

Final Project: Application of RL in supply chain management

Prof. Dr. Pirmin Fontaine
Daniel Müllerklein
Operations Management
Ingolstadt School of Management

Current application areas of reinforcement learning in SCM

Rising number of publications using RL for:

- Inventory management
- Vehicle rescheduling
- Job scheduling
- Transportation / vehicle routing
- Forecasting
- Dynamic pricing
- Supplier selection

• ...

The objectives and scope of the final project

- In your groups, you will work on one specific problem area of supply chain management to:
 - Define the problem and the Markov-Decision-Process
 - Obtain public data / generate data for your problem
 - Implement a reinforcement learning algorithm in python (Q-learning)
 - Discuss results
- Submission documents
 - Written report
 - o (Running) python code
- Exercise sheet summary in ILIAS

Timeline (Proposal)

22.06. (today)	06.07.	20.07.	18.08.
Start	Possibility to discuss problem definition / MDP (upon appointment)	Possibility to discuss implementation challenges (upon appointment)	Submission of code and written report

- Per group, request appointments via mail (alternative dates possible upon request)
- Earlier submission possible
- Submission via mail to pirmin.fontaine@ku.de and daniel.muellerklein@ku.de
- In case of questions, please reach out to daniel.muellerklein@ku.de

Overview of topics

Choose **one** of the following topics (details next):

- Inventory management
- Vehicle rescheduling
- Job scheduling

For each topic, you receive a scientific paper as implementation example.

In your groups,

- Discuss on how to simplify the problem
- Check for assumptions / insights that help your implementation
- Discuss on how to simplify the algorithms / implementation

Topic 1 – Inventory management (1/2)

- · Beer game for inventory management across multiple levels
- Various uncertainties regarding demand and other environmental factors
- Objective to minimize total inventory costs

Topic 1 – Inventory management (2/2)

- Each level as separate agent
- Different levels co-operate and communicate
- However, each level (agent) needs specific ordering system (no centralized decision making)
- RL good ordering policies under complex scenarios
- Example:

Chaharsooghi, S. K., Heydari, J., & Zegordi, S. H. (2008). A reinforcement learning model for supply chain ordering management: An application to the beer game. *Decision Support Systems*, *45*(4), *949-959*.

Table 4Comparison of inventory cost of RLOM with two other algorithms

	Main test problem	Test problem 1	Test problem 2	Test problem 3
1-1 policy	7463	5453	8397	7826
GA-based algorithm	2555	3109	4156	4330
RLOM	2417	3169	4038	4205

Topic 2 – Vehicle rescheduling (1/2)

- In railway traffic, timetables specify expected departure / arrival times
- Disruptions and unexpected events require rescheduling
- Objective to maintain overall punctuality (expected actual arrival time)

Topic 2 – Vehicle rescheduling (2/2)

- In practice, dispatchers manually reschedule,
 e.g., changing order of departure
- RL algorithm outperforms random walk or standard rules for rescheduling
- Example:

Šemrov, D., Marsetič, R., Žura, M., Todorovski, L., & Srdic, A. (2016). Reinforcement learning approach for train rescheduling on a single-track railway. *Transportation Research Part B:*Methodological, 86, 250-267.

Topic 3 – Production scheduling (1/2)

- Completing a set of jobs on a limited number of resources
- Job routing and job sequencing
- Different (and competing) objectives in practice

Topic 3 – Production scheduling (2/2)

- Dispatching rules to solve sequencing problem
- Priority rule for jobs waiting
- Varying objectives and uncertain jobs
- RL algorithm able to learn to favor the bestknown dispatching rule (analytical solution)
- Example:

Wang, Y. C., & Usher, J. M. (2005). Application of reinforcement learning for agent-based production scheduling. *Engineering* applications of artificial intelligence, 18(1), 73-82.

