

An Overview of the SysML-Modelica Transformation Specification

Chris Paredis (Georgia Tech)

Y. Bernard (Airbus), R. Burkhart (Deere & Co), H. de Koning (ESA/ESTEC), S. Friedenthal (Lockheed Martin Corp.), P. Fritzson (Linköping University), N. Rouquette (JPL), W. Schamai (EADS)

SysML-Modelica Transformation Specification: Context & Objective

- > Two complementary languages for Systems Engineering:
 - Descriptive modeling in SysML
 - Formal equation-based modeling for analyses and trade studies in Modelica

➤ Objective:

- Leverage the strengths of both SysML and Modelica by integrating them to create a more expressive and formal MBSE language.
- Define a formal Transformation Specification:
 - a SysML4Modelica profile
 - a Modelica abstract syntax metamodel
 - a mapping between Modelica and the profile

Presentation Overview

- What is SysML?
- What is Modelica?
- ➤ Motivating Example: Design & Analysis of Robot
- SysML-Modelica Transformation Specification
- Transformations in Systems Modeling
- Model reuse and composition
- > Summary

What is SysML?

- ➤ The Systems Modeling Language (OMG SysMLTM) is a *visual, general purpose modeling language*
- > Is a modeling language that provides
 - Semantics = meaning
 - Notation = representation of meaning
- > Is not a methodology or a tool
 - SysML is methodology and tool independent
- Developed by the Object Management Group to support Model-Based Systems Engineering

What Can be Expressed in SysML?

- SysML is a language to express the information and knowledge generated and processed during the application of a systems development methodology
 - Specification
 - Analysis
 - Design
 - Verification
 - Validation

- Hardware
- Software
- Data
- Personnel
- Procedures
- Facilities

SysML Diagram Taxonomy

Think of SysML as an integrated collection of languages...

Reprinted with permission. Copyright © 2006-2008 by Object Management Group.

Some History...

Specification: http://www.omg.org/spec/SysML/

- v1.0: 2007-09

- v1.1: 2008-11

- v1.2: 2010-06

v2.x: RFI preparation workshop - 2008-12

MagicDraw (No Magic), Artisan Studio (Atego),
 Enterprise Architect (Sparx Systems), Rhapsody (IBM),...

Good learning infrastructure

Books, short courses, academic courses,
 INCOSE/OMG tutorial, public examples, etc.

OMG Certified Systems Modeling Professional

– http://www.omg.org/ocsmp/

What is SysML? (www.omgsysml.org)

3. Requirements

4. Parametrics

What is SysML? (www.omgsysml.org)

What is Modelica? (www.modelica.org)

- State-of-the-art Modeling Language for System Dynamics
 - Differential Algebraic Equations (DAE)
 - Discrete Events
- > Formal, object-oriented language
- Standardized by the Modelica Association
 - Open language specification tool independent
- Multi-domain modeling
- Ports represent energy flow (undirected) or signal flow (directed)
- Acausal, equation-based, declarative (f-m*a=0)

Modelica: Active and Mature Community

- ➤ Modelica association 20+ free libs (www.modelica.org)
- ➤ 6 commercial solvers, 3 open-source solvers (Dymola, MapleSim, SimulationX, OpenModelica,...)
- ➤ EUROSYSLIB project 20+ libs under development (http://www.itea2.org/public/project_leaflets/EUROSYSLIB_profile_oct-07.pdf)

Georgia Institute of Technology A Robot Example in Modelica Model-Based Systems Engineering Center mechanics axisControlBus initializeFlange axis3 tau1 [N.m] 2000 motor tordus tau4 [N.m] - tau5 [N.m -3000 + axisControlBus

Modelica Semantics and Textual Syntax


```
model Spring "Linear 1D translational spring"
  extends Translational.Interfaces.PartialCompliant;
  parameter SI.TranslationalSpringConstant c(final min=0, start = 1)
        "spring constant ";
  parameter SI.Distance s_rel0=0 "unstretched spring length";

equation
  f = c*(s_rel - s_rel0);
end Spring;
```


Graphical symbols defined as annotations in textual models

- > Connections represent Kirchhoff semantics
 - Across variables (voltage, pressure,...) are equal
 - Through variables (current, flow rate,...) add to zero

Presentation Overview

- ➤ What is SysML?
- What is Modelica?
- Motivating Example: Design & Analysis of Robot
 - SysML-Modelica Transformation Specification
 - > Transformations in Systems Modeling
 - > Timeline towards Specification Adoption
 - > Summary

Georgia Institute of Technology A Robot Example in Modelica Model-Based Systems Engineering Center mechanics axisControlBus initializeFlange axis3 tau1 [N.m] 2000 motor tordus tau4 [N.m] - tau5 [N.m -3000 + axisControlBus

SysML-Modelica Robot Example: UseCases & Requirements

SysML-Modelica Robot Example: Robot Domain BDD & IBD

SysML-Modelica Robot Example: Robot BDD & IBD

SysML-Modelica Robot Example: Robot Arm BDD

SysML-Modelica Robot Example: Analysis and Trade Study

SysML4Modelica Analytical Model: Compose Model from Standard Library

/modelicaParts

SysML4Modelica Analytical Model: Detailed IBD

SysML4Modelica Analytical Model: Detailed IBD

SysML4Modelica Analytical Model: Relation to Modelica Native Model

ibd [ModelicaModel] RobotAnalyticalDomain [ModelicaRobot] «modelicaPort» controlBus : ControlBus pathPlanning : PathPlanning6 «modelicaConnection» «modelicePort» «modelicePort» «modelicePort» emodelicaParts «modelicaConnection» axisControlBus : AxisControlBus flange : Flange_b axis6 : Flange_a ics : MechanicalStructure axis6 : AxisType2 «modelicaConnection «modelicaPort» «modelicaPort» «modelicaPort» axisControlBus : AxisControlBus «modelicaPart» axis5 : Flange_a flange : Flange_b «modelicaConnection» axis5 : AxisType2 «modelicaConnection» ~modelicaPort» «modelicaPort» «modelicaPort» «modelicaPart» axisControlBus : AxisControlBus flange : Flange_b axis4: AxisType2 pathPlanning «modelicaPort» «modelicaPort» «modelicaPort» modelicaConnection» axisControlBus : AxisControlBus «modelicaPart» axis3 : Flange_a flange : Flange b axis3: AxisType1 «modelicaPort» «modelicaPort» «modelicaPort» «modelicaPort» controlBus «modelicaConnection» axisControlBus : AxisControlBus «modelicaPart» flange : Flange_b axis2: Flange_a axis2: AxisType1 axis6 «modelicaPort» «modelicaPort» «modelicaPort» tro@ua6 flange : Flange_b axis1 : Flange_a mechanics axis1: AxisType1 axish axisControlBus5 axis4 controlBus axis3 axisControlBus3 axisControlBus2 axisControlBus1

SysML4Modelica Analytical Model: Allocation Georgia Institute schnology

rd: RobotDomain

rob: Robot

«modelicaModel»

SysML-Modelica Robot Example: Modelica model with simulation results

Nodel-Based Systems Engineering Center

SysML-Modelica Robot Example: Analysis and Trade Study

Presentation Overview

- What is SysML?
- What is Modelica?
- ➤ Motivating Example: Design & Analysis of Robot
- SysML-Modelica Transformation Specification
 - Transformations in Systems Modeling
 - > Timeline towards Specification Adoption
 - > Summary

SysML-Modelica Transformation Specification

SysMLModelica
Transformation
follows the
principles
of ModelDriven
Architecture
(MDA)

SysML4Modelica Profile

Reference implementation: Based on OMG QVT

QVT = Query / View / Transformation

Transformations in Systems Modeling

- Model Object
- **D** Model Dependency

Transformations in Systems Modeling

Model Reuse in MBSE

Revision by GIT; Original Source: OMG SysML Tutorial (June 2008). Reprinted with permission. Copyright © 2006-2008 by Object Management Group.

Reusable Models in MBSE

- Physical components are reused
- Portions of the systems model repeat
- Patterns for instantiating these portions

- ➤ Component models → Domain specific model libraries
- Application of pattern = model transformations

Model Library of Hydraulic Components

- Georgia Institute
 of Technology

 Model-Based Systems

 Engineering Center
- Needs to be carefully designed and managed
- > Encodes domain knowledge

Other Perspectives of Cylinder are Reusable

- When cylinder is used, other corresponding models are often used also
- → Capture the reuse pattern

Correspondence Patterns

Engineering Center bdd [Package] ModelCorrespondence [R ModelCorrespondence] «block» ModelCorrespondenceContext -analytical -descriptive «GamsModel» portA: FluidFlow «allocate» portA: FluidConnector Cylinder Cylinder (boreDiameter =e= sum(cylinderId, cylinderSelect(cylinderId)*boreDiameterCatalogData(cylinderId)) portB : FluidConnector portB : FluidFlow «allocate» cost =e= sum(cylinderId, cylinderSelect(cylinderId)*costCatalogData(cylinderId)) sum(cylinderld, cylinderSelect(cylinderld))=e=1 cost: \${unit = Dollar} rodEnd : FluidConnector rod: TransEnergyFlow «allocate» f =e= (Pi*0.25*sqr(boreDiameter)*portA.p) - (Pi*0.25*(sqr(boreDiameter)-sqr(rodDiameter))*portB.q) stroke : m{unit = Meter} mass: kg{unit = Kilogram} mass =e= sum(cylinderId, cylinderSelect(cylinderId)*massCatalogData(cylinderId)) base : TransEnergyFlow «allocate» baseEnd : FluidConnector boreD : m{unit = Meter} maxPressure =e= sum(cylinderld, cylinderSelect(cylinderld)*maxPressureCatalogData(cylinderld)). portA.p = = maxPressure portA.g =e= v*0.25*Pi*sgr(boreDiameter) portB.p = |= maxPressure portB.q*sqr(boreDiameter) + portA.q*(sqr(boreDiameter)-sqr(rodDiameter)) =e= 0, rodDiameter =e= 0.5*boreDiameter strokeLength =e= sum(cylinderId, cylinderSelect(cylinderId)*strokeLengthCatalogData(cylinderId)) time*abs(portA.q) =e= I*0.25*Pi*sqr(boreDiameter) time =q= 0.00001 «refine» abs(v)*time =e= |} values «GamsVariable»boreDiameter : m «Gams Variable» stroke Length: m par [Block] ModelCorrespondenceContext [R ModelCorrespondenceContext] «Ga «Ga Analytical Model refines the «Ga «Ga Descriptive Model «Ga descriptive : Cylinder analytical: Cylinder «Ga «Ga • Structural ports are allocated to «Ga cost:\$ cost:\$ «Ga corresponding analytical ports «Ga «Ga strokeLength: m stroke: m • Descriptive properties bound to «Ga «Ga analytical properties mass: kg mass: kg boreD: m boreDiameter: m

Model Composition using Model Transformations

Descriptive to Analytical Transformation

Model-Based Systems
Engineering Center

Summary

> Objective:

 Leverage the strengths of both SysML and Modelica by integrating them to create a more expressive and formal MBSE language.

Descriptive Modeling in SysML

Formal Equation-Based Modeling for Analyses and Trade Studies in Modelica

http://doc.omg.org/syseng/2010-6-8

Acknowledgements

Working Group Members

- Yves Bernard (EADS)
- Roger Burkhart (Deere & Co)
- Wuzhu Chen (Univ. Braunschweig)
- Hans-Peter De Koning (ESA)
- Sandy Friedenthal (Lockheed Martin)
- Peter Fritzson (Linköping University)
- Nerijus Jankevicius (No Magic)
- Alek Kerzhner (Georgia Tech)
- Andreas Korff (Atego)
- Chris Paredis (Georgia Tech)
- Axel Reichwein (Georgia Tech)
- Nicolas Rouquette (JPL)
- Wladimir Schamai (EADS)

Students / post-docs

- Kevin Davies
- Sebastian Herzig
- > Alek Kerzhner
- Ben Lee
 - Roxanne Moore
 - Marc Pare
- Axel Reichwein
 - Wladimir Schamai

Sponsors

- Deere & Co
- Lockheed Martin
- National Science Foundation