Сортировка на (h,3)-призме

Биктимиров Айдар, Сандлер Андрей

Московский физико-технический институт (государственный университет) Факультет инноваций и высоких технологий

Научный руководитель: Беляев Виссарион Викторович, д.ф.-м. н., проф.

Аннотация В работе рассматривается задача сортировки занумерованных вершин графа специального вида, причем при сортировке разрешается менять местами только смежные вершины. Для графов небольших размеров приводится результат компьютерных вычислений и точный ответ, для больших ситуаций доказываются некоторые оценки и выдвигаются гипотезы относительно самых удаленных друг от друга нумераций.

1 Введение

Сортировка на графе с помощью множества разрешенных транспозиций – в общем случае ещё не решенная задача. Звучит она так:

пусть на вершинах графа задана некоторая нумерация натуральными числами от 1 до п. Какое минимальное число перестановок смежных вершин необходимо сделать в этом графе, чтобы получить некоторую другую нумерацию?

Ставится также вопрос:

какие две нумерации вершин данного графа наиболее удалены друг от друга, то есть сводятся одна к другой за максимальное число шагов?

В данной работе мы рассматриваем частный случай этой задачи - сортировку на одном конкретном графе и его естественном обобщении. Для небольших ситуаций мы получили точный ответ на компьютере, а в общем случае оценили ответ сверху и снизу достаточно близко.

2 Терминология

Изначальный рассматриваемый нами граф выглядит следующим образом:

Это призма с тремя вершинами на каждом из двух слоев. Два возможных варианта его обобщения - наращивать число вершин на уровне и наращивать число уровней. Отсюда название графа – (h,c)-призма – призма с h слоями и c вершинами на каждом слое. Мы выбрали второй вариант обобщения. Таким образом, данная работа посвящена исследованию (h,3)-призмы.

Обозначим через n число вершин в графе. Заметим, что всевозможные нумерации вершин образуют симметрическую группу S_n . Присвоим каждой нумерации (перестановке) номер, равный её номеру в лексикографическом порядке на подстановках. Теперь рассмотрим некоторый подграф графа Кэли, построенный по группе подстановок и множеству ребер графа, считая их множеством разрешенных транспозиций в S_n . Будем строить его послойно: на нулевой слой поместим одну вершину и дадим ей номер исходной перестановки. На первый слой поместим вершины с номерами тех перестановок, которые получаются из исходной с помощью ровно одной транспозиции, и так далее. Выражаясь языком Сотритег Science, запустим обход в ширину на графе Кэли и возьмем в качестве подграфа дерево обхода. Номер последнего слоя в полученном дереве и будет ответом на второй вопрос задачи.

Также будет удобно называть количество транспозиций, необходимых для перевода данной нумерации в начальную, длиной этой нумерации (или перестановки), а наибольшую возможную длину нумерации – диаметром призмы (графа).

3 Компьютерный эксперимент

Ответ на задачу при небольших значениях h мы решили посчитать на компьютере. Для определения диаметра графа Кэли использовался алгоритм поиска в ширину. В процессе его работы требуется хранить очередь из перестановок, а также сохранять список уже посещенных вершин, чтобы поиск мог завершиться, а не ушел в бесконечный цикл.

Первоначальная реализация не была оптимизирована, требовала $C \cdot n \cdot n!$ памяти, где C>1, а также была довольно медленной (сложность работы алгоритма составляла $O(n! \cdot log(n!) \cdot n)$). В результате мы смогли проанализировать только (2,3)- и (3,3)- призмы. По результатам первого эксперимента мы выдвинули гипотезу о том, что все нумерации, которые получаются из начальной перестановкой слоев в обратном порядке и поворотом этих слоев, будут иметь максимальную длину.

Далее мы оптимизировали алгоритм путем преобразования самих перестановок в их номера. В результате этого сложность алгоритма снизилась до $O(n! \cdot log(n!))$, а потребление памяти - до (n!/8), благодаря чему стал возможен анализ (4,3)-призмы. Это опровергло нашу первую гипотезу о виде перестановок наибольшей длины.

Кроме определения диаметра графа Кэли, мы добавили в программу возможность полного вывода его остовного дерева, что позволяет определить для каждой из перестановок один из минимальных по длине способов привести ее к начальной.

3.1 Послойная функция роста

Послойной функцией роста (для нашего графа) называется функция натурального аргумента, которая показывает, сколько на нём существует нумераций заданной длины.

Ниже приведены результаты вычисления диаметра и послойной функции роста графа Кэли для (2,3)-, (3,3)- и (4,3)-призм. Номер строки указывает длину перестановки, число справа – количество перестановок такой длины.

Таблица 1. Значен	ия послойной	функции	роста п	pu n =	6.9	и 12	
-------------------	--------------	---------	---------	--------	-----	------	--

	n=6	n = 9	n = 12
1	9	15	21
2	46	129	248
3	148	788	2103
4	253	3615	13950
5	199	12729	75525
6	60	33856	340471
7	4	65895	1289604
8		91275	4116728
9		85052	11058204
10		50217	24894822
11		16903	46667348
12		2347	72221112
13		58	91109874
14			91795393
15			71807347
16			41874833
17			16969822
18			4219024
19			520390
20			24204
21			562
22		·	14

Таким образом, мы получили ответ на вопрос задачи для призм с параметром h < 5. Диаметр (2,3)-призмы равен семи, диаметр (3,3)-призмы равен тринадцати, а диаметр (4,3)-призмы – двадцати двум.

4 Оценка снизу через подсчет девиаций

Основываясь на данных компьютерного эксперимента, мы выдвинули ещё одну гипотезу о том, как выглядят две самых удаленных друг от друга перестановки.

Гипотеза. Одна из нумераций (h,3)-призмы с самой большой длиной получается из начальной перестановкой слоев призмы в обратном порядке и поворотом всех слоев на единицу в одну сторону.

Используя эту гипотезу, мы приводим нижнюю оценку диаметра графа Кэли (h,3)-призмы. Для этого потребуется ввести одно

Определение. Назовем *девиацией* (или *отклонением*) вершины (h, 3)-призмы минимальное число транспозиций, необходимое для того, чтобы переместить эту вершину на её место в исходной перестановке.

Тогда в определенных выше терминах верна

Теорема. Диаметр графа Кэли (h,3)-призмы не меньше $\frac{n^2}{12}+C$, где C=0 при четных n и $C=-\frac{3}{2}$ при нечетных n.

$$S = 3 \cdot \sum_{i=1}^{h} \left(2 \cdot \left| \frac{h}{2} - i \right| \right)$$

Обозначим через S_{even} сумму S при четных n, а через S_{odd} - сумму S при нечетных n. Путем несложных вычислений получаем, что $S_{even}=\frac{n^2}{6}$, а $S_{odd}=\frac{n^2}{6}-\frac{3}{2}$. Заметим, что каждая транспозиция либо не изменяет S, либо увеличивает/уменьшает

Заметим, что каждая транспозиция либо не изменяет S, либо увеличивает/уменьшает это значение на 2. Но в исходной нумерации сумма девиаций равна нулю, значит, каким бы способом мы не сводили нашу перестановку к исходной, нам нужно получить нулевую сумму девиаций, что невозможно меньше, чем за $\frac{S}{2} = \frac{n^2}{12} + C$ шагов. Таким образом, мы доказали теорему.

5 Оценка сверху при помощи алгоритма

Для получения верхней оценки ответа на задачу мы приведем алгоритм, который переводит любую перестановку к исходной, а также покажем время его работы.

Данный алгоритм похож на сортировку выбором: на каждом шаге ищется минимальная по номеру вершина графа, стоящая не на своем месте, после чего она поднимается на нужный слой. Для этого вершина переставляется в тот ряд (всего их в призме три), в котором она должна находиться (за 0 либо 1 транспозицию), и далее несколькими транспозициями поднимается на свое место, как в сортировке пузырьком.

Ясно, что наибольшее кол-во транспозиций для поднятия вершины на свое место требуется, если она «всплывает» с нижнего слоя призмы. Также заметим, что если k верхних слоев призмы отсортированы правильно, то любую из оставшихся вершин можно вернуть на место не больше чем за (h-k) транспозиций.

Смоделируем наихудшую для нашего алгоритма ситуацию, когда для поднятия каждой вершины требуется вернуть ее на нужный ряд и применить $(h-\frac{i}{3})$ транспозиции для «всплытия». Суммарное число транспозиций, которое придется выполнить, равно

$$3 \cdot \sum_{i=1}^{h} (h-i) + n = 3 \cdot \sum_{i=1}^{h} i + n = 3 \cdot \frac{h \cdot (h+1)}{2} + n = \frac{n^2}{6} + \frac{3 \cdot n}{2}.$$

Таким образом, мы доказали, что любая нумерация вершин сводится к исходной не больше, чем за указанное количество транспозиций.

6 Заключение

В своей работе мы ввели понятие (h,c)-призмы и рассмотрели задачу о сортировке на (h,3)-призме. Для h>4 ответ на задачу ещё не получен, но мы привели его оценки сверху и снизу, которые можно продолжать улучшать, так как они различаются асимптотически в два раза. Для $h\leqslant 4$ точный ответ удалось посчитать на компьютере.

Список литературы

1. Беляев В.В. Лекции по алгебре, геометрии и теории групп. https://sites.google.com/site/miptmath — 2010-2011 гг.