

## GEOMETRÍA

Capítulo 17





**POLIEDROS REGULARES** 



#### **MOTIVATING | STRATEGY**



Glucoproteína

Genoma - Cápside

- Envoltura





h

Es el poliedro cuyas caras son regiones poligonales regulares congruentes entre sí y en cada vértice concurren el mismo número de aristas.

Solo existen cinco poliedros regulares



# $h = \frac{a\sqrt{6}}{3}$

$$S = a^2 \sqrt{3}$$

$$V = \frac{a^3 \sqrt{2}}{12}$$

S: Área de la superficie total

V: Volumen del sólido

#### 2. HEXAEDRO REGULAR O CUBO









$$MN = d = a\sqrt{2}$$

$$S = 2a^2\sqrt{3}$$

$$V = \frac{a^3 \sqrt{2}}{3}$$



**0**1



### 4. DODECAEDRO REGULAR



Es aquel poliedro limitado por 12 regiones pentagonales regulares congruentes.

### 5. ICOSAEDRO REGULAR



Es aquel poliedro limitado por 20 regiones triangulares equiláteras congruentes.

| Poliedro              | Número<br>de caras | Número<br>de vértices | Número<br>de aristas |
|-----------------------|--------------------|-----------------------|----------------------|
| TETRAEDRO<br>REGULAR  | 4                  | 4                     | 6                    |
| HEXAEDRO<br>REGULAR   | 6                  | 8                     | 12                   |
| OCTAEDRO<br>REGULAR   | 8                  | 6                     | 12                   |
| DODECAEDRO<br>REGULAR | 12                 | 20                    | 30                   |
| ICOSAEDRO<br>REGULAR  | 20                 | 12                    | 30                   |



1. Calcule el área de la superficie total de un hexaedro regular si el perímetro de una de sus caras es 12 u.



Piden: S



 $S = 6a^2$ 

Por dato.

$$2p_{DCGH} = 12$$

$$4a = 12$$

$$a = 3$$

Por teorema.

$$S = 6(3)^2$$



 $S = 54 u^2$ 



2. La arista de un tetraedro regular es  $\sqrt{6}$  u. Calcule el volumen del sólido

limitado por el tetraedro.



Piden: V



$$V = \frac{a^3\sqrt{2}}{12}$$

Por dato.

$$a = \sqrt{6}$$

Por teorema.

$$V = \frac{(\sqrt{6})^3 \sqrt{2}}{12}$$

$$V = \sqrt{3} u^3$$



#### 3. Calcule el volumen del sólido limitado por el hexaedro regular mostrado.



Piden: V



 $V = a^3$ 

$$d = a\sqrt{3}$$

Por dato.

$$d = \sqrt{12}$$

$$a\sqrt{3} = 2\sqrt{3}$$

$$a = 2$$

Por teorema.

$$V = (2)^3$$

$$V = 8 u^3$$



4. Calcule el área de la superficie total de un tetraedro regular, si la suma de las longitudes de sus aristas es 36 u.



Piden: A



 $S = a^2 \sqrt{3}$ 

Por dato.

$$6a = 36$$
$$a = 6$$

Por teorema.

$$S = (6)^2 \sqrt{3}$$

$$S = 36\sqrt{3} u^2$$



5. Si la diagonal de un octaedro regular es  $\sqrt{32}$ , calcule el perímetro de

una de sus caras.



Piden: 2p<sub>CMD</sub>

$$2p_{CMD} = 3a$$
 ... (1)

Por teorema.

$$MN = d = a\sqrt{2}$$

Por dato.

$$d = \sqrt{32}$$
 $a\sqrt{2} = 4\sqrt{2}$ 
 $a = 4$  ... (2)

Reemplazando 2 en 1.

$$2p_{CDM}=3(4)$$

$$2p_{CMD} = 12 u$$



6. Se muestra dos cubos Rubik que tienen la forma de un hexaedro regular, calcule la relación de sus volúmenes.







$$\frac{V_1}{V_2} = \frac{(6a)^3}{(5a)^3}$$

$$\frac{V_1}{V_2} = \frac{216\alpha^3}{125\alpha^3}$$

$$\frac{V_1}{V_2} = \frac{216}{125}$$

7. En un cubo en el punto A se encuentra una hormiga y en el punto B su comida. Halle la longitud del menor recorrido que puede hacer la hormiga para llegar al punto B.

