

LCI构建中的数据处理 及其不确定性

盛虎 副研究员 南京大学环境学院

背景

需要解决的问题

信息对接

- 标准数据库
- 数据接口
- 数据模型

实用性

数据规 范性 模型规范性

大规模计算

- 标准模型库
- 高分辨率
- 分布式计算

不确定性评估

- 数据评估
- 模型评估
- 结果评估

结果准 确性 结果可 靠性

结果验证

- 数据代表性
- 时间变异
- 空间变异

科学性

数据规范性

多源数据融合——求并集

数据融合: AUB

出现数据缺失的问题

缺失数据的多重插补

结果:得到了一个带有不确定信息的数据集

盛虎,郭怀成,数据缺失下流域模拟方法研究,科学出版社,2015

多源数据融合——求交集

数据源: A

数据源: B

数据融合: A∩B

出现数据不一致的问题

不一致数据的处理

数值不一致

加权平均

$$X = \sum_{i=1}^{n} W_i X_i$$

时空尺度不一致

尺度转化

$$Y_{ij} = W(X_{ij})Y_i$$

结果:得到了一个带有不确定信息的数据集

标准化数据库

<u></u>					,				
NAME	NOTE	UNIT	TIME	DATA	CV	DIST	P1	P2	Р3
DRP	原矿产量	kt	Y2000	20	0.1	unif	16.536	23.464	
PRP	原矿元素含量	1	Y2000	0.5	0.1	triangle	0.378	0.622	0.500
PRR	矿石产率	1	Y2000	0.8	0.2	beta	4.200	1.050	0.000
DFP	化肥产量	kt	Y2000	15	0.1	unif	12.402	17.598	
PFP	化肥元素含量	1	Y2000	0.4	0.2	triangle	0.204	0.596	0.400
DCP	日化产量	kt	Y2000	5	0.1	unif	4.134	5.866	
PCP	日化元素含量	1	Y2000	0.3	0.3	triangle	0.080	0.520	0.300
PCR	化工废物回用率	1	Y2000	0.5	0.2	beta	12.000	12.000	0.000
DMP	作物产量	kt	Y2000	1000	0.1	unif	826.795	1173.205	
PMP	作物元素含量	1	Y2000	0.005	0.2	triangle	0.003	0.007	0.005
PHR	饲料占比	1	Y2000	0.4	0	none	0.400		
PNR	食品占比	1	Y2000	0.45	0	none	0.450		
DAP	动物产量	kt	Y2000	800	0.1	unif	661.436	938.564	
PAP	动物元素含量	1	Y2000	0.002	0.2	triangle	0.001	0.003	0.002
PAR	肉产率	1	Y2000	0.75	0.2	beta	5.500	1.833	0.000

基本数据

数据的不确定性

原则: ①直观; ②可累积; ③含不确定性信息

数据接口

Long-type

Start	End	Flow
X1	X1	a11
X1	X2	a12
X1	X3	a13
••••	••••	• • • • •
X2	X1	a21
X2	X2	a22
X2	X3	a23
••••	• • • • •	••••
Y1	X1	b11
Y1	X2	b12
Y1	X3	b13
• • • • •	• • • • •	• • • • •

数据转换

Wide-type

	X 1	X2	X3	• • • • •
X1	a11	a12	a13	• • • • •
X2	a21	a22	a23	
X3	a31	a32	a33	• • • • •
• • • • •	• • • • •	• • • • •	• • • • •	• • • • •

技术矩阵(经济矩阵)

$$g = \widehat{BA}^1 f$$

 \mathbf{V}_{1}

	$\Lambda 1$	$\Lambda \mathcal{L}$	ΛJ	• • • • •
Y1	b11	b12	b13	• • • • •
Y2	b21	b22	b23	• • • • •

 \mathbf{V}_{2}

干扰矩阵 (环境矩阵)

标准化数据库

模型规范性

LCI分析方法

过程流图法

Suppose that the toaster under study produces 1,000 pieces of toast during its life time.

	Steel	Steam	Toaster	Bread	Toaster	
	Production	Production	production	toasting	disposal	LCI
CO_2	1	0.5*4	2	0.001*1000	0.5	6.5

矩阵算法

Process Commodity	Steel Production	Steam Production	Toaster production	Bread toasting	Toaster disposal	Reference flow
Steel	1	0	-1	0	0	0
Steam	0	1	-0.5	0	0	0
Toaster	0	0	1	-1	0	0
Bread toasted	0	0	0	1000	0	1000
Toaster disposed	0	0	0	1	-1	0
CO ₂	1	4	2	1	0.5	?

$$As = f$$

LCI的矩阵化

$$g = Bs = BA^{-1}f$$

	Steel	Steam	Toaster	Bread	Toaster	Reference
	Production	Production	production	toasting	disposal	flow
Steel						
Steam						
Toaster			Α			f
Bread toasted						
Toaster disposed						
CO ₂			В			g

投入产出法

	Λ	$=(a_{ij})_n$	•	肖耗系数矩阵	E 0	in	$\frac{\operatorname{put}_i}{\operatorname{tput}_i}$	参考流
	Λ	$-(a_{ij})_n$	$\times n$		- α	$_{ij} = \frac{1}{\text{out}}$	tput_j	
	柴油	硬煤资源	动力煤	公路运输量	水电	火电	电网电力	最终产品
柴油	0	0	0	37.63	0	0	0	0
硬煤资源	0	0	1.09	0	0	0	0	0
动力煤	0	0	0	0	0	0.5	0	0
公路运输量	0	0	0	0	0	0.1	0	0
水电	0	0	0	0	0	0	0.161	0
火电	0	0	0	0	0	0	0.914	0
电网电力	0	0	0	0	0	0	0	1
SO_2	0	0	3	0.09	0	5.68	0	
NO_X	0	0	0	1.6	0	2.87	0	
CO_2	0	0	330	118	0	891	0	
CH_4	0	0	5.12	0.004	0.286	0	0	
	D	$-(h_{\perp})$	+	╅ ╅╇	- h	— emi	$1SS1On_i$	
	D	$= (b_{ij})_m$	t imes n 1	非放系数矩阵	ŧ O	$_{ij}=\frac{\partial u}{\partial u}$	$\frac{\mathrm{ission}_i}{\mathrm{tput}_j}$	
LCI ²	计算	公式	g =	B(I-A)	^{-1}f		f =	$(f_i)_{n \times 1}$

LCI的一般化表达

LCI建模

•独立型计算:

FLOW[节点i,节点j]=活动水平*转换系数

• 依附型计算:

FLOW[节点i,节点j]=FLOW[节点k,节点i]*分配系数

平衡型计算:

FLOW[节点i,节点j]=BALANCE(节点i|节点j)

标准化模型库

NAME	START	END !	FUN
P rock production	I	LIND	1
PF 01	R	Ch	DRP*PRP*PRR
PF 02	R	W	DRP*PRP-PF 01
P chemical production			
PF 03	Ch	Cr	DFP*PFP
PF 04	Ch	Н	DCP*PCP
PF 05	W	Ch	PF 06*PCR
PF 06	Ch	W	 (PF_01-PF_03-PF_04)/(1-PCR)
Crop production			/
PF_07	Cr	А	DMP*PMP*PHR
PF_08	Cr	н	DMP*PMP*PNR
PF_09	Cr	W	PF_03-PF_07-PF_08
Animal production		-	
PF_10	A	н	DAP*PAP*PAR
PF_11	Α	W	PF_07-PF_10
Human consumption		į	_
PF_12	Н	W	PF_04+PF_08+PF_10
	1		1

第二步:定义流 第一步:模型结构 第三步

第三步:模型表达

大规模计算

sfc软件包及可视化界面

网址: https://cran.r-project.org/web/packages/sfc/index.html

sfc: Substance Flow Computation

Provides a function sfc() to compute the substance flow with the input files — "data" and "model". If sample.size is set more than 1, uncertainty analysis will be executed while the distributions and parameters are supplied in the file "data".

Version: 0.1.0

Depends: R (\geqslant 3.1.0), <u>dplyr</u>, <u>tidyr</u>

Imports: stats, utils, <u>triangle</u>, <u>zoo</u>, <u>sna</u>

Published: 2016-08-25

Author: Hu Sheng [aut, cre]

Maintainer: Hu Sheng <shenghu at nju.edu.cn>
BugReports: https://github.com/ctfysh/sfc/issues
License: GPL-2 | GPL-3 [expanded from: GPL]
URL: https://github.com/ctfysh/sfc

NeedsCompilation: no
Materials: README
CRAN checks: sfc results

Downloads:

Reference manual: sfc.pdf

Package source: sfc 0.1.0.tar.gz

Windows binaries: r-devel: sfc 0.1.0.zip, r-release: sfc 0.1.0.zip,
OS X Mavericks binaries: r-release: sfc 0.1.0.tgz, r-oldrel: sfc 0.1.0.tgz

中文说明:

https://ctfysh.github.io/2016/08/27/sfc-package-manual.html

Substance Flow Computation

Choose	Data (.csv) Fi	le		
选择文件	未选择任何	文件		
Choose	Model (.csv	.txt) File		
选择文件	未选择任何	文件		
Choose	Model File Ty	na ^Q Cha	s le	
0110030	would rife ly	pe & Che	SK.	
	check model	pe & Che	JK .	•
		pe a che	3K	~
.csv &			3K	•
.csv &	check model		.n	•
.csv &	check model	tput		•
.csv &	check model	tput	SR.	*
.csv &	check model	tput	SR.	•
.csv & Set Sam 1 Set Rane	check model	tput	SR.	•

https://ctfysh.shinyapps.io/sample_app/

sfc进行流的计算

Substance Flow Computation

Show	10 ▼ entries		Search:		
	TIME	START	♦ END	\$	FLOW
1	Y2000	R	Ch		8
2	Y2000	W	Ch		0.5
3	Y2000	Ch	Cr		6
4	Y2000	Ch	Н		1.5
5	Y2000	Cr	Н		2.25
6	Y2000	А	Н		1.2
7	Y2000	Cr	Α		2
8	Y2000	R	W		2
9	Y2000	Ch	W		1
10	Y2000	Cr	W		1.75
howing	1 to 10 of 24 er	ntries	Previous	1 2	3 Next

sfc进行不确定性分析

Substance Flow Computation

	TIME 💠	START	END \$	MEAN 	MEDIAN ♦	SD 🏺	CV 🏺	Q05 🍦	Q25 🍦	Q75 🍦	Q95
1	Y2000	R	Ch	7.99	8.12	1.89	0.24	4.62	6.81	9.32	10.93
2	Y2000	R	W	1.86	1.49	1.5	0.81	0.15	0.66	2.63	4.81
3	Y2000	Ch	Cr	5.97	6.17	1.34	0.22	3.95	5.06	6.84	7.86
4	Y2000	Ch	Н	1.52	1.52	0.49	0.32	0.71	1.14	1.89	2.35
5	Y2000	Ch	W	1.22	0.8	5.23	4.28	-6.87	-1.96	4	10.79
6	Y2000	Cr	Н	2.27	2.27	0.48	0.21	1.45	1.97	2.61	3.09
7	Y2000	Cr	Α	2.01	2.01	0.43	0.21	1.29	1.76	2.32	2.75
8	Y2000	Cr	W	1.68	1.71	1.6	0.95	-0.97	0.62	2.86	4.18
9	Y2000	Н	W	4.97	4.94	0.78	0.16	3.72	4.44	5.42	6.2
10	Y2000	Α	Н	1.18	1.18	0.42	0.36	0.58	0.85	1.52	1.8

19	nple Size & Output	
19		
t Ran	idom Seed (0 = no set)	
· · · · · · ·	aom occa (o mo set)	

									0.97	1.	89	2.41
5	Y2000	Ch	W	3.39	2.66	2.17	0.64	0.75	1.76	4.	77	7.17
6	Y2000	Cr	Н	2.11	2.13	0.43	0.21	1.52	1.76	2.	33	2.84
7	Y2000	Cr	А	1.88	1.89	0.38	0.21	1.35	1.57	2.	07	2.53
8	Y2000	Cr	W	2.02	1.84	1.15	0.57	0.72	1.27	2.	62	3.59
9	Y2000	Н	W	4.76	4.76	8.0	0.17	3.33	4.43	5.	13	6.28
10	Y2000	А	Н	1.13	1.09	0.35	0.31	0.68	0.93	1.	27	1.63
how	ing 1 to 10	of 24 entr	ies					Previous	1	2	3	Next

Q75

10.2

2.15

6.37

8.28

0.74

5.37

Q95 +

11.31

3.23

7.9

结果准确性

不确定性类型

不确定性分析

• 对象:模型

■ 任何一个过程都可能导致不确定性

$$y_i = f_i(x_1, x_2, \dots, x_m | \theta_1, \theta_2, \dots, \theta_k), \quad i = 1, 2, \dots, n$$

模型输出

模型结构

模型输入

模型参数

• 目的:将输入的不确定传递给输出

不确定性的表达

• 数值

均值:
$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 方差: $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$

图表

LCI不确定性解析法

Taylor展开:

$$\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{1}{2} \frac{\partial^2 z}{\partial x^2} \Delta x^2 + \frac{1}{6} \frac{\partial^3 z}{\partial x^3} \Delta x^3 + \cdots$$

忽略高阶项:

$$\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y - z = f(x, y)$$

求变量的方差:

$$\operatorname{var}(z) = (\frac{\partial z}{\partial x})^{2} \operatorname{var}(x) + (\frac{\partial z}{\partial y})^{2} \operatorname{var}(y) + 2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial x} \operatorname{cov}(x, y)$$

独立性假设:

$$var(z) = \left(\frac{\partial z}{\partial x}\right)^2 var(x) + \left(\frac{\partial z}{\partial y}\right)^2 var(y)$$

$$\frac{\partial \ln(z)}{\partial \ln(x)} = \frac{x}{z} \frac{\partial z}{\partial x}$$

Monte Carlo方法

Monte Carlo方法基本思路:

求方差的数值解:

$$var(Z) = var(f(X, Y)) = \frac{1}{n-1} \sum_{i=1}^{n} [f(X_i, Y_i) - \bar{f}(X_i, Y_i)]^2$$

Monte Carlo方法是用一种随机方法来计算确定数值的过程

LCI数据不确定性

正态分布

$$\begin{cases} P_1 = \mu \\ P_2 = \text{CV} \cdot \mu \end{cases}$$

均匀分布

$$\begin{cases} P_1 = (1 - \sqrt{3} \cdot \text{CV})\mu \\ P_2 = (1 + \sqrt{3} \cdot \text{CV})\mu \end{cases}$$

$$CV = \frac{\sigma}{\mu}$$

$$\begin{cases} P_1 = \mu \\ P_2 = \sqrt{\ln(\text{CV}^2 + 1)} \end{cases}$$

对数正态分布

$$\begin{cases} P_1 = \mu \\ P_2 = \sqrt{\ln(\text{CV}^2 + 1)} \end{cases} \begin{cases} P_1 = (1 - \sqrt{6} \cdot \text{CV})\mu \\ P_2 = (1 + \sqrt{6} \cdot \text{CV})\mu \end{cases}$$

对称三角分布

不确定性分析——中国磷流分析

不确定性分析——中国铜存量分析

结果可靠性

LCI与SFA 、排放清单的比较

从个案到整体

单个企业的LCI

从企业到行业:

• 行业总产能: $M = \sum M_i$ 单个企业的产能

· 行业LCI:

$$LCI = \sum_{i=1}^{n} \frac{M_i}{M} \cdot LCI_i$$

行业总的LCI:

$$LCI = \sum_{i=1}^{n} \frac{M_i}{M} \cdot LCI_i \qquad LCI_T = M \cdot LCI = \sum_{i=1}^{n} M_i \cdot LCI_i$$

蛋糕的切法

条件期望:
$$\mathbb{E}(Z) = \mathbb{E}[\mathbb{E}_X(Z[X]) = \mathbb{E}[\mathbb{E}_Y(Z[Y])]$$
 LCI 企业 工艺

条件方差:
$$var(Z) = \mathbb{E}[var_X(Z|X)] + var[\mathbb{E}_X(Z|X)]$$

• 行业总产能:
$$M = \sum_{i=1}^n \widehat{M_i}$$
 单种工艺的产能

• 行业LCI:
$$\mathrm{LCI} = \sum_{i=1}^n \underbrace{M_i}_{\mathrm{LCI}_i}$$
 单种工艺的LCI

• 行业总的LCI:
$$LCI_T = M \cdot LCI = \sum_{i=1}^{n} M_i$$
 (LCI_i)

空间化LCI

$$LCI_i = \sum_{i=1} SF_j \cdot PI_{ij}$$
 无空间信息

$$LCI_i^{(k)} = \sum_{j=1}^n SF_j \cdot PI_{ij}^{(k)}$$
 空间信息

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 $B = B_1 + B_2 + B_3 + B_4$ 如果不知道 B_1, B_2, B_3, B_4 而只知道 B $b_{ij} = B \cdot \frac{a_{ij}}{A}$

$$B = B_1 + B_2 + B_3 + B_4$$

$$b_{ij} = B \cdot \frac{a_{ij}}{A}$$

$$\begin{bmatrix} A_1 & A_2 \\ \hline A_3 & A_4 \end{bmatrix} \qquad A = \sum_{i,j} a_{ij}$$

如果知道
$$B_1, B_2, B_3, B_4$$

$$(i,j) \in I(A_k)$$
, $A_k = \sum_{i,j \in I(A_k)} a_{ij}$

$$b_{ij} = B_k \cdot \frac{a_{ij}}{A_k} \quad (i,j) \in I(A_k)$$

中国涉磷行业空间化LCI

→ 空间化的LCI

富营养化潜势评估

总结

- 构建标准数据库,实现数据富集
 - 2 构建标准模型库,实现算法富集

- 3 推行不确定性分析,评估结果准确性
- 4 突破时空格局分析,促进结果验证

谢谢!

课题组网站:http://www.njumce.com/

微信公众号: Material_Cycles

个人邮箱:shenghu@nju.edu.cn

个人主页: https://ctfysh.github.io/