STAT 510 Mathematical Statistics Fall 2022

Problem set 5: Due on 11:59pm, Monday, 10/24/2022

1. Let X_1, \ldots, X_n be i.i.d. random variables with the inverse Gaussian distribution whose pdf is given by

$$f(x|\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right], \quad 0 < x < \infty.$$

Find a sufficient statistic for (μ, λ) .

2. Suppose X_1, \ldots, X_n are iid $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown parameters. Let $s_n^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X})^2$ be the sample variance. Show that the Fisher information matrix based on s_n^2 is

$$I_{s_n^2}(\theta) = \begin{pmatrix} 0 & 0 \\ 0 & \frac{1}{2}(n-1)\sigma^{-4} \end{pmatrix}$$

where $\theta = (\mu, \sigma^2)$.

- 3. Let X_1, X_2, X_3 be iid Bernoulli(p) where $0 is the unknown parameter. Evaluate Fisher information <math>I_{\mathbf{X}}(p)$, $I_{\overline{X}}(p)$ and $I_T(p)$, where $\mathbf{X} = (X_1, X_2, X_3)$, $\overline{X} = (X_1 + X_2 + X_3)/3$ and $T = X_1 + X_2$. Is \overline{X} sufficient for p? Is T sufficient for p?
- 4. Let X be a random variable with probability density function $f(x|\theta)$ where $\theta \in \mathbb{R}^K$ is the parameter vector. Let $s_{\theta}(x) = \nabla_{\theta} \log f(x|\theta)$ be the score function. Show that $\mathbb{E}[s_{\theta}(X)] = 0$ and the Fisher information matrix $I_X(\theta) := \mathbb{E}[s_{\theta}(X)s_{\theta}(X)^T]$ can be expressed as

$$I_X(\theta) = -\mathbb{E}[\nabla^2 \log f(X|\theta)].$$

- 5. (a) Show that gamma distribution with either parameter α or β known, or both unknown, belongs to the exponential family.
 - (b) Show that Poisson distribution belongs to the exponential family.
 - (c) Does binomial distribution b(n, p) with unknown n belong to the exponential family? Why?

- 6. For each of the following families (a) and (b),
 - (a) $N(\theta, a\theta^2)$, where a is known,
 - (b) $f(x|\theta) = C \exp(-(x-\theta)^4)$, where C is a normalization constant, do the following:
 - (i) verify that it is an exponential family.
 - (ii) describe the curve on which the parameter θ lies.
 - (iii) sketch a graph of the curved parameter space.