Homework 3

Price a maximum rainbow option with the payoff $\max(\max(S_{1T}, S_{2T}, ..., S_{nT}) - K, 0)$ using the Monte Carlo simulation.

(Inputs: K, r, T, number of simulations, number of repetitions, n, S_{10} , S_{20} , ..., S_{n0} , q_1 , q_2 ,..., q_n , σ_1 , σ_2 ,..., σ_n , ρ_{ij} . Outputs: Option value and 95% confidence interval.)

• The basic requirment (80 points):

Apply the Cholesky decomposition method to pricing the above rainbow option.

• Bonus 1 (5 points):

Combine the antithetic variate approach and moment matching method to price the above rainbow option.

• Bonus 2 (10 points):

Implement the inverse Cholesky method in Wang (2008) to price the above rainbow option.

• Reference

Wang (2008), "Variance Reduction for Multivariate Monte Carlo Simulation," *Journal of Derivatives* 16, pp. 7–28.