

Discrete Mathematics thematical

Number Theory Methods of Mathematical Proofs

Lecture 03 — Other Proof Techniques

Dr Kieran Murphy @ (1)

Recurrence
Relations

Department of Computing and Mathematics, SETU (Waterford).

(kieran.murphy@setu.ie)

Autumn Semester, 2022

Outline

Proof by Contradiction

Enumeration

Set Theory

Outline

1. Proof by Contradiction

- We prove a statement using the process:
 - assume reverse of statement ...
 - derive conclusions from assumption . . .
 - show conclusions are contradictory ...
 - hence assumption must be **False**, so original statement is **True**.

7

Proof by Contradiction

Proof by Contradiction

In a proof by contradiction argument you:

- Assume the negative of the claim
 - So a universal claim will become an existence claim, and an existence claim will become a universal claim.
- Then show that the assumption leads to a contradiction.

Proof by Contradiction (Formal Structure)

Given claim

$$P \implies Q$$

Show that the negative, i.e. $P \Rightarrow \neg Q$, leads to a contradiction, by

- lacktriangle Assume P.
- 2 Assume $\neg Q$.
- **3** Use P and $\neg Q$ to demonstrate a contradiction.

Proof by Contradiction

Proofs by contradiction can be tricky, you

- Need to be very clear as to what statement you are assuming in order to generate a contradiction.
- In particular, take case when the statement involves a qualifier.

^{*}https://xkcd.com/1724/

Examples

- Prove that a triangle cannot have more than one right angle.
- Prove that the $\sqrt{2}$ is irrational.
- Prove that $log_2(3)$ is irrational.
- Let *n* be an integer. If 3n + 2 is odd, then *n* is odd.
- Prove that there are an infinite number of primes.[‡]
- ① There are no integers x and y such that $x^2 = 4y + 2$.
- The Pigeonhole Principle: If more than *n* pigeons fly into *n* pigeon holes, then at least one pigeon hole will contain at least two pigeons. Prove this.

^{†&}quot;irrational"= "not rational". A rational number is a number that can be expressed as quotient of two integers p and p which don't have a common factor.

[‡]A prime is an integer greater than one with exactly two divisors.