Eine Woche, ein Beispiel 2.13. outer automorphism

We do something very elementary but tricky, and will later find out its connection to the advanced topic, like Teichmüller space.

1. outer automorphism group Out(G)/automorphism group Aut(G)

https://en.wikipedia.org/wiki/Outer_automorphism_group https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups

$$1 \longrightarrow Z(G) \longrightarrow G \xrightarrow{conj} Aut(G) \longrightarrow Out(G) \longrightarrow 1$$

where Z(G) is the center of G

Aut(a) is the automorphism of a

Inn (G) = Im (conj) is the inner automorphism of G

Out (G) = Aut (G)/Inn (G) is the outer automorphism of G.

E.g.
$$G = \mathbb{Z}$$
, $Aut(\mathbb{Z}) = \{\pm 1\}$, $Out(\mathbb{Z}) = \{\pm 1\}$
 $G = \mathbb{Z}/m\mathbb{Z}$, see https://zhuanlan.zhihu.com/p/97195375 \leftarrow typo. $\mathbb{Q} \Rightarrow 2$

$$G = \mathbb{Z}/m\mathbb{Z}$$
, see https://zhuanlan.zhihu.com/p/97195375 \leftarrow typo. $\mathbb{Q} \Rightarrow 2$

(m>2)

(nells)

an easy result is that
$$\#Out(\frac{\mathbb{Z}}{n\mathbb{Z}}) = \varphi(m)$$
.

$$E.g.$$
 $G = S_n$

an easy result is that
$$\# Out(\mathbb{Z}/n\mathbb{Z}) = \varphi(m)$$
.

$$G = S_n, \qquad \qquad n \neq 2, 6$$

$$Aut(S_n) = \begin{cases} S_n & n \neq 2, 6 \\ 1 & n \neq 2 \end{cases}$$

$$S_6 \times \mathbb{Z}/2\mathbb{Z} \qquad n = 6$$

$$Out(S_n) = \begin{cases} f * f & n \neq 6 \\ \mathbb{Z}/2\mathbb{Z} & n = 6 \end{cases}$$

$$Aut(A_n) = \begin{cases} S_n & n \neq 2, 3, 6 \\ f * f & n = 2 \end{cases}$$

$$S_6 \times \mathbb{Z}/2\mathbb{Z} \qquad n = 6$$

$$Out(A_n) = \begin{cases} S_n & n \neq 2, 3, 6 \\ f * f & n = 2 \end{cases}$$

$$S_6 \times \mathbb{Z}/2\mathbb{Z} \qquad n = 6$$

$$Out(A_n) = \begin{cases} \mathbb{Z}/2\mathbb{Z} & n \neq 2, 3, 6 \\ f * f & n = 2 \text{ or } 3 \end{cases}$$

$$S_{12} \times \mathbb{Z}/2\mathbb{Z} \qquad n \neq 2, 3, 6 \end{cases}$$

$$S_{12} \times \mathbb{Z}/2\mathbb{Z} \qquad n \neq 2, 3, 6 \end{cases}$$

$$S_{12} \times \mathbb{Z}/2\mathbb{Z} \qquad n \neq 2, 3, 6 \end{cases}$$

$$S_{13} \times \mathbb{Z}/2\mathbb{Z} \qquad n \neq 2, 3, 6 \end{cases}$$

$$S_{13} \times \mathbb{Z}/2\mathbb{Z} \qquad n \neq 2, 3, 6 \end{cases}$$

$$S_{13} \times \mathbb{Z}/2\mathbb{Z} \qquad n \neq 2, 3, 6 \end{cases}$$

$$S_{13} \times \mathbb{Z}/2\mathbb{Z} \qquad n \neq 2, 3, 6 \end{cases}$$

$$Out(A_n) = \begin{cases} 2/2 & n \neq 2, \\ 5 & n = 20 \end{cases}$$

For a reference of the proof and constructions of the exotic outer automorphism of S_6, see wiki and here: https://wordpress.nmsu.edu/pamorand/files/2018/10/AutGroups.pdf

For Chinese you can also see here: https://zhuanlan.zhihu.com/p/24764617

They are elementary and everybody who have learned something about Sylow's theorem should be able to follow the proofs.

Felements in conj class [= (123)]

E.g.
$$G = PSL(2, \mathbb{F}_7) \cong GL(3, \mathbb{F}_2)$$

 $Aut(PSL(2, \mathbb{F}_7)) \cong PGL(2, \mathbb{F}_7)$ $Out(PSL(2, \mathbb{F}_7)) \cong \{\pm 1\}$

Statement:

https://mathoverflow.net/questions/34844o/what-is-the-outer-automorphism-group-of-operatornamesl2-mathbbf-q
For the other lie group, e.g. group in wiki: https://en.wikipedia.org/wiki/Projective_linear_group,
there is a general theory for its outer automorphism group, please see this book: (Even though I'm not so interested now)
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/automorphisms-of-finite-linear-groups/16c
23 F257E0F21D57873B1450E9F15E4

E.g.
$$F_n := free \ group \ generated \ by \ a_1,..., a_n$$

$$F_n \longrightarrow F_n/_{[F_nF_n]} \cong \mathbb{Z}_n \qquad \sim Out(F_n) \longrightarrow GL(n,\mathbb{Z})$$
It's claimed that $Out(F_2) \cong GL(2,\mathbb{Z})$.

Left: f.g. obelian group, like
$$\mathbb{Z}^n$$
. $(Aut(\mathbb{Z}^n) \cong Out(\mathbb{Z}^n) \cong GL(n,\mathbb{Z}))$ $(\mathbb{Z}/8\mathbb{Z})^{\oplus 3}$