Patent

Agilent Technologies Docket No.: 10031076-1

Listing of Claims

The following listing of claims replaces all prior versions.

1. (Original) A light-emitting device, comprising:
an active region configured to generate light in response to injected charge;
and
a current confinement structure located to direct charge into the active region
and including a strain compensating layer adjacent an oxide-forming layer.
2. (Original) The light-emitting device of claim 1, in which the current
confinement structure comprises an additional strain compensating layer adjacent the
oxide-forming layer, where the oxide-forming layer is sandwiched between the strain
compensating layers.
3. (Original) The light-emitting device of claim 1, in which the strain
compensating layer comprises gallium, indium and phosphorus.
4. (Original) The light-emitting device of claim 1, in which the oxide-
forming layer comprises aluminum, gallium and arsenic.
5. (Original) The light-emitting device of claim 1, in which the strain
compensating layer consists essentially of $Ga_{1-x}In_xP$, where $x \le 0.5$.
6. (Original) The light-emitting device of claim 1, in which the oxide-
forming layer consists essentially of $Al_xGa_{1-x}As$, where $x \ge 0.96$.

atont

Agilent Technologies Docket No.: 10031076-1

1	7. (Original) The light-emitting device of claim 1, in which:				
2	the strain compensating layer consists essentially of gallium indium phosphic				
3	GaInP; and				
4	the oxide-forming layer consists essentially of aluminum gallium arsenide				
5	AlGaAs.				
i	8. (Original) The light-emitting device of claim 7, in which:				
2	the strain compensating layer consists essentially of gallium indium phosphide				
3	$Ga_{1-x}In_xP$ in which $x \le 0.5$; and				
4	the oxide-forming layer essentially of aluminum gallium arsenide Al _x Ga _{1-x} A				
5	in which $x \ge 0.96$.				
1	9. (Original) The light-emitting device of claim 1, structured to generate				
2	light having a wavelength between 620 nm and 1650 nm.				
1	10. (Withdrawn) A method of making a strain compensating structure,				
2	the method comprising:				
3	providing a substrate;				
4					
5 6 7	forming over the substrate a strain compensating layer of a first semiconductor material;				
8	forming an oxide-forming layer of a second semiconductor material				
9	juxtaposed with the strain compensating layer to form the strain compensating				
10	structure; and				
11	oxidizing at least part of the oxide-forming layer.				
1	11. (Withdrawn) The method of claim 10, in which:				
2	the first semiconductor material comprises indium, gallium and phosphorus;				
3	and				
4	the second semiconductor material comprises aluminum, gallium and arsenide				

Agilent Technologies Docket No.: 10031076-1

1	12. (Withdrawn) The method of claim 11, further comprising:		
2	forming the strain compensating layer using $Ga_{1-x}In_xP$, where $x \le 0.5$; and		
3	forming the oxide layer using $Al_xGa_{1-x}As$, where $x \ge .96$.		
1	13. (Withdrawn) A method for generating light, the method comprising:		
2	forming an optical cavity;		
3	locating an active region in the optical cavity, the active region configured to		
4	generate light in response to injected current;		
5	forming a current confinement structure located to direct current into the active		
6	region, including:		
7	forming a strain compensating layer of a first semiconductor material		
8	including gallium (Ga), indium (In) and phosphorus (P);		
9	forming an oxide-forming layer of a second semiconductor material		
0	including aluminum (Al) gallium (Ga) and arsenic (As);		
1	oxidizing at least part of the oxide-forming layer; and		
2	injecting current into the active region using the current confinement		
3	structure.		
ı	14. (Withdrawn) The method of claim 13, in which the active region is		
2	configured to generate light having a wavelength between 620 nm and 1650 nm.		
1	15. (Withdrawn) A strain compensating structure, comprising:		
2	a strain compensating layer of a first semiconductor material including gallium		
3	(Ga), indium (In) and phosphorus (P); and		
4	an oxide-forming layer of a second semiconductor material including		
5	aluminum (Al) gallium (Ga) and arsenic (As) juxtaposed with the strain compensating		
6	layer.		
1	16. (Withdrawn) The strain compensating structure of claim 15, in which		
2	the first semiconductor material consists essentially of gallium indium phosphide		
3	$Ga_{1-x}In_x P$ in which $x \le 0.5$.		

Patent

Agilent	Technologies	Docket No.:	10031076-1
---------	--------------	-------------	------------

1	17. (Withdrawn) The strain compensating structure of claim 15, in which			
2	the second semiconductor material consists essentially of aluminum gallium arsenide			
3	$Al_xGa_{1-x}As$ in which $x \ge 0.96$.			
l	18. (Withdrawn) The strain compensating structure of claim 15, in which:			
2	the first semiconductor material consists essentially of gallium indium			
3	phosphide (GaInP); and			
4	the second semiconductor material consists essentially of aluminum gallium			
5	arsenide (AlGaAs).			
]	19. (Withdrawn) The strain compensating structure of claim 18, in which:			
2	the first semiconductor material consists essentially of gallium indium			
3	phosphide $Ga_{1-x}In_x P$ in which $x \le 0.5$; and			
ļ	the second semiconductor material essentially of aluminum gallium arsenide			
5	$Al_xGa_{1-x}As$ in which $x > 0.96$.			