```
library(tidyverse)
## -- Attaching packages -
                                                    ----- tidyverse 1.3.1 --
## v ggplot2 3.3.6
                                0.3.4
                      v purrr
                                1.0.9
## v tibble 3.1.7
                      v dplyr
            1.2.0
## v tidyr
                      v stringr 1.4.0
                      v forcats 0.5.1
## v readr
            2.1.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
numberFamilies <- 10000
load(str_interp("../RObjects/summary_tables/summaryTable${numberFamilies}Families.Rdata"))
summaryTable <- summaryTable[1:1000,]</pre>
logit <- function(x){</pre>
 log(x) - log(1-x)
visual = ggplot(data= summaryTable) + geom_point(aes(x=famID, y=fullCarrierRisk, color="Full Carrier R
 geom_point(aes(x=famID, y=carrierRiskUnaffectedInfoMasked, color = "Carrier Risk with Unaffected Info
 geom_point(aes(x=famID, y= firstDegreeCarrierRisk, color = "First Degree Carrier Risk")) +
 scale_y_log10() +
 labs(title= "MLH1 Carrier Risk", x= "Family ID", y="Carrier Risk")
print(visual)
```

MLH1 Carrier Risk

Next we will generate the same plot but only focus on the full family information and the families with masked unaffected relatives

```
ggplot(data= summaryTable) + geom_point(aes(x=famID, y=fullCarrierRisk, color="Full Carrier Risk")) +
  geom_point(aes(x=famID, y= carrierRiskUnaffectedInfoMasked, color = "Carrier Risk with Unaffected Inf
  scale_y_log10() +
  labs(title= "MLH1 Carrier Risk", x= "Family ID", y="Carrier Risk")
```

MLH1 Carrier Risk

This plot shows the difference between the carrier risk with the unaffected info masked and the full carrier risk

do box plots by proband status

Difference for Carrier Risk

ggplot(data = summaryTable, aes(x = famNumber, y = diffMaskedFull)) +
geom_point(aes(x = famID, y = diffMaskedFull, colour= as.factor(probandAffectionStatus), shape = prob
labs(x = "Family ID", y = "Unaffected Masked Risk - Full Risk", title="Difference for Carrier Risk",

Difference for Carrier Risk

ggplot(data = summaryTable, aes(x = famNumber, y = diffMaskedFull)) +
geom_point(aes(x = famID, y = diffMaskedFull, colour= as.factor(firstDegreeAffectedFamilyMembersBinar
labs(x = "Family ID", y = "Unaffected Masked Risk - Full Risk", title="Difference for Carrier Risk",

Difference for Carrier Risk

Next we will make a box plot to show by number of affected relatives what the difference in risk is

Difference for Carrier Risk by Number of Affected Family Members

Next we will compare the carrier risk scores for the full families and the masked families

This will serve as a starting point for prediction

```
logit <- function(x){
  log(x)-log(1-x)
}
ggplot(data = summaryTable, aes(x= carrierRiskUnaffectedInfoMasked, y= fullCarrierRisk, color = proband
  geom_point() +
  labs(x = "Carrier Risk Unaffected Info Masked", y= "Carrier Risk for Full Family Information", title</pre>
```



```
logit <- function(x){
  log(x)-log(1-x)
}
ggplot(data = summaryTable, aes(x= logit(carrierRiskUnaffectedInfoMasked), y= logit(fullCarrierRisk), c
  geom_point() +
  labs(x = "Carrier Risk Unaffected Info Masked (logit)", y= "Carrier Risk for Full Family Information")</pre>
```



```
logit <- function(x){
  log(x)-log(1-x)
}
ggplot(data = summaryTable, aes(x= logit(carrierRiskUnaffectedInfoMasked), y= logit(fullCarrierRisk), c
  geom_point() +
  labs(x = "Carrier Risk Unaffected Info Masked (logit)", y= "Carrier Risk for Full Family Information")</pre>
```



```
logit <- function(x){
  log(x)-log(1-x)
}
ggplot(data = summaryTable, aes(x= logit(carrierRiskUnaffectedInfoMasked), y= logit(fullCarrierRisk), c
  geom_point() +
  labs(x = "Carrier Risk Unaffected Info Masked (logit)", y= "Carrier Risk for Full Family Information")</pre>
```



```
logit <- function(x){
  log(x)-log(1-x)
}
ggplot(data = summaryTable, aes(x= logit(carrierRiskUnaffectedInfoMasked), y= logit(fullCarrierRisk), c
  geom_point() +
  labs(x = "Carrier Risk Unaffected Info Masked (logit)", y= "Carrier Risk for Full Family Information")</pre>
```


Here we will color by the number of affected relatives to see the relationship between number of affected relatives and carrier risk scores

```
ggplot(data = summaryTable, aes(x= carrierRiskUnaffectedInfoMasked, y= fullCarrierRisk, color = as.fact
geom_point() +
labs(x = "Carrier Risk Unaffected Info Masked", y= "Carrier Risk for Full Family Information", title
```


ggplot(data = summaryTable, aes(x= carrierRiskUnaffectedInfoMasked, y= fullCarrierRisk, color = as.fact
geom_point() +
labs(x = "Carrier Risk Unaffected Info Masked", y= "Carrier Risk for Full Family Information", title

ggplot(data = summaryTable, aes(x= carrierRiskUnaffectedInfoMasked, y= fullCarrierRisk, color = as.fact
geom_point() +
labs(x = "Carrier Risk Unaffected Info Masked", y= "Carrier Risk for Full Family Information", title

Zoom in to the bottom left corner to see if there are any trends there

```
ggplot(data = summaryTable, aes(x= carrierRiskUnaffectedInfoMasked, y= fullCarrierRisk, color = proband
geom_point() +
labs(x = "Carrier Risk Unaffected Info Masked", y= "Carrier Risk for Full Family Information", title
xlim(0, 0.15) + ylim(0, 0.15)
```

Warning: Removed 331 rows containing missing values (geom_point).

use more distinct colors for the color scale an alternative to use 0, 1, 2, 3+ as the categories of the families numaffectedrels

```
ggplot(data = summaryTable, aes(x= carrierRiskUnaffectedInfoMasked, y= fullCarrierRisk, color = as.fact
  geom_point() +
  labs(x = "Carrier Risk Unaffected Info Masked", y= "Carrier Risk for Full Family Information", title
  xlim(0, 0.15) + ylim(0, 0.15)
```

Warning: Removed 331 rows containing missing values (geom_point).

