线性代数小班辅导讲义 (无 82)

无 68 何昊天

2018年11月4日

目录

1	向量	与向量空间	2
	1.1	向量的代数运算律	2
	1.2	向量组	3
	1.3	向量空间	5
2	矩阵		
	2.1	矩阵的代数运算律	7
	2.2	分块矩阵	9
3	线性方程组		
	3.1	齐次线性方程组	10
	3.2	非齐次线性方程组	11

1 向量与向量空间

1.1 向量的代数运算律

线性代数主要研究 \mathbb{R}^n 中的向量,可以将其看作 \mathbb{R}^2 和 \mathbb{R}^3 中向量的推广。先用低维的情况想明白问题,再抽象至高维的情形往往是一个很有效的理解方法。

 \mathbb{R}^n 中向量的运算律如下:

(1)
$$\forall \alpha, \beta \in \mathbb{R}^n, \alpha + \beta = \beta + \alpha$$

(2)
$$\forall \alpha, \beta, \gamma \in \mathbb{R}^n, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$

(3)
$$\forall \alpha \in \mathbb{R}^n, \alpha + 0 = 0 + \alpha$$

(4)
$$\forall \alpha \in \mathbb{R}^n, \alpha + (-\alpha) = (-\alpha) + \alpha = 0$$

(5)
$$\forall \alpha \in \mathbb{R}^n, 1\alpha = \alpha$$

(6)
$$\forall \alpha \in \mathbb{R}^n, k, l \in \mathbb{R}, k(l\alpha) = (kl)\alpha$$

(7)
$$\forall \alpha \in \mathbb{R}^n, k, l \in \mathbb{R}, (k+l)\alpha = k\alpha + l\alpha$$

(8)
$$\forall \alpha, \beta \in \mathbb{R}^n, k \in \mathbb{R}, k(\alpha + \beta) = k\alpha + k\beta$$

向量的点积定义为 $\alpha\cdot\beta=|\alpha||\beta|cos\theta$,其中 θ 是两个向量之间的夹角,夹角这个概念也很自然地推广到了高维。

 \mathbb{R}^n 中向量点积运算律如下:

(1)
$$\forall \alpha, \beta \in \mathbb{R}^n, \alpha \cdot \beta = \beta \cdot \alpha$$

(2)
$$\forall \alpha, \beta, \gamma \in \mathbb{R}^n, (\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$$

(3)
$$\forall \alpha, \beta \in \mathbb{R}^n, k \in \mathbb{R}, (k\alpha) \cdot \beta = \alpha \cdot (k\beta) = k(\alpha \cdot \beta)$$

(4)
$$\forall \alpha \in \mathbb{R}^n, \alpha^2 = \alpha \cdot \alpha > 0$$

Problem 1.1 设
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix},$$
 计算 $\alpha_1 - \alpha_2$ 和 $3\alpha_1 + 2\alpha_2 - \alpha_3$ 。

Solution:
$$\alpha_1 - \alpha_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
, $3\alpha_1 + 2\alpha_2 - \alpha_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$

Problem 1.2 设
$$\alpha_1 = \begin{bmatrix} 2 \\ 5 \\ 1 \\ 3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 10 \\ 1 \\ 5 \\ 10 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 4 \\ 1 \\ -1 \\ 1 \end{bmatrix}, 满足 $3(\alpha_1 - \alpha) + 2(\alpha_2 + \alpha) = 5(\alpha_3 + \alpha),$$$

计算 α 。

Solution:
$$\alpha = \frac{1}{6}(3\alpha_1 + 2\alpha_2 - 5\alpha_3) = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$

Problem 1.3 证明 *Cauchy-Schwarz* 不等式 $(\sum_{k=1}^{n} a_k b_k)^2 \le (\sum_{k=1}^{n} a_k^2)(\sum_{k=1}^{n} b_k^2)$ 。

Solution: $\forall x \in \mathbb{R}$, 都有 $\sum_{k=1}^{n} (a_k x + b_k)^2 \ge 0$, $\diamondsuit A = \sum_{k=1}^{n} a_k^2$, $B = \sum_{k=1}^{n} a_k b_k$, $C = \sum_{k=1}^{n} b_k^2$, $\emptyset Ax^2 + 2Bx + C \ge 0$.

不妨设 A > 0, 令 $x = -\frac{B}{A}$, 则有 $B^2 \le AC$, 此即 Cauchy-Schwarz 不等式。•

Problem 1.4 证明 *Minkowski* 不等式 $\left[\sum_{k=1}^{n} (a_k + b_k)^2\right]^{\frac{1}{2}} \leq \left(\sum_{k=1}^{n} a_k^2\right)^{\frac{1}{2}} + \left(\sum_{k=1}^{n} b_k^2\right)^{\frac{1}{2}}$ 。

Solution: $\sum_{k=1}^{n}(a_k+b_k)^2=\sum_{k=1}^{n}a_k^2+\sum_{k=1}^{n}b_k^2+2\sum_{k=1}^{n}a_kb_k$, 由 Cauchy-Schwarz 不等式 $\sum_{k=1}^{n}a_kb_k\leq (\sum_{k=1}^{n}a_k^2)^{\frac{1}{2}}(\sum_{k=1}^{n}b_k^2)^{\frac{1}{2}}$,所以:

$$\sum_{k=1}^{n} (a_k + b_k)^2 \le \sum_{k=1}^{n} a_k^2 + \sum_{k=1}^{n} b_k^2 + 2(\sum_{k=1}^{n} a_k^2)^{\frac{1}{2}} (\sum_{k=1}^{n} b_k^2)^{\frac{1}{2}} = [(\sum_{k=1}^{n} a_k^2)^{\frac{1}{2}} + (\sum_{k=1}^{n} b_k^2)^{\frac{1}{2}}]^2$$

此即 Minkowski 不等式。•

1.2 向量组

向量组就是一组向量,实际上很多地方能够自然地得到向量组,比如矩阵的所有行和所有列 各自都是一个向量组,因此研究向量组的一些性质是必要的。

向量组有如下重点问题:

- (1) 能否用一个向量组去表示一个向量、特别的、向量组之间能否相互表示。
- (2) 如何得到向量组的极大线性无关组(由 Zorn 引理,极大线性无关组是一定存在的)。
- (3) 极大线性无关组的向量数,即向量组的秩。

只要掌握了这些问题的答案,也就掌握了向量组的所有内容。

Problem 1.5 读
$$\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 5 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ -1 \\ a+2 \\ 1 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} 1 \\ 2 \\ 4 \\ a+8 \end{bmatrix}$, $\beta = \begin{bmatrix} 1 \\ 1 \\ b+3 \\ 5 \end{bmatrix}$, 计算:

- (1) 当 a,b 取何值时, β 不能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示。
- (2) 当 a,b 取何值时, β 可由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 唯一线性表示。

Solution: $\Diamond A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$, 讨论方程组 $Ax = \beta$ 是否有解。

$$\begin{bmatrix} A & \beta \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & a+2 & 4 & b+3 \\ 3 & 5 & 1 & a+8 & 5 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & a+1 & 0 & b \\ 0 & 0 & 0 & a+1 & 0 \end{bmatrix}$$

当 $a = -1, b \neq 0$ 时,方程组无解, β 不能由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表示,当 $a \neq -1$ 时,方程组 有唯一解, β 可由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 唯一线性表示。•

Problem 1.6 读
$$\alpha_1 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}, \beta_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix}, \beta_2 = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 1 \end{bmatrix}, \beta_3 = \begin{bmatrix} 4 \\ 4 \\ 1 \\ 3 \end{bmatrix}, \text{ ix 明}$$

 $\{\beta_1,\beta_2,\beta_3\}$ 可由 $\{\alpha_1,\alpha_2,\alpha_3\}$ 线性表示, 但 $\{\alpha_1,\alpha_2,\alpha_3\}$ 不能由 $\{\beta_1,\beta_2,\beta_3\}$ 线性表示

Solution: $\Rightarrow A = [\alpha_1, \alpha_2, \alpha_3], B = [\beta_1, \beta_2, \beta_3].$

$$\begin{bmatrix} A & B \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & 0 & 0 & 1 & 1 & 1 \\ 0 & 4 & 0 & 2 & 2 & 2 \\ 0 & 0 & 4 & 1 & -3 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \text{id} \quad \{\beta_1, \beta_2, \beta_3\} \text{ or } \text{if} \quad \{\alpha_1, \alpha_2, \alpha_3\} \text{ idet} \}$$

$$\begin{bmatrix} B & A \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & 4 & 0 & 3 & 2 \\ 0 & 2 & -2 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \text{id} \quad \alpha_1, \alpha_2 \text{ if} \text{ if} \text{ if} \quad \{\beta_1, \beta_2, \beta_3\} \text{ idet} \}$$

$$\begin{bmatrix} B & A \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 0 & 4 & 0 & 3 & 2 \\ 0 & 2 & -2 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \text{ if } \alpha_1, \alpha_2 \text{ if } A \text{ if } B \text{ if } \{\beta_1, \beta_2, \beta_3\} \text{ if } A \text{ if } A$$

Problem 1.7 设
$$\alpha_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \beta_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \beta_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \beta_3 = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix},$$
 证明 $\{\alpha_1, \alpha_2\}$ 和 $\{\beta_1, \beta_2, \beta_3\}$ 等价。

$$A^{T} \Rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$
$$B^{T} \Rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

由行等价矩阵行向量组等价性知, $\{\alpha_1, \alpha_2\}$ 和 $\{\beta_1, \beta_2, \beta_3\}$ 等价。•

Problem 1.8 设
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ 3 \\ t \end{bmatrix},$$
 计算当 t 取何值时, $\{\alpha_1, \alpha_2, \alpha_3\}$ 线性无关。

Solution: $\Rightarrow A = [\alpha_1, \alpha_2, \alpha_3], \quad M |A| = t - 5.$

当 $t \neq 5$ 时, A 为可逆矩阵, 故 $\{\alpha_1, \alpha_2, \alpha_3\}$ 线性无关。•

Problem 1.9 证明由阶梯型矩阵的非零行构成的向量组一定线性无关。

这个结论是显而易见的,重点是怎么把理由说清楚。

可以考虑对主元数目做归纳,也可以假设主元所在的列编号然后进行说明。●

Problem 1.10 设
$$\alpha_1 = \begin{bmatrix} a \\ 3 \\ 1 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 2 \\ b \\ 3 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \alpha_4 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, 满足 \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$$
 的秩为 2, 计算 a, b 的值。

Solution: 因为 α_3 , α_4 显然线性无关,故 $\{\alpha_3,\alpha_4,\alpha_1\}$, $\{\alpha_3,\alpha_4,\alpha_2\}$ 的秩均为 2。

$$\begin{bmatrix} \alpha_3, \alpha_4, \alpha_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & a \\ 2 & 3 & 3 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & a \\ 0 & -1 & 3 - 2a \\ 0 & 0 & a - 2 \end{bmatrix}, \text{ five } a = 2.$$

$$\begin{bmatrix} \alpha_3, \alpha_4, \alpha_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & b \\ 1 & 1 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 2 \\ 0 & -1 & b - 4 \\ 0 & 0 & b - 5 \end{bmatrix}, \text{ five } b = 5. \bullet$$

1.3 向量空间

向量空间由两个要素构成:向量的集合 V 与数域 \mathbb{F} ,其中向量之间可以定义"加法",向量和数域中的数可以定义"数乘",且这些运算要满足下面的公理:

- (1) $\forall u, v \in V, u \oplus v = v \oplus u$
- (2) $\forall u, v, w \in V, (u \oplus v) \oplus w = u \oplus (v \oplus w)$
- (3) $\forall u \in V, u \oplus \hat{0} = \hat{0} \oplus u = u$
- (4) $\forall u \in V, u \oplus \tilde{u} = \tilde{u} \oplus u = \hat{0}$
- (5) $\forall u \in V, 1 \otimes u = u$
- (6) $\forall u \in V, k, l \in \mathbb{F}, k \otimes (l \otimes u) = (kl) \otimes u$
- (7) $\forall u \in V, k, l \in \mathbb{F}, (k+l) \otimes u = (k \otimes u) \oplus (l \otimes u)$
- (8) $\forall u, v \in V, k \in \mathbb{F}, k \otimes (u \oplus v) = (k \otimes u) \oplus (k \otimes v)$

注意这里的 \oplus 和 \otimes ,未必是按常规理解的 + 和 \times ,而是可以随着我们的需求自己去定义的计算,同时 $\hat{0}$ 也未必是真正的 0,只要是能满足这些性质就足够了。

向量子空间:向量空间的封闭子集就是原空间的子空间,验证是子空间不需要验证所有公理,只需要验证封闭性即可,值得一提的是子空间一定是包含 Ô 元素的。

生成子空间:由一个向量组的所有线性组合构成的空间,其维数等于向量组的秩。与矩阵 $A_{m\times n}$ 相关的有四个重要空间:

- (1) 列空间: $\{y \in \mathbb{R}^m | y = Ax, \exists x \in \mathbb{R}^n \}$
- (2) 行空间: $\{y \in \mathbb{R}^n | y = A^T x, \exists x \in \mathbb{R}^m \}$
- (3) 零空间: $\{x \in \mathbb{R}^n | Ax = 0\}$

 $(4) 左零空间: \left\{ x \in \mathbb{R}^m | A^T x = 0 \right\}$

Problem 1.11 给定正整数 n, 证明次数不超过 n 的实系数多项式构成数域 \mathbb{R} 上的向量空间。

Solution: 设 $f, g, h \in \mathbb{R}[x]_n, k, l \in \mathbb{R}$, 依次验证八条公理:

- (1) f + g = g + f
- (2) (f+g) + h = f + (g+h)
- (3) f + 0 = 0 + f = f
- (4) f + (-f) = (-f) + f = 0
- (5) $1 \cdot f = f$
- (6) $(kl) \cdot f = k \cdot (l \cdot f)$
- (7) $(k+l) \cdot f = k \cdot f + l \cdot f$
- (8) $k \cdot (f+g) = k \cdot f + k \cdot g$

综上所述,次数不超过n的实系数多项式构成数域ℝ上的向量空间。 \bullet

Problem 1.12 给定正实数集 \mathbb{R}_+ ,定义 $a,b \in \mathbb{R}_+$ 的加法结果为 $a \cdot b$, $a \in \mathbb{R}_+$, $b \in \mathbb{R}$ 的纯量乘法结果为 a^b ,证明 \mathbb{R}_+ 构成数域 \mathbb{R} 上的向量空间。

Solution: 设 $a, b, c \in \mathbb{R}_+, k, l \in \mathbb{R}$,依次验证八条公理:

- (1) ab = ba
- (2) (ab)c = a(bc)
- (3) $a \cdot 1 = 1 \cdot a = a$
- (4) $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$
- (5) $a^1 = a$
- (6) $a^{kl} = (a^l)^k$
- (7) $a^{(k+l)} = a^k a^l$
- $(8) (ab)^k = a^k b^k$

综上所述, ℝ+ 构成数域 ℝ 上的向量空间。●

Problem 1.13 设
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \beta_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \beta_2 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \beta_3 = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}, \ \mathbb{M}$$
 $\{\alpha_1, \alpha_2, \alpha_3\}$ 和 $\{\beta_1, \beta_2, \beta_3\}$ 是 \mathbb{R}^3 的两组基,计算从 $\{\alpha_1, \alpha_2, \alpha_3\}$ 到 $\{\beta_1, \beta_2, \beta_3\}$ 的过渡矩阵。

Solution: 由
$$[\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3]$$
 ⇒
$$\begin{bmatrix} 1 & 0 & 0 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & -1 \end{bmatrix}$$
可得 $[\beta_1, \beta_2, \beta_3] = [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$

所以从
$$\{\alpha_1, \alpha_2, \alpha_3\}$$
 到 $\{\beta_1, \beta_2, \beta_3\}$ 的过渡矩阵为 $\begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$ 。•

矩阵 2

2.1 矩阵的代数运算律

矩阵乘法的计算规则应该掌握、但应该避免直接计算矩阵乘法、事实上很少有必须计算 3 阶 及以上矩阵乘法的情况。

矩阵的代数运算律:

(1) 结合律: A(BC) = (AB)C

(2) 分配律: A(B+C) = AB + AC, (A+B)C = AC + BC

(3) 交换律: 一般来说 $AB \neq BA$,与所有矩阵相乘的交换的矩阵是纯量矩阵 cI_n

考察常用的代数公式:

(1)
$$(A+B)^2 = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2$$

(2)
$$(A+B)(A-B) = A^2 - AB + BA - B^2 \neq A^2 - B^2$$

矩阵的转置: $(A^T)^T = A, (AB)^T = B^T A^T, (A+B)^T = A^T + B^T$

矩阵的逆: $(A^{-1})^{-1}$, $(AB)^{-1} = B^{-1}A^{-1}$

转置和逆混合计算: $(A^T)^{-1} = (A^{-1})^T$ 二阶矩阵求逆公式: $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ (需要记忆)

一般矩阵的求逆: Gauss-Jordan 消元法, 事实上很少有必须计算 3 阶及以上矩阵的逆的情况。

Problem 2.1 计算
$$\begin{bmatrix} cos\alpha & sin\alpha \\ -sin\alpha & cos\alpha \end{bmatrix}^n$$
。

Solution: 考虑这个矩阵的几何意义,直接得出答案即可。

 $\begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}$ 和一个向量相乘等价于将这个向量逆时针旋转 α ,故乘上 n 个该矩阵等价于将向量逆时针旋转 $n\alpha$,所以答案为 $\begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin \alpha & \cos n\alpha \end{bmatrix}$ 。 •

Problem 2.2 计算 $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}^n$ 。

Solution: 注意到 $\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$,且纯量矩阵和任何矩阵相乘都可以交换,然后用下一颗的结论即可。

$$\begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}^n = \begin{pmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}^n = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}^n + n \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}^{n-1} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{bmatrix} \bullet$$

Problem 2.3 若矩阵 A, B 满足 AB = BA, 证明 $(A + B)^n = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i}$.

Solution: 已知 $(A+B)^2 = A^2 + AB + BA + B^2 = A^2 + 2AB + B^2 = \sum_{i=0}^2 \binom{2}{i} A^i B^{2-i}$ 假设 $(A+B)^n = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i}$ 成立,考虑 $(A+B)^{n+1}$ 。 $(A+B)^{n+1} = (A+B)(A+B)^n = (A+B) \sum_{i=0}^n \binom{n}{i} A^i B^{n-i} = A \sum_{i=0}^n \binom{n}{i} A^i B^{n-i} + B \sum_{i=0}^n \binom{n}{i} A^i B^{n-i} = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i+1} = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i+1} = \sum_{i=0}^{n+1} \binom{n}{i} A^i B^{n-i+1} = \sum_{i=0}^{n+1} \binom{n}{i} A^i B^{n-i+1}$ 。

由归纳法原理知, $(A+B)^n = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i}$ 。•

Problem 2.4 设
$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}_{n \times n}$$
 , 计算 A 的所有方幂。

Solution: $A = \begin{bmatrix} 0 & I_{n-1} \\ 0 & 0 \end{bmatrix}$, $\stackrel{\text{def}}{=} k < n \text{ pd}$, $A^k = \begin{bmatrix} 0 & I_{n-k} \\ 0 & 0 \end{bmatrix}$, $\stackrel{\text{def}}{=} k \ge n \text{ pd}$, $A^k = 0$.

Problem 2.5 设矩阵 A, B 可逆, 且 A+B 也可逆, 证明 $A^{-1}+B^{-1}$ 可逆。

Solution: $A^{-1} + B^{-1} = A^{-1}(I + AB^{-1}) = A^{-1}(B + A)B^{-1}$, $\mathbb{M}(A^{-1} + B^{-1})^{-1} = B(A + B)^{-1}A$.

Problem 2.6 飞知 $A^2 = A, B^2 = B, (A - B)^2 = A + B,$ 证明 AB + BA = 0。

Solution: $(A - B)^2 = A^2 + B^2 - AB - BA = A + B - AB - BA = A + B \Rightarrow AB + BA = 0$.

Problem 2.7 证明 $(A - B)(A + B) = A^2 - B^2$ 的充要条件是 AB = BA.

Solution: $(A-B)(A+B) = A^2 - B^2 + AB - BA = A^2 - B^2 \Leftrightarrow AB = BA_{\circ} \bullet$

Problem 2.8 设 A 是反对称矩阵,B 是对称矩阵,证明 AB 是反对称矩阵的充要条件是 AB = BA。

Solution: $(AB)^T = B^TA^T = -BA$,而 AB 反对称等价于 $(AB)^T = -AB$,故 AB 是反对称矩阵的充要条件是 AB = BA。 \bullet

Problem 2.9 设
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$$
,且矩阵 B 满足 $BA = 2B + 4I$,计算 B 。

Solution:
$$BA = 2B + 4I = B(2I) + 4I \Rightarrow B(A - 2I) = 4I \Rightarrow B = \frac{1}{4}(A - 2I)^{-1} = \frac{1}{4}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} = \frac{1}{8}\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 •

Solution: 由
$$A^2 = 2A$$
 得 $A(A-2I) = 0$,则 $C(A-2I) \subseteq N(A)$,所以 $r(A) + r(A-2I) \le n$ 。 又 $r(A) + r(A-2I) \ge r(A-2I-A) = r(-2I) = n$,所以 $r(A) + r(A-2I) = n$ 。 •

Problem 2.11 设 A 为对阵矩阵且 $A^T = A^{-1}$, 求证 r(A - I) + r(A + I) = n.

Solution: 由 A 为对阵矩阵且 $A^T=A^{-1}$ 得 $A^2=I$,即 (A+I)(A-I)=0,则 $C(A-I)\subseteq N(A+I)$,所以 $r(A+I)+r(A-I)\leq n$ 。

又
$$r(A+I) + r(A-I) \ge r(A+I-(A-I)) = r(2I) = n$$
,所以 $r(A-I) + r(A+I) = n$ 。

Problem 2.12 设存在正整数 k, 使得 $A^k = 0$, 求证 A - I 可逆。

Solution:
$$(A - I)(-I - A - A^2 - \dots - A^{k-1}) = I - A^k = I_{\circ}$$

2.2 分块矩阵

把分块矩阵中每一块的矩阵看作对象来处理,很多问题都会得到简化。 矩阵和分块矩阵的初等变换需要熟记,这里以分块矩阵为例:

$$(1) \begin{bmatrix} P & 0 \\ 0 & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} PA & PB \\ C & D \end{bmatrix}$$

(2)
$$\begin{bmatrix} I & 0 \\ Q & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ QA + C & QB + D \end{bmatrix}$$

$$(3) \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} C & D \\ A & B \end{bmatrix}$$

Problem 2.13 设
$$A = \begin{bmatrix} B & I \\ 0 & B \end{bmatrix}, B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix},$$
 计算 A^{-1} 。

$$Solution: \quad \begin{bmatrix} A & I_4 \end{bmatrix} \Rightarrow \begin{bmatrix} I & B^{-1} & B^{-1} & 0 \\ 0 & I & 0 & B^{-1} \end{bmatrix} \Rightarrow \begin{bmatrix} I & 0 & B^{-1} & -B^{-2} \\ 0 & I & 0 & B^{-1} \end{bmatrix}$$
因为 $B^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$,所以 $A = \begin{bmatrix} 2 & -1 & -5 & 3 \\ -1 & 1 & 3 & -2 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ 。 •

Problem 2.14 设
$$B$$
 为 n 阶可逆矩阵, α 为 n 维非零向量, 若 $A = \begin{bmatrix} BB^T & \alpha \\ \alpha^T & 0 \end{bmatrix}$, 证明 $r(A) = n+1$.

Solution: 因为
$$B$$
 可逆,所以 BB^T 可逆,做初等变换: $A \Rightarrow \begin{bmatrix} BB^T & 0 \\ 0 & -\alpha^T(BB^T)^{-1}\alpha \end{bmatrix}$,则 $r(A) = r(BB^T) + r(\alpha^T(BB^T)^{-1}\alpha)$ 。
$$r(BB^T) = n, \alpha^T(BB^T)^{-1}\alpha = (B^{-1}\alpha)^T(B^{-1}\alpha) > 0, \text{ 所以 } r(A) = n+1. \bullet$$

3 线性方程组

线性方程组主要分为两类:

- (1) 齐次线性方程组 Ax = 0: 主要方法是转化为阶梯型矩阵,主元所在的列就是 C(A) 的一组基,再通过每次将一个自由元置为 1、其它自由元置为 0,可得 N(A) 的一组基,也即方程的基础解系。
- (2) 非齐次线性方程组 Ax = b: 方程的所有解可以表示为任何一个特解加上对应齐次线性方程组 Ax = 0 的基础解系,其中特解也可以从阶梯型矩阵中得到。

3.1 齐次线性方程组

Problem 3.1 求齐次线性方程组 $\begin{cases} x_1 - x_2 + x_3 = 0 \\ x_2 - x_3 + x_4 = 0 \end{cases}$ 的两个不同基础解系并写出通解。

Solution: 记系数矩阵为
$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$$
.

分别取
$$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \text{ 可得 } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \text{ 则基础解系为 } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \text{ 通解即为两}$$

向量的线性组合。

分别取
$$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$
可得 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix},$ 则基础解系为 $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$,通解即为两

向量的线性组合。●

Problem 3.2 求一个齐次线性方程组,使它的基础解系为
$$\alpha_1=\begin{bmatrix}0\\1\\2\\3\end{bmatrix}, \alpha_2=\begin{bmatrix}3\\2\\1\\0\end{bmatrix}$$
。

Solution: 设所求方程组为
$$Ax = 0$$
, 记 $B = \begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix}$, 则 $AB = 0 \Rightarrow B^T A^T = 0$.

考虑方程组
$$B^Tx=0$$
,求得基础解系为 $\begin{bmatrix}1\\-2\\1\\0\end{bmatrix}$, $\begin{bmatrix}2\\-3\\0\\1\end{bmatrix}$, 即 $A=\begin{bmatrix}1&-2&1&0\\2&-3&0&1\end{bmatrix}$,故所求方程

组为
$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_1 - 3x_2 + x_4 = 0 \end{cases}$$
.

3.2 非齐次线性方程组

Problem 3.3 求非齐次线性方程组 $\begin{cases} x_1 + x_2 = 5 \\ 2x_1 + x_2 + x_3 + 2x_4 = 1 \end{cases}$ 的一个解以及对应齐次线性方 $5x_1 + 3x_2 + 2x_3 + 2x_4 = 3$

程组的基础解系。

Solution:
$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 5 \\ 2 & 1 & 1 & 2 & 1 \\ 5 & 3 & 2 & 2 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & -8 \\ 0 & 1 & -1 & 0 & 13 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}, \ \diamondsuit \ x_3 = 0 \ \clubsuit$$

$$\begin{bmatrix} -8 \\ 13 \\ 0 \\ 2 \end{bmatrix}, \ \ \, \diamondsuit \ x_3 = 1 \ \ \, \texttt{4} \, \texttt{$$

Problem 3.4 设 $\eta_1, \eta_2, \dots, \eta_s$ 是非齐次线性方程组 Ax = b 的 s 个解向量,令 $\eta = k_1 \eta_1 + k_2 \eta_2 + \dots + k_s \eta_s, k1, k2, \dots, k_s \in \mathbb{R}$,证明:

- (i) η 是非齐次线性方程组 Ax = b 的解的充要条件为 $k_1 + k_2 + \cdots + k_s = 1$ 。
- (ii) η 是齐次线性方程组 Ax = 0 的解的充要条件为 $k_1 + k_2 + \cdots + k_s = 0$ 。

Solution:

- (1) $\eta = k_1 \eta_1 + k_2 \eta_2 + \dots + k_s \eta_s$ $\not\equiv Ax = b$ in $\not\equiv A(k_1 \eta_1 + k_2 \eta_2 + \dots + k_s \eta_s, k_1, k_2, \dots, k_s) = b \Leftrightarrow (k_1 + k_2 + \dots + k_s)b = b \Leftrightarrow k_1 + k_2 + \dots + k_s = 1.$
- (2) $\eta = k_1 \eta_1 + k_2 \eta_2 + \dots + k_s \eta_s$ $\not\equiv Ax = 0$ 的解 $\Leftrightarrow A(k_1 \eta_1 + k_2 \eta_2 + \dots + k_s \eta_s, k_1, k_2, \dots, k_s) = 0 \Leftrightarrow (k_1 + k_2 + \dots + k_s)b = 0 \Leftrightarrow k_1 + k_2 + \dots + k_s = 0.$

•

Problem 3.5 设 $rank(A_{m\times 4})=3,\ \eta_1,\eta_2,\eta_3$ 是非齐次线性方程组 Ax=b 的 3 个解向量,且

$$\eta_1 = egin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}, \eta_2 + \eta_3 = egin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \ \ 求 \ Ax = b \$$
的通解。

Solution: 由 r(A) = 3 得 Ax = 0 的基础解系只含一个向量,令 $\xi = 2\eta_1 - (\eta_2 + \eta_3) = \begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$,则

 ξ 为方程 Ax=0 的基础解系,所以 Ax=b 的通解为 $\{\eta_1+k\xi|k\in\mathbb{R}\}$ 。•

Problem 3.6 设 $A=[\alpha_1,\alpha_2,\alpha_3,\alpha_4]$, 其中 $\alpha_2,\alpha_3,\alpha_4$ 线性无关, $\alpha_1=2\alpha_2-\alpha_3$, 求线性方程组 $Ax=\alpha_1+\alpha_2+\alpha_3+\alpha_4$ 的通解。

Solution: 由题意知 r(A)=3, 故 Ax=0 的基础解系只有一个向量。由 $\alpha_1=2\alpha_2-\alpha_3$ 得

$$Solution$$
: 田趣恵知 $r(A)=3$,故 $Ax=0$ 的基础解系为 $\begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix}$ 。

显然
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
 是方程组 $Ax = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$ 特解,所以通解为: $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + k \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix} | k \in \mathbb{R} \right\}$ 。•