Chapter 2

Boolean Decision Making by Satisfiability (SAT) Solving

The logician's point of view

Robinson Crusoe

-)0-

To escape from the island (a)

(
$$a \Rightarrow b \lor c$$
) he needs to build a boat (b) or must be discovered by a passing-by ship (c)

- To build a boat (b) he needs wood (d)
- ($c \Rightarrow e$) To be discovered by a passing-by ship (c) he needs to send smoke signals (e)
- ($e \Rightarrow d$) To send smoke signals (e) he needs wood (d)

Robinson's premises: $(a \Rightarrow b \lor c) \land (b \Rightarrow d) \land (c \Rightarrow e) \land (e \Rightarrow d)$

Notation: ∧: "and", ∨: "or", ¬: "not"

The logician's point of view

The logician's point of view

Robinson's premises

$$(a \Rightarrow b \lor c) \land (b \Rightarrow d) \land (c \Rightarrow e) \land (e \Rightarrow d)$$

CNF (Conjunctive Normal Form)

$$(\neg a \lor b \lor c) \land (\neg b \lor d) \land (\neg c \lor e) \land (\neg e \lor d)$$

SAT-problem

Find a set of assignments for the variables of a formula f in CNF such that f = 1

or

prove that no such set exists

Is the set of premises contradictory?

Circuit satisfiability

$$\varphi = h [d = \neg(ab)] [e = \neg(b + c)] [f = \neg d] [g = d + e] [h = fg]$$

CNF of a gate

$$\phi_{d} = [d = \neg(a b)]
= \neg[d \oplus \neg(a b)]
= \neg[\neg(a b)\neg d + a b d]
= \neg[\neg a \neg d + \neg b \neg d + a b d]
= (a + d)(b + d)(\neg a + \neg b + \neg d)$$

CNF for circuit

$$\varphi = h [d=\neg(ab)] [e=\neg(b+c)] [f=\neg d] [g=d+e] [h=fg]$$

$$= h$$

$$(a + d)(b + d)(\neg a + \neg b + \neg d)$$

$$(\neg b + \neg e)(\neg c + \neg e)(b + c + e)$$

$$(\neg d + \neg f)(d + f)$$

$$(\neg d + g)(\neg e + g)(d + e + \neg g)$$

$$(f + \neg h)(g + \neg h)(\neg f + \neg g + h)$$

CNF or "clause system" for circuit and satisfiability of *h*: "Tseitin construction"

Classification of Literals and Clauses

A *literal* is a variable or its complement.

A literal is called satisfied, if it has been assigned to value 1.

A literal is called violated, if it has been assigned to value 0.

A literal is called unspecified, if it has not yet been assigned any value.

A clause is called satisfied, if it assumed the value 1.

A clause is called violated, if it assumes the value 0.

A clause is called unspecified, if it has not yet assumed a unique logic value.

Example

$$\varphi = (a + \neg b)(\neg a + b + \neg c)(a + c + d)(\neg a + \neg b + \neg c)$$

Status of clauses and literals after the following value assignment:

$$a = 0$$

$$b = 1$$

c: no value assigned yet

SAT solving

Most modern SAT solvers are based on the **Davis-Logemann-Loveland (DLL) Procedure**, 1962

Basic procedure:

Assign step by step values 0 or 1 to the variables in the CNF until all clauses are satisfied (evaluate to 1).

If a clause evaluates to 0 it is called violated and backtracks are performed based on a decision tree.

Backtracks in decision tree

SAT-based property checking: the model

iterative circuit array

Concatenate k copies of the combinational logic for δ and λ ("time frames") \Rightarrow no feedback loops, entirely combinational model

"Interval Property Checking (IPC)"

iterative circuit array from i = t to i = t + k

Compute CNF for iterative model and property