# Segmentation of text with emojis



**Presented by**: Zakharov Artem, Shatalov Andrey and Keseli Timur, БПАД212

Project supervisor: Titova Natalia Nikolaevna

## **RACI Matrix**

| TASK               | Zakharov Artem | Shatalov Andrew 🤩 | Keseli Timur |
|--------------------|----------------|-------------------|--------------|
| Data Preprocessing | R              | R                 | R            |
| Data Analysis      | R              | R                 | R            |
| KNN                | 1              | I                 | R            |
| BERTweet           | 1              | R                 | I            |
| MLP                | I              | R                 | I            |
| Siamese            | R              | I                 | I            |
| Presentation       | R              | R                 | R            |

## Project aim

Combine text and emoji analysis in text segmentation. Our dataset requires to classify tweets based on text and emoji into 4 classes:

0: sad 😿

1: happy 🤣

2: angry 👪

3: love 🥰

#### Dataset

This dataset contains 3085 Twitter tweets labelled with 0-3 values, where 0= sad, 1 = happy, 2 = angry and 3 = love



Figure 1. Data Samples.

## Data preprocessing

- 1. Cleaning sentences
- 2. Deleting stop words
- 3. Lemmatization
- 4. Extracting emojis
- 5. Vectorisation of words / emojis
- 6. Concatenation of vectors (dimension = 600)

## Data preprocessing

| Text                                             | cleaned_text                                   | lemmatized_text                                | emojis                | label |
|--------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|-------|
| I'm already starting and it's all upwards and    | im already starting and its all upwards and on | im already starting upwards onwards            | [😬]                   | 2     |
| The Chinese style. 😞                             | the chinese style                              | chinese style                                  | [2]                   | 0     |
| Just WT 🐶 ? 🤢 M feeds her magpies on the bedroom | just wt m feeds her magpies on the bedroom win | wt feed magpie bedroom window sill thought hac | [ <b>ড</b> , 😉,<br>🥜] | 2     |
| if i unfollow or unfriend you, dont take it pe   | if i unfollow or unfriend you dont take it per | unfollow unfriend dont take personally ayoko I | [😚]                   | 3     |
| @CallMeAgent00 Thanks man 😔 I've entered 27272   | thanks man ive entered giveaways in my time of | thanks man ive entered giveaway time living    | [@]                   | 0     |
| if I'm not like this next Christmas it's over    | if im not like this next christmas its over ca | im like next christmas cause ima pissed        | [3]                   | 2     |
| "Turkey's president has warned that he would e   | turkeys president has warned that he would evi | turkey president warned would evict u force tw | 0                     | 1     |
| it doesn't feel like Christmas 🥴                 | it doesnt feel like christmas                  | doesnt feel like christmas                     | [@]                   | 0     |
| we were literally all in tears 🔞                 | we were literally all in tears                 | literally tear                                 | [0]                   | 0     |
| my boyfriend got me the best gifts ever!!!!!!    | my boyfriend got me the best gifts ever first  | boyfriend got best gift ever first one got boo | [😉]                   | 0     |

Figure 2. Data before and after Preprocessing.

### Data preprocessing, Word2Vec

#### Word2Vec Pre-trained model:

- Google News: pre-trained vectors trained on part of Google News dataset (about 100 billion words).
- The model contains 300-dimensional vectors for 3 million words and phrases.

#### **Emoji2Vec Pre-trained model:**

- Proved to have better accuracy with Google News Word2Vec on analysing emoji texts and encodes 300 dimensional vectors.
- Contains description of 1661 emoji symbols.

### Data analysis

t-SNE Visualization of Most Frequent Words and Emojis



Figure 3. Stochastic neighbour embedding.

## Data analysis



Figure 4 & 5. Class and Emoji Distribution.

### Models and metrics

- 1. KNN
- 2. Random Forests on BERT Embeddings
- 3. SIAMESE
- 4. SimpleNN

- 1. Accuracy
- 2. Precision
- 3. Recall
- 4. F1 Score

### **KNN**

Implements K-Nearest Neighbors for classification.

- Uses 4 neighbors with Euclidean distance as the metric.
- Trained on normalized input data to classify sentiment.

### Siamese

Siamese Neural Network with triplet loss for classification.

- Normalizes input data to improve model performance and convergence.
- Input data is reshaped to add a time dimension for convolutional processing.
- Consists of two shared convolutional layers for feature extraction.
- Employs a fully connected dense layer for generating embeddings.
- Utilizes cosine similarity on sNN embeddings for classification.

### Word Importance for SiameseNN



- Compute mean embeddings
- Calculate the gradient of the similarity score with respect to the input features (words and emojis).
- The absolute values of these gradients indicate how much each feature (word/emoji) contributes to the similarity score.

### BERTweet + Random forest

- Performs data augmentation on text data using synonym replacement.
- Extracts emojis from text using regular expressions.
- Combines text and emoji embeddings using BERTweet.
- Trains a Random Forest model to classify sentiment.

0

### **MLP**

Utilizes a Multi-Layer Perceptron (MLP) with multiple dense layers.

- Four hidden layers with ReLU activation functions.
- Dropout layers for regularization to prevent overfitting.
- Output layer uses softmax activation for multi-class classification.
- Trained using the Adam optimizer.

## Results

|               | Accuracy | Precision | Recall | F1 Score |
|---------------|----------|-----------|--------|----------|
| KNN           | 0.7277   | 0.7286    | 0.7277 | 0.7280   |
| BERTweet + RF | 0.7615   | 0.7632    | 0.7615 | 0.7611   |
| MLP           | 0.7763   | 0.7818    | 0.7763 | 0.7771   |
| Siamese       | 0.7812   | 0.8086    | 0.7812 | 0.7855   |

### References

- 1. Dataset, Kaggle, <a href="https://www.kaggle.com/datasets/juyana054/sentiment-data-16-emoji">https://www.kaggle.com/datasets/juyana054/sentiment-data-16-emoji</a>
- Code, Google Colaboratory,
- 3. Emoji2Vec, GitHub, <a href="https://github.com/uclnlp/emoji2vec">https://github.com/uclnlp/emoji2vec</a>
- 4. Google News vector model, GitHub, <a href="https://github.com/mmihaltz/word2vec-GoogleNews">https://github.com/mmihaltz/word2vec-GoogleNews</a>