知识小料

「电计 2203 班」周常规知识整理共享

16 **16**

日期: 2024-1-3 学科: 大学物理 A2

《大学物理·下半》公式集锦

注:只是公式,不一定包括全部知识点。有的知识点没有公式。

带背景底色的公式需重点背诵。

1 磁学篇

1.1 恒定磁场

公式	描述
$\mathbf{F} = q\mathbf{v} \times \mathbf{B} = q\mathbf{v}B\sin\theta$	运动电荷所受洛伦兹力
$d\boldsymbol{B} = \frac{\mu_0}{4\pi} \cdot \frac{Id\boldsymbol{l} \times \boldsymbol{r}}{r^3}$	磁感应强度定义式
$dB = \frac{\mu_0}{4\pi} \cdot \frac{Idl\sin\theta}{r^2}$	磁感应强度定义・标量形式
$\boldsymbol{B} = \int d\boldsymbol{B} = \int \frac{\mu_0}{4\pi} \cdot \frac{Id\boldsymbol{l} \times \boldsymbol{r}}{r^3}$	磁感应强度沿路径积分
$B = \frac{\mu_0 I}{2\pi a}$	无限长载流的直导线的磁场(载流 I ,考察点到导线的垂直距离为 a)
$B = \frac{\mu_0 I}{2R}$	载流圆线圈轴线上的磁场 (载流 I, 半径 R)
$B = \mu_0 nI$	载流螺线管轴线上的磁场 (载流 I, 匝密度 n)
$\iint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	磁场高斯定理

$\oint_{L} \boldsymbol{B} \cdot d\boldsymbol{l} = \mu_{0} \sum I_{i}$	安培环路定理(ΣI_i 表示正向穿过以 L 为边界的曲面的电流和)
$U_{\rm H} = \frac{1}{ne} \frac{IB}{d}$	霍尔电压 (d是沿 B方向的厚度)
$F = I \mathbf{l} \times \mathbf{B}$	导线受到的安培力
m = IS	载流线圈的磁矩
$M = m \times B$	载流线圈的磁力矩
$A_{\rm m} = I(\Phi_2 - \Phi_1)$	磁力矩做功
$\boldsymbol{B} = \mu \boldsymbol{H} = \mu_0 \mu_{\rm r} \boldsymbol{H}$	磁场强度与磁感应强度的关系
$\boldsymbol{M} = (\mu_r - 1)\boldsymbol{H}$	磁场强度与磁化强度的关系
$\oint_{L} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \left(\sum I_0 + \sum I' \right)$	安培环路定理 (为与下二式区别,再写一次)
$\oint_L \boldsymbol{H} \cdot d\boldsymbol{l} = \sum I_0$	磁场强度的环路定理
$\oint_{L} \mathbf{M} \cdot \mathrm{d}\mathbf{l} = \sum I'$	磁化强度的环路定理

1.2 电磁感应

公式	描述
$\mathscr{E} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$	法拉第电磁感应定律 (单匝线圈)
$\mathscr{E} = -\frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t} = -N\frac{\mathrm{d}\Phi}{\mathrm{d}t}$	法拉第电磁感应定律 (N匝线圈)
$\mathscr{E}_{ab} = \int_{a}^{b} (\boldsymbol{v} \times \boldsymbol{B}) \cdot \mathrm{d}\boldsymbol{l}$	动生电动势公式

$\oint_{L} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \left(\iint_{S} \mathbf{B} \cdot d\mathbf{S} \right)$	感生电场(涡旋电场)公式
$\Psi_{21} = M_{21}I_1$	线圈1对线圈2的全磁通
$M_{21}=M_{12}$	互感系数是相等的
$\mathscr{E}_{21} = -M \frac{\mathrm{d}I_1}{\mathrm{d}t}$	线圈1电流变化导致线圈2产生互感电动势
$\Psi = LI$	线圈自身的全磁通
$\mathscr{E} = -L \frac{\mathrm{d}I}{\mathrm{d}t}$	线圈的自感电动势
$w_{\rm m} = \frac{1}{2}\mu H^2 = \frac{1}{2}BH$	磁场能量密度
$W_{\rm m} = \int w_{\rm m} dV = \frac{1}{2} \int_V BH dV$	磁场能量
$W_{\rm m} = \frac{1}{2}LI^2$	磁场能量与自感系数的关系

1.3 麦克斯韦方程组

公式	描述
$I_D = \iint_S \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{dS}$	位移电流
$J_D = \frac{\partial \mathbf{D}}{\partial t}$	位移电流密度
$\oint_L \mathbf{H} \cdot \mathrm{d}\mathbf{r} = I + I_D$	全电流安培环路定理(传导电流+位移电流)
$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$	真空中的光速与 μ_0 和 ϵ_0 的关系
$\sqrt{\mu}H = \sqrt{\varepsilon}E$	E与H的关系
$\sqrt{\mu_0}H = \sqrt{\varepsilon_0}E$	E 与 H 的关系 (真空中)

$$\overline{S} = \frac{1}{2} H_0 E_0 = c \varepsilon_0 \overline{E^2} = I$$

电磁波平均能流密度(也等于波强)

麦克斯韦方程组的形式如下,分别为

- 1. 电场高斯定理(电场・通量)
- 2. 法拉第电磁感应定律(电场·环流)
- 3. 磁场高斯定理(磁场・通量)
- 4. 全电流安培环路定理(磁场·环流)

$$\begin{cases}
\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \sum q_{0} \\
\oint_{L} \mathbf{E} \cdot d\mathbf{r} = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S} \\
\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0 \\
\oint_{L} \mathbf{H} \cdot d\mathbf{r} = I + I_{D}
\end{cases}
\iff
\begin{cases}
\nabla \cdot \mathbf{D} = \rho \\
\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}
\end{cases}$$

2 光学篇

2.1 几何光学

公式	描述
$L = \int_{A}^{B} n(x) dx$	光程公式
$n = \frac{v_1}{v_2} = \frac{c}{v}$	折射率公式
$n_1 \sin i_1 = n_2 \sin i_2$	折射定律
$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$	薄透镜成像(物点距离 s ,像点距离 s' ,焦距 $f = -f'$)

2.2 光的干涉

公式	描述
$I = \frac{1}{2}E_0^2$	光矢量与光强
$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi$	光强的相干叠加
$\Delta \varphi = \pm 2k\pi$	干涉相长的相位差条件 $(k=0,1,2,)$
$\Delta \varphi = \pm (2k - 1)\pi$	干涉相消的相位差条件(k=1,2,)
$\delta = \pm k\lambda$	干涉相长的光程差条件 (k = 0,1,2,)
$\delta = \pm (2k - 1)\frac{\lambda}{2}$	干涉相消的光程差条件 (k=1,2,)
$\delta = \frac{xnd}{D}$	杨氏双缝干涉光程差(条纹位置 x ,级数 n ,双缝间距 d ,双缝到屏的距离 D)
$\Delta x = \frac{D\lambda}{nd}$	杨氏双缝干涉的条纹宽度(即相邻条纹间隔)
$\delta = \frac{xnd}{D} + \frac{\lambda}{2}$	洛埃镜实验光程差
$\delta = 2h\sqrt{n_2^2 - n_1^2 \sin^2 i_1} + \frac{\lambda}{2}$	等倾干涉反射光光程差 (当 $n_1 < n_2 > n_3$ 或 $n_1 > n_2 < n_3$ 有半波损失;透射光相反)
$\delta = 2hn_2 + \frac{\lambda}{2}$	等厚干涉反射光光程差(空气劈尖满足 $n_1 < n_2 > n_3 (= n_1)$,有半波损失)
$\Delta h = \frac{\lambda}{2n_2}$	等厚干涉相邻明纹(暗纹)厚度差
$\Delta l = \frac{\Delta h}{\sin \theta} \approx \frac{\lambda}{2n_2 \theta}$	等厚干涉相邻明纹(暗纹)间距(θ<5°)
$r_k = \sqrt{\frac{kR\lambda}{n}}$	牛顿环第 k 级暗环半径 (牛顿环曲率半径为 R)
$k_{ m max} = rac{2h}{\lambda}$	迈克尔孙干涉仪的中心级次 (两反射镜的像距离为h)

2.3 光的衍射

公式	描述
$a\sin\theta_k = k\lambda$	单缝(夫琅禾费)衍射第 k 级暗纹公式 ($k = \pm 1, \pm 2, \ldots$, 缝宽 a , 衍射角 θ_k)
$a\sin\theta_k' \approx (k+0.5)\lambda$	单缝衍射第 k 级明纹公式 (k = ±1, ±2,, 并不严格)
$\delta = a\sin\theta_k = N \cdot \frac{\lambda}{2}$	单缝衍射半波带公式 (半波带个数 N)
$x_k = k \frac{\lambda f}{a}$	单缝衍射第 k 级暗纹中心位置 (会聚透镜焦距 f)
$\Delta x_0 = 2x_1 = \frac{2\lambda f}{a}$	单缝衍射中央明纹线宽度
$\Delta\theta_0 = 2\theta_1 = \frac{2\lambda}{a}$	单缝衍射中央明纹角宽度
$\delta\theta = 1.22 \frac{\lambda}{D}$	瑞利判据:中心角距离等于角半径(衍射圆孔直径D;前提是光强相近)
$A = \frac{1}{\delta\theta} = \frac{D}{1.22\lambda}$	光学仪器的分辨本领公式
$d\sin\theta = \pm m\lambda$	光栅衍射主极大位置公式 (m=0,1,2,)
$d(\sin\theta - \sin\theta_0) = \pm m\lambda$	光栅衍射主极大,斜入射 $ heta_0$
$m = \frac{d}{a}k$	光栅衍射缺级位置
$ m < \frac{d}{a}$	光栅衍射显见主极大的位置
$R = \frac{\lambda}{\mathrm{d}\lambda} = mN$	光栅分辨本领 (总刻线数 N ,级次 m ,最小可分辨 波长之差 $\mathrm{d}\lambda$)
$2d\sin\alpha = k\lambda$	布拉格定律:干涉相长条件 (晶格常数 <i>d</i> , 掠射角 α, 级次为 <i>k</i>)

2.4 光的偏振、散射、吸收

公式	描述
$P = \frac{I_{\rm p}}{I_{\rm n} + I_{\rm p}} = \frac{I_{\rm M} - I_{\rm m}}{I_{\rm M} + I_{\rm m}}$	光的偏振度 (最大光强 $I_{ m M}$,最小光强 $I_{ m m}$)
$I_x = I_y = \frac{I_0}{2}$	线偏振光光强是自然光的一半
$I = I_0 \cos^2 \theta$	马吕斯定律
$\tan i_{\rm B} = \frac{n_2}{n_1}$	布儒斯特定律(i _B 为布儒斯特角)
$n_{\rm e} = \frac{c}{v_{\rm e}}, n_{\rm o} = \frac{c}{v_{\rm o}}$	垂直光轴方向的 o 光、e 光折射率
$\delta = d n_{\rm o} - n_{\rm e} = \frac{\lambda}{2} (+k\lambda)$	半波片
$\delta = d n_{ m o} - n_{ m e} = rac{\lambda}{4} \left(+ k rac{\lambda}{2} ight)$	四分之一波片
$\alpha = \frac{\psi}{l}, \alpha = \frac{\psi}{cl}$	晶体、液体的旋光率
$I \propto rac{1}{\lambda^4}$	散射光的强度与波长的 4 次方成反比
$v_1 = v + v_0$	拉曼散射紫伴线频率(v 为入射光频率, v ₀ 由介质分子决定)
$v_1' = v - v_0$	拉曼散射红伴线频率
$I = I_0 e^{-\beta x}$	朗伯特定律:光吸收后的光强

3 原子物理篇

3.1 实验基础与基本原理

公式	描述

$\frac{M_{vA}}{a_A} = \frac{M_{vB}}{a_B} = M_v$	基尔霍夫热辐射定律(单色辐射出射度为 M_v ,单色吸收比为 a ,最后一项为黑体)
$M = \sigma T^4$	斯特藩—玻尔兹曼公式(总辐射出射度为 M, 温度为 T)
$\lambda_{\mathrm{M}} \cdot T = b$	维恩位移定律(辐射能量最大的光波长为 λ_{M} ,其温度为 T)
$\varepsilon = hv$	光子的能量
$hv = A + \frac{1}{2}mv_{\rm m}^2$	光电效应方程
$hv_0 = A$	红限频率 (对应 Uc = 0 的频率)
$eU_{\rm c} = \frac{1}{2}mv_{\rm m}^2$	遏止电压
$\Delta \lambda = 2\lambda_{\rm C} \sin^2 \frac{\varphi}{2}$	康普顿公式
$\lambda_{\rm C} = \frac{h}{m_0 c}$	康普顿波长表达式(其中电子静质量为 m_0)
$p = \frac{h}{\lambda}$	德布罗意公式:光子及实物粒子动量
$E^2 = E_0^2 + (pc)^2$	能量动量的相对论表达式
$\hbar = \frac{h}{2\pi}$	约化普朗克常数
$\Delta x \cdot \Delta p \geqslant \frac{\hbar}{2}$	位置、动量不确定性关系(有时取 ½ 为 h 估算)
$\Delta t \cdot \Delta E \geqslant \frac{\hbar}{2}$	时间、能量不确定性关系

3.2 薛定谔方程、一维无限深势阱

公式	描述
$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} + U\psi = E\psi$	一维势场中的定态薛定谔方程(势能 <i>U</i> ,总能量 <i>E</i>)
$\int_{V} \psi ^2 \mathrm{d}V = 1$	归一化条件
$P(x) = \psi(x) ^2$	概率密度函数
$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$	一维无限深势阱的波函数
$E_n = \frac{\pi^2 \bar{h}^2}{2ma^2} \cdot n^2$	一维无限深势阱的能量(动能)
$\frac{1}{\lambda} = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right)$	氢原子光谱(莱曼系 $n=1$,巴耳末系 $n=2$,帕邢系 $n=3$; $m>n$,里德伯常数为 R)
$hv = E_n - E_m $	电子跃迁产生辐射
$E_n = -\frac{13.6}{n^2} (\text{eV})$	氢原子能量量子化
$L = \sqrt{l(l+1)}\hbar$	氢原子角动量量子化
$L_z = m\hbar$	氢原子角动量取向量子化
$m_{\rm s} = \pm \frac{1}{2}$	电子自旋磁量子数