LA2 4

KYB

Thrn, it's a Fact mathrnfact@gmail.com

October 1, 2020

Overview

Correction

Ch7. The spectral theory of symmetric matrices 7.2 The spectral theorem for normal matrices Tensor product

Ex6.6.13,14, the minimum-norm least-squares solution to Ax = y

Prove that \overline{x} has the smallest Euclidean norm of any element of $\hat{x} + \mathcal{N}(A)$.

Proof.

Let $x\in \hat{x}+\mathcal{N}(A)$. Then $\bar{x}=\operatorname{proj}_{\operatorname{col}(A^T)}x$. So $(\bar{x}-x)\cdot \bar{x}=0$. By Pythagorean theorem,

$$||x||_{2}^{2} = ||x - \bar{x} + \bar{x}||_{2}^{2} = ||x - \bar{x}||_{2}^{2} + ||\bar{x}||_{2}^{2} > ||\bar{x}||_{2}^{2}.$$

7.2 The spectral theorem for normal matrices

Definition

Let $A \in \mathbb{C}^{n \times n}$. We say that A is <u>normal</u> if and only if $A^*A = AA^*$.

If A is Hermitian, A is normal, but the converse need not to be true.

Lemma (346)

Let $A \in \mathbb{C}^{n \times n}$ be normal. Then

$$||Ax||_2 = ||A^*x||_2.$$

Theorem (347)

Let $A \in \mathbb{C}^{n \times n}$ be normal. If (λ, x) is e.pair of A, then $(\overline{\lambda}, x)$ is e.pair of A^* .

Theorem (348)

Let $A \in \mathbb{C}^{n \times n}$ be normal. Then e.vecs of A corr to distinct e.vals are orthogonal.

Lemma (349)

Let $A \in \mathbb{C}^{n \times n}$ be normal. Then

$$\operatorname{col}(A^*) = \operatorname{col}(A)$$
 and $\mathcal{N}(A^*) = \mathcal{N}(A)$.

Recall

$$\mathbb{C}^n = \operatorname{col}(A^*) \oplus \mathcal{N}(A)$$

Theorem (350)

Let $A \in \mathbb{C}^{n \times n}$ be normal and $\lambda \in \mathbb{C}$ be e.val of A. Then $m. \operatorname{geo}(\lambda) = m. \operatorname{alg}(\lambda)$.

Recall

TFAE

- ightharpoonup m. $geo(\lambda) = m. alg(\lambda);$

Theorem (351)

Let $A \in \mathbb{C}^{n \times n}$ be normal. Then there exists a unitary matrix $X \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D \in \mathbb{C}^{n \times n}$ such that $A = XDX^*$.

Observation

Let $x, y \in \mathbb{R}^n$. Then the dot product of x and y is

$$x \cdot y = \sum x_i y_i = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix} \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = y^T x.$$

On the other hand

$$xy^{T} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix} = \begin{bmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & \ddots & \vdots \\ x_ny_1 & \cdots & x_ny_n \end{bmatrix}$$

Moreover, for $z \in \mathbb{R}^n$

$$(xy^T)z = x(y^Tz) = x(z \cdot y) = (z \cdot y)x$$

Using this property, we can define new concept of product, say the outer product.

Definition

Let U and V be inner product spaces over $\mathbb R$ or $\mathbb C$. If $u\in U$ and $v\in V$, then the outer product of u and v is the opreator $u\otimes v:V\to U$ defined by

$$(u \otimes v)(w) = \langle w, v \rangle u$$

Suppose $A \in \mathbb{C}^{n \times n}$ has the spectral decomposition $A = XDX^*$, where

$$X = [x_1|\cdots|x_n], D = \operatorname{diag}(\lambda_1,\cdots,\lambda_n),$$

then for any $v \in \mathbb{C}^n$

$$Av = XDX^*v = XD\begin{bmatrix} \langle v, x_1 \rangle \\ \vdots \\ \langle v, x_n \rangle \end{bmatrix} = X\begin{bmatrix} \lambda_1 \langle v, x_1 \rangle \\ \vdots \\ \lambda_n \langle v, x_n \rangle \end{bmatrix} = \sum_{i=1}^n \lambda_i \langle v, x_i \rangle x_i$$

Hence $A = \sum_{i} \lambda_i x_i \otimes x_i$.

7.2 The spectral theorem for normal matrices

Ex7.2.3

Let $A \in F^{n \times n}$ be given, define $T : F^n \to F^n$ by T(x) = Ax, and let $\mathcal{X} = \{x_1, \cdots, x_n\}$ be a basis for F^n . Prove that $[T]_{\mathcal{X}, \mathcal{X}} = X^{-1}AX$.

Proof.

$$\begin{array}{ccc} F_{\mathcal{S}}^n & \stackrel{A}{\longrightarrow} & F_{\mathcal{S}}^n \\ [I]_{\mathcal{X},\mathcal{S}} & & & & & & & & & \\ F_{\mathcal{X}}^n & & & & & & & & & \\ F_{\mathcal{X}}^n & & & & & & & & & \\ \end{array}$$

Denote $(\beta_1, \dots, \beta_n) \in F_{\mathcal{X}}^n$ by $x = \sum \beta_i x_i \in F^n$. Note that $[x]_{\mathcal{S}} = x$ for all $x \in F^n$ and $e_i = [x_i]_{\mathcal{X}}$. Then

$$[I]_{\mathcal{X},\mathcal{S}}e_i = [I]_{\mathcal{X},\mathcal{S}}[x_i]_{\mathcal{X}} = [Ix_i]_{\mathcal{S}} = [x_i]_{\mathcal{S}} = x_i.$$

So
$$[I]_{\mathcal{X},\mathcal{S}} = X$$
, and hence $[T]_{\mathcal{X},\mathcal{X}} = X^{-1}AX$.

☐ 7.2 The spectral theorem for normal matrices

Determinant of linear operator

By the result of Ex7.2.3, we can define the determinant of $L:V\to V$ where V is finite dimensional vector space over F. Fix a basis \mathcal{X} . Define

$$\det(L) = \det[L]_{\mathcal{X},\mathcal{X}}.$$

det(L) is invariant under a choice of a basis.

Observation

Recall that $\det: (F^n) \times \cdots \times (F^n) \to F$ is a function such that

- ▶ det is multilinear.

The first condition is called the normalizing condition.

We can apply $A \in F^{n \times n}$ to det by

$$\det(A) := \det(Ae_1, \cdots, Ae_n).$$

-7.2 The spectral theorem for normal matrices

Step 1

Let $\{x_1, \dots, x_n\}$ be any basis for F^n . Define $D: (F^n) \times \dots \times (F^n) \to F$ so that

- $D(x_1, \cdots, x_n) = 1.$
- ▶ *D* is multilinear.
- $D(\cdots, v, \cdots, v, \cdots) = 0.$

D is different from det.

Now for $A \in F^{n \times n}$, define D(A) by

$$D(A) := D(Ax_1, \cdots, Ax_n).$$

Step 2

Let
$$L: F^n \to F^n$$
 by $L(x) = Ax$ and $B = [L]_{\mathcal{X},\mathcal{X}}$. Notw that $B_i = [Ax_i]_{\mathcal{X}}$.
$$D(A) = D(Ax_1, \cdots, Ax_n)$$

$$= D(\sum B_{1i_1}x_{i_1}, \cdots, \sum B_{ni_n}x_{i_n})$$

$$= \sum_{i_1} \cdots \sum_{i_n} B_{1i_1} \cdots B_{ni_n} D(x_{i_1}, \cdots, x_{i_n})$$

$$= \sum_{i_1} \cdots \sum_{i_n} B_{1i_1} \cdots B_{ni_n} \det(e_{i_1}, \cdots, e_{i_n})$$

$$= \det(\sum B_{1i_1}e_{i_1}, \cdots, \sum B_{ni_n}e_{i_n})$$

$$= \det(Be_1, \cdots, Be_n) = \det(B) = \det([L]_{\mathcal{X},\mathcal{X}})$$

$$= \det(A).$$

This is another reason why det(L) is well-defined.

Remark

We can directly construct $\det(L)$ for arbitrary $L:V\to V$. Fix a basis $\{x_1,\cdots,x_n\}$. Define $\det:V\times\cdots\times V\to F$ so that

- det is multilinear.
- $ightharpoonup \det(\cdots, v, \cdots, v, \cdots) = 0.$

Now for $L \in \mathcal{L}(V, V)$, define $\det(L)$ by

$$\det(L) := \det(L(x_1), \cdots, L(x_n)).$$

Ex7.2.4

Let $A \in \mathbb{C}^{n \times n}$ be normal. Prove that $A - \lambda I$ is normal for any $\lambda \in \mathbb{C}$.

-7.2 The spectral theorem for normal matrices

Ex7.2.5

Let $A \in \mathbb{C}^{n \times n}$. Prove:

- (a) If there exists a unitary matrix $X \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $A = XDX^*$, then A is Hermitian.
- (b) If there exists a unitary matrix $X\in\mathbb{C}^{n\times n}$ and a diagonal matrix $D\in\mathbb{C}^{n\times n}$ such that $A=XDX^*$, then A is normal.

Ch7. The spectral theory of symmetric matrices

-7.2 The spectral theorem for normal matrices

Ex7.2.7

Let $A \in \mathbb{R}^{n \times n}$. We say that A is skew-symmetric if $A^T = -A$.

- (a) Prove that any skew symmetric matrix is normal.
- (b) Prove that a skew symmetric matrix has only purely imaginary eigenvalues.

Ex7.2.14

Let V be an inner product space over $\mathbb R$ or $\mathbb C$, and let u,v be nonzero vectors in V.

- (a) the rank of $u \otimes v$;
- (b) the eigenparis of $u \otimes v$;
- (c) the characteristic polynomial, determinant, and trace of $u \otimes v$;
- (d) the adjoint of $u \otimes v$.

-7.2 The spectral theorem for normal matrices

E7.2.16

Let V be an inner product spave over $\mathbb R$ and let $u\in V$ have norm one. Define $T:V\to V$ by

$$T = I - 2u \otimes u$$
.

Prove that T is self-adjoint and orthogonal.

Tensor product

Observation

Let U and V be two vector spaces over a field F. Suppose $\dim U=n$ and $\dim V=m$. Then $U\times V=\{(u,v)\mid u\in U,v\in V\}$ is a vector space over F in a natural way;

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2), \alpha(u, v) = (\alpha u, \alpha v).$$

Let $\{u_1,\cdots,u_n\}$ and $\{v_1,\cdots,v_m\}$ be bases for U and V, respectively. Then $\{(u_1,0),\cdots,(u_n,0),(0,v_1),\cdots,(0,v_m)\}$ forms a basis for $U\times V$. Thus

$$\dim(U\times V)=\dim U+\dim V.$$

Tensor product

The inner direct sum

Let X be a vector space, and let U and V be two subspace of X such that $U\cap V=\{0\}$. Then every vector of U+V can be written as u+v for some $u\in U$ and $v\in V$ in a unique way. In this case, we write $U+V=U\oplus V$. We call \oplus the inner direct sum.

The outer direct sum

In the previous observation, we can identify U as a subspace of $U \times V$ by $U \cong U \times \{0\}$. Similarly $V \cong \{0\} \times V \subset U \times V$. Since $(U \times \{0\}) \cap (\{0\} \times V) = \{0\}, \ U \times V = (U \times \{0\}) \oplus (\{0\} \times V)$. In this case, we sometimes denote $U \boxplus V \cong U \times V$, which is a vector space containing U and V independently and is isomorphic to $U \times V$. We call \boxplus the outer direct sum.

The direct sum

Since we can identify U and V with subspaces of $X=U\times V$, we don't distinguish between \oplus and \boxplus . Thus $U\oplus V$ is a vector space which is generated by U and V independently. Moreover, $\dim(U\oplus V)=\dim U+\dim V$.

Observation

Consider $\mathcal{L}(F^n,F^m)\cong F^{m\times n}.$ For all $A\in F^{m\times n}$,

$$A = \sum_{i,j} A_{ij} e_j e_i^T, e_i \in F^n, e_j \in F^m.$$

Let $u \in F^n$ and $v \in F^m$ and $\alpha \in F$.

- $(\alpha v)u^T = v(\alpha u)^T = \alpha(vu^T).$
- $(v_1 + v_2)u^T = v_1 u^T + v_2 u^T.$
- $v(u_1 + u_2)^T = vu_1^T + vu_2^T.$

So for all $A \in F^{m \times n}$, $A = \sum v_j u_i^T$ for some $u_i \in F^n$ and $v_j \in F^m$, or $F^{m \times n}$ is generated by $\{vu^T \mid u \in F^n, v \in F^m\}$.

Hence for all $L \in \mathcal{L}(F^n, F^m)$, $L = \sum u_i \otimes v_j$. If we take bases $\{e_1, \dots, e_n\}$ and $\{f_1, \dots, f_m\}$,

$$L = \sum_{i,j} \alpha_{i,j} e_i \otimes f_j.$$

Observation

Let U and V be two vector spaces over a field F. Consider a vector space X which satisfies the followings:

- 1. X is generated by $\{u \otimes v \mid u \in U, v \in V\}$;
- 2. $\alpha(u \otimes v) = (\alpha u) \otimes v = u \otimes (\alpha v);$
- 3. $(u_1 + u_2) \otimes v = (u_1 \otimes v) + (u_2 \otimes v);$
- **4.** $u \otimes (v_1 + v_2) = (u \otimes v_1) + (u \otimes v_2).$

The question is "is there such a vector space?". The answer is "yes". We write $X=U\otimes V$, a tensor product of U and V.

Suppose $\dim U=n$ and $\dim V=m$ and take bases $\{e_1,\cdots,e_n\}$ and $\{f_1,\cdots,f_m\}$. By the conditions, every vector in $U\otimes V$ is of the form $\sum_i\sum_j\alpha_{ij}e_i\otimes f_j$. Hence $\{e_i\otimes f_j\}_{i,j}$ forms a basis for $U\otimes V$, and

$$\dim(U \otimes V) = \dim U \cdot \dim V.$$

La Tensor product

Sequence notation

A sequence on a set S is just a function $a:\mathbb{N}\to S$. Sometimes we write $a=(a_n)$, or $a=\{a_n\}$ where $a_n=a(n)$. In this sense, $x:\mathbb{N}\to S$ can be written as (x_n) .

Let $x \in F^n$. Then $x = (x_1, \dots, x_n)$. So x is a function $x : \{1, \dots, n\} \to F$ where $x(i) = x_i$.

Set of all functions

Let X and Y be sets and define Y^X a set of all functions $f:X\to Y$. In general, the cadinality of Y^X is $|Y|^{|X|}$.

Now by using the sequence notation, $f \in Y^X$ can be written as $f = (f(x))_{x \in X}$. If X is finite set, $X = \{x_1, \dots, x_n\}$, $f = (f(x_i)) = (f_i)$.

La Tensor product

Free vector space

Let S be any set and F be a field. We can construct a vector space $\mathcal{F}(S)$ whose basis is S, as follows:

Let $X=\{f:S\to F\}$ be the set of all functions from S to F such that f(s)=0 for all but only finitely many $s\in S$. (We say f has the finite support) For $x\in X$, write $x_s=x(s)$ for all $s\in S$, and $x=(x_s)_{s\in S}$. We can define $x+y=(x_s+y_s)$ and $\alpha x=(\alpha x_s)$. For each $s\in S$, we can define a function $f^s:S\to F$ by $f^s(t)=\delta_{st}$. Then for all $x\in X$, $x=\sum x_sf^s$. Since $x_s\neq 0$ for only finitely many s, the sum is well defined, and actually it is a linear combination of $\{f^s\}$. Moreover, $\sum \alpha_i f^{s_i}=0$ implies $\alpha_i=0$ for all i. Hence $\{f^s\}$ is a basis for X. Now if we identify $s\in S$ with $f^s\in X$, S is a basis for X. Hence $X=\mathcal{F}(S)$ exists, say the free vector space of S over F.

Notation

For $s \in S$, we can write $f^s = 1_s$. This implies $1_s(t) = 1$ for only t = s.

Universal property of a free vector space

Let W be a vector space over F. Suppose $f:S\to W$ is a function. Then there is a unique linear map $\tilde{f}:\mathcal{F}(S)\to W$ such that $\tilde{f}\circ\iota(s)=f(s)$.

Proof

Define $\tilde{f}(\sum \alpha_i 1_{s_i}) = \sum \alpha_i s_i$.

Notation

$$\mathcal{F}(S)=F^{(S)}=\bigoplus_{s\in S}F.$$
 If $|S|=n<\infty$, $F^{(n)}=F^n=\bigoplus_{i=1}^nF.$ The map $s\mapsto 1_s$ is injective. Define $\iota:S\to\mathcal{F}(S)$ such that $\iota(s)=1_s.$

Tensor product

Quotient space

Let V be a vector space over F and H be a subspce of V. We can define a relation \sim on V by

$$x \sim y \iff x - y \in H.$$

This relation satisfies 1) $x\sim x$, 2) $x\sim y$ implies $y\sim x$, and 3) $x\sim y$ and $y\sim z$ implies $x\sim z$. So \sim is an equivalent relation. Note that [v]=v+H. Consider the set of all equivalece class $V/H=\{[v]\mid v\in V\}$. We can define an addition and a scalar multiplication by

$$[v_1] + [v_2] := [v_1 + v_2], \quad \alpha[v] := [\alpha v].$$

Thus V/H is also vector space. Now define $\pi:V\to V/H$ by $\pi(v)=[v]$. Then π is a serjective linear map whose kernel is H. We call π a canonical projection map.

Universal property of quotient spaces

Let V be a vector space over F and H be a subspce of V. Suppose $T:V\to W$ is a linear map such that $H\subset\ker T$. Then there is a unique liner map $\tilde{T}:V/H\to W$ such that $T=\tilde{T}\circ\pi$.

$$V \xrightarrow{\pi} V/H$$

$$T \xrightarrow{\tilde{T}}$$

$$W$$

Proof

Define
$$\tilde{T}(v+H) = T(v)$$
.

The existence of the tensor product

Let U and V be vector spaces over F. Let $X=\mathcal{F}(U\times V)$. Let $H\subset X$ spanned by

$$\begin{aligned} &\mathbf{1}_{(\alpha u,v)} - \mathbf{1}_{(u,\alpha v)}, \\ &\mathbf{1}_{(u_1 + u_2,v)} - \mathbf{1}_{(u_1,v)} - \mathbf{1}_{(u_2,v)}, \\ &\mathbf{1}_{(u,v_1 + v_2)} - \mathbf{1}_{(u,v_1)} - \mathbf{1}_{(u,v_2)}. \end{aligned}$$

Then X/H is a vector space over F and it satisfies

- 1. X/H is generated by $\{[1_{(u,v)}] \mid u \in U, v \in V\};$
- 2. $\alpha[1_{(u,v)}] = [1_{(\alpha u,v)}] = [1_{(u,\alpha v)}];$
- 3. $[1_{(u_1+u_2,v)}] = [1_{(u_1,v)}] + [1_{(u_2,v)}];$
- 4. $[1_{(u,v_1+v_2)}] = [1_{(u,v_1)}] + [1_{(u,v_2)}].$

If we write $[1_{(u,v)}] = u \otimes v$, X/H is a tensor product of U and V, as desired.

Remark

When we construct $\mathcal{F}(U \times V)$, $U \times V$ is a set (not a vector space). So for $\alpha \neq 1$, $1_{(\alpha u, \alpha v)} \neq \alpha 1_{(u,v)}$, for example,

$$1_{(\alpha u, \alpha v)}(u, v) = 0.$$

- A vector $x \in U \otimes V$ may not be written as $x = u \otimes v$. But every vector can be written as $x = \sum_i \alpha_i u_i \otimes v_i$. For example, $U = V = F^2$, $e_1 \otimes e_2 + e_2 \otimes e_1 \neq u \otimes v$ for all u, v.
- $\blacktriangleright u \otimes 0 = 0$ for all u. (cf. $(u,0) \neq 0$ if $u \neq 0$.)

La Tensor product

Universal property of tensor product

Suppose $T:U\times V\to W$ is a bilinear map. There is a unique linear map $\tilde T:U\otimes V\to W$ such that

$$T(u,v) = \tilde{T}(u \otimes v).$$

$$U \times V \xrightarrow{p} U \otimes V$$

$$\tilde{T} \xrightarrow{\tilde{T}} W$$

Note

We have two maps $\iota:U\times V\to \mathcal{F}(U\times V)$ and $\pi:\mathcal{F}(U\times V)\to U\otimes V$. Define $p=\pi\circ\iota$. Then $p(u,v)=u\otimes v$ and $T=\tilde{T}\circ p$. You can easily check p is bilinear.

Tensor product

Proof, Step 1

It is easy to show the uniqueness.

By the universal property of a free vector space, there is a unique linear map $L: \mathcal{F} \to W$ such that $L(\iota(u,v)) = T(u,v)$.

Tensor product

Proof, Step 2

Since $T(\alpha u,v)-T(u,\alpha v)=0, T(u_1+u_2,v)-T(u_1,v)-T(u_2,v)=0, T(u,v_1+v_2)-T(u,v_1)-T(u,v_2)=0, H\subset \ker(L).$ By the universal property of a quotient space, there is a unique linear map $\tilde{T}:U\otimes V\to W$ such that $L=\tilde{T}\circ\pi.$ Hence $T=\tilde{T}\circ\pi\circ\iota=\tilde{T}\circ p$ ad desired.

Uniqueness of tensor products

By using the universal property of the tensor product, there is a unique tensor product up to isomorphism.

Ch7. The spectral theory of symmetric matrices
Tensor product

Diagram for proof

$$U \times V \xrightarrow{\iota} \mathcal{F}(U \times V) \xrightarrow{\pi} U \otimes V$$

$$T \xrightarrow{L} \tilde{T}$$

$$W$$

Application of tensor products

Consider a vector space V over $\mathbb C.$ V is vector space over $\mathbb R.$ How about the converse?

In general, a vector space V over $\mathbb R$ is not a vector space over $\mathbb C$. Then we want to find the best approximation of V into a vector space over $\mathbb C$.

Scalar extension, or base change

 $\mathbb C$ is itself a vector space over $\mathbb R$. Then $V_{\mathbb C}=V\otimes_{\mathbb R}\mathbb C$ is a vector space over $\mathbb R$. Now give a scalar multiplication on $V_{\mathbb C}$ by

$$\alpha \cdot (v \otimes c) = v \otimes (\alpha c).$$

In this sense, $V_{\mathbb{C}}$ is a vector space over \mathbb{C} .

Moreover $V \otimes_{\mathbb{R}} \mathbb{R}$ is a subspace of $V_{\mathbb{C}}$ and $V \otimes_{\mathbb{R}} \mathbb{R} \cong V$. So we can consider $V_{\mathbb{C}}$ as a scalar extension of V.

The outer product and the tensor product

Suppose U and V are finite dimensional inner product spaces. Define $E:U\times V\to \mathcal{L}(V,U)$ by

$$E(u, v)(w) = \langle w, v \rangle u.$$

We already know that E is a bilinear map. Thus there is a unique linear map $\tilde{E}(\sum u_i \otimes v_i) = \sum \langle \cdot, v_i \rangle u_i$. You can easily chech that \tilde{E} is an isomorphism. So we can identify $u \otimes v = \langle \cdot, v \rangle u$.

In fact, the tensor product is a generalization of the outer product.

Relation of tensor product to linear map

Let U and V be finite diimensional vecsor spaces over F. Consider the map

$$U^* \otimes V \longrightarrow \mathcal{L}(U, V)$$
$$\sum (f_i \otimes v_i) \longmapsto \sum f_i(\cdot) v_i.$$

Clearly it is a linear map. Moreover this map is an isomorphism.

In general there is an isomorphism

$$\mathcal{L}(U \otimes V, W) \cong \mathcal{L}(U, \mathcal{L}(V, W)).$$

Click here

The tensor algebra

Fix a vector space V over F. Then $(V \otimes V) \otimes V \cong V \otimes (V \otimes V)$. Thus we can define $\underbrace{V \otimes \cdots \otimes V}_{i=1} = \bigotimes_{i=1}^n V$.

n times

For a positive integer k, let $T^k(V) = \bigotimes_{i=1}^k V$. Then $T^k(V)$ is a vector space over F, and we say an element of $T^k(V)$ is a k-tensor. Define $T^0(V) = F$ and $T^1(V) = V$.

For $v \in T^k(V)$ and $w \in T^l(V)$, we can define $v \otimes w \in T^{k+l}(V)$.

Now define $T(V)=\bigoplus_{k=0}^{\infty}T^k(V)$. Then T(V) is a vector space over F, and there is a multiplication $v\cdot w=v\otimes w$. We call such space F-algebra. Typically, T(V) is a tensor algebra.

Tensor product

Universal property of tensor product

Suppose $T:V_1\times\cdots\times V_n\to W$ is a multilinear map. There is a unique linear map $\tilde T:V_1\otimes\cdots\otimes V_n\to W$ such that

$$T(v_1, \dots, v_n) = \tilde{T}(v_1 \otimes \dots \otimes v_n).$$

$$V_1 \times \cdots \times V_n \xrightarrow{p} V_1 \otimes \cdots \otimes V_n$$

$$T \xrightarrow{\tilde{T}} W$$

Tensor product

Definition

For $\tau \in S_k$ and $v = v_1 \otimes \cdots \otimes v_k \in T^k(V)$, define

$$\tau(v) = v_{\tau^{-1}(1)} \otimes \cdots \otimes v_{\tau^{-1}(k)},$$

and

$$\tau(\sum v_1^{(i)} \otimes \cdots \otimes v_k^{(i)}) = \sum \tau(v_1^{(i)} \otimes \cdots \otimes v_k^{(i)}).$$

The symmetric algebra

Consider $T^k(V)$. Let $v=v_1\otimes \cdots \otimes v_k\in T^k(V)$. For $\tau\in S_k$, $v-v_{\tau(1)}\otimes \cdots \otimes v_{\tau(k)}$ is either 0 or nonzero. We call v is a symmetric if $v-v_{\tau^{-1}(1)}\otimes \cdots \otimes v_{\tau^{-1}(k)}=0$ for all $\tau\in S_k$. In this case,

$$v = \frac{1}{k!} \sum_{\tau \in S_k} v_{\tau^{-1}(1)} \otimes \cdots \otimes v_{\tau^{-1}(k)}.$$

The symmetric operator

Let $\mathcal{S}:T^k(V) o T^k(V)$ by

$$S(v) = \frac{1}{k!} \sum_{\tau \in S_k} v_{\tau^{-1}(1)} \otimes \cdots \otimes v_{\tau^{-1}(k)},$$

for $v = v_1 \otimes \cdots \otimes v_k$.

The alternating algebra

For $\tau \in S_k$, we call v is an alternating if for all $\tau \in S_k$

$$v = \operatorname{sgn}(\tau) v_{\tau^{-1}(1)} \otimes \cdots \otimes v_{\tau^{-1}(k)}.$$

In this case,

$$v = \frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) v_{\tau^{-1}(1)} \otimes \cdots \otimes v_{\tau^{-1}(k)}.$$

The alternating operator

Let $\mathcal{A}: T^k(V) \to T^k(V)$ by

$$\mathcal{A}(v) = \frac{1}{k!} \sum_{\tau \in S_k} \operatorname{sgn}(\tau) v_{\tau^{-1}(1)} \otimes \cdots \otimes v_{\tau^{-1}(k)},$$

for $v = v_1 \otimes \cdots \otimes v_k$.

Remark

We only define S and A for $v=v_1\otimes\cdots\otimes v_k$. We can extand these maps in natural way for whole $T^k(V)$, by

$$\mathcal{S}(\sum v_1^{(i)} \otimes \cdots \otimes v_k^{(i)}) = \sum \mathcal{S}(v_1^{(i)} \otimes \cdots \otimes v_k^{(i)}).$$

$$\mathcal{A}(\sum v_1^{(i)} \otimes \cdots \otimes v_k^{(i)}) = \sum \mathcal{A}(v_1^{(i)} \otimes \cdots \otimes v_k^{(i)}).$$

Example

- $ightharpoonup m\otimes m,\ m_1\otimes m_2+m_2\otimes m_1$ are symmetric.
- $ightharpoonup m_1 \otimes m_2 m_2 \otimes m_1$ is alternating.

Remark

If v and w are symmetric (or alternating) k-tensros, so is v+w. Thus the set of all symmetric (or alternating) k-tensors is subspace of $T^k(V)$. Define $\operatorname{Sym}^k(V)$ the set of all alternating k-tensors.

Theorem

S(v) is symmetric and A(v) is alternating.

Proof.

$$\tau(\mathcal{S}(v)) = \tau\left(\frac{1}{k!}\sum_{\tau' \in S_k} \tau'(v)\right) = \frac{1}{k!}\sum_{\tau' \in S_k} \tau(\tau'(v)) = \frac{1}{k!}\sum_{\tau' \in S_k} (\tau \circ \tau')(v) = \mathcal{S}(v).$$

$$\begin{split} \tau(\mathcal{A}(v)) &= \tau\left(\frac{1}{k!}\sum_{\tau' \in S_k} \operatorname{sgn}(\tau')\tau'(v)\right) = \frac{1}{k!}\sum_{\tau' \in S_k} \operatorname{sgn}(\tau')\tau(\tau'(v)) \\ &= \operatorname{sgn}(\tau)\frac{1}{k!}\sum_{\tau' \in S_t} \operatorname{sgn}(\tau \circ \tau')(\tau \circ \tau')(v) = \operatorname{sgn}(\tau)\mathcal{A}(v). \end{split}$$

Tensor product

The wedge product

Let $v \in T^k(V)$ and $w \in T^l(V)$. We can define the wedge product by

$$v \wedge w = \frac{(k+l)!}{k!l!} \mathcal{A}(v \otimes w).$$

Then $v \wedge w \in \mathsf{Alt}^{k+l}(V)$.

properties

Let $v \in \mathsf{Alt}^k(V)$ and $w \in \mathsf{Alt}^l(V)$.

- 1. $(v_1 + v_2) \wedge w = v_1 \wedge w + v_2 \wedge w$.
- 2. $v \wedge (w_1 + w_2) = v \wedge w_1 + v \wedge w_2$.
- 3. $(\alpha v) \wedge w = v \wedge (\alpha w)$.
- 4. $v \wedge w = (-1)^{kl} w \wedge v$

Remark

Then every element of $\mathrm{Alt}^k(V)$ is of the form $\sum \alpha_{i_1\cdots i_k}v_{i_1}\wedge\cdots\wedge v_{i_k}$ where $\{v_1,\cdots,v_n\}$ is a basis for V and $i_1< i_2<\cdots< i_k$. Hence $\{v_{i_1}\wedge\cdots\wedge v_{i_k}\mid i_1< i_2<\cdots< i_k\}$ forms a basis for $Alt^k(V)$, and $\dim \mathrm{Alt}^k(V)=\binom{n}{k}$.

Similarly every element of $\operatorname{Sym}^k(V)$ is of the form $\sum \alpha_{i_1 \cdots i_k} v_{i_1} \otimes \cdots \otimes v_{i_k}$ where $i_1 \leq i_2 \leq \cdots \leq i_k$ and

$$\alpha_{i_1\cdots i_k}=\alpha_{i_{\tau(1)}\cdots i_{\tau(k)}}$$

for all $\tau \in S_k$. Clearly, $\dim \operatorname{Sym}^k(V) = \binom{k+n-1}{n-1} = \binom{n+k-1}{k}$.

The determinant

Consider $V=F^n$. Let $A={\rm Alt}^n(V^*)$. We can identify $f_1\wedge\cdots\wedge f_n\in A$ to a multilinear map $V^n\to F$ by

$$(f_1 \wedge \cdots \wedge f_n)(v_1, \cdots, v_n) = \sum_{\tau \in S_k} f_1(v_{\tau(1)}) \cdots f_n(v_{\tau(n)}).$$

Now let d_i be the covector of e_i , i.e. $d_i(e_j) = \delta_{ij}$. Then

$$\det(v_1,\cdots,v_n)=(d_1\wedge\cdots\wedge d_n)(v_1,\cdots,v_n)$$

Example

$$V = \mathbb{R}^2$$
.

$$(d_1 \wedge d_2)(u_1e_1 + u_2e_2, v_1e_1 + v_2e_2) = d_1(u_1e_1 + u_2e_2)d_2(v_1e_1 + v_2e_2) - d_1(v_1e_1 + v_2e_2)d_2(u_1e_1 + u_2e_2) = u_1v_2 - u_2v_1.$$

The exterior product

Let $V = \mathbb{R}^3$. Let $u = u_1e_1 + u_2e_2 + u_3e_3$ and $v = v_1e_1 + v_2e_2 + v_3e_3$. Since $V = T^1(V)$, we can compute $u \wedge v$. Note that $S_2 = \{\tau_1 = (1,2), \tau_2 = (2,1)\}$.

$$e_i \wedge e_i = 2\mathcal{A}(e_i \otimes e_i) = e_i \otimes e_i - e_i \otimes e_i = 0.$$

$$u \wedge v = (u_1e_1 + u_2e_2 + u_3e_3) \wedge (v_1e_1 + v_2e_2 + v_3e_3)$$

= $(u_1v_2 - u_2v_1)e_1 \wedge e_2 + (u_2v_3 - u_3v_2)e_2 \wedge e_3 + (u_3v_1 - u_1v_3)e_3 \wedge e_1.$

Compare

$$u \times v = (u_1v_2 - u_2v_1)(i \times j) + (u_2v_3 - u_3v_2)(j \times k) + (u_3v_1 - u_1v_3)(k \times i)$$

where $i \times j = k$, $j \times k = i$ and $k \times i = j$. The exterior (wedge) product is a generalization of the cross product.

A relation between determinant and wedge product

 $V=\mathbb{R}^3$, d_i is the covector of e_i . Let $u=u_1e_1+u_2e_2+u_3e_3$ and $v=v_1e_1+v_2e_2+v_3e_3$.

$$(d_1 \wedge d_2)(u, v) = d_1(u)d_2(v) - d_1(v)d_2(u) = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$

In general,

$$(d_{i_1} \wedge \dots \wedge d_{i_k})(v^{(1)}, \dots, v^{(k)}) = \begin{vmatrix} v_{i_1}^{(1)} & \dots & v_{i_1}^{(k)} \\ v_{i_2}^{(1)} & \dots & v_{i_2}^{(k)} \\ \vdots & \ddots & \vdots \\ v_{i_k}^{(1)} & \dots & v_{i_k}^{(k)} \end{vmatrix}$$

Notation

In differential geometry or analysis, $e_i = \partial/\partial x_i$ and $d_i = dx_i$.

The End