Notes for Lecture 9

Scribe: Tingkai Jia

1 Convergence of Proximal Gradient Descent

Lemma 1. Let $\mathbf{y}^+ = \operatorname{prox}_{\frac{1}{L}h}(y - \frac{1}{L}\nabla f(\mathbf{y}))$, then

$$F(\mathbf{y}^+) - F(\mathbf{x}) \le \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 - \frac{L}{2} \|\mathbf{x} - \mathbf{y}^+\|_2^2 - g(\mathbf{x}, \mathbf{y})$$

where $g(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) - f(\mathbf{y}) - \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$.

Proof. Define $\phi(\mathbf{z}) = f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{z} - \mathbf{y} \rangle + \frac{L}{2} \|\mathbf{z} - \mathbf{y}\|_2^2 + h(\mathbf{z})$. It is true that $\mathbf{y}^+ = \arg\min_{\mathbf{z}} \phi(\mathbf{z})$ and $\phi(\mathbf{z})$ is L-strongly convex, which means

$$\phi(\mathbf{x}) \ge \phi(\mathbf{y}^+) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}^+\|_2^2.$$

From the smoothness of f, we have

$$\phi(\mathbf{y}^+) = f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{y}^+ - \mathbf{y} \rangle + \frac{L}{2} ||\mathbf{y}^+ - \mathbf{y}||_2^2 + h(\mathbf{y}^+)$$

$$\geq f(\mathbf{y}^+) + h(\mathbf{y}^+) = F(\mathbf{y}^+).$$

Now we get

$$\phi(\mathbf{x}) \ge F(\mathbf{y}^+) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}^+\|_2^2$$

which together with the definition of $\phi(\mathbf{x})$ gives

$$f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + h(\mathbf{x}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \ge F(\mathbf{y}^{+}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}^{+}\|_{2}^{2}$$

$$f(\mathbf{x}) + h(\mathbf{x}) - g(\mathbf{x}, \mathbf{y}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \ge F(\mathbf{y}^{+}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}^{+}\|_{2}^{2}$$

$$F(\mathbf{x}) - g(\mathbf{x}, \mathbf{y}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \ge F(\mathbf{y}^{+}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}^{+}\|_{2}^{2}.$$

Theorem 1 (PGD for convex problems). Suppose f is convex and L-smooth. If $\eta_t \equiv 1/L$, then

$$F(\mathbf{x}_t) - F(\mathbf{x}_*) \le \frac{L \|\mathbf{x}_0 - \mathbf{x}_*\|_2^2}{2t}.$$

Proof. With Lemma 1 in mind, set $\mathbf{x} = \mathbf{x}_*$, $\mathbf{y} = \mathbf{x}_t$ to obtain

$$F(\mathbf{x}_{t+1}) - F(\mathbf{x}_*) \le \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_*\|_2^2 - \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_*\|_2^2 - g(\mathbf{x}_*, \mathbf{x}_t)$$

$$\le \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_*\|_2^2 - \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_*\|_2^2.$$

Apply it recursively and add up all inequalities to get

$$\sum_{k=0}^{t-1} \left(F(\mathbf{x}_{k+1}) - F(\mathbf{x}_*) \right) \le \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}_*\|_2^2 - \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_*\|_2^2,$$

with $t(F(\mathbf{x}_t) - F(\mathbf{x}_*)) \le \sum_{k=0}^{t-1} (F(\mathbf{x}_{k+1}) - F(\mathbf{x}_*))$, we finally get

$$F(\mathbf{x}_t) - F(\mathbf{x}_*) \le \frac{L \|\mathbf{x}_0 - \mathbf{x}_*\|_2^2}{2t}.$$

Theorem 2 (PGD for strongly convex problems). Suppose f is μ -strongly convex and L-smooth. if $\eta_t \equiv 1/L$, then

$$\|\mathbf{x}_t - \mathbf{x}_*\|_2^2 \le \left(1 - \frac{\mu}{L}\right)^t \|\mathbf{x}_0 - \mathbf{x}_*\|_2^2.$$

Proof. With Lemma 1 in mind, set $\mathbf{x} = \mathbf{x}_*$, $\mathbf{y} = \mathbf{x}_t$ to obtain

$$F(\mathbf{x}_{t+1}) - F(\mathbf{x}_*) \le \frac{L}{2} \|\mathbf{x}_t - \mathbf{x}_*\|_2^2 - \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_*\|_2^2 - g(\mathbf{x}_*, \mathbf{x}_t)$$

$$\le \frac{L - \mu}{2} \|\mathbf{x}_t - \mathbf{x}_*\|_2^2 - \frac{L}{2} \|\mathbf{x}_{t+1} - \mathbf{x}_*\|_2^2.$$

This taken collectively with $F(\mathbf{x}_{t+1}) - F(\mathbf{x}_*) \ge 0$ yields

$$\|\mathbf{x}_{t+1} - \mathbf{x}_*\|_2^2 \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}_*\|_2^2.$$

Applying it recursively concludes the proof.