Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(A)} \quad \forall P(A) \neq 0.$$

Q-1:- The probability that a regularly scheduled flight departs on time is P(D) = 0.83; the probability that it arrives on time is P(A) = 0.82; and the probability that it departs and arrives on time is $P(A \cap D) = 0.78$. Find the probability that a plane arrives on time, given that it departs at time.

$$S_{a}^{a}$$
. $P(A/D) = ?$

$$P(A|D) = \frac{P(A|D)}{P(D)}$$

$$= \frac{0.78}{0.83} = 0.94$$

,		female	Total
Education	Male		83
Elementary	38	45	78
Secondary	28	50	/ * *
college	122	17.	39
			200
Total	88	112.	1 -

If a person is picked at random from this group, find the probability that

a) placen is a female, given that she is

a collège educator.

-: les

$$P(F/c) = \frac{P(F \cap c)}{P(c)}$$

$$=\frac{17/200}{39/200}$$

$$=\frac{17}{39}=0.44$$

$$S_{N}^{-} = \frac{P(S/M)}{P(M)} = \frac{P(SNM)}{P(M)}$$

$$= \frac{28/200}{88/200}$$

$$= \frac{28}{88} = 0.32.$$

Q-3:-	Age group (years)	Invest Es (5%.	stment per	rsentage En) 10% -30%	E8	Total	
E,	Age group (years)	70	240	270	30%+	1	
	31 to 50	90	300	630	1120	2140	
E,	+ 55	110	305	780			
E3	50 to 65	200	170	370	260	1000	
E4	66+						
	Total	470	1015	2050	1990	5525	
If a person is selected at random, What							
is the probability of:					(3)		

$$P(E_3/E_6) = \frac{P(E_3 \cap E_6)}{P(E_6)}$$

$$= \frac{305/5525}{1015/5525}$$

$$=\frac{305}{1015}=0.3$$

Søl:

$$P(E_8/E_2) = ?$$

$$P(E_8/E_2) = \frac{P(E_8 \cap E_2)}{P(E_2)}$$

$$= \frac{1120/5525}{2140/5525}$$

$$= 0.52$$

(;

"Multiplication Rule"

$$P(A|B) = \frac{P(A\cap B)}{P(B)}$$

$$\Rightarrow P(A \cap B) = P(A/B) P(B)$$

$$P(A \cap B) = P(B/A) P(A)$$

In general;

$$P(A_1 \cap A_2 \cap ... \cap A_k) = P(A_1) P(A_2/A_1) P(A_3/A_1 \cap A_2)$$

... $P(A_k/A_1 \cap A_2 \cap ... \cap A_{k-1})$

Q-1:- 7 black, 9 Red, 11 White and 8 green balls. If 4 balls are randomly selected without replacement. What is the

a) first is Red, 2" White, 3" Red and 4" black

$$S_{2}^{2}-P(R, NW_{2}NR_{3}NB_{4})$$

= $P(R,) \times P(W_{2}/R,) \times P(R_{3}/R,NW_{2}) \times P(B_{4}/R,NW_{2}NR_{3})$

$$= \frac{9}{35} \times \frac{11}{34} \times \frac{8}{33} \times \frac{7}{32}$$

$$=\frac{99}{22440}=\frac{3}{680}$$

$$= \frac{11}{35} \times \frac{10}{34} \times \frac{8}{33} \times \frac{7}{32}$$

Practice: from table of Education level and Gende, of three persons are selected at random without replacement, then find the probability of:

- a) first person is a college educator, 2nd is a college educator and 3nd is again a college edu.
- b) first person is a male, 2 again a male and 3rd person is a female.

Probability: Independent Events

$$P(A/B) = P(A)$$

$$P(B/A) = P(B).$$

Two events A and B are independent events if and only if

$$P(A \cap B) = P(A) \times P(B)$$

$$P(A, nA_{2}, nA_{3}, ..., nA_{k}) = P(A_{1}) \times P(A_{2}) \times ... \times P(A_{k}) = \frac{P(A \cap B)}{P(B)}$$

$$Independent \ case \Rightarrow P(A \cap B) = P(A/B)P(B)$$

$$\Rightarrow P(A \cap B) = P(A)P(B)$$

ambulance available for emergencies. The probability that the fire engine is available when needed is 0.98, and the probability that the ambulance is available when called is 0.92. In the event of an injury resulting from a burning building, find the probability that both the ambulance and the fire engine will be available, assuming they operate independently.

$$P(F) = 0.98$$

 $P(A) = 0.92$

$$P(F \cap A) = ?$$

Because of operating Independently
$$P(F \cap A) = P(F) P(A)$$

$$= (0.98) (0.92)$$

Q-2:- A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles. A marble is chosen at random from the jar. After replacing it, a second marble is chosen. What is the probability of choosing a green and then a yellow marble?

5d:-

$$P(G_1 \cap Y_2) = P(G_1) \times P(Y_2)$$

$$= \frac{5}{16} \times \frac{6}{16}$$

$$= \frac{30}{9.56} = 0.117$$

A coin is tossed and a single 6-sided die is rolled. Find the probability of landing the head on side of the coin and rolling a 3 on the die.

$$P(1+) = \frac{1}{2}$$
 $P(3) = \frac{1}{6}$

$$= \frac{1}{2} \times \frac{1}{6}$$

$$= \frac{1}{2} \times \frac{1}{6}$$

$$= \frac{1}{2} \times \frac{1}{6}$$