从一个例子讲起

$$\max_{S:t.} Z = \chi_1 + 2\chi_2$$

$$\sum_{S:t.} \chi_1 + \chi_2 \leq 3$$

$$\chi_2 \leq 1$$

$$\chi_1, \chi_2 \geq 0$$

$$\sum_{H_3} \chi_1 + \chi_2 + \chi_3 = 3$$

$$\chi_2 + \chi_4 = 1$$

$$\chi_1, \chi_2, \chi_3, \chi_4 \geq 0$$

构造初始可行解

$$\chi^{(0)} = (0,0,3,1)^T, Z=0$$

典则形式: 用非基变量表示基变量和目标函数

$$\begin{cases} \chi_3 = 3 - \chi_1 - \chi_2 \\ \chi_4 = 1 - \chi_2 \\ \mathcal{Z} = \chi_1 + 2\chi_2 \end{cases}$$

显然目标函数可以改进

$$\chi^{(1)} = (0,1,2,0)^T \mathcal{Z} = 2$$

$$\begin{cases} \chi_2 = 1 - \chi_4 \\ \chi_3 = 2 - \chi_1 + \chi_4 \\ Z = \chi_1 - 2\chi_4 + 2 \end{cases}$$

$$\chi_1$$
入基, χ_2 不变, $\chi_3=2-\chi_1+\chi_4=0$ 上基

$$\chi^{(2)} = (2,1,0,0)^{T}, Z=4$$

$$\begin{cases} \chi_1 = 2 - \chi_3 + \chi_4 \\ \chi_2 = 1 - \chi_4 \\ Z = 4 - \chi_3 - \chi_4 \end{cases}$$

检验数50, 达到最优的

B: Basic N: non-Basic

$$\chi = \begin{bmatrix} \chi_B \\ \chi_N \end{bmatrix}$$
 $A = [A_B A_N]$

 $A_B \chi_B + A_N \chi_N = b$

$$\chi_{\mathcal{B}} = A_{\mathcal{B}}^{-1} b - A_{\mathcal{B}}^{-1} A_{\mathcal{N}} \chi_{\mathcal{N}}$$

 $A = A_B^T A_N = (\bar{\Omega} \dot{q})_{m \times (n-m)}$

若非基变量 % (j=m+1,...,n) 的 检验面 基金量 χ_j (j=m+1,..., n) 的 产 验 和 因为 χ_{m+1} 对方 因为 χ_{m+1} 对方 $\chi_{k} = C_k - \overset{m}{=} C_i \overline{\Omega}_{ik}$ k=j-(m+1) χ_{m+1} χ_{m+1} χ_{m+1} χ_{m+1} χ_{m+1} χ_{m+1}

$$G_k = C_k - \sum_{i=1}^m C_i \widehat{\Omega}_{ik}$$

 $\bar{x} \max, 若 \sigma_k \leq 0 , 则 [XB] 为最优弱$

岩∃σ >0且 Qī ≤0, ∀i=1,…, m,则无有限最优的 (α越大越路)

	Св	CN		
χ_{B}	AB	ΑN	b	→ ABXB+ANXN=b

检验数 目标值相反数

	0	CN-COTAOTAN	-CoTAob	\searrow
$\chi_{\mathtt{B}}$	Im×m	A _B A _N	A _e b	Z-C&A&b
	单位矩阵			$= (C_{N} - C_{A}^{T} A_{B}^{-1} A_{N})$

$$\chi_i + \overline{\alpha_{ij}} \chi_j = \overline{b_i}$$

 $\min_{\alpha_{ij} > 0} \frac{\overline{b_i}}{\overline{\alpha_{ij}}} \text{ at } \overline{\lambda_i}$ $\lambda_i = \overline{\lambda_i}$

举例:

$$\max_{s.t.} z = \chi_1 + 2\chi_2$$

$$s.t. \quad \chi_1 + \chi_2 \leq 3$$

$$\chi_2 \leq |$$

$$\chi_1, \chi_2 \geq 0$$

光化成林涯
$$\max Z = \chi_1 + 2\chi_2$$

円 式 $\chi_1 + \chi_2 + \chi_3 = 3$
 $\chi_2 + \chi_4 = 1$

 $\chi_1, \chi_2, \chi_3, \chi_4 \ge 0$

构造一组初始可好解(0,0,3,1)™ 足=0 先以Xx, Xx为基

				/ /	初开
		ત	(0	0	
$\chi_{\!\scriptscriptstyle 3}$	I	1	-	0	× 3
7/4	0	-	0		1

	١	(C)	0	0		
χ,	1	ł	1	0	3	
7/4	0	0	0	1		
入基						

λ2λ基, 选准工基?

	I	۷.	0	0	0
χ ₃	ı	1	1	0	3
χ2	O	ı	0	١	1

不满足典则刑式

X,入基, Xa生基

		X			
		O	0	-2	-2
χι	I	Ŏ	ı	-1	2
χ_2	0		0	l	ſ

校验熟料≤0								
٥	0	T	T	<i>-</i> 4				

		٥	0	T	丁	<i>-</i> 4
λ	,	1	0	-	T	2
λ	/2	Q	l	O	l	ſ

$$\chi^* = (2,1,0,0) Z^* = 4$$