Mini-course on Sparse estimation off-the-grid Algorithms

Discretise on a fine grid?

Approach: Discrete Φ on a fine grid

For
$$\phi(x) \in \mathbb{R}^m$$
, define: $A = [\phi(x_1), \phi(x_2), \dots, \phi(x_N)] \in \mathbb{R}^{m \times N}$

$$\min_{x \in \mathbb{R}^n} F(x) = \frac{1}{2\lambda} ||Ax - y||^2 + ||x||_1$$

Example: Fourier measurements

Column i:
$$A_i = \left(\exp(2\pi\sqrt{-1}x_i^{\mathsf{T}}\omega_k)\right)_k$$

 $\mathcal{O}(p^{-d})$ grid points if $[x_i] \subseteq [0,1]^d$ spaced p apart

Forward-Backward splitting

$$\min_{x} F(x) := f(x) + g(x)$$

Assume that f is differentiable

Forward-Backward splitting:

$$\begin{cases} \hat{x}_{k+1} &= x_k - \tau \nabla f(x_k) \\ x_{k+1} &= \text{Prox}_{\tau g}(\hat{x}_{k+1}) := \operatorname{argmin}_{z} \frac{1}{2\tau} ||z - \hat{x}_{k+1}||^2 + g(z) \end{cases}$$

- f,g convex $\|\nabla f(x) \nabla f(x')\| \le L\|x x'\|$

Convergence rates: If
$$\tau = 1/L$$
, then
$$F(x_k) - \min_x F(x) \le \frac{L}{k}$$

Iterative Soft Thresholding

$$Prox_{\tau \|\cdot\|_{1}}(\hat{x}) = \underset{z}{\operatorname{argmin}} \frac{1}{2\tau} \|z - \hat{x}\|^{2} + \|z\|_{1}$$
$$= \operatorname{sign}(\hat{x})(\|\hat{x}\| - \tau)_{+}$$

$$\begin{cases} \hat{x}_{k+1} &= x_k - \tau A^{\mathsf{T}} (A x_k - y) \\ x_{k+1} &= \operatorname{Prox}_{\tau \| \cdot \|_1} (\hat{x}_{k+1}) \end{cases}$$

$$f(x) = \frac{1}{2} ||Ax - y||^2 \text{ is } L\text{-Lipschitz with } L = ||A||^2$$

Convergence rates: for $\tau = 1/L$

$$F(x_k) - \min_{x} F(x) \le \frac{\|A\|^2}{k}$$

Example: Fourier measurements

Column i:
$$A_i = \left(\exp(2\pi\sqrt{-1}x_i^{\mathsf{T}}\omega_k)\right)_k$$

 $\|A\|^2 = \mathcal{O}(p^{-d})$

Iterative Soft Thresholding

$$\min_{x \in \mathbb{R}^n} \Phi(x) = \frac{1}{2\lambda} ||Ax - y||^2 + ||x||_1$$

$$Prox_{\tau \|\cdot\|_{1}}(\hat{x}) = \underset{z}{\operatorname{argmin}} \frac{1}{2\tau} \|z - \hat{x}\|^{2} + \|z\|_{1}$$
$$= \operatorname{sign}(\hat{x})(|\hat{x}| - \tau)_{+}$$

$$\begin{cases} \hat{x}_{k+1} &= x_k - \tau A^{\mathsf{T}} (A x_k - y) \\ x_{k+1} &= \operatorname{Prox}_{\tau \|\cdot\|_1} (\hat{x}_{k+1}) \end{cases}$$

Convergence rates (depends on n):

$$F(x_k) - \min_{x} F(x) \le \frac{C_n}{k}$$

NB: C_n can grow with n!

Grid-free convergence rates (Chizat 2021):

$$F(x_k) - \min_{x} F(x) \le k^{-2/(d+1)}$$

NB: Result is independent of n

Finite dimensional formulations

$$\sup_{p \in \mathbb{R}^m} \langle p, y \rangle - \frac{\lambda}{2} \|p\|^2 \quad \text{s.t.} \quad \|\Phi^* p\|_{\infty} \le 1$$

In general, the constraint is infinite dimensional. However, there are special cases for which one can formulate as a finite dimensional problem.

Fourier setting

[Candés & Fernandez-Granda 2014]:

Minimise over all p such that for all x, $|\sum_{|k| \le f_c} p_k \exp(2\pi \sqrt{-1}kx)| \le 1$

This constraint can be written as a positive semidefinite constraint on matrices.

Quadratic: $\phi(x) = ((u_i^T x)^2)_i$ for $x \in \mathbb{S}_{n-1}$, then

$$\Phi^* p(x) = \sum_k p_k (u_k^\top x)^2 = \langle (\sum_k p_k u_k u_k^\top) x, x \rangle$$

Constraint: Spectral norm is bounded by 1.

ReLU [Pilanci & Ergen 2020]:
$$\phi(x) = ((u_i^\top x)_+)_i$$
 for $x \in \mathbb{S}_{n-1}$. Then. $\Phi^* p(x) = \sum_k p_k (u_k^\top x)_+$

Uses the fact that there are only finitely many support patterns for which (Ux)_+

Semi-definite programming

Special case of Fourier samples:

minimise over all
$$p$$
 such that for all x , $|\sum_{|k| \le f_c} p_k \exp(2\pi \sqrt{-1}kx)| \le 1$

Theorem (Dumitrescu): A trigonometric polynomial $f(t) = \sum_{k=0}^{\infty} c_k \exp(\sqrt{-1}2\pi kx)$ with

 $p\in\mathbb{C}^n$ lid uniformly bounded by 1 in magnitude if there exists $Q\in\mathbb{C}^{n\times n}$ Hermitian s t

$$0 \le \begin{pmatrix} Q & p \\ p^* & 1 \end{pmatrix} \quad \text{and} \quad \sum_{i=1}^{n-j} Q_{i,i+j} = \delta_{0,j}$$

Semi-definite programming

Equivalent dual formulation: Let $n = 2f_c + 1$:

$$\sup_{p,Q} \langle p, y \rangle - \frac{\lambda}{2} ||p||^2 \quad \text{s.t.} \quad 0 \le \begin{pmatrix} Q & p \\ p^* & 1 \end{pmatrix} \quad \text{and} \quad \sum_{i=1}^{n-j} Q_{i,i+j} = \delta_{0,j}$$

Finite dimensional semi-definite program!

- 1. Solve SDP to find p_{λ}
- 2. Find the support of m_{λ} by finding the roots of the polynomial $f_{2n-2}(e^{\sqrt{-1}2\pi x}) = 1 |\Phi^*p_{\lambda}(x)|^2$
- 3. This has at most n-1 roots (unless identically 0)
- 4. Solve for amplitudes.

Frank-Wolfe algorithm

$$\min_{x \in C} f(x)$$

C is a weakly compact convex set of a Banach space.

f is a differentiable convex function.

1.
$$z^k \in \operatorname{argmin}_{z \in C} f(x^k) + \langle \nabla f(x^k), z - x^k \rangle$$

- 2. If $\langle \nabla f(x^k), z^k x^k \rangle = 0$ then x^k is a solution.
- 3. $\gamma^k = 2/(k+2)$

4.
$$x^{k+1} = x^k + \gamma^k (z^k - x^k)$$

- f is convex $\Longrightarrow f(z) \ge f(x^k) + \langle \nabla f(x^k), z x^k \rangle \stackrel{Step2}{\Longrightarrow} f(z) \ge f(x^k)$ for all z.
- •One can replace x^{k+1} in step 4 with any \hat{x}^{k+1} such that $f(\hat{x}^{k+1}) \leq f(x^{k+1})$.

Applying Frank-Wolfe to the Blasso

$$\mu \in \underset{\mu \in \mathcal{M}(\mathcal{X})}{\operatorname{argmin}} f_{\lambda}(m) := \frac{1}{2} \|\Phi \mu - y\|^2 + \lambda \|\mu\|_{TV}$$

$$(\|\mu\|_{TV}, \mu) \in \underset{(t,\mu) \in C}{\operatorname{argmin}} \hat{f}_{\lambda}(t,\mu) := \frac{1}{2} \|\Phi\mu - y\|^2 + \lambda t$$

$$C = \{(t, \mu) \in \mathbb{R}_+ \times \mathcal{M}(\mathcal{X}) : \|\mu\|_{TV} \le t \le \|y\|^2/(2\lambda) =: M \}$$

$$\mu \in \operatorname{argmin} f_{\lambda}(\mu) \text{ implies}$$

$$\lambda \|\mu\|_{TV} \le \lambda \|\mu\|_{TV} + \frac{1}{2} \|\Phi\mu - y\|^2$$

$$||\mu||_{TV} \le \lambda ||\mu||_{TV} + \frac{1}{2} ||\Phi\mu||_{TV} = \frac{1}{2} ||y||^{2}$$

$$\le \lambda ||0||_{TV} + \frac{1}{2} ||\Phi0 - y||^{2} = \frac{1}{2} ||y||^{2}$$

$$\hat{f}_{\lambda}$$
 is differentiable :
$$\begin{cases} \partial_{t}f = \lambda \\ \partial_{\mu}\hat{f}_{\lambda}(t,\mu) = \Phi^{*}(\Phi\mu - y) \end{cases}$$

[Bredies and Pikkarainnen 2013, Boyd et al, 2017, Denoyelle et al 2018]

Convergence of Frank-Wolfe

[Jaggi (2011)]: The curvature constant of f over C is

$$R := \max_{\substack{\gamma \in [0,1] \\ x, s, y \in C}} \frac{2}{\gamma^2} \left(f(y) - f(x) - \langle \nabla f(x), y - x \rangle \right)$$

Convergence rate:

$$f(x^k) - f^* \le \frac{2R}{k+2}$$

- R = 0 if f is linear
- . ∇f is L-Lipschitz $\Longrightarrow f(y) f(x) \langle \nabla f(x), y x \rangle \le \frac{L}{2} ||y x||^2$ $\Longrightarrow R \le L \text{diam}(C)^2$
- . For \hat{f}_{λ} , $R = \frac{1}{2} \sup\{\|\Phi(m m')\|^2 : \|m\|_{TV}, \|m'\|_{TV} \le \|y\|^2/2\}$
- If $\|\phi(x)\| = 1$ for all x, then $R \lesssim \|y\|^2$ and the convergence rate is $\mathcal{O}(\|y\|^2/k)$

Applying Frank-Wolfe to the Blasso

Key step. Let
$$u^k = (t^k, m^k)$$
.
$$z^k \in \operatorname{argmin}_{z \in C} \hat{f}(u^k) + \langle \nabla \hat{f}(u^k), z - u^k \rangle$$
$$= \operatorname{argmin}_{(t,m) \in C} \langle \Phi^*(\Phi m^k - y), m \rangle + \langle \lambda, t \rangle$$

$$x^{k} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \pm [\Phi^{*}(\Phi m^{k} - y)](x) + \lambda$$

$$= \underset{x \in \mathcal{X}}{\operatorname{argmin}} \pm [\eta^{k}(x)], \quad \eta^{k} = \frac{1}{\lambda} [\Phi^{*}(\Phi m^{k} - y)]$$

$$= \underset{x \in \mathcal{X}}{\operatorname{argmin}} \pm [\Phi^{*}(\Phi m^{k} - y)] \quad \Longrightarrow \quad z^{k} = (M, \pm M\delta_{x_{k}})$$

 $a^k = -\operatorname{sign}(\eta^k(x^k)) M$

C is a convex set and minimum is achieved at an extremal point of C.

$$E = \{ (M, \pm M\delta_{x}) : x \in \mathcal{X} \}$$

$$\Longrightarrow z^k = (M, \pm M\delta_{x_k})$$

Applying Frank-Wolfe to the Blasso

At each iteration
$$k$$
, $\mu^{k-1} = \sum_{j=1}^{k-1} a^j \delta_{x^j}$

Define
$$\eta^k = \frac{1}{\lambda} [\Phi^*(\Phi \mu^{k-1} - y)]$$
 and $\gamma^k = 2/(k+2)$.

- 1. Add new spike: $x^k = \operatorname{argmax}_{x \in \mathcal{X}} |\eta^k(x)|$
- 2. $\mu^k = \mu^{k-1} + \gamma^k \left(a_k \delta_{x^k} \mu^{k-1} \right)$

Terminate if $\eta^k(x^k) = \pm 1$ and return μ^k

Sliding Frank-Wolfe: [Denoyelle et al 2018]

Replace step 2 with any $\hat{\mu}^k$ such that $f_{\lambda}(\hat{\mu}^k) \leq f_{\lambda}(\mu^k)$:

$$\hat{\mu}^k = \sum_{j=1}^k \hat{a}_j \, \delta_{\hat{x}_j} \text{ where}$$

$$(\hat{a}, \hat{x}) \in \min_{a, x} \lambda \|a\|_1 + \frac{1}{2} \|\Phi \mu_{a, x} - y\|^2$$

Theorem (Denoyelle et al, 2019): finite convergence if η_V is non-degenerate at the solution.

Remarks

- The sliding Frank-Wolfe is an off-the-grid algorithm, however:
 - \Rightarrow the difficulty is in the step $x^k = \operatorname{argmax}_{x \in \mathcal{X}} |\eta^k(x)|$
- \mathcal{X} is a continuous space and η^k is a continuous (smooth) function
- In practice, discretize $\mathcal X$ and do a local ascent step on η^k
- This is computationally intensive if $\mathcal{X} \subset \mathbb{R}^d$ and d is large.

Particle methods

$$\min_{\mu} \lambda \|\mu\|_{TV} + \frac{1}{2} \|\Phi\mu - y\|^2$$

This has a solution consisting of m+1 Diracs

$$\min_{a,x} \lambda \sum_{i=1}^{k} |a_i| + \frac{1}{2} \|\sum_{i=1}^{k} \phi(x_i) a_i - y\|^2$$

Has the same value as $P_{\lambda}(y)$ when $k \ge m$

Chizat and Bach (2018): Global convergence results for *sufficiently large k*.

VarPro

[Golub and Pereyra, 1978]

$$\min_{x} f(x) \text{ where}$$

$$f(x) = \min_{a} \| \sum_{j} \phi(x_{j}) a_{j} - y \|^{2}$$

Easy to compute gradient:

$$\partial_{x_j} f(x) = \partial_{x_j} \|\Phi_x \bar{a} - y\|^2 = \bar{a}_j \nabla \phi(x_j)^{\mathsf{T}} (\Phi_x \bar{a} - y)$$

$$\bar{a} = \operatorname{argmin}_a \|\Phi_x a - y\|^2 = \Phi_x^{\dagger} y$$

In general, solution is non-sparse.

Leads to better problem conditioning.

VarPro

A practical approach for sparse solutions (Nonsmooth VarPro):

$$\min_{x} f(x) \text{ where } f(x) := \min_{a} \frac{1}{2} ||\Phi_{x}a - y||^{2} + \lambda ||a||_{1}$$

If the inner Lasso problem has a unique solution for x, then f is differentiable at x with gradient

$$\partial_{x_j} f(x) = \partial_{x_j} \|\Phi_x \bar{a} - y\|^2 = \bar{a}_j \nabla \phi(x_j)^{\mathsf{T}} (\Phi_x \bar{a} - y)$$
$$\bar{a} = \operatorname{argmin}_a \frac{1}{2} \|\Phi_x a - y\|^2 + \lambda \|a\|_1$$

Summary

- For certain settings (Fourier sampling), one can convert to a finite dimensional optimisation problem.
- The Frank-Wolfe algorithm is a versatile algorithm for computations off-the-grid. Works well in low dimensions, but there is a difficulty with finding the argmax of η_k
- Particle methods are effective in practice, but no quantitative rates.

References

SDP/convex finite dimensional formulations

- Candès, E. J., & Fernandez-Granda, C. (2014). Towards a mathematical theory of super-resolution. Communications on pure and applied Mathematics, 67(6), 906-956.
- Catala, Paul, Vincent Duval, and Gabriel Peyré. "A low-rank approach to off-the-grid sparse superresolution." SIAM Journal on Imaging Sciences 12.3 (2019): 1464-1500.
- Pilanci, Mert, and Tolga Ergen. "Neural networks are convex regularizers: Exact polynomial-time convex optimization formulations for two-layer networks." *International Conference on Machine Learning*. PMLR, 2020.

Frank-Wolfe

- Bredies, K., & Pikkarainen, H. K. (2013). Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations, 19(1), 190-218.
- Boyd, N., Schiebinger, G., & Recht, B. (2017). The alternating descent conditional gradient method for sparse inverse problems. SIAM Journal on Optimization, 27(2), 616-639.
- Denoyelle, Q., Duval, V., Peyré, G., & Soubies, E. (2019). The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy. *Inverse Problems*, 36(1), 014001.

"Particle" approaches

- Chizat, L., & Bach, F. (2018). On the global convergence of gradient descent for over-parameterized models using optimal transport. Advances in neural information processing systems, 31.
- Golub, Gene, and Victor Pereyra. "Separable nonlinear least squares: the variable projection method and its applications." *Inverse problems* 19.2 (2003): R1.