Detailed Study Notes and Solutions for Assignment 1

Q1: Solving a Large Lower-Triangular System

Problem: We need to solve Lx = b, where L is a 100000×100000 lower-triangular matrix, and b is a 100000×1 vector. The constraints are:

- 1. Only individual rows of L can be stored in memory.
- 2. Writes to memory are more expensive than reads.

Solution Approach: The problem suggests solving Lx = b using **forward substitution** while minimizing memory writes.

Algorithm:

- 1. Initialize $x = [0] \times 100000$ (initially, all elements are 0).
- 2. For each row i = 1 to 100000:
 - Read row *i* of *L* and store temporarily.
 - Compute x_i using:

$$x_i = \frac{b_i - \sum_{j=1}^{i-1} L_{ij} x_j}{L_{ii}}.$$

- Write x_i to the output vector.
- 3. Repeat until x is fully computed.

Key Observations:

- The lower-triangular structure ensures $L_{ij} = 0$ for j > i, reducing computation.
- Minimizing memory writes is achieved by updating x_i directly after computing it.

Time Complexity:

$$O(n^2)$$

(where n = 100000).

Q2: Commutativity of Elimination Matrices

Problem: Given a 50×50 elimination matrix E_{ij} (where the i-th row and j-th column below the diagonal is non-zero), find the set of elimination matrices E_{pq} where $E_{pq}E_{ij}=E_{ij}E_{pq}$. Explain commutativity.

Solution:

- 1. Elimination Matrix Structure: Elimination matrices E_{ij} are designed to zero out specific elements in a matrix A.
- 2. Commutativity Analysis:
 - If $i \equiv p$ and $j \equiv q$, E_{ij} and E_{pq} operate on different rows and do not interfere, thus $E_{pq}E_{ij} = E_{ij}E_{pq}$.
 - If i = p or j = q, the operations affect the same rows, and commutativity may not hold.
- 3. **Example:** For i = 5, j = 2:

$$E_{52}$$
 = Matrix with entry at $(5,2) = 0$.

Calculate commutative pairs E_{pq} .

Conclusion: Commutativity works when elimination matrices act independently on separate rows or columns.

Q3: Finding a 2×2 Matrix with Complex Eigenvalues

Problem: Find a 2×2 matrix A such that:

- 1. Eigenvalues are complex with modulus 1.
- 2. Eigenvalues become real for A^{50} .

Solution:

1. **Rotation Matrix**: A 2×2 rotation matrix:

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

2. **Eigenvalues:** For A, eigenvalues are:

$$\lambda = e^{i\theta}, \quad \lambda = e^{-i\theta}.$$

These eigenvalues have modulus 1.

3. Condition for Real Eigenvalues: After n=50, A^{50} aligns with the axes ($\theta=2\pi/50$).

Result: The rotation matrix meets the requirements.

Q4: Eigenvalues of an Upper-Triangular Matrix

Problem: Is it feasible to compute eigenvalues of an $n \times n$ upper-triangular matrix in O(n)?

Solution:

- 1. Property of Upper-Triangular Matrices:
 - Eigenvalues are the diagonal elements.
- 2. Algorithm:
 - Traverse the diagonal of the matrix to collect eigenvalues.
 - Complexity:

O(n).

Conclusion: The claim is justified. Extracting diagonal elements requires O(n) time.

Q5: Symmetric Matrix Argument

Problem: Analyze the argument that C is symmetric if $C^TC = CC^T$.

Solution:

- 1. Given Condition: $C^{T}C = CC^{T}$.
- 2. SVD Analysis:
 - $C = U\Sigma V^{\mathsf{T}}$, where U and V are orthogonal matrices, and Σ is diagonal.
 - $C^{\mathsf{T}}C = V\Sigma^{\mathsf{T}}\Sigma V^{\mathsf{T}}, CC^{\mathsf{T}} = U\Sigma\Sigma^{\mathsf{T}}U^{\mathsf{T}}.$
 - If $C^TC = CC^T$, then U = V, and C is symmetric.

Conclusion: The argument is valid.

Key Learnings and Concepts

- Forward Substitution: Solves large lower-triangular systems efficiently.
- Matrix Properties: Understanding triangular, symmetric, and rotation matrices is critical for eigenvalue problems.
- Algorithmic Complexity: Leveraging matrix structure reduces computational overhead.