Решающие деревья

В основе - слайды Евгения Соколова

НИУ ВШЭ, 2021

Интерпретация моделей

- Можно интерпретировать веса признаков, если признаки масштабированы
- В остальном все сложно

Предсказание цены квартиры

- Признаки: площадь, этаж, число комнат
 a (x) = 10 * площадь + 1.1 * этаж + 20 * число комнат
- Квадратичные признаки: будут работать лучше, как интерпретировать совсем непонятно
 a(x) = 10 * площадь + 1.1 * этаж + 20 * число комнат 0.2 * этаж 2 + 0.5 * площадь * число комнат + ···

Логические правила

[этаж > 3][площадь < 40][число комнат < 3]

- Легко объяснить заказчику (если ≤ 5 условий)
- Позволяют извлекать знания из данных
- Не факт, что оптимальны с точки зрения качества

Логические правила

- Как строить?
- Линейные модели
- Перебор, жадное наращивание
- Решающие деревья

Медицинская диагностика

Принятие решений

Решающее дерево

- •Бинарное дерево (ровно 2 дочерних узла)
- •В каждой внутренней вершине записано условие
- •В каждом листе записан прогноз (решение)

Условия

• Самые популярные варианты:

$$\left[x^{j} \le t \right] \quad \mathsf{u} \quad \left[x^{j} = t \right]$$

Примеры:

- [этаж = 5]
- •[площадь ≤ 30]

Прогноз в листе

- Регрессия:
 - Вещественное число
- Классификация:
 - Класс
 - Вероятности классов

- Как правило используется жадный алгоритм построения
- Растим дерево от корня к листьям

• Как разбить вершину?

Как сравнить разбиения?

ИЛИ

• Мера неопределённости распределения

• Мера неопределённости распределения

- Дискретное распределение
- Принимает n значений с вероятностями p_1 ,

$$\dots, p_n$$

• Энтропия:

$$H(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \log p_i$$

- 5 значений, с вероятностями *(р1, р2, р3, р4, р5)*
- \bullet (0.2, 0.2, 0.2, 0.2) \bullet (0.9, 0.05, 0.05, 0, 0) \bullet (0, 0, 0, 1, 0)
- $H = 1.60944 \dots$ $H = 0.394398 \dots$ H = 0

Как сравнить разбиения?

- (0.5, 0.5, 0) и (0, 0, 1)
- $\bullet H = 0.693 + 0 = 0.693$

- (0.33, 0.33, 0.33) и (0.33, 0.33, 0.33)
- $\bullet H = 1.09 + 1.09 = 2.18$

А для регрессии?

А для регрессии? 12 А для регрессии?

А для регрессии?

- •Выбираем разбиение с наименьшей суммарной дисперсией
- •Чем меньше дисперсия, тем меньше неопределённости

Поиск разбиения

- Пусть в вершине m оказалась выборка X_m
- $Q(X_m, j, t)$ критерий качества условия $[x^j \le t]$
- Ищем лучшие параметры j и t перебором:

$$Q(X_m, j, t) \to \max_{j,t}$$

Критерий качества

$$Q(X_m, j, t) = H(X_m) - \frac{|X_l|}{|X_m|} H(X_l) - \frac{|X_r|}{|X_m|} H(X_r)$$

Разброс ответов в левом листе

Разброс ответов в правом листе

Критерий информативности

- $\bullet H(X)$
- Зависит от ответов на выборке X
- Чем меньше разброс ответов, тем меньше значение H(X)

Критерий информативности

Impurity	Task	Formula	Description
Gini impurity	Classification	$\sum_{i=1}^{C} f_i (1 - f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Entropy	Classification	$\sum\nolimits_{i=1}^{C} -f_i \log(f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Variance / Mean Square Error (MSE)	Regression	$\frac{1}{N}\sum_{i=1}^{N}(y_i-\mu)^2$	y_i is label for an instance, N is the number of instances and μ is the mean given by $\frac{1}{N}\sum_{i=1}^{N}y_i$
Variance / Mean Absolute Error (MAE) (Scikit-learn only)	Regression	$\frac{1}{N} \sum\nolimits_{i=1}^{N} y_i - \mu $	y_i is label for an instance, N is the number of instances and μ is the mean given by $\frac{1}{N}\sum_{i=1}^{N}y_i$

Поиск разбиения

- После того, как разбиение найдено:
- Разбиваем X_m на две части:

$$X_l = \left\{ x \in X_m \mid \left[x^j \le t \right] \right\}$$

$$X_r = \left\{ x \in X_m \mid \left[x^j > t \right] \right\}$$

• Повторяем процедуру для дочерних вершин

Критерий останова

- В какой момент прекращать разбиение вершин?
- •В вершине один объект?
- В вершине объекты одного класса?
- Глубина превысила порог?

Ответ в листе

- •Допустим, решили сделать вершину *m* ЛИСТОМ
- Какой прогноз выбрать?
- Регрессия:

$$a_m = \frac{1}{|X_m|} \sum_{i \in X_m} y_i$$

- среднее арифметическое

• Классификация:

$$a_m = rg \max_{y \in \mathbb{Y}} \sum_{i \in Y} \left[y_i = y \right]$$
 - наиболее частый класс

Жадный алгоритм построения дерева

- 1. Поместить в корень всю выборку: $X_1 = X$
- 2. Начать построение с корня: m = 1
- 3. Если выполнен критерий останова для вершины m, то выход
- 4. Найти лучшее разбиение $[x^{j} \le t]$ для вершины m
- 5. Разбить вершину m на дочерние вершины l и r
- 6. Повторить шаги 3-6 для дочерних вершин $\it l$ и $\it r$

Обучение деревьев

Признаки

$$\frac{3}{13}H(p_l) + \frac{10}{13}H(p_r) = 0.53$$

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.65$$

$$\frac{5}{13}H(p_l) + \frac{8}{13}H(p_r) = 0.62$$

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

$$\frac{7}{13}H(p_l) + \frac{6}{13}H(p_r) = 0.66$$

H(p) = 0.68

$$\frac{9}{13}H(p_l) + \frac{4}{13}H(p_r) = 0.53$$

$$\frac{4}{13}H(p_l) + \frac{9}{13}H(p_r) = 0.47$$

(1, 0)H(p) = 0 Лучшее разбиение!

Переобучение деревьев и борьба с ним

Регрессия

Регрессия

Решающие деревья

- Восстанавливают сложные закономерности
- Могут построить сколь угодно сложную поверхность
- Чем больше глубина тем сложнее поверхность
- Склонны к переобучению

Глубина деревьев

Переобучение деревьев

Переобучение деревьев

Переобучение деревьев

- •Дерево может достичь нулевой ошибки на любой выборке
- Как правило, такое дерево окажется переобученным
- Выход ограничивать глубину или число объектов в листе

Критерий останова

- Как понять, разбивать вершину или делать листовой?
- Способ борьбы с переобучением

Критерий останова

- •Все объекты в вершине относятся к одному классу
- Простое условие
- Но приводит к переобучению

Число объектов в листе

- В вершину попало ≤ *n* объектов
- При n = 1 получаем максимально переобученные деревья
- n должно быть достаточно, чтобы построить надёжный прогноз
- Рекомендация: n = 5

Число объектов в листе

Глубина дерева

- Ограничение на глубину
- Достаточно грубый критерий

Глубина дерева

Резюме

- Решающее дерево очень мощная модель
- Много тонкостей с переобучением
- Обычно используется в композициях