Question 6

(a)

We denote a polynomial with degree $\phi(n) - 1$ by $f(x) = f_0 + f_1 x + \ldots + f_{\phi(n)-1} x^{\phi(n)-1}$. It is trivially true that if f(x) = g(x), then $f(\zeta_i) = g(\zeta_i)$ for all $1 \le i \le \phi(n)$.

On the other hand, if for two polynomials f, g with degree $\phi(n) - 1$, their NTT representations are exactly identical, then for all $1 \le i \le \phi(n)$:

$$f(\zeta_i) = g(\zeta_i)$$

Define h(x) = f(x) - g(x), then $\zeta_1, \zeta_2, \dots, \zeta_{\phi(n)}$ are distinct roots of h(x). This means that h(x) must have form:

$$h(x) = h'(x)(x - \zeta_1)(x - \zeta_2) \dots (x - \zeta_{\phi(n)})$$

Because f(x), g(x) both have degree $\phi(n) - 1$, the degree of f(x) - g(x) cannot be more than $\phi(n) - 1$. Therefore, h(x) must be 0, because otherwise it must have degree of at least $\phi(n)$.

(b)