Prof. Dr. Horst Tempelmeier Seminar für Allg. Betriebswirtschaftslehre, Industriebetriebslehre und Produktionswirtschaft Universität zu Köln

Albertus Magnus-Platz D-50923 Köln Tel. 0221/470-3378 Fax 0221/470-5140

Email: Tempelmeier@WISO.UNI-Koeln.de

Input data for the MLCLSP

(see: Tempelmeier, Horst and Matthias Derstroff, A Lagrangean-based Heuristic for Dynamic Multilevel Multiitem Constrained Lotsizing with Setup Times, in: Management Science 42(1996)5, pp. 738-757)

The test data on the accompanying floppy disc are organized in directories PROBA, PROBB,...,PROBD according to the problem classes considered. Within a directory there may be several subdirectories. **Note that all problem instances have already been generated.**

The meaning of the file extensions are:

- *.DAT description of the BOM structure
- *.DT? end product demand data
- *.TBO TBO profiles
- *.CAP target utilization profiles
- *.XLS MS-Excel 5.0 results files or problem description files

Each problem instance is identified by a name composed of letters and digits as follows (Italic words are comments.):

```
G0141111.DAT
.....# of generated demand time series (here: #1)
....# of TBO profile (here: #1)
....# of utilization profile (here: #1)
...coefficient of variation of end item demand (here: CV= 0.1)
.# of end items (here: 4)
# of setup time profile (here: #1)
```

identification of gozinto structure (here: G0; g=general; k=assembly; second digit used for identification of special type of structure)

This problem instance name is analyzed digit by digit and a specific problem instance is generated with the help of the following data sets. (We stored these data sets in separate files; in the following example data for a BOM structure called G0 (general with as special assignment pattern of items to resources) are shown).

The following names are used:

G00	Problem class A, general BOM structure, non-cyclic relations between resources and items (Table 8, A1)
G50	Problem class A, general BOM structure, cyclic relations between resources and items (Table 8, A2)
K00	Problem class A, assembly BOM structure, non-cyclic relations between resources and items (Table 8, A3)
K50	Problem class A, assembly BOM structure, cyclic relations between resources and items (Table 8, A4)
G01	Problem class B, general BOM structure, non-cyclic relations between resources and items (Table 8, A1), Setup time profile 1

G51	Problem class B, general BOM structure, cyclic relations between resources and items (Table 8, A2), Setup time profile 1
K01	Problem class B, assembly BOM structure, non-cyclic relations between resources and items (Table 8, A3), Setup time profile 1
K51	Problem class B, assembly BOM structure, cyclic relations between resources and items (Table 8, A4)), Setup time profile 1
G02	Problem class B, general BOM structure, non-cyclic relations between resources and items (Table 8, A1), Setup time profile 2
G52	

As an example, considered problem class A

BOM structure: file G0 .DAT

10 .. number of items in gozinto structure

for each item one line:

```
item number
     setup time
             echelon holding cost
                  not used
                    . not used
                       . number of resource that produces the item
                           . not used
                                 production time per unit
                       0
  1
     10.00
             1.00
                    0
                           1
                              1
                                 1.00
  2
     10.00
             1.00
                   0
                      0
                          1
                              1
                                 1.00
  3
             1.00 0 0 1
     15.00
                              1
                                 1.00
     15.00
             1.00 0
                      0 1
                              1
                                 1.00
             1.00 1 2 2
  5
     10.00
                              1
                                 1.00
                      1 2
                              2
  6
     10.00
             1.00
                    1
                                 1.00
                       1 2
  7
                    1
                              2
      5.00
             1.00
                                 1.00
  8
      5.00
                    2
                       3 3
                              2
                                 1.00
             1.00
  9
                    2
                       3 3
                              2
      5.00
             1.00
                                 1.00
                       2
                           3
 10
      5.00
             1.00
                    2
                              1
                                 1.00
```

The following lines describe the arcs in the bom structure (for each arc one line): parent item

```
component
        number of component used for one unit of parent
               minimum lead time (not used in our numerrical experiment)
   5
       1.00
2
       1.00
   5
               0
2
   6
       1.00
               0
3
   6
       1.00
               0
3
   7
       1.00
               0
4
   7
       1.00
               0
5
   8
       1.00
               0
   9
       1.00
               0
6
   9
       1.00
               0
6 10
       1.00
               0
7 10
       1.00
end of arcs
0
```

For each BOM structure considered one desciption of this type is needed.

Note: For problem classes B and D, for both setup time profiles the same BOM structure description file names are used, allthough these are located in different subdirectories (...\SETUP1 or ..\SETUP2)

TBO profile: file G____1_.TBO

item number

- mean time-between-orders
- 1 1.00
- 2 1.00
- 3 1.00
- 4 1.00
- 5 1.00
- 6 1.00
- 7 1.00
- 8 1.00
- 9 1.00
- 10 1.00

Based on the given mean time-between-orders, the setup costs are computed as follows:

Berechnung der Rüstkosten si:

$$s_i = \frac{e_i \cdot \Phi D_i \cdot TB O_i^2}{2}$$

with:

 $: \ echelon \ holding \ costs \ of \ item \ i \ (provided \ with \ the \ description \ of \ the \ gozinto \ structure)$

: mean total demand per period of item i (including derived demands)i

: setup costs for item i (to be computed) TBO_i

: time-between-orders for item i

For each TBO-profile considered one file of this type is needed. The file names are

- G____1_.TBO (General structure, TBO profile #1)
- G____2_.TBO
- G____3_.TBO
- G____4_.TBO
- G____5_.TBO

K____1_.TBO (Assembly structure, TBO profile #1)

- K 2 .TBO
- K____3_.TBO
- K____4_.TBO
- K____5_.TBO

Demand times series for end items: file G_141___.DT1

mean end item demand per time period

period number

- demand for item #1
- . demand for item #2
- demand for item #3
- demand for item #4

```
1 66 29 44 99
2 68 25 56 101
3 64 32 46 86
4 82 34 54 114
```

For each demand time series one such file of this type is used. The file names are (for the general BOM structure with 4 end items of problem class A):

Problem Class A (general structure with 4 end items):

```
G__041__.DT1
                     (CV=0.1; series #1)
G__041__.DT2
                     (CV=0.1; series #2)
G__041__.DT3
                     (CV=0.1; series #3)
G__041__.DT4
                     (CV=0.1; series #4)
G__041__.DT5
                     (CV=0.1; series #5)
G 044 .DT1
                     (CV=0.4; series #1)
G__044__.DT2
                     (CV=0.4; series #2)
G__047__.DT1
                     (CV=0.7; series #1)
```

Utilization profiles: file G014_1__.CAP

number of resource

- . mean target utilization
- 1 0.90
- 2 0.90
- 3 0.90

For each utilization profile one file of this type is needed. The file names with respect to the general BOM structure with 4 end items in problem class A are:

G004_1CAP	(util-profile #1)
G004_2CAP	(util-profile #2)
G004_3CAP	(util-profile #3)
G004_4CAP	(util-profile #4)
G004_5CAP	(util-profile #5)

For problem class D, the relevant *.CAP files are located in the lowest subdirectories. For example, for the assembly structure (K), TBO profiles 2, 3, 4 and 5, coefficient of variation of end product demand of 0.1 and 0.5 the *.CAP files are located in subdirectory A:\PROBD\KONV\TBO2_5\CV0105

Process of generating one problem instance:

```
Read file GO_____.DAT (from SD A:\PROBA or A:\PROBB, depending problem class A or B)

here use GO_____.DAT from SD A:\PROBB (setup time profile 1)

Read file GO_____5_.TBO (TBOs for all items) and compute setup costs (use the eclosed program GENDATA.EXE)

identification of the number of end items used
```


To generate a specific problem instance, copy all relevant files needed into a separate subdirectory and run program GENDATA.EXE. GENDATA.EXE reads an input file called MLCLSP.IN that contains the names of the problem instances to be generated, e.g.

```
G0141111.DAT (line#1 of MLCLSP.IN)
G0141112.DAT (line#1 of MLCLSP.IN)
END
```

In the example GENDATA.EXE generates the files G0141111.TMP and G0141112.TMP containing the setup costs and the capacities.