PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-066051

(43)Date of publication of application: 03.03.2000

(51)Int.CI.

G02B 6/13 C09D183/04 // C08G 77/04

(21)Application number: 10-238406

(71)Applicant:

JSR CORP

(22)Date of filing:

25.08,1998

(72)Inventor:

SEKIGUCHI MANABU

MORIKAWA AKIHIKO

SATO HOZUMI

(54) PRODUCTION OF OPTICAL WAVEGUIDE AND OPTICAL WAVEGUIDE

(1) PROBLEM TO BE SOLVED: To provide a process capable of rapidly and easily producing an optical waveguide having low waveguide loss and excellent heat resistance and an optical waveguide by this process. (**D**) SOLUTION: At least one of the lower clad layer 13, core portion 15 and upper clad layer in the process for producing the optical waveguide consisting of a substrate 12, the lower clad layer 13, the core portion 15 and the upper clad layer are formed by means of applying a radiation curing **(//)** compsn. and curing this compsn. by irradiation with radiation. The core portion 15 is preferably formed by irradiating the thin film obtd. by application of the radiation curing compsn. with the radiation according to a prescribed pattern, thereby removing unexposed parts. The radiation curing compsn. preferably contains (A) at least one compd. selected from the group consisting of a specific hydrolyzable silane compd., its hydrolyzate and its condensate, (B) a photo acid generator and (c) a dehydrating agent.

LEGAL STATUS

[Date of request for examination]

06.09.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2000-66051 (P2000-66051A)

(43)公開日 平成12年3月3日(2000.3.3)

(51) Int.Cl.7	識別記号	F I		テーマコード(参考)
G 0 2 B 6/13		G 0 2 B 6/12	M	2H047
C 0 9 D 183/04		C 0 9 D 183/04		4J035
// C08G 77/04		C 0 8 G 77/04		4J038

		審查請求	未請求 請求項の数6 OL (全 17 頁)		
(21)出願番号	特願平10-238406	. (71)出願人	000004178		
(22)出願日	平成10年8月25日(1998.8.25)		東京都中央区築地2丁目11番24号		
		(72)発明者	関口 学 東京都中央区築地2丁目11番24号 ジェイ エスアール株式会社内		
		(72)発明者	森川 明彦 東京都中央区築地2丁目11番24号 ジェイ エスアール株式会社内		
		(74)代理人	100078754 弁理士 大井 正彦		
			最終頁に続く		

(54) 【発明の名称】 光導波路の製造方法および光導波路

(57)【要約】

【課題】 導波路損失が低く、耐熱性に優れた光導波路 を、短時間でかつ簡単に製造することができる方法、並 びにこの方法による光導波路を提供すること。

【解決手段】 本発明は、基板、下部クラッド層、コア 部分および上部クラッド層よりなる光導波路の製造方法 であって、下部クラッド層、コア部分および上部クラッ ド層の少なくとも一つは、放射線硬化性組成物を塗布し て放射線の照射により硬化させることを含む手段により 形成される。コア部分は、放射線硬化性組成物を塗布し て得られる薄膜に、所定のパターンに従って放射線を照 射して未露光部を除去することにより形成することが好 ましい。放射線硬化性組成物は、(A)特定の加水分解 性シラン化合物、その加水分解物およびその縮合物から なる群から選ばれる少なくとも1つの化合物、(B)光 酸発生剤並びに(C)脱水剤を含有するものが好まし い。光導波路は、上記の方法によって製造される。

【特許請求の範囲】

【請求項1】 基板と、この基板上に形成された下部クラッド層と、この下部クラッド層上に形成されたコア部分と、このコア部分および下部クラッド層上に形成された上部クラッド層とよりなる光導波路の製造方法であって、

下部クラッド層、コア部分および上部クラッド層の少なくとも一つを、放射線硬化性組成物を塗布して放射線の 照射により硬化させることを含む手段により形成することを特徴とする光導波路の製造方法。

【請求項2】 コア部分を形成するための放射線硬化性 組成物を塗布して得られる薄膜に、所定のパターンに従 って放射線を照射した後、未露光部を除去することによ り、コア部分を形成することを特徴とする請求項1に記 載の光導波路の製造方法。

【請求項3】 コア部分を形成するための放射線硬化性 組成物は、これにより形成されるコア部分の屈折率が、 下部クラッド層および上部クラッド層の屈折率より高い ものとなる放射線硬化性組成物であることを特徴とする 請求項1または2に記載の光導波路の製造方法。

【請求項4】 下部クラッド層、コア部分および上部クラッド層を形成するための放射線硬化性組成物が、下記(A)~(C)成分を含有することを特徴とする請求項1~3のいずれかに記載の光導波路の製造方法。

(A) 一般式(1) で示される加水分解性シラン化合物、その加水分解物およびその縮合物からなる群から選ばれる少なくとも1つの化合物

一般式(1) (R¹)p S i(X)4-p

[式中、R¹ は炭素数が1~12である非加水分解性の有機基、Xは加水分解性基、およびpは0~3の整数である。]

- (B) 光酸発生剤
- (C) 脱水剤

【請求項5】 一般式(1)におけるR¹ がラジカル重合性基またはカチオン重合性基を有することを特徴とする請求項4に記載の光導波路の製造方法。

【請求項6】 請求項1~5のいずれかに記載された方法によって製造されたものであることを特徴とする光導被路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光通信分野、光情報処理分野などにおいて用いられる光回路を作成するための光導波路の製造方法およびそれによる光導波路に関する。

[0002]

【従来の技術】マルチメディア時代を迎え、光通信システムやコンピュータにおける情報処理の大容量化および高速化の要求から、光を伝送媒体とする伝送システムが、公衆通信網、LAN(ローカルエリアネットワー

ク)、FA(ファクトリーオートメーション)、コンピュータ間のインターコネクト、家庭内配線等に使用されつつある。光導波路は、例えば映画や動画等の大容量の情報伝達や光コンピュータ等を実現するための光デバイス、光電集積回路(OEIC)、並びに光集積回路(光IC)等における基本構成要素である。そして、この光導波路は、大量の需要があることから、近年、特に高性能で低コストの製品が求められている。

【0003】従来、光導波路としては、ポリマー系光導波路と石英系光導波路が知られており、ポリマー系光導波路の製造方法としては、例えば特開平6-273631号公報、特開平7-159630号公報に、紫外線硬化樹脂を用いて光導波路を作製する方法が例示されている。このポリマー系光導波路は、石英系光導波路と比較して、フォトリングラフィー等の手段を用いることにより、簡単にかつ低コストで製造することができるという利点があるが、性能としては、一般に導波路損失が大きくて耐熱性が低いという欠点があり、特に通信に用いられる波長650~1600nmの光について導波路損失が大きい、という問題があった。

【0004】一方、石英系導波路の製造方法としては、シリコン基板上に、火炎堆積法(FHD)、CVD法等の手段によりガラス膜よりなる下部クラッド層を形成し、この下部クラッド層上にこれと屈折率の異なる無機質の薄膜を形成し、この薄膜を反応性イオンエッチング法(RIE)を利用してパターニングすることによりコア部分を形成し、その後、更に火炎堆積法によって上部クラッド層を形成する方法が代表的である。しかしながら、この方法は、各工程の実施が相当に煩雑である上、各構成層を透明ガラス化するために1000℃以上の温度に加熱するガラス化工程が必要であることから、製造に長い時間がかかり、コストが高いものとなる。

【0005】一方、特開平6-250036号公報には、いわゆるゾルーゲル法を用いて無機質の薄膜を形成することにより、石英系光導波路を製造する方法が例示されている。この方法では、火炎堆積法に比較すれば、低温で短時間のうちに薄膜を形成することができるが、反応性イオンエッチング等の工程に長時間を要する点は同様であり、結局、コストが高いものとなる。以上のように、従来の石英系光導波路の製造方法によれば、導波路損失が低くて耐熱性に優れた光導波路を得ることができるが、製造工程が煩雑で、効率が悪く、コストが高い、という問題があった。

[0006]

【発明が解決しようとする課題】本発明は以上のような事情を背景としてなされたものであって、可視域から赤外域にわたる光についての導波路損失が低く、しかも耐熱性に優れた光導波路を、短時間でかつ簡単なプロセスで製造することができる方法を提供すること、並びにこの方法による光導波路を提供することを目的とする。

[0007]

【課題を解決するための手段】上記の課題は、下記の製造方法により解決される。すなわち、本発明の光導波路の製造方法は、基板と、この基板上に形成された下部クラッド層と、この下部クラッド層上に形成されたコア部分と、このコア部分および下部クラッド層上に形成された上部クラッド層とよりなる光導波路の製造方法であって、下部クラッド層、コア部分および上部クラッド層の少なくとも一つを、放射線硬化性組成物を塗布して放射線の照射により硬化させることを含む手段により形成することを特徴とする。

【0008】以上の方法においては、コア部分を形成するための放射線硬化性組成物を塗布して得られる薄膜に、所定のパターンに従って放射線を照射した後、未露光部を除去することにより、コア部分を形成することが好ましい。また、コア部分を形成するための放射線硬化性組成物は、これにより形成されるコア部分の屈折率が、下部クラッド層および上部クラッド層の屈折率より高いものとなる放射線硬化性組成物である。

【0009】上記の方法において、下部クラッド層、コア部分および上部クラッド層を形成するための放射線硬化性組成物は、下記(A)~(C)成分を含有することが好ましい。

(A) 一般式(1) で示される加水分解性シラン化合物、その加水分解物およびその縮合物からなる群から選ばれる少なくとも1つの化合物

一般式(1) (R¹)_p S i (X)_{4-p}

〔式中、 R^1 は炭素数が $1\sim12$ である非加水分解性の有機基、Xは加水分解性基、およびpは $0\sim3$ の整数である。〕

- (B) 光酸発生剤
- (C)脱水剤

ここに、一般式(1)におけるR¹ がラジカル重合性基 またはカチオン重合性基を有することが好ましい。

【0010】本発明の光導波路は、上記の方法によって 製造されたものであることを特徴とする。

[0011]

【発明の実施の形態】以下、本発明について具体的に説明する。図1は、本発明の方法によって製造される光導波路の基本的構成を示す説明用断面図である。図1に示 40 すように、光導波路10は、紙面に直角な方向に伸びる基板12と、この基板12の表面上に形成された下部クラッド層13と、この下部クラッド層13上に形成された、特定の幅を有するコア部分15と、このコア部分15を含む下部クラッド層13上に積重して形成された上部クラッド層17とにより構成され、コア部分15は、その全体が下部クラッド層13および上部クラッド層17の積重体中に埋設された状態とされている。

【0012】本発明方法の好適な態様によれば、光導波路10は、次のようにして製造される。すなわち、図2

(イ)に示すように、平坦な表面を有する基板12が用意される。この基板12としては、特に制限されるものではないが、シリコン基板、ガラス基板等を用いることができる。この基板12の表面には、下部クラッド層13が形成される。具体的には、図2(ロ)に示すように、基板12の表面に、後述する放射線硬化性組成物からなる下部クラッド層形成用組成物(以下「下層用組成物」という。)を塗布し、乾燥またはプレベークさせて下層用薄膜を形成し、この下層用薄膜を、これに放射線を照射することにより硬化させて下部クラッド層13を形成する。

【0013】次に、この下部クラッド層13上に、図2 (ハ)に示すように、後述する放射線硬化性組成物からなるコア形成用組成物(以下「コア用組成物」という。)を塗布し、乾燥またはさらにプレベークさせてコア用薄膜14を形成する。その後、図2(二)に示すように、コア用薄膜14の上面に対して、所定のパターンに従って、例えば所定のパターンのマスク孔を有するフォトマスク18を介して放射線の照射を行う。これにより、放射線が照射された個所が硬化するので、それ以外の未硬化の部分を除去することにより、図2(ホ)に示すように、下部クラッド層13上に、パターニングされた硬化膜よりなるコア部分15が形成される。

【0014】このようなコア部分15が形成された下部クラッド層13の表面に、後述する放射線硬化性組成物からなる上部クラッド層形成用組成物(以下「上層用組成物」という。)を塗布し、乾燥またはプレベークさせて上層用薄膜を形成し、この上層用薄膜を、これに放射線を照射して硬化させることにより、図1に示したように上部クラッド層17を形成し、もって光導波路10が製造される。

【0015】以上のようにして得られる光導波路におい て、下部クラッド層13、上部クラッド層17およびコ ア部分15の厚みは特に制限されるものではないが、下 部クラッド層13の厚みは3~50 µm、コア部分15 の厚みは3~20μm、上部クラッド層17の厚みは3 ~50μmであることが好ましい。コア部分15の幅は 特に限定されるものではないが、例えば1~50μmの 範囲である。コア部分15の屈折率は、下部クラッド層 13および上部クラッド層17のいずれの屈折率よりも 大きいことが必要であり、実際の光導波路におけるコア 部分15の屈折率は、波長1300~1600mmの光 に対して1.450~1.650、下部クラッド層13 および上部クラッド層17の屈折率は1.400~1. 648であることが好ましく、コア部分の屈折率は両方 のクラッド層の屈折率よりも0.002~0.5の範囲 で大きいことが好ましい。

【0016】本発明の具体的な態様においては、下部クラッド層、コア部分および上部クラッド層を、いずれも、それらの層を形成するための放射線硬化性組成物、

すなわち下層用組成物、コア用組成物および上層用組成物を塗布し、形成される塗布膜を乾燥させ、あるいは必要に応じてプレベークさせて薄膜とし、この薄膜を放射線の照射によって硬化させる工程を経て、形成することが好ましい。

【0017】本発明において、下層用組成物、コア用組成物および上層用組成物としては、下記(A)~(C)成分を含有する放射線硬化性組成物が好ましく用いられる。

(A) 一般式(1) で示される加水分解性シラン化合物、その加水分解物およびその縮合物からなる群から選ばれる少なくとも1つの化合物

一般式 (1) (R1)_p S i (X)_{4-p}

〔式中、 R^1 は炭素数が $1\sim12$ である非加水分解性の有機基、Xは加水分解性基、およびpは $0\sim3$ の整数である。〕

- (B) 光酸発生剤
- (C) 脱水剤

【0018】以下、この放射線硬化性組成物について説明する。

(1) (A) 成分

(A) 成分は当該放射線硬化性組成物の主成分であって、上記の一般式(1)で示される加水分解性シラン化合物、その加水分解物およびその縮合物からなる群から選ばれる少なくとも1つの化合物である。

【0019】ここで、Xで表される加水分解性基は、通 常、無触媒、過剰の水の共存下、室温(25℃)~10 0℃の温度範囲内で加熱することにより、加水分解され てシラノール基を生成することができる基、もしくはシ ロキサン縮合物を形成することができる基を指す。ま 30 た、一般式(1)中の添え字pは0~3の整数である が、より好ましくは0~2の整数であり、特に好ましく は1である。但し、一般式(1)で示される加水分解性 シラン化合物の加水分解物において、一部未加水分解の 加水分解性基が残っていてもよく、その場合は、加水分 解性シラン化合物と加水分解物との混合物となる。ま た、加水分解性シラン化合物の加水分解物というとき は、加水分解反応によりアルコキシ基がシラノール基に 変わった化合物ばかりでなく、一部のシラノール基同士 が縮合した部分縮合物をも意味している。さらに、加水 分解性シラン化合物は、放射線硬化性組成物を配合する 時点で加水分解されている必要は必ずしもなく、放射線 を照射する段階で、少なくとも一部の加水分解性基が加 水分解されていればよい。すなわち、放射線硬化性組成 物において、加水分解性シラン化合物を予め加水分解せ ずに使用した場合には、事前に水を添加して、加水分解 性基を加水分解させ、シラノール基を生成することによ り、放射線硬化性組成物を放射線硬化させることができ

【0020】 [有機基R1] 一般式 (1) における有機 50

基R¹ は、非加水分解性である1価の有機基の中から選ぶことができる。このような非加水分解性の有機基として、非重合性の有機基および重合性の有機基あるいはいずれか一方の有機基を選ぶことができる。なお、有機基R¹ における非加水分解性とは、加水分解性基Xが加水分解される条件において、そのまま安定に存在する性質であることを意味する。

【0021】ここで、非重合性の有機基R¹ としては、アルキル基、アリール基、アラルキル基等が挙げられる。これらは、直鎖状、分岐状、環状あるいはこれらの組み合わせであってもよい。また、より具体的なアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基、および重水素化アルキル基もしくはハロゲン化アルキル基が挙げられる。これらのアルキル基のうち、より好ましくはメチル基である。

【0022】また、非重合性の有機基R¹における具体的なアリール基としては、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基、および重水素化アリール基もしくはハロゲン化アリール基が挙げられる。これらのうち、より好ましくはフェニル基である。さらに、非重合性の有機基R¹における具体的なアラルキル基としては、ベンジル基およびフェニルエチル基が挙げられる。これらのうち、より好ましくはベンジル基である。

【0023】さらに、非重合性の有機基R¹ は、ヘテロ原子を含む構造単位とすることも好ましい。そのような構造単位としては、エーテル、エステル、スルフィド等を例示することができる。また、ヘテロ原子を含む場合、非塩基性であることが好ましい。

【0024】また、重合性の有機基R¹ は、分子中にラジカル重合性の官能基およびカチオン重合性の官能基あるいはいずれか一方の官能基を有する有機基であることが好ましい。このような官能基を導入することにより、ラジカル重合やカチオン重合を併用して、放射線硬化性組成物をより有効に硬化させることができる。

【0025】また、重合性の有機基R¹におけるラジカル重合性の官能基およびカチオン重合性の官能基のうち、より好ましいのはカチオン重合性の官能基である。 光酸発生剤により、シラノール基における硬化反応のみならず、カチオン重合性の官能基における硬化反応を同時に生じさせることができるためである。

【0026】ラジカル重合性の官能基を有する有機基R」としては、オレフィン基を有する有機基、(メタ)アクリロキシを有する有機基、スチリル基を有する有機基、ビニルエーテルを有する有機基等が挙げられる。そして、より具体的なオレフィン基としてはビニル基、プロペニル基、ブタジエニル基等が挙げられる。これらのうち、より好ましくはビニル基である。また、(メタ)アクリロキシを有する有機基の例を示すと、(メタ)ア

R

クリロキシメチルや (メタ) アクリロキシプロピル等が 挙げられる。また、スチリル基を有する有機基の例を示 すと、スチリル、スチリルエチル、スチリルプロピル等 が挙げられる。さらに、ビニルエーテルを有する有機基 の例を示すと、ビニロキシエチル、ビニロキシプロピ ル、ビニロキシブチル、ビニロキシオクチル、ビニロキ シクロヘキシル、ビニロキシフェニル等を挙げること ができる。

【0027】また、カチオン重合性の官能基を有する有機基R¹としては、環状エーテル構造を有する有機基、ビニルエーテルを有する有機基等が挙げられる。そして、より好ましくは、環状エーテル構造を有する有機基である。かかる環状エーテル基としては、直鎖や環状構造を有する3~6員環の環状エーテル構造、より具体的にはエポキシ基、オキセタン基、テトラヒドロフラン、及びピラン単位を含む構造を挙げることができる。また、これらの環状エーテル基のうち、より好ましいものはエポキシ基、オキセタン基等の4員環以下の環状エーテル構造である。

【0028】また、環状エーテル構造を有する有機基の 20 具体例を示すと、グリシジルプロピル、エポキシ化シクロヘキシルエチル、メチルオキセタニルメトキンプロピル 、エチルオキセタニルメトキンプロピル等を挙げることができる。また、ビニルエーテルを有する有機基としては、ビニロキシエチル、ビニロキシプロピル、ビニロキシブチル、ビニロキシンクロヘキシル、ビニロキシフェニル等を挙げることができる。

【0029】 [加水分解性基X] 一般式 (1) における 加水分解性基Xとしては、水素原子、炭素数1~12の アルコキシ基、ハロゲン原子、アミノ基およびアシルオ 30 キシ基等が挙げられる。ここで、好ましい炭素数1~1 2のアルコキシ基の具体例を挙げると、メトキシ基、エ トキシ基、プロポキシ基、ブトキシ基、フェノキシベン ジロキシ基、メトキシエトキシ基、アセトキシエトキシ 基、2-(メタ)アクリロキシエトキシ基、3-(メ タ) アクリロキシプロポキシ基、4-(メタ) アクリロ キシブトキシ基、あるいは、グリシジロキシ基、エポキ シ化シクロヘキシルエトキシ基等のエポキシ基含有アル コキシ基、メチルオキセタンメトキシ、エチルオキセタ ンメトキシ等のオキセタン基含有アルコキシ基、オキサ シクロヘキシロキシ等の6員環エーテル基を有するアル コキシ基等を挙げることができる。また、上述した炭素 数1~12のアルコキシ基のうち、メトキシ基およびエ トキシ基がより好ましい。これらのアルコキシ基は、容 易に加水分解されてシラノール基を生成するため、放射 線硬化反応を安定して生じさせることができる。

【0030】また、好ましいハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等を挙げることができる。但し、このように加水分解性基としてハロゲン原子を含む加水分解性シラン化合物を用いる場合、放射線硬化性組

成物の保存安定性を低下させないように注意を払う必要がある。すなわち、加水分解により生成するハロゲン化水素の量にもよるが、かかるハロゲン化水素を、中和、蒸留等の操作により除去して、放射線硬化性組成物の保存安定性に影響を及ぼさないようにすることが好ましい。

【0031】また、好ましいアミノ基としては、アミノ基、ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基、ジフェニノ基、ジブチルアミノ基、フェニルアミノ基、ジフェニルアミノ基等を挙げることができる。但し、このように加水分解性基としてアミノ基を用いた場合、加水分解によりアミン類が生成する。したがって、放射線硬化性組成物の保存安定性に影響を及ぼさないように、放射線硬化性組成物を最終的に調製する前に、かかる副生アミン類を除去することが好ましい。

【0032】また、好ましいアシルオキシ基としては、 アセトキシ基、ブチロイルオキシ基等を挙げることがで きる。

【0033】 [加水分解性シラン化合物の具体例] 次に、式(1)で表される加水分解性シラン化合物(単に、シラン化合物と称する場合がある。)の具体例を説明する。まず、非重合性の有機基R¹を有するシラン化合物としては、テトラクロロシラン、テトラアミノシラン、テトラアセトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、トリメトキシシラン、トリエトキシシラン等の4個の加水分解性基で置換されたシラン化合物が挙げられる。

【0034】また、同様に、メチルトリクロロシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリオトキシシラン、エチルトリブトキシシラン、エチルトリブトキシシラン、ブチルトリブトキシシラン、ペンタフルオロフェニルトリメトキシシラン、フェニルトリメトキシシラン、d3 ーメチルトリメトキシシラン、トリフルオロブチルエチルトリメトキシシラン、トリフルオロメチルトリメトキシシランでの3個の加水分解性基で置換されたシラン化合物が挙げられる。

【0035】また、同様に、ジメチルジクロロンラン、ジメチルジアミノシラン、ジメチルジアセトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジブチルジメトキシシラン等の2個の加水分解性基で置換されたシラン化合物、及びトリメチルクロロシラン、ヘキサメチルジシラザン、トリメチルシラン、トリブチルシラン、トリブチルメトキシシラン等の1個の加水分解性基で置換されたシラン化合物を挙げることができる。

【0036】これらの中で、加水分解性シラン化合物としてより好ましい例を挙げると、メチルトリメトキシシラン、メチルトリエトキシシラン等のメチルアルコキシ

シラン、あるいはテトラメトキシシラン、テトラエトキ シシラン等のテトラアルコキシシランである。

【0037】また、重合性の有機基R!を有するシラン化合物としては、Xにおける非加水分解性の有機基に重合性の有機基R!を含むシラン化合物、Xにおける加水分解性の有機基に重合性の有機基R!を有するシラン化合物のいずれかを用いることができる。

【0038】ここで、Xにおける非加水分解性の有機基に重合性の有機基R¹を含むシラン化合物としては(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルメチルジメトキシシラン、

(メタ) アクリロキシプロピルトリクロロシラン、ビス (メタクリロキシプロピル) ジメトキシシラン等の (メ タ) アクリロキシシラン化合物、ビニルトリメトキシシ ラン、ビニルトリクロロシラン、ビニルトリエトキシシ ラン、ジビニルジメトキシシラン、ジビニルジエトキシ シラン等のピニルシラン化合物、グリシジロキシトリメ トキシシラン、ビス (グリシジロキシ) ジメトキシシラ ン、β-(3, 4-エポキシシクロヘキシル) エチルト リメトキシシラン、β-(3,4-エポキシシクロヘキ シル)エチルトリエトキシシラン等のエポキシシラン化 合物、3-(3-メチル-3-オキセタンメトキシ)プ ロピルトリメトキシシラン、3-(3-エチル-3-オ キセタンメトキシ) プロピルトリエトキシシラン等のオ キセタンシラン化合物、オキサシクロヘキシルトリメト キシシラン、オキサシクロヘキシルトリエトキシシラン 等の6員環エーテル構造を有するシラン化合物を挙げる ことができる。これらは、1種単独または2種以上を組 み合わせて使用することができる。

【0039】また、Xにおける加水分解性の有機基に重合性の有機基R を含むシラン化合物の例としては、テトラ(メタ)アクリロキシシラン、テトラキス [2-(メタ)アクリロキシエトキシ]シラン、テトラグリシジロキシシラン、テトラキス (2-ビニロキシエトキシ)シラン、テトラキス (2-ビニロキシブトキシ)シラン、テトラキス (3-メチルー3-オキセタンメトキシ)シラン、メチルトリ (メタ)アクリロキシシラン、メチルートリグリシジロキシシラン、メチルトリス (3 40-メチルー3-オキセタンメトキシ)シランを挙げることができる。これらは、1種単独または2種以上を組み合わせて使用することができる。

【0040】また、重合性の有機基R!を有するシラン化合物の中で、より好ましくは非加水分解性の有機基に重合性の有機基R!を含むシラン化合物であり、さらに好ましくは、カチオン重合性の有機基を有するシラン化合物である。そのような具体例を挙げると、グリシジロキシプロピルトリメトキシシラン、グリシジロキシプロピルトリエトキシシラン、β-(3,4-エポキシシク 50

ロヘキシル) エチルトリメトキシシラン、β-(3, 4 -エポキシシクロヘキシル) エチルトリエトキシシラ ン、3-(3-メチル-3-オキセタンメトキシ)プロ ピルトリメトキシシラン、3-(3-エチル-3-オキ セタンメトキシ) プロピルトリメトキシシラン、3-(3-メチルー3-オキセタンメトキシ)プロピルトリ エトキシシラン、3-(3-エチル-3-オキセタンメ トキシ) プロピルトリメトキシシラン等が挙げられる。 【0041】〔加水分解性シラン化合物の入手例〕以上 述べた加水分解性シラン化合物は、公知の方法により合 成することができる。例えば、Pure Appl. Chem., A34 (11)、2335頁、1997 年、やEur. Polym. J. Vol. 33、N o. 7、1021頁、1997年に記載されているよう に、オレフィン基を有する化合物に対して、トリアルコ キシシランを遷移金属錯体またはラジカル発生剤を触媒 とするヒドロシリル化により、種々の官能基を有するア ルコキシシラン類を製造することができる。

【0042】また、これらの加水分解性シラン化合物の 一部は、商品として市販されており、容易に入手するこ とができる。例えば、日本ユニカー (株) 製のA-15 1, A-171, A-172, A-174, Y-993 6 \ AZ-6167 \ AZ-6134 \ A-186 \ A -187, MAC-2101, MAC-2301, FZ -3704, AZ-6200, A-162, A-16 3, AZ-6171, A-137, A-153, A-1 230、また、例えば、東レダウコーニングシリコーン (株) 製 SZ-6030、SH-6040、SZ-6 0.70, SZ-6072, SZ-6075, SZ-6079, SZ-6300, PRX11, PRX19, PR X24、AY43-154M等を挙げることができる。 【0043】〔加水分解性シラン化合物の加水分解条 件〕上述したシラン化合物を加水分解または縮合させる ための条件は、特に制限されるものではないが、一例と して、以下に示す1)~3)の工程によって実施するの

【0044】1) 一般式(1) に示す加水分解性シラン 化合物と、所定量の水とを、撹拌機付の容器内に収容する。

- 2) 次いで、溶液の粘度を調節しながら、有機溶媒を容 器内にさらに収容し、混合溶液とする。
- 3) 得られた混合溶液を、空気雰囲気中、0℃から有機溶媒もしくは加水分解性シラン化合物の沸点以下の温度で、1~24時間の間加熱撹拌する。なお、加熱撹拌中、必要に応じて蒸留によって混合溶液を濃縮したり、あるいは溶剤を置換することも好ましい。

【0045】(2)光酸発生剤

が好ましい。

〔定義〕放射線硬化性組成物における(B)成分の光酸発生剤は、放射線を照射することにより、(A)成分である加水分解性シラン化合物を放射線硬化(架橋)可能

な酸性活性物質を放出することができる化合物と定義さ れる。

【0046】光酸発生剤を分解させてカチオンを発生さ せるための放射線としては、可視光、紫外線、赤外線、 X線、α線、β線、γ線等を挙げることができるが、一 定のエネルギーレベルを有し、大きな硬化速度が得ら れ、しかも照射装置は比較的安価で小型のものでよい利 点があることから、紫外線が好ましい。

【0047】また、光酸発生剤とともに、後述するラジ カル発生剤を併用することも好ましい。中性の活性物質 10 であるラジカルは、シラノール基の縮合反応を促進する

一般式(2)

〔式中、カチオンはオニウムイオンであり、WはS、S e, Te, P, As, Sb, Bi, O, I, Br, Cl または-N≡Nであり、R2、R3、R4 およびR5 は 同一または異なる有機基であり、a、b、cおよびdは それぞれ0~3の整数であって、(a+b+c+d)の 値はWの価数に等しい。また、Mはハロゲン化物錯体 [MZmn] の中心原子を構成する金属またはメタロイ ドであり、例えばB、P、As、Sb、Fe、Sn、B 20 i, Al, Ca, In, Ti, Zn, Sc, V, Cr, Mn、Coである。Zは、例えばF、Cl、Br等のハ ロゲン原子またはアリール基であり、mはハロゲン化物 錯体イオンの正味の電荷であり、nはMの原子価であ る。]

[0050]

一般式(3) $Q_S - (S (= O)_2 - R^6)_t$

〔式中、Qは1価もしくは2価の有機基、R6 は炭素数 1~12の1価の有機基、添え字 s は0または1、添え 字tは1または2である。〕

【0051】まず、第1群の化合物であるオニウム塩 は、光を受けることにより酸性活性物質を放出すること ができる化合物である。ここで、一般式(2)における アニオン [M Z mn] の具体例としては、テトラフルオ ロボレート (BF4 -)、ヘキサフルオロホスフェート (PF6 -)、ヘキサフルオロアンチモネート (SbF 6 ·)、ヘキサフルオロアルセネート(AsF6 ·)、 ヘキサクロルアンチモネート (SbCl6 -)、テトラ フェニルボレート、テトラキス (トリフルオロメチルフ ェニル) ボレート、テトラキス (ペンタフルオロメチル 40 フェニル) ボレート等が挙げられる。

【0052】また、一般式(2)におけるアニオン[M Z_{s+n}] の代わりに、一般式 [MZ_nOH⁻] で表され るアニオンを使用することも好ましい。さらに、過塩素 酸イオン(CIO4·)、トリフルオロメタンスルフォ ン酸イオン (CF₃ SO₃ ·)、フルオロスルフォン酸 イオン (FSO₃ ·)、トルエンスルフォン酸イオン、

一般式(4)

〔式中、R⁷ およびR⁸ は、それぞれ1価の有機基であ り、同一でも異なっていてもよく、RプおよびRタ゚の少 50 り、Ar゚ およびAr² はそれぞれ芳香族基であり、同

ことはないが、(A)成分中にラジカル重合性の官能基 を有する場合に、かかる官能基の重合を推進させること ができる。従って、放射線硬化性組成物をより効率的に 硬化させることができる。

【0048】〔光酸発生剤の種類〕光酸発生剤として は、一般式(2)で表される構造を有するオニウム塩 (第1群の化合物)や一般式(3)で表される構造を有 するスルフォン酸誘導体(第2群の化合物)を挙げるこ とができる。

[0049]

 $[R^2 \ a \ R^3 \ b \ R^4 \ c \ R^5 \ d \ W] + m \ [MZ_{m+n}]^{-n}$

トリニトロベンゼンスルフォン酸アニオン、トリニトロ トルエンスルフォン酸アニオン等の他のアニオンを有す るオニウム塩を使用することもできる。

【0053】また、第1群の化合物の市販品例を示す と、サンエイドSI-60、SI-80、SI-10 0, SI-60L, SI-80L, SI-100L, S I-L145, SI-L150, SI-L160, SI -L110、SI-L147(以上、三新化学工業 (株) 製)、UVI-6950、UVI-6970、U VI-6974、UVI-6990 (以上、ユニオンカ ーバイド社製)、アデカオプトマーSP-150、SP -151、SP-170、SP-171(以上、旭電化 工業 (株) 製)、Irgacure 261 (チバスペ シャルティケミカルズ (株) 製)、СІ-2481、С I-2624、CI-2639、CI-2064(以 上、日本曹達(株) 製)、CD-1010、CD-10 11、CD-1012 (以上、サートマー社製)、DS -100 DS-101 DAM-101 DAM-1 02, DAM-105, DAM-201, DSM-30 1, NAI-100, NAI-101, NAI-10 5, NAI-106, SI-100, SI-101, S I-105, SI-106, PI-105, NDI-1 05 BENZOIN TOSYLATE, MBZ-1 01, MBZ-301, PYR-100, PYR-20 0, DNB-101, NB-101, NB-201, B BI-101, BBI-102, BBI-103, BB I-109(以上、ミドリ化学(株)製)、PCI-0 61T, PCI-062T, PCI-020T, PCI -022T(以上、日本化薬(株)製)、IBPF、I BCF(三和ケミカル(株)製)等を挙げることができ

【0054】また、上述した第1群の化合物のうち、よ り有効なオニウム塩は芳香族オニウム塩であり、特に好 ましくは下記一般式(4)で表されるジアリールョード ニウム塩である。

 $[R^7 - Ar^1 - I^+ - Ar^2 - R^8]$ [Y-]

なくとも一方は炭素数が4以上のアルキル基を有してお

14

ーでも異なっていてもよく、Y は1価の陰イオンであり、周期律表3族、5族のフッ化物陰イオンもしくは、ClO4 、CF3 - SO3 ・から選ばれる陰イオンである。]

【0055】このようなジアリールヨードニウム塩とし ては、具体的に、(4-n-デシロキシフェニル)フェ ニルヨードニウム ヘキサフルオロアンチモネート、 [4-(2-ヒドロキシーn-テトラデシロキシ)フェ ニル) フェニルヨードニウムヘキサフルオロアンチモネ ート、[4-(2-ヒドロキシーnーテトラデシロキ シ) フェニル] フェニルヨードニウム トリフルオロス ルホネート、 [4-(2-ヒドロキシ-n-テトラデシ ロキシ) フェニル] フェニルヨードニウム ヘキサフル オロホスフェート、 [4-(2-ヒドロキシーnーテト ラデシロキシ) フェニル] フェニルヨードニウム テト ラキス (ペンタフルオロフェニル) ボレート、ピス (4 - t - ブチルフェニル) ヨードニウム ヘキサフルオロ アンチモネート、ビス (4-t-ブチルフェニル) ヨー ドニウム ヘキサフルオロフォスフェート、ビス (4tープチルフェニル) ヨードニウム トリフルオロスル ホネート、ビス (4-t-ブチルフェニル) ヨードニウ ム テトラフルオロボレート、ビス (ドデシルフェニ ル) ヨードニウム ヘキサフルオロアンチモネート、ビ ス (ドデシルフェニル) ヨードニウム テトラフルオロ ボレート、ビス (ドデシルフェニル) ヨードニウム へ キサフルオロフォスフェート、ビス(ドデシルフェニ ル) ヨードニウム トリフルオロメチルスルフォネート 等の1種または2種以上の組み合わせを挙げることがで

【0056】また、ジアリールヨードニウム塩の市販品 30 としては、例えば、サートマー社製のCD1012、三 和ケミカル (株) 製のIBPF、IBCF、ミドリ化学 (株) 製のBBI-101、BBI-102、BBI-103、BBI-109等を挙げることができる。

【0057】さらに、一般式 (4) で表されるジアリールヨードニウム塩の製造方法は、特に制限されるものではないが、例えば、J. Polymer Science:Part A:polymer Chemistry,Vol.31, 1473-1482(1993), J. Polymer Science:Part A:polymer Chemistry,Vol.31, 1483-1491(1993)において記述されている方法により製造することができる。

【0058】次に、第2群の化合物について説明する。一般式(3)で表されるスルフォン酸誘導体の例を示すと、ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類、1ーオキシー2ーヒドロキシー3ープロピルアルコールのスルホネート類、ピロガロールトリスルホネート類、ベンジルスルホネート類を挙げることができる。また、一般式(3)の中でより好ましくはイミドスルホネート類で50

あり、さらに好ましくはイミドスルホネートのうち、ト リフルオロメチルスルホネート誘導体である。

【0059】また、このようなスルホネート類の具体例 を挙げると、ジフェニルジスルホン、ジトシルジスルホ ン、ビス (フェニルスルホニル) ジアゾメタン、ビス (クロルフェニルスルホニル) ジアゾメタン、ピス (キ シリルスルホニル) ジアゾメタン、フェニルスルホニル ベンゾイルジアゾメタン、ビス(シクロヘキシルスルホ ニル) メタン、1,8-ナフタレンジカルボン酸イミド メチルスルホネート、1,8-ナフタレンジカルボン 酸イミド トシルスルホネート、1,8-ナフタレンジ カルボン酸イミド トリフルオロメチルスルホネート、 1,8-ナフタレンジカルボン酸イミド カンファース ルホネート、コハク酸イミド フェニルスルホネート、・ コハク酸イミド トシルスルホネート、コハク酸イミド トリフルオロメチルスルホネート、コハク酸イミド カンファースルフォネート、フタル酸イミド トリフル オロスルホネート、シスー5ーノルボルネンーエンドー 2, 3-ジカルボン酸イミド トリフルオロメチルスル ホネート、ベンゾイントシラート、1,2-ジフェニル -2-ヒドロキシプロピル トシラート、1,2-ジ (4-メチルメルカプトフェニル) -2-ヒドロキシプ ロピル トシラート、ピロガロール メチルスルホネー ト、ピロガロール エチルスルホネート、2,6ージニ トロフェニルメチル トシラート、オルトーニトロフェ ニルメチル トシラート、パラーニトロフェニル トシ ラートを挙げることができる。

【0060】 〔光酸発生剤の添加量〕 放射線硬化性組成物における光酸発生剤の含有割合は、特に制限されるものではないが、(A) 成分100重量部に対して、通常0.1~15重量部の範囲内の値とするのが好ましい。光酸発生剤の添加量が0.1重量部未満となると、放射線硬化性が低下し、十分な硬化速度が得られない傾向がある。一方、光酸発生剤の添加量が15重量部を超えると、得られる硬化物の耐候性や耐熱性が低下する傾向がある。したがって、放射線硬化性と得られる硬化物の耐候性等とのバランスがより良好な観点から、光酸発生剤の添加量を、(A) 成分100重量部に対して1~10重量部の範囲内の値とすることがより好ましい。

【0061】(3)脱水剤

[定義] 放射線硬化性組成物における脱水剤は、化学反応により水以外の物質に変換する化合物、物理吸着または包接により、放射線硬化性および保存安定性に影響を与えなくする化合物と定義される。すなわち、このような脱水剤を含有することにより、放射線硬化性組成物の耐候性や耐熱性を損なうことなく、保存安定性や放射線硬化性という相反する特性を向上させることができる。この理由は必ずしも明確でないが、外部から侵入してくる水を、脱水剤が有効に吸収するために放射線硬化性組成物の保存安定性が向上し、一方、放射線硬化反応であ

る縮合反応においては、生成した水を順次に脱水剤が有 効に吸収するために放射線硬化性組成物の放射線硬化性 が向上するものと考えられる。

【0062】 〔脱水剤の種類〕脱水剤の種類は特に制限されるものでないが、有機化合物として、カルボン酸エステル、アセタール類(ケタール類を含む。)、およびカルボン酸無水物からなる群から選択される少なくとも一つの化合物であることが好ましい。また、無機化合物として、脱水機能を有するセラミック粉体の使用も好ましい。これらの脱水剤は、優れた脱水効果を示し、少量の添加で脱水剤の機能を効率的に発揮することができる。

【0063】また、脱水剤としてのカルボン酸エステルは、カルボン酸オルトエステルやカルボン酸シリルエステル等の中から選ばれる。ここで、好ましいカルボン酸オルトエステルとしては、オルト蟻酸メチル、オルト酵酸プロピル、オルト酵酸プチル、オルト酢酸プロピル、オルト酢酸プロピル、オルト酢酸プロピル、オルト酢酸プロピル、オルト酢酸プロピル、オルト酢酸プロピル、オルト酢酸プロピカルボン酸エチル等が挙げられる。また、これらのカルボン酸オルトエステルのうち、より優れた脱水効果を示し、保存安定性や放射線硬化性をより向上させることができる観点から、オルト蟻酸エステルが脱水剤として特に好ましい。また、好ましいカルボン酸シリルエステルとしては、酢酸トリメチルシリル、酢酸トリメチルシリル、蜂酸トリメチルシリル、シュウ酸トリメチルシリル等が挙げられる。

【0064】なお、カルボン酸エステルのうち、カルボン酸オルトエステルを使用することがより好ましい。カルボン酸オルトエステルは、効率的に水を吸収し、自身 30で加水分解することができる。また、カルボン酸オルトエステルが加水分解して生成する化合物は中性である。したがって、カルボン酸オルトエステルは、優れた脱水効果を示し、保存安定性や放射線硬化性をより向上させることができる。

【0065】また、好ましいアセタール類としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド等のケトン類と、1価アルコールとの反応物であるジメチルアセタール、ジエチルアセタールおよびジプロピルアセタール、あるいは、エチレングリコール等の2価アルコールとケトン類とからなるアセタールおよびカルボン酸エステルのシリル化反応により製造されるケテンシリルアセタール類を挙げることができる。

【0066】そして、これらのアセタール類のうち、アセトンジメチルアセタール、アセトンジエチルアセタール、メチルエチルケトンジメチルアセタール、メチルエチルケトンジエチルアセタール、シクロヘキサノンジメチルアセタールおよびシクロヘキサノンジエチルアセタ

ールは、特に優れた脱水効果を示し、保存安定性や放射 線硬化性をより向上させることができる観点から本発明 における脱水剤としての使用に好ましい。

【0067】また、好ましいカルボン酸無水物としては、例えば、蟻酸無水物、無水酢酸、無水コハク酸、無水マレイン酸、無水フタル酸、安息香酸無水物、酢酸安息香酸無水物等が挙げられる。特に、無水酢酸および無水コハク酸は、脱水効果に特に優れており、好ましい。 【0068】また、好ましい脱水機能を有するセラミック粉体としては、シリカゲル粒子、アルミナ粒子、シリカアルミナ粒子、シリカアルミナ粒子、活性白土、ゼオライト等が挙げられる。これらのセラミック粉体は、水に対して、強い親和力を有しており、優れた脱水効果を発揮することができる

【0069】 [脱水剤の性状] 次に、脱水剤の性状につ いて説明する。まず、脱水剤は、常温、常圧条件におい、 て、固体もしくは液体であり、放射線硬化性組成物中に 溶解または分散して、脱水効果を発揮する化合物から選 ばれる。また、脱水剤が有機化合物から選ばれる場合、 その沸点 (常圧条件下) を、40~200℃の範囲内の 値とすることが好ましい。沸点がこのような範囲内の値 であれば、室温(25℃)~200℃の乾燥条件で効率 的に揮発させることができる。したがって、脱水剤を除 去することが容易である。一方、脱水剤が無機化合物か ら選ばれる場合、放射線硬化性樹脂組成物の塗布性、透 明性を損なわないように、均一に分散して用いられる。 【0070】 [脱水剤の添加量] 放射線硬化性組成物に おける脱水剤の含有割合は特に制限されるものではない が、(A)成分100重量部に対して、通常、0.1~ 100重量部の範囲内の値とするのが好ましい。 脱水剤 の添加量が 0. 1 重量部未満となると、添加効果の発現 に乏しい傾向があり、また、保存安定性や放射線硬化性 の向上効果が低い傾向がある。一方、脱水剤の添加量が 100重量部を超えると、保存安定性や放射線硬化性の

【0071】(4)添加剤等

本発明で使用される放射線硬化性組成物には、本発明の 目的や効果を損なわない範囲において、ラジカル性光重 合開始剤、光増感剤、反応性希釈剤、シリカ粒子、有機 溶剤等の添加剤等を更に含有させることができる。

向上効果が飽和する傾向がある。したがって、より好ま

しくは、脱水剤の添加量は(A)成分100重量部に対

して0.5~50重量部の範囲内の値であり、さらに好

ましくは、1~10重量部の範囲内の値である。

【0072】 [ラジカル性光重合開始剤] 本発明で使用される放射線硬化性組成物において、光酸発生剤と併用してラジカル性光重合開始剤 (ラジカル発生剤) を配合してもよい。ラジカル発生剤は、紫外線等の放射線を受けることにより分解してラジカルを発生させ、このラジカルによってラジカル重合性基を重合反応させる化合物である。

【0073】このようなラジカル発生剤としては、例え ばアセトフェノン、アセトフェノンベンジルケタール、 アントラキノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、カル パソール、キサントン、4-クロロベンゾフェノン、 4, 4' -ジアミノベンソフェノン、1, 1-ジメトキ シデオキシベンゾイン、3,3'ージメチルー4ーメト キシベンソフェノン、チオキサントン系化合物、 2 - メ チルー1-[4-(メチルチオ)フェニル]-2-モル フォリノープロパン-2-オン、2-ベンジル-2-ジ ・メチルアミノー1ー(4ーモルフォリノフェニル)-ブ タン-1-オン、トリフェニルアミン、2,4,6ート リメチルベンゾイルジフェニルホスフィンオキサイド、 ピス (2, 6-ジメトキシベンゾイル) -2, 4, 4-トリーメチルペンチルフォスフィンオキサイド、ベンジ ルジメチルケタール、1-ヒドロキシシクロヘキシルフ エニルケトン、2-ヒドロキシ-2-メチル-1-フェ ニルプロパン-1-オン、フルオレノン、フルオレン、 ベンズアルデヒド、ベンソインエチルエーテル、ベンゾ インプロピルエーテル、ベンゾフェノン、ベンゾフェノ ン誘導体、ミヒラーケトン、3-メチルアセトフェノ ン、3,3',4,4'ーテトラ(tーブチルパーオキシ カルボニル) ベンソフェノン (BTTB) 等が挙げられ る。なお、かかるラジカル発生剤は、1種を単独で使用 することもできるし、あるいは2種以上を組み合わせて 使用することができる。

【0074】 (光増感剤) 本発明で使用される放射線硬化性組成物において、光酸発生剤と併用して光増感剤を配合してもよい。光増感剤は、光等のエネルギー線を吸収し、光酸発生剤の感度を向上させる化合物である。

【0075】このような光増感剤としては、チオキサントン、ジエチルチオキサントンおよびチオキサントンの誘導体;アントラキノン、ブロムアントラキノンおよびアントラキノンの誘導体;アントラセン、ブロムアントラセンおよびアントラセン誘導体;ペリレンおよびペリレンの誘導体;キサンテン、チオキサンテンおよびチオキサンテンの誘導体;クマリンおよびケトクマリン等を挙げることができる。また、これらの光増感剤中で、より好ましい化合物はジエチルチオキサントンおよびブロムアントラセンである。

【0076】 [反応性希釈剤] 本発明で使用される放射線硬化性組成物に、反応性希釈剤を添加(配合) することにより、得られる硬化膜の硬化収縮を低減したり、硬化膜の機械的強度を制御することができる。さらに、ラジカル重合性の反応性希釈剤を用いた場合には、さらにラジカル発生剤を添加することにより、放射線硬化性組成物の光反応性を調節することができる。また、カチオン重合性の反応性希釈剤を用いた場合には、光反応性や機械的特性を調節することができる。

【0077】 [反応性希釈剤の種類] 反応性希釈剤とし 50

ては、カチオン重合性モノマーおよびエチレン性不飽和モノマーあるいはいずれか一方のモノマーを配合することが好ましい。ここで、反応性希釈剤であるカチオン重合性モノマーとは光酸発生剤の存在下で光照射することにより重合反応や架橋反応を起こす有機化合物と定義される。したがって、例えば、エポキシ化合物、オキシタン化合物、オキソラン化合物、環状アセタール化合物、環状ラクトン化合物、チイラン化合物、チエタン化合物、ビニルエーテル化合物、エポキシ化合物とラクトンとの反応生成物であるスピロオルソエステル化合物、環状チナエーテル化合物、ドニル化合物等を挙げることができる。これらのカチオン重合性モノマーは、1種を単独で使用することもできる。

【0078】また、上述したカチオン重合性モノマーと してのエポキシ化合物は、例えばビスフェノールAジグ リシジルエーテル、ピスフェノールFジグリシジルエー テル、ビスフェノールSジグリシジルエーテル、臭素化 ビスフェノールAジグリシジルエーテル、臭素化ビスフ ェノールFジグリシジルエーテル、臭素化ビスフェノー ルSジグリシジルエーテル、エポキシノボラック樹脂、 水添ピスフェノールAジグリシジルエーテル、水添ビス フェノールFジグリシジルエーテル、水添ビスフェノー ルSジグリシジルエーテル、3,4-エポキシシクロへ キシルメチルー3',4' -エポキシシクロヘキサンカル ボキシルレート、2-(3,4-エポキシシクロヘキシ ルー5, 5-スピロー3, 4-エポキシ) シクロヘキサ ンーメタージオキサン、ビス(3,4-エポキシシクロ ヘキシルメチル) アジペート、ビニルシクロヘキセンオ キサイド、4ービニルエポキシシクロヘキサン、ビス (3, 4-エポキシー6-メチルシクロヘキシルメチ ル) アジペート、3, 4-エポキシー6-メチルシクロ ヘキシルー3'4'-エポキシー6'-メチルシクロヘ キサンカルボキシルレート、メチレンビス (3, 4-エ ポキシシクロヘキサン)、ジシクロペンタジエンジエポ キサイド、エチレングリコールのジ(3,4-エポキシ シクロヘキシルメチル) エーテル、エチレンピス (3, 4-エポキシシクロヘキサンカルボキシルレート)、エ ポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキ サヒドロフタル酸ジー2-エチルヘキシル、1,4-ブ タンジオールジグリシジルエーテル、1,6-ヘキサン ジオールジグリンジルエーテル、グリセリントリグリシ ジルエーテル、トリメチロールプロパントリグリシジル エーテル、ポリエチレングリコールジグリシジルエーテ ル、ポリプロピレングリコールジグリシジルエーテル 類:エチレングリコール、プロピレングリコール、グリ セリン等の脂肪族多価アルコールに1種または2種以上 のアルキレンオキサイドを付加することにより得られる ポリエーテルポリオールのポリグリシジルエーテル類;

脂肪族長鎖二塩基酸のジグリンジルエステル類;脂肪族 高級アルコールのモノグリシジルエーテル類;フェノー ル、クレゾール、ブチルフェノールまたはこれらにアル キレンオキサイドを付加して得られるポリエーテルアル コールのモノグリシジルエーテル類;高級脂肪酸のグリ シジルエステル類;エポキシ化大豆油;エポキシステア リン酸ブチル;エポキシステアリン酸オクチル;エポキ シ化アマニ油;エポキシ化ポリブタジエン等を例示する ことができる。

【0079】また、他のカチオン重合性モノマーとして は、トリメチレンオキシド、3,3-ジメチルオキセタ ン、3,3-ジクロロメチルオキセタン、3-エチルー 3-フェノキシメチルオキセタン、ビス (3-エチルー 3-メチルオキシ) ブタン等のオキセタン類;テトラヒ ドロフラン、2,3-ジメチルテトラヒドロフラン等の オキソラン類;トリオキサン、1,3-ジオキソラン、 1,3,6-トリオキサンシクロオクタン等の環状アセ タール類;βープロピオラクトン、εーカプロラクトン 等の環状ラクトン類;エチレンスルフィド、1,2-プ ロピレンスルフィド、チオエピクロロヒドリン等のチイ 20 ラン類;3,3ージメチルチエタン等のチエタン類;エ チレングリコールジビニルエーテル、トリエチレングリ コールジビニルエーテル、トリメチロールプロパントリ ビニルエーテル等のビニルエーテル類;エポキシ化合物 とラクトンとの反応によって得られるスピロオルソエス テル類:ビニルシクロヘキサン、イソブチレン、ポリブ タジエン等のエチレン性不飽和化合物類;上記の各化合 物の誘導体等を例示することができる。

【0080】また、上述したカチオン重合性モノマーの うち、水添ビスフェノールAジグリシジルエーテル、水 30 添ビスフェノールFジグリシジルエーテル、3,4-エ ポキシシクロヘキシルメチルー3',4' ーエポキシシク ロヘキサンカルボキシルレート、ピス(3,4-エポキ シシクロヘキシルメチル) アジペート、1, 4ーブタン ジオールジグリシジルエーテル、1、6-ヘキサンジオ ールジグリシジルエーテル、グリセリントリグリシジル エーテル、トリメチロールプロパントリグリシジルエー テル、ネオペンチルグリコールジグリシジルエーテル、 ポリエチレングリコールジグリシジルエーテル、ポリプ ロピレングリコールジグリシジルエーテルが好ましい。 【0081】また、特に好ましいカチオン重合性モノマ ーは、3,4-エポキシシクロヘキシルメチル-3', 4'-エポキシシクロヘキサンカルボキシルレート、ビ ス(3,4-エポキシシクロヘキシルメチル)アジペー ト等、1分子中に2個以上の脂環式エポキシ基を有する エポキシ化合物である。

【0082】なお、上述したカチオン重合性モノマーは、UVR-6100、UVR-6105、UVR-6105、UVR-6110、UVR-6128、UVR-6200、UVR-6216(以上、ユニオンカーバイド社製)、セロキ 50

サイド2021、セロキサイド2021P、セロキサイ ド2081、セロキサイド2083、セロキサイド20 85、セロキサイド2000、セロキサイド3000、 グリシドール、AOEX24、サイクロマーA200、 サイクロマーM100、エポリードGT-300、エポ リードGT-301、エポリードGT-302、エポリ ードGT-400、エポリード401、エポリード40 3 (以上、ダイセル化学工業 (株) 製)、エピコート8 28、エピコート812、エピコート1031、エピコ ート872、エピコートCT508 (以上、油化シェル (株) 製)、KRM-2100、KRM-2110、K RM-2199、KRM-2400、KRM-241 0 KRM-2408 KRM-2490 KRM-2 . 200、KRM-2720、KRM-2750(以上、 旭電化工業(株)製), Rapi-Cure DVE-3、CHVE、PEPC(以上、ISP社製)、VEC TOMER 2010, 2020, 4010, 4020 (以上、アライドシグナル社製) 等の市販品として容易 に入手することができる。

【0083】次に、反応性希釈剤としてのエチレン性不飽和モノマーを説明する。ここで、エチレン性不飽和モノマーとはエチレン性不飽和結合(C=C)を分子中に有する化合物であり、1分子中に1個のエチレン性不飽和結合を有する単官能モノマー、および1分子中に2個以上のエチレン性不飽和結合を有する多官能モノマーと定義することができる。

【0084】したがって、エチレン性不飽和モノマーで ある単官能性モノマーとしては、例えば(メタ)アクリ ロイルモルホリン、7ーアミノー3, 7ージメチルオク チル (メタ) アクリレート、イソプトキシメチル (メ タ) アクリルアミド、イソボルニルオキシエチル (メ タ) アクリレート、イソボルニル(メタ)アクリレー ト、2-エチルヘキシル (メタ) アクリレート、エチル ジエチレングリコール (メタ) アクリレート、 t ーオク ・チル(メタ)アクリルアミド、ジアセトン(メタ)アク リルアミド、ジメチルアミノエチル(メタ)アクリレー ト、ジエチルアミノエチル (メタ) アクリレート、ラウ リル (メタ) アクリレート、ジシクロペンタジエン (メ タ) アクリレート、ジシクロペンテニルオキシエチル (メタ) アクリレート、ジシクロペンテニル (メタ) ア クリレート、N,Nージメチル(メタ)アクリルアミド テトラクロロフェニル (メタ) アクリレート、2-テト ラクロロフェノキシエチル (メタ) アクリレート、テト ラヒドロフルフリル(メタ)アクリレート、テトラブロ モフェニル (メタ) アクリレート、2ーテトラブロモフ ェノキシエチル (メタ) アクリレート、2ートリクロロ フェノキシエチル (メタ) アクリレート、トリブロモフ ェニル (メタ) アクリレート、2ートリブロモフェノキ シエチル (メタ) アクリレート、2-ヒドロキシエチル (メタ) アクリレート、2-ヒドロキシプロピル (メ

22

タ) アクリレート、ビニルカプロラクタム、Nービニル ピロリドン、フェノキシエチル(メタ)アクリレート、 ブトキシエチル(メタ)アクリレート、ペンタクロロフ ェニル(メタ)アクリレート、ペンタブロモフェニル (メタ) アクリレート、ポリエチレングリコールモノ (メタ) アクリレート、ポリプロピレングリコールモノ (メタ) アクリレート、ボルニル(メタ)アクリレー ト、メチルトリエチレンジグリコール(メタ)アクリレ ートを例示することができる。

【0085】また、これらのアクリレートのうちで、放射線硬化性を低下させない観点からアミドやアミン構造を含まないアクリレートが好ましく、さらには、耐候性を確保する目的で芳香環を含有しないアクリレートが好ましい。これらのアクリレートとしては、例えば、イソボルニル(メタ)アクリレート、ラウリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、メチルトリエチレンジグリコール(メタ)アクリレートを挙げることができる。

【0086】また、これらのエチレン性不飽和モノマーである単官能性モノマーとしては、例えばアロニックスM-101、M-102、M-111、M-113、M-117、M-152、TO-1210(以上、東亞合成(株)製)、カヤラッドTC-110S、R-564、R-128H(以上、日本化薬(株))、ビスコート192、ビスコート220、ビスコート2311HP、ビスコート2000、ピスコート2150、ビスコート8F、ビスコート17F(以上、大阪有機化学工業(株)製)等の市販品として、容易に入手することができる。

【0087】また、エチレン性不飽和モノマーである多 官能性モノマーとしては、例えばエチレングリコールジ (メタ) アクリレート、ジシクロペンテニルジ (メタ) アクリレート、トリエチレングリコールジアクリレー ト、テトラエチレングリコールジ (メタ) アクリレー ト、トリシクロデカンジイルジメチレンジ(メタ)アク リレート、トリス (2ーヒドロキシエチル) イソシアヌ レートジ (メタ) アクリレート、トリス (2ーヒドロキ・ シエチル) イソシアヌレートトリ (メタ) アクリレー ト、カプロラクトン変性トリス (2-ヒドロキシエチ ル) イソシアヌレートトリ(メタ) アクリレート、トリ メチロールプロパントリ (メタ) アクリレート、エチレ ンオキシド(以下「EO」という。)変性トリメチロー ルプロパントリ (メタ) アクリレート、プロピレンオキ シド (以下「PO」という。) 変性トリメチロールプロ パントリ (メタ) アクリレート、トリプロピレングリコ ールジ (メタ) アクリレート、ネオペンチルグリコール ジ (メタ) アクリレート、ビスフェノールAジグリシジ ルエーテルの両末端(メタ)アクリル酸付加物、1,4 ープタンジオールジ (メタ) アクリレート、1,6-へ 50

キサンジオールジ (メタ) アクリレート、ペンタエリス リトールトリ (メタ) アクリレート、ペンタエリスリト ールテトラ (メタ) アクリレート、ポリエステルジ (メ タ) アクリレート、ポリエチレングリコールジ (メタ) アクリレート、ジペンタエリスリトールヘキサ (メタ) アクリレート、ジペンタエリスリトールペンタ (メタ) アクリレート、ジペンタエリスリトールテトラ (メタ) アクリレート、カプロラクトン変性ジペンタエリスリト ールヘキサ(メタ)アクリレート、カプロラクトン変性 ジペンタエリスリトールペンタ (メタ) アクリレート、 ジトリメチロールプロパンテトラ (メタ) アクリレー ト、EO変性ビスフェノールAジ (メタ) アクリレー ト、PO変性ビスフェノールAジ(メタ) アクリレー ト、EO変性水添ビスフェノールAジ(メタ)アクリレ ート、PO変性水添ビスフェノールAジ(メタ)アクリ レート、EO変性ビスフェノールFジ(メタ)アクリレ ート、フェノールノボラックポリグリシジルエーテルの (メタ) アクリレート等を例示することができる。

【0088】これらのアクリレート等の中でも、放射線 硬化性を低下させない観点からアミドやアミン構造を含まないアクリレートが好ましく、また、耐候性を確保する目的で芳香環を含有しないアクリレートが好ましい。したがって、例えば、エチレングリコールジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、デトリエチレングリコールジアクリレート、トリシクロデカンジイルジメチレンジ(メタ)アクリレート、シペンメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート等を挙げることができる。

【0089】これらのエチレン性不飽和モノマーである 多官能性モノマーは、例えばSA1002(三菱化学 (株) 製)、ビスコート195、ビスコート230、ビ スコート260、ビスコート215、ビスコート31 .O、ビスコート214HP、ビスコート295、ビスコ ート300、ピスコート360、ピスコートGPT、ピ スコート400、ビスコート700、ビスコート54 0、ビスコート3000、ビスコート3700(以上、 大阪有機化学工業(株)製)、カヤラッドR-526、 HDDA, NPGDA, TPGDA, MANDA, R-551, R-712, R-604, R-684, PET -30, GPO-303, TMPTA, THE-33 O. DPHA, DPHA-2H, DPHA-2C, DP HA-21, D-310, D-330, DPCA-2 0、DPCA-30、DPCA-60、DPCA-12 0. DN-0075, DN-2475, T-1420, T-2020, T-2040, TPA-320, TPA -330. RP-1040. RP-2040. R-01

1、R-300、R-205 (以上、日本化薬 (株) 製)、アロニックスM-210、M-220、M-233、M-240、M-215、M-305、M-309、M-310、M-315、M-325、M-400、M-6200、M-6400(以上、東亞合成(株)製)、ライトアクリレートBP-4EA、BP-4PA、BP-2EA、BP-2PA、DCP-A(以上、共栄社化学(株)製)、ニューフロンティアBPE-4、BR-42M、GX-8345(以上、第一工業製薬(株)製)、ASF-400(以上、新日鐵化学(株)製)、リポキシSP-1506、SP-1507、SP-1509、VR-77、SP-4010、SP-4060(以上、昭和高分子(株)製)、NKエステルA-BPE-4(以上、新中村化学工業(株)製)等の市販品として、容易に入手することができる。

【0090】また、エチレン性不飽和モノマーである単 官能モノマーおよび多官能モノマーは、各々1種単独で または2種以上組み合わせるか、あるいは単官能モノマ 一の少なくとも1種と多官能モノマーの少なくとも1種 とを組み合わせて構成することが好ましい。このような 20 重合性基が3官能以上の多官能モノマーとしては、上記 に例示されたトリ (メタ) アクリレート化合物、テトラ (メタ) アクリレート化合物、ペンタ(メタ) アクリレ ート化合物、ヘキサ(メタ)アクリレート化合物の中か ら選択することができる。これらのうち、トリメチロー ルプロパントリ (メタ) アクリレート、EO変性トリメ チロールプロパントリ (メタ) アクリレート、ジペンタ エリスリトールヘキサ (メタ) アクリレート、ジペンタ エリスリトールペンタ (メタ) アクリレート、ジトリメ チロールプロパンテトラ(メタ)アクリレートが特に好 ましい。

【0091】 [シリカ粒子] 本発明で使用される放射線 硬化性組成物に、シリカ粒子を添加(配合) することにより、得られる硬化膜の硬化収縮を低減することができる。ここに、シリカ粒子の添加量は、特に制限されるものではないが、例えば(A)成分100重量部に対して10~250重量部の範囲内とすることが好ましく、特に20~200重量部、更に30~150重量部であることが好ましい。

【0092】シリカ粒子の種類

使用するシリカ粒子は、シリカを主成分とする粒子であればよく、シリカ以外の他の成分を含んでいてもよい。そのようなシリカ以外の成分としてはアルカリ金属酸化物、アルカリ土類酸化物、およびTi、Zr、Al、B、Sn、P等の酸化物を挙げることができる。また、シリカ粒子の平均粒子径は0.001~20μmの範囲内の値とするのが好ましいが、特に透明な硬化膜が形成される点から、平均粒子径を0.001~0.2μmの範囲内の値とするのが好ましく、より好ましくは0.001~0.01μmの範囲内の値とすることである。

【0093】また、シリカ粒子の屈折率(温度25℃、 Na-D線、以下、同様)と、放射線硬化性組成物の屈 折率との差を、0.02(一)以下とするように、シリ カ粒子を選択することが好ましい。屈折率差を、このよ うな値とすることにより、硬化膜の透明性をより高める ことができる。また、シリカ粒子の比表面積を、0.1 ~3000m² /gの範囲内の値とするのが好ましく、 より好ましくは10~1500m²/gの範囲内の値と することである。さらに、シリカ粒子の形状も特に制限 されるものではないが、球状、中空状、多孔質状、棒 状、板状、繊維状もしくは不定形状の群から選ばれる少 なくとも一つの形状であることが好ましい。但し、分散 性がより良好な観点から、球状のシリカ粒子を使用する ことがより好ましい。シリカ粒子の使用方法は特に制限 されるものではないが、例えば、乾燥状態で使用するこ とができるし、あるいは水もしくは有機溶剤に分散した 状態で使用することもできる。

【0094】また、コロイダルシリカとして業界に知ら れている微粒子状のシリカ粒子の分散液を直接用いるこ ともできる。そして、特に高い透明性が得られることか ら、コロイダルシリカの使用が好ましい。ここで、コロ イダルシリカの分散溶媒が水の場合、その水素イオン濃 度はpH値として2~13の範囲内の値であることが好 ましく、3~7の範囲内の値であることがより好まし い。また、コロイダルシリカの分散溶媒が有機溶剤の場 合、有機溶剤としてメタノール、イソプロピルアルコー ル、エチレングリコール、ブタノール、エチレングリコ ールモノプロピルエーテル、メチルエチルケトン、メチ ルイソブチルケトン、トルエン、キシレン、ジメチルホ ルムアミド等を使用することができ、もしくくはこれら と相溶する有機溶剤または水との混合物として用いても よい。好ましい分散溶剤としてはメタノール、イソプロ ピルアルコール、メチルエチルケトン、キシレン等であ

【0095】シリカ粒子として市販されている商品とし ては、例えばコロイダルシリカとしては、メタノールシ リカゾル、IPA-ST、MEK-ST、NBA-S T, XBA-ST, DMAC-ST, ST-UP, ST -OUP, ST-20, ST-40, ST-C, ST-N、ST-O、ST-50、ST-OL(以上、日産化 学工業(株)製)等を挙げることができる。また粉体シ リカとしては、AEROSIL130、AEROSIL 300 AEROSIL380 AEROSILTT6 00、AEROSILOX50(以上、日本アエロジル (株) 製)、シルデックスH31、H32、H51、H 52、H121、H122(以上、旭硝子(株)製)、 E220A、E220(以上、日本シリカ工業(株) 製)、SYLYSIA470(富士シリシア(株) 製)、SGフレーク(日本板硝子(株)製)等を挙げる ことができる。

【0096】 [有機溶媒] 本発明で使用される放射線硬化性組成物には、必要に応じて有機溶媒を配合することができる。かかる有機溶媒は(A)成分の加水分解性シラン化合物の加水分解物又は縮合物を製造する際に添加してもよく、あるいは、(A)成分~(C)成分を配合する際に加えてもよい。

【0097】このような有機溶媒としては、本発明の目 的、効果を損なわない範囲で選ぶことができるが、通 常、大気圧下での沸点が50~200℃の範囲内の値を 有する有機化合物であり、各成分を均一に溶解させる有 機化合物が好ましい。好ましい有機溶媒を示すと、メタ ノール、エタノール、プロパノール、ブタノール等のア ルコール類、ジブチルエーテル、エチレングリコールジ メチルエーテル、エチレングリコールモノエチルエーテ ル、プロピレングリコールメチルエーテルアセテート、 プロピレングリコールエチルエーテルアセテート、ジエ チレングリコールモノメチルエーテル、ジエチレングリ コールジメチルエーテル、ジエチレングリコールエチル メチルエーテル、テトラヒドロフラン、ジオキサン等の エーテル類、アセトン、メチルエチルケトン、メチルイ ソブチルケトン、シクロヘキサノン、メチルアミルケト ン等のケトン類、酢酸エチル、酢酸プチル、酢酸アミ ル、乳酸エチル、2-ヒドロキシプロピオン酸エチル、 γープチロラクトン等のエステル類、ベンゼン、トルエ ン、キシレン等の芳香族炭化水素類が挙げられる。これ らは1種単独または2種以上を組み合わせて用いること が可能である。これらの中で、より好ましい有機溶媒を 示すと、アルコール類、エーテル類、ケトン類を挙げる ことができる。さらに好ましくは、アルコール類、ケト ン類である。

【0098】特に本発明においては、放射線硬化性組成 物を塗布するためにスピンコート法を用いることが好ま しいが、スピンコートに適した塗布液が得られる観点か らは、有機溶媒として、エチレングリコールモノエチル エーテル、プロピレングリコールモノメチルエーテルな どのグリコールエーテル類; エチルセロソルプアセテー ト、プロピレングリコールメチルエーテルアセテート、 プロピレングリコールエチルエーテルアセテートなどの エチレングリコールアルキルエーテルアセテート類;乳 酸エチル、2-ヒドロキシプロピオン酸エチルなどのエ 40 ステル類:ジエチレングリコールモノメチルエーテル、 ジエチレングリコールジメチルエーテル、ジエチレング リコールエチルメチルエーテルなどのジエチレングリコ ール類:メチルイソプチルケトン、2-ヘプタノン、シ クロヘキサノン、メチルアミルケトンなどのケトン類を 用いることが好ましく、特にエチルセロソルプアセテー ト、プロピレングリコールメチルエーテルアセテート、 乳酸エチル、メチルイソブチルケトンおよびメチルアミ ルケトンが好ましい。

【0099】〔その他〕本発明で使用される放射線硬化 50

性組成物には、さらに必要に応じて各種の添加剤を含有 することができる。このような添加剤としては、エポキ シ樹脂、アクリル樹脂、ポリアミド樹脂、ポリアミドイ ミド樹脂、ポリウレタン樹脂、ポリブタジエン樹脂、ポ リクロロプレン樹脂、ポリエーテル樹脂、ポリエステル 樹脂、スチレンーブタジエンブロック共重合体、石油樹 脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ 素系ポリマー、シリコーン系ポリマー、ポリスルフィド 系ポリマー等の有機樹脂 (ポリマー) あるいはオリゴマ ー、もしくはこれらの有機樹脂あるいはオリゴマーが加 水分解性シリル基で置換された化合物が挙げられる。ま た、その他の添加剤として、フェノチアジン、2,6-ジーtープチルー4ーメチルフェノール等の重合禁止 剤;重合開始助剤;レベリング剤;濡れ性改良剤;界面 活性剂;可塑剂;紫外線吸収剂;酸化防止剂;带電防止 剤;シランカップリング剤;無機充填剤等を挙げること もできる。

【0100】 〔放射線硬化性組成物の調製および性状〕 光導波路を構成する下部クラッド層、コア部分および上 部クラッド層を形成するための放射線硬化性組成物、す なわち下層用組成物、コア用組成物および上層用組成物 は、それぞれ、上述した加水分解性シラン化合物や脱水 剤等を、常法にしたがって混合撹拌することにより、製 造することができる。下層用組成物、コア用組成物およ び上層用組成物としては、それぞれ、最終的に得られる 各部の屈折率の関係が、光導波路に要求される条件を満 足することとなるよう、互いに異なる放射線硬化性組成 物を用いることができるが、下層用組成物と上層用組成 物とは同一の放射線硬化性組成物であってもよく、通常 は同一の組成物であることが種々の点から好ましい。

【0101】上述の放射線硬化性組成物は、その(A) 成分である加水分解性シラン化合物および/またはその加水分解物の種類を選ぶことにより、異なる屈折率を有する硬化膜を形成するものとなる。従って、屈折率の差が適宜の大きさとなるような2種または3種の放射線硬化性組成物を用い、最も高い屈折率の硬化膜を与える放射線硬化性組成物をコア用組成物とし、他の放射線硬化性組成物を下層用組成物および上層用組成物として用いればよい。

【0102】各放射線硬化性組成物の粘度は、5~1000cps (25℃) の範囲内の値であることが好ましい。粘度がこれらの範囲を超えると、均一な塗膜を形成することが困難となる傾向がある。なお、放射線硬化性組成物の粘度は、反応性希釈剤や有機溶媒の配合量によって、適宜調整することができる。

【0103】既述のように、本発明においては、基板上に下部クラッド層が形成され、その上にコア部分が形成され、更に上部クラッド層が形成されることにより、目的とする光導波路が製造されるが、各クラッド層およびコア部分の形成においては、放射線硬化性組成物の塗布

および乾燥による薄膜の形成、並びにこの薄膜に対する 放射線の照射による硬化が行われる点で共通である。但 し、コア部分の形成では、薄膜に対する放射線の照射が 所定のパターンに従って行われ、未硬化の部分が除去される操作が行われる点で異なる。

【0104】放射線硬化性組成物の塗布する手段としては、スピンコート法、ディッピング法、スプレー法、バーコート法、ロールコート法、カーテンコート法、グラビア印刷法、シルクスクリーン法、またはインクジェット法等の方法を用いることができる。このうち、特にスピンコート法が好ましい。また、放射線硬化性組成物のレオロジー特性を、実際の塗布手段に適したものとするために、各種レベリング剤、チクソ付与剤、フィラー、有機溶媒、界面活性剤等を、必要に応じて配合することができる。

【0105】放射線硬化性組成物の塗布により形成された塗布膜は、50~90℃の温度で乾燥させ、あるいは必要に応じてさらに60~120℃に加熱してプレベークすることにより、薄膜が形成される。プレベークのための加熱の条件は、用いる放射線硬化性組成物の各成分20の種類、配合割合などによっても異なるが、通常60~120℃で10~600秒間程度である。

【0106】形成された薄膜は、これに放射線が照射されることにより、硬化される。下部クラッド層および上部クラッド層の形成では、薄膜の全面に放射線が照射され、その全体が硬化される。ここに、放射線としては、可視光、紫外線、赤外線、 χ 線、 χ 線、 χ 線等を用いることができるが、既述のように、特に紫外線が好ましい。そして、紫外線を照射する手段としては、特に制限されるものではなく、種々の手段を利用することができる。例えば、光源としては、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、エキシマランプ等の紫外線光源ランプを用いることができる。薄膜に照射される放射線は、波長200~390nm、照度が1~500mW/cm²のものを所定時間照射することにより照射量が10~500mJ/cm²となるようにすることが好ましい。

【0107】コア部分を形成するためのコア用薄膜に対する放射線の照射は、所定のパターンに従って行われ、その後、現像液により現像することにより、未硬化の不要な部分が除去され、これによってコア部分が形成される。所定のパターンに従って放射線の照射を行う方法としては、所定のパターンのマスク孔を有するフォトマスクを用いる方法に限られず、例えば液晶表示装置と同様の原理を利用した、所定のパターンに従って放射線透過領域と放射線不透過領域とよりなるマスク像を電気光学的に形成する手段を利用する方法、多数の光ファイバーを東ねてなる導光部材を用い、この導光部材における所定のパターンに対応する光ファイバーを介して放射線を照射する方法、レーザ光、あるいはレンズ、ミラー等の

集光性光学系により得られる収束性放射線を走査させな がら放射線硬化性組成物に照射する方法を用いることも できる。

【0108】このようにして所定のパターンに従って選択的に硬化させた薄膜に対しては、硬化部分と未硬化部分との溶解性の差異を利用して、適宜の有機溶媒あるいはアルカリ現像液によって現像処理することにより、未硬化部分を除去し硬化部分を残存させることができ、これにより、コア部分が形成される。

【0109】ここに、現像液としては、放射線硬化性組 成物の調製に用いられるものとして前述した有機溶媒、 あるいは水酸化ナトリウム、水酸化カリウム、炭酸ナト リウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、ア ンモニア、エチルアミン、nープロピルアミン、ジエチ ルアミン、ジーn-プロピルアミン、トリエチルアミ ン、メチルジエチルアミン、N-メチルピロリドン、ジ メチルエタノールアミン、トリエタノールアミン、テト ラメチルアンモニウムヒドロキシド、テトラエチルアン モニウムヒドロキシド、コリン、ピロール、ピペリジ ン、1,8-ジアザビシクロ[5.4.0]-7-ウン デセン、1,5ージアザビシクロ[4.3.0]ー5ー ノナンなどのアルカリ類からなるアルカリ水溶液を用い ることができる。このアルカリ水溶性の濃度は、通常 0. 1~2. 5重量%、好ましくは0. 2~0. 5重量 %である。また上記アルカリ水溶液に、メタノール、エ タノールなどの水溶性有機溶媒、界面活性剤などを適当 量添加した水溶液を現像液として使用することもでき る。

【0110】現像時間は、通常30~180秒間であり、また現像方法は液盛り法、ディッピング法などのいずれでもよい。現像液として有機溶媒を用いた場合はそのまま風乾することにより、また、アルカリ水溶液を用いた場合には流水洗浄を30~90秒間行い、圧縮空気や圧縮窒素で風乾させることによって表面上の水分を除去することにより、パターン状被膜が形成される。続いてホットプレート、オーブンなどの加熱装置により、所定温度、例えば150~250℃で、所定時間、例えばホットプレート上で5~30分間、オーブン中では30~90分間加熱処理することによって、パターニングされた架橋被膜よりなるコア部分が形成される。

【0111】また、放射線の照射によって得られる硬化膜は、必要に応じて、さらに加熱することができる。この場合の加熱は、通常、室温から基板や薄膜の分解開始温度以下の温度で、例えば5分間~72時間、行えばよい。このように、放射線硬化後にさらに加熱することにより、硬度および耐熱性に優れたコア部分を得ることができる。この後加熱は、下部クラッド層および上部クラッド層の形成においても行うことができる。以上のようにして、微細にパターン化されたコア部分が、下部クラッド層とこれに積重された上部クラッド層との内部に埋

設された状態で形成され、これにより光導波路が得られる。

【0112】而して、本発明によれば、コア部分を形成するために、特定の加水分解性シラン化合物および/またはその加水分解物を含有してなる放射線硬化性組成物を用いるため、所定のパターンに従う放射線の照射により、きわめて容易にかつ短時間の処理でコア部分を形成することができると共に、得られるコア部分はポリシロキサンを主成分とするものであるために高い透明性を有するものとなり、得られる光導波路は、導波路損失が小さく、しかも大きな耐熱性を有するものとなる。

【0113】更に、下部クラッド層および上部クラッド層も、上記のコア部分のための組成物と同様の組成成分による放射線硬化性組成物によって形成することができ、この場合には、必要とされる操作は、当該放射線硬化性組成物の塗布および放射線の照射のみであるため、塗布装置および放射線照射装置、その他の処理装置として、コア部分の形成に供したものをそのまま共通に使用することができ、その結果、全体として、きわめて簡単に、非常に低いコストで目的とする光導波路を製造することができる。

[0114]

【実施例】以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。

[ポリシロキサン溶液の調製]

ポリシロキサン溶液1

撹拌機付の容器内に、フェニルトリメトキシシラン(23.3g、0.12モル)と、メチルトリメトキシシラン(61.6g、0.43モル)と、電気伝導率が8×3010-5S・cm-1のイオン交換水(15.7g、0.87モル)とを収容した後、温度60℃、6時間の条件で加熱撹拌することにより、フェニルトリメトキシシランとメチルトリメトキシシランの加水分解を行った。次いで、メチルイソブチルケトン(MIBK)を滴下しながら、加水分解により副生したメタノールを蒸留除去した。そして、最終的に固形分を40重量%に調整したポリシロキサンを含有するメチルイソブチルケトン溶液を得た。これを「ポリシロキサン溶液1」とする。

【0115】ポリシロキサン溶液2

撹拌機付の容器内に、メチルトリメトキシシラン(8 0.0g、0.558モル)と、電気伝導率が8×10 ふS・cm¹のイオン交換水(16.0g、0.889 モル)とを収容した後、温度60℃、6時間の条件で加 熱撹拌することにより、メチルトリメトキシシランの加 水分解を行った。MIBKを滴下しながら、加水分解に より副生したメタノールを蒸留除去した。そして、最終 的に固形分を40重量%に調整したポリシロキサンを含 有するメチルイソプチルケトン溶液を得た。これを「ポ リシロキサン溶液2」とする。 【0116】 〔放射線硬化性組成物の調製〕 放射線硬化性組成物A (コア用組成物) ポリシロキサン溶液1 (固形分および溶剤) 100重量

部に対し、光酸発生剤(サートマー社製、CD101 2)を1.0重量部、脱水剤としてオルト蟻酸メチル 3.0重量部をそれぞれ添加し、均一に混合することに より、放射線硬化性組成物Aを得た。

放射線硬化性組成物B(下層用組成物および上層用組成物)

ポリシロキサン溶液2(固形分および溶剤)100重量 部に対し、光酸発生剤(サートマー社製、CD101 2)を1.0重量部、脱水剤としてオルト蟻酸メチル 3.0重量部をそれぞれ添加し、均一に混合することに より、放射線硬化性組成物Bを得た。

【0117】 [実施例1] 放射線硬化性組成物Bをシリ コン基板の表面上にスピンコータで塗布し、70℃で1 0分間乾燥させた後、波長365nm、照度200mW / c m² の紫外線を5秒間照射することにより、厚み1 0μmの下部クラッド層を形成した。この下部クラッド 層の波長1550nmの光の屈折率は1.423であっ た。次に、放射線硬化性組成物Aを下部クラッド層の上 にスピンコータで塗布し、70℃で10分間乾燥させた 後、幅4~20 µmの光導波路パターンを刻んだフォト マスクを用いて、波長365mm、照度200mW/c m² の紫外線を5秒間照射することにより、露光を行っ た。その後、この基板をエタノールよりなる現像液中に 浸漬して未露光部を溶解し、厚み7μmのコア部分を形 成した。このコア部分の波長1550mmの光の屈折率 は1.452であった。さらに、このコア部分を有する 下部クラッド層の上面に、放射線硬化性組成物Bをスピ ンコータで途布し、70℃で10分間乾燥させた後、波 長365nm、照度200mW/cm2 の紫外線を5秒 間照射することにより、厚み15μmの上部クラッド層 を形成し、これにより、光導波路を製造した。形成され た上部クラッド層の波長1550mmの光の屈折率は 1. 423であった。

【0118】このようにして得られた光導波路について、波長1300nmの光を導波路の一端から入射させたときに他端から出射する光量を測定することにより、導波路損失を求めたところ、0.1dB/cm以下であった。また、得られた光導波路を150℃で5000時間加熱した後、上記と同様にして導波路損失を測定したところ0.1dB/cm以下であり、熱劣化は認められず、優れた耐熱性を有することが確認された。

[0119]

【発明の効果】以上のように、本発明によれば、可視域から赤外域にわたる光についての導波路損失が低く、しかも耐熱性に優れた光導波路を、短時間でかつ簡単なプロセスで製造することができる方法を提供することができ、また、当該方法で製造された、光通信システムなど

に好適な光導波路が提供される。

【図面の簡単な説明】

【図1】本発明の方法によって製造される光導波路の基本的構成を示す説明用断面図である。

【図2】(イ)~(ホ)は、本発明の光導波路の製造方法の一例を工程順に示す説明用断面図である。

【符号の説明】

[図1]

10 光導波路

12 基板

13 下部クラッド層

15 コア部分

14 コア用薄膜

17 上部クラッド層

18 フォトマスク

【図2】

フロントページの続き

(72)発明者 佐藤 穂積

東京都中央区築地2丁目11番24号 ジェイ エスアール株式会社内 F ターム(参考) 2H047 KA04 PA02 PA13 PA21 PA22 PA24 PA28 QA05 TA35 TA36 TA43

> 4J035 BA01 BA11 CA13N CA131 CA14N CA141 EA01 EB02 LA03 LB17

4J038 DL051 DL071 DL081 HA216
HA446 HA556 JA29 JA31
JA33 JA42 JA56 JA59 JB15
JC01 JC19 JC20 JC37 JC38
KA02 KA04 KA11 KA20 NA17
PA17 PB08 PB09 PB11