import matplotlib.pyplot as plt
import pandas as pd

df=pd.read\_csv(r"C:\Users\Admin\Desktop\Datasets\Heart.csv",sep=',')
df

asymptomatic

asymptomatic

nontypical

nonanginal

| 8 |     | Unnamed: | Age | Sex | ChestPain    | RestBP | Chol | Fbs | RestECG | MaxHR | ExAng | Oldpeak |
|---|-----|----------|-----|-----|--------------|--------|------|-----|---------|-------|-------|---------|
|   | 0   | 1        | 63  | 1   | typical      | 145    | 233  | 1   | 2       | 150   | 0     | 2.3     |
|   | 1   | 2        | 67  | 1   | asymptomatic | 160    | 286  | 0   | 2       | 108   | 1     | 1.5     |
|   | 2   | 3        | 67  | 1   | asymptomatic | 120    | 229  | 0   | 2       | 129   | 1     | 2.6     |
|   | 3   | 4        | 37  | 1   | nonanginal   | 130    | 250  | 0   | 0       | 187   | 0     | 3.5     |
|   | 4   | 5        | 41  | 0   | nontypical   | 130    | 204  | 0   | 2       | 172   | 0     | 1.4     |
|   |     |          |     |     |              |        |      |     |         |       |       |         |
|   | 298 | 299      | 45  | 1   | typical      | 110    | 264  | 0   | 0       | 132   | 0     | 1.2     |

3.4

1.2

0.0

0.0

#LINEPLOT using MATPLOTLIB
df.set\_index('RestBP').plot()





```
x=df['Age']
y=df['RestBP']
plt.bar(x,y)
```

## <BarContainer object of 303 artists>



#HISTOGRAM using MATPLOTLIB
x=df['Age']
plt.hist(x)

(array([ 1., 10., 33., 38., 37., 60., 64., 43., 14., 3.]),
 array([29., 33.8, 38.6, 43.4, 48.2, 53., 57.8, 62.6, 67.4, 72.2, 77. ]),
 <BarContainer object of 10 artists>)



#SCATTERPLOT using MATPLOTLIB
x=df['Chol']
y=df['RestBP']
plt.scatter(x,y, alpha=0.5)

## <matplotlib.collections.PathCollection at 0x1b7f412c430>



#VIOLINPLOT using MATPLOTLIB
plt.violinplot(df['Age'])

{'bodies': [<matplotlib.collections.PolyCollection at 0x1b7f6c25c10>], 'cmaxes': <matplotlib.collections.LineCollection at 0x1b7f6c28d30>, 'cmins': <matplotlib.collections.LineCollection at 0x1b7f6c2f3a0>, 'cbars': <matplotlib.collections.LineCollection at 0x1b7f6c2f760>}



import seaborn as sns

#BARPLOT using SEABORN
x=df['Chol']
y=df['RestBP']
sns.barplot(x,y)

<AxesSubplot:xlabel='Chol', ylabel='RestBP'>



#BOXPLOT using SEABORN
x=df['Age']
y=df['RestBP']
sns.boxplot(x,y)

C:\Users\Admin\anaconda3\lib\site-packages\seaborn\\_decorators.py:36: FutureWarnin
warnings.warn(

<AxesSubplot:xlabel='Age', ylabel='RestBP'>



#HISTOGRAM using SEABORN
sns.distplot(df['Age'])

<AxesSubplot:xlabel='Age', ylabel='Density'>



```
x=df['Age']
y=df['RestBP']
sns.lineplot(x,y)
```

<AxesSubplot:xlabel='Age', ylabel='RestBP'>



#HEATMAP using SEABORN
sns.heatmap(df.corr())

## <AxesSubplot:>



#SCATTERPLOT using SEABORN
x=df['Age']
y=df['RestBP']
sns.scatterplot(x,y)

<AxesSubplot:xlabel='Age', ylabel='RestBP'>



## pip install squarify

Collecting squarify

Downloading squarify-0.4.3-py3-none-any.whl (4.3 kB)

Installing collected packages: squarify

Successfully installed squarify-0.4.3

Note: you may need to restart the kernel to use updated packages.

# #TREEMAP import squarify

x=df['RestBP']
squarify.plot(x)

#### <AxesSubplot:>



#VIOLINPLOT using SEABORN
x=df['RestBP']
sns.violinplot(x)

<AxesSubplot:xlabel='RestBP'>

