AI504 9강 정리

- Autoencoder
 - 입력 -encoding(압축)-> Code -decoding(압축 해제)-> 출력
- 새로운 샘플 만들기 (Generating New Samples)
 - 존재하는 z를 교란
 - ◆ Code인 z의 값에 약간의 변화를 주어 새로운 샘플 z'를 만듦
 - 구역에서 샘플을 추출
 - ◆ 하나의 종류로 분류된 것들이 모여있는 구역에서 샘플을 추출함
 - ◆ 하지만 구역이 명확한 구분으로 나뉜 것이 아니기에 추출하기 난감함
 - 두 방법 모두 정상적으로 작동할 것이라는 보장이 없음
- Variational Inference
 - 사후분포 (Posterior Distribution)
 - ◆ 데이터 X와 관측되지 않은 변수 Z
 - ◆ Z가 X를 결정한다고 가정할 때 P(Z | X)를 구하고 싶음
 - ◆ X가 주어졌을 때 Z를 추론하는 것
 - ◆ Autoencoder에서 MNIST 이미지 X와 그 Latent representation Z
 - ◆ 일반적으로 사후확률은 다루기 힘듦
 - 베이즈 정리

$$\blacksquare P(Z|X) = \frac{P(X|Z)P(Z)}{P(X)} = \frac{P(X|Z)P(Z)}{\int_Z P(X,Z) dZ}$$

- 대신 더 간단한 함수 Q로 근사함 (주로 가우시안 사용)
- Q(Z)가 최대한 P(Z | X)와 유사하길 원함
 - Kullback-Leibler Divergence(KL-Divergence) 최소화
 - $\blacksquare D_{KL}(Q||P) \triangleq \sum_{Z} Q(Z) \log \frac{Q(Z)}{P(Z|X)}$
 - ◆ 정리하면 $D_{KL}(Q||P) = E_Z[\log Q(Z) \log P(Z,X)] + \log P(X)$ (E는 기대 값) ->①
 - D_{KL}은 대칭적이지 않음

- $D_{KL}(Q||P)$ -> Reverse KL
- ①에서 $\log P(X) = D_{KL}(Q||P) E_Z[\log Q(Z) \log P(Z,X)]$
 - ◆ 좌변은 고정되어 있음
 - $igoplus D_{KL}(Q||P)$ 을 최소화하려면 $-E_Z[\log Q(Z) \log P(Z,X)]$ 를 최대화하면 됨
 - ♦ $-E_Z[\log Q(Z) \log P(Z, X)]$ -> Evidence Lower Bound(ELBO) = H(Q)
- Variational Autoencoder
 - 목표
 - ◆ P(Z | X)를 따르도록 x를 z로 압축
 - ◆ 다시 x가 되도록 z를 압축해제
 - P(X)에서 P(Z)로 매핑 -> P(Z)에서 z 샘플 추출 가능, 추출한 z를 x로 변환
 - VAE Loss
 - ◆ Reconstruction Loss: z에서 x를 reconstruction
 - ◆ Regularization Term: z가 가우시안 분포를 따르도록 함
 - VAE Posterior Distribution
 - ◆ 진짜 P(Z | X)를 구할 수는 없으므로 Variational Inference 사용
 - ◆ Q(Z) 대신 Q_λ(Z | X) 사용
 - X에 의해 Z가 결정되기 때문
 - $Q_{\lambda}(Z \mid X) \rightarrow Encoder$
 - λ는 가우시안 Q에 대한 (μ, σ) -> 인코더가 (μ, σ) 생성
 - lacktriangle ELBO(λ) = $E_a[\log p(x,z)] E_a[\log q_{\lambda}(z|x)]$
 - 각 샘플 x_i에 대해,

 $\mathsf{ELBO}_{\mathsf{i}}(\lambda) = Eq_{\lambda}(z|x_{\mathsf{i}})[\log p(x_{\mathsf{i}}|z)] - KL(q_{\lambda}(z|x_{\mathsf{i}})||p(z))$

- 학습과정
 - ◆ 랜덤 샘플 x;에 대한 예시
 - x_i를 인코더에 넣고 (μ_i, σ_i)를 구함

- N (E,[f(z)]의 몬테카를로 예측)에서 z; 샘플 추출
- z_i를 디코더에 넣고 x_i' 구함
- squared error $||x_i' x_i||^2$ 와 $D_{KL}(N(\mu_i, \sigma_i)||N(0, 1))$ 계산
- 역전파, 인코더와 디코더 업데이트
- ◆ ||x_i'- x_i||²의 계산
 - zi와 연관된 식
 - z:를 디코더의 입력으로 생각하면 디코더에서 역전파 가능
 - 인코더 역전파에서 문제 발생
 - 랜덤하게 추출된 샘플인 Z_i가 문제를 발생시킴
 - 원래 z는 N(μ, σ)에서 랜덤으로 추출된 샘플
 - 대신 z를 μ + σ * ε로 나타냄 (ε는 N(0, 1)에서 랜덤으로 추출)
 - ◆ 이렇게 나타내면 역전파에서 랜덤성이 없어짐
- β-VAE: 잠재 변수를 사용해 이미지를 특정 요소를 기준으로 나눔
 - ◆ 이미지의 색상, 방향 등만 바꾸기 가능
- VAE를 사용하여 이미지 뿐 아니라 sequence, graph 등도 생성할 수 있음