

MATLAB + Computational Thinking

Decomposition

 Break 1 complex problem into a collection of smaller/simpler problems

Abstraction

Mathematical modelling

- Symbolic representation
- Block diagrams

Algorithms + Automation

- Formulating solution as a series of steps
- Transforming between Modelling paradigms

Simulation

What happens when?

Slider Crank mechanism

Benefits

- Validate hand computations
- Visualize motion of mechanism

Concepts

Kinematics: Velocity Analysis of a mechanism

Kinetics: Newton's 2nd Law

Getting started

- >> DEMO_START_HERE_PLEASE

4-bar mechanism

Benefits

- Validate hand computations
- Visualize motion of mechanism

Concepts

Kinematics: Velocity Analysis of a mechanism

Kinetics: Newton's 2nd Law

Kinetics: Lagrange with Holonomic constraints

Getting started

- >> bh_4bar_startup

https://insidelabsgit.mathworks.com/ww-edutechnical/demos/demo-4barmechanism

Undergraduate year

Gyroscope

Benefits

- Validate hand computations
- Visualize motion of mechanism

Concepts

Kinetics: Newton's 2nd Law

Getting started

- >> bh wheel on pole startup

https://insidelabsgit.mathworks.com/ww-edutechnical/demos/demo-wheel-on-a-pole

$$M_O - ({}_C^B I.\dot{\Omega} + \omega \times ({}_C^B I.\Omega)) = {}_O^B I.\dot{\omega} + \omega \times ({}_O^B I.\omega)$$

Gyroscopic Boat Stabilization

- Benefits
 - Validate hand computations
 - Visualize motion of mechanism
- Concepts
 - Kinetics: Lagrange
- Getting started
 - >> DEMO START HERE PLEASE

https://insidelabs-git.mathworks.com/ww-edutechnical/demos/gyroscopic-boat-stabilization

A rolling wheel

- Benefits
 - Validate hand computations
 - Visualize motion of mechanism
- Concepts
 - Kinetics: Newton
 - Kinetics: Lagrange (NON-holonomic constraints)
- Getting started
 - >> DEMO_START_HERE_PLEASE

https://insidelabs-git.mathworks.com/ww-edu-technical/demos/a-rolling-wheel-gathers-no-moss

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) - \frac{\partial L}{\partial q_k} = Q_k + \sum_{j=1}^P \lambda_j . A_{jk}$$

Quadcopter balancing a pendulum

Benefits

- Validate hand computations
- Visualize motion of mechanism

Concepts

Kinetics: Newton's 2nd Law

Kinetics: Lagrange

Getting started

- >> bh startup quad and pendulum

https://insidelabs-git.mathworks.com/ww-edu-technical/demos/demoquadcopter-balancing-a-pendulum

3-LINK Robot Inverse kinematics

Benefits

- Solve the Inverse Kinematics problems using different approaches
 - Geometric, optimization, Neural nets, Robotics systems toolbox

Concepts

- Inverse Kinematics
- Solving nonlinear optimization problems
- Shallow Neural Networks

Getting started

- >> bh 3LINK IK startup

https://insidelabsgit.mathworks.com/ww-edutechnical/demos/demo-3link-inverse-kinematics

3-LINK Robot

Benefits

- Validate hand computations
- Visualize motion of mechanism

Concepts

- Kinetics: Newton's 2nd Law
- Kinetics: Lagrange

Getting started

- >> bh 3LINK NEWTON derivation
- >> bh 3LINK NEWTON simulation
- >> bh 3LINK LAGRANGE derivation AND simulation
- □ 01_Bootcamp
- 02 2LINK Robotic Manipulator
- □ 03_LINK_Robot_Exercise
- □ 04_steel_frame
- Appendix_2LINK_Inverse_Kinematics

https://insidelabs-git.mathworks.com/ww-edu-technical/seminars/modern-matlab-for-curriculum-delivery-the-disruption-we-had-to-have

Robot that writes hello

- Benefits
 - Visualize motion of mechanism
- Concepts
 - Kinetics: Lagrange
- Getting started
 - >> bh_robx_startup

https://insidelabs-git.mathworks.com/ww-edu-technical/seminars/seminar-computational-thinking-and-robots-that-can-write

2-dof non planar robot – Hands on WORKSHOP

- Benefits
 - Visualize motion of mechanism
- Concepts
 - Kinetics: Lagrange
- Getting started
 - >> bh_2dofnp_startup

VIDEOS of steps To create Simscape Multibody model

https://insidelabs-git.mathworks.com/ww-edu-technical/workshops/workshop-2dof-non-planar-robot

Differential Drive Robot (DDR)

Benefits

- Explore cause and effect
 - Derive Equations of motion ... and then SIMULATE
- Visualize motion of ground vehicle

Concepts

Kinetics: Newton's 2nd Law

– Control: Pure Pursuit

Getting started

- >> DEMO_START_HERE_PLEASE

https://insidelabs-git.mathworks.com/ww-edutechnical/demos/demo-differential-drive-robot

Droid Racing Challenge(DRC)

Benefits

- Explore cause and effect
 - Derive Equations of motion ... and then SIMULATE
- Visualize motion of ground vehicle

Concepts

- Kinetics: Newton's 2nd Law
- Computer Vision
- Finite State Machines

Getting started

- >> bh_car_startup.m

https://insidelabs-git.mathworks.com/ww-edu-technical/demos/demo-droid-racing-challenge---student-competition

7-dof Transverse car dynamics

Benefits

- Validate hand computations
- Visualize motion of mechanism

Concepts

Kinetics: Newton's 2nd Law

Getting started

- >> DEMO START HERE PLEASE

https://insidelabs-git.mathworks.com/ww-edutechnical/demos/car-dynamics-7dof-transverse

VIRTUAL LAB 1st year Physics Mechanical dynamics

Benefits

Visualize motion of mechanism

Concepts

Kinetics: Newton's 2nd Law, Friction, Impulse
Momentum

Getting started

https://insidelabs-git.mathworks.com/ww-edutechnical/coursework/virtual-lab-1st-year-physicsmechanical-dynamics

VIRTUAL LAB Pendulum Block and Friction

Benefits

Visualize motion of mechanism

Concepts

- Kinetics:
 - Principle of Work and Energy
 - Principle of Impulse and Momentum
 - Newton's 2nd Law

Getting started

https://insidelabs-git.mathworks.com/ww-edutechnical/coursework/virtual-lab-pendulum-block-andfriction

