Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 14.04.2015r	Dzień: Wtorek	
Grupa: VII	Godzina: 12:15-15:00	
Temat ćwiczenia:		
$Zasilacz\ impulsowy\ [DC/DC]$		
Dane projektowe:		
$U_0 = 11.00 \text{ V}$	$I_0 = 0.60$	
l.p	Nazwisko i imię	Oceny
1	Arkadiusz Ziółkowski	
2	Jakub Koban	

1 Zadanie projektowe

Zaprojektować zasilacz stabilizowany o zadanych parametrach :

- $U_{\mathrm{we}}=9.00~\mathrm{V}$
- $U_{wy}=6.00 V$
- I_{max}=0.25 A

2 Obliczenia projektowe

$$I_{pk} = I_{Lpk} = 2I_{0max} = 2 * 0.25 = 0.5A \tag{1}$$

$$\mathbf{R_{SC}} = \frac{0.3V}{I_{pk}} = \frac{0.3}{0.5} = \mathbf{0.6\Omega}$$
 (2)

Zakadamy
$$\mathbf{R_1} = \mathbf{1.8k\Omega} \rightarrow \mathbf{R_2} = R_1 \frac{|U_0| - 1.25V}{1.25V} = 1800 \frac{6 - 1.25}{1.25} = \mathbf{6.8k\Omega}$$
(3)

Zakadamy
$$\mathbf{T} = \mathbf{25u}s \rightarrow \mathbf{t_{on}} = T\frac{U_0}{U_i} = 25 * 10^{-6} \frac{6}{9} = \mathbf{16.67us}$$
 (4)

$$\mathbf{L} \geqslant \frac{U_i}{I_{Lvk}} t_{ON} = \frac{9}{0.5} * 16.37 * 10^{-6} = \mathbf{300uH}$$
 (5)

$$\mathbf{C_0} \geqslant \frac{I_{Lpk}T}{8U_{tpp}} = \frac{0.5 * 25 * 10^{-6}}{8 * 0.5} = \mathbf{3.125uF}$$
 (6)

3 Schemat projektowy

Rysunek 1: Schemat projektowanego układu

4 Część laboratoryjna

4.1 Charakterystyki napięciowe

TUTAJ BRAKUJE 2 tabeli ale nie wiem czy mogę tak bezczelnie uwalić część danych :p »DO SKONSULTOWANIA«

U1[V]	U2_1 [V]	
0	0	
2	0.2862	
5	4.0874	
5.5	4.561	
8	6.988	
8.5	7.457	
9	7.874	
10.1	8.916	
10.5	9.32	
11	9.87	
11.5	10.35	
12	10.784	
12.5	10.992	
13	10.994	
13.5	10.994	
14	10.995	
14.5	10.995	
15	10.995	
17	10.999	
19	11	
20	11.002	
25	11.007	
30	11.014	

Rysunek 2:
$$U_{wy} = f(I_{wy})$$
 przu $I_{wy} = 0A$

Rysunek 3:
$$\mathbf{U}_{\mathrm{wy}} \!=\! \mathbf{f}(\mathbf{U}_{\mathrm{we}})$$
przu $\mathbf{I}_{\mathrm{wy}} \! \neq 0A$

Analizując przedstawione charakterystyki możemy zauważyć,
iż układ poprawnie stabilizuje napięcie od (odpowiednio) 12.5V i 13V aż do maksymalnego napięcia jakie udało nam się uzyskać z zasilacza czyli 30V.

4.2 Charakterystyki zewnętrzne

Rysunek 4:
$$U_{wy} = f(I_{wy})$$
 przu $U_{we} = 15V$

Rysunek 5:
$$U_{wy}=f(I_{wy})$$
 przu $U_{we}=30V$

Analizując charakterystyki zewnętrzne stabilizatora zauważamy, że przy $\rm U_{we}{=}15V$ układ nie przepuszcza prądu powyżej zadanych 0.70A, natomiast przy $\rm U_{we}{=}30V$ obserwujemy tzw. foldback ('odwijanie' charakterystyki) co jest zabezpieczeniem układu w wypadku dalszego wzrostu napięcia wejściowego.

5 Wnioski

- 1. Zgodnie z założeniami teoretycznymi układ utrzymuje na swoim wyjściu stałe napięcie równe 11V , w związku z niedokładnością użytych elementów maksymalny prąd wyjściowy różni się od założeń jednak nie jest to duża rozbieżność (około 0.70 A wobec założonych 0.60 A).
- 2. Minimalne napięcie dla jakiego układ pracuje poprawnie przy $I_{wy}{=}0$ to 12.5V a dla $I_{wy}{\neq}~0$ to 13V.
- 3. W stabilizatorze kompensacyjnym użyto tzw. foldback'u który jest bardzo dobrym zabezpieczeniem układu w wypadku podawania na wejście zbyt dużych wartości napięć.