FSI Test Case

Validation Process

Felix Newberry

University of Colorado Boulder - Aerospace Engineering

February 25, 2018

FSI Problem

Objective: FSI problem as a test case for UQ algorithms

FSI Problem:

- 2D channel flow past a cylinder with an elastic bar
- Arbitary Lagrangian-Eulerian (ALE) method
- Coded in Python, solved in FEniCS

Solvers

Fluid Solver:

- Incompressible and Newtonian
- Incremental Pressure Correction Scheme (IPCS)

Structure Solver:

- Elastic and compressible
- CG1 method applied
- St Venant-Kirchoff material model

Mesh Solver:

• Time dependent linear elasticity

Solvers

Table: Discretization Scheme

	Element Type	Element Degree
Fluid Pressure	Continuous Galerkin	1
Fluid Velocity	Continuous Galerkin	2
Structure	Continuous Galerkin	1
Mesh	Continuous Galerkin	1

Fluid Solver Validation

2D benchmark channel flow past a circular cylinder. ¹

Fluid Properties:

- $\nu = 0.001 m^2 s^{-1}$
- $ho=1.0 kgm^{-3}$ in validation, $ho=1000.0 kgm^{-3}$ in FSI
- $\bar{U} = 0.2 ms^{-1}$

Boundary Conditions:

- Inlet, $U(0,y) = \frac{4U_m y(H-y)}{H^2}$, V = 0
- Walls and Cylinder, no-slip
- Outlet, P = 0

Validation metrics: C_D , C_L and ΔP .

¹Benchmark computations of laminar flow around a cylinder. Schäfer, Michael and Turek, Stefan and Durst, Franz and Krause, Egon and Rannacher, Rolf, Flow simulation with high-performance computers II, pages 547-566. Springer, 1996

Fluid Solver Validation

Table: Fluid Validation

N	ndof	C_D	C_L	P_{diff}
32	8503	5.512	-0.01117	0.1142
64	28760	5.557	0.01018	0.1169
128	108217	5.569	0.01103	0.1173
256	416630	5.574	0.01094	0.1174
Lower Bound Upper Bound		5.5700 5.5900	0.0104 0.0110	0.1172 0.1176

Structure Parameters:

- $\mu = 0.05 kgm^{-1}s^{-2}$
- $\nu = 0.4$
- $\rho = 1000 kgm^{-3}$

Boundary Conditions:

- fixed end
- gravitational force $\mathbf{g} = (0, 2)$
- traction set to 0

Validation metrics: mean and amplitude of point A.

Results for dynamic test case with time steps dt = 0.02, 0.01, 0.005

level	nel	ndof	ux of A $[\times 10^{-3}]$	uy of A $[\times 10^{-3}]$
2 + 0	320	6468	$-14.384 \pm 14.389 [1.0956]$	$-64.271 \pm 64.595[1.0956]$
			$-14.402 \pm 14.406[1.0956]$	
4 + 0	5120	98820	$-14.404 \pm 14.408[1.0956]$	$-64.371 \pm 64.695[1.0956]$
level	nel	ndof	ux of A $[\times 10^{-3}]$	uy of A $[\times 10^{-3}]$
2 + 0	320	6468	$-14.632 \pm 14.636[1.0978]$	$-64.744 \pm 64.907[1.0978]$
3 + 0	1280	25092	$-14.645 \pm 14.650[1.0978]$	$-64.765 \pm 64.946[1.0978]$
4 + 0	5120	98820	$-14.645 \pm 14.650[1.0978]$	$-64.766 \pm 64.948[1.0978]$
level	nel			uy of A $[\times 10^{-3}]$
2 + 0				$-63.541 \pm 65.094[1.0995]$
3 + 0	1280	25092	$-14.299 \pm 14.299[1.0995]$	$-63.594 \pm 65.154[1.0995]$
4 + 0	5120	98820	$-14.305 \pm 14.305 [1.0995]$	$-63.607 \pm 65.160[1.0995]$
ref			$-14.305 \pm 14.305 [1.0995]$	$-63.607 \pm 65.160[1.0995]$

ndof	ux of A $[\times 10^{-3}]$	uy of A $[\times 10^{-3}]$
7906	$-14.379 \pm 14.400 [1.0949]$	$-64.438 \pm 64.578 [1.0949]$
29850	$-14.383 \pm 14.407 [1.0949]$	$-64.445 \pm 65.593 [1.0949]$
105134	$-14.379 \pm 14.400 [1.0949]$	$-64.438 \pm 64.578 [1.0949]$
7906	$-14.464 \pm 14.465 [1.0941]$	$-64.787 \pm 64.971 [1.0941]$
29850	$-14.673 \pm 14.679 [1.0941]$	$-64.841 \pm 65.025 [1.0941]$
105134	$-14.665 \pm 14.672 [1.0941]$	$-64.826 \pm 65.010 [1.0941]$
7906	$-14.311 \pm 14.311 [1.0917]$	$-63.624 \pm 65.173 [1.0923]$
29850	$-14.333 \pm 14.333 [1.0917]$	$-63.682 \pm 65.222 [1.0923]$
105134	$-14.325 \pm 14.326 [1.0917]$	$-63.660 \pm 65.210 [1.0923]$

Slight differences, but closer than other references I have found ².

FSI Approach

Three sub-problems comprised of the fluid, structure and mesh. Structure and mesh solved in undeformed reference domains, and fluid solved in deformed domain:

- Reference domain $\Omega = \Omega_F \cup \Omega_S$, $\Omega_F \cap \Omega_S = 0$
- Deformed domain $\omega(t) = \omega_F(t) \cup \omega_S(t)$, $\omega_F(t) \cap \omega_S(t) = 0$
- FSI interface Γ_{FSI} (reference), $\gamma_{FSI}(t)$ (deformed)

FSI Approach

The mesh is constructed in GMSH. The structure and fluid meshes are constructed separately with coincident nodes on the shared boundary.

Figure: Course mesh of reference structure and fluid domains

FSI Algorithm

- 1. Solve the fluid problem in the current fluid domain $\omega_F(t)$
- 2. Solve structure problem in reference structure domain Ω_s
- 3. Solve mesh problem in reference fluid domain Ω_F
- 4. Repeat steps 1-3 until convergence
- 5. Move to the subsequent time step

Interface Traction

Equal and opposite traction forces on interaction boundary. Cauchy stress tensor computed in current domain:

$$\sigma_F = -pI + \mu_f(grad(u_f) + grad(u_f)^T)$$
 (1)

where p is the fluid pressure, μ_f the dynamic viscosity and u_f the fluid velocity. The fluid traction is transferred to the structure via the Piola map

$$(j\sigma_F \cdot f^{-T}) \cdot n_f = -\sigma_s \cdot n_s \tag{2}$$

where j = det(f) is the determinant of the Jacobi matrix f computed from the mesh deformation.

Interface Traction

- Fluid stress computed in current fluid domain $\omega_F(t)$
- Fluid traction assembled in reference fluid domain Ω_F on a Continuous Galerkin degree 1 vector space
- Fluid traction written to an expression and applied to FSI interface Γ_{FSI} in structure variational form

Interface Velocity and Mesh Coordinates

- Mesh displacement interface Dirichlet BC prescribed as structure displacement on Γ_{FSI}
- Mesh velocity computed from current and previous time step
- Mesh velocity interpolated to function defined on Γ_{FSI}
- Velocity values copied to a function defined on current interface γ_{FSI}
- Current interface velocity written to an expression and applied to γ_{FSI} as fluid velocity Dirichlet BC
- Fluid mesh and fluid interface mesh coordinates updated as reference coordinates plus current mesh deformation solution

Printing 2-norm at each iteration of each time step asserts that:

- mesh, fluid and structure velocities match on interface
- mesh and structure displacements match on interface
- the 2-norm of the mesh and fluid velocities reduces over iterations within a time step, as expected

A time step of dt=0.001 yields physical fluid velocity and pressure results. The structure velocity behaves erratically throughout, often changing sign between time steps. Despite this the resulting structure displacement does seem reasonable until divergence after several hundred time steps. dt=0.0005 yields similar results.

Code runs without issue when bar stiffness is very high.

Figure: dt = 0.001, t = 0.5s

Figure: dt = 0.001, t = 0.6s

Figure: dt = 0.001, t = 0.7s

Figure: dt = 0.001, t = 0.8s

Figure: dt = 0.001, t = 0.83s