Is the chemical gate of connexins voltage sensitive? Behavior of Cx32 wild-type and mutant channels

CAMILLO PERACCHIA, XIAO G. WANG, AND LILLIAN L. PERACCHIA Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642-8711

Peracchia, Camillo, Xiao G. Wang, and Lillian L. Peracchia. Is the chemical gate of connexins voltage sensitive? Behavior of Cx32 wild-type and mutant channels. Am. J. Physiol. 276 (Cell Physiol. 45): C1361-C1373, 1999.-Connexin channels are gated by transjunctional voltage (V_i) or CO₂ via distinct mechanisms. The cytoplasmic loop (CL) and arginines of a COOH-terminal domain (CT1) of connexin32 (Cx32) were shown to determine CO₂ sensitivity, and a gating mechanism involving CL-CT₁ association-dissociation was proposed. This study reports that Cx32 mutants, tandem, 5R/E, and 5R/N, designed to weaken CL-CT₁ interactions, display atypical V_1 and CO_2 sensitivities when tested heterotypically with Cx32 wild-type channels in Xenopus oocytes. In tandems, two Cx32 monomers are linked NH2-to-COOH terminus. In 5R/E and 5R/N mutants, glutamates or asparagines replace CT₁ arginines. On the basis of the intriguing sensitivity of the mutant-32 channel to V_i polarity, the existence of a "slow gate" distinct from the conventional V_i gate is proposed. To a lesser extent the slow gate manifests itself also in homotypic Cx32 channels. Mutant-32 channels are more CO₂ sensitive than homotypic Cx32 channels, and CO₂-induced chemical gating is reversed with relative depolarization of the mutant oocyte, suggesting V_i sensitivity of chemical gating. A hypothetical pore-plugging model involving an acidic cytosolic protein (possibly calmodulin) is dis-

cell communication; cell junctions; pH gating

GAP JUNCTIONS ARE MEMBRANE differentiations specialized for direct cell-to-cell exchange of metabolic and electrical signals. A gap junction channel is made of two hemichannels (connexons), each a hexamer of connexin proteins. Connexins have four transmembrane domains linked by two extracellular loops and a cytoplasmic loop (CL), a short NH₂ terminus (NT), and a COOH terminus (CT) of variable length (for review see Ref. 13).

Gap junction channels close in response to changes in transjunctional voltage (V_j) or intracellular Ca^{2+} or H^+ concentration (for review see Refs. 3, 9, and 14), but the molecular mechanisms of channel gating are still unclear. V_j and chemical gates are believed to be two distinct gates: the former closes the channel rapidly but incompletely, and the latter closes the channel slowly but completely (5).

Recently, we studied connexin mutants and chimeras expressed in *Xenopus* oocytes to identify domains of the rat connexin32 (Cx32) potentially involved in CO₂-induced (low intracellular pH) channel gating. Cx32 is

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

a connexin expressed in many organs, such as liver, pancreas, kidney, thyroid, and mammary gland, and in various cells of the nervous system, such as neurons, oligodendrocytes, and Schwann cells (for review see Ref. 3). Several Cx32 mutations have been shown to be relevant to the pathogenesis of a demyelinating disease known as the X-linked Charcot-Marie-Tooth disease (2, 3).

In Cx32, CL contains a domain relevant to CO_2 gating sensitivity (23, 24), and NT (23) and 84% of CT (25, 28, 30) do not seem to play a role, whereas basic residues of the initial domain of CT (CT₁) inhibit CO_2 gating sensitivity (25, 28). Thus Cx32 appears to differ from Cx43, in which CT seems to play a major role in chemical gating (8) via a postulated ball-and-chain mechanism (6, 10). On the basis of our work on Cx32, we have proposed that CT_1 , a basic and partly hydrophobic domain, may interact electrostatically and hydrophobically with acidic and hydrophobic residues of CL_1 and may inhibit gating by latching CL (26).

To further probe the chemical gating mechanism of Cx32, three new mutants were constructed. One mutant, the tandem, is a dimer in which two Cx32 monomers are concatenated NT-to-CT. With this mutant, each connexon (hemichannel) is made of three tandem connexins. In each connexon, three of the six NT chains are linked to three CT chains and the other three NT and CT chains are free. Another mutant, the 5R/E, is a Cx32 molecule in which five basic residues of CT₁ (R215, R219, R220, R223, and R224) are replaced with an acidic residue (E). In the third mutant, the 5R/N, the five basic CT₁ residues mentioned above are replaced with a neutral-polar residue (N). This mutant, when tested homotypically, generated channels more sensitive to CO₂ than Cx32 (25, 28). All these mutations would be expected to interfere with the CT₁-CL₁ interaction. Homotypic pairing of tandem and 5R/E mutants did not produce functional junctions.

The data show that, in all these heterotypic channels, junctional conductance (G_j) increases with V_j gradients positive at the tandem, 5R/E, or 5R/N side and decreases with V_j of opposite polarity. In addition, positive V_j gradients partially reverse the G_j drop induced by CO_2 , suggesting that the chemical gate might be voltage sensitive.

MATERIALS AND METHODS

Site-Directed Mutagenesis

Molecular biology protocols were generally as described by Sambrook et al. (20). Cx32 cDNA (12) was used in the construction of DNA mutants. Two wild-type Cx32 were

linked to form a Cx32 tandem; a tandem is a Cx32 dimer composed of two Cx32 monomers concatenated NT-to-CT. Normal and modified Cx32 cDNAs were used in the construction of the tandem. The modification involved the deletion of a silent stop codon preceding the ATG initiation codon, which would be used in the second Cx32 monomer of the tandem. The strategy employed to create the 5R/E and 5R/N mutants of Cx32 has been previously described (25). All the mutations were verified by digestion of DNA with restriction enzymes and sequence analysis.

Oligonucleotide Sequences

Oligonucleotides were synthesized by a DNA synthesizer (model 393, ABI, Foster City, CA). The sequences used to produce the 5R/E and 5R/N mutants are as follows (underscored letters represent mutated nucleotides): 5'-CCTT GCGGGAGGGCGGATTAGATTCCTCCTGAGCTTCCTC (5R/E) and 5'-CCTTGCGGGAGGGCGGATTGGAGTTGTTCTGAGC GTTGTT (5R/N).

Preparation of cRNA

Wild-type and mutated forms of Cx32 cDNA were subcloned into pBluescript (Stratagene, Menasha, WI) or pGEM 3Z (Promega, Madison, WI) and used for in vitro synthesis of cRNA. cRNAs were transcribed from linearized plasmid with use of T7 or SP6 mMESSAGE mMACHINE (Ambion, Austin, TX) in the presence of the cap analog m7G(5')ppp(5')G (Ambion).

Oocyte Preparation and Microinjection

Oocytes were prepared as previously described (15). Briefly, adult female frogs (Xenopus laevis) were anesthetized with 0.3% tricaine (MS-222), and the oocytes were surgically removed from the abdominal incision. The oocytes were placed in ND-96 medium. Oocytes at stage V or VI were subsequently defolliculated in 2 mg/ml collagenase (Sigma Chemical, St. Louis, MO) in Ca²⁺-free OR-2 medium for 80 min at room temperature. The defolliculated oocytes were injected with 46 nl (0.25 $\mu\text{g}/\mu\text{l})$ of antisense oligonucleotide complementary to endogenous Xenopus Cx38: 5'-GCTTTAG-TAATTCCCATCCTGCCATGTTTC-3′ (commencing at nt −5 of Cx38 cDNA sequence) (1) by means of a Nanoject apparatus (Drummond, Broomall, PA). The antisense oligonucleotide blocks completely the endogenous junctional communication within 48 h. At 48-72 h after injection, 46 nl of Cx32 wild-type, tandem, 5R/E, or 5R/N cRNA (0.04, 0.4, 0.46, and 0.2 µg/µl, respectively) were injected into oocytes at the vegetal pole, and the oocytes were incubated overnight at 18°C. The oocytes were mechanically stripped of their vitelline layer in a hypertonic medium (15) and paired at the vegetal poles in ND-96 medium. Oocyte pairs were studied electrophysiologically 2-3 h after pairing.

Uncoupling Protocol

The oocyte chamber was continuously perfused at a flow rate of 0.6 ml/min by a peristaltic pump (Dyamax model RP-1, Rainin Instrument, Woburn, MA). The superfusion solution was ejected by a 22-gauge needle placed near the edge of the conical well containing the oocyte pair. The level of the solution in the chamber was maintained constant by continuous suction. Electrical uncoupling of oocyte pairs was induced by 3–15 min of superfusion (0.6 ml/min) of salines continuously gassed with 100% CO₂. A Cl⁻-free saline (Cl⁻ replaced with methanesulfonate) was used. The Cl⁻-free saline contained (in mM) 75 NaOH, 10 KOH, 4 Ca(OH)₂, 5 Mg(OH)₂,

and 10 MOPS, adjusted to pH 7.2 with methanesulfonic acid. As previously reported (15), the opening of $\mathrm{Ca^{2^+}}$ -activated $\mathrm{Cl^-}$ channels during exposure to 100% $\mathrm{CO_2}$ causes an increase in membrane current that may interfere with measurements of junctional current (I_j).

Measurement of G_i in Oocyte Pairs

All the experiments were performed using the standard double-voltage-clamp procedure for measuring $G_{\rm j}$ (21). After the insertion of a current and a voltage microelectrode in each oocyte, both oocytes were initially voltage clamped to the same holding potential $(V_{\rm m}),\ V_{\rm m1}=V_{\rm m2}$ (usually $-20\ {\rm mV}$), so that no $I_{\rm j}$ would flow at rest $(I_{\rm j}=0)$. A $V_{\rm j}$ gradient was created by imposing a $+20\ {\rm mV}$ voltage step $(V_{\rm l})$ of 2-s duration every $10\ {\rm or}\ 30\ {\rm s}\ {\rm to}\ oocyte\ 1$ while maintaining $V_{\rm 2}$ at $V_{\rm m}$; thus $V_{\rm j}=V_{\rm l}$. The negative-feedback current $(I_{\rm 2})$, injected by the clamp amplifier in $oocyte\ 2$ for maintaining $V_{\rm 2}$ constant at $V_{\rm m}$, was used for calculating $G_{\rm j}$, inasmuch as it is identical in magnitude to the $I_{\rm j}$ but of opposite sign $(I_{\rm j}=-I_{\rm 2});\ G_{\rm j}=I_{\rm j}/V_{\rm j}$. Pulse generation and data acquisition were performed by means of a computer equipped with pClamp software (Axon Instruments, Foster City, CA) and Labmaster TL-1A/D-D/A interface (Axon).

For studying voltage dependence of G_j , each oocyte of the pair was first voltage clamped at -20 mV. Voltage steps of 20 mV (± 120 mV maximum) and 20-s duration were then applied every 45 s to either oocyte of the pair while the other was maintained at -20 mV. To illustrate the relationship between steady-state G_j (G_{jss}) and V_j , the normalized G_j (G_{jss}/G_{jmax} , where G_{jmax} is maximum G_j) was plotted with respect to V_j . The curve was fitted to a two-state Boltzmann distribution of the following form: ($G_{jss}-G_{jmin}$)/($G_{jmax}-G_{jss}$) = $\exp[-A(V_j-V_0)]$, where V_0 is the V_j value at which the voltage-sensitive conductance is one-half the maximal value, G_{jmin} is the theoretical minimum normalized G_j , and A=nq/kT is a constant expressing voltage sensitivity in terms of number of equivalent gating charges (n) moving through the entire applied field (where q is the electron charge, k is the Boltzmann constant, and T is the temperature in Kelvin).

RESULTS

Functional Tests of Mutants

Tandem and 5R/E mutants did not form functional channels when tested homotypically, even after 6-7 h of oocyte pairing. In heterotypic pairs between oocytes expressing tandem or 5R/E and oocytes expressing Cx32 wild type (tandem-32 and 5R/E-32, respectively), coupling developed slowly. Within 2-3 h after pairing, $G_{\rm i}$ was 0.56 ± 0.14 (SE) μ S (n = 15) with tandem-32 and $0.34 \pm 0.13 \,\mu\text{S}$ (n = 6) with 5R/E-32. In contrast, 5R/N mutants were functional homotypically (5R/N-5R/N) (26, 28) and heterotypically with Cx32 wild-type mutants (5R/N-32) (27). In 5R/N-32 pairs, G_i , measured with the conventional protocol (+20-mV voltage pulses of 2-s duration applied to 1 of the 2 oocytes every 10 s) within 2–3 h after pairing, was $2.03 \pm 0.4 \mu S$ (n = 19). In homotypic 5R/N-5R/N and 32–32 pairs, G_i was 3.8 \pm 1.3 (n = 8) and 4.2 \pm 1.3 μ S (n = 26), respectively.

Sensitivity to *V_i* Pulses

Tandem-32 channels. Cx32 junctions displayed a characteristic sensitivity to V_j . As shown in Fig. 1A, I_j

decayed exponentially with time for $V_i > \pm 40$ mV. In contrast, tandem-32 channels displayed a unique I_i - V_i behavior (Fig. 1A). With the tandem side negative, as V_i was increased in 20-mV steps from 20 to 120 mV, the initial and final I_i progressively decreased to very low conductance values, and the channels appeared to be V_i sensitive even at the lowest V_i . With the tandem side positive, as V_i increased in steps from 20 to 120 mV, I_i progressively increased to high values, and I_i recorded at the end of the pulse was greater than the initial I_i , as if V_i caused an increase rather than a decrease in I_i . Only at the largest V_i gradients (100–120 mV), two fairly conventional I_i levels started to appear (Fig. 1*A*). The asymmetric I_i - \mathring{V}_i behavior of tandem-32 and other heterotypic mutant-32 junctions is clearly demonstrated by plotting normalized $G_i(G_{iss}/G_{imax})$ vs. V_i (Fig. 1, *C* and *D*).

This intriguing voltage behavior seemed to suggest that V_j gradients that made the tandem side of the channels negative or positive progressively closed or opened, respectively, an increasing number of channels. A channel population out of steady state would obviously mask the normal V_j behavior of individual channels, generating the false impression of increased V_j sensitivity with the tandem side negative and the absence of V_j sensitivity with the tandem side positive, up to the time when all the channels had opened.

To test this idea, trains of 60-mV V_i pulses (tandem side positive) of 20-s duration (45-s intervals) were applied and immediately followed by the conventional $V_{\rm j}$ protocol (tandem side positive). Three distinct $I_{\rm j}$ behaviors were observed during the train of 60-mV pulses (Fig. 1*B*): a monophasic I_i increase (*pulses 1–3*); a biphasic I_i time course (*pulses 4–9*), characterized by an initial progressive I_i increase followed by an exponential I_i decay; and a conventional I_i behavior (pulses 10-18), depicted by an initial I_i peak followed by an exponential I_i decay to a steady-state level. After the train of V_i pulses, the application of conventional V_i protocols (tandem side positive) resulted in a current behavior relatively similar to that of 32–32 channels. However, note in Fig. 1B that pulse 21 ($V_i = 60 \text{ mV}$) generated a biphasic I_i time course similar to that of pulse 6, suggesting that, after the end of the train of 60-mV V_i pulses, some of the channels might have closed.

5R/E-32 channels. 5R/E-32 channels subjected to the conventional V_j protocol behaved as tandem-32 channels (Fig. 1A). With the 5R/E side negative, initial and final I_j progressively decreased to very low values, and the channels appeared to be V_j sensitive even at the lowest V_j . With the 5R/E side positive, I_j progressively increased to very high values, and with V_j gradients as high as $80 \text{ mV } I_j$ measured at the end of the pulse was greater than the initial I_j . Only with the largest V_j gradients (100-120 mV) did two fairly conventional I_j levels start to appear (Fig. 1A). As for tandem-32 channels, the relationship between normalized G_j (G_{jss}/G_{jmax}) and V_j clearly demonstrates the asymmetric I_j - V_j behavior of 5R/E-32 junctions (Fig. 1D).

5R/N-32 channels. The behavior of 5R/N-32 channels exposed to the conventional V_i protocol was not as asymmetric as that of tandem-32 or 5R/E-32 channels (Fig. 1*A*). With $V_i > 20$ mV, initial and final I_i were higher with the 5R/N side positive than negative at each comparable V_i value (Fig. 1A). This moderate asymmetry is displayed in Fig. 1C, which plots the normalized $G_{\rm j}$ ($G_{\rm jss}/G_{\rm jmax}$) vs. $V_{\rm j}$ and the two-state Boltzmann fit for 5R/N-32 and 32–32 channels. The Boltzmann values of 5R/N-32 channels are as follows: $V_0=52.6$ mV, n=2.4, and $G_{\rm jmin}=0.11$ (n=3) for the 5R/N side negative and $V_0=77.2$ mV, n=2.4, and $G_{\rm jmin} = 0.22~(n=3)$ for the 5R/N side positive. Those of homotypic 32-32 and 5R/N-5R/N channels are similar: $V_0 = 59.5$ mV, n = 2.1, and $G_{\text{jmin}} = 0.29$ (n = 7) and $V_0 =$ 59.8 mV, n = 2.3, and $G_{\text{jmin}} = 0.21$ (n = 5), respectively. On the basis of data described below, the asymmetric voltage behavior of mutant-32 channels may indicate that progressive exposure to prolonged V_i gradients that make the mutant side negative or positive progressively closes or opens, respectively, an increasing number of channels.

Effect on G_i of Trains of Long V_i Pulses

The asymmetric I_j - V_j behavior of mutant-32 channels (Fig. 1*A*) suggested that V_j -dependent channel opening and closing processes might have a long time constant (τ), possibly reflecting the function of a "slow gate," distinct from the conventional, relatively fast, V_j -sensitive gate. To further test this idea, G_j was measured immediately before and after the application of trains of V_j pulses (60 mV, 20 s) with the mutant side positive and then negative (Fig. 2).

Tandem-32 channels. With V_i pulses positive at the tandem side, I behaved as previously described (cf. Fig. 2A, left trace, with Fig. 1B). With the tandem side negative, initial and final I_i levels progressively decreased to very low values (Fig. 2A, right trace). Gi, measured with the conventional protocol (+20-mV pulses of 2-s duration applied to 1 oocyte every 10 s) immediately after the train of V_i pulses positive at the tandem side (pulse train 1), was 130% greater than that measured before the train of V_i pulses (Fig. 2B) and recovered in 3-4 min (Fig. 2B). G_i measured immediately after the train of 60-mV V_i pulses (pulse *train 2*) negative at the tandem side decreased to 23% of control values (Fig. 2B). This behavior suggested *V*_i-dependent channel opening and closing processes, with long time constants, that could reflect the function of a slow V_i -sensitive gate.

 $5R/E-3\dot{2}$ channels. 5R/E-32 channels displayed a similar I_j behavior (Fig. 2C) but, with the 5R/E side positive, only the first pulse resulted in a monophasic I_j increase, whereas subsequent pulses progressively assumed a more conventional I_j behavior: an initial I_j peak followed by exponential I_j decay (Fig. 2C, left trace). However, initial and final I_j levels increased exponentially over the first six to seven pulses (Fig. 2C, left trace). With the 5R/E side negative, initial and final I_j levels progressively decreased to very low conductance values (Fig. 2C, right trace). G_j increased by 110%

Downloaded from journals.physiology.org/journal/ajpcell at Univ of Georgia Lib (198.137.020.014) on August 21, 2024.

during the train of V_j pulses (*pulse train 1*) positive at the 5R/E side (Fig. 2*D*) and recovered exponentially in 4–5 min (Fig. 2*D*). In contrast, G_j reversibly dropped to 31% of control values with pulses (*pulse train 2*) negative at the 5R/E side (Fig. 2*D*).

5R/N-32 channels. 5R/N-32 channels displayed an I_i behavior (Fig. 2E) qualitatively similar to that of tandem-32 (Fig. 2A) and 5R/E-32 (Fig. 2C) channels. With the 5R/N side positive, the first pulse resulted in a monophasic I_i increase from initial to final I_i , whereas subsequent pulses generated a more conventional I_i behavior: an initial I_j peak followed by exponential I_i decay (Fig. 2*E*, *left trace*). Initial and final I_i levels increased sizably between the first and the second pulse but only slightly with subsequent pulses (Fig. 2E, *left trace*). In contrast, with the 5R/N side negative, initial and final I_i levels progressively decreased to lower conductance values (Fig. 2*E, right trace*). *G*_i increased by 11% during the application of the train of V_i pulses (pulse train 1) positive at the 5R/N side (Fig. 2F) and recovered to control values in 4–5 min (Fig. 2*F*). In contrast, G_i reversibly dropped to 63% of control values with pulses (pulse train 2) negative at the 5R/N side (Fig. 2*F*).

32–32 channels. The application of similar trains of $V_{\rm j}$ pulses of either polarity to homotypic 32–32 channels (Fig. 2 G) caused a small and reversible $G_{\rm j}$ drop to \sim 90% of control values (Fig. 2 H). This indicates that, albeit to a lesser extent, repeated $V_{\rm j}$ pulses affect a slow $V_{\rm j}$ -sensitive gate in homotypic Cx32 wild-type channels as well.

Effect on G_i of Steady-State V_i

The ability of trains of long $V_{\rm j}$ pulses of opposite polarity to progressively increase or decrease $G_{\rm j}$ in tandem-32, 5R/E-32, and 5R/N-32 junctions suggested that these channels might also be sensitive to prolonged, steady-state $V_{\rm j}$ gradients. If so, steady-state $V_{\rm j}$ protocols could enable one to better define the magnitude and kinetics of this process.

Tandem-32 channels. In oocyte pairs in which each oocyte was initially clamped at $V_{\rm m}=-20$ mV ($V_{\rm j}=0$), the establishment of steady-state $V_{\rm j}=40$ mV (tandem

side positive) increased G_j exponentially by $262 \pm 64\%$ (mean \pm SD, n=4), with $\tau=0.88 \pm 0.2$ (SD) min (n=4; Fig. 3A and B); G_j was measured by the conventional protocol: +20-mV pulses of 2-s duration applied to one oocyte every 10 s. Similar results were obtained by simultaneously depolarizing the tandem side and hyperpolarizing the Cx32 side or by just hyperpolarizing the Cx32 side in oocytes initially clamped at -20 mV (Fig. 3A and B) or -40 mV. V_j gradients of 10 and 20 mV increased G_j by 10-20% and 80-130%, respectively (data not shown).

In experiments in which oocytes initially clamped at $V_i = 0$ mV were subjected to $V_i = 60$ mV (tandem side positive), G_i increased exponentially by 581 \pm 278% (mean \pm SD, n = 4), with $\tau = 1.3 \pm 0.4$ (SD) min (n = 4). With the reestablishment of $V_i = 0$ mV from V_j (tandem side positive) = 40 mV (Fig. 3A) or 60 mV, G_i decreased slowly after a single-exponential decay, with $\tau = 1.6 \pm$ 0.2 min (n = 3). After the application of $V_i = 40-60$ mV (tandem side positive), G_j did not return to baseline values even after 7-8 min (Fig. 3A), indicating that channels opened by positive $V_{\rm j}$ gradients closed very slowly. In contrast, when V_i was reversed from tandem side positive to tandem side negative, G_i decreased more rapidly and dramatically (Fig. 3B). With V_j reversal to 40 or 60 mV (tandem side negative), G_i decreased to $16 \pm 11\%$ (n = 4) or $\sim 0\%$ of control values (measured at $V_{\rm i}=0$) after exponential decays, with $\tau=0.4\pm0.16$ $\min (n = 4)$, indicating that the relative negativity of the tandem side actively closed the channels.

Interestingly, on return to $V_j = 0$ mV from $V_j = 40$ mV (Fig. 3A) or 60 mV, tandem side positive, G_j increased abruptly, then dropped. This is due to the reopening of the conventional (fast) V_j -sensitive gate. This interpretation is also supported by the observation that the abrupt increase in G_j is not observed when V_j is reversed from positive to negative at the tandem side (Fig. 3B); in this case, as the conventional V_j gates open at the Cx32 side, they close at the mutant side, or vice versa.

5R/E-32 channels. Similar results were obtained with 5R/E-32 channels. Exposure to $V_i = 40$ mV (5R/E

Fig. 1. Response of junctional current (I_j) to transjunctional voltage (V_j) pulses in *Xenopus* oocyte pairs expressing homotypic Cx32 channels (32-32, A) or heterotypic channels between Cx32 wild-type and tandem (tandem-32, A and B, 5R/E (5R/E-32, A), or 5R/N (5R/N-32, A). 32-32 channels (A) display a characteristic sensitivity to V_1 , as I_1 decays exponentially with time for V_1 greater than ± 40 mV. In contrast, tandem-32 and 5R/E-32 channels (A) display a unique I_j - V_j behavior (A). With mutant side negative (A, left), as V_j is increased from 20 to 120 mV, initial and final I_i progressively decrease to very low values, and V_i sensitivity seems present even at $V_i = 20$ mV. With mutant side positive (A, right), $I_{\rm j}$ progressively increases to high values, and $I_{\rm j}$ increases, rather than decreases, from initial $I_{\rm j}$; only with $V_{\rm j}=100-120$ mV, 2 more conventional $I_{\rm j}$ levels are seen. With trains of 60-mV $V_{\rm j}$ pulses (tandem side positive), 3 distinct I_i behaviors are observed: a monophasic increase in I_i (B, pulses 1-3); a biphasic I_i time course (B, pulses 4-9), with initial I_j increase followed by exponential I_j decay; and, finally, a conventional I_j behavior (B, pulses 10–18). Subsequent applications of conventional V_j protocol (tandem side positive) result in fairly conventional I_j behaviors (B, pulses 19-27). Pulse 21 generates a biphasic I_j time course, as does pulse 6, suggesting that some channels had closed after 60-mV pulses. Behavior of 5R/N-32 channels is qualitatively similar but not as asymmetric as that of tandem-32 or 5R/E-32 channels (A). With $V_i > 20$ mV, initial and final I_i are higher with positive (A, right) than with negative (A, left) V_j . C and D: asymmetric I_j - V_j behavior of tandem-32 and other heterotypic mutant-32 junctions demonstrated by plots of normalized G_j (G_{jss}/G_{jmax} , where G_{jss} is steady-state G_j and G_{jmax} is maximum G_j) vs. V_j . C: 2-state Boltzmann fit for 5R/N-32 and 32-32 channels. Boltzmann values are $V_0 = 52.6$ mV, n = 2.4, and minimum C_j (C_{jmin}) = 0.11 (n = 3) with 5R/N side negative (C_j left) and $V_0 = 77.2$ mV, n = 2.42.4, and $G_{\text{imin}} = 0.22$ (n = 3) with 5R/N side positive (*C, right*) for 5R/N-32 channels and $V_0 = 59.5$ mV, n = 2.1, and $G_{\text{jmin}} = 0.29$ for 32–32 channels.

Fig. 2. Effect on G_i of trains of long V_i pulses of opposite polarity (A, C, E, and G). G_i of tandem-32 (B), 5R/E-32 (D), 5R/N-32 (F), and 32-32 (H) channels was measured with conventional protocol: +20-mV pulses of 2-s duration applied to 1 oocyte every 10 s ($V_i = 20$ mV during pulse, $V_i = 0$ mV between pulses) immediately before and after trains of V_i pulses (60 mV, 20-s duration, every 45 s) with mutant side positive (A, C, and E, left traces) or negative (A, C, and E, right traces). With tandem side positive, I_i behaves as previously described (cf, A, left trace, with Fig. 1B). With tandem side negative, initial and final I_i progressively decrease to low values (A, right trace). G_i increases by 130% with train of V_1 pulses (pulse train 1) that make tandem side positive (B) and recovers exponentially in 3-4 min (B). In contrast, G_i reversibly decreases to 23% of control values with pulses (pulse train 2) negative at tandem side (B). A similar behavior is observed with 5R/E-32 channels (C and D). With 5R/E side positive, 1st pulse causes a monophasic I_i increase, whereas subsequent pulses progressively assume a more conventional I_i behavior (C). Initial and final I₁ levels increase exponentially over 1st 6-7 pulses (C, left trace). With 5R/E side negative, initial (instantaneous) and final I_i levels progressively decrease to very low values (C, right trace). C_i increases by 110% with V_1 pulses (pulse train 1) positive at 5R/E side (D) and recovers exponentially in 4–5 min (D). In contrast, G_1 drops to 31% of control values with pulses (pulse train 2) negative at 5R/E side (D). 5R/N-32 channels (E and F) behave qualitatively as tandem-32 and 5R/E-32 channels, but not as dramatically. With 5R/N side positive, 1st pulse results in a monophasic I_i increase, whereas subsequent pulses generate a more conventional I_i behavior (E_i *left trace*). Initial and final I_i levels increase sizably between 1st and 2nd pulse, but only slightly with subsequent pulses (E, left trace). In contrast, with 5R/N side negative, both I_j levels progressively decrease to lower values (E, right trace). G_i increases by 11% with V_i pulses (pulse train 1) positive at 5R/N side (F) and recovers exponentially in 4-5 min (F), whereas G_j reversibly drops to 63% of control values with pulses (pulse train 2) negative at 5R/N side (F). In contrast, trains of 60-mV V_i pulses of either polarity applied to homotypic 32–32 channels (G) reversibly decrease G_i to ~90% of control values (H).

side positive) increased $G_{\rm j}$ by $182\pm50\%$ (mean \pm SD, n=5), with $\tau=1.28\pm0.33$ (SD) min (n=5; Fig. 3, C and D). $G_{\rm j}$ increased by as much as 400% with $V_{\rm j}=60$ mV. On return to $V_{\rm j}=0$ mV, $G_{\rm j}$ recovered slowly (Fig. 3C), with $\tau=2.04\pm0.35$ min (n=4). When $V_{\rm j}$ was reversed from positive to negative at the 5R/E side, $G_{\rm j}$ drastically decreased (Fig. 3D) to $14.8\pm3.3\%$ (n=4) of control values (measured at $V_{\rm j}=0$), with $\tau=0.39\pm0.07$ min (n=4). As for tandem-32 channels, on return to $V_{\rm j}=0$ mV from $V_{\rm j}=40$ mV (5R/E side positive), $G_{\rm j}$ increased abruptly before dropping (Fig. 3C) because of the reopening of conventional $V_{\rm j}$ -sensitive gates. Indeed, as expected, this abrupt increase in $G_{\rm j}$ was not observed when the $V_{\rm j}$ polarity was reversed from positive to negative (Fig. 3D).

5R/N-32 channels. 5R/N-32 channels behaved qualitatively as tandem-32 and 5R/E-32 channels. The establishment of $V_i = 40 \text{ mV}$ (5R/N side positive) increased $G_{\rm i}$ reversibly and exponentially by 23 \pm 19.5% (mean \pm SĎ, n = 18; Fig. 3, E and F), with $\tau = 0.78 \pm 0.32$ (SD) min (n = 11). With reestablishment of $V_i = 0$ mV, G_i recovered, with $\tau = 2.4 \pm 0.9$ min (n = 4). When the channels were subjected to V_i negative at the 5R/N side from $V_j = 0$ mV (Fig. 3E) or $V_j = 40$ mV (5R/N side positive; Fig. 3*F*), G_i dropped to 35.2 \pm 17.3% (n = 10) of control values (measured at $V_{\rm j}=0$), with $\tau=1.05\pm$ 0.61 min (n = 9). On return to $V_j = 0$ mV from $V_j = 40$ mV, 5R/N side positive, G_j increased abruptly, then dropped (Fig. 3*E*); this was not observed with V_i reversal from positive to negative (Fig. 3F), as described for tandem-32 (Fig. 3B) and 5R/E-32 (Fig. 3D) channels.

32-32 channels. In homotypic 32-32 junctions the application of 40-mV V_j gradients to either oocyte decreased G_j to $67.7 \pm 8.2\%$ (mean \pm SD, n=7; Fig. 3G). On V_j application, G_j dropped rapidly in the first 10-20 s (Fig. 3G, more obvious with 1st V_j application) and then slowly over the following 4-5 min, eventually reaching a steady-state value. The rapid drop and the slow decay may result from the sequential closures of the conventional (fast) V_j gate and the slow V_j gate, respectively.

Effect of Simultaneous Depolarization or Hyperpolarization of Both Oocytes

The heterotypic channels were tested for sensitivity to $V_{\rm m}$ by depolarizing or hyperpolarizing both oocytes in 20-mV steps starting from $V_{\rm m}=-20$ mV ($V_{\rm m1}=V_{\rm m2},V_{\rm j}=0$). Neither depolarizations as great as $V_{\rm m}=+20$ mV nor hyperpolarizations as high as $V_{\rm m}=-60$ mV had any effect on $G_{\rm j}$ (Fig. 3H), indicating that tandem-32 channels, like other vertebrate cell-cell channels, are insensitive to $V_{\rm m}$, the voltage between the inside and the outside of the cell. The same results were obtained with the other mutant-32 channels and with homotypic 32–32 and 5R/N-5R/N channels (data not shown). $V_{\rm m}$ sensitivity is present in insect gap junctions (11), whereas connexins, with the possible exception of Cx26 (1), are insensitive to $V_{\rm m}$.

CO₂ Sensitivity

Homotypic 32–32 channels were weakly sensitive to CO_2 , as previously reported (22). G_j decreased to $85 \pm 5\%$ (mean \pm SE, n=7) with a 3-min exposure to CO_2 (Fig. 4A) and to $47 \pm 4.8\%$ with a 15-min exposure (n=16; Fig. 4B) at a maximum rate of $\sim 9\%$ /min. Tandem-32 channels were more sensitive to CO_2 than 32–32 channels. G_j dropped to $43 \pm 8\%$ (n=5) with 3-min exposures to CO_2 (Fig. 4) and to $6.4 \pm 5\%$ (n=4) with 15-min exposures (Fig. 4B) at a maximum rate of $\sim 13\%$ /min. 5R/E-32 channels were much more sensitive to CO_2 than 32-32 channels (Fig. 4). G_j dropped to zero (n=3) with 3-min exposures to CO_2 at a maximum rate of $\sim 37\%$ /min (Fig. 4).

As previously reported (26), the sensitivity of 5R/N-32 channels was also greater than that of 32-32 channels. G_1 decreased to $37.5 \pm 6.4\%$ (mean \pm SE, n=3) with 3-min exposures to CO_2 (Fig. 4B) and to $\sim 0\%$ (n=4) with 15-min exposures (Fig. 4B) at a maximum rate of $\sim 21\%$ /min. Thus the CO_2 sensitivity of all these channels ranked as follows: 5R/E-32 > 5R/N-32 >tandem-32 > 32-32.

Effect on G_j of Steady-State V_j During CO_2 -Induced Uncoupling

Oocyte pairs expressing mutant-32 or 32-32 channels were subjected to V_j gradients of different polarity during exposure to 100% CO₂. In mutant-32 channels, G_j , reduced to very low values by exposure to CO_2 at $V_i = 0$ mV, increased dramatically and reversibly with V_i gradients that made the tandem (Fig. 5A), 5R/E (Fig. 5C), or 5R/N (Fig. 5D) side positive by 40 mV. Similar results were obtained by simultaneously depolarizing the mutant side and hyperpolarizing the Cx32 side or by just hyperpolarizing the Cx32 side (Fig. 5, A, C, and *D*). With the same V_j gradient, G_j increased more during uncoupling or recovery from uncoupling than during maximal uncoupling. This was most obvious with 5R/E-32 channels (Fig. 5C), inasmuch as their CO_2 sensitivity is so high that G_i remains 0 μ S for several minutes even with CO₂ exposures as short as 3-5 min (Figs. 4A and 5C). With tandem-32, 5R/E-32, and 5R/N-32 channels, the application of $V_i = 40 \text{ mV}$ (mutant side positive) during CO₂ uncoupling (Fig. 5, A, *C*, and *D*) increased G_i by ~1,000, ~2,600, and ~600%, respectively. This is noteworthy, because in the absence of CO_2 , similar V_j applications increased G_i by only \sim 260, \sim 180, and \sim 23%, respectively (see above). These data indicated that V_i is able to open tandem-32, 5R/E-32, and 5R/N-32 channels that had been closed by the CO_2 treatment. In contrast, V_i gradients that made the mutant side negative dramatically and reversibly reduced G_j to very low values (Fig. 5, A, C, and D). When a similar protocol was tested on 32-32 channels, the application of 40-mV V_i gradients of either polarity always resulted in a significant drop of G_i (Fig. 5B). The magnitude of the G_i drop indicates that also in the case of 32–32 channels V_i affects the conventional V_i gate and the slow V_j gate.

DISCUSSION

This study shows that oocytes expressing tandem, 5R/E, or 5R/N mutants have altered sensitivity to CO_2 and V_j when paired with oocytes expressing Cx32 wild-type mutants. When V_j is depolarized with respect to the mutant-expressing oocyte, G_j increases rather than decreases. Positive V_j at the mutant side is also effective in reopening channels closed by 100% CO_2 .

Tandem and 5R/E mutants did not display functional channels in homotypic configuration. A possibility is that tandem and 5R/E mutants assume conformations unsuitable for homotypic interaction. In the tandem

mutant the NH_2 -to-COOH terminus linkage may render opposite dimers too rigid for interaction but able to interact heterotypically with more flexible Cx32 monomers. However, the architecture of tandems in connexons is difficult to predict, and in the absence of structural information the possibility that only one of the two monomers of a tandem is normally inserted in the membrane cannot be discounted.

In tandem-32 and 5R/E-32 pairs, G_j is low when measured at $V_j = 0$ mV but increases dramatically with depolarization of the mutant-expressing oocyte. This large increase in G_j with positive V_j at the mutant side

could be explained in a number of ways: new channel formation, increase in single-channel open probability (P_0) , increase in single-channel conductance (γ_j) , or a combination of the above. Although it is possible that positive V_j favors channel formation, this is considered unlikely, because it would mean that channels formed by positive V_j at the mutant side are removed on return to $V_j = 0$ mV and that negative V_j at the mutant side removes newly formed and preexisting channels. One would have to assume that channel formation and removal are based on the same mechanism, which is unlikely. Because G_j measured at $V_j = 0$ mV did not significantly increase after the first 2-3 h of pairing, we believed that at that time the channel population had reached some stability, at least in terms of new channel formation.

Whether the observed phenomenon is due to changes in $P_{\rm o}$ and/or $\gamma_{\rm j}$ can only be determined at the single-channel level. Interestingly, $\gamma_{\rm j}$ was found to be sensitive to $V_{\rm j}$ in heterotypic Cx32/Cx26 channels (4). However, in this case, even $V_{\rm j}$ as high as ± 100 mV did not change $\gamma_{\rm j}$ by >50% in either direction, whereas in our case $V_{\rm j}$ as low as 40 mV (tandem or 5R/E side positive) increased $G_{\rm j}$ by as much as two- to threefold and $V_{\rm j}$ as low as 60 mV (tandem or 5R/E side negative) reduced $G_{\rm j}$ to nearly zero. Therefore, this is likely to be a gating phenomenon involving changes in $P_{\rm o}$. Tandem, 5R/E, and 5R/N mutants may display the function of a slow, $V_{\rm j}$ -sensitive gate.

If it is assumed that this is a channel gating phenomenon, does it involve the conventional V_j -sensitive gate or another gate, a slow gate? Several elements suggest that we might be dealing with a slow gate distinct from the conventional V_j gate. The presumed slow gates appear to open and close with time constants on the order of minutes, whereas V_j gates close with time constants of a few seconds. V_j gradients of 40–60 mV (mutant side negative) close most of the channels, whereas even with V_j gradients of ± 120 mV a 20-25% residual conductance is usually observed (5). Even a V_j gradient as low as 10 mV (tandem side positive) significantly increases G_j , whereas the conventional

 V_i -sensitive gate is insensitive to $V_i < 20$ –40 mV. Furthermore, the distinct behavior of the two gates is clearly manifested by the abrupt increase in G_i observed with return to $V_i = 0$ mV from positive V_i at the mutant side (Fig. 3, A, C, and E). Because the conventional V_i gate of Cx32 is believed to close with negative potentials (22), the abrupt increase in G_i is likely to mark the reopening of some of the Cx32 V_i gates. This interpretation is further confirmed by the observation that this abrupt increase in G_i is absent when V_i is reversed from positive to negative at the mutant side; in this case, the behavior of the conventional V_i gate is masked, because, with V_i reversal, whereas the V_i gate of the Cx32 hemichannel opens that of the mutant hemichannel closes, or vice versa. Recently, additional evidence for a distinction between a slow gate and a conventional V_i gate has come from our preliminary data (unpublished observations) on the behavior of heterotypic channels between Cx26 wild-type and Cx26 mutant (4basic/E) channels, in which, as in 5R/E, all four basic residues of CT were mutated to E (R215E, K220E, K222E, and R223E). Interestingly, these channels behaved qualitatively as 5R/E-32 channels when exposed to V_j in the presence and absence of CO_2 , despite the fact that the conventional (fast) V_i gates of Cx26 and Cx32 are sensitive to opposite voltage polari-

Is the slow gate active in wild-type connexins as well? In homotypic 32–32 channels, exposure to steady-state $V_{\rm j}$ (40 mV) of either polarity decreased $G_{\rm j}$ to ~68%. The time course of $G_{\rm j}$ decay had a fast and a slow component, suggesting that also in these channels fast and slow $V_{\rm j}$ gates are activated. However, with 32–32 channels the $G_{\rm j}$ drop was much smaller than with mutant-32 channels, indicating that the effect of negative $V_{\rm j}$ on the slow gate is less pronounced in wild-type Cx32 than in mutant hemichannels.

Most intriguing is the observation that V_j gradients (mutant side positive) significantly increase G_j in oocytes partially or totally uncoupled by CO_2 . This raises the possibility that the chemical gate is voltage sensitive and that the chemical gate and the slow gate are

Fig. 3. G_j response to steady-state V_j gradients in tandem-32 (A and B), 5R/E-32 (C and D), 5R/N-32 (E and F), and 32–32 (G) channels and to holding potential (V_m) in tandem-32 channels (H); G_j was measured by usual pulse protocol (+20-mV voltage pulses of 2-s duration applied to 1 oocyte every 10 s). In oocytes initially clamped at $V_m = -20$ mV ($V_j = 0$), a 40-mV V_j step (tandem side positive) exponentially increases G_j by 262 \pm 64% (mean \pm SD, n = 4), with $\tau = 0.88 \pm 0.2$ (SD) min (n = 4), in tandem-32 channels (A and B). On return to $V_j = 0$ mV from $V_j = 40$ mV (A) tandem side positive, G_j decreases exponentially, with $\tau = 1.6 \pm 0.2$ min (n = 3), but does not reach baseline (control) values even after 7–8 min. With V_j reversal to 40 mV (tandem side negative), G_j decreases exponentially to 16 \pm 11% (n = 4) (B) of control values with $\tau = 0.4 \pm 0.16$ min (n = 4), indicating that relative negativity of tandem side actively closes channels. 5R/E-32 channels behave similarly (C and D). Exposure to $V_j = 40$ mV (5R/E side positive) increases G_j by 182 \pm 50% (n = 5), with $\tau = 1.28 \pm 0.33$ min (n = 5, C and D). With return to $V_j = 0$ mV, G_j recovers slowly to control values (C), with $\tau = 2.04 \pm 0.35$ min (n = 4). With V_j reversal from positive to negative, G_j decreases (D) to 14.8 \pm 3.3% (n = 4) of control values (measured at $V_j = 0$), with $\tau = 0.39 \pm 0.07$ min (n = 4). 5R/N-32 channels behave qualitatively as tandem-32 and 5R/E-32 channels, but G_j fluctuations are less dramatic (E and E). Establishment of $V_j = 40$ mV (5R/N side positive) increases G_j by 23 \pm 19.5% (n = 18, E and E), with $\tau = 0.78 \pm 0.32$ min (E = 11). With return to E = 0 mV, E

Fig. 4. G_1 sensitivity to 100% CO₂ of 32–32, tandem-32, and 5R/E-32 channels. With 32–32 channels, $G_{\rm j}$ decreases to 85 \pm 5% (mean \pm SE, n=7, A) with 3-min exposure to CO₂ and to 47 \pm 4.8% (n=16, B) with 15-min CO₂ exposure at a maximum rate of ~9%/min. All heterotypic channels are more CO₂ sensitive than 32-32 channels (*B*). With tandem-32 channels, G_i drops to $43 \pm 8\%$ (n = 5) with 3-min exposures to CO_2 (A and B) and to $6.4 \pm 5\%$ (n = 4) with 15-min exposures (B) at a maximum rate of \sim 13%/min. 5R/E-32 channels (A and B) are the most sensitive channels tested in any of our oocyte studies; G_j drops to zero (n = 3) with 3-min exposures to CO_2 (A and B) at a maximum rate of $\sim 37\%$ /min (A). 5R/N-32 channels are slightly more sensitive than tandem-32 channels; G_j decreases to $37.5 \pm 6.4\%$ (n = 3) with 3-min exposure to CO₂ (B) and to $\sim 0\%$ (n = 3) 4) with 15-min exposures (*B*) at a maximum rate of \sim 21%/min. Thus CO₂ sensitivity of these channels ranks as follows: 5R/E-32 > 5R/N-32 > tandem-32 > 32-32

the same. Interestingly, the effect of voltage on chemical gating has been recently reported in insect cells (29). In this case, however, the chemical gate appears to be sensitive to $V_{\rm m}$ rather than to $V_{\rm j}$. The idea that the slow gate and the ${\rm CO_2}$ -sensitive gate are the same may be corroborated by the observation that with mutant-32 channels a $V_{\rm j}$ application (mutant side positive) during ${\rm CO_2}$ -induced uncoupling increases $G_{\rm j}$ by a much larger fraction than in the absence of ${\rm CO_2}$. We believe that positive $V_{\rm j}$ has a greater effect on $G_{\rm j}$ in the presence than in the absence of ${\rm CO_2}$, because with ${\rm CO_2}$ a larger fraction of slow gates are in the closed state. This further indicates that $V_{\rm j}$ and ${\rm CO_2}$ compete for driving the same gating mechanism. An additional piece of evidence favoring the idea that the chemical gate and

the slow gate may be the same comes from preliminary data on oocytes in which calmodulin (CaM) expression was inhibited with antisense oligonucleotides to CaM mRNA (15, 17). Within 24-48 h after the injection of CaM antisense oligonucleotides, the slow gating behavior of tandem-32, 5R/E-32, and other mutant-32 channels completely disappeared (17) and tandem-32 channels manifested a symmetrical V_i sensitivity virtually identical to that of 32-32 channels. This observation, in conjunction with our previous data showing complete loss of CO₂ gating sensitivity after the same treatment with CaM antisense oligonucleotides (15), suggests that CaM may be involved in chemical gating and slow gating mechanisms. On this basis, a gating mechanism viewing CaM (or another small acidic protein) as a negatively charged channel-plugging molecule ("cork" gating model) is being considered (see below).

Data from this and previous studies (25, 27, 28) show that homotypic 5R/N-5R/N and heterotypic tandem-32, 5R/E-32, and 5R/N-32 channels are more sensitive to CO_2 than 32–32 channels. If we assume that the hemichannels of heterotypic channels gate independently from each other (27), this would indicate that, in tandem-32, 5R/E-32, and 5R/N-32 pairs, most of the channels close at the mutant hemichannel side. If this were the case, the observed increase in G_i at positive V_i would be expected to reflect primarily the behavior of the slow gates of tandem, 5R/E, and 5R/N hemichannels rather than that of Cx32 hemichannels. Because V_i gradients activate the conventional V_i gate as well, the increase in G_i observed at positive V_i on the mutant side indicates that the consequence of slow gates reopening significantly outweighs the effect of V_i gates closing. Thus the increase in G_j in the presence and absence of CO_2 with positive V_i at the mutant side would be even greater if the conventional V_i gate were inactive, and the opposite would be expected with negative V_i . However, the effect of 40-mV V_i gradients on conventional V_j gating is relatively small.

With 32–32 channels, V_j gradients of either polarity always caused further drops in G_j during exposure to CO_2 . Because in this case the CO_2 -sensitive gates are expected to close symmetrically, one would predict V_j gradients to complement the effect of CO_2 at the negative side and oppose it at the positive side; thus the G_j drop may result from the activation of conventional V_j -sensitive gates only. However, the magnitude of the G_j drop is greater than expected on the basis of the weak sensitivity of 32–32 channels to V_j gradients of ± 40 mV. Therefore, it is likely that the G_j drop reflects the effect of V_i on conventional V_j gates and slow gates.

If it is assumed that the observed phenomena reflect the behavior of a slow gate, why do they manifest themselves preferentially in these mutants? One can only speculate at this stage. In previous studies we have proposed that CL is relevant for CO_2 -induced gating of Cx32 channels (23, 24) and that CT_1 may inhibit gating by limiting CL mobility via electrostatic and hydrophobic interactions with CL_1 (26). If present, these interactions could maintain the channel open by latching CT_1 to CL_1 . CO_2 would close the channel by

Fig. 5. Effect of $V_{\rm j}$ on $G_{\rm j}$ during exposure to 100% CO₂ in oocyte pairs expressing tandem-32 (A), 32–32 (B), 5R/E-32 (C), or 5R/N-32 (D) channels. $G_{\rm j}$, reduced to low values by CO₂ at $V_{\rm j}=0$, increases significantly and reversibly with the application of $V_{\rm j}$ gradients positive at mutant side (A, C, and D). With similar $V_{\rm j}$ gradients, $G_{\rm j}$ increases less at maximal uncoupling. This is more notable with 5R/E-32 channels (C); CO₂ sensitivity of these channels is so high that $G_{\rm j}$ remains virtually zero for several minutes (C). $V_{\rm j}$ increases $G_{\rm j}$ by ~1,000% (A, 3rd $V_{\rm j}$ application), ~2,600% (C, 2nd $V_{\rm j}$ application), and ~600% (D, 2nd $V_{\rm j}$ application) in tandem-32, 5R/E-32, and 5R/N-32 channels, respectively. This is noteworthy, because in absence of CO₂, similar $V_{\rm j}$ applications increase $G_{\rm j}$ by only ~260, ~180, and ~23%, respectively (Fig. 3, A and C-F). This indicates that $V_{\rm j}$ opens mutant-32 channels that had been closed by CO₂. $V_{\rm j}$ negative at mutant side dramatically and reversibly reduces $G_{\rm j}$ to very low values (A, C, and D). In contrast, with 32–32 channels, $V_{\rm j}$ gradients of either polarity significantly decrease $G_{\rm j}$ (B). Magnitude of $G_{\rm j}$ drop (B) indicates that also in the case of 32–32 channels $V_{\rm j}$ affects conventional $V_{\rm j}$ gate and slow $V_{\rm j}$ gate. Dashed lines, predicted $G_{\rm j}$ time course in absence of $V_{\rm j}$ gradients.

initiating a mechanism that releases CL from CT. If this were true, one would expect any weakening of the CL₁-CT₁ interaction to result in a mixture of open and closed channels. In tandem, 5R/E, and 5R/N mutants, CL₁-CT₁ interactions might be weaker for the following reasons. In the tandem mutants, three of the six CT and NT chains are linked, which may prevent three of the six CT₁ domains from reaching CL₁ domains, if indeed both monomers are inserted in the membrane. In 5R/E mutants the replacement of five basic residues of CT₁ (R215, R219, R220, R223, and R224) with acidic residues (E) would cause CT1 and CL1 to repel each other, inasmuch as electrostatic CL₁-CT₁ interactions are postulated to occur between basic CT1 residues (particularly R215 and R219) (25, 28) and acidic CL₁ residues (El02, E109, and D113). In 5R/N mutants the removal of positive charges from CT₁ would eliminate electrostatic interactions yet leave unaffected hydrophobic interactions. This would be expected to weaken but not prevent CT₁-CL₁ interactions, which could be the reason why 5R/N-32 channels were not affected by steady-state V_i gradients as strongly as tandem-32 or 5R/E-32 channels. Consistent with this idea may also

be recent data for increased CO_2 sensitivity in mutants in which E102 was replaced with R (26) or G (19) residues, mutations that would be expected to weaken potential CL_1 - CT_1 charge interactions; interestingly, the latter is a mutation reported to occur in some patients with Charcot-Marie-Tooth disease (7, 19).

Of course, the CT_1 - CL_1 association-dissociation hypothesis is based on many assumptions, the foremost of which is the CL_1 - CT_1 interaction, which at this stage relies primarily on circumstantial evidence (26). Therefore, the phenomena described here could very well be related to different molecular domains. Whatever conformational changes connexins undergo with uncouplers, a likely possibility is that these changes render the channel mouth more accessible to a negatively charged plugging molecule (cork gating model).

The cork gating hypothesis envisions slightly different scenarios for 32-32 and mutant-32 channels. In the former, CaM would have limited accessibility to the channel mouth under normal cytosolic conditions (absence of uncouplers) and in the absence of V_j gradients. Uncouplers would change CaM and/or connexin conformation, making the channel mouth accessible to a CaM

lobe, which would bind electrostatically and hydrophobically to the channel's mouth, closing the channel completely. The latter would be accessible to a CaM lobe even without uncouplers, but CaM would bind loosely, only electrostatically, such that positive V_i would dislodge it slowly and negative V_i would lodge it in a greater number of channels. With uncouplers, CaM would plug the channel more efficiently, by interacting electrostatically and hydrophobically. This would imply two closed states: *closed state 1* would involve both types of interaction and would not be reversed by V_i , and closed state 2 would involve only electrostatic interactions, and so it would be sensitive to V_i . The presence of both types of interaction in *closed state 1* could explain why at maximum uncoupling positive V_i is less effective (Fig. 5*C*). Because the channel's mouth (18) and the CaM lobes are \sim 2.5 nm in diameter, a CaM lobe could fit well in the channel's mouth.

In conclusion, data on chemical and voltage gating characteristics of three Cx32 mutants (tandem, 5R/E, and 5R/N) expressed heterotypically with Cx32 wild type indicate that V_i gradients activate a slow gating mechanism that appears to be distinct from the conventional V_i gating mechanism. The presumed slow gate opens at relatively positive V_i and closes at negative V_i , following exponential courses with long time constants. In addition, a positive V_i at the mutant side appears to reopen channels closed by CO₂, raising the possibility that the chemical gate and the V_i -sensitive slow gate are the same. The slow gate appears to be present in homotypic Cx32 channels as well, but since these channels are all open in the absence of V_i , the slow gate of Cx32 wild-type channels manifests itself only with relatively negative V_i gradients. This gate could be a pluglike cytosolic molecule (possibly CaM).

The authors thank Dr. Eric C. Beyer (Washington University) for providing the cDNA clone for the rat liver connexin32, Dr. Basilio A. Kotsias (Instituto Investigaciónes Médicas, Buenos Aires, Argentina) for useful criticism, and Drs. Peter G. Shrager and Ted B. Begenisich (University of Rochester) for helpful comments on the manuscript.

This study was supported by National Institute of General Medical Sciences Grant GM-20113.

A preliminary account of this study has been published in abstract form (16).

Address for reprint requests and other correspondence: C. Peracchia, Dept. of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642-8711 (E-mail: cpera@pharmacol.rochester.edu).

Received 6 November 1998; accepted in final form 15 March 1999.

REFERENCES

- Barrio, L. C., T. Suchyna, T. Bargiello, L. X. Xu, R. S. Roginski, M. V. L. Bennett, and B. J. Nicholson. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. *Proc. Natl. Acad. Sci. USA* 88: 8410–8414, 1991.
- Bergoffen, J., S. S. Scherer, S. Wang, M. O. Scott, L. J. Bone, D. L. Paul, K. Chen, M. W. Lensch, P. F. Chance, and K. H. Fischbeck. Connexin mutations in X-linked Charcot-Marie-Tooth disease. *Science* 262: 2039–2042, 1993.
- 3. **Bruzzone, R., T. W. White, and D. L. Paul.** Connections with connexins: the molecular basis of direct intercellular signaling. *Eur. J. Biochem.* 238: 1–27, 1996.
- Bukauskas, F. F., C. Elfgang, K. Willecke, and R. Weingart. Heterotypic gap junction channels (connexin26-connexin32) vio-

- late the paradigm of unitary conductance. *Pflügers Arch.* 429: 870–872, 1995.
- 5. **Bukauskas, F. F., and C. Peracchia.** Two distinct gating mechanisms in gap junction channels: CO_2 -sensitive and voltage-sensitive. *Biophys. J.* 72: 2137–2142, 1997.
- Ek-Vitorin, J. F., G. Calero, G. E. Morley, W. Coombs, S. M. Tafet, and M. Delmar. pH regulation of connexin43: molecular analysis of the gating particle. *Biophys. J.* 71: 1273–1284, 1996.
- Ionasescu, V., C. Searby, and R. Ionasescu. Point mutations of the connexin32 (GJB1) gene in X-linked dominant Charcot-Marie-Tooth neuropathy. *Hum. Mol. Genet.* 3: 355–358, 1994.
- 8. Liu, S., S. Taffet, L. Stoner, M. Delmar, M. L. Vallano, and J. Jalife. A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length. *Biophys. J.* 64: 1422–1433, 1993.
- Loewenstein, W. R. Cell-to-cell communication and the control of growth. Am. Rev. Respir. Dis. 142: S48–S53, 1990.
- Morley, G. E., S. M. Taffet, and M. Delmar. Intramolecular interactions mediate pH regulation of connexin43 channels. *Biophys. J.* 70: 1294–1302, 1996.
- Obaid, A. L., S. J. Socolar, and B. Rose. Cell-to-cell channels with two independently regulated gates in series: analysis of junctional conductance modulation by membrane potential, calcium, and pH. *J. Membr. Biol.* 73: 69–89, 1983.
- 12. **Paul, D. L.** Molecular cloning of cDNA for rat liver gap junction protein. *J. Cell Biol.* 103: 123–134, 1986.
- Peracchia, C., A. Lazrak, L. L. Peracchia. Molecular models of channel interaction and gating in gap junctions. In: *Handbook* of Membrane Channels. Molecular and Cellular Physiology, edited by C. Peracchia. San Diego: Academic, 1994, p. 361–377.
- Peracchia, C., and X. G. Wang. Connexin domains relevant to the chemical gating of gap junction channels. *Braz. J. Med. Biol.* Res. 30: 577–590 1997.
- Peracchia, C., X. Wang, L. Li, and L. L. Peracchia. Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in *Xenopus* oocytes. *Pflügers Arch.* 431: 379–387, 1996.
- Peracchia, C., X. G. Wang, and L. L. Peracchia. Is the chemical gate of gap junctions voltage sensitive? (Abstract). *Mol. Biol. Cell* 9: 323A, 1998.
- Peracchia, C., X. G. Wang, and L. L. Peracchia. Connexin32 mutants reveal a slow gate that opens at positive potentials (Abstract). *Biophys. J.* 76: A221, 1999.
- Perkins, G., D. Goodenough, and G. Sosinsky. Threedimensional structure of the gap junction connexon. *Biophys. J.* 72: 533–544, 1997.
- Ressot, C., D. Gomès, A. Dautigny, D. Pham-Dinh, and R. Bruzzone. Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct behaviors: loss of function and altered gating properties. *J. Neurosci.* 18: 4063–4075, 1998.
- Sambrook, J., E. Fritsch, and T. Maniatis. Molecular Cloning. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989.
- Spray, D. C., A. L. Harris, and M. V. L. Bennett. Equilibrium properties of a voltage-dependent junctional conductance. *J. Gen. Physiol.* 77: 77–93, 1981.
- Verselis, V. K., C. S. Ginter, and T. A. Bargiello. Opposite voltage gating polarities of two closely related connexins. *Nature* 368: 348–351, 1994.
- Wang, X. G., L. Q. Li, L. L. Peracchia, and C. Peracchia. Chimeric evidence for a role of the connexin cytoplasmic loop in gap junction channel gating. *Pflügers Arch.* 431: 844–852, 1996.
- 24. **Wang, X. G., and C. Peracchia.** Connexin32/38 chimeras suggest a role for the second half of the inner loop in gap junction gating by low pH. *Am. J. Physiol.* 271 (*Cell Physiol.* 40): C1743–C1749, 1996.
- 25. **Wang, X. G., and C. Peracchia.** Positive charges of the initial C-terminus domain of Cx32 inhibit gap junction gating sensitivity to CO₂. *Biophys. J.* 73: 798–806, 1997.
- 26. Wang, X. G., and C. Peracchia. Domains of connexin32 relevant to CO₂-induced channel gating. In: *Gap Junctions*, edited by R. Werner. Amsterdam, The Netherlands: IOS, 1998, p. 35–39.

- 27. **Wang, X. G., and C. Peracchia.** Behavior of heteromeric and heterotypic channels in gap junction chemical gating. *J. Membr. Biol.* 162: 169–176, 1998.
- 28. **Wang, X. G., and C. Peracchia.** Molecular dissection of a basic COOH-terminal domain of Cx32 that inhibits gap junction gating sensitivity. *Am. J. Physiol.* 275 (*Cell Physiol.* 44): C1384–C1390, 1998.
- 29. Weingart, R., and F. F. Bukauskas. Long-chain n-alkanols and arachidonic acid interfere with the $V_{\rm m}$ -sensitive gating mechanism of gap junction channels. *Pflügers Arch.* 435: 310–319, 1998.
- 30. **Werner, R., E. Levine, C. Rabadan-Diehl, and G. Dahl.** Gating properties of connexin32 cell-cell channels and their mutants expressed in *Xenopus* oocytes. *Proc. R. Soc. Lond.* 243: 5–11, 1991.

