НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

Інститут прикладного системного аналізу Кафедра системного проектування

3BIT

з виконання лабораторної роботи №5 з дисципліни "Комп'ютерні мережі"

На тему "Дослідження коефіцієнту навантаження у середовищах ЛОМ"

Виконав:

Студент групи ДА-82

Муравльов А.Д.

Варіант №18(51)

Мета роботи

- ознайомлення з засобами імітаційного моделювання комп'ютерних мереж;
- ознайомлення з особливостями методів доступу до середовища, що розділяється, в технологіях ЛОМ та методами структуризації комп'ютерних мереж;
- ознайомлення з принципами роботи концентраторів, комутаторів і маршрутизаторів;
- придбання досвіду розрахунків коефіцієнту навантаження у середовищах ЛОМ.

Nº	Технологія	Кількість РС	Сегментація (пристрій, тип підключення серверу до порту, з якого сегменту сервер)
51	FDDI	37	Міст, сервер підключений до порту повнодуплексним зв'язком, лівий сегмент

Завдання

- 3.1) Ознайомтесь з теоретичними відомостями.
- 3.2) Побудувати мережу на технології за варіантом. В мережі має бути задана кількість РС і 2 сервери. Половина РС звертається до одного сервера, половина до другого.

- 3.3) Намалювати топологію одного сегменту мережі.
- 3.4) Написати переваги і недоліки заданої технології у порівнянні з іншими, що мають аналогічну швидкість (Ethernet 10Base i Token Ring або Ethernet 100Base i

FDDI). Для цього треба враховувати наступне:

- швидкість передачі даних;
- надійність мережі, наявність елементів відмовостійкості;
 особливості методу доступу (рівномірність розподілу між користувачами пропускної здатності та стійкість до навантаження розподіленого середовища, які обмеження накладає на розміри мережі);
 Відносна вартість реалізації протоколів.

	Ethernet 100Base	FDDI
Швидкість передачі данних	100 Мбіт/с	100 Мбіт/с
Надійність мережі	при использовании витой пары	Висока відмовостійкості мережі,
	сеть строится по топологии	що забезпечується за рахунок
	dota orpositosi no tonesionisi	введення процедур відновлення
	«звезда», поэтому обрыв кабеля	
	приводит лишь к нарушению	після відмови обладнання (пошкоджень кабелю,
	приводит лишь к парушению	некоректної
	связи между двумя объектами	
	сети, соединёнными этим	роботи станцій або
	ости, сосдиненными отим	концентраторів, перешкод на
	кабелем (при использовании	
	коаксиального кабеля сеть	лініях). • дінаково ефективна
	ROURONG/IBNOTO ROOS//1 OCTD	робота при передачі як
	строится по топологии «общая	
	шина», для которой требуется	синхронного (чутливого до
	шина», для которой тресустоя	затримок трафіку), так і
	наличие терминальных	_
	резисторов на концах кабеля,	асинхронного (нечутливого до
	розлоторов на концах кабеля,	затримок) трафіку при великій
	поэтому обрыв кабеля приводит	
	к неисправности сегмента сети);	завантаженості мережі (0.7).
	к поиоправности сегмента сетиј,	

	Ethernet 100Base	FDDI	
Особливості методу доступу	Обеспечивает передачу данных со скоростью до 100 Мбит/с по кабелю, состоящему из двух витых пар 5-й категории. Обычно передача данных в каждом направлении ведётся по одной витой паре, обеспечивая до 100 Мбит/с общей пропускной способности в дуплексе. Длина линии связи ограничена 100 метрами, но по одному стандартному кабелю, имеющему 4 пары, можно организовать два 100-мегабитных канала связи.	Сеть строится на основе двух оптоволоконных колец: основного (primary) и резервного (secondary). Данные по кольцам передаются в противоположных направлениях. Обычно используется основное кольцо, а при повреждениях участков выполняется переключение на резервное кольцо средствами концентраторов и сетевых адаптеров. При обрыве кабеля в одном месте длина кольца увеличивается в 2 раза. При множественных повреждениях магистрали, сеть распадается на несколько независимых работающих сетей.	
Відносна вартість реалізації	Оптичне волокно – являє собою нитку з оптично прозорого матеріалу, скла або пластику і використовується для	Використовується оптичний кабель - як основний пункт затрат. Ще ретранслятори.	
	перенесення світла всередині себе за рахунок повного внутрішнього відбиття. майже в 10 разів дорожче ніж коаксіальний кабель та віта пара	Дорожче ніж вита пара та коаксіальний кабель	

3.5) Написати переваги і недоліки заданої фізичної специфікації у порівнянні з іншими для Ethernet. Для цього необхідно враховувати наступне:

- загальна довжина сегменту;
- максимальна кількість робочих станцій у сегменті;
 максимальна відстань між вузлами;
 складність монтажу і захищеність від перешкод.

	Ethernet	Ethernet	Ethernet	Ethernet	FDDI	Token Ting
	10Base-2	10Base-5	10Base- F	10Base-T		
Загальна	185 м	500 м	2000 м	500 м	100 км	UTP 365 м
довжина						STP 730 M
сегменту						

Максимальн а кількість робочих станцій у сегменті	30	100	1024	1024		72 (UTP), 250-260 (Type 1 STR)
Максимальн а відстань	925	2500	2500 (2740 для 10Base-	500	2 км	100 м
між вузлами Складність монтажу і захищеність від перешкод	Реализация этого стандарта на практике приводит к наиболее простому реше- нию для кабельной сети, так как для соединения компьютеро в требуются толь- ко сетевые адаптеры, Т- коннекторы и терминаторы 50 Ом.	высокая стоимость кабеля; сложность прокладки кабеля из- за большой жесткости; потребност ь в специально м инструмент е для заделки кабеля; останов работы всей сети при повреждени и кабеля или плохом соединении; необходимо сть заранее предусмотр еть подводку кабеля ко всем возможным местам установки	FB)	Преимущес тва связаны с разделение м общего физическог о кабеля на отдельные кабельные отрезки, подключенные к центрально му коммуникац ионному устройству.		

3.6) Провести моделювання за допомогою програми Netcracker роботи сегменту ЛОМ, враховуючи п. «Рекомендації». Записати параметри всіх видів трафіку. Виміряти навантаження ліній зв'язку і концентратора.

3.7) Розрахувати навантаження сегменту вручну з тими ж параметрами трафіку, що у попередньому пункті. Результати повинні бути близькі до результатів моделювання.

За 10 хвилин (600 сек.) для однієї РС:

$$TPC = (37 * 84 + (45982 * 390)) / 600 = 29893 \, faŭm/c.$$

$$Трс.общ. = \sum Tpc.i = 29893 * 37 = 1106041$$
 байт/с.

Інтенсивність запитів від однієї PC = 37/600 = 0.06 зап/с.

Нехай сервер передає на кожний запит файл з середнім об'ємом 336 Кбайт (230 пакетів максимальної довжини)

$$Tсерв = 230 * 45982 * (37 * 0.06) = 15652272$$
 байт/с.

 $Тзагал_сегм = 15652272 + 1106041 = 16758313$ байm/c.

2) Для однорангового трафіку (між РС):

Нехай в середньому кожна з 37-ти РС передає якійсь з інших РС файл розміром 93.4 Кбайт раз у 12 хвилин і один файл розміром 244 Кбайт один раз у 24 хвилини.

За 24 хвилини для однієї РС:

$$TPC = (2 * (45982 * 64) + 167 * 45982) / (24 * 60) = 9419 \ \text{байт/c}.$$

Трс загал = 9419 * 37 = 348537 байт/с.

3) Сумарний трафік сегменту:

$$T_{CYM} = 560715,76 + 348537 = 909252 \text{ } 6aŭm/c.$$

4) Середній коефіцієнт навантаження мережі:

$$\rho = 909252 * 8 / (100 * 1000000) = 0.07,$$

що відповідає рекомендованій межі навантаження мережі Ethernet, яка повинна бути

Сегментація

3.8) Розділити сегмент мережі на дві частини за допомогою комутуючою пристрою за варіантом. Сервери залишити **в середині** кожного з сегменті (по серверу).

- 3.9) Перерахуйте основні та додаткові функції заданого комутуючого пристрою.
- Маршрутизаторы помогают уменьшить загрузку сети благодаря её разделению на домены коллизий или широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы xDSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана. В качестве маршрутизатора может выступать как специализированное (аппаратное) устройство, так и обычный компьютер, выполняющий функции маршрутизатора.
- 3.10) Провести моделювання за допомогою програми Netcracker з тими ж характеристиками трафіку, що були для цілого сегменту. Виміряти навантаження всіх ліній зв'язку, які розрізняються між собою, і самого комутуючого пристрою.
- 3.11) Порівняти результати, які були отримані у п. 3.6 і у п. 3.10. Зробити висновки.
- 3.12) Виключити сервер з одного з сегментів (за варіантом) і підключити безпосередньо до порту комутуючого пристрою.

3.13) Провести моделювання з попередніми характеристиками трафіку. Записати навантаження для тих ліній зв'язку, для яких воно змінилися порівняно з п.3.10, і самого комутуючого пристрою. <u>Зробити висновки</u>.

3.14) Розрахувати вручну значення коефіцієнтів навантаження сегменту, з якого вилучили сервер, і ліній зв'язку з сервером. Результати повинні бути близькі до результатів моделювання. Оскільки у програмі немає окремих розрахунків для ліній зв'язку у повно і напівдуплексному режимі, то потрібно зробити розрахунок за своїм варіантом, а потім визначити, що рахує програма.

За 10 хвилин (600 сек.) для однієї РС:

 $TPC = (18 * 84 + (45982 * 390)) / 600 = 29890 \ \textit{6aŭm/c}.$

$$Трс.общ. = \sum Tpc.i = 29890 * 18 = 538034 \ байт/с.$$

Інтенсивність запитів від однієї PC = 18/600 = 0.03 зап/с.

Нехай сервер передає на кожний запит файл з середнім об'ємом 336 Кбайт (230 пакетів максимальної довжини)

$$Tcepe = 230 * 45982 * (18 * 0,03) = 5710964$$
 байт/с. $Tsaran \ cerm = 5710964 + 538034 = 6248998$ байт/с.

2) Для однорангового трафіку (між РС):

Нехай в середньому кожна з 18-ти РС передає якійсь з інших РС файл розміром 93.4 Кбайт раз у 12 хвилин і один файл розміром 244 Кбайт один раз у 24 хвилини.

За 24 хвилини для однієї РС:

$$TPC = (2 * (45982 * 64) + 167 * 45982) / (24 * 60) = 9419 \ 6aŭm/c.$$

$$Трс$$
 загал = $9419 * 18 = 169542$ бай m/c .

3) Сумарний трафік сегменту:

$$T_{CYM} = 6248998 + 169542 = 6418540 \text{ } 6aŭm/c.$$

4) Середній коефіцієнт навантаження мережі:

$$\rho = 6418540 * 8 / (100 * 1000000) = 0.5,$$

що відповідає рекомендованій межі навантаження мережі Ethernet, яка повинна бути

 $\leq 0.7.$

Таким чином, швидкість 100 Мбіт\сек дозволяє забезпечити нормальну роботу нашої мережі.