Содержание

1	Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Первое и второе достаточное условие экстремума.	3
2	Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Третье достаточное условие экстремума.	4
3	Определение функции, выпуклой вверх (вниз). Достаточное условие выпуклости. Определение точки перегиба графика функции. Необходимое условие перегиба.	4
4	Определение точки перегиба графика функции. Достаточное условие перегиба. Определение точки перегиба.	5
5	Определение асимптот графика функции (вертикальная, наклонная, горизонтальная). Теорема о наклонных асимптотах. Общая схема исследования графика функции.	6
6	Определение интегрируемости функции. Необходимое условие интегрируемости. Лемма Дарбу о верхних и нижних суммах (первые четыре леммы Дарбу).	7
7	Определение верхнего и нижнего интегралов Дарбу. Леммы Дарбу о верхнем и нижнем интегралах Дарбу (пятая и шестая леммы). Критерий интегрируемости (в терминах верхних и нижних сумм).	9
8	Теорема об интегрируемости непрерывной функции. Достаточное условие интегрируемости функции, имеющей разрывы.	10
9	Теорема об интегрируемости монотонной функции. Интегрируемость композиции функций.	11
10	Основные свойства определенного интеграла (линейность, интегрируемость произведения, интегрируемость на подотрезках, аддитивность). Оценки интегралов (интегрирование неравенств, условие строгой положительности интеграла от неотрицательной функции).	
11	Первая теореме о среднем значении и следствие из нее. Вторая теорема о среднем (без доказательства).	14

12 Определение и свойства интеграла с перемент	ным верхним пределом.	
Основная формула интегрального исчисления ((формула Ньютона-Лейбница). 1	4

- 13 Формулы замены переменной и интегрирования частям в определенном интеграле. Формула Тейлора с остаточным членом в интегральной форме.
- 14 Определение плоской кривой, простой кривой, параметризуемой кривой. Понятие длины плоской кривой. Теорема о длине дуги кривой, заданной параметрически. Следствие формула длины кривой, заданной в декартовых и в полярных координатах.
- 15 Понятие квадрируемости (площади) плоской фигуры. Критерий квадрируемости через приближение простейшими (лемма 1). Площадь криволинейной трапеции. 18

1 Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Первое и второе достаточное условие экстремума.

Опр. Точка x_0 называется строгим локальным максимум (минимумом), если $\exists \varepsilon > 0$, m.ч. $\forall x \in B_{\varepsilon}(x_0) : f(x) < f(x_0) \ (f(x) > f(x_0))$.

Опр. Точка x_0 называется нестрогим локальным максимум (минимумом), если $\exists \varepsilon > 0$, т.ч. $\forall x \in B_{\varepsilon}(x_0) : f(x) \leq f(x_0) \ (f(x) \geq f(x_0))$.

Теорема (Теорема Ферма, без доказательства). *Если функция дифференцируема в точ* ке экстремума, то ее производная в этой точке равна нулю.

Теорема (Первое достаточное условие экстремума). Пусть функция f непрерывна в окрестности точки c и дифф-ма в ее проколотой окрестности. Тогда

- 1) если $\exists \delta > 0 : f'(x) > 0 \, \forall x \in (c \delta, c) \, u \, f'(x) < 0 \, \forall x \in (c, c + \delta), \, mo \, c$ точка строгого локального максимума.
- 2) если $\exists \delta > 0: f'(x) < 0 \, \forall x \in (c-\delta,c) \, u \, f'(x) > 0 \, \forall x \in (c,c+\delta), \, mo \, c$ точка строгого локального минимума.
- 3) Если $\exists \delta > 0$, т.ч. f' имеет одинаковые знаки на $(c \delta, c)$ и $(c, c + \delta)$, то экстремума в ней нет.

 \mathcal{A} -во. 1) Возьмем $x \in B_{\delta}(x)$ по т. Лагранжа найдется ξ между x и c, т.ч. $f(x) - f(c) = f'(\xi)(x-c)$. Если $x \in (c-\delta,c)$, то $f'(\xi) > 0$, $x-c < 0 \implies f(x) - f(c) < 0$, т.е. f(x) < f(c). Если $x \in (c,c+\delta)$, то $f'(\xi) < 0$, $x-c > 0 \implies f(x) - f(c) < 0$, т.е. f(x) < f(c). Значит c - точка строгого локального максимума.

- 2) Аналогично.
- 3) Пусть, например, $f'(x) > 0 \, \forall x \in \mathring{B}_{\delta}(c)$. f(x) f(c) и x c имеют одинаковый знак, т.е. при

$$x \in (c - \delta, c) : f(x) - f(c) < 0 \implies f(x) < f(c)$$
$$x \in (c, c + \delta) : f(x) - f(c) > 0 \implies f(x) > f(c)$$

 $\implies f$ возрастает в точке c.

Теорема (Второе достаточное условие экстремума). Пусть f дифф-ма в окрестности точки c и существует вторая производная в точке c. Если f'(x) = 0, f''(c) > 0 (< 0), то c - точка строгого локального минимума (максимума).

 \mathcal{A} -во. Пусть, например, f''(c) > 0, тогда f' возрастает в точке $c \implies$

$$\implies \exists \delta > 0$$
, t.y. $f'(x) < f'(c) = 0 \ \forall x \in (c - \delta, c)$
$$f'(x) > f'(c) = 0 \ \forall x \in (c, c + \delta)$$

 $\implies c$ - точка строгого локального минимума (по 1-му достаточному условию экстремума). $\hfill\Box$

2 Определение локального экстремума функции (строгого и нестрогого). Необходимое условие экстремума (теорема Ферма, без доказательства). Третье достаточное условие экстремума.

(см. предыдущий билет для определения экстремума и теоремы Ферма)

 \mathcal{A} -60. Случай n=1 уже рассмотрен во 2-м достаточном условии экстремума. Пусть n>3.

Пусть, например, $f^{(n+1)} > 0$. Тогда $f^{(n)}$ возрастает в точке $c \implies$

$$\implies \exists \delta > 0, \text{ т.ч. } f^{(n)}(x) < f^{(n)}(c) \, \forall x \in (c - \delta, c)$$
$$f^{(n)}(x) > f^{(n)}(c) \, \forall x \in (c, c + \delta)$$

Разложим f'(x) по формуле Тейлора с центром в точке c

$$f'(x) = f'(c) + \frac{f''(c)}{1!}(x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-2)!}(x-c)^{n-2} + \frac{f^{(n)}(\xi)}{(n-1)!}(x-c)^{n-1} =$$

$$= \frac{f^{(n)}(\xi)}{(n-1)!}(x-c)^{n-1}$$

Значит,

при
$$x \in (c - \delta, x), \xi \in (c - \delta, c) \implies f^{(n)}(\xi) < 0 \implies f'(x) < 0$$
 при $x \in (c, c + \delta), \xi \in (x, x + \delta) \implies f^{(n)}(\xi) > 0 \implies f'(x) > 0$

 $\implies c$ - точка локального минимума (1-е достаточное условие экстремума).

3 Определение функции, выпуклой вверх (вниз). Достаточное условие выпуклости. Определение точки перегиба графика функции. Необходимое условие перегиба.

Опр. Пусть f дифф-ма на (a,b). График функции на (a,b) имеет выпуклость направленную вверх (вниз), если на (a,b) график лежит не ниже (не выше) касательной, проведенной в любой точке $M(c,f(c)),c\in(a,b)$.

Теорема. Пусть f дважды дифф-ма на (a,b). Если $f''(x) \ge 0 (\le 0) \forall x \in (a,b)$, то f выпукла вниз (вверх).

 \mathcal{A} -во. Пусть $f''(x) \leq 0$.

Уравнение касательной: y = f'(c)(x - c) + f(c). Разложим f по формуле Тейлора:

$$f(x) = f(c) + \frac{f'(x)}{1!}(x-c) + \frac{f''(\xi)}{2!}(x-c)^2 \implies$$

$$y - f(x) = \frac{-f''(\xi)}{2!}(x-c)^2 \ge 0 \implies f$$
 выпукла вниз.

Опр. Пусть f дифф-ма на (a,b), $c \in (a,b)$. Точка c называется точкой перегиба графика функции f, если существует $\delta > 0$, т.ч. f имеет различные направления выпуклости на $(c - \delta, c)$ и $(c, c + \delta)$.

Лемма. Пусть f дифф-ма на (a,b), $c \in (a,b)$, c - точка перегиба. Тогда функция r(x) = f(x) - (f'(c)(x-c) + f(c)) монотонна в точке c (т.е. $\exists \delta > 0$, т.ч. на интервалах $(c-\delta,c)$ и $(c,c+\delta)$ график f лежит по разные стороны от касательной в точке M(c,f(c)).

 \mathcal{A} -во. Пусть $\exists \delta > 0$, т.ч. f выпукла вниз на $(c - \delta, c)$ и выпукла вверх на $(c, c + \delta)$. Графи функции на интервале $(c - \delta, c)$ лежит не ниже касательной в точке (c, f(c)), т.е. $\forall x \in (c - \delta, c): f(x) \geq f'(c)(x - c) + f(c) \implies r(x) \geq 0 \, \forall x \in (c - \delta, c)$. Аналогично $r(x) \leq 0 \, \forall x \in (c, c + \delta)$. Значит, $r(x) \searrow$ в точке c.

Теорема. Пусть f дифф-ма на (a,b), $c \in (a,b)$ - точка перегиба f. Если $\exists f''(c)$, то f''(c) = 0.

Д-60. r(x) = f(x) - (f'(c)(x-c) + f(c)). Заметим, что r'(c) = f'(c) - f'(c) = 0; $r''(x) = f''(x) \implies r''(c) = f''(c)$. Предположим, что $f''(x) \neq 0$, тогда r'(c) = 0, $r''(c) \neq 0 \implies c$ - точка строгого локального экстремума функции r. Но согласно лемме функция r монотонна. Противоречие. Значит f''(c) = 0.

4 Определение точки перегиба графика функции. Достаточное условие перегиба. Определение точки перегиба.

Теорема (Необходимое условие перегиба, без доказательства). Пусть f дифф-ма на $(a,b), c \in (a,b)$ - точка перегиба f. Если $\exists f''(c), mo \ f''(c) = 0$.

Теорема (1-е достаточное условие перегиба). Пусть f дважсды дифф-ма в проколотой окрестности точки c и $\exists f'(c)$. Если найдется $\delta > 0$, т.ч. f'' имеет разные знаки на интервалах $(c - \delta, c)$ и $(c, c + \delta)$, то c - точка перегиба.

 \mathcal{A} -во. Если f'' имеет разные знаки на $(c-\delta,c)$ и на $(c,c+\delta)$, то f имеет различные направления выпуклости на этих интервалах. Значит c - точка перегиба.

Теорема (2-е достаточное условие перегиба). Пусть f дважды дифф-ма на (a,b) и $\exists f'''(c)$. Если f''(c) = 0, $f'''(c) \neq 0$, то c - точка перегиба.

 \mathcal{A} -во. Если $f'''(c) \neq 0$, то f'' монотонна в точке c. При этом $f''(c) = 0 \implies \exists \delta > 0$, т.ч. f'' имеет разные знаки на $(c - \delta, c)$ и $(c, c + \delta) \implies c$ - точка перегиба.

Теорема (3-е достаточное условие перегиба). Пусть f n раз дифф-ма на (a,b), n -четное, $c \in (a,b)$, причем $\exists f^{(n+1)}(c)$. Если $f''(c) = f'''(c) = \cdots = f^{(n)}(c) = 0$ и $f^{(n-1)} \neq 0$, то c - точка перегиба.

 \mathcal{A} -во. Пусть, например $f^{(n+1)}(c)>0$. Тогда $f^{(n)}$ - возрастает в точке $c\implies\exists\delta>0$, т.ч. $f^{(n)}(x)< f^{(n)}(c) \forall x\in (c-\delta,c)$ и $f^{(n)}>f^{(n)}(c) \forall x\in (c,c+\delta)$. Возьмем $x\in B_\delta(c)$ и разложим f''(x) по формуле Тейлора с центром в точке c:

$$f''(x) = f''(c) + \frac{f'''(c)}{1!}(x-c) + \dots + \frac{f^{(n-1)}(c)}{(n-3)!}(x-c)^{n-3} + \frac{f^{(n)}(\xi)}{(n-2)!}(x-c)^{(n-2)}, \ \xi \ \text{между} \ x \ \text{и} \ c.$$

Значит
$$f''(x)=\frac{f^{(n)}(\xi)}{(n-2)!}(x-c)^{n-2} \implies f''(x)<0 \ \forall x\in (c-\delta,c)$$
 и $f''(x)>0 \ \forall x\in (c,c+\delta) \implies c$ - точка перегиба.

5 Определение асимптот графика функции (вертикальная, наклонная, горизонтальная). Теорема о наклонных асимптотах. Общая схема исследования графика функции.

Опр. Прямая x = a называется вертикальной асимптотой графика функции f, если $f(a+0) = \pm \infty$ u/uли $f(a-0) = \pm \infty$.

Опр. Прямая y = kx + b называется наклонной асимптотой к графику функции f при $x \to +\infty(-\infty)$, если $f(x) = kx + b + \alpha(x)$, где $\alpha(x) \to 0$, при $x \to +\infty(-\infty)$. В частности, при k = 0 прямая y = b называется горизонтальной асимптотой.

Теорема. Прямая y=kx+b является наклонной асимптотой графика f при $x\to\pm\infty$ $\Leftrightarrow \lim_{x\to\pm\infty}\frac{f(x)}{x}=k, \lim_{x\to\pm\infty}(f(x)-kx)=b$

$$\mathcal{A}$$
-so. $(\Longrightarrow) f(x) = kx + b + \alpha(x), \ \alpha(x) \xrightarrow{x \to \pm \infty} 0$

$$\lim_{x\to\pm\infty}\frac{f(x)}{x}=\lim_{x\to\pm\infty}(k+\frac{b}{x}+\frac{\alpha(x)}{x})=k$$

$$\lim_{x\to\pm\infty}(f(x)-kx)=\lim_{x\to\pm\infty}(b+\alpha(x))=b$$

(
$$\iff$$
) Если $\exists k,b \in \mathbb{R}: \lim_{x \to \pm \infty} \frac{f(x)}{x} = k, \lim_{x \to \pm \infty} (f(x) - kx) = b,$ то $\lim_{x \to \pm \infty} (f(x) - kx - b) = 0 \implies f(x) - kx - b = \alpha(x) \to 0,$ при $x \to \pm \infty \implies f(x) = kx + b + \alpha(x).$

Общая схема исследования функции

на примере функции $f(x) = \frac{(x+1)^3}{(x-1)^2}$

- 1) $D(f) = \mathbb{R} \setminus \{1\}$
- 2) Четность, периодичность, другая симметрия. Здесь нет.
- 3) Точки разрыва, промежутки непрерывности. x = 1 - разрыв 2-го рода. Непрерывна на $(-\infty, 1)$ и на $(1, +\infty)$.
- 4) Нули, промежутки знакопостоянства, f(0). f(x) = 0, x = -1; f(0) = 1. f(x) < 0 Ha $(-\infty, -1), f(x) > 0$ Ha $(-1, 1) \cup (1, +\infty)$.
- 5) Экстремумы, промежутки монотонности. $f'(x) = \frac{(x+1)^2(x-5)}{(x-1)^3}, \ f'(x) = 0, \ x = -1, \ x = 5.$ Точка $(5, \frac{27}{2})$ - точка минимума. f(x) / на $(-\infty,1)$ и на $[5,+\infty);$ f(x) \ на (1,5].
- 6) Выпуклость, точки перегиба. $f''(x) = \frac{24(x+1)}{(x-1)^4}$. Точка (-1,0) - точка перегиба.
- f(x) выпукла вниз на [-1,1) и на $(1,+\infty)$; f(x) выпукла вверх на $(-\infty,-1]$. 7) Асимптоты.

$$x=1$$
 - вертикальная асимптота.
$$\lim_{x \to \pm \infty} \frac{(x+1)^3}{x(x-1)^2} = 1 = k$$

$$\lim_{x \to \pm \infty} (\frac{(x+1)^3}{(x-1)^2} - x) = 5 = b$$

y=x+5 - наклонная асимптота при $x \to \pm \infty$.

Определение интегрируемости функции. Необходимое условие интегрируемости. Лемма Дарбу о верхних и нижних суммах (первые четыре леммы Дарбу).

Опр. Разбиением (неразмеченным) отрезка [a,b] называется (упорядоченное) множество $T = \{x_0, x_1, \dots, x_n\}$, где $a = x_0 < x_1 < \dots < x_n = b$. Разбиение T' называется измельчением разбиения T, если $T \subset T'$. Объединением разбиений T_1 и T_2 называется разбиение $T = T_1 \cup T_2$. Обозначим через $\Delta x_k = x_k - x_{k-1}$. Диаметром разбиения Tназывается величина $\Delta_T = \max_{1 \leq k \leq n} \{\Delta x_k\}.$

Опр. Пусть $T = \{x_0, x_1, ..., x_n\}$ - разбиение отрезка $[a, b], \xi_k \in [x_{k-1}, x_k]$. Совокупность $V = V(T) = \{x_0, \xi_1, x_1, \xi_2, \dots, \xi_n, x_n\}$ называется размеченным разбиением отрезка [a,b], соответствующее неразмеченному разбиению T. Если V=V(T), то по определению положим, что $\Delta_V = \Delta_T$.

Опр. Пусть функция f определена на [a,b]. Интегральной суммой для функции f, соответствующей размеченному разбиению V, называется $\sigma(V) = \sigma_f(V) = \sum_{k=0}^n f(\xi_k) \Delta x_k$ Опр. Определенный интеграл (Римана) от функции f по отрезку [a,b] называется число I, для которого выполнено: $\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0$, т.ч. $\forall V$ - размеченного разбиения $[a,b],\,\Delta_V < \delta: |\sigma_f(V)-I| < \varepsilon$, т.е. число I является приделом интегральной суммы при стремлении диметра разбиения κ нулю ($I = \lim_{\Delta_V \to 0} \sigma(V)$). Если такое число I существует, то говорят, что функция f интегрируема (по Риману) на [a,b]. Будем писать: $f \in R[a,b],\, I = \int_a^b f(x)\,dx$.

Утверждение (Единственность интеграла). Если числа I_1 и I_2 удовлетворяют определению интеграла, то они равны.

 \mathcal{A} -во. Пусть $I_1 \neq I_2$, тогда в определении интеграла возьмем $\varepsilon = \frac{|I_1 - I_2|}{2} > 0$. Получили, что $\exists \delta > 0$, т.ч. $\forall V$ - размеченного разбиения $[a,b], \ \Delta_V < \delta : |I_1 - I_2| = |I_1 - \sigma(V) + \sigma(V) - I_2| \leq |I_1 - \sigma(V)| + |I_2 - \sigma(V)| < 2\varepsilon = |I_1 - I_2|$ - противоречие. Значит $I_1 = I_2$. \square

Теорема. Пусть $f \in R[a,b]$. Тогда f ограничена на [a,b].

 \mathcal{A} -во. Предположим, что f не ограничена на [a,b]. Возьмем произвольное M>0 и $\delta>0$. Пусть $T=\{x_0,x_1,\ldots,x_n\}$ - разбиение [a,b], $\Delta_T<\delta$. Поскольку f не ограничена на [a,b], то существует хотя бы один отрезок $[x_{r-1},x_r]$, на котором f не ограничена. Выберем произвольным образом точки ξ_k на отрезках $[x_{k-1},x_k]$, где $1\leq k\leq n,$ $k\neq 0$

r. Обозначим $A = \left| \sum_{k=1, k \neq r}^{n} f(\xi_k) \Delta x_k \right|$. Теперь выберем точку $\xi_r \in [x_{r-1}, x_r]$ так, чтобы $|f(\xi_r)| > \frac{A+M}{\Delta x_r}$. Получим, что $\forall \delta > 0 \, \forall M > 0 \, \exists V = \{x_0, x_1, \dots, x_n, \xi_1, \dots, \xi_n\}$ - разбиение отрезка [a, b], т.ч. $\Delta_V < \delta$, но $|\sigma(V)| = \left| \sum_{k=1, k \neq r}^{n} f(\xi_k) \Delta x_k + f(\xi) \Delta x_r \right| \geq |f(\xi_r)| \Delta x_r - A > M \implies \# \lim_{k \to \infty} \sigma(V)$.

Опр. Верхней суммой Дарбу функции f на [a,b], соответствующей разбиению T, называется $S(T) = \sum_{k=1}^{n} M_k \Delta x_k$, нижней суммой Дарбу - величина $\sum_{k=1}^{n} m_k \Delta x_k$.

Лемма 1. Пусть T - разбиение отрезка [a,b]. $\forall V=V(T)$ - размеченного разбиения: $s(T) \leq \sigma(V) \leq S(T)$.

$$\mathcal{A}$$
-60. $\forall \xi_k \in [x_{k-1}, x_k] m_k \le f(\xi_k) \le M_k \implies \sum_{k=1}^n \Delta x_k m_k \le \sum_{k=1}^n f(\xi_k) \Delta x_k \le \sum_{k=1}^n \Delta x_k M_k \implies s(T) \le \sigma(V) \le S(T).$

Лемма 2.
$$S(T) = \sup_{V=V(T)} \{\sigma(V)\}, \ s(T) = \inf_{V=V(T)} \{\sigma(V)\}.$$

 \mathcal{A} -во. Докажем первое утверждение (второе аналогично). Уже знаем, что $\sigma(V) \leq S(T), \, \forall V = V(T).$ Возьмем $\varepsilon > 0 \, M_k = \sup_{[x_{k-1},x_k]} f(x) \implies \exists \xi_k \in \mathbb{R}$

$$[x_{k-1},x_k]$$
, т.ч. $f(\xi_k) > M_k - \frac{\varepsilon}{b-a}$. Тогда $\exists V = \{x_0,x_1,\dots,x_n,\xi_1,\dots,\xi_n\}$, т.ч. $\sigma(V) = \sum_{k=1}^n f(\xi_k) \Delta x_k > \sum_{k=1}^n (M_k - \frac{\varepsilon}{b-a}) \Delta x_k = \sum_{k=1}^n M_k x_k - \frac{\varepsilon}{b-1} \sum_{k=1}^n \Delta x_k = S(T) - \varepsilon \implies S(T) = \sup_{V=V(T)} \{\sigma(V)\}.$

Лемма 3. Пусть $T' = T \cup \{x_1', \dots, x_l'\}$ - измельчение T. Тогда $0 \le S(T) - S(T') \le (M-m)l\Delta_T, \ 0 \le s(T') - s(T) \le (M-m)l\Delta_T.$

$$\mathcal{A}$$
-во. На примере $S(T)$ и $T' = T \cup \{x'\}$. Пусть $x' \in (x_{k-1}, x_k)$. Тогда $S(T) - S(T') = M_k \Delta x_k - \left(\sup_{x_{k-1} \le x \le x'} f(x)(x' - x_{k-1}) + \sup_{x' \le x \le x_k} f(x)(x_k - x')\right) \ge M_k x_k - M_k (x_k - x_{k-1}) = 0.$

С другой стороны
$$S(T) - S(T') = M_k \Delta x_k - \left(\sup_{x_{k-1} \le x \le x'} f(x)(x' - x_{k-1}) + \sup_{x' \le x \le x_k} f(x)(x_k - x')\right) \le M \Delta x_k - m(x_k - x_{k-1}) = \Delta x_k (M - m) \le (M - m) \Delta_T.$$

Лемма 4. $\forall T_1, T_2 : s(T_1) \leq S(T_2)$.

$$A$$
-60. $s(T_1) \le s(T_1 \cup T_2) \le S(T_1 \cup T_2) \le S(T_2)$.

7 Определение верхнего и нижнего интегралов Дарбу. Леммы Дарбу о верхнем и нижнем интегралах Дарбу (пятая и шестая леммы). Критерий интегрируемости (в терминах верхних и нижних сумм).

Опр. Верхним интегралом Дарбу называется $I^* = \inf_T \{S(T)\}$; нижним интегралом Дарбу называется $I_* = \sup_T \{s(T)\}$.

Лемма 5. Для любой ограниченной на [a,b] функции f существуют I^* и I_* , причем $I^* \leq I_*$.

$$\mathcal{A}$$
-во. f ограничена $\implies \exists m = \inf_{a \leq x \leq b} f(x) \implies \forall T$ - разбиение $[a,b]: S(T) = \sum_{k=1}^n M_k \Delta x_k \geq m \sum_{k=1}^n \Delta x_k = m(b-a)$. Значит множество $\{S(t)\}$ ограничено снизу $\implies \exists \inf_T \{S(T)\}$. Аналогично для $\{s(T)\}$. Предположим, что $I_* > I^*$. Обозначим $\varepsilon = \frac{I_* - I^*}{2} > 0$. $I^* = \inf_T \{S(T)\} \implies \exists T_1$ - разбиение $[a,b]: S(T_1) < I^* + \varepsilon = I^* + \frac{I_* - I^*}{2} = \frac{I_* + I^*}{2}$. $I_* = \sup_T \{s(T)\} \implies \exists T_2$ - разбиение $[a,b]: s(T_2) > I_* - \varepsilon = \frac{I_* + I^*}{2} > S(T_1)$ - противоречие. Значит $I_* \leq I^*$.

Лемма 6 (Основная лемма Дарбу). $I^* = \lim_{\Delta_T \to 0} S(T); \ I_* = \lim_{\Delta_T \to 0} s(T), \ mo \ ecmb \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ m.ч. \ \forall T$ - разбиение $[a,b], \ \Delta_T < \delta : 0 \le S(T) - I^* < \varepsilon; \ 0 \le I_* - s(T) < \varepsilon.$

 \mathcal{A} -во. Проведем для первого утверждения, второе аналогично. Заметим, что если m=M, то f постоянна на $[a,b] \implies S(T) = I^* \forall T$ и утверждение становится очевидным. Пусть m < M. Возьмем $\varepsilon > 0$. $I^* = \inf_T \{S(T)\} \implies \exists T^* = \{x_0^*, x_1^*, \ldots, x_k^*\}$ - разбиение [a,b], т.ч. $0 \le S(T^*) - I^* < \frac{\varepsilon}{2}$. Возьмем $\delta = \frac{\varepsilon}{2(M-m)(k-1)}$. Пусть $T = \{x_0, x_1, \ldots, x_n\}$ - разбиение [a,b], $\Delta_T < \delta$. Обозначим $T' = T \cup T^*$. Тогда (T' - u3 мельчение T0 $0 \le S(T) - S(T') \le (M-m)(k-1)\Delta_T < \frac{\varepsilon}{2}$. Значит $\forall T, \Delta_T < \delta : 0 \le S(T) - I^* = \underbrace{S(T) - S(T')}_{<\frac{\varepsilon}{2}} + \underbrace{\frac{\varepsilon}{2}}_{\leq S(T^*)} = \underbrace{S(T) - S(T')}_{<\frac{\varepsilon}{2}} + \underbrace{\frac{\varepsilon}{2}}_{<\frac{\varepsilon}{2}} = \underbrace{S(T) -$

Теорема (Критерий Римана интегрируемости функции). Пусть f определена и ограничена на [a,b]. Тогда $f \in R[a,b] \Leftrightarrow \forall \varepsilon > 0 \,\exists T$ - разбиение [a,b], m.ч. $0 \leq S(T) - s(T) < \varepsilon$.

 \mathcal{A} -во. (\Longrightarrow) Пусть $f \in R[a,b], I = \int_a^b f(x) \, dx$. Возьмем $\varepsilon > 0$. По определению интеграла: $\exists \delta(\varepsilon) > 0$, т.ч. $\forall V$ - разбиение $[a,b], \Delta_V < \delta : |\sigma(V) - I| < \frac{\varepsilon}{3} \Leftrightarrow I - \frac{\varepsilon}{3} < \sigma(V) < I + \frac{\varepsilon}{3}$. Поскольку $S(T) = \sup_{V = V(T)} \{\sigma(V)\}, \ s(T) = \inf_{V = V(T)} \{\sigma(V)\}, \ \text{то} \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq I + \frac{\varepsilon}{3}, \ I - \frac{\varepsilon}{3} \leq S(T) \leq$

8 Теорема об интегрируемости непрерывной функции. Достаточное условие интегрируемости функции, имеющей разрывы.

 $s(T) \le \sigma(V) \le S(T), s(T) \le I \le S(T) \implies |\sigma(V) - I| \le S(T) - s(T) < \varepsilon$ это и означает,

Теорема. Пусть $f \in C[a,b]$. Тогда $f \in R[a,b]$.

что $f \in R[a,b]$ и $I = \int_a^b f(x) \, dx$.

 \mathcal{A} -во. $f \in C[a,b] \Longrightarrow$ равномерно непрерывна. Возьмем $\varepsilon > 0$. По определению равномерной непрерывности $\exists \delta(\varepsilon) > 0$, т.ч. $\forall x', x'' \in [a,b] \, |x'-x''| < \delta : |f(x')-f(x'')| < \frac{\varepsilon}{b-a}$. Пусть $T = \{x_0, x_1, \ldots, x_n\}$ - размеченное разбиение [a,b], $\Delta_T < \delta$. Тогда $\forall k = 1, \ldots, n: M_k - m_k < \frac{\varepsilon}{b-a}$. Значит $0 \le S(T) - s(T) = \sum_{k=1}^n (M_k \Delta x_k - m_k \Delta x_k) < \frac{\varepsilon}{b-a} \sum_{k=1}^n \Delta x_k = \varepsilon$. \square

Теорема. Пусть f определена на [a,b]. Если $\forall \varepsilon > 0$ все точки разрыва функции f на [a,b] можно покрыть конечным числом интервалов $I_1, \ldots, I_l, \ m.$ ч. $\sum_{i=1}^l |I_i| < \varepsilon$.

 \mathcal{A} -во. Возьмем $\varepsilon > 0$. Покроем все точки разрыва f на [a,b] интервалами I_1,\dots,I_l , т.ч. $\sum_{i=1}^l |I_i| < \frac{\varepsilon}{2(M-m)}$ (если m=M, то $f=\mathrm{const} \implies$ интегрируема). Обозначим через

 $J = [a,b] \setminus \bigcup_{i=1}^{l} I_i$. Заметим, что $J = \bigcup_{j=1}^{r} J_j$, где J_j - отрезок, $r \leq l+1$. f непрерывна на каждом из $J_j \Longrightarrow$ равномерно непрерывна $\Longrightarrow \exists \delta_j)\varepsilon > 0 : \forall x_j', x_j'' \in J_j, |x_j' - x_j''| < \delta_j : |f(x_j') - f(x_j'')| < \frac{\varepsilon}{2(b-a)}$. Пусть $\delta = \min_{1 \leq j \leq r} \{\delta_j\}$, T_j - разбиение J_j , $\Delta_{T_j} < \delta$. Обозначим, $T = \bigcup_{j=1}^{t} T_j \cup a, b$. $T = \{x_0, \dots, x_n\}$ - разбиение [a,b]. Тогда $S(T) - s(T) = \sum_{[x_{k-1}, x_k] \in \bigcup_{i=1}^{l} I_i} (M_k - m_k) \Delta x_k + \sum_{[x_{k-1}, x_k] \in J} (M_k - m_k) \Delta x_k < (M - m_k) \frac{\varepsilon}{2(M - m)} + (b - a) \frac{\varepsilon}{2(b - a)} = \varepsilon \Longrightarrow f \in R[a, b]$. \square

9 Теорема об интегрируемости монотонной функции. Интегрируемость композиции функций.

 \mathcal{A} -во. Пусть $f \nearrow$ на [a,b]. Если f(a)=f(b), то $f=\mathrm{const} \implies f \in R[a,b]$. Пусть f(a)<

Теорема. Пусть f определена и монотонна на [a,b]. Тогда $f \in R[a,b]$.

f(b). Возьмем $\varepsilon > 0$. Пусть $\delta = \frac{\varepsilon}{f(b)-f(a)}$. Пусть $T = \{x_0, x_1, \dots, x_n\}$ - разбиение [a, b], $\Delta_T < \delta$. Тогда $S(T) - s(T) = \sum\limits_{k=1}^n (M_k - m_k) \Delta x_k \leq \delta \sum\limits_{k=1}^n (f(x_k) - f(x_{k-1})) = \frac{\varepsilon}{f(b)-f(a)} (f(x_1) - f(a) + f(x_2) - f(x_1) + \dots + f(b) - f(x_{n-1})) = \frac{\varepsilon}{f(b)-f(a)} (f(b) - f(a)) = \varepsilon \implies f \in R[a, b]$. \square **Теорема.** Π усть $f \in R[a, b]$, $m = \inf_{a \leq x \leq b} f(x)$, $M = \sup_{a \leq x \leq b} f(x)$, $g \in \text{Lip}[m, M]$. Tогда $g(f) \in R[a, b]$. \square M-во. Возьмем $\varepsilon > 0$. $f \in R[a, b] \implies \exists T$ - разбиение [a, b], т.ч. $S_f(T) - s_f(T) < \frac{\varepsilon}{c}$, где c - постоянная Липшица для функции g. Пусть $M_k \sup_{x_{k-1} \leq x \leq x_k} f(x)$, $m_k = \inf_{x_{k-1} \leq x \leq x_k} f(x)$, $g \in \text{Lip}[m, M] \implies \forall x_k', x_k'' \in [x_{k-1}, x_k] : |g(f(x_k')) - g(f(x_k''))| \leq c|f(x_k') - f(x_k'')| \leq c(M_k - m_k)$ $\implies M_k^* - m_k^* \leq c(M_k - m_k)$, где $M_k^* = \sup_{x_{k-1} \leq x \leq x_k} g(f(x))$, $m_k^* = \inf_{x_{k-1} \leq x \leq x_k} g(f(x))$. Значит $S_g(f)(T) - s_g(f)(T) = \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - s_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - s_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - s_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - s_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - s_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - S_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - S_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - S_f(T)) < \sum_{k=1}^n (M_k^* - m_k^*) \Delta x_k \leq c \sum_{k=1}^n (M_k - m_k) \Delta x_k = c(S_f(T) - S_f(T))$

10 Основные свойства определенного интеграла (линейность, интегрируемость произведения, интегрируемость на подотрезках, аддитивность). Оценки интегралов (интегрирование неравенств, условие строгой положительности интеграла от неотрицательной функции).

Свойства интеграла Римана.

1. Пусть $f, g \in R[a, b] \implies f \pm g \in R[a, b]$, причем $\int_a^b (f(x) \pm g(x)) \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$.

$$\mathcal{A}$$
-во. Следует из того, что $\sum_{k=1}^{n} (f(\xi_k) \pm g(\xi_k)) \Delta x_k = \sigma_{f\pm g}(V) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k \pm \sum_{k=1}^{n} g(\xi_k) \Delta x_k = \sigma_f(V) \pm \Sigma_g(V).$

2. Пусть $f \in R[a,b], \alpha \in \mathbb{R} \implies \alpha f \in R[a,b]$, причем $\int_a^b \alpha f(x) \, dx = \alpha \int_a^b f(x) \, dx$.

$$\mathcal{A}$$
-во. Следует из того, что $\sigma_{\alpha f}(V) = \sum_{k=1}^{n} \alpha f(\xi_k) \Delta x_k = \alpha \sum_{k=1}^{n} f(\xi_k) \Delta x_k = \alpha \sigma_f(V)$.

3. Пусть $f, g \in R[a, b] \implies fg \in R[a, b]$.

$$\mathcal{A}$$
-60. Пусть $h(y) = y^2$. Тогда $h \in \text{Lip}[m, M]$, т.к. $|h(y_1) - h(y_2)| = |y_1 - y_2||y_1 + y_2| \le 2 \max\{|m|, |M|\}|y_1 - y_2|, \ c = \max\{|m|, |M|\}$. Пусть $f \in R[a, b]$. Тогда $f^2 = h(f) \in R[a, b]$. Далее $fg = \frac{1}{4}(\underbrace{(f+g)^2}_{\in R[a, b]} - \underbrace{(f-g)^2}_{\in R[a, b]}) \in R[a, b]$.

4. Пусть $f \in R[a,b], a \le c < d \le b$. Тогда $f \in R[c,d]$.

$$\mathcal{A}$$
-во. Возьмем $\varepsilon > 0$, $f \in R[a,b] \Longrightarrow \exists T = \{x_0,x_1,\ldots,x_n\}$ - разбиение $[a,b]$, т.ч. $S(T) - s(T) < \varepsilon$. Обозначим $T' = T \cup \{c,d\}$, $a < x_1 < x_2 < \cdots < x_{m-1} < c \le x_m \cdots < x_{l-1} < d \le x_l < \cdots < x_n$. Тогда $S(T') - s(T') \le S(T) - s(T) < \varepsilon$. Получим, что $T'' = \{c,x_m,\ldots,x_{l-1},d\}$ - разбиение $[c,d]$, причем $S(T'') - s(T'') = \sum_{k=m}^{l} (M_k - m_k) \Delta x_k \le S(T') - s(T') < \varepsilon \implies f \in R[c,d]$.

5. Пусть $a < c < b, f \in R[a,c], f \in R[c,b]$. Тогда $f \in R[a,b]$, причем $\int_a^c f(x) \, dx + \int_c^b f(x) \, dx = \int_a^b f(x) \, dx$.

$$\mathcal{A}$$
-во. Возьмем $\varepsilon > 0$. $\exists T_1$ - разбиение $[a,c]$ и T_2 - разбиение $[c,b]$, т.ч. $S(T_j) - s(T_j) < \frac{\varepsilon}{2}, \ j=1,2$. Пусть $T=T_1 \cup T_2 = \{x_0,x_1,\ldots,x_n\}$ - разбиение $[a,b],\ c=x_m$. $S(T)-s(T)=\sum_{k=1}^n (M_k-m_k)\Delta x_k = \sum_{k=1}^m (M_k-m_k)\Delta x_k + \sum_{k=m+1}^n (M_k-m_k)\Delta x_k = (S(T_1)-s(T_1))+(S(T_2)-s(T_2))<\varepsilon \implies f\in R[a,b]$.

Оценки интегралов.

1. Пусть $f \in R[a,b]$. Если $f(x) \ge 0 (\le 0) \, \forall x \in [a,b]$, то $\int_a^b f(x) \, dx \ge 0 (\le 0)$.

$$\mathcal{A}$$
-во. Пусть $f(x) \geq 0 \, \forall x \in [a,b]$. Тогда $\forall V$ - размеченного разбиения $[a,b]: \sigma(V) = \sum_{k=1}^n \underbrace{f(\xi_k)}_{>0} \Delta x_k \geq 0$.

2. Пусть $f,g\in R[a,b]$. Если $f(x)\geq g(x)\,\forall x\in [a,b],$ то $\int_a^b f(x)\,dx\geq \int_a^b f(x)\,dx.$

$$\mathcal{A}$$
-80. $\int_a^b (f(x) - g(x)) dx \ge 0 \implies \int_a^b f(x) dx \ge \int_a^b g(x) dx$

3. Пусть $f \in R[a,b]$. Если $f(x) \ge 0 \, \forall x \in [a,b], \, \exists x_0 \in [a,b], \, \text{т.ч.} \, f(x_0) > 0,$ причем f непрерывна в точке x_0 , то $\int_a^b f(x) \, dx > 0$.

$$\mathcal{A}$$
-во. Обозначим $\varepsilon = \frac{f(x_0)}{2} > 0$. f непрерывна в точке $x_0 \implies \exists \delta > 0$, т.ч. $\forall x \in B_{\delta}(x) \cap [a,b] : |f(x_0) - f(x)| < \varepsilon \Leftrightarrow \frac{f(x_0)}{2} \leq f(x) \leq \frac{3f(x_0)}{2}$. Пусть h - длина промежутка $B_{\delta}(x_0) \cap [a,b]$, $h > 0$. Положим $g(x) = \begin{cases} \frac{f(x_0)}{2}, x \in B_{\delta}(x_0) \cap [a,b] \\ 0, \text{ иначе} \end{cases}$. Тогда $f(x) \geq g(x) \, \forall x \in [a,b] \implies \int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx = \frac{f(x_0)}{2} h > 0$.

- 4. Пусть $f \in C[a,b], \ f(x) \ge 0 \ \forall x \in [a,b].$ Если $\int_a^b f(x) \ dx = 0$, то $f(x) \equiv 0$.
- 5. Если $f \in R[a,b]$, то $|f| \in R[a,b]$, причем $\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx$.

$$\mathcal{A}$$
-во. Функция $g(y) = |y| \in \text{Lip}[m, M] : ||y_1| - |y_2|| \le |y_1 - y_2|$. Значит сложная функция $g(f) = |f| \in R[a, b]$.

11 Первая теореме о среднем значении и следствие из нее. Вторая теорема о среднем (без доказательства).

Теорема (1-я теорема о среднем). Пусть $f,g \in R[a,b], \ m = \inf_{a \le x \le b} f(x), \ M = \sup_{a \le x \le b} f(x).$

Если $g(x) \ge 0 (\le 0) \, \forall x \in [a,b], \, mo \, \exists \mu \in [m,M], \, m.ч. \, \int_a^b f(x)g(x) \, dx = \mu \int_a^b g(x) \, dx \, (1). \, B$ частности, если $f \in C[a,b], \, mo \, \exists \xi \in [a,b], \, m.ч. \, \int_a^b f(x)g(x) \, dx = f(\xi) \int_a^b g(x) \, dx \, (2).$

 \mathcal{A} -во. Пусть $g(x) > 0 \,\forall x \in [a,b]$. Поскольку $m \leq f(x) \leq M \,\forall x \in [a,b]$, то $mg(x) \leq f(x)g(x) \leq Mg(x) \implies m \int_a^b g(x) \,dx \leq \int_a^b f(x)g(x) \,dx \leq M \int_a^b g(x) \,dx$. Заметим, что если $\int_a^b g(x) \,dx = 0$, то $\int_a^b f(x)g(x) \,dx = 0$ в силу двойного неравенства. Если же $\int_a^b g(x) \,dx > 0$, то $m \leq \frac{\int_a^b f(x)g(x) \,dx}{\int_a^b g(x) \,dx} \leq M$. Обозначим $\mu = \frac{\int_a^b f(x)g(x) \,dx}{\int_a^b g(x) \,dx}$.

Следствие. Положим в формуле (1) $g(x) \equiv 1$, получим, что для $f \in R[a,b] \exists \mu \in [m,M]$, т.ч. $\int_a^b f(x) \, dx = \mu(b-a)$. В частности, если $f \in C[a,b]$, то $\exists \xi \in [a,b]$, т.ч. $\int_a^b f(x) \, dx = f(\xi)(b-a)$.

Теорема (2-я теорема о среднем, без доказательства). Пусть $f \in R[a,b]$

- 1. Если $g \searrow$ на [a,b] и $g(x) \ge 0 \ \forall x \in [a,b], \ mo \ \exists \xi \in [a,b]: \int_a^b f(x)g(x) \ dx = g(a) \int_a^\xi f(x) \ dx.$
- 2. Ecnu $f \nearrow na [a, b] \ u \ g(x) \ge 0 \ \forall x \in [a, b], \ mo \ \exists \xi \in [a, b] : \int_a^b f(x) g(x) \ dx = g(b) \int_{\xi}^b f(x) \ dx.$
- 3. Если g монотонна на [a,b], то $\exists \xi \in [a,b] : \int_a^b f(x)g(x) \, dx = g(a) \int_a^{\xi} f(x) \, dx + g(b) \int_{\xi}^b f(x) \, dx$.

12 Определение и свойства интеграла с переменным верхним пределом. Основная формула интегрального исчисления (формула Ньютона-Лейбница).

Опр. Пусть $f \in R[a,b]$, $x_0 \in [a,b]$. Функция $F(x) = \int_{x_0}^x f(x) \, dx$, $a \le x \le b$ называется интегралом с переменным верхним пределом от функции f на [a,b].

Теорема. Если $f \in R[a,b]$, то $F \in C[a,b]$. Если κ тому же f непрерывна в некоторой точке ξ , то F дифференцируема в точке ξ , причем $F'(\xi) = f(\xi)$.

 \mathcal{A} -во. 1) Пусть $s \in [a,b]$. Тогда $\forall \Delta x \in \mathbb{R}, s + \Delta x \in [a,b] : |F(s + \Delta x) - F(s)| = \left| \int_{x_0}^{s + \Delta x} f(x) \, dx - \int_{x_0}^s f(x) \, dx \right| = \left| \int_s^{s + \Delta x} f(x) \, dx \right| \leq \left| \int_s^{s + \Delta x} |f(x)| \, dx \right| \leq \left| \int_s^{s + \Delta x} M \, dx \right| = M |\Delta x|$. Значит F непрерывна в любой точке $s \in [a,b]$, т.е. $F \in C[a,b]$.

2) Пусть f непрерывна в точке $\xi \in [a,b]$. Возьмем $\Delta x \in \mathbb{R}$, т.ч. $\xi + \Delta x \in [a,b]$. Тогда $\left|\frac{F(\xi + \Delta x) - F(\xi)}{\Delta x} - f(\xi)\right| = \left|\frac{1}{\Delta x} \int_{\xi}^{\xi + \Delta x} f(t) \, dt - f(\xi)\right| = \left|\frac{1}{\Delta x} \int_{\xi}^{\xi + \Delta x} f(t) \, dt - \frac{1}{\Delta x} \int_{\xi}^{\xi + \Delta x} f(\xi) \, dt\right| = \left|\int_{\xi}^{\xi + \Delta x} (f(t) - f(\xi)) \, dt\right|$. Возьмем $\varepsilon > 0$. f непрерывна в точке $\xi \implies \exists \delta(\varepsilon) > 0$, т.ч.

 $\forall t, |t-\xi| < \delta: |f(t)-f(\xi)| < \varepsilon.$ Пусть $0 < |\Delta x| < \delta.$ Тогда $\left|\frac{F(\xi+\Delta x)-F(\xi)}{\Delta x}-f(\xi)\right| \le \frac{1}{|\Delta x|} \left|\int_{\xi}^{\xi+\Delta x} \underbrace{|f(t)-f(\xi)|}_{\leq \varepsilon} dt\right| \le \frac{1}{|\Delta x|} \varepsilon |\Delta x| = \varepsilon.$ Это означает в точности, что

$$\lim_{\Delta x \to 0} \left(\frac{F(\xi + \Delta x) - F(\xi)}{\Delta x} - f(\xi) \right) = 0 \implies F'(\xi) = \lim_{\Delta x \to 0} \frac{F(\xi + \Delta x) - F(\xi)}{\Delta x} = f(\xi).$$

Теорема (Формула Ньютона-Лейбница). Пусть $\int_a^b f(x) dx = \Phi|_a^b = \Phi(b) - \Phi(a)$, где Φ - любая первообразная для f на [a,b].

 \mathcal{A} -во. Пусть $F(x) = \int_a^x f(t) \, dt$. F является первообразной для f на [a,b]. Если Φ - произвольная первообразная для f на [a,b], то $F(x) = \Phi(x) + C$, $\forall x \in [a,b]$. Тогда $\int_a^b f(x) \, dx = F(b) = F(b) - F(a) = \Phi(b) - \Phi(a) = \Phi|_a^b$.

13 Формулы замены переменной и интегрирования частям в определенном интеграле. Формула Тейлора с остаточным членом в интегральной форме.

Теорема (Замена переменной в определенном интеграле). Пусть

- 1. $\varphi \in C^1[\alpha, \beta]$.
- 2. $\min_{\alpha \le t \le \beta} \varphi(t) = \varphi(\alpha) = a$, $\max_{\alpha \le t \le \beta} \varphi(t) = \varphi(\beta) = b$.
- 3. $f \in C[a, b]$.

Тогда $\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) dt$.

Д-60. Оба интеграла существуют, так как подынтегральные функции непрерывны $(f(\varphi))$ непрерывна как сложная функция). Пусть F - первообразная для f на [a,b]. Тогда $F(\varphi)$ дифференцируема на $[\alpha,\beta]$ (как сложная функция) и $(F(\varphi(t)))' = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t) \, \forall t \in [\alpha,\beta] \implies \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(T) \, dt = F(\varphi(t))|_{\alpha}^{\beta} = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) = F(x)|_{a}^{b} = \int_{\alpha}^{b} f(x) \, dx.$

Теорема (Интегрироание по частям в определенном интеграле). Пусть $f, g \in C^1[a, b]$. Тогда $\int_a^b f(x)g'(x) dx = f(x)g(x)|_a^b - \int_a^b f'(x)g(x) dx$.

Д-60. Оба интеграла существуют, так как подынтегральные функции непрерывны. Поскольку $(f(x)g(x))'=f(x)g'(x)+f'(x)g(x) \, \forall x\in [a,b], \; f(x)g(x)|_a^b=\int_a^b (f(x)g(x))'\, dx=\int_a^b f(x)g'(x)\, dx+\int_a^b f'(x)g(x)\, dx.$

Следствие (Формула Тейлора с остаточным членов в интегральной форме). Пусть $f \in C^{n+1}(B_{\delta}(a)), \delta > 0$ (т.е. $\exists f^{(n+1)}$ и она непрерывна $\forall x \in B_{\delta}(a)$). Тогда $\forall x \in B_{\delta}(a)$: $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \cdots + \frac{f^{(n)(a)}}{n!}(x-a)^n + \frac{1}{n!}\int_a^x f^{(n+1)}(t)(x-t)^n dt$.

Д-60. Интеграл существует, так как подынтегральная функция непрерывна. Применим формулы интегрирования по частям: $\frac{1}{n!} \int_a^x f^{(n+1)}(t)(x-t)^n \, dx = \frac{1}{n!} \int_a^x (x-t)^n \, df^{(n)}(t) = \frac{1}{n!} (x-t)^n f^{(n)}|_a^x - \frac{1}{n!} \int_a^x f^{(n)} \, d(x-t)^n = -\frac{1}{n!} (x-a)^n f^{(n)}(a) + \frac{1}{(n-a)!} \int_a^x f^{(n)}(t)(x-t)^{n-1} \, dt = (\text{снова по частям, и т.д.}) = -\frac{1}{n!} (x-a)^n f^{(n)}(a) - \frac{1}{(n-1)!} f^{(n-1)}(a) - \cdots - \frac{1}{1!} (x-a) f'(a) + \frac{1}{0!} \int_a^x f'(x)(x-t)^0 \, dt = f(x) - \varphi(a,x)$

14 Определение плоской кривой, простой кривой, параметризуемой кривой. Понятие длины плоской кривой. Теорема о длине дуги кривой, заданной параметрически. Следствие формула длины кривой, заданной в декартовых и в полярных координатах.

Опр. Плоской кривой называется множество $L = \{(x,y) \in \mathbb{R}^2 : x = \varphi(t), y = \psi(t), \alpha \le t \le \beta, \ \varphi, \psi \in C[a,b] \}.$

Опр. Точка (x,y) называется кратной точкой кривой, если $\exists t_1,t_2 \in [\alpha,\beta], t_1 \neq t_2:$ $\begin{cases} \varphi(t_1) = \varphi(t_2) \\ \psi(t_1) = \psi(t_2) \end{cases}$. Точка, не являющаяся кратной, называется простой.

 \dot{K} ривая L называется простой, если y нее нет кратных точек, кроме, возможно, точки (x_0, y_0) , т.ч. $x_0 = \varphi(\alpha) = \varphi(\beta)$, $y_0 = \psi(\alpha) = \psi(\beta)$. Если единственная кратная точка кривой L - ее начало/конец, то L называется простой замкнутой кривой.

Кривая L называется параметризуемой, если $\exists T = \{t_0, t_1, \dots, t_n\}$ - разбиение $[\alpha, \beta]$, m.ч. на каждом из отрезков $[t_{k-1}, t_k]$ функции φ, ψ задают простую кривую.

Опр. Функция f называется кусочно линейной на $[\alpha, \beta]$, если $f \in C[\alpha, \beta]$, т.ч. на каждом из отрезков $[t_{k-1}, t_k]$ f является линейной функцией. Кривая l называется ломаной, если задающие ее функции являются кусочно линейными.

Опр. Пусть $L = \{(x,y) \in \mathbb{R}^2 : x = \varphi(y), y = \psi(t), \alpha \leq t \leq \beta, \varphi, \psi \in C[\alpha,\beta]\}$, $T = \{t_0, t_1, \ldots, t_n\}$ - разбиение $[\alpha, \beta]$. Ломаная $l = A_0 A_1 \ldots A_n$ вписана в кривую L и соответствует разбиению T, если $A_k(\varphi(t_k), \psi(t_k))$ - вершины ломаной, отрезки $A_{k-1}A_k$ - звенья ломаной. Длина ломаной l - число $|l| = \sum_{k=1}^n |A_{k-1}A_k|$.

Опр. Кривая L называется спрямляемой, если множество длин всех ломаных, вписанных в L ограничено сверху. Длина спрямляемой кривой L - это число $|L| = \sup_{T} \{|l|\}$.

Лемма. Пусть L - плоская кривая, ломанные l и l' вписаны в L и соответствуют разбиениям T и T' соответственно. Если $T \subset T'$, то $|l| \leq |l'|$.

 \mathcal{A} -во. Достаточно рассмотреть случай $T'=T\cup\{t'\}$. Пусть $t'\in(t_{k-1},t_k)$. Обозначим $A_{k-1}=(\varphi(t_{k-1}),\psi(t_{k-1}),\,A_k=(\varphi(t_k),\psi(t_k)),\,A'=(\varphi(t'),\psi(t'))$. Тогда $|l'|-|l|=|A_{k-1}A'|+|A'A_k|-|A_{k-1}A_k|\geq 0$ (неравенство треугольника).

Лемма. $\forall a, b \in \mathbb{R} : |\sqrt{a^2 + b^2} - \sqrt{a^2 + c^2}| \le |b - c|$.

Д-60. Если b=c, то утверждение очевидно. Пусть $b^2+c^2\neq 0$. Тогда

$$\begin{split} |\sqrt{a^2+b^2}-\sqrt{a^2+c^2}| &= \frac{|a^2+b^2-a^2-c^2|}{\sqrt{a^2+b^2}+\sqrt{a^2+c^2}} \leq \frac{|b^2-c^2|}{|b|+|c|} = \frac{|b-c||b+c|}{|b|+|c|} \leq \\ &\leq \frac{|b-c|(|b|+|c|)}{|b|+|c|} = |b-c|. \end{split}$$

Теорема. Пусть $\varphi, \psi \in C^1[\alpha, \beta]$. Тогда кривая $L = \{(x, y) \in \mathbb{R}^2 | x = \varphi(t), y = \psi(t), \alpha \le t \le \beta\}$ спрямляема, причем $|L| = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2} \, dt$.

 \mathcal{A} -во. Проведем для случая простой кривой. Возьмем $\varepsilon > 0$. Функция $\psi' \in C[a,b] \Longrightarrow$ равномерно непрерывна $\Longrightarrow \exists \delta_1(\varepsilon) > 0$, т.ч. $\forall t',t'' \in [a,b], |t'-t''| < \delta_1 : |\psi(t')-\psi(t'')| < \frac{\varepsilon}{4(\beta-\alpha)}$ (1). Обозначим $f(t) = \sqrt{(\varphi'(t))^2 + (\psi'(t))^2}, f \in C[\alpha,\beta] \Longrightarrow f \in R[\alpha,\beta] \Longrightarrow \exists J = \int_{\alpha}^{\beta} f(t) \, dt$. Далее, $\exists \delta_2(\varepsilon) > 0$, т.ч. $\forall V$ - размеченного разбиения $[\alpha,\beta], \Delta_V < \delta_2 : |\sigma_f(V)-J| < \frac{\varepsilon}{4}$ (2). Обозначим $\delta = \min\{\delta_1,\delta_2\}$. Пусть T - разбиение $[\alpha,\beta], \Delta_T < \delta$. Впишем в L ломаную l, соответсвующую разбиению T. Тогда

$$|l| = \sum_{k=1}^{n} \sqrt{(\varphi(t_k - \varphi(t_{k-1})^2 + (\psi(t_k) - \psi(t_{k-1}))^2} = (\text{т. Лагранжа}, \xi_k, \eta_k \in [t_{k-1}, t_k]) =$$

$$= \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k)(t_k - t_{k-1}))^2 + (\psi'(\eta_k)(t_k - t_{k-1}))^2} =$$

$$= \sum_{k=1}^{n} \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} \Delta t_k. (*)$$

Заметим, что $\varphi', \psi' \in C[\alpha, \beta] \implies$ ограничены на $[\alpha, \beta] \implies \exists M_1, M_2$ т т.ч. $|\varphi'(t)| \leq M_1$, $|\psi'(t)| \leq M_2 \, \forall t \in [\alpha, \beta]$. Обозначим $M = \sqrt{M_1^2 + M_2^2}$, тогда $|t| \leq \sum\limits_{k=1}^n M \Delta t_k = M(\beta - \alpha)$. Получили, что множество длин всех ломаных t, вписанных в t и соответствующих разбиению с диаметром t0, ограничено сверху. Но при измельчении разбиения длина ломаных растет t1 множество длин всех ломаных, вписанных в t2, ограничено сверху t3 соответствующее разбиению t4, где точки t6, взяты из соотношения t8. Тогда

$$||l| - \sigma_f(V)| = \left| \sum_{k=1}^n \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} \Delta t_k - \sum_{k=1}^n \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2} \Delta t_k \right| \le \left| \sum_{k=1}^n \left(\sqrt{(\varphi'(\xi_k))^2 + (\psi'(\eta_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2} \right) \Delta t_k \right| \le \sum_{k=1}^n |\psi'(\xi_k) - \psi'(\eta_k)| \Delta t_k < \frac{\varepsilon}{(\beta - \alpha)} \sum_{k=1}^n \Delta t_k = \frac{\varepsilon}{4} (3)$$

Далее, кривая L спрямляема $\Longrightarrow \exists |L|$. По определению $\exists l^*$ - ломаная, вписанная в L и соответствующая разбиению T^* , т.ч. $0 \le |L| - |L^*| < \frac{\varepsilon}{2}$. Пусть T' - измельчение T^* , т.ч. $\Delta_{t'} < \delta$. Тогда $0 \le |L| - |l'| \le |L| - |l^*| < \frac{\varepsilon}{2}$ (4). Объединяя неравенства (2) – (4), получаем, что $\forall \varepsilon > 0 \, \exists \delta(\varepsilon > 0, \, \text{т.ч.} \, \forall l$ - ломаной, вписанной в L и соответствующей разбиению T, $\Delta_T < \delta$:

$$||L| - J| \le \underbrace{||L| - |L||}_{<\frac{\varepsilon}{2}} + \underbrace{||l| - \sigma_f(V)|}_{<\frac{\varepsilon}{4}} + \underbrace{|\sigma_f(V) - J|}_{<\frac{\varepsilon}{4}} < \varepsilon.$$

В силу произвольности выбора $\varepsilon: |L| = J$.

Следствия.

1. Пусть L - график функции y=f(x) в декартовых координатах, $a\leq x\leq b$. Если $f\in C^1[a,b],$ то кривая L спрямляема, причем $|L|=\int_a^b\sqrt{1+(f'(x))^2}\,dx.$

Д-во. Возьмем в теореме
$$\varphi(t)=t, \psi(t)=f(t)$$
. Тогда $|L|=\int_a^b \sqrt{1+(f'(t))^2}\,dt$.

2. Пусть кривая L - график функции $r=r(\theta)$ в полярных координатах, $\theta_1 \leq \theta \leq \theta_2$. Если $r \in C^1[\theta_1,\theta_2]$, то кривая L спрямляема, причем $|L| = \int_{\theta_1}^{\theta_2} \sqrt{(r(\theta))^2 + (r'(\theta))^2} \, dt$.

Д-во. Возьмем
$$\varphi(t) = r(t)\cos(t), \ \psi(t) = r(t)\sin(t)$$
. Тогда

$$(\varphi'(t))^{2} + (\psi'(t))^{2} = (r'(t)\cos t - r(t)\sin t)^{2} + (r'(t)\sin t + r(t)\cos t)^{2} =$$

$$= (r'(t))^{2}\cos^{2}t - 2r'(t)\cos tr(t)\sin t + (r(t))^{2}\sin^{2}t +$$

$$+ (r'(t))^{2}\sin^{2}t + 2r'(t)\sin tr(t)\cos t + (r(t))^{2}\cos^{2}t =$$

$$= (r'(t))^{2} + (r(t))^{2}.$$

15 Понятие квадрируемости (площади) плоской фигуры. Критерий квадрируемости через приближение простейшими (лемма 1). Площадь криволинейной трапеции.