Elementary Set Theory

Contents

	Sets, subsets and complements		
	1.1	Sets and notation	1
	1.2	Subsets, Complements and Singletons	1
2 Set operations		operations	2
	2.1	Unions and Intersections	2
	2.2	Cartesian Products	3
3	Caro	dinality	3

1 Sets, subsets and complements

1.1 Sets and notation

A **set** is any collection of *distinct* objects, and is a fundamental object of mathematics.

 $\emptyset = \{\}$, the empty set containing *no* objects, is included.

The objects in a set can be anything, for example integers, real numbers, or the objects may even themselves be sets.

Notation and abbreviations:

 \in - "is an element of" (set membership)

← 'if and only if" (equivalence)

 \implies - "implies"

∃ - "there exists"

 \forall - "for all"

s.t. *or* | - "such that"

wrt - "with respect to"

1.2 Subsets, Complements and Singletons

If a set *B* contains all of the objects contained in another set *A*, and possibly some other objects besides, we say *A* is a **subset** of *B* and write $A \subseteq B$.

Suppose $A \subseteq B$ for two sets A and B. If we also have $B \subseteq A$ we write A = B, whereas if we know $B \nsubseteq A$ we write $A \subset B$.

The **complement** of a set A wrt a *universal* set Ω (say, of all "possible values") is $\overline{A} = \{\omega \in \Omega | \omega \notin A\}$.

A **singleton** is a set with exactly one element - $\{\omega\}$ for some $\omega \in \Omega$.

2 Set operations

2.1 Unions and Intersections

Consider two sets *A* and *B*.

The **union** of *A* and *B*, $A \cup B = \{\omega \in \Omega | \omega \in A \text{ or } \omega \in B\}.$

The **intersection** of *A* and *B*, $A \cap B = \{\omega \in \Omega | \omega \in A \text{ and } \omega \in B\}$.

More generally, for sets A_1, A_2, \ldots we define

$$\bigcup_{i} A_{i} = \{\omega \in \Omega | \exists i \text{ s.t. } \omega \in A_{i} \}$$
$$\bigcap_{i} A_{i} = \{\omega \in \Omega | \forall i, \omega \in A_{i} \}$$

If $\forall i, j, A_i \cap A_j = \emptyset$, we say the sets are **disjoint**. Furthermore, if we also have $\bigcup_i A_i = \Omega$, we say the sets form a **partition** of Ω .

Both *operators* are commutative:

$$A \cup B = B \cup A$$
,

$$A \cap B = B \cap A$$
.

The union operator is distributive over intersection, and vice versa:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Differences and De Morgan's Laws

The **difference** of *A* and *B*, $A \setminus B = A \cap \overline{B} = \{ \omega \in \Omega | \omega \in A \text{ and } \omega \notin B \}.$

Notice *A* and *B* are disjoint $\iff A \setminus B = A$.

The following rules, known as De Morgan's Laws, provide useful relations between complements, unions and intersections:

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}, \qquad \overline{(A \cap B)} = \overline{A} \cup \overline{B}.$$

Examples

Let $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ be our universal set and $A = \{1, 2, 3, 4, 5, 6\}$ and $B = \{5, 6, 7, 8, 9\}$ be two sets of elements of Ω .

- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- $A \cap B = \{5, 6\}.$
- $A \setminus B = \{1, 2, 3, 4\}.$
- $\overline{(A \cup B)} = \{10\}.$
- $\overline{(A \cap B)} = \{1, 2, 3, 4, 7, 8, 9, 10\}.$
- $\overline{A} = \{7, 8, 9, 10\}, \overline{B} = \{1, 2, 3, 4, 10\}.$
- $\overline{A} \cap \overline{B} = \{10\}.$
- $\overline{A} \cup \overline{B} = \{1, 2, 3, 4, 7, 8, 9, 10\}.$

2.2 Cartesian Products

For two sets Ω_1 , Ω_2 , their **Cartesian product** is the set of all ordered pairs of their elements. That is,

$$\Omega_1 \times \Omega_2 = \{(\omega_1, \omega_2) | \omega_1 \in \Omega_1, \omega_2 \in \Omega_2\}$$

More generally, the Cartesian product for sets $\Omega_1, \Omega_2, \ldots$ is written $\prod_i \Omega_i$.

3 Cardinality

A useful *measure* of a set is the size, or **cardinality**.

The cardinality of a finite set is simply the number of elements it contains. For infinite sets, there are again an *infinite* number of different cardinalities they can take. However, amongst these there is a most important distinction: Between those which are **countable** and those which are not.

A set Ω is countable if \exists a function $f : \mathbb{N} \to \Omega$ s.t. $f(\mathbb{N}) \supseteq \Omega$. That is, the elements of Ω can satisfactorily be written out as a possibly unending list $\{\omega_1, \omega_2, \omega_3, \ldots\}$. Note that all finite sets are countable.

A set is **countably infinite** if it is countable but not finite. Clearly $\mathbb N$ is countably infinite. So is $\mathbb N \times \mathbb N$.

A set which is not countable is **uncountable**. \mathbb{R} is uncountable.

The empty set \emptyset has zero cardinality,

$$|\emptyset| = 0.$$

For finite sets *A* and *B*:

• If *A* and *B* are disjoint, then

$$|A \cup B| = |A| + |B|;$$

• otherwise,

$$|A \cup B| = |A| + |B| - |A \cap B|.$$