Manual Técnico

Para que funcione el analizador sintáctico vamos a utilizar los tokens realizados por el analizador léxico, le damos un vistazo a la tabla Patrón.

Patrón

Una tabla que contiene todo tipo de token respecto a su lexema, y para identificarlo se usa expresiones regulares.

Token(Componente Léxico)	Lexema	Patrón
identificador	a,valor,b	([a-z,A-Z],[-]) (0-9)
Constante número	5,3,25,56	[0-9]+(\.[0-9]+)?
Aritmeticos	a+9,5+1	[a-z,A-Z]*[0-9]+[+,-,*,**,/,//,%]
Comparacion	a = 2	[a-z,A-Z]*[0-9]+[==,!=,>,<,>=,<=]
Logicos	b and 9	[a-z,A-Z]*[0-9]+[and,or,not]
Asignacion	C=5	[a-z,A-Z]*[0-9]+[=]
Palabras clave	class a19	[a-z,A-Z]*[Palabras reservadas]+
Constantes	(1.0), true,("" ")	[a-z,A-Z]*[0-9]+[.,(),boolean,"","]
Comentario	#comentario	[#comentario]+[a-z,A-Z]*[0-9]
Otros	ab;	[a-z,A-Z]*[0-9]+[(),{},[], , ,:,;]

Gramática

La gramática se basa en el orden de los tokens para poder crear los símbolos del analizador sintáctico.

Identificador

$$I \rightarrow Id I$$

$$|_I$$

$$|número I$$

$$|\varepsilon$$

Palabras Reservadas

P → Palabras clave

as |False |nonlocal

|assert |finally |pass

|break |from |raise

|class |global |return

|continue |if |True

|def |import |try

|del |in |while

|elif |is |with

|else |lambda |yield

|except |None | E

Logicos

 $L\rightarrow$ and

|or

|not

3 |

Declaración de variables

```
Expresiones
E → I E'
E'→ Asignación E"
E" → Constante Entero
|Constante Decimal E"
|Constante comillas D E"
|Constante comillas S E"
|P E"
```

Expresiones dic = ()

 $E \rightarrow I E'$ $E' \rightarrow Asignacion E''$ $E'' \rightarrow Otros "(" E'''$ $E''' \rightarrow Otros ")"$

Operadores

 $O \rightarrow I O'$

O'→ Asignación O"

 $O'' \rightarrow Constante Entero O'''$

 $O''' \rightarrow Operadores Aritmeticos O^4$ |Comparacion O'''

O⁴→ Constante Entero

Declaración de variables con asignación num += 10

 $A \rightarrow I A'$

A"→ Operadores Aritmeticos A"'

A'"→ Asignacion A⁴

A⁴→ Constante Entero

Declaración de variables print(factorial(10))

Operadores de entrada y salida print("hola")

$$S \rightarrow I \ S'$$
 $S' \rightarrow Otros \ S''$
 $S'' \rightarrow Constantes \ Comillas \ D \ S'''$
|Constantes \ Comillas \ S \ S''

S'"→ Otros

Declaración de variables con lógicos resultado = 10 is not 10

 $E \rightarrow I E'$ $E' \rightarrow Asignacion E''$ $E'' \rightarrow Constante Entero E'''$ $\mid I E''$ $E''' \rightarrow P E^4$ $E^4 \rightarrow L E^5$ $E^5 \rightarrow Constante Entero$ $\mid I E^5$

Operadores de entrada y salida Print("hola"+"mundo")

 $O \rightarrow I O'$

O'→ Otros O"

O"→ Constante comillas D O" |Contante comillas S O"

O'''→ Operadores Aritmeticos O⁴ |Comparacion O'''

O⁴→ Constante comillas D O⁵ |Contante comillas S O⁴

 $O^5 \rightarrow Otros$

Condicionales if contenido:

 $C \rightarrow P$ "if" C'

 $C' \rightarrow I C''$

C"→ Otros ":"

Condicionales con operadores if 5+5

 $C \rightarrow P$ "if" C'

C'→ Constante Entero C"

| I C'

C"→ Operadores Aritmeticos C"'

C'"→ Constante Entero C'""

| I C'''

Condicionales else:

e→ P "else" e'

 $e' \rightarrow Otros$ ":"

Ciclos while True:

W → P "while" W'

W'→ P "True" W"

 $W'' \rightarrow Otros ":"$

Ciclos while 5/9

W → P "while" W'
W'→ Constante Entero W"
| I W'
W"→ Operadores Aritmeticos W"'
W"'→ Constante Entero
| I W"'

Funciones def sigue(3,9)

 $D \rightarrow P$ "def" D' $D' \rightarrow I$ D" $D'' \rightarrow Otros$ "(" D"') $D''' \rightarrow Constante$ Entero D^4 |ID''' $D^4 \rightarrow Otros$ "," D^5 $D^5 \rightarrow Constante$ Entero D^6 $|ID^5$ $D^6 \rightarrow Otros$ "("

Funciones def mundo(k)

$$D \rightarrow P$$
 "def" D'

 $D' \rightarrow I$ D"

 $D'' \rightarrow Otros$ "(" D"'

 $D''' \rightarrow Constante$ Entero D^4
 $| I D'''$
 $D^4 \rightarrow Otros$ ")"

Return return len(texto)

 $R \rightarrow P$ "return" R'

 $R'\!\!\to I~R''$

 $R'' \rightarrow Otros "(" R''')$

 $R''' \rightarrow I R^4$

 $R^4 \rightarrow Otros ")"$

Return return a-b

 $R \rightarrow P$ "return" R'

R'→ Constante Entero R"

| I R'

R"→ Operadores Aritmeticos R""

R'"→ Constante Entero

| I R'''

Return return "hola"

 $R \rightarrow P$ "return" R'

R'→ Constante comillas D

Ciclo For for i in arreglo:

 $F \rightarrow P$ "for" F'

 $F' \rightarrow I F''$

 $F'' \rightarrow P$ "in" F'''

 $F''' \rightarrow I F^4$

F⁴→ Otros ":"

Ciclo For for i in range(5):

 $\mathsf{F} \to \mathsf{P}$ "for" F'

 $F'\!\!\to I\;F''$

 $F'' \rightarrow P$ "in" F'''

 $F''' \rightarrow I F^4$

 $F^4 \rightarrow Otros "(" F^5)$

 $F^5 \rightarrow$ Constante Entero F^6

| I F⁵

 $F^6 \rightarrow Otros ")" F^7$

 $F^7 \rightarrow Otros$ ":"

Ciclo For for i in range(b,a):

 $F \rightarrow P$ "for" F'

 $F'\!\!\to I\;F''$

 $F'' \rightarrow P$ "in" F'''

 $F''' \rightarrow I F^4$

 $F^4 \rightarrow Otros "("F^5)$

F⁵→ Constante Entero F⁶

| I F⁵

 $F^6 \rightarrow Otros "," F^7$

 $F^7 \rightarrow$ Constante Entero F^8

| I F⁷

 $F^8 \rightarrow Otros ")" F^9$

F⁹→ Otros ":"

Break break

B→ P "break"

Diagrama de Clases

Git flow

