

COMP 3647 Human-Al Interaction Design

Topic 7

Affective Computing:
Basics

Prof. Effie L-C Law

"Humans are feeling machines that think rather than thinking machines that feel"

- A. Antonio Damasio, neuroscientist
- B. Rosalind Picard, computer scientist
- C. Paul Ekman, psychologist
- D. Lisa Feldman Barret, psychologist

Who proposed six basic emotions:

Angry, Digust, Fear, Happy, Sad, Surprise

- A. Antonio Damasio, neuroscientist
- B. Rosalind Picard, computer scientist
- C. Paul Ekman, psychologist
- D. Lisa Feldman Barret, psychologist

Who proposed Theory of Constructed Emotion?

- A. Antonio Damasio, neuroscientist
- B. Rosalind Picard, computer scientist
- C. Paul Ekman, psychologist
- D. Lisa Feldman Barret, psychologist

Who coined the term and found the field "Affective Computing"?

- A. Antonio Damasio, neuroscientist
- B. Rosalind Picard, computer scientist
- C. Paul Ekman, psychologist
- D. Lisa Feldman Barret, psychologist

What is Affective Computing?

Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects/emotions. It is an interdisciplinary field spanning computer science, psychology, and cognitive science.

https://www.predictiveanalyticstoday.com/whatis-affective-computing/

Automatic Multimodality Emotion Recognition (AMER)

Input Modalities for Affective Computing

Emotion + AI Research

Artificial Emotional Intelligence (AEI)

(Bjorn Schuller, Imperial College London)

Human-in-the-Loop:

(1) Annotate a subset of data; (2) Train a model with labelled data; (3) Make predictions on unlabelled data; (4) Validate uncertain predictions; (5) Revise the model to improve prediction. 10

Speech Emotion Recognition: Emotion + Al

audEERING/
University of Augsburg

https://www.informatik.uni-augsburg.de/lehrstuehle/hcm/projects/tools/emovoice/

Law, E. L. C., Soleimani, S., Watkins, D., & Barwick, J. (2020). Automatic voice emotion recognition of child-parent conversations in natural settings. *Behaviour & Information Technology*, 1-18.

Speech Emotion Recognition (SER)

OpenSMILE: Open-source Speech and Music Interpretation by Large-space Extraction

OpenSMILE 3.0: Speech Features

https://www.audeering.com/research/opensmile/

- Signal energy
- Loudness
- Mel-/Bark-/Octave-spectra
- MFCC (Mel-frequency cepstral coefficient)
- PLP-CC (perceptual linear prediction cepstral coefficient)
- Pitch
- Voice quality (Jitter, Shimmer)
- Formants
- LPC (linear predictive coding)
- Line Spectral Pairs (LSP)
- Spectral Shape descriptors

SER: Challenges (Schuller, 2018)

- Automatic SER requires an appropriate emotion representation (modelling)
- Robustness of prediction requires accurate data labelling (annotation) considering states and traits (i.e. context-awareness)

OpenFace

Data Fusion

Three Types of Fusion: Early (Feature), Intermediate (Joint), Late (Decision)

Björn Schuller's Invited Talk (2022)

Björn Schuller

SER

Imperial College London

Intro

Patent in 1970ies

Chapter 1

First real papers in mid 1990ies Expert Features, mostly acted, mostly categories, noise robustness,

low comparibility

Chapter 2

Late Naughties

Systematic Brute Forcing & standardised features (openSMILE), spontanoues realistic data, challenges (Interspeech '09)

Chapter 3

Chapter 4

Deep Learning – 2010s End-2-End Learning (2016), AutoML (2018),

Dimensions

2020ies... Several Companies, Application

Audio Transcript

Chat Messages

Q Search transcript

interesting. But then, after um that, it's really degrading for most of the most challenging database on the

@ / E R D D

Emotion Corpora/ Databases/ Datasets

Database	Type	Size [hrs]	Speakers
eNTERFACE'05 [23]	Acted	-	42
CREMA-D [10]	Acted	-	91
RAVDESS [19]	Acted	-	24
IEMOCAP [5]	Acted	≈ 12	10
MSP-IMPROV [8]	Acted	≈ 9.5	12
CreativeIT [25, 26]	Acted	≈ 8	16
SEMAINE [24]	Natural	≈ 75	150
MAHNOB-HCI [41]	Natural	-	27
RECOLA [35]	Natural	≈ 3.75	46
SEWA [18]	Natural	44	398
CMU-MOSEI [45]	Natural	≈ 65	1,000
MSP-Face	Natural	$\approx 24.7 (+46)$	302

CREMA-D (Cao et al. 2014, IEEE Transaction on Affective Computing)

Code	Sentence
DFA	Don't forget a jacket.
IEO	It's eleven o'clock,
IOM	I'm on my way to the meeting.
ITH	I think I have a doctor's appointment.
ITS	I think I've seen this before.
IWL	I would like a new alarm clock.
IWW	I wonder what this is about.
MTI	Maybe tomorrow it will be cold.
TAI	The airplane is almost full.
TIE	That is exactly what happened.
TSI	The surface is slick.
WSI	We'll stop in a couple of minutes.

12 sentences of emotionally neutral content

6 emotions: Anger, Disgust, Fear, Happy, Sad + Neutral

IEO: 3 intensity levels (low, medium, high) for each

emotions but NOT neutral: 3*5 + 1 = 16

Each of 11 sentences: 11 * 6 Emotions = 66

91 Actors * (16 + 66) = 7462 -> 7442 video

Each video split: audio-only, visual-only, mixed

7442*3 clips. Each annotated by 10 raters 223,269 clips / ~ 90 clips = 2443 raters

CREMA-D: Inclusivity and Diversity of Database (Bias in AI)

Actors' Age Distribution

Race/Ethnicity Distribution

Raters

73.60%

10.80%

8.10%

4.50%

3.00%

Actors

58.24%

10.99%

23.08%

7.69%

0.00%

Age	# actors	Race/Ethnicity
20-29 YRS 30-39 YRS 40-49 YRS 50-59 YRS 60-69 YRS OVER 70 YRS	34 23 16 12 5 1	Caucasian Hispanic African American Asian Other/No Answer

Test your Emotional Intelligence! <u>Google Form</u>

CREMA-D: Emotion Recognition Rates

Recognition Rates

CMU-MOSEI (Multimodal Opinion Sentiment and Emotion Intensity)

Dataset	# S	# Sp	Mod	Sent	Emo	TL (hh:mm:ss)
CMU-MOSEI	23,453	1,000	$\{l,v,a\}$	✓	✓	65:53:36
CMU-MOSI	2,199	98	$\{l,v,a\}$	✓	X	02:36:17
ICT-MMMO	340	200	$\{l,v,a\}$	✓	X	13:58:29
YouTube	300	50	$\{l,v,a\}$	✓	X	00:29:41
MOUD	400	101	$\{l,v,a\}$	✓	X	00:59:00
SST	11,855	_	$\{l\}$	✓	X	, –
Cornell	2,000	_	$\{l\}$	✓	X	l –
Large Movie	25,000	_	$\{l\}$	✓	X	_
STS	5,513	_	$\{l\}$	✓	X	_
IEMOCAP	10,000	10	$\{l,v,a\}$	X	✓	11:28:12
SAL	23	4	$\{v,a\}$	X	✓	11:00:00
VAM	499	20	$\{v,a\}$	X	✓	12:00:00
VAM-faces	1,867	20	$\{v\}$	X	✓	_
HUMAINE	50	4	$\{v,a\}$	X	✓	04:11:00
RECOLA	46	46	$\{v,a\}$	X	✓	03:50:00
SEWA	538	408	$\{v,a\}$	X	✓	04:39:00
SEMAINE	80	20	$\{v,a\}$	X	✓	06:30:00
AFEW	1,645	330	$\{v,a\}$	X	✓	02:28:03
AM-FED	242	242	$\{v\}$	X	✓	03:20:25
Mimicry	48	48	$\{v,a\}$	X	✓	11:00:00
AFEW-VA	600	240	$\{v,a\}$	X	✓	00:40:00

Total number of sentences	
Total number of videos	
Total number of distinct speakers	1000
Total number of distinct topics	250
Average number of sentences in a video	
Average length of sentences in seconds	
Total number of words in sentences	
	2222

Topics: Reviews (16%), Debate (3%), Consulting (2%)

CMU-MOSEI: Rationale & Sources

- Diversity in the training samples
- Variety in the topics
- Diversity in speakers

Sources:

- Social multimedia: monologue videos of opinions
 - language in the form of spoken text
 - visual via perceived gestures and facial expressions
 - acoustic through intonations and prosody
- 5000 videos, 14 experts quality check → 3228 videos
- Automatic check: facial feature extraction confidence
- 57% male vs. 43% female
- Tokenisation: Punctuation marks rather than Stanford CoreNLP tokenizer

Summary

- Humans are NOT good emotion recognisers
- Al-powered emotion recognition applications (ERA) may (not) be better in terms of accuracy, which in general remains moderate.
- The ground truth of ERA is based on human annotators → paradox?!
- More research on Affective Computing is MUCH needed!

Suggested Reading

Christy, T., & Kuncheva, L. I. (2014). Technological advancements in affective gaming: A historical survey. *GSTF Journal on Computing (JoC)*, 3(4), 1-10.

Gandhi, A., Adhvaryu, K., Poria, S., Cambria, E., & Hussain, A. (2022). Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. *Information Fusion*.

Picard, R. W. (2000). Affective computing. MIT press.

Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. *Information Fusion*, 37, 98-125.

Schuller, B. W. (2018). Speech emotion recognition: Two decades in a nutshell, benchmarks, and ongoing trends. *Communications of the ACM*, *61*(5), 90-99.

Tomar, P. S., Mathur, K., & Suman, U. (2022). Unimodal approaches for emotion recognition: A systematic review. *Cognitive Systems Research*.

Zhao, S., Yao, X., Yang, J., Jia, G., Ding, G., Chua, T. S., ... & Keutzer, K. (2021). Affective image content analysis: Two decades review and new perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.

