(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 12. Juli 2001 (12.07.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/50171 A1

(51) Internationale Patentklassifikation7: 13/18, G03F 7/20

(71) Anmelder (nur für GB, IE, JP, KR): CARL-ZEISS-STIFTUNG trading as CARL ZEISS [DE/DE]; 89518 Heidenheim (Brenz) (DE).

(21) Internationales Aktenzeichen:

PCT/EP00/13148

G02B 13/14,

(22) Internationales Anmeldedatum:

22. Dezember 2000 (22.12.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

(30) Angaben zur Priorität:

60/173,523

100 02 626.5

29. Dezember 1999 (29.12.1999) US 22. Januar 2000 (22.01.2000) DE

100 21 739.7 4. Mai 2000 (04.05.2000)

(71) Anmelder (nur für AT, BE, CH, CY, DE, DK, ES, FI, FR, GR, IT, LU, MC, NL, PT, SE, TR): CARL ZEISS [DE/DE]; 89518 Heidenheim (Brenz) (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SHAFER, David, R. [US/US]; 56 Drake Lane, Fairfield, CT 06430 (US). SCHUSTER, Karl-Heinz [DE/DE]; Rechbergstrasse 24, 89551 Königsbronn (DE). BEIERL, Helmut [DE/DE]; Robert-Koch-Strasse 53, 89522 Heidenheim (DE).

(81) Bestimmungsstaaten (national): JP, KR, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Veröffentlicht:

Mit internationalem Recherchenbericht.

[Fortsetzung auf der nächsten Seite]

(54) Title: PROJECTION LENS COMPRISING ADJACENT ASPHERIC LENS SURFACES

(54) Bezeichnung: PROJEKTIONSOBJEKTIV MIT BENACHBART ANGEORDNETEN ASPHÄRISCHEN LINSENOBER-FLÄCHEN

(57) Abstract: The invention relates to a projection lens comprising at least five groups of lenses G1 - G5 and several lens surfaces, in which at least two of the lens surfaces lie adjacent to one another. Said adjacent lens surfaces are referred to as a double aspheric lens. The double aspheric lens or lenses (21) are positioned at a minimum distance from an image plane 0', said distance being greater than the maximum lens diameter (D2) of the lens.

(57) Zusammenfassung: Projektionsobjektiv mit mindestens fünf Linsengruppen G1-G5 und mit mehreren Linsenoberflächen, wobei mindestens zwei asphärische Linsenoberflächen benachbart zueinander angeordnet sind. Diese benachbart zueinander angeordneten Linsenoberflächen werden mit Doppelasphäre bezeichnet. Diese mindestens eine Doppelasphäre (21) ist in einem Mindestabstand von einer Bildebene 0' angeordnet, der grösser als der maximale Linsendurchmesser (D2) des Objektives ist.

WO 01/50171 A1

 Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen. Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung:

Projektionsobjektiv mit benachbart angeordneten asphärischen Linsenoberflächen

Die Erfindung betrifft ein Projektionsobjektiv gemäß dem Oberbegriff des Patentanspruchs 1.

Aus der WO 99/52004 sind katadioptische Projektionsobjektive bekannt, die eine Vielzahl von asphärischen Linsenoberflächen umfassen. So weist beispielsweise das in Figur 4 dargestellte Projektionsobjektiv bei 15 Linsen 12 asphärische Linsenoberflächen auf. Da die Herstellungskosten von asphärischen Linsenoberflächen mit der in der Mikrolithographie geforderten Genauigkeit sehr hoch sind, dürften diese Objektive aufgrund der vielen erforderlichen asphärischen Linsenoberflächen für den Markt weniger interessant sein.

15

20

10

Aus der EP 322 201 B1 ist ein optisches Projektionssystem insbesondere für die Photolithographie bekannt. Die aus dieser Schrift bekannten Projektionsobjektive umfassen fünf Linsengruppen, wobei die erste, zweite, dritte und fünfte Linsengruppe jeweils nur eine Linse aufweisen. Zum Teil sind die Linsen mit asphärischen Linsenoberflächen versehen, wobei auf einer in der vierten Linsengruppe bildseitig angeordnete asphärische Linsenoberfläche eine asphärische objektseitig angeordnete Linsenoberfläche der fünften Linsengruppe folgt.

Aus der EP 851 304 A2 ist die benachbarte Anordnung von asphärischen
Linsenoberflächen in einem Projektionsobjektiv bekannt. Diese asphärischen Linsen sind in radialer Richtung verschiebbar gelagert. Durch die relative Bewegung der Linsen wird das Projektionsobjektiv abgestimmt. Aufgrund der Möglichkeit die Asphären in radialer Richtung gegeneinander zu verschieben sind die asphärischen Linsenoberflächen insbesondere rotationsunsymmetrisch. Aufgrund der beweglichen Lagerung der asphärischen Linsen, dürfte diese Anordnung nicht für jedes Projektionsobjektiv geeignet sein, da insbesondere für kurze Wellenlängen ausgelegte Projektionsobjektive sehr

empfindlich aus kleinste Positionsänderungen der einzelnen Linsen reagieren. Es ist davon auszugehen, daß die durch die spezielle Lagerung der Linsen erreichbare Lagestabilität nicht ausreichend ist, um zuverlässig eine gute Abbildungsqualität gewährleisten zu können.

5

10

15

20

Aus der DE 198 18 444 A1 ist eine Projektionsoptikvorrichtung mit einem rein refraktivem Projektionsobjektiv bekannt, das sechs Linsengruppen G1 bis G6 umfaßt. Bei diesem Projektionsobjektiv weisen die Linsengruppen G1,G3 und G5positive Brechkraft auf. Die Linsengruppen G2,und G4 weisen negative Brechkraft auf. Für die Korrektur von Abbildungsfehlern weisen einige Linsen, insbesondere in der vierten und fünften Linsengruppe, asphärische Linsenoberflächen auf.

Aus der DE 199 42 281.8 sind weitere Projektionsbelichtungsobjektive, die sechs Linsengruppen aufweisen, wobei die zweite Linsengruppe und die vierte Linsengruppe negative Brechkraft aufweisen, bekannt. Bei den aus dieser Schrift bekannten Projektionsobjektiven sind Linsen mit asphärischen Linsenoberflächen vorzugsweise in den ersten drei Linsengruppen angeordnet, wobei zwischen den asphärischen Linsenoberflächen eine Mindestzahl von sphärischen Linsenoberflächen angeordnete sind. Dieser Mindestabstand zwischen den asphärischen Linsenoberflächen erschien erforderlich, damit die eingesetzten asphärischen Linsen optimale Wirkung entfalten.

Aus der US 4,871,237 ist es bereits bekannt, in Abhängigkeit vom barometrischen Druck ein Objektiv abzustimmen und zwar über den Brechungsindex eines Füllgases in Linsenzwischenräumen. Durch eine geeignete Kombination von Zwischenräumen können zum Beispiel sphärische Aberration, Koma und andere Bildfehler korrigiert werden.

Aus der US 5,559,584 ist es bekannt, bei einer Projektionsbelichtungsanlage zur Herstellung mikrostrukturierter Bauteile in den Zwischenräumen zwischen einem Wafer und/oder einem Retikel und dem Projektionsobjektiv Schutzgas einzubringen.

30

Der Erfindung liegt die Aufgabe zugrunde ein Projektionsobjektiv und eine Projektionsbelichtungsanlage sowie ein Verfahren zur Herstellung von mikrostrukturierten Bauteile bereitzustellen, wobei diese im Hinblick auf die Abbildungsqualität und das Auflösungsvermögen verbessert sind. Weiterhin lag der Erfindung die Aufgabe zugrunde die Herstellungskosten zu reduzieren.

5

Die Aufgabe der Erfindung wird durch die im Patentanspruch 1, 2, 3, 17 und 18 gegebenen Merkmale gelöst.

Durch die Maßnahme bei einem Projektionsobjektiv mit einer Mehrzahl an Linsen, wobei 10 mindestens zwei benachbart zueinander angeordnete Linsenoberflächen asphärisch sind, die im folgenden mit Doppelasphäre bezeichnet werden, die Doppelasphäre in einem Abstand von mindestens dem maximalen Linsendurchmesser des Objektives entfernt von der Bildebene, insbesondere Waferebene beabstandet anzuordnen wobei der Abstand zwischen den asphärischen Linsenoberflächen der Doppelasphäre maximal dem halben 15 Linsendurchmesser des mittleren Durchmessers der Doppelasphäre wurden die Abbildungsqualitäten eines Projektionsobjektives im Vergleich zu einem Projektionsobjektiv ohne solche Doppelasphären, verbessert werden. Insbesondere konnte bei einem refraktiven Projektionsobjektiv durch den Einsatz von mindestens einer Doppelasphäre die numerische Apertur gesteigert werden, indem der erste Bauch verkürzt 20 wurde, so daß bei konstanter Länge des Projektionsobjektives der dritte Bauch eine Steigerung der numerischen Apertur von etwa 0,03 bis 0,05 erfährt.

Insbesondere bei rein refraktiven Projektionsobjektiven hat sich der Einsatz von
Doppelasphären mit einer Anordnung in den ersten drei Linsengruppen als besonders vorteilhaft herausgestellt.

In Lithographieobjektiven gibt es ausgezeichnete Stellen, die auf schwer beherschbare Aberrationen besonders gut wirken, wenn sie asphärisiert werden. Gerade dort ist es sinnvoll die Wirksamkeit an der entsprechenden Stelle durch eine komplexe
Asphärenfunktion besonders effektiv zu nutzen. Prädestiniert ist der Bereich der ersten Taille und das Ende des zweiten Bauches sowie Bereiche hinter der Blende. Da der

technischen Realisierung von komplexen Asphären technisch Grenzen gesetzt sind, können die komplexen Asphärenfunktionen mittels Doppelashären realisiert werden. Dadurch wird eine noch weitergehende Korrektur möglich, wobei die Asphären der Doppelasphäre technisch realisierbar sind.

5

10

15

20

25

30

Weiterhin hat sich als vorteilhaft herausgestellt, als asphärische Linsenoberflächen der Doppelasphäre asphärische Linsenoberflächen vorzusehen, deren Radius der bestpassendsten sphärischen Linsenoberfläche, mit Hüllradius bezeichnet, sich nur wenig unterscheiden. Vorzugsweise weichen die Kehrwerte der Hüllradien oder Radien der Doppelasphären weniger als 30% voneinander ab. Als Bezugswert wird der Kehrwert des betragsmäßig größeren Radius herangezogen.

Es hat sich insbesondere als vorteilhaft herausgestellt, daß sich die Scheitelradien der asphärischen Linsenoberflächen der Doppelasphären in bezug auf den betragsmäßig größeren Scheitelradius um weniger als 30% unterscheiden.

Auf dem Gebiet der Mikrolithographie wird in der Entwicklung das Bestreben verfolgt die Auflösung zu erhöhen. Die Auflösung kann zum einen durch Steigerung der numerischen Apertur, Verwendung von immer kleiner werden Wellenlängen und auch durch Korrektur von auftretenden Abbildungsfehlern gesteigert werden. Für eine Steigerung der bildseitigen numerischen Apertur ist der bildseitig angeordnete letzte Bauch des Objektives zu vergrößern. Problematisch ist jedoch, daß für das Objektiv nur ein fest vorgegebener Bauraum zur Verfügung gestellt werden kann. Um also eine größere numerische Apertur bereitstellen zu können, ist es somit erforderlich in anderen Bereichen des Objektives Bauraum einzusparen.

Es hat sich nun als vorteilhaft herausgestellt, den für die Steigerung der numerischen Apertur erforderlichen Bauraum durch Verkürzung des ersten Bauches bereitzustellen, wobei durch den ersten Bauches insbesondere die Eingangstelezentrie und die Verzeichnung korrigiert wird. Durch die Maßnahme Doppelasphären einzusetzen, ist es möglich, die Eingangstelezentrie sowie die Verzeichnung mit geringen Mitteln und auf

kurzer Distanz korrigieren zu können. Durch die Doppelasphäre wird eine variable
Einstellung des Ortes auf kurzer Distanz bereitgestellt, wobei durch die Möglichkeit den
Ort variieren zu können, die Verzeichnung korrigiert werden kann. Durch die flexible
Beeinflußbarkeit des Winkels kann insbesondere die Eingangstelezentrie korrigiert werden.

5 .

10

15

20

Insbesondere durch den Einsatz einer Doppelasphäre bei einem refraktiven Projektionsobjektiv im Bereich der ersten beiden Linsengruppen, also bis einschließlich zur ersten Linsengruppe negativer Brechkraft, werden bereits Korrekturmittel im Eingangsbereich des Objektives bereitgestellt, so daß die in dem dritten Bauch erforderlichen Korrekturmittel für die Gewährleistung einer gleichbleibenden Abbildungsqualität reduziert sind.

Weiterhin kann durch Vorsehen einer Doppelasphäre im vorderen Bereich des Objektives, insbesondere bis zur 2. Taille, die Anzahl der Linsen reduziert werden. Dies wirkt sich vorteilhaft auf die Herstellungskosten aus.

Es hat sich zur Verbesserung der Abbildungsqualität bei rein refraktiven Projektionsobjektiven als vorteilhaft herausgestellt asphärischen Linsenoberflächen im vorderen Bereich des Objektives vor der zweiten Taille vorzusehen. So kann beispielsweise bei einer numerischen Apertur von 0,83 die Abweichung von der Wellenfront einer Kugelwelle auf weniger als 6 mλ bei einem Feld von 8x26 mm² bezogen auf 248nm reduziert werden.

Durch Druckschwankungen des athmosphärischen Druckes können die

Abbildungseigenschaften des Objektives verändert werden. Um solche
Druckschwankungen zu kompensieren hat es sich als vorteilhaft herausgestellt, einen
Zwischenraum zwischen zwei Linsenoberflächen gezielt mit Druck zu beaufschlagen, so
daß Druckänderungen insbesondere des atmosphärischen Druckes ausgeglichen werden
können. Weiterhin kann die gezielte Druckbeaufschlagung zur weiteren Verminderung von
Abbildungsfehlern genutzt werden.

Weiterhin hat es sich als vorteilhaft herausgestellt, mindestens eine der Abschlußplatten mit einem Druckmanipulator zu versehen, so daß durch beidseitige Druckbeaufschlagung der jeweiligen Linse bzw. der jeweiligen Platte eine Wölbung der Platte bzw. Linse erzeugt werden kann. So kann bei einer Dreipunktlagerung der Abschlußplatte und

Druckbeaufschlagung des Gasraumes gezielt mittels der Durchbiegung der Abschlußplatte die Dreiwelligkeit während des Betriebes korrigiert werden. Mit einer n-Punktlagerung ist somit eine n-Welligkeit korrigierbar.

Durch koaxial angeordnete Aktuatoren, insbesondere Piezos, kann eine in Z-Richtung gerichtete Kraft zur Wölbung der Linse eingeleitet werden, wobei die von den Aktuatoren eingeleitete Kraft auf den Linsenmittelpunkt gerichtet ist.

Weitere vorteilhafte Maßnahmen sind in weiteren Unteransprüchen beschrieben. Anhand der folgenden Ausführungsbeispiele wird die Erfindung näher erläutert.

15 Es zeigt:

10

Figur 1: Projektionsbelichtungsanlage;

Figur 2: Projektionsobjektiv für die Wellenlänge 157 nm mit einer numerischen Apertur von 0,8;

Figur 3: Projektionsobjektiv für die Wellenlänge 248 nm mit einer numerischen Apertur von 0,83;

25 Figur 4: Projektionsobjektiv für die Wellenlänge 248 nm mit einer numerischen Apertur von 0,9;

Figur 5: Projektionsobjektiv für die Wellenlänge 193 nm mit der numerischen Apertur 0,85;

Figur 6: Projektionsobjektiv für die Wellenlänge 193 nm mit einer numerischen Apertur von 0,9;

Figur 7: Projektionsobjektiv für die Wellenlänge 157nm mit einer numerischen Apertur von 0,9;

5

15

20

Figur 8: Projektionsobjektiv für die Wellenlänge 193 nm mit einer numerischen Apertur von 0,9; und

Figur 9: Katadioptrisches Projektionsobjektiv mit Doppelasphäre für die
Wellenlänge von 157 nm und mit einer numerischen Apertur von 0,8

Anhand von Figur 1 wird zunächst der prinzipielle Aufbau einer
Projektionsbelichtungsanlage beschrieben. Die Projektionsbelichtungsanlage 1, weist eine
Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 auf. Das Projektionsobjektiv 5
umfaßt eine Linsenanordnung 19 mit einer Aperturblende AP, wobei durch die
Linsenanordnung 19 eine optische Achse 7 definiert wird. Verschiedene
Linsenanordnungen werden nachfolgend anhand der Figuren 2 bis 6 näher erläutert.
Zwischen Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 ist eine Maske 9
angeordnet, die mittels eines Maskenhalters 11 im Strahlengang gehalten wird. Solche in
der Mikrolithographie verwendete Masken 9 weisen eine Mikrometer-Nanometer Struktur
auf, die mittels des Projektionsobjektives 5 bis zu einem Faktor von 10, insbesondere von
um den Faktor 4, verkleinert auf eine Bildebene 13 abgebildet wird. In der Bildebene 13
wird ein durch einen Substrathalter 17 positionierte Substrat 15, bzw. ein Wafer, gehalten.

Die noch auflösbaren minimalen Strukturen hängen von der Wellenlänge λ des für die Beleuchtung verwendeten Lichtes sowie von der bildseitigen numerischen Apertur des Projektionsobjektives 5 ab, wobei die maximal erreichbare Auflösung der Projektionsbelichtungsanlage 1 mit abnehmender Wellenlänge λ der Beleuchtungseinrichtung 3 und mit zunehmender bildseitiger numerischer Apertur des Projektionsobjektives 5 steigt.

Das in Figur 2 dargestellte Projektionsobjektiv 19 umfaßt sechs Linsengruppen G1 bis G6. Dieses Projektionsobjektiv ist für die Wellenlänge 157 nm ausgelegt. Die erste Linsengruppe G1 wird durch die Linsen L101 bis L103, welche alle Bikonvexlinsen sind, gebildet. Diese erste Linsengruppe weist positive Brechkraft auf. Die letzte Linsenoberfläche dieser Linsengruppe G1, die bildseitig angeordnete ist, ist asphärisiert. Diese Linsenoberfläche wird mit AS1 bezeichnet. Bei der letzten Linse dieser Linsengruppe G1 handelt es sich um eine bikonvexe Linse, die somit eindeutig der ersten Linsengruppe zuzuordnen ist.

10

15

20

5

Die sich an die Linsengruppe G1 anschließende Linsengruppe G2 umfaßt die drei Linsen L104 bis L106, wobei diese Linsengruppe G2 negative Brechkraft aufweist und eine Taille darstellt. Eine objektseitig angeordnete Linsenoberfläche AS2 der Linse L104 ist asphärisch. Weiterhin ist die bildseitig angeordnete Linsenoberfläche der Linse L 106 asphärisch. Durch die beiden Linsenoberflächen AS1 und AS2 wird eine Doppelasphäre gebildet.

Die Linsengruppe G3, die positive Brechkraft aufweist, wird durch die Linsen L107 bis L111 gebildet, wobei die letzte Linsenoberfläche dieser Linsengruppe der Linse L111, die bildseitig angeordnet ist, asphärisiert ist.

An diese Linsengruppe schließt sich die zweite Linsengruppe G4 negativer Brechkraft an. Diese Linsengruppe G4 wird durch die Linsen L112 bis L115 gebildet.

Die fünfte Linsengruppe G5 mit den Linsen L116 bis L125, die positive Brechkraft aufweist, umfaßt eine Aperturblende AP, die zwischen der Linse L119 und der Linse L120 angeordnet ist.

Die sechste Linsengruppe G6 wird durch die Linsen bzw. Platten L126 und L127 gebildet.

Bei diesem für die Wellenlänge 157 nm mit einer spektrale Bandbreite der

Beleuchtungsquelle von 1,5 pm ausgelegte Objektiv sind die Linsen L 113 bis L115 und

L119 aus Natriumfluorid. Durch den Einsatz von einem zweiten Material, hier Natriumflourid, können insbesondere chromatische Fehler korrigiert werden. Durch den Einsatz von NaF in der ersten Taille wird der Farbquerfehler wesentlich verringert verringert. Auch der Farblängsfehler wird etwas verringert, wobei durch den Einsatz von NaF in der Linsengruppe G5 der größte Einzelbeitrag zur Korrektur der Farblängsfehler erzielt wird.

5

10

Die sich an die Linsengruppe G4 anschließenden positiven Linsen L116 bis L118 der Linsengruppe G5 sind aus Lithiumflourid. Durch den Einsatz von Lithiumflourid an dieser Stelle im Objektiv wird insbesondere die monochromatische Korrektur erleichtert, da durch den größeren Dispersionsabstand von Lithium- und Natriumflourid als von Kalzium- und Natriumflourid nur kleine Einzelbrechkräfte zur Achromatisierung benötigt werden. Der grundsätzliche Aufbau unterscheidet sich aufgrund der speziellen Materialauswahl nicht so bedeutsam von einem chromatischen Objektiv.

Die beiden nach der Blende angeordneten positiven Linsen sind ebenfalls aus Lithiumflourid und leisten ebenfalls, wie schon anhand der vor der Blende angeordneten Lithiumlinsen erörtert, einen wichtigen Beitrag zur Korrektur des Farblängsfehlers.

- Die Linse L122, deren beide Oberflächen nahezu im konstantem Abstand zueinander verlaufen, besteht aus Kalziumflourid. Diese Linse ist sehr bedeutsam für die monochromatische Korrektur und hat nur geringen Einfluß auf den chromatische Längsfehler.
- Die letzten drei Linsen der fünften Linsengruppe G5 L123 bis L125 sind aus Lithiumflourid. Diese Linsen liefern zwar einen kleineren aber dennoch sehr wertvollen Beitrag zur Korrektur des Farblängsfehlers.

Die sechste Linsengruppe umfaßt die Linsen bzw. Planplatten L126 und L127, die aus Kalziumflourid bestehen.

Dieses Objektiv ist für die Beleuchtung eines Feldes von 8 x 26 mm ausgelegt. Die Baulänge betrat von 0 zu 0′ 1000mm. Die numerische Apertur beträgt 0.8. Die genauen Linsendaten sind der Tabelle 1 zu entnehmen.

5 Die asphärischen Flächen werden in allen Ausführungsbeispielen durch die Gleichung:

$$P(h) = \frac{\delta \bullet h \bullet h}{1 + \sqrt{1 - (1 + K) \bullet \delta \bullet \delta \bullet h \bullet h}} + C_1 h^4 + \dots + C_n h^{2n + 2} \qquad \delta = 1/R$$

10

15

25

beschrieben, wobei P die Pfeilhöhe als Funktion des Radius h (Höhe zur optischen Achse 7) mit den in den Tabellen angegebenen asphärischen Konstanten C₁ bis C_n ist. R ist der in den Tabellen angegebene Scheitelradius.

Das in Figur 3 dargestellte Projektionsobjektiv umfaßt sechs Linsengruppen G1 bis G6 mit den Linsen L201 bis L225 und einer geteilten Abschlußplatte L226, L227. Dieses Objektiv ist für die Beleuchtungswellenlänge 248nm ausgelegt. Der für dieses Projektionsobjektiv 19 erforderliche Bauraum beträgt von Objektebene 0 bis Bildebene 0' genau 1000 mm. Bildseitig weist dieses Objektiv 19 eine numerische Apertur von 0,83 auf. Das mittels dieses Projektionsobjektives belichtbare Feld beträgt 8 x 26 mm.

Die erste Linsengruppe G1 umfaßt die Linsen L201 bis L204,wobei es sich bei den Linsen L201 bis 203 um Bikonvexlinsen handelt.

Die erste Linse L204 der Linsengruppe G1 weist auf der bildseitigen Linsenoberfläche eine asphärische Form auf. Diese Asphäre wird mit AS1 bezeichnet.

Die zweite LinsengruppeG2 umfaßt die drei Linsen L205 bis L207. Diese Linsen weisen bikonkave Form auf, wobei die jeweils zur angrenzenden Linsengruppe gewandte Linsenoberfläche der Linsen L205 und L207 asphärisch sind. Die asphärischen Linsenoberfläche der Linsen L205 wird mit AS2 bezeichnet. Damit wird durch die beiden

zueinander gewandten asphärischen Linsenoberflächen AS1 und AS2 eine Doppelasphäre gebildet. Die letzte Linse der Linsengruppe G2 ist waferseitig asphärisiert.

Die dritte Linsengruppe umfaßt die Linsen L208 bis L212. Durch diese Linsengruppe G3
wird ein Bauch gebildet. Die Linse L211 ist auf der bildseitigen Linsenoberfläche asphärisiert.

Die vierte Linsengruppe G4 wird durch die Linsen L213 bis L215 gebildet, die alle bikonkav ausgebildet sind. Diese Linsengruppe G4 ist die zweite Linsengruppe negativer Brechkraft. Durch diese Linsengruppe wird eine Taille gebildet.

10

15

30

Die Linsengruppe G5 umfaßt die Linsen L216 bis L225. Zwischen den Linsen L218 und L219 ist eine Aperturblende angeordnet. Die Blendenkrümmung beträgt zwischen Randstrahl an der Blende bei einer numerischen Apertur von 0,83 und dem Schnittpunkt des Hauptstrahls mit der optischen Achse 30,9 mm. Durch diese Linsengruppe wird ein Bauch gebildet.

Die sechste Linsengruppe G6 umfaßt die als Planplatten ausgebildeten Linsen L226 und L227.

Die genauen Linsendaten dieses Projektionsobjektives 19 sind der Tabelle 2 zu entnehmen. Gegenüber Figur 2 ist die Apertur bei gleichbleibender Baulänge des Objektives von 00′ von 1000mm weiter auf 0,83 bei ausgezeichneter Korrektur gesteigert worden.

Das in Figur 4 gezeigte Projektionsobjektiv umfaßt sechs Linsengruppen mit den Linsen
L301 bis L327. Dieses Objektiv ist für die Beleuchtungswellenlänge 248nm ausgelegt und
weist eine numerische Apertur von 0,9 auf.

Die erste Linsengruppe G1 weist die Linsen L302 bis L303 auf. Diese Linsengruppe weist positive Brechkraft auf, wobei die Brechkraft insbesondere der Linsen L302 bis L303 sehr gering ist. Die Brennweite dieser Linsen beträgt bei L302 1077,874mm und bei L303 -92397,86mm.

An diese Linsengruppe schließt sich eine Linsengruppe negativer Brechkraft G2 an, die durch die drei Linsen L305 bis L307 gebildet wird. Die erste Linsenoberfläche dieser Linsengruppe G2, die bildseitig angeordnete ist, ist asphärisiert und wird mit AS1 bezeichnet. Die der Linsenoberfläche AS1 zugewandte Linsenoberfläche der Linse L305 ist asphärisiert, so daß durch die Linsenoberflächen AS1 und AS2 eine Doppelasphäre gebildet wird. Zwischen diesen asphärischen Linsenoberflächen AS1 und AS2 ist im Gegensatz zum vorangegangenen Ausführungsbeispiel ein deutlich erkennbarer Abstand vorgesehen. Bei dieser Doppelasphäre wird etwas die äquidistante Anordnung der Flächen AS1 und AS2 verlassen und die Doppelasphäre öffnet sich etwas nach außen.

Die darauffolgende Linsengruppe G3, die positive Brechkraft aufweist, umfaßt die Linsen L308 bis L311. Diese Linsengruppe G3 beinhaltet eine asphärische Linsenoberfläche, wobei diese asphärische Linsenoberfläche bildseitig auf der Linse L311 angeordnet ist.

15

30

5

10

Die zweite Linsengruppe negativer Brechkraft G4 umfaßt die Linsen L312 bis L315, wobei die bildseitig angeordnete Linsenoberfläche der Linse L314 asphärisiert ist.

Die sich anschließende Linsengruppe G5, die positive Brechkraft aufweist, umfaßt die
Linsen L316 bis L325. Zwischen den Linsen L319 und L320 ist die Blende AP angeordnet.
Die beiden zueinander gewandten Linsenoberflächen der Linsen L321 und L322 sind
asphärisch und werden mit AS3 und AS4 bezeichnet. Durch diese Asphären AS3 und AS4
wird eine Doppelasphäre gebildet, wobei durch die Flächen AS1 und AS2 ein Luftraum
eingeschlossen wird. Durch diese Doppelasphäre ist insbesondere die sphärische
Abberation und die Sinusbedingung bei hohen Aperturen besser entkoppelt und gut zu
korrigieren.

Die sechste Linsengruppe umfaßt die als dicke Planplatten ausgebildeten Linsen L326 und L327. Der durch diese Planplatten gebildete Zwischenraum ist mit Über- und Unterdruck und/oder mit einem Gas zur Kompensation von Schwankungen des atmosphärischen Druckes beaufschlagbar. Für weitergehende Korrekturmöglichkeiten kann es vorgesehen

sein, daß mindestens eine der Planplatten mit oder ohne Brechkraft, also auch als Linse deutlich dünner, unter Druckvariation und Punktlagerung n-Welligkeiten kompensiert. Es könnten auch für eine gezielte Deformation der Linse am Außenumfang angreifende Piezoaktoren vorgesehen sein.

5

Die Baulänge dieses Objektives beträgt von Objektebene 0 zu Bildebene 0′ 1139,8mm. Die numerische Apertur beträgt bildseitig 0,9 bei einem belichtbaren Feld von27,2 mm in der Diagonalen. Die genauen Linsendaten sind der Tabelle 3 zu entnehmen.

Das in Figur 5 dargestellt Projektionsobjektiv 19 umfaßt sechs Linsengruppen G1 bis G6.

Dieses Projektionsobjektiv ist für die Wellenlänge 193nm ausgelegt. Die erste
Linsengruppe G1 umfaßt die Linsen L401 bis L404. Bereits die erste, objektseitig
angeordnete Linsenoberfläche der Linse L401 ist asphärisiert. Diese Asphäre wirkt sich
insbesondere positiv auf Schalenverläufe und Verzeichnung bei guter Eingangstelezentrie
aus, weil diese Asphäre an dem Ort angeordnet ist, an dem noch die beste
Büscheltrennung bei dem hochaperturigen Lithographieobjektiv existiert.

Die objektseitig angeordnete Linsenoberfläche der Linse L404 ist asphärisch und wird mit AS1 bezeichnet. Durch diese Linsenoberfläche wird zusammen mit der bildseitig angeordneten Linsenoberfläche der Linse L405, die ebenfalls asphärisch ist und die mit AS2 bezeichnet ist, eine Doppelasphäre gebildet. Diese Doppelasphäre wirkt sich insbesondere positiv auf die Schalenverläufe bei gleichzeitiger guter Korrektur der durch die hohe Apertur bedingten Bildfehler aus. Die Flächen AS1 und AS2 der Doppelasphäre weisen mit zunehmendem radialem Abstand von der optischen Achse einen zunehmenden Abstand in Richtung der optischen Achse auf. Diese sich nach außen öffnende Doppelasphäre stellt ein komplexes Korrekturmittel bei mittlerer Büscheltrennung dar.

Die Linse L404 gehört bereits der zweiten Linsengruppe, die die Linsen L405 bis L407 umfaßt, an. Diese zweite Linsengruppe weist negative Brechkraft auf.

20

Die ersten Linsen L402 bis L405 weisen eine besonders geringe Brechkraft $f_{L402} = 1397,664$ mm, $f_{L403} = 509,911$ mm, $f_{L404} = 1371,145$ mm und $f_{L405} = -342,044$ mm auf. Eine weitere asphärische Linsenoberfläche ist bildseitig auf der Linse L407 vorgesehen.

Die darauffolgende Linsengruppe G3, die positive Brechkraft aufweist, umfaßt die Linsen L408 bis L413. Die Linsen L409 weist objektseitig eine asphärische Linsenoberfläche auf und die Linsen L413 ist bildseitig mit einer asphärischen Linsenoberfläche versehen. Die Asphäre L413 hat einen positiven Einfluß auf die Koma höherer Ordnung und auf die 45° Strukturen. Der zwischen den Linsen L411 und 412 vorgesehen Luftraum ist nahezu äquidistant.

Die Linsengruppe G4, die negative Brechkraft aufweist, wird durch die Linsen L414 bis L416 gebildet, wobei die Linse L415 bildseitig eine asphärische Linsenoberfläche aufweist. Diese asphärische Linsenoberfläche wirkt in einer guten Mischung auf apertur- und feldabhängige Bildfehler, insbesondere bei Objektiven mit einer hohen Apertur.

Die darauffolgende Linsengruppe G5 wird durch die Linsen L417 bis L427 gebildet. Zwischen den Linsen L420 bis L421 ist eine Blende AP angeordnet. Die auf die Blende AP folgende Linsenoberfläche der Linse L422 ist asphärisiert. Mit diese Asphäre wird es möglich die Korrektur der sphärischen Aberration, ohne andere Bildfehler zu beeinflussen, durchgeführt. Dazu ist es aber notwendig bei anwesendheit von deutlicher Blendenkrümmung, daß die asphärische Fläche in den Bereich einer Schiebeblendehineinragt.

Weiterhin sind die zueinander gewandten Linsenoberflächen der Linsen L423 und L424 die mit AS3 und AS4 bezeichnet werden, asphärisiert. Durch diese nachfolgende Doppelasphäre ist insbesondere eine gute aplanatische Korrektur für höchste numerische Apertur möglich. Es ist also die gleichzeitige Korrektur der sphärischen Aberration und der Erfüllung der Sinusbedingung möglich.

15

Die Linsengruppe G6 wird durch die Linsen L428 bis L429, die als Planplatten ausgebildet sind, gebildet. Es kann wiederum vorgesehen sein, daß der Zwischenraum zwischen den planparallelen Platten 428 und 429 mit einem Fluid beaufschlagbar ist.

Als Linsenmaterial ist Quarzglas vorgesehen, wobei es zur Verminderung der chromatischen Aberration vorgesehen sein kann, daß die Linsen L408 und L409 sowie L413 aus Kalziumflourid bestehen. Zur Verminderung des Compaction-Effektes aufgrund der hohen Strahlungsbelastung kann es vorgesehen sein, für die kleinere oder für beide planparallelen Platten L428 und L429 als Material Kalziumflourid vorzusehen. Auffällig ist weiterhin bei diesem Projektionsobjektiv, daß der maximale Durchmesser der Linsengruppe G3 einen größeren maximalen Durchmesser als die Linsengruppe G5 mit 398mm aufweist. Dieses Objektiv ist sehr gut korrigiert und die Abweichung von der Wellenfront einer idealen Kugelwelle ist > = 1,2 mλ bezogen auf 193nm. Der Abstand zwischen Objektebene 0 und Bildebene 0' beträgt 1188,1 mm und das belichtbare Feld beträgt 8 x 26 mm. Die genauen Linsendaten sind der Tabelle 4 zu entnehmen.

Das in Figur 6 dargestellte Projektionsobjektiv umfaßt die Linsengruppen G1 bis G6 mit den Linsen L501 bis L530, wobei für L529 und 530 Planplatten vorgesehen sind. Dieses Projektionsobjektiv ist für die Wellenlänge 193nm ausgelegt und weist eine numerische Apertur von 0,9 auf. Der Abstand zwischen Objektebene 0 und Bildebene 0' beträgt 1174,6 mm. Das belichtbare Feld umfaßt eine Größe von 8 x 26 mm. Makroskopisch betrachtet unterscheidet sich dieses Projektionsobjektiv von dem anhand von Figur 5 beschriebenen Projektionsobjektiv nicht. Wiederum weisen insbesondere die Linsen L502 und L503 geringe Brechkraft auf. Die Linse L510 ist hier, wie auch in dem vorangegangenen anhand von Figur 5 beschriebenen Projektionsobjektivs, insbesondere für die Quadratenkorrektur vorgesehen.

20

25

30

Abgesehen von den planparallelen Platten L529 und L530 bestehen alle Linsen L501 bis L528 aus Quarzglas. Auch dieses Projektionsobjektiv ist sehr gut korrigiert und die Abweichung von der idealen Wellenfront einer Kugelwelle ist < als 3,0 mλ bezogen auf

193nm. Die Linsen L510, L515, L522 weisen eine geringe Brechkraft auf. Die genauen Linsendaten sind der Tabelle 5 zu entnehmen. Die Wirkung der asphärischen Flächen entsprechen prinzipiell den anhand von Fig.5 beschriebenen Wirkungen, wobei die Wirkungen aufgrund der höheren numerischen Apertur von 0,9 noch stärker sind.

5

10

15

20

Das in Figur 7 für die Wellenlänge 157nm dargestellte Projektionsobjektiv umfaßt sechs Linsengruppen mit den Linsen L601 bis L630 mit den planparallelen Platten L629 und L630. Die Baulänge dieses Projektionsobjektives beträgt von Objektebene 0 bis zur Bildebene 0′997,8 mm, wobei ein Feld von 7 x 22 mm belichtbar ist. Die numerische Apertur dieses Objektives beträgt 0,9. Als Linsenmaterial ist Kalziumflourid vorgesehen. Eine weitere Korrektur von Farbfehlern ist durch den Einsatz von Bariumflourid als Linsenmaterial für die Linsen L614 bis L617 erreichbar. Die Abweichung von der Wellenfront einer idealen Kugelwelle ist < 1,8 mλ bezogen auf 157nm. Da makroskopisch betrachtet der Aufbau des in Figur 7 dargestellten Projektionsobjektives sich von den anhand von Figur 5 und Figur 6 beschriebenen Projektionsobjektiven nur geringfügig unterscheidet wird, auf die Beschreibung insbesondere auf die Beschreibung zu Figur 5 verwiesen. Die exakten Linsendaten sind der Tabelle 6 zu entnehmen.

Das in Figur 8 dargestellte Projektionsobjektiv umfaßt 6 Linsengruppe G1 – G6. Die erste Linsengruppe umfaßt die Linsen L701 – L704, wobei die Linse L701 objektseitig und die Linse L704 bildseitig eine asphärische Linsenoberfläche aufweisen. Diese erste Linsengruppe weist nur Linsen positiver Brechkraft auf, die annähernd identischen Durchmessers sind.

Die darauf folgende zweite Linsengruppe G2, die negative Brechkraft aufweist, umfaßt die Linsen L705 —L708. Die Linse L705 weist auf der der Linse L704 zugewandten Seite eine asphärische Linsenoberfläche auf, mit AS2 bezeichnet. Durch die beiden asphärischen Linsenoberflächen AS1 und AS2 wird eine Doppelasphäre 21 gebildet. Diese Doppelasphäre ist zum Wafer durchgebogen und öffnet sich schwach in radialer Richtung.

Weiterhin weist die Linse L708 bildseitig eine asphärische Linsenoberfläche auf.

Die dritte Linsengruppe G3 mit den Linsen L709 – L714 weist positive Brechkraft auf. Diese Linsengruppe umfaßt zwei asphärische Linsen L710 und L714. Der zwischen den Linsen L712 und L713 ausgebildete Luftspalt weist nahezu konstante Dicke auf.

Die vierte Linsengruppe G4 umfaßt nur zwei Negativlinsen L715 und L716, durch die eine Taille gebildet wird. Die Linse L715 ist bildseitig mit einer asphärischen Linsenoberfläche versehen.

Die fünfte Linsengruppe mit den Linsen L717 – L727 weist positive Brechkraft auf. Zwischen der Linse L720 und L721 ist die Blende AP angeordnet. In dieser Linsengruppe ist eine weitere Doppelasphäre 21 vorgesehen, die durch die beiden asphärischen Linsenoberflächen AS3 und AS4 der Linsen L723 und L724 gebildet wird. Weitere asphärische Linsenoberflächen sind auf der Linse L721 objektseitig und auf der Linse L727 bildseitig angeordnet.

15

10

An diese Linsengruppe schließt sich die letzte Linsengruppe G6, die durch die beiden planparallelen Platten L728 und L729 gebildet wird, an. Durch die zueinander gewandten Oberflächen der Planplatten L728 und L729 wird ein Zwischenraum 25, der mit Druck beaufschlagbar ist, gebildet.

20

25

30

Dieses Projektionsobjektiv ist für die Wellenlänge 193 nm ausgelegt und weist eine numerische Apertur von 0,9 auf. Der Abstand zwischen Objektebene 0 und Bildebene 0 – beträgt 1209,6 mm. Mit diesem Projektionsobjektiv ist ein Feld von 10,5 x 26 mm belichtbar. Die maximale Abweichung von der idealen Wellenfront einer Kugelwelle beträgt 3,0 m λ bezogen auf 193nm. Diese Abweichung wurde mittels dem Programmcode CODE V ermittelt. Die genauen Linsendaten sind der Tabelle 7 zu entnehmen.

In Figur 9 ist ein katadioptrisches Projektionsobjektiv das für die Wellenlänge 157 nm ausgelegt ist, dargestellt. Mit diesem Projektionsobjektiv ist ein Feld von 22 x 7 mm belichtbar. Die numerische Apertur beträgt 0,8. Bei diesem Projektionsobjektiv bestehen alle Linsen als Kalziumfluorid. Die erste Linse L801 ist bildseitig mit einer asphärischen

Linsenoberfläche versehen. Diese Asphäre liefert insbesondere einen wertvollen Beitrag zur Korrektur der Verzeichnung.

Über den Spiegel SP 1 wird die Strahlung umgelenkt und trifft auf die Linse negativer

Brechkraft L802. Die darauffolgende Linse L803 ist auf der im Strahlengang bildseitig
angeordneten Linsenseite mit einer asphärischen Linsenoberfläche versehen. Diese
Asphäre liefert einen besonders wertvollen Beitrag zur Korrektur von der sphärischen
Aberration.

Die von der Linse L803 ausbreitende Strahlung wird an dem Spiegel SP 2 zurückreflektiert und passiert die Linsen L803 und L802 in umgekehrter Reihenfolge, bevor sie durch Reflektion am Spiegel SP 3 zur Linse L804, die auf einer mit der Linse L801 gemeinsamen optischen Achse angeordnet ist, zugeführt wird. Zwischen dem Spiegel SP 3 und L804 entsteht ein Zwischenbild Z1. Die darauffolgenden Linsen L805 und L806 weisen an den zueinander gewandten Oberflächen asphärische Linsenoberflächen AS1 und AS2 auf. Durch diese Asphären wird eine Doppelasphäre gebildet. Weiterhin umfaßt das Objektiv die Linsen L807 – L818 wobei die Linsen L812, L814, L816 und L818 bildseitig mit einer asphärischen Linsenoberfläche versehen sind und die Linse L817 objektseitig mit einer asphärischen Linsenoberfläche versehen ist. Durch die asphärischen Linsenoberflächen der Linsen L816 und L817 wird eine Doppelasphäre gebildet.

25

Bezugszeichenliste

1.	Pro	iektions	sbelich	ntungsan	lage

- 5 3. Belichtungseinrichtung
 - 5. Projektionsobjektiv
 - 7. Optische Achse 9 Maske
 - 11. Maskenhalter
 - 13. Bildebene
- 10 15. Substrat, Wafer
 - 17. Substrathalter AP = Aperturblende 19 Linsenanordung L = Linsen
 - 19. Maximaler Radius
 - 21. Doppelasphären
 - 23. Abstand zwischen asphärischen Linsenoberflächen der Doppelasphären
- 15 25 Zwischenraum

20

25

TABELLE 1

	M1197a	•				
5	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157 nm	1/2 FREIER DURCHMESSER
	~					
10	0	unendlich unendlich	32.000000000 3.386300000	N2 N2	1.00000320 1.00000320	54.410 61.189
10	L101	331.163350000	17.963900000	CaF2	1.55840983	63.195
	71.07	-319.616060000	1.476400000	N2	1.00000320	63.531
	L102	766.337390000	17.162600000	CaF2	1.55840983	63.346
		-447.357070000	0.750000000	N2	1.00000320	62.932 61.274
15	L103	308.080750000 -256.921560000AS	26.167800000 0.781900000	CaF2 N2	1.55840983 1.00000320	59.279
	104	-199.45907000AS	7.000000000	CaF2	1.55840983	59.017
	201	115.459900000	26.055700000	N2	1.00000320	53.978
	L105	-155.555940000	7.00000000	CaF2	1.55840983	54.017
20		181.538670000	32.685400000	N2	1.00000320 1.55840983	57.637 59.819
	L106	-105.047550000 -6182.626690000AS	7.623100000 16.767300000	CaF2 N2	1.00000320	74.788
	L107	-441.263450000	27.098000000	CaF2	1.55840983	83.940
	220.	-151.990780000	2.318200000	N2	1.00000320	88.568
25	L108	-613.725250000	45.372400000	CaF2	1.55840983	103.501
	- 1 0 0	-150.623730000	2.560000000	N2 CaF2	1.00000320 1.55840983	107.663 119.260
	L109	1648.391330000 -255.166800000	42.538400000 2.852600000	N2	1.00000320	120.183
	L110	154.432580000	47.915200000	CaF2	1.55840983	110.475
30		1162.400830000	0.929300000	N2	1.00000320	107.883
	L111	261.100680000	20.383600000	CaF2	1.55840983	98.431 93.917
	T 1 1 O	614.726380000AS 359.575500000	0.867900000 7.168800000	N2 CaF2	1.00000320 1.55840983	89.668
	Ь112	126.930570000	40.754900000	N2	1.00000320	76.782
35	L113	-253.190760000	7.000000000	NAF	1.46483148	74.969
		132.038930000	28.180300000	N2	1.00000320	67.606
	L114	-338.990070000	7.611900000	NAF	1.46483148 1.00000320	67.535 68.722
	L115	222.374240000 -109.896940000	39.202700000 7.095700000	N2 NAF	1.46483148	69.544
40	11112	705.107390000	19.428900000	N2	1.00000320	84.312
	L116	-706.158480000	29.677100000	LIF	1.47810153	90.890
		-180.715990000	5.740400000	N2	1.00000320	95.248
	ь117	1725.475600000	35.904100000 0.75000000	LIF N2	1.47810153 1.00000320	112.495 114.191
45	L118	-263.017160000 619.827930000	64.044600000	LIF	1.47810153	121.296
75	1110	-197.026470000	0.750100000	N2	1.00000320	121.844
	L119	-195.861770000	7.000000000	NAF	1.46483148	121.626
		-469.620100000	0.750000000	N2	1.00000320	123.300 122.405
50	L120	unendlich 640.893310000	0.750600000 25.458500000	N2 LIF	1.00000320 1.47810153	123.549
50	L120	-1089.937900000	0.980400000	N2	1.00000320	123.525
	L121	322.108140000	34.102200000	LIF	1.47810153	121.602
		-1728.500990000	31.928200000	N2	1.00000320	120.573
ے ہے	L122	-234.494140000	46.273400000	CaF2	1.55840983 1.0000320	119.587 121.785
55	L123	-251.236960000 171.211410000	0.974700000 29.502800000	N2 LIF	1.47810153	103.953
	11123	452.301450000	0.887100000	N2	1.00000320	101.542
	L124	126.180740000	28.831400000	LIF	1.47810153	88.565
		223.894010000	0.796800000	N2	1.00000320	83.098
60	L125	132.333150000	25.819300000	LIF N2	1.47810153 1.00000320	76.140 70.847
	L126	477.745080000 unendlich	6.457300000 59.682500000	NZ CaF2	1.55840983	69,261
	11140	Unendlich	0.838600000	N2	1.00000320	33.343
	L127	unendlich	4.000000000	CaF2	1.55840983	32.211
65		Unendlich	12.000810000	N2	1.00000320	29.804 13.603
	L128	unendlich	. 0.000000000			13.003

ASPHAERISCHE KONSTANTEN

```
Asphäre der Linse L103
 5
           -0.8141
           -1.93290250e-007
    C1
    C2
           4.16659320e-011
    C3
           -4.77885250e-015
10
    C4
           3.28605790e-019
    C5
           -1.03537910e-022
    C6
           2.39743010e-026
    C7
           0.00000000e+000
    C8
            0.00000000e+000
15
    C9
           0.00000000e+000
    Asphäre der Linse L104
20
          -1.0887
    K
           1.57414760e-008
    C1
    C2
           1.63099500e-011
    C3
           -4.85048550e-015
           9.48501060e-019
    C4
25
    C5
           -2.37918310e-022
    С6
           3.60692700e-026
    C7
           0.00000000e+000
    C8
           0.00000000e+000
           0.00000000e+000
    C9
30
    Asphäre der Linse L106
            4235.0115
35
    C1
           1.16160120e-007
    C2
          -1.37360280e-011
    СЗ
          -1.75181710e-016
    C4
           1.56917750e-019
    C5
           -1.57135270e-023
40
           5.89614270e-028
    С6
    C7
           0.00000000e+000
    C8
           0.00000000e+000
    C9
           0.00000000e+000
45
    Asphäre der Linse L111
           0.0000
    K
    C1
           1.35782560e-009
50
          -2.31506660e-013
    C3
          2.14831120e-017
    C4
          -7.84495330e-022
    C5
          -4.23732680e-026
           1.17366430e-031
    C6
55
           0.00000000e+000
    C7
    C8
           0.00000000e+000
    C9
           0.00000000e+000
```

60 Brechzahl und Wellenlänge sind gegenüber Luft angegeben.

TABELLE 2

5	M1159a				BRECHZAHL	1/2 FREIER
	LINSEN	RADIEN	DICKEN	GLÄSER	BEI 248.38 nm	DURCHMESSER
	0	unendlich	32.000000000	Luft	0.99998200	54.410
10	L201	unendlich 359.203085922	0.750000000 16.544139898	Luft	0.99998200	61.498
10	1201	-367.814285018	0.750000000	SIO2 Luft	1.50837298 0.99998200	62.894 63.342
	L202	376,906582229	16.424149202	SIO2	1.50837298	63.744
		-370.266896435	0.750000000	Luft	0.99998200	63.552
	L203	623.868133301	12.000921336	SIO2	1.50837298	62.201
15		-558.943539628	4.488271401	Luft	0.99998200	61.489
	L204	-593.881163796	10.597937240	SIO2	1.50837298	60.233
	~ 0.5.5	-258.275165583AS		Luft	0.99998200	59.503
	L205	-195.528496730AS		SIO2	1.50837298	59.067
20	L206	114.970814112 -150.593037892	27.465616009	Luft	0.99998200	54.855
20	11200	203.788990073	7.000000000 29.227930343	SIO2 Luft	1.50837298 0.99998200	55.023 59.359
	L207	-116.847756998	7.000000015	SIO2	1.50837298	60.888
		029423.850607139A		Luft	0.99998200	74.043
	L208	-433.333706324	29.900058462	SIO2	1.50837298	89.733
25		-145.855178517	0.750000000	Luft	0.99998200	93.351
	L209	-740.439232493As	44.983538148	SIO2	1.50837298	108.655
		-155.998681446	0.750000000	Luft	0.99998200	111.280
	L210	730.369450038	38.596890643	SIO2	1.50837298	120.834
20	-011	-339.830855552	0.750000000	Luft	0.99998200	121.150
30	L211	159.417768241	52.577878183	SIO2	1.50837298	112.765
	L212	457732.591606731AS 190.812012094		Luft	0.99998200	110.299
	112.1.2	115.677643950	23.738591831 40.245663292	SIO2 Luft	1.50837298 0.99998200	94.787 77.717
	L213	-412.140976525	7.000000000	SIO2	1.50837298	77.717 76.256
35		151.701098214	27.102188582	Luft	0.99998200	69.619
	L214	-319.487543080	7.000000000	SIO2	1.50837298	69.443
		236.707933198	42.112032397	Luft	0.99998200	70.193
	L215	-105.934259216	8.769693914	SIO2	1.50837298	71.068
4.0		680.231460994	17.681829203	Luft	0.99998200	88.650
40	L216	-517.056865132	36.235608441	SIO2	1.50837298	91.923
	+ 017	-185.271735391	0.764865888	Lu£t	0.99998200	100.651
	L217	2262.402798068 -267.329724617	44.431825566	SIO2	1.50837298	119.658
	L218	1103.186796189	8.198939895 40.827914599	Luft	0.99998200	123.247
45	HE LO	-364.593909045	8.280602730	SIO2 Luft	1.50837298 0.99998200	133.839 134.570
		unendlich	-3.250000000	Luft	0.99998200	133.180
	L219	620.770366318	25.036239346	SIO2	1.50837298	134.241
		-1858.943929157	0.750000000	Luft	0.99998200	134.164
	L220	329.635686681	40.854820783	SIO2	1.50837298	132.227
50		-1181.581276955	31.972595866	Luft	0.99998200	131.156
	L221	-249.799136729	10.000000000	SI02	1.50837298	130.229
	т 222	6484.262988004	5.619260320	Luft	0.99998200	130.672
	L222	-2574.687141000 -254.665255526	38.775298966	SIO2	1.50837298	130.696
55	L223	203.341746230	0.750000000 25.409827006	Luft	0.99998200	130.891
0.5	2220	463.496973555	0.750000000	SIO2 Luft	1.50837298 0.99998200	110.728
	L224	118.263098967	37.247858671	SIO2	1.50837298	108.517 92.529
		191.067427473	0.753637388	Luft	0.99998200	84.037
	L225	137.671384625	24.859589811	SIO2	1.50837298	78.934
60		507.533271700	6.693359054	Luft	0.99998200	74.624
	L226		55.768369688	SIO2	1.50837298	72.833
	- 00-	unendlich	0.800000000	Luft	0.99998200	35.729
	L227	unendlich	4.000000000	SIO2	1.50837298	34.512
65	L228		11.999970000	Luft	0.99998200	31.851
05	TC 6 0	unendlich	0.00000000		1.0000000	13.602

ASPHAERISCHE KONSTANTEN

```
Asphäre der Linse L204
5
          -0.7780
          -1.91000417e-007
    C1
          4.02870297e-011
    C2
          -5.55434626e-015
    C3
           1.68245178e-019
10
    C4
    C5
           2.20604311e-023
           8.09599744e-027
    С6
           0.00000000e+000
    C7
            0.00000000e+000
    C8
            0.00000000e+000
15
    Asphäre der Linse L205
20
           -0.4166
    K
           5.25344324e-008
    C1
           1.26756433e-011
    C2
           -5.25489404e-015
     СЗ
           7.04023970e-019
     C4
           -1.04520766e-022
25
     C5
           2.06454806e-026
     С6
           0.00000000e+000
     C7
           0.00000000e+000
     C8
            0.00000000e+000
     C9
30
     Asphäre der Linse L207
     к -2116959451.7820
     C1 1.25171476e-007
35
           -1.53794245e-011
     C2
           -3.12532578e-016
     C3
           2.00967035e-019
     C4
           -2.05026124e-023
     C5
            7.81326379e-028
40
     С6
     Asphäre der Linse L211
            0.0000
           2.78321477e-009
 45
           5.89866335e-014
     C2
            1.19811527e-017
     СЗ
           -7.81165149e-022
1.66111023e-026
     C4
     C5
```

Brechzahl und Wellenlänge sind in Luft bestimmt worden.

-1.60965484e-031

55

50

С6

TABELLE 3

M1222a

	MIZZZA				DDEGMERIC	1 /0 ======
5	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 248.380nm	1/2 FREIER DURCHMESSER
	0	unendlich :	32.000000000	L710		54.410
		unendlich	0.750000000	L710		62.206
	F301,	12444.588054076	17.524945114	SIO2	1.50837298	62.427
10		-167.739069307	0.765384867	L710	0.99998200	63.213
	L302	1202.845295516	8.943027554	SIO2	1.50837298	63.724
		-1004.036633539	0.757676170	L710	0.99998200	63.750
	L303	235.865591780	9.298971429	SIO2	1.50837298	63.464
1.5		231.568686620	24.888929767	L710	0.99998200	62.457
15	L304	-148.910928631	11.307968350	SIO2	1.50837298	62.393
	T 205	-106.056725042AS	11.531057240	L710	0.99998200	63.087
	L305	-135.467082619AS	7.000000000	SIO2	1.50837298	60.496
	L306	236.063635384	11.820516442	L710	0.99998200	61.104
20	T200	-1613.154189634	7.000000000	SIO2	1.50837298	61.565
2.0	L307	222.732790977 -93.477889742	38.103480975	L710	0.99998200	63.842
		525258.126273967AS	7.004909948 25.183324680	SIO2	1.50837298	64.855
	T308	-313.395232213		L710	0.99998200	84.949
	7200	-140.728421777	37.921288357 2.422311655	SIO2	1.50837298	94.853
25	L309	-882.714069478AS	62.983288381	L710 SIO2	0.99998200	102.129
	2000	-162.454752849	0.750000000	L710	1.50837298 0.99998200	129.319
	L310	372.954030958	61.566328910	SIO2	1.50837298	131.820 148.95 <i>6</i>
		-446.221051696	0.750000000	L710	0.99998200	148.766
	L311	159.626550846	68.423222152	SIO2	1.50837298	126.219
30		6881.817080351As	0.754846049	L710	0.99998200	121.302
	L312	1035.238560782	11.490813397	SIO2	1.50837298	116.908
		181.491627420	22.008897360	L710	0.99998200	97.838
	L313	508.638145894	7.024491847	SIO2	1.50837298	96.444
		144.727315074	42.480962349	L710	0.99998200	85.818
35	L314	-315.769132147	7.000000000	SIO2	1.50837298	85.132
		168.042488686AS	60.840114041	L710	0.99998200	82.384
	L315	-110.641058959	7.000000000	SIO2	1.50837298	82.821
	~ ~ ~ ~	460.993264759	26.383956624	L710	0.99998200	108.073
40	L316	-573.887503383	33.664255268	SIO2	1.50837298	111.503
40	L317	-189.203245467	0.750000000	L710	0.99998200	115.508
	пэті	-4374.531790288	33.200388364	SIO2	1.50837298	144.129
	L318	-365.840916872 5367.437754044	0.750000000	L710	0.99998200	146.400
	11010	-556.194479444	32.001020330 0.857496674	SIO2	1.50837298	162.024
45	L319	1425.923295786	68.540751990	L710	0.99998200	163.414
	2023	-318.608860176	8.280602730	SIO2 L710	1.50837298	172.847
		unendlich	-3.250000000	L710	0.99998200	173.674
	L320	524.088279104	18.00000000	SIO2	1.50837298	165.236 164.278
		896.107746530	0.750000000	L710	0.99998200	163.371
50	L321	447.468508944	50.493798307	SIO2	1.50837298	161.574
		-849.886554129	37.700767601	L710	0.99998200	160.560
	L322	-277.232722440	15.000000000	SIO2	1.50837298	159.396
		-359.067701243As	13.800352685	L710	0.99998200	159.582
~ -	L323	-283.705002828AS	20.143173981	SIO2	1.50837298	158.903
55		-264.293409160	0.750000000	L710	0.99998200	159,923
	L324	182.924856302	28.086938401	SIO2	1.50837298	124.917
		293.542915952	0.750000000	L710	0.99998200	122.142
	L325	138.051507251	29.667601165	SIO2	1.50837298	107.973
60	T 226	206.495592035	4.518697859	L710	0.99998200	103.815
60	L326	137.608373914	37.703252491	SIO2	1.50837298	93.164
	L327	2008.206929102AS 79833.713358573	6.230615100	L710	0.99998200	88.838
	110C /	unendlich	27.734587521	SIO2	1.50837298	83.516
	L328	unendlich	5.000000000 25.000000000	L710	0.99998200	62.961
65		unendlich	10.000000000	SIO2	1.50837298	52.694
	L 329	unendlich	0.000000000	L710	0.99998200	34.137
		,	3.4000000			13.605

L710 = Luft bei 710 Torr = 950 mbar

ASPHAERISCHE KONSTANTEN

```
5
    Asphäre der Linse L304
           -1.5058
         -1.86740544e-007
           3.71500406e-011
10
    C2
           -8.38153156e-015
    C3
           1.06034402e-018
    C5
           -7.88993246e-023
           2.81358334e-027
    C6
15
    C7
            0.00000000e+000
            0.00000000e+000
    C8
            0.00000000e+000
    C9
20
    Asphäre der Linse L305
           -1.3497
    C1
            9.59200710e-008
    C2
            3.31187872e-011
           -1.02270060e-014
25
     C3
            1.45048880e-018
     C4
           -1.18276835e-022
     C5
            5.49446108e-027
     C6
     C7
            0.00000000e+000
            0.00000000e+000
30
     C8
     C9
            0.00000000e+000
     Asphäre der Linse L307
35
     K -234276718577673550000000000000.0000
     C1
           1.13856265e-007
     C2
           -9.18910043e-012
           -2.09482944e-016
     C3
40
     C4
            8.75414269e-020
           -6.71659158e-024
     C5
            1.94896163e-028
     С6
     C7
            0.00000000e+000
     C8
            0.00000000e+000
            0.00000000e+000
45
     C9
```

Asphäre der Linse L311

```
50
            0.0000
    K
            1.36987424e-008
    C1
           -6.69820602e-013
    C2
            2.24912373e-017
    C3
    C4
           -5.16548278e-022
            4.05832389e-027
55
     C5
            3.25008659e-032
     С6
    C7
            0.00000000e+000
            0.00000000e+000
     C8
            0.00000000e+000
     C9
60
```

Asphäre der Linse L314

```
0.0000
           -3.81602557e-009
    C1
           -1.32998252e-012
    C2
            0.00000000e+000
5
    C3
           -3.24422613e-021
    C4
            3.55600124e-025
    C5
           -2.11130790e-029
    С6
            0.00000000e+000
    C7
            0.00000000e+000
10
    C8
            0.00000000e+000
    C9
    Asphäre der Linse L322
15
            0.0000
    C1
            2.20018047e-011
           -6.06720907e-016
    C2
    C3
           -1.85544385e-019
            1.99332533e-023
20
     C4
           -1.25615823e-028
     C5
     C6
            5.72017494e-033
            0.00000000e+000
     C7
            0.00000000e+000
     C8
            0.00000000e+000
25
     C9
     Asphäre der Linse L323
30
            0.0000
     K
            2.59747415e-011
     C1
            1.15845870e-015
     C2
            2.93792021e-019
     C3
           -5.20753147e-024
     C4
            5.15087863e-028
35
     C5
           -3.68361393e-033
     C6
            0.00000000e+000
     C7
            0.00000000e+000
     C8
            0.00000000e+000
     C9
40
     Asphäre der Linse L326
            0.0000
            2.53574810e-008
45
     C1
            1.14136997e-012
     C2
     С3
           -2.09898773e-016
            1.80771983e-020
     C4
           -8.70458993e-025
     Ċ5
50
     С6
           1.83743606e-029
     C7
            0.00000000e+000
            0.00000000e+000
     C8
     C9
            0.00000000e+000
```

60

	M1450a	TABELLE 4				
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
5	0	unendlich unendlich	32.000000000	ь710 ь710	0.99998200 0.99998200	54.410 61.369
	L401	1072.135967906AS -274.850778792		SIO2 HE	1.56028895 0.99971200	62.176 62.804
10	L402	-195.160258125 -159.034954419	9.677862773 15.411706951	SIO2 HE	1.56028895 0.99971200	62.822 63.649
10	ь403	-409.040910955	11.634800854 18.878098976	SIO2 HE	1.56028895 0.99971200	62.424 62.549
	L404	-184.929247238 -86.928681017 -81.003682870AS	9.000000000	SIO2 HE	1.56028895 0.99971200	61.870 63.469
15	L405	-105.055795110AS	6.000000000 7.135710642	SIO2 HE	1.56028895 0.99971200	60.375 61.325
	L406	-237.059668556 -170.390902140	6.000000000	SIO2	1.56028895	61.152 64.312
	L407	179.617978310 -108.910057000	40.187039625 6.00000000	HE SIO2	0.99971200 1.56028895	66.769
20		10000.000000000AS	23.032466424	HE	0.99971200 1.56028895	84.010 98.271
	L408	-482.423484275 -166.024534852	35.657870541 0.712083613	SIO2 HE	0.99971200	104.636
	L409	-5301.825985682AS	59.184134830	SIO2	1.56028895	129.868 135.616
25	T 410	-219.603781546 -407.514819861	1.964238192 25.000000000	HE SIO2	0.99971200 1.56028895	141.192
23	L410	-275.650807138	2.073256156	HE	0.99971200	143.933
	L411	812.482278880	41.728126549	SIO2	1.56028895	150.437 150.588
	L412	2085.321083022 1989.395979432	11.867512800 66.189720990	HE SIO2	0.99971200 1.56028895	151.170
30	11412	-336.825131023	2.208063283	HE	0.99971200	151.249
	L413	161.751335222	66.140524993	SIO2	1.56028895	121.860 115.257
	L414	-7743.125302019AS 2700.830058670	0.732008617 8.000000000	HE SIO2	0.99971200 1.56028895	112.928
	714 7 4	175.482298866	18.681794864	HE	0.99971200	94.204
35	L415	330.479176880	8.000000000	SIO2	1.56028895	91.933 86.259
	L416	215.492418517 -263.077268094	37.734500801 6.000000000	HE SIO2	0.99971200 1.56028895	83.596
	TATO	119.453498304AS	66.406324570	HE	0.99971200	77.915
40	L417	-126.431526615	6.000000000	SIO2	1.56028895 0.99971200	80.395 96.410
40	L418	1627.715124622 -517.066851877	24.178532080 30.987035837	HE SIO2	1.56028895	105.371
	HATO	-242.666474401	0.70000000	HE	0.99971200	113.249
	L419	-737.673536297	30.292644418	SIO2	1.56028895 0.99971200	124.350 128.112
45	L420	-270.925750340 -1051.979110054	0.700000000 27.301344542	HE SIO2	1.56028895	137.231
1.5	D.220	-363.545320262	0.711035404	HE	0.99971200	139.644
	L421	914.456821676	50.497126159 10.000000000	SIO2 HE	1.56028895 0.99971200	148.531 149.700
	L422	-500.741001160 unendlich	-5.000000000	HE	0.99971200	146.693
50		353.826401507AS	22.748234242	SIO2	1.56028895	147.721
	L423	529.864238000 422.718681400	1.376970242 57.709521396	HE SIO2	0.99971200 1.56028895	146.294 146.003
	L424	-733.506899438	37.709321396	HE	0.99971200	143.238
		-261.264462802	15.000000000	SIO2	1.56028895	138.711
55	L425	-292.145870649AS -225.638240671AS	18.942285163 19.098948274	HE SIO2	0.99971200 1.56028895	139.089 136.464
	L426	-230.537827019	0.700000000	HE	0.99971200	138.299
		246.284141218	23.038665896	SIO2	1.56028895	114.892
60	L427	400.381469987 131.458744675	0.704537226 28.653621426	HE SIO2	0.99971200 1.56028895	110.931 98.090
00	L428	200.500973816	0.708148286	HE	0.99971200	93.130
		139.428371855	36.540725215	SIO2	1.56028895	87.103 79.764
	L429	1188.104646109AS unendlich	8.107454155 25.934594077	HE CaF2	0.99971200 1.50143563	79.764
65	L430	unendlich	5.000000000	L710	0.99998200	54.980
		unendlich	25.000000000	CAF2HL	1.50143563 0.99998200	46.911 29.741
	L431	unendlich unendlich	10.000000000 0.000000000	L710	0.55556200	13.603

L710 = Luft bei 710 Torr ASPHAERISCHE KONSTANTEN 5 Asphäre der Linse L401 0.0000 7.64628377e-008 10 C1 6.87967706e-013 C2 6.32367166e-017 C3 4.65534082e-020 C4 C5 -1.74760583e-023 3.25143184e-027 15 С6 -2.97366674e-031 C7 0.00000000e+000 C8 0.00000000e+000 C9 20 Asphäre der Linse L404 K -1.3306-2.46704917e-007 C1 1.00943626e-011 25 C2 -6.88338440e-015 C3 1.00927351e-018 C4 C5 -1.37371749e-022 9.94732480e-027 С6 30 -6.46127195e-031 C7 C8 0.00000000e+000 0.00000000e+000 C9 Asphäre der Linse L405 35 -1.1682 8.44108642e-008 C1 6.67934072e-012 C2 -5.16053049e-015 40 C3 8.51835178e-019 C4 -9.37525700e-023 C5 C6 3.80738193e-027 -7.58518933e-035 C7 0.00000000e+000 45 C8 0.00000000e+000 C9 Asphäre der Linse L407 50 0.0000 K 8.18369639e-008 C1

-9.75131236e-012

3.85197305e-016

1.05024918e-020

-3.84907914e-024

3.28329458e-028

-1.16692413e-032

0.00000000e+000

0.00000000e+000

C2

C3

C4

C5

C6

C7

C8

C9

55

Asphäre der Linse L409

```
0.0000
    K
            4.21547093e-009
    C1
           -2.05810358e-013
5
    C2
           -2.19266732e-018
    СЗ
    C4
           -7.83959176e-023
           6.55613544e-027
    C5
           -7.33103571e-032
    С6
10
    С7
           -2.15461419e-036
            0.00000000e+000
    C8
            0.00000000e+000
    C9
```

15 Asphäre der Linse L413

```
0.0000
            1.39800416e-008
    C1
           -1.91505190e-013
    C2
           -1.26782008e-017
20
    C3
            9.93778200e-022
    C4
           -5.55824342e-026
     C5
            1.85230750e-030
     С6
           -2.83026055e-035
     C7
            0.00000000e+000
25
     C8
            0.00000000e+000
     C9
```

Asphäre der Linse L416

```
30
            0.0000
     K
    C1
           -1.87949694e-008
           -4.87119675e-012
     C2
           -5.90009367e-017
     C3
           -5.76749530e-021
35
     C4
           -3.07189672e-025
     C5
            4.51160541e-029
     C6
           -5.02037364e-033
     C7
            0.00000000e+000
     C8
40
     C9
            0.00000000e+000
```

Asphäre der Linse L421

```
45
           -0.0073
    K
            1.63581145e-010
     C1
           -7.80915457e-015
     C2
            6.72460331e-021
     C3
            5.33479719e-025
     C4
            2.82144185e-028.
50
     C5
           -6.16219372e-033
     С6
            2.37157562e-037
     C7
            0.00000000e+000
     C8
            0.00000000e+000
     C9
55
```

Asphäre der Linse L424

```
0.0000
    K
            1.28367898e-010
    C1
           -1.18938455e-014
5
    C2
           -1.84714219e-019
    СЗ
    C4
           4.28587779e-023
           -1.39213579e-027
    C5
           2.04883718e-032
    С6
           -3.36201584e-037
10
    C7
           0.00000000e+000
    C8
            0.00000000e+000
    C9
```

15 Asphäre der Linse L425

```
0.0000
           -2.31584329e-010
            2.47013162e-014
    C2
20
            1.13928751e-018
    C3
           -1.24997826e-023
    C4
           -9.59653919e-028
    C5
            1.46403755e-032
    C6
    C7.
           -1.23684921e-037
           0.00000000e+000
25
    C8
            0.00000000e+000
     C9
```

Asphäre der Linse L428

```
30
            0.0000
    K
            2.79193914e-008
    C1
            5.72325985e-013
    C2
           -1.69156262e-016
    C3
           1.45062961e-020
35
     C4
           -7.24157687e-025
     C5
            1.59130857e-029
     С6
            9.07975701e-035
     C7
            0.00000000e+000
     C8
40
            0.00000000e+000
     C9
```

45

50

55

	M1558a			TABELLE 5		
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
5	0	unendlich	32.000000000	L710	0.99998200	54.410
	- = 0.4	unendlich	0.70000000	L710	0.99998200	61.800
	L501	1062.826934956AS -280.649155373	17.734965551 9.921059017	SIO2	1.56028895 0.99971200	62.680 63.358
	L502	-198.612797944	9.733545477	HE SIO2	1.56028895	63.454
10		-157.546275141	15.417407860	HE	0.99971200	64.281
	L503	-400.277413338	11.803054495	SIO2	1.56028895	63.163
	7 = 0.4	-182.515287485	19.059582585	HE	0.99971200	63.316
	L504	-86.486413985 -79.976798205AS	9.000000000 3.314115561	SIO2 HE	1.56028895 0.99971200	62.723 64.356
15	L505	-102.262183494AS	6.000000000	SIO2	1.56028895	61.260
		-275.242312561	7.844485351	HE	0.99971200	62.494
	L506	-191.274205909	6.000000000	SIO2	1.56028895	62.450
	L507	180.723494008 -108.539011643	40.175681177	HE	0.99971200	65.811
20	וטכע	10000.0000000000AS	6.000000000 23.009626916	SIO2 HE	1.56028895	67.752 86.379
	L508	-481.040730284	35.657298256	SIO2	1.56028895	100.931
		-165.828518942	0.70000000	HE	0.99971200	106.719
	L509	-5243.952853546AS	59.233771719	SIO2	1.56028895	134.666
25	L510	-218.541408733 -402.136827778	2.123657562	HE	0.99971200	139.441
23	пото	-276.854279724	25.000000000 1.637353303	SIO2 HE	1.56028895 0.99971200	145.856 148.618
	L511	796.304534481	36.805305429	SIO2	1.56028895	156.741
		2360.950907095	10.808883416	HE	0.99971200	157.059
•	L512	2256.926430541	60.789786196	SIO2	1.56028895	157.684
30	L513	-336.450738373	0.801676910	HE	0.99971200	157.856
	тэтэ	161.617552542 -6835.350709889As	66.152351274 0.744366824	SIO2 HE	1.56028895 0.99971200	125.624 121.362
	L514	2851.162473443	8.000000000	SIO2	1.56028895	118.726
		173.208226906	18.750820117	HE	0.99971200	97.559
35	L515	318.351302869	8.000000000	SIO2	1.56028895	95.703
	L516	214.643166184	38.151364608	HE	0.99971200	89.760
	7270	-261.549915460 119.510683982As	6.000000000 66.550546342	SIO2 HE	1.56028895 0.99971200	88.331 82.116
	L517	-126.322271364	6.000000000	SIO2	1.56028895	83.464
40		1722.207555551	24.185704173	HE	0.99971200	102.415
	. L518	-506.819064828	30.988960270	SIO2	1.56028895	111.113
	L519	-242.042046428 -728.789614455	0.700000000	HE	0.99971200	118.861
	11019	-269.518093553	30.297084361 0.700000000	SIO2 HE	1.56028895	132.704 135.576
45	L520	-1024.754284774	27.306923440	SIO2	1.56028895	147.201
		-361.037355343	0.700000000	HE	0.99971200	149.061
	L521	929.096482269	49.082091976	SIO2	1.56028895	161.109
		-497.886578908 unendlich -1	15.000000000	HE	0.99971200	161.854
50	L522	352.973470359AS	22.735479730	HE SIO2	0.99971200 1.56028895	158.597 159.957
		529.864238000	1.119499649	HE	0.99971200	158.688
	L523	422.718681400	57.532074113	SIO2	1.56028895	158.278
	7.504	-733.230538894	37.317449332	HE	0.99971200	156.533
55	L524	-261.165349728 -292.119447959As	15.000000000 18.962883498	SIO2	1.56028895	155.119
33	L525	-226.263316842AS	19.009003051	HE SIO2	0.99971200 1.56028895	156.043 155.000
		-231.163516914	0.700000000	HE	0.99971200	157.710
	L526	245.306778718	23.024380018	SIO2	1.56028895	124.547
CO	× 505	403.694577141	0.70000000	HE	0.99971200	121.262
60	L527	132.188567375 199.679919884	28.647981266 0.700019350	SIO2	1.56028895	104.696
	L528	138.967602414	36.537553325	HE SIO2	0.99971200 1.56028895	101.254 93.617
		1194.093826692AS	8.108769689	HE	0.99971200	89.148
	L529	unendlich	25.923824338	CaF2	1.50143563	82.715
65	~ = 2.2	unendlich	5.000000000	L710	0.99998200	63.301
	L530	unendlich unendlich	25.000000000 10.000000000	CaF2	1.50143563	52.976
	L531	unendlich	0.000000000	L710	0.99998200	34.253 13.603
			5.55555555			20.000

L710 = Luft bei 710 TorrASPHAERISCHE KONSTANTEN 5 Asphäre der Linse L501 0.0000 7.79889739e-008 10 C1 5.96475035e-013 C2 5.73397945e-017 C3 5.38600405e-020 C4 -2.08145188e-023 C5 4.05094979e-027 15 C6 -3.79132983e-031 C7 0.00000000e+000 C8 С9 0.00000000e+000 20 Asphäre der Linse L504 -1.3308 K -2.46633450e-007 C1 1.00446806e-011 25 C2 .-7.00686898e-015 C3 9.90840734e-019 C4 -1.31781718e-022 C5 9.28901869e-027 C6 -6.52628587e-031 30 C7 0.00000000e+000 C8 0.00000000e+000 C9 Asphäre der Linse L505 35 -1.1513 K 8.27765089e-008 C1 7.00992841e-012 C2 40 C3 -5,19825762e-015 8.12467102e-019 C4 -8.31805913e-023 C5 2.18925711e-027 С6 1.11778799e-031 C7 0.00000000e+000 45 C8 0.00000000e+000 C9 Asphäre der Linse L507

50 0.0000 8.22829380e-008 C1 -9.72735758e-012 C2 3.85643753e-016 C3 1.01114314e-020 55 C4 -3.91221853e-024 C5 3.39732781e-028 С6 -1.20135313e-032 C7 0.00000000e+000 C8

60

C9

0.00000000e+000

Asphäre der Linse L509

```
0.0000
            4.14637283e-009
    C1
           -2.13253257e-013
5
    C2
           -2.08003643e-018
    СЗ
           -7.83152213e~023
    C4
            5.30015388e-027
    C5
           -2.59321154e-033
    C6
           -3.37000758e-036
10
    C7
            0.00000000e+000
    C8
            0.00000000e+000
    C9
```

15 Asphäre der Linse L513

```
0.0000
    K
            1.39567662e-008
    C1
           -2.05760928e-013
    C2
           -1.29919990e-017
20
     C3
     C4
           1.00302455e-021
           -5.58828742e-026
            1.79594589e-030
     С6
           -2.49374487e-035
    C7
            0.00000000e+000
25
     C8
            0.00000000e+000
     C9
```

Asphäre der Linse L516

```
30 .
            0.0000
     K
           -1.82058286e-008
     C1
           -4.87410470e-012
     C2
           -5.89919068e-017
     C3
           -4.04061992e-021
35
     C4
           -6.60202054e-025
     C5
           9.31855676e-029
     С6
           -7.48573635e-033
     C7
            0.00000000e+000
     C8
40
     C9
            0.00000000e+000
```

Asphäre der Linse L522

```
45
           -0.0071
           1.64455895e-010
    C1
           -7.76483415e-015
    C2
           8.29256873e-021
    C3
           -5.46990406e-025
    C4
           3.42070772e-028
50
    C5
           -8.24545949e-033
    C6
           2.57783363e-037
    C7
            0.00000000e+000
    C8
     C9
            0.00000000e+000
55
```

Asphäre der Linse L524

```
K
           0.0000
           1.18780021e-010
    C1
5
          -1.18823445e-014
    C2
          -1.80162246e-019
    C3
          4.08343213e-023
    C4
          -1.42735407e-027
    C5
          2.34804331e-032
    С6
10
          -3.79018523e-037
    C7
    C8
          0.00000000e+000
           0.00000000e+000
    C9
```

15 Asphäre der Linse L525

```
0.0000
          -2.15560895e-010
    C1
    C2
           2.44929281e-014
           1.12359306e-018
20
    C3
          -1.29749910e-023
    C4
    C5
          -1.00106399e-027
           1.88165471e-032
    C6
           -2.01557723e-037
    C7
           0.00000000e+000
25
    C8
            0.00000000e+000
    C9
```

Asphäre der Linse L528

30		
	K	0.0000
	C1	2.73896476e-008
	C2	6.17281255e-013
	Ċ3	-1.75474902e-016
35	C4	1.56329449e-020
	C5	-8.82259694e-025
	C6	2.92948124e-029
	C7	-4.01055770e-034
	C8	0.00000000e+000
40	C9	0.00000000e+000

45

50

55

	M1587a		TAF	BELLE 6		
	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 157.629nm	1/2 FREIER DURCHMESSER
5	0	unendlich	27.171475840	N2	1.00031429 1.00031429	46.200 52.673
	L601	unendlich 900.198243311AS	0.602670797 15.151284556	N2 CaF2	1.55929035 1.00031429	53.454 54.049
	L602	-235.121108435 -167.185917779	9.531971079 8.294716452	N2 CaF2	1.55929035	54.178 54.901
10	ь603	-132.673519510 -333.194588652	14.020355779 9.893809820	N2 CaF2	1.00031429 1.55929035	53.988 54.132
	L604	-155.450516203 -73.572316296	15.930502944 7.641977580	N2 CaF2	1.00031429 1.55929035	53.748
15	L605	-68.248613899AS -86.993585564AS	2.881720302 5.094651720	N2 CaF2	1.00031429 1.55929035	55.167 52.580
	L606	-238.150965327 -165.613920870	5.379130780 5.094651720	N2 CaF2	1.00031429 1.55929035 ·	53.729 53.730
	L607	153.417884485 -92.061009990	34.150169591 5.094651720	N2 CaF2	1.00031429 1.55929035	56.762 58.081
20	T608	8491.086261873AS -407.131300451	19.673523795 30.380807138	N2 CaF2	1.00031429 1.55929035	74.689 87.291
		-140.620317156 -4831.804853654AS	0.761662684	N2 CaF2	1.00031429 1.55929035	91.858 117.436
	L609	-192.197373609	1.688916911	N2 CaF2	1.00031429	121.408 127.704
25	L610	-367.718684892 -233.628547894	21.227715500 2.224071019	N2	1.00031429	129.305 137.016
	L611	709.585855080 1238.859445357	28.736922725 9.120684720	CaF2 N2	1.00031429	137.428
30	L612	1205.457051945 -285.321880705	49.281218258 1.625271224	CaF2 N2	1.55929035 1.00031429	138.288 138.379
	L613	137.549591710 -4380.301012978AS	56.718543740 0.623523902	CaF2 N2	1.55929035 1.00031429	108.652 106.138
	L614	2663.880214408 149.184979730	6.792868960 15.779049257	CaF2 N2	1.55929035 1.00031429	103.602 84.589
35	L615	281.093108064 184.030288413	6.792868960 32.341552355	CaF2 N2	1.55929035 1.00031429	83.373 77.968
	L616	-222.157416308 101.254238115AS	5.094651720 56.792834221	CaF2 N2	1.55929035 1.00031429	77.463 71.826
40	ь617	-106.980638018 1612.305471130	5.094651720 20.581065398	CaF2 N2	1.55929035 1.00031429	72.237 89.760
40	L618	-415.596135628	26.398111993	CaF2	1.55929035	96.803 103.409
	L619	-204.680044631 -646.696622394	0.713343960 25.867340760	N2 CaF2	1.55929035	116.636
45	L620	-231.917626896 -790.657607677	0.766268682 23.400482872	N2 CaF2	1.00031429 1.55929035	118.569 128.806
	L621	-294.872053725 786.625567756	0.721402031 40.932308205	N2 CaF2	1.00031429 1.55929035	130.074 141.705
		-431.247283013 unendlich	12.736629300 -8.491086200	N2 N2	1.00031429 1.00031429	142.089 134.586
50	L622	295.022653593AS 449.912291916	20.185109438 0.619840486	CaF2 N2	1.55929035 1.00031429	139.341 137.916
	L623	358.934076212 -622.662988878	48.662890509 30.955714157	CaF2 N2	1.55929035 1.00031429	136.936 135.288
55	L624	-224.404889753 -251.154571510AS	12.736629300 16.079850229	CaF2 N2	1.55929035 1.00031429	134.760 134.853
33	ь625	-193.582989843AS -198.077570749	16.510083506 0.880353872	CaF2 N2	1.55929035 1.00031429	134.101 136.109
	F656	206.241795157	19.927993542 0.925956949	CaF2 N2	1.55929035 1.00031429	101.240 97.594
60	ь627	338.140581666 111.017549581	24.580089962	CaF2	1.55929035	85.023 81.164
	L628	169.576109839 117.982165264	0.777849447 31.161065630	N2 CaF2	1.55929035	75.464 69.501
, <u>.</u>	L629	921.219058213AS unendlich	6.934980174 22.260797322	N2 CaF2	1.55929035	63.637 48.606
65	L630	unendlich unendlich	4.245543100 21.227715500	N2 CaF2	1.00031429 1.55929035	41.032 26.698
		unendlich unendlich	8.491086200 0.000000000	N2	1.00031429 1.00000000	11.550

Wellenlänge und Brechzahl sind gegenüber Vakuum angegeben.

ASPHAERISCHE KONSTANTEN

5

Asphäre der Linse L601

```
0.0000
    K
            1.28594437e-007
10
    C1
            8.50731836e-013
    C2
           1.16375620e-016
    C3
            2.28674275e-019
    C4
           -1.23202729e-022
    C5
           3.32056239e-026
15
    C6
           -4.28323389e-030
    C7
           0.00000000e+000
    C8
            0.00000000e+000
    C9
```

20

Asphäre der Linse L604

```
-1.3312
           -4.03355456e-007
    C1
            2.25776586e-011
25
    C2
           -2.19259878e-014
    C3
            4.32573397e-018
     C4
           -7.92477159e-022
     C5
     С6
           7.57618874e-026
           -7.14962797e-030
30
     C7
            0.00000000e+000
     C8
            0.00000000e+000
     C9
```

35 Asphäre der Linse L605

```
-1.1417
    K
           1.33637337e-007
    C1
           1.56787758e-011
    C2
          -1.64362484e-014
40
    C3
            3.59793786e-018
    C4
           -5.11312568e-022
    C5
           1.70636633e-026
    С6
           1.82384731e-030
    Ç7
           0.00000000e+000
45
    C8
            0.00000000e+000
    C9
```

Asphäre der Linse L607

```
50
            0.0000
            1.34745120e-007
    C1
           -2.19807543e-011
    C2
           1.20275881e-015
    C3
           4.39597377e-020
55
    C4
           -2.37132819e-023
    C5
           2.87510939e-027
    Сб
           -1.42065162e-031
    C7
           0.00000000e+000
    C8
           0.00000000e+000
60
    C9
```

Asphäre der Linse L609 0.0000 K 6.85760526e-009 C1-4.84524868e-013 5 C2 -6.28751350e-018 C3 -3.72607209e-022 C4 3.25276841e-026 C5 -4.05509974e-033 C6 -3.98843079e-035 10 C7 0.00000000e+000 C8 0.00000000e+000 C9 Asphäre der Linse L613 15 0.0000 K 2.24737416e-008 C1 -4.45043770e-013 C2 -4.10272049e-017 20 C3 4.31632628e-021 C4 -3.27538237e-025 C5 1.44053025e-029 С6 -2.76858490e-034 C7 0.00000000e+000 25 C8 0.00000000e+000 C9 Asphäre der Linse L616 30 0.0000 K -2.83553693e-008 C1 -1.12122261e-011 €2 -2.05192812e-016 C3 -1.55525080e-020 35 C4-4.77093112e-024 C5 8.39331135e-028 С6 -8.97313681e-032 C7 0.00000000e+000 C8 40 C9 0.00000000e+000 Asphäre der Linse L622 45 0.0421 K 7.07310826e-010 C1 -2.00157185e-014 C2 -9.33825109e-020 СЗ 1.27125854e-024 C4 1.94008709e-027 50 C5 -6.11989858e-032 C6 2.92367322e-036 C7

0.00000000e+000

0.00000000e+000

60

55

C8

Asphäre der Linse L624

```
0.0000
            3.02835805e-010
    C1
          -2.40484062e-014
5
    C2
          -3.22339189e-019
    СЗ
           1.64516979e-022
    C4
          -8.51268614e-027
    C5
           2.09276792e-031
    С6
           -4.74605669e-036
10
    C7
           0.00000000e+000
    C8
            0.00000000e+000
    C9
```

15 Asphäre der Linse L625

```
0.0000
           -3.99248993e-010
    C1
           5.79276562e-014
    C2
           3.53241478e-018
20
    СЗ
           -4.57872308e-023
    C4
           -6.29695208e-027
    C5
            1.57844931e-031
    C6
           -2,19266130e-036
    C7
            0.00000000e+000
25
    C8
            0.00000000e+000
     C9
```

Asphäre der Linse L628

```
30
            0.0000
            4.40737732e-008
    C1
           1.52385268e-012
    C2
           -5.44510329e-016
    C3
           6.32549789e-020
35
    C4
           -4.58358203e-024
     C5
           1.92230388e-028
    C6-
           -3.11311258e-033
     C7
           0.00000000e+000
     C8
            0.00000000e+000
40
   C9
```

45

50

	M1630a		AT	BELLE 7		
_	LINSEN	RADIEN	DICKEN	GLÄSER	BRECHZAHL BEI 193.304nm	1/2 FREIER DURCHMESSER
5	0	unendlich 32	2.989007360	L710	0.99998200	56.080
	U		2.050119724	L710	0.99998200	63.700
	L701	1292.577885893AS	17.083079028	SIO2	1.56028895	64.846
		-320.912994055	6.356545111	HE	0.99971200	65.549 65.651
10	L702	-222.076099367	9.996105426	SIO2	1.56028895 0.99971200	66.515
		-173.186007383	14.918724377	HE	1.56028895	65.892
	L703	-465.289541055	12.849128877 24.825544140	SIO2 HE	0.99971200	66.089
	L704	-190.575077708 -88.003869940	9.278158320	SIO2	1.56028895	64.773
15	L/04	-80.342454766AS	3.110021891	HE	0.99971200	66.529
1.0	L705	-104.692897461AS	6.185438880	SIO2	1.56028895	63.593
	2.00	687.929853355	8.052826671	HE	0.99971200	65.986
	L706	-4211.039282601	6.185438880	SIO2	1.56028895	66.833
		191.063416206	42.178241931	HE	0.99971200	69.389 71.596
20	L707	-115.620656932	6.185438880	SIO2	1.56028895 0.99971200	91.649
		10919.608812170AS	23.544585745	HE SIO2	1.56028895	105.419
	L708	-462.245785462 -166.710127403	36.857934334 0.922637637	HE	0.99971200	110.921
	L709	-2362.175430424AS	61.803635845	SIO2	1.56028895	140.744
25	ш/09	-209.701792909	1.020714627	HE	0.99971200	144.651
23	L710	-389.602200799	25.772662000	SIO2	1.56028895	151.693
		-307.008965979	0.721634536	HE	0.99971200	156.014
	L711	629.229001456	46.511934207	SIO2	1.56028895	167.044
	•	-859.369679090	24.151857437	HE	0.99971200	167.077
30	L712	-877.205712077	30.754166393	SIO2	1.56028895	164.429 164.440
		-357.572652646	4.953800031	HE SIO2	0.99971200 1.56028895	129.450
	L713	168.111512940 unendlich	68.382989629 0.000000000	HE SIO2	0.99971200	125.430
	L714	unendlich	8.247251840	SIO2	1.56028895	125.021
35	17.1.77	149.672876100AS	23.428435757	HE	0.99971200	98.364
55	L715	167.316121704	0.000000000	SIO2	1.56028895	92.117
		167.316121704	46.368104843	HE	0.99971200	92.117
	L716	-276.014955570	6.185438880	SIO2	1.56028895	90.583
		122.032488640AS	68.057116286	HE	0.99971200	84.260
40	ь717	-131.026926440	6.185438880	SIO2	1.56028895 0.99971200	85.665 105.177
	-710	1443.442379280	24.936997937 31.985422479	HE SIO2	1.56028895	114.725
	ь718	-570.720178737 -251.966065824	0.742435413	HE	0.99971200	122.318
	ь719	-792.022948046	31.395737994	SIO2	1.56028895	136.726
45	111.5	-284.699402375	0.732480789	HE	0.99971200	139.887
	L720	-1399.942577177	28.528105133	SIO2	1.56028895	152.678
		-405.074653331	0.721634536	HE	0.99971200	154.617
	L721	969.181518515	52.876050649	SIO2	1.56028895	166.429
70		-498.113891823	15.463597200	HE	0.99971200	167.335 163.661
50	. 700	unendlich	-10.309064800 22.457291722	HE SIO2	0.99971200 1.56028895	164.702
	L722	369.912797108AS 546.240476474	0.759815621	HE	0.99971200	163.421
	L723	435.783427872	59.712335014	SIO2	1.56028895	163.043
	1125	-757,138748183	38.604277894	HE	0.99971200	161.173
55	L724	-268.662949002	15.463597200	SIO2	1.56028895	159.696
		-299.983850179AS	20.130367113	HE	0.99971200	160.684
	L725	-232.880394011AS	19.892839003	SIO2	1.56028895	159.263
	40.1	-238.077482924	0.721634536	HE	0.99971200	162.099
CO	L726	238.488298578	23.631362631 0.721634536	SIO2	1.56028895 0.99971200	127.621 124.291
60	* 7 0 7	378.766536032	29.608483074	HE SIO2	1.56028895	108.001
	ь727	136.105324171 205.107042559	0.785819222	HE	0.99971200	104.429
	L728	143.303538802	37.757018324	SIO2	1.56028895	96.584
	≀ <u>८.</u> ∪	1247.979376087AS	8.449273703	HE	0.99971200	91.946
65	L729	unendlich	26.717587971	CaF2	1.50143563	85.145
		unendlich	5.154532400	L710	0.99998200	65.152
	L730	unendlich	25.772662000	CaF2	1.50143563	54.537
		unendlich	10.309064800	L710	0.99998200	35.251

0.000000000

unendlich

14.020

L710 = Luft bei 710 Torr ASPHAERISCHE KONSTANTEN Asphäre der Linse L701 0.0000 10 K 6.70377274e-008 C2 6.84099199e-013 1.05733405e-016 СЗ C4 3.37349453e-020 -7.15705547e-024 15 C5 5.09786203e-028 C6 C7 -6.46970874e-033 0.00000000e+000 C8 0.00000000e+000 C9 20 Asphäre der Linse L704 -1.3610 -2.19369509e-007 25 Cl C2 7.67800088e-012 -6.07796875e-015 C3 7.90645856e-019 C4 -9.11112500e-023 C5 30 5.68885354e-027 С6 -4.26463481e-031 C7 0.00000000e+000 C8 0.00000000e+000 C9 35 Asphäre der Linse L705 -1.2060 K 8.09444891e-008 C1 4.80824558e-012 40 C2 -4.20373603e-015 СЗ 5.60648644e-019 C4 -4.51520330e-023 C5 1.54505188e-027 С6 5.00741161e-032 45 C7 C8 0.00000000e+000 C9 0.00000000e+000 50 Asphäre der Linse L707 0.0000 C1 7.63455153e-008 -8.56292259e-012 C2 3.01669569e-016 55 C3 9.61573017e-021 C4 -2.67588216e-024 C5 2.05728418e-028 C6 C7 -6.45595651e-033 0.00000000e+000 60 C8 0.00000000e+000 C9

Asphäre der Linse L709 0.0000 K 5 3.23214391e-009 C1 -1.67326019e-013 C2 C3 -4.26702152e-019 -5.66712884e-023 C4C5 -1.24256704e-028 10 С6 1.64124726e-031 C7 -4.41379927e-036 C8 0.00000000e+000 C9 0.00000000e+000 15 Asphäre der Linse L714 0.0000 -1.63753926e-009 C1 2.54837542e-013 20 C2 C3 8.79430055e-018 C49.19127213e-022 -7.01950932e-026 C5 C6 1.17918461e-029 25 C7 -8.74308763e-034 C8 0.00000000e+000 C9 0.00000000e+000 30 Asphäre der Linse L716 0.0000 C1 -1.54725313e-008 C2 -4.26275476e-012 35 C3 -1.01484275e-016 C4 8.37843426e-022 C5 -1.29202167e-024 C6 1.71820044e-028 C7 -1.05335330e-032 40 0.00000000e+000 C8 0.00000000e+000 Asphäre der Linse L722 45 -0.0331 C1 2.56540619e~011 C2 -6.98183157e-015 C3 7.92101859e~021 50 C4 -5.85807569e-025 C5 2.42288782e-028 C6 -5.79467899e-033 C7 1.63689132e-037

55

C8

C9

0.00000000e+000

0.00000000e+000

Asphäre der Linse L724

```
0.0000
           8.90820785e-011
5
    C1
          -1.06772804e-014
    C2
          -1.68281363e-019
    СЗ
           3.04828021e-023
    C4
          -1.01185483e-027
    C5
           1.61617917e-032
10
    С6
    C7
           -2.40582729e-037
           0.00000000e+000
    C8
            0.00000000e+000
    C9
```

15 Asphäre der Linse L725

```
0.0000
    K
           -1.97757640e-010
    C1
           2.05110497e-014
20
    C2
           8.96864099e-019
    СЗ
           -9.85543257e-024
    C4
          -7.12993590e-028
    C5
            1.30146671e-032
    С6
           -1.36102788e-037
25
    C7
           0.00000000e+000
     C8
           0.00000000e+000
     C9
```

30 Asphäre der Linse L728

```
0.0000
    K
           2.55097376e-008
    C1
           5.47467657e-013
    C2
          -1.43568713e-016
35
    C3
           1.17677649e-020
    C4
    C5
          -5.95320448e-025
           1.71763367e-029
    С6
          -1.94556007e-034
    C7
40
    C8
           0.00000000e+000
           0.00000000e+000
    C9
```

45

50

55

TABELLE 8

5	L61				BRECHZAHL	1/2 FREIER
_	LINSEN	RADIEN	DICKEN	GLÄSER	BEI 157.13 nm	DURCHMESSER
	0	unendlich	34.00000000		1.00000000	82.150
		unendlich	0.100000000		1.0000000	87.654
10	L801	276.724757380	40.000000000	CaF2	1.55970990	90.112
		1413.944109416AS	95.000000000		1.00000000	89.442
	SP1	unendlich	11.000000000		1.00000000	90.034
			433.237005445		1.00000000	90.104
	L802	-195.924336384	17.295305525	CaF2	1.55970990	92.746
15		-467.658808527	40.841112468	~ =0	1.00000000	98.732 105.512
	T803	-241.385736441	15.977235467	CaF2	1.55970990	118.786
		-857.211727400AS	21.649331094		1.00000000	139.325
	SP2	unendlich	0.000010000		1.00000000	119.350
00		253.074839896	21.649331094	CaF2	1.55970990	118.986
20	L803'	857.211727400AS	15.977235467 40.841112468	Carz	1.00000000	108.546
	T 0 0 0 1	241.385736441 467.658808527	17.295305525	CaF2	1.55970990	102.615
	L802'	195.924336384	419.981357165	Carz	1.00000000	95.689
	SP3	unendlich	6.255658280		1.00000000	76.370
25	353	unendlich	42.609155219		1.00000000	76.064
23	Z1.	unendlich	67.449547115		1.00000000	73.981
	L8.04	432.544479547	37.784311058	CaF2	1.55970990	90.274
	10.04	-522.188532471	113.756133662		1.00000000	92.507
	L805	-263.167605725	33.768525968	CaF2	1.55970990	100.053
30		-291.940616829AS	14.536591424		1.00000000	106.516
	L806	589.642961222AS	20.449887046	CaF2	1.55970990	110.482
		-5539.698828792	443.944079795		1.00000000	110.523
	L807	221.780582003	9.000000000	CaF2	1.55970990	108.311
		153.071443064	22.790060084		1.0000000	104.062
35	T808	309.446967518	38.542735318	CaF2	1.55970990	104.062
		-2660.227900099	0.100022286	_	1.0000000	104.098
	F803	23655.354584194	12.899131182	CaF2	1.55970990	104.054
		-1473.189213176	9.318886362	~ =0	1.00000000	103.931 103.644
	F810	-652.136459374	16.359499814	CaF2	1.55970990	103.844
40		-446.489459129	0.100000000	G - EO	1.00000000 1.55970990	99.267
	L811	174.593507050	25.900313780	CaF2	1.00000000	96.610
		392.239615259AS unendlich	14.064505431 2.045119392		1.00000000	96.552
	L812	7497.306838492	16.759051656	CaF2	1.55970990	96.383
45	1017	318.210831711	8.891640764	CHE	1.00000000	94.998
45	L813	428.724465129	41.295806263	CaF2	1.55970990	95.548
	1012	3290.097860119AS	7.377912006	00	1.00000000	95.040
	L814	721.012739719	33.927118706	CaF2	1.55970990	95.443
	110114	-272.650872353	6.871397517		1.0000000	95.207
50	L815	131.257556743	38,826450065	CaF2	1.55970990	81.345
-	2010	632.112566477AS	4.409527396		1.0000000	74.847
	L816	342.127616157AS	37.346293509	CaF2	1.55970990	70.394
		449.261078744	4.859754445		1.00000000	54.895
	L817	144.034814702	34.792179308	CaF2	1.55970990	48.040
55		-751.263321098AS	11.999872684		1.00000000	33.475
	0 1	unendlich	0.000127776		1.0000000	16.430

60

ASPHAERISCHE KONSTANTEN

```
Asphäre der Linse L801
5
            0.0000
            4.90231706e-009
    C1
            3.08634889e-014
    C2
           -9.53005325e-019
10
    C3
           -6.06316417e-024
    C4
           6.11462814e-028
    C5
           -8.64346302e-032
    С6
           0.00000000e+000
    C7
            0.00000000e+000
15
    C8
            0.00000000e+000
    C9
    Asphäre der Linse L803
20
            0.0000
           -5.33460884e-009
    C1
            9.73867225e-014
    C2
           -3.28422058e-018
    C3
            1.50550421e-022
25
    C4
            0.00000000e+000
    C5
            0.00000000e+000
    С6
    C7
            0.00000000e+000
            0.00000000e+000
    C8
            0.00000000e+000
30
    C9
    Asphäre der Linse L803'
            0.0000
35
     K
            5.33460884e-009
     C1
           -9.73867225e-014
     C3
            3.28422058e-018
           -1.50550421e-022
     C4
            0.00000000e+000
40
     C5
            0.00000000e+000
     C6
     C7
            0.00000000e+000
            0.00000000e+000
     C8
            0.00000000e+000
     C9
45
     Asphäre der Linse L805
            0.0000
     K
50
            2.42569449e-009
     C1
            3.96137865e-014
     C2
     C3
           -2.47855149e-018
            7.95092779e-023
     C4
            0.00000000e+000
     C5
```

0.00000000e+000

0.00000000e+000 0.00000000e+000

0.00000000e+000

55

60

C6 C7

C8

C9

Asphäre der Linse L806 0.0000 K -6.74111232e-009 5 C1-2.57289693e-014 C2 -2.81309020e-018 C3 6.70057831e-023 C4 5.06272344e-028 C5 -4.81282974e-032 10 С6 C7 0.00000000e+000 0.00000000e+000 C8 0.00000000e+000 C9 15 Asphäre der Linse L811 0.0000 C1 2.28889624e-008 20 C2 -1.88390559e-014 2.86010656e-017 СЗ C4 -3.18575336e-021 C5 1.45886017e-025 -1.08492931e-029 **C6** 25 0.00000000e+000 C7 0.00000000e+000 C8 0.00000000e+000 C9 Asphäre der Linse L813 30 0.0000 3.40212872e-008 C1 -1.08008877e-012 C2 4.33814531e-017 35 C3 C4 -7.40125614e-021 5.66856812e-025 C5 0.00000000e+000 С6 0.00000000e+000 C7 0.00000000e+000 40 C8 0.00000000e+000 C9 Asphäre der Linse L815 45 0.0000 K -3.15395039e-008 C1 C2 4.30010133e-012

3.11663337e-016

-3.64089769e-020

0.00000000e+000

0.00000000e+000

0.00000000e+000

0.00000000e+000

1.06073268e-024

50

55

C3 .

C4

C5

C6

C7

C8

C9

Asphäre der Linse L816

```
0.0000
           -2.16574623e-008
-6.67182801e-013
5
     C1
    C2
C3
           4.46519932e-016
           -3.71571535e-020
     C4
           0.00000000e+000
     C5
           0.00000000e+000
10
     С6
            0.00000000e+000
     C7
            0.00000000e+000
     C8
            0.00000000e+000
```

15

Asphäre der Linse L817

	K	0.0000
	C1	2.15121397e-008
20	C2	-1.65301726e-011
	C3	-5.03883747e-015
	C4	1.03441815e-017
	C5	-6.29122773e-021
	C6	1.44097714e-024
25	C7	0.00000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000

Patentansprüche:

5

10

15

1. Projektionsobjektiv mit einer Objektebene 0 und mit einer Bildebene 0' mit einer Mehrzahl an Linsen, wobei mindestens zwei benachbart zueinander angeordneten Linsenoberflächen asphärisch sind, die im folgenden mit Doppelasphäre bezeichnet werden, dadurch gekennzeichnet, daß die Doppelasphäre in einem Abstand von mindestens dem maximalen Linsendurchmesser (D2) des Objektives von der Bildebene 0' beabstandet angeordnet ist und, wobei der Abstand (23) zwischen den asphärischen Linsenoberflächen (151, 152, 153, 154) der Doppelasphäre (21) kleiner als der halbe Linsendurchmesser des gemittelten Linsendurchmessers der Doppelasphäre (21) ist.

- 2. Refraktives Projektionsobjektiv mit mindestens fünf Linsengruppen G1 G5 und mit mehreren Linsenoberflächen, wobei mindestens zwei asphärische Linsenoberflächen benachbart zueinander, im folgenden mit Doppelasphäre bezeichnet, angeordnet sind, dadurch gekennzeichnet, daß die Doppelasphäre (21) mindestens in einem Abstand des maximalen Linsendurchmessers (D2) des Objektives beabstandet von einer Bildebene 0' angeordnet ist.
- 3. Refraktives Projektionsobjektiv nach dem Oberbegriff des Anspruchs 1 oder 2, dadurch gekennzeichnet, daß das Projektionsobjektiv (5) mindestens zwei Taillen (G2, G4) aufweist.
 - 4. Refraktives Projektionsobjektiv mit zwei Linsengruppen negativer Brechkraft, dadurch gekennzeichnet, daß mindestens eine der Linsengruppen negativer Brechkraft nur zwei Linsen negativer Brechkraft umfaßt.
 - 5. Refraktives Projektionsobjektiv nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die zweite Linsengruppe negativer Brechkraft maximal zwei Linsen negativer Brechkraft aufweist.

6. Refraktives Projektionsobjektiv nach Anspruch 5, dadurch gekennzeichnet, daß in der zweiten Taille eine asphärische Linsenoberfläche angeordnet ist.

- 7. Refraktives Projektionsobjektiv nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß in einer Linsengruppe (G5) positiver Brechkraft, in der eine Blende (AP) angeordnet ist, mindestens eine Linse (L720, L722, L723) mit einer asphärischen Linsenoberfläche vorgesehen ist.
- 8. Refraktives Projektionsobjektiv nach einem der Ansprüche 4 bis 6, dadurch
 gekennzeichnet, daß das Projektionsobjektiv mindestens eine Doppelasphäre nach
 Anspruch 2 aufweist.
 - 9. Projektionsobjektiv mindestens nach Anspruch 2 oder 8, dadurch gekennzeichnet, daß die asphärische Linsenoberflächen (AS1 und AS2, AS3 und AS4) auf verschiedenen Linsen (L) angeordnet sind.
 - 10. Refraktives Projektionsobjektiv nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß alle asphärischen Linsen (L104, L105, L107,L111, L203, L204, L206, L211) vor der zweiten Taille (G4) angeordnet sind.
 - 11. Refraktives Projektionsobjektiv mindestens nach Anspruch 2 oder 9, dadurch gekennzeichnet, daß zwischen den asphärischen Linsenoberflächen (AS1 und AS4, AS3 und AS4) der Doppelasphäre (21) ein Abstand (23) von maximal ihrem mittleren halben Linsendurchmesser, gemessen auf der optischen Achse (7) vorgesehen ist.
 - 12. Refraktives Projektionsobjektiv nach Anspruch 11, dadurch gekennzeichnet, daß zwischen den asphärischen Linsenoberflächen der Doppelasphäre (AS1 AS4) ein Luftspalt (23) gemessen auf der optischen Achse (7) von maximal 20 % ihres gemittelten Radiusses vorgesehen ist.

5

15

20

13. Projektionsobjektiv mindestens nach Anspruch 1,2 oder 9, dadurch gekennzeichnet, daß die benachbart angeordneten asphärischen Linsenoberflächen (AS1-AS4) in einem äquidistanten Abstand voneinander angeordnet sind.

- 5 14. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche 2 13, dadurch gekennzeichnet, daß in den ersten drei Linsengruppen (G1 bis G3) mindestens eine Doppelasphäre (21) angeordnet ist.
- 15. Projektionsobjektiv mindestens nach Anspruch 1, 2 oder 9, dadurch gekennzeichnet, daß sich die Radien der am besten passenden sphärischen Linsenoberflächen einer Doppelasphäre, die der jeweiligen asphärischen Linsenoberfläche (AS1 bis AS4) zugeordnet ist, um weniger als 30 % voneinander unterscheiden, wobei von dem vom Betrag größeren Radius ausgegangen wird.

15

16. Projektionsobjektiv mindestens nach Anspruch 1,2 oder 9, dadurch gekennzeichnet, daß sich die Scheitelradien der am besten passenden sphärischen Linsenoberflächen einer Doppelasphäre, die der jeweiligen asphärischen Linsenoberfläche (AS1 bis AS4) zugeordnet ist, um weniger als 30 % voneinander unterscheiden, wobei von dem vom Betrag größeren Radius ausgegangen wird.

20

17. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß sich die Durchmesser der ersten 13 Linsenoberflächen nahezu nicht, vorzugsweise um weniger als 10 %, unterscheiden.

25

18. Refraktives Projektionsobjektiv mindestens nach Anspruch 2 oder 9, dadurch gekennzeichnet, daß die ersten 13 Linsenoberflächen einen Durchmesser (D1) aufweisen, der kleiner als 40 % des maximalen Durchmessers (D2) von Linsen des Objektives (5) ist.

19. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß mittels der Doppelasphären (21) eine numerische Apertur von mindestens 0,8, insbesondere von 0,9, bereitgestellt wird.

- 5 20. Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß durch zwei Linsenoberflächen ein mit Fluid beaufschlagbarer Zwischenraum gebildet wird.
- 21. Projektionsobjektiv mindestens nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mindestens 40 % der Linsen, vorzugsweise 60% der Linsen, sphärisch sind.
 - 22. Refraktives Projektionsobjektiv nach Anspruch 2, dadurch gekennzeichnet, daß mindestens 60 % der Linsen sphärisch sind.
- 23. Projektionsbelichtungsanlage der Mikrolithographie, dadurch gekennzeichnet, daß sie ein Projektionsobjektiv (5) nach mindestens einem der Ansprüche 1 bis 22 enthält.
 - 24. Verfahren zur Herstellung mikrostrukturierter Bauteile bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat (15) mittels einer Maske (9) und einer Projektionsbelichtungsanlage (1) mit einer Linsenanordnung (19) nach mindestens einem der Ansprüche 1 bis 22 durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach Entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthaltenen Muster strukturiert wird.

25

20

ERSATZBLATT (REGEL 26)

F16.3

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

F16.5

ERSATZBLATT (REGEL 26)

ERSATZBLATT (REGEL 26)

INTERNATIONAL SEARCH REPORT

Internatio plication No

PCT/EP 00/13148 A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G02R13/1/ G02B13/18 G03F7/20 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 GO2B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) WPI Data, EPO-Internal, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 1 079 253 A (NIPPON KOGAKU KK) 2 28 February 2001 (2001-02-28) cited in the application figures 4A,4B,7A,7B; tables 1,2 Α 1,3-24-& WO 99 52004 A (NIPPON KOGAKU KK) 14 October 1999 (1999-10-14) X PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13, 30 November 1999 (1999-11-30) -& JP 11 231219 A (RICOH OPT IND CO LTD), 27 August 1999 (1999-08-27) abstract: figures X Further documents are listed in the continuation of box C. Patent family members are listed in annex. ° Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25 May 2001 01/06/2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Ward, S

INTERNATIONAL SEARCH REPORT

Internatio plication No
PCT/EP 00/13148

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	1_
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03, 31 March 1999 (1999-03-31) -& JP 10 325922 A (NIKON CORP), 8 December 1998 (1998-12-08) abstract; figures 1,3,7	1-24
Α	US 4 757 354 A (KAWATA KOICHI ET AL) 12 July 1988 (1988-07-12) column 7, line 11 - line 25 figures 6,7	1-24
A	US 5 990 926 A (MERCADO ROMEO I) 23 November 1999 (1999-11-23) abstract; figures	1-24
Α	US 5 835 285 A (MATSUZAWA HITOSHI ET AL) 10 November 1998 (1998-11-10) abstract; figures	4
Α .	US 4 861 148 A (KAWATA KOICHI ET AL) 29 August 1989 (1989-08-29) column 5, line 30 - line 45 figures 5,6	1-24
Α	EP 0 816 892 A (NIPPON KOGAKU KK) 7 January 1998 (1998-01-07) figures 1,3	1-24
Α	US 5 724 121 A (BURGESS JOHN R ET AL) 3 March 1998 (1998-03-03) column 9, line 10 - line 20; figures	1-24
Α	EP 0 851 304 A (CANON KK) 1 July 1998 (1998-07-01) cited in the application abstract; figures	1-24
Α	DE 198 18 444 A (NIPPON KOGAKU KK) 29 October 1998 (1998-10-29) cited in the application abstract; figures	1-24
A	EP 0 332 201 A (MATSUSHITA ELECTRIC IND COLTD) 13 September 1989 (1989-09-13) cited in the application abstract; figures	1-24

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation plication No
PCT/EP 00/13148

Patent document cited in search repor	t	Publication date	Patent family member(s)	Publication date
EP 1079253	Α	28-02-2001	JP 2000195772 A JP 11354436 A WO 9952004 A	14-07-2000 24-12-1999 14-10-1999
JP 11231219	Α	27-08-1999	NONE	
JP 10325922	Α	08-12-1998	NONE	
US 4757354	A	12-07-1988	JP 62258414 A JP 63014112 A DE 3784963 A DE 3784963 T EP 0243950 A	10-11-1987 21-01-1988 29-04-1993 15-07-1993 04-11-1987
US 5990926	Α	23-11-1999	JP 11097347 A	09-04-1999
US 5835285	A	10-11-1998	JP 8190047 A EP 0721150 A	23-07-1996 10-07-1996
US 4861148	Α	29-08-1989	JP 62210415 A JP 63014113 A DE 3787035 A DE 3787035 T EP 0237041 A	16-09-1987 21-01-1988 23-09-1993 10-03-1994 16-09-1987
EP 0816892	Α	07-01-1998	JP 10003039 A	06-01-1998
US 5724121	Α	03-03-1998	NONE	
EP 0851304	Α	01-07-1998	JP 10242048 A US 6104472 A	11-09-1998 15-08-2000
DE 19818444	A	29-10-1998	JP 11006957 A US 6008884 A	12-01-1999 28-12-1999
EP 0332201	A	13-09-1989	JP 2220015 A JP 1315709 A JP 2012132 C JP 7048089 B DE 68916451 D DE 68916451 T US 4948238 A	03-09-1990 20-12-1989 02-02-1996 24-05-1995 04-08-1994 17-11-1994 14-08-1990

Internatic -..tenzeichen PCT/EP 00/13148

INTERNATIONALER RECHERCHENBERICHT A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 G02B13/14 G02B13/18 G02B13/14 G02B13/18 G03F7/20 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 GO2B Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) WPI Data, EPO-Internal, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. χ EP 1 079 253 A (NIPPON KOGAKU KK) 2 28. Februar 2001 (2001-02-28) in der Anmeldung erwähnt Abbildungen 4A,4B,7A,7B; Tabellen 1,2 Α 1.3 - 24-& WO 99 52004 A (NIPPON KOGAKU KK) 14. Oktober 1999 (1999-10-14) PATENT ABSTRACTS OF JAPAN X vol. 1999, no. 13, 30. November 1999 (1999-11-30) -& JP 11 231219 A (RICOH OPT IND CO LTD), 27. August 1999 (1999-08-27) Zusammenfassung; Abbildungen Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie lχ X Besondere Kategorien von angegebenen Veröffentlichungen "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit elner oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für elnen Fachmann naheliegend ist ausgeführt) Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 25. Mai 2001 01/06/2001 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Ward, S

INTERNATIONALER RECHERCHENBERICHT

Internatio Aktenzeichen
PCT/EP 00/13148

C (Fortcet-	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	FC1/EF 00/13148
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 03, 31. März 1999 (1999-03-31) -& JP 10 325922 A (NIKON CORP), 8. Dezember 1998 (1998-12-08) Zusammenfassung; Abbildungen 1,3,7	1-24
Α	US 4 757 354 A (KAWATA KOICHI ET AL) 12. Juli 1988 (1988-07-12) Spalte 7, Zeile 11 - Zeile 25 Abbildungen 6,7	1-24
A	US 5 990 926 A (MERCADO ROMEO I) 23. November 1999 (1999-11-23) Zusammenfassung; Abbildungen	1-24
A	US 5 835 285 A (MATSUZAWA HITOSHI ET AL) 10. November 1998 (1998-11-10) Zusammenfassung; Abbildungen	4
A	US 4 861 148 A (KAWATA KOICHI ET AL) 29. August 1989 (1989-08-29) Spalte 5, Zeile 30 - Zeile 45 Abbildungen 5,6	1-24
A	EP 0 816 892 A (NIPPON KOGAKU KK) 7. Januar 1998 (1998-01-07) Abbildungen 1,3	1-24
Α	US 5 724 121 A (BURGESS JOHN R ET AL) 3. März 1998 (1998–03–03) Spalte 9, Zeile 10 – Zeile 20; Abbildungen	1-24
Α	EP 0 851 304 A (CANON KK) 1. Juli 1998 (1998-07-01) in der Anmeldung erwähnt Zusammenfassung; Abbildungen	1-24
Α	DE 198 18 444 A (NIPPON KOGAKU KK) 29. Oktober 1998 (1998–10–29) in der Anmeldung erwähnt Zusammenfassung; Abbildungen	1-24
Α	EP 0 332 201 A (MATSUSHITA ELECTRIC IND COLTD) 13. September 1989 (1989-09-13) in der Anmeldung erwähnt Zusammenfassung; Abbildungen	1-24

INTERNATIONALER RECHERCHENBERICHT

Ängaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internation tenzelchen
PCT/EP 00/13148

Im Recherchenberic angeführtes Patentdoku		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 1079253	Α	28-02-2001	JP 2000195772 A JP 11354436 A WO 9952004 A	14-07-2000 24-12-1999 14-10-1999
JP 11231219	Α	27-08-1999	KEINE	
JP 10325922	Α	08-12-1998	KEINE	
US 4757354	Α	12-07-1988	JP 62258414 A JP 63014112 A DE 3784963 A DE 3784963 T EP 0243950 A	10-11-1987 21-01-1988 29-04-1993 15-07-1993 04-11-1987
US 5990926	Α	23-11-1999	JP 11097347 A	09-04-1999
US 5835285	Α	10-11-1998	JP 8190047 A EP 0721150 A	23-07-1996 10-07-1996
US 4861148	A	29-08-1989	JP 62210415 A JP 63014113 A DE 3787035 A DE 3787035 T EP 0237041 A	16-09-1987 21-01-1988 23-09-1993 10-03-1994 16-09-1987
EP 0816892	Α	07-01-1998	JP 10003039 A	06-01-1998
US 5724121	Α	03-03-1998	KEINE	
EP 0851304	A	01-07-1998	JP 10242048 A US 6104472 A	11-09-1998 15-08-2000
DE 19818444	Α	29-10-1998	JP 11006957 A US 6008884 A	12-01-1999 28-12-1999
EP 0332201	A	13-09-1989	JP 2220015 A JP 1315709 A JP 2012132 C JP 7048089 B DE 68916451 D DE 68916451 T US 4948238 A	03-09-1990 20-12-1989 02-02-1996 24-05-1995 04-08-1994 17-11-1994 14-08-1990