Applying the Axioms of Additive Conjoint Measurement to a Hierarchy of Latent Variable Models

Ronli Diakow¹* Benjamin Domingue²* David Torres Irribarra³*

¹New York University

²University of Colorado at Boulder

³University of California, Berkeley

International Meeting of the Psychometric Society
July 25, 2013

^{*}Authors are listed in alphabetical order.

Score scales and latent structure

- ► We want to adequately characterize psychological and educational variables.
 - Are differences between respondents categorical? ordered? distances?
 - ► How can we determine the ("correct") generating model?
- ► This issue has both theoretical and practical importance.
 - Foundation of many debates in policy and substantive research
 - Any decision matters for subsequent inferences

A tale of two methods

- ► Joint work based on two previous lines of research:
 - Torres Irribarra and Diakow Can we determine the structure (qualitative, ordinal, interval) of a latent variable by model fit comparisons within a hierarchical model framework that places progressively more stringent monotonicity and scale assumptions on the latent variable?
 - Domingue Do data possess sufficient structure, as judged by the axioms of conjoint measurement, to yield interval scales?

Organizing models by their latent structure

Two kinds of restrictions that a model places on the latent variable:

Monotonicity, which implies that the probability a correct response is a non-decreasing function of increasing proficiency and/or is a non-increasing function of increasing difficulty.

Scale, which implies that the differences between persons (and items) are quantitative (i.e. interval) in nature.

A hierarchy of latent variable models

1. Unconstrained Latent Class Model (UN):

$$logit[Pr(x_{ic} = 1|c)] = logit[\pi_{i|c}] = \beta_{ic}$$

2. Ordered Latent Class Model with Class Monotonicty (MON):

logit[
$$Pr(x_{ic} = 1|c)$$
] = logit[$\pi_{i|c}$] = β_{ic} , $\beta_{ic} \le \beta_{ic'}$ for all $c < c'$ and for all i

3. Ordered Latent Class Model with Invariant Item Ordering (IIO):

logit[
$$Pr(x_{ic} = 1|c)$$
] = logit[$\pi_{i|c}$] = β_{ic} , $\beta_{ic} \le \beta_{i'c}$ for all $i < i'$ and for all c

Six latent variable models (cont.)

4. Ordered Latent Class Model with Double Monotonicity (DM):

$$\begin{aligned} \operatorname{logit}[Pr(x_{ic} = 1 | c)] &= \operatorname{logit}[\pi_{i|c}] = \beta_{ic}, \\ \beta_{ic} &\leq \beta_{ic'} \text{ for all } c < c' \text{ and for all } i, \\ \beta_{ic} &\leq \beta_{i'c} \text{ for all } i < i' \text{ and for all } c \end{aligned}$$

5. Located Latent Class Model or Latent Class Rasch Model (LCR):

$$logit[Pr(x_{ic} = 1 | \theta_c, \delta_i)] = \theta_c - \delta_i$$

6. Rasch Model (RM):

$$logit[Pr(x_{ip} = 1 | \theta_p, \delta_i)] = \theta_p - \delta_i$$

Additive Conjoint Measurement (ACM)

- Axioms of additive conjoint measurement:
 - Describe conditions that need to be satisfied for an interval scale to exist for an attribute
 - Provide a means of testing the hypothesis that data is consistent with an interval scale
 - Are difficult to verify given (likely) measurement error
- Focus on the cancelation axioms

Cancelation axioms

Consider a 3×3 probability matrix formed by the selection of 3 item difficulties and 3 person abilities:

$$x_{11}$$
 x_{12} x_{13} x_{21} x_{22} x_{23} x_{31} x_{32} x_{33}

- Single cancelation: Rows or columns can be consistently ordered.
 - ► Implies that the major (left-leaning) diagonal is ordered.
- ► Examples:
 - ► Rows: If $x_{11} < x_{21}$, then $x_{12} < x_{22} & x_{13} < x_{23}$.
 - ► Columns: If $x_{11} < x_{12}$, then $x_{21} < x_{22} & x_{31} < x_{32}$.

Cancelation axioms

Consider a 3×3 probability matrix formed by the selection of 3 item difficulties and 3 person abilities:

$$\begin{array}{cccc} \cdot & x_{12} & x_{13} \\ x_{21} & \cdot & x_{23} \\ x_{31} & x_{32} & \cdot \end{array}$$

- ▶ Double cancelation: Additive constraints
 - Imposes some order on the (very messy) minor (right-leaning) diagonal.
- ► Two forms:
 - If $x_{21} < x_{12} & x_{32} < x_{23}$ then $x_{31} < x_{13}$.
 - If $x_{21} > x_{12} & x_{32} > x_{23}$ then $x_{31} > x_{13}$.

Applying the axioms of ACM

- Domingue expanded and improved a Bayesian method for checking the single and double cancelation constraints
 - Accounts for measurement error in the observed proportions
- ► The method implemented in the R package ConjointChecks:
 - Estimate the posterior for the probability of a correct response within each cell using relevant cancelation constraints to form the jumping distribution
 - Check if the observed proportions correct fit within the estimated 95% credible interval

The Framework and the Axioms

Hypotheses

The expected order for the number of violations of the cancelation axioms is un > (mon \sim 110) > dm > (lcr \sim Rm)

	Violates cancelation axiom		
Model	Single		Double
	Rows	Columns	200010
UN	✓	√	\checkmark
MON		\checkmark	\checkmark
IIO	\checkmark		\checkmark
DM			\checkmark
LCR			
RM			

If these hypotheses hold, then we potentially have a fairly straightforward criteria to recover the generating latent structure.

o methods Study design Results Discussion

Simulation design and analysis

- Generate data under each of six models
 - 1. Use original data from Diakow and Torres Irribarra
 - ► 5000 people in 2-6 classes
 - ▶ 10 items
 - 30 replications per model
 - 2. Simulate new data
 - ▶ 1000 people in 6 classes
 - ► 50 items in 6 groups
 - ► 50 replications per model
- Check for violations of the cancelation axioms using ConjointChecks
 - Double cancelation and each single cancelation separately
- ► Record the % of (weighted) violations for each model

Simulation 1: Results for single cancelation

Person ordering

Simulation 1: Results for single cancelation Item ordering

Simulation 1: Results for double cancelation

Simulation 2: Single cancelation

Person ordering

Simulation 2: Single cancelation

Item ordering

Simulation 2: Double cancelation

[include figure]

Discussion

- Person monotonicity versus item ordering
 - precision / aggregation
 - we don't usually treat persons and items as symmetric, though the models/checks formally do
- Reconsidering double cancelation
 - standard testing data too noisy to check this?

Summary

- \triangleright
- ▶
- •

Applying the Axioms of Additive Conjoint Measurement to a Hierarchy of Latent Variable Models

xxx@xxx.xxx dti@berkeley.edu rdiakow@berkeley.edu Benjamin Domingue David Torres Irribarra Ronli Diakow

