

Acta Crystallographica Section E

### Structure Reports Online

ISSN 1600-5368

### (3Z)-1,1,1-Trifluoro-4-phenyl-4-[(2-{[(1Z)-4,4,4-trifluoro-3-oxo-1-phenylbut-1-en-1-yl]amino}ethyl)amino]but-3-en-2one

# Abdullah M. Asiri, a,b + Hassan M. Faidallah, b Khalid A. Alamry, a,b Seik Weng Ngc and Edward R. T. Tiekinkc\*

<sup>a</sup>Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, <sup>b</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and <sup>c</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 22 June 2012; accepted 25 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma(\text{C-C}) = 0.004 \text{ Å}$ ; disorder in main residue; R factor = 0.060; wR factor = 0.165; data-to-parameter ratio = 15.7.

In the title compound,  $C_{22}H_{18}F_6N_2O_2$ , the five atoms comprising each O=C-C=C-N fragment are almost coplanar (the r.m.s. deviation for the fitted atoms being 0.008 and 0.002 Å) and form a dihedral angle of 47.70 (12)°. The phenyl ring attached to each of the O=C-C=C-Nfragments is twisted out of the respective plane with dihedral angles of 64.46 (11) and 61.82 (10)°, respectively. An almost orthogonal relationship for the phenyl rings is indicated by the dihedral angle between them of 78.19 (14)°. The conformation about each ethylene bond is Z, which allows for the formation of intramolecular N $-H \cdot \cdot \cdot$ O hydrogen bonds which close S(6)loops. The most prominent feature of the crystal packing are N-H···O hydrogen bonds that result in supramolecular chains along the a axis. The F atoms of one  $-CF_3$  groups are disordered over three sets of sites with site-occupation factors of 0.318 (4), 0.360 (10) and 0.322 (9).

#### **Related literature**

For the structure of the compound in which the CF<sub>3</sub> substituents of the title compound are replaced by 2-thienyl groups, see: Asiri *et al.* (2011).

#### **Experimental**

Crystal data

 $\begin{array}{lll} {\rm C}_{22}{\rm H}_{18}{\rm F}_{6}{\rm N}_{2}{\rm O}_{2} & V = 2098.6~(3)~\mathring{\rm A}^{3} \\ M_{r} = 456.38 & Z = 4 \\ {\rm Monoclinic,}~P2_{1}/c & {\rm Mo}~K\alpha~{\rm radiation} \\ a = 13.0411~(9)~\mathring{\rm A} & \mu = 0.13~{\rm mm}^{-1} \\ b = 15.897~(1)~\mathring{\rm A} & T = 100~{\rm K} \\ c = 10.9417~(9)~\mathring{\rm A} & 0.35 \times 0.15 \times 0.15~{\rm mm} \\ \beta = 112.306~(9)^{\circ} & & & & & \\ \end{array}$ 

#### Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector detection: multi-scan (CrysAlis PRO; Agilent, 2012)  $T_{\min} = 0.538, \ T_{\max} = 1.000$  10523 measured reflections 4845 independent reflections 3146 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.041$ 

#### Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.060 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.165 & \text{independent and constrained} \\ S=1.02 & \text{refinement} \\ 4845 & \text{reflections} & \Delta\rho_{\max}=0.51 \text{ e Å}^{-3} \\ 309 & \text{parameters} & \Delta\rho_{\min}=-0.50 \text{ e Å}^{-3} \\ 19 & \text{restraints} \end{array}$ 

**Table 1** Hydrogen-bond geometry (Å, °).

| $D-\mathbf{H}\cdot\cdot\cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|---------------------------------|----------|-------------------------|-------------------------|-----------------------------|
| N1-H1···O1                      | 0.91 (3) | 2.02 (3)                | 2.719 (3)               | 133 (3)                     |
| $N1-H1\cdots O1^{i}$            | 0.91(3)  | 2.28 (3)                | 2.997 (3)               | 135 (3)                     |
| $N2-H2\cdots O2$                | 0.88(3)  | 2.02 (3)                | 2.709 (3)               | 134 (3)                     |
| N2−H2···O2 <sup>ii</sup>        | 0.88 (3) | 2.33 (3)                | 3.039 (3)               | 137 (3)                     |

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

O—CF<sub>3</sub>
HN
HN
F<sub>3</sub>C

<sup>‡</sup> Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

### organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5954).

#### References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011). *Acta Cryst.* E67, o2659–o2660.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2012). E68, o2289-o2290 [doi:10.1107/S1600536812028875]

# (3Z)-1,1,1-Trifluoro-4-phenyl-4-[(2-{[(1Z)-4,4,4-trifluoro-3-oxo-1-phenylbut-1-en-1-yl]amino}ethyl)amino]but-3-en-2-one

Abdullah M. Asiri, Hassan M. Faidallah, Khalid A. Alamry, Seik Weng Ng and Edward R. T. Tiekink

#### Comment

Recently, some of us described the structure of the 2-thienyl derivative (Asiri *et al.*, 2011) of the title compound, (I). Herein, the crystal and molecular structure of (I) is described which has  $-CF_3$  groups rather than thienyl substituents. In (I), Fig. 1, the five atoms comprising each O=C-C=C-N fragment are co-planar with the r.m.s. deviation for the fitted atoms being 0.008 Å [for the plane containing the O1 atom] and 0.002 Å [O2]; the dihedral angle between the planes is 47.70 (12)°. The conformation about each ethylene bond is *Z* allowing for the formation of intramolecular N—H···O hydrogen bonds which close S(6) loops, Table 1; a similar conformation and S(6) loops were observed in the two independent molecules of the 2-thienyl derivative (Asiri *et al.*, 2011). The attached phenyl ring is twisted out of the plane through the O=C-C=C-N fragment, forming dihedral angles of 64.46 (11) and 61.82 (10)°, respectively; the dihedral angle between the phenyl rings is 78.19 (14)°.

The crystal packing also features N—H···O hydrogen bonds so that each amine-H and each carbonyl-O atom is bifurcated, Table 1. The result is the formation of four-membered  $\{\cdots H \cdots O\}_2$  synthons and supramolecular chains along the a axis, Fig. 2.

#### **Experimental**

A mixture of the N,N'-bis(1-ethylidene)ethane-1,2-diamine (0.01 M) in THF (30 ml) and trifluroacetic anhydride (0.025 M) was refluxed for 2 h. The solid which separated on cooling was recrystallized from ethanol. M. pt: 477–478 K. Yield: 70%.

#### Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å,  $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ ] and were included in the refinement in the riding model approximation. The N-bound H-atoms were located in a difference were refined freely. One trifluoromethyl group is disordered over three positions in respect to the F atoms. The C—F distances were restrained to within  $1.35\pm0.01$  Å, and the F···F distances to  $2.21\pm0.01$  Å. The disordered F atoms were refined isotropically and the final site occupancies were 0.318 (4), 0.360 (10) and 0.322 (9) for the unprimed, primed and doubly primed atoms, respectively.

#### **Computing details**

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis PRO* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg,

2006); software used to prepare material for publication: publCIF (Westrip, 2010).



Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The C1— $CF_3$  group is disordered over three positions. The orientation with a site occupancy factor = 0.318 (4) is illustrated here.



Figure 2

A view of the supramolecular chain along the a axis in (I) mediated by N—H···O hydrogen bonds shown as blue dashed lines.

# (3Z)-1,1,1-Trifluoro-4-phenyl-4-[ $(2-\{[(1Z)-4,4,4-\text{trifluoro-3-oxo- 1-phenylbut-1-en-1-yl]amino}\}$ ethyl)amino]but-3-en-2-one

Crystal data

 $C_{22}H_{18}F_6N_2O_2$ F(000) = 936 $M_r = 456.38$  $D_{\rm x} = 1.444 \; {\rm Mg \; m^{-3}}$ Monoclinic,  $P2_1/c$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å Hall symbol: -P 2ybc Cell parameters from 2319 reflections a = 13.0411 (9) Å  $\theta = 2.4-27.5^{\circ}$ b = 15.897 (1) Å $\mu = 0.13 \text{ mm}^{-1}$ c = 10.9417 (9) ÅT = 100 K $\beta = 112.306 (9)^{\circ}$ Prism, colourless  $V = 2098.6 (3) \text{ Å}^3$  $0.35\times0.15\times0.15~mm$ Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator

Detector resolution: 10.4041 pixels mm<sup>-1</sup>

 $\omega$  scan

Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012)

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.060$  $wR(F^2) = 0.165$ S = 1.024845 reflections 309 parameters 19 restraints  $T_{\rm min} = 0.538$ ,  $T_{\rm max} = 1.000$ 10523 measured reflections 4845 independent reflections 3146 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.041$  $\theta_{\rm max} = 27.6^{\circ}$ ,  $\theta_{\rm min} = 2.4^{\circ}$  $h = -16 \rightarrow 16$  $k = -15 \rightarrow 20$  $l = -10 \rightarrow 14$ 

and constrained refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent

$$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0641P)^{2} + 1.085P]$$

$$where P = (F_{o}^{2} + 2F_{c}^{2})/3$$

$$(\Delta/\sigma)_{max} = 0.002$$

$$\Delta\rho_{min} = -0.50 \text{ e Å}^{-3}$$

Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | X            | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1)  |
|-----|--------------|--------------|--------------|-----------------------------|------------|
| O1  | 1.01821 (13) | 0.40373 (11) | 0.50828 (17) | 0.0287 (4)                  |            |
| O2  | 0.44440 (13) | 0.44780 (12) | 0.37678 (17) | 0.0304 (4)                  |            |
| N2  | 0.63608 (17) | 0.52490 (14) | 0.3995(2)    | 0.0276 (5)                  |            |
| N1  | 0.86126 (16) | 0.46861 (13) | 0.5887 (2)   | 0.0253 (5)                  |            |
| F1  | 1.0661 (7)   | 0.2668 (4)   | 0.3981 (6)   | 0.0556 (19)*                | 0.318 (4)  |
| F2  | 1.1419 (5)   | 0.2588 (4)   | 0.6132 (6)   | 0.0514 (19)*                | 0.318 (4)  |
| F3  | 0.9898 (5)   | 0.1853 (4)   | 0.4922 (7)   | 0.041 (2)*                  | 0.318 (4)  |
| F1′ | 1.0158 (7)   | 0.2543 (4)   | 0.3630 (4)   | 0.0332 (16)*                | 0.360 (10) |
| F2' | 1.1461 (3)   | 0.2603(3)    | 0.5612 (7)   | 0.0142 (13)*                | 0.360 (10) |
| F3′ | 1.0020 (5)   | 0.1831(3)    | 0.5290 (9)   | 0.0150 (14)*                | 0.360 (10) |
| F1" | 0.9793 (7)   | 0.2360 (5)   | 0.3631 (5)   | 0.055 (2)*                  | 0.322 (9)  |
| F2" | 1.1364 (4)   | 0.2625(3)    | 0.5098 (9)   | 0.0290 (17)*                | 0.322 (9)  |
| F3" | 1.0224 (6)   | 0.1860 (4)   | 0.5657 (8)   | 0.038 (2)*                  | 0.322 (9)  |
| F4  | 0.35986 (14) | 0.28737 (11) | 0.28834 (17) | 0.0491 (5)                  |            |
| F5  | 0.37037 (12) | 0.31466 (10) | 0.10070 (16) | 0.0394 (4)                  |            |
| F6  | 0.26345 (11) | 0.38801 (10) | 0.16715 (15) | 0.0382 (4)                  |            |
| C1  | 1.0361 (2)   | 0.25715 (17) | 0.4985 (3)   | 0.0370(7)                   |            |
| C2  | 0.98029 (19) | 0.33504 (16) | 0.5274(2)    | 0.0260(6)                   |            |
| C3  | 0.8934(2)    | 0.32256 (17) | 0.5709(3)    | 0.0284 (6)                  |            |
| H3  | 0.8712       | 0.2666       | 0.5791       | 0.034*                      |            |
| C4  | 0.83811 (19) | 0.38913 (16) | 0.6026(2)    | 0.0252 (5)                  |            |
| C5  | 0.75063 (19) | 0.36831 (17) | 0.6547 (3)   | 0.0277 (6)                  |            |
| C6  | 0.6563 (2)   | 0.32548 (17) | 0.5745 (3)   | 0.0314 (6)                  |            |
| H6  | 0.6480       | 0.3097       | 0.4875       | 0.038*                      |            |
| C7  | 0.5742 (2)   | 0.30574 (19) | 0.6215 (3)   | 0.0379 (7)                  |            |
| H7  | 0.5091       | 0.2773       | 0.5660       | 0.045*                      |            |
| C8  | 0.5872 (2)   | 0.3275 (2)   | 0.7495 (3)   | 0.0409 (7)                  |            |
| H8  | 0.5310       | 0.3138       | 0.7815       | 0.049*                      |            |
| C9  | 0.6812 (2)   | 0.3689(2)    | 0.8300(3)    | 0.0413 (7)                  |            |
| H9  | 0.6902       | 0.3832       | 0.9178       | 0.050*                      |            |
| C10 | 0.7632 (2)   | 0.38983 (19) | 0.7832 (3)   | 0.0347 (7)                  |            |
| H10 | 0.8278       | 0.4188       | 0.8388       | 0.042*                      |            |
| C11 | 0.80105 (19) | 0.54221 (16) | 0.6068 (3)   | 0.0274 (6)                  |            |

| H11A         0.8550         0.5849         0.6595         0.033*           H11B         0.7551         0.5255         0.6569         0.033*           C12         0.72688 (19)         0.58088 (16)         0.4758 (3)         0.0279 (6)           H12A         0.6956         0.6343         0.4930         0.033*           H12B         0.7720         0.5941         0.4232         0.033*           C13         0.62859 (19)         0.47929 (17)         0.2947 (2)         0.0265 (6)           C14         0.71669 (19)         0.48676 (17)         0.2393 (2)         0.0271 (6)           C15         0.7362 (2)         0.56297 (19)         0.1885 (3)         0.0369 (7)           H15         0.6925         0.6110         0.1874         0.044*           C16         0.8199 (2)         0.5682 (2)         0.1397 (3)         0.0437 (8)           H16         0.8335         0.6201         0.1053         0.052*           C17         0.8833 (2)         0.4990 (2)         0.1406 (3)         0.0440 (8)           H17         0.9409         0.5034         0.1079         0.053*           C18         0.8634 (2)         0.4231 (2)         0.1890 (3)         0.0396 (7)                               |      |              |              |            |             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------------|------------|-------------|--|
| C12       0.72688 (19)       0.58088 (16)       0.4758 (3)       0.0279 (6)         H12A       0.6956       0.6343       0.4930       0.033*         H12B       0.7720       0.5941       0.4232       0.033*         C13       0.62859 (19)       0.47929 (17)       0.2947 (2)       0.0265 (6)         C14       0.71669 (19)       0.48676 (17)       0.2393 (2)       0.0271 (6)         C15       0.7362 (2)       0.56297 (19)       0.1885 (3)       0.0369 (7)         H15       0.6925       0.6110       0.1874       0.044*         C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038* <td>H11A</td> <td>0.8550</td> <td>0.5849</td> <td>0.6595</td> <td>0.033*</td> <td></td> | H11A | 0.8550       | 0.5849       | 0.6595     | 0.033*      |  |
| H12A       0.6956       0.6343       0.4930       0.033*         H12B       0.7720       0.5941       0.4232       0.033*         C13       0.62859 (19)       0.47929 (17)       0.2947 (2)       0.0265 (6)         C14       0.71669 (19)       0.48676 (17)       0.2393 (2)       0.0271 (6)         C15       0.7362 (2)       0.56297 (19)       0.1885 (3)       0.0369 (7)         H15       0.6925       0.6110       0.1874       0.044*         C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6) <td>H11B</td> <td>0.7551</td> <td>0.5255</td> <td>0.6569</td> <td>0.033*</td> <td></td> | H11B | 0.7551       | 0.5255       | 0.6569     | 0.033*      |  |
| H12B       0.7720       0.5941       0.4232       0.033*         C13       0.62859 (19)       0.47929 (17)       0.2947 (2)       0.0265 (6)         C14       0.71669 (19)       0.48676 (17)       0.2393 (2)       0.0271 (6)         C15       0.7362 (2)       0.56297 (19)       0.1885 (3)       0.0369 (7)         H15       0.6925       0.6110       0.1874       0.044*         C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*                                                                                          | C12  | 0.72688 (19) | 0.58088 (16) | 0.4758 (3) | 0.0279 (6)  |  |
| C13       0.62859 (19)       0.47929 (17)       0.2947 (2)       0.0265 (6)         C14       0.71669 (19)       0.48676 (17)       0.2393 (2)       0.0271 (6)         C15       0.7362 (2)       0.56297 (19)       0.1885 (3)       0.0369 (7)         H15       0.6925       0.6110       0.1874       0.044*         C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263                                                                           | H12A | 0.6956       | 0.6343       | 0.4930     | 0.033*      |  |
| C14       0.71669 (19)       0.48676 (17)       0.2393 (2)       0.0271 (6)         C15       0.7362 (2)       0.56297 (19)       0.1885 (3)       0.0369 (7)         H15       0.6925       0.6110       0.1874       0.044*         C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.054 (1                                                                           | H12B | 0.7720       | 0.5941       | 0.4232     | 0.033*      |  |
| C15       0.7362 (2)       0.56297 (19)       0.1885 (3)       0.0369 (7)         H15       0.6925       0.6110       0.1874       0.044*         C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.054 (10)*                                                                                                                                                            | C13  | 0.62859 (19) | 0.47929 (17) | 0.2947 (2) | 0.0265 (6)  |  |
| H15       0.6925       0.6110       0.1874       0.044*         C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                  | C14  | 0.71669 (19) | 0.48676 (17) | 0.2393 (2) | 0.0271 (6)  |  |
| C16       0.8199 (2)       0.5682 (2)       0.1397 (3)       0.0437 (8)         H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                                                                                  | C15  | 0.7362(2)    | 0.56297 (19) | 0.1885 (3) | 0.0369 (7)  |  |
| H16       0.8335       0.6201       0.1053       0.052*         C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                                                                                                                                                                  | H15  | 0.6925       | 0.6110       | 0.1874     | 0.044*      |  |
| C17       0.8833 (2)       0.4990 (2)       0.1406 (3)       0.0440 (8)         H17       0.9409       0.5034       0.1079       0.053*         C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                  | C16  | 0.8199 (2)   | 0.5682(2)    | 0.1397 (3) | 0.0437 (8)  |  |
| H17 0.9409 0.5034 0.1079 0.053* C18 0.8634 (2) 0.4231 (2) 0.1890 (3) 0.0396 (7) H18 0.9074 0.3754 0.1896 0.047* C19 0.7791 (2) 0.41635 (19) 0.2368 (3) 0.0315 (6) H19 0.7642 0.3637 0.2678 0.038* C20 0.54108 (19) 0.42385 (16) 0.2348 (2) 0.0267 (6) H20 0.5397 0.3925 0.1603 0.032* C21 0.45487 (19) 0.41255 (16) 0.2804 (2) 0.0263 (6) C22 0.3625 (2) 0.35051 (17) 0.2078 (3) 0.0302 (6) H1 0.918 (3) 0.479 (2) 0.562 (3) 0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H16  | 0.8335       | 0.6201       | 0.1053     | 0.052*      |  |
| C18       0.8634 (2)       0.4231 (2)       0.1890 (3)       0.0396 (7)         H18       0.9074       0.3754       0.1896       0.047*         C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C17  | 0.8833 (2)   | 0.4990(2)    | 0.1406(3)  | 0.0440 (8)  |  |
| H18 0.9074 0.3754 0.1896 0.047* C19 0.7791 (2) 0.41635 (19) 0.2368 (3) 0.0315 (6) H19 0.7642 0.3637 0.2678 0.038* C20 0.54108 (19) 0.42385 (16) 0.2348 (2) 0.0267 (6) H20 0.5397 0.3925 0.1603 0.032* C21 0.45487 (19) 0.41255 (16) 0.2804 (2) 0.0263 (6) C22 0.3625 (2) 0.35051 (17) 0.2078 (3) 0.0302 (6) H1 0.918 (3) 0.479 (2) 0.562 (3) 0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H17  | 0.9409       | 0.5034       | 0.1079     | 0.053*      |  |
| C19       0.7791 (2)       0.41635 (19)       0.2368 (3)       0.0315 (6)         H19       0.7642       0.3637       0.2678       0.038*         C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C18  | 0.8634(2)    | 0.4231 (2)   | 0.1890(3)  | 0.0396 (7)  |  |
| H19 0.7642 0.3637 0.2678 0.038* C20 0.54108 (19) 0.42385 (16) 0.2348 (2) 0.0267 (6) H20 0.5397 0.3925 0.1603 0.032* C21 0.45487 (19) 0.41255 (16) 0.2804 (2) 0.0263 (6) C22 0.3625 (2) 0.35051 (17) 0.2078 (3) 0.0302 (6) H1 0.918 (3) 0.479 (2) 0.562 (3) 0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H18  | 0.9074       | 0.3754       | 0.1896     | 0.047*      |  |
| C20       0.54108 (19)       0.42385 (16)       0.2348 (2)       0.0267 (6)         H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C19  | 0.7791 (2)   | 0.41635 (19) | 0.2368 (3) | 0.0315 (6)  |  |
| H20       0.5397       0.3925       0.1603       0.032*         C21       0.45487 (19)       0.41255 (16)       0.2804 (2)       0.0263 (6)         C22       0.3625 (2)       0.35051 (17)       0.2078 (3)       0.0302 (6)         H1       0.918 (3)       0.479 (2)       0.562 (3)       0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H19  | 0.7642       | 0.3637       | 0.2678     | 0.038*      |  |
| C21 0.45487 (19) 0.41255 (16) 0.2804 (2) 0.0263 (6)<br>C22 0.3625 (2) 0.35051 (17) 0.2078 (3) 0.0302 (6)<br>H1 0.918 (3) 0.479 (2) 0.562 (3) 0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C20  | 0.54108 (19) | 0.42385 (16) | 0.2348 (2) | 0.0267 (6)  |  |
| C22 0.3625 (2) 0.35051 (17) 0.2078 (3) 0.0302 (6)<br>H1 0.918 (3) 0.479 (2) 0.562 (3) 0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H20  | 0.5397       | 0.3925       | 0.1603     | 0.032*      |  |
| H1 0.918 (3) 0.479 (2) 0.562 (3) 0.054 (10)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C21  | 0.45487 (19) | 0.41255 (16) | 0.2804(2)  | 0.0263 (6)  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C22  | 0.3625 (2)   | 0.35051 (17) | 0.2078 (3) | 0.0302 (6)  |  |
| H2 0.583 (3) 0.5189 (19) 0.430 (3) 0.046 (9)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H1   | 0.918 (3)    | 0.479 (2)    | 0.562(3)   | 0.054 (10)* |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H2   | 0.583 (3)    | 0.5189 (19)  | 0.430(3)   | 0.046 (9)*  |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| O1  | 0.0229 (9)  | 0.0269 (10) | 0.0412 (10) | -0.0004 (8)  | 0.0176 (8)  | 0.0006 (8)   |
| O2  | 0.0222(8)   | 0.0362 (11) | 0.0367 (10) | -0.0024(8)   | 0.0155 (8)  | -0.0076(9)   |
| N2  | 0.0201 (10) | 0.0286 (12) | 0.0379 (12) | -0.0047(9)   | 0.0155 (9)  | -0.0050 (10) |
| N1  | 0.0197 (10) | 0.0252 (12) | 0.0355 (11) | -0.0005(9)   | 0.0156 (9)  | -0.0017 (10) |
| F4  | 0.0464 (10) | 0.0404 (10) | 0.0557 (11) | -0.0172(9)   | 0.0140 (9)  | 0.0040 (9)   |
| F5  | 0.0262 (8)  | 0.0437 (10) | 0.0501 (9)  | -0.0018(7)   | 0.0167 (7)  | -0.0203(8)   |
| F6  | 0.0196 (7)  | 0.0469 (10) | 0.0478 (9)  | 0.0001 (7)   | 0.0125 (7)  | -0.0173 (8)  |
| C1  | 0.0284 (14) | 0.0281 (15) | 0.0609 (19) | -0.0017(12)  | 0.0241 (14) | 0.0029 (14)  |
| C2  | 0.0188 (11) | 0.0237 (14) | 0.0340 (13) | 0.0021 (10)  | 0.0085 (10) | 0.0008 (11)  |
| C3  | 0.0231 (12) | 0.0240 (14) | 0.0407 (14) | -0.0012 (11) | 0.0148 (11) | 0.0035 (12)  |
| C4  | 0.0172 (11) | 0.0297 (14) | 0.0278 (12) | -0.0022(11)  | 0.0075 (10) | 0.0006 (11)  |
| C5  | 0.0204 (11) | 0.0289 (14) | 0.0366 (13) | 0.0010 (11)  | 0.0139 (11) | 0.0059 (12)  |
| C6  | 0.0244 (12) | 0.0327 (15) | 0.0378 (14) | -0.0052 (12) | 0.0126 (11) | 0.0031 (12)  |
| C7  | 0.0247 (13) | 0.0413 (17) | 0.0482 (16) | -0.0053 (13) | 0.0144 (12) | 0.0106 (14)  |
| C8  | 0.0283 (14) | 0.0485 (19) | 0.0539 (18) | 0.0021 (14)  | 0.0245 (14) | 0.0166 (15)  |
| C9  | 0.0376 (15) | 0.056(2)    | 0.0385 (15) | -0.0001(15)  | 0.0235 (13) | 0.0081 (15)  |
| C10 | 0.0254 (13) | 0.0469 (18) | 0.0321 (14) | -0.0035(13)  | 0.0114 (11) | 0.0032 (13)  |
| C11 | 0.0224 (12) | 0.0255 (14) | 0.0392 (14) | -0.0042(11)  | 0.0170 (11) | -0.0078 (12) |
| C12 | 0.0230 (12) | 0.0236 (13) | 0.0419 (14) | -0.0031 (11) | 0.0178 (11) | -0.0036 (12) |
| C13 | 0.0218 (12) | 0.0253 (14) | 0.0340 (13) | 0.0052 (11)  | 0.0123 (11) | 0.0027 (11)  |
| C14 | 0.0214 (12) | 0.0322 (14) | 0.0287 (13) | -0.0039 (11) | 0.0105 (10) | -0.0007 (11) |
| C15 | 0.0333 (14) | 0.0386 (17) | 0.0404 (15) | -0.0017(13)  | 0.0159 (13) | 0.0055 (13)  |
| C16 | 0.0382 (16) | 0.058(2)    | 0.0377 (15) | -0.0148(16)  | 0.0173 (13) | 0.0064 (15)  |

| C17 | 0.0307 (14) | 0.071(2)    | 0.0371 (16) | -0.0130(16)  | 0.0208 (13) | -0.0074 (16) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C18 | 0.0277 (14) | 0.057(2)    | 0.0376 (15) | 0.0010 (14)  | 0.0161 (12) | -0.0115 (14) |
| C19 | 0.0263 (13) | 0.0392 (16) | 0.0314 (13) | -0.0011 (12) | 0.0136 (11) | -0.0063 (12) |
| C20 | 0.0213 (12) | 0.0282 (14) | 0.0313 (13) | -0.0007 (11) | 0.0109 (10) | -0.0032 (11) |
| C21 | 0.0206 (12) | 0.0248 (13) | 0.0333 (13) | 0.0002 (11)  | 0.0099 (11) | -0.0011 (11) |
| C22 | 0.0226 (12) | 0.0306 (15) | 0.0385 (14) | -0.0002 (11) | 0.0129 (11) | -0.0045 (12) |

### Geometric parameters (Å, °)

| Geometric parameters (Å, | o)        |               |           |
|--------------------------|-----------|---------------|-----------|
| O1—C2                    | 1.249 (3) | C7—C8         | 1.389 (4) |
| O2—C21                   | 1.247 (3) | C7—H7         | 0.9500    |
| N2—C13                   | 1.328 (3) | C8—C9         | 1.376 (4) |
| N2—C12                   | 1.463 (3) | C8—H8         | 0.9500    |
| N2—H2                    | 0.88(3)   | C9—C10        | 1.390 (4) |
| N1—C4                    | 1.321 (3) | С9—Н9         | 0.9500    |
| N1—C11                   | 1.464 (3) | C10—H10       | 0.9500    |
| N1—H1                    | 0.91(3)   | C11—C12       | 1.521 (4) |
| F1—C1                    | 1.308 (5) | C11—H11A      | 0.9900    |
| F2—C1                    | 1.471 (5) | C11—H11B      | 0.9900    |
| F3—C1                    | 1.282 (6) | C12—H12A      | 0.9900    |
| F1'—C1                   | 1.405 (5) | C12—H12B      | 0.9900    |
| F2'—C1                   | 1.335 (4) | C13—C20       | 1.393 (4) |
| F3'—C1                   | 1.345 (5) | C13—C14       | 1.493 (3) |
| F1"—C1                   | 1.422 (6) | C14—C19       | 1.390 (4) |
| F2"—C1                   | 1.269 (5) | C14—C15       | 1.396 (4) |
| F3"—C1                   | 1.397 (5) | C15—C16       | 1.388 (4) |
| F4—C22                   | 1.344 (3) | C15—H15       | 0.9500    |
| F5—C22                   | 1.342 (3) | C16—C17       | 1.374 (4) |
| F6—C22                   | 1.336 (3) | C16—H16       | 0.9500    |
| C1—C2                    | 1.529 (4) | C17—C18       | 1.382 (4) |
| C2—C3                    | 1.400(3)  | C17—H17       | 0.9500    |
| C3—C4                    | 1.397 (4) | C18—C19       | 1.389 (4) |
| C3—H3                    | 0.9500    | C18—H18       | 0.9500    |
| C4—C5                    | 1.493 (3) | C19—H19       | 0.9500    |
| C5—C6                    | 1.388 (4) | C20—C21       | 1.404 (3) |
| C5—C10                   | 1.395 (4) | C20—H20       | 0.9500    |
| C6—C7                    | 1.388 (4) | C21—C22       | 1.526 (4) |
| С6—Н6                    | 0.9500    |               |           |
| C13—N2—C12               | 127.1 (2) | C9—C10—C5     | 120.0 (3) |
| C13—N2—H2                | 117 (2)   | C9—C10—H10    | 120.0     |
| C12—N2—H2                | 116 (2)   | C5—C10—H10    | 120.0     |
| C4—N1—C11                | 126.2 (2) | N1—C11—C12    | 112.2 (2) |
| C4—N1—H1                 | 118 (2)   | N1—C11—H11A   | 109.2     |
| C11—N1—H1                | 116 (2)   | C12—C11—H11A  | 109.2     |
| F3—C1—F1                 | 110.2 (4) | N1—C11—H11B   | 109.2     |
| F2'—C1—F3'               | 107.3 (4) | C12—C11—H11B  | 109.2     |
| F2"—C1—F3"               | 109.6 (4) | H11A—C11—H11B | 107.9     |
| F2'—C1—F1'               | 106.2 (3) | N2—C12—C11    | 112.3 (2) |
| F3'—C1—F1'               | 106.6 (4) | N2—C12—H12A   | 109.1     |

| F2"—C1—F1"   | 103.1 (4)  | C11—C12—H12A                  | 109.1      |
|--------------|------------|-------------------------------|------------|
| F3"—C1—F1"   | 103.7 (4)  | N2—C12—H12B                   | 109.1      |
| F3—C1—F2     | 109.4 (4)  | C11—C12—H12B                  | 109.1      |
| F1—C1—F2     | 103.4 (4)  | H12A—C12—H12B                 | 107.9      |
| F2"—C1—C2    | 118.6 (3)  | N2—C13—C20                    | 122.0(2)   |
| F3—C1—C2     | 118.8 (4)  | N2—C13—C14                    | 119.4 (2)  |
| F1—C1—C2     | 113.3 (4)  | C20—C13—C14                   | 118.6 (2)  |
| F2'—C1—C2    | 111.5 (3)  | C19—C14—C15                   | 119.6 (2)  |
| F3′—C1—C2    | 115.5 (3)  | C19—C14—C13                   | 119.4 (2)  |
| F3"—C1—C2    | 112.4 (3)  | C15—C14—C13                   | 121.0 (2)  |
| F1'—C1—C2    | 109.3 (3)  | C16—C15—C14                   | 119.7 (3)  |
| F1"—C1—C2    | 107.8 (3)  | C16—C15—H15                   | 120.2      |
| F2—C1—C2     | 100.1 (3)  | C14—C15—H15                   | 120.2      |
| O1—C2—C3     | 127.2 (2)  | C17—C16—C15                   | 120.5 (3)  |
| O1—C2—C1     | 115.1 (2)  | C17—C16—H16                   | 119.8      |
| C3—C2—C1     | 117.7 (2)  | C15—C16—H16                   | 119.8      |
| C4—C3—C2     | 122.6 (2)  | C16—C17—C18                   | 120.2 (3)  |
| C4—C3—H3     | 118.7      | C16—C17—H17                   | 119.9      |
| C2—C3—H3     | 118.7      | C18—C17—H17                   | 119.9      |
| N1—C4—C3     | 122.3 (2)  | C17—C18—C19                   | 120.2 (3)  |
| N1—C4—C5     | 119.8 (2)  | C17—C18—H18                   | 119.9      |
| C3—C4—C5     | 117.9 (2)  | C19—C18—H18                   | 119.9      |
| C6—C5—C10    | 119.6 (2)  | C14—C19—C18                   | 119.9 (3)  |
| C6—C5—C4     | 119.3 (2)  | C14—C19—H19                   | 120.1      |
| C10—C5—C4    | 121.1 (2)  | C18—C19—H19                   | 120.1      |
| C7—C6—C5     | 120.0 (3)  | C13—C20—C21                   | 122.5 (2)  |
| C7—C6—H6     | 120.0      | C13—C20—H20                   | 118.7      |
| C5—C6—H6     | 120.0      | C21—C20—H20                   | 118.7      |
| C6—C7—C8     | 120.1 (3)  | O2—C21—C20                    | 127.1 (2)  |
| C6—C7—H7     | 120.0      | O2—C21—C22                    | 114.4 (2)  |
| C8—C7—H7     | 120.0      | C20—C21—C22                   | 118.6 (2)  |
| C9—C8—C7     | 120.2 (2)  | F6—C22—F5                     | 106.5 (2)  |
| C9—C8—H8     | 119.9      | F6—C22—F4                     | 106.8 (2)  |
| C7—C8—H8     | 119.9      | F5—C22—F4                     | 106.5 (2)  |
| C8—C9—C10    | 120.1 (3)  | F6—C22—C21                    | 110.9 (2)  |
| C8—C9—H9     | 119.9      | F5—C22—C21                    | 114.9 (2)  |
| C10—C9—H9    | 119.9      | F4—C22—C21                    | 110.7 (2)  |
|              | 117.7      | 14 622 621                    | 110.7 (2)  |
| F2"—C1—C2—O1 | 27.6 (6)   | C7—C8—C9—C10                  | 0.6 (5)    |
| F3—C1—C2—O1  | -167.4 (4) | C8—C9—C10—C5                  | -0.5(5)    |
| F1—C1—C2—O1  | -35.7 (5)  | C6—C5—C10—C9                  | -0.4(4)    |
| F2'—C1—C2—O1 | 52.0 (4)   | C4—C5—C10—C9                  | -179.2 (3) |
| F3'—C1—C2—O1 | 174.8 (5)  | C4—N1—C11—C12                 | -104.0 (3) |
| F3"—C1—C2—O1 | 157.3 (4)  | C13—N2—C12—C11                | -103.8 (3) |
| F1'—C1—C2—O1 | -65.0 (5)  | N1—C11—C12—N2                 | 66.1 (3)   |
| F1"—C1—C2—O1 | -89.0 (5)  | C12—N2—C13—C20                | 175.8 (2)  |
| F2—C1—C2—O1  | 73.7 (4)   | C12—N2—C13—C20 C12—N2—C13—C14 | -3.7(4)    |
| F2"—C1—C2—C3 | -152.8 (5) | N2—C13—C14—C19                | 118.6 (3)  |
| F3—C1—C2—C3  | 12.2 (5)   | C20—C13—C14—C19               | -60.9 (3)  |
| 13 01 02-03  | 12.2 (3)   | 020 013 -014019               | 00.7 (3)   |

| F1—C1—C2—C3  | 144.0 (4)  | N2—C13—C14—C15  | -62.2(3)  |
|--------------|------------|-----------------|-----------|
| F2'—C1—C2—C3 | -128.3 (4) | C20—C13—C14—C15 | 118.2 (3) |
| F3'—C1—C2—C3 | -5.5(5)    | C19—C14—C15—C16 | -1.9(4)   |
| F3"—C1—C2—C3 | -23.1 (5)  | C13—C14—C15—C16 | 179.0(2)  |
| F1'—C1—C2—C3 | 114.7 (5)  | C14—C15—C16—C17 | 0.2(4)    |
| F1"—C1—C2—C3 | 90.7 (5)   | C15—C16—C17—C18 | 0.7 (4)   |
| F2—C1—C2—C3  | -106.6 (4) | C16—C17—C18—C19 | 0.1 (4)   |
| O1—C2—C3—C4  | -1.7(4)    | C15—C14—C19—C18 | 2.7 (4)   |
| C1—C2—C3—C4  | 178.7 (2)  | C13—C14—C19—C18 | -178.2(2) |
| C11—N1—C4—C3 | 173.6 (2)  | C17—C18—C19—C14 | -1.8(4)   |
| C11—N1—C4—C5 | -6.8(4)    | N2—C13—C20—C21  | 0.3 (4)   |
| C2—C3—C4—N1  | 2.8 (4)    | C14—C13—C20—C21 | 179.8 (2) |
| C2—C3—C4—C5  | -176.9(2)  | C13—C20—C21—O2  | -0.7(4)   |
| N1—C4—C5—C6  | 116.6 (3)  | C13—C20—C21—C22 | 179.8 (2) |
| C3—C4—C5—C6  | -63.7(3)   | O2—C21—C22—F6   | 56.6 (3)  |
| N1—C4—C5—C10 | -64.5(3)   | C20—C21—C22—F6  | -123.8(3) |
| C3—C4—C5—C10 | 115.1 (3)  | O2—C21—C22—F5   | 177.4 (2) |
| C10—C5—C6—C7 | 1.2 (4)    | C20—C21—C22—F5  | -3.0(4)   |
| C4—C5—C6—C7  | -179.9(2)  | O2—C21—C22—F4   | -61.8(3)  |
| C5—C6—C7—C8  | -1.1 (4)   | C20—C21—C22—F4  | 117.7 (3) |
| C6—C7—C8—C9  | 0.2 (5)    |                 |           |
|              |            |                 |           |

### Hydrogen-bond geometry (Å, °)

| D— $H$ ··· $A$            | <i>D</i> —H | $H\cdots A$ | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|---------------------------|-------------|-------------|-----------|-------------------------|
| N1—H1···O1                | 0.91(3)     | 2.02(3)     | 2.719 (3) | 133 (3)                 |
| N1—H1···O1 <sup>i</sup>   | 0.91(3)     | 2.28 (3)    | 2.997 (3) | 135 (3)                 |
| N2—H2···O2                | 0.88(3)     | 2.02(3)     | 2.709(3)  | 134 (3)                 |
| N2—H2····O2 <sup>ii</sup> | 0.88(3)     | 2.33 (3)    | 3.039 (3) | 137 (3)                 |

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.