ELE 535 - Machine Learning and Pattern Recognition

Fall 2018

HOMEWORK 8: Theory

- Q1 Let $\{(x_i, y_i)\}_{i=1}^m$ with $x_i \in \mathbb{R}^n$ and $y_i \in \{\pm 1\}$, $i \in [1:m]$, be a linearly separable set of training data. Show that if C is sufficiently large, the solution of the primal SVM problem will give the unique maximum margin separating hyperplane. How large does C need to be?
- Q2 Let $\{(x_i, y_i)_{i=1}^m \text{ with } x_i \in \mathbb{R}^n \text{ and } y_i \in \{\pm 1\}, i \in [1:m], \text{ be a training dataset. For a fixed value of } C$, let the corresponding SVM classifier have parameters w^*, b^* .
 - (a) Let $h \in \mathbb{R}^n$ and $Q \in \mathcal{O}_n$, and form the second training set: $\{Q(x_i h), y_i)\}_{i=1}^m$. Show that the SVM classifier for this second dataset using the same value of C has parameters $Qw^*, w^{*T}h + b^*$.
 - (b) If we first center the training examples, how does this change the SVM classifier?
- Q3 Give a clear and concise derivation of the dual of the primal linear SVM problem shown below and explain the origin of each of the constraints in the dual problem.

$$\min_{w \in \mathbb{R}^n, b \in \mathbb{R}, s \in \mathbb{R}^m} \quad \frac{1}{2} w^T w + C \mathbf{1}^T s$$
s.t.
$$Z^T w + b y + s - \mathbf{1} \ge \mathbf{0}$$

$$s \ge \mathbf{0}.$$

- Q4 Suppose that instead of using $C\sum_{i=1}^m s_i$ as the penalty term in the objective of the primal SVM problem we use the quadratic penalty $1/2C\sum_{i=1}^m s_i^2$, while maintaining the constraint $s_i \geq 0$.
 - (a) Formulate the new primal problem in vector form. When is the primal problem feasible?
 - (b) Does strong duality hold for this problem? Justify your answer.
 - (c) Write down the KKT conditions.
 - (d) Find the dual problem.
- Q5 You are provided with m > 1 data points $\{x_j \in \mathbb{R}^n\}_{j=1}^m$ of which at least d, with $1 < d \le m$ are distinct. Let $X = [x_1, \dots, x_m]$ and consider the one class SVM problem:

$$\min_{\substack{R \in \mathbb{R}, a \in \mathbb{R}^n, s \in \mathbb{R}^m \\ \text{s.t.}}} R^2 + C\mathbf{1}^T s$$

$$\text{s.t.} \quad \|x_i - a\|_2^2 \le R^2 + s_i, \quad i = 1, \dots, m,$$

$$s > \mathbf{0}.$$

- (a) Show that this is a feasible convex program and that strong duality holds. [Hint: let $r=R^2$]
- (b) Write down the KKT conditions.
- (c) Show that $\alpha^* \neq \mathbf{0}$ and that if C > 1/(d-1) then $(R^2)^* > 0$ (harder).
- (d) What are the support vectors for this problem?
- (e) Derive the dual problem.
- (f) Assume C > 1/(d-1). Given the dual solution, how should a and R^2 be selected?

1