XGBoost cts

2021年4月16日

0.1 导入数据

[1]: import pandas as pd

```
df = pd.read_csv('test2.1.csv')
     df.set_index('id', inplace=True)
     df.head()
[1]:
                   breach breachNewYear region bondBalance
                                                                    regCap comScale \
     id
     143376.SH
                        1
                                     2020
                                                           8.20
                                                                  3.000000
                                               18
                                                                                    1
     011758127.IB
                        1
                                     2018
                                               13
                                                          30.00
                                                                 23.162800
                                                                                    2
     1380202.IB
                                     2018
                                                           5.50
                                                                  6.000000
                                                                                    0
                                               13
     150660.SH
                                     2019
                                                6
                                                          20.00
                        1
                                                                 12.960761
                                                                                    1
     150570.SH
                                     2019
                                                6
                                                          13.79
                                                                 16.313768
                        1
                   industry guaCom typeBond bondTerm
                                                              sbreachNewYearGPBR \
     id
     143376.SH
                          5
                                   2
                                                  5.0000
                                                                       7048.5800
     011758127.IB
                          5
                                   2
                                             7
                                                  0.7397 ...
                                                                       1466.5189
     1380202.IB
                          4
                                   2
                                                  7.0000 ...
                                             1
                                                                       1466.5189
     150660.SH
                                   3
                                             2
                                                  5.0000 ...
                                                                       2106.2400
                          0
     150570.SH
                                   3
                                             2
                                                  3.0000
                                                                       2106.2400
                          0
                   sbreachNewYearGPBE
                                                  sbreachNewYearUrbanArea
                                           sSSFR
     id
     143376.SH
                              10052.99 0.701143
                                                                  12421.76
     011758127.IB
                               4637.24 0.316248
                                                                   3093.66
     1380202.IB
                               4637.24 0.316248
                                                                   3093.66
```

150660.SH	3103.20 0.	. 6787	732	2585.1	19
150570.SH	3103.20 0.	. 6787	'32	2585.1	19
	sbreachNewYearCityNumb	ber	sbreachNewYearPCDI	\	
id					
143376.SH		11	49898.84		
011758127.IB		4	19975.10		
1380202.IB		4	19975.10		
150660.SH		1	39506.15		
150570.SH		1	39506.15		
	ahah Nas-Vaas-Dassas-IIa		abore ab NassVassellana al	Dani a a	,
id	sbreachNewYearPowerUsa	age	spreachnewrearhouse	Price	\
143376.SH	4706.	22	1530	04.00	
011758127.IB	2542.			65.00	
1380202.IB	2542.			65.00	
150660.SH	861.			54.64	
150570.SH	861.			54.64	
150570.511	001.		200	01.01	
130370.511	sbreachNewYearUnemploy			01.01	
id					
		yment			
id		yment	:Rate \		
id 143376.SH		yment	ZRate \ 2.52		
id 143376.SH 011758127.IB		yment	2.52 2.58		
id 143376.SH 011758127.IB 1380202.IB		yment	2.52 2.58 2.58		
id 143376.SH 011758127.IB 1380202.IB 150660.SH	sbreachNewYearUnemploy	yment	2.52 2.58 2.58 3.51 3.51		
id 143376.SH 011758127.IB 1380202.IB 150660.SH 150570.SH		yment	2.52 2.58 2.58 3.51 3.51		
id 143376.SH 011758127.IB 1380202.IB 150660.SH 150570.SH	sbreachNewYearUnemploy	yment	2.52 2.58 2.58 3.51 3.51		
id 143376.SH 011758127.IB 1380202.IB 150660.SH 150570.SH id 143376.SH	sbreachNewYearUnemploy	yment	2.52 2.58 2.58 3.51 3.51 agSecurity 19.4300		
id 143376.SH 011758127.IB 1380202.IB 150660.SH 150570.SH id 143376.SH 011758127.IB	sbreachNewYearUnemploy	yment	2.52 2.58 2.58 3.51 3.51 3.51 19.4300 65.3502		
id 143376.SH 011758127.IB 1380202.IB 150660.SH 150570.SH id 143376.SH 011758127.IB 1380202.IB	sbreachNewYearUnemploy	yment	2.52 2.58 2.58 3.51 3.51 agSecurity 19.4300 65.3502 65.3502		
id 143376.SH 011758127.IB 1380202.IB 150660.SH 150570.SH id 143376.SH 011758127.IB 1380202.IB 150660.SH	sbreachNewYearUnemploy	yment	2.52 2.58 2.58 3.51 3.51 3.51 19.4300 65.3502 65.3502 8.0000		
id 143376.SH 011758127.IB 1380202.IB 150660.SH 150570.SH id 143376.SH 011758127.IB 1380202.IB	sbreachNewYearUnemploy	yment	2.52 2.58 2.58 3.51 3.51 agSecurity 19.4300 65.3502 65.3502		

[5 rows x 40 columns]

通过如下代码将特征变量和目标变量单独提取出来,代码如下:

```
[2]: X = df.drop(columns='breach')
y = df['breach']
```

特征变量描述性分析

[3]: X.describe()

[3]:		breachNewYear	region	bondBalance	regCap	comScale	\
	count	62647.000000	62647.000000	62647.000000	62647.000000	62647.000000	
	mean	2019.998978	11.300797	2230.267537	307.809451	2.145466	
	std	0.051466	8.305893	3401.400396	1155.002734	0.793186	
	min	2016.000000	0.000000	0.000000	0.080000	0.000000	
	25%	2020.000000	3.000000	125.800000	37.759450	2.000000	
	50%	2020.000000	11.000000	408.417864	77.504314	2.000000	
	75%	2020.000000	18.000000	2177.000000	196.871963	3.000000	
	max	2020.000000	30.000000	86951.396040	17395.000000	4.000000	
		industry	guaCom	typeBond	bondTerm	bondIssuePrice	\
	count	62647.000000	62647.000000	62647.000000	62647.000000	62647.000000	
	mean	8.799958	2.014143	4.996169	0.965660	98.635466	
	std	2.574340	0.118080	1.542537	1.551403	1.360883	
	min	0.00000	2.000000	0.00000	0.019200	94.786700	
	25%	10.000000	2.000000	5.000000	0.251400	97.648300	
	50%	10.000000	2.000000	5.000000	0.504100	99.086000	
	75%	10.000000	2.000000	5.000000	1.000000	100.000000	
	max	11.000000	3.000000	11.000000	30.000000	119.020000	
		sbreachNew	YearGPBR sbrea	achNewYearGPBE	sSSFR	\	
	count	62647	7.000000	62647.000000	62647.000000		
	mean	5334	1.420784	8263.695302	0.624341		
	std	2934	1.926543	3395.626078	0.180965		
	min	272	2.890000	1647.430000	0.151448		
	25%	3052	2.929700	5850.960000	0.449738		
	50%	5817	7.100000	7408.190000	0.677853		
	75%	7048	3.580000	10052.990000	0.785226		
	max	12654	1.530000	17297.850000	0.876006		

	sbreachNewYearUrbanArea s	sbreachNewYearCityNumber	sbreachNewYearPCDI	\
count	62647.000000	62647.000000	62647.000000	
mean	10316.451414	8.684933	43892.913490	
std	6260.675045	6.727405	17751.557356	
min	688.150000	1.000000	18118.090000	
25%	5102.940000	1.000000	27679.710000	
50%	8186.150000	10.000000	39014.280000	
75%	16410.000000	14.000000	67755.910000	
max	23206.320000	21.000000	69441.560000	
	sbreachNewYearPowerUsage	sbreachNewYearHousePrice	\	
count	62647.000000	62647.000000		
mean	2846.948581	17584.913993		
std	1941.524868	11524.857927		
min	354.890000	4965.000000		
25%	1166.400000	8070.000000		
50%	2214.300000	11637.000000		
75%	3856.060000	30677.000000		
max	6695.850000	35905.000000		
	sbreachNewYearUnemployment	tRate sbreachNewYearMini	${ t mumLivingSecurity}$	
count	62647.00	00000	62647.000000	
mean	2.67	75670	18.252859	
std	0.82	28362	14.788203	
min	1.30	00000	3.680000	
25%	2.25	50000	6.540000	
50%	2.73	30000	14.850000	
75%	3.50	00000	21.570000	
max	4.16	50000	134.500000	

[8 rows x 39 columns]

0.2 数据预处理

检查特征变量是否存在空值

[4]: X.isnull().sum().sort_values(ascending = False)

[4]:	${\tt sbreachNewYearMinimumLivingSecurity}$	0
	bondIssuePrice	0
	${\tt breachNewYearGDPgrowthindex}$	0
	intBeginDateGDP	0
	breachNewYearGDP	0
	bondIssuerRating	0
	intBeginDate	0
	bondInterest	0
	bondTotalAmt	0
	bondTerm	0
	${\tt breachNewYearFinanceScaleRate}$	0
	typeBond	0
	guaCom	0
	industry	0
	comScale	0
	regCap	0
	bondBalance	0
	region	0
	$\verb intBeginDateGDP growth \verb index $	0
	$\verb intBeginDateFinanceScaleRate \\$	0
	${\tt sbreachNewYearUnemploymentRate}$	0
	sbreachNewYearGPBR	0
	sbreachNewYearHousePrice	0
	sbreachNewYearPowerUsage	0
	sbreachNewYearPCDI	0
	sbreachNewYearCityNumber	0
	sbreachNewYearUrbanArea	0
	sSSFR	0
	sbreachNewYearGPBE	0
	sbreachNewYearPD	0
	${\tt breachNewYearConsumptionLevel}$	0
	sbreachNewYearPNGT	0
	sbreachNewYearCPI	0
	${\tt sbreachNewYearGDPGrowthIndex}$	0
	sbreachNewYearGDP	0

```
intBeginDateConsumptionLevelIndex
    breachNewYearConsumptionLevelIndex
                                           0
    intBeginDateConsumptionLevel
                                           0
    breachNewYear
                                           0
    dtype: int64
    导入工具库, 使特征变量归一化
[5]: from sklearn.preprocessing import StandardScaler
    X_new = StandardScaler().fit_transform(X)
    pd.DataFrame(X new).head() # 查看归一化后的数据
                        1
                                                      4
                                                               5
        0.019850 0.806567 -0.653285 -0.263906 -1.444144 -1.476102 -0.119773
    1 - 38.840941 \quad 0.204580 \quad -0.646876 \quad -0.246449 \quad -0.183396 \quad -1.476102 \quad -0.119773
    2 -38.840941 0.204580 -0.654079 -0.261308 -2.704892 -1.864555 -0.119773
    3 -19.410545 -0.638202 -0.649816 -0.255282 -1.444144 -3.418364 8.349112
    4 -19.410545 -0.638202 -0.651642 -0.252379 -1.444144 -3.418364 8.349112
             7
                       8
                                 9
                                              29
                                                        30
                                                                 31
                                                                           32 \
    0 -1.942381
                 2.600467 1.002691 ... 0.584060 0.526945 0.424402 0.336278
    1 1.299060 -0.145650 1.002691 ... -1.317898 -1.067987 -1.702511 -1.153685
    2 -2.590669 3.889633 1.002691
                                    ... -1.317898 -1.067987 -1.702511 -1.153685
    3 -1.942381
                                    ... -1.099928 -1.519760 0.300559 -1.234902
                2.600467 1.002691
                                    ... -1.099928 -1.519760 0.300559 -1.234902
    4 -1.942381
                1.311301 1.002691
             33
                       34
                                 35
                                           36
                                                    37
                                                               38
       1 - 0.696401 - 1.347375 - 0.156630 - 1.095026 - 0.115494 3.184817
    2 -0.696401 -1.347375 -0.156630 -1.095026 -0.115494 3.184817
    3 -1.142342 -0.247122 -1.022662 -0.132781 1.007214 -0.693319
    4 -1.142342 -0.247122 -1.022662 -0.132781 1.007214 -0.693319
```

[5 rows x 39 columns]

[5]:

提取完特征变量后,通过如下代码将数据拆分为训练集及测试集:

```
[6]: from sklearn.model_selection import train_test_split
     X_train, X_test, y_train, y_test = train_test_split(X_new, y, test_size=0.2)
     利用主成分分析法进行特征变量降维
[7]: from sklearn.decomposition import PCA
     pca = PCA(n components=0.9)# 保证降维后的数据保持 90% 的信息
     pca.fit(X_train)
[7]: PCA(n_components=0.9)
     对训练集和测试集进行数据降维, 并赋值给 X X train pca,X test pca
[8]: X_train_pca = pca.transform(X_train)
     X_test_pca = pca.transform(X_test)
     通过如下代码验证 PCA 是否降维:
[9]: print(X_train_pca.shape)
     print(X_test_pca.shape)
     (50117, 14)
     (12530, 14)
     查看降维的系数
[10]: PCAcom=pca.components_
     dfPCA=pd.DataFrame(PCAcom)
     dfPCA.to_csv("PCA.csv")
     dfPCA
[10]:
               0
                                  2
                                                                           \
         0.005414 -0.261641 0.201375 0.143964 -0.179318 -0.021749
                                                                  0.018476
     1 \quad -0.249120 \quad -0.018444 \quad 0.028650 \quad 0.003210 \quad -0.048541 \quad -0.015921
                                                                  0.010671
     2 -0.324117 0.015681 -0.025253
                                     0.000570 0.027748 -0.006864
                                                                  0.005290
     3 -0.049830 -0.083398 -0.056460 -0.001266 -0.069610 -0.056387
                                                                  0.014211
         0.018468 -0.007640 -0.156524 0.255056 0.121072 -0.346529
     4
                                                                 0.368358
         0.002931 0.044293 0.149522 0.097863 -0.312515 -0.111501
                                                                  0.255668
     5
     6 - 0.005508 \ 0.160262 \ 0.447980 \ 0.466017 \ 0.157928 \ 0.390428
                                                                  0.203208
         0.015162
     8 -0.006752 -0.144241 0.017144 0.317289 0.099363 -0.007104
                                                                 0.104263
```

```
9 -0.005576 0.209624 0.062662 -0.057162 -0.134852 0.051007 -0.400854
10 0.008150 -0.153308 -0.009274 -0.076492 -0.247106 -0.141835 -0.336211
11 -0.002673 0.056463 -0.131064 -0.140525 0.528024 -0.021661 -0.257077
12 0.000950 0.218238 -0.144117 -0.087316 -0.145301 -0.095361 0.220177
13 -0.000171 0.059409 -0.251713 -0.309031 -0.296348 0.616129 0.341806
         7
                   8
                            9
                                         29
                                                  30
                                                                      32 \
                                                            31
    0.003633
            0.039442 0.069298
                                ... 0.097060 -0.042673 0.299050
0
                                                               0.125234
1
  -0.018449
            0.022407 -0.013437
                               ... 0.026153 0.015676 0.035021 0.029785
  -0.014926 0.015086 0.024326
                               ... -0.085977 -0.083696 -0.051191 -0.066331
                                ... 0.404955 0.421237 0.178104 0.333413
  -0.001093 0.037314 0.052397
                               ... -0.099889 -0.042669 -0.135536 0.145139
  -0.300338 0.484879 0.163539
  -0.141385 0.276635 0.214202
                                ... 0.102445 0.052532 0.122422 -0.298029
    0.033459 0.064769 -0.365974
                                ... -0.040799 -0.037451 -0.046610 0.004403
6
   0.399116 -0.108242 0.485995
                                ... -0.118274 -0.129880 -0.075283 -0.027670
7
    0.465517 -0.118482 0.077203
8
                               ... 0.065384 0.157518 -0.081156 0.027054
9 -0.282054 0.117496 0.035311
                               ... -0.010403  0.053339  -0.155427  -0.067104
10 0.128525 0.027761 -0.182915 ... -0.097299 -0.050560 -0.075962 0.114789
11 -0.038279 0.121202 0.085534 ... 0.087264 0.005579 0.136914 -0.053669
12 0.407298 -0.097710 -0.133195
                               ... 0.010233 -0.037379 0.026648 -0.045056
13 -0.045014 -0.016077 0.230853 ... -0.063529 -0.042628 -0.048482 0.104616
         33
                   34
                            35
                                      36
                                                37
                                                         38
  -0.009831 0.030560 0.006173 0.028204 -0.017795 -0.008411
2
  -0.038307 -0.028827 -0.070628 -0.018159 0.015751 0.025962
    0.240146 0.048087 0.373148 0.016256 -0.097193 -0.084258
3
4
    0.018550 -0.050570 -0.047247 0.009333 -0.229272 0.093061
5
    0.027682 -0.014587 0.051319 -0.086801 0.413709 -0.001481
    0.048765 -0.062521 0.044593 -0.059625 -0.037682 -0.147296
6
    0.002489 -0.091328 0.008492 -0.070806 -0.098140 -0.225452
8
    0.099587 0.000138 -0.054739 0.029214 -0.010529 0.448535
9
    0.124183 -0.084917 -0.119359 0.003918 -0.305265 0.082990
   0.038553 -0.052754 0.012476 -0.051094 0.051530 0.192821
11 -0.095704 0.072650 0.077514 0.027503 0.142345 -0.261820
12 -0.034352 -0.029787 -0.001005 -0.009531 -0.096551 -0.294061
```

查看此时降维后的 X train pca 和 X test pca

[11]: pd.DataFrame(X_train_pca).head()

```
pd.DataFrame(X_test_pca).head()
                                              3
[11]:
               0
                         1
                                    2
                                                                  5
                                                                             6
      0 -0.863884 -2.433233 1.482733 1.858663 -0.180729 -1.222185 0.707273
      1 - 2.321023 - 1.273418 \quad 0.941012 - 0.559762 - 0.161169 - 0.617901 \quad 0.627936
      2 4.235525 -0.978434 0.707951 0.246900 -0.394597 -1.234797 -0.689885
      3 -1.123108 -0.838234 -0.200331 5.410859 0.889762 1.849604 0.128327
      4 -2.339678 0.939150 -0.216356 -2.224602 2.871920 3.106451 -0.391717
               7
                         8
                                    9
                                              10
                                                        11
                                                                   12
                                                                             13
      0 \ -0.649258 \ -0.490956 \ -0.727238 \ -0.310451 \ \ 0.707288 \ -0.102438 \ -0.066412
      1 - 0.350038 - 0.553530 - 0.760497 - 0.171184 0.546280 - 0.248033 - 0.023432
      2 0.437284 -0.344212 0.415278 -0.458113 -1.132259 -0.338352 0.940863
      3 -1.505360 -1.587084 2.203331 -0.887822 0.401666 -1.099852 0.651840
      4 -0.898591 -1.866768 1.828021 0.587925 0.438961 0.852280 -0.156096
```

0.3 常见机器学习模型默认超参数的结果

```
[12]: from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
kfold = KFold(n_splits=10)
# xgboost
from xgboost import XGBClassifier
xgbc_model=XGBClassifier(use_label_encoder=False, eval_metric='auc')

# 随机森林
from sklearn.ensemble import RandomForestClassifier
rfc_model=RandomForestClassifier()

# ET
from sklearn.ensemble import ExtraTreesClassifier
```

```
et model=ExtraTreesClassifier()
# 朴素贝叶斯
from sklearn.naive_bayes import GaussianNB
gnb_model=GaussianNB()
#K 最近邻
from sklearn.neighbors import KNeighborsClassifier
knn_model=KNeighborsClassifier()
#逻辑回归
from sklearn.linear_model import LogisticRegression
lr_model=LogisticRegression()
#决策树
from sklearn.tree import DecisionTreeClassifier
dt_model=DecisionTreeClassifier()
# 支持向量机
from sklearn.svm import SVC
svc model=SVC()
#result = cross_val_score(model , X_train_pca, y_train , cv=kfold).mean()
print("\n使用 10 折交叉验证方法得到模型的准确率(每次迭代的准确率的均值): ")
print("\tXGBoost 模型: ",cross_val_score(xgbc_model , X_train_pca, y_train_

→, scoring='roc_auc', cv=kfold).mean())
print("\t随机森林模型: ",cross_val_score(rfc_model , X_train_pca, y_train_
→,scoring='roc_auc', cv=kfold).mean())
print("\tET 模型: ",cross_val_score(et_model , X_train_pca, y_train ,u
print("\t高斯朴素贝叶斯模型: ",cross_val_score(gnb_model , X_train_pca, y_train_
print("\tK 最近邻模型: ",cross_val_score(knn_model , X_train_pca, y_train_
→, scoring='roc_auc', cv=kfold).mean())
print("\t逻辑回归: ",cross_val_score(lr_model , X_train_pca, y_train ,u

→scoring='roc_auc', cv=kfold).mean())
```

```
print("\t决策树: ",cross_val_score(dt_model , X_train_pca, y_train_u 

→,scoring='roc_auc', cv=kfold).mean())

print("\t支持向量机: ",cross_val_score(svc_model , X_train_pca, y_train_u 

→,scoring='roc_auc', cv=kfold).mean())
```

使用 10 折交叉验证方法得到模型的准确率 (每次迭代的准确率的均值):

XGBoost 模型: 0.9965806288340227 随机森林模型: 0.9749761157269237

ET 模型: 0.8061721434490107

高斯朴素贝叶斯模型: 0.9349179297501257

K 最近邻模型: 0.932024739354347 逻辑回归: 0.9823637357498212 决策树: 0.7555230147271651 支持向量机: 0.9603518034122157

0.4 引入 XGBoost 分类器进行模型训练

基于主成分分析法降维后数据, 代码如下:

```
[13]: # 引入 XGBoost 分类器进行模型训练了,基于主成分分析法降维后数据,代码如下:
     from xgboost import XGBClassifier
     clf_pca = XGBClassifier(max_depth=5,
                            learning_rate=0.1,
                            n_estimators=500,# 迭代次数
                            gamma=0,
                            min_child_weight=1,
                            subsample=0.8,
                            colsample_bytree=0.8,
                            colsample_bylevel=1,
                            reg_alpha=0,
                            reg_lambda=1,
                            use_label_encoder=False,
                            verbosity=0,
                            objective='binary:logistic',
                            eval_metric='auc')
     clf_pca.fit(X_train_pca, y_train)
```

```
[13]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                   colsample_bynode=1, colsample_bytree=0.8, gamma=0, gpu_id=-1,
                   importance_type='gain', interaction_constraints='',
                   learning_rate=0.1, max_delta_step=0, max_depth=5,
                   min_child_weight=1, missing=nan, monotone_constraints='()',
                   n_estimators=500, n_jobs=16, num_parallel_tree=1, random_state=0,
                   reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=0.8,
                   tree_method='exact', use_label_encoder=False,
                   validate_parameters=1, verbosity=0)
[14]: y_pred_pca = clf_pca.predict(X_test_pca)# 降维后的数据及模型
     y_pred_pca
[14]: array([0, 0, 0, ..., 0, 0, 0])
[15]: # 通过和之前章节类似的代码, 我们可以将预测值和实际值进行对比:
     b = pd.DataFrame() # 创建一个空 DataFrame
     b['预测值'] = list(y_pred_pca)
     b['实际值'] = list(y_test)
            预测值 实际值
[15]:
     0
              0
                   0
              0
     1
                   0
     2
                   0
     3
              0
                   0
     4
              0
                   0
     12525
              0
                   0
     12526
                   0
     12527
     12528
              0
                   0
     12529
                   0
     [12530 rows x 2 columns]
```

[16]: # 所有测试集数据的预测准确度,可以使用如下代码:

from sklearn.metrics import accuracy_score

```
score = accuracy_score(y_pred_pca, y_test)
score
```

[16]: 0.999122106943336

[17]: # 我们还可以通过 XGBClassifier() 自带的 score() 函数来查看模型预测的准确度评分,代码如下 clf_pca.score(X_test_pca, y_test)

[17]: 0.999122106943336

未降维的数据建模

```
[18]: # 划分为训练集和测试集之后,就可以引入 XGBoost 分类器进行模型训练了,基于未降维的数
     据,代码如下:
     from xgboost import XGBClassifier
     clf = XGBClassifier(max_depth=5,
                           learning_rate=0.1,
                           n_estimators=500,# 迭代次数
                           gamma=0,
                           min_child_weight=1,
                           subsample=0.8,
                           colsample_bytree=0.8,
                           colsample_bylevel=1,
                           reg_alpha=0,
                           reg_lambda=1,
                           use_label_encoder=False,
                           verbosity=0,
                           objective='binary:logistic',
                           eval_metric='auc')
     clf.fit(X_train, y_train)
```

```
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=0.8,
tree_method='exact', use_label_encoder=False,
validate_parameters=1, verbosity=0)
```

```
[19]: # 模型搭建完毕后,通过如下未降维数据,预测测试集数据:
y_pred = clf.predict(X_test)
y_pred # 打印预测结果
```

[19]: array([0, 0, 0, ..., 0, 0, 0])

```
[20]: # 我们可以将预测值和实际值进行对比:
a = pd.DataFrame() # 创建一个空 DataFrame
a['预测值'] = list(y_pred)
a['实际值'] = list(y_test)
a
```

```
[20]:
           预测值 实际值
     0
             0
                 0
             0
     1
                 0
     2
             0
                 0
     3
             0
     4
             0
                 0
     12525
                 0
     12526
                 0
     12527
           0
                0
     12528
     12529
           0
                 0
```

[12530 rows x 2 columns]

```
[21]: # 所有测试集数据的预测准确度,可以使用如下代码:
from sklearn.metrics import accuracy_score
score = accuracy_score(y_pred, y_test)
score
```

[21]: 0.9990422984836392

```
[22]: # 我们还可以通过 XGBClassifier() 自带的 score() 函数来查看模型预测的准确度评分,代码如下 clf.score(X_test, y_test)
```

[22]: 0.9990422984836392

可以看出主成分降维后有一定的提升,对主成分降维后的模型进行分析

[23]: # XGBClassifier 分类器本质预测的并不是准确的 0 或 1 的分类,而是预测其属于某一分类的概率,可以通过 predict_proba() 函数查看预测属于各个分类的概率,代码如下: y_pred_pca_proba = clf_pca.predict_proba(X_test_pca) print(y_pred_pca_proba[0:5]) # 查看前 5 个预测的概率

```
[[9.9999970e-01 3.0106258e-07]
[9.9999982e-01 1.7359697e-07]
[9.9999952e-01 4.9591586e-07]
[9.9999255e-01 7.4715372e-06]
[9.9999118e-01 8.8266861e-06]]
```

[24]: # 利用相关代码绘制 ROC 曲线来评估模型预测的效果:

```
from sklearn.metrics import roc_curve
fpr, tpr, thres = roc_curve(y_test, y_pred_pca_proba[:,1])
import matplotlib.pyplot as plt
plt.plot(fpr, tpr)
plt.show()
```



```
[25]: # 通过如下代码求出模型的 AUC 值:
from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_pca_proba[:,1])
score
```

[25]: 0.9992318139637785

- [26]: # 我们可以通过查看各个特征的特征重要性 (feature importance) 判断最重要的特征变量: clf_pca.feature_importances_
- [31]: # 进行整理, 方便结果呈现, 代码如下:
 features = X.columns # 获取特征名称
 importances = clf.feature_importances_ # 获取特征重要性
 # 通过二维表格形式显示

```
importances_df = pd.DataFrame()
importances_df['特征名称'] = features
importances_df['特征重要性'] = importances
importances_df.sort_values('特征重要性', ascending=False)
```

特征名称 [31]: 特征重要性 0 breachNewYear 0.277536 breachNewYearGDP 0.197524 14 0.091247 16 breachNewYearGDPgrowthindex 9 bondIssuePrice 0.059798 2 bondBalance 0.032052 3 regCap 0.021941 37 sbreachNewYearUnemploymentRate 0.020941 13 bondIssuerRating 0.019489 25 sbreachNewYearGDPGrowthIndex 0.017744 38 sbreachNewYearMinimumLivingSecurity 0.016971 8 bondTerm 0.016337 5 industry 0.015551 34 sbreachNewYearPCDI 0.015037 4 comScale 0.014552 31 sSSFR 0.014523 30 sbreachNewYearGPBE 0.013652 27 sbreachNewYearPNGT 0.013287 1 region 0.012141 24 sbreachNewYearGDP0.011487 35 sbreachNewYearPowerUsage 0.010989 36 sbreachNewYearHousePrice 0.010973 sbreachNewYearGPBR 0.010941 29 11 bondInterest 0.010538 7 typeBond 0.010304 28 sbreachNewYearPD 0.007751 bondTotalAmt 0.007614 10 32 sbreachNewYearUrbanArea 0.007261 guaCom 0.006888 6 12 intBeginDate 0.006784 26 sbreachNewYearCPI 0.006311

```
33
               sbreachNewYearCityNumber 0.006037
15
                        intBeginDateGDP
                                        0.005957
           intBeginDateFinanceScaleRate 0.005564
19
17
             intBeginDateGDPgrowthindex 0.004279
23
      intBeginDateConsumptionLevelIndex 0.000000
22
    breachNewYearConsumptionLevelIndex
                                        0.000000
21
           intBeginDateConsumptionLevel 0.000000
20
          breachNewYearConsumptionLevel
                                        0.000000
18
          breachNewYearFinanceScaleRate 0.000000
```

0.5 超参数优化

网格搜索法(3个超参数优化,10折交叉验证)

```
[34]: from sklearn.model_selection import GridSearchCV,RandomizedSearchCV parameters = { 'max_depth': [1, 2, 3, 5, 10], 'learning_rate': [0.02, 0.05, 0.1, 0.15], 'n_estimators': [200, 300, 500, 700]} # 指定模型中参数的范围
```

```
[35]: # 下面我们将数据传入网格搜索模型并输出参数最优值:
     clf_pca = XGBClassifier(gamma=0,
                            min child weight=1,
                            subsample=0.8,
                            colsample_bytree=0.8,
                            colsample_bylevel=1,
                            reg_alpha=0,
                            reg_lambda=1,
                            use_label_encoder=False,
                            verbosity=0,
                            objective='binary:logistic',
                            eval_metric='auc') # 构建模型
     grid_search = GridSearchCV(clf_pca, parameters, scoring='roc_auc', cv=10)
     grid_search.fit(X_train_pca, y_train) # 传入数据
     print("参数的最佳取值::",grid_search.best_params_)
     print("最佳模型得分:",grid_search.best_score_)
```

```
参数的最佳取值: : {'learning_rate': 0.1, 'max_depth': 10, 'n_estimators': 300} 最佳模型得分: 0.9954505509139947
```

随机网格搜索法(11个超参数优化,10折交叉验证)

```
参数的最佳取值::{'subsample': 0.7, 'scale_pos_weight': 0.4, 'reg_lambda': 0.4, 'reg_alpha': 0.75, 'n_estimators': 200, 'min_child_weight': 0, 'max_depth': 2, 'max_delta_step': 1, 'learning_rate': 0.1, 'gamma': 0, 'colsample_bytree': 0.5} 最佳模型得分: 0.9887431918195002
```

贝叶斯优化法(11个超参数优化,10折交叉验证)

```
[78]: from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from bayes_opt import BayesianOptimization
import numpy as np
rf = XGBClassifier(colsample_bylevel=1,
```

```
use label encoder=False,
                        verbosity=0,
                        objective='binary:logistic',
                        eval_metric='auc')
def rf_cv(max_depth, learning_rate, n_estimators, min_child_weight,_
→max_delta_step, subsample,
→colsample_bytree,reg_alpha,reg_lambda,scale_pos_weight,gamma):
    val = cross_val_score(
         XGBClassifier(max_depth = int(max_depth),
                       learning_rate = float(learning_rate),
                       use_label_encoder=False,
                       n_estimators = int(n_estimators),
                        min_child_weight = int(min_child_weight),
                        max_delta_step = float(max_delta_step),
                        subsample = float(subsample),
                        colsample_bytree = float(colsample_bytree),
                        reg_alpha = float(reg_alpha),
                        reg_lambda = float(reg_lambda),
                        scale_pos_weight = float(scale_pos_weight),
                        gamma = float(gamma)
        ),
        X_train_pca, y_train , scoring='roc_auc', cv=10
    ).mean()
    return val
rf_bo = BayesianOptimization(
        rf_cv,
                {'max_depth':(1,10),
                'learning_rate': (0.02,0.2),
                'n_estimators': (200,1000),
                'min_child_weight': (0,20),
                'max_delta_step': (0.01,2),
                'subsample':(0.6,1),
                'colsample_bytree': (0.5,1),
                'reg_alpha': (0.01,1),
                'reg lambda': (0.2,1),
                'scale_pos_weight': (0.2,1),
```

```
'gamma':(0,1)}
   )
rf_bo.maximize()
rf_bo.max
        | target | colsam... | gamma | learni... | max_de... |
max_depth | min_ch... | n_esti... | reg_alpha | reg_la... | scale_... |
subsample |
1 1
        0.8105
                  | 0.9091 | 0.4019
0.1384
       0.1954
                  2.995
                           | 13.52
457.2
        0.3792
                  0.3412
                           0.4227
0.8768
2
        0.9636 | 0.8771 | 0.1358
0.08338 | 1.726
                  8.928
                           10.2
740.2
         0.07443 | 0.5078
0.4884 | 0.792 |
1 3
        | 0.9561 | 0.712
                           0.5591
0.1118
        1.943
                    2.639
                           | 15.56
l 389.5
        0.2704
                 0.5633
                           0.3893
0.7282
        | 0.948 | 0.7099
                           0.9354
| 0.187 | 1.729
                  6.012
                           | 13.16
899.1
        0.5194
                  0.993
                           0.4271
0.9334
l 5
         0.952
                  0.7667
                           0.7983
0.04016
        1.436
                    2.713
                           | 15.45
| 748.9
        0.5374
                  0.2437
                           0.492
0.9096
         0.9406
                  0.7476
                           0.1786
l 6
| 0.05076 | 0.2513
                  8.263
                           10.12
739.2
        0.3089
                  0.7847
                           0.5438
0.9896
| 7
        0.961
                 1.0
                           0.0
```

```
| 0.2 | 2.0 | 10.0 | 7.782
| 748.4
       | 0.01 | 0.2 | 0.2
0.6
        0.9912 | 0.7867 | 0.1822
I 8
0.1394 | 0.5469 | 6.093 |
3.688
     393.6 | 0.01974 | 0.2285 |
0.6548 | 0.9101 |
l 9
       | 0.9784 | 0.739 | 0.3482
0.02
       | 2.0 | 6.805 | 7.534
       0.5512
402.2
              | 0.2919 | 0.8042
0.8226
       0.9937 | 0.7251 | 0.7631
10
0.1749 | 0.7092 | 9.413 |
1.495 | 382.5 | 0.3504 | 0.6068 |
0.8254 | 0.8671 |
| 11
       0.993
              | 0.9754 | 0.4161
               2.048
                       | 0.5338
| 0.08282 | 1.08
372.1
       0.791
              0.6683
                      0.9558
0.6522
       | 12
       0.5
              0.5
                       1.0
0.2
       0.01
              10.0
                      | 10.12
370.9
       0.01
                0.2
                       1 0.2
1.0
| 13
       0.9615
                0.7631
                       0.5666
                | 1.604 | 0.2663
| 0.06482 | 0.3198
386.4
        0.6314
               0.4442 | 0.7655
0.6536
       0.5
               | 1.0
| 14
                       0.0
0.2
        0.01
                1.0
                       | 18.71
1 402.8
        0.01
               1.0
                       1 0.2
1.0
| 15
       0.9917
               0.5
                       1.0
0.02
        | 2.0 | 10.0
                       0.0
| 402.0 | 1.0 | 0.2
                       1.0
```

```
0.6
        16
        0.9942
                 0.7423 | 0.4041
0.04373 | 0.8069
                 8.847
                           414.1 | 0.2714 | 0.5765 |
0.6126
0.3744
       0.6482
               | 17
         0.9919
                  0.5429
                           0.8305
0.02731
        0.9236
                  9.638
                           2.949
1 426.5
                           0.8351
         0.1688
                  0.639
0.9705
         | 18
         0.9759
                  0.8397
                           0.04041
0.152
         1.747
                  1.264
                           5.309
| 420.5
           0.8898
                    0.8954
                           0.6401
0.7673
19
         0.7106
                  0.6113
                           0.0
0.2
           0.01
                    1.0
                           0.0
| 433.6
           0.02295
                    1.0
                           0.2
1 0.6
1
  20
           0.6021
                    0.5
                           1.0
0.02
                    10.0
           0.05309
                           9.934
| 419.8
           1.0
                  0.2
                           1.0
1.0
         0.9918
  21
                  0.9512
                           0.6888
0.08462
        0.8539
                  3.999
                           2.522
| 408.4
           0.08055
                  0.257
                           0.5133
0.992
| 22
         0.9939
                  0.8566
                           0.6244
0.1438
         1.224
                    3.238
                           0.1618
401.0
           0.5514
                    0.29
                           0.6891
0.6143
1
  23
           0.9838
                  0.9121
                           0.6801
0.124
         0.9667
                  5.221
                           8.234
| 385.8
                           0.9965
           0.2203
                  0.6774
0.7873
         24
           0.9613
                  1.0
                           1.0
           2.0
0.2
                    10.0
                           20.0
| 742.9
         1.0
                  0.2
                             1.0
```

```
0.6
  25
           0.9596
                   1.0
                              0.0
 0.2
           2.0
                     10.0
                              20.0
 756.4
         1.0
                     1.0
                              1.0
 0.6
  26
         1 0.9542
                              0.6324
                     0.62
 0.08352
           0.786
                     4.88
                              9.44
 760.9
           0.1337
                     0.5582
                              0.3744
 0.8572
         0.5
 27
                   0.5767
                            0.252
                     6.348
0.125
         | 0.01954 |
                              19.03
 768.4
         1 0.3284
                     0.4905
                              0.2751
 0.9766
  28
           0.9862
                   0.6389
                            1.0
 0.07411
           2.0
                     1.0
                              2.687
 754.1
         1.0
                     1.0
                              1.0
1 0.8474
  29
         0.9932
                     0.5335
                              0.02304
 0.09671
        l 1.255
                     8.851
                              0.7951
 759.9
         0.2595
                     0.8932
                              0.7622
 0.7737
  30
         0.9863
                   0.5894
                            0.7115
0.0881
           1.91
                     2.26
                              0.09341
  766.6
           0.4705
                   0.6914
                              0.2507
  0.9624
______
```

[78]: {'target': 0.9942003438041904,

^{&#}x27;params': {'colsample_bytree': 0.7423149626112193,

^{&#}x27;gamma': 0.4041491563174455,

^{&#}x27;learning_rate': 0.04372842773946696,

^{&#}x27;max_delta_step': 0.8068812912438583,

^{&#}x27;max_depth': 8.847495440604824,

^{&#}x27;min_child_weight': 0.6125910158781278,

^{&#}x27;n_estimators': 414.1133206068373,

^{&#}x27;reg_alpha': 0.27138414911981196,

```
'reg_lambda': 0.5764643153330873,
'scale_pos_weight': 0.37440413624132207,
'subsample': 0.6482261815174488}}
```

0.6 根据三个优化结果新的参数建模,重新搭建 XGBoost 分类器,比较结果

网格搜索法

```
[52]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.8, gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.1, max_delta_step=0, max_depth=10, min_child_weight=1, missing=nan, monotone_constraints='()', n_estimators=300, n_jobs=16, num_parallel_tree=1, random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=0.8, tree_method='exact', use_label_encoder=False, validate_parameters=1, verbosity=0)
```

```
[53]: # AUC 值:
y_pred_proba = clf_pca_g.predict_proba(X_test_pca)
from sklearn.metrics import roc_auc_score
```

```
score = roc_auc_score(y_test, y_pred_proba[:,1])
print(score)
```

0.9992318139637786

```
[54]: from sklearn.metrics import roc_curve
fpr, tpr, thres = roc_curve(y_test, y_pred_proba[:,1])
import matplotlib.pyplot as plt
plt.plot(fpr, tpr)
plt.show()
```



```
[55]: # 通过如下代码求出模型的 AUC 值:
from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_proba[:,1])
score
```

[55]: 0.9992318139637786

```
[56]: # 将预测值和实际值进行对比:

ag = pd.DataFrame() # 创建一个空 DataFrame

ag['预测值'] = list(y_pred)

ag['实际值'] = list(y_test)

ag.to_csv("ag.csv",encoding="utf_8_sig")
```

随机网格搜索法

```
[57]: clf_pca_rg = XGBClassifier(max_depth=2,
                              learning_rate=0.1,
                              scale_pos_weight=0.4,
                              n estimators=200,# 迭代次数
                              gamma=0,
                              min_child_weight=0,
                              subsample=0.7,
                              colsample_bytree=0.5,
                              colsample_bylevel=1,
                              reg_alpha=0.75,
                              reg_lambda=0.4,
                              use_label_encoder=False,
                              max_delta_step=1,
                              verbosity=0,
                              objective='binary:logistic',
                              eval_metric='auc')
      clf_pca_rg.fit( X_train_pca, y_train)
```

```
[57]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.5, gamma=0, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.1, max_delta_step=1, max_depth=2, min_child_weight=0, missing=nan, monotone_constraints='()', n_estimators=200, n_jobs=16, num_parallel_tree=1, random_state=0, reg_alpha=0.75, reg_lambda=0.4, scale_pos_weight=0.4, subsample=0.7, tree_method='exact', use_label_encoder=False, validate_parameters=1, verbosity=0)
```

```
[58]: # AUC 值:
y_pred_proba = clf_pca_rg.predict_proba(X_test_pca)
from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_proba[:,1])
print(score)
```

0.9994223241007614

```
[59]: from sklearn.metrics import roc_curve
  fpr, tpr, thres = roc_curve(y_test, y_pred_proba[:,1])
  import matplotlib.pyplot as plt
  plt.plot(fpr, tpr)
  plt.show()
```



```
[60]: # 通过如下代码求出模型的 AUC 值:
from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_proba[:,1])
score
```

[60]: 0.9994223241007614

```
[61]: # 将预测值和实际值进行对比:

arg = pd.DataFrame() # 创建一个空 DataFrame

arg['预测值'] = list(y_pred)

arg['实际值'] = list(y_test)

arg.to_csv("arg.csv",encoding="utf_8_sig")
```

贝叶斯优化

```
[90]: clf_pca_b = XGBClassifier(max_depth=8,
                              learning_rate=0.04372842773946696,
                              scale pos weight=0.37440413624132207,
                              n_estimators=414,
                              gamma=0.4041491563174455,
                              min_child_weight=0,
                              subsample=0.6482261815174488,
                              colsample_bytree=0.7423149626112193,
                              colsample_bylevel=1,
                              reg_alpha=0.27138414911981196,
                              reg_lambda=0.5764643153330873,
                              use_label_encoder=False,
                              max delta step=0.8068812912438583,
                              verbosity=0,
                              objective='binary:logistic',
                              eval_metric='auc')
      clf_pca_b.fit( X_train_pca, y_train)
```

```
[90]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.7423149626112193, gamma=0.4041491563174455, gpu_id=-1, importance_type='gain', interaction_constraints='', learning_rate=0.04372842773946696, max_delta_step=0.8068812912438583, max_depth=8, min_child_weight=0, missing=nan, monotone_constraints='()', n_estimators=414, n_jobs=16, num_parallel_tree=1, random_state=0, reg_alpha=0.27138414911981196, reg_lambda=0.5764643153330873, scale_pos_weight=0.37440413624132207, subsample=0.6482261815174488, tree_method='exact',
```

```
[91]: # AUC 值:
y_pred_proba = clf_pca_b.predict_proba(X_test_pca)
from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_proba[:,1])
print(score)
```

0.999514506425108

```
[92]: from sklearn.metrics import roc_curve
fpr, tpr, thres = roc_curve(y_test, y_pred_proba[:,1])
import matplotlib.pyplot as plt
plt.plot(fpr, tpr)
plt.show()
```



```
[93]: # 通过如下代码求出模型的 AUC 值:
from sklearn.metrics import roc_auc_score
score = roc_auc_score(y_test, y_pred_proba[:,1])
```

score

[93]: 0.999514506425108

```
[94]: # 将预测值和实际值进行对比:
ab = pd.DataFrame() # 创建一个空 DataFrame
ab['预测值'] = list(y_pred)
ab['实际值'] = list(y_test)
ab.to_csv("ab.csv",encoding="utf_8_sig")
```

0.7 迁移学习城投债数据

```
[95]: import pandas as pd
df1 = pd.read_csv('ctest2.1.csv')
cid = df1['id']
ctest=df1.drop(columns=['breach','id'])

ctest_new = StandardScaler().fit_transform(ctest)
pd.DataFrame(ctest)
#pd.DataFrame(X_train)
```

[95]:	breachNe	wYear r	egion	bond	Balance		regCap	comSca	le	industry	\
0		2020	27	30	0.80000	4.	000000		2	5	
1		2020	27	30	0.80000	4.	000000		2	5	
2		2020	21	1	5.80000	32.	350400		2	5	
3		2020	21	1	5.80000	32.	350400		2	5	
4		2020	9	:	2.00000	1.	923669		1	5	
•••											
13959		2020	5	1:	2.00000	51.	750362		3	2	
13960		2020	12	7	4.90000	40.	693061		2	2	
13961		2020	5	1:	2.00000	51.	750362		3	2	
13962		2020	9	93	9.99999	459.	000000		2	5	
13963		2020	9	93	9.99999	459.	000000		2	5	
	guaCom 1	typeBond	bond	Γerm	bondIss	suePri	ce	sbreach	NewY	/earGPBR	\
0	1	1		7.0		1	00			2134.93	
1	1	1		7.0		1	00			2134.93	

2	1 1	7.0	100	3007.15
3	1 1	7.0	100	3007.15
4	1 1	7.0	100	6526.71
•••			••• •••	•••
13959	0 1	10.0	100	4070.83
13960	0 1	10.0	100	1811.89
13961	0 1	10.0	100	4070.83
13962	0 1	10.0	100	6526.71
13963	0 1	10.0	100	6526.71
	sbreachNewYearGPBE	sSSFR	sbreachNewYearU	rbanArea \
0	4847.6800	0.440402		7659.78
1	4847.6800	0.440402		7659.78
2	8034.4200	0.374283		5102.94
3	8034.4200	0.374283		5102.94
4	10739.7600	0.607715		23206.32
•••		•••		
13959	10348.1712	0.393386		8609.50
13960	5850.9600	0.309674		5814.43
13961	10348.1712	0.393386		8609.50
13962	10739.7600	0.607715		23206.32
13963	10739.7600	0.607715		23206.32
	sbreachNewYearCity	Number sbr	reachNewYearPCDI	sbreachNewYearPowerUsage \
0		1	28920.41	1160.27
1		1	28920.41	1160.27
2		13	27679.71	1864.32
3		13	27679.71	1864.32
4		16	31596.98	6218.72
•••		•••	•••	
13959		18	24703.15	2635.83
13960		14	23328.21	1907.33
13961		18	24703.15	2635.83
13962		16	31596.98	6218.72
13963		16	31596.98	6218.72

```
sbreachNewYearHousePrice sbreachNewYearUnemploymentRate \
                               8402.00
                                                                    2.60
      0
                               8402.00
                                                                    2.60
      1
      2
                               6127.00
                                                                    2.73
      3
                               6127.00
                                                                    2.73
      4
                               8070.00
                                                                    3.29
      13959
                               7448.00
                                                                    3.31
                                                                    2.60
      13960
                               6505.34
      13961
                               7448.00
                                                                    3.31
      13962
                               8070.00
                                                                    3.29
      13963
                               8070.00
                                                                    3.29
             sbreachNewYearMinimumLivingSecurity
      0
                                          28.1000
      1
                                          28.1000
      2
                                          50.7000
                                          50.7000
      3
                                          13.2837
      4
      13959
                                          76.8400
      13960
                                          30.4900
      13961
                                          76.8400
      13962
                                          13.2837
      13963
                                           13.2837
      [13964 rows x 39 columns]
[97]: ctest_new_pca = pca.transform(ctest_new)
[98]: #import xqboost as xqb
      cy_pred = clf_pca_b.predict(ctest_new_pca)
[99]: cy_pred
[99]: array([0, 0, 0, ..., 0, 0, 0])
```

```
[100]: df1['pred'] = cy_pred
[100]:
                                   breachNewYear region bondBalance
                                                                              regCap \
                       id breach
       0
                                 0
                                                                            4.000000
               127353.SH
                                              2020
                                                        27
                                                               30.80000
       1
              1580326.IB
                                 0
                                             2020
                                                        27
                                                               30.80000
                                                                            4.000000
               139328.SH
                                 0
                                              2020
                                                        21
                                                                15.80000
                                                                           32.350400
       3
              1580313.IB
                                             2020
                                                        21
                                 0
                                                               15.80000
                                                                           32.350400
               127172.SH
                                 0
                                             2020
                                                         9
                                                                2.00000
                                                                            1.923669
                                              •••
               122724.SH
                                                               12.00000
                                                                           51.750362
       13959
                                 0
                                             2020
                                                         5
       13960
              1280042.IB
                                 0
                                             2020
                                                        12
                                                               74.90000
                                                                           40.693061
       13961
              1280044.IB
                                 0
                                             2020
                                                         5
                                                               12.00000
                                                                           51.750362
       13962
               122742.SH
                                                         9
                                                               939.99999
                                 0
                                              2020
                                                                          459.000000
              1280010.IB
       13963
                                              2020
                                                         9
                                                               939.99999
                                                                          459.000000
                                 0
              comScale
                         industry
                                    guaCom typeBond ... sbreachNewYearGPBE \
       0
                      2
                                 5
                                         1
                                                    1 ...
                                                                    4847.6800
                      2
                                 5
                                         1
                                                    1 ...
       1
                                                                    4847.6800
       2
                      2
                                 5
                                                    1 ...
                                                                    8034.4200
       3
                      2
                                 5
                                                    1 ...
                                                                    8034.4200
                                         1
       4
                      1
                                 5
                                         1
                                                                   10739.7600
       13959
                      3
                                 2
                                                                   10348.1712
                                         0
       13960
                                 2
                                         0
                                                                    5850.9600
                                 2
                                                                   10348.1712
       13961
                      3
       13962
                      2
                                 5
                                         0
                                                                   10739.7600
       13963
                      2
                                 5
                                                    1
                                                                   10739.7600
                                         0
                  sSSFR
                         sbreachNewYearUrbanArea
                                                    sbreachNewYearCityNumber
       0
              0.440402
                                          7659.78
       1
              0.440402
                                          7659.78
                                                                            1
       2
              0.374283
                                          5102.94
                                                                           13
       3
              0.374283
                                          5102.94
                                                                           13
              0.607715
                                         23206.32
                                                                           16
       13959 0.393386
                                          8609.50
                                                                           18
```

13960	0.309674		5814.	43	14	
13961	0.393386		8609.	50	18	
13962	0.607715		23206.	32	16	
13963	0.607715		23206.	32	16	
	sbreachNew	wYearPCDI	sbreachNewY	earPowerUsage	${\tt sbreachNewYearHousePrice}$	\
0		28920.41		1160.27	8402.00	
1		28920.41		1160.27	8402.00	
2		27679.71		1864.32	6127.00	
3		27679.71		1864.32	6127.00	
4		31596.98		6218.72	8070.00	
		•••		•••	•••	
13959		24703.15		2635.83	7448.00	
13960		23328.21		1907.33	6505.34	
13961		24703.15		2635.83	7448.00	
13962		31596.98		6218.72	8070.00	
13963		31596.98		6218.72	8070.00	
	sbreachNew	wYearUnemp	loymentRate	sbreachNewYea	rMinimumLivingSecurity \setminus	
0			2.60		28.1000	
1			2.60		28.1000	
2			2.73		50.7000	
3			2.73		50.7000	
4			3.29		13.2837	
			•••			
13959			3.31		76.8400	
13960			2.60		30.4900	
13961			3.31		76.8400	
13962			3.29		13.2837	
13963			3.29		13.2837	
	pred					
0	0					
1	0					
2	0					
3	0					

```
4
                 0
       13959
                 0
       13960
                 0
       13961
                 0
       13962
                 0
       13963
                 0
       [13964 rows x 42 columns]
[101]: df1['pred'] = cy_pred
       df2=df1[['id','pred']]
       df2.set_index('id', inplace=True)
       df2.to_csv('result.csv',encoding="utf_8_sig")
  []:
```