

TEST REPORT

FCC ID: 2AJVVMX840

Product: Wireless Bluetooth MMCX Cable

Model No.: MX840

Additional Model No.: MX831,MX835,MX868

Trade Mark: PURDIO

Report No.: TCT170327E023

Issued Date: Apr. 06, 2017

Issued for:

ODOYO International Limited
Rm 1103, 11/F., Join-in Hang Sing Centre, 2-16 Kwai Fung Crescent, Kwai
Chung, NT.Hong Kong

Issued By:

Shenzhen Tongce Testing Lab.

1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China

TEL: +86-755-27673339 FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab.

This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1. Test Certification	3
2. Test Result Summary	4
3. EUT Description	5
4. Genera Information	6
4.1. Test environment and mode	6
4.2. Description of Support Units	6
5. Facilities and Accreditations	7
5.1. Facilities	
5.2. Location	
5.3. Measurement Uncertainty	7
6. Test Results and Measurement Data	8
6.1. Antenna requirement	8
6.2. Conducted Emission	9
6.3. Conducted Output Power	13
6.4. Emission Bandwidth	16
6.5. Power Spectral Density	19
6.6. Conducted Band Edge and Spurious Emission Measurement	
6.7. Radiated Spurious Emission Measurement	25
Appendix A: Photographs of Test Setup	
Appendix B: Photographs of EUT	

1. Test Certification

Report No.: TCT170327E023

Product:	Wireless Bluetooth MMCX Cable
Model No.:	MX840
Additional Model No.:	MX831,MX835,MX868
Applicant:	ODOYO International Limited
Address:	Rm 1103, 11/F., Join-in Hang Sing Centre, 2-16 Kwai Fung Crescent, Kwai Chung, NT.Hong Kong
Manufacturer:	ODOYO International Limited
Address:	Rm 1103, 11/F., Join-in Hang Sing Centre, 2-16 Kwai Fung Crescent, Kwai Chung, NT.Hong Kong
Date of Test:	Mar. 28 – Apr. 05, 2017
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB 558074 D01 DTS Meas Guidance v03r05

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Brews Xu	Date:	Apr. 05, 2017	
Reviewed By:	Ride Cheng	Date:	Apr. 06, 2017	<u> </u>
Approved By:	Joe Zhou Tomsin	Date:	Apr. 06, 2017	_

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. EUT Description

Product Name:	Wireless Bluetooth MMCX Cable
Model :	MX840
Additional Model:	MX831,MX835,MX868
Trade Mark:	PURDIO
BT Version:	V4.1 (This report is for BLE)
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Antenna Type:	Ceramic Antenna
Antenna Gain:	2dBi
Power Supply:	DC 3.7V from Rechargeable Li-ion Battery
Remark:	All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement.

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
	<u> </u>		<u></u>					
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9 2420MHz 19 2440MHz 29 2460MHz 39 2480MHz								
Remark:	Remark: Channel 0, 19 & 39 have been tested.							

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	1	1	1	(C)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 572331

Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

CNAS - Registration No.: CNAS L6165
 Shenzhen TCT Testing Technology Co., Ltd. is accredited to ISO/IEC 17025:2005
 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6165.

5.2. Location

Shenzhen Tongce Testing Lab

Address: 1F, Leinuo Watch Building, Fuyong Town, Baoan Dist, Shenzhen, China Tel: 86-755-36638142

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

Report No.: TCT170327E023

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The EUT antenna is a ceramic antenna which permanently attached, and the best case gain of the antenna is 2dBi.

Antenna

6.2. Conducted Emission

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	100			
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
Limits:	0.5-5	56	46			
	5-30	60	50			
	0 00					
	Referer	nce Plane	1201			
Test Setup:	## Adapter Filter AC power					
Test Mode:	Charging + Transmittin	g Mode				
Test Procedure:	1. The E.U.T is connect impedance stabilized provides a 50 ohm/5 measuring equipmer 2. The peripheral deviced power through a List coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10: 2013 of the conducted interface.	ation network OuH coupling im nt. es are also conne SN that provides with 50ohm terr diagram of the line are checke nce. In order to file positions of equal	(L.I.S.N.). This appedance for the ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum and the maximum sipment and all of ged according to			
Test Result:	PASS					

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment Manufacturer Model Serial Number Calibration Du								
EMI Test Receiver	R&S	ESCS30	100139	Aug. 11, 2017				
LISN	LISN Schwarzbeck		8126453	Aug. 16, 2017				
Coax cable (9kHz-40GHz)	тст	CE-05	N/A	Aug. 11, 2017				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

	III. 1 C	or all it	D Class D C	Jonadouoi	(321)	1 000	<i>7</i> 1.			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1655	29.14	11.49	40.63	65.18	-24.55	QP		
2		0.1655	9.98	11.49	21.47	55.18	-33.71	AVG		
3	*	0.4349	23.97	11.34	35.31	57.16	-21.85	QP		
4		0.4349	13.43	11.34	24.77	47.16	-22.39	AVG		
5		1.3665	21.78	11.39	33.17	56.00	-22.83	QP		
6		1.3665	9.64	11.39	21.03	46.00	-24.97	AVG		
7		2.1928	18.01	11.63	29.64	56.00	-26.36	QP		
8		2.1928	5.38	11.63	17.01	46.00	-28.99	AVG		
9		5.0468	15.26	10.63	25.89	60.00	-34.11	QP		
10		5.0468	10.75	10.63	21.38	50.00	-28.62	AVG		
11		28.7103	20.70	10.71	31.41	60.00	-28.59	QP		
12		28.7103	17.07	10.71	27.78	50.00	-22.22	AVG		
	No. 1 2 3 4 5 6 7 8 9 10 11	No. Mk. 1 2 3 * 4 5 6 7 8 9 10 11	No. Mk. Freq. MHz 1 0.1655 2 0.1655 3 * 0.4349 4 0.4349 5 1.3665 6 1.3665 7 2.1928 8 2.1928 9 5.0468 10 5.0468 11 28.7103	No. Mk. Freq. MHz Reading Level ABuV 1 0.1655 29.14 2 0.1655 9.98 3 * 0.4349 23.97 4 0.4349 13.43 5 1.3665 21.78 6 1.3665 9.64 7 2.1928 18.01 8 2.1928 5.38 9 5.0468 15.26 10 5.0468 10.75 11 28.7103 20.70	No. Mk. Freq. MHz Reading Level Level Factor Factor Factor Correct Factor Factor 1 0.1655 29.14 11.49 2 0.1655 9.98 11.49 3 * 0.4349 23.97 11.34 4 0.4349 13.43 11.39 5 1.3665 21.78 11.39 6 1.3665 9.64 11.39 7 2.1928 18.01 11.63 8 2.1928 5.38 11.63 9 5.0468 15.26 10.63 10 5.0468 10.75 10.63 11 28.7103 20.70 10.71	No. Mk. Freq. MHz Level dBuV Factor dBuV ment dBuV 1 0.1655 29.14 11.49 40.63 2 0.1655 9.98 11.49 21.47 3 * 0.4349 23.97 11.34 35.31 4 0.4349 13.43 11.34 24.77 5 1.3665 21.78 11.39 33.17 6 1.3665 9.64 11.39 21.03 7 2.1928 18.01 11.63 29.64 8 2.1928 5.38 11.63 17.01 9 5.0468 15.26 10.63 25.89 10 5.0468 10.75 10.63 21.38 11 28.7103 20.70 10.71 31.41	No. Mk. Freq. MHz Reading Level Level Factor Factor Factor Ment Factor Ment Ment Measure Ment Ment Limit Ment Ment Ment Ment Ment Ment Ment Men	No. Mk. Freq. MHz Reading Level Level Factor Factor Factor Ment Factor Ment Limit Measure Ment Ment Ment Ment Ment Ment Ment Men	No. Mk. Freq. MHz Reading Level Level Factor Factor Factor Ment Factor Ment Limit Limit Limit Limit Dover Over 1 0.1655 29.14 11.49 40.63 65.18 -24.55 QP 2 0.1655 9.98 11.49 21.47 55.18 -33.71 AVG 3 * 0.4349 23.97 11.34 35.31 57.16 -21.85 QP 4 0.4349 13.43 11.34 24.77 47.16 -22.39 AVG 5 1.3665 21.78 11.39 33.17 56.00 -22.83 QP 6 1.3665 9.64 11.39 21.03 46.00 -24.97 AVG 7 2.1928 18.01 11.63 29.64 56.00 -26.36 QP 8 2.1928 5.38 11.63 17.01 46.00 -28.99 AVG 9 5.0468 15.26 10.63 25.89 60.00 -34.11 QP 10 <td>No. Mk. Freq. Level Level Correct Factor Factor ment Factor ment MHz Limit Level Level Factor ment MHz Limit Over Comment 1 0.1655 29.14 11.49 40.63 65.18 -24.55 QP 2 0.1655 9.98 11.49 21.47 55.18 -33.71 AVG 3 0.4349 23.97 11.34 35.31 57.16 -21.85 QP 4 0.4349 13.43 11.34 24.77 47.16 -22.39 AVG 5 1.3665 21.78 11.39 33.17 56.00 -22.83 QP 6 1.3665 9.64 11.39 21.03 46.00 -24.97 AVG 7 2.1928 18.01 11.63 29.64 56.00 -26.36 QP 8 2.1928 5.38 11.63 17.01 46.00 -28.99 AVG 9 5.0468 15.26 10.63 25.89 60.00 -34.11 QP 10</td>	No. Mk. Freq. Level Level Correct Factor Factor ment Factor ment MHz Limit Level Level Factor ment MHz Limit Over Comment 1 0.1655 29.14 11.49 40.63 65.18 -24.55 QP 2 0.1655 9.98 11.49 21.47 55.18 -33.71 AVG 3 0.4349 23.97 11.34 35.31 57.16 -21.85 QP 4 0.4349 13.43 11.34 24.77 47.16 -22.39 AVG 5 1.3665 21.78 11.39 33.17 56.00 -22.83 QP 6 1.3665 9.64 11.39 21.03 46.00 -24.97 AVG 7 2.1928 18.01 11.63 29.64 56.00 -26.36 QP 8 2.1928 5.38 11.63 17.01 46.00 -28.99 AVG 9 5.0468 15.26 10.63 25.89 60.00 -34.11 QP 10

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

Report No.: TCT170327E023

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit	t: FC(C Part 15E	3 Class B C	onduction	(QP)	Powe	er: AC	120V/60Hz		Humidity:	60 %
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment		
1		0.1968	23.83	11.47	35.30	63.74	-28.44	QP			
2		0.1968	11.27	11.47	22.74	53.74	-31.00	AVG			
3		0.4781	22.53	11.32	33.85	56.37	-22.52	QP			
4		0.4781	12.23	11.32	23.55	46.37	-22.82	AVG			
5	*	0.7389	24.76	11.23	35.99	56.00	-20.01	QP			
6		0.7389	8.69	11.23	19.92	46.00	-26.08	AVG			
7		1.4429	23.97	11.43	35.40	56.00	-20.60	QP			
8		1.4429	5.78	11.43	17.21	46.00	-28.79	AVG			
9		4.8750	13.95	10.67	24.62	56.00	-31.38	QP			
10		4.8750	10.18	10.67	20.85	46.00	-25.15	AVG			
11		27.2070	20.86	10.75	31.61	60.00	-28.39	QP			
12		27.2070	18.28	10.75	29.03	50.00	-20.97	AVG			

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	KDB558074				
Limit:	30dBm				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Refer to item 4.1				
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 				
Test Result:	PASS				

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Aug. 11, 2017
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017
Antenna Connector	TCT	RFC-01	N/A	Aug. 12, 2017

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.3.3. Test Data

Report No.: T	CT170327E023
---------------	--------------

BT LE mode						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	7.30	30.00	PASS			
Middle	8.60	30.00	PASS			
Highest	8.68	30.00	PASS			

Test plots as follows:

BT LE mode

Lowest channel

Date: 30.MAR.2017 04:41:29

Middle channel

Date: 30.MAR.2017 04:43:26

Highest channel

Date: 30.MAR.2017 04:44:33

Report No.: TCT170327E023

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r05. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Serial Number	Calibration Due			
Spectrum Analyzer	R&S	FSU	200054	Aug. 11, 2017		
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017		
Antenna Connector	TCT	RFC-01	N/A	Aug. 12, 2017		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Test channel

6.4.3. Test data

Result

	Lowest	701.92	>500k		
	Middle	698.72	>500k	PASS	
	Highest	695.51	>500k		
Test plot	s as follows:				

6dB Emission Bandwidth

(kHz)

Limit

BT LE mode

Middle channel

Date: 30.MAR.2017 04:38:58

Highest channel

Date: 30.MAR.2017 04:37:14

6.5. Power Spectral Density

6.5.1. Test Specification

est Method:	KDB558074
mit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
est Setup:	Eur Eur
(M - 1 -	Spectrum Analyzer
est Mode:	Refer to item 4.1
est Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v03r05 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
est Result:	PASS

6.5.2. Test Instruments

RF Test Room						
Equipment Manufacturer Model Serial Number Calibration						
Spectrum Analyzer	R&S	FSU	200054	Aug. 11, 2017		
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017		
Antenna Connector	тст	RFC-01	N/A	Aug. 12, 2017		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.5.3. Test data

Test channel	Power Spectral Density (dBm/3kHz)				
rest channel	BT LE mode	Limit	Result		
Lowest	-8.24	8 dBm/3kHz			
Middle	-6.69	8 dBm/3kHz	PASS		
Highest	-6.58	8 dBm/3kHz			

Test plots as follows				

Lowest channel

Date: 30.MAR.2017 04:52:12

Middle channel

Date: 30.MAR.2017 04:51:30

Highest channel

Date: 30.MAR.2017 04:48:26

6.6. Conducted Band Edge and Spurious Emission Measurement

6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB and 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Structure Analysis EUT				
Tool Mode	Spectrum Analyzer				
Test Mode:	Refer to item 4.1				
Test Procedure:	 The RF output of EUT was connected to the spectrun analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging ove a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band 				
Test Result:	PASS				

6.6.2. Test Instruments

RF Test Room										
Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	R&S	FSU	200054	Aug. 11, 2017						
RF cable (9kHz-40GHz)	тст	RE-06	N/A	Aug. 12, 2017						
Antenna Connector	TCT	RFC-01	N/A	Aug. 12, 2017						

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.6.3. Test Data

6.7. Radiated Spurious Emission Measurement

6.7.1. Test Specification

Test Requirement:	FCC Part15	C Section	15.209	(0)		(60		
Test Method:	ANSI C63.10	D: 2013						
Frequency Range:	9 kHz to 25 (GHz	3					
Measurement Distance:	3 m	K			1/0			
Antenna Polarization:	Horizontal &	Vertical						
Operation mode:	Refer to item	1 4.1	((C)		(,c		
	Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW 200Hz	VBW 1kHz	+	Remark si-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peal		30kHz	1	si-peak Value		
Neceiver Getup.	30MHz-1GHz Above 1GHz	Quasi-peal Peak Peak	100KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Р	si-peak Value eak Value erage Value		
	Frequen	ncy	Field Str	ength s/meter)	Ме	asurement nce (meters)		
	0.009-0.4 0.490-1.7		2400/F(24000/F			300 30		
	1.705-3		30	(KLIZ)	30			
	30-88		100	1	(AC	3		
	88-216		150		-	3		
Limit:	216-96	0	200			3		
Ellint.	Above 9	60	500			3		
	Frequency		Field Strength (microvolts/meter)		ment ice rs)	Detector		
	Above 1GHz	z	500 5000		(0	Average Peak		
Test setup:	For radiated emissions below 30MHz Distance = 3m Computer Pre -Amplifier Receiver							
	30MHz to 10	SHz						

while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final

TESTING CENTRE TECHNOLOGY	Report No.: TCT170327E0
	measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB
	 lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace =
	max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 4.1 for details
Test results:	PASS

6.7.2. Test Instruments

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
ESPI Test Receiver	ROHDE&SCHW ARZ	ESVD	100008	Aug. 11, 2017
Spectrum Analyzer	ROHDE&SCHW ARZ	FSEM	848597/001	Aug. 11, 2017
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Aug. 11, 2017
Pre-amplifier	HP	8447D	2727A05017	Aug. 11, 2017
Loop antenna	ZHINAN	ZN30900A	12024	Aug. 13, 2017
Broadband Antenna	Schwarzbeck	VULB9163	340	Aug. 13, 2017
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Aug. 13, 2017
Horn Antenna	Schwarzbeck	BBHA 9170	373	Aug. 13, 2017
Antenna Mast	ccs	CC-A-4M	N/A	N/A
Coax cable (9kHz-40GHz)	тст	RE-low-01	N/A	Aug. 11, 2017
Coax cable (9kHz-40GHz)	тст	RE-high-02	N/A	Aug. 11, 2017
Coax cable (9kHz-40GHz)	тст	RE-low-03	N/A	Aug. 11, 2017
Coax cable (9kHz-40GHz)	тст	RE-high-04	N/A	Aug. 11, 2017
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data

Please refer to following diagram for individual Below 1GHz

Horizontal:

Site Chamber Polarization: Horizontal Temperature: 25 (C)
Limit: FCC Class B 3M Radiation Power: AC 120V/60Hz Humidity: 55 %

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
7			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
K	1		31.9586	31.39	-13.47	17.92	40.00	-22.08	QP	
	2		53.3793	32.94	-12.29	20.65	40.00	-19.35	QP	
	3		106.2810	31.04	-11.79	19.25	43.50	-24.25	QP	
_	4		187.7829	40.56	-12.52	28.04	43.50	-15.46	QP	
_	5	:	210.1294	39.24	-11.33	27.91	43.50	-15.59	QP	
	6	*	360.9775	38.24	-6.99	31.25	46.00	-14.75	QP	

Limit: FCC Class B 3M Radiation Power: AC 120V/60Hz Humidity: 55 %

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			/
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
	1 *	48.0392	45.58	-12.12	33.46	40.00	-6.54	QP		
	2	80.2382	35.62	-16.27	19.35	40.00	-20.65	QP		
,	3	148.9173	34.21	-15.18	19.03	43.50	-24.47	QP		
	4	208.6579	36.30	-11.38	24.92	43.50	-18.58	QP		
	5	302.8192	30.04	-8.19	21.85	46.00	-24.15	QP		,
	3	481.5110	29.66	-3.56	26.10	46.00	-19.90	QP		

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Low channel) was submitted only.

Above 1GHz

	Low channel: 2402 MHz										
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
3	2390	Η	45.64		-7.52	38.12		74	54	-15.88	
/	4804	Η	44.59		7.44	52.03		74	54	-1.97	
	7206	Η	37.06		13.54	50.6		74	54	-3.4	
		Н							 /.		
		.G)		(.G			.GN				
	2390	V	45.81		-7.52	38.29	<u></u>	74	54	-18.71	
	4804	V	44.75		7.44	52.19		74	54	-1.81	
	7206	V	38.22		13.54	51.76		74	54	-2.24	
		V				×		(**)			

Middle cha	nnel: 2440	MHz							
Frequency (MHz)	Ant. Pol. Peak reading (dBµV)		AV reading (dBµV)	Correction Emission Level Factor Peak AV (dB/m) (dBµV/m) (dBµV/m)		Peak limit (dBµV/m)		Margin (dB)	
4880	(CH)	45.07	-420	7.01	52.08	(C)) -	74	54	-1.92
7320	4	38.50		13.21	51.71	<u></u>	74	54	-2.29
	Н								
4880	V	45.81		7.01	52.82		74	54	-1.18
7320	V	39.06		13.21	52.27		74	54	-1.73
	V								

High channel: 2480 MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	ading Factor Peak AV		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
2483.5	Н	41.58		-7.52	34.06		74	54	-19.94	
4960	Н	45.66		7.44	53.1		74	54	-0.9	
7440	Н	38.20		13.54	51.74		74	54	-2.26	
	Н)		\\\/			
2483.5	V	42.54		-7.52	34.79		74	54	-18.98	
4960	V	44.71		7.44	52.15		74	54	-1.85	
7440	CV	38.34	- -	13.54	51.88	(C)	74	54	-2.12	
	V					<u></u>				

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix A: Photographs of Test Setup

Refer to test report TCT170327E021

Appendix B: Photographs of EUT

Refer to test report TCT170327E021

*****END OF REPORT****

