§2.1 Classes of Sets

WU Yuzhe

March 4, 2019

Problem 1. The union of a countable collection of B.F.'s $\{\mathcal{F}_j\}$ such that $\mathcal{F}_j \subset \mathcal{F}_{j+1}$ need not be a B.F., but there is a minimal B.F. containing all of them, denoted by $\bigvee_j \mathcal{F}_j$. In general $\bigvee_{\alpha \in A} \mathcal{F}_\alpha$ denotes the minimal B.F. containing all \mathcal{F}_α , $\alpha \in A$. [HINT: Ω = the set of positive integers; \mathcal{F}_j = the B.F. generated by those up to j.]

Solution. Following the hint, we consider $\Omega =$ the set of positive integers and $\mathcal{F}_j =$ the B.F. generated by those up to j. Note that for every positive integer n, the singleton $\{n\}$ belongs to $\bigcup_{j=1}^{\infty} \mathcal{F}_j$, since it belongs to \mathcal{F}_n . However, the union of these singletons equals the whole set of positive integers, which is not included in the union of \mathcal{F}_j 's, since every single one of them only contains finite subsets. We conclude that $\bigcup_{j=1}^{\infty} \mathcal{F}_j$ is not a B.F.

Problem 8. Let \mathcal{F} be a B.F. generated by an arbitrary collection of sets $\{E_{\alpha}, \alpha \in A\}$. Prove that for each $E \in \mathcal{F}$, there exists a countable subcollection $\{E_{\alpha_j}, j \geq 1\}$ (depending on E) such that E belongs already to the B.F. generated by this subcollection. [HINT: Consider the class of all sets with the asserted property and show that it is a B.F. containing each E_{α} .]

Solution. Following the hint, we consider the class of all sets with the asserted property and denote it by C. We proceed to show that C is a B.F.

Let $E \in \mathcal{C}$ be given. By definition of \mathcal{C} , E belongs to the B.F. generated by some subcollection from the sets $\{E_{\alpha}, \alpha \in A\}$. Since E^{\complement} belongs to the same B.F., E also has the asserted property and hence belongs to \mathcal{C} .

Now let $\{E_i, i \geq 1\}$ be any sequence of sets from \mathcal{C} . For each E_i in the sequence, there exists a countable collection \mathcal{S}_i of sets $\{E_{\alpha_j^i}, j \geq 1\}$ such that E_i belongs to the B.F. generated by \mathcal{S}_i . Let $\mathcal{S} = \bigcup_{i=1}^{\infty} \mathcal{S}_i$ then S is countable as a countable union of countable collections, and each E_i belongs to the B.F. generated by \mathcal{S} . The property of a B.F. guarantees that $\bigcup_{i=1}^{\infty} E_i$ belongs to the B.F generated by \mathcal{S} and hence is a member of \mathcal{C} . We conclude that \mathcal{C} is a B.F.

Note that each E_{α} belongs to \mathcal{C} as it is contained in the B.F. generated by itself. But the whole \mathcal{F} is generated by $\{E_{\alpha}, \alpha \in A\}$. We have $\mathcal{F} \subset \mathcal{C}$ by the minimality of a generating B.F. In other words, every set in \mathcal{F} has the asserted property and we are done.

Problem 10. Let \mathcal{D} be a class of subsets of Ω having the closure property (iii); let \mathcal{A} be a class of sets containing Ω as well as \mathcal{D} , and having the closure properties (vi) and (x).

Then \mathcal{A} contains the B.F. generated by \mathcal{D} . (This is Dynkin's form of a monotone class theorem which is expedient for certain applications. The proof proceeds as in Theorem 2.1.2 by replacing \mathcal{F}_0 and \mathcal{G} with \mathcal{D} and \mathcal{A} respectively.)

Solution. Let \mathcal{A}_0 be the minimal class of sets containing Ω as well as \mathcal{D} , and having the same closure properties (vi) and (x). Clearly $\mathcal{A}_0 \subset \mathcal{A}$. Note that \mathcal{A}_0 is closed under complementation by having property (x) and containing Ω . We shall show that \mathcal{A}_0 is also closed under intersection and hence is a field. Define two classes of subsets of \mathcal{A}_0 as follows:

$$C_1 = \{ E \in \mathcal{A}_0 : E \cap F \in \mathcal{A}_0 \text{ for all } F \in \mathcal{D} \},$$

$$C_2 = \{ E \in \mathcal{A}_0 : E \cap F \in \mathcal{A}_0 \text{ for all } F \in \mathcal{A}_0 \}.$$

The identities

$$F \cap (\cup_{j=1}^{\infty} E_f) = \cup_{j=1}^{\infty} (F \cap E_j)$$

$$F \cap (E_2 \setminus E_1) = (F \cap E_2) \setminus (F \cap E_1)$$

show that both C_1 and C_2 have the closure properties (vi) and (x). It is also clear that they both contain Ω . Since \mathcal{D} is closed under intersection and contained in \mathcal{A}_0 , we have $\mathcal{D} \subset \mathcal{C}_1$. Hence $\mathcal{A}_0 \subset \mathcal{C}_1$ by the minimality of \mathcal{C}_1 and so $\mathcal{A}_0 = \mathcal{C}_1$. This means for any $F \in \mathcal{D}$ and $E \in \mathcal{A}_0$ we have $E \cap E \in \mathcal{A}_0$, which in turn means $\mathcal{D} \subset \mathcal{C}_2$. Hence $\mathcal{A}_0 = \mathcal{C}_2$ and this means \mathcal{A}_0 is closed under intersection.

It is clear that \mathcal{A}_0 is also a M.C. So it is a B.F. by Theorem 2.1.1. We conclude that the B.F. generated by \mathcal{D} is contained in \mathcal{A}_0 and hence in \mathcal{A} .

Problem 11. Take $\Omega = \mathbb{R}^n$ or a separable metric space in Exercise 10 and let \mathcal{D} be the class of all open sets. Let \mathcal{H} be a class of real-valued functions on Ω satisfying the following conditions.

- (a) $1 \in \mathcal{H}$ and $1_D \in \mathcal{H}$ for each $D \in \mathcal{D}$;
- (b) \mathcal{H} is a vector space, namely: if $f_1 \in \mathcal{H}$, $f_2 \in \mathcal{H}$ and c_1 , c_2 are any two real constants, then $c_1f_1 + c_2f_2 \in \mathcal{H}$;
- (c) \mathcal{H} is closed with respect to increasing limits of positive functions, namely: if $f_n \in \mathcal{H}$, $0 \le f_n \le f_{n+1}$ for all n, and $f = \lim_n \uparrow f_n < \infty$, then $f \in \mathcal{H}$.

Then \mathcal{H} contains all Borel measurable functions on Ω , namely all finite-valued functions measurable with respect to the topological Borel field (= the minimal B.F. containing all open sets of Ω). [HINT: let $\mathcal{C} = \{E \subset \Omega : 1_E \in \mathcal{H}\}$; apply Exercise 10 to show that \mathcal{C} contains the B.F. just defined. Each positive Borel measurable function is the limit of an increasing sequence of simple (finitely-valued) functions.]

Solution. Following the hint, we let $\mathcal{C} = \{E \subset \Omega : 1_E \in \mathcal{H}\}$. Since \mathcal{H} satisfies the condition (a), \mathcal{H} contains Ω as well as \mathcal{D} . Let $E_j \in \mathcal{C}$, $E_j \subset E_{j+1}$, $1 \leq j < \infty$, then $1_{\cup E_j} = \lim_j \uparrow 1_{E_j} \in \mathcal{H}$ by condition (c). It follows that $\cup E_j \in \mathcal{C}$ and so \mathcal{C} has the closure property (vi). Let $E_1 \in \mathcal{C}$, $E_2 \in \mathcal{C}$, $E_1 \subset E_2$, then $1_{E_2 \setminus E_1} = 1_{E_2} - 1_{E_1} \in \mathcal{H}$ by condition (c). It follows that $E_2 \setminus E_1 \in \mathcal{C}$

and so \mathcal{C} has the closure property (x). Now Exercise 10 gives that \mathcal{C} contains the B.F. generated by \mathcal{D} , or the topological Borel field. Note that every finitely-valued simple function is a linear combination of indicator functions 1_{F_k} where $F_k \in \mathcal{C}$, and therefore belongs to \mathcal{H} . By condition (c), we conclude that \mathcal{H} contains every Borel measurable functions as the limit of an increasing sequence of simple (finitely-valued) functions.

Problem 12. Let \mathcal{C} be a M.C. of subsets of \mathbb{R}^n (or a separable metric space) containing all the open sets and closed sets. Prove that $\mathcal{C} \supset \mathcal{B}^n$ (the topological Borel field defined in Exercise 11). [HINT: Show that the minimal such class is a field.]

Solution. (TO BE COMPLETED) Denote the collection of all open and closed sets by \mathcal{F}_0 and the minimal M.C. containing \mathcal{F}_0 by \mathcal{C}_0 . It is sufficient to show that \mathcal{C}_0 is a field, because then it will also be a Borel field and hence contain \mathcal{B}^n . We show show that it is closed under intersection and complementation. Define a class of sets in \mathcal{C}_0 as follows:

$$\mathcal{C}_3 = \{ E \in \mathcal{C}_0 : E^{\complement} \in \mathcal{C}_0 \}$$

The (DeMorgan) identities

$$(\cup_{j=1}^{\infty} E_j)^{\complement} = \cap_{j=1}^{\infty} E_j^{\complement}$$

$$(\bigcap_{j=1}^{\infty} E_j)^{\complement} = \bigcup_{j=1}^{\infty} E_j^{\complement}$$

show that C_3 is a M.C. Since $C_3 \supset \mathcal{F}_0$, we have $C_0 \subset C_3$ by the minimality of C_0 . Hence $C_0 = C_3$, which means C_0 is closed under complementation. It remains to be shown that it is also closed under intersection.