Back and forth conditions for elementary equivalence in model theory of non-classical logics

Pilar Dellunde¹² Àngel García-Cerdaña²³ Carles Noguera⁴

¹Department of Philosophy Universitat Autònoma de Barcelona

²Artificial Intelligence Research Institute (IIIA) Spanish National Research Council (CSIC)

³Department of Information and Communication Technologies University Pompeu Fabra

> ⁴Institute of Information Theory and Automation Czech Academy of Sciences

First-order fuzzy logic is strong enough to support non-trivial formal mathematical theories

Mathematical concepts in such theories show gradual rather than bivalent structure

Examples:

- Skolem, Hájek (1960, 2005): naïve set theory over Ł
- Takeuti–Titani (1994): ZF-style fuzzy set theory in a system close to Gödel logic
- Restall (1995), Hájek–Paris–Shepherdson (2000): arithmetic with the truth predicate over Ł
- Hájek–Haniková (2003, 2011): ZF-style set theory over HL_{Δ}
- Novák (2004): Church-style fuzzy type theory over IMTL∆
- Běhounek-Cintula (2005): higher-order fuzzy logic

Also theories about extra-mathematical gradual notions may be expressible in first-order fuzzy logics.

Fuzzy description logic studies tractable fragments of such formalisms.

Model theory studies the models of first-order theories. Over classical logic, it constitutes a major branch of Mathematical Logic, but over fuzzy logics is still in its first stages:

- G. Gerla, Di Nola: first-order logics of bounded semilattices (semantical approach)
- Novák: fuzzy logics with evaluated syntax
- Hájek, Cintula et al: basic notions of morphisms, diagram, elementary equivalence
- Dellunde: more on morphisms, ultraproducts

Very basic issues are not yet well understood, such as classification of models in terms of their first-order properties, i.e. elementary equivalence.

Very basic issues are not yet well understood, such as classification of models in terms of their first-order properties, i.e. elementary equivalence.

A much more ambitious project:

a model theory of non-classical logics

A general non-classical framework (Cintula, Noguera)

L algebraizable in the sense of Blok and Pigozzi

The algebras are ordered (by implication), therefore we can define:

- Usual classical syntax
- Semantics as in Mostowski, Rasiowa, Hájek tradition (A, M)
- $\forall = \inf \text{ and } \exists = \sup$
- Notion of safe structure, where truth values of all formulas are defined.
- Notion of model: $\|\sigma\|_{\mathbf{M}}^A \in \mathcal{F}^A$ (where $\mathcal{F}^A = \{a \mid \overline{1}^A \leq_A a\}$ is the filter of designated elements of the algebra A).

We still have:

- axiomatic Hilbert-style presentation
- completeness theorem

(Elementary) substructure

 $\langle \mathbf{B}, \mathbf{N} \rangle$ is a substructure of $\langle \mathbf{A}, \mathbf{M} \rangle$ if:

- \bigcirc **B** is a subalgebra of **A**.
- **③** For each n-ary function symbol $F \in \mathcal{P}$, and elements $d_1, \ldots, d_n \in N$,

$$F_{\mathbf{N}}(d_1,\ldots,d_n)=F_{\mathbf{M}}(d_1,\ldots,d_n).$$

1 For each *n*-ary predicate $P \in \mathcal{P}$, P_N is the restriction of P_M to N.

(Elementary) substructure

 $\langle \mathbf{B}, \mathbf{N} \rangle$ is a substructure of $\langle \mathbf{A}, \mathbf{M} \rangle$ if:

- \bigcirc **B** is a subalgebra of **A**.
- **③** For each *n*-ary function symbol $F \in \mathcal{P}$, and elements $d_1, \ldots, d_n \in N$,

$$F_{\mathbf{N}}(d_1,\ldots,d_n)=F_{\mathbf{M}}(d_1,\ldots,d_n).$$

1 For each n-ary predicate $P \in \mathcal{P}$, P_N is the restriction of P_M to N.

Moreover, if both structures are safe, $\langle \boldsymbol{B}, \mathbf{N} \rangle$ is an elementary substructure of $\langle \boldsymbol{A}, \mathbf{M} \rangle$ if for every \mathcal{P} -formula $\varphi(x_1, \dots, x_n)$, and elements $d_1, \dots, d_n \in N$,

$$\|\varphi(d_1,\ldots,d_n)\|_{\mathbf{N}}^{\mathbf{B}} = \|\varphi(d_1,\ldots,d_n)\|_{\mathbf{M}}^{\mathbf{A}}$$

Homomorphisms

The pair $\langle f,g\rangle$ is an homomorphism from $\langle A,\mathbf{M}\rangle$ into $\langle B,\mathbf{N}\rangle$ (safe \mathcal{P} -structures) if

- 1) $f: A \rightarrow B$ is an homomorphism of L-algebras
- 2) $g: M \to N$ is a mapping from M into N
- 3) for every n-ary $F \in \mathcal{P}$ and $d_1, \ldots, d_n \in M$,

$$g(F_{\mathbf{M}}(d_1,\ldots,d_n))=F_{\mathbf{N}}(g(d_1),\ldots,g(d_n)).$$

4) For every *n*-ary predicate symbol $P \in \mathcal{P}$, and $d_1, \ldots, d_n \in M$,

$$P_{\mathbf{M}}(d_1,\ldots,d_n)\in\mathcal{F}^{\mathbf{A}} \Rightarrow P_{\mathbf{N}}(g(d_1),\ldots,g(d_n))\in\mathcal{F}^{\mathbf{B}}.$$

Homomorphisms

The pair $\langle f,g\rangle$ is an homomorphism from $\langle A,\mathbf{M}\rangle$ into $\langle B,\mathbf{N}\rangle$ (safe \mathcal{P} -structures) if

- 1) $f: A \rightarrow B$ is an homomorphism of L-algebras
- 2) $g: M \to N$ is a mapping from M into N
- 3) for every n-ary $F \in \mathcal{P}$ and $d_1, \ldots, d_n \in M$,

$$g(F_{\mathbf{M}}(d_1,\ldots,d_n))=F_{\mathbf{N}}(g(d_1),\ldots,g(d_n)).$$

4) For every *n*-ary predicate symbol $P \in \mathcal{P}$, and $d_1, \ldots, d_n \in M$,

$$P_{\mathbf{M}}(d_1,\ldots,d_n)\in\mathcal{F}^{\mathbf{A}} \Rightarrow P_{\mathbf{N}}(g(d_1),\ldots,g(d_n))\in\mathcal{F}^{\mathbf{B}}.$$

It is a σ -homomorphism if f preserves all the existing infima and suprema.

It is a strong homomorphism if for every n-ary predicate symbol $P \in \mathcal{P}$ and $d_1, \ldots, d_n \in M, f(P_{\mathbf{M}}(d_1, \ldots, d_n)) = P_{\mathbf{N}}(g(d_1), \ldots, g(d_n)).$

Elementary homomorphisms

A homomorphism from $\langle A, \mathbf{M} \rangle$ into $\langle \mathbf{B}, \mathbf{N} \rangle$ (safe \mathcal{P} -structures) $\langle f, g \rangle$ is elementary if for each \mathcal{P} -formula $\varphi(x_1, \ldots, x_n)$ and elements $d_1, \ldots, d_n \in M$,

$$f(\|\varphi(d_1,\ldots,d_n)\|_{\mathbf{M}}^{\mathbf{A}}) = \|\varphi(g(d_1),\ldots,g(d_n))\|_{\mathbf{N}}^{\mathbf{B}}$$

A useful lemma

Lemma 1

Let $\langle f,g \rangle$ be a strong σ -homomorphism from $\langle A, \mathbf{M} \rangle$ into $\langle B, \mathbf{N} \rangle$ (safe \mathcal{P} -structures) such that g is onto. Then $\langle f,g \rangle$ is elementary and for every \mathcal{P} -sentence σ ,

$$\|\sigma\|_{\mathbf{M}}^{\mathbf{A}} \in \mathcal{F}^{\mathbf{A}} \iff \|\sigma\|_{\mathbf{N}}^{\mathbf{B}} \in \mathcal{F}^{\mathbf{B}}.$$

Let $\langle A, M \rangle$ and $\langle B, N \rangle$ be safe \mathcal{P} -structures. We say that they are:

1 Elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv \langle B, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\sigma\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$.

Let $\langle A, M \rangle$ and $\langle B, N \rangle$ be safe \mathcal{P} -structures. We say that they are:

1 Elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv \langle B, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\sigma\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$.

Assume now that $A \subseteq B$.

2 Filter-strongly elementarily equivalent (in symbols:

$$\langle A, \mathbf{M} \rangle \equiv^{fs} \langle B, \mathbf{N} \rangle$$
) if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\sigma\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$ and, in this case, $\|\sigma\|_{\mathbf{M}}^{A} = \|\sigma\|_{\mathbf{N}}^{B}$.

Let $\langle A, \mathbf{M} \rangle$ and $\langle B, \mathbf{N} \rangle$ be safe \mathcal{P} -structures. We say that they are:

1 Elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv \langle B, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\sigma\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$.

Assume now that $A \subseteq B$.

- 2 Filter-strongly elementarily equivalent (in symbols:
 - $\langle A, \mathbf{M} \rangle \equiv^{fs} \langle B, \mathbf{N} \rangle$ if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\sigma\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$ and, in this case, $\|\sigma\|_{\mathbf{M}}^{A} = \|\sigma\|_{\mathbf{N}}^{B}$.
- 3 Strongly elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv^s \langle B, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^A = \|\sigma\|_{\mathbf{N}}^B \in A$.

Let $\langle A, M \rangle$ and $\langle B, N \rangle$ be safe \mathcal{P} -structures. We say that they are:

1 Elementarily equivalent (in symbols: $\langle A, \mathbf{M} \rangle \equiv \langle B, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\sigma\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$.

Assume now that $A \subseteq B$.

- 2 Filter-strongly elementarily equivalent (in symbols: $\langle A, M \rangle \equiv^{f_S} \langle B, N \rangle$) if, for every \mathcal{P} -sentence σ ,
 - $\|\sigma\|_{\mathbf{M}}^{A} \in \mathcal{F}^{A} \Leftrightarrow \|\sigma\|_{\mathbf{N}}^{B} \in \mathcal{F}^{B}$ and, in this case, $\|\sigma\|_{\mathbf{M}}^{A} = \|\sigma\|_{\mathbf{N}}^{B}$.
- 3 Strongly elementarily equivalent (in symbols: $\langle \mathbf{A}, \mathbf{M} \rangle \equiv^s \langle \mathbf{B}, \mathbf{N} \rangle$) if, for every \mathcal{P} -sentence σ , $\|\sigma\|_{\mathbf{M}}^A = \|\sigma\|_{\mathbf{N}}^B \in A$.
- Clearly, \equiv and \equiv^{fs} are the same notion for logics with weakening, because then $\mathcal{F}^A = \mathcal{F}^B = \{\overline{1}^A\}$.

• Consider a predicate language with only one monadic predicate P and $\langle A, \mathbf{M} \rangle$ and $\langle A, \mathbf{N} \rangle$ with both domains the set of all natural numbers, and A the standard uninorm given by:

$$x \&^{A} y = \begin{cases} \min\{x, y\}, & \text{if } x \le 1 - y, \\ \max\{x, y\}, & \text{if } x > 1 - y. \end{cases}$$

$$\mathcal{F}^{A} = \left[\frac{1}{2}, 1\right]$$

$$P_{\mathbf{M}}(n) = \begin{cases} \frac{4}{5} - \frac{1}{n}, & \text{if } n \ge 2, \\ 0, & \text{if } 0 \le n \le 1. \end{cases}$$

$$P_{\mathbf{N}}(n) = \begin{cases} \frac{3}{5} - \frac{1}{n}, & \text{if } n \ge 2, \\ 0, & \text{if } 0 \le n \le 1. \end{cases}$$

 $\|(\exists x)P(x)\|_{\mathbf{M}} = \frac{4}{5}$ and $\|(\exists x)P(x)\|_{\mathbf{M}} = \frac{3}{5}$, but taking a strong σ -homomorphism $\langle f, Id \rangle$ with $f(\frac{4}{5} - \frac{1}{n}) = \frac{3}{5} - \frac{1}{n}$ and applying the lemma, we obtain $\langle A, \mathbf{M} \rangle \equiv \langle A, \mathbf{N} \rangle$

• Consider a predicate language with only one monadic predicate P and take $\langle [0,1]_G, \mathbf{M} \rangle$ and $\langle [0,1]_G, \mathbf{N} \rangle$, both with the set of natural numbers as domain.

$$P_{\mathbf{M}}(n) = \begin{cases} \frac{3}{4} - \frac{1}{n} & \text{if } n \geq 2, \\ 0 & 0 \leq n \leq 1. \end{cases}$$

$$P_{\mathbf{N}}(n) = \begin{cases} \frac{1}{2} - \frac{1}{n} & \text{if } n \ge 2, \\ 0 & 0 \le n \le 1. \end{cases}$$

 $\|(\exists x)P(x)\|_{\mathbf{M}}=\frac{3}{4}$ and $\|(\exists x)P(x)\|_{\mathbf{N}}=\frac{1}{2}$. Taking f as any non-decreasing bijection such that $f(\frac{3}{4})=\frac{1}{2}, f(1)=1, f(0)=0$, and for every $n\in\mathbb{N}$, $f(\frac{3}{4}-\frac{1}{n})=\frac{1}{2}-\frac{1}{n}$, and applying again the lemma we obtain $\langle [0,1]_{\mathbf{G}},\mathbf{M}\rangle\equiv\langle [0,1]_{\mathbf{G}},\mathbf{N}\rangle.$

Löwenheim-Skolem theorems

Observation: if $A \subseteq B$ and there is an elementary homomorphism $\langle Id_A, g \rangle$ from $\langle A, M \rangle$ to $\langle B, N \rangle$, then $\langle A, M \rangle \equiv^s \langle B, N \rangle$.

Löwenheim-Skolem theorems

Observation: if $A \subseteq B$ and there is an elementary homomorphism $\langle Id_A, g \rangle$ from $\langle A, M \rangle$ to $\langle B, N \rangle$, then $\langle A, M \rangle \equiv^s \langle B, N \rangle$.

Aim: Given a model, obtain bigger and smaller strongly elementarily equivalent models.

P. Dellunde, À. García-Cerdaña, and C. Noguera. Löwenheim–Skolem theorems for non-classical first-order algebraizable logics. To appear in *Logic Journal of the IGPL*.

Downward Löwenheim-Skolem theorem

Theorem 2 (Classical)

Let \mathcal{P} be a predicate language and \mathbf{M} a \mathcal{P} -structure. For each subset $Z \subseteq M$, and κ a cardinal such that $\max\{\omega, |\mathcal{P}|, |Z|\} \le \kappa \le |M|$, there is an elementary substructure \mathbf{N} of \mathbf{M} such that $|N| = \kappa$ and $Z \subseteq N$.

Downward Löwenheim-Skolem theorem

Theorem 2 (Classical)

Let \mathcal{P} be a predicate language and \mathbf{M} a \mathcal{P} -structure. For each subset $Z \subseteq M$, and κ a cardinal such that $\max\{\omega, |\mathcal{P}|, |\mathbf{Z}|\} \le \kappa \le |M|$, there is an elementary substructure \mathbf{N} of \mathbf{M} such that $|N| = \kappa$ and $Z \subseteq N$.

Theorem 3 (Non-classical)

Take a safe \mathcal{P} -structure $\langle \mathbf{A}, \mathbf{M} \rangle$ and assume that every subset of A definable with parameters in $\langle \mathbf{A}, \mathbf{M} \rangle$ has infimum and supremum. Then, for every $Z \subseteq M$ and every cardinal κ such that

$$\max\{\omega, |\mathcal{P}|, |\mathbf{Z}|, p(\mathbf{A})\} \le \kappa \le |\mathbf{M}|,$$

there is a safe \mathcal{P} -structure $\langle \mathbf{A}, \mathbf{N} \rangle$ which is an elementary substructure of $\langle \mathbf{A}, \mathbf{M} \rangle$ such that $|N| = \kappa$ and $Z \subseteq N$.

Upward Löwenheim-Skolem theorem

Theorem 4 (Classical)

Let \mathcal{P} be a predicate language, \mathbf{M} an infinite \mathcal{P} -structure, and κ a cardinal such that $\max\{|\mathcal{P}|, |M|\} \le \kappa$. Then there is an elementary extension \mathbf{N} of \mathbf{M} such that $|N| = \kappa$.

Upward Löwenheim-Skolem theorem

Theorem 4 (Classical)

Let \mathcal{P} be a predicate language, \mathbf{M} an infinite \mathcal{P} -structure, and κ a cardinal such that $\max\{|\mathcal{P}|, |M|\} \le \kappa$. Then there is an elementary extension \mathbf{N} of \mathbf{M} such that $|N| = \kappa$.

Theorem 5 (Non-classical)

Let $\mathcal P$ be an equality-free language. For every infinite safe $\mathcal P$ -structure $\langle A, \mathbf M \rangle$ and every cardinal κ with $\max\{|\mathcal P|, |M|\} \leq \kappa$, there is a safe $\mathcal P$ -structure $\langle A, \mathbf N \rangle$ of cardinality κ and an elementary embedding from $\langle A, \mathbf M \rangle$ to $\langle A, \mathbf N \rangle$.

• Take G_{\triangle} assume that the language contains a unary predicate P and an equality symbol \approx .

- Take G_{\triangle} assume that the language contains a unary predicate P and an equality symbol \approx .
- Take a semantics of models $\langle [0,1]_{G_{\triangle}}, \mathbf{M} \rangle$, where \approx is interpreted as classical equality.

- Take G_{\triangle} assume that the language contains a unary predicate P and an equality symbol \approx .
- Take a semantics of models $\langle [0,1]_{G_{\triangle}}, \mathbf{M} \rangle$, where \approx is interpreted as classical equality.
- Consider $\chi = (\forall x)(\forall y)(\neg \triangle(x \approx y) \rightarrow \neg \triangle(P(x) \leftrightarrow P(y)))$ that codifies the fact that P is interpreted as an injective mapping from the domain to the algebra of truth-values.

- Take G_{\triangle} assume that the language contains a unary predicate P and an equality symbol \approx .
- Take a semantics of models $\langle [0,1]_{G_{\triangle}}, \mathbf{M} \rangle$, where \approx is interpreted as classical equality.
- Consider $\chi = (\forall x)(\forall y)(\neg \triangle(x \approx y) \rightarrow \neg \triangle(P(x) \leftrightarrow P(y)))$ that codifies the fact that P is interpreted as an injective mapping from the domain to the algebra of truth-values.
- Therefore, $\langle [0,1]_G, \mathbf{M} \rangle$ is a model of χ if and only if $|M| \leq 2^{\aleph_0}$, and hence the upward theorem does not hold.

Many-sorted classical first-order logic

Many-sorted predicate language: $\langle S, Pred, Func, Ar, Sort \rangle$, where S is a non-empty set of *sorts*, Ar is the arity function and Sort is a function that maps each n-ary $R \in Pred$ to a sequence of n sorts and each n-ary $F \in Func$ to a sequence of n + 1 sorts.

Many-sorted structure: $\mathbf{M} = \langle M, \langle R^{\mathbf{M}} \rangle_{R \in Pred}, \langle F^{\mathbf{M}} \rangle_{f \in Func} \rangle$, where M is a family of non-empty domains $\{S(M) \mid S \in \mathcal{S}\}$; for each n-ary $R \in Pred$, if $Sort(R) = \langle S_1, \ldots, S_n \rangle$, $R^{\mathbf{M}} \subseteq S_1(M) \times \ldots \times S_n(M)$; for each n-ary $F \in Func$, if $Sort(F) = \langle S_1, \ldots, S_n, S \rangle$, $F^{\mathbf{M}}$ is a function from $S_1(M) \times \ldots \times S_n(M)$ to S(M).

By the cardinality |M| of M we mean the sum of the cardinalities of the sets $\{S(M) \mid S \in \mathcal{S}\}$.

Translation to two-sorted structures

P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna and C. Noguera, Distinguished Algebraic Semantics For T-Norm Based Fuzzy Logics: Methods and Algebraic Equivalencies, *Annals of Pure and Applied Logic* 160(1):53–81, 2009.

Given a \mathcal{P} -structure $\langle \mathbf{B}, \mathbf{M} \rangle$, we build a 2-sorted structure $\mathbf{B}_{\mathbf{M}}$:

- The universe of sort 1 is B and the universe of sort 2 is M.
- The symbols \approx_i are interpreted as crisp equality in the corresponding sorts.
- For each propositional *n*-ary connective λ , define λ^{B_M} as λ^{B} .
- For each *n*-ary functional symbol $F \in Func$, define $F^{B_{\mathbf{M}}}$ as $F_{\mathbf{M}}$.
- For each *n*-ary relational symbol $R \in Pred$, define R^{B_M} as R_M .

Translation to two-sorted structures

Lemma 6

For each \mathcal{P} -formula $\varphi(v_1, \ldots, v_n)$, there is a 2-sorted formula $E_{\varphi}(v_1, \ldots, v_n, x)$ such that, for every \mathcal{P} -structure $\langle \mathbf{B}, \mathbf{M} \rangle$, and each $d_1, \ldots, d_n \in M$,

$$\|\varphi(d_1,\ldots,d_n)\|_{\mathbf{M}}^{\mathbf{B}}=b$$
 if and only if $\mathbf{B}_{\mathbf{M}}\models E_{\varphi}(d_1,\ldots,d_n,b)$.

Corollary 7

A \mathcal{P} -structure $\langle \mathbf{B}, \mathbf{M} \rangle$ is safe if and only if, for every \mathcal{P} -formula $\varphi(v_1, \dots, v_n)$,

$$\mathbf{B}_{\mathbf{M}} \models (\forall v_1, \dots, v_n)(\exists ! x) E_{\varphi}(v_1, \dots, v_n, x).$$

Löwenheim-Skolem Theorems (via 2-sorted structures)

Theorem 8

Let $\langle \pmb{B}, \pmb{M} \rangle$ be a safe \mathcal{P} -structure. Then, for every $\pmb{Z} \subseteq \pmb{M}$, every $\pmb{X} \subseteq \pmb{B}$ and every cardinal κ such that $\max\{|\mathcal{P}|, \omega, |\pmb{Z}|, |X|\} \leq \kappa \leq \max\{|\pmb{B}|, |\pmb{M}|\}$, there is a safe \mathcal{P} -structure $\langle \pmb{A}, \pmb{O} \rangle$ which is an elementary substructure of $\langle \pmb{B}, \pmb{M} \rangle$ such that $|\pmb{A}| + |O| = \kappa$, $\pmb{Z} \subseteq O$, and $\pmb{X} \subseteq \pmb{A}$.

Theorem 9

Let $\langle A, \mathbf{M} \rangle$ be a safe infinite \mathcal{P} -structure and κ a cardinal such that $\max\{|\mathcal{P}|, |A|, |M|\} \leq \kappa$. Then there is a safe \mathcal{P} -structure $\langle B, \mathbf{N} \rangle$ such that $\langle A, \mathbf{M} \rangle$ is an elementary substructure of $\langle B, \mathbf{N} \rangle$ and $|B| + |N| = \kappa$.

Finitely isomorphic 2-sorted structures

Two 2-sorted structures **M** and **N** are said to be finitely isomorphic, written $\mathbf{M} \cong_f \mathbf{N}$ if there is a sequence $\langle I_n \mid n \in \mathbb{N} \rangle$ with the following properties:

- **①** Each I_n is a non-empty set of partial isomorphisms from **M** to **N**.
- ② For each $n \in \mathbb{N}$, $I_{n+1} \subseteq I_n$.
- **③** (Forth property) For each $n \in \mathbb{N}$, $p \in I_{n+1}$, and $a \in S_1(M) \cup S_2(M)$, there is a mapping $q \in I_n$ such that $p \subseteq q$ and $a \in dom(q)$.
- 4 (Back property) For each $n \in \mathbb{N}$, $p \in I_{n+1}$, and $b \in S_1(N) \cup S_2(N)$, there is a mapping $q \in I_n$ such that $p \subseteq q$ and $b \in rg(q)$.

Theorem 10 (Fraïssé)

Let M and N be 2-sorted structures. Then:

$$\mathbf{M} \equiv \mathbf{N} \quad \Leftrightarrow \quad \mathbf{M} \cong_f \mathbf{N}.$$

Finitely isomorphic non-classical structures

Two \mathcal{P} -structures $\langle A, \mathbf{M} \rangle$, $\langle B, \mathbf{N} \rangle$ are said to be finitely isomorphic, written $\langle A, \mathbf{M} \rangle \cong_f \langle B, \mathbf{N} \rangle$ if there is a sequence $\langle I_n \mid n \in \mathbf{N} \rangle$ with the following properties:

- **1** Every I_n is a non-empty set of partial isomorphisms from $\langle A, \mathbf{M} \rangle$ to $\langle B, \mathbf{N} \rangle$.
- ② For each $n \in \mathbb{N}$, $I_{n+1} \subseteq I_n$.
- **③** (Forth-property I) For every $\langle p,r\rangle \in I_{n+1}$ and $m\in M$, there is a mapping s such that $r\subseteq s, m\in dom(s)$ and $\langle p,s\rangle \in I_n$.
- **4** (Back-property I) For every $\langle p, r \rangle \in I_{n+1}$ and $n \in N$, there is a mapping s such that $r \subseteq s$, $n \in rg(s)$ and $\langle p, s \rangle \in I_n$.
- **⑤** (Forth-property II) For every $\langle p,r\rangle \in I_{n+1}$ and $a\in A$, there is a mapping q such that $p\subseteq q$, $a\in dom(q)$ and $\langle q,r\rangle \in I_n$.
- **⑤** (Back-property II) For every $\langle p,r\rangle \in I_{n+1}$ and $b \in B$, there is a mapping q such that $p \subseteq q$, $b \in rg(q)$ and $\langle q,r\rangle \in I_n$.

Back-and-forth is a sufficient condition for elementary equivalence...

Theorem 11

Let $\mathcal P$ be a finite predicate language. Let $\langle A, \mathbf M \rangle$, $\langle B, \mathbf N \rangle$ be safe $\mathcal P$ -structures. The following holds:

$$\langle A, M \rangle \cong_f \langle B, N \rangle \quad \Rightarrow \quad \langle A, M \rangle \equiv \langle B, N \rangle.$$

Furthermore, if $A \subseteq B$, then we have:

$$\langle A, M \rangle \cong_f \langle B, N \rangle \implies \langle A, M \rangle \equiv^s \langle B, N \rangle.$$

...but it is not necessary!

Lemma 12

If $\langle A, M \rangle \cong_f \langle B, N \rangle$ and $\langle A, M \rangle$ is finite, then $\langle A, M \rangle \cong \langle B, N \rangle$.

Let \mathcal{P} be a finite predicate language. Let $\langle \mathbf{\textit{B}}_2, \mathbf{\textit{M}} \rangle$ be a classical first-order \mathcal{P} -structure. Now take an infinite L-algebra A. Since $\mathbf{B}_2 \subseteq \mathbf{A}$, we can also see $\langle B_2, \mathbf{M} \rangle$ as a structure over A. Clearly $\langle B_2, \mathbf{M} \rangle \equiv^s \langle A, \mathbf{M} \rangle$ but it is not true that $\langle B_2, \mathbf{M} \rangle \cong_f \langle A, \mathbf{M} \rangle$.

Conclusions

- Model theory for fuzzy logics is well motivated but underdeveloped.
- Some results might as well be carried out in the much wider framework of first-order algebraizable logics.
- Such research is not trivial due to the failure of classical properties (witnessing, compactness, ...).
- The classical notion of elementary equivalence splits into three different non-classical notions.
- L-S theorems can be obtained by direct proofs or from many-sorted classical structures with different pros and cons.
- The classical back-and-forth characterizations of elementary equivalence cannot be directly imported (via 2-sorted structures).

Conclusions

- Model theory for fuzzy logics is well motivated but underdeveloped.
- Some results might as well be carried out in the much wider framework of first-order algebraizable logics.
- Such research is not trivial due to the failure of classical properties (witnessing, compactness, ...).
- The classical notion of elementary equivalence splits into three different non-classical notions.
- L-S theorems can be obtained by direct proofs or from many-sorted classical structures with different pros and cons.
- The classical back-and-forth characterizations of elementary equivalence cannot be directly imported (via 2-sorted structures).