Phys 512 Lecture 4 Integration 2/ODEs

legendre polynomials

Code to Make Coeffs

```
def legendre_mat(npt):
    #Make a square legendre polynomial matrix of desired dimension
    x=np.linspace(-1,1,npt)
    mat=np.zeros([npt,npt])
   mat[:,0]=1.0
   mat[:,1]=x
    if npt>2:
        for i in range(1,npt-1):
            mat[:,i+1]=((2.0*i+1)*x*mat[:,i]-i*mat[:,i-1])/(i+1.0)
    return mat
def integration_coeffs_legendre(npt):
    #Find integration coefficients using
    #square legendre polynomial matrix
    mat=legendre_mat(npt)
    mat_inv=np.linalg.inv(mat)
    coeffs=mat_inv[0,:]
    coeffs=coeffs/coeffs.sum()*(npt-1.0)
    return coeffs
```

Code to Call it +Output

```
if True:
                                          def lorentz(x):
    print("Integrating sin")
    fun=np.sin
                                                return 1.0/(1.0+x**2)
    xmin=0
    xmax=np.pi
    targ=2.0
    dx_targ=0.1
else:
    print("Integrating Lorentzian")
    fun=lorentz
    xmin=-5
    xmax=5
    targ=np.arctan(xmax)-np.arctan(xmin)
    dx targ=0.5
for ord in range(2,16,2):
    val=integrate(fun,xmin,xmax,dx_targ,ord)
    print('For order ' + repr(ord) + ' error is ' + repr(np.abs(val-targ)))
```

```
Integrating sin
For order 2 error is 1.0333694131503535e-06
For order 4 error is 3.809155213474469e-09
For order 6 error is 7.276845792603126e-12
For order 8 error is 1.0769163338864018e-13
For order 10 error is 0.0
For order 12 error is 1.9984014443252818e-15
For order 14 error is 2.6645352591003757e-15
```

```
Integrating Lorentzian
For order 2 error is 0.0038935163714279852
For order 4 error is 0.01097767769723701
For order 6 error is 0.002621273236311783
For order 8 error is 0.01837703807845159
For order 10 error is 0.005032084054994446
For order 12 error is 0.001118349714313016
For order 14 error is 0.0003964865376655524
```

Romberg Integration

- Another way to get to high order.
- If I integrate from -a to a, only even terms survive in integral.
- If I have n estimates of area with varying dx, I could kill off n terms in even error series, giving accuracy of dx²ⁿ.
- More stable than high order polynomial weights.

Scipy Romberg

In scipy.integrate have 2 options:
 scipy.integrate.romb = integral from pre-evaluated points
 scipy.integrate.romberg = integral from function

for k=1 and 3 function calls, error is 0.011651369255893052 for k=2 and 5 function calls, error is 6.851628176995916e-05 for k=3 and 9 function calls, error is 1.0674648986963575e-07 for k=4 and 17 function calls, error is 4.2089887131169235e-11 for k=5 and 33 function calls, error is 4.440892098500626e-15

```
for k=6 and 65 function calls, error is 8.881784197001252e-16
                                        for k=7 and 129 function calls, error is 4.440892098500626e-16
                                        for k=8 and 257 function calls, error is 0.0
                                        for k=9 and 513 function calls, error is 0.0
import numpy as np
                                        Romberg integration of <function vfunc at 0x11b243140> from [-1, 1]
from scipy import integrate
                                         Steps StepSize
                                                        Results
                                             1 2.000000 3.086161
a = -1
                                             2 1.000000 2.543081 2.362054
b=1
                                             4 0.500000 2.399166 2.351195 2.350471
for k in range(1,10):
                                             8 0.250000 2.362631 2.350453 2.350404 2.350402
                                            16 0.125000 2.353462 2.350406 2.350402 2.350402 2.350402
    n=1+2**k
                                            32 0.062500 2.351167 2.350403 2.350402 2.350402 2.350402 2.350402
    dx=(b-a)/(n-1.0)
    x=np.linspace(a,b,n)
                                        The final result is 2.350402387287607 after 33 function evaluations.
    y=np.exp(x)
    pred=np.exp(b)-np.exp(a)
    f=dx*integrate.romb(y)
    print('for k=' + repr(k) + ' and ' + repr(n) + ' function calls, error is ' + repr(np.abs(f-pred)
f=integrate.romberg(np.exp,a,b,show=True)
```

Pseudo-Romberg

```
n=np.asarray([3,5,7,9,13],dtype='int')
area=np.zeros(len(n))
if True:
    fun=np.exp
    x0 = -1;
    x1=1;
    truth=fun(x1)-fun(x0)
for i in range(len(n)):
    x=np.linspace(x0,x1,n[i])
    area[i]=simpsons(fun,x)
    print('area error with ',n[i],' points is ',area[i]-truth)
mat=np.zeros([len(n),len(n)])
mat[:,0]=1 #the first column corresponds to the dx**0 term
dx=(x1-x0)/(n-1)
for i in range(1,len(n)):
    mat[:,i]=dx**(3+i) #we know Simpson's rule kills off t
fitp=np.dot(np.linalg.inv(mat),area)
print('area in romberg extrapolation is ',fitp[0]-truth)
```

Variable Step Size

- For Lorentzian, areas well away from poles should integrate nicely. Only around |x| < 1 is problematic.
- If I keep track, I will be able to see that away from the origin I converge, but less well at origin.
- I can find regions that behave, and not shrink dx when their errors are small.
- Regions that do not behave: shrink dx by a factor of 2, and try again.
- Life experience: Bad functions are usually bad in a small piece.
- Variable step size integration can easily save factors of ~hundred.
- Let's write one.

Side Note: Recursion

- A recursive function calls itself.
- In this case, we'll evaluate function across interval. If error small enough, we're done.
- Otherwise integral is integral of left half + integral of right half. Just call ourselves twice.
- If you don't have good stopping point, recursion can run away on you, easily crash computer.
- Good practice to think how stopping might go wrong.

Let's play with our integrator

- Throw out some functions where you know the analytic integral. How do we do?
- If we shrink the input tolerance, does our error get more accurate?
- What's a (finite, integrable function) with a spike? Does our integrator do lots of work around the spike and little elsewhere?

Cautionary Tale

- Let's integrate f(x)=1+exp(-0.5*(x/0.1)²) from a (<<0) to b (>>0).
- What should the answer be?
- What do we get from (-20,20)? How about (-25,15)?
- Does using scipy's quad help us here?
- How can we fix things?

Gaussian Quadrature

- We did well with high order and orthogonal polynomials. We might be able to do even better.
- Problem: polynomials not quite orthogonal on evenly spaced points.
- Gaussian quadrature: if we can pick x positions (instead of evenly spaced), we can make points orthogonal to odd polynomials. By only fitting even, can go to twice the order. Weights depend on positions.
- Unexpected bonus this works well for integrating w(x)f(x) for fixed w. One way to integrate over singularities.
- Example: integrate f(x)/sqrt(x) we calculate quadrature positions, weights for w=1/sqrt(x), then use that to integrate f(x).
- Many weight function have already been generated if you need this, have a look.

Chebyshev Polynomials

- $T_n = cos(nacos(x)), -1 \le x \le 1$
- $T_0=1, T_1=x$.
- Recurrence relation: T_{n+1}=2xT_n-T_{n-1}.

- Bounded by +/-1
- Orthogonal under weight: $\int T_n T_m/(1-x^2)^{1/2} dx=0$ (i \neq j), π (i=j=0) or $\pi/2$ (i=j>0).
- Make a natural way of doing Gaussian quadrature (Gauss-Chebyshev quadrature) of f(x)/(1-x²)¹/².

Chebyshev Series

- Let's say we want to make a polynomial expansion for some function with the smallest maximum errors.
- Common case when, say, trying to write code for evaluating functions.
- For smooth functions, Chebyshev coefficients tend to drop smoothly.
- Because T_n are bounded, max error is \sum of cut coefficients.
- If you want to have fast functions at possibly relaxed precision over possibly restricted range, T_n are very useful.

How This Looks

- Look at cheb_expand.py
- Fits chebyshev and least-squares to same order.

ODEs

- usual case: we have $y(x_0)$, find $y(x_0+h)$ given dy/dx=f(x,y)
- Harder than integration, because we don't know how to evaluate dy/dx along the path - that depends on the (unknown) value of y.
- We can still apply many of the Taylor series tricks we've learned.
- NB we could have a system of equations just as well as a single equation.
- NB 2 we can also have higher order equations recast into a system. variables are then y,y',y"...

1st order

- We could just take y(x+h)=y(x)+h dy/dx = y(x)+hf
- How will error scale with size of h?
- This isn't very good...
- Can we do better?

RK2

- I could take a trial step, then evaluate derivative. Maybe combine with first derivative to do better?
- Taylor expand y(x+h) to 2nd order.
- Take $k_1=hf(x,y)$, $k_2=hf(x+\alpha h,y+\beta k_1)=hf(x+\alpha h,y+\beta fh)$
- Let answer be $y(x+h)=ak_1+bk_2$.
- Solve for a,b, α , β to make agree with Taylor.
- Answer underconstrained have freedom to pick. Usual is $\alpha = \beta = 1$, a=b=1/2, or $\alpha = \beta = 1/2$ and a=0,b=1.

RK4

- Can extend to 4th order. Mathy, but not very illustrative.
- $k_1=hf(x,y)$ $k_2=hf(x+h/2,y+k_1/2)$ $k_3=hf(x+h/2,y+k_2/2)$ $k_4=hf(x+h,y+k_3)$ $y(x+h)=y(x)+(k_1+2k_2+2k_3+k_4)/6$
- Accurate to 4th order ODE equivalent of Simpson's rule.
- Adaptive stepsize highly recommended.

```
def f(x,y):
    dydx=np.asarray([y[1],-y[0]])
    return dydx
```

```
def rk4(fun,x,y,h):
    k1=fun(x,y)*h
    k2=h*fun(x+h/2,y+k1/2)
    k3=h*fun(x+h/2,y+k2/2)
    k4=h*fun(x+h,y+k3)
    dy=(k1+2*k2+2*k3+k4)/6
    return y+dy
```



```
npt=201
x=np.linspace(0,np.pi,npt)
y=np.zeros([2,npt])
y[0,0]=1 #starting conditions
y[1,0]=0 #if I start at peak, then first derivative =0
for i in range(npt-1):
    h=x[i+1]-x[i]
    y[:,i+1]=rk4(f,x[i],y[:,i],h)
truth=np.cos(x)
print(np.std(truth-y[0,:]))
```

Bulirsch-Stoer

- We saw we could take multiple not-very accurate integrals, and combine to get high accuracy by estimating error terms.
- Can do the same with ODEs Romber equivalent is called Bulirsch-Stoer.
- If you need high accuracy, have smooth function, try this!

Stability

- let y'=-cy. Answer should be exp(-cx)
- Solve the stupid way: y(x+h)=y(x)+hf(x,y)= y(x)-hcy(x)
- y(x+h)=y(x)(1-hc). $y(x+nh) = y(x)(1-hc)^n$.
- What happens if h is to large? For |1-hc|>1, this grows exponentially. Large steps have made our answer unstable.

Stiff Equations

- Very often in systems, one equation (or eigenmode) has a large c, other has a small c.
- Solution is large c converges very quickly, and stays at solution while we wait for small c to evolve.
- If we aren't careful and take steps for small c, then large c becomes unstable, and solution blows up.
- Shrinking time step enough to track large c may be impracticle.
- Such systems are called stiff. Solutions presented here are simplistic, but knowing you have a stiff set is most of the battle.

U238 Decay

- Radioactive decay common situation.
- U238 takes 4 billion years to go to Th234. Po214 takes 160 microseconds to go to Pb210.
- To solve naively, takes (4 billion years/160 microsconds) =10²¹ timesteps.

	Half-Life	Time unit	Emitter
Uranium-238	4,468	billion of years	alpha
Thorium-234	24,10	days	beta -
Protactinium-234	6,70	hours	beta -
Uranium-234	245 500	years	alpha
Thorium-230	75380	years	alpha
Radium-226	1 600	years	alpha
Radon-222	3,8235	days	alpha
Polonium-218	3,10	minutes	alpha
Plomb-214	26,8	minutes	beta -
Bismuth-214	19,9	minutes	beta -
Polonium-214	164,3	microseconds	alpha
Plomb-210	22,3	years	beta
Bismuth-210	5,015	years	beta
Polonium-210	138,376	days	alpha
Plomb-206	Stable		

Implicit

- Common solution use derivative at end of interval.
- In constant coefficient case y_{n+1}=y_n-hcy_{n+1}.
- Solve: $y_{n+1}(1+hc)=y_n$, $y_{n+1}=y_n/(1+hc)$. (reminder old way was $y_{n+1}=y_n(1-hc)$. Agrees to 1st order but not 2nd.)
- I can now make h very large and remain stable. I may not be accurate, but I can crank up h.
- This is just an introduction, much better ways to handle stiff equations exist, but at least you know to look for them...