Smart Ultrasonic Humidifier - Design Report

Name: Atul Verma

Email:atul25v@gmail.com

Submitted to: RevoltronX

1. Design Objectives

The goal is to design a smart ultrasonic humidifier system controlled via:

- Manual push-button
- Bluetooth commands (HC-05)
 It includes a status LED and a MOSFET to safely switch the atomizer circuit.

2. Component Selection Rationale

Component	Reason for Selection	
ATmega328P	Sufficient I/Os, UART support, low power, widely supported	
HC-05	Easy serial Bluetooth control	
Push Button	Manual toggle feature	
MOSFET (e.g., IRF540N)	Efficient switching of the atomizer.	
Status LED	Visual ON/OFF feedback	
USB Ultrasonic Module	Ready-to-use atomizer control circuit	
Power Supply (5V Regulator)	Stable power for logic and atomizer	

3. Pin Configuration

Function	ATmega328P Pin
HC-05 TX → RX	PD0 (RXD)
HC-05 RX ← TX	PD1 (TXD) via divider
Push Button	PD2 (INT0)
Status LED	PD4
MOSFET Gate	PD3

4. Control Logic

- Button (INT0): On falling edge, toggles humidifier state.
- Bluetooth Commands:
 - o '1' → Turn ON
 - o '0' → Turn OFF
- LED: Reflects current humidifier state
- MOSFET: Acts as switch to atomizer (controlled by PD3)

5. Anticipated Challenges & Solutions

Challenge	Solution
Signal interference from atomizer	Add decoupling capacitors near VCC, proper grounding
MOSFET heating	Use logic-level MOSFET with heatsink or large copper pour
Bluetooth instability	Use proper baud rate (9600), avoid noisy shared power lines
Button debounce	Implement software debounce using _delay_ms(50)
Reverse voltage or power surges	Add flyback diode or use protected MOSFET circuit

Block Diagram

