Foundations of Computer Science Comp109

University of Liverpool

Boris Konev

konev@liverpool.ac.uk

Olga Anosova

O.Anosova@liverpool.ac.uk

Recap: composition and extended pigeonhole principle.

- Composition $g \circ f : X \to Z$ of two functions $f : X \to Y$ and $g : Y \to Z$ is defined by $(g \circ f)(x) = g(f(x))$.
- The **extended pigeonhole principle**: if |A| > k|B| for some $k \in \mathbb{N}$ and a function $f : A \to B$, then there is a value of f which occurs at least k+1 times.
- There are multiple applications of Pigeonhole principle, for example: The adult human body has about 5 million hair follicles (men have a few hundred thousand more than women). Earth population is about 8.2 Billion. What can you deduce?

Less fun example: Hash collision

A *hash function* is any function that maps data of arbitrary size to fixed-size values.

Example: password \rightarrow number of symbols.

A *perfect hash function* maps distinct elements to distinct values, i.e. it is

Problem: function domain needs to be known, hence the perfect hash function either is not dynamic or requires excessive codomain size.

In practice all hash functions are *imperfect* with some additional *hash collision* resolution methods.¹

¹For images and more, see https://en.wikipedia.org/wiki/Hash_collision

The Birthday paradox

The pigeonhole principle guarantees the result with probability=1, but the probability is getting >50% very quick.

The Birthday paradox states that

- to *guarantee* having two people with the same birthday one needs how many people?
- the probability to match a fixed specific birthday is very low;
- to exceed 50% *probability* of having a birthday match we need *how many people?*

Comparing number sets

Hilbert's infinite hotel

Bijections and cardinality

We can't **count** infinite cardinalities, but we can **compare** them.

Sets A and B have the same cardinality iff there is a bijection from A to B.

Recall: the powerset and bit vectors

We used this trick to compute the cardinality of the powerset:

Let $S = \{1, 2, ..., n\}$ and let B^n be the set of bit strings of length n. The function

$$f: Pow(S) \rightarrow B^n$$

that assigns each subset A of S to its *characteristic vector* is a bijection.

Comparing $\mathbb N$ and $\mathbb Z$

Countable sets

A set that is either **finite** or has the **same cardinality as** \mathbb{N} is called *countable*.

Cardinality of $\mathbb N$ is often denoted as \aleph_0 (read: aleph-nought, aleph-zero, or aleph-null).

(DIY) Claim. A set A is countable if and only if there exists an injection from A into \mathbb{N} .

Example: are even integers countable?

Countable Sets: Q

$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	
$\frac{2}{1}$	$\frac{2}{2}$	$\frac{2}{3}$	$\frac{2}{4}$	<u>2</u> 5	$\frac{2}{6}$	
$\frac{3}{1}$	$\frac{3}{2}$	$\frac{3}{3}$	<u>3</u>	$\frac{3}{5}$	$\frac{3}{6}$	
$\frac{4}{1}$	<u>4</u>	4 3	$\frac{4}{4}$	<u>4</u> 5	<u>4</u> 6	
<u>5</u>	<u>5</u>	<u>5</u>	<u>5</u>	<u>5</u>	<u>5</u>	
$\frac{6}{1}$	<u>6</u>	<u>6</u>	<u>6</u>	<u>6</u> 5	<u>6</u>	
						٠.

Real numbers: $\{x \in \mathbb{R} \mid 0 < x < 1\}$ and \mathbb{R}^+

Uncountable sets

A set that is *not countable* is called *uncountable*.

Claim. Set $S = \{x \in \mathbb{R} \mid 0 < x < 1\}$ is uncountable.

Proof: Cantor's diagonal argument

Suppose for a proof by contradiction that there exists a bijection $f: \mathbb{N}^+ \to S$. Consider decimal representations of f(n), for $n \in \mathbb{N}^+$:

$$f(1) = 0.a_{11} \ a_{12} \ a_{13} \dots \ a_{1n} \dots$$

$$f(2) = 0.a_{21} \ a_{22} \ a_{23} \dots \ a_{2n} \dots$$

$$f(3) = 0.a_{31} \ a_{32} \ a_{33} \dots \ a_{3n} \dots$$

$$\vdots \qquad \dots \qquad \vdots$$

$$f(n) = 0.a_{n1} \ a_{n2} \ a_{n3} \dots \ a_{nn} \dots$$

We show that there exists $d \in S$ such that for no $i \in \mathbb{N}^+$ we have f(i) = d.

Let
$$d=0.d_1\ d_2\ d_3\ldots d_n\ldots$$
 where
$$d_i=\left\{\begin{array}{ll} 2, \ \text{if} \ a_{ii}=1\\ 1, \ \text{if} \ a_{ii}\neq 1 \end{array}\right.$$

Then what?

Summary

- \blacksquare Sets A and B have the same cardinality iff there is a bijection from A to B.
- A set that is either **finite** or has the **same cardinality as** N is called **countable**. Otherwise a set is called **uncountable**.
- Sets \mathbb{Z} , \mathbb{Q} are countable, set \mathbb{R} is not.

DIY Problem. Prove that any subset of any countable set is countable.