Linear Algebra. Test 2. Variant 2.

First name	Last name	Group	Points#1	Points#2
		BS1-		

I am, _____ (initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own work.

(signature)

Rules:

- no talking AT ALL is allowed during the exam and after it (if you are still in the room)
- when time is up, you have to put down your pen (pencil) and do NOT write anything else
- you can NOT leave your seat till the end of the test
- any electronic devices are not allowed

1. (*5 points*) Subspace
$$S$$
 of \mathbb{R}^3 is spanned by vectors $a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$. Represent the vector

$$x = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$$
 as a sum of projections onto S and S^{\perp} .

Linear Algebra. Test 2. Variant 2.

First name	Last name	Group	Points#3
		BS1-	

(initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own work.

2. (5 points) Using least squares method find coefficients of a curve f(x) = asin(x+b) that best fits following points:

х	π/2	3π/4	π
f(x)	1	0	-1

 $f(x) = \frac{1}{1} = \frac{1}{0} = \frac{1}{0}$ Note: $\sin(x + y) = \sin(x) \cos(y) + \sin(y) \cos(x)$.

3. (**3+2 points**). Let $a = (0, 1, 1)^T$, $b = (1, 0, 1)^T$, $c = (1, 1, 0)^T$

Provide Gram-Schmidt procedure to obtain orthonormal basis (3 points). Write corresponding QR factorization (2 points).