Devoir maison 11 - transformée de Fourier

Pour toute fonction $f: \mathbb{R} \to \mathbb{C}$ et tout réel x, on note, lorsqu'elle existe :

$$\widehat{f}(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt$$

Quand elle est définie, la fonction \hat{f} s'appelle la **transformée de Fourier** de f.

1. Transformée de Fourier d'une fonction intégrable

Dans cette question, $f: \mathbb{R} \to \mathbb{C}$ est une fonction continue et intégrable sur \mathbb{R} .

- **a.** Montrer que $\widehat{f}(x)$ est défini pour tout $x \in \mathbb{R}$, et que la fonction \widehat{f} est continue et bornée.
- **b.** Vérifier que pour tout réel $a \neq 0$, les fonctions $f_{Ta}: t \mapsto f(t-a)$ et $f_{Ha}: t \mapsto f(at)$ admettent des transformées de Fourier, et montrer que

$$\forall x \in \mathbb{R}, \quad \widehat{f_{Ta}}(x) = e^{-iax}\widehat{f}(x) \quad \text{et} \quad \widehat{f_{Ha}}(x) = \frac{1}{a}\widehat{f}\left(\frac{x}{a}\right)$$

- c. Exprimer de même la transformée de Fourier de $t \mapsto e^{iat} f(t)$ en fonction de celle de f, après avoir justifié qu'elle existe.
- **d.** Si f est paire, donner une expression de sa transformée de Fourier sous forme d'une intégrale sur $[0, +\infty[$.
- e. Même question si f est impaire.
- f. Que peut-on dire de la transformée de Fourier d'une fonction réelle paire? réelle impaire?

2. Dérivation

On considère $f \in C^1(\mathbb{R}, \mathbb{C})$, et on suppose que f et f' sont intégrables sur \mathbb{R} .

- **a.** Montrer que f tend vers 0 en $\pm \infty$.
- **b.** Montrer que $\forall x \in \mathbb{R}, \hat{f}'(x) = ix\hat{f}(x)$, puis en déduire que \hat{f} tend vers 0 en $\pm \infty$.
- c. On suppose de plus que $\varphi: t \mapsto tf(t)$ est intégrable sur \mathbb{R} . Montrer que \widehat{f} est de classe C^1 sur \mathbb{R} et que

$$\forall x \in \mathbb{R}, \left(\widehat{f}\right)'(x) = -i\widehat{\varphi}(x).$$