

ANALOG / DIGITAL

ANALOGE LEITUNG

ANALOGE LEITUNG

SIGNAL LEITUNG

Spannung

elektrische Quelle – Potentialdifferenz

Ohne Spannung kein Stromfluss möglich

Strom

fließt bei geschlossenem Stromkreis und vorhandener Spannungsquelle

Stromstärke abhängig von Spannung und Widerstand (Verbraucher)

Voltage = Current × Resistance (U = I × R)

Water

Electricity

Circuit Diagram

Ohmsches Gesetz

$$U = R * I$$

Spannung [Einheit Volt, V] = Widerstand [Einheit Ohm, Ω] * Strom [Einheit Ampere, A]

elektrische Leistung

$$P = U *$$

Leistung [Einheit Watt, W] = Spannung [V] * Strom [A]

durch Substitution I = U/R erhält man P = U^2/R bei Wechselstrom immer den Effektivwert U_{eff} nehmen!

Stromfluss wird durch den elektrischen Widerstand des Kabels verkleinert.

$$R = \rho * L/A$$

p [Ωmm²/m] spezifischer Widerstand, temperaturabhängige Materialkonstante, zB. Kupfer bei 20°C, p=0,0178 L [m] Leitungslänge A [mm²] Leitungsquerschnitt

Mikrofonkabel 2x0.22mm²

(Herstellerangaben)

Widerstand Leiter pro 1km = 87Ω Widerstand Schirm pro 1km = 30Ω

Kapazität Leiter/Leiter pro m = 68pF Kapazität Leiter/Schirm pro m = 130pF

LEITERWIDERSTAND MIKROKABEL

Die Signaladern und die Schirmung bilden zueinander einen Kondensator.

Über einen Kondensator können hohe Frequenzen abfliessen. RC-Glied bildet einen TPF.

Grenzfrequenz
$$f_g = 1/(2\pi RC)$$

LEITERKAPAZITÄT MIKROKABEL

$$f_g = 1 / (2 \cdot \pi \cdot R \cdot C \cdot d) = 612134Hz$$

 $R = Ausgangswiderstand z.B.: 200\Omega$

 $C = \text{Kapazität pro Meter z.B.: } 130pF (piko=10^{-12})$

d = Leiterlänge z.B.: 10m

E-Gitarre Stratocaster

$$f_g = 1 / (2 \cdot \pi \cdot R \cdot C \cdot d) = 26,7 \text{ kHz}$$

 $R = Ausgangswiderstand z.B.: 7000\Omega$

C = Kapazität Instrumentenkabel 10m.: 850pF

