Table of Contents

Page -548-

GAMMA-RAY ENERGIES AND INTENSITIES (page 1 of 2)

Nuclide: 142 Ba $_{\gamma}$, σE_{γ} , I_{γ} , σI_{γ} - 1998 ENSDF Data Half Life: 10.6(2) min.

Detector: 35 cm³ coaxial Ge (Li)

Method of Production: U(n,f) chem

	E _γ (keV)	σE_{γ}	l _γ (rel)	l _γ (%)	σ l $_{\gamma}$	S
	8.7					4
	63.60	0.10		0.090	0.013	4
	68.30	0.10	1.0	0.078	0.010	4
D	68.30	0.10		0.082	0.019	
	69.70	0.10		0.262	0.014	
	77.594	0.003	42.0	9.5	0.4	3
	79.8			0.037	0.012	4
	84.0		<1.0	0.031	0.010	4
	123.00	0.10	4.2	0.92	0.04	4
	130.0			0.062	0.016	4
	147.5			0.074	0.012	4
	153.10	0.10		0.086	0.021	4
	154.60	0.10	2.7	0.48	0.03	4
	162.30	0.10		0.113	0.009	4
	172.6	0.3		0.037	0.014	4
	177.00	0.10	6.5	1.72	0.06	4
D	215.70	0.20	4.0	0.10	0.04	4
ט	216.60	0.10	1.2	0.20	0.04	
	220.20	0.20		0.066	0.012	4
	222.80	0.10	1.7	0.322	0.014	4
	231.611	0.010	57.0	12.1	0.4	2
	242.90	0.20	1.5	0.18	0.04	4
D	253.70	0.10	100.	0.53	0.04	2
ט	255.300	0.012	100.	20.5	0.8	
	257.50	0.10		0.14	0.03	4
	269.50	0.10	4.6	0.92	0.09	4
	283.50	0.20		0.29	0.08	4
- - - -	286.30	0.10	5.9	1.11	0.09	4
	309.20	0.10	15.0	2.58	0.11	4
	335.00	0.10	7.6	1.47	0.04	4
	337.70	0.20	1.6	0.310	0.024	4
	340.5	0.7		0.025	0.020	4
	346.80	0.20		0.133	0.013	4
	354.7			0.049	0.016	4

E _γ (keV)	σE_{γ}	l _γ (rel)	Ι _γ (%)	σ l $_{\gamma}$	S
356.8	,		0.082	0.025	4
363.96	0.03	28.0	4.72	0.20	3
379.40	0.10	3.5	0.576	0.021	4
380.0		~1.0	0.066	0.023	4
412.7			0.055	0.027	4
417.80	0.20	2.2	0.37	0.04	4
425.04	0.03	30.0	5.72	0.20	3
432.30	0.10	6.0	1.02	0.09	4
434.40	0.10		0.45	0.06	4
448.30	0.10		0.248	0.016	4
457.10	0.10		0.373	0.018	4
473.40	0.10	2.4	0.416	0.019	4
488.30	0.20		0.092	0.015	4
537.20	0.20		0.070	0.012	4
557.70	0.10		0.246	0.012	4
577.70	0.20		0.068	0.010	4
588.40	0.20		0.090	0.015	4
590.70	0.10	3.3	0.310	0.017	4
599.80	0.10	12.0	1.84	0.06	4
604.30	0.20		0.418	0.024	4
620.3	0.3		0.049	0.012	4
622.80	0.20		0.066	0.012	4
649.30	0.20		0.070	0.012	4
654.60	0.20		0.088	0.013	4
660.90	0.10		0.226	0.014	4
674.4	0.6		0.066	0.027	4
674.7	0.7		0.070	0.027	4
714.4	0.4		0.041	0.014	4
769.40	0.10	3.8	0.752	0.029	4
771.90	0.20		0.094	0.015	4
786.60	0.20		0.189	0.015	4
791.60	0.20		0.084	0.015	4
823.4	0.3		0.29	0.10	4
840.40	0.10	18.0	3.61	0.16	3

GAMMA-RAY ENERGIES AND INTENSITIES (page 2 of 2)

Half Life: 10.6(2) min.

Detector: 35 cm³ coaxial Ge (Li)

Method of Production: U(n,f) chem

E _γ (keV)	σE_{γ}	I_{γ} (rel)	l _γ (%)	σ l $_{\gamma}$	S
853.0			0.031	0.016	4
895.20	0.10	69.0	13.9	0.6	2
907.2	0.4		0.041	0.014	4
931.6	0.4		0.08	0.06	4
932.6	0.9		0.08	0.06	4
934.0			0.031	0.016	4
949.10	0.10	58.0	10.6	0.4	4
984.5	0.3		0.074	0.014	4
1001.20	0.10	52.0	9.7	0.4	2
1033.00	0.10		0.342	0.018	4
1040.0			0.078	0.027	4

	E _γ (keV)	σE_{γ}	l _γ (rel)	Ι _γ (%)	σ l $_{\gamma}$	S
	1078.70	0.10	59.0	11.5	0.5	2
	1094.10	0.10	16.0	2.81	0.15	3
	1114.4	0.4		0.10	0.04	4
D	1122.90	0.10	2.3	0.392	0.020	4
	1126.80	0.10	8.9	1.50	0.13	3
	1148.70	0.10	2.3	0.498	0.024	4
	1202.40	0.10	97.0	5.54	0.26	1
	1204.30	0.10		14.2	0.5	•
	1230.20	0.20		0.084	0.009	4
	1283.6	0.3		0.066	0.012	4
	1380.20	0.10	15.0	3.40	0.19	2

