ESCUELA POLITÉCNICA SUPERIOR

Matemáticas II, Curso 2024-25

Grado en Ingeniería Eléctrica, Grado en Ingeniería Química Industrial TERCERA CONVOCATORIA, SEGUNDA PARTE 09-10-2024

NOMBRE y APELLIDOS:

Grupo:

PROBLEMA 1:

1.A) [1 punto] Expresar la integral iterada $\iint_{\mathcal{R}} f(x,y) dA$ en los dos órdenes de integración posibles, siendo \mathcal{R} la región del plano dada por

$$\mathcal{R} = \left\{ 2 - x \le y \le \sqrt{1 - (x - 1)^2}, 1 \le x \le 2 \right\}.$$

- **1.B)** [1.5 puntos] Calcular $\iint_{\mathcal{D}} dA$, siendo \mathcal{D} la región interior a la circunferencia de centro (0,1) y radio 1 situada bajo la recta y=x.
- 1.C) [1.5 puntos] Hallar el volumen del sólido acotado por el paraboloide $z=x^2+y^2$ y el plano z=y.
- **1.D)** [2 puntos] Sea \mathcal{Q} el sólido acotado superiormente por la esfera $x^2 + y^2 + (z-3)^2 = 9$ e inferiormente por el cono $z = \sqrt{x^2 + y^2}$. Expresar la integral

$$\iiint_{\mathcal{O}} yz^2 dV$$

sin calcularla, de las siguientes formas:

- D.1) como integral iterada en coordenadas cilíndricas.
- D.2) como integral iterada en coordenadas esféricas.

PROBLEMA 2:

- **2.A)** [1 punto] Calcular el área de la superficie del paraboloide $z = x^2 + y^2$ que se encuentra por debajo del plano z = 4.
- **2.B)** [1.5 puntos] Calcular la integral de línea del campo $G(x,y) = (2x\cos y,\cos y)$ a lo largo de la curva \mathcal{C} que va del punto (0,0) al punto (1,1) por la parábola $y=x^2$, y del punto (1,1) al origen por la recta y=x.
- 2.C) [1.5 puntos] Obtener una función potencial del campo vectorial conservativo

$$\mathbf{F}(x,y) = (e^x y^2 + 3x^2 y) \mathbf{i} + (2ye^x + x^3 + 3) \mathbf{j},$$

y calcular la integral de línea $\int_C \mathbf{F} \cdot d\mathbf{r}$ donde C es una curva suave a trozos que va del punto (2,0) al punto (0,2) recorrida en sentido antihorario.

- ▶ Problemas distintos se escribirán en grupos de hojas distintos.
- ▶ Todas las respuestas deberán estar debidamente razonadas.