BRAC

Online Final Examination: CSE330. All Sections.

Department of Computer Science & Engineering

BRAC University Fall 2023 Semester

Date: December 19, 2023

Exam Time: One hour 30 minutes

Scanning and Uploading time: 15 minutes.

Faculty Name (Initial) :	Student ID# :	Section#:

Instructions:

- Answer as instructed below. Total marks 60.
- Answer questions sequentially. **DO NOT** mix part of one question with another question. Write legibly so that we can follow your thoughts.
- Number your pages, and scan them sequentially when done, and prepare a single pdf file with the Top Sheet as the first page. Before submission rename your pdf file as 'ID#_FirstName_Section#.pdf'. As for example: '12345678_Examinee_18.pdf'.
- Use pencil for your answers (preferable). No break for bathroom/freshroom is allowed. **Must use your own calculator**. Cell phones must be turned off (Not in vibration mode). We assume that you know how to use scientific calculator of model CASIO fx-991 ES or equivalent.
- All students MUST follow the final exam policy as given already.
- All examinees must abide by the 'Regulations of Students Conduct' of Brac university.
- Wait and stay in front of the camera till the end of exam. **DO NOT** leave before that.
- NO Email submission. The scanned pdf file of your answer script MUST be submitted through the Google Form Submission Link provided in the Discord server for CSE330.

Read carefully the questions below and answer properly:

- 1. (6 marks) CO-1: Answer any one from Questions-(1a-1b). Marks break down are as stated.
 - (a) (6 marks) A linear system is described by the matrix equation Ax = b where A is a square $n \times n$ matrix, x and b are $n \times 1$ column matrices. If the matrix A is decomposed into a product of unit lower triangular matrix L and an upper triangular matrix U, show that $\det A = \det U$.
 - (b) i. (2 marks) **Define** an over-determined system.
 - ii. (2 marks) Name the methods that you learned to solve an over-determined system.
 - iii. (2 marks) Let the over-determined system is described by Ax = b where the matrix A is a 4×2 matrix. Since det A does not exist, **state** the condition to find a solution of the over-determined system.
- 2. (12 marks) CO-2: Answer any one from Questions-(2a-2b). Marks break down are as stated.
 - (a) In the interval [-4, 4], the function, $f(x) = x^3 x^2 3x + 2$, has three roots at 2.000, 0.6180 and -1.618; and two turning points at x = -0.721 and x = 1.387.
 - i. (3 marks) **Explain** why it might not be possible to find the root of the given function and interval using the interval bisection method.
 - ii. (3 marks) Write down the intervals, including the root it contains, such that the problem in the previous part can be avoided.
 - iii. (6 marks) **Find** the minimum number of iterations required to find the root if the error bound is 1.0×10^{-5} in the interval [-4, -0.5].
 - (b) Answer the following:
 - i. (2+4 marks) Consider the fixed point function, $g(x) = \sqrt{2x+3}$ which has been derived from the function $f(x) = x^2 2x 3$ with roots -1 and 3. **State** the domain of the fixed point function g(x) and **explain** to which root the iteration $x_{k+1} = g(x_k)$ will converge to based on your understanding of the 'Contraction Mapping Theorem' if you start the iteration from $x_0 = -1.5$.

ii. (6 marks) Verify that matrix below for a linear system

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$$

consists of orthonormal vectors.

- 3. (18 marks) CO-3: Answer any two from Questions-(3a-3c). Marks break down are as stated.
 - (a) Consider the function, $f(x) = x^3 4x^2 + 6$.
 - i. (3 marks) Compute any two fixed point functions, $g_1(x)$ and $g_2(x)$, from the given function f(x).
 - ii. (3 marks) For $g_1(x)$ evaluate the convergence rate and determine to which root it is converging to or divergent.
 - iii. (3 marks) For $g_2(x)$ evaluate the convergence rate and determine to which root it is converging to or divergent.
 - (b) Consider a set of four data points: f(0) = 3, f(4) = -2, f(-1) = 2, f(1) = 1. In the following, you are asked to find the best fit polynomial of degree 2 by using the Discrete-square approximation method as follows:
 - i. (3 marks) From the given data, write down the matrices A, b and x.
 - ii. (3 marks) **Evaluate** $A^{T}A$ and $det(A^{T}A)$.
 - iii. (3 marks) Compute the best-fit polynomial of degree 2.
 - (c) A function is given by $f(x) = e^{0.5x} + \sin x$ which is to be integrated on the interval [0, 2].
 - i. (2 marks) **Evaluate** the exact integral I(f).
 - ii. (3 marks) Compute the numerical integral by using the Newton-Cotes formula with n=2.
 - iii. (4 marks) Also evaluate the numerical integral $C_{1,4}$ by using the Composite Newton-Cotes formula.
- 4. (24 marks) CO-4: Answer any two from Questions-(4a-4c). Marks break down are as stated.
 - (a) Consider a cubic function, $f(x) = 2x^3 2x 5$, which has only one real root.
 - i. (5 marks) Use the Bisection Method to **compute** the approximate root of the given function for the interval I = [1.2, 1.8] after five iterations and keeping 4 decimal places.
 - ii. (3 marks) Compute the fixed point function g(x) for the given function f(x) using Newton's method.
 - iii. (4 marks) **Compute** four iterations to find an approximate root of the given function using Newton's method with the initial point, $x_0 = 1.9$. Consider five significant figures.
 - (b) A linear system is described by the following equations

$$x_1 - 2x_2 + 4x_3 = 6$$

$$2x_1 - 7x_2 + x_3 = 8$$

$$3x_1 + 3x_2 + 4x_3 = 2$$

and you are asked to obtain the solution by using the LU-decomposition method as follows:

- i. (3 marks) **Evaluate** the row multipliers m_{21} and m_{31} , the Frobenius matrix $F^{(1)}$ and the matrix $A^{(2)}$.
- ii. (2 marks) **Evaluate** the row multiplier m_{32} , the Frobenius matrix $F^{(2)}$, and the matrix $A^{(3)}$.
- iii. (2 marks) Compute the lower unit triangular matrix L using the row multipliers, and the upper triangular matrix U.
- iv. (5 marks) **Evaluate** the solution of the system by using the matrices L and U.
- (c) Consider the coordinates: (x, f(x)) = (0, 1), (0.5, 1.4), (1, 1.7), (1.5, 2). In the following, you are asked to contruct the best-fit linear polynomial by using the QR-decomposing method as follows:
 - i. (2 marks) Construct the matrices A, b and x.
 - ii. (4 marks) Evaluate the orthonornmal vectors q_1 and q_2 , and construct the matrix Q.
 - iii. (3 marks) Compute the matrix R.
 - iv. (3 marks) Using Q and R, evaluate the matrix x, and hence compute the best-fit linear polynomial.