1 A space is *Lindelöf* if every open cover has a countable subcover. Show that a Lindelöf metric space is second-countable.

Proof. Let (X,d) be a Lindelöf metric space. For each $n \in \mathbb{N}$, the set of balls $\{B_{1/n}(x)\}_{x \in X}$ forms an open cover of X. Then there is a choice of points $x_{n,k} \in X$ for $k \in \mathbb{N}$ such that the collection $\{B_{1/n}(x_{n,k})\}_{k \in \mathbb{N}}$ is a countable subcover. We claim that the countable collection

$$\mathcal{B} = \{B_{1/n}(x_{n,k})\}_{n,k \in \mathbb{N}}$$

is a basis for X. Let $x \in X$ and $U \subseteq X$ be an open neighborhood of x. Then $B_r(x) \subseteq U$ for some radius r > 0. Choose $N \in \mathbb{N}$ such that 1/N < r/2, then $x \in B_{1/N}(x_{N,k}) \in \mathcal{B}$ for some $k \in \mathbb{N}$. For all $y \in B_{1/N}(x_{N,k})$ we compute

$$d(x,y) \le d(x,x_{N,k}) + d(x_{N,k},y) < \frac{1}{N} + \frac{1}{N} < r,$$

so $y \in B_r(x)$, implying $B_{1/N}(x_{N,k}) \subseteq B_r(x)$. This proves \mathcal{B} is a basis, hence X is Lindelöf. \square

2 Show that $\mathcal{C}([0,1])$ with the sup norm is separable (and therefore second-countable).

Hint: This is equivalent to showing that every continuous function $[0,1] \to \mathbb{R}$ can be approximated arbitrarily closely by functions from some countable set.

Proof. By the Weierstrass approximation theorem, every function in $\mathcal{C}([0,1])$ can be uniformly approximated within an arbitrary distance by a polynomial in $\mathbb{R}[x]$. We will show that every polynomial in $\mathbb{R}[x]$ can be uniformly approximated within an arbitrary distance by a polynomial in $\mathbb{Q}[x]$.

Let $f \in \mathbb{R}[x]$, i.e., $f = \sum_{k=0}^{d} a_k x^k$ where $d = \deg f$ and $a_k \in \mathbb{R}$. Given $\varepsilon > 0$, we can choose $q_k \in \mathbb{Q}$ such that $|a_k - q_k| < \varepsilon/(d+1)$ for $k = 0, \ldots, d$. Then $g = \sum_{k=0}^{d} q_k x^k$ is a polynomial in $\mathbb{Q}[x]$. For all $x \in [0, 1]$, we find

$$|f(x) - g(x)| = \left| \sum_{k=0}^{d} (a_k - q_k) x^k \right|$$

$$\leq \sum_{k=0}^{d} |a_k - q_k| |x|^k$$

$$< \sum_{k=0}^{d} \frac{\varepsilon}{d+1} \cdot 1$$

$$= \varepsilon$$

Hence, polynomials in $\mathbb{R}[x]$ can be uniformly approximated within an arbitrary distance by polynomials in $\mathbb{Q}[x]$.

Given $f \in \mathcal{C}([0,1])$ and $\varepsilon > 0$, we can choose $g \in \mathbb{R}[x]$ such that $||f - g|| < \varepsilon/2$ and $h \in \mathbb{Q}[x]$ such that $||g - h|| < \varepsilon/2$. Then

$$||f - h|| \le ||f - g|| + ||g - h|| < \varepsilon.$$

Hence, functions in $\mathcal{C}([0,1])$ can be uniformly approximated within an arbitrary distance by polynomials in $\mathbb{Q}[x]$. In other words, $\mathbb{Q}[x]$ is a countable dense subset of $\mathcal{C}([0,1])$, so $\mathcal{C}([0,1])$ is separable.

3 Let $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ be an indexed family of connected spaces. In this problem you will show that their product $X=\prod_{{\lambda}\in\Lambda}X_{\lambda}$ is connected.

Lemma 1. If Y and Z are connected subspaces of a topological space such that $Y \cap Z \neq \emptyset$, then $Y \cup Z$ is connected.

Proof. Assume—for contradiction—that $Y \cup Z$ is disconnected, i.e., $Y \cup Z = U \cup V$ where $U, V \subseteq Y \cup Z$ are nonempty disjoint open sets. We can write

$$Y = (Y \cup Z) \cap Y = (U \cap Y) \cup (V \cap Y),$$

where $U \cap Y$ and $V \cap Y$ are disjoint open subsets of Y. Similarly,

$$Z = (Y \cup Z) \cap Z) = (U \cap Z) \cup (V \cap Z),$$

where $U \cap Z$ and $V \cap Z$ are disjoint open subsets of Z.

Since Y is connected, we can assume without loss of generality that

$$U \cap Y = Y$$
 and $V \cap Y = \emptyset$.

This implies $V \subseteq Z$, i.e., $V \cap Z = V$. Since V is nonempty and Z is connected,

$$V \cap Z = Z$$
 and $V \cap Z = \emptyset$.

This now tells us Y = U and Z = V. However, this is a contradiction since we assumed Y and Z to overlap but U and V to be disjoint.

(a) Fix a point $\mathbf{a} = (a_{\lambda})_{\lambda \in \Lambda} \in X$. Given a finite subset $K \subset \Lambda$, let X_K denote the subspace of points in X whose coordinates are all a_{λ} except perhaps for $\lambda \in K$. Show that X_K is connected.

Proof. Given $\lambda_0 \in \Lambda$ the space X_{λ_0} is homeomorphic to the subspace $X_{\{\lambda_0\}} \subseteq X$. Explicitly, for each point $x \in X_{\lambda_0}$, there is a point $(x_{\lambda})_{\lambda \in \Lambda} \in X$ with $x_{\lambda_0} = x$ and $x_{\lambda} = a_{\lambda}$ for all $\lambda \neq \lambda_0$. Then the map $x \mapsto (x_{\lambda})_{\lambda \in \Lambda}$ is the desired homeomorphism. In particular, $X_{\{\lambda_0\}}$ is connected since X_{λ_0} is connected.

Note that X_K is the finite union of connected subspaces $X_{\{\lambda\}}$ for $\lambda \in K$, which all contain the point **a**. As an immediate corollary to Lemma 1, the finite union of overlapping connected subspaces is connected, hence X_K is connected.

(b) Show that the union Y of all the X_K is connected.

Proof. Assume—for contradiction—that Y is disconnected. Then $Y = U \cup V$ where U and V are nonempty disjoint open subsets of Y. Let $x \in U$ and $y \in V$. By construction of Y, we have $x \in X_{K_1}$ and $y \in X_{K_2}$ for some finite subsets $K_1, K_2 \subseteq \Lambda$. Then $K = K_1 \cup K_2$ is also a finite subsets of Λ with $x, y \in X_K$. However, we also have

$$X_K = Y \cap X_K = (U \cap X_K) \cup (V \cap X_K),$$

where $U \cap X_K$ and $V \cap X_K$ are disjoint open subsets of X_K . And since $x \in U \cap X_K$ and $y \in V \cap X_K$, then we conclude that X_K is disconnected. However, this contradicts part (a) which tells us that X_K must be connected.

(c) Show that the closure of a connected subset of any space is connected.

Proof. Let C be a connected subset of a space Z. If $C = \emptyset$, then the result is trivial, so we assume C is nonempty.

Assume—for contradiction—that \overline{C} is disconnected. Then $\overline{C} = U \cup V$ for some nonempty disjoint open subsets $U, V \subseteq \overline{C}$. Without loss of generality, assume $U \cap C \neq \emptyset$. If $V \cap C$ were also nonempty, then we could write $C = (U \cap C) \cup (V \cap C)$, with U and V being nonempty disjoint open subsets of C. Since C is connected, this is not possible, so $V \cap C$ must be empty.

Since V is nonempty, we can choose some $x \in V$. Since $\overline{C} \subseteq Z$ has the subspace topology, we have $V = \overline{C} \cap W$ for some open set $W \subseteq Z$. But then W is an open neighborhood of x outside of C. This is a contradiction since we assumed $x \in V \subseteq \overline{C}$.

(d) Show that the closure of Y is X. Conclude that X is connected.

Proof. Let $x \in X$ and consider an open neighborhood U of x. Without loss of generality, we may assume U is in the basis for the product topology on X. This means there is a finite subset $K \subseteq \Lambda$ and open neighborhoods U_{λ} of x_{λ} for each $\lambda \in K$ such that

$$U = \prod_{\lambda \in K} U_{\lambda} \times \prod_{\lambda \in \Lambda \setminus K} X_{\lambda}.$$

Then U and Y overlap at some point $(y_{\lambda})_{{\lambda} \in {\Lambda}} \in X_K$, chosen such that $y_{\lambda} = a_{\lambda}$ for ${\lambda} \in {\Lambda} \setminus K$ and $y_{\lambda} \in U_{\lambda}$ for ${\lambda} \in K$. This implies $x \in \overline{Y}$, so in fact $\overline{Y} = X$. Applying part (c), we conclude that X is connected.

4

(a) Show that if X is a first-countable space, then for every $A \subset X$, every point in the closure of A is the limit of a sequence in A.

Proof. Let $x \in \overline{A}$ and let $\{U_n\}_{n \in \mathbb{N}}$ be a countable neighborhood basis for x with $U_n \supseteq U_{n+1}$. Since $x \in \overline{A}$, we can choose a point $x_n \in U_n \cap A$. We check that $x_n \to x$. For any open neighborhood U of x, there is some $N \in \mathbb{N}$ such that $U_N \subseteq U$. Moreover, for any $n \ge N$ we have

$$x_n \in U_n \subseteq U_N \subseteq U$$
,

hence $x_n \to x$.

(b) Using the previous problem, show that this is not true for spaces that aren't first-countable.

Let $\Lambda = \mathbb{R}$ and $X_{\lambda} = \mathbb{R}$ for $\lambda \in \Lambda$. So $X = \mathbb{R}^{\mathbb{R}}$ is the space of functions $\mathbb{R} \to \mathbb{R}$ with the product topology. Choose the base point $\mathbf{a} = \mathbf{0} \in X$ where $a_{\lambda} = \mathbf{0}(x) = 0 \in \mathbb{R}$ for all $x \in \mathbb{R}$. Then Y can be described as the set of functions with finite support.

Consider the function $\mathbf{1} \in X$ with $\mathbf{1}(x) = 1 \in \mathbb{R}$ for all $x \in \mathbb{R}$. We claim that no sequence in Y converges to $\mathbf{1}$.

Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of points in Y, i.e., each f_n is a function $\mathbb{R} \to \mathbb{R}$ with finite support. For each $n \in \mathbb{N}$, denote the support of f_n by supp f_n . Since each support is finite, the countable union

$$S = \bigcup_{n \in \mathbb{N}} \operatorname{supp} f_n = \{ x \in \mathbb{R} : f_n(x) \neq 0 \text{ for some } n \in \mathbb{N} \}$$

is a countable subset of \mathbb{R} . Then there is some $x_0 \in \mathbb{R} \setminus S$, because \mathbb{R} is uncountable. There is an open neighborhood of 1 given by

$$U = \{ f \in X : f(x_0) \in B_{1/2}(1) \}.$$

However, for all $n \in \mathbb{N}$, we have $f_n(x_0) = 0$, implying $f_n \notin U$. Hence, the sequence $(f_n)_{n \in \mathbb{N}}$ does not converge to **1**.