

(19) BUNDESREPUBLIK **DEUTSCHLAND**

PATENTAMT

Offenlegungsschrift

₁₀ DE 196 09 771 A 1

(2) Aktenzeichen:

196 09 771.1

② Anmeldetag:

13. 3.96

(3) Offenlegungstag:

4. 6.98

(6) Int. Cl.6: B 23 D 45/00

> B 23 D 47/00 B 23 Q 11/00 B 23 Q 11/08 B 27 G 21/00

(71) Anmelder:

Nieberle, Jan, 22607 Hamburg, DE; Hauer, Sebastian, 22145 Hamburg, DE

(72) Erfinder: gleich Anmelder

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Der Inhalt dieser Schrift weicht von dem am Anmeldetag eingereichten Unterlagen ab

- (54) Aktives Sicherheitssystem an Tischkreisägen o.ä.
- Tischkreissägen gehören zu den gefährlichsten Werkzeugmaschinen, die sowohl im Handwerk als auch im Heimbereich Anwendung finden. Vor allem der charakteristische Aufbau der Tischkreissäge macht sie zu einem für den Benutzer gefährlichen Werkzeug. Die vorhandenen Sicherheitseinrichtungen bieten keinen zuverlässigen Schutz vor Verletzungen und behindern bei der Arbeit außerdem oft so stark, daß sie demontiert werden und somit überhaupt kein Schutz mehr vorhanden ist. Die Schutzhauben, zum Beispiel, sind meistens instabil, verdecken das Sägeblatt nur unzureichend und nehmen die Sicht auf das Werkstück, da sie undurchsichtig sind. Unsere Arbeit besteht in einem Sicherheitskonzept, welches den Benutzer wirksam vor Verletzungen schützen soll und den Arbeitskomfort dabei nicht einschränken, sondern erhöhen soll. Die Schutzhaube verdeckt das Sägeblatt im Ruhezustand vollkommen und wird, durch eine Elektronik gesteuert, automatisch auf die erforderliche Arbeitshöhe gefahren, sobald sich ein Holzstück nähert und bietet dadurch immer den maximal möglichen Schutz. Außerdem ist die Schutzhaube durchsichtig und erlaubt es, das Werkstück während des Sägevorgangs zu beobachten. Ein Laser, in der Schutzhaube montiert, projiziert eine rote Linie, welcher die Schnittlinie optisch verlängert und erlaubt so das einfache Ausrichten von Werkstücken. Des weiteren hat er eine Warnfunktion: Fällt die rote Linie auf eine in der Schnittlinie auf dem Holz liegende Hand, wird man auf die drohende ...

Beschreibung

Die Erfindung betrifft eine Vorrichtung entsprechend dem Oberbegriff des Anspruch 1.

Damit Finger und Hände vor Schnittverletzungen geschützt werden, wird ein Handerkennungssensor in Verbindung mit einer Sägeblattabschwenkeinrichtung installiert.

Es ist bekannt, daß es Tischkreissägen gibt, die nach DIN 38821 gebaut sind. Diese Maschinen sind zum Zersägen von Holz und anderen Werkstoffen konzipiert. Sie zeichnen sich 10 dadurch aus, daß sie einen sehr hohes Verletzungsrisiko beim Bedienen aufweisen.

Aufgabe dieser Erfindung ist es, das Arbeiten mit Tischkreissägen sicherer und komfortabler zu gestalten. Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen 15 des Anspruchs 1 gelöst. Die Vorteile der Erfindung sind eine Elektronik, die erkennen kann, ob sich dem Sägeblatt ein Körperglied nähert, und in diesem Fall das Sägeblatt mittels einer Pneumatik oder Hydraulik unter die Arbeitssläche sahren kann, so daß für das Körperglied keine Gefahr mehr be- 20 steht; ferner ein mit dem Sägetisch und dem Werkstück lükkenlos abschließender Sägeblattschutz, der den Zweck erfüllt, nicht von den Seiten oder von oben in das Sägeblatt fassen zu können; weiterhin ein Laser, der die Schnittlinie des Sägeblattes auf den Tisch projiziert, so daß man erken- 25 nen kann, ob das Werkstück richtig plaziert ist, und außerdem die Aufgabe hat, den Benutzer optisch auf den Gefahrenbereich aufmerksam zu machen.

Die Schnittlinienkennzeichnung

In der Schutzhaube unserer Kreissäge haben wir einen "Laserliner" montiert, welcher eine rote Linie projiziert, die die Schnittlinie optisch sichtbar macht. Dies erfüllt zwei Aufgaben: Zum einen kann man Werkstücke mit angezeichneten Schnittkanten bequem per Hand ausrichten wenn ein Winkelanschlag nicht unbedingt nötig ist und außerdem wird es dadurch erst möglich, sehr große Werkstücke auszurichten, welche für den Winkelanschlag zu breit sind. Zum anderen hat die rote Linie eine Warnfunktion: Führt man ein Werkstück mit der Hand auf der Schnittlinie, so fällt die rote Linie auch auf die Hand. Dies soll einen auf die Gefahr aufmerksam machen, die in einigen Zentimetern lauert.

Der Laser besteht aus einer Laserdiode, deren punktförmiger Strahl durch einen Glasstab zu einer Linie aufgeweitet wird. Die Laserdiode hat eine Leistung von 3 mW und fällt in die Laserschutzklasse IIIa. Diese Leistung reicht bei Tageslicht nicht ganz aus um die Linie gut erkennen zu können. Da man jedoch nicht direkt in den Strahl blicken kann und die Leistung auf die Linie verteilt wird, kann man auch 50 einen Laser mit z. B. 10 mW einsetzen. Die Schutzhaube, in der der Laser montiert ist, ist so stabil und schwingungsarm, daß die rote Linie nicht von der Schnittlinie abweicht.

Die Schutzhaube

55

Unser Ziel war es, eine Schutzhaube zu entwickeln, die das Sägeblatt so weit wie möglich abdeckt, um eine Verletzung des Benutzers auszuschließen. Dabei sollte die Schutzhaube aber nicht den Blick auf das Sägeblatt verdecken, 60 denn die Sicht auf den Treffpunkt des Sägeblattes auf das Werkstück ist Voraussetzung für präzise Schnitte. Die Schutzhaube soll vor allem so konstruiert sein, daß sie den Benutzer bei seiner Arbeit nicht in seiner Handlungsfreiheit einschränkt, denn dann ist zu befürchten, daß sie demontiert 65 wird. Die Schutzhaube muß sich so verhalten, als sei sie gar nicht da und muß den Eindruck erwecken, sie sei in erster Linie sinnvoll und dem Arbeitsprozeß dienlich. Da vor al-

lem die Höheneinstellung der Schutzhaube bei der Arbeit stört, muß besonders dieser Vorgang vereinfacht werden. Für die Öffnung der Schutzhaube haben wir uns zwei Varianten überlegt:

a) die manuelle Variante

Dabei handelt es sich um einen Öffnungsmechanismus. der durch das vom Benutzer herangeführte Werkstück betätigt wird. Durch den Schub des Werkstücks in Richtung Sägeblatt drückt es gegen die Vorderkante der Schutzhaube. Durch die Konstruktion der Aufhängung der Schutzhaube, wie sie im Bild ersichtlich ist, weicht die Schutzhaube dadurch nach hinten und nach oben zurück. Sobald die Schutzhaube die Höhe des Werkstücks erreicht hat, bleibt sie in dieser Höhe stehen und man schiebt das Werkstück unter ihr durch. Diese Variante gewährleistet, daß die Schutzhaube das Sägeblatt immer so weit wie möglich abdeckt und dadurch ein Maximum an Schutz bietet. Auch ist diese Lösung äußerst unanfällig für Störungen. Allerdings lastet die Schutzhaube beim Hindurchschieben des Werkstücks auf diesem. Wir haben diese Variante gebaut und eine Weile mit ihr gearbeitet. Wir haben uns dann aber für die zweite Variante entschieden, da die manuelle sicherlich einigen Benutzern immer noch zu umständlich oder zu nervig wäre.

b) die automatische Variante

Es handelt sich hierbei um eine ähnliche Lösung wie bei der ersten Variante. Der Unterschied besteht darin, daß die Schutzhaube sich nicht durch den Druck des Werkstücks öffnet, sondern durch ein Hubgetriebe mit einer Steuerelektronik nach oben gefahren wird. Dazu ist an der Spitze der Schutzhaube ein IR-Sender/Empfängerpaar installiert. Kommt ein Werkstück in die Reichweite des IR-Strahls, wird dieser von der Vorderkante des Werkstücks reflektiert und trifft auf den IR-Empfänger. Die Elektronik läßt dann das Hubgetriebe die Schutzhaube nach oben fahren. Wenn die Höhe des Werkstücks erreicht wird, strahlt der IR-Sender über der Vorderkante des Werkstücks hinweg und das reflektierte Signal bleibt aus. In diesem Moment wird das Hubgetriebe angehalten und man kann das Werkstück durchschieben. Diese Elektronik arbeitet mit dem Handerkennungssensor zusammen, dadurch fährt die Schutzhaube nicht nach oben, wenn statt eines Werkstücks eine Hand vor die Schutzhaube gehalten wird. Diese Variante ist eleganter als die erste und wird kaum jemanden beim Arbeiten stören. Die Elektronik ist einfach und nicht störanfällig.

Bei beiden Varianten besteht die Schutzhaube aus dem Plexiglas "Makrolon", welches extrem widerstandsfähig ist und nicht zerkratzt. Da die vorgeschriebene Staubabsaugung an der Schutzhaube nichts mit unserer Zielsetzung "Sicherheit" zu tun hat, haben wir sie nicht berücksichtigt um den Aufwand zu reduzieren.

Der Handerkennungssensor

Hände und Finger sind bei der Arbeit mit Kreissägen besonders gefährdet. Es war eines unserer Ziele, einen Sensor zu finden, welcher erkennen kann, ob man einen Finger oder eine Hand mit in das Sägeblatt führt. Es gibt allerdings keinen im Handel erhältlichen Sensor, der dieser Anforderung genügen kann. Bewegungssensoren z. B. können zwar die Bewegung erfassen, aber nicht zwischen Holz und Hand unterscheiden. Thermische Sensoren, welche die Hand an ihrer Wärmestrahlung theoretisch erkennen könnten, können durch kalte Hände oder warmes Holz irritiert werden. Wir haben deshalb selber einen Sensor entwickelt, welcher auf

4

der Idee des Russen Leon Theremen von 1920 basiert. Der sogenannte "Theremin-Oszillator" war der erste Synthesizer zur Klangerzeugung. Die Schaltung besteht aus zwei Oszillatoren, von denen einer auf einer festen Frequenz schwingt, der andere ändert seine Frequenz abhängig von der Annäherung einer Hand an eine Kupferplatte, welche zusammen mit der Hand eine Parallelkapazität zu der Kapazität im Schwingkreis darstellt. Die Differenz beider Frequenzen ist proportional zur Annäherung der Hand an die Kupferplatte, welche unter dem Arbeitstisch vor dem Sägehlatt angebracht ist. Wegen der geringeren elektrischen Polarisierbarkeit von Holz gegenüber der Hand hat das Holz eine geringere Wirkung auf den Sensor als die Hand. Dies ermöglicht eine Unterscheidung der Hand vom Holz. Ab einem bestimmten Wert der Frequenzdifferenz, also bei einer be- 15 stimmten Nähe der Hand zur Sensorplatte und damit zum Sägeblatt, löst die Sensorelektronik die Notaus-Absenkvorrichtung aus.

Als ein Problem stellte sich der Arbeitstisch heraus, da er aus Metall besteht und bei einem zu geringen Abstand zur 20 Sensorfläche ebenfalls als Sensor diente. Um dieses Problem zu beseitigen haben wir den Kunststoffeinsatz um das Sägeblatt herum vergrößert. Die Oszillatorelektronik ist direkt unter der Sensorfläche montiert um eine Störung durch elektromagnetische Wechselfelder in der Umgebung zu verbindern.

Die Notaus-Absenkvorrichtung

Das Sägeblatt ist die Hauptgefahrenquelle an einer Tischkreissäge. Um einen wirksamen Schutz vor Verletzungen zu
bieten, muß man das Sägeblatt auf irgend eine Weise ungefährlich machen können. Eine Bremsung des Sägeblattes ist
zwar möglich, aber es kann nicht schlagartig geschehen. Die
Zeit vom Erkennen der Hand vor dem Sägeblatt über das
Abbremsen des Sägeblattes bis zu dessen Stillstand würde
ausreichen, um die Hand in das noch rotierende Sägeblatt zu
führen. Wir mußten uns deshalb eine andere Art ausdenken,
um die Gefahr des Sägeblatts auszuschalten.

Wir haben ein eine Notaus-Funktion entwickelt, die das 40 Sägeblatt nicht abbremst, sondern es außer Reichweite der Hand befördert: Bei Erkennen einer Hand vor dem Sägeblatt steuert die Sensorelektronik ein Ventil an, wodurch ein pneumatischer Zylinder den Motor mit dem Sägeblatt schlagartig nach unten zieht; dabei verschwindet das Säge- 45 blatt vollständig unterhalb des Arbeitstisches. Diese Methode hat die Vorteile, daß sie sehr schnell ist und dabei vollkommen verschleißfrei arbeitet. Nach der Auslösung der Absenkung kann das Sägeblatt durch den Zylinder per Knopfdruck wieder nach oben gefahren werden. Für den 50 Zylinder wird Druckluft mit einem Druck von 10 bar benötigt. Hierzu eignet sich ein kleiner Kompressor mit Druckspeicher wie man ihn in jedem Baumarkt kaufen kann. Wird die Säge in Betrieben eingesetzt, entfällt diese Anschaffung, da Druckluft fast immer schon vorhanden ist.

Für die Führung der beweglichen Motorapparatur wird die vorhandene Führung zur Schnitthöheneinstellung verwendet. Die Funktion der Schnitthöhenverstellung erfolgt nun durch eine Handkurbel welche über eine Spindel und eine Scherenmimik den Zylinder und somit auch das Sägeblatt in der Höhe verstellen kann.

Fazit

Im Gegensatz zu den herkömmlichen Tischkreissägen 65 kann aufgrund der neu angewandten Sicherheitstechnik mit der Erfindung komfortabel und vor allem sicher gearbeitet werden. Besonders die Verknüpfung von verschiedenen Si-

cherheitsvorrichtungen im Einklang mit der DIN-Norm 38821 verringert wirksam das Verletzungsrisiko bei diesen Maschinen. Der Handerkennungssensor macht es in Verbindung mit der Notaus-Schutzschaltung im Grunde unmöglich, sich an der Maschine zu verletzen. Die Laser-Schnittlinienkennzeichnung warnt den Benutzer vor dem Sägeblatt und vereinfacht gleichzeitig eine präzise Bearbeitung des Werkstückes.

Die Erfindung setzt neue Maßstäbe in puncto Arbeitssicherheit und Bedienkomfort und trägt so zu einer Verbesserung des Arbeitsplatzes im Handwerk und im Heimwerkerbereich bei.

Patentansprüche

- 1. Vorrichtung zur Verbesserung der Arbeitssicherheit und des Bedienungskomfort an Tischkreissägen, dadurch gekennzeichnet, daß vor dem Sägeblatt eine elektronische Handerkennung plaziert ist, welche im Notfall Schutzmaßnahmen auslöst.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Sägeblatt durch die Elektronik ausgelöst, hydraulisch oder pneumatisch abgesenkt werden kann.
- 3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzhaube, welche das Sägeblatt abdeckt, mit dem Werktisch und dem Werkstück mittels einer Gleit- oder Hubvorrichtungsvorrichtung lükkenlos abschließt und sich mechanisch oder automatisch der Höhe des Werkstücks anpaßt.
- 4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzhaube, welche das Sägeblatt abdeckt, durchsichtig ist, und somit den Blick auf das Werkstück nicht verdeckt.
- 5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schnittlinie vor dem Sägeblatt mit einem Laser, welcher eine Linie auf den Werktisch projiziert, visualisiert wird.

Hierzu 4 Seite(n) Zeichnungen

- Leerseite -

DE 196 09 771 A1 B 23 D 45/00 4. Juni 1998

Funktionsprinzip Notabsenkung des Sägeblattes und Handerkennungssensor

9,19

Fig. 16

802 023/3

DE 196 09 771 A1 B 23 D 45/004. Juni 1998

Funktionsprinzip automatische Schutzhaube

Fig. 20

DE 196 09 771 A1 B 23 D 45/004. Juni 1998

Funktionsprinzip Laserliner an Schutzhautre

Fig, 36

DE 196 09 771 A1 B 23 D 45/004. Juni 1998

Fig. 4 Blockschaltbild Handerkennungssensor

