INTRODUCCIÓN A LAS MATEMÁTICAS

Conjuntos numéricos

Manuel Carlevaro

OBJETIVOS

- Definir conjuntos por extensión y comprensión. Realizar diagramas de Venn. Identificar elementos y subconjuntos a la vez que relaciones de pertenencia e inclusión.
- Realizar operaciones entre conjuntos (unión, intersección y diferencia).
- ▶ Identificar los conjuntos numéricos.
- Revisar la conformación de los números reales: números naturales, enteros, racionales e irracionales.

- Conocer la representación del conjunto de los números reales como recta real y los demás conjuntos numéricos.
- Revisar cómo se manipulan expresiones algebraicas usando las propiedades conmutativas, asociativas y distributivas de las operaciones.
- Conocer el orden de las prioridades de las operaciones algebraicas y el rol de los paréntesis.
- Revisar identidades algebraicas importantes que involucran la suma, resta, multiplicación y división.

Definición: Conjunto.

Es una colección o agrupamiento de objetos, cosas, etc. Usualmente se utilizan letras mayúsculas para nombrarlos y llaves {} para escribirlos encerrando sus elementos.

Definición: Conjunto.

Es una colección o agrupamiento de objetos, cosas, etc. Usualmente se utilizan letras mayúsculas para nombrarlos y llaves {} para escribirlos encerrando sus elementos.

Ejemplo:.

 $S = \{\mathsf{domingo}, \mathsf{martes}, \mathsf{lunes}, \mathsf{jueves}, \mathsf{viernes}, \mathsf{s\'{a}bado}, \mathsf{m\'{i}\'{e}rcoles}\}$

Definición: Conjunto.

Es una colección o agrupamiento de objetos, cosas, etc. Usualmente se utilizan letras mayúsculas para nombrarlos y llaves {} para escribirlos encerrando sus elementos.

Ejemplo:.

$$S = \{ \mathsf{domingo}, \mathsf{martes}, \mathsf{lunes}, \mathsf{jueves}, \mathsf{viernes}, \mathsf{s\'{a}bado}, \mathsf{m\'{i}\'{e}rcoles} \}$$

Otros ejemplos:

$$A = \{\mathsf{a},\mathsf{e},\mathsf{i},\mathsf{o},\mathsf{u}\} \quad B = \{\mathsf{rojo},\mathsf{verde},\mathsf{azul}\} \quad C = \{\Box,\bigcirc,\triangle,\diamondsuit,\clubsuit\} \quad D = \{1,2,3,4,5,6,7,8,9,0\}$$

Conjuntos y operaciones entre conjuntos

Definición: Conjunto.

Es una colección o agrupamiento de objetos, cosas, etc. Usualmente se utilizan letras mayúsculas para nombrarlos y llaves {} para escribirlos encerrando sus elementos.

Ejemplo:.

$$S = \{ \mathsf{domingo}, \mathsf{martes}, \mathsf{lunes}, \mathsf{jueves}, \mathsf{viernes}, \mathsf{s\'{a}bado}, \mathsf{m\'{i}\'{e}rcoles} \}$$

Otros ejemplos:

$$A = \{\mathsf{a},\mathsf{e},\mathsf{i},\mathsf{o},\mathsf{u}\} \quad B = \{\mathsf{rojo},\mathsf{verde},\mathsf{azul}\} \quad C = \{\Box,\bigcirc,\triangle,\diamondsuit,\clubsuit\} \quad D = \{1,2,3,4,5,6,7,8,9,0\}$$

- No importa el orden en que escribimos los elementos de un conjunto.
- ▶ Tampoco es importante que aparezcan elementos repetidos. Por ejemplo, los siguientes conjuntos son iguales:

$${a,b,c} = {a,c,b,b,b} = {b,a,c,a}$$

Conjuntos y operaciones entre conjuntos

Se utiliza el símbolo "∈" para indicar que cierto elemento **pertenece** a un conjunto:

lunes
$$\in S$$

Se puede leer como "lunes pertenece a "S". Por otro lado, se utiliza el símbolo " \notin " para indicar que un elemento **no pertenece** a un conjunto, por ejemplos:

enero
$$\not\in S$$

Cuando el conjunto tiene **muchos elementos**, o una **cantidad infinita** de elementos, se utilizan los **tres puntos** "...":

$$a, b, c, \dots, x, y, z$$

 $\{0, 1, 2, 3, 4, \dots\}$

Se utiliza el símbolo "∈" para indicar que cierto elemento **pertenece** a un conjunto:

$$\mathsf{lunes} \in S$$

Se puede leer como "lunes pertenece a "S". Por otro lado, se utiliza el símbolo " \notin " para indicar que un elemento **no pertenece** a un conjunto, por ejemplos:

enero
$$\not\in S$$

Cuando el conjunto tiene **muchos elementos**, o una **cantidad infinita** de elementos, se utilizan los **tres puntos** "...":

$$\{a, b, c, \dots, x, y, z\}$$

 $\{0, 1, 2, 3, 4, \dots\}$

Diagramas de Venn:

Definición: Conjunto vacío.

El conjunto que **no tiene elementos** se llama "**conjunto vacío**" y se denota con el símbolo "Ø":

$$\varnothing = \{\}$$

Con los elementos de un conjunto se pueden formar otros conjuntos "más pequeños" que se llaman **subconjuntos**. Por ejemplo, con $A=\{{\rm a},{\rm e},{\rm i},{\rm o},{\rm u}\}$ se pueden formar varios subconjuntos:

$$\begin{cases} e,i,o \} & \{a\} & \{a,e\} & \{i,u\} \\ \{i,o,u\} & \{o,u\} & \{u,o,a,e\} & \{o\} \\ \end{cases}$$

En palabras se dice, por ejemplo, que:

$$\{a,i\} \quad \text{es un subconjunto de} \quad \{a,e,i,o,u\}$$

o que

$$\{a,i\} \quad \text{est\'a incluido en} \quad \{a,e,i,o,u\}$$

Definición : $A \subseteq B$.

Se escribe $A\subseteq B$ cuando **todos los elementos** del conjunto A también son elementos del conjunto B. En cambio, se escribe $A\nsubseteq B$ cuando **algún elemento** de A no es un elemento del conjunto B

Se puede describir a los conjuntos **por extensión** o **por comprensión**. Se dice que un conjunto está descripto por extensión cuando hacemos una lista de sus elementos, como en los ejemplos anteriores:

$$A = \{\mathsf{a},\mathsf{e},\mathsf{i},\mathsf{o},\mathsf{u}\} \quad B = \{\mathsf{rojo},\mathsf{verde},\mathsf{azul}\} \quad C = \{\Box,\bigcirc,\triangle,\diamondsuit,\clubsuit\} \quad D = \{1,2,3,4,5,6,7,8,9,0\}$$

Por otro lado, se dice que un conjunto está descripto por comprensión cuando se utiliza alguna propiedad característica de sus elementos, por ejemplo:

$$A = \underbrace{\{\text{el conjunto de las vocales}\}}_{\text{definición por comprensión}} = \underbrace{\{\text{a}, \text{e}, \text{i}, \text{o}, \text{u}\}}_{\text{definición por extensión}}$$

De manera más formal, se utiliza la siguiente notación para definir conjuntos por comprensión:

$$A = \{\underbrace{x \text{ es una letra}}_{\text{conjunto con el que trabajamos}} : \underbrace{x \text{ es una vocal}}_{\text{propiedad que debe cumplirse}} \}$$

Se lee: "A es el conjunto de las letras x tal que x es una vocal".

Ejemplos:

Definición por comprensión	Definición por extensión
$\{x:x ext{ es una letra de la palabra "matemática"}\}$	{m, a, t, e, i , c}
$\{x:x$ es una vocal de la palabra "matemática" $\}$	{a, e, i}
$\{x:x ext{ es un Estado miembro de la Unión Europea que empieza con "F"} \}$	{Francia, Finlandia}
$\{x:x ext{ es un dígito decimal par}\}$	$\{0, 2, 4, 6, 8\}$

OPERACIONES ENTRE CONJUNTOS: INTERSECCIÓN

Definición: Intersección de conjuntos.

La **intersección** de dos conjuntos es un nuevo conjunto formado por los elementos que están en ambos conjuntos simultáneamente. Considerando A y B dos conjuntos, escribimos la intersección de A y B de la siguiente forma:

$$A\cap B=\{x:x\in A\text{ y }x\in B\}$$

Ejemplo:.

Si
$$A = \{a, b, c, g\}$$
 y $B = \{r, g\}$, entonces:

$$A \cap B = \{q\}$$

OPERACIONES ENTRE CONJUNTOS: UNIÓN

Definición: Unión de conjuntos.

La **unión** de dos conjuntos es un nuevo conjunto formado por los elementos que están en uno u otro conjunto. Considerando A y B dos conjuntos, escribimos la unión de A y B de la siguiente forma:

$$A \cup B = \{x : x \in A \text{ o } x \in B\}$$

Ejemplo:.

Si
$$A = \{a, b, c, g\}$$
 y $B = \{r, g\}$, entonces:

$$A \cup B = \{\mathsf{a},\mathsf{b},\mathsf{c},\mathsf{r},\mathsf{g}\}$$

OPERACIONES ENTRE CONJUNTOS: DIFERENCIA

Definición: Diferencia de conjuntos.

La **diferencia** del conjunto A con el conjunto B es un nuevo conjunto formado por todos los elementos de A que no están en B. Considerando A y B dos conjuntos, escribimos la diferencia de A con B de la siguiente forma:

$$A - B = \{x : x \in A \text{ y } x \notin B\}$$

Ejemplo:.

Si
$$A = \{a, b, c, g\}$$
 y $B = \{r, g\}$, entonces:

$$A-B=\{\mathrm{a},\mathrm{b},\mathrm{c}\}$$

OPERACIONES ENTRE CONJUNTOS

Ejemplo:

23 estudiantes de un curso practican alguno de los siguientes deportes: tenis, fútbol y voley. Cuatro de ellas juegan regularmente los tres deportes; 5 juegan solamente voley y fútbol; dos juegan solamente tenis y fútbol; y tres juegan solamente tenis y voley. Además, tres personas juegan únicamente tenis y una persona juega únicamente fútbol. ¿Cuantas personas juegan únicamente voley?

 $T = \{ \text{estudiantes que juegan tenis} \}; V = \{ \text{estudiantes que juegan voley} \}; F = \{ \text{estudiantes que juegan fútbol} \}$

OPERACIONES ENTRE CONJUNTOS

Ejemplo:

23 estudiantes de un curso practican alguno de los siguientes deportes: tenis, fútbol y voley. Cuatro de ellas juegan regularmente los tres deportes; 5 juegan solamente voley y fútbol; dos juegan solamente tenis y fútbol; y tres juegan solamente tenis y voley. Además, tres personas juegan únicamente tenis y una persona juega únicamente fútbol. ¿Cuantas personas juegan únicamente voley?

 $T = \{ \texttt{estudiantes que juegan tenis} \}; V = \{ \texttt{estudiantes que juegan voley} \}; F = \{ \texttt{estudiantes que juegan fútbol} \}$

Enunciado	Conjunto	# elementos
Total de alumnos	$V \cup F \cup T$	23
Alumnos que juegan 3 deportes	$V \cap F \cap T$	4
Alumnos que juegan únicamente voley y fútbol	$(V \cap F) - T$	5
Alumnos que juegan únicamente tenis y fútbol	$(T \cap F) - V$	2
Alumnos que juegan únicamente tenis y voley	$(T \cap V) - F$	3
Alumnos que juegan únicamente tenis	$T - (V \cup F)$	3
Alumnos que juegan únicamente fútbol	$F - (T \cup V)$	1
Alumnos que juegan únicamente voley	$V - (T \cup F)$:?

OPERACIONES ENTRE CONJUNTOS

Ejemplo:

23 estudiantes de un curso practican alguno de los siguientes deportes: tenis, fútbol y voley. Cuatro de ellas juegan regularmente los tres deportes; 5 juegan solamente voley y fútbol; dos juegan solamente tenis y fútbol; y tres juegan solamente tenis y voley. Además, tres personas juegan únicamente tenis y una persona juega únicamente fútbol. ¿Cuantas personas juegan únicamente voley?

 $T = \{ \text{estudiantes que juegan tenis} \}; V = \{ \text{estudiantes que juegan voley} \}; F = \{ \text{estudiantes que juegan fútbol} \}$

Enunciado	Conjunto	# elementos
Total de alumnos	$V \cup F \cup T$	23
Alumnos que juegan 3 deportes	$V \cap F \cap T$	4
Alumnos que juegan únicamente voley y fútbol	$(V \cap F) - T$	5
Alumnos que juegan únicamente tenis y fútbol	$(T \cap F) - V$	2
Alumnos que juegan únicamente tenis y voley	$(T \cap V) - F$	3
Alumnos que juegan únicamente tenis	$T - (V \cup F)$	3
Alumnos que juegan únicamente fútbol	$F - (T \cup V)$	1
Alumnos que juegan únicamente voley	$V - (T \cup F)$	ز?

Conjuntos numéricos

Definición: Números naturales.

Utilizamos los **números naturales** para contar cosas. Denotamos este conjunto con el símbolo \mathbf{N} :

$$\mathbf{N} = \{0, 1, 2, 3, 4, \ldots\}$$

Consideramos al 0 como número natural, aunque algunos libros no lo hacen.

Definición: Números enteros.

Los **números enteros** están comprendidos por los naturales y sus opuestos. Utilizamos el símbolo ${\bf Z}$ para este conjuntos:

$$\mathbf{Z} = \{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$$

Representación gráfica:

Conjuntos numéricos

Definición: Números racionales o fraccionarios.

Son aquellos números que pueden escribirse como **cociente** entre dos números enteros:

$$\frac{p}{q} = \frac{\text{numerador}}{\text{denominador}} = \frac{\text{número entero}}{\text{número entero} \neq 0}$$

Utilizamos el símbolo ${f Q}$ para denotar este conjunto:

$$\mathbf{Q} = \{0, 1, -3, \frac{1}{3}, \frac{5}{2}, \dots, -4, 0.3, \dots, \}$$

 $\frac{9}{20}$

La razón entre el área total y el área sombreada es 9 a 20: