Mathématiques Sciences de l'informatique Corrigé de la session principale Juin 2013

Exercice 1

1)
$$z^2 - 2(2 - i)z + 7 - 4i = 0$$
.

$$\Delta' = \begin{bmatrix} (2 - i)^2 - (7 - 4i) = (4 - 4i - 1) - (7 - 4i) = -4 = (2i)^2.$$

$$z_1 = 2 - i - 2i = 2 - 3i \; ; \; z_2 = 2 - i + 2i = 2 + i.$$
2) $P(z) = z^3 - (2 - 3i)z^2 - (3 + 4i)z + 18 - i \; ; \; z \in \square.$
a) $(z + 2 + i) e^{-2z^2} - 2(2 - i)z + 7 - 4i e^{-2z^2}$

$$= z^3 - 2(2 - i)z^2 + (7 - 4i)z + (2 + i) e^{-2z^2} - 2(2 - i)z + 7 - 4i e^{-2z^2}$$

$$= z^3 + \begin{bmatrix} -2(2 - i) + (2 + i) \end{bmatrix} z^2 + \begin{bmatrix} (7 - 4i) - 2(2 + i)(2 - i) \end{bmatrix} z + (2 + i)(7 - 4i)$$

$$= z^3 + \begin{bmatrix} -2(2 - i) + (2 + i) \end{bmatrix} z^2 + \begin{bmatrix} (7 - 4i) - 2(2 + i)(2 - i) \end{bmatrix} z + (2 + i)(7 - 4i)$$

$$= z^3 - (2 - 3i)z^2 - (3 + 4i)z + 18 - i = P(z).$$
D'où $P(z) = (z + 2 + i) e^{-2z^2} - 2(2 - i)z + 7 - 4i e^{-2z^2}$
b) $P(z) = 0 \Leftrightarrow (z + 2 + i) \begin{bmatrix} z^2 - 2(2 - i)z + 7 - 4i \end{bmatrix} = 0$

$$\Leftrightarrow z + 2 + i = 0 \text{ ou } z^2 - 2(2 - i)z + 7 - 4i = 0$$

$$\Leftrightarrow z = -2 - i \text{ ou } z = 2 - 3i \text{ ou } z = 2 + i.$$

$$S_1 = \{ -2 - i, 2 - 3i, 2 + i \}$$

3) A, B, C et D les points d'affixes respectives 2+i, -1-3i, -2-i et 2-3i.

b) On a:
$$\overrightarrow{AC}(-4-2i)$$
, $\overrightarrow{BC}(-1+2i)$, $\overrightarrow{AC}\begin{pmatrix} -4\\-2 \end{pmatrix}$, $\overrightarrow{BC}\begin{pmatrix} -1\\2 \end{pmatrix}$.

 $\overrightarrow{AC}.\overrightarrow{BC} = (-4)\times(-1)+(-2)\times2=0$ D'où les vecteurs \overrightarrow{AC} et \overrightarrow{BC} sont orthogonaux et par conséquent le triangle ABC est rectangle en C.

c) Le triangle ABC est rectangle en C, d'où il est inscrit dans le cercle de diamètre [AB].

$$\overrightarrow{AD}(-4i)$$
, $\overrightarrow{BD}(3)$, $\overrightarrow{AD}\begin{pmatrix} 0 \\ -4 \end{pmatrix}$, $\overrightarrow{BD}\begin{pmatrix} 3 \\ 0 \end{pmatrix}$ et $\overrightarrow{AD}.\overrightarrow{BD} = 0$. D'où les vecteurs \overrightarrow{AD} et \overrightarrow{BD}

sont orthogonaux et par conséquent le triangle ABD est rectangle en D. Ainsi D appartient au cercle de diamètre [AB].

Soit I le milieu du segment [AB],
$$I(\frac{1}{2}-i)$$
. $AB = \sqrt{(-1-2)^2 + (-3-1)^2} = \sqrt{9+16} = 5$.

Les points A, B, C et D sont sur le cercle de centre $I(\frac{1}{2}, -1)$ et de rayon 5.

Exercice 2

Dans un lycée, on a les données suivantes :

- 52% des élèves sont des filles.
- 20% des élèves suivent la spécialité informatique.
- 12% des élèves sont des filles qui suivent la spécialité informatique.

On choisit au hasard un élève de ce lycée.

On considère les évènements suivants :

F: « L'élève choisi est une fille ».

I : « L'élève choisi suit la spécialité informatique ».

1)a) Dans ce lycée, 52% des élèves sont des filles alors la probabilité que l'élève choisi soit une fille est $p(F) = \frac{52}{100} = \frac{13}{25}$.

20% des élèves de ce lycée suivent la spécialité informatique alors la probabilité que l'élève choisi suit la spécialité informatique est $p(I) = \frac{20}{100} = \frac{1}{5}$.

12% des élèves sont des filles qui suivent la spécialité informatique alors la probabilité que l'élève choisi soit une fille qui suit la spécialité informatique est $p(F \cap I) = \frac{12}{100} = \frac{3}{25}$.

b) L'élève choisi est une fille. La probabilité qu'elle suit la spécialité informatique est

$$p(I/F) = \frac{p(F \cap I)}{p(F)} = \frac{\frac{3}{25}}{\frac{13}{25}} = \frac{3}{13}.$$

2)a) On sait que $p(I/\overline{F}) = \frac{p(I \cap \overline{F})}{p(\overline{F})}$.

$$p(\overline{F}) = 1 - p(F) = 1 - \frac{13}{25} = \frac{12}{25}.$$

D'autre part on a $p(I) = p(I \cap F) + p(I \cap \overline{F})$, d'où $p(I \cap \overline{F}) = p(I) - p(I \cap F)$.

$$p(I \cap \overline{F}) = p(I) - p(I \cap F) = \frac{1}{5} - \frac{3}{25} = \frac{2}{25}.$$

$$p(I/\bar{F}) = \frac{p(I \cap \bar{F})}{p(\bar{F})} = \frac{\frac{2}{25}}{\frac{12}{25}} = \frac{2}{12} = \frac{1}{6}.$$

b) La probabilité que l'élève choisi soit un garçon qui ne suit pas la spécialité informatique est $p(\bar{I} \cap \bar{F})$.

$$p(\bar{I} \cap \bar{F}) = p(\bar{F}).p(\bar{I}/\bar{F}) \quad \text{or} \ \ p(\bar{I}/\bar{F}) = 1 - p(I/\bar{F}) = 1 - \frac{1}{6} = \frac{5}{6}$$

D'où
$$p(\bar{I} \cap \bar{F}) = p(\bar{F}).p(\bar{I}/\bar{F}) = \frac{12}{25} \times \frac{5}{6} = \frac{2}{5}.$$

Exercice 3

1)a) Les courbes (C) et (Γ), représentées sont celles des deux fonctions $\ln : x \mapsto \ln x$ et $u : x \mapsto \frac{1}{x} - 1$, définies sur]0; $+\infty$ [.

On a $\ln 2 > 0$ et $u(2) = -\frac{1}{2} < 0$. D'où la courbe (C) est celle de la fonction ln et la courbe

- (Γ) est celle de la fonction u.
- b) Par une lecture graphique, on détermine la position relative des deux courbes (C) et (Γ) et cela permet d'établir le signe de $\ln x u(x) \sin \frac{1}{3}0; +\infty$.

X	0	1	=	+∞
$\ln x - u(x)$	_	0	+	

- 2) f la fonction définie sur $]0;+\infty[$ par $f(x)=(x-1)\ln x$.
- a) $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x 1) \ln x = +\infty$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x - 1) \ln x = +\infty.$$

b)
$$\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\frac{(x-1)\ln x}{x}=\lim_{x\to +\infty}(1-\frac{1}{x})\ln x=+\infty.$$

D'où la courbe C_f admet une branche parabolique de direction l'axe $(O\;;\;\vec{j})$.

c)
$$f(x) = (x-1)\ln x$$
; $x \in]0; +\infty[$.

$$f'(x) = \ln x + (x-1) \cdot \frac{1}{x} \quad ; \quad x \in]0 ; +\infty[$$

$$= \ln x + 1 - \frac{1}{x}$$

$$= \ln x - u(x)$$

d) Le tableau de variation de la fonction f :

X	0	1	+∞
f'(x)	====	0	+
f	+∞	0	+∞

3) La courbe C_f .

4)
$$\mathbf{A} = \int_{1}^{e} f(x) dx = \int_{1}^{e} (x-1) \ln x dx$$

On pose:
$$u(x) = \ln x \implies u'(x) = \frac{1}{x}$$

 $v'(x) = x - 1 \implies v(x) = \frac{1}{2}x^2 - x$

En appliquant la formule d'intégration par parties on a :

$$\int_{1}^{e} (x-1) \ln x \, dx = \left[\left(\frac{1}{2} x^{2} - x \right) \ln x \right]_{1}^{e} - \int_{1}^{e} \left(\frac{x}{2} - 1 \right) \, dx$$

$$= \frac{e^{2}}{2} - e - \left[\frac{1}{4} x^{2} - x \right]_{1}^{e}$$

$$= \frac{e^{2}}{2} - e - \left(\frac{e^{2}}{4} - e - \frac{1}{4} + 1 \right)$$

$$= \frac{e^{2} - 3}{4}$$

D'où $\mathbf{A} = \frac{e^2 - 3}{4}$ unité d'aire.

Exercice 4

- 1) On considère dans \Box 2 l'équation (E): 2x-3y=1.
 - a) Soit (x; y) une solution de (E) alors le couple (x; y) vérifie 2x-3y=1, d'où d'après le théorème de Bézout x et y sont premiers entre eux.
 - b) $2 \times (-1) 3 \times (-1) = 1$, d'où (-1; -1) est une solution de (E).
 - c) (x; y) est une solution de l'équation (E) \Leftrightarrow 2 x 3y = 1

$$\Leftrightarrow 2 \times -3y = 2 \times (-1) - 3 \times (-1)$$

$$\Leftrightarrow 2 \times (x+1) - 3 \times (y+1) = 0$$

$$\Leftrightarrow 2 \times (x+1) = 3 \times (y+1)$$

On a 2 divise 3(y+1) et 2 et 3 sont premiers entre eux, donc d'après le lemme de Gauss 2 divise y+1. D'où y+1=2k, $k \in \square$.

$$y+1=2k, k \in \square \iff y=2k-1, k \in \square.$$

On remplace y par sa valeur dans l'équation (E) et on tire x en fonction de k :

$$2x-3(2k-1) = 1 \Leftrightarrow 2x = 3(2k-1)+1$$

 $\Leftrightarrow x = 3k-1$

On vérifie que (3k-1;2k-1) est solution de (E):2(3k-1)-3(2k-1)=1.

$$S_{\square 2} = \{(3k-1; 2k-1), k \in \square \}.$$

- 2) Pour tous entiers m et n, on définit la matrice $A = \begin{pmatrix} m-2 & n-1 \\ 3 & 2 \end{pmatrix}$.
- a) det(A) = 2(m-2) 3(n-1) = 2m 3n 1.
- b) A n'est pas inversible \Leftrightarrow det(A) = 0

$$\Leftrightarrow 2m-3n=1$$

⇔ (m;n) est une solution de l'équation (E)

$$\Leftrightarrow$$
 $(m;n) \in \{(3k-1;2k-1), k \in \square\}.$

c) On a 13 = 1[3] d'où $13^{2013} = 1[3]$, d'autre part 2011 = 1[3] alors $2011 \times 13^{2013} = 1[3]$.

De même
$$11 = 2[3]$$
 d'où $11^{2012} = 2^{2012}[3] = (2^2)^{1006}[3] = 1^{1006}[3] = 1[3]$.

D'autre part 2015 = 2[3] alors $2015 \times 11^{2012} = 2[3]$.

Ainsi
$$2011 \times 13^{2013} \equiv 1[3]$$
 et $2015 \times 11^{2012} \equiv 2[3]$

d) On pose $m = 2011 \times 13^{2013} + 2$ et $n = 2015 \times 11^{2012} + 1$.

On a: m = 0[3] et n = 0[3], d'où les entiers m et n ne sont pas premiers entre eux puisqu'ils sont divisibles par 3 par conséquent le couple (m;n) ne peut pas être une solution de l'équation (E) d'après 1a).

Or $2011 \times 13^{2013} = m - 2$ et $2015 \times 11^{2012} = n - 1$.

D'où la matrice
$$B = \begin{pmatrix} 2011 \times 13^{2013} & 2015 \times 11^{2012} \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} m-2 & n-1 \\ 3 & 2 \end{pmatrix} = A$$

D'après 2)b) (m;n) est une solution de l'équation (E) si et seulement si A n'est pas inversible. Cela permet de dire que :

(m;n) n'est pas une solution de l'équation (E) si et seulement si B est inversible.

On a (m;n) n'est pas une solution de l'équation (E) d'où la matrice B est inversible.