Mode-Selection / Cross-Validation

Data Analysis for Networks - DataNets'19 Anastasios Giovanidis

Sorbonne-LIP6

January 21, 2019

Bibliography

B.1 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. "An introduction to statistical learning: with applications in R". Springer Texts in Statistics. ISBN 978-1-4614-7137-0
 Chapter 2, Chapter 5
 DOI 10.1007/978-1-4614-7138-7

Recap

In the previous course (Regression) we assumed that the real-world model is sufficiently described by a linear model with additive noise:

$$y = \beta_1 x + \beta_0 + \epsilon = f(x) + \epsilon$$

We estimated the unknown β 's by the parameters $\hat{\beta}_1, \hat{\beta}_0$.

The following formula predicts for any x

$$\hat{y} = \hat{\beta}_1 x + \hat{\beta}_0 = \hat{f}(x).$$

■ But we do not know anything about the noise!

Prediction Errors

These predictions cannot be accurate but will always have an irreducible error, no matter how good the choice of the predictor \hat{f} :

$$\mathbb{E}\left[(y-\hat{y})^2\right] = \mathbb{E}\left[(f(x)-\hat{f}(x))^2\right] + \mathbb{E}\left[\epsilon^2\right] + 2\mathbb{E}\left[\epsilon(f(x)-\hat{f}(x))^2\right].$$

$$= \mathbb{E}\left[(f(x)-\hat{f}(x))^2\right] + Var(\epsilon).$$

Two types of errors...

Reducible vs Irreducible

- ▶ The irreducible error, due to the random error ϵ in the model, whose variance is unknown.
- The reducible error, due to errors in the estimate of the model parameters $\hat{\beta}_i$. This type of error can be reduced by using (a) larger sample sets when estimating the coefficients, or (b) different models $\hat{f}(x)$ that better describe the unknown function f(x) (could be non-linear).

In practice larger intervals are used for prediction to account for both types of errors.

Accuracy

The MSE is a measure of model accuracy.

For the available data set $D_n = ((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$,

$$MSE(D_n; \hat{\beta}_1, \hat{\beta}_0) = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\beta}_1 x_i - \hat{\beta}_0)^2.$$
 (1)

We guarantee maximum accuracy by

$$\min_{\hat{\beta}_1, \ \hat{\beta}_0} MSE(D_n; \hat{\beta}_1, \hat{\beta}_0).$$

By choosing $\hat{\beta}_1$, $\hat{\beta}_0$ that minimize MSE we reduce the reducible part, but cannot change the irreducible part due to noise.

Train MSE

The predicted response $\hat{y}(x_i) = \hat{\beta}_1 x_i + \hat{\beta}_0$ will be close to y_i , because the parameters are chosen to minimise their difference! We say that the model is trained with data D_n .

$$MSE_{train} = MSE(D_n; \hat{\beta}_1, \hat{\beta}_0).$$

But! We actually want that the model predicts good values for unknown data, $x_o \notin D_n$.

$$\hat{y}_o = \hat{\beta}_1 x_o + \hat{\beta}_0.$$

Test MSE

We need a different test data set D_m^{test} with a number $m \geq 1$ of samples, to test the accuracy of our prediction model. For this test data set, we relate the accuracy metric

$$MSE_{test} := MSE(D_m^{test}; \hat{\beta}_1, \hat{\beta}_0) \neq MSE_{train}.$$

Question 1: How good does our "minimum MSE linear predictor" behave for the test data set?

Question 2: If we use other prediction models $\hat{f}(x)$, e.g. non-linear, can these predict better for the same test data set?

Polynomial Regression

The linear regression model assumes a linear relationship between the response and the input (predictors).

But! the true relationship may be non-linear.

Extend the linear model, using polynomial regression.

For 1-D input x we write an ℓ -polynomial model:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_\ell x^\ell + \epsilon = f(x) + \epsilon.$$
 (2)

But it is still a linear model for the parameters!

If we regard $x_1 := x$, $x_2 := x^2$,..., $x_\ell := x^\ell$ it is just a multiple linear regression.

 \rightarrow Use standard linear regression software.

Polynomial Fit

Figure: Polynomial vs Linear fit.¹

¹Source [B.1]

Flexibility VS Interpretability

Higher order polynomial models offer more flexibility. (see Question 2)

In the most extreme case we can use a model whose curve passes through every point of the train data set D_n . We can propose a polynomial fit with $\ell = card(D_n)$. Is this a good predictive model?

 $^{\mbox{\tiny LSP}}$ At the other extreme we can use a very restrictive model (simple linear regression), with $\ell=1.$ Maybe this simple model is better?

Model Fitting I

Figure: Example 1 (black curve is the real one, noise added).²

²Source [B.1]

Model Fitting II

Figure: Example 2 (black curve is the real one, noise added).³

³Source [B.1]

Model Fitting III

Figure: Example 3 (black curve is the real one, noise added).⁴

⁴Source [B.1]

Optimal mode selection

Answer to Question 1:

 \square The MSE_{test} is always higher than noise (irreducible error).

Answer to Question 2:

The more flexibility (higher poly-degree ℓ), the lower the MSE_{train} .

But! The MSE_{test} always has a U shape (fundamental property) with respect to degree (x-axis). The optimal mode is the one that minimizes the MSE_{test} : trade-off between flexibility vs interpretability.

We call this the Variance VS Bias trade-off.

Overfitting / Underfitting

Overfitting: Small MSE_{train} but large MSE_{test} . The statistical learning model picks patterns that are caused by randomness rather than the true properties of the unknown f(x).

needs lower flexibility!

Underfitting: Large MSE_{train} and large MSE_{test} . The learning model is too rigid to accurately describe the unknown f(x).

reads higher flexibility!

Overfitting / Underfitting Example

Figure: Polynomial Over/Under- fitting.

$$MSE(Train) = (46.41, 25.66, 24.67)$$
, min train MSE for $\ell = 16$. $MSE(Test) = (59.30, 42.94, 45.70)$, min test MSE for $\ell = 3$.

Numerical Example - Polynomial fit

Consider the numerical example with $D_n = \{(1,3), (2,4), (3,8), (4,14)\}.$

- With the first three set elements do linear regression.
- ▶ Use the forth element to derive the MSE_{test-linear} .
- ▶ With the first three set elements do quadratic regression.
- ▶ Use the forth element to derive the $MSE_{test-quadratic}$.

Which method is best?

Numerical Example - Polynomial fit cont'd

We use the set $D_3 = \{(1,3), (2,4), (3,8)\}$ for the linear regression, and we get:

 $\hat{y} = 2.50x + 0$, with an $MSE_{test-linear} = 16$.

for the quadratic regression $\beta = (\mathbf{X}\mathbf{X}^T)^{-1}\mathbf{X}^T\mathbf{y}$, and we get:

 $\hat{y} = 1.50x^2 - 3.5x + 5$, with an $MSE_{test-quadratic} = 1$.

 $MSE_{test-quadratic} < MSE_{test-linear}$ so the quadratic fit is better!

Resampling

In all the above, we assumed that two disjoint data-sets are available:

- \triangleright a train data-set D_n ,
- ► a test data-set D_m^{test} ,

where $D_n \cap D_m^{test} = \emptyset$.

However, usually we only have one data-set available D_n , to both train and test the machine learning algorithm.

What should we do? a. Cross-validation, or b. Bootstrapping!

Validation set approach

Naive approach. Split the observation data set D_n in two:

- a train set
- ▶ a validation set

e.g. Half of the elements of D_n belong to the train and the other half to the test set.

- Use the train set to fit the model.
- ▶ Use the validation set to evaluate performance, e.g. MSE_{test} .

Validation set Example

Figure: n observations randomly split into a Train and Validation set.⁵

⁵Source [B.1]

Drawbacks

The method has two main problems:

- 1. The test error rate depends on the data split
 - $\rightarrow MSE_{test}$ can be highly variable!
- 2. Not all available n data are used for training
 - \rightarrow worse performance with less observations, and MSE_{test} is overestimated !

Validation set Example

Figure: Variability of the MSE_{test} depending on the data split.⁶

⁶Source [B.1]

LOOCV

Leave-one-out-Cross-Validation. Split the data set D_n again in two:

- ightharpoonup a validation set of a single observation (x_1, y_1)
- ▶ a train set of the rest n-1 observations .

A prediction \hat{y}_1 is made only for the excluded observation using x_1 .

$$MSE_{test} = MSE_1 = (y_1 - \hat{y}_1)^2.$$

ightharpoonup Problem: The evaluation is based on a single observation ightarrow highly variable.

LOOCV x n

Figure: Solution: repeat n times, for n different splits !⁷

⁷Source [B.1]

LOOCV x n

The LOOCV estimate for the test MSE is the average of these *n* test error-estimates

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} MSE_i.$$

No randomness in the result + uses all observations!

k-fold CV

For large n LOOCV is time-consuming to calculate all MSE_i .

■Better use k-fold Cross-Validation:

- ▶ The data-set D_n is split into $1 \le k \le n$ folds.
- ▶ The 1st fold is treated as validation set and the rest k-1 for training $\rightarrow MSE_1$ is caclulated.
- Repeat k times by choosing a different fold for validation set each time → MSE_k is calculated.

The k-fold estimate is computed by averaging

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} MSE_i.$$

k-fold x k

Figure: Repeat k times, for k different splits !8

⁸ Source [B.1]

k-fold CV

Computational advantages over LOOCV:

- ▶ LOOCV is a special case of k-fold CV, for k = n.
- ▶ In practice k = 5 or k = 10.
- ▶ k-fold CV with k < n can have lower variance in the MSE, than LOOCV.

LOOCV vs k-fold CV

Figure: Mode selection with two CV methods⁹.

The 10-fold was run 10 times, each with a different data split.

⁹ Source [B.1]

The Bootstrap

A powerful tool that can quantify the uncertainty associated with a given learning method.

e.g. it can estimate the standard error (SE) of $\hat{\beta}_k$, or MSE_{test} ,...

Main idea:

Given an original data-set $Z = D_n$, create B > 1 new datasets of size n:

 \square each new dataset Z^{*b} results from uniform sampling with replacement of the set Z.

 \square for each Z^{*b} calculate the unknown $\hat{\alpha}^{*b}$.

Resampled Data Sets

Figure: Example of Z^{*b} sets, $b = 1, 2, \dots, B$.¹⁰.

¹⁰Source [B.1]

Bootstrap estimates

► The Average

$$Av_B(\hat{\alpha}) = \bar{\alpha} = \frac{1}{B} \sum_{b=1}^{B} \hat{\alpha}^{*b}$$

The Standard Error

$$SE_B(\hat{\alpha}) = \sqrt{\frac{1}{(B-1)}\sum_{b=1}^B (\hat{\alpha}^{*b} - \overline{\alpha})}$$

Resampled stats

Figure: Real vs Bootstrapped statistics.¹¹.

¹¹ Source [B.1]

Numerical Example - Resampling

Consider the numerical example with $D_n = \{(1,3), (2,4), (3,8), (4,9)\}.$

Use this set and apply:

- ► Simple Validation.
- ► LOOCV.
- ▶ 2-fold CV.
- Bootstrapping.

Numerical Example - Simple Validation

Suppose first that we split the D_n in half, into a

- ► Train Set {(1,3), (2,4)} .
- ► Validation Set {(3,8),(4,9)} .

Then
$$\hat{y} = 1 \cdot \hat{x} + 2$$
.

- $ightharpoonup MSE_{train} = 0$.
- $MSE_{test} = \frac{(5-8)^2 + (6-9)^2}{2} = 9$.

Numerical Example - LOOCV

We get

$$Av(MSE_{test}) = \frac{1+1.638+1.664+1}{4} = 1.3255$$

Numerical Example - 2Folds

Numerical Example - Bootstrapping

Consider the numerical example with

$$D_n = Z_1 = \{(1,3), (2,4), (3,8), (4,9)\}.$$

Apply the bootstrapping technique for 3 more sample sets :

- $Z_2^* = \{(2,4), (2,4), (4,9), (4,9)\}.$
- $Z_3^* = \{(2,4), (1,3), (3,8), (4,9) \}.$
- $Z_4^* = \{(2,4), (4,9), (3,8), (3,8) \}.$

Numerical Example - Bootstrapping cont'd I

We get for each of the four sets,

1.
$$(\hat{\beta}_0, \ \hat{\beta}_1) = (0.5, \ 2.2)$$
.

2.
$$(\hat{\beta}_0, \ \hat{\beta}_1) = (-1.0, \ 2.5)$$
.

3.
$$(\hat{\beta}_0, \ \hat{\beta}_1) = (0.5, \ 2.2)$$
.

4.
$$(\hat{\beta}_0, \ \hat{\beta}_1) = (-0.25, \ 2.5)$$
.

Numerical Example - Bootstrapping cont'd II

Figure: Bootstrap Regression Lines.

Numerical Example - Bootstrapping cont'd III

We have obtained the following set of estimates for the intercept and the slope

- $\hat{\beta}_0 = [0.5, -1.0, 0.5, -0.25]$.
- $\hat{\beta}_1 = [2.2, 2.5, 2.2, 2.5]$.

Then

- $ar{eta}_0 = Av_4(\hat{eta}_0) = -0.0625$ and $SE_4(\hat{eta}_0) = 0.3590$.
- $\bar{\beta}_1 = Av_4(\hat{\beta}_1) = 2.35$ and $SE_4(\hat{\beta}_1) = 0.0867$.

95% confidence intervals:

- $\beta_0 \in [-0.7806, +0.6556].$
- $\beta_1 \in [+2.1768, +2.5232].$

Data Networks DataNets 2019
LExercises

END