Дисциплина "Архитектура ЭВМ" Лабораторная работа №1 по теме "Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью"

> Работу выполнил: Керимов Ахмед ИУ7-44Б

Цель работы – исследование триггеров, получение их статических и динамических характеристик.

Асинхронный RS-триггер с инверсными входами

Асинхронный RS-триггер – это простейший триггер, который используется как запоминающая ячейка.

Табл. 1. Таблица переходов асинхронного RS-триггера

\overline{S}	\overline{R}	Q_{t-1}	Q_t	Пояснение
0	0	0	Х	Запрещенная операция
0	0	1	Х	
0	1	0	1	Установка 1
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	0	. Хранение
1	1	1	1	

Синхронный RS-триггер в статическом режиме

Синхронный RS-триггер имеет два входа управления (R и S) и один вход синхронизации C. При C = 0 синхронный RS-триггер сохраняет предыдущее значение. При C = 1 -работает как асинхронный RS-триггер.

Табл. 2. Таблица переходов синхронного RS-триггера

C	S	R	Q_{t-1}	Q_t	Пояснение
0	A	A	Q_{t-1}	Q_{t-1}	Хранение
1	0	0	0	0	Хранение
1	0	0	1	1	
1	0	1	0	0	Установка 0
1	0	1	1	0	
1	1	0	0	1	. Установка 1
1	1	0	1	1	
1	1	1	0	Х	. Запрещенная операция
1	1	1	1	Х	

Синхронный D-триггер в статическом режиме

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

Табл. 3. Таблица переходов синхронного D-триггера

C	D	Q_{t-1}	Q_t	Пояснение
0	0	0	0	Хранение
0	0	1	1	- Жранопис
0	1	0	0	
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	. Jordhobka o
1	1	0	1	Установка 1
1	1	1	1	J J J J J J J J J J J J J J J J J J J

Синхронный D-триггер с динамическим управлением записью

Сигнал D в данном случае меняется только тогда, когда сигнал C меняется.

Синхронный DV-триггер с динамическим управлением записью

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

$$Q_t = DV + \overline{V}Q_{t-1} = DVC + (\overline{V} + \overline{C})Q_{t-1}$$

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_t = Q_{t-1}$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

Синхронный Т-триггер

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Т-триггер реализует счет по модулю 2: $Q_t = T_{t-1} \oplus Q_{t-1}$. Синхронный Т-триггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1.

Синхронный TV-триггер

