- 1. Prove that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ for all positive integers n.
- **2.** Prove that $\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$ for all positive integers n.
- 3. Prove that $\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2$ for all positive integers n.
- **4.** Prove that $\sum_{i=1}^{n} i \cdot i! = (n+1)! 1$ for all positive integers n.
- **5.** Prove that any amount of postage that is at least 12ϕ can be obtained using 3ϕ and 7ϕ stamps.