近世代数 (H) 第十一周作业

涂嘉乐 PB23151786

2025年5月9日

Exercise 1 证明 $K_4 = \{ \mathrm{Id}, (12)(34), (13)(24), (14)(23) \} \simeq V_4$

Proof 因为 $V_4 = \{(1,1), (1,-1), (-1,1), (-1,-1)\}$ 考虑映射

$$\phi: K_4 \longrightarrow V_4$$

$$\text{Id} \longmapsto (1,1)$$

$$(12)(34) \longmapsto (1,-1)$$

$$(13)(24) \longmapsto (-1,1)$$

$$(14)(23) \longmapsto (-1,-1)$$

容易验证它保乘法, 且为双射, 故 ϕ 确实是群同构, 即 $K_4 \simeq V_4$

Exercise 2 设 $|G| < +\infty$ 且 G 是 Abel 群, 求证: G 是单群 \iff G 是素数阶循环群

Proof (⇒): 对 $\forall a \in G \setminus \{1_G\}$, 由 G 是 Abel 群知 $\{1_G\} \neq (a) \triangleleft G$, 且 G 是单群,故 (a) = G, 且由 a 的任意性知, $\forall a \in G \setminus \{1_G\}$, $\operatorname{Ord}(a) = |G|$, 且由先前的结论:记 $\operatorname{Ord}(a) = n$,则 $\operatorname{Ord}(a^k) = \frac{n}{\gcd(n,k)}$, 因此 $\forall 1 \leq k < n, \gcd(n,k) = 1$,则 |G| = n 为素数

 (\longleftarrow) : 设 G 是素数 p 阶循环群,设 G=(a),循环群的子群阶数一定是 p 的因子,因此 G 只有平方子群,即 G 为单群

Exercise 3 计算 A_4 中 (123) 和 (132) 的共轭类

Solution 因为

$$\begin{cases} (12)(34)(123)(34)(12) = (142) \\ (13)(24)(123)(24)(13) = (134) \\ (14)(23)(123)(23)(14) = (243) \end{cases}$$

所以 (123) 所在的 A_4 中的共轭类为 $\{(123), (142), (134), (243)\};$ 又因为

$$\begin{cases} (12)(34)(132)(34)(12) = (124) \\ (13)(24)(132)(24)(13) = (143) \\ (14)(23)(132)(23)(14) = (234) \end{cases}$$

所以 (132) 所在的 A_4 中的共轭类为 $\{(132),(124),(143),(234)\}$;对型为 2^2 的元素,以 (12)(34),(13)(24) 为例,在 A_4 中求解 $\sigma(12)(34)\sigma^{-1}=(13)(24)$,即 $(\sigma(1)\sigma(2))(\sigma(3)\sigma(4))=(13)(24)$,所以

$$\begin{cases} (\sigma(1)\sigma(2)) = (13) \\ (\sigma(3)\sigma(4)) = (24) \end{cases} \implies \sigma = (23), (132), (234), (1342)$$

其中 (132), $(234) \in A_4$, 因此 (12)(34), (13)(24) 在 A_4 中共轭, 同理可证得型为 2^2 的元素是 A_4 中的一个共轭类, 因此 A_4 共有 4 个共轭类

$$\begin{cases}
\{ \text{Id} \} \\
\{ (132), (124), (143), (234) \} \\
\{ (123), (142), (134), (243) \} \\
\{ (12)(34), (13)(24), (14)(23) \}
\end{cases}$$

Exercise 4 求证: A₄ 无六阶子群

Proof 设 N 为 A_4 的六阶子群,则 $[A_4:N]=2$,由先前的习题知 $N \triangleleft A_4$,则 N 一定是 A_4 中若干个共轭类之并,但是由上题知, A_4 的 4 个共轭类中的元素个数为 1,3,4,4,这四个数无法组合出 6,矛盾!

Exercise 5 任给群同态 $G \xrightarrow{\rho} S(Y)$, 验证如下左作用 $G \xrightarrow{\sim} Y$

$$g.y = \rho(g)(y)$$

Proof 首先明确 ρ(g) 是 Y 的一个置换, 且由群同态知, $ρ(1_G) = \text{Id}_Y$

1.
$$1_G.y = Id_Y(y) = y$$

2.
$$\forall g, h \in G, (gh).y = \rho(gh)(y) = \rho(g) \circ \rho(h)(y) = \rho(g)(h(y)) = g.h(y) = g.(h.y)$$
 因此确实是左作用

Exercise 6 定义 $G^{\frown}G/H$ 满足 g.(aH) = gaH, 证明稳定化子 $G_{aH} = aHa^{-1}, \forall a \in G$

Proof 因为

$$G_{gH} = \{g \in G : g.aH = aH\} = \{g \in G : gaH = aH\}$$
$$= \{g \in G : a^{-1}ga \in H\} = \{g \in G : \exists h \in H, \text{s.t. } a^{-1}ga = h\}$$
$$= \{g \in G : \exists h \in H, \text{s.t. } g = aha^{-1}\} = aHa^{-1}$$

Exercise 7 考虑 $\operatorname{GL}_2(\mathbb{F}_2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{F}_2 \right\}$, 有群作用 $G = \operatorname{GL}_2(\mathbb{F}_2)^{\frown}(\mathbb{F}_2)^2$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

有两个
$$G$$
-轨道: $\left\{ \begin{pmatrix} \overline{0} \\ \overline{0} \end{pmatrix} \right\}, \left\{ \begin{pmatrix} \overline{0} \\ \overline{1} \end{pmatrix}, \begin{pmatrix} \overline{1} \\ \overline{0} \end{pmatrix}, \begin{pmatrix} \overline{1} \\ \overline{1} \end{pmatrix} \right\} \stackrel{\text{def}}{=} X$,证明存在群同构 $\rho: G \to S(X)$

Proof 将群作用的集合限制在 X 上,对于 $\forall A \in GL_2(\mathbb{F}_2), v \in X$,定义映射

$$A^*: X \longrightarrow X$$
$$v \longmapsto Av$$

则 A^* 是 X 上的一个置换 (双射):

1. 单射: 若 $Av_1 = Av_2$, 由 A 可逆知 $v_1 = v_2$

2. 满射: 由 A 可逆知, $A^{-1}v \neq 0$, 故 $A^{-1}v \in X$, 所以 $v = A(A^{-1}v)$, 故找到了原像 因此考虑

$$\rho: G \longrightarrow S(X)$$
$$A \longmapsto A^*$$

则它确实是群同构: 对 $\forall A, B \in G, \rho(AB) = (AB)^*, \rho(A)\rho(B) = A^* \circ B^*,$ 对 $\forall v \in X,$ 因为

$$(AB)^*v = ABv = A(Bv) = A^*(BV) = A^* \circ B^*(v)$$

且 ρ 为单射, 假设 $A^* = B^*$, 因为

$$\begin{cases} A^*(\overline{1},\overline{0})^T = B^*(\overline{1},\overline{0})^T \Longrightarrow A,B$$
的第一列相同
$$A^*(\overline{0},\overline{1})^T = B^*(\overline{0},\overline{1})^T \Longrightarrow A,B$$
的第二列相同

所以 A = B, 单射得证

另一方面
$$\mathrm{GL}_2(\mathbb{F}_2)=3 imes(3-1)=6=|S(X)|$$
,所以 ρ 是双射,故 ρ 是同构 \qed