Lógica Combinacional

No existe memoria, la salida depende de la entrada en todo momento, a igual entrada igual salida

Compuertas básicas

Compuertas básicas

Compuertas básicas

Algebra de Boole

Propiedad	Producto	Suma
Conmutativa	AB = BA	A+B=B+A
Distributiva	A(B+C) = AB+AC	A+BC = (A+B)(A+C)
Identidad	1.A = A	0+A=A
Complemento	AA' = 0	A+A' = 1
Teorema del cero y uno	0.A = 0	1+A = 1
Idempotencia	AA = A	A+A=A
Asociativa	A(BC) = (AB)C	A+(B+C) = (A+B)+C
Involución	A'' = A	
Teorema DeMorgan	(AB)' = A'+B'	(A+B)' = A'B'
Teorema del concenso	AB+A'C+BC = AB+A'C	(A+B)(A'+C)(B+C) = (A+B)(A'+C)
Teorema de absorción	A(A+B) = A	A+AB=A

Primera Forma Canónica

- Suma de M productos de N variables
- M nro de productos = nro de '1' a la salida
- N nro de términos de cada producto = nro de variables de entrada
- Cada producto forma un '1' de la salida
- La suma de todos los productos forman todos los '1' de la salida
- La salida es binaria, si no es '1' es '0'
- Ideal cuando hay pocos '1'
- El resultado puede ser simplificado

Segunda Forma Canónica

- Producto de M sumas de N variables
- M nro de sumas = nro de '0' a la salida
- N nro de términos de cada cada = nro de variables de entrada
- Cada suma forma un '0' de la salida
- El producto de todos las sumas forman todos los '0' de la salida
- La salida es binaria si no es '0' es uno
- Ideal cuando hay pocos '0'
- El resultado puede ser simplificado

Simplificación

- Se intenta minimizar la complejidad del sistema
- Menor cantidad de componentes
- Menor cantidad de conexiones
- Menor costo
- Menor tamaño
- Menor producción de calor
- Mayor velocidad

Karnaugh

- Simplificación, menor cantidad de términos y mas chicos
- Reescribo la Tabla de Verdad con el código de Gray en el mapa
- Tomo grupos de 1 o 0 contiguos (1er o 2da Forma Canónica) bajo las premisas:
- Rectángulos o cuadrados
- Cantidad de elementos n = 2x con x entero
- Cantidad de elementos la mayor posible, mas simplificación
- Puedo tomar un termino varias veces (idempotencia)
- No tomar grupos redundantes
- Los extremos son contiguos (los términos que difieren en 1 bit)

Multiplexores

Demultiplexores

$$F_0 = D\overline{A}\overline{B}$$
 $F_2 = DA\overline{B}$
 $F_1 = D\overline{A}B$ $F_3 = DAB$

D	\boldsymbol{A}	В	F_0	F_1	F_2	F_3
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
1	0	1	0	1	0	0

Decodificadores

Enable = 1						
A	В	D_0	D_1	D_2	D_3	
0	0	1	0	0	0	
0	1	0	1	0	0	
1	0	0	0	1	0	
1	1	0	0	0	1	

	Enable = 0					
A	В	D_0	D_1	D_2	D_3	
0	0	0	0	0	0	
0	1	0	0	0	0	
1	0	0	0	0	0	
1	1	0	0	0	0	

$$D_0 = \overline{A} \overline{B}$$

$$D_0 = \overline{A} \overline{B}$$
 $D_1 = \overline{A} B$ $D_2 = A \overline{B}$

$$D_2 = A \overline{B}$$

$$D_3 = AB$$

Codificadores de prioridad

$$F_0 = A_0 A_1 A_3 + A_0 A_1 A_2$$

$$F_1 = A_0 A_2 A_3 + A_0 A_1$$

A_0	A_1	A_2	A_3	F_0	F_{l}
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	1	0
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

PROGRAMMABLE LOGIC ARRAYS (PLA)

Sumador

A_i	B_i	C_i	S_i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_i = A_i'B_i'C_i + A_i'B_iC_i' + A_iB_i'C_i' + A_iB_iC_i = A \text{ xor } B \text{ xor } C$$

 $C_i = A_i'B_iC_i + A_iB_i'C_i + A_iB_iC_i' + A_iB_iC_i = AB + BC + AC$

Sumador

