Introduction to Software Development Principles and Practices (SWPP) M1522.000100

Chung-Kil Hur

(Credit: Byung-Gon Chun)

All You Ever Wanted to Know about How to Build Large-Scale Software ©

Who am I?

- ➤ Prof. Chung-Kil (Gil) Hur [허충길]
 - Education: KAIST (B.S.), U of Cambridge (Ph.D.)
 - Software Foundations Lab <u>http://sf.snu.ac.kr</u>
 - Research Topics
 - Software Verification
 - Low-level Language Semantics (C/C++/LLVM/Rust)
 - Concurrency Models
 - Our collaborators
 - [UK] U of Cambridge, Microsoft Research Cambridge
 - [Germany] Max Planck Institute for Software Systems
 - [France] INRIA
 - [USA] Princeton, UPenn, Utah, State U of New York at Oswego, Google, IBM, Mozilla, Azul Systems.
 - Publications
 - 8 top conference papers (last 4 years at SNU). PLDI(4),POPL(2),ICFP(1),AAAI(1)

Teaching Staff

• Instructor: Chung-Kil Hur

– Email: gil.hur@sf.snu.ac.kr

- Office: Bldg. 301, Rm. 407

Office hours: Anytime by appointment

TAs

- Sanghoon Park
- Juneyoung Lee
- Dongyeon Shin
- Yonghyun Kim
- Email at swpp@sf.snu.ac.kr
- Course Web https://github.com/snu-sf-class/swpp201701

Goals for Today

What is this course about?

How does this class operate?

- Interactive is important!
 - Ask questions!

This Course is About

<u>Principles</u> + <u>Practices</u>
 of building large-scale software systems

- An hands-on course on large-scale software systems: project-oriented
 - This semester's theme is web services

This Course is About

- Building large software systems that actually work is hard. This course covers techniques for dealing with the complexity of software systems
- We will focus on the technology of software development principles and software engineering for the individual and small team
 - Specifications, principles of design and software architecture, testing, abstraction, modularity, design patterns, software development process, etc.

This Course is About

 The students are expected to apply the principles to systems in practice by working on semester-long group projects on web services

 You can think that each team is creating its own startup. The students applies software engineering principles to build their software products.

Class Components [Tentative: the percentage can change]

Class participation	5%
Warm up practice (Debugging, Code Refactoring)	20%
Milestone 1 (Specific features + Presentation)	35%
Milestone 2 (Your own features + Poster)	40%

Course Materials

- There is no required textbook in this class.
- If you want to read more about the topics covered in the class, I recommend to read the following books.
 - "Engineering Software as a Service: An Agile Approach Using Cloud Computing", by Armando Fox and David Patterson
 - "Software Engineering. A Practitioner's Approach (6th ed.)", by Roger Pressman
 - "Code Complete", by Steve McConnell
 - "Design Patterns: Elements of Reusable Object-Oriented Software", by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
 - "Extreme Software Engineering. A Hands-On Approach", by Daniel H.
 Steinberg, Daniel W. Palmer
 - "Structure and Interpretation of Computer Programs (SICP) (2nd ed.)", by Harold Abelson, Gerald Jay Sussman

• • •

Course Structure

- Lecture Tue, Thu 5:00-6:00 PM
 - Project presentations
- Practice session Tue 7:00-9:00 PM
 - Project presentations
 - Step-by-step guidance on software development principles
- Don't miss practice sessions: lectures and practice sessions go hand in hand

(https://sites.google.com/site/snuswppspr2015/)

Week	Lecture	Practice Session	Project	Exam/Assignment
1	Introduction, Software Engineering Introduction		Proposal assignment out (Mar 3)	
2	Software Development Process (Agile Process)	Language Tutorial: Ruby (I)	Proposal assignment due (Mar 13, 6pm)	
3	Working in Teams: Version Control	Language Tutorial: Ruby (II)	Proposal presentation and team formation (Mar 17)	Programming assignment 1 out (Mar 17)
4	Software Architecture	Git		

5	Development Framework	Database Basics Framework Tutorial: Rails (I)		
6	Requirements and Specification, BDD	Framework Tutorial: Rails (II)	Milestone 1 start (Apr 11)	Programming assignment 1 due (Apr 10, 6pm)
7	Testing (Unit, Functional, Integration), TDD	BDD with Cucumber	Milestone 1 interim check (Apr 17, 6pm)	
8	Code Refactoring	TDD with RSpec, Testing		

9	Software Design Patterns	Testing, Continuous Integration	Milestone 1 due, Milestone 2 start (May 1, 6pm)	
10	Software Design Patterns	Code Refactoring	Milestone 1 random presentation	
11	Operations: Deployment, Availability & Responsiveness, Monitoring	Design Pattern Examples	Milestone 2 due, Milestone 3 start (May 15, 6pm)	
12	Operations: Security; Big Data	Big Data Framework Tutorial: Tang	Milestone 2 presentation	Programming assignment 2 out (May 19)

13	Big Data	Big Data Framework Tutorial: REEF (I)	Milestone 3 due, Milestone 4 start (May 29, 6pm)	Exam (May ??, ?pm)
14	Advanced Topics (e.g. Delta Debugging)	Big Data Framework Tutorial: REEF (II)	Milestone 3 random presentation	Programming assignment 2 due (Jun 5, 6pm)
15	Advanced Topics	Project Test Session	Milestone 4 due (Jun 12, 6pm)	
16			Poster & demo session (Jun 15, 7- 9pm, dinner provided)	

Finale: Poster & Demo Session

- This semester's theme web services
 - Facebook

- Build "new" services you've dreamed about while learning software development principles and practices
 - Amazon, Ebay, Paypal, Uber, Airbnb, Facebook,
 Twitter, LinkedIn, ...

- Group: a team of 4 students (no exception)
 - W.h.p. 2-student group(s) fail to finish
- Start forming teams this week!

- Development environment
 - Backend: Python, Django
 - Frontend: HTML5/Javascript, React with Redux

- Agile software development process
- Git for version control
- Github for project management
 - Milestones
 - Issues
 - Pull requests
 - Code review

Testing infra – unit tests/integration tests

• There is a project proposal assignment today.

 Thanks to students who took WEC (including TAs), we have sample documents we can share ☺

Project Schedule

- Project Proposal 1-2 page project description (individual assignment, due 6pm March 13 (Fri), 2015)
- Project Bidding 1) proposals selected by the staff, 2) select final project topics by bidding who want to work on the projects
- Project requirements and specification
- Project Steps
 - Milestone 1 project design doc
 - Milestone 2
 - Milestone 3
 - Testing another team's project
 - Milestone 4 final report
 - Final poster and demo presentation

Back-end

 The back-end of your project will run on a server in the <u>Amazon EC2</u> or on <u>Heroku</u>. It is likely that it will use a database (Mongo, MySQL, etc.) and a model-view-controller architecture.

Front-end

 The front-end for your project will run in a browser. HTML5 and Javascript are your friends.

Warm-up Individual Projects

Warmup Project1 – Frontend using Javascript,
 Backend using RoR

Getting Help

- Class ETL for slides and announcement
- Course web site:
 - https://sites.google.com/site/snuswppspr2015/
- Github issues for discussion
- Office hours

Timeliness

Hard deadlines

- Catastrophic events
 - Major illness, death in family, ...
 - Consult your academic advisor to come up with a plan to get back on track
 - Consult with me about this class

Cheating

- What is cheating?
 - Sharing code: by copying, retyping, looking at, or supplying a file
 - Coaching: helping your friend to write a programming assignment, line by line
 - Copying code from pervious course or from elsewhere in the Internet
 - Especially, be careful about copying code since we may <u>open</u> your project code! Be alert about code licenses.
- Penalty for cheating
 - Removal from course with failing grade

Other Rules of the Lecture Hall

- Laptops: closed
 - Exceptions: when we actually try things together during the class
- Electronic communications: forbidden
 - No email, SMS, instant messaging (Kakao, etc.), calls, etc.
- Presence in lectures
 - We will check attendance
- No recordings of ANY KIND: no video, audio recording allowed
- No auditing allowed (except (future) course staffs)

The Rules (and we really mean it!)

Welcome! We will have lots of fun!