Denial of Service

- Understanding Denial of Service
- Some important DoS attacks
- Defense mechanisms

How to take down a restaurant

Saboteur vs. Restauranteur

Saboteur vs. Restauranteur

Saboteur vs. Restauranteur

Saboteur

Saboteur

Saboteur

Saboteur

Saboteur

No More Tables!

Denial-of-service (DoS) attacks

A general definition:

An attack which prevents legitimate users from accessing a service from a computing system

- DoS is often interpreted as a resource exhaustion attack, an attack which causes the loss of network connectivity and services by
 - consuming the bandwidth of the victim network or
 - overloading the computational, memory resources of the victim system

Typical types of attacks

- Consumption of computational resources, such as bandwidth, disk space, or CPU time
 - Most frequently happen and most difficult to defend against
- ➤ Disruption of configuration information, such as routing information
 - Proper authentication mechanism will work
- ➤ Disruption of physical network components
 - Call the cop!!!

A real story

A real story (cont'd)

Distributed Denial-of-Service (DDoS) attacks

Distributed Denial-of-Service (DDoS) attacks

Some other famous DoS/DDoS events

- > <1999: mostly "old fashion" DoS attacks, such as SYN flood, Ping of death, ..., first distributed attack tools ('fapi')
- ➤ 1999 2000: more robust DDoS tools (trinoo, TFN, Stacheldraht), auto-update, added encryption, bundled with rootkits, controlled with talk or ÍRC
- ➤ 2000: Brazilian government attacks, CNN, Yahoo, E-Bay, Datek taken down for several hours at a time due to traffic flooding

Famous events (cont'd)

- ➤ 2001: worms include DDos-features (i.e. Code Red), include time synchro., Register.com reflected DNS attack (Jan. 2001)
- ➤ 2002: DrDos (reflected) attack tools, (179/TCP; BGP=Border Gateway Protocol), India/Pakistani conflict Yaha worm (2002) http://www.vnunet.com/News/1133119, Root DNS servers
- ➤ 2003/2004: Mydoom infects thousands of victims to attack SCO and Microsoft. Al Jazeera web site was attacked http://www.infoworld.com/article/03/03/26/HNjazeera 1.html

Why DoS?

- ➤ "An Introduction to Denial of Service," Hans Husman, 1996 http://packetstormsecurity.nl/docs/hack/denial.txt
 - Sub-cultural status
 - To gain access
 - Revenge
 - Political reasons
 - Economic reasons
 - Nastiness

Trend of attacks

Attackers

From
Dave Dittrich's
slides

The Joy of Tech

by Nitrozac & Snaggy

Who downed CNN, E-Bay and Yahoo

From
Dave Dittrich's
slides

Denial of Service

Some important DoS attacks

DoS and network protocol layers

- ➤ TCP/IP protocol suite contains four layers
 - Link, IP, TCP and application
- ➤ DoS attacks could aim at all these layers
 - Link: damage of hardware, signal jamming, etc
 - IP: bandwidth exhaustion attacks, etc
 - TCP: Syn-flooding, etc
 - Application: authentication attacks, SPAM, etc

DoS on TCP: Syn-flooding attacks

- ➤ One of the most famous "old-fashion" DoS attacks
 - Attacker: an individual, with limited resources
 - Target: high performance computers on a high-speed network
 - Method: exploiting a vulnerability in the software system

➤ Syn-flooding

 Exploiting the vulnerability in TCP connection protocol which is also known as three-way handshaking protocol

TCP three-way handshaking

TCP three-way handshaking

TCP three-way handshaking

IP spoofing and DoS attacks

- ➤If the attacker uses the real IP to attack the server, he will be captured easily
- ➤ How about using someone else's? This is easy on the Internet

IP spoofing and DoS attacks

- ➤If the attacker uses the real IP to attack the server, he will be captured easily
- ➤ How about using someone else's? This is easy on the Internet

Getting a spoofed IP address

- > Fully random IP addresses
 - Some could be exotic and unroutable
 - Most could be valid

- ➤ Subnet spoofing
 - Spoof the IP of the computer in the same sub-net could evade egress filtering
- ➤ Spoofing the victim's IP
 - This leads to the reflection attacks

Why is IP spoofing Challenging?

- ➤ Whoever accessible to network socket is able to spoof IP
- The most effective defense is egress filtering
 - Edge routers of a network only allow the packets with source IP in that network to leave
 - E.g, in a network 192.168.1.0/24, only IP between 192.168.1.1 and 192.168.1.254 are valid
- >However, a network has little incentive to do egress filtering
 - Require extra network administration
 - May break mobile IP support
 - Your security expense is used to only protect OTHERS' security!!!

DoS on IP: bandwidth exhaustion attacks

- ➤ Objective: saturating the victim's bandwidth in a brute-force fashion
- **≻**Strategies
 - Control of a large number of hosts, called zombies
 - Can be easily launched using DDoS tools
 - A multiple stepping-stone approach

DoS on IP: bandwidth exhaustion attacks

- ➤ Objective: saturating the victim's bandwidth in a brute-force fashion
- **≻**Strategies
 - Control of a large number of hosts, called zombies
 - Can be easily launched using DDoS tools
 - A multiple stepping-stone approach

Zombies (called agents or daemon)

DDoS attack tools

>Trinoo

- Attacker: $tcp(27665) \rightarrow master: udp(27444) \leftrightarrow agent: udp(31335)$
- Handler and agents are protected by passwords
- Udp based flooding

➤ Tribe Flood Network (TFN) and TFN2K

- Attacker: tcp (all kinds of application, including ssh) → master: icmp echo
 (ping) ↔ agent
- The ICMP packets are encoded
- Udp flooding, TCP syn flooding, icmp echo flooding and smurf attacks
- TFN2K offers more sophisticated mechanisms to hide structure of attack network, including decoy messages, spoofed IP, etc

DDoS attack tools (cont'd)

- ➤ Stacheldraht (German for "barbed wire")
 - Combining features of trinoo and TFN
 - The communication between attackers and handlers is encrypted
 - Attacking code on agents can be automatically updated

≻Shaft

- Shared properties of all above attack tools
- Can dynamically switch port numbers to evade detection
- Can link transactions and do packet statistics

DDoS attack tools (cont'd)

- **≻**Mstream
 - Can be controlled by multiple attackers
 - Using TCP ack flooding to saturate links

≻Trinity

- The first IRC based DDoS tool
- All handlers can be summoned to an Internet Chat room to organize attacks
- ➤ DDoS "Swiss army knifes"--- Agobot and Phatbot
 - The fashion of 2003/2004
 - Combination of multiple known DDoS attacks, on IP and TCP
 - Can simulate legitimate traffics

Flooding without a zombie army

➤ Ping (icmp echo)

IP: S.E.R.V

Flooding without a zombie army

➤ Ping (icmp echo)

IP: A.D.O.G

IP: S.E.R.V

Reflection flooding

Reflection flooding

Reflection flooding

Smurf flooding

- ➤ Reflection attacks using broadcast address
 - For a /n network, the broadcast address is the one which has n 1s on the least important part, e.g, IU's broadcast address: 156.56.255.255
 - A message to the broadcast address of a network is forwarded to ALL computers in that network

IP: E.B.A.Y

Smurf flooding

- > Reflection attacks using broadcast address
 - For a /n network, the broadcast address is the one which has n 1s on the least important part, e.g, IU's broadcast address: 156.56.255.255
 - A message to the broadcast address of a network is forwarded to ALL computers in that network

DoS on application

- > DoS on authentication server
 - Computation intensive operation: public key authentication
 - Attack: large number of junk messages →exhaustion of cpu cycles

>SPAM

- Squandering mailbox space, human energy
- About 2/3 spam from zombies (CNN)
- SPAM virus: SoBig

Denial of Service

Defense

DoS defense

- >Attacks exploiting software vulnerability
 - Defense: software engineering, patching
- >Attacks on system configuration information
 - Defense: authentication
- ➤ Resource exhaustion (RE) DoS
 - Defense: difficult in an open system

What make RE DoS possible?

- >Limited resources
- ➤ Unlimited service requests
- ➤ Difficulty to tell good and bad requests apart

plausible when attackers control many zombies

Defending against RE DoS

- >Acquiring more resources
 - Content distribution networks, such as Akamai
- ➤ Limiting service requests
 - Rate limiting/push back
 - Puzzles
- ➤ Identifying good or bad requests
 - Identifying bad traffic: Intrusion detection, IP traceback, D-WARD, etc.
 - Identifying good traffic: Capability token, Secure Overlay Systems, etc

DoS defense

- ⇒Acquiring more resources
- ➤ Limiting service requests
- ➤ Identifying good/bad requests

Vulnerability of an open system

• Resources: limited

Control: centralized

Access: global

From Bruce Maggs's slides

Content distribution network: Akamai

 Content provider delegates its service to Akamai

- What Akamai does
 - deploys servers wherever there are clients
 - Direct clients to "nearby" servers
 - Monitor the Internet and route around trouble spots

From Bruce Maggs's slides

Downloading objects using Akamai

www.srv.com

IP: s.e.r.v

Downloading objects using Akamai

www.srv.com

IP: s.e.r.v

Scale of Akamai network

- ➤ They claim having
 - 15,000 servers
 - distributing over 1,000 networks
 - in 69 countries

➤ Most of the major websites, including CNN, Yahoo!, Microsoft, are their customers

Weaknesses of Akamai

- ➤ Limits in handling contents
 - Good for static contents, such as pictures
 - Insufficient for real-time, dynamic contents
- **>** Scalability
 - Akamai itself is having scalability problem
- ➤ Not complete immunization to DDoS
 - Jun, 2004, Akamai was attacked by a DDoS with thousands of zombies
 - Its service to some customers was interrupted for 2 hours

DoS defense

- ➤ Acquiring more resources
- ⇒Limiting service requests
- ➤ Identifying good/bad requests

Rate-limiting and Push-back

➤ Rate-limiting

- Limiting the traffic from individual incoming links, to achieve fairness
- Maxmin fairness: small requestor gets what he asks, while big requestor gets average portion

➤ Push-back

Individual router pushes the rate-limiting requests to its upstream routers

Rate-limiting and Push-back

Rate-limiting and Push-back

Weaknesses

- ➤ Need large-scale deployment
 - Otherwise, collateral damage could be substantial
 - Proper deployed attacking flows may evade controls
- ➤ Router needs to keep per flow state
- ➤ However, the mechanism could be more effective if combined with detection mechanisms

Application of puzzles

- ➤ Mitigate bandwidth exhaustion attacks (Wang&Reiter, 04)
- ➤ Prevent Connectivity attacks (Juels&Brainard,99 Wang&Reiter, 03)
- ➤ Computing resource attacks (Aura, et al, 00) (Dean&Stubblefield, 01)
- Fighting SPAM (Abadi, et al 03) (Dwork&Naor, 92)
- ➤ Others: key agreement protocols, creating time capsules, metering web-usage and fair exchange protocols

Puzzle types

- ➤ CPU bounded puzzle functions
 - Hash function (Juels&Brainard,99)
 - Signature scheme (Dwork&Naor,92)

➤ Memory bounded puzzles (Abadi, et al, 03)

What a puzzle looks like?

Puzzle auction

➤ Puzzle Auctions

- Servers hold an auction.
- Clients bid for the service with the puzzles
- Those who solve the most difficult puzzles get resources

➤ Valuation of service

- Observation (Geng&Whinston,00): Attackers do not want to cost zombies
- Implication: legitimate clients value service more
- Incremental bidding: gradually raise the bid via retransmission mechanism until get communication through

Example: TCP puzzles

Example: TCP puzzles

Embedding puzzles to covert channel

TCP Frame: SYN

Source Port

Sequence Number

Acknowledgement Number

Data offset Resv R C S S Y I Window

Check Sum

Destination Port

Sequence Number

Window

U A P R S F Window

Urgent Pointer

Embedding puzzles to covert channel

TCP Frame: RST

Server

Server

Server

Puzzle-based rate limiter

What puzzles can do

- Fairness in resource allocation
 - DoS attacks violate fairness

- Incentives to work with victim to fight against DoS
 - Attacker becomes more difficult to find zombies

What puzzles cannot do

- ➤ Very large number of zombies
 - Indistinguishable from flash crowd
- ➤ Puzzle-based incentive engineering makes this hard to happen!

DoS defense

- ➤ Acquiring more resources
- ➤ Limiting service requests
- ⇒Identifying good/bad requests

Identifying bad requests

- ➤ Syn-cookie
- **≻**Traceback
- **≻**Filtering
- **>**D-WARD

Syn-cookie

- ➤ An implementation in Linux to mitigate the threat of syn-flooding
- ➤ Mainly designed for detecting syn packets using spoofed IP addresses

Strength and weaknesses of syn-cookie

➤ Strength:

- Practical: It has already been used in the kernel
- Simple and effective

≻Weaknesses

- Violating TCP semantics
 - Problems occur when packet drops
 - Some applications may not work
- Not effective in the presence of large number of attackers using authenticate source IP addresses

IP traceback

- ➤ Many DDoS attacks spoof IP to hide location of the attacker
- >IP traceback attempts to identify the real origin of attack flows
 - Basic idea: each router marks individual packets it forwards, or keeps some trace of these packets
- The same techniques are also used to detect and filter packets using spoofed IP addresses

Weaknesses of IP traceback

- ➤ Need large deployment to be effective
- ➤ Not effective during the attack
- ➤Only traced back to zombies, not the attacker
- ➤ Useless towards attack flows using authentic IP addresses

Ingress/egress Filtering

- Ingress filtering
 - To prevent packets with faked source IP addresses from entering the network
- Egress filtering
 - To prevent packets with faked source IP addresses from leaving the network

D-WARD

- ➤ Deployed at the source router that serves as the gateway between source network and the Internet
- ➤ Prevents the machines in the source network from participating in DDoS attacks
- ➤ Configured with the police address set
- ➤ Monitors two-way traffic between the police address set and the rest of the internet
- ➤ Online traffic statistics periodically compared with predefined models of normal traffic
- ➤ Non-complying flows are rate-limited
- Guarantees good service to legitimate traffic by monitoring individual connections, regardless of the imposed rate limit

D-WARD Architecture

D-WARD weaknesses

- Motivation of deployment
- > Asymmetric problems

Hop-counting filtering

- ➤ Using TTL to detect packets with spoofed IP
 - TTL is a field on IP header
 - Every router a packet passes by decrements TTL by 1
 - A router drops the packets with TTL=0
- >TTL values are bound to the hops between a client and a server
 - There are only a small number of initial TTL settings in operating systems
- Using TTL and IP mapping to detect spoofed IPs

Strength and weaknesses of Hop-counting

➤ Simple, easy to implement

≻However

- Just raise the bar to the attacker a little bit
- Filtering may not work in the presence of link saturation (bandwidth exhaustion) attacks

Identifying good requests

➤ Secure Overlay Systems

>Access control

SOS – Security Overlay Service

- > To protect a dedicated server from DDoS attacks
- Use high-performance filters to drop all the packets not from secret servlets
- Path redundancy in overlay network is used to hide the identities of secret servlets
- Legitimate users enter the overlay network at the point of SOAP (secure overlay access point)

SOS (cont.)

Strength and Weaknesses

- **>**Strength
 - Attacker needs to take down all the entrance nodes to DoS the server
- **≻**Weaknesses
 - Deployment difficulty
 - Modification of routing structure

Access control

- ➤ Server can grant some privileged clients capability token
- ➤ Clients embed the capability tokens to the packets sent to the server
- ➤ Routers of the server's ISP checks individual packets, and treats these packets according to their access privileges

Strength and weaknesses

≻Strength

 Allow the end server to determine the routing privileges of the packets it receives

➤ Weaknesses

- During flooding, legitimate but yet unprivileged clients cannot access the server
- Clients need to change software