Q/EQ

东风汽车公司企业标准

Q/EQC-773-2013 代替 EQC-773-2009

CAN 总线网络诊断通用技术条件

2013-12-30 发布 2013-12-30 实施

目录

1	范围	1
2	规范性引用文件	1
3	术语和定义	1
	3.1 服务器	2
	3.2 客户端	2
	3.3 物理寻址	2
	3.4 功能寻址	2
	3.5 安全状态	2
	3.6 诊断会话模式	2
	3.7 参数约定(Cvt)	2
	3.8 子功能	2
	3.9 否定响应码	3
	3.10 服务原语	3
	3.11 协议数据单元	3
4	符号和缩写	3
5	诊断标准架构	5
6	诊断电压范围	7
7	诊断概述	7
	7.1 标准诊断连接器	7
	7.2 诊断通信规则	8
	7.2.1 寻址方式	8
	7.2.2 诊断报文的 CAN 标识符分配原则	8
	7.2.3 填充规则	9
	7.2.4 诊断设备要求	9
	7.2.5 对网关节点的要求	9
	7.3 各层 PDU 的映射关系	9
8	网络层	10
	8.1 网络层概念	10
	8.1.1 网络层与应用层的接口服务	10
	8.1.2 网络层协议数据单元(N_PDU)	12
	8.1.3 网络层计时器	15
	8.2 网络层参数要求	17
9	应用层	18
	9.1 应用层概念	18
	9.1.1 应用层协议数据单元(A_PDU)	18
	9.1.2 应用层会话管理计时器	18
	9.1.3 应用层参数要求	28
10	诊断服务	30
	10.1 增强型诊断服务	30

	4, 240 = 010
10.1.1 增强型诊断服务总览	30
10.1.2 增强型诊断服务响应要求	31
10.1.3 增强型诊断服务描述	33
10.2 排放相关诊断服务	77
10.2.1 排放相关诊断服务总览	77
10.2.2 排放相关诊断服务响应规则	78
10.2.3 排放相关诊断服务描述	79
10.3 故障码格式	97
10.3.1 三字节 DTC	97
10.3.2 两字节 DTC	97
10.3.3 5 位标准故障码	97
10.3.4 节点 DTC 要求	98
附录 A 数据链路层提供服务原语	99
附录 B 诊断服务否定响应码(NRC_)数值定义	
附录 C DTC 群组和 DTC 数值范围定义	104
附录 D DTCStatusMask 和 statusOfDTC 位的定义	
附录 E InputOutputControlParameter 定义	
附录 F PID/OBDMID/TID/INFOTYPE 支持情况描述	
附录 G 0x01 和 0x02 服务中参数标识符 PIDs 定义	
附录 H 0x06 服务测试标识符描述	
附录Ⅰ 0x06 服务车载诊断监测标识符 OBDMID 描述	
附录 J 0x06 服务单位和缩放比例定义	
附录Κ 0x08 服务测试标识符 TID 描述	
附录 L 0x09 服务信息类型描述	187
桁录 M	194

前言

本系列标准包含:

EOC -770 CAN 总线网络物理层要求 (通用)

EQC-771 CAN 总线网络通信要求 (通用)

EOC-772 CAN 总线网络管理规范 (通用)

EQC -773 CAN 总线网络诊断要求 (通用)

EQCT- 427 CAN 总线测试规范

本标准与 EQC-773-2009《CAN 总线网络诊断要求(通用)》相比,主要的差异有:

- —将原第 4 章符号和缩写中 Lsb 的描述"最高有效位"修改为"最低有效位",将 LSB 的描述"最高有效 字节"修改为"最低有效字节";
- 一在原第 6 章中,删除"6.1.1 参考整车拓扑结构"章节;将 6.2 章节中的"诊断服务的结束标志依据请求报文是否包含禁止肯定响应位和禁止肯定响应位取值分别如下"修改为"诊断服务的结束标志依据请求报文是否包含无禁止肯定响应位和禁止肯定响应位取值分别如下";删除了 6.2.4 章节中的"由于所有诊断是跨网关执行,因此诊断议只需支持一路物理通信连接。";
- —在原第7章中,将7.2章节的表 20 中的 STmin 由之前的"<5ms"修改为"5ms",并删除7.2章节的"表 22 网络层计时器-动力网段",将表 21 的标题"网络层计时器-非动力网段"修改为"网络层计时器";
- 在原第 8 章中,将 8.1.2 章节中的"表 26 中应用层计时器"中的 S3Client 与 S3Server 在表中的位置交换一下;将 8.1.2.4 中 S3 会话管理计时器图 18 的 a 和 c 步骤中的"P2Client"修改为"S3Client"
- 一在原第9章中,将9.1.3.1.1.2章节中图 19中的步骤 c 和 g 的 DSC 请求报文 $0x10\ 0x04$ 修改为 $0x10\ 0x40$; 将9.1.3.1.7的"密码核查过程如下"的"密码核查"删除;将9.1.3.2.4的表 101 中否定响应码增加 0x12,删除 0x72,并将表 102 中的第一行中子功能不支持的 0x13 修改为 0x12; 在 9.2.3.1.2 表 169 中补充否定响应码 0x21 的描述;分别在 9.2.3.2.2 的表 175、9.2.3.3.2 的表 179、在 9.2.3.4.2 的表 183、9.2.3.5.2 的表 189、9.2.3.6.2 的表 193、在 9.2.3.7.2 表 199 中、在 9.2.3.8.2 表 205 中补充否定响应码 0x21、0x78 的描述;
 - —新增了诊断电压范围, 见文中第6章节。

本标准的附录 A、附录 B、附录 C、附录 D、附录 E、附录 F、附录 G 为规范性附录,附录 H、附录 I、附录 J、附录 K、附录 L、附录 M 为资料性附录。

本标准由东风汽车公司技术中心提出。

本标准由东风汽车公司技术标准化委员会归口。

本标准起草单位: 东风汽车公司技术中心。

本标准起草人: 万娟、王永峰、贺林曼、王俊鹏、Marcus Ehner。

本标准所代替标准的历次版本发布情况为:

——Q/EQC-773-2009, 首次发布。

CAN 总线网络诊断通用技术条件

1 范围

本标准适用于东风汽车公司各型式采用 CAN 总线网络的乘用车。

在 CAN 总线网络实现过程中,如果有任何违背此标准的地方,须经东风汽车公司技术中心电子电器部批准。

2 规范性引用文件

下列文件中的条款通过本标准的引用成为本标准的条款。凡是注日期的引用文件,其随后的修改单(不包括勘误的内容)或修订版均不适用于本标准。然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB 18352.3-2005 轻型汽车污染物排放限值及测量方法(中国 III、IV 阶段)

EQC-771 CAN 总线网络通信要求 (通用)

- ISO 14229-1 Road vehicles Unified diagnostic services (UDS) Part 1: Specification and requirements
- ISO 15031-3: Road vehicles Communication between vehicle and external equipment for emission-related diagnostics Part 3: Diagnostic connector and related electrical circuits, specification and use
- ISO 15031-5 Road vehicles Communication between vehicle and external equipment for emission-related diagnostics Part 5: Emissions-related diagnostic services
- ISO 15031-6 Road vehicles Communication between vehicle and external equipment for emission-related diagnostics Part 6: Diagnostic trouble code definitions
- ISO 15765-1 Road vehicles Diagnostics on Controller Area Networks (CAN) Part 1: General information
- ISO 15765-2 Road vehicles Diagnostics on Controller Area Networks (CAN) Part 2: Network layer services
- ISO 15765-3 Road vehicles Diagnostics on Controller Area Networks (CAN) Part 3: Implementation of unified diagnostic services (UDS on CAN)
- ISO 15765-4 Road vehicles Diagnostics on Controller Area Networks (CAN) Part 4: Requirements for emissions-related systems

3 术语和定义

ISO 15765-1、ISO 15765-2、ISO 15765-3、ISO 15765-4、ISO 14229-1、ISO 15031-3、ISO 15031-5、ISO 15031-6 确定的以及下列术语和定义适用于本部分。

3.1 服务器

电控单元(ECU),响应诊断服务请求。

3.2 客户端

诊断设备,发出诊断请求。诊断设备分为:

- 1) 车载诊断设备: 固定于车内;
- 2) 离线诊断设备: 通过诊断接口与车内网络相连。

3.3 物理寻址

客户端与服务器之间一对一的诊断。

3.4 功能寻址

客户端向多个服务器发出同一功能的诊断请求。

诊断设备向ECU发出的请求报文可能采用任意一种寻址方式,但ECU发送给诊断设备的响应报文必须采用物理寻址。

3.5 安全状态

分为锁定状态和解锁状态。

ECU上电后,自动进入锁定状态,此状态禁止执行受限的诊断服务。

ECU进入解锁状态需要通过执行安全访问服务(SID = 0x27)完成密码核查。通过密码核查后,ECU的安全状态变为解锁状态,诊断设备可以请求受限的诊断服务。

3.6 诊断会话模式

服务器的诊断会话模式分为两种:

- 1) 默认会话模式;
- 2) 非默认会话模式。

ECU上电后,自动进入诊断默认会话模式,此会话模式下不支持受限的诊断服务,非默认会话模式可以支持受限的诊断服务。ECU进入非默认会话模式后,Tester需要使用诊断设备在线服务进行会话模式的定期维护,避免S3计时器超时发生;ECU处于默认会话模式则不需要进行定期维护和超时处理。

其中,本标准规定非默认模式包含三种诊断模式:

- 1) 编程模式:
- 2) 扩展模式:
- 3) 下线检测模式。

每种诊断模式支持一组特定的诊断服务。

3.7 参数约定(Cvt)

参数约定规定了参数的用法,包括四种:

- 1) M: 强制使用,参数必须使用;
- 2) C: 有条件使用,参数在某些条件下使用:
- 3) S: 选择使用,参数要求强制使用,并且从给定列表中选择;
- 4) U: 用户选择使用。

3.8 子功能

不同的数值表示一种诊断服务的不同功能。

3.9 否定响应码

否定响应码用于表示 ECU 不能发送肯定响应的原因。

3.10 服务原语

服务原语是一种抽象的表达,用于描述服务提供者和服务应用者之间的交互信息。服务原语的类型包括:

- 1) 请求(Request)
- 2) 指示(Indication)
- 3) 响应(Response)
- 4) 确认(Confirmation)

本标准服务原语的表达格式为:

Service.Type (

[Parameter1,...]

)

其中: Service 为服务原语名称, Type 为服务原语类型, Parameter 为服务原语的参数。省略号表示可能存在多个参数,方括号表示参数为可选。

服务原语可以描述一个 ECU(或诊断设备)内部 OSI 参考模型各层之间的接口服务,如图 1 所示。

3.11 协议数据单元

协议数据单元是一组信息和数据的集合,表示了发送方和接收方之间传递的信息和数据。协议数据单元包括:

- 1) 标识或寻址信息
- 2) 协议控制信息(PCI)
- 3) 数据(Data)

4 符号和缩写

表1 符号和缩写

A_PDU	Application layer_Protocol Data Unit,应用层协议数据单元
BS	Block Size,连续帧的持续发送次数
Client	客户端
CF	Consecutive Frame,连续帧
Cvt	Convention,参数约定
DATA	CAN 数据帧的数据场
DLC	Data Length Code, CAN 数据帧的数据场长度
DSC	Diagnostic Session Control,诊断会话控制(SID = 0x10)诊断服务
DTC	Diagnostic Trouble Code,诊断故障码
ECU	Electronic Control Unit,电控单元
EOL	End Of Line,下线检测
FC	Flow Control,流控制帧
FF	First Frame,第一帧

FF_DL	First Frame Data Length,报文数据长度	
FS	Flow Status,流状态	
IDENTIFIER	CAN 数据帧的标识符	
L_PDU	Link data layer_Protocol Data Unit,数据链路层协议数据单元	
Lsb	least significant bit,最低有效位	
LSB	Least Significant Byte,最低有效字节	
PCI	Protocol Control Information,协议控制信息	
PDU	Protocol Data Unit,协议数据单元	
PID	Parameter Identifier,参数标识符	
msb	most significant bit,最高有效位	
MSB	Most Significant Byte,最高有效字节	
Mtype	Message Type,诊断报文类型	
NRC	Negative Response Code,否定响应码	
NWL	NetWork Laye,网络层	
N_AE	Network layer Address Extension,网络层远程网络地址	
N_AI	Network layer Address Information,地址信息	
N_Ar	Network layer timing parameter Ar,网络层定时参数 Ar	
N_As	Network layer timing parameter As,网络层定时参数 As	
N_Br	Network layer timing parameter Br,网络层定时参数 Br	
N_Bs	Network layer timing parameter Bs,网络层定时参数 Bs	
N_Cr	Network layer timing parameter Cr,网络层定时参数 Cr	
N_Cs	Network layer timing parameter Cs,网络层定时参数 Cs	
N_Data	Network layer Data,网络层数据	
N_PCI	Network layer Protocol Control Information,网络层协议控制信息	
N_PCItype	Network layer Protocol Control Information type,网络层协议控制信息类型	
N_PDU	Network layer Protocol Data Unit,网络层协议数据单元	
N_SA	Network layer Source Address,网络层源地址	
N_SDU	Network layer Service Data Unit,网络层接口服务数据单元	
N_TA	Netwok layer Target Address,网络层目标地址	
N_TAType	Netwok layer Target Address Type,网络层目标地址类型:物理寻址和功能寻址	
N_USData	Netwok layer Unacknowledged Segmented Data,网络层与应用层的接口服务 名称:未确认分段数据传输	
N_USData_FF	Unacknowledged Segmented Data First Frame,网络层与应用层的接口服务名	
OGI	称:未确认分段数据传输的第一帧	
OSI	Open System Interconnect,开放系统互联 On Board Diagnostic Manitoring Identifier OPD 监测标识符	
OBDMID	On Board Diagnostic Monitoring Identifier , OBD 监测标识符	

PCI	Protocol Control Information,协议控制信息		
SAE	Society of American Engineering,美国汽车工程师协会		
SF	Single Frame,单帧		
SF_DL	Single Frame Data Length,单帧数据长度		
SN	Sequence Number,多帧报文的连续帧序列号		
STmin SeparationTime min.,发送连续帧的最小时间间隔			
Server 服务器,即 ECU			
SID Service Identifier,诊断服务的标识符			
SPRMIB	B Suppress Positive Response Message Indication Bit,禁止肯定响应指示位		
TID Test Identifier,测试标识符			
USDT Unacknowledged Segmented Data Transfer,未确认分段数据传输			
UUDT	Unacknowledged Unsegmented Data Transfer,未确认非分段数据传输		

5 诊断标准架构

CAN 总线诊断标准的各部分与 ISO/IEC 7498 的 OSI 参考模型分层结构的映射见表 2, 其架构如图 1 所示。

表2 CAN 总线诊断标准与 OSI 分层的映射

OSI 分层	诊断标准	描述
应用层	第 9 章/第 10 章	该部分定义了应用层协议数据单元、定时参数和诊
四用云		断服务
表述层	-	-
会话层	-	-
传输层	-	-
回炉	该部分定义了网络层协议数据单元、网络层内部参	
网络层	第8章	数、网络层定时参数
数据链路层	附录 A	该部分定义了数据链路层使用原语
物理层	-	-

图1 CAN 总线诊断标准架构

6 诊断电压范围

网络相关的诊断必须保证在以下电压范围内进行。

表3 网络相关诊断电压范围

描述	最小值[V]	最大值[V]
诊断电压范围	9 (+0.1*)	16 (-0.1*)
*表示允许误差		

7 诊断概述

7.1 标准诊断连接器

诊断连接器用于为外接诊断设备提供访问 ECU 的接口,当前拓扑结构中各个网段通过网关连接到诊断连接器处。诊断连接器的管脚分配依据 ISO15031-3 之规定,详见表 4。

1	2	3	4	5	6	7	8 /
9	10	11	12	13	14	15	16

图2 标准诊断连接器管脚

表4 标准诊断连接器管脚分配

管脚	描述
1	保留
2	SAE J1850 总线正极线
3	保留
4	底盘地
5	信号地
6	CAN – H
7	K 线
8	保留
9	保留
10	SAE J1850 总线负极线
11	保留
12	保留
13	保留
14	CAN – L
15	L线
16	电源正极

7.2 诊断通信规则

诊断服务的开始标志是客户端发送诊断服务请求报文。诊断服务的结束标志依据请求报文是否包含无禁止肯定响应位和禁止肯定响应位取值分别如下:

无禁止肯定响应位或禁止肯定位值为"0"

- ✔ 服务器发送完成一个单帧肯定响应报文,或者
- ✓ 服务器发送完成一个多帧肯定响应的最后一个连续帧,或者
- ✔ 服务器发送完成一个 NRC≠0x78 的否定响应报文。

禁止肯定响应位值为"1"

- ✓ 服务器发送完成一个 NRC≠0x78 的否定响应报文;
- ✓ 服务器发送一个或多个 NRC≠0x78 后,服务器发送完成一个单帧肯定响应报文,或者服务器发送完成一个多帧肯定响应的最后一个连续帧;
- ✓ P3 定时器超时。

7.2.1 寻址方式

所有 ECU 诊断均使用常规寻址方式,不支持扩展寻址和混合寻址方式。

7.2.2 诊断报文的 CAN 标识符分配原则

0x7E7

所有诊断相关设备和 ECU 的诊断报文均使用 11 位 CAN 标识符,每个 ECU 需要支持一对物理寻址 CAN 报文标识符,一个用于接收诊断请求,另一个用于发送诊断响应;同时,每个 ECU 还要支持诊断设备发送的功能寻址诊断请求 CAN 标识符。

诊断报文的 CAN 标识符 = DiagBaseAddress+N AI, 其中:

- 1) DiagBaseAddress 表示诊断服务报文的基础地址,本标准规定 DiagBaseAddress= 0x700;
- 2) N AI 表示网络层寻址信息,隐含了源地址、目标地址和寻址方式等信息。

因此,诊断报文所使用的 CAN 标识符限于 0x700~0x7FF,并且依据 OBD/EOBD 规定在这个范围内的 0x7DF~0x7EF 只用于排放相关 ECU 的诊断。表 5 为诊断用的 CAN 标识符列表。

表5 诊断用 CAN 标识符分配列表 				
ECU 接收的诊断请求 CAN 标识符	ECU 发送的诊断响应 CAN 标识符			
(诊断仪发送的诊断请求)	(诊断仪接收的诊断响应)			
0x700	0x708			
0x701	0x709			
0x7C6	0x7CE			
0x7C7	0x7CF			
$0x7DF^{[1]}$	-			
0x7E0	0x7E8			
0x7E1	0x7E9			
0x7E6	0x7EE			

表5 诊断用 CAN 标识符分配列表

0x7EF

ECU 接收的诊断请求 CAN 标识符	ECU 发送的诊断响应 CAN 标识符	
(诊断仪发送的诊断请求)	(诊断仪接收的诊断响应)	
0x7F7	0x7FF	
注: [1] 用于排放相关系统功能寻址请求报文 CAN 标识符。		

7.2.3 填充规则

本标准规定诊断报文采用填充方式,即诊断报文 DLC 统一为 8,对于有效数据不满 8 字节的报文,未使用字节以 0x00 填充。对于 DLC 不等于 8 的诊断报文,接收方将其定为格式无效并作舍弃处理:但 ECU 不应拒绝填充字节不是 0x00 的诊断请求报文。

7.2.4 诊断设备要求

在诊断过程中,应人为地避免车载诊断设备和外接诊断设备同时进行诊断。为防止同时诊断产生不良后果,一旦 ECU 与一个诊断设备已建立连接(已开始诊断服务), ECU 应使用 NRC = 0x21 的否定响应拒绝另一个诊断设备的诊断服务请求。

使用 addressAndLengthFormatIdentifier 参数的诊断服务,请求报文中该参数值限定为 0x24,即 memoryAddress 由 4 字节表示,memorySize 有 2 字节表示。但请求下载(0x34)和请求上传(0x35)服务,该参数 addressAndLengthFormatIdentifier 取值限定为为 0x44。任何 ECU 实现如果不能遵守该规定的必须征得东风汽车公司同意。

7.2.5 对网关节点的要求

要求网关节点正确转发诊断设备向 ECU 发送的诊断服务请求报文和 ECU 向诊断设备发送的诊断响应报文。诊断报文路由方式采用报文路由模式,具体参见 EQC-771 的网关相关章节。

7.3 各层 PDU 的映射关系

应用层协议数据单元 A_PDU 的描述参见本标准第 9 章, 网络层协议数据单元 N_PDU 的描述参见本标准第 8 章, 数据链路层协议数据单元的描述参见本标准附录 A。

A_PDU	N_PDU	L_PDU
DiagBaseAddress + A_AI	DiagBaseAddress + N_AI	IDENTIFIER
-	-	$\mathrm{DLC}^{[1]}$
-	N_PCI	
A_PCI	N Data ^[2]	DATA
A_Data	N_Data ^{c y}	

表6 A_PDU 和 N_PDU 的映射关系

注: [1] 依据填充规则,诊断报文 DLC 统一为 8;

[2] 数据长度大于 7 字节的 N_Data 将按照网络层的协议数据单元格式进行拆分,然后发给数据链路层。

8 网络层

8.1 网络层概念

网络层概念定义了:

- ✔ 网络层与应用层的接口服务;
- ✓ 网络层协议数据单元(N PDU);
- ✓ 网络层计时器。

8.1.1 网络层与应用层的接口服务

网络层与应用层的接口服务包括:

- 1) 未确认分段数据传输服务,服务原语名称为 N USData,服务原语类型包括:
 - ✓ 请求(Request): 应用层向网络层请求发送报文;
 - ✓ 指示(Indication): 网络层向应用层报告接收到报文;
 - ✓ 确认(Confirmation): 网络层向应用层确认报文发送结果。
- 2) 未确认分段数据传输的第一帧服务,服务原语名称 N USData FF,服务原语类型包括:
 - ✓ 指示(Indication): 网络层向应用层指示接收到多帧报文的第一帧。
- 3) 更改网络层参数服务,服务原语名称为 N ChangeParameter,服务原语类型包括:
 - ✓ 请求(Request): 应用层向网络层请求更改网络层参数;
 - ✓ 确认(Confirmation): 网络层向应用层确认网络层参数更改结果。

8.1.1.1 接口服务说明

8.1.1.1.1 N USData.req

应用层向网络层请求,发送地址信息为 N_AI、数据内容为 N_Data、数据长度为 N_Length 字节的报文。

```
N_USData.req(
N_AI,
N_Data,
N_Length
)
```

8.1.1.1.2 N USData.ind

网络层向应用层报告,接收到地址信息为 N_AI、数据内容为 N_Data、数据长度为 N_Length 字节的报文,以及接收结果 N Result。

```
N_USData.ind (
N_AI,
N_Data,
N_Length,
N_Result)
```

8.1.1.1.3 N USData.con

网络层向应用层确认,地址信息为 N_AI 的报文发送的结果 N_Result。

```
N_USData.con (
N_AI,
```

```
N_Result
```

8.1.1.1.4 N USData FF.ind

网络层向应用层报告,接收到地址信息为 N_AI、数据长度为 N_Length 字节的报文的第一帧。

N USData FF.ind (

N AI,

N_Length

)

8.1.1.1.5 N ChangeParameters.req

应用层向网络层请求更改网络层参数 N_Parameter,数值等于 N_Parameter_Value。

N_ChangeParameter.req (

N AI,

N Parameter,

N Parameter Value

)

8.1.1.1.6 N ChangeParameters.con

网络层向应用层确认网络层参数 N Parameter 更改结果 N Result ChangeParameter。

N_ChangeParameter.con (

N AI,

N Parameter,

N Result ChangeParameter

)

8.1.1.2 接口服务参数说明

8.1.1.2.1 地址信息(N AI)

N AI 隐含了源地址、目标地址和寻址方式等信息,包括:

- 1) Mtype 指明诊断报文类型:本地诊断报文和远程诊断报文,枚举类型;
- 2) N SA 表示网络层源地址,数据长度均为 1 个字节,数值范围 0~255;
- 3) N_TA 表示网络层目标地址,数据长度均为1个字节,数值范围0~255;
- 4) N Tatype 指明网络层目标地址类型: 物理寻址和功能寻址, 枚举类型;
- 5) N AE 表示远程网络地址,数据长度均为1个字节,数值范围0~255。

8.1.1.2.2 数据长度(N_Length)

N_Length 指明了 N_Data 的数据长度。其数据长度为 12 位,数值范围 1~4095。

8.1.1.2.3 数据(N Data)

 N_Data 是网络层与应用层交换的数据。 $N_Data[n]$ 表示 N_Data 的第 n 个字节的数据内容,n 为非负整数。

8.1.1.2.4 参数(N Parameter)

N Parameter 表明了网络层参数:

1) N_Parameter = STmin;

2) N Parameter = BS_{\circ}

8.1.1.2.5 参数值(N Parameter Value)

N Parameter Value 表明了网络层参数的数值,其数据长度为 1 个字节。

8.1.1.2.6 结果(N Result 和 N Result ChangeParameter)

N_Result 表明了报文发送或者接收的结果,N_Result_ChangeParameter 表明了网络层参数更改的结果。如果在接收或发送报文的过程中网络层发现两个或两个以上的错误,则网络层反馈第一个发现的错误。

- 1) N_Result = N_Success: 报文发送或接收成功。应用层只有接收到此结果,才会启动应用层定时参数:
- 2) N Result = N Timeout A: 定时器 N As/N Ar 超时;
- 3) N Result = N Timeout Bs: 定时器 Bs 超时;
- 4) N Result = N Timeout Cr: 定时器 Cr 超时;
- 5) N Result = N Wrong SN: 接收到一个错误的序列号(SN);
- 6) N Result = N Invalid FS:接收到一个非法的流控制状态值(FS);
- 7) N Result = N Buffer Overflow: 报文长度超出接收方的网络层缓存大小;
- 8) N Result = N UNEXP PDU:接收到非预期的 PDU,接收方应忽略该报文;
- 9) N_Result = N_WFT_OVRN: 接收方接收到的等待流控制帧的次数超过系统定义的 N_WFT 最大值;
- 10) N Result= N ERROR: 其它错误;
- 11) N Result ChangeParameter = N Success: 网络层参数更改成功;
- 12) N Result ChangeParameter = N Undefined Parameter: 网络层参数未定义;
- 13) N Result ChangeParameter = N Wrong Value: 网络层参数值错误;
- 14) N Result ChangeParameter = N Busy: 网络层正忙,不能更改网络层参数。
- 以上部分的网络层错误处理详见本标准的其它章节。

8.1.2 网络层协议数据单元(N PDU)

表7 N_PDU 说明

参数名称	缩写	描述
寻址信息	N_AI	隐含了源地址、目标地址和寻址方式等信息
协议控制信息	N_PCI	用于表示 N_PDU 类型,分为:单帧(SF)、第一帧(FF)、连续帧(CF)和流控制帧(FC)
数据	N_Data	包含应用层的 A_PCI 和 A_Data

8.1.2.1 单帧 N PDU 的 N PCI

单帧 N PDU的 N PCI 见表 8,单帧数据长度(SF DL)的数值定义见表 9。

表8 单帧 N PDU 的 N PCI

N. DDV	N_PCI		
N_PDU 类型	Byte0		描述
人主	Bit7~4 Bit3~0		

N. DDV	N_l	PCI	
N_PDU 类型	Byte0		描述
大王	Bit7~4	Bit3~0	
单帧(SF)	0 SF_DL		表示单帧报文

表9 SF_DL 数值定义

数值	描述
0	保留
1~7	单帧报文的数据长度,单位:字节
8~15	无效

如果 SF_DL = 保留值或者无效值,则接收方忽略接收到的单帧报文,并且接收方网络层不使用 N USData.ind 向应用层报告。

8.1.2.2 第一帧 N PDU 的 N PCI

第一帧 N_PDU 的 N_PCI 见表 10,多帧报文的数据长度(FF_DL)的数值定义见表 11。

表10 第一帧 N_PDU 的 N_PCI

N_PCI				
N_PDU 类型	Byte0		Dryto1	描述
大型	Bit7~4	Bit3~0	Byte1	
第一帧(FF)	1	FF_DL		表示多帧报文的第一帧

表11 FF_DL 数值定义

数值	描述
0~7	无效
8~4095	多帧报文的数据长度,单位:字节

如果 FF_DL = 无效值,则接收方中断报文接收,不发送流控制帧,并且接收方网络层不使用 N_USData.ind 向应用层报告。

如果 FF_DL 大于接收方的网络层缓存大小,则接收方中断报文接收,发送 FS = Overflow 的流控制帧(此时流控制帧中的 BS 和 STmin 没有意义),并且接收方网络层不使用 N_USData_FF.ind 向应用层报告。发送方网络层接收到此流控制帧后,应使用 N_USData.con 向应用层报告 N_Result = N_Buffer_Overflow。发送方应用层接收到此 N_Result 后不应启动应用层计时器。

8.1.2.3 连续帧 N PDU 的 N PCI

连续帧 N PDU 的 N PCI 见表 12,连续帧序列号(SN)的数值定义见表 13。

表12 连续帧 N_PDU 的 N_PCI

N DDU	N_l	PCI	
N_PDU 类型	Byte0		描述
大型	Bit7~4 Bit3~0		
连续帧(CF)	2 SN		表示多帧报文的连续帧

表13 SN 数值定义

数值	描述
0.15	表示连续帧的序列号,第一个连续帧的序列号为 1,之后的连续帧序列号逐一增加,
0~15	当序列号大于 15 时,重新从 0 开始

如果 SN 不符合计数规则,则接收方中断报文接收并作相应的处理,同时接收方网络层应使用 N_USData.ind 向应用层报告 N_Result = N_Wrong_SN。

8.1.2.4 流控制帧 N PDU 的 N PCI

流控制帧 N_PDU 的 N_PCI 见表 14, 流控制状态(FS)、持续发送次数(BS)、最小间隔时间(STmin) 的数值定义分别见表 15~17。

表14 流控制帧 N_PDU 的 N_PCI

N DDII	N_PCI				
N_PDU 类型	By	te0	D4-1	D4-2	描述
火型	Bit7~4	Bit3~0	Byte1	Byte2	
流控制帧 (FC)	3	FS	BS	STmin	用于接收方对多帧报文发送 的控制

表15 FS 数值定义

数	数值 描述		
	0 ContinueToSend 表示允许发送方继续发送连续帧		
	1 Wait 表示发送方需等待下一条流控制帧 ^[1] ,该流控制帧称为等待流控制帧		
Overflow, 表示报文长度超		Overflow,表示报文长度超出接收方的网络层缓存大小,此流控制帧将迫使发送方中断	
2		多帧报文的发送,并且发送方网络层使用 N_USData.con 向应用层报告 N_Result =	
		N_Buffer_Overflow。FS = Overflow 的流控制帧接收方只能在接收到第一帧后发送。	
3~15 保留		保留	
注:	E: [1] 发送方可以连续发送该流控制帧的次数不能超过 N_WFT 最大值,参数 N_WFT 在系统		
计过程中确定。		中确定。	

表16 BS 数值定义

数值	描述			
0	表示允许发送方连续发送连续帧,而不需要等待接收方发出的流控制帧			
1~255	表示允许发送方连续发送连续帧的数目,发送完成相应数目的连续帧后,发送方必须			
1~233	等待接收方发出的流控制帧			

表17 STmin 数值定义

数值	描述
0~127	两个连续帧之间的最小间隔时间,单位: ms
128~255	保留

如果 STmin = 保留值,则发送方以 127 ms 的时间间隔发送连续帧。

图3 BS 和 STmin 示意图(BS=3)

8.1.2.5 N_PDU 和 L_PDU 的映射关系

表18 N_PDU 与 L_PDU 的映射关系

	L_PDU						
N_PDU 类型	IDENTIFIER		DI C	DATA ^[1]			
	Bit10~8	Bit7~0	DLC	Byte0	Byte1	Byte2	Byte3~7
单帧(SF)	7	N_AI	8	N_PCI		N_I	Data
第一帧(FF)	7	N_AI	8	N_1	PCI		N_Data
连续帧(CF)	7	N_AI	8	N_PCI	N_PCI N_Data		
流控制帧(FC)	7	N_AI	8	N_PCI 0x00			

注: [1] 依据填充规则,单帧和最后一个连续帧有效数据 DATA 如果不足 8 字节,未使用字节用 0x00 填充;流控制帧有效数据为 3 字节,后 5 个字节用 0x00 填充。

8.1.3 网络层计时器

8.1.3.1 计时器描述

网络层计时器如图 4 所示,它们以数据链路层与网络层的接口服务为起止时刻,具体见表 19。

表19 网络层计时器

计时器	描述
N_As/N_Ar	CAN 数据帧经过数据链路层发送的时间
N_Bs	发送方接收流控制帧的等待时间

计时器	描述
N_Br	接收方发送流控制帧的间隔时间
N_Cs	发送方发送连续帧的间隔时间
N_Cr	接收方接收连续帧的等待时间

图4 网络层计时器

8.1.3.2 计时器超时处理

表20 网络层计时器超时处理

计时器	超时处理
N_As	发送方中止报文发送,并使用 N_USData.con 向应用层确认 N_Result = N_Timeout_A
N_Ar	接收方中止报文接收,并使用 N_USData.ind 向应用层报告 N_Result = N_Timeout_A
N_Bs	发送方中止报文发送,并使用 N_USData.con 向应用层报告 N_Result = N_Timeout_Bs
N_Cr	接收方中止报文接收,并使用 N_USData.ind 向应用层报告 N_Result = N_Timeout_Cr

8.2 网络层参数要求

本标准规定: 等待流控制帧发送次数 N_WFT 最大允许值为 0, 即不允许发送等待流控制帧。

表21 网络层参数

参数	符号	非编程模式	编程模式
等待流控制帧	N WET	0	0
最大发送次数	$N_{ m WFT_{MAX}}$	U	U
持续发送次数	BS	0	0
最小间隔时间	STmin	5ms	0 ms

表22 网络层计时器

计时器	超时时间值(ms)	性能要求(ms)
N_As/N_Ar	50	-
N_Bs	150	-
N_Br	-	(N_Br+N_Ar)<100
N_Cs	-	(N_Bs+N_As)<100
N_Cr	150	-

9 应用层

9.1 应用层概念

在应用层概念中描述了如下内容:

- 1) 应用层协议数据单元(A PDU);
- 2) 应用层会话管理计时器。

9.1.1 应用层协议数据单元(A PDU)

表23 A_PDU 说明

参数名称	缩写	描述
寻址信息	A_AI	隐含了源地址、目标地址和寻址方式等信息
协议控制信息	A_PCI	包含诊断服务的标识符(SID/RSID)
数据	A_Data	包含诊断服务的子功能和数据内容

9.1.1.1 诊断服务请求报文的 A_PDU

诊断服务请求报文 A_{PCI} 的数据长度为 1 个字节,存放 SID。对于具有子功能的诊断服务,请求报文 A_{Data} Data[0] 存放子功能字节。

表24 子功能(sub-function)字节

Bit7	Bit6~0	
SPRMIB,禁止肯定响应指示位 ^[1]	子功能值	
注: [1] 禁止肯定响应指示位的设置不影响否定响应。		

表25 禁止肯定响应指示位(SPRMIB)的数值定义

数值	描述
0	FALSE,不禁止服务器的肯定响应
1	TRUE,禁止服务器的肯定响应

9.1.1.2 诊断服务响应报文的 A_PDU

诊断服务肯定响应报文 A_PCI 的数据长度为 1 个字节,存放 RSID(RSID=对应请求报文 SID+0x40)。

诊断服务否定响应报文 A_PCI 的数据长度为 2 个字节,A_PCI[0] = 0x7F,A_PCI[1] = SID(与请求报文 SID 相同)。A_Data 的数据长度为 1 个字节,存放 NRC。NRC 定义参见附录 B。

9.1.2 应用层会话管理计时器

表26 应用层计时器

计时器	描述
P2 _{CAN_Server}	对于服务器接收到请求消息后发出响应消息时间的性能要求
P2 _{CAN_Client}	客户端在成功发送完请求消息后等待服务器发送的响应时的超时设置(FF或SF)
P2* _{CAN_Server}	当服务器在发送否定响应码为 0x78 的否定响应后,到服务器发出响应消息时间的
	性能要求
P2* _{CAN_Client}	当客户端在接收到否定响应码为 0x78 的否定响应后等待服务器发送响应时的增强
	型超时设置(FF 或 SF)

计时器	描述
D2	客户端成功发送物理寻址请求消息,并且该请求消息不需要服务器进行响应后,客
P3 _{CAN_Client_Phy}	户端再次发送下一个物理寻址请求消息的最小间隔时间
	客户端成功发送完功能寻址请求消息,并再次发送下一个功能寻址请求消息时的最
P3 _{CAN_Client_Func}	小间隔时间,分两种情况:一种为客户端发送的请求不需要服务器响应,一种为仅
	由部分支持该请求的服务器响应,即存在部分服务器不给予响应。
客户端的定时参数:客户端为保持非默认会话自动化连接,两个连续的 Tester	
S3 _{Client}	请求报文的间隔时间
g2	服务器的定时参数: 仅用于非默认会话模式,在 S3 _{Server} 时间内,如果服务器没有接
S3 _{Server}	收到任何诊断请求报文,则退出非默认会话模式,返回默认会话模式

9.1.2.1 P2 计时器

9.1.2.1.1 P2_{CAN Server}

P2_{CAN_Server} 是服务器的计时器。服务器接收到诊断服务请求报文后,启动该计时器。在该计时器到时前,服务器应完成请求的操作。如果诊断服务要求服务器发送响应报文,则服务器必须在计时器到时前进行发送。P2_{CAN_Server} 的取值范围见表 27。

表27 P2_{CAN_Server} 计时器

计时器	最小值(ms)	最大值(ms)	
P2 _{CAN_Server}	0	50	

图5 服务器 P2can_Server 计时器 (单帧响应报文)

图6 服务器 P2can Server 计时器 (多帧响应报文)

图 5 和图 6 是 P2_{CAN_Server} 计时器的运行示例。客户端(Tester)向服务器(ECU)发送诊断服务请求报文(Request),然后服务器向客户端发送响应报文(Response),具体过程如下:

- 1) 客户端的应用层使用 N_USData.req 向网络层请求发送请求报文。无论发送成功与否,客户端网络层使用 N USData.con 向应用层确认;
- 2) 服务器接收到报文后,网络层使用 $N_USData.ind$ 向应用层报告,应用层随即启动 $P2_{CAN_Server}$ 计时器:
- 3) 在 P2_{CAN_Server} 到时(50 ms)之前,服务器应完成请求的操作并发送响应报文。响应报文可能是单帧或者多帧。当服务器应用层使用 N_USData.req 向网络层请求发送响应报文时,可以停止 P2_{CAN_Server}。

9.1.2.1.2 P2_{CAN Client}

P2_{CAN_Client} 是客户端的计时器。客户端成功发送诊断服务请求报文后,启动该计时器。多个服务器响应时,客户端接收到响应报文后,重新启动该计时器。在该计时器到时或者停止前,所有相关服务器应完成发送响应报文,客户端应禁止发送诊断服务的请求报文。

表28 P2CAN_Client 计时器

定时参数	最小值(ms)	最大值(ms)
P2 _{CAN_Client} 100		-

图7 客户端 P2can_client 计时器 (单帧响应)

图8 客户端 P2can_client 计时器 (单帧响应和多帧响应)

图 7 和图 8 是 P2_{CAN Client} 计时器的运行示例,具体过程如下:

- 1) 客户端的应用层使用 N_USData.req 向网络层(NWL)请求发送请求报文。无论发送成功与否,客户端网络层使用 N_USData.con 向应用层确认。如果 N_USData.con 的 N_Result = N_Success,则启动 P2_{CAN Client};
- 2) 客户端接收到 ECU#1 发出的响应报文(单帧)后,客户端的网络层使用 N_USData.ind 向应用层报告,应用层随即重新启动 P2_{CAN Client};
- 3) 客户端接收到 ECU#2 发出的响应报文(多帧)的第一帧后,客户端的网络层使用 N USData FF.ind 向应用层报告,应用层随即重新启动 P2_{CAN Client};
 - 4) ECU#2 发出的连续帧不影响 P2_{CAN Client}的计时;
- 5) 如果客户端知道参与响应的 ECU 数目,则接收到最后一个响应报文后,不必重新启动 P2_{CAN Client}, 此后客户端允许发送诊断服务的请求报文,但客户端还需满足 P3_{CAN Client} 的计时要求;
- 6) 如果客户端不知道参与响应的 ECU 数目,则 $P2_{CAN_Client}$ 超时后,客户端认为相关 ECU 已经完成响应,此后客户端允许发送诊断服务的请求报文,但客户端还需满足 $P3_{CAN_Client}$ 的计时要求。

9.1.2.2 P2*计时器

9.1.2.2.1 P2*_{CAN_Server}

如果 ECU 不能在规定的 P2_{CAN Server} 定时时间内发送正常的响应报文,那么 ECU 应执行如下处理:

- ECU 应在正常的 P2_{CAN_Server} 定时内发送否定码为 0x78 的否定响应报文。这强制 Tester 设置 其 P2_{CAN_Client} 定时值为 P2*_{CAN_Client} 定时值;
- 如果 ECU 需要比 P2*_{CAN_Server} 定时值更多的时间执行 Tester 发送的请求动作,那么在 P2*_{CAN_Server} 定时到期前必须再次发送否定码为 0x78 的否定响应报文。这样直到 ECU 可以 发送正常响应(正常响应指肯定响应或否定码不是 0x78 的否定响应);
- ECU 必须保证单帧响应报文或多帧响应报文的第一帧在上一个请求的 P2*_{CAN_Server}时间内能 完成(发送到 CAN 总线上);
- ECU 在激活了增强的响应定时之后,应该可以同时接收和处理维持 ECU 处于非默认会话方式下的 TesterPresent 报文。

表29 P2*_{CAN_Server} 计时器

定时参数 最小值(ms)		最大值(ms)
P2* _{CAN_Server}	0	5000

图9 服务器 P2*can Server 计时器(单帧响应)

图10 服务器 P2*can_Server 计时器 (多帧响应)

图11 服务器 P2*CAN Server 计时器 (多帧响应,多次发送否定码为 0x78 的否定响应报文)

9.1.2.2.2 P2*_{CAN Client}

如果 ECU 通过否定响应码为 0x78 的否定响应报文要求进行增强的响应定时时,Tester 必须将其 $P2_{CAN_Client}$ 定时器重新修正为 $P2_{CAN_Client}$ 值。使用 $P2_{CAN_Client}$ 定时参数值的处理方式与通用的 $P2_{CAN_Client}$ 定时处理方式相同,唯一区别是定时器重新修正为 $P2_{CAN_Client}$ 值。

表30 P2*can Client 计时器

定时参数	最小值(ms)	最大值(ms)
------	---------	---------

定时参数	最小值(ms)	最大值(ms)	
P2* _{CAN_Client}	5050	-	

Tester 端应进行如下处理:

图12 客户端 P2*CAN_Client 计时器 (多帧响应)

如图 12 所示,Tester 发送物理寻址请求报文,被寻址的 ECU 2 次请求增强型响应定时。当 Tester 收到第一个响应码为 0x78 的否定响应报文时,Tester 要重新启动 $P2_{CAN_Client}$ 定时器,但是此时值要使用加载的 $P2*_{CAN_Client}$ 值,此外 Tester 还需记录发送 0x78 的否定响应报文的 ECU 标志。任何后续的响应码为 0x78 的否定响应报文均使用加载 $P2*_{CAN_Client}$ 值。当发送 0x78 否定码的 ECU 最后发送肯定响应或否定码不是 0x78 的否定响应报文时,Tester 需要从列表中删除该 ECU 标志。

图13 客户端 P2*can_Client 计时器 (多个 ECU, 其中一个单帧响应, 另一个多帧响应)

如图 13,Tester 发送一个功能寻址请求报文,2个 ECU 响应,其中一个单帧响应,另一个多帧响应。Tester 在每次收到起始响应报文时需重新启动 $P2_{CAN_Client}$ 定时器。当 Tester 收到第一个响应码为 0x78 的否定响应报文时,Tester 需修改 $P2_{CAN_Client}$ 定时器值为 $P2*_{CAN_Client}$ 值,并且需要保存发送否定码为 0x78 的否定响应报文的 ECU 标志。当所有 ECU 执行最终响应时,Tester 内部等待 ECU 响应列表需删除被保存的 ECU 标志。

9.1.2.3 P3 计时器

9.1.2.3.1 P3_{CAN_Client_Phy}

 $P3_{CAN_Client_Phy}$ 定时参数是对两条物理寻址请求报文间隔时间的限制,以保证 ECU 能够有足够时间处理物理请求报文。该参数仅在 Tester 发送不需要响应(SuppressPosRspMsgIndicationBit = TRUE)的物理寻址请求报文时才会使用,此时启动的定时器是 $P3_{CAN_Client_Phy}$,而不是 $P2_{CAN_Client}$ 。该定时器的处理情况和 $P2_{CAN_Client}$ 一致,唯一区别在于此时 ECU 不会以报文形式进行响应。

定时参数 最小值(ms) 最大值(ms)

P3_{CAN_Client_Phy} P2_{CAN_Server_MAX}50^[1]
注: [1] P3_{CAN_Client_Phy}的最小取值为 P2_{CAN_Server}最大值

表31 P3_{CAN Client Phy} 计时器

图14 客户端 P3can_Client_Phy 计时器

9.1.2.3.2 P3_{CAN Client Func}

P3_{CAN_Client_Func}定时参数是对两条功能寻址请求报文间隔时间的限制,以保证 ECU 能够有足够时间处理功能请求报文。该参数仅在 Tester 发送不需要响应(SuppressPosRspMsgIndicationBit = TRUE) 或被访问 ECU 部分不需要响应的功能寻址请求报文时才会使用。

定时参数		最小值(ms)	最大值(ms)
P3 _{CAN_Client_Func}		P3 _{CAN_Client_Func} P2 _{CAN_Server_MAX} 50 ^[1]	
注: [1] P3 _{CAN_Client_Func} 的最小取值为 P2 _{CAN_Server} 最大值			

表32 P3_{CAN Client Func} 计时器

图15 客户端 P3_{CAN Client Func} 计时器

9.1.2.4 S3 会话管理计时器

 $S3_{Client}$ 定时为两个连续的 TesterPresent(0x3E 服务,具体服务描述见后续的诊断服务内容)服务请求报文之间的最长时间。当 Tester 为了维持 ECU 处于非默认会话模式,Tester 应在 $S3_{Client}$ 定时器超时时刻发送 TesterPresent 请求报文。 $S3_{Client}$ 定时器和 $S3_{Server}$ 定时器只有客户端请求服务器进入非默认会话模式下时才会启动。

TesterPresent 服务请求可以是功能寻址也可以是物理寻址。当 TesterPresent 服务请求是功能寻址时,ECU 不需要响应该请求,只要 Tester 端成功发送 SID = 0x10 的请求报文后即可启动 $S3_{Client}$; 但是如果 TesterPresent 服务请求是物理寻址,则必须每次等到 Tester 成功接收到来自 ECU 响应后, $S3_{Client}$ 才会启动。对于 ECU 端,必须在 $S3_{Server}$ 定时器超时之前成功收到来自 Tester 端的请求服务,否则 ECU端会自动退出非默认会话模式。

定时参数	描述		
52	客户端的定时参数:客户端为保持非默认会话自动化连接,两个连续的 TesterPresent		
S3 _{Client}	请求报文的间隔时间		
G2	服务器的定时参数: 仅用于非默认会话模式, 在 S3 _{Server} 时间内, 如果服务器没有接		
$S3_{Server}$	收到任何诊断请求报文,则退出非默认会话模式,返回默认会话模式		

表33 S3 会话管理计时器

表34 S3 计时器的启动/停止条件

定时参数	动作	对于功能寻址	对于物理寻址
S3 _{Client}	初始启动	进入非默认模式的过程中, 网络层的 N_USData.con 表明已成功发送诊断模式控制(SID = 0x10)请求报文 ^[1]	客户端不需要响应,网络层的 N_USData.con表明成功发送诊断模式控制 (SID=0x10)的请求报文 客户端需要响应,网络层的 N_USData.ind 表明接收到诊断模式控制(SID=0x10)的 响应报文
	后续启动	网络层的 N_USData.con 表明已 发送诊断设备在线(SID = 0x3E) 请求报文,并且每次 S3 _{Client} 超时	客户端不需要响应,网络层的 N_USData.con表明已发送任何一种诊断服 务的请求报文

定时参数	动作	对于功能寻址	对于物理寻址		
		时刻, 该报文都会被再次发送	客户端需要响应,则当网络层的		
			N_USData.ind 表明接收到任何一种诊断服		
			务的响应报文		
			网络层的 N_USData.ind 表明在接收多帧响		
			应报文时发现错误		
		完成模式转换,进入非默认模式的过程,客户端需要响应,则当网络层的			
	初始启动	N_USData.con 表明已发送诊断会话控制(SID = 0x10)肯定响应报文			
		如不需要响应,完成模式转换,进入非默认模式后			
		仅允许用于非默认模式,当服务器的 N_USData_FF.ind 表明接收到多帧请求			
S3 _{Server}	停止	报文的第一帧,或者服务器的 N_USData.ind 表明接收到单帧请求报文;默认			
		模式激活后,也将停止			
		客户端需要响应,则当网络层 N_USData.con 表明已发送响应报文。但是 NRC			
	巨绿白油	= 0x78 的否定响应除外			
	后续启动	客户端不需要响应,则当服务器完成所请求的动作			
		服务器的 N_USData.ind 表明在接收多帧响应报文时发现错误			
注: [1	生: [1] 具体的服务描述见诊断服务部分。				

图16 功能通信非默认模式-功能寻址 TesterPresent

- a: 客户端的网络层使用 N_USD ata.con 向应用层反馈完成诊断会话控制(SID = 0x10)请求报文的发送,应用层启动定时参数 $S3_{Client}$;
- b: 服务器的网络层使用 N_USD ata.con 向应用层反馈完成诊断会话控制(SID = 0x10)响应报文的发送,应用层启动定时参数 $S3_{Server}$;
- c: 服务器的网络层使用 N_USData.ind 向应用层报告接收到请求报文(单帧),应用层停止定时参数 S3_{Server}。多帧请求报文的 N_USData_FF.ind 也会使应用层停止定时参数 S3_{Server};
- d: 定时参数 $S3_{Client}$ 超时,客户端的应用层使用 $N_{USData.req}$ 向网络层请求发送诊断设备在线(SID = 0x3E)报文,此报文无需响应;
- e: 客户端的网络层使用 N_USData.con 向应用层反馈完成 TesterPresent(SID = 0x3E)报文的发送, 应用层重新启动定时参数 S3_{Client};

- f: 服务器的网络层使用 N_USData.ind 向应用层报告接收到 TesterPresent(SID = 0x3E)报文,由于定时参数 S3_{Server}已经停止,所以忽略此报文;
- g: 服务器端的网络层使用 $N_USData.con$ 向应用层反馈完成响应报文的发送,应用层重新启动定时参数 $S3_{Server}$;
- h: 在定时参数 $S3_{Server}$ 超时前,服务器端的网络层使用 N_USD ata.ind 向应用层报告接收到 TesterPresent(SID = 0x3E)报文,应用层重新启动定时参数 $S3_{Server}$,以维持服务器端的非默认会话模式的自动化连接。

图17 物理通信非默认模式-物理寻址 TesterPresent

- a: 客户端的网络层使用 N_USData.con 向应用层反馈完成诊断会话控制(SID = 0x10)请求报文的 发送,应用层启动定时 S3_{Client};
- b: 如图 17 所示,假设客户端需要服务器响应 DiagnosticSessionControl(0x10)请求报文,那么服务器应发送肯定响应报文;
- c: 服务器在完成肯定响应报文的发送后启动 S3_{Server}定时器,这个定时器用于维持非默认模式的激活状态,在客户端,DSC(0x10)的肯定响应报文的接收会造成 S3_{Client}定时器的启动,客户端接收到肯定响应后会停止 S3_{Client};
 - d: 只要客户端发送一个请求报文给服务器(包括 TP 请求),即会停止客户端 S3_{Client}定时器;
- e: 服务器接收到单帧或者多帧报文的第一帧都会停止 S3_{Server} 定时器。服务器通过 N_USData.ind 的指示完成响应报文的处理;
- f: 客户端响应报文的接收完成是通过 N_USData.ind,接收到响应报文后客户端会启动 S3_{Client} 定时器,而服务器在发送完响应报文后会启动 S3_{Server} 定时器。如果客户端不需要响应报文,那么只要发送完请求报文后即会启动 S3_{Client} 定时器,客户端只要接收到请求即会启动 S3_{Server} 定时器,为简化起见,图 17 假设需要客户端的响应;
- g: 如果在 S3_{Client} 定时器超时前客户端没有发送任何诊断请求报文,那么 S3_{Client} 定时器的超时会造成客户端发送一个物理寻址 TesterPresent(0x3E)请求报文;
- h: 服务器通过 N_USData.ind 指示 TesterPresent(0x3E)请求报文的接收, 这使得服务器停止 S3_{Server}定时器;
- i: 客户端在接收到 TesterPresent(0x3E)响应报文会使得客户端启动 S3_{Client}定时器。而服务器完成 TesterPresent(0x3E)响应报文的发送也会启动 S3_{Server} 定时器,如果客户端不需要响应报文,那么只要 发送完请求报文后即会启动 S3_{Client} 定时器,客户端只要接收到请求即会启动 S3_{Server} 定时器,为简化起见,图 17 假设需要客户端的响应。

9.1.2.5 计时器错误处理

表35 客户端的错误处理

を			带误处理 ^[1]
地信所权	各广场馆庆央型	物理通信	功能通信
发送请求	N_USData.con 反馈客 户端发送错误	在 P3 _{CAN_Client_Phy} 超时后,客 户端重新发送上一个请求报 文,非默认模式下重启定时参 数 S3 _{Client}	P3 _{CAN_Client_Fun} 超时后客户端 重新发送上一个请求报文
P2 _{CAN_Client} P2* _{CAN_Client}	超时	客户端重新发送上一次请求 报文,非默认模式下重启定时 参数 S3 _{Client}	如果客户端不知道响应节点,则超时后不做处理 如果客户端知道响应节点,则 超时后重新发送上一个请求 报文
接收响应 N_USData.ind 报告客 报为 P 编接收错误		客户端重新发送上一次请求 报文,非默认模式下重启定时 参数 S3 _{Client}	客户端重新发送上一次请求 报文
注: [1] 客户端错误处理最多允许 2 次。			

表36 服务器的错误处理

通信阶段	服务器错误类型	服务器的错误处理	
接收请求	N_USData.ind 报告服务器接收错误	忽略接收到的诊断服务请求,重启定时参数 S3 _{Server}	
P2 _{CAN_Server} P2* _{CAN_Server}	超时	-	
发送响应	N_USData.con 反馈服务器发送错误	不再发送响应报文,重启定时参数 S3 _{Server}	

9.1.3 应用层参数要求

表37 应用层计时器 - 非编程模式

计时器	用于客户端	用于服务器	最小值(ms)	标称值(ms)	最大值(ms)
P2 _{CAN_Server}	-	$\sqrt{}$	0	-	50
P2 _{CAN_Client}	√	-	100	-	-
P2* _{CAN_Server}	-	√	0	-	5000
P2* _{CAN_Client}	√	-	5050	-	-
P3 _{CAN_Client_Phy}	V	-	100	-	-
P3 _{CAN_Client_Func}	√	-	100	-	-

表38 应用层计时器 - 编程模式

Q/EQC-773-2013

计时器	用于客户端	用于服务器	最小值(ms)	标称值(ms)	最大值(ms)
P2 _{CAN_Server}	-	$\sqrt{}$	0	-	50
P2 _{CAN_Client}	√	-	100	-	-
P2* _{CAN_Server}	-	√	0	-	30000
P2* _{CAN_Client}	√	-	30050	-	-
P3 _{CAN_Client_Phy}	V	-	100	-	-
P3 _{CAN_Client_Func}	√	-	100	-	-

表39 S3 会话管理计时器

计时器	用于客户端	用于服务器	最小值(ms)	标称值(ms)	最大值(ms)
S3 _{Server}	-	$\sqrt{}$	-	5000	-
S3 _{Client}	$\sqrt{}$	-	-	4000	-

10 诊断服务

10.1 增强型诊断服务

10.1.1 增强型诊断服务总览

表40 诊断模式应支持的增强型诊断服务

	表40 珍函	[候八 <u>四</u>]		模式 ^[1]		支持		是否	依存
SID)人 NC UD 々 みばた			非默认		寻址方式			
(Hex)	诊断服务名称	默认	编程	扩展	下线 检测	功能	物理	强制	服务
诊断和通信的管理									
0x10	诊断模式控制	0	0	0	0	V	V	М	_
OATO	DiagnosticSessionControl		0						
0x11	电控单元复位	0	0	0	0		$\sqrt{}$	М	_
0.111	ECUReset	Ů	Ů		•	,	,		
0x27	安全访问	_	0	0	0	_		U	_
	SecurityAccess			-					
0x28	通信控制	_	_	0	-	V	√	U	-
	CommunicationControl								
0x3E	诊断设备在线	0	0	0	0	$\sqrt{}$	$\sqrt{}$	M	-
	TesterPresent								
0x85	控制 DTC 设置	_	-	0	-	$\sqrt{}$	$\sqrt{}$	U	-
	ControlDTCSetting			-					
0x87	链路控制	-	-	0	-	$\sqrt{}$	$\sqrt{}$	U	-
	LinkControl	粉坭							
	ReadDataByIndetifier	数1 伯	14 111						
0x22	读取数据	0	0	0	0	$\sqrt{}$	$\sqrt{}$	M	-
	ReadMemoryByAddress								
0x23	读取内存	0	-	0	0	-		U	-
	ReadDataByPeriodicIdentifier						,		
0x2A	周期读取数据	0	0	0	0	-		U	-
	DynamicallyDefineDataIdentifier				1 -	-	,		
0x2C	动态定义数据标识符	-	-	1				U	0x22
0.25	WriteDataByIdentifier		1			-	.1	TT	
0x2E	写入数据	_	1	-	1		√	U	0x22
0x3D	WriteMemoryByAddress		1	1	1		V	U	0.22
UX3D	写入内存		1	1	1	-	V	U	0x23
己存储数据传输									

							W/ LWC	113 20	10
0x14	ClearDiagnosticInformation 清除诊断信息	0	0	0	0	√	$\sqrt{}$	M	-
0x19	ReadDTCInformation 读取诊断信息		0	0	0	V	V	M	-
		输入/输出	出的控制	IJ	•		•	•	'
0x2F	InputOutputControlByIdentifier 输入输出控制		1	1	1	-	V	U	-
		上传	/下载						
0x34	RequestDownload 请求下载	-	1	-	-	-	V	U	0x36, 0x37
0x35	RequestUpload 请求上传	-	1	-	-	-	V	U	0x36, 0x37
0x36	TransferData 数据传输	-	1	-	-	-	V	U	0x34/ 0x35, 0x37
0x37	RequestTransferExit 请求退出传输		1	-	-	-	V	U	0x34/ 0x35, 0x36
例程控制									
0x31	RoutineControl 例程控制	-	1	1	1	-	V	U	-
注: [1] "0"表示诊断服务在任何安全状态下都可运行; "1"表示诊断服务只能在安全状态为解锁状态下运行; "-"表示不支持。									

下文描述的诊断服务中,如果 A_Data[0]为子功能,则仅描述其中 Bit6~0 的子功能值,Bit7 的禁止肯定响应指示位(SPRMIB)在每类诊断服务的总表中描述。本标准规定服务器端应正确处理带子功能诊断服务 SPRMIB 的不同取值,而诊断仪发送的请求服务 SPRMIB 的值需按照每类诊断服务的总表中进行取值。

10.1.2 增强型诊断服务响应要求

表41 具有子功能的增强型诊断服务的响应要求

客户站	端请求	服务器处理能力		服务器响应				
寻址	SPRMIB	支持 SID	支持	响应	NRC	描述		
模式	SIKNIID	X14.21D	子功能	类型	INKC			
		是	是	肯定	-	-		
物理	FALSE	是	Ħ.	否定	xx ^[1]	服务器在处理服务时发现错误,		
寻址	FALSE	疋	疋	定	是	白化	XX	例如非法的 A_PDU
		否	-	否定	SNS	不支持 SID		

客户端请求		服务器处理能力		服务都	路响应		
寻址 模式	SPRMIB	支持 SID	支持 子功能	响应 类型	NRC	描述	
		是	否	否定	SFNS	不支持子功能	
		是	是	不响应	-	-	
		是	是	否定	XX	服务器在处理服务时发现错误,	
	TRUE					例如非法的 A_PDU 格式	
		否	-	否定	SNS	不支持 SID	
		是	否	否定	SFNS	不支持子功能	
		是	是	肯定	-	-	
		是	是	否定	XX	服务器在处理服务时发现错误,	
						例如非法的 A_PDU 格式	
	FALSE	否	-	不响应	-	在功能寻址中禁止不支持 SID 的	
						否定响应	
		是	否	不响应	-	在功能寻址中禁止不支持子功能	
功能						的否定响应	
寻址		是	是	不响应	-	-	
		Ħ	Ħ	不白		服务器在处理服务时发现错误,	
		是	是	否定	XX	例如非法的 A_PDU 格式	
	TRUE	不		不曲点		在功能寻址中禁止不支持 SID 的	
		否 .	-	不响应	-	否定响应	
		是	日不	不响应		在功能寻址中禁止不支持子功能	
		疋	否	小峒巡	-	的否定响应	
注: [1] xx 的取值依据具体情况确定。							

表42 不具有子功能的增强型诊断服务的响应要求

客户端请求	服务器处理能力	服务器响应				
寻址模式	支持 SID	响应	NRC	描述		
予业 模式	▼4 SID	类型	NRC			
		肯定	-	-		
物理寻址	是	否定	XX	服务器在处理服务时发现错误,		
				例如非法的 A_PDU 格式		
	否	否定	SNS	不支持 SID		
		肯定	1	-		
功能寻址	是	否定	XX	服务器在处理服务时发现错误,		
		百疋		例如非法的 A_PDU 格式		

客户端请求	服务器处理能力	服务器响应		
寻址模式	支持 SID	响应 类型	NRC	描述
		不响应	-	在功能寻址中禁止不支持数据内 容的否定响应
	否	不响应	-	在功能寻址中禁止不支持 SID 的 否定响应

10.1.3 增强型诊断服务描述

10.1.3.1 诊断和通信管理

表43 诊断和通信管理的诊断服务

	诊断服务名称	英文	SID		支持 寻址方式		SPRMIB
		缩写 (H		(Hex) 功能		能	
1	诊断模式控制	DSC	0x10	V	$\sqrt{}$		FALSE
1	DiagnosticSessionControl	DSC	UXIU	٧	٧	٧	TALSE
2	电控单元复位	ECUR	0x11		$\sqrt{}$		FALSE
	EcuReset	ECOR	UXII	V	V	V	ralse
3	安全访问	SA	0x27		$\sqrt{}$		FALSE
3	SecurityAccess	SA	UX27	-	٧	٧	TALSE
4	通信控制	CC	0x28	V	$\sqrt{}$		FALSE
-	CommunicationControl	CC	UAZO	٧	V	٧	TALSE
5	诊断设备在线	TP	0x3E		$\sqrt{}$		TURE 或
	TesterPresent	11	UAJE	٧	٧	٧	FALSE ^[1]
6	控制 DTC 设置	CDTCS	0x85		$\sqrt{}$		FALSE
0	ControlDTCSetting	CDICS	UXOS	٧	V	٧	TALSE
7	链路控制	LC	0x87		$\sqrt{}$		TURE 或
_ ′	LinkControl	LC	UXO/	V	V	V	FALSE ^[2]

注: [1] 功能寻址 TP 的 SPRMIB = TRUE, 物理寻址 TP 的 SPRMIB = FALSE;

10.1.3.1.1 诊断模式控制(SID = 0x10)诊断服务-DiagnosticSessionControl

该诊断服务简称 DSC 诊断服务,客户端通过该诊断服务切换服务器的诊断会话模式。

10.1.3.1.1.1 请求报文

表44 DSC 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	DiagnosticSessionControl Req ID	M	0x10	DSC
	sub-function = [M		LEV_
A_Data[0]	diagnosticSessionType]	M	0x00~0x7F	DS_

^[2] 链路控制服务的 SPRMIB 的取值详见其诊断服务具体规定。

表45 diagnosticSessionType(LEV_DS_)数值定义

数值(Hex)	描述	Cvt	缩写
0x00	保留	M	-
0x01	defaultSession,默认模式	M	DS
0x02	programmingSession,编程模式	M	PRGS
0x03	extendedDiagnosticSession,扩展模式	M	EXTDS
0x40	EOLDiagnosticSession,下线检测模式	U	EOLDS
其它	保留	U	-

10.1.3.1.1.2 响应报文

表46 DSC 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	DiagnosticSessionControl Resp Id	S	0x50	DSCPR
A_Data[0]	diagnosticSessionType	M	0x00~0x7F	DS_
	sessionParameterRecord[] = [SPREC_
A_Data[1]	P2 _{CAN_Server_max} (MSByte)	M	0x00~0xFF	P2CSMH
A_Data[2]	P2 _{CAN_Server_max} (LSByte)	M	0x00~0xFF	P2CSML
A_Data[3]	P2* _{CAN_Server_max} (MSByte)	M	0x00~0xFF	P2ECSMH
A_Data[4]	$P2*_{CAN_Server_max}(LSByte)]$	M	0x00~0xFF	P2ECSML

表47 DSC 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	DiagnosticSessionControl Req ID	M	0x10	DSC
A_Data[0]	negativeResponseCode	M	0x12, 0x13, 0x22	NRC_

表48 DSC 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
012	subFunctionNotSupported	M	CENC
0x12	子功能不支持	M	SFNS
012	incorrectMessageLengthOrInvalidFormat	M	IMLOIF
0x13	报文长度错误或者格式非法	M	IIVILOIF
	conditionsNotCorrect		
022	条件未满足:	M	CNC
0x22	1、服务器正处于编程状态	M	CINC
	2、接收到 DS_= 保留值的 DSC 请求报文		

诊断模式的状态转移如图 18 所示。

图18 诊断模式状态转移图

图中:

- a: 服务器上电或者复位(初始化);
- b: 服务器接收到 DS_=DS 的 DSC 请求报文(0x10 0x01);
- c: 服务器接收到 DS_=PRGS、EXTDS 或 EOLDS 的 DSC 请求报文(0x10 0x02, 0x10 0x03 或 0x10 0x40), 依据 DS 进入扩展模式、编程模式或 EOL 检测模式;
- d: 服务器接收到 DS_=DS 的 DSC 请求报文($0x10\ 0x01$), 或者 S3_{Server}超时, 或者 ECU 复位,同时服务器的安全状态变为锁定状态;
 - e: 服务器接收到 DS =EXTDS 的 DSC 请求报文(0x10 0x03);
 - f: 服务器接收到 DS = PRGS 的 DSC 请求报文(0x10 0x02);
 - g: 服务器接收到 DS = EOLDS 的 DSC 请求报文(0x10 0x40)。

如果服务器当前条件可以执行诊断模式切换,只有成功发送肯定响应报文之后(网络层使用 N_USData.con 向应用层确认 N_Result = N_Success),服务器才激活所请求的诊断模式,否则诊断模式维持不变,如果当前不能执行模式切换,服务器需要发送否定响应报文,并维持原诊断模式不变。

诊断模式切换需要执行以下操作:

如果 ECU 处于默认会话模式下,客户端发送进入 defaultSession 请求报文(图 19 中过程 b),服务器收到该请求后,执行完全的初始化,复位所有在 defaultSession 模式下激活的事件,设置和控制等操作,但并不包括已经编程固化到非易失性存储位置的操作。

如果 ECU 处于默认会话模式下,客户端发送进入非默认会话模式请求报文(图 19 中过程 c),服务器收到该请求后配置基本不需复位。

如果 ECU 处于非默认会话模式下,客户端发送进入非默认会话模式请求报文(图 19 中过程 e、f、g), 服务器收到该请求后安全状态切换到锁定状态,但通过 CommunicationControl (0x28)和 ControlDTCSetting(0x85)进行的设置保持不变。

如果 ECU 处于非默认会话模式下,客户端发送进入 defaultSession 请求报文(图 19 中过程 d),服务器收到该请求后,服务器安全状态切换到锁定状态,由 ReadDataByPeriodicIdentifier(0x2A 服务)配置的周期调度被禁止,通过 CommunicationControl (0x28)和 ControlDTCSetting(0x85)进行的设置均被

复位。即服务器需执行完全的初始化,复位所有在非默认模式下激活的事件,设置和控制等操作,但 并不包括已经编程固化到非易失性存储位置的操作。

10.1.3.1.2 电控单元复位(SID = 0x11)诊断服务-ECUReset

该诊断服务简称 ECUR 诊断服务,客户端通过该诊断服务命令服务器(电控单元)复位。服务器应 先发送肯定响应报文,再执行复位。

10.1.3.1.2.1 请求报文

表49 ECUR 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ECUReset Req Id	M	0x11	ER
	sub-function=[M		LEV_
A_Data[0]	resetType]		0x00~0x7F	RT_

表50 resetType(LEV_RT_)数值定义

数值(Hex)	描述	Cvt	缩写
0x00	保留	M	-
0x01	hardReset, 硬件复位	U	HR
0x02	keyOffOnReset,点火钥匙复位	U	KOFFONR
0x03	softReset,软件复位	U	SR
0x04~0x7F	保留	M	-

10.1.3.1.2.2 响应报文

表51 ECUR 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ECUReset Resp ID	S	0x51	ERPR
A_Data[0]	resetType	M	0x00~0x7F	RT_

表52 ECUR 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	ECUReset Req Id	M	0x11	ER
A_Data[0]	negativeResponseCode	M	0x12, 0x13, 0x22	NRC_

表53 ECUR 的否定响应码(NRC_)

数值(Hex)	描述		缩写
012	subFunctionNotSupported	М	SFNS
0x12	子功能值不支持	IVI	5FIN5
0v.12	incorrectMessageLengthOrInvalidFormat	М	IMLOIF
0x13	报文长度错误或者格式非法	IVI	IMLOIF

数值(Hex)	描述	Cvt	缩写
0x22	conditionsNotCorrect 条件未满足	M	CNC

10.1.3.1.3 安全访问(SID = 0x27)诊断服务-SecurityAccess

该诊断服务简称 SA 诊断服务。客户端通过该诊断服务,访问某些因保密、排放以及人身安全相关的受限数据、诊断功能和诊断服务等。客户端与服务器执行下载/上传数据或者读取某些数据或内存等服务时,必须先进行密码核查。密码核查过程如图 19 所示:

- 1) 客户端请求"种子";
- 2) 服务器发送"种子";
- 3) 客户端发送"密钥"(根据接收到的"种子"生成"密钥");
- 4) 服务器判断"密钥"是否合法,如果合法,则服务器解锁,否则服务器锁定。 本标准不包含密码核查的加密算法。

10.1.3.1.3.1 请求报文

表54 SA 请求报文(sub-function = requestSeed)

A_PDU 参数	参数名称	Cvt 数值(Hex)		缩写
A_PCI	SecurityAccess Req ID	M	0x27	SA
	sub-function = [LEV_
A_Data[0]	securityAccessType = requestSeed]	M	0x01	SAT_RSD

表55 SA 请求报文(sub-function = sendKey)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	requestSID	M	0x27	SIDRQ
A_Data[0]	sub-function = [LEV_
	securityAccessType = sendKey]	M	0x02	SAT_SK

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
	$securityKey[]^{[1]} = [$			SECKEY_
A_Data[1]	key#1 (MSByte)	M	0x00~0xFF	KEY1HB
A_Data[m]	key#4 (LSByte)]	U	0x00~0xFF	KEY4LB

10.1.3.1.3.2 响应报文

表56 SA 肯定响应报文(sub-function = requestSeed)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	SecurityAccess Resp Id	S	0x67	SAPR
A_Data[0]	securityAccessType = requestSeed	M	0x01	SAT_RSD
	securitySeed[] = [SECSEED_
A_Data[1]	seed#1 (MSByte)	M	0x00~0xFF	SEED1HB
A_Data[m]	seed#4 (LSByte)]	U	0x00~0xFF	SEED4LB

表57 SA 肯定响应报文(sub-function = sendKey)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	SecurityAccess Resp Id	S	0x67	SAPR
A_Data[0]	securityAccessType = sendKey	M	0x02	SAT_SK

表58 SA 的否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	SecurityAccess Req ID	M	0x27	SA
A_Data[0]	negativeResponseCode	M	0x12, 0x13, 0x22, 0x24, 0x31, 0x35, 0x36, 0x37	NRC_

表59 SA 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x12	subFunctionNotSupported 子功能值不支持	M	SFNS
0x13	incorrectMessageLengthOrInvalidFormat 报文长度错误或者格式非法	М	IMLOIF
0x22	conditionsNotCorrect 条件不满足	М	CNC

数值(Hex)	描述	Cvt	缩写
	requestSequenceError		
0x24	请求次序错误,即在未接收到请求种子请求报文	M	RSE
	情况下,先接收到发送密钥的请求报文		
021	requestOutOfRange	М	ROOR
0x31	请求超出范围	IVI	KOOK
025	invalidKey		Ш
0x35	密钥非法	M	IK
026	exceededNumberOfAttempts	M	ENGA
0x36	超出安全访问尝试次数限制	M	ENOA
027	requiredTimeDelayNotExpired	М	DTDME
0x37	延迟时间未到[1]	IVI	RTDNE
注:	[1] 3 次非法密钥后,服务器需要锁定 10 秒后才允	许再次	进行安全访问。

服务器上电/复位后处于锁定状态,安全访问尝试计数器为 0,同时必须等待 10 s 后才能处理客户端发送的请求种子诊断报文。如果在服务期初始上电/复位后 10 s 内接收到请求种子诊断报文,服务器发送否定码为 0x37(equiredTimeDelayNotExpired)的否定响应报文。

客户端执行完请求种子诊断请求后,应该向服务器发送密钥。如果客户端重复发送请求种子请求 报文,服务器应返回包含相同种子的响应报文,但其安全访问尝试计数器作加1处理。

如果客户端请求种子后发送错误的密钥,客户端的安全访问尝试计数器作加1处理,服务器返回 否定码为0x35(invalidKey)的否定响应报文。同时安全解锁过程复位,即原种子成为无效值。

当安全访问尝试计数器达到 3 后,服务器发送否定码为 0x36(exceededNumberOfAttempts)的否定响应报文,并且必须经过 10 s 的延迟后方可接收处理下一次的请求种子诊断报文。如果在 10 s 延迟时间未到时,接收到客户端发送的请求种子诊断报文,服务器发送否定码为 0x37(requiredTimeDelayNotExpired)的否定响应报文。如果 10 s 延迟后接收到请求种子诊断报文,服务器发送包含新的种子的响应报文,如果客户端发送正确的密钥,服务器正常解锁,安全访问尝试计数器清零;如果密钥不正确,服务器发送否定码为 0x35(invalidKey)的否定响应报文,下一次安全访问尝试仍然需要等待 10 s。

图20 安全访问 NRC 示例

10.1.3.1.4 通信控制(SID = 0x28)诊断服务-CommunicationControl

该诊断服务简称 CC 诊断服务,客户端通过该诊断服务禁止或者允许服务器非诊断报文的发送和接收。

10.1.3.1.4.1 请求报文

表60 CC 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	CommunicationControl Req ID	M	0x28	CC
	sub-function = [LEV_
A_Data[0]	controlType]	M	0x00~0x7F	CTRLTP_
A Data[1]	communication Type	M	0x00, 0x01,	СТР
A_Data[1]	communicationType	M	0x02, 0x03	CIF

表61 controlType(LEV_CTRLTP_)数值定义

数值(Hex)	描述	Cvt	缩写
0x00	enableRxAndTx,允许接收和发送	M	ERXTX
0x01	enableRxAndDisableTx,允许接收禁止发送	M	ERXDTX
0x02	disableRxAndEnableTx,禁止接收允许发送	M	DRXETX
0x03	disableRxAndTx,禁止接收和发送	M	DRXTX
0x04~0x7F	保留	M	-

表62 communicationType(CTP)数值定义

数值(Hex)	描述	Cvt	缩写
0x01	常规应用报文	M	NCM
0x02	网络管理报文	M	NWMCM
0x03	常规应用报文和网络管理报文	M	NCM_NWMCM

10.1.3.1.4.2 响应报文

表63 CC 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	CommunicationControl Resp ID	S	0x68	CCPR
A_Data[0]	controlType	M	0x00~0xFF	CTRLTP

表64 CC 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	CommunicationControl Req ID	M	0x28	CC
A_Data[0]	negativeResponseCode	M	0x12, 0x13, 0x22, 0x31	NRC_

表65 CC 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x12	subFunctionNotSupported	M	SFNS
	子功能值不支持	M	2112

数值(Hex)	描述	Cvt	缩写
0x13	incorrectMessageLengthOrInvalidFormat 报文长度错误或者格式非法	M	IMLOIF
0x22	conditionsNotCorrect 条件不满足:收到请求时,服务器正处于常规模 式下某种关键的活动中,此种情况下被请求的通 信类型不能被禁止或使能。	M	CNC
0x31	requestOutOfRange CTP 超出数值范围	M	ROOR

10.1.3.1.5 诊断设备在线(SID = 0x3E)诊断服务-TesterPresent

该诊断服务简称 TP 诊断服务,客户端通过该诊断服务维持和服务器在非默认模式下的连接。建议功能寻址 TP 的 SPRMIB = True,物理寻址 TP 的 SPRMIB = False。

10.1.3.1.5.1 请求报文

表66 TP 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	TesterPresent Req ID	M	0x3E	TP
	sub-function = [LEV_
A_Data[0]	zeroSubFunction]	M	0x00	ZSUBF

10.1.3.1.5.2 响应报文

表67 TP 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	TesterPresent Resp ID	S	0x7E	TPPR
A_Data[0]	zeroSubFunction	M	0x00	ZSUBF

表68 TP 否定响应报文

A_PDU 参数	参数名称	Cvt 数值(Hex)		缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	TesterPresent Req ID	M	0x3E	TP
A_Data[0]	negativeResponseCode	M	0x12, 0x13	NRC_

表69 TP 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0v12	subFunctionNotSupported	M	SFNS
0x12	子功能值不支持	IVI	21.12
012	incorrectMessageLengthOrInvalidFormat		IMLOIF
0x13	报文长度错误或者格式非法	M	IMLOIF

10.1.3.1.6 控制 DTC 设置(SID = 0x85)诊断服务-ControlDTCSetting

该诊断服务简称 CDTCS 诊断服务,客户端通过该诊断服务停止或恢复诊断故障码的设置。

故障码被停止情况下,当发生以下事件时,ECU恢复故障码的设置。

- 1) ECU 接收到 ControlDTCSetting, 其 DTCSettingType 为 switch on 的命令;或者
- 2) ECU 复位或断电;或者
- 3) 诊断会话模式切换到默认会话模式。

另外,该服务不影响 0x19 服务和 0x14 服务的执行。

10.1.3.1.6.1 请求报文

表70 CDTCS 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ControlDTCSetting Req ID	M	0x85	CDTCS
A_Data[0]	sub-function = [LEV_
	DTCSettingType]	M	0x00~00xFF	DTCSTP_
	DTCSettingControlOptionRecord[]=[DTCSCOR_
A_Data[1]	Parameter#1	U	0x00~00xFF	PARA1
A_Data[n]	Parameter#1]	U	0x00~00xFF	PARAm

表71 DTCSettingType(LEV_DTCSTP_)数值定义

数值(Hex)	描述	Cvt	缩写
0x00	ISO/SAE 保留	M	ISOSAERESRVD
0x01	On 打开 DTC 设置	U	ON
0x02	Off 关闭 DTC 设置	U	OFF
0x03~0x3F	ISO/SAE 保留	U	ISOSAERESRVD
0x40~0x5F	东风汽车公司技术中心自定义	U	VMS
0x60~0x7E	系统供应商自定义	U	SSS
0x7F	ISO/SAE 保留	M	ISOSAERESRVD

10.1.3.1.6.2 响应报文

表72 CDTCS 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ControlDTCSetting Resp ID	S	0xC5	CDTCSPR
A_Data[0]	DTCSettingType	M	0x00~00xFF	DTCSTP

表73 CDTCS 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	ControlDTCSetting Req ID	M	0x85	DTCSTP

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_Data[0]	negativeResponseCode	M	0x12, 0x13, 0x22, 0x31	NRC_

表74 CDTCS 的否定响应码(NRC)

数值(Hex)	描述	Cvt	缩写
012	subFunctionNotSupported	M	CENC
0x12	子功能值不支持	M	SFNS
012	incorrectMessageLengthOrInvalidFormat	M	IMLOIE
0x13	报文长度错误或者格式非法	M	IMLOIF
022	conditionsNotCorrect	M	CNC
0x22	条件不满足	M	CNC
021	requestOutOfRange	М	DOOD.
0x31	请求的数据内容超出数值范围:	M	ROOR

10.1.3.1.7 链路控制(SID = 0x87)诊断服务-LinkControl

该诊断服务简称 LC 诊断服务,客户端通过该诊断服务控制通信波特率的转换。

客户端向服务器发送波特率转换请求前,必须先确认所有 ECU 是否可以进行波特率转换。过程如下:

- 1) 客户端确认 ECU 可以进行波特率转换(此请求 SPRMIB=False);
- 2) 服务器发送肯定响应(网络上的所有 ECU);
- 3) 客户端发送波特率转换请求(此请求 SPRMIB=True)。

10.1.3.1.7.1 请求报文

表75 LC 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写	
A_PCI	LinkControl Req ID	M	0x87	LC	
A_Data[0]	sub-function = [LEV_	
	linkControlType]	M	0x00~0xFF	LCTP_	
A_Data[1]	baudrateIdentifier	C ^[1]			
A Data[2]	linkBaudrateRecord[]=[LBR_	
A_Data[2]	baudrateHighByte	$C^{[2]}$	$0x00\sim0xFF$	BRHB	
A_Data[3]	baudrateMiddleByte	$C^{[2]}$	$0x00\sim0xFF$	BRMB	
A_Data[4]	baudrateLowByte]	$C^{[2]}$	$0x00\sim0xFF$	BRLB	
分 [11] linkControlTymo-01 确认可以转换公国党证帐变					

|注: [1] linkControlType=01,确认可以转换至固定波特率

[2] linkControlType=02,确认可以转换至具体定义波特率

表76 linkControlType(LEV_LCTP_)数值定义

数值(Hex)	描述	Cvt	缩写
0x00	ISO/SAE 保留	M	ISOSAERESRVD

数值(Hex)	描述	Cvt	缩写
0x01	verifyBaudateTransitionWithFixedBaudrate 确认可以转换至固定波特率	U	VBTWFBR
0x02	verifyBaudrateTransitionWithSpecificBaudrete 确认可以转换至具体定义波特率	U	VBTWSBR
0x03	transitionBaudrate 波特率转换	U	ТВ
0x04~0x3F	ISO/SAE 保留	M	ISOSAERESRVD
0x40~0x5F	东风汽车公司技术中心自定义	U	VMS
0x60~0x7E	系统供应商自定义	U	SSS
0x7F	ISO/SAE 保留	M	ISOSAERESRVD

10.1.3.1.7.2 响应报文

表77 LC 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	LinkControl Resp ID	S	0xC7	LCPR
A_Data[0]	linkControlType	M	0x00~0xFF	LCTP

表78 LC 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	LinkControl Req ID	M	0x87	LC
A_Data[0]	negativeResponseCode	M	0x12, 0x13, 0x22, 0x24, 0x31	NRC_

表79 LC 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x12	subFunctionNotSupported	М	SFNS
UX12	子功能值不支持	IVI	SFNS
0x13	incorrectMessageLengthOrInvalidFormat	М	IMLOIF
0x13	报文长度错误或者格式非法	IVI	IMILOIF
0x22	conditionsNotCorrect	М	CNC
UXZZ	条件不满足	IVI	CNC
	requestSequenceError		
0x24	请求次序错误,即在确认可以进行波特率转换前,	M	RSE
	先收到了波特率转换请求		
0x31	requestOutOfRange	M	ROOR
0.31	请求的数据内容超出数值范围:	1 V1	ROOK

10.1.3.2 数据传输

表80 数据传输的诊断服务

	诊断服务名称	遊断服务名称 英文 SID 缩写 (Hex)		寻址方式		支持子 功能	SPRMIB
		>III →	(IICA)	功能	物理	77 100	
1	ReadDataByIndetifier	RDBI	0x22	V		_	_
	读取数据		07122	,	,		
2	ReadMemoryByAddress	RMBA	0x23	_		_	_
2	读取内存	KWIDI	UXZS		,		
3	ReadDataByPeriodicIdentifier	RDBPI	0x2A	_		_	_
3	周期读取数据	KDDFI	UXZA		,		_
4	DynamicallyDefineDataIdentifier	DDDI	0x2C				
4	动态定义数据标识符	DDDI	UXZC	0x2C -		1	-
5	WriteDataByIdentifier	WDBI	0x2E				
3	写入数据	WDBI	UXZE	-	V	-	-
6	WriteMemoryByAddress	WDDA	02D		2/		
6	写入内存	WDBA	0x3D	-	V	-	-

10.1.3.2.1 读取数据(SID = 0x22)诊断服务-ReadDataByIdentifier

该诊断服务简称 RDBI 诊断服务。客户端通过该诊断服务可以读取服务器中指定数据标识符对应的数据,本标准规定每次请求最多读取五个数据标识符。数据标识符及对应的记录数据由东风汽车公司技术中心或供应商自定义。

10.1.3.2.1.1 请求报文

表81 RDBI 请求报文定义

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDataByIdentifier Req ID	M	0x22	RDBI
	dataIdentifier[] #1 = [DID_
A_Data[0]	byte#1 (MSByte)	M	$0x00\sim0xFF$	B1
A_Data[1]	byte#2 (LSByte)]	M	0x00~0xFF	B2
			•••••	
	dataIdentifier[] $\#(n+1)/2 = [$			DID_
A_Data[n-1]	byte#1 (MSByte)	U	0x00~0xFF	B1
A_Data[n]	byte#2 (LSByte)]	U	0x00~0xFF	B2

表82 dataldentifier(DID_)数值定义

数值(Hex)	描述	Cvt	缩写
0x0000~0x00FF	ISO/SAE 保留	M	ISOSAERESRVD
0x0100~0xEFFF	东风汽车公司技术中心自定义	U	VMS
0xF000~0xF00F	拖车网络配置数据	U	NCDFTTADID

数值(Hex)	描述	Cvt	编写
0xF010~0xF0FF	东风汽车公司技术中心自定义	U	VMS
0xF100~0xF17F	东风汽车公司技术中心自定义标识选项	U	IDOPTVMSDID
0xF180	引导软件标识	U	BSIDID
0xF181	应用软件标识	U	ASIDID
0xF182	标定数据标识	U	ADIDID
0xF183	引导软件数字指纹	U	BSFPDID
0xF184	应用软件数字指纹	U	ASFPDID
0xF185	应用数据数字指纹	U	ADFPDID
0xF186	ISO/SAE 保留-标准	M	ISOSAERESRVD
0xF187	东风汽车公司技术中心定义的零件编号	M	VMSPNDID
0xF188	东风汽车公司技术中心定义的 ECU 软件编号	U	VMECUSNDID
0xF189	东风汽车公司技术中心定义的 ECU 软件版本编号	U	VMECUSVNDID
0xF18A	供应商标识符:数据包含供应商名称和地址信息	U	SSIDDID
0xF18B	ECU 生产日期:数据按照年、月、日的顺序排列	U	ECUMDDID
0xF18C	ECU 序列号	U	ECUSNDID
0xF18D	支持的功能单元	U	SFUDID
0xF18E	东风汽车公司技术中心整套装配零部件编号	U	VMKAPNDID
0xF18F	ISO/SAE 保留-标准	M	ISOSAERESRVD
0xF190	车辆识别码	U	VINDID
0xF191	东风汽车公司技术中心定义的 ECU 硬件编号	U	VMECUHN
0xF192	系统供应商定义的 ECU 硬件编号	U	SSECUHWNDID
0xF193	系统供应商定义的 ECU 硬件版本编号	U	SSECUHWVNDID
0xF194	系统供应商定义的 ECU 软件编号	U	SSECUSWNDID
0xF195	系统供应商定义的 ECU 软件版本编号	U	SSECUSWVNDID
0xF196	排放法规或者批准类型编号	U	EROTANDID
0xF197	系统名称或发动机类型	U	SNOETDID
0xF198	维修店代码或者诊断设备编号	U	RSCOTSNDID
0xF199	编程日期标识符:数据按照年、月、日的顺序排列	U	PDDID
0xF19A	标定维修店代码或标定设备编号	U	CRSCOCESNDID
0xF19B	标定日期标识符:数据按照年、月、日的顺序排列	U	CDDID
0xF19C	标定设备软件编号	U	CESWNDID
0xF19D	ECU 装车日期:数据按照年、月、日的顺序排列	U	EIDDID
0xF19E	ODX 文件标识	U	ODXDID
0xF19F	实体标识	U	EDID
0xF1A0~0xF1EF	东风汽车公司技术中心自定义	U	IDOPTVMS
0xF1F0~0xF1FF	系统供应商自定义	U	IDOPTSSS

数值(Hex)	描述	Cvt	缩写
0xF200~0xF2FF	周期数据标识符	U	PDID
0xF300~0xF3FF	动态定义数据标识符	U	DDDDI
0xF400~0xF4FF	OBD 数据标识符(ISO 15031-5)	U	OBDDID
0xF500~0xF5FF	OBD 数据标识符(扩展用)	U	OBDDID
0xF600~0xF6FF	OBD 监测标识符(ISO 15031-5)	U	OBDMDID
0xF700~0xF7FF	OBD 监测标识符(扩展用)	U	OBDMDID
0xF800~0xF8FF	OBD 信息类型标识符	U	OBDINFTYPDID
0xF900~0xF9FF	转速图表数据标识符	U	TACHODID
0xFA00~0xFA0F	安全气囊开发用数据标识符	U	ADDID
0xFA10~0xFAFF	安全系统数据标识符	U	SSS
0xFB00~0xFCFF	保留给立法使用	U	RFLU
0xFD00~0xFEFF	系统供应商使用	U	SSS
0xFF00~0xFFFF	ISO/SAE 保留	M	ISOSAERESRVD

10.1.3.2.1.2 响应报文

表83 RDBI 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDataByIdentifier Resp ID	M	0x62	RDBIPR
	dataIdentifier[] #1 = [DID_
A_Data[0]	byte#1 (MSByte)	M	$0x00\sim0xFF$	B1
A_Data[1]	byte#2 (LSByte)]	M	$0x00\sim0xFF$	B2
	dataRecord[] #1 = [DREC_
A_Data[2]	data#1 (MSByte)	M	0x00~0xFF	DATA_1
A_Data[k+1]	data#k (LSByte)]	U	$0x00\sim0xFF$	DATA_k
			•••••	
	dataIdentifie[] $\#(n+1)/2 = [$			DID_
	byte#1 (MSByte)	M	$0x00\sim0xFF$	B1
•••••	byte#2 (LSByte)]	M	$0x00\sim0xFF$	B2
	dataRecord[] #(n+1)/2 = [DREC_
	data#1 (MSByte)	M	0x00~0xFF	DATA_1
			•••••	
	data#k (LSByte)]	U	0x00~0xFF	DATA_k

表84 RDBI 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	ReadDataByIdentifier Req ID	M	0x22	RDBI

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_Data[0]	negativeResponseCode	M	0x13, 0x22, 0x31	NRC_

表85 RDBI 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x13	incorrectMessageLengthOrInvalidFormat 报文长度错误或者格式非法	M	IMLOIF
0x22	conditionsNotCorrect 条件不满足	M	CNC
0x31	requestOutOfRange 1、所有 DID_都非法 2、一次请求的 DID_数量超出限值	M	ROOR

10.1.3.2.2 读取内存(SID = 0x23)诊断服务-ReadMemoryByAddress

该诊断服务简称 RMBA 诊断服务。客户端通过该诊断服务读取服务器中指定的内存数据。内存数据由请求报文中的起始内存地址和内存大小而指定。服务器发送的肯定响应报文包含指定内存全部数据。

10.1.3.2.2.1 请求报文

表86 RMBA 请求报文

A_PDU 参数	参数名称		Cvt	数值(Hex)	缩写
A_PCI	ReadMemo	ReadMemoryByAddress Req Id		0x23	RMBA
A_Data[0]	addressAndLen gthFormatIdenti fier	内存大小的数据长度 (Bit7~Bit4) 起始内存地址的数据长 度 (Bit3~Bit0)	M	0x24	ALFID
A_Data[1] A_Data[m]	memoryAddress[] ^[1] = [byte#1 (MSByte) byte#4 (LSByte)]		M 	0x00~0xFF 0x00~0xFF	MA_ B1 B4
A_Data[m+1] A_Data[m+1+	memorySize[] ^[2] = [byte#1 (MSByte) byte#2 (LSByte)]		M M	0x00~0xFF 0x00~0xFF	MS_ B1 B2

汪: [1] 起始内存地址的数据长度由 A_Data[0]的 Bit3~Bit0 定义;

10.1.3.2.2.2 响应报文

表87 RMBA 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写	
----------	------	-----	---------	----	--

^[2] 内存大小的数据长度由 A_Data[0]的 Bit7~Bit4 定义。

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadMemoryByAddress Resp ID	M	0x63	RMBAPR
	dataRecord[] ^[1] = [DREC_
A_Data[0]	data#1	M	0x00~0xFF	DATA_1
		•••••		
A_Data[m-1]	data#m]	U	0x00~0xFF	DATA_m
注: [1] 内存	数据的第一个字节为起始内存地址的数据。			

表88 RMBA 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	ReadMemoryByAddress Req Id	M	0x23	RMBA
A_Data[0]	negativeResponseCode	М	0x13, 0x22, 0x31	NRC_

表89 RMBA 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
012	incorrectMessageLengthOrInvalidFormat	M	IMLOIE
0x13	报文长度错误或者格式非法	IVI	IMLOIF
022	conditionsNotCorrect	M	CNC
0x22	条件不满足	M	CNC
	requestOutOfRange		
	请求的数据内容超出数值范围:		
0x31	1、非法的内存地址	M	роор
0x31	2、受限的内存地址	IVI	ROOR
	3、内存大小溢出		
	4、非法的 ALFID		

10.1.3.2.3 周期读取数据(SID = 0x2A)诊断服务- ReadDataByPeriodicIdentifier

该诊断服务简称 RDBPI 诊断服务。客户端通过该诊断服务可以周期读取服务器中指定这数据周期标识符对应的数据。周期数据标识符及对应的记录数据由东风汽车公司技术中心或供应商自定义。在某时间点,每个周期标识符只需支持一种传输方式,不同标识符可以具有不同的传输方式。

ISO15765-3 规定两种周期读取数据的响应方式,本标准规定只使用其规定中的第一种方式,基于 USDT 的响应报文,响应报文不能超过一帧 CAN 帧。

10.1.3.2.3.1 请求报文

表90 RDBI 请求报文定义

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDataByIdentifierPeriodic Req ID	M	0x2A	RDBPI
A_Data[0]	transmissionMode	М	0x01/0x02/0x03 /0x04	TM

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_Data[1]	PeriodicDataIdentifier[] #1	C ^[1]	0x00~0xFF	PDID1
				•••••
A_Data[m]	dataIdentifier[] #m	U	0x00~0xFF	PDIDm

注: [1] 如果 TM=0x01/0x02/0x03, 请求报文中必须包含 PeriodicDataIdentifier;

如果 TM=0x04,要停止所有周期标识符的周期传输,请求服务不包含 PeriodicDataIdentifier,如果停止指定周期标识符的周期传输,请求报文中包含对应的 PeriodicDataIdentifier。

表91 transmissionMode(TM)数值定义

数值(Hex)	描述		
0x00	ISO 保留		
0x01	sendAtSlowRate,低速率发送		
0x02	sendAtMediumRate,中速率发送		
0x03	sendAtFastRate,高速率发送		
0x04	stopSending,停止发送		
0x05~0xFF	ISO 保留		

10.1.3.2.3.2 响应报文

响应报文分为初始响应报文和后续响应报文。初始响应报文用于表示服务器正确接收到请求报文。

表92 RDBI 初始肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDataByPeriodicIdentifier Resp ID	M	0x6A	RDBPIPR

后续响应报文包含周期标识符及其对应的数据。每个 Periodic Data Identifier 对应一个独立的响应报文,响应报文长度不能超过一个 CAN 帧。

表93 RDBI 后续肯定响应报文-基于 USDT

	1000 100 21 / 10 / 10 / 10 / 10 / 10 / 1			
A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDataByPeriodicIdentifier Resp ID	M	0x6A	RDBPIPR
A_Data[0]	PeriodicDataIdentifier[]	M	0x00~0xFF	PDID
	dataRecord[]=[DREC_
A_Data[1]	data#1	M	0x00~0xFF	DATA_1
A_Data[k]	Data#k]	U	0x00~0xFF	DATA_k

表94 RDBI 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[1]	ReadDataByIdentifier Req ID	M	0x2A	RDBI
A_Data[0]	negativeResponseCode	M	0x13, 0x22, 0x31,0x33	NRC_

表95 RDBI 的否定响应码(NRC)

数值(Hex)	描述	Cvt	缩写
012	incorrectMessageLengthOrInvalidFormat		IMLOIE
0x13	报文长度错误或者格式非法	M	IMLOIF
0x22	conditionsNotCorrect	M	CNC
UXZZ	条件不满足	M	CNC
	requestOutOfRange		
0x31	1、所有 PDID_都非法	M	роор
0x31	2、一次请求的 PDID_数量超出限值	M	ROOR
	3、一次请求中重复包含相同的 PDID_		
0x33	securityAccessDenied	М	SAD
UX33	安全访问拒绝		SAD

10.1.3.2.4 动态定义数据标识符(0x2C)诊断服务-DynamicallyDefineDataIdentifier

该诊断服务简称 DDDI 诊断服务。客户端通过该诊断服务动态定义由 ReadDataByIdentifier 服务 读取的数据标识符,从而将已定义数据标识符数据重新进行组合,或将某内存数据分配动态标识符。但该服务不可将动态定义数据标识符对应的数据重新定义新的动态数据标识符。

10.1.3.2.4.1 请求报文

表96 DDDI 请求报文(sub-function=defineByldentifier)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	DynamicallyDefineDataIdentifier Req ID	M	0x2C	DDDI
	Sub-function = [LEV_
A_Data[0]	difineByIdentifier]	M	0x01	DBID
	dynamically Defined Data Identifier[] =			DDDI_
A_Data[1]	[byte#1(MSB)	M	0xF2/0xF3	B1
A_Data[2]	byte#2(LSB)]	M	0x00~0xFF	B2
	sourceDataIdentifier#1[]=[SDI_
A_Data[3]	byte#1(MSB)	M	0x00~0xFF	B1
A_Data[4]	byte#2(LSB)]	M	0x00~0xFF	B2
A_Data[5]	positionSourceDataRecord#1	M	$0x00\sim0xFF$	PISDR#1
A_Data[6]	memorySize#1	M	0x00~0xFF	MS#1
		•••••		

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
	sourceDataIdentifier#m[]=[SDI_
A_Data[n-3]	byte#1(MSB)	M	0x00~0xFF	B1
A_Data[n-2]	byte#2(LSB)]	M	0x00~0xFF	B2
A_Data[n-1]	positionSourceDataRecord#m	M	0x00~0xFF	PISDR#m
A_Data[n]	memorySize#m	M	0x00~0xFF	MS#m

表97 DDDI 请求报文(sub-function=defineByMemoryAddress)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	DynamicallyDefineDataIdentifier Req ID	М	0x2C	DDDI
	Sub-function = [LEV_
A_Data[0]	difineByMemoryAddress]	M	0x02	DBMA
	dynamicallyDefinedDataIdentifier[] =			DDDI_
A_Data[1]	[byte#1(MSB)	M	0xF2/0xF3	B1
A_Data[2]	byte#2(LSB)]	M	0x00~0xFF	B2
A_Data[3]	addressAndLengthFormatIdentifier	M	0x24	ALFID
	memoryAddress[] = [MA_
A_Data[4]	byte#1(MSB)	M	0x00~0xFF	В1
			•••••	
A_Data[7]	byte#4(LSB)]	M	0x00~0xFF	B4
	memorySize[] = [MS_
A_Data[8]	byte#1(MSB)	M	0x00~0xFF	B1
A_Data[9]	byte#2(LSB)]	M	0x00~0xFF	B2
	memoryAddress[] = [MA_
A_Data[10]	byte#1(MSB)	M	0x00~0xFF	В1
			•••••	
A_Data[n-k]	byte#m(LSB)]	U/C	0x00~0xFF	Bm
	memorySize[] = [MS_
A_Data[n-(k-1)]	byte#1(MSB)	U	0x00~0xFF	B1
A_Data[n]	byte#k(LSB)]	U/C	0x00~0xFF	Bk

表98 DDDI请求报文(sub-function= clearDynamicallyDefinedDataldentifier)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	DynamicallyDefineDataIdentifier Req ID	M	0x2C	DDDI
	Sub-function = [LEV_
A_Data[0]	clearDynamicallyDefinedDataIdentifier]	M	0x01	CDDDID

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
	$dynamically Defined Data Identifier^{[1]}[] =$			DDDI_
A_Data[1]	[byte#1(MSB)	M	0xF2/0xF3	B1
A_Data[2]	byte#2(LSB)]	M	0x00~0xFF	B2

表99 Sub-function(LEV_)数值定义

数值(Hex)	描述
0x00	ISO 保留
0x01	defineByIdentifier,通过标识符定义
0x02	defineByMemoryAddress,通过内存地址定义
0x03	clearDynamicallyDefineDataIdentifier,清除动态定义的动态标识符
0x04~0x7F	ISO 保留

10.1.3.2.4.2 响应报文

表100 DDDI 肯定响应报文

A_PDU 参数	参数名称		数值(Hex)	缩写	
A_PCI	DynamicallyDefineDataIdentifier Resp ID M		0x6C	DDDIPR	
	DefininitionType=[LEV_	
A Data[0]	defineByIdentifier/	M	0x01/	DBID/	
A_Data[0]	difineByMemoryAddress/	M	0x02/	DBMA/	
	clearDynamicallyDefinedDataIdentifie]		0x03	CDDDI	
	dynamicallyDefinedDataIdentifier[]=[byt			DDDI_	
A_Data[1]	e#1(MSB)	С	0xF2/0xF3	B1	
A_Data[2]	byte#2(LSB)]	С	0x00~0xFF	B2	

表101 DDDI 否定响应报文

A_PDU 参数	参数名称		数值(Hex)	缩写
A_PCI[0]	I[0] negativeResponseSID		0x7F	SIDNR
A_PCI[1]	DynamicallyDefineDataIdentifier Req ID	M	0x2C	DDDI
A_Data[0]	negativeResponseCode	M	0x12\0x13\0x22\ 0x31\0x33	NRC_

表102 DDDI 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
012	SubnFunctionNotSupported	M	CNICE
0x12	子功能不支持	M	SNSF
012	incorrectMessageLengthOrInvalidFormat	M	IMLOIE
0x13	报文长度错误或者格式非法	M	IMLOIF
022	conditionsNotCorrect	11	CNC
0x22	条件不满足	U	CNC

数值(Hex)	描述	Cvt	缩写
	requestOutOfRange		
	请求的数据内容超出数值范围:		
	1、 非法的新 DDID 或源 DID		
021	2、 数据起始位置超出范围	M	DOOD.
0x31	3、 内存位置不合理	IVI	ROOR
	4、 内存大小不合理		
	5、 组合数据量超限		
	6、 addressAndLengthFormatIdentifier 参数无效		
0x33	securityAccessDenied	М	SAD
	安全访问拒绝	M	SAD

10.1.3.2.5 写入数据(SID = 0x2E)诊断服务-WriteDataByIdentifier

该诊断服务简称 WDBI 诊断服务。客户端通过该诊断服务可以改写服务器中指定数据标识符对应的数据。数据标识符及对应的记录数据由东风汽车公司技术中心或供应商自定义,数值分段见表 84。客户端每次最多只允许写入一个数据。

10.1.3.2.5.1 请求报文

表103 WDBI 请求报文

A_PDU 参数	参数名称	参数名称 Cvt 数值(Hex)		缩写
A_PCI	WriteDataByIdentifier Req ID	tifier Req ID M 0x2E		WDBI
	dataIdentifier[] = [DID_
A_Data[0]	byte#1 (MSByte)	e#1 (MSByte) M 0x00~0xFF		B1
A_Data[1]	byte#2 (LSByte)]	M	$0x00\sim0xFF$	B2
	dataRecord[] = [DREC_
A_Data[2]	data#1 (MSByte)	M	0x00~0xFF	DATA_1
A_Data[n]	data#k (LSByte)]	U	0x00~0xFF	DATA_k

10.1.3.2.5.2 响应报文

表104 WDBI 肯定响应报文

A_PDU 参数	参数 参数名称 Cvt		数值(Hex)	缩写
A_PCI	WriteDataByIdentifier Resp ID	M	0x6E	WDBIPR
	dataIdentifier[] = [DID_
A_Data[0]	byte#1 (MSByte)	M	0x00~0xFF	B1
A_Data[1]	byte#2 (LSByte)]	M	0x00~0xFF	B2

表105 WDBI 否定响应报文

A_PDU 参数	_PDU 参数 参数名称		数值(Hex)	缩写
A_PCI[0]	negativeResponseSID		0x7F	SIDNR
A_PCI[1]	WriteDataByIdentifier Req ID	M	0x2E	WDBI

A_PDU 参数	参数名称		数值(Hex)	缩写
			0x13, 0x22,	
A_Data[0]	negativeResponseCode	M	0x31, 0x33,	NRC_
			0x72	

表106 WDBI 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x13	incorrectMessageLengthOrInvalidFormat 报文长度错误或者格式非法	M	IMLOIF
0x22	conditionsNotCorrect 条件不满足	U	CNC
0x31	requestOutOfRange 请求的数据内容超出数值范围: 1、非法的 DID_或者服务器不支持向该 DID_写 入数据 2、非法的 DREC_	М	ROOR
0x33	securityAccessDenied 安全访问拒绝:该诊断服务仅用于编程模式	M	SAD
0x72	generalProgrammingFailure 写入失败	M	GPF

10.1.3.2.6 写入内存(SID = 0x3D)诊断服务-WriteMemoryByAddress

该诊断服务简称 WMBA 诊断服务。客户端通过该诊断服务可以向服务器中指定内存位置写入数据。内存位置及写入数据内容由由东风汽车公司技术中心或供应商自定义。该服务仅支持物理寻址,没有子功能定义。该服务需要先执行安全访问服务以使 ECU 处于解锁状态。

10.1.3.2.6.1 请求报文

表107 WMBA 请求报文

A_PDU 参数	参数名称		Cvt	数值(Hex)	缩写
A_PCI	WriteMemo	ryByAddress Req Id	M	0x3D	WMBA
	- 11 A II	内存大小的数据长度			
A D-4-[0]	addressAndLen	(Bit7~Bit4)	M	0.24	ALEID
A_Data[0]	gthFormatIdenti	起始内存地址的数据长	M	0x24	ALFID
	fier	度 (Bit3~Bit0)			
	memory	Address[] [1][2] = [MA_
A_Data[1]	byte	#1 (MSByte)	M	0x00~0xFF	B1
•••••					
A_Data[4]	byte	e#4 (LSByte)]	M	0x00~0xFF	B4

A_PDU 参数	参数名称		数值(Hex)	缩写
	memorySize[] ^[3] = [MS_
A_Data[5]	byte#1 (MSByte)		$0x00\sim0xFF$	B1
A_Data[6]	A_Data[6] byte#k (LSByte)]		$0x00\sim0xFF$	B2
	dataRecord[]=[DREC
A_Data[7]	A_Data[7] data#1		$0x00\sim0xFF$	DATA_1
A_Data[6+r]	Data#r]	U	$0x00\sim0xFF$	DARA_r

注: [1] 起始内存地址的数据长度由 A_Data[0]的 Bit3~Bit0 定义;

- [2] 起始内存地址的数值小于结尾内存地址的数值;
- [3] 内存大小的数据长度由 A_Data[0]的 Bit7~Bit4 定义。

10.1.3.2.6.2 响应报文

表108 WMBA 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	WriteMemoryByAddress Resp ID	M	WMBAPR	
A_Data[0]	addressAndLengthFormatIdentifier	M	0x00~0x0F	ALFID
	memoryAddress[] [1][2] = [MA_
A_Data[1]	byte#1 (MSByte)	oyte#1 (MSByte) M 0x00~0xFF		B1
A_Data[m]	byte#m (LSByte)]	С	0x00~0xFF	Bm
	memorySize[] ^[3] = [MS_
A_Data[m+1]	byte#1 (MSByte)	M	0x00~0xFF	B1
A_Data[m+1+k]	byte#k (LSByte)]	С	0x00~0xFF	Bk

注: [1] 起始内存地址的数据长度由 A_Data[0]的 Bit3~Bit0 定义;

- [2] 起始内存地址的数值小于结尾内存地址的数值;
- [3] 内存大小的数据长度由 A_Data[0]的 Bit7~Bit4 定义。

表109 RMBA 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	WriteMemoryByAddress Req Id	M	0x3D	WMBA
A_Data[0]	negativeResponseCode	M	0x13, 0x22, 0x31, 0x33, 0x72	NRC_

表110 WMBA 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
---------	----	-----	----

数值(Hex)	描述	Cvt	缩写
0x13	incorrectMessageLengthOrInvalidFormat	M	IMLOIF
	报文长度错误或者格式非法		
0x22	conditionsNotCorrect	M	CNC
UXZZ	条件不满足	1V1	CIVC
	requestOutOfRange		
	请求的数据内容超出数值范围:		
0.24	1、非法的内存地址		2002
0x31	2、 受限的内存地址	M	ROOR
	3、内存大小溢出		
	4、非法的 ALFID		
	securityAccessDenied		
	服务器阻止客户端的受限诊断服务请求,原因包		
0x33	括:	M	SAD
	1、服务器的测试条件不满足		
	2、服务器的安全状态处于锁定状态		
	generalProgrammingFailure		
0x72	擦除或者烧写非易失性内存的过程中,服务器由	M	GPF
	于发现错误而终止诊断服务		

10.1.3.3 已存储数据传输

表111 已存储数据传输诊断服务

	诊断服务名称	英文缩写	SID (Hex)	支 寻址	持 方式	支持 子功	SPRMIB
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(Hex)	功能	物理	能	
1	ClearDiagnosticInformation	CDI	0x14	V	ما		
1	清除诊断信息	CDI	UX14	V	٧		•
2	ReadDTCInformation	RDI	0x19	V	V	$\sqrt{}$	EALCE
	读取诊断信息	KDI	UX19	٧	v v v		FALSE

10.1.3.3.1 清除诊断信息(SID = 0x14)诊断服务-ClearDiagnosticInformation

该诊断服务简称 CDTCI 诊断服务,客户端通过该诊断服务清除服务器中存储的诊断信息。服务器接收到该诊断服务请求报文后,清除 RAM 和 EEPROM 中诊断信息及其拷贝。清除诊断信息服务处理完毕后,服务器发送肯定响应报文,即使服务器中没有存储 DTC 及有关诊断信息。

客户端发送的该诊断服务请求报文包含"故障码(DTC)"参数,它允许客户端清除单个 DTC 或者一组 DTC,例如动力系统、底盘系统、车身系统等。除非特殊指明,否则服务器应同时清除排放相关或无关的 DTC 信息。DTC 格式参见本标准第 10.3 节。

10.1.3.3.1.1 请求报文

表112 CDTCI 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex	缩写
A_PCI	ClearDiagnosticInformation Req ID	M	0x14	CDTCI
	$groupOfDTC[]^{[1]} = [$			GODTC_
A_Data[0]	DTC (HighByte)	M	0x00~0xFF	НВ
A_Data[1]	DTC(MiddleByte)	M	0x00~0xFF	MB
A_Data[2]	DTC (LowByte)]	M	0x00~0xFF	LB
注: [1] DTC 组定义见附录 C。				

10.1.3.3.1.2 响应报文

表113 CDTCI 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ClearDiagnosticInformation Resp ID	M	0x54	CDTCIPR

表114 CDTCI 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	negativeResponseSID	M	0x7F	SIDNR
A_PCI[1]	ClearDiagnosticInformation Req ID	M	0x14	CDTCI
A_Data[0]	negativeResponseCode	M	0x13, 0x22, 0x31	NRC_

表115 CDTCI的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写	
012	incorrectMessageLengthOrInvalidFormat	М	D III OIE	
0x13	报文长度错误或者格式非法	M	IMLOIF	
	conditionNotCorrect			
0.22	条件不满足:	C	CNC	
0x22	如果服务器内部禁止此时清除 DTC,则返回此否		CNC	
	定码			
0x31	requestOutOfRequest	М	DOOD.	
	请求的数据内容超出数值范围	M	ROOR	

10.1.3.3.2 读取 DTC 信息(SID = 0x19)诊断服务-ReadDTCInformation

该诊断服务简称 RDTCI 诊断服务。客户端通过该诊断服务读取车辆内所有服务器或一组服务器存储的 DTC 信息。除非特殊说明,服务器应返回和排放相关以及和排放无关的 DTC 信息。

10.1.3.3.2.1 服务器支持客户端获得的 DTC 信息

- 1) 获得与客户端定义的 DTC 状态屏蔽码相匹配的 DTC 数目(0x19 0x01);
- 2) 获得与客户端定义的 DTC 状态屏蔽码相匹配的所有 DTC 列表(0x19 0x02);
- 3) 获得与客户端定义的 DTC 和状态屏蔽码相关的 DTCSnapshot 记录信息(0x19 0x03、0x19 0x04);

- 4) 获得与客户端定义的 DTC 相关的扩展数据(0x19 0x06);
- 5) 获得服务器支持的所有 DTC 的状态(0x19 0x0A)。

10.1.3.3.2.1.1 获得与客户端定义的 DTC 状态掩码相匹配的 DTC 数量

该子功能用于获得与客户端定义的 DTC 状态掩码相匹配的 DTC 数量。请求报文包含 DTC 状态掩码。服务器将 DTC 状态掩码与它的各个 DTC 状态进行"与"逻辑运算,从而筛选出客户端期望获得的 DTC 并统计 DTC 数量。"与"逻辑运算的结果称为 DTC 有效掩码,包含在肯定响应报文中。DTC 状态、DTC 状态掩码和 DTC 状态有效掩码的格式相同,数据长度 8 位,见附录 D。

10.1.3.3.2.1.2 获得与客户端定义的 DTC 状态掩码相匹配的 DTC 列表

该子功能用于获得与客户端定义的 DTC 状态掩码相匹配的 DTC 列表。请求报文中包含 DTC 状态掩码。服务器将 DTC 状态掩码与它的各个 DTC 状态进行"与"逻辑运算,筛选出客户端期望获得的 DTC 列表。

10.1.3.3.2.1.3 获得 DTCSnapshot 记录信息

该子功能用于获得 DTCSnapshot 记录,响应报文包括 DTCSnapshot 记录数量和记录信息等。

10.1.3.3.2.1.4 获得 DTC 扩展数据

该子功能用于获得 DTC 的一个或全部扩展数据。

10.1.3.3.2.1.5 获得服务器支持的所有 DTC 的状态

该子功能用于获得服务器支持的所有 DTC 的状态信息。响应报文包含 DTC 有效状态掩码、DTC 和对应的状态记录。

10.1.3.3.2.2 请求报文

表116 RDTCI 请求报文

(sub-function = reportNumberOfDTCByStatusMask, reportDTCByStatusMask)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Req ID	M	0x19	RDTCI
	sub-function = [M	0x01	LEV_
A_Data[0]	report Number Of DTCBy Status Mask	IVI		RNODTCBSM
	reportDTCByStatusMask]	M	0x02	RDTCBSM
A_Data[1]	DTCStatusMask	M	0x00~0xFF	DTCSM

表117 RDTCI 请求报文

(sub-function = reportDTCSnapshotIdentification, reportDTCSnapshotRecordByDTCNumber)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Req ID	M	0x19	RDTCI
A D . [0]	sub-function = [reportDTCSnapshotIdentification	M	0x03	LEV_ RNODTCBSM
A_Data[0]	reportDTCSnapshotRecordByDTCNumb er]	M	0x04	RDTCBSM

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A Data[1]	DTCMaskRecord[] = [DTCMREC_
A_Data[1]	DTCHighByte	С	0x00~0xFF	DTCHB
A_Data[2]	DTCMiddleByte	С	0x00~0xFF	DTCMB
A_Data[3]	DTCLowByte]	С	0x00~0xFF	DTCLB
A_Data[4]	DTCSnapshotRecordNumber	С	0x00~0xFF	DTCSSRN

表118 RDTCI 请求报文

(sub-function = reportDTCExtendedDataRecordByDTCNumber)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Req ID	M	0x19	RDTCI
A_Data[0]	sub-function = [reportDTCExtendedDataRecordByDTC Number	М	0x06	LEV_ RDTCEDRBD N
A_Data[1] A_Data[2] A_Data[3]	DTCMaskRecord[] = [DTCHighByte DTCMiddleByte DTCLowByte]	C C C	0x00~0xFF 0x00~0xFF 0x00~0xFF	DTCMREC_ DTCHB DTCMB DTCLB
A_Data[4]	DTCExtendedDataRecordNumber	С	0x00~0xFF	DTCEDRN

表119 RDTCI 请求报文(sub-function = reportSupportedDTC)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Req ID	M	0x19	RDTCI
A Data[0]	sub-function = [M	0x0A	LEV_
A_Data[0]	reportSupportedDTC]			RSUPDTC

10.1.3.3.2.3 响应报文

表120 RDTCI 肯定响应报文(reportNumberOfDTCByStatusMask)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Resp ID	M	0x59	RDTCIPR
A Data[0]	reportType = [LEV_
A_Data[0]	reportNumberOfDTCByStatusMask]	M	0x01	RNODTCBSM
A_Data[1]	DTCStatusAvailabilityMask	M	0x00~0xFF	DTCSAM
	DTCFormatIdentifier = [DTCFID_
A_Data[2]	ISO15031-6DTCFormat	M	0x00	15031-6DTCF
	ISO14229-1DTCFormat	IVI	0x01	14229-1DTCF
	SAEJ1939-73DTCFormat]		0x02	J1939-73DTCF

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A Data[2]	DTCCount[] = [DTCC_
A_Data[3]	DTCCountHighByte	M	0x00~0xFF	DTCCHB
A_Data[4]	DTCCountLowByte]	M	0x00~0xFF	DTCCLB

表121 RDTCI 肯定响应报文(reportDTCByStatusMask)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Resp ID	M	0x59	RDTCIPR
	reportType = [LEV_
A_Data[0]	reportDTCByStatusMask]	M	0x02	RDTCBSM
A_Data[1]	DTCStatusAvailabilityMask	M	0x00~0xFF	DTCSAM
	DTCAndStatusRecord[] = [DTCASR_
A_Data[2]	DTCHighByte#1	$C^{[1]}$	$0x00\sim0xFF$	DTCHB
	DTCMiddleByte#1	С	$0x00\sim0xFF$	DTCMB
A_Data[m]	DTCLowByte#1	С	$0x00\sim0xFF$	DTCLB
	statusOfDTC#1	С	$0x00\sim0xFF$	SODTC
	DTCHighByte#2	$C^{[2]}$	$0x00\sim0xFF$	DTCHB
	DTCMiddleByte #2	С	$0x00\sim0xFF$	DTCLB
	DTCLowByte#2	С	$0x00\sim0xFF$	DTCFT
	statusOfDTC#2	С	$0x00\sim0xFF$	SODTC
	DTCHighByte#m	С	$0x00\sim0xFF$	DTCHB
	DTCMiddleByte#m	С	$0x00\sim0xFF$	DTCMB
	DTCLowByte#m	С	$0x00\sim0xFF$	DTCLB
	statusOfDTC#m	С	$0x00\sim0xFF$	SODTC
]			

注: [1] 只有当reportType = reportDTCByStatusMask,且有DTC信息需要报告;

[2] 只有当 reportType = reportDTCByStatusMask,且需要报告的 DTC 信息多于一个。

表122 RDTCI 肯定响应报文(reportDTCSnapshotIdentification)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Resp ID	M	0x59	RDTCIPR
A Data[0]	reportType = [LEV_
A_Data[0]	reportDTCSnapshotIdentification]	M	0x03	RDTCSSI
	DTCRecord[] #1 = [DTCASR_
A Data[1]	DTCHighByte#1	C ^[1]	0x00~0xFF	DTCHB
A_Data[1]	DTCMiddleByte#1	C	0x00~0xFF	DTCMB
	DTCLowByte#1]	C	0x00~0xFF	DTCLB
A_Data[2]	DTCSnapshotRecordNumber #1	С	0x00~0xFF	DTCSSRN

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
				•••••
	DTCRecord[] #m = [$C^{[2]}$	0x00~0xFF	DTCASR_
	DTCHighByte#m	C		DTCHB
	DTCMiddleByte#m	C	0x00~0xFF	DTCMB
	DTCLowByte#m]		0X00~0XFF	DTCLB
•••••	DTCSnapshotRecordNumber #m	С	0x00~0xFF	DTCSSRN

注: [1] 至少有一条 DTCSnapshot 记录可用于报告;

[2] 需要报告的DTCSnapshot 记录多于一个。

表123 RDTCI 肯定响应报文(reportDTCSnapshotRecordByDTCNumber)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Resp ID	M	0x59	RDTCIPR
	reportType = [LEV_
A D-4-[0]	reportDTCSnapshotRecordByDTCNumb	M	0x04	RDTCSSBDT
A_Data[0]	er]			С
A Data[1]	DTCAndStatusRecord[] = [DTCASR_
A_Data[1]	DTCHighByte	M	0x00~0xFF	DTCHB
A_Data[2]	DTCMiddleByte	M	0x00~0xFF	DTCMB
A_Data[3]	DTCLowByte	M	0x00~0xFF	DTCLB
A_Data[4]	statusOfDTC]	M	0x00~0xFF	SODTC
A_Data[5]	DTCSnapshotRecordNumber #1	$C^{[1]}$	0x00~0xFF	DTCSSRN
A D ([6]	DTCSnapshotRecordNumberOfIdentifiers	С	0x00~0xFF	DTCSSRNI
A_Data[6]	#1			
	DTCSnapshotRecord[] #1 = [DTCSSR_
A_Data[7]	dataIdentifier#1 byte #1 (MSB)	С	0x00~0xFF	DIDB11
	dataIdentifier#1 byte #2	С	0x00~0xFF	DIDB12
	snapshotData#1 byte #1	С	0x00~0xFF	SSD11
A_Data[m]	snapshotData#1 byte #p	С	0x00~0xFF	SSD1p
	dataIdentifier#w byte #1 (MSB)	$C^{[2]}$	0x00~0xFF	DIDB21
	dataIdentifier#w byte #2	С	0x00~0xFF	DIDB22
	snapshotData#w byte #1	С	0x00~0xFF	SSD21
	snapshotData#w byte #m]	С	0x00~0xFF	SSD2m
•••••			••••	•••••
A_Data[t]	DTCSnapshotRecordNumber #x	C ^[3]	00~FF	DTCSSRN

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A Data[t+1]	DTCSnapshotRecordNumberOfIdentifiers	С	00~FF	DTCSSRNI
A_Data[t+1]	#x			
		•••••		•••••

[1] 至少有一条 DTCSnapshot 记录可用于报告;

注: [2] 一条 DTCSnapshot 记录包括多项 dataIdentifier/snapshotData 组合;

[3] 所有 DTCSnapshot 记录需要报告。

表124 RDTCI 肯定响应报文(reportDTCExtendedDataRecordByDTCNumber)

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写	
A_PCI	ReadDTCInformation Resp ID	M	0x59	RDTCIPR	
	reportType = [LEV_	
A Data[0]	reportDTCS napshotRecordByDTCN umb	M	0x06	RDTCEDRBD	
A_Data[0]	er]			N	
A Data[1]	DTCAndStatusRecord[] = [DTCASR_	
A_Data[1] A_Data[2]	DTCHighByte	M	0x00~0xFF	DTCHB	
A_Data[2] A_Data[3]	DTCMiddleByte	M	0x00~0xFF	DTCMB	
A_Data[3] A Data[4]	DTCLowByte	M	0x00~0xFF	DTCLB	
A_Data[4]	statusOfDTC]	M	0x00~0xFF	SODTC	
A_Data[5]	DTCExtendedDataRecordNumber #1	$C^{[1]}$	0x00~0xFF	DTCEDRN	
	DTCExtendedDataRecord[] #1 = [DTCEDR_	
A_Data[6]	extendedData#1 byte #1 (MSB)	С	0x00~0xFF	EDD11	
A_Data[m]	extendedData #1 byte #p	С	0x00~0xFF	EDD1p	
•••••					
A_Data[t]	DTCExtendedDataRecordNumber #x	$C^{[2]}$	0x00~0xFF	DTCEDRN	
	DTCExtendedDataRecord[] #x = [DTCEDD	
A_Data[t+1]	extendedData#x byte #1 (MSB)	С	0x00~0xFF	DTCEDR_	
			•••••	EDDx1	
A_Data[t+1+(p	extendedData #x byte #p	С	$0x00\sim0xFF$	EDD	
+1)]				EDDxp	
注: [1] DTCH	ExtendedDataRecordNumber不为0xFF,且对	应的扩展	展记录可以获取;		
或DT	或DTCExtendedDataRecordNumber为0xFF,当前至少一个扩展记录可以获取;				

- [2] DTCExtendedDataRecordNumber 为 0xFF, 当前多于一个扩展记录可以获取。

RDTCI 肯定响应报文(reportSupportedDTCs) 表125

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI	ReadDTCInformation Resp ID	M	0x59	RDTCIPR

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写		
A Data[0]	reportType = [LEV_		
A_Data[0]	reportSupportedDTCs]	M	0x0A	RSUPDTC		
A_Data[1]	DTCStatusAvailabilityMask	M	0x00~0xFF	DTCSAM		
	DTCAndStatusRecord[] = [DTCASR_		
A_Data[2]	DTCHighByte#1	$C^{[1]}$	0x00~0xFF	DTCHB		
	DTCMiddleByte#1	С	0x00~0xFF	DTCMB		
	DTCLowByte#1	С	0x00~0xFF	DTCLB		
	statusOfDTC#1	С	0x00~0xFF	SODTC		
	DTCHighByte#2	$C^{[2]}$	0x00~0xFF	DTCHB		
	DTCMiddleByte #2	С	0x00~0xFF	DTCLB		
	DTCLowByte#2	С	0x00~0xFF	DTCFT		
	statusOfDTC#2	С	0x00~0xFF	SODTC		
	DTCHighByte#m	С	0x00~0xFF	DTCHB		
	DTCMiddleByte#m	С	0x00~0xFF	DTCMB		
	DTCLowByte#m	С	0x00~0xFF	DTCLB		
	statusOfDTC#m]	С	0x00~0xFF	SODTC		
注: [1] 只有	注: [1] 只有当reportType = reportSupportedDTCs, 且有DTC信息需要报告;					

表126 RDTCI 否定响应报文

[2] 只有当reportType = reportSupportedDTCs,且需要报告的DTC信息多于一个。

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	ReadDTCInformation Req ID	M	0x19	RDTCI
A_Data[0]	Negative Response Code	M	0x12, 0x13	NRC_

表127 RDTCI 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x12	subFunctionNotSupported	M	SFNS
	子功能不支持		
0x13	incorrectMessageLengthOrInvalidFormat	M	IMLOIF
	报文长度错误或者格式非法		

10.1.3.4 输入/输出控制功能单元

表128 输入输出控制功能的诊断服务

诊断服务名称	英文	SID	支	持 方式	支持 子功	SPRMIB
	缩写	(Hex)	功能	物理	能	

	诊断服务名称		英文 SID 缩写 (Hex) -		支持 寻址方式		SPRMIB
		41年	(Hex)	功能	物理	能	
1	InputOutputControlByIdentifier 输入 输出控制	IOCBI	0x2F	-	√	-	-

10.1.3.4.1 通过 ID 输入输出控制(SID = 0x2F)服务-InputOutputControlByIdentifier

该诊断服务简称 IOCBI 诊断服务,扩展模式下客户端通过该诊断服务可以替换服务器输入信号、内部服务功能和/或控制输出信号。该服务仅支持物理寻址,没有子功能定义,服务器接收到该请求报文后可以不以报文形式响应。

10.1.3.4.1.1 请求报文

表129 IOCBI 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	InputOutputControlByIdentifier Request ID	M	0x2F	IOCBI
	dataIdentifier#1[] = [IOI_
A_Data[0]	byte#1(MSB)	M	0x00~0xFF	B1
A_Data[1]	byte#2(LSB)]	M	0x00~0xFF	B2
	controlOptionRecord#1[] = [CSR_
A_Data[2]	controlState#1[inputOutputControlPara	M	0x00~0xFF	IOCP_/CS_
	meter ^[1]]			
A_Data[m+1]	controlState#m]	C	0x00~0xFF	CS_
	controlEnableMaskRecord#1[] =[CEM_
A_Data[m+2]	controlMask#1	C	C 0x00~0xFF	
•••••				
A_Data[m+2+(r-	controlMask#r]	C 0x00~0xFF		CM_
1)]				
注: [1] inputO	butputControlParameter 定义见附录 E。			

10.1.3.4.1.2 响应报文

表130 IOCBI 肯定响应报文

A_PDU 参数	参数名称		数值(Hex)	缩写
A_PCI[0]	A_PCI[0] InputOutputControlByIdentifier Response ID		0x6F	IOCBIPR
dataIdentifier#1[] = [IOI_
A_Data[2]	byte#1(MSB)	M	$0x00\sim0xFF$	B1
A_Data[3]	A_Data[3] byte#2(LSB)]		$0x00\sim0xFF$	B2

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
	controlStatusRecord#1[] = [CSR_
	controlState#1/InputOutputControlPara		$0x00\sim0xFF$	IOCP_/CS_
	meter			
	controlState#m: 反馈的数据]	С	$0x00\sim0xFF$	CS_

表131 IOCBI 否定响应报文

A_PDU 参数	参数名称		数值(Hex)	缩写
A_PCI[0]	Negative Response ID		0x7F	SIDNR
A_PCI[1]	A_PCI[1] InputOutputControlByIdentifier Request ID		0x2F	IOCBI
A Data[0]	Nagativa Raspansa Cada	M	0x13, 0x22,	NDC
A_Data[0]	Negative Response Code	1VI	0x31, 0x33	NRC_

表132 IOCBI 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写	
012	incorrectMessageLengthOrInvalidFormat	M	n a ore	
0x13	报文长度错误或者格式非法	IVI	IMLOIF	
0x22	conditionNotCorrect	M	COLIC	
UXZZ	条件不满足	IVI	CNC	
	requestOutOfRange		ROOR	
	1、服务器不支持被请求的 dataIdentifier			
0x31	2、dataIdentifier 使用的 controlState#1 参数值是非法	M		
	的			
	3、一个或多个 controlState 的记录是非法的			
0x33	securityAccessDenied	M	SAD	
0.33	安全访问拒绝	1 VI	SAD	

10.1.3.5 上传/下载功能单元

表133 上传/下载功能的诊断服务

	诊断服务名称	英文	SID			支持 子功	SPRMIB
		缩写	(Hex)	功能	物理	能	
1	RequestDownload 请求下载	RD	0x34	-	$\sqrt{}$	-	-
2	RequestUpload 请求上传	RU	0x35	-	$\sqrt{}$	1	-
3	TransferData 发送数据	TD	0x36	-	\checkmark	1	-

	诊断服务名称	英文缩写	SID (Hex)	寻址		支持 子功	SPRMIB
				功能	物理	能	
4	RequestTransferExit 请求退出发送	RTE	0x37	-	$\sqrt{}$	-	-

10.1.3.5.1 请求下载(SID = 0x34)服务-RequestDownload

该诊断服务简称 RD 诊断服务,客户端使用该诊断服务初始化从客户端到服务器的数据发送。接收到请求服务报文后服务器应采取某些必要动作用于数据接收,例如判断数据长度,判断服务器所处会话模式,判断是否处于发送数据状态等,以上判断完成,并无错误后发送肯定响应报文。该服务没有子功能参数定义。

应用程序中在编程会话模式下请求该服务需要先执行安全访问服务以使 ECU 处于解锁状态。在下载程序之前,Tester 需要先了解对方可提供的二级缓存有多大,这个过程可通过 ReadDataByIdentifier 服务执行。

10.1.3.5.1.1 请求报文

参数名称 数值(Hex) 缩写 A PDU 参数 Cvt A_PCI[0] RequestDownload Req ID M 0x34 RD dataFormatIdentifier M 0x00~0xFF A Data[0] DFI addressAndLengthFormatIdentifier M 0x44 A Data[1] **ALFID** MA memoryAddress[] = [0x00~0xFF В1 M A Data[2] byte#1(MSB) M $0x00\sim0xFF$ **B4** A Data[5] byte#4] memorySize[] = [MS byte#1(MSB) 0x00~0xFF B1 A Data[6] M . A_Data[9] byte#4] M $0x00\sim0xFF$ B4

表134 RD 请求报文

表135 RD 请求报文数据参数定义

名称

dataFormatIdentifier:

该参数为一个字节,高 4 位确定"compressionMethod",低 4 位确定"encryptingMethod",0x00 表示既没有使用 compressionMethod 也没有使用 encryptingMethod。除了 0x00 以外的值由设备供应商确定。

addressAndLengthFormatIdentifier:

7-4 位表示 memorySize 参数的长度。

3-0 位表示 memoryAddress 参数的长度。

名称

memoryAddress:

该参数为需要写入数据内存的起始地址。使用几个字节在 addressFormatIdentifier 的 3-0 位定义。

memorySize (unCompressedMemorySize):

服务器应使用该参数进行被传输数据大小和内存大小的比较。

10.1.3.5.1.2 响应报文

表136 RD 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	RequestDownload Resp ID	S	0x74	RDPR
A_Data[0]	lengthFormatIdentifier	M	0x00~0xF0	LFID
	maxNumberOfBlockLength = [MNROB
A_Data[1]	byte#1 (MSB)	M	0x00~0xFF	B1
A_Data[m]	byte#m]:	M	0x00~0xFF	Bm

表137 RD 肯定响应报文数据参数定义

名称

lengthFormatIdentifier:

7-4位表示maxNumberOfBlockLength参数的长度

3-0位保留,全设置为0

maxNumberOfBlockLength:

该参数用于指示客户端在每一个 TransferData 请求报文中允许的数据长度 (maxNumberOfBlockLength)。这个参数允许客户端在开始发送数据给服务器之前即适应服务器所能提供的接收缓存。

表138 RD 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RequestDownload Req ID	M	0x34	RD
A_Data[0]	Negative Response Code	М	0x13, 0x22, 0x31, 0x33, 0x70	NRC_

表139 RD 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x13	incorrectMessageLengthOrInvalidFormat	M	IMLOIF
	报文长度错误或者格式非法	M	INILOIF

数值(Hex)	描述	Cvt	缩写
	conditionNotCorrect		
0x22	条件不满足:	M	CNC
0x22	如果存在服务器和客户端之间的数据长度不匹配	IVI	CNC
	时,或者正在进行数据下载处理		
	requestOutOfRange		
	请求超出范围:		
0x31	1、dataFormatIdentifier是非法的;	M	ROOR
	2、memoryAddress/memorySize是非法的		
	3、addressAndFormatIdentifier是非法的		
0x33	securityAccessDenied	M	SAD
0233	安全访问拒绝	IVI	SAD
	uploadDownloadNotAccepted		
0x70	服务器由于某种故障而拒绝客户端对服务器内存的	M	UDNA
	上传/下载操作		

10.1.3.5.2 请求上传(SID = 0x35)服务-RequestUpload

该诊断服务简称 RU 诊断服务,客户端使用该诊断服务初始化从服务器到客户端的数据发送。接收到请求服务报文后服务器应采取某些必要动作用于数据上传,例如判断请求数据存储位置和长度,判断服务器所处会话模式和安全模式等,以上判断完成,并无错误后发送肯定响应报文。该服务没有子功能参数定义。

10.1.3.5.2.1 请求报文

表140 RU 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	RequestUpload Req ID	M	0x35	RU
A_Data[0]	dataFormatIdentifier	M	0x00~0xFF	DFI_
A_Data[1]	addressAndLengthFormatIdentifier	M	0x44	ALFID
	memoryAddress[] = [MA_
A_Data[2]	byte#1(MSB)	M	0x00~0xFF	B1
A_Data[5]	byte#4]	M	0x00~0xFF	B4
	memorySize[] = [MS_
A_Data[6]	byte#1(MSB)	M	0x00~0xFF	B1
A_Data[9]	byte#4]	M	0x00~0xFF	B4

表141 RD 请求报文数据参数定义

名称

名称

dataFormatIdentifier:

该参数为一个字节,高 4 位确定"compressionMethod",低 4 位确定"encryptingMethod",0x00 表示既没有使用 compressionMethod 也没有使用 encryptingMethod。除了 0x00 以外的值由设备供应商确定。

address And Length Format I dentifier:

7-4 位表示 memorySize 参数的长度

3-0 位表示 memoryAddress 参数的长度

memoryAddress:

该参数为需要上传数据内存的起始地址。使用几个字节在 addressFormatIdentifier 的 3-0 位定义。

memorySize (unCompressedMemorySize):

服务器应使用该参数进行被传输数据大小和内存大小的比较。

10.1.3.5.2.2 响应报文

表142 RD 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	RequestUpload Resp ID	S	0x75	RUPR
A_Data[0]	lengthFormatIdentifier	M	0x00~0xF0	LFID
	maxNumberOfBlockLength = [MNROB
A_Data[1]	byte#1 (MSB)	M	0x00~0xFF	B1
				••••
A_Data[m]	byte#m]:	M	$0x00\sim0xFF$	Bm

表143 RU 肯定响应报文数据参数定义

名称

lengthFormatIdentifier:

7-4位表示maxNumberOfBlockLength参数的长度

3-0 位保留,全设置为0

maxNumberOfBlockLength:

该参数用于指示客户端在每一个 TransferData 响应报文中的数据长度(maxNumberOfBlockLength)。这个参数告知客户端服务器发送数据的大小。

表144 RU 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RequestUpload Req ID	M	0x35	RU
A_Data[0]	Negative Response Code	M	0x13, 0x31, 0x33, 0x70	NRC_

表145 RD 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x13	incorrectMessageLengthOrInvalidFormat	M	IMLOIF
0x13	报文长度错误或者格式非法	IVI	IMLOIF
	requestOutOfRange		
	请求超出范围:		
0x31	1、dataFormatIdentifier是非法的;	M	ROOR
	2、memoryAddress/memorySize是非法的		
	3、addressAndLengthFormatIdentifier是非法的		
0x33	securityAccessDenied	M	SAD
0x33	安全访问拒绝	IVI	SAD
	uploadDownloadNotAccepted		
0x70	服务器由于某种故障而拒绝客户端对服务器内存的	M	UDNA
	上传/下载操作		

10.1.3.5.1.3 数据传输(SID = 0x36)服务-TransferData

该诊断服务简称 TD 诊断服务,客户端使用该诊断服务请求服务器上传/下载数据。数据传输的方向是由上一个服务 RequestDownload/RequestUpload 决定的。

应用程序中在编程会话模式下请求该服务需要安全访问。没有子功能参数定义。

10.1.3.5.3.1 请求报文

表146 TD 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	TransferData Request ID	M	0x36	TD
A_Data[0]	blockSequenceCounter	M	0x00~0xFF	BSC
	transferRequestParameterRecord[] = [TRPR_
A_Data[1]	transferRequestParameter#1	U	0x00~0xFF	TRTP_
A_Data[m]	transferRequestParameter#m]	U	0x00~0xFF	TRTP_

10.1.3.5.3.2 响应报文

表147 TD 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	TransferData Response ID	S	0x76	RUPR
A_Data[0]	blockSequenceCounter: 和请求报文中的值一致	M	00~FF	BSC
	transferResponseParameterRecord[] =			TREPR_
A_Data[1]	[transferResponseParameter#1	M	00~FF	TREP_
			•••••	
A_Data[n]	transferResponseParameter#m]	M	00~FF	TREP_

表148 TD 请求和肯定响应报文数据参数定义

名称

blocakSequenceCounter:

第一个 TransferData 请求报文中该值为 0x01, 随后的 TransferData 请求报文中,该值依次递增加 1, 当该值到 0xFF 时,此时下一个 TransferData 的 blockSequenceCounter 值以 0x00 开始。该参数用于进行增强的错误处理。

transferRequestParameterRecord:

请求参数记录包含服务器支持数据传输需要的参数,参数格式和长度由设备制造商确定。 对于下载数据,transferRequestParameterRecord 包含被发送的数据。

transferResponseParameterRecord:

注意: transferResponseParameterRecord 不是 transferRequestParameterRecord 的重复。

表149 TD 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写	
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR	
A_PCI[1]	TransferData Request ID	M	0x36	TD	
	A_Data[0] Negative Response Code		0x13, 0x24,		
A Doto[0]		M	0x31, 0x71,	NRC	
A_Data[0]		IVI	0x72, 0x73,	NRC_	
			0x92/0x93		

表150 TD 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x 13	incorrectMessageLengthOrInvalidFormat	M	IMLOIF
0x 13	报文长度错误或者格式非法	1 V1	INILOII
	requestSequenceError		
	请求顺序错误:		
	1、 ECU 接收到该请求服务时,请求下载		
0 24	RequestDownload 或请求上传 RequestUpload 服务未	M	RSE
0x 24	被激活;	M	KSE
	2、 ECU 接收到该请求服务时,请求下载		
	RequestDownload 或请求上传 RequestUpload 服务已		
	被激活,但所有的待传输数据均已传输完毕。		
	requestOutOfRange		
0x 31	如果 transferRequestParameterRecord 包含额外的控制参数	M	ROOR
	但是这个控制参数却是非法的。		

数值(Hex)	描述	Cvt	缩写
0x 71	transferDataSuspended 由于某些故障一个发送操作被悬挂。	М	TDS
0x 72	generalProgrammingFailure 在下载数据过程中,当擦除或对永久性内存编程时,服务 器探测到一个故障发生	М	GPF
0x 73	wrongBlockSequenceCounter 如果服务器探测到 blockSequenceCounter 参数的序号错误注意: 当重复连续接收到相同 blockSequenceCounter 的数据传输请求服务时,ECU 应该正常接收请求报文,如果处于下载过程中,ECU 发送肯定响应,但不会将数据重复写入内存;如果处于上传过程中,ECU 需要重复发送上传数据。	М	WBSC
0x 92/93	Voltage too high/Voltage too low 电压过高/过低	М	VTH/VTL

10.1.3.5.1.4 请求退出传输(SID = 0x37)服务-RequestTransferExit

该诊断服务简称 RTE 诊断服务,客户端通过该诊断服务停止与服务器之间的数据传输。应用程序中在编程会话模式下请求该服务需要安全访问。该服务没有子功能参数定义。

10.1.3.5.4.1 请求报文

表151 RTE 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Request TransferExit Req ID		0x37	RTE
	transferRequestParameterRecord[] = [TRPR_
A_Data[1]	transferRequestParameter#1	U	0x00~0xFF	TRTP_
•••••		•••••	•••••	•••••
A_Data[m]	transferRequestParameter#m]	U	0x00~0xFF	TRTP_

10.1.3.5.4.2 响应报文

表152 RTE 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值 (Hex)	缩写
A_PCI[0]	Request TransferExit Response ID	M	0x77	RTEPR
	transferResponseParameterRecord[] =			TREPR_
A_Data[1]	[transferResponseParameter#1	U	00~FF	TREP_
A_Data[n]	transferResponseParameter#m]:	U	00~FF	TREP_

表153 RTE 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RequestTransferExit Request ID	M	0x37	RTE
A_Data[0]	Negative Response Code	M	0x13, 0x22, 0x24	NRC_

表154 RTE 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0 12	incorrect Message Length Or Invalid Format	M	IMI OIE
0x 13	报文长度错误或者格式非法	M	IMLOIF
0 22	conditionsNotCorrect	M	CNC
0x 22	接收到请求服务时,编程过程还未完成	M	CNC
	requestSequenceError		
0 24	请求顺序错误,也即 RequestDownload 或	M	DCE
0x 24	RequestUpload 服务在没有没有被激活的情况下请	M	RSE
	求该服务		

10.1.3.6 例程控制

表155 例程控制的诊断服务

	诊断服务名称	英文缩写	SID (Hex)		持 方式 物理	支持 子功 能	SPRMIB
1	RoutineControl 例程控制	RC	0x31	-	V	V	FALSE

10.1.3.6.1 例程控制(SID = 0x31)服务-RoutineControl

该诊断服务简称 RC 诊断服务,客户端通过该服务控制服务器的例程:启动例程,停止例程以及请求例程结果。一个例程通过 2 字节的 routineIdentifier 定义。

10.1.3.6.1.1 请求报文

表156 RC 请求报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	RoutineControl Request ID	M	0x31	RC
A Data[0]	sub-function[] = [LEV_
A_Data[0]	routineControlType]	M	0x00~0xFF	RCTP_
	routineIdentifier[] = [RI_
A_Data[1]	byte1(MSB)	M	0x00~0xFF	B1
A_Data[2]	byte2]	M	0x00~0xFF	B2

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
	routineControlOptionRecord[] = [RCEOR_
A_Data[3]	routineControlOption#1	C/U ^[1]	0x00~0xFF	RCO_
A_Data[n]	routineControlOption#m]	C/U	0x00~0xFF	RCO_
注: [1] C/U 仅在 sub-function 为 stopRoutine 和 startRoutine 才有效。				

10.1.3.6.1.2 响应报文

表157 RC 肯定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	RoutineControl Response ID	M	0x71	RCPR
A_Data[0]	routineControlType	M	0x00~0xFF	RCTP_
	routineIdentifier [] = [RI_
A_Data[1]	byte#1 (MSB)	M	0x00~0xFF	B1
A_Data2]	byte#2]	M	0x00~0xFF	B2
	routineStatusRecord[] = [RSR_
A_Data[3]	routineStatus#1	U	0x00~0xFF	RS_
				•••••
A_Data[n]	routineStatus#m]	U	0x00~0xFF	RS _

表158 routineControlType(LEV_ RCTP_)数值定义

数值(Hex)	描述	Cvt	缩写
	startRoutine		
0x 01	该参数用于服务器启动和 routineIdentifier 相对应的	M	STR
	例程		
	stopRoutine		
0x 02	该参数用于服务器停止和 routineIdentifier 相对应的	M	STPR
	例程		
0** 02	requestRoutineResults	M	DDD
0x 03	服务器返回例程结果	M	RRR

表159 RC 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RoutineControl Request ID	M	0x31	RC
			0x12, 0x13, 0x22,	
A_Data[0]	Negative Response Code	M	0x24, 0x31, 0x33,	NRC_
			0x72	

表160 RC 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
0x 12	subFunctionNotSupported	M	SFNS
0X 12	子功能不支持	IVI	21.12
0x 13	incorrectMessageLengthOrInvalidFormat	M	IMLOIF
0X 13	报文长度错误或者格式非法	IVI	INILOIF
0 22	conditionsNotCorrect	M	CNC
0x 22	条件不满足	M	CNC
	requestSequenceError		
0x 24	必须先启动'startRoutine',才可'stopRoutine'或	M	RSE
	者'requestRoutineResults'		
	requestOutOfRange		
0x 31	服务器不支持被请求的 routineIdentifier 或	M	ROOR
	routineControlOptionRecord 包含无效数据		
0x 33	securityAccessDenied	M	SAD
UX 33	安全访问拒绝	IVI	SAD
0x 72	GeneralProgrammingFailure	M	GDE
UX /Z	例如当访问服务器内存时服务器发现错误	IVI	GPF

表161 routineIdentifier 定义

数值(Hex)	描述	Cvt	缩写
0x FF00	eraseMemory	M	EM
0x FF01	checkProgrammingDependencies	M	CPD

10.2 排放相关诊断服务

10.2.1 排放相关诊断服务总览

排放相关诊断服务均可在默认会话模式下执行,且服务之间没有依存关系,排放相关诊断服务详 见表 162。

表162 排放相关诊断服务

	诊断服务名称	英文缩写	SID (Hex)		方式
		7H →	(Hex)	功能	物理
1	请求动力系统当前诊断相关数据	RCPDD	0x01	$\sqrt{}$	2
1	RequestCurrentPowertrainDiagnosticData	KCPDD	UXU1	٧	V
2	请求动力系统冻结帧数据	RPFFD	0x02	$\sqrt{}$	2
2	Request Powertrain Freeze Frame Data	RPFFD	0X02	٧	V
3	请求排放相关故障码	RERDTC	0x03	V	2
3	RequestEmission-RelatedDiagnosticTroubleCode	KEKDIC	UXU3	٧	٧

	诊断服务名称	英文	英文 SID 缩写 (Hex)		持 :方式
		-III →	(Hex)	功能	物理
4	清除/复位排放相关诊断信息	CRERDI	0x04	$\sqrt{}$	
4	Clear/Reset Emission-Related Diagnostic Information	CKEKDI	0X04	V	٧
	请求规定监测系统的 OBD 监测结果				
5	Request On-Board Monitoring Test Results for Specific Monitore	ROBMTR	0x06	$\sqrt{}$	$\sqrt{}$
	dSystems				
	请求排放相关当前或最后运转循环的故障码	RERDTCD			
6	Request Emission-Related Diagnostic Trouble Codes Detected D	DCLCDC	0x07	$\sqrt{}$	$\sqrt{}$
	uring Current or Last Completed Driving Cycle	DCLCDC			
7	请求控制车载系统、测试或部件	RCOBSTC	0x08	$\sqrt{}$	ما
/	Request Control of On-Board System Testor Component	RCOBSIC	UXU6	V	V
8	读取车辆信息	RVI	0x09	V	٦/
0	RequestVehicleInformation	KVI	0.09	V	V

10.2.2 排放相关诊断服务响应规则

排放相关诊断服务响应规则见表 163。

表163 诊断服务响应规则

服务	条件	响应规则		
001 服タ	不支持请求参数标识符(Parameter Identifier,以下简称 PID)	不响应		
0x01 服务	支持请求 PID	在 P2 时间内发送响应报文,不允许发送否 定码为 0x78 的否定响应		
	不支持	不响应		
0x02 服务	支持请求 PID, 无存储冻结帧	如果 PID 为查询支持信息用 PID,在 P2 时间内发送响应报文 否则不响应		
	不支持请求 PID, 无存储冻结帧	不响应		
	请求 PID, 有存储冻结帧	在 P2 时间内发送响应报文		
	不支持请求 PID,有存储冻结帧	不响应		
0.02/	不支持	不响应		
0x03/	无存储 DTC	在 P2 时间内发送响应报文,表示无 DTC		
0x07 服务	有存储 DTC	在P2时间内发送包含存储DTC的响应报文		
	不支持	不响应		
0x04 服务	条件不满足	发送否定码为 0x22 的否定响应		
UXU4 IIX 分	条件满足	在 P2 时间内发送肯定响应或否定码为 0x 的否定响应		

	不支持	不响应
	支持请求 OBDMID,无存储数据	在 P2 时间内发送肯定响应,测试值、最大
0x06 服务	文行 侗水 OBDMID, 尤行 個 数 店	最小值设置为 0x00
	不支持请求 OBDMID, 有/无存储数据	不响应
	支持请求 OBDMID, 有存储数据	在 P2 时间内发送响应报文
	不支持	不响应
0x08 服务	支持请求 TID,条件不满足	发送否定码为 0x22 否定响应报文
	不支持请求 TID	不响应
	不支持	不响应
	支持请求 InfoType,数据可用(VIN,	P2 时间内给出响应
0x09 服务	CVN, CALID)	F2 비기미 (기술 III 바이스스
UXU9 服务	支持请求 InfoType, 条件正确, 数据无	发送否定码为 0x22 的否定响应报文
	法获取(CVN)	及还日尼阿为 0822 的 自尼啊应报义
	不支持请求 InfoType	不响应

10.2.3 排放相关诊断服务描述

10.2.3.1 请求动力系统当前诊断相关数据(SID=0x01)- RequestCurrentPowertrainDiagnostic Data

该诊断服务简称 RCPDD 诊断服务,外部诊断设备通过该诊断服务可以读取动力系统当前排放相关的一些参数,主要包括系统的一些模拟/数字的输入/输出量和系统的状态信息等。这些参数是车辆、发动机以及 OBD 系统本身的重要信息,且实时进行刷新。

依据 GB 18352.3-2005 标准 IA.6.5.1.2 规定,外部诊断设备应能够通过标准数据连接器的串口获得下述信息(如果车载电控单元具有、或通过车载电控单元能够被确定的信息):诊断故障码、发动机冷却液温度、燃料控制系统状态(闭环/开环及其它)、燃油修正、点火正时提前、进气温度、歧管空气压力、空气流量、发动机转速、节气门位置传感器输出值、二次空气状态(上游、下游或大气)、计算的负荷值、车速和燃油压力。必须按照 IA.6.5.3 的规定,以标准单位提供这些信号。

ECU 的响应报文数据必须是实际的最新信号测量值,不能因部件故障而使用预设值或替代值。

ISO 15031-5 给出了可供选择的所有参数的定义,包括参数的含义、数值转换算法、单位和供诊断仪文字显示等信息,每个参数都有一个参数标识(PID)与之相对应。PID 列表参见附录 G。

所有排放相关 OBD ECU 必须支持 SID=0x01, PID=0x00 服务, 其它 PID 是否支持由东风汽车公司技术中心或供应商依据标准以及系统条件自定义。PID=0x00、0x20、0x40、0x60...0xE0(称为查询支持信息 PID), 用于查询 ECU 对 PID 的支持信息,例如 PID=0x00 表示查询 ECU 是否支持 PID 0x01~0x20,其回复数据 4 字节共 32 位,依次对应 ECU 对其后 32 个 PID 支持信息。具体的对应关系参见附录 F。

10.2.3.1.1 请求报文

请求报文最多可以包含 6 个 PID,同一个 PID 在一个请求报文中可重复出现;查询支持信息 PID 和对应具体诊断数据的 PID 不能位于同一个请求报文中,查询 ECU 对 PID 的支持信息和读取当前诊断相关数据要依次进行。

表164 查询 ECU 对 PID 支持信息请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
-------------	------	-----	---------	----

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestCurrentPowertrainDiagnosticData Req ID	M	0x01	RCPDD
A_Data[0]	PID#1(查询支持信息PID)	M	$xx^{[1]}$	PID
A_Data[1]	PID#2(查询支持信息 PID)	U	xx ^[1]	PID
A_Data[2]	PID#3(查询支持信息 PID)	U	xx ^[1]	PID
A_Data[3]	PID#4(查询支持信息 PID)	U	xx ^[1]	PID
A_Data[4]	PID#5(查询支持信息 PID)	U	xx ^[1]	PID
A_Data[5]	PID#6(查询支持信息 PID)	U	xx ^[1]	PID
注: [1] xx 取f	直为 0x00、0x20、0x400xE0			

表165 RCPDD 请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A DCI	RequestCurrentPowertrainDiagnosticData	M	0x01	RCPDD
A_PCI	Req ID	IVI	0x01	KCPDD
A_Data[0]	PID#1	M	xx ^[1]	PID
A_Data[1]	PID#2	U	xx ^[1]	PID
A_Data[2]	PID#3	U	xx ^[1]	PID
A_Data[3]	PID#4	U	xx ^[1]	PID
A_Data[4]	PID#5	U	xx ^[1]	PID
A_Data[5]	PID#6	U	xx ^[1]	PID
注: [1] xx 只能取 0x00、0x20、0x400xE0 之外的值				

10.2.3.1.2 响应报文

ECU 支持最多 6 个 PID 的请求报文,对于同一请求中重复出现的同一个 PID 当作多个 PID 分别 处理,响应报文中 PID 的顺序不要求同于在请求报文中的顺序。

ECU 不一定支持请求报文中的所有 PID,如果支持其中一个或多个 PID,那么 ECU 需要发送肯 定响应报文,报文中包括支持的 PID 及其对应数据。

表166 查询 ECU 对 PID 支持信息肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A DCI	RequestCurrentPowertrainDiagnosticDa	M	0x41	RCPDDPR
A_PCI	ta Resp ID	1 V1	0.741	KCI DDI K

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
	data record of supported PIDs = [
A_Data[0]	1 st supported PID	M	xx ^[1]	PIDREC_PID
A_Data[1]	Data A: supported PIDs,	M	0x00~0xFF	DATA_A
A_Data[2]	Data B: supported PIDs,	M	0x00~0xFF	DATA_B
A_Data[3]	Data C: supported PIDs,	M	0x00~0xFF	DATA_C
A_Data[4]	Data D: supported PIDs]	M	0x00~0xFF	DATA_D
••••			•••••	
	data record of supported PIDs = [
A_Data[n-4]	m th supported PID	С	xx ^[1]	PIDREC_PID
A_Data[n-3]	Data A: supported PIDs,	С	0x00~0xFF	DATA_A
A_Data[n-2]	Data B: supported PIDs,	С	0x00~0xFF	DATA_B
A_Data[n-1]	Data C: supported PIDs,	С	0x00~0xFF	DATA_C
A_Data[n]	Data D: supported PIDs]	С	0x00~0xFF	DATA_D
注: [1] xx取	值为0x00、0x20、0x400xE0			

表167 RCPDD 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A DCI	RequestCurrentPowertrainDiagnosticData	M	0x41	RCPDD PR
A_PCI	Resp SID	IVI	0.741	RCFDD FR
	data record of 1 st supported PIDs = [
A_Data[0]	PID#1	M	$\mathbf{x}\mathbf{x}^{[1]}$	PIDREC_PID
A_Data[1]	Data A,	M	0x00~0xFF	DATA_A
A_Data[2]	Data B,	С	0x00~0xFF	DATA_B
A_Data[3]	Data C,	С	0x00~0xFF	DATA_C
A_Data[4]	Data D]	С	0x00~0xFF	DATA_D
	data record of m th supported PIDs = [
A_Data[n-4]	PID#m	С	$\mathbf{x}\mathbf{x}^{[1]}$	PIDREC_PID
A_Data[n-3]	Data A: supported PIDs,	С	0x00~0xFF	DATA_A
A_Data[n-2]	Data B: supported PIDs,	С	0x00~0xFF	DATA_B
A_Data[n-1]	Data C: supported PIDs,	С	0x00~0xFF	DATA_C
A_Data[n]	Data D: supported PIDs]	С	0x00~0xFF	DATA_D
注: [1] xx只	能取0x00、0x20、0x400xE0之外的值			

表168 RCPDD 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[1]	RequestCurrentPowertrainDiagnosticData Req ID	M	0x01	RU
A_Data[0]	Negative Response Code	M	0x21, 0x22	NRC_

表169 RCPDD的否定响应码(NRC)

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙,无法处理客户端发出的请求。此否定	M	BRR
	响应表明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认	M	CNCORSE
	为诊断服务的请求顺序错误		

10.2.3.2 请求动力系统冻结帧数据(SID=0x02)- RequestPowertrainFreezeFrameData

该诊断服务简称 RPFFD 诊断服务,外部诊断设备通过该诊断服务读取排放相关故障的冻结帧信息。

依据 GB 18352.3-2005 标准 IA.6.6.1 规定,OBD 系统一旦测定了任何部件或系统的首次故障,必须将当时发动机状态的冻结帧储存在电控单元存储器中。当有多个故障存在的时候,后发生的故障除非优先级比先发生的故障优先级高,否则该服务输出的仍然是最先发生故障的冻结帧信息,相应的PID 0x02 保持为最先发生的故障的故障码。根据法规的要求,燃油系统故障和失火故障具有较高的优先级。如果随后发生了供油系统或失火故障,任何原储存的冻结帧必须被供油系统或失火状态(取先发生者)所替代。储存的发动机状态必须包括,但不限于: 计算的负荷值、发动机转速、燃油修正值(如有)、燃油压力(如有)、车速(如有)、冷却液温度、进气岐管压力(如有)、闭环或开环运转状态(如有)和引发上述数据被储存的故障代码。整车厂必须选择便于有效修理的最合适的一组状态作为冻结帧储存,只要求一组数据帧。当然,还可以自定义选择储存额外的数据帧,标准规定的冻结帧对应帧号为Frame 0x00,其它自定义冻结帧,其存储条件和对应数据等由东风汽车公司技术中心或供应商自定义,但要求数据帧可以通过满足 GB 18352.3-2005 标准 IA6.5.3.2 和 IA6.5.3.3 规范的通用诊断工具读出。

冻结帧存储的数据值必须是真实值,不能因部件故障而使用预设值或替代值。

ISO 15031-5 给出了可供选择的所有参数的标准定义,包括参数的含义、数值转换算法、单位和文字描述等信息。每个参数都有一个参数标识(PID)与之相对应。所有可能输出的参数同服务 0x01,详见附录 G。

PID=0x02 表示查询引起冻结帧存储的 DTC,如果 ECU 无冻结帧存储,返回 DTC 为 0x00 00。10.2.3.2.1 请求报文

请求报文最多可以包含 3 个 PID,同一个 PID 在一个请求报文中可重复出现;查询支持信息 PID 和对应具体诊断数据的 PID 不能位于同一个请求报文中,查询 ECU 对 PID 的支持信息和读取当前诊断相关数据要依次进行。

表170 查询 ECU 对 PID 支持信息请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写	
-------------	------	-----	---------	----	--

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestPowertrainFreezeFrameData Req SID	M	0x02	RPFFD
A_Data[0]	PID#1(查询支持信息PID)	M	$xx^{[1]}$	PID
A_Data[1]	frame #	M	0x00~0xFF	FRNO_
A_Data[2]	PID#2(查询支持信息 PID)	U	$xx^{[1]}$	PID
A_Data[3]	frame #	С	0x00~0xFF	FRNO_
A_Data[4]	PID#3(查询支持信息 PID)	U	$xx^{[1]}$	PID
A_Data[5]	frame #	С	0x00~0xFF	FRNO_
注: [1] xx 取值为 0x00、0x20、0x400xE0				

表171 RPFFD 请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A PCI	RequestPowertrainFreezeFrameData Req	M	0x02	RPFFD
A_FCI	SID	IVI	0x02	KFFFD
A_Data[0]	PID#1	M	xx ^[1]	PID
A_Data[1]	frame #	M	0x00~0xFF	FRNO_
A_Data[2]	PID#2	U	xx ^[1]	PID
A_Data[3]	frame #	U	0x00~0xFF	FRNO_
A_Data[4]	PID#3	U	xx ^[1]	PID
A_Data[5]	frame #	U	0x00~0xFF	FRNO_
注: [1] xx 只	能取 0x00、0x20、0x400xE0 之外的值			

10.2.3.2.2 响应报文

ECU 支持最多 3 个 PID 的请求报文,对于同一请求中重复出现的同一个 PID 当作多个 PID 分别处理,响应报文中 PID 的顺序不要求同于在请求报文中的顺序。

ECU 不一定支持请求报文中的所有 PID,如果支持其中一个或多个 PID,那么 ECU 需要发送肯定响应报文,报文中包括支持的 PID 及其对应数据。

表172 查询 ECU 对 PID 支持信息肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A PCI	RequestPowertrainFreezeFrameData Resp	М	0x42	RPFFDPR
A_FCI	SID	IVI	0842	KFFTDFK
A_Data[0]	1 st supported PID	M	xx ^[1]	PID
A_Data[1]	frame #	M	0x00~0xFF	FRNO_
	data record of supported PIDs = [
A_Data[2]	Data A: supported PIDs,	M	0x00~0xFF	DATA_A
A_Data[3]	Data B: supported PIDs,	M	0x00~0xFF	DATA_B
A_Data[4]	Data C: supported PIDs,	M	0x00~0xFF	DATA_C
A_Data[5]	Data D: supported PIDs]	M	0x00~0xFF	DATA_D

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写	
			••••		
A_Data[n-5]	m th supported PID	С	$xx^{[1]}$	PID	
A_Data[n-4]	frame #	С	0x00~0xFF	FRNO_	
	data record of supported PIDs = [
A_Data[n-3]	Data A: supported PIDs,	С	0x00~0xFF	DATA_A	
A_Data[n-2]	Data B: supported PIDs,	С	0x00~0xFF	DATA_B	
A_Data[n-1]	Data C: supported PIDs,	С	0x00~0xFF	DATA_C	
A_Data[n]	Data D: supported PIDs]	С	0x00~0xFF	DATA_D	
注: [1] xx取	注: [1] xx取值为0x00、0x20、0x400xE0				

表173 RPFFD 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写	
A_PCI	RequestPowertrainFreezeFrameData Resp SID	M	0x42	RPFFDPR	
A_Data[0]	1 st supported PID	M	xx ^[1]	PID_	
A_Data[1]	frame #	M	0x00~0xFF	FRNO_	
	data record of 1 st supported PID = [
A_Data[2]	Data A,	M	0x00~0xFF	DATA_A	
A_Data[3]	Data B,	С	0x00~0xFF	DATA_B	
A_Data[4]	Data C,	С	0x00~0xFF	DATA_C	
A_Data[5]	Data D]	С	0x00~0xFF	DATA_D	
			•••••	•••••	
A_Data[n-5]	m th supported PID	C	xx ^[1]	PID_	
A_Data[n-4]	frame #	С	0x00~0xFF	FRNO_	
	data record of m th supported PIDs = [
A_Data[n-3]	Data A,	С	0x00~0xFF	DATA_A	
A_Data[n-2]	Data B,	С	0x00~0xFF	DATA_B	
A_Data[n-1]	Data C,	С	0x00~0xFF	DATA_C	
A_Data[n]	Data D]	C	0x00~0xFF	DATA_D	
注: [1] xx只					

表174 RPFFDPR 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RequestPowertrainFreezeFrameData Req SID	M	0x02	RPFFD

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_Data[0]	Negative Response Code	M	0x21, 0x22, 0x78	NRC_

表175 RPFFDPR 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙,无法处理客户端发出的请求。此否定响应	M	BRR
	表明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认为诊	M	CNCORSE
	断服务的请求顺序错误		
	requestCorrectlyReceived-ResponsePending		
	服务器正确接收到客户端发送的请求,正在处理中,当		
0x78	尚未处理完,此否定响应的发送时间应满足本规范中	M	RCRRP
	P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定响应,		
	直到完成操作		

10.2.3.3 请求排放相关故障码(SID=0x03)- RequestEmission-RelatedDiagnosticTroubleCodes

该诊断服务简称 RERDTC 诊断服务,外部诊断设备通过该诊断服务读取已确认的排放相关的故障码 DTC,所有 ECU 收到该服务请求后,须将所有存储的已确认 DTC 一次性发送给诊断设备;如果没有相应的故障码,ECU 也要发送响应报文,其 DTC 数量标示为 0。

本标准规定,排放相关故障码采用五位标准故障码,具体见10.5节。

10.2.3.3.1 请求报文

读取已确认的排放相关故障码服务请求报文见表 176。

表176 RERDTC 请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestEmission-RelatedDTC Req SID	M	0x03	RERDTC

10.2.3.3.2 响应报文

读取已确认的排放相关故障码服务响应报文见表 177。

表177 RERDTC 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestEmission-RelatedDTC Resp SID	M	0x43	RERDTCPR
	# of DTC=[
A Data[0]	no emission-related DTCs stored/	M	0x00/	#OFDTC
A_Data[0]	emission-related DTCs stored]		0x01~0xFF	
A_Data[1]	DTC#1(High Byte)	С	0x00~0xFF	DTC1HI
A_Data[2]	DTC#1(Low Byte)	C	0x00~0xFF	DTC1LO

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
		•••••		
A_Data[n-1]	DTC#m(High Byte)	С	0x00~0xFF	DTCmHI
A_Data[n]	DTC#m(Low Byte)	С	0x00~0xFF	DTCmLO

表178 RPFFDPR 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RequestEmission-RelatedDTC Req SID	M	0x03	RERDTC
A_Data[0]	Negative Response Code	M	0x21, 0x22, 0x78	NRC_

表179 RPFFDPR 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙,无法处理客户端发出的请求。此否定响应	M	BRR
	表明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认为诊	M	CNCORSE
	断服务的请求顺序错误		
	requestCorrectlyReceived-ResponsePending		
	服务器正确接收到客户端发送的请求,正在处理中,当		
0x78	尚未处理完,此否定响应的发送时间应满足本规范中	M	RCRRP
	P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定响应,		
	直到完成操作		

10.2.3.4 清除/复位排放相关诊断信息(SID=0x04)-Clear/ResetEmission-RelatedDiagnostic Information 该诊断服务简称 CRERDI 诊断服务,外部诊断设备通过该诊断服务命令 ECU 清除/复位排放相关诊断信息,包括:

- 1) 故障灯和 DTC 数量(通过 SID=0x01, PID=0x01 读取)
- 2) 清除 I/M(Inspection/Maintenance)就绪标识位(通过 SID=0x01, PID=0x01/0x41 读取)
- 3) 已确认 DTC(通过 SID=0x03 服务读取)
- 4) 临时 DTC(通过 SID=0x07 服务读取)
- 5) 冻结帧对应的故障码和冻结帧数据(通过 SID=0x02 服务读取)
- 6) 系统监测测试状态(通过 SID=0x01, PID=0x01 读取)
- 7) 车载监测测试结果(通过 SID=0x06 服务读取)
- 8) 故障灯激活后的行驶里程(通过 SID=0x01, PID=0x21 读取)
- 9) DTC 清除后暖机次数(通过 SID=0x01, PID=0x30 读取)
- 10) DTC 清除后的行驶里程(通过 SID=0x01, PID=0x31 读取)
- 11) 故障灯激活后发动机运行时间(通过 SID=0x01, PID=0x4D 读取)

- 12) DTC 清除后时间(通过 SID=0x01, PID=0x4E 读取)
- 13) 复位失火计数(可通过 SID=0x06, TID=0x0B 读取)

该服务的执行条件要求点火开关处于"ON"位置;发动机处于停止状态,如果发动机处于运行状态,ECU发送否定码为0x22(条件不满足)的否定响应。

10.2.3.4.1 请求报文

清除/复位排放相关诊断信息请求报文见表 180。

表180 CRERDI 请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A DCI	Clear/ResetEmission-RelatedDiagnostic	M	004	CDEDDI
A_PCI	Information Req SID	M	0x04	CRERDI

10.2.3.4.2 响应报文

清除/复位排放相关诊断信息服务响应报文见表 181。

表181 CRERDI 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	Clear/ResetEmission-RelatedDiagnostic	M	0x44 CRERDIP	CRERDIPR
	Resp SID	1V1	0344	CRERDII R

表182 CRERDI 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	Clear/ResetEmission-RelatedDiagnostic Information Req SID	M	0x04	CRERDI
A_Data[0]	Negative Response Code	M	0x21, 0x22, 0x78	NRC_

表183 CRERDI的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙,无法处理客户端发出的请求。此否定响应	M	BRR
	表明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认为诊	M	CNCORSE
	断服务的请求顺序错误		
	requestCorrectlyReceived-ResponsePending		
	服务器正确接收到客户端发送的请求,正在处理中,当		
0x78	尚未处理完,此否定响应的发送时间应满足本规范中	M	RCRRP
	P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定响应,		
	直到完成操作		

10.2.3.5 请求规定监测系统的 OBD 监测结果(SID=0x06)-RequestOn-BoardMonitoringTest

ResultsforSpecificMonitoredSystems

该诊断服务简称 ROBMTR 诊断服务,外部诊断设备通过该诊断服务依据 OBD 监测标识符 (OBDMID)读取某个部件/系统的 OBD 连续/非连续监测测试结果。OBDMID 列表参见附录 I。

监测系统执行的具体测试通过"Test IDs"(见附录 H)定义测试项。ECU 需将最后的监测结果存储, 其值不因点火开关动作而改变。客户端通过 OBDMID 进行读取, ECU 接收到请求后,将测试值、最 大值和最小值,以及这些值的单位和转换算法(参见附录 J)等信息报告给外部诊断设备。

0x04 服务和蓄电池断电发生后,监测结果、最大最小测试值复位为 0x00 00。

系统不需要支持所有的 OBDMID,该服务具体支持的 OBDMID 由东风汽车公司技术或供应商自 定义。OBDMID=0x00、0x20、0x40、0x60...0xE0(称为查询支持信息 OBDMID), 用于查询 ECU 对 OBDMID 的支持信息,例如 OBDMID=0x00 表示查询 ECU 是否支持 OBDMID 0x01~0x20, 其回复数 据 4 字节共 32 位, 依次对应 ECU 对其后 32 个 OBDMID 支持信息。具体的对应关系见附录 F。

10.2.3.5.1 请求报文

查询 OBDMID 支持信息请求报文最多可以包含 6 个查询支持信息 OBDMID, 读取 OBDMID 监 测结果的请求报文只能包含一个对应具体测试结果的 OBDMID。查询支持信息 OBDMID 和对应具体 监测结果的 OBDMID 不能位于同一个请求报文中,查询 ECU 对 OBDMID 支持信息和读取监测结果 要依次进行。

A_Data Byte	参数名称	Cvt	数值 (Hex)	缩写	
A PCI	Request On-Board Monitoring Test Results for Specific M	М	0x06	DODMTD.	
A_FCI	onitoredSystems Req SID	IVI	1 UXU6	ROBMTR	
A_Data[0]	OBDMID#1(查询支持信息OBDMID)	M	xx ^[1]	OBDMID	
A_Data[1]	OBDMID#2(查询支持信息 OBDMID)	U	xx ^[1]	OBDMID	
A_Data[2]	OBDMID#3(查询支持信息 OBDMID)	U	xx ^[1]	OBDMID	
A_Data[3]	OBDMID#4(查询支持信息 OBDMID)	U	xx ^[1]	OBDMID	
A_Data[4]	OBDMID#5(查询支持信息 OBDMID)	U	xx ^[1]	OBDMID	
A_PCI	OBDMID#6(查询支持信息 OBDMID)	U	xx ^[1]	OBDMID	
注: [1] xx	注: [1] xx 取值为 0x00、0x20、0x400xE0				

表184 查询 ECU 对 OBDMID 支持信息请求报文

ROBMTR 请求报文 表185

A_Da	ta Byte	参数名称	Cvt	数值 (Hex)	缩写
A_	PCI	RequestOn-BoardMonitoringTestResultsforSpecificM onitoredSystems Req SID	M	0x06	ROBMTR
A_D	ata[0]	OBDMID	M	xx ^[1]	OBDMID
注: [1] xx 只能取 0x00、0x20、0x400xE0 之外的值					

10.2.3.5.2 响应报文

由于 ECU 不一定支持请求报文中的所有 OBDMID, 如果请求报文中包含支持的 OBDMID, 那么

ECU 需要发送肯定响应报文,报文中包括支持的 OBDMID 及其对应结果。响应报文中 OBDMID 的顺序不要求同于在请求报文中的顺序。

表186 查询 ECU 对 OBDMID 支持信息响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A DCI	Request On-Board Monitoring Test Results for	M	0 - 46	ROBMTRPR
A_PCI	SpecificMonitoredSystems Resp SID	IVI	0x46	ROBWIRPR
	data record of supported OBDMID = [OBDMIDREC
A_Data[0]	1 st supported OBDMID	M	$\mathbf{x}\mathbf{x}^{[1]}$	OBDMID
A_Data[1]	Data A: supported OBDMIDs,	M	0x00~0xFF	DATA_A
A_Data[2]	Data B: supported OBDMIDs,	M	0x00~0xFF	DATA_B
A_Data[3]	Data C: supported OBDMIDs,	M	0x00~0xFF	DATA_C
A_Data[4]	Data D: supported OBDMIDs]	M	0x00~0xFF	DATA_D
			•••••	
	data record of supported OBDMID = [OBDMIDREC
A_Data[n-4]	m th supported OBDMID	C	xx ^[1]	OBDMID
A_Data[n-3]	Data A: supported OBDMIDs,	C	0x00~0xFF	DATA_A
A_Data[n-2]	Data B: supported OBDMIDs,	C	0x00~0xFF	DATA_B
A_Data[n-1]	Data C: supported OBDMIDs,	C	0x00~0xFF	DATA_C
A_Data[n]	Data D: supported OBDMIDs]	C	0x00~0xFF	DATA_D
注: [1] xx取	值为0x00、0x20、0x400xE0		·	

表187 ROBMTR 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A DCI	RequestOn-BoardMonitoringTestResultsfor	M	0x46	ROBMTRPR
A_PCI	SpecificMonitoredSystems Resp SID	IVI	UX40	ROBMIRPR
	data record of supported OBDMID=[OBDMIDREC
A_Data[0]	OBDMID	M	xx ^[1]	OBDMID
A_Data[1]	Std./Manuf. Defined TID ^[1] #1	M	0x00~0xFF	S/MDTID
A_Data[2]	Unit And Scaling ID ^[2] #1	M	0x00~0xFF	UASID
A_Data[3]	Test Value (High Byte)#1	M	0x00~0xFF	TVHI
A_Data[4]	Test Value (Low Byte)#1	M	0x00~0xFF	TVLO
A_Data[5]	Min. Test Limit (High Byte)#1	M	0x00~0xFF	MINTLHI
A_Data[6]	Min. Test Limit (Low Byte)#1	M	0x00~0xFF	MINTLLO
A_Data[7]	Max. Test Limit (High Byte)#1	M	0x00~0xFF	MAXTLHI
A_Data[8]	Max. Test Limit (Low Byte)#1]	M	0x00~0xFF	MAXTLLO

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
	data record of supported OBDMID=[OBDMIDREC
A_Data[n-8]	OBDMID	С	$\mathbf{x}\mathbf{x}^{[1]}$	OBDMID
A_Data[n-7]	Std./Manuf. Defined TID ^[2] #1	С	0x00~0xFF	S/MDTID
A_Data[n-6]	Unit And Scaling ID ^[3] #1	С	0x00~0xFF	UASID
A_Data[n-5]	Test Value (High Byte)#1	С	0x00~0xFF	TVHI
A_Data[n-4]	Test Value (Low Byte)#1	С	0x00~0xFF	TVLO
A_Data[n-3]	Min. Test Limit (High Byte)#1	С	0x00~0xFF	MINTLHI
A_Data[n-2]	Min. Test Limit (Low Byte)#1	С	0x00~0xFF	MINTLLO
A_Data[n-1]	Max. Test Limit (High Byte)#1	С	0x00~0xFF	MAXTLHI
A_Data[n]	Max. Test Limit (Low Byte)#1]	С	0x00~0xFF	MAXTLLO

- 注: [1] xx 取值为 0x00、0x20、0x40...0xE0 以外的值
 - [2] 对于该请求 OBDMID, 制造商可以定义多个 Test ID
 - [3] 响应中的测试值,最大/小的数值转换算法和显示单位标识符,具体定义见附录J

表188 ROBMTR 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A PCI[1]	RequestOn-BoardMonitoringTestResultsfor	M	0x06	ROBMTR
	SpecificMonitoredSystems Req SID		0.100	
A Data[0]	Negative Response Code	M	0x21, 0x22,	NRC
A_Data[0]	rvegative Response Code	0x78	NIC_	

表189 ROBMTR 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙, 无法处理客户端发出的请求。此否定响应表	M	BRR
	明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认为诊断	M	CNCORSE
	服务的请求顺序错误		
	requestCorrectlyReceived-ResponsePending		
	服务器正确接收到客户端发送的请求,正在处理中,当尚		
0x78	未处理完,此否定响应的发送时间应满足本规范中	M	RCRRP
	P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定响应,		
	直到完成操作		

10.2.3.6 请求排放相关当前或最后运转循环的故障码(SID=0x07)-RequestEmission-RelatedDiagnosticTroubleCodesDetectedDuringCurrentOrLastCompletedDrivingCycle 该诊断服务简称RERDTCDDCLCDC诊断服务,外部诊断设备通过该诊断服务读取当前或最后运

转循环排放相关的故障码。该服务主要应用于汽车维修后的测试工作,当清除/复位所有故障码后,通过一个有效的运转循环可以确认故障是否仍然存在,该故障码并不代表部件/系统故障,还需要进一步的测试进行确认,然后外部诊断设备通过 0x03 服务进行查询。

10.2.3.6.1 请求报文

读取已确认的排放相关故障码服务请求报文见表 190。

表190 RERDTCDDCLCDC 请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestEmission-RelatedDiagnosticTroubleC odesDetectedDuringCurrentOrLastCompleted	M	0x07	RERDTCDD
	DrivingCycle Req SID			CLCDC

10.2.3.6.2 响应报文

读取排放相关当前或最后运转循环故障码服务响应报文见表 191。

表191 RERDTCDDCLCDC 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
	RequestEmission-RelatedDiagnosticTroubl			RERDTCDDC
A_PCI	eCodesDetectedDuringCurrentOrLastComp	M	0x47	LCDCPR
	letedDrivingCycle Resp SID			LCDCFK
	# of DTC=[
	no emission-related DTCs stored	M	0x00,	#OFDTC
A_Data[0]	# of emission-related DTCs]		0x01~0xFF	
A_Data[1]	DTC#1(High Byte)	С	0x00~0xFF	DTC1HI
A_Data[2]	DTC#2(Low Byte)	С	0x00~0xFF	DTC1LO
A_Data[n-1]	DTC#m(High Byte)	С	0x00~0xFF	DTCmHI
A_Data[n]	DTC#m(Low Byte)	С	0x00~0xFF	DTCmLO

表192 RERDTCDDCLCDC 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
	RequestEmission-RelatedDiagnosticTroubl	M		RERDTCDDC
A_PCI[1]	eCodesDetectedDuringCurrentOrLastComp		0x07	LCDC
	letedDrivingCycle Req SID			LCDC
A Doto[0]	Nagativa Paspansa Coda	М	0x21, 0x22,	NRC
A_Data[0]	A_Data[0] Negative Response Code	1VI	0x78	NKC_

表193 RERDTCDDCLCDC的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写	
---------	----	-----	----	--

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙,无法处理客户端发出的请求。此否定响应	M	BRR
	表明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认为诊	M	CNCORSE
	断服务的请求顺序错误		
	requestCorrectlyReceived-ResponsePending		
	服务器正确接收到客户端发送的请求,正在处理中,当		
0x78	尚未处理完,此否定响应的发送时间应满足本规范中	M	RCRRP
	P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定响应,		
	直到完成操作		

10.2.3.7 求 控 车 请 制 载. 系 统 测 试 或 部 件 (SID=0x08)-RequestControlofOn-BoardSystem,TestorComponent

该诊断服务简称 RCOBSTC 诊断服务,外部诊断设备通过该诊断服务依据 TID 可以实现对车载系统、测试或部件操作的控制。显示的信息包括系统的状态和测试结果。TID 列表见附录 K。

系统不需要支持所有的 TID,该服务具体支持的 TID 由东风汽车公司技术中心或供应商自定义。 TID=0x00、0x20、0x40、0x60…0xE0(称为查询支持信息 TID),用于查询 ECU 对 TID 的支持信息,例如 TID=0x00 表示查询 ECU 是否支持 TID 0x01~0x20,其回复数据 4 字节共 32 位,依次对应 ECU 对其后 32 个 TID 支持信息。具体的对应关系见附录 F。

对于 EOBD 来说不对服务 0x08 进行要求,我国采用了 EOBD 的要求,因此凡为中国市场开发的 OBD 系统不支持服务 0x08 的功能。

10.2.3.7.1 请求报文

查询 TID 支持信息请求报文最多可以包含 6 个查询支持信息 TID,请求对车载系统、测试、部件进行控制的请求报文只能包含一个 TID 及相关参数。查询支持信息 TID 和请求对车载系统、测试、部件进行控制的 TID 不能位于同一个请求报文中,查询 ECU 对 TID 支持信息和请求控制车载系统、测试或部件要依次进行。

A_Data Byte	参数名称	Cvt	数值 (Hex)	缩写
A_PCI	RequestControlofOn-BoardSystem,TestorComponent Req SID	M	0x08	RCOBSTC
A_Data[0]	TID#1(查询支持信息TID)	M	$\mathbf{x}\mathbf{x}^{[1]}$	TID
A_Data[1]	TID#2(查询支持信息 TID)	U	xx ^[1]	TID
A_Data[2]	TID#3(查询支持信息 TID)	U	xx ^[1]	TID
A_Data[3]	TID#4(查询支持信息 TID)	U	xx ^[1]	TID
A_Data[4]	TID#5(查询支持信息 TID)	U	xx ^[1]	TID

表194 查询 ECU 对 TID 支持信息-请求报文

A_Data Byte	参数名称	Cvt	数值 (Hex)	缩写
A_Data[5]	TID#6(查询支持信息 TID)	U	xx ^[1]	TID
注: [1] xx 取值为 0x00、0x20、0x400xE0				

表195 RCOBSTC 请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写	
A DCI	RequestControlofOn-BoardSystem,TestorC	М	0x08	RCOBSTC	
A_PCI	component Req SID	1 V1	0x08	RCOBSIC	
	data record of TID = [TIDREC_	
A_Data[0]	TID	M	$\mathbf{x}\mathbf{x}^{[1]}$	TID	
A_Data[1]	Data A,	С	0x00~0xFF	DATA_A	
A_Data[2]	Data B,	С	0x00~0xFF	DATA_B	
A_Data[3]	Data C,	С	0x00~0xFF	DATA_C	
A_Data[4]	Data D,	С	0x00~0xFF	DATA_D	
A_Data[5]	Data E]	С	0x00~0xFF	DATA_E	
注: [1] xx只能取0x00、0x20、0x400xE0之外的值					

Data A~Data E自定义,可用于:

- 1) 打开车载系统、测试和部件;
- 2) 关闭车载系统、测试和部件;
- 3) 持续 n 秒循环控制车载系统、测试和部件打开关闭。

10.2.3.7.2 响应报文

由于 ECU 不一定支持请求报文中的所有 TID,如果请求报文中包含支持的 TID,那么 ECU 需要发送肯定响应报文,报文中包括支持的 TID 及其对应结果。响应报文中 TID 的顺序不要求同于在请求报文中的顺序。

表196 查询 ECU 对 OBDMID 支持信息响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A PCI	RequestControlofOn-BoardSystem,TestorC	М	0x48	RCOBSTCPR
A_FCI	component Resp SID	IVI	0246	RCOBSTCFR
	data record of Test ID = [TIDREC_
A_Data[0]	1 st supported TID	M	$\mathbf{x}\mathbf{x}^{[1]}$	TID
A_Data[1]	Data A: supported TIDs,	M	0x00~0xFF	DATA_A
A_Data[2]	Data B: supported TIDs,	M	0x00~0xFF	DATA_B
A_Data[3]	Data C: supported TIDs,	M	0x00~0xFF	DATA_C
A_Data[4]	Data D: supported TIDs,]	M	0x00~0xFF	DATA_D

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
	data record of supported TID = [TIDREC_
A_Data[n-4]	m th supported TID	С	$\mathbf{x}\mathbf{x}^{[1]}$	TID
A_Data[n-3]	Data A: supported TIDs,	С	0x00~0xFF	DATA_A
A_Data[n-2]	Data B: supported TIDs,	С	$0x00\sim0xFF$	DATA_B
A_Data[n-1]	Data C: supported TIDs,	С	$0x00\sim0xFF$	DATA_C
A_Data[n]	A_Data[n] Data D: supported TIDs]		0x00~0xFF	DATA_D
注: [1] xx取值为0x00、0x20、0x400xE0				

表197 RCOBSTC 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A PCI	RequestControlofOn-BoardSystem,TestorC	М	0x46	RCOBSTCPR
A_FCI	component Resp SID	IVI	0840	RCOBSTCFR
	data record of Test ID= [TIDREC
A_Data[0]	Test ID	M	xx ^[1]	TID
A_Data[1]	Data A,	M	0x00~0xFF	DATA_A
A_Data[2]	Data B,	M	0x00~0xFF	DATA_B
A_Data[3]	Data C,	M	0x00~0xFF0x	DATA_C
A_Data[4]	Data D,	M	00~0xFF0x00	DATA_D
A_Data[5]	Data E]	M	~0xFF	DATA_E
注: [1] xx只能取0x00、0x20、0x400xE0之外的值				

表198 RCOBSTC 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RequestControlofOn-BoardSystem,TestorC	M	0x08	RCOBSTC
	omponent Req SID			
A_Data[0]	Negative Response Code	M	0x21, 0x22, 0x78	NRC_
			UA/0	

表199 RCOBSTC 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙,无法处理客户端发出的请求。此否定响应	M	BRR
	表明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认为诊	M	CNCORSE
	断服务的请求顺序错误		

数值(Hex)	描述	Cvt	缩写
	requestCorrectlyReceived-ResponsePending		
	服务器正确接收到客户端发送的请求,正在处理中,当		
0x78	尚未处理完,此否定响应的发送时间应满足本规范中	M	RCRRP
	P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定响应,		
	直到完成操作		

10.2.3.8 读取车辆信息(SID=0x09)- RequestVehicleInformation

该诊断服务简称 RVI 诊断服务,外部诊断设备通过该诊断服务依据 InfoType 读取车辆信息,包括车辆识别码(VIN),标定标识符等。InfoType 说明见附录 L。

系统不需要支持所有的 InfoType, 该服务具体支持的 InfoType 由东风汽车公司技术中心或供应商自定义。InfoType=0x00、0x20、0x40、0x60...0xE0(称为查询支持信息 InfoType),用于查询 ECU 对 InfoType 的支持信息,例如 InfoType=0x00 表示查询 ECU 是否支持 InfoType 0x01~0x20,其回复数据 4 字节共 32 位,依次对应 ECU 对其后 32 个 InfoType 支持信息。具体的对应关系见附录 F。

10.2.3.8.1 请求报文

查询 InfoType 支持信息请求报文最多可以包含 6 个查询支持信息 InfoType, 读取车辆信息的请求 报文只能包含一个对应具体车辆信息的 InfoType。查询支持信息 InfoType 和读取车辆信息的 InfoType 不能位于同一个请求报文中,查询 ECU 对 InfoType 支持信息和读取车辆信息要依次进行。

A_Data Byte	参数名称	Cvt	数值 (Hex)	缩写
A_PCI	RequestVehicleInformation Req SID	M	0x09	RVI
A_Data[0]	InfoType #1(查询支持信息InfoType)	M	xx ^[1]	INFOTYP
A_Data[1]	InfoType #2(查询支持信息 InfoType)	U	$\mathbf{x}\mathbf{x}^{[1]}$	INFOTYP
A_Data[2]	InfoType #3(查询支持信息 InfoType)	U	xx ^[1]	INFOTYP
A_Data[3]	InfoType #4(查询支持信息 InfoType)	U	xx ^[1]	INFOTYP
A_Data[4]	InfoType #5(查询支持信息 InfoType)	U	$xx^{[1]}$	INFOTYP
A_PCI	InfoType #6(查询支持信息 InfoType)	U	xx ^[1]	INFOTYP
注: [1] xx []]	取值为 0x00、0x20、0x400xE0			

表200 查询 ECU 对 InfoType 支持信息请求报文

表201 RVI 请求报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestVehicleInformation Req SID	M	0x09	RVI
A_Data[0]	InfoType	M	xx ^[1]	INFTYP
注: [1] xx 只	[1] xx 只能取 0x00、0x20、0x400xE0 之外的值			

10.2.3.8.2 响应报文

由于 ECU 不一定支持请求报文中的所有 InfoType,如果请求报文中包含支持的 InfoType,那么 ECU 需要发送肯定响应报文,报文中包括支持的 InfoType 及其对应信息。响应报文中 InfoType 的顺

序不要求同于在请求报文中的顺序。

如果 ECU 支持 InfoType 0x02 (VIN),那么 ECU 必须在 P2max 时间内发送出响应报文,即使 VIN 丢失或未写入等。例如处于研发中的 ECU,如果其 VIN 还未被下载,那么其回复报文可以使用 0xFF 填充。

表202 查询 ECU 对 InfoType 支持信息肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestVehicleInformation Resp SID	M	0x49	RVIPR
	data record of supported InfoTypes=[INFTYPREC
A_Data[0]	1 st supported InfoType	M	$\mathbf{x}\mathbf{x}^{[1]}$	INFTYP
A_Data[1]	Data A: supported InfoTypes,	M	0x00~0xFF	DATA_A
A_Data[2]	Data B: supported InfoTypes,	M	0x00~0xFF	DATA_B
A_Data[3]	Data C: supported InfoTypes,	M	0x00~0xFF	DATA_C
A_Data[4]	Data D: supported InfoTypes s]	M	0x00~0xFF	DATA_D
			•••••	
	data record of supported InfoTypes=[INFTYPREC
A_Data[n-4]	m th supported InfoType	С	$\mathbf{x}\mathbf{x}^{[1]}$	INFTYP
A_Data[n-3]	Data A: supported InfoTypes,	С	$0x00\sim0xFF$	DATA_A
A_Data[n-2]	Data B: supported InfoTypes,	С	0x00~0xFF	DATA_B
A_Data[n-1]	ta[n-1] Data C: supported InfoTypes,		0x00~0xFF	DATA_C
A_Data[n]	Data D: supported InfoTypes s]	С	0x00~0xFF	DATA_D
注: [1] xx取值为0x00、0x20、0x400xE0				

表203 RVI 肯定响应报文

A_Data Byte	参数名称	Cvt	数值(Hex)	缩写
A_PCI	RequestVehicleInformation Resp SID	M	0x49	RVI
	data record of InfoType= [INFTYPREC
A_Data[0]	InfoType (reportInfoTypeValues)	M	XX	INFTYP
A_Data[1]	NOfDataItems	M	0x00~0xFF	NODI
A_Data[2]	data #1,	M	0x00~0xFF	DATA_#1
	data #2,	M	0x00~0xFF	DATA_#2
			•••••	
A_Data[m+1]	data #m]	M	0x00~0xFF	DATA_#m

表204 RVI 否定响应报文

A_PDU 参数	参数名称	Cvt	数值(Hex)	缩写
A_PCI[0]	Negative Response ID	M	0x7F	SIDNR
A_PCI[1]	RequestVehicleInformation Req SID	M	0x09	RVI
A_Data[0]	Negative Response Code	M	0x21, 0x22, 0x78	NRC_

表205 RVI 的否定响应码(NRC_)

数值(Hex)	描述	Cvt	缩写
	busyRepeatRequest		
0x21	服务器正忙,无法处理客户端发出的请求。此否定响	M	BRR
	应表明诊断服务结束		
	conditionsNotCorrectOrRequestSequenceError		
0x22	服务器执行诊断服务的条件不满足,或者服务器认为	M	CNCORSE
	诊断服务的请求顺序错误		
	requestCorrectlyReceived-ResponsePending		
	服务器正确接收到客户端发送的请求,正在处理中,		
0x78	当尚未处理完,此否定响应的发送时间应满足本规范	M	RCRRP
	中 P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定		
	响应,直到完成操作		

10.3 故障码格式

参考 ISO 14229-1、ISO 15031-5 和 ISO 15031-6 的故障码要求,本标准规定故障码由 2 或 3 字节组成,具体见表 206 和表 207。

10.3.1 三字节 DTC

三字节 DTC 对应的是 ISO 14229-1 服务中的 DTC。

表206 3 字节 DTC 信息格式

DTCHighByte(Hex)	DTCMiddleByte(Hex)	DTCLowByte(Hex)

其中 DTCHighByte, DTCMiddleByte 两字节表示故障内码,对应 5 位标准故障码,见表 210 所示。 DTCLowByte 描述故障种类和子类型,对于不需要该字节信息的 DTC,该字节填充为 0x00。

10.3.2 两字节 DTC

两字节 DTC 对应的是 ISO 15031-5 服务中的 DTC。

表207 2字节 DTC 信息格式

DTC 信息格式				
	DTCHighByte(Hex)	DTCLowByte(Hex)		

其中 DTCHighByte, DTCLowByte 表示 ISO 15031-5 服务中的 DTC, 对应 5 位标准故障码, 见表 210 所示。

10.3.3 5 位标准故障码

故障内码与5位标准故障码的对应关系见表208所示。

表208 故障内码与 5 位标准故障码对应关系

故障内码 DTCByte1(Hex) DTCByte2(Hex)

故障内码	DTCByte1(Hex)				DTCByte2(Hex)											
	Bit	Bit	Bit	Bit	bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	bit
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
五位标准 第一位 第二位 故障码		第三位		第四、五位												

⁵ 位标准故障码,第1位是字母,后面4位是数字,如P0120。

第一位字母表示故障所属系统,当前分配的字母有 4 个: "P"代表动力系统,"B"代表车身,"C"代表底盘,"U"代表网络通信,详见表 209。

故障内码 Bit15 Bit14	标准故障码字符 1 所属系统		
00	P	Powertrain 动力系统故障	
01	С	Chassis 底盘故障	
10 B		Body 车身故障	
11	U	Network 网络故障	

表209 5 位标准故障码第一位字符

第二位数字是 0、1、2 或 3 表示故障类型,意义如下: "0"代表 SAE(美国汽车工程师协会)定义的通用故障码; "1"代表汽车厂家定义的扩展故障码; "2"或"3"表示预留故障码,详见表 210。

故障内码 Bit13 Bit12	标准故障码字符 2	故障类型
00	0	ISO/SAE 标准定义的故障码
01	1	制造商自定义故障码
10	2	ISO/SAE 标准定义的故障码
11	3	ISO/SAE 保留

表210 5 位标准故障码第二位字符

第三位字符表示故障所属的子系统。对于动力系统部分:该位"0"表示燃油和空气计量辅助排放控制整个系统,"1"表示燃油和空气计量系统;"2"表示燃油和空气计量系统(喷油器);"3"表示点火系统;"4"表示废气控制系统;"5"表示巡航、怠速控制系统;"6"表示与控制单元相关;"7""8"表示变速箱系统等。

最后两位数字表示具体故障对象和类型。

10.3.4 节点 DTC 要求

排放相关节点存储 2 字节的 DTC, 在响应 0x19 读取 DTC 信息服务时,前两字节为 2 个字节的存储的 DTC,第三个字节填充为 0x00;在响应 0x03 和 0x07 服务时,使用该存储的 2 字节 DTC。

对于非排放相关节点,实现 3 字节的 DTC,0x19 读取 DTC 信息服务响应报文 DTC 即为该 3 字节的 DTC。

附录 A 数据链路层提供服务原语 (规范性附录)

数据链路层提供如下服务原语:

1)L_Data.Req: 网络层向数据链路层请求,发送标识符为 Identifier、数据长度为 DLC、数据内容为 DATA 的报文,且数据结构满足 L PDU 结构要求。

L Data.Req(

Identifier

DLC

DATA

)

2)L_Data.ind:数据链路层向网络层报告,接收到标识符为 Identifier、数据长度为 DLC、数据内容为 DATA 的报文。

L Data.ind(

Identifier

DLC

DATA

)

3)L_Data.confirm: 数据链路层向网络层确认 L_Data.Req 发送的完成状态<TRANSFER-STATUS>。

L Data. confirm(

Identifier

TRANSFER-STATUS

)

注意:数据链路层不提供定时参数,如果数据链路层发送数据成功,则通过 L_Data.confirm 向上层确认,如果一直没有发送出去,在网络层超时时刻 L_Data.confirm 向上层确认,此时TRANSFER-STATUS 的状态为发送未完成。

附录 B 诊断服务否定响应码(NRC_)数值定义 (规范性附录)

1. 否定响应码的数值定义

表 B. 1 否定响应码(NRC_)数值定义

数值	描述	缩写
0~0x0F	保留	_
0x10	generalReject 当否定响应不属于本表格其它任意一项时,服务器使用此否定码 拒绝向客户端提供服务	GR
0x11	serviceNotSupported This code is returned if the requested service is not supported. 服务器不支持客户端请求的诊断服务	SNS
0x12	subfuntionNotSupported This code is returned if the requested sub-function is not supported. 服务器不支持客户端请求服务的子功能	SFNS
0x13	incorrectMessageLengthOrInvalidFormat 服务器认为客户端的请求报文的数据长度(或者格式)不符合本标准	IMLOIF
0x14~0x20	保留	_
0x21	busyRepeatRequest 服务器正忙,无法处理客户端发出的请求。此否定响应表明诊断 服务结束 多数诊断服务都具有此否定响应,因此服务中未一一列出	BRR
0x22	conditionsNotCorrect 服务器执行诊断服务的条件不满足	CNC
0x23	保留	_
0x24	requestSequenceError 服务器认为诊断服务的请求(或者执行)顺序错误	RSE
0x25~0x30	保留	_
0x31	requestOutOfRange 服务器没有客户端请求的数据,此否定响应适用于支持数据读、 写,或者根据数据调整功能的服务器	ROOR
0x32	保留	_
0x33	securityAccessDenied 服务器阻止客户端的受限诊断服务请求,原因包括: ■ 服务器的测试条件不满足	SAD

数值	描述	Q/EQC=773=2013 缩写
	● 服务器的安全状态处于锁定状态	
0x34	保留	_
0x35	invalidKey 服务器认为客户端返回的密钥错误	IK
0x36	exceedNumberOfAttempts 服务器认为客户端尝试安全访问(解锁)的失败次数超标 本标准规定安全访问的最大次数等于 3	ENOA
0x37	requiredTimeDelayNotExpired 服务器拒绝客户端的安全访问请求,因为服务器允许接收请求的 计时器未到时 本标准规定等待时间等于 10 秒	
0x38~0x4F	保留给 ISO15764	_
0x50~0x6F	保留	_
0x70	uploadDownloadNotAccepted 服务器由于某种故障而拒绝客户端对服务器内存的上传/下载操作	UDNA
0x71	transferDataSuspended 服务器由于某种故障而终止了正在运行的数据传输	TDS
0x72	generalProgrammingFailure 再擦除或者烧写非易失性内存的过程中,服务器由于发现错误而 终止诊断服务	GPF
0x73	wrongBlockSequenceCounter 服务器发现客户端的发送数据(SID = 0x36)请求报文的 blockSequenceCounter 计数错误	WBSC
0x74~0x77	保留	_
0x78	requestCorrectlyReceived-ResponsePending 服务器正确接收到客户端发送的请求,正在处理中,但尚未处理完,此否定响应的发送时间应满足本标准第 9.3.1 节 P2 _{CAN_Server} 的要求,并且服务器应重复发送此否定响应,直到完成操作。多数诊断服务都具有此否定响应,因此服务中未一一列出 0x01 服务的否定响应不允许使用该否定码	RCRRP
0x79~0x7D	保留	_
0x7E	subFunctionNotSupportedInActiveSession 在当前诊断模式下,服务器不支持客户端请求服务的子功能	SFNSIAS
0x7F	ox7F serviceNotSupportedInActiveSession 在当前诊断模式下,服务器不支持客户端请求的 SID	
0x80	保留	_

数值	描述	Q/EQC-773-2013 缩写
0x81	rpmTooHigh	RPMRH
UAU1	服务器认为发动机不满足最大转速条件	KI WIKI
0x82	rpmTooLow	RPMTL
0.102	服务器认为发动机不满足最小转速条件	141112
	engineIsRunning	
0x83	服务器由于发送机运转而不能运行执行器测试	EIR
	注意区分此否定响应和 NRC = 0x81 的否定响应	
	engineIsNotRunning	
0x84	服务器由于发动机停止运转而不能运行执行期测试	EINR
	注意区分此否定响应和 NRC = 0x82 的否定响应	
0x85	engineRunTimeTooLow	ERTTL
	服务器认为发动机运行时间不满足要求	
0x86	temperatureTooHigh	ТЕМРТН
	服务器认为发动机温度过高	
0x87	temperatureTooLow	TEMPTL
	服务器认为发动机温度过低	
0x88	vehicleSpeedTooHigh	VSTH
	服务器认为车速过高	
0x89	vehicleSpeedTooLow	VSTL
	服务器认为车速过低	
0x8A	throttle/PedalTooHigh	ТРТН
	服务器认为节气门或加速踏板位置过高	
0x8B	throttle/PedalTooLow	TPTL
	服务器认为节气门或加速踏板位置过低	
0x8C	transmissionRangeNotInNeutral	TRNIN
	服务器认为变速器不满足空档要求	
0x8D	transmissionRangeNotInGear	TRNIG
0x8E	服务器认为变速器不满足挂挡要求	
UX8E	保留	_
0.05	brakeSwitch(es)NotClosed	DCNC
0x8F	为了安全,服务器认为制动踏板应在某些测试中始终被踩下(制动	BSNC
	系统工作) shifterLeverNotInPark	
0x90		SLNIP
0.890	为了安全,服务器认为手刹手柄应在某些测试中始终拉起(辅助制动系统工作)	SLNIF
	torqueConverterClutchLocked	
0x91	服务器认为变矩器离合器不满足要求(被闭锁)	TCCL

Q/EQC-773-2013

数值	描述	缩写
002	voltageTooHigh	VTH
0x92	服务器认为蓄电池电压过高	
002	voltageTooLow	VTL
0x93	服务器认为蓄电池电压过低	
0x94~0xFF	保留	_

附录 C DTC 群组和 DTC 数值范围定义 (规范性附录)

表 C. 1 DTC 群组定义

数值	描述	Cvt	缩写
0x000000	排放相关系统的全部 DTC 群组	С	ERS
0x000001	动力系统的全部 DTC 群组	U	PG
0x400000	底盘系统的全部 DTC 群组	U	CG
0x800000	车身系统的全部 DTC 群组	U	BG
0xC00000	网络通信的全部 DTC 群组	U	NCG
0xFFFFFF	全部 DTC 群组	M	AG

表 C. 2 DTC 数值范围定义

数值	描述	Cvt	缩写
0x000002~0x3FFFFF	动力系统的 DTC 范围	U	PDTC_
0x400001~0x7FFFFF	底盘系统的 DTC 范围	U	CDTC_
0x800001~0xBFFFFF	车身系统的 DTC 范围	U	BDTC_
0xC00001~0xCFFFFE	网络通信的 DTC 范围	U	NCDTC_
0xD00000~0xFFFFFE	保留	U	_

附录 D DTCStatusMask 和 statusOfDTC 位的定义 (规范性附录)

这一部分定义了 DTCStatusMask/statusOfDTC 参数相关的信息。以下用于描述 DTC status 的所使用的算法定义:

- 1) Test: 在线诊断算法,该算法决定系统的故障状态。一个算法对应于一个唯一 DTC, 非连续性测试在一个监控周期内仅运行一次,连续测试在每次循环中进行调用,可 以是毫秒级的;
- 2) Failure: 系统不能满足功能,则为一个故障。
- 3) Monitor: 可以是一个 Test 也可由多个 Test 组成,用于决定系统故障状态;
- 4) Monitoring cycle: 由设备制造商定义,在这个周期下 Test 可以运行。当然制造商 也可定义其它的周期,只要这个定义满足法规要求;
- 5) Complete: 在当前监控周期内, test 决定是否有故障存在的一种指示。(不仅指 failed)

Bit	描述	Cvt	缩写
	TestFailed		
	指示最近执行 Test 的结果,逻辑"1"表示上次 Test 失败。		
	如果最近执行的 Test 返回'pass', 那么该位应重新置为		
	"0",如果调用了 ClearDiagnosticInformation 服务,也需要		
0	重新置为"0"。当然设备制造商也可确定重置条件	U	TF
	在请求报文时刻如果 DTC Test 没有失败,则设置为"0",		
	表示最近的测试发现没有故障发生,如果在请求报文时		
	刻 DTC Test 失败,则设置为"1",表示最近的测试发现有		
	故障发生		

表 D. 1 DTC status 位 0 描述 testFailed

表 D 2	DTC	status 位:	1	tectFail	adThi	eMon i	torio	naCva I	۵

Bit	描述	Cvt	缩写
	testFailedThisMonitoringCycle		
	在当前检测过程中,诊断 Test 是否已经报告了一个		
	testFailed 结果(或者是在当前检测循环过程中并在上次调		
	用 ClearDiagnosticInformation 服务后已经报告过了		
1	testFailed 结果)。当新的检测循环开始时,这个位需要设置	C_1	TFTMC
	为逻辑"0",在调用了 ClearDiagnosticInformation 后也需要设		
	置为逻辑"0"。如果该位设置为逻辑"1",那么一直保持逻辑		
	"1"状态直到新的检测循环开始。(可用于请求 Current		
	DTC)。		

Bit	描述	Cvt	缩写
	C ₁ : 如果第 2 位(pendingDTC)有,那么此位是必须的,否		
	则用户可自定义该位的使用		

表 D. 3 DTC status 位 2 描述 pendingDTC

Bit	描述	Cvt	缩写
2	pendingDTC 在当前或上一次已完成的检测循环过程中诊断 Test 是否已 经报告了一个 testFailed 结果。只有当 Test 运行并完成时该 位 才 可 被 更 新 。 设 置 pendingDTC 和 设 置 TestFailedThisMonitoringCycle 的标准是一样的,唯一区别 是清除 testFailedThisMonitoringCycle 是在当前检测循环结束,而 pendingDTC 是直到检测循环已完成并且 Test 至少 pass 一次并且再也没有 failed 过才可被清除。如果当前检测循环过程中 Test 没有完成,那么 pendingDTC 应不可改变。 在调用 ClearDiagnosticDTC 后需要设置为"0"	U	PDTC

表 D. 4 DTC status 位 3 描述 confirmedDTC

Bit	描述	Cvt	缩写
	confirmedDTC		
	故障持续一段时间并且可以把 DTC 存储到 long-term		
3	memory 中。此时的 pendingDTC 有一次或多次被置为"1"	U	CDTC
	在调用 ClearDiagnosticDTC 后需要设置为"0"。可作为		
	History DTC.		

表 D.5 DTC status 位 4 描述 testNotCompletedSinceLastClear

Bit	描述	Cvt	缩写
4	testNotCompletedSinceLastClear 用于指示在上次调用 ClearDiagnosticDTC 后 DTC Test 是否曾经运行过并直到 complete。"1"指 DTC Test 没有运行直到 complete,如果 Test 运行并 pass 或者如果 Test 运行并 fails(testFailedThisMonitoringCycle = "1"),那么该位应设置	C_2	TNCSLC
	为"0"		

Bit	描述	Cvt	缩写
	在调用 ClearDiagnosticDTC 后需要设置为"1","0"表示在		
	上次诊断信息清除后, DTC Test 至少返回或者'pass'或者		
	'failed'的测试结果,"1"表示在上次诊断信息清除后 DTC		
	Test 没有运行到 complete		

表 D. 6 DTC status 位 5 描述 testFailedSinceLastClear

Bit	描述	Cvt	缩写
	testFailedSinceLastClear		
	在上次调用 ClearDiagnosticInformation 后 DTC Test 曾经		
	返回过 testFailedThisMonitoringCycle = "1", "0"表示 Test		
5	没有运行或者 DTC 运行了但是结果是 pass, 如果 Test 运	C_2	TFSLC
	行并且返回结果为 fails,那么该位应一直为"1",第 5 位		
	要和第4位一起使用		
	在调用 ClearDiagnosticDTC 后需要设置为"0"		

表 D7 DTC status 位 6 描述 testNotCompletedThisMonitoringCycle

Bit	描述	Cvt	缩写
	testNotCompletedThisMonitoringCycle		
	在当前检测循环周期(或者在上次调用		TNCTMC
	ClearDiagnosticInformation 后的当前检测循环周期过程	М	
	中)过程中 DTC Test 曾经运行过并直到 complete,"1"表示		
6	在当前循环检测周期过程中 DTC Test 没有运行到		
	complete,只要 DTC Test 运行并返回 Test 的结果,该位		
	就应设置为"0"		
	在调用 ClearDiagnosticDTC 后需要设置为"1"		

表 D.8 DTC status 位 7 描述 warningIndicatorRequested

Bit	描述	Cvt	缩写
	warningIndicatorRequested		
	该位报告警告指示。由 Tester 设备输出警告信息, 如果没	U	WIR
7	有和 DTC 相关的警告存在,该位应设置为"0",输出警告		
/	信息的条件由设备制造商定义,如果已经设定了警告信		
	息就是针对已给定的 DTC 的,那么 confirmedDTC 位要		
	设置为"1"		

Bit	描述	Cvt	缩写
	在调用 ClearDiagnosticDTC 后需要设置为"0",其它的重		
	置条件由设备制造商确定		

附录 E InputOutputControlParameter 定义 (规范性附录)

表 E.1 InputOutputControlParameter 定义

Hex	描述	Cvt	缩写
0x00	returnControlToECU 该值指示服务器客户端此刻不再控制输入信号等; 请求中 controlState 字节个数: 0; 肯定响应中 controlState 字节个数: 依赖 dataIdentifier。	U	RCTECU
0x01	resetToDefault 服务器恢复到各信号以及参数的默认状态; 请求中 controlState 字节个数: 0; 肯定响应中 controlState 字节个数: 依赖 dataIdentifier。	U	RTD
0x02	freezeCurrentState 请求冻结服务器输入信号、内部参数或者输出信号(通过 inputOutputLocalIdentifier 引用)的当前状态; 请求中 controlState 字节个数: 0; 肯定响应中 controlState 字节个数: 依赖 dataIdentifier。	U	FCS
0x03	shortTermAdjustment 请求把服务器 RAM 中的输入信号、内部参数或者输出信 号(通过 inputOutputLocalIdentifier 引用)值修正为 controlOption参数中定义的值; 请求中 controlState 字节个数: 依赖 dataIdentifier; 肯定响应中 controlState 字节个数: 依赖 dataIdentifier。	U	STA
0x04~0xFF	保留	M	本文档保留

附录 F PID/OBDMID/TID/INFOTYPE 支持情况描述 (规范性附录)

该附录规定了服务 0x01, 0x02, 0x05, 0x06, 0x07 和 0x09 请求报文用的标准 Hex 值,用以查询支持的 PIDs、OBDMIDs、TIDs 及 INFOTYPEs。

表 F. 1 支持的 PID/OBDMID/TID/INFOTYPE 定义

支持的 PID		分辨率/bit		
/OBDMID		数据字节数 =	外部测试设备	
/TID	数据	ff A~D 或 B~E:	位赋值	国际制单位体系(公制)/
/INFOTYPE	所支持的 P	ID/OBDMID/TI	D/INFOTYPE	英制显示
(Hex)		(Hex)		
	Data A bit7	0x01		ISO 15031-4 规定了外部
0x00	Data A bit6	0x02	0 = 不支持	测试设备如何解析接收
0200			1= 支持	到的数据来识别每个
	Data D bit0	0x20		ECU 所 支 持 的
	Data A bit7	0x21		PIDs/OBDMIDs/TIDs/IN
0x20	Data A bit6	0x22	0 = 不支持	FOTYPEs.
0320			1= 支持	
	Data D bit0	0x40		如果对应请求报文的标
	Data A bit7	0x41		准 Hex 值的被查询的
0x40	Data A bit6	0x42	0 = 不支持	PIDs/OBDMIDs/TIDs/IN
0340			1= 支持	FOTYPEs 中至少有一个
	Data D bit0	0x60		ECU 是支持的, ECU 才
	Data A bit7	0x61		会对该请求作出响应,否
0x60	Data A bit6	0x62	0 = 不支持	则 ECU 不响应。
0.000			1= 支持	
	Data D bit0	0x80		
	Data A bit7	0x81		
0x80	Data A bit6	0x82	0 = 不支持	
0x80	•••	•••	1 = 支持	
	Data D bit0	0xA0		
	Data A bit7	0xA1		
0 4.0	Data A bit6	0xA2	0 = 不支持	
0xA0		•••	1 = 支持	
	Data D bit0	0xC0		

支持的 PID		分辨率/bit		
/OBDMID		数据字节数 = 4	1	外部测试设备
/TID	数捷	号 A~D 或 B~E: 亻	立赋值	国际制单位体系(公制)/
/INFOTYPE	所支持的 P	ID/OBDMID/TII	D/INFOTYPE	英制显示
(Hex)		(Hex)		
	Data A bit7	0xC1		
0xC0	Data A bit6	0xC2	0 = 不支持	
UXCO	•••		1= 支持	
	Data D bit0	0xE0		
	Data A bit7	0xE1		
	Data A bit6	0xE2		
0xE0	•••		0 = 不支持	
UXLU	Data D bit1	0xFF	1= 支持	
	Data D bit0	ISO/SAE 保留		
		(设为 0)		

附录 G 0x01 和 0x02 服务中参数标识符 PIDs 定义 (规范性附录)

G.1 术语

这个附录使用下面方式进行数字和单位的表示,分别为美国表示法,欧洲表示法及外部测试设备的显示。表 G1 是一个示例:

表 G. 1 美国表示法,欧洲表示法及外部测试设备的显示的数字和单位

附录示例	美国表示法	欧洲表示法	外部测试设备显示
4750.75 min ⁻¹	4750.75 min ⁻¹ 4750.75 min ⁻¹		4750.75 min ⁻¹

G.2 经由分布式网络收到的信号

在分布式网络架构中,一些 OBD 设备是通过硬线与其它 ECU 连接的,或者是独立的 OBD 机电一体化设备,例如,智能传感器,或经由网络与其它 ECU 相连(被称为远程 OBD 设备)。当远程 OBD 设备与 OBD ECU 既不是硬线连接时,从某一特定远程 OBD 设备接收 的数据也不是通过数据总线,遵循以下方式:

- 1) 当主要 OBD ECU 尚未接收到相应信号时,应使用最小值或最大值报告给 0x01 服务和 0x02 服务的数据参数进行表示。包含无效数据(无信号)的 PID 将使用最小值(0x00 or 0x0000)或者最大值(0xFF or 0xFFFF)进行报告,例如,PID 0x0D"车速传感器" = 0xFF = 255 km/h,PID 0x2F"燃油液位输入" = 0x00 = 0.0 %。具体取值由制造商根据系统设计和网络架构选择在正常状况下最少出现的值。
- 2) OBD ECU 检测到远程 OBD 信号丢失,经过滤波验证后,OBD ECU 需要设置存储 对应的网络通信故障码"与'X'控制模块失去通信"。

网络通信故障码依据 ISO 15031-6 之规定进行设置。

G.3 PID 定义

表 G. 2 PID 0x01 定义

PID (Hex)	描述	数据字节	分辨率/位	外部测试设备 国际制单位体系(公制)/英 制显示			
0x01	故障码清除之后的监测状态						
	这个 PID 的比特位包含每个监测器报告两部分信息:						
	1) 故障码最后被清除后的监测状	、 保存在	生NVRAM或RAM;				
	2) 车辆所支持的监视						
	排放相关 DTC 个数和 MIL 状态	A (bit)	4 字节中的第 1 字节	DTC 和 MIL 状态:			
	ECU 中存储的故障码个数	0~6	Hex 到十进制	DTC_CNT: xxd			

PID (Hex)	描述	数据字	分辨率/位	外部测试设备 国际制单位体系(公制)/英 制显示				
	故障灯(MIL)的状态	7	0 = 故障灯熄灭 1 = 故障灯激活	MIL: OFF or ON				
	点火钥匙处于ON位置,发动机尚未启动,正在进行自检过程中,此时MIL状态将指示为"OFF",除非由于检测到故障命令MIL为"ON"。该状态反映是否存在导致MIL激活的故障码,而不是反映MIL灯的亮灭。因为,MIL灯亮可能因为功能检查,闪烁可能是因为检查/维护就绪或失火故障。							
	支持的连续监测	B (bit)	4 字节中的第 2 字节 (低半字节)	连续监测支持状态				
	失火监测	0	0 = 不支持监测(NO) 1 = 支持监测(Yes)	MIS_SUP: NO or YES				
	无论是点燃式发动机还是压燃式	发动机,只	【要是具备失火监测功能	的车辆都应支持。				
	燃油系统监测	1	0 = 不支持监测(NO) 1 = 支持监测(YES)	FUEL_SUP: NO or YES				
	凡是使用氧传感器作为闭环反馈控制且具有燃油系统监测功能的车辆都应支持,多为点燃式发动机。							
	综合部件监测	2	0 = 不支持监测(NO) 1 = 支持监测(YES)	CCM_SUP: NO or YES				
	具有综合部件监测功能的点燃式	发动机和压	医燃式发动机车都应支持	:				
	ISO/SAE 保留(显示 0)	3		-				
	自 DTC 清除之后连续监测功能 的状态	B (bit)	4字节中的第2字节 (高半字节)	DTC 清除之后连续监测的 完成状态				
	失火监测状态	4	0 = 监测完成,或者 不可适用的(YES) 1 = 监测未完成(NO)	MIS_RDY: YES or NO				
	对点燃式发动机车来说,此位应 在失火评估完成之后再指示为已]已完成状态(即为 0)。x	寸于压燃式发动机车来说,				
	燃油系统监测状态	5	0 = 监测完成,或者 不适用的(YES) 1 = 监测未完成(NO)	FUEL_RDY: YES or NO				
	对于点燃式发动机,燃油系统监	测状态都应		态。				
	综合部件监测状态	6	0 = 监测完成,或者 不可适用的(YES) 1 = 监测未完成(NO)	CCM_RDY: YES or NO				

PID (Hex)	描述	数据字节	分辨率/位	外部测试设备 国际制单位体系(公制)/英 制显示					
	对于点燃式发动机和压燃式发动								
	注意:可以假设当每个非连续监测完成时,连续的综合部件监测状态也将完成。对于支持其它								
	非连续监测的点燃式发动机 Bit6		弘不"元成"。 						
	ISO/SAE 保留(填充为 0)	7		-					
	支持非连续监测测试	С	 4 字节中的第 3 字节	支持的非连续监测状态					
		(bit)							
	催化器监测	0		CAT_SUP: NO or YES					
	催化器加热监测	1		HCAT_SUP: NO or YES					
	蒸发系统监测	2		EVAP_SUP: NO or YES					
	二次进气系统监测	3	0 = 不支持监测(NO)	AIR_SUP: NO or YES					
	空调制冷系统监测	4	1 = 支持监测(YES)	ACRF_SUP: NO or YES					
	氧传感器监测	5		O2S_SUP: NO or YES					
	氧传感器加热监测	6		HTR_SUP: NO or YES					
	EGR(废气再循环)系统监测	7		EGR_SUP: NO or YES					
	-1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	D	4 9 # h b b b b b	自故障码清除后的非连续					
	非连续监测功能的状态	(bit)	4字节中的第4字节	监测功能的完成状态					
	催化器监测	0		CAT_RDY: NO or YES					
	催化器加热监测	1		HCAT_RDY: NO or YES					
	蒸发系统监测	2	 0 = 监测完成,或者	EVAP_RDY: NO or YES					
	二次进气系统监测	3		AIR_RDY: NO or YES					
	空调制冷系统监测	4	不可适用的(否)	ACRF_RDY: NO or YES					
	氧传感器监测	5	1 = 监测未完成(是)	O2S_RDY: NO or YES					
	氧传感器加热监测	6		HTR_RDY: NO or YES					
	EGR(废气再循环)系统监测	7		EGR_RDY: NO or YES					

表 G. 3 PID 0x02 定义

DID		数据				外部测试设备
PID	描述	製 ケック タック タック タック タック タック タック タック タック タック タ	最小值	最大值	分辨率/bit	国际制单位体系(公制)/
(Hex)		4年				英制显示

0x02	对应存储冻结帧的	A, B	0x00 00	0xFF FF	Hex	DTCFRZF: Pxxxx,
	故障码				例如: P01AB	Cxxxx, Bxxxx, Uxxxx
	(0x0000 代表没有				(故障码在 ISO	
	任何故障)				15031-6 中定	
					义)	

表 G. 4 PID 0x03 定义

PID		数据		外部测试设备				
(Hex)	描述	字节	分辨率/bit	国际制单位体系(公制)/				
(Hex)		2		英制显示				
0x03	燃油系统1状态:	A	byte 1 of 2	FUELSYS1:				
		(位)						
	(未使用的比特值为	0	1= 开环 - 进入闭环控制的条件尚未	OL				
	"0";不可能同时有		满足					
	多于一个比特的值	1	1= 闭环 - 使用氧传感器进行燃油反	CL				
	为 1)		馈控制					
		2	1= 开环 - 由于驾驶条件(例如,功率	OL-Drive				
			增加,减速减稀)					
		3	1= 开环 - 由于检测到了系统故障	OL-Fault				
		4	1= 闭环,但是至少有一个氧传感器存	CL-Fault				
			在故障 - 可能只使用一个氧传感器进					
			行燃油控制					
		5~7	ISO/SAE 保留 (应该全部报告为 0)	-				
	注意:燃油系统通常	不是指那	《些喷油器。燃油系统旨在代表完全不同的	可以独立地进入和退出				
	闭环燃油的燃油系统。这些在 V 型发动机上的喷油器通常是不独立的,它们共享相同的闭环使							
	能标准。如果发动机停止工作而点火开关处于 ON 位置,则 A和 B 字节所有位报告为"0"。							
	燃油系统 2 状态:	В	两字节中的第二字节	FUELSYS2:				
		(位)		(燃油系统 2)				

PID (Hex)	描述	数据 字节	分辨率/bit	外部测试设备 国际制单位体系(公制)/ 英制显示
	(未使用的比特位值	0	1 = 开环一进入闭环控制的条件尚未	OL
	为"0";不可能同时		满足	
	有多于一个比特的	1	1= 闭环一使用氧传感器进行燃油反	CL
	值为 1)		馈控制	
		2	1= 开环一由于驾驶条件(例如,动力增	OL-Drive
			加,减速减稀)	
		3	1= 开环一由于检测到了系统故障	OL-Fault
		4	1= 闭环,但是至少有一个氧传感器存	CL-Fault
			在故障一可能只使用一个氧传感器进	
			行燃油控制	
		5~7	ISO/SAE 保留 (应该全部报告为 0)	-

表 G. 5 PID 0x04 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
0x04	计算负荷值	A	0 %	100 %	100/255 %	LOAD_PCT: xxx.x %

OBD 法规以前把 CLV(计算负载值)定义为:

(当前气流/最大气流@海平面)*(气压@海平面/气压)*100%

各厂商以不同的方式实施这一计算,下面的定义,虽然有点限制性,却更加规范和改善 计算的准确性:

LOAD_PCT = [当前气流]/[(最大气流在 WOT@STP 是转速的函数)*(气压/29.92) *SORT(298/(ATT+273))]

- 1) 这里: STP = 标准温度和气压 = 25 ℃, 汞气压 29.92, SQRT = 平方根;
- 2) WOT = 油门全开, AAT = 周围空气温度, 单位为℃

注意 当发动机不开启,点火开关打开时,LOAD PCT=0%

LOAD PCT 的特性:

- 1) 对于自然吸气和助推发动机,如果火花塞没有因为连锁反应控制(取决于负荷,燃料和温度)延迟,在任何高度、温度或转速,当油门大开时可达到100%。而且,对于助推发动机,只要涡轮可以传递适当的空气量,高度并不影响负荷。
 - 2) 表明了在常规、无故障条件下的峰值扭矩百分比。
 - 3) 与发动机的真空度线性相关。

- 4) 通常被用来调度功率的增加。
- 5) 压燃式发动机(柴油机)应支持 PID 使用燃油流量代替进气流量来计算上述。 点燃式发动机和压燃式发动机都应支持 PID 0x04。关于发动机负荷的其它定义见 PID 0x43。

表 G. 6 PID 0x05 定义

PID		数据				外部测试设备
(Hex)	描述	字节	最小值	最大值	分辨率/bit	国际制单位体系(公
(Hex)		1 12				制)/英制显示
0x05	发动机冷却液	A	- 40 °C	+ 215 °C	1 °C /bit	ECT: xxx °C
	温度				- 40 °C偏移	(xxx °F)

发动机冷却液温度输出的是发动机冷却液温度传感器或者缸盖温度传感器所测量的温度值。很多柴油机使用的不是这两种传感器,此时 PID 0x05 应输出发动机油温。

表 G. 7 PID 0x06 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系
, ,						(公制)/英制显示
0x06	短时燃油修正 -气	A	- 100 %	+ 99.22 %	100/128 %	SHRTFT1: xxx.x %
	缸1(如果只有1个		(稀)	(浓)	(0 % at 128)	
	燃油修正值时使					
	用)	В				SHRTFT3: xxx.x %
	短时燃油修正 -气					
	缸 3					

短时燃油修正 - 气缸列 1/3 应该显示通过闭环燃油算法得到的修正量,在燃油控制处于开环状态的时候,SHRTFT1/3 应该输出 0%。

如果 PID 0x1D(氧传感器的位置)表明气缸 3 有氧传感器,则数据 B 才会被列入 PID 0x06 的响应中。外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应报文的长度。如果数据字节 B 被系统支持,数据字节 A 必然被系统支持。

见 PID 0x09 中的示例。

表 G.8 PID 0x07 定义

PID		数据				外部测试设备
	描述	数据 字节	最小值	最大值	分辨率/bit	国际制单位体系
(Hex)		1 T H				(公制)/英制显示

0x07	长期燃油修正一	A	- 100 %	+ 99.22 %	100/128 %	LONGFT1: xxx.x %
	气缸 1(如果只有 1		(稀)	(浓)	(0 % at 128)	
	个燃油修正值时					
	使用)					LONGFT3: xxx.x %
	长期燃油修正一	В				
	气缸 3					

气缸 1/3 的燃油修正量储存在非易失性 RAM 或永存 RAM。LONGFT 应在数据被请求时显示通过闭环和开环燃油控制算法得到的修正量。如果在开环燃油算法下没有修正量,则LONGFT 应报告 0%。如果在燃油控制算法下,长期燃油修正没有使用,则该 PID 不予支持。如果 PID 0x1D(氧传感器的位置)表明目前气缸 3 有氧传感器,则数据 B 才会被列入 PID 0x07的响应中。外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应信息的长度。如果数据字节 B 被系统支持,数据字节 A 必然被系统支持。见 PID 0x09 中的示例。

表 G.9 PID 0x08 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
0x08	短时燃油修正一气	A	- 100 %	+ 99.22 %	100/128 %	SHRTFT2: xxx.x %
	缸 2(如果只有1个燃		(稀)	(浓)	(0 % at 128)	
	油修正值就使用)					SHRTFT4: xxx.x %
	短时燃油修正 - 气					
	缸 4	В				

短时燃油修正 - 气缸列 2/4 应该显示通过闭环燃油算法得到的修正量,在燃油控制处于开环状态的时候,SHRTFT2/4 应该输出 0%。

如果 PID 0x1D(氧传感器的位置)表明目前气缸 4有氧传感器,则数据 B 才会被列入 PID 0x08的响应中。外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应信息的长度。如果数据字节 B 被系统支持,数据字节 A 必然被系统支持。见 PID 0x09 中的示例。

表 G. 10 PID 0x09 定义

DID		数据				外部测试设备
PID	描述	り 数据 字节	最小值	最大值	分辨率/bit	国际制单位体系(公
(Hex)		ተዞ				制)/英制显示

0x09	长期燃油修正一	A	-100 %	+99.22 %	100/128 %	LONGFT2: xxx.x %
	气缸 2(如果只有 1		(稀)	(浓)	(0 % at 128)	
	个燃油修正值就					
	使用)					LONGFT4: xxx.x %
	长期燃油修正一	В				
	气缸 4					

气缸 2/4 的燃油修正量储存在非易失性 RAM 或永存 RAM。LONGFT 应在数据被请求时显示通过闭环和开环燃油控制算法得到的修正量。如果在开环燃油算法下没有修正量,则 LONGFT 应报告 0%。如果在燃油控制算法下,长期燃油修正一直没有被用,则 PID 不予支持。如果 PID 0x1D(氧传感器的位置)表明目前气缸 4有氧传感器,则数据 B 才会被列入 PID 0x09

如果 PID 0x1D(氧传感器的位直) 表明目前气缸 4 有氧传感器,则数据 B 才会被列入 PID 0x09 的响应中。如果数据 B 是有效的,外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应信息的长度。

对于只有 1 个发动机 ECU 的车辆,这个 ECU 表明了对 PIDs 0x06,0x07,0x13 和更多的 PID 的支持。PID 0x13 的响应数据是 0x03(00000011b)表明了对 O2S11(氧传感器,第一缸,前含氧)和 O2S12(氧传感器,第一缸,后含氧)。基于以上信息,当外部测试设备的要求报告 PID 0x06/PID 0x07 时,响应只包含数据 A,即短时燃油修正-气缸 1/长期燃油修正 - 气缸 1。

对于有 2 个发动机 ECU 的车辆, ECU#1 支持 O2S11(氧传感器,第一缸,前含氧), O2S12(氧传感器,第一缸,后含氧), O2S31(氧传感器,第三缸,前含氧)和 O2S32(氧传感器,第三缸,后含氧),排气罐 1 和 3 位于气缸 1 或气缸 1 和 3。ECU#1 表明了对 PIDs 0x06,0x07,0x1D 和更多的 PID 的支持,PID 0x1D 的数据是 0x33(00110011b)表明了对 O2S11,O2S12,O2S31和 O2S32的支持。

基于上述信息,下面的数据字节应该报告:

- 1) PID 0x06 的数据 A 短时燃油修正 气缸 1;
- 2) PID 0x06 的数据 B 短时燃油修正 气缸 3;
- 3) PID 0x07 的数据 A 长期燃油修正 气缸 1;
- 4) PID 0x07 的数据 B 长期燃油修正 气缸 3。

ECU#2 支持 O2S21(氧传感器,第二缸,前含氧), O2S22(氧传感器,第二缸,后含氧), O2S41(氧传感器,第四缸,前含氧)和 O2S42(氧传感器,第四缸,后含氧)。ECU#2 表明了对 PIDs 0x06,0x07,0x1D 和更多的 PID 的支持,PID 0x1D 的数据是 0x33(00110011b)表明了对 O2S21,O2S22,O2S41和 O2S42的支持。

基于上述信息,下面的数据字节应该报告:

- 1) PID 0x08 的数据 A 短时燃油修正 气缸 2;
- 2) PID 0x08 的数据 B 短时燃油修正 气缸 4;
- 3) PID 0x09 的数据 A 长期燃油修正 气缸 2;
- 4) PID 0x09 的数据 B 长期燃油修正 气缸 4。

如果数据字节 B 被系统支持,数据字节 A 必然被系统支持。

对于只有 1 个发动机 ECU 的车辆,这个 ECU 表明了对 PIDs 0x06,0x07,0x08,0x09,0x1D 和更多的 PID 的支持。PID 0x1D 的数据是 0x0F(00001111b)表明了对 O2S11,O2S12,O2S21 和 O2S22 的支持。基于这个信息,当外部测试设备要求时报告时,只有 PID 0x06 和 PID 0x07 的数据 A 短时燃油修正 - 缸 1 和长期燃油修正 - 缸 1 和 PID 0x08 和 PID 0x09 的数据 A 短时燃油修正,气缸 2 和长期燃油修正,气缸 2。

对于有 2 个发动机 ECU 的车辆, 排气组(exhaust banks)1+2 连接在气缸 1 上, 排气组 3+4 连接在气缸 2 上, 气缸 2 和气缸 1 是对置的, ECU#1 支持 O2S11, O2S12, O2S21 和 O2S22。 且支持 PID 0x06, 0x07, 0x08, 0x09, 0x1D 和更多的 PID。PID 0x1D 的数据是 0x0F(00001111b)。 基于上述信息, 下面的数据字节应该报告:

- 1) PID 0x06 的数据 A 短时燃油修正 气缸 1 和 PID 0x07 的数据 A 长期燃油修正 气缸 1;
- 2) PID 0x06 的数据 B 短时燃油修正 气缸 3 和 PID 0x07 的数据 B 长期燃油修正 气缸 3(从 ECU#2 得到的数据 B 的值将通过网络通信);
- 3) PID 0x08 的数据 A 短时燃油修正 气缸 1 和 PID 0x09 的数据 A 长期燃油修正 气缸 2;
- 4) PID 0x08 的数据 B 短时燃油修正 气缸 4 和 PID 0x09 的数据 B 长期燃油修正 气缸 4(从 ECU#2 得到的数据 A 的值将通过网络通信)。

ECU#2 支持 O2S31, O2S32, O2S41 和 O2S42。且支持 PID 0x06, 0x07, 0x08, 0x09, 0x1D 和更多的 PID。PID 0x1D 的数据是 0xF0(11110000b)。

基于上述信息,下面的数据字节应报告:

- 1) PID 0x06 的数据 A 短时燃油修正 气缸 1 和 PID 0x07 的数据 A 长期燃油修正 气缸 1(从 ECU#1 得到的数据 A 的值将通过网络通信):
- 2) PID 0x06 的数据 B 短时燃油修正 气缸 3 和 PID 0x07 的数据 B 长期燃油修正 气缸 3:
- 3) PID 0x08 的数据 A 短时燃油修正 缸 2 和 PID 0x09 的数据 A 长期燃油修正 气缸 2(从 ECU#1 得到的数据 A 的值将通过网络通信);
- 4) PID 0x08 的数据 B 短时燃油修正 气缸 4 和 PID 0x09 的数据 B 长期燃油修正 气缸 4。

	ACCULATION ON ALL								
PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示			
0x0A	油轨压力计量	A	0 kPa	765 kPa	3 kPa/bit	FRP: xxx kPa			
			(计量)	(计量)	(计量)	(xx.x psi)			

表 G. 11 PID 0x0A 定义

FRP 显示的发动机油轨压力测量值是相对于大气压力的。 对于支持燃油压力传感器的系统,必须支持以下三个 PID 中的一个,且只能为一个: 0x0A,0x22或 0x23。

表 G. 12 PID 0x0B 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公			
						制)/英制显示			
0x0B	进气歧管绝	A	0 kPa	255 kPa	1 kPa/bit	MAP: xxxx.x kPa			
	对压力		(绝对压力)	(绝对压力)	(绝对压力)	(xxx.x inHg)			
	如果使用传感器,则 MAP 应该显示的是从歧管绝对压力传感器得到的歧管压力。如果								
	车辆既用 MA	P 传感器	器又用 MAF 传统	感器,则 MAP	和 MAF PIDs 都	应该被支持。			
	如果 ECU 不	支持 PID	0x4F,或者支	持 PID 0x4F,	但其进气歧管绝	对压力值为 0x00,外			
	部监测设备将	好使用本.	表中的定义来计	十算该 PID 压力	值。如果 ECU 🦠	支持 PID 0x4F,外部			
	设备将使用P	ID 0x4F	的数据D定义	计算该 PID。					

表 G. 13 PID 0x0C 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示	
0x0C	发动机转速	A, B	0 min ⁻¹	16383.75 min ⁻¹	1/4 rpm/bit	RPM: xxx min ⁻¹	
	发动机 RPM 显示的是发动机曲轴的每分钟转过的周数。						

表 G. 14 PID 0x0D 定义

PID		数据				外部测试设备		
	描述	字节	最小值	最大值	分辨率/bit	国际制单位体系(公		
(Hex)		ተዞ				制)/英制显示		
0x0D	车速传感器	A	0 km/h	255 km/h	1 km/h/bit	VSS: xxx km/h (xxx		
						mph)		
	VSS 显示道路车速,用于控制模块策略。车速既可以从车速传感器得到,即通过其它车							
	速传感器由 PC	CM 计算	,或者从车辆	i串行数据总线得	到。			

表 G. 15 PID 0x0E 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示			
0x0E	第一缸点火正	A	- 64°	63.5 °	1/2°	SPARKADV: xx.x °			
	时提前角				0°:128				
	第一缸点火正时	第一缸点火正时提前角(不包括机械提前)							

表 G. 16 PID 0x0F 定义

PID (Hex)	描述	数据 字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示	
0x0F	进气温度	A	- 40 °C	+ 215 °C	1 °C/bit	IAT: xxx °C (xxx °F)	
					- 40 °C偏移量		
	IAT 显示进气歧管温度,用于控制模块策略。IAT 既可以直接从传感器得到,也可以通过						
	其它传感器	输入由控	制策略推断得到	到。			

表 G. 17 PID 0x10 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
0.10	正月		0 /	677.07	0.04	,
0x10	质量流量传感	A, B	0 g/s	655.35 g/s	0.01 g/s	MAF:
	器的空气质量				(1/100)	xxxx.xx g/s
	流量					(xxxx.x lb/min)

MAF 显示的是空气质量流量,它是由一个 MAF 传感器或者等效源测量得到。如果发动机关闭而点火开关处于 ON 状态,则将报告实际传感器的读数。如果传感器的读数不能被报告,则 MAF 值将用 0.00 g/s。

如果这个 ECU 不支持 PID 0x50, 或者支持 PID 0x50 但质量流量传感器的空气质量流量为 0x00, 外部监测设备将使用本表中定义的分辨率值来计算该 PID。如果 ECU 支持 PID 0x50, 外部设备将使用 PID 0x50 的数据 A 的定义计算该 PID。

表 G. 18 PID 0x11 定义

DI	n		数据字				外部测试设备
PI		描述	】 数据于 节	最小值	最大值	分辨率/bit	国际制单位体系(公
(He	(X)		11				制)/英制显示

0x11	绝对节气门位置	A	0 %	100 %	100/255 %	TP: xxx.x %	
	绝对节气门位置(不是	星"相对"或'	·自学习"节气i	门位置)会以	一个规范化的	信显示,范围从0到	l

绝对节气门位置(不是"相对"或"自学习"节气门位置)会以一个规范化的值显示,范围从0到 100%。例如,如果使用一个0到5.0 V的传感器(使用5.0 V参考电压),如果油门关闭的位置是在1.0 V特,在油门关闭时TP将显示(1.0/5.0) = 20%,在2.5 V时是50%。在怠速时TP显示的值一般大于0%,当节气门全开时,TP显示的值小于100%。

在输出与输入电压是成比例的系统中,这个值是最大输入参考电压的百分比。在输出与输入 电压成反比的系统中,这个值等于100%减去最大输入参考电压的百分比。

一个节气门可以有3个节气门位置传感器,A、B和C。在ISO 15031中只提供1个节气位置值,PID报告的值应该是最主要的节气门的位置传感器的值。

注意:相对节气门位置的定义见PID 0x45。

表 G. 19 PID 0x12 定义

PID (Hex)	描述	数据字节	分辨率/bit	外部测试设备 国际制单位体系(公制)/英 制显示
0x12	二次空气状态	A	1字节中的第1字节	IAT: xxx °C (xxx °F)
	指令	(bit)		
	如果支持置对	0	1 = 上游的第一个催化转化器	AIR_STAT:UPS
	应比特位为1,	1	1 = 下游的第一个催化转化器入口	AIR_STAT:DNS
	且一次只能有	2	1 = 大气/关	AIR_STAT:OFF
	1bit 被置为 1	3~7	ISO/SAE 保留 (应该全部报告为"0")	-

表 G. 20 PID 0x13 定义

PID (Hex)	描述	数据字节	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
0x13	氧传感器位置	A (bit)	1字节中的第1字节	O2SLOC:

传感器 1 最接近发	0	1= 气缸1- 传感器1在此位置	O2S11
动机。每一比特表明	1	1= 气缸1- 传感器2在此位置	O2S12
氧气传感器是否在	2	1= 气缸1- 传感器3在此位置	O2S13
下列的位置。	3	1= 气缸1- 传感器4在此位置	O2S14
	4	1= 气缸 2- 传感器 1 在此位置	O2S21
	5	1=气缸2-传感器2在此位置	O2S22
	6	1=气缸2-传感器3在此位置	O2S23
	7	1=气缸2-传感器4在此位置	O2S24

只有不支持 PID 0x1D,车辆才会支持 PID 0x13。在任何情况下车辆不会同时支持这两个 PID。

表 G. 21 PID 0x14~0x1B 定义

PID		粉堰				外部测试设备
	描述	数据 字节	最小值	最大值	分辨率/bit	国际制单位体系
(Hex)		子巾				(公制)/英制显示
0x14	气缸1-传感器1		这些 PIDs 将	用于传统0至	引V 氧传感器	
0x15	气缸1-传感器2		输出电压。不	下同量程的传	感器的值应该	
0x16	气缸 1- 传感器 3		被规范化以负		在 0xC8(十进	
0x17	气缸 1 - 传感器 4		制是 200)。			
0x18	气缸 2 - 传感器 1		宽域/线性式等	氧传感器将使	E用 PID 0x24	
0x19	气缸 2- 传感器 2		至 0x2B 或者	PID 0x34 至		
0x1A	气缸 2- 传感器 3					
0x1B	气缸 2 - 传感器 4					
	氧传感器输出电压	A	0 V	1.275 V	0.005 V	O2Sxy: x.xxx V
	(Bx-Sy)					
	短时燃油修正	В	-100.00 %	99.22 %	100/128 %	SHRTFTxy:
	(Bx-Sy)		(稀)	(浓)	(0% at 128)	xxx.x %
	(如果这个传感器在					
	计算时没有使用,					
	则与传感器 0xFF 相					
	关联)					

只有 PID 0x13 被用来定义氧传感器位置,上面表中的 PID 才适用。

表 G. 22 PID 0x14~0x1B 定义

PID (Hex)	描述	数据 字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示
0x14	气缸1-传感器1		这些 PIDs 将	用于传统0至	刂1V 氧传感器	
0x15	气缸 1 - 传感器 2		输出电压。	不同量程的传	感器的值应该	
0x16	气缸 2 - 传感器 1		被规范化以	使标称满量程	在 0xC8(十进	
0x17	气缸 2 - 传感器 2		制是 200)。			
0x18	气缸 3 - 传感器 1		宽量程/线性	氧传感器将领	使用 PID 0x24	
0x19	气缸 3 - 传感器 2		至 0x2B 或者	台 PID 0x34 至	0x3B。	
0x1A	气缸 4 - 传感器 1					
0x1B	气缸 4 - 传感器 2					
	氧传感器输出电压	A	0 V	1.275 V	0.005 V	O2Sxy: x.xxx V
	(Bx-Sy)					
	短时燃油修正	В	-100.00 %	99.22 %	100/128 %	SHRTFTxy:
	(Bx-Sy)		(稀)	(浓)	(0% 为128)	xxx.x %
	(如果这个传感器					
	在计算没有使用,					
	则与传感器 0xFF					
	相关联)					

只有 PID 0x1D 被用来定义氧传感器位置,上面表中的 PID 才适用。

表 G. 23 PID 0x1C 定义

PID (Hex)	描述	数据字节	分辨率 /bit	外部测试设备 国际制单位体系(公制)/英制显示
0x1C	OBD 系统的车辆设计要求	A	字节 1	OBDSUP:
		(Hex)	中的 1	
			字节	
	OBD II (加州大气资源局)	0x01		OBD II
	OBD (美国联邦环境保护署)	0x02		OBD
	OBD 和 OBD II	0x03		OBD and OBD II
	OBD I	0x04		OBD I
	不带 OBD 功能	0x05		NO OBD
	EOBD	0x06		EOBD
	EOBD 和 OBD II	0x07		EOBD and OBD II

PID (Hex)	描述	数据字节	分辨率 /bit	外部测试设备 国际制单位体系(公制)/英制显示
	EOBD and OBD	0x08		EOBD and OBD
	EOBD, OBD 和 OBD II	0x09		EOBD, OBD and OBD II
	JOBD	0x0A		JOBD
	JOBD 和 OBD II	0x0B		JOBD and OBD II
	JOBD 和 EOBD	0x0C		JOBD and EOBD
	JOBD, EOBD 和 OBD II	0x0D		JOBD, EOBD, and OBD II
	重型车(欧四)B1	0x0E		EURO IV B1
	重型车(欧五)B2	0x0F		EURO V B2
	重型车(欧 EEC)C(气体发动机)	0x10		EURO C
	发动机制造厂诊断(EMD)			
	ISO/SAE 保留	0x11		EMD
	ISO/SAE - 不能用于分配	0x12~FA		-
		0xFB~FF		SAE J1939 special meaning

表 G. 24 PID 0x1D 定义

PID (Hex)	描述	数据字节	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示
0x1D	氧传感器位置	A(bit)	字节1中的1字节	O2SLOC:
	传感器 1 最接近发动	0	1= 气缸1-传感器1在此位置	O2S11
	机。每一比特表明氧	1	1= 气缸1-传感器2在此位置	O2S12
	气传感器是否在下列	2	1= 气缸 2-传感器 1 在此位置	O2S21
	的位置。	3	1=气缸2-传感器2在此位置	O2S22
		4	1= 气缸 3-传感器 1 在此位置	O2S31
		5	1=气缸3一传感器2在此位置	O2S32
		6	1= 气缸 4-传感器 1 在此位置	O2S41
		7	1= 气缸 4-传感器 2 在此位置	O2S42

只有不支持 PID 0x13,车辆才会支持 PID 0x1D。在任何情况下车辆不会同时支持这两个 PID。

表 G. 25 PID 0x1E 定义

DID		数据字		外部测试设备
PID	描述	数据子 节	分辨率/bit	国际制单位体系
(Hex)		म		(公制)/英制显示

0x1E	辅助输入状态	A(bit)	字节1中的1字节	辅助输入状态
	电源起跳(PTO)状态	0	0 = PTO 不激活(OFF)	PTO_STAT: OFF or
			1 = PTO 激活(ON)	ON
		1~7	ISO/SAE 保留(保留位全部为"0")	

表 G. 26 PID 0x1F 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示			
0x1F	自发动机起动的	A,B	0 sec	65535 sec	1 sec/计数	RUNTM: xxxxx sec.			
	时间								
	当发动机运行时RUNTM将会增加。如果发动机停止它将冻结。每次在控制模块电源启动,								
	点火钥匙处于"ON",发动机关闭状态时,RUNTM将复位为0。RUNTM的极限值是								
	65535sec,不会复	位为0。							

表 G. 27 PID 0x21 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示
0x21	在 MIL 激活状态下	A, B	0 km	65535 km	1 km/计数	MIL_DIST: xxxxx
	行驶的里程					km (xxxxx miles)

[&]quot;行使里程"计数条件:

当MIL状态从未激活变为激活的时候,PID值复位为0x0000;

当MIL处于激活状态时进行累计计算,单位为km(公里);

当MIL处于未激活状态时不改变其值;

如果通过Mode 4删除故障信息,或者在40个未激活MIL的暖机循环之后,PID0x21的值归位为0;

当累计到最大值65535的时候保持不变,不会复位为0。

表 G. 28 PID 0x22 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示
0x22	相对于歧	A, B	0 kPa	5177.27 kPa	0.079 kPa	FRP: xxxx.x kPa
	管真空度				(5178/65535)/bit	(xxx.x PSI)

PID (Hex)	描述	数据字节	最小值	最大值 分辨率/bit		外部测试设备 国际制单位体系 (公制)/英制显示		
	的油轨压				无符号整数,			
	力				1 kPa = 0.1450377 PSI			
	当读数是相对	对于歧管	真空度的	的(相对压力),I	RP显示的是发动机的油软	九压力。		
	系统支持燃料	油压力传	力传感器,下列三个PID中的一个将会被用到: 0x0A, 0x22或 0x23。					
	系统只能支	持上述PI	D中的一	个。				

表 G. 29 PID 0x23 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系			
(' '		,				(公制)/英制显示			
0x23	油轨压	A, B	0 kPa	655350 kPa	10 kPa/bit	FRP: xxxxxx kPa			
	力				无符号整数,	(xxxxx.x PSI)			
					1 kPa = 0.1450377 PSI				
	FRP显示	的是发表	动机的油菊	1压力,这个读数	是相对于大气的(计量压力	7)。柴油机燃油压力			
	和汽油直喷系统比FRP PID 0x0A具有更高的压力范围。								
	系统支持燃油压力传感器,下列三个PID中的一个将会被用到: 0x0A, 0x22,或者 0x23。								
	系统只能	* 支持上	述PID中的	一个。					

表 G. 30 PID 0x24~0x2B 定义

PID (Hex)	描述	数据 字节	最小值	最大值	分辨率/bit	外部测试设 备国际制单 位体系(公 制)/英制显示
0x24	气缸 1- 传感器 1		当显示当量比和电	压时,线	性或宽域氧	传感器将采用
	(宽域氧传感器)		PID0x24~0x2B.			
0x25	气缸 1- 传感器 2		如果 ECU 不支持 PII	O 0x4F,	え者支持 PID	0x4F 但当量比
	(宽域氧传感器)		比或氧传感器最大电	压为 0x00	, 外部监测设	と 各将使用本表
0x26	气缸 1 - 传感器 3		中的分辨率值来计算	该 PID。如	果 ECU 支持	PID 0x4F,外
	(宽域氧传感器)		部设备将按照 PID 0x	4F 的数据	D的定义计算	算该 PID。
0x27	气缸 1 - 传感器 4					
	(宽域氧传感器)					
0x28	气缸 2 - 传感器 1					
	(宽域氧传感器)					

PID (Hex)	描述	数据字节	最小值		最大值	分辨率/bit	外部测试设 备国际制单 位体系(公 制)/英制显示
0x29	气缸 2 - 传感器 2						
	(宽域氧传感器)						
0x2A	气缸 2 - 传感器 3						
	(宽域氧传感器)						
0x2B	气缸 2 - 传感器 4						
	(宽域氧传感器)						
	当量比(lambda)	A, B	0	1.99	99	0.0000305	EQ_RATxy:
	(Bx-Sy)					(2/65535)	XXX.XXX
	氧传感器电压	C, D	0 V	7.99	9 V	0.000122 V	O2Sxy:
	(Bx-Sy)					(8/65535)	xxx.xxx V

上表中所列出的 PID 只适用于当 PID 0x13 定义了氧传感器位置时。

表 G. 31 PID 0x24~0x2B 定义

PID (Hex)	描述	数据 字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示		
0.24	与左1 从昆田1		v e = v					
0x24	气缸 1 - 传感器 1		当显示当量比和电压时,线性或宽域氧传感器将使用 PID					
	(宽域氧传感器)		$0x24 \sim 0x2$	2B将。				
0x25	气缸 1 - 传感器 2		如果 ECU	J 不支持 PII	D 0x4F,或者支持	FPID 0x4F但当量比		
	(宽域氧传感器)		或氧传感	器最大电压	为 0x00,外部监治	则设备将使用本表中		
0x26	气缸 2 - 传感器 1		的分辨率	值来计算该	PID。如果 ECU	支持 PID 0x4F,外		
	(宽域氧传感器)		部设备将	依据 PID 0x	x4F的数据D定》	义计算 PID。		
0x27	气缸 2- 传感器 2							
	(宽域氧传感器)							
0x28	气缸 3 - 传感器 1							
	(宽域氧传感器)							
0x29	气缸 3 - 传感器 2							
	(宽域氧传感器)							
0x2A	气缸 4 - 传感器 1							
	(宽域氧传感器)							
0x2B	气缸 4- 传感器 2							
	(宽域氧传感器)							

当量比(lambda)	A, B	0	1.999	0.0000305	EQ_RATxy:
(Bx-Sy)				(2/65535)	xxx.xxx
氧传感器电压	C, D	0 V	7.999 V	0.000122 V	O2Sxy: xxx.xxx V
(Bx-Sy)				(8/65535)	

上表中所列出的 PID 只适用于当 PID 0x1D 定义了氧传感器位置时。

表 G. 32 PID 0x2C 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
0x2C	EGR(废弃再	A	0 %	100 %	100/255 %	EGR_PCT: xxx.x %
	循环)指令开		(无流量)	(最大流量)		
	度					

EGR 指令开度显示的是一个百分比。EGR_PCT 应该规范为最大 EGR 指令开度输出控制 参数。EGR 系统使用不同的方法来控制传给发动机的废气再循环量。

如果使用开/关阀- 当 EGR 指令开度关闭时,EGR_PCT 将显示为 0 %,当 EGR 系统指令 开度开启时,将显示 100 %。

如果真空电磁阀是占空循环控制,则 EGR 占空比将显示从 0 到 100 %。

如果使用一个线性或步进电机阀,则在完全封闭的位置将会显示为 0 %,完全开放的位置将会显示为 100 %。中间位置应显示为与全开放位置的百分比。例如,步进电机 EGR 阀计数从 0 到 128,在 0 时显示为 0 %,在 128 时显示 100 %,在 64 时显示 50 %。

其他任何驱动方法应规范化,即当没有 EGR 指令时显示 0 %,当在最大 EGR 指令开度位置时,显示 100 %。

表 G. 33 PID 0x24~0x2B 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示
0x2D	EGR 开度误差 =	A	-100 %	+99.22 %	100/128 %	EGR_ERR:
	(EGR 实际开度		(小于指令)	(大于指令)	(0% 在 128)	xxx.x %
	-EGR 指令开度)/					
	EGR 指令开度					
	*100%					

EGR 开度误差是 EGR 指令开度的百分比。通常,EGR 阀控制输出与 EGR 反馈输入传感器不在同一工程单元,例如,一个 EGR 阀可以由占空真空电磁阀控制;然而,反馈输入传感器是一个位置传感器。这使得"实际开度"与"指令开度"在同一个工程单元显示是不可

能的。EGR 开度误差是通过显示一个规范的 EGR 系统反馈参数来解决这个问题的。EGR 开度误差定义为:

(EGR 实际开度 - EGR 指令开度)/ EGR 指令开度*100%

例如,如果 EGR 开度是 10 %,传到发动机的是 5 %,则 EGR_ERR = ((5 %-10 %)/10 %)*100 %=-50 %。

EGR_ERR 可以由计算各种控制参数计算,如位置,步长,计数等。所有废气再循环系统必须对发动机迅速变化的情况作出反应;因此,EGR_ERR 在瞬态条件时通常会显示错误。在稳定的情况下,当 EGR 系统处于受控状态时,错误会最大程度减小(但不一定是 0)。如果控制系统没有使用闭环控制,则不支持 EGR ERR。

当 EGR 指令开度是 0%, EGR 开度误差在技术上没有被定义。在这种情况下, 当实际 EGR 指令开度 = 0%时 EGR 开度误差应该置为"0%"或者当实际 EGR>0%时, EGR 开度误差置为"99.2%"。

表 G. 34 PID 0x2E 定义

PID	描述	数据	最小值	最大值	分辨率/bit	外部测试设备
(Hex)		字节				国际制单位体系
						(公制)/英制显示
0x2E	碳罐冲洗控制	A	0%	100 %	100/255 %	EVAP PCT:
	100 1 100 1 101 1	1.	0 / 0	100 / 0	100/200 / 0	L V / H _ I C I .
	指令		(无流量)	(最大流量)	100,200 ,0	XXX.X%

碳罐冲洗控制指令控制阀以百分比显示。EVAP_PCT 应该规范为最大 EVAP(汽油蒸气排放控制)冲洗控制指令输出控制参数。

如果使用开/关阀,当 EVAP_PCT 冲洗指令关闭时,EGR_PCT 将显示为 0 %,当冲洗指令开启时,将显示 100 %。

如果真空电磁阀是占空循环,则 EVAP 冲洗阀占空比将显示从 0 到 100 %。

如果使用一个线性或步进电机阀,则在完全封闭的位置将会显示为 0 %,完全开放的位置将会显示为 100 %。中间位置应显示为与全开放位置的百分比。例如,步进电机 EVAP 冲洗阀从 0 到 128 计数,在 0 时显示为 0%,在 128 时显示 100 %,在 64 时显示 50 %。

其他任何驱动方法应规范化,即当没有冲洗指令时显示 0%,当在最大冲洗指令开度位置时,显示 100%。

G. 35 PID 0x2F 定义

DID		数据				外部测试设备
PID	描述	数据 字节	最小值	最大值	分辨率/bit	国际制单位体系(公
(Hex)		子"1				制)/英制显示

0x2F	燃油液	A	0%	100 %	100/255 %	FLI: xxx.x %
	位输入		(无燃油)	(最大燃油容量)		

如果车载诊断系统监视控制模块使用了标称燃油油箱液体容量,则 FLI 显示的是其与最大值的百分比。FLI 可直接从传感器得到,也可间接通过车辆串行数据通信总线得到,或者通过控制策略由其他传感器的输入推断得到。使用气体燃料的车辆显示的是可用燃油容量百分比。如果在混合燃料车中有两个油箱,每个油箱对应不同的燃料,燃油液位输入将从当发动机运行时载有燃料的油箱读出。

表 G. 36 PID 0x30 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
0x30	自故障码被清	A	0	255	1次暖机循环	WARM_UPS: xxx
	除之后经历的				/计数	
	暖机循环个数					

自故障码被清除之后经历的暖机循环个数(通过外部测试设备或者电源断开来清除故障码)。在车载诊断系统法规中定义了暖机循环使车辆进行足够的运转,例如发动机启动时冷却液温度升高至少22℃(40°F)且最小温度达70°C(160°F)(柴油机60°C(140°F))。这个PID与特定故障码无关,它只不过是外部检测设备最后一次清除故障码后检查/维修的的指示。如果大于255次暖机循环,则WARM_UPS保持为255,而不会复位回0。

表 G. 37 PID 0x31 定义

PID (Hex)	描述	数据 字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示		
0x31	故障码清除之	A, B	0 km	65535 km	1km/计数	CLR_DIST: xxxxx		
	后的行驶里程	程 km (xxxxx miles)						
	故障码清除之后	的总计行	 了驶里程(通过	上外部测试设备:	或者电源断开来	(清除故障码)。这个		
	PID与特定故障码无关,它只不过是外部检测设备最后一次清除故障码后检查/维修的指							
	示。如果大于65	535 km,	则CLR_DIS	T保持为65535	km,而不会复位	立为0。		

表 G. 38 PID 0x32 定义

DID		数据				外部测试设备
PID	描述	製店 字节	最小值	最大值	分辨率/bit	国际制单位体系(公
(Hex)		子巾				制)/英制显示

0x32	蒸发系统的	A, B	(0x8000)	(0x7FFF)	0,25Pa	EVAP_VP: xxxx.x
	蒸气压力		-8192 Pa	8191.75 Pa,	(1/4)/bit	Pa (xx.xxx in H2O)
			(-32,8878	(32,8868 in	有符号	
			inH2O)	H2O)		

如果控制模块使用蒸发系统的蒸气压力,则PID 0x32表示的是就是这个数据。这个压力信号通常是由位于油箱的传感器得到(FTP-油箱压力)或者从蒸发系统蒸汽管路的传感器得到。如果需要更宽的压力范围,PID 0x54比PID 0x32有更宽的压力范围。

支持蒸发系统的蒸气压力的系统,下列两个PID中的一个将会被用到: 0x32,0x54。 但系统只能支持两者中的一个。

表 G. 39 PID 0x33 定义

Ī	PID (Hex)	描述	数据 字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
	0x33	大气压力	A	0 kpa	255 kpa	1 kpa/bit	BARO: xxx kPa
				(绝对压力)	(绝对压力)	(绝对压力)	(xx.x inHg)

控制模块使用大气压力,BARO通常从一个专用的传感器得到,或当电源接通,在特定驾驶模式下,可从歧管绝对压力得到,或者在特定模式下从空气流量传感器和其它输入推算得出。不管通过什么方式得到,控制模块都会报告BARO。

注意1:一些天气服务报告的BARO值是随海平面变化的,在这种情况下,报告值可能与外部测试设备显示的数值不一致。

注意2:如果BARO是在驾驶时推导得出的,且存储在非易失性RAM或者永存性RAM,在电源断电或清除整个内存后,BARO的值可能会不准确。

表 G. 40 PID 0x34~0x3B 定义

PID	描述	数据	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系		
(Hex)	(如果支持 0x13)	字节				(公制)/英制显示		
0x34	气缸 1- 传感器 1		当支持显示当量比和电流时,线性或宽域氧传感器将使用					
	(宽域氧传感器)		PID 0x34~0x3B。					
0x35	气缸 1 - 传感器 2		如果 ECU 不支持 PID 0x4F,或者支持 PID 0x4F 但当量比					
	(宽域氧传感器)		或氧传感器	器最大电流为	7 0x00,外部监测	则设备将使用本表中		
0x36	气缸 1 - 传感器 3		的分辨率值	直来计算该 P	PID。如果 ECU 支	互持 PID 0x4F,外部		
	(宽域氧传感器)		设备将依据	居 PID 0x4F I	的数据 D 的定义	计算 PID。		
0x37	气缸 1 - 传感器 4							
	(宽域氧传感器)							

0x38	气缸 2 - 传感器 1					
	(宽域氧传感器)					
0x39	气缸 2 - 传感器 2					
	(宽域氧传感器)					
0x3A	气缸 2 - 传感器 3					
	(宽域氧传感器)					
0x3B	气缸 2 - 传感器 4					
	(宽域氧传感器)					
	当量比(lambda)	A, B	0	1.999	0.0000305	EQ_RATxy:
	(Bx-Sy)				(2/65535)	xxx.xxx
	氧传感器电流	C, D	-128 mA	127.996m	0.00390625	O2Sxy:
	(Bx-Sy)			A	mA	xxx.xx mA
					(128/32768)	
					(0x8000 表示	
					0 mA)	

上表中所列出的 PID 只适用于当 PID 0x13 定义了氧传感器位置时。

表 G. 41 PID 0x34-0x3B 定义

PID (Hex)	描述 (如果支持 0x13)	数据 字节	最小值	最大值	分辨率/bit	外部测试设 备国际制单 位体系(公 制)/英制显 示		
0x34	气缸1-传感器1		当支持显示	当支持显示当量比和电流时,线性或宽域氧传感器将使用				
	(宽域氧传感器)		PID0x34~0	x3B∘				
0x35	气缸 1- 传感器 2		如果这个 E	ECU 不支持 PII	O 0x4F,或者支持 PID (x4F但当量比		
	(宽域氧传感器)		或氧传感器	异最大电流为 0x	x00,外部监测设备将	使用表中的分		
0x36	气缸 2 - 传感器 1		辨率值来替	持代这些值。如 :	果这个 ECU 支持 PID	0x4F, 这个外		
	(宽域氧传感器)		部设备将计	算 PID 的分辨	率和范围,正如 PID ()x4F 的数据 D		
0x37	气缸 2 - 传感器 2		的定义所说	的那样。				
	(宽域氧传感器)							
0x38	气缸 3 - 传感器 1							
	(宽域氧传感器)							
0x39	气缸 3 - 传感器 2							
	(宽域氧传感器)							

PID (Hex)	描述 (如果支持 0x13)	数据字节	最小值	最大值	分辨率/bit	外部测试设 备国际制单 位体系(公 制)/英制显 示
0x3A	气缸 4 - 传感器 1					
	(宽域氧传感器)					
0x3B	气缸 4 - 传感器 2					
	(宽域氧传感器)					
	当量比(lambda)	A, B	0	1.999	0.0000305	EQ_RATxy:
	(Bx-Sy)				(2/65535)	xxx.xxx
	氧传感器电流	C, D	-128mA	127.996mA	0.00390625 mA	O2Sxy:
	(Bx-Sy)				(128/32768)	xxx.xx mA
					(0x8000	
					表示 0 mA)	

上表中所列出的 PID 只适用于当 PID 0x1D 定义了氧传感器位置时。

表 G. 42 PID 0x3C 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示	
0x3C	催化器温度	A, B	-40 °C	+6513.5 °C	0.1 °C / bit	CATEMP11:	
	B1S1(Bank1前氧				偏移量为-40℃	xxxx °C (xxxx °F)	
	传感器)						
	如果OBD监测策略	各中使用	了Bank 1催	化器载体的温	度,那么CATEMP1	1显示的就是这个数	
	据,否则使用Bank1的第一个氧传感器(即B1S1)的温度。CATEMP11可能是通过某个温度						
	传感器直接测量得	科到的,	也可能够是	根据其它传感	器的值间接计算得到	到的 。	

表 G. 43 PID 0x3D 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系(公 制)/英制显示
0x3D	催化器温度	A, B	-40 °C	+6513.5 °C	0.1 °C /bit	CATEMP21:
	B2S1(Bank2前氧				偏移量为	xxxx °C (xxxx °F)
	传感器)				-40 °C	

如果OBD检测策略中使用了Bank 2催化器载体的温度,那么CATEMP21显示的就是这个数据,否则使用Bank2的第一个氧传感器(即B1S1)的温度。CATEMP21可能是通过某个温度传感器直接测量得到的,也可能够是根据其它传感器的值间接计算得到的。

表 G. 44 PID 0x3E 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示	
0x3E	催化器温度	A, B	-40 °C	+6513.5°C	0. 1°C / bit	CATEMP12:	
	B1S2(Bank1后氧				偏移量为	xxxx °C (xxxx °F)	
	传感器)				-40 °C		
	如果OBD检测策略中使用了Bank 1催化器载体的温度,那么CATEMP12显示的就是这个数						
	据,否则使用Bank1的第二个氧传感器(即B1S2)的温度。CATEMP12可能是通过某个温度						
	传感器直接测量得	到的,也	可能够是	根据其它传感	器的值间接计算得	到的。	

表 G. 45 PID 0x3F 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/bit	外部测试设备 国际制单位体系 (公制)/英制显示	
0x3F	催化器温度	A, B	- 40 °C	+6513.5 °C	0.1 °C / bit	CATEMP22:	
	B2S2(Bank2 后				偏移量为	xxxx °C (xxxx °F)	
	氧传感器)				- 40 °C		
	如果OBD检测策略	各中使用	了Bank 2俏	星化器载体的温	且度,那么CATEMP2	2显示的就是这个数	
	据,否则使用Bank2的第二个氧传感器(即B2S2)的温度。CATEMP22可能是通过某个温度						
	传感器直接测量得	肆到的,	也可能够是	是根据其它传感	这器的值间接计算得 _。	到的。	

表 G. 46 PID 0x41 定义

PID (Hex)	描述	数据字节	分辨率/bit	外部测试设备 国际制单位体系(公制)/ 英制显示				
0x41	当前驾驶循环的监测状态							
	这个 PID 的比特位为每个出	拉视报告	两个信息:					
	1) 当前驾驶循环监测使能料	1) 当前驾驶循环监测使能状态。这个比特显示若当监测在某种意义上被禁止时,驾驶员						
	不能通过简单的操作方式使监测运行。典型的例子如下:							
	- 发动机热机不充分(例如,	冷启动	温度条件不满足);					

PID		数据		外部测试设备					
	描述	数据 字节	分辨率/bit	国际制单位体系(公制)/					
(Hex)		十 1		英制显示					
	- 监测超过最大时间限制,	或者尝证	式/中止的次数过多;						
	- 周围空气温度过低或过高	ī;							
	- 气压过低(高海拔)。								
	监测不会对驾驶者控制信息	息显示"禁	上",如转速、负荷、油门	7位置等。在电源开启时监					
	测器不会显示"禁止",因为还没有超过最小时间限制或者发动机热循环条件没有满足,								
	但是随着汽车的运行这些条件中将会满足。								
	如果驾驶者开车到了不同海	每拔或者	不同气温的地方,监测的	状态可能由"使能"变为"禁					
	止"状态。但是当条件变回	来的话,	监测器不会由"禁止"变回'	'使能"状态。这就导致监测					
	一直显示"禁止"但最终显示	示"完成"。							
	2) 当前驾驶循环监测完成>	伏态。如	果开启新的监测循环,状态	态则重置为"未完成"状态。					
	注意一些监测循环可以包括	舌各种不[司的发动机操作条件;一	些监测循环在点火开关关闭					
	后开始。某些车上的状态位	立可以采用	用正在运行的发动机监测征	盾环而某些车的状态位则可					
	以采用关闭的发动机监测循	盾环。在发	 支动机开启时将状态位复位	五为"未完成"状态,将协调					
	采用正在运行的发动机监测	別循环和差	采用关闭的发动机的监测征	盾环两种实现,有关如何定					
	义监测周期,由制造商自定	三义。							
	PID 0x41 的比特位将用于原	所有 PID	0x01 中支持的非连续监测], 并改变 PID 0x01 监测的					
	完成状态。如果某非连续出	拉测不支 持	寺或一直显示"完成"状态,	相应的 PID 0x41 的比特位					
	将显示禁止和完成状态。PI	D 0x41 せ	2可用于车辆制造商的对所	有支持的连续监测的判断,					
	除了数据字节 B 中的比特 2	2,其总是	显示火花塞点火式和压燃	式发动机的 CCM(综合部件					
	监测)可用。								
		A	4字节中的第1字节						
		(bit)							
	保留位 - 报告为 0x00	0~7		-					
	当前监测周期连续监测使	В	4字节中的第2字节	当前监测周期的连续监测					
	能状态	(bit)	(低半字节)	的使能状态: NO 表示当前					
				周期剩余时间禁止或者					
				PID 0x01 中不支持; YES					
				表示当前监测循环使能。					
	失火监测使能	0	0= 当前周期剩余时	MIS_ENA: NO or YES					
	燃油系统监测使能	1	间禁止或者不支持	FUEL_ENA: NO or YES					
	综合部件监测使能	2	(NO)	CCM_ENA: NO or YES					
	ISO/SAE 保留(报告为"0")	3	1=这个监测周期监测	-					
			使能(YES)						
	当前监测循环连续监测完	В	4字节中的第2字节	当前监测循环连续监测完					

PID (Hex)	描述	数据字节	分辨率/bit	外部测试设备 国际制单位体系(公制)/ 英制显示
	成状态	(bit)	(高半字节)	成状态:
	失火监测完成	4	参照 PID 0x01 来决定	MIS_CMPL: YES or NO
	燃油系统监测完成	5	哪些监测是被支持的。	FUELCMPL: YES or NO
	综合部件监测完成	6	0= 当前监测周期监	CCM_CMPL: YES or NO
	ISO/SAE 保留(报告为"0")	7	测完成或者不支持	-
			(YES)	
			1 = 当前监测周期监	
			测未完成(NO)	
	当前监测周期非连续监测	С	四字节中的第三字节	当前监测周期非连续监测
	使能状态	(bit)		的使能状态:
	催化剂监测	0	0 = 当前周期剩余时	CAT_ENA: NO or YES
	催化剂加热监测	1	间禁止	HCAT_ENA: NO or YES
	蒸发系统监测	2	(NO)	EVAP_ENA: NO or YES
	二次进气系统监测	3	1= 当前监测周期监	AIR_ENA: NO or YES
	空调制冷系统监测	4	测使能(YES)	ACRF_ENA: NO or YES
	氧传感器监测	5		O2S_ENA: NO or YES
	氧传感器加热监测	6		HTR_ENA: NO or YES
	废气再循环系统监测	7		EGR_ENA: NO or YES
	当前监测周期非连续监测	D	四字节中的第四字节	当前监测周期非连续监测
	完成状态	(bit)		完成状态
	催化剂监测完成	0	参照 PID 0x01 来决定	CAT_CMPL: YES or NO
	催化剂加热监测完成	1	哪些监测器是被支持	HCATCMPL: YES or NO
	蒸发系统监测完成	2	的。	EVAPCMPL: YES or NO
	二次进气系统监测完成	3	0 = 当前监测周期监	AIR_CMPL: YES or NO
	空调制冷系统监测完成	4	测完成或者不支持	ACRFCMPL: YES or NO
	氧传感器监测完成	5	(YES)	O2S_CMPL: YES or NO
	氧传感器加热监测完成	6	1 = 当前监测周期监	HTR_CMPL: YES or NO
	废气再循环系统监测完成	7	测未完成(NO)	EGR_CMPL: YES or NO

表 G. 47 PID 0x42 定义

PID		数据				外部测试设备
	描述	字节	最小值	最大值	分辨率/bit	国际制单位体系(公制)/
(Hex)		ታዞ				英制显示

0x42	控制模块电压	A, B	0 V	65.535 V	0.001 V/bit	VPWR :xx.xx V				
	VPWR-输入控制模块的电压。VPWR 通常是指电池电压,在电池和控制模块之间的电									
	路上几乎没有压降。									
	注意: 42 V 的车辆可能由于不同的系统而需要用到多种电压。VPWR 指的是控制模块									
	处的电压,它有7	可能与电	池电压有	显著的差别。						

表 G. 48 PID 0x43 定义

PI	D(Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
	0x43	绝对负荷值	A, B	0 %	25700%	100/255 %	LOAD_ABS:
							XXXXX.X%

绝对负荷值与 PID 0x04 里定义的 LOAD_PCT 有一些不同的特性。这种定义,虽然带有局限性,但将会使得计算标准化。LOAD_ABS 就是指每一个进气冲程进气量的标准化值,以百分比显示:

LOAD_ABS = [空气质量(克/进气冲程)]/[1.184(克/升)*气缸排量(升/进气冲程)] 注意: 当发动机熄火、点火开关开着时,LOAD_ABS=0% 推导:

- 空气质量(克/进气冲程)=[进入发动机的空气总量(克/秒)]/[转速(转/分)*(1 分/60 秒)*1/2 气缸数(进气冲程数/转)]
- LOAD_ABS=[空气质量(克)/进气冲程]/[最大空气质量值(克)/进气冲程(在WTO@STP, 且容积效率为 100 %时)]*100 %

溯源:

- STP=标准温度和压力=25°C, 气压计为 29.92 毫米汞柱(1013 kPa), WOT=节气门全开
- 数量(最大空气质量值(克)/进汽冲程(当WOT@STP, 且容积效率为100%时)这一值对于给定的气缸排量是一个常数。这一常数基于标准温度和压力下的空气密度, 其值为1.184(克/升)*气缸排量(升/进气冲程)

LOAD_ABS 的特征:

- 对于吸气式发动机而言,该值从 0%到 95%取值 ; 对于增压助力式发动机而言,该值在 0%到 400%范围内;
- 与发动机指示和制动扭矩线形相关;
- 通常用于调度点火和废气循环速率;
- LOAD ABS 的最高值与节气门全开时的容积效率相关;
- 故障诊断时,该值指出了发动机喷油效率。
- 火花塞点火式发动机需支持 PID 0x43, 而压燃式内燃机(柴油机)不需要支持这一

PID(Hex)	描述	数据字	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
	PID。 对发动机负荷的	 対其它定 <i>ジ</i>	L 人可查阅 P	ID 0x04。		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

表 G. 49 PID 0x44 定义

PID		数据				外部测试设备
	描述	製造 字节	最小值	最大值	分辨率/比特	国际制单位体系
(Hex)		十九				(公制)/英制显示
0x44	当量比指令	A, B	0	1999	0.0000305(2/65535)	EQ_RAT: xxx.xxx

运用传统氧传感器的燃油系统,当燃油控制系统处于开环时,将会显示开环当量比指令的倒数(即 lambda);当燃油系统闭环时 EQ RAT 将表示 1000。

注意: lambda 是燃空当量比的倒数。

运用宽域/线性氧传感器的燃油系统,在开环和闭环操作模式下均显示当量比指令的倒数(lambda)。

为获取实际所需的 A/F(空燃比)值,将最佳空燃比与当量比指令的倒数(lambda)相乘即可。比如,对汽油而言,最佳空燃比是 14.64:1. 如果燃油控制系统发出 0.95 EQ_RAT 的指令,传输至发动机的 A/F 比值即为 14.64*0.95=13.9 A/F。

如果 ECU 不支持 PID 0x4F,或者如果它支持 PID 0x4F,同时包含 0x00 作为当量比,外部测试仪器将采用本表格所包含的分辨率数值。如果 ECU 支持 PID 0x4F,外部测试仪器将如 PID0x4F 定义计算 PID 的分辨率。

表 G. 50 PID 0x45 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公
						制)/英制显示
0x45	相对节气门位置	A	0 %	100 %	100/255 %	TP_R: xxx.x %

相对或"自学习"节气门位置将以标准值显示,从 0 至 100 %。当自学习节气门位置处在关闭时,TP_R 将显示 0 %。比如,如果用一个 0~5.0 V 的传感器(用 5.0V 的参考电压),且节气门位置关闭时是 1.0 V,那么 TP 将在节气门关闭时显示(1.0-1.0/5.0)=0 %,在 2.5 V 时显示 30 %。由于关闭的节气门位置存在偏移量,所以即使节气门全开时,系统显示实际上也会小于 100 %。

对于输出与输入电压成正比例关系的系统而言,这一值是占最大输入参考电压的百分比。对于输出与输入电压成反比关系的系统而言,这一值等于100%减去占最大输入

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
	参考电压的百分比	。对于约	色对节气门。	位置的定义	ረ请查阅 PID 0x1	1.

表 G. 51 PID 0x46 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
0x46	环境空气温度	A	- 40 °C	+215 °C	1 °C	AAT:
	(与IAT-0x0F同				(-40°C 偏移)	xxx°C /xxx°F
	样的分辨率)					

如果控制模块的 OBD 监测策略中使用了 AAT,它显示的是周围环境温度。AAT 可以通过传感器直接测得,也可以间接通过车辆串行数据传输总线获得,还可以由通过运用其它传感器输入的控制策略推导得到。

表 G. 52 PID 0x47 定义

	PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
	0x47	绝对节气门位置 B	A	0 %	100 %	100/255 %	TP_B: xxx.x %
-					I .		

如果 OBD 监控控制模块策略中使用了绝对节气门位置 B(不是"相对"或者"自学习"节气门位置)时,它将以标准值显示,从 0 至 100 %。比如,如果用一个 0~5.0 V 的传感器(用 5.0 V 的参考电压),且节气门位置关闭时处于 1.0 V,那么 TP_B 在节气门位置处在关闭时将显示(1.0/5.0)=20 %,而在 2.5 V 时显示 50 %。在发动机处在怠速时系统显示的值通常会大于 0 %,而且当节气门全开时,系统显示值通常也会小于 100 %。对于输出与输入电压成正比例关系的系统而言,这一值是占最大输入参考电压的百分比。对于输出与输入电压成反比关系的系统而言,这一值等于 100 %减去占最大输入参考电压的百分比。对于输出与输入电压成反比关系的系统而言,这一值等于 100 %减去占最大输入参考电压的百分比。

一个节气门可以有3个节气门位置传感器,A、B和C。在ISO 15031中只提供1个节气门位置的计算,PID应该报告的值是最主要的节气门的位置传感器的。

表 G. 53 PID 0x48 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
0x48	绝对节气门位置 C	A	0 %	100 %	100/255 %	TP_C: xxx.x %

如果 OBD 监控控制模块策略中使用了绝对节气门位置 C(不是"相对"或者"自学习"节气门位置)时,它将以标准值显示,从 0 至 100 %。比如,如果用一个 0~5.0 V 的传感器(用 5.0 V 的参考电压),且节气门位置关闭时处于 1.0 V,那么 TP_C 在节气门位置关闭时将显示(1.0/5.0)=20 %,在 2.5 V 时显示 50%. 在发动机处在怠速时系统显示的值通常会大于 0%,而且当节气门全开时,系统显示值通常会小于 100 %。

对于输出与输入电压成正比例关系的系统而言,这一值是占最大输入参考电压的百分比。对于电压成反比关系的系统而言,这一值等于 100 %减去占最大输入参考电压的百分比。

一个节气门可以有 3 个节气门位置传感器, A、B 和 C。在 ISO 15031 中只提供 1 个节气门位置的计算, PID 报告的值应该是最主要的节气门的位置传感器的。

表 G. 54 PID 0x49 定义

PID		数据				外部测试设备
	描述	数班 字节	最小值	最大值	分辨率/比特	国际制单位体系(公
(Hex)		十り				制)/英制显示

如果控制模块中使用了加速踏板位置 D(不是"相对"或者"自学习"踏板位置)时,它将以标准值显示,从 $0 \le 100$ %。比如,如果用一个 $0 \sim 5.0$ V 的传感器(用 5.0 V 的参考电压),且踏板位置关闭时处于 1.0 V,那么 APP_D 在踏板关闭时显示(1.0/5.0)=20 %,在 2.5 V 时显示 50 %。在发动机处在怠速时系统显示的值通常会大于 0 %,而且当节气门全开时,系统显示值通常会小于 100 %。

对于输出与输入电压成正比例关系的系统而言,这一值是占最大输入参考电压的百分比。对于输出与输入电压成反比关系的系统而言,这一值等于100%减去占最大输入参考电压的百分比。

标识D应该与ISO 15031-6中所定义的故障诊断码相匹配。如果定义了更多的故障诊断码,这些故障诊断码应该与这个PID标识符相匹配。加速踏板传感器标识是D、E和F。

表 G. 55 PID 0x4A 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
0x4A	加速踏板位置E	A	0 %	100 %	100/255 %	APP_E: xxx.x %

如果控制模块中使用了加速踏板位置 $E(TE^*H T)$ "或者"自学习"踏板位置)时,它将以标准值显示,从 $0 \le 100$ %。比如,如果用一个 0 < 5.0 V 的传感器(用 5.0 V 的参考电压),且踏板位置关闭时处于 1.0 V,那么 APP_E 在踏板关闭时显示(1.0/5.0)=20 %,在 2.5 V 时显示 50 %。在发动机处在怠速时系统显示的值通常会大于 0 %,而且当节气门全开时,系统显示值通常会小于 100 %。

对于输出与输入电压成正比例关系的系统而言,这一值是占最大输入参考电压的百分比。 对于输出与输入电压成反比关系的系统而言,这一值等于 100 %减去占最大输入参考电压 的百分比。

标识 D 与 ISO 15031-6 中所定义的故障诊断码相匹配。如果定义了更多的故障诊断码,这些故障诊断码应该与这个 PID 标识相匹配。加速踏板传感器标识是 D、E 和 F。

表 G. 56 PID 0x4B 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示			
0x4B	加速踏板位置 F	A	0 %	100 %	100/255 %	APP_E: xxx.x %			
	如果控制模块中使用了加速踏板位置 F(不是"相对"或者"自学习"踏板位置)时,它将以标								
	准值显示, 从 0 至 100 %。比如, 如果用一个 0~5.0 V 的传感器(用 5.0 V 的参考电压),								
	且踏板位置关闭时	处于 1.	0 V, 那么 A	APP_F 在蹭	首板关闭时显示(1	.0/5.0)=20 %,在2.5 V			
	时显示 50%. 在发	动机处	在怠速时系统	统显示的值	直通常会大于0%	,而且当节气门全开时,			
	系统显示值通常会	小于 10	0 %.						
	对于输出与输入电	压成正	比例关系的	系统而言,	这一值是占最大转	俞入参考电压的百分比。			
	对于输出与输入电压成反比关系的系统而言,这一值等于100%减去占最大输入参考电								
	压的百分比。								

标识 D 与 ISO 15031-6 中所定义的故障诊断码相匹配。如果定义了更多的故障诊断码, 这些故障诊断码应该与这个 PID 标识相匹配。加速踏板传感器标识是 D、E 和 F。

表 G. 57 PID 0x4C 定义

DID		₩ . ID			分辨率/比	外部测试设备
PID	描述	数据字节	最小值	最大值		国际制单位体系
(Hex)		子巾			特	(公制)/英制显示

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x4C	节气门执行	A	0 %	100 %	100/255 %	TAC_PCT:
	器控制指令		(节气门关闭)	(节气门全开)		xxx.x %

节气门执行器控制指令以百分比显示。TAC_PCT被规范为最大节气门执行器控制指令输出控制参数。TAC系统用各种方法来控制节气门的开度:

- 1) 如果使用线性或步进电机,在节气门位置全关时将显示 0%,全开时显示 100%。中间位置显示的是与全开节气门位置的百分比。例如,一个步进电机的节气门执行器控制使节气门从计数 0 到 128,则在 0 时显示 0%,在 128 时显示 100%,在 64 时显示 50%。
- 2) 其它执行方案也应该规范化,当节气门关闭指令时显示 0%,当节气门开启指令时显示 100%。

表 G. 58 PID 0x4D 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x4D	MIL处于激活状态	A, B	0 min	65535 min	1 min/计数	MIL_TIME:
	下的发动机运转					xxxx hrs, xx min
	时间					

- "MIL 处于激活状态下的发动机运转时间"计数条件:
- 当MIL状态从未激活变为激活的时候,PID值复位为0x0000;
- 当 MIL 处于激活状态时进行累计计算,按分钟计数;
- 当MIL处于未激活状态时不改变其值;
- 如果通过维修 0x04 删除故障信息,或者在至少 40 个未激活 MIL 的暖机循环后, PID 的 值复位为 0;
- 当计数到最大值 0xFFFF 后保持不变,而不从 0x0000 循环计数。

表 G. 59 PID 0x4E 定义

PID		数据				外部测试设备
	描述	字节	最小值	最大值	分辨率/比特	国际制单位体系
(Hex)		ተዞ				(公制)/英制显示
0x4E	自故障码清除之	A, B	0 min	65535 min	1 min/计数	CLR_TIME:
	后的时间					xxxx hrs, xx min

PID (Hex)	描述	数据 字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系			
						(公制)/英制显示			
	故障码清除之后的总计时间(通过外部测试设备或者电源断开来清除故障码)。这个 PID 与								
	特定故障码无关,它只不过是外部检测设备最后一次清除故障码后,检查/维修的的标志。								
	如果达到 65535 扂	f,则 CI	LR_TIME 保	持为 65535,同	而而不从 0 循环计	十数 。			

表 G. 60 PID 0x4F 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公制)/ 英制显示
0x4F	当量比的最大值	A	0	255	1	这些值是不给维修技术
						员显示出来的

外部测试设备用这些值来计算线性或宽带比氧传感器数据的比例因子,这些氧传感器数据在 PID 0x24~0x2B, PID 0x34~0x3B 和 PID 0x44 中报告。

外部测试设备用数据A来计算PID 0x24~0x2B,PID 0x34~0x3B和PID 0x44的分辨率。如果数据A报告的是0x00,外部测试设备将使用包含在PID初始定义中的"当量比的最大值"(1.999 / 65535 = 0.0000305 /bit)。如果PID 0x4F的数据A所报告的值比0x00大,则用这个值除以65535来计算分辨率,所得到的值将在计算当量比时用到。(数据A包含PID 0x24~0x2B,PID 0x34~0x3B和PID 0x44的新的最大值)

下面是计算 PID 0x24 的例子,这个例子支持 0x4F 且含有非 0 值。这个例子中,制造商需要比 0 到 1,999 大的当量比范围。制造商需要 0 到 4 的范围,并且置数据 A = 4。

示例: EQ RAT11_(PID24) = DATA A B_(PID24)*(DATA A_(PID4F)/65535)

PID 0x24新分辨率 = DATA_A(PID4F)/65535 = $4_{(10)}$ /65535 $_{(10)}$ = 0.0000610/bit DATA_A_B_(PID24) = 0x7D00=32000 $_{10}$ = 车辆ECU的报告值

EQ RAT $11_{PID24} = 32000*(4/65535) = 1.953$

氧传感器电压最	В	0 V	255 V	1 V	这些值是不给维修技术
大值					员显示出来的

外部测试设备用数据B来计算PID 0x24~0x2B的分辨率。如果数据B报告的是0x00,外部测试设备将使用包含在PID初始定义中的"氧传感器电压最大值"(7.999 V/65535 bits = 0.0000305 V/bit)。如果PID 0x4F的数据B所报告的值比0x00大,则用这个值除以65535来计算分辨率,计算得到的值在将在计算氧传感器电压中用到。如果ECU支持PID 0x34~0x3B,该值将报告为0x00。

下面是计算 PID 0x24 的例子,这个例子支持 0x4F 且含有非 0 值。这个例子中,制造商需要比 0 到 7.999 大的压力范围。制造商需要 0 到 16V 的范围,并且置数据 A=16。

示例: O2S11_(PID24) = DATA C D_(PID24)*(DATA B_(PID4F)*1 V/65535)

PID	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公制)/		
(Hex)		子 巾				英制显示		
	DID O AAT // AB JO DATA D							

PID 0x24新分辨率 = DATA_B_(PID4F)*1 V/65535 = 16₍₁₀₎*1V/65535₍₁₀₎= 0.000244V/bit

DATA_C_D_(PID24) = 0x9C40 = 4000010 = 车辆ECU的报告值

 $O2S11_{(PID24)} = 40000*(16V/65535) = 9.766V$

 氧传感器电流最
 C
 0 mA
 255 mA
 1 mA
 这些值是不给维修技术员显示出来的

外部测试设备用数据C来计算PID 0x34~0x3B的分辨率。如果数据C报告的是0x00,外部测试设备将使用包含在PID初始定义中的"氧传感器电流最大值"(128mA/32768 bits = 0.0000305 mA/bit)。如果PID 0x4F的数据C所报告的值比0x00大,则用这个值除以32768(氧传感器电流是有一个符号数值)来计算分辨率,得到的值将在计算氧传感器电流中用到。如果ECU支持PID 0x24~0x2B, 0x24~0x2B将报告为0x00。

下面是计算 PID 0x24 的例子,这个例子支持 0x4F 且含有非 0 值。这个例子中,制造商不需要-128 到 127.996mA 的范围,希望增加分辨率。制造商只需要-64 到+ 64mA 的范围,并且置数据 A=64mA。

示例: O2S11_(PID34)=DATA_C_D_(PID34)*(DATA_C_(PID4F)*1 mA/32768)

PID 0x34新分辨率= DATA_C(PID4F)*1 mA/32768 = $64_{(10)}$ mA/32768 $_{(10)}$ =0.001953 mA/bit

DATA_C_D_(PID34) = 0x9C40 = -25536₍₁₀₎ = 车辆ECU报告的负值

 $O2S11_{(PID34)} = -25536*(64 \text{ mA}/32768) = -49.875\text{mA}$

进气歧管绝对压	D	0 kP	2550 kP	10 kP	这些值是不给维修技术员
力最大值					显示出来的

外部测试设备用数据D来计算PID 0x0B的分辨率。如果数据D报告的是0x00,外部测试设备将使用包含在PID初始定义中的"气歧管绝对压力"(255kPa/255bits = 1kPa/bit)。如果PID 0x4F的数据B所报告的值比0x00大,则用这个值先乘以10 kPa/bit再除以65535来计算分辨率,得到的值将在计算进气歧管绝对压力中用到。

下面是计算 PID 0x0B 的例子,这个例子支持 0x4F 且含有非 0 值。这个例子中,制造商需要比 0 到 255kPa 大的压力范围。制造商需要 0 到 765kPa 的范围,并且置数据 A = 77,最接近的数据可能是 76.5。

示例: MAP_(PID0B)=DATA_A_(PID0B)*(DATA_D_(PID4F)*10 kPa/bit/255)

PID 0x0B新分辨率 = DATA_D(PID4F)*10kPa/255 = 77(10)*10 kPa/255 = 3.0196 kPa/bit.

DATA_A_(PID0B) = 0x7F=127₍₁₀₎ = 车辆ECU的报告值

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公制)/ 英制显示			
	$MAP_{(PID0B)}$	$MAP_{(PID0B)} = 127*(770 \text{ kPa/255}) = 383.5 \text{ kPa}$							

表 G. 61 PID 0x50 定义

			12 U. UI	PID 0x50 定义	•			
PID	外部设备配置	数据	D 1 44.		分辨率/	外部测试设备		
(Hex)	 信息 #2 描述	字节	最小值	最大值	比特	国际制单位体系(公制)/英		
		,			. = , ,	制显示		
0x50	空气流量传感	A	0 g/s	2550 g/s	10 g/s	这些值是不给维修技术员		
	器的最大流量					显示出来的		
	外部测试设备用数	数据A来	计算PID 0	x10的分辨率。	如果数据A	报告的是0x00,外部测试设		
	备将使用包含在P	ID初始	定义中的"	来自空气流量位	专感器的流	量"(655.35 g/s / 65535bits =		
	0.01 g/s /bit)。如是	果PID 02	x4F的数据	B所报告的值比	0x00大,贝	则用这个值先乘以10 g/s 再		
	除以65535来计算	分辨率	,得到的值	直将在来自空气	流量传感器	异的流量中用到 。		
	下面是计算 PID (0x10 的作	例子,这个	~例子支持 0x50	且含有非	0 值。这个例子中,制造商		
	需要比 0 到 655.3	5 g/s 大	的流量范围	围。制造商需要	0到1000g	g/s 的范围,并且置数据 A=		
	100。							
	示例: MAF _(PID10) = DATA_A_B _(PID10) *(DATA_A _(PID50) *10g/s/65535)							
	PID 0x10新分辨率=DATA_A _(PID50) *10 g/s/65535 = 100(10)*10 g/s/65535=0.0							
	g/s/bit							
	DATA_A	_B _{(PID10}	$= 0 \times E290$	= 58000 ₍₁₀₎ = 4	=辆ECU的	报告值		
	MAF _{(PID10}	$_{0)} = 5800$	00*(1000 g	/s/65535) = 885.	02 g/s			
	为将来扩展预	В				这些值是不给维修技术员		
	留 - 报告为					显示出来的		
	0x00							
			1	1	1			
	为将来扩展预	С				这些值是不给维修技术员		
	留 - 报告为					显示出来的		
	0x00							
			I	1	I			
	为将来扩展预	D				这些值是不给维修技术员		
	留一报告为					显示出来的		
	0x00							
			1	<u> </u>	<u> </u>			

表 G. 62 PID 0x51 定义

PID (Hex)	描述	数据字节	分辨率/比特	外部测试设备 国际制单位体系(公制)/英 制显示
0x51	当前车辆使用	A	1字节中的第一字节	FUEL_TYP
	的燃料类型	(Hex)	(状态可变编码)	
		0x01	汽油	GAS
		0x02	甲醇	METH
		0x03	乙醇	ETH
		0x04	柴油	DSL
		0x05	液化石油气(LPG)	LPG
		0x06	压缩天然气(CNG)	CNG
		0x07	丙烷	PROP
		0x08	电池/电	ELEC
		0x09	汽油两用燃料汽车	BI_GAS
		0x0A	甲醇两用燃料汽车	BI_METH
		0x0B	乙醇两用燃料汽车	BI_ETH
		0x0C	LPG 两用燃料汽车	BI_LPG
		0x0D	CNG 两用燃料汽车	BI_CNG
		0x0E	丙烷两用燃料汽车	BI_PRO
		0x0F	电池两用燃料汽车	BI_ELEC
		0x10~0	ISO/SAE预留	-
		xFF		

示例:如果一辆汽车的汽油中乙醇含量少于 10 %,那么外部测试设备将显示状态 0x09。在这种情况下,该系统将使用汽油/汽油(燃料)表和车载诊断阈值。PID 0x52 应该人为的显示 0 %或者一些数如 10 %或者更少,如果系统有这样的分离度。如果汽油中乙醇含量高于 10 %,则外部测试设备将显示状态 0x0B。PID 0x52 将报告计算得到的乙醇/酒精含量百分比。

表 G. 63 PID 0x52 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x52	酒精在燃料	A	0 %	100 %	100/255 %	ALCH_PCT:
	的百分比		(没有酒精)	(最大酒精)		xxx.x %
	如果系统使用的	内是甲醇	或乙醇燃料,则	ALCH PCT \$	显示的是甲醇或	乙醇燃料中酒精含量

如果系统使用的是甲醇或乙醇燃料,则 ALCH_PCT 显示的是甲醇或乙醇燃料中酒精含量的百分比。例如,乙醇燃料(E85)通常含有 85.0 %的乙醇,在这种情况下 ALCH_PCT 将

PID	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系
(Hex)		ተ ሀ				(公制)/英制显示
	显示 85.0 %。剂	西精含量	百分比可以通过	廿一个传感器或	者从其它燃油挖	2制软件中计算得到。

表 G. 64 PID 0x53 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x53	蒸发系统	A, B	0 kPa	0.005 kPa	0.005 kPa	EVAP_VPA:
	蒸气压力		(0.00inH2O)	(1315.49 inH2O)	(1/200)	xxx.xxx kPa
	绝对值				无符号型	(xxxx.xx inH2O)

如果控制模块使用了蒸发系统蒸气压力绝对值,则 PID 0x53 显示的就是这个数据。该压力信号通常是从位于燃油箱(FTP-燃油箱压力)的传感器得到或者从蒸发系统蒸汽管路中的传感器得到。

表 G. 65 PID 0x54 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x54	蒸发系统	A, B	-32767 Pa	32768 Pa	1 Pa	EVAP_VP:
	蒸气压力			(131.55 inH2O)	符号型	xxxxx kPa (xxx.xx
						inH2O)

如果控制模块使用了蒸发系统蒸气压力,则 PID 0x54 显示的就是这个数据。压力信号通常是从位于燃油箱(FTP-燃油箱压力)的传感器得到或者从蒸发系统蒸汽管路中的传感器得到。PID 0x54 的分辨率使得 PID 0x54 比 PID 0x32 具有年更宽的压力范围。

对于支持蒸发系统蒸气压力的系统来说,将需要以下两个 PID 中的一个: 0x32 或 0x54。但只能支持上述中的一个 PID。

表 G. 66 PID 0x55 定义

DID		数据				外部测试设备
PID	描述	製猫 字节	最小值	最大值	分辨率/比特	国际制单位体系(公
(Hex)		† †				制)/英制显示

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
0x55	第二个氧传感器的	A	-100 %	+99.22 %	100/128 %	STSO2FT1: xxx.x %
	短时燃油修正 -		(稀)	(浓)	(128 为 0%)	STSO2FT3: xxx.x %
	Bank1(用于只有一					
	个燃油修正值时)					
	第二个氧传感器的					
	短时燃油修正 -	В				
	Bank3					

第二个氧传感器的短时燃油修正系统 Bank1/3 应该显示闭环燃油算法控制得到的燃油修正量。如果燃油系统是开环系统,STSO2FT 将报告 0 %修正量。

如果 PID 0x1D(氧传感器的位置)表明目前气缸 3 有氧传感器,则数据 B 才会被列入以回应 PID 0x55 的请求。外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应信息的长度。参阅 PID 0x09 中的例子的描述。

表 G. 67 PID 0x56 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体 系(公制)/英制 显示
0x56	第二个氧传感器的	A	-100 %	+99.22 %	100/128 %	LGSO2FT1:
	长期燃油修正 -		(稀)	(浓)	(128 为 0%)	xxx.x %
	Bank1(用于只有一					LGSO2FT3:
	个燃油修正值时)					xxx.x %
	第二个氧传感器的	В				
	长期燃油修正 -					
	Bank3					

气缸 1/3 的第二个氧传感器的长期燃油修正将分别存储在非易失性 RAM 和永存 RAM 中,在数据被请求时 LGSO2FT 应显示通过闭环和开环燃油控制算法得到的修正量。如果在开环燃油算法下没有修正量,则 LGSO2FT 应报告 0%。如果燃油控制算法根本没有用到第二个氧传感器的长期燃油修正,则 PID 不予支持 0x56。

如果 PID 0x1D(氧传感器的位置)表明目前气缸 3 有氧传感器,则数据 B 才会被列入以回应 PID 0x56 请求。外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应信息的长度。参阅 PID 0x09 中的示例的描述。

表 G. 68 PID 0x57 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公 制)/英制显示
0x57	第二个氧传感器的短	A	-100	+99.22	100/128 %	STSO2FT2: xxx.x %
	时燃油修正-		%	%	(128 时为	STSO2FT4: xxx.x %
	Bank2(用于只有一个		(稀)	(浓)	0 %)	
	燃油修正值时)	В				
	第二个氧传感器的短					
	时燃油修正 - Bank4					

第二个氧传感器的短时燃油修正系统 Bank2/4 应该显示闭环燃油算法控制得到的燃油修正量。如果燃油系统是开环系统,STSO2FT 将报告 0%修正量。

如果 PID 0x1D(氧传感器的位置)表明目前气缸 4 有氧传感器,则数据 B 才会被列入以回应 PID 0x57 的请求。外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应信息的长度。参阅 PID 0x09 中的例子的描述。

表 G. 69 PID 0x58 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x58	第二个氧传感器的	A	-100 %	+99.22 %	100/128 %	LGSO2FT2:
	长期燃油修正一		(稀)	(浓)	(128 为 0%)	xxx.x %
	Bank2(用于只有一					LGSO2FT4:
	个燃油修正值时)	В				xxx.x %
	第二个氧传感器的					
	长期燃油修正一					
	Bank4					

气缸 2/4 的第二个氧传感器的长期燃油修正将分别存储在非易失性 RAM 和永存 RAM 中,在数据被请求时 LGSO2FT 应显示通过闭环和开环燃油控制算法得到的修正量。如果在开环燃油算法下没有修正量,则 LGSO2F 应报告 0%。如果燃油控制算法根本没有用到第二个氧传感器的长期燃油修正,则 PID 不予支持 0x58。

如果 PID 0x1D(氧传感器的位置)表明目前气缸 4 有氧传感器,则数据 B 才会被列入以回应 PID 0x58请求。外部测试设备可以根据 PID 0x13 和 0x1D 的数据内容来决定响应信息的长度。参阅 PID 0x09 中示例的描述。

表 G. 70 PID 0x59 定义

PID (Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x59	油轨压力	A, B	0 kpa	655350 kpa	10 kPa/bit	FRP:
	(绝对压				无符号型	xxxxxx kpa
	力)				1kPa=0.1450377PSI	(xxxxx.x PSI)

FRP 显示的是发动机内的油管绝对压力。柴油燃油压力和汽油直喷式燃油系统比 PID 0x0A 的 FRP 有更大的压力范围。

对于支持燃油压力传感器的系统中,下列四个 PID 中的一个将会被使用: 0x0A, 0x22, 0x23 或 0x59。系统只能支持上述 PID 中的一个。

表 G. 71 PID 0x5A 定义

ID	描述	数据	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系(公
(Hex)		字节				制)/英制显示
0x5A	加速踏	A	0 %	100 %	100/255 %	APP_R:XXX.X %
	板相对					
	位置					

相对或"自学习"踏板位置将以标准值显示,范围从 0 %到 100 %。APP_R 在"自学习"踏板关闭位置显示值为 0%。例如,如果用一个 0 到 5.0 V 的电压传感器(用一个 5 V 的参考电压),且在关闭位置时是 10 V。APP_R 在踏板关闭位置显示(1.0-1.0/5.0)= 0.0 %,在 2.5 V 时显示 30 %。由于踏板关闭时的位置偏移,当其完全打开时,实际通常小于100 %。多数情况下,APP_R 将会取多个踏板位置传感器的平均值。

对于输出与输入电压成正比变化的系统,这个数值就是占最大输入参考电压的百分比。对于输出与输入电压成反比变化的系统,这个数值就是100.0%减去它所占的最大输入参考电压的百分比。加速踏板绝对位置的定义参阅PID0x49。

表 G. 72 PID 0x5B~0xFF 定义

PID(Hex)	描述	数据字节	最小值	最大值	分辨率/比特	外部测试设备 国际制单位体系 (公制)/英制显示
0x5B~0xFF	ISO/SAE 保留	-	-	-	-	-

附录 H 0x06 服务测试标识符描述 (资料性附录)

表 H. 1 测试标识符的分辨率描述

测试项目	描述	最小值	最大值	分辨率/位
0x01	由浓变至稀的传感器阈值电压(常数)	0 V	1.275 V	0.005 V
0x02	由稀变浓的传感器阈值电压(常数)	0 V	1.275 V	0.005 V
0x03	进行切换时间计算的传感器低电压(常数)	0 V	1.275 V	0.005 V
0x04	进行切换时间计算的传感器高电压(常数)	0 V	1.275 V	0.005 V
0x05	从浓到稀传感器的切换时间(计算值)	0 s	1.02 s	0.004 s
0x06	从稀到浓传感器的切换时间(计算值)	0 s	1.02 s	0.004 s
0x07	测试循环中的最小传感器电压(计算值)测	0 V	1.275 V	0.005 V
0x08	测试循环中的最大传感器电压(计算值)	0 V	1.275 V	0.005 V
0x09	传感器切换之间的时间(计算值)	0 s	10.2 s	0.04 s
0x0A	传感器周期(计算值)	0 s	10.2 s	0.04 s
0x0B~0x1F	ISO/SAE 保留部分			
0x21~0x2F	厂商定义的测试 ID 范围	0 s	1.02 s	0.004 s
0x30~0x3F		0 s	10.2 s	0.04 s
0x41~0x4F		0 V	1.275 V	0.005 V
0x50~0x5F		0 V	12.75 V	0.05 V
0x61~0x6F		0 Hz	25.5 Hz	0.1 Hz
0x70~0x7F		0	255	1
0x81~0x9F	厂商定义的测试 ID 范围	厂商定义	具体数值和	単位
0xA1~0xBF				
0xC1~0xDF				
0xE1~0xFF				

附录 I 0x06 服务车载诊断监测标识符 0BDMID 描述 (资料性附录)

表 I.1 标准的车载诊断监测标识符说明

车载诊断监测标识符	
(Hex)	车载诊断监测标识符名称
0x00	所支持的车载诊断监测标识符(0x01~0x20)
0x01	氧传感器监测组 1- 传感器 1
0x02	氧传感器监测组 1- 传感器 2
0x03	氧传感器监测组 1- 传感器 3
0x04	氧传感器监测组 1- 传感器 4
0x05	氧传感器监测组 2 - 传感器 1
0x06	氧传感器监测组 2 - 传感器 2
0x07	氧传感器监测组 2 - 传感器 3
0x08	氧传感器监测组 2 - 传感器 4
0x09	氧传感器监测组 3- 传感器 1
0x0A	氧传感器监测组 3 - 传感器 2
0x0B	氧传感器监测组 3 - 传感器 3
0x0C	氧传感器监测组 3 - 传感器 4
0x0D	氧传感器监测组 4- 传感器 1
0x0E	氧传感器监测组 4 - 传感器 2
0x0F	氧传感器监测组 4 - 传感器 3
0x10	氧传感器监测组 4 - 传感器 4
0x11~0x1F	ISO/SAE 保留
0x20	所支持的车载诊断监测标识符(0x21~0x40)
0x21	催化监测组 1
0x22	催化监测组 2
0x23	催化监测组 3
0x24	催化监测组 4
0x25~0x30	ISO/SAE 保留
0x31	废气再循环监测组 1
0x32	废气再循环监测租 2
0x33	废气再循环监测组 3
0x34	废气再循环监测组 4
0x35~0x38	ISO/SAE 保留
0x39	燃油蒸发监测(凸轮不工作)
0x3A	燃油蒸发监测(0.090")

车载诊断监测标识符	<u> </u>
(Hex)	车载诊断监测标识符名称
0x3B	燃油蒸发监测(0.040")
0x3C	燃油蒸发监测(0.020")
0x3D	碳管冲洗流量监测
0x3E~0x3F	ISO/SAE 保留
0x40	所支持的车载诊断监测标识符(0x01~0x20)
0x41	氧传感器加热监测组 1- 传感器 1
0x42	氧传感器加热监测组 1 - 传感器 2
0x43	氧传感器加热监测组 1- 传感器 3
0x44	氧传感器加热监测组 1- 传感器 4
0x45	氧传感器加热监测组 2 - 传感器 1
0x46	氧传感器加热监测组 2 - 传感器 2
0x47	氧传感器加热监测组 2 - 传感器 3
0x48	氧传感器加热监测组 2 - 传感器 4
0x49	氧传感器加热监测组 3 - 传感器 1
0x4A	氧传感器加热监测组 3 - 传感器 2
0x4B	氧传感器加热监测组 3 - 传感器 3
0x4C	氧传感器加热监测组 3 - 传感器 4
0x4D	氧传感器加热监测组 4- 传感器 1
0x4E	氧传感器加热监测组 4- 传感器 2
0x4F	氧传感器加热监测组 4 - 传感器 3
0x50	氧传感器加热监测组 4 - 传感器 4
0x51~0x5F	ISO/SAE 保留
0x60	所支持的车载诊断监测标识符(0x61~0x80)
0x61	加热催化监测组 1
0x62	加热催化监测组 2
0x63	加热催化监测组 3
0x64	加热催化监测组 4
0x65~0x70	ISO/SAE 保留
0x71	二次喷射监测 1
0x72	二次喷射监测 2
0x73	二次喷射监测 3
0x74	二次喷射监测 4
0x75~0x7F	ISO/SAE 保留
0x80	所支持的车载诊断监测标识符(0x81~0xA0)

车载诊断监测标识符	左
(Hex)	车载诊断监测标识符名称
0x81	燃油系统监测 1
0x82	燃油系统监测 2
0x83	燃油系统监测 3
0x84	清洗气流监测器 4
0x85~0x9F	ISO/SAE 保留
0xA0	所支持的车载诊断监测标识符(0xA1~0xC0)
0xA1	失火监测器一般数据
0xA2	失火气缸 1 数据
0xA3	失火气缸 2 数据
0xA4	失火气缸 3 数据
0xA5	失火气缸 4 数据
0xA6	失火气缸 5 数据
0xA7	失火气缸 6 数据
0xA8	失火气缸 7 数据
0xA9	失火气缸 8 数据
0xAA	失火气缸9数据
0xAB	失火气缸 10 数据
0xAC	失火气缸 11 数据
0xAD	失火气缸 12 数据
0xAE~0xBF	ISO/SAE 保留
0xC0	所支持的车载诊断监测标识符(0xC1~0xE0)
0xC1~0xDF	ISO/SAE 保留
0xE0	所支持的车载诊断监测标识符(0xE1~0xFF)
0xE1~0xFF	车辆生产商定义的车载诊断监测标识符

例 传感器与催化转换器的布置方案。离飞轮最远的气缸定义为1号气缸。

关键部件

- S1 传感器 1
- S2 传感器 2
- S3 传感器 3
- B1 气缸 1
- B2 气缸 2
- a 大量程
- b 加热区

- 1 V6/V8/V12 带排气系统的气缸发动机组
- 2 催化转器
- 3 尾 管

图I.1 2个Bank和4个催化器的V6/V8/V12 汽缸发动机示例

关键部件

- S1 传感器 1
- S2 传感器 2
- S3 传感器 3
- B1 气缸 1
- B2 气缸 2
- a 大量程
- b 加热区

- 1 V6/V8/V12 带排气系统的气缸发动机组
- 2 催化转器
- 3 尾 管

图1.2 2个Bank和3个催化器的V6 V8/V12汽缸发动机示例

关键部件

- S1 传感器 1
- S2 传感器 2
- S3 传感器 3

- 1 带排气系统的直列式4缸发动机组
- 2 催化转器
- 3 尾 管

- B1 气缸1
- a 大量程
- b 加热区

图I.3 1个Bank和2个催化器的L4汽缸发动机示例

关键部件

- S1 传感器 1
- S2 传感器 2
- S3 传感器 3
- B1 气缸 1
- a 大量程
- b 加热区

- 1 带排气系统的直列式4气缸发动机组
- 2 催化转器
- 3 尾管

图I.4 1个Bank和1个催化器的L4气缸发动机示例

附录 J 0x06 服务单位和缩放比例定义

(资料性附录)

该附录仅适用于 ISO 15765-4。单位和比例的标识符分为两部分: 0x01~0x7F 用于无符号型比例标识符, 0x80~0xFE 用于符号型比例标识符, 0x00 和 0xFF 是 ISO/SAE 预留给将来定义。

Bit 7 = "0" 无符号型比例标识符范围

Bit 7="1" 符号型比例标识符范围

7	6 5	4	3	2	1	0
---	-----	---	---	---	---	---

图 J. 1 无符号/符号型比例标识符编码范围

J.1 无符号型单位和比例标识符定义

表 J. 1 单位和比例标识符 0x01 定义

单位和比 例标识符	描述	述 比例/比特		最小值		で値	外部检测设备国际
(Hex)	JAI.C	7373.7313	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
		每比特1	0x0000	0	0xFFFF	65535	XXXXX
001	原始值	十六进制转十进制		数据范围	围举例:		显示举例:
0x01		无符号型	0x00	000		0	0
			0xFI	FFF	+ 6:	5535	65535

表 J. 2 单位和比例标识符 0x02 定义

单位和比 例标识符	描述	比例/比特	最小值		最大值		外部检测设备国际				
	JII/CE	10 N 1 N 1 1 1	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示				
(Hex)			(IICA)	(Dec)	(IICA)	(DCC)					
		每比特 0.1	0x0000	0	0xFFFF	6553.5	xxxx.x				
0x02	原始值	十六进制转十进制		数据范	围举例:		显示举例:				
0x02		无符号型	0x00	000		0	0.0				
			0xFF	FFF	+ 65	553.5	6553,5				

表 J. 3 单位和比例标识符 0x03 定义

单位和比 例标识符	描述	比例/比特	最小值		最大值		外部检测设备 国际单位制(公制)
(Hex)	细化	17. Jah. 17. 144	(Hex)	(Dec)	(Hex)	(Dec)	显示
		每比特 0.01	0000	0	FFFF	655.35	xxx.xx
002	原始值	十六进制转十进制		数据范围	围举例:		显示举例:
0x03		无符号型	0x00	000		0	0.00
			0xFF	FF	+ 6:	55.35	655.35

表 J. 4 单位和比例标识符 0x04 定义

单位和比 例标识符	描述	比例/比特	最小值		最力	で値	外部检测设备国际
(Hex)	细处	1001/104	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
		每比特 0.0001	0x0000	0	0xFFFF	65.535	xx.xxx
004	原始值	十六进制转十进制		数据范围	围举例:		显示举例:
0x04		无符号型	0x000	00		0	0.000
			0xFFF	F	+ (55.535	65.535

表 J. 5 单位和比例标识符 0x05 定义

单位和比			最么	最小值		で値	外部检测设备国际
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
(Hex)							
		每比特 0.0000305	0x0000	0	0xFFFF	1.999	x.xxxx
005	原始值	十六进制转十进制		数据范围	围举例:		显示举例:
0x05		无符号型	0x00	000		0	0.000
			0xFF	FF	+ 1	.999	1.999

表 J. 6 单位和比例标识符 0x06 定义

单位和比		N. H. Malellada		最小值		で値	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
		每比特 0.000305	0x0000	0	0xFFFF	19.988	xx.xxx
006	原始值	十六进制转十进制		数据范围	围举例:		显示举例:
0x06		无符号型	0x00	000		0	0.000
			0xFF	FF	19	9.988	19.988

表 J. 7 单位和比例标识符 0x07 定义

	次 6. 7 中国和 2017 [6. 2017 是 2017]									
单位和比			最小值		最	大值	外部检测设备国际			
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示			
(Hex)			()	(= 33)	()	(= 33)				
			0x0000	0 rpm	0xFFFF	16384 rpm	xxxxx rpm			
	旋转频	每比特 0.25 rpm		数据	范围举例:		显示举例:			
	率	无符号型	0x0000)		0 rpm	0 rpm			
0x07			0x0002	,		+ 0.5 rpm	1 rpm			
OXO7			0xFFF	C	+	16383 rpm	16383 rpm			
			0xFFF	D	+ 163	383.25 rpm	16383 rpm			
			0xFFF	Έ	+ 163	383.50 rpm	16384 rpm			
			0xFFF	F	+ 163	383.75 rpm	16384 rpm			

表 J. 8 单位和比例标识符 0x08 定义

单位和比	III.s.s.		最小	最小值		最大值	外部检测设备国际单位	
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex) (Dec)		制(公制)显示	
			0x0000	0 km/h	0xFFFF	655.35 km/h	xxx.xx km/h	
		每比特	0.0000	O KIII/II	UXITIT	033.33 KIII/II	(xxx.xx mph)	
	速度	0,01 km/h		数据	范围举例:	显示举例:		
0x08		无符号型	0x000	00		0 km/h	0.00 km/h (0.00 mph)	
			0x00	64		+ 1 km/h	1.00 km/h (0.62 mph)	
	换算 k	m/h -> mph	0x03E7		+ 9.99 km/h		9.99 km/h (6,21 mph)	
	1 km/h	= 0.62137 mph	0xFF	FF	+ (555.35 km/h	655.35km/h (407,21mph)	

表 J. 9 单位和比例标识符 0x09 定义

单位和比	LLL	描述 比例/比特		卜值	<u> </u>	最大值	外部检测设备国际单位	
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	制(公制)显示	
		每比特	0x0000	0 km/h	0xFFFF	65535 km/h	xxxxx km/h	
	速度	可以付 0.01 km/h	0x0000	U KIII/II	UXITIT	03333 KIII/II	(xxxxx mph)	
	述 浸	无符号型		数据范围举例:			显示举例:	
0x09		九的 7至	0x0000		0 km/h		0 km/h (0 mph)	
	始質1₂ m	/h -> mph	0x0064		+ 100 km/h		100 km/h (62 mph)	
		0.62137 mph	0x03E7		+ 999 km/h		999 km/h (621 mph)	
	1 KIII/II —	0.0213 / IIIpii	0xFF	FF	+ 65535 km/h		65535 km/h (40721mph)	

表 J. 10 单位和比例标识符 0x0A 定义

单位和比			最小	最小值		大值	外部检测设备国际单位
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	制(公制)显示
		每比特 0.122 mV	0x0000	0 V	0xFFFF	7.99 V	x.xxxx V
	电压	五符 U.122 mv 无符号型		数据剂	5围举例:		显示举例:
0x0A		九刊 5至	0x0000)		$0~\mathrm{mV}$	0.0000 V
UXUA	始曾 5	the state of the s		0x0001		122 mV	0.0001 V
	换算: mV -> V: 1000 mV = 1 V		0x2004		+ 999.912 mV		0.9999 V
			0xFFF	F	+7.	995 mV	7.9953 V

表 J. 11 单位和比例标识符 0x0B 定义

单位和比	HEAD	FF. Sect. of Fredding	最小值		最	大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
0x0B	电压	每比特 0.001 V	0x0000	0 V	0xFFFF	65.535 V	xx.xxx V

	无符号型	数据剂	范围举例 :	显示举例:
		0x0000	0 mV	0.000 V
换算: n	nV -> V:	0x0001	+ 1mV	0.001 V
1000 mV	V = 1 V	0xFFFF	+65535 mV	65.535 V

表 J. 12 单位和比例标识符 0x0C 定义

单位和比 例标识符	描述	比例/比特	最久	最小值		大值	外部检测设备国际
(Hex)	油处	PG P3/ PG13	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
		复比性 0.01 V	0x0000	0 V	0xFFFF	655,35 V	xxx.xxx V
	电压	毎比特 0.01 V 无符号型		数据范围举例:			显示举例:
0x0C		九孙 5室 	0x0000		0 mV		0.000 V
	换算:	mV -> V:	0x000	0x0001		1 mV	0.010 V
	1000 n	$_{1}V = 1 V$	0xFF	FF	+655350 mV		655.350V

表 J. 13 单位和比例标识符 0x0D 定义

单位和比			最小值		盾		外部检测设备
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	国际单位制(公制) 显示
		每比特	0x0000	0 A	0xFFFF	255.996 mA	xxx.xxx mA
	电流	0.00390625 mA		数据剂	5围举例:		显示举例:
0x0D		无符号型	0x0000)		0 mA	0.000 mA
UXUD		<u> </u>	0x000	0x0001		0.004 mA	0.004 mA
			0x8000			+ 128 mA	128.000 mA
			0xFFF	F	+25	5.996 mA	255.996 mA

表 J. 14 单位和比例标识符 0x0E 定义

单位和比			最小	最小值		大值	外部检测设备
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	国际单位制(公制)
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	显示
	复以柱 0.001 A	0x0000	0 A	0xFFFF	65.535 A	xxx.xxx A	
	电流	每比特 0.001 A 无符号型		数据范围	围举例:		显示举例:
0x0E		上 八刊 5室	0x0000			0 A	0.000 A
	换算 1	mA -> A:	0x8000	0x8000		2.768 A	32.768 A
	1000 n	nA = 1 A	0xFFF	F	+6	5.535 A	65.535 A

表 J. 15 单位和比例标识符 0x0F 定义

单位和比	 描述 比例/比特	比例/比特	最小	、 值	最	:大值	外部检测设备国际
例标识符	押坯	11 11 11 11 11 11 11 11 11 11 11 11 11	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示

(Hex)							
		复以供 0.01 A	0x0000	0 A	0xFFFF	655.35 A	xxx.xxx A
	电流	每比特 0.01 A 无符号型		数据范围	显示举例:		
0x0F			0x0000			0 m A	0.000 A
	换算 mA -> A:		0x0001		+ 10 m A		0.010 A
	1000 mA = 1 A		0xFFFF		+ 655350 m A		655.350 A

表 J. 16 单位和比例标识符 0x10 定义

单位和比			最小	值	最	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
		6 -11-11-	0000	0 ms	FFFF	65535 ms	xxx.xxx s (x min, xx s)
	时间	每比特 1 ms 无符号型		数据范围	显示举例:		
0x10		, _,, ,	0x0000			0 ms	0.000 s (0 min, 0 s)
	换算 s	s -> min -> h:	0x8000		+ 32	2768 ms	32.768 s (0min,33 s)
	60 s =	1 min	0xEA60		+ 60000 ms		60000 s (1 min, 0 s)
	60 min	= 1 h	0xFFFF	+ 65	535 ms (1 r	nin, 6 s)	65.535 s (1 min, 6 s)

表 J. 17 单位和比例标识符 0x11 定义

单位和比			最小	値	最	 大值	시 한다시 Mil VIL 전 FRITT 꼭 쓰
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	外部检测设备国际单位 制(公制)显示
			0x0000	0 s	0xFFFF	6553.5 s	xxxx.x s
	时间	每比特 100 ms	0.0000	0.3	OXITI	0555.5 8	(x h, x min, xx s)
	H.J. 1HJ	无符号型		数据范	显示举例:		
0x11			0x0000			0 s	0.000 s (0h, 0 min, 0 s)
	换算 s -> min -> h: 60 s = 1 min		0x8000		+ 3276.8 s		3276.8s (0h, 54min, 37 s)
			0xEA60		+ 6000 s (1 h 40 min)		6000 s (1h, 40min,0 s)
	60 min	= 1 h	0xFFFF	+ 6553.	5 s (1 h , 49	min, 13 s)	6553.5 s (1h, 49min,13 s)

表 J. 18 单位和比例标识符 0x12 定义

单位和比			最小值		最大值		外部检测设备国际单位
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	制(公制)显示
0x12	时间	每比特 1 second 无符号型	0x0000	0 s	0xFFFF	65535 s	xxxx.x s (xxh, xxmin, xx s)
		1 九何亏望		数据范围	显示举例:		

		0x0000	0 s	0 s (0h, 0 min, 0 s)
换算	s -> min -> h:	0x003C	+ 60 s	60 s (0h, 1 min,0 s)
60 s =	1 min	0x0E10	+ 3600 s	3600 s (1h, 0 min,0 s)
60 mir	n = 1 h	0xFFFF	+ 65535 s	65535 s(18h, 12min,15 s)

表 J. 19 单位和比例标识符 0x13 定义

单位和比	THA 6	11 hat 11 dl.	最小值		揖	最大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
			0x0000	0 mOhm	0xFFFF	65535 mOhm	xx.xxx Ohm
	电阻	每比特 1 mOhm 无符号型		数据	显示举例:		
0x13	11.11		0x0000		0 mOhm		0.000 Ohm
UXIS			0x0001			+ 1 mOhm	0.001 Ohm
	换算 m	nOhm -> Ohm:	0x8000		+32768 mOhm		32,768 Ohm
	1000 m	nOhm = 1 Ohm	0xFF	FF	+ 65535 mOhm		65.535 Ohm

表 J. 20 单位和比例标识符 0x14 定义

单位和比	4444	I le tol / Leith	最久	最小值		最大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
(====)			0x0000	0 Ohm	0xFFFF	65535 Ohm	xx.xxx kOhm
	电阻	每比特 1 Ohm 无符号型		数据	范围举例:		显示举例:
0x14	11.11		0x000	0		0 Ohm	0.000 kOhm
0.114			0x0001	1		+ 1 Ohm	0.001 kOhm
	换算 Ohm -> kOhm:		0x800	0	+ 32768 Ohm		32.768 kOhm
	1000 C	0hm = 1 kOhm	0xFFI	FF	+ 65535 Ohm		65.535 kOhm

表 J. 21 单位和比例标识符 0x15 定义

46 21 1. + 12 11 12 13 13 14 2 17 2 17 2 17 2 17 2 17 2 17 2 17 2											
单位和比			最	小值	揖	 大值	 外部检测设备国际单				
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示				
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	TE 164 (TE 164) TE 14				
			0x0000	0 kOhm	0xFFFF	65535 kOhm	xxxxx kOhm				
	电阻	每比特 1 kOhm 无符号型		数据范围举例:			显示举例:				
0x15	212		0x0000		0 kOhm		0 kOhm				
UXIS			0x0001		+ 1 kOhm		1 kOhm				
			0x80	000	+ 32768 kOhm		32768 kOhm				
			0xFF	FF	+ 65535 kOhm		65535 kOhm				

表 J. 22 单位和比例标识符 0x16 定义

单位和比	44.44	LV /501 / LLV /445	最小值		最	大值	外部检测设备国际
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示

(Hex)							
温度		(每比特 0.1℃)	0x0000	-40 °C	0xFFFF	+6513.5 °C	xxxx.x °C
	泪亩		00000	-40 C	OXITIT	10313.5	(xxxxx.x °F)
	/皿/又	无符号型		数据	范围举例:		显示举例:
0x16		九州 7至	0x000	0		-40 °C	-40.0 °C(-40.0 °F)
UXIO			0x000	1		-39.9°C	-39.9°C(-39.8°F)
	换算	C -> °F:	0x00DC			-18.0°C	-18.0°C(-0.4°F)
	°F =	°C * 1.8 32 °C	0x019	0		-0°C	0.0°C(32.0°F)
			0xFFI	FF	-	+6513.5°C	6513.5°C(11756.3°F)

表 J. 23 单位和比例标识符 0x17 定义

单位和比			最小	值	最	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
0x17	压力 (仪表)	每比特 0.01kPa 无符号型	0x0000	0 kPa	0xFFFF	655.35 kPa	xxx.x xkPa(仪表) (xx.x PSI)
换算: kPa	换算: kPa -> PSI:			数据	显示举例:		
1 kPa (10 H 附加换算:	(Pa) = 0.14	150377 PSI					
1 kPa = 4.0	146309 in	H2O	0x0000 0x0001			0 kPa	0.00 kPa (0.0 PSI)
1 kPa = 101.9716213 毫米 H2O(毫米水柱)					+0.01 kPa +655.35 kPa	0.01 kPa (0.0 PSI)	
1 kPa = 7.50	1 kPa = 7.5006151 毫米 Hg(毫米汞柱)		0xFFFF			±033.33 KPa	655.35 kPa (95.1 PSI)
1 kPa = 0.0	10 bar						

表 J. 24 单位和比例标识符 0x18 定义

单位和比			最小	卜值	最大	值	外部检测设备国际单	
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示	
(Hex)			` ′	. ,	, ,	` ′		
	压力	每比特 0.0117				766.76	xxx.xxx kPa(空气)	
0x18		kPa	0x0000	0 kPa	0xFFFF		, ,	
	(空气压力)	无符号型				kPa	(xxx.x PSI)	
换算: kPa	-> PSI:		数据范围举例:				显示举例:	
1 kPa (10 H	(Pa) = 0.145037	77 PSI						
附加换算:							0.0001P (0.0PGF)	
1 kPa = 4.0	146309 inH2O		0x0000 0 kPa				0.000 kPa (0.0 PSI)	
$1 l_2 D_0 = 101$	1 kPa = 101.9716213 毫米 H2O (毫米水柱)				+0.0)117 kPa	0.012 kPa (0.0 PSI)	
	` '			0xFFFF +766.76 kPa 766.760kPa (111				
1 kPa = 7.50	1 kPa = 7.5006151 毫米 Hg (毫米汞柱)						, , ,	
1 kPa = 0.0	10 bar							

表 J. 25 单位和比例标识符 0x19 定义

单位和比			最小	值	最大	大值	外部检测设备国际单位
例标识符	描述	比例/比特	(Hoy)	(Doa)	(Hay)	(Dec)	制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	1γ3(Σ) (τη (Δ) (τη (τη (δ) (τ
	压力	每比特				5177.27	
0x19	压力	0.079kPa	0x0000	0 kPa	0xFFFF	5177.27	xxxx.xxxkPa(仪表)
	(燃油压力)	无符号型				kPa	(xxx.x PSI)
换算: kPa	-> PSI:		数据范围举例:				显示举例:
1 kPa (10 H	(Pa) = 0.145037	77 PSI					
附加换算:							
1 kPa = 4.0	146309 inH2O		0x0000 0kPa			0kPa	0.000kPa (0.0 PSI)
1 kPa = 101.9716213 毫米 H2O (毫米水			0x0001 + 0.079kPa			0.079kPa	0.079Pa (0.0 PSI)
柱)			0xFFFF + 5177.265kPa				5177.265 kPa (750.9PSI)
1 kPa = 7.5006151 毫米 Hg (毫米汞柱)							
1 kPa = 0.0	10 bar						

表 J. 26 单位和比例标识符 0x1A 定义

单位和比			最小	值	最	大值	外部检测点	设备国际单位
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)		制)显示
(Hex)			(11011)	(200)	(11011)	(200)		.,
0x1A	压力	每比特 1kPa	0x0000	0 kPa	0xFFFF	65535 kPa	xxxx k	Pa(仪表)
UXIA	(仪表)	无符号型	00000	UKFa	UXITIT	03333 KFa	(xxxx	x.x PSI)
换算: kPa	-> PSI:			数据剂	克围举例:	显示举例:		
1 kPa (10 H	(Pa) = 0.14	150377 PSI						
附加换算:								
1 kPa = 4.0	146309 inl	H2O	0x0000			0 kPa	0 kPa	(0.0 PSI)
1 kPa = 10	1.9716213	3 毫米 H2O (毫米	0x0001			+1 kPa	1 kPa	(0.01PSI)
水柱)		0xFFFF + 65535 kPa			65535 kPa	65535 kPa	(9505.0 PSI)	
1 kPa = 7.50	006151 毫	毫米 Hg (毫米汞柱)						
1 kPa = 0.0	10 bar							

表 J. 27 单位和比例标识符 0x1B 定义

单位和比			最小值		最大值		外部检测设备国际单位
例标识符 (Hex)	描述	比例/比特	(Hex)	(ex) (Dec) (Hex)		(Dec)	制(公制)显示
0x1B	压力	每比特 10kPa	0x0000	0 kPa	0xFFFF	655350	xxxxx kPa(仪表)
OXID	(柴油压力)	无符号型	020000	U KI a	OXITIT	kPa	(xxxxx.x PSI)
换算: kPa	换算: kPa -> PSI:			数据剂	克围举例:		显示举例:

1 kPa (10 HPa) = 0.1450377 PSI				
附加换算:				
1 kPa = 4.0146309 inH2O	0x0000	0 kPa	0 kPa	(0.0 PSI)
1 kPa = 101.9716213 毫米 H2O (毫米水	0x0001	+1 kPa	10 kPa	(1.5PSI)
柱)	0xFFFF	+655350 kPa	655350kPa	(95050.5PSI)
1 kPa = 7.5006151 毫米 Hg (毫米汞柱)				
1 kPa = 0.010 bar				

表 J. 28 单位和比例标识符 0x1C 定义

单位和比			最小值		最大	位	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	角度	每 bit 0.01°	0x0000	0°	0xFFFF	655.35°	xxx.xx°
	用坟	无符号型		数据范围	围举例:		显示举例:
0x1C			0x0000)		0°	0.00°
UXIC			0x0001		+ 0.01°		0.01°
			0x8CA0		360°		360.00°
			0xFFF	F	+ 65	55.35°	655.35°

表 J. 29 单位和比例标识符 0x1D 定义

单位和比			最小	值	最力	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	本	每 bit 0.5 °	0x0000	0°	0xFFFF	32767.5°	xxxxx.x °
	角度	无符号型		数据范围	围举例:		显示举例:
0x1D			0x0000			0 °	0.0 °
			0x0001			0.5 °	0.5 °
			0xFFFF		32	2767.5°	32767,5 °

表 J. 30 单位和比例标识符 0x1E 定义

单位和比			最小值		最	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	当量比	每 bit	0x0000	0	0xFFFF	1.999	x.xxx lambda
0.15	コ里に (lambda)	0.0000305 无符号型		数据范围		显示举例:	
0x1E	等于实际	的空/燃比除以	0x0000			0	0.000 lambda
	理论空/燃	比	0x0001			1	1.000 lambda
	(汽油机 1	4.64)	0xFFFF			1.999	1.999 lambda

表 J. 31 单位和比例标识符 0x1F 定义

单位和比			最小值 (Hex) (Dec)		最	大值	外部检测设备
例标识符	描述	比例/比特			(Hex)	(Dec)	国际单位制(公制)
(Hex)							显示
	空/燃比	每 bit 0.05	0x0000	0	0xFFFF	3276.75	xxxx.xx 空/燃比
	工/然比	无符号型		数据范	围举例:		显示举例:
			0x0000)		0	0.00 空/燃比
0x1F	实际的空	/燃比	0x000	1		0.05	0.05 空/燃比
	不除以理	论空/燃比	0x0014			1.00	1.00 空/燃比
	(汽油机 1	4.64)	0x0126			14.7	14.70 空/燃比
			0xFFI	FF	:	3276.75	3276.75 空/燃比

表 J. 32 单位和比例标识符 0x20 定义

单位和比			最小	最小值		大值	 外部检测设备国际单			
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示			
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	E 161(57 161) 3571			
	比率	每 bit 0.0039062	0x0000	0	0xFFFF	255.993	XXX.XXX			
	14年	无符号型		数据范	围举例:		显示举例:			
0x20			0x0000	0		0	0.000			
			0x000)1	0.0	039062	0.004			
			0xFFI	FF	:	255.993	255.993			

表 J. 33 单位和比例标识符 0x21 定义

单位和比			最小	最小值		で値	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
, , ,	频率	每 bit 1 mHz	0x0000	0	0xFFFF	65.535	xx.xxx Hz
	炒 华	无符号型		数据范	围举例:		显示举例:
0x21	協質	mIIa > IIa > I/Ia.	0x0000			0 mHz	0.000 Hz
	换算: mHz -> Hz -> kHz: 1000 mHz = 1 Hz		0x8000		327	68 mHz	32.768 Hz
	1000 11	inz – i nz	0xFFF	F	655	35 mHz	65.535 Hz

表 J. 34 单位和比例标识符 0x22 定义

单位和比			最小	值	最	大值	 外部检测设备国际单
例标识符	描述	比例/比特	(11)	(D)	(11)	(D)	位制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	[瓦山1(又山1)7F公)
022	频率	每 bit 1 Hz	0x0000	0 Hz	0xFFFF	65535 Hz	xx.xxx Hz
0x22	刎竿	无符号型		数据范围	举例:		显示举例:

换算: mHz -> Hz -> kHz:	0x0000	0 Hz	0 Hz
1000 Hz = 1 KHz	0x8000	32768 Hz	32768 Hz
1000 KHz = 1 MHz	0xFFFF	65535 Hz	65535 Hz

表 J. 35 单位和比例标识符 0x23 定义

单位和比			最小值			 大值	外部检测设备国际单
例标识符	描述	比例/比特	(Hov)	(Dec)	(Uov)	(Dec)	位制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	□ 163(♥ 163) 3E 14.
	频率	每 bit 1 KHz	0x0000	0 KHz	0xFFFF	65535 KHz	xx.xxx MHz
	- - - - - - -			数据		显示举例:	
0x23	换算:1	$mHz \rightarrow Hz \rightarrow kHz$:	0x000	00	0 KHz		0 .000 MHz
	1000 H	z = 1 KHz	0x8000		32768 KHz		32.768 MHz
	1000 K	Hz = 1 MHz	0xFF	FF	(65535 KHz	65.535 MHz

表 J. 36 单位和比例标识符 0x24 定义

单位和比			最小	值	最为	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	每 bit 1 次		0x0000	0 次	0xFFFF	65535	xxxxx 次
0.24	计数	无符号型		数据范围	举例:		显示举例:
UX24	0x24		0x0000			0 次	0 次
			0xFFFI	7	655	335 次	65535 次

表 J. 37 单位和比例标识符 0x25 定义

单位和比			最小值		最	大值	外部检测设备国际单位
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	制(公制)显示
(Hex)			(IICA)	(DCC)	(IICA)	(DCC)	164(54 164) 3574
	每 bit 1 km 距离		0x0000	0 次	0xFFFF	65535	xxxxx km(xxxxx mile)
025	四百	无符号型		数据范	显示举例:		
0x25	换算: km -> mile:		0x0000		0 km		0 km (0 mile)
	1 km=	0.62137 miles	0xFFF	F	6	5535 km	65535 km (40721 mile)

表 J. 38 单位和比例标识符 0x26 定义

单位和比			最久	卜值	4	最大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
026	伏特	每 bit 0.1mV/ms	0x0000	0 V/ms	0xFFFF	6.5535 V/ms	xx.xxxx V/ms
0x26	每秒	无符号型		数据范	显示举例:		

换算: mV/ms -> V/ms: 1000 mV/ms = 1 V/ms	0x0000 0x0001 0xFFFF	0 mV/ms 0.1mV/ms +6553.5 mV/ms	0.0000 V/ms 0.0001 V/ms 6.5535 V/ms
	UXFFFF	+0333.3 III V/IIIS	0.3333 V/IIIS

表 J. 39 单位和比例标识符 0x27 定义

单位和比			最小值		最	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	单位时	每 bit 0.01 g/s	0x0000	0 g/s	0xFFFF	655.35 g/s	xxx.xx g/s(x.xxx lb/s)
0x27	间进气 量	无符号型		数据	显示举例:		
0x27	始質.α/ β	5 > 1 b /c⋅	0x000	00	0 g/s		0.00 g/s(0.000 lb/s)
		(現実) (現実) 現場 (現実) 現場 (現実) 現場 (現実) 現場 (現実) またい またい またい またい またい またい またい はいまい はいまい は		0x0001		+0.01 g/s	0.01 g/s(0.000 lb/s)
	1 g/s - 0.0	7022040 10/3	0xFF	FF	+6	55,.35 g/s	655.35 g/s (1.445 lb/s)

表 J. 40 单位和比例标识符 0x28 定义

单位和比			最小值		最	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	单位时间	每 bit 1 g/s	0x0000	0g/s	0xFFFF	65535 g/s	xxxxx g/s(xxx.xx lb/s)
	进气量	无符号型		数据范	围举例:		显示举例:
0x28	换算: g/s ->	> 1h/a.	0x0000		0 g/s		0 g/s (0.000 lb/s)
		22046 lb/s	0x0001		+1 g/s		1 g/s (0.000 lb/s)
	1 g/s - 0.002	22040 10/S	0xFFI	0xFFFF		535 g/s	65535 g/s (144.48 lb/s)

表 J. 41 单位和比例标识符 0x29 定义

单位和比			最小值		最	大值	· 外部检测设备国际单位制
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	(公制)显示
	单位	每 bit 0.25	0x0000	0 Pa/s	0xFFFF	16.384	xx.xxx kPa/s
0x29	时间	Pa/s	0x0000	U Pa/S	UXFFFF	kPa/s	(xx.xxx inH2O/s)
	压力	无符号型	数据范围举例:				显示举例:
换算: inH	2O/s -> k	Pa/s					
1 inH2O/s	= 0.24908	89 kPa/s	0x0000	0 Pa/	S	0 inH2O/s	0.000 kPa/s (0.000 inH2O/s)
(英寸水柱)	(英寸水柱) 1 inH2O = 249.0889 Pa		0x0004	+1 Pa	a/s +4.0	15 inH2O/s	0.001 kPa/s (4.015 inH2O/s)
(毫米水柱) 1 mmH2O = 9.80665 Pa		0xFFFF +16384 Pa/s +65.5348 inH2O/s		16.384kPa/s(65.775inH2O/s)			
(毫米汞柱)	1 mmHg	s = 133.3224 Pa					

表 J. 42 单位和比例标识符 0x2A 定义

		单位和比	描述	比例/比特	最小值	最大值	外部检测设备国际单
--	--	------	----	-------	-----	-----	-----------

例标识符	标识符		(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	
	光	复1:400011/1	0**0000	0.150/15	0xFFFF	65.535	2222 22222 1z o /la
	単位时间 名 进气量	每 bit 0.001 kg/h 无符号型	0x0000	0 kg/h	OXITITI	kg/h	xx.xxx kg/h
02 4				数据范	显示举例:		
0x2A	换算: lbs/s -> kg/h: 1 lbs/s = 0.4535924 kg/h		0x0000 0 kg/h			0.000 kg/h	
			0x0001 +0.001 kg/h			0.001 kg/h	
			0xFFFF		+6	55.535 kg/h	65.535 kg/h

表 J. 43 单位和比例标识符 0x2B 定义

单位和比			最小值		最大值		外部检测设备国际单
例标识符 描述 (Hex)		比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
(HCA)		1 -> \+ +\++ 1 \++	0.0000	0	0 EEEE	65525	24.1
	开关	十六进制转十进制	0x0000	0	0xFFFF	65535	xxxxx switches
		无符号型		数据范	围举例:		显示举例:
0x2B			0x0000		0 switches		0 switches
			0x0001		+1 switches		1 switches
			0xFFFF		+65535	switches	65535 switches

表 J. 44 单位和比例标识符 0x2C 定义

单位和比	和比		最么	最小值		大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	每缸进 气量	每 bit 0.01 g/cyl 无符号型	0x0000	0 g/cyl	0xFFFF	65535 g/cyl	xxx.xx g/cyl
				数据范围	显示举例:		
0x2C			0x0000 0x0001 0xFFFF			0 g/cyl 0.01 g/cyl 5.35 g/cyl	0.00 g/cyl 0.01 g/cyl 655.35 g/cyl

表 J. 45 单位和比例标识符 0x2D 定义

单位和比	单位和比		最	小值	最	大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
0x2D	每冲程		0x0000	0 mg/stroke	0xFFFF	65535 mg/stroke	xxx.xx mg/stroke
	世 (里	(里) 儿付亏空		数据范围	显示举例:		

0x0000	0 mg/stroke	0.00 mg/stroke
0x0001	+0.01 mg/stroke	0.01 mg/stroke
0xFFFF	+655.35 mg/stroke	655.35 mg/stroke

表 J. 46 单位和比例标识符 0x2E 定义

单位和比	位和比		最小	值	最为	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	正/误	状态编码	0x0000	false	0xFFFF	true	
		无符号型		数据范围	举例:		显示举例:
0x2E			0x0 0xF	000 FFF		lse ue	false true

表 J. 47 单位和比例标识符 0x2F 定义

单位和比			最小	值	最为	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	百分率	每 bit 0.01 %	0x0000	0 %	0xFFFF	65.535 %	xxx.xx %
		无符号型	数据范围举例:				显示举例:
0x2F			0x0000		0.00 %		0.00 %
UXZI			0x0001		+0.01 %		0.01 %
			0x2710		+100 %		100.00 %
			0xFFF	F	+655.35 %		655.35 %

表 J. 48 单位和比例标识符 0x30 定义

单位和比例标识符描述(Hex)		比例/比特	最小值		最	大值	外部检测设备国际
			(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
	百分率	每 bit 0.001526 %	0x0000	0 %	0xFFFF	100.00 %	xxx.xx %
		无符号型		数据范	显示举例:		
0x30			0x0000 0x0001 0xFFFF	7	+100	0.00% +0.01% 0.00641%	0.00% 0.00% 100.00%

表 J. 49 单位和比例标识符 0x31 定义

单位和比		比例/比特	最小值		最大值		外部检测设备
例标识符	描述		(Hov)	(Daa)	(Harr)	(Dee)	国际单位制(公制)
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	显示
0x31	容量	每 bit 0.001 L	0x0000	0 L	0xFFFF	65.535 L	xx.xxx L

	无符号型	数据范围举例:		显示举例:
		0x0000	0L	0.000 L
		0x0001	+0.001 L	0.001 L
		0xFFFF	+65.535 L	65.535 L

表 J. 50 单位和比例标识符 0x32 定义

单位和比	比		最小	最小值		最大值	外部检测设备
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	国际单位制(公制) 显示
		每 bit	0x0000	0 inch	0xFFFF	1.999 inch	xx.xxx mm
	长度	0.0000305 inch					(x.xxx inch)
		无符号型		数据剂	范围举例 :		显示举例:
			0x0000			0 inch	0.000 mm (0.000 inch)
0x32			••			••	••
	1 . 1	1 inch = 25,4 mm				••	••
	1 inch			0x0001		04880 inch	0.012 mm (0,000 inch)
				0x2710)5185 inch	0.013 mm (0.001 inch)
			0xFFF	ΪF	+ 1.99	88175 inch	50.770 mm (1.999 inch)

表 J. 51 单位和比例标识符 0x33 定义

单位和比			最久	卜值	最大值		外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	当量比	每 bit	0x0000	0	0xFFFF	15.99976	xx.xx lambda
	一里儿 (lambda)	0.00024414 无符号型		数据范	显示举例:		
0x33			0x0000			0	0.00 lambda
0x33	等于实际	的空/燃比除以	0x0001			0.00	0.00 lambda
	理论空/燃	比	0x1000			1.00	1.00 lambda
	(汽油机 1	4.64)	0xE5BE			14.36	14.36 lambda
			0xFFFF 16.00			16.00	16.00 lambda

表 J. 52 单位和比例标识符 0x34 定义

单位和比		比例/比特	最小值		最大值		外部检测设备国际单
例标识符 (Hex)	描述		(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
0x34		每 bit 1 minute 无符号型	0x0000	0	0xFFFF	65535	xx days. xx h ,xx min
	时间			数据范围	举例:		显示举例:
			0x0000			0 min	0 days,0 h,0 min

换算 s -> min -> h:	0x003C	+ 60 min	0 days,1 h,0 min
60 min = 1 h	0x0E10	+ 3600 min	2 days,12 h,0 min
24 h = 1 day	0xFFFF	+ 65535 min	45 days,12 h,15 min

表 J. 53 单位和比例标识符 0x35 定义

单位和比			最小值		最大值		外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	中语	每 bit 100 ms	0x0000	0	0xFFFF	655.350	xxx.xx s (x min, xx s)
	时间	无符号型	数据范围举例:				显示举例:
0x35			0x0000			0 ms	0.00 s (0 min, 0 s)
	换算 s -> min -> h:		0x8000		+ 327.680 ms		327.68 s(5 min,28 s)
	60 s =	60 s = 1 min		0xEA60		0.000 ms	600.00 s(10min,0 s)
	60 min	= 1 h	0xFFFF	+ 655.350 ms		5.350 ms	655.35 s(10min,55 s)

表 J. 54 单位和比例标识符 0x36 定义

单位和比			最小值		最大值		外部检测设备国际单位
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	制(公制)显示
(Hex)			(HCA)	(Dec)	(HCA)	(Dec)	164(- 164) <u>- 164</u>
			0x0000	0	0xFFFF	65535	xxx.xx g
	重量	每 bit 0.01 g 无符号型	0.0000	U	UXITIT	03333	(x.xxx lbs)
				数据范围	围举例:		显示举例:
0x36			0x0000)	0 g		0.00 g(0.000 lbs)
			0x003C		+ 0.82 g		0.82 g(0.002 lbs)
	换算g	换算 g -> lbs:		0x0E10		36.17 g	36.17 g(0.079 lbs)
	1 lbs = 453 g		0xFFFF		+ 655.35 g		655.35 g(1.447 lbs)

表 J. 55 单位和比例标识符 0x37 定义

单位和比			最小值		最大值		外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
			0x0000	0	0xFFFF	65535	x,xxx.xx g
	重量	每 bit 0.1 g 无符号型	0.0000		OXITIT	03333	(xx.xxx lbs)
			数据范围举例:			显示举例:	
0x37			0x0000 0 g				0.00 g(0.000 lbs)
			0x003C		+8.20 g		8.20 g(0.018 lbs)
	换算 g -> lbs: 1 lbs = 453 g		0x0E10		+ 361.7 g		361.7 g(0.798 lbs)
			0xFFFF	0xFFFF + 6553.5 g			6553.5 g(14.467 lbs)

表 J. 56 单位和比例标识符 0x38 定义

单位和比			最小值		最	大值	外部检测设备
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	国际单位制(公制) 显示
			0x0000	0	0xFFFF	65535	xx.xxx g
		每 bit 1 g 无符号型		Ť	OXITII	03333	(xxx.xx lbs)
	重量			数据范围	举例:		显示举例:
0x38			0x0000		0 g		0 g (0.00 lbs)
			0x003C		+82 g		82 g (0.18 lbs)
	换算 g·	-> lbs:	0x0E10)	+	3617 g	3617 g (7.98 lbs)
	1 lbs = 4	53 g	0xFFFF		+ (65535 g	65535 g (144.67 lbs)

表 J. 57 单位和比例标识符 0x39 定义

单位和比			最小	值	最	:大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
(Hex)	百分率	每 bit 0.01 %	0x0000	327.68 %	0xFFFF	+327.67 %	xxx.xx %
	日77年 	无符号型	数据范围举例:				显示举例:
			0x0000		-327.68%		-327.68%
			0x58F0		-100.00%		-100.00%
0x39			0x7FF	F	-0.01%		-0.01 %
	换算: H = E*10032768		0x8000		0%		0.00%
			0x800	1	+0	0.01%	+0.01%
			0xA710		+100%		+100.00%
			0xFFI	FF	+327.67%		+327.67%

从 0x01 到 0x7F 范围内的无符号型单位和比例标识符没有被规定,是 ISO/SAE 预留的。更多的比例标识符提交给 SAE 汽车电子/电气系统诊断标准委员会或 ISO/TC22/SC3/WG1 等委员会考虑在此文件实施。

E.2 符号型单位和比例标识符定义

表 J. 58 单位和比例标识符 0x81 定义

单位和比			最小	值	最力	大值	外部检测设备国际
例标识符	描述	比例/比特	(Hoy)	(Dog)	(How)	(Dan)	单位制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	十 区 htt (立 htt)对 文 / 1
		每 bit 1	0x8000	-32768	0x7FFF	+32767	xxxxx
	原始值	十六进制转十进制		数据范围省	举例:		显示举例:
		符号型	0x800)0	-3276	58	-32768
0x81			0xFFF	F	-1		-1
			0x0000		0		0
			0x0001		+ 1		1
			0x7FI	FF	+ 3276	57	32767

表 J. 59 单位和比例标识符 0x82 定义

单位和比			最小	値	最大值		外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
		每 bit 0.1	0x8000	-3276.8	0x7FFF	+3276.7	xxxx,x
	原始值 十六进制转十进制			数据范围	举例:		显示举例:
		符号型	0x80	00	-327	6.8	-3276.8
0x82			0xFF	FF	-0.1		-0.1
			0x0000		0		0.0
			0x0001		+	0.1	0.1
			0x7F	FF	+ 327	6.7	3276.7

表 J. 60 单位和比例标识符 0x83 定义

单位和比			最小	最小值		大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
		每 bit 0.01	0x8000	-327.68	0x7FFF	+327.67	XXX.XX
	原始值 十六进制转十进制			数据范围	举例:		显示举例:
		符号型	0x8000)	-3	27.68	-327.68
0x83			0xFFFI	7	-0.01		-0.01
			0x0000			0	0.00
			0x0001	[-	+ 0.01	0.01
			0x7FFI	7	+ 3	27.67	327.67

表 J. 61 单位和比例标识符 0x84 定义

单位和比			最	小值	最为	大值	外部检测设备国际
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
(Hex)			(HCA)	(Dec)	(HCA)	(Bee)	1 Hz 164 (Hz 164) - Tr. 4
		每 bit 0.001	0x8000	-32.768	0x7FFF	+32.767	XX.XXX
	原始值	十六进制转十进制		数据范围	国举例:		显示举例:
	// 1/ H III.	符号型	0x80	00	-3:	2.768	-32.768
0x84		14 4 =	0xFF	FF	-	0.001	-0.001
			0x000	00		0	0.000
			0x00	01	+	0.001	0.001
			0x7F	FF	+ 3	2.767	32.767

表 J. 62 单位和比例标识符 0x85 定义

	ACCOUNT THE INVESTIGATION OF THE PROPERTY OF T										
单位和比			最小	值	最大值		 外部检测设备国际				
例标识符	描述	比例/比特	(Harr)	(Daa)	(Haw)	(Das)	单位制(公制)显示				
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	去压帥(又帥)死少				
		每 bit 0.0000305	0x8000	-0.999	0x7FFF	+0.999	x,xxx				
	原始值 十六进制转十			数据范	围举例:		显示举例:				
		符号型	0x800	0	- 0.9	99424	-0.999				
0x85			0xFFF	F	- 0.00	00305	0.000				
			0x0000)		0	0.000				
			0x0001	1	+ 0.00	00305	0.000				
			0x7FF	F	+ 0.9	99394	0.999				

表 J. 63 单位和比例标识符 0x86 定义

单位和比			最小	值	最力	大值	外部检测设备国际
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	— ET 163(ET 163) 3E5/17
		每 bit 0.000305	0x8000	-9.994	0x7FFF	9.994	x.xxx
	原始值	十六进制转十进制	数据范围等		举例:		显示举例:
		符号型	0x800	0	-9.99	424	-9.994
0x86			0xFFF	F	-0.000305		0.0000
			0x0000		0		0.0000
			0x0001		+ 0.000305		0.0000
			0x7FF	F	+ 9.99	394	9.994

表 J. 64 单位和比例标识符 0x8A 定义

单位和比			最久	卜值	最力	值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
			0x8000	-3.9977 V	0x7FFF	3.9976V	x.xxxx V
	每 bit 0.122 mV			数据范围	举例:		显示举例:
	1 1 /12	符号型	0x800	0	-3997,696	mV	-3.9977V
0x8A			0xFFF	F	-0.122	mV	-0.0001V
	换算: n	nV -> V·	0x0000		0 mV		0.0000 V
	1000 mV		0x000	1	+ 0.122 mV		0.0001V
	1000 111 (1 V	0x7FF	F	+ 3997.696	mV	3.9976V

表 J. 65 单位和比例标识符 0x8B 定义

单位和比			最	最小值		大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
			0x8000	-32.768 V	0x7FFF	32.767 V	xx.xxxV
	每 bit 0.001 V 电压			数据范围	围举例:		显示举例:
		符号型	0x8000		-327	68 mV	-32.768 V
0x8B			0xFF	FF		-1 mV	-0.001 V
	换算: mV -> V:		0x0000		$0~\mathrm{mV}$		0.000 V
	1000 mV		0x00	001	+ 1 mV		0.001 V
	1000 111 4	. ,	0x71	FFF	+ 3276	67 mV	32.767 V

表 J. 66 单位和比例标识符 0x8C 定义

单位和比			最	小值	最	大值	外部检测设备国际
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
(Hex)			(11011)	(200)	(11011)	(200)	, - , , (, , , , , , , , , , , , , , ,
		每 bit 0.01 V	0x8000	-327.68 V	0x7FFF	+327.67 V	xxx.xx V
	电压	符号型		数据范围	国举例:		显示举例:
		初夕空 	0x800	0x8000		580 mV	-327.68 V
0x8C			0xFFF1	F	-10 mV		-0.01 V
	换算: n	nV -> V:	0x0000		0 mV		0.00 V
	1000 mV	V = 1 V	0x0001		+ 10 mV		0.01 V
			0x7FF	F	+ 3270	670 mV	327.67 V

表 J. 67 单位和比例标识符 0x8D 定义

单位和比					最为	大值	外部检测设备
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	国际单位制(公制) 显示
		每 hit 0 00200625 mA	0x8000	-128.0 mA	0x7FFF	127.996 mA	xxx.xxx mA
	电流	电流 每 bit 0.00390625 mA 符号型		数据范围	举例:		显示举例:
0x8D		14 4 7	0x8000)	-1	28 mA	-128.0 mA
UXOD			0xFFFF		-0.00390625 mA		-0.004 mA
	换열.	换算: mA -> A: 1000 mA = 1 A)	0 mA		0.00 mA
)1 +	+ 0.00390625 mA		0.004 mA
	1000 11	11 111	0x7FF	F	+ 127.9	96 mA	127.996 mA

表 J. 68 单位和比例标识符 0x8E 定义

单位和比			最生	最小值		大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
		0x8000	-32.768 A	0x7FFF	+32.767A	xx.xxx A	
	电流	每 bit 0.001 A		数据范围	举例:		显示举例:
	<u> </u>	符号型	0x8000		-32768 mA		-32.68 A
0x8E			0xFFFF		-1 mA		-0.001 A
	换質.n	换算: mA -> A: 1000 mA = 1 A		0x0000		0 mA	0.000 A
				0x0001		1 mA	0.001 A
	1000 1111		0x7FF	F	+ 3276	7 mA	32.767 A

表 J. 69 单位和比例标识符 0x90 定义

单位和比			最	小值	最	大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
	时间	每 bit 1 ms 符号型	0x8000	-32.768 s	0x7FFF	+32.767 s	xx.xxx s
0.00				数据范围		显示举例:	
0x90			0x8000 0x0001 0x7FFF			2768 ms + 1 ms 2767 ms	-32.768 s + 0.001 s + 32.767 s

表 J. 70 单位和比例标识符 0x96 定义

单位和比			最	小值	最	大值	外部检测设备
例标识符	描述	比例/比特	(Hay)	(Daa)	(How)	(Dag)	国际单位制(公制)
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	显示
	温度	复 5 + 0.1 C	0x8000	-3276.8 °C	0x7FFF	+3276.7°C	xxxx.x C
		每 bit 0.1 C 符号型	0x8000	-3270.8 C	OX/ITT	13270.7 C	(xxxx.x F)
				数据范围	显示举例:		
			0x8000		-32	76.8 °C	-3276.8 °C (5886.2 °F)
0x96			0xFE70		-40 °C		-40.0 °C (-40.0 °F)
0.00	换算:	G · OF	0xFFFF		-0.1 °C		-0.1 °C (31.8 °F)
		C ->°F: * 1.8 + 32°C	0x000	0	0 °C		0.0 °C (32.0 °F)
	r – C	1.6 ± 32 C	0x000)1		+0.1 °C	0.1 °C (32.2 °F)
			0x4E2	20	+ 3	2000 °C	2000.0 °C (3632.0 °F)
			0x7FI	FF	+ 32	76.7 °C	3276.7°C (5930.1 °F)

表 J. 71 单位和比例标识符 0x9C 定义

单位和比			最小	值	最为	大值	外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	免庇	每 bit 0.01	0x8000	-327.68	0x7FFF	+327.67	xxx.xx
	角度	符号型		数据范围	显示举例:		
			0x8	000	-327.68 °		-327.68 °
0x9C			0xF060		-40 °		-40.00 °
0.000			0xFFFF		-0.01 °		-0.01 °
			0x00	000	0 °		0.00 °
			0x0FA0		+ 40 °		+ 40.00 °
			0x7	FFF	+ 327.67	7 °	+ 327.67°

表 J. 72 单位和比例标识符 0x9D 定义

单位和比			最小值		最大值		外部检测设备国际单位
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	制(公制)显示
0x9D	角度	每 bit 0.5	0x8000	-16384	0x7FFF	+16383.5	xxxxx.x
符号型				数据范	显示举例:		

Q/EQC-773-2013

0x8000	-16384 °	-16384.0°
0xFF60	-80 °	-80.0 °
0x FFFF	-0.5 °	-0.5 °
0x0000	0 °	0.0 °
0x0001	0.5 °	0.5°
0x00A0	+ 80 °	80.0 °
0x7FFF	+ 16383.5 °	16383.5°

J. 73 单位和比例标识符 0xA8 定义

单位和比			最	小值			外部检测设备国际单
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示
	单位时间	每bit 1 g/s	0x8000	-32768 g/s	0x7FFF	+32767 g/s	xxxxx g/s
	进气量	符号型	oncoo				(xx,xxx lb/s)
	20 (里			数据范围	显示举例:		
0xA8			0x8000		-32768 g/s		-32768 g/s (-72.24 lb/s)
UXA6	· 44. /	Life forty		0x FFFF		-1 g/s	-1 g/s (-0.00 lb/s)
	换算: g/s -		0x00	000	0 g/s		0 g/s (-0.00 lb/s)
	1 g/s = 0.002	22046 lb/s	0x0001		+ 1 g/s		1 g/s (-0.00 lb/s)
			0x7	FFF	+ 32767 g/s		32767 g/s (72.24 lb/s)

表 J. 74 单位和比例标识符 0xA9 定义

单位和比		比例/比	最	小值	最力	大值	外部检测设备国际单位制(公	
例标识符 (Hex)	标识符 描述 特		(Hex)	(Dec)	(Hex) (Dec)		制)显示	
	压力	每 bit	0x8000	-8192 Pa/s	0x7FFF	+8191.7	xxxx.xx Pa/s	
0xA9		0.25 Pa/s	0.0000	-0192 Fa/S	0x/111	5 Pa/s	(xx.xxx inH2O/s)	
	母炒	符号型		数据范围	举例:	显示举例:		
			0x8000		-8192 Pa/s		-8192.00 Pa/s(-32.888 inH2O/s)	
 换算: Pa ->	\ inII20		0xFF	FC	-1 Pa/s		-1.00 Pa/s(-0.004 inH2O/s)	
			0x000	00		0 Pa/s	0.00 Pa/s(-0.000 inH2O/s)	
1 Pa = 0.0040146309 inH2O		0x000)4	+	1 Pa/s	1.00 Pa/s(-0.004 inH2O/s)		
			0x7Fl	FF	+ 8191.7	5 Pa/s	8191.75 Pa/s(32.887 inH2O/s)	

表 J. 75 单位和比例标识符 0xAF 定义

单位和比 描述 比例/比特	最小值	最大值	外部检测设备国际单	
---------------	-----	-----	-----------	--

例标识符			(11)	(D)	(H)	(D)	位制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	
	百分率	每 bit 0.01 %	0x8000	-327.68 %	0x7FFF	+327.67 %	xxx.xx %
	日刀竿	符号型		数据范围		显示举例:	
			0x800	00	-327.68 %		-327.68 %
			0xD8F0		-100.00 %		-100.00 %
0xAF			0xFFI	FF	-0.01 %		-0.10 %
			0x000	00		0 %	0.00 %
			0x000)1	+ 0.01 %		+ 0.10 %
			0x271	10	+ 100 %		+ 100.00 %
			0x7FFF		+ 327.	67 %	+ 327.67 %

表 J. 76 单位和比例标识符 0xB0 定义

单位和比			最	:小值	最	大值	外部检测设备国际
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	单位制(公制)显示
	百分	每 bit 0.003052 %	0x8000	-100.01 %	0x7FFF	+100.00 %	xxx.xx %
	率 符号型 数据范围省						显示举例:
			0x8000		-100,007936 %		-100.01 %
0xB0			0xFF	FF	-0,003052 %		0.00 %
			0x0000		0 %		0.00 %
			0x0001		+ 0,003052 %		0.00 %
			0x7F	FF	+ 100,0	04884 %	+100.00 %

表 J. 77 单位和比例标识符 0xB1 定义

单位和比			1	最小值	£	最大值	外部检测设备国际
例标识符	描述	比例/比特	(Hov)	(Dag)	(Hov)	(Dec)	单位制(公制)显示
(Hex)			(Hex)	(Dec)	(Hex)	(Dec)	平位的(公前)业小
	单位时	每 bit 2 mV/s	0x8000	-65536 mV/s	0x7FFF	+65534mV/s	xxxxx mV/s
	间电压	符号型		数据范围	显示举例:		
			0x8	8000	-655	36 mV/s	-65536 mV/s
0xB1			0xI	FFFF	-2 mV/s		-2 mV/s
			0x(0x0000		0 mV/s	0 mV/s
			0x0001		+ 2 mV/s		+ 2 mV/s
			0x7	7FFF	+ 655	534 mV/s	+ 65534 mV/s

表 J. 78 单位和比例标识符 0xFD 定义

单位和比			最小值		最大值		外部检测设备国际单	
例标识符	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	位制(公制)显示	
(Hex)								
	绝对	每 bit 0.001 kPa	0x8000	-32.768 kPa	0x7FFF	+32.767kPa	xx.xxx kPa	
	压力	符号型	数据范围举例:		显示举例:			
0xFD			0x8000 -32,768 kPa		-32.768 kPa			
			0x00	001	+ 0,	001 kPa	+ 0.001 kPa	
			0x7FFF + 32.767 kPa		+ 32.767 kPa			

表 J. 79 单位和比例标识符 0xFE 定义

单位和比			最小	值	最力	大值	外部检测设备国际单位制
例标识符 (Hex)	描述	比例/比特	(Hex)	(Dec)	(Hex)	(Dec)	(公制)显示
(Hex)				-8192		8191.75	xxxx.xx Pa
0xFE	压力	每 bit 0.25 Pa	0x8000	Pa	0x7FFF	Pa	(xx.xxx inH2O)
	(真空度)	符号型	数据范围举例:			I	显示举例:
	Mr Mr D 1 1100		0x8000		-8192Pa		-8192.00Pa (-32.888 inH2O)
松笆 D-			0xFFFC		-1 Pa		-1.00 Pa (-0.004 inH2O)
换算: Pa -> inH2O 1 Pa = 0.0040146309 inH2O		0x0000		0 Pa		0.00Pa (0.000 inH2O)	
		0x0004	ļ		+ 1 Pa	1.0 Pa (0.004 inH2O)	
			0x7FFF		+ 8191.75 Pa		8191.75 Pa (32.887 inH2O)

从 0x80 到 0xFE 范围内的符号型单位和比例标识符没有被规定,是 ISO/SAE 预留的。此文件更多的比例标识符将提交给 SAE 汽车电子/电气系统诊断标准委员会或 ISO/TC22/SC3/WG1 等委员会考虑在 ISO 15031 的这部分实施。

附录 K 0x08 服务测试标识符 TID 描述 (资料性附录)

表 K. 1 测试标识符说明

测试标识符#	描述				
0x01	蒸发系统泄漏测试				
	对于 ISO15765-4 协议,请求和响应报文不应包括 DATA-A 到 DATA-E,				
	如果当前条件不执行测试,车辆发送否定码为 0x22 的否定响应表示当前条件不正确。				
	该服务只是使能执行蒸发系统泄露测试的要求的条件,但不是执行测试。例如,如果给系统增压,就关闭泄气电磁线圈防止漏气。汽车制造商要负责决定测试自动停止(本例中为打开电磁阀)的条件例如发动机运转,车速大于零,或是超过一个特定的时间周期等。				
0x02~0xFF	ISO/SAE 保留				

附录 L 0x09 服务信息类型描述 (资料性附录)

表 L. 1 VIN 数据报文计数描述

信息类型 (Hex)	车辆信息数据字节描述	比例	助记符
0x01	VIN 报文计数	1 个字节	MC_VIN
	车辆识别码报文计数:	无符号型	
	对于 ISO 9141-2、ISO 14230-4 和 SAE J1850,报文计数均		
	为 0x05。对于 ISO 15765-4, 一般不推荐/需要支持这个参		
	数。改信息的响应不做具体规定。		

表 L. 2 车辆识别码 VIN 数据字节描述

信息类型	描述	比例	外部测试设备			
(Hex)	油心	իր իմ	国际单位制(公制)/英制显示			
0x02	车辆识别码 VIN	17 位 ASCII 字符	VIN:XXXXXXXXXXXXXXXXXX			
	对于提供 VIN 访问的车辆,建议使用下面的格式报告车辆识别码信息,以方便外部测试设备对					
	车辆进行诊断或检查/维护程序等。					
	对于 ISO 9141-2、ISO 14230-4 和 SAE J1850,这个响应包含如下报文:					
	- 报文 1: 3 个 0x00 填充字节, 之后是 VIN 字符#1;					
	- 报文 2: VIN 第 2 到第 5 位字符;					
	- 报文 3: VIN 第 6 到第 9 位字符;					
	- 报文 4: VIN 第 10 到第 13 位字符	;				
	- 报文 5: VIN 第 14 到第 17 位字符	0				
	对于 ISO 15765-4,只有一个响应报为	文,这个信息包含所有`	VIN 字符而没填充字节。			

表 L. 3 CALID 数据报文计数描述

信息类型	 	比例	助记符
(Hex)	1 .001H \psi \xxxxxxxx 1 1 14.1H\pxi	7377	27 12 13
0x03	CALID 报文计数	1 个字节	MC_CALID
	标定标识符报文计数:	无符号型	
	对 ISO 9141-2、ISO 14230-4 和 SAE J1850,响应报文计数应是		
	4的倍数,因为每个标定标识符使用4个报文。对于ISO 15765,		
	一般不推荐/需要支持这个参数。该信息的响应不做具体规定。		

表 L. 4 标定标识符数据字节描述

信息类型	描述	比例	外部测试设备	
(Hex)	畑心	<u> </u>	国际单位制(公制)/英制显示	
0x04	标定标识符	16 位 ASCII 字符	CALID:	
			XXXXXXXXXXXXX	
	一个控制器可能有多种标题	定标识符, 取决于软件的	的结构。标定标识符最多包含 16	
	字符,均为 ASCII 编码。	其中如果有未使用字节	必须置于标定标识符尾部,且以	
	0x00 填充。			
	标定标识符用于唯一的识别	别安装在 ECU 中的软件	,如果法规要求排放相关软件标	
	定标识符,这些标识符必须	页以标准格式报告 。		
	其它供应商或机构(非东风汽车公司技术中心)也需要使用唯一标定标识符进行			
	识,以表明所作的标定不同	司于东风汽车公司技术中	卢心开发的 。	
	包含标定标识符的车辆控制	引器应该存储并报告 16	个 ASCII 码字符的标定标识符	
	(不一定 16 个字节全部使用])。		

表 L. 5 标定确认序列号计数描述

信息类型 (Hex)	车辆信息数据字节描述	比例	助记符
0x05	CVN 报文计数	1 个字节	MC_CVN
	标定确认序列号计数:	无符号型	
	对 ISO 9141-2、 ISO 14230-4 和 SAE J1850,响应		
	的报文计数是 CVNs 的个数,因为每个 CVN 需要用		
	一个报文响应。对 ISO 15765-4, 一般不推荐/需要		
	支持这个参数。该信息的响应不做具体规定。		

表 L. 6 标定确认序列号描述

信息类型	描述	比例	外部测试设备			
(Hex)	細化	HT.D.I	国际单位制(公制)/英制显示			
0x06	标定确认序列号	4 字节十六进制数	CVN: XXXXXXXX			
		(字节 A 为 MSB)				
	标定确认序列号(CVN)用来验证车辆软件完整性。东风汽车公司技术中心负责决定需要					
	多少标定确认序列	示定确认序列号以及序列号的算法,例如:数据校验和,计算覆盖的内存区域等。				
	如果排放相关的标	果排放相关的标定序列号,他们的格式应该按照标准格式实现。每个标定(由 InfoType				
	0x04 进行识别)需要至少有一个对应的标定确认序号,除非整个电控单元 ECU 是不能编					
	程的。分配给一个标定标识符(CALID)的标定确认序号(或一组标定确认序号),应该与					
	标定标识符以相同	的顺序报告给外部测试设备。				

信息类型	描述	比例	外部测试设备			
(Hex)	無 处		国际单位制(公制)/英制显示			
	CVN 的报告方式可以通过以下两种方式实现,具体实现方式由应用规定。					
	方式 1:标定确认	号在每个行程执行至少一次,而不是	在请求时计算。一个行程的长度			
	应该是一个合理的	时长(例如 5~10 ms)。计算得到的 CV	N 应该存储在外部测试设备可以			
	方便访问的非易失	便访问的非易失性存储器位置。ECU 重新编程后或蓄电池重新连通后,CVN 首次计				
	算完后,外部测试设备即可进行访问,即使发动机仍然处于运行状态。如果外部测试设					
	备访问时,尚未完成计算,这是 ECU 应该回复 0x78 否定码的否定响应,直到最终肯定					
	响应。					
	方式 2: 如果方式 1 不适用, 电控单元在外部测试设备请求时进行计算, 如果 ECU 不					
	能立即进行肯定响应时,应该回复 0x78 否定码的否定响应,直到最终肯定响应。					
	其它机构(非东风汽车公司技术中心)一般也需要使用标定确认号进行标识,而且该值应					
	该不同于东风汽车	公司技术中心所使用的值。				
	如果计算策略不需	要使用4个字节,标定确认号应该农	与对齐并用 0x00 填充。			

表 L. 7 标定确认序列号计数描述

信息类型	车辆信息数据字节描述	比例	助记符
(Hex)	一型的形态数据 1 内加松	V4 V3	257 162 15
0x07	IPT 计数	1 个字节	MC_IPT
	运行性能追踪报文计数:	无符号型	
	对 ISO 9141-2、 ISO 14230-4 和 SAE J1850,响应		
	的报文计数是 0x08。对 ISO 15765-4, 一般不推荐/		
	需要支持这个参数。该信息的响应不做具体规定		

表 L. 8 运行性能追踪描述

信息类型 (Hex)	描述	数据字节	外部测试设备国际单位 制(公制)/英制显示
0x08	运行性能追踪	32 字节	IPT:

			Q/EQC=773=2013	
信息类型 (Hex)	描述	数据字节	外部测试设备国际单位 制(公制)/英制显示	
	范围: 无符号数字型(数据 A 为 MSB)			
	该信息用来实现法规要求的性能追踪需要。			
	制造商实现的软件算法需要跟踪以下部件的运行性能	: 催化剂组	1, 催化剂组 2, 主氧传感	
	器 1, 主氧传感器 2, 燃油蒸发 0.020"泄露检测系统,	废气再循环	系统,二次进汽系统。	
	每个元件或系统的计数器应追踪某监测检测到失效的	条件全部满	足次数。	
	每个元件或系统的追踪计数需要车辆运行在特定的条	件下,每个出	监测部件或系统都有具体的	
	规定。			
	点火计数器应追踪发动机启动次数。			
	运行性能追踪记录的所有数据应按此表所列顺序报告	0		
	没有实现的数据(例如:对于只有一组催化器组的系统	 É 的第二组催	化剂检监测器追踪记录),	
	应按 0x0000 报告。			
	如果车辆使用可变气门正时(VVT)代替废气再循环系	统(EGR),豆	了变气门正时运行数据将代	
	替废气再循环系统运行数据,如果车辆废气再循环系统	统和可变气门	门正时系统都使用, 电控单	
	元应追踪二者运行性能,但选择低数值比率的数据报	告。		
	如果车辆使用的燃油蒸发系统监测,这个监测满足 0.040"的要求而不是 0.020",那么电控单			
	元应该报告 0.040"监测运行性能数据来替代 0.020"的运行性能数据。			
	车载诊断系统监测条件满足计数 2 字节 OBDCOND: xxxxx			
	车载诊断系统监测条件满足计数显示车辆运行在规定	车载诊断系统	统监测条件的次数。	
	点火周期计数器 2 字节 IGNCYCCN			
			ents	
	点火周期计数器显示发动机启动的计数。			
	催化剂监测完成计数组 1	2 字节	CATCOMP1: xxxxx cnts	
	催化剂监测完成计数组 1 显示催化剂系统 2 监测检测到失效的条件全部满足次数			
	催化剂监测条件满足计数组 1 2 字节 CATCOND1: xxxx			
	催化剂监测条件满足计数组 1 表示车辆运行在特定催化剂监测条件的次数。			
	催化剂监测完成计数组 2 2 字节 CATCOMP2: xxxxx			
	催化剂监测完成计数组 2 显示催化剂系统 2 监测检测到失效的条件全部满足次数。			
	催化剂监测条件满足计数组 2 2 字节 CATCOND2: xxxxx cnts			
	催化剂监测条件满足计数组2表示车辆运行在特定催	化剂监测条	件的次数。	
	氧传感器监测完成计数组 1	2 字节	O2SCOMP1: xxxxx cnts	
	氧传感器监测完成计数组 1 显示氧传感器 1 监测检测到失效的条件全部满足次数。			

信息类型 (Hex)	描述	数据字节	外部测试设备国际单位制(公制)/英制显示
	氧传感器监测条件满足计数组 1	2 字节	O2SCOND1: xxxxx cnts
	氧传感器监测条件满足计数组 1 表示车辆运行在特定	氧传感器监	测条件的次数。
	氧传感器监测完成计数组 2	2 字节	O2SCOMP2: xxxxx cnts
	氧传感器监测完成计数组 2 显示氧传感器 2 监测检测	到失效的条	件全部满足次数。
	氧传感器监测条件满足计数组 2	2 字节	O2SCOND2: xxxxx cnts
	氧传感器监测条件满足计数组2表示车辆运行在特定	氧传感器监	测条件的次数。
	EGR/VVT 监测完成计数	2 字节	EGRCOMP: xxxxx cnts
	EGR/VVT 监测完成计数显示 EGR/VVT 监测检测到5	 夫效的条件全	部满足次数。
	EGR/VVT 监测条件满足计数	2 字节	EGRCOND: xxxxx cnts
	EGR/VVT 监测条件满足计数表示车辆运行在特定 EGR/VVT 监测条件的次数。		
	进气系统监测完成计数(二次进气)	2 字节	AIRCOMP: xxxxx cnts
	进气系统(二次进气)监测完成计数显示进气系统监测	佥测到失效 的	り条件全部满足次数。
	空气喷射监测条件满足计数(二次进气)	2 字节	AIRCOND: xxxxx cnts
	进气系统(二次进气)监测条件满足计数表示车辆运行在特定进气系统监测条件的次数。		
	燃油蒸发系统监测完成计数。	2 字节	EVAPCOMP: xxxxx cnts
	燃油蒸发系统监测完成计数显示燃油蒸发系统测检测到失效的条件全部满足次数。		
	燃油蒸发系统监测条件满足计数。	2 字节	EVAPCOND: xxxxx cnts
燃油蒸发系统(二次进气)监测条件满足计数表示车辆运行在特定燃油蒸发系统出次数。			燃油蒸发系统监测条件的

表 L. 9 电控单元名称描述

信息类型 (Hex)	车辆信息数据字节描述	比例	助记符
0x09	ECUNAME 报文计数	1 个字节	MC_ECUNM
	电控单元/模块的缩写和名称计数:	无符号型	
	对 ISO 9141-2、 ISO 14230-4 和 SAE J1850,响应的报文计数		
	是 0x05。对 ISO 15765-4,一般不推荐/需要支持这个参数。该		
	信息的响应不做具体规定。		

表 L. 10 电控单元名称描述

信息类型	描述	比例	外部测试设备国际单位制
(Hex)	畑处		(公制)/英制显示
0x0A	电控单元名称	最多 20 个 ASCII 字符	ECU: XXXX
			ECUNAME:
		YYYYYYYYYYYYY	
	这个数据用来报告 ECU/模块的缩写和名称,以使得外部测试设备能显示这些信息。这些信息最		

这个数据用来报告 ECU/模块的缩写和名称,以使得外部测试设备能显示这些信息。这些信息最多 20 个 ASCII 字符。20 个字符中 4 个字符用来表示 ECU/模块缩写,一个字符作为分界符,15 个字符表示 ECU/模块全程,格式如下:

"XXXX-YYYYYYYYYYYYYYY"

具体位置分配为:

- 数据字节 1~4: "XXXX", ECU 的缩写;
- 数据字节 5: "-"(0x2D)分界符;
- 数据字节 6~20: "YYYYYYYYYYYYYY"正文名称。

由于部分 ECU 的缩写和名称不足以上的字节数,此时要求使用从左端开始,后续所有未使用的字节将用 0x00 填充。每个电控单元名称必须是可印刷的 ASCII 字符,而且这些字符应该使用英语拼写方式。

例#1: 0x45 0x43 0x4D 0x00 0x2D 0x45 0x6E 0x67 0x69 0x6E 0x65 0x20 0x43 0x6F 0x6E 0x74 0x72 0x6F 0x6C 0x00 译成"ECM-Engine Control"

例#2: 0x41 0x42 0x53 0x31 0x2D 0x41 0x6E 0x74 0x69 0x6C 0x6F 0x63 0x6B 0x20 0x42 0x72 0x61 0x6B 0x65 0x31 译成"ABS1-Antilock Brake1"

这将有利于技术人员更好地了解哪个电控单元/模块提供的数据。

排放相关的电控单元(控制模块)报告给外部测试设备的缩写和名称如下所列,这个表并不完整,在表中没有列出的与排放相关的 ECU 将由 ISO/SAE 来定义。

外部测试设备报告缩写	排放相关 ECU/控制模块	外部测试设备报告名称
(最夺 4 个字符)	全称	(最多 15 个字符)
ABS	防抱死制动系统控制模块	AntiLock Brake
AFCM	替代燃料控制模块	Alt. Fuel Crtl
AHCM	辅助加热器控制模块	Aux. Heat Crtl
BECM	电池能量控制模块	B+ Energy Crtl
BSCM	制动系统控制模块	Brake System
CCM	巡航控制模块	Cruise Control
CTCM	冷却液温度控制模块	Cool Temp Crtl
DMCM	驱动电机控制模块	Drive Mot.Crtl

信息类型 (Hex)	描述	比例	外部测试设备国际单位制 (公制)/英制显示
(Hex)	ECCI	排放量的关键控制信息	Emis Crit Info
	ECM	发动机控制模块	Engine Control
	FACM	燃料添加剂控制模块	Fuel Add. Crtl
	FICM	喷油器控制模块	Fuel Inj. Crtl
	FPCM	燃油泵控制模块	Fuel Pump Crtl
	FWDC	四轮驱动离合器控制模块	4 Whl Dr.Cl.Crtl
	GPCM	电热塞控制模块	Glow Plug Crtl
	GSM	变速器控制模块	Gear Shift Crtl
	HPCM	混合动力总成控制模块	Hybrid Ptr Crtl
	IPC	仪表板控制模块	Inst. Panel Cl.
	PCM	传动系控制模块	Powertrain Crtl
	SGCM	起动/发电机控制模块	Start/Gen. Crtl
	TACM	节气门执行器控制模块	Thr.Act. Crtl
	TCCM	分动箱控制模块	Transf Case Crtl
	TCM	变速器控制模块	Transm. Crtl
	UDM	尿素定量供给控制模块	Urea Inj. Ctrl

表 L. 11 ISO/SAE 预留

信息类型	 车辆信息数据字节描述	比例	助记符
(Hex)	1 4141 10 30 At 1 14 14 VE	10 11	
0x0B~0xFF	ISO/SAE 预留	-	-

附录 M (资料性附录) 编制说明

M.1 任务来源

根据东风汽车公司技术中心 2013 年标准编制计划编制。

M.2 制(修)订本标准的必要性

本标准从2009制订以来,已经在中心各乘用车车型开发中陆续得到了应用;根据车型的应用情况,以及中心对CAN总线技术的掌握,对本标准进行适当的修订,以更好地满足车型开发的需求。

M.3 标准内容的说明

如果已经具备ISO 15765 开发经验,请直接查阅该标准中诊断概述、网络层参数要求,应用层参数要求 和诊断服务章节。

如果不具备ISO 15765 开发经验,请详细阅读本标准。

由技术中心发布的电控单元技术规范与本标准不一致的情况下须遵照技术规范执行,主要考虑到如下情况:

- a)该电控单元(系统)实现了本标准的主要功能,仅有少量附加功能未实现,重新定制开发费用很高,在不影响整车网络通讯及功能实现的情况下,可以在电控单元(系统)的技术规范中对实现功能进行约定,并据此验收:
- b)该电控单元(系统)所应用的整车平台对诊断系统要求不高,或受开发费用限制,无需实现本标准规定的诊断协议,经相关部门评估和确认,可以不采用本标准。

M.4 标准征求意见及处理汇总

序	标准章	意见内容及理由	提出人	处理	
号	条号		(或单位)		
1	第1章	此标准是否针对东风所有车	吴杰余	在范围中限定"该标准针对技术中心采用 CAN 总线的	
1	分 1 早	辆,包括军车	天杰东	乘用车"	
2		增加目录	缪光益	采纳	
3	全文	表头和图标采用黑体五号	缪光益	采纳	