

4^{ème}Math Classe: (Gr standard)

Série 19 chimie (les acides et les bases)

Prof: Karmous Med

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

1- Le tableau ci-dessous regroupe des couples acide/base avec leur pka ou pkb.

Couple A/B	рКа	pKb	Ka	Kb
/ NH ₂			10 ⁻²³	
С ₆ Н ₅ СООН/	3,2			
NH ₄ ⁺ /		4,75		
/CO ₃ ²⁻				2,09.10 ⁻⁴
H ₂ SO ₄ /			10 ⁴	

- a- Compléter le tableau.
- b- Classer, par force croissante, les acides entre eux et les bases entre elles.
- 2-
- a- Donner la définition d'un ampholyte.
- **b-** Déterminer les ampholytes présents dans le tableau ci-dessus.

Exercice 2

- 1°) a- Définir un acide et une base selon la théorie de Bronsted.
 - b- Préciser les couples acide-base montrant que l'eau est un amphotère.
- 2°)On donne la classification des acides suivants par ordre de force d'acidité croissante.

- a- Lequel de ces acides est pris comme acide de référence ?
- **b-** On donne:

pK _a	3,17	-2	9,2	-1,74
Pa	- ,- :	_	- ,—	_,

Attribuer à chaque acide le $\mathbf{pK_a}$ correspondant. Justifier la réponse.

- c- Montrer que HNO3 est un acide fort alors que NH4+ et HF sont des acides faibles.
- 3°)a- Donner la formule chimique des bases conjuguées correspondant à chaque acide.
 - b- Classer en justifiant ces bases par ordre de force de basicité décroissante

Exercice 3

Acide	CH₃CO₂H	C₂H₅NH₃⁺	HCIO
pKa	4,75	10,8	7,5

1°) a-Ecrire l'équation de dissociation ionique de l'acide C₂H₅NH₃⁺ dans l'eau.

b-Donner l'expression de sa constante d'acidité Ka.

2°) a- Classer par ordre croissant de leurs forces les trois acides .Justifier .

b-En déduire un classement par ordre croissant de leurs bases conjuguées.

3°) a-Ecrire l'équation de la réaction acido basique qui fait intervenir les acides CH₃CO₂H et HClO.

b-Montrer que la constante d'équilibre **K** relative à cette réaction peut s'écrire sous la forme :

$$k=$$
 $\frac{K_{al} \quad (CH3COOH)}{Ka_{2} \quad (HClO)}$. La calculer.

Exercice 4

On considère la réaction suivante :

$$NH_4^+ + HCO_2^-$$

NH₃ + HCO₂H

1°) Montrer que cette réaction est une réaction acido-basique.

2°) a- Quels sont les deux couples acide /base mis en jeu ?

b- Ecrire l'équation formelle de chaque couple.

3°) Appliquer le loi d'action de masse relative à cette réaction.

4°) La constante d'équilibre relative à la réaction est K= 2,8.10⁻⁶ et le pKa auquel appartient HCO₂H est 3,7.

a- En exploitant la valeur de K, déduire le couple dont la base est la plus forte.

b- Déterminer la valeur de pKa du couple auquel appartient NH₄⁺

Exercice 5

On considère la réaction suivante : $HNO_2 + HCO_2$ \longrightarrow $NO_2 + HCO_2H$

1°) Montrer qu'il s'agit d'une réaction acide-base.

2°)Quels sont les couples acide-base mis en jeu au cours de la réaction?

1°) a- Exprimer la constante d'équilibre K de la réaction en fonction de $\ K_{a_1}$ et $\ K_{a_2}$.

b-On donne :
$$pK_{a_1} (HNO_2 / NO_2) = 3,3$$
; $pK_{b_2} (HCO_2H / HCO_2) = 10,25$ et $pK_e = 14$

. Déterminer la valeur de K.

c-Comparer les forces des acides et celles des bases des couples mis en jeu dans la réaction.

3°)On considère un système chimique contenant : 0,1 mol de HNO₂, 0,2 mol de HCO₂H, 0,5 mol de HCO₂- et 0,4 mol de NO₂-. Le système est-il en équilibre ? Si non dans quel sens évolue-t-il ? Justifier.

Exercice 6

On considère les couples suivants : HF/F^- ($K_{b1} = 1.58.10^{-11}$) et HNO_2/NO_2^- ($ka_2 = 5.10^{-4}$)

1°)Comparer, en le justifiant, les forces des acides d'une part et les forces des bases d'autre part.

2°) Ecrire les équations des réactions de l'acide HNO et de la base F-avec l'eau.

3°)Ecrire l'équation de la réaction mettant en jeu les couples HF/F et HNO₂ /NO₂ (HF à gauche).

4°)Déterminer l'expression de la constante d'équilibre K relative à cette réaction en fonction de ke, Ka_2 et K_{b_1} et calculer sa valeur

5°) Comparer les forces de deux acides, en utilisant la valeur de K.

Exercice 7

Acide méthanoïque HCOOH (aq) / ion méthanoate HCOO⁻ (aq) : $\mathbf{pKa_1} = 3.8$ Acide benzoïque C_6H_5COOH (aq) /ion benzoate $C_6H_5COO^-$ (aq) : $\mathbf{pKa_2} = 4.2$

 \mathcal{D} n dispose de solutions aqueuses d'acide méthanoïque et d'acide benzoïque de même concentration molaire en soluté apporté $C = 10^{-2}$ mol.L-1.

La mesure du pH d'un volume $V = 10 \ mL$ d'une solution aqueuse d'acide méthanoïque donne $PH_1 = 2.9$

A- Etude de la réaction de l'acide méthanoïque avec l'eau.

- 1°) Écrire l'équation bilan de la réaction l'acide méthanoïque avec l'eau.
- 2°) Dresser un tableau descriptif de l'évolution du système chimique.
- 3°) Calculer l'avancement final $\mathbf{x}_{\mathbf{f}}$, l'avancement maximal xmax ; et en déduire son taux d'avancement final. Conclure.

4°) Donner l'expression de la constante d'acidité du couple HCOOH (aq)/HCOO- (aq).

B- Soit la réaction chimique suivante :

$$HCOOH_{(aq)} + C_6H_5COO_{(aq)}$$
 \longleftrightarrow $HCOO_{(aq)} + C_6H_5COOH_{(aq)}$

- 1°) Exprimer la constante d'équilibre de cette réaction en fonction de pKa₁ et pKa₂ puis calculer sa valeur.
- **2°).** On dispose de solutions aqueuses d'acide méthanoïque et de benzoate de sodium de même concentration molaire C et de solutions aqueuses d'acide benzoïque et de méthanoate de sodium de même concentration molaire C'.

On admettra que, dans leurs solutions aqueuses respectives : [HCOOH (aq)] = C; $[C_6H_5COO^-(aq)] = C$; $[C_6H_5COOH(aq)] = C'$; $[HCOO^-(aq)] = C'$.

On réalise un mélange formé d'un volume v de chacune des solutions indiquées cidessus.

- a Les concentrations molaires C et C', sont telles que C= 10⁻² mol.L⁻¹ et C' = 5.10⁻³ mol.L⁻¹.
 Dans quel sens va évoluer spontanément le système chimique juste après le mélange des quatres solutions.
- b- En gardant la même valeur de C, quelle valeur faudrait-il donner à C' pour que le système soit en équilibre à l'état initial ?

