1. Релация на еквивалентност

В математиката често се изучава отношенията или ралацията между математическите обекти. Релации между два обекта наричаме двуместни или бинарни. Например казваме, че правата l е в релация R с точка P ако l минава през P. Тогава R е (двуместна)релация между обектите наречени линии и обектите наречени точки. Една нестрога дефиниция е:

В едно множество X е зададена релация R ако за всеки два елемента $x,y \in X$, е казано дали x е в релация R с y (xRy) или не е в релация (!xRy).

Примери:

- релацията равенство: x = y;
- всяка функция от едно множество X в друго множество $Y(f: X \to Y)$, дефинира релация $R: xRy \Leftrightarrow y = f(x), x \in X, y \in Y$;
- •релацията перпендикулярност \bot в множеството на правите.

Нека X е множество. С X^2 ще означаваме множеството на наредените двойки елементи от множеството X,т.е. $X^2=\{(a,b):a,b\in X\}$.

Аналогично дефинираме $X^n=(a_1,a_2,...,a_n):a_1,a_2,...,a_n\in X$, множеството на наредените n-торки.

Дефиниция1: Релация \sim в множеството X ще наричаме *релация на еквивалентност*, ако са изпълнени следните три свойства:

- $1)a \sim a$, за $\forall a \in X$ (рефлекцивност);
- 2)Ако $a \sim b$, то $b \sim a$ (симетричност);
- 3) Ако $a \sim b$ и $b \sim c$, то $a \sim c$ (транзитивност).

Пример: Нека вземем редацията $\|$ в множеството на правите. Нека l е права, тогава:

- 1) l||l| (всяка права е успоредна на себе си);
- |l|m и m|l (ако една права е успоредна на друга, то и другата е успоредна на първата);
- 3) $l||m,m||n \Rightarrow l||n$ (ако ена права е успоредна на вотра и втората е упоредна на трета, то първата е успоредна на третата). Така доказахме, че релацията || е релация на еквивалентност.

Дефиниция2: Нека \sim е релация на еквивалентност в множеството X. Клас на еквивалентност на $x \in X$ се нарича множеството:

$$[x] = \{ y \in X : x \sim y \},$$

т.е. [x] е множеството на тези елементите на X, които са в релация \sim с x. Например [x] може да бъде множеството от всички прави l успоредни на правата m.

Тегрдение: Нека \sim е релация на еквивалентност в множеството X и $x, y \in X$. Тогава:

- 1) $x \sim y \Leftrightarrow [x] = [y];$
- 2) Ako $x \nsim y$, $[x] \cap [y] = \emptyset$.

Доказателство:

- 1)⇒) $z\epsilon[x]\Rightarrow x\sim z\Rightarrow z\sim x$ и от $x\sim y\Rightarrow z\sim y\Rightarrow y\sim z\Rightarrow z\in[y]$ ⇒ $[x]\subset[y];$
- \Leftarrow) Аналогично $[y] \subset [x];$

Следователно $[x] \equiv [y]$;

2) Нека $x\nsim y$. Допускаме, че $[x]\cap[y]\neq\emptyset$. Тогава от $x\sim z,\,y\sim z\Rightarrow x\sim z,\,z\sim y\Rightarrow x\sim y$. Стигнахме до противоречие.

Ако $x \sim y$, то или $[x] \equiv [y]$, или $[x] \cap [y] = \emptyset$, т.е. X представлява обединение на непресичащи се класове на еквивалентност.