① Compute line through
$$z pts$$

$$P_1 \equiv (y_1, y_1) ; P_2 \equiv (y_2 - y_2)$$

This gives,
$$\begin{vmatrix} x_2 - x_1 & x_1 - x_1 \\ y_1 - y_1 & y_1 - y_1 \end{vmatrix} = 0$$

© Compute dist. of pt. to line

If 'p', b'p' pass through line
$$ax+by+c=0$$

dist of 'q' from this line is

$$d = \left| \frac{a}{a} \frac{q_{2c} + b}{a^2 + b^2} \frac{q_{2c}}{a^2 + b^2} \right|$$

3 Compute dist. of pl. from segment vec 1 = vector from start of line segment to end of line segment vec 2 = vector from pt to start of line segment rel·length = (vec 1 · vec 2)/|vec 1/2 if rel length <0: dist = dist (start pt, pt.)

state = left of start pt & 13 if rel length >1: dist = dist (end pt, pt.)
state = right of end pt (24) else dist = I dist from pt to line state = on the line segment doy

Eiz	?					
0	Comput	distance	pt to	polygon		
	→ C	ompute to	he dist	of the po	pt from	computed
	$\rightarrow R$	etwin th	e min	dist of t	le above	computed
2	Compi	to tange	nt vecto	i to po	olygon	
-	-> Fine look	the seg	ment els	ery 2 or	the pt.	by as edge
						left, on est segment;
		state =				
					ivalent to	closest
	• if	state = Let the				
		$\overline{z} = (\overline{q},$				
				x vec		
				32,013		

Flowchart of implementation of Bug! algorithm

- iii) Implementation of functions in E1.7 and E1.6 are given on earlier pages. These will be used to:
 - a) Detect the distance from obstacle

d) Calculate distance between two points

- b) Align the robot about the boundary of obstacle
- c) More in a circular path when close to vertices

· Plot showcasing the distance from bug's position to the goal as a function of time:

· By Bug I algorithm: -> Time taken to compute and travel the path is 724.66 secs -> Length of total path travelled by robot is 29.2 m