Содержание

1.	О наилучшем приближении	2
2.	О чебышевских пространствах	4
3.	О Чебышеве	8
4.	О ядрах 1	0
5.	Об оптимальных константах 1	4
6.	О интерполяции 1	9
7.	О интерполяционном процессе	21
8.	О сплайнах	25
9.	О оценке константы Лебега	27
10.	О насыщении	29
11.	О Вейерштрасса 3	32
12.	О Бернулли и обращении 3	34
13.	О гладком классе	35
14.	О конечных разностях	₹7

ИСП Численный анализ

1. О наилучшем приближении

Определение 1.1 (Наилучшее приближение)

Пусть B — нормированное пространство, фиксируем некоторое непустое подмножество M. Пусть $\|x\|$ обозначает норму элемента x в нормированном пространстве B.

Число

$$\varepsilon(x, M) = \inf_{y \in M} ||x - y||$$

называется **наилучшим приближением** элемента $x \in B$ на множестве M.

Элемент $y_* \in M$ называется **наименее уклоняющимся** от x, или **элементом наилучшего приближения** на множестве M, если

$$\|x-y_*\|=\varepsilon(x,M)$$

Определение 1.2. Наилучшее приближение

Предложение 1.2 (Свойства наименьшего уклонения)

- 1. Для любого $M \subset B$ функция $\varepsilon(x, M)$ равномерно непрерывна по x.
- 2. Если $M \subset B$ подпространство, то
 - $\varepsilon(\alpha x, M) = |\alpha|\varepsilon(x, M)$ для любых $x \in B$ и $\alpha \in \mathbb{R}$
 - $\varepsilon(x_1+x_2,M) \leq \varepsilon(x_1,M) + \varepsilon(x_2,M)$ для любых $x_1,x_2 \in B$
 - $\varepsilon(x,M) \leq ||x||$ для любого $x \in B$
- 3. Пусть $M\subset B$ конечномерное линейное многообразие. Тогда отображение $\pi:P_M\to M$ непрерывно

Предложение 1.3. Свойства наименьшего уклонения

Доказательство. Пункт 2 очевидно следует из свойств нормы.

Для пункта 1 докажем неравенство

$$|\varepsilon(x_1,M)-\varepsilon(x_2,M)|\leq \|x_1-x_2\|$$

Для произвольного $y \in M$ имеем

$$\varepsilon(x_1, M) \leq \|x_1 - y\| \leq \|x_1 - x_2\| + \|x_2 - y\| \Rightarrow \varepsilon(x_1, M) - \|x_1 - x_2\| \leq \|x_2 - y\|$$

Ввиду произвольности $y \in M$ получим

$$\varepsilon(x_1,M) - \|x_1 - x_2\| \leq \varepsilon(x_2,M)$$

Поэтому, выполняется неравенство

$$\varepsilon(x_1,M) - \varepsilon(x_2,M) \leq \|x_1 - x_2\|$$

Аналогично доказывается неравенство со знаком - и получили, что хотели.

Для пункта 3 рассмотрим сходящуюся в P_M последовательность x_n и пусть

$$\lim_{n\to\infty} x_n = x_0$$

Докажем сначала, что последовательность $\pi(x_n)$ ограничена

$$\begin{split} \|\pi(x_n)\| &= \|\pi(x_n) - x_n + x_n\| \leq \\ \|\pi(x_n) - x_n\| + \|x_n\| &= \varepsilon(x_n, M) + \|x_n\| = \varepsilon(x_n, M) - \varepsilon(x_0, M) + \varepsilon(x_0, M) + \|x_n\| \leq \\ |\varepsilon(x_n, M) - \varepsilon(x_0, M)| + \varepsilon(x_0, M) + \|x_n\| &\leq \\ |x_n - x_0| + \varepsilon(x_0, M) + \|x_n\| \end{split}$$

Поскольку последовательность x_n сходится, все слагаемые последней суммы ограничены, следовательно, последовательность $\pi(x_n)$ ограничена.

Теперь необходимо доказать, что последовательность $\pi(x_n)$ сходится к $\pi(x_0)$. Пусть это не так. Тогда существуют такие $\varepsilon>0$ и подпоследовательность x_{n_k} , для которых выполняется неравенство

$$\left|\pi\!\left(x_{n_k}\right) - \pi(x_0)\right| > \varepsilon$$

Без ограничения общности можно считать, что подпоследовательность x_{n_k} совпадает со всей последовательностью x_n .

Поскольку последовательность $\pi(x_n)$ ограничена, а подпространство M конечномерно, из неё можно выбрать сходящуюся подпоследовательность.

Опять БОО будем считать, что этой подпоследовательностью является сама последовательность $\pi(x_n)$ и $\lim_{n\to\infty}\pi(x_n)=y_0$. Тогда переходя к пределам в неравенстве из отрицания сходимости:

$$\|\pi(x_n) - \pi(x_0)\| > \varepsilon \Rightarrow \|y_0 - \pi(x_n)\| \ge \varepsilon > 0$$

Согласно определению проекции π выполнены равенства

$$\|\pi(x_n) - x_n\| = \varepsilon(x_n, M)$$

Переходя к пределу в равенстве ввиду непрерывности функции ε

$$\|y_0-x_0\|=\varepsilon(x_0,M)$$

Следовательно, y_0 – наименее уклоняющийся элемент пространства $M \Rightarrow y_0 = \pi(x_0)$.

Противоречие!

2. О чебышевских пространствах

Определение 2.1 (Чебышевское пространство)

Пусть C[D] – пространство вещественных непрерывных функций на замкнутом ограниченном множестве $D \subset \mathbb{R}^m, m \geq 1$, состоящем из бесконечного числа точек, с нормой максимума модуля

$$||f|| = \sup_{x \in D} |f(x)|$$

Особо выделим два случая:

- D = [a, b] при m = 1
- $D = S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ при m = 2

Тогда подпространство $L \subset C[D]$ называется **чебышевским**, если любая ненулевая функция $f \in L$ имеет не более n-1 корня на рассматриваемом множестве, где $n \coloneqq \dim L$.

Определение 2.2. Чебышевское пространство

Определение 2.2

Элементы чебышевского подпространства L в пространстве функций будем называть **чебышевскими** L-полиномами или просто **чебышевскими** полиномами.

Пусть $f_1, ..., f_n \in C[D]$ и $x_1, ..., x_n \in D$. Тогда введём обозначение

$$\Delta_f(x_1,...,x_n) = \det \begin{pmatrix} f_1(x_1) & f_2(x_1) & \dots & f_n(x_1) \\ f_1(x_2) & f_2(x_2) & \dots & f_n(x_2) \\ \dots & \dots & \ddots & \vdots \\ f_1(x_n) & f_2(x_n) & \dots & f_n(x_n) \end{pmatrix}$$

Определение 2.3.

Предложение 2.3

Пусть $L \subset C[D]$ – чебышевское подпространство и dim L = n. Тогда

1. Элементы $e_1, ..., e_n \in L$ линейно независимы тогда и только тогда, когда

$$\Delta_e(x_1,...,x_n) \neq 0$$

Для любых попарно различных точек $x_1, ..., x_n \in D$

- 2. Для любых попарно различных точек $x_1,...,x_n\in D$ и любых n чисел $c_1,...,c_n$ существует и притом единственный интерполяционный чебышевский многочлен $p\in L$, для которого $p(x_i)=c_i$ при $1\leq i\leq n$
- 3. Для любых n-1 попарно различных точек, пространство чебышевских многочленов, обращающихся в этих точках в нуль, имеет размерность 1.

Предложение 2.4.

Доказательство. 1 пункт.

Если $e_1,...,e_n\in L$ линейно зависимы, то найдутся такие числа $\alpha_i\in\mathbb{R},1\leq i\leq n$, не все равные нулю, для которых выполнено равенство

$$\textstyle\sum_{j=1}^n \alpha_j e_j(x) = 0$$

Тогда для любой последовательности точек $x_1,...,x_n\in D$ линейная однородная система уравнений Ay=0, где $A=\left\|e_j(x_i)\right\|_{1\leq i,j<+n}$ имеет ненулевое решение $y=(\alpha_1,...,\alpha_n)^T.$

Следовательно, определитель системы равен нулю, но

$$\det A = \Delta_e(x_1,...,x_n) \Rightarrow \forall x_1,...,x_n : \Delta_e(x_1,...,x_n) \equiv 0$$

Обратно, пусть $e_1,...,e_n\in L$ и существуют n различных точек $x_1,...,x_n\in D,$ для которых выполнено равенство

$$\Delta_e(x_1,...,x_n)=0$$

Тогда $\det A=0$ и, следовательно, столбцы матрицы A линейно зависимы. Поэтому существуют такие числа $\alpha_1,...,\alpha_n$ не все равные нулю, для которых выполнено равенство

$$\sum_{j=1}^{n} \alpha_j e_j(x_i) = 0$$

Это означает, что функция $\sum_{j=1}^n \alpha_j e_j(x)=0$ имеет n различных корней. Поскольку подпространство L чебышевское, то отсюда вытекает, что она – тождественный нуль. Следовательно, вектора $e_1,...,e_n$ линейно зависимы.

 Π ункт 2.

Пусть $e_1,...,e_n$ – базис в чебышевском пространстве L и $c_1,...,c_n$ произвольные n чисел. Тогда, согласно уже доказанному, определитель системы линейных уравнений

$$Ay = c \quad A = \left\| e_j(x_i) \right\|_{1 \leq i, j \leq n}$$

не равен нулю и, следовательно, эта система имеет ненулевое решение $y^T=(y_1,...,y_n)$. Тогда $p(x)=\sum_{k=1}^n y_k e_k(x)$ определяет искомый интерполяционный многочлен Чебышева.

 Π ункт 3.

Пусть даны n различных точек $x_0,...,x_{n-1}$. Согласно предыдущему пункту, существует единственный чебышевский многочлен $p_0(x)$, обращающийся в 0 в точках $x_1,...,x_{n-1}$ и равный 1 в точке x_0 .

Тогда, согласно тому же предыдущему пункту, для любого чебышевского многочлена q(x) обращающегося в 0 в точках $x_1,...,x_{n-1}$, выполнено равенство

$$q(x) = q(x_0)p_0(x)$$

Лемма 2.4

Пусть $r,g \in C[D], M = M(r) = \{x \in D \mid |r(x)| = ||r||\}.$

Тогда, если

$$a \coloneqq \inf_{x \in M} r(x)g(x) > 0$$

то существует $\delta > 0$ такое, что при $0 < k < \delta$ всегда выполнено неравенство

$$||r - kg|| < ||r||$$

Лемма 2.5.

Доказательство. Множество $M\subset I$ замкнуто и ограничено, поэтому компактно. Поэтому

$$\exists c > 0 : \forall x \in M : r(x)g(x) > 2c$$

Причём для каждой точки $x\in M$ имеется открытый шар радиуса $r_x>0$, такой что для любой точки y этого шара выполняются условия

$$r(x)r(y) > 0$$
 $r(y)g(y) > c$ $|r(y)| > \frac{|r|}{2}$

Рассмотрим покрытие M открытыми шарами $U(x, \frac{r_x}{4})$. Поскольку M компактно, можно выделить его конечное подпокрытие

$$U\left(x_1, \frac{r_{x_1}}{4}\right), ..., U\left(x_n, \frac{r_{x_n}}{4}\right)$$

Дополнение в I объединения этих шаров – компактное множество N. Тогда

$$||r|| > \max_{x \in N} |r(x)| = r_0$$

Пусть $\max_{x \in N} |g(x)| = g_0$. Тогда

$$\exists \delta_1 : \forall k, 0 < k < \delta_1 : 0 < r_0 - kg_0 < r_0 + kg_0 < ||r||$$

Поэтому для любого $x \in N$ и любого $0 < k < \delta_1$ всегда

$$|r(x) - kg(x)| < r_0 + kg_0 < ||r||$$

Выберем теперь такое $\delta_2>0,$ что для всех $x\in I$ выполняется

$$\delta_2|g(x)|<\tfrac{\|r\|}{4}$$

Тогда

$$\forall k, 0 < k < \delta_2 : \forall x \in \cup_{i=1}^n U\Big(x_i, r_{x_i}\Big) : |r(x) - kg(x)| < \|r\|$$

Пусть $N_1 = \cup_{i=1}^n B\left(x_i, \frac{r_{x_i}}{2}\right)$. Тогда N_1 компакт и для любого $0 < k < \delta_2$ и $x \in N_1$ выполняется неравенство $\max_{x \in N_1} |r(x) - kg(x)| = a_k < \|r\|$.

Поскольку $I=N\cup N_1,$ величина $\delta=\min(\delta_1,\delta_2)$ удовлетворяет условиями леммы.

Лемма 2.5

Пусть $r \in C[I]$ ненулевая функция,

$$M = M(r) = \{x \in I \mid |r(x)| = ||r||\}$$

Тогда M представимо в виде объединения $M = \cup_{k=1}^m M_k$ где M_k – замкнутые непустые попарно непересекающиеся множества, причём

- $M_k < M_{k+1}, 1 \le k \le m$
- $\bullet \quad \forall x \in M_k : \forall y \in M_{k+1} : \operatorname{sign}(r(x)) = -\operatorname{sign}(r(y))$

Лемма 2.6.

Доказательство. Представим $M = M^+ \cup M^-$, где

$$M^+ = \{x \in M \mid r(x) > 0\} \quad M^- = \{x \in M \mid r(x) < 0\}$$

Пусть $x \in M$, положим

$$M_x^+ = \{y \in M \mid r(y) > 0, \forall z \in (x, y) \cap M : r(z) > 0\}$$

$$M_r^- = \{ y \in M \mid r(y) < 0, \forall z \in (x, y) \cap M : r(z) < 0 \}$$

Возмжно, что при некоторых $x_0 \neq x_1$ выполняется $M_{x_0}^+ = M_{x_1}^+$. Выберем по одному экземпляру таких множеств.

Пусть это множества M_a^+ при $a \in A$ и M_b^- при $b \in B$. Тогда

$$M^{+} = \cup_{a \in A} M_{a}^{+} \quad M^{-} = \cup_{b \in B} M_{b}^{-}$$

Множества A и B конечны, поскольку в противном случае имеется точка $x_0 \in I$ в любой окрестности которой бесконечно много элементов из A или B. БОО пусть из A. В этом случае $M_{x_0}^+$ пересекается с M_a^+ для бесконечного числа элементов $a \in A$.

Тогда, для некоторого $a \neq x_0$ выполняется $M_{x_0}^+ = M_a^+$. Что противоречит уникальности каждого взятого множества. Конечное число таких множеств доказано!

Осталось построить чередующиеся множества. Найдём $a': a' \neq a$, причём $(a,a') \cap A = \emptyset$. Тогда множество $(a,a') \cap B$ состоит из одного элемента. Расположим теперь элементы множеств A и B в порядке чередования по этому алгоритму.

3. О Чебышеве

Теорема 3.1 (Чебышева)

Пусть $L \subset C[I]$ — чебышевское подпространство, $n=\dim L \geq 1$ и $f \in C[I]$ — произвольная функция. Тогда функция $p \in L$ наименее уклоняется от f тогда и только тогда, когда найдутся n+1 различные точки $a \leq x_1 < x_2 < \ldots < x_{n+1} \leq b$, для которых разность r(x) = f(x) - p(x) удовлетворяет следующим условиям:

- $\forall i = 1..n + 1 : |r(x_i)| = ||r||$
- $\bullet \quad r(x_1) = -r(x_2) = r(x_3) = \ldots = (-1)^n r(x_{n+1})$

Такая разность r называется **чебышевским альтернансом**

Теорема 3.2. Чебышева

Доказательство. Необходимость.

Пусть $f \in C[I]$ и $p \in L$ наименее уклоняется от f. Рассмотрим разность r = f - p. При r = 0 утверждение теоремы очевидно. Если $r \neq 0$, рассмотрим

$$M = M(r) = \{x \in I \mid |r(x)| = ||r||\}$$

Тогда множество M представимо в виде объединения $M = \bigcup_{k=1}^m M_k$ непустых замкнутых непересекающихся множеств, удовлетворяющим условиям вспомогательной леммы.

Если m>n, то r удовлетворяет требованиям теоремы. Иначе рассмотрим $m\leq n$. Поскольку все множества M_k компактны, существует последовательность точек

$$M_1 < y_1 < M_2 < y_2 < \ldots < y_{m-1} < M_m$$

Рассмотрим многочлен $h(x)=\sigma(y_1-x)(y_2-x)...(y_{m-1}-x)$ степени m-1, где $\sigma=\mathrm{sign}(r(M_1)).$ Тогда функции r,h удовлетворяют условию первой вспомогательной леммы, поэтому при некотором $\delta>0$ выполнено неравенство $\|r-\delta h\|<\|r\|$. Следовательно, многочлен $p+\delta h\in L$ даст лучшее приближение, а не p, противоречие.

Достаточность.

Пусть r=f-p – чебышевский альтенанс порядка n+1, а наилучшим приближением является многочлен q(x). Тогда

$$|f(x_k) - q(x_k)| < |f(x_k) - p(x_k)| = |r(x_k)| = \|r\|$$

Поэтому

$$|q(x_k) - p(x_k)| = |(f(x_k) - p(x_k)) - (f(x_k) - q(x_k))| \ge \\ ||f(x_k) - p(x_k)| - |f(x_k) - q(x_k)|| = |f(x_k) - p(x_k)| - |f(x_k) - q(x_k)| > 0$$

Причём из этих неравенств будет следовать, что разность $|f(x_k)-p(x_k)|$ «зажимает» разность $|f(x_k)-q(x_k)|$ при смене знака в этих точках и не остаётся выбора, кроме как тоже сменить знак. Тогда

$$\exists y_1, ..., y_n : x_1 < y_1 < x_2 < y_2 < ... < y_n < x_{n+1}$$

в которых $q(y_k)-p(y_k)=0,$ а так как $q-p\in L\Rightarrow q-p\equiv 0,$ то есть многочлен p действительно даёт наилучшее приближение. \square

4. О ядрах

Определение 4.1 (Ядро)

Положительным ядро называется последовательность 2π -периодических функций $K_n(x)$, удовлетворяющая следующим свойствам:

- 1. $K_n(x) \geq 0$ 2. $\int_{-\pi}^{\pi} K_n(x) \, \mathrm{d}x = 1$ 3. $\lim_{n \to \infty} \int_{-\delta}^{\delta} K_n(x) \, \mathrm{d}x = 1$ для всех $0 < \delta < \pi$

Если выполняются лишь свойства 2 и 3, последовательность K_n называется ядром.

Определение 4.2. Ядро

Лемма 4.2 (Об аппроксимации положительного ядра)

Пусть $K_n(x)$ – положительное ядро.

Тогда для любой 2π -периодической функции f(x) последовательность функций $f_n(x) = \int_{-\pi}^{\pi} f(t+x) K_n(t) \, \mathrm{d}t$ равномерно сходится к функции f(x).

Лемма 4.3. Об аппроксимации положительного ядра

Доказательство. Ввиду свойств ядра имеем:

$$\begin{split} f(x) - \int_{-\pi}^{\pi} f(x+t) K_n(t) \, \mathrm{d}t &= \int_{-\pi}^{\pi} f(x) K_n(t) \, \mathrm{d}t - \int_{-\pi}^{\pi} f(x+t) K_n(t) \, \mathrm{d}t = \\ & \int_{-\pi}^{\pi} (f(x) - f(x+t)) K_n(t) \, \mathrm{d}t = \\ & \Big(\int_{-\pi}^{-\delta} + \int_{-\delta}^{\delta} + \int_{\delta}^{\pi} \Big) (f(x) - f(x+t)) K_n(t) \, \mathrm{d}t \end{split}$$

В силу непрерывности и периодичности функции f(x), эта функция равномерно непрерывна и ограничена на всей числовой прямой. Поэтому

$$\forall \varepsilon>0: \exists \delta>0: \forall x_1,x_2, |x_1-x_2|<\delta: |f(x_1)-f(x_2)|<\frac{\varepsilon}{2}$$

И

$$\exists M > 0 : \forall x : |f(x)| < M$$

Фиксируем такое $\delta < \pi.$ Тогда ввиду неорицательности $K_n(t)$ имеем

$$\begin{split} \Big| \int_{-\delta}^{\delta} (f(x) - f(x+t)) \Big| K_n(t) \, \mathrm{d}t &\leq \int_{-\delta}^{\delta} |f(x) - f(x+t)| K_n(t) \, \mathrm{d}t < \\ & \int_{-\delta}^{\delta} \frac{\varepsilon}{2} K_n(t) \, \mathrm{d}t = \frac{\varepsilon}{2} \int_{-\delta}^{\delta} K_n(t) \, \mathrm{d}t \end{split}$$

А в силу ограниченности функции |f(x)| < M выполнено неравенство

$$\begin{split} \left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right) &|f(x) - f(x+t)| K_n(t) \, \mathrm{d}t \leq 2M \Big(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \Big) K_n(t) \, \mathrm{d}t = \\ &2M \Big(1 - \int_{-\delta}^{\delta} K_n(t) \, \mathrm{d}t \Big) \end{split}$$

Получается,

$$\left| f(x) - \int_{-\pi}^{\pi} f(x+t) K_n(t) \, \mathrm{d}t \right| \leq \frac{\varepsilon}{2} \int_{-\delta}^{\delta} K_n(t) \, \mathrm{d}t + 2M \Big(1 - \int_{-\delta}^{\delta} K_n(t) \, \mathrm{d}t \Big) \underset{n \to \infty}{\longrightarrow} 0$$

Лемма 4.3

Последовательность функций

$$D_n(x) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{n-1} \cos kx = \frac{\sin(n-\frac{1}{2})x}{2\pi \sin(\frac{x}{2})}$$

определяет ядро. Это ядро называется ядром Дирихле.

Лемма 4.4.

 $\ensuremath{\mathcal{A}\!\mathit{okaзameльcm80}}$. По определению функции D_n :

$$\int_{-\pi}^{\pi} D_n(t) \, \mathrm{d}t = \int_{-\pi}^{\pi} \frac{\mathrm{d}x}{2\pi} + \frac{1}{\pi} \sum_{k=1}^{n-1} \int_{-\pi}^{\pi} \cos kt \, \mathrm{d}t = 1$$

Далее, пусть $0 < \delta < \pi$. Имеем

$$\int_{-\pi}^{\pi} D_n(t) \, \mathrm{d}t = 1 - \left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right) D_n(t) \, \mathrm{d}t$$

То есть, достаточно проверять, что $\left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi}\right) D_n(t) \, \mathrm{d}t$ бесконечно малая величина.

Рассмотрим функцию

$$g(x) = \begin{cases} 0, |x| < \delta \\ 1, \delta \le |x| \le \delta \end{cases}$$

Положим $h(x)=rac{g(x)}{\sin(rac{x}{2})}\in L_2^*[-\pi,\pi]$. Тогда

$$\left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} D_n(t) dt = \int_{-\pi}^{\pi} h(t) \sin\left(n - \frac{1}{2}\right) t dt = \int_{-\pi}^{\pi} h(t) \sin\left(n - \frac{1}{2}\right) t dt = \int_{-\pi}^{\pi} h(t) \sin\left(n - \frac{1}{2}\right) t dt$$

$$\int_{-\pi}^{\pi} h(t) \cos\left(\frac{t}{2}\right) \sin(nt) dt - \int_{-\pi}^{\pi} h(t) \sin\left(\frac{t}{2}\right) \cos(nt) dt$$

Согласно неравенству Бесселя, последние два интеграла стремятся к нулю.

Лемма 4.4

Последовательность функций

$$\Phi_n(x) = \frac{\sum_{k=1}^n D_k(x)}{n}$$

Определяет положительное ядро. Это ядро называется ядром Фейера.

Лемма 4.5.

Доказательство. По определению функции $\Phi_n(x)$:

$$\int_{-\pi}^{\pi} \Phi_n(t) \, \mathrm{d}t = \tfrac{1}{n} \int_{-\pi}^{\pi} \sum_{k=1}^n D_k(t) \, \mathrm{d}t = \tfrac{1}{n} \sum_{k=1}^n 1 = 1$$

Неравенство $\Phi_n(t) \geq 0$ следует из соотношения

$$\Phi_n(t) = \frac{1}{4\pi n} \frac{1 - \cos(nt)}{\sin^2(\frac{t}{2})}$$

Фиксируем $0 < \delta \le \pi$. Функция

$$\frac{1-\cos nt}{\sin^2\left(\frac{t}{2\pi}\right)}$$

ограничена на $[-\pi, -\delta] \cup [\delta, \pi]$. Следовательно, на этом множестве $\Phi_n(t) \twoheadrightarrow 0$. Поэтому требуемая бесконечная малость выполняется.

Лемма 4.5

Последовательность функций

$$J_n(x) = \frac{3n^3}{2\pi(2n^2+1)} \Big(\frac{\sin(n\frac{x}{2})}{n\sin(\frac{x}{2})}\Big)^4 = \frac{6\pi n}{2n^2+1} \Phi_n^2(x)$$

определяет положительное ядро. Это ядро называется **ядром** Джекснова.

Лемма 4.6.

Определение 4.6

Пусть M>0 и r натуральное. Классом $W^r(M)$ называется множество r-1 дифференцируемых 2π -периодических функций, для который $f^{(r-1)}(x)$ — Млипшецева.

Определение 4.7.

Теорема 4.7 (Джексона)

Сущестувует такая константа C, что для любых r,n,M>0 и $f\in W^r(M)$ выполняется неравенство

$$\varepsilon(f,\mathcal{T}_{2n-1}) < C^r \tfrac{M}{n^r}$$

Теорема 4.8. Джексона

Доказательство. Заметим, что $J_n(x)$ тригонометрический многочлен степени 2(n-1). Следовательно, $\forall f \in C[S^1]$

$$T_n(x) = \int_{-\pi}^{\pi} J_n(t-x) f(t) \, \mathrm{d}t$$

тригонометрический многочлен степени $\leq 2(n-1)$.

Пусть r=1 и $f\in W^1(M)$, для $m\geq 1$ рассмотрим тригонометрический многочлен T(x). Учитывая чётность ядра Джексона и условие Липшица для функции f, получаем

$$|f(x) - T(x)| = \left| \int_{-\pi}^{\pi} J_m(t) (f(x) - f(x+t)) \, \mathrm{d}t \right| \le M \int_{-\pi}^{\pi} |t| J_m(t) \, \mathrm{d}t = 2M \int_{0}^{\pi} t J_m(t) \, \mathrm{d}t$$

Ввиду неравенства $\sin(\frac{t}{2}) \geq \frac{t}{\pi}$ при $0 \leq t \leq \pi$ получаем

$$\begin{split} \int_0^\pi t J_m(t) \, \mathrm{d}t &\leq \tfrac{3\pi^3}{2m(2m^2+1)} \int_0^\pi \tfrac{\sin^4(m\frac{t}{2})}{t^3} \, \mathrm{d}t = \\ &\tfrac{3\pi^3 m}{8(2m^2+1)} \int_0^{m\frac{\pi}{2}} \tfrac{\sin^4(t)}{t^3} \, \mathrm{d}t < \tfrac{C}{4m} \end{split}$$

Следовательно, $||f - t|| < \frac{CM}{2m}$.

Заметим, что $J_n(x) \in \mathcal{T}_{4n-1}$, когда нам нужно использовать многочлены, степени не более 2n-1. Определим стратегию уменьшения степени:

Если итоговый n=2m, то с помощью ядра J_m построим рассмотренный выше тригонометрический многочлен, иначе n=2m+1, для которого также построим требуемый $J_m.$ Таким образом,

$$\|f-T\|<\tfrac{CM}{2m}<\tfrac{CM}{n}$$

Пусть теперь теорема доказана для произвольного r и более того, если интеграл по периоду равен нулю, то и полученная апроксимация удовлетворяет этому свойству.

Докажем, что тогда то же выполнено и для r+1. Пусть $f \in W^{r+1}(M)$. Тогда $f' \in W^r(M)$. Причём, очевидно, интеграл по периоду от функции f' равен нулю.

Тогда, согласно индукционному предположению, существует $T(x) \in \mathcal{T}_{2n-1}$, для которого выполнено неравенство $||f'-T|| < C^r m n^{-r}$ и интеграл по периоду от T равен нулю.

Тогда свободный член тригонометрического многочлена T нулевой. Поэтому существует тригонометрический многочлен U той же степени с нулевым свободный членом, для которого U'=T. Следовательно

$$\|(f-U)'\| = \|f'-T\| < C^r M n^{-r}$$

Поэтому $t-U \in W^1(C^rMn^{-r})$. Следовательно, существует $t \in \mathcal{T}_{2n-1}$, такой, что

$$\|(f-U)-t\|<\tfrac{C(C^rMn^{-r})}{n}=C^{r+1}\tfrac{M}{n^{r+1}}$$

Причём, если интеграл по периоду функции f равен нулю, то это же справедливо и для многочлена $U+t\in\mathcal{T}_{2n-1}.$

5. Об оптимальных константах

Определение 5.1

Набор констант C_r называется **оптимальным**, если:

• Для любых $n \ge 1, r \ge 1, f \in W^r(M), M > 0$ для констант C_r выполнено неравенство

$$\varepsilon(f, \mathcal{T}_{2n-1}) < C_r \frac{M}{n^r} \quad f \in W^r(M)$$

 $\varepsilon(f,\mathcal{T}_{2n-1}) < C_r \tfrac{M}{n^r} \quad f \in W^r(M)$ • Если $0 < c < C_r$ для некоторого $r \ge 1$, то

$$\forall n \geq 1: \forall M > 0: \exists f \in W^r(M): \varepsilon(f,\mathcal{T}_{2n-1}) > c\frac{M}{n^r}$$

Определение 5.2.

Определение 5.2 (Функция Бернулли)

Пусть $r \geq 1$. r-й функцией Бернулли называется функция

$$B_r(t) = \sum_{k=1}^{\infty} \frac{\cos(kt - \pi \frac{r}{2})}{k^r}$$

Определение 5.3. Функция Бернулли

Π емма $5.3~(\mathrm{O}$ тригонометрической интерполяции)

1. Пусть $t_0,...,t_{n-1}\in(0,\pi)$ – попарно различные точки и $b_0,...,b_{n-1}\in\mathbb{R}$ – произвольные числа. Тогда существует единственный чётный тригонометрический многочлен

$$T(t) = \sum_{k=0}^{n-1} \alpha_k \cos(kt) \quad \alpha_k \in \mathbb{R}$$

для которого $T(t_i) = b_i$ при $0 \le j \le n-1$.

1. Пусть $au_1,..., au_{n-1} \in (0,\pi)$ – попарно различные точки и $d_1,...,d_{n-1} \in \mathbb{R}$ – произвольные числа. Тогда существует единственный нечётный тригонометрический многочлен

$$T(t) = \sum_{k=1}^{n-1} \beta_k \sin(kt) \quad \beta_k \in \mathbb{R}$$

для которого $T\left(au_{j}
ight) = d_{j}$ при $1 \leq j \leq n-1.$

Лемма 5.4. О тригонометрической интерполяции

Определение 5.4

Определим тригонометрические многочлены $T_{n,r}(t)$.

Пусть $n\geq 1$ и $t_j=\frac{(2j+1)\pi}{2n}$ — все нули функции $\cos(nt)$ на интервале $(0,\pi),$ а $\tau_k=\frac{k\pi}{n}$ — все нули функции $\sin(nt)$ на интервале $(0,\pi).$

Для чётного $r \geq 2$ пусть $T_{n,r}(t) \in \mathcal{T}_{2n-1}$ — тригонометрический многочлен, для которого $T_{n,r}(t_j) = B_r(t_j).$

Для нечётного $r \geq 2$ пусть $T_{n,r} \in \mathcal{T}_{2n-1}$ — тригонометрический многочлен, для которого $T_{n,r}(\tau_k) = B_r(\tau_k)$. Согласно лемме о тригонометрической интерполяции, функции $T_{n,r}$ определены однозначно.

Определение 5.5.

Определение 5.5 (Класс гладких функций)

$$W^r_*(M) = \left\{ f \in C^r[S^1] \mid \left\| f^{(r)} \right\| \le M \right\}$$

Определение 5.6. Класс гладких функций

Лемма 5.6 (Формула обращения)

Пусть $f \in W^r_*(M)$. Тогда

$$f(t) = \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{\pi} \int_0^{2\pi} B_r(t-\tau) f^{(r)}(\tau) \, \mathrm{d}\tau$$

Лемма 5.7. Формула обращения

Доказательство. Достаточно доказать для r=1. имеем

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{\pi} \int_0^{2\pi} B_1(t-\tau) f'(\tau) \, \mathrm{d}\tau = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{\pi} \int_0^t B_1(t-\tau) f'(\tau) \, \mathrm{d}\tau + \frac{1}{\pi} \int_t^{2\pi} B_1(t-\tau+2\pi) f'(\tau) \, \mathrm{d}\tau = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{\pi} \int_0^t \frac{\pi-t+\tau}{2} f'(\tau) \, \mathrm{d}\tau + \frac{1}{\pi} \int_t^{2\pi} \frac{\tau-t-\pi}{2} f'(\tau) \, \mathrm{d}\tau = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{\pi} \int_0^{2\pi} \frac{\tau-t}{2} f'(\tau) \, \mathrm{d}\tau + \frac{1}{2} \int_0^t f'(\tau) \, \mathrm{d}\tau - \frac{1}{2} \int_t^{2\pi} f'(\tau) \, \mathrm{d}\tau = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + f(t) = \\ \frac{1}{2\pi} \int_0^{2\pi} f(\tau) \, \mathrm{d}\tau + \frac{1}{2\pi} \int_0^{2\pi} \tau f'(\tau) \, \mathrm{d}\tau + \int_0^{2\pi} \tau f'(\tau)$$

Лемма 5.7 (О нулях тригонометрической интерполяции)

Разность $\Delta(t)=\Delta_{n,r}(t)=B_r(t)-T_{n,r}(t)$ обращается в нуль на интервале $(0,\pi)$ при $n\geq 1$ и чётном r только в точках t_j , а в нечётном r только в точках τ_k .

При n=1 и нечётном r корней на $(0,\pi)$ нет. Все корни являются простыми.

Лемма 5.8. О нулях тригонометрической интерполяции

Лемма 5.8

Пусть $n \ge 1$ — натуральное и $2\frac{\pi}{n}$ -периодическая функция $f: \mathbb{R} \to \mathbb{R}$ суммируема на каждом конечном отрезке.

Тогда для любого 1 < k < n-1:

$$\int_{-\pi}^{\pi} f(t) \cos(kt) dt = \int_{-\pi}^{\pi} f(t) \sin(kt) dt = 0$$

Лемма 5.9.

Лемма 5.9

Коэффициенты Фурье для функции Бернулли $B_r(t)$ выражаются формулой

$$\mu_{r,n}+i\nu_{r,n}=\tfrac{1}{\pi}\int_{-\pi}^{\pi}B_r(t)d^{int}\,\mathrm{d}t=\tfrac{i^r}{n^r}\quad n>0$$

И

$$\mu_{r,0} + i\nu_{r,0} = \frac{1}{\pi} \int_{-\pi}^{\pi} B_r(t) dt = 0$$

Лемма 5.10.

Теорема 5.10 (Фавара)

Пусть

$$K_r = \frac{4}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^{m(r+1)}}{(2m+1)^{r+1}} \quad r \geq 1$$

Тогда для любых $f \in W^r(M)$ и $n \ge 1$ справедливо неравенство

$$\varepsilon(f, \mathcal{T}_{2n-1}) \le K_r \frac{M}{n^r} \quad r \ge 1 \quad n \ge 1$$

Теорема 5.11. Фавара

Доказательство. Согласно Лемма 5.11 выполняется равенство

$$f(t) = \frac{a}{2} + \frac{1}{\pi} \int_0^{2\pi} B_r(t-\tau) f^{(r)}(\tau) \,\mathrm{d}\tau$$

Пусть $T \in \mathcal{T}_{2n-1}$ произвольный тригонометрический многочлен степени < n. Тогда

$$\Lambda(T)(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} T(t-\tau) f^{(r)}(\tau) \,\mathrm{d} \tau$$

также является тригонометрическим многочленом степени < n. Рассмотрим разность

$$f(t)-\tfrac{a}{2}-\Lambda(T)(t)=\tfrac{1}{\pi}\int_0^{2\pi}(B_r(t-\tau)-T(t-\tau))f^{(r)}(\tau)\,\mathrm{d}\tau$$

Тогда

$$\begin{split} \left| f(t) - \tfrac{a}{2} - \Lambda(T)(t) \right| &\leq \tfrac{1}{\pi} \int_0^{2\pi} \lvert B_r(t-\tau) - T(t-\tau) \rvert \left| f^{(r)}(\tau) \right| \mathrm{d}\tau \leq \\ &\frac{M}{\pi} \int_0^{2\pi} \lvert B_r(z) - T(z) \rvert \, \mathrm{d}z \end{split}$$

Следовательно,

$$\varepsilon(f,\mathcal{T}_{2n-1}) \leq \tfrac{M}{\pi} \inf_{T \in \mathcal{T}_{2n-1}} \int_0^{2\pi} \lvert B_r(z) - T(z) \rvert \, \mathrm{d}z$$

Значит достаточно проверить нерпвенство

$$\inf\nolimits_{T \in \mathcal{T}_{2n-1}} \int_{0}^{2\pi} \lvert B_{r}(z) - T(z) \rvert \, \mathrm{d}z \leq \pi K_{r} n^{-r}$$

А для этого достаточно проверить, что, например,

$$\int_{0}^{2\pi} |B_{r}(z) - T_{n,r}(z)| \, \mathrm{d}z \le \pi K_{r} n^{-r}$$

Согласно Лемма 5.11 все корни разности $B_r(t)-T_{n,r}(t)$ на интервале $(0,\pi)$ простые и совпадают с простыми корнями функции $\cos(nt)$ при чётном r и с корнями $\sin(nt)$ при нечётном r.

Поэтому знаки функций $B_r(t)-T_{n,r}(t)$ и $\cos(nt)$ при чётном r и, соответственно, $\sin(nt)$ при нечётном r, либо всюду совпадают, либо всюду противоположны. Поэтому при БОО чётном r выполняется равенство

$$\begin{split} \int_{-\pi}^{\pi} \left| B_r(z) - T_{n,r}(z) \right| \mathrm{d}z &= 2 \int_0^{\pi} \left| B_r(z) - T_{n,r}(z) \right| \mathrm{d}z = \\ 2 \int_0^{\pi} \left(B_r(z) - T_{n,r}(z) \right) \operatorname{sign} \Delta(z) \, \mathrm{d}z &= \pm 2 \int_0^{\pi} \left(B_r(z) - T_{n,r}(z) \right) \operatorname{sign} \cos(nz) \, \mathrm{d}z = \\ 2 \left| \int_0^{\pi} \left(B_r(z) - T_{n,r} \right) \operatorname{sign} \cos(nz) \, \mathrm{d}z \right| &= \left| \int_{-\pi}^{\pi} \left(B_r(z) - T_{n,r}(z) \right) \operatorname{sign} \cos(nz) \, \mathrm{d}z \right| = \\ \left| \int_{-\pi}^{\pi} B_r(z) \operatorname{sign} \cos(nz) \, \mathrm{d}z \right| \end{split}$$

где в последнем равенстве использована Лемма 5.11.

Абсолютно такое же равенство (но с sign sin(nz)) аналогично получаем для нечётного r.

Теперь воспользуемся обобщённым равенством Парсеваля в $L_2[-\pi,\pi]$:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t) = \frac{\alpha_0 a_0}{2} + \sum_{k=1}^{\infty} (\alpha_k a_k + \beta_k b_k)$$

где α_k, β_k и a_k, b_k – коэффициенты Фурье функций f(t) и g(t) соответственно.

Для функции Бернулли коэффициенты Фурье вычислены в Лемма 5.11. Для функции sign cos(nt) и sign sin(nt) соответствующие ряды Фурье определяются формулами

$$sign cos(nt) = \frac{4}{\pi} \sum_{k=0}^{\infty} (-1)^k \frac{cos(2k+1)nt}{2k+1}$$

И

$$\operatorname{sign}\sin(nt) = \frac{4}{\pi} \sum_{k=0}^{\infty} \frac{\sin(2k+1)nt}{2k+1}$$

Подставляя полученные коэффициенты в равенства Парсеваля получим при чётном $r=2\nu$:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} B_{2\nu}(z) \operatorname{sign} \cos(nz) \, \mathrm{d}z = (-1)^{\nu} \frac{4}{\pi n^{2\nu}} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^{2\nu+1}} = \frac{(-1)^{\nu} K_r}{n^r}$$

и нечётном $r=2\nu+1$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} B_{2\nu+1}(z) \operatorname{sign} \sin(nz) \, \mathrm{d}z = (-1)^{\nu} \frac{4}{\pi n^{2\nu+1}} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2\nu+2}} = \frac{(-1)^{\nu} K_r}{n^r}$$

Следовательно,

$$\frac{1}{\pi} \int_0^{2\pi} |B_r(z) - T_{n,r}(z)| \, \mathrm{d}z = K_r n^{-r}$$

Что и требовалось доказать.

6. О интерполяции

Определение 6.1

Рассмотрим бесконечный компакт $D \subset \mathbb{C}$ и пространство непрерывных на нём функций C[D]. Пусть P_n – пространство полиномов степени меньшей n.

Фиксируем произвольные n точек $x=(x_1,...,x_n),$ где $x_i\in D$ и набор чисел $y=(y_1,...,y_n),$ где $y_i\in \mathbb{R}.$

Интерполяционным полиномом для этих данных называется многочлен $p_{n-1}(x,y) \in P_n$ для которого $p_{n-1}(x,y)(x_k) = y_k.$

Определение 6.2.

Определение 6.2

Полиномами Лагранжа называются интерполяционные полиномы

$$I_{k,n}(x) = p_{n-1}(x, y_k)$$

дл
$$y_k = \left(\delta_{k,1}, \delta_{k,2}, ..., \delta_{k,n}\right)$$
, где

$$\delta_{i,j} = \begin{cases} 1, i=j \\ 0, i \neq j \end{cases}$$

Имеет место равенство

$$I_{k,n}(x)(x) = \prod_{i \neq k} \frac{x - x_i}{x_k - x_i}$$

При фиксации узлов интерполяции x обозначения для интерполяционного полинома обычно сокращается

$$p_{n-1}(x,y) = p_{n-1}(y) \quad I_{k,n}(x) = I_{k,n}$$

Определение 6.3.

Определение 6.3

Определим операторы

$$\pi_x^{(\nu)}:C[D]\to P_n$$

формулами

$$\pi_x^{(\nu)}(f) = \sum_{k=1}^n f(x_k) \cdot I_{k,n}^{(\nu)}$$

Заметим, что оператор $\pi_x^{(0)} =: \pi_x$ является проектором.

Определение 6.4.

Определение 6.4

Числа

$$\lambda_n = \max_{x \in D} \sum_{k=1}^n |I_{k,n}(x)|$$

называются константами Лебега.

Определение 6.5.

Теорема 6.5 (Неравенство Лебега)

Для любой непрерывной на отрезке [a,b] функции f выполняется неравенство

$$\|f-\pi_x(f)\| \leq (1+\lambda_n)\varepsilon(f,P_n)$$

Теорема 6.6. Неравенство Лебега

Доказательство. Пусть $q \in P_n$ – происзвольный элемент. Тогда, поскольку π_x проектор

$$\begin{split} \|f - \pi_x(f)\| &= \|f - q + q - \pi_x(f)\| \leq \|f - q\| + \|\pi_x(q) - \pi_x(f)\| = \\ \|f - q\| + \lambda_n \|f - q\| &= (1 + \lambda_n) \|f - q\| \end{split}$$

Пусть теперь q_{δ} такой полином из P_n , для которого выполняется неравенство $\|f-q_{\delta}\|<\varepsilon(f,P_n)+\delta.$

Тогда

$$\|f-\pi_x(f)\| \leq (1+\lambda_n)\|f-q_\delta\| < (1+\lambda_n)(\varepsilon(f,P_n)+\delta)$$

Переходя в полученном неравенстве к пределу при $\delta \to 0$, получим требуемое.

7. О интерполяционном процессе

Определение 7.1

Матрицей X интерполяционных узлов на отрезке I=[a,b] называется бесконечная треугольная таблица чисел

$$\begin{pmatrix} x_{1,1} & & & \\ x_{2,1} & x_{2,2} & & & \\ \cdots & \cdots & \cdots & & \\ x_{n,1} & x_{n,2} & \cdots & x_{n,n} & \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

для которой

- 1. $x_{n,k} \in I$ при $1 \le k \le n$
- 2. При любом n выполняются неравенства $x_{n,1} < x_{n,2} < ... < x_{n,n}$

Определение 7.2.

Определение 7.2

Для $f \in C[a,b]$ матрицы интерполяции определяет последовательность интерполяционных полиномов

$$p_{n-1} = p_{n-1}(X,f) = \pi_n(x_n,f) \in P_n$$

Эта последовательность называется **интерполяционным процессом**, отвечающим данной матрице интерполяционных узлов X и данной функции f

Определение 7.3.

Определение 7.3

Интерполяционный процесс $p_{n-1}(X,f)$ называется **сходящимся** для данной матрицы интерполяционных узлов X и данной функции $f \in [a,b]$, если для любого $x \in [a,b]$ существует предел и выполняется равенство

$$\lim_{n\to\infty} p_{n-1}(X,f)(x) = f(x) \quad x \in I$$

Интерполяционный процесс $p_{n-1}(X,f)$ называется **равномерно сходящимся** на отрезке I для данной матрицы интерполяционных узлов X и данной функции $f \in [a,b]$, если указанная выше сходимость является равномерной.

Определение 7.4.

Теорема 7.4 (Банаха-Штейнгауза)

Пусть X — банахово пространство, Y — нормированное векторное пространство, F — семейство линейных непрерывных операторов из X в Y.

Предположим, что для любого $x \in X$ выполняется

$$\sup_{T \in F} \|T(x)\|_{Y} < \infty$$

Тогда

$$\sup_{T \in F, \|x\| = 1} \|T(x)\|_Y = \sup_{T \in F} \|T(x)\|_{\mathcal{L}(X,Y)} < \infty$$

Теорема 7.5. Банаха-Штейнгауза

Следствие 7.4.1

Если последовательность ограниченных операторов на банаховом пространстве сходится поточечно, то её поточечный предел является ограниченным оператором.

Следствие 7.4.2.

Теорема 7.5 (Фабера-Бернштейна)

Для любой матрицы интерполяционных узлов X выполняются неравенства

$$\lambda_n = \lambda_n(x_n) = \|\pi_n(x_n)\| > \frac{1}{8}\sqrt{\pi}\ln(n) \quad n \ge 1$$

Теорема 7.6. Фабера-Бернштейна

Следствие 7.5.1

Для любой матрицы интерполяционных узлов X существует функция $f \in C[a,b]$, для которой последовательность интерполяционных полиномов $p_{n-1}(X,f)$ не сходится равномерно на I к f и, более того, последовательность $\|p_{n-1}(X,f)\|_{C[I]}$ неограниченна

Следствие 7.5.2.

Доказательство. Допустим, что это не так и для некоторой матрицы X при любом $f \in C[a,b]$ последовательность $p_{n-1}(X,f)$ равномерно сходится к f на I.

Следовательно, последовательность линейных непрерывных операторов $\pi_n(x_n):C[a,b]\to P_n\subset C[a,b]$ поточечно сходится.

Тогда, поскольку C[a,b] — полной нормированное пространство, по теореме Банаха-Штейнгауза, нормы операторов $\|\pi_n(x_n)\|=\lambda_n$ ограничены, что противоречит теореме Фабера-Бернштейна.

Теорема 7.6

Пусть $f \in C[a,b]$. Тогда существует матрица интерполяционных узлов X на отрезке [a,b], для которой интерполяционный процесс для функции f сходится равномерно.

Теорема 7.7.

Пусть $p_{n-1} \in P_n$ — его наилучшее приближение в пространстве P_n . Согласно теореме Чебышева на отрезке [a,b] разность $\Delta_n = f - p_{n-1}$ имеет альтернанс порядка n+1, то есть существуют точки

$$a \le y_{1,n} < y_{2,n} < \dots < y_{n+1,n} \le b$$

для которых $\left|\Delta_n(y_{k,n})\right|=\|\Delta_n\|$ и знаки $\Delta_n(y_{k,n})$ чередуются. Тогда существуют нули функции Δ_n :

$$y_{1,n} < x_{1,n} < y_{2,n} < \dots < x_{n,n} < y_{n+1,n}$$

Рассмотрим матрицу интерполяции X, соответствующую полученным нулям. По построению, выполняются равенства $p_{n-1}(x_{k,n})=f(x_{k,n})$ при $1\leq k\leq n$. Тогда выполняется равенство

$$p_{n-1} = p_{n-1}(x_n, f) = \pi_n(x_n, f)$$

Погрешность интерполяции равна

$$\|f-p_{n-1}\|=\|f-\pi_n(x_n,f)\|=\varepsilon(f,P_n)$$

и, следовательно, по теореме Вейерштрасса

$${\lim}_{n\to\infty}\|f-p_{n-1}\|=0$$

Определение 7.7

Чебышевской системой узлов порядка n на отрезке $I_0 = [0,1]$ называется система точек

$$x_k^* = (x_{1,n}^*, x_{2,n}^*, ..., x_{n,n}^*)$$

где

$$x_{k,n}^* = \cos\!\left(\tfrac{(2k-1)\pi}{2n}\right) \quad n \ge 1 \quad 1 \le k \le n$$

Определение 7.8.

Теорема 7.8 (Бернштейна)

Пусть $I=I_0=[0,1]$ и X^* – интерполяционная матрица из чебышевских узлов на отрезке I_0 . Тогда

$$\lambda_n = \lambda_n(x_k^*) < 8 + \frac{4}{\pi} \ln n \quad n \ge 1$$

Теорема 7.9. Бериштейна

Пример Берштейна. Пусть $I = I_0 = [-1, 1], f_0(x) = |x|.$

Тогда $f_0 \in W^1(1,I_0)$, но интерполяционный процесс, отвечающий функции f_0 и матрице равноотстоящих узлов на отрезке I_0 , расходится всюду на отрезке I_0 , кроме концов отрезка и точки x=0.

8. О сплайнах

Определение 8.1

Пусть $D \subset \mathbb{R}^s$ – замкнутое подмножество.

Конечная совокупность $D_k \subset \mathbb{R}^s, k \in \mathcal{K}$ называется разбиением D, если

- $\begin{array}{l} 1. \ \cup_{k=1}^n D_k = D \\ 2. \ [D_k] \cap \left[D_j\right] = \emptyset, k \neq j \end{array}$
- 3. $[D_k] \neq \emptyset$

Где [D] обозначает внутренность множества D

Определение 8.2.

Определение 8.2

Функция $I \in C[D]$ называется **сплайн-функцией** на конечном разбиении $D_k, k \in \mathcal{K}$ множества D, если эта функция полиномиальна на каждом множестве D_k .

Поскольку $[D_k] \neq \emptyset$, алгебраический многочлен на каждом множестве D_k определён однозначно.

Число $\max_{k \in \mathcal{K}} \deg I|_{D_k}$ называется **порядком сплайн-функции** I

Определение 8.3.

Определение 8.3

Далее будет исследован случай $D = [a, b] \subset \mathbb{R}$, где a < b.

В число узлов $x=(x_1,...,x_n)$ всегда будут входить начало и конец отрезка. В качестве разбиения рассматриваются множества $D_k = I_k = [x_{k+1}, x_{k+2}],$ где $0 \le k \le n-2$. Пусть $n \ge r \ge 2$. Определим отображение

$$I_r = I_r(x): \mathbb{R}^n \to C[a,b]$$

Для вектора $f = (f_1, ..., f_n)$ и $x \in [a, b]$ положим

$$I_r(x)(f)(x) = \begin{cases} p_{r-1}(x^{(k)},f^{(k)})(x), x \in I_k, 0 \le k \le n-r \\ p_{r-1}(x^{(n-r)},f^{(n-r)})(x), x \in I_k, n-r < k \le n-2 \end{cases}$$

 $x^{(k)}=ig(x_{k+1},...,x_{k+r}ig), f^{(k)}=ig(f_{k+1},...,f_{k+r}ig)$ при $0\leq k\leq n$ $p_{r-1}(x^{(k)},f^{(k)})$ – алгебраический интерполяционный полином степени меньше r на отрезке $J_k = [x_{k+1}, x_{k+r}].$

Пусть функция $f \in C[a,b]$ и $a = x_1 < ... < x_n = b$. Положим f = $(f(x_1),...,f(x_n))$. Тогда функция $I_r(x,f)$ называется **лагранжевым сплайном** или **сплайн-интерполяцией** порядка < r функции f относительно узлов x.

Определение 8.4.

Теорема 8.4

Пусть $I=[a,b], 2\leq r\leq n, f\in W^r(M,I), \xi=(\xi_1,...,\xi_n)\in \mathbb{R}^n$ — произвольный вектор, $h=\frac{b-a}{n-1}, x=(x_1,...,x_n)$ — равноотстоящие узлы $x_k=a+(k-1)h, 1\leq k\leq n$. Тогда

$$\|f-I_r(x,f)\| \leq M \tfrac{(r-1)^r}{r!} h^r + \lambda_r \max\nolimits_{1 \leq j \leq n} \left| f \left(x_j \right) - \xi_j \right|$$

где $\lambda_r < 2^{r-1}$ – константы Лебега относительно системы узлов x.

Для $f \in W^1(M,I)$ и $n \geq 2$ справедлива оценка

$$\|f - l_2(x, f)\| \le 2Mh + \lambda_2 \max_{1 \le j \le n} \left| f(x_j) - \xi_j \right|$$

Теорема 8.5.

Доказательство. Поскольку отрезки $[x_{s+1},x_{s+2}]$ при $0 \le s \le n-2$ покрывают отрезок [a,b] и каждый из них лежит в некотором отрезке $J_k = [x_{k+1},x_{k+r}], 0 \le k \le n-r$, то из определения лагранжева сплайна и полученной ранее оценки для приближения интерполяционным многочленом $p_{r-1}(x^{(k)},f^{(k)})$ следует, что

$$\begin{split} \left\| f - I_r(x,\xi) \right\|_{C[I]} &= \max_{1 \leq s \leq n-2} \left\| f - I_r(x,\xi) \right\|_{C[x_{s+1},x_{s+2}]} \leq \\ &\max_{1 \leq k \leq n-r} \left\| f - p_{r-1} \left(x^{(k)}, \xi^{(k)} \right) \right\|_{C[J_k]} \leq \\ &\max_{1 \leq k \leq n-r} \left[M \frac{(r-1)^r}{r!} h^r + \lambda_r \max_{k+1 \leq j \leq k+r} \left| f \left(x_j \right) - \xi_j \right| \right] \leq \\ &M \frac{(r-1)^r}{r!} h^r + \lambda_r \max_{1 \leq j \leq n} \left| f \left(x_j \right) - \xi_j \right| \end{split}$$

Оценка для констант Лебега при равномерном распределении узлов будет получена в следующем билете.

При r=1 используются кусочно линейные аппроксимации $p_1\big(x^{(k)},\xi^{(k)}\big)$ и оценка погрешности

$$|f(x)-p_1(x)| = \left|f(x)-f(x_1) - \frac{f(x_*)-f(x_1)}{x_*-x_1}(x-x_1)\right| \leq \\ 2M|x-x_1| \leq 2M(b-a)$$

Для $f \in W^1(M,I)$:

$$\begin{split} \left\|f-I_2(x,\xi)\right\|_{C[I]} &= \max_{0 \leq k \leq n-2} \left\|f-p_1\left(x^{(k)},\xi^{(k)}\right)\right\|_{C[J_k]} \leq \\ &2Mh + \lambda_2 \max_{1 \leq j \leq n} \left|f\left(x_j\right)-\xi_j\right| \end{split}$$

9. О оценке константы Лебега

Примечание

Константы Лебега инвариантны для линейных преобразований узлов. Найдём константы Лебега для равномерно распределённых узлов интерполяции. Достаточно рассмотреть отрезок [1,n] с узлами $x_k=k$.

Полиномы Лагранжа имеют вид

$$I_{n,k}(x) = \prod_{j \neq k}^{n} \frac{x-j}{k-j}$$

Лемма 9.1

Выполняются соотношения:

- $\begin{array}{ll} 1. & \prod_{j \neq k}^{n} |k-j| = (k-1)!(n-k)! \\ 2. & k!(n-k)! \leq (n-1)! \quad 1 \leq k \leq n \\ 3. & \prod_{j=1}^{m} \left(j \frac{1}{2}\right) \geq \frac{m!}{2} \sqrt{m} \quad m \geq 1 \end{array}$

Лемма 9.2.

Теорема 9.2

При n > 1 константы Лебега удовлетворяют неравенству

$$\frac{2^{n-3}}{n^{\frac{3}{2}}} \le \lambda_n \le 2^{n-1}$$

Теорема 9.3.

Доказательство. Оценим константы Лебега снизу. Имеем

$$\begin{array}{ccc} \lambda_n \underset{\text{Pabehctbo } 1}{=} \max_{1 \leq x \leq n} \sum_{k=1}^n \frac{1}{(k-1)!(n-k)!} \prod_{j \neq k}^n |x-j| \geq \\ & \sum_{k=1}^n \frac{1}{(k-1)!(n-k)!} \prod_{j \neq k}^n \left| \frac{3}{2} - j \right| \end{array}$$

Согласно неравенству 3 предыдущей леммы получаем

$$\begin{split} \prod_{j \neq k}^{n} \left| \frac{3}{2} - j \right| &= \frac{1}{|k - \frac{3}{2}|} \prod_{j = 1}^{n} \left| \frac{3}{2} - j \right| = \frac{1}{2|k - \frac{3}{2}|} \prod_{j = 1}^{n - 1} \left| \frac{1}{2} - j \right| \geq \frac{(n - 1)!}{4|k - \frac{3}{2}|\sqrt{n - 1}} \geq \frac{(n - 1)!}{4n\sqrt{n - 1}} \end{split}$$

Поэтому

$$\lambda_n \geq \frac{1}{4n\sqrt{n-1}} \sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{2^{n-1}}{4n\sqrt{n-1}} \geq \frac{2^{n-3}}{n^{\frac{3}{2}}}$$

Теперь докажем справедливость оценки сверху для констант Лебега. Представим $x \in [1, n]$ в виде x = l + s,где $1 \le l \le n$ – целое число, а $|s| \le \frac{1}{2}$. Предположим также, что $s \neq 0$. Тогда

$$\begin{split} \prod_{j\neq k}^{n}|x-j| &= \frac{1}{|x-k|}\prod_{j=1}^{n}|x-j| = \\ \frac{1}{|l-k+s|}\prod_{j=1}^{n}|l-j+s| &= \frac{1}{|l-k+s|}\prod_{j=-(n-l)}^{l-1}|j+s| = \\ \frac{|s|}{|l-k+s|}\prod_{j=1}^{l-1}|j+s|\prod_{j=1}^{n-l}|j-s| &\leq \prod_{j=1}^{l-1}|j+s|\prod_{j=1}^{n-l}|j-s| \end{split}$$

При s>0 всегда l< n, и, следовательно, выполнено неравенство

$$\textstyle \prod_{j \neq k}^n \lvert x - j \rvert \leq l! (n - l)! \underset{\text{Hepabelltbo}}{\leq} (n - 1)!$$

При s < 0 всегда l > 1 и следовательно, выполнено неравенство

$$\prod_{j\neq k}^n \lvert x-j\rvert \leq (l-1)!(n-l+1)! \underset{\text{Неравенство 2}}{\leq} (n-1)!$$

При s=0 'nj неравенство очевидно. Следовательно

$$\lambda_n = \max_{1 \leq x \leq n} \sum_{k=1}^n \frac{1}{(k-1)!(n-k)!} \prod_{j \neq k}^n |x-j| \leq \sum_{k=1} \frac{(n-1)!}{(k-1)!(n-k)!} = 2^{n-1}$$

10. О насыщении

Определение 10.1

Последовательность $\pi_n: B \to L_n$ определённая для достаточно больших n и состоящая из линейных непрерывных отображений банахова пространства B в конечномерные линейные подпространства $L_n \subset B$, называется линейным методом приближения.

Нормы $\|\pi_n\|$ называются абстрактными константами Лебега.

Определение 10.2.

Определение 10.2

Пусть (\mathcal{R}, \prec) – линейный порядок на множестве индексов и для каждого $r \in \mathcal{R}$ задано подмножество $W^r \subset B$, называемое классом, не содержащееся ни в каком конечномерном подпространстве B.

Обозначим через

$$\delta_n(f) = \|f - \pi_n f\| \quad \delta_n W^s(M) = \sup_{f \in W^s(M)} \delta_n(f)$$

Линейный метод приближения $\pi_n: B \to L_n$ имеет **насыщение** на классах $W^r, r \in \mathcal{R},$ если существует индекс $r_0 \in \mathcal{R},$ для которого выполнены следующие условия

- 1. $\lim_{n \to \infty} \delta_n W^r = 0$ при любом $r \preceq r_0$
- 2. $\delta_n W^s = o(\delta_n W^r)$ при $n \to \infty$ для любых $r \prec s \preceq r_0$
- 3. Если $r_0 \prec r$, то существуют $x \in W^r$ и C > 0, не зависящая от n, для которых при достаточно больших n выполняется неравенство

$$\delta_n x \geq C \delta_n W^{r_0}$$

то есть
$$\delta_n W^{r_0} = O(\delta_n(x)), n \to \infty$$

Класс W^{r_0} называется **классом насыщения** линейного метода приближения π_n , а класс последовательностей, слабо эквивалентных сходящейся к нулю последовательности $\delta_n W^{r_0}$ – порядком насыщения.

Определение 10.3.

Теорема 10.3

Если π_n проектор, то имеет место абстрактное неравенство Лебега

$$\varepsilon(x,L_n) \leq \|x-\pi_n(x)\| \leq (1+\|\pi_n\|)\varepsilon(x,L_n)$$

Теорема 10.4.

Теорема 10.4

Пусть $\delta_n^r(f) = \|f - I_r(x_n, f)\|_{C[a,b]}$

- 1. Если $1 \leq s \leq r$, то $\delta^r_n W^s(M) \sim M|b-a|n^{-s}, n \to \infty, n \geq r$
- 2. Если s>r, то $\delta_n^r W^s(M)=\infty, n\geq r$, причём для любого E>0 найдётся функция $f_E\in W^S(M)$, для которой $\delta_n^r(f)\geq E|b-a|^r K_r n^{-r}$, где константа K_r зависит только от r.

Теорема 10.5.

Насыщение при интерполяции лагранжевыми сплайнами. Пусть $B = C[I], I = [a,b], r_0 \geq 2,$

$$x_{n,k}^0=a+rac{(b-a)(k-1)}{n-1}, 1\leq k\leq n, n\geq r_0$$
 — равноотстоящие узлы на $[a,b]$

 $\pi_n = I_{r_0}(x_n^0): C[I] \to \mathcal{L}_{r_0}^{(n)}(x_n^0) = L_n$ – оператор, сопоставляющий функции f её лагранжев сплайн относительно системы узлов $x_n^0 = \left(x_{n,1}^0,...,x_{n,n}^0\right), n \geq r_0.$

Из свойств лагранжевых сплайнов следует, что π_n линейный метод приближения и $\|\pi\| \le \lambda_{r_0}$, где λ_{r_0} – константа Лебега относительно системы r_0 равноотстоящих узлов.

Положим, для заданного положительного числа $M:W^r=W^r(M,I)$

 Насыщение при интерполяции по чебышевскими узлам. Пусть B=C[I], I=[a,b]

$$x_{n,k}^* = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{2k-1}{2n}\pi)$$
 $n \ge 1, 1 \le k \le n$

чебышевские узлы на отрезке $I, \pi_n = \pi_n(x_n^*) : C[i] \to P_n$ – оператор, сопоставляющий функции её алгебраический интеполяционный полином степени, меньшей n относительно системы узлов $x_n^* = \left(x_{n,1}^*, ..., x_{n,n}^*\right)$ на отрезке I.

Для интепорялицонных полиномов с такими узлами было доказано, что π_n – линейный оператор и $\|\pi_n\|=\lambda_n$ – соответствующая константа Лебега относительно узлов x_n^* , то есть определяет линейный метод приближения.

Положим для $M>0: W^r=W^r(M,I).$ Тогда полученный линейный метод не имеет насыщения на классах $W^r.$

приближение периодических функций частичной суммой ряда Фурье. Пусть $B=C[S^1], L_n=\mathcal{T}_{2n+1}, \pi_n=S_n: B\to L_n,$ оператор, сопоставляющий функции $f\in C[S^1]$ n-ю частичную сумму её ряда Фурье

$$\pi_n = S_n(f)(f) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx)) = \frac{1}{\pi} \int_{-\pi}^{\pi} D_n(x-t) f(t) \, \mathrm{d}t$$

Поэтому выполняется неравенство

$$|S_n(f)(x)| \le \|f\| \frac{1}{\pi} \int_{-\pi}^{\pi} |D_n(t)| \, \mathrm{d}t$$

Поэтому

$$||S_n|| \le \frac{1}{\pi} \int_{-\pi}^{\pi} |D_n(t)| \, \mathrm{d}t$$

•••

Не имеет насыщения

Аппроксимация с помощью ядра Фейера. Пусть $B=C[S^1], L_n=\mathcal{T}_{2n-1}, \pi_n=\sigma_n: B\to L_n$ – оператор, сопоставляющий функции $f\in C[S^1]$ её n-ую сумму Фейера

$$\sigma_n(f)(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} \Phi_n(t-x) f(t) \, \mathrm{d}t$$

где Φ_n – ядро Фейера, умноженное на π .

Утверждается, что

$$\delta_n W^1(M) \sim \frac{\ln n}{n} \quad \delta_n W^2 \sim \frac{1}{n}$$

...

Класс насыщения $W^2(M)$, а порядок насыщения n^{-1} .

частичная сумма Фурье-Чебышева. Пусть $B=C[I_0], I_0=[-1,1], L_n=P_{n+1}, n\geq 1,$ а $\pi_n=c_n:C[I_0]\to P_{n+1}$ – оператор, сопоставляющий функции $f\in C[I_0]$ её частичную сумму Фурье-Чебышева

$$c_n(f)(x) = \sum_{k=0}^n a_k t_k(x) \quad a_k = \int_{-1}^1 \frac{t_k(x) f(x)}{\sqrt{1-x^2}} \, \mathrm{d}x$$

где $t_k(x)=\sqrt{\frac{2}{\pi}}\cos(k\arccos x), k>0, t_0=\sqrt{\frac{1}{\pi}}$ – ортогональные многочлены Чебышева. Оператор $c_n(f)$ – линейные операторы, являющиеся проекторами.

Они непрерывные, имеющие какую-то операторную норму, а значит, зажав $\delta_n W^r$ по абстрактному неравенству Лагранжа получим ненасыщенность.

11. О Вейерштрасса

Теорема 11.1 (Фейера)

Для любой непрерывной периодической функции с периодом 2π на прямой, последовательность тригонометрических многочленов

$$f_n(x) = \int_{-\pi}^{\pi} f(t+x) \Phi_n(t) dt$$

равномерно сходится к функции f

Теорема 11.2. Фейера

Лемма 11.2

Фукнцию $\cos(nx)$ можно представить, как многочлен степени n от переменной $\cos(x)$

Лемма 11.3.

Теорема 11.3 (Вейерштрасса)

Для любой непрерывной на отрезке [a,b] функции f(x) существует равномерно сходящаяся к ней последовательность многочленов.

Теорема 11.4. Вейерштрасса

Доказательство. Определим функцию на отрезке [0,1]:

$$g(s) = f((1-s)a + sb)$$

Функция f(x) на отрезке [a,b] восстанавливается по функции g(s), заданной на отрезке [0,1] по формуле

$$f(x) = g\left(\frac{x-a}{b-a}\right)$$

Поэтому достаточно доказать теорему только для функций заданных на отрезке [0,1]

Продолжим функцию f(x) до чётной на отрезке [-1,1]:

$$h(x) = \begin{cases} f(x), x \ge 0 \\ f(-x), x \le 0 \end{cases}$$

И определим чётную функцию на всей числовой прямой:

$$g(t) = h(\cos t)$$

В силу определния и условия теоремы, функция g(t) непрерывна и периодична с периодом $T=2\pi$. Следовательно, выполнены условия теоремы Фейера и последовательность тригонометрических многочленов $\sigma_n(t;g)$ сходится равномерно к функции g(t).

Поскольку функцию g(t) чётная, коэффициенты $b_n=0$ и следовательно

$$\sigma_n(t;g) = \sum_{k=0}^n a_k \cos(kt) = \sum_{k=0}^n a_k P_k(\cos t) = Q_n(\cos t)$$

Где $P_k(x)$ – многочлены из леммы выше и, следовательно, $Q_n(x)$ также многочлен степени n.

Покажем теперь, что последовательность $Q_n(x)$ сходится равномерно к функции f(x).

Поскольку $Q_n(\cos t) \to g(t),$ то для любого $\varepsilon>0$ существует N такое, что при n>N всегда $|g(t)-Q_n(\cos t)|<\varepsilon.$

Следовательно, при n>N всегда $|f(\cos t)-Q_n(\cos t)|<\varepsilon,$ то есть для всех $x\in[0,1]$ выполнено

$$|f(x)-Q_n(x)|<\varepsilon$$

12. О Бернулли и обращении

Ищи в предыдущих билетах

13. О гладком классе

Лемма 13.1

Пусть m, ν – целые, $m \ge 1, m \ge \nu \ge 0, f \in C^m[I]$ и f имеет $k \ge m$ различных нулей на I. Тогда $f^{(n-\nu)}$ имеет не менее $k-\nu$ корней на отрезке I.

Лемма 13.2.

Лемма 13.2

Утверждается, что

$$[W^n_*(M,I)] = W^n(M,I)$$

где [X] – замыкание множества X в пространстве C[I].

Лемма 13.3.

Теорема 13.3

Пусть I=[a,b] – отрезок, $n\geq 1, x=(x_1,...,x_n)$ – система узлов интерполяции на I,M>0 и $f\in W^n(M,I)$. Тогда выполняется неравенство

$$\|f-\pi_n(x,f)\| \leq M \tfrac{(b-a)^n}{n!}$$

Теорема 13.4.

Доказательство. Сначала докажем теорему для $f \in W^n_*(M, I)$. Рассмотрим функцию $g(x) = f(x) - \pi_n(x, f)(x) \in C^n[I]$. Требуется доказать неравенство

$$|g(x)| \le \frac{M(b-a)^n}{n!}$$

для всех $x \in I$. Если x_0 является одним из узлов интерполяции x_k , то $g(x) = g(x_k) = 0$, то неравенство выполняется.

Пусть $x_0 \neq x_k$ для всех $1 \leq k \leq n$. Тогда

$$I_n(x_0) = \prod_{k=1}^n (x_0 - x_k) \neq 0$$

Тогда определена функция

$$\xi(x) = g(x) - \frac{g(x_0)}{I_n(x_0)} \cdot I_n(x)$$

По построению, для всех $0 \le k \le n$ выполняются равенства $\xi(x_k) = 0$. Поэтому, по ближайшей лемме, существует точка $y \in I$, в которой выполнено равенство $\xi^{(n)}(y) = 0$.

Поскольку $\pi_n(x,f)(x)$ — многочлен степени меньшей n, а $I_n(x)$ — многочлен степени n со старшим коэффициентом равным 1, то $g^{(n)}(x)=f^{(n)}(x)$ и выполняется равенство

$$0 = \xi^{(n)}(y) = f^{(n)}(y) - \frac{g(x_0)}{I_n(x_0)} n!$$

Следовательно,

$$g(x_0) = \frac{f^{(n)}(y)}{I_n(x_0)n!}$$

Поскольку $x_0 \in I = [a, b]$, очевидно, выполнено неравенство

$$|I_n(x_0)| \leq (b-a)^n$$

А ввиду условия $f \in W^n_*(M,I)$ выполнено неравенство $\left|f^{(n)}(y)\right| \leq M.$ Требуемое неравенство теперь очевидно.

Рассмотрим теперь произвольную $f\in W^n(M,I)$, по лемме о приближении при любом $\varepsilon>0$ существует $f_\varepsilon\in W^n_*(M,I)$, для которого $\|f_\varepsilon-f\|<\varepsilon$. Тогда

$$\begin{split} \|f - \pi_n(x,f)\| &= \|f - f_\varepsilon + f_\varepsilon - \pi_n(x,f_\varepsilon) + \pi_n(x,f_\varepsilon) - \pi_n(x,f)\| \leq \\ \|f - f_\varepsilon\| &+ \|f_\varepsilon - \pi_n(x,f_\varepsilon)\| + \|\pi_n(x,f_\varepsilon) - \pi_n(x,f)\| \leq \\ \varepsilon &+ \frac{M(b-a)^n}{n!} + \lambda_n(x) \cdot \varepsilon \end{split}$$

Переходя к пределу в полученном неравенстве при $\varepsilon \to 0$, получим требуемое.

36

14. О конечных разностях

Определение 14.1

Обозначим через $\mathcal{F}(\mathbb{R})$ множество всех вещественно-значных функций, заданных на всевозможных подмножествах D множества вещественных чисел \mathbb{R} .

Две функции $f_1:D_1\to\mathbb{R}$ и $f_2:D_2\to\mathbb{R}$ считаются равными, если $D_1=D_2\wedge \forall x\in D_1:f_1(x)=f_2(x)$

Область определении функции f будем обозначать через D_f . На множестве $\mathcal{F}(R)$ определены операции сложения и умножения на вещественные числа:

$$(f+g)(x) = f(x) + g(x) \quad x \in D_{f+g} = D_f \cap D_g$$
$$(\alpha f)(x) = \alpha \cdot f(x) \quad x \in D_{\alpha f} = D_f$$

Определение 14.2.

Определение 14.2

Пусть $h \in \mathbb{R}$ — число, которое будем называть далее шагом. Определим отображения

$$T_h: \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R}) \quad \Delta_h: \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R})$$

формулами

$$(T_h(f))(x) = f(x+h) \quad (\Delta_h(f))(x) = f(x+h) - f(x)$$

Оператор Δ_h можно представить в виде $\Delta_h = T_h - E,$ где E – тождественный оператор.

Оператор T_h называется оператором **сдвига на шаг** h, а оператор Δ_h – **оператором первой конечной разности**.

Определение 14.3.

Определение 14.3

Умножая оператор Δ_h на себя, получаем конечные разности высших порядков:

$$\Delta_h^0 = E \quad \Delta_h^1 = \Delta_h \quad \Delta_h^{n+1} = \Delta_h^n \circ \Delta_h^1$$

Областью определению функции $\Delta_h^n(f)$ является множество $\cap_{k=0}^n \left(D_f - kh \right)$. Оператор Δ_h^k называется **оператором конечной разности** k-го порядка.

Определение 14.4.

Предложение 14.4 (Свойства конечных разностей)

- 1. Δ_h линейный оператор
- 2. Если f дифференцируемая на отрезке или прямой функция, то функция $\Delta_h(f)$ также дифференцируема на отрезке или прямой и выполняется равенство

$$\left(\Delta_h(f)\right)' = \Delta_h(f')$$

3. Если f определена и абсолютно непрерывна на [a, b] и 0 < h < b - a, то

$$(\Delta_h f)(t) = \int_0^h f'(t+\tau) \, \mathrm{d}\tau \quad t \in [a,b-h]$$
4. $(\Delta_h^n f)(t) = \sum_{k=0}^n (-1)^{n-k} C_n^k f(t+kh)$

- 5. Если $f \in W^r(M, [a, b]), 1 \le n \le r, h > 0, 0 < nh < b a$ выполняется равен-

$$(\Delta_h^s f)(t) = \int_0^h \ldots \int_0^h f^{(s)}(t+ au_1+\ldots+ au_n)\,\mathrm{d} au_1\ldots\mathrm{d} au_n \quad t\in [a,b-nh]$$

 $(\Delta_h^sf)(t)=\int_0^h\dots\int_0^hf^{(s)}(t+\tau_1+\dots+\tau_n)\,\mathrm{d}\tau_1\dots\mathrm{d}\tau_n\quad t\in[a,b-nh]$ 6. Если $f\in C^r([a,b]),h>0,r\geq 1,$ то для любого $t\in[a,b-rh]$ найдётся точка $\xi \in [t, t+rh]$, для которой

$$(\Delta_h^r f)(t) = h^r f^{(r)}(\xi)$$

7. Если $f \in W^r(M, [a, b]), r \ge 1$, то для любого t:

$$|(\Delta_h^r f)(t)| \leq M|h|^r$$

Предложение 14.5. Свойства конечных разностей

Определение 14.5

Алгебраические полиномы

$$\Phi_n(x,h) = \frac{1}{n!h^n} \prod_{k=0}^{n-1} (x - kh) \quad n \ge 1$$

называются факториальными полиномами с шагом h.

Определение 14.6.

Предложение 14.6 (Свойства факториальных полиномов)

- 1. $\Phi_n(x-a,h)$ алгебраический многочлен относительно переменной x степени n
- 2. Многочлены $\Phi_0(x-a,h),...,\Phi_n(x-a,h),n\geq 0$ образуют базис в пространстве P_{n+1} всех алгебраических многочленов степени $\leq n$.
- 3. Если n > 0, то $\Phi_n(0, h) = 0$
- $4. \ \Delta_h \Phi_n(x-a,h) = \Phi_{n-1}(x-a,h), n \geq 0$
- 5. Если $p \in P_n, n \ge 1$, то

$$p(x) = \sum_{k=0}^{n-1} (\Delta_h^k p)(a) \Phi_k(x-a,h)$$

Предложение 14.7. Свойства факториальных полиномов

Определение 14.7

Пусть на отрезке [a,b] задана система из n+1 равноотстоящих узлов $x_k=a+kh, 0 \le k \le n, h=\frac{b-a}{n}, n \ge 1.$

Рассмотрим алгебраический интерполяционный полином $p_{r-1}(x^{(r)},f)$ функции f, построенный по первым $r\leq n+1$ узлам $x_0,...,x_{r-1}$, где $r\geq 1, x^{(r)}=(x_0,...,x_{r-1}).$

Согласно последнему свойству, для любого алгебраического полинома степени < r имеет место тождество:

$$p(x) = \sum_{k=0}^{r-1} (\Delta_h^k p)(a) \Phi_k(x-a,h)$$

Пусть теперь $p=p_{r-1}\big(x^{(r)},f\big),$ тогда p(a+lh)=f(a+lh) при $0\leq l\leq r-1.$

Поэтому, по одному из свойств конечных разностей, получим

$$\left(\Delta_{h}^{k} p\right)\!(a) = \sum_{l=1}^{k}{(-1)^{k-l} C_{k}^{l} p(a+lh)} = \sum_{l=1}^{k}{(-1)^{k-l} C_{k}^{l} f(a+lh)} = \left(\Delta_{h}^{k} f\right)\!(a)$$

Следовательно, интерполяционный полином функции f относительно системы равноотстоящих узлов записывается в виде

$$p_{r-1}(x^{(r)}, f)(x) = \sum_{k=0}^{r-1} (\Delta_h^k f)(a) \Phi_k(x - a, h)$$

Эта форма интерполяционного полинома называется формой Ньютона

Определение 14.8.