CIS 677

Homework 2

Daniel Sparber

Collaborators: Julian Schnitzler & Seyoung Kim

Problem 1

Algorithm

Let A be the integer representation of Alice's bitstring, let B be the integer representation of Bob's bitstring.

Let $k = \sqrt{2n}$

- 1. Alice picks $k \cdot \log n$ distinct primes $p_i \in [2..2n \cdot \log n], i \in [1..k]$
- 2. Bob picks k primes $q_i \in [2..2n \cdot \log n], i \in [1..k]$
- 3. Alice computes and send all pairs $(p_i, A \mod p_i)$ and Bob all pairs $(q_i, B \mod q_i)$ for $i \in [1..k]$ to Charlie.
- 4. Charlie looks for one pair where $p_i = q_j$ for some $i, j \in [1..k]$. If such a pair exists, Charlie returns whether the second element of the respective pair is equal. Otherwise Charlie returns $A \neq B$.

Communication

Since Alice sends $k \log n \in \mathcal{O}(\sqrt{n} \log n)$ and each pair has $\mathcal{O}(\log n)$ size (see lecture), the total number of bits for the communication is in $\mathcal{O}(\sqrt{n} \cdot \log^2 n)$.

Correctness

Let A and B be arbitrary.

• Case A = B

If Alice and Bob have a prime in common, the algorithm correctly outputs A = B since $A \mod p = B \mod p$.

Otherwise, the algorithm makes a mistake. The probability for having no prime in common can be bound by using the birthday paradox.

 $Pr[No \ primes \ in \ common] = Pr[Bob \ draws \ non \ of \ Alice's \ primes] \le$

$$\leq \left(1 - \frac{k \cdot \log n}{2n \cdot \log n}\right)^k = \left(1 - \frac{1}{\sqrt{2n}}\right)^{\sqrt{2n}} \leq \frac{1}{e}$$

By repeating $\ln n$ times, the error probability can be reduced to 1 - n. The communication increases to $\mathcal{O}(\sqrt{n} \cdot \log^3 n)$.

The success probability is therefore $1 - \frac{1}{n}$

• Case $A \neq B$

The algorithm only fails, if there are some i, j such that $p_i = q_j$ and $A \mod p = B \mod p$.

The probability of having such i, j is less than 1.

By revising the algorithm from the lecture, the probability of $A \mod p = B \mod p$ given $A \neq B$ can be bounded by $\frac{1}{2}$.

$$\Pr[A \bmod p = B \bmod p \mid A \neq P] = \frac{\textit{number of distinct prime divisors of } |A - B|}{\textit{number of distinct primes in } [2..n \log n]}$$

$$\leq \frac{n}{\frac{2n\log n}{\log(2n\log n)}} \leq \frac{1}{2}$$

Thus, the algorithm fails with probability less equal than $1 \cdot \frac{1}{2}$. By repeating $\log_2 n$ times, the error probability can be reduced to 1 - n. The communication increases to $\mathcal{O}(\sqrt{n} \cdot \log^3 n)$.

The success probability is therefore $1 - \frac{1}{n}$

Thus, the algorithm is outputs the correct answer with probability at least $1 - \frac{1}{poly(n)}$.

First consider the case, where S and T only differ at one element, i.e. |T| = |S| - 1.

Consider the following algorithm:

- 1. Alice calculates the sum of all her elements S_A and sends it to Bob
- 2. Bob calculates the sum over all his elements S_B
- 3. Bob outputs $S_A S_B$

 S_A is at most $\frac{n \cdot (n+1)}{2} \leq n^2$ and can therefore be decoded with $2 \cdot \log n$ bits.

Since there is only one element $x \in S$ that is not in T, the difference of the sums must equal x. Therefore the algorithm outputs an element in $S \setminus T$.

Now, let T and S be arbitrary subsets of [1..n] with $T \subset S$.

Let d = |S| - |T|, let n^* be the smallest power of 2 such that $n^* \ge n$.

Since Alice does not know d, she executes the following algorithm:

For $p \in \{1, \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{n^*}\}$:

- 1. Bob and Alice choose $V \subset [1..n], \forall i \in [1..n] : i \in V$ with probability p, from their shared source of randomness
- 2. Alice computes $S_A^* = \text{sum}(S \cap V)$
- 3. Alice computes and sends $(S_A^*, |S \cap V|)$
- 4. Bob: computes $S_B^* = \text{sum}(S \cap T)$
- 5. If $|S \cap V| = |T \cap V| + 1$: Bob returns $S_A^* S_B^*$

Note: Instead of sending individual messages, all messages can be combined to one. Bob does his calculations after receiving this one message.

For one iteration the communication is in $\mathcal{O}(\log n)$ bits, since both S_A^* and $|A \cap S|$ require less than $2 \cdot \log n$ bits. In total, there are $\log n^*$ repetitions, thus the total communication is in $\mathcal{O}(\log^2 n)$.

Since $(T \cap V) \subset (S \cap V)$, the results from the previous algorithm can be used. With this, a correct result is always returned if $|S \cap V| = |T \cap V| + 1$.

Thus we only need to show, that the probability of $|S \cap V| = |T \cap V| + 1$ is high enough for at least one iteration.

If |S| - |T| = 1, the algorithm succeeds with probability 1 in the first iteration. Otherwise the following analysis can be made:

There is one iteration where $p = \frac{1}{2^k}$ for each $k \in [2..\log n^*]$. Let k' be such that $2^{k'-1} < d \le 2^{k'}$. Let

$$c = 2^{k'}.$$
 Then $\frac{c}{2} < d \leq c \Leftrightarrow \frac{c}{2} + 1 \leq d \leq c$.

 $\Pr[Picking\ exactly\ 1\ of\ the\ d\ elements\ when\ p=1/c]$

 $\geq \Pr[Picking \ exactly \ 1 \ of \ c/2 + 1 \ elements \ when \ p = 1/c] = \ (by \ binomial \ distribution)$

$$= {\binom{c/2+1}{1}} \cdot \frac{1}{c} \cdot \left(1 - \frac{1}{c}\right)^{c/2} = (c/2+1) \cdot \frac{1}{c} \cdot \sqrt{\left(1 - \frac{1}{c}\right)^c} \ge \frac{1}{2} \cdot \sqrt{\left(1 - \frac{1}{c}\right)^c} \ge \text{ (by using calculus and } c \ge 2)$$

$$\geq \frac{1}{2}\sqrt{\frac{1}{4}} = \frac{1}{4}$$

Therefore, the probability of failure is at most $1 - \frac{1}{4} = \frac{3}{4}$.

Instead of executing the algorithm once, we execute it $9 \cdot \log(1/\delta)$ times. The total communication is now in $\mathcal{O}(\log^2 n \log(1/\delta))$.

$$\Pr[failure] \le \left(\frac{3}{4}\right)^{9 \cdot \log(1/\delta)} = e^{9 \cdot \log(1/\delta) \cdot \log(3/4)} \le e^{-\log(1/\delta)} = e^{\log \delta} = \delta$$

Thus, the success probability is at least $1 - \delta$.

First consider the case, where all colors are available for a given node v. Since Δ is the maximum degree in G, v has at most Δ neighbors. In the worst case, those Δ neighbors all need to be colored with different colors. Even so, there are still $2\Delta - \Delta = \Delta$ colors remaining to color v. Thus, there are at least Δ good colors for v.

For every node $2 \log n$ colors are picked uniformly at random. The following steps calculate a lower bound for the probability of picking at least one good color for every node.

Let $v \in V$ be arbitrary.

 $\Pr[Picking \ a \ good \ color \ for \ v \ with \ one \ trial] \ge \frac{\Delta}{2\Delta} = \frac{1}{2}$

- $\Rightarrow \Pr[Picking \ a \ bad \ color \ for \ v \ with \ one \ trial] \leq \frac{1}{2}$
- $\Rightarrow \Pr[\textit{Picking only bad colors for } v \; (\textit{with} \; 2 \log n \; \textit{trials})] \leq \left(\frac{1}{2}\right)^{2 \log n} = 2^{-2 \log n} = n^{-2} = \frac{1}{n^2}$
- $\Rightarrow \Pr[Some\ node\ picks\ only\ bad\ colors] \leq n \cdot \frac{1}{n^2} = \frac{1}{n}$
- $\Rightarrow \Pr[All\ nodes\ pick\ at\ least\ one\ good\ color] = 1 \Pr[Some\ node\ picks\ only\ bad\ colors] \geq 1 \frac{1}{n}$

Therefore, the probability that a (2Δ) -coloring of the graph, such that every vertex is assigned only one of the colors it has sampled, exists with propability at least 1 - 1/n.

Simple randomized algorithm

Algorithm

- 1. Assign every $v \in V$ with $p = \frac{1}{2}$ to U
- 2. Return U

Analysis

By definition, there is some maximum directed cut in G (not necessarily unique). Let E_{max} be the set of all edges in that cut.

The probability of any edge $(i, j) \in E_{max}$ being in the cut that the algorithm generates, can be calculated as following:

$$\Pr[(i, j) \ part \ of \ cut] = \Pr[i \in U] \cdot \Pr[j \in W] = \Pr[i \in U] \cdot \Pr[j \notin U] = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

Thus, this algorithm yields a 4-approximation.

Integer linear program

 z_{ij} is 1 if the edge $(i,j) \in E$ is part of the cut, otherwise 0.

 x_i is 1 if $i \in U$, otherwise 0.

Maximizing $\sum_{(i,j)\in E} z_{ij}$ will therefore maximize the number of edges going from U to W.

Every $i \in V$ is either part of U or not, there is no in between. This is enforced by $\forall i \in V, x_i \in \{0, 1\}$.

 z_{ij} can be 1 only if $i \in U$ and $j \in W$, otherwise it needs to be 0. This is strictly enforced by the three constraints $\forall (i,j) \in E, z_{ij} \leq x_i, \ \forall (i,j) \in E, z_{ij} \leq 1 - x_j \ \text{and} \ \forall (i,j) \in E, 0 \leq z_{ij} \leq x_i \ \text{combined with the fact, that} \ x_i \in \{0,1\}$

Therefore the ILP correctly models the maximum directed cut problem

LP relaxation

The constraint $\forall i \in V, x_i \in \{0, 1\}$ is changed to $\forall i \in V, x_i \in [0, 1]$.

Claim. The integrality gap for the complete graph graph converges to 2, as $|V| \to \infty$.

Proof. For the complete graph, assigning $x_i = 0.5, i \in V$ and assigning $z_{i,j} = 0.5, (i,j) \in E$ for the LP relaxed problem yields $\frac{|E|}{2}$.

However, the best ILP solution is assigning half of the nodes to U, which converges to $\frac{|E|}{4}$ for the complete graph, as $|V| \to \infty$.

Thus the integrality gap equals 2.

Rounding scheme

The proposed rounding scheme returns a valid directed cut by construction, since every vertex is either assigned to U or not U (i.e. W).

Let $(i, j) \in E$ be arbitrary.

$$\begin{aligned} &\Pr[(i,j) \ in \ cut] = \Pr[i \in U, j \notin U] \\ &= \left(\frac{1}{4} + \frac{x_i}{2}\right) \cdot \left[1 - \left(\frac{1}{4} + \frac{x_j}{2}\right)\right] = \left(\frac{1}{4} + \frac{x_i}{2}\right) \cdot \left(\frac{3}{4} - \frac{x_j}{2}\right) = \left(\frac{1}{4} + \frac{x_i}{2}\right) \cdot \left(\frac{1}{4} + \frac{1 - x_j}{2}\right) \\ &\geq \left(\frac{1}{4} + \frac{z_{ij}}{2}\right) \cdot \left(\frac{1}{4} + \frac{z_{ij}}{2}\right) = \frac{1}{16} + \frac{z_{ij}}{4} + \frac{z_{ij}^2}{4} = \frac{1}{16} - \frac{z_{ij}}{4} + \frac{z_{ij}^2}{4} + \frac{z_{ij}}{2} = \left(\frac{1}{4} - \frac{z_{ij}}{2}\right)^2 + \frac{z_{ij}}{2} \\ &\geq \frac{z_{ij}}{2} \end{aligned}$$

With this probability the expected value of number of edges going from U to W can be calculated.

 $\mathbb{E}[\textit{Total number of edges going from } U \; to \; W] = \sum_{(i,j) \in E} 1 \cdot Pr[(i,j) \; in \; cut]$

$$\geq \sum_{(i,j)\in E} \frac{z_{ij}}{2} = \frac{1}{2} \cdot \sum_{\underbrace{(i,j)\in E}} z_{ij} \geq \frac{1}{2} \cdot OPT$$

Thus, the proposed scheme yields a 2-approximation. Therefore, the integrality gap is at most 2.

We use the same LP relaxation as described in the lecture.

Let $j \in [1..n]$ be an arbitrary element.

From the lecture, we know:

 $\Pr[j \text{ is not covered}] \leq \frac{1}{e}$

Instead of repeating $\log n$ times to get a valid solution, we now use a different approach:

Repeat $\log \Delta$ times to get a better probability:

 $\Pr[j \text{ is not covered after } \Delta \text{ tries}] \leq \left(\frac{1}{e}\right)^{\log \Delta} = \frac{1}{\Delta}$

After that, for every uncovered element, pick the set with the smallest weight (greedy).

Suppose $OPT = \{S_1, \ldots, S_k\}$ is an optimal solution. Every S_i of the solution covers at most Δ elements. Thus, the cost of picking sets by the greedy step is at most Δ times worse than the optimal solution.

Therefore, in total the expected cost increases by $\Delta \cdot \frac{1}{\Delta} = 1$ when doing the greedy step. We get a $(\log \Delta)$ -approximation.