The following information, in maroon, is extracted directly from the source that created the original dataset:

Data Set Information:

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain.

For each record in the dataset it is provided:

- -Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
- -Triaxial Angular velocity from the gyroscope.
- -A 561-feature vector with time and frequency domain variables.
- -Its activity label.
- -An identifier of the subject who carried out the experiment.

For this project, the process is summarized as follows:

1. Read in the 8 files:

test data set

test activity data set

test subject data set

train data set

train activity data set

train subject data set

activity labels data set

variables labels (called features)

2. Clean up the data sets by:

removing all special characters from the variables labels and use them as column names in the test and train data sets extract only those measurements that are needed in this study ("mean" and "std" columns)

3. Combine all the data sets into one tidy data set:

combine the test data set, test activity data set and test subject data set

combine the train data set, train activity data set and train subject data set

combine the test and train data sets

replace the Activity numeric value with the Activity label

4. Summarize:

Summarize the data by Activity, Subject and each measurement

5. Write

Write the summary data to a .txt file

For this project, the following is the list of the variables used from the original dataset:

Code Book 1 Activity Integer 2 Subject 3 tBodyAccmeanX 4 tBodyAccmeanY 5 tBodyAccmeanZ 6 tBodyAccstdX 7 tBodyAccstdY 8 tBodyAccstdZ 9 tGravityAccmeanX 10 tGravityAccmeanY 11 tGravityAccmeanZ 12 tGravityAccstdX 13 tGravityAccstdY 14 tGravityAccstdZ 15 tBodyAccJerkmeanX 16 tBodyAccJerkmeanY 17 tBodyAccJerkmeanZ 18 tBodyAccJerkstdX 19 tBodyAccJerkstdY 20 tBodyAccJerkstdZ 21 tBodýGyromeanX 22 tBodyGyromeanY 23 tBodyGyromeanZ 24 tBodyGyrostdX 25 tBodyGyrostdY

Character Numeric Numeric

26 tBodyGyrostdZ	Numeric
27 tBodyGyroJerkmeanX	Numeric
28 tBodyGyroJerkmeanY	Numeric
29 tBodyGyroJerkmeanZ	Numeric
30 tBodyGyroJerkstdX	Numeric
31 tBodyGyroJerkstdY	Numeric
32 tBodyGyroJerkstdZ	Numeric
33 tBodyAccMagmean	Numeric
34 tBodyAccMagstd	Numeric
35 tGravityAccMagmean	Numeric
36 tGravityAccMagstd	Numeric
	Numeric
37 tBodyAccJerkMagmean	
38 tBodyAccJerkMagstd	Numeric
39 tBodyGyroMagmean	Numeric
40 tBodyGyroMagstd	Numeric
41 tBodyGyroJerkMagmean	Numeric
42 tBodyGyroJerkMagstd	Numeric
43 fBodyAccmeanX	Numeric
44 fBodyAccmeanY	Numeric
45 fBodyAccmeanZ	Numeric
46 fBodyAccstdX	Numeric
47 fBodyAccstdY	Numeric
48 fBodyAccstdZ	Numeric
49 fBodyAccmeanFreqX	Numeric
50 fBodyAccmeanFreqY	Numeric
51 fBodyAccmeanFreqZ	Numeric
52 fBodyAccJerkmeanX	Numeric
53 fBodyAccJerkmeanY	Numeric
54 fBodyAccJerkmeanZ	Numeric
55 fBodyAccJerkstdX	Numeric
56 fBodyAccJerkstdY	Numeric
57 fBodyAccJerkstdZ	Numeric
58 fBodyAccJerkmeanFreqX	Numeric
59 fBodyAccJerkmeanFreqY	Numeric
60 fBodyAccJerkmeanFreqZ	Numeric
61 fBodyGyromeanX	Numeric
62 fBodyGyromeanY	Numeric
63 fBodyGyromeanZ	Numeric
64 fBodyGyrostdX	Numeric
65 fBodyGyrostdY	Numeric
	Numeric
66 fBodyGyrostdZ	
67 fBodyGyromeanFreqX	Numeric
68 fBodyGyromeanFreqY	Numeric
69 fBodyGyromeanFreqZ	Numeric
70 fBodyAccMagmean	Numeric
71 fBodyAccMagstd	Numeric
72 fBodyAccMagmeanFreq	Numeric
73 fBodyBodyAccJerkMagmean	Numeric
74 fBodyBodyAccJerkMagstd	Numeric
75 fBodyBodyAccJerkMagmeanFreq	Numeric
76 fBodyBodyGyroMagmean	Numeric
77 fBodyBodyGyroMagstd	Numeric
78 fBodyBodyGyroMagmeanFreq	Numeric
79 fBodyBodyGyroJerkMagmean	Numeric
80 fBodyBodyGyroJerkMagstd	Numeric
81 fBodyBodyGyroJerkMagmeanFreq	Numeric
82 angletBodyAccMeangravity	Numeric
83 angletBodyAccJerkMeangravityMean	Numeric
84 angletBodyGyroMeangravityMean	Numeric
85 angletBodyGyroJerkMeangravityMean	Numeric
86 angleXgravityMean	Numeric
	Numeric
87 angle Ygravity Mean	
88 angleZgravityMean	Numeric