<u>Patent claims</u>

- 1. Process for producing packs (10) with an outer wrapper (13) made of film, in particular hinge-lid boxes for cigarettes, a film blank which is folded around the pack (10) having folding tabs which are connected to one another by thermal sealing, it being the case that, following the thermal sealing, the film is subjected to heat treatment for the purpose of shrinking the film, characterized by the following features:
- during the production of packs (10) of the hinge-lid type, said packs are transported in a plurality of, in particular two, pack rows (22, 23) arranged one above the other along a straight conveying path for the purpose of sealing laterally directed folds in the region of end wall (14) and base wall (15),
 - b) following the sealing of the end walls (14) and base walls (15), the cyclically transported pack rows (22, 23) are subjected to heat treatment in the vicinity of the conveying path, preferably (only) in the region of the upward-facing front sides of the packs (10).

FOC636C1.doc

20

2. Process according to Claim 1, characterized by the following features:

5

- the packs (10) of the top pack row (22) are raised in the region of a shrinking station (26) for the purpose of positioning a (bottom) heating plate (33) between the pack rows (22, 23).
- by means of a top heating plate (32) and a bottom heating plate (33) positioned between the pack rows (22, 23), heat is directed downwards in each case only onto the facing (front) side of the packs (10).
 - 3. Apparatus for producing packs (10) with an outer wrapper (13) made of film, in particular hinge-lid boxes for cigarettes, a film blank which is folded around the pack (10) having folding tabs which are connected to one another by thermal sealing in the region of a sealing station (25), characterized by the following features:
 - a) the packs (10) can be transported cyclically along a straight conveying path in a plurality of, in particular two, pack rows (22, 23) arranged one above the other,
 - b) in a first region of the conveying path (28, 29) the latter is configured as a sealing station (25) with sealing jaws (30, 31) arranged at either side of the conveying path (28, 29) for the purpose of sealing the laterally directed folding tabs,
 - c) the sealing station (25) is followed in the region of the conveying path (28, 29) by a shrinking station (26) for the purpose of shrinking the outer wrapper (13) through the application of heat.
 - 4. Apparatus according to Claim 3, characterized in that the shrinking station (26) has movable thermal elements, in particular heating plates (32, 33), which, for the purpose of transmitting heat to the packs (10), can be moved against at

The first first that the first first

15

20

25

30

35

40

10

15

25

30

35

40

least one side of the packs (10), in particular against an upwardly directed front side of the packs (10).

5 following features:

- during transport along the horizontal conveying path (28, 29), the packs (10) of the top pack row (22) can be conveyed in the upward direction such that the packs (10) of the top pack row (22) can be conveyed over a heating element heating plate (33) assigned to the packs (10) of the bottom pack row (23),
- b) the heating plate (33) has an obliquely directed run-on surface (40) for the packs (10) of the top pack row (22),
- c) the run-on surface (40) extends across the full (transverse) extent of the packs (10),
- 20 d) the run-on surface (40) has an oblique edge (47) as a boundary.
 - 6. Apparatus according to Claim 3, characterized in that a pack (10) of the top pack row (22) in a position before it runs onto the bottom heating plate (33) in each case can be solved in the transverse direction onto a laterally arranged ramp (43), and in that, in a further conveying cycle, the pack (10) resting with one side on the ramp (43) can be pushed onto the bottom heating plate (33), preferably with a simultaneous sideways-directed return movement into the starting position.
 - 7. Apparatus according to Claim 3, characterized in that the two heating plates (32, 33) can be moved up and down together such that, during the advancement of the packs (10), the heating plates (32, 33) can be raised from the packs (10) of the top pack row (22) and of the bottom pack row (23).
 - 8. Apparatus according to Claim 7, characterized in that the heating plates (32, 33) are connected to one another by pressure-exerting elements, in particular by lowering springs (51) and lifting springs (52) for the bottom heating plate

5

10

15

20

25

112

K

30

35

- 9. Apparatus according to Claim 7, characterized in that the top heating plate (32) can be moved, in particular lowered, by a transversely movable actuating mechanism, transversely movable actuating levers (53, 54) preferably having wedge surfaces (56) which, via supporting rollers (57) connected to the top heating plate (32), move, preferably raise, the top heating plate (32) counter to the loading of pressing-down elements, in particular compression springs (49).
- 10. Apparatus according to Claim 3, characterized in that the thermal elements or heating plates (32, 33) have heating elements (71) which have heat-transmitting elements, in particular very thin metal plates (72), which react immediately to changes in temperature, the packs (10) coming into abutment against the same or being capable of being moved past the same at a small distance therefrom.
- 11. Apparatus according to Claim 10, characterized in that the heating element (71) has sheet-like heating elements, in particular electrical (resistance-)heating wires (73) which are arranged in loops or in meandering form and, on the side which is directed away from the packs (10), are connected to the metal plate (72) or the like via a heat-conducting intermediate layer, in particular a mat (74) made of silicone.
- 12. Apparatus according to Claim, 10 or 11, characterized in that the heating element (71) is of multilayered construction, heating wires (73), on the one hand, and a temperature sensor (76), on the other hand, being positioned between a plurality of mats (74, 75, 77), and the layers, namely metal plate (72) and mats (74, 75, 77), being connected to one another to form a unit by adhesive bonding or vulcanization.
- 13. Apparatus according to Claim 12, characterized in that the unit-design heating element (71) is positioned within a

recess (70) of the heating plate (32, 33) by way of a moldable embedding compound (79), in particular made of silicone.

5

OK /

Applicant:
Focke & Co. (GmbH & Co.)
Siemensstrasse 10

27283 Verden

List of designations

10	Pack	47	Edge
11	Box part	48	End surface
12	Lid	49	Compression spring
13	Outer wrapper	50	Supporting plate
14	End wall	51	Lowering spring
15	Base wall	52	Lifting spring
16	Film web	53	Actuating lever
17	Blank subassembly	54	Actuating lever
18	Folding turret	55	Leg
19	Pack path	56	Wedge surface
20	Vertical conveyor	57	Supporting roller
21	Push-off path	58	Web
22	Pack row	59	Connecting rod
23	Pack row	60	Connecting rod
24	Pusher	61	Slide bearing
25	Sealing station	62	Connection line
26	Shrinking station	63	Connection line
27	Track plate	64	Lifting arm
28	Conveying path	65	Bearing
29	Conveying path	66	Handle
30	Sealing jaw	67	Connecting leg
31	Sealing jaw	68	Crossmember
32	Heating plate (top)	69	Guide shoe
33	Heating plate (bottom)	70	Recess
34	Carrying plate (top)	71	Heating element
35	Carrying plate (bottom)	72	Metal plate
36	Heating element	73	Heating wire
37	Heating element	74	Mat
38	Line	75	Mat
39	Line	76	Temperature sensor
40	Run-on surface	77	Mat
41	Holding-down means	78	Line
42	Brush	79	Embedding compound
43	Ramp		
44	Transverse pusher		
45	Side guide		
46	Side guide		