Graph Theory: Origin

Leave from one votex & come back to the same vertex visiting each edge exactly once?

Drawing does not matter:

H:
$$ad$$

$$G \cong H.$$

$$A = G$$

$$A = G$$

$$A = G$$

$$f(1) = a$$
 $f(3) = c$
 $f(2) = d$ $f(4) = b$

Four graphe are given. Check for isomorphism.

Path:

(5:

Complete graphs:

 C_2

Bi-partite graph:

(not complete)

Complete bipartite graph:

Counting graphs (simple) over n vertices:

Complement of a graph: P4 & C5 are self-complementary, they are isomorphic to P4 & C5 respectively.

Graph de composition:

K6:

Kb can be decomposed into five copies of P4.