

Derek Chiu

2024-02-15

## Contents

| Pı               | refac | е                             | 6  |
|------------------|-------|-------------------------------|----|
| 1                | Intr  | roduction                     | 7  |
| 2                | Met   | thods                         | 8  |
| 3                | Dist  | tributions                    | 9  |
|                  | 3.1   | Full Data                     | 9  |
|                  | 3.2   | Training Sets                 | 9  |
|                  | 3.3   | Common Samples                | 15 |
|                  | 3.4   | Histotypes in Classifier Data | 15 |
|                  | 3.5   | Quality Control               | 15 |
| 4                | Res   | ults                          | 18 |
|                  | 4.1   | Training Set                  | 18 |
|                  | 4.2   | CS1 Set                       | 27 |
|                  | 4.3   | CS2 Set                       | 35 |
|                  | 4.4   | SMOTE Kappa Summary           | 43 |
|                  | 4.5   | Gene Optimization             | 44 |
|                  | 4.6   | Rank Aggregation              | 47 |
|                  | 4.7   | Top 4 Model Summary           | 48 |
|                  | 4.8   | Test Set Performance          | 50 |
| $\mathbf{R}_{0}$ | efere | nces                          | 51 |

# List of Figures

| 4.1  | Training Set Accuracy                               | 18 |
|------|-----------------------------------------------------|----|
| 4.2  | Training Set Class-Specific Accuracy                | 19 |
| 4.3  | Training Set F1-Score                               | 21 |
| 4.4  | Training Set Class-Specific F1-Score                | 22 |
| 4.5  | Training Set Kappa                                  | 23 |
| 4.6  | Training Set Class-Specific Kappa                   | 24 |
| 4.7  | Training Set G-mean                                 | 25 |
| 4.8  | Training Set Class-Specific G-mean                  | 26 |
| 4.9  | CS1 Set Accuracy                                    | 27 |
| 4.10 | CS1 Set Class-Specific Accuracy                     | 28 |
| 4.11 | CS1 Set F1-Score                                    | 29 |
| 4.12 | CS1 Set Class-Specific F1-Score                     | 30 |
| 4.13 | CS1 Set Kappa                                       | 31 |
| 4.14 | CS1 Set Class-Specific Kappa                        | 32 |
| 4.15 | CS1 Set G-mean                                      | 33 |
| 4.16 | CS1 Set Class-Specific G-mean                       | 34 |
| 4.17 | CS2 Set Accuracy                                    | 35 |
| 4.18 | CS2 Set Class-Specific Accuracy                     | 36 |
| 4.19 | CS2 Set F1-Score                                    | 37 |
| 4.20 | CS2 Set Class-Specific F1-Score                     | 38 |
| 4.21 | CS2 Set Kappa                                       | 39 |
| 4.22 | CS2 Set Class-Specific Kappa                        | 40 |
| 4.23 | CS2 Set G-mean                                      | 41 |
| 4.24 | CS2 Set Class-Specific G-mean                       | 42 |
| 4.25 | SMOTE Kappa by Algorithm and Dataset                | 43 |
| 4.26 | SMOTE Class-Specific Kappa by Algorithm and Dataset | 44 |
| 4.27 | Gene Optimization for Sequential Classifier         | 45 |
| 4.28 | Cone Optimization for Two Stop Classifier           | 46 |

| 4.29 | Cop 4 Model Evaluation Metrics           | 18 |
|------|------------------------------------------|----|
| 4.30 | Cop 4 Model Per-Class Evaluation Metrics | 19 |
| 4.31 | Cop 4 Model Per-Class F1-Scores          | 5( |

## List of Tables

| 3.1  | All CodeSet Histotype Groups                                             | Ĝ  |
|------|--------------------------------------------------------------------------|----|
| 3.2  | All CodeSet Major Reviewed Histotypes                                    | 10 |
| 3.3  | All CodeSet Reviewed Histotypes                                          | 10 |
| 3.4  | CS1 Histotypes                                                           | 10 |
| 3.5  | CS2 Histotypes                                                           | 10 |
| 3.6  | CS3 Histotypes                                                           | 11 |
| 3.7  | Common Summary ID CodeSet Histotypes                                     | 11 |
| 3.8  | CS1 Training Set Histotypes                                              | 11 |
| 3.9  | CS2 Training Set Histotypes                                              | 12 |
| 3.10 | All Common Samples Histotype Distribution                                | 12 |
| 3.11 | Distinct Common Samples Histotype Distribution                           | 13 |
| 3.12 | Distinct Common CS2 and CS3 Samples Histotype Distribution               | 13 |
| 3.13 | Common Samples Across Sites Histotype Distribution                       | 13 |
| 3.14 | Distinct Common Samples Across Sites Histotype Distribution              | 13 |
| 3.15 | CS3/CS4/CS5 Common Samples Histotype Distribution                        | 13 |
| 3.16 | CS3/CS4/CS5 Pools Distribution                                           | 14 |
| 3.17 | Pre-QC Training Set Histotype Distribution by CodeSet                    | 14 |
| 3.18 | Full Training Set Histotype Distribution by CodeSet                      | 14 |
| 3.19 | Histotype Distribution by CodeSet/Datasets                               | 14 |
| 3.20 | Number of failed sampled by CodeSet                                      | 14 |
| 4.1  | Training Set Accuracy by Algorithm and Subsampling Method                | 19 |
| 4.2  | Training Set Class-Specific Accuracy by Algorithm and Subsampling Method | 20 |
| 4.3  | Training Set Macro-Averaged F1-Score by Algorithm and Subsampling Method | 21 |
| 4.4  | Training Set Class-Specific F1-Score by Algorithm and Subsampling Method | 22 |
| 4.5  | Training Set Kappa by Algorithm and Subsampling Method                   | 23 |
| 4.6  | Training Set Class-Specific Kappa by Algorithm and Subsampling Method    | 24 |
| 4.7  | Training Set G-mean by Algorithm and Subsampling Method                  | 25 |
| 4.8  | Training Set Class-Specific G-mean by Algorithm and Subsampling Method   | 26 |

| 4.9  | CS1 Set Accuracy by Algorithm and Subsampling Method                                 | <br>27 |
|------|--------------------------------------------------------------------------------------|--------|
| 4.10 | CS1 Set Class-Specific Accuracy by Algorithm and Subsampling Method                  | <br>28 |
| 4.11 | CS1 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method $\dots$          | <br>29 |
| 4.12 | CS1 Set Class-Specific F1-Score by Algorithm and Subsampling Method                  | <br>30 |
| 4.13 | CS1 Set Kappa by Algorithm and Subsampling Method                                    | <br>31 |
| 4.14 | CS1 Set Class-Specific Kappa by Algorithm and Subsampling Method                     | <br>32 |
| 4.15 | CS1 Set G-mean by Algorithm and Subsampling Method                                   | <br>33 |
| 4.16 | CS1 Set Class-Specific G-mean by Algorithm and Subsampling Method $\dots$            | <br>34 |
| 4.17 | CS2 Set Accuracy by Algorithm and Subsampling Method                                 | <br>35 |
| 4.18 | CS2 Set Class-Specific Accuracy by Algorithm and Subsampling Method                  | <br>36 |
| 4.19 | CS2 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method $\dots$          | <br>37 |
| 4.20 | CS2 Set Class-Specific F1-Score by Algorithm and Subsampling Method                  | <br>38 |
| 4.21 | CS2 Set Kappa by Algorithm and Subsampling Method                                    | <br>39 |
| 4.22 | CS2 Set Class-Specific Kappa by Algorithm and Subsampling Method $\ \ldots \ \ldots$ | <br>40 |
| 4.23 | CS2 Set G-mean by Algorithm and Subsampling Method                                   | <br>41 |
| 4.24 | CS2 Set Class-Specific G-mean by Algorithm and Subsampling Method $\dots$            | <br>42 |
| 4.25 | SMOTE Kappa by Algorithm and Dataset                                                 | <br>43 |
| 4.26 | Class-specific F1-scores on Confirmation Set Models                                  | <br>51 |
| 4 27 | Class-specific F1-scores on Validation Set Model                                     | 51     |

## Preface

This report of statistical findings describes the classification of ovarian cancer histotypes using data from NanoString CodeSets.

Marina Pavanello conducted the initial exploratory data analysis, Cathy Tang implemented class imbalance techniques, Derek Chiu conducted the normalization and statistical analysis, and Lauren Tindale and Aline Talhouk are the project leads.

## 1. Introduction

Ovarian cancer has five major histotypes: high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), endometrioid carcinoma (ENOC), mucinous carcinoma (MUC), and clear cell carcinoma (CCOC). A common problem with classifying these histotypes is that there is a class imbalance issue. HGSC dominates the distribution, commonly accounting for 70% of cases in many patient cohorts, while the other four histotypes are spread over the rest of the cases. Subsampling methods like up-sampling, down-sampling, and SMOTE can be used to mitigate this problem.

The supervised learning is performed under a consensus framework: we consider various classification algorithms and use evaluation metrics like accuracy, F1-score, Kappa, and G-mean to inform the decision of which methods to carry forward for prediction in confirmation and validation sets.

## 2. Methods

We use 5 classification algorithms and 4 subsampling methods across 500 repetitions in the supervised learning framework for the Training Set, CS1 and CS2. The pipeline was run using SLURM batch jobs submitted to a partition on a CentOS 7 server. Implementations of the techniques below were called from the splendid package.

- Classifiers:
  - Random Forest
  - SVM
  - Adaboost
  - Multinomial Regression Model with Ridge Penalty
  - Multinomial Regression Model with LASSO Penalty
- $\bullet \;\; \text{Subsampling:}$ 
  - None
  - Down-sampling
  - Up-sampling
  - SMOTE

## 3. Distributions

#### 3.1 Full Data

The histotype distributions on the full data are shown below.

#### 3.2 Training Sets

#### 3.2.1 CS1 Training Set Generation

We use the reference method to normalize CS1 to CS3.

- CS1 reference set: duplicate samples from CS1
  - Samples = 16
  - Genes = 72
- CS3 reference set: corresponding samples in CS3 also found in CS1 reference set
  - Samples = 9
  - Genes = 72
- CS1 validation set: remaining CS1 samples with reference set removed
  - Samples = 270
  - Genes = 72

The final CS1 training set has 251 samples on 72 genes after normalization and keeping only the major histotypes of interest.

Table 3.1: All CodeSet Histotype Groups

| Histotype Group | CS1 | CS2 | CS3  |
|-----------------|-----|-----|------|
| HGSC            | 120 | 643 | 1643 |
| non-HGSC        | 166 | 220 | 583  |

Table 3.2: All CodeSet Major Reviewed Histotypes

| Reviewed Histotype | CS1 | CS2 | CS3  | CS1 % | CS2 % | CS3 % |
|--------------------|-----|-----|------|-------|-------|-------|
| CCOC               | 48  | 61  | 174  | 18.0  | 7.4   | 8.1   |
| ENOC               | 60  | 32  | 232  | 22.5  | 3.9   | 10.8  |
| HGSC               | 120 | 643 | 1643 | 44.9  | 78.5  | 76.1  |
| LGSC               | 20  | 21  | 40   | 7.5   | 2.6   | 1.9   |
| MUC                | 19  | 62  | 69   | 7.1   | 7.6   | 3.2   |

Table 3.3: All CodeSet Reviewed Histotypes

| Reviewed Histotype | CS1 | CS2 | CS3  |
|--------------------|-----|-----|------|
| CARCINOMA-NOS      | 0   | 1   | 23   |
| CCOC               | 48  | 61  | 174  |
| CTRL               | 0   | 12  | 0    |
| ENOC               | 60  | 32  | 232  |
| HGSC               | 120 | 643 | 1643 |
| LGSC               | 20  | 21  | 40   |
| MBOT               | 0   | 19  | 3    |
| MIXED (ENOC/CCOC)  | 0   | 0   | 1    |
| MIXED (ENOC/LGSC)  | 0   | 0   | 1    |
| MIXED (HGSC/CCOC)  | 0   | 0   | 1    |
| MMMT               | 0   | 0   | 28   |
| MUC                | 19  | 62  | 69   |
| Other/Exclude      | 0   | 0   | 8    |
| SBOT               | 19  | 12  | 2    |
| serous LMP         | 0   | 0   | 1    |

Table 3.4: CS1 Histotypes

| CodeSet | Reviewed Histotype | n   |
|---------|--------------------|-----|
| CS1     | CCOC               | 48  |
| CS1     | ENOC               | 60  |
| CS1     | HGSC               | 120 |
| CS1     | LGSC               | 20  |
| CS1     | MUC                | 19  |
| CS1     | SBOT               | 19  |

Table 3.5: CS2 Histotypes

| CodeSet | Reviewed Histotype | n   |
|---------|--------------------|-----|
| CS2     | CARCINOMA-NOS      | 1   |
| CS2     | CCOC               | 61  |
| CS2     | CTRL               | 12  |
| CS2     | ENOC               | 32  |
| CS2     | HGSC               | 643 |
| CS2     | LGSC               | 21  |
| CS2     | MBOT               | 19  |
| CS2     | MUC                | 62  |
| CS2     | SBOT               | 12  |

Table 3.6: CS3 Histotypes

| CodeSet | Reviewed Histotype | n    |
|---------|--------------------|------|
| CS3     | CARCINOMA-NOS      | 23   |
| CS3     | CCOC               | 174  |
| CS3     | ENOC               | 232  |
| CS3     | HGSC               | 1643 |
| CS3     | LGSC               | 40   |
| CS3     | MBOT               | 3    |
| CS3     | MIXED (ENOC/CCOC)  | 1    |
| CS3     | MIXED (ENOC/LGSC)  | 1    |
| CS3     | MIXED (HGSC/CCOC)  | 1    |
| CS3     | MMMT               | 28   |
| CS3     | MUC                | 69   |
| CS3     | Other/Exclude      | 8    |
| CS3     | SBOT               | 2    |
| CS3     | serous LMP         | 1    |

Table 3.7: Common Summary ID CodeSet Histotypes

| Reviewed Histotype | CS1 | CS2 | CS3 |
|--------------------|-----|-----|-----|
| CCOC               | 3   | 4   | 9   |
| ENOC               | 4   | 4   | 9   |
| HGSC               | 55  | 62  | 94  |
| LGSC               | 7   | 5   | 8   |
| MUC                | 7   | 5   | 11  |

Table 3.8: CS1 Training Set Histotypes

| Histotype | n   | %     |
|-----------|-----|-------|
| CCC       | 57  | 18.8% |
| ENOCa     | 59  | 19.4% |
| HGSC      | 156 | 51.3% |
| LGSC      | 16  | 5.3%  |
| MUC       | 16  | 5.3%  |

Table 3.9: CS2 Training Set Histotypes

| Histotype | n   | %     |
|-----------|-----|-------|
| CCOC      | 68  | 7.2%  |
| ENOC      | 30  | 3.2%  |
| HGSC      | 757 | 80.1% |
| LGSC      | 29  | 3.1%  |
| MUC       | 61  | 6.5%  |

Table 3.10: All Common Samples Histotype Distribution

| revHist | CS1 | CS2 | CS3 |
|---------|-----|-----|-----|
| CCOC    | 3   | 4   | 3   |
| ENOC    | 4   | 4   | 3   |
| HGSC    | 53  | 56  | 68  |
| LGSC    | 7   | 5   | 4   |
| MUC     | 7   | 5   | 5   |

#### 3.2.2 CS2 Training Set Generation

We use the pool method to normalize CS2 to CS3 so we can be consistent with the PrOType normalization when there are available pools.

- CS2 pools:
  - Samples = 12 (Pool 1 = 4, Pool 2 = 4, Pool 3 = 4)
  - Genes = 365
- CS3 pools:
  - Samples = 22 (Pool 1 = 12, Pool 2 = 5, Pool 3 = 5)
  - Genes = 513
- CS2 validation set: CS2 samples with pools removed
  - Samples = 879
  - Genes = 365

The final CS2 training set has 819 samples on 136 (common) genes after normalization and keeping only the major histotypes of interest.

Table 3.11: Distinct Common Samples Histotype Distribution

| revHist | CS1 | CS2 | CS3 |
|---------|-----|-----|-----|
| CCOC    | 3   | 3   | 3   |
| ENOC    | 3   | 3   | 3   |
| HGSC    | 51  | 51  | 51  |
| LGSC    | 4   | 4   | 4   |
| MUC     | 5   | 5   | 5   |

Table 3.12: Distinct Common CS2 and CS3 Samples Histotype Distribution

| revHist | CS2 | CS3 |
|---------|-----|-----|
| CCOC    | 3   | 3   |
| ENOC    | 3   | 3   |
| HGSC    | 71  | 71  |
| LGSC    | 4   | 4   |
| MUC     | 5   | 5   |

Table 3.13: Common Samples Across Sites Histotype Distribution

| revHist | AOC | USC | Vancouver |
|---------|-----|-----|-----------|
| CCOC    | 3   | 3   | 3         |
| ENOC    | 3   | 3   | 3         |
| HGSC    | 13  | 13  | 26        |
| LGSC    | 2   | 2   | 2         |
| MUC     | 3   | 3   | 3         |

Table 3.14: Distinct Common Samples Across Sites Histotype Distribution

| revHist | AOC | USC | Vancouver |
|---------|-----|-----|-----------|
| CCOC    | 3   | 3   | 3         |
| ENOC    | 3   | 3   | 3         |
| HGSC    | 13  | 13  | 13        |
| LGSC    | 2   | 2   | 2         |
| MUC     | 3   | 3   | 3         |

Table 3.15: CS3/CS4/CS5 Common Samples Histotype Distribution

| revHist | CS3 | CS4 | CS5 |
|---------|-----|-----|-----|
| HGSC    | 47  | 47  | 47  |
| NA      | 26  | 26  | 26  |

Table 3.16: CS3/CS4/CS5 Pools Distribution

| Pool   | CS3 | CS4 | CS5 |
|--------|-----|-----|-----|
| Pool1  | 12  | 4   | 4   |
| Pool2  | 5   | 4   | 4   |
| Pool3  | 5   | 4   | 4   |
| Pool4  | NA  | 1   | 1   |
| Pool5  | NA  | 1   | 1   |
| Pool6  | NA  | 1   | 0   |
| Pool7  | NA  | 1   | 1   |
| Pool8  | NA  | 1   | 1   |
| Pool9  | NA  | 1   | 1   |
| Pool10 | NA  | 1   | 1   |
| Pool11 | NA  | 1   | 1   |

Table 3.17: Pre-QC Training Set Histotype Distribution by CodeSet

| Variable  | Levels | CS1       | CS2       | CS3       | Total       |
|-----------|--------|-----------|-----------|-----------|-------------|
| Histotype | HGSC   | 120 (45%) | 643 (79%) | 515 (92%) | 1278 (78%)  |
|           | CCOC   | 48 (18%)  | 61 (7%)   | 11 (2%)   | 120 (7%)    |
|           | ENOC   | 60 (22%)  | 32 (4%)   | 11 (2%)   | 103 (6%)    |
|           | MUC    | 19 (7%)   | 62 (8%)   | 12 (2%)   | 93 (6%)     |
|           | LGSC   | 20 (7%)   | 21 (3%)   | 9 (2%)    | 50 (3%)     |
| Total     | N (%)  | 267 (16%) | 819 (50%) | 558 (34%) | 1644 (100%) |

Table 3.18: Full Training Set Histotype Distribution by CodeSet

| Variable  | Levels | CS1       | CS2       | CS3       | Total       |
|-----------|--------|-----------|-----------|-----------|-------------|
| Histotype | HGSC   | 116 (48%) | 623 (80%) | 475 (94%) | 1214 (79%)  |
|           | CCOC   | 44 (18%)  | 54 (7%)   | 8 (2%)    | 106 (7%)    |
|           | ENOC   | 55 (23%)  | 27 (3%)   | 8 (2%)    | 90 (6%)     |
|           | MUC    | 15 (6%)   | 59 (8%)   | 9 (2%)    | 83 (5%)     |
|           | LGSC   | 14 (6%)   | 19 (2%)   | 6 (1%)    | 39 (3%)     |
| Total     | N (%)  | 244 (16%) | 782 (51%) | 506 (33%) | 1532 (100%) |

Table 3.19: Histotype Distribution by CodeSet/Datasets

| Variable  | Levels | CS1 All   | CS2 All   | Confirmation | Validation |
|-----------|--------|-----------|-----------|--------------|------------|
| Histotype | HGSC   | 119 (46%) | 642 (79%) | 422 (66%)    | 674 (74%)  |
|           | CCOC   | 47 (18%)  | 60 (7%)   | 75 (12%)     | 80 (9%)    |
|           | ENOC   | 58 (22%)  | 30 (4%)   | 106 (16%)    | 108 (12%)  |
|           | MUC    | 18 (7%)   | 61 (8%)   | 27 (4%)      | 26 (3%)    |
|           | LGSC   | 18 (7%)   | 20 (2%)   | 13 (2%)      | 18 (2%)    |
| Total     | N (%)  | 260 (10%) | 813 (31%) | 643 (25%)    | 906 (35%)  |

Table 3.20: Number of failed sampled by CodeSet

| CS1 | CS2 | CS3 |
|-----|-----|-----|
| 8   | 32  | 8   |

- 3.3 Common Samples
- 3.4 Histotypes in Classifier Data
- 3.5 Quality Control
- 3.5.1 Failed Samples
- 3.5.2 %GD vs. SNR

#### % Genes Detected vs. SNR







 $\label{lem:caption} $$ \operatorname{Moise Ratio} \end{figure} $$ \operatorname{figure}[H] $$$ 

## % Genes Detected vs. SNR (Zoomed)







 $\label{lem:caption} $$ \operatorname{Caption} {\% \ Genes \ Detected \ vs. \ Signal \ to \ Noise \ Ratio \ (Zoomed)} \ \end{figure} $$$ 

4. Results

We show internal validation summaries for the combined classifier training set, as well as the CS1 and CS2 sets with duplicates included. The F1-scores, kappa, and G-mean are the measures of interest. Algorithms are sorted by descending value based on the overallaccuracy of the training set. The point ranges show the median, 5th and 95th percentiles, coloured by subsampling methods.

### 4.1 Training Set

#### 4.1.1 Accuracy

#### **Training Set Accuracy by Algorithm and Subsampling Method**



Figure 4.1: Training Set Accuracy

Table 4.1: Training Set Accuracy by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.936 | 0.924    | 0.937     | 0.934     | 0.911 |
| up       | 0.923 | 0.944    | 0.9       | 0.908     | 0.829 |
| down     | 0.874 | 0.873    | 0.862     | 0.841     | 0.821 |
| smote    | 0.941 | 0.935    | 0.915     | 0.91      | 0.862 |

#### Training Set Class-Specific Accuracy by Algorithm and Subsampling Method



Figure 4.2: Training Set Class-Specific Accuracy

Table 4.2: Training Set Class-Specific Accuracy by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.983 | 0.982    | 0.983     | 0.982     | 0.964 |
| none     | ENOC      | 0.971 | 0.97     | 0.974     | 0.971     | 0.968 |
| none     | HGSC      | 0.951 | 0.936    | 0.952     | 0.953     | 0.932 |
| none     | LGSC      | 0.98  | 0.976    | 0.977     | 0.978     | 0.986 |
| none     | MUC       | 0.986 | 0.984    | 0.988     | 0.986     | 0.975 |
| up       | CCOC      | 0.981 | 0.983    | 0.978     | 0.971     | 0.902 |
| up       | ENOC      | 0.969 | 0.972    | 0.955     | 0.954     | 0.956 |
| up       | HGSC      | 0.932 | 0.963    | 0.921     | 0.934     | 0.849 |
| up       | LGSC      | 0.978 | 0.985    | 0.964     | 0.976     | 0.986 |
| up       | MUC       | 0.984 | 0.984    | 0.984     | 0.981     | 0.976 |
| down     | CCOC      | 0.977 | 0.977    | 0.977     | 0.973     | 0.929 |
| down     | ENOC      | 0.947 | 0.946    | 0.946     | 0.943     | 0.929 |
| down     | HGSC      | 0.899 | 0.898    | 0.884     | 0.869     | 0.856 |
| down     | LGSC      | 0.953 | 0.955    | 0.937     | 0.926     | 0.965 |
| down     | MUC       | 0.976 | 0.973    | 0.982     | 0.977     | 0.978 |
| smote    | CCOC      | 0.982 | 0.981    | 0.979     | 0.976     | 0.95  |
| smote    | ENOC      | 0.972 | 0.968    | 0.964     | 0.959     | 0.96  |
| smote    | HGSC      | 0.961 | 0.957    | 0.936     | 0.934     | 0.874 |
| smote    | LGSC      | 0.986 | 0.984    | 0.968     | 0.971     | 0.982 |
| smote    | MUC       | 0.982 | 0.982    | 0.985     | 0.983     | 0.97  |

Table 4.3: Training Set Macro-Averaged F1-Score by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.769 | 0.726    | 0.766     | 0.779     | 0.755 |
| up       | 0.723 | 0.827    | 0.772     | 0.761     | 0.688 |
| down     | 0.732 | 0.73     | 0.727     | 0.699     | 0.672 |
| smote    | 0.826 | 0.82     | 0.789     | 0.777     | 0.614 |

#### 4.1.2 F1-Score

## Training Set Macro-Averaged F1-Score by Algorithm and Subsamplin



Figure 4.3: Training Set F1-Score

Table 4.4: Training Set Class-Specific F1-Score by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.871 | 0.857    | 0.87      | 0.861     | 0.735 |
| none     | ENOC      | 0.73  | 0.688    | 0.759     | 0.747     | 0.712 |
| none     | HGSC      | 0.97  | 0.961    | 0.97      | 0.971     | 0.958 |
| none     | LGSC      | 0.417 | 0.182    | 0.364     | 0.476     | 0.667 |
| none     | MUC       | 0.863 | 0.851    | 0.885     | 0.865     | 0.711 |
| up       | CCOC      | 0.849 | 0.872    | 0.844     | 0.794     | 0.491 |
| up       | ENOC      | 0.677 | 0.769    | 0.676     | 0.648     | 0.646 |
| up       | HGSC      | 0.959 | 0.977    | 0.948     | 0.957     | 0.905 |
| up       | LGSC      | 0.267 | 0.667    | 0.545     | 0.6       | 0.645 |
| up       | MUC       | 0.846 | 0.857    | 0.857     | 0.821     | 0.731 |
| down     | CCOC      | 0.833 | 0.838    | 0.833     | 0.811     | 0.632 |
| down     | ENOC      | 0.63  | 0.628    | 0.644     | 0.615     | 0.566 |
| down     | HGSC      | 0.932 | 0.932    | 0.921     | 0.91      | 0.901 |
| down     | LGSC      | 0.47  | 0.477    | 0.421     | 0.375     | 0.514 |
| down     | MUC       | 0.8   | 0.776    | 0.838     | 0.794     | 0.776 |
| smote    | CCOC      | 0.865 | 0.861    | 0.853     | 0.825     | 0.58  |
| smote    | ENOC      | 0.761 | 0.738    | 0.718     | 0.685     | 0.571 |
| smote    | HGSC      | 0.975 | 0.972    | 0.958     | 0.957     | 0.924 |
| smote    | LGSC      | 0.706 | 0.71     | 0.567     | 0.579     | 0.429 |
| smote    | MUC       | 0.836 | 0.831    | 0.862     | 0.843     | 0.622 |

#### Training Set Class-Specific F1-Score by Algorithm and Subsampling Method



Figure 4.4: Training Set Class-Specific F1-Score

Table 4.5: Training Set Kappa by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.806 | 0.758    | 0.812     | 0.809     | 0.737 |
| up       | 0.751 | 0.841    | 0.754     | 0.754     | 0.582 |
| down     | 0.702 | 0.701    | 0.682     | 0.643     | 0.605 |
| smote    | 0.833 | 0.823    | 0.782     | 0.768     | 0.561 |

#### 4.1.3 Kappa

## Training Set Kappa by Algorithm and Subsampling Method



Figure 4.5: Training Set Kappa

Table 4.6: Training Set Class-Specific Kappa by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.862 | 0.848    | 0.859     | 0.852     | 0.714 |
| none     | ENOC      | 0.714 | 0.671    | 0.746     | 0.733     | 0.695 |
| none     | HGSC      | 0.84  | 0.783    | 0.845     | 0.852     | 0.781 |
| none     | LGSC      | 0.406 | 0.125    | 0.353     | 0.466     | 0.659 |
| none     | MUC       | 0.856 | 0.844    | 0.879     | 0.856     | 0.7   |
| up       | CCOC      | 0.839 | 0.862    | 0.832     | 0.777     | 0.438 |
| up       | ENOC      | 0.659 | 0.754    | 0.654     | 0.624     | 0.624 |
| up       | HGSC      | 0.765 | 0.887    | 0.784     | 0.807     | 0.599 |
| up       | LGSC      | 0.23  | 0.66     | 0.529     | 0.59      | 0.634 |
| up       | MUC       | 0.839 | 0.849    | 0.848     | 0.811     | 0.718 |
| down     | CCOC      | 0.822 | 0.825    | 0.82      | 0.797     | 0.599 |
| down     | ENOC      | 0.605 | 0.601    | 0.616     | 0.585     | 0.53  |
| down     | HGSC      | 0.729 | 0.73     | 0.701     | 0.667     | 0.64  |
| down     | LGSC      | 0.45  | 0.459    | 0.396     | 0.349     | 0.496 |
| down     | MUC       | 0.786 | 0.762    | 0.828     | 0.782     | 0.764 |
| smote    | CCOC      | 0.856 | 0.851    | 0.842     | 0.812     | 0.556 |
| smote    | ENOC      | 0.745 | 0.722    | 0.699     | 0.663     | 0.548 |
| smote    | HGSC      | 0.881 | 0.87     | 0.817     | 0.811     | 0.569 |
| smote    | LGSC      | 0.699 | 0.701    | 0.551     | 0.565     | 0.423 |
| smote    | MUC       | 0.828 | 0.822    | 0.855     | 0.834     | 0.608 |

#### Training Set Class-Specific Kappa by Algorithm and Subsampling Method



Figure 4.6: Training Set Class-Specific Kappa

Table 4.7: Training Set G-mean by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.657 | 0.481    | 0.663     | 0.72      | 0.695 |
| up       | 0.528 | 0.799    | 0.871     | 0.8       | 0.706 |
| down     | 0.849 | 0.846    | 0.861     | 0.842     | 0.788 |
| smote    | 0.822 | 0.837    | 0.862     | 0.838     | 0.501 |

#### 4.1.4 G-mean

## Training Set G-mean by Algorithm and Subsampling Method



Figure 4.7: Training Set G-mean

Table 4.8: Training Set Class-Specific G-mean by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.907 | 0.888    | 0.904     | 0.912     | 0.856 |
| none     | ENOC      | 0.812 | 0.758    | 0.844     | 0.84      | 0.828 |
| none     | HGSC      | 0.886 | 0.838    | 0.895     | 0.909     | 0.866 |
| none     | LGSC      | 0.527 | 0.267    | 0.5       | 0.63      | 0.755 |
| none     | MUC       | 0.915 | 0.9      | 0.93      | 0.919     | 0.753 |
| up       | CCOC      | 0.876 | 0.91     | 0.925     | 0.892     | 0.873 |
| up       | ENOC      | 0.737 | 0.871    | 0.885     | 0.835     | 0.836 |
| up       | HGSC      | 0.824 | 0.934    | 0.935     | 0.923     | 0.849 |
| up       | LGSC      | 0.365 | 0.78     | 0.933     | 0.86      | 0.73  |
| up       | MUC       | 0.893 | 0.931    | 0.94      | 0.904     | 0.768 |
| down     | CCOC      | 0.92  | 0.916    | 0.913     | 0.916     | 0.909 |
| down     | ENOC      | 0.872 | 0.861    | 0.882     | 0.864     | 0.866 |
| down     | HGSC      | 0.92  | 0.919    | 0.912     | 0.901     | 0.891 |
| down     | LGSC      | 0.908 | 0.91     | 0.931     | 0.914     | 0.867 |
| down     | MUC       | 0.925 | 0.926    | 0.934     | 0.914     | 0.831 |
| smote    | CCOC      | 0.918 | 0.918    | 0.923     | 0.919     | 0.741 |
| smote    | ENOC      | 0.87  | 0.867    | 0.88      | 0.861     | 0.666 |
| smote    | HGSC      | 0.941 | 0.943    | 0.939     | 0.935     | 0.714 |
| smote    | LGSC      | 0.827 | 0.875    | 0.915     | 0.895     | 0.522 |
| smote    | MUC       | 0.931 | 0.932    | 0.936     | 0.924     | 0.681 |

#### Training Set Class Specific G-mean by Algorithm and Subsampling Method



Figure 4.8: Training Set Class-Specific G-mean

Table 4.9: CS1 Set Accuracy by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.828 | 0.808    | 0.841     | 0.831     | 0.849 |
| up       | 0.847 | 0.835    | 0.842     | 0.824     | 0.841 |
| down     | 0.802 | 0.781    | 0.788     | 0.766     | 0.811 |
| smote    | 0.846 | 0.839    | 0.837     | 0.823     | 0.841 |

## 4.2 CS1 Set

#### 4.2.1 Accuracy





Figure 4.9: CS1 Set Accuracy

Table 4.10: CS1 Set Class-Specific Accuracy by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.942 | 0.941    | 0.938     | 0.937     | 0.944 |
| none     | ENOC      | 0.891 | 0.887    | 0.898     | 0.897     | 0.912 |
| none     | HGSC      | 0.902 | 0.882    | 0.912     | 0.904     | 0.903 |
| none     | LGSC      | 0.956 | 0.947    | 0.968     | 0.957     | 0.972 |
| none     | MUC       | 0.969 | 0.967    | 0.977     | 0.97      | 0.969 |
| up       | CCOC      | 0.945 | 0.941    | 0.933     | 0.922     | 0.937 |
| up       | ENOC      | 0.901 | 0.892    | 0.896     | 0.884     | 0.904 |
| up       | HGSC      | 0.918 | 0.906    | 0.916     | 0.911     | 0.899 |
| up       | LGSC      | 0.968 | 0.965    | 0.967     | 0.961     | 0.978 |
| up       | MUC       | 0.971 | 0.969    | 0.971     | 0.977     | 0.969 |
| down     | CCOC      | 0.939 | 0.933    | 0.941     | 0.926     | 0.936 |
| down     | ENOC      | 0.881 | 0.87     | 0.888     | 0.873     | 0.888 |
| down     | HGSC      | 0.888 | 0.871    | 0.868     | 0.856     | 0.882 |
| down     | LGSC      | 0.941 | 0.935    | 0.922     | 0.92      | 0.958 |
| down     | MUC       | 0.967 | 0.96     | 0.967     | 0.959     | 0.96  |
| smote    | CCOC      | 0.944 | 0.939    | 0.933     | 0.931     | 0.941 |
| smote    | ENOC      | 0.896 | 0.89     | 0.894     | 0.887     | 0.9   |
| smote    | HGSC      | 0.92  | 0.913    | 0.911     | 0.901     | 0.901 |
| smote    | LGSC      | 0.968 | 0.968    | 0.962     | 0.957     | 0.976 |
| smote    | MUC       | 0.97  | 0.969    | 0.977     | 0.978     | 0.969 |

#### CS1 Set Class-Specific Accuracy by Algorithm and Subsampling Method



Figure 4.10: CS1 Set Class-Specific Accuracy

Table 4.11: CS1 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.748 | 0.718    | 0.794     | 0.771     | 0.805 |
| up       | 0.792 | 0.772    | 0.806     | 0.787     | 0.793 |
| down     | 0.76  | 0.733    | 0.751     | 0.723     | 0.771 |
| smote    | 0.804 | 0.797    | 0.803     | 0.784     | 0.797 |

#### 4.2.2 F1-Score

## CS1 Set Macro-Averaged F1-Score by Algorithm and Subsampling Me



Figure 4.11: CS1 Set F1-Score

Table 4.12: CS1 Set Class-Specific F1-Score by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.829 | 0.828    | 0.824     | 0.813     | 0.833 |
| none     | ENOC      | 0.764 | 0.739    | 0.769     | 0.769     | 0.8   |
| none     | HGSC      | 0.9   | 0.884    | 0.909     | 0.9       | 0.9   |
| none     | LGSC      | 0.545 | 0.444    | 0.714     | 0.625     | 0.769 |
| none     | MUC       | 0.727 | 0.667    | 0.8       | 0.769     | 0.727 |
| up       | CCOC      | 0.839 | 0.828    | 0.812     | 0.784     | 0.813 |
| up       | ENOC      | 0.78  | 0.765    | 0.766     | 0.743     | 0.782 |
| up       | HGSC      | 0.915 | 0.903    | 0.909     | 0.902     | 0.898 |
| up       | LGSC      | 0.667 | 0.667    | 0.769     | 0.727     | 0.8   |
| up       | MUC       | 0.769 | 0.75     | 0.8       | 0.778     | 0.71  |
| down     | CCOC      | 0.828 | 0.812    | 0.833     | 0.8       | 0.824 |
| down     | ENOC      | 0.743 | 0.711    | 0.756     | 0.723     | 0.764 |
| down     | HGSC      | 0.871 | 0.85     | 0.843     | 0.83      | 0.865 |
| down     | LGSC      | 0.667 | 0.632    | 0.6       | 0.571     | 0.714 |
| down     | MUC       | 0.727 | 0.714    | 0.732     | 0.706     | 0.727 |
| smote    | CCOC      | 0.839 | 0.833    | 0.821     | 0.811     | 0.833 |
| smote    | ENOC      | 0.779 | 0.766    | 0.769     | 0.757     | 0.785 |
| smote    | HGSC      | 0.915 | 0.907    | 0.901     | 0.889     | 0.898 |
| smote    | LGSC      | 0.75  | 0.75     | 0.75      | 0.706     | 0.769 |
| smote    | MUC       | 0.769 | 0.766    | 0.8       | 0.8       | 0.727 |

#### CS1 Set Class-Specific F1-Score by Algorithm and Subsampling Method



Figure 4.12: CS1 Set Class-Specific F1-Score

Table 4.13: CS1 Set Kappa by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.743 | 0.706    | 0.765     | 0.752     | 0.776 |
| up       | 0.775 | 0.755    | 0.771     | 0.747     | 0.763 |
| down     | 0.723 | 0.694    | 0.707     | 0.675     | 0.733 |
| smote    | 0.777 | 0.766    | 0.767     | 0.746     | 0.768 |

#### 4.2.3 Kappa

## CS1 Set Kappa by Algorithm and Subsampling Method



Figure 4.13: CS1 Set Kappa

Table 4.14: CS1 Set Class-Specific Kappa by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.795 | 0.792    | 0.784     | 0.777     | 0.797 |
| none     | ENOC      | 0.691 | 0.666    | 0.704     | 0.7       | 0.744 |
| none     | HGSC      | 0.803 | 0.764    | 0.824     | 0.807     | 0.806 |
| none     | LGSC      | 0.49  | 0.342    | 0.692     | 0.593     | 0.754 |
| none     | MUC       | 0.709 | 0.652    | 0.784     | 0.753     | 0.712 |
| up       | CCOC      | 0.804 | 0.792    | 0.773     | 0.734     | 0.776 |
| up       | ENOC      | 0.713 | 0.696    | 0.697     | 0.664     | 0.722 |
| up       | HGSC      | 0.836 | 0.811    | 0.83      | 0.82      | 0.799 |
| up       | LGSC      | 0.652 | 0.646    | 0.753     | 0.711     | 0.784 |
| up       | MUC       | 0.753 | 0.73     | 0.782     | 0.757     | 0.678 |
| down     | CCOC      | 0.789 | 0.774    | 0.797     | 0.755     | 0.784 |
| down     | ENOC      | 0.664 | 0.624    | 0.679     | 0.643     | 0.691 |
| down     | HGSC      | 0.772 | 0.738    | 0.731     | 0.706     | 0.76  |
| down     | LGSC      | 0.632 | 0.594    | 0.558     | 0.523     | 0.691 |
| down     | MUC       | 0.708 | 0.687    | 0.712     | 0.682     | 0.709 |
| smote    | CCOC      | 0.804 | 0.794    | 0.776     | 0.767     | 0.796 |
| smote    | ENOC      | 0.709 | 0.693    | 0.699     | 0.683     | 0.717 |
| smote    | HGSC      | 0.84  | 0.825    | 0.819     | 0.799     | 0.802 |
| smote    | LGSC      | 0.727 | 0.739    | 0.728     | 0.677     | 0.754 |
| smote    | MUC       | 0.753 | 0.745    | 0.789     | 0.788     | 0.711 |

#### CS1 Set Class-Specific Kappa by Algorithm and Subsampling Method



Figure 4.14: CS1 Set Class-Specific Kappa

Table 4.15: CS1 Set G-mean by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.658 | 0.571    | 0.75      | 0.727     | 0.757 |
| up       | 0.734 | 0.716    | 0.812     | 0.787     | 0.734 |
| down     | 0.791 | 0.774    | 0.795     | 0.756     | 0.793 |
| smote    | 0.786 | 0.781    | 0.81      | 0.793     | 0.752 |

#### 4.2.4 G-mean

## CS1 Set G-mean by Algorithm and Subsampling Method



Figure 4.15: CS1 Set G-mean

Table 4.16: CS1 Set Class-Specific G-mean by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.888 | 0.885    | 0.889     | 0.885     | 0.891 |
| none     | ENOC      | 0.854 | 0.827    | 0.848     | 0.848     | 0.867 |
| none     | HGSC      | 0.904 | 0.883    | 0.913     | 0.905     | 0.905 |
| none     | LGSC      | 0.606 | 0.471    | 0.775     | 0.707     | 0.816 |
| none     | MUC       | 0.775 | 0.745    | 0.845     | 0.84      | 0.812 |
| up       | CCOC      | 0.893 | 0.888    | 0.891     | 0.87      | 0.883 |
| up       | ENOC      | 0.864 | 0.849    | 0.846     | 0.833     | 0.848 |
| up       | HGSC      | 0.92  | 0.908    | 0.914     | 0.909     | 0.902 |
| up       | LGSC      | 0.707 | 0.707    | 0.913     | 0.889     | 0.816 |
| up       | MUC       | 0.816 | 0.812    | 0.878     | 0.864     | 0.756 |
| down     | CCOC      | 0.901 | 0.895    | 0.905     | 0.883     | 0.886 |
| down     | ENOC      | 0.84  | 0.81     | 0.849     | 0.82      | 0.853 |
| down     | HGSC      | 0.881 | 0.863    | 0.855     | 0.845     | 0.876 |
| down     | LGSC      | 0.904 | 0.902    | 0.91      | 0.858     | 0.895 |
| down     | MUC       | 0.856 | 0.861    | 0.859     | 0.852     | 0.895 |
| smote    | CCOC      | 0.899 | 0.896    | 0.895     | 0.89      | 0.894 |
| smote    | ENOC      | 0.872 | 0.856    | 0.854     | 0.846     | 0.868 |
| smote    | HGSC      | 0.92  | 0.913    | 0.907     | 0.895     | 0.902 |
| smote    | LGSC      | 0.835 | 0.84     | 0.898     | 0.863     | 0.816 |
| smote    | MUC       | 0.856 | 0.848    | 0.882     | 0.877     | 0.788 |

#### CS1 Set Class Specific G-mean by Algorithm and Subsampling Method



Figure 4.16: CS1 Set Class-Specific G-mean

Table 4.17: CS2 Set Accuracy by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.924 | 0.91     | 0.938     | 0.931     | 0.926 |
| up       | 0.926 | 0.931    | 0.922     | 0.921     | 0.926 |
| down     | 0.859 | 0.844    | 0.815     | 0.817     | 0.843 |
| smote    | 0.928 | 0.925    | 0.915     | 0.902     | 0.922 |

### 4.3 CS2 Set

#### 4.3.1 Accuracy

## CS2 Set Accuracy by Algorithm and Subsampling Method



Figure 4.17: CS2 Set Accuracy

Table 4.18: CS2 Set Class-Specific Accuracy by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.984 | 0.983    | 0.987     | 0.983     | 0.981 |
| none     | ENOC      | 0.974 | 0.967    | 0.98      | 0.977     | 0.981 |
| none     | HGSC      | 0.931 | 0.913    | 0.949     | 0.946     | 0.936 |
| none     | LGSC      | 0.977 | 0.976    | 0.977     | 0.975     | 0.977 |
| none     | MUC       | 0.983 | 0.981    | 0.983     | 0.981     | 0.977 |
| up       | CCOC      | 0.986 | 0.986    | 0.986     | 0.984     | 0.98  |
| up       | ENOC      | 0.977 | 0.98     | 0.969     | 0.969     | 0.98  |
| up       | HGSC      | 0.931 | 0.941    | 0.938     | 0.941     | 0.933 |
| up       | LGSC      | 0.977 | 0.977    | 0.972     | 0.972     | 0.98  |
| up       | MUC       | 0.981 | 0.981    | 0.98      | 0.979     | 0.977 |
| down     | CCOC      | 0.98  | 0.979    | 0.977     | 0.97      | 0.956 |
| down     | ENOC      | 0.96  | 0.959    | 0.954     | 0.943     | 0.958 |
| down     | HGSC      | 0.879 | 0.866    | 0.842     | 0.844     | 0.867 |
| down     | LGSC      | 0.948 | 0.939    | 0.921     | 0.922     | 0.954 |
| down     | MUC       | 0.956 | 0.951    | 0.947     | 0.963     | 0.961 |
| smote    | CCOC      | 0.984 | 0.984    | 0.986     | 0.981     | 0.979 |
| smote    | ENOC      | 0.976 | 0.976    | 0.966     | 0.961     | 0.98  |
| smote    | HGSC      | 0.943 | 0.941    | 0.933     | 0.923     | 0.934 |
| smote    | LGSC      | 0.979 | 0.979    | 0.97      | 0.964     | 0.98  |
| smote    | MUC       | 0.974 | 0.972    | 0.978     | 0.976     | 0.973 |

## CS2 Set Class-Specific Accuracy by Algorithm and Subsampling Method



Figure 4.18: CS2 Set Class-Specific Accuracy

Table 4.19: CS2 Set Macro-Averaged F1-Score by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.714 | 0.751    | 0.757     | 0.745     | 0.766 |
| up       | 0.722 | 0.741    | 0.784     | 0.761     | 0.755 |
| down     | 0.703 | 0.68     | 0.656     | 0.645     | 0.675 |
| smote    | 0.782 | 0.775    | 0.771     | 0.741     | 0.758 |

### 4.3.2 F1-Score

# CS2 Set Macro-Averaged F1-Score by Algorithm and Subsampling Me



Figure 4.19: CS2 Set F1-Score

Table 4.20: CS2 Set Class-Specific F1-Score by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.889 | 0.875    | 0.903     | 0.884     | 0.857 |
| none     | ENOC      | 0.471 | 0.267    | 0.667     | 0.632     | 0.706 |
| none     | HGSC      | 0.958 | 0.948    | 0.968     | 0.966     | 0.961 |
| none     | LGSC      | 0.222 | 0.286    | 0.375     | 0.4       | 0.5   |
| none     | MUC       | 0.882 | 0.865    | 0.885     | 0.878     | 0.835 |
| up       | CCOC      | 0.895 | 0.895    | 0.909     | 0.895     | 0.848 |
| up       | ENOC      | 0.556 | 0.632    | 0.609     | 0.6       | 0.696 |
| up       | HGSC      | 0.958 | 0.963    | 0.96      | 0.962     | 0.959 |
| up       | LGSC      | 0.25  | 0.286    | 0.583     | 0.522     | 0.5   |
| up       | MUC       | 0.87  | 0.87     | 0.864     | 0.857     | 0.833 |
| down     | CCOC      | 0.87  | 0.857    | 0.844     | 0.809     | 0.755 |
| down     | ENOC      | 0.556 | 0.533    | 0.5       | 0.444     | 0.538 |
| down     | HGSC      | 0.919 | 0.909    | 0.89      | 0.893     | 0.909 |
| down     | LGSC      | 0.432 | 0.389    | 0.343     | 0.333     | 0.452 |
| down     | MUC       | 0.745 | 0.724    | 0.717     | 0.768     | 0.75  |
| smote    | CCOC      | 0.895 | 0.895    | 0.9       | 0.872     | 0.842 |
| smote    | ENOC      | 0.667 | 0.667    | 0.588     | 0.556     | 0.667 |
| smote    | HGSC      | 0.963 | 0.963    | 0.957     | 0.95      | 0.959 |
| smote    | LGSC      | 0.556 | 0.571    | 0.558     | 0.5       | 0.533 |
| smote    | MUC       | 0.837 | 0.824    | 0.857     | 0.842     | 0.811 |

## CS2 Set Class-Specific F1-Score by Algorithm and Subsampling Method



Figure 4.20: CS2 Set Class-Specific F1-Score

Table 4.21: CS2 Set Kappa by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.761 | 0.703    | 0.811     | 0.799     | 0.779 |
| up       | 0.764 | 0.794    | 0.798     | 0.789     | 0.767 |
| down     | 0.676 | 0.646    | 0.605     | 0.602     | 0.641 |
| smote    | 0.802 | 0.797    | 0.781     | 0.75      | 0.766 |

## 4.3.3 Kappa

# CS2 Set Kappa by Algorithm and Subsampling Method



Figure 4.21: CS2 Set Kappa

Table 4.22: CS2 Set Class-Specific Kappa by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.88  | 0.868    | 0.896     | 0.874     | 0.848 |
| none     | ENOC      | 0.459 | 0.191    | 0.655     | 0.62      | 0.697 |
| none     | HGSC      | 0.767 | 0.692    | 0.834     | 0.828     | 0.794 |
| none     | LGSC      | 0.148 | 0        | 0.357     | 0.39      | 0.486 |
| none     | MUC       | 0.873 | 0.856    | 0.875     | 0.869     | 0.823 |
| up       | CCOC      | 0.888 | 0.888    | 0.902     | 0.885     | 0.839 |
| up       | ENOC      | 0.544 | 0.622    | 0.594     | 0.586     | 0.684 |
| up       | HGSC      | 0.764 | 0.806    | 0.823     | 0.823     | 0.775 |
| up       | LGSC      | 0.214 | 0.264    | 0.568     | 0.506     | 0.486 |
| up       | MUC       | 0.86  | 0.859    | 0.853     | 0.842     | 0.823 |
| down     | CCOC      | 0.859 | 0.847    | 0.832     | 0.792     | 0.732 |
| down     | ENOC      | 0.533 | 0.512    | 0.484     | 0.414     | 0.516 |
| down     | HGSC      | 0.688 | 0.659    | 0.617     | 0.617     | 0.656 |
| down     | LGSC      | 0.41  | 0.364    | 0.314     | 0.306     | 0.429 |
| down     | MUC       | 0.722 | 0.696    | 0.687     | 0.747     | 0.729 |
| smote    | CCOC      | 0.888 | 0.887    | 0.893     | 0.863     | 0.832 |
| smote    | ENOC      | 0.655 | 0.651    | 0.568     | 0.54      | 0.655 |
| smote    | HGSC      | 0.829 | 0.825    | 0.81      | 0.781     | 0.786 |
| smote    | LGSC      | 0.542 | 0.561    | 0.544     | 0.484     | 0.523 |
| smote    | MUC       | 0.824 | 0.808    | 0.845     | 0.831     | 0.797 |

## CS2 Set Class-Specific Kappa by Algorithm and Subsampling Method



Figure 4.22: CS2 Set Class-Specific Kappa

Table 4.23: CS2 Set G-mean by Algorithm and Subsampling Method

| sampling | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| none     | 0.363 | 0        | 0.649     | 0.657     | 0.693 |
| up       | 0.499 | 0.576    | 0.841     | 0.773     | 0.652 |
| down     | 0.829 | 0.811    | 0.808     | 0.792     | 0.802 |
| smote    | 0.775 | 0.763    | 0.835     | 0.806     | 0.685 |

### 4.3.4 G-mean

# CS2 Set G-mean by Algorithm and Subsampling Method



Figure 4.23: CS2 Set G-mean

Table 4.24: CS2 Set Class-Specific G-mean by Algorithm and Subsampling Method

| sampling | histotype | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-----------|-------|----------|-----------|-----------|-------|
| none     | CCOC      | 0.913 | 0.889    | 0.933     | 0.928     | 0.891 |
| none     | ENOC      | 0.576 | 0.333    | 0.739     | 0.742     | 0.78  |
| none     | HGSC      | 0.83  | 0.773    | 0.889     | 0.894     | 0.866 |
| none     | LGSC      | 0.301 | 0        | 0.535     | 0.574     | 0.698 |
| none     | MUC       | 0.921 | 0.898    | 0.931     | 0.93      | 0.879 |
| up       | CCOC      | 0.911 | 0.931    | 0.96      | 0.943     | 0.866 |
| up       | ENOC      | 0.62  | 0.707    | 0.812     | 0.795     | 0.755 |
| up       | HGSC      | 0.828 | 0.871    | 0.937     | 0.921     | 0.84  |
| up       | LGSC      | 0.354 | 0.408    | 0.903     | 0.791     | 0.629 |
| up       | MUC       | 0.911 | 0.934    | 0.941     | 0.92      | 0.87  |
| down     | CCOC      | 0.958 | 0.947    | 0.928     | 0.918     | 0.936 |
| down     | ENOC      | 0.827 | 0.803    | 0.807     | 0.795     | 0.827 |
| down     | HGSC      | 0.904 | 0.893    | 0.881     | 0.878     | 0.888 |
| down     | LGSC      | 0.896 | 0.885    | 0.887     | 0.883     | 0.887 |
| down     | MUC       | 0.916 | 0.914    | 0.92      | 0.901     | 0.88  |
| smote    | CCOC      | 0.957 | 0.954    | 0.957     | 0.942     | 0.885 |
| smote    | ENOC      | 0.811 | 0.79     | 0.815     | 0.805     | 0.739 |
| smote    | HGSC      | 0.922 | 0.92     | 0.932     | 0.921     | 0.861 |
| smote    | LGSC      | 0.751 | 0.75     | 0.891     | 0.853     | 0.703 |
| smote    | MUC       | 0.935 | 0.929    | 0.934     | 0.919     | 0.877 |

#### CS2 Set Class Specific G-mean by Algorithm and Subsampling Method



Figure 4.24: CS2 Set Class-Specific G-mean

Table 4.25: SMOTE Kappa by Algorithm and Dataset

| dataset  | rf    | adaboost | mlr_ridge | mlr_lasso | svm   |
|----------|-------|----------|-----------|-----------|-------|
| Training | 0.833 | 0.823    | 0.782     | 0.768     | 0.561 |
| CS1      | 0.777 | 0.766    | 0.767     | 0.746     | 0.768 |
| CS2      | 0.802 | 0.797    | 0.781     | 0.75      | 0.766 |

## **4.4 SMOTE**

# Kappa

# Summary

# **SMOTE Kappa by Algorithm and Dataset**



Figure 4.25: SMOTE Kappa by Algorithm and Dataset

#### **SMOTE Class-Specific Kappa by Algorithm and Dataset**



Figure 4.26: SMOTE Class-Specific Kappa by Algorithm and Dataset

## 4.5 Gene Optimization

#### 4.5.1 Overlap with Other Sets

There are 16 genes out of the 72 common classifier set that overlap with the PrOTYPE classifier: COL11A1, CD74, CD2, TIMP3, LUM, CYTIP, COL3A1, THBS2, TCF7L1, HMGA2, FN1, POSTN, COL1A2, COL5A2, PDZK1IP1, FBN1

There are 13 genes out of the 72 classifier set that overlap with the SPOT signature: HIF1A, CXCL10, DUSP4, SOX17, MITF, CDKN3, BRCA2, CEACAM5, ANXA4, SERPINE1, TCF7L1, CRABP2, DNAJC9.

#### 4.5.2 Optimal Gene Set

There are 28 unique genes from the combined PrOTYPE and SPOT lists that we want to use for the final classifier. We then incrementally add genes from the remaining 44 candidates based on variable importance scores to this list and recalculate performance metrics. The number of genes at which the performance starts to plateau may indicate an optimal gene set for us to carry forward for a particular model.

Variable importance is calculated using either a model-based approach if it is available, or a SHAP-based VI score otherwise (e.g. for SVM). For the sequential and two-step classifiers, we calculate overall VI scores by aggregating the base classifier VI scores using rank aggregation.

### Gene Optimziation for Sequential Classifier



Figure 4.27: Gene Optimization for Sequential Classifier

In the sequential classifier, we use the per-class median F1-scores pertaining to the histotype that had the best performance from each retraining, and sort them on number of genes added. For instance, in sequence 2,

we look at the CCOC F1-scores because CCOC had the best performance from retraining after HGSC was removed.

We can observe that in sequence 3, the F1-score stabilizes at around 0.93 when we reach 34 genes added, hence the optimal number of genes used will be n=28+34=62. The added genes are: SEMA6A, GPR64, KGFLP2, BCL2, ATP5G3, C1orf173, ZBED1, PBX1, FUT3, KLK7, IGFBP1, STC1, MET, CPNE8, C10orf116, MAP1LC3A, EPAS1, SLC3A1, TPX2, TFF1, CAPN2, WT1, CYP4B1, SERPINA5, HNF1B, EGFL6, LGALS4, TSPAN8, BRCA1, LIN28B, DKK4, ADCYAP1R1, TFF3 and MUC5B.

### Gene Optimization for Two-Step Classifier



Figure 4.28: Gene Optimization for Two-Step Classifier

Since the second step of the classifier fits a multinomial model, we use the macro F1-score as the measure to analyze gene entry. In the two-step classifier, we see that in Step 2, the F1-score stabilizes at around 0.88 when we reach 24 added. The optimal number of genes used will be n=28+24=52. The added genes are: PBX1, LGALS4, HNF1B, IGFBP1, TFF3, C10orf116, PAX8, GPR64, FUT3, CYP4B1, DKK4, GAD1, KLK7, EPAS1, CPNE8, BRCA1, ZBED1, IL6, SERPINA5, TPX2, CAPN2, TSPAN8, LIN28B and SLC3A1.

4.6 Rank Aggregation

| Show 50 entries |        | <b>5</b> .0      |                         | Search: |       |
|-----------------|--------|------------------|-------------------------|---------|-------|
| model -         | CCOC ≑ | F1-Score Summary | by Model and Class HGSC | LGSC ⊕  | MUC 🏺 |
| All             | All    | All              | All                     | All     | All   |
| seq             | 0.9    | 0.931            | 0.973                   | 0.938   | 0.971 |
| two_step        | 0.919  | 0.837            | 0.974                   | 0.88    | 0.897 |
| adaboost-up     | 0.872  | 0.769            | 0.977                   | 0.667   | 0.857 |
| rf-smote        | 0.865  | 0.761            | 0.975                   | 0.706   | 0.836 |
| mlr_ridge-none  | 0.87   | 0.759            | 0.97                    | 0.364   | 0.885 |
| mlr_lasso-none  | 0.861  | 0.747            | 0.971                   | 0.476   | 0.865 |
| adaboost-smote  | 0.861  | 0.738            | 0.972                   | 0.71    | 0.831 |
| rf-none         | 0.871  | 0.73             | 0.97                    | 0.417   | 0.863 |
| mlr_ridge-smote | 0.853  | 0.718            | 0.958                   | 0.567   | 0.862 |
| adaboost-none   | 0.857  | 0.688            | 0.961                   | 0.182   | 0.851 |
| rf-up           | 0.849  | 0.677            | 0.959                   | 0.267   | 0.846 |
| mlr_lasso-smote | 0.825  | 0.685            | 0.957                   | 0.579   | 0.843 |
| mlr_ridge-up    | 0.844  | 0.676            | 0.948                   | 0.545   | 0.857 |
| svm-none        | 0.735  | 0.712            | 0.958                   | 0.667   | 0.711 |
| rf-down         | 0.833  | 0.63             | 0.932                   | 0.47    | 0.8   |
| mlr_lasso-up    | 0.794  | 0.648            | 0.957                   | 0.6     | 0.821 |
| mlr_ridge-down  | 0.833  | 0.644            | 0.921                   | 0.421   | 0.838 |
| adaboost-down   | 0.838  | 0.628            | 0.932                   | 0.477   | 0.776 |
| mlr_lasso-down  | 0.811  | 0.615            | 0.91                    | 0.375   | 0.794 |
| svm-down        | 0.632  | 0.566            | 0.901                   | 0.514   | 0.776 |
| svm-up          | 0.491  | 0.646            | 0.905                   | 0.645   | 0.731 |
| svm-smote       | 0.58   | 0.571            | 0.924                   | 0.429   | 0.622 |

The 22 methods (algorithm-sampling combinations) are ordered in the table by their aggregated ranks using the Genetic Algorithm. We see that the best performing methods involve the 2-stage and sequential algorithms.

Previous

Next

Showing 1 to 22 of 22 entries

# 4.7 Top 4 Model Summary

## 4.7.1 Overall Metrics

# **Top 4 Model Overall Evaluation Metrics**



Figure 4.29: Top 4 Model Evaluation Metrics

4.7.2 Per-Class Metrics

# **Top 4 Model Per-Class Evaluation Metrics**



Figure 4.30: Top 4 Model Per-Class Evaluation Metrics



Figure 4.31: Top 4 Model Per-Class F1-Scores

## 4.8 Test Set Performance

Now we'd like to see how our best methods perform in the confirmation and validation sets. The class-specific F1-scores will be used.

The top 2 methods are:

- sequential: sequential algorithm with upsampling at every step. The sequence of algorithms used are:
  - HGSC vs. non-HGSC using adaboost
  - CCOC vs. non-CCOC using random forest
  - ENOC vs. non-ENOC using ridge regression
  - MUC vs. LGSC using adaboost
- two\_step: two-step algorithm with upsampling at both steps. The sequence of algorithms used are:
  - HGSC vs. non-HGSC using adaboost
  - CCOC vs. ENOC vs. MUC vs. LGSC using random forest

We can test 2 additional methods by using either the full set of genes or the optimal set of genes for both of these methods.

Table 4.26: Class-specific F1-scores on Confirmation Set Models

| method             | measure  | HGSC  | CCOC  | ENOC  | LGSC  | MUC   |
|--------------------|----------|-------|-------|-------|-------|-------|
|                    | accuracy | 0.872 | 0.923 | 0.814 | 0.900 | 0.919 |
| two_step_full      | f1       | 0.908 | 0.886 | 0.792 | 0.450 | 0.679 |
| two_step_run       | kappa    | 0.703 | 0.828 | 0.626 | 0.403 | 0.632 |
|                    | gmean    | 0.826 | 0.912 | 0.808 | 0.795 | 0.817 |
|                    | accuracy | 0.869 | 0.928 | 0.833 | 0.914 | 0.910 |
| two step optimal   | f1       | 0.906 | 0.892 | 0.814 | 0.486 | 0.655 |
| two_stcp_optimar   | kappa    | 0.695 | 0.837 | 0.663 | 0.444 | 0.603 |
|                    | gmean    | 0.819 | 0.915 | 0.827 | 0.801 | 0.813 |
|                    | accuracy | 0.871 | 0.950 | 0.767 | 0.800 | 0.800 |
| sequential full    | f1       | 0.906 | 0.922 | 0.833 | 0.692 | 0.852 |
| sequentiai_run     | kappa    | 0.700 | 0.886 | 0.449 | 0.544 | 0.544 |
|                    | gmean    | 0.825 | 0.928 | 0.736 | 0.768 | 0.768 |
|                    | accuracy | 0.869 | 0.946 | 0.781 | 0.800 | 0.800 |
| sequential optimal | f1       | 0.906 | 0.914 | 0.840 | 0.692 | 0.852 |
| sequential_optimal | kappa    | 0.695 | 0.875 | 0.496 | 0.544 | 0.544 |
|                    | gmean    | 0.821 | 0.921 | 0.771 | 0.768 | 0.768 |

Table 4.27: Class-specific F1-scores on Validation Set Model

| method         | measure  | HGSC  | CCOC  | ENOC  | LGSC  | MUC   |
|----------------|----------|-------|-------|-------|-------|-------|
|                | accuracy | 0.897 | 0.974 | 0.888 | 0.932 | 0.932 |
| sequential ont | f1       | 0.931 | 0.962 | 0.919 | 0.909 | 0.945 |
| sequential_opt | kappa    | 0.734 | 0.942 | 0.737 | 0.855 | 0.855 |
|                | gmean    | 0.870 | 0.968 | 0.881 | 0.913 | 0.913 |

## 4.8.1 Confirmation Set

In the confirmation set, **sequential\_full** and **sequential\_optimal** are very similar. Both sequential algorithms have moderate improvement in LGSC and MUC classification. We will select the **sequential\_optimal** model to test in the validation set.

## 4.8.2 Validation Set

Per-class F1-scores in the validation set are all above 0.9.