CSE 355: Intro. to Theoretical Computer Science HW #6: Decidability and Reducibility

- This assignment is worth 100 points and 5% of your final grade.
- It is due on Friday, Apr. 23, 2021 at 11:59pm Arizona time.
- Copying answers from any sources (online, book, last-semester's notes, ...) without proper citation is considered a violation of academic integrity and will be dealt with accordingly. Answers can be provided in handwritten or typed form.
- Unreadable and unclear answers will be graded with 0 point.
- Scan and submit your homework on Canvas **as a single PDF file** (in case you use Apps. taking pictures of your answers, please make sure they are neat and readable)
- No late submissions will be accepted! Submission through emails will NOT be accepted!
- 1. [10 pts] Let $A_{\epsilon-CFG} = \{ \langle G \rangle | G \text{ is a CFG that generates } \epsilon \}$, show that $A_{\epsilon-CFG}$ is decidable.

First, convert G to an equivalent CFG.

Let $G' = \langle V \rangle$, Σ , $R \rangle$ Where S is the start state. If $S \to \epsilon$ is a rule in G', then G' generates ϵ . So G will also generate ϵ because of L(G) = L(G'). The only way we can have $\epsilon \in L(G')$ is if G' has the rule of $S \to \epsilon$ in R. Thus if G' does not include rule $S \to \epsilon$ then ϵ not $\epsilon L(G')$.

2. [10 pts] Let B = $\{ < R, S > | R \text{ and } S \text{ are regular expressions and } L(R) \subseteq L(S) \}$, show that B is decidable.

We know that R and S will generate regular languages. We need to show whether $L(R) \subseteq L(S)$. Since regular language is closed under complement, intersection and L(R) - L(S) should be empty. The conversion should be RE \rightarrow NFA \rightarrow DFA. Now we check if $L(C) = L(R) \cap L(S)$ ' is empty or not.

The following TM F decides B:

- 1. Construct DFA C as described
- 2. Run TM T
- 3. If T accepts, accept, If T rejects, reject.
- 3. [20 pts] Given a Turing machine M, we consider the problem of deciding whether this Turing machine has an equivalent finite automaton or not, formulate this problem as a language, then prove that it is undecidable.

Let $EQ_{DFA} = \{ < M, A > | M \text{ and } A \text{ are DFAs} \}$. In order to prove M and A are equivalent DFA. It needs to satisfy L(M) - L(A) being empty $L(C) = L(M) \cap L(A)$. Where C is a new DFA construct from M and A. In order for it to be undecidable. L(M) - L(A) should not be empty, which means they have to recognize the same language and $L(C) = L(M) \cap L(A)$ will accept nothing. And it will make it undecidable.

4. [20 pts] Let G_1 and G_2 be two CFGs, formulate the problem of deciding whether G_1 and G_2 generate the same set of strings as a language. Then prove the problem is undecidable.

Let $EQ_{CFG}\{ < G_1, G_2 > | G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}$. In order for them to be equivalent, they need to be accepted by $L(C) = L(G_1) \cap L(G_2)$ '. However, this is not possible because CFG is not closed under complementation and intersection.

5. [20 pts] Let $SUB_{CFG-DFA} = \{ \langle G,D \rangle | G \text{ is a CFG and D is a DFA and } L(G) \subseteq L(D) \}$. Is SUBCFG-DFA decidable? If your answer is yes, describe a TM that decides it; if your answer is no, prove it.

 $SUB_{CFG-DFA}$ is decidable if $L(G) \cap L(D)$ ' is empty. We know that the intersection of a regular language and a context-free language will result in context-free language. Which we could construct a CFG for it.

S = On input <G,w> : Convert G into grammar in CNF If w accept, accept, if not, reject.

So $SUB_{CFG-DFA}$ is decidable.

6. [20 pts] Let $EQ_{\text{TM-MTM}}$ be the problem of determining whether the language of an ordinary Turing machine and the language of a multitape Turing machine are equivalent. Convert this problem into a language, and then show that $EQ_{\text{TM-MTM}}$ is undecidable.

Let
$$M_1 = TM$$
 and $M_2 = MTM$
 $EQ_{TM-MTM} \{ < M_1, M_2 > | L(M_1) = L(M_2) \}$

Let TM R decides $EQ_{\rm TM}$ and construct TM S to decide $E_{\rm TM}$ S = On input <M> where M is a TM

- 1. Run R on $\langle M, M_1 \rangle$ Where M_1 is a TM that rejects all input.
- 2. If R accept, accept, if not, reject.

If R decides EQ_{TM} and S decides E_{TM} and E_{TM} is undecidable so EQ_{TM} will also be undecidable.