INTRODUCTION TO ALGORITHMS

Lecture 11: Shortest Path Algorithms

Yao-Chung Fan yfan@nchu.edu.tw

Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

	_
4->5	0.35
5->4	0.35
4->7	0.37
5->7	0.28
7->5	0.28
- 1	0 22

5->1 0.32 0->4 0.38

0->2 0.26

7->3 0.39

 $1 -> 3 \quad 0.29$

2 -> 7 0.34

6 -> 2 0.40

 $3 - > 6 \quad 0.52$

6 -> 0 0.58

 $6 -> 4 \quad 0.93$

shortest path from 0 to 6

0 -> 2 0.26

2 - > 7 0.34

 $7 -> 3 \quad 0.39$

3 - > 6 0.52

Google maps

Shortest path variants

Which vertices?

- Single source: from one vertex s to every other vertex.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Arbitrary weights.

Cycles?

No directed cycles.

which variant?

Simplifying assumption. Shortest paths from s to each vertex v exist.

Weighted directed edge API

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight)
      this.v = v;
      this.w = w;
      this.weight = weight;
   public int from()
                                                                 from() and to() replace
   { return v; }
                                                                 either() and other()
   public int to()
   { return w; }
   public int weight()
    return weight; }
```

Edge-weighted digraph API

public class	EdgeWeightedDigraph	
	EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
	EdgeWeightedDigraph(In in)	edge-weighted digraph from input stream
void	addEdge(DirectedEdge e)	add weighted directed edge e
Iterable <directededge></directededge>	adj(int v)	edges pointing from v
int	V()	number of vertices
int	E()	number of edges
Iterable <directededge></directededge>	edges()	all edges
String	toString()	string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```
public class EdgeWeightedDigraph
   private final int V;
   private final Bag<DirectedEdge>[] adj;
   public EdgeWeightedDigraph(int V)
      this.V = V;
      adj = (Bag<DirectedEdge>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<DirectedEdge>();
   }
   public void addEdge(DirectedEdge e)
      int v = e.from();
                                                          add edge e = v \rightarrow w to
      adj[v].add(e);
                                                          only v's adjacency list
   public Iterable<DirectedEdge> adj(int v)
      return adj[v]; }
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?
```

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
   StdOut.printf( s, v, sp.distTo(v));
   for (DirectedEdge e : sp.pathTo(v))
      StdOut.print(e + " ");
   StdOut.println();
}</pre>
```

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?
```

```
% java SP tinyEWD.txt 0
0 to 0 (0.00):
0 to 1 (1.05): 0->4 0.38   4->5 0.35   5->1 0.32
0 to 2 (0.26): 0->2 0.26
0 to 3 (0.99): 0->2 0.26   2->7 0.34   7->3 0.39
0 to 4 (0.38): 0->4 0.38
0 to 5 (0.73): 0->4 0.38   4->5 0.35
0 to 6 (1.51): 0->2 0.26   2->7 0.34   7->3 0.39   3->6 0.52
0 to 7 (0.60): 0->2 0.26   2->7 0.34
```


Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Idea. Represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.

	edgeTo[]	<pre>distTo[]</pre>	
0	null	0	
1	5->1 0.32	1.05	1.05 = 0.32 + 0.35 + 0.38
2	0->2 0.26	0.26	
3	7->3 0.37	0.97	
4	0->4 0.38	0.38	
5	4->5 0.35	0.73	
6	3->6 0.52	1.49	
7	2->7 0.34	0.60	

shortest-paths tree from 0

parent-link representation

Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

distTo[v] is length of shortest path from s to v.

• edgeTo[v] is last edge on shortest path from s to v.

```
5->1 0.32
                                                                                     1.05
                                                                        0 -> 2 0.26
                                                                                    0.26
public double distTo(int v)
                                                                                    0.97
                                                                        7 -> 3 \ 0.37
                                                 e.g., pathTo(7)
                                                                                    0.38
{ return distTo[v]; }
                                                                        0 -> 4 \ 0.38
                                                                                    0.73
                                                                        4->5 0.35
                                                                         3 - > 6 \ 0.52
                                                                                    1.49
public Iterable<DirectedEdge> pathTo(int v)
                                                                        2 \rightarrow 7 \quad 0.34
                                                                                     0.60
   Stack<DirectedEdge> path = new Stack<DirectedEdge>();
   for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
      path.push(e);
   return path;
```

distTo[]

edgeTo[]

nu11

0

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v,
 update both distTo[w] and edgeTo[w].

v→w successfully relaxes

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update both distTo[w] and edgeTo[w].

```
private void relax(DirectedEdge e)
{
  int v = e.from(), w = e.to();
  if (distTo[w] > distTo[v] + e.weight())
  {
     distTo[w] = distTo[v] + e.weight();
     edgeTo[w] = e;
  }
}
```

Edge relaxation

Edge relaxation (two cases)

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

0→4 9.0 0→7 8.0 1→2 12.0 15.0 1→3 1→7 4.0 2→3 3.0 2→6 11.0 3→6 9.0 4→5 4.0 4→6 20.0 5.0 4→7 1.0 5→2 5→6 13.0 6.0 7→5 7.0 7→2

5.0

0→1

an edge-weighted digraph

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

choose source vertex 0

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 0

- Consider vertices in increasing order of d (non-tree vertex with the lowest distTo[] \)
- Add vertex to tree and relax all edges po

relax all edges pointing from 0

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2		
3		
4	9.0	0→4
5		
6		
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

choose vertex 1

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 1

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 1

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

٧	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5		
6		
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

choose vertex 7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 7

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	15.0	7→2
3	20.0	1→3
4	9.0	0→4
5	14.0	7→5
6		
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 4

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 4

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 4

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	15.0	7→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	29.0	4→6
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 5

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 5

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 5

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 2

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 2

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 2

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 3

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 3

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 3

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

select vertex 6

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

relax all edges pointing from 6

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

Dijkstra's algorithm visualization

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
   public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
      while (!pq.isEmpty())
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
```

relax vertices in order of distance from s

Dijkstra's algorithm: Java implementation

Dijkstra's algorithm: correctness proof

Invariant. For v in T, distTo[v] is the length of the shortest path from s to v.

Pf.

- Let w be next vertex added to T.
- Let P^* be the $s \rightarrow w$ path through v.
- Consider any other $s \rightarrow w$ path P; let x be first vertex to w.
- P is already as long as P* as soon as it reaches x.
- Thus, distTo[w] is the length of the shortest path from s to w.

Dijkstra's algorithm: Performance Guarantee

Dijkstra's algorithm uses extra space proportional to V and time proportional to $E \log V$ (in the worst case) to compute the SPT rooted at a given source in an edge-weighted digraph with E edges and V vertices.

```
public class DijkstraSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   private IndexMinPQ<Double> pq;
   public DijkstraSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new IndexMinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      pq.insert(s, 0.0);
      while (!pq.isEmpty())
          int v = pq.delMin();
          for (DirectedEdge e : G.adj(v))
             relax(e);
```

Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: Rule used to choose next vertex for the tree.

- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).

Shortest path variants

- Single source: from one vertex *s* to every other vertex.
- Source-Sink: from one vertex s to another t.
 - use Dijkstra's algorithm, but terminate the search as soon as t comes off the priority queue.
- All pairs: between all pairs of vertices.

```
public class DijkstraAllPairsSP
{
    private DijkstraSP[] all;
    DijkstraAllPairsSP(EdgeWeightedDigraph G)
    {
        all = new DijkstraSP[G.V()]
        for (int v = 0; v < G.V(); v++)
            all[v] = new DijkstraSP(G, v);
    }
    Iterable<Edge> path(int s, int t)
    { return all[s].pathTo(t); }
    double dist(int s, int t)
    { return all[s].distTo(t); }
}
```


- shortest-paths properties
- Dijkstra's algorithm
- Edge-weighted DAGs

What if finding shortest paths in a DAG

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

an edge-weighted DAG

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

topological order: 0 1 4 7 5 2 3 6

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

choose vertex 0

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 0

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 0

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

V	distTo[]	edgeTo[
0	0.0	-
1	5.0	0→1
2		
3		
4	9.0	0→4
5		
6		
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

choose vertex 1

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 1

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 1

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

V	distTo[]	edgeTo[
0	0.0	-
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5		
6		
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

select vertex 4
(Dijkstra would have selected vertex 7)

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 4

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 4

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	29.0	4→6
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

choose vertex 7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	15.0	7→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	29.0	4→6
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

select vertex 5

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 5

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 5

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

select vertex 2

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 2

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 2

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

select vertex 3

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 3

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 3

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

select vertex 6

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

relax all edges pointing from 6

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

0 1 4 7 5 2 3 6

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

- Consider vertices in topological order.
- Relax all edges pointing from that vertex.

0 1 4 7 5 2 3 6

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

shortest-paths tree from vertex s

Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edgeweighted DAG in time proportional to E + V.

| edge weights can be negative!

Pf.

- Each edge e = v→w is relaxed exactly once (when vertex v is relaxed),
 leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- distTo[w] cannot increase ← distTo[] values are monotone decreasing
- distTo[v] will not change ← because of topological order, no edge pointing to v will be relaxed after v is relaxed
- Thus, upon termination, shortest-paths optimality conditions hold.

Shortest paths in edge-weighted DAGs

```
public class AcyclicSP
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   public AcyclicSP(EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE_INFINITY;
      distTo[s] = 0.0;
      Topological topological = new Topological(G);
                                                                topological order
      for (int v : topological.order())
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

 $6 -> 4 \quad 0.93$

equivalent: reverse sense of equality in relax()

longest paths input shortest paths input

5->4	0.35	5->	4 -0.35
4->7	0.37	4->	7 -0.37
5->7	0.28	5->	7 -0.28
5->1	0.32	5->	1 -0.32
4->0	0.38	4->	0 -0.38
0->2	0.26	0->	2 -0.26
3->7	0.39	3->	7 -0.39
1->3	0.29	1->	3 -0.29
7->2	0.34	7->	2 -0.34
6−>2	0.40	6->	2 -0.40
3->6	0.52	3->	6 -0.52
6->0	0.58	6->	0 -0.58

Key point. Topological sort algorithm works even with negative weights.

6 -> 4 - 0.93

Job Assignment: Longest paths in edge-weighted DAGs

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

job	duration		t com befor	iplete e
0	41.0	1	7	9
1	51.0	2		
2	50.0			
3	36.0			
4	38.0			
5	45.0			
6	21.0	3	8	
7	32.0	3	8	
8	32.0	2		
9	29.0	4	6	

- 1. How long the duration of this project can be?
- 2. How many workers are needed?

Parallel job scheduling solution

Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
- begin to end (weighted by duration)
- source to begin (0 weight)
- end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

duration

41.0

job

must complete

before

7 9

Critical path method

CPM. Use longest path from the source to schedule each job.

Parallel job scheduling with Deadlines

Deadlines. Add extra constraints to the parallel job-scheduling problem.

Ex. "Job 2 must start no later than 12 time units after job 4 starts."

Consequences.

• Corresponding shortest-paths problem has cycles (and negative weights).

- APIS
- > shortest-paths properties
- Dijkstra's algorithm
- Edge-weighted DAGs
- negative weights

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is $0\rightarrow 1\rightarrow 2\rightarrow 3$.

Re-weighting. Add a constant to every edge weight doesn't work.

Adding 8 to each edge weight changes the shortest path from $0\rightarrow1\rightarrow2\rightarrow3$ to $0\rightarrow3$.

Conclusion. Need a different algorithm.

Bellman-Ford algorithm for Shortest Path Problem with Negative Edges (without Negative cycles)

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge in any order.

```
for (int i = 0; i < G.V(); i++)
  for (int v = 0; v < G.V(); v++)
    for (DirectedEdge e : G.adj(v))
        relax(e);</pre>
pass i (relax each edge)
```

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

0→1	5.0
0→4	9.0
0→7	8.0
1→2	12.0
1→3	15.0
1→7	4.0
2→3	3.0
2→6	11.0
3→6	9.0
4→5	4.0
4→6	20.0
4→7	5.0
5→2	1.0
5→6	13.0
7→5	6.0
7→2	7.0

an edge-weighted digraph

Bellman-Ford algorithm demo

Repeat V times: relax all E edges.

initialize

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

$$0 \rightarrow 1 \quad 0 \rightarrow 4 \quad 0 \rightarrow 7 \quad 1 \rightarrow 2 \quad 1 \rightarrow 3 \quad 1 \rightarrow 7 \quad 2 \rightarrow 3 \quad 2 \rightarrow 6 \quad 3 \rightarrow 6 \quad 4 \rightarrow 5 \quad 4 \rightarrow 6 \quad 4 \rightarrow 7 \quad 5 \rightarrow 2 \quad 5 \rightarrow 6 \quad 7 \rightarrow 5 \quad 7 \rightarrow 2$$

Repeat V times: relax all E edges.

pass 0

 $0 \rightarrow 1 \quad 0 \rightarrow 4 \quad 0 \rightarrow 7 \quad 1 \rightarrow 2 \quad 1 \rightarrow 3 \quad 1 \rightarrow 7 \quad 2 \rightarrow 3 \quad 2 \rightarrow 6 \quad 3 \rightarrow 6 \quad 4 \rightarrow 5 \quad 4 \rightarrow 6 \quad 4 \rightarrow 7 \quad 5 \rightarrow 2 \quad 5 \rightarrow 6 \quad 7 \rightarrow 5 \quad 7 \rightarrow 2$

0→1

0→4

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5		
6	28.0	2→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	28.0	2→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	28.0	2→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	28.0	2→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	17.0	1→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	28.0	2→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	28.0	2→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7
-28 2	26	

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 0

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	20.0	1→3
4	9.0	0→4
5	13.0	4→5
6	26.0	5→6
7	8.0	0→7

pass 1

pass 1

Repeat V times: relax all E edges.

pass 1

pass 1

Repeat V times: relax all E edges.

pass 1

Repeat V times: relax all E edges.

V	distTo[] edge		
0	0.0	_	
1	5.0	0→1	
2	14.0	5→2	
3	17.0	2→3	
4	9.0	0→4	
5	13.0	4→5	
6	25.0	2→6	
7	8.0	0→7	

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]	
0	0.0	-	
1	5.0	0→1	
2	14.0	5→2	
3	17.0	2→3	
4	9.0	0→4	
5	13.0	4→5	
6	25.0	2→6	
7	8.0	0→7	

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]
0	0.0	_
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

pass 1

Repeat V times: relax all E edges.

٧	distTo[]	edgeTo[]
0	0.0	-
1	5.0	0→1
2	14.0	5→2
3	17.0	2→3
4	9.0	0→4
5	13.0	4→5
6	25.0	2→6
7	8.0	0→7

pass 2, 3, 4, 5, 6, 7 (no further changes)

Repeat V times: relax all E edges.

V	distTo[]	edgeTo[]		
0	0.0	-		
1	5.0	0→1		
2	14.0	5→2		
3	17.0	2→3		
4	9.0	0→4		
5	13.0	4→5		
6	25.0	2→6		
7	8.0	0→7		

shortest-paths tree from vertex s

Bellman-Ford algorithm: analysis

Bellman-Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:

- Relax each edge.

Pf idea. After pass i, found shortest path to each vertex v for which the shortest path from s to v contains i edges (or fewer).

Bellman-Ford algorithm: queue-based implementation

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice (E + V).

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm: Java implementation

```
public class BellmanFordSP
   private double[] distTo;
   private DirectedEdge[] edgeTo;
                                                                     queue of vertices whose
   private boolean[] onQ;
                                                                      distTo[] value changes
   private Queue<Integer> queue;
   public BellmanFordSPT(EdgeWeightedDigraph G, int s)
      distTo = new double[G.V()];
      edgeTo = new DirectedEdge[G.V()];
             = new boolean[G.V()];
      ong
      queue = new Queue<Integer>();
                                                    private void relax(DirectedEdge e)
      for (int v = 0; v < V; v++)
                                                       int v = e.from(), w = e.to();
         distTo[v] = Double.POSITIVE_INFINITY;
                                                       if (distTo[w] > distTo[v] + e.weight())
      distTo[s] = 0.0;
                                                            distTo[w] = distTo[v] + e.weight();
      queue.enqueue(s);
                                                            edgeTo[w] = e;
      while (!queue.isEmpty())
                                                            if (!onQ[w])
         int v = queue.dequeue();
                                                               queue.enqueue(w);
         onQ[v] = false;
                                                               onQ[w] = true;
         for (DirectedEdge e : G.adj(v))
            relax(e);
```

Single source shortest-paths implementation: cost summary

algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	$E \log V$	$E \log V$	V
Bellman-Ford	no negative	EV	EV	V
Bellman-Ford (queue-based)	cycles	E + V	EV	V

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean hasNegativeCycle()

is there a negative cycle?

Iterable <DirectedEdge> negativeCycle()

negative cycle reachable from s

digraph

4->5 0.35 5->4 -0.66

 $4 -> 7 \quad 0.37$

5->7 0.28

7 -> 5 0.28

 $5 -> 1 \quad 0.32$

 $0 -> 4 \quad 0.38$

0 -> 2 0.26

 $7 -> 3 \quad 0.39$

1->3 0.29

2 - > 7 0.34

6 -> 2 0.40

3 - > 6 0.52

6 -> 0 0.58

 $6 -> 4 \quad 0.93$

negative cycle (-0.66 + 0.37 + 0.28)

5->4->7->5

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in pass V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.35	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.62	1	0.953
CAD	0.995	0.732	0.65	1.049	1

Ex. $$1,000 \Rightarrow 741 \text{ Euros } \Rightarrow 1,012.206 \text{ Canadian dollars } \Rightarrow 1,007.14497.$ \$1,007.14497.

Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

- Let weight of edge $v \rightarrow w$ be -ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!

Shortest paths summary

Nonnegative weights.

- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.

- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.

- Arise in some applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.