Colles série 1 : tracés de courbes

Sujet 1:

- 1. Tracer la fonction ln() sur $[10^{-2}, 10]$ en noir avec un titre et une légende sur chaque axe et y faire figurer en noir les axes des abscisses et des ordonnées (la fonction ln() de R est log()).
- 2. Y ajouter la tangeante à la courbe en le point d'abscisse 1 en rouge et en vert le point de la courbe d'abscisse 1. Quelle majoration de ln(x) peut-on déduire à l'aide de ce graphique ?

Sujet 2:

- 1. Tracer la fonction ln() sur $[10^{-1}, 5]$ en noir avec un titre et une légende sur chaque axe. Ajouter les axes des ordonnées et des abscisses en noir. (Pour avoir un repère orthonormé on pourra utiliser asp=1 comme option dans plot())
- 2. Y ajouter le tracé de la fonction exponentielle sur le même domaine en rouge et ajouter le tracé de la première diagonale en vert. Quelle propriété observe-t-on ?

Sujet 3:

- 1. Tracer la fonction $f(x) = |x 1| \sin [-2, 4]$ en noir avec un titre et une légende sur chaque axe. Ajouter en noir les axes des abscisses et des ordonnées.
- 2. Représentez sur l'axe des abscisses en rouge l'ensemble des x dont l'image par f est inférieure ou égal à 2 (on pourra utiliser la fonction segments de R). Y ajouter en pointillés la droite horizontale et les deux droites verticales qui permettent une lecture graphique de ce domaine.

Sujet 4:

- 1. Tracer la fonction tan() sur]-1.5, 1.5[en noir avec un titre et une légende sur chaque axe et en définissant comme limites sur l'axe des abscisses l'intervalle [-1.7, 5] (attention la fonction tan n'est pas définie en $\pi/2 + k\pi$ pour $k \in \mathbb{Z}$). Ajouter en noir les axes des abscisses et des ordonnées.
- 2. Y ajouter le tracé de la tan() sur l'intervalle]1.65, 4.65[en noir, les asymptotes en $-\pi/2$, $\pi/2$ et $3\pi/2$ en rouge et la tangeante au points d'abscisse 0 en vert.

Sujet 5:

- 1. Tracer la fonction sin() sur $[-\pi/2, \pi/2]$ dans un repère orthonormé en noir avec un titre et une légende sur chaque axe et en définissant comme limites sur l'axe des ordonnées l'intervalle $[-\pi/2, \pi/2]$. Ajouter les axes des abscisses et des ordonnées.
- 2. Y superposer le tracé de la fonction arcsin() (asin avec R) sur l'intervalle [-1,1] en vert et la première diagonale en rouge. Qu'observe-t-on?

Sujet 6:

- 1. Tracer la fonction sin() sur $[-2\pi, 2\pi]$ en noir avec un titre et une légende sur chaque axe. Ajouter en noir les axes des abscisses et des ordonnées.
- 2. Y ajouter le tracé de la fonction cos() en vert, sur le même intervalle. Ajouter en pointillés noirs les verticales passant par $\pi/4$ et $\pi/4+\pi/2$ et l'horizontale passant par $\sqrt{2}/2$. Qu'en conclure (comment obtient-on la courbe du cos à partir de celle du sin)?