

Data Analytics Element 1 - Group 2

Team Members

BIBI KURIAN (w9457273)

CORCORAN, JAMES (j9049758) LUI, YU SHING (a0201746) NG, CHUN YU (w9190570)

ODUNOLA, BOLA (a0141109)

PYBUS, DANIEL (p4261837)

Dataset

- Dataset:
 - Complete PokemonDataset
- List of Pokedex:
 - Generation One to Eight
- Data Content:
 - □ 38 columns
 - □ 1027 rows

Data Source:

https://www.kaggle.com/ mariotormo/completepokemon-datasetupdated-090420?select=pokedex_ %28Update_05.20%29.cs

- Can we use clustering to identify different groups of Pokemons?
- Can legendary Pokémon be identified through the use of classification methods?
- What species are the strongest and weakest in Pokemon?

Can we use clustering to identify different groups of Pokemons?

- Objective
 - Use clustering to find groups of Pokemons
 - Attributes: HP, Attack, Defense, SP Attack, SP Defense,
 Speed, Height, Weight
 - Identify the strong points of different Pokemons
- Clustering methods
 - Hierarchical clustering
 - K-means

Can we use clustering to identify different groups of Pokemons?

- Compare results within and between the two methods
 - Between methods
 - Within methods
- Compare with Pokemon types
- Validation
 - Internal validation indexes and stats
 - Relative measures
 - Visual exploration
 (Brock et al., 2008; Halkidi, Batistakis, & Vazirgiannis, 2001)

Data Exploration

Data Exploration

Data Exploration

Decision Trees

Method

CART (Classification & Regression Trees) methodology: Each region of the tree is continuously divided into smaller sub-groups formed by asking yes/no questions in relation to features. (*Breiman*, 2017)

Measure

Gini Index: Each split is an attempt to minimise node impurity i.e. consisting mostly of observations from a single class. (*Boehmke et al, 2020*)

Evaluation

Early Stoppage: Restricting the depth or growth of the tree.

Pruning: Finding optimal tree depth through the use of cross-validation and complexity parameters. (*Boehmke et al, 2020*)

Decision Trees

Process Summary

Import data into R

Further data exploration

Tidy and process data based on findings

Train/test split

Build model

Comparison of evaluation methods to determine best practice Identify importance of features i.e. VIP variables

Further Investigation

Random Forests

K Nearest Neighbour

 Simple algorithm that stores all available cases, and classifies new data based on similarity measures (Subramanian, 2019).

- 'K' is a parameter that refers to the number of nearest neighbours to include in the majority of the classification process.
- Small K = Noisy Large K = Increased Bias
- Generally, K = sqrt(total number of data points)

Proposed Method:

- Read csv, clean data
- Test-Train data, 0.2 test size (20%)
- Standardise columns StandardScaler
- Determine K value
- Predict data classifier.predict
- Evaluate model to check accuracy confusion matrix
- Check f1 score & Accuracy score
- Plot graph Is Legendary TRUE/FALSE


```
in [201]: data.plot(kind = "scatter", x = "attack", y = "defense",
 plt.xlabel("attack")
 plt.ylabel("defense")
 plt.show()
```


References

- Mario Tormo Romero, M. 2020. Kaggle. [Online]. [12 November 2020]. Available from:
 - https://www.kaggle.com/mariotormo/complete-pokemon-dataset-updated-090420?select=pokedex_%28Update_05.20%29.csv
- The Pokemon company. 2020. Pokemon. [Online]. [12 November 2020]. Available from: https://www.pokemon.com/uk/pokedex/
- Boehmke, B.C. and Greenwell, B. (2020) *Hands-on machine learning with R.* 1st edn.
- Breiman, L. (2017) Classification and regression trees.
- Brock, G., Pihur, V., Datta, Susmita., and Datta, Somnath.
 (2008) "CIValid: An R Package for Cluster Validation." *Journal of Statistical Software* 25 (4): 1–22.

References

- Mathworks.com. 2020. Classification Using Nearest Neighbors-MATLAB & Simulink. [online] Available at: https://www.mathworks.com/help/stats/classification-using-nearest-neighbors.html [Accessed 4 November 2020].
- Subramamanian, D., 2020. A Simple Introduction To K-Nearest Neighbors Algorithm. [online] Medium. Available at: https://towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-algorithm-b3519ed98e [Accessed 6 November 2020].
- Mitchell, T., 2017. Machine Learning. New York: McGraw Hill.
- Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. *Journal of intelligent* information systems, 17(2-3), 107-145.

Q & A