Intrinsic Subspace Evaluation of Word Embedding Representations

December 2015

LMU Munich CIS

Outline

Word Embeddings Evaluation

Word Embeddings Evaluation

Representation of Words in Vector space model

Word Embeddings

 Word embedding: real-valued vector representing all the facets of the word

Are these methods proper for the evaluation?

Word Embeddings

- Word embedding: real-valued vector representing all the facets of the word
- Evaluation: how much of these facets are represented accurately and consistently.

Are these methods proper for the evaluation?

Word Embeddings

- Word embedding: real-valued vector representing all the facets of the word
- Evaluation: how much of these facets are represented accurately and consistently.
- Current methods of evaluation:
 - Extrinsic tasks
 - Intrinsic similarity-based datasets
- Are these methods proper for the evaluation?

 Objective: how much of word facets are represented accurately and consistently.

- Objective: how much of word facets are represented accurately and consistently.
- Our proposed method:
 - Identifying generic and fundamental criteria for embedding models that are important to represent facets of words accurately and consistently.

- Objective: how much of word facets are represented accurately and consistently.
- Our proposed method:
 - Identifying generic and fundamental criteria for embedding models that are important to represent facets of words accurately and consistently.
 - Developing corpus-based tests to asses the criteria using PCFG generated datasets

- Objective: how much of word facets are represented accurately and consistently.
- Our proposed method:
 - Identifying generic and fundamental criteria for embedding models that are important to represent facets of words accurately and consistently.
 - Developing corpus-based tests to asses the criteria using PCFG generated datasets
 - Evaluating embedding models by supervised classification that needs to look at subspaces

Nonconflation

- Nonconflation
- Robustness against sparseness

- Nonconflation
- Robustness against sparseness
- Robustness against ambiguity

- Nonconflation
- Robustness against sparseness
- Robustness against ambiguity
- Accurate and consistent representation of multifacetedness

- Robustness against ambiguity
- Accurate and consistent representation of multifacetedness

Robustness against ambiguity

• Most words are ambiguous.

Robustness against ambiguity

- Important question:
 - for a word with k senses, Should we have k vectors? Or just 1 vector?

• Two senses of "suit": litigation vs. clothing

legal-case litigation lawsuit outfit clothing apparel

Two senses of "suit": litigation vs. clothing

outfit clothing apparel

legal-case

litigation

lawsuit

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .

outfit $\vec{s}_2 \quad \text{clothing}$ legal-case apparel litigation \vec{s}_1 lawsuit

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .

outfit $\vec{s}_2 \quad \text{clothing}$ legal-case apparel litigation \vec{s}_1

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .
- Plausible approach: the embedding \vec{w} of "suit" is

$$0.5(\vec{s}_1 + \vec{s}_2)$$

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .
- Plausible approach: the embedding \vec{w} of "suit" is

$$0.5(\vec{s}_1 + \vec{s}_2)$$

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .
- Plausible approach: the embedding \vec{w} of "suit" is

$$0.5(\vec{s}_1 + \vec{s}_2)$$

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .
- Plausible approach: the embedding \vec{w} of "suit" is

$$0.5(\vec{s}_1 + \vec{s}_2)$$

• But \vec{w} is not close to either sense ("litigation" / "clothing")!

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .
- Plausible approach: the embedding \vec{w} of "suit" is

$$0.5(\vec{s}_1 + \vec{s}_2)$$

- But \vec{w} is not close to either sense ("litigation" / "clothing")!
- Does that mean that 1vector-ksenses is a bad idea?

Embeddings: For which objectives?

Embeddings: For which objectives?

- It is often assumed:
 - closeness in embedding space should model closeness in "linguistic" space.

Embeddings: For which objectives?

- It is often assumed:
 - closeness in embedding space should model closeness in "linguistic" space.
- Similarity evaluation datasets (MEN, WordSim, Stanford Rare Words etc) evaluate performance on this objective.

- Two senses of "suit": litigation vs. clothing
- Let's represent these two senses using the embeddings \vec{s}_1 , \vec{s}_2 .
- Plausible approach: the embedding \vec{w} of "suit" is

$$0.5(\vec{s}_1 + \vec{s}_2)$$

- But \vec{w} is not close to either sense ("litigation" / "clothing")!
- Does that mean that 1vector-ksenses is a bad idea?

Embeddings: Remember our objective

Embeddings: Remember our objective

 Word embeddings should represent the facets of words accurately and consistently

Embeddings: Remember our objective

- Word embeddings should represent the facets of words accurately and consistently
- If we adopt this alternative objective, then maybe there is no problem with 1vector-ksenses?

Setup for ambiguity experiment

• Define PCFG grammar

- Define PCFG grammar
- PCFG models ambiguity in natural language

- Define PCFG grammar
- PCFG models ambiguity in natural language
- Generate a corpus using the PCFG

- Define PCFG grammar
- PCFG models ambiguity in natural language
- Generate a corpus using the PCFG
- Train embedding models on corpus: each will give us its trained word embeddings

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	0 ≤ <i>i</i> ≤ 49
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	0 ≤ <i>i</i> ≤ 49
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

Two types of contexts: A-B contexts and C-D contexts.

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	0 ≤ <i>i</i> ≤ 49
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

Two types of contexts: A-B contexts and C-D contexts.

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	0 ≤ <i>i</i> ≤ 49
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

Two types of contexts: A-B contexts and C-D contexts.

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	0 ≤ <i>i</i> ≤ 49
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

Unambiguous: $v_0 \dots v_{49}$ only occur in A-B contexts.

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	$0 \le i \le 49$
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

Unambiguous: $w_5 \dots w_{49}$ only occur in C-D contexts.

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	$0 \le i \le 49$
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

Ambiguous: $w_0 \dots w_4$ occur in A-B and C-D contexts.

$P(AV_1B S)$	=	9/20	
$P(CW_1D S)$	=	9/20	
$P(AW_2B S)$	=	$(1 - \beta) \cdot 1/20$	
$P(CW_2D S)$	=	<i>β</i> ⋅1/20	
$P(a_i A)$	=	1/10	0 ≤ <i>i</i> ≤ 9
$P(b_i B)$	=	1/10	$0 \le i \le 9$
$P(c_i C)$	=	1/10	$0 \le i \le 9$
$P(d_i D)$	=	1/10	$0 \le i \le 9$
$P(v_i V_1)$	=	1/45	0 ≤ <i>i</i> ≤ 49
$P(w_i W_1)$	=	1/45	$5 \le i \le 49$
$P(w_i W_2)$	=	1/5	$0 \le i \le 4$

Skewedness of ambiguity controlled by β .

• Learn embeddings from corpus

- Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"

- Learn embeddings from corpus
- SVMs were trained for the binary classification task
 "can this word occur in an C-D context?"
- One SVM for embeddings of each model

- · Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"
- One SVM for embeddings of each model
- The test set consists of the five ambiguous words $w_0 \dots w_4$.

- · Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"
- One SVM for embeddings of each model
- The test set consists of the five ambiguous words $w_0 \dots w_4$.
- 50 trials of this experiment were run for each of eleven values of β : $\beta = 2^{-\alpha}$ where $\alpha \in \{1.0, 1.1, 1.2, \dots, 2.0\}$.

• x-axis: skewedness parameter β (1.0 \approx 50/50, 2.0 \approx 25/75)

- x-axis: skewedness parameter β (1.0 \approx 50/50, 2.0 \approx 25/75)
- Most embedding models degrade gracefully as skewedness increases.

- x-axis: skewedness parameter β (1.0 \approx 50/50, 2.0 \approx 25/75)
- Most embedding models degrade gracefully as skewedness increases.
- PPMI accuracy is 0 for beta ≥ 1.5.

Premise of much work on ambiguity:
 kvectors-ksenses: We need one embedding per sense.

- Premise of much work on ambiguity:
 kvectors-ksenses: We need one embedding per sense.
- But maybe we only need a single embedding per word i.e., 1vector-ksenses

- Premise of much work on ambiguity:
 kvectors-ksenses: We need one embedding per sense.
- But maybe we only need a single embedding per word i.e., 1vector-ksenses
- A single embedding will not fare well on analogy/similarity.

- Premise of much work on ambiguity:
 kvectors-ksenses: We need one embedding per sense.
- But maybe we only need a single embedding per word i.e., 1vector-ksenses
- A single embedding will not fare well on analogy/similarity.
- But it is not the word embedding objective.

Accurate and consistent representation of multifacetedness

Words have a large number of facets

Accurate and consistent representation of multifacetedness

- Words have a large number of facets
- Each facet constitutes a small part of the overall information that a representation should capture about a word.

• Define PCFG grammar

- Define PCFG grammar
- PCFG models multifacetedness in natural language

- Define PCFG grammar
- PCFG models multifacetedness in natural language
- Generate a corpus using the PCFG

- Define PCFG grammar
- PCFG models multifacetedness in natural language
- Generate a corpus using the PCFG
- Train embedding models on the corpus: each gives us a set of word embeddings.

Multifacetedness grammar

```
=1/4
      P(NF_n|S)
      P(AF_a|S)
                           = 1/4
      P(NM_n|S)
                           =1/4
      P(AM_f|S)
                            =1/4
      P(n_i|N)
                            =1/5
                                     0 < i < 4
      P(a_i|A)
                            = 1/5
                                     0 \le i \le 4
      P(x_i^{\text{nf}}U_i^{\text{nf}}|F_n)
                            = 1/5 0 < i < 4
       P(f|U_i^{nf})
 8
                            =1/2
      P(\mu(U_i^{nf})|U_i^{nf})
                            =1/2
       P(x_i^{af}U_i^{af}|F_a)
10
                            = 1/5 0 \le i \le 4
11
                            =1/2
      P(\mu(U_i^{af})|U_i^{af})
12
                            =1/2
       P(x_i^{nm} U_i^{nm} | M_n) = 1/5
                                     0 < i < 4
13
       P(m|U_i^{nm})
14
                            =1/2
       P(\mu(U_i^{nm})|U_i^{nm}) = 1/2
15
       P(x_i^{am} U_i^{am} | M_f) = 1/5
                                     0 < i < 4
16
17
      P(m|U_i^{am})
                            =1/2
       P(\mu(U_i^{am})|U_i^{am}) = 1/2
18
```

This grammar generates nouns (x_i^{n}) and adjectives (x_i^{a})

Multifacetedness grammar

```
P(NF_n|S)
                              = 1/4
      P(AF_a|S)
                              = 1/4
      P(NM_n|S)
                              = 1/4
       P(AM_f|S)
                              =1/4
       P(n_i|N)
                              =1/5
                                        0 < i < 4
                                        0 \le i \le 4
                              = 1/5
        P(a_i|A)
       P(x_i^{\text{nf}}U_i^{\text{nf}}|F_n)
                              = 1/5 0 < i < 4
       P(f|U_i^{nf})
 8
                              =1/2
       P(\mu(U_i^{\text{nf}})|U_i^{\text{nf}})
                              =1/2
       P(x_i^{\text{af}}U_i^{\text{af}}|F_a)
10
                              = 1/5
                                       0 \le i \le 4
11
                              =1/2
       P(\mu(U_i^{af})|U_i^{af})
12
                              =1/2
        P(x_i^{\text{nm}} U_i^{\text{nm}} | M_n) = 1/5
                                        0 < i < 4
13
       P(m|U_i^{nm})
14
                              =1/2
       P(\mu(U_i^{nm})|U_i^{nm}) = 1/2
15
16
                             = 1/5
                                        0 < i < 4
17
       P(m|U_i^{am})
                              =1/2
       P(\mu(U_i^{am})|U_i^{am}) = 1/2
18
```

This grammar generates nouns (x_i^{n}) and adjectives (x_i^{a})

Multifacetedness grammar

```
P(NF_n|S)
                             = 1/4
      P(AF_a|S)
                             = 1/4
      P(NM_n|S)
                             =1/4
      P(AM_f|S)
                             =1/4
                             = 1/5
       P(n_i|N)
                                       0 \le i \le 4
       P(a_i|A)
                             = 1/5
                                      0 \le i \le 4
      P(x_i^{\text{nf}}U_i^{\text{nf}}|F_n)
                             = 1/5 0 < i < 4
 8
       P(f|U_i^{\mathsf{nt}})
                             =1/2
       P(\mu(U_i^{\mathsf{nf}})|U_i^{\mathsf{nf}})
                             =1/2
       P(x_i^{af}U_i^{af}|F_a)
10
                             =1/5 0 \le i \le 4
11
                             =1/2
       P(\mu(U_i^{af})|U_i^{af})
12
                             =1/2
       P(x_i^{nm} U_i^{nm} | M_n) = 1/5
                                      0 < i < 4
13
       P(m|U_i^{nm})
14
                             =1/2
       P(\mu(U_i^{nm})|U_i^{nm}) = 1/2
15
                                      0 < i < 4
16
                             = 1/5
17
       P(m|U_i^{am})
                             =1/2
       P(\mu(U_i^{am})|U_i^{am}) = 1/2
18
```

with masculine (x_i^m) and feminine (x_i^f) gender.

Multifacetedness grammar

```
P(NF_n|S)
                            =1/4
     P(AF_a|S)
                            = 1/4
      P(NM_n|S)
                            = 1/4
      P(AM_f|S)
                            =1/4
                            = 1/5
       P(n_i|N)
                                      0 \le i \le 4
       P(a_i|A)
                            = 1/5 0 \le i \le 4
     P(x_i^{\text{nf}}U_i^{\text{nf}}|F_n)
                            = 1/5 0 < i < 4
 8
                            =1/2
       P(\mu(U_i^{nf})|U_i^{nf})
                            =1/2
       P(x_i^{\text{af}}U_i^{\text{af}}|F_a)
10
                            = 1/5 0 < i < 4
                            =1/2
11
      P(\mu(U_i^{af})|U_i^{af})
12
                            =1/2
       P(x_i^{\text{nm}} U_i^{\text{nm}} | M_n) = 1/5
                                     0 < i < 4
13
       P(m|U_i^{nm})
14
                            =1/2
       P(\mu(U_i^{nm})|U_i^{nm}) = 1/2
15
       P(x_i^{\text{am}} U_i^{\text{am}} | M_f) = 1/5
                                     0 < i < 4
16
17
      P(m|U_i^{am})
                            =1/2
      P(\mu(U_i^{am})|U_i^{am}) = 1/2
18
```

with masculine (x_i^m) and feminine (x_i^f) gender.

Multifacetedness grammar

```
P(NF_n|S)
                             =1/4
      P(AF_a|S)
                             =1/4
      P(NM_n|S)
                             = 1/4
       P(AM_f|S)
                              =1/4
       P(n_i|N)
                              =1/5
                                        0 < i < 4
       P(a_i|A)
                              = 1/5
                                        0 \le i \le 4
      P(x_i^{\text{nf}}U_i^{\text{nf}}|F_n)
                              = 1/5 0 < i < 4
 8
       P(f|U_i^{\text{nt}})
                              =1/2
       P(\mu(U_i^{nf})|U_i^{nf})
                             =1/2
       P(x_i^{af}U_i^{af}|F_a)
10
                              = 1/5
                                       0 \le i \le 4
11
                              =1/2
       P(\mu(U_i^{af})|U_i^{af})
12
                              =1/2
        P(x_i^{\text{nm}} U_i^{\text{nm}} | M_n) = 1/5
                                        0 < i < 4
13
       P(m|U_i^{nm})
14
                              =1/2
        P(\mu(U_i^{nm})|U_i^{nm}) = 1/2
15
        P(x_i^{\text{am}} U_i^{\text{am}} | M_f) = 1/5
                                        0 < i < 4
16
17
       P(m|U_i^{am})
                              =1/2
18
       P(\mu(U_i^{am})|U_i^{am}) = 1/2
```

Function μ maps each U to one of the paradigms $\{u_0 \dots u_4\}$

• Learn embeddings from corpus

- Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"

- Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"
- One SVM for embeddings of each model

- Learn embeddings from corpus
- SVMs were trained for the binary classification task
 "can this word occur in an C-D context?"
- One SVM for embeddings of each model
- Training on feminine and masculine "nouns", the task is to predict gender of "adjectives".

- Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"
- One SVM for embeddings of each model
- Training on feminine and masculine "nouns", the task is to predict gender of "adjectives".
- 10 trials of experiments with different paradigm assignments.

- Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"
- One SVM for embeddings of each model
- Training on feminine and masculine "nouns", the task is to predict gender of "adjectives".
- 10 trials of experiments with different paradigm assignments.
- Results: No single error in the classification: All models could predict the gender 100% accurate.

- Learn embeddings from corpus
- SVMs were trained for the binary classification task "can this word occur in an C-D context?"
- One SVM for embeddings of each model
- Training on feminine and masculine "nouns", the task is to predict gender of "adjectives".
- 10 trials of experiments with different paradigm assignments.
- Results: No single error in the classification: All models could predict the gender 100% accurate.
- But what if we used similarity/analogy to check this criterion?

- But what if we used similarity/analogy to check this criterion?
- similarity evaluation: assign to each adjective, the gender of nearest neighbour in the train set.
- analogy evaluation: randomly select triples to form analogies like: $\vec{s} = \vec{x}_i^{\text{nf}} \vec{x}_j^{\text{nm}} + \vec{x}_k^{\text{am}}$ the search is successful if the nearest neighbor is feminine.

- But what if we used similarity/analogy to check this criterion?
- similarity evaluation: assign to each adjective, the gender of nearest neighbour in the train set.
- analogy evaluation: randomly select triples to form analogies like: $\vec{s} = \vec{x}_i^{\text{nf}} \vec{x}_j^{\text{nm}} + \vec{x}_k^{\text{am}}$ the search is successful if the nearest neighbor is feminine.
- We did this evaluation on the same test set as before.

- But what if we used similarity/analogy to check this criterion?
- similarity evaluation: assign to each adjective, the gender of nearest neighbour in the train set.
- analogy evaluation: randomly select triples to form analogies like: $\vec{s} = \vec{x}_i^{\text{nf}} \vec{x}_j^{\text{nm}} + \vec{x}_k^{\text{am}}$ the search is successful if the nearest neighbor is feminine.
- We did this evaluation on the same test set as before.
- Results: error rates of around 20% similarity and around 15% for analogy.

- But what if we used similarity/analogy to check this criterion?
- similarity evaluation: assign to each adjective, the gender of nearest neighbour in the train set.
- analogy evaluation: randomly select triples to form analogies like: $\vec{s} = \vec{x}_i^{\text{nf}} \vec{x}_j^{\text{nm}} + \vec{x}_k^{\text{am}}$ the search is successful if the nearest neighbor is feminine.
- We did this evaluation on the same test set as before.
- Results: error rates of around 20% similarity and around 15% for analogy.
- Note that we got 0% error for SVM classification to find genders.

- But what if we used similarity/analogy to check this criterion?
- similarity evaluation: assign to each adjective, the gender of nearest neighbour in the train set.
- analogy evaluation: randomly select triples to form analogies like: $\vec{s} = \vec{x}_i^{\text{nf}} \vec{x}_j^{\text{nm}} + \vec{x}_k^{\text{am}}$ the search is successful if the nearest neighbor is feminine.
- We did this evaluation on the same test set as before.
- Results: error rates of around 20% similarity and around 15% for analogy.
- Note that we got 0% error for SVM classification to find genders.
- Full-space similarity cannot determine the presence of a low entropy facet accurately and consistently.