Variable Volume Reaction Part-II (Flow Reactors)

J. K. Basu

Flow reactors

- There are two types of Flow reactors
- 1. Continuous Stirred Tank Reactors(CSTR) or Ideal mixed Reactor.
- 2. Plug Flow Reactor(PFR)

There are the two extreme flow conditions from nomixing in PFR to complete mixing in CSTR

Their performances are evaluated by two parameters

- 1. Space time and
- 2. Space volume

Space time: It is the time required to process one reactor volume of the feed at specified conditions. It is denoted by τ and has a unit sec or min.

Space time is obtained by dividing reactor volume 'V' with the volumetric flow rate of feed entering the reactor

$$\tau = \frac{V}{v_0}$$

If reactor volume= 10 liters and feed flow rate=5 liter/min, then space time= 2 min.

Space volume: It is the number reactor volumes of feed at specified conditions which can be processed in unit time. It is denoted by 's'. It has a unit of time⁻¹ Where,

$$s = \frac{v_0}{V} = \frac{1}{\tau}$$

 τ is used as the main design parameter for flow reactors.

• A reactor with a space time of 2min means every 2 mins one reactor volume can be processed. In 6 min 3 reactor volume can be treated.

• A space velocity of 5 hr⁻¹ means five reactor volume of feed at specified conditions are being fed into the reactor per hr.

$$\tau = \frac{V}{v_0} or$$
 $\frac{\tau}{C_{A0}} = \frac{V}{v_0 C_{A0}} = \frac{V}{F_{A0}}$

For catalytic reactor we use

$$\frac{W}{F_{A0}}$$
 is called 'TimeFactor'

W = weight of catalyst in a packed bed reactor

Ideal CSTR or Mixed Flow Reactor

$$F_{A0}(1 - X_{A0}) = F_{A0}(1 - X_A) + (-r_A)V$$

 $At X_{A0} = 0$, $F_{A0}X_A = (-r_A)V$

$$\frac{V}{F_{A0}} = \frac{X_A}{-r_A} = \frac{C_{A0} - C_{Af}}{C_{A0}(-r_A)}$$

$$au = \frac{C_{A0} - C_{Af}}{(-r_A)}$$
 or, $au = \frac{C_{A0}(X_{Af} - X_{A0})}{(-r_A)}$

$$(-r_A) = (C_{Af} - C_{A0})(-1/\tau)$$

Ideal CSTR or Mixed Flow Reactor

$$\tau = \frac{C_{A0} - C_{Af}}{(-r_A)} \qquad (-r_A) = (C_{Af} - C_{A0})(-1/\tau)$$

Design of CSTR (Graphical presentation) in terms of concentration

$$Area = \tau = \frac{VC_{A0}}{F_{A0}} = (C_{A0} - C_{Af}) \frac{1}{-r_A}$$
 Area, $\tau = \frac{VC_{A0}}{F_{A0}}$

 C_A vs. $-r_A$ plot

Graphical presentation in terms of conversion

$$\tau = C_{A0} \frac{X_{Af} - X_{A0}}{-r_A}$$

Variable density with first-order rate kinetics

$$\frac{\mathbf{V}}{\mathbf{F}_{A0}} = \frac{\mathbf{V}_{0}(1 + \varepsilon_{A}X_{A})}{\mathbf{C}_{A0}\mathbf{v}_{0}(1 + \varepsilon_{A}X_{A})} = \frac{\mathbf{X}_{A}}{\mathbf{k}\mathbf{C}_{A0}\frac{(1 - \mathbf{X}_{A})}{(1 + \varepsilon_{A}X_{A})}}$$
$$\mathbf{k}\tau = \frac{\mathbf{X}_{A}(1 + \varepsilon_{A}X_{A})}{(1 - \mathbf{X}_{A})} = f(\mathbf{X}_{A})$$

For various τ values calculate $f(X_A)$ with X_A values and from the slope of the straight line plot k is obtained.

- Variable Density with second-order rate kinetics
- Rate equation : $-r_A = kC_A^2$
- $C_A = C_{A0} \frac{(1-X_A)}{(1+\varepsilon_A X_A)}$

Variable Density with second-order rate kinetics

$$\frac{V}{F_{A0}} = \frac{V_0(1 + \varepsilon_A X_A)}{C_{A0} v_0(1 + \varepsilon_A X_A)} = \frac{X_A}{k C_{A0}^2 \frac{(1 - X_A)^2}{(1 + \varepsilon_A X_A)^2}}$$

$$k\tau = (X_A) = \frac{X_A(1 + \varepsilon_A X_A)^2}{kC_{A0}(1 - X_A)^2}$$

Problem-1 (mixed reactor)

A high molecular weight hydrocarbon stream A is fed continuously to a heated high temperature mixed reactor where it tharmally cracks (homogeneous gas reaction) into a lower molecular weight product, R by a stoichiometry approximated by $A \rightarrow 5R$. By changing the feed rate different extents of cracking are obtained as follows:

F _{A0} , millimol/hr	300	1000	3000	5000
C _{A,out} , millimol/liter	16	30	50	60

The internal void volume is V=0.1 liter, and at the temperature of the reactor the feed concentration is $C_{A0} = 100$ milimol/liter. Find a rate equation to represent the cracking reaction

Solution to Problem 1

- $A \rightarrow 5R$, $\epsilon_A \neq 0$
- $\epsilon_A = \frac{5-1}{1} = 4$, $C_{A0} = 100 \frac{millimol}{liter}$, $V = 0.1 \ liter$,
- $C_A = \frac{N_A}{V} = \frac{N_{A0}(1 X_A)}{V_0(1 + \varepsilon_A X)} = \frac{C_{A0}(1 X_A)}{(1 + \varepsilon_A X)}$
- $X_A = \frac{1 (C_A/C_{A0})}{1 + \epsilon_A(C_A/C_{A0})}$
- For C_A = 16millimol/liter, $X_A = \frac{1 (16/100)}{1 + 4(16/100)} = 0.512$
- $-r_A = \frac{F_{A0}X_A}{V} = \frac{300 \times 0.512}{0.1} = 1536$
- Similarly, for all data points calculate C_A and $-r_A$. Also $\ln C_A$ and $\ln (-r_A)$

Data Analysis

F _{A0} , millimol/hr	300	1000	3000	5000	
C _{A,out} , millimol/liter	16	30	50	60	
X _A	0.512	0.318	0.166	0.1176	
-r _A , millimol/liter-hr	1536	3180	5000	5880	

In(-r _A)	7.34	8.064	8.52	8.68
In(C _A)	2.77	3.4	3.91	4.09

$$\ln(-r_A) = lnk + nln(C_A)$$

Plot of $ln(C_A)$ vs. $ln(-r_A)$

n=1.017

Ln k =4.57 K= 96.54 hr⁻¹ -r_A= 96.54 C_A 12. From the following data find a satisfactory rate equation for the gas-phase decomposition A>R taking place isothermally in a mixed reaction Run Number 0.423 5.1 13.5 44 0.22 0.63 0.75 26-0 88.0 0.002 mil / lit

Solution:

 $\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$ $C_A = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$ $C_A = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$ $C_A = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$ or $-r_A = \frac{c_{A0} \times A}{T}$ Let the rate equation is $-r_A = \kappa c_A^{\infty}$

CA	1.278 x183	4.54 x164	2.857 X10	1.276×104	4,00 - 55
In (10000G)	2.547	7.213	1.049	0.2437	
In (-12105)	4.644	3.206	2.406	1.386	0. p
yn (-12/0)	4.644	3 20 6			7.

from stope, K=1-36

1.04 x 163 = K (1.278 x 103) 1.36 K=8.3264 :- LY=8.326 CH.39 - 1/4 = 11.692 CA'' Groon Computer program

T See 0.423 5.10 13.5 44.0 192 X_A 0.22 0.63 0.75 0.88 0.96 $-Y_A$ 1.040x163 2.47x164 1.11x164 4x165 1x165

