

Aufgaben zur Algebra 1

Besprechungstermin: Do. 23. Jänner 2025

Aufgabe 1

Sei $p \in k[x]$ ein irreduzibles Polynom sowie K sein Zerfällungskörper über k. Zeigen Sie, dass es für je zwei Nullstellen $a,b \in K$ von p ein $\varphi \in \operatorname{Aut}(K,k)$ gibt mit $\varphi(a) = b$.

Aufgabe 2

Sei p eine Primzahl, $\xi:=e^{2\pi i/p}\in\mathbb{C}$ und $K:=\mathbb{Q}(\xi)$. Zeigen Sie, dass für jedes $j=1,\ldots,p-1$ genau ein \mathbb{Q} -Isomorphismus $\varphi_j\colon K\to K$ existiert mit

$$\varphi_j(\xi) = \xi^j$$
.

Stimmt die Aussage auch, wenn p keine Primzahl ist?

Aufgabe 3

Sei $k \subseteq K$ eine Körpererweiterung. Man nennt

$$k_K^{\mathrm{rel}} := \{ a \in K \mid a \text{ algebraisch ""uber } k \}$$

den relativen algebraischen Abschluss von k in K. Falls $k=k_K^{\rm rel}$ gilt, heißt k relativ algebraisch abgeschlossen in K.

Zeigen Sie: Wenn K algebraisch abgeschlossen ist, so ist k genau dann algebraisch abgeschlossen, wenn k relativ algebraisch abgeschlossen in K ist.

Aufgabe 4

Sei R ein kommutativer Ring und $I \triangleleft R$ ein Ideal. Für $a \in R \setminus \sqrt{I}$ betrachten wir die Menge $M = \{1, a, a^2, a^3, \ldots\}$, die Lokalisierung $M^{-1}R$ und den kanonischen Homomorphismus $\iota \colon R \to M^{-1}R$. Zeigen Sie:

- (i) Das von $\iota(I)$ in $M^{-1}R$ erzeugte Ideal ist nicht der ganze Ring $M^{-1}R$.
- (ii) Es gibt ein maximales Ideal $\mathfrak{m} \triangleleft M^{-1}R$ mit $\iota(I) \subseteq \mathfrak{m}$.
- (iii)Es gibt ein Primideal $\mathfrak{p} \lhd R$ mit $I \subseteq \mathfrak{p}$ und $a \notin \mathfrak{p}.$
- (iv) \sqrt{I} ist der Durchschnitt aller über I liegenden Primideale.