, ABC is a triangle in which ∠ABC < 90° and AD⊥ BC produced. Prove that:</p>

$$AC^2 = AB^2 + BC^2 - 2BC_BD$$

Ans. Given: ABC is a triangle in which ∠ABC < 90° and AD⊥ BC produced.

To prove:
$$AC^2 = AB^2 + BC^2 - 2BC$$
_BD

Proof: Since △ ADB is a right triangle, right angled at D, therefore, by Pythagoras theorem,

$$AB^2 = AD^2 + BD^2$$
(i)

.........

Again, \triangle ADB is a right triangle, right angled at D, therefore, by Pythagoras theorem,

$$AC^{2} = AD^{2} + DC^{2}$$

$$\Rightarrow AC^{2} = AD^{2} + (BC - BD)^{2}$$

$$\Rightarrow AC^{2} = AD^{2} + BC^{2} + BD^{2} - 2BC.BD$$

$$\Rightarrow AC^{2} = (AD^{2} + DB^{2}) + BC^{2} - 2DB.BC$$

$$\Rightarrow AC^{2} = AB^{2} + BC^{2} - 2DB.BC$$

[Using eq. (i)]

5. In figure, AD is a median of a triangle ABC and AM^{\perp} BC. Prove that:

(i)
$$AC^2 = AD^2 + BC.DM + \left(\frac{BC}{2}\right)^2$$

(ii)
$$AB^2 = AD^2 - BC.DM + \left(\frac{BC}{2}\right)^2$$

(iii)
$$AC^2 + AB^2 = 2AD^2 + \frac{1}{2}BC$$

Ans. Since \angle AMD = $^{90^{\circ}}$, therefore \angle ADM < $^{90^{\circ}}$ and \angle ADC > $^{90^{\circ}}$

Thus, \angle ADC is acute angle and \angle ADC is obtuse angle.

****** END *******