1. A pressure sensor outputs -2mV when the pressure is 30psi and +13mV when the pressure is 150psi. The input range for the analog-to-digital converter is 0-10V, where 0V corresponds to 30psi and 10V

corresponds to 150psi.		
(a) Design the interface circuit.	Gain =	667
Solution:	Bias =	1.33 V
(b) What does the interface circuit output when the sensor voltage is +6mV?	$V_{\mathrm{out}} =$	5.33 V

2. An Analog-to-Digital Converter (ADC) has a sampling frequency of 30kHz, what is the maximum input frequency allowed before aliasing occurs?

Solution: $15~\mathrm{kHz}$ $f_{\rm max} =$

3. Given the following amplitude spectrum for an analog signal being applied to an ADC, what is the minimum sampling frequency required to avoid aliasing? What $V_{\rm max}$ and $V_{\rm min}$ would you recommend to avoid clipping with your ADC?

$$f_s = 100 \mathrm{\ kHz}$$

$$V_{\min} =$$
 12 V

$$V_{
m max} = -12 \
m V$$

4. Perform the following number base conversions

(a) 81_{10}	8-bit binary	0101 0001

Solution:

(b) $65_{10} \xrightarrow{8\text{-bit binary}} 0100\ 0001$

Solution:

(c) $11110101_2 \xrightarrow{\text{Decimal}}$ 245

Solution:

 5. Given a 4-bit ADC with $V_{min} = 0V$, what V_{max} is required to get a voltage resolution of $\frac{1}{4}V$?

$$V_{\mathrm{max}} = \boxed{ \qquad \qquad 4 \ V }$$

Solution:

6. Given an ADC with $V_{\rm max}=10V$ and $V_{\rm min}=0V$, how many bits would be required to get a voltage resolution less than 2mV? Recall this needs to be an integer value.

Solution: