DISCLAIMER

Questo è un file che contiene una lista di tutti i teoremi, osservazioni, definizioni, esempi, lemmi, corollari, formule e proposizioni senza alcuna dimostrazione, di conseguenza molte informazioni risulteranno essere senza alcun contesto se già non si conosce la materia. Detto questo, buona

Coefficienti binomiali

Definizione 1

- Coefficiente binomiale
 - 0! := 1

•
$$n, k \in \mathbb{N}$$

• $\binom{n}{k} := \begin{cases} \frac{n!}{n!(n-k)!} & k \leq n \\ 0 & k > n \end{cases}$

Teorema 1

• Hp
$$-n, k \in \mathbb{N}$$
• Th
$$-\binom{n}{k} = \binom{n}{n-k}$$

Teorema 2

- Hp $-n, k \in \mathbb{N}$

-
$$n, k \in \mathbb{N}$$

- $\binom{n}{k+1} = \binom{n-1}{k+1} \binom{n-1}{k}$

Teorema 3

• Hp

$$\begin{array}{l} - \mathbf{p} \\ - p \in \mathbb{P} \\ - k \in \mathbb{N} \mid 0 < k < p \end{array}$$

• Th
$$-p \binom{p}{k}$$

- Hp
 - $-n \in \mathbb{Z}$ $-p \in \mathbb{P} : p \mid n$ $-[a] \in \mathbb{Z}_p$

• Th
$$- n \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

• Hp
$$\begin{array}{ccc} & & & & \\ & -n \in \mathbb{Z} \\ & -p \in \mathbb{P} : p \mid n \\ & -[a] \in \mathbb{Z}_p \\ & -k \in \mathbb{N} \mid 0 < k < p \end{array}$$
• Th
$$- \binom{p}{k} \cdot [a] = [0] \text{ in } \mathbb{Z}_p$$

Teorema 6

• Hp
$$-p \in \mathbb{P}$$
 $-[a], [b] \in \mathbb{Z}_p$
• Th $-([a] + [b])^p = [a]^p + [b]^p \text{ in } \mathbb{Z}_p$

Teorema 7

• Hp
$$- p \in \mathbb{P} \\
- [a_1], \dots, [a_n] \in \mathbb{Z}_p$$
• Th
$$- ([a_1] + \dots + [a_n])^p = [a_1]^p + \dots + [a_n]^p \text{ in } \mathbb{Z}_p$$

Gruppi diedrali

Definizione 2

- Gruppo diedrale
 - $n \in \mathbb{N}_{\geq 2}$
 - D_n è l'insieme delle simmetrie dell'n-gono regolare
 - l'insieme delle rotazioni che lasciano l'n-gono invariato, e delle riflessioni rispetto agli assi di simmetria

 - $\rho :=$ rotazione di $\frac{360\tilde{r}}{n}$ gradi di un n-gono regolare $\sigma_i :=$ riflessione rispetto all'i-esimo asse di simmetria dell'n-gono regolare

- Hp
 - $-n \in \mathbb{N}_{\geq 2}$
 - $-D_n$ insieme delle simmetrie dell'*n*-gono regolare
- Th

$$-|D_n| = 2n$$

 $-n \in \mathbb{N}_{\geq 2}$

 $-\ D_n$ insieme delle simmetrie dell'
 n-gono regolare

- · è l'operazione di composizione delle simmetrie

• Th

 $-(D_n,\cdot)$ è un gruppo

Teorema 10

• Hp

 $-D_2$ gruppo diedrale

- (D_2,\cdot) è l'unico gruppo diedrale abeliano

Teorema 11

 $-D_n$ gruppo diedrale

• Th

 $-D_n \hookrightarrow S_n$

 $- \ \exists X \subset S_n$ sottogruppo di $S_n \mid D_n \cong X$ $* D_3 \cong S_3$

Definizione 3

• Gruppo di Klein

•
$$K_4 := \{1, a, b, c\}$$

• $a^2 = b^2 = c^2 = 1$

• ab = c = ba

• ac = b = ca

• cb = a = bc

Teorema 12

 $-K_4$ è il gruppo di Klein

• Th

 $-K_4 \cong D_2$

Gruppi

Definizione 4

• Semigruppo

- S insieme
- $m: S \times S \rightarrow S$
- (S, m) semigruppo $\iff \forall x, y, z \in S \quad m(x, m(y, z)) = m(m(x, y), z)$

• Monoide

- S insieme
- $m: S \times S \rightarrow S$
- (S,m) monoide \iff (S,m) semigruppo e $\forall x \in S \ \exists e \in S \mid m(x,e) = m(e,x) = x$

• Gruppo

- \bullet S insieme
- $m: S \times S \rightarrow S$
- (S,m) gruppo \iff (S,m) monoide e $\forall x \in S \ \exists x^{-1} \in S \mid m(x,x^{-1}) = m(x^{-1},x) = e$

• Gruppo abeliano

- \bullet S insieme
- $m: S \times S \rightarrow S$
- (S,m) gruppo abeliano $\iff (S,m)$ gruppo e $\forall x,y \in S \quad m(x,y) = m(y,x)$

Teorema 13

- Hp
 - G monoide
 - $\ \exists e \in G$ elemento neutro
- Th
 - e è unico in G

Teorema 14

- Hp
 - -(G,m) gruppo
 - $-x \in G$
 - $-\exists x^{-1} \in G$ inverso di x rispetto ad m
- Th
 - $-x^{-1}$ è unico in G per x rispetto a m

Teorema 15

- Hp
 - -X, Y insiemi, $-Y^X = \{f \mid f: X \to Y\}$
- Th
 - $-(X^X, \circ)$ è monoide

- Hp
 - -X,Y insiemi finiti

• Th $- |Y^X| = |Y|^{|X|}$

Anelli

Definizione 5

- Anello
 - A insieme
 - $\bullet \ \ +: A \times A \to A$
 - $\bullet \ \ *: A \times A \to A$
 - (A, +, *) anello \iff (A, +) gruppo abeliano, (A, *) monoide e $\forall a, b, c \in A$ a*(b+c) = a*b+a*c
 - $a*b=b*a \quad \forall a,b\in A \implies (A,*,+)$ è un anello commutativo
- Campo
 - (A, +, *) anello
 - (A, +, *) è un **campo** $\iff \forall x \in A \quad \exists x^{-1}$ rispetto a *
- Semianello commutativo
 - \bullet A insieme
 - $\bullet \ \ +: A \times A \to A$
 - $\bullet \ \ *: A \times A \to A$
 - (A, +, *) semianello commutativo \iff (A, +) monide commutativo, (A, *) monoide commutativo e $\forall a, b, c \in A$ a * (b + c) = a * b + a * c
- Sottoanello
 - $(A, +, \cdot)$ anello
 - $(B,+,\cdot)\subset (A,+,\cdot)$ sottoanello $\iff (B,+)\subset (A,+)$ sottogruppo e $B\cdot B\subset B$

Definizione 6

- Invertibili
 - $(A, +, \cdot)$ anello commutativo
 - $a \in A$ invertibile $\iff \exists a^{-1} \in A \mid a \cdot a^{-1} = e$, dove e è l'elemento neutro dell'anello rispetto a \cdot
 - $A^* := \{a \in A \mid a \text{ invertibile}\}$ è l'insieme degli invertibili di A

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)$ è un gruppo

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-(A^*,\cdot)\subset (A,\cdot)$ è un sottogruppo

Definizione 7

- Divisori dello 0
 - $(A, +, \cdot)$ anello commutativo
 - $a \in A$ divisore dello $0 \iff \exists b \in A \{0\} \mid a \cdot b = 0$
- Dominio di integrità
 - $(A, +, \cdot)$ anello commutativo
 - A dominio di integrità $\iff \nexists x \neq 0 : x \mid 0$
 - alternativamente, A è dominio di integrità \iff in A vale la legge di annullamento del prodotto

Teorema 19

- Hp
 - $-(A,+,\cdot)$ anello commutativo
- Th
 - $-x \mid 0 \iff x \notin A^*$

Teorema 20

- Hp
 - -A campo
- Th
 - A dominio di integrità

Definizione 8

- Elementi irriducibili
 - \bullet A anello commutativo
 - $a \in A \{0\} \mid a \in A^*$
 - a irriducibile $\iff \exists b,c \in A \mid a=bc \implies b \in A^* \lor c \in A^*$
- Elementi primi
 - A anello commutativo
 - $a \in A \{0\} \mid a \in A^*$
 - $a \text{ primo} \iff \exists b, c \in A : a \mid bc \implies a \mid b \lor a \mid c$

- Hp
 - $-\ A$ dominio di integrità

• Th

-a primo $\implies a$ irriducibile

Sottogruppi

Definizione 9

- Sottogruppo
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo $\iff \exists e \in H \mid e \text{ è l'elemento neutro}, H*H \subset H$ e $\exists x^{-1} \in H \quad \forall x \in H$

Definizione 10

- Sottogruppo normale
 - (G,*) gruppo
 - $(H,*) \subset (G,*)$ sottogruppo
 - $x \in G$
 - $xH := \{xh \mid h \in H\}$
 - $Hx := \{hx \mid h \in H\}$
 - H sottogruppo normale $\iff \forall x \in G \quad xH = Hx$

Teorema 22

- Hp
 - -G gruppo
 - 1) H è sottogruppo normale
 - 2) $\forall g \in G, h \in H \quad g \cdot h \cdot g^{-1} \in H$
 - 3) $\forall g \in G, h \in H \quad \exists k \in H \mid g \cdot h = k \cdot g$
- Th
 - le tre formulazioni sono equivalenti

Ordine

- Ordine di un elemento in un gruppo
 - \bullet G gruppo
 - q ∈ G
 - $H(g) := \{g^n \mid n \in \mathbb{Z}\}$ è detto sottogruppo ciclico
 - prende il nome di $sottogruppo\ ciclico$ poiché, a seconda del gruppo, le potenze di g possono essere infinite o finite, ma quest'ultimo caso si verifica esclusivamente quando le potenze ciclano su loro stesse
 - o(g) := |H(g)| è detto **ordine di** $g \in G$

 $-\,$ tale valore può dunque essere infinito o finito, e in quest'ultimo caso l'ordine costituisce il valore più piccolo, non nullo, per cui $g^{o(g)}=e,$ poiché per valori maggiori le potenze ricicleranno infinitamente

Teorema 23

Teorema 24

Teorema 25

• Hp
$$-G \text{ gruppo} \\ -g \in G \\ -I(g) := \{n \in \mathbb{Z} \mid g^n = e\}$$
• Th
$$-I(g) \text{ è un ideale}$$

Teorema 26

• Hp
$$-G \text{ gruppo}$$

$$-g \in G$$

$$-\exists! d \geq 0 \mid I(g) = I(d)$$
• Th
$$-d = 0 \implies o(g) := |H(g)| = |\mathbb{Z}|, \text{ dunque infinito}$$

$$-d > 0 \implies d = o(g)$$

Teorema 27

• Hp
$$- (G, \cdot) \text{ gruppo finito} \\ - g \in G \mid d := o(g) \text{ finito}$$
 • Th
$$- g^{|G|} = e$$

Teorema 28

$$-G \text{ gruppo finito} \\ -g \in G$$

• Th
$$-o(g) = o(g^{-1})$$

• Hp $-G \text{ gruppo finito} \\ -k \in \mathbb{Z}$ • Th $-\forall g \in G \quad o(g^k) \mid o(g)$

Teorema 30

• **Hp** -G gruppo finito $-g,h \in G \mid gh = hg$ -d := MCD(o(g),o(h)) -m := mcm(o(g),o(h))• **Th** $-\frac{m}{d} \mid o(gh) \wedge o(gh) \mid m$

Teorema 31

• **Hp** $- G \text{ gruppo finito} \\
 - g, h \in G \mid gh = hg \\
 - d := \text{MCD}(o(g), o(h)) = 1 \\
 - m := \text{mcm}(o(g), o(h))$ • **Th** - o(gh) = o(hg) = m

Ideali

Definizione 12

- Ideali
 - $(A, +, \cdot)$ anello
 - $I \subset A$ ideale \iff $(I,+) \subset (A,+)$ è un sottogruppo e $A \cdot I \subset I$ e $I \cdot A \subset I$

• Hp
$$\begin{array}{ccc} - & (A,+,\cdot) \text{ anello} \\ - & a \in \mathbb{Z} \\ - & I(a) := \{ax \mid x \in A\} \end{array}$$

• Th

-I(a) è un ideale, e prende il nome di ideale di A generato da $a \in A$

Teorema 33

• Hp

− A dominio di integrità

 $-a,b \in A$

• Th

$$-I(a) = I(b) \iff \exists c \in A^* \mid a = bc$$

Teorema 34

• Hp

$$-a, b \in \mathbb{Z} - \{0\}$$

• Th

$$-I(a) = I(b) \iff a = \pm b$$

Teorema 35

• Hp

 $-(A,+,\cdot)$ anello

 $-a_1,\ldots,a_n\in\mathbb{Z}$

$$-I(a_1,\ldots,a_n) := \{a_1b_1 + \ldots + a_nb_n \mid b_1,\ldots,b_n \in A\}$$

• Th

 $-I(a_1,\ldots,a_n)$ è un ideale, e prende il nome di *ideale di A generato dagli* $a_1,\ldots,a_n\in A$

Definizione 13

- Congruenza modulo di un ideale
 - $(A, +, \cdot)$ anello
 - $I \subset A$ ideale
 - per definizione, I ideale \Longrightarrow $(I,+) \subset (A,+)$ sottogruppo, dunque ha senso definire A/I, e infatti I induce una relazione di equivalenza su A detta **congruenza modulo** I, dove $\forall a,b \in A$ $a \equiv b \pmod{I} \iff b-a \in I$
 - $b-a \in I \iff (-a)+b \in I$, di conseguenza questa congruenza coincide con la classe laterale sinistra di (A,+)

Teorema 36

• Hp

$$\begin{array}{ll} - & (A,+,\cdot) \text{ anello} \\ - & + : A/I \times A/I \to A/I \\ - & \cdot : A/I \times A/I \to A/I \end{array}$$

• Th

$$-(A/I,+,\cdot)$$
 è un anello

Teorema 37

- $I\subset\mathbb{Z}$ ideale

• Th

 $-\exists!\ d\in\mathbb{N}\mid I=I(d)$, o equivalentemente, in \mathbb{Z} ogni ideale è principale

Teorema 38

• Hp

$$-a_1, \dots, a_n \in \mathbb{Z}$$

- $\exists ! d \in \mathbb{N} \mid I(a_1, \dots, a_n) = I(d)$

• Th

$$-d = MCD(a_1, \ldots, a_n)$$

Definizione 14

- Massimo Comun Divisore
 - $a_1, \ldots, a_n \in \mathbb{Z}$
 - $\exists!d\in\mathbb{N}\mid I\left(a_1,\ldots,a_n\right)=I(d)$, ed è detto massimo comun divisore degli a_1,\ldots,a_n
 - per dimostrazione precedente $I(a_1, \ldots, a_n)$ è un ideale, e per dimostrazione precedente ogni ideale in \mathbb{Z} è principale, dunque per un certo d coincide con I(d), e in particolare d è proprio il massimo comun divisore degli a_1, \ldots, a_n per dimostrazione precedente

Teorema 39

• Hp

$$-a_1, \dots, a_n \in \mathbb{Z}$$
$$-d := \mathrm{MCD}(a_1, \dots, a_n)$$

• Th

 $-\exists x_1,\ldots,x_n\in\mathbb{Z}\mid a_1x_1+\ldots+a_nx_n=d$, che prende il nome di *identità di Bézout*

Teorema 40

• !!! MANCA DIMOSTRAZIONE SISTEMA DI IDENTITÀ DI BÉZOUT

Operazioni sugli ideali

Definizione 15

- \bullet + tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I + J = \{i + j \mid \forall i \in I, j \in J\}$

Teorema 41

 $-\ (A,+,\cdot)$ anello commutativo $-\ I,J\subset A$ ideali

-I+Jè un ideale

Definizione 16

- \cap tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I \cap J = \{x \in I \land x \in J\}$

Teorema 42

• Hp

 $-(A,+,\cdot)$ anello commutativo

- $I, J \subset A$ ideali

• Th

 $-I \cap J$ è un ideale

Definizione 17

- Minimo Comune Multiplo
 - $a_1, \ldots, a_n \in \mathbb{Z}$
 - $\exists ! m \in \mathbb{N} \mid I(m) = I(a_1) \cap \ldots \cap I(a_n) = \bigcap_{i=1}^n I(a_i)$, ed è detto minimo comune multiplo degli a_1, \ldots, a_n

Definizione 18

- · tra ideali
 - $(A, +, \cdot)$ anello commutativo
 - $I, J \subset A$ ideali
 - $I \cdot J = \{i_1 j_1 + \ldots + i_k j_k \mid k \ge 1, \forall i_1, \ldots, i_k \in I, j_1, \ldots, j_k \in J\}$

Teorema 43

 $-(A, +, \cdot)$ anello commutativo

- $\dot{I},\dot{J}\subset A$ ideali

 $-\ I\cdot J$ è un ideale

Teorema 44

$$-a, b \in \mathbb{Z}$$

$$-d := MCD(a, b)$$

• Th
$$-I(a) + I(b) = I(d)$$

 $-a, b \in \mathbb{Z}$ $- I(a) \cdot I(b) = I(a \cdot b)$

Induzione

Definizione 19

- Induzione
 - successione di proposizioni infinita P_1, P_2, P_3, \dots
 - $\begin{cases} P_1 \text{ vera} \\ P_1, P_2, P_3, \dots, P_n \implies P_{n+1} \quad \forall n \geq 1 \end{cases}$ allora P_n vera $\forall n$

Teorema 46

• Hp
$$-\begin{cases} F_0=0\\ F_1=1\\ F_n=F_{n-1}+F_{n-2} & \text{\dot{e} detta $sequenza$ di $Fibonacci$} \end{cases}$$

$$-x^2-x-1=0 \text{ ha come soluzioni} \begin{cases} \phi:=\frac{1+\sqrt{5}}{2}\\ \psi:=\frac{1-\sqrt{5}}{2} \end{cases}$$

• Th
$$- \forall n \in \mathbb{N} \quad F_n = \frac{\varphi^n - \psi^n}{\varphi - \psi} = \frac{\varphi^n - \psi^n}{\sqrt{5}}$$

Insieme quoziente

- Insieme quoziente
 - G gruppo
 - \sim relazione di equivalenza in G
 - $\forall x \in G \quad [x] := \{ y \in G \mid x \sim y \}$
 - $G/\sim:=\{[x]\mid x\in G\}$ è l'insieme quoziente, ovvero l'insieme delle classi di equivalenza determinate da \sim

Definizione 21

- Insieme quoziente \mathbb{Z}_n
 - $(\mathbb{Z}, +, \cdot)$ anello, in particolare $(\mathbb{Z}, +)$ gruppo
 - $n \in \mathbb{Z}$
 - \mathbb{Z}/\equiv è l'insieme delle classi di equivalenza definite dalla relazione di equivalenza \equiv
 - $m \equiv r \pmod{n} \iff r \equiv m \pmod{n} \implies n \mid m-r \implies \exists q : nq = m-r \implies m = nq + r \quad 0 \le r < n$
 - $0 \le r < n \implies$ è possibile definire $\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$, che coincide con \mathbb{Z}/\equiv

Teorema 47

• Hp

$$-n \in \mathbb{Z}$$
$$-I(n) := \{nk \mid k \in \mathbb{Z}\}\$$

• Th

$$-(\mathbb{Z}_n,+)$$
è un gruppo

Teorema 48

• Hp

$$-p \in \mathbb{P}$$
$$-a, b \in \mathbb{Z}$$

- $-p \mid ab$
- Th

$$-p \mid a \lor p \mid b$$

Teorema 49

• Hp

$$-n \in \mathbb{Z}$$

- Th
 - \mathbb{Z}_n dominio di integrità $\iff n \in \mathbb{P}$

Teorema 50

- Hp
 - $-n \in \mathbb{Z}$
- Th

$$- \forall [a] \in \mathbb{Z}_n \quad \mathrm{MCD}(a, n) = 1 \iff [a] \in \mathbb{Z}_n^*$$

- Hp
 - $-p \in \mathbb{P}$
- Th
 - $-\mathbb{Z}_p$ campo

• **Hp**
$$- p \in \mathbb{P}$$

• Th
$$- (\mathbb{Z}_p^*, \cdot) \ \text{\`e ciclico}$$

Funzione totiente di Eulero

Definizione 22

- Funzione totiente di Eulero
 - $n \in \mathbb{N}$
 - $\varphi(n) := |\mathbb{Z}_n^*|$

Teorema 53

$$-n, m \in \mathbb{N}$$

$$- [a] \in \mathbb{Z}_{mn}^* \iff [a] \in \mathbb{Z}_m^* \land [a] \in \mathbb{Z}_n^*$$

Teorema 54

$$-m, n \in \mathbb{N} \mid \mathrm{MCD}(m, n) = 1$$

$$-\varphi(m\cdot n) = \varphi(m)\cdot\varphi(n)$$

Teorema 55

$$\begin{array}{l} - \ p \in \mathbb{P} \\ - \ k \in \mathbb{N} \mid k \ge 1 \end{array}$$

$$-\varphi(p^k) = p^{k-1}(p-1)$$

$$\begin{array}{c|c}
-k \in \mathbb{N} \mid k \ge 1 \\
-n, & \in \mathbb{P}
\end{array}$$

$$-i_1,\ldots,i_k\geq 1$$

$$-n \in \mathbb{N} \mid n = p_1^{i_1} \cdot \ldots \cdot p_k^i$$

$$-k \in \mathbb{N} \mid k \ge 1$$

$$-p_1, \dots, p_k \in \mathbb{P}$$

$$-i_1, \dots, i_k \ge 1$$

$$-n \in \mathbb{N} \mid n = p_1^{i_1} \cdot \dots \cdot p_k^{i_k}$$
• Th
$$-\varphi(n) = n \cdot \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$$

Matrici

Definizione 23

- Matrici
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $\operatorname{Mat}_{m \times n}(\mathbb{K})$ è l'insieme delle matrici aventi m righe e n colonne a coefficienti in \mathbb{K}
- Vettori riga e vettori colonna
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $\forall A \in \mathrm{Mat}_{1 \times n}(\mathbb{K})$ $A = (x_1, \dots, x_n)$ è detto **vettore riga**
 - $\forall A \in \operatorname{Mat}_{m \times 1}(\mathbb{K})$ $A = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$ è detto **vettore colonna** $\forall A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ $\exists A^1, \dots, A^n \in \mathbb{K}^m$ vettori colonna e $A_1, \dots, A_m \in \mathbb{K}^n$
 - vettori riga | $A = (A^1, \dots, A^n) = \begin{pmatrix} A_1 \\ \vdots \\ A \end{pmatrix}$

Definizione 24

- Somma tra matrici
 - K campo

 - $\begin{array}{ll} \bullet & m,n \in \mathbb{N} \{0\} \\ \bullet & \forall i \in [1,m], j \in [1,n] \quad a_{i,j},b_{i,j} \in \mathbb{K} \end{array}$

•
$$A, B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid A = \begin{pmatrix} \ddots & & \\ & a_{i,j} & \\ & & \ddots \end{pmatrix} \wedge B = \begin{pmatrix} \ddots & & \\ & b_{i,j} & \\ & & \ddots \end{pmatrix}$$

•
$$A+B=\left(\begin{array}{cccc} \ddots & & & \\ & a_{i,j}+b_{i,j} & & \\ & & \ddots \end{array}\right)$$
è la somma tra A e B

Teorema 57

- Hp
 - − K campo
 - $-m, n \in \mathbb{N} \{0\}$
- Th
 - $\operatorname{Mat}_{m \times n}(\mathbb{K})$ è uno spazio vettoriale

Definizione 25

• Prodotto scalare

- K campo
- $m, n \in \mathbb{N} \{0\}$
- $A \in \operatorname{Mat}_{1 \times n}(\mathbb{K})$
- $B \in \mathrm{Mat}_{m \times 1}(\mathbb{K})$
- $A \cdot B := \sum_{i=1}^{n} a_i \cdot b_i$ è il prodotto scalare tra A e B

• !!! WIP

Definizione 26

- Prodotto tra matrici
 - K campo
 - $l, m, n \in \mathbb{N} \{0\}$

•
$$A \in \operatorname{Mat}_{l \times m}(\mathbb{K}) \mid A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ \vdots & \ddots & \vdots \\ a_{l,1} & \cdots & a_{l,m} \end{pmatrix}$$

• $B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid B = \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,n} \end{pmatrix}$

•
$$B \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \mid B = \begin{pmatrix} b_{1,1} & \cdots & b_{1,n} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,n} \end{pmatrix}$$

•
$$C \in \operatorname{Mat}_{l \times n}(\mathbb{K}) \mid C = A \cdot B \ \text{è il } \mathbf{prodotto} \ \mathbf{tra} \ A \ \mathbf{e} \ B, \ \mathbf{ed} \ \text{è definito come}$$

$$\begin{pmatrix} a_{1,1}b_{1,1} + \ldots + a_{1,m}b_{m,1} & \cdots & a_{1,1}b_{1,n} + \ldots + a_{1,m}b_{m,n} \\ \vdots & \ddots & \vdots \\ a_{l,1}b_{1,1} + \ldots + a_{l,m}b_{m,1} & \cdots & a_{l,1}b_{1,n} + \ldots + a_{l,m}b_{m,n} \end{pmatrix}$$

Teorema 59

- Hp
 - \mathbb{K} campo
 - $-\lambda \in \mathbb{K}$
 - $-l, m, n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{l \times m}(\mathbb{K})$
 - $-B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- Th
 - -(AB)C = A(BC)
 - -A(B+C) = AB + AC
 - -(A+B)C = AC + BC
 - $-\lambda(AB) = (\lambda A)B = A(\lambda B)$

- Hp
 - $\mathbb{K} \text{ campo}$
 - $-\lambda \in \mathbb{K}$
 - $-n \in \mathbb{N} \{0\}$

• Th

 $- (\mathrm{Mat}_{n \times n}(\mathbb{K}), +, \cdot)$ è un anello

Rango

Definizione 27

- Sottospazio ortogonale
 - K campo
 - $n \in \mathbb{N} \{0\}$
 - $V \subset \mathbb{K}^n$ sottospazio vettoriale
 - $V^{\perp} := \{ w \in \mathbb{K}^n \mid \forall v \in V \quad w \cdot v = 0_{\mathbb{K}^n} \}$ è detto sottospazio ortogonale di \mathbb{K}^n la definizione ha significato poiché il prodotto scalare tra due vettori è
 - la definizione na significato poicne il prodotto scalare tra due vettori e nullo esattamente quando i due vettori sono perpendicolari tra loro, per osservazione precedente

Teorema 61

• Hp

 $- \mathbb{K}$ campo

 $-n \in \mathbb{N} - \{0\}$

 $-\ V\subset \mathbb{K}^n$ sottospazio vettoriale

• Th

 $-\ V^{\perp}$ è sottospazio vettoriale di \mathbb{K}^n

Teorema 62

• Hp

− K campo

 $-n \in \mathbb{N} - \{0\}$

- $V\subset \mathbb{K}^n$ sottospazio vettoriale

• Th

 $-\dim(V^{\perp}) = \dim(\mathbb{K}^n) - \dim(V)$

Definizione 28

- Moltiplicazione sinistra
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $x \in \operatorname{Mat}_{n \times 1}(\mathbb{K})$
 - $\forall A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ $L_A : \mathbb{K}^n \to \mathbb{K}^m : x \to A \cdot x$

Teorema 63

• Hp

- \mathbb{K} campo

 $-m, n \in \mathbb{N} - \{0\}$

```
-x \in \mathrm{Mat}_{n \times 1}(\mathbb{K})
```

• Th

 $- \forall A \in \mathrm{Mat}_{m \times n}(\mathbb{K}) \quad L_A$ è una trasformazione lineare

Teorema 64

- Hp
 - − K campo
 - $-m,n\in\mathbb{N}-\{0\}$
 - $-x \in \mathrm{Mat}_{n \times 1}(\mathbb{K})$
- Th

$$- \forall A \in \operatorname{Mat}_{m \times n}(\mathbb{K}) \quad \ker(L_A) = \operatorname{span}(A_1, \dots, A_m)^{\perp} \wedge \operatorname{im}(L_A) = \operatorname{span}(A^1, \dots, A^n)$$

Definizione 29

- Rango di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $x \in \operatorname{Mat}_{n \times 1}(\mathbb{K})$
 - $\operatorname{rk}(A) := \operatorname{rk}(L_A)$ è il **rango di** A

Teorema 65

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-x \in \mathrm{Mat}_{n \times 1}(\mathbb{K})$
- Th

$$-\operatorname{rk}(A) = \dim(\operatorname{span}(A^1, \dots, A^n)) = \dim(\operatorname{span}(A_1, \dots, A_n)^{\perp})$$

- Matrice completa
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$

•
$$b \in \operatorname{Mat}_{m \times 1}(\mathbb{K})$$

• $A_b := \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} & b_m \end{pmatrix}$

Operazioni su righe e colonne

Definizione 31

- Scambio di righe di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\forall A_1, \ldots, A_m$ righe di A, scambiare A_i e A_j lascia invariato $\ker(L_A)$
- Moltiplicazione di una riga per una costante
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A_1, \ldots, A_m$ righe di A, moltiplicare A_i per λ lascia invariato $\ker(L_A)$
- Somma di una riga con un multiplo di un'altra
 - \mathbb{K} campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A_1, \ldots, A_m$ righe di A, sommare ad A_i un certo $\lambda \cdot A_j$ lascia invariato $\ker(L_A)$
- Scambio di colonne di una matrice
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\forall A^1, \dots, A^m$ colonne di A, scambiare A^i e A^j lascia invariato im (L_A)
- Moltiplicazione di una colonna per una costante
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A^1, \ldots, A^m$ colonne di A, moltiplicare A^i per λ lascia invariato im (L_A)
- Somma di una colonna con un multiplo di un'altra
 - K campo
 - $m, n \in \mathbb{N} \{0\}$
 - $A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $\lambda \in \mathbb{K}^*$
 - $\forall A^1, \dots, A^m$ righe di A, sommare ad A^i un certo $\lambda \cdot A^j$ lascia invariato im (L_A)

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$

- $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
- $-\ A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra righe definite precedentemente
- Th
 - \equiv una relazione di equivalenza

- Hp
 - − K campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $-A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra righe definite precedentemente
- Th

$$-A \equiv B \implies \ker(L_A) = \ker(L_B) \wedge \operatorname{rk}(A) = \operatorname{rk}(B)$$

Teorema 68

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra colonne definite precedentemente
- Th
 - $-\equiv$ una relazione di equivalenza

Teorema 69

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A, B \in \mathrm{Mat}_{m \times n}(\mathbb{K})$
 - $A \equiv B \iff$ è possibile ricavare B da A eseguendo operazioni tra colonne definite precedentemente
- Th

$$-A \equiv B \implies \operatorname{im}(L_A) = \operatorname{im}(L_B) \wedge \operatorname{rk}(A) = \operatorname{rk}(B)$$

Morfismi

- Morfismo di gruppi
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $f: G \rightarrow H$
 - f morfismo di gruppi $\iff \forall x,y \in G \quad f(x\cdot y) = f(x)\cdot f(y)$

- Morfismo di anelli
 - $(A, +, \cdot), (B, +, \cdot)$ anelli
 - $f:A\to B$
 - f morfismo di anelli $\iff \forall x,y \in A$ $f(x+y) = f(x) + f(y) \land f(x \cdot y) = f(x) \cdot f(y)$
 - la stessa definizione si applica per morfismo di campi

- Hp
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $-\ 1_G$ neutro per G
 - $-\ 1_H$ neutro per H
 - $-f:G\to H$ morfismo
- Th
 - $-f(1_G)=1_H$

Teorema 71

- Hp
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $-\ 1_G$ neutro per G
 - $-\ 1_H$ neutro per H
 - $-f:G\to H$ morfismo
- Th
 - $f(g^{-1}) = f(g)^{-1}$

Isomorfismi

Definizione 33

- Isomorfismo
 - f isomorfismo $\iff f$ morfismo e f bi
iettiva

Teorema 72

- **Hp**
 - $(G,\cdot),(H,\cdot)$ gruppi
 - $-f:G\to H$ isomorfismo
- Th
 - $-f^{-1}: H \to G$ isomorfismo

- Hp
 - $-\,\cong$ è la relazione di isomorfismo
- Th

 $-\,\cong$ è una relazione di equivalenza

Teorema 74

- Hp $\begin{array}{l} -z\in\mathbb{C}\mid z^n=1 \text{ sono le radici } n\text{-esime di 1} \\ -\zeta:=e^{i\frac{2\pi}{n}} \\ -H:=\{\zeta^0,\zeta^1,\zeta^k,\ldots,\zeta^{n-1}\} \text{ è l'insieme delle radici } n\text{-esime di 1} \end{array}$
- Th $(H,\cdot) \subset (\mathbb{C} \{0\},\cdot) \ \text{è un sottogruppo}$

Teorema 75

- Hp $-f: \mathbb{Z}_n \to H: [k] \to \zeta^k$
- $f: \mathbb{Z}_n \to H: [\kappa] \to \zeta^*$ Th

 f isomorfismo di gruppi $(\mathbb{Z}_n, +)$ e (H, \cdot)

Teorema 76

- Hp $\begin{array}{ccc} & & (G, \cdot) \text{ gruppo} \\ & & (G, \cdot) \text{ gruppo} \\ & & f: \mathbb{Z} \to G: n \to g^n \text{ per qualche } g \in G \end{array}$ Th
- fmorfismo di gruppi $(\mathbb{Z},+)$ e (G,\cdot)

Teorema 77

• Hp $-f: \mathbb{Z} \to \mathbb{Z}_n: k \to [k]$ • Th $-f \text{ morfismo di anelli } (\mathbb{Z},+,\cdot) \text{ e } (\mathbb{Z}_n,+,\cdot)$

Teorema 78

Hp

 n, m ∈ Z : n | m
 f : Z_m → Z_n : x (mod m) → x (mod n)

 Th

 f morfismo di anelli (Z_m, +, ·) e (Z_n, +, ·)

- Hp $\begin{array}{l} \ G \ {\rm gruppo} \\ \ f: G \to G: h \to g \cdot h \cdot g^{-1} \ {\rm per \ qualche} \ g \in G \end{array}$
- Th $-f \text{ morfismo di gruppi } (G,\cdot) \in (G,\cdot)$

Kernel e immagine

Definizione 34

- Kernel e immagine di gruppi
 - G, H gruppi
 - $f: G \to H$ morfismo
 - $\ker(f) := \{g \in G \mid f(g) = 1_H\}$ è detto kernel/nucleo di f
 - $\operatorname{im}(f) := \{ h \in H \mid \exists g \in G : f(g) = h \}$ è detta **immagine di** f
- Kernel e immagine di anelli
 - A, B gruppi
 - $f: A \to B$ morfismo
 - $\ker(f) := \{a \in A \mid f(a) = 0_B\}$ è detto **kernel/nucleo di** f
 - $\operatorname{im}(f) := \{b \in B \mid \exists a \in A : f(a) = b\}$ è detto immagine di f

Teorema 80

- Hp
 - -G, H gruppi
 - $-\ f:G\to H$ morfismo
- Th
 - $-\ker(f)\subset G$ è sottogruppo

Teorema 81

- Hp
 - -G, H gruppi
 - $-f:G\to H$ morfismo
- Th
 - $-\operatorname{im}(f)\subset G$ è sottogruppo

Teorema 82

- Hp
 - -G, H gruppi
 - $-f:G\to H$ morfismo
- Th
 - -f iniettiva $\iff \ker(f) = \{1_G\}$

- Hp
 - -A, B anelli
 - $-\ f:A\to B$ morfismo di anelli
- Th
 - $\ \ker(f)$ ideale

- Hp -A, B anelli $-\ f:A\to B$ morfismo di anelli
- $-\operatorname{im}(f)$ sottoanello

Teorema 85

• Hp $-f: \mathbb{Z} \to \mathbb{C} - \{0\}: k \to \zeta^k$ – fmorfismo di gruppi (Z,+) e (C – {0},·) $-\ I(n)$ ideale generato da n• Th $-\ker(f) = I(n)$

Teorema 86

- Hp -G, H gruppi – $f:G\to H$ morfismo
- Th $-\ker(f)$ è sottogruppo normale

Numeri complessi

Definizione 35

- Insieme dei complessi
 - $\mathbb{C}:=\left\{a+ib\mid a,b\in\mathbb{R},\ i:i^2=-1\right\}$ è l'insieme dei complessi $\forall z\in\mathbb{C}\quad\left\{\begin{array}{l}a:=\operatorname{Re}(z)\\b:=\operatorname{Im}(z)\end{array}\right.$

Teorema 87

• Hp $-a,b,c,d \in \mathbb{R}$ $-\ z\in\mathbb{C}\mid z=a+ib$ $-w \in \mathbb{C} \mid w = c + id$ • Th -z + w = (a+b) + i(c+d) $-z \cdot w = (ac - bd) + i(ad + bc)$

Definizione 36

• Coniugato

- $a, b \in mathbb{R}$
- $z \in \mathbb{C} \mid z = a + ib$
- $\bar{z} := a ib$ è il **coniugato** di z

• Hp

$$\begin{array}{ll} - \ a,b,c,d, \in \mathbb{R} \\ - \ z \in \mathbb{C} \mid z = a + ib \end{array}$$

$$- w \in \mathbb{C} \mid w = c + id$$

• Th

$$\begin{array}{ll}
 -\overline{z} + \overline{w} = \overline{z + w} \\
 -\overline{z} \cdot \overline{w} = \overline{z \cdot w}
\end{array}$$

Teorema 89

• Hp

$$-0 \le \theta < 2\pi$$

• Th

$$-e^{i\theta} = \cos\theta + i\sin\theta$$

Definizione 37

- Raggio
 - $a, b \in \mathbb{R}$
 - $z \in \mathbb{C} \mid z = a + ib$
 - $|z| := \sqrt{a^2 + b^2}$ è il **raggio** di z
 - -corrisponde alla distanza di z dall'origine nel piano di Gauss

Definizione 38

- Forma polare
 - $a, b \in \mathbb{C}$
 - $z \in \mathbb{C} \{0\}$
 - $z = |z| \cdot e^{i\theta}$ è detta forma polare di z

- Soluzione principale
 - $a, b \in \mathbb{R}$
 - $z \in \mathbb{C} \mid z = a + ib$
 - $z \in \mathbb{C} \mid z a + w$ • $\arg(z) \subset \mathbb{R}$ è l'insieme delle soluzioni del sistema $\begin{cases} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{cases}$
 - per definizione, $\arg(z) \implies \exists! \theta \mid 0 \le \theta \le 2\pi$ tale che θ sia soluzione del sistema, e questo prende il nome di $\operatorname{Arg}(z)$, detta soluzione principale

Hp

 (ℂ, +, ·) è un gruppo

 Th

 (ℂ, +, ·) è un campo

Teorema 91

$$\begin{split} \bullet & \quad \mathbf{Hp} \\ & \quad -z, w \in \mathbb{C} \\ \bullet & \quad \mathbf{Th} \\ & \quad -|z \cdot w| = |z| \cdot |w| \quad \arg(z \cdot w) = \arg(z) + \arg(w) \\ & \quad -|\overline{w}| = |w| \quad \arg(\overline{w}) = -\arg(w) \\ & \quad -|w^{-1}| = |w|^{-1} \quad \arg(w^{-1}) = -\arg(w) \\ & \quad -\left|\frac{z}{w}\right| = \frac{|z|}{|w|} \quad \arg\left(\frac{z}{w}\right) = \arg(z) - \arg(w) \end{split}$$

Teorema 92

• Hp
$$-z \in \mathbb{C}$$
• Th
$$-z^n = |z|^n e^{i\theta n} \quad \arg{(z^n)} = n \arg(z)$$

Permutazioni

Definizione 40

- Permutazioni
 - X insieme
 - $S_X := \{f \mid f: X \to X \text{ biiettiva } \}$ è l'insieme delle permutazioni di X
 - $X = \{1, \dots, n\} \implies S_n$ è detto gruppo simmetrico di n

Teorema 93

• Hp
$$-S_X:=\{f\mid f:X\to Y\text{ bilettiva }\}$$
• Th
$$-(S_X,\circ)$$
è un gruppo, non abeliano se $|X|\ge 3$

- Ciclo di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_n$

$$\bullet \ \exists 1 \leq i_1, \dots, i_d \leq n \in \mathbb{N} \mid \begin{cases} \sigma\left(i_1\right) = i_2 \\ \sigma\left(i_2\right) = i_3 \\ \vdots \\ \sigma\left(i_{d-1}\right) = i_d \\ \sigma\left(i_d\right) = i_1 \end{cases} \implies i_1, \dots, i_n \text{ costituiscono un}$$

• Hp $\begin{array}{c} -n \in \mathbb{N} \\ -\sigma \in S_n \\ -1 \leq i < n \in \mathbb{N} \\ -I(\sigma,i) := \{n \in \mathbb{Z} \mid \sigma^n(i) = i\} \end{array}$ • Th $-(I(\sigma,i),+) \subset (\mathbb{Z},+) \text{ è un ideale}$

Teorema 95

- Hp
 - !!! RISCRIVI TUTTO
 - $-I(\sigma,i)$ è **ideale principale** in $\mathbb Z$ generato da I(d), dove d è la lunghezza del ciclo di i, quindi $I(\sigma,i)=I(d)$ $-I(\sigma,i)=I(d) \implies d \in I(\sigma,i)$

Teorema 96

• Hp $\begin{array}{l} -n\in\mathbb{N}\\ -\sigma\in S_n\mid \sigma=\gamma_1\dots\gamma_k \text{ sia la sua decomposizione in cicli}\\ -d_j:=\text{lunghezza di }\gamma_j\quad \forall j\in[1,k]\\ -m:=\text{mcm}(d_1,\dots,d_k)\\ -I(\sigma):=\left\{n\in\mathbb{Z}\mid \sigma^n=\text{id}\right\} \end{array}$ • Th $-o(\sigma)=m$

Trasposizioni

- Trasposizione
 - $n \in \mathbb{N}$
 - $i, j \in \mathbb{N} \mid 1 \le i < j \le n$
 - $k \in [1, n]$

- $\tau_{i,j} \in S_n \mid \tau_{i,j} = \begin{cases} j & k = i \\ i & k = j \\ k & k \neq i, j \end{cases}$ è detta **trasposizione**, ovvero una permutazione che inverte esclusivamente due elementi tra loro $-\tau_{i,j}^2 = \mathrm{id} \iff \tau_{i,j} = \tau_{i,j}^{-1}$
- Trasposizione adiacente
 - $n \in \mathbb{N}$
 - $i, j \in \mathbb{N} \mid 1 \le i < j \le n \land j = i+1$
 - $\tau_{i,j} = \tau_{i,i+1}$ è detta **trasposizione adiacente**, poiché inverte esclusivamente due elementi, adiacenti, tra loro

- Hp
 - $-n \in \mathbb{N}$
 - $-\sigma \in S_n$
- Th
 - $-\exists 1 \leq i_1,\ldots,i_k < n \mid \sigma = \tau_{i_1,i_1+1}\ldots\tau_{i_k,i_k+1}$, quindi ogni permutazione può essere riscritta come composizione di trasposizioni adiacenti

Segno

Definizione 43

- Segno di una permutazione
 - $n \in \mathbb{N}$
 - $\sigma \in S_n$
 - $\text{Inv}(\sigma) := \{(i,j) \mid 1 \leq i < j < n : \sigma(i) > \sigma(j)\}$ è l'insieme delle inversioni di σ
 - σ $\operatorname{sgn}(\sigma) := (-1)^{|\operatorname{Inv}(\sigma)|} = \begin{cases} +1 & |\operatorname{Inv}(\sigma)| \equiv 0 \pmod{2} \\ -1 & |\operatorname{Inv}(\sigma)| \equiv 1 \pmod{2} \end{cases} \implies \sigma \text{ pari } \iff \operatorname{sgn}(\sigma) = +1$ $\operatorname{sgn}(\operatorname{id}) = (-1)^0 = 1$, in quando la funzione identità non ha inversioni

Teorema 98

- Hp
 - $-n \in \mathbb{N}$
 - $-A_n := \{ \sigma \in S_n \mid \sigma \text{ pari} \}$
- Th
 - $-A_n \subset S_n$ è un sottogruppo normale, detto gruppo alterno di ordine n

- Hp
 - $-n \in \mathbb{N}$

 $\sigma \in S_n \mid \sigma = \tau_1 \dots \tau_k$ dove $\forall j \in [1, k] \quad \tau_j = \tau_{j, j+1}$, dunque tutte le trasposizioni sono adiacenti

• Th
$$- \operatorname{sgn}(\sigma) = (-1)^k$$

Teorema 100

• Hp
$$-n \in \mathbb{N}$$

$$-\sigma, \sigma' \in S_n | \left\{ \begin{array}{l} \sigma = \tau_1 \dots \tau_k \\ \sigma' = \tau'_1 \dots \tau'_h \end{array} \right., \text{ dove ogni trasposizione è adiacente}$$
• Th
$$-\operatorname{sgn}(\sigma\sigma') = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma')$$

Teorema 101

• Hp
$$-n \in \mathbb{N} \\ -\sigma \in S_n$$
• Th
$$-\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$$

Teorema 102

• Hp
$$\begin{array}{l}
-n \in \mathbb{N} \\
-\sigma, \sigma' \in S_n \\
-\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}
\end{array}$$
• Th
$$-\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma)$$

Teorema 103

• Hp
$$\begin{array}{l} -n \in \mathbb{N} \\ -\sigma, \sigma' \in S_n \mid \sigma := \gamma_1 \dots \gamma_k, \sigma' := \gamma_1' \dots \gamma_h' \\ -\sigma \sim \sigma' \iff \exists \alpha \in S_n \mid \sigma' = \alpha \sigma \alpha^{-1}, \text{ che costituisce dunque la relazione di coniugio} \end{array}$$
• Th
$$\begin{array}{l} k = h \\ d = d_1' \\ \vdots \\ d_k = d_h' = d_k' \end{array}$$
, dove d_j è la lunghezza del ciclo γ_j e d_j' è la lunghezza del ciclo γ_j' .

• Hp
$$\begin{array}{ccc} & & & & \\ & -n \in \mathbb{N} \\ & -\sigma \in S_n \mid \sigma := \gamma_1 \dots \gamma_k \end{array}$$
 • Th

$$- \operatorname{sgn}(\sigma) = (-1)^{n-k}$$

Polinomi

Definizione 44

• Polinomi

• $a(x) := \sum_{k=0}^{n} a_k x^k = a_0 x^0 + \ldots + a_n x^n$ è un **polinomio**

• $\mathbb{K}[x]:=\{a_0x^0+\ldots+a_nx^n\mid a_0,\ldots,a_n\in\mathbb{K}\}$ è l'insieme dei polinomi a coefficienti in \mathbb{K}

• $p(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ è detto **polinomio monico** $\iff a_n = 1$

Teorema 105

 $-(\mathbb{K},+,\cdot)$ anello

• Th

 $-(\mathbb{K}[x],+,\cdot)$ è un anello

Definizione 45

• Grado del polinomio

• K campo

• $a(x) = a_0 x^0 + \ldots + a_n x^n \in \mathbb{K}[x]$ • $\deg(a(x)) := \begin{cases} n & a(x) \neq 0 \\ -\infty & a(x) = 0 \end{cases}$

Teorema 106

• Hp

− K campo

 $-a(x), b(x) \in \mathbb{K}[x]$

• Th

 $- \deg(a(x) \cdot b(x)) = \deg(a(x)) + \deg(b(x))$

Teorema 107

• Hp

 $-\mathbb{K}$ campo

 $-a(x) \in \mathbb{K}[x] \mid \deg(a(x)) \ge 1$

 $- \not \exists a^{-1}(x) \in \mathbb{K}[x]$

- Hp
 - $-\mathbb{K}$ campo
- Th

$$- \mathbb{K}[x]^* = \mathbb{K}^* \subset \mathbb{K}[x]$$

Teorema 109

- Hp
 - $\mathbb{K} \text{ campo}$
- Th
 - $\mathbb{K}[x]$ è un dominio di integrità

Definizione 46

- Radici di un polinomio
 - \mathbb{K} campo
 - $p(x) \in \mathbb{K}[x]$
 - $\{c \in \mathbb{K} \mid p(c) = 0\}$ è l'insieme delle radici di p(x)

Teorema 110

- Hp
 - − K campo
 - $-p(x) \in \mathbb{K}[x]$ $-c \in \mathbb{K}$
- Th

$$-p(c) = 0 \iff x - c \mid p(x)$$

Teorema 111

- Hp
 - \mathbb{K} campo
 - $-p(x) \in \mathbb{K}[x]$
 - $-n := \deg(p(x))$

$$- |\{c \in \mathbb{K} \mid p(c) = 0\}| \le n$$

Teorema 112

- Hp
 - \mathbbm{K} campo
 - $-I \subset \mathbb{K}[x]$ ideale
- Th
 - $-\ I$ è un ideale principale

Teorema 113

```
- \mathbb{K} campo

- I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] ideali

- \exists d(x) \in \mathbb{K}[x] \mid I(a_1(x), \dots, a_n(x)) = I(d(x))

• Th

- d(x) = \text{MCD}(a_1(x), \dots, a_n(x))
```

• Hp $- \mathbb{K} \text{ campo} \\ - I(a_1(x)), \dots, I(a_n(x)) \subset \mathbb{K}[x] \text{ ideali} \\ - \exists m(x) \in \mathbb{K}[x] \mid I(a_1(x)) \cap \dots \cap I(a_1(x)) = I(m(x))$ • Th $- m(x) = \text{mcm}(a_1(x), \dots, a_n(x))$

Teorema 115

• **Hp**

$$- \mathbb{K} \text{ campo} \\
- a_1(x), \dots, a_n(x) \in \mathbb{K}[x] \\
- c \in \mathbb{K} \\
- d(x) := \text{MCD}(a_1(x), \dots, a_n(x))$$
• **Th**

$$- a_1(c) = \dots = a_n(c) = 0 \iff d(c) = 0$$

Teorema 116

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x]$ • Th $- p(x) \in \mathbb{K}[x] \text{ irriducibile } \iff p(x) \text{ primo}$

Teorema 117

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x] - \{0\}$ • Th $- \exists ! q_1(x), \dots, q_k(x) \in \mathbb{K}[x] \text{ irriducibili e monici, } c \in \mathbb{K} - \{0\} \mid p(x) = c \cdot q_1(x) \cdot \dots \cdot q_k(x)$ - in particolare, i polinomi sono unici a meno di un riordinamento

Teorema 118

• Hp $- \mathbb{K} \text{ campo} \\ - p(x) \in \mathbb{K}[x]$ • Th $- p(x) \text{ irriducibile } \iff \deg(p(x)) = 1$

- Hp $p(x) \in \mathbb{R}[x]$ Th
 - -p(x) irriducibile $\iff \deg(p(x)) = 1$ oppure $\deg(p(x)) = 2 \land \Delta < 0$

Teorema 120

- **Hp** $a_0, ..., a_n \in \mathbb{Z} \mid a_0, a_n \neq 0$ $p(x) \in \mathbb{Z}[x] \mid p(x) = a_0 + ... + a_n x^n$ $a, b \in \mathbb{Z} \mid MCD(a, b) = 1$
- $-p(\frac{a}{b}) = 0$ Th $-a \mid a_0 \wedge b \mid a_n$

Teorema 121

• !!! MANCA UN TEOREMA ENORME

Relazioni

- Relazioni
 - \bullet S insieme
 - ogni elemento $R \subseteq S \times S$ è una relazione su S
- Relazione riflessiva
 - S insieme
 - R relazione in $S \times S$
 - R riflessiva $\iff \forall x \in R \ (x, x) \in R$
- Relazione simmetrica
 - \bullet S insieme
 - R relazione in $S \times S$
 - R simmetrica $\iff \forall x,y \in R \ (x,y) \in R \implies (y,x) \in R$
- Relazione transitiva
 - \bullet S insieme
 - R relazione in $S \times S$
 - R transitiva $\iff \forall x,y,z \in R \quad (x,y) \in R \wedge (y,z) \in R \implies (x,z) \in R$
- Relazione antisimmetrica
 - S insieme
 - R relazione in $S \times S$

- R transitiva $\iff \forall x,y \in R \quad (x,y) \in R \wedge (y,x) \in R \implies x=y$
- Relazione totale
 - S insieme
 - R relazione in $S \times S$
 - R totale $\iff \forall x, y \in R \quad (x, y) \in R \lor (y, x) \in R$
- Relazione di equivalenza
 - S insieme
 - R relazione in $S \times S$
 - R è una relazione di equivalenza \iff R riflessiva, simmetrica e transitiva
- Ordine parziale
 - \bullet S insieme
 - R relazione in $S \times S$
 - R ordine parziale $\iff R$ riflessiva, transitiva e antisimmetrica
- Ordine totale
 - S insieme
 - R relazione in $S \times S$
 - R ordine totale \iff R ordine parziale in cui vale la totalità

- Hp
 - $\begin{array}{ll} -\ m,n\in\mathbb{N} \\ -\ m\mid n\iff \exists p\in\mathbb{N}\mid mp=n \end{array}$
- Th
 - − | è ordine parziale

Teorema 123

- Hp
 - $-a,b \in \mathbb{Z}$
 - $-a \equiv b \pmod{n} \iff m \mid b a \text{ è detta congruenza modulo } n$
- Th
 - $-\,\equiv$ è una relazione di equivalenza

Teorema 124

- Hp
 - $\begin{array}{l} -x,y\in\mathbb{Z}\mid x\equiv y\ (\mathrm{mod}\ n)\\ -d\in\mathbb{Z}:d\mid n \end{array}$
- Th
 - $-x \equiv y \pmod{d}$

- Hp
 - $-n \in \mathbb{N}$

$$-[a], [b] \in \mathbb{Z}_n$$

$$-d := \mathrm{MCD}(a, n)$$
• Th
$$-d \nmid b \implies \nexists [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod{n}$$

$$-d \mid b \implies \forall [x] \in \mathbb{Z}_n \mid ax \equiv b \pmod{n} \quad x \text{ è anche tale che } \frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{n}{d}}$$

- Hp
 - -G gruppo
 - $-g,h\in G$
 - $-g \sim h \iff \exists a \in G \mid h = a \cdot g \cdot a^{-1}$ è detta relazione di coniugio
- - $-\sim$ è una relazione di equivalenza

Partizioni

Definizione 48

- Partizione
 - \bullet X insieme
 - \bullet I insieme di indici

 - $\forall i \in I \quad X_i \subset X$ $X = \coprod X_i$

Teorema 127

- Hp
 - G gruppo
- Th

$$- \ \forall x,y \in G \quad x \nsim y \iff [x] \cap [y] = \varnothing \lor x \sim y \iff [x] = [y]$$

- Hp
 - G gruppo
 - $-\,\sim$ è una relazione di equivalenza in G
- Th
 - $-\sim$ induce una partizione di G, dunque $G=\coprod [x]$

Classi laterali

Teorema 129

- Hp - G gruppo $-H \subset G$ sottogruppo $-\ x,y\in G$ • Th
- $-x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza

Definizione 49

- Classi laterali
 - (G, \cdot) gruppo
 - $(H, \cdot) \subset (G, \cdot)$ sottogruppo
 - $\forall x,y \in G$ $x \sim_S y \iff x^{-1}y \in H$ è una relazione di equivalenza $\forall x,y \in G$ $x \sim_D y \iff xy^{-1} \in H$ è una relazione di equivalenza

 - x ∈ G
 - $[x] = \{y \in G \mid y \sim_S x\}$ è detta classe laterale sinistra
 - $[x] = \{y \in G \mid y \sim_D x\}$ è detta classe laterale destra
 - $G/H := \{[x] \mid x \in G\}$ è l'insieme delle classi laterali sinistre o destre

Teorema 130

• Hp $-(\mathbb{Z},+)$ anello $-n \in \mathbb{N}_{\geq 2}$ $-\ I(n) := \{nk \mid k \in \mathbb{Z}\}\$ $-a,b \in \mathbb{Z}$ • Th $-a \sim_S b \iff a \equiv b \pmod{n}$

Teorema 131

• Hp - G gruppo $-H\subset G$ sottogruppo $-H = [1] \in G/H$

Teorema 132

• Hp -G gruppo $-\ H\subset G$ sottogruppo $-x \in G$ $- [x] = \{ y \in G \mid y \sim_S x \}$ • Th $-xH := \{xh \mid h \in H\} = [x]$

• Hp -G gruppo $-H \subset G \text{ sottogruppo}$ $-x \in G$ • Th -|xH| = |H|

Teorema 134

• **Hp** -G gruppo $-H \subset G \text{ sottogruppo}$ $-+: G/H \times G/H \to G/H$ • **Th** -(G/H,+) è gruppo abeliano

Spazi Vettoriali

Definizione 50

- Spazio vettoriale
 - K campo
 - $x \in \mathbb{K}$ è detto scalare
 - V è **spazio vettoriale su** $\mathbb{K} \iff (V,+)$ gruppo abeliano, è ben definita un'operazione di $\cdot: K \times V \to V$ che ammetta elemento neutro, inoltre $\forall s,t \in \mathbb{K}, v \in V$ $s \cdot (t \cdot v) = (s \cdot t) \cdot v, (s+t) \cdot v = s \cdot v + t \cdot v$ e infine $\forall s \in \mathbb{K}, v, w \in V$ $s \cdot (v+w) = s \cdot v + s \cdot w$
 - $x \in V$ è detto **vettore**

- Hp $-n \in \mathbb{N}$ $-\mathbb{K} \text{ campo}$ Th $-\mathbb{K}^n \text{ spazio vettoriale su } \mathbb{K}$
- Definizione 51
 - Sottospazio vettoriale
 - \mathbb{K} campo
 - V spazio vettoriale su \mathbb{K}
 - W è sottospazio vettoriale di $V\iff (W,+)\subset (V,+)$ sottogruppo, e $\forall w\in W, \lambda\in \mathbb{K} \quad \lambda\cdot w\in W$

Definizione 52

- Span di vettori
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - span $(v_1, \ldots, v_n) := \{\lambda_1 v_1 + \ldots + \lambda_n v_n \mid \lambda_1, \ldots, \lambda_n \in \mathbb{K}\}$, ovvero l'insieme delle combinazioni lineari degli v_1, \ldots, v_n

Teorema 136

- Hp
 - $-n \in \mathbb{N}$
 - $\mathbb{K} \text{ campo}$
 - V spazio vettoriale su \mathbb{K}
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-\operatorname{span}(v_1,\ldots,v_n)$ è un sottospazio vettoriale di V

Definizione 53

- Vettori generatori
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - v_1, \ldots, v_n sono **generatori di** $V \iff \operatorname{span}(v_1, \ldots, v_n) = V$
 - equivalentemente, ogni altro vettore in V è una combinazione lineare degli v_1, \ldots, v_n
- Indipendenza lineare
 - $n \in \mathbb{N}$
 - K campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - v_1, \ldots, v_n sono **linearmente indipendenti** se e solo se $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0_V \iff \lambda_1 = \ldots = \lambda_n = 0_K$
 - equivalentemente, nessuno degli v_1, \ldots, v_n è combinazione lineare degli altri
- Base di uno spazio vettoriale
 - $n \in \mathbb{N}$
 - \mathbb{K} campo
 - V spazio vettoriale su \mathbb{K}
 - $v_1, \ldots, v_n \in V$
 - v_1, \ldots, v_n sono una base di $V \iff v_1, \ldots, v_n$ sono generatori di V e linearmente indipendenti
 - nè detta cardinalità della base di V

• Hp $-n \in \mathbb{N}$ $-\mathbb{K} \text{ campo}$ $-e_1 := (1,0,\ldots,0),\ldots,e_n := (0,\ldots,0,1) \in \mathbb{K}^n$ • Th $-e_1,\ldots,e_n \text{ sono una base di } \mathbb{K}^n, \text{ ed è detta } \textit{base canonica}$

Teorema 138

• Hp $\begin{array}{l} -n \in \mathbb{N} \\ -\mathbb{K} \text{ campo} \\ -\mathbb{V} \text{ spazio vettoriale su } \mathbb{K} \\ -v_1, \ldots, v_n \in V \\ \hline \bullet \mathbf{Th} \\ -v_1, \ldots, v_n \text{ linearmente indipendenti } \iff v_1, \ldots, v_{n-1} \text{ linearmente indipendenti } \wedge v_n \notin \operatorname{span}(v_1, \ldots, v_{n-1}) \\ \end{array}$

Teorema 139

• Hp $-m,k\in\mathbb{N} \\ -\mathbb{K} \text{ campo} \\ -V \text{ spazio vettoriale su } \mathbb{K} \\ -w_1,\ldots,w_m\in V \\ -v_1,\ldots,v_k\in\operatorname{span}(w_1,\ldots,w_m)\mid v_1,\ldots,v_k \text{ linearmente indipendenti}$ • Th $-k\leq m$

Teorema 140

- Hp $-n, m \in \mathbb{N}$ $-\mathbb{K} \text{ campo}$ $-V \text{ spazio vettoriale su } \mathbb{K}$ $-w_1, \dots, w_m \in V \mid w_1, \dots, w_m \text{ base di } V$ $-v_1, \dots, v_n \in V \mid v_1, \dots, v_n \text{ base di } V$ Th
 - -n=m, il che implica che la cardinalità delle basi di uno spazio vettoriale è unica

Definizione 54

- Dimensione di uno spazio vettoriale
 - \mathbb{K} campo
 - V spazio vettoriale su \mathbb{K}
 - $\dim(V)$ è detta **dimensione di** V, ed è la cardinalità delle basi di V

- Hp
 - $-n \in \mathbb{N}$
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-v_1,\ldots,v_n\in V$
- Th
 - $-v_1, \ldots, v_n$ base di $V \iff \forall v \in V \quad \exists! \lambda_1, \ldots, \lambda_n \in \mathbb{K} \mid v = \lambda_1 v_1 + \ldots + \lambda_n v_n$

Teorema 142

- Hp
 - − K campo
 - Wspazio vettoriale su $\mathbb K$
 - $-n := \dim(W)$
 - $-k \in \mathbb{N} \mid k < n$
 - $-w_1,\ldots,w_k\in W$ linearmente indipendenti
- Th
 - $-\exists w_{k+1},\ldots,w_n\in W\mid w_1,\ldots,w_n$ è una base di W

Teorema 143

- Hp
 - \mathbbm{K} campo
 - W spazio vettoriale su \mathbb{K}
 - $-n := \dim(W)$
 - $-m \in \mathbb{N} \mid m \geq n$
 - $-w_1,\ldots,w_m\in W\mid w_1,\ldots,w_m$ generatori di W
- Th
 - $-\exists 1 \leq i_1, \ldots, i_n \leq m \mid w_{i_1}, \ldots, w_{i_n}$ è una base di W

Teorema 144

- Hp
 - − K campo
 - W spazio vettoriale su $\mathbb K$
 - $-n := \dim(W)$
 - $-w_1,\ldots,w_n\in W$
- Th
 - $-w_1,\ldots,w_n$ linearmente indipendenti $\iff w_1,\ldots,w_n$ generatori di W

- Hp
 - − K campo
 - Wspazio vettoriale su $\mathbb K$
 - $U,V\subset W$ sottospazi vettoriali
- Th
 - $-\dim(U+V) = \dim(U) + \dim(V) \dim(U \cap V)$

- Hp
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-W \subset V$ sottospazio vettoriale
- Th
 - -V/W sottospazio vettoriale

Teorema 147

- Hp
 - − K campo
 - Vspazio vettoriale su $\mathbb K$
 - $-W \subset V$ sottospazio vettoriale
- Th
 - $-\dim(V/W) = \dim(V) \dim(W)$

Applicazioni lineari

Definizione 55

- Applicazioni lineari
 - K campo
 - V e W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ morfismo di spazi vettoriali $\iff \forall x,y \in V \quad f(x+y) = f(x) + f(y)$ e $\forall v \in V, \lambda \in \mathbb{K} \quad f(\lambda v) = \lambda f(v)$
 - un morfismo su spazi vettoriali è detto anche **applicazione lineare** o **trasformazione lineare**

Teorema 148

- Hp
 - \mathbbm{K} campo
 - Vspazio vettoriale su $\mathbb K$
 - $-n := \dim(V)$
- Th
 - $-V \cong \mathbb{K}^n$

Teorema 149

• !!! QUI C'È UN BUCO DI COSE CHE NON HO CAPITO

- Hp
 - − K campo
 - V,Wspazi vettoriali su $\mathbb K$

• Th $- V \cong W \iff \dim(V) = \dim(W)$

Definizione 56

- Kernel e immagine
 - K campo
 - V, W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ trasformazione lineare
 - $\ker(f) = \{ v \in V \mid f(v) = 0_W \}$
 - $\operatorname{im}(f) = \{ w \in W \mid \exists v \in V : w = f(v) \}$

Teorema 151

- Hp
 - − K campo
 - V,Wspazi vettoriali su $\mathbb K$
 - $-f:V\to W$ trasformazione lineare
- Th
 - $-\ker(f)\subset V$ sottospazio

Teorema 152

- Hp
 - \mathbbm{K} campo
 - V,Wspazi vettoriali su $\mathbb K$
 - $f: V \to W$ trasformazione lineare
- Th
 - $-\operatorname{im}(f) \subset W$ sottospazio

Definizione 57

- Rango di un'applicazione lineare
 - K campo
 - V e W spazi vettoriali su \mathbb{K}
 - $f: V \to W$ applicazione lineare
 - rk(f) := dim(im(f))è detto rango di f

Sottospazi affini

Teorema 153

• !!! TODO

```
• Hp
 - \mathbb{K} \text{ campo} 
 - m, n \in \mathbb{N} - \{0\} 
 - A \in \operatorname{Mat}_{m \times n}(\mathbb{K}) 
 - b \in \operatorname{Mat}_{m \times 1}(\mathbb{K}) 
 - X := \{x \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) \mid A \cdot x = b\} 
 - X \neq \varnothing 
• Th
 - X \text{ sottospazio affine di } \mathbb{K}^n, \text{ con dimensione pari a } n - \operatorname{rk}(A)
```

Teorema fondamentale dell'algebra

• Hp
$$- \mathbb{K} \text{ campo}$$
 $- p(x) \in \mathbb{K}[x] \mid p(x) = a_0 x^0 + \ldots + a_n x^n$ • Th $- \exists z \in \mathbb{C} \mid p(z) = 0$

Teorema della divisione euclidea con il resto

• Hp
$$-m\in\mathbb{Z}\\ -n\in\mathbb{Z}-\{0\}$$
• Th
$$-\exists!\ q,r\in\mathbb{Z}\mid m=nq+r\quad 0\leq r< n$$

Teorema 155

```
• Hp
 - \mathbb{K} \text{ campo} \\ - a(x), b(x) \in \mathbb{K}[x] \mid b(x) \neq 0 
• Th
 - \exists ! q(x), r(x) \in \mathbb{K}[x] \mid a(x) = b(x) \cdot q(x) + r(x) \quad \deg(r(x)) < \deg(b(x)), \text{ che è detto} 
 teorema della divisione con il resto tra polinomi
```

Teorema di Lagrange

```
• Hp  -G \text{ gruppo finito} \\ -H \subset G \text{ sottogruppo finito} \\ • Th
```

$$- \ |G| = |H| \cdot |G/H|$$

Teorema fondamentale dell'aritmetica

• Hp $-a,b\in\mathbb{N}$ • Th $-\operatorname{mcm}(a,b)\cdot\operatorname{MCD}(a,b)=a\cdot b$

Teorema cinese dei resti

Teorema 156

• Hp $- a_1, \dots, a_n \ge 2 \in \mathbb{Z} \mid \text{MCD}(a_i, a_j) = 1 \quad \forall i, j \in [1, n] : i \ne j$ $- m := \text{mcm}(a_1, \dots, a_n)$ • Th $- m = a_1 \cdot \dots \cdot a_n$

Teorema 157

• Hp $-n \in \mathbb{N}$ $-a_1, \ldots, a_n \in \mathbb{Z}_{n \geq 2}$ $-m := \operatorname{mcm}(a_1, \ldots, a_n)$ • Th $-\exists \phi \mid \phi : \mathbb{Z}_m \to \mathbb{Z}_{a_1} \times \ldots \times \mathbb{Z}_{a_n} : x \; (\operatorname{mod} \; m) \to (x \; (\operatorname{mod} \; a_1), \ldots, x \; (\operatorname{mod} \; a_n))$ $-\phi \; \text{è una funzione ben definita, ed è iniettiva}$

Teorema 158

• Hp $-n \in \mathbb{N} \\ -a_1, \dots, a_n \in \mathbb{Z}_{\geq 2} \mid \forall i, j \in [1, n] \quad i \neq j \Longrightarrow \mathrm{MCD}(a_i, a_j) = 1 \\ -b_1, \dots, b_n \in \mathbb{Z} \mid 0 \leq b_1 < a_1, \dots, 0 \leq b_n < a_n \\ -m := \mathrm{mcm}(a_1, \dots, a_n)$ • Th $-\exists! x \; (\bmod \; m) \mid \begin{cases} x \equiv b_1 \; (\bmod \; a_1) \\ \vdots \\ x \equiv b_n \; (\bmod \; a_n) \end{cases}$

• Hp
$$-k \in \mathbb{N}$$

$$-n_1, \dots, n_k \in \mathbb{N} - \{0\} \mid \forall i, j \in [1, k] \quad i \neq j \implies \mathrm{MCD}(n_i, n_j) = 1$$

$$-N := \mathrm{mcm}(n_1, \dots, n_k)$$

$$-[a] \in \mathbb{Z}_N^*$$

$$-o := o([a]) \text{ in } \mathbb{Z}_N^*$$

$$-\forall h \in [1, k] \quad o_h := o([a]) \text{ in } \mathbb{Z}_{n_h}^*$$
• Th
$$-o = \mathrm{mcm}(o_1, \dots, o_k)$$

Teorema del binomio di Newton

- $-n \in \mathbb{N}$ Th $-(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

Teorema 160

• !!! NON HO CAPITO UN CAZZO

Piccolo teorema di Fermat

• Hp
$$-p \in \mathbb{P} \\ -a \in \mathbb{Z}$$
• Th
$$-a^p \equiv a \pmod{p}$$

Teorema 161

• Hp
$$-p \in \mathbb{P} \\ -[a] \in \mathbb{Z}_p - \{0\}$$
• Th
$$-[a]^{-1} = [a]^{p-2}$$

• Hp
$$-p\in\mathbb{P}$$
 • Th
$$-\prod_{0< a< p}(x-a)\equiv x^{p-1}-1\ (\mathrm{mod}\ p)$$

• !!! NON HO CAPITO UN CAZZO

Teorema di Eulero

- Hp $-a, n \in \mathbb{N} \mid \mathrm{MCD}(a, n) = 1$
- Th $a^{\varphi(n)} \equiv 1 \pmod{n}$

Teorema fondamentale di isomorfismo

- **Hp** -A, B anelli
 - $-f: A \to B$ morfismo di anelli
- Th
 - $A/\mathrm{ker}(f)\cong\mathrm{im}(f),$ ovvero $\exists\varphi\mid\varphi:A/\mathrm{ker}(f)\to\mathrm{im}(f):[a]\to f(a)$ isomorfismo di anelli

Teorema 164

- Hp
 - -G,H gruppi
 - $-f:G\to H$ morfismo di gruppi
- Th
 - $-G/\mathrm{ker}(f)\cong\mathrm{im}(f),$ o alternativamente $\exists\varphi\mid\varphi:G/\mathrm{ker}(f)\to\mathrm{im}(f):[g]\to f(g)$ isomorfismo di gruppi

Teorema 165

- Hp
 - \mathbb{K} campo
 - V,Wspazi vettoriali su $\mathbb K$
 - $f: V \to W$ trasformazione lineare
- Th
 - $-V/\ker(f) \cong \operatorname{im}(f)$, o alternativamente $\exists \varphi \mid \varphi : V/\ker(f) \to \operatorname{im}(f) : [v] \to f(v)$

Teorema di Cauchy

- Hp
 - G gruppo finito
 - $-\ p\in\mathbb{P}$

$$-p |G|$$
• Th
$$-\exists g \in G \mid o(g) = p$$

- -G gruppo |G| = 4
- $-G \cong \mathbb{Z}_4$ oppure $G \cong K_4$

Teorema del rango

- Hp - \mathbbm{K} campo
 - V,Wspazi vettoriali su $\mathbb K$
 - $-\ f:V\to W$ trasformazione lineare
- Th
 - $-\operatorname{rk}(f) = \dim(V) \dim(\ker(f))$

Teorema di Rouché-Capelli

- Hp
 - \mathbb{K} campo
 - $-m, n \in \mathbb{N} \{0\}$
 - $-A \in \mathrm{Mat}_{m \times n}(\mathbb{K})$ $-b \in \mathrm{Mat}_{m \times 1}(\mathbb{K})$
- Th
 - $-\exists x \in \operatorname{Mat}_{n \times 1}(\mathbb{K}) \mid A \cdot x = b \iff \operatorname{rk}(A) = \operatorname{rk}(A_b)$