EE6310: Image and Video Processing Spring 2023

Gray Scale Point Operations

Gray Scale Point OperationsDefinition

- Recall that binary morphological operations are neighborhood operations due to ${\bf B}$
- As the name suggests, a point operation is performed on a pixel wise basis without using neighborhood information
- Spatial relationships are not modified
- $J(i,j) = f[I(i,j)]; 0 \le i \le N-1, 0 \le j \le M-1$

Gray Scale Point OperationsLinear Point Operations

- Simplest class of point operations: $J(i,j) = P \cdot I(i,j) + L$
- Scale and offset image intensities
- Affects image histogram
 - Recall $\mathbf{H}_{\mathbf{I}}(k)$ is the histogram of image \mathbf{I} where $0 \le k \le (K-1)$ for a K level image

Linear Point Operations

- If P = 1, J(i, j) = I(i, j) + L
 - what happens when L > 0?
 - how about when L < 0?
- If L = 0, $J(i, j) = P \cdot I(i, j)$
 - what happens when P > 1?
 - how about when P < 1?
- A demo...

Linear Point Operations

- To summarize:
 - If P = 1, J(i, j) = I(i, j) + L, $H_J(k) = H_I(k L)$
 - If $\mathbf{L} = 0$, $\mathbf{J}(i, j) = \mathbf{P} \cdot \mathbf{I}(i, j)$, $\mathbf{H}_{\mathbf{J}}(k) = \mathbf{H}_{\mathbf{I}}(\operatorname{int}(k/\mathbf{P}))$

Linear Point Operations: Full Scale Contrast Stretch

The most common linear point operation

Notice how the entire range of [0, 255] is not occupied

Linear Point Operations: Full Scale Contrast Stretch

- Let A and B be the minimum and maximum gray values of a K level image I
- Apply point operation to \mathbf{I} : $\mathbf{J}(i,j) = \mathbf{P} \cdot \mathbf{I}(i,j) + \mathbf{L}$
- Pick P and L such that

•
$$PA + L = 0$$

•
$$PB + L = (K - 1)$$

• Solving for **P** and **L**:

$$\mathbf{P} = \frac{K-1}{B-A}$$

$$L = -A \frac{K-1}{B-A}$$

Another demo...

Non-linear Point Operations

- Let's consider non-linear point functions:
 - $\mathbf{J}(i,j) = f[\mathbf{I}(i,j)]; 0 \le i \le (N-1); 0 \le j \le (M-1)$
- A very large class of functions!
- A few common ones:
 - $J(i,j) = [I(i,j)]^2$
 - $\mathbf{J}(i,j) = \sqrt{[\mathbf{I}(i,j)]}$
 - J(i,j) = log(1 + [I(i,j)])
 - $\mathbf{J}(i,j) = \exp([\mathbf{I}(i,j)])$

Gray Scale Point Operations Log Range Compression

- Scenario: A small group of very bright pixels obscure rich information present in less bright pixels that are less visible
- Example: Astronomical images of galaxies

Gray Scale Point OperationsLog Range Compression

- Apply log range compression: $\mathbf{J}(i,j) = \log(1 + [\mathbf{I}(i,j)])$
- Bright intensities compressed heavily causing faint details to appear
- Apply FSCS to use full range

Gray Scale Point Operations Histogram Flattening

- An image with a flat histogram
 - makes rich use of available grayscale
 - might be an image with smooth changes in intensities
 - might be an image with lots of texture
- Nonlinear point operations can be applied to an image to obtain an approximately flat histogram
 - How is this different from FSCS?

Gray Scale Point Operations Histogram Flattening

• Defined normalized histogram to be

•
$$p_{\mathbf{I}}(k) = \frac{1}{MN} \mathbf{H}_{\mathbf{I}}(k); 0 \le k \le (K-1)$$

- Satisfies $\sum_{k=0}^{K-1} p_{\mathbf{I}}(k) = 1$ (like a PMF)
- . The **cumulative histogram** is $P_{\mathbf{I}}(r) = \sum_{k=0}^{r} p_{\mathbf{I}}(k); r=0,1,\ldots,(K-1),$ a non-decreasing function
- $P_{\mathbf{I}}(K-1) = 1$
- Probabilistic interpretation:
 - $P_{\mathbf{I}}(r) = Pr\{I(i,j) \le r\}$
 - $p_{\mathbf{I}}(r) = P_{\mathbf{I}}(r) P_{\mathbf{I}}(r-1); r = 0,1,...,(K-1)$

Histogram Flattening: Continuous Case

• If p(x) and P(x) are **continuous**, they can be regarded as probability density and cumulative distribution respectively

$$p(x) = \frac{dP(x)}{dx}$$

- $P^{-1}(x)$ exists of defined by **convention**
- Problem: Transform I with p(x), P(x) into image K with flat histogram
- Solution: $\mathbf{J}(i,j) = P(\mathbf{I}(i,j))$ will have a **flattened histogram** with range [0,1]
- K = FSCS(J) solves the problem

Histogram Flattening: Continuous Case

- Recall: $\mathbf{J} = P(\mathbf{I})$ will have a **flattened histogram** with range [0,1]
- This means the following:
 - Let $\mathbf{Q}(x) = Pr{\mathbf{J} \le x}$, then,
 - $\mathbf{Q}(x) = Pr\{P(\mathbf{I}) \le x\} = Pr\{\mathbf{I} \le P^{-1}(x)\}$
 - \longrightarrow $\mathbf{Q}(x) = P[P^{-1}(x)] = x$
 - $\therefore q(x) = \frac{dP(x)}{dx} = 1; 0 \le x \le 1$

Gray Scale Point OperationsHistogram Flattening: Discrete Case

- To approximately flatten the histogram of image \mathbf{I} : define the cumulative histogram image $\mathbf{J} = P(\mathbf{I})$
- By definition, $P(\mathbf{I})$, $0 \le \mathbf{J} \le 1$
- This means that the elements of ${f J}$ are approximately linearly distributed between 0 and 1
- As before, $\mathbf{K} = \mathsf{FSCS}(\mathbf{J})$ yields the histogram flattened image

Gray Scale Point OperationsHistogram Flattening: Discrete Case

- Observations
 - The height of $H_{\mathbf{I}}(k)$ cannot be reduced
 - Flattening only spreads the histogram more flat
 - Spaces are characteristics of flattened histograms

Gray Scale Neighborhood Operations

Image Zoom

Original Image

Zoomed Image

Gray Scale Neighborhood Operations Image Zoom

- Zooming magnifies an image by resampling it
- Visualization:
 - Let $N \times N$ be the size of the original image
 - Let $M \times M$ be the size of the zoomed image (M > N)
 - Now fit larger image in space occupied by smaller image
 - Compute pixel values at the new grid points using nearest neighbor interpolation

Gray Scale Neighborhood Operations

Image Zoom

Gray Scale Neighborhood Operations Image Zoom: Bilinear Interpolation

- Use four nearest neighbors for interpolation according to: J(i,j) = A + Bi + Cj + Dij
- How to find A, B, C, D?
 - Use four nearest neighbors of the location (i, j)
 - Smoothness assumption: I(m, n) = A + Bm + Cn + Dmn

Solve:
$$\begin{bmatrix} 1 & i_0 & j_0 & i_0 j_0 \\ 1 & i_1 & j_1 & i_1 j_1 \\ 1 & i_2 & j_2 & i_2 j_2 \\ 1 & i_3 & j_3 & i_3 j_3 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \begin{bmatrix} I(i_0, j_0) \\ I(i_1, j_1) \\ I(i_2, j_2) \\ I(i_3, j_3) \end{bmatrix}$$