Teoría de portafolio Usando R

Gabriel Cabrera G.

Universidad de Chile Facultad de Economía y Negocios

26 de Marzo del 2019

1/39

Información de contacto

- **★** gcabrerag@fen.uchile.cl
 - % gcabrerag.rbind.io
 - **৺** GaboC_g
 - **○** GaboCg
- ♥ Facultad de Economía & Negocios, Universidad de Chile

Tabla de contenido

- 1 Descargando la librería IntroCompFinR
- 2 Utilizando IntroCompFinR
- 3 Portafolio de Mínima Varianza
- 4 Portfolio de minima varianza sujeto a un retorno objetivo
- 5 Portafolio tangente
- 6 Frontera eficiente

Descargando la librería IntroCompFinR

4/39

Librería IntroCompFinR

Para la teoría de portfolio vamos a utilzar la librería IntroCompFinR (Intro to Computational Finance in R) creado por el profesor Eric Zivot (Zivot 2013).

1. Debemos instalar primero las librerías que utiliza IntroCompFinR:

```
if(!require("pacman")) install.packages("pacman")
p_load("PerformanceAnalytics", "quadprog", "xts")
```

2. Ya instaladas las dependencias, descargamos IntroCompFinR:

```
install.packages("IntroCompFinR", repos="http://R-Forge.R-project.org")
```

3. Otra opción es simplemente cargar las funciones, sin necesidad de instalar y cargar el paquete. Estas quedarán en el *Global Environment*.

source (IntroComFinR/IntroComFinR.R)

A veces debemos instalar (install.packages()) muchas librerías y luego cargarlas (library()), esto puede ser muy invasivo y genera lineas de código innecesarias, una solución es usar la librería pacman (Package Management)

Función Pacman	Paquete equivalente	Descripción
p_load	install.packages + library	Carga e instala los paquetes
p_install	install.packages	Instala paquetes desde CRAN
p_load_gh	ninguno	Carga e instala del github

Existen más opciones, pero no serán necesarias para la sesión. Con la función p_load agregan¹ todos las librerías que deseen, si las tienen las carga (library()), si no, las instala (install.packages()) y luego las carga.

¹Deben escribir antes if(!require("pacman")) install.packages("pacman")

Funciones útiles de IntroCompFinR

Funciones	Descripciones	
getPortfolio	Crea un portafolio (objeto)	
globalMin.portfolio	Computa el portafolio de mímina varianza	
efficient.portfolio	Computa el portafolio de mímina varianza sujeto a un retorno	
tangency.portfolio	Computa el portafolio tangente	
efficient.frontier	Computa la frontera eficiente	

Utilizando IntroCompFinR

9/39

Cargando la librería y la base de datos

10 / 39

Una vez la instalada la librería, procedemos a cargarla en conjunto con aquellas que utilizaremos en esta ayudantía:

```
if(!require("pacman")) install.packages("pacman")
p_load("IntroCompFinR", "readxl", "tidyverse")
```

Como ya está cargado readxl cargamos el archivo **stocks.xlsx**, que ya posee los retornos².

Portafolio con tres activos riesgosos

11/39

Considerando tres activos riesgosos (Starbucks, Nordstrom y Microsoft), definimos un vector columna 3x1 el que tendrá los retornos y los pesos:

$$\mathbf{R} = \begin{pmatrix} R_a \\ R_b \\ R_c \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_a \\ x_b \\ x_c \end{pmatrix}$$

El vector de retornos esperados es:

$$E[\mathbf{R}] = E\begin{bmatrix} \begin{pmatrix} R_a \\ R_b \\ R_c \end{pmatrix} \end{bmatrix} = \begin{pmatrix} E[R_a] \\ E[R_b] \\ E[R_c] \end{pmatrix} = \begin{pmatrix} \mu_a \\ \mu_b \\ \mu_c \end{pmatrix} = \mu$$

La matriz 3x3 de varianza y covarianza de los retornos es:

$$var[\mathbf{R}] = \begin{pmatrix} \sigma_a^2 & \sigma_{ab} & \sigma_{ac} \\ \sigma_{ab} & \sigma_b^2 & \sigma_{bc} \\ \sigma_{ac} & \sigma_{bc} & \sigma_c^2 \end{pmatrix} = \Sigma$$

Notar que la matriz de covarianza es simétrica ($\Sigma = \Sigma'$). Para construir las matrices anteriores en R:

```
# Promedio
mean <- apply(stocks[2:4], 2 , function(x) mean(x))
# Desviación Estandar
sd <- apply(stocks[2:4], 2 , function(x) sd(x))
# Covarianza
cov <- cov(stocks[2:4])</pre>
```

12 / 39

Graficando Trade-off retorno-riesgo

13 / 39

A continuación graficamos el trade-off retorno riesgo de cada activo riesgoso:

```
# graficamos el trade-off riesgo-retorno
g1 <- ggplot(mapping = aes(sd, mean, label = c("NODS", "SBUX", "MSFT"))) + geom_point()
g1 <- g1 + geom_text(hjust = 0, vjust = 0)
4 g1 <- g1 + scale_y_continuous(breaks = seq(0,0.2, by = 0.01), limits = c(0,0.08))
5 g1 <- g1 + scale_x_continuous(breaks = seq(0,0.2, by = 0.02), limits = c(0,0.2))
6 g1 <- g1 + theme_bw() + xlab("Riesgo") + ylab("Retorno")
7 g1 <- g1 + ggtitle("Trade-off Riesgo-Retorno", subtitle = "Tres activos riesgosos")
8 g1</pre>
```

Trade-off Riesgo-Retorno

Tres activos riesgosos

Construcción portafolio con pesos iguales

15 / 39

El retorno de un portafolio usando notación matricial es:

$$\mathbf{R}_{\mathbf{p},\mathbf{x}} = \mathbf{x}' \mathbf{R} = (x_a, x_b, x_c) \cdot \begin{pmatrix} R_a \\ R_b \\ R_c \end{pmatrix} = x_a R_a + x_b R_b + x_c R_c$$

La varianza del portafolio es:

$$\sigma_{\mathbf{p},\mathbf{x}}^{2} = var(\mathbf{x}'R) = \mathbf{x}'\Sigma\mathbf{x}' = (x_{a}, x_{b}, x_{c}) \begin{pmatrix} \sigma_{a}^{2} & \sigma_{ab} & \sigma_{ac} \\ \sigma_{ab} & \sigma_{b}^{2} & \sigma_{bc} \\ \sigma_{ac} & \sigma_{bc} & \sigma_{c}^{2} \end{pmatrix} \begin{pmatrix} x_{a} \\ x_{b} \\ x_{c} \end{pmatrix}$$

```
# construimos los pesos
weights <- rep(1,3)/3

# construimos el portfolio
getPortfolio(mean, cov, weights)</pre>
```

Portafolio de Mínima Varianza

17/39

Calculando Portafolio de Mínima Varianza

El portafolio de mínima varianza $\mathbf{m} = (m_a, m_b, m_c)'$ para tres activos puede ser resuelto:

$$\begin{aligned} \min_{m_a, m_b, m_c} \sigma_{p, m}^2 &= m_a^2 \sigma_a^2 + m_b^2 \sigma_b^2 + m_c^2 \sigma_c^2 + 2 m_a m_b \sigma_{ab}^2 + 2 m_a m_c \sigma_{ac}^2 + 2 m_b m_c \sigma_{bc}^2 \\ \text{s.t.} \quad m_a + m_b + m_c &= 1 \end{aligned}$$

Usando la manera matricial se puede expresar como:

$$\min_{\mathbf{m}} \sigma_{p,m}^2 = \mathbf{m}' \mathbf{\Sigma} \mathbf{m}$$
 s.t. $\mathbf{m}' \mathbf{1} = 1$

Calculando Portafolio de Mínima Varianza Código


```
# construimos el objeto
globalmin <- globalmin.portfolio(mean, cov, shorts = TRUE)

# vemos el objeto en la consola
globalmin
```

Graficando Portafolio de Mínima Varianza

20 / 39

A continuación se grafica el portafolio de mínima varianza

Trade-off Riesgo-Retorno

Tres activos riesgosos & minima varianza

Portfolio de minima varianza sujeto a un retorno objetivo

Calculando portfolio de minima varianza sujeto a un retorno objetivo

Sea $\sigma_{p,0}^2$ el nivel de riesgo, el problema de maximización es acotado a:

$$\begin{aligned} \max_{\mathbf{x}} \mu_p &= \mathbf{x}' \mu \\ \text{s.t.} \quad \sigma_p^2 &= \mathbf{x}' \mathbf{\Sigma} \mathbf{x} = \sigma_{p,0}^2 \quad \mathbf{y} \quad \mathbf{x}' \mathbf{1} = 1 \end{aligned}$$

El problema dual para la minimización:

$$\begin{aligned} & \min_{\mathbf{x}} \sigma_{p,\mathbf{x}}^2 = \mathbf{x}' \mathbf{\Sigma} \mathbf{x} \\ & \text{s.t.} \quad \mu_p = \mathbf{x}' \mu = \mu_{p,0} \quad \mathbf{y} \quad \mathbf{x}' \mathbf{1} = 1 \end{aligned}$$

```
# retorno igual a Nordstrom
port.nods <- efficient.portfolio(mean, cov, mean[1], shorts = TRUE)

# retorno igual a Starbucks
port.sbux <- efficient.portfolio(mean, cov, mean[2], shorts = TRUE)

# retorno igual a Microsoft
port.msft <- efficient.portfolio(mean, cov, mean[3], shorts = TRUE)

# construimos objeto con los retornos y desviaciones estandar
mean.2 <- c(port.nods$er, port.sbux$er, port.msft$er)
sd.2 <- c(port.nods$ed, port.sbux$sd, port.msft$sd)</pre>
```

24 / 39

Graficando Portafolio de Mínima Varianza sujeto a un retorno objetivo

25 / 39

A continuación se grafican los portafolios eficientes

Trade-off Riesgo-Retorno

Tres activos riesgosos & minima varianza

Gabriel Cabrera G. Teoría de portafolio 26 de Marzo del 2019

Portafolio tangente

27 / 39

Cálculo Portafolio tangente

28 / 39

El portafolio tangente es el portafolio de activos riesgosos que tiene el mayor ratio de sharpe. El portafolio tangente (pesos), denominado $\mathbf{t} = (t_{aapl}, t_{msft}, t_{nvda})'$ resuelve:

$$\max_{\mathbf{t}} \quad \frac{\mathbf{t}'\mu - r_f}{(\mathbf{t}'\Sigma\mathbf{t})^{1/2}} = \frac{\mu_{p,t} - r_f}{\sigma_{p,t}}$$
s.t.
$$\mathbf{t'1} = 1$$

resolviendo:

$$\mathbf{t} = rac{\mathbf{\Sigma}^{-1}(\mu - r\mathbf{f} \cdot \mathbf{1})}{\mathbf{1}'\mathbf{\Sigma}^{-1}(\mu - r\mathbf{f} \cdot \mathbf{1})}$$

El caso usual es cuando el ratio de sharpe es positivo, $\mu_{p,m} > r_f$.

Fijamos una tasa libre de riesgo

```
# Tasa libre de riesgo
risk_free <- 0.005</pre>
```

Procedemos a calcular el portafolio tangente:

```
# Portafolio tangente
port.tang <- tangency.portfolio(mean, cov, risk_free, shorts = TRUE)
```

Finalmente el ratio de sharpe:

```
#sharpe ratio
sharpe.ratio <- (port.tang$er - risk_free)/port.tang$sd</pre>
```

Graficando calculo portafolio tangente

30 / 39

A continuación se grafica el portafolio eficiente:

```
1 | q4 <- qqplot() + qeom point(mapping = aes(sd, mean, color = "1"))
2 q4 <- q4 + geom point (mapping = aes(sd.2, mean.2, color = "2"))
3 | q4 <- q4 + geom_point (mapping = aes(port.tang$sd, port.tang$er, color = "3"))
4 q4 <- q4 + geom point (mapping = aes (globalmin$sd, globalmin$er, color = "4"))
5 q4 <- q4 + geom abline (intercept = risk free, slope = sharpe.ratio)
6 \mid q4 \mid q4 \mid scale y continuous (breaks = seq(0,0.2, by = 0.01), limits = c(0,0.06))
7 \mid q4 \leftarrow q4 + scale_x continuous (breaks = seq(0,0.2, by = 0.02), limits = c(0,0.2))
8 q4 <- q4 + scale_color_manual("", values = c("blue", "red", "orange", "green"),
                                  labels = c("Stocks 1", "Stocks 2", "Tang. Port", "Min
                                   \hookrightarrow var."))
10 q4 <- q4 + theme bw() + xlab("Riesgo") + ylab("Retorno")
11 q4 <- q4 + qqtitle("Trade-off Riesgo-Retorno",
                       subtitle = "Tres activos riesgosos & minima varianza")
13 q4
```

Trade-off Riesgo-Retorno

Tres activos riesgosos & minima varianza

Gabriel Cabrera G. Teoría de portafolio 26 de Marzo del 2019

Frontera eficiente

32 / 39

Construcción frontera eficiente

33 / 39

Para formar la frontera eficiente (punto) se necesita encontrar dos portafolios eficientes (realizado anteriormente). Sea $\mathbf{x}=(x_a,x_b,x_c)'$ e $\mathbf{x}=(y_a,y_b,y_c)'$ con retornos esperados distintos (target) $\mathbf{x}'\mu=\mu_{p,0}\neq\mathbf{y}'\mu=\mu_{p,1}$, donde \mathbf{x} resuelve:

$$\begin{aligned} & \min_{\mathbf{x}} \sigma_{p,\mathbf{x}}^2 = \mathbf{x}' \mathbf{\Sigma} \mathbf{x} \\ & \text{s.t.} \quad \mu_p = \mathbf{x}' \mu = \mu_{p,0} \quad \mathbf{y} \quad \mathbf{x}' \mathbf{1} = 1 \end{aligned}$$

y el portafolio y:

$$\begin{aligned} & \min_{\mathbf{x}} \sigma_{p,y}^2 = \mathbf{y}' \mathbf{\Sigma} \mathbf{y} \\ & \text{s.t.} \quad \mu_p = \mathbf{y}' \mu = \mu_{p,1} \quad \mathbf{y} \quad \mathbf{y}' \mathbf{1} = 1 \end{aligned}$$

Sea α cualquier constante y definiendo el portafolio **z** como una combinación lineal de portafolios **x** e **y**.

$$\mathbf{z} = \alpha \cdot \mathbf{x} + (1 - \alpha) \cdot \mathbf{y}$$
$$= \begin{pmatrix} \alpha x_a + (1 - \alpha) y_a \\ \alpha x_b + (1 - \alpha) y_b \\ \alpha x_c + (1 - \alpha) y_c \end{pmatrix}$$

Entonces:

1. El portafolio **z** es un portafolio de minima varianza con retorno esperado y varianza dado por:

$$\mu_{p,z} = \mathbf{z}'\mu = \alpha \cdot \mu_{p,x} + (1 - \alpha) \cdot \mu_{p,y}$$

$$\sigma_{p,z}^2 = \mathbf{z}'\Sigma\mathbf{z} = \alpha^2\sigma_{p,x}^2 + (1 - \alpha)^2\sigma_{p,y}^2 + 2\alpha(1 - \alpha)\sigma_{xy}$$

donde

$$\sigma_{p,x}^2 = \mathbf{z}' \Sigma \mathbf{z}, \sigma_{p,y}^2 = \mathbf{y}' \Sigma \mathbf{y}, \sigma_{xy} = \mathbf{x}' \Sigma \mathbf{y}$$

2. Si $\mu_{p,z} \ge \mu_{p,m}$ donde $\mu_{p,m}$ es el retorno esperado del portafolio de mímina varianza, entonces el portafolio **z** es un portafolio eficiente


```
eff.front.short <- efficient.frontier(mean, cov, nport = 25, alpha.min = -2, alpha.max = 1.5, shorts = TRUE)

eff.front.short
```

```
## efficient.frontier(er = mean, cov.mat = cov, nport = 25, alpha.min = -2,
##
      alpha.max = 1.5, shorts = TRUE)
##
## Frontier portfolios' expected returns and standard deviations
##
     port 1 port 2 port 3 port 4 port 5 port 6 port 7 port 8 port 9 port 10
## ER 0.0782 0.0756 0.0730 0.0704 0.0678 0.0652 0.0627 0.0601 0.0575 0.0549
## SD 0.1835 0.1760 0.1686 0.1613 0.1541 0.1469 0.1399 0.1330 0.1263 0.1197
##
     port 11 port 12 port 13 port 14 port 15 port 16 port 17 port 18 port 19
## ER 0.0523 0.0497 0.0471 0.0446 0.0420 0.0394 0.0368 0.0342 0.0316
## SD 0.1133 0.1072 0.1014 0.0960 0.0909 0.0863
                                                    0.0823 0.0789 0.0763
     port 20 port 21 port 22 port 23 port 24 port 25
##
## ER 0.0290 0.0265 0.0239 0.0213 0.0187 0.0161
## SD 0.0744 0.0735 0.0734 0.0742 0.0759 0.0785
```

Call:

Gráficando frontera eficiente

37 / 39

A continuación se grafican la frontera eficiente con venta corta

```
1 | q5 <- qqplot() + qeom_point(mapping = aes(eff.front.short$er,
                                             color = "1"))
3 | q5 <- q5 + geom_point (mapping = aes(sd, mean, color = "2"))
4 g5 <- g5 + geom_point(mapping = aes(sd.2, mean.2, color = "3"))
5 q5 <- q5 + qeom point (mapping = aes (port.tang$sd, port.tang$er, color = "4"))
6 q5 <- q5 + qeom point (mapping = aes (globalmin$sd, globalmin$er, color = "5"))
7 q5 <- q5 + qeom_abline(intercept = risk_free, slope = sharpe.ratio)
8 q5 < -q5 + scale y continuous (breaks = seq(0,0.2, by = 0.01), limits = c(0,0.08))
9 q5 \leftarrow q5 + scale \times continuous (breaks = seq(0,0.2, by = 0.02), limits = c(0,0.2))
10 g5 <- g5 + scale_color_manual("", values = c("black", "blue", "red", "orange", "green"),
                                 labels = c("Frontera", "Stocks 1", "Stocks 2",
11
                                            "Tang. Port", "Min var."))
13 g5 <- g5 + theme bw() + xlab("Riesgo") + vlab("Retorno")
14 q5 <- q5 + qqtitle("Trade-off Riesgo-Retorno",
                      subtitle = "Tres activos riesgosos & minima varianza")
16 q5
```

Trade-off Riesgo-Retorno

Tres activos riesgosos & minima varianza

Referencia I

39 / 39

Eric Zivot. "Chapter 1: Portfolio Theory with Matrix Algebra". In: Lecture Notes for ECON 424 and MATH 462: Computational Finance and Financial Econometrics (2013), pp. 25–27.