Math 220 Section 108 Lecture 14

25th October 2022

Power Sets

Definition

Let S be any set. Then the **power set** $\mathcal{P}(S)$ of S is the set of all subsets of S.

Note: this includes S itself as well as the empty set!

Example

Let
$$S = \{a, b, c\}$$
. Then

$$\mathcal{P}(S) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$$

- 1. Let $A = \{1, 2\}$. Find $\mathcal{P}(A)$ and $\mathcal{P}(\mathcal{P}(A) \{\emptyset\})$.
- 2. Show that if $p, q \in \mathbb{N}$, then $\{pn \mid n \in \mathbb{N}\} \cap \{qn \mid n \in \mathbb{N}\} \neq \emptyset$.

Hint: Think about a couple of concrete examples first.

(Continued) 1. Let $A = \{1, 2\}$. Find $\mathcal{P}(A)$ and $\mathcal{P}(\mathcal{P}(A) - \{\emptyset\})$. 2. Show that if $p, q \in \mathbb{N}$, then $\{pn \mid n \in \mathbb{N}\} \cap \{qn \mid n \in \mathbb{N}\} \neq \emptyset$.

Sets (old final question)

3. Let $p_1, p_2, p_3, \ldots, p_n, \ldots$ be the infinite sequence of prime numbers listed in increasing order (so that $p_1=2, p_2=3, p_3=5$, etc.). For $k\in\mathbb{N}$, let $A_k=\{a\in\mathbb{N}\mid a\geq 2 \text{ and } p_k \text{ does not divide a}\}$, and for $n\in\mathbb{N}$, define

$$B_n = \bigcap_{k=1}^n A_k = A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n.$$

- (a) Find the smallest element of the set B_4 .
- (b) Consider whether for every $n \in \mathbb{N}$, the set B_n is infinite or not.
- (c) Find the intersection of all A_k 's.

(a)
$$B_n = \bigcap_{k} = A_1 \cap A_2 \dots \cap A_n$$

 $A_1 = (3, 5, 7, 9, 1) \dots 3$
 $A_2 = (2, 4, 5, 7, 8, 10, 11 \dots 3)$
 $A_3 = (2, 3, 4, 6, 7, 8, 9, 10, 11 \dots 3)$
 $A_4 = (2, 3, 4, 5, 6, 8, 9, 10, 11 \dots 3)$
Smallest Januart = 11

(Continued) 3. Let $p_1, p_2, p_3, \ldots, p_n, \ldots$ be the prime numbers listed in increasing order. For $k \in \mathbb{N}$, let $A_k = \{a \in \mathbb{N} \mid a \geq 2 \text{ and } p_k \nmid a\}$, and for $n \in \mathbb{N}$, define $B_n = \bigcap_{k=1}^n A_k = A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n$.

- (a) Find the smallest element of the set B_4 .
- (b) Consider whether for every $n \in \mathbb{N}$, the set B_n is infinite or not.
- (c) Find the intersection of all A_k 's.

- 4. Let $a \in \mathbb{R}$.
- (a) On the xy-plane, draw the set $S_a = \{(x, x^2 ax), x \in \mathbb{R}\}$ when a = 0, a = 1 and a = 2.
- (b) Show that $\bigcap_{a\in\mathbb{R}} S_a = \{(0,0)\}.$

Hint: What does it mean for a point to be in the intersection?

(Continued) 4. Let $a \in \mathbb{R}$.

- (a) Draw $S_a = \{(x, x^2 ax), x \in \mathbb{R}\}$ when a = 0, 1, 2.
- (b) Show that $\bigcap_{a\in\mathbb{R}} S_a = \{(0,0)\}.$

- 5. (a) Show that for every $k \in \mathbb{Z}$, $\exists x, y \in \mathbb{Z}$, such that k = 4x + 5y.
- (b) What does it say about the set $A = \{4x + 5y \mid x, y \in \mathbb{Z}\}$: is it a subset of, superset of, or equal to \mathbb{Z} ?

(Continued) 5. Show: $\forall k \in \mathbb{Z}$, $\exists x, y \in \mathbb{Z}$, such that k = 4x + 5y. (b) Is $A = \{4x + 5y \mid x, y \in \mathbb{Z}\}$ a subset of, superset of, or equal to \mathbb{Z} ?

6. Let A, B and C be sets. For each of the following statements, either prove it is true or give a counterexample.

(a)
$$\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$$
,

(b)
$$\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)$$
.

Hint: First try this with small sets.

(Continued) 6. Prove or give a counterexample:

- (a) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$,
- (b) $\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.