构造初始基可行解

> 希望初始基矩阵是一个单位矩阵,有

$$(\mathbf{P}_1, \cdots, \mathbf{P}_m) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

方法:通过增加人工变量或松弛变量,可以使 $\mathbf{A}_a = [\mathbf{A} \mathbf{I}]$

人工变量法举例

max
$$z=-3x_1+x_3$$

s.t. $x_1+x_2+x_3 \le 4$
 $-x_1+2x_2-x_3 \ge 1$
 $3x_2+x_3=9$

$$x_1, x_2, x_3 \ge 0$$

人工变量法举例

max
$$z=-3x_1+x_3+0x_4+0x_5-Mx_6-Mx_7$$

s.t.
$$x_1 + x_2 + x_3 + x_4 = 4$$

 $-x_1 + 2x_2 - x_3 - x_5 + x_6 = 1$
 $3x_2 + x_3 + x_7 = 9$

$$x \ge 0$$
 $j=1,2,...,7$

大M法: 初始单纯形表

			-3	0	1	0	0	-M	- M
C_B	基	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7
0	x_4	4	1	1	1	1	0	0	0
-M	x_6	1	-2	1	-1	0	-1	1	0
-M	x_7	9	0	3	1	0	0	0	1
	$\sigma_{\!j}$		-2M-3	4M	1	0	-M	0	0

大M法: 最优单纯形表

			-3	0	1	0	0	-M	-M
C_B	基	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7
0	x_4	0	0	0	0	1	-1/2	1/2	-1/2
0	x_2	5/2	-1/2	1	0	0	-1/4	1/4	1/4
1	x_3	3/2	3/2	0	1	0	3/4	-3/4	1/4
	$\sigma_{\!j}$		-3/2	0	0	0	-3/4	-M+3/4	-M-1/4

两阶段法

问题实质:问题隐含了约束 $x_a=0$,最优解需同时满足Ax=b和 $x_a=0$ 。

步骤:

第一阶段: 在Ax=b的解空间中寻找满足 $x_a=0$ 的解。

第二阶段:以上述解为初始解,在 x_a =0的子空间(降维空间)中寻找满足Ax=b的最优解。

第一阶段:

max w=-
$$x_6$$
- x_7
s.t. $x_1 + x_2 + x_3 + x_4$ =4
 $-2x_1 + x_2 - x_3$ - $x_5 + x_6$ = 1
 $3x_2 + x_3$ + $x_7 = 9$

$$x_j \ge 0$$
 $j=1,2,...,7$

两阶段法:最优单纯形表

			0	0	0	0	0	-1	-1
C_B	基	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7
0	x_4	0	0	0	0	1	-1/2	1/2	-1/2
0	x_2	3	0	1	1/3	0	0	0	1/3
$0 x_1 1$		1	0	2/3	0	1/2	-1/2	1/6	
	$\sigma_{\!j}$		0	0	0	0	0	-1	-1

第一阶段

max
$$z=-3x_1+x_3+0x_4+0x_5$$

s.t. $x_4 - 1/2*x_5=0$
 $x_2 - 1/3*x_3 = 3$
 $x_1 + 2/3*x_3 + 1/2*x_5=1$

$$x_{j} \ge 0$$
 $j = 1, 2, ..., 7$

第二阶段:初始单纯形表

			-3	0	1	0	0
C_B	基	b	x_1	x_2	x_3	x_4	x_5
0	x_4	0	0	0	0	1	-1/2
0	x_2	3	0	1	1/3	0	0
0	x_1	1	1	0	2/3	0	1/2
	$\sigma_{\!j}$		0	0	3	0	3/2

第二阶段:最优单纯形表

			-3	0	1	0	0
C_B	基	b	x_1	x_2	x_3	x_4	x_5
0	x_4	0	0	0	0	1	-1/2
0	x_2	5/2	-1/2	1	0	0	-1/4
0	x_3	3/2	3/2	0	1	0	3/4
	$\sigma_{\!j}$		-3/2	0	0	0	-3/4