Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III. a.	
	reprezentarea corectă a tuturor forțelor ce acționează asupra sistemului
	expresia lucrului mecanic efectuat de forța de tracțiune: $L = Fd \cos \alpha$
	Rezultat final: $F = 20N$
b.	
	condițiile de echilibru pe verticală $m_1g=N_1+F\sin\alpha$ și $m_2g=N_2$
	expresia coeficientului de frecare $\mu = \frac{ L_{Ff} }{[(m_1 + m_2)g - F \sin \alpha]d}$
	Rezultat final: $\mu = 0.1$
C.	
	$P = -F_{f2} \cdot V_{medie}$
	$P = -F_{f2} \cdot V_{medie}$ Observația $V_{medie} = \frac{0+V}{2}$
	Expresia teoremei de variație a energiei cinetice $L_{tot} = \Delta E_c$
	$v = \sqrt{\frac{2(L_F - \left L_{F_i} \right)}{m_1 + m_2}}$
	$P = -\frac{\mu m_2 g}{2} \sqrt{\frac{2(L_F - L_{F_i})}{m_1 + m_2}}$
	Rezultat final: $ P = 2.81W$
d.	
	teorema variației energiei cinetice $FD\cos\alpha + F_fD\cos 180^0 = (m_1 + m_2)v^2/2$
	Rezultat final: $v' \cong 15.9 m/s$