

2013—2014 学年第一学期 《高等数学 (2-1)》第二阶段考试卷

(工科类)

专业班级 _	
姓 名	
学 号	
开课系室	基础数学系
考试日期	2013年12月7日

题 号	1	1 1	11.1	四	五.	六	七	总分
本题满分	20	18	18	10	12	12	10	
本题得分								
阅卷人								

注意事项:

- 1. 请在试卷正面答题,反面及附页可作草稿纸;
- 2. 答题时请注意书写清楚,保持卷面清洁;
- 3. 本试卷共七道大题,满分100分;试卷本请勿撕开,否则作废;
- 4. 本试卷正文共7页。

- 一. (共4小题,每小题5分,共计20分)
- 1. 求极限: $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$.

本题满分 20 分		
本		
题		
得		
分		

2. 求极限: $\lim_{x\to 0^+} \frac{\ln \tan 5x}{\ln \tan 3x}.$

3. 求极限: $\lim_{x\to 0^+} x^x$.

4. 求不定积分: $\int \ln^2 x dx$.

- 二. (共3小题,每小题6分,共计18分)
- 1. 求极限: $\lim_{x\to 0} \frac{\ln(1+x)(x-\ln(1+\tan x))}{\sin^3 x}$.

本是	逐满分 18 分
本	
题	
得	
分	

2. 求极限:
$$\lim_{x\to 0} \left(\frac{a_1^x + a_2^x + a_3^x + \dots + a_n^x}{n} \right)^{\frac{1}{x}}, \quad (a_i > 0, i = 1, 2, \dots, n).$$

3. 求不定积分: $\int \cos^3 x \sin^4 x dx$.

三. (共3小题,每小题6分,共计18分)

1. 求不定积分 $\int \frac{dx}{x \ln x}$.

本是	逐满分 18 分
本	
题	
得	
分	

2. 求不定积分 $\int \frac{x+3}{x^2+2x+3} dx$.

3. 求不定积分 $\int \frac{x^2}{\sqrt{1-x^2}} dx.$

四. (本题 10 分)

已知函数 $y = \frac{(x-1)^2}{1+x}$,讨论函数的单调区间、凸性、极值和函数图形的拐点、渐近线。

本题满分10分		
本		
题		
得		
分		

五. (共2小题,每题6分,共12分)

1. 写出函数 $f(x) = x^2 e^x$ 的 n 阶麦克劳林展开式。

本题满分 12 分		
本		
题		
得		
分		

2. 把一根长度为a的铁丝截成两段,其中一段折成正方形框,另一段弯成圆周,问如何截时,可使所围成的正方形和圆的面积之和达到最小?

六. (共2小题,每小题6分,共计12分)

1. 设 e^{x^2} 是函数f(x)的一个原函数, 求 $\int xf'(x)dx$.

本是	逐满分 12 分
本	
题	
得	
分	

2. 讨论方程 $\ln x - \frac{x}{e} + k = 0 \ (k > 0)$ 在 $(0, +\infty)$ 内有几个实根?

七. 证明题 (共2小题,每小题5分,共计10分)

1. 证明: 当 x < 1时, $e^x \le \frac{1}{1-x}$.

本题满分10分		
本		
题		
得		
分		

2. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 0,证明存在 $\xi \in (a,b)$, 使得 $f'(\xi) + f(\xi) = 0$.