САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ГЕНЕТИКИ И БИОТЕХНОЛОГИИ

Васильев Артем Викторович Выпускная квалификационная работа

"Эволюционные особенности структуры гена Nxf1 (nuclear export factor) у животных"

Научный руководитель: к.б.н., доцент, кафедра генетики и биотехнологии, Голубкова Елена Валерьевна

Рецензент:

заведующая лабораторией, ведущий научный сотрудник, лаборатория эволюционной геномики и палеогеномики, ЗИН, к.б.н., с.н.с., Абрамсон Наталья Иосифовна

Оглавление

1	Материалы и методы	3
2	Результаты/Обсуждение	4
3	Таблицы с результатами	6
4	Графики и картинки с результатами	14
5	Список литературы	15

Материалы и методы

В качестве материалов выступали нуклеотидные и белковые последовательности гена *Nxf1* из открытых баз данных NCBI [1]. Всего было проанализировано X видов, относящихся к разнообразным филогенетическим таксонам.

Поиск гена интереса для разведывательного анализа проводился внутри вебсервиса NCBI [1].

Полученные данные в большинстве случаев анализировались с помощью пакета pandas v2.2.3 [2] для языка программирования Python v3.12.6 [3]. Большинство этапов последующего анализа реализовано в виде отдельных скриптов, разработанных в рамках данной работы, если не указано другое. Для логического разделения на блоки был использован Jupyter Notebook v1.1.1 [4].

Получение данных для определенных клад производилось с помощью пакета NCBI E-utilities из BioPython v1.85 [5] и NCBI Datasets Command-Line Interface (CLI) v18.0.2 [6]. Для увеличения выборок у конкретных таксономических групп был использован PSI-BLAST [7]. Парсинг результатов, полученных с помощью PSI-BLAST, осуществлялся пакетом BioPython [5] и специально разработанными скриптами. Множественные выравнивания проводились, используя алгоритм MAFFT [8] в программе Unipro UGENE v52.0 [9].

С помощью пакета инструментов MEME Suite v5.5.8 [10] проводился поиск консервативных мотивов внутри интрона. Найденные мотивы анализировались с помощью Tomtom [11] из того же пакета на базе данных Vertebrates (In vivo and in silico).

Построение вторичных структур РНК и выделение интересующих участков цветом осуществлялось локально с помощью инструмента RNAfold v2.7.0 из пакета ViennaRNA [12].

Анализ "силы сайтов сплайсинга" проводился локально в программе MaxEnt-Scan [13].

Филогенетический анализ включал построение деревьев с помощью IQ-TREE v2.4.0 [14] и их визуализацию, используя Figtree v1.4.4 [15].

Работа проводилась в виртуальном окружении Mamba v1.5.5 [16], использованные пакеты, их версии и примеры анализа в Jupyter Notebooks можно найти в GitHub [17] репозитории автора: https://github.com/ArtemVaska/Diploma.

Для написания ВКР была использована система верстки LaTeX v4.76 [18]. Все шаги анализа проводились на базе операционной системы Linux Ubuntu 22.04 [19].

Результаты/Обсуждение

В качестве отправной точки был произведен поиск гена *Nxf1* внутри веб-сервиса NCBI [1]. Полученные данные были сохранены в текстовом формате и загружены в качестве tsv-таблицы с помощью пакета pandas [2] для языка программирования Python (версия 3.12) [3], всего был найден 651 ген для уникальных организмов, большинство из которых относятся к Deuterostomia (Вторичноротые). Большинство этапов последующего анализа реализовано в виде отдельных скриптов, разработанных в рамках данной работы, если не указано другое. Для логического разделения на блоки был использован Jupyter Notebook [4].

По данным из полученной таблицы в разведывательных целях было построено филогенетическое дерево исключительно для найденных генов. Грубое распределение организмов по филогенетическим группам отображено на Изображении 1 (TODO). Для глубокого анализа было принято решение сфокусироваться на организмах, относящихся к группе Protostomia (Первичноротые) за исключением Arthropoda (Членистоногие), которые были проанализированы в бакалаврской работе, а также на некоторых группах из Deuterostomia.

Для найденных организмов с помощью пакета NCBI E-utilities из BioPython [5] и NCBI Datasets Command-Line Interface (CLI) [6] были загружены нуклеотидные последовательности гена, кодирующих участков и мРНК, а также аминокислотные последовательности белка в формате FASTA и аннотации для гена в GenBank-формате, необходимые для получения нуклеотидных последовательностей экзонов и поиска "консервативной кассеты". Затем были получены и проанализированы интересующие нас участки экзон-интрон-экзонной структуры и созданы файлы со всеми экзонами и "кассетным" интроном для всех организмов, у которых получилось найти "кассету". Данные файлы будут необходимы для множественного выравнивания.

Учитывая очень маленькую выборку видов в каждой из анализируемых групп, было принято решение по увеличению их количества. Для этой цели, учитывая разнообразия полученных генов даже внутри одной таксономической группы, самым эффективным вариантом оказалось использование PSI-BLAST [7]. В качестве запроса (Query), или референса, использовались белковые последовательности тех организмов, у которых была найдена "кассета". Для проведения PSI-BLAST были выбраны настройки по-умолчанию за исключением параметра Organism: поиск проводился внутри таксономической группы, к которой принадлежал референс, также референс был исключен из поиска.

Парсинг результатов BLAST также осуществлялся с помощью пакета BioPython [5] и специально разработанных скриптов. Он также включал в себя фильтрацию данных по параметрам процента покрытия (Query Coverage, QC), длине и сходству (Per. Ident) найденных хитов у Subject, а также загрузку нуклеотидных и белковых последовательностей, однако реализация отличалась из-за особенностей баз данных NCBI [1]. Получение "кассеты" было произведено по тому же принципу, но, опять

же, с отличиями. Благодаря данному шагу удалось увеличить выборки суммарно на 128 видов, не включая референсные, хотя изначально их было всего 17. К сожалению, для некоторых таксономических групп увеличение выборки оказалось невозможным технически в связи с отсутствием у некоторых организмов интересующего нас участка, т.к. непонятно, что в этом случае использовать в качестве референса. Множественные выравнивания осуществлялись с помощью алгоритма МАFFT [8] в программе Unipro UGENE [9].

Анализ видов из Deuterostomia изначально шел более благоприятно за счет большого сходства последовательностей, в том числе интронных, и большего количества видов в группах. Для них также были загружены все необходимые файлы и произведен поиск и анализ "консервативной кассеты". Учитывая большую степень сходства интронных последовательностей, с помощью пакета инструментов MEME Suite [10] был произведен поиск консервативных мотивов внутри интрона. Найденные мотивы, у которых E-value < 0.05 были проанализированы с помощью Tomtom [11] из того же пакета. Для описанного шага была взята база данных для позвоночных (TODO). Попытка того же рода анализа была произведена и для Protostomia, однако не увенчалась успехом в связи с отсутствием базы данных мотивов для этой таксономической группы.

Помимо всего перечисленного, с помощью инструмента RNAfold из пакета Vienna-RNA [12] были построены вторичные структуры PHK для нуклеотидных последовательностей в двух вариантах (MFE и Centroid), содержащих экзоны и "кассетный интрон", т.к. мы предполагаем, что избегание интроном сплайсинга может быть опосредовано образованной им специфической вторичной структурой. Также с помощью скриптов цветом были выделены интронные последовательности внутри вторичной структуры. Учитывая данное предположение, разумным шагом также являлся анализ "силы сайтов сплайсинга", проведенный с помощью MaxEntScan [13].

Для некоторых групп организмов был проведен филогенетический анализ, включающий построение и визуализацию деревьев. Для данной цели использовались самые популярные и проверенные временем инструменты по данным из научных статей (TODO). Построение деревьев осуществлялось с помощью IQ-TREE 2 [14], визуализация - с помощью Figtree [15].

Работа проводилась в виртуальном окружении Mamba [16], использованные пакеты и примеры анализа в Jupyter Notebooks можно найти в GitHub [17] репозитории автора: https://github.com/ArtemVaska/Diploma.

Для написания ВКР была использована система верстки LaTeX [18].

Таблицы с результатами

 Таблица 1: Сводная таблица с характеристикой кассетного интрона для

 таксономической группы Actinopterygii. Сортировка по возрастанию количества

 нуклеотидов до стоп-кодона в кассетной интроне.

	Кол-во	Длина	Длина	Длина
Название	нуклеотидов	длина 1-го экзона	длина кассетного	2-го экзона
организма	до стоп-кодона	в кассете	интрона	в кассете
	в интроне			
$Chanos\ chanos$	1	110	3568	37
$Danio\ rerio$	1	110	3580	37
$Denticeps\ clupeoides$	7	110	2629	37
$Labrus\ bergylta$	10	110	2684	37
$Cottoperca\ gobio$	16	110	2388	37
$Xiphophorus\ couchianus$	22	110	2227	37
$Larimichthys\ crocea$	22	110	2340	37
$Lates\ cal{carifer}$	22	110	2434	37
$Noto then ia\ cori iceps$	22	110	2886	37
$Betta\ splendens$	22	110	2274	37
$Poecilia\ reticulata$	22	110	2262	37
$Takifugu\ rubripes$	22	110	2114	37
$Salarias\ fasciatus$	22	110	3855	37
$Poecilia\ mexicana$	22	110	2247	37
$Stegastes\ partitus$	22	110	2900	37
Clupea harengus	22	110	3219	37
$Archocentrus\ centrarchus$	22	110	2644	37
$Esox\ lucius$	22	110	2848	37
$Monopterus\ albus$	22	110	2353	37
Echeneis naucrates	22	110	2314	37
Paralichthys olivaceus	22	110	3148	37
$Maylandia\ zebra$	22	110	2565	37
Parambassis ranga	22	110	2484	37
$Sander\ lucioperca$	22	110	2494	37
Xiphophorus maculatus	22	110	2231	37
Nothobranchius furzeri	22	110	2290	37
$Anabas\ testudineus$	22	110	2352	37
Acanthochromis polyacanthus	22	110	2797	37
Anarrhichthys ocellatus	22	110	2355	37
Boleophthalmus pectinirostris	22	110	1702	37
Sparus aurata	22	110	2361	37
Oryzias melastigma	22	110	2212	37
Seriola dumerili	22	110	2494	37
Poecilia formosa	22	110	2259	37
Oreochromis niloticus	22	110	2580	37
Kryptolebias marmoratus	22	110	2556	37
	22 22	110	$\frac{2550}{2240}$	37
Xiphophorus hellerii	22 22	110	2240	37
Poecilia latipinna	22 22	110	2527	37
Pundamilia nyererei				
Hippocampus comes	22 22	110	2622	37
Oreochromis aureus		110	2579	37
Amphiprion ocellaris	22	110	2752	37
Seriola lalandi dorsalis	22	110	2481	37
Austrofundulus limnaeus	22	110	2541	37
Puntigrus tetrazona	25	110	2440	37
Fundulus heteroclitus	25	110	2476	37
$Cyprinodon\ variegatus$	28	110	2533	37

$ Haplochromis\ burtoni$	31	110	2535	37
$A statotilapia\ calliptera$	31	110	2571	37
$Gouania\ will de nowi$	37	110	2616	37
Oryzias latipes	40	110	2331	37
Sphaeramia orbicularis	43	110	2376	37
Pygocentrus nattereri	46	110	2649	37
Astyanax mexicanus	46	110	2791	37
Colossoma macropomum	46	110	2644	37
Ictalurus punctatus	46	110	3166	37
$Tachysurus\ fulvidraco$	46	110	3493	37
Pangasianodon hypophthalmus	46	110	3348	37
Erpetoichthys calabaricus	55	110	3662	37
Perca flavescens	58	110	2378	37
Mastacembelus armatus	64	110	2371	37
$Salmo\ salar$	67	110	3553	37
Gadus morhua	67	110	3151	37
$Etheostoma\ spectabile$	97	110	2457	37
Scleropages formosus	112	110	3412	37
Myripristis murdjan	112	110	2492	37
Paramormyrops kingsleyae	121	110	2929	37
Carassius auratus	148	110	3854	37
Sinocyclocheilus grahami	148	110	3330	37
Sinocyclocheilus rhinocerous	154	110	3449	37
Sinocyclocheilus anshuiensis	154	110	4202	37
Electrophorus electricus	283	110	2874	37

Таблица 2: Сводная таблица с характеристикой кассетного интрона для таксономической группы Amphibia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Ambystoma mexicanum	1	110	10340	37
Pelobates fuscus	1	110	2424	37
Bufo bufo	7	110	3002	37
Bufo gargarizans	7	110	2879	37
Hyperolius riggenbachi	10	110	3902	37
Rana temporaria	10	110	3036	37
Pseudophryne corroboree	19	110	3561	37
Spea bombifrons	25	110	2840	37
Engystomops pustulosus	25	110	2004	37
Nanorana parkeri	25	110	3038	37
Hyla sarda	25	110	3029	37
Pyxicephalus adspersus	25	110	2917	37
Ranitomeya imitator	37	110	2650	37
Xenopus tropicalis	46	110	2596	37
Xenopus laevis	52	110	3791	37
Geotrypetes seraphini	55	110	3065	37
Rhinatrema bivittatum	103	110	4053	37
Pleurodeles waltl	151	110	3245	37
Microcaecilia unicolor	187	110	2784	37

Таблица 3: Сводная таблица с характеристикой кассетного интрона для таксономической группы Cnidaria. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
$Actinia\ tenebrosa$	10	116	173	37
Dendronephthya gigantea	10	116	328	37
Nematostella vectensis	25	116	991	37
$Montipora\ foliosa$	31	116	907	37
Pocillopora verrucosa	34	116	390	37
Acropora digitifera	40	116	670	37
Acropora millepora	40	116	682	37
Acropora muricata	40	116	679	37
Pocillopora damicornis	46	116	392	37
Pocillopora meandrina	46	116	392	37
Porites lutea	61	116	711	37
Porites evermanni	61	116	711	37
Exaiptasia diaphana	76	86	227	37
Xenia sp. Carnegie-2017	103	116	116	37

Таблица 4: Сводная таблица с характеристикой кассетного интрона для таксономической группы Ecdysozoa. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Trichinella spiralis	1	83	417	37
Priapulus caudatus	1	110	2114	37
$Galendromus\ occidentalis$	1	110	1491	37
Ixodes scapularis	1	110	3567	37
Limulus polyphemus	1	110	915	37
Parasteatoda tepidariorum	1	110	1725	37
$Cryptotermes\ secundus$	1	110	4335	37
Maniola hyperantus	1	110	920	37
Cimex lectularius	1	110	4437	37
Vespa mandarinia	1	113	379	37
Zerene cesonia	1	110	1162	37
Pararge aegeria	1	110	2657	37
Myzus persicae	1	107	772	37
$Halyomorpha\ halys$	1	110	7270	37
Diuraphis noxia	1	107	742	37
Sipha flava	1	107	58	37
$Manduca\ sexta$	1	110	1796	37
Apis laboriosa	1	113	1254	37
Orussus abietinus	1	113	74	37
Danaus plexippus	1	110	1009	37
Colletes gigas	1	113	379	37
Ostrinia furnacalis	1	110	1946	37
Vespa crabro	1	113	381	37
Venturia canescens	1	113	621	37
Papilio polytes	1	110	1674	37
$Vespa\ velutina$	1	113	377	37

	1		l ===	l a=
Cephus cinctus	1	113	75	37
Bombus pyrosoma	1	113	244	37
Papilio xuthus	1	110	999	37
Vanessa tameamea	1	110	2352	37
$Megalopta\ genalis$	1	113	373	37
Vespula pensylvanica	1	113	363	37
$Leptopilina\ heterotoma$	1	113	921	37
Acromyrmex echinatior	1	113	438	37
Aphidius gifuensis	1	113	240	37
Polistes fuscatus	1	113	400	37
Dirofilaria immitis	7	98	248	37
Odontomachus brunneus	10	113	498	37
Diploscapter pachys	10	110	662	37
Bactrocera dorsalis	13	110	1808	37
Drosophila melanogaster	13	110	1602	37
Ceratitis capitata	19	110	2023	37
1	19	110	631	37
Pediculus humanus corporis				
Aphelenchoides avenae	19	110	441	37
Litomosoides sigmodontis	19	110	242	37
Acanthocheilonema viteae	19	110	225	37
$Aethina\ tumida$	19	110	1729	37
Lepeophtheirus salmonis	22	110	1555	37
Anoplophora glabripennis	22	110	3664	37
$Varroa\ jacobsoni$	22	110	3077	37
Varroa destructor	22	110	3077	37
$The lazia\ callipaeda$	25	110	209	37
Bursaphelenchus xylophilus	25	110	638	37
Acyrthosiphon pisum	28	107	68	37
Anisakis simplex	30	219	665	37
Tetranychus urticae	31	122	648	37
Homarus americanus	31	110	9821	37
Bursaphelenchus okinawaensis	37	110	593	37
Globodera pallida	43	113	47	37
$Amphibalanus\ amphitrite$	73	110	369	37
Cotesia glomerata	73	116	236	37
Caenorhabditis angaria	79	110	96	37
Onchocerca ochengi	88	110	243	37
Bruqia pahangi	91	110	232	37
Ditylenchus destructor	97	307	1167	37
Mesorhabditis belari	97	110	147	37
Melanaphis sacchari	97	107	71	37
Enterobius vermicularis	100	110	195	37
Pristionchus mayeri	103	110	131	37
Cercopithifilaria johnstoni	103	110	238	37
Steinernema carpocapsae	106	110	131	37
Wuchereria bancrofti	106	125	242	37
Parelaphostrongylus tenuis	112	110	228	37
Toxocara canis	115	110	1062	37
Necator americanus	136	110	243	37
Brugia malayi	139	110	243	37
$Cae nor hab ditis\ auriculariae$	145	110	156	37
Auanema sp. JU1783	145	110	80	37
Pristionchus entomophagus	151	110	154	37
Steinernema hermaphroditum	157	110	131	37
Caenorhabditis brenneri	175	110	130	37
Angiostrongylus cantonensis	181	110	213	37
Dictyocaulus viviparus	190	110	832	37
Caenorhabditis elegans	193	110	106	37

Cooperia oncophora	205	110	215	37
Caenorhabditis sp. 36 PRJEB53466	205	110	133	37
$Caenorhabditis\ nigoni$	214	110	142	37
Pristionchus pacificus	214	110	251	37
Trichostrongylus colubriformis	214	110	224	37
$Cae nor hab ditis\ briggs ae$	217	110	145	37
$Cylicocyclus\ nassatus$	229	110	239	37
Haemonchus contortus	304	110	220	37
$Caenorhabditis\ bovis$	316	110	235	37
Nippostrongylus brasiliensis	316	110	235	37
Dracunculus medinensis	334	110	122	37
$Mesorhabditis\ spiculigera$	376	110	173	37
Pollicipes pollicipes	436	110	367	37
Rhopalosiphum maidis	1345	107	69	37

 Таблица 5: Сводная таблица с характеристикой кассетного интрона для

 таксономической группы Lepidosauria. Сортировка по возрастанию количества

 нуклеотидов до стоп-кодона в кассетной интроне.

Название организма	Кол-во нуклеотидов до стоп-кодона в интроне	Длина 1-го экзона в кассете	Длина кассетного интрона	Длина 2-го экзона в кассете
Python bivittatus	1	110	2374	37
$Note chis\ scutatus$	1	110	2507	37
$Pseudonaja\ textilis$	1	110	2519	37
$Anolis\ sagrei$	1	110	4667	37
Pituophis catenifer annectens	1	110	2420	37
Lacerta agilis	1	110	2499	37
$Candoia\ aspera$	1	110	2293	37
$Sphae rodactylus\ town sendi$	1	110	2825	37
$Tham noph is\ elegans$	1	110	2426	37
$Ahaetulla\ prasina$	1	110	2432	37
$Gekko\ japonicus$	1	110	2924	37
Crotalus tigris	1	110	3091	37
$Pogona\ vitticeps$	1	110	2746	37
$Podarcis\ raffonei$	1	110	2495	37
Protobothrops mucrosquamatus	1	110	3264	37
$Varanus\ komodoensis$	1	110	2658	37
$Pantherophis\ guttatus$	1	110	2411	37
$Elgaria\ multicarinata\ webbii$	1	110	2800	37
$Rhineura\ floridana$	1	110	2581	37
$Podarcis\ muralis$	1	110	2506	37
$Heteronotia\ binoei$	1	110	3002	37
$Anolis\ carolinensis$	1	110	4026	37
$Erythrolamprus\ reginae$	1	110	2638	37
$Sceloporus\ undulatus$	1	110	2380	37
Eublepharis macularius	1	110	2577	37
$Euleptes\ europaea$	1	110	2901	37
$Hemicordylus\ capensis$	1	110	2830	37
$Zootoca\ vivipara$	1	110	2516	37

Таблица 6: Сводная таблица с характеристикой кассетного интрона для таксономической группы Sauropsida. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

	Кол-во	_		
Название	нуклеотидов	Длина	Длина	Длина
организма	до стоп-кодона	1-го экзона	кассетного	2-го экзона
	в интроне	в кассете	интрона	в кассете
Molothrus aeneus	1	110	745	37
Taeniopygia guttata	1	110	443	37
Lonchura striata	1	110	629	37
Gallus gallus	7	110	1616	37
Cygnus atratus	25	110	1257	37
Haliaeetus leucocephalus	25	110	1375	37
Phalacrocorax carbo	25	110	1345	37
Grus americana	25	110	1659	37
Haliaeetus albicilla	25	110	1378	37
Oxyura jamaicensis	25	110	1246	37
Anser cygnoides	25	110	1279	37
Ciconia boyciana	25	107	1459	37
Anas acuta	25	110	1346	37
Astur gentilis	25	110	1393	37
Aquila chrysaetos chrysaetos	25	110	1375	37
Aythya fuligula	25	110	1227	37
Struthio camelus	64	110	1405	37
Chelonia mydas	79	110	1674	37
Dermochelys coriacea	79	110	1661	37
$Caretta\ caretta$	79	110	1656	37
Ammospiza caudacuta	82	110	3942	37
Aphelocoma coerulescens	85	110	3626	37
Gopherus flavomarginatus	142	110	1655	37
Chelonoidis abingdonii	142	110	1645	37
Malaclemys terrapin pileata	142	110	1652	37
Mauremys mutica	142	110	1662	37
Mauremys reevesii	142	110	1661	37
Trachemys scripta elegans	142	110	1661	37
Chrysemys picta bellii	142	110	1662	37
Emys orbicularis	142	110	1650	37
Alligator sinensis	148	110	1497	37
Alligator mississippiensis	148	110	1618	37
Caloenas nicobarica	184	110	1245	37
Rissa tridactyla	205	110	1388	37
Terrapene triunguis	211	110	1662	37
Emydura macquarii macquarii	223	110	1647	37
Catharus ustulatus	241	110	3252	37
Gopherus evgoodei	301	110	1639	37
Strigops habroptila	457	110	1317	37
Neopsephotus bourkii	502	110	1245	37
Melopsittacus undulatus	517	110	1257	37
Apteryx rowi	541	110	1359	37
$Apteryx\ mantelli$	541	110	1359	37
Dromaius novaehollandiae	553	110	1365	37
Chroicocephalus ridibundus	562	110	1373	37
Pezoporus wallicus	568	110	1328	37
Pezoporus flaviventris	568	110	1328	37
Rhea pennata	568	110	1348	37
Pezoporus occidentalis	568	110	1319	37
Pelodiscus sinensis	640	110	1643	37

$Phaenicophaeus\ curvirostris$	892	110	2155	37
$Camarhynchus\ parvulus$	1360	110	2456	37
$Vidua\ chalybeata$	1519	110	678	37

Таблица 7: Сводная таблица с характеристикой кассетного интрона для таксономической группы Spiralia. Сортировка по возрастанию количества нуклеотидов до стоп-кодона в кассетной интроне.

	Кол-во			
II		Длина	Длина	Длина
Название	нуклеотидов	1-го экзона	кассетного	2-го экзона
организма	до стоп-кодона	в кассете	интрона	в кассете
	в интроне	220		0.7
Schistosoma haematobium	1	239	652	37
Magallana gigas	1	110	1537	37
Mya arenaria	1	110	1727	37
Crassostrea virginica	1	110	1613	37
Aplysia californica	1	221	4146	37
Gigantopelta aegis	1	110	1869	37
Mercenaria mercenaria	1	110	1690	37
$Dreissena\ polymorpha$	1	110	2207	37
Ruditapes philippinarum	1	110	1646	37
$Mactra\ antiquata$	1	110	2319	37
Mytilus coruscus	1	110	1234	37
$Potamilus\ streckersoni$	1	110	4567	37
$Saccostrea\ echinata$	1	110	1556	37
Mytilus edulis	1	110	1360	37
$Mytilus\ trossulus$	1	110	1357	37
Pecten maximus	1	110	5000	37
$Ostrea\ edulis$	1	110	1643	37
Mizuhopecten yessoensis	1	110	4836	37
$Saccostrea\ cuccullata$	1	110	1706	37
$Y listrum\ ballot i$	1	110	4649	37
Argopecten irradians	1	110	5057	37
$Magallana \ angulata$	1	110	1534	37
$Mytilus\ californianus$	1	110	1248	37
$Pinctada\ imbricata$	1	110	4144	37
$Haliotis\ asinina$	1	110	2375	37
$Sin anodonta\ woodiana$	1	110	4580	37
$Haliotis\ cracherodii$	1	110	2506	37
$Haliotis \ rufescens$	1	110	2505	37
$Patella\ caerulea$	1	110	1362	37
$Patella\ vulgata$	1	110	1384	37
Lymnaea stagnalis	1	221	2705	37
Batillaria attramentaria	1	110	8614	37
Schistosoma turkestanicum	1	239	905	37
Paragonimus westermani	1	239	13971	37
Pomacea canaliculata	1	56	255	37
Bradybaena similaris	1	221	3811	37
Elysia crispata	1	221	8063	37
Elysia chlorotica	1	221	7182	37
Bulinus truncatus	1	221	1873	37
Biomphalaria pfeifferi	1	221	1885	37
	1	221	1889	37
Biomphalaria glabrata	1	239	652	37
Schistosoma guineensis Schistosoma curassoni		239	652	37
	1			
Schistosoma bovis	1	239	652	37
$Schistosoma\ margrebowiei$	1	239	650	37

Schistosoma intercalatum	1	239	652	37
$Schistosoma\ rodhaini$	1	239	671	37
Schistosoma japonicum	1	239	847	37
Clonorchis sinensis	1	242	6006	37
Hydatigera taeniaeformis	1	242	375	37
Taenia crassiceps	1	242	278	37
Taenia asiatica	1	242	480	37
Heterobilharzia americana	1	239	2163	37
Trichobilharzia szidati	1	239	1336	37
Trichobilharzia regenti	1	239	996	37
Opisthorchis felineus	1	242	14603	37
$Rodentolepis\ nana$	1	242	222	37
$Calicophoron\ daubneyi$	1	239	4214	37
Taenia solium	1	242	480	37
Echinococcus granulosus	1	242	521	37
Fasciola hepatica	1	239	2631	37
Fasciola gigantica	1	239	2581	37
$Schistosoma\ mattheei$	1	239	649	37
Fasciolopsis buskii	1	239	1303	37
Dicrocoelium dendriticum	1	239	2612	37
Paragonimus heterotremus	1	239	18219	37
Hymenolepis diminuta	1	242	224	37
Solemya velum	4	110	2071	37
Littorina saxatilis	19	218	6746	37

Графики и картинки с результатами

Рис. 1: Количество видов, взятых в анализ для Protostomia+Cnidaria и Deuterostomia.

Рис. 2: Количество видов, взятых в анализ для Protostomia+Cnidaria и Deuterostomia.

Список литературы

- 1. Database resources of the National Center for Biotechnology Information / E. W. Sayers, E. E. Bolton, J. R. Brister, [et al.] // Nucleic Acids Research. 2022. Vol. 50, no. D1. P. D20–D26. DOI: 10.1093/nar/gkab1112. URL: https://doi.org/10.1093/nar/gkab1112.
- 2. McKinney W. Data Structures for Statistical Computing in Python. 2010.
- 3. Python Software Foundation. Python, Version 3.12. 2023. https://www.python.org/downloads/release/python-3120/.
- 4. Jupyter Notebooks a publishing format for reproducible computational workflows / T. Kluyver [et al.]. 2016. DOI: 10.3233/978-1-61499-649-1-87. URL: https://doi.org/10.3233/978-1-61499-649-1-87.
- 5. Biopython: Freely available Python tools for computational molecular biology and bioinformatics / P. J. A. Cock [et al.] // Bioinformatics. 2009. Vol. 25, no. 11. P. 1422–1423. DOI: 10.1093/bioinformatics/btp163. URL: https://doi.org/10.1093/bioinformatics/btp163.
- 6. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI Datasets / N. A. O'Leary [et al.] // Scientific Data. 2024. Vol. 11, no. 1. P. 732. DOI: 10.1038/s41597-024-03571-y. URL: https://doi.org/10.1038/s41597-024-03571-y.
- 7. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs / S. F. Altschul [et al.] // Nucleic Acids Research. 1997. Vol. 25, no. 17. P. 3389–3402. DOI: 10.1093/nar/25.17.3389. URL: https://doi.org/10.1093/nar/25.17.3389.
- 8. Katoh K., Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Molecular Biology and Evolution. 2013. Vol. 30, no. 4. P. 772–780. DOI: 10.1093/molbev/mst010. URL: https://doi.org/10.1093/molbev/mst010.
- 9. Unipro UGENE: a unified bioinformatics toolkit / K. Okonechnikov [et al.] // Bioinformatics. 2012. Vol. 28, no. 8. P. 1166–1167. DOI: 10.1093/bioinformatics/bts091. URL: https://doi.org/10.1093/bioinformatics/bts091.
- 10. The MEME Suite / T. L. Bailey [et al.] // Nucleic Acids Research. 2015. Vol. 43, W1. W39-W49. DOI: 10.1093/nar/gkv416. URL: https://doi.org/10.1093/nar/gkv416.
- 11. Quantifying similarity between motifs / S. Gupta [et al.] // Genome Biology. 2007. Vol. 8, no. 2. R24. DOI: 10.1186/gb-2007-8-2-r24. URL: https://doi.org/10.1186/gb-2007-8-2-r24.

- 12. ViennaRNA Package 2.0 / R. Lorenz [et al.] // Algorithms for Molecular Biology. 2011. Vol. 6, no. 1. P. 26. DOI: 10.1186/1748-7188-6-26. URL: https://doi.org/10.1186/1748-7188-6-26.
- 13. Yeo G., Burge C. B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals // Bioinformatics. 2004. Vol. 20, no. 3. P. 327–335. DOI: 10.1093/bioinformatics/btg005. URL: https://doi.org/10.1093/bioinformatics/btg005.
- 14. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era / B. Q. Minh [et al.] // Molecular Biology and Evolution. 2020. Vol. 37, no. 5. P. 1530–1534. DOI: 10.1093/molbev/msaa015. URL: https://doi.org/10.1093/molbev/msaa015.
- 15. Rambaut A. FigTree v1.4.4. 2018. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/.
- 16. QuantStack, contributors mamba. Mamba: The Fast Cross-Platform Package Manager. 2024. https://github.com/mamba-org/mamba.
- 17. GitHub, Inc. GitHub. 2008. URL: https://github.com.
- Lamport L. LaTeX: A Document Preparation System. 2nd ed. Reading, Massachusetts: Addison-Wesley, 1994.
- 19. Canonical Ltd. Ubuntu 22.04 LTS (Jammy Jellyfish). 2022. https://releases.ubuntu.com/22.04/.