# RO et IA : Réseaux de Neurones

ESGI-PPA-4 Vidal



- Bonnes propriétés :
  - Parallélisme
  - Apprentissage
    - Généralisation
    - Adaptation



(renvoie toujours un résultat)



#### Le cerveau humain ...

- Pour avoir de l'intelligence artificielle ...
  « il suffit » de reproduire de manière informatique l'architecture du cerveau ?
  - Comment est organisé le cerveau ?



#### Le cerveau humain ...

- Comment chacune de ces zones fonctionne-t-elle ?
  - Un ensemble de neurones interconnectés
  - Qu'est-ce qu'un neurone ?



Le cerveau humain ...



Un ensemble de neurones interconnectés

• Qu'est-ce u'un neurone ?





Un ensemble de neurones interconnectés

• Qu'est-ce u'un neurone ?



- Peut-on simuler ce fonctionnement par une fonction mathématique ?
  - Le neurone envoie un signal électrique à partir du moment ou il est suffisamment stimulé (la somme des signaux électriques des dendrites est d'une intensité suffisante).
  - On cherche donc une fonction de seuil sur la somme des entrées.
  - On souhaite aussi qu'elle soit continue/différentiable (apprentissage).

- Peut-on simuler ce fonctionnement par une fonction mathématique ?
  - Somme des entrées =>

$$\sum_{k=0}^{n} input_{k}$$

Fonction seuil sur la somme des entrées :



- Peut-on simuler ce fonctionnement par une fonction mathématique ?
  - Somme des entrées =>

$$\sum_{k=0}^{n} w_k \times input_k$$

Fonction seuil sur la somme des entrées :

$$f(x) \to \frac{1}{1 + e^{-Kx}}$$
  $f(x) \to \arctan(Kx) \times \frac{2}{\pi}$ 

- Peut-on simuler ce fonctionnement par une fonction mathématique ?
  - Au final la valeur de sortie est dictée par :

$$\frac{1}{1 + e^{-k\sum_{k=0}^{n} input_k}}$$

• Neurone artificiel fonctionnel :



Perceptron de Rosenblatt (1957) :



- Apprentissage :
  - Trouver les wi minimisant l'erreur.
- Exemple

Du neurone au réseau de neurones



Du neurone au réseau de neurones



Du neurone au réseau de neurones



Perceptron Multi-Couches (PMC ou MLP)



#### Théorème d'approximation universelle

- Cybenko 89
  - Pour toute fonction F continue définie et bornée sur un ensemble borné, et pour tout ε, il existe un réseau de neurones à 1 couche cachée de neurones sigmoïdes qui approxime F à ε près.

#### Sussman 92

 Les réseaux à une couche cachée forment une famille d'approximateurs parcimonieux : à nombre égal de paramètres on approxime correctement plus de fonction qu'avec des polynômes.

- Théorème d'approximation universelle
  - Cybenko 89
    - Pour toute fonction F continue définie et bornée sur un ensemble borné, et pour tout ε, il existe un réseau de neurones à 1 couche cachée de neurones sigmoïdes qui approxime F à ε près.
    - → Comment trouver un tel réseau ?

- Apprentissage supervisé
  - On connait pour un nombre conséquent d'exemples les valeurs d'entrée et de sortie
  - Idée générale :
    - 1 : On divise notre ensemble d'exemples en deux
      - L'ensemble d'apprentissage : A
      - L'ensemble de test : T
    - 2 : Pour chaque exemple de A :
      - On présente au réseau de neurone un exemple de A
      - On compare la sortie obtenue avec la sortie attendue
      - On corrige (rétropropagation du gradient) les poids du réseau pour qu'il tende vers la sortie attendue.
    - 3 : On évalue le score du réseau sur les exemples de T
    - 4 : On recommence si le réseau n'obtient pas le score désiré, on arrête dans le cas ou le score obtenu est satisfaisant.

- Cas d'utilisations
  - Reconnaissance de formes
  - Traitement du signal
    - Classification d'image radars
    - Reconnaissance vocale

•

 Peu à peu remplacés par d'autres structures de réseaux neuronaux

- Limites...
  - Paramètres du réseau de neurones
    - Dimensionnement
    - Structure
  - Apprentissage de la multiplication de deux nombres
  - Gestion du temps
  - Sur-apprentissage
  - Nécessité d'une base d'exemples représentative
  - Phénomène 'boite noire'

0

- Apprentissage supervisé
  - Radial Basis Function Network
  - Linear Vector Quantization
  - Support Vector Machines
  - 0
- Apprentissage non supervisé
  - Cartes de Kohonen
  - Adaptive Resonance Theory
  - 0
- Prise en compte du temps
  - Time-delay neural network
  - Réseau de neurones bouclés/récurents
  - 0



- Le cas NEAT (Neuroevolution of Augmented Topologies)
- Apprentissage indirect
- Un individu = un réseau (ensemble des poids + structure)
- Exemple 1 : SmartSweepers
- Exemple 2 : Galactic Arms Race
  - http://www.youtube.com/watch?v=QiBOk6ar1mg

### Mêtaheuristiques et RdN