Total marks-120 Attempt Questions 1-8 All questions are of equal value

Answer each question in a SEPARATE piece of paper clearly marked Question 1, Question 2, etc. Each piece of paper must show your name.

Question 1 (15 Marks)

a)
$$\int \frac{xdx}{\sqrt{9-4x^2}}$$

b)
$$\int \frac{dx}{\sqrt{9-4x^2}}$$

c) Use integration by parts to evaluate
$$\int_{1}^{e} x^{3} \ln x dx$$
 3

d) (i) Find real numbers a,b and c such that
$$\frac{5x^2 - 4x - 9}{(x - 2)(x^2 - 3)} = \frac{a}{x - 2} + \frac{bx + c}{x^2 - 3}$$

(ii) Hence show that
$$\int_{3}^{4} \frac{5x^2 - 4x - 9}{(x - 2)(x^2 - 3)} = \ln \frac{52}{3}$$

e)
$$\int \sec^3 x \tan x dx$$

$$f) \int \frac{dx}{x^2 + 4x + 13}$$

Question 2 (15 marks)

a) Let z = 2 + i and w = 3 - 4i, find

(i)
$$z^2$$

(ii)
$$\frac{1}{z}$$

(iii)
$$\overline{wz}$$

b) (i) Express
$$1-\sqrt{3}i$$
 in mod arg form 2

(ii) Hence find
$$(1-\sqrt{3}i)^5$$

(iii) Express
$$(1-\sqrt{3}i)^5$$
 in the form x + yi where x and y are real 2

c) If u and v are two non zero complex numbers. Show that if $\frac{u}{v} = ik$ for some $k \in R$

(i)
$$\overline{u}v + \overline{v}u = 0$$

(ii) If
$$\overline{u}v + \overline{v}u = 0$$
 what is the relationship between arg v and arg u

d) If ω is a complex root of the equation $z^3 = 1$

(i) Show that
$$1 + \omega + \omega^2 = 0$$

(ii) Find the value of
$$(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)$$

3

Question 3 (15 Marks)

a) The graph of y = f(x) is shown above. It has been reproduced for you on pages 9 and 10, detach these pages and draw neat sketches of the following. Include these pages in your solutions. The point of intersection of f(x) and the asymptote is (1, 2).

$$(i) y = \frac{1}{f(x)}$$

(ii)
$$y = f(|x|)$$

(iii)
$$y = f'(x)$$

(iv)
$$y = f(\frac{1}{x})$$

- b) The circle above has diameter AB and centre O. KH is a chord to the circle and X is a point on the circumference such that KX = XH. XP is the perpendicular from P to AB. Prove that PNMO is a cyclic quadrilateral.
- c) (i) Find the square root of $-8-8\sqrt{3}i$
 - (ii) Hence solve the quadratic equation $x^2 2\sqrt{2}ix + 2\sqrt{3}i = 0$

Question 4 (15 Marks)

a) The solid shown has a semicircular of radius 2 units. Vertical cross sections perpendicular to the diameter of the circle are quarter circles.

(i) By slicing at right angles to the x-axis show that the volume is given by

$$V = \frac{\pi}{2} \int_{0}^{2} 4 - x^{2} dx$$

- (ii) Find the volume 2
- b) The region bounded by the curve $y = \sin^{-1} x$ and the x-axis in the first quadrant is rotated about the line y = -1. Using the method of cylindrical shells find the volume of the shape formed.
- c) Let α , β and γ be the roots of the cubic equation $x^3 5x^2 + 13x 7 = 0$.

(i) Find the polynomial with roots
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$

- (ii) Find the polynomial with roots α^2 , β^2 and γ^2
- d) (i) Prove the identity $\sin(a+b)\theta + \sin(a-b)\theta = 2\sin a\theta \cos b\theta$ 1
 - (ii) Hence find $\int \sin 4\theta \cos 2\theta \ d\theta$ 2

Question 5 (15 Marks)

- a) Given the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Find:
 - (i) the eccentricity. 2
 - (ii) The coordinates of the foci
 - (iii) The equation of the directrices
 - (iv) Sketch the ellipse showing all essential features.
- b) Given the hyperbola $\frac{x^2}{Q} \frac{y^2}{4} = 1$
 - (i) Show that the point P with coordinates $(3 \sec \theta, 2 \tan \theta)$ lies on the hyperbola 1
 - (ii) Find the equation of the normal to the hyperbola at P. 2
 - (iii) Find the equation of the tangent to the hyperbola at P.
 - (iv) The tangent at P cuts the asymptotes at L and M. Find the coordinates of L and M.
 - (v) Show that P is the mid point of LM.

Question 6. (15 Marks)

a)

A light inelastic string of length 27cm is attached to two points D and E on the vertical shaft DE, distance 21cm apart, E being vertically below D. F is a smooth ring of mass 100gms threaded on the string. The system is such that F moves with constant speed in a horizontal circle 6cm above E.

- (i) Find the lengths of DF, FE and r.
 (ii) Find the tension in the string.
 (iii) Find the angular speed of F about DE
- b) A bullet is fired vertically into the air with a speed of 800m/s. In the air the bullet experiences air resistance equal to $\frac{mv}{5}$ as well as gravity.
 - (i) Find the height reached to the nearest metre. 2
 - (ii) The time taken to achieve this height.
 - (iii) As the bullet returns to the ground it is subject to the same forces,Find the terminal velocity.
- c) Solve for $x \tan^{-1} 3x \tan^{-1} 2x = \tan^{-1} \frac{1}{5}$

Question 7 (15 Marks)

- a) The cubic equation $x^3 3x 1 = 0$ is solved in two steps. Firstly let x = u + v and secondly solve the quadratic equation $\lambda^2 \lambda + 1 = 0$ the roots of which are u^3 and v^3 .
 - (i) Solve the quadratic equation for u^3 and v^3 .
 - (ii) Use De Moivre's theorem to find the cube roots with the arguments of least magnitude.
 - (iii) Find the value of x leave in trigonometric form.
- b) Let $I_n = \int_0^1 x^n \sqrt{1-x} dx$ n = 0,1,2,3...
 - (i) Show that $I_n = \frac{2n}{2n+3}I_{n-1}$ 2
 - (ii) Hence evaluate $\int_{0}^{1} x^{3} \sqrt{1-x} dx$ 2
 - (iii) Show that $I_n = \frac{n!(n+1)!}{(2n+3)!} 4^{n+1}$
- c) The curves $y = \cos x$ and $y = \tan x$ intersect at a point P whose x coordinate is α
 - (i) Show that the curves intersect at right angles at P. 2
 - (ii) Show that $\sec^2 \alpha = \frac{1+\sqrt{5}}{2}$

Question 8 (15 Marks)

a) If $U_1 = \sqrt{2}$ and $U_n = \sqrt{2 + U_{n-1}}$ Prove by Mathematical Induction that $U_n < \sqrt{2} + 1 \text{ for all n.}$

b) (i) Sketch the graph of $y = \frac{1}{x}$. With the aid of your sketch, show that for any

positive number u, $\frac{u}{1+u} < \int_{1}^{1+u} \frac{1}{x} dx < u$

(ii) Deduce from (i) that $\frac{1}{1+r} < \ln \frac{r+1}{r} < \frac{1}{r}$, where r > 0

(iii) Let $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \dots + \frac{1}{n} - \ln n$. By using (ii) show that

 $\frac{1}{n} < a_n < 1$

c) (i) Show that $\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$ 2

(ii) Hence find the value of $\int_{0}^{\pi} x \sin x \, dx$ 2

d) (i) Show that the gradient function for $x^2 + y^2 + xy = 12$ is

$$\frac{dy}{dx} = \frac{-(2x+y)}{2y+x}$$

(ii) Find the coordinates of the stationary points of this function 1

(iii) Find the coordinates of the points of contact of any vertical tangents.

and 2 = 1 h	6-5 4 = 1 X2	Dytomace of organizations		4 & 6 & 100+ 0-(1+4+4+) (-3)	Š Š	1	$\begin{cases} L_{\alpha} L_{\alpha}^{\dagger} = L_{\alpha} \left(\omega^{3} \right) = L_{\alpha} \right) \\ = \left(\left(+ L_{\alpha} \right) \left(\left(+ L_{\alpha} \right) \right)^{2} \right) \end{cases}$	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
ψ2.	$(a) (b) \neq 2 = (2+b)^2$ $= 3+4b^2 \qquad (1)$	$\frac{2}{(2+i)(2+i)}$	$=\frac{2-i}{5} = \frac{2}{5} - \frac{i}{5} \cdot \frac{2}{5}$ (ii) $\omega Z = (3-4i)(2-i)$	2 - 11:	mod = 2. (2)	(1) $(1-5i)^5 = 25 \text{ cio} 5(-7)_3$	better = $32 \text{ cor } x_3$ (iii) $(1-53i)^5 = 32(\cos x_4 + i \cos x_3)$	= 16 + 16/32 (2)	c) (n uv + vk = 0	اران (الاران) الاران الاران الاران الاران ا	1>1>12	13 1 1 1 1 1 1 1 1 1	,
	(d) (i) 5x2-4x-9= 9+6x+6 (x-z)(x2-3) x.2 x2-3	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	3	$\begin{cases} (i) \\ 5x^2 - 4xx - 9 = \begin{pmatrix} 3 & 4 & 2x \\ 3 & x - 2x \end{pmatrix} \\ (x - 2)(x^2 - 3) & 3 \end{pmatrix} x - 2 + \frac{2x}{x^2 - 3}$	$= \left[32u(x-2) + ln(x^2-3) \right]_3^{+}$	$= \begin{cases} 3 \text{ fm } 2 + \text{ fm}(13) = 3 \text{ fm} \\ - \text{ fm } 6 \end{cases}$	6 = lm 32 . (2)	(e) Jue + tank dx	, ±3	1 2 de 3 x + C (2)	£ 2 3	1 (x+2) x+3 = (2) = 1 + (2) = 1 + (2) = 1	M)
TOWN FXT D	$Q_1 = \int_{A-4\pi^2} x dx$	$\log u = q - u \times 2$	$du = -8xdx$ $\int = -1 \int -8xdx$		$= -\frac{1}{4} \left(2 \omega^{2} \right) + C$ $= -\frac{1}{4} \left(9 - 4 x^{2} + C \right) $	$(b) T = \int \frac{dx}{\sqrt{q-4x^2}} = \frac{1}{2} \int \frac{dx}{\sqrt{q-x^2}}$	2 2 3 4 C. 2	(dvu = [uv], - (vdu	let we have due x3 due /x \ \ = x/4	$= \left[\left(lnx \right) \frac{x^{4}}{2} \right]^{4} - \left(\frac{e^{4}}{4} \right)^{4}$	1 64 - (x3 dx)		$= 3a^{4} + 1 = \frac{1}{(6(3a^{4}+1))}$

Page 9

Page 8

(b)
$$\angle xoh = 2 \angle xkh (d)$$

(angle at conte)
 $\angle xhk = \angle xkh (\Delta xkh is)$

$$L \times HK = L \times KH$$
 ($\Delta \times KH$ is oscillated) 1505clubs)

(1)
$$x^2 - 25ix + 25i = 0$$

 $x = 25i + (-ig - 85i)$

$$x = 2 \times (2 - 2 \times)$$

$$X = 1 + (\sqrt{12} - \sqrt{3})^2$$
, $-1 + (\sqrt{2} + \sqrt{5})^2$

$$V = \frac{1}{2} \pi \int_{0}^{2} dx$$

$$\int_{0}^{1} dx = \frac{x^{2} + y^{2}}{y^{2}} = 4$$

$$\int_{0}^{1} \frac{1}{x^{2}} dx = 4$$

$$(ii) \qquad V = \pi_{\lambda_0} \int_0^1 4^{-\lambda_1} d\lambda$$

$$= \frac{\pi}{12} \left[4x - x_3^2 \right]^2$$

$$= \frac{\pi}{12} \left[(8 - 8)_3 - (6) \right]$$

(م)

=
$$\pi r R^2 h - \pi r^2 h$$
.
= $\pi (\{y + \frac{5}{4}y\}^2 - (y + i)^2\} 1 - \chi$
= $\pi (1 - \chi) \{\{y + i\}^2 + 2(y + i)5y + 5y^2\}$
- $(y + i)^2\}$

$$SV = 2\pi (1-x)(9+i) S y$$

 $V = \lim_{\delta y > 0} 2\pi \frac{\pi^{3}}{8} (1-x)(9+i) S y$

$$V = 2\pi \int_{0}^{\pi y_{2}} (1-x)(y+i) dy$$

$$V = 2\pi \int (1 - \delta m y) (y+1) dy$$

$$= 2\pi \int (y+1 - \delta m y) dy - 2\pi \int y dy$$

$$V_{A} = 2\pi \left[u_{2}^{2} + y + cory \right]_{0}^{W_{L}}$$

$$= 2\pi \left[\left(\frac{\pi^{2}}{8} + W_{L} + 0 \right) - (0 + 1) \right]$$

$$= 2\pi \left[\frac{\pi^{2}}{8} + W_{L} - 1 \right]$$

$$V_{B} = -2\pi \int y_{0} m y_{0} dy$$

by part

$$= -2\pi \left\{ [-y_{0} \cos y]^{\frac{\pi}{2}} - \int -coyc$$

$$= -2\pi \left\{ (0) + [\cos y]^{\frac{\pi}{2}} \right\}$$

$$V_{Tot} = V_a + V_g$$

$$V_{Tot} = V_a + V_g$$

$$= 2\pi \left[\frac{\pi^2}{N_g} + \pi_2 - 2 \right] M^3$$

$$(C) = \frac{\pi^2}{N_g} + \frac{\pi^2}{N_g} - \frac{\pi^2}{N_$$

(c)
$$f(x) = x^3 - 5x^2 + 13x - 7$$

 $f(\frac{1}{x}) = \frac{1}{x^3} - \frac{5}{x^3} + \frac{13}{x} - 7$
 $x > 3$
 $f(x) = 7x^3 - (3x^2 + 5x - 1)$

(11) toots
$$d^2$$
, β^2 and β^2
Consider the function
$$f(5x) = (5x)^3 - 5x + (35x - 7)$$

$$0 = x5x - 5x + (35x - 7)$$

$$(5x+7)^2 = (x(5x+135x)^2)$$

$$25x^2 + 70x + 49 = x^3 + 26x^2 + 169x$$

$$0 = x^3 + x^2 + 99x^2 - 49$$

$$f(x) = x^3 + x^2 + 99x^2 - 49$$

(11)
$$\int sm40 \cos 20 d0$$

 $a=4 b=2$

$$=\frac{1}{2}\left[-\frac{\cos 60}{6}-\frac{\cos 20}{2}\right]+C$$

$$=-\frac{1}{12}\left[\cos 60 + 3\cos 20\right] + C$$

(a)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

(1)
$$b^{2} = a^{2} (1 - e^{2})$$

 $4 = 9 (1 - e^{2})$
 $4/4 = 1 - e^{2}$
 $e = \sqrt{5}/3$.

(iii) DIRECTRIX
$$x = \pm g_e$$

 $x = \pm 3$

(b)
$$\frac{\chi^2}{9} - \frac{4^2}{4} = 1$$

$$See^{2}\Theta - ton^{2}\Theta = 1$$

$$See^{2}\Theta = ton^{2}O + 1 \qquad ($$
true for all Θ (pyttag)

$$\frac{\chi^2}{9} - \frac{\chi^2}{4} = 1$$

$$\frac{\chi^2}{9} - \frac{\chi^2}{4} = 1$$

Diff
$$\frac{2x}{9} - \frac{2y}{4} \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{4x}{9y}$$

$$\frac{dy}{dx} = \frac{4(3 \text{ ser } 0)}{9(2 + 6 \text{ so } 0)}$$

$$\frac{y}{3 + a \cdot o} - \frac{z}{3} = \frac{x}{2 \cdot a \cdot o} + \frac{3}{2}$$

$$\frac{3\pi}{\text{sup}} + \frac{2y}{\text{tone}} = 13 \quad \boxed{2}$$

$$y = \pm \frac{1}{2}x$$

$$y = \frac{2}{3}x$$

$$y = -\frac{2}{3}x$$

$$1 = \frac{1}{3} = \frac{1}{2} = \frac{1}{2}$$

$$L\left(\frac{3}{100-t00},\frac{2}{100-t00}\right)$$

$$y = \frac{1}{2} \left(\frac{3}{500 + 100} + \frac{3}{500 + 100} \right)$$

$$y = \frac{1}{2} \left(\frac{2}{\text{reco-teno}} + \frac{-2}{\text{reco-teno}} \right)$$

$$DF^{2} = \tau^{2} + 15^{2}$$

$$FE^{2} = \tau^{2} + 6^{2}$$

$$(27-x)^{2} = \tau^{2} + 225. \quad (2)$$

$$\pi^2 = +^2 + 36 \qquad (\beta)$$

$$729 - 564 + 227 = +225$$
 (d)

$$729 - 542 + 7^2 + 36 = T^2 + 225$$
.

Resolving ventically at F Mg = TookD - TookE

$$T = 3.54 \, \text{N}$$
.

Resolving hongontally at F mwir = TomKD + TomKE 0.1 × 62 × 008 = 3.54 (4/5 +8/17) ω2 = 563.5 Rad / sec

$$a = -(v+59)$$

$$\frac{dv}{dx} = -\frac{v + 5g}{5v}$$

$$\frac{dx}{dv} = -5\left(\frac{v}{v+59}\right)$$

$$\int_{0}^{H} dx = -5 \int_{0}^{\infty} \frac{V}{V + 59} dV$$

$$H = 5 \int_{0}^{800} 1 - \frac{50}{v + 50} dv$$

$$H = 5 \left[v - 5g \ln(v + 5g) \right]_{0}^{800}$$

using
$$g = 10$$
.
 $H = 5[(800 - 50 \ln 850)]$

$$\frac{dv = -(v + Sg)}{S}$$

$$\frac{dt}{dv} = -\frac{5}{v + 5g}$$

$$dt = -\frac{5dv}{v+5g}$$

Question 6 cent.

$$\int dt = -5 \int \frac{dv}{v+55}$$

$$t = 5 \left[\ln(v+59) \right]_{6}^{800}$$

(III)
$$F = ma$$
 $ma = mg - mv$
 $a = Sg - V$

FOR TERMINAL VELOCITY

 $a = 0$
 $Sg = V$
 $V = Som/sec$ (2)

(c)
$$\tan^{-1} 3x - \tan^{-1} 2x = \tan^{-1} \frac{1}{5}$$

let $\alpha = \tan^{-1} 3x$ $3x = \tan \alpha$
(et $\beta = \tan^{-1} 2x$ $2x = \tan \beta$.
 $\tan (d - \beta) = \tan (\tan^{-1} 3x - \tan^{-1} 2x)$
 $= \tan \alpha - \tan \beta$
 $=$

×=性/す・ ②

Quarter 7

(a) (1)
$$\lambda^{2} - \lambda + 1 = 0$$

$$\lambda = +1 \pm \sqrt{1-4}$$

$$\lambda = +\frac{1}{2} + \sqrt{3}i, \quad \frac{1}{2} - \frac{5}{2}i, \quad (1)$$
(ii)

(ii) $\lambda = 1 \cos \frac{\pi}{3}, \quad 1 \cos \frac{\pi}{3}$

$$4 = \cos \frac{2\pi k + \sqrt{3}}{3}, \quad v = \cos \frac{2\pi k - \sqrt{3}}{3}.$$

$$4 = \cos \frac{2\pi k + \sqrt{3}}{3}, \quad v = \cos \frac{2\pi k - \sqrt{3}}{3}.$$

$$4 = \cos \frac{\pi}{3}, \quad v = \cos \frac{2\pi k - \sqrt{3}}{3}.$$
(iii)
$$X = 4 + V$$

$$x = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3} + i \cos \frac{\pi}{3}.$$
(iv)
$$X = 4 + V$$

$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3} + \cos \frac{\pi}{3}.$$
(iv)
$$x = 2 \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} + \cos \frac{\pi$$

 $= \frac{2n}{3} I_{n-1} - \frac{2n}{3} \int_{1-x}^{1-x} x^n$

(OX = DMX

cos2x = pinx

1 - sin2x = smx

0 = pin2x+ pmx -1

2 < lu 2 - lu 1 < 1
2 < lu 3 - lu 2 - lu 1 < 1
3 < lu 3 - lu 2 < \frac{1}{2}
1 < lu n - lu (n-1) < \frac{1}{n-1}
n = lu n - lu (n-1) < \frac{1}{n-1}
n = lu n - lu (n-1) < \frac{1}{n-1}
n = lu n - lu (n-1) < \frac{1}{n-1}
n = lu n - lu (n-1) < \frac{1}{n-1}
n = lu n - 14 2 / 1 dx 2 cs. (1) 1 < 2n T+1 < 1 (1+1 .. 1 c Cun- Bri < 1+1+1 30 thed 1+2+3.. +4-6nn 61 = Sn 1+4 - Pn 1 when x = 0 By nispection 174

Acres 6 1 1 - Africo 1+4 = [on x] whom x=a び " " " adding all three orde (iii) (exto 1,2,3 .. mul 1+1 < CM 1+1 < 1 I for 1+W L < Initu < u (ii) Mar somice (et x = 0-4 let a= 1/2 (c) (i) { f(x) qx LHS & RUS TRUE FORMS! tous (or all a 3 5) 4,= 12 42 = 12+42n-1 Stapl. account true for note ... Uk+1 ~ 12+1 Ep3 By the principle of Prome True for Uk+1 Mathemashies Industri Mb+1 = 2 + 4 kz .. up = 12+ Me+1 4k < [2+1 = 1/(12+1)/2 < 13+252 = 12+1 RHS = (2+1 LHS = 52 σ Question 8. -|± -|∓ S Gap 3 (i) aq)

.. product of gradute-

.. AGX Cel Aux

1-5 1-1.

(-, pm d) (sec 2) = 1-15 1+15

(i) y'= - DIMX y'= AREX

penpendicule at a (3)

1 + 15

= 2 (1/5+1)

.. Dee2x = 2 x (5+1)

x250 xxmx tod

DMX = -1+55 acute x

Sin 2 = -1 + (1+4

Question] cont.

Question 8 cont.
of
$$a f(x) dx = \int_a f(a-u) - du$$

= $-\int_a f(a-u) du$

change of variable
$$= \int_{a}^{a} f(a-w) dw$$

$$= \int_{a}^{a} f(a-w) dx$$

2x + 5 # 0

By change of variable
$$= \int_0^a f(a-x) dx$$

$$= \int_0^a f(a-x) dx (2)$$

$$\begin{aligned} & \cdot \cdot \cdot \int f(x) \, dx = \int \int g(-x) \, dx \end{aligned} \tag{2}$$

$$(i) \quad \cdot \cdot \quad \int x \, omx \, dx$$

$$= \int \pi \left(\pi - x\right) \, om(\pi - x) \, dx$$

d)
$$x^2 + y^2 + xy = 12$$
obelieventiate unplicitly
$$2x + 2y dy + x dy + y = 0$$

$$\frac{du}{dx} = -\frac{(2x+4)}{2y+2x}$$

$$\frac{2y+2x}{(ij)}$$

$$\frac{dy}{dy} = 0$$

Substants funching
$$x^2 + (-2x)^2 + x(-2x) = 12$$

$$x^2 + (4x^2 - 2x^2 = 12)$$

$$3x^2 = 12$$

$$x = 2 \quad y = -\mu \qquad (z, -\mu)$$

$$x = -1 \quad y = \mu \qquad (z, +\mu) \oplus$$

(iii) for weatherd bangard
$$2y + \lambda = 0$$

$$y = -\eta$$

$$\chi^2 + (-\frac{\lambda}{2})^2 + \lambda(-\frac{\lambda}{2}) = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{2} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$

$$\chi^2 + \frac{\lambda^2}{4} - \frac{\lambda^2}{4} - \frac{\lambda^2}{4} = 12$$