CORRIGÉ DS Nº3

Idéaux de $\mathcal{M}_n(\mathbb{R})$. Bases stables de $\mathcal{M}_n(\mathbb{R})$ d'après ESIM 2002 (parties I à V) et ENSAE 1983 (partie VI.)

I) Résultats préliminaires.

Rem : Il s'agissait ici de questions de cours, que l'on demandait explicitement de (re)démontrer. Pour cette raison, les démonstrations suivantes seront un peu abrégées...

- 1°) a) Il s'agit ici du théorème de la base incomplète (après avoir noté que dim Keru = n r).
 - b) Il s'agit ici du théorème d'isomorphisme : la restriction de u à tout supplémentaire du noyau réalise un isomorphisme de ce supplémentaire sur Im u.
 - c) $(u(e_1), u(e_2), \dots, u(e_r))$ est une base de $\operatorname{Im} u$ donc une famille libre de \mathbb{R}^n , que l'on peut compléter en une base de \mathbb{R}^n ; notons-là $\mathcal{B}' = (u(e_1), u(e_2), \dots, u(e_r), e'_{r+1}, \dots, e'_n)$. La matrice de u dans les bases $\mathcal{B} = (e_1, e_2, \dots, e_n)$ et \mathcal{B}' est $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$; si \mathcal{B}_c est la base canonique de \mathbb{R}^n , P la matrice de passage de \mathcal{B}_c à \mathcal{B} et Q celle de \mathcal{B}_c à \mathcal{B}' , on a alors, d'après le cours : $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} = Q^{-1}AP$, donc A est bien équivalente à $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.
- 2°) a) Si A est équivalente à B, $\operatorname{rg}(A) = \operatorname{rg}(B)$ car le rang d'une matrice est inchangé lorsqu'on la multiplie par une matrice inversible.

 Réciproquement, si $\operatorname{rg}(A) = \operatorname{rg}(B)$, A et B sont toutes deux équivalentes à $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ d'après la question précédente donc équivalentes entre elles par transitivité.
 - **b)** Découle de ce qui précède, car rg(D) = r = rg(A).

II) Application.

- 1°) On a : $\forall A \in \mathcal{M}_n(\mathbb{R})$, $f(A) = f(A.I_n) = f(A)f(I_n)$. f n'étant pas l'application nulle, il existe A telle que $f(A) \neq 0$, donc on déduit de l'égalité ci-dessus : $f(I_n) = 1$. Par suite, si A est inversible, $1 = f(I_n) = f(A.A^{-1}) = f(A)f(A^{-1})$ donc $f(A) \neq 0$.
- 2°) a) On choisit pour A_i ($1 \le i \le r$) une matrice diagonale dont les r+1 premiers éléments diagonaux sont égaux à 1, à l'exception du i-ème, et dont tous les autres éléments diagonaux sont nuls (c'est possible car r < n). A_i est de rang r donc équivalente à A; puisque le produit de matrices diagonales est une matrice diagonale dont les éléments diagonaux sont les produits des éléments diagonaux de ces matrices, on a bien $A_1A_2...A_{r+1}=0$.
 - b) On a , pour toute $A \in \mathcal{M}_n(\mathbb{R})$: $f(0_n) = f(A.0_n) = f(A)f(0_n)$. Puisqu'il existe A telle que $f(A) \neq 1$, on en déduit $f(0_n) = 0$. D'où $f(A_1A_2...A_{r+1}) = f(A_1)f(A_2)...f(A_{r+1}) = 0$, donc l'un des $f(A_i)$ est nul ; A étant équivalente à A_i , $A = PA_iQ$ avec P, Q inversibles, d'où $f(A) = f(P)f(A_i)f(Q) = 0$.

3°) Facilement : $f(A) \neq 0 \Leftrightarrow A$ inversible. Un exemple de telle application est le déterminant!

III) Idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$.

- 1°) Si $I_n \in \mathcal{J}$ alors : $\forall A \in \mathcal{M}_n(\mathbb{R})$, $A = A.I_n \in \mathcal{J}$ donc $\mathcal{M}_n(\mathbb{R}) \subset \mathcal{J}$ d'où $\mathcal{J} = \mathcal{M}_n(\mathbb{R})$.
- **2°)** Si \mathcal{J} contient une matrice inversible A, il contient alors $I_n = AA^{-1}$ donc $\mathcal{J} = \mathcal{M}_n(\mathbb{R})$ d'après la question précédente.
- 3°) a) A est équivalente à $J_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$, donc il existe P,Q inversibles telles que $J_r = PAQ$. Or $A \in \mathcal{J}$ et \mathcal{J} est un idéal à droite donc $AQ \in \mathcal{J}$ puis, étant aussi un idéal à gauche $PAQ \in \mathcal{J}$. Finalement : $J_r \in \mathcal{J}$.
 - b) Pour tout $i \in [1, n-r+1]$, soit A_i la matrice diagonale dont les r-1 premiers termes ainsi que le (r-1+i)-ème sur la diagonale sont égaux à 1, les autres étant nuls. Chaque A_i est de rang r, donc équivalente à A, et $A_1 + A_2 + \ldots + A_{n-r+1}$ est une matrice diagonale à éléments diagonaux non nuls, donc inversible.
- **4°)** Soit \mathcal{J} un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$. Alors :
 - soit $\mathcal{J} = \{0\}$
 - soit il existe dans \mathcal{J} une matrice A de rang $r \geq 1$; on construit alors comme dans la question précédente des matrices A_i , équivalentes à A, telles que $A_1 + A_2 + \ldots + A_{n-r+1}$ soit inversible. Les A_i étant équivalentes à A appartiennent à \mathcal{J} (comme dans 3.a), et, $(\mathcal{J}, +)$ étant un sousgroupe de $(\mathcal{M}_n(\mathbb{R}), +)$, leur somme appartient encore à \mathcal{J} . Ainsi, \mathcal{J} contient une matrice inversible, donc est égal à $\mathcal{M}_n(\mathbb{R})$.

En conclusion, les seuls idéaux bilatères de $\mathcal{M}_n(\mathbb{R})$ sont : $\{0\}$ et $\mathcal{M}_n(\mathbb{R})$.

IV) Idéaux à droite de $\mathcal{M}_n(\mathbb{R})$.

- 1°) \mathcal{J}_{E} est non vide car il contient la matrice nulle.
 - Si $A, B \in \mathcal{J}_{E}$, alors $A B \in \mathcal{J}_{E}$ car $\operatorname{Im}(A B) \subset \operatorname{Im}(A) + \operatorname{Im}(B) \subset E$ (ainsi, \mathcal{J}_{E} est un sous-groupe de $(\mathcal{M}_{n}(\mathbb{R}), +)$).
 - Enfin, si $M \in \mathcal{M}_n(\mathbb{R})$ et $A \in \mathcal{J}_E$, alors $\operatorname{Im}(AM) \subset \operatorname{Im}(A) \subset E$ donc $AM \in \mathcal{J}_E$. Cela prouve que : \mathcal{J}_E est un idéal à droite de $\mathcal{M}_n(\mathbb{R})$.
- 2°) a) C'est le théorème d'isomorphisme (ici, sous forme matricielle)...
 - **b)** Pour tout $i \in [1, q]$, $Be_i \in Im(B) \subset Im(A)$. D'après la question précédente, il existe un et un seul ε_i de S tel que $Be_i = \phi(\varepsilon_i)$ soit $A\varepsilon_i = Be_i$.
 - c) Pour tout $i \in [1, q]$, $Be_i = A\varepsilon_i = A(Ce_i)$ car Ce_i représente la i-ème colonne de C, i.e ε_i . D'où B = AC.
- 3°) a) L'image d'une matrice est le sous-espace vectoriel engendré par ses colonnes. On a donc, avec des notations évidentes :

$$Im(D) = Vect(D_1, \dots, D_{2n}) = Vect(A_1, \dots, A_n, B_1, \dots, B_n)$$

= $Vect(A_1, \dots, A_n) + Vect(B_1, \dots, B_n) = Im(A) + Im(B).$

On peut aussi démontrer ce résultat en utilisant le produit par blocs :

$$\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = AX_1 + BX_2, \text{ avec } X_1, X_2 \in \mathcal{M}_{(n,1)}(\mathbb{R}).$$

- b) Puisque $\operatorname{Im}(C) \subset \operatorname{Im}(A) + \operatorname{Im}(B) = \operatorname{Im}(D)$, il suffit d'appliquer directement IV.2!
- c) $W \in \mathcal{M}_{(2n,n)}(\mathbb{R})$ s'écrit par blocs : $W = \begin{bmatrix} U \\ V \end{bmatrix}$ avec $U, V \in \mathcal{M}_n(\mathbb{R})$. L'égalité C = DWdonne alors : $C = [AB] \begin{bmatrix} U \\ V \end{bmatrix} = AU + BV$
- **4**°) a) L'ensemble des rangs des matrices $M \in \mathcal{J}$ est un ensemble non vide d'entiers, majoré par n; il admet donc un plus grand élément r, d'où les résultats.
 - b) Soit $F = \operatorname{Im}(M) + \operatorname{Im}(M_0)$. On peut toujours trouver $P \in \mathcal{M}_n(\mathbb{R})$ telle que $\operatorname{Im}(P) = F$ (par exemple, une projection sur F). On a alors: $\operatorname{Im}(P) = \operatorname{Im}(M) + \operatorname{Im}(M_0)$ et, d'après la question précédente, il existe $U, V \in \mathcal{M}_n(\mathbb{R})$ telles que $P = MU + M_0V$ \mathcal{J} étant un idéal à droite, $MU \in \mathcal{J}$ et $M_0V \in \mathcal{J}$ donc $P \in \mathcal{J}$. $\operatorname{Or} \operatorname{rg}(P) = \dim(F) = \dim(\operatorname{Im}(M) + \operatorname{Im}(M_0)) > r$ puisque $\operatorname{Im}(M)$ n'est pas contenue dans $\operatorname{Im}(M_0)$, ce qui contredit la définition de r. En conclusion, pour tout $M \in \mathcal{J}$, $\operatorname{Im}(M) \subset \operatorname{Im}(M_0)$, soit $\mathcal{J} \subset \mathcal{J}_{\operatorname{Im}(M_0)}$
- 5°) Réciproquement, si $M \in \mathcal{J}_{Im(M_0)}$, on a $Im(M) \subset Im(M_0)$. D'après IV.2, il existe $C \in \mathcal{M}_n(\mathbb{R})$ telle que $M = M_0C$. Puisque $M_0 \in \mathcal{J}$ et que \mathcal{J} est un idéal à droite, on a $M \in \mathcal{J}$, soit l'inclusion inverse et finalement : $\mathcal{J} = \mathcal{J}_{\mathrm{Im}(\mathcal{M}_n)}$.
- 6°) Conclusion : les idéaux à droite de $\mathcal{M}_n(\mathbb{R})$ sont les parties de la forme : $\mathcal{J}_{\mathrm{E}} = \{ A \in \mathcal{M}_n(\mathbb{R}) / E \text{ contient } \mathrm{Im}(A) \}.$ où E est un sous-espace vectoriel quelconque de $\mathcal{M}_{(n,1)}(\mathbb{R})$ (pour $E = \{0\}$, $\mathcal{J}_{E} = \{0\}$ et, pour $E = \mathcal{M}_{(n,1)}(\mathbb{R}), \ \mathcal{J}_{E} = \mathcal{M}_{n}(\mathbb{R}) : \text{c'est le cas des idéaux bilatères}.$

V) Idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$.

- 1°) $\mathcal{K}_{\mathrm{F}} \neq \emptyset$ car la matrice nulle appartient à \mathcal{K}_{F} .
 - Si $A, B \in \mathcal{K}_F$, $A B \in \mathcal{K}_F$ puisque $E \subset \operatorname{Ker}(A)$ et $E \subset \operatorname{Ker}(B)$ impliquent facilement $E \subset \operatorname{Ker}(A-B)$. Ainsi, \mathcal{K}_{F} est un sous-groupe de $(\mathcal{M}_{n}(\mathbb{R}), +)$.
 - Enfin, si $M \in \mathcal{M}_n(\mathbb{R})$ et $A \in \mathcal{K}_F$, $\operatorname{Ker}(A) \subset \operatorname{Ker}(MA)$ donc $MA \in \mathcal{K}_F$. Cela prouve que : \mathcal{K}_{F} est un idéal à gauche de $\mathcal{M}_{n}(\mathbb{R})$.
- 2°) a) Soir r = rg(u) et s = rg(v). Puisque $Ker(u) \subset Ker(v)$, on a $r \geqslant s$. Soit $(e_{r+1}, e_{r+2}, \dots, e_n)$ une base de Ker(u), que l'on complète en une base $(e_{s+1}, \dots, e_{r+1}, \dots, e_n)$ de Ker(v), que l'on complète ensuite en une base (e_1, \ldots, e_n) de \mathbb{R}^n . On sait que $(u(e_1), u(e_2), \dots, u(e_r))$ est une base de Im(u) (cf. I.1); on la complète alors en une base $(u(e_1), \ldots, u(e_r), e'_{r+1}, \ldots, e'_p)$ de \mathbb{R}^p .

On sait alors que l'on peut définir une application linéaire
$$w$$
 de \mathbb{R}^p dans \mathbb{R}^q par :
$$\begin{cases} \forall i \in [\![1,r]\!] &, & w[u(\mathbf{e}_i)] = v(\mathbf{e}_i) \\ \forall i \in [\![r+1,p]\!] &, & w(\mathbf{e}_i') = 0 \end{cases}$$

On a alors:

 $\begin{cases} \forall i \in [1, r] &, \quad w \circ u(\mathbf{e}_i) = v(\mathbf{e}_i) \\ \forall i \in [r+1, n] &, \quad w \circ u(\mathbf{e}_i) = w(0) = 0 = v(\mathbf{e}_i) \quad (\text{car alors } \mathbf{e}_i \in \text{Ker}(u) \subset \text{Ker}(v)) \end{cases}$

On en déduit : $w \circ u = v$.

- b) Il s'agit de la traduction matricielle du résultat précédent!
- 3°) Soit $D = \begin{bmatrix} A \\ B \end{bmatrix} \in \mathcal{M}_{(2n,n)}(\mathbb{R})$, et $X \in \mathcal{M}_{(n,1)}(\mathbb{R})$. Alors:

$$DX = 0 \Leftrightarrow \begin{bmatrix} A \\ B \end{bmatrix} X = 0 \Leftrightarrow \begin{bmatrix} AX \\ BX \end{bmatrix} = 0 \Leftrightarrow AX = BX = 0 \Leftrightarrow X \in \text{Ker}(A) \cap \text{Ker}(B).$$

Donc $\operatorname{Ker}(D) \subset \operatorname{Ker}(C)$. D'après la question précédente, il existe $W \in \mathcal{M}_{(n,2n)}(\mathbb{R})$ telle que C = WD. En écrivant $W = [U \ V]$ avec $U, V \in \mathcal{M}_n(\mathbb{R})$, on obtient :

$$C = [U \ V] \begin{bmatrix} A \\ B \end{bmatrix} = UA + VB$$

- 4°) Il n'y avait plus ici d'indications; il fallait donc s'inspirer de la méthode utilisée dans la partie précédente.
 - Soit \mathcal{K} un idéal à gauche de $\mathcal{M}_n(\mathbb{R})$. Soit r la plus petite des dimensions des $\mathrm{Ker}(M)$ lorsque M décrit \mathcal{K} , et $M_0 \in \mathcal{K}$ tel que dim $(\text{Ker}(M_0)) = r$.

Soit $M \in \mathcal{K}$. Montrons que $\operatorname{Ker}(M_0) \subset \operatorname{Ker}(M)$. Par l'absurde, si on n'a pas cette inclusion, alors $Ker(M) \cap Ker(M_0)$ est inclus *strictement* dans $Ker(M_0)$, donc de dimension $\langle r \rangle$; soit alors $P \in \mathcal{M}_n(\mathbb{R})$ dont le noyau est $\operatorname{Ker}(M) \cap \operatorname{Ker}(M_0)$ (par exemple, le noyau d'une projection). Puisque $\operatorname{Ker}(P) = \operatorname{Ker}(M) \cap \operatorname{Ker}(M_0)$, il existe $U, V \in \mathcal{M}_n(\mathbb{R})$ telles que $P = UM + VM_0$ d'après la question précédente. M et M_0 étant éléments de \mathcal{K} , idéal à gauche, on en déduit $P \in \mathcal{K}$. Mais dim(Ker(P)) < r, ce qui contredit le choix de r.

Ainsi :
$$\forall M \in \mathcal{K}$$
, $\operatorname{Ker}(M_0) \subset \operatorname{Ker}(M)$ soit $\mathcal{K} \subset \mathcal{K}_{\operatorname{Ker}(M_0)}$.

- Réciproquement, si $M \in \mathcal{K}_{\mathrm{Ker}(M_0)}$, alors $\mathrm{Ker}(M_0) \subset \mathrm{Ker}(M)$, donc, d'après V.2.b, il existe $C \in \mathcal{M}_n(\mathbb{R})$ telle que $M = CM_0$. K étant un idéal à gauche, on a $M \in \mathcal{K}$ d'où l'inclusion inverse : $\mathcal{K}_{\text{Ker}(M_0)} \subset \mathcal{K}$.
- Conclusion : Les idéaux à gauche de $\mathcal{M}_n(\mathbb{R})$ sont les parties de la forme :

$$\mathcal{K}_{\mathrm{F}} = \{ M \in \mathcal{M}_n(\mathbb{R}) / \operatorname{Ker}(M) \text{ contient } \mathrm{F} \}.$$

où F est un sous-espace vectoriel quelconque de $\mathcal{M}_{(n,1)}(\mathbb{R})$ (pour $F=\{0\}, \mathcal{K}_F=\mathcal{M}_n(\mathbb{R})$ et, pour $F = \mathcal{M}_{(n,1)}(\mathbb{R}), \mathcal{K}_F = \{0\}$: c'est le cas des idéaux bilatères).

Remarque (pour les 5/2): En fait, tous les résultats du V. peuvent se déduire presque immédiatement de ceux du IV.

En effet, lorsqu'on munit \mathbb{R}^n de sa structure euclidienne canonique, si A est la matrice canoniquement associée à l'endomorphisme a, soit A^* celle canoniquement associée à l'adjoint a^* de a. À tout idéal à gauche \mathcal{K} de $\mathcal{M}_n(\mathbb{R})$, on peut associer la partie $\mathcal{K}^* = \{M^*, M \in \mathcal{K}\}$. Il est alors facile de vérifier que \mathcal{K}^* est un idéal à droite (car $(MA)^* = A^*M^*$). On a alors, puisque $\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^*) \text{ et } \operatorname{Im}(A) \subset E \Leftrightarrow E^{\perp} \subset \operatorname{Ker}(A^*), \ \mathcal{J}_{\operatorname{E}} = \mathcal{K}_{E^{\perp}}^* \ etc...$

5°) • Soit $M \in \mathcal{K}_F \cap \mathcal{J}_E$; alors $F \subset \operatorname{Ker}(M)$ et $\operatorname{Im}(M) \subset E$. Soit u l'endomorphisme canoniquement associé à M. En identifiant \mathbb{R}^n et $\mathcal{M}_{(n,1)}(\mathbb{R})$, si $p = \dim(F)$ et $q = \dim(E)$, on peut trouver une base $\mathcal{B} = (e_1, \dots, e_n)$ de \mathbb{R}^n telle que (e_1, \dots, e_p) soit une base de F et une base $\mathcal{B}'=(e_1',\ldots,e_n')$ de \mathbb{R}^n telle que (e_1',\ldots,e_q') soit une base de E. La matrice de u dans les bases

 \mathcal{B} et \mathcal{B}' est alors de la forme $\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}$ où $B \in \mathcal{M}_{(q,n-p)}(\mathbb{R})$.

Réciproquement, si u a une matrice de cette forme dans les bases \mathcal{B} et \mathcal{B}' , il est facile de vérifier que $F \subset \operatorname{Ker}(u)$ et $\operatorname{Im}(u) \subset E$. L'application qui, à tout endomorphisme u de \mathbb{R}^n associe sa matrice dans les bases \mathcal{B} et \mathcal{B}' étant un isomorphisme d'espaces vectoriels, on en déduit que $\mathcal{K}_{\mathrm{F}} \cap \mathcal{J}_{\mathrm{E}}$ est isomorphe au sous-espace vectoriel de $\mathcal{M}_{n}(\mathbb{R})$ formé des matrices de la forme $\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix}$ où $B \in \mathcal{M}_{(q,n-p)}(\mathbb{R})$, donc à $\mathcal{M}_{(q,n-p)}(\mathbb{R})$.

$$\begin{bmatrix} 0 & B \\ 0 & 0 \end{bmatrix} \text{ où } B \in \mathcal{M}_{(q,n-p)}(\mathbb{R}), \text{ donc à } \mathcal{M}_{(q,n-p)}(\mathbb{R})$$

 $\overline{\text{Ainsi}}: \dim(\mathcal{K}_{F} \cap \mathcal{J}_{E}) = q(n-p) = \dim(E) \times (n - \dim(F)).$

• Si \mathcal{J} est un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$, il existe E et F sous-espaces vectoriels de $\mathcal{M}_{(n,1)}(\mathbb{R})$ tels que $\mathcal{J} = \mathcal{K}_F = \mathcal{J}_E$.

Or, dans le cas particulier $F = \{0\}$, on a $\mathcal{K}_F = \mathcal{M}_n(\mathbb{R})$ ce qui donne $\dim(\mathcal{J}_E) = n \dim(E)$. On a donc ici : $\mathcal{K}_F \cap \mathcal{J}_E = \mathcal{J}_E$ d'où $\dim(E) \times (n - \dim(F)) = n \dim(E)$ d'où $E = \{0\}$ ou $F = \{0\}$. On obtient donc $\mathcal{J} = \mathcal{M}_n(\mathbb{R})$ ou $\mathcal{J} = \{0\}$.

VI) Application : bases stables de $\mathcal{M}_n(\mathbb{R})$.

- 1°) Un exemple de base stable est évidemment la base canonique de $\mathcal{M}_n(\mathbb{R})$ (car $E_{ij}E_{kl}=\delta_{jk}E_{il}$).
- **2°)** a) Soient $B \in \mathcal{B}$ et $A \in \mathcal{B}'$. Ker $(A) \subset \text{Ker}(BA)$ donc, d'après le théorème du rang, $\operatorname{rg}(A) \geqslant \operatorname{rg}(BA)$, soit $\operatorname{rg}(BA) \leqslant r$. Puisque $BA \in \mathcal{B}$, on a donc, par définition de r: BA = 0 ou $BA \in \mathcal{B}'$.
 - Soient $B \in \mathcal{B}$ et $A \in \mathcal{B}'$. $Im(AB) \subset Im(A)$ donc $rg(AB) \leq rg(A) = r$, et, puisque $AB \in \mathcal{B}$, AB = 0 ou $AB \in \mathcal{B}'$.
 - **b)** Notons $\mathcal{B}' = (E_1, \dots, E_s)$ et $\mathcal{B} = (E_1, \dots, E_{n^2})$ $(s \leqslant n^2 = \dim(\mathcal{M}_n(\mathbb{R})))$. Notons $\mathcal{J} = \operatorname{Vect}(\mathcal{B}')$.

 \mathcal{J} est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, donc, en particulier, $(\mathcal{J}, +)$ est un sous-groupe de $(\mathcal{M}_n(\mathbb{R}), +)$.

Soit
$$M \in \mathcal{J}$$
, $M = \sum_{i=1}^{s} \lambda_i E_i$, et soit $A \in \mathcal{M}_n(\mathbb{R})$, $A = \sum_{j=1}^{n^2} \mu_j E_j$. On a : $MA = \sum_{j=1}^{n^2} \mu_j E_j$.

$$\sum_{i=1}^{s} \sum_{j=1}^{n^2} \lambda_i \mu_j E_i E_j \text{ et } AM = \sum_{i=1}^{s} \sum_{j=1}^{n^2} \lambda_i \mu_j E_j E_i \text{ . Or, pour } i \in [\![1,s]\!] \text{ et } j \in [\![1,n^2]\!], E_i E_j \text{ et }$$

 $E_j E_i$ appartiennent à $\mathcal{B}' \cup \{0\}$ d'après la question précédente, donc AM et MA appartiennent à $\text{Vect}(\mathcal{B}') = \mathcal{J}$.

Ainsi, \mathcal{J} est un idéal bilatère de $\mathcal{M}_n(\mathbb{R})$, non réduit à $\{0\}$. D'après III.4, $\mathcal{J} = \mathcal{M}_n(\mathbb{R})$, d'où $\operatorname{Vect}(\mathcal{B}') = \mathcal{M}_n(\mathbb{R})$.

- \mathcal{B}' est donc une base de $\mathcal{M}_n(\mathbb{R})$, donc $\operatorname{card}(\mathcal{B}') = n^2 = \operatorname{card}(\mathcal{B})$ d'où $\mathcal{B}' = \mathcal{B}$.
- 3°) a) Cela a déjà été fait en classe, de plusieurs manières... C'était aussi dans le DS précédent... Je rappelle ici, brièvement, la démonstration matricielle : Si M vérifie la relation de l'énoncé, alors, pour tout $(i,j) \in [\![1,n]\!]^2$, $ME_{ij} = E_{ij}M$ (où (E_{ij}) est la base canonique de $\mathcal{M}_n(\mathbb{R})$). En écrivant $M = \sum_{k,l} m_{kl} E_{kl}$, on obtient : $ME_{ij} = \sum_{k=1}^n m_{ki} E_{kj}$ et $E_{ij}M = \sum_{k} m_{kl} E_{kl}$

 $\sum_{l=1}^{n} m_{jl} E_{il}$ d'où l'on déduit M scalaire...

- b) Si on avait r=n, toutes les matrices de \mathcal{B} seraient inversibles. Donc, si $A, B \in \mathcal{B}$, on a $AB \in \mathcal{B}$ (le cas AB=0 étant impossible). L'application $B \mapsto AB$ est injective de \mathcal{B} dans \mathcal{B} (car $AB=AB' \Rightarrow A^{-1}AB=A^{-1}AB' \Rightarrow B=B'$); \mathcal{B} étant de cardinal fini, cette application est bijective de \mathcal{B} dans \mathcal{B} . On a donc: $MB=\left(\sum_{A\in\mathcal{B}}A\right)B=\sum_{A\in\mathcal{B}}AB=\sum_{A\in\mathcal{B}}C=M$, et, de même, BM=M.
- c) Conclusion: \mathcal{B} étant une base de $\mathcal{M}_n(\mathbb{R})$, on aurait alors: $\forall N \in \mathcal{M}_n(\mathbb{R})$, MN = NM. D'après 3.a, il existe $\lambda \in \mathbb{R}$ tel que $M = \lambda I_n$, d'où, d'après 3.b, $\forall B \in \mathcal{B}$, $\lambda B = \lambda I_n$. Or, on ne peut avoir $\lambda = 0$, car \mathcal{B} est libre, donc $\sum_{A \in \mathcal{B}} A \neq 0$. On en déduit $\mathcal{B} = \{I_n\}$, ce

qui est impossible puisque l'on a supposé $n \ge 2$. Ainsi : r < n.

 $4^{\circ})$ a) • Si $A \in \mathcal{B}_{E}$, Im(A) = E donc $A \in \mathcal{J}_{E}$ et, par suite, Vect $(\mathcal{B}_{E}) \subset \mathcal{J}_{E}$.

> D'autre part, soit $A \in \mathcal{B}_{E}$, et $M \in \mathcal{J}_{E}$. Puisque $\operatorname{Im}(M) \subset E = \operatorname{Im}(A)$, il existe $C \in \mathcal{M}_{n}(\mathbb{R})$ telle que M = AC (d'après IV.2.c).

> Puisque \mathcal{B} est une base de $\mathcal{M}_n(\mathbb{R})$, on peut écrire $C = \sum_{B \in \mathcal{B}} \lambda_B B$. On a alors, pour $B \in \mathcal{B}$,

soit AB=0, soit $AB\in\mathcal{B}$ et dans ce cas $\operatorname{rg}(AB)=r=\dim(E)=\dim(\operatorname{Im} A)$ d'où $\operatorname{Im}(AB) = \operatorname{Im}(A) = E$ et $AB \in \mathcal{B}_{E}$. Donc $M = AC = \sum_{B \in \mathcal{B}} \lambda_{B} AB$ appartient en fait à

 $Vect(\mathcal{B}_{E})$, ce qui démontre l'inclusion réciproque : $\mathcal{J}_{E} \subset Vect(\mathcal{B}_{E})$.

- Je vous laisse le soin de démontrer de façon tout à fait similaire (on utilise ici V.2b) que : $Vect(\mathcal{B}^F) = \mathcal{K}_F$
- b) Il est clair que $(\mathcal{B}_{E})_{E\in\mathcal{E}}$ est une partition de \mathcal{B} . Donc $\mathcal{M}_n(\mathbb{R}) = \operatorname{Vect}(\mathcal{B}) = \bigoplus_{E \in \mathcal{E}} \operatorname{Vect}(\mathcal{B}_E) = \bigoplus_{E \in \mathcal{E}} \mathcal{J}_E.$
- c) On peut donc écrire : $I_n = \sum_{E \in \mathcal{E}} M_E$ avec $M_E \in \mathcal{J}_E$. Donc, pour tout $X \in \mathcal{M}_{(n,1)}(\mathbb{R})$,

$$X = \sum_{E \in \mathcal{E}} M_E X, \text{ et } M_E X \in \operatorname{Im}(M_E) \subset E, \text{ donc } X \in \sum_{E \in \mathcal{E}} E \text{ donc } \mathcal{M}_{(n,1)}(\mathbb{R}) = \sum_{E \in \mathcal{E}} E.$$

De plus, $\dim(\mathcal{M}_n(\mathbb{R})) = n^2 = \sum_{E \in \mathcal{E}} \dim(\mathcal{J}_E) = \sum_{E \in \mathcal{E}} n \dim(E) \text{ (cf. V.5) donc } n = \dim(\mathcal{M}_{(n,1)}(\mathbb{R})) = n^2$

 $\sum_{\mathbb{R} = \mathcal{C}} \dim(E), \text{ ce qui prouve que la somme est directe et } : \mathcal{M}_{(n,1)}(\mathbb{R}) = \bigoplus E.$

- a) $(\mathcal{B}_{E})_{E\in\mathcal{E}}$ étant une partition de \mathcal{B} , $(\mathcal{B}_{E}\cap\mathcal{B}^{F})_{E\in\mathcal{E}}$ est une partition de \mathcal{B}^{F} qui est une base 5°) de \mathcal{K}_{F} (libre, car incluse dans \mathcal{B} , et génératrice d'après VI.4.a), d'où le résultat.
 - b) Notons déjà, d'après VI.4.a : $Vect(\mathcal{B}_E \cap \mathcal{B}^F) \subset \mathcal{K}_F \cap \mathcal{J}_E$.

D'autre part, la somme des $\mathcal{K}_F \cap \mathcal{J}_E$, lorsque E décrit \mathcal{E} , est directe puisque la somme des \mathcal{J}_{E} l'est, et elle est évidemment incluse dans \mathcal{K}_{F} , ce qui donne l'inégalité : $\sum_{i} \dim(\mathcal{K}_{F} \cap \mathcal{J}_{E}) \leqslant \dim(\mathcal{K}_{F}).$

$$\sum_{F} \dim(\mathcal{K}_{F} \cap \mathcal{J}_{E}) \leqslant \dim(\mathcal{K}_{F})$$

On a donc finalement, en utilisant le résultat de la question précédente :
$$\dim(\mathcal{K}_F) = \sum_{E \in \mathcal{E}} \dim(\operatorname{Vect}(\mathcal{B}_E \cap \mathcal{B}^F)) \leqslant \sum_{E \in \mathcal{E}} \dim(\mathcal{K}_F \cap \mathcal{J}_E) \leqslant \dim(\mathcal{K}_F)$$

donc toutes ces inégalités sont en fait des égalités, soit :

 $\dim(\mathcal{K}_{\mathrm{F}} \cap \mathcal{J}_{\mathrm{E}}) = \dim(\mathrm{Vect}(\mathcal{B}_{\mathrm{E}} \cap \mathcal{B}^{\mathrm{F}}))$, puis finalement l'égalité de ces deux sous-espaces vectoriels.

- a) Soit $A \in \mathcal{B}_{E} \cap \mathcal{B}^{F}$. On a donc : soit $A^{2} = 0$, soit $A^{2} \in \mathcal{B}$, et dans ce dernier cas, $rg(A^{2}) =$ r=rg(A), ce qui donne facilement $E=\mathrm{Im}(A)=\mathrm{Im}(A^2)$ et $F=\mathrm{Ker}(A)=\mathrm{Ker}(A^2)$ d'où $A^2 \in \mathcal{B}_{\mathrm{E}} \cap \mathcal{B}^{\mathrm{F}}$.
 - b) Remarquons d'abord que $\in \mathcal{B}_E \cap \mathcal{B}^F$ est non vide, puisque cette partie engendre $\mathcal{K}_F \cap \mathcal{J}_E$ qui est de dimension $\dim(E)(n-\dim(F))=r^2\neq 0$.
 - On peut donc trouver $A \in \mathcal{B}_{\mathrm{E}} \cap \mathcal{B}^{\mathrm{F}}$. On a alors :
 - \diamond soit $A^2 = 0$ d'où $\operatorname{Im}(A) \subset \operatorname{Ker}(A)$ soit $E \subset F$.
 - \diamond soit $A^2 \in \mathcal{B}_{\mathrm{E}} \cap \mathcal{B}^{\mathrm{F}}$. Dans ce cas, soit $X \in E \cap F = \mathrm{Im}(A) \cap \mathrm{Ker}(A)$; alors X = AY et

AX = 0 impliquent $A^2Y = 0$ d'où $Y \in \text{Ker}(A^2) = F = \text{Ker}(A)$ d'où X = AY = 0. Ainsi, la somme E+F est directe, et puisque $\dim(E)+\dim(F)=\dim(\operatorname{Im}(A))+\dim(\operatorname{Ker}(A))=n$; on a bien $E \oplus F = \mathcal{M}_{(n,1)}(\mathbb{R})$.

- c) Soit $F \in \mathcal{F}$. S'il n'existait pas de $E \in \mathcal{E}$ tel que $E \oplus F = \mathcal{M}_{(n,1)}(\mathbb{R})$, alors, d'après la question précédente, on aurait , pour tout $E \in \mathcal{E}$, $E \subset F$, d'où $\mathcal{M}_{(n,1)}(\mathbb{R}) = \bigoplus_{E \in \mathcal{E}} E$ serait inclus, donc égal, à F, donc il existerait $A \in \mathcal{B}$ tel que $\operatorname{Ker}(A) = \mathcal{M}_{(n,1)}(\mathbb{R})$ soit A = 0 ce qui est impossible.
- 7°) a) Notons d'abord que la définition de l'énoncé a bien un sens, puisque, si $A \in \mathcal{K}_F \cap \mathcal{J}_E$, on a $\operatorname{Im}(A) \subset E$.
 - La linéarité de l'application $A \mapsto \hat{A}$ ne pose pas de problème.
 - On a : $\dim(\mathcal{K}_F \cap \mathcal{J}_E) = r^2 = \dim(\mathcal{M}_r(\mathbb{R}))$, donc, pour prouver que cette application est un isomorphisme d'espaces vectoriels, il suffit de prouver son injectivité.
 - Or, si on a $\hat{A} = 0$, alors $Ae_i = 0$ pour tout $i \in [1, r]$ donc la restriction de A à E est nulle; puisque $A \in \mathcal{K}_F$, la restriction de A à F est nulle également, donc A = 0 puisque E et F sont supplémentaires. Ainsi, le noyau de l'application $A \mapsto \hat{A}$ est réduit à $\{0\}$ et cette application est bien injective.
 - b) L'image par cet isomorphisme de $\mathcal{B}_{E} \cap \mathcal{B}^{F}$, qui est une base de $\mathcal{K}_{F} \cap \mathcal{J}_{E}$, est donc une base de $\mathcal{M}_{r}(\mathbb{R})$. De plus, si A, B appartiennent à $\mathcal{B}_{E} \cap \mathcal{B}^{F}$, alors AB = 0 ou $AB \in \mathcal{B}_{E} \cap \mathcal{B}^{F}$ d'après VI.4.a, d'où l'on déduit facilement (puisque $\widehat{AB} = \widehat{AB}$) qu'il s'agit d'une base stable.
 - c) Si $A \in \mathcal{B}_{E} \cap \mathcal{B}^{F}$, alors $\operatorname{Ker}(\hat{A}) = E \cap F = \{0\}$ donc $\operatorname{rg}(\hat{A}) = \dim(E) = r$, ce qui n'est possible, d'après VI.3, que si r = 1.
 - d) On a déjà vu : $r^2 = \dim(\mathcal{K}_F \cap \mathcal{J}_E) = \operatorname{card}(\mathcal{B}_E \cap \mathcal{B}^F)$. Donc $\operatorname{card}(\mathcal{B}_E \cap \mathcal{B}^F) = 1$, et, si A est l'unique élément de cet ensemble, on a vu que $A^2 \in \mathcal{B}_E \cap \mathcal{B}^F$ d'où $A^2 = A$, d'où le résultat.