Analogové vstupy a výstupy

Mikroprocesorové a vestavěné systémy (IMP)

Přednáší: doc. Ing. Richard Růžička, Ph. D. Fakulta informačních technologií VUT v Brně

Analogový vstup

- Signály ze spojitých snímačů
 - teplota
 - tlak
 - osvětlení
 - odpor (např. odporový touchscreen)
 - napětí/proud
- Zpětná vazba
- "Rozšíření" počtu číslicových vstupů

Analogový vstup - příklad

Měření teploty

Analogový vstup MCU

- MCU je číslicový, analogovou hodnotu je třeba vyjádřit binárním číslem, aby s ní bylo možno dále pracovat.
- Potřebujeme A/D převodník.
- A/D převodník (Analog to Digital Converter, ADC) je typickým modulem na čipu dnešních MCU.
- Někdy stačí jen vědět, zda analogová hodnota je větší či menší než nějaká mez k vyjádření stačí dvoustavová hodnota, kterou lze získat analogovým komparátorem.

Analogově-číslicový převodník – Analogue to Digital Converter, ADC

Diskretizace v napěťové i časové oblasti

Důsledky:

- teoreticky ztráta informace:
- diskretizace v napěťové oblasti přináší tzv. kvantizační šum
- diskretizace v časové oblasti může způsobit třeba aliasing

Přenosová funkce ADC (pro jednoduchost tříbitového)

Figure 2.5: Transfer Function for Ideal Unipolar 3-bit ADC

Příklad kompletního řetězce snímání analogové veličiny

Figure 4. Output vs. Absolute Pressure

Rozšíření digitálních vstupů

Princip aproximačního ADC

Princip aproximačního ADC

Je třeba si uvědomit:

- Převod analogové hodnoty na binární číslo pomocí aproximačního ADC je proces, který trvá nějaký čas – pro n-bitové číslo je třeba (nejméně) n kroků.
- Převod je taktován hodinami jejich frekvence určuje, jak rychle dostáváme vzorky vstupního signálu (případně jak často, pokud vzorkujeme "co to dá").
- Pokud se vstupní analogová hodnota změní dříve, než je převod dokončen, výsledek je nejspíš špatně (řeší se vzorkováním před převodem).
- Přesnost převodu je dále závislá na kvalitě (linearitě) D/A převodníku přesný D/A převodník je velmi drahá komponenta.

Více kanálů ADC

Je typické, že se používá jeden ADC pro více snímaných veličin – vstup se přepíná multiplexorem.

Analogově-číslicový převodník

Modul ADC

Struktura ADC modulu MCU Kinetis

Vstupy ADC

- Teoreticky může být až 24 (ADO AD23), prakticky je to omezeno použitým pouzdrem.
- Některé vstupy jsou zapojeny "uvnitř" (referenční zdroj, teplotní senzor).

Příklad: KL05Z32VLC4 (MCU na kitu v laboratoři)

Napájení ADC modulu

Rozlišení převodníku

RESOLUTION N	2 ^N	VOLTAGE (10V FS)	ppm FS	% FS	dB FS
2-bit	4	2.5 V	250,000	25	- 12
4-bit	16	625 mV	62,500	6.25	- 24
6-bit	64	156 mV	15,625	1.56	- 36
8-bit	256	39.1 mV	3,906	0.39	- 48
10-bit	1,024	9.77 mV (10 mV)	977	0.098	- 60
12-bit	4,096	2.44 mV	244	0.024	- 72
14-bit	16,384	610 μV	61	0.0061	- 84
16-bit	65,536	153 μV	15	0.0015	- 96
18-bit	262,144	38 μV	4	0.0004	- 108
20-bit	1,048,576	9.54 μV (10 μV)	1	0.0001	- 120
22-bit	4,194,304	2.38 μV	0.24	0.000024	- 132
24-bit	16,777,216	596 nV*	0.06	0.000006	- 144

*600nV is the Johnson Noise in a 10kHz BW of a 2.2kΩ Resistor @ 25°C

Remember: 10-bits and 10V FS yields an LSB of 10mV, 1000ppm, or 0.1%.

All other values may be calculated by powers of 2.

Figure 2.14: Quantization: The Size of a Least Significant Bit (LSB)

Základní vztahy pro převod

Jaké číslo dostanu na výstupu pro napětí V_{in}?

$$n = \left[\frac{(V_{in}) 2^{N}}{V_{REFSH}} + 1/2 \right]$$
 za předpokladu $V_{REFSL} = 0$
ořezání desetinné části – výsledkem má být celé číslo!

Jaký interval napětí reprezentuje číslo n?

$$V_{in_min} = \frac{n - \frac{1}{2}}{2^N} (V_{REFSH})$$

$$V_{in_max} = \frac{n + \frac{1}{2}}{2^N} (V_{REFSH})$$

Postup při převodu

- Převod aproximačním AD převodníkem je děj, který trvá určitou dobu.
 Proto lze vysledovat fáze:
 - zahájení převodu,
 - provádění převodu,
 - ukončení převodu (výsledek je k dispozici nebo byl převod "násilně" přerušen).

Zahájení převodu

Zahájení převodu se děje zápisem do registru ADCx_SC1A

(také existuje ADC0 SC1B)

Zahájení převodu

- Jsou dvě možnosti spuštění převodu:
 - softwarové zápis do registru ADCx_SC1,
 - hardwarové signálem ADHWT, který může být přiveden ze zdroje, voleného v registru SIM_SOPT7:

Opakovaný převod

- Pokud je nastaven bit ADCO v registru ADCx_SC3, pak se převod opakuje.
 - v případě softwarového spuštění se startuje další převod ihned po zápisu výsledku,
 - v případě hardwarového spuštění pak při další HW události (signál ADHWT).

Výsledek

- Je k dispozici v registrech ADCx_Rn podle toho, kterým registrem byl převod zahájen (zápisem do ADC0_SC1A se spustí převod, jehož výsledek bude v ADC0_RA).
- Je indikován bitem **COCO** v registru ADCx_SC1n.
- Může generovat přerušení.
- Lze nastavit, že výsledek je indikován jen když:
 - je menší než nějaká hodnota,
 - je větší nebo roven nějaké hodnotě
 - je v nějakém intervalu,
 - je mimo nějaký interval.

Průměrování

- Modul ADC lze nastavit tak, aby provedl sám několik vzorkování a dodal jako výsledek průměrnou hodnotu.
- V registru ADCx_SC3 jsou bity AVGE a AVGS, které toto nastavují:

AVGE	AVGS	Number of samples averaged
0	XX	1
1	00	4
1	01	8
1	10	16
1	11	32

• Výsledek převodu (v registru ADCO_Rn) je až průměrná hodnota.

Režim porovnání

- Hodnota k porovnání se ukládá do registrů ADCx_CV1 a/nebo ADCx_CV2.
- Porovnání je možné
 - buď s hodnotou ADCx_CV1 (výsledek převodu je větší nebo roven hodnotě výsledku) – bit ACREN v ADCx_SC2 = 0
 - nebo s intervalem daným registry ADCx_CV1 a ADCx_CV2 (výsledek převodu je uvnitř/vně intervalu) – bit ACREN = 1.
- Porovnání se povoluje bitem ACFE v registru ADCx_SC2.
- Způsob porovnání se nastavuje bitem ACFGT v registru ADCx_SC2 (0 = menší, 1 = větší nebo rovno).
- Pokud bylo porovnání neúspěšné, výsledek převodu je ignorován: nezapíše se do datového registru, nenastaví se COCO, negeneruje se přerušení, ...

Zrušení převodu

- Užitečné zejména při nastaveném opakovaném převádění, funguje ale i při jednorázovém převodu:
- Lze provést:
 - zápisem do ADC0_SC1A (v tom případě se ale spustí nový převod, není-li ADCH = 11111),
 - zápisem do jiného registru ADC (mění se režim, tudíž právě probíhající převod nemá smysl dokončovat),
 - resetem MCU, vstupem do STOP režimu.

Konfigurace - hodiny

- ADCx_CFG1
 - ADIV: nast. děličky hodin 2^{ADIV}
 - 00:1
 - 01:2
 - 10:4
 - 11:8
 - ADICLK: Výběr zdroje hodin
 - 00: Bus clock
 - 01: Bus clock/2
 - 10: ALTCLK
 - 11: ADACK

- ADCx_CFG2
 - ADACKEN: Povolení asynchronních hodin

Modul ADC má vlastní generátor hodin (asynchronní se zbytkem MCU).

Konfigurace – referenční napětí

- K dispozici jsou dvě referenční napětí:
 - napětí mezi V_{REFH}, V_{REFL}
 - napětí mezi V_{ALTH}, V_{ALTL}
- Volí se v registru SC2 bity REFSEL
 - 00: V_{REFH}, V_{REFL}
 - 01: V_{ALTH}, V_{ALTL}
 - 10, 11: Reserved
- "Náš" MCU KL05Z má:
 - V_{ALTH} connected to V_{DDA}

Konfigurace – parametry převodu

- Low power
 - Bit ADLPC (v reg. ADCx CFG1) na 1
 - sníží rychlost hodin
- Long sample time
 - Bit ADLSMP (v reg. ADCx_CFG1) na 1
 - je možné pomocí bitů ADLSTS (v reg. ADCx CFG2) přidat 20, 16, 10 or 6 ADCK cyklů)
- Conversion mode režim převodu
 - Bity MODE (v reg. ADCx_CFG1) nastavují 8, 10 nebo 12 bitů
- Continuous vs. single conversion
 - Set ADCO (in ADCx SC3) to 1 for continuous conversions

Sampling time?

Figure 2.27: Sample-and-Hold Function Required for Digitizing AC Signals

Jak dlouho trvá převod?

$ConversionTime = SFCAdder + AverageNum \times \big(BCT + LSTAdder + HSCAdder\big)$

CFG1[AD LSMP]	CFG2[AD ACKEN]	CFG1[ADICLK]	Single or first continuous time adder (SFCAdder)
1	х	0x, 10	3 ADCK cycles + 5 bus clock cycles
1	1	11	3 ADCK cycles + 5 bus clock cycles ¹
1	0	11	5 μs + 3 ADCK cycles + 5 bus clock cycles
0	x	0x, 10	5 ADCK cycles + 5 bus clock cycles
0	1	11	5 ADCK cycles + 5 bus clock cycles ¹
0	0	11	5 µs + 5 ADCK cycles + 5 bus clock cycles

Mode	Base conversion time (BCT)	
8b single-ended	17 ADCK cycles	100
10b single-ended	20 ADCK cycles	
12b single-ended	20 ADCK cycles	

CFG1[ADLSMP]	CFG2[ADLSTS]	Long sample time adder (LSTAdder)
0	xx	0 ADCK cycles
1	00	20 ADCK cycles
1	01	12 ADCK cycles
1	10	6 ADCK cycles
1	11	2 ADCK cycles

CFG2[ADHSC]	High-speed conversion time adder (HSCAdder)	
0	0 ADCK cycles	
1	2 ADCK cycles	

Teplotní snímač

```
Temp = 25 - ((V_{TEMP} - V_{TEMP25}) \div m)
V_{TEMP25} = 1,396 V
m = 3.266 \text{ mV/°C pro rozsah -40 až 25 °C}
m = 3.638 \text{ mV/°C pro rozsah 25 až 125 °C}
```

Postup měření teploty:

- přečte se napětí kanálu AD26
- hodnota se porovná s V_{TEMP25}
- je-li hodnota menší než V_{TEMP25}, do vzorce se dosadí první hodnota m
- je-li hodnota větší než V_{TEMP25}, do vzorce se dosadí druhá hodnota m

Zkalibrujeme-li teplotní snímač při 25°C, můžeme dosáhnout přesnosti až +/-4,5°C. Pokud kalibrujeme ve třech bodech (-40, 25 a 125°C), lze dosáhnout přesnosti až +/-2,5°C.

Rekapitulace – jak se převádí

ADC a spotřeba

ADC je energeticky náročný (postupná aproximace = spousta změn úrovní CMOS obvodů).

Je dobré zvážit,

- jak velkou rychlost převodu potřebujeme jak rychle chceme mít výsledek od okamžiku sběru vzorku signálu,
- jak často potřebujeme vzorkovat,
- jakou přesnost potřebujeme (každý bit výsledku stojí energii),
- zda vůbec potřebujeme A/D, když je k dispozici komparátor s desetinou energie ve srovnání s převodníkem, který v některých situacích vyhoví.

Analogový komparátor

Modul CMP

Analogový komparátor?

- A/D převodník (ADC) dává jako výstup číslo jak velké je V_{in} – vyjádřeno zlomkem V_{REF}.
- Analogový komparátor (CMP) říká, zda je V_{in} menší nebo větší než V_{REF} – binární hodnota.

Příklad využití komparátoru – detekce ztráty napájení

Je třeba včas zjistit, že napájení vypadlo a v kondenzátoru C2 již zbývá jen trochu náboje, takže je třeba uložit kritická data, vypnout výstupy a přejít do bezpečného a úsporného režimu.

Můžeme využít komparátor pro srovnání napětí s referenčním zdrojem.

Kdy je výhodný komparátor?

- Proč použít komparátor místo ADC?
 - komparátor má mnohem menší spotřebu,
 - výstup je aktuální vždy je k dispozici okamžitě. Není třeba čekat na dokončení převodu.

Schéma komparátoru CMP

Je-li INP>INM, pak výstup = 1, v opačném případě 0. Změna na výstupu může generovat přerušení. Porovnávané analogové hodnoty se vybírají multiplexery.

Vstupy CMP

CMP Inputs	CMP0
INO	CMP0_IN0
IN1	CMP0_IN1
IN2	CMP0_IN2
IN3	12-bit DAC0 reference/ CMP0_IN3
IN4	_
IN5	=
IN6	Bandgap¹ 1V referenční napětí
IN7	6-bit DAC0 reference

Vybírá se bity PSEL (vstup INP komparátoru) a MSEL (vstup INM) registru CMPx_MUXCR:

6-bitový DAC — možná reference pro CMP

Registr CMPx_DACCR:

Výstup CMP

- Zdánlivě jednoduchá věc buď je tam 0 nebo 1, ale tak jednoduché to není proč?
- Snímáme obvykle reálné veličiny v reálném prostředí!
- Výstup může kmitat v okamžiku, kdy je rozdíl mezi INP a INM velmi malý. Hraje roli šum, který může komparátor překlápět, rozkmitávat.
- Vstup je proto často třeba vhodně filtrovat.

Výstup CMP

Výstup CMP – continuous mode

Přímý výstup – není nijak filtrován ani vzorkován.

Výstup CMP – sampled, non-filtered

Výstup je vzorkován hodinami, lze zvolit jakými – zde externími.

Výstup CMP – sampled, filtered

Výstup je vzorkován hodinami, lze zvolit jakými – zde interními. Navíc je zapnut filtr – hodnota FILTER_CNT říká, kolik vzorků se musí shodnout.

Výstup CMP – windowed mode

Výstup je brán v potaz jen pokud je aktivní signál WINDOW.

Výstup CMP – windowed, filtered

Výstup je brán v potaz jen pokud je aktivní signál WINDOW. Navíc je zapnut filtr – hodnota FILTER_CNT říká, kolik vzorků se musí shodnout.

Číslicově-analogový převodník

modul DAC

DA převodník – modul DAC

 $V_o = (N+1)*V_{in}/2^{12}$, kde N je 12-ti bitové číslo DACDAT[11:0]

Režimy činnosti

- V normálním (bez bufferu) režimu DAC převádí číslo z registrů DACDATO (dva osmibitové registry).
- V bufferovaném režimu lze převádět postupně čísla z 16ti místného bufferu, další vzorek se převede buď
 - zápisem 1 na bit DACSWTRG v registru DACxC0 nebo
 - hw triggerem (od PIT).
- buffer se chová buď
 - jako kruhový nebo
 - se projde jednou a pak se zastaví.

Pro úplnost - PWM

• (Pseudo)analogový výstup lze vytvořit také pomocí PWM (viz přednáška o časovačích).

