Organisasi Sistem Komputer

Bab 4. Operasi Aritmatika

- 4.1 Instruksi Penjumlahan
- 4.2 Instruksi Perkalian
- 4.3 Instruksi Pembagian

Pembahasan:

► Instruksi MUL dan IMUL

Perkalian

- Terdapat dua instruksi untuk perkalian:
 - ☐ Perkalian bilangan tidak bertanda: MUL
 - Perkalian bilangan bertanda: IMUL
- Kenapa kita membutuhkan dua instruksi yang berbeda?
 - Misalkan mengalikan FF dengan FF
 - Jika kita mengasumsikan bilangan tidak bertanda, maka FF x FF berarti $255 \times 255 = 65035 = FE0Bh$
 - Jika kita mengasumsikan bilangan bertanda, maka FF x FF berarti $-1 \times -1 = 1 = 0001$ h

Instruksi MUL

Sintaks:

MUL **src**

- Instruksi MUL digunakan untuk perkalian bilangan tidak bertanda
- Hanya memerlukan satu operand sebagi pengali, nilai terkali diasumsikan berada dalam register AL, AX, dan EAX tergantung dari besar operand src:

src (pengali)	Terkali	Aksi
reg/mem8	AL	AX = AL x src
reg/mem16	AX	DX:AX = AX x src
reg/mem32	EAX	EDX:EAX = EAX x src •

mengalikan register 8 bit atau memori 8 bit dengan AL dan hasilnya disimpan di AX

mengalikan register 16 bit atau memori 16 bit dengan AX dan hasilnya disimpan di DX: AX (16 bit teratas di DX dan 16 bit terbawah di AX)

mengalikan register 32 bit atau memori 32 bit dengan AX dan hasilnya disimpan di EDX: EAX (32 bit teratas di EDX dan 32 bit terbawah di EAX)

Flag Carry pada Instruksi MUL

- Instruksi MUL men-set flag Carry jika setengah atas bit-bitnya tidak sama dengan 0
- Contoh: Perkalian 8 bit

```
mov al, 5h ; simpan nilai terkali 5h ke al
mov bl, 10h ; simpan nilai pengali 10h ke bl
mul bl ; ax = al x bl = 5h x 10h = 50h
```

src (pengali)	Terkali	Aksi
reg/mem8	AL	$AX = AL \times src$
reg/mem16	AX	$DX:AX = AX \times src$
reg/mem32	EAX	EDX:EAX = EAX x src

Contoh Instruksi MUL 16-bit

Contoh: Perkalian 16 bit

```
reg/mem8 AL AX = AL x src
reg/mem16 AX DX:AX = AX x src
reg/mem32 EAX EDX:EAX = EAX x src
```


Contoh Instruksi MUL 32-bit

Contoh: Perkalian 32 bit

src (pengali)	Terkali	Aksi
reg/mem8	AL	$AX = AL \times src$
reg/mem16	AX	$DX:AX = AX \times src$
reg/mem32	EAX	EDX:EAX = EAX x src

```
; simpan nilai terkali 12345h ke eax
         eax, 12345h
  mov
         ebx, 10000h
                       ; simpan nilai pengali 10000h ke ebx
  mov
                       = edx = eax \times ebx = 00012345h \times 00001000h
  mul
         ebx
                       ; edx = 00000000, eax = 123450000
                                                             CF
  EAX
                  EBX
                                       EDX
                                                   EAX
00012345
               00001000
                                    0000000
                                                12345000
                                     32 bit
 32 bit
                32 bit
                                                 32 bit
                                                         Nilai EDX = 0, maka CF = 0
```


Instruksi IMUL

Instruksi IMUL mempunyai tiga varian:

IMUL src1
IMUL dest, src1

IMUL dest, src1, src2

- Flag Overflow di-set:
 - Pada varian dengan 1 operand: jika setengah bit-bit teratas dari hasil perkalian bukan ektensi tanda (tidak mungkin terjadi overflow)
 - Pada varian dengan 2 dan 3 operand: jika hasil perkalian melebihi kapasitas bit penyimpanan hasil (overflow, sehingga nilai hasil perkalian tidak valid)

Catatan: Pada instruksi MUL dan IMUL satu operand, hasil perkalian tidak mungkin overflow karena hasil perkalian disimpan dalam register dengan kapasitas dua kali lebih besar dari pengali dan terkali

dest	src1	src2	Aksi
—	reg/mem8		AX = AL x src1
	reg/mem16		DX:AX = AX x src1
	reg/mem32		EDX: EAX = EAX x src1
reg16	reg/mem16		dest = dest x src1
reg32	reg/mem32		dest = dest x src1
reg16	imm8		dest = dest x imm8
reg32	imm8		dest = dest x imm8
reg16	imm16		dest = dest x imm16
reg32	imm32		dest = dest x imm32
reg16	reg/mem16	imm8	dest = src1 x src2
reg32	reg/mem32	imm8	dest = src1 x src2
reg16	reg/mem16	imm16	dest = src1 x src2
reg32	reg/mem32	imm32	dest = src1 x src2

Contoh Instruksi IMUL

; AX = 00C0h, OF = 1

• Contoh #1: $+48 \times +4$

```
mov al, +48
mov bl, +4
imul bl
```

dest	src1	src2	Aksi
	reg/mem8		AX = AL x src1
	reg/mem16		DX:AX = AX x src1
	reg/mem32		EDX:EAX = EAX x src1

Flag overflow yang di-set pada IMUL dengan 1 operand tidak menandakan hasil yang tidak valid, namun hanya menandakan jika setengah bit-bit atas dari hasilnya (nilai AH) bukan ekstensi tanda. Ini berarti kita dapat mengabaikan nilai dalam AH

Nilai AH = 0 yang berarti bukan berupa ekstensi tanda, maka OF = 1

Contoh Instruksi IMUL

• Contoh #2: $-3200 \times +2$

```
mov ax, -32000
imul ax, 2 ; AX = FFF0h, OF = 1
```

dest	src1	src2	Aksi
reg16	reg/mem16		dest = dest x src1
reg32	reg/mem32		dest = dest x src1
reg16	imm8		dest = dest x imm8
reg32	imm8		dest = dest x imm8
reg16	imm16		dest = dest x imm16
reg32	imm32		dest = dest x imm32

= +1536

Flag overflow yang di-set pada IMUL 2 atau 3 operand berarti hasil perkalian tidak valid

Overflow terjadi karena hasil perkalian melebihi kapasitas bit

Ringkasan

- Dua instruksi perkalian:
 - MUL untuk perkalian bilangan tidak bertanda
 - IMUL untuk perklaian bilangan bertanda
- Instruksi MUL:
 - Hanya satu jenis instruksi
 - flag carry yang ter-set mengindikasikan nilai pada setengah bit-bit dari hasil tidak sama dengan nol, namun hasilnya selalu valid
- Instruksi IMUL:
 - terdapat tiga varian instruksi berdasarkan banyak operand, yaitu 1, 2, dan 3 operand
 - flag overflow yang ter-set pada IMUL 1 operand mengindikasikan nilai pada setengah bitbit dari hasil bukan ekstensi tanda, namun hasilnya selalu valid
 - oflag overflow yang ter-set pada IMUL 2 dan 3 operand mengindikasikan hasil perkalian melebih kapasitas operand destination, sehingga hasil perkalian tidak valid

