Контекстно-свободные грамматики. Деревья разбора. Нормальная форма Хомского. Алгоритм Кока-Янгера-Касами

Теория формальных языков *2021 г*.

Ограничения регулярных грамматик

- (классы эквивалентности) Префиксы лишь конечно различимы
- (алфавитно-префиксные грамматики) Доступ лишь к началу (концу) слова

Что будет, если дать возможность доступа к переписыванию с середины?

Ограничения регулярных грамматик

- (классы эквивалентности) Префиксы лишь конечно различимы
- (алфавитно-префиксные грамматики) Доступ лишь к началу (концу) слова

Что будет, если дать возможность доступа к переписыванию с середины?

Структура вывода — дерево, а не последовательность.

Ограничения регулярных грамматик

- (классы эквивалентности) Префиксы лишь конечно различимы
- (алфавитно-префиксные грамматики) Доступ лишь к началу (концу) слова

Что будет, если дать возможность доступа к переписыванию с середины?

Структура вывода — дерево, а не последовательность.

Контекстно-свободные грамматики

Определение

Контекстно-свободная грамматика (CFG) — это грамматика $\langle \Sigma, N, P, S \rangle$, где правила переписывания Р имеют вид $A \to \alpha$, $A \in N$, $\alpha \in (\Sigma \cup N)^*$.

- Нетерминалы переписываются независимо друг от друга (можно понимать их как нульместные функции).
- Вывод в грамматике (разбор слова) не линеен.

Контекстно-свободные грамматики

Определение

Контекстно-свободная грамматика (CFG) — это грамматика $\langle \Sigma, N, P, S \rangle$, где правила переписывания Р имеют вид $A \to \alpha$, $A \in N$, $\alpha \in (\Sigma \cup N)^*$.

- Нетерминалы переписываются независимо друг от друга (можно понимать их как нульместные функции).
- Вывод в грамматике (разбор слова) не линеен.

Грамматика
$$G_2$$

S \rightarrow B R \rightarrow)

B \rightarrow (RB R \rightarrow (RR

B \rightarrow ϵ

Неоднозначность разбора

Грамматика G_1 для языка Дика

 $S \rightarrow SS$

 $\mathsf{S} \ \ o \ \ (\mathsf{S})$

S ightarrow ϵ

Левосторонний разбор

Шаг левостороннего разбора с.ф. $\alpha_1 A \alpha_2$, где $\alpha_1 \in \Sigma^*$, $A \in \mathbb{N}$, — замена выделенного вхождения A на правую часть $A \to \beta$. Левосторонний разбор S — разбор, каждый шаг которого левосторонний.

Левосторонний разбор

Шаг левостороннего разбора с.ф. $\alpha_1 A \alpha_2$, где $\alpha_1 \in \Sigma^*$, $A \in \mathbb{N}$, — замена выделенного вхождения A на правую часть $A \to \beta$. Левосторонний разбор S — разбор, каждый шаг которого левосторонний.

Левосторонний разбор не обязательно единственный, см. ниже.

$$S \rightarrow SS$$
 $S \rightarrow (S)$ $S \rightarrow \varepsilon$

Левосторонний разбор

Шаг левостороннего разбора с.ф. $\alpha_1 A \alpha_2$, где $\alpha_1 \in \Sigma^*$, $A \in \mathbb{N}$, — замена выделенного вхождения A на правую часть $A \to \beta$. Левосторонний разбор S — разбор, каждый шаг которого левосторонний.

Утверждение

Между деревьями разбора слов $w \in L(G)$ и левосторонними разборами w есть взаимно-однозначное соответствие.

(Не)однозначность грамматик

Грамматика G_2 для языка Дика					
В		B (RB ε		$\overset{\rightarrow}{\rightarrow}$) (RR

Грамматика G_2 однозначна — для всех $w \in L(G_2)$ существует единственный левосторонний разбор w. Достаточно заглянуть на 1 символ после разобранной позиции.

Другие проблемы контекстно- свободного разбора слов

- ε -правила (правила вида $A \to \varepsilon$);
- « ε -переходы», или цепные правила (правила вида $A \rightarrow B$).

- ullet Объявляем Nullable $=\emptyset$;
- ullet $\forall A \in \mathsf{N}$, если $A \to arepsilon$, тогда $\mathtt{Nullable} = \mathtt{Nullable} \cup \{A\};$
- Пока Nullable меняется:
 - для всех $A \in \mathbb{N}$, если $A \to B_1 \dots B_n$, $B_i \in \text{Nullable}$ $\Rightarrow \text{Nullable} \cup \{A\}$.
- Итоговое множество Nullable множество всех коллапсирующих нетерминалов.

- Если $\varepsilon \in L(G)$, тогда добавляем новый стартовый символ S_0 и правила $S_0 \to \varepsilon, \ S_0 \to S.$
- Стираем все правила $B_i \to \varepsilon$, кроме $S_0 \to \varepsilon$.
- Для всех правил $A \to \alpha_1 B_i \alpha_2$, где $B_i \in \text{Nullable}$, добавляем правила $A \to \alpha_1 \alpha_2$.

- Если $\varepsilon \in L(G)$, тогда добавляем новый стартовый символ S_0 и правила $S_0 \to \varepsilon, \ S_0 \to S.$
- Стираем все правила $B_i \to \varepsilon$, кроме $S_0 \to \varepsilon$.
- Для всех правил $A \to \alpha_1 B_i \alpha_2$, где $B_i \in Nullable$, добавляем правила $A \to \alpha_1 \alpha_2$. И получаем новые ε -правила! Порядок преобразований существенен.

- Если $\varepsilon \in L(G)$, тогда добавляем новый стартовый символ S_0 и правила $S_0 \to \varepsilon, \ S_0 \to S$.
- Для всех правил $A \to \alpha_1 B_i \alpha_2$ ($|\alpha_1 \alpha_2| \geqslant 1$), где $B_i \in \text{Nullable}$, добавляем правила $A \to \alpha_1 \alpha_2$.
- ullet Стираем все правила $B_i o arepsilon$, кроме $S_0 o arepsilon$.

Уничтожение цепных правил

- Строим транзитивное замыкание $A \to_c^* B$ отношения $A \to_c B: A \to B \in P$.
- ullet $\forall A, B: A
 ightarrow_c$ B, строим множество правил $A
 ightarrow \varphi_i$, для которых $\exists C, \varphi_i(C
 ightarrow \varphi_i \in P \& (B
 ightarrow_c^* C \lor C = B) \& (|\varphi_i| > 1 \lor \varphi_i = \epsilon \lor (\varphi_i = a \& a \in \Sigma))).$
- ullet Удаляем все правила A o B.

Нормальная форма Хомского

Определение

Грамматика G находится в нормальной форме Хомского (CNF) \Leftrightarrow все её правила имеют вид либо $A \to \alpha$, либо $A \to BC$, либо $S \to \varepsilon$, причём S не входит в правую часть никакого правила из G.

Нормальная форма Хомского

Определение

Грамматика G находится в нормальной форме Хомского (CNF) \Leftrightarrow все её правила имеют вид либо $A \to \alpha$, либо $A \to BC$, либо $S \to \varepsilon$, причём S не входит в правую часть никакого правила из G.

- Устраняем ε -правила.
- Устраняем цепные правила.
- $\forall \alpha \in \Sigma$ таких, что α входит в правую часть правила, отличную от α , заводим нетерминал-охранник G_{α} , строим правило $G_{\alpha} \to \alpha$, и во всех правых частях, кроме совпадающих с α , заменяем α на G_{α} .
- ullet $\forall A o B_1 \dots B_n$, n > 2, вводим новый нетерминал B_{1f} и заменяем $A o B_1 \dots B_n$ на два правила $A o B_1 B_{1f}$, $B_{1f} o B_2 \dots B_n$ (рекурсивно).

Смысл нормальной формы Хомского

- Неукорачивающие применения правил
- Нет пустых переходов правила либо финальные, либо удлиняющие
- Контролируемый рост длины сентенциальной формы от количества шагов разбора

Перевод грамматики в CNF позволяет легче анализировать свойства её языка и проводить разбор слов.

Недостижимость и зацикливание

- Стартовый нетерминал $S \in N$ достижим.
- Нетерминал $A\in N$ достижим, если существует правило $B\to \alpha$ такое, что $|\alpha|_A\geqslant 1$ и B достижим.

Недостижимость и зацикливание

- ullet Стартовый нетерминал $S\in N$ достижим.
- Нетерминал $A \in N$ достижим, если существует правило $B \to \alpha$ такое, что $|\alpha|_A \geqslant 1$ и B достижим.
- Если существует правило A o w, $w \in \Sigma^*$, A порождающий.
- Если $A \to \alpha$ и $\forall B_i(|\alpha|_{B_i} \geqslant 1 \Rightarrow B_i$ порождающий), то A порождающий.
- Удаляем из G все правила, в левых или правых частях которых стоят непорождающие нетерминалы.
- **У**даляем из G все правила, в левых или правых частях которых стоят недостижимые нетерминалы.

Проверка корректности рекурсивных алгоритмов

 Завершаемость — фундированность — искомое множество М нетерминалов не может уменьшаться, и количество нетерминалов грамматики конечно.

Проверка корректности рекурсивных алгоритмов

- Завершаемость фундированность искомое множество М нетерминалов не может уменьшаться. и количество нетерминалов грамматики конечно.
- bad sequence» — пусть существуют элементы $k_i \in M$, которые не находятся рекурсивным алгоритмом. Выберем тот из них, до которого минимальный путь из S (варианты — из которого минимальный путь до Σ^* ; до ε). Покажем, что есть ещё какой-то с путём вывода ещё короче.

Алгоритм Кока-Янгера-Касами (СҮК)

Задача

Дано слово $w_1 \dots w_n \in \Sigma^+$ и грамматика G в CNF. Проверить, выполнено ли $w \in L(G)$.

Идея алгоритма: переход к более простым задачам порождения подстрок w.

Алгоритм Кока-Янгера-Касами (СҮК)

Задача

Дано слово $w_1 \dots w_n \in \Sigma^+$ и грамматика G в CNF. Проверить, выполнено ли $w \in L(G)$.

Идея алгоритма: переход к более простым задачам порождения подстрок w.

Определим функцию f(A, i, j) (где $i \leq j$), возвращающую ответ, можно ли вывести слово $w_i \dots w_j$ из $A \in \mathbb{N}$.

- ullet Если i=j, тогда $f(A,i,j)=\mathsf{T}\Leftrightarrow A o w_i\in\mathsf{P}$, и $f(A,i,j)=\mathsf{F}$ иначе.
- ullet Если $oldsymbol{i} < oldsymbol{j}$, тогда $f(A,oldsymbol{i},oldsymbol{j}) = \bigvee_{(A o BC\in P)} \bigvee_{k=oldsymbol{i}+1} (f(B,oldsymbol{i},k-1)\ \&\ f(C,k,oldsymbol{j})).$