

Formulação de um problema inverso não-linear

Prof. André L. A. dos Reis

Objetivos da aula

- * A formulação de um problema inverso não linear
- * Métodos por gradiente:
 - Steepest descent
 - Newton
 - Gauss-Newton
 - Levenberg-Marquardt
- * Diferença entre os métodos

Formulação de um problema inverso não-linear

Dados preditos: dados gerados por um conjunto de parâmetros que descrevem o nosso modelo, que nos traz a relação física e matemática do problema

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

Dados observados: medições realizadas na superfície da Terra

Vetor de parâmetros: conjunto de variáveis que descrevem o modelo

Problema inverso: estima automaticamente o conjunto de parâmetros a partir dos dados observados

Dados preditos: dados gerados por um conjunto de parâmetros que descrevem o nosso modelo, que nos traz a relação física e matemática do problema

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

Dados observados: medições realizadas na superfície da Terra

Vetor de parâmetros: conjunto de variáveis que descrevem o modelo

Problema inverso: estima automaticamente o conjunto de parâmetros a partir dos dados observados

Dados preditos: dados gerados por um conjunto de parâmetros que descrevem o nosso modelo, que nos traz a relação física e matemática do problema

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

Dados observados: medições realizadas na superfície da Terra

Dados preditos: dados gerados por um conjunto de parâmetros que descrevem o nosso modelo, que nos traz a relação física e matemática do problema

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

Dados observados: medições realizadas na superfície da Terra

Dados preditos: dados gerados por um conjunto de parâmetros que descrevem o nosso modelo, que nos traz a relação física e matemática do problema

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

Dados observados: medições realizadas na superfície da Terra

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Gradiente da função de ajuste

Problema linear

$$\mathbf{d}^p = \mathbf{G}\mathbf{p}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados

Problema não-linear

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Gradiente da função de ajuste

Problema linear

$$\mathbf{d}^p = \mathbf{G}\mathbf{p}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados

Problema não-linear

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Gradiente da função de ajuste

Problema linear

$$\mathbf{d}^p = \mathbf{G}\mathbf{p}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Gradiente da função de ajuste

Achar o mínimo dessa função iterativamente

Existem dois tipos de métodos que minimizam estas funções:

Métodos por gradiente (Determinísticos)

Métodos Heurísticos

Achar o mínimo dessa função iterativamente

Métodos por gradiente :

- Steepest descent
- Newton
- Gauss-Newton
- Levenberg-Marquardt

Métodos Heurísticos:

- Simulated Annealing
- Ant Colony
- Algoritmo Genético

Métodos determinísticos

Matematicamente, este é um processo de otimização no qual queremos minimizar a norma euclidiana de uma função que mede a distância entre os dois vetores!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2 = [\mathbf{d}^o - \mathbf{d}^p]^T [\mathbf{d}^o - \mathbf{d}^p]$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Quando falamos em minimizar uma função, significa que queremos tomar o gradiente desta função e igualarmos a zero.

Métodos determinísticos

Primeiro expandindo a função de ajuste em **série de Taylor (até segunda ordem)** teremos:

$$\varphi(\mathbf{p}_0 + \Delta \mathbf{p}) \approx \varphi(\mathbf{p}_0) + \Delta \mathbf{p}^T \mathbf{J}(\mathbf{p}_0) + \frac{1}{2} \Delta \mathbf{p}^T \mathbf{H}(\mathbf{p}_0) \Delta \mathbf{p}$$

Encontraremos que o sistema linear que teremos que resolver será igual a :

$$\mathbf{H}(\mathbf{p}^k)\mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$$

Resolveremos este sistema linear a cada k-ésima iteração!

Métodos determinísticos

Minimizar a norma euclidiana entre o vetor de dados observados e o vetor de dados preditos!

$$\varphi(\mathbf{p}) = \parallel \mathbf{d}^o - \mathbf{d}^p \parallel_2$$

Função de ajuste

$$\nabla \varphi(\mathbf{p}) = \mathbf{0}$$

Gradiente da função de ajuste

Problema linear

$$\mathbf{d}^p = \mathbf{G}\mathbf{p}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\sharp} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p}^k)\mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$$

Sistema de equações

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p}^k)\mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$$

Sistema de equações

Problema não-linear

$$\mathbf{d}^p
eq \mathbf{Gp}$$
 $\mathbf{H}(\mathbf{p}^k) \mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$ Sistema de equações

O que irá diferenciar os métodos é a aproximação da matriz Hessiana!

Problema não-linear

$$\mathbf{d}^p
eq \mathbf{Gp}$$
 $\mathbf{H}(\mathbf{p}^k) \mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$ Sistema de equações

O que irá diferenciar os métodos é a aproximação da matriz Hessiana!

Steepest Descent : $1/\eta$

Newton: $\mathbf{H}(\mathbf{p}^k)$

Gauss-Newton : $\mathbf{J}(\mathbf{p}^k)^T\mathbf{J}(\mathbf{p}^k)$

Levenberg-Marquardt : $\mathbf{J}(\mathbf{p}^k)^T\mathbf{J}(\mathbf{p}^k) + \lambda\mathbf{I}$

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p}^k)\mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$$

Sistema de equações

Método	Convergência
Steepest Descent	0
Levenberg-Marquardt	1
Gauss-Newton	2
Newton	3

Lenta = 0

Rápida = 3

Problema não-linear

$$\mathbf{d}^p
eq \mathbf{G} \mathbf{p}$$

 $\mathbf{H}(\mathbf{p}^k)\mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$

Sistema de equações

Método	Chute inicial
Steepest Descent	Pode ser longe
Levenberg-Marquardt	Pode ser longe
Gauss-Newton	Deve ser próxima
Newton	Deve ser próxima

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p}^k)\mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$$

Sistema de equações

Método	Passo
Steepest Descent	Depende de um parâmetro e do gradiente
Levenberg-Marquardt	Depende do gradiente, da Hessiana e de um parâmetro
Gauss-Newton	Depende do gradiente e da Hessiana
Newton	Depende do gradiente e da Hessiana

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p}^k)\mathbf{\Delta p}^k = -\mathbf{J}(\mathbf{p}^k)$$

Sistema de equações

Método	Custo computacional
Steepest Descent	0
Levenberg-Marquardt	2
Gauss-Newton	1
Newton	3

Baixo = 0

Alto = 3

não-linear? E os exemplos?

Como regularizar um problema inverso

Até breve!