3 二极管及其基本电路

- 3.1 半导体的基本知识
- 3.2 PN结的形成及特性
- 3.3 二极管
- 3.4 二极管基本电路
- 3.5 特殊二极管

ch03

3.1 半导体的基本知识

- 3.1.1 本征半导体
- 3.1.2 杂质半导体

1. 半导体的导电性

根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。

典型的半导体有硅(Si)和锗(Ge)以及砷化镓(GaAs)等。

本征半导体是一种完全纯净、结构完整的半导体晶体。

ch03

1. 半导体的导电性

硅的二维晶格结构

硅原子结构简化模型

在室温(300K)下,当被束缚的价电子获得足够的随 机热振动能量而挣脱共价键束缚成为自由电子时(本征激 发),半导体便具备了一定的导电能力。

1. 半导体的导电性

但与良导体 相比,本征硅晶 体内自由电子数 量较少,因而其 导电性能远不及 导体。

2. 空穴

空穴就是价电 子挣脱束缚成为自 由电子后, 共价键 中留下的空位。

因为空穴表示 共价键中失去了一 个带负电荷的电子, 所以认为其带有与 电子电荷等量的正 电荷。

由于热激发而产 生的自由电子

价电子挣脱束缚 后留下的空穴

2. 空穴

空穴也可以移动,它实际 上反映了受束缚的价电子的移 动,只是移动方向与价电子移 动方向相反。

可以用空穴移动产生的电 流来代表价电子移动产生的电 流。

空穴的出现是半导体区别于导体的一个重要特点。

ch03

3. 载流子的产生与复合

载流子——可以自由移动的带电粒子。

自由电子和空穴都是载流子

本征激发产生的自由电 子和空穴总是成对出现的。

自由电子与空穴相遇时, 两者同时消失,称为自由电 子与空穴的复合。

外部环境不变的情况下,载流子的产生与复合达到动态 平衡。

3. 载流子的产生与复合

当温度升高时,将产生 更多的自由电子和空穴, 味着载流子的浓度升高, 体的导电能力也会增强。即 本征半导体的电导率将随温 度的升高而增加。

由于热激发而产 生的自由电子

价电子挣脱束缚 后留下的空穴

3.1 半导体的基本知识

- 3.1.1 本征半导体
- 3.1.2 杂质半导体

在本征半导体中掺入某些微量元素作为杂质, 可使半导体的导电性发生显著变化。掺入的杂质 主要是三价或五价元素。掺入杂质的本征半导体 称为杂质半导体。

N型半导体——掺入五价杂质元素(如磷)的 半导体。

P型半导体——掺入三价杂质元素(如硼)的 半导体。

1.P型半导体

因三价杂质原 子在与硅原子形成 共价键时,缺少一 个价电子而在共价 键中留下一个空穴

在P型半导体中空穴是多数载流子,它主要由掺杂形成; 自由电子是少数载流子,由热激发形成。

空穴很容易俘获电子,使杂质原子成为<mark>负离子</mark>。三价杂质因而也称为受主杂质。

2. N型半导体

因五价杂质原子中只 有四个价电子能与周围四 个半导体原子中的价电子 形成共价键,而多余的一 个价电子因无共价键束缚 而很容易形成自由电子。

在N型半导体中自由电子是多数载流子,它主要由杂质原子提供;空穴是少数载流子,由热激发形成。

提供自由电子的五价杂质原子因带正电荷而成为正离子, 因此五价杂质原子也称为施主杂质。

掺入杂质对本征半导体的导电性有很大的影 响,以下是一组典型数据:

- ① T=300 K室温下,本征硅的电子和空穴浓度: $n = p = 1.4 \times 10^{10} / \text{cm}^3$
- (2) 掺杂后 N 型半导体中的自由电子浓度: $n=5\times 10^{16}/\text{cm}^3$
- (3) 本征硅的原子浓度: 4.96×10²²/cm³

以上三个浓度基本上依次相差10⁶/cm³

ch03

3 二极管及其基本电路

- 3.1 半导体的基本知识
- 3.2 PN结的形成及特性
- 3.3 二极管
- 3.4 二极管基本电路
- 3.5 特殊二极管

3.2 PN结的形成及特性

- 3.2.1 PN结的形成
- 3.2.2 PN结的单向导电性
- 3.2.3 PN结的反向击穿和电容效应

3.2.1 PN结的形成

1. 载流子的漂移与扩散

漂移运动:

在电场作用下引起的载流子运动

扩散运动:

由载流子浓度差引起的载流子运动

3.2.1 PN结的形成

2. PN结的形成

多数载流子的扩散

少数载流子的漂移

空间电荷区 也称为耗尽层、势垒区。

3.2.1 PN结的形成

在一块本征半导体两侧通过扩散不同的杂质, 分别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:

因浓度差

多子的扩散运动→ 由杂质离子形成空间电荷区

空间电荷区形成内电场

内电场促使少子漂移

内电场阻止多子扩散

最后,多子的扩散和少子的漂移达到动态平衡。

3.2 PN结的形成及特性

- 3.2.1 PN结的形成
- 3.2.2 PN结的单向导电性
- 3.2.3 PN结的反向击穿和电容效应

1. 外加正向电压

当外加电压使PN结中P区的电位高于N区的电位,称为加 正向电压, 简称正偏; 反之称为加反向电压, 简称反偏。

外加正向电压

削弱了内电场的作 用,PN结电阻减小

有利于多数载流

子的扩散运动

回路中产生由多数载流子形成 的扩散电流, 称为正向电流

- 低电阻
- 大的正向扩散电流

1. 外加正向电压

当外加电压使PN结中P区的电位高于N区的电位,称为加正向电压,简称正偏;反之称为加反向电压,简称反偏。

2. 外加反向电压

外加反向电压

增强了内电场的作 用,PN结电阻增大 阻止多子扩散,

有利于少子漂移

回路中产生由少数载流子形成 的漂移电流,称为反向电流

- 高电阻
- 很小的反向漂移电流

在一定的温度条件下,由 本征激发决定的少子浓度是一 定的,故少子形成的漂移电流 是恒定的,基本上与所加反向 电压的大小无关,这个电流也 称为反向饱和电流。

2. 外加反向电压

外加反向电压

- 高电阻
- 很小的反向漂移电流

在一定的温度条件下,由 本征激发决定的少子浓度是一 定的,故少子形成的漂移电流 是恒定的,基本上与所加反向 电压的大小无关,这个电流也 称为反向饱和电流。

PN结加正向电压时,呈现低电阻, 具有较大的正向扩散电流。

PN结加反向电压时,呈现高电阻, 具有很小的反向漂移电流。

由此可以得出结论: PN结具有单向导电性。

3. PN结的*I-V*特性

$$i_{\mathrm{D}} = I_{\mathrm{S}}(\mathrm{e}^{\frac{v_{\mathrm{D}}}{nV_{T}}} - 1)$$

其中

 $I_{\rm S}$ ——反向饱和电流

 V_T ——温度电压当量

PN结单向导电性的I-V特性曲线

且在常温下(T=300K)

$$V_T = \frac{kT}{q} = 0.026 \text{ V} = 26 \text{ mV}$$

3.2 PN结的形成及特性

- 3.2.1 PN结的形成
- 3.2.2 PN结的单向导电性
- 3.2.3 PN结的反向击穿和电容效应

ch03

1. PN结的反向击穿

当PN结的反向电压增加到一定数值时,反向电流突然快速增加,此现象称为PN结的反向击穿。

电击穿——可逆 热击穿——不可逆

1. PN结的反向击穿

雪崩击穿

反向电压增大到一定程度

- → 电场足够强
- ── 漂移运动的少子获得足够的动能
- → 撞击出更多的自由电子-空穴对
- → 新的自由电子-空穴对继续撞击出更多的自由电子-空穴对
- → 载流子的倍增效应

1. PN结的反向击穿

齐纳击穿

反向电压增大到一定程度

- → 电场足够强
- 破坏共价键的束缚,分离出电子, 产生大量的自由电子-空穴对
- → 形成较大的反向电流

2. PN结的电容效应

扩散电容

外加电压变化

扩散到对方区域 在靠近PN结附近

累积的载流子浓 度发生变化

等效于电容充放电

2. PN结的电容效应

势垒电容

外加电压变化 ─ 离子层厚薄变化 ─ 等效于电容充放电

3 二极管及其基本电路

- 3.1 半导体的基本知识
- 3.2 PN结的形成及特性
- 3.3 二极管
- 3.4 二极管基本电路
- 3.5 特殊二极管

3.3 二极管

ch03

3.3 二极管

(1) 点接触型二极管

PN结面积小,结 电容小,用于检波和 变频等高频电路。

二极管的结构示意图

(a) 点接触型

3.3 二极管

面接触型二极管

PN结面积大,用于 工频大电流整流电路。

(c)集成电路中的平面型

3.3 二极管

- 3.3.1 二极管的*I-V*特性
- 3.3.2 二极管的主要参数
- 3.3.3 二极管模型

3.3.1 二极管的*I-V*特性

硅二极管2CP10

- ① ——正向特性
- ② ——反向特性
- ③ ——反向击穿特性

锗二极管2AP15

 $V_{
m th}$ ——门坎电压 $V_{
m BR}$ ——反向击穿电压

3.3 二极管

- 3.3.1 二极管的*I-V*特性
- 3.3.2 二极管的主要参数
- 3.3.3 二极管模型

3.3.2 二极管的主要参数

- (1) 最大整流电流 I_{F}
- (2) 反向击穿电压 V_{RR}
- (3) 反向电流 I_R
- (4) 极间电容 C_d
- (5) 反向恢复时间 T_{RR}

3.3 二极管

- 3.3.1 二极管的*I-V*特性
- 3.3.2 二极管的主要参数
- 3.3.3 二极管模型

将指数模型 $i_D = I_S(e^{v_D/V_T} - 1)$ 分段线性化,得到二极管特性的等效模型。

2. 恒压降模型

(a) I-V特性 (b) 电路模型

3. 折线模型

(a) I-V特性 (b) 电路模型

4. 小信号模型

二极管上的电压(或二极管中电流)仅在一较小范围 内发生变化时所建立的模型称为小信号模型

将二极管I-V特 性近似为以Q点为 切点的一条直线, 其斜率的倒数就是 小信号模型的微变 电阻 r_{d}

4. 小信号模型

Q点切线的斜率

(电导):

$$g_{\mathbf{d}} = \frac{\mathbf{d}i_{\mathbf{D}}}{\mathbf{d}v_{\mathbf{D}}}\bigg|_{\mathbf{d}}$$

且满足 $v_{\rm D}>>V_{\rm T}=26{\rm mV}$

$$i_{
m D}/{
m mA}$$
 Q'
 $\Delta v_{
m D}$
 $V_{
m D}$
 $V_{
m D}/V$

$$g_{\mathrm{d}} = \frac{di_{\mathrm{D}}}{dv_{\mathrm{D}}}\Big|_{\mathcal{Q}} = \frac{I_{\mathrm{S}}}{V_{T}} e^{v_{\mathrm{D}}/V_{T}}\Big|_{\mathcal{Q}} \approx \frac{i_{\mathrm{D}}}{V_{T}}\Big|_{\mathcal{Q}} = \frac{I_{\mathrm{DQ}}}{V_{T}} \qquad \begin{array}{c} \mathcal{Q} \text{点称为静态工作点,反} \\ \text{映直流时的工作状态。} \end{array}$$

得
$$r_{\rm d} = \frac{1}{g_{\rm d}} \approx \frac{V_T}{I_{\rm DQ}} = \frac{26({\rm mV})}{I_{\rm DQ}({\rm mA})}$$

(常温下, T=300K)

4. 小信号模型

$$r_{\rm d} = \frac{1}{g_{\rm d}} \approx \frac{V_T}{I_{\rm DQ}} = \frac{26({
m mV})}{I_{\rm DQ}({
m mA})}$$

特别注意:

- 小信号模型中的微变电阻 r_{d} 与静态工作点Q有关。
- 该模型用于二极管处于正向偏置条件下,且 $\nu_{
 m D}>>V_T$ 。

符号中大小写的含义:

大写字母大写下标:静态值(直流),如, $I_{\rm R}$

小写字母大写下标:总量(直流+交流),如,i_R

小写字母小写下标:瞬时值(交流),如, i_{k}

(参见"本书常用符号表")

3 二极管及其基本电路

- 3.1 半导体的基本知识
- 3.2 PN结的形成及特性
- 3.3 二极管
- 3.4 二极管基本电路
- 3.5 特殊二极管

3.4 二极管基本电路

- 3.4.1 整流电路
- 3.4.2 限幅电路
- 3.4.3 开关电路
- 3.4.4 小信号模型应用
- 3.4.5 图解分析法

1. 半波整流

二极管采用理想模型时,负 载上的平均电压

$$V_{\rm L} = \frac{1}{2\pi} \int_0^{\pi} \sqrt{2} V_{\rm s} \sin \omega t \cdot d\omega t$$

$$= \frac{\sqrt{2}}{\pi} V_{\rm s} \approx 0.45 V_{\rm s}$$

二极管中的整流电流

$$I_{\rm D} = I_{\rm L} = \frac{V_{\rm L}}{R_{\rm L}} = \frac{0.45V_{\rm s}}{R_{\rm L}}$$

二极管承受的最大反向电压

$$\sqrt{2}V_{
m s}$$

1. 半波整流

采用恒压降模型时

2. 桥式整流

11 华中科技大学电信学院

2. 桥式整流

二极管采用理想模型时,负 载上的平均电压

$$V_{L} = \frac{1}{\pi} \int_{0}^{\pi} \sqrt{2} V_{s} \sin \omega t \cdot d\omega t$$
$$= \frac{2\sqrt{2}}{\pi} V_{s} \approx 0.9 V_{s}$$

二极管中的整流电流

$$I_{\rm D1} = I_{\rm D2} = I_{\rm D3} = I_{\rm D4} = \frac{1}{2}I_{\rm L} = \frac{1}{2} \cdot \frac{V_{\rm L}}{R_{\rm L}} = \frac{1}{2} \cdot \frac{0.9V_{\rm s}}{R_{\rm L}} = \frac{0.45V_{\rm s}}{R_{\rm L}}$$

二极管承受的最大反向电压

$$\sqrt{2}V_{
m s}$$

3.4 二极管基本电路

- 3.4.1 整流电路
- 3.4.2 限幅电路
- 3.4.3 开关电路
- 3.4.4 小信号模型应用
- 3.4.5 图解分析法

3.4.2 限幅电路

理想模型

恒压降模型

理想模型结果

恒压降模型结果

3.4 二极管基本电路

- 3.4.1 整流电路
- 3.4.2 限幅电路
- 3.4.3 开关电路
- 3.4.4 小信号模型应用
- 3.4.5 图解分析法

3.4.3 开关电路

电路如图所示,求AO的电压值

解: 先断开D,以O为基准电位,即O点为0V。

则接D阳极的电位为-6V,接阴极的电位为-12V。

阳极电位高于阴极电位,D接入时正向导通。

导通后,D的压降等于零,即A点的电位就是D阳极的电位。 所以,AO的电压值为-6V。

3.4.3 开关电路

例 二极管开关电路如图3.4.6所示。利用二极管理想模型求解:

当 v_{11} 和 v_{12} 为0V或5V时,求 v_{11} 和 v_{12} 电压的不同组合情况下,输出电压

 v_0 的值。

$v_{ m II}/{ m V}$	$v_{ m I2}$ /V	二极管工作状态		71 /\
		\mathbf{D}_{1}	\mathbf{D}_2	v_{0}/V
0	0	导通	导通	0
0	5	导通	截止	0
5	0	截止	导通	0
5	5	截止	截止	5

3.4 二极管基本电路

- 3.4.1 整流电路
- 3.4.2 限幅电路
- 3.4.3 开关电路
- 3.4.4 小信号模型应用
- 3.4.5 图解分析法

3.4.4 小信号模型应用

$$v_{\rm I} = V_{\rm PS} + v_{\rm i}$$

$$\boldsymbol{i}_{\mathrm{D}} = \boldsymbol{I}_{\mathrm{DO}} + \boldsymbol{i}_{\mathrm{d}}$$

$$\boldsymbol{v}_{\mathrm{I}} = \boldsymbol{V}_{\mathrm{PS}} + \boldsymbol{v}_{\mathrm{i}}$$
 $\boldsymbol{i}_{\mathrm{D}} = \boldsymbol{I}_{\mathrm{DQ}} + \boldsymbol{i}_{\mathrm{d}}$ $\boldsymbol{v}_{\mathrm{D}} = \boldsymbol{V}_{\mathrm{DQ}} + \boldsymbol{v}_{\mathrm{d}}$ $\boldsymbol{v}_{\mathrm{O}} = \boldsymbol{V}_{\mathrm{O}} + \boldsymbol{v}_{\mathrm{o}}$

$$v_{\rm O} = V_{\rm O} + v_{\rm o}$$

- 叠加原理应用
- 小信号线性化模型应用

3.4.4 小信号模型应用

例:求图中输出电压。设 V_{PS} =5V,R=5 $k\Omega$, V_{γ} =0.6V, v_{i} =0.1sinwt(V).

解: 因为
$$v_0 = V_0 + v_0$$

(1) 直流分析, 令 $v_i = 0$, 则

$$I_{\rm DQ} = \frac{V_{\rm PS} - V_{\gamma}}{R} = \frac{5 - 0.6}{5} = 0.88 \,\mathrm{mA}$$

$$V_{\rm O} = I_{\rm DO}R = 0.88 \times 5 = 4.4 \text{V}$$

有
$$r_{\rm d} = \frac{V_{\rm T}}{I_{\rm DO}} = \frac{26 \text{mV}}{0.88 \text{mA}} = 0.0295 \text{k}\Omega$$

(2) 交流分析, 令 $V_{PS} = 0$, 则

$$i_{\rm d} = \frac{v_{\rm i}}{r_{\rm d} + R} = \frac{0.1 \sin \omega t}{0.0295 + 5} = 19.9 \sin \omega t (\mu A)$$

$$v_{o} = i_{d}R = 0.0995 \sin \omega t(V)$$

小信号等效电路

3.4.4 小信号模型应用

例:求图中输出电压。设 V_{PS} =5V,R=5 $k\Omega$, V_{γ} =0.6V, v_i =0.1sinwt(V).

解:

$$v_{\rm O} = V_{\rm O} + v_{\rm o} = 4.4 + 0.0995 \sin \omega t$$
 (V)

3.4 二极管基本电路

- 3.4.1 整流电路
- 3.4.2 限幅电路
- 3.4.3 开关电路
- 3.4.4 小信号模型应用
- 3.4.5 图解分析法

3.4.5 图解分析法

例3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源 $V_{\rm DD}$ 和电阻R,求二极管两端电压 $v_{\rm D}$ 和流过二极管的电流 $i_{\rm D}$ 。

即 $i_D = -\frac{1}{R}v_D + \frac{1}{R}V_{DD}$ 是一条斜率为-1/R的直线,称为负载线

Q的坐标值 (V_D, I_D) 即为所求。Q点称为电路的工作点

3.4.5 图解分析法

例3.4.1 加入小信号激励源后,求二极管电压、电流的变化。

 $v_{\rm s} = V_{\rm m} \sin \omega t$ 时 ($V_{\rm m} < < V_{\rm DD}$,小信号)

Q点称为<mark>静态工作点</mark>,反映直流时的工作状态。

3 二极管及其基本电路

- 3.1 半导体的基本知识
- 3.2 PN结的形成及特性
- 3.3 二极管
- 3.4 二极管基本电路
- 3.5 特殊二极管

3.5 特殊二极管

- 3.5.1 齐纳二极管
- 3.5.2 光电子二端器件
- *3.5.3 变容二极管
- 3.5.4 肖特基二极管

3.5.1 齐纳二极管

利用二极管反向击穿特性实现稳压。齐纳二极管稳压时 工作在反向电击穿状态。

电路符号

I-V特性

反向击穿时的模型

3.5.1 齐纳二极管

稳压应用电路

正常稳压时 $V_0 = V_Z$

#稳压条件是什么?

- #当 V_1 变化或 R_L 变化时,为什么 V_0 能保持基本不变?
- #选择 D_z 的依据是什么?如何确定R的阻值?

3.5 特殊二极管

- 3.5.1 齐纳二极管
- 3.5.2 光电子二端器件
- *3.5.3 变容二极管
- 3.5.4 肖特基二极管

1. 光电二极管

将光转换为电的二极管,工作在反向偏置状态下,其反向电流随光照强度(简称照度)变化。

2. 发光二极管

将电转换为光的二极管,通过一定正向电流时会发光。

3. 激光二极管

4. 太阳能电池

3.5 特殊二极管

- 3.5.1 齐纳二极管
- 3.5.2 光电子二端器件
- *3.5.3 变容二极管
- 3.5.4 肖特基二极管

*3.5.3 变容二极管

结电容随反向电压显著变化的二极管

电路符号

结电容与电压的关系(纵坐标为对数刻度)

3.5 特殊二极管

- 3.5.1 齐纳二极管
- 3.5.2 光电子二端器件
- *3.5.3 变容二极管
- 3.5.4 肖特基二极管

3.5.4 肖特基二极管

思考:

- 1. PN结有哪些特性?
- 2. 二极管有哪些特性?如何选用二极管(选用二极管时要考虑哪些问题)?
- 3. 二极管有放大作用吗?
- 4. 如何分析二极管电路? 如何理解电路的静态和动态?
- 5. 二极管工作在大信号情况和小信号情况下有何差别?在分析方法上有何差别?
- 6. 还有哪些特殊的二极管? 它们各具有怎样的特性?

