DIALOG(R) File 351:Derwent WPI (c) 2003 Thomson Derwent. All rts. reserv.

014490840 **Image available**
WPI Acc No: 2002-311543/ 200235

XRAM Acc No: C02-091005 XRPX Acc No: N02-244195

Toner for electrophotographic apparatus, comprises polyester resin, hydrocarbon group wax with ester or amide bond, coloring agent and external additive comprising positively charged inorganic microparticle

Patent Assignee: MATSUSHITA DENKI SANGYO KK (MATU) Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week
JP 2002040712 A 20020206 JP 2000222276 A 20000724 200235 B

Priority Applications (No Type Date): JP 2000222276 A 20000724 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes JP 2002040712 A 31 G03G-009/087

Abstract (Basic): JP 2002040712 A

NOVELTY - Toner comprises a polyester resin with acid value of 10 or more, hydrocarbon group wax having ester or amide bond with acid value of 30-60 mgKOH/g and penetration of 2 or more at 25degreesC, coloring agent and external additive (added to toner base) comprising positively charged inorganic microparticle.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for electrophotographic apparatus comprising transfer material passing between an image support and electroconductive elastic roller and toner transfer unit for transferring the electrostatic latent toner image to an electroconductive elastic roller by providing transfer bias voltage.

USE - For electrophotographic apparatus such as copier, laser printer, facsimile, color laser printer and color facsimile.

ADVANTAGE - By fixing the molecular weight of toner, heat fusion or aggregation of toner are prevented. Fogging of image over a long period is inhibited and uniform electrical charging is enabled. A stable image output can be obtained even over a long period. Deletion of image during transfer process is eliminated hence high transfer efficiency is exhibited by the toner over a long period even at high humid atmosphere. Formation of film on photoreceptor and intermediate transfer object are eliminated hence staining of the transfer object is improved and cleaning process can be avoided. The residual toner can be collected smoothly. Offset property is prevented and high overhead projection transparency is maintained without applying oil or by fixing belt. Hence surface degradation of belt is eliminated over a long period.

DESCRIPTION OF DRAWING(S) - The figure shows the electrophotographic apparatus.

pp; 31 DwgNo 1/14

Technology Focus:

TECHNOLOGY FOCUS - INORGANIC CHEMISTRY - Preferred Toner: The external additive comprises positively charged inorganic microparticle (A) and negatively charged inorganic microparticle (B) and low resistant metallic oxide fine powder. The low resistance metallic oxide fine powder titanium oxide fine powder has BET specific surface area of 0.1-100 m2/g, mean particle diameter of 0.02-2 mum and electrical resistivity of 109 OMEGA.cm or less. The toner comprising binder resin and coloring agent exhibits maximum peak at 2x103-3x104 and at 5x104-1x106 regions in molecular weight distribution as measured by gel

permeation chromatography. The height of maximum peak appearing at 2x103-3x104 is set to (Ha) and the height of maximum peak appearing at 5x104-1x106 region is set to (Hb) and the ratio of Hb to Ha is 0.15-0.9. ORGANIC CHEMISTRY - Preferred Wax: The ester bond in the hydrocarbon group wax is formed by reacting 5-66C long chain alkyl alcohol, unsaturated multivalent carboxylic acid or its anhydride. Preferred Composition: 0.5-4 weight parts (wt.pts) of electric charge controlling agent is added 100 wt.pts of toner. The electric charge controlling agent is salicylic acid metallic salt, salicylic acid metal complex compound or organic boron compound. Title Terms: TONER; ELECTROPHOTOGRAPHIC; APPARATUS; COMPRISE; POLYESTER; RESIN; HYDROCARBON; GROUP; WAX; ESTER; AMIDE; BOND; COLOUR; AGENT; EXTERNAL; ADDITIVE; COMPRISE; POSITIVE; CHARGE; INORGANIC; MICROPARTICLES Derwent Class: A89; G08; P84; S06 International Patent Class (Main): G03G-009/087 International Patent Class (Additional): C08K-003/00; C08K-003/22; C08K-005/098; C08K-005/55; C08K-005/56; C08K-009/02; C08L-067/00; C08L-091/06; G03G-009/08; G03G-009/09; G03G-009/097; G03G-015/00; G03G-015/01; G03G-015/04; G03G-015/08; G03G-015/16; G03G-015/20 File Segment: CPI; EPI; EngPI Manual Codes (CPI/A-N): A05-E01D; A12-L05C2; G06-G05; G06-G08B Manual Codes (EPI/S-X): S06-A04C1 Polymer Indexing (PS): <01> *001* 018; P0839-R F41 D01 D63; S9999 S1456-R

002 018; ND01; Q9999 Q8639 Q8617 Q8606; B9999 B4751 B4740

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-40712 (P2002-40712A)

(43)公開日 平成14年2月6日(2002.2.6)

(51) Int.Cl.7		識別記号		FΙ			Ŧ	-マコード(参考)
G03G	9/087			C 0 8	3 K 3/00			2H005
C08K	3/00				3/22			2H030
	3/22				5/098			2H032
	5/098				5/55			2H033
	5/55				5/56			2H071
	·		審查請求	未請求	請求項の数20	OL	(全 31 頁)	最終頁に続く

特願2000-222276(P2000-222276) (21)出願番号

(22)出願日 平成12年7月24日(2000.7.24) (71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 前田 正寿

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 100097445

弁理士 岩橋 文雄 (外2名)

最終頁に続く

(54) 【発明の名称】 トナー及び電子写真装置

(57)【要約】

【課題】 定着オイルを使用しないカラートナーで高透 光性と耐オフセット性の両立を可能とし、さらにはクリ ーナーレスプロセスにおいても安定した現像性を維持で き、また異なった色のトナー像を形成する複数の移動可 能な像形成ユニットを円環状に配置した像形成ユニット 群を有し、その像形成ユニット全体が回転移動する構成 の電子写真方法に好適に作用し、高濃度、低地かぶりで 感光体へのフィルミングの発生を防ぐことをが可能とす るトナーを提供することを目的とする。

【解決手段】 一定の酸価を有するポリエステル樹脂 と、一定のを有するエステル結合又はアミド結合を有す る炭化水素系ワックスからなるトナー母体に、正帯電性 を示す無機微粒子を添加する構成。

【特許請求の範囲】

【請求項1】少なくとも酸価10以上のポリエステル樹脂と、酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスと着色剤とからなるトナー母体に、少なくとも正帯電性を示す無機微粒子からなる外添剤を添加することを特徴とするトナー。

【請求項2】少なくとも酸価10以上のポリエステル樹脂と、酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスと着色剤とからなるトナー母体に、少なくとも正帯電性を示す無機微粒子A及び負帯電性を示す無機微粒子Bからなる外添剤を添加することを特徴とするトナー。

【請求項3】少なくとも酸価10以上のポリエステル樹脂と、酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスと着色剤とからなるトナー母体に、少なくとも正帯電性を示す無機微粒子A及び低抵抗金属酸化物微粉末からなる外添剤を添加することを特徴とするトナー。

【請求項4】炭化水素系ワックスの有するエステル結合は炭素数5~62の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物の反応により得られる請求項1~3いずれか記載のトナー。

【請求項5】サリチル酸金属塩、サリチル酸金属錯体化合物又は有機ホウ素化合物の1種以上からなる電荷制御剤をトナー母体100重量部あたり0.5~4重量部含有する請求項1~3いずれか記載のトナー。

【請求項6】低抵抗金属酸化物微粉末が、平均粒径0.02~2μm、窒素吸着によるBET比表面積が0.1~100m²/g、電気抵抗率が10°Ωcm以下である酸化チタン微粉末、酸化アルミニウム微粉末、酸化ストロンチウム微粉末、酸化錫微粉末、酸化ジルコニア微粉末、酸化マグネシウム微粉末、酸化インジウム微粉末のうちの少なくとも1種類以上からなる金属酸化物微粉末である請求項3記載のトナー。

【請求項7】低抵抗金属酸化物微粉末が、平均粒径0.02~2μm、窒素吸着によるBET比表面積1~200m²/gの酸化スズーアンチモンの混合物で表面被覆処理された酸化チタン及び/または酸化シリカ微粉末からなる請求項3記載のトナー。

【請求項8】結着樹脂と着色剤からなるトナー構成材料を混合処理、混練処理を施されたトナーのGPCクロマトグラムにおける分子量分布が、2×10³~3×10⁴の領域に少なくとも一つの分子量極大ピークを有し、5×10⁴~1×10⁶の領域に少なくとも一つの分子量極大ピーク又はショルダーを有する請求項1~3いずれかに記載のトナー。

【請求項9】少なくとも結着樹脂と着色剤とからなるト ナーであって、前記トナーのGPCクロマトグラムにお ける分子量分布が、2×103~3×104の領域に少な くとも一つの分子量極大ピークを有し、5×104~1 ×10⁶の領域に少なくとも一つの分子量極大ピーク又 はショルダーを有し、2×103~3×104の領域に存 在する分子量極大ピークの高さをHa、3×104~1 ×106の領域に存在する分子量極大ピーク又はショル ダーの高さをHbとすると、Hb/HaがO.15~ 0.90である請求項1~3いずれかに記載のトナー。 【請求項10】少なくとも結着樹脂と着色剤とからなる トナーであって、前記トナーのGPCクロマトグラムに おける分子量分布が、2×103~3×104の領域に少 なくとも一つの分子量極大ピーク、5×104~1×1 06の領域に少なくとも一つの分子量極大ピーク又はシ ョルダーを有し、

分子量 $5\times10^4\sim1\times10^6$ の領域に存在する分子量分布の極大ピーク又はショルダーに相当する分子量値よりも大きい領域にある分子量曲線において、分子量分布の極大ピーク又はショルダーの高さを1とした場合に、分子量極大ピーク又はショルダーの高さの90%に相当する分子量をM90、分子量極大ピーク又はショルダーの高さの10%に相当する分子量をM10とした場合、M10/M90が6以下である請求項 $1\sim3$ いずれかに記載のトナー。

【請求項11】少なくとも結着樹脂と着色剤とからなるトナーであって、前記トナーのGPCクロマトグラムにおける分子量分布が、 $2\times10^3\sim3\times10^4$ の領域に少なくとも一つの分子量極大ピーク、 $3\times10^4\sim1\times10^4$ の領域に少なくとも一つの分子量極大ピーク又はショルダーを有し、

分子量3×10⁴~1×10⁶の領域に存在する分子量分布の極大ピーク又はショルダーに相当する分子量値よりも大きい領域にある分子量曲線において、分子量分布の極大ピーク又はショルダーの高さを1とした場合に、分子量極大ピーク又はショルダーの高さの90%に相当する分子量をM90、分子量極大ピーク又はショルダーの高さの10%に相当する分子量をM10とした場合、

(M10-M90) / M90が5以下である請求項1~ 3いずれかに記載のトナー。

【請求項12】結着樹脂のGPCクロマトグラムにおける分子量分布が、2×10³~3×10⁴の領域に少なくとも一つの分子量極大ピークを有し、かつ高分子量領域に存在する成分として3×10⁴以上の分子量成分を結着樹脂全体に対し5%以上有し、THF不溶分のゲル成分が5wt%以下である請求項1~3いずれかに記載のトナー。

【請求項13】結着樹脂が、重量平均分子量Mwfが10000~40万、重量平均分子量Mwfと数平均分子 量Mnfの比Mwf/MnfをWmfとすると、Wmf が3~100、Z平均分子量Mzfと数平均分子量Mnfの比Mzf/MnfをWzfとすると、Wzfが10~2000であるポリエステル樹脂であり、混練処理により作成したトナーの重量平均分子量Mwvが8000~30万、重量平均分子量Mwvと数平均分子量Mnvの比Mwv/MnvをWmvとすると、Wmvが2~100、Z平均分子量Mzvと数平均分子量Mnvの比Mzv/MnvをWzvとすると、Wzvが8~1200であり、

Mwf/Mwvが1.2~10、Wmf/Wmvが1.2~10、Wzf/Wzvが2.2~30である請求項1~3いずれかに記載のトナー。

【請求項14】像保持体と導電性弾性ローラとの間に転写材を挿通させ、前記導電性弾性ローラに転写バイアス電圧を付与することにより前記像担持体上の静電潜像を可視像化したトナーを転写するトナー転写手段を具備し、請求項1~13記載のトナーを使用することを特徴とする電子写真装置。

【請求項15】軸で回転可能に支持され像担持体に当接するシリコーン樹脂又はウレタン樹脂からなる現像ロールに、回転可能に支持され前記現像ローラに当接するウレタン樹脂からなる供給ローラによりトナーを前記現像ローラに供給し、前記現像ロール上にドクターブレードを接触させてトナーの層を形成し、前記現像ローラと像担持体とを接触させて現像する接触式非磁性一成分手段を具備し、請求項1~13記載のトナーを使用することを特徴とする電子写真装置。

【請求項16】像担持体と現像ロール間に直流バイアス に交流バイアスを重畳させる請求項15記載の電子写真 装置。

【請求項17】像担持体上に形成した静電潜像を顕像化されたトナー画像を、前記像担持体に無端状の中間転写体の表面を当接させて前記中間転写体の表面に前記トナー画像を転写させる一次転写プロセスが複数回繰り返し実行され、この後に、この一次転写プロセスの複数回の繰り返し実行により前記中間転写体の表面に形成された重複転写トナー画像を転写材に一括転写させる2次転写プロセスが実行されるよう構成された転写システムを具備し、請求項1~13記載のトナーを使用することを特徴とする電子写真装置。

【請求項18】像担持体上に形成した静電潜像を顕像化されたトナー画像を転写手段により転写材に転写し、前記転写プロセス後に像担持体上に残留したトナーをクリーニングにより回収するクリーニングプロセス工程を有さずに、次の帯電、露光、現像プロセスを行うクリーナーレスプロセスを基本構成とし、請求項1~13記載のトナーを使用することを特徴とする電子写真装置。

【請求項19】各々が、少なくとも回転する像担持体と、それぞれ色の異なるトナーを有する現像手段とを備え、前記像担持体上にそれぞれ異なった色のトナー像を

形成する複数の移動可能な像形成ユニットと、単一の露 光位置と単一の転写位置より構成される像形成位置と、 前記複数の像形成ユニットを円環状に配置した像形成ユニット群と、前記複数の像形成ユニットのそれぞれを、 前記単一の像形成位置に順次移動せしめるため前記像形 成ユニット群全体を回転移動させる移動手段と、信号光 を発生する露光手段と、前記像形成ユニット群の回転移 動のほぼ回転中心に、前記露光手段の光を前記露光位置 に導くミラーとを有し、転写材上に異なる色のトナー像 を位置を合わせて重ねて転写するカラー像形成システム を具備し、請求項1~13記載のトナーを使用すること を特徴とする電子写真装置。

【請求項20】耐熱性と変形自在性を有し、シリコーンゴム、フッ素ゴム及びフッ素樹脂のいずれかからなる表面層を有する耐熱ベルトと定着ローラと加圧ローラと加熱部材を用いてトナーを記録材上に熱と圧力との作用で定着する定着システムを具備し、請求項1~13記載のトナーを使用することを特徴とする電子写真装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は複写機、レーザプリンタ、普通紙FAX、カラーPPC、カラーレーザプリンタやカラーFAXに用いられるトナー及び電子写真装置に関するものである。

[0002]

【従来の技術】近年、電子写真装置はオフィスユースの目的からパーソナルユースへと移行しつつあり、小型化、メンテフリーなどを実現する技術が求められている。そのため廃トナーのリサイクルなどのメンテナンス性が良く、オゾン排気が少ないなどの条件が必要となる。

【0003】電子写真方式の複写機、プリンターの印字 プロセスを説明する。先ず、画像形成のために像担持体 (以下感光体と称す)を帯電する。帯電方法としては、 従来から用いられているコロナ帯電器を使用するもの、 また、近年ではオゾン発生量の低減を狙って導電性ロー ラを感光体に直接押圧した接触型の帯電方法などによっ て感光体表面を均一に帯電する方法がある。感光体を帯 電後、複写機であれば、複写原稿に光を照射して反射光 をレンズ系を通じて感光体に照射する。或いは、プリン タであれば露光光源としての発光ダイオードやレーザー ダイオードに画像信号を送り、光のON-OFFによっ て感光体に潜像を形成する。感光体に潜像(表面電位の 高低)が形成されると感光体は予め帯電された着色粉体 であるトナー (直径が3μm~12μm程度) によって 可視像化される。トナーは感光体の表面電位の高低に従 って感光体表面に付着し複写用紙に電気的に転写され る。すなわち、トナーは予め正または負に帯電しており 複写用紙の背面からトナー極性と反対の極性の電荷を付 与して電気的に吸引する。転写方法としては、従来から

用いられているコロナ放電器を使用するもの、また、近年ではオゾン発生量の低減を狙って導電性ローラを感光体に直接押圧した転写方法が実用化されている。転写時には感光体上の全てのトナーが複写用紙に移るのではなく、一部は感光体上に残留する。この残留トナーはクリーニング部でクリーニングブレードなどで掻き落とされ廃トナーとなる。そして複写用紙に転写されたトナーは、定着の工程で、熱や圧力により、紙に固定される。またクリーニング部を有さないクリーニングレスプロセスの実現は、トナー消費量の低減、廃棄物の低減につながり環境にやさしいプロセスである。

【0004】定着方法としては、2本以上の金属ロール 間を通過させる圧力定着方式と電熱ヒータによる加熱雰 囲気中を通過させるオーブン定着方式および加熱ローラ ー間を通過させる熱ロール定着方式がある。 熱ロール定 着方式は加熱ローラの表面と複写用紙上のトナー面とが 圧接触するためトナー画像を複写用紙に融着する際の熱 効率が良好であり、迅速に定着を行うことが出来る。し かしながら熱ロール定着方式では加熱ローラ表面にトナ ーが加熱溶融状態で圧接触するためトナーの一部がロー ラ表面に付着して再び複写用紙上に付着し画像を汚すオ フセット現象を起こしやすい欠点がある。そのオフセッ ト防止する方法として、加熱ローラ表面を耐熱性でトナ ーに対する離型性に富む弗素樹脂やシリコンゴムで形成 し、さらにその表面にシリコーンオイルなどのオフセッ ト防止用液体を供給して液体の薄膜でローラ表面を被覆 する方法が取られている。この方法では、シリコーンオ イルなどの液体が加熱されることにより臭気を発生し、 また、液体を供給するための余計な装置が必要となり、 複写装置の機構が複雑になる。また、安定性よくオフセ ットを防止するためには、高い精度で液体の供給をコン トロールする必要があり、複写装置が高価にならざるを 得ない。そこでこのような液体を供給しなくてもオフセ ットが発生せず、良好な定着画像が得られるトナーが要 求されている。

【0005】周知のように電子写真方法に使用される静電荷現像用のトナーは一般的に樹脂成分、顔料もしくは染料からなる着色成分および可塑剤、電荷制御剤、更に必要に応じて離型剤などの添加成分によって構成されている。樹脂成分として天然または合成樹脂が単独あるいは適時混合して使用される。

【0006】そして、上記添加剤を適当な割合で予備混合し、熱溶融によって加熱混練し、気流式衝突板方式により微粉砕し、微粉分級されてトナー母体が完成する。 その後このトナー母体に外添剤を外添処理してトナーが完成する。

【0007】一成分現像では、トナーのみで構成されるが、トナーと磁性粒子からなるキャリアと混合することによって2成分現像剤が得られる。

【0008】またカラー複写機やLBPでは、感光体

を、帯電チャージャーによるコロナ放電で帯電させ、その後各色の潜像を光信号として感光体に照射し、静電潜像を形成し、第1色、例えばイエロートナーで現像し、潜像を顕像化する。その後感光体に、イエロートナーの帯電と逆極性に帯電された転写材を当接し、感光体上に形成されたイエロートナー像を転写する。感光体は転写時に残留したトナーをクリーニングしたのち除電され、第1のカラートナーの現像、転写を終える。

【0009】その後マゼンタ、シアンなどのトナーに対してもイエロートナーと同様な操作を繰り返し、各色のトナー像を転写材上で重ね合わせてカラー像を形成する方法が取られている。そしてこれらの重畳したトナー像はトナーと逆極性に帯電した転写紙に転写された後、定着され複写が終了する。

【0010】このカラー像形成方法としては、単一の感光体上に順次各色のトナー像を形成し、転写ドラムに巻き付けた転写材を回転させて繰り返しこの感光体に対向させ、そこで順次形成される各色のトナー像を重ねて転写していく転写ドラム方式と、複数の像形成部を並べて配置し、ベルトで搬送される転写材にそれぞれの像形成部を通過させて順次各色のトナー像を転写し、カラー像を重ね合わす連続重ね方式が一般的である。

【0011】一方、連続転写方式を用いたカラー画像形成装置の例として、特開平1-250970号公報がある。この従来例では4色の像形成のためにそれぞれが感光体、光走査手段などを含んだ4つの像形成ステーションが並び、ベルトに搬送された用紙がそれぞれの感光体の下部を通過してカラートナー像が重ね合わされる。

【0012】さらにまた、転写材上に異なる色のトナー像を重ねてカラー像を形成する他の方法として、感光体上に順次形成される各色トナー像を中間転写材上に一旦重ねて、最後にこの中間転写材上のトナー像を一括して転写紙に移す方法が特開平2-212867号公報で開示されている。

[0013]

【発明が解決しようとする課題】 昨今地球環境保護の点から、オゾン発生量の低減や、産業廃棄物の無制限な廃棄を規制するため従来再利用されずに廃棄されていた廃トナーを再利用することや、定着の消費電力を抑える低温定着方法などの必要性が叫ばれている。トナー材料もオゾン量の発生の少ないローラ転写方法への対応や、廃トナー廃棄の低減への対応や、低温定着化への対応すべく改良が進んでいる。更にこれら単独ではなく同時に満足できる高性能なトナーは環境保護からは重要課題である

【0014】定着の工程では、紙へのトナーの付着力である定着強度と、ヒートローラへの付着を防止する耐オフセット性とが支配因子となる。トナーは定着ローラからの熱または圧力により、紙の繊維に溶融浸透して、定着強度が得られる。この定着特性を向上するため、従来

は、結着樹脂を改良したり、離型剤などを添加したりして、紙へ固着する定着強度を高め、定着ローラにトナーが付着するオフセット現象を防止している。

【0015】特開昭59-148067号公報では、樹 脂に低分子量と高分子量部分とを持ち、低分子量のピー ク値と Mw/Mnを規定した不飽和エチレン系重合体を 使用し、軟化点を特定したポリオレフィンを含有するト ナーが開示されている。これによって、定着性と耐オフ セット性が確保されるとしている。また特開昭56-1 58340号公報では特定の低分子量重合体成分と高分 子量重合体成分よりなる樹脂を主成分とするトナーが開 示されている。低分子量成分により定着性を確保し、高 分子量成分により耐オフセット性を確保する目的であ る。また特開昭58-223155号公報では1000 ~1万と20万~100万の分子量領域に極大値を持 ち、Mw/Mnが10~40の不飽和エチレン系重合体 からなる樹脂と特定の軟化点を有するポリオレフィンを 含有するトナーが開示されている。低分子量成分により 定着性を確保し、高分子量成分とポリオレフィンにより 耐オフセット性を確保する目的として使用されている。 【0016】しかし、高速機での定着強度を高めるため に、結着樹脂の溶融粘度を下げたり低分子量化した樹脂 を使用すると、長期使用中に2成分現像であればトナー がキャリアに固着するいわゆるスペントが発生し易くな る。現像剤の耐ストレス性が低下する。また低速機に使 用すると、定着時にヒートローラにトナーが付着するオ フセットが発生しやすくなる。また長期保存中にトナー 同士が融着するブロッキングが発生する。

【0017】高分子量成分と低分子量成分をブレンドする構成によっては、狭範囲のプロセス速度に対しては定着強度と、耐オフセット性を両立させることが可能ではあるが、広範囲のプロセス速度に対応することは難しい。広範囲のプロセス速度に対応するためにはより高い高分子量成分とより低い低分子量成分の構成にすることである程度の効果は発揮できる。しかし高速機では低分子量成分を多くすることにより定着強度を高めることができるが、耐オフセット性が悪化し、また低速機では高分子量成分を多くすることにより耐オフセット性を高める効果が得られるが、高分子量成分を多くすると、トナーの粉砕性が低下し生産性が低下する等の弊害が生じる。

【0018】高分子量成分と低分子量成分をブレンドした、あるいは共重合させた樹脂構成に対して、低融点の離型剤、例えばポリエチレン、ポリプロピレンワックス、エステル系ワックス、炭化水素系ワックス等は、定着時ヒートローラからの離型性を良くして耐オフセット性を高める目的で添加される。しかしこれらの離型剤は結着樹脂中での分散性を向上させるのが困難で、分散不良による逆極性トナーが発生し易く、非画像部へのカブリが発生する。結着樹脂にポリエステル系を使用した場

合に特に分散が困難である。またベタ黒画像部後端部に 刷毛でかきとられたような画像欠けが生じ、画質を悪化 させる。またキャリア、感光体、現像スリーブをフィル ミング汚染する課題がある。

【0019】また、シリコン樹脂やウレタン樹脂等の現像ローラにトナー層を規制する弾性体ブレードを接触使用し、現像ローラにトナーを供給するウレタン樹脂等の供給ローラを具備する接触式の一成分現像方式では、前記した低融点の離型剤を添加したトナーの使用により、数千枚の使用で徐々に現像ローラ上に縦筋が発生し、白抜け、黒筋等の画像不良の原因となる。これは離型剤の分散不良による現像ローラへの傷、ブレードへの融着、供給ローラと現像ローラとの摩擦による凝集の発生が要因と考えられる。

【0020】また、前記したように近年地球環境保護の 観点から、転写後に感光体上に残留し、クリーニング手 段によって回収された廃トナーを再度現像工程でリサイ クルするのが好ましい。しかしながら、廃トナーをリサ イクルするとき、廃トナーがクリーナ部、現像部、また 廃トナーを現像部へ戻すときの輸送管内で受けるストレ スなどによりトナーにダメージが現れる。またクリーニ ング工程で感光体から掻き落とされた廃トナーを再度現 像でリサイクルする際、離型剤が分散不良であると、特 に分散が低下した粒子が廃トナーとなる傾向が強く、そ れが現像器内の新しいトナーが混合すると帯電量分布が 不均一になり、逆極性トナーが増加して、複写画像の品 質が低下する。さらに低融点離型剤を添加したトナーで は、感光体へのフィルミングが助長され、寿命低下の要 因となる。また葉書などの長さの短い用紙では感光体ド ラムとの摩擦力で搬送されるが、フィルミングの発生し た感光体では、その搬送力を低下させ葉書通紙不良とな

【0021】また、前記の導電性弾性ローラを用いた転 写方式は、像担持体と導電性弾性ローラとの間に転写紙 を挿通させ、前記導電性弾性ローラに転写バイアス電圧 を付与することにより前記像担持体表面上にあるトナー を転写紙に転写するものであるが、かかる導電性弾性ロ ーラを用いた転写方式では、転写紙に裏汚れが発生する といった問題がある。これは像担持体上のトナーを転写 ローラを用いて転写紙に転写する場合、転写紙がない状 態では転写ローラは像担持体に所定の圧力で当接してお り、現像工程でカブリが多いと、かかるカブリによって 転写ローラが汚染し、このトナーによって汚染した転写 ローラが送られて来た転写紙の裏面に当接するためであ る。また離型剤が分散不良のトナーでは、流動性が低下 し、トナーの凝集が部分的に強くなり、転写時に中抜け を生じ易い。またこれは廃トナーリサイクル時により顕 著に現われる。

【0022】また、中間転写方式は、複雑な光学系を必要としなく、また葉書や厚紙などの腰の強い用紙にも使

用でき、また中間転写ベルトを使用するとフレキシブルなため、転写ドラム方式、連続転写方式に比べて、装置自体の小型化を可能に出来るメリットがある。トナーは転写時に全て転写されるのが理想であるが、一部転写残りが生じる。いわゆる転写効率は100%でなく、一般的には75~90%程度である。この転写残りのトナーは感光体クリーニングの工程でクリーニングブレード等で掻き落とされて廃トナーとなる。

【0023】中間転写体を使用する構成では、トナーは感光体から中間転写体へ、さらに中間転写体から受像紙へと、少なくとも2回以上の転写工程を経ることになり、通常の1回転写の複写機では、例えば85%の転写効率があっても、2回の転写により、転写効率は72%にまで低下する。さらに1回転写で75%の転写効率であるものは56%と約半分のトナーが廃トナーとなってしまい、トナーのコストアップや、廃トナーボックスの容積をより大きなものとせねばならず、これでは装置の小型化が出来ない。転写効率の低下は離型剤の分散不良による逆極性の地かぶりや転写抜けが要因と考えられる。

【0024】またカラー現像の場合は、中間転写体上で4色のトナー画像を重ねるためトナー層が厚くなり、トナー層がない、あるいは、薄いところとの圧力差が生じやすい。このため、トナーの凝集効果によって画像の一部が転写されずに穴となる"中抜け"現象が発生し易い。さらに、受像紙が詰まった場合のクリーニングを確実に行うために、中間転写体にトナーの離型効果の高い材料を用いると、中抜けは顕著に現れ、画像の品位を著しく低下させてしまう。さらに、文字やラインなどではエッジ現像となっており、トナーがより多くのり、加圧によるトナー同士の凝集を起こし、中抜けがより顕著になる。特に高湿高温の環境下でより顕著に現れる。

【0025】また、2次転写時に転写材に転写されずに 残留するトナーをクリーニング除去することが必要であ り、ゴムブレードや、バイアスを印可したローラ、ファ ーブラシ等が使用される。このとき低融点の離型剤の添 加したトナーでは、中間転写体にフィルミングを生じて しまう。またクリーニングローラにより除去されたトナーをこのローラから金属プレートによりスクレープする 際にその金属プレートに融着し、スクレープ不良が生じ てしまう。特にカラー画像の光沢性、高透光性を発現さ せるため低溶融性のシャープメルト樹脂の使用により、 よりフィルミング、スクレープ不良が生じ易くなる。

【0026】また、後述する電子写真装置では、異なった色のトナー像を形成する複数の移動可能な像形成ユニットを円環状に配置した像形成ユニット群を有し、その像形成ユニット全体が回転移動する構成である。さらに像形成ユニット、中間転写ユニット毎での交換が可能な構成であり、寿命が来て交換時期に来るとユニット毎の交換でメンテナンスが容易に行え、電子写真カラープリ

ンタにおいても白黒並みのメンテナンス性を得ることが 可能となる。しかし像形成ユニット自体が公転するため、クリーニングされた廃トナーが感光体に離脱、付着 を繰り返す構成となり、感光体へのダメージやフィルミングが生じやすくなる。また現像ローラからの離脱、付着を繰り返すため、現像の初期に於いてトナーの帯電立上がり性が悪いと初期カブリが増大する。

【0027】また機器の小型化省資源からクリーニング 工程のないクリーナレスプロセス実現は重要である。感 光体上に形成した静電潜像を顕像化されたトナーを転写 手段により転写材に転写した後、通常は感光体上に残留 したトナーをクリーニングにより回収して廃トナーとな る。このときクリーニングプロセス工程を有さずに、次 の帯電、露光、現像プロセスを行うのがクリーナーレス プロセスである。まず転写において高転写性実現が不可 欠で、トナーの球形化処理や重合トナーによる転写性改 良が行われている。しかし100%転写残トナーが零と は困難で、ある程度は感光体上に残り、次の現像プロセ スでは、非画像部の残トナーが現像に戻されれば画像的 に問題は生じない。よってこの非画像部に残留したトナ 一の現像での回収が重要なポイントである。特に定着時 の非オフセット性を満たすために低融点離型剤を添加し たトナーにおいては流動性が低下する傾向にあり、転写 性が良くないのと、クリーナーレスプロセスでは現像で の回収に難があるため、非画像部の前の画像パターンの メモリが残ってしまう。

【0028】また定着プロセスにおいては、カラー画像ではカラートナーを混色溶融させる必要がある。このとき、トナーの溶融不良が起こるとトナー画像表面又は内部に於いて光の散乱が生じて、トナー色素本来の色調が損なわれると共に重なった部分では下層まで光が入射せず、色再現性が低下する。従って、トナーには完全溶融特性を有し、色調を妨げないような透光性を有することが必要条件である。特に〇HP用紙での光透過性がカラーでのプレゼンテーション機会の増加で、その必要はより大きくなっている。

【0029】しかしこのような樹脂の構成ではより溶融特性を良くしようとするとき耐オフセット性が低下し、用紙にすべて定着するのではなく定着ローラ表面に付着してオフセットが生じてしまうため定着ローラに多量のオイル等を塗布しなければならず、取扱や、機器の構成が複雑になる。

【0030】また装置のフレキシブルさや小型化、ウオームアップ短縮の目的から媒体加熱部とトナー溶融定着部を別にしたベルトの定着方式が用いられつつある。従って定着ローラを小径にして装置の小型化が図られる。また紙排紙部の曲率が大きくなることから紙のベルトへの巻付きが起こりにくい。ベルトの低熱容量からウオームアップが短縮される。しかし、トナーが高温オフセット防止のため一定以上の高分子量成分を付加し、ある程

度の弾性要素を持たせたとき、トナーの細い縦線のパターンを描いた紙が曲率の大きいベルトからの隔離時に先端部がベルトに持っていかれる先端オフセットが生じる場合がある。またベルトに負帯電性の強いシリコーン材料やフッ素材料を使用すると、定着部に突入前に未定着のトナー像が静電気的にベルトと反発する像乱れが生じやすい。特に離型オイルを塗布しない構成において帯電性の影響が出やすい。またオフセット性を向上させる目的で離型剤を添加したトナーでは、分散の状態によってはベルトに傷を生じさせやすくなり、定着画像の縦筋発生の要因となってしまう。

【0031】また従来のポリプロピレンやポリエチレン等の低融点離型剤と低軟化性の樹脂を使用してカラー画像の光沢性や透光性を高める構成のトナーを使用した場合、現像での現像ローラ上での縦傷の発生や、現像での画像の均質性の低下、中間転写体のクリーニング不良やフィルミングの発生、中間転写体のクリーニングローラのスクレープ不良のために、離型剤の添加量を減量したすると、離型性の効果が低下し、非オフセット領域が狭くなってしまい、両立が難しい。

【0032】このようにトナーは、上記した課題に対し、総合的に満足するものでなければならない。

【0033】本発明は上記問題点に鑑み、均一な帯電分布を有し、画像の長期安定化を図れるトナー及び電子写真装置を提供することを目的とする。

【0034】一成分現像法に使用しても現像ローラに縦筋が生じず、トナーの熱融着や凝集を生じず、また、高機能な結着樹脂を使用しても、樹脂特性を劣化させることなく添加剤の分散性を向上させ、画像の均質性、再現再現性等の安定した現像性を維持出来るトナー及び電子写真装置を提供することを目的とする。

【0035】また、導電性弾性ローラや、中間転写体を 用いた電子写真方法で転写時の中抜けや飛び散りを防止 し、高転写効率が得られ、中間転写体等へのフィルミン グを回避し、クリーニングローラへの融着を防止できる トナー及び電子写真装置を提供することを目的とする。

【0036】クリーナレスプロセスにおいても高転写効率が得られ、帯電量、流動性の低下がなく、現像でのメモリーが生じず、クリーナレスプロセスを可能とし、地球環境汚染防止と資源の再活用を可能にするトナー及び電子写真装置を提供することを目的とする。

【0037】また、オイル塗布しないオイルレス定着で高透光性、光沢性を発現するフルカラー電子写真用トナー及び電子写真装置を提供することを目的とする。そして低溶融性のシャープメルト樹脂を使用したカラートナーにおいても現像ローラやドクターブレード、中間転写体等へのフィルミングを回避でき、また、高湿下での長期使用においても、感光体、中間転写体等フィルミングを防止できるトナー及び電子写真装置を提供することを目的とする。

【0038】また、ベルトを使用した定着プロセスにおいても、低定着圧力、長定着ニップ構成の曲率の大きいローラを使用したベルト定着においても、紙のベルトへの非巻付き性は良好であるが、曲率が大きいことでベルトと紙が分離する時に生じる画像先端部の欠けを防止することができ、さらに現像、転写性とも両立を図れるトナー及び電子写真装置を提供することを目的とする。

【0039】そしてこれらの個々の特性を単独で満足するものでなく、機能として総合的に満足させることができるトナー及び電子写真装置を提供することを目的とする

[0040]

【課題を解決するための手段】上記課題に鑑み本発明に係るトナーの構成は、少なくとも酸価10以上のポリエステル樹脂と、酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスと着色剤とからなるトナー母体に、少なくとも正帯電性を示す無機微粒子からなる外添剤を添加するナーである。

【0041】また、本発明に係るトナーの構成は、少なくとも酸価10以上のポリエステル樹脂と、酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスと着色剤とからなるトナー母体に、少なくとも正帯電性を示す無機微粒子A及び負帯電性を示す無機微粒子Bからなる外添剤を添加するトナーである。

【0042】また、本発明に係るトナーの構成は、少なくとも酸価10以上のポリエステル樹脂と、酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスと着色剤とからなるトナー母体に、少なくとも正帯電性を示す無機微粒子A及び低抵抗金属酸化物微粉末からなる外添剤を添加するトナーである。

[0043]

【発明の実施の形態】デジタル高画質化、高彩色再現性 カラー化、定着ローラにオフセット防止用のオイルを使 用しないで高透光性と耐オフセット性の両立を図ること ができ、さらには現像一成分におけるローラ傷やブレード融着による縦筋の発生や、中間転写体のクリーニング 不良、クリーニングローラのスクレープ不良の防止との 両立実現を本形態のトナーにより可能とするものである。

【0044】これまでカラー定着性向上のため、高分子量成分の少ない分子量分布の狭いシャープメルトな低軟化性の結着樹脂を使用していた。この構成では透光性を確保できるが、オフセットが生じるため定着ローラにオイルを塗布する必要があった。またオイルレス定着を実

現するため、シャープメルトな低軟化性の結着樹脂に離型剤を添加する構成では、離型剤や、顔料、電荷制御剤などの分散が困難で、カブリや帯電不良による転写性の低下、クリーニング性の悪化、感光体や現像ローラへのフィルミング、帯電の立上がりの劣化、繰返し使用時における電荷量低下による画像濃度の低下等の不都合が発生した。従来の離型性を有するポリエチレン、ポリプロピレン等のポリオレフィン系のワックスではポリエステル樹脂中での分散が困難なこと、また帯電性が低下してカブリ等の画質を低下させること、またカラートナーでは色濁りが生じ、鮮明な透光性がえられない。

【0045】本形態のトナーにより、これらの種々の電子写真特性を両立させることが可能となる。その構成は酸価10以上のポリエステル樹脂に、定着助剤として酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスを内添加する構成である。さらにはトナー、結着樹脂の分子量、分子量分布を特定化することで定着特性がより向上する。トナーの高温保存性を低下させることなく、定着オイルを使用せずとも非オフセット性の離型性に優れ、また透光性を阻害せず、繰返し使用時における電荷量低下に効果が発揮される。

【0046】ただ、これを結着樹脂中に添加する際の分散の状態により、離型性、透光性等の定着性、帯電安定化等の現像性に大きく影響を及ぼす。また分散状態が適切でないと、現像ローラ上での縦筋、中間転写体上でのフィルミング、クリーニングローラでのスクレープ不良、定着ベルトへの傷を生じてしまう。そのため樹脂での分散状態を適切な状態にすることが重要な点であり、トナー及び結着樹脂の分子量分布を下記記載の状態とする。さらには溶融混練方法にも適正条件で行うことが解決策である。

【0047】炭化水素系ワックスの有するエステル結合は炭素数5~62の長鎖アルキルアルコール、不飽和多価カルボン酸又はその無水物の反応により得られることが好ましい。長鎖アルキルの炭素数が5より小さいと離型作用が弱くなり定着オフセット性が低下する。長鎖アルキルの炭素数が62より大きいと結着樹脂中での分散性が悪化する。酸価が30mgKOH/gより小さいと分散性が低下する。酸価が60mgKOH/gより大きいと耐湿性が低下し、高湿下でのかぶりが増大する。融点が90℃より小さいとトナーの保存性が低下する。融点が120℃より大きいと離型作用が弱くなり非オフセット温度幅が狭くなる。カラー画像の透光性が低下する。25℃における針入度が2より大きいと強靭性が低下し、長期使用中に感光体、中間転写体にフィルミングを生じる。

【0048】アルコールとしてはオクタノール、ドデカノール、ステアリルアルコール、ノナコサノール、ペン

タデカノール等の長鎖のアルキル鎖を持つものが使用で きる。またアミン類としてN-メチルヘキシルアミン、 ノニルアミン、ステアリルアミン、ノナデシルアミン等 も好適に使用できる。不飽和多価カルボン酸又はその無 水物としては、マレイン酸、無水マレイン酸、イタコン 酸、無水イタコン酸、シトラコン酸、無水シトラコン酸 等が一種または2種以上使用できる。合成炭化水素系ワ ックスとしては、ポリエチレン、ポリプロピレン、フィ ッシャートロプッシュワックス、αーオレフィン等が好 適に使用できる。不飽和多価カルボン酸またはその無水 物をアルコールまたはアミンを用いて重合させ、次にこ れをジクルミパーオキサイドやターシャリーブチルパー オキシイソプロピルモノカルボネート等の存在下で合成 炭化水素系ワックスに付加させることにより得ることが できる。添加量は結着樹脂100重量部に対し、5~1 2重量部が好ましい。5以下であると離型効果が出にく い。12以上であるとトナーの流動性が低下するばかり でなくそれ以上添加しても飽和して効果が向上しない。 【0049】さらに本形態のトナーでは結着樹脂として 酸価10以上のポリエステル樹脂を使用する。 これによ り高酸価を有するワックスとの分散性が向上する。10 より小さいと分散性が低下し、かぶり等の画質を低下さ せる。

【0050】さらにトナー及びポリエステル樹脂の分子 量を特定することにより、混練時での定着助剤の分散を より良好なものとすることができ、帯電性の安定化が図 られる。またトナー凝集も防止することが可能となり、 長期間連続して使用しても感光体、中間転写体、現像ロ ーラへのフィルミングを防止することが可能となる。 定 着での高透光性、高色再現性を確保でき、かつ定着オイ ルを必要とせずとも、より高温度域にまでオフセット幅 を広げられる構成を創出した。現像においては帯電性を 上げるためにより強いストレスがかけられ、また中間転 写体のクリーニングにおいてもクリーニング性を上げる ため強い負荷がかけられる。また現像ユニット自体が公 転する構成によりトナーに強いストレスが掛かる状態に おいても高透光性を維持しながら耐久性、転写性、リサ イクル性、帯電性をより良好なものとし、定着性と現像 性、耐久性をより良好に両立させることが可能となるこ とを見い出した。

【0051】本形態ではシャープな分布を有する高分子 量成分を具備することで、高透光性を確保できかつ定着 オイルを必要とせずとも、オフセットを防げる構成を創 出した。

【0052】具体的には溶融混練処理されたトナーのGPCクロマトグラムにおける分子量分布が、 2×10^3 $\sim 3\times10^4$ の領域に少なくとも一つの分子量極大ピークを有し、 $5\times10^4\sim1\times10^6$ の領域に少なくとも一つの分子量極大ピーク又はショルダーを有する構成とすることである。

【0053】好ましくはトナーの低分子量側に存在する分子量極大ピークが、GPCクロマトグラムにおける分子量分布で、 $3\times10^3\sim2\times10^4$ の領域に少なくとも一つ有し、さらに好ましくは $4\times10^3\sim2\times10^4$ の領域に少なくとも一つ有する構成である。

【0054】また、トナーの高分子量側に存在する分子量極大ピーク又はショルダーの位置が、GPCクロマトグラムにおける分子量分布で、 $6\times10^4\sim7\times10^5$ の領域に少なくとも一つ有し、さらに好ましくは $8\times10^4\sim5\times10^5$ の領域に分子量極大ピーク又はショルダーを少なくとも一つ有する構成である。

【0055】低分子量側に存在するトナーの分子量分布の分子量極大ピーク位置が、 2×10^3 より小さくなると耐久性が悪化し、 3×10^4 より大きくなると定着性が悪化し、透光性が低下する。

【0056】また、高分子量側に存在するトナーの分子量分布の分子量極大ピーク又はショルダーの位置が、5×104より小さくなると、耐オフセット性が低下し、保存安定性が悪化する。現像性の悪化と廃トナーリサイクル性も低下する。1×106より大きくなると粉砕性が低下し、生産効率の低下を招く。

【0057】さらに、トナーの高分子量領域に存在する成分として、5×10⁵以上の高分子量成分の含有量が結着樹脂全体に対し10wt%以下であることが好ましい。5×10⁵以上の高分子量領域に存在する成分が多くなる、あるいは巨大な状態は、混練時にトナー構成材料に均一な混練ストレスが加わらず、混練状態が不具合となった結果である。これにより透光性が著しく阻害される。また分散不良によるカブリの増大、現像ローラ、供給ローラの傷の発生、トナーの粉砕性が悪化し製造効率が低下する。

【0058】より好ましくは、5×10⁵以上の高分子量成分の含有量が結着樹脂全体に対し5%以下であり、さらに好ましくは、1×10⁶以上の高分子量成分の含有量が結着樹脂全体に対し1%以下、若しくは含有しない構成である。

【0059】また、トナーのGPCクロマトグラムにおける分子量分布で、 $2\times10^3\sim3\times10^4$ の領域に存在する分子量極大ピークの分子量分布の高さをHa、 $5\times10^4\sim1\times10^6$ の領域に存在する分子量極大ピーク又はショルダーの高さをHbとすると、Hb/Haを $0.15\sim0.9$ とすることである。

【0060】Hb/Haが、0.15より小さくなると耐オフセット性が悪化し、保存安定性も低下し、現像スリーブや感光体へのフィルミングを助長する結果となる。0.9より大きくなると現像ローラ供給ローラに傷を生じさせ、また粉砕性が悪化し、生産性が低下しコストアップにつながる。より好ましくは、Hb/Haが0.15~0.7、さらに好ましくは、Hb/Haが0.2~0.6である。

【0061】また、高透光性を確保でき、かつ定着オイ ルを必要とせずともオフセット防止を可能とするため、 トナーのGPCクロマトグラムにおける分子量分布で、 2×103~3×104の領域に少なくとも一つの分子量 極大ピーク、5×104~1×106の領域に少なくとも 一つの分子量極大ピーク又はショルダーを有する構成 で、分子量5×10⁴~1×10⁶の領域に存在する分子 量分布の極大ピーク又はショルダーに相当する分子量値 よりも大きい領域にある分子量曲線に着目し、その分子 量分布の極大ピーク又はショルダーの高さを1と基準と して、その分子量極大ピーク又はショルダーの高さに対 して90%の高さに相当する分子量をM90、分子量極 大ピーク又はショルダーの高さの10%の高さに相当す る分子量をM10とした場合、M10/M90が6以下 とすることで実現できる。さらには、(M10-M9 0)/M90が5以下とすることで実現できる。

【0062】上記M10/M90、さらには、(M10-M90)/M90の値(分子量分布曲線の傾き)を規定することは超高分子量成分の分子切断の状態を定量化できるものであり、この値が上記記載した値以下(分子量分布曲線の傾きが急峻であることを示唆する)である場合には、透光性を阻害している超高分子量成分が混練時の切断により無くなり、高透光性を有するようになる。さらには、この高分子側に現れるピーク又はショルダーの高分子量成分が耐オフセット性に寄与し、オイルを使用せずともカラートナーのオフセットの発生を防ぐことが可能となる。

【0063】さらにはこの超高分子量成分を分子切断す る際に、ワックスの定着助剤等の内部添加剤の均一分散 化処理を可能とすることができ、帯電量が均一化し、鮮 明な解像度を有し、長期連続使用しても耐久性を悪化さ せることがない。また中間転写体のクリーニング性が向 上し、現像ローラでの縦筋の発生もなく、転写時の中抜 けを防止でき高効率な転写性を得ることが可能となる。 【0064】M10/M90の値が6より大きい場合、 (M10-M90)/M90が5より大きい場合には、依然超高分子量成分が残存し、透光性を阻害する。より 好ましくはM10/M90の値が5.5以下であり、 (M10-M90)/M90が4.5以下である。さら に好ましくは、M10/M90の値が4.5以下であ り、(M10-M90)/M90が3.5以下である。 【0065】さらには、前記した結着樹脂のポリエステ ル樹脂の分子量特性と組合わせて使用する構成が重要で ある。つまり、一定の高分子量領域に存在する成分を有 する樹脂を混練することにより上記特性範囲内に合せ込 むことが可能となるわけである。つまり結着樹脂が上記 特性の範囲を外れていると、混練後のトナー特性も上記 特性内に入ってこない。

【0066】具体的には結着樹脂としてGPCクロマトグラムにおける分子量分布で、 $2\times10^3\sim3\times10^4$ の

領域に少なくとも一つの分子量極大ピークを有し、かつ、高分子量領域に存在する成分として3×10⁴以上の分子量成分を結着樹脂全体に対し5%以上有する樹脂から構成される。

【0067】この構成により後述する混練条件により、混練時のせん断力により高分子量成分が分子切断し、混練後のトナーの分子量が最適な構成となり、高透光性を阻害する高分子成分を低分子量化できて、高透光性が確保できると共に、低分子量化した高分子量成分によりオフセットを防止できる。さらには内部添加する定着助剤の分散性をより向上することが可能となる。高分子量領域に存在する成分として3×10⁴以上の分子量成分を結着樹脂全体に対し5%以上含有することにより実現できる。3×10⁴以上の分子量成分を含まないと、適正な混練が行われず、分散が不良となり、またオフセットを防止できる効果がなくなる。

【0068】結着樹脂の分子量極大ピークが2×10³より小さいと樹脂が軟弱になりすぎ、耐久性が低下すると共に混練時のせん断力がかからずに分散性が低下した構成となる。分子量極大ピークが3×10⁴より大きいと、OHPの透光性を低下させる要因となる。

【0069】さらには結着樹脂の分子量極大ピークは、好ましくはGPCクロマトグラムにおける分子量分布で、 $3\times10^3\sim2\times10^4$ の領域に少なくとも一つ有する構成とすることである。更に好ましくは $4\times10^3\sim2\times10^4$ の領域に少なくとも一つ有する構成である。

【0070】また高分子量領域に存在する成分として、好ましくは1×10⁵以上の分子量成分を結着樹脂全体に対し3%以上有することが好ましい。さらには高分子量領域に存在する成分として、3×10⁵以上の分子量成分を結着樹脂全体に対し0.5%以上有することが好ましい。

【0071】好ましくは高分子量領域に存在する成分として、 $8\times10^4\sim1\times10^7$ の分子量成分を結着樹脂全体に対し3%以上有し、かつ 1×10^7 以上の成分は含有しない構成が好ましい。

【0072】更に好ましくは、高分子量領域に存在する成分として、3×10⁵~9×10⁶の高分子量成分を結着樹脂全体に対し1%以上有し、かつ9×10⁶以上の成分は含有しない構成である。

【0073】更に好ましくは、高分子量領域に存在する成分として、 $7\times10^5\sim6\times10^6$ の高分子量成分を結着樹脂全体に対し1%以上有し、かつ 6×10^6 以上の成分は含有しない構成である。

【0074】高分子量成分が多すぎると、あるいは巨大すぎると混練時に巨大分子量成分が残留し、透光性を阻害する。また樹脂自体の製造効率が低下する。現像ローラ供給ローラに不要な傷を付け画像に縦筋を生じさせる。また定着助剤の分散性が低下する。

【0075】これにより、デジタル高画質化、高彩色再

現性カラー化、接触式一成分現像における現像ローラ、供給ローラでの長期安定して使用可能ならしめ、定着ローラにオフセット防止用のオイルを使用しないで高透光性と耐オフセット性の両立を図れ、さらにはクリーナプロセスの実現、中間転写体を使用した転写工程での高転写性を実現することができる。

【0076】また、結着樹脂、トナーの平均分子量の規定も重要である。ポリエステル樹脂の重量平均分子量Mwfが10000~40万、重量平均分子量Mwfと数平均分子量Mnfの比Mwf/MnfをWmfと数と、Wmfが3~100、Z平均分子量Mzfと数平均分子量Mnfの比Mzf/MnfをWzfとすると、Wzfが10~2000、高化式フローテスタによる1/2法による溶融温度(以下軟化点)が80~150℃、流出開始温度は80~120℃、樹脂のガラス転移点が45~65℃の範囲であるポリエステル樹脂を成分とすることが好ましい。

【0077】 Z平均分子量は最もよく高分子量側のテーリング部における分子量の大きさと量を表し、混練時の内添剤の分散性、定着性、耐オフセット性に大きな影響を与える。Mzfが大きいほど樹脂強度が増大し、熱溶融混錬時の粘度が増大して、分散性が著しく向上する。カブリ、トナー飛散を抑えることが出来るとともに、高温低湿下、高湿下の環境変動を抑制できる効果が得られる。Mzf/Mnfが大きくすることは、超高分子量領域まで幅広く広がっているものである。

【0078】好ましくは $Mwfが11000\sim30万$ 、 $Wmfが3\sim30$ 、 $Wzfが10\sim500$ 、軟化点が9 $0\sim150$ °C、流出開始温度は $85\sim115$ °C、ガラス転移点が $52\sim65$ °Cの範囲であるポリエステル樹脂を成分とすることが好ましい。

【0079】より好ましくはMwfが12000~10万、Wmfが3~10、Wzfが10~100、軟化点が90~140℃、流出開始温度は85~110℃、ガラス転移点が53~59℃の範囲であるポリエステル樹脂を成分とすることが好ましい。

【0080】結着樹脂のMwfが10000より小さく、Wmfが3より小さく、Wzfが10より小さく、軟化点が80℃より小さく、流出開始温度が80℃より小さく、ガラス転移点が45℃より小さくとなると、混練時の分散性が低下し、カブリの増加や耐久性の悪化を招く。また混練時の混練ストレスが充分にかからず、分子量を適正値に維持できなくなる。定着助剤の分散性が低下し耐オフセット性、高温保存性の悪化、さらには中間転写体でのクリーニング不良、感光体へのフィルミングが発生する。

【0081】結着樹脂のMwfが40万より大きく、Wmfが100より大きく、Wzfが2000より大きく、軟化点が150℃より大きく、流出開始温度120℃ガラス転移点が65℃より大きくとなると、機械の処

理中の負荷が過大となり生産性の極端な低下や、カラー・画像での透光性の低下や定着強度の低下につながる。

【0082】また結着樹脂はTHF不溶成分が5重量%以下、好ましくはTHF不溶成分を有しないことである。THF不溶成分が5重量%より多いとカラー画像の透光性を悪化させる要因となり、画質を劣化させていまう。

【0083】上記した結着樹脂を溶融混練処理において強い圧縮せん断力にて混練することで従来にない特性を発現することが可能となる。オイルを用いない定着でカラートナーの高い透光性と耐オフセット性を両立させることが出来る。つまり超高分子量成分を付与した結着樹脂を強いせん断力により、超高分子量成分を低分子量化した高分子量成分の存在により耐オフセット性も満足できる。また超高分子量成分を有するため、混練時に高いせん断力がかかるため、定着助剤がより均一に分散させることが可能となり、より透光性が良化し、非オフセット性、高画質、高彩色再現性が得られる。

【0084】溶融混練処理後のトナーの重量平均分子量 Mwv i 8000~30万、重量平均分子量 <math>Mwv e数 平均分子量Mvv e数 mv e00、mv e0、mv e0 mv e0

【0085】好ましくは $Mwvが8000\sim20万$ 、 $Wzvが8\sim100$ であることが好ましい。

[0086] さらに好ましくはMwvが $8000\sim10$ 万、Wmvが $2\sim10$ 、Wzvが $8\sim50$ であることが好ましい。

【0087】Mwvが8000より小さく、Wmvが2より小さく、Wzvが8より小さくなると、混練ストレスが充分にかからず、分子量を適正値に維持できなくなる。定着助剤の分散性が低下し耐オフセット性、高温保存性の悪化、さらには中間転写体でのクリーニング不良、感光体へのフィルミングが発生する。

【0088】結着樹脂のMwvが30万より大きく、Wmvが100より大きく、Wzvが1200より大きくなると、機械の処理中の負荷が過大となり生産性の極端な低下やカラー画像での透光性の低下た定着強度の低下につながる。

【0089】よって樹脂の分子量が小さいと、ローラからの適度な圧縮せん断力受けられず、結着樹脂中の内添剤の分散性を向上することが出来ないし、オフセットが生じる。つまり一定値以上の分子量を有することが必要となる。

【0090】そしてMwf/Mwvが1.2~10、Wmf/Wmvが1.2~10、Wzf/Wzvが2.2~30の範囲に収まることで可能となるものである。

【0091】より好ましくはMwf/Mwvが1.2~5、Wmf/Wmvが1.2~5、Wzf/Wzvが3~20の範囲が好ましい。

【0092】さらに好ましくはMwf/Mwvが1.5 ~ 4 、 $Wmf/Wmvが1.5\sim 3$ 、 $Wzf/Wzvが3\sim 15の範囲が好ましい。$

【0093】Mwf/Mwvが1.2より小さく、Wmf/Wmvが1.2より小さく、Wzf/Wzvが2.2より小さくなると、混練時の混練ストレスが充分にかからず、分子量を適正値に維持できなくなる。透光性が向上しない。定着助剤の分散性が低下し耐オフセット性、高温保存性の悪化、さらには中間転写体でのクリーニング不良、感光体へのフィルミングが発生する。

【0094】Mwf/Mwvが10より大きく、Wmf/Wmvが10より大きく、Wzf/Wzvが30より大きくとなると、せん断力の圧力が働きすぎ、逆に電荷制御剤等の内添剤が相互に凝集を生じ、分散性の低下につながり、クリーナレスプロセス時のかぶりの増加、画像濃度の低下、転写不良の発生を招く。特に下記で示すポリエステル樹脂に電荷制御剤としてサリチル酸金属錯体や、ベンジル酸金属錯体を使用した場合により顕著に発生する現象である。

【0095】本形態に好適に使用される結着樹脂は、アルコール成分とカルボン酸、カルボン酸エステル及びカルボン酸無水物等のカルボン酸成分との重縮合によって得られるポリエステル樹脂が好適に使用される。

【0096】2価カルボン酸又は低級アルキルエステルとしては、マロン酸、コハク酸、グルタル酸、アジピン酸、ヘキサヒドロ無水フタル酸などの脂肪族二塩基酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸などの脂肪族不飽和二塩基酸、及び無水フタル酸、フタル酸、テレフタル酸、イソフタル酸などの芳香族二塩基酸、及びこれらのメチルエステル、エチルエステル等を例示することが出来る。この中でコハク酸、フタル酸、テレフタル酸、イソフタル酸等の芳香族二塩基酸及びそれらの低級アルキルエステルが好ましい。コハク酸とテレフタル酸、若しくはフタル酸とテレフタル酸とを組合わせた使用が好ましい。

【0097】3価以上のカルボン酸成分としては1,2,4-ベンゼントリカルボン酸、1,2,5-ベンゼントリカルボン酸、1,2,4-シクロヘキサントリカルボン酸、2,5,7-ナフタレントリカルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサトリカルボン酸、1,3-ジカルボキシルー2-メチレンカルボキプロパン、テトラ(メチレンカルボキシル)メタン、1,2,7,8-オクタンテトラカルボン

酸、ピロメリット酸、エンポール三量体酸及びこれらの 酸無水物、アルキル(炭素数 1~12)エステル等が挙 げられる。

【0098】2価アルコールとしては、エチレングリコール、1,2ープロピレングリコール、1,3ープテレングリコール、1,4ーブチレングリコール、1,6ーへキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、ビスフェノールAエチレンオキサイド付加物、ビスフェノールAプロピレンオキサイド付加物、などのジオール、グレセリン、トリメチロールプロパン、トリメチロールエタンなどのトリオール、及びそれらの混合物を例示することが出来る。この中でネオペンチルグリコール、トチメチロールプロパン、ビスフェノールAエチレンオキサイド付加物、ビスフェノールA

【0099】3価以上のアルコール成分としては、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセロール、2-メチルプロバントリオール、2-メチルー1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5-トリヒドロキシメチルベンゼン等が挙げられる。

【0100】重合は公知の重縮合、溶液重縮合等を用いることが出来る。これによって耐塩ビマット性やカラートナーの色材の色を損なうことなしに、良好なトナーを得ることができる。

【0101】多価カルボン酸と多価アルコールの使用割合は通常、カルボキシル基数に対する水酸基数の割合 (OH/COOH)で0.8~1.4が一般的である。

【0102】樹脂及びトナーの分子量は、数種の単分散ポリスチレンを標準サンプルとするゲル・パーミエーション・クロマトグラフィー(GPC)によって測定された値である。

【0103】装置は、東ソー社製HPLC8120シリーズ、カラムはTSKgel superHM-H H4000/H3000/H2000(7.8mm径、150mm×3)、溶離液THF(テトラヒドロフラン)、流量0.6ml/min、試料濃度0.1%、注入量20μL、検出器RI、測定温度40℃、測定前処理は試料をTHFに溶解後0.45μmのフィルターでろ過しシリカ等の添加剤を除去した樹脂成分を測定する。測定条件は、対象試料の分子量分布が、数種の単分散ポリスチレン標準試料により得られる検量線における分子量の対数とカウント数が直線となる範囲内に包含される条件である。

【0104】また、結着樹脂の軟化点は、島津製作所のフローテスタ(CFT500)により、1cm³の試料

【 0 1 0 5 】また樹脂のガラス転移点は示差走査熱量計を用い、1 0 0 ℃まで昇温し、その温度にて 3 分間放置した後、降温速度 1 0 K / m i nで室温まで冷却したサンプルを、昇温速度 1 0 K / m i nで昇温して熱履歴を測定した際に、ガラス転移点以下のベースラインの延長線とピークの立上がり部分からピークの頂点までの間での最大傾斜を示す接線との交点の温度を言う。

【0106】DSCによる吸熱ピークの融点は、島津製作所の示差熱量分析計DSC-50を使用した。5K/minで200℃まで昇温し、5分間保温10℃まで急冷後、15分間放置後5K/minで昇温させ、吸熱(融解)ピークから求めた。セルに投入するサンプル量は10mg±2mgとした。

【 O 1 O 7 】高せん断力による混練により、より定着性 現像性耐久性等の特性が向上する。

【0108】具体的は、異方向に回転し、加熱または冷却が可能な対向する2本のロールを有し、一方のロール(RL1)のロール温度ともう一方のロール(RL2)のロール温度に温度差を設け、かつ前記ロール(RL1)と前記ロール(RL2)とを異なる周速で回転させて2本のロール間で混練処理することにより実現できる。さらには一方のロール(RL1)が前半部と後半部で温度差を有する構成とすることである。

【0109】そしてそのロールの温度設定及び温度勾配、回転数及び負荷電流の混練条件と結着樹脂の軟化点、定着助剤の融点、添加量を最適な条件で処理することにより向上する。

【0110】2本ロールの回転数比を1.1倍から2.5倍の範囲内で行うことにより混練時に適切なせん断力が生じ、結着樹脂の分子切断、着色剤等の内部添加剤の分散性が向上し、定着性、現像性が向上する。加熱してトナーを溶融し巻き付ける側のロールの回転比を高くする構成である。1.1倍以下であると適切なせん断力が生じず、分散性が向上せず、透光性が悪化する。逆に2.5倍以上であると、生産性が急激に低下し、また分散性が向上せず、現像性の悪化を招く。

【0111】またこのときの2本のロールにかかる負荷電流値の比を1.25~10の範囲となるような条件で混練することで、適切なせん断力が加わりより内添剤の分散性が向上する。この範囲よりも小さいと分散性が向上せず、透光性が悪化する。また生産性も低下する。逆

にこの範囲よりも大きいと、ローラにかかる負荷が大き くなりすぎ、超高分子量成分がより低分子量化しすぎる ため、非オフセット性が低下し、オフセットが発生する ようになる。

【0112】結着樹脂の軟化点よりも低い温度の定着助剤を添加した際、定着助剤の添加量を多くするほど、ロール温度を高くしなければ、ロールへの溶融巻付きが良好に行えない。通常低融点のものを添加することで、より低い温度により処理が可能となると考えられるが、離型作用が強く、ローラから離脱しやすくなる傾向にある。従って高温度により処理を行う必要があるが、高温度で処理すればせん断力が弱くなり定着助剤の分散性が

$Tri1 = (Tm + Tw + Sw \times k) / 2$

【0114】kの値が小さいと巻付きが不良化して定着助剤の分散性が向上しない。kの値を大きくして処理するとせん断力作用が十分にかからず、透光性の低下、中間転写体へのフィルミング、クリーニング不良を誘発する。

【O115】またトナーを溶融し巻き付ける一方のロールにおいて、原料を供給する前半部(IN側)と混練された材料を取出す後半部(OUT側)とに温度差を設ける構成とする。IN側では供給された材料をローラに溶融巻付きさせるため温度を高めに設定し、OUT側は温度を下げて材料にせん断力を与えて、樹脂の分子切断と定着助剤の分散性を向上させる。IN側からOUT側に搬送された材料が温度差を設けることは、IN側で結着

Trj1-Trk1=Tw-Swxj

【0117】jの値が大きいとOUT側でのせん断力が 十分にかからず、定着助剤の分散性が向上しない。定着 時の透光性が低下し、現像ローラでの縦筋、かぶり、中 間転写体でのクリーニング不良が生じる。jの値を小さ くして処理すると溶融膜のローラからの浮状態が発生 し、逆にせん断力作用が十分にかからず、透光性の低 下、中間転写体へのフィルミング、クリーニング不良を 誘発する。

【0118】また加熱されたロール表面にトナーの溶融膜が形成された後、ロールの加熱温度を下げることで、混練のせん断力が溶融された状態でより強固なものとなる。この時の低下させる温度幅は大きすぎるとロール上でトナーの溶融層が剥離し、飛散するようになる。よって10℃以上で、結着樹脂の軟化点よりも50℃低い温度までの範囲が適当である。

【0119】さらに、2本のロールに原料を投入するのであるが、投入に材料が飛散し舞上る現象が避けられない。特に比重の軽い電荷制御剤が特に舞上りやすい。この舞上った材料は局所集塵等で集塵しないと周辺の機器を汚染し、トナーのコンタミを生じてしまう。そのためこの原料投入に工夫が必要となる。本構成では、トナー構成材料を原料供給フィーダから2本のロール間に投入する際、原料フィーダを冷却側のロール(RL2)側か

低下する。逆に温度が低いと巻付きが不良化し、飛散や離脱が生じ、生産性が低下する。よってこのとき前半部のロール温度をTrj1、後半部のロール温度をTrk1、結着樹脂の軟化点(1/2法における溶融温度)をTm、定着助剤のDSC法による融点をTw、定着助剤のMM量をSw(結着樹脂100重量部に対する配合量(重量部)比)とすると、(数1)の関係を満たすように処理することにより、ロールへの溶融巻付きが良好に行えると共に、定着助剤の分散性を適切に行える。

[0113]

【数1】

/2 (k:0.1~10)

樹脂がある程度溶融され、定着助剤が樹脂中でばらされた状態にあり、それが〇UT側の低温度により強いせん断力を受け、分散性が均一なものと出来る。また樹脂の分子切断も適切に行える。このときIN側のロール温度をTrj1、〇UT側のロール温度をTrk1、結着樹脂の軟化点をTm、定着助剤の添加量をSw(結着樹脂100重量部に対する配合量(重量部)比)とすると、(数2)の関係を満たすように処理することにより、ロールへの溶融巻付きが良好に行えると共に、定着助剤の分散性を適切に行える。

[0116]

【数2】

-Swxj (j:1~8)

ら挿入し、投入箇所を加熱側のロール(RL1)と前記ロール(RL2)の最近接点から前記ロール(RL1)の回転方向と逆方向に20°~80°までの範囲内でロール(RL1)の表面上に落下させることにした。【0120】以上の状態で処理することにより、混練時の高分子量の分子切断を適当な状態で行え、又内添削特に顔料と電荷制御剤を均一に混練分散することができ、特にカラートナーでの透光性とオイルを使用しない定着において耐オフセット性の両立を実現させることが出来る。

【0121】さらにより分散の均一性を高められ、高転写性、現像性を向上させることが可能となる。また高温高湿下、低温低湿下での特性を安定化させることが出来る。

【0122】本形態の現像プロセスにおいては、弾性又は剛性の現像ローラ上にゴムやメタル等のトナー層規制弾性ブレードまたは回転するトナー層規制ローラ等を一定の圧力により接触させ、トナーの薄層を形成して感光体と接触又は非接触により現像する構成である。一成分現像法としては、ウレタン樹脂からなるスポンジ系の供給ローラとシリコン樹脂又はウレタン樹脂からなる現像ローラを一定の食い込み量により接触させ、供給ローラから現像ローラにトナーを供給し、現像ローラ上に弾性

体のゴムや金属ステンレスのドクターブレードを接触して、または金属性のトナー層規制ローラを現像ローラとアゲインスト(同方向)に回転接触して、トナーの薄層を形成し、それを感光体と接触または非接触にて直流または交流印可してトナー像を形成する現像法が好適に使用される。

【0123】このとき供給ローラと現像ローラは同方向に回転させ、現像ローラと供給ローラの周速を $1:1\sim0.8:0.2$ の割合で現像ローラを早くする構成とする。また現像ローラは感光体表面に $9.8\times10^2\sim9.8\times10^4$ (N/m^2)の圧力で圧接して感光体上の静電潜像が現像される。また弾性ブレードは $5\times10^3\sim5\times10^5$ (N/m^2)の圧力で現像ローラ上に圧接してトナー層が形成される。

【0124】さらに、トナー溜めから供給されるトナーの供給量を現像ローラ上へ搬送する際の現像ローラ上のトナー搬送量を一定量に制御するため、ウレタン樹脂等からなるスポンジ状の供給ローラを、現像ローラに対し一定の食い込み量0.1~1mmで、現像ローラと接触させる構成が取られる。

【0125】トナー溜めから供給されるトナーの供給量を現像ローラ上へ搬送する際の現像ローラ上のトナー搬送量を一定量に制御するため、ウレタン樹脂等からなるスポンジ状の供給ローラを現像ローラと接触させて具備する構成が取られる。これはトナーの搬送量を一定量に規制するために有効な手段である。

【0126】しかし、この構成においては、長期使用していると現像ローラ上での傷や、ブレードに異物の付着により画像上に縦筋が生じる画像不良が発生しやすい。特にカラー定着性を向上させるために、低軟化性の結着樹脂の使用や、低融点離型剤Waxを添加したトナーではより顕著に発生する。

【0127】また、長期連続使用中に現像ローラ上のトナーの搬送量が低下したり、べた黒画像を取った場合に画像後半部の濃度が部分的に低下するベタ追随性不良が発生しやすい。現像ローラ上のトナーの帯電量を吸引式により測定すると帯電量が大きく低下していることが分かった。さらに追求すると供給ローラ部のトナーの帯電量が低下しており、つまり画像濃度の低下はテーの帯電量が低下しているのではなくて、現像ローラに供給される前の供給ローラ部においてチャージアップしており供給ローラから現像ローラへの供給能力が低下しており供給ローラから現像ローラへの供給能力が低下とためである。よってトナーの飛散を防ぎながら画像度を確保できる構成が必要になる。ドクターブレードの圧接力を高めてトナーの帯電能力を上げる構成も有効であるが、トナーの融着を招きやすく現像ローラに傷を生じさせる。

【0128】そこで、酸価10以上のポリエステル樹脂に、定着助剤として酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であ

るエステル結合又はアミド結合を有する炭化水素系ワックスを内添加する負帯電性を有するトナー母体に対し、正極帯電性を示す無機微粒子、又は正極帯電性を示す無機微粒子Bからなる外添剤、又は正極帯電性を示す無機微粒子Aと低抵抗金属酸化物微粉末からなる外添剤を添加する構成により解決できることを見い出した。

【0129】カラー透光性、オイルレス定着非オフセット性、保存特性を改善するため、一定の酸価やエステルやアミドを有する樹脂、定着助剤を使用しているためトナー母体は負帯電に強く帯電する作用を有する。そのため従来のような外添剤に負帯電性の無機微粉末を添加するだけでは、帯電が過帯電になり、現像性や中間転写性、クリーニング性を劣化させる要因となる。そこで、正極帯電性を示す無機微粒子を外添剤として添加することにより現像性クリーニング性を安定化するとともに、定着性をも向上できることを見出した。

【0130】正極帯電性を示す無機微粒子により供給ローラでのトナーの過帯電を抑えると共に、トナー母体と逆帯電性の外添剤を含有することでトナー飛散を抑えることが可能となる。さらに連続使用時の画像濃度を安定化でき、またべた追随性も良好なものとなる。現像ローラ上でのトナーの搬送状態をスムーズなものとし、搬送状態を常に安定化できる効果がある。特に高湿下での搬送状態の安定化に効果が大きい。

【0131】外添剤として負帯電性のシリカのみでは連続使用時に現像ローラ上のトナー帯電量が低下し、べた画像追随性が悪化し耐久性もたない。このときの現像ローラ上のトナーの吸引式ファラデーケージ法によるトナーの帯電量が $-5\sim-45\mu$ C/g以下であるとトナー飛散が増大する。 -45μ C/g以上となると画像濃度が出にくい。

【0132】また回転するトナー層規制ローラを一定の圧力により現像ローラと接触させてトナー層を規制する機構において、本トナー形態では層規制が均質に行える。この回転するトナー層規制ローラが弾性ブレードよりもトナーに加わるストレスは弱く、帯電しづらい機構であるが、トナーが高帯電立上り特性を有するため、トナー層規制が均質に行える。またトナー母体には高離型性のワックスを有するため、ローラ間で滑りやすく帯電性が弱くなる傾向にあるが、高帯電立上り特性によりトナー層規制が均質に行える効果が得られる。さらにはトナー、結着樹脂の分子量、分子量分布を特定化することでより安定性が向上するある。

【0133】本形態のトナー構成とすることにより、定着特性を犠牲にすることなく、現像ローラ上の縦筋の発生、ベタ追随性不良、トナーの融着を防止することができることを見い出した。これは樹脂中での均一分散が可能となり、帯電分布が安定化し供給ローラでのトナーの過帯電を抑えると共に、連続使用時の画像濃度を安定化

でき、またべた追随性も良好なものとなる。均一分散によりトナーの流動性が維持でき現像ローラ上でのトナーの搬送状態をスムーズなものとし、搬送状態を常に安定化できる効果がある。特に高湿下での搬送状態の安定化に効果が大きい。

【0134】また、本形態において、感光体の表面に形 成されたトナー画像を、感光体の表面に無端状の中間転 写体の表面を当接させて当該表面にトナー画像を転写さ せる一次転写プロセスが複数回繰り返し実行され、この 後、この一次転写プロセスの複数回の繰り返し実行によ り中間転写体の表面に形成された重複転写トナー画像を 複写用紙等の転写材に一括転写させる2次転写プロセス が実行されるよう構成された転写システムを具備する電 子写真装置に好適に使用される。この時感光体と中間転 写体は9.8×10²~2×10⁵ (N/m²)の圧力で 圧接して感光体上のトナーが転写される。また中間転写 体表面に形成されたトナー像は中間転写体の表面を転写 部材が記録紙を介して5×10³~2×10⁵ (N/ m²) 圧力で押圧して記録材上にトナーが転写される。 【0135】このとき、2次転写時に転写材に転写され ずに残留するトナーをクリーニング除去することが必要 であり、バイアスを印可したローラや、ファーブラシ等 が使用される。このときトナーがクリーニングされにく いと、中間転写体との接触によりトナーがフィルミング を生じてしまう。またローラにより除去されたトナーを このローラから金属プレートによりスクレープする際に その金属プレートに融着し、スクレープ不良が生じてし まう。特にカラー画像の光沢性、高透光性のカラー定着 性を発現させるために、低軟化性の結着樹脂の使用や、

【0136】そこで、本形態のトナー構成を使用することで、トナーの帯電性の安定化が得られ、均一な帯電性を有し、地カブリが少なく転写時の中抜けを防止できるとともに高転写効率を得ることが可能となる。クリーニング性においては、トナーの帯電性が負極性に強すぎるとクリーニング不良が生じ、それがフィルミング、スクレープ不良につながる。このクリーニング性に適切な帯電性を有する外添剤の構成とすることにより、クリーニング性を良好なものとし、フィルミング、スクレープ不良を回避できる。

低融点離型剤を添加したトナーではより顕著に発生し易

くなる。

【0137】また、本形態において、回転する感光体とそれぞれ色の異なるトナーを有する現像手段とを備え、前記感光体上にそれぞれ異なった色のトナー像を形成する複数の移動可能な像形成ユニットを円環状に配置した像形成ユニット群から構成され、像形成ユニット群全体を回転移動させ、感光体上に形成した異なる色のトナー像を転写材上に位置を合わせて重ねて転写してカラー像を形成するカラー電子写真装置に好適に使用される。

【0138】像形成ユニットは感光体や現像ローラが自

転しながら、ユニット全体が公転する構成のため、現像 器内ではトナーが一時的に現像ローラや供給ローラとも 接触、離脱する状況が発生し、現像初期に於いて帯電の 立ち上がり性が悪いと、地カブリの原因となる。

【0139】また、像形成ユニットが回転することによりトナーが上下に激しく移動するためシール部分からのトナーのこぼれが発生しやすく、そのためシール部分ではよりシールを強化する必要があり、融着現象が発生し、それが塊となって黒筋、白筋の画像ノイズの原因となる。

【0140】また、感光体上からクリーニングされ、感光体上から回収された廃トナーが再度感光体に繰り返し付着離脱する状況が必ず発生する。その廃トナーが感光体と再度繰り返し接触、離脱することで感光体へのフィルミングが著しく発生しやすくなり、感光体の寿命低下の要因となる。

【0141】そこで、本形態のトナーの結着樹脂、定着助剤、外添剤の使用により、トナーの帯電の立上がり性が安定化し、均一な帯電性を有し、現像初期の地カブリ発生を抑えることができる。樹脂中での均一分散性の向上、材料の有する離型性、トナーの適正な帯電性のため、像形成ユニットでの、融着現象や黒筋、白筋の画像ノイズの発生はみられない。また廃トナーが感光体と再度繰り返し接触離脱による感光体へのフィルミングの発生は防止可能である。

【0142】また、本形態では、像担持体と導電性弾性ローラとの間に転写材を挿通させ、前記導電性弾性ローラに転写バイアス電圧を付与することにより前記像担持体上にあるトナー画像を静電気力で転写材に転写するトナー転写システムを具備する電子写真装置に好適に使用される。これは、かかるトナー転写システムは、接触転写であることから、電気力以外の機械力が転写に作用して、本来転写されるべきでない感光体表面に付着した逆極性トナーが転写されたり、通紙していない状態で感光体表面に付着したトナーが転写ローラ表面を汚染し、転写紙裏面を汚染させてしまうことがあるものである。

【 O 1 4 3 】 そこで、本形態のトナーの結着樹脂、定着助剤、外添剤の使用により、トナーの凝集を抑え、過帯電を防止し、帯電性の安定化が得られ、転写時の中抜けを防止できるとともに高転写効率を得ることが可能となる。また転写体や、感光体へのフィルミングの発生を防止でき、また転写紙の不要トナー粒子による汚染を防止することができる。また、転写ローラ表面上の傷やフィルミングも防止でき、画像欠陥も防止することができる。

【0144】また、本形態では、転写プロセス後に感光体上に残留したトナーをクリーニングにより回収するクリーニングプロセス工程を有さずに、次の帯電、露光、現像プロセスを行うクリーナーレスプロセスを基本構成とする電子写真装置に好適に使用される。

【0145】本形態のトナーの結着樹脂、定着助剤、外添剤の使用により、トナーの凝集を抑え、過帯電を防止し、帯電性の安定化が得られ、高転写効率を得ることが可能となる。また樹脂中での均一分散性の向上、良好な帯電性、材料の有する離型性により、非画像部に残留したトナーの現像での回収が良好に行える。そのため、非画像部の前の画像パターンが残る現像メモリーも発生もない。

【0146】また、本形態では、トナーを定着する手段 にベルト式の定着媒体を使用する構成の定着プロセスを 具備する電子写真装置に好適に使用される。そのベルト としては耐熱性と変形自在性とを有するニッケル電鋳べ ルトやポリイミドベルトの耐熱ベルトが用いられる。離 形性を向上するために表面層としてシリコーンゴム、フ ッ素ゴム、フッ素樹脂を用いる構成である。これらの定 着ベルトにおいてはこれまでは離型オイルを塗布してオ フセットを防止してきた。オイルを使用せずに高離型性 を有するトナーにより、離型オイルを塗布する必要はな くなった。しかし離型オイルを塗布しないとベルトが帯 電しやすく、未定着のトナー像がベルトと近接すると帯 電の影響により、トナー飛びが生じる場合がある。特に 低温低湿下において発生しやすい。またトナーが高温オ フセット防止のため一定以上の高分子量成分を付加し、 ある程度の弾性要素を持たせたとき、トナーの細い縦線 のパターンを描いた紙が曲率の大きいベルトからの隔離 時に先端部がベルトに持っていかれる先端オフセットが 生じる場合がある。また従来の剛性の定着ローラと比べ て弾性体のベルト式では、オイルレスにより傷による寿 命低下が問題となる。

【0147】そこで、本形態のトナーの結着樹脂、定着助剤、混練工法の使用により、オイルを使用せずともオフセットの発生を防止でき、カラー高透光性を得ることができる。トナーの過帯電性を抑制できベルトとの帯電作用によるトナーの飛びを抑えられる。またベルトからの隔離時に先端部がベルトに持っていかれるオフセットトナーの分子量分布と滑性の効果により防止することが可能となる。

【0148】無機微粉末としてはアルミナ、チタニア、シリカが適する材料である。正極帯電性を有する無機微粉末はアミノシランやアミノ変性シリコーンオイル、エボキシ変性シリコーンオイルで処理される。さらに疎水性処理を高めるため、ヘキサメチルジシラザンやジメチルジクロロシラン、他のシリコーンオイルによる処理の併用も好ましい。例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アルキル変性シリコーンオイルのうちの少なくとも1種類以上で処理することが好ましい。

【0149】またシランカップリング処理剤としては、 ジメチルジクロロシラン、トリメチルクロルシラン、ア リルジメチルクロルシラン、ヘキサメチルジシラザン、 アリルフェニルジクロルシラン、ベンジルメチルクロルシラン、ビニルトリエトキシシラン、アーメタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ジビニルクロルシラン、ジメチルビニルクロルシラン等がある。シランカップリング剤処理は、微粉体を撹拌等によりクラウド状としたものに気化したシランカップリング剤を反応させる乾式処理又は、微粉体を溶媒中に分散させたシランカップリング剤を滴下反応させる湿式法等により処理される。

【0150】負極帯電性を有する無機微粉末は、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、フッ素変性シリコーンオイル、アルキル変性シリコーンオイル等のシリコーンオイルにより処理されたものが好適に使用される。

【0151】処理は無機微粉末とシリコーンオイル等の材料とをヘンシェルミキサ等の混合機により混合する方法や、シリカヘシリコーンオイル系の材料を噴霧する方法、溶剤にシリコーンオイル系の材料を溶解或いは分散させた後、シリカ微粉末と混合した後、溶剤を除去して作成する方法等がある。無機微粉末100重量部に対して、シリコーンオイル系の材料は0.1~8重量部配合されるのが好ましい。

【0152】このとき無機微粉末は、窒素吸着によるBET比表面積は30~350 m^2 /gが好ましい。より好ましい比表面積は50~300 m^2 /g、さらに好ましくは80~250 m^2 /gの範囲にあるのが好ましい。比表面積が30 m^2 /gより小さいと、トナーの流動性が向上せず、保存安定性が低下する。比表面積が350 m^2 /gより大きいと、凝集が悪化し、均一な外添処理が難しくなる。トナー母体粒子100重量部に当たり0.1~5重量部、好ましくは0.2~3重量部配合される。0.1重量部より小さいとトナーの流動性が向上でず、5重量部より大きいと浮遊シリカが増加し、機内を汚染する。

【0153】また正極帯電性を有する無機微粉末Aと負極帯電性を有する無機微粉末Bの比表面積比が1:1~70:1で、無機微粉末Aの比表面積を無機微粉末Bよりも大きくすることである。これにより相互作用による帯電の安定化、帯電の立ち上がり性の維持、脂肪酸金属塩との相互作用によるクリーニング性、転写性が向上し、また定着時の画像の乱れを防止できる。

【0154】無機微粉末Aの比表面積が小さくなると帯電安定性の効果がなくなり、トナーが過帯電し画像濃度の低下を招く。帯電の立ち上がり性が悪化し、かぶり、転写不良が生じる。逆に比率が70を超えると無機微粉末Aと無機微粉末Bの混在性が低下し、相互作用による帯電の安定化が低下し、また脂肪酸金属塩との相互作用弱くなる。廃トナーリサイクル性の低下、転写性の低下が生じる。

【0155】また正極帯電性を有する無機微粉末Aと負

極帯電性を有する無機微粉末Bの混合比率は50:50 ~95:5の割合で正極帯電性を有する無機微粉末Aの添加量が同等又はそれ以上となるように混合することが好ましい。無機微粉末Bの割合が50を超えると過帯電が激しくなりベタ追随性が悪化する。無機微粉末Bの割合が5をより少なくなると帯電性の低下が生じ、地かぶり、廃トナー量が増大する傾向となる。

【0156】無機微粉末の帯電量はノンコートのフェライトキャリアとの摩擦帯電のブローオフ法により測定したものである。25℃45%RHの環境下で、100m1のポリエチレン容器にキャリア50gとシリカ等0.1gを混合し、縦回転にて100min⁻¹の速度で5分、30分間攪拌した後、0.3g採取し、窒素ガス1.96×10⁴(Pa)で60secブローした。【0157】正帯電性では5分間攪拌後の5分値が+100~+800μC/gで、30分間攪拌後の30分の値が+50~+400μC/gであることが好ましい。30分値での帯電量が5分値での帯電量の40%以上を維持しているシリカが好ましい。低下率が大きいと長期連続使用中での帯電量の変化が大きく、一定の画像を維持できなくなる。

【0158】負帯電性では5分値が-100~-800 μ C/gで、30分の値が-50~-400 μ C/gで あることが好ましい。高い帯電量のシリカでは少量の添加量で機能を発揮できる。

【0159】また本形態ではトナーの電荷制御の目的で結着樹脂に電荷制御剤を配合する。好ましい材料としてはサリチル酸金属塩又は金属錯体、ベンジル酸誘導体の金属錯体、フェニルボレイト4級アンモニウム塩が好適に使用される。金属は亜鉛、ニッケル、銅、クロムが好適である。添加量は結着樹脂100重量部に対し、0.5~5重量部が好ましい。より好ましくは1~4重量部、さらに好ましくは3~4重量部である。

【0160】本形態に使用される顔料としては、カーボンブラック、鉄黒、グラファイト、ニグロシン、アゾ染料の金属錯体、、C. I. ピグメント・イエロー1,3,74,97,98等のアセト酢酸アリールアミド系モノアゾ黄色顔料、C. I. ピグメント・イエロー12,13,14,17等のアセト酢酸アリールアミド系ジスアゾ黄色顔料、C. I. ソルベントイエロー19,77,79、C. I. ディスパース・イエロー164、C. I. ピグメント・レッド48,49:1,53:1,57,57:1,81,122,5等の赤色顔料、C. I. ソルベント・レッド49,52,58,8等の赤色染料、C. I. ピグネント・ブルー15:3等のアタロシアニン及びその誘導体の青色染顔料が1種又は2種類以上で配合される。添加量は結着樹脂100重量部に対し、3~8重量部が好ましい。

【0161】さらに、トナーの体積平均粒径は $3\sim11$ μ mで、好ましくは $3\sim9\mu$ m、より好ましくは $3\sim6$

μmである。11μmより大きいと、解像度が低下し高 画質が得らず、3μmより小さいと、トナーの凝集が強 くなり地カブリが増大する。

【0162】定着助剤の体積平均粒径は $1\sim10\mu$ m で、好ましくは $2\sim8\mu$ m、より好ましくは $2\sim5\mu$ m である。

【0163】またトナーの体積粒径分布の変動係数が15~35%、個数粒径分布の変動係数が20~40%であることが好ましい。より好ましくは、体積粒径分布の変動係数が15~30%、個数粒径分布の変動係数が20~35%、さらに好ましくは、体積粒径分布の変動係数が15~25%、個数粒径分布の変動係数が20~30%である。

【0164】変動係数とはトナーの粒径における標準偏差を平均粒径で割ったものである。コールターカウンタ (コールター社)を使用して測定した粒子径をもとにしたものである。標準偏差は、n個の粒子系の測定を行なった時の、各測定値の平均値からの差の2乗を(n-1)で割った値の平方根であらわされる。

【0165】つまり変動係数とは粒度分布の広がり具合をあわらしたもので、体積粒径分布の変動係数が15%未満、又は個数粒径分布の変動係数が20%未満となると、生産的に困難であり、コストアップの要因となる。体積粒径分布の変動係数が35%より大、または個数粒径分布の変動係数が40%より大きくなると、粒度分布がブロードとなるとトナーの凝集性が強くなり、感光体へのフィルミングが発生しやすくなる。

【0166】トナーは予備混合処理、溶融混錬処理、粉砕分級処理、外添処理の工程を経て作成される。

【0167】予備混合処理は、結着樹脂とこれに分散させるべき添加剤を撹拌羽根を具備したミキサなどにより均一分散する処理である。ミキサとしては、スーパーミキサ(川田製作所製)、ヘンシェルミキサ(三井三池工業製)、PSミキサ(神鋼パンテック製)、レーディゲミキサ等の公知のミキサを使用する。

【0168】図5にトナー溶融混練処理の概略斜視図を、図6に平面図、図7に正面図、図8に側面図を示す。601は原料の供給機、602はロール(RL1)、603はロール(RL2)、604はロール(RL1)上に巻きついたトナーの溶融膜、602-1はロール(RL1)の前半部(原料の搬送方向の上流部)、602-2はロール(RL2)の後半部(原料の搬送方向の下流部)、605はロール(RL1)の前半部602-1を加熱するための熱媒体の流入口、606はロール(RL1)の後半部602-2を加熱するための熱媒体の流入口、608はロール(RL1)の後半部602-2を加熱するための熱媒体の流入口、608はロール(RL1)の後半部602-2を加熱するための熱媒体の流入口、608はロール(RL2)603をの熱媒体の流入口、610はロール(RL2)603を

加熱又は冷却した熱媒体の流出口、611はロール表面のスパイラル状の溝で深さは2~10mm程度、612はロール間で形成されるトナー溜りである。定量供給機から原料はロール(RL1)602-1側の端部から投入される。ロール(RL1)602-1の熱とロール(RL2)603との圧縮せん断力により樹脂が溶融し、ロール(RL1)の前半部602-1に巻付くようになる。その状態がロール(RL1)の後半部602-2の端部にまで広がり、ロール(RL1)の前半部602-1よりも低い温度で加熱されたロール(RL2)の後半部602-2から剥離される。なお、上記処理の間、ロール603は室温以下に冷却されている。ロール(RL1)602とロール(RL2)603のクリアランスは0.1~1.0mmである。原料投入量は10kg/hで処理した。

【0169】得られたトナー塊を、カッターミルなどで 粗粉砕し、その後ジェットミル粉砕 (例えば I D S 粉砕 機、日本ニューマティック工業) などで細かく粉砕し、 さらに必要に応じて気流式分級機で微粉粒子をカットして、所望の粒度分布のトナー粒子(トナー母体粒子)を得るものである。そして分級処理により3~6μmの範囲の体積平均粒子径を有するトナー粒子(トナー母体粒子)を所得する。

【0170】外添処理は、前記分級により得られたトナー粒子(トナー母体粒子)にシリカなどの外添剤を混合する処理である。これにはヘンシェルミキサ、スーパーミキサなどの公知のミキサが使用される。

【0171】次に、実施例により本発明を更に詳細に説明する。

【0172】(表1)に実施例で使用する結着樹脂の特性を示す。樹脂はビスフェノールAプロピルオキサイド付加物、テレフタル酸、トリメリット酸、コハク酸、フマル酸を主成分としたポリエステル樹脂を使用し、配合比、重合条件により熱特性を変えた樹脂を使用した。

[0173]

【表1】

樹脂	PES-1	PES-2	PES-3	PES-4	pes-5
Mnf(×10⁴)	0.32	0.59	0.52	0.32	0.23
Mwf(×10 ⁴)	6.40	5.91	4.40	2.10	1.40
Mzf(×10 ⁴)	97.50	40.50	31.00	26.50	7.40
Wmf=Mwf/Mnf	20.00	10.02	8.46	6.56	6.09
Wzf=Mzf/Mnf	304.69	68.64	59.62	82.81	32.17
Tg	58.00	55.50	57.30	57.30	54.00
Tm	119.00	105.00	110.80	107.50	100.00
Tfb	100.00	90.00	95.00	96.20	85.00
AV	15	25	15	18	2

【O174】Mnfは結着樹脂の数平均分子量、Mwfは結着樹脂の重量平均分子量、Wmfは重量平均分子量 Mwfと数平均分子量Mnfとの比Mwf/Mnf、Wzfは結着樹脂のZ平均分子量Mzfと数平均分子量Mnfの比Mzf/Mnf、AVは樹脂酸価を示す。 【 O 1 7 5 】 (表 2) に本実施例で使用する定着助剤を示す。

[0176]

【表2】

定證助剤		融点 Tw (℃)	酸低	針入窟
WF-1	ポリエチレンワックス/無水マレイン酸 /炭条数50末端アルコール型ワックス /ターシャリーブチルパーオキシイソプロピルモノカルボネート :100/15/10/5 20 20 20 20 20 20 20 20 20 20 20 20 20	98	45	1
WF-2	フィッシャートロプッシュワックス/無水マレイン酸 /1-オクタノール/ジクミルパーオキサイド :100/20/10/5堂曼郎	120	58	1

【0177】(表3)に本実施例で使用する電荷制御剤

[0178]

を示す。

【表3】

森材No.	組成	材料
CCA1	Cr含金アゾ扱料	534(オリエント化学社製)
CCA2	サリチル酸緊導体の金属塩	E-81(オリエント化学社製)
CCA3	ベンジル酸脱導体の金鳳塩	LR-147(日本カーリット社製)

【0180】正帯電性では5分間撹拌後の5分値が+1 $00\sim+800\mu$ C/gで、30分間撹拌後の30分の 値が $+50\sim+400\mu$ C/gであることが好ましい。 30分値での帯電量が5分値での帯電量の40%以上を 維持しているシリカが好ましい。低下率が大きいと長期 連続使用中での帯電量の変化が大きく、一定の画像を維 持できなくなる。

【0181】負帯電性では5分値が-100~-800 μ C/gで、30分の値が-50~-400 μ C/gで あることが好ましい。高い帯電量のシリカでは少量の添加量で機能を発揮できる。

【0182】 【表4】

無极 微粉末	材料	BET値 (m²/g)	5分値	30分位	5分位/ 30分值
SG-1	アミノ変性シリコーンオイルで 処理したシリカ	200	740	350	47.3
SG-2	アミノシランで処理したシリカ	150	280	140	50.00
SG-3	ジメチルシリコーンオイルで 処理したシリカ	100	-300	-200	66.67
SG-4	ヘキサメチルジシラザンで 処理したシリカ	50	-432	-226	52.31
SG-5	強化インジウム	10.5	粒径0.1μm		
SG-6	酸化鍋-アンチモンで表面被囚 処理された酸化シリカ	43.2	粒径0.2μm		

【0183】(表5)に本実施例で使用する顔料を示す。

[0184]

【表5】

顔料	組成
СМ	マゼンダ顔料:ピグメント・レッド57:1
CC	シアン顔科:ピグメント・ブルー15:3
CY	イエロー顔料:ピグメント・イエロー12
вк	カーボンブラックMA100A(三菱化学社製)

【0185】(表6)(表7)に本実施例での混練条件

を亦す

【0186】 Trj1 ($^{\circ}$) はロール (RL1) の前半部の加熱温度、Trk1 ($^{\circ}$) はロール (RL1) の後半部の加熱温度、Tr2 ($^{\circ}$) ロール (RL2) の加熱温度、Trj2 ($^{\circ}$) はロール (RL1) の前半部のトナー溶融層が形成された後、ロール (RL1) の前半部のロール温度を変動させたときの温度、Rw1はロール (RL1) の回転数、Rw2はロール (RL2) の回転数、uール (RL1) の回転時の負荷電流値をDr1、ロール (RL2) の負荷電流値をDr2と示している。【0187】

【表6】

混枊条件	結び樹脂	Tm (℃)	定分助剂	Tw (℃)	Sw (部)	Trj1 (℃)	Trj2 (℃)	Trk1 (℃)
Q-1	PES-1	119.0	WF-1	98	8	149	100	82
Q-2	PES-2	105.0	WF-2	120	10	153	110	110
Q-3	PES-3	110.8	WF-1	98	6	122	85	74
Q-4	PES-4	107.5	WF-2	120	8	130	95	96
q-5	PES-5	100.0				100.0	100	100

【表7】

[0188]

混練条件	Tr2 (℃)	Rw1 (min ⁻¹)	Rw2 (min ⁻¹)	Rw1/Rw2	Dr1 (A)	Dr2 (A)	Dr1/Dr2
Q-1	20	95.0	50.0	1.9	29.2	12.1	2.4
Q-2	6	95.0	65.0	1.5	31.0	16.5	1.9
Q-3	20	75.0	50.0	1.5	25.2	12.5	2.0
Q-4	6	80.0	40.0	2.0	24.9	10.0	2.5
q-5	20	60.0	60.0	1.0	19.0	17.0	1.1

【0189】(表8)に本実施例に本実施例で使用した

【0190】 【表8】

トナー材料組成を示す。

トナー	結着樹脂	電荷 制御剤	顏料	無機 微粉末	無機 微粉末	混練条件	定着剤
TM1	PES1	CCA2(2)	CM(5)	SG1(1.2)		Q-1	WF-1(8)
TM2	PES2	CCA2(1)	CM(5)	SG2(1.0)	SG4(0.5)	Q-2	WF-2(10)
TM3	PES3	CCA2(1)	CM(5)	SG1(0.8)	SG5(0.4)	Q-3	WF-1(8)
TM4	PES4	CCA2(1) +CCA3(2)	CM(5)	SG2(1.2)	SG3(0.5)	Q-4	WF-2(7)
tm5	pes5	CCA2(2)	CM(5)		SG4(0.5)	q5	
TYI	PES1	CCA3(2)	CY(5)	SG2(1.2)		Q-1	WF-1(8)
TY2	PES2	CCA3(2)	CY(5)	SG1(1.0)	SG3(0.5)	Q-2	WF-2(10)
TY3	PES3	CCA2(1)	CY(5)	SG2(0.8)	SG6(0.4)	Q-3	WF-1(8)
TY4	PES4	CGA2(1) +CGA3(2)	CY(5)	SG1(1.2)	SG4(0.8)	Q-4	WF-2(7)
ty5	pes5	CCA2(1)	CY(5)		SG4(0.4)	q-5	
TC1	PES1	CCA2(2)	CM(5)	SG2(1.2)		Q-1	WF-1(8)
TC2	PES2	CCA2(2)	CM(5)	SG1(1.0)	SG4(0.5)	Q-2	WF-2(10)
TC3	PES3	CCA2(1)	CM(5)	SG2(0.8)	SG5(0.4)	Q-3	WF-1(8)
TC4	PES4	CCA2(1) +CCA3(2)	CM(5)	SG1(1.2)	SG3(0.8)	Q-4	WF-2(7)
tc5	pes5	GCA2(1)	CM(5)		SG4(0.5)	q-5	
TB1	PES1	CCA1(2)	BK(8)	SG1(1.2)		Q-1	WF-1(8)
TB2	PES2	CCA1(2)	BK(8)	SG2(1.0)	SG3(0.5)	Q-2	WF-2(10)
ТВ3	PES3	CCA1(2)	BK(8)	SG1(0.8)	SG6(0.6)	Q-3	WF-1(7)
TB4	PES4	CCA1(2)	BK(8)	SG2(1.2)	SG4(0.8)	Q-4	WF-2(9)
tb5	pes5	GCA1(1)	BK(8)		SG4(0.4)	q-5	<u> </u>

【0191】それぞれのトナーの重量平均粒径は6~7 μm、体積粒径分布の変動係数が20~25%、個数粒径分布の変動係数が25~30%となるように試作した。

【0192】顔料、電荷制御剤、定着助剤の配合量比は結着樹脂100重量部に対する配合量(重量部)比を括弧内に示す。外添剤シリカはトナー母体100重量部に対する配合量(重量部)を示している。外添処理はFM20Bにおいて、撹拌羽根20S0型、回転数2000rpm、処理時間5min、投入量1kgで行った。

【0193】(表9)(表10)(表11)に本実施例で 混練処理を施した後のトナーの分子量特性を示す。トナ ーはマゼンタトナーのTMトナーで評価した。イエロー、シアン、ブラックトナーでも同様な結果になる。Mnvはトナーの数平均分子量、Mwvはトナーの重量平均分子量、Wmvはトナーの重量平均分子量Mnvの比Mwv/Mnv、Wzvはトナーの乙平均分子量Mzvと数平均分子量Mnvの比Mzv/Mnvを示す。

【0194】MLは分子量分布において低分子量側の分子量極大ピーク値を、MHは高分子量側の分子量極大ピーク値を、MVは分子量極小ピーク値を示す。SmはHb/Haを、Snは(Hb-La)/(Ha-La)、SK1はM10/M90、SK2は(M10-M90)

∕M90を示す。 【0195】

【表9】

トナー	TM-1	TM-2	TM-3	TM-4	tm-5
Mnv(×10 ⁴)	0.36	0.64	0.50	0.33	0.24
Mwv(×10 ⁴)	2.90	3.74	2.80	1.70	1.20
Mzv(×10 ⁴)	11.30	11.80	9.40	7.70	4.90
Wmv=Mwv/Mnv	8.06	5.84	5.60	5.15	5.00
Wzv=Mzv/Mnv	31.39	18.44	18.80	23.33	20.42

[0196]

【表10】

トナー	TM-1	TM-2	TM-3	TM-4	tm-5
Mwf/Mwv	2.21	1.58	1.57	1.24	1.17
Mzf/Mzv	8.63	3.43	3.30	3.44	1.51
Wmf/Wmv	2.48	1.71	1.51	1.27	1.22
Wzf/Wzv	9.71	3.72	3.17	3.55	1.58

[0197]

【表11】

トナー	TM-1	TM-3	TM-4	TM-5	tm-7
ML	0.70	1.00	0.88	0.56	0.46
мн	13.10	9.00	9.20	10.00	8.90
MV	8.80	5.50	5.00	7.00	5.80
Sm	0.40	0.73	0.48	0.20	
Sn	0.17	0.18	0.04		
SK1	2.25	1.58	2.04	2.2	
SK2	1.25	0.58	1.04	1.21	

【0198】また図914に分子量分布特性を示す。 【0199】図9a、図9bはそれぞれ結着樹脂PES-1、トナーTM-1の分子量分布特性、図10a、図10bはそれぞれ結着樹脂PES-2、トナーTM-2の分子量分布特性、図11a、図11bはそれぞれ結着樹脂PES-3、トナーTM-3の分子量分布特性、図12a、図12bはそれぞれ結着樹脂PES-4、トナーTM-4の分子量分布特性、図13a、図13bはそれぞれ結着樹脂pes-5、トナーtm-5の分子量分布特性を示す。

【0200】結着樹脂PES-1では3×10⁴以上の高分子量成分を結着樹脂分子量分布全体に対し面積比で5%以上存在している。また3×10⁵~9×10⁶の高分子量成分を結着樹脂分子量分布全体に対し面積比で1%以上有している。同様にPES-2、3、4も3×10⁴以上の高分子量成分を結着樹脂分子量分布全体に対し面積比で5%以上存在している。また3×10⁵~9×10⁶の高分子量成分を結着樹脂分子量分布全体に対し面積比で1%以上有している。しかしpes-5では3×10⁴以上の高分子量成分の存在は結着樹脂分子量

分布全体に対し面積比で5%以下であり、また 3×10 $^{5}\sim9\times10$ の高分子量成分は存在しない。

【0201】混練によりトナーではそれが分子切断され、高分子成分側にピーク又はショルダーとなって現れていることが分かる。つまり透光性を阻害している成分が切断によりなくなり、高分子側に急峻な傾きとなってあらわれ、これが透光性を阻害せずに耐オフセット性を維持させている要因である。トナーTM-1では 3×1 0 5 以上の高分子量成分量はトナー分子量分布全体に対し面積比で5%以下であり、 1×10^{6} 以上の高分子量成分はほとんど含有していない。同様にTM-2、3、4 6 3×1 0 5 以上の高分子量成分量はトナー分子量分布全体に対し面積比で5%以下であり、 1×10^{6} 以上の高分子量成分量はトナー分子量分布全体に対し面積比で5%以下であり、 1×10^{6} 以上の高分子量成分はほとんど含有していない。

【0202】また図14に分子量分布特性を示す。図中の太線はトナーTM-3の分子量分布特性を示す。高分子成分側に急峻なピークとなって現れている。これは結着樹脂PES3の高分子量成分が、混練により分子切断され、高分子成分側に急峻なピークとなって現れたためである。

【0203】その高分子側の急峻な分布のピーク高さを 100%としたとき、極大ピーク又はショルダーに相当 する分子量値よりも大きい領域にある分子量曲線、すな わちこの領域における分子量分布曲線の傾きが負となる 部位、つまり分布曲線の右側の部位において、分子量分 布の極大ピーク又はショルダーの高さを100%とした 場合に、分子量極大ピーク又はショルダーの高さの90 %に相当する分子量をM90、分子量極大ピーク又はシ ョルダーの高さの10%に相当する分子量をM10とし ている。ここで、M10/M90の値(分子量分布曲線 の傾き)は、超高分子量成分の分子切断の状態を定量化 できるものである。M10/M90の値が小さいという ことは分子量分布曲線の傾きが急峻であり、透光性を阻 害している成分が切断によりなくなり、高透光性を有す るわけである。さらには、この高分子側に現れるピーク が耐オフセット性に寄与しているわけである。

【0204】(実施例1)図1は本実施例で使用したフルカラー画像形成用の電子写真装置の構成を示す断面図である。図1において、1はカラー電子写真プリンタの外装筐で、図中の右端面側が前面である。1Aはプリンタ前面板であり、この前面板1Aはプリンタ外装筐1に対して下辺側のヒンジ軸1Bを中心に点線表示のように 倒し開き操作、実線表示のように起こし閉じ操作自由である。プリンタ内に対する中間転写ベルトユニット2の 着脱操作や紙詰まり時などのプリンタ内部点検保守等は前面板1Aを倒し開いてプリンタ内部を大きく解放することにより行われる。この中間転写ベルトユニット2の 着脱動作は、感光体の回転軸母線方向に対し垂直方向になるように設計されている。

【0205】中間転写ベルトユニット2の構成を図2に示す。中間転写ベルトユニット2はユニットハウジング2aに、中間転写ベルト3、導電性弾性体よりなる第1転写ローラ4、アルミローラよりなる第2転写ローラ5、中間転写ベルト3の張力を調整するテンションローラ6、中間転写ベルト3上に残ったトナー像をクリーニングするベルトクリーナローラ7、クリーナローラ7上に回収したトナーをかきおとすスクレーパ8、回収したトナーを溜おく廃トナー溜め9aおよび9b、中間転写ベルト3の位置を検出する位置検出器10を内包している。この中間転写ベルトユニット2は、図1に示されているように、プリンタ前面板1Aを点線のように倒し開いてプリンタ外装筐1内の所定の収納部に対して着脱自在である。

【0206】中間転写ベルト3は、絶縁性樹脂中に導電性のフィラーを混練して押出機にてフィルム化して用いる。本実施例では、絶縁性樹脂としてポリカーボネート樹脂(たとえば三菱ガス化学製、ユーピロンZ300)95重量部に、導電性カーボン(たとえばケッチェンブラック)5重量部を加えてフィルム化したものを用いた。また、表面に弗素樹脂をコートした。フィルムの厚

みは約350μm、抵抗は約10⁷~10⁹Ω・cmである。ここで、中間転写ベルト3としてポリカーボネート樹脂に導電性フィラーを混練し、これをフィルム化したものを用いているのは、中間転写ベルト3の長期使用による弛みや、電荷の蓄積を有効に防止できるようにするためであり、また、表面を弗素樹脂でコートしているのは、長期使用による中間転写ベルト表面へのトナーフィルミングを有効に防止できるようにするためである。

【0207】この中間転写ベルト3を、厚さ 100μ mのエンドレスベルト状の半導電性のウレタンを基材としたフィルムよりなり、周囲に $10^6\sim10^8\Omega$ ・cmの抵抗を有するように低抵抗処理をしたウレタンフォームを成形した第1転写ローラ4、第2転写ローラ5およびテンションローラ6に巻回し、矢印方向に移動可能に構成する。ここで、中間転写ベルト3の周長は、最大用紙サイズであるA4用紙の長手方向の長さ(298mm)に、後述する感光体ドラム(直径30mm)の周長の半分より若干長い長さ(62mm)を足した360mmに設定している。

【0208】中間転写ベルトユニット2がプリンタ本体に装着されたときには、第1転写ローラ4は、中間転写ベルト3を介して感光体11(図2に図示)に約9.8×10⁴(N/m 2)の力で圧接され、また、第2転写ローラ5は、中間転写ベルト3を介して上記の第1転写ローラ4と同様の構成の第3転写ローラ12(図2に図示)に圧接される。この第3転写ローラ12は中間転写ベルト3に従動回転可能に構成している。

【0209】クリーナローラ7は、中間転写ベルト3を 清掃するベルトクリーナ部のローラである。これは、金 属性のローラにトナーを静電的に吸引する交流電圧を印 加する構成である。なお、このクリーナローラ7はゴム ブレードや電圧を印加した導電性ファーブラシであって もよい。

【0210】図1において、プリンタ中央には黒、シアン、マゼンタ、イエロの各色用の4組の扇型をした像形成ユニット17Bk、17Y、17M、17Cが像形成ユニット群18を構成し、図のように円環状に配置されている。各像形成ユニット17Bk、17Y、17M、17Cは、プリンタ上面板1Cをヒンジ軸1Dを中心に開いて像形成ユニット群18の所定の位置に着脱自在である。像形成ユニット17Bk、17Y、17M、17Cはプリンタ内に正規に装着されることにより、像形成ユニット側とプリンタ側の両者側の機械的駆動系統・電気回路系統が相互カップリング部材(不図示)を介して結合して機械的・電気的に一体化する。

【0211】円環状に配置されている像形成ユニット17Bk、17C、17M、17Yは支持体(図示せず)に支持されており、全体として移動手段である移動モータ19に駆動され、固定されて回転しない円筒状の軸20の周りに回転移動可能に構成されている。各像形成ユ

ニットは、回転移動によって順次前述の中間転写ベルト3を支持する第2転写ローラ4に対向した像形成位置21に位置することができる。像形成位置21は信号光22による露光位置でもある。

【0212】各像形成ユニット17Bk、17C、17M、17Yは、中に入れた現像剤を除きそれぞれ同じ構成部材よりなるので、説明を簡略化するため黒用の像形成ユニット17Bkについて説明し、他色用のユニットの説明については省略する。

【0213】図3に像形成ユニットを示す。11は感光体、30はJIS-A硬度60°のシリコーンゴムよりなる $\phi18$ mmの現像ローラで、感光体に21Nの力で圧接され、矢印の方向に回転する。31は $\phi14$ mmのウレタンスポンジよりなる供給ローラで、トナーホッパ内のトナーを現像ローラに供給する。32は金属製のブレードで現像ローラ上にトナーの層を形成する。33は電源で230Vの直流と、500pp (1kHz)の交流電圧が印可される。24はエピクロルヒドリンゴムよりなる $\phi12$ mmの帯電ローラで直流バイアス-1kVが印加される。感光体表面を-450Vに帯電する。26は現像剤溜め、34はクリーナ、27は廃トナー、28Bkはブラックトナーである。

【0214】図1の35はプリンタ外装筐1内の下側に配設したレーザビームスキャナ部であり、図示しない半導体レーザ、スキャナモータ35a、ポリゴンミラー35b、レンズ系35cなどから構成されている。このレーザビームスキャナ部35からの画像情報の時系列電気画素信号に対応した画素レーザ信号光22は、像形成ユニット17Bkと17Yの間に形成された光路窓口36を通って、軸20の一部に開けられた窓37を通して軸20内の固定されたミラー38に入射し、反射されて像形成位置21にある像形成ユニット17Bkの露光窓25から像形成ユニット17Bk内にほぼ水平に進入し、像形成ユニット内に上下に配設されている現像剤溜め26とクリーナ34との間の通路を通って感光体11の左側面の露光部に入射し母線方向に走査露光される。

【0215】ここで光路窓口36からミラー38までの 光路は両隣の像形成ユニット17Bkと17Yとのユニット間の隙間を利用しているため、像形成ユニット群1 8には無駄になる空間がほとんど無い。また、ミラー3 8は像形成ユニット群18の中央部に設けられているため、固定された単一のミラーで構成することができ、シンプルでかつ位置合わせなどが容易な構成である。

【0216】12はプリンタ前面板1Aの内側で紙給送ローラ39の上方に配設した第3転写ローラであり、中間転写ベルト3と第3転写ローラ12との圧接されたニップ部には、プリンタ前面板1Aの下部に設けた紙給送ローラ39により用紙が送られてくるように用紙搬送路が形成されている。

【0217】40はプリンタ前面板1Aの下辺側に外方

に突出させて設けた給紙カセットであり、複数の紙Sを同時にセットできる。41aと41bとは紙搬送タイミングローラ、42aは定着ローラ、42bは加圧ローラ、42cはフッ素ゴムからなる定着ベルト、42dは加熱媒体ローラ、43は第3転写ローラ12と定着ローラ対間に設けた紙ガイド板、44a・44bは定着ローラ対の紙出口側に配設した紙排出ローラ対である。

【0218】図4にその定着プロセスを示す。定着ローラ42aとヒートローラ42dとの間にベルト42cがかけられている。定着ローラ42aと加圧ローラ42bとの間に所定の加重がかけられており、ベルトと加圧ローラとの間でニップが形成される。ヒートローラ42dの内部にはヒータが設けられ、外面には温度センサー51が配置されている。

【0219】加圧ローラ42bは加圧バネ52により定着ローラ42aに押しつけられている。トナー53を有する記録材54は、案内板55に沿って動く。

【0220】定着部材としての定着ローラ42aは、長さが250mm、外径が14mm、厚さ1mmのアルミニウム製中空ローラ芯金56の表面に、JIS規格によるゴム硬度(JIS-A)が20度のシリコーンゴムからなる厚さ3mmの弾性層57を設けている。この上にシリコーンゴム層58が3mmの厚みで形成され外径が約20mmとなっている。図示しない駆動モータから駆動力を受けて100mm/sで回転する。

, *†*

1

【0221】ヒートローラ42dは肉厚1mm、外径20mmのアルミニウムの中空パイプからなっている。内部に加熱用の700Wのランプヒータ58を有し、定着ローラ表面温度はサーミスタを用いて表面温度170度に制御した。また、OHP画像定着の際は50mm/sと半速での定着を行った。

【0222】加圧部材としての加圧ローラ42bは、長さが250mm、外径20mmである。これは外径16mm、厚さ1mmのアルミニウムからなる中空ローラ芯金59の表面にJIS規格によるゴム硬度(JISーA)が55度のシリコーンゴムからなる厚さ2mmの弾性層60を設けている。この加圧ローラ42bは、回転可能に設置されており、片側147Nのバネ加重のバネ52によって定着ローラ1との間で幅5.0mmのニップ幅を形成している。

【0223】各像形成ユニット17Bk、17C、17M、17Y、中間転写ベルトユニット2には、廃トナー溜めを設けている。

【0224】以下、動作について説明する。

【0225】最初、像形成ユニット群18は、図1に示すように、黒の像形成ユニット17Bkが像形成位置21にある。このとき感光体11は中間転写ベルト3を介して第1転写ローラ4に対向接触している。

【0226】像形成工程により、レーザビームスキャナ部35により黒の信号光が像形成ユニット17Bkに入

力され、黒トナーによる像形成が行われる。このとき像 形成ユニット17Bkの像形成の速度(感光体の周速に 等しい60mm/s)と中間転写ベルト3の移動速度は 同一になるように設定されており、像形成と同時に第1 転写ローラ4の作用で、黒トナー像が中間転写ベルト3 に転写される。このとき第1転写ローラには+1kVの 直流電圧を印加した。黒のトナー像がすべて転写し終わ った直後に、像形成ユニット17日k、17C、17 M、17Yは像形成ユニット群18として全体が移動モ ータ19に駆動されて図中の矢印方向に回転移動し、ち ょうど90度回転して像形成ユニット17Cが像形成位 置21に達した位置で止まる。この間、像形成ユニット の感光体以外のトナーホッパ26やクリーナ34の部分 は感光体11先端の回転円弧より内側に位置しているの で、中間転写ベルト3が像形成ユニットに接触すること はない。

【0227】像形成ユニット17Cが像形成位置21に到着後、前と同様に今度はシアンの信号でレーザビームスキャナ部35が像形成ユニット17Cに信号光22を入力しシアンのトナー像の形成と転写が行われる。このときまでに中間転写ベルト3は一回転し、前に転写された黒のトナー像に次のシアンのトナー像が位置的に合致するように、シアンの信号光の書き込みタイミングが制御される。この間、第3転写ローラ12とクリーナローラ7とは中間転写ベルト3から少し離れており、転写べ

ルト上のトナー像を乱さないように構成されている。 【0228】以上と同様の動作を、マゼンタ、イエロについても行い、中間転写ベルト3上には4色のトナー像が位置的に合致して重ね合わされカラー像が形成された。最後のイエロトナー像の転写後、4色のトナー像はタイミングを合わせて給紙カセット40から送られる用紙に、第3転写ローラ12の作用で一括転写される。このとき第2転写ローラ5は接地し、第3転写ローラ12には+1.5kVの直流電圧を印加した。用紙に転写されたトナー像は定着ローラ対42a・42bにより定着された。用紙はその後排出ローラ対44a・44bを経て装置外に排出された。中間転写ベルト3上に残った転写残りのトナーは、クリーナローラ7の作用で清掃され次の像形成に備えた。

【0229】次に単色モード時の動作を説明する。単色モード時は、まず所定の色の像形成ユニットが像形成位置21に移動する。次に前と同様に所定の色の像形成と中間転写ベルト3への転写を行い、今度は転写後そのまま続けて、次の第3転写ローラ12により給紙カセット40から送られてくる用紙に転写をし、そのまま定着した

【0230】(表12)に図1の電子写真装置により、画像出しを行った結果を示す。

【0231】 【表12】

[]	感光体上	函像混皮(ID)		カブリ	全面 ベタ画像	転写	定辯時の
トナー	フィルミング	初期	テスト後	7,7	均一性	中抜け	トナー乱れ
TM1	未発生	1.40	1.42	0	0	なし	発生なし
TM2	未発生	1.35	1.43	0	0	なし	発生なし
ТМЗ	未発生	1.40	1.46	0	0	なし	発生なし
TM4	未発生	1.30	1.42	0	0	なし	発生なし
tm5	発生	1.46	1.02	х	×	発生	トナー飛び発生
TY1	杂発生	1.36	1.44	0	0	なし	発生なし
TY2	杂発 生	1.33	1.42	0	0	なし	発生なし
TY3	杂発生	1.40	1.45	0	0	なし	発生なし
TY4	杂発生	1.28	1.38	0	0	なし	発生なし
ty5	発生	1.44	1.08	×	×	発生	トナー飛び発生
TC1	未発生	1.40	1.46	0	0	なし	発生なし
TC2	未発生	1.38	1.44	0	0	なし	発生なし
ТСЗ	未発生	1.36	1.45	0	0	なし	発生なし
TC4	杂発生	1.32	1.40	0	0	なし	発生なし
tc5	発生	1.48	1.00	×	×	発生	トナ一飛び発生
TB1	未発生	1.40	1.48	0	0	なし	免生なし
TB2	未発生	1.42	1.46	0	0	なし	発生なし
TB3	未発生	1.40	1.45	0	0	なし	発生なし
ТВ4	未発生	1.33	1.42	0	0	なし	発生なし
tb5	発生	1.48	1.03	×	×	発生	トナー飛び発生

【0232】かかる電子写真装置により、前記のように 製造したトナーを用いて画像出しを行ったところ、横線 の乱れやトナーの飛び散り、文字の中抜けなどがなくべ タ黒画像が均一で、16本/mmの画線をも再現した極 めて高解像度高画質の画像が得られ、画像濃度1.3以 上の高濃度の画像が得られた。また、非画像部の地かぶ りも発生していなかった。更に、1万枚の長期耐久テス トにおいても、流動性、画像濃度とも変化が少なく安定 した特性を示した。また現像時の全面ベタ画像を取った ときの均一性も良好であった。現像メモリーも発生して いない。また転写においても中抜けは実用上問題ないレ ベルであり、転写効率は90%であった。また、感光 体、中間転写ベルトへのトナーのフィルミングも実用上 問題ないレベルであった。中間転写ベルトのクリーニン グのスクレープ不良も未発生であった。また定着時のト ナーの乱れやトナー飛びもほとんど生じていない。また クリーニングブレードを使用せずに転写時の残トナーを このまま現像での回収を行うクリーナプロセスにおいて も、回収がスムーズに行え、前画像の履歴が残ることが なかった。しかしtm5、ty5、tc5のトナーは感 光体のフィルミングや転写中抜けが発生し、カブリも多く発生した。中間転写ベルトのフィルミングや、クリーニングのスクレープ不良も発生した。現像時の全面ベタ画像を取ったときに後半部にかすれが生じた。定着時にトナーのトナー飛びが発生した。

【0233】次に(表13)に〇HP用紙に付着量0.4 g/c m²以上のベタ画像をプロセス速度は110 mm/s、オイルを塗布しないベルトを用いた定着装置にて非オフセット性試験を行った。定着ニップ部で〇HPのジャムは発生しなかった。普通紙の全面ベタグリーン画像では、オフセットは122000枚目までは全く発生しなかった。シリコン又はフッ素系の定着ベルトでオイルを塗布せずともベルトの表面劣化現象はみられない。【0234】透過率と、高温でのオフセット性を評価した。プロセス速度は55 mm/sで、160℃で透過率は分光光度計U-3200(日立製作所)で、700 nmの光の透過率を測定した。定着性、耐オフセット性、保存安定性の結果を示す。

[0235]

【表13】

トナー	OHP透過率 (%)	高温オフセット発生温度 (℃)	保存性テスト	
TM1	90	180	0	
TM2	91.5	200	0	
тмз	90.9	195	0	
TM4	88.9	185	0	
tm5	91.5	全温度領域で発生	×	

【0236】OHP透光性が80%以上を示しており、また非オフセット温度幅も40~60Kとオイルを使用しない定着ローラにおいて良好な定着性を示した。また50℃、24時間の保存安定性においても凝集はほとんど見られなかった。しかしtm5のトナーは貯蔵安定性テストで固まりが生じ、また非オフセット温度域も狭い結果となった。

[0237]

【発明の効果】以上のように、本発明によれば、酸価10以上のポリエステル樹脂と、酸価30~60mgKOH/g、融点90~120℃、25℃における針入度が2以下であるエステル結合又はアミド結合を有する炭化水素系ワックスと着色剤とからなるトナー母体に、少なくとも正帯電性を示す無機微粒子、又は正帯電性を示す無機微粒子Aと負帯電性を示す無機微粒子B、また正帯電性を示す無機微粒子Aと低抵抗金属酸化物微粉末からなる外添剤を添加することにより、さらには結着樹脂、着色剤、その他必要に応じて添加される添加剤とを少なくとも混練処理工程を経てトナーを作成し、作成された前記トナーのGPCクロマトグラムにおける分子量分布を一定値とすることにより、接触式の一成分現像法に使用してもトナーの熱融着や凝集を生じず、長期連続使用

での過帯電による画像濃度低下、低温低湿下でのカブリ を防止することができ、均一な帯電分布を有し、長期使 用しても安定した画像特性を出力し続けることが可能と なる。

【0238】導電性弾性ローラや、中間転写体を用いた電子写真方法で転写時の中抜けや飛び散りを防止し、高転写効率を得ることが可能となる。高湿下での長期使用においても、感光体、中間転写体のフィルミングを防止することができる。中間転写体のクリーニング性を向上することができる。クリーニングプレードを使用しないクリーニングプロセスにおいても転写残トナーの回収がスムーズに行え、前画像の履歴が残らないようにすることができる。

【0239】シリコン又はフッ素系の定着ベルトでオイルを塗布せずとも、高いOHP透光性を維持しながらオフセット性を防止できる。また長期使用してもベルトの表面劣化現象を生じることなく、良好な非オフセット性を維持させることができる。

【図面の簡単な説明】

【図1】本発明の実施例で使用した電子写真装置の構成 を示す断面図

【図2】本発明の実施例で使用した中間転写ベルトユニ

ットの構成を示す断面図

【図3】本発明の実施例で使用した現像ユニットの構成 を示す断面図

【図4】本発明の実施例で使用した定着ユニットの構成 を示す断面図

【図5】本発明の実施例で使用したトナー溶融混練処理 の概略斜視図

【図6】本発明の実施例で使用したトナー溶融混練処理 の平面図

【図7】本発明の実施例で使用したトナー溶融混練処理 の正面図

【図8】本発明の実施例で使用したトナー溶融混練処理 の断面図

【図9】本発明の実施例の結着樹脂及びトナーの分子量 分布特性を示す図

【図10】本発明の実施例の結着樹脂及びトナーの分子 量分布特性を示す図

【図11】本発明の実施例の結着樹脂及びトナーの分子 量分布特性を示す図

【図12】本発明の実施例の結着樹脂及びトナーの分子 量分布特性を示す図

【図13】本発明の実施例の結着樹脂及びトナーの分子 量分布特性を示す図

【図14】本発明の実施例のトナーの分子量分布特性を 示す図

【符号の説明】

2 中間転写ベルトユニット

- 3 中間転写ベルト
- 4 第1転写ローラ
- 5 第2転写ローラ
- 6 テンションローラ
- 11 感光体
- 12 第3転写ローラ
- 17Bk, 17C, 17M, 17Y 像形成ユニット
- 18 像形成ユニット群
- 21 像形成位置
- 22 レーザ信号光
- 35 レーザビームスキャナ部
- 38 ミラー
- 308 キャリア
- 305 現像スリーブ
- 306 ドクターブレード
- 307 マグネットロール
- 314 クリーニングブレード
- 312 クリーニングボックス
- 311 廃トナー
- 313 廃トナー輸送管
- 602 ロール (RL1)
- 603 ロール (RL2)
- 604 ロール (RL1) 上に巻きついたトナーの溶融

- 605 熱媒体の流入口
- 606 熱媒体の流出口

【図1】

【図5】

横路PES-1 3 2.5 1 2 5 1.5 0 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

【図10】

【図14】

【図11】

【図12】

【図13】

フロントページの続き		·	
(51) Int. Cl. 7 織別記号		F I	テーマコード(参考)
COSK 5/56	u9011111 1	C08K 9/02	2H076
9/02		COSL 67/00	2H077
		91/06	4 J 0 0 2
COSL 67/00 91/06		G03G 9/08	365
			374
G03G 9/097			375
9/09	365	15/00	550
9/08		15/01	Z
	374		112A
	375		1 1 4 A
15/00	550	15/04	111
15/01		15/16	111
	112		103
	114	15/20	331
15/04	111	9/08	
15/08	507		346
15/16			351
15/20	103		361
		15/08	507B

Fターム(参考) 2H005 AA01 AA06 AA08 AA21 CA08

CA25 CB07 CB13 DA02 DA03

DAO8 DAO9 EAO1 EAO3 EAO5

EA06 EA07

2H030 AA06 AA07 AB02 AD07 AD11

BB02 BB16 BB22 BB42 BB44

BB46

2H032 AA05 AA15 BA05 BA09 BA23

BA30

2H033 AA09 BA11 BA26 BA32 BB06

BB13 BB15 BB23 BB29 BB30

BB34

2H071 BA03 BA04 BA13 BA14 BA16

BA22 BA27 DA02 DA05 DA08

DA09 DA15 EA18

2H076 AB05 AB12 AB18 AB61 EA01

EA06 EA12

2H077 AA37 AC04 AC16 AD02 AD06

AD13 AD14 AD31 AD36 AE03

AE04 BA09 EA15 EA16 FA22

FA26 GA03 GA13

4J002 AE03X CF01W CF03W CF04W

CF05W CF09W CF10W DE076

DE096 DE136 DE137 DE146

DE147 DJ017 FA086 FA087

FB076 FB137 FB147 FB267

FD017 FD206 GS00