

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ И УПРАВЛЕНИЕ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ ДЛЯ ЗАДАЧИ РОСТА ТЕХНОЛОГИЧЕСКОГО ПОСЛЕДОВАТЕЛЯ

Готовец Мария Алексеевна

Алгоритм решения стратегией МРС

- Измерение текущего состояния объекта x_{t_i} .
- ullet Вычисление управления обратной связи $ar u\colon [t_i,t_{i+T}] o \mathbb R^n.$
- Управление $u^*(t) := \bar{u}(t)$ на интервале $[t_i, t_i + \delta]$ применяется к объекту, (оставшийся управление $\bar{u}(t), \ t \geq t_i + \delta$ отбрасывается).

Алгоритм решения стратегией МРС

Процедура повторяется, как показано на рисунке, для следующего момента t_{i+1} (индекс i увеличивается на одну единицу).

Задача оптимального управления

$$J(x,u) = \int_0^z e^{-\rho t} [\kappa \ln x(t) + \ln(b - u(t))] dt \to \max,$$

$$\dot{x}(t) = u(t)(x(t) + \gamma y(t)),$$

$$x(0) = x_0,$$

$$\dot{y}(t) = \nu y(t),$$

$$y(0) = y_0, u(t) \in [0, b].$$

где b,γ,ρ,ν,κ — положительные параметры, $\gamma<1;\;x_0$ и y_0 — положительные начальные состояния фазовых переменных.

Смысл параметров

- b размеры трудовых ресурсов,
- γ емкость абсорбции,
- ρ параметр дисконтирования,
- ν рост научно-исследовательского сектора страны A,
- κ параметр эластичности замещения.

МРС с параметрами: $\gamma = 0.1$, $\nu = 0.6$ b = 1, $\rho = 0.5$, $\kappa = 0.9$.

МРС с параметрами: $\gamma = 0.9$, $\nu = 0.5$ b = 1, $\rho = 0.5$, $\kappa = 0.5$.

МРС с параметрами: $\gamma = 0.1$, $\nu = 0.6$ b = 2, $\rho = 0.5$, $\kappa = 0.5$.

МРС с параметрами: $\gamma = 0.9$, $\nu = 0.6$ b = 1, $\rho = 0.5$, $\kappa = 0.9$.

Спасибо за внимание!