Category Theory Problem Sets and Solutions

Fall 2022

September 20, 2022

Contents

1	\mathbf{Pro}	Problem Set 1			
	1.1	Proble	roblem 4 - Orin Gotchey		
		1.1.1	Measurable Spaces as a Category	2	
		1.3.1	Enhanced Measurable Spaces	3	
			Equality Almost Everywhere		
		1.3.3	Hom-sets mod an Equivalence Relation	4	
	1.4	Proble	em 6 - Alan Bohnert	4	
		1.4.1	Question	4	
		1.4.2	Solution	4	
2	Problem Set 2				
	2.1	Proble	em 1 - Orin Gotchey	5	
		Proble	em 4 - Alan	7	
		2.10.1	Construct a functor Ban ^{op} to Ball	7	
3	Pro	blem S	Set 3	8	

1 Problem Set 1

Assignments

- Problem 1 Unclaimed
- Problem 2 Emilio Verdooren
- Problem 3 Emilio Verdooren
- Problem 4 Orin Gotchey
- Problem 5 Unclaimed
- Problem 6 Alan Bohnert
- Problem 7 James
- Problem 8 James
- Problem 9 Unclaimed
- Problem 10 Unclaimed
- Problem 11 Unclaimed

1.1 Problem 4 - Orin Gotchey

1.1.1 Measurable Spaces as a Category

Definition 1.2. σ -algebras Let X be a set. Let Ω be any subset of $\mathcal{P}(X)$ satisfying the following conditions:

- $X \in \Omega_X$
- For each $E \in \Omega$, $X \setminus E \in \Omega_X$
- For any index $I : \mathbb{N} \to \Omega_X$, $(\cup_{n \in \mathbb{N}} I(n)) \in \Omega_X$

 Ω is called a σ -algebra on X, the pair (X, Ω_X) a measurable space, the elements of Ω_X the measurable subsets of X.

It follows immediately that $\emptyset \in \Omega_X$, and that Ω_X is closed under countable intersection.

Definition 1.3. Measurable Maps The maps $f: X \to Y$ between measurable spaces which have the following property:

$$\forall E \subset X : (f(E) \in \Sigma \implies E \in \Omega)$$

are called measurable maps or measurable functions.

Let Meas be the category specified as follows:

- Objects are the measurable spaces (X,Ω)
- Morphisms are the measurable functions.

Then, given any morphism $f: X \to Y$,

$$f\circ \operatorname{Id}_X=f$$

$$\operatorname{Id}_Y \circ f = f$$

Associativity follows from the fact that the composition of functions on the underlying sets is associative. Given two composable morphisms, say $f: X \to Y$ and $g: Y \to Z$, consider the composition $g \circ f: X \to Z$, and let $\gamma \in \Omega_Z$. Then:

$$g^{-1}(\gamma) \in \Omega_Y$$
$$f^{-1}(g^{-1}(\gamma)) = (g \circ f)^{-1}(\gamma) \in \Omega_X$$

. Thus, we have that Meas is a category.

1.3.1 Enhanced Measurable Spaces

Let (X, Ω_X) be a topological space. Then $\mathcal{P}(X)$ forms a Boolean commutative ring with the operations \cap and \triangle as multiplication and addition, respectively, and of which Ω_X is a subring. Define an *enhanced measurable space* as a triple (X, Ω_X, N_X) , where (X, Ω_X) form a measurable space, and N_X is a σ -ideal of Ω_X (recall: a σ -ideal is an ideal which is closed under *countable* addition). A *negligible set* in X is some subset of N_X .

The measurable maps $f:(X,\Omega_X,N_X)\to (Y,\Omega_Y,N_Y)$ are maps of sets: $f:X_f\to Y$, where $X_f\subset X$, such that f obeys the following conditions (which are verified for the identity maps in the subpoints where X=Y):

- 1. The set $X \setminus X_f$ is negligible
 - $X = X_{\mathrm{Id}_X}$ and $X \setminus X_{\mathrm{Id}_X} = \emptyset \in N_X$, by definition of ideal.
- 2. For any $m_u \in \Omega_Y$, there exists a set m_x such that $f^{-1}(m_u) \triangle m_x$ is negligible
 - Given m_x , $\operatorname{Id}_X^{-1}(m_x) \triangle m_X = m_x \triangle m_x = \emptyset \in N_X$
- 3. For any $n_y \in N_Y$, the set $f^{-1}(n_y)$ is negligible.
 - $\operatorname{Id}_X(n_x) = n_x$

We cannot define composition of morphisms strictly as composition of underlying maps, because there is no guarantee, e.g., for two maps between enhanced measurable spaces $f: X \to Y$, $g: Y \to Z$, that $Imf \subset Y_g$. Thus, we restrict the domain of the composition to:

$$X_{g \circ f} := f^{-1}(Y_g)$$

. However, it is clear by inspection that composition of morphisms retains associativity. Then,

$$X \backslash X_{q \circ f} = X \backslash f^{-1}(Y_q) = (f^{-1}(Y \backslash (Y_q)))$$

The negligibility of the above quantity then follows from the definition of f.

Furthermore, given $m_z \in \Omega_Z$, we have that $(g \circ f)^{-1}(m_z) = f^{-1}(g^{-1}(m_z))$. Since g is measurable (why?) and since f is presumed to satisfy (2), $g \circ f$ satisfies (2).

(3) is clearly transitive.

Thus, enhanced measurable spaces and measurable maps form a category.

1.3.2 Equality Almost Everywhere

Two parallel morphisms $f, g: (X, \Omega_X, N_X) \to (Y, \Omega_Y, N_Y)$ are "equal almost everywhere" if the set $\{x \in X_f \cap X_G : f(x) \neq g(x)\}$ is negligible. Let "f and g are equal almost everywhere" be denoted $f \sim g$. Claim: \sim defines an equivalence relation.

- Reflexivity: A function differs from itself on the empty set (\emptyset) , which is negligible (see above)
- ullet Symmetry: Note that the symbols f and g in the definition of equality almost everywhere are symmetric
- Transitivity: If $f \sim g$ and $g \sim h$ for parallel morphisms f, g, and h, then

$$\{x \in X_f \cap X_h : f(x) \neq h(x)\} \subset (\{x \in X_f \cap X_g : f(x) \neq g(x)\} \cup \{x \in X_g \cap X_h : g(x) \neq h(x)\})$$

, and N is closed under countable unions and taking subsets, so the left hand side of the above is negligible.

Furthermore, this equivalence relation is compatible with composition. Assume that there are morphisms $f, f': X \to Y$ and $g, g': Y \to Z$, such that $f \sim f'$ and $g \sim g'$. We're interested in the set

$$\{x \in X_{g \circ f} \cap X_{g' \circ f'} : (g \circ f)(x) \neq (g' \circ f')(x)\} \subset \{x \in X_f \cap X_{f'} : f(x) \neq f'(x)\}$$
$$\cup f^{-1}(\{y \in Y_g \cap Y_g' : g(y) \neq g'(y)\})$$

This set is the union of two negligible sets.

1.3.3 Hom-sets mod an Equivalence Relation

Suppose that for every pair of objects X, Y in a category C, we are given (e.g. by the above) an equivalence relation $R_{X,Y}$ on C(X,Y) that is compatible with composition (i.e. if $f \sim_R f'$ and $g \sim_R g'$ then $(g \circ f) \sim_R (g' \circ f')$. We identify all morphisms in C between any two objects X and Y which relate through $R_{X,Y}$. Composition of equivalence classes of \sim does not depend on choice of representative: this is exactly compatibility with \circ

Verifying that the proper morphisms are unital and associative are gifted as simple exercises to the reader;)

1.4 Problem 6 - Alan Bohnert

1.4.1 Question

Fix a category C. A bimorphism in C is a morphism f that is simultaneously a monomorphism and an epimorphism. Is any isomorphism a bimorphism? Give and example of a category C and a bimorphism f in C that is not an isomorphism.

1.4.2 Solution

In any category C every isomorphism is a bimorphism.

Proof. Let $f: X \to Y$ be an isomorphism in **C**. Then there exists a morphism $g: Y \to X$ in **C** such that

$$gf = Id_X$$
 and $fg = Id_Y$.

To show f is a monomorphism let $h, k : W \rightrightarrows X$ and fh = fk. It follows that gfh = gfk for the g given above. Therefore $\mathrm{Id}_X h = \mathrm{Id}_X k$ and so h = k tells us f is a monomorphism.

To show f is an epimorphism let $m, n : Y \rightrightarrows Z$ and mf = nf. Composing with the g we know mfg = nfg. Consequently $m\mathrm{Id}_Y = n\mathrm{Id}_Y$ and m = n tells us f is an epimorphism. Therefore f is a bimorphism. \square

Let C be the category Ring and let $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ the inclusion map. We claim f is a bimorphism but not an isomorphism.

Proof. To show f is a monomorphism let $h, k : W \Rightarrow \mathbb{Z}$ and $f \circ h(w) = f \circ k(w) \ \forall w \in W$. Since f is injective

$$h(w) = f \circ h(w) = f \circ k(w) = k(w).$$

Therefore h(w) = k(w) and f is a monomorphism.

To show f is an epimorphism let $m, n : \mathbb{Q} \rightrightarrows S$ such that $m \circ f(x) = n \circ f(x) \ \forall x \in \mathbb{Q}$. Since f is injective, we know $m(z) = n(z) \ \forall z \in \mathbb{Z}$. Seeking a contraction, suppose there exists $\frac{a}{b} \in \mathbb{Q}$ such that $m(\frac{a}{b}) \neq n(\frac{a}{b})$. Given m and n are ring homomorphisms we know

$$m(a)m(b^{-1}) = m(\frac{a}{b}) \neq n(\frac{a}{b}) = n(a)n(b^{-1}).$$

Given b is an invertible integer and m(b) = n(b) we can multiply on the right and retain the inequality. Thus,

$$m(a)m(b^{-1})m(b) \neq n(a)n(b^{-1})n(b)$$

and as ring homomorphisms we have

$$m(a) = m(a)m(b^{-1}b) \neq n(a)n(b^{-1}b) = n(a).$$

Therefore f is a epimorphism.

To show f is not an isomorphism we note $\frac{1}{3} \in \mathbb{Q}$ has no preimage in \mathbb{Z} .

2 Problem Set 2

Assignments

- Problem 1 Orin Gotchey
- $\bullet\,$ Problem 2 James
- Problem 3 Bradley
- Problem 4 Alan
- Problem 5 James
- Problem 6 Emilio

2.1 Problem 1 - Orin Gotchey

Lemma 2.2. Existence and Uniqueness of Borel σ -Algebras. Let X be a topological space. Then there exists a unique σ -algebra, Ω on X which contains all open subsets of X and which is the smallest among such σ -algebras with respect to inclusion.

Proof. Let Σ be the collection of all σ -algebras on X which contain all open subsets of X. Σ contains $\mathcal{P}(X)$, and thus is nonempty. Let

$$\Omega := \cap_{x \in \Sigma} x$$

Clearly, $X \in \Omega$. Given an index $I : \mathbb{N} \to \Omega$, such that for every natural n, $I(n) \in \Omega$, we have that $I(n) \in x$, $\forall x \in \Sigma$, whence it follows that $\bigcap_{n \in \mathbb{N}} I(n) \in x$, $\forall x \in \Sigma$. Therefore, $\bigcap_{n \in \mathbb{N}} I(n) \in \Omega$. By a similar argument, for any $E \in \Omega$, $X \setminus E \in \Omega$. Thus, Ω contains all open subsets of X, and is indeed inferior to any other σ -algebra with this property.

Definition 2.3. A complex *-algebra A is a complex algebra, equipped with a complex-antilinear operation $*: A \to A$ obeying the following:

$$(ab)^* = b^*a^*$$
$$1^* = 1$$
$$(a^*)^* = a$$

Definition 2.4. A complex-valued morphism $f: X \to \mathbb{C}$ (on some topological space X) is called "bounded" if it factors through some bounded subset of \mathbb{C} . That is, there exists some subset $C \in \mathbb{C}$ which is contained in some open ball, and some map \bar{f} which makes the following diagram commute:

$$X \xrightarrow{f} \mathbb{C}$$

$$\bar{f} \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Lemma 2.5. Given an enhance measurable set (X, Ω_X, N_X) , the set of all bounded morphisms $\{f : (X, \Omega_X, N_X) \to (\mathbb{C}, \Omega_C, \{\emptyset\})\}$ is a complex *-algebra.

Proof. The zero morphism 0_X acts as the additive identity. Addition, multiplication, and involution are pointwise. Everything else follows by inspection.

Proposition 2.6. Together with complex algebra homomorphisms: $f: A \to B$ satisfying $f(a^*) = f(a)^*$, and objects: commutative complex *-algebras, $CAlg_{\mathbb{C}}^*$ is a category.

Proof. Let $\forall a, b, c \in \mathsf{Obj}(\mathsf{CAlg}^*_{\mathbb{C}}), \ f \in \mathsf{CAlg}^*_{\mathbb{C}}(a, b), \ g \in \mathsf{CAlg}^*_{\mathbb{C}}(b, c)$ then:

- $\exists id_a : a \to a$ given by $id_a(x) = x$ satisfies $id_a(x^*) = x^* = id_a(x)^*$, and which is clearly a \mathbb{C} -algebra homomorphism
- $g \circ f$ satisfies $(g \circ f)(x)^* = g(f(x))^* = g(f(x)^*) = g(f(x^*)) = g \circ f(x^*)$, and is clearly a \mathbb{C} -algebra homomorphism.

• The composition of underlying sets is associative.

Let L^{∞} : $\mathsf{PreEMS}^{op} \to \mathsf{CAlg}^*_{\mathbb{C}}$ send an enhanced measurable space to the complex *-algebra of bounded morphisms: $(X, \Omega_X, N_X) \mapsto (L^{\infty}(X) : \{\phi : (X, \Omega_X, N_X) \to (\mathbb{C}, \Omega_{\mathbb{C}}, \{\varnothing\}) | \phi \text{ bounded}\})$, and which sends an enhanced measurable morphism $f : (X, \Omega_X, N_X) \to (Y, \Omega_Y, N_Y)$ to

$$\mathsf{L}^\infty(f): (\mathsf{L}^\infty(Y): \{\phi: (Y, \Omega_Y, N_Y) \to (\mathbb{C}, \Omega_\mathbb{C}, N_\mathbb{C})\}) \to (\mathsf{L}^\infty(X): \{\psi: (X, \Omega_X, N_X) \to (\mathbb{C}, \Omega_\mathbb{C}, N_\mathbb{C})\})$$

given by:

$$(L^{\infty}(f))(\phi) = (\phi \circ f)$$

Proposition 2.7. L^{∞} is a contravariant functor

Proof. We need to show the following:

- 1. $L^{\infty}(f)$ defines a morphism in $\mathsf{CAlg}^*_{\mathbb{C}}$ i.e. a complex algebra homomorphism which respects involution.
- 2. L^{∞} respects identity
- 3. L^{∞} respects composition

For (1), given an $f: X \to Y$, ϕ , $\psi \in L^{\infty}(Y)$, and $c \in \mathbb{C}$

$$L^{\infty}(f): L^{\infty}(Y) \to L^{\infty}(X)$$

$$L^{\infty}(f)(0_{Y}) = 0_{X}$$

$$L^{\infty}(f)(\phi + \psi) = (\phi + \psi) \circ (f) = (\phi \circ f) + (\psi \circ f) = L^{\infty}(f)(\phi) + L^{\infty}(f)(\psi)$$

$$L^{\infty}(f)(\phi \cdot \psi) = (\phi \cdot \psi) \circ f = (\phi \circ f) \cdot (\psi \circ f) = L^{\infty}(f)(\phi) \cdot L^{\infty}(f)(\psi)$$

$$c \cdot L^{\infty}(f)(\phi) = c \cdot (\phi \circ f) = (c \cdot \phi) \circ f = L^{\infty}(f)(c \cdot \phi)$$

$$L^{\infty}(f)(\phi^{*}) = (\phi^{*}) \circ f = (\phi \circ f)^{*} = L^{\infty}(f)(\phi)^{*}$$

$$(1)$$

For (2),

$$L^{\infty}(\mathrm{id}_X)(\phi) = (\phi \circ \mathrm{id}_X) = \phi \implies L^{\infty}(\mathrm{id}_X) = \mathrm{id}_{L^{\infty}(X)}$$
 (2)

For (3), we give two morphisms $f: X \to Y$, $g: Y \to Z$ in PreEMS. Then for any $\phi \in L^{\infty}(Z)$

$$\mathcal{L}^{\infty}(g \circ f)(\phi) = \phi \circ (g \circ f) = (\phi \circ g) \circ f = \mathcal{L}^{\infty}(f)(\phi \circ g) = \mathcal{L}^{\infty}(f)(\mathcal{L}^{\infty}(g)(\phi)) = (\mathcal{L}^{\infty}(f) \circ \mathcal{L}^{\infty}(g))(\phi)$$
 (3)

Lemma 2.8. Let C be a category with an equivalence relation R on its set of morphisms, and let F be some functor from C/R to another category D. Then precomposing with the functor $C \xrightarrow{\Pi} C/R$ gives a bijection between functors $C/R \xrightarrow{F} D$ and functors $C \xrightarrow{G} D$ with the property that $\alpha \sim_R \beta \Rightarrow G(\alpha) = G(\beta)$

Proof. If $\alpha \sim_R \beta$, then $\Pi(\alpha) = \Pi(\beta)$, so $(F \circ \Pi)(\alpha) = (F \circ \Pi)(\beta)$. For the other direction, let $G : \mathsf{C} \to \mathsf{D}$ and R be given as above. Then, let $F : \mathsf{C}/R \to D$ be identical to G on objects, and let the image of an equivalence class of morthly mo

Definition 2.9. Let R be an equivalence relation defined on the Hom-sets of PreEMS. Define the category StrictEMS, whose objects are the same as PreEMS, and whose morphisms are equivalence classes of morphisms under R sharing domain and codomain.

It follows from the foregoing observations that StrictEMS is, in fact, a category. Extend the L^{∞} to a functor from StrictEMS to $\mathsf{CAlg}_{\mathbb{C}}^*$ as follows:

- Send an enhanced measurable space (X, Ω_X, N_X) to the complex *-algebra of bounded morphisms from X to $\mathbb C$
- Given a morphism $f: X \to Y$, consider the equivalence class of f in StrictEMS.

2.10 Problem 4 - Alan

2.10.1 Construct a functor Ban^{op} to Ball

Objects in Ban^{op} are real (or complex) vector spaces with norms, and morphisms are \mathbb{R} (or \mathbb{C}) linear maps:

$$(X, \|\cdot\|_X) \xrightarrow{f} (Y, \|\cdot\|_Y)$$

such that for all $x \in X$, $||f(x)||_Y \le ||x||_X$

Objects in Ball are pairs (V, B) where V is a Hausdorff, locally convex topological real (complex) vector space, and B a compact, convex, Hausdorff topological vector subspace of V, which is balanced. Here, "balanced" means:

$$0 \in B \land \forall x \in B \forall \ t \in \mathbb{R}(|t| \le 1 \implies tx \in B)$$

For a given object $(X, \|\cdot\|_X)$ in Ban^{op} , X^* denotes the space of continuous linear functionals on X with the weak-* topology and $X^*_{\leq 1}$ denotes the subspace of X^* consisting of functionals of norm at most 1. $(X^*, X^*_{\leq 1})$ is an object of Ball . Let $F: \mathsf{Ban}^{op} \to \mathsf{Ball}$ be the functor which sends $(X, \|\cdot\|_X)$ to $(X^*, X^*_{\leq 1})$ and sends a morphism g from $X \to Y$ to $X^* \to Y^*$ to $F(g) = \circ g$. The functor F is encoded in the following commutative diagram:

From this diagram,

3 Problem Set 3

- 1. For which pairs of fields (of the same characteristic) does a categorical product exist?
- 2. Prove that the category of connected topological spaces does not have a product.
- 3. Prove: The category of Banach Spaces with continuous maps has no infinite coproducts.
- 4. Prove:
 - The category TOSet of totally ordered sets and order-preserving maps does not have coproducts.
 - What about the category. WOSet of well-ordered sets?
- 5. Prove: the category TopGrp of topological groups and continuous homomorphisms has coproducts.
- 6. Prove: the category of Lie groups (finite dimensional) does not have coproducts.
- 7. Investigate products and coproducts in the category PG of Hilbert spaces and contractive maps
- 8. Express limits in analysis (i.e. in a given metric space) as categorical limits

Assignments

- Problem 1 Unassigned
- Problem 2 Unassigned
- \bullet Problem 3 Unassigned
- Problem 4 JJ
- Problem 5 Orin
- Problem 6 Unassigned
- \bullet Problem 7 Unassigned
- Problem 8 Unassigned