Class 8: Partial pooling and zero-inflation

Andrew Parnell andrew.parnell@mu.ie

PRESS RECORD

Learning outcomes:

- ▶ Be able to fit some basic zero inflation and hurdle models
- ▶ Be able to understand and fit some multinomial modelling examples

Zero-inflation and hurdle models

▶ Let's introduce some new data. This is data from an experiment on whiteflies:

```
wf = read.csv('../data/whitefly.csv')
head(wf)
## imm week block trt n live plantid
```

```
## 1
     15
                3
                   5 12
                         11
                3 5 8
## 2
     16
                       6
                 5 10
## 3
     28
                         10
## 4
    17
          4
                 5 10 8
          5
                3 5 10
                         10
## 5
          6
                   5 10
## 6
     28
                         10
```

The response variable here is the count imm of immature whiteflies, and the explanatory variables are block (plant number), week, and treatment treat.

Look at those zeros!

Number of immature whiteflies

A first model

- These are count data so a Poisson distribution is a good start
- Let's consider a basic Poisson distribution model for Y_i , i = 1, ..., N observations:

$$Y_i \sim Po(\lambda_i)$$

$$\log(\lambda_i) = \beta_{\mathsf{trt}_i}$$

▶ We'll only consider the treatment effect but we could run much more complicated models with e.g. other covariates and interactions

Fitting the model in JAGS

```
model code = '
model
  # Likelihood
  for (i in 1:N) {
    y[i] ~ dpois(lambda[i])
    y_pp[i] ~ dpois(lambda[i])
    log(lambda[i]) <- beta trt[trt[i]]</pre>
  # Priors
  for (j in 1:N_trt) {
    beta trt[j] ~ dnorm(beta mean, beta sd^-2)
  beta_mean ~ dnorm(0, 10^-2)
  beta sd \sim dt(0, 5, 1)T(0,)
```

Running the model

Results

plot(jags_run)

Some clear treatment effects - treatment 5 in particular

Did the model actually fit well?

Data vs posterior predictive fit

What about the zeros?

One way of broadening the distribution is through over-dispersion which we have already met:

$$\log(\lambda_i) \sim N(\beta_{\mathsf{trt}_i}, \sigma^2)$$

- However this doesn't really solve the problem of excess zeros
- Instead there are a specific class of models called *zero-inflation* models which use a specific probability distribution. The zero-inflated Poisson (ZIP) with ZI parameter q_0 is written as:

$$p(y|\lambda) = \left\{ egin{array}{ll} q_0 + (1-q_0) imes Poisson(0,\lambda) & ext{if } y=0 \ (1-q_0) imes Poisson(y,\lambda) & ext{if } y
eq 0 \end{array}
ight.$$

Fitting models with custom probability distributions

- ► The Zero-inflated Poisson distribution is not included in Stan or JAGS by default. We have to create it
- ▶ It's possible to create new probability distributions in Stan
- ▶ It's a little bit fiddly to do so in JAGS, we have to use some tricks
- We will use JAGS to create a mixture of Poisson distributions; A Poisson(0) distribution for the zeros, and a Poisson(λ) distribution for the rest

Fitting the ZIP in JAGS

```
model code =
model
  # Likelihood
  for (i in 1:N) {
    y[i] ~ dpois(lambda[i] * z[i] + 0.0001)
    y pp[i] ~ dpois(lambda[i] * z[i] + 0.0001)
    log(lambda[i]) <- beta trt[trt[i]]</pre>
    z[i] \sim dbinom(q 0, 1)
  # Priors
  for (j in 1:N trt) {
    beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
  beta mean ~ dnorm(0, 10^-2)
  beta_sd ~ dt(0, 5, 1)T(0,)
  q 0 \sim dunif(0, 1)
```

Running the model

Results

plot(jags_run)

Did it work any better? - code

Data vs posterior predictive fit

Some more notes on Zero-inflated Poisson

- This model seems to predict the number of zeros pretty well. It would also be interesting to perhaps try having a different probability of zeros (q_0) for different treatments
- ▶ It might be that the other covariates explain some of the zero behaviour
- ▶ We could further add in both zero-inflation and over-dispersion

An alternative: hurdle models

- ightharpoonup ZI models work by having a parameter (here q_0) which is the probability of getting a zero, and so the probability of getting a Poisson value (which could also be a zero) is 1 minus this value
- An alternative (which is slightly more complicated) is a hurdle model where q_0 represents the probability of the *only way* of getting a zero. With probability $(1-q_0)$ we end up with a special Poisson random variable which has to take values 1 or more
- In some ways this is richer than a ZI model since zeros can be deflated or inflated
- ► This is a bit fiddlier to fit in JAGS

A hurdle-Poisson model in JAGS

```
model code =
model
  # Likelihood
  for (i in 1:N) {
    v[i] ~ dpois(lambda[i])T(1,)
    log(lambda[i]) <- beta trt[trt[i]]</pre>
  for(i in 1:N 0) {
    y_0[i] \sim dbin(q_0, 1)
  # Priors
  for (j in 1:N trt) {
    beta_trt[j] ~ dnorm(beta_mean, beta_sd^-2)
  beta_mean ~ dnorm(0, 10^-2)
  beta sd \sim dt(0, 5, 1)T(0,)
  a 0 \sim dunif(0, 1)
```

Running the model

```
jags_run =
 jags(data = list(N = nrow(wf[wf$imm > 0,]),
                   N_trt = length(unique(wf$trt)),
                   y = wf \sin [wf \sin > 0],
                   v = as.integer(wfsimm == 0),
                   N O = nrow(wf),
                   trt = wf\$trt[wf\$imm > 0]).
       parameters.to.save = c('beta trt', 'q 0',
                               'beta mean', 'beta sd'),
       model.file = textConnection(model code))
```


Bugs model at "6", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

0.46

Some final notes on ZI models

- ➤ To complete the Poisson-Hurdle fit we would need to simulate from a truncated Poisson model. This starts to get very fiddly though see the jags_examples repository for worked examples
- ► We can extend these models further by using a better count distribution such as the negative binomial which has an extra over-dispersion parameter
- ► We can also add covariates into the zero-inflation component, though it is not always clear whether this is desirable

The multinomial distribution

- Multinomial data can be thought of as multivariate discrete data
- It's usually used in two different scenarios:
 - 1. For classification, when you have an observation falling into a single one of K possible categories
 - 2. For multinomial regression, where you have a set of counts which sum to a known value N
- We will just consider the multinomial regression case, whereby we have observations $y_i = [y_{i1}, \dots, y_{iK}]$ where the sum $\sum_{k=1}^{K} y_{ik} = N_i$ is fixed
- The classification version is a simplification of the regression version

Some new data! - pollen

```
pollen = read.csv('../data/pollen.csv')
head(pollen)
     GDD5 MTCO Abies Alnus Betula Picea Pinus.D Quercus.D Gramineae
## 1 1874 -7.9
                        50
                              158
                                            721
## 2 1623 -5.5
                                    302
                                            537
## 3 1475 -4.7
                       276
                              183
                                    110
                                            136
## 4 1360 -8.8
                   0 111
                              354
                                    141
                                            364
## 5 1295 -6.9
                                            708
                        91
                                    151
## 6 1539 -7.8
                        51
                              194
                                            673
```

These data are pollen counts of 7 varieties of pollen from modern samples with two covariates

Some plots

- ► The two covariates represent the length of the growing season (GDD5) and harshness of the winter (MTCO)
- ▶ The task is to find which climate regimes each pollen variety favours

A multinomial model

The multinomial distribution is often written as:

$$[y_{i1},\ldots,y_{iK}] \sim Mult(S_i,\{p_{i1},\ldots,p_{iK}\})$$

or, for short:

$$y_i \sim Mult(S_i, p_i)$$

- The key parameters here are the probability vectors p_i . It's these we want to use a link function on to include the covariates
- ▶ We need to be careful as each must sum to one: $\sum_{k=1}^{K} p_{ik} = 1$. Any link function must satisfy this constraint

Prior distributions on probability vectors

- When K=2 we're back the binomial-logit we met in the first day, and we can use the logit link function
- ▶ When K > 2 a common function to use is the *soft-max* function:

$$p_{ik} = \frac{\exp(z_{ik})}{\sum_{j=1}^{K} \exp(z_{ij})}$$

- This is a generalisation of the logit function
- ► The next layer of our model sets, e.g.:

$$z_{ik} = \beta_0 + \beta_1 GDD5_i + \gamma_2 MTCO_i + \dots$$

JAGS code

```
model code =
model
  # Likelihood
  for (i in 1:N) { # Observation loops
    v[i,] ~ dmulti(p[i,], S[i])
    for(j in 1:M) { # Category loop
      \exp z[i,j] \leftarrow \exp(z[i,j])
      p[i,j] \leftarrow \exp_z[i,j]/\sup(\exp_z[i,j])
      z[i,i] <- beta[i,]%*%x[i,]
  # Prior
  for(j in 1:M) {
    for(k in 1:K) {
      beta[j,k] ~ dnorm(0, 0.1^-2)
```

Let's fit it (first 500 obs only)

```
model data = list(N = nrow(pollen[1:500,]),
                  y = pollen[1:500,3:9],
                  x = cbind(1, scale(cbind(pollen[1:500,1:2],
                                           pollen[1:500,1:2]^2))),
                  S = pollen[1:500,10],
                  K = 5, # Number of covars
                  M = 7) # Number of categories
# Run the model
model_run = jags(data = model_data,
                 parameters.to.save = c("p").
                 model.file = textConnection(model code))
```

Results 1

plot(model_run)

Bugs model at "4", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

242100	80% interval for 242200	or each chain 242300	242400	1	R-hat 1.5	2+
deviance						_
242100	242200	242300	242400	1	1.5	2+

medians and 80% intervals

Results 2

Notes about this model

- ► This model is not going to fit very well, since it is unlikely that a linear relationship between the covariates and the pollen counts will match the data
- ▶ It might be better to use e.g. a spline model (covered in the next class)
- ► Similarly we might need some complex interactions between the covariates as they are strongly linked
- ▶ We have constrained the parameters here so that the slopes and intercepts borrow strength across species. Does this make sense? What else could we do?

Some final notes about multinomial models

- These models can be a pain to deal with as there are tricky constraints on the β parameters to make them all sum to 1. Instead it's often easier to just put a tight prior distribution on them, e.g. $\beta \sim N(0,0.1)$
- ► The softmax function is one choice but there are lots of others (logistic ratios, the Dirichlet distribution, ...)
- Whilst the classification version of this model just has binary y_i (with just a single 1 in it, i.e. $S_i = 1$) most packages (including JAGS and Stan) have a special distribution (e.g. dcat in JAGS) for this situation

Summary

- ▶ We have fitted some zero inflated and hurdle Poisson models in JAGS
- ▶ We have seen a simple multinomial logistic regression