HØGSKULEN PÅ VESTLANDET

Fakultet for ingeniør- og naturvitenskap Institutt for elektrofag ELE125 Audioforsterkere

Stabilisering av arbeidspunktet til et fellesemittertrinn.

Hvordan beregne stabiliteten til arbeidspunktet til et felles emittertrinn.

Gitt:

Vi lager en Theveninekvivalent av $R_1,\,R_2$ og U_{CC} som gir denne ekvivalentkretsen

$$\operatorname{der} U_{BB} = \frac{R_1}{R_1 + R_2} \cdot U_{CC} \quad \operatorname{og} \quad R_B = R_1 || R_2 .$$

Fra basis-emittersløyfen får vi:

$$1) -U_{BB} + R_B \cdot I_B + U_{BE} + R_E \cdot I_E = 0 \Longrightarrow$$

2)
$$\left(\frac{\beta+1}{\beta}\cdot R_E + \frac{R_B}{\beta}\right)\cdot I_C + U_{BE} = U_{BB}$$

Vi vil anta at $\beta \gg 1$ slik at $\frac{\beta}{\beta+1} \approx 1$ \Rightarrow

3)
$$\left(R_E + \frac{R_B}{\beta}\right) \cdot I_C + U_{BE} = U_{BB} \implies$$

$$4) \qquad I_C = \frac{U_{BB} - U_{BE}}{R_E + \frac{R_B}{\beta}}$$

Det som påvirker stabiliteten til arbeidspunktet, det vil si (I_C, U_{CE}), er variasjonen i U_{BE} og β.

Variasjonen i U_{BE} kan være \pm 50mV for like transistorer med lik kollektorstrøm. I tillegg avtar U_{BE} med ca. 2 mV/ °C når kollektorstrømmen er konstant.

 β kan variere med en faktor 2-4 for like transistorer med lik kollektorstrøm og kollektorbasisspenning og øker med ca. 0.5~% / $^{\circ}$ C.

Dette gir oss disse ligningene for U_{BE} og β som funksjon av temperaturen:

5)
$$\beta(T) = \beta(T_0) \cdot 1.005^{(T-T_0)}$$

6)
$$U_{BE}(T) = U_{BE}(T_0) - 2(mV / {}^{0}C) \cdot (T - T_0)$$

Ligning 3) ovenfor skal vi bruke til å bestemme U_{BB} og R_B når R_E er kjent. Anta at vi har bestemt hvor stor variasjon vi tillater i kollektorstrømmen I_C :

$$I_{C_{\rm min}} < I_{C} < I_{C_{\rm maks}}$$
 .

Vi har og funnet $U_{{\scriptscriptstyle BE_{
m min}}}$, $U_{{\scriptscriptstyle BE_{
m maks}}}$ og $eta_{
m min}$, $eta_{
m maks}$.

Vi går fram slik:

 I_C har sin maksimalverdi når U_{BE} har sin minste verdi og β har sin største verdi. I_C har sin minimalverdi når U_{BE} har sin største verdi og β har sin minste verdi. Ved å sette disse opplysningene inn i ligning 3) får vi to nye ligninger:

7)
$$U_{BB} = U_{BE_{\text{maks}}} + \left(R_E + \frac{R_B}{\beta_{\text{min}}}\right) \cdot I_{C_{\text{min}}}$$

8)
$$U_{BB} = U_{BE_{\min}} + \left(R_E + \frac{R_B}{\beta_{\max}}\right) \cdot I_{C_{\max}}$$

Her har vi to ligninger i tre ukjente, U_{BB}, R_B og R_E. Vi gjør dem først om til en ligning i to ukjente ved å eliminere U_{BB} fra ligningene. Det får vi til ved å trekke ligning 8) fra ligning 7). Da får vi:

$$9) \quad 0 = \left(U_{BE_{\text{maks}}} - U_{BE_{\text{min}}}\right) - \left(I_{C_{\text{maks}}} - I_{C_{\text{min}}}\right) \cdot R_E + \left(\frac{I_{C_{\text{min}}}}{\beta_{\text{min}}} - \frac{I_{C_{\text{maks}}}}{\beta_{\text{maks}}}\right) \cdot R_B$$

Vi løser denne for R_B:

La
$$\Delta U_{BE} = U_{BE_{\text{maks}}} - U_{BE_{\text{min}}}$$
 og $\Delta I_{C} = I_{C_{\text{maks}}} - I_{C_{\text{min}}}$

$$10) R_B = \frac{\Delta I_C \cdot R_E - \Delta U_{BE}}{\frac{I_{C_{\min}}}{\beta_{\min}} - \frac{I_{C_{\max}}}{\beta_{\max}}}$$

Vi ser av ligning 10) at det er mulig å få negative verdier på R_B . Det er selvsagt ikke en praktisk løsning. Men det betyr bare at vi har valgt R_E for liten. Velg en større verdi på R_E og prøv igjen.

Måten vi bruker ligning 10) er slik:

Velg en verdi på R_E , regn ut R_B . Hvis verdien til R_B er akseptabel, det vil si stor nok, er vi ferdige, hvis ikke, velg en ny verdi på R_E og gjenta.

En kan selvsagt snu på ligning 10) og få denne formen:

11)
$$R_{E} = \frac{\Delta U_{BE} + \left(\frac{I_{C_{\min}}}{\beta_{\min}} - \frac{I_{C_{\max}}}{\beta_{\max}}\right) \cdot R_{B}}{\Delta I_{C}}$$

Av denne ligningen ser vi at $R_E > \frac{\Delta U_{BE}}{\Delta I_C}$.

Når vi har funnet R_E og R_B kan vi bestemme U_{BB} fra ligning 7) eller 8). Når U_{BB} er bestemt kan vi så regne ut R_1 og R_2 :

$$12) \qquad R_2 = \frac{U_{CC}}{U_{BB}} \cdot R_B$$

13)
$$\frac{1}{R_1} = \frac{1}{R_B} - \frac{1}{R_2}$$
 eller $R_1 = \frac{U_{CC}}{U_{CC} - U_{BB}} \cdot R_B = \frac{R_2}{U_{CC}} - 1$

Eksempel:

Anta at vi ønsker at $I_C = 2mA \pm 20\%$ og at $R_B \ge 20k\Omega$. La $U_{CC} = 12V$.

For transistoren har vi funnet at $U_{BE_{min}} = 400mV$, $U_{BE_{maks}} = 750mV$, $\beta_{min} = 100$, $\beta_{maks} = 400$.

Dette gir

$$I_{C_{\text{maks}}} = 2.4 \text{mA}, \quad I_{C_{\text{min}}} = 1.6 \text{mA} \quad \text{og}$$

$$\Delta I_{C} = 0.8 \text{mA}, \quad \Delta U_{BE} = 350 \text{mV}$$

Sett inn i 10) eller 11).

Vi velger $R_B = 25k\Omega$ og setter inn i 11) som gir

$$R_E = \frac{0.35 + \left(\frac{1.6}{100} - \frac{2.4}{400}\right) \cdot 25}{0.8} = 0.75k\Omega$$

Vi velger en standardverdi på R_E som er større enn 0.75 k Ω , vi velger R_E = 0.82 k Ω . Denne verdien setter vi inn i 10) og får at R_B = 30.6 k Ω .

Fra ligning 8) kan vi nå bestemme U_{BB}:

$$U_{BB} = 0.400 + \left(0.82 + \frac{30.6}{400}\right) \cdot 2.4 = 2.552V$$
.

Nå kan vi finne R_1 og R_2 fra 12) og 13):

$$R_2 = \frac{12}{2.552} \cdot 30.6 = 143.9k\Omega$$

$$R_1 = \frac{143.9}{\frac{12}{2.552} - 1} = 38.9k\Omega$$

