SHORT SYLLABUS

BCSE309L Cryptography and Network Security (3-0-0-3)

Finite Fields and Number Theory - Symmetric key cryptographic techniques - Asymmetric key cryptographic techniques - Message Digest and Hash Functions - Digital Signatures and Authentication Protocols - Transport Layer Security - IP Security - E-mail, Web and System Security.

Agenda Item 65/39 - Annexure - 35						
	Agenda Rem C	15/39 -	Allile	xure -	33	
BCSE309L	Cryptography and Network Security	L	Т	Р	С	
					3	
Pre-requisite	NIL	Sylla		versi	on	
1.0						
Course Objectives						
1. To explore the concepts of basic number theory and cryptographic techniques.						
2. To impart concept of Hash and Message Authentication, Digital Signatures and						
authentication protocols.						
3. To reveal the basics of transport layer security, Web Security and various types of						
System Secur	ity.					
Course Outcome	ne .					
	this course, students should be able to:					
To know the fundamental mathematical concepts related to security.						
 To know the landamental mathematical concepts related to security. To understand concept of various cryptographic techniques. 						
3. To apprehend the authentication and integrity process of data for various applications						
4. To know fundamentals of Transport layer security, web security, E-Mail Security and IP						
Security						
•						
	amentals of Number Theory			5 ho		
	Number Theory: Modular arithmetic, Euclidian Algorithn			Testir	ng:	
	rs theorem, Chinese Reminder theorem, Discrete Loga	rithms	S			
	netric Encryption Algorithms			7 ho		
,	ptographic techniques: Introduction to Stream cipher,	3lock	ciphe	r: DES	3,	
	Cipher Operation, Random Bit Generation and RC4					
Module:3 Asymmetric Encryption Algorithm and Key Exchange					urs	
	ryptographic techniques: principles, RSA, ElGamal, Elli					
cryptography, Homomorphic Encryption and Secret Sharing, Key distribution and Key						
exchange protoco	ls, Diffie-Hellman Key Exchange, Man-in-the-Meddle A	ttack				
Module:4 Mess	age Digest and Hash Functions			5 ho	urs	
Requirements for	Hash Functions, Security of Hash Functions, Message	Diges	t (MD)5),		
Socure Hack Fun	ction (SUA) Birthday Attack LIMAC	•	`	,		

Secure Hash Functions, Security of Hash Functions, Message Digest (MD5).

Module:5 Digital Signature and Authentication Protocols

7 hours

Authentication Requirements, Authentication Functions, Message Authentication Codes, Digital Signature Authentication, Authentication Protocols, Digital Signature Standards, RSA Digital Signature, Elgamal based Digital Signature, Authentication Applications: Kerberos, X.509 Authentication Service, Public Key Infrastructure (PKI)

Module:6 Transport Layer Security and IP Security

4 hours

Transport-Layer Security, Secure Socket Layer(SSL),TLS, IP Security: Overview: IP Security Architecture, Encapsulating Payload Security

Module:7 | E-mail, Web and System Security

7 hours

Electronic Mail Security, Pretty Good Privacy (PGP), S/MIME, Web Security: Web Security Considerations, Secure Electronic Transaction Protocol

Intruders, Intrusion Detection, Password Management, Firewalls: Firewall Design Principles, Trusted Systems.

Module:8	Contemporary Issues	2 hours
	Total Lecture hours:	45 hours
Text Book		
1 Crypto	graphy and Network Security-Principles and Practice, 8 th Edit	ion by Stallings

... | --, | --, | ---, |

	William, published by Pearson, 2020							
Reference Books								
1.	Cryptography and Network Security, 3 rd Edition, by Behrouz A Forouzan and Depdeep							
	Mukhopadhyay, published by McGrawHill, 2015							
Mode of Evaluation: CAT, written assignment, Quiz, and FAT								
Recommended by Board of Studies 04-03-2022								
App	proved by Academic Council	No. 65	Date	17-03-2022				