BML	.101-Quiz 2	Name:	
Answer all questions		ID Number:	
Full marks: 30, Time: 45 minutes			
PART A (10 marks)			
1.	The most abundant element in the humar	body is	
2.	Alpha-helix is an example of	structure of a protein.	
3.	The net charge of the zwitterion form of G	ily is	
4.	In the tripeptide Lys-Pro-Ile, the C-termina	al residue is	
5.	The two amino acids containing sulfur are	e and methionine.	
6.	A protein found in hair, horn, nails and fea	athers is	
7.	is a technique use	ed to determine the tertiary structure of	
	a protein.		
8.	An example of an interaction that is impor	tant in stabilizing protein structure is	
9.	The type of enzyme inhibition in which V_{rr}	_{ax} is unaffected is	

10. For a simple E + S \rightarrow ES \rightarrow E + P reaction, the kinetics _____ order in [S]

when [S] $>> K_M$.

PART B (10 marks, only one answer may be correct)

1. Whi	ch of the following amino acids has a charged polar side chain at pH 7?
A)	Leu
B)	Ala
C)	Met
D)	Тгр
E)	Glu
2. Whi	ch of the following amino acids has an uncharged polar side chain at pH 7?
A)	Arg
B)	Thr
C)	Glu
D)	Pro
E)	lle
3. The	disulfide bond between two cysteine molecules:
A)	is a peptide bond.
B)	is an ionic bond that is stable at physiological pH.
C)	is a covalent bond formed by oxidation.
D)	is a hydrogen bond between the two sulfhydryl groups.
E)	is a weak ion-induced dipole attraction.
	ymes that hydrolyze the internal peptide bonds (not the peptide bonds of the terminal acids) of a protein are:
A)	oxidoreductases.
B)	lyases.
C)	endopeptidases.
D)	nucleases.
E)	exopeptidases.
5. Wha	at is the velocity of a first-order reaction when the reactant concentration is $6 \times 10^{-2} \text{M}$ e rate constant is $8 \times 10^3 \text{sec}^{-1}$?
A)	$1.33 \times 10^5 \mathrm{M}^{-1} \mathrm{sec}^{-1}$
B)	1.33 x 10 ⁵ M sec
C)	$7.5 \times 10^{-2} \text{ M sec}$
D)	$4.8 \times 10^2 \mathrm{M} \mathrm{sec}^{-1}$
E)	not enough data are given to make this calculation

PART C (10 marks)

What are different ionic forms of the dipeptide below at pH of 1 and 10.5? What is the PI of the dipeptide?

pH 10.5

$$\begin{array}{c|cccc}
 & O & & & O & & O & & O & & O & & O & & O & & O & & O & & O & & O & & O &$$

pl= (4.2+9.5)/2=6.85