Dual ground sense operational amplifier

BA10358 / BA10358F / BA10358FV / BA10358N

The BA10358, BA10358F, BA10358FV, and BA10358N are monolithic ICs with two independent built-in operational amplifiers featuring high gain and frequency compensation.

These products offer a particularly wide range of operating voltages, from 3 to 32V (when using a single power supply). Current dissipation is low and remains constant regardless of the power supply voltage. Available packages include an 8-pin DIP (BA10358), an 8-pin SOP (BA10358F), an 8-pin SSOP-B (BA10358FV), and an 8-pin SIP (BA10358N).

Features

- 1) Can be driven with a single power supply.
- 2) Extremely low current dissipation.
- 3) Level is compatible with any kind of logic circuit.
- 4) Operating voltage range is 3 to 32V for single power supply, ±1.5 to ±16V for dual power supply.
- 5) High DC voltage gain.

- 6) Wide frequency response.
- Pin assignments is the same as the general-purpose 4558 model.
- Compatible with model 358 operation amplifiers of other manufacturers.

Absolute maximum ratings

Parameter	Symbol		l lait				
		BA10358	BA10358F	BA10358FV	BA10358N	Unit	
Power supply voltage	Vcc	32 (± 16)	32 (± 16)	32 (± 16)	32 (± 16)	V	
Power dissipation	Pd	800*	550*	350*	900*	mW	
Differential input voltage	VID	± Vcc	± Vcc	± Vcc	± Vcc	V	
Common-mode input voltage	Vı	- 0.3 ~ Vcc	V				
Operating temperature	Topr	- 40 ~ +85	- 40 ~ +85	- 40 ~ +85	- 40 ~ + 85	°C	
Storage temperature	Tstg	- 55 ~ + 125	°C				

^{*} Refer to the Pd characteristic diagram.

The values for the BA10358F are those when it is mounted on a glass epoxy board (50mm × 50mm × 1.6mm).

The values for the BA10358FV are those when it is mounted on a glass epoxy board (70mm \times 70mm \times 1.6mm).

●Block diagram

•Internal circuit configuration (diagram shows only one channel)

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = +5 V)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions	
Input offset voltage		Vio	_	2	7	mV	$Rs = 50\Omega$	
Input offset current		lio	_	5	50	nA	<u> </u>	
Input bias current		Ів	_	45	250	nA	_	
High-amplitude voltage gain		Av	25	100	_	V / mV	$R_L \ge 2k\Omega$, $Vcc = 15V$	
Common-mode input voltage		Vісм	0	_	Vcc - 1.5	V	_	
Output voltage		Vo	0	_	Vcc – 1.5	V	$R_L = 2k\Omega$	
Common-mode rejection ratio		CMRR	65	80	_	dB	-	
Power supply voltage rejection ratio		PSRR	65	100	_	dB	$Rs = 50\Omega$	
Quiescent current		lα	_	0.7	1.2	mA	$R_L = \infty$, on All Op - Amps	
Channel separation		cs	_	120	_	dB	f = 1 kHz input conversion	
Maximum output current	source	Isource	10	20	_	mA	$V_{IN^{+}} = 1V$, $V_{IN^{-}} = 0V$, $V_{O} = 0V$	
	sink	İsink	10	20	_	mA	$V_{IN^-} = 1V$, $V_{IN^+} = 0V$, $V_0 = V_{CC}$	

Electrical characteristic curves

Fig. 1 Power dissipation vs. ambient temperature

Fig. 4 Maximum output voltage vs.frequency

Fig. 2 Quiescent current vs. power supply voltage

Fig. 5 Input bias current vs. ambient temperature

Fig. 3 Open loop voltage gain vs. frequency

Fig. 6 Input bias current vs. power supply voltage

Fig. 7 Voltage difference during power supply output vs. output source current

Fig. 8 Output voltage vs. output sink current

Fig. 9 Output response characteristics

Operation notes

(1) Handling unused circuits If there are any circuits which are not being used, we recommend making connections as shown in Figure 10, with the non-inverted input pin connected to the potential within the in-phase input voltage range (VICM).

Fig. 10 Handling unused circuits

●External dimensions (Units: mm)

