

Homework I - Common Source

Due Time: 2022. 10. 13 10:00pm

First release: 2022. 9. 29

This homework is for you to design a **common source** stage. The results should include HSPICE simulations and hand calculations. The SPICE model is cic018.1. Please <u>use the parameters from HSPICE simulation results for hand</u> calculations.

Please note again:

- 1. Please hand in your report using eeclass system.
- 2. 若無於繳交期限前,先行向老師說明並獲許可,作業一律不同意補交!
- 3. 嚴禁抄襲(參考)!
- 4. Please generate your report with pdf format. At first page please add your student ID and name. Try to make the information "readable". (Note: Don't use black color in background for your screen capture figures). (Without performance table, -10pt)
- 5. Please hand in the spice code file (.sp) for each item of work. Do not include output file.
- 6. Please fill the number into HW1.xls. (Without excel file, -20pt)
- 7. Please do not zip your report.
- 8. Please write down the "values" associated with each variable in the equations. Do not just give answer directly.

In this common source, please use VDD=1.5V.

The source impedance Rs is assumed 10Kohm and the loading capacitance C_L is 0.5pF.

Please design the bias voltage (V_{GS}), device size (W/L) of M1, and load resistor (R_L), to make M1 overdrive voltage (V_{GS}-V_t, Vod in HSPICE) larger than 0.15V. The small signal voltage gain (v_{out}/v_i) must be **larger** than 5.0 (V/V), at the same time the small signal -3dB bandwidth has to be **larger** than 30MHz.

Please try to design your circuit to achieve the large bandwidth (MHz) with small current (mA).

(operation point)

- (a) Please design the device size of M₁, load resistance R_L, and the bias voltage V_{GS} , to make the small signal voltage gain (v_{out}/v_i) equal to 5.0 (V/V).
- (b) Please use .op command to print out its small signal parameters.
- (c) Please hand-calculate the gain value using SPICE parameters.
- (d) Please sweep the gate DC voltage to draw its DC transfer curve. And find the slope at the selected V_{GS} .

(frequency response)

- (e) Please plot the frequency response of this gain stage. And mark the poles and zeros on this curve. (Try to use .pz command (p.42 in tutorial) in SPICE).
- (f) Compared and simulated poles/zeros with hand calculation.

(discussion)

- (g) We will use the bandwidth (MHz) / current consumption (μA) as the figure of merit (FoM). Try to make it large, and then fill the table below.
- (h) Please discuss how to achieve best FoM.

Parameter		Result
Supply Vdd	1.5V	
M ₁ Device size (W/L x m)		
M ₁ V _{GS} (mV)		
M ₁ Bias Current (μA)	As small as possible	
M ₁ Overdrive Voltage (mV)	Vod > 0.15V	
M ₁ V _{DS} Saturation Voltage (mV)	vdsat	
M ₁ Transconductance (μΑ/V)	gm	
Load R (Kohm)		
Voltage Gain (V/V)	> 5.0 V/V	
Bandwidth (MHz)	> 30 MHz	
FoM (BW (MHz) / Bias Current (µA))	As large as possible	

(a) 參考指令

.op \$operation point

.tf v(vout) vi \$transfer function

.DC vi 0 1.5 0.001

.probe v(vout)

.probe d_gain=deriv('v(vout)') \$find gain using the first derivative

.meas DC d_av find deriv('v(vout)') when v(vin)=XXX

\$find gain at the bias condition using the first derivative

(e) 參考指令

.ac dec 10 1 10g

.pz v(vout) vi \$find pole & zero (p42 in tutorial)

.probe vdb(vout) vp(vout) \$plot AC gain and phase responses

.meas AC gmax MAX vdb(vout) \$find max AC gain .meas AC BW when vdb(vout)='gmax-3' \$find bandwidth