More applications of the d-neighbor equivalence: acyclic and connectivity constraints

Benjamin Bergougnoux*, Mamadou Moustapha Kanté[†]

* IRIF, CNRS, Université Paris Diderot, France

† LIMOS, CNRS, Université Clermont Auvergne, France

ESA, Munich, March 1, 2020

Width measures

- ► Tree-width is nice but unbounded in any dense graph class.
- ▶ Many NP-hard problems are tractable on some dense graph classes.
 - → Explainable with clique-width, rank-width, mim width.

Recursively decompose your graph...

Recursively decompose your graph... into simple cuts.

 \rightarrow We describe the simplicity of a cut with a function f: cut $\rightarrow \mathbb{N}$.

Different notions of simplicity = different width measures.

Width of a decomposition $D := \max f(\text{cut})$ among the cuts of D.

Width of a graph $G \coloneqq \min$ width of the decompositions of G.

Module-width

Defined from the function $mw(A) := |\{N(v) \cap \overline{A} : v \in A\}|$.

Linearly equivalent to clique-width:

[Rao 2006]

For all graphs G, we have $mw(G) \le cw(G) \le 2mw(G)$.

Rank-width

Defined from the function $rw(A) := the rank of adjacency matrix between A and <math>\overline{A}$ over GF(2).

 $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

Maximum Induced Matching width (mim-width)

Defined from the function $\min(A) :=$ the size of a maximum induced matching in the bipartite graph between A and \overline{A} .

Generality / Modeling power

Computation complexity

▶ NP-hard for all these widths measures.

- Efficient algorithms for tree-width and rank-width.
 - \rightarrow Running time: $2^{O(k)} \cdot n^{O(1)}$.

► Tough open questions for clique-width and mim-width.

Algorithmic applications

Intuition: conquer

Intuition: conquer

Intuition: conquer

In general

If it is enough to keep $\mathcal N$ partial solutions at each step, then we can solve the problem in time $\mathcal N^{O(1)} \cdot n^{O(1)}$.

One algorithm to rule them all

Theorem [B., Kanté 2019]

We have a meta-algorithm for the connected and acyclic variants of (σ, ρ) -dominating set problems.

- Connected dominating set,
- Connected vertex cover,
- Node-weighted Steiner tree,
- Feedback vertex set,

- Maximum induced tree,
- Longest induced path,
- Maximum induced linear forest,
- Max. induced tree of $\Delta \leq 42,...$

One algorithm to rule them all

Theorem [B., Kanté 2019]

We have a meta-algorithm for the connected and acyclic variants of (σ, ρ) -dominating set problems.

Corollary [B., Kanté 2019]

These problems are solvable in time:

tree-width	$2^{O(tw)} \cdot n^{O(1)}$
clique-width	$2^{O(cw)} \cdot n^{O(1)}$
rank-width	$2^{O(rw^2)} \cdot n^{O(1)}$
mim-width	$n^{O(mim)}$

 \implies Polytime in interval graphs, permutations graphs, k-trapezoid,...

Key: d-neighbor equivalence

 $\operatorname{nec}_d(A)$: # of equivalence classes of the d-neighbor equivalence over A.

Theorem [Bui-Xuan, Telle, Vatshelle 2013]

It is enough to keep $\operatorname{nec}_d(A) \cdot \operatorname{nec}_d(\overline{A})$ partial solutions at each cut (A, \overline{A}) , for any (σ, ρ) -Dominating Set problem.

Lemma [Vatshelle 2012]

 $nec_d(A)$ is upper bounded by:

tree-width	$2^{d \cdot tw} \cdot n^{O(1)}$
clique-width	$2^{d \cdot \mathbf{cw}} \cdot n^{O(1)}$
rank-width	$2^{d \cdot rw^2} \cdot n^{O(1)}$
mim-width	$n^{d\cdot mim}$

Key: d-neighbor equivalence

 $\operatorname{nec}_d(A)$: # of equivalence classes of the d-neighbor equivalence over A.

Theorem [Bui-Xuan, Telle, Vatshelle 2013]

It is enough to keep $\operatorname{nec}_d(A) \cdot \operatorname{nec}_d(\overline{A})$ partial solutions at each cut (A, \overline{A}) , for any (σ, ρ) -Dominating Set problem.

Corollary [Bui-Xuan, Telle, Vatshelle 2013]

We can solve these problems in time:

tree-width	$2^{O(tw)} \cdot n^{O(1)}$
clique-width	$2^{O(cw)} \cdot n^{O(1)}$
rank-width	$2^{O(rw^2)} \cdot n^{O(1)}$
mim-width	$n^{O(mim)}$

Our result

Theorem [B., Kanté 2019]

It is enough to keep $\operatorname{nec}_d(A) \cdot \operatorname{nec}_d(\overline{A}) \cdot \operatorname{nec}_1(A)^2$ partial solutions at each cut (A, \overline{A}) , for any connected variant of a (σ, ρ) -Dominating Set problem.

Corollary [B., Kanté 2019]

We can solve these problems in time:

tree-width	$2^{O(tw)} \cdot n^{O(1)}$
clique-width	$2^{O(cw)} \cdot n^{O(1)}$
rank-width	$2^{O(rw^2)} \cdot n^{O(1)}$
mim-width	$n^{O(\min)}$

Connected Dominating set and 1-neighbor equivalence

Connected Dominating set and 1-neighbor width

Connected dominating set

Finding a vertex set D of minimum weight which dominates all the vertices and which induces a connected graph.

1-neighbor equivalence relation

$$X, Y \subseteq A$$
 are 1-neighbor equivalent in A if $N(X) \cap \overline{A} = N(Y) \cap \overline{A}$.

 $nec_1(A) := \# \text{ of equivalence classes over } A.$

Theorem [B. and Kanté 2018]

It is enough to keep $\operatorname{nec}_1(A)^3\operatorname{nec}_1(\overline{A})$ partial solutions for each cut (A, \overline{A}) to solve Connected dominating set.

A set of partial solutions for each equivalence class R' of the 1-neighbor equivalence over \overline{A} .

The sets $Y \in \mathbb{R}'$ have the same neighborhood in A.

The sets $Y \in \mathbb{R}'$ have the same neighborhood in A.

Partial solutions associated with R':

 $\to X \subseteq A$ such that $X \cup Y$ dominates A, for (all) $Y \in R'$

Partial solutions associated with R':

 $\to X \subseteq A$ such that $X \cup Y$ dominates A, for (all) $Y \in R'$

At the root of the decomposition, the cut is $(V(G),\varnothing)$:

→ A partial solution is a dominating set.

Two partial solutions associated with R' are equivalent for the domination if they are 1-neighbor equivalent!

Two partial solutions associated with R' are equivalent for the domination if they are 1-neighbor equivalent!

Lemma [Bui-Xuan, Telle and Vatshelle, 2013]

For Dominating set, it is enough to keep $\operatorname{nec}_1(A) \cdot \operatorname{nec}_1(A)$ partial solutions at each step.

One partial solution:

- for each 1-neighbor equivalence class R' of \overline{A} , and
- ▶ for each 1-neighbor equivalence class R of A

Dealing with connectivity

▶ We need an equivalence relation between sets of partial solutions.

Dealing with connectivity

▶ We need an equivalence relation between sets of partial solutions.

▶ For all $Y \in R'$ and for all sets of partial solutions S, we define:

$$\mathsf{best}(\mathcal{S},Y) \coloneqq \min\{\mathsf{weight}(X) \,:\, X \in \mathcal{S} \text{ and } G[X \cup Y] \text{ is connected}\}.$$

R'-representativity

We say that S^* R'-represents S if, for all $Y \in R'$, we have

$$\mathsf{best}(\mathcal{S}, Y) = \mathsf{best}(\mathcal{S}^{\star}, Y).$$

Representative set

At the root $(V(G),\emptyset)$: an $\{\emptyset\}$ -representative set of the set of all partial solutions must contain an optimal solution.

 $\rightarrow \mathsf{best}(\mathcal{S}, \emptyset) \coloneqq \min\{\mathsf{weigth}(X) : X \in \mathcal{S} \text{ and } G[X] \text{ is connected}\}.$

Representative set

- At the root $(V(G), \emptyset)$: an $\{\emptyset\}$ -representative set of the set of all partial solutions must contain an optimal solution.
 - $\rightarrow \mathsf{best}(\mathcal{S}, \emptyset) \coloneqq \min\{\mathsf{weigth}(X) : X \in \mathcal{S} \text{ and } G[X] \text{ is connected}\}.$

Theorem [B., Kanté 2019]

There exists a function reduce:

- ▶ Input: a set of partial solutions $S \subseteq 2^A$.
- ▶ Output: $S^* \subseteq S$ such that $|S^*| \le \text{nec}_1(A)^2$ and S^*R' -represents S.
- Running time: $|S| \cdot \text{nec}_1(A)^{O(1)} \cdot n^2$.

Sketch of proof

Inspiration [Bodlaender, Cygan, Kratsch, Nederlof 2013]

Rank based approach: technique to obtained $2^{O(\mathsf{tw})} \cdot n$ time algorithms for many connectivity problems.

Let \mathcal{M} be the (\mathcal{S}, R') -matrix:

$$\mathcal{M}[X,Y] \coloneqq \begin{cases} 1 & \text{if } G[X \cup Y] \text{ is connected,} \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ In GF(2): a basis of the row space of \mathcal{M} of minimum weight R'-represents \mathcal{S} .
- But M is too big to be computed.

Sketch of proof

 \mathcal{P} : the set of pairs (R'_1, R'_2) of 1-neighbor equivalence classes in \overline{A} .

- A basis of C is also a basis of M.
- $|\mathcal{P}| = \mathsf{nec}_1(A)^2.$
- \mathcal{C} is computable in time $|\mathcal{S}| \cdot |\mathcal{P}| \cdot n^2$.

There is $2^{|CC(X \cup Y)|-1}$ ways of dividing $X \cup Y$ such that v_Y is on one side.

There is $2^{|CC(X \cup Y)|-1}$ ways of dividing $X \cup Y$ such that v_Y is on one side.

$$\mathcal{C} \cdot \overline{\mathcal{C}}[X, Y] = 2^{|CC(X \cup Y)| - 1}$$

$$\mathcal{C}\cdot\overline{\mathcal{C}}\stackrel{ iny GF(2)}{=}\mathcal{M}$$

Acyclicity

Theorem [B., Kanté 2019]

It is enough to keep $\operatorname{nec}_d(A) \cdot \operatorname{nec}_d(\overline{A}) \cdot \operatorname{nec}_1(A)^2 \cdot \mathcal{X}$ partial solutions at each cut (A, \overline{A}) , for any acyclic and acyclic+connected variant of a (σ, ρ) -Dominating Set problem.

Corollary [B., Kanté 2019]

We can solve these problems in time:

tree-width	$2^{O(tw)} \cdot n^{O(1)}$
clique-width	$2^{O(cw)} \cdot n^{O(1)}$
rank-width	$2^{O(rw^2)} \cdot n^{O(1)}$
mim-width	$n^{O(mim)}$

Overview

Thanks to the d-neighbor equivalence, we obtain the best algorithms:

- for many problems
 - \rightarrow (σ, ρ) -Dominating Set problems and their variants.
- ▶ for many width-measures
 - → tree-width, clique-width, rank-width, mim-width, Q-rank-width.

The algorithms for clique-width and tree-width are optimal under ETH.

 \rightarrow What about rank-width: is $2^{O(rw^2)} \cdot n^{O(1)}$ optimal?

Hamiltonian cycle, Max Cut and Edge Dominating Set

Can we use the d-neighbor equivalence for W[1]-hard problems parameterized by clique-width?

- We can solve these 3 problems in time $2^{O(tw)} \cdot n$ and $n^{O(cw)}$.
 - → Optimal under ETH.
- Using the d-neighbor equivalence width d a constant is useless.

Theorem [B., Kanté 19]

For Max Cut, it is enough to keep $\operatorname{nec}_n(A)$ partial solutions at each cut (A, \overline{A}) .

Corollary [B., Kanté 19]

We can solve Max Cut in time $n^{O(cw)}$, $n^{O(rw_Q)}$ and $n^{2^{O(rw)}}$.

The dream

Towards a "Courcelle's theorem" which gives efficient algorithms?

Example:

We want a set of vertices X of minimum weight satisfying:

 ${\sf DominatingSet}(X) \ \land \ {\sf Acyclic}(X) \ \land \ {\sf Connected}(X).$

Thm \Rightarrow We can find one in time: $2^{O(\text{tw})} \cdot n$, $2^{O(\text{cw})} \cdot n$, $2^{O(\text{rw}^2)} \cdot n^3$.