

PRÁCTICA

REPORTEV

PROYECTO: DOCUMENTACIÓN Y AJUSTES DE SCIANDROP Y SCIANFORCE

RECAPITULACIÓN

Precisión de SCIANDrop

El principal competidor para nuestra aplicación es
OpenDrop, cuyo funcionamiento todavía no es totalmente descubierto ¿Cuál software es más efectivo? ¿Por qué?

2

Curvaturas en SCIANForce

Se implementaron tres métodos distintos para obtener curvaturas, pero existían otros más efectivos. La visualización tampoco era la mejor ¿Cuál es el resultado final?

Curso de marzo

Próximamente, se va a llevar a cabo un curso en donde se presentaría la aplicación. Es necesario preparar el programa al público ¿Qué tanto se ha avanzado con esto?

PEQUEÑAS MEJORAS

- Se arreglaron fallas ortográficas.
- Se mejoró la aproximación del círculo dentro de la gota.
- Ahora, admite imágenes previamente procesadas.
- Se ajustaron bugs y otras cosas del código.

GOTAS SINTÉTICAS

BOND = 0.25

OPENDROP VS SCIANDROP

Ambos métodos
están muy cercanos
al valor real, pero
OpenDrop tiene
resultados mejores.
El software de
ScianDrop todavía
puede mejorar su
exactitud.

REAL	OPENDROP		SCIANDROP	
	OBTENIDO	DIFERENCIA	OBTENIDO	DIFERENCIA
0.18	0.1813	0.0013	0.17745	0.00255
0.195	0.1957	0.0007	0.19345	0.00155
0.21	0.2102	0.0002	0.2119	0.0019
0.25	0.2494	0.0006	0.24838	0.00162
0.3	0.299	0.001	0.2998	0.0002
PROMEDIOS:		0.00076		0.001564

OBTENCIÓN DE CURVATURAS

Se tienen diversos métodos para hallar curvaturas, siendo unos más costosos computacionalmente, y precisos, que otros. En particular, se tradujo el algoritmo de **Rusinkiewwicz** desde C++ hasta Python.

- Método de Rusinkiewicz
- Método de Keenan Crane (Discreto)
- Método a través del Laplaciano
- Método de Taubin

Librería de Trimesh

Todavía se tiene que investigar más

ESFERA CON EL NUEVO MÉTODO

PEQUEÑAS MEJORAS

Se mejoró la **escala de colores**. Los positivos serán de tonalidades anaranjadas, mientras que los negativos más azulados, siendo el cero aproximadamente blanco. Es posible **mejorarlo** más

Result	s	
mean:		
std:		Options
max:		☐ Normalize nan
min:		
	Save curvatures	

Entrega el valor promedio, mínimo, máximo y la desviación estándar.
Permite guardar las curvaturas en un excel, puede **normalizar** y lee archivos .OBJ. Todavía está pendiente que entregue el **radio original** de la gota.

RECONSTRUCCIÓN 3D

¿Cómo los estudiantes podrían reconstruir los stacks? Una solución sencilla podría ser el uso de ImageJ (Fiji)

Plugin **3DViewer**

Ajuste del suavizado.

IDLY FIJI

Ambos pueden exportar en otro archivo (.OFF y .OBJ), trabajable en la interfaz.

Ambos pueden ajustar su suavizado, aunque los métodos no sean exactamente iguales. De igual forma, entregan resultados satisfactorios.

CURVATURAS: FIJI - IDL

DOCUMENTACIÓN DE LOS PROGRAMAS

GitHub

Se plantea la creación de un repositorio, donde poder almacenar los códigos y los archivos de más importancia en la teoría

Jupyter Notebook o Exe

Se puede crear un documento interactivo en Python para que las instrucciones sean más claras y prácticas. Así como también se puede generar un ejecutable.

Informe y Presentación de Práctica

Para finalizar la práctica, es necesario escribir un informe y realizar una presentación. Acá también habrá información valiosa para los futuros trabajos de otras personas.

Ya se tienen organizados los archivos, bibliografías y demás. También, los archivos de Python tienen su versión ejecutable en .EXE

#