Week 6

More on random walks

Lecturer: Siva Athreya Scribe: Rahil Miraj, Jainam Khakra

Harmonic Functions:

Let $\Gamma = (V, E, \mu)$ be weighted graph and let $A \subseteq V$, $\bar{A} = A \bigcup \partial A$. Then $f : \bar{A} \to \mathbb{R}$ is said to be:

Harmonic if $\Delta f = 0$, *i.e.* (Pf = f),

Super Harmonic if $\Delta f \leq 0$, *i.e.* $(Pf \leq f)$,

Sub Harmonic if $\Delta f \geq 0$, *i.e.* $(Pf \geq f)$.

Examples:

1. For $x, y \in V$ and $A \subseteq V$,

$$g_A(x,y) = \sum_{n=0}^{\infty} p_n^A(x,y) = \frac{\mathbb{E}[L_{\tau_A}^y]}{\mu_y}.$$

$$\Delta g_A(x,y) = -\frac{1}{\mu_x} \mathbf{1}_{\{\mathbf{x}\}}(\mathbf{y}) = \begin{cases} -\frac{1}{\mu_x}, & \text{if } y = x \\ 0, & \text{if } y \neq x. \end{cases}$$

Therefore, $g_A(x,\cdot)$ is Harmonic in $A \setminus x$ and Super Harmonic in A.

2. For $z \in V$ and $x \neq z, \phi(x) = \mathbb{P}^x(T_z = \infty)$ is Harmonic in $V \setminus z$.

Theorem 6.0.1. (Foster's Criteria/Lyapunov Function): Let $A \subseteq V$ be a finite set. Then (Γ, μ) is recurrent iff there exists a function h, which is: non negative, Super Harmonic on $V \setminus A$ and $|\{x : h(x) < M\}| < \infty \ \forall \ M > 0$.

Proof:

 (\Rightarrow)

WLOG, we take $A = \{\rho\}$. Suppose $\exists h : V \to [0, \infty)$ such that h is super harmonic on $V \setminus \{\rho\}$ and $|\{x : h(x) < M\}| < \infty \ \forall M > 0$.

 $T_{\rho} = min\{n \geq 0 | X_n = \rho\}, \{X_n\}_{n \geq 0}$ is a random walk on (Γ, μ) . Let $Y_n = h(X_n \cap T_{\rho})$ and let \mathcal{A}_n be the observable events upto time n. So for $X_0 = x$,

$$\mathbb{E}^{x}[Y_{n}|\mathcal{A}_{n-1}] = \mathbb{E}^{x}[h(X_{n \cap T_{\rho}})|\mathcal{A}_{n-1}]$$

$$= \mathbb{E}^{X_{n-1}}[h(X_{n \cap T_{\rho}})], \text{ (SMP)}$$

$$= Ph(X_{n-1 \cap T_{\rho}}),$$

$$\leq h(X_{n-1 \cap T_{\rho}}), \text{ (super harmonic)},$$

$$= Y_{n-1}.$$

Super Martingle: Let $\{Z_n\}_{n\geq 1}$ be a sequence of random variables such that $\mathbb{E}[Z_n]<\infty$. Then $\{Z_n\}_{n\geq 1}$ is a super Martingle if $\mathbb{E}[Z_n|Z_{n-1},Z_{n-2},...Z_1]\leq z_{n-1}$.

Theorem 6.0.2. (Martingle Convergence Theorem): Let $Y_n \geq 0$ be Super Martingle, $\exists Y \equiv Y_{\infty}$ such that $Y_n \to Y_{\infty}$ wp 1 and $\mathbb{E}[Y_{\infty}] \leq \mathbb{E}[Y_0]$ as $n \to \infty$.

So, in our case, $Y_0 = h(X_0 \cap T_\rho) = h(X_0) < \infty$.

Therefore, from the above theorem, $Y_{\infty} < \infty$ wp 1.

Now, suppose (Γ, μ) is Transient. Then $\exists x \in V \setminus \{\rho\}$ such that $\mathbb{P}^x(T_{\rho}) < 1$.

Let $C_n = \{y \in V \setminus \{\rho\} | h(y) \ge n\} \ \forall \ n \ge 1$. Then $|C_n^c| < \infty$.

 $N = \{T_{\rho} = \infty\} \cap \{\exists n_k \ge 1 : X_{n_k} \in C_k\}$. Let $w \in N$ and n_k be as given by N.

$$Y_{n_k} = h(X_{n_k \cap T_\rho}),$$

$$\Rightarrow Y_{n_k} \ge k,$$

$$\Rightarrow N \subseteq \{Y_\infty = \infty\},$$

 $\Rightarrow \mathbb{P}(Y_{\infty} = \infty) > 0$, which contradicts Martingle Convergence Theorem.

 $\Rightarrow \{X_n\}_{n\geq 0}$ can not be Transient.

Hence, $\{X_n\}_{n\geq 0}$ is Recurrent.

 (\Leftarrow)

Suppose (Γ, μ) is Recurrent.

Let $B(\rho, n) = \{x \in V | d(x, \rho) \le n\}$ and let $h_n : V \to [0, 1]$ such that

$$h_n(x) = \mathbb{P}^x(\tau_{B(\rho,n)} < T_\rho); \ \tau_{B(\rho,n)} = T_{B(\rho,n)^c}.$$

$$(SMP) \Rightarrow Ph_n = h_n, \ x \neq \rho,$$

$$\Rightarrow \Delta h_n = 0, \ \forall \ x \neq \rho.$$

In particular, $h_n(\cdot)$ is super harmonic in $V \setminus \{\rho\}$.

$$\lim_{n \to \infty} h_n(x) = 0,$$

$$h_n(x) = 1 \ \forall \ x \in B(\rho, n)^c.$$

 $\exists \{n_k\}_{k\geq 1} \text{ such that } h_{n_k}(x) \leq \frac{1}{2^k} \ \forall \ x \in B(\rho, n).$

Let
$$x \in V$$
, $\sum_{k=1}^{\infty} h_{n_k}(x)$ (Ex: $h(\cdot) < \infty$).

(I) h > 0.

(II) $x \in V \setminus \{\rho\},\$

$$Ph(x) = \sum_{x \sim y} \frac{\mu_{xy}}{\mu_x} h(y),$$

$$= \sum_{x \sim y} \frac{\mu_{xy}}{\mu_x} \sum_{k=1}^{\infty} h_{n_k}(x),$$

$$= \sum_{k=1}^{\infty} \sum_{x \sim y} \frac{\mu_{xy}}{\mu_x} h_{n_k}(x),$$

$$= \sum_{k=1}^{\infty} Ph_{n_k}(x),$$

$$= \sum_{k=1}^{\infty} h_{n_k}(x) = h(x).$$

(III) Let M > 0 and $U = \{x \in V | h(x) < M\}$.

$$\forall j \geq h_{n_i}(x) = 1 \ \forall \ x \in B(\rho, n_i)^c.$$

Claim: $U \subseteq B(\rho, n_m)^c$.

Proof: Given M > 0, $\exists n_m$ such that

 $\forall j \geq h_{n_j}(x) = 1 \ \forall \ x \in B(\rho, n_m)^c, \text{ for } 1 \leq j \leq M.$

$$\sum_{j=1}^{m} h_{n_j}(x) = M \ \forall \ x \in B(\rho, n_m)^c.$$
$$\Rightarrow h(x) \ge M \ \forall \ x \in B(\rho, n_m)^c.$$

Theorem (Maximum Principle):

 $A \subset V$, connected, $h: V \to \mathbb{R}$ such that $\Delta h \geq 0$ on A

a) If $\exists x \in A$ such that $h(x) = \max_{z \in A \cup \partial A} h(z)$ then h is constant on \overline{A}

b)
$$|A| < \infty$$
, $h(z) = \max_{z \in \partial A} h(z)$

Proof

a)
$$B = \{ y \in \overline{A} \mid h(y) = h(x) \}$$

$$B \neq \emptyset$$
 as $x \in B$

$$y \in B \cap A, z \sim y \Rightarrow z_0 \in \overline{A} \Rightarrow z_0 \in B$$

$$h(z_0) \le \max_{u \in \overline{A}} h(u)$$

$$y \in B \cap A$$
 and $z \sim y$ then

$$z_0 \in \overline{A} \Rightarrow h(z_0) \le \max_{u \in \overline{A}} h(u) = h(x) = h(y)$$

But
$$\Delta h(y) \ge 0$$

$$\frac{1}{\mu_y} \sum_{z \sim y} \mu_{zy} (h(y) - h(z)) \ge 0$$

Hence if $z \sim y \Rightarrow h(z) = h(y)$ Inductively, as A is connected, we have that $B = \overline{A}$

b)
$$|A| < \infty \Rightarrow \exists x_0 \in \overline{A}, h(x) = \max_{z \in A} h(z)$$

If
$$x_0 \in \partial A \Rightarrow \max_{u \in \partial A} h(u) = \max_{z \in \overline{A}} h(z)$$

If
$$x_0 \in A \Rightarrow$$
 (a) h is constant on \overline{A} and $\max_{u \in \partial A} h(u) = \max_{x \in \overline{A}} h(x)$

Liouville Property: (Γ, μ) is said to have the Liouville Property if all bounded harmonic functions are constant.

Strong Liouville Property: A graph is said to have the strong Liouville Property if all positive harmonic functions are constant.

Theorem: Let (Γ, μ) be recurrent. Any positive superharmonic function is constant (in particular, (Γ, μ) has the strong Liouville Property).

Notes for continuation of Martingales

Let $\{Z_n\}$ be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Let $E[Z_n] < \infty$

If $E[Z_n|Z_{n-1}, Z_{n-2}, ..., Z_1] = Z_{n-1}$, then $\{Z_n\}_{n\geq 1}$ is a martingale. $\{h(.)\}$ is bounded, harmonic, X_n r.v on (Γ, μ) , $\{h(X_n)\}_{n\geq 1}$

If $E[Z_n|Z_{n-1},Z_{n-2},...,Z_1] \geq Z_{n-1}$, then $\{Z_n\}_{n\geq 1}$ is a submartingale. $\{h(.)\}$ is bounded, subharmonic, X_n r.v on (Γ,μ) , $\{h(X_n)\}_{n\geq 1}$

If $E[Z_n|Z_{n-1},Z_{n-2},...,Z_1] \leq Z_{n-1}$, then $\{Z_n\}_{n\geq 1}$ is a supermartingale. $\{h(.)\}$ is bounded, superbharmonic, X_n r.v on (Γ,μ) , $\{h(X_n)\}_{n\geq 1}$

Jensen's Inequality

Let $f: \mathbb{R} \to \mathbb{R}$ be such that $\forall a \in \mathbb{R}, \exists c \in \mathbb{R}$ such that $f(x) \geq f(a) + c(x - a)$ Then f is said to be a convex function.

Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$. Then Jensen's Inequality states that $E[f(X)] \geq f(E[X])$ wherever both expectations are well defined.

Theorem (Kolmogorov's Maximal Inequality): Let $\{Z_n\}_{n\geq 1}$ be a non-negative submartingale. Then $\mathbb{P}(\max_{1\leq i\leq m}\ Z_i\geq a)\leq \frac{E[Z_m]}{a}\ \forall a>0,\ \forall m\geq 1$

Proof:

Let $m \in \mathbb{N}$ and a > 0 be given.

$$J = min.\{min.\{n \ge 1 | Z_n > a\}, m\}$$

$$\tilde{J} = min.\{n \ge 1 | Z_n > a\}$$

It is left as an exercise to show that J is a bounded stopping time. $Z_J \ge a \Leftrightarrow Z_n \ge a$ for some $n \le m$

$$\mathbb{P}(\max_{1 \le i \le m} Z_i \ge a) = \mathbb{P}(Z_J \ge a) \le \frac{E[Z_J]}{a}$$

This follows from the Markov Inequality which can be applied here since $Z_i \geq 0$

$$Z_J = \sum_{k=1}^m Z_k \mathbf{1}_{J=k} + Z_m \mathbf{1}_{\tilde{J}>m}$$

$$E[Z_J] = \sum_{k=1}^{m} E[Z_k \mathbf{1}_{J=k}] + E[Z_m \mathbf{1}_{\tilde{I} > m}]$$

 $E[Z_J] = \sum_{k=1}^m E[Z_k \mathbf{1}_{J=k}] + E[Z_m \mathbf{1}_{\tilde{J}>m}]$ Since $\{Z_k\}_{k\geq 1}$ is a submartingale, we have that the above is less than or equal to

$$\sum_{k=1}^{m} E[E[Z_m | \mathcal{A}_k] \mathbf{1}_{J=k}] + E[Z_m \mathbf{1}_{\tilde{J}>m}]$$

The above is equal to

The above is equal to
$$\sum_{k=1}^{m} E[E[Z_{m} \mathbf{1}_{J=k} | \mathcal{A}_{k}]] + E[Z_{m} \mathbf{1}_{\tilde{J}>m}] \text{ (Since } E[XY | \mathcal{A}_{Y}] = YE[X | \mathcal{A}_{Y}])$$

$$= \sum_{k=1}^{m} E[Z_{m} \mathbf{1}_{J=k}] + E[Z_{m} \mathbf{1}_{\tilde{J}>m}]$$

$$= E[Z_{m}(\sum_{k=1}^{m} \mathbf{1}_{J=k} + \mathbf{1}_{\tilde{J}>m}]$$

$$= E[Z_{m}] = 0$$

$$= \sum_{k=1}^{m} E[Z_m \mathbf{1}_{J=k}] + E[Z_m \mathbf{1}_{\tilde{J}>m}]$$

$$= E[Z_m(\sum_{k=1}^m \mathbf{1}_{J=k} + \mathbf{1}_{\tilde{J}>m}]$$

$$=E[Z_m]=0$$

Corollary: Let $\{Z_m\}_{m\geq 1}$ be a martingale.

1)
$$E[Z_m^2] < \infty \ \forall m \ge 1, \mathbb{P}(\max_{1 \le i \le m} |Z_i| \ge a) \le \frac{E[|Z_m|^2]}{a^2}$$

2)
$$Z_m \ge 0, \mathbb{P}(\sup_{n \ge 1} Z_n > a) \le \frac{E[Z_1]}{a}$$

Proof

For 1) Let $Y_n = \mathbb{Z}_n^2$. Then we apply Kolmogorov's Maximal Inequality. The proof of 2) will be

Theorem (Martingale Convergence):

Let
$$\{Z_n\}_{n\geq 1}$$
 be a martingale and $\sup_{n\geq 1} E[Z_n^2] < \infty$. Then $\exists Z$ such that $Z_n \to Z$ w.p. 1 as $n\to \infty$

Proof

 $f(x) = x^2$ is a convex function. Hence, Jensen's inequality applies to conditional expectation. $E[Z_n^2|Z_{n-1}^2,...,Z_1^2] \ge Z_{n-1}^2 \ \forall n \ge 2$

From the Tower Property, it follows that

$$E[Z_n^2|Z_i^2,...,Z_1^2] \ge Z_i^2$$
 for $1 \le i \le n$

Thus,
$$E[Z_n^2] \ge E[Z_i^2] \ \forall 1 \le i \le n$$

In particular, $E[Z_n^2] \geq E[Z_{n-1}^2]$ and $\sup_{n \geq 1} \ E[Z_n^2] < \infty$

Thus $\exists \ \alpha > 0$ such that $E[Z_n^2] \to \alpha$ as $n \to \infty$

Let $k \ge 1$, $Y_m = Z_{k+m} - Z_k \ \forall m \ge 1$ Exercise: $\{Y_m\}_{m\geq 1}$ is also a martingale.

From the Tower Property, we have that $E[Z_{k+m}Z_k] = E[E[Z_{k+m}Z_k|\mathcal{A}_k]]$ which is equal to $E[Z_kE[Z_{k+m}|\mathcal{A}_k]]$ which is equal to $E[Z_k^2]$ since $\{Z_n\}_{n\geq 1}$ is a martingale and Z_k is observable in A_k .

Hence $E[Y_m^2] = E[Z_{k+m}^2] - E[Z_k^2]$

By Corollary 1,

By Corollary 1,
$$\mathbb{P}(\max_{1 \le i \le m} |Y_i| > a) \le \frac{E[Z_m^2]}{a^2} = \frac{E[Z_{k+m}^2] - E[Z_k^2]}{a^2}$$

$$\mathbb{P}(\max_{1 \le i \le m} |Y_i| > a) = \mathbb{P}(\max_{1 \le i \le m} |Z_{i+k} - Z_k| > b)$$

Letting m go to 0 on both sides, we get

$$\mathbb{P}(\cup_{i\geq 1} |Z_{i+k} - Z_k| > a) \leq \frac{\alpha - E[Z_k^2]}{a^2}$$

(Exercise:

i)
$$0 \le \mathbb{P}(\sup_{i \ge 1} |Z_{i+k} - Z_k| > a) \le \frac{\alpha - E[Z_k^2]}{a^2}$$

ii)
$$\lim_{k \to \infty} \mathbb{P}(\bigcup_{i \ge 1} |Z_{i+k} - Z_k| > a) = 0 \quad \forall a)$$

From ii) above and the Borel Cantelli Lemma, we have that if $E = \{\{Z_k\}_{k\geq 1} \text{ is a Cauchy se-}$ quence $\}$ then $\mathbb{P}(E) = 1$.

 $\Rightarrow \exists Z \text{ such that } Z_n \to Z \text{ w.p. } 1 \text{ as } n \to \infty.$