

Mini-projet MQ06 Conduite sous-marine

Prise de connaissance du sujet

Chargements

- Poids de la structure
- Poids du pétrole
- Pression hydrostatique (1500 mètre sous la surface) ~15MPa
- Pression interne 10 Pa
- Force horizontale à l'extrémité droite (induisant un déplacement de -1m)

Conditions limites

- Liaison rigide à gauche
- Blocage verticale à droite
- Déplacement horizontal de -1m à droite

R=140 mm

e=20 mm

Choix de modélisation

- Type d'élément

- Structure à 1D : ligne médiane, constituée de poutres épaisses avec phénomènes sur l'épaisseur (pipe31). Minimum 2000 mm de longueur pour un diamètre de 240 mm
- Structure à 2D: surface médiane des tubes (épaisseur faible), constituée de coques (éléments quadrangles)

- Liaisons

- Gauche: Encastrement U1=U2=U3=UR1=UR2=UR3=0
- Droite: Appui ponctuelle + déplacement U1= -1000, U2=0

- Chargements

- Poids : calcul d'une masse volumique équivalente acier + pétrole ρ=10,043T/mm^3
 -> gravity
- Pression considéré comme uniforme à 14,5 MPa (la différence de dénivelée implique normalement une différence de 0,6 MPa)
 - -> pressure (coque); pipe pressure (poutre)

Analyse vibratoire - Libre libre

Déformée du mode 7, modèle coque

Poutre : convergence des 3 premiers modes

Coque: convergence des 3 premiers modes

Analyse vibratoire - Libre libre

Fréquence propre	7	8	9
Coque	1,0643	2,3308	2,5718
Poutre	1,0835	2,3734	2,6784
Ecart	1,77%	1,79%	3,97%

Mode propre	7	8	9
Coque	44,72	214,47	261,11
Poutre	46,346	222,38	283,22
Ecart	3,51%	3,55%	7,81%

Analyse vibratoire - Libre libre

Mode 1 Mode 2 Mode 3

Analyse vibratoire - Libre

Déformée du mode 3, modèle coque

Poutre : convergence des 3 premiers modes

Coque : convergence des 3 premiers modes

Analyse vibratoire - Libre

Fréquence propre	1	2	3
Coque	0,25679	1,2639	2,3863
Poutre	0,17352	0,83632	1,4158

Mode propre	1	2	3
Coque	2,6033	63,068	224,81
Poutre	1,1886	27,612	79,131

Analyse vibratoire - Validations et interprétation

- Les premiers modes élastiques déforment bien les parties les moins rigides
- En libre-libre, on a bien 6 modes rigides
- Le modèle poutre converge plus rapidement que le modèle coque
- En libre-libre, résultats très proches entre les modèles convergés poutres et coques
- L'introduction des liaisons change grandement les premiers modes, et perturbe beaucoup le modèle poutre, qui paraît peu précis face au modèle coque
- Pour étudier les dangers de la vibration de la structure, il faudrait prendre en compte les forces externes (surtout l'éventuel déplacement de -1 m), et connaître les vibrations induites par l'écoulement du pétrole (surtout aux coudes) et par les courants marins

Analyse statique - Contrainte

Convergences de la contrainte VM maximale

Coque : déformé du modèle convergé et contraintes de VM

Contrainte de VM maximale, sur le coude gauche (proche de l'encastrement) = 549,2 MPa

Analyse statique - Déformée

Convergences du déplacement maximale

Coque : déformé du modèle convergé et déplacements

Déplacement max = 1047 mm

Analyse statique - Modèle analytique

- Simplification : assemblage de poutre en liaison rigide
- Après premier calcul: la plus grande déformation est due à la partie centrale
- On fait l'hypothèse que certains coudes ne se déforment pas
- Résultat pour obtenir le même déplacement maximum

Feq= 83000N (analytique) Vs RF1= 125000N (Abaqus)

Analyse statique - Validations et interprétations

- Écart de 24% entre les déplacements max des modèles convergés poutre et coque
- Écart de 15% entre les contraintes de Von Mises max
- Contrainte max de Von Mises > Limite d'élasticité de l'acier inox (~275 MPa)
- La structure est encore trop rigide pour pouvoir supporter le déplacement de 1 mètre

Pour ne pas rentrer en plasticité ou risquer la rupture, il est possible de :

- Autoriser une rotation dans le plan à l'emplacement de l'encastrement
- Allonger les tubes verticaux
- Diminuer le déplacement imposé (matériau de la structure raccordée)
- Diminuer le diamètre de la conduite dans les limites de résistance à la pression