

Introduction

Electrical & Electronic Circuits and Elements

Embedded Systems & Embedded Programming

- Materials have a characteristic behavior of resisting the flow of electric charge
- This behavior is known as resistance and its magnitude:
 - \triangleright Is dictated by electrical properties (**resistivity** ρ) of the material and its geometry (**A** and **L**)
 - ightharpoonup Is represented by **R** and expressed in **ohms** (Ω)
- ❖ The element used to model the current-resisting behavior of a material is known as **resistor**

Resistivities of common materials.

Material	Resistivity $(\Omega \cdot \mathbf{m})$	Usage
Silver	1.64×10^{-8}	Conductor
Copper	1.72×10^{-8}	Conductor
Aluminum	2.8×10^{-8}	Conductor
Gold	2.45×10^{-8}	Conductor
Carbon	4×10^{-5}	Semiconductor
Germanium	47×10^{-2}	Semiconductor
Silicon	6.4×10^{2}	Semiconductor
Paper	10 ¹⁰	Insulator
Mica	5×10^{11}	Insulator
Glass	10 ¹²	Insulator
Teflon	3×10^{12}	Insulator

Fundamentals of Electric Circuits (Ohm's Law)

- ❖ The element used to model the current-resisting behavior of a material is known as **resistor**
- The voltage across a resistor is directly proportional to the current flowing through the resistor
 - > Ohm's law is an approximation of the resisting behavior of materials
 - > Typically, the relationship between current and voltage is not **linear**
- Resistance and Ohm's law
- > i-v characteristic graphs can tell us so much about the behavior of elements
 - Resistance, power, passive/active etc.

i-v c of characteristic a semiconductor diode

Fundamentals of Electric Circuits (Definitions)

- ♦ Source: Any element that provides energy to the circuit
- **Load**: Any device or circuit powered by electricity
 - Simple; like a lamp, complex; like a modern high-speed computer
- Short circuit: A circuit element with resistance approaching zero
- ◆ Open circuit: A circuit element with resistance approaching infinity

Fundamentals of Electric Circuits (Definitions)

- ♦ Series Circuits: Two or more elements are in series if they
 - > Exclusively share a single node and
 - Consequently carry the same current

- Parallel Circuits: Two or more elements are in parallel if they
 - > Are connected to the same two nodes
 - Consequently have the same voltage across them

- Resistor is the element used to resist/control/limit electric current flow in circuits
- It is a passive element and it converts electrical energy to heat energy
- ❖ In a typical resistor, voltage-current relationship is linear (V = R × I)
- Types
 - > Fixed resistors (constant resistance value)
 - Variable resistors (adjustable resistance value)

Application

- ➤ Limiting/dividing current in electric circuits
- ➤ Lowering voltage levels (voltage divider)
- As pull-up and pull-down
- As sensor

- Most common resistors are made of either a carbon, metal, or metal-oxide film
- The resistance of a resistor can be measured by:
 - Ohmmeters (without any power supplied to the resistor)
 - ➤ The bands of color on a resistor (4 6 bands), Online Calculator

Color	Tolerance	
Brown	±1%	
Red	±2%	
Gold	±5%	
Silver	±10%	
None	±20%	

T Dallas Colol lables	4	bands	color	table	es
-----------------------	---	-------	-------	-------	----

Band color	Digit	Multiplier
Black	0	X1
Brown	1	X10
Red	2	X100
Orange	3	X1000
Yellow	4	X10000
Green	5	X100000
Blue		
Purple	7	X10000000
Grey	8	X100000000
White	9	X1000000000
Silver	-	x.01
Gold	: - 5	x.1

Resistor value =
$$AB \times 10^{C} \pm tol\%(\Omega)$$

Resistors in Series and Parallel

$$R_{\text{EQ}} = \sum_{n=1}^{N} R_n$$
 Equivalent series resistance

$$R_{\mathrm{EQ}} = rac{1}{1/R_1 + 1/R_2 + \cdots + 1/R_N}$$
 Equivalent parallel resistance

$$i_n = \frac{1/R_n}{1/R_1 + 1/R_2 + \dots + 1/R_n + \dots + 1/R_N} i_S$$
 Current divider

Some examples of variable resistors

A **potentiometer** is a manually adjustable variable resistor with 3 terminals

Varistors have a non-linear resistance which is dependent on the voltage over the varistor. They are used as over-voltage protection devices

Photoresistors (LDR) show a decrease in resistance when light intensity increases.

Thermistors are resistors of which the resistance changes significantly when temperature changes

The **magneto-resistor** type can be used to detect and measure magnetic fields.

Read more about resistor at Resistor Guide

Fundamentals of Electric Circuits

References

- Fundamentals of Electric Circuits, 5th Edition, Charles K. Alexander and Matthew N.O. Sadiku, ISBN 978-0-07-338057-5
- > Fundamentals of Electrical Engineering, First Edition, Giorgio Rizzoni, ISBN 978-0-07-338037-7
- ➤ Most of the images have been copied from these two books

Some useful links

- Resistors Ohm's Law is not a real law
- Resistors
- ➤ I-V Characteristic Curves

The SI prefixes.

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10 ¹⁵	peta	P
1012	tera	T
10 ⁹	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	e
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

