

Gestion et valorisation sémantiques de données de biodiversité et d'études d'écosystèmes dans l'infrastructure AnaEE-France

Damien Maurice, INRA – AnaEE-France Christian Pichot, INRA – AnaEE-France

A. Chanzy, E. Aivayan, N. Beudez, C. Callou, P. Clastre, M. El-Hamadry, L. Greiveldinger, B. Jaillet, F. Lafolie, A. Léturgie, A. Maire, C. Martin, D. Maurice, N. Moitrier, G. Monet, H. Raynal, A. Schellenberger, R. Yahiaoui

thématique e-Envir - Gif-sur-Yvette

28-31 octobre 2019

Contexte AnAEE

à Mobilisation des technologies du web sémantique pour la gestion et l'exploitation de la connaissance sur les données, par les machines et un peu les humains

Un Système d'Information distribué ... et une approche sémantique

FIGURE 5 | The distributed architecture of the AnaEE-F information system includes a discovery catalog to access metadata information about platforms, datasets, or models, a portal to access metadata about observations or model variables including a semantic referential and an ontology, and a data repository to store digital object identifies (DOI) of data sets from information systems of *in natura* and mesocosm experiments. Data sets from experiments are linked with model factories to enable model parameterisation or data assimilation.

Un flux de gestion des données/métadonnées

Modélisation sémantique et ontologie

Graphe générique de l'ontologie OBOE

Triples view

Exemple de graphe

http://obs1 ofEntity http://nitrogen
hasContext http://obs2
hasMeasurement http://meas1
http://obs2 ofEntity http://ammonium
http://meas1 ofCharacteristic http://massConcentration
usesStandard http://milliGramPerLiter
hasValue 0,2

Comment passer des SI initiaux (ici BDD) au(x) graphe(s)?

Comment passer des SI initiaux (ici BDD) au(x) graphe(s)?

Comment passer des SI initiaux (ici BDD) au(x) graphe(s)?

graphes sémantiques

Comment effectuer le mapping requis?

- 1. Modéliser les graphes (selon l'ontologie)
- 2. A chaque nœud d'un graphe doivent être associés :
- un URI:
- → URI fixe (ex: classe de l'ontologie)
 - Ex: http://anaee/massConcentration
- → URI dynamique contenant des valeurs issues des bdd value

Ex : http://anaee/ola/observation/water{mesure_id}

• une requête SQL pour renseigner les URI dynamiques et produire

les triplets à la volée

SELECT mesure_id, value FROM table

modèle d'annotation pour le pipeline de production des triplets

Une mise en œuvre généralisée

... nécessitant une approche générique et automatisée

automatiser et génériciser le plus possible

1 modèle d'annotation pour n variables [350 variables déclarées dans l'ontologie]

•	VariableANAEEStandardName	Ca	tegory(ies)	Co	ntext(s)	Er	ntity	Cł	naracteristic	Un	nity
•	DissolvedAmmoniumNitrogenMassConcentration	•	PhysicalChemistr y		Water, Solutes, Ammonium	•	Nitrogen	•	MassConcentration	• ۱	MilligramPerLiter
•	CalciumMassConcentration	•	PhysicalChemistr y	•	Water	•	Calcium	•	MassConcentration	۱•	MilligramPerLiter
•	WaterPH	•	PhysicalChemistr y			•	Water	•	рН	•	pHUnit
•		•		•		•		•		•	

Unique information

Multiple informations

Principe: générer automatiquement des fichiers de mapping ontop de plusieurs variables à partir d'un même modèle d'annotation (dépendant de la modélisation de la bddr).

Vue générale du pipeline d'annotation sémantique

Un flux de gestion des données/métadonnées

Ressource access portal

Objectif: Produire un nouveau graphe de données élaborées en utilisant le pipleine d'annotation et le publier dans un SPARQL Endpoint spécifique qui sera interrogé par le portail AnaEE-France

Pipeline for semantic generation of metadata (& data) sets

Pipeline for semantic generation of (metadata &) data sets

interface des services de génération de (méta)données

interface des services de génération de (méta)données

Bilan

LES PLUS

- technologies standards
- interopérabilité native
- FAIR compatible
- approche données et/ou métadonnées
- réutilisation de referentiels existants
- rapproche scientifiques et informaticiens
- généricité des pipelines (=> portefeuille de services d'ENVRI-plus)

LES MOINS

- beaucoup de nouvelles compétences à acquerir + outils
- gestion du volume des triplets

ETAT D'AVANCEMENT / PERSPECTIVES

Référentiels

- publication ontologie AnaEE et v2 du thésaurus AnaEE
- alignements avec d'autres référentiels

Pipeline d'annotation sémantique

- consolidation des développements
- tests de déploiement et performances
- déploiement sur d'autres SI d'AnaEE...autres infra de recherche

Pipelines de génération de données et métadonnées

- poursuite des développements
- prise en charge d'autres formats de sortie que NetCDF ?
- prise en charge du format EML en + de l'ISO19115 ?

Damien,

ici je verrai bien un support présentant :

- ce qu'est un « graphe » (portant les informations (données/métadonnées) sur les expérimenatton AnaEE-Fr
- le référentiel de domaine (= ontologie) sur leuel le graphe se base

puis un 2eme support, léger posant le pb : « comment passer des SI initiaux (ici BDD) au(x) graphe(s) »

Sur la question des outils, on peut se contenter (je crois) de signaler que nous avons retenu ONTOP pour cette opération...choix qui est néanmoins « lourd » pour une annotation systématque de nos SI => automatisation du processus

On peut assez largement alléger la description de l'annotation (support actuels 9-16)

OBOE ONTOLOGY BASED APPROACH

OBOE model overview

Triples view

Application for SOERE OLA: water physical chemistry variable in database: ammonium nitrogen

Triples view

Application : SOERE OLA DB : Variable semantic analysis

Application : SOERE OLA DB : Variable semantic analysis

Application : SOERE OLA DB : Node graph values from DB

Application : SOERE OLA DB : Node graph values from DB

Application : SOERE OLA DB : Node graph values from DB

Application : SOERE OLA DB : Location and infrastructure information

Application: SOERE OLA DB: Complete graph for « ammonium nitrogen »

Get some abstraction to graph models

- 1 graph model <--> 1 variable
- 1 graph model <--> **n** variables
 - → requires appropriate structure and information adjustments drived by variable semantic analysis.

Extract of semantic analysis for 3 variables of SOERE OLA:

•	Standard AnaEE	Cá	ategory(ies) (Contexts		Er	ntity	Cł	naracteristic	Ur	nity
•	DissolvedAmmoniumNitrogenMassConcentrati on	•	PhysicalChemis • try	Water, S	Solutes, Ammoniun	n•	Nitrogen	•	MassConcentration	•	MilligramPerLite r
•	CalciumMassConcentration	•	PhysicalChemis • try	Water		•	Calcium	•	MassConcentration	•	MilligramPerLite r
•	WaterPH	•	PhysicalChemis try			•	Water	•	рН	•	pHUnit
•		•	•			•		•		•	

Suitable variables for a graph model required a similar relational DB structure.

Abstract Pattern for

« Category(ies) » information

hasMeasurement

On-The-Fly Translation tools

- On-the-fly Ontology-based Data Access
- Intuitive Mapping (using SQL)

Something which says how relational data are transformed to semantic data graph

Contexte AnAEE

Challenges

Organisation

- Distributed platforms
- In natura

Analytical

Data & modelling

In vitro