Problem Set 4

Advanced Logic

26th September 2022

Throughout this problem set, A is some arbitrary set, and A^* is the set of lists over A; s, t, u are arbitrary members of A^* . \oplus denotes the list concatenation operation on A^* , defined to obey the following recursion clauses:

$$[] \oplus t = t$$
$$(a:s) \oplus t = a:(s \oplus t)$$

Note that you can and should rely on earlier results in proving later ones.

- 1. (15%) Prove that if $s \oplus t = s$ then t = [].
 - (a) $s \oplus t = s$
 - (b) iff $(s : []) \oplus t = s$, since [s] = (s : [])
 - (c) iff $s:([] \oplus t) = s$, by clause 2
 - (d) iff s: t = s, by clause 1
 - (e) iff t = [
 - (f) therefore, we reach our conclusion here.
- 2. (15%) Prove that if $s \oplus t = []$ then s = t = [].
 - (a) by the injective property of Axiom of the List, we have that [] is not in the range of any $cons_a$
 - (b) $ifs \oplus t = []$, then s and t are all []
 - (c) Thus, s = t = []
- 3. (15%) Prove that if $s \oplus t = (a:u)$ then either s = [] or s = (a:s') for some s'.
 - (a) Assume that a is just any arbitrary element in A, then (a:s') is just the transformation of list s after taking out an element in A.
 - (b) iff $s \oplus t = (a:s') \oplus t = a:(s' \oplus t)$, by clause 2
 - (c) the case of s=[] is tritvial because a : t and a : u is the same as both u and t are all arbitrary elements
 - (d) Moreover, for the second case, s' and t and u are all arbitrary, thus, it is the same.

For the following problems, we define a function final : $A^* \to \mathcal{P}(A^*)$ recursively as follows:

final
$$[] = \{[]\}$$

final $(a:s) =$ final $s \cup \{(a:s)\}$

We say that s is a final sublist of t iff $s \in \text{final } t$.

- 5. (15%) Prove that [] is a final sublist of every list.
 - (a) Assume that X is the set that has all the list and $x \in X$, then for every final function, we have x = a : s and final $(a : s) = final <math>s \cup \{(a : s)\}$, since x is monotonicly popping out elements, it will reach [] as always.
 - (b) Thus [] will always be in the form of a:s and then we can use clause 1 to get $\{[]\}$. Thus, we have the conclusion
- 6. (10%) Prove that every list is a final sublist of itself.
 - (a) Assume that x is an arbitrary list of all list, then final $(a:s) = \text{final } s \cup \{(a:s)\}$ by clause 2, and x is (a:s), thus, we have $final(s) \cup \{x\}$. Since $x \in finalx$, we say that x is a final sublist of itself. Therefore, as x is arbitrary, every list is a final sublist of itself.
- 7. (10%) Prove that t is a final sublist of $s \oplus t$.
 - (a) $t \in final(s \oplus t)$ iff $final(t) \cup \{s \oplus t\}$
 - (b) By the recursive structure, we have that t = a : u
 - (c) $final(t) = final(a:u) = finalu \cup \{(a:u)\}$
 - (d) $\{(a:u)\}=\{t\}$
 - (e) Thus, $t \in final(s \oplus t)$
- 8. (10%) Prove that if s is a final sublist of t, then $t = u \oplus s$ for some u.
 - (a) $s \in final(t)$
 - (b) iff $final(a:u) = final(u) \cup \{(a:u)\}\$ or $final(a:s) = final(s) \cup \{(a:s)\}\$, as s and u are all arbitrary
 - (c) $a: u = a: ([] \oplus u) = (a:[]) \oplus u$, by clause 1 and 2 in q1
 - (d) (a:[]) = [a] is just arbitrary list, thus, it can be substituted as s
 - (e) thus, we have $t = s \oplus u$
 - (f) since u and s are all arbitrary, we have $t = u \oplus s$
- 9. (10%) Prove that if $s \oplus s' = t \oplus t'$ then either s' is a final sublist of t' or t' is a final sublist of s'.
- 10. (10% extra credit) Play through the level 'Advanced Multiplication World' in the Lean Natural Numbers Game (https://www.ma. imperial.ac.uk/buzzard/xena/natural_number_game/). To show that you've completed the levels, send us a screenshot of the last level of Advanced Multiplication World open on your computer screen, with your name showing somewhere in the screenshot (e.g. in a text editor window).