	Matematisk induksion	Sterk induktion	Structural indukcijan
	Beine for alle n	Når n=41 avhorger	Egenslaper for
therfor	i en selevens	av flere foregående	industrit/retursut
100. 100		verdict and N	definate manader
		Eks: Fibonacci	
	Viser for minste	viser for si mange	Vises for alle elementer
Basissteset	vedi av n	verlies as n som	i basismengden
		trenss	
	Antar at stemmer for k	Anter at stemmer	Anter at stemmer for alle
	Visa for K+1	for alle n = k.	X,, Xz, Xg som lager X.
Induksjonssteget		Viser for k+1	Visos at da holder for X
	Anter at stemp for f(L)		
	Viso for f(4+1)		

Definisjoner

1 Matematisk induktion

For à bevise matematise induksjon et det til strekkelig à bevise

- 1 Basissteset: P(0) et senn
- 2 Indulesianssteget: Hus det stemmer for P(n), stemmer det også for P(n+1)

2 Structurell induktion

Brukes for à pavise egenstaper for induktive definerte mengder

Oppskrift

Matematisk induktion

- Vis for basetilfellet PCO)
- Anta at stemmer for P(n). Legs til 1. Vis at dette blir det samme som P(n+1)

Els: De n første oddetallene til sammen = n^2 $(1+3+5+...+(2n-1)=n^2$

- 1 Basistilfellet:

 Det første oddetallef = 1

 (2 = 1)
- Indulusionstaget:

 Antor at summen as n hirster oddetall = n^2 Beviser at summen as de n+1 hirster oddetallene = $(n+1)^2$ A hirster oddetall = n^2 leaguer til nester oddetall: $n^2 + (2(n+1)-1)$ = $n^2 + 2n + 2 1 = n^2 + 2n + 1 = (n+1)^2$

Summer au 1+1 forste oddetall = (n+1)2 som er like Nypotesen

Strukturell induktion

- 1) Berixe at pastanden holder for alle elementer i basis menoden
- 2 Hvis x et laget av x,, xz,..., xn og en påstand holder for dise, holder den også for

Desson v(0)=0, v(1)=1, v(60)=2·v(6) og v(61)=2·v(6)+1 Vis at v(b) = v(0b)

> Mark: Ma vive for P(0) as 1 Basetilfellet P(O) og P(1) V(0)= V(0b) - P(o) er at V(0) = V(00) $0 = 2 \cdot V(0) = 20$ 0 = 0 1 v(1) = v(01) P(1) erat 1 = 2· V(0)+1

Induksjonsstaget: Hvis P(b) er sam er også P(b0) og P(b1) sam Anter at P(b) or sonn alts2 at V(b) = V(0b). Dette er induksjons hypotesen

1 = 2.0+1

1 = 1 /

Viser da at P(bo) og P(bi) er sam

 $-P(b0) = V(b0) = 2 \cdot V(b) = 2 \cdot P(b) = 2 \cdot V(0b)$

v (060) = P(060

P(1) sider vi har

2 basefilfeller

Det stemmer alts at P(b0) = P(0b0)

P(b1) = v(b1) = [2. V(b)]+1 = 2. v(0b)+1

 $= \langle \mathbf{v}(0|0|) \rangle = \langle \mathbf{b}(0|0|) \rangle$

Villige detailer

- 1 Induktion er en fin nate à beurse at alle elementer i en vendelig mengle hor en sestemt egenskap
- 2 Disse betyr det samme:
 - Ved strukturell induksjon på
 - Ved induksjon pë
 - Ved indutisjon på strukturen