

江西理工大学

Jiangxi University of Science and Technology

信息工程学院

School of information engineering

Spring_2020

Prof Associate, School of information engineering Jiangxi university of science and technology, China

EMAIL: ajm@jxust.edu.cn

Jiangxi University of Science and Technology

Sequential Circuits

Flip-flop/Basic Flip-Flop

DR AJM

S-R Flip-flop/Basic Flip-Flop

Flip flops are an application of logic gates. A flip-flop circuit can remain in a binary state indefinitely (as long as power is delivered to the circuit) until directed by an input signal to switch states

- S-R flip-flop stands for SET-RESET flip-flops.
- The SET-RESET flip-flop consists of two NOR gates and also two NAND gates.
- These flip-flops are also called S-R Latch.
- The design of these flip flops also includes two inputs, called the SET [S] and RESET [R]. There are also two outputs, Q and Q'.

S-R Flip-flop/Basic Flip-Flop

S	R	Q	Q'
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1
1	1	0	0

b) Truth table

fig: Basic flip-flop circuit with NOR gates

S-R Flip-flop/Basic Flip-Flop

S	R	Q	Q'
1	0	0	1
1	1	0	1
0	1	1	0
1	1	1	0
0	0	1	1

fig: Basic flip-flop circuit with NAND gates

b) Truth table

SR Latch

SR Latch

Current	N	lext
S R Q	Q*	
0 0 0	0	
0 0 1	1	HOLD
0 1 0	0	Donat
0 1 1	0	Reset
1 0 0	1	Cat
1 0 1	1	Set
1 1 0	0	т 1:1
1 1 1	0	Invalid

$$Q^* = S + \overline{R}.Q$$

$$S.R = 0$$

Flip Flop

- If we add the **clk** to the input latch control its become FF
- Please not FF are sensitive to clock edge and latch are sensitive to level

DIGITAL SYSTEMS DESIGN

- SR flip-flop operates with only positive clock transitions or negative clock transitions. Whereas, SR latch operates with enable signal.
- The **circuit diagram** of SR flipflop is shown in the following figure.

This circuit has two inputs S & R and two outputs Q(t) & Q(t)'. The operation of SR flipflop is similar to SR Latch. But, this flip-flop affects the outputs only when positive transition of the clock signal is applied instead of active enable.

• The following table shows the **state table** of SR flip-flop.

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	-

DR AJM

• Here, Q(t) & Q(t + 1) are present state & next state respectively. So, SR flip-flop can be used for one of these three functions such as Hold, Reset & Set based on the input conditions, when positive transition of clock signal is applied. The following table shows the **characteristic table** of SR flip-flop.

Present Inputs		Present State	Next State
S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

DR AJM

Present	Present Inputs		Next State
S	R	Q(t)	Q(t + 1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

By using three variable K-Map, we can get the simplified expression for next state, Q(t+1). The **three variable K-Map** for next state, Q(t+1) is shown in the following figure.

The maximum possible groupings of adjacent ones are already shown in the figure. Therefore, the **simplified expression** for next state Q(t + 1) is Q(t+1)=S+R'Q(t)

Clocked S-R Flip-Flop

DIGITAL SYSTEMS DESIGN

• The operation of a basic flip-flop can be modified by providing an additional control input that determines when the state of the circuit is to be changed.

The limitation with a S-R flip-flop using NOR and NAND gate is the invalid state. This problem can be overcome by using a stable SR flip-flop that can change outputs when certain invalid states are met, regardless of the condition of either the Set or the Reset inputs.

fig: Clocked SR flip flop

• A clock pulse is given to the inputs of the AND Gate. If the value of the clock pulse is '0', the outputs of both the AND Gates remain '0'.

Q	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	Intermediate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Intermediate

• If the SR Flip Flop have the Q feedback to the gate which have the R input and from Q to the S input we can have the JK FF.

J	K	Q*	
0	0	Q	HOLD
0	1	θ	RESET
1	0	1	SET
1	1	Q	Complement

$$Q* = J.\overline{Q} + \overline{K}.Q$$

c) Graphical symbol

fig. Clocked JK flip flop

- J-K flip-flop can be considered as a modification of the S-R flip-flop.
- The main difference is that the intermediate state is more refined and precise than that of an S-R flip-flop.

The characteristics of inputs 'J' and 'K' is same as the 'S' and 'R' inputs of the S-R flip-flop.

J stands for SET, and 'K' stands for CLEAR.

When both the inputs J and K have a HIGH state, the flip-flop switches to the complement state, so, for a value of Q = 1, it switches to Q=0, and for a value of Q=0, it switches to Q=1.

a) Logic diagram

0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- JK flip-flop is the modified version of SR flip-flop. It operates with only positive clock transitions or negative clock transitions.
- The **circuit diagram** of JK flip-flop is shown in the following figure.

This circuit has two inputs J & K and two outputs Q(t) & Q(t)'.

The operation of JK flip-flop is similar to SR flip-flop.

Here, we considered the inputs of SR flip-flop as S = J Q(t)' and R = KQ(t) in order to utilize the modified SR flip-flop for 4 combinations of inputs.

• The following table shows the **state table** of JK flip-flop.

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)'

DR AJM

- Here, Q(t) & Q(t + 1) are present state & next state respectively. So, JK flip-flop can be used for one of these four functions such as Hold, Reset, Set & Complement of present state based on the input conditions, when positive transition of clock signal is applied.
- The following table shows the **characteristic table** of JK flip-flop.

Present Inputs		Present State	Next State
J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

DR AJM

- By using three variable K-Map, we can get the simplified expression for next state, Q(t + 1).
- Three variable K-Map for next state, Q(t + 1) is shown in the following figure.

The maximum possible groupings of adjacent ones are already shown in the figure. Therefore, the **simplified expression** for next state Q(t+1) is Q(t+1)=JQ(t)+KQ(t)

D Flip-Flop

DIGITAL SYSTEMS DESIGN

- D flip-flop operates with only positive clock transitions or negative clock transitions. Whereas, D latch operates with enable signal.
- That means, the output of D flip-flop is insensitive to the changes in the input, D except for active transition of the clock signal.
- The circuit diagram of D flip-flop is shown in the following figure.

DR AJM

D Flip-Flop

- This circuit has single input D and two outputs Q(t) & Q(t)'.
- The operation of D flip-flop is similar to D Latch. But, this flipflop sign

e operation of D flip-flop is similar to D Latch. But, this flip-	D	Q(t+1)	
p affects the outputs only when positive transition of the clock anal is applied instead of active enable.		0	
		1	
a following table shows the state table of D flip flop			

• The following table shows the **state table** of D flip-flop.

Therefore, D flip-flop always Hold the information, which is available on data input, D of earlier positive transition of clock signal. From the above state table, we can directly write the next state equation as

$$Q(t+1) = D$$

Next state of D flip-flop is always equal to data input, D for every positive transition of the clock signal. Hence, D flip-flops can be used in registers, shift registers and some of the counters.

DR AJM

The D flip-flop

(a) Logic diagram with Nand gates

(c) Transition table

When the value of CP is '1' (HIGH), the flip-flop moves to the SET state

S input and the complement of the D input is connected to the R input.

From the above figure, you can see that the D input is connected to the

if it is '0' (LOW), the flip-flop switches to the CLEAR state.

(b) Graphic Symbol

D Flip-Flop

$$Q^* = D$$

• If we connct the input FF D to S and its complement to R the D Flip Flop will be made

The D flip-flop

- Input sampled at clock edge
 - Rising edge: Input passes to output
 - Otherwise: Flip-flop holds its output
- Flip-flops can be rising-edge triggered or falling-edge triggered

The D flip-flop

• D flip-flop is a slight modification of clocked SR flip-flop.

How do we make a D flip flop?

- Edge triggering is difficult
 - You can do this at home:
 - Label the internal nodes
 - Draw a timing diagram
 - Start with Clk=1

How do we make a D flip flop?

Falling edge-triggered flip-flop

If Clk=1 then X=Y=0 and SR-latch block holds previous values of Q,Q' also Z=D' and W=Z'=D

When Clk→0 then Y (set for SR-latch block)
becomes Z'=D
and X (reset for SR-latch block)
becomes W'=D'
so Q becomes D
This is stable until D or the Clk switches

While Clk=0, if D switches then Z becomes 0 and X and W hold their previous values and Y=X'=D as before.

Terminology & notation

Rising-edge triggered D flip-flop

Falling-edge triggered D flip-flop

Positive D latch

Negative D latch

Graphic symbol for edge-triggered D flip-flop

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Latches versus flip-flops

behavior is the same unless input changes while the clock is high

The master-slave D

Master-slave D flip-flop

Copyright ©2013 Pearson Education, publishing as Prentice Hall

D-type positive-edge-triggered flip-flop

D flip-flop with asynchronous reset

R	Clk	D	Q	Q'
0	X	X	0	1
0	\uparrow	O	O	1
O	\uparrow	1	1	O

(b) Function table

JK flip-flop

Copyright ©2013 Pearson Education, publishing as Prentice Hall

T Flip-Flop

- T flip-flop is the simplified version of JK flip-flop. It is obtained by connecting the same input 'T' to both inputs of JK flip-flop.
- It operates with only positive clock transitions or negative clock transitions.
- The circuit diagram of T flip-flop is shown in the following figure

This circuit has single input T and two outputs Q(t) & Q(t)'. The operation of T flip-flop is same as that of JK flip-flop.

Here, we considered the inputs of JK flip-flop as $\mathbf{J} = \mathbf{T}$ and $\mathbf{K} = \mathbf{T}$ in order to utilize the modified JK flip-flop for 2 combinations of inputs. So, we eliminated the other two combinations of J & K, for which those two values are complement to each other in T flip-flop.

DR AJM

T Flip-Flop

c) Graphical symbol

fig. Clocked T flip flop

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

b) Transition table

a) Logic diagram

- Full name: Toggle flip-flop
- Output toggles when input is asserted
 - If T=1, then $Q \rightarrow Q'$ when CLK \uparrow
 - If T=0, then $Q \rightarrow Q$ when CLK \uparrow

Input(t)	Q(t)	$\mathbf{\Phi}(t+\Delta t)$
0	0	0
0	1	1
1	0	1
1	1	0

Copyright ©2013 Pearson Education, publishing as Prentice Hall

- Here, Q(t) & Q(t+1) are present state & next state respectively.
- So, T flip-flop can be used for one of these two functions such as Hold, & Complement of present state based on the input conditions, when positive transition of clock signal is applied.
- The following table shows the **characteristic table** of T flip-flop.

Inputs	Present State	Next State
${f T}$	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

From the above characteristic table, we can directly write the **next state equation** as

$$Q(t+1)=T'Q(t)+TQ(t)'Q(t+1)=T'Q(t)+TQ(t)'$$

$$\Rightarrow Q(t+1)=T\bigoplus Q(t)\Rightarrow Q(t+1)=T\bigoplus Q(t)$$

The output of T flip-flop always toggles for every positive transition of the clock signal, when input T remains at logic High (1). Hence, T flip-flop can be used in **counters**.

https://www.tutorialspoint.com/digital_circuits/digital_circuits_conversion_of_flip_flops.htm

https://www.electronicstutorials.ws/sequential/seq_1.html

Flip-Flop Characteristic Tables

Table 5.1

Flip-Flop Characteristic Tables

JK Flip-Flop

J	K	Q(t + 1))
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D Flip-Flop

D	Q(t +	1)
0	0	Reset
1	1	Set

7 Flip-Flop

T	Q(t + 1)	
0	Q(t)	No change
1	Q'(t)	Complement

Clear and preset in flip-flops

- Clear and Preset set flip-flop to a known state
 - Used at startup, reset
- Clear or Reset to a logic 0
 - Synchronous: Q=0 when next clock edge arrives
 - Asynchronous: Q=0 when reset is asserted
 - Doesn't wait for clock
 - Quick but dangerous
- Preset or Set the state to logic 1
 - Synchronous: Q=1 when next clock edge arrives
 - Asynchronous: Q=1 when reset is asserted
 - Doesn't wait for clock
 - Quick but dangerous

Reference

- 1. Mano book
- 2. ee.hawaii.edu/~sasaki/EE361/Fall06/Lab/7disp.html
- 3. https://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm
- 4. https://www.electronics-tutorials.ws/sequential/seq_1.html

