高等数学(11)

作业集

(下册)

姓	名	
学	号	
址	纽	

第8章 多元函数微分学及其应用

8.1 多元函数

- 1. 已知函数 $f(u,v,w) = u^w + w^{u+v}$, 求 f(x+y,x-y,xy).
- 2. 求下列函数的定义域并画出定义域的图形:

(1)
$$z = \ln(y^2 - 2x + 1)$$
;

(2)
$$z = \frac{1}{\sqrt{x+y}} + \frac{1}{\sqrt{x-y}}$$
;

(3)
$$z = \sqrt{x - \sqrt{y}}$$
;

(4)
$$z = \ln(y - x) + \frac{\sqrt{x}}{\sqrt{1 - x^2 - y^2}}$$
.

3. 求下列极限:

(1)
$$\lim_{(x,y)\to(0,1)} \frac{1-xy}{x^2+y^2}$$
;

(2)
$$\lim_{(x,y)\to(1,0)} \frac{\ln(x+e^y)}{\sqrt{x^2+y^2}}$$
;

(3)
$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy}$$
; (4) $\lim_{(x,y)\to(0,0)} \frac{\sin^2(xy)}{\sqrt{(xy)^2+1}-1}$;

(4)
$$\lim_{(x,y)\to(0,0)} \frac{\sin^2(xy)}{\sqrt{(xy)^2+1}-1};$$

(5)
$$\lim_{(x,y)\to(2,0)} \frac{\sin(xy)}{y}$$
;

(6)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}}.$$

4. 证明下列极限不存在:

(1)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$$
;

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2y^2 + (x-y)^2}.$$

5. 证明
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0$$
.

1. 填空题:

- (2) 曲线 $\begin{cases} z = \frac{x^2 + y^2}{4} \\ y = 4 \end{cases}$ 在点 (2,4,5) 处的切线相对于 x 轴的倾角为_____;
- 2. 求下列函数的一阶偏导数:

(1)
$$z = x^3y - y^3x$$
;

(2)
$$s = \frac{u^2 + v^2}{uv}$$
;

(3)
$$z = \sqrt{\ln(xy)}$$
;

(4)
$$z = \sin(xy) + \cos^2(xy)$$
;

$$(5) \quad u = x^{\frac{y}{z}}$$

(6)
$$u = \arctan(x - y)^z$$
.

- 3. 求下列函数的二阶偏导数:
- (1) $z = x^4 + y^4 4x^2y^2$; (2) $z = \arctan \frac{y}{x}$.

4. 设函数 $f(x,y,z) = xy^2 + yz^2 + zx^2$, 求 $f_x(0,0,1)$ 、 $f_{xz}(1,0,2)$ 、 $f_{yx}(0,-1,0)$ 以及 $f_{zzx}(2,0,1)$.

5. 设 $f(x,y) = e^{\sqrt{x^2+y^4}}$, 判断该函数在(0,0)点的偏导数是否存在? 如果存在求其值.

年 月 日

姓名_____ 学号___

8.3 全微分

- 1. 选择题:
- (1) 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微的充要条件是 ().
- (A) f(x, y) 在 (x_0, y_0) 处连续
- (B) $f_x(x,y)$, $f_y(x,y)$ 在 (x_0,y_0) 的某邻域内存在
- (C) $\Delta z f_x(x, y) \Delta x f_y(x, y) \Delta y (\sqrt{(\Delta x)^2 + (\Delta y)^2} \rightarrow 0)$ 是无穷小量
- (D) $\frac{\Delta z f_x(x, y)\Delta x f_y(x, y)\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} (\sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0)$ 是无穷小量
- (2) $f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$ \not t
- (A) 偏导数不存在
- (B) 可微
- (C) 偏导数存在且连续
- (D) 不可微
- 2. 求下列函数的全微分:
- (1) $z = xy + \frac{x}{y}$;

 $(2) \quad z = e^{\frac{y}{x}};$

(3) $u = \frac{s+t}{s-t}$;

 $(4) \quad u = x^{yz} \ .$

3. 求函数 $z = \frac{y}{x}$ 当 x = 1 , y = 1 , $\Delta x = 0.1$, $\Delta y = -0.2$ 时的全增量和全微分.

4. 设
$$z = \frac{y}{\sqrt{x^2 + y^2}}$$
, 求 dz 和 $dz|_{(1,0)}$.

6. 求函数
$$u = z \cdot \sqrt{\frac{x}{y}}$$
 在点 $(1,1,1)$ 处的全微分.

_____年___月___日 姓名________ 学号_____

8.4 多元复合函数的求导法则

- 1. 求下列函数的全导数:
- (1) $z = \arcsin(x y)$, x = 3t, $y = 4t^3$;
- (2) $u = \frac{e^{ax}(y-z)}{a^2+1}$, $y = a\sin x$, $z = \cos x$.

- 2. 求下列函数的 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
- (1) $z = u^2 + v^2$, u = x + y, v = x y;

(2) $z = u^2 \ln v$, $u = \frac{x}{v}$, v = 3x - 2y.

- 3. 求下列函数的一阶偏导数(其中 f 具有一阶连续偏导数):
- (1) $u = f(x^2 y^2, e^{xy})$;

- (2) $u = f(x^y, y^x)$;
- (3) u = f(x, xy, xyz).

4. 设 f 与 g 有二阶连续导数,且 z = f(x+ay) + g(x-ay),求 $\frac{\partial^2 z}{\partial y^2} - a^2 \frac{\partial^2 z}{\partial x^2}$.

5. 求下列函数的 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 z}{\partial y^2}$ (其中f 具有二阶连续偏导数):

(1)
$$z = f(xy, y)$$
;

$$(2) \quad z = f(x, \frac{x}{y}) \ .$$

年 月 日

姓名_____ 学号____

隐函数的求导公式 8.5

- 1. 填空题:
- (1) 设 y = y(x) 由方程 $\sin y + e^x xy^2 = 1$ 确定,则 $\frac{dy}{dx} =$ ______;
- (2) 设 z = z(x, y) 由方程 $x^2 + y^2 + z^2 4z = 0$ 确定,则 $\frac{\partial z}{\partial x} =$ ______.
- 2. 验证方程 $x^2 + y^2 1 = 0$ 在点 (0,1) 的某一邻域内能唯一确定一个单值且有连续导 数的函数 y = f(x), 并求 f'(0) 和 f''(0).

3. 求方程 $\frac{x}{z} = \ln \frac{z}{y}$ 所确定的隐函数 z = z(x, y) 的一阶偏导数.

4. 读 $z^3 - 3xyz = a^3$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

5. 求下列方程组所确定的函数的导数或者偏导数:

(1)
$$\[idgar{0} \begin{cases} z = x^2 + y^2, \\ x^2 + 2y^2 + 3z^2 = 20, \end{cases} \] \[\dot{x} \frac{dy}{dx}, \frac{dz}{dx} ; \]$$

6. 设w = f(x, y, u),其中 f 具有二阶连续偏导数,u 是由方程 $u^5 - 5xy + 5u = 1$ 所确定的函数,求 $\frac{\partial w}{\partial x}$.

8.6 方向导数与梯度

- 1. 下列结论正确的是().
- (A) 如果函数 z = f(x, y) 在点 P(x, y) 沿任一方向的方向导数都存在,那么函数在该点的偏导数必存在
- (B) 如果函数 z = f(x, y) 在点 P(x, y) 是可微分的,那么函数在该点沿任一方向的方向导数都存在
- (C) 如果函数 z = f(x, y) 在点 P(x, y) 是不可微分的,那么函数在该点沿任一方向的方向导数必不存在
- (D) 如果函数 z = f(x, y) 在点 P(x, y) 的偏导数存在,那么函数在该点沿任一方向的方向导数可能都不存在
- 2. 求函数 $z = x^2 + y^2$ 在点(1,2)处沿从点(1,2)到点(2,2+ $\sqrt{3}$)的方向的方向导数.

3. 求函数 $z = \ln(x + y)$ 在抛物线 $y^2 = 4x$ 上点 (1, 2) 处,沿着这抛物线在该点处偏向 x 轴正向的切线方向的方向导数.

4. 设函数
$$u = 1 + \frac{x^2}{6} + \frac{y^2}{12} + \frac{z^2}{18}$$
,单位向量 $n = \frac{1}{\sqrt{3}}(1,1,1)$,求 $\frac{\partial u}{\partial n}\Big|_{(1,2,3)}$.

- 5. 设在xOy平面上,各点的温度T与点的位置间的关系式为 $T=4x^2+9y^2$,求
- (1) 在点 P(9,4) 处沿方向 $l = (\cos \alpha, \sin \alpha)$ 的温度的变化率;
- (2) 在什么方向上, 点 P 处的温度变化率取得最大值? 并求此最大值.

6. $\% f(x, y, z) = x^2 + 2y^2 + 3z^2 + xy + 3x - 2y - 6z$, % grad f(0,0,0) % grad f(1,1,1).

__年___月__日 姓名_______ 学号______

8.7 多元函数微分学的应用

1. 求曲线 $x = t - \sin t$, $y = 1 - \cos t$, $z = 4\sin\frac{t}{2}$ 在点 $\left(\frac{\pi}{2} - 1, 1, 2\sqrt{2}\right)$ 处的切线及法平面 方程.

2. 求曲线 $x = \frac{t}{1+t}$, $y = \frac{1+t}{t}$, $z = t^2$ 在对应于 t = 1的点处的切线及法平面方程.

3. 求曲线 $\begin{cases} x^2 + y^2 + z^2 - 3x = 0, \\ 2x - 3y + 5z - 4 = 0 \end{cases}$ 在点 (1,1,1) 处的切线及法平面方程.

4. 求曲面 $e^z - z + xy = 3$ 在点 (2,1,0) 处的切平面及法线方程.

5. 求椭球面 $x^2 + 2y^2 + z^2 = 1$ 上平行于平面 x - y + 2z = 0 的切平面的方程.

6. 证明曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a}$ (a > 0) 上任何点处的切平面在各坐标轴上的截距之和等于 a .

8.8 多元函数的极值、最值和条件极值

- 1. 选择题:
- (1) 设函数 f(x,y) 在点 (x_0,y_0) 取得极值,下列选项正确的是().
- (A) $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$
- (B) $f(x_0, y)$ 在 $y = y_0$ 处的导数等于 0
- (C) $f(x, y_0)$ 在 $x = x_0$ 处的导数等于 0
- (D) f(x,y)在点 (x_0,y_0) 处的偏导数可能不存在
- (2) 设函数 $f(x,y) = x^3 3x y$, 则它在点(1,0)处().
- (A) 取得极大值
- (B) 取得极小值
- (C) 不取极值
- (D) 无法判定是否取得极值
- 2. 求函数 $f(x,y) = e^{2x}(x+y^2+2y)$ 的极值.

3. 求函数 z = xy 在适合附加条件 x + y = 1下的极大值.

	局 等 数 字 作 业 集
4.	从斜边之长为1的一切直角三角形中,求有最大周长的直角三角形.
	将周长为2p的矩形绕它的一边旋转而构成一个圆柱体,问矩形的边长各为多少才可使圆柱体的体积为最大?

6. 求内接于半径为 a 的球且有最大体积的长方体.

7. 求函数 $f(x,y) = x^2 + 2y^2 - x^2y^2$ 在区域 $D = \{(x,y) | x^2 + y^2 \le 4, y \ge 0\}$ 上的最大值和最小值.

8. 求函数 $u = x^2 + y^2 + z^2$ 在约束条件 $z = x^2 + y^2$ 和 x + y + z = 4 下的最大值与最小值.

总习题8

1. 填空题:

(1) 函数 $z = \arctan x^y$ 的全微分 dz =______;

(2) 设函数 $z = \left(\frac{1}{3}\right)^{\frac{y}{x}}$,则 $\frac{\partial z}{\partial x}\Big|_{(1,1)} = \underline{\hspace{1cm}};$

(3) 函数 $f(x,y) = x^2 - xy + y^2$ 在点(1,1) 处的梯度为______;

(4) 曲面 $z = 4 - x^2 - y^2$ 上点 (1,1,2) 处的切平面方程为_____;

(5) 设函数 $u = f\left(\frac{x}{y}, \frac{y}{z}\right)$, 其中 f(x, y) 具有一阶连续偏导数,则

du =

2. 选择题:

(1) 考虑二元函数 f(x, y) 的下面四条性质:

① 函数 f(x, y) 在点 (x_0, y_0) 处连续.

② 函数 f(x, y) 在点 (x_0, y_0) 处两个偏导数连续.

③ 函数 f(x, y) 在点 (x_0, y_0) 处可微.

④ 函数 f(x, y) 在点 (x_0, y_0) 处两个偏导数存在.

则下面结论正确的是().

 $(A) \ \ 2 \Rightarrow \ \ 3 \Rightarrow \ \ 1 \qquad (B) \ \ 3 \Rightarrow \ \ 2 \Rightarrow \ \ 1 \qquad (C) \ \ 3 \Rightarrow \ \ 4 \Rightarrow \ \ 1 \qquad (D) \ \ 3 \Rightarrow \ \ 1 \Rightarrow \ \ 4$

(2) 设 $f(x,y) = e^{x+y} \left[x^{\frac{1}{3}} (y-1)^{\frac{1}{3}} + y^{\frac{1}{3}} (x-1)^{\frac{2}{3}} \right]$, 则该函数在 (0,1) 点处的两个偏导数 $f_{x}(0,1)$ 和 $f_{y}(0,1)$ 的情况为(
).

(A) 两个偏导数均不存在 (B) $f_x(0,1)$ 不存在, $f_y(0,1) = \frac{4}{3}e^{-\frac{4}{3}}$

(C) $f_x(0,1) = \frac{e}{3}$, $f_y(0,1) = \frac{4}{3}e$ (D) $f_x(0,1) = \frac{e}{3}$, $f_y(0,1)$ 不存在

(3) 函数 $z = x^3 + y^3 - 3x^2 - 3y^2$ 的极小值点是().

(A) (0,0) (B) (2,2) (C) (0,2) (D) (2,0)

__年___月___日 姓名______ 学号____

3. 计算 $\lim_{(x,y)\to(0,0)} \frac{1-\sqrt{x^2y+1}}{x^3y^2} \sin(xy)$.

4. 设 $z = x^3 f\left(xy, \frac{y}{x}\right)$, 其中 f(x, y) 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

5. 设z=z(x,y) 是由方程 $x^2+y^2-z=\varphi(x+y+z)$ 所确定的函数,其中 φ 具有二阶 导数,且 $\varphi' \neq -1$,(1) 求dz;(2) 记 $u(x,y) = \frac{1}{x-y} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} \right)$,求 $\frac{\partial u}{\partial x}$.

6. 设
$$u(x,y), v(x,y)$$
 是由方程 $x+y^2+2uv=0$ 与 $x^2-xy+y^2+u^2+v^2=0$ 确定的二元 函数,求 $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial x}$.

7. 确定函数
$$f(x,y) = \begin{cases} \frac{x^2 y^2}{\sqrt{(x^2 + y^2)^3}}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 点处的 (1) 连续性;

(2) 偏导数是否存在; (3) 可微性

_____年___月___日 姓名_____ 学号____ 8. 设函数 z = f(u),方程 $u = \varphi(u) + \int_{x}^{y} p(t)dt$ 确定 $u \neq x, y$ 的函数,其中 $f(u), \varphi(u)$ 可微, p(t), $\varphi'(u)$ 连续, 而且 $\varphi'(u) \neq 1$, 求 $p(y) \frac{\partial z}{\partial x} + p(x) \frac{\partial z}{\partial y}$.

9. 求球面 $x^2 + y^2 + z^2 = 4$ 与柱面 $x^2 + y^2 = 2x$ 的交线在点 $P(1,1,\sqrt{2})$ 处的切线及法平 面方程.

高等数学作业集
10. 在椭圆抛物面 $z=x^2+2y^2$ 上求一点,使曲面在该点处的切平面垂直于直线 $\begin{cases} 2x + y = 0, \\ y + 3z = 0, \end{cases}$ 并写出曲面在该点处的法线方程.

11. 设点 $P(x_0, y_0, z_0)$ 是球面 $\Sigma: z = \sqrt{1 - x^2 - y^2}$ 上的一点,n为 Σ 在点P的外侧法向 量,(1) 求函数u=x+y+z在点P处沿方向n的方向导数;(2) 当 x_0,y_0,z_0 为何值时, 此方向导数取最大值?

_年__月__日 姓名_______ 学号_____

第9章 重积分

9.1 二重积分的概念与性质

- 1. 填空题:
- (1) 用二重积分表示平面有界闭区域D的面积 $\sigma =$ _____;
- (3) 设D, D_1 和 D_2 为有界闭区域,且 $D \supset D_1 \supset D_2$, 又f(x,y)在D上可积.

- (4) 设 σ 是圆域 $D = \{(x, y) | x^2 + y^2 \le 9 \}$ 的面积, $\left| \iint_{\mathbb{R}} \cos(x^2 + y^2) d\sigma \right| \underline{\hspace{1cm}} \sigma . \ (\le, \ge)$
- 2. 比较下列二重积分的大小:
- (1) $\iint_D (x+y)^2 d\sigma$ 与 $\iint_D (x+y)^3 d\sigma$, 其中 D 是由圆 $(x-1)^2 + (y-2)^2 = 2$ 所围成;
- (2) $\iint_D \ln(x+y) d\sigma$ 与 $\iint_D [\ln(x+y)]^2 d\sigma$, 其中 D 是矩形闭区域: $0 \le x \le 1$, $3 \le y \le 5$.
- 3. 估计二重积分 $I = \iint_D (4x^2 + y^2 + 9) d\sigma$ 的值,其中 $D = \{(x, y) | x^2 + y^2 \le 4\}$.

9.2 二重积分的计算

- 1. 填空题:

- (3) $\[\exists D = \{(x,y) | 0 \le x \le 1, \ 0 \le y \le 1 \} \], \ \[\iint_D (x^3 + 3x^2y + y^3) d\sigma = \underline{\qquad}; \]$
- (4) 二次积分 $\int_0^1 dx \int_x^1 \sin y^2 dy$ 的值等于_____;
- (5) 设 D 是由 x = 1, x = 2, y = 1, y = 2 所围成的闭区域,则 $\iint_D \ln x dx dy = _______,$ $\iint_D (\ln x)(\ln y) dx dy _______ \int_1^2 \ln x dx \cdot \int_1^2 \ln y dy$, 其值等于_______.
- 2. 更换下列二次积分的积分次序(要求画出积分区域):
- (1) $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x,y) dy$;
- (2) $\int_0^4 dy \int_{-\sqrt{4-y}}^{(y-4)/2} f(x,y) dx$;
- (3) $\int_{e^{-2}}^{1} dy \int_{-\ln y}^{2} f(x, y) dx + \int_{1}^{1+\sqrt{2}} dy \int_{(y-1)^{2}}^{2} f(x, y) dx.$
- 3. 计算下列二重积分(要求画出积分区域):
- (1) $\iint_{D} e^{x+y} d\sigma$, $\sharp + D = \{(x,y) | |x| + |y| \le 1\}$;

_____年___月___日 姓名______ 学号_____ (2) $\iint_D (x^2+y^2-x)d\sigma$,其中D是由直线 y=2,y=x 及 y=2x 所围成的闭区域;

(3) $\iint_D x\cos(x+y)d\sigma$,其中D是顶点分别为(0,0), $(\pi,0)$, (π,π) 的三角形闭区域;

(4) $\iint_D (x^2 + y^2) d\sigma$, 其中 D 是由直线 y = x, y = x + a, y = a, y = 3a (a > 0) 所围成的 闭区域.

4. 设 f'(u) 连续,证明 $\int_0^a dx \int_0^x \frac{f'(y)}{\sqrt{(a-x)(a-y)}} dy = 2[f(a)-f(0)]$.

的面密度 $\rho(x,y) = x^2 + y^2$, 求该薄片的质量.

6. 求由平面 x = 0, y = 0, x + y = 1 所围成的柱体被平面 z = 0 及抛物面 $x^2 + y^2 = 6 - z$ 截得的立体的体积.

- 7. 填空题:
- (1) 将下列二重积分表示为极坐标形式的二次积分:

(2) 将下列二次积分化为极坐标形式的二次积分:

$$(1) \int_0^2 dx \int_x^{\sqrt{3}x} f(\sqrt{x^2 + y^2}) dy = \underline{ }$$

- 8. 计算下列二重积分:
- (1) $\iint_D \ln(1+x^2+y^2)d\sigma$,其中D是由圆周 $x^2+y^2=1$ 及坐标轴所围成的在第一象限 内的闭区域;

(3) $\iint_{D} |x^2 + y^2 - 2| d\sigma, \quad \text{App} D = \{(x, y) | x^2 + y^2 \le 3\}.$

9. 平面薄片所占xOy 平面内的闭区域D 是由螺线 $r = 2\theta$ 上一段弧 $(0 \le \theta \le \frac{\pi}{2})$ 与直线 $\theta = \frac{\pi}{2}$ 所围成,它的面密度为 $\rho(x,y) = x^2 + y^2$,求该薄片的质量.

10. 计算以 xOy 面上的圆周 $x^2 + y^2 = ax$ 围成的闭区域为底,以曲面 $z = x^2 + y^2$ 为项 的曲顶柱体的体积.

9.3 三重积分

- 1. 将下列三重积分化为三次积分:
- (1) $\Xi \Omega = \{(x, y, z) | x^2 + y^2 \le z, 0 \le z \le 1\}$, $\iiint_{\Omega} f(x, y, z) dv = _____;$
- (2) 若 Ω 是由曲面 cz = xy(c > 0),柱面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 及平面 z = 0 所围成的在第一卦限

内的闭区域,则 $\iint_{\Omega} f(x, y, z) dxdydz =$ ______;

(3) 若 $\Omega = \{(x, y, z) | 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$,则

(4) 若区域 Ω 关于xOy面对称,f(x,y,-z) = -f(x,y,z),则 $\iint_{\Omega} f(x,y,z) dv =$ ______,

特别地,若 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$,则 $\iint_{\Omega} \frac{z \ln(x^2 + y^2 + z^2 + 1)}{x^2 + y^2 + z^2 + 1} dv = \underline{\qquad}$

- 2. 计算下列三重积分:
- (1) $\iiint_{\Omega} (x^2 + y^2 + z^2) dxdydz, \quad \sharp + \Omega = \{(x, y, z) | 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}.$

(2) $\iint_{\Omega} z \, dx \, dy \, dz$, 其中 Ω 是由曲面 $z = 1 + \sqrt{1 - x^2 - y^2}$ 与平面z = 1所围成的闭区域.

_____年__月__日 姓名_____ 学号_____
(3)
$$\iint_{\Omega} \frac{1}{(1+x+y+z)^3} dx dy dz$$
,其中 Ω 为平面 $x=0$, $y=0$, $z=0$, $x+y+z=1$ 所围成的四面体.

(4)
$$\iiint_{\Omega} z(x^2 + y^2) dx dy dz, \quad \sharp + \Omega = \{(x, y, z) | x^2 + y^2 \le z, 0 \le z \le 1\}.$$

(5) 设
$$\Omega$$
是两个球体 $x^2 + y^2 + z^2 \le R^2$ 及 $x^2 + y^2 + z^2 \le 2Rz$ ($R > 0$)的公共部分,计算
$$\iiint_{\Omega} z^2 \, \mathrm{d} v \ .$$

_	T구 연구 B모	
٦.	填空题	•

(1) 若空间闭区域 Ω 是由曲面 $z = \sqrt{2 - x^2 - y^2}$ 及 $z = x^2 + y^2$ 所围成,将 $\iint_{\Omega} z dv$

表示为柱面坐标下的三次积分为______, 其值为_____;

(2) 曲面 $x^2 + y^2 = az$ 及 $z = 2a - \sqrt{x^2 + y^2}$ 所围成空间区域 Ω 的体积表示为三重

积分______,或二重积分_____

或柱面坐标下的三次积分_____;

(3) 设 $\Omega = \{(x,y,z) | \sqrt{x^2 + y^2} \le z, 0 \le z \le h\}$,且f(z) 连续,将三重积分 $\iint_{\Omega} f(z) dv$ 化为柱面坐标下的三次积分为_______,化为先对x,y的二重积分,后对z的

- 4. 计算三重积分 $\iint_{\Omega} (x^2 + y^2) dv$, 其中
- (1) Ω 是由曲面 $4z^2 = 25(x^2 + y^2)$ 及平面 z = 5 所围成的闭区域;

(2) $\Omega = \{(x, y, z) | 0 < a \le \sqrt{x^2 + y^2 + z^2} \le A, z \ge 0 \}.$

- (1) Ω 是由球面 $x^2 + y^2 + z^2 = z$ 所围成的闭区域;

(2) Ω 是由 $z = \sqrt{4 - x^2 - y^2}$ 及 $z = \sqrt{x^2 + y^2}$ 所围成的闭区域.

6. 求上半球面 $z = \sqrt{5 - x^2 - y^2}$ 与旋转抛物面 $x^2 + y^2 = 4z$ 所围成的立体的体积.

9.4 重积分的应用

1. 求球面 $x^2 + y^2 + z^2 = a^2$ 含在柱面 $x^2 + y^2 = ax$ (a > 0) 内的曲面面积.

2. 求平面 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ 被三坐标面所割出的有限部分的面积.

3. 设薄片所占的闭区域D是介于两个圆 $r = a\cos\theta$, $r = b\cos\theta$ (0 < a < b)之间的闭区域,求该均匀薄片的质心.

- 4. 一个半径为a,高为h的均匀圆柱体(设密度 $\rho=1$)
- (1) 求该柱体关于其对称轴的转动惯量;

(2) 求该柱体对在其对称轴上距上底为b处的一单位质点的引力.

总习题9

1. 选择题:

(1)
$$\int_0^1 dx \int_0^{1-x} f(x, y) dy = ($$
).

(A)
$$\int_0^{1-x} dy \int_0^1 f(x, y) dx$$
 (B) $\int_0^1 dy \int_0^{1-x} f(x, y) dx$

(B)
$$\int_{0}^{1} dy \int_{0}^{1-x} f(x, y) dx$$

(C)
$$\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx$$

(C)
$$\int_0^1 dy \int_0^1 f(x, y) dx$$
 (D) $\int_0^1 dy \int_0^{1-y} f(x, y) dx$

(2)
$$\begin{tabular}{l} \begin{tabular}{l} \begin$$

(2)
$$\mbox{if } D = \{(x,y) | x^2 + y^2 \le a^2 \}$$
, $\mbox{if } a = ($) $\mbox{if } \int \sqrt{a^2 - x^2 - y^2} dx dy = \pi$.

(B)
$$\sqrt[3]{\frac{3}{2}}$$

(A) 1 (B)
$$\sqrt[3]{\frac{3}{2}}$$
 (C) $\sqrt[3]{\frac{3}{4}}$ (D) $\sqrt[3]{\frac{1}{2}}$

(D)
$$\sqrt[3]{\frac{1}{2}}$$

(3) 当D是()围成区域时,二重积分 $\iint_{\Sigma} dx dy = 1$.

(A)
$$x$$
 $= \frac{1}{2}$, $|y| = \frac{1}{3}$

(B)
$$|x| = \frac{1}{2}, |y| = \frac{1}{3}$$

(C)
$$x$$
 $\pm i$, y \pm

(D)
$$|x+y|=1, |x-y|=1$$

(4)
$$\[\mathcal{D} = \{(x,y) | 0 \le x \le 1, -1 \le y \le 0 \} \]$$
, $\[\iint_D x e^{xy} dx dy = () \]$.

(A)
$$\frac{1}{e}$$

(A)
$$\frac{1}{e}$$
 (B) e (C) $-\frac{1}{e}$ (D) 1.

(5) 设圆域 $D = \{(x, y) | x^2 + y^2 \le a^2 \}$,则 $\iint_{\mathbb{R}} (x^2 + y^2) dx dy = ($

(A)
$$\int_0^{2\pi} d\theta \int_0^a a^2 r dr = \pi a^4$$

(A)
$$\int_0^{2\pi} d\theta \int_0^a a^2 r dr = \pi a^4$$
 (B) $\int_0^{2\pi} d\theta \int_0^a r^2 \cdot r dr = \frac{1}{2} \pi a^4$

(C)
$$\int_0^{2\pi} d\theta \int_0^a r^2 dr = \frac{2}{3}\pi a^3$$

(C)
$$\int_0^{2\pi} d\theta \int_0^a r^2 dr = \frac{2}{3}\pi a^3$$
 (D) $\int_0^{2\pi} d\theta \int_0^a a^2 \cdot a dr = 2\pi a^4$

(6) 设 Ω 是由三个坐标面与平面 x+2y-z=1 所围成的闭区域,则 $\iiint_{\Omega} x dv = 0$

(A)
$$\frac{1}{48}$$

(B)
$$-\frac{1}{48}$$

(C)
$$\frac{1}{24}$$

(A)
$$\frac{1}{48}$$
 (B) $-\frac{1}{48}$ (C) $\frac{1}{24}$ (D) $-\frac{1}{24}$

(7) 设 Ω 是锥面 $\frac{z^2}{c^2} = x^2 + y^2(c > 0)$ 与平面x = 0, y = 0, z = c所围成的空间区域在

第一卦限的部分,则 $\iiint \frac{xy}{\sqrt{z}} dxdydz = ($).

(A)
$$\frac{1}{36}\sqrt{c}$$
 (B) $\frac{1}{36}$ (C) $\frac{1}{36}c^2$ (D) $\frac{1}{36}c$

(B)
$$\frac{1}{36}$$

(C)
$$\frac{1}{36}c^2$$

(D)
$$\frac{1}{36}c$$

- 高等数学作业集 (8) 设 Ω 是由 $z^2 = x^2 + y^2$ 及z = 1所围成的闭区域,下列不正确的解法为(
- (A) $\iiint_{\Omega} z dv = \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{r}^{1} z dz$ (B) $\iiint_{\Omega} z dv = \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{0}^{r} z dz ;$
- (C) $\iiint_{\Omega} z dv = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{\sec\varphi} r^{3} \cos\varphi \sin\varphi dr \quad \text{(D)} \quad \iiint_{\Omega} z dv = \int_{0}^{1} dz \int_{0}^{2\pi} d\theta \int_{0}^{z} z r dr.$
- (9) 锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 所割下部分的曲面面积 S = (

- (B) π (C) $\sqrt{2}\pi$ (D) $2\sqrt{2}\pi$
- 2. 计算下列二重积分:
- (1) $\iint_{D} (x^{2} y^{2}) d\sigma, \quad \sharp \oplus D = \{(x, y) | 0 \le y \le \sin x, 0 \le x \le \pi\};$

(2) $\iint_{D} (y^2 + 3x - 6y + 9) d\sigma, \quad \sharp \oplus D = \{(x, y) | x^2 + y^2 \le R^2\};$

(3) $\iint\limits_{D}(\sqrt{x^2+y^2-2xy}+2)d\sigma\,,\,\,\mathrm{其中}\,D\,\mathrm{是圆域}\,x^2+y^2\leq 1\,\mathrm{在第一象限的部分};$

(4) $\iint_D e^{\max\{x^2,y^2\}} dxdy$, 其中 D 是直线 x = 0, x = 1, y = 0, y = 1 所围成的闭区域.

- (1) $\int_0^1 dy \int_0^{2y} f(x,y) dx + \int_1^3 dy \int_0^{3-y} f(x,y) dx$;
- (2) $\int_0^1 dx \int_{\sqrt{x}}^{1+\sqrt{1-x^2}} f(x,y) dy$.
- 4. 计算下列三重积分:
- (1) $\iiint_{\Omega} y \cos(x+z) dx dy dz$, 其中 Ω 是由抛物柱面 $y = \sqrt{x}$ 及平面 y = 0, z = 0, $x+z=\frac{\pi}{2}$ 所围成的区域;

(2) $\iiint_{\Omega} (y^2 + z^2) dv$, 其中 Ω 是由 xOy 平面上曲线 $y^2 = 2x$ 绕 x 轴旋转而成的旋转 曲面与平面x=5所围成的闭区域.

5. 求底圆半径相等的两个直交圆柱面 $x^2 + y^2 = R^2$, $x^2 + z^2 = R^2$ 所围立体的体积和表面积.

6. 计算三重积分
$$\iiint_{x^2+y^2+z^2 \le R^2} f(x,y,z) dv$$
,其中 $f(x,y,z) = \begin{cases} \sqrt{x^2+y^2+z^2} \ , \ z < 0, \\ \sqrt{x^2+y^2}, \ 0 \le z \le \sqrt{x^2+y^2}, \\ 0, \qquad z > \sqrt{x^2+y^2}. \end{cases}$

7. 设
$$f(x)$$
 连续, $\Omega = \{(x, y, z) | x^2 + y^2 \le t^2, 0 \le z \le h \}$, $F(t) = \iiint_{\Omega} (z^2 + f(x^2 + y^2)) dv$,计算 $\frac{dF}{dt}$ 与 $\lim_{t \to 0^+} \frac{F(t)}{t^2}$.

_____年___月__日 姓名______ 学号______

第10章 曲线积分与曲面积分

10.1 第一类(对弧长的)曲线积分

- 1. 填空题:
- (1) 设C为正方形|x|+|y|=4的边界,则 $\oint_C xyds=$ ______;
- (2) 设 C 为圆周 $x = a\cos t, y = a\sin t (0 \le t \le 2\pi)$,则 $\oint_C (x^2 + y^2)^n ds = ______;$
- (3) 设 Γ 为 圆 周 $\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x = y \end{cases}$, 则 $\int_{\Gamma} \sqrt{2x^2 + z^2} ds = \underline{\hspace{1cm}}$;
- (4) 曲线 x = 3t, $y = 3t^2$, $z = 2t^3$ 上从 O(0,0,0) 到 M(3,3,2) 的这段弧长为______.
- 2. 计算下列曲线积分:
- (1) $\int_C xy \, ds$, 其中 C 为椭圆 $x^2 + \frac{y^2}{4} = 1$ 位于第一象限的部分;

(2) $\oint_C x ds$, 其中 C 为直线 y = x 及抛物线 $y = x^2$ 所围成的区域的整个边界;

(3) $\oint_C \sqrt{x^2 + y^2} ds$, 其中 C 为圆 $x^2 + y^2 = 4x$ 的一周;

(4) $\int_{\Gamma} \frac{1}{x^2 + y^2 + z^2} ds$, 其中 Γ 为曲线 $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ 上相应于 t 从 0 到 2 的这弧段;

(5) $\int_{\Gamma} x^2 yz ds$, 其中 Γ 为折线 ABCD, 这里 A,B,C,D 依次为 (0,0,0),(0,0,2), (1,0,2),(1,3,2).

3. 设曲线 $y = \ln x$ 上每一点的密度等于该点的横坐标的平方,求曲线在 $x = \sqrt{3}$ 和 $x = \sqrt{15}$ 之间这一段的质量.

4. 计算半径为 R ,中心角为 2α 的均匀圆弧(线密度 $\rho=1$)绕它的对称轴的转动惯量和形心坐标.

______年___月___日 姓名_______ 学号______

10.2 第一类(对面积的)曲面积分

- 1. 填空题:
- (1) 设 Σ 是xOy面上的一个有界闭区域D,则 $\iint_{\Sigma} f(x,y,z) dS _{----} \iint_{D} f(x,y,0) d\sigma$;

- (4) 设 Σ 是上半球面 $z = \sqrt{4 x^2 y^2}$,则 $\iint_{\Sigma} \frac{1}{1 + \sqrt{x^2 + y^2 + z^2}} dS = \underline{\hspace{1cm}}$
- 2. 计算下列第一类曲面积分:
- (1) 计算 $\iint_{\Sigma} (2x + \frac{4}{3}y + z)dS$, 其中 Σ 为平面 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ 在第一卦限的部分;

(2) 计算 $\iint_{\Sigma} (x^2 + y^2) dS$,其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 及平面 z = 1 所围成的区域的整个边界曲面;

(3) 计算 $\iint_{\Sigma} (x+y+z)dS$, 其中 Σ 为球面 $x^2 + y^2 + z^2 = a^2 \perp z \ge h(0 < h < a)$ 的部分;

高等数学作业集 $(4) 计算 \iint_{\Sigma} (xy+yz+zx) dS , 其中 \Sigma 为锥面 z = \sqrt{x^2+y^2} 被柱面 x^2+y^2 = 2ax 所截$ 得的有限部分.

3. 求抛物面壳 $z = \frac{1}{2}(x^2 + y^2)(0 \le z \le 1)$ 的质量,此壳的面密度的大小为 $\rho = z$.

4. 求均匀锥面 $z = \sqrt{x^2 + y^2}$ 在柱体 $x^2 + y^2 \le 2x$ 内的部分的面积和质心坐标.

______年___月__日 姓名_______ 学号______

10.3 第二类(对坐标的)曲线积分

- 1. 填空题:
- (1) 设 C 为折线 \overline{OBA} , 这里 O(0,0), B(2,0), A(2,1) , 则 $\int_C 2xy dx x^2 dy =$ ______;
- (2) 设 $L \neq y = x^2$ 上从点 (0,0) 到点 (2,4) 的一段弧,则 $\int_L (x^2 y^2) dx =$ _______;
- (4) 设 Γ_1 为 $\begin{cases} x=a\cos\theta,\\ y=a\sin\theta,\;$ 上从点 $A(a,\;0,\;0)$ 到点 $B(a,0,2\pi b)$ 的一段弧, Γ_2 为直线段 $z=b\theta \end{cases}$

$$\overline{AB}$$
, \overline{AB} , \overline

- 2. 计算下列曲线积分
- (1) $\int_L (x+y)dx + (x-y)dy$, 其中 L 为依逆时针方向绕椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 一周的路径;

(2) $\oint_L \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$, 其中 L 为圆周 $x^2 + y^2 = a^2$ (接逆时针方向绕行);

(3) $\int_{L} x dx + y dy + (x + y - 1) dz$, 其中 L 是从点 (1,1,1) 到点 (2,3,4) 的一段直线.

3. 在椭圆 $x = a\cos t$, $y = b\sin t$ 上每一点 M 都有作用力 \vec{F} ,大小等于从点 M 到 椭圆中心的距离,而方向朝着椭圆中心,求质点 P 沿椭圆位于第一象限中的弧从点 A(a,0) 移动到点 B(0,b) 时,力 \vec{F} 所做的功.

4. 设C为曲线 $x=t,y=t^2,z=t^3$ 上相应于t从0变到1的曲线弧,把对坐标的曲线积分 $\int_C Pdx+Qdy+Rdz$ 化成对弧长的曲线积分.

10.4 格林公式及其应用

- 1. 利用格林公式计算下列曲线积分:
- (1) $\oint_L xe^{-y^2} dy$,其中 L 是以 O(0,0) , A(1,1) , B(0,1) 为顶点的三角形边界,方向为 逆时针方向;

(2) 计算 $\int_L (e^x \sin y + y + 1) dx + (e^x \cos y - x) dy$, 其中 L 是从 A 到 B 的下半圆周,圆 的直径两端点A,B的坐标分别为(1,0)与(7,0);

(3) $\int_{L} (x^2 - y) dx - (x + \sin^2 y) dy$, 其中 L 是在圆周 $y = \sqrt{2x - x^2}$ 上由点 (0,0) 到 点(1,1)的一段弧.

高等数学作业集 2. 利用曲线积分计算星形线: $x = a\cos^3 t, y = a\sin^3 t$ 所围成的图形的面积.

3. 证明下列曲线积分在整个 xOy 面内与路径无关,并计算积分值:

(1)
$$\int_{(1,1)}^{(2,3)} (x+y)dx + (x-y)dy$$
;

(2)
$$\int_{(1,0)}^{(2,1)} (2xy - y^4 + 3)dx + (x^2 - 4xy^3)dy$$
.

- 4. 验证下列 P(x,y)dx + Q(x,y)dy 在整个 xOy 平面内是某一函数 u(x,y) 的全微 分,并求这样的一个u(x,y):
- (1) $(x^2 + 2xy y^2)dx + (x^2 2xy y^2)dy$;

(2) $4\sin x \sin 3y \cos x dx - 3\cos 3y \cos 2x dy$.

5. 试确定 λ 的值,使曲线积分 $\int_C (x^4 + 4xy^{\lambda}) dx + (6x^{\lambda-1}y^2 - 5y^4) dy$ 在全平面上与路径无关,并求 $\int_{(1,1)}^{(2,3)} (x^4 + 4xy^{\lambda}) dx + (6x^{\lambda-1}y^2 - 5y^4) dy$ 的值.

6. 试确定 a 的值,使得 $(ax\cos y - y^2\sin x)dx + (ay\cos x - x^2\sin y)dy$ 为某一函数 u(x,y) 的全微分,并求 u(x,y) .

10.5 第二类(对坐标的)曲面积分

- 1. 设∑是平面x+y+z=3被三坐标面截下的部分的上侧,求:
- (1) $\iint_{\Sigma} x dy dz$;

(2) $\iint\limits_{\Sigma}(x+y)dzdx;$

 $(3) \iint\limits_{\Sigma} yzdxdy.$

- 2. 计算下列第二类曲面积分:
- (1) $\iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S}$, 其中 $\mathbf{F} = z\mathbf{i} + x\mathbf{j} + y\mathbf{k}$, Σ 是柱面 $x^2 + y^2 = 1$ 被平面z = 0及z = 3所截得的在第一卦限内的部分的前侧.

_____年___月___日 姓名_____ 学号_____ (2) $\iint_{\Sigma} \sin x \, dy \, dz + \cos y \, dz \, dx + \arctan \frac{z}{2} \, dx \, dy$, Σ 是平面 z = 2 $(x^2 + y^2 \le 4)$ 的下侧.

(3) $\iint_{\Sigma} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{S} , \ \, \sharp + \boldsymbol{F} = (xz, xy, yz) \, , \ \, \Sigma \, \sharp + \mathrm{m} \, z = 0 \, , \ \, x = 0 \, , \ \, y = 0, \, x + y + z = 1 \, \mathrm{m} \,$ 围成的空间区域的整个边界曲面的外侧.

3. 把 $\iint_{\Sigma} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$ 化成对面积的曲面积分,其中 Σ 为上半球面 $z = \sqrt{1 - x^2 - y^2}$ 的上侧.

10. 6 高斯公式 通量与散度

- 1. 利用高斯公式计算下列曲面积分:
- (1) $\bigoplus_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$, 其中 Σ 为平面 x = 0, y = 0, z = 0, x = a, y = a, z = a 所围成的立体的表面的外侧;

(2) $\bigoplus_{\Sigma} (x\cos\alpha + y\cos\beta + z\cos\gamma)dS$, 其中 Σ 是由 $z = x^2 + y^2$, z = 4 所围成的立体的表面, $\cos\alpha$, $\cos\beta$, $\cos\gamma$ 是 Σ 外法线方向的方向余弦;

(3) $\iint_{\Sigma} \boldsymbol{F} \cdot d\boldsymbol{S}$, 其中 $\boldsymbol{F} = x^3 \boldsymbol{i} + y^2 \boldsymbol{j} + z \boldsymbol{k}$, Σ 是由 $x^2 + y^2 = 4$, z = 1, z = 2 所围成的立体的内表面;

_____年__月__日 姓名_____学号____ (4) $\iint_{\Sigma} \mathbf{F} \cdot d\mathbf{S}$, 其中 $\mathbf{F} = x \sin x \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$, 其中 Σ 是 $z = 1 - \sqrt{1 - x^2 - y^2}$ 的上侧;

(5) $\iint\limits_{\Sigma} yzdzdx + 2dxdy$,其中 $\sum \mathcal{E} x^2 + y^2 + z^2 = 4$ 的外侧在 $z \ge 0$ 的部分.

2. 求向量 $\mathbf{A} = (2x + 8z)\mathbf{i} - (xz + y)\mathbf{j} + (y^2 + 2z)\mathbf{k}$ 穿过曲面 Σ 流向外侧的流量, 其中 Σ 是以点(3,-1,2)为球心,半径 R=3 的球面.

- 3. 求下列向量场 A 的散度:
- (1) $\mathbf{A} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$; (2) $\mathbf{A} = x^y\mathbf{i} + \arctan(e^{xy})\mathbf{j} + \ln(1 + yz)\mathbf{k}$.

10.7 斯托克斯公式 环流量与旋度

- 1. 利用斯托克斯公式计算第二类空间曲线积分:
- (1) $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$, 其中 $\mathbf{F} = z\mathbf{i} + x\mathbf{j} + y\mathbf{k}$, Γ 是闭折线 ABCA , 这里 A,B,C 的坐标分别 为 A(1,0,0),B(0,1,0),C(0,0,1) .

2. 求向量场 $\mathbf{A}=z\mathbf{i}+x\mathbf{j}+y\mathbf{k}$ 沿闭曲线 Γ : $\begin{cases} z=x^2+y^2,\\ z=4 \end{cases}$ 的环流量,从 z 轴正向看去 Γ 沿逆时针方向.

3. 求下列向量场 A 的旋度:

(1)
$$\mathbf{A} = x^2 y \mathbf{i} + y^2 z \mathbf{j} + z^2 x \mathbf{k}$$
,

(2)
$$\mathbf{A} = x^2 y z \mathbf{i} + x y^2 z \mathbf{j} + x y z^2 \mathbf{k} .$$

|--|

姓名

学号

总习题 10

- 1. 判断下列命题是否正确:
- (1) $\oint_{|x|+|y|=1} \frac{dx+dy}{|x|+|y|} = \oint_{|x|+|y|=1} dx + dy = \iint_D 0d\sigma = 0$,其中D为|x|+|y|=1所围成的区域;

- (2) 设 P(x,y), Q(x,y) 在区域 D 内有连续的一阶偏导数,且 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,则在 D 内 曲线积分 $\int_{\mathcal{C}} P dx + Q dy$ 与路径无关;
- (3) 设 Σ 是球面 $x^2 + y^2 + z^2 = R^2$ 的外侧, $I = \bigoplus_{\Sigma} z dx dy$,由于积分曲面 Σ 关于 x O y 平面对称,被积函数是 z 的奇函数,故 I = 0;
- (4) 设 \sum 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧, Ω 为球体 $x^2 + y^2 + z^2 \le a^2$,则

$$\iint_{\Sigma} x^{3} dy dz + y^{3} dz dx + z^{3} dx dy = 3 \iiint_{\Omega} (x^{2} + y^{2} + z^{2}) dv = 3 \iiint_{\Omega} a^{2} dv = 4\pi a^{5}.$$
 ()

- 2. 填空题:
- (2) 设 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧,则 $\bigoplus_{\Sigma} y^2 x dy dz + z^2 y dz dx + x^2 z dx dy$ 的值为 ;
- (3) 设 Σ 为光滑的封闭曲面,V为其所围立体的体积, $\cos \alpha, \cos \beta, \cos \gamma$ 为 Σ 的外法线方向的方向余弦,则曲面积分 $\bigoplus_{\Sigma} (x\cos \alpha + y\cos \beta + z\cos \gamma) dS = \underline{\hspace{1cm}}$.
- 3. 计算下列曲线积分
- (1) $\int_L y ds$, 其中 L 是摆线 $x = a(t \sin t)$, $y = a(1 \cos t)$ 的一拱 (a > 0);

且设从原点经过A(1,1)到B(2,0)是积分所沿的方向.

4. 计算曲线积分
$$\int_L \frac{y^2}{\sqrt{R^2+x^2}} dx + \left[4x+2y\ln(x+\sqrt{R^2+x^2})\right] dy$$
, 其中路径 L 是沿

圆周 $x^2+y^2=R^2$ 由点 A(R,0) 依逆时针方向到点 B(-R,0))的半圆,常数 R>0 .

- 5. 计算下列曲面积分:
- (1) $\iint_{\Sigma} (y^2 + z^2) dS$, 其中 Σ 为圆锥面 $z = \sqrt{x^2 + y^2} (0 \le z \le 1)$;

的外侧;

(3) $\iint_{\Sigma} \frac{x dy dz + z^2 dx dy}{x^2 + y^2 + z^2}, \quad 其中 \sum 是介于平面 z = -R 及 z = R (R > 0) 之间的圆柱面$ $x^2 + y^2 = R^2$ 的外侧.

6. 证明: $\frac{xdx + ydy}{x^2 + y^2}$ 在整个 xOy 平面除去 y 的负半轴及原点的开区域 G 内是某个 二元函数的全微分,并求出这样的二元函数.

7. 求面密度为 ρ 的均匀半球壳 $x^2 + y^2 + z^2 = a^2 (z \ge 0)$ 对于z轴的转动惯量.

8. 设在半平面 x>0 内有力 $F=-\frac{k}{r^3}(x\pmb{i}+y\pmb{j})$ 构成力场,其中 k 为常数, $r=\sqrt{x^2+y^2}\text{ , 证明: 在此力场中场力所做的功与所取的路径无关.}$

第 11 章 无穷级数

11.1 常数项级数的概念和性质

1. 写出下列级数的一般项:

(1)
$$\frac{-2}{1} + \frac{3}{2} - \frac{4}{3} + \frac{5}{4} - \frac{6}{5} + \cdots;$$

(2)
$$\frac{\sqrt{x}}{3} + \frac{x}{5} + \frac{x\sqrt{x}}{7} + \frac{x^2}{9} + \cdots;$$

(3)
$$\frac{1}{1\cdot 4} + \frac{a}{4\cdot 7} + \frac{a^2}{7\cdot 10} + \frac{a^3}{10\cdot 13} + \cdots$$

2. 根据级数收敛与发散的定义判别下列级数的收敛性:

(1)
$$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} + \dots;$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
.

3. 判别下列级数的收敛性:

(1)
$$\frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{2}} + \dots + \frac{1}{\sqrt[n]{2}} + \dots;$$

(2)
$$\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \cdots;$$

(3)
$$-\frac{8}{9} + \frac{8^2}{9^2} - \frac{8^3}{9^3} + \frac{8^4}{9^4} - \cdots;$$

(4)
$$\sum_{n=1}^{\infty} \frac{3 + (-2)^n}{3^n};$$

(5)
$$\sum_{n=1}^{\infty} \frac{n}{10n+9}$$
.

11.2 常数项级数的审敛法

1. 用比较法或比较法的极限形式判别下列级数的收敛性:

(1)
$$1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots;$$

(2)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}}$$
;

(3)
$$\sum_{n=1}^{\infty} \frac{1}{3+2^n}$$
;

$$(4) \sum_{n=1}^{\infty} \sin \frac{1}{n^2};$$

(5)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+4n+5};$$

(6)
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right).$$

- 高等数学作业集2. 用比值法判别下列级数的收敛性:
- (1) $\sum_{n=1}^{\infty} \frac{n^2+2}{5^n}$;

(2) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$;

(3) $\sum_{n=1}^{\infty} n \tan \frac{\pi}{2^{n+1}}$;

(4) $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}.$

3. 用根值法判别下列级数的收敛性:

(1)
$$\sum_{n=1}^{\infty} \frac{n^2}{\left(2 + \frac{1}{n}\right)^n}$$
;

(2)
$$\sum_{n=1}^{\infty} \frac{2^n}{3^{\ln n}}$$
.

- (1) $\sum_{n=1}^{\infty} n \left(\frac{3}{4}\right)^n;$

(2) $\sum_{n=1}^{\infty} \frac{1}{na+b} (a>0,b>0)$;

(3) $\sum_{n=1}^{\infty} \frac{n-\sqrt{n}}{2n-1}$;

(4) $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.

- 5. 判别下列级数是否收敛? 若收敛, 是绝对收敛还是条件收敛?
- (1) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{3^{n-1}}$;

(2) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}$;

(3)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n^2 - n}}$$
;

(4)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}.$$

6. 若级数
$$\sum_{n=1}^{\infty} a_n^2$$
 , $\sum_{n=1}^{\infty} b_n^2$ 收敛, 证明: 级数 $\sum_{n=1}^{\infty} \left| a_n b_n \right|$, $\sum_{n=1}^{\infty} \frac{\left| a_n \right|}{n}$ 都收敛.

7. 若正项数列
$$\{a_n\}$$
单调增加且有上界,证明:级数 $\sum_{n=1}^{\infty} \left(1 - \frac{a_n}{a_{n+1}}\right)$ 收敛.

11.3 幂级数

- 1. 求下列幂级数的收敛域:
- $(1) \sum_{n=1}^{\infty} nx^n ;$
- $(2) \sum_{n=1}^{\infty} n! x^n ;$

 $(3) \sum_{n=1}^{\infty} \frac{x^n}{2 \cdot 4 \cdot \cdots \cdot (2n)};$

(4) $\sum_{n=1}^{\infty} \frac{(x-5)^n}{\sqrt{n}}$;

(5) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$

高等数学作业集 2. 求下列级数在收敛域内的和函数:

$$(1) \sum_{n=1}^{\infty} nx^n ;$$

(2)
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}.$$

3. 求级数
$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$$
 的和.

11.4 函数展开成幂级数

- 1. 将下列函数展开成 x 的幂级数, 并求展开式成立的区间:
- (1) ln(2+x);

(2) $\sin^2 x$;

$$(3) \ \frac{x}{\sqrt{1+x^2}};$$

$$(4) \ \frac{x}{2+x}.$$

2. 将 $f(x) = \lg x$ 展开成(x-1) 的幂级数.

3. 将 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成(x + 4)的幂级数.

4. 求幂级数 $\sum_{n=0}^{\infty} \frac{2n+1}{n!} x^{2n}$ 的收敛域及和函数.

11.6 傅里叶级数

1. 已知 f(x) 是以 2π 为周期的周期函数,在 $-\pi \le x < \pi$ 上 f(x) 的表达式为

$$f(x) = \begin{cases} 0, & -\pi \le x < 0, \\ x, & 0 \le x < \pi, \end{cases}$$

设 s(x) 是 f(x) 的傅里叶级数的和函数,求 $s(\frac{\pi}{2})$, $s(-\frac{\pi}{2})$, $s(\pi)$, $s(\frac{7\pi}{2})$.

2. f(x) 是周期为 2π 的周期函数, 试将f(x) 展开成傅里叶级数, 如果f(x) 在 $[-\pi,\pi)$ 上的表达式为: $f(x) = \begin{cases} bx, & -\pi \le x < 0, \\ ax, & 0 \le x < \pi. \end{cases}$

3. 将 f(x) 展开成傅里叶级数, 其中 $f(x) = 2\sin\frac{x}{3} (-\pi \le x \le \pi)$.

4. 将函数 $f(x) = \frac{\pi - x}{2} (0 \le x \le \pi)$ 展开成正弦级数.

_____年___月___日

姓名______ 学号_____

5. 将 $f(x) = 2x^2 (0 \le x \le \pi)$ 展开成余弦级数.

6. 设周期函数 f(x) 的周期为 2π , 证明: 如果 $f(x-\pi) = -f(x)$, 则 f(x) 的 傅里叶系数 $a_0=0, a_{2k}=0, b_{2k}=0$ $(k=1,2,\cdots)$.

12.7 周期为 2l 的周期函数的傅里叶级数

1. 将周期函数 f(x) 展开成傅里叶级数, f(x) 在一个周期内的表达式为: $f(x) = \begin{cases} 2x+1, & -3 \le x < 0, \\ 1, & 0 \le x < 3 \end{cases}$

2. 将函数 $f(x) = \begin{cases} x, & 0 \le x < \frac{1}{2}, \\ 1 - x, & \frac{1}{2} \le x \le 1 \end{cases}$ 展开成正弦级数.

总习题 11

1. 填空题:

(1) 级数
$$\sum_{n=1}^{\infty} \frac{1}{1+a^n} (a>0)$$
 , 当 a ______ 时,级数收敛,当 a ______ 时级数发散;

(2) 级数
$$\sum_{n=1}^{\infty} \frac{(x-2)^{2n}}{n4^n}$$
 的收敛区间是______;

(4)
$$f(x) = \begin{cases} -1, & -\pi < x \le 0, \\ 1+x^2, & 0 < x < \pi, \end{cases}$$
 则其以 2π 为周期的傅里叶级数在点 $x = \pi$ 处

收敛于______,在
$$x = \frac{\pi}{2}$$
 处收敛于______.

2. 选择题:

(1) 若()成立,则级数
$$\sum_{n=1}^{\infty} a_n$$
 必收敛.

(A)
$$s_n = a_1 + a_2 + \dots + a_n$$
, 数列 $\{s_n\}$ 有界 (B) $\lim_{n \to \infty} a_n = 0$

(B)
$$\lim_{n \to \infty} a_n = 0$$

(C)
$$a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6) + \cdots$$
 收敛 (D) $s_n = a_1 + a_2 + \cdots + a_n$, $\lim_{n \to \infty} s_n$ 存在

(D)
$$s_n = a_1 + a_2 + \dots + a_n$$
, $\lim_{n \to \infty} s_n$ 存在

(2) 设常数
$$k > 0$$
 , 则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{k+n}{n^2}$ 的敛散性为 ()

(A) 发散 (B) 绝对收敛 (C) 条件收敛 (D) 收敛性与
$$k$$
 的取值有关

(3) 若级数
$$\sum_{n=1}^{\infty} a_n (x-1)^n$$
 在 $x = -1$ 处收敛,则此级数在 $x = 2$ 处().

(4) 若
$$a_n = (-1)^n \ln(1 + \frac{1}{n})$$
 ,则下列结论正确的是 ()

(A)
$$\sum_{n=1}^{\infty} a_n$$
 与 $\sum_{n=1}^{\infty} a_n^2$ 都绝对收敛 (B) $\sum_{n=1}^{\infty} a_n$ 条件收敛, $\sum_{n=1}^{\infty} a_n^2$ 绝对收敛

(C)
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^2$$
 发散 (D) $\sum_{n=1}^{\infty} a_n$ 发散, $\sum_{n=1}^{\infty} a_n^2$ 收敛

(5) 若正项级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则下列结论正确的是 ().

(A)
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho < 1$$
 (B)
$$\lim_{n \to \infty} \sqrt[n]{u_n} = \rho < 1$$

(C)
$$\sum_{n=1}^{\infty} (u_n + u_{n+1})$$
 收敛 (D) $\sum_{n=1}^{\infty} \sqrt{u_n}$ 收敛

3. 判别下列级数的收敛性:

$$(1) \sum_{n=1}^{\infty} \frac{1}{n\sqrt[n]{n}};$$

(2)
$$\sum_{n=1}^{\infty} \frac{n\cos^2\frac{n\pi}{3}}{2^n}$$
;

$$(3) \sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^2};$$

(4)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n - \ln n}.$$

4. 将下列函数展开成 x 的幂级数:

(1)
$$\frac{1}{(2-x)^2}$$
;

$$(2) \ \frac{d}{dx} \left(\frac{e^x - 1}{x} \right).$$

年	月	Н
	/ -/	

姓名_____ 学号____

5. 求下列幂级数的和函数:

$$(1) \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)};$$

(2)
$$\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{(2n+1)!} x^{2n+1}.$$

6. 设
$$a_n > 0, b_n > 0$$
, 且 $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$, 证明: 若级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 则级数 $\sum_{n=1}^{\infty} a_n$ 收敛.

7. 证明: 若数列 $\{na_n\}$ 的极限存在,级数 $\sum_{n=1}^{\infty}n(a_n-a_{n-1})$ 收敛,则级数 $\sum_{n=1}^{\infty}a_n$ 收敛.

8. 设正项数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问级数 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 是否收敛?并说明理由.

12.1 微分方程的基本概念

1. 求下列微分方程满足初始条件的特解:

(1)
$$\begin{cases} y' = \frac{1}{x} \\ y|_{x=e} = 0 \end{cases}$$

(2)
$$\begin{cases} y'' = 6x \\ y|_{x=0} = 0 \\ y'|_{x=0} = 2 \end{cases}$$

2. 已知曲线过点(-1,1),且曲线上任一点的切线与x轴交点的横坐标等于切点横坐 标的平方,写出此曲线所满足的初值问题.

12.2 可分离变量的微分方程

- 1. 求下列微分方程的通解:
- (1) $xy' y \ln y = 0$;
- (2) $y' xy' = 2(y^2 + y')$;

(3) $(e^{x+y}-e^x)dx+(e^{x+y}+e^y)dy=0$.

- 2. 求下列微分方程满足初始条件的特解:
- (1) $\cos x \sin y dy = \cos y \sin x dx$, $y|_{x=0} = \frac{\pi}{4}$;

3. 一曲线经过点(2,3),它在两坐标轴间的任意切线线段均被切点所平分,求这曲线 方程.

4. 将温度为 T_0 的物体放在温度为 T_1 的空气中逐渐冷却 $(T_0 > T_1)$,由实验测定,物体 在空气中冷却的速度与这一物体的温度和其周围空气的温度之差成正比,求任意时 刻t物体的温度.

12.3 一阶线性微分方程

- 1. 求下列微分方程的通解:
- (1) $xy' + y = x^2 + 1$;

(2) $y' + y \tan x = \sin 2x$;

(3) $(2xy - y^3)y' + 1 = 0$.

3. 设 f(x) 具有连续的一阶导数,且满足 $f(x) = \int_0^x (x^2 - t^2) f'(t) dt + x^2$,求 f(x) 的 表达式.

12.4 全微分方程

- 1. 判别下列方程中哪些是全微分方程,并求全微分方程的通解:
- (1) $2xydx + (x^2 + y^2)dy = 0$;

(2) $y(x-2y)dx - x^2dy = 0$;

(3) $(x\cos y + \cos x)y' - y\sin x + \sin y = 0$;

(4) $(a^2 - 2xy - y^2)dx - (x + y)^2 dy = 0$.

- 2. 用观察法求下列方程的积分因子,并求其通解:
- (1) $ydx xdy + y^2x^2dx = 0$;

(2) $xdx + ydy = (x^2 + y^2)dx$.

12.5 可降阶的高阶微分方程

- 1. 求下列各微分方程的通解:
- (1) $y'' = xe^x$;

(2) $(1+x^2)y'' + 2xy' = 1$;

(3) $y'' + \frac{2}{1-y}(y')^2 = 0$.

- (1) $(1-x^2)y'' xy' = 0$, $y|_{x=0} = 0$, $y'|_{x=0} = 1$;

(2) $y^3y'' + 1 = 0$, $y|_{x=1} = 1$, $y'|_{x=1} = 0$.

3. 设函数 u = f(r), $r = \sqrt{x^2 + y^2}$ 在 r > 0 内满足方程 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 其中 f(r)二阶可导,求f(r).

12.6 高阶线性微分方程

1. 验证:函数 $y = C_1 x^5 + \frac{C_2}{x} - \frac{x^2}{9} \ln x$ 是方程 $x^2 y'' - 3xy' - 5y = x^2 \ln x$ 的通解. (其中 C_1 , C_2 为任意常数).

2. 已知 $y_1(x) = x$ 是齐次线性方程 $x^2y'' - 2xy' + 2y = 0$ 的一个解,求非齐次线性方程 $x^2y'' - 2xy' + 2y = 2x^3$ 的通解.

______年___月___日 姓名________ 学号______

12.7 二阶常系数齐次线性微分方程

1. 求下列微分方程的通解:

(1)
$$y'' - 4y' = 0$$
;

(2)
$$y'' + 2y' + 3y = 0$$
;

(3)
$$4\frac{d^2x}{dt^2} - 20\frac{dx}{dt} + 25x = 0$$
; (4) $y''' + 3y'' + 3y' + y = 0$.

(4)
$$y''' + 3y'' + 3y' + y = 0$$

2. 求下列微分方程满足所给初始条件的特解:

(1)
$$y'' - 3y' - 4y = 0$$
, $y|_{x=0} = 0$, $y'|_{x=0} = -5$;

(2)
$$y'' + 4y' + 4y = 0$$
, $y|_{x=0} = 1$, $y'|_{x=0} = 1$;

(3) y'' - 4y' + 13y = 0, $y|_{x=0} = 0$, $y'|_{x=0} = 3$.

3. 长6米的链条自桌上滑下,运动开始时,链条垂下部分为1米,若不计摩擦,问链条全部滑下桌面需要多少时间?

______年___月__日 姓名______ 学号______

12.8 二阶常系数非齐次线性微分方程

- 1. 求下列微分方程的通解:
- (1) $2y'' + y' y = 2e^x$;

(2)
$$y'' - 3y' + 2y = xe^x$$
;

(3) $y'' + 9y = x \sin x$;

(4) $y'' - y = \sin^2 x$.

2. 设函数 f(x)连续,且满足 $f(x) = \sin x - \int_0^x (x-t)f(t)dt$,求 f(x).

1. 求下列齐次方程的通解:

(1)
$$x\frac{dy}{dx} = y \ln \frac{y}{x}$$
;

(2)
$$(1+2e^{\frac{x}{y}})dx+2e^{\frac{x}{y}}(1-\frac{x}{y})dy=0$$
.

2. 求微分方程(x+y)dx+(3x+3y-4)dy=0的通解.

3. 设有连接点 O(0,0) 和 A(1,1) 的一段向上凸的曲线弧 OA ,对于 OA 上任一点 P(x,y) ,曲线弧 OP 与直线段 \overline{OP} 所围图形的面积为 x^2 ,求曲线弧 OA 的方程.

4. 求伯努利方程 $\frac{dy}{dx} - y = xy^4$ 的通解.

5. 作变换 $x = e^t$, 求欧拉方程 $x^2y'' - 2xy' + 2y = \ln^2 x - 2\ln x$ 的通解.

总习题 12

1. 判别下列一阶微分方程的类型:

(1)
$$\frac{dy}{dx} - \frac{e^{y^2 + 3x}}{y} = 0$$
;

(2)
$$x^2 y dx - (x^3 + y^3) dy = 0$$
;

(3)
$$(x+1)\frac{dy}{dx} - xy = e^x(x+1)$$
;

(4)
$$\frac{dy}{dx} - 3xy - xy^2 = 0$$
;

(5)
$$y' = \frac{y}{x + y^3}$$
;

(6)
$$(2xy-3y^2)dx + (x^2-6xy-y^3)dy = 0$$
.

- 2. 选择题:
- (1) 微分方程 $y'' y = e^x + 1$ 的一个特解应具有形式 ().
- (A) $ae^x + b$; (B) $axe^x + b$; (C) $ae^x + bx$; (D) $axe^x + bx$.
- (2) 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y}{1+x^2} \Delta x + \alpha$,且当 $\Delta x \to 0$ 时, α 是 Δx 的高阶无穷小, $y(0) = \pi$,则 y(1) 等于().
- (A) 2π ; (B) π ; (C) $e^{\frac{\pi}{4}}$; (D) $\pi e^{\frac{\pi}{4}}$.
- (3) 在下列微分方程中,以 $y = C_1 e^x + C_2 \cos 2x + C_3 \sin 2x$ 为通解的是().
- (A) y''' + y'' 4y' 4y = 0; (B) y''' + y'' + 4y' + 4y = 0;
- (C) y''' y'' 4y' + 4y = 0; (D) y''' y'' + 4y' 4y = 0.
- 3. 已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求曲线方程.

4. 设函数 f(t) 在 $[0,+\infty)$ 上连续,且满足 $f(t) = e^{4\pi t^2} + \iint_{x^2+y^2 \le 4t^2} f(\frac{1}{2}\sqrt{x^2+y^2}) dxdy$, 求 f(t).

5. 设函数 f(x) 具有二阶连续导数, f(0) = 0, f'(0) = 1, 且 $[xy(x+y) - f(x)y]dx + [f'(x) + x^2y]dy = 0$ 为全微分方程,求f(x)并解此全微分方程.

- 6. (1) 验证函数 $y(x) = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \frac{x^9}{9!} + \dots + \frac{x^{3n}}{(3n)!} + \dots (-\infty < x < +\infty)$ 满足微分方程 $y'' + y' + y = e^x$;
- (2) 利用(1)的结果求幂级数 $\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$ 的和函数.

答案与提示

第8章 多元函数微分学及其应用

8.1 多元函数

1. $(x+y)^{xy} + (xy)^{2x}$.

2. (1) $D = \{(x, y) | y^2 - 2x + 1 > 0 \}$; (2) $D = \{(x, y) | x + y > 0, x - y > 0 \}$;

(3) $D = \{(x, y) | x \ge \sqrt{y}, y \ge 0\};$ (4) $D = \{(x, y) | x^2 + y^2 < 1, y > x \ge 0\}.$

3. (1) 1; (2) $\ln 2$; (3) $-\frac{1}{4}$; (4) 2; (5) 2; (6) 0.

8.2 多元函数的偏导数

1. (1) 1; (2) $\frac{\pi}{4}$; (3) 2.

2. (1) $\frac{\partial z}{\partial x} = 3x^2y - y^3$, $\frac{\partial z}{\partial y} = x^3 - 3xy^2$;

(2) $\frac{\partial s}{\partial u} = \frac{1}{v} - \frac{v}{u^2}$, $\frac{\partial s}{\partial v} = \frac{1}{u} - \frac{u}{v^2}$;

(3) $\frac{\partial z}{\partial x} = \frac{1}{2x\sqrt{\ln xy}}$, $\frac{\partial z}{\partial y} = \frac{1}{2y\sqrt{\ln xy}}$;

(4) $\frac{\partial z}{\partial x} = y\cos(xy) - y\sin(2xy)$, $\frac{\partial z}{\partial y} = x\cos(xy) - x\sin(2xy)$;

(5) $\frac{\partial u}{\partial x} = \frac{y}{z} x^{\frac{y}{z}-1}, \quad \frac{\partial u}{\partial y} = x^{\frac{y}{z}} \ln x \cdot \frac{1}{z}, \quad \frac{\partial u}{\partial z} = x^{\frac{y}{z}} \ln x \cdot (-\frac{y}{z^2});$

(6) $\frac{\partial u}{\partial x} = \frac{z(x-y)^{z-1}}{1+(x-y)^{2z}}, \quad \frac{\partial u}{\partial y} = \frac{-z(x-y)^{z-1}}{1+(x-y)^{2z}}, \quad \frac{\partial u}{\partial z} = \frac{(x-y)^z \ln(x-y)}{1+(x-y)^{2z}}.$

3. (1) $\frac{\partial^2 z}{\partial x^2} = 12x^2 - 8y^2$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = -16xy$, $\frac{\partial^2 z}{\partial y^2} = 12y^2 - 8x^2$;

(2) $\frac{\partial^2 z}{\partial x^2} = \frac{2xy}{(x^2 + y^2)^2}, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}, \quad \frac{\partial^2 z}{\partial y^2} = -\frac{2xy}{(x^2 + y^2)^2}.$

4. 0, 2, -2, 0

5. $f_{v}(0,0)$ 不存在, $f_{v}(0,0) = 0$.

8.3 全微分

1. (1)(D); (2)(B).

2. (1) $dz = (y + \frac{1}{v})dx + (x - \frac{x}{v^2})dy$; (2) $dz = -\frac{y}{x^2}e^{\frac{y}{x}}dx + \frac{1}{x}e^{\frac{y}{x}}dy$;

(3) $du = \frac{-2tds + 2sdt}{(s-t)^2}$; (4) $dz = yzx^{yz-1}dx + zx^{yz} \ln xdy + yx^{yz} \ln xdz.$

3. $-\frac{3}{11}$, -0.3.

4.
$$dz = \frac{-xy}{(x^2 + y^2)^{\frac{3}{2}}} dx + \frac{x^2}{(x^2 + y^2)^{\frac{3}{2}}} dy$$
; $dz|_{(1,0)} = dy$.

5.
$$dz|_{(1,0)} = 2edx + (e+2)dy$$
.

6.
$$du\Big|_{(1,1,1)} = \frac{1}{2}dx - \frac{1}{2}dy + dz$$
.

8.4 多元复合函数的求导法则

1. (1)
$$\frac{3-12t^2}{\sqrt{1-(3t-4t^3)^2}}$$
; (2) $e^{ax} \sin x$.

2. (1)
$$4x$$
, $4y$.

(2)
$$\frac{2x}{y^2}\ln(3x-2y) + \frac{3x^2}{y^2(3x-2y)}, -\frac{2x^2}{y^3}\ln(3x-2y) - \frac{2x^2}{y^2(3x-2y)}.$$

3. (1)
$$\frac{\partial u}{\partial x} = 2xf_1' + ye^{xy}f_2'$$
, $\frac{\partial u}{\partial y} = -2yf_1' + xe^{xy}f_2'$;

(2)
$$\frac{\partial u}{\partial x} = yx^{y-1}f_1' + y^x \ln yf_2'$$
, $\frac{\partial u}{\partial y} = x^y \ln xf_1' + xy^{x-1}f_2'$;

(3)
$$\frac{\partial u}{\partial x} = f_1' + yf_2' + yzf_3'$$
, $\frac{\partial u}{\partial y} = xf_2' + xzf_3'$, $\frac{\partial u}{\partial z} = xyf_3'$.

4. 0

5. (1)
$$y^2 f_{11}''$$
, $f_1' + y(xf_{11}'' + f_{12}'')$, $x^2 f_{11}'' + 2xf_{12}'' + f_{22}''$;

$$(2) f_{11}'' + \frac{2}{y} f_{12}'' + \frac{1}{y^2} f_{22}'', \quad -\frac{x}{y^2} f_{12}'' - \frac{x}{y^3} f_{22}'' - \frac{1}{y^2} f_2', \quad \frac{2x}{y^3} f_2' + \frac{x^2}{y^4} f_{22}''.$$

8.5 隐函数的求导公式

1. (1)
$$\frac{y^2 - e^x}{\cos y - 2xy}$$
; (2) $\frac{x}{2-z}$.

2.
$$f'(0) = 0, f''(0) = -1.$$

3.
$$\frac{\partial z}{\partial x} = \frac{z}{x+z}$$
, $\frac{\partial z}{\partial x} = \frac{z^2}{y(x+z)}$.

4.
$$\frac{z^5 - 2xyz^3 - x^2y^2z}{(z^2 - xy)^3}$$

5. (1)
$$\frac{dy}{dx} = -\frac{x(6z+1)}{2y(3z+1)}, \frac{dz}{dx} = \frac{x}{3z+1};$$

(2)
$$\frac{\partial u}{\partial x} = \frac{\sin v}{e^u(\sin v - \cos v) + 1}, \quad \frac{\partial u}{\partial y} = \frac{-\cos v}{e^u(\sin v - \cos v) + 1},$$
$$\frac{\partial v}{\partial x} = \frac{\cos v - e^u}{u[e^u(\sin v - \cos v) + 1]}, \quad \frac{\partial v}{\partial y} = \frac{\sin v + e^u}{u[e^u(\sin v - \cos v) + 1]}.$$

6.
$$\frac{\partial w}{\partial x} = f_1' + \frac{y}{1 + u^4} f_3'.$$

8.6 方向导数与梯度

1. (B). 2.
$$1+2\sqrt{3}$$
. 3. $\frac{\sqrt{2}}{3}$. 4. $\frac{\sqrt{3}}{3}$.

3.
$$\frac{\sqrt{2}}{3}$$
.

4.
$$\frac{\sqrt{3}}{3}$$

5. (1) $72\cos\alpha + 72\sin\alpha$; (2) 梯度方向, $72\sqrt{2}$.

6. (3,-2,-6), (6,3,0).

8.7 多元函数微分学的应用

1. 切线方程: $\frac{x-(\frac{n}{2}-1)}{1} = \frac{y-1}{1} = \frac{z-2\sqrt{2}}{\sqrt{2}}$, 法平面方程: $x+y+\sqrt{2}z = \frac{\pi}{2}+4$.

2. 切线方程: $\frac{x-\frac{1}{2}}{\frac{1}{2}} = \frac{y-2}{\frac{1}{2}} = \frac{z-1}{\frac{1}{2}}$, 法平面方程: 2x-8y+16z=1.

3. 切线方程: $\frac{x-1}{16} = \frac{y-1}{9} = \frac{z-1}{-1}$, 法平面方程: 16x+9y-z=24.

4. 切平面方程: x+2y=4, 法线方程: $\begin{cases} \frac{x-2}{1} = \frac{y-1}{2} \\ z=0 \end{cases}$

5. 切平面方程: $x-y+2z=\pm\sqrt{\frac{11}{2}}$.

8.8 多元函数的极值、最值和条件极值

1. (1) (D); (2) (C).

2. 极小值 $f(\frac{1}{2},-1) = -\frac{e}{2}$.

3. $z(\frac{1}{2}, \frac{1}{2}) = \frac{1}{4}$.

4. 当两直角边都为 $\frac{l}{\sqrt{2}}$ 时,周长最大为 $(\sqrt{2}+1)l$.

5. 当矩形的边长为 $\frac{2p}{3}$ 及 $\frac{p}{3}$ 时,绕短边旋转所得圆柱体的体积最大.

6. 当长、宽、高都是 $\frac{2a}{\sqrt{3}}$ 时,体积最大.

7. 最大值 8, 最小值 0.

8. 最大值 72, 最小值 6.

1. (1) $\frac{1}{1+(x^y)^2}(yx^{y-1}dx+x^y\ln xdy);$ (2) $\frac{1}{3}\ln 3;$ (3) (1,1);

(4) 2x + 2y + z = 6; (5) $\frac{1}{v} f_1' dx + (\frac{1}{z} f_2' - \frac{x}{v^2} f_1') dy - \frac{y}{z^2} f_2' dz$.

2. (1) (A); (2) (C); (3) (B).

3. $-\frac{1}{2}$.

4.
$$\frac{\partial^2 z}{\partial x \partial y} = 4x^3 f_1' + 2x f_2' + x^4 y f_{11}'' - y f_{22}''.$$

5. (1)
$$dz = \frac{1}{1+\varphi'}[(2x-\varphi')dx + (2y-\varphi')dy];$$
 (2) $\frac{\partial u}{\partial x} = -\frac{2(2x+1)\varphi''}{(1+\varphi')^3}.$

6.
$$\frac{\partial u}{\partial x} = \frac{v + u(y - 2x)}{2(u^2 - v^2)}, \quad \frac{\partial v}{\partial x} = \frac{v(2x - y) - u}{2(u^2 - v^2)}.$$

7. (1) 连续; (2)
$$f_{\nu}(0,0) = f_{\nu}(0,0) = 0$$
; (3) 不可微.

8. 0

9. 切线方程:
$$\frac{x-1}{1} = \frac{y-1}{0} = \frac{z-\sqrt{2}}{-\sqrt{2}/2}$$
; 法平面方程: $2x-\sqrt{2}z=0$.

10. 法线方程为:
$$\frac{x+3/4}{3} = \frac{y-3/4}{-6} = \frac{z-27/16}{2}$$
.

11. (1)
$$\frac{\partial u}{\partial n}\Big|_{P} = x_0 + y_0 + z_0$$
; (2) $\stackrel{.}{=} x_0 = y_0 = z_0 = \frac{1}{\sqrt{3}}$ 时,方向导数取最大值.

第9章 重积分

9.1 二重积分的概念与性质

1. (1)
$$\iint_{D} dxdy$$
; (2) $\iint_{y^{2}+y^{2}<9} \sqrt{9-x^{2}-y^{2}}d\sigma$; (3) (i) \geq , (ii) \leq ; (4) \leq .

2. (1)
$$\iint_D (x+y)^2 d\sigma \le \iint_D (x+y)^3 d\sigma$$
; (2) $\iint_D \ln(x+y) d\sigma \le \iint_D [\ln(x+y)]^2 d\sigma$.

3.
$$36\pi \le \iint (x^2 + 4y^2 + 9)d\sigma \le 100\pi$$
.

9.2 二重积分的计算

1. (1)
$$\int_{-r}^{r} dx \int_{0}^{\sqrt{r^{2}-x^{2}}} f(x,y)dy$$
; (2) $\int_{\frac{1}{2}}^{1} dy \int_{\frac{1}{y}}^{2} f(x,y)dx + \int_{1}^{2} dy \int_{y}^{2} f(x,y)dx$;

(3) 1; (4)
$$\frac{1}{2}(1-\cos 1)$$
; (5) $2\ln 2-1$, =, $(2\ln 2-1)^2$.

2. (1)
$$\int_0^1 dy \int_{2-y}^{1+\sqrt{1-y^2}} f(x,y) dx$$
; (2) $\int_{-2}^0 dx \int_{2x+4}^{4-x^2} f(x,y) dy$; (3) $\int_0^2 dx \int_{e^{-x}}^{1+\sqrt{x}} f(x,y) dy$;

3. (1)
$$e - e^{-1}$$
; (2) $\frac{13}{6}$; (3) $-\frac{3\pi}{2}$; (4) $14a^4$. 5. $\frac{4}{3}$. 6. $\frac{17}{6}$.

7. (1) ①
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr , ② \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{(\cos\theta+\sin\theta)^{-1}} f(r\cos\theta, r\sin\theta) r dr ;$$

$$(2) \, \, \textcircled{\scriptsize 1} \, \, \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{0}^{2\sec\theta} f(r) r dr \, , \quad \textcircled{\scriptsize 2} \, \, \int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{\frac{\sin\theta}{\cos^2\theta}} dr \, , \sqrt{2} - 1 \, , \quad \textcircled{\scriptsize 3} \, \, \int_{0}^{\pi/2} d\theta \int_{0}^{2a\cos\theta} r^3 dr \, , \quad \frac{3}{4} \pi a^4 \, .$$

8. (1)
$$\frac{\pi}{4}(2\ln 2 - 1)$$
; (2) $\frac{R^3}{3}(\pi - \frac{4}{3})$; (3) $\frac{5}{2}\pi$.

9.
$$\frac{\pi^5}{40}$$
. 10. $\frac{3\pi}{32}a^4$.

_年___月__日 姓名______ 学号___

1. (1)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{x^2+y^2}^{1} f(x,y,z) dz$$
; (2) $\int_{0}^{a} dx \int_{0}^{b\sqrt{1-\frac{x^2}{a^2}}} dy \int_{0}^{\frac{xy}{c}} f(x,y,z) dz$;

(3)
$$\int_0^1 dx \int_0^1 dy \int_0^1 (x+y+z)dz$$
, $\frac{3}{2}$; (4) 0,0.

2. (1) 1; (2)
$$\frac{11}{12}\pi$$
; (3) $\frac{1}{2}\left(\ln 2 - \frac{5}{8}\right)$; (4) $\frac{\pi}{8}$; (5) $\frac{59}{480}\pi R^5$.

3. (1)
$$\int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^{\sqrt{2-r^2}} z dz$$
, $\frac{7\pi}{12}$;

(2)
$$\iiint_{\Omega} dv \,, \; \iint_{\Omega} (2a - \sqrt{x^2 + y^2} - \frac{x^2 + y^2}{a}) dx dy \,, \; \int_{0}^{2\pi} d\theta \int_{0}^{a} r dr \int_{\frac{r^2}{a}}^{2a-r} dz \,;$$

(3)
$$\int_{0}^{2\pi} d\theta \int_{0}^{h} r dr \int_{r}^{h} f(z) dz , \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{\frac{h}{\cos \varphi}} f(r \cos \varphi) r^{2} \sin \varphi dr ,$$

$$\int_{0}^{h} f(z) dz \iint_{D} dx dy , \notin D_{z} = \{(x, y) | x^{2} + y^{2} \leq z^{2}, 0 \leq z \leq h\}, \int_{0}^{h} \pi z^{2} f(z) dz .$$

4. (1)
$$8\pi$$
; (2) $\frac{4\pi}{15}(A^5-a^5)$.

5. (1)
$$\frac{\pi}{10}$$
; (2) $4\pi(2-\sqrt{2})$.

6.
$$\frac{2}{3}\pi(5\sqrt{5}-4)$$
.

9.4 重积分的应用

1.
$$2a^2(\pi-2)$$
.

2.
$$\frac{1}{2}\sqrt{a^2b^2+b^2c^2+c^2a^2}$$
.

$$3. \left(\frac{a^2+ab+b^2}{2(a+b)}, 0\right).$$

4. (1)
$$\frac{1}{2}a^2M$$
 ($M = \pi a^2h\rho$ 为圆柱体的质量);

(2) 建立直角坐标系,使圆柱体的下底位于xOy面上,且使中心位于坐标原点,所求引力 $F = (0.0.2k\pi(\sqrt{a^2 + (b+h)^2} - \sqrt{a^2 + b^2} - h))$

总习题 9

2. (1)
$$\pi^2 - \frac{40}{9}$$
; (2) $\frac{\pi}{4}R^4 + 9\pi R^2$; (3) $\frac{2}{3}(\sqrt{2}-1) + \frac{\pi}{2}$; (4) $e-1$.

3. (1)
$$\int_0^2 dx \int_{\frac{x}{2}}^{3-x} f(x,y) dy ; \qquad (2) \int_0^1 dy \int_0^{y^2} f(x,y) dx + \int_1^2 dy \int_0^{\sqrt{2y-y^2}} f(x,y) dx .$$

4. (1)
$$\frac{\pi^2}{16} - \frac{1}{2}$$
; (2) $\frac{250}{3}\pi$.

5.
$$\frac{16}{3}R^3$$
; $16R^2$.

6.
$$\frac{\pi}{2}R^4\left(\frac{\pi}{8}+\frac{5}{4}\right).$$

7.
$$2\pi ht \left(\frac{1}{3}h^2 + f(t^2)\right), \quad \pi h \left(\frac{1}{3}h^2 + f(0)\right).$$

第10章 曲线积分与曲面积分

10.1 第一类(对弧长的)曲线积分

1. (1) 0; (2)
$$2\pi a^{2n+1}$$
; (3) $2\pi a^2$; (4) 5.

2. (1)
$$\frac{14}{9}$$
; (2) $\frac{1}{12}(5\sqrt{5}+6\sqrt{2}-1)$; (3) 32; (4) $\frac{\sqrt{3}}{2}(1-e^{-2})$; (5) 9.

3.
$$\frac{56}{3}$$
.

4. 所求转动惯量 $R^3(\alpha - \sin \alpha \cos \alpha)$; 形心在扇形的对称轴上且与圆心距离 $\frac{R \sin \alpha}{\alpha}$ 处.

10.2 第一类(对面积的)曲面积分

1. (1) = ; (2)
$$\iint dS$$
; (3) 0; (4) $\frac{8}{3}\pi$.

(4)
$$\frac{8}{3}\pi$$

2. (1)
$$4\sqrt{61}$$
; (2) $\frac{1+\sqrt{2}}{2}\pi$; (3) $\pi(a^3-ah^2)$; (4) $\frac{64}{15}\sqrt{2}a^4$.

3.
$$\frac{2\pi}{15}(6\sqrt{3}+1)$$
.

4.
$$\sqrt{2}\pi$$
; $\left(1,0,\frac{32}{9\pi}\right)$.

10.3 第二类(对坐标的)曲线积分

1. (1)
$$-4$$
; (2) $-\frac{56}{15}$; (3) $-\frac{\pi}{2}a^3$; (4) $\frac{1}{a}\arctan\frac{2\pi b}{a}$, $\frac{1}{a}\arctan\frac{2\pi b}{a}$.

2. (1) 0; (2)
$$-2\pi$$
;

3.
$$\frac{1}{2}(a^2-b^2)$$
.

4.
$$\int_C \frac{P + 2xQ + 3yR}{\sqrt{1 + 4x^2 + 9y^2}} ds$$

10.4 格林公式及其应用

1. (1)
$$\frac{1}{2}(1-e^{-1})$$
; (2) $-9\pi+6$; (3) $\frac{\sin 2}{4}-\frac{7}{6}$.

2.
$$\frac{3}{8}\pi a^2$$
. 3. (1) $\frac{5}{2}$; (2) 5.

4. (1)
$$\frac{x^2}{3} + x^2y - xy^2 - \frac{y^3}{3}$$
; (2) $-\cos 2x \sin 3y$.

5.
$$\lambda = 3$$
, $-\frac{109}{5}$.

6.
$$a = 2$$
, $y^2 \cos x + x^2 \cos y$.

_年___月__日 姓名________ 学号_ 10.5 **第二类(对坐标的)曲面积分**

1. (1)
$$\frac{9}{2}$$
; (2) 9; (3) $\frac{27}{8}$.

2. (1) 6; (2)
$$-\pi^2$$
; (3) $\frac{1}{8}$.

3.
$$\iint_{\Sigma} (xP + yQ + \sqrt{1 - x^2 - y^2}R)dS$$
.

10.6 高斯公式 通量与散度

1. (1)
$$3a^4$$
; (2) 24π ; (3) -16π ; (4) $\frac{\pi}{6}$; (5) 12π .

2. 108π .

3. (1)
$$y+z+x$$
; (2) $yx^{y-1} + \frac{xe^{xy}}{1+(e^{xy})^2} + \frac{y}{1+yz}$.

10.7 斯托克斯公式 环流量与旋度

1. (1)
$$\frac{3}{2}$$
; (2) $-\frac{3\pi}{2}$.

3. (1)
$$-y^2\vec{i} - z^2\vec{j} - x^2\vec{k}$$
; (2) $(xz^2 - xy^2)\vec{i} + (xy^2 - yz^2)\vec{j} + (y^2z - x^2z)\vec{k}$.

总习题 10

2. (1)
$$-\sqrt{2}$$
; (2) $\frac{4}{5}\pi a^5$; (3) $3V$.

3. (1)
$$\frac{32}{3}a^2$$
; (2) $\frac{4}{3}$.

4. $2\pi R^2$.

5. (1)
$$\frac{3}{4}\sqrt{2}\pi$$
; (2) $-\frac{\pi}{4}h^4$; (3) $\frac{1}{2}\pi^2R$.

6.
$$\frac{1}{2}\ln(x^2+y^2)$$
.

7.
$$\frac{4}{3}\rho\pi a^4$$
.

第11章 无穷级数

11.1 常数项级数的概念和性质

1. (1)
$$(-1)^n \frac{n+1}{n}$$
; (2) $\frac{x^{\frac{n}{2}}}{2n+1}$; (3) $\frac{a^{n-1}}{(3n-2)(3n+1)}$.

2. (1) 收敛; (2) 发散.

11.2 常数项级数的审敛法

(4) 收敛.

- (2) 发散. 3. (1) 收敛;
- 4. (1) 收敛; (2) 发散; (3) 发散;
- 5. (1) 绝对收敛; (2) 发散; (3)条件收敛; (4) 条件收敛.

11.3 幂级数

1. (1)
$$(-1,1)$$
; (2) $x = 0$; (3) $(-\infty, +\infty)$; (4) $[4,6)$; (5) $[-1,1]$.

2. (1)
$$s(x) = \frac{x}{(1-x)^2}$$
 (-1 < x < 1); (2) $\frac{1}{2} \ln \frac{1+x}{1-x}$ (-1 < x < 1).

3. 3.

11.4 函数展开成幂级数

1. (1)
$$\ln 2 + \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{(n+1)2^{n+1}}, x \in (-2,2];$$

(2)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(2x)^{2n}}{2(2n)!}, \quad x \in (-\infty, +\infty);$$

(3)
$$x + \sum_{n=1}^{\infty} (-1)^n \frac{(2n)!}{2^{2n} (n!)^2} x^{2n+1}, \quad x \in [-1,1];$$

(4)
$$\sum_{1}^{\infty} (-1)^{n-1} \frac{x^n}{2^n}$$
, $x \in (-2, 2)$.

2.
$$\lg x = \frac{1}{\ln 10} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-1)^n}{n}, x \in (0,2].$$

3.
$$\frac{1}{x^2+3x+2} = \sum_{n=0}^{\infty} \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}}\right)(x+4)^n$$
, $x \in (-6,-2)$.

4.
$$s(x) = (2x^2 + 1)e^{x^2}$$
, $x \in (-\infty, +\infty)$.

11.6 傅里叶级数

1.
$$s(\frac{\pi}{2}) = \frac{\pi}{2}$$
, $s(-\frac{\pi}{2}) = 0$, $s(\pi) = \frac{\pi}{2}$, $s(\frac{7\pi}{2}) = 0$.

2.
$$f(x) = \frac{a-b}{4}\pi + \sum_{n=1}^{\infty} \left\{ \frac{[1-(-1)^n](b-a)}{n^2\pi} \cos nx + \frac{(-1)^{n-1}(a+b)}{n} \sin nx \right\},$$
$$x \neq (2k+1)\pi, \ k = 0, \pm 1, \pm 2, \cdots.$$

3.
$$f(x) = \frac{18\sqrt{3}}{\pi} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{9n^2 - 1} \sin nx$$
, $x \in (-\pi, \pi)$.

4.
$$\frac{\pi - x}{2} = \sum_{n=1}^{\infty} \frac{1}{n} \sin nx$$
, $x \in (0, \pi]$.

5.
$$2x^2 = \frac{2}{3}\pi^2 + 8\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx$$
, $x \in [0, \pi]$.

11.7 周期为 2l 的周期函数的傅里叶级数

1.
$$f(x) = -\frac{1}{2} + \sum_{n=1}^{\infty} \left\{ \frac{6[1 - (-1)^n]}{n^2 \pi^2} \cos \frac{n \pi x}{3} + \frac{6(-1)^{n+1}}{n \pi} \sin \frac{n \pi x}{3} \right\}, \quad x \neq 3(2k+1), \quad k = 0, \pm 1, \pm 2, \cdots.$$

2.
$$f(x) = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} \sin n\pi x$$
, $x \in [0,1]$.

1. (1)
$$a > 1$$
, $a \le 1$; (2) $(0,4)$; (3) $(x+1)e^x$ $x \in (-\infty, +\infty)$; $(4)\frac{\pi^2}{2}$, $1 + \frac{\pi^2}{4}$.

- 2. (1) (D); (2) (C); (3) (B);

- 3. (1) 发散; (2) 收敛; (3) 发散; (4) 收敛.

4. (1)
$$\frac{1}{(2-x)^2} = \sum_{n=1}^{\infty} \frac{n}{2^{n+1}} x^{n-1}$$
, $x \in (-2,2)$;

(2)
$$\frac{d}{dx} \left(\frac{e^x - 1}{x} \right) = \sum_{n=1}^{\infty} \frac{n}{(n+1)!} x^{n-1}, \quad |x| < +\infty, \ x \neq 0.$$

5. (1)
$$s(x) = \begin{cases} 1 + \left(\frac{1}{x} - 1\right) \ln(1 - x), & x \in [-1, 0) \cup (0, 1), \\ 0, & x = 0, \\ 1, & x = 1; \end{cases}$$

(2)
$$s(x) = \frac{1}{2}(\sin x + x \cos x), \quad -\infty < x < +\infty$$
.

- 6. 提示: 用比较法证明.
- 7. 提示: 用级数收敛的定义证明.
- 8. 提示: 收敛,说明 $\lim_{n\to\infty}a_n$ 存在且大于 0,用比较法或根值法证明.

第12章 微分方程

12.1 微分方程的基本概念

1. (1)
$$y = \ln x - 1$$
; (2) $y = x^3 + 2x$.

$$(2) \quad y = x^3 + 2x$$

2.
$$y' = \frac{y}{x - x^2}$$
, $y|_{x=-1} = 1$.

12.2 可分离变量的微分方程

1. (1)
$$y = e^{Cx}$$

12.2 可分离变量的微分万程
1. (1)
$$y = e^{Cx}$$
; (2) $y = \frac{1}{2\ln(1+x)+C}$; (3) $(e^x + 1)(e^y - 1) = C$.

(3)
$$(e^x + 1)(e^y - 1) = C$$
.

2. (1)
$$\cos y = \frac{\sqrt{2}}{2}\cos x$$
; (2) $(x+1)e^y - 2x = 1$.

(2)
$$(x+1)e^y - 2x = 1$$

3.
$$xy = 6$$

4.
$$T(t) = (T_0 - T_1)e^{-kt} + T_1$$
 (k为比例常数).

12.3 一阶线性微分方程

1. (1)
$$y = \frac{1}{3}x^2 + 1 + \frac{C}{x}$$

$$(2) y = C\cos x - 2\cos^2 x;$$

1. (1)
$$y = \frac{1}{3}x^2 + 1 + \frac{C}{x}$$
; (2) $y = C\cos x - 2\cos^2 x$; (3) $x = Ce^{-y^2} + \frac{1}{2}(y^2 - 1)$.

$$2. \quad y = \frac{x}{\cos x}.$$

$$3. \quad f(x) = e^{x^2} - 1.$$

12.4 全微分方程

1. (1)
$$x^2y + \frac{1}{3}y^3 = C$$
;

(3)
$$v\cos x + x\sin y = C$$

(3)
$$y\cos x + x\sin y = C$$
; (4) $a^2x - x^2y - xy^2 - \frac{1}{3}y^3 = C$.

2. (1)
$$\mu(x,y) = \frac{1}{y^2}, \frac{x}{y} + \frac{x^3}{3} = C$$
; (2) $\mu(x,y) = \frac{1}{(x^2 + y^2)}, x^2 + y^2 = Ce^{2x}$.

12.5 可降阶的高阶微分方程

1. (1)
$$y = (x-2)e^x + C_1x + C_2$$
; (2) $y = \frac{1}{2}\ln(1+x^2) + C_1 \arctan x + C_2$; (3) $y = 1 - \frac{1}{C_1x + C_2}$

- 2. (1) $y = \arcsin x$; (2) $(x-1)^2 + y^2 = 1$.
- 3. $f(r) = C_1 \ln r + C_2$.

12.6 高阶线性微分方程

2.
$$y = C_1 x + C_2 x^2 + x^3$$
.

12.7 二阶常系数齐次线性微分方程

1. (1)
$$y = C_1 + C_2 e^{4x}$$
; (2) $y = e^{-x} (C_1 \cos \sqrt{2}x + C_2 \sin \sqrt{2}x)$;

(2)
$$x = (C_1 + C_2 t)e^{\frac{5}{2}t}$$
; (4) $y = e^{-x}(C_1 + C_2 x + C_3 x^2)$.

(2)
$$x = (C_1 + C_2 t)e^{\frac{5}{2}t}$$
; (4) $y = e^{-x}(C_1 + C_2 x + C_3 x^2)$.
2. (1) $y = e^{-x} - e^{4x}$; (2) $y = (1+3x)e^{-2x}$ (3) $y = e^{2x} \sin 3x$.

3.
$$t = \sqrt{\frac{6}{g}} \ln(6 + \sqrt{35})$$
 ? $t = \sqrt{\frac{6}{g}} \ln(6 + \sqrt{35})$?

12.8 二阶常系数非齐次线性微分方程

1. (1)
$$y = C_1 e^{\frac{x}{2}} + C_2 e^{-x} + e^x$$
; (2) $y = C_1 e^x + C_2 e^{2x} + e^x (-\frac{1}{2}x^2 - x)$;

(3)
$$y = C_1 \cos 3x + C_2 \sin 3x + \frac{1}{8} x \sin x - \frac{1}{32} \cos x$$
; (4) $y = C_1 e^{-x} + C_2 e^{x} + \frac{1}{10} \cos 2x - \frac{1}{2}$.

2.
$$f(x) = \frac{1}{2}\sin x + \frac{x}{2}\cos x$$
.

12.9 变量代换法

1. (1)
$$y = xe^{Cx+1}$$
; (2) $x + 2ye^{\frac{x}{y}} = C$.

2.
$$x+3y+2\ln|2-x-y|=C$$
.

3.
$$y = x(1-4\ln x)$$
.

4.
$$\frac{1}{y^3} = Ce^{-3x} - x + \frac{1}{3}$$
. 5. $y = C_1x + C_2x^2 + \frac{1}{2}(\ln x^2 + \ln x) + \frac{1}{4}$.

3.
$$y = x(1-\ln x)$$
 4. $f(t) = (4\pi t^2 + 1)e^{4\pi t^2}$.

5.
$$f(x) = 2\cos x + \sin x + x^2 - 2$$
, if $f(x) = 2\cos x + \sin x + x^2 - 2$, if $f(x) = 2\cos x + \sin x + x^2 - 2$, if $f(x) = 2\cos x + \sin x + x^2 - 2$, if $f(x) = 2\cos x + \sin x + x^2 - 2$, if $f(x) = 2\cos x + \sin x + x^2 - 2$, if $f(x) = 2\cos x + \cos x + 2\cos x$

6. (2)
$$y(x) = \frac{2}{3}e^{-\frac{x}{2}}\cos\frac{\sqrt{3}}{2}x + \frac{1}{3}e^{x} \quad (-\infty < x < +\infty)$$
.

_年___月___日

姓名______ 学号_____

附 录

高等数学试题(A卷)

一、填空题 (24分):

1. 设函数
$$z = (\frac{1}{3})^{\frac{y}{x}}$$
,则 $\frac{\partial z}{\partial x}\Big|_{(1,1)} =$ ______;

2. 设
$$f(x,y)$$
 连续,交换二次积分的次序: $\int_0^1 dx \int_{x^2}^1 f(x,y) dy =$ ______;

3. 设
$$^{\Sigma}$$
是上半球面 $_{z} = \sqrt{4-x^{2}-y^{2}}$,则曲面积分 $\iint_{\Sigma} \frac{1}{1+\sqrt{x^{2}+y^{2}+z^{2}}} dS = ______$;

5. 函数
$$f(x) = \ln(1+2x)$$
 展开成 x 的幂级数为______

6. 已知幂级数
$$\sum_{n=0}^{\infty} a_n (x-1)^n$$
 在 $x = -1$ 收敛,则该幂级数在 $x = \frac{3}{2}$ 的敛散性为______;

7. 已知
$$(x+4y)dx+(ax+y^2)dy=0$$
 是全微分方程,则 $a=$ ______;

8. 微分方程
$$y\sqrt{1-x^2}dy = xdx$$
 的通解为______.

二、(6 分) 设
$$y = y(x)$$
 是由方程 $xy = e^x - e^y$ 确定的函数,试计算 $dy|_{x=0}$.

三、(8 分)设
$$f$$
 是任意二阶可导函数,并设 $z=f(ay+x)$,满足方程
$$6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$$
,试确定 a 的值.

四、(6 分)计算
$$\int_L (x^2 - 2xy) dx + (y^2 - 2xy) dy$$
 , 其中 L 是抛物线 $y = x^2$ 上点 (-1,1) 到 (1,1) 的一段弧.

五、(10分)判别下列级数的敛散性:

1.
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$
; 2. $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{1}{n^{\alpha}}$, 若收敛, 指明是条件收敛还是绝对收敛.

六、(8 分) 将函数
$$f(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 0 & x = 0 \\ 1 & 0 < x \le \pi \end{cases}$$
 展开成傅里叶级数.

七、(10 分) 求幂级数
$$\sum_{n=0}^{\infty} (2n+1)x^n$$
 的收敛域及和函数,并求 $\sum_{n=0}^{\infty} \frac{(-1)^n(2n+1)}{2^n}$ 的值.

八、(10 分) 计算曲面积分
$$I = \iint_{\Sigma} (x^3 + z + 1) dy dz + (y^3 + x + 1) dz dx + (z^3 + 1) dx dy$$
,其中 Σ 是

上半球面
$$z = \sqrt{1 - x^2 - y^2}$$
 的上侧.

- 高等数学作业集 九、(10分)已知曲线 y = y(x) 经过原点,且在原点的切线平行于直线 2x y + 5 = 0, 而 y(x) 满足微分方程 $y'' - 6y' + 9y = e^{3x}$, 求此曲线方程.
- 十、(8 分)设定义在($-\infty$, $+\infty$)上的函数 f(x),对任意 $x,y \in (-\infty,+\infty)$,满足 $f'(0) = a(a \neq 0)$, $\coprod f(x+y) = f(x)e^{y} + f(y)e^{x}$,
- 1. 证明:对任意 $x \in (-\infty, +\infty)$, f'(x) 存在,并求出函数 f(x);
- 2. 将 f(x) 展开成 (x-1) 的幂级数,并求 $f^{(2007)}(1)$.

高等数学试题(B卷)

一、填空题 (24分)

1. 设函数
$$f(x, y, z) = z\sqrt{\frac{x}{y}}$$
, 则 $df(1,1,1) = ______;$

- 2. $\forall D: 1 \le x \le 2, \ 1 \le y \le 2$, $\iiint_{\Sigma} \frac{18x^2}{(1+y)^2} dx dy = \underline{\hspace{1cm}};$
- 3. 设 L 为闭曲线 $x^2 + y^2 = 1$,则 $\oint_L e^{\sqrt{x^2 + y^2 + 3}} ds =$ ______;
- 4. 曲面 $z = 4 x^2 y^2$ 上点(1,1,2)处的切平面方程为
- 5. 函数 $y = \frac{x^2}{1-x}$ 的麦克劳林级数为______;
- 7. 设 $f(x) = \begin{cases} -1 & -\pi < x \le 0 \\ 1+x & 0 < x \le \pi \end{cases}$,则其以 2π 为周期的傅里叶级数在点 $x = \frac{\pi}{2}$ 处收敛 于_____,在点 $x = \pi$ 处收敛于______;
- 8. 微分方程 (y-1)dy xydx = 0 的通解为______
- 二、(8 分) 设 u = f(x+y,xz), f 具有二阶连续的偏导数,求 $\frac{\partial^2 u}{\partial x^2 \partial x}$.
- 三、(8分) 求由曲面 $x^2 + y^2 = z$ 和 $z = 2 \sqrt{x^2 + y^2}$ 所围成的闭区域的体积.
- 四、(8分) 计算曲面积分 $\iint \sqrt{1+4z} dS$,其中 Σ 是 $z=x^2+y^2$ 在 $z\leq 1$ 的部分.

五、(8分) 判别下列级数的敛散性:

1.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
; 2. $\sum_{n=1}^{\infty} (\frac{\sin \alpha n}{n^2} - \frac{1}{\sqrt{n}})$.

_______年___月__日 姓名________ 学号______

六、(8 分) 求幂级数 $\sum_{n=1}^{\infty} (n+1)x^n$ 的收敛域及和函数.

七、(10 分) 计算积分 $I = \iint_{\Sigma} x(8z-1)dydz - 5yzdzdx + (y-2z)dxdy$, 其中 Σ 是曲面 $z = 1 + x^2 + y^2$ 被平面 z = 3 所截下的部分,取下侧.

八、(10分) 求微分方程 $y''-2y'+y=6xe^x$ 的通解.

九、(10 分) 设 f(x) 具有连续的一阶导数,已知 f(0) = 0 ,试确定 f(x) ,使曲线积分 $\int_L [xe^x + f(x)] y dx + f(x) dy$ 与路径无关,并求由点 A(0,0) 到 B(1,1) 的曲线积分.

十、(10 分) 讨论 $\sum_{n=1}^{\infty} (-1)^n (e^{\frac{1}{\sqrt{n}}} - 1 - \frac{1}{\sqrt{n}})$ 的敛散性,若收敛,指明是条件收敛还是绝对收敛.

高等数学试题(A 卷)参考答案及评分标准

一、填空题

1.
$$\frac{1}{3} \ln 3$$
;

1.
$$\frac{1}{3}\ln 3$$
; 2. $\int_0^1 dy \int_0^{\sqrt{y}} f(x,y) dx$; 3. $\frac{8}{3}\pi$; 4. 3;

3.
$$\frac{8}{3}\pi$$

5.
$$\ln(1+2x) = \sum_{n=1}^{\infty} \frac{(-)^{n-1}2^n x^n}{n}$$
 $x \in (-\frac{1}{2}, \frac{1}{2}]$; 6. 绝对收敛;

7.
$$a = 4$$
;

7.
$$a=4$$
; 8. $y^2=c-2\sqrt{1-x^2}$.

二、解: 当
$$x = 0$$
时, $y = 0$ (1分)

$$f(x, y) = xy - e^x + e^y$$
 $f_x(x, y) = y - e^x$, $f_y(x, y) = x + e^y$ (3 $\%$)

$$\frac{dy}{dx}\Big|_{x=0} = -\frac{f_x}{f_y}\Big|_{x=0} = 1 \qquad \text{fill } dy\Big|_{x=0} = dx \qquad (6 \, \text{fill})$$

三、解:
$$\frac{\partial z}{\partial x} = f'(u)$$
, $\frac{\partial z}{\partial y} = af'(u)$(3 分)

$$\frac{\partial^2 z}{\partial x^2} = f''(u), \frac{\partial^2 z}{\partial x \partial y} = af''(u), \frac{\partial^2 z}{\partial y^2} = a^2 f''(u) \qquad (6 \%)$$

$$6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = (6 + a - a^2) f''(u) = 0,$$

即
$$6+a-a^2=0$$
 解得 $a=3$ 或 $a=-2$ (8 分)

四、解:
$$\int_L (x^2 - 2xy) dx + (y^2 - 2xy) dy = \int_{-1}^1 (x^2 - 2xx^2) + (x^4 - 2x^3) 2x dx \dots (3 分)$$

$$=2\int_0^1 x^2 dx - 8\int_0^1 x^4 dx = -\frac{14}{15}$$
 (6 $\%$)

五、(1) 解:
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{3}{(1+\frac{1}{n})^n} = \frac{3}{e} > 1$$
 所以级数发散.....(4 分)

(2) 解: 当
$$\alpha \le 0$$
时, $\lim_{n \to \infty} (-1)^{n+1} \sin \frac{1}{n^{\alpha}} \ne 0$,级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{1}{n^{\alpha}}$ 发散;......(6分)

当
$$\alpha > 0$$
时,令 $u_n = \sin \frac{1}{n^{\alpha}}$, $u_n > u_{n+1}$,又 $\lim_{n \to \infty} u_n = 0$,

由莱布尼兹定理知
$$\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{1}{n^{\alpha}}$$
 收敛(8 分)

年 月 日 姓名 学号

$$\because \sin \frac{1}{n^{\alpha}} \sim \frac{1}{n^{\alpha}} \quad (n \to \infty), \therefore \Rightarrow 0 < \alpha \le 1$$
 时, $\sum_{n=1}^{\infty} \sin \frac{1}{n^{\alpha}}$ 发散,

故级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{1}{n^{\alpha}}$ 条件收敛

当 $\alpha > 1$ 时, $\sum_{n=1}^{\infty} \sin \frac{1}{n^{\alpha}}$ 收敛,故级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \sin \frac{1}{n^{\alpha}}$ 绝对收敛.

综合:级数 $\sum_{n=0}^{\infty} (-1)^{n+1} \sin \frac{1}{n^{\alpha}}$ 当 $\alpha \le 0$ 时,发散;当 $0 < \alpha \le 1$ 时,条件收敛;当 $\alpha > 1$

时,绝对收敛.(10分)

六、解: $a_n = 0$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(\int_{-\pi}^{0} (-\sin nx) dx + \int_{0}^{\pi} \sin nx dx \right) = \frac{2}{n\pi} [1 - (-1)^{n}]$$

$$= \begin{cases} \frac{4}{\pi (2k-1)} & n = 2k-1 \\ 0 & n = 2k \end{cases} \qquad (k = 1, 2, \dots) \qquad (5 \%)$$

由于 f(x) 满足收敛定理的条件,所以 $f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{2n-1}$ $x \in (-\pi,0) \cup (0,\pi)$

当 $x = 0, \pm \pi$ 时, 右端傅里叶级数收敛于 0.(8分) 七、

解: $\lim_{n\to\infty} \frac{2n+3}{2n+1} = 1$, 收敛半径为 1, $x = \pm 1$ 时原级数发散, 收敛域为 (-1,1) ...(2 分)

$$s(x) = \sum_{n=0}^{\infty} (2n+1)x^n = 2\sum_{n=0}^{\infty} nx^n + \sum_{n=0}^{\infty} x^n = 2x(\sum_{n=0}^{\infty} x^n)' + \frac{1}{1-x}$$
$$= 2x(\frac{1}{1-x})' + \frac{1}{x} = \frac{1+x}{(1-x)^2} \quad x \in (-1,1) \quad ... \quad (8 \ \%)$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)}{2^n} = s(-\frac{1}{2}) = \frac{2}{9}$$
 (10 $\frac{2}{3}$)

$$I = \bigoplus_{\Sigma + \Sigma_1} - \bigoplus_{\Sigma_1} = 3 \iiint_{\Omega} (x^2 + y^2 + z^2) dV - \iint_{\Sigma_1} (z^3 + 1) dx dy \qquad (6 \%)$$

$$=3\int_{0}^{2\pi}d\theta \int_{0}^{\frac{\pi}{2}}d\varphi \int_{0}^{1}r^{4}\sin\varphi dr + \iint_{D}dxdy = \frac{6}{5}\pi + \pi = \frac{11}{5}\pi \qquad (10 \ \%)$$

十、解:

高等数学试题(B卷)参考答案及评分标准

一、填空题

三、解:由
$$x^2 + y^2 = z$$
和 $z = 2 - \sqrt{x^2 + y^2}$ 得 $z = 1, z = 4$ (舍)

立体在在
$$xOy$$
 面的投影为: $x^2 + y^2 \le 1$ (2分)

体积
$$V = \iiint_{\Omega} dV = \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{r^{2}}^{2-r} dz = 2\pi \int_{0}^{1} (2-r-r^{2}) r dr = \frac{5}{6}\pi$$
(8 分)

四、解: Σ在 xoy 面的投影为:
$$x^2 + y^2 \le 1$$
(2分)

$$dS = \sqrt{1 + 4(x^2 + y^2)} dxdy (4 \%)$$

$$\iint_{\Sigma} \sqrt{1 + 4z} dS = \iint_{D} \sqrt{1 + 4(x^2 + y^2)} \sqrt{1 + 4(x^2 + y^2)} dx dy$$

$$= \iint_{D} 1 + 4(x^{2} + y^{2}) dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{1} (1 + 4r^{2}) r dr = 3\pi \dots (8 \%)$$

五、(1) 解:
$$\lim_{n\to\infty}\frac{u_{n+1}}{u}=\lim_{n\to\infty}\frac{(n+1)^2}{(2n+2)(2n+1)}=\frac{1}{4}<1$$
,所以级数收敛.....(4分)

(2) 解:
$$\left|\frac{\sin\alpha}{n^2}\right| \le \frac{1}{n^2}$$
, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,所以 $\sum_{n=1}^{\infty} \frac{\sin\alpha}{n^2}$ 收敛,
$$\sum_{n=1}^{\infty} \left(-\frac{1}{\sqrt{n}}\right)$$
 发散,所以原级数发散.....(8 分)

六、解:

$$\lim_{n\to\infty}\frac{n+2}{n+1}=1$$
, 收敛半径为 1, $x=\pm 1$ 时原级数发散, 所以收敛域为(-1,1).....(3分)

$$s(x) = \sum_{n=1}^{\infty} (n+1)x^n = (\sum_{n=1}^{\infty} x^{n+1})' = (\frac{x^2}{1-x})' = \frac{2x-x^2}{(1-x)^2} \quad x \in (-1,1) \dots (8 \ \%)$$

$$I = \bigoplus_{\Sigma + \Sigma_1} - \bigoplus_{\Sigma_1} = \iiint_{\Omega} 3(z-1)dV - \iint_{D} (y-2z)dxdy \qquad (6 \%)$$

$$= \int_{1}^{3} 3(z-1)dz \iint_{D(z)} dxdy + \iint_{D} 6dxdy \quad , \quad D(z): x^{2} + y^{2} \le z - 1$$

$$=\pi \int_{1}^{3} 3(z-1)^{2} dz + 12\pi = 20\pi$$
 (10 分)

八、 解: 特征方程为
$$r^2 - 2r + 1 = 0$$
的根 $r = 1$ (重根)(3分)

$$y'' - 2y' + y = 0$$
 的通解 $Y = (c_1 + c_2 x)e^x$ (6分)

$y'' - 2y' + y = 6xe^x$ 的特解 $y^* = x^2(ax + b)e^x$, 将其代入原方程得: $a = 1, b = 0$
所以 $y^* = x^3 e^x$,原方程的通解为: $y = (c_1 + c_2 x + x^3) e^x$ (10 分)
九、解: $\frac{\partial p}{\partial y} = xe^x + f(x)$, $\frac{\partial q}{\partial x} = f'(x)$
曲线积分与路径无关,所以 $\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}$, $f'(x) - f(x) = xe^x$ (4分)
解得 $f(x) = \frac{1}{2}x^2e^x + ce^x$,由 $f(0) = 0$, 得 $c = 0$, $f(x) = \frac{1}{2}x^2e^x$ (8 分)
由点 $A(0,0)$ 到 $B(1,1)$ 的曲线积分 $\int_{L} (xe^{x} + f(x))ydx + f(x)dy = \frac{1}{2}e$ (10 分)
+, $M: u_n = e^{\frac{1}{\sqrt{n}}} - 1 - \frac{1}{\sqrt{n}}, \Leftrightarrow f(x) = e^x - 1 - x, f(0) = 0$
$f'(x) = e^x - 1 > 0$, $f(x) = 0$ $f(x)$
所以 $u_n > u_{n+1}$,又 $\lim_{n \to \infty} u_n = 0$,由莱布尼兹定理知原级数收敛(4分)
又 $e^{\frac{1}{\sqrt{n}}} - 1 - \frac{1}{\sqrt{n}} = \frac{1}{2n} + o(\frac{1}{n})$, $e^{\frac{1}{\sqrt{n}}} - 1 - \frac{1}{\sqrt{n}} \sim \frac{1}{2n} (n \to \infty)$,所以 $\sum_{n=1}^{\infty} (e^{\frac{1}{\sqrt{n}}} - 1 - \frac{1}{\sqrt{n}})$ 发散
故原级数条件收敛(6分)