4 Aprendizaje de parámetros y grafos

Camilo Palazuelos Calderón

REPRESENTACIÓN DEL CONOCIMIENTO Grado en Ingeniería Informática Mención en Computación

Curso 2023-2024

Información útil

Sobre la práctica y su entrega

Objetivos de la práctica

- Profundizar en la manipulación de grafos en Python
- □ Implementar el algoritmo de aprendizaje de Chow-Liu
- Calcular el coste temporal del algoritmo codificado
- Laboratorio: 24 de noviembre y 1 de diciembre de 14:30 a 16:30
 - La fecha límite de entrega es el 7 de diciembre a las 23:59

	L	M	X	J	V
	13	14	15	16	17
	20	21	22	23	24
	27	28	29	30	1
İ	4	5	6	7	8
	11	12	13	14	15

Qué entregar

- Memoria con respuestas a las preguntas formuladas en el guion de la práctica
- Código desarrollado (y material adicional si lo consideráis oportuno)

Estimación de máxima verosimilitud

El caso del grafo de una RB discreta como arborescencia

Algoritmo de Chow-Liu

- ① Crea $\mathcal{K} = (V, E, W)$ tal que $w_{ij} = \mathbb{I}(X_i, X_j \mid \mathcal{D})$ para todo $\{v_i, v_j\} \in E$
- ② Busca un árbol de recubrimiento de peso máximo $\mathcal{G} = (V, E')$ de \mathcal{K}
- ③ Elige $v \in V$ a partir del que asignar direccionalidad a \mathcal{G} hacia fuera

Información mutua de dos variables dado ${\cal D}$

$$\mathbb{I}(X, Y \mid \mathcal{D}) = \sum_{x,y} p_{\mathcal{D}}(x, y) \log \frac{p_{\mathcal{D}}(x, y)}{p_{\mathcal{D}}(x) \cdot p_{\mathcal{D}}(y)}$$

- $\operatorname{arg\,max}_{\mathcal{G}} \log p(\mathcal{D} \mid \mathcal{G}) = \operatorname{arg\,max}_{\mathcal{G}} \sum_{(v_i,v_i) \in E(\mathcal{G})} \mathbb{I}(X,Y \mid \mathcal{D})$
 - \square Restringir la estructura de \mathcal{G} evita un *sobreajuste* en el aprendizaje

Tareas y preguntas

Qué hacer y a qué dar respuesta en la memoria

- [6 PUNTOS] Codificación del algoritmo descrito
 - Para ello, os recomiendo utilizar el módulo de Python NetworkX
- [2 PUNTOS] Eficacia de vuestra propuesta
 - Mostrad, con ejemplos variados, que funciona correctamente
- [2 PUNTOS] Evaluación de su coste temporal empírico
 - En función de algún parámetro de su coste temporal teórico