

Report No: CCISE160905302

FCC REPORT

(WIFI)

Applicant: SUN CUPID TECHNOLOGY (HK) LIMITED

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Hong Kong

Equipment Under Test (EUT)

Product Name: Mifi

Model No.: Konnect i1

Trade mark: NUU

FCC ID: 2ADINKONI1

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Sep., 2016

Date of Test: 29 Sep., to 01 Dec., 2016

Date of report issued: 01 Dec., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	01 Dec., 2016	Original

Steven Liu
Test Engineer
Covey Chen Tested by: Date: 01 Dec., 2016

Date: Reviewed by: 01 Dec., 2016

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VER	RSION	2
3	100	NTENTS	3
4		ST SUMMARY	
5		NERAL INFORMATION	
ວ	GEN	NERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	9
6	TES	ST RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	25
	6.6	BAND EDGE	
	6.6.		
	6.6.2	2 Radiated Emission Method	32
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	52
7	TES	ST SETUP PHOTO	59
8	EUT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SUN CUPID TECHNOLOGY (HK) LIMITED		
Address of Applicant:	6/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Hong Kong		
Manufacturer/Factory:	Sun cupid(Shen Zhen) Electronic Ltd		
Address of Manufacturer/ Factory::	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7		

5.2 General Description of E.U.T.

Product Name:	Mifi
Model No.:	Konnect i1
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.02dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-3700mAh

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz	ИНz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE160905302

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE160905302

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
12	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017		
13	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.02 dBi.

6.2 Conducted Emission

FCC Part 15 C Section 1	5.207					
ANSI C63.4: 2014	ANSI C63.4: 2014					
150 kHz to 30 MHz						
Class B	Class B					
RBW=9 kHz, VBW=30 k	Hz					
	·					
(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the log	arithm of the frequency.					
 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 						
	Reference Plane					
Remark: E.U.T: Equipment Under	E.U.T EMI Receiver	ilter — AC power				
Refer to section 5.6 for d	etails					
Refer to section 5.3 for d	etails					
Passed						
	ANSI C63.4: 2014 150 kHz to 30 MHz Class B RBW=9 kHz, VBW=30 k Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logation of the positions of equipment according to ANSI Compared to the positions of equipment according to the positions of equipment according to ANSI Compared to the positions of equipment according to ANSI Compared to the positions of equipment according to ANSI Compared to the positions of equipment according to ANSI Compared to the positions of equipment according to ANSI Compared to the positions of equipment according to ANSI Compared to the positions of equipment according to the positions of equipme	Class B RBW=9 kHz, VBW=30 kHz Frequency range				

Measurement Data:

Neutral:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Mifi Model : Konnect il

Test Mode : WIFI mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Steven

Remark

OMALK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.150	32.24	0.12	10.78	43.14	66.00	-22.86	QP
1	0.170	31.73	0.13	10.77	42.63	64.94	-22.31	QP
3	0.170	24.98	0.13	10.77	35.88	54.94	-19.06	Average
4	0.258	23.40	0.17	10.75	34.32	61.51	-27.19	QP
4 5 6 7 8 9	0.258	17.25	0.17	10.75	28.17	51.51	-23.34	Average
6	0.421	19.40	0.23	10.73	30.36	57.42	-27.06	QP
7	0.442	9.42	0.23	10.74	20.39	47.02	-26.63	Average
8	1.289	12.03	0.26	10.90	23.19	46.00	-22.81	Average
9	16.573	25.74	0.27	10.91	36.92	50.00	-13.08	Average
10	16.839	31.82	0.27	10.91	43.00	60.00	-17.00	QP
11	22.655	29.25	0.25	10.89	40.39	60.00	-19.61	QP
12	22.775	27.06	0.25	10.89	38.20	50.00	-11.80	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Line:

Trace: 7

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

EUT : Mifi Model : Konnect il Test Mode : WIFI mode Power Rating: AC 120/60Hz

Environment: Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Steven

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>		dBu∀	dBu∜	<u>dB</u>	
1	0.150	30.11	0.14	10.78	41.03	66.00	-24.97	QP
2	0.154	22.93	0.14	10.78	33.85	55.78	-21.93	Average
2 3	0.258	23.20	0.16	10.75	34.11	61.51	-27.40	QP
4	0.258	18.12	0.16	10.75	29.03	51.51	-22.48	Average
4 5 6 7	0.627	19.47	0.29	10.77	30.53	56.00	-25.47	QP
6	1.289	15.04	0.28	10.90	26.22	46.00	-19.78	Average
7	2.581	21.92	0.33	10.93	33.18	56.00	-22.82	QP
8	5.419	18.19	0.35	10.84	29.38	50.00	-20.62	Average
9	17.475	29.15	0.30	10.91	40.36			Average
10	17.568	34.10	0.30	10.90	45.30	60.00	-14.70	QP
11	22,535	26.76	0.35	10.89	38.00	50.00	-12.00	Average
12	22.775	33.19	0.35	10.89	44.43		-15.57	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Maximum	Limit(dBm)	Result		
1631 011	802.11b	Limit(dDin)			
Lowest	12.17	10.02	9.12		Pass
Middle	11.90	9.61	9.18	30.00	
Highest	10.48	8.34	7.49		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	6dB	Limit(kHz)	Result			
1631 011	802.11b	802.11g	802.11n(H20)	- Limit(Kriz)	Nesult	
Lowest	9.28	16.56	17.76			
Middle	9.20	16.56	17.76	>500	Pass	
Highest	8.72	16.56	17.44			
Test CH	99%	Limit(kHz)	Result			
1031 011	802.11b	802.11g	802.11n(H20)	Ell'III(KI 12)	rtoodit	
Lowest	13.84	17.28	18.00			
Middle	13.68	17.20	18.08	N/A	N/A	
Highest	13.52	16.72	17.84			

Test plot as follows:

6dB EBW

Date: 18.OCT.2016 22:19:10

Lowest channel

Date: 18.OCT.2016 22:20:24

Middle channel

Date: 18.OCT.2016 22:21:50

Highest channel

Date: 18.OCT.2016 22:49:23

Lowest channel

Date: 18.0CT.2016 22:50:48

Middle channel

Date: 18.0CT.2016 22:53:45

Highest channel

Date: 18.0CT.2016 22:54:59

Lowest channel

Date: 18.0CT.2016 22:56:44

Middle channel

Date: 18.0CT.2016 22:58:04

Highest channel

Date: 18.OCT.2016 23:10:19

Lowest channel

Date: 18.OCT.2016 23:10:44

Middle channel

Date: 18.0CT.2016 23:11:01

Highest channel

Date: 18.0CT.2016 23:11:31

Lowest channel

Date: 18.0CT.2016 23:12:01

Middle channel

Date: 18.0CT.2016 23:12:17

Highest channel

Date: 18.OCT.2016 23:12:47

Lowest channel

Date: 18.0CT.2016 23:13:07

Middle channel

Date: 18.0CT.2016 23:13:26

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Pov	ver Spectral Density (Limit(dBm)	Result			
1631 011	802.11b	802.11g	802.11n(H20)	Limit(abin)	Nesuit		
Lowest	3.57	-1.85	-2.69				
Middle	3.09	-2.63	-3.65	8.00	Pass		
Highest	1.72	-3.24	-4.06				

Test plot as follows:

Date: 9.NOV.2016 16:45:18

Lowest channel

Date: 9.NOV.2016 16:46:34

Middle channel

Date: 9.NOV.2016 16:47:30

Highest channel

Date: 9.NOV.2016 16:48:24

Lowest channel

Date: 9.NOV.2016 16:49:47

Middle channel

Date: 9.NOV.2016 16:51:06

Highest channel

Date: 9.NOV.2016 16:51:40

Lowest channel

Date: 9.NOV.2016 16:52:11

Middle channel

Date: 9.NOV.2016 16:53:04

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plot as follows:

Lowest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 20	ANSI C63.10: 2013 and KDB 558074v03r05 section 12.1							
Test Frequency Range:	2.3GHz to 2.5G	2.3GHz to 2.5GHz							
Test site:	Measurement D	Measurement Distance: 3m							
Receiver setup:	Frequency	Frequency Detector RBW VBW Remark							
	Above 1GHz	Peak	1MHz	3M	lHz	Peak Value			
		RMS	1MHz		lHz	Average Value			
Limit:	Frequency	y Lir	nit (dBuV/m @	3m)		Remark			
	Above 1GF	łz 🖳	54.00 74.00			erage Value Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 								
Test setup:	sheet.	(Turntable)	Ground Reference Plane	-	Antenna Tow	er WWW			
	Refer to section 5.6 for details								
Test Instruments:	Refer to section 5.3 for details								
Test Instruments: Test mode:									

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Condition EUT : Mifi Model : Konnect i1
Test mode : 802.11b-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Steven
RPMARK

REMAR	К :								
	Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
1	MHz	dBu∇	— <u>dB</u> /m	d <u>B</u>	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	2375.325	31.92	23.68	4.67	0.00	60.27	74.00	-13.73	Peak
2	2375.325	17.26	23.68	4.67	0.00	45.61	54.00	-8.39	Average
2	2390.000	29.20	23.68	4.69	0.00	57.57	74.00	-16.43	Peak
4	2390.000	17.43	23.68	4.69	0.00	45.80	54.00	-8.20	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Vertical:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mifi Model : Konnect i1
Test mode : 802.11b-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Hu
Test Engineer: Steven
RFMARK

Huni:55%

REMARK

			Antenna Factor						Remark
<u>-</u>	MHz	dBuV	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2341.603	32.12	23.67	4.64	0.00	60.43	74.00	-13.57	Peak
2	2341.603	17.20	23.67	4.64	0.00	45.51	54.00	-8.49	Average
3	2390.000	28.45	23.68	4.69	0.00	56.82	74.00	-17.18	Peak
	2390.000	17.40	23.68	4.69	0.00	45.77	54.00	-8.23	Average

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mifi

Model : Konnect il Test mode : 802.11b-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Steven REMARK :

THE THE		220 000			<u>_</u>			62	
	Freq		Antenna Factor						Remark
	MHz	dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2483.500								
2	2483, 500	18, 24	23.70	4.81	0.00	46.75	54.00	-7.25	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Vertical:

: 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mifi EUT

Model : Konnect il Test mode : 802.11b-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Steven

REMARK

HILLIA									
	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	2483.500	29.32	23.70	4.81	0.00	57.83	74.00	-16.17	Peak
2	2483.500	17.84	23.70	4.81	0.00	46.35	54.00	-7.65	Average
3	2486.514	31.86	23.70	4.81	0.00	60.37	74.00	-13.63	Peak
4	2486 514	17 51	23 70	4 81					Amerage

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 36 of 60

802.11g

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mifi Model : Konnect il Test mode : 802.11g-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C H

Huni:55%

Test Engineer: Steven

REMARK

	•	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
2	MHz	—dBu∇	$\overline{dB/m}$	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	2390.000 2390.000								

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1609053

Page 37 of 60

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mifi Model : Konnect il Test mode : 802.11g-L Mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Steven

REMARK

1,000	F	req				Preamp Factor				
		MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
				23.68 23.68						Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Mifi EUT Model : Konnect il

Test mode : 802.11g-H Mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Steven REMARK :

Π)	T								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500		70,700,000,700					0.5/5/5/5/5/5/5/	6E0/50/762204
	2493 500	21 00	23 70	4 91	0.00	EO 41	E4 00	-3 EQ	Orrorogo

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 39 of 60

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mifi Model : Konnect il Test mode : 802.11g-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Steven

REMARK

111									
	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500					YEAR TO SEE AND SEE AND AND AND		Control of the Contro	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mifi

Model : Konnect il : 802.11n20-L Mode

Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Steven REMARK

9.1	XK.	:	ъ .			-				
		Freq		Antenna Factor						
		MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	dB	dBuV/m	dBuV/m	<u>d</u> B	
				23.68 23.68		0.00 0.00				Peak Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 41 of 60

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mifi

Model

: Konnect i1 : 802.11n20-L Mode Test mode

Power Rating : AC120V/60Hz

Huni:55% Environment : Temp: 25.5°C

Test Engineer: Steven

REMARK

m_{I}	n :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
Ĺ	2390.000								
2	2390.000	19.20	23.68	4.69	0.00	47.57	54.00	-6.43	Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

: 3m chamber Site

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mifi

Model

: Konnect i1 : 802.11n20-H Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Steven

REMARK

щ	u : Freq		Antenna Factor					
	MHz	dBu∀	dB/m	 	dBuV/m	$\overline{dBuV/m}$	āB	
	2483,500 2483,500							

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Mifi EUT : Konnect i1 : 802.11n20-H Mode Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Steven

Huni:55%

REMARK

411									
	Freq		Antenna Factor						
-	MHz	dBuV	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500						74.00		
16	2483.500	19.92	23, 70	4.81	0.00	48.43	54, 00	-5.57	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b

Date: 8.NOV.2016 14:59:29

30MHz~25GHz

Date: 8.NOV.2016 15:00:30

30MHz~25GHz

Date: 8.NOV.2016 15:01:38

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 8.NOV.2016 15:03:28

30MHz~25GHz

Date: 8.NOV.2016 15:04:10

30MHz~25GHz

Date: 8.NOV.2016 15:05:14

30MHz~25GHz

Test mode: 802.11n(H20)

Date: 8.NOV.2016 15:06:20

30MHz~25GHz

Date: 8.NOV.2016 15:07:12

30MHz~25GHz

Date: 8.NOV.2016 15:08:42

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:201	13							
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Dis	stance: 3m	m						
Receiver setup:	Frequency	Detecto	or	RBW	V	BW	Remark		
·	30MHz-1GHz	Quasi-pe	eak	120KHz	300KHz		Quasi-peak Value		
	Above 1GHz	Peak				ИHz	Peak Value		
	RI			1MHz		ИHz	Average Value		
Limit:	Frequency		Limit ((dBuV/m @3	m)		Remark		
	30MHz-88MH			40.0			uasi-peak Value		
							uasi-peak Value		
	216MHz-960MHz 46.0 Quasi-peak Value								
	960MHz-1GHz 54.0 Quasi-peak Value								
	Above 1GHz	: -	54.0			/	Average Value		
Test Procedure:	1. The EUT wa	o placed a	on the	74.0	otio a	table 0	Peak Value		
	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the med. 4. For each suscase and the meters and the meters and the meters and the find the meters. Specified Base 6. If the emission the limit specifies the EUT whave 10dB meters and the meters and the limit specifies are limited and the limit specifies and the limited and the l	as rotated ation. Its set 3 me ich was me height is o determire and versaurements pected er the ante aximum resiver system on level of cified, there would be remargin woo	I 360 d neters a nounte s varied ine the ertical lent. emission tenna valuem was with Marthe Een testiireporte buld be	degrees to deaway from the ded on the top defrom one remaximum to polarization on, the EUT was turned from the second between the top death of	he into of a meter value s of the was a being om 0 of a mode stopped the ne by	erferent variable to four of the interest from the text fr	r meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees		

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL Condition

EUT Mifi Konnect il Model Test mode : WIFI Mode Power Rating: AC120V/60Hz

Huni:55% Environment : Temp: 25.5°C

Test Engineer: Steven REMARK :

nnnn									
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	₫₿	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
1	103.806	52.60	10.54	1.99	29.50	35.63	43.50	-7.87	QP
2	143.830	48.27	11.34	2.44	29.25	32.80	43.50	-10.70	QP
2 3 4 5	167.824	48.07	9.82	2.64	29.07	31.46	43.50	-12.04	QP
4	239.987	45.01	11.80	2.82	28.59	31.04	46.00	-14.96	QP
5	295.147	50.98	12.47	2.93	28.46	37.92	46.00	-8.08	QP
6	397, 633	53, 16	15, 84	3, 08	28, 77	43, 31	46,00	-2.69	OP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Mifi Model : Konnect il Test mode : WIFI Mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Steven REMARK:

Huni:55%

Tillionar									
	Freq		Antenna Factor					Over Limit	Remark
-	MHz	dBu∇	$\overline{dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	103.806	53.05	10.54	1.99	29.50	36.08	43.50	-7.42	QP
2	147.921	48.77	10.91	2.50	29.23	32.95	43.50	-10.55	QP
3	194.453	52.24	9.93	2.83	28.87	36.13	43.50	-7.37	QP
4	297.224	45.83	12.59	2.93	28.46	32.89	46.00	-13.11	QP
5	394.855	52.57	15.78	3.08	28.76	42.67	46.00	-3.33	QP
6	547.098	44.39	17.98	3.87	29.09	37.15	46.00	-8.85	QP

Above 1GHz

Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	60.93	36.06	6.81	41.82	61.98	74.00	-12.02	Vertical
4824.00	59.45	36.06	6.81	41.82	60.50	74.00	-13.50	Horizontal
						Remark: Average		
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage	
Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 80	est mode: 802.11b			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	58.40	36.32	6.85	41.84	59.73	74.00	-14.27	Vertical	
4874.00	57.08	36.32	6.85	41.84	58.41	74.00	-15.59	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	50.32	36.32	6.85	41.84	51.65	54.00	-2.35	Vertical	
4874.00	48.96	36.32	6.85	41.84	50.29	54.00	-3.71	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	56.22	36.58	6.89	41.86	57.83	74.00	-16.17	Vertical
4924.00	55.24	36.58	6.89	41.86	56.85	74.00	-17.15	Horizontal
Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.32	36.58	6.89	41.86	49.93	54.00	-4.07	Vertical
4924.00	46.39	36.58	6.89	41.86	48.00	54.00	-6.00	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	56.94	36.06	6.81	41.82	57.99	74.00	-16.01	Vertical	
4824.00	54.01	36.06	6.81	41.82	55.06	74.00	-18.94	Horizontal	
Test mode: 80)2.11g		Test char	nel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.36	36.06	6.81	41.82	49.41	54.00	-4.59	Vertical	
4824.00	45.96	36.06	6.81	41.82	47.01	54.00	-6.99	Horizontal	

Test mode: 80	mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	54.92	36.32	6.85	41.84	56.25	74.00	-17.75	Vertical	
4874.00	52.46	36.32	6.85	41.84	53.79	74.00	-20.21	Horizontal	
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	45.68	36.32	6.85	41.84	47.01	54.00	-6.99	Vertical	
4874.00	43.95	36.32	6.85	41.84	45.28	54.00	-8.72	Horizontal	

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	53.74	36.58	6.89	41.86	55.35	74.00	-18.65	Vertical	
4924.00	50.66	36.58	6.89	41.86	52.27	74.00	-21.73	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	45.21	36.58	6.89	41.86	46.82	54.00	-7.18	Vertical	
4924.00	41.32	36.58	6.89	41.86	42.93	54.00	-11.07	Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	56.34	36.06	6.81	41.82	57.39	74.00	-16.61	Vertical	
4824.00	54.05	36.06	6.81	41.82	55.10	74.00	-18.90	Horizontal	
Test mode: 8	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.25	36.06	6.81	41.82	49.30	54.00	-4.70	Vertical	
4824.00	45.85	36.06	6.81	41.82	46.90	54.00	-7.10	Horizontal	

Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Pea	ık	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	54.68	36.32	6.85	41.84	56.01	74.00	-17.99	Vertical
4874.00	53.36	36.32	6.85	41.84	54.69	74.00	-19.31	Horizontal
Test mode: 80	02.11n(H20)		Test char	nnel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.89	36.32	6.85	41.84	47.22	54.00	-6.78	Vertical
4874.00	45.32	36.32	6.85	41.84	46.65	54.00	-7.35	Horizontal

Test mode: 80	02.11n(H20)		Test char	nnel: Highest		Remark: Pea		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	52.03	36.58	6.89	41.86	53.64	74.00	-20.36	Vertical
4924.00	51.04	36.58	6.89	41.86	52.65	74.00	-21.35	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	43.69	36.58	6.89	41.86	45.30	54.00	-8.70	Vertical
4924.00	42.69	36.58	6.89	41.86	44.30	54.00	-9.70	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.