Proposition 37.1. Given a metric space E with metric d, the family \mathcal{O} of all open sets defined in Definition 37.4 satisfies the following properties:

- (O1) For every finite family $(U_i)_{1 \leq i \leq n}$ of sets $U_i \in \mathcal{O}$, we have $U_1 \cap \cdots \cap U_n \in \mathcal{O}$, i.e., \mathcal{O} is closed under finite intersections.
- (O2) For every arbitrary family $(U_i)_{i\in I}$ of sets $U_i \in \mathcal{O}$, we have $\bigcup_{i\in I} U_i \in \mathcal{O}$, i.e., \mathcal{O} is closed under arbitrary unions.
- (O3) $\emptyset \in \mathcal{O}$, and $E \in \mathcal{O}$, i.e., \emptyset and E belong to \mathcal{O} .

Furthermore, for any two distinct points $a \neq b$ in E, there exist two open sets U_a and U_b such that, $a \in U_a$, $b \in U_b$, and $U_a \cap U_b = \emptyset$.

Proof. It is straightforward. For the last point, letting $\rho = d(a, b)/3$ (in fact $\rho = d(a, b)/2$ works too), we can pick $U_a = B_0(a, \rho)$ and $U_b = B_0(b, \rho)$. By the triangle inequality, we must have $U_a \cap U_b = \emptyset$.

The above proposition leads to the very general concept of a topological space.

One should be careful that, in general, the family of open sets is not closed under infinite intersections. For example, in \mathbb{R} under the metric |x-y|, letting $U_n = (-1/n, +1/n)$, each U_n is open, but $\bigcap_n U_n = \{0\}$, which is not open.

Later on, given any nonempty subset A of a metric space (E, d), we will need to know that certain special sets containing A are open.

Definition 37.5. Let (E,d) be a metric space. For any nonempty subset A of E and any $x \in E$, let

$$d(x,A) = \inf_{a \in A} d(x,a).$$

Proposition 37.2. Let (E, d) be a metric space. For any nonempty subset A of E and for any two points $x, y \in E$, we have

$$|d(x,A) - d(y,A)| \le d(x,y).$$

Proof. For all $a \in A$ we have

$$d(x,a) \le d(x,y) + d(y,a),$$

which implies

$$d(x, A) = \inf_{a \in A} d(x, a)$$

$$\leq \inf_{a \in A} (d(x, y) + d(y, a))$$

$$= d(x, y) + \inf_{a \in A} d(y, a)$$

$$= d(x, y) + d(y, A).$$