Velocity Insight

(A Fusion of Speed and Data-Driven F1 Race **Predictions**)

CMPE 257 | San Jose State University

Team Introduction

Hanlin Chen

Shrivaikunth Krishnakumar

Sravan

Sai Chetan

Brian Lam

Problem Statement

 Formula 1 is a high-speed motorsport with strategic decisions like Pit stops, tire choices and driver performance

 We developed a Machine Learning model to predict lap times for each driver and build a simulation engine to provide optimal pit stops and race scenarios

 The goal is to provide teams with race scenarios and optimal pit stops to make data driven decisions

Solution Overview

Data Collection

- Historical race data (2021–2024) sourced via <u>FastF1</u> API
- Verified race metadata with external datasets <u>Kaggle</u> for Cross Verification and consistency

Approach

- Built Supervised regression models for lap time prediction.
- Focused on single circuit to remove cross-track variability
- Engineered race specific features like: tire degradation, stint management

£

Prediction

- Predicated lap-by-lap performance for each driver
- Forecasted pit-stop timings, Tire compound selection

Strategy

• Enabled tactical decisions making by predicting race evolution

Solution Approach

Data Preprocessing

Cleaned & structured Abu Dhabi raw race data for consistent analysis.

Feature Engineering

Create features like tire degradation, Stint progress and Pit stops Designed features to capture race dynamics

Data Split

Split seasons 2021-2023 for training, and 2024 reserved for testing.

Model Training

Trained Random forest and Gradient Boosting model for lap time predictions.

Simulation and Iterative Refinement

Built a optimization algorithm based simulation engine.

Improved models by adjusting features and validating techniques

YAS MARINA CIRCUIT

LOCATION: ABU DHABI UNITED ARAB EMIRATES TURNS: 21 LENGTH: 5.55KM / 3.45ML

Model Architecture

Random Forest Regressor

- Best performing model in our case
- Builds independent decision trees and combine their predictions.
- Fast, robust and captured lap time variations effectively

Gradient Boosting Regressor

- Trained for comparison
- Builds model Sequentially. Tries to correct errors of previous one
- Great for capturing small patterns and reduces bias over time

Why both Gradient Boosting Regressor and Random Forest Regressor?

- GBR is better for fine-tuned, high accurate predictions and performs better on large, multi-circuits data
- RF offer quick and stable baseline predictions. Handled circuit-level data better
- Together, they allow comparison between precision vs generalization for race simulation

Results

Performance Metrics – Random Forest

- Mean Absolute Error (MAE): 1.012 seconds
- Median Absolute Error (MAE): 0.867 seconds
- Root Mean Squared Error (RMSE): 1.22 seconds
- R² Score = 0.7168

Performance Metrics – Gradient Boosting

- Mean Absolute Error (MAE): 1.017 seconds
- Median Absolute Error (MAE): 0.925 seconds
- Root Mean Squared Error (RMSE): 1.21 seconds
- R^2 Score = 0.6656

Simulation Engine

- The engine simulated lap-by-lap performance for top drivers (Lewis Hamilton, Max Verstappen, etc.)
- Optimal pit strategies suggested a one-stop and two-stint approach:
 - Start on **HARD compound** for long initial stints (35–50 laps)
 - Switch to SOFT (or MEDIUM for Leclerc) for final sprint to the end.
 - Predicted total race times closely matched actual leader timing:
- E.g. Max Verstappen gap to Hamilton predicted as +0.217s, very minimal!

Race Simulation for Abu Dhabi grand prix - 2024:

Main causes for deviations (small differences observed):

- **Tire degradation variance:** Real-world tire wear can be slightly unpredictable due to temperature changes and track conditions.
- Traffic and overtakes: Being stuck behind slower cars may increase lap times unexpectedly.
- **Driver behavior:** Aggressive vs conservative driving styles were not fully captured.
- **Unmodeled race incidents:** Minor contact, yellow flags, or slight mechanical issues during race were not part of simulation assumptions.

Driver	Stint 1	Compound 1	Stint 2	Compound 2	Stint 3	Compound 3	Gap	Total Race Time
Max Verstappen	1-21	HARD	22-42	SOFT	43-58	MEDIUM	Leader	1:21:52.484
Lewis Hamilton	1-50	HARD	51-51	MEDIUM	52-58 	SOFT	+0:00:04.529	1:21:57.013
Lando Norris	1-38	HARD	39-40	MEDIUM	41-58 	SOFT	+0:01:26.402	1:23:18.886
Charles Leclerc	1-37	HARD	38-49	MEDIUM	50-58	SOFT	+0:01:33.070	1:23:25.554
Oscar Piastri	1-30	HARD	31-38	MEDIUM	39-58	SOFT	+0:01:39.256	1:23:31.740

Scope for Future Enhancement

- Generalize Model for Multiple Circuits
- Handle Dynamic race Scenarios like Safety cars, yellow flags more accurately
- Develop Real-Time Strategy Engine that can dynamically re-optimize race strategies

• In conclusion, teams that can effectively leverage machine learning can gain a significant strategic edge in Formula 1.

Thank You

We appreciate your time and attention.

Looking forward to discussing next steps and answering questions.