

Christopher Gundler
Philipp Fukas

Jonas Rebstadt
Farina Kock
Christoph Stenkamp

A Hitchhiker's Guide to the Quantum World

DON'T PANIC

Introduction to Qubits

A qubit is a two-dimensional quantum-mechanical system that is in a state

$$|\phi\rangle = \alpha|0\rangle + \beta|1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

with
$$|0\rangle = (0,1)^{\mathsf{T}}$$
 and $|1\rangle = (1,0)^{\mathsf{T}}$

Measuring the qubit leads to the classical bit 0 with probability $|\alpha|^2$, 1 with probability $|\beta|^2$

Superposition and Entanglement

Two quantum mechanical effects that can outperform classical algorithms are:

superposition and entanglement

each qubit is in both states simultaneously (before measurement)

type of correlation between two or more qubits

Why may a quantum computer be faster?

- Quantum computers allows more efficient algorithms
 - → massive parallelism
- Until now: Speed-up "proven" by complexity theory, not by real-life experience

Comparing complexities

Quantum Algorithm Zoo

- Reliable: National Institute of Standards & Technology (NIST), USA
- Up-to-date: Updated since 2011
- (Relatively) structured: Best classical algorithm vs. best quantum algorithm

https://math.nist.gov/quantum/zoo/

Quantum Algorithm Zoo

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@microsoft.com. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial

Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor solves this in $\widetilde{O}(n^3)$ time [82,125]. The fastest known classical algorithm for integer factorization is the

general number field sieve, which is believed to run in time $2^{\widetilde{O}(n^{1/3})}$. The best rigorously proven upper bound on the classical complexity of factoring is $O(2^{n/4+o(1)})$ via the Pollard-Strassen algorithm [252, 362]. Shor's factoring algorithm breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's for the special case of factoring "semiprimes", which are widely used in cryptography, is given in [271]. If small factors exist, Shor's algorithm can be beaten by a quantum algorithm using Grover search to speed up the elliptic curve factorization method [366]. Additional optimized versions of Shor's algorithm are given in [384, 386]. There are proposed classical public-key cryptosystems not believed to be broken by quantum algorithms, cf. [248]. At the core of Shor's factoring algorithm is order finding, which can be reduced to the Abelian hidden subgroup problem, which is solved using the quantum Fourier transform. A number of other problems are known to reduce to integer factorization including the membership problem for matrix groups over fields of odd order [253], and certain diophantine problems relevant to the synthesis of quantum circuits [254].

Algorithm: Discrete-log Speedup: Superpolynomial

Description: We are given three n-bit numbers a, b, and N, with the promise that $b=a^s \mod N$ for some s. The task is to find s. As shown by Shor [82], this can be achieved on a quantum computer in poly(n) time. The fastest known classical algorithm requires time superpolynomial in n. By similar techniques to those in [82], quantum computers can solve the discrete logarithm problem on elliptic curves, thereby breaking elliptic curve cryptography [109, 14]. A further optimization to Shor's algorithm is given in [385]. The superpolynomial quantum speedup has also been extended to the discrete logarithm problem on semigroups [203, 204]. See also Abelian hidden subgroup.

Algorithm: Pell's Equation Speedup: Superpolynomia

Web scraping: Workflow

Algorithm: Factoring **Speedup:** Superpolynomial **Description:** Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor solves this in $\widetilde{O}(n^3)$ time [82,125]. The fastest known classical algorithm for integer factorization is

solves this in $\widetilde{O}(n^3)$ time [82,125]. The fastest known classical algorithm for integer factorization is the general number field sieve, which is believed to run in time $2^{\widetilde{O}(n^{1/3})}$. The best rigorously proven upper bound on the classical complexity of factoring is $O(2^{n/4+o(1)})$ via the Pollard-Strassen algorithm [252, 362]. Shor's factoring algorithm breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's for the special case of factoring "semiprimes", which are widely used in cryptography, is given in [271]. If small factors exist, Shor's algorithm can be beaten by a quantum algorithm using Grover search to speed up the elliptic curve factorization method [366]. Additional optimized versions of Shor's algorithm are given in [384, 386]. There are proposed classical public-key cryptosystems not believed to be broken by quantum algorithms, cf. [248]. At the core of Shor's factoring algorithm is order finding, which can be reduced to the Abelian hidden subgroup problem, which is solved using the quantum Fourier transform. A number of other problems are known to reduce to integer factorization including the membership problem for matrix groups over fields of odd order [253], and certain diophantine problems relevant to the synthesis of quantum circuits [254].

b>Algorithm: Factoring

b>Speedup: Superpolynomial

/>
b>Description: Given an <i>n</i>-bit integer, find the prime factorization. The quantum algorithm of Peter Shor solves this in 82,125] The fastest known classical algorithm for integer factorization is the general number field sieve, which is believed to run in time \((2^{\star} (\midetilde{0}(\n^{1/3})) \). The best rigorously proven upper bound on the classical complexity of factoring is $(0(2^{n/4}+o(1)))$ via the Pollard [252, 362]. Shor's factoring algorithm breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's for the special case of factoring " semiprimes", which are widely used in cryptography, is given in [271]. If small factors exist, Shor's algorithm can be beaten by a quantum algorithm using Grover search to speed up the elliptic curve factorization method [366]. Additional optimized versions of Shor's algori cryptosystems not believed to be broken by quantum algorithms, <i>cf.</i> [248]. At the core of Shor's factoring algorithm is order finding, which can be reduced to the Abelian hidden which is solved using the quantum Fourier transform. A number of other problems are known to reduce to integer factorization including the membership problem for matrix groups over fields of odd order [253], and certain diophantine problems relevant to

the synthesis of quantum circuits [254].

Web scraping: Workflow

```
In [1]: import requests
        from bs4 import BeautifulSoup
        import re
        from copy import deepcopy
        import csv
        import itertools
        bigrams = lambda l: list(zip(l[:-1], l[1:]))
        new sent sign = '<NEWSENT>'
In [2]: page = requests.get('https://math.nist.gov/quantum/zoo/')
        contents = str(page.content)
        contents = contents.replace('<b>Algorithm: </b>', '<b>Algorithm:</b>')
        contents = contents.replace('<b>Description: </b>', '<b>Description:</b>')
        # soup = BeautifulSoup(contents, 'html.parser') #don't even need bs, as the page is very non-semantic anyway
In [3]: indices = bigrams([m.start() for m in re.finditer('<b>Algorithm:</b>', contents)]+[len(contents)])
        complete txts = [str(contents)[i[0]:i[1]] for i in indices]
In [4]: all algos = []
        for i in complete txts:
            this algorithm = {}
            for name, searchstring in [['name', '<b>Algorithm:</b>'], ['speedup coarse', '<b>Speedup:</b>'], ['description', '
                tmp = i[i.find(searchstring)+len(searchstring):]
                this algorithm[name] = tmp[:tmp.find('<br />')].strip()
```

Visualising complexities

ui[ui[ui["text_max_range"].value "text_coarse_speedup"].valu "text_min_range"].value = ' "text_max_range"].value = ' hm"].observe(on_dropdown_ch	alue = "" = "1" = "50"
Algorithm f	Enter manually	Y-Scale: Absolute complexity Difference
Coarse Speedu	ıp:	Ratio
Quantum c	Please enter O().	
Classic co	Please enter O().	
Min range:	1	
Max range:	50	
✓ Calcul	ate Reset	

Visualising complexities

Visualisation: Domain matters!

Choose way of visualisation

Idea of Fourier Transform

- Decompose complex signals into its basic components,
 e.g. with sin, cos
- In order to make it computationally solvable, the signal has to be discretised
 → leads to the idea of FFT

Quantum Fourier Transform

- Decomposition of Discrete Fourier
 Transformation into the product of unitary matrices
- Can be computed more efficiently by using quantum gates
 - → Combination of Hadamard Gates and Conditional Phase Rotations

Circuit for Quantum Fourier Transform

Result for multiple tries

- Example with all inputs set to zero
- Simulated with 30000 shots

Result for multiple tries

- Same run on a
 Quantum computer
- Simulated with 1024 shots

Result for multiple tries with different initialisations

How can we achieve different initialisations?

→ by inverting some qubits

As you can see, different initialisations have no impact, all results are uniformly distributed

Result for multiple tries with entanglement

How can we achieve entanglement?

→ applying CNOT Gates

But simple entanglement has no impact, because all results are still equally distributed

Which quantum gates are necessary for...

Classical computation	Probabilistic Computation	Quantum Computation
- CNOT - 180° rotation	- CNOT - 180° rotation - Hadamard	CNOTHadamardPhase Shift

Quantum machine learning: SVM

- Classical method of Data Mining and Artificial Intelligence
- Complexity: High possible speed-up (*M*: Samples, *N*: Features)
 - Classical: $O(M^2(M+N))$
 - Quantum: $O(\log(M*N))$

Rebentrost, P.; Mohseni, M. & Lloyd, S. Quantum support vector machine for big feature and big data classification. arXiv:1307.0471, 2013.

SVM: Testing with custom data

DON'T PANIC