目录

—.	数论	3
	1.阶乘最后非零位	3
	2. 模线性方程(组)	4
	3. 素数表	6
	4. 素数随机判定(miller_rabin)	6
	5. 质因数分解	7
	6. 最大公约数欧拉函数	8
<u> </u>	图论_匹配	
	1. 二分图最大匹配(hungary 邻接表形式)	9
	2. 二分图最大匹配(hungary 邻接表形式,邻接阵接口)	9
	3. 二分图最大匹配(hungary 邻接阵形式)	10
	4. 二分图最大匹配(hungary 正向表形式)	11
	5. 二分图最佳匹配(kuhn_munkras 邻接阵形式)	11
	6. 一般图匹配(邻接表形式)	12
	7. 一般图匹配(邻接表形式,邻接阵接口)	13
	8. 一般图匹配(邻接阵形式)	14
	9. 一般图匹配(正向表形式)	15
\equiv .	图论_生成树	
	1. 最小生成树(kruskal 邻接表形式)	16
	2. 最小生成树(kruskal 正向表形式)	
	3. 最小生成树(prim+binary_heap 邻接表形式)	19
	4. 最小生成树(prim+binary_heap 正向表形式)	20
	5. 最小生成树(prim+mapped_heap 邻接表形式)	21
	6. 最小生成树(prim+mapped_heap 正向表形式)	
	7. 最小生成树(prim 邻接阵形式)	23
	8. 最小树形图(邻接阵形式)	24
四.	图论_网络流	
	1. 上下界最大流(邻接表形式)	25
	2. 上下界最大流(邻接阵形式)	27
	3. 上下界最小流(邻接表形式)	
	4. 上下界最小流(邻接阵形式)	
	5. 最大流(邻接表形式)	
	6. 最大流(邻接表形式,邻接阵接口)	
	7. 最大流(邻接阵形式)	
	8. 最大流无流量(邻接阵形式)	33
	9. 最小费用最大流(邻接阵形式)	
五.	图论_最短路径	
	1. 最短路径(单源 bellman_ford 邻接阵形式)	
	2. 最短路径(单源 dijkstra_bfs 邻接表形式)	
	3. 最短路径(单源 dijkstra_bfs 正向表形式)	
	4. 最短路径(单源 dijkstra+binary_heap 邻接表形式)	
	5. 最短路径(单源 dijkstra+binary_heap 正向表形式)	38

	6. 最短路径(单源 dijkstra+mapped_heap 邻接表形式)	39
	7. 最短路径(单源 dijkstra+mapped_heap 正向表形式)	40
	8. 最短路径(单源 dijkstra 邻接阵形式)	41
	9. 最短路径(多源 floyd_warshall 邻接阵形式)	42
六.	图论_连通性	42
	1. 无向图关键边(dfs 邻接阵形式)	42
	2. 无向图关键点(dfs 邻接阵形式)	43
	3. 无向图块(bfs 邻接阵形式)	
	4. 无向图连通分支(bfs 邻接阵形式)	45
	5. 无向图连通分支(dfs 邻接阵形式)	
	6. 有向图强连通分支(bfs 邻接阵形式)	46
	7. 有向图强连通分支(dfs 邻接阵形式)	46
	8. 有向图最小点基(邻接阵形式)	47
七.	图论_应用	48
	1.欧拉回路(邻接阵形式)	
	2. 前序表转化	49
	3. 树的优化算法	
	4. 拓扑排序(邻接阵形式)	51
	5. 最佳边割集	51
	6. 最佳顶点割集	
	7. 最小边割集	
	8. 最小顶点割集	
	9. 最小路径覆盖	
八.	. 图论_NP 搜索	
	1. 最大团(n 小于 64)(faster)	
	2. 最大团	
九.	. 组合	
	1. 排列组合生成	
	2. 生成 gray 码	
	3. 置换(polya)	
	4. 字典序全排列	
	5. 字典序组合	
	6. 组合公式	
十.	. 数值计算	
	1. 定积分计算(Romberg)	
	2. 多项式求根(牛顿法)	
,	3. 周期性方程(追赶法)	
十-	一. 几何	
	1. 多边形	
	2. 多边形切割	
	3. 浮点函数	
	4. 几何公式	
	5. 面积	
	6. 球面	80

7. 三角形	81
8. 三维几何	
9. 凸包(graham)	91
10. 网格(pick)	
11. 圆	
12. 整数函数	96
13. 注意	99
十二. 结构	100
1. 并查集	100
2. 并查集扩展(friend_enemy)	100
3. 堆(binary)	101
4. 堆(mapped)	101
5. 矩形切割	102
6. 线段树	103
7. 线段树扩展	105
8. 线段树应用	107
9. 子段和	108
10. 子阵和	108
十三. 其他	109
1. 分数	
2. 矩阵	
3. 日期	
4. 线性方程组(gauss)	
5. 线性相关	
十四. 应用	
1. joseph	
2. N 皇后构造解	
3. 布尔母函数	
4. 第 k 元素	119
5. 幻方构造	
6. 模式匹配(kmp)	
7. 逆序对数	
8. 字符串最小表示	
9. 最长公共单调子序列	
10. 最长子序列	
11. 最大子串匹配	
12. 最大子段和	
13. 最大子阵和	125

```
//求阶乘最后非零位,复杂度 O(nlogn)
//返回该位,n 以字符串方式传入
#include <string.h>
#define MAXN 10000
int lastdigit(char* buf){
    const int mod[20] = \{1,1,2,6,4,2,2,4,2,8,4,4,8,4,6,8,8,6,8,2\};
    int len=strlen(buf),a[MAXN],i,c,ret=1;
    if (len==1)
        return mod[buf[0]-'0'];
    for (i=0;i<len;i++)
        a[i]=buf[len-1-i]-'0';
    for (;len;len=!a[len-1])
        ret=ret*mod[a[1]%2*10+a[0]]%5;
        for (c=0,i=len-1;i>=0;i--)
            c=c*10+a[i],a[i]=c/5,c%=5;
    }
   return ret+ret%2*5;
}
                              2. 模线性方程(组)
#ifdef WIN32
typedef __int64 i64;
#else
typedef long long i64;
#endif
//扩展 Euclid 求解 gcd(a,b)=ax+by
int ext_gcd(int a,int b,int& x,int& y){
    int t,ret;
    if (!b){
        x=1,y=0;
        return a;
    }
    ret=ext\_gcd(b,a\%b,x,y);
    t=x,x=y,y=t-a/b*y;
   return ret;
}
//计算 m^a, O(loga), 本身没什么用, 注意这个按位处理的方法:-P
int exponent(int m,int a){
   int ret=1;
    for (;a;a>>=1,m*=m)
        if (a&1)
            ret*=m;
```

```
return ret;
}
//计算幂取模 a^b mod n, O(logb)
int modular_exponent(int a,int b,int n){ //a^b mod n
    int ret=1;
    for (;b;b>>=1,a=(int)((i64)a)*a%n)
        if (b&1)
            ret=(int)((i64)ret)*a%n;
    return ret;
}
//求解模线性方程 ax=b (mod n)
//返回解的个数,解保存在 sol[]中
//要求 n>0,解的范围 0..n-1
int modular_linear(int a,int b,int n,int* sol){
    int d,e,x,y,i;
    d=ext\_gcd(a,n,x,y);
   if (b%d)
        return 0;
    e=(x*(b/d)%n+n)%n;
    for (i=0;i<d;i++)
        sol[i]=(e+i*(n/d))%n;
    return d;
}
//求解模线性方程组(中国余数定理)
// x = b[0] \pmod{w[0]}
// x = b[1] \pmod{w[1]}
// ...
// x = b[k-1] \pmod{w[k-1]}
//要求 w[i]>0,w[i]与 w[j]互质,解的范围 1..n,n=w[0]*w[1]*...*w[k-1]
int modular_linear_system(int b[],int w[],int k){
    int d,x,y,a=0,m,n=1,i;
    for (i=0;i<k;i++)
        n*=w[i];
    for (i=0;i< k;i++)
        m=n/w[i];
        d=ext\_gcd(w[i],m,x,y);
        a=(a+y*m*b[i])%n;
    }
    return (a+n)%n;
}
```

3. 素数表

```
//用素数表判定素数,先调用 initprime
int plist[10000],pcount=0;
int prime(int n){
    int i;
    if ((n!=2\&\&!(n\%2))||(n!=3\&\&!(n\%3))||(n!=5\&\&!(n\%5))||(n!=7\&\&!(n\%7)))
        return 0;
    for (i=0;plist[i]*plist[i]<=n;i++)
        if (!(n%plist[i]))
            return 0;
    return n>1;
}
void initprime(){
    int i;
    for (plist[pcount++]=2,i=3;i<50000;i++)
        if (prime(i))
            plist[pcount++]=i;
}
                        4. 素数随机判定(miller_rabin)
//miller rabin
//判断自然数 n 是否为素数
//time 越高失败概率越低,一般取 10 到 50
#include <stdlib.h>
#ifdef WIN32
typedef __int64 i64;
#else
typedef long long i64;
#endif
int modular_exponent(int a,int b,int n){ //a^b mod n
    int ret;
    for (;b;b>>=1,a=(int)((i64)a)*a%n)
        if (b&1)
            ret=(int)((i64)ret)*a\%n;
    return ret;
}
// Carmicheal number: 561,41041,825265,321197185
int miller_rabin(int n,int time=10){
    if
(n=-1||(n!-2\&\&!(n\%2))||(n!-3\&\&!(n\%3))||(n!-5\&\&!(n\%5))||(n!-7\&\&!(n\%7)))|
```

```
return 0;
    while (time--)
        if
(modular\_exponent(((rand()\&0x7fff<<16)+rand()\&0x7fff+rand()\&0x7fff)\%(n-1)+1,n)
-1,n)!=1)
            return 0;
    return 1;
}
                                 5. 质因数分解
//分解质因数
//prime_factor()传入 n, 返回不同质因数的个数
//f 存放质因数, nf 存放对应质因数的个数
//先调用 initprime(), 其中第二个 initprime()更快
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
#define MAXN 2001000
#define PSIZE 100000
int plist[PSIZE], pcount=0;
int prime(int n){
    int i;
    if ((n!=2\&\&!(n\%2))||(n!=3\&\&!(n\%3))||(n!=5\&\&!(n\%5))||(n!=7\&\&!(n\%7)))
        return 0;
    for (i=0;plist[i]*plist[i]<=n;++i)
        if (!(n%plist[i]))
            return 0;
    return n>1;
void initprime(){
    int i;
    for (plist[pcount++]=2,i=3;i<100000;++i)
        if (prime(i))
            plist[pcount++]=i;
int prime_factor(int n, int* f, int *nf) {
    int cnt = 0;
    int n2 = sqrt((double)n);
    for(int i = 0; n > 1 && plist[i] <= n2; ++i)
        if (n \% plist[i] == 0) {
            for (nf[cnt] = 0; n \% plist[i] == 0; ++nf[cnt], n /= plist[i]);
            f[cnt++] = plist[i];
```

```
}
   if (n > 1) nf[cnt] = 1, f[cnt++] = n;
   return cnt;
}
/*
//产生 MAXN 以内的所有素数
//note:2863311530 就是 101010101010101010101010101010
//给所有2的倍数赋初值
#include <cmath>
#include <iostream>
using namespace std;
#define MAXN 100000000
unsigned int plist[6000000],pcount;
unsigned int isprime[(MAXN>>5)+1];
#define setbitzero(a) (isprime[(a)>>5]&=(\sim(1<<((a)&31))))
#define setbitone(a) (isprime[(a)>>5]|=(1<<((a)&31)))
#define ISPRIME(a) (isprime[(a)>>5]&(1<<((a)&31)))
void initprime(){
    int i,j,m;
    int t=(MAXN>>5)+1;
    for(i=0;i<t;++i)isprime[i]=2863311530;
    plist[0]=2;setbitone(2);setbitzero(1);
    m=(int)sqrt(MAXN);
    for(pcount=1,i=3;i <= m;i+=2)
         if(ISPRIME(i))
             for(plist[pcount++]=i,j=i<<1;j<=MAXN;j+=i)
                  setbitzero(j);
    if(!(i\&1))++i;
    for(;i<=MAXN;i+=2)if(ISPRIME(i))plist[pcount++]=i;
}
                           6. 最大公约数欧拉函数
int gcd(int a,int b){
   return b?gcd(b,a%b):a;
}
inline int lcm(int a,int b){
    return a/gcd(a,b)*b;
}
//求 1..n-1 中与 n 互质的数的个数
int eular(int n){
```

二. 图论 匹配

1. 二分图最大匹配(hungary 邻接表形式)

```
//二分图最大匹配,hungary 算法,邻接表形式,复杂度 O(m*e)
//返回最大匹配数.传入二分图大小 m,n 和邻接表 list(只需一边)
//match1,match2 返回一个最大匹配,未匹配顶点 match 值为-1
#include <string.h>
#define MAXN 310
#define _clr(x) memset(x,0xff,sizeof(int)*MAXN)
struct edge_t{
   int from,to;
   edge_t* next;
};
int hungary(int m,int n,edge_t* list[],int* match1,int* match2){
    int s[MAXN],t[MAXN],p,q,ret=0,i,j,k;edge_t* e;
    for (\text{clr}(\text{match1}), \text{clr}(\text{match2}), i=0; i < m; \text{ret} + = (\text{match1}[i++] > = 0))
        for (_clr(t),s[p=q=0]=i;p<=q\&\&match1[i]<0;p++)
            for (e=list[k=s[p]];e\&&match1[i]<0;e=e->next)
                if (t[j=e->to]<0){
                    s[++q]=match2[j],t[j]=k;
                    if (s[q]<0)
                        for (p=j;p>=0;j=p)
                             match2[j]=k=t[j],p=match1[k],match1[k]=j;
                }
    return ret;
}
```

2. 二分图最大匹配(hungary 邻接表形式,邻接阵接口)

//二分图最大匹配,hungary 算法,邻接表形式,邻接阵接口,复杂度 O(m*e)s

```
//返回最大匹配数,传入二分图大小 m,n 和邻接阵
//match1,match2 返回一个最大匹配,未匹配顶点 match 值为-1
#include <string.h>
#include <vector>
#define MAXN 310
#define clr(x) memset(x,0xff,sizeof(int)*MAXN)
int hungary(int m,int n,int mat[][MAXN],int* match1,int* match2){
    int s[MAXN],t[MAXN],p,q,ret=0,i,j,k,r;
    vector<int> e[MAXN];
   //生成邻接表(只需一边)
    for(i=0;i< m;++i)
        for(j=0;j< n;++j)
            if (mat[i][j]) e[i].push_back(j);
    for (\text{clr}(\text{match1}), \text{clr}(\text{match2}), i=0; i < m; \text{ret} + = (\text{match1}[i++] > = 0))
        for (_clr(t),s[p=q=0]=i;p<=q\&&match1[i]<0;p++)
            for(r=0,k=s[p];r < e[k].size() \& match1[i] < 0;++r)
                if (t[j=e[k][r]]<0){
                    s[++q]=match2[j],t[j]=k;
                    if (s[q]<0)
                        for (p=j;p>=0;j=p)
                            match2[i]=k=t[i],p=match1[k],match1[k]=i;
                }
    return ret;
}
                   3. 二分图最大匹配(hungary 邻接阵形式)
//二分图最大匹配,hungary 算法,邻接阵形式,复杂度 O(m*m*n)
//返回最大匹配数,传入二分图大小 m,n 和邻接阵 mat,非零元素表示有边
//match1,match2 返回一个最大匹配,未匹配顶点 match 值为-1
#include <string.h>
#define MAXN 310
#define _clr(x) memset(x,0xff,sizeof(int)*MAXN)
int hungary(int m,int n,int mat[][MAXN],int* match1,int* match2){
    int s[MAXN],t[MAXN],p,q,ret=0,i,j,k;
    for (\text{clr}(\text{match1}), \text{clr}(\text{match2}), i=0; i < m; \text{ret} + = (\text{match1}[i++] > = 0))
        for (_{clr(t),s[p=q=0]=i;p < = q \& match1[i] < 0;p++)}
            for (k=s[p],j=0;j<n\&\&match1[i]<0;j++)
                if (mat[k][j]&&t[j]<0){
                    s[++q]=match2[j],t[j]=k;
                    if (s[q]<0)
                        for (p=j;p>=0;j=p)
```

```
match2[j]=k=t[j],p=match1[k],match1[k]=j;
               }
   return ret;
}
                  4. 二分图最大匹配(hungary 正向表形式)
//二分图最大匹配,hungary 算法,正向表形式,复杂度 O(m*e)
//返回最大匹配数,传入二分图大小 m,n 和正向表 list,buf(只需一边)
//match1,match2 返回一个最大匹配,未匹配顶点 match 值为-1
#include <string.h>
#define MAXN 310
#define _clr(x) memset(x,0xff,sizeof(int)*MAXN)
int hungary(int m,int n,int* list,int* buf,int* match1,int* match2){
   int s[MAXN],t[MAXN],p,q,ret=0,i,j,k,l;
   for (\operatorname{clr}(\operatorname{match1}), \operatorname{clr}(\operatorname{match2}), i=0; i < m; ret + = (\operatorname{match1}[i++] > = 0))
       for (_clr(t),s[p=q=0]=i;p<=q\&\&match1[i]<0;p++)
           for (l=list[k=s[p]]; l< list[k+1] & match 1[i] < 0; l++)
               if (t[j=buf[1]]<0)
                   s[++q]=match2[j],t[j]=k;
                   if (s[q]<0)
                       for (p=i;p>=0;i=p)
                           match2[j]=k=t[j],p=match1[k],match1[k]=j;
               }
   return ret;
}
              5. 二分图最佳匹配(kuhn_munkras 邻接阵形式)
//二分图最佳匹配,kuhn munkras 算法,邻接阵形式,复杂度 O(m*m*n)
//返回最佳匹配值,传入二分图大小 m,n 和邻接阵 mat,表示权值
//match1,match2 返回一个最佳匹配,未匹配顶点 match 值为-1
//一定注意 m<=n,否则循环无法终止
//最小权匹配可将权值取相反数
#include <string.h>
#define MAXN 310
#define inf 1000000000
#define _clr(x) memset(x,0xff,sizeof(int)*n)
int kuhn_munkras(int m,int n,int mat[][MAXN],int* match1,int* match2){
   int s[MAXN],t[MAXN],11[MAXN],12[MAXN],p,q,ret=0,i,j,k;
   for (i=0;i< m;i++)
       for (11[i]=-\inf_{j=0}; j< n; j++)
           11[i]=mat[i][j]>11[i]?mat[i][j]:11[i];
   for (i=0;i< n;12[i++]=0);
```

```
for (\_clr(match1),\_clr(match2),i=0;i< m;i++){
        for (_clr(t),s[p=q=0]=i;p<=q\&&match1[i]<0;p++)
            for (k=s[p],j=0;j<n\&\&match1[i]<0;j++)
                if (11[k]+12[j]==mat[k][j]&&t[j]<0){
                    s[++q]=match2[j],t[j]=k;
                    if (s[q]<0)
                        for (p=j;p>=0;j=p)
                            match2[j]=k=t[j],p=match1[k],match1[k]=j;
        if (match1[i]<0){
            for (i--,p=inf,k=0;k<=q;k++)
                for (j=0; j< n; j++)
                    if (t[i]<0\&\&11[s[k]]+12[i]-mat[s[k]][i]<p)
                        p=11[s[k]]+12[j]-mat[s[k]][j];
            for (j=0;j< n;l2[j]+=t[j]<0?0:p,j++);
            for (k=0;k<=q;11[s[k++]]-=p);
        }
    }
    for (i=0;i<m;i++)
        ret+=mat[i][match1[i]];
   return ret;
}
                         6. 一般图匹配(邻接表形式)
//一般图最大匹配,邻接表形式,复杂度 O(n*e)
//返回匹配顶点对数,match 返回匹配,未匹配顶点 match 值为-1
//传入图的顶点数 n 和邻接表 list
#define MAXN 100
struct edge t{
   int from,to;
    edge_t* next;
};
int aug(int n,edge_t* list[],int* match,int* v,int now){
   int t,ret=0;edge_t* e;
    v[now]=1;
   for (e=list[now];e;e=e->next)
        if (!v[t=e->to])
            if (match[t]<0)
                match[now]=t,match[t]=now,ret=1;
            else{
                v[t]=1;
                if (aug(n,list,match,v,match[t]))
                    match[now]=t,match[t]=now,ret=1;
```

```
v[t]=0;
            }
           if (ret)
               break;
        }
    v[now]=0;
    return ret;
}
int graph_match(int n,edge_t* list[],int* match){
    int v[MAXN],i,j;
    for (i=0;i< n;i++)
    v[i]=0,match[i]=-1;
   for (i=0,j=n;i<n&&j>=2;)
        if (match[i]<0&&aug(n,list,match,v,i))
           i=0, j=2;
       else
           i++:
    for (i=j=0;i< n;i++)
       j+=(match[i]>=0);
   return j/2;
}
                   7. 一般图匹配(邻接表形式,邻接阵接口)
//一般图最大匹配,邻接表形式,复杂度 O(n*e)
//返回匹配顶点对数,match 返回匹配,未匹配顶点 match 值为-1
//传入图的顶点数 n 和邻接表 list
#include <vector>
#define MAXN 100
int aug(int n,vector<int> list[],int* match,int* v,int now){
   int t,ret=0,r;
   v[now]=1;
// for (e=list[now];e;e=e->next)
   for (r=0;r<list[now].size();++r)</pre>
        if (!v[t=list[now][r]]){
           if (match[t]<0)
                match[now]=t,match[t]=now,ret=1;
            else{
               v[t]=1;
               if (aug(n,list,match,v,match[t]))
                    match[now]=t,match[t]=now,ret=1;
               v[t]=0;
            }
```

```
if (ret)
               break;
        }
    v[now]=0;
   return ret;
}
int graph_match(int n,int mat[][MAXN],int* match){
    int v[MAXN],i,j;
    vector<int> list[MAXN];
   for (i=0;i<n;i++)
        for (j=0; j< n; j++)
           if (mat[i][j]) list[i].push_back(j);
    for (i=0;i<n;i++)
    v[i]=0,match[i]=-1;
    for (i=0,j=n;i<n\&\&j>=2;)
        if (match[i]<0&&aug(n,list,match,v,i))
           i=0, j=2;
        else
           i++;
   for (i=j=0;i< n;i++)
       j+=(match[i]>=0);
   return j/2;
}
                         8. 一般图匹配(邻接阵形式)
//一般图最大匹配,邻接阵形式,复杂度 O(n^3)
//返回匹配顶点对数,match 返回匹配,未匹配顶点 match 值为-1
//传入图的顶点数 n 和邻接阵 mat
#define MAXN 100
int aug(int n,int mat[][MAXN],int* match,int* v,int now){
   int i,ret=0;
    v[now]=1;
   for (i=0;i<n;i++)
        if (!v[i]&&mat[now][i]){
           if (match[i]<0)
                match[now]=i,match[i]=now,ret=1;
            else{
               v[i]=1;
               if (aug(n,mat,match,v,match[i]))
                   match[now]=i,match[i]=now,ret=1;
               v[i]=0;
            }
```

```
if (ret)
               break;
   v[now]=0;
   return ret;
}
int graph_match(int n,int mat[][MAXN],int* match){
   int v[MAXN],i,j;
   for (i=0;i<n;i++)
   v[i]=0,match[i]=-1;
   for (i=0,j=n;i<n\&\&j>=2;)
       if (match[i]<0&&aug(n,mat,match,v,i))
           i=0, j=2;
       else
           i++:
   for (i=j=0;i< n;i++)
       j+=(match[i]>=0);
   return j/2;
}
                         9. 一般图匹配(正向表形式)
//一般图最大匹配,正向表形式,复杂度 O(n*e)
//返回匹配顶点对数,match 返回匹配,未匹配顶点 match 值为-1
//传入图的顶点数 n 和正向表 list,buf
#define MAXN 100
int aug(int n,int* list,int* buf,int* match,int* v,int now){
   int i,t,ret=0;
   v[now]=1;
   for (i=list[now];i<list[now+1];i++)
       if (!v[t=buf[i]]){
           if (match[t]<0)
               match[now]=t,match[t]=now,ret=1;
           else{
               v[t]=1;
               if (aug(n,list,buf,match,v,match[t]))
                   match[now]=t,match[t]=now,ret=1;
               v[t]=0;
           }
           if (ret)
               break;
   v[now]=0;
```

```
return ret;
}

int graph_match(int n,int* list,int* buf,int* match){
    int v[MAXN],i,j;
    for (i=0;i<n;i++)
      v[i]=0,match[i]=-1;
    for (i=0,j=n;i<n&&j>=2;)
      if (match[i]<0&&aug(n,list,buf,match,v,i))
            i=0,j-=2;
      else
            i++;
    for (i=j=0;i<n;i++)
            j+=(match[i]>=0);
    return j/2;
}
```

三.图论_生成树

1. 最小生成树(kruskal 邻接表形式)

```
//无向图最小生成树,kruskal 算法,邻接表形式,复杂度 O(mlogm)
//返回最小生成树的长度,传入图的大小 n 和邻接表 list
//可更改边权的类型,edge[][2]返回树的构造,用边集表示
//如果图不连通,则对各连通分支构造最小生成树,返回总长度
#include <string.h>
#define MAXN 200
#define inf 1000000000
typedef double elem_t;
struct edge_t{
   int from,to;
   elem_t len;
   edge_t* next;
};
#define _ufind_run(x) for(;p[t=x];x=p[x],p[t]=(p[x]?p[x]:x))
#define _run_both _ufind_run(i);_ufind_run(j)
struct ufind{
   int p[MAXN],t;
   void init(){memset(p,0,sizeof(p));}
   void set_friend(int i,int j){_run_both;p[i]=(i==j?0:j);}
   int is_friend(int i,int j){_run_both;return i==j&&i;}
};
```

```
\#define \_cp(a,b) ((a).len<(b).len)
struct heap_t{int a,b;elem_t len;};
struct minheap{
    heap_t h[MAXN*MAXN];
   int n,p,c;
    void init(){n=0;}
    void ins(heap_t e){
       for (p=++n;p>1&\&\_cp(e,h[p>>1]);h[p]=h[p>>1],p>>=1);
        h[p]=e;
    }
   int del(heap_t& e){
        if (!n) return 0;
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[p]=h[c],p=c,c< n\&\&\_cp(h[c+1],h[c]))
<=1);
        h[p]=h[n--]; return 1;
    }
};
elem_t kruskal(int n,edge_t* list[],int edge[][2]){
    ufind u;minheap h;
   edge t* t;heap t e;
   elem_t ret=0;int i,m=0;
    u.init(),h.init();
    for (i=0;i<n;i++)
        for (t=list[i];t;t=t->next)
           if (i < t > to)
               e.a=i,e.b=t->to,e.len=t->len,h.ins(e);
    while (m< n-1 \&\& h.del(e))
        if (!u.is_friend(e.a+1,e.b+1))
            edge[m][0]=e.a,edge[m][1]=e.b,ret+=e.len,u.set\_friend(e.a+1,e.b+1);
    return ret;
}
                     2. 最小生成树(kruskal 正向表形式)
//无向图最小生成树,kruskal 算法,正向表形式,复杂度 O(mlogm)
//返回最小生成树的长度,传入图的大小 n 和正向表 list,buf
//可更改边权的类型,edge[][2]返回树的构造,用边集表示
//如果图不连通,则对各连通分支构造最小生成树,返回总长度
#include <string.h>
#define MAXN 200
#define inf 1000000000
typedef double elem_t;
```

```
struct edge_t{
    int to;
    elem_t len;
};
#define \_ufind\_run(x) for(;p[t=x];x=p[x],p[t]=(p[x]?p[x]:x))
#define _run_both _ufind_run(i);_ufind_run(j)
struct ufind{
    int p[MAXN],t;
    void init(){memset(p,0,sizeof(p));}
    void set_friend(int i,int j){_run_both;p[i]=(i==j?0:j);}
    int is_friend(int i,int j){_run_both;return i==j&&i;}
};
\#define \_cp(a,b) ((a).len<(b).len)
struct heap_t{int a,b;elem_t len;};
struct minheap{
    heap_t h[MAXN*MAXN];
    int n,p,c;
    void init(){n=0;}
    void ins(heap_t e){
         for (p=++n;p>1&\&\_cp(e,h[p>>1]);h[p]=h[p>>1],p>>=1);
         h[p]=e;
    }
    int del(heap_t& e){
         if (!n) return 0;
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[p]=h[c],p=c,c< n\&\&\_cp(h[c+1],h[c]))
<=1);
         h[p]=h[n--]; return 1;
    }
};
elem_t kruskal(int n,int* list,edge_t* buf,int edge[][2]){
    ufind u;minheap h;
    heap_t e;elem_t ret=0;
    int i,j,m=0;
    u.init(),h.init();
    for (i=0;i<n;i++)
         for (j=list[i];j<list[i+1];j++)
             if (i<buf[j].to)
                  e.a=i,e.b=buf[j].to,e.len=buf[j].len,h.ins(e);
    while (m< n-1&&h.del(e))
         if (!u.is friend(e.a+1,e.b+1))
```

```
edge[m][0]=e.a,edge[m][1]=e.b,ret+=e.len,u.set_friend(e.a+1,e.b+1);
   return ret:
}
```

3. 最小生成树(prim+binary_heap 邻接表形式)

```
//无向图最小生成树,prim 算法+二分堆,邻接表形式,复杂度 O(mlogm)
//返回最小生成树的长度,传入图的大小 n 和邻接表 list
//可更改边权的类型,pre[]返回树的构造,用父结点表示,根节点(第一个)pre 值为-1
//必须保证图的连通的!
#define MAXN 200
#define inf 1000000000
typedef double elem_t;
struct edge_t{
    int from,to;
    elem t len;
    edge_t* next;
};
#define _cp(a,b) ((a).d<(b).d)
struct heap_t{elem_t d;int v;};
struct heap{
    heap_t h[MAXN*MAXN];
    int n,p,c;
    void init()\{n=0;\}
    void ins(heap_t e){
        for \ (p \! = \! + \! + \! n; \! p \! > \! 1 \& \&\_cp(e, \! h[p \! > \! 1]); \! h[p] \! = \! h[p \! > \! 1], \! p \! > \! = \! 1);
        h[p]=e;
    }
    int del(heap_t& e){
        if (!n) return 0;
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[p]=h[c],p=c,c< n\&\&\_cp(h[c+1],h[c]))
<=1);
        h[p]=h[n--];return 1;
    }
};
elem_t prim(int n,edge_t* list[],int* pre){
    heap h;
    elem_t min[MAXN],ret=0;
    edge_t* t;heap_t e;
    int v[MAXN],i;
    for (i=0;i<n;i++)
        min[i]=inf,v[i]=0,pre[i]=-1;
```

```
h.init();e.v=0,e.d=0,h.ins(e);
   while (h.del(e))
       if (!v[e.v])
           for (v[e.v]=1,ret+=e.d,t=list[e.v];t;t=t->next)
               if (!v[t->to]\&\&t->len<min[t->to])
                   pre[t->to]=t->from,min[e.v=t->to]=e.d=t->len,h.ins(e);
   return ret;
}
               4. 最小生成树(prim+binary_heap 正向表形式)
//无向图最小生成树,prim 算法+二分堆,正向表形式,复杂度 O(mlogm)
//返回最小生成树的长度,传入图的大小 n 和正向表 list,buf
//可更改边权的类型,pre[]返回树的构造,用父结点表示,根节点(第一个)pre 值为-1
//必须保证图的连通的!
#define MAXN 200
#define inf 1000000000
typedef double elem_t;
struct edge_t{
   int to;
   elem t len;
};
\#define \_cp(a,b) ((a).d < (b).d)
struct heap_t{elem_t d;int v;};
struct heap{
   heap_t h[MAXN*MAXN];
   int n,p,c;
   void init()\{n=0;\}
   void ins(heap t e){
       for (p=++n;p>1&\&\_cp(e,h[p>>1]);h[p]=h[p>>1],p>>=1);
       h[p]=e;
    }
   int del(heap_t& e){
       if (!n) return 0;
       for
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[p]=h[c],p=c,c< n\&\&\_cp(h[c+1],h[c]))
<=1);
       h[p]=h[n--]; return 1;
    }
};
elem_t prim(int n,int* list,edge_t* buf,int* pre){
   heap h;heap_t e;
   elem_t min[MAXN],ret=0;
```

```
int v[MAXN],i,j;
   for (i=0;i<n;i++)
       min[i]=inf,v[i]=0,pre[i]=-1;
   h.init();e.v=0,e.d=0,h.ins(e);
   while (h.del(e))
       if (!v[i=e.v])
           for (v[i]=1,ret+=e.d,j=list[i];j<list[i+1];j++)
               if (!v[buf[j].to]&&buf[j].len<min[buf[j].to])</pre>
                   pre[buf[i].to]=i,min[e.v=buf[i].to]=e.d=buf[i].len,h.ins(e);
   return ret;
}
              5. 最小生成树(prim+mapped_heap 邻接表形式)
//无向图最小生成树,prim 算法+映射二分堆,邻接表形式,复杂度 O(mlogn)
//返回最小生成树的长度,传入图的大小 n 和邻接表 list
//可更改边权的类型,pre[]返回树的构造,用父结点表示,根节点(第一个)pre 值为-1
//必须保证图的连通的!
#define MAXN 200
#define inf 1000000000
typedef double elem_t;
struct edge_t{
   int from,to;
   elem_t len;
   edge_t* next;
};
#define _cp(a,b) ((a)<(b))
struct heap{
   elem_t h[MAXN+1];
   int ind[MAXN+1],map[MAXN+1],n,p,c;
   void init()\{n=0;\}
   void ins(int i,elem_t e){
(p=++n;p>1&\&\_cp(e,h[p>>1]);h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
       h[map[ind[p]=i]=p]=e;
   int del(int i,elem_t& e){
       i=map[i];if (i<1||i>n) return 0;
       for (e=h[p=i];p>1;h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
(c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind[c]]=p]=h
[c],p=c,c<<=1);
       h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
```

}

```
int delmin(int& i,elem_t& e){
       if (n<1) return 0; i=ind[1];
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c<n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind])
[c]=p=h[c],p=c,c<<=1);
       h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
   }
};
elem_t prim(int n,edge_t* list[],int* pre){
   heap h;
   elem_t min[MAXN],ret=0,e;
   edge_t* t;
   int v[MAXN],i;
   for (h.init(),i=0;i< n;i++)
       min[i]=(i?inf:0),v[i]=0,pre[i]=-1,h.ins(i,min[i]);
   while (h.delmin(i,e))
       for (v[i]=1,ret+=e,t=list[i];t;t=t->next)
           if (!v[t->to]\&\&t->len<min[t->to])
               pre[t->to]=t->from,h.del(t->to,e),h.ins(t->to,min[t->to]=t->len);
   return ret;
}
              6. 最小生成树(prim+mapped_heap 正向表形式)
//无向图最小生成树,prim 算法+映射二分堆,正向表形式,复杂度 O(mlogn)
//返回最小生成树的长度,传入图的大小 n 和正向表 list,buf
//可更改边权的类型,pre[]返回树的构造,用父结点表示,根节点(第一个)pre 值为-1
//必须保证图的连通的!
#define MAXN 200
#define inf 1000000000
typedef double elem t;
struct edge_t{
   int to;
   elem_t len;
};
\#define \_cp(a,b)((a)<(b))
struct heap{
   elem_t h[MAXN+1];
   int ind[MAXN+1],map[MAXN+1],n,p,c;
   void init(){n=0;}
   void ins(int i,elem_t e){
       for
(p=++n;p>1&\&\_cp(e,h[p>>1]);h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
```

```
h[map[ind[p]=i]=p]=e;
    }
   int del(int i,elem_t& e){
       i=map[i];if (i<1||i>n) return 0;
       for (e=h[p=i];p>1;h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
(c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind[c]]=p]=h
[c],p=c,c<<=1);
       h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
   int delmin(int& i,elem t& e){
       if (n<1) return 0; i=ind[1];
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c<n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind])
[c]=p=h[c],p=c,c<<=1);
       h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
    }
};
elem_t prim(int n,int* list,edge_t* buf,int* pre){
   heap h;
   elem_t min[MAXN],ret=0,e;
   int v[MAXN],i,j;
   for (h.init(),i=0;i< n;i++)
       min[i]=(i?inf:0),v[i]=0,pre[i]=-1,h.ins(i,min[i]);
   while (h.delmin(i,e))
       for (v[i]=1,ret+=e,j=list[i];j< list[i+1];j++)
           if (!v[buf[j].to]&&buf[j].len<min[buf[j].to])</pre>
   pre[buf[i].to]=i,h.del(buf[i].to,e),h.ins(buf[i].to,min[buf[i].to]=buf[i].len);
   return ret;
}
                      7. 最小生成树(prim 邻接阵形式)
//无向图最小生成树,prim 算法,邻接阵形式,复杂度 O(n^2)
//返回最小生成树的长度,传入图的大小 n 和邻接阵 mat,不相邻点边权 inf
//可更改边权的类型,pre[]返回树的构造,用父结点表示,根节点(第一个)pre 值为-1
//必须保证图的连通的!
#define MAXN 200
#define inf 1000000000
typedef double elem_t;
elem_t prim(int n,elem_t mat[][MAXN],int* pre){
   elem_t min[MAXN],ret=0;
```

```
int v[MAXN],i,j,k;
   for (i=0;i< n;i++)
       min[i]=inf,v[i]=0,pre[i]=-1;
   for (\min[j=0]=0; j< n; j++)
       for (k=-1,i=0;i< n;i++)
           if (!v[i]&&(k==-1||min[i]< min[k]))
       for (v[k]=1,ret+=min[k],i=0;i< n;i++)
           if (!v[i]&&mat[k][i]<min[i])
               min[i]=mat[pre[i]=k][i];
    }
   return ret;
}
                        8. 最小树形图(邻接阵形式)
//多源最小树形图,edmonds 算法,邻接阵形式,复杂度 O(n^3)
//返回最小生成树的长度,构造失败返回负值
//传入图的大小 n 和邻接阵 mat,不相邻点边权 inf
//可更改边权的类型,pre[]返回树的构造,用父结点表示
//传入时 pre[]数组清零,用-1 标出源点
#include <string.h>
#define MAXN 120
#define inf 1000000000
typedef int elem t;
elem_t edmonds(int n,elem_t mat[][MAXN*2],int* pre){
   elem t ret=0;
   int c[MAXN*2][MAXN*2],l[MAXN*2],p[MAXN*2],m=n,t,i,j,k;
   for (i=0;i< n;l[i]=i,i++);
   do{
       memset(c,0,sizeof(c)),memset(p,0xff,sizeof(p));
       for (t=m,i=0;i< m;c[i][i]=1,i++);
       for (i=0;i< t;i++)
           if (l[i]==i\&\&pre[i]!=-1){
               for (j=0; j< m; j++)
                   if
(l[j]==j\&\&i!=j\&\&mat[j][i]<inf\&\&(p[i]==-1||mat[j][i]<mat[p[i]][i]))
                       p[i]=j;
               if ((pre[i]=p[i])==-1)
                   return -1;
               if (c[i][p[i]]){
                   for (j=0;j<=m;mat[j][m]=mat[m][j]=inf,j++);
                   for (k=i;l[k]!=m;l[k]=m,k=p[k])
                       for (j=0;j< m;j++)
```

```
if (l[j]==j){
                                   if (mat[j][k]-mat[p[k]][k] < mat[j][m])
                                       mat[j][m]=mat[j][k]-mat[p[k]][k];
                                   if (mat[k][j]<mat[m][j])</pre>
                                       mat[m][j]=mat[k][j];
                     c[m][m]=1,l[m]=m,m++;
                 }
                 for (j=0;j< m;j++)
                     if (c[i][i])
                          for (k=p[i];k!=-1&\&l[k]==k;c[k][j]=1,k=p[k]);
             }
    }
    while (t<m);
    for (;m-->n;pre[k]=pre[m])
        for (i=0;i<m;i++)
            if (l[i]==m){
                 for (j=0;j< m;j++)
                     if (pre[j]==m&&mat[i][j]==mat[m][j])
                          pre[j]=i;
                 if (mat[pre[m]][m]==mat[pre[m]][i]-mat[pre[i]][i])
                      k=i;
    for (i=0;i<n;i++)
        if (pre[i]!=-1)
             ret+=mat[pre[i]][i];
    return ret;
}
```

四. 图论 网络流

1. 上下界最大流(邻接表形式)

```
//求上下界网络最大流,邻接表形式
//返回最大流量,-1 表示无可行流,flow 返回每条边的流量
//传入网络节点数 n,容量 mat,流量下界 bf,源点 source,汇点 sink
//MAXN 应比最大结点数多 2,无可行流返回-1 时 mat 未复原!
#define MAXN 100
#define inf 1000000000
int _max_flow(int n,int mat[][MAXN],int source,int sink,int flow[][MAXN]){
    int pre[MAXN],que[MAXN],p,q,t,i,j,r;
```

```
vector<int> e[MAXN];
    for (i=0;i< n;i++)
        for (e[i].clear(),j=0;j<n;j++)
             if (mat[i][j]) e[i].push_back(j),e[j].push_back(i);
    for (;;){
         for (i=0;i< n;pre[i++]=0);
         pre[t=source]=source+1,d[t]=inf;
         for (p=q=0;p <= q \& \&!pre[sink];t = que[p++])
             for (r=0;r<e[t].size();++r){
                  i=e[t][r];
                  if (!pre[i]&&(j=mat[t][i]-flow[t][i]))
                      pre[que[q++]=i]=t+1,d[i]=d[t]<j?d[t]:j;
                  else if (!pre[i]&&(j=flow[i][t]))
                      pre[que[q++]=i]=-t-1,d[i]=d[t]<j?d[t]:j;
             }
         if (!pre[sink]) break;
         for (i=sink;i!=source;)
             if (pre[i]>0)
                  flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
             else
                  flow[i][-pre[i]-1]-=d[sink], i=-pre[i]-1;
    for (j=i=0;i< n;j+=flow[source][i++]);
    return j;
}
int limit_max_flow(int n,int mat[][MAXN],int bf[][MAXN],int source,int sink,int
flow[][MAXN]){
    int i,j,sk,ks;
    if (source==sink) return inf;
    for (mat[n][n+1]=mat[n+1][n]=mat[n][n]=mat[n+1][n+1]=i=0;i< n;i++)
         for (mat[n][i]=mat[i][n]=mat[n+1][i]=mat[i][n+1]=j=0; j< n; j++)
             mat[i][j] = bf[i][j], mat[n][i] + bf[j][i], mat[i][n+1] + bf[i][j];
    sk=mat[source][sink],ks=mat[sink][source],mat[source][sink]=mat[sink][source]
=inf:
    for (i=0;i< n+2;i++)
         for (j=0;j< n+2;flow[i][j++]=0);
    _{\text{max}_{\text{flow}}(n+2,\text{mat,n,n+1,flow})};
    for (i=0;i<n;i++)
         if (flow[n][i]<mat[n][i]) return -1;
    flow[source][sink]=flow[sink][source]=0,mat[source][sink]=sk,mat[sink][source]
=ks;
    _max_flow(n,mat,source,sink,flow);
    for (i=0;i< n;i++)
         for (j=0;j< n;j++)
```

```
mat[i][j]+=bf[i][j],flow[i][j]+=bf[i][j];
    for (j=i=0;i< n;j+=flow[source][i++]);
    return j;
}
                         2. 上下界最大流(邻接阵形式)
//求上下界网络最大流,邻接阵形式
//返回最大流量.-1 表示无可行流.flow 返回每条边的流量
//传入网络节点数 n,容量 mat,流量下界 bf,源点 source,汇点 sink
//MAXN 应比最大结点数多 2,无可行流返回-1 时 mat 未复原!
#define MAXN 100
#define inf 1000000000
void _max_flow(int n,int mat[][MAXN],int source,int sink,int flow[][MAXN]){
    int pre[MAXN],que[MAXN],d[MAXN],p,q,t,i,j;
    for (;;){
        for (i=0;i< n;pre[i++]=0);
        pre[t=source]=source+1,d[t]=inf;
        for (p=q=0;p <= q & !pre[sink];t = que[p++])
            for (i=0;i< n;i++)
                if (!pre[i]&&j=mat[t][i]-flow[t][i])
                    pre[que[q++]=i]=t+1,d[i]=d[t]<j?d[t]:j;
                else if (!pre[i]&&j=flow[i][t])
                    pre[que[q++]=i]=-t-1,d[i]=d[t]<j?d[t]:j;
        if (!pre[sink]) break;
        for (i=sink;i!=source;)
            if (pre[i]>0)
                flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
            else
                flow[i][-pre[i]-1]-=d[sink], i=-pre[i]-1;
    }
}
int limit_max_flow(int n,int mat[][MAXN],int bf[][MAXN],int source,int sink,int
flow[][MAXN]){
   int i,j,sk,ks;
   if (source==sink) return inf;
    for \ (mat[n][n+1] = mat[n+1][n] = mat[n][n] = mat[n+1][n+1] = i = 0; i < n; i + +)
        for (mat[n][i]=mat[i][n]=mat[n+1][i]=mat[i][n+1]=j=0;j< n;j++)
            mat[i][j] = bf[i][j], mat[n][i] + bf[j][i], mat[i][n+1] + bf[i][j];
    sk=mat[source][sink],ks=mat[sink][source],mat[source][sink]=mat[sink][source]
=inf;
    for (i=0;i< n+2;i++)
```

```
for (j=0; j< n+2; flow[i][j++]=0);
    \max flow(n+2,mat,n,n+1,flow);
   for (i=0;i<n;i++)
        if (flow[n][i]<mat[n][i]) return -1;
    flow[source][sink]=flow[sink][source]=0,mat[source][sink]=sk,mat[sink][source]
=ks;
    _max_flow(n,mat,source,sink,flow);
   for (i=0;i<n;i++)
        for (j=0;j< n;j++)
            mat[i][j]+=bf[i][j],flow[i][j]+=bf[i][j];
   for (j=i=0;i< n;j+=flow[source][i++]);
   return j;
}
                        3. 上下界最小流(邻接表形式)
//求上下界网络最小流,邻接阵形式
//返回最大流量,-1 表示无可行流,flow 返回每条边的流量
//传入网络节点数 n,容量 mat,流量下界 bf,源点 source,汇点 sink
//MAXN 应比最大结点数多 2,无可行流返回-1 时 mat 未复原!
#define MAXN 100
#define inf 1000000000
int max flow(int n,int mat[][MAXN],int source,int sink,int flow[][MAXN]){
    int pre[MAXN],que[MAXN],d[MAXN],p,q,t,i,j,r;
    vector<int> e[MAXN];
   for (i=0;i<n;i++)
        for (e[i].clear(),j=0;j< n;j++)
           if (mat[i][j]) e[i].push_back(j),e[j].push_back(i);
    for (;;){
        for (i=0;i< n;pre[i++]=0);
        pre[t=source]=source+1,d[t]=inf;
        for (p=q=0;p <= q & !pre[sink];t = que[p++])
            for (r=0;r<e[t].size();++r){
                i=e[t][r];
                if (!pre[i]&&(j=mat[t][i]-flow[t][i]))
                    pre[que[q++]=i]=t+1,d[i]=d[t]<j?d[t]:j;
                else if (!pre[i]\&\&(j=flow[i][t]))
                    pre[que[q++]=i]=-t-1,d[i]=d[t]<j?d[t]:j;
        if (!pre[sink]) break;
        for (i=sink;i!=source;)
           if (pre[i]>0)
                flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
```

```
else
               flow[i][-pre[i]-1]-=d[sink],i=-pre[i]-1;
   for (j=i=0;i< n;j+=flow[source][i++]);
   return j;
int limit_min_flow(int n,int mat[][MAXN],int bf[][MAXN],int source,int sink,int
flow[][MAXN]){
    int i,j,sk,ks;
   if (source==sink) return inf;
    for (mat[n][n+1]=mat[n+1][n]=mat[n][n]=mat[n+1][n+1]=i=0;i< n;i++)
        for (mat[n][i]=mat[i][n]=mat[n+1][i]=mat[i][n+1]=j=0;j< n;j++)
            mat[i][j] = bf[i][j], mat[n][i] + bf[j][i], mat[i][n+1] + bf[i][j];
    sk=mat[source][sink],ks=mat[sink][source],mat[source][sink]=mat[sink][source]
=inf;
    for (i=0;i< n+2;i++)
        for (j=0; j< n+2; flow[i][j++]=0);
    \max flow(n+2,mat,n,n+1,flow);
   for (i=0;i<n;i++)
        if (flow[n][i]<mat[n][i]) return -1;</pre>
    flow[source][sink]=flow[sink][source]=0,mat[source][sink]=sk,mat[sink][source]
=ks;
    _max_flow(n,mat,sink,source,flow);
   for (i=0;i< n;i++)
        for (j=0;j< n;j++)
           mat[i][j]+=bf[i][j],flow[i][j]+=bf[i][j];
    for (j=i=0;i< n;j+=flow[source][i++]);
   return j;
}
                        4. 上下界最小流(邻接阵形式)
//求上下界网络最小流,邻接阵形式
//返回最大流量,-1 表示无可行流,flow 返回每条边的流量
//传入网络节点数 n,容量 mat,流量下界 bf,源点 source,汇点 sink
//MAXN 应比最大结点数多 2,无可行流返回-1 时 mat 未复原!
#define MAXN 100
#define inf 1000000000
void _max_flow(int n,int mat[][MAXN],int source,int sink,int flow[][MAXN]){
    int pre[MAXN],que[MAXN],d[MAXN],p,q,t,i,j;
    for (;;){
        for (i=0;i< n;pre[i++]=0);
        pre[t=source]=source+1,d[t]=inf;
```

```
for (p=q=0;p <= q & !pre[sink];t = que[p++])
            for (i=0;i<n;i++)
                if (!pre[i]&&j=mat[t][i]-flow[t][i])
                     pre[que[q++]=i]=t+1,d[i]=d[t]<i?d[t]:i;
                else if (!pre[i]&&j=flow[i][t])
                     pre[que[q++]=i]=-t-1,d[i]=d[t]<j?d[t]:j;
        if (!pre[sink]) break;
        for (i=sink;i!=source;)
            if (pre[i]>0)
                flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
            else
                flow[i][-pre[i]-1]-=d[sink],i=-pre[i]-1;
    }
}
int limit min flow(int n,int mat[][MAXN],int bf[][MAXN],int source,int sink,int
flow[][MAXN]){
    int i,j,sk,ks;
    if (source==sink) return inf;
    for (mat[n][n+1]=mat[n+1][n]=mat[n][n]=mat[n+1][n+1]=i=0;i< n;i++)
        for (mat[n][i]=mat[i][n]=mat[n+1][i]=mat[i][n+1]=j=0; j< n; j++)
            mat[i][j]=bf[i][j], mat[n][i]+=bf[j][i], mat[i][n+1]+=bf[i][j];
    sk=mat[source][sink],ks=mat[sink][source],mat[source][sink]=mat[sink][source]
=inf;
    for (i=0;i<n+2;i++)
        for (j=0; j< n+2; flow[i][j++]=0);
    _{\text{max\_flow}(n+2,\text{mat,n,n+1,flow})};
    for (i=0;i<n;i++)
        if (flow[n][i]<mat[n][i]) return -1;
    flow[source][sink]=flow[sink][source]=0,mat[source][sink]=sk,mat[sink][source]
=ks;
    max flow(n,mat,sink,source,flow);
    for (i=0;i<n;i++)
        for (j=0;j< n;j++)
            mat[i][j]+=bf[i][j],flow[i][j]+=bf[i][j];
    for (j=i=0;i< n;j+=flow[source][i++]);
    return j;
}
                             5. 最大流(邻接表形式)
//求网络最大流,邻接表形式
//返回最大流量,flow 返回每条边的流量
//传入网络节点数 n.容量 mat.邻接表 list,源点 source,汇点 sink
//list[i](vector<int>)存放所有以 i 相邻的点,包括反向边!!!
```

```
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],vector<int> list[],int source,int sink,int
flow[][MAXN]){
    int pre[MAXN],que[MAXN],d[MAXN],p,q,t,i,j,r;
   if (source==sink) return inf;
   for (i=0;i< n;i++)
        for (j=0;j< n;flow[i][j++]=0);
    for (;;){
        for (i=0;i< n;pre[i++]=0);
        pre[t=source]=source+1,d[t]=inf;
        for (p=q=0;p <= q & !pre[sink];t = que[p++])
            for (r=0;r<list[t].size();++r){
                i=list[t][r];
                if (!pre[i]&&j=mat[t][i]-flow[t][i])
                    pre[que[q++]=i]=t+1,d[i]=d[t]<j?d[t]:j;
                else if (!pre[i]&&j=flow[i][t])
                    pre[que[q++]=i]=-t-1,d[i]=d[t]< j?d[t]:j;
            }
        if (!pre[sink]) break;
        for (i=sink;i!=source;)
            if (pre[i]>0)
                flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
            else
                flow[i][-pre[i]-1]-=d[sink],i=-pre[i]-1;
   for (j=i=0;i< n;j+=flow[source][i++]);
    return j;
}
                      6. 最大流(邻接表形式,邻接阵接口)
//求网络最大流,邻接表形式
//返回最大流量,flow 返回每条边的流量
//传入网络节点数 n,容量 mat,源点 source,汇点 sink
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],int source,int sink,int flow[][MAXN]){
    int pre[MAXN],que[MAXN],d[MAXN],p,q,t,i,j,r;
    vector<int> e[MAXN];
    if (source==sink) return inf;
```

```
for (i=0;i< n;i++)
        for (j=0;j< n;flow[i][j++]=0);
    //e[i]存放所有以 i 相邻的点,包括反向边!!!
    for (i=0;i<n;i++)
        for (e[i].clear(),j=0;j< n;j++)
            if (mat[i][j]) e[i].push_back(j),e[j].push_back(i);
    for (;;){
        for (i=0;i< n;pre[i++]=0);
        pre[t=source]=source+1,d[t]=inf;
        for (p=q=0;p\leq q\&\&!pre[sink];t=que[p++])
            for (r=0;r<e[t].size();++r){
                i=e[t][r];
                if (!pre[i]&&(j=mat[t][i]-flow[t][i]))
                    pre[que[q++]=i]=t+1,d[i]=d[t]<j?d[t]:j;
                else if (!pre[i]&&(j=flow[i][t]))
                    pre[que[q++]=i]=-t-1,d[i]=d[t]<j?d[t]:j;
        if (!pre[sink]) break;
        for (i=sink;i!=source;)
            if (pre[i]>0)
                flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
            else
                flow[i][-pre[i]-1]-=d[sink],i=-pre[i]-1;
    for (j=i=0;i< n;j+=flow[source][i++]);
    return j;
}
                             7. 最大流(邻接阵形式)
//求网络最大流,邻接阵形式
//返回最大流量,flow 返回每条边的流量
//传入网络节点数 n,容量 mat,源点 source,汇点 sink
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],int source,int sink,int flow[][MAXN]){
    int pre[MAXN],que[MAXN],d[MAXN],p,q,t,i,j;
    if (source==sink) return inf;
    for (i=0;i< n;i++)
        for (j=0;j< n;flow[i][j++]=0);
    for (;;){
        for (i=0;i< n;pre[i++]=0);
        pre[t=source]=source+1,d[t]=inf;
```

```
for (p=q=0;p\leq q\&\&!pre[sink];t=que[p++])
            for (i=0;i< n;i++)
                if (!pre[i]&&j=mat[t][i]-flow[t][i])
                     pre[que[q++]=i]=t+1,d[i]=d[t]<j?d[t]:j;
                else if (!pre[i]&&j=flow[i][t])
                     pre[que[q++]=i]=-t-1,d[i]=d[t]<j?d[t]:j;
        if (!pre[sink]) break;
        for (i=sink;i!=source;)
            if (pre[i]>0)
                flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
            else
                flow[i][-pre[i]-1]-=d[sink],i=-pre[i]-1;
    for (j=i=0;i< n;j+=flow[source][i++]);
    return j;
}
                         8. 最大流无流量(邻接阵形式)
//求网络最大流,邻接阵形式
//返回最大流量
//传入网络节点数 n,容量 mat,源点 source,汇点 sink
//注意 mat 矩阵被修改
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],int source,int sink){
    int v[MAXN],c[MAXN],p[MAXN],ret=0,i,j;
    for (;;){
        for (i=0;i< n;i++)
            v[i]=c[i]=0;
        for (c[source]=inf;;){
            for (j=-1,i=0;i< n;i++)
                if (!v[i]\&\&c[i]\&\&(j=-1||c[i]>c[j]))
                    j=i;
            if (j<0) return ret;
            if (j==sink) break;
            for (v[i]=1,i=0;i< n;i++)
                if (mat[j][i]>c[i]&&c[j]>c[i])
                     c[i]=mat[j][i]<c[j]?mat[j][i]:c[j],p[i]=j;
        }
        for (ret+=j=c[i=sink];i!=source;i=p[i])
            mat[p[i]][i]-=j,mat[i][p[i]]+=j;
    }
```

```
}
```

9. 最小费用最大流(邻接阵形式)

```
//求网络最小费用最大流,邻接阵形式
//返回最大流量,flow 返回每条边的流量,netcost 返回总费用
//传入网络节点数 n.容量 mat,单位费用 cost,源点 source,汇点 sink
#define MAXN 100
#define inf 1000000000
int min_cost_max_flow(int n,int mat[][MAXN],int cost[][MAXN],int source,int
sink,int flow[][MAXN],int& netcost){
    int pre[MAXN],min[MAXN],d[MAXN],i,j,t,tag;
   if (source==sink) return inf;
    for (i=0;i<n;i++)
        for (j=0;j< n;flow[i][j++]=0);
   for (netcost=0;;){
        for (i=0;i<n;i++)
            pre[i]=0,min[i]=inf;
        //通过 bellman ford 寻找最短路,即最小费用可改进路
        for (pre[source]=source+1,min[source]=0,d[source]=inf,tag=1;tag;)
            for (tag=t=0;t< n;t++)
               if (d[t])
                    for (i=0;i< n;i++)
                       if (j=mat[t][i]-flow[t][i]&&min[t]+cost[t][i]<min[i])
    tag=1,min[i]=min[t]+cost[t][i],pre[i]=t+1,d[i]=d[t]<j?d[t]:j;
                                                                              if
                       else
(j=flow[i][t]\&\&min[t]<inf\&\&min[t]-cost[i][t]<min[i])
    tag=1,min[i]=min[t]-cost[i][t],pre[i]=-t-1,d[i]=d[t]<j?d[t]:j;
        if (!pre[sink])
                       break;
        for (netcost+=min[sink]*d[i=sink];i!=source;)
            if (pre[i]>0)
                flow[pre[i]-1][i]+=d[sink], i=pre[i]-1;
            else
               flow[i][-pre[i]-1]-=d[sink],i=-pre[i]-1;
   for (j=i=0;i< n;j+=flow[source][i++]);
   return j;
}
```

五. 图论 最短路径

1. 最短路径(单源 bellman_ford 邻接阵形式)

```
//单源最短路径,bellman_ford 算法,邻接阵形式,复杂度 O(n^3)
//求出源 s 到所有点的最短路经,传入图的大小 n 和邻接阵 mat
//返回到各点最短距离 min[]和路径 pre[],pre[i]记录 s 到 i 路径上 i 的父结
点,pre[s]=-1
//可更改路权类型,路权可为负,若图包含负环则求解失败,返回0
//优化:先删去负边使用 dijkstra 求出上界,加速迭代过程
#define MAXN 200
#define inf 1000000000
typedef int elem t;
int bellman_ford(int n,elem_t mat[][MAXN],int s,elem_t* min,int* pre){
   int v[MAXN],i,j,k,tag;
   for (i=0;i< n;i++)
       min[i]=inf,v[i]=0,pre[i]=-1;
   for (\min[s]=0, j=0; j< n; j++){
       for (k=-1,i=0;i< n;i++)
           if (!v[i]&&(k==-1||min[i]< min[k]))
              k=i:
       for (v[k]=1,i=0;i< n;i++)
           if (!v[i]\&\&mat[k][i] > = 0\&\&min[k] + mat[k][i] < min[i])
              min[i]=min[k]+mat[pre[i]=k][i];
   for (tag=1,j=0;tag\&\&j<=n;j++)
       for (tag=i=0;i< n;i++)
           for (k=0;k< n;k++)
              if (min[k]+mat[k][i]<min[i])</pre>
                  min[i]=min[k]+mat[pre[i]=k][i],tag=1;
   return j<=n;
}
```

2. 最短路径(单源 dijkstra_bfs 邻接表形式)

```
//单源最短路径,用于路权相等的情况,dijkstra 优化为 bfs,邻接表形式,复杂度 O(m) //求出源 s 到所有点的最短路经,传入图的大小 n 和邻接表 list,边权值 len //返回到各点最短距离 min[]和路径 pre[],pre[i]记录 s 到 i 路径上 i 的父结点,pre[s]=-1 //可更改路权类型,但必须非负且相等! #define MAXN 200 #define inf 10000000000 typedef int elem_t;
```

```
struct edge_t{
   int from.to:
   edge_t* next;
};
void dijkstra(int n,edge_t* list[],elem_t len,int s,elem_t* min,int* pre){
   edge t* t;
   int i,que[MAXN],f=0,r=0,p=1,l=1;
   for (i=0;i<n;i++)
       min[i]=inf;
   min[que[0]=s]=0,pre[s]=-1;
   for (;r \le f;l++,r=f+1,f=p-1)
       for (i=r;i<=f;i++)
           for (t=list[que[i]];t;t=t->next)
               if (\min[t->to]==\inf)
                   min[que[p++]=t->to]=len*l,pre[t->to]=que[i];
}
                 3. 最短路径(单源 dijkstra_bfs 正向表形式)
//单源最短路径,用于路权相等的情况,dijkstra 优化为 bfs,正向表形式,复杂度 O(m)
//求出源 s 到所有点的最短路经,传入图的大小 n 和正向表 list,buf,边权值 len
//返回到各点最短距离 min[]和路径 pre[].pre[i]记录 s 到 i 路径上 i 的父结
点,pre[s]=-1
//可更改路权类型,但必须非负且相等!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
void dijkstra(int n,int* list,int* buf,elem t len,int s,elem t* min,int* pre){
   int i,que[MAXN],f=0,r=0,p=1,l=1,t;
   for (i=0;i<n;i++)
       min[i]=inf;
   min[que[0]=s]=0,pre[s]=-1;
   for (;r \le f;l++,r=f+1,f=p-1)
       for (i=r;i<=f;i++)
           for (t=list[que[i]];t<list[que[i]+1];t++)</pre>
               if (min[buf[t]]==inf)
                   min[que[p++]=buf[t]]=len*l,pre[buf[t]]=que[i];
}
```

4. 最短路径(单源 dijkstra+binary_heap 邻接表形式)

//单源最短路径,dijkstra 算法+二分堆,邻接表形式,复杂度 O(mlogm) //求出源 s 到所有点的最短路经,传入图的大小 n 和邻接表 list //返回到各点最短距离 min[]和路径 pre[],pre[i]记录 s 到 i 路径上 i 的父结

```
点,pre[s]=-1
//可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
struct edge_t{
    int from,to;
    elem_t len;
    edge_t* next;
};
#define _{cp(a,b)}((a).d<(b).d)
struct heap_t{elem_t d;int v;};
struct heap{
    heap_t h[MAXN*MAXN];
    int n,p,c;
    void init(){n=0;}
    void ins(heap_t e){
        for (p=++n;p>1&\&\_cp(e,h[p>>1]);h[p]=h[p>>1],p>>=1);
        h[p]=e;
    }
    int del(heap_t& e){
        if (!n) return 0;
        for
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[p]=h[c],p=c,c< n\&\&\_cp(h[c+1],h[c]))
<=1);
        h[p]=h[n--];return 1;
    }
};
void dijkstra(int n,edge_t* list[],int s,elem_t* min,int* pre){
    heap h;
    edge_t* t;heap_t e;
    int v[MAXN],i;
    for (i=0;i<n;i++)
        min[i]=inf,v[i]=0,pre[i]=-1;
    h.init();min[e.v=s]=e.d=0,h.ins(e);
    while (h.del(e))
        if (!v[e.v])
             for (v[e.v]=1,t=list[e.v];t;t=t->next)
                 if (!v[t->to]&&min[t->from]+t->len<min[t->to])
    pre[t->to]=t->from,min[e.v=t->to]=e.d=min[t->from]+t->len,h.ins(e);
}
```

5. 最短路径(单源 dijkstra+binary_heap 正向表形式)

```
//单源最短路径,dijkstra 算法+二分堆,正向表形式,复杂度 O(mlogm)
//求出源 s 到所有点的最短路经,传入图的大小 n 和正向表 list,buf
//返回到各点最短距离 min[]和路径 pre[],pre[i]记录 s 到 i 路径上 i 的父结
点,pre[s]=-1
//可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
struct edge_t{
   int to;
   elem_t len;
};
\#define \_cp(a,b) ((a).d<(b).d)
struct heap_t{elem_t d;int v;};
struct heap{
    heap_t h[MAXN*MAXN];
   int n,p,c;
    void init(){n=0;}
    void ins(heap_t e){
        for (p=++n;p>1&\&\_cp(e,h[p>>1]);h[p]=h[p>>1],p>>=1);
        h[p]=e;
    }
   int del(heap_t& e){
        if (!n) return 0;
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[p]=h[c],p=c,c< n\&\&\_cp(h[c+1],h[c]))
<=1);
        h[p]=h[n--];return 1;
    }
};
void dijkstra(int n,int* list,edge_t* buf,int s,elem_t* min,int* pre){
    heap h;heap te;
    int v[MAXN],i,t,f;
   for (i=0;i<n;i++)
        min[i]=inf,v[i]=0,pre[i]=-1;
   h.init();min[e.v=s]=e.d=0,h.ins(e);
    while (h.del(e))
        if (!v[e.v])
           for (v[f=e.v]=1,t=list[f];t<list[f+1];t++)
                if (!v[buf[t].to]&&min[f]+buf[t].len<min[buf[t].to])
```

```
\label{eq:prebuf} \begin{split} & pre[buf[t].to] = f, min[e.v = buf[t].to] = e.d = min[f] + buf[t].len, h.ins(e); \\ & \rbrace \end{split}
```

6. 最短路径(单源 dijkstra+mapped_heap 邻接表形式)

```
//单源最短路径,dijkstra 算法+映射二分堆,邻接表形式,复杂度 O(mlogn)
//求出源 s 到所有点的最短路经.传入图的大小 n 和邻接表 list
//返回到各点最短距离 min[]和路径 pre[],pre[i]记录 s 到 i 路径上 i 的父结
点,pre[s]=-1
//可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
struct edge_t{
   int from,to;
   elem t len;
   edge_t* next;
};
\#define \_cp(a,b)((a)<(b))
struct heap{
   elem_t h[MAXN+1];
   int ind[MAXN+1],map[MAXN+1],n,p,c;
   void init(){n=0;}
   void ins(int i,elem t e){
       for
(p=++n;p>1&\&\_cp(e,h[p>>1]);h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
       h[map[ind[p]=i]=p]=e;
   }
   int del(int i,elem t& e){
       i=map[i];if (i<1||i>n) return 0;
       for (e=h[p=i];p>1;h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
       for
(c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind[c]]=p]=h
[c],p=c,c<<=1);
       h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
   int delmin(int& i,elem_t& e){
       if (n<1) return 0; i=ind[1];
       for
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind])
[c]=p=h[c],p=c,c<<=1);
       h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
   }
};
```

```
void dijkstra(int n,edge_t* list[],int s,elem_t* min,int* pre){
   heap h;
   edge_t* t;elem_t e;
   int v[MAXN],i;
   for (h.init(),i=0;i<n;i++)
       min[i]=((i==s)?0:inf),v[i]=0,pre[i]=-1,h.ins(i,min[i]);
   while (h.delmin(i,e))
       for (v[i]=1,t=list[i];t;t=t->next)
           if (!v[t->to]\&\&min[i]+t->len<min[t->to])
               pre[t->to]=i,h.del(t->to,e),min[t->to]=e=min[i]+t->len,h.ins(t->to,e);
}
           7. 最短路径(单源 dijkstra+mapped_heap 正向表形式)
//单源最短路径,dijkstra 算法+映射二分堆,正向表形式,复杂度 O(mlogn)
//求出源 s 到所有点的最短路经,传入图的大小 n 和正向表 list,buf
//返回到各点最短距离 min[]和路径 pre[],pre[i]记录 s 到 i 路径上 i 的父结
点,pre[s]=-1
//可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
struct edge_t{
   int to;
   elem_t len;
};
\#define \_cp(a,b)((a)<(b))
struct heap{
   elem_t h[MAXN+1];
   int ind[MAXN+1],map[MAXN+1],n,p,c;
   void init(){n=0;}
   void ins(int i,elem_t e){
(p=++n;p>1&\&\_cp(e,h[p>>1]);h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
       h[map[ind[p]=i]=p]=e;
   int del(int i,elem_t& e){
       i=map[i];if (i<1||i>n) return 0;
       for (e=h[p=i];p>1;h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
(c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind[c]]=p]=h
[c],p=c,c<<=1);
       h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
```

```
}
          int delmin(int& i,elem t& e){
                     if (n<1) return 0; i=ind[1];
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c<n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind])
[c]=p=h[c],p=c,c<<=1);
                     h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
          }
};
void dijkstra(int n,int* list,edge_t* buf,int s,elem_t* min,int* pre){
          heap h;elem te;
          int v[MAXN],i,t;
          for (h.init(),i=0;i< n;i++)
                     min[i]=((i==s)?0:inf),v[i]=0,pre[i]=-1,h.ins(i,min[i]);
          while (h.delmin(i,e))
                     for (v[i]=1,t=list[i];t<list[i+1];t++)
                               if (!v[buf[t].to]&&min[i]+buf[t].len<min[buf[t].to])
          pre[buf[t].to]=i,h.del(buf[t].to,e),min[buf[t].to]=e=min[i]+buf[t].len,h.ins(buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to]=t,h.del(buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t].to,e),min[buf[t
o,e);
                                                    8. 最短路径(单源 dijkstra 邻接阵形式)
//单源最短路径,dijkstra 算法,邻接阵形式,复杂度 O(n^2)
//求出源 s 到所有点的最短路经,传入图的顶点数 n,(有向)邻接矩阵 mat
//返回到各点最短距离 min[]和路径 pre[],pre[i]记录 s 到 i 路径上 i 的父结
点,pre[s]=-1
//可更改路权类型,但必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
void dijkstra(int n,elem_t mat[][MAXN],int s,elem_t* min,int* pre){
          int v[MAXN],i,j,k;
          for (i=0;i<n;i++)
                     min[i]=inf,v[i]=0,pre[i]=-1;
          for (\min[s]=0, j=0; j< n; j++){
                     for (k=-1,i=0;i< n;i++)
                               if (!v[i]&&(k==-1||min[i]<min[k]))
                                          k=i;
                     for (v[k]=1,i=0;i< n;i++)
                               if (!v[i]\&\&min[k]+mat[k][i]<min[i])
                                          min[i]=min[k]+mat[pre[i]=k][i];
```

```
}
}
              9. 最短路径(多源 floyd_warshall 邻接阵形式)
//多源最短路径,floyd_warshall 算法,复杂度 O(n^3)
//求出所有点对之间的最短路经,传入图的大小和邻接阵
//返回各点间最短距离 min[]和路径 pre[],pre[i][j]记录 i 到 j 最短路径上 j 的父结点
//可更改路权类型.路权必须非负!
#define MAXN 200
#define inf 1000000000
typedef int elem_t;
void
      floyd_warshall(int
                      n,elem_t mat[][MAXN],elem_t min[][MAXN],int
pre[][MAXN]){
   int i,j,k;
   for (i=0;i<n;i++)
      for (j=0;j< n;j++)
          min[i][j]=mat[i][j],pre[i][j]=(i==j)?-1:i;
   for (k=0;k< n;k++)
      for (i=0;i<n;i++)
          for (j=0; j< n; j++)
             if (min[i][k]+min[k][j]<min[i][j])
                 min[i][j]=min[i][k]+min[k][j],pre[i][j]=pre[k][j];
}
六. 图论_连通性
                   1. 无向图关键边(dfs 邻接阵形式)
//无向图的关键边,dfs 邻接阵形式,O(n^2)
//返回关键边条数,key[][2]返回边集
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
#define MAXN 100
void search(int n,int mat[][MAXN],int* dfn,int* low,int now,int& cnt,int key[][2]){
   for (low[now]=dfn[now], i=0; i< n; i++)
```

key[cnt][0]=i,key[cnt++][1]=now;

if (mat[now][i]){
 if (!dfn[i]){

dfn[i]=dfn[now]+1;

if (low[i]>dfn[now])

search(n,mat,dfn,low,i,cnt,key);

```
if (low[i]<low[now])</pre>
                    low[now]=low[i];
            else if (dfn[i]<dfn[now]-1&&dfn[i]<low[now])
               low[now]=lev[i];
        }
}
int key_edge(int n,int mat[][MAXN],int key[][2]){
   int ret=0,i,dfn[MAXN],low[MAXN];
   for (i=0;i< n;dfn[i++]=0);
    for (i=0;i<n;i++)
        if (!dfn[i])
            dfn[i]=1,bridge(n,mat,dfn,low,i,ret,key);
   return ret;
}
                      2. 无向图关键点(dfs 邻接阵形式)
//无向图的关键点,dfs 邻接阵形式,O(n^2)
//返回关键点个数,key[]返回点集
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
#define MAXN 110
void search(int n,int mat[][MAXN],int* dfn,int* low,int now,int& ret,int* key,int&
cnt,int root,int& rd,int* bb){
   int i;
   dfn[now]=low[now]=++cnt;
    for (i=0;i<n;i++)
        if (mat[now][i]){
           if (!dfn[i]){
                search(n,mat,dfn,low,i,ret,key,cnt,root,rd,bb);
               if (low[i]<low[now])</pre>
                    low[now]=low[i];
               if (low[i] > = dfn[now]) 
                    if (now!=root&&!bb[now])
                        key[ret++]=now,bb[now]=1;
                    else if(now==root)
                        rd++;
                }
            else if (dfn[i]<low[now])
               low[now]=dfn[i];
        }
}
```

```
int key_vertex(int n,int mat[][MAXN],int* key){
   int ret=0,i,cnt,rd,dfn[MAXN],low[MAXN],bb[MAXN];
   for (i=0;i< n;dfn[i++]=bb[i]=0);
   for (cnt=i=0;i< n;i++)
        if (!dfn[i]){
            rd=0:
            search(n,mat,dfn,low,i,ret,key,cnt,i,rd,bb);
            if (rd>1&&!bb[i])
                \text{key}[\text{ret}++]=i,\text{bb}[i]=1;
        }
   return ret;
}
                         3. 无向图块(bfs 邻接阵形式)
//无向图的块,dfs 邻接阵形式,O(n^2)
//每产生一个块调用 dummy
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
#define MAXN 100
#include <iostream.h>
void dummy(int n,int* a){
   for (int i=0;i< n;i++)
        cout<<a[i]<<' ';
   cout<<endl;
}
void search(int n,int mat[][MAXN],int* dfn,int* low,int now,int& cnt,int* st,int& sp){
    int i,m,a[MAXN];
   dfn[st[sp++]=now]=low[now]=++cnt;
   for (i=0;i<n;i++)
        if (mat[now][i]){
            if (!dfn[i]){
                search(n,mat,dfn,low,i,cnt,st,sp);
                if (low[i]<low[now])
                    low[now]=low[i];
                if (low[i]>=dfn[now]){
                    for (st[sp]=-1,a[0]=now,m=1;st[sp]!=i;a[m++]=st[--sp]);
                    dummy(m,a);
                }
            }
            else if (dfn[i]<low[now])
                low[now]=dfn[i];
        }
```

```
}
void block(int n,int mat[][MAXN]){
   int i,cnt,dfn[MAXN],low[MAXN],st[MAXN],sp=0;
   for (i=0;i< n;dfn[i++]=0);
   for (cnt=i=0;i< n;i++)
       if (!dfn[i])
           search(n,mat,dfn,low,i,cnt,st,sp);
}
                    4. 无向图连通分支(bfs 邻接阵形式)
//无向图连通分支,bfs 邻接阵形式,O(n^2)
//返回分支数,id 返回 1..分支数的值
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
#define MAXN 100
int find_components(int n,int mat[][MAXN],int* id){
   int ret,k,i,j,m;
   for (k=0;k< n;id[k++]=0);
   for (ret=k=0;k< n;k++)
       if (!id[k])
          for (id[k]=-1,ret++,m=1;m;)
              for (m=i=0;i< n;i++)
                  if (id[i]==-1)
                      for (m++,id[i]=ret,j=0;j< n;j++)
                         if (!id[j]&&mat[i][j])
                             id[i]=-1;
   return ret;
}
                    5. 无向图连通分支(dfs 邻接阵形式)
//无向图连通分支,dfs 邻接阵形式,O(n^2)
//返回分支数,id 返回 1..分支数的值
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
#define MAXN 100
void floodfill(int n,int mat[][MAXN],int* id,int now,int tag){
   for (id[now]=tag,i=0;i< n;i++)
       if (!id[i]&&mat[now][i])
           floodfill(n,mat,id,i,tag);
}
int find_components(int n,int mat[][MAXN],int* id){
```

```
int ret,i;
   for (i=0;i< n;id[i++]=0);
   for (ret=i=0;i<n;i++)
       if (!id[i])
           floodfill(n,mat,id,i,++ret);
   return ret;
}
                   6. 有向图强连通分支(bfs 邻接阵形式)
//有向图强连通分支,bfs 邻接阵形式,O(n^2)
//返回分支数,id 返回 1..分支数的值
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
#define MAXN 100
int find_components(int n,int mat[][MAXN],int* id){
   int ret=0,a[MAXN],b[MAXN],c[MAXN],d[MAXN],i,j,k,t;
   for (k=0;k< n;id[k++]=0);
   for (k=0;k< n;k++)
       if (!id[k]){
           for (i=0;i<n;i++)
               a[i]=b[i]=c[i]=d[i]=0;
           a[k]=b[k]=1;
           for (t=1;t;)
              for (t=i=0;i< n;i++)
                  if (a[i]&&!c[i])
                      for (c[i]=t=1,j=0;j< n;j++)
                          if (mat[i][j]&&!a[j])
                             a[j]=1;
                  if (b[i]&&!d[i])
                      for (d[i]=t=1,j=0;j< n;j++)
                          if (mat[j][i]&&!b[j])
                             b[i]=1;
           for (ret++,i=0;i<n;i++)
              if (a[i]&b[i])
                  id[i]=ret;
   return ret;
}
                   7. 有向图强连通分支(dfs 邻接阵形式)
//有向图强连通分支,dfs 邻接阵形式,O(n^2)
//返回分支数,id 返回 1..分支数的值
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
```

```
void search(int n,int mat[][MAXN],int* dfn,int* low,int now,int& cnt,int& tag,int*
id,int* st,int& sp){
   int i,j;
    dfn[st[sp++]=now]=low[now]=++cnt;
    for (i=0;i<n;i++)
        if (mat[now][i]){
            if (!dfn[i]){
                ssearch(n,mat,dfn,low,i,cnt,tag,id,st,sp);
                if (low[i]<low[now])</pre>
                    low[now]=low[i];
            else if (dfn[i]<dfn[now]){
                for (j=0;j < sp\&\&st[j]!=i;j++);
                if (j<cnt&&dfn[i]<low[now])
                    low[now]=dfn[i];
            }
    if (low[now]==dfn[now])
        for (tag++;st[sp]!=now;id[st[--sp]]=tag);
}
int find_components(int n,int mat[][MAXN],int* id){
    int ret=0,i,cnt,sp,st[MAXN],dfn[MAXN],low[MAXN];
    for (i=0;i< n;dfn[i++]=0);
    for (sp=cnt=i=0;i< n;i++)
        if (!dfn[i])
            search(n,mat,dfn,low,i,cnt,ret,id,st,sp);
    return ret;
}
                       8. 有向图最小点基(邻接阵形式)
//有向图最小点基,邻接阵形式,O(n^2)
//返回电集大小和点集
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
//需要调用强连通分支
#define MAXN 100
int base_vertex(int n,int mat[][MAXN],int* sets){
    int ret=0,id[MAXN],v[MAXN],i,j;
   j=find_components(n,mat,id);
    for (i=0;i< j;v[i++]=1);
    for (i=0;i< n;i++)
```

七. 图论 应用

1.欧拉回路(邻接阵形式)

```
//求欧拉回路或欧拉路,邻接阵形式,复杂度 O(n^2)
//返回路径长度,path 返回路径(有向图时得到的是反向路径)
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
//可以有自环与重边,分为无向图和有向图
#define MAXN 100
void find_path_u(int n,int mat[][MAXN],int now,int& step,int* path){
   int i:
   for (i=n-1;i>=0;i--)
       while (mat[now][i]){
           mat[now][i]--,mat[i][now]--;
           find_path_u(n,mat,i,step,path);
   path[step++]=now;
}
void find_path_d(int n,int mat[][MAXN],int now,int& step,int* path){
   int i;
   for (i=n-1;i>=0;i--)
       while (mat[now][i]){
           mat[now][i]--;
           find_path_d(n,mat,i,step,path);
   path[step++]=now;
}
int euclid_path(int n,int mat[][MAXN],int start,int* path){
   int ret=0;
   find_path_u(n,mat,start,ret,path);
```

```
find_path_d(n,mat,start,ret,path);
    return ret:
}
                               2. 前序表转化
//将用边表示的树转化为前序表示的树
//传入节点数 n 和邻接表 list[],邻接表必须是双向的,会在函数中释放
//pre[]返回前序表,map[]返回前序表中的节点到原来节点的映射
#define MAXN 10000
struct node{
    int to;
    node* next;
};
void prenode(int n,node* list[],int* pre,int* map,int* v,int now,int last,int& id){
    node* t;
   int p=id++;
   for (v[map[p]=now]=1,pre[p]=last;list[now];){
       t=list[now],list[now]=t->next;
       if (!v[t->to])
           prenode(n,list,pre,map,v,t->to,p,id);
    }
}
void makepre(int n,node* list[],int* pre,int* map){
    int v[MAXN],id=0,i;
   for (i=0;i< n;v[i++]=0);
   prenode(n,list,pre,map,v,0,-1,id);
}
                              3. 树的优化算法
//最大顶点独立集
int max_node_independent(int n,int* pre,int* set){
   int c[MAXN],i,ret=0;
   for (i=0;i<n;i++)
       c[i]=set[i]=0;
    for (i=n-1;i>=0;i--)
       if (!c[i]){
           set[i]=1;
           if (pre[i]!=-1)
               c[pre[i]]=1;
           ret++;
    return ret;
```

```
}
//最大边独立集
int max_edge_independent(int n,int* pre,int* set){
    int c[MAXN],i,ret=0;
    for (i=0;i<n;i++)
        c[i]=set[i]=0;
    for (i=n-1;i>=0;i--)
        if (!c[i]&&pre[i]!=-1&&!c[pre[i]]){
             set[i]=1;
             c[pre[i]]=1;
             ret++;
         }
    return ret;
}
//最小顶点覆盖集
int min_node_cover(int n,int* pre,int* set){
    int c[MAXN],i,ret=0;
    for (i=0;i<n;i++)
        c[i]=set[i]=0;
    for (i=n-1;i>=0;i--)
        if (!c[i]\&\&pre[i]!=-1\&\&!c[pre[i]]){
             set[i]=1;
             c[pre[i]]=1;
             ret++;
         }
    return ret;
}
//最小顶点支配集
int min_node_dominant(int n,int* pre,int* set){
    int c[MAXN],i,ret=0;
    for (i=0;i<n;i++)
        c[i]=set[i]=0;
    for (i=n-1;i>=0;i--)
        if (!c[i]\&\&(pre[i]=-1||!set[pre[i]])){
             if (pre[i]!=-1){
                 set[pre[i]]=1;
                 c[pre[i]]=1;
                 if (pre[pre[i]]!=-1)
                     c[pre[pre[i]]]=1;
             }
             else
```

```
set[i]=1;
           ret++;
        }
   return ret;
}
                          4. 拓扑排序(邻接阵形式).
//拓扑排序,邻接阵形式,复杂度 O(n^2)
//如果无法完成排序,返回 0,否则返回 1,ret 返回有序点列
//传入图的大小 n 和邻接阵 mat,不相邻点边权 0
#define MAXN 100
int toposort(int n,int mat[][MAXN],int* ret){
    int d[MAXN],i,j,k;
    for (i=0;i<n;i++)
        for (d[i]=j=0;j< n;d[i]+=mat[j++][i]);
   for (k=0;k< n;ret[k++]=i){
        for (i=0;d[i]\&\&i< n;i++);
        if(i==n)
            return 0;
        for (d[i]=-1,j=0;j< n;j++)
           d[i]-=mat[i][i];
    }
   return 1;
}
                                5. 最佳边割集
//最佳边割集
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],int source,int sink){
   int v[MAXN],c[MAXN],p[MAXN],ret=0,i,j;
    for (;;){
       for (i=0;i< n;i++)
            v[i]=c[i]=0;
       for (c[source]=inf;;){
            for (j=-1, i=0; i< n; i++)
               if (!v[i]\&\&c[i]\&\&(j==-1||c[i]>c[j]))
                   j=i;
            if (j<0) return ret;
           if (j==sink) break;
            for (v[j]=1,i=0;i< n;i++)
               if (mat[j][i]>c[i]&&c[j]>c[i])
```

```
c[i]=mat[j][i]<c[j]?mat[j][i]:c[j],p[i]=j;
        for (ret+=j=c[i=sink];i!=source;i=p[i])
            mat[p[i]][i]-=j,mat[i][p[i]]+=j;
    }
}
int best_edge_cut(int n,int mat[][MAXN],int source,int sink,int set[][2],int&
mincost){
    int m0[MAXN][MAXN],m[MAXN][MAXN],i,j,k,l,ret=0,last;
    if (source==sink)
        return -1;
    for (i=0;i<n;i++)
        for (j=0; j< n; j++)
            m0[i][j]=mat[i][j];
    for (i=0;i<n;i++)
        for (j=0;j< n;j++)
            m[i][j]=m0[i][j];
    mincost=last=max_flow(n,m,source,sink);
    for (k=0;k<n&&last;k++)
        for (l=0;l<n&&last;l++)
            if (m0[k][1]){
                for (i=0;i<n+n;i++)
                     for (j=0;j< n+n;j++)
                         m[i][j]=m0[i][j];
                 m[k][1]=0;
                if (max_flow(n,m,source,sink)==last-mat[k][l]){
                     set[ret][0]=k;
                     set[ret++][1]=l;
                     m0[k][1]=0;
                     last-=mat[k][1];
                 }
    return ret;
}
                                6. 最佳顶点割集
//最佳顶点割集
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],int source,int sink){
    int v[MAXN],c[MAXN],p[MAXN],ret=0,i,j;
    for (;;){
```

```
for (i=0;i< n;i++)
             v[i]=c[i]=0;
        for (c[source]=inf;;){
             for (i=-1,i=0;i< n;i++)
                 if (!v[i]\&\&c[i]\&\&(j==-1||c[i]>c[j]))
                     j=i;
             if (j<0) return ret;
             if (j==sink) break;
             for (v[j]=1,i=0;i< n;i++)
                 if (mat[j][i]>c[i]&&c[j]>c[i])
                      c[i]=mat[j][i]<c[j]?mat[j][i]:c[j],p[i]=j;
        for (ret+=j=c[i=sink];i!=source;i=p[i])
             mat[p[i]][i]-=j,mat[i][p[i]]+=j;
    }
}
int best_vertex_cut(int n,int mat[][MAXN],int* cost,int source,int sink,int* set,int&
mincost){
    int m0[MAXN][MAXN],m[MAXN][MAXN],i,j,k,ret=0,last;
    if (source==sink||mat[source][sink])
        return -1;
    for (i=0;i<n+n;i++)
        for (j=0;j< n+n;j++)
             m0[i][j]=0;
    for (i=0;i<n;i++)
        for (j=0; j< n; j++)
             if (mat[i][j])
                 m0[i][n+j]=inf;
    for (i=0;i<n;i++)
        m0[n+i][i]=cost[i];
    for (i=0;i<n+n;i++)
        for (j=0;j< n+n;j++)
             m[i][j]=m0[i][j];
    mincost=last=max_flow(n+n,m,source,n+sink);
    for (k=0;k<n&&last;k++)
        if (k!=source&&k!=sink){
             for (i=0;i<n+n;i++)
                 for (j=0;j< n+n;j++)
                      m[i][j]=m0[i][j];
             m[n+k][k]=0;
             if (max_flow(n+n,m,source,n+sink)==last-cost[k]){
                 set[ret++]=k;
                 m0[n+k][k]=0;
```

```
last-=cost[k];
             }
    return ret;
}
                                   7. 最小边割集
//最小边割集
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],int source,int sink){
    int v[MAXN],c[MAXN],p[MAXN],ret=0,i,j;
    for (;;){
        for (i=0;i< n;i++)
             v[i]=c[i]=0;
        for (c[source]=inf;;){
             for (j=-1,i=0;i<n;i++)
                 if (!v[i]\&\&c[i]\&\&(j==-1||c[i]>c[j]))
                     j=i;
            if (j<0) return ret;
            if (j==sink) break;
             for (v[j]=1,i=0;i< n;i++)
                 if (mat[j][i]>c[i]&&c[j]>c[i])
                     c[i]=mat[j][i]<c[j]?mat[j][i]:c[j],p[i]=j;
        for (ret+=j=c[i=sink];i!=source;i=p[i])
             mat[p[i]][i]-=j,mat[i][p[i]]+=j;
    }
}
int min_edge_cut(int n,int mat[][MAXN],int source,int sink,int set[][2]){
    int m0[MAXN][MAXN],m[MAXN][MAXN],i,j,k,l,ret=0,last;
    if (source==sink)
        return -1;
    for (i=0;i< n;i++)
        for (j=0;j< n;j++)
             m0[i][j]=(mat[i][j]!=0);
    for (i=0;i<n;i++)
        for (j=0;j< n;j++)
            m[i][j]=m0[i][j];
    last=max_flow(n,m,source,sink);
    for (k=0;k<n&&last;k++)
        for (l=0;l<n&&last;l++)
```

```
if (m0[k][1]){
                 for (i=0;i<n+n;i++)
                     for (j=0;j< n+n;j++)
                         m[i][j]=m0[i][j];
                 m[k][1]=0;
                 if (max_flow(n,m,source,sink)<last){
                     set[ret][0]=k;
                     set[ret++][1]=l;
                     m0[k][1]=0;
                     last--;
                 }
    return ret;
}
                                 8. 最小顶点割集
//最小顶点割集
#define MAXN 100
#define inf 1000000000
int max_flow(int n,int mat[][MAXN],int source,int sink){
    int v[MAXN],c[MAXN],p[MAXN],ret=0,i,j;
    for (;;){
        for (i=0;i<n;i++)
             v[i]=c[i]=0;
        for (c[source]=inf;;){
             for (j=-1, i=0; i< n; i++)
                 if (!v[i]\&\&c[i]\&\&(j==-1||c[i]>c[j]))
                     j=i;
            if (j<0) return ret;
            if (j==sink) break;
             for (v[j]=1,i=0;i< n;i++)
                 if (mat[j][i]>c[i]&&c[j]>c[i])
                     c[i]=mat[j][i]<c[j]?mat[j][i]:c[j],p[i]=j;
        }
        for (ret+=j=c[i=sink];i!=source;i=p[i])
             mat[p[i]][i]=j,mat[i][p[i]]+=j;
    }
}
int min_vertex_cut(int n,int mat[][MAXN],int source,int sink,int* set){
    int m0[MAXN][MAXN],m[MAXN][MAXN],i,j,k,ret=0,last;
    if (source==sink||mat[source][sink])
        return -1;
```

```
for (i=0;i<n+n;i++)
        for (j=0;j< n+n;j++)
            m0[i][j]=0;
    for (i=0;i<n;i++)
        for (j=0;j< n;j++)
            if (mat[i][j])
                m0[i][n+j]=inf;
    for (i=0;i< n;i++)
        m0[n+i][i]=1;
    for (i=0;i<n+n;i++)
        for (j=0;j< n+n;j++)
            m[i][j]=m0[i][j];
    last=max_flow(n+n,m,source,n+sink);
    for (k=0;k<n&&last;k++)
        if (k!=source&&k!=sink){
            for (i=0;i< n+n;i++)
                for (j=0;j< n+n;j++)
                     m[i][j]=m0[i][j];
            m[n+k][k]=0;
            if (max_flow(n+n,m,source,n+sink)<last){</pre>
                set[ret++]=k;
                m0[n+k][k]=0;
                last--:
            }
    return ret;
}
                                9. 最小路径覆盖
//最小路径覆盖,O(n^3)
//求解最小的路径覆盖图中所有点,有向图无向图均适用
//注意此问题等价二分图最大匹配,可以用邻接表或正向表减小复杂度
//返回最小路径条数,pre 返回前指针(起点-1),next 返回后指针(终点-1)
#include <string.h>
#define MAXN 310
#define clr(x) memset(x,0xff,sizeof(int)*n)
int hungary(int n,int mat[][MAXN],int* match1,int* match2){
    int s[MAXN],t[MAXN],p,q,ret=0,i,j,k;
    for (\operatorname{clr}(\operatorname{match1}), \operatorname{clr}(\operatorname{match2}), i=0; i< n; ret + = (\operatorname{match1}[i++]>=0))
        for (_{clr(t),s[p=q=0]=i;p <= q \& match1[i] < 0;p++)}
            for (k=s[p],j=0;j<n\&\&match1[i]<0;j++)
                if (mat[k][j]\&\&t[j]<0){
                     s[++q]=match2[j],t[j]=k;
```

八. 图论_NP 搜索

1. 最大团(n 小于 64)(faster)

```
/**
 * WishingBone's ACM/ICPC Routine Library
 * maximum clique solver
#include <vector>
using std::vector;
// clique solver calculates both size and consitution of maximum clique
// uses bit operation to accelerate searching
// graph size limit is 63, the graph should be undirected
// can optimize to calculate on each component, and sort on vertex degrees
// can be used to solve maximum independent set
class clique {
public:
     static const long long ONE = 1;
     static const long long MASK = (1 \ll 21) - 1;
     char* bits;
     int n, size, cmax[63];
     long long mask[63], cons;
     // initiate lookup table
     clique() {
          bits = new char[1 \ll 21];
          bits[0] = 0;
          for (int i = 1; i < 1 << 21; ++i) bits[i] = bits[i >> 1] + (i & 1);
     }
```

```
~clique() {
          delete bits:
     // search routine
     bool search(int step, int size, long long more, long long con);
     // solve maximum clique and return size
     int sizeClique(vector<vector<int>>& mat);
     // solve maximum clique and return constitution
     vector<int> consClique(vector<vector<int> >& mat);
};
// search routine
// step is node id, size is current solution, more is available mask, cons is
constitution mask
bool clique::search(int step, int size, long long more, long long cons) {
     if (step >= n) {
          // a new solution reached
          this->size = size:
          this->cons = cons;
          return true;
     }
     long long now = ONE << step;
     if ((now \& more) > 0) {
          long long next = more & mask[step];
          if (size + bits[next & MASK] + bits[(next >> 21) & MASK] + bits[next >>
42] >= this->size
                    && size + cmax[step] > this->size) {
               // the current node is in the clique
               if (search(step + 1, size + 1, next, cons | now)) return true;
          }
     }
     long long next = more & \simnow;
     if (size + bits[next & MASK] + bits[(next >> 21) & MASK] + bits[next >> 42]
> this->size) {
          // the current node is not in the clique
          if (search(step + 1, size, next, cons)) return true;
     return false;
}
// solve maximum clique and return size
int clique::sizeClique(vector<vector<int>>& mat) {
     n = mat.size();
     // generate mask vectors
```

```
for (int i = 0; i < n; ++i) {
          mask[i] = 0;
          for (int j = 0; j < n; ++j) if (mat[i][j] > 0) mask[i] |= ONE << j;
     }
     size = 0;
     for (int i = n - 1; i >= 0; --i) {
          search(i + 1, 1, mask[i], ONE << i);
          cmax[i] = size;
     }
     return size;
}
// solve maximum clique and return constitution
// calls sizeClique and restore cons
vector<int> clique::consClique(vector<vector<int> >& mat) {
     sizeClique(mat);
     vector<int> ret;
     for (int i = 0; i < n; ++i) if ((cons & (ONE << i)) > 0) ret.push_back(i);
     return ret;
}
                                      2. 最大团
//最大团
//返回最大团大小和一个方案,传入图的大小 n 和邻接阵 mat
//mat[i][j]为布尔量
#define MAXN 60
void clique(int n, int* u, int mat[][MAXN], int size, int& max, int& bb, int* res, int*
rr, int* c) {
    int i, j, vn, v[MAXN];
    if (n) {
        if (size + c[u[0]] \le max) return;
        for (i = 0; i < n + size - max && i < n; ++ i) {
             for (j = i + 1, vn = 0; j < n; ++ j)
                 if (mat[u[i]][u[j]])
                      v[vn ++] = u[j];
             rr[size] = u[i];
             clique(vn, v, mat, size + 1, max, bb, res, rr, c);
             if (bb) return;
         }
    } else if (size > max) {
        max = size;
        for (i = 0; i < size; ++ i)
```

```
res[i] = rr[i];
         bb = 1;
    }
}
int maxclique(int n, int mat[][MAXN], int *ret) {
    int max = 0, bb, c[MAXN], i, j;
    int vn, v[MAXN], rr[MAXN];
    for (c[i = n - 1] = 0; i >= 0; --i) {
         for (vn = 0, j = i + 1; j < n; ++ j)
             if (mat[i][j])
                  v[vn ++] = j;
         bb = 0;
         rr[0] = i;
         clique(vn, v, mat, 1, max, bb, ret, rr, c);
         c[i] = max;
    return max;
}
```

九. 组合

1. 排列组合生成

```
//gen_perm 产生字典序排列 P(n,m)
//gen_comb 产生字典序组合 C(n,m)
//gen_perm_swap 产生相邻位对换全排列 P(n,n)
//产生元素用 1..n 表示
//dummy 为产生后调用的函数,传入 a[]和 n,a[0]..a[n-1]为一次产生的结果
#define MAXN 100
int count:
#include <iostream.h>
void dummy(int* a,int n){
   int i;
   cout << count ++ << ": ";
   for (i=0;i< n-1;i++)
       cout<<a[i]<<' ';
   cout << a[n-1] << endl;
}
void _gen_perm(int* a,int n,int m,int l,int* temp,int* tag){
   int i;
```

```
if (l==m)
        dummy(temp,m);
    else
        for (i=0;i<n;i++)
            if (!tag[i]){
                 temp[1]=a[i],tag[i]=1;
                 _gen_perm(a,n,m,l+1,temp,tag);
                 tag[i]=0;
             }
}
void gen_perm(int n,int m){
    int a[MAXN], temp[MAXN], tag[MAXN] = \{0\}, i;
    for (i=0;i<n;i++)
        a[i]=i+1;
    _gen_perm(a,n,m,0,temp,tag);
}
void _gen_comb(int* a,int s,int e,int m,int& count,int* temp){
    int i;
    if (!m)
        dummy(temp,count);
    else
        for (i=s; i <= e-m+1; i++){
            temp[count++]=a[i];
            _gen_comb(a,i+1,e,m-1,count,temp);
            count--;
        }
}
void gen_comb(int n,int m){
    int a[MAXN],temp[MAXN],count=0,i;
    for (i=0;i<n;i++)
        a[i]=i+1;
    _gen_comb(a,0,n-1,m,count,temp);
}
void _gen_perm_swap(int* a,int n,int l,int* pos,int* dir){
    int i,p1,p2,t;
    if (l==n)
        dummy(a,n);
    else{
        _gen_perm_swap(a,n,l+1,pos,dir);
        for (i=0;i<1;i++)
```

```
p2=(p1=pos[1])+dir[1];
           t=a[p1],a[p1]=a[p2],a[p2]=t;
           pos[a[p1]-1]=p1,pos[a[p2]-1]=p2;
           _gen_perm_swap(a,n,l+1,pos,dir);
        }
        dir[1]=-dir[1];
    }
}
void gen_perm_swap(int n){
    int a[MAXN],pos[MAXN],dir[MAXN],i;
    for (i=0;i< n;i++)
        a[i]=i+1,pos[i]=i,dir[i]=-1;
    _gen_perm_swap(a,n,0,pos,dir);
}
                               2. 生成 gray 码
//生成 reflected gray code
//每次调用 gray 取得下一个码
//000...000 是第一个码,100...000 是最后一个码
void gray(int n,int *code){
   int t=0,i;
   for (i=0;i< n;t+=code[i++]);
   if (t&1)
        for (n--;!code[n];n--);
   code[n-1]=1-code[n-1];
}
                               3. 置换(polya)
//求置换的循环节,polya 原理
//perm[0..n-1]为 0..n-1 的一个置换(排列)
//返回置换最小周期,num 返回循环节个数
#define MAXN 1000
int gcd(int a,int b){
    return b?gcd(b,a%b):a;
}
int polya(int* perm,int n,int& num){
   int i,j,p,v[MAXN]=\{0\},ret=1;
   for (num=i=0;i<n;i++)
       if (!v[i]){
           for (num++,j=0,p=i;!v[p=perm[p]];j++)
               v[p]=1;
```

```
ret*=j/gcd(ret,j);
    return ret;
}
                                4. 字典序全排列
//字典序全排列与序号的转换
int perm2num(int n,int *p){
    int i,j,ret=0,k=1;
    for (i=n-2;i>=0;k*=n-(i--))
        for (j=i+1;j< n;j++)
            if (p[j] < p[i])
                ret+=k;
   return ret;
}
void num2perm(int n,int *p,int t){
    int i,j;
    for (i=n-1;i>=0;i--)
        p[i]=t\%(n-i),t/=n-i;
    for (i=n-1;i;i--)
        for (j=i-1;j>=0;j--)
            if (p[j] \leq p[i])
                p[i]++;
}
                                 5. 字典序组合
//字典序组合与序号的转换
//comb 为组合数 C(n,m),必要时换成大数,注意处理 C(n,m)=0|n<m
int comb(int n,int m){
    int ret=1,i;
    m=m<(n-m)?m:(n-m);
    for (i=n-m+1; i \le n; ret^* = (i++));
    for (i=1;i<=m;ret/=(i++));
    return m<0?0:ret;
}
int comb2num(int n,int m,int *c){
    int ret=comb(n,m),i;
    for (i=0;i<m;i++)
        ret-=comb(n-c[i],m-i);
   return ret;
}
```

```
void num2comb(int n,int m,int* c,int t){
    int i,j=1,k;
    for (i=0;i< m;c[i++]=j++)
        for (;t>(k=comb(n-j,m-i-1));t=k,j++);
}
                                   6. 组合公式
1. C(m,n)=C(m,m-n)
2. C(m,n)=C(m-1,n)+C(m-1,n-1)
derangement D(n) = n!(1 - 1/1! + 1/2! - 1/3! + ... + (-1)^n/n!)
                    = (n-1)(D(n-2) - D(n-1))
              Q(n) = D(n) + D(n-1)
求和公式,k = 1..n
1. sum( k ) = n(n+1)/2
2. sum(2k-1) = n^2
3. sum( k^2 ) = n(n+1)(2n+1)/6
4. sum( (2k-1)^2 ) = n(4n^2-1)/3
5. sum( k^3 ) = (n(n+1)/2)^2
6. sum( (2k-1)^3 ) = n^2(2n^2-1)
7. sum( k^4) = n(n+1)(2n+1)(3n^2+3n-1)/30
8. sum( k^5 ) = n^2(n+1)^2(2n^2+2n-1)/12
9. sum( k(k+1) ) = n(n+1)(n+2)/3
10. sum( k(k+1)(k+2) ) = n(n+1)(n+2)(n+3)/4
12. sum( k(k+1)(k+2)(k+3) ) = n(n+1)(n+2)(n+3)(n+4)/5
```

十. 数值计算

1. 定积分计算(Romberg)

```
/* Romberg 求定积分
输入:积分区间[a,b],被积函数 f(x,y,z)
输出:积分结果
f(x,y,z)示例:
double f0( double x, double l, double t)
{
return sqrt(1.0+l*l*t*t*cos(t*x)*cos(t*x));
}
```

double Integral(double a, double b, double (*f)(double x, double y, double z), double

```
eps,
                 double l, double t)
double Romberg (double a, double b, double (*f)(double x, double y, double z),
double eps,
                 double l, double t)
#define MAX_N 1000
    int i, j, temp2, min;
    double h, R[2][MAX_N], temp4;
    for (i=0; i<MAX_N; i++) {
        R[0][i] = 0.0;
        R[1][i] = 0.0;
    }
    h = b-a;
    min = (int)(log(h*10.0)/log(2.0)); //h  should be at most 0.1
    R[0][0] = ((*f)(a, l, t) + (*f)(b, l, t))*h*0.50;
    i = 1;
    temp2 = 1;
    while (i<MAX_N){
        i++;
        R[1][0] = 0.0;
        for (j=1; j<=temp2; j++)
             R[1][0] += (*f)(a+h*((double)j-0.50), l, t);
        R[1][0] = (R[0][0] + h*R[1][0])*0.50;
        temp4 = 4.0;
        for (j=1; j< i; j++) {
             R[1][j] = R[1][j-1] + (R[1][j-1]-R[0][j-1])/(temp4-1.0);
             temp4 *= 4.0;
        }
        if ((fabs(R[1][i-1]-R[0][i-2]) < eps) & (i>min))
             return R[1][i-1];
        h *= 0.50;
        temp2 *= 2;
        for (j=0; j< i; j++)
             R[0][j] = R[1][j];
    }
    return R[1][MAX_N-1];
}
```

double Integral(double a, double b, double (*f)(double x, double y, double z), double eps,

```
double l, double t)
#define pi 3.1415926535897932
    int n;
    double R, p, res;
    n = (int)(floor)(b * t * 0.50 / pi);
    p = 2.0 * pi / t;
    res = b - (double)n * p;
   if (n)
        R = Romberg (a, p, f0, eps/(double)n, l, t);
    R = R * (double)n + Romberg(0.0, res, f0, eps, l, t);
   return R/100.0;
}
                            2. 多项式求根(牛顿法)
/* 牛顿法解多项式的根
   输入: 多项式系数 c[], 多项式度数 n, 求在[a,b]间的根
   输出:根
   要求保证[a,b]间有根
double fabs( double x )
{
    return (x<0)? -x : x;
double f(int m, double c[], double x)
   int i;
   double p = c[m];
   for (i=m; i>0; i--)
        p = p*x + c[i-1];
   return p;
}
int newton(double x0, double *r,
           double c[], double cp[], int n,
           double a, double b, double eps)
{
   int MAX_ITERATION = 1000;
```

```
int i = 1;
    double x1, x2, fp, eps2 = eps/10.0;
    x1 = x0;
    while (i < MAX\_ITERATION) {
         x2 = f(n, c, x1);
         fp = f(n-1, cp, x1);
         if ((fabs(fp)<0.000000001) && (fabs(x2)>1.0))
             return 0;
         x2 = x1 - x2/fp;
         if (fabs(x1-x2) < eps2) {
             if (x2 < a || x2 > b)
                 return 0;
             *r = x2;
             return 1;
         }
         x1 = x2;
        i++;
    }
    return 0;
}
double Polynomial_Root(double c[], int n, double a, double b, double eps)
    double *cp;
    int i;
    double root;
    cp = (double *)calloc(n, sizeof(double));
    for (i=n-1; i>=0; i--) {
        cp[i] = (i+1)*c[i+1];
    }
    if (a>b) {
             root = a; a = b; b = root;
    if ((!newton(a, &root, c, cp, n, a, b, eps)) &&
         (!newton(b, &root, c, cp, n, a, b, eps)))
             newton((a+b)*0.5, &root, c, cp, n, a, b, eps);
    free(cp);
    if (fabs(root)<eps)
         return fabs(root);
    else
         return root;
}
```

3. 周期性方程(追赶法)

```
追赶法解周期性方程
    周期性方程定义: | a1 b1 c1 ...
                                                   a2 b2 c2 ...
                                                    | * | X | = ...
                      | cn-1 ...
                                         an-1 bn-1 | | = xn-1
                      | bn cn
                                               an | | = xn
    输入: a[],b[],c[],x[]
    输出: 求解结果 X 在 x[]中
*/
void run()
{
   c[0] /= b[0]; a[0] /= b[0]; x[0] /= b[0];
   for (int i = 1; i < N - 1; i ++) {
       double temp = b[i] - a[i] * c[i - 1];
       c[i] /= temp;
       x[i] = (x[i] - a[i] * x[i - 1]) / temp;
       a[i] = -a[i] * a[i - 1] / temp;
   }
   a[N-2] = -a[N-2] - c[N-2];
   for (int i = N - 3; i >= 0; i --) {
       a[i] = -a[i] - c[i] * a[i + 1];
       x[i] = c[i] * x[i+1];
   x[N-1] = (c[N-1] * x[0] + a[N-1] * x[N-2]);
   x[N-1] /= (c[N-1] * a[0] + a[N-1] * a[N-2] + b[N-1]);
   for (int i = N - 2; i >= 0; i --)
       x[i] += a[i] * x[N - 1];
}
```

十一. 几何

1. 多边形

#include <stdlib.h> #include <math.h> #define MAXN 1000 #define offset 10000 #define eps 1e-8

```
#define zero(x) (((x)>0?(x):-(x))<eps)
#define _{sign(x) ((x)>eps?1:((x)<-eps?2:0))}
struct point{double x,y;};
struct line{point a,b;};
double xmult(point p1,point p2,point p0){
   return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线
int is_convex(int n,point* p){
   int i,s[3]=\{1,1,1\};
   for (i=0;i<n\&\&s[1]|s[2];i++)
       s[\_sign(xmult(p[(i+1)\%n],p[(i+2)\%n],p[i]))]=0;
   return s[1]|s[2];
}
//判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线
int is_convex_v2(int n,point* p){
   int i,s[3]=\{1,1,1\};
   for (i=0;i<n\&\&s[0]\&\&s[1]|s[2];i++)
       s[_sign(xmult(p[(i+1)\%n],p[(i+2)\%n],p[i]))]=0;
   return s[0]&&s[1]|s[2];
}
//判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出
int inside_convex(point q,int n,point* p){
   int i,s[3]=\{1,1,1\};
   for (i=0;i<n\&\&s[1]|s[2];i++)
       s[_sign(xmult(p[(i+1)\%n],q,p[i]))]=0;
   return s[1]|s[2];
}
//判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回0
int inside_convex_v2(point q,int n,point* p){
   int i,s[3]=\{1,1,1\};
   for (i=0;i<n\&\&s[0]\&\&s[1]|s[2];i++)
       s[_sign(xmult(p[(i+1)\%n],q,p[i]))]=0;
   return s[0]&&s[1]|s[2];
}
//判点在任意多边形内,顶点按顺时针或逆时针给出
//on edge 表示点在多边形边上时的返回值,offset 为多边形坐标上限
int inside_polygon(point q,int n,point* p,int on_edge=1){
```

```
point q2;
           int i=0,count;
           while (i<n)
                       for (count=i=0,q2.x=rand()+offset,q2.y=rand()+offset;i<n;i++)
                                   if
(zero(xmult(q,p[i],p[(i+1)\%n]))\&\&(p[i].x-q.x)*(p[(i+1)\%n].x-q.x)<eps\&\&(p[i].y-q.y)
(p[(i+1)\%n].y-q.y) < eps)
                                               return on_edge;
                                   else if (zero(xmult(q,q2,p[i])))
                                               break;
                                   else
                                                                                                                                                                                                                                       if
(xmult(q,p[i],q2)*xmult(q,p[(i+1)\%n],q2)<-eps\&\&xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n])*xmult(p[i],q,p[(i+1)\%n
i],q2,p[(i+1)\%n])<-eps)
                                               count++;
           return count&1;
}
inline int opposite_side(point p1,point p2,point 11,point 12){
           return xmult(11,p1,12)*xmult(11,p2,12)<-eps;
}
inline int dot_online_in(point p,point 11,point 12){
zero(xmult(p,11,12))\&\&(11.x-p.x)*(12.x-p.x)<eps\&\&(11.y-p.y)*(12.y-p.y)<eps;
//判线段在任意多边形内.顶点按顺时针或逆时针给出,与边界相交返回1
int inside_polygon(point 11,point 12,int n,point* p){
           point t[MAXN],tt;
           int i,j,k=0;
           if (!inside_polygon(11,n,p)||!inside_polygon(12,n,p))
                       return 0;
           for (i=0;i<n;i++)
                       if
(opposite\_side(11,12,p[i],p[(i+1)\%n])\&\&opposite\_side(p[i],p[(i+1)\%n],11,12))
                                   return 0;
                       else if (dot\_online\_in(11,p[i],p[(i+1)\%n]))
                                   t[k++]=11;
                       else if (dot\_online\_in(12,p[i],p[(i+1)\%n]))
                                   t[k++]=12;
                       else if (dot_online_in(p[i],l1,l2))
                                   t[k++]=p[i];
           for (i=0;i<k;i++)
                       for (j=i+1;j< k;j++)
```

```
tt.x = (t[i].x + t[j].x)/2;
              tt.y=(t[i].y+t[j].y)/2;
             if (!inside_polygon(tt,n,p))
                  return 0;
         }
    return 1;
}
point intersection(line u,line v){
    point ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
             /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    return ret;
}
point barycenter(point a,point b,point c){
    line u,v;
    u.a.x = (a.x + b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b=c;
    v.a.x = (a.x + c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b=b;
    return intersection(u,v);
}
//多边形重心
point barycenter(int n,point* p){
    point ret,t;
    double t1=0,t2;
    int i;
    ret.x=ret.y=0;
    for (i=1;i< n-1;i++)
         if (fabs(t2=xmult(p[0],p[i],p[i+1]))>eps){
             t=barycenter(p[0],p[i],p[i+1]);
             ret.x+=t.x*t2;
             ret.y+=t.y*t2;
             t1+=t2;
         }
    if (fabs(t1)>eps)
         ret.x/=t1,ret.y/=t1;
    return ret;
```

}

```
//多边形切割
//可用于半平面交
#define MAXN 100
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
int same_side(point p1,point p2,point l1,point l2){
    return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps;
}
point intersection(point u1,point u2,point v1,point v2){
    point ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x += (u2.x - u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    return ret;
}
//将多边形沿 11,12 确定的直线切割在 side 侧切割,保证 11,12,side 不共线
void polygon_cut(int& n,point* p,point 11,point 12,point side){
    point pp[100];
    int m=0,i;
    for (i=0;i< n;i++)
        if (same_side(p[i],side,11,12))
             pp[m++]=p[i];
        if
(!same\_side(p[i],p[(i+1)\%n],11,12)\&\&!(zero(xmult(p[i],11,12))\&\&zero(xmult(p[(i+1)\%n],11,12))\&
%n],11,12))))
            pp[m++]=intersection(p[i],p[(i+1)\%n],l1,l2);
    for (n=i=0;i<m;i++)
        if (!i||!zero(pp[i].x-pp[i-1].x)||!zero(pp[i].y-pp[i-1].y))
             p[n++]=pp[i];
    if (zero(p[n-1].x-p[0].x)\&\&zero(p[n-1].y-p[0].y))
        n--;
```

2. 多边形切割

```
if (n<3)
        n=0;
}
                                   3. 浮点函数
//浮点几何函数库
#include <math.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
struct line{point a,b;};
//计算 cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double xmult(double x1,double y1,double x2,double y2,double x0,double y0){
    return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
}
//计算 dot product (P1-P0).(P2-P0)
double dmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
double dmult(double x1,double y1,double x2,double y2,double x0,double y0){
    return (x1-x0)*(x2-x0)+(y1-y0)*(y2-y0);
}
//两点距离
double distance(point p1,point p2){
    return \ sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));\\
}
double distance(double x1,double y1,double x2,double y2){
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
//判三点共线
int dots_inline(point p1,point p2,point p3){
    return zero(xmult(p1,p2,p3));
int dots_inline(double x1,double y1,double x2,double y2,double x3,double y3){
    return zero(xmult(x1,y1,x2,y2,x3,y3));
}
```

```
//判点是否在线段上,包括端点
int dot_online_in(point p,line l){
   return
zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x)<eps&&(l.a.y-p.y)*(l.b.y-p.y)<eps;
int dot_online_in(point p,point 11,point 12){
zero(xmult(p,11,12))\&\&(11.x-p.x)*(12.x-p.x)<eps\&\&(11.y-p.y)*(12.y-p.y)<eps;
int dot_online_in(double x,double y,double x1,double y1,double x2,double y2){
   return zero(xmult(x,y,x1,y1,x2,y2))&&(x1-x)*(x2-x)<eps&&(y1-y)*(y2-y)<eps;
}
//判点是否在线段上,不包括端点
int dot_online_ex(point p,line l){
dot_nine_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.a.y))
.b.y));
}
int dot_online_ex(point p,point 11,point 12){
y-12.y));
int dot_online_ex(double x,double y,double x1,double y1,double x2,double y2){
   return
y2));
}
//判两点在线段同侧,点在线段上返回 0
int same side(point p1, point p2, line 1){
   return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps;
}
int same_side(point p1,point p2,point 11,point 12){
   return xmult(11,p1,12)*xmult(11,p2,12)>eps;
}
//判两点在线段异侧,点在线段上返回0
int opposite_side(point p1,point p2,line l){
   return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps;
}
int opposite_side(point p1,point p2,point l1,point l2){
   return xmult(11,p1,l2)*xmult(11,p2,l2)<-eps;
```

```
}
// 点关于直线的对称点 // by lyt
// 缺点: 用了斜率
// 也可以利用"点到直线上的最近点"来做,避免使用斜率。
point symmetric_point(point p1, point l1, point l2) {
  point ret;
  if (11.x > 12.x - eps \&\& 11.x < 12.x + eps) {
     ret.x = (2 * 11.x - p1.x);
    ret.y = p1.y;
  } else {
     double k = (11.y - 12.y) / (11.x - 12.x);
     ret.x = (2*k*k*11.x + 2*k*p1.y - 2*k*11.y - k*k*p1.x + p1.x) / (1 + k*k);
     ret.y = p1.y - (ret.x - p1.x) / k;
  }
  return ret;
}
//判两直线平行
int parallel(line u,line v){
    return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y));
}
int parallel(point u1, point u2, point v1, point v2){
    return zero((u1.x-u2.x)*(v1.y-v2.y)-(v1.x-v2.x)*(u1.y-u2.y));
}
//判两直线垂直
int perpendicular(line u,line v){
    return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y);
int perpendicular(point u1, point u2, point v1, point v2){
    return zero((u1.x-u2.x)*(v1.x-v2.x)+(u1.y-u2.y)*(v1.y-v2.y));
}
//判两线段相交,包括端点和部分重合
int intersect_in(line u,line v){
    if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
        return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
    return
dot\_online\_in(u.a,v)||dot\_online\_in(u.b,v)||dot\_online\_in(v.a,u)||dot\_online\_in(v.b,u);
int intersect_in(point u1,point u2,point v1,point v2){
    if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
        return !same side(u1,u2,v1,v2)&&!same side(v1,v2,u1,u2);
```

```
return
dot\_online\_in(u1,v1,v2) || dot\_online\_in(u2,v1,v2) || dot\_online\_in(v1,u1,u2) || dot\_online\_in(v1,u1
e_{in}(v2,u1,u2);
//判两线段相交,不包括端点和部分重合
int intersect ex(line u,line v){
            return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
}
int intersect_ex(point u1,point u2,point v1,point v2){
            return opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);
}
//计算两直线交点,注意事先判断直线是否平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point intersection(line u,line v){
            point ret=u.a;
            double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
                                    /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
            ret.x+=(u.b.x-u.a.x)*t;
            ret.y+=(u.b.y-u.a.y)*t;
            return ret;
point intersection(point u1,point u2,point v1,point v2){
            point ret=u1;
            double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
                                    /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
            ret.x += (u2.x - u1.x)*t;
            ret.y+=(u2.y-u1.y)*t;
            return ret;
}
//点到直线上的最近点
point ptoline(point p,line l){
            point t=p;
            t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x;
            return intersection(p,t,l.a,l.b);
}
point ptoline(point p,point 11,point 12){
            point t=p;
            t.x+=11.y-12.y,t.y+=12.x-11.x;
            return intersection(p,t,11,12);
}
```

```
//点到直线距离
double disptoline(point p,line l){
    return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
}
double disptoline(point p,point 11,point 12){
    return fabs(xmult(p,11,12))/distance(11,12);
double disptoline(double x,double y,double x1,double y1,double x2,double y2){
    return fabs(xmult(x,y,x1,y1,x2,y2))/distance(x1,y1,x2,y2);
}
//点到线段上的最近点
point ptoseg(point p,line l){
    point t=p;
    t.x+=1.a.y-1.b.y,t.y+=1.b.x-1.a.x;
    if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
        return distance(p,l.a)<distance(p,l.b)?l.a:l.b;
    return intersection(p,t,l.a,l.b);
point ptoseg(point p,point 11,point 12){
    point t=p;
    t.x+=11.y-12.y,t.y+=12.x-11.x;
    if (xmult(11,t,p)*xmult(12,t,p)>eps)
        return distance(p,l1)<distance(p,l2)?11:12;
    return intersection(p,t,11,12);
}
//点到线段距离
double disptoseg(point p,line l){
    point t=p;
    t.x+=1.a.y-1.b.y,t.y+=1.b.x-1.a.x;
    if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps)
        return distance(p,l.a)<distance(p,l.b)?distance(p,l.a):distance(p,l.b);
    return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b);
double disptoseg(point p,point 11,point 12){
    point t=p;
    t.x+=11.y-12.y,t.y+=12.x-11.x;
    if (xmult(11,t,p)*xmult(12,t,p)>eps)
        return distance(p,11)<distance(p,12)?distance(p,11):distance(p,12);
    return fabs(xmult(p,l1,l2))/distance(l1,l2);
}
//矢量 V 以 P 为顶点逆时针旋转 angle 并放大 scale 倍
```

```
point rotate(point v,point p,double angle,double scale){
   point ret=p;
   v.x-=p.x,v.y-=p.y;
   p.x=scale*cos(angle);
   p.y=scale*sin(angle);
   ret.x+=v.x*p.x-v.y*p.y;
   ret.y+=v.x*p.y+v.y*p.x;
   return ret;
}
                               4. 几何公式
三角形:
1. 半周长 P=(a+b+c)/2
2. 面积 S=aHa/2=absin(C)/2=sqrt(P(P-a)(P-b)(P-c))
3. 中线 Ma=sqrt(2(b^2+c^2)-a^2)/2=sqrt(b^2+c^2+2bccos(A))/2
4. 角平分线 Ta=sqrt(bc((b+c)^2-a^2))/(b+c)=2bccos(A/2)/(b+c)
5. 高线 Ha=bsin(C)=csin(B)=sqrt(b^2-((a^2+b^2-c^2)/(2a))^2)
6. 内切圆半径 r=S/P=asin(B/2)sin(C/2)/sin((B+C)/2)
                =4R\sin(A/2)\sin(B/2)\sin(C/2)=\operatorname{sqrt}((P-a)(P-b)(P-c)/P)
               =Ptan(A/2)tan(B/2)tan(C/2)
7. 外接圆半径 R=abc/(4S)=a/(2sin(A))=b/(2sin(B))=c/(2sin(C))
四边形:
D1,D2 为对角线,M 对角线中点连线,A 为对角线夹角
1. a^2+b^2+c^2+d^2=D1^2+D2^2+4M^2
2. S = D1D2\sin(A)/2
(以下对圆的内接四边形)
3. ac+bd=D1D2
4. S=sqrt((P-a)(P-b)(P-c)(P-d)),P 为半周长
正 n 边形:
R 为外接圆半径,r 为内切圆半径
1. 中心角 A=2PI/n
2. 内角 C=(n-2)PI/n
3. 边长 a=2sqrt(R^2-r^2)=2Rsin(A/2)=2rtan(A/2)
4. 面积 S=nar/2=nr^2tan(A/2)=nR^2sin(A)/2=na^2/(4tan(A/2))
员:
1. 弧长 l=rA
2. 弦长 a=2sqrt(2hr-h^2)=2rsin(A/2)
3. 弓形高 h=r-sqrt(r^2-a^2/4)=r(1-cos(A/2))=atan(A/4)/2
4. 扇形面积 S1=rl/2=r^2A/2
5. 弓形面积 S2=(rl-a(r-h))/2=r^2(A-sin(A))/2
```

棱柱:

- 1. 体积 V=Ah,A 为底面积,h 为高
- 2. 侧面积 S=lp,l 为棱长,p 为直截面周长
- 3. 全面积 T=S+2A

棱锥:

- 1. 体积 V=Ah/3,A 为底面积,h 为高 (以下对正棱锥)
- 2. 侧面积 S=lp/2,l 为斜高,p 为底面周长
- 3. 全面积 T=S+A

棱台:

- 1. 体积 V=(A1+A2+sqrt(A1A2))h/3,A1.A2 为上下底面积,h 为高(以下为正棱台)
- 2. 侧面积 S=(p1+p2)l/2,p1.p2 为上下底面周长,l 为斜高
- 3. 全面积 T=S+A1+A2

圆柱:

- 1. 侧面积 S=2PIrh
- 2. 全面积 T=2PIr(h+r)
- 3. 体积 V=PIr^2h

圆锥:

- 1. 母线 l=sqrt(h^2+r^2)
- 2. 侧面积 S=PIrl
- 3. 全面积 T=PIr(l+r)
- 4. 体积 V=PIr^2h/3

圆台:

- 1. 母线 l=sqrt(h^2+(r1-r2)^2)
- 2. 侧面积 S=PI(r1+r2)l
- 3. 全面积 T=PIr1(l+r1)+PIr2(l+r2)
- 4. 体积 V=PI(r1^2+r2^2+r1r2)h/3

球:

- 1. 全面积 T=4PIr^2
- 2. 体积 V=4PIr^3/3

球台:

- 1. 侧面积 S=2PIrh
- 2. 全面积 T=PI(2rh+r1^2+r2^2)
- 3. 体积 V=PIh(3(r1^2+r2^2)+h^2)/6

球扇形:

- 1. 全面积 T=PIr(2h+r0),h 为球冠高,r0 为球冠底面半径
- 2. 体积 V=2PIr^2h/3

5. 面积

```
#include <math.h>
struct point{double x,y;};
//计算 cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
   return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
double xmult(double x1,double y1,double x2,double y2,double x0,double y0){
   return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
}
//计算三角形面积,输入三顶点
double area_triangle(point p1,point p2,point p3){
   return fabs(xmult(p1,p2,p3))/2;
}
double area_triangle(double x1,double y1,double x2,double y2,double x3,double y3){
   return fabs(xmult(x1,y1,x2,y2,x3,y3))/2;
}
//计算三角形面积,输入三边长
double area_triangle(double a,double b,double c){
   double s=(a+b+c)/2;
   return sqrt(s*(s-a)*(s-b)*(s-c));
}
//计算多边形面积,顶点按顺时针或逆时针给出
double area_polygon(int n,point* p){
   double s1=0,s2=0;
   int i;
   for (i=0;i<n;i++)
       s1+=p[(i+1)\%n].y*p[i].x,s2+=p[(i+1)\%n].y*p[(i+2)\%n].x;
   return fabs(s1-s2)/2;
}
                                  6. 球面
#include <math.h>
const double pi=acos(-1);
//计算圆心角 lat 表示纬度,-90<=w<=90,lng 表示经度
//返回两点所在大圆劣弧对应圆心角,0<=angle<=pi
```

```
double angle(double lng1,double lat1,double lng2,double lat2){
    double dlng=fabs(lng1-lng2)*pi/180;
    while (dlng>=pi+pi)
        dlng-=pi+pi;
    if (dlng>pi)
        dlng=pi+pi-dlng;
    lat1*=pi/180, lat2*=pi/180;
    return acos(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2));
}
//计算距离.r 为球半径
double line_dist(double r,double lng1,double lat1,double lng2,double lat2){
    double dlng=fabs(lng1-lng2)*pi/180;
    while (dlng>=pi+pi)
        dlng-=pi+pi;
    if (dlng>pi)
        dlng=pi+pi-dlng;
    lat1*=pi/180, lat2*=pi/180;
    return r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2)));
}
//计算球面距离,r 为球半径
inline double sphere_dist(double r,double lng1,double lat1,double lng2,double lat2){
    return r*angle(lng1,lat1,lng2,lat2);
}
                                     7. 三角形
#include <math.h>
struct point{double x,y;};
struct line{point a,b;};
double distance(point p1,point p2){
    return \ sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));\\
}
point intersection(line u,line v){
    point ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
            /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x+=(u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    return ret;
}
```

```
//外心
point circumcenter(point a,point b,point c){
    line u,v;
    u.a.x = (a.x + b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b.x=u.a.x-a.y+b.y;
    u.b.y=u.a.y+a.x-b.x;
    v.a.x = (a.x + c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b.x=v.a.x-a.y+c.y;
    v.b.y=v.a.y+a.x-c.x;
    return intersection(u,v);
}
//内心
point incenter(point a,point b,point c){
    line u,v;
    double m,n;
    u.a=a;
    m=atan2(b.y-a.y,b.x-a.x);
    n=atan2(c.y-a.y,c.x-a.x);
    u.b.x=u.a.x+cos((m+n)/2);
    u.b.y=u.a.y+sin((m+n)/2);
    v.a=b;
    m=atan2(a.y-b.y,a.x-b.x);
    n=atan2(c.y-b.y,c.x-b.x);
    v.b.x=v.a.x+cos((m+n)/2);
    v.b.y=v.a.y+sin((m+n)/2);
    return intersection(u,v);
}
//垂心
point perpencenter(point a,point b,point c){
    line u,v;
    u.a=c;
    u.b.x=u.a.x-a.y+b.y;
    u.b.y=u.a.y+a.x-b.x;
    v.a=b;
    v.b.x=v.a.x-a.y+c.y;
    v.b.y=v.a.y+a.x-c.x;
    return intersection(u,v);
}
//重心
```

```
//到三角形三顶点距离的平方和最小的点
//三角形内到三边距离之积最大的点
point barycenter(point a,point b,point c){
    line u,v;
    u.a.x = (a.x + b.x)/2;
    u.a.y=(a.y+b.y)/2;
    u.b=c;
    v.a.x = (a.x + c.x)/2;
    v.a.y=(a.y+c.y)/2;
    v.b=b;
    return intersection(u,v);
}
//费马点
//到三角形三顶点距离之和最小的点
point fermentpoint(point a,point b,point c){
    point u,v;
    double step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+fabs(c.x)+fabs(c.y);
    int i,j,k;
    u.x = (a.x+b.x+c.x)/3;
    u.y=(a.y+b.y+c.y)/3;
    while (step>1e-10)
        for (k=0; k<10; step/=2, k++)
            for (i=-1;i<=1;i++)
                for (j=-1;j<=1;j++)
                    v.x=u.x+step*i;
                    v.y=u.y+step*j;
(distance(u,a)+distance(u,b)+distance(u,c)>distance(v,a)+distance(v,b)+distance(v,c))
                        u=v;
                }
    return u;
}
                                  8. 三维几何
//三维几何函数库
#include <math.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point3{double x,y,z;};
struct line3{point3 a,b;};
struct plane3{point3 a,b,c;};
//计算 cross product U x V
```

```
point3 xmult(point3 u,point3 v){
    point3 ret;
    ret.x=u.y*v.z-v.y*u.z;
    ret.y=u.z*v.x-u.x*v.z;
    ret.z=u.x*v.y-u.y*v.x;
    return ret;
}
//计算 dot product U.V
double dmult(point3 u,point3 v){
    return u.x*v.x+u.y*v.y+u.z*v.z;
}
//矢量差 U-V
point3 subt(point3 u,point3 v){
    point3 ret;
    ret.x=u.x-v.x;
    ret.y=u.y-v.y;
    ret.z=u.z-v.z;
    return ret;
}
//取平面法向量
point3 pvec(plane3 s){
    return xmult(subt(s.a,s.b),subt(s.b,s.c));
point3 pvec(point3 s1,point3 s2,point3 s3){
    return xmult(subt(s1,s2),subt(s2,s3));
}
//两点距离,单参数取向量大小
double distance(point3 p1,point3 p2){
    return
sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z));
//向量大小
double vlen(point3 p){
    return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
}
//判三点共线
int dots_inline(point3 p1,point3 p2,point3 p3){
    return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps;</pre>
```

```
}
//判四点共面
int dots_onplane(point3 a,point3 b,point3 c,point3 d){
          return zero(dmult(pvec(a,b,c),subt(d,a)));
}
//判点是否在线段上,包括端点和共线
int dot_online_in(point3 p,line3 l){
          return\ zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p.x)*(l.b.x-p.x)<eps\&\&(l.a.x-p
                    (l.a.y-p.y)*(l.b.y-p.y) < eps & & (l.a.z-p.z)*(l.b.z-p.z) < eps;
}
int dot_online_in(point3 p,point3 11,point3 12){
          return zero(vlen(xmult(subt(p,11),subt(p,12))))&&(11.x-p.x)*(12.x-p.x)<eps&&
                    (11.y-p.y)*(12.y-p.y) < eps & & (11.z-p.z)*(12.z-p.z) < eps;
}
//判点是否在线段上.不包括端点
int dot_online_ex(point3 p,line3 l){
          return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&&
                    (!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z));
int dot_online_ex(point3 p,point3 11,point3 12){
          return
dot_nine_in(p,11,12)&&(!zero(p.x-11.x)||!zero(p.y-11.y)||!zero(p.z-11.z))&&
                    (!zero(p.x-12.x)||!zero(p.y-12.y)||!zero(p.z-12.z));
}
//判点是否在空间三角形上,包括边界,三点共线无意义
int dot_inplane_in(point3 p,plane3 s){
          return
zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))-
                    vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a))));
int dot_inplane_in(point3 p,point3 s1,point3 s2,point3 s3){
         return
zero(vlen(xmult(subt(s1,s2),subt(s1,s3)))-vlen(xmult(subt(p,s1),subt(p,s2)))-
                    vlen(xmult(subt(p,s2),subt(p,s3)))-vlen(xmult(subt(p,s3),subt(p,s1))));
}
//判点是否在空间三角形上,不包括边界,三点共线无意义
int dot_inplane_ex(point3 p,plane3 s){
          return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&&
```

```
vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>e
ps;
int dot_inplane_ex(point3 p,point3 s1,point3 s2,point3 s3){
    return dot_inplane_in(p,s1,s2,s3)&&vlen(xmult(subt(p,s1),subt(p,s2)))>eps&&
    vlen(xmult(subt(p,s2),subt(p,s3)))>eps&&vlen(xmult(subt(p,s3),subt(p,s1)))>eps;
}
//判两点在线段同侧,点在线段上返回 0,不共面无意义
int same_side(point3 p1,point3 p2,line3 l){
    return
dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps;
int same_side(point3 p1,point3 p2,point3 11,point3 12){
    return dmult(xmult(subt(11,12),subt(p1,12)),xmult(subt(11,12),subt(p2,12)))>eps;
}
//判两点在线段异侧,点在线段上返回 0,不共面无意义
int opposite_side(point3 p1,point3 p2,line3 l){
    return
dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b))) < -eps;
int opposite_side(point3 p1,point3 p2,point3 11,point3 12){
    return dmult(xmult(subt(11,12),subt(p1,12)),xmult(subt(11,12),subt(p2,12))) < -eps;
}
//判两点在平面同侧,点在平面上返回 0
int same_side(point3 p1,point3 p2,plane3 s){
    return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps;
}
int same side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
    return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps;
}
//判两点在平面异侧,点在平面上返回 0
int opposite_side(point3 p1,point3 p2,plane3 s){
    return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps;
int opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){
    return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps;
}
//判两直线平行
```

```
int parallel(line3 u,line3 v){
    return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps;</pre>
int parallel(point3 u1,point3 u2,point3 v1,point3 v2){
    return vlen(xmult(subt(u1,u2),subt(v1,v2)))<eps;
}
//判两平面平行
int parallel(plane3 u,plane3 v){
    return vlen(xmult(pvec(u),pvec(v)))<eps;</pre>
}
int parallel(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return vlen(xmult(pvec(u1,u2,u3),pvec(v1,v2,v3)))<eps;
}
//判直线与平面平行
int parallel(line3 l,plane3 s){
    return zero(dmult(subt(l.a,l.b),pvec(s)));
int parallel(point3 11,point3 12,point3 s1,point3 s2,point3 s3){
    return zero(dmult(subt(11,12),pvec(s1,s2,s3)));
}
//判两直线垂直
int perpendicular(line3 u,line3 v){
    return zero(dmult(subt(u.a,u.b),subt(v.a,v.b)));
int perpendicular(point3 u1,point3 u2,point3 v1,point3 v2){
    return zero(dmult(subt(u1,u2),subt(v1,v2)));
}
//判两平面垂直
int perpendicular(plane3 u,plane3 v){
    return zero(dmult(pvec(u),pvec(v)));
}
int perpendicular(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return zero(dmult(pvec(u1,u2,u3),pvec(v1,v2,v3)));
}
//判直线与平面平行
int perpendicular(line3 l,plane3 s){
    return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps;
int perpendicular(point3 11,point3 12,point3 s1,point3 s2,point3 s3){
```

```
return vlen(xmult(subt(11,12),pvec(s1,s2,s3)))<eps;
}
//判两线段相交,包括端点和部分重合
int intersect_in(line3 u,line3 v){
         if (!dots_onplane(u.a,u.b,v.a,v.b))
                    return 0:
         if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
                    return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
          return
dot\_online\_in(u.a,v)||dot\_online\_in(u.b,v)||dot\_online\_in(v.a,u)||dot\_online\_in(v.b,u);
int intersect_in(point3 u1,point3 u2,point3 v1,point3 v2){
          if (!dots_onplane(u1,u2,v1,v2))
                    return 0;
         if (!dots inline(u1,u2,v1)||!dots inline(u1,u2,v2))
                    return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
         return
dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v1,u1,u2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(u2,v1
e_{in}(v2,u1,u2);
//判两线段相交.不包括端点和部分重合
int intersect_ex(line3 u,line3 v){
          return
dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
int intersect_ex(point3 u1,point3 u2,point3 v1,point3 v2){
          return
dots_onplane(u1,u2,v1,v2)&&opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,
u2);
}
//判线段与空间三角形相交,包括交于边界和(部分)包含
int intersect_in(line3 l,plane3 s){
         return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&&
                    !same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b);
}
int intersect in(point3 11,point3 12,point3 s1,point3 s2,point3 s3){
          return !same_side(11,12,s1,s2,s3)&&!same_side(s1,s2,11,12,s3)&&
                    !same_side(s2,s3,11,12,s1)&&!same_side(s3,s1,11,12,s2);
 }
//判线段与空间三角形相交,不包括交于边界和(部分)包含
```

```
int intersect_ex(line3 l,plane3 s){
    return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&&
        opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b);
}
int intersect_ex(point3 11,point3 12,point3 s1,point3 s2,point3 s3){
    return opposite_side(11,12,s1,s2,s3)&&opposite_side(s1,s2,11,12,s3)&&
        opposite_side(s2,s3,11,12,s1)&&opposite_side(s3,s1,11,12,s2);
}
//计算两直线交点,注意事先判断直线是否共面和平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point3 intersection(line3 u,line3 v){
    point3 ret=u.a;
    double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x))
            /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x));
    ret.x += (u.b.x-u.a.x)*t;
    ret.y+=(u.b.y-u.a.y)*t;
    ret.z+=(u.b.z-u.a.z)*t;
    return ret;
point3 intersection(point3 u1,point3 u2,point3 v1,point3 v2){
    point3 ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x += (u2.x - u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    ret.z+=(u2.z-u1.z)*t;
    return ret;
}
//计算直线与平面交点,注意事先判断是否平行,并保证三点不共线!
//线段和空间三角形交点请另外判断
point3 intersection(line3 l,plane3 s){
    point3 ret=pvec(s);
    double t=(ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))/
        (ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z));
    ret.x=l.a.x+(l.b.x-l.a.x)*t;
    ret.y=1.a.y+(1.b.y-1.a.y)*t;
    ret.z=l.a.z+(l.b.z-l.a.z)*t;
    return ret;
}
point3 intersection(point3 11,point3 12,point3 s1,point3 s2,point3 s3){
    point3 ret=pvec(s1,s2,s3);
    double t=(ret.x*(s1.x-l1.x)+ret.y*(s1.y-l1.y)+ret.z*(s1.z-l1.z))/
```

```
(ret.x*(12.x-11.x)+ret.y*(12.y-11.y)+ret.z*(12.z-11.z));
    ret.x=11.x+(12.x-11.x)*t;
    ret.y=11.y+(12.y-11.y)*t;
    ret.z=11.z+(12.z-11.z)*t;
    return ret;
}
//计算两平面交线,注意事先判断是否平行,并保证三点不共线!
line3 intersection(plane3 u,plane3 v){
    line3 ret;
    ret.a=parallel(v.a,v.b,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.a,v
.b,u.a,u.b,u.c);
    ret.b=parallel(v.c,v.a,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.c,v
.a,u.a,u.b,u.c);
    return ret;
line3 intersection(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    line3 ret:
    ret.a=parallel(v1,v2,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v1,v2,u1,
u2,u3);
    ret.b=parallel(v3,v1,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v3,v1,u1,
u2,u3);
    return ret:
}
//点到直线距离
double ptoline(point3 p,line3 l){
    return vlen(xmult(subt(p,l.a),subt(l.b,l.a)))/distance(l.a,l.b);
double ptoline(point3 p,point3 11,point3 12){
    return vlen(xmult(subt(p,l1),subt(l2,l1)))/distance(l1,l2);
}
//点到平面距离
double ptoplane(point3 p,plane3 s){
    return fabs(dmult(pvec(s),subt(p,s.a)))/vlen(pvec(s));
double ptoplane(point3 p,point3 s1,point3 s2,point3 s3){
    return fabs(dmult(pvec(s1,s2,s3),subt(p,s1)))/vlen(pvec(s1,s2,s3));
}
//直线到直线距离
double linetoline(line3 u,line3 v){
    point3 n=xmult(subt(u.a,u.b),subt(v.a,v.b));
```

```
return fabs(dmult(subt(u.a,v.a),n))/vlen(n);
}
double linetoline(point3 u1,point3 u2,point3 v1,point3 v2){
    point3 n=xmult(subt(u1,u2),subt(v1,v2));
    return fabs(dmult(subt(u1,v1),n))/vlen(n);
}
//两直线夹角 cos 值
double angle_cos(line3 u,line3 v){
    return dmult(subt(u.a,u.b),subt(v.a,v.b))/vlen(subt(u.a,u.b))/vlen(subt(v.a,v.b));
}
double angle_cos(point3 u1,point3 u2,point3 v1,point3 v2){
    return dmult(subt(u1,u2),subt(v1,v2))/vlen(subt(u1,u2))/vlen(subt(v1,v2));
}
//两平面夹角 cos 值
double angle_cos(plane3 u,plane3 v){
    return dmult(pvec(u),pvec(v))/vlen(pvec(u))/vlen(pvec(v));
double angle_cos(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){
    return
dmult(pvec(u1,u2,u3),pvec(v1,v2,v3))/vlen(pvec(u1,u2,u3))/vlen(pvec(v1,v2,v3));
}
//直线平面夹角 sin 值
double angle_sin(line3 l,plane3 s){
    return dmult(subt(l.a,l.b),pvec(s))/vlen(subt(l.a,l.b))/vlen(pvec(s));
}
double angle_sin(point3 11,point3 12,point3 s1,point3 s2,point3 s3){
    return dmult(subt(11,12),pvec(s1,s2,s3))/vlen(subt(11,12))/vlen(pvec(s1,s2,s3));
}
                                9. 凸包(graham)
// CONVEX HULL I
// modified by rr 不能去掉点集中重合的点
#include <stdlib.h>
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
//计算 cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
```

```
//graham 算法顺时针构造包含所有共线点的凸包,O(nlogn)
point p1,p2;
int graham_cp(const void* a,const void* b){
   double ret=xmult(*((point*)a),*((point*)b),p1);
   return zero(ret)?(xmult(*((point*)a),*((point*)b),p2)>0?1:-1):(ret>0?1:-1);
}
void _graham(int n,point* p,int& s,point* ch){
   int i,k=0;
   for (p1=p2=p[0],i=1;i< n;p2.x+=p[i].x,p2.y+=p[i].y,i++)
       if (p1.y-p[i].y>eps||(zero(p1.y-p[i].y)&&p1.x>p[i].x))
           p1=p[k=i];
   p2.x/=n,p2.y/=n;
   p[k]=p[0],p[0]=p1;
   qsort(p+1,n-1,sizeof(point),graham_cp);
   for (ch[0]=p[0],ch[1]=p[1],ch[2]=p[2],s=i=3;i< n;ch[s++]=p[i++])
       for (;s>2&&xmult(ch[s-2],p[i],ch[s-1])<-eps;s--);
}
//构造凸包接口函数,传入原始点集大小 n,点集 p(p 原有顺序被打乱!)
//返回凸包大小,凸包的点在 convex 中
//参数 maxsize 为 1 包含共线点,为 0 不包含共线点,缺省为 1
//参数 clockwise 为 1 顺时针构造,为 0 逆时针构造,缺省为 1
//在输入仅有若干共线点时算法不稳定.可能有此类情况请另行处理!
//不能去掉点集中重合的点
int graham(int n,point* p,point* convex,int maxsize=1,int dir=1){
   point* temp=new point[n];
   int s,i;
   _graham(n,p,s,temp);
   for (convex[0]=temp[0],n=1,i=(dir?1:(s-1));dir?(i< s):i;i+=(dir?1:-1))
       if (maxsize||!zero(xmult(temp[i-1],temp[i],temp[(i+1)%s])))
           convex[n++]=temp[i];
   delete []temp;
   return n;
}
// CONVEX HULL II
// modified by mgmg 去掉点集中重合的点
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
struct point{double x,y;};
//计算 cross product (P1-P0)x(P2-P0)
double xmult(point p1,point p2,point p0){
```

```
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//graham 算法顺时针构造包含所有共线点的凸包,O(nlogn)
point p1,p2;
int graham_cp(const void* a,const void* b){
    double ret=xmult(*((point*)a),*((point*)b),p1);
    return zero(ret)?(xmult(*((point*)a),*((point*)b),p2)>0?1:-1):(ret>0?1:-1);
}
void _graham(int n,point* p,int& s,point* ch){
    int i,k=0;
    for (p1=p2=p[0],i=1;i< n;p2.x+=p[i].x,p2.y+=p[i].y,i++)
         if (p1.y-p[i].y>eps||(zero(p1.y-p[i].y)&&p1.x>p[i].x))
             p1=p[k=i];
    p2.x/=n,p2.y/=n;
    p[k]=p[0],p[0]=p1;
    qsort(p+1,n-1,sizeof(point),graham_cp);
    for (ch[0]=p[0],ch[1]=p[1],ch[2]=p[2],s=i=3;i< n;ch[s++]=p[i++])
        for (;s>2&&xmult(ch[s-2],p[i],ch[s-1])<-eps;s--);
}
int wipesame_cp(const void *a, const void *b)
{
    if ((*(point *)a).y < (*(point *)b).y - eps) return -1;
    else if ((*(point *)a).y > (*(point *)b).y + eps) return 1;
    else if ((*(point *)a).x < (*(point *)b).x - eps) return -1;
    else if ((*(point *)a).x > (*(point *)b).x + eps) return 1;
    else return 0;
}
int _wipesame(point * p, int n)
    int i, k;
    qsort(p, n, sizeof(point), wipesame_cp);
    for (k=i=1;i< n;i++)
        if (wipesame_cp(p+i,p+i-1)!=0) p[k++]=p[i];
    return k;
}
//构造凸包接口函数,传入原始点集大小 n,点集 p(p 原有顺序被打乱!)
//返回凸包大小,凸包的点在 convex 中
//参数 maxsize 为 1 包含共线点,为 0 不包含共线点,缺省为 1
//参数 clockwise 为 1 顺时针构造,为 0 逆时针构造,缺省为 1
//在输入仅有若干共线点时算法不稳定,可能有此类情况请另行处理!
int graham(int n,point* p,point* convex,int maxsize=1,int dir=1){
```

```
point* temp=new point[n];
    int s,i;
    n = \text{wipesame}(p,n);
    _graham(n,p,s,temp);
    for (convex[0]=temp[0],n=1,i=(dir?1:(s-1));dir?(i< s):i;i+=(dir?1:-1))
         if (maxsize||!zero(xmult(temp[i-1],temp[i],temp[(i+1)%s])))
              convex[n++]=temp[i];
    delete []temp;
    return n;
}
                                  10. 网格(pick)
#define abs(x) ((x)>0?(x):-(x))
struct point{int x,y;};
int gcd(int a,int b){
    return b?gcd(b,a%b):a;
}
//多边形上的网格点个数
int grid_onedge(int n,point* p){
    int i,ret=0;
    for (i=0;i<n;i++)
        ret+=gcd(abs(p[i].x-p[(i+1)\%n].x),abs(p[i].y-p[(i+1)\%n].y));
    return ret;
}
//多边形内的网格点个数
int grid_inside(int n,point* p){
    int i,ret=0;
    for (i=0;i<n;i++)
        ret+=p[(i+1)\%n].y*(p[i].x-p[(i+2)\%n].x);
   return (abs(ret)-grid_onedge(n,p))/2+1;
}
                                       11. 圆
#include <math.h>
#define eps 1e-8
struct point{double x,y;};
double xmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
```

```
double distance(point p1,point p2){
    return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
double disptoline(point p,point 11,point 12){
    return fabs(xmult(p,11,12))/distance(11,12);
}
point intersection(point u1, point u2, point v1, point v2){
    point ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
            /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x += (u2.x - u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
   return ret;
}
//判直线和圆相交,包括相切
int intersect_line_circle(point c,double r,point 11,point 12){
    return disptoline(c,l1,l2)<r+eps;
}
//判线段和圆相交,包括端点和相切
int intersect_seg_circle(point c,double r,point 11,point 12){
    double t1=distance(c,11)-r,t2=distance(c,12)-r;
    point t=c;
    if (t1 < eps | |t2 < eps)
        return t1>-eps||t2>-eps;
    t.x+=11.y-12.y;
    t.y+=12.x-11.x;
    return xmult(l1,c,t)*xmult(l2,c,t)<eps&&disptoline(c,l1,l2)-r<eps;
}
//判圆和圆相交,包括相切
int intersect_circle_circle(point c1,double r1,point c2,double r2){
    return distance(c1,c2)<r1+r2+eps&&distance(c1,c2)>fabs(r1-r2)-eps;
}
//计算圆上到点 p 最近点,如 p 与圆心重合,返回 p 本身
point dot_to_circle(point c,double r,point p){
    point u,v;
    if (distance(p,c) < eps)
        return p;
    u.x=c.x+r*fabs(c.x-p.x)/distance(c,p);
```

```
u.y = c.y + r*fabs(c.y-p.y)/distance(c,p)*((c.x-p.x)*(c.y-p.y) < 0?-1:1);
    v.x=c.x-r*fabs(c.x-p.x)/distance(c,p);
    v.y=c.y-r*fabs(c.y-p.y)/distance(c,p)*((c.x-p.x)*(c.y-p.y)<0?-1:1);
    return distance(u,p)<distance(v,p)?u:v;
}
//计算直线与圆的交点,保证直线与圆有交点
//计算线段与圆的交点可用这个函数后判点是否在线段上
void intersection_line_circle(point c,double r,point 11,point 12,point& p1,point& p2){
    point p=c;
   double t;
   p.x+=11.y-12.y;
   p.y+=12.x-11.x;
   p=intersection(p,c,l1,l2);
   t=sqrt(r*r-distance(p,c)*distance(p,c))/distance(11,12);
   p1.x=p.x+(12.x-11.x)*t;
   p1.y=p.y+(12.y-11.y)*t;
   p2.x=p.x-(12.x-11.x)*t;
   p2.y=p.y-(12.y-11.y)*t;
}
//计算圆与圆的交点,保证圆与圆有交点,圆心不重合
void intersection circle circle(point c1,double r1,point c2,double r2,point&
p1,point& p2){
    point u,v;
    double t;
    t=(1+(r_1*r_1-r_2*r_2)/distance(c_1,c_2)/distance(c_1,c_2))/2;
    u.x=c1.x+(c2.x-c1.x)*t;
    u.y=c1.y+(c2.y-c1.y)*t;
    v.x=u.x+c1.y-c2.y;
   v.y=u.y-c1.x+c2.x;
   intersection_line_circle(c1,r1,u,v,p1,p2);
}
                                12. 整数函数
//整数几何函数库
//注意某些情况下整数运算会出界!
#define sign(a) ((a)>0?1:(((a)<0?-1:0)))
struct point{int x,y;};
struct line{point a,b;};
//计算 cross product (P1-P0)x(P2-P0)
int xmult(point p1,point p2,point p0){
```

```
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
int xmult(int x1,int y1,int x2,int y2,int x0,int y0){
    return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0);
}
//计算 dot product (P1-P0).(P2-P0)
int dmult(point p1,point p2,point p0){
    return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
int dmult(int x1,int y1,int x2,int y2,int x0,int y0){
    return (x1-x0)*(x2-x0)+(y1-y0)*(y2-y0);
}
//判三点共线
int dots_inline(point p1,point p2,point p3){
    return !xmult(p1,p2,p3);
}
int dots_inline(int x1,int y1,int x2,int y2,int x3,int y3){
    return !xmult(x1,y1,x2,y2,x3,y3);
}
//判点是否在线段上,包括端点和部分重合
int dot_online_in(point p,line l){
    return !xmult(p,l.a,l.b)&&(l.a.x-p.x)*(l.b.x-p.x) <= 0&&(l.a.y-p.y)*(l.b.y-p.y) <= 0;
int dot_online_in(point p,point 11,point 12){
    return !xmult(p,11,12)&&(11.x-p.x)*(12.x-p.x) <= 0&&(11.y-p.y)*(12.y-p.y) <= 0;
int dot_online_in(int x,int y,int x1,int y1,int x2,int y2){
    return !xmult(x,y,x1,y1,x2,y2)&&(x1-x)*(x2-x)<=0&&(y1-y)*(y2-y)<=0;
}
//判点是否在线段上,不包括端点
int dot_online_ex(point p,line l){
    return dot_online_in(p,l)&&(p.x!=l.a.x||p.y!=l.a.y)&&(p.x!=l.b.x||p.y!=l.b.y);
int dot_online_ex(point p,point 11,point 12){
    return\ dot\_online\_in(p,\!11,\!12)\&\&(p.x!=\!11.x||p.y!=\!11.y)\&\&(p.x!=\!12.x||p.y!=\!12.y);
int dot_online_ex(int x,int y,int x1,int y1,int x2,int y2){
    return dot_online_in(x,y,x1,y1,x2,y2)&&(x!=x1||y!=y1)&&(x!=x2||y!=y2);
}
```

```
//判两点在直线同侧,点在直线上返回0
int same_side(point p1,point p2,line l){
    return sign(xmult(l.a,p1,l.b))*xmult(l.a,p2,l.b)>0;
}
int same_side(point p1,point p2,point 11,point 12){
    return sign(xmult(11,p1,12))*xmult(11,p2,12)>0;
}
//判两点在直线异侧,点在直线上返回0
int opposite_side(point p1,point p2,line 1){
    return sign(xmult(l.a,p1,l.b))*xmult(l.a,p2,l.b)<0;
}
int opposite_side(point p1,point p2,point 11,point 12){
    return sign(xmult(11,p1,12))*xmult(11,p2,12)<0;
}
//判两直线平行
int parallel(line u,line v){
    return (u.a.x-u.b.x)*(v.a.y-v.b.y)==(v.a.x-v.b.x)*(u.a.y-u.b.y);
int parallel(point u1, point u2, point v1, point v2){
    return (u1.x-u2.x)*(v1.y-v2.y)==(v1.x-v2.x)*(u1.y-u2.y);
}
//判两直线垂直
int perpendicular(line u,line v){
    return (u.a.x-u.b.x)*(v.a.x-v.b.x)==-(u.a.y-u.b.y)*(v.a.y-v.b.y);
}
int perpendicular(point u1,point u2,point v1,point v2){
    return (u1.x-u2.x)*(v1.x-v2.x) == -(u1.y-u2.y)*(v1.y-v2.y);
}
//判两线段相交,包括端点和部分重合
int intersect_in(line u,line v){
    if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b))
        return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u);
dot\_online\_in(u.a,v)||dot\_online\_in(u.b,v)||dot\_online\_in(v.a,u)||dot\_online\_in(v.b,u);
int intersect_in(point u1,point u2,point v1,point v2){
    if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2))
        return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2);
dot online in(u1,v1,v2)||dot online in(u2,v1,v2)||dot online in(v1,u1,u2)||dot online
```

```
e_in(v2,u1,u2);
}

//判两线段相交,不包括端点和部分重合
int intersect_ex(line u,line v){
    return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u);
}
int intersect_ex(point u1,point u2,point v1,point v2){
    return opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2);
}
```

13. 注意

- 1. 注意舍入方式(0.5 的舍入方向);防止输出-0.
- 2. 几何题注意多测试不对称数据.
- 3. 整数几何注意 xmult 和 dmult 是否会出界; 符点几何注意 eps 的使用.
- 4. 避免使用斜率;注意除数是否会为0.
- 5. 公式一定要化简后再代入.
- 6. 判断同一个 2*PI 域内两角度差应该是 abs(a1-a2)
beta||abs(a1-a2)>pi+pi-beta; 相等应该是 abs(a1-a2)<eps||abs(a1-a2)>pi+pi-eps;
- 7. 需要的话尽量使用 atan2,注意:atan2(0,0)=0, atan2(1,0)=pi/2,atan2(-1,0)=-pi/2,atan2(0,1)=0,atan2(0,-1)=pi.
- 8. cross product = $|\mathbf{u}|^*|\mathbf{v}|^*\sin(a)$ dot product = $|\mathbf{u}|^*|\mathbf{v}|^*\cos(a)$
- 9. (P1-P0)x(P2-P0)结果的意义:

正: <P0,P1>在<P0,P2>顺时针(0,pi)内 负: <P0,P1>在<P0,P2>逆时针(0,pi)内 0: <P0,P1>,<P0,P2>共线,夹角为0或pi

10. 误差限缺省使用 1e-8!

1. 并查集

```
//带路径压缩的并查集,用于动态维护查询等价类
//图论算法中动态判点集连通常用
//维护和查询复杂度略大于 O(1)
//集合元素取值 1..MAXN-1(注意 0 不能用!),默认不等价
#include <string.h>
#define MAXN 100000
#define _ufind_run(x) for(;p[t=x];x=p[x],p[t]=(p[x]?p[x]:x))
#define _run_both _ufind_run(i);_ufind_run(j)
struct ufind{
   int p[MAXN],t;
   void init(){memset(p,0,sizeof(p));}
   void set_friend(int i,int j){_run_both;p[i]=(i==j?0:j);}
   int is_friend(int i,int j){_run_both;return i==j&&i;}
};
                       2. 并查集扩展(friend_enemy)
//带路径压缩的并查集扩展形式
//用于动态维护查询 friend-enemy 型等价类
//维护和查询复杂度略大于 O(1)
//集合元素取值 1..MAXN-1(注意 0 不能用!),默认无关
#include <string.h>
#define MAXN 100000
#define sig(x) ((x)>0?1:-1)
#define abs(x) ((x)>0?(x):-(x))
#define
                                                               ufind run(x)
for(p[t=abs(x)]; x=sig(x)*p[abs(x)], p[t]=sig(p[t])*(p[abs(x)]; p[abs(x)]; abs(p[t])))
#define _run_both _ufind_run(i);_ufind_run(j)
\#define \_set\_side(x) p[abs(i)]=sig(i)*(abs(i)==abs(j)?0:(x)*j)
#define _judge_side(x) (i==(x)*j&&i)
struct ufind{
   int p[MAXN],t;
   void init(){memset(p,0,sizeof(p));}
   int set_friend(int i,int j){_run_both;_set_side(1);return !_judge_side(-1);}
   int set_enemy(int i,int j){_run_both;_set_side(-1);return !_judge_side(1);}
   int is_friend(int i,int j){_run_both;return _judge_side(1);}
   int is_enemy(int i,int j){_run_both;return _judge_side(-1);}
```

```
};
```

3. 堆(binary)

```
//二分堆(binary)
//可插入,获取并删除最小(最大)元素,复杂度均 O(logn)
//可更改元素类型,修改比较符号或换成比较函数
#define MAXN 10000
\#define \_cp(a,b)((a)<(b))
typedef int elem_t;
struct heap{
   elem_t h[MAXN];
   int n,p,c;
   void init()\{n=0;\}
   void ins(elem t e){
      for (p=++n;p>1&\&\_cp(e,h[p>>1]);h[p]=h[p>>1],p>>=1);
      h[p]=e;
   }
   int del(elem_t& e){
      if (!n) return 0;
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[p]=h[c],p=c,c<
<=1);
      h[p]=h[n--];
      return 1;
   }
};
                         4. 堆(mapped)
//映射二分堆
//可插入,获取并删除任意元素,复杂度均 O(logn)
//插入时提供一个索引值,删除时按该索引删除,获取并删除最小元素时一起获得
该索引
//索引值范围 0..MAXN-1,不能重复,不负责维护索引的唯一性,不在此返回请另外
//主要用于图论算法,该索引值可以是节点的下标
//可更改元素类型,修改比较符号或换成比较函数
#define MAXN 10000
#define _cp(a,b) ((a)<(b))
typedef int elem_t;
struct heap{
   elem_t h[MAXN];
```

int ind[MAXN],map[MAXN],n,p,c;

```
void init(){n=0;}
    void ins(int i,elem_t e){
        for
(p=++n;p>1&\&\_cp(e,h[p>>1]);h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
        h[map[ind[p]=i]=p]=e;
    int del(int i,elem_t& e){
        i=map[i]; if (i<1||i>n) return 0;
        for (e=h[p=i];p>1;h[map[ind[p]=ind[p>>1]]=p]=h[p>>1],p>>=1);
(c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind[c]]=p]=h
[c],p=c,c<<=1);
        h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
    int delmin(int& i,elem_t& e){
        if (n<1) return 0;i=ind[1];
(e=h[p=1],c=2;c<n\&\&\_cp(h[c+=(c< n-1\&\&\_cp(h[c+1],h[c]))],h[n]);h[map[ind[p]=ind])
[c]=p=h[c],p=c,c<<=1);
        h[map[ind[p]=ind[n]]=p]=h[n];n--;return 1;
    }
};
                                  5. 矩形切割
//矩形切割
//intersect 函数构造矩形 a 和 b 的交集
//cut 函数将 b 关于 a 进行切割,用切下的矩形作参数调用 dummy 函数
struct rect{
    int x1, x2, y1, y2;
    rect(){}
    rect(int a,int b,int c,int d):x1(a),x2(b),y1(c),y2(d){}
};
inline rect intersect(rect& a,rect& b){
rect(a.x1>b.x1?a.x1:b.x1,a.x2<b.x2?a.x2:b.x2,a.y1>b.y1?a.y1:b.y1,a.y2<b.y2?a.y2:b.
y2);
}
void dummy(rect a){
    //dispose this rect
}
int cut(rect& a,rect b){
```

```
rect c=intersect(a,b);
    if (c.x1 >= c.x2 || c.y1 >= c.y2)
        return 0;
    if (b.x1 < c.x1)
        dummy(rect(b.x1,c.x1,b.y1,b.y2)),b.x1=c.x1;
    if (b.x2>c.x2)
        dummy(rect(c.x2,b.x2,b.y1,b.y2)),b.x2=c.x2;
    if (b.y1<c.y1)
        dummy(rect(b.x1,b.x2,b.y1,c.y1)),b.y1=c.y1;
    if (b.y2>c.y2)
        dummy(rect(b.x1,b.x2,c.y2,b.y2)),b.y2=c.y2;
    return 1;
}
                                     6. 线段树
//线段树
//可以处理加入边和删除边不同的情况
//inc_seg 和 dec_seg 用于加入边
//seg_len 求长度
//t 传根节点(一律为 1)
//10,r0 传树的节点范围(一律为 1..t)
//l.r 传线段(端点)
#define MAXN 10000
struct segtree{
    int n,cnt[MAXN],len[MAXN];
    segtree(int t):n(t){
        for (int i=1; i <=t; i++)
            cnt[i]=len[i]=0;
    };
    void update(int t,int l,int r);
    void inc seg(int t,int 10,int r0,int 1,int r);
    void dec_seg(int t,int 10,int r0,int 1,int r);
    int seg_len(int t,int 10,int r0,int 1,int r);
};
int length(int l,int r){
    return r-l;
}
void segtree::update(int t,int l,int r){
    if (cnt[t]||r-l==1)
        len[t]=length(l,r);
    else
        len[t]=len[t+t]+len[t+t+1];
```

```
}
void segtree::inc_seg(int t,int l0,int r0,int l,int r){
    if (10==1\&\&r0==r)
         cnt[t]++;
    else{
         int m0=(10+r0)>>1;
         if (l<m0)
             inc_seg(t+t,l0,m0,l,m0<r?m0:r);
         if (r>m0)
             inc_seg(t+t+1,m0,r0,m0>1?m0:l,r);
         if (cnt[t+t]\&\&cnt[t+t+1]){
             cnt[t+t]--;
             update(t+t,l0,m0);
             cnt[t+t+1]--;
             update(t+t+1,m0,r0);
             cnt[t]++;
         }
    }
    update(t,10,r0);
}
void segtree::dec_seg(int t,int 10,int r0,int 1,int r){
    if (10==1&&r0==r)
         cnt[t]--;
    else if (cnt[t]){
         cnt[t]--;
         if (l>l0)
             inc_seg(t,l0,r0,l0,l);
         if (r<r0)
             inc_seg(t,l0,r0,r,r0);
    }
    else{
         int m0=(10+r0)>>1;
         if (l<m0)
             dec_seg(t+t,10,m0,1,m0<r?m0:r);
             dec_seg(t+t+1,m0,r0,m0>1?m0:1,r);
    }
    update(t,10,r0);
}
int segtree::seg_len(int t,int l0,int r0,int l,int r){
    if (cnt[t]||(10==1\&\&r0==r))
```

```
return len[t];
    else{
        int m0=(10+r0)>>1,ret=0;
         if (l<m0)
             ret + = seg_len(t+t, 10, m0, 1, m0 < r?m0:r);
         if (r>m0)
             ret + = seg_len(t + t + 1, m0, r0, m0 > 1?m0:l,r);
         return ret;
    }
}
                                    7. 线段树扩展
//线段树扩展
//可以计算长度和线段数
//可以处理加入边和删除边不同的情况
//inc_seg 和 dec_seg 用于加入边
//seg_len 求长度,seg_cut 求线段数
//t 传根节点(一律为 1)
//10,r0 传树的节点范围(一律为 1..t)
//l,r 传线段(端点)
#define MAXN 10000
struct segtree{
    int n,cnt[MAXN],len[MAXN],cut[MAXN],bl[MAXN],br[MAXN];
    segtree(int t):n(t){
         for (int i=1; i <=t; i++)
             cnt[i]=len[i]=cut[i]=bl[i]=br[i]=0;
    };
    void update(int t,int l,int r);
    void inc_seg(int t,int l0,int r0,int l,int r);
    void dec_seg(int t,int 10,int r0,int 1,int r);
    int seg len(int t,int l0,int r0,int l,int r);
    int seg_cut(int t,int 10,int r0,int 1,int r);
};
int length(int l,int r){
    return r-l;
}
void segtree::update(int t,int l,int r){
    if (cnt[t]||r-l==1)
         len[t] = length(l,r), cut[t] = bl[t] = br[t] = 1;
    else{
         len[t]=len[t+t]+len[t+t+1];
         \operatorname{cut}[t] = \operatorname{cut}[t+t] + \operatorname{cut}[t+t+1];
```

```
if (br[t+t]\&\&bl[t+t+1])
             cut[t]--;
         bl[t]=bl[t+t],br[t]=br[t+t+1];
    }
}
void segtree::inc_seg(int t,int 10,int r0,int 1,int r){
    if (10==1&&r0==r)
        cnt[t]++;
    else{
         int m0=(10+r0)>>1;
         if (l<m0)
             inc\_seg(t+t,10,m0,1,m0< r?m0:r);
         if (r>m0)
             inc_seg(t+t+1,m0,r0,m0>1?m0:1,r);
         if (cnt[t+t]&&cnt[t+t+1]){
             cnt[t+t]--;
             update(t+t,10,m0);
             cnt[t+t+1]--;
             update(t+t+1,m0,r0);
             cnt[t]++;
         }
    }
    update(t,10,r0);
}
void segtree::dec_seg(int t,int 10,int r0,int 1,int r){
    if (10==1&&r0==r)
        cnt[t]--;
    else if (cnt[t]){
        cnt[t]--;
        if (l>l0)
             inc_seg(t,l0,r0,l0,l);
        if (r<r0)
             inc\_seg(t,10,r0,r,r0);
    }
    else{
         int m0=(10+r0)>>1;
         if (1<m0)
             dec_seg(t+t,l0,m0,l,m0<r?m0:r);
        if (r>m0)
             dec_seg(t+t+1,m0,r0,m0>1?m0:1,r);
    update(t,10,r0);
```

```
}
int segtree::seg_len(int t,int 10,int r0,int l,int r){
    if (cnt[t]||(10==1\&\&r0==r))
         return len[t];
    else{
         int m0=(10+r0)>>1,ret=0;
         if (l<m0)
              ret + = seg_len(t+t, 10, m0, 1, m0 < r?m0:r);
         if (r>m0)
              ret + = seg_len(t + t + 1, m0, r0, m0 > 1?m0:l,r);
         return ret;
    }
}
int segtree::seg_cut(int t,int 10,int r0,int l,int r){
    if (cnt[t])
         return 1;
    if (10==1\&\&r0==r)
         return cut[t];
    else{
         int m0=(10+r0)>>1,ret=0;
         if (1 < m0)
              ret + = seg_cut(t + t, 10, m0, 1, m0 < r?m0:r);
         if (r>m0)
              ret + = seg\_cut(t+t+1,m0,r0,m0>1?m0:1,r);
         if (1 < m0 & r > m0 & br[t+t] & bl[t+t+1])
              ret--;
         return ret;
    }
}
```

8. 线段树应用

求面积:

- 1) 坐标离散化
- 2) 垂直边按 x 坐标排序
- 3) 从左往右用线段树处理垂直边 累计每个离散 x 区间长度和线段树长度的乘积

求周长:

- 1) 坐标离散化
- 2) 垂直边按 x 坐标排序, 第二关键字为入边优于出边
- 3) 从左往右用线段树处理垂直边 在每个离散点上先加入所有入边,累计线段树长度变化值

再删除所有出边,累计线段树长度变化值

- 4) 水平边按 v 坐标排序, 第二关键字为入边优于出边
- 5) 从上往下用线段树处理水平边 在每个离散点上先加入所有入边,累计线段树长度变化值 再删除所有出边,累计线段树长度变化值

9. 子段和

```
//求 sum{[0..n-1]}
//维护和查询复杂度均为 O(logn)
//用于动态求子段和,数组内容保存在 sum.a[]中
//可以改成其他数据类型
#include <string.h>
#define lowbit(x) ((x)&((x)^{(x)-1}))
#define MAXN 10000
typedef int elem t;
struct sum{
   elem_t a[MAXN],c[MAXN],ret;
    int n:
    void init(int i){memset(a,0,sizeof(a));memset(c,0,sizeof(c));n=i;}
    void update(int i,elem_t v){for (v=a[i],a[i++]+=v;i \le n;c[i-1]+=v,i+=lowbit(i));}
   elem_t query(int i){for (ret=0;i;ret+=c[i-1],i^=lowbit(i));return ret;}
};
                                 10. 子阵和
//求 sum{a[0..m-1][0..n-1]}
//维护和查询复杂度均为 O(logm*logn)
//用于动态求子阵和,数组内容保存在 sum.a[][]中
//可以改成其他数据类型
#include <string.h>
#define lowbit(x) ((x)&((x)^{(x)-1}))
#define MAXN 100
typedef int elem_t;
struct sum{
    elem_t a[MAXN][MAXN],c[MAXN][MAXN],ret;
   int m,n,t;
    void init(int i,int j){memset(a,0,sizeof(a));memset(c,0,sizeof(c));m=i,n=j;}
    void update(int i,int j,elem_t v){
        for (v-=a[i][j],a[i++][j++]+=v,t=j;i<=m;i+=lowbit(i))
           for (j=t;j \le n;c[i-1][j-1]+=v,j+=lowbit(j));
    }
    elem_t query(int i,int j){
        for (ret=0,t=j;i;i^=lowbit(i))
```

```
for \ (j = t; j; ret + = c[i-1][j-1], j^* = lowbit(j));
         return ret;
    }
};
十三. 其他
                                         1. 分数
struct frac{
    int num,den;
};
double fabs(double x){
    return x>0?x:-x;
}
int gcd(int a,int b){
    int t;
    if (a<0)
         a=-a;
    if (b<0)
         b=-b;
    if (!b)
         return a;
    while (t=a%b)
         a=b,b=t;
    return b;
}
void simplify(frac& f){
    int t;
    if (t=gcd(f.num,f.den))
         f.num/=t,f.den/=t;
    else
         f.den=1;
}
frac f(int n,int d,int s=1){
    frac ret;
    if (d<0)
         ret.num=-n,ret.den=-d;
```

else

```
ret.num=n,ret.den=d;
    if (s)
         simplify(ret);
    return ret;
}
frac convert(double x){
    frac ret;
    for (ret.den=1; fabs(x-int(x)) > 1e-10; ret.den*=10,x*=10);
    ret.num=(int)x;
    simplify(ret);
    return ret;
}
int fraqcmp(frac a,frac b){
    int g1=gcd(a.den,b.den),g2=gcd(a.num,b.num);
    if (!g1||!g2)
        return 0;
    return b.den/g1*(a.num/g2)-a.den/g1*(b.num/g2);
}
frac add(frac a,frac b){
    int g1=gcd(a.den,b.den),g2,t;
    if (!g1)
         return f(1,0,0);
    t=b.den/g1*a.num+a.den/g1*b.num;
    g2=gcd(g1,t);
    return f(t/g2,a.den/g1*(b.den/g2),0);
}
frac sub(frac a,frac b){
    return add(a,f(-b.num,b.den,0));
}
frac mul(frac a,frac b){
    int t1=gcd(a.den,b.num),t2=gcd(a.num,b.den);
    if (!t1||!t2)
         return f(1,1,0);
    return f(a.num/t2*(b.num/t1),a.den/t1*(b.den/t2),0);
}
frac div(frac a,frac b){
    return mul(a,f(b.den,b.num,0));
}
```

2. 矩阵

define MAXN 100

```
#define fabs(x) ((x)>0?(x):-(x))
\#define zero(x) (fabs(x)<1e-10)
struct mat{
    int n,m;
    double data[MAXN][MAXN];
};
int mul(mat& c,const mat& a,const mat& b){
    int i,j,k;
    if (a.m!=b.n)
         return 0;
    c.n=a.n,c.m=b.m;
    for (i=0;i< c.n;i++)
         for (j=0; j< c.m; j++)
             for (c.data[i][j]=k=0;k< a.m;k++)
                  c.data[i][j]+=a.data[i][k]*b.data[k][j];
    return 1;
}
int inv(mat& a){
    int i,j,k,is[MAXN],js[MAXN];
    double t;
    if (a.n!=a.m)
         return 0;
    for (k=0;k< a.n;k++)
         for (t=0,i=k;i< a.n;i++)
             for (j=k;j<a.n;j++)
                  if (fabs(a.data[i][j])>t)
                       t=fabs(a.data[is[k]=i][js[k]=j]);
         if (zero(t))
             return 0;
         if (is[k]!=k)
             for (j=0; j< a.n; j++)
                  t=a.data[k][j],a.data[k][j]=a.data[is[k]][j],a.data[is[k]][j]=t;
         if (js[k]!=k)
             for (i=0; i< a.n; i++)
                  t=a.data[i][k],a.data[i][k]=a.data[i][js[k]],a.data[i][js[k]]=t;
         a.data[k][k]=1/a.data[k][k];
         for (j=0; j< a.n; j++)
             if (j!=k)
```

```
a.data[k][j]*=a.data[k][k];
         for (i=0;i<a.n;i++)
             if (i!=k)
                  for (j=0; j< a.n; j++)
                       if (i!=k)
                            a.data[i][j]=a.data[i][k]*a.data[k][j];
         for (i=0;i<a.n;i++)
             if (i!=k)
                  a.data[i][k]*=-a.data[k][k];
    for (k=a.n-1;k>=0;k--){
         for (j=0; j< a.n; j++)
             if (js[k]!=k)
                  t=a.data[k][j],a.data[k][j]=a.data[js[k]][j],a.data[js[k]][j]=t;
         for (i=0;i<a.n;i++)
             if (is[k]!=k)
                  t=a.data[i][k],a.data[i][k]=a.data[i][is[k]],a.data[i][is[k]]=t;
    }
    return 1;
}
double det(const mat& a){
    int i,j,k,sign=0;
    double b[MAXN][MAXN],ret=1,t;
    if (a.n!=a.m)
         return 0;
    for (i=0;i<a.n;i++)
         for (j=0; j< a.m; j++)
              b[i][j]=a.data[i][j];
    for (i=0;i< a.n;i++){
         if (zero(b[i][i])){
             for (j=i+1; j< a.n; j++)
                  if (!zero(b[j][i]))
                       break;
             if (j==a.n)
                  return 0;
             for (k=i;k<a.n;k++)
                  t=b[i][k],b[i][k]=b[j][k],b[j][k]=t;
              sign++;
         ret*=b[i][i];
         for (k=i+1;k< a.n;k++)
              b[i][k]/=b[i][i];
         for (j=i+1; j< a.n; j++)
```

```
for (k=i+1;k< a.n;k++)
                b[j][k]-=b[j][i]*b[i][k];
    if (sign&1)
        ret=-ret;
   return ret;
}
                                    3. 日期
//日期函数
int days[12]=\{31,28,31,30,31,30,31,30,31,30,31\};
struct date{
    int year, month, day;
};
//判闰年
inline int leap(int year){
    return (year%4==0&&year%100!=0)||year%400==0;
}
//判合法性
inline int legal(date a){
    if (a.month<0||a.month>12)
        return 0;
    if (a.month==2)
        return a.day>0&&a.day<=28+leap(a.year);
    return a.day>0&&a.day<=days[a.month-1];
}
//比较日期大小
inline int datecmp(date a,date b){
   if (a.year!=b.year)
       return a.year-b.year;
   if (a.month!=b.month)
       return a.month-b.month;
   return a.day-b.day;
}
//返回指定日期是星期几
int weekday(date a){
    int tm=a.month>=3?(a.month-2):(a.month+10);
    int ty=a.month>=3?a.year:(a.year-1);
    return (ty+ty/4-ty/100+ty/400+(int)(2.6*tm-0.2)+a.day)%7;
```

```
}
//日期转天数偏移
int date2int(date a){
    int ret=a.year*365+(a.year-1)/4-(a.year-1)/100+(a.year-1)/400,i;
    days[1]+=leap(a.year);
    for (i=0;i<a.month-1;ret+=days[i++]);
    days[1]=28;
    return ret+a.day;
}
//天数偏移转日期
date int2date(int a){
    date ret;
    ret.year=a/146097*400;
    for (a\%=146097;a>=365+leap(ret.year);a=365+leap(ret.year),ret.year++);
    days[1]+=leap(ret.year);
    for (ret.month=1;a>=days[ret.month-1];a-=days[ret.month-1],ret.month++);
    days[1]=28;
    ret.day=a+1;
    return ret;
}
                             4. 线性方程组(gauss)
#define MAXN 100
#define fabs(x) ((x)>0?(x):-(x))
#define eps 1e-10
//列主元 gauss 消去求解 a[][]x[]=b[]
//返回是否有唯一解,若有解在 b[]中
int gauss_cpivot(int n,double a[][MAXN],double b[]){
    int i,j,k,row;
    double maxp,t;
    for (k=0;k< n;k++)
        for (maxp=0,i=k;i< n;i++)
            if (fabs(a[i][k])>fabs(maxp))
                maxp=a[row=i][k];
        if (fabs(maxp)<eps)
            return 0;
        if (row!=k){
            for (j=k;j< n;j++)
                t=a[k][j],a[k][j]=a[row][j],a[row][j]=t;
            t=b[k],b[k]=b[row],b[row]=t;
        }
```

```
for (j=k+1;j< n;j++){
             a[k][j]/=maxp;
            for (i=k+1;i< n;i++)
                 a[i][j] = a[i][k] * a[k][j];
         }
        b[k]/=maxp;
        for (i=k+1;i<n;i++)
            b[i]=b[k]*a[i][k];
    for (i=n-1;i>=0;i--)
        for (j=i+1;j< n;j++)
             b[i]=a[i][j]*b[j];
    return 1;
}
//全主元 gauss 消去解 a[][]x[]=b[]
//返回是否有唯一解,若有解在 b[]中
int gauss_tpivot(int n,double a[][MAXN],double b[]){
    int i,j,k,row,col,index[MAXN];
    double maxp,t;
    for (i=0;i< n;i++)
        index[i]=i;
    for (k=0;k< n;k++)
         for (maxp=0,i=k;i<n;i++)
             for (j=k;j< n;j++)
                 if (fabs(a[i][j])>fabs(maxp))
                     maxp=a[row=i][col=j];
         if (fabs(maxp)<eps)
            return 0;
        if (col!=k){
            for (i=0;i< n;i++)
                 t=a[i][col],a[i][col]=a[i][k],a[i][k]=t;
            j=index[col],index[col]=index[k],index[k]=j;
        }
        if (row!=k){
             for (j=k;j< n;j++)
                    t=a[k][j],a[k][j]=a[row][j],a[row][j]=t;
             t=b[k],b[k]=b[row],b[row]=t;
        for (j=k+1;j< n;j++){
             a[k][j]/=maxp;
            for (i=k+1;i< n;i++)
                 a[i][j] = a[i][k] * a[k][j];
         }
```

```
b[k]/=maxp;
        for (i=k+1;i<n;i++)
             b[i]=b[k]*a[i][k];
    }
    for (i=n-1;i>=0;i--)
        for (j=i+1;j< n;j++)
             b[i]=a[i][j]*b[j];
    for (k=0;k< n;k++)
        a[0][index[k]]=b[k];
    for (k=0;k<n;k++)
        b[k]=a[0][k];
    return 1;
}
                                    5. 线性相关
//判线性相关(正交化)
//传入 m 个 n 维向量
#include <math.h>
#define MAXN 100
#define eps 1e-10
int linear_dependent(int m,int n,double vec[][MAXN]){
    double ort[MAXN][MAXN],e;
    int i,j,k;
    if (m>n)
        return 1;
    for (i=0;i< m;i++){
        for (j=0;j< n;j++)
             ort[i][j]=vec[i][j];
        for (k=0;k< i;k++){
             for (e=j=0; j< n; j++)
                 e+=ort[i][j]*ort[k][j];\\
             for (j=0;j< n;j++)
                 ort[i][j]-=e*ort[k][j];
             for (e=j=0; j< n; j++)
                 e+=ort[i][j]*ort[i][j];
             if (fabs(e=sqrt(e))<eps)
                 return 1;
             for (j=0; j< n; j++)
                 ort[i][j]/=e;
        }
    }
    return 0;
}
```

1. joseph

```
// Joseph's Problem
// input: n,m
                  -- the number of persons, the inteval between persons
// output:
                  -- return the reference of last person
int josephus0(int n, int m)
    if (n == 2) return (m\%2) ? 2:1;
    int v = (m+josephus0(n-1,m)) \% n;
    if (v == 0) v = n;
    return v;
int josephus(int n, int m)
    if (m == 1) return n;
    if (n == 1) return 1;
    if (m \ge n) return josephus0(n,m);
    int l = (n/m)*m;
    int j = \text{josephus}(n - (n/m), m);
    if (j \le n-l) return l+j;
    j = n-1;
    int t = (j/(m-1))*m;
    if ((j \% (m-1)) == 0) return t-1;
    return t + (j \% (m-1));
}
```

2. N 皇后构造解

```
//N 皇后构造解,n>=4

void even1(int n,int *p){
    int i;
    for (i=1;i<=n/2;i++)
        p[i-1]=2*i;
    for (i=n/2+1;i<=n;i++)
        p[i-1]=2*i-n-1;
}

void even2(int n,int *p){
    int i;
```

```
for (i=1;i \le n/2;i++)
        p[i-1]=(2*i+n/2-3)%n+1;
    for (i=n/2+1;i<=n;i++)
        p[i-1]=n-(2*(n-i+1)+n/2-3)\%n;
}
void generate(int,int*);
void odd(int n,int *p){
    generate(n-1,p),p[n-1]=n;
}
void generate(int n,int *p){
    if (n&1)
        odd(n,p);
    else if (n\%6!=2)
        even1(n,p);
   else
        even2(n,p);
}
                                3. 布尔母函数
//布尔母函数
//判 m[]个价值为 w[]的货币能否构成 value
//适合 m[]较大 w[]较小的情况
//返回布尔量
//传入货币种数 n,个数 m[],价值 w[]和目标值 value
#define MAXV 100000
int genfunc(int n,int* m,int* w,int value){
    int i,j,k,c;
    char r[MAXV];
    for (r[0]=i=1;i<=value;r[i++]=0);
    for (i=0;i<n;i++){
        for (j=0;j< w[i];j++){
            c=m[i]*r[k=j];
            while ((k+=w[i]) \le value)
                if (r[k])
                    c=m[i];
                else if (c)
                    r[k]=1,c--;
            if (r[value])
                return 1;
    }
```

```
return 0;
}
                                    4. 第 k 元素
//取第 k 个元素,k=0..n-1
//平均复杂度 O(n)
//注意 a[]中的顺序被改变
\#define \_cp(a,b)((a)<(b))
typedef int elem_t;
elem_t kth_element(int n,elem_t* a,int k){
    elem_t t,key;
    int l=0,r=n-1,i,j;
    while (l < r){
        for (key=a[((i=l-1)+(j=r+1))>>1];i< j;){}
             for (j--;_cp(key,a[j]);j--);
             for (i++;_cp(a[i],key);i++);
             if (i < j) t = a[i], a[i] = a[j], a[j] = t;
        if (k>j) l=j+1;
        else r=j;
    }
    return a[k];
}
                                    5. 幻方构造
//幻方构造(1!=2)
#define MAXN 100
void dllb(int l,int si,int sj,int sn,int d[][MAXN]){
    int n,i=0,j=1/2;
    for (n=1;n<=l*l;n++)
        d[i+si][j+sj]=n+sn;
        if (n%l){
             i=(i)?(i-1):(1-1);
            j=(j==l-1)?0:(j+1);
         }
        else
            i=(i==l-1)?0:(i+1);
     }
}
void magic_odd(int l,int d[][MAXN]){
```

```
dllb(1,0,0,0,d);
}
void magic_4k(int l,int d[][MAXN]){
   int i,j;
   for (i=0;i<1;i++)
       for (j=0;j<1;j++)
   1||j\%4==2)?(1*1-(i*1+j)):(i*1+j+1);
void magic_other(int l,int d[][MAXN]){
   int i,j,t;
   dllb(1/2,0,0,0,d);
   dllb(1/2,1/2,1/2,1*1/4,d);
   dllb(1/2,0,1/2,1*1/2,d);
   dllb(1/2,1/2,0,1*1/4*3,d);
   for (i=0;i<1/2;i++)
       for (j=0;j<1/4;j++)
           if (i!=1/4||j)
               t=d[i][j],d[i][j]=d[i+l/2][j],d[i+l/2][j]=t;
   t=d[1/4][1/4],d[1/4][1/4]=d[1/4+1/2][1/4],d[1/4+1/2][1/4]=t;
   for (i=0;i<1/2;i++)
       for (j=l-l/4+1; j< l; j++)
           t=d[i][j],d[i][j]=d[i+l/2][j],d[i+l/2][j]=t;
}
void generate(int l,int d[][MAXN]){
   if (1%2)
       magic_odd(l,d);
   else if (1\%4 = = 0)
       magic_4k(l,d);
   else
       magic_other(l,d);
}
                             6. 模式匹配(kmp)
//模式匹配,kmp 算法,复杂度 O(m+n)
//返回匹配位置,-1表示匹配失败,传入匹配串和模式串和长度
//可更改元素类型,更换匹配函数
#define MAXN 10000
\#define \_match(a,b) ((a)==(b))
typedef char elem_t;
```

```
int pat_match(int ls,elem_t* str,int lp,elem_t* pat){
    int fail[MAXN]=\{-1\},i=0,j;
    for (j=1;j<lp;j++){
        for (i=fail[j-1];i>=0\&\&!\_match(pat[i+1],pat[j]);i=fail[i]);
        fail[j]=(_match(pat[i+1],pat[j])?i+1:-1);
   for (i=j=0;i<ls\&\&j<lp;i++)
        if (_match(str[i],pat[j]))
           j++;
        else if (j)
           j=fail[j-1]+1,i--;
   return j==lp?(i-lp):-1;
}
                                 7. 逆序对数
//序列逆序对数,复杂度 O(nlogn)
//传入序列长度和内容,返回逆序对数
//可更改元素类型和比较函数
#include <string.h>
#define MAXN 1000000
\#define \_cp(a,b)((a)<=(b))
typedef int elem_t;
elem_t _tmp[MAXN];
int inv(int n,elem_t* a){
   int l=n>>1, r=n-1, i, j;
   int ret=(r>1?(inv(1,a)+inv(r,a+1)):0);
    for (i=j=0; i<=1; tmp[i+j]=a[i], i++)
        for (ret+=j;j< r\&\&(i==l||!\_cp(a[i],a[l+j]));\_tmp[i+j]=a[l+j],j++);
   memcpy(a,_tmp,sizeof(elem_t)*n);
   return ret;
}
                              8. 字符串最小表示
    求字符串的最小表示
    输入:字符串
    返回:字符串最小表示的首字母位置(0...size-1)
template <class T>
int MinString(vector <T> &str)
{
   int i, j, k;
```

```
vector < T > ss(str.size() << 1);
    for (i = 0; i < str.size(); i ++) ss[i] = ss[i + str.size()] = str[i];
    for (i = k = 0, j = 1; k < str.size() && i < str.size() && j < str.size(); ) {
        for (k = 0; k < str.size() && ss[i + k] == ss[j + k]; k ++);
        if (k < str.size()) {
            if (ss[i+k] > ss[j+k])
                i += k + 1;
            else j += k + 1;
            if (i == j) j ++;
        }
    }
    return i < j ? i : j;
}
                             9. 最长公共单调子序列
// 最长公共递增子序列,
                          时间复杂度 O(n^2 * logn), 空间 O(n^2)
/**
 *n为a的大小,m为b的大小
 * 结果在 ans 中
 * "define _cp(a,b) ((a)<(b))"求解最长严格递增序列
 */
#define MAXN 1000
#define _{cp(a,b)}((a)<(b))
typedef int elem_t;
elem_t DP[MAXN][MAXN];
int num[MAXN], p[1<<20];
int LIS(int n, elem_t *a, int m, elem_t *b, elem_t *ans){
    int i, j, l, r, k;
    DP[0][0] = 0;
    num[0] = (b[0] == a[0]);
    for(i = 1; i < m; i++) {
         num[i] = (b[i] == a[0]) || num[i-1];
         DP[i][0] = 0;
    for(i = 1; i < n; i++){
         if(b[0] == a[i] &\& !num[0]) {
              num[0] = 1;
              DP[0][0] = i << 10;
         }
```

```
for(j = 1; j < m; j++){
             for(k=((l=0)+(r=num[j-1]-1))>>1; l<=r; k=(l+r)>>1)
                  if(cp(a[DP[j-1][k]>>10], a[i]))
                      1=k+1;
                  else
                      r=k-1;
             if(1 < num[j-1] && i == (DP[j-1][1] >> 10)){
                  if(l \ge num[j]) DP[j][num[j]++] = DP[j-1][l];
                  else DP[j][l] = _cp(a[DP[j][l] >> 10],a[i]) ? DP[j][l] : DP[j-1][l];
             }
             if(b[i] == a[i])
                  for(k=((l=0)+(r=num[j]-1))>>1; l<=r; k=(l+r)>>1)
                      if(cp(a[DP[j][k]>>10], a[i]))
                           l=k+1;
                      else
                           r=k-1;
                  DP[i][1] = (i << 10) + i;
                  num[j] += (l>=num[j]);
                  p[DP[j][1]] = 1 ? DP[j][1-1] : -1;
             }
         }
    }
    for (k=DP[m-1][i=num[m-1]-1];i>=0;ans[i--]=a[k>>10],k=p[k]);
    return num[m-1];
}
                               10. 最长子序列
//最长单调子序列,复杂度 O(nlogn)
//注意最小序列覆盖和最长序列的对应关系,例如
//"define _cp(a,b) ((a)>(b))"求解最长严格递减序列,则
//"define _cp(a,b) (!((a)>(b)))"求解最小严格递减序列覆盖
//可更改元素类型和比较函数
#define MAXN 10000
\#define \_cp(a,b)((a)>(b))
typedef int elem_t;
int subseq(int n,elem_t* a){
   int b[MAXN],i,l,r,m,ret=0;
   for (i=0; i< n; b[1]=i++, ret+=(1>ret))
        for (m=((l=1)+(r=ret))>>1; l<=r; m=(l+r)>>1)
           if (cp(a[b[m]],a[i])
```

```
l=m+1;
           else
               r=m-1;
   return ret;
}
int subseq(int n,elem_t* a,elem_t* ans){
   int b[MAXN],p[MAXN],i,l,r,m,ret=0;
   for (i=0;i< n;p[b[1]=i++]=b[1-1],ret+=(1>ret))
       for (m=((l=1)+(r=ret))>>1; l<=r; m=(l+r)>>1)
           if (cp(a[b[m]],a[i])
               l=m+1;
           else
               r=m-1;
   for (m=b[i=ret];i;ans[--i]=a[m],m=p[m]);
   return ret;
}
                             11. 最大子串匹配
//最大子串匹配,复杂度 O(mn)
//返回最大匹配值,传入两个串和串的长度,重载返回一个最大匹配
//注意做字符串匹配是串末的'\0'没有置!
//可更改元素类型,更换匹配函数和匹配价值函数
#include <string.h>
#define MAXN 100
#define \max(a,b) ((a)>(b)?(a):(b))
\#define \_match(a,b) ((a)==(b))
#define _value(a,b) 1
typedef char elem_t;
int str match(int m,elem t* a,int n,elem t* b){
   int match[MAXN+1][MAXN+1],i,j;
   memset(match,0,sizeof(match));
   for (i=0;i<m;i++)
       for (j=0;j< n;j++)
           match[i+1][j+1]=max(max(match[i][j+1],match[i+1][j]),
                           (match[i][j]+_value(a[i],b[i]))*_match(a[i],b[j]));
   return match[m][n];
}
int str_match(int m,elem_t* a,int n,elem_t* b,elem_t* ret){
   int match[MAXN+1][MAXN+1],last[MAXN+1][MAXN+1],i,j,t;
   memset(match,0,sizeof(match));
   for (i=0;i< m;i++)
```

```
for (j=0;j< n;j++)
    match[i+1][j+1] = (match[i][j+1] > match[i+1][j]?match[i][j+1]:match[i+1][j]);
            last[i+1][j+1] = (match[i][j+1] > match[i+1][j]?3:1);
            if ((t=(match[i][j]+\_value(a[i],b[i]))*\_match(a[i],b[j])) > match[i+1][j+1]) \\
                match[i+1][j+1]=t,last[i+1][j+1]=2;
    for (;match[i][j];i-=(last[t=i][j]>1),j-=(last[t][j]<3))
        ret[match[i][j]-1]=(last[i][j]<3?a[i-1]:b[j-1]);
    return match[m][n];
}
                                12. 最大子段和
//求最大子段和,复杂度 O(n)
//传入串长 n 和内容 list[]
//返回最大子段和,重载返回子段位置(maxsum=list[start]+...+list[end])
//可更改元素类型
typedef int elem_t;
elem_t maxsum(int n,elem_t* list){
    elem_t ret,sum=0;
    int i;
    for (ret=list[i=0];i < n;i++)
        sum=(sum>0?sum:0)+list[i],ret=(sum>ret?sum:ret);
    return ret;
}
elem_t maxsum(int n,elem_t* list,int& start,int& end){
    elem t ret,sum=0;
    int s,i;
    for (\text{ret=list}[\text{start=end=s=i=0}]; i < n; i++, s=(\text{sum}>0?s:i))
        if ((sum=(sum>0?sum:0)+list[i])>ret)
            ret=sum,start=s,end=i;
    return ret;
}
                                13. 最大子阵和
//求最大子阵和,复杂度 O(n^3)
//传入阵的大小 m,n 和内容 mat[][]
//返回最大子阵和,重载返回子阵位置(maxsum=list[s1][s2]+...+list[e1][e2])
//可更改元素类型
#define MAXN 100
typedef int elem_t;
```

```
elem_t maxsum(int m,int n,elem_t mat[][MAXN]){
    elem_t matsum[MAXN][MAXN+1],ret,sum;
   int i,j,k;
   for (i=0;i<m;i++)
        for (matsum[i][j=0]=0;j< n;j++)
            matsum[i][j+1]=matsum[i][j]+mat[i][j];
    for (ret=mat[0][j=0];j< n;j++)
        for (k=j;k<n;k++)
            for (sum=0,i=0;i<m;i++)
   sum=(sum>0?sum:0)+matsum[i][k+1]-matsum[i][j],ret=(sum>ret?sum:ret);
   return ret;
}
elem_t maxsum(int m,int n,elem_t mat[][MAXN],int& s1,int& s2,int& e1,int& e2){
    elem_t matsum[MAXN][MAXN+1],ret,sum;
   int i,j,k,s;
    for (i=0;i<m;i++)
        for (matsum[i][j=0]=0;j<n;j++)
            matsum[i][j+1]=matsum[i][j]+mat[i][j];
    for (ret=mat[s1=e1=0][s2=e2=j=0];j< n;j++)
        for (k=j;k< n;k++)
            for (sum=0,s=i=0;i<m;i++,s=(sum>0?s:i))
                if ((sum=(sum>0?sum:0)+matsum[i][k+1]-matsum[i][j])>ret)
                    ret=sum,s1=s,s2=i,e1=j,e2=k;
   return ret;
}
```