

Fakulta chemicko-inženýrská

Ústav počítačové a řídicí techniky

POUŽITÍ ADAPTIVNÍCH SYSTÉMŮ PŘI ANALÝZE DAT

DISERTAČNÍ PRÁCE

AUTOR | JAN VRBA

ŠKOLITEL JAN MAREŠ

ŠKOLITEL SPECIALISTA RATACHAN

STUDIJNÍ PROGRAM Chemické a procesní inženýrství (čtyřleté)

STUDIJNÍ OBOR Technická kybernetika

ROK **2020**

Faculty of Chemical Engineering

Department of Computing and Control Engineering

ADAPTIVE SYSTEMS IN DATA ANALYSIS

DISSERTATION

AUTHOR | JAN VRBA

SUPERVISOR JAN MAREŠ

SUPERVISOR SPECIALIST PANÍ SOBÍKOVÁ

STUDY PROGRAMME Chemical and Process Engineering

FIELD OF STUDY Technical Cybernetics

YEAR **2020**

Tato disertační práce byla vypracována na Ústavu počítačové a řídicí techniky v období OD-KDY – DOKDY.

Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární prameny a informace,

které jsem v práci využil, jsou uvedeny v seznamu použité literatury.

Byl jsem seznámen s tím, že na moji práci se vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon). Zejména se jedná o skutečnost, že Vysoká škola chemicko-technologická v Praze, popř. jiné vzdělávací zařízení, ve kterém jsem svou práci vypracoval, má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona. Pokud bych v budoucnu poskytl licenci o užití práce jinému subjektu, je Vysoká škola chemicko-technologická v Praze, popř. jiné vzdělávací zařízení, ve kterém jsem svou práci vypracoval, oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložil a to podle okolností až do jejich skutečné výše.

Souhlasím se zveřejněním své práce podle zákona č. 111/1998 Sb., o vysokých školách, ve znění pozdějších předpisů.

V Praze dne

JMÉNO

Souhrn

Disertační práce se zabývá detekcí novosti, zejména pak algoritmem Extreme Seeking Entropy. $\# \mathrm{TODO}$

Klíčová slova

 $SLOVO~\#\mathrm{TODO}$

${\bf Summary}$

This dissertation deals with $\#\mathrm{TODO}$

Keywords

 $WORD\ \# TODO$

Obsah

1	Pře	hled n	netod detekce novosti	21
	1.1	Algori	itmus Learning Entropy	21
	1.2	Algori	itmus Error and Learning Based Novelty Detection	22
2	Čís	licové	adaptivní filtry a algoritmy	25
	2.1	Adapt	ivní filtry	27
		2.1.1	Lineární FIR filtry	27
		2.1.2	Volterrovy filtry	29
		2.1.3	Polynomiální neuronové jednotky	30
		2.1.4	Fuzzy filtry	31
	2.2	Adapt	ivní algoritmy	32
		2.2.1	Algoritmy LMS a NLMS	33
		2.2.2	Algoritmus RLS	35
		2.2.3	Algoritmus Generalized Normalized Gradient Descent	36
		2.2.4	Gradient descent pro fuzzy filtry	37
3	Zob	ecněn	é Paretovo rozdělení	41
	3.1	Metoo	la Peak-over-Threshold	41
	3.2	Metoo	ly odhadu parametrů zobecněného Paretova rozdělení	42
		3.2.1	Metoda maximální věrohodnosti	43
		3.2.2	Metoda momentů	43
		3.2.3	Kvazi-ML metoda	44
4	\mathbf{Alg}	oritmı	as Extreme Seeking Entropy	47
5	Výs	sledky	experimentů	51
	5.1	Případ	dové studie detekce novosti algoritmu Extreme Seeking Entropy	51
		5.1.1	Případová studie: chaotická časová řada Mackey-Glass a detekce pertubace	51
		5.1.2	Případová studie: detekce změny rozptylu šumu v náhodném datovém	
			toku	52

		5.1.3	Případová studie: detekce skokové změny parametrů generátoru signálu	54
		5.1.4	Případová studie: detekce náhlé absence šumu	56
		5.1.5	Případová studie: detekce změny trendu	57
		5.1.6	Případová studie: detekce epilepsie v myším EEG	59
		5.1.7	Vyhodnocení úspěšnosti detekce skokové změny parametrů generátoru	
			signálu	61
		5.1.8	Vyhodnocení úspěšnosti detekce skokové změny trendu	64
	5.2	Vyhoo	lnocení úspěšnosti detekce změny trendu a evaluace ROC křivky	66
		5.2.1	Popis experimentu	67
		5.2.2	Konstrukce ROC křivky	68
		5.2.3	Výsledky experimentu	69
	5.3	Vyhoo	lnocení výpočetní náročnosti metod odhadu parametrů zobecněného Pare-	
		tova r	ozdělení	70
		5.3.1	Motivace	73
		5.3.2	Specifikace experimentu	74
		5.3.3	Výsledky a diskuze	74
	5.4	Případ	dová studie použití algoritmu Learning Entropy a adaptivního fuzzy filtru	
		pro de	etekci změn stavů bioprocesu	78
		5.4.1	Popis bioprocesu a specifikace problému	78
		5.4.2	Experiment a zhodnocení	80
6	Záv	ěr		85
P	ublik	ace au	tora	87
Li	Literatura 8			
Pi	říloha	a		93

Seznam použitých zkratek

LE learning entropy

ELBND error and learning based novelty detection

GEV generalized extreme value

GNGD generalized normalized gradient descend

NLMS normalized least mean squares

POT peak over threshold
LNU linear neural unit
QNU quadratic neural unit
SNR signal-to-noise ratio
RLS recursive least squares
ESE extreme seeking entropy

#TODO TODO

Seznam symbolů

```
\mathbb{N}
           množina přirozených čísel
\mathbb{R}
           množina reálných čísel
           rychlost učení
\mu
            výstup adaptivního filtru
\hat{y}
k
            diskrétní časový index
            chyba predikce
e
M_{ND}
            délka okna pro vyhodnocení změn adaptabilních parametrů
            chyba predikce
e
           chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
            chyba predikce
e
            chyba predikce
e
           chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
e
            chyba predikce
\#TODO
            #TODO
```

Úvod

Tato disertační práce je věnována problematice využití adaptivních systémů při analýze dat. Vzhledem k exponenciálnímu celosvětovému nárustu dat a ke zvyšování jejich variability roste i potřeba tato data analyzovat, kategorizovat a vytěžovat (TODO: nějaká citace k nárůstu dat). Analýzou dat rozumíme proces, kdy z nezpracovaných naměřených dat získáme nějakou interpretovatelnou informaci, s kterou pak lze dál pracovat. Jedna z možných důležitých interpretací nově získaných dat je, zda-li se nově získaná data nějakým zásadním způsobem odlišují od předchozích dat. Této problematice se věnuje obor detekce novosti, neboli anomálií, který spadá do oblasti vytěžování dat a strojového učení. Úspěšná detekce novosti pak může být využita k vícero účelům. Například k diagnostice sledovaného procesu, ke změně struktury nebo parametrů adaptivního modelu za účelem zlepšení predikce, z konkrétních aplikací pak k odhalení neoprávněného vniknutí do sítě nebo zneužití dat, v lékařství se detekce novosti používá k diagnostickým účelům, z průmyslových aplikací pak k detekci poruchy a monitoringu stavu strojů, senzorů, ev zpracování textových dat k detekci nových témat atd. Spektrum využití je velice široké.

V oblasti detekce novosti byla v posledních desetiletích intenzivního vývoje navrhnuta celá řada algoritmů. Vzhledem k rostoucímu výpočetnímu výkonu a rozmanitosti analyzovaných dat rostla i potřeba nových algoritmů. Nové algoritmy typicky předčili ostatní algoritmy v rámci jedné aplikace, respektive v rámci jednoho typu dat. Doposud se však nepodařilo vytvořit algoritmus, který by ve všech, nebo alespoň ve významné části, oblastech použití předčil již publikované algoritmy. I proto vznikají v oblasti detekce novosti neustále nové přístupy, které navíc umožňují analyzovat nové typy dat.

Předkládáná disertační práce je členěna do pěti kapitol. První kapitola je věnována přehledu různých metod detekce novosti a obsahuje i oblasti jejich využití. Druhá kapitola obsahuje přehled adaptivních filtrů a metod, které byly v rámci práce použity. Třetí kapitola je věnována zobecněnému Paretovu rozdělení, které bylo použito v navrženém algoritmu detekce novosti. Čtvrtá kapitola obsahuje popis nově navrženého algoritmu nazvaném Extreme Seeking Entropy a představuje možnosti jeho použití v různých případech. Dále jsou zde výsledky tohoto algoritmu v porovnání s dalšími vybranými metodami adaptivní detekce novosti.

1 Přehled metod detekce novosti

Tato kapitola je věnována přehledu různých přístupů k detekci novosti, které se v posledních letech používají. Více pozornosti je věnováno algoritmům Learning Entropy (viz kap.1.1) a Error and Learning Based Novelty detection (viz kap. 1.2) které jsou v kapitole (XYZ) použity pro porovnání úspěšnosti detekce novosti.

1.1 Algoritmus Learning Entropy

Algoritmus Learning Entropy (LE) je algoritmem, který využívá adaptivních filtrů (obvykle LNU a HONU) k detekci novosti v datech [9, 10]. Autoři ukazují, že ne vždy, je novost v datech korelována s chybou predikce, a k detekci novosti navrhují využívat přírůstky vah adaptivních filtrů $\Delta \mathbf{w}$, které jsou získány použitím gradientní metody a adaptací s každými novými daty. V první publikaci [10] je popsán multifraktální přístup, který využívá uspořádané množiny různých hodnot prahů

$$\boldsymbol{\alpha} = \{\alpha_1, \alpha_1, \dots, \alpha_{n_\alpha}\}, \alpha_1 > \alpha_2 > \dots > \alpha_{n_\alpha}$$
 (1.1)

přičemž $\forall i \in \{1, 2, ..., n_{\alpha}\} : \alpha_i \in R$. Míra novosti "Approximate Individual Sample Learning Entropy" je potom definovaná jako

$$E_A(k) = \frac{1}{n \cdot n_\alpha} \sum_{i=1}^n \sum_{j=1}^{n_\alpha} f(|\Delta w_i(k)|, \alpha_j)$$
 (1.2)

kde funkce f je

$$f(\Delta w_i, \alpha_j) = \begin{cases} 1 \ if \ |\Delta w_i(k)| > \alpha_j \cdot \overline{|\Delta w_i^M(k)|} \\ 0 \ if \ |\Delta w_i(k)| \le \alpha_j \cdot \overline{|\Delta w_i^M(k)|} \end{cases}$$
(1.3)

kde n je počet adaptivních parametrů filtru, n_{α} je počet citlivostních prahů (respektive počet prvků množiny α) a $\overline{|\Delta w_i^M(k)|}$ průměrná hodnota přírůstku i-té adaptivní výhy v plovoucím okně délky M. Člen $1/(n \cdot n_{\alpha})$ normalizuje hodnotu AISLE takže $E_A \in \langle 0, 1 \rangle$. Toto hodnotu lze interpretovat tak že pokud se blíží 0, váhy se téměř nemění a z pohledu adaptace filtru se příliš neliší od minulých dat. Naopak vysoké hodnoty E_A znamenají, že dochází k velkým

změnám velkého množství adaptivních vah a data se nějakým způsobem liší od předchozích.

V publikaci [9] pak autoři navrhují tzv. přímý algoritmus pro výpočet LE. Ta je vypočítána jako

$$LE(k) = \sum_{i=1}^{n} \max\{0, z(|\Delta w_i(k)|) - \beta\};$$
(1.4)

kde funkce z je označovaná jako speciální z-score a je definovaná jako

$$z(|\Delta w_i(k)|) = \frac{|\Delta w_i(k)| - \overline{|\Delta \mathbf{w}_i^M(k-1)|}}{\sigma(|\Delta \mathbf{w}_i^M(k-1)|)}$$
(1.5)

kde

$$\frac{|\Delta \mathbf{w}_i^M(k-1)|}{|\Delta \mathbf{w}_i^M(k-1)|} = \frac{\sum_{j=1}^M w_i(k-j-m)}{M}$$
(1.6)

je průměr hodnot přírůstku adaptivních vah, přičemž parametr M je délka plovoucího okna, z kterého je spočítán průměr přírůstků i-té váhy a parametr m je volitelný parametr pro data které vykazují periodicitu a $\sigma(\sigma(|\Delta\mathbf{w}_i^M(k-1)|))$ je směrodatná odchylka těchto M přírůstků. Pro takto definovanou LE pak platí, že $E(k) \in (0, +\infty)$. Tento přístup umožňuje detekovat změny adaptivních parametrů, které jsou větší než jejich průměr zvětšený o β násobek jejich směrodatné odchylky a zároveň obchází nutnost výpočtu přes několik citlivostních prahů jako v případě 1.2. Pokud bychom chtěli detekovat i neobvykle malé změny adaptivních parametrů, navrhují autoři vztah pro výpočet LE 1.4 modifikovat na tvar

$$E(k) = \sum_{i=1}^{n_w} z(|\Delta w_i(k)|); E \in R$$
(1.7)

který v případě negativních hodnot $z(|\Delta w_i(k)|)$ nemusí poskytovat jasnou hranici mezi obvyklými a neobvyklými změnami adaptivních parametrů.

1.2 Algoritmus Error and Learning Based Novelty Detection

Algoritmus Error and Learning Based Novelty Detection (ELBND) [11, 12] je dalším z algoritmů detekce novosti, které využívají adaptivních filtrů, jejichž parametry jsou adaptovány vždy s novými daty. Každý naměřený vzorek dat je popsán vektorem hodnot, na základě přírůstku adaptivních vah a chyby filtru, definovaným jako

$$elbnd(k) = \Delta \mathbf{w} \cdot e(k) \tag{1.8}$$

který popisuje novost v daném vzorku dat. Skalární hodnotu popisující novost ve vzorku dat pak autoři navrhují získat buď jako maximum z absolutních hodnot vektoru elbnd(k), takže

skalární míra novosti ELBND(k) je definovaná jako

$$ELBND(k) = \max_{1 \le i \le n_w} |\Delta w_i(k) \cdot e(k)|.$$
(1.9)

Další možností je určit míru novosti jako součet absolutních hodnot jednotlivých přírůstků násobených chybou filtru, tedy

$$ELBND(k) = \sum_{i=1}^{n_w} |\Delta w_i(k) \cdot e(k)|$$
(1.10)

Uvedený algoritmus, využívající vztah 1.9, byl úspěšně použit k adaptivní klasifikaci EEG pacientů s demencí [13].

2 Číslicové adaptivní filtry a algoritmy

Tato kapitola je věnována diskrétním adaptivním filtrům, které byly v průběhu práce na tématu dizertační práce použity (viz podkapitola 2.1 a algoritmům, které byli k jejich adaptaci použity (viz podkapitola 2.2). Z pohledu klasifikace filtrů dle impulsní charakteristiky se jedná o filtry s konečnou impulsní charakteristikou (viz podkapitola) i o filtry s nekonečnou impulsní charakteristikou (viz podkapitola). Z pohledu lineární závislosti adaptabilních parametrů potom na filtry lineární a nelinární v parametrech.

Obecně problém filtrace spočívá ve zpracování signálu filtrem tak, že ze signálu získáme nějakou užitečnou informaci[6].

Pro úplnost uveďme, že signálem rozumíme fyzikální veličinu, která se mění v čase, prostoru nebo v jakékoliv jiné nezávislé proměnné (obecně proměnných) [4]. V rámci dizertace jsou analyzovány pouze signály, které se mění v čase.

Jedno ze základních dělení signálů je rozdělení na signály spojité a diskrétní, přičemž signál může být spojitý, resp. diskrétní v čase nebo amplitudě. Uvažujme signál spojitý v čase i amplitudě s(t). Pro takový signál platí, že hodnota jeho amplitudy $s(t) \in R$ a hodnota nezávislé proměnné t je z nějakého intervalu $(t_1;t_2)$, kde $t_1 \in R$ a $t_2 \in R$ (předkládaná dizertační práce se nezabývá komplexními signály). Signál spojitý v amplitudě a diskrétní v čase vznikne vzorkováním původního signálu s(t) pomocí vzorkovací funkce ve tvaru

$$v(t) = \sum_{k=-\infty}^{\infty} \delta(t - k\Delta t)$$
 (2.1)

kde Δt je vzorkovací perioda (uvažujeme konstantní vzorkovací periodu) a δ je, z pohledu teorie distribucí, lineární funkcionál na prostoru testovacích funkcí φ (všech hladkých funkcí na R s kompaktním supportem, které mají požadovaný počet derivací) definovaný jako

$$\langle \delta, \varphi \rangle = \varphi(0) \tag{2.2}$$

pro každou testovací funkci φ [7]. Pro navzorkovaný signál tedy platí

$$s(k) = s(t) \cdot v(t) \tag{2.3}$$

a výsledkem je posloupnost vzorků s(k). Signál spojitý v čase a diskrétní v amplitudě získáme aplikací kvantizační funkce Q(s), která převede hodnotu signálu na číslo z nějaké množiny přípustných hodnot, (typicky to bývá celé číslo, případně číslo s plovoucí desetinnou čárkou). Existuje celá řada kvantizačních algoritmů (více viz [8]), takže pro úplnost uvedeme pouze základní uniformní kvantizátor s velikostí kvantizačního kroku definovanou jako

$$q = \frac{s_{max} - s_{min}}{L} \tag{2.4}$$

kde L určuje počet intervalů o délce q. Potom kvantizovanou hodnotu můžeme určit jako

$$Q(s) = \left[s - \frac{s_{min}}{q} \right] q + \frac{q}{2} + s_{min}$$
 (2.5)

Signál, který je diskrétní v čase i amplitudě bývá označován jako digitální signál a právě těmito signály se předložená dizertační práce zabývá.

Signály dále můžeme rozdělit na skalární a vektorové. Vektorových (někdy též označovaným jako vícekanálový) signálem je například EEG. Některé systémy pro měření EEG využívají až 256 kanálů [5]. Takový signál můžeme v časovém okamžiku k reprezentovat 256 ti dimenzionálním vektorem

$$\mathbf{s}(k) = [s_1(k), \dots, s_{256}(k)]^T$$
 (2.6)

kde i-tá složka $s_i(k)$ odpovídá signálu i-tého kanálu. Skalární signál (někdy též označovaný jako jednokanálový) je pak např. právě i-tá složka signálu $\mathbf{s}(k)$.

Z pohledu počtu nezávislých proměnných, jejichž funkcí lze signál vyjádřit lze rozlišovat mezi signály jednorozměrnými a vícerozměrnými. Jednorozměrným signálem je například záznam jednoho kanálu EEG, kde hodnota signálu $s_i(k)$ je závislá pouze na čase. Vícerozměrným signálem může např. digitální obraz, jehož intenzita je funkcí souřadnic I(x, y).

Další dělení signálu je na signály deterministické a náhodné. Pokud můžeme popsat signál pomocí explicitního matematického zápisu, tabulky nebo pravidlem tak, že pro každý časový okamžik získáme jednoznačnou hodnotu, jedná se o signál deterministický. V opačném případě jsou signály, jejichž hodnota lze určit pouze s nějakou pravděpodobností označovány jako náhodné (stochastické). Typickým příkladem náhodného signálu je např. bílý šum. Ze stochastických signálu jsou z pohledu této práce je zajímavé ještě dělení na ergodické a stacionární signály. Pro stacionární signály je jejich pravděpodobnostní popis nezávislý na počátku časové osy. Ergodické signály jsou pak signály jejichž statistické vlastnosti lze určit z libovolné, dostatečně velké, množiny dat a tyto vlastnosti se v čase nemění.

Filtr můžeme použít v následujících základních úlohách zpracování signálů:

- filtrace
- vyhlazování
- predikce

Obrázek 2.1: Schéma adaptivní filtrace

V rámci této práce byli všechny filtry využity k predikci, jejíž chyba e byla využita k adaptaci parametrů daného filtru (více viz podkapitola 2.2).

2.1 Adaptivní filtry

V této podkapitole jsou stručně popsané adaptivní filtry, které byly v rámci práce použity. FIR (finite impulse response) adaptivní filtry jsou popsány v podkapitole 2.1.1, Volterrovy filtry v podkapitole 2.1.2 a adaptivní fuzzy filtry v podkapitole 2.1.4.

2.1.1 Lineární FIR filtry

Výstup FIR (finite-impulse-response) filtru $\hat{y} \in \mathbb{R}$ v diskrétním čase $k \in Z$ je popsán rovnicí

$$\hat{y}[k] = \sum_{i=0}^{N} w_i \cdot x[k-i]$$
(2.7)

kde $w_i \in \mathbb{R}$ hodnota i-tého koeficienty, x[k-i] je hodnota vstupu $x \in \mathbb{R}$ posunutá o i hodnot v čase, hodnota N je řád filtru. Pokud jsou koeficienty FIR filtru v čase adaptovány, přejde

Obrázek 2.2: Blokový diagram FIR filtru

rovnice (2.7) do tvaru

$$\hat{y}[k] = \sum_{i=0}^{N} w_i[k] \cdot x[k-i]$$
(2.8)

kde člen $w_i[k]$ reprezentuje hodnoty koeficientů filtru v diskrétním čase k. V následujícím textu, již uvažujeme, že veškeré adaptivní filtry mají v čase proměnné koeficienty w. Někdy se pro popis výstupu FIR filtru využívá operátoru konvoluce, potom pro výstup FIR filtru platí

$$\hat{y}[k] = h[k] * x[k] = x[k] * h[k]$$
(2.9)

Hodnoty h[k] v reprezentují impulzní odezvu filtru. Impulsní odezva filtru je definovaná jako

$$h[k] = \sum_{i=0}^{N} w_i \cdot \delta[k-i] = \begin{cases} w_i & 0 \le k \le N \\ 0 & k < 0 \lor k > N \end{cases}$$
 (2.10)

Konečnost impulzní odezvy je dána konečným počtem N+1 koeficientů filtru. Pokud koeficienty filtru splňují podmínku $\forall i: w_i < \infty$, potom je FIR filtr stabilní.

Uvedný filtr (viz rovnice (2.7)) lze zapsat ve tvaru

$$\hat{y}(k) = \mathbf{w}(k) \cdot \mathbf{x}(k) \tag{2.11}$$

kde $\mathbf{w}(k)$ je vektor vah

$$\mathbf{w}(k) = [w_1, \dots, w_N] \tag{2.12}$$

a $\mathbf{x}(k)$ je vstupní vektor

$$\mathbf{x}^{T}(k) = [x(k), x(k-1), \dots, x(k-N)]$$
(2.13)

.

2.1.2 Volterrovy filtry

Jeden z filtrů, který se použivá k modelování nelineárních systémů je nelineární Voltérrův filtr (někdy uváděný pod označením Higher Order Neural Unit - HONU). Výstup $\hat{y}[k]$ těchto filtrů, využívajících zkrácených Voltérových řad, je popsán rovnicí

$$\hat{y}[k] = w_0 + \sum_{i=0}^{N-1} w_1(i)x(k-i) + \sum_{i_1=0}^{N-1} \sum_{i_2=i_1}^{N-1} w_2(i_1, i_2)x(k-i_1)x(k-i_2) +] \cdots$$

$$\cdots \sum_{i_1=0}^{N-1} \cdots \sum_{i_p=i_{p-1}}^{N-1} w_p i_1, \dots, i_p x(k-i_1) \cdots x(k-i_p) \quad (2.14)$$

kde w_0 je konstanta, $\{w_j(i_1,\ldots,i_j), 1 \leq j \leq p\}$ je množina koeficientů Volterrovo jader j-tého řádu a x(k) je vstupní signál. Filtr pracuje s pamětí N vzorků, parametr p určuje řád filtru. Analogický zápis využívající vektorové násobení

$$\hat{y}[k] = \mathbf{w} \cdot \mathbf{colx} \tag{2.15}$$

kde \mathbf{w} je uspořádaný vektor koeficientů Volterrovo jader a \mathbf{colx} uspořádaný vektor ve tvaru

$$\mathbf{colx} = [1, x[0], \dots, x[N-1], x[1] \cdot x[2], \dots, x[1] \cdot x[N-1], x[2]^2, x[2] \cdot x[3], \dots, x[2] \cdot x[N-1], \dots, x[N-2] \cdot x[N-1], x[N-1]^2, \dots, \dots, x[N-1]^p]^T$$
 (2.16)

Určitým faktorem limitujícím použití Volterrovo filtrů je vysoký počet jejich parametrů, přičemž každé zvýšení počtu vzorků v paměti, nebo řádu filtru, výrazně zvýši počet jeho parametrů. Pro počet parametrů m Volterrova filtru s délkou paměti N a řádu p je dán jako

$$m(p,N) = \frac{(N+p)!}{N!p!}$$
 (2.17)

kde N! je faktoriál N a p! je faktoriál p. Např. pro N=3 a p=3 má filtr 20 parametrů, pro N=4 a p=3 má 35 parametrů, pro N=4 a p=4 již 70 parametrů. Pro zpracování signálů v reálném čase je tedy využití Volterrových filtrů s velkou pamětí a vysokým řádem, vzhledem k vysokému počtu parametrů, komplikované. Volterrův filtr druhého řádu bývá někdy označován Quadratic neural unit (QNU) a třetího řádu Cubic neural unit (CNU) [viz Ivo nebo IGI]. Volterrův filtr prvního řádu je variantou standartního FIR filtru (viz kap.) v případě, že $w_0=0$. V případě, že $w_0\neq 0$, je tento filtr typu IIR, tedy má nekonečnou impulsní charakteristiku.

2.1.3 Polynomiální neuronové jednotky

Jedním z typů nelineární filtrů, které jsou ale lineární v adaptivních parametrech jsou polynomiální neuronové jednotky, někdy též nazývané HONU (Higher Order Neural Units). Výstup HONU p-tého řádu je difinován jako

$$\hat{y}(k) = \sum_{i_1=0}^{n} \sum_{i_2=i_1}^{n} \cdots \sum_{i_p=i_{p-1}}^{n} w_{i_1,i_2,\dots,i_p} x_{i_1} \cdot x_{i_2} \cdots x_{i_p}$$
(2.18)

přičemž člen $x_{0,...,0} = 1$ je označován jako bias, $w_{i_1,i_2,...,i_px_{i_1}}$ jsou váhy a x_{i_j} je j-tý vstup. Uvedený filtr lze reprezentovat pomocí násobení vektorů, obdobně jako Volterrovy filtry,jako

$$\hat{y}(k) = \mathbf{w} \cdot \mathbf{colx} \tag{2.19}$$

kde w je uspořádaný vektor adaptivních parametrů

$$\mathbf{w} = [w_{0,\dots,0}, \dots, w_{n,\dots,n}] \tag{2.20}$$

a colx je odpovídajícím způsobem uspořádaný vektor vstupů ve tvaru

$$\mathbf{colx} = [1, x_{0,\dots,1}, \dots, x_{n,\dots,n}]^T \tag{2.21}$$

přičemž pokud vektor vstupů obsahuje časově spožděné vzorky vstupního signálu, jsou HONU identické s Volterrovými filtry. Pokud je vstupem n+1-dimenzionální vektor různých vstupů, tak je HONU kombinačním filtrem. HONU prvního řádu bývá označována jako lineární neuronová jednotka (LNU). Pokud jsou vstupem do LNU časově posunuté hodnoty vstupního signálu, je identická s klasickým FIR filtrem (viz kapitola 2.1.1), protože její výstup je definován jako

$$\hat{y}(k) = \sum_{i=0}^{n} w_i \cdot x(k-i)$$
 (2.22)

Pokud je vstupem n+1-dimenzionální vektor n+1 různých vstupů, potom je LNU klasickým lineárním kombinačním filtrem (viz obr. 2.3). Použijeme-li terminologii neuronových sítí, potom je lineárním neuronem, kde \mathbf{w} je vektor synaptických vah, \mathbf{x} je vstupní vektor a přenosová funkce tohoto neuronu realizuje lineární kombinaci.

$$\hat{y}(k) = \sum_{i=0}^{n} w_i \cdot x_i(k)$$
 (2.23)

Často používanými HONU jsou jednotky druhého (quadratic neural unit - QNU) a třetího řádu (cubic neural unit - CNU). Podobně jako pro Volterrovy filtry, i úskalím použití HONU vyššího řádu s velkou pamětí je velký počet parametrů.

Obrázek 2.3: LNU jako lineární kombinační filtr

2.1.4 Fuzzy filtry

Jedním z rozšířených typů nelineárních adaptivních filtrů jsou filtry založené na fuzzy logice. (Fuzzy adaptive filters, with application to nonlinear channel equalization) V rámci práce byl použit fuzzy adaptivní filtr, tvořený Mamdaniho fuzzy systémem se součinovým inferenčním mechanismem a defuzzifikací využívající metody těžiště typických hodnot. Báze pravidel tohoto fuzzy filtru je tvořena M pravidly, kdy l-té pravidlo je ve tvaru

$$Ru^l: IF \ x_1 \ is \ A_1^l \ and \ x_2 \ is \ A_2^l \ and \ \dots x_n \ is \ A_n^l \ THEN \ \hat{y} \ is \ B^l$$
 (2.24)

kde A_i^l je i-tá množina ve vstupním prostoru $U \subset R^n$, B^l je fuzzy množina ve výstupním prostoru $V \subset R$ a $x_i \in U$ a $\hat{y} \in V$ jsou lingvistické proměnné. Fuzzy množiny ve výstupním prostoru jsou singletony, obsahují tedy jediný prvek x^* z univerza X a pro jejich funkce příslušnosti (charakteristické funkce) platí, že

$$\mu_B(x^*) = 1 \tag{2.25}$$

takže jádro této množiny je identické s jejím nosičem a obsahují pouze jeden stejný prvek.

$$ker(B) = supp(B) = \{1/x^*\}$$
 (2.26)

Studovaný fuzzy systém využívá součinové konjukce a Larsenovy implikace. Tím se převede vyhodnocení implikace na několik součinů tak, že pro j-té pravidlo platí

$$[\mu_{A_1^j}(x_1) \ AND \ \mu_{A_2^j}(x_2) \ AND \dots AND \ \mu_{A_n^j}(x_n)] \implies \mu_{B^j}(\hat{y}) =$$

$$= \mu_{A_1^j}(x_1) \cdot \mu_{A_2^j}(x_2) \dots \mu_{A_n^j}(x_n) \cdot \mu_{B^j}(\hat{y}) \quad (2.27)$$

kde $\mu_{A_i^j}(x_i)$ je funkce příslušnosti k *i*-té množině *j*-tého pravidla ve vstupním prostoru a μ_{B^j} je funkce příslušnosti ke množině ve výstupním prostoru.

Defuzzifikace převádí fuzzy do její reprezentace pomocí jediného čísla z množiny ostrých hodnot. Metodou těžiště typických hodnot se výstup fuzzy systému určí podle rovnice

$$y^* = \frac{\sum_{j=1}^{M} \bar{b}^j z_j}{\sum_{j=1}^{M} z_j}$$
 (2.28)

kde \bar{b}^j je střed j-té fuzzy množiny reprezentující příslušné pravidlo a z_j je její váha ve smyslu hodnoty funkce příslušnosti tohoto pravidla.

Výstup uvedeného fuzzy systému je potom ve tvaru

$$\hat{y}(\mathbf{x}) = \frac{\sum_{j=1}^{M} \bar{b}^{j} \left[\prod_{i=1}^{n} \mu_{i}^{j}(x_{i}) \right]}{\sum_{j=1}^{M} \left[\prod_{i=1}^{n} \mu_{i}^{j}(x_{i}) \right]}$$
(2.29)

přičemž \mathbf{x} je vektor vstupů o délce n

$$\mathbf{x} = [x_1, \dots, x_n] \tag{2.30}$$

a \overline{b}^j je střed výstupní množiny $B^j,$ což je fuzzy množina j-tého pravidla.

Funkce filtru lze znázornit třívrstvou dopřednou sítí (viz Figure 2.4).

V první vrstvě jsou určeny váhy jednotlivých pravidel, tedy jsou vypočteny hodnoty z_j , kde $j=1,\ldots,M$. V druhé vrstvě jsou váhy jednak pronásobeny hodnotami středů a sečteny (výpočet a), druhak jsou váhy jednotlivých pravidel sečteny (b). Ve třetí vrstvě se pak vypočte výstup fuzzy systému jako $\hat{y}=\frac{a}{b}$ (více viz podkapitola 2.2.4).

Nespornou výhodou uvedeného fuzzy adaptivního filtru je, že tvoří tzv. univerzální aproximátor. Při vhodně zvolené bázi pravidel a typu funkcí příslušnosti množin ve vstupním prostoru tak dokážet aproximovat libovolnou funkci s libovolně velkou přesností (více viz. [?])

2.2 Adaptivní algoritmy

V této podkapitole jsou popsány adaptivní algoritmy, které byly v rámci dizertační práce vyzkoušeny. Jedná se o LMS a NLMS (viz podkap. 2.2.1), Generalized Normalized Gradient Descent (GNGD, viz podkap. 2.2.3) a algoritmus Gradient descent ve verzi pro adaptivní fuzzy filtry s Gausovskými funkcemi příslušnosti ve vstupním prostoru (viz podkap. 2.2.4).

Obrázek 2.4: Fuzzy filtr jako dopředná síť

2.2.1 Algoritmy LMS a NLMS

Při použití LMS algoritmu optimální hodnoty adaptivních parametrů filtru $\mathbf{w}(k+1)$ minimalizují střední kvadratickou chybu predikce J(k) definovanou jako

$$J(k) = E[|e(k)|^2] (2.31)$$

kde $E[\cdot]$ značí střední (očekávanou) hodnotu, a e(k) je chyba predikce, definovaná jako rozdíl výstupu adaptivního filtru a skutečné hodnoty

$$e(k) = d(k) - \hat{y}(k).$$
 (2.32)

Hodnoty adaptivních parametrů filtru jsou nalezeny gradientním algoritmem. S každými nově získanými daty jsou potom váhy filtru upraveny podle rovnice

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \Delta \mathbf{w}(k) \tag{2.33}$$

přičemž pro LMS algoritmus je přírůstek vah definován jako

$$\Delta \mathbf{w}(k) = -\frac{\mu}{2} \nabla_{\mathbf{w}} E[|e(k)|^2] = \mu E[\mathbf{x}(k)e(k)]$$
(2.34)

kde μ je rychlost učení (velikost kroku) ovlivňující rychlost konvergence algoritmu a ∇ je operátor nabla

$$\nabla = \left(\frac{\partial}{\partial w_1}, \dots, \frac{\partial}{\partial w_n}\right). \tag{2.35}$$

Protože jsou parametry filtru přepočítány s každými nově získanými daty (online), je možné nahradit očekávanou hodnotu $E[\mathbf{x}(k)e(k)]$ hodnotou okamžitou. Výpočet nových hodnot parametrů adaptivního filtru tak přejde do tvaru

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mu \mathbf{x}(k)e(k) \tag{2.36}$$

přičemž pro konvergenci a stabilitu algoritmu musí být splněna podmínka pro velikost rychlosti učení

$$0 < \mu < \frac{2}{\lambda_{max}} \tag{2.37}$$

kde λ_{max} je největší vlastní číslo autokorelační matice

$$R_{xx} = E[\mathbf{x}(k)\mathbf{x}^{T}(k)]. \tag{2.38}$$

Pokud není podmínka splňěna, pak je algoritmus nestabilní a hodnoty $\mathbf{w}(k)$ divergují. Pokud je naopak velikost rychlosti učení μ příliž malá, váhy konvergují pomalu.

Algoritmus NLMS řeší problém klasického LMS algoritmu, který v případě nevhodně škálovaného vstupu $\mathbf{x}(k)$ ztrácí stabilitu. Tento problém je vyřešen normalizací vstupu. Velikost přírůstku vah je tedy

$$\Delta \mathbf{w}(k) = \mu \frac{e(k)\mathbf{x}(k)}{\mathbf{x}^{T}(k)\mathbf{x}(k)}.$$
(2.39)

Podmínka pro velikost rychlosti učení zajišťující stabilitu algoritmu je v případě, že vstupní signál x(k) není korelovaný s aditivním šumem

$$0 < \mu < 2.$$
 (2.40)

Velikost optimální rychlosti učení je ovlivněná vlastnostmi aditivního šumu n(k) a v případě, že tento šum není korelovaný se vstupním signálem \mathbf{x} je dána jako

$$\mu_{optimal} = \frac{E[|d(k) - \hat{y}(k)|^2]}{E[|e(k)|^2]}$$
(2.41)

Problém nastane v případě, že vektor $\mathbf{x}(k)$ je nulový. Z tohoto důvodu, se přidává do jmenova-

tele v rovnici 2.39 malá pozitivní konstanta $\epsilon > 0$, která řeší problém s potenciálním dělením nulou. Změna adaptivních vah filtru je v tomto případě dána jako

$$\Delta \mathbf{w}(k) = \mu \frac{e(k)\mathbf{x}(k)}{\mathbf{x}^{T}(k)\mathbf{x}(k) + \epsilon}$$
(2.42)

a podmínka pro velikost rychlosti učení přejde do tvaru

$$0 < \mu < 2 + \frac{\epsilon}{\mathbf{x}^T(k)\mathbf{x}(k)}. (2.43)$$

2.2.2 Algoritmus RLS

Při použití rekurzivní metody nejmenších čtverců (RLS - recursive least squares) je odhad parametrů filtru získán na základě minimalizace kriteriální funkce ve tvaru

$$J(k) = \sum_{j=j_1}^{k} \lambda^{k-j} e(j)^2$$
 (2.44)

která je exponenciálně váženým součtem chyb výstupu posledních $k-j_i$ vzorků, přičemž parametr $\lambda \in (0;1)$ je tzv. faktor exponenciálního zapomínání. Chyba výstupu je pak definována jako

$$e(j) = d(j) - \hat{y}(j)$$
 (2.45)

kde

$$\hat{y}(j) = \mathbf{w}^{T}(k)\mathbf{x}(j) \tag{2.46}$$

přičemž $\mathbf{w}^T(k)$ je vektor adaptivních parametrů filtru

$$\mathbf{w}^{T}(k) = [w_0(k), w_1(k), \dots, w_n(k)]$$
(2.47)

a $\mathbf{x}(k)$ je vstupní vektor v diskrétním časovém okamžiku k obsahující posledních n+1 vzorků a definovaný jako

$$\mathbf{x}(j) = [x(j), x(j-1), \dots, x(j-n)]^{T}$$
(2.48)

kde parametr n se označuje jako řád filtru. Z uvedené kriteriální funkce 2.44 je tedy zřejmé, že historicky starší chyby výstupu mají exponenciálně klesající význam a vzorky, které jsou starší než $k-j_i$ vzorků, nejsou pro odhad parametrů filtru použity. Pro hodnoty adaptivních parametrů, které minimalizují výše uvedenou kriteriální funkci (2.44) v diskrétním časovém okamžiku k pak platí

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \mathbf{P}(k)\mathbf{x}(k)[d(k) - \mathbf{x}^{T}(k)\mathbf{w}(k-1)]$$
(2.49)

kde matice $\mathbf{P}(k)$ je

$$\mathbf{P}(k) = \frac{1}{\lambda} \left[\mathbf{P}(k-1) - \frac{\mathbf{P}(k-1)\mathbf{x}(k)\mathbf{x}^{T}(k)\mathbf{P}(k-1)}{\lambda + \mathbf{x}^{T}(k)\mathbf{P}(k-1)\mathbf{x}(k)} \right]. \tag{2.50}$$

Člen $\mathbf{x}^T(k)\mathbf{w}(k-1)$ v rovnici (2.49) reprezentuje apriorní chybu filru, která je vypočtena ještě před korekcí adaptivních vah. Kritérium, která je minimalizováno (viz rovnice (2.44)) ale obsahuje aposteriorní chyby filtru, která je vypočtena po korekci adaptivních vah (zde se nabízí určitá podobnost s Kalmanovým filtrem, více viz [3]). Dále poznamenejme, že $\mathbf{P}(k)$ je inverzní maticí k vážené výběrové kovarianční matici $\mathbf{R}_x(k)$ definované jako

$$\mathbf{R}_{x}(k) = \lambda^{k} \mathbf{R}_{x}(0) + \sum_{j=1}^{k} \lambda^{k-j} \mathbf{x}(j) \mathbf{x}^{T}(j) = \lambda \mathbf{R}_{x}(k-1) + \mathbf{x}(k) \mathbf{x}^{T}(k)$$
(2.51)

přičemž $\mathbf{R}_x(0)$ je počáteční hodnota. V praxi se počáteční hodnota matice $\mathbf{P}(0) = \mathbf{R}_x^{-1}(0)$ volí jako

$$\mathbf{P}(0) = \delta \cdot \mathbf{I} \tag{2.52}$$

kde δ je dostatečně velká pozitivní konstanta a I je jednotková matice (v některé literatuře nazývaná jako matice identity). Pro signály s vysokým poměrem výkon-šum se volí malé hodnoty δ , pro signály s malým poměrem výkon-šum pak velké hodnoty δ . Pokud je k dispozici apriorní informace o σ_x^2 tedy varianci vstupního signálu x(k), volí se hodnota konstanty podle [2] jako

$$\delta > 100\sigma_x^2. \tag{2.53}$$

Počáteční hodnota adaptivních parametrů se obvykle volí jako

$$\mathbf{w}(0) = 0. \tag{2.54}$$

2.2.3 Algoritmus Generalized Normalized Gradient Descent

Algoritmus Generalized Normalized Gradient Descent (GNGD) řeší problém případné pomalé konvergence algoritmu NLMS zavedením dalšího kompenzačního členu, který ovlivňuje velikost kroku při gradientní adaptaci. Nejprve uvažujme kvadratickou kriteriální funkce ve tvaru

$$J(k) = \frac{1}{2}e^2(k) \tag{2.55}$$

a adaptaci parametrů ve tvaru (2.42). Malou pozitivní konstantu ϵ nahradíme dalším adaptivním členem

$$\epsilon(k+1) = \epsilon(k) - \rho \nabla_{e(k-1)} J(k) \tag{2.56}$$

přičemž

$$\frac{\partial J(k)}{\partial \epsilon(k-1)} = \frac{\partial J(k)}{\partial e(k)} \frac{\partial e(k)}{\partial y(k)} \frac{\partial y(k)}{\partial \mathbf{x}(k)} \frac{\partial \mathbf{w}(k)}{\partial \eta(k-1)} \frac{\partial \eta(k-1)}{\partial \epsilon(k-1)} = \frac{e(k)e(k-1)\mathbf{x}^{T}(k)\mathbf{x}(k-1)}{(\mathbf{x}^{T}(k)\mathbf{x}(k) + \epsilon(k-1))^{2}}.$$
(2.57)

Adaptace parametrů je tedy dána jako

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \eta(k)e(k)\mathbf{x}(k) \tag{2.58}$$

kde

$$\eta(k) = \frac{\mu}{\mathbf{x}^T(k)\mathbf{x}(k) + \epsilon(k)}$$
 (2.59)

$$\epsilon(k) = \epsilon(k-1) - \rho \mu \frac{e(k)e(k-1)\mathbf{x}^{T}(k)\mathbf{x}(k-1)}{(\mathbf{x}^{T}(k)\mathbf{x}(k) + \epsilon(k-1))^{2}}$$
(2.60)

přičemž parametr ρ je parametr adaptace velikosti kroku při spuštění algoritmu. Algoritmus GNGD je vhodný pro zpracování nelineární a nestacionárních signálů.

2.2.4 Gradient descent pro fuzzy filtry

Při použití metody gradient descent pro adaptivní fuzzy filtry je potřeba nejdříve specifikovat strukturu filtru, tedy počet pravidel, množiny ve vstupním a výstupním prostoru, typ inferenční metody, fuzzifikace a defuzzifikace. Uvažujme fuzzy systém specifikovaný v podkapitole 2.1.4, v jehož vstupním prostoru $U \subset \mathbb{R}^n$ jsou Gaussovské funkce příslušnosti ve tvaru

$$\mu_{A_i^j}(x_i) = exp \left[-\left(\frac{x_i - \overline{x}_i^j}{\sigma_i^j}\right)^2 \right]$$
 (2.61)

kde \overline{x}_i^j je středem i-té vstupní množiny j-tého pravidla a σ_i^j je parametr, určující tvar, respektive šířku, této fuzzy množiny. Zobrazení, realizováné výše specifikovaným fuzzy systémem je dáno rovnicí

$$\hat{y}(x) = \frac{\sum_{j=1}^{M} \overline{b}^{j} \left[\prod_{i=1}^{n} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right) \right) \right]}{\sum_{j=1}^{M} \left[\prod_{i=1}^{n} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right) \right) \right]}$$
(2.62)

přičemž parametr M určující počet množin je vzhledem k adaptaci parametrem fixním a parametry \overline{b}^j , σ_i^j a \overline{x}_i^j jsou parametry, které se adaptují. Dále uvažujme množinu N dvojic vstup-výstup, kde N odpovídá počtu vzorků experimentu.

$$\{\mathbf{x}^d(k), d(k)\}, \ k = 1, 2, \dots, N$$
 (2.63)

Při použití algoritmu gradient descent pro fuzzy filtr v kontextu detekce novosti se vždy s nově naměřenými daty tento filtr adaptuje. Adaptace probíhá s každými daty na základě minimalizace kritériální funkce

$$J(k) = \frac{1}{2} [\hat{y}(\mathbf{x}(k)) - d(k)]^2$$
 (2.64)

která je zvolená tak, aby měla právě jeden globální extrém, přičemž parametry jsou adaptovány dokud není dosaženo dostatečně malé chyby, nebo dokud není překročen předem stanovený maximální počet iterací q_{max} . Volba Gaussovských funkcí příslušnosti ve vstupním prostoru je výhodná z hlediska výpočtu derivace podle adaptabilních parametrů, neboť tato derivace existuje v každém bodě.

$$\overline{b}^{j}(q+1) = \overline{b}^{j}(q) - \mu \frac{\partial e}{\partial \overline{b}^{j}} \Big|_{q} = \overline{b}^{j}(q) - \mu \frac{\hat{y} - d(k)}{b(q)} z^{j}(q)$$
(2.65)

$$\begin{split} \overline{x}_{i}^{j}(q+1) &= \overline{x}_{i}^{j}(q) - \mu \frac{\partial e}{\partial \overline{x}_{i}^{j}} \Big|_{q} = \\ &= \overline{x}_{i}^{j}(q) - \mu \frac{\hat{y} - d(k)}{b(q)} [\overline{b}^{j}(q) - \hat{y}] z^{j}(q) \frac{2[x_{i}(k) - \overline{x}_{i}^{j}(q)]}{\sigma_{i}^{j^{2}}(q)} \end{split} \tag{2.66}$$

$$\sigma_{i}^{j}(q+1) = \sigma_{i}^{j}(q) - \mu \frac{\partial e}{\partial \sigma_{i}^{j}} \Big|_{q} =$$

$$= \sigma_{i}^{j}(q) - \mu \frac{\hat{y} - d(k)}{b(q)} [\overline{b}^{j}(q) - \hat{y}] z^{j}(q) \frac{2[x_{i}(k) - \overline{x}_{i}^{j}(q)]^{2}}{\sigma_{i}^{j3}(q)} \quad (2.67)$$

S každými nově získanými daty (v diskrétním časovém okamžiku k) jsou tedy v q-té iteraci hodnoty parametru \overline{b}^j vypočítány podle rovnice (2.65), parametru \overline{x}_i^j podle rovnice (2.66) a parametru σ_i^j podle rovnice (2.67). Parametr μ je fixní a určuje velikost kroku. Algoritmus lze shrnout následujícími 5-ti kroky:

- 1. Krok Určení počtu pravidel a počáteční nastavení parametrů $\overline{b}^j(0), \overline{x}_i^j(0), \sigma_i^j(0)$ a velikosti kroku μ .
- **2.** Krok Pro ktou dvojici ($\mathbf{x}(\mathbf{k})$, $\mathbf{d}(\mathbf{k})$) v q-té iteraci jsou vypočteny hodnoty výstupních vrstev fuzzy systému (viz obr 2.4) podle rovnic (2.68), (2.69), (2.70) a (2.71).
- 3. Krok Výpočet nových hodnot parametrů $\overline{b}^j(q+1)$, $\overline{x}_i^j(q+1)$, $\sigma_i^j(q+1)$ dle rovnic (2.65), (2.66), (2.67).
- 4. Krok q=q+1 a opakování kroků 2. a 3. pro , dokud není dosaženo maximálního množství iterací q_{max} nebo požadované přesnosti ϵ .

5. Krok Návrat do kroku 2. pro hodnotu k=k+1, tedy s novou dvojicí dat (\mathbf{x},d) .

Rovnice popisující výstup jednotlivých vrstev fuzzy systému (viz obr. 2.4) následují.

$$z^{j} = \prod_{i=1}^{n} exp \left[-\left(\frac{x_{i}(k) - \overline{x}_{i}^{j}(q)}{\sigma_{i}^{j}(q)}\right) \right]$$
 (2.68)

$$b = \sum_{j=1}^{M} z^j \tag{2.69}$$

$$a = \sum_{j=1}^{M} \overline{b}^{j}(q)z^{j} \tag{2.70}$$

$$\hat{y} = \frac{a}{b} \tag{2.71}$$

Pro správnou funkci algoritmu je důležitá prvotní volba hodnot parametrů $\overline{b}^j(0), \overline{x}_i^j(0), \sigma_i^j(0)$. Náhodné hodnoty parametrů nejsou v případě použití tohoto algoritmu vhodné. Jedna z možných metod, jak vybrat hodnoty parametrů je využití prvních M dvojic vstup-výstup. Uvažujme množinu M dvojic vstup-výstup

$$\{\mathbf{x}(j), d(j)\}, \ j = 1, 2, \dots, M$$
 (2.72)

kterou využijeme k počátečnímu nastavení parametrů následujícím způsobem.

$$\bar{b}^j(0) = d(j) \tag{2.73}$$

$$\overline{x}_i^j(0) = x_i(j) \tag{2.74}$$

$$\sigma_i^j(0) = \frac{[\max(x_i^l : l = 1, 2, \dots, M)] - \min(x_i^l : l = 1, 2, \dots, M)}{M}$$
(2.75)

Pro správnou funkci algoritmu je důležitá i volba velikosti kroku μ , která se obvykle provádí experimentálně.

3 Zobecněné Paretovo rozdělení

#TODO

$$F_u(x) = P(X - u \le x, X > u) = \frac{F(u + x) - F(x)}{1 - F(x)}$$
(3.1)

$$F_u(x) = P(X - u \le x, X > u) = \frac{F(u + x) - F(x)}{1 - F(x)}$$
(3.2)

$$f_{(\xi,\mu,\sigma)}(x) = \begin{cases} \frac{1}{\sigma} \left(1 + \frac{\xi(x-\mu)}{\sigma} \right)^{\left(-\frac{1}{\xi}-1\right)} & \text{for } \xi \neq 0, \\ \exp\left(-\frac{x-\mu}{\sigma}\right) & \text{for } \xi = 0. \end{cases}$$
(3.3)

$$F_{(\xi,\mu,\sigma)}(x) = \begin{cases} 1 - \left(1 + \frac{\xi(x-\mu)}{\sigma}\right)^{-\frac{1}{\xi}} & \text{for } \xi \neq 0, \\ 1 - \exp\left(-\frac{x-\mu}{\sigma}\right) & \text{for } \xi = 0. \end{cases}$$
(3.4)

3.1 Metoda Peak-over-Threshold

Zásadním problémem při hledání parametrů GPD je volba vhodné hodnoty prahu z. Metody, které řeší uvedený problém jsou nazývány Peak-Over-Threshold (POT). V případě, že je hodnota prahu z příliš vysoká, mají parametry GPD velkou varianci, protože je existuje pouze příliš málo dat, které zvolenou prahovou hodnotu překročí. Pokud je hodnota prahu z naopak příliš nízká, není aproximace ocasu generujícího rozdělení spolehlivá. Z tohoto pohledu, je tedy vhodná volba hodnoty prahu z pro kvalitu fitu GPD zásadní. Existuje celá řada metod pro výběr hodnoty prahu (více viz [?]). Některé z metod POT jsou však sami o sobě výpočetně náročné, případně poskytují výsledky, jež musí být vyhodnoceny expertem. Z těchto důvodů nejsou příliž vhodné pro algoritmus detekce novosti, který by vyhodnocoval data v reálném čase. Proto se zdá vhodné využít některé z metod "Rule of Thumb".

Obrázek 3.1: GPD probability density function with various parameters ξ , and fixed parameters $\sigma = 1$, $\mu = 0$

[???] choice of threshold were used. Let l is the number of samples used for GPD fitting and n_s is total number of samples available:

$$l_1 = \left\lceil 0.1 \cdot n_s \right\rceil \tag{3.5}$$

$$l_2 = \left\lceil \sqrt{n_s} \right\rceil \tag{3.6}$$

$$l_3 = \left\lceil \frac{\sqrt[3]{n_s^2}}{\log(\log(n_s))} \right\rceil \tag{3.7}$$

Note, that we use the highest adaptive weight increments to estimate the GPD parameters. The Peaks-over-threshold (POT) method is crucial to decide, whether the $|\Delta w_k(k)|$ belongs to set H_i or L_i . In section ?? there are results with different techniques of threshold choice.

3.2 Metody odhadu parametrů zobecněného Paretova rozdělení

Odhad parametrů zobecněného Paretova rozdělení není triviální problém, proto existuje celá řada metod, které tento problém řeší. V následující textu je věnována pozornost metodě momentů (MOM) [26], metodě maximální věrohodnosti (ML) [27] a metodě kvazi-maximální věrohodnosti (QML) [32]. Z nověji publikovaných metod uveďmě alespon metodu věrohodných momentů [33], metodu vážených nelineárních čterců momentů [35?]. Přehled dalších metod

nabízí např. publikace [36].

3.2.1 Metoda maximální věrohodnosti

Metoda maximální věrohodnosti (maximum likelihood) je jednou ze zásadních statistických metod (pro zajímavost: byla použitá i Johannem Carlem Friedrichem Gaussem nebo Pierre-Simon Laplacem, více viz [28]). Slouží k odhadu parametrů různých rozdělení pravděpodobnosti [29]. Pro odhad parametrů je použita tzv. věrohodnostní funkce definovaná jako

$$\mathcal{L}(\theta|X_1,\dots,X_n) = \prod_{i=1}^n f(X_i|\theta)$$
(3.8)

kde $\theta \in \Omega$ je vektor odhadu parametrů, Ω je množina parametrů rozdělení a $X_1,...,X_n$ je soubor nezávislých náhodných veličin se stejným rozdělením a neznámou hustotou pravděpodobnosti. Pro maximálně věrohodný odhad $\hat{\theta}$ pak platí

$$\hat{\theta} = \arg \max_{\theta \in \Omega} \mathcal{L}(\theta | X_1, X_2, \dots, X_n). \tag{3.9}$$

Tento vektor parametrů rozdělení tedy maximalizuje věrohodnostní funkci. V praxi se často pracuje s logaritmem věrohodnostní funkce, takže problém je formulován jako

$$\log \mathcal{L}(\theta|X_1,\dots,X_n) = \sum_{i=1}^n \log f(X_i|\theta)$$
(3.10)

Věrohodnostní funkce pro zobecněné Paretovo rozdělení byla zformulovaná DuMouchelem [27] ve tvaru

$$\log \mathcal{L}(\sigma, \gamma | x_1, \dots, x_n) = -n \log \sigma + \frac{1 - \gamma}{\gamma} \sum_{i=1}^n \log \left(1 - \frac{\gamma}{\sigma} (x_i - \mu) \right)$$
(3.11)

přičemž podle [31] je pro $-0.5 < \xi < 0$, při zachování určitých podmínek, maximálně věrohodný odhad asymptoticky normální a asymptoticky vydatný. Problém může pro hodnoty $\xi < -0.5$ kdy maximálně věrohodný odhad nemusí existovat [30]. Optimalizační problém 3.8 pro GPD s věrohodností funkcí ve tvaru 3.11 obvykle řeší nějakou numerickou metodou.

3.2.2 Metoda momentů

Při použití MOM [26] je k odhadu parametrů GPD využito prvního a druhého momentu. Abychom poukázali na problém, který je s použitím MOM spojen, uvažujme nyní dvou parametrové GPD, pro které je $\mu = 0$, $\xi \ge 0$ a $x \ge 0$. Pro první moment potom dostaneme přímo

podle definice

$$\int_{0}^{\infty} x \frac{1}{\sigma} \left(1 + \frac{\xi x}{\sigma} \right)^{\left(-1 - \frac{1}{\xi} \right)} dx = \sigma^{\frac{1}{\xi}} \int_{0}^{\infty} x (\xi x + \sigma)^{-\frac{1}{\xi} - 1} dx = \sigma^{\frac{1}{\xi}} \left[-\frac{x}{(\xi x + \sigma)^{\frac{1}{\xi}}} \right]_{0}^{\infty} - \sigma^{\frac{1}{\xi}} \int_{0}^{\infty} -\frac{x}{(\xi x + \sigma)^{\frac{1}{\xi}}} dx = \sigma^{\frac{1}{\xi}} \left[-\frac{x}{(\xi x + \sigma)^{\frac{1}{\xi}}} \right]_{0}^{\infty} + \sigma^{\frac{1}{\xi}} \left[\frac{(\xi x + \sigma)^{1 - \frac{1}{\xi}}}{\xi (1 - \frac{1}{\xi})} \right]_{0}^{\infty} = \left[\frac{\sigma^{\frac{1}{\xi}} (x + \sigma)}{(\xi - 1)(\xi x + \sigma)^{\frac{1}{\xi}}} \right]_{0}^{\infty} = \frac{\sigma}{1 - \xi}$$

$$(3.12)$$

přičemž z předposledního výrazu je patrné, že konečnou hodnotu získáme pouze pro hodnoty $\xi < 1$.

Obecný r-tý moment GPD existuje pokud je splněna podmínka $\xi < 1/r$. První čtyři momenty GPD (průměr, rozptyl, koeficienty šikmosti a špičatosti), jsou definovány jako

$$E(X) = \mu + \frac{\sigma}{1 - \xi} \tag{3.13}$$

$$Var(X) = \frac{\sigma^2}{(1 - 2\xi)(1 - \xi)^2}$$
 (3.14)

$$Skew(X) = \frac{2(1+\xi)\sqrt{1-2\xi}}{1-3\xi}$$
 (3.15)

$$Kurt(X) = \frac{2(1-2\xi)(2\xi^2+\xi+3)}{(1-3\xi)(1-4\xi)} - 3$$
(3.16)

s přihlédnutím k omezení, že $\xi < 1/r$. Řešením soustavy rovnic 3.13 a 3.14 dostaneme odhady parametrů GPD jako

$$\sigma = \frac{1}{2}E(X)\left(\frac{E(X)^2}{Var(X)} + 1\right) \tag{3.17}$$

$$\xi = -\frac{1}{2} \left(\frac{E(X)^2}{Var(X) - 1} \right) \tag{3.18}$$

kde E(X) je střední hodnota vzorku dat a Var(X) je rozptyl tohoto vzorku dat. Metoda MOM je použitelná pouze pro hodnoty parametru $\xi < 0.5$. Pro $\xi \ge 0.5$ není splněná podmínka pro existenci druhého momentu.

3.2.3 Kvazi-ML metoda

Kvazi-ML metoda ?? odhadu parametrů GPD kombinuje metodu maximální věrohodnosti pro $\xi > -0.75$ a modifikovanou metodu maximální věrohodnosti pro $\xi \leq -0.75$. Protože neznáme přesnou hodnotu parametru ξ je rozhodnutí, kterou z metod použít provedeno na empirickém

ZOBECNĚNÉ PARETOVO ROZDĚLENÍ

základě. Nejprve uvažujme posloupnost hodnot (x_1, \ldots, x_n) . Metodu kvazi-ML lze popsat v následujících třech krocích.

1. Výpočet

$$\xi = \frac{-1}{n-1} \sum_{i=1}^{n-1} \ln\left(1 - \frac{x_1}{\max x_1, \dots, x_n}\right) \tag{3.19}$$

a

$$Z = 1 - \frac{\sum_{i=1}^{n} x_i}{2n\overline{x}^2} \tag{3.20}$$

kde \overline{x} je střední hodnota posloupnosti hodnot $(x_1,\ldots,x_n).$

- 2. Pokud je $\xi < 0.75$ a Z < 0.2použij metodu maximální věrohodnosti.
- 3. Jinak určíme odhad parametru σ jako

$$\sigma = \xi \cdot \max(x_1, \dots, x_n) \tag{3.21}$$

Z hlediska výpočetní náročnosti a možností hodnot, kterých může parametr ξ nabývat, je uvedená hodnota dobrým kompromisem mezi metodou maximální věrohodnosti a metodou momentů.

4 Algoritmus Extreme Seeking Entropy

V této kapitole je představen algoritmus pro detekci novosti nazvaný Extreme Seeking Entropy (ESE), který tvoří hlavní teoretický výsledek předkládané dizertační práce. Navržený algoritmus, vychází z předpokladu, že novost v datech se projeví neobvykle velkými přírůstky vah adaptivního filtru, který danou řadu dat modeluje.

Nejprve uvažujme myšlenkový experiment, ve kterém máme dokonale nastavený adaptivní filtr, jehož chyba predikce e je nulová pro všechny vstupní hodnoty. Potom přírůstky adaptivních vah tohoto filtru budou nulové. V případě, že dojde k nějaké změně v generátoru dat pro tento filtr, začne se filtr opět adaptovat což vyústí v nenulové změny adaptivních vah, které budou reflektovat novost způsobenou změnou vlastností daného generátoru.

V publikacích [9, 10], kde autoři představují algoritmus Learning Entropy, je zmíněna obecná míra snahy adaptivního filtru o adaptaci, L, která slouží k vyhodnocení neobvykle velkých přírůstků adaptivních vah a je definovaná jako

$$L(k) = A(f(\Delta \mathbf{w})) \tag{4.1}$$

kde A je obecně nějaká agregační funkce a funkce f je funkce která nějakým způsobem kvantifikuje odchylku v adaptaci adaptivních parametrů filtru.

Nejprve uvažujme, že hodnota funkce f, která slouží k vyhodnocení neobvykle velkých přírůstků by měla mít neobvykle velkou (nebo neobvykle malou) hodnotu v okamžiku, kdy přírůstky adaptivních vah filtru $\Delta \mathbf{w}$ jsou neobvykle velké. Dalším požadavkem je, aby tato funkce zohledňovala i nějakou historii těchto přírůstků. Přirozeně se tedy nabízí nějaká vhodná distribuční funkce f_{cdf} . S ohledem na požadavek, že neobvykle velké přírůstky vah by měli být reflektovány neobvykle velkou hodnotou míry snahy o adaptaci, nabízí se jako vhodná funkce A, kterou uvažujeme ve tvaru

$$A(f(\Delta|\mathbf{w}|(k))) = -\log \prod_{i=1}^{n} (1 - f_{cdf_i}(|\Delta w_i(k)|)).$$
(4.2)

Uvedená agregační funkce A má pro neobvykle velké přírůstky vah neobvykle velkou kladnou hodnotu, pokud jsou hodnoty f_{cdf} blízké 1. Člen $1-f_{cdf}$ je vlastně komplementární distribuční funkcí (funkce přežití, spolehlivostní funkce). Výhodou uvedeného přístupu je absence potřeby nastavovat několik prahů pro detekci.

Jak již bylo uvedeno, cílem je tedy vyhodnotit neobvykle velké přírůstky vah adaptivního systém. Nejprve je nutné určit nějaký práh z, podle kterého můžeme přírůstky adaptivních vah filtru rozdělit do dvou množin. Množinu, která bude obsahovat obsahovat přírůstky menší než je zvolený práh z označíme L. Přírůstek který je větší nebo roven hodnotě prahu z označíme H. Pozn. Volba hodnoty prahu přímo souvisí s volbou metody POT (viz kapitola 3). Uvažujme, že obě množiny existují pro každou adaptivní váhu, potom pro i-tou adaptivní váhu zvolíme práh z_i tak, že velikosti přírůstku této váhy náleží do jedné ze dvou množin, tak, že:

$$\forall |\Delta w_i| < z_i \in L_i \tag{4.3}$$

$$\forall |\Delta w_i| \ge z_i \in H_i \tag{4.4}$$

Vzhledem k výše zmíněnému předpokladu o velikosti změn vah adaptivního filtru a novosti v datech, uvažujme, že přírůstky náležející množině L_i pravděpodobně neobsahují informaci o novosti během adaptace a proto nebudou vyhodnocovány. Množina H_i by měla obsahovat přírůstky adaptivních vah filtru, u kterých lze očekávat, že mohou nést nějakou informaci o novosti v datech.

Nyní můžeme zavést novou míru, kterou nazvěme Extreme Seeking Entropy (ESE), definovanou jako

$$ESE(|\Delta \mathbf{w}(k)|) = -\log \prod_{i=1}^{n_w} (1 - f_{cdf_i}(|\Delta w_i(k)|))$$
 (4.5)

kde

$$f_{cdf_i}(|\Delta w_i(k)|) = \begin{cases} 0, \ |\Delta w_i(k)| \in L_i \\ F_{(\xi_i, \mu_i, \sigma_i)}(|\Delta w_i(k)|), \ |\Delta w_i(k)| \in H_i. \end{cases}$$
(4.6)

a funkce $F_{(\xi_i,\mu_i,\sigma_i)}$ je distribuční funkce zobecněného Paretova rozdělení (GPD), představeného v předchozí kapitole 3. Přírůstky adaptivních vah, které jsou menší než hodnota prahu získaného metodou POT nezmění hodnotu ESE. Přírůstky vah, které mají velice malou pravděpodobnost a spíše nesou nějakou informaci o novosti v datech způsobí velký nárůst hodnoty ESE. Zásadním aspektem navrhovaného algoritmu je, že mohou být vyhodnocovány buď všechny získané přírůstky vah, a nebo lze vyhodnocovat pouze nejnovějších n_s vzorků a na ně aplikovat metodu POT. Novost potom můžeme vnímat v kontextu těchto n_s vzorků.

Navrhovaný algoritmus pro detekci novosti v datech je popsán následujícím pseudokódem.

Algoritmus 1 Extreme Seeking Entropy

- 1: nastavení n_s a výběr metody POT
- 2: počáteční nastavení parametrů ξ_i , μ_i , σ_i GPD pro každý adaptivní parametr
- 3: for vzorek d(k) do
- 4: výpočet změny adaptivních parametrů filtru $\Delta \mathbf{w}(k)$
- 5: aplikace metody POT
- 6: if $|\Delta w_i|(k) \in H_i$ then
- 7: výpočet parametrů ξ_i , μ_i , σ_i pro příslušné GPD
- 8: end if
- 9: výpočet hodnoty ESE podle rovnice (??)
- 10: end for

Výhodou navrhovaného algoritmu je, že jediným volitelným parametrem je parametr n_s , který ale v případě potřeby můžeme vynechat a zpracovávat všechny historicky dostupné přírůstky adaptivních parametrů. Dále je nutné zvolit vhodnou metodu POT.

Určitou limitací uvedeného algoritmu je, že pro získání první hodnoty ESE potřebujeme nějakou apriorní informaci o parametrech GPD rozdělení. Konkrétněji, pro každou i-tou adaptivní váhu musíme mít k dispozici odhad parametrů ξ_i , μ_i , σ_i . Vzhledem k tomu, že adaptivní filtr má n_w různých adaptivních vah, potřebujeme získat odhad $3 \cdot n_w$ parametrů aby začal algoritmus ESE poskytovat první hodnoty. Pokud není k dispozici žádná apriorní informace o hodnotách těchto parametrů, potřebujeme provést získat alespoň n_s vzorků, na jejichž základě můžeme získat první hodnotu ESE. Dalším úskalím je proměnlivost parametrů nebo typu rozdělení pravděpodobnosti přírůstků adaptivních vah v čase.

5 Výsledky experimentů

V této kapitole jsou shrnuty výsledky, kterých bylo v rámci práce na tématu dizertace dosaženo. Jmenovitě jsou to výsledky navrženého algoritmu Extreme Seeking Entropy (viz kapitola 5.1) a potom použití algoritmu Learning Entropy pro adaptivní fuzzy filtr při detekci změn stavu bioprocesu (viz kapitola 5.4). Výsledky byly publikovány v [1].

5.1 Případové studie detekce novosti algoritmu Extreme Seeking Entropy

Obsah této kapitoly je shrnutím výsledků publikovaných v MDPI.

5.1.1 Případová studie: chaotická časová řada Mackey-Glass a detekce pertubace

Tento experiment byl proveden pro porovnání s výsledky uvedenými v publikaci [10], která je první publikací o algoritmu LE (viz kapitola 1.1). Experiment spočívá v detekci pertubovaného vzorku v chaotické časové řadě, která je výsledkem řešení Mackey-Glassovy rovnice [20].

$$\frac{dy(t)}{dt} = \beta \cdot \frac{y(t-\tau)}{1+y^{\alpha}(t-\tau)} - \gamma y(t)$$
 (5.1)

přičemž parametry $\alpha=10,\,\beta=0.2,\,\gamma=0.1$ and $\tau=17$ byly vybrány tak, aby řešením této rovnice byla chaotická časová řada. Celkem bylo vygenerováno 701 vzorků. Data v diskrétní časový okamžiku k=523 pak byly pertubovány podle následujícího předpisu.

$$y(523) = y(523) + 0.05 \cdot y(523) \tag{5.2}$$

Výsledná časová řada a detail pertubace je znázorněn na obrázku 5.1. Jako adaptivní filtr byl zvolen QNU (resp. Volterrův filtr) jehož vstupem jsou 4 časově spožděné hodnoty časové řady y(k-1), y(k-2), y(k-3), y(k-4). Hodnoty adaptivních vah tohoto filtru byly adaptovány algoritmem NLMS. Struktura filtru byla zvolena stejně jako v [10]. Rychlost učení během experimentu byla nastavena na $\mu = 1$. Metoda POT byla zvolena podle rovnice 3.5 a délka

okna pro detekci novosti algoritmem ESE byla nastavena na $n_s = 300$.

Výstup adaptivního filtru a chyba predikce jsou znázorněny na obrázku 5.2. Výsledky metod detekce novosti jsou zobrazeny na obrázku 5.3. Z obrázku je patrné, že globální maximum průběhu ESE odpovídá pertubovaným datům. Globální maximum metod ELBND a LE odpovídá vzorku u něhož byla největší chyba predikce. Hodnoty prahů algoritmu LE byly zvoleny $\alpha = \{4, 5, 6, 7, 8, 9\}$ a délka okna byla nastavena na m = 30.

Obrázek 5.1: Horní graf zobrazuje celou datovou řadu. Spodní grafy zobrazují detail pertubovaného vzorku v diskrétní časový okamžik k=523.

5.1.2 Případová studie: detekce změny rozptylu šumu v náhodném datovém toku

Tato případová studie je navržená na základě problému, který se vyskytuje v použití hybridních navigačních systémů využívajících GPS (Global Positioning System) senzory pro navigaci výpočtem [21]. Smyslem experimentu je demonstrovat možnost využití algoritmu ESE pro detekci změn rozptylu šumu v náhodných datech.

Uvažujme dva vstupy $x_1(k)$ a $x_2(k)$ a výstup generátoru signálu y(k) takový, že

$$y(k) = x_1(k) + x_2(k) + x_1(k) \cdot x_2(k) + v(k)$$
(5.3)

Obrázek 5.2: Graf (a) zobrazuje datovou řadu s pertubací (černá plná čára) a výstup adaptivního filtru (tečkovaná zelená čára). Pertubovaný vzorek je označen černou šipkou. Graf (b) zobrazuje velikost chyby predikce e (resp. její absolutní hodnotu). Na grafu (c) jsou znázorněny přírůstky adaptivních vah filtru (resp. absolutní hodnotu těchto přírůstků).

kde člen v(k) reprezentuje aditivní Gaussovský šum který je přidán k výstupu generátoru y(k). Přidaný šum má nulovou střední hodnotu a směrodatnou odchylku $\sigma_n=0.1$, takže $v(k)\sim N(0,1)$. Hodnoty vstupů jsou v každém diskrétním časovém okamžiku vybrány náhodně z rovnoměrného rozdělení na intervalu $\langle 0, \rangle$. V diskrétním časovém okamžiku k=500 dojde ke změně směrodatné odchylky šumu na hodnota $\sigma_n=0.2, v(k)\sim N(0,0.2)$.

Adaptivní filtr v tomto experimentu byl QNU ve tvaru

$$\hat{y}(k) = w_1 \cdot x_1(k) + w_2 \cdot x_2(k) + w_3 \cdot x_1(k) \cdot x_2(k)$$
(5.4)

tak, že jeho struktura odpovídá struktuře generátoru signálu. Adaptivní parametry filtru byly adaptovány algoritmem GNGD. Rychlost učení byla nastavená jako $\mu=1$. Metoda POT byla zvolena podle 3.6 a délka okna $n_s=500$. Výsledky experimentu jsou zobrazeny na obrázku 5.4. Apriorní hodnoty parametrů GPD byly stanoveny na základě 500 vzorků, které nejsou v následujícím obrázku 5.4 zobrazeny. Globální maximum ESE odpovídá změně směrodatné odchylky šumu σ_n . Detekce pomocí algoritmů LE a ELBND je o několik vzorků opožděná.

Obrázek 5.3: Graf (a) zobrazuje hodnotu ESE. Prvních 300 vzorků je hodnota ESE nulová, protože délka okna pro vyhodnocování novosti $n_s=300$. Graf (b) zobrazuje výsledky algoritmu ELBND. Prvních 300 výsledků ELBND je pro názornost vynecháno. Graf (c) zobrazuje výsledky algoritmu LE.

Pro výpočet LE byl použit vztah 1.7 a délka okna byla nastavena na M=300. Výpočet ELBND byl proveden podle rovnice 1.10.

5.1.3 Případová studie: detekce skokové změny parametrů generátoru signálu

Tato případová studie je motivována problémem, který vzniká při sledování vícero náhodných datových toků [23] u kterých se kontroluje, zda nedošlo ke změně vlastností jejich generátoru. Uvažujme opět dva vstupy $x_1(k)$, $x_2(k)$ a výstup generátoru signálu ve tvaru

$$y(k) = x_1(k) + x_2(k) + x_1(k) \cdot x_2(k) + v(k)$$
(5.5)

kde člen v(k) reprezentuje gaussovský aditivní šum s nulovou střední hodnotou a směrodatnou odchylkou $\sigma_n = 0.1$, $v \sim N(0,0.1)$. Hodnoty vstupů $x_1(k)$ a $x_2(k)$ jsou v každém diskrétním časovém okamžiku náhodně vybrány z rovnoměrného rozdělení, $x_1(k) \sim U(0,1)$ resp. $x_2(k) \sim U(0,1)$. V časový diskrétní okamžik k = 500 dojde ke změně parametrů generátoru, a výstup

Obrázek 5.4: Detekce změny rozpylu šumu. Na grafu (a) jsou zobrazeny data z generátoru (modrá) a výstup z adaptivního filtru (zelená). Na grafu (b) je vynesena chyba filtru e(k). Graf (c) zobrazuje velikosti přírůstků adaptivních parametrů filtru. Na grafu (d) jsou zobrazeny hodnoty ESE. V diskrétní časový okamžik k=500 je patrný značný nárůst v ESE, který reflektuje změnu směrodatné odchylky aditivního šumu. Na dalších grafech (e) a (f) jsou zobrazeny výsledné hodnoty algoritmů ELBND a LE.

generátoru přejde do tvaru

$$y(k) = 0.4 \cdot x_1(k) + 1.6x_2(k) + 0.99x_1(k) \cdot x_2(k) + v(k). \tag{5.6}$$

Jako adaptivní filtr byl v tomto případě zvolen QNU, jehož struktura odpovídá generátoru dat. Výstup tohoto filtru je tedy

$$\hat{y}(k) = w_1 \cdot x_1(k) + w_2 \cdot x_2(k) + w_3 \cdot x_1(k) \cdot x_2(k)$$
(5.7)

přičemž adaptivní parametry uvedeného filtru jsou adaptovány algoritmem GNGD. Rychlost učení během experimentu byla nastavena na $\mu=1$. POT metoda byla zvolena podle rovnice 3.5 a parametr délky okna byl $n_s=500$. Apriorní hodnota parametrů GPD a dat pro LE byla získána použitím 500 vzorků dat (vygenerovaných podle rovnice 5.6). Výsledky experimentu

jsou znázorněny na obrázku 5.5. Z obrázku je patrné, že pomocí algoritmu ESE se podařilo detekovat skokovou změnu parametrů, čemuž odpovídá výrazné globální maximum v ESE. Globální maximum v LE neodpovídá skokové změně parametrů generátoru a detekce pomocí algoritmu ELBND je opožděná.

Obrázek 5.5: Detekce skokové změny generátoru signálu. Na grafu (a) je zobrazena původní časová řada (modrá). Graf (b) zobrazuje chybu filtru e. Na grafu (c) jsou zobrazeny velikosti přírůstků adaptivních vah filtru. Na grafu (d) jsou pak výsledky algoritmu ESE, přičemž k skokové změně parametrů generátoru signálu došlo v diskrétní časový okamžik k=500. Je tedy vidět globální maximum v ESE odpovídající úspěšné detekci. Na grafech (e) a (f) jsou pak výsledky metod ELBND a LE. Detekci algoritmem ELBND lze považovat za úspěšnou. Detekce algoritmem LE byla neúspěšná. Globální maximum LE je v diskrétním časovém okamžiku k=338, který neodpovídá skokové změně parametrů generátoru signálu.

5.1.4 Případová studie: detekce náhlé absence šumu

V tomto experimentu je ukázáno, že lehce modifikovaný algoritmus ESE může být využit také k detekci neobvykle malých změn parametrů adaptivního filtru. Oproti standardní variantě ESE budeme vyhodnocovat neobvykle malé přírůstky vah adaptivního filtru. Takže jediná změna v algoritmu je, že metodou POT budeme vybírat pouze nejmenší změny adaptivních

vah a budeme odhadovat parametry GPD z takto vybraných hodnot.

Uvažujme dva vstupy $x_1(k)$ a $x_2(k)$ jejichž hodnoty jsou v každém diskrétním časovém okamžiku k vybrány z rovnoměrného rozdělení, takže $x_1(k) \sim U(0,1)$ a $x_2(k) \sim U(0,1)$. Výstup generátoru dat y(k) je definován jako

$$y(k) = x_1(k) + x_2(k) + x_1(k) \cdot x_2(k) + v(k)$$
(5.8)

kde člen v(k) reprezentuje aditivní gaussovský šum s nulovou střední hodnotou a směrodatnou odchylkou $\sigma_n = 0.1$. V diskrétním časovém okamžiku dojde k odstranění aditivního šumu a výstup generátoru signálu přejde do tvaru

$$y(k) = x_1(k) + x_2(k) + x_1(k) \cdot x_2(k). \tag{5.9}$$

který platí pro všechna $k \ge 500$.

Jako adaptivní filtr byl zvolen QNU, jehož výstup je definován

$$\hat{y}(k) = w_1 \cdot x_1(k) + w_2 \cdot x_2(k) + w_3 \cdot x_1(k) \cdot x_2(k) \tag{5.10}$$

takže jeho struktura odpovídá generátoru signálu. Parametry toho filtru jsou adaptovány algoritmem GNGD. Rychlost učení byla nastavena jako $\mu=1$. Metoda POT byla zvolena podle rovnice 3.5 a parametr $n_s=500$. Pro výpočet LE byl použit vztah 1.7 a délka okna byla nastavena na M=300. Výpočet ELBND byl proveden podle rovnice 1.10. Na obrázku 5.6 jsou zobrazeny výsledky experimentu. Maximum v ESE odpovídá detekci vymizení šumu z generátoru signálu. Výsledky metod ELBND a LE jsou uvedeny pouze pro ilustraci.

5.1.5 Případová studie: detekce změny trendu

Cílem tohoto experimentu je demonstrovat použití algoritmu ESE při detekci změny trendu, což je úloha, která se často vyskytuje v oblasti detekce poruch a diagnostice [22]. Uvažujme opět dva vstupy $x_1(k) \sim U(0,1)$ a $x_2(k) \sim U(0,1)$ a výstup generátoru dat y(k) takový, že

$$y(k) = x_1(k) + x_2(k) + 0.01 \cdot k + v(k)$$
(5.11)

kde člen v(k) reprezentuje aditivní gaussovský šum s nulovou střední hodnotou a směrodatnou odchylkou $\sigma_n = 0.1$. V diskrétním časovém okamžiku k = 500 nastane změna trendu. Výstup generátoru signálu se změní, tak, že

$$y(k) = x_1(k) + x_2(k) + 0.0105 \cdot k + v(k), \tag{5.12}$$

pro $k \geq 500$.

Obrázek 5.6: Detekce vymizení šumu ze signálu. Na grafu (a) je zobrazena původní časová řada (modrá). Graf (b) zobrazuje chybu filtru e. Na grafu (c) jsou zobrazeny velikosti přírůstků adaptivních vah filtru. Na grafu (d) jsou pak výsledky modifikovaného algoritmu ESE, přičemž k odstranění šumu ze signálu došlo v diskrétní časový okamžik k=500. Je tedy vidět globální maximum v ESE odpovídající úspěšné detekci. Na grafech (e) a (f) jsou pak výsledky metod ELBND a LE.

Pro zpravování signálu byl použit filtr typu LNU s třemi vstupy, takže výstup uvedeného filtru je ve tvaru

$$\hat{y}(k) = w_1 \cdot x_1(k) + w_2 \cdot x_2(k) + w_3 \tag{5.13}$$

takže odpovídající vektor vstupů je

$$\mathbf{x}(k) = [x_1(k), x_2(k), 1]. \tag{5.14}$$

Struktura LNU byla vybrána tak, aby co nejlépe odpovídala struktuře generátoru signálu. Parametry adaptivního filtru byly v tomto experimentu adaptovány algoritmem GNGD. Rychlost učení byla nastavena na $\mu=1$, délka okna byla $n_s=500$ a POT metoda byla zvolena podle 3.5. Na obrázku 5.7 jsou zobrazeny výsledky experimentu. Globální maximum ESE odpovídá okamžiku změny trendu. Algoritmy LE a ELBND úspěšně změnu trendu také de-

tekovali. Pro výpočet LE byl použit vztah 1.7 a délka okna byla nastavena na M=300. Výpočet ELBND byl proveden podle rovnice 1.10.

Obrázek 5.7: Detekce změny trendu při použití algoritmu GNGD. Na grafu (a) jsou zobrazena data z generátoru signálu (modré). Černá šipka znázorňuje okamžik ve kterém došlo ke změně trendu. Na grafu (b) je zobrazena chyba adaptivního filtru e. Na grafu (c) jsou znázorněny velikosti přírůstků adaptivních vah filtru. Grafy (d), (e) a (f) znázorňují výsledky detekce novosti pomocí algoritmů ESE, ELBND a LE. Všechny tři algoritmy vykazují úspěšnou detekci změny trendu, která koresponduje s jejich maximální hodnoty během experimentu.

Vzhledem k tomu, že pro algoritmus ESE není důležité, jaký konkrétní adaptivní algoritmus je použit, jsou na následujících obrázcích ještě zobrazeny výsledky detekce změny trendu s použitím algoritmů RLS (viz obrázek 5.8) a LMS (viz obrázek 5.9). Pro algoritmus RLS bylo prvodní nastavení parametru $\delta=10$, pro algoritmus LMS byla nastavena rychlost učení $\mu=0.1$.

5.1.6 Případová studie: detekce epilepsie v myším EEG

Poslední případová studie je věnována detekci epileptického záchvatu v signálu EEG myši pomocí algoritmu EEG. Standartizovaná data ze tří vybraných kanálů EEG, ve kterých byl expertem stanoven začátek epileptického záchvatu přibližně v čase $k \approx 1700$, jsou zobrazeny

Obrázek 5.8: Detekce změny trendu při použití algoritmu RLS. Na grafu (a) jsou zobrazena data z generátoru signálu (modré). Černá šipka znázorňuje okamžik ve kterém došlo ke změně trendu. Na grafu (b) je zobrazena chyba adaptivního filtru e. Na grafu (c) jsou znázorněny velikosti přírůstků adaptivních vah filtru. Grafy (d), (e) a (f) znázorňují výsledky detekce novosti pomocí algoritmů ESE, ELBND a LE. Všechny tři algoritmy vykazují úspěšnou detekci změny trendu, která koresponduje s jejich maximální hodnoty během experimentu.

na obrázku 5.10. Standartizace byla provedena podle předpisu

$$y = \frac{x - \mu_x}{\sigma_x} \tag{5.15}$$

kde y je výsledná standartizovaná hodnota, x je původní hodnota, mu_x je průměrná hodnota původních dat daného kanálu a σ_x je jejich původní směrodatná odchylka.

Jako adaptivní filtr byl, na základě experimentů, zvolen FIR filtr délky 10. Vstupem je vektor dat

$$\mathbf{x} = [x(k-1)x(k-2), \dots, x(k-10)] \tag{5.16}$$

takže filtr má 10 adaptivních parametrů. Filtr byl adaptován algoritmem NLMS. Rychost učení byla během experimentu nastavena na $\mu = 1$. Metoda POT byla zvolena podle vztahu 3.7 a délka okna $n_s = 1000$. Výsledky detekce algoritmem ESE jsou zobrazeny na obrázku

Obrázek 5.9: Detekce změny trendu při použití algoritmu LMS. Na grafu (a) jsou zobrazena data z generátoru signálu (modré). Černá šipka znázorňuje okamžik ve kterém došlo ke změně trendu. Na grafu (b) je zobrazena chyba adaptivního filtru e. Na grafu (c) jsou znázorněny velikosti přírůstků adaptivních vah filtru. Grafy (d), (e) a (f) znázorňují výsledky detekce novosti pomocí algoritmů ESE, ELBND a LE. Všechny tři algoritmy vykazují úspěšnou detekci změny trendu, která koresponduje s jejich maximální hodnoty během experimentu.

5.11. Pozice globálního maxima ESE v kanálu C3 (obzvláště signifikantní) je v diskrétním časovém okamžiku k=1735, v kanálu Pz je to k=1698 a v kanálu Fp1 je to v k=1727.

5.1.7 Vyhodnocení úspěšnosti detekce skokové změny parametrů generátoru signálu

Pro vyhodnocení úspěšnosti skokové změny parametrů generátoru signálu uvažujme generátor signálu s dvěma vstupy $x_1(k)$ a $x_2(k)$ a výstupem y(k) ve tvaru

$$y(k) = a_1 \cdot x_1(k) + a_2 \cdot x_2(k) + a_3 \cdot x_1(k) \cdot x_2(k) + v(k)$$
(5.17)

kde člen v(k) reprezentuje gaussovský aditivní šum s nulovou střední hodnotou a směrodatnou odchylkou σ . Počáteční hodnoty parametrů a_1 , a_2 a a_3 jsou vygenerovány z rovnoměrného

Obrázek 5.10: Vybrané kanály myšího EEG na kterých je patrný epileptický záchvat. Data byly standartizovány. Začátek záchvatu je přibližně v $k\approx 1700$, což znázorňuje černá šipka.

rozdělení U(-1,1). V diskrétním časovém okamžiku k=200, dojde ke skokové změně těchto parametrů a jejich nová hodnota je opět náhodně vygenerována z rovnoměrného rozdělení U(-1,1). Celkový počet vzorků experimentu je 400. Použitý adaptivní filtr je stejný jako v předchozí případové studii detekce skokové změny parametrů generátoru signálu, viz kapitola 5.1.3. Parametry tohoto adaptivního filtru byly adaptovány algoritmem GNGD. Metoda POT byla zvolena podle rovnice 3.5 a délka okna byla zvolena $n_s=1200$. Apriorní informace o parametrech GPD byla pro každý experiment získána pomoci 1200 vzorků, s počátečními hodnotami parametrů a_1 , a_2 a a_3 . Pro každý experiment byla vyhodnocena hodnota SNR jako

$$SNR = 10\log_{10}\frac{\sigma_s^2}{\sigma^2} \tag{5.18}$$

kde σ_s je hodnota směrodatné odchylky výstupu generátoru signálu během experimentu a σ je směrodatná odchylka aditivního gaussovského šumu. Vyhodnocení přesnosti detekce bylo provedeno následujícím způsobem:

1. nastavení hodnoty směrodatné odchylky šumu σ

Obrázek 5.11: Hodnota ESE pro vybrané kanály se záznamem myšího EEG ve kterých je patrný epileptický záchvat. V kanále C3 je v ESE výrazný nárůst po začátku záchvatu (přibližně v $k \approx 1700$), v porovnání s ostatními kanály. Černá šipka znázorňuje přibližný začátek epileptického záchvatu.

- 2. pro zvolenou hodnotu směrodatné odchylky σ se provede 1000 experimentů, přičemž pro každý experiment jsou nově vygenerovány počáteční hodnoty parametrů generátoru signálu a_1 , a_2 a a_3 .
- 3. pro každý experiment je vyhodnocena úspěšnost detekce. Za úspěšnou detekci je považováno, pokud globální maximum ESE, ELBND, EL respektive chyby filtru je v mezích $k \geq 200$ a $k \leq 210$.
- 4. vypočte se celková úspěšnost detekce pro danou hodnotu směrodatné odchylky (poměr počtu úspěšných detekcí k celkovému počtu experimentů)
- 5. pro každý experiment se vyhodnotí SNR podle 5.18 a pak se pro zvolenou hodnotu σ vypočítá průměrná hodnota SNR pro všechny experimenty

Vyhodnocení úspěšnosti detekce bylo vyhodnoceno pro dva případy. V prvním případě, byly hodnoty vstupů $x_1(k)$ a $x_2(k)$ generovány z rovnoměrného rozdělení U(-1,1). Výsledky úspěš-

nosti detekce pro různé hodnoty směrodatných odchylek šumu σ jsou zobrazeny na obrázku 5.12. Výsledky jsou také shrnuty v tabulce XXX (viz příloha). Pro porovnání jsou zvoleny metody ELBND (výpočet podle rovnice 1.10), LE s oknem $n_s = 1200$ (výpočet podle rovnice 1.7) a velikost chyby adaptivního filtru e (v grafu označeno jako ERR).

Obrázek 5.12: Úspěšnost detekce skokové změny parametrů generátoru signálu. Hodnoty vstupů generátoru signálu jsou generovány z rovnoměrného rozdělení U(-1,1). Pro hodnoty $SNR > 15 \ dB$ dosáhl algoritmus ESE vyšší úspěšnost než algoritmy LE, ELBND a vyhodnocení pomocí chyby filtru (ERR). Pro $SNR > 33 \ dB$ dosáhl algoritmus ESE 100% úspěšnost detekce.

Ve druhém případě byly hodnoty vstupů $x_1(k)$ a $x_2(k)$ generovány z normálního rozdělení. Vyhodnocení úspěšnosti detekce bylo provedeno stejně jako v případě popsaném výše. Výsledky ůspěšnosti detekce pro různé hodnoty směrodatných odchylek šumu σ jsou zobrazeny na obrázku 5.13. Uvedené výsledky v číselné podobě jsou uvedeny v tabulce XXX (viz příloha). Výpočet hodnot ELBND, LE a ERR bylo provedeno stejně jako ve výše uvedeném případě.

5.1.8 Vyhodnocení úspěšnosti detekce skokové změny trendu

Pro vyhodnocení úspěšnosti změny trendu uvažujme výstup generátoru signálu y(k) se dvěma vstupy $x_1(k)$ a $x_2(k)$ jehož výstup je definován jako

$$y(k) = x_1(k) + x_2(k) + 0.01 \cdot k + v(k)$$
(5.19)

Obrázek 5.13: Úspěšnost detekce skokové změny parametrů signálu. Hodnoty vstupů generátoru signálu jsou generovány z normálního rozdělení N(0,1). Pro hodnoty $SNR>8\ dB$ dosáhl algoritmus ESE lepší úspěšnosti detekce než algoritmy LE, ELBND a vyhodnocení pomocí velikosti chyby predikce (ERR). Pro $SNR>34\ dB$ dosáhl algoritmus ESE 100% úspěšnosti detekce.

kde člen v(k) reprezentuje aditivní gaussovký šum s nulovou střední hodnotou a směrodatnou odchylkou σ . V diskrétním časovém okamžiku k=200 se změní výstup generátoru signálu

$$y(k) = x_1(k) + x_2(k) + (0.01 + a) \cdot k + v(k)$$
(5.20)

přičemž parametr a je vygenerován v každém experimentu z rovnoměrného rozdělení U(-0.02, 0.02). Počet vzorků experimentu je 400.

Struktura adaptivního filtru byla zvolena stejně jako v předcházející případové studii detekce změny trendu (viz kapitola 5.1.3). Adaptivní parametry filtru byly adaptovány algoritmem GNGD. Metoda POT pro algoritmus ESE byla zvolena jako 3.5 a délka okna byla nastaven na $n_s=1200$. Apriorní informace o parametrech GPD byla získána na základě 1200 vzorků, ve kterých nedošlo ke změně trendu.

Vyhodnocení přesnosti detekce změny trendu bylo provedeno následujícím způsobem:

- 1. nastavení hodnoty směrodatné odchylky šumu σ
- 2. pro zvolenou hodnotu směrodatné odchylky σ se provede 1000 experimentů. V každém experimentu dojde v diskrétním časovém okamžiku k=200 k novému vygenerování hodnoty parametru a z rovnoměrného rozdělení U(-0.02,0.02).
- 3. pro každý experiment je vyhodnocena úspěšnost detekce. Za úspěšnou detekci je považováno, pokud globální maximum ESE, ELBND, EL respektive chyby filtru je v mezích

 $k \ge 200 \text{ a } k \le 210.$

- 4. vypočte se celková úspěšnost detekce pro danou hodnotu směrodatné odchylky (poměr počtu úspěšných detekcí k celkovému počtu experimentů)
- 5. pro každý experiment se vyhodnotí SNR podle 5.18 a pak se pro zvolenou hodnotu σ vypočítá průměrná hodnota SNR pro všechny experimenty

Vyhodnocení úspěšnosti detekce změny trendu bylo vyhodnoceno pro hodnoty vstupů $x_1(k)$ a $x_2(k)$ vygenerovány z rovnoměrného rozdělení U(-1,1). Výsledky úspěšnosti detekce pro různé hodnoty směrodatných odchylek šumu σ jsou zobrazeny na obrázku 5.14. Výsledky jsou také shrnuty v tabulce XXX (viz příloha). Pro porovnání jsou zvoleny metody ELBND (výpočet podle rovnice 1.10), LE s oknem $n_s = 1200$ (výpočet podle rovnice 1.7) a velikost chyby adaptivního filtru e (v grafu označeno jako ERR).

Obrázek 5.14: Úspěšnost detekce změny trendu. Hodnoty vstupů generátoru signálu byly generovány z rovnoměrného rozdělení U(-1,1). Pro hodnoty $SNR > 8 \ dB$ dosáhl algoritmus ESE větší úspěšnosti detekce než LE, ELBND a vyhodnocení pomocí velikosti chyby filtru.

5.2 Vyhodnocení úspěšnosti detekce změny trendu a evaluace ROC křivky

Protože úspěšná detekce novosti pomocí algoritmu ESE je závislá na volbě hodnoty, od které budeme považovat hodnotu ESE za "novost", byl proveden experiment detekce změny trendu a vyhodnocena ROC (Receiver Operating Characteristics) křivka [24]. ROC křivka poskytuje vhodný způsob jak vizualizovat schopnost binárního klasifikátoru klasifikovat správně data na

základě proměnlivé velikosti prahu, který klasifikaci určuje (v případě algoritmu ESE je to hodnota ESE) a zároveň umožňuje objektivně jednotlivé klasifikátory porovnávat [25] (více viz následující podkapitola 5.2.2). Pro porovnání algoritmu ESE byly opět zvoleny algoritmy LE, ELBND a klasifikátor, který klasifikuje vzorky náhodně.

5.2.1 Popis experimentu

Stejně jako v případě vyhodnocení přesnosti detekce změny trendu (viz podkapitola 5.1.8) i v tomto experimentu uvažujeme dva vstupy $x_1(k)$ a $x_2(k)$ výstup generátoru signálu y(k) ve tvaru

$$d(k) = x_1(k) + x_2(x) + 0.01 \cdot k + v(k)$$

$$0 < k < 200$$
(5.21)

kde člen v(k) reprezentuje gaussovský aditivní šum s nulovou střední hodnotou a směrodatnou odchylkou σ_n . V diskrétním časovém okamžiku k=200 přejde výstup generátoru signálu do tvaru

$$y(k) = x_1(k) + x_2(x) + (0.01 + a) \cdot k + v(k)$$

$$200 < k < 399$$

$$(5.22)$$

přičemž hodnota parametru a je vygenerována z rovnoměrného rozdělení U(-0.02, 0.02) a pro všechna $200 \le k \le 399$ je během daného experimentu konstantní. Hodnoty vstupů $x_1(k)$ a $x_2(k)$ jsou generovány z rovnoměrného rozdělení U(-1, 1).

Jako adaptivní filtr byl zvolen QNU, jehož struktura odpovídá struktuře generátoru signálu. Výstup adaptivního filtru je ve tvaru

$$\hat{y}(k) = w_1 \cdot x_1(k) + w_2 \cdot x_2(k) + w_3 \cdot x_1(k) \cdot x_2(k)$$
(5.23)

a parametry toho adaptivního filtru byly adaptovány algoritmem GNGD. Rychlost učení během experimentů byla nastavený na $\mu=0.5$.

Apriorní hodnota parametrů GPD pro algoritmus ESE je získána pomocí 1200 vzorků, získaných z výstupu generátoru signálu, který je dán rovnicí 5.21. Během experimentů byla délka okna $n_s=1200$. Metoda POT byla zvolena podle 3.5. Pro výpočet ELBND byl použit vztah 1.10. Výsledky algoritmu LE byly získány pro okno délky $n_s=1200$ pomocí vztahu 1.7. Pro každou hodnotu σ bylo provedeno 10000 experimentů na jejichž základě byla zkonstruována ROC křivka. Hodnoty směrodatných odchylek σ byly vybrány takto:

$$\sigma = \{0.1, 0.2, 0.5, 1.0, 2.0, 2.5\} \tag{5.24}$$

a pro každou hodnotu sigma byla pro všech 10000 experimentů určená průměrná hodnota

5.2.2 Konstrukce ROC křivky

Pro konstrukci ROC křivky je důležité, aby množina výsledků byla vyvážená. Tedy aby obsahovala stejný počet pozitivních i negativních vzorků. Pro získání vyvážené množiny výsledků byl nejdřív každý experiment převzorkován podle následujícího předpisu

$$ND_r(i) = \max\{ND(i \cdot 10), ND(i \cdot 10 + 1), ND(i \cdot 10 + 2), \dots, ND(i \cdot 10 + 9)\}$$
 (5.25)

$$i = 0, 1, \dots, 39$$

kde ND reprezentuje hodnotu detektoru novosti (resp. hodnoty algoritmu ESE, ELBND, LE). Z každé převzorkované datové řady jsou vybrány dva vzorky jsou vygenerovány dvě jednoprvkové množiny. Množina P obsahuje pozitivní vzorek, takový, že $P = \{ND_r(20)\}$ (protože v diskrétním časovém okamžiku k = 200 došlo ke změně trendu). Množina N obsahuje obsahuje zbylých 39 negativních vzorků, takže $N = \{ND(0), \dots ND(19), ND(21), \dots ND(39)\}$. Při konstrukci ROC křivky jsou pro každý experiment vybrány dva vzorky. Jeden vzorek z množiny P a jeden náhodně vybraný vzorek z množiny N. Pro vyhodnocení ROC je klíčové zjistit, jestli jsou pozitivní vzorky (prvky množiny P) pro daný práh správně klasifikovány jako pozitivní (True Positive) a zda-li jsou negativní vzorky klasifikovány jako falešně pozitivní (False Positive). Pro danou velikost prahu se určí úspěšnost detekce skutečně pozitivních (True Positive Rate) jako

$$TPR = \frac{TP}{P} = \frac{TP}{10000}$$
 (5.26)

kde TP je počet správně pozitivně klasifikovaných vzorků a P je celkový počet skutečně pozitivních vzorků. Dále je potřeba určit poměr falešně pozitivních (False Positive Rate) vzorků pro daný práh jako

$$FPR = \frac{FP}{N} = \frac{FP}{10000} \tag{5.27}$$

kde FP je počet vzorků klasifikovaných jako falešně pozitivní a N je celkový počet skutečně negativních vzorků. ROC pak zobrazuje závislost úspěšnost detekce skutečně pozitivních vzorků (TPR) v závislosti na poměru falešně pozitivních vzorků (FPR).

Hodnota TPR bývá nazývána také jako sensitivita. Komplementární hodnotou k FPR je potom specifita (True Negative Rate TNR), která určuje, kolik opravdu negativních vzorku (TN) je klasifikováno jako negativní. Komplementární ve smyslu

$$TNR = \frac{TN}{N} = 1 - FPR. (5.28)$$

Komplementární k sensitivitě je hodnota míry falešně negativních (FNR), která určuje poměr

falešně negativních k (FN) k celkovému počtu pozitivních, tedy

$$FNR = \frac{FN}{P} = 1 - TPR. \tag{5.29}$$

Pro každou ROC křivku je možné určit plochu pod touto křivkou (Area Under ROC), která vypovídá o schopnosti klasifikátoru rozlišovat mezi jednotlivými třídami. Čím větší plocha pod křivkou, tím víc klasifikátor správně klasifikuje pozitivní případy jako pozitivní a negativní případy jako negativní. Plocha AUROC ideálního klasifikátoru bude 1, zatímco plocha nejhoršího možného klasifikátoru bude rovna 0 (tento klasifikátor, ale bude dokonalým klasifikátorem, pokud zaměníme označení negativní třídy za pozitivní). Plocha AUROC náhodného klasifikátoru bude 0.5, neboť tento klasifikátor nedokáže vůbec rozlišovat mezi pozitivními a negativními případy.

5.2.3 Výsledky experimentu

Výsledné ROC křivky pro různé hodnoty SNR jsou zobrazeny v obrázcích 5.15-5.20. Modrá čára zobrazuje výsledky algoritmu ESE, zelená tečkovaná čára zobrazuje výsledky algoritmu LE, červená přerušovaná čára výsledky algoritmu ELBND a černá čerchovaná čára zobrazuje výsledky náhodného klasifikátoru.

Pro každou ROC křivku byla vypočtena AUROC pomocí lichoběžníkové metody, jako

$$AUROC \approx \sum_{j=1}^{n_t} \frac{TPR(FPR(j)) + TPR(FPR(j+1))}{2} \cdot (FPR(j+1) - FPR(j))$$
 (5.30)

kde n_t reprezentuje počet vyhodnocovaných prahů zmenšený o 1. Výsledné plochy pod křivkami ROC jsou pro jednotlivé metody a směrodatné odchylky šumu uvedené v následující tabulce 5.1. Tučně je zvýrazněna nejvetší hodnota AUROC. Podle uvedených hodnot při průměrném SNR=35.8 nejlepe rozlišuje mezi pozitivními a negativními případy algoritmus LE. Pro nižší hodnoty SNR je nejlépe separujícím algoritmem ESE. V další tabulce 5.2 je

AUROC SNR [dB] \overline{ELBND} ESELE σ_n 0.99520.135.80.99540.82340.230.0 0.99200.99120.82990.521.7 0.98160.97770.82881.0 16.2 0.95760.94960.82632.0 10.8 0.92860.92140.83972.59.20.91340.84460.9056

Tabulka 5.1: AUROC pro detekci změny trendu

uvedená úspěšnost klasifikace, kde za úspěšnou klasifikaci je považován případ, kdy maximální

hodnota ESE, ELBND nebo LE během experimentu je v intervalu $200 \le k \le 210$, tedy do deseti vzorků po změně trendu. Tučně jsou zvýrazněny hodnoty nejvyšší úspěšnosti detekce.

Tabulka 5.2: Úspěšnost detekce změny trendu

		Detection rate		
σ_n	SNR [dB]	ESE	LE	ELBND
0.1	35.8	98.88	98.92	60.00
0.2	30.0	98.14	98.03	59.61
0.5	21.7	95.18	95.08	59.65
1.0	16.2	90.42	89.96	57.67
2.0	10.8	81.27	78.51	57.69
2.5	9.2	75.86	71.56	57.16

Z výsledků je patrné, že pro průměrné SNR = 35.8 má nejvyšší úspěšnost algoritmus LE. Pro nižší hodnoty SNR je algoritmem s nejvyšší úspěšností detekce algoritmus ESE.

Obrázek 5.15: ROC křivky v případě detekce změny trendu signálu obsahujícího aditivní gaussovský šum se směrodatnou odchylkou $\sigma=0.1$. Průměrná hodnota SNR experimentů byla SNR=35.80~dB. Černá čerchovaná čára (RANDOM) reprezentuje náhodný klasifikátor.

5.3 Vyhodnocení výpočetní náročnosti metod odhadu parametrů zobecněného Paretova rozdělení

Výsledky v této podkapitole byli publikovány v (můj shit). Cílem bylo určit výpočetní čas výpočtu parametrů GPD v typické aplikaci pro použití algoritmu ESE, který byl, v tomto

Obrázek 5.16: ROC křivky v případě detekce změny trendu signálu obsahujícího aditivní gaussovský šum se směrodatnou odchylkou $\sigma=.2$. Průměrná hodnota SNR experimentů byla SNR=30.00~dB. Černá čerchovaná čára (RANDOM) reprezentuje náhodný klasifikátor.

Obrázek 5.17: ROC křivky v případě detekce změny trendu signálu obsahujícího aditivní gaussovský šum se směrodatnou odchylkou $\sigma=0.5$. Průměrná hodnota SNR experimentů byla SNR=21.70~dB. Černá čerchovaná čára (RANDOM) reprezentuje náhodný klasifikátor.

Obrázek 5.18: ROC křivky v případě detekce změny trendu signálu obsahujícího aditivní gaussovský šum se směrodatnou odchylkou $\sigma=1.0$. Průměrná hodnota SNR experimentů byla SNR=16.20~dB. Černá čerchovaná čára (RANDOM) reprezentuje náhodný klasifikátor.

Obrázek 5.19: ROC křivky v případě detekce změny trendu signálu obsahujícího aditivní gaussovský šum se směrodatnou odchylkou $\sigma=2.0$. Průměrná hodnota SNR experimentů byla SNR=10.88~dB. Černá čerchovaná čára (RANDOM) reprezentuje náhodný klasifikátor.

Obrázek 5.20: ROC křivky v případě detekce změny trendu signálu obsahujícího aditivní gaussovský šum se směrodatnou odchylkou $\sigma=2.5$. Průměrná hodnota SNR experimentů byla SNR=9.20~dB. Černá čerchovaná čára (RANDOM) reprezentuje náhodný klasifikátor.

případě, testován ne experimentu detekce skokové změny parametrů generátoru signálu.

5.3.1 Motivace

Detekce novosti v reálném čase je úloha, která nalézá své uplatnění nejen v oblasti detekci a diagnostiky v průmyslových aplikacích [14], ale také např. v detekci narušení počítačových sítí [15] nebo v zabezpečovacích systémech [16]. Další oblastí uplatnění je např. mobilní robotika, která je specifická tím, že robot má k dispozici pouze limitovaný výpočetní výkon [17, 18]. Pro metody detekce novosti v reálném čase je tedy důležité, aby vynikali dostatečně nízkou výpočetní náročností. Z tohoto důvodu byli otestovány tři různé metody výpočtu parametrů GPD (viz kapitola 3, protože tento výpočet je z hlediska použití algoritmu ESE potenciálně limitující z hlediska využitelnosti v aplikacích detekce v reálném čase. Jmenovitě byli otestovány tyto metody: metoda maximální věrohodnosti (ML), metoda momentů (MOM) a metoda kvazi-maximální věrohodnosti (QML) (více viz kapitola 3). Výpočetní čas potřebný k určení parametrů GPD pomocí těchto metod byl vyhodnocen při experimentu, ve kterém dojde ke skokové změně parametrů generátoru signálu.

5.3.2 Specifikace experimentu

Vzhledem k povaze experimentu, který slouží k vyhodnocení výpočetní náročnosti různých metod určení parametrů GPD, a nikoliv k detekci novosti v nějakém komplexním procesu, byl zvolen jednoduchý lineární kombinační filtr (LNU), jehož výstup v diskrétním časovém okamžiku k je definován jako

$$\hat{y}(k) = w_1 \cdot x_1(k) + w_2 \cdot x_2(k) + w_3 \cdot x_3(k) \tag{5.31}$$

a tento filtr je adaptován algoritmem NLMS (viz kapitola 2.2.1), přičemž rychlost učení μ byla nastavena jako $\mu = 0.8$.

Pro výstup generátoru signálu platí vztah

$$y(k) = x_1(k) + x_2(k) + x_3(k) + v(k)$$
(5.32)

pro všechny $1 \le k \le 200$. Člen v(k) reprezentuje aditivní gaussovský šum s nulovou střední hodnotou a směrodatnou odchylkou $\sigma_{noise} = 0.1$. V diskrétním časovém okamžiku k = 201 dojde ke změně generátoru signálu a jeho výstup přejde do tvaru

$$y(k) = 0.7 \cdot x_1(k) + 1.2 \cdot x_1(k) + 1.1 \cdot x_1(k) + v(k)$$
(5.33)

pro $201 \le k \le 400$. Hodnota všech vstupů generátoru signálu je v každém časovém okamžiku k vybrána ze standartního rozdělení normálního rozdělení, takže i-tý vstup $x_i \sim \mathcal{N}(0,1)$. Změna parametrů signálu byla vybrána tak, aby nedošlo ke změně střední hodnoty signálu y(k).

Délka okna pro odhad parametrů GPD bylě během experimentu nastavena na $n_s = 1200$. Metoda POT byla zvolena podle REF na 10%. Před experimentem bylo pořízení 1200 vzorků vygenerovaných generátorem signálu definovaným vztahem 5.31, na něž byla použita metoda POT, tak aby při experimentu v diskrétní časový okamžik k = 1 byla hodnota ESE relevantní.

Experiment byl proveden na PC s procesorem Intel(R) Core(TM) i5-7400 se 4mi jádry s taktovací frekvencí 3001 MHz a operační pamětí o velikosti 32 GB. Operační systém byl Windows 10 Pro, 64-bitová verze 10.0.18362. Kód byl napsán v Python 3.6.1 a byly použity knihovny Numpy 1.17.0 a Scipy 1.4.1. Pro

5.3.3 Výsledky a diskuze

Průměrný čas výpočtu \bar{t} parametrů všech tří GPD (počet GPD odpovídá počtu adaptivních parametrů filtru) a odpovídající směrodatné odchylky σ_t jsou uvedeny v následující tabulce 5.3. Čas výpočtu je určený pro jeden experiment (400 vzorků).

Z uvedených výsledků je patrné, že nejrychlejší metoda je MOM. Podstatnou nevýhodou

Obrázek 5.21: Výstup adaptivního filtru během experimentu. Skoková změna parametrů generátoru signálu je zvýrazněná svislou vodorovnou čarou v diskrétním časovém okamžiku k=200.

Obrázek 5.22: Hodnota ESE během experimentu. Globální maximum odpovídá změně parametrů generátoru signálu, resp. úspěšné detekci novosti.

této metody pro využití v aplikacích, které vyhodnocují data v reálném čase je její omezení na hodnoty parametrů GPD (viz kapitola 3). Pokud parametry uvedené omezení nesplňují,

Obrázek 5.23: Hodnota parametru μ GPD pro všechny tři adaptivní váhy w_1 , w_2 , w_3 během experimentu detekce změn parametrů generátoru signálu. Svislá čára v diskrétním časovém okamžiku k=200 znázorňuje skokovou změnu parametrů generátoru signálu.

Obrázek 5.24: Hodnota parametru γ GPD pro všechny tři adaptivní váhy w_1 , w_2 , w_3 během experimentu detekce změn parametrů generátoru signálu. Svislá čára v diskrétním časovém okamžiku k=200 znázorňuje skokovou změnu parametrů generátoru signálu.

Obrázek 5.25: Hodnota parametru σ GPD pro všechny tři adaptivní váhy w_1 , w_2 , w_3 během experimentu detekce změn parametrů generátoru signálu. Svislá čára v diskrétním časovém okamžiku k=200 znázorňuje skokovou změnu parametrů generátoru signálu.

Tabulka 5.3: Tabulka průměrných časů výpočtu pro jednotlivé adaptivní váhy a odpovídajících směrodatných odchylek vybraných metod výpočtu parametrů GPD

	Metoda	\bar{t} [ms]	$\sigma_t [\mathrm{ms}]$
w_1	ML	26.198	3.396
	QML	0.354	0.478
	MOM	0.076	0.264
w_2	ML	26.718	2.302
	QML	0.337	0.471
	MOM	0.064	0.244
w_3	ML	24.982	1.964
	QML	0.395	0.489
	MOM	0.060	0.238

vypočtené hodnoty nepřesné (resp. nesmyslné) a tedy nepoužitelné pro algoritmus ESE, který začne produkovat nepřesné výsledky. Z pohledu úlohy detekce novosti je diskutabilní, zda-li můžeme garantovat, že sledovaný proces po celou dobu bude splňovat uvedené omezení.

Metoda, jejíž výpočetní čas byl nejvyšší je ML, což je vzhledem k iterativnímu určení parametrů GPD očekávatelné. Nevýhoda použití této metody tkví v nemožnosti určit minimální resp. maximální počet iterací. Jednou z možností jak zrychlit nalezení parametrů je využití apriorní informace o hodnotách těchto parametrů. V rámci experimentu však byla využita pouze apriorní informace o parametru μ , který odpovídá nejmenší hodnotě přírůstku vah,

které byli získány metodou POT aplikovanou na plovoucí okno délky n_s .

Dobrým kompromisem mezi výše uvedenými metodami je použití metody QML. Výpočetní čas této metody byl v uvedeném experimentu o dva řády kratší než ML a asi pětkrát delší než MOM. Pro každou z vyhodnocovaných vah byl kratší než $500 \ \mu s$.

Z provedeného experimentu je patrné, že použití algoritmu ESE pro aplikace v reálném čase je limitováno počtem parametrů filtru a rychlostí vzorkování monitorovaného procesu.

5.4 Případová studie použití algoritmu Learning Entropy a adaptivního fuzzy filtru pro detekci změn stavů bioprocesu

Cílem této studie je ověřit, že algoritmus LE, který byl doposud publikován s adaptivními filtry typu LNU a HONU, je možné použít i pro jiné typy adaptivních filtrů. Pro provedenou studii tak byl vybrán adaptivní fuzzy filtr (viz kapitola 2.1.4).

5.4.1 Popis bioprocesu a specifikace problému

Podle [1] je pro fermentační procesy, které probíhají v dávkovém režimu je podstatné, aby probíhalo správně dávkované živení substrátem. Pro tyto procesy je specifické, že se při nadměrných koncentracích stává substrát pro mikroorganismy toxickým a může dojít k tzv. přeživení a tím i zahubení těchto mikroorganismů. Naopak, v důsledku nedostatečného zábovení živinami může dojít k odumření kultivovaného organismu. Z tohoto pohledu se je tedy důležité v závislosti na koncentraci substrátu a stavu populace mikroorganismů měnit i strategii pro řízení procesu kultivace. Historicky byl stav bioprocesu klasifikován expertem, přičemž vyhodnocení bylo poměrně časově náročné a nebylo neobvyklé, že různí experti docházeli k rozdílným závěrům. Protože výnos fermentačního procesu je zásadním způsobem ovlivněn správnou klasifikací stavu ve kterém se právě nacházi, bylo by vhodné klasifikaci automatizovat a pokud možno zvýšit její přesnost. Tomuto problému je právě věnována publikace [1], která řeší problém automatické klasifikace stavů bioprocesu kultivace bakterie Pseudomonas putida KT2442. V této publikaci je navržen komplexní algoritmus pro online klasifikaci stavů bioprocesu. Autoři zde rozlišují celkem tři stavy bioprocesu kultivace Pseudomonas putida KT2442, konkrétně:

- 1. normální živení
- 2. přeživení
- 3. nedoživení

Navržený algoritmus vyhodnocuje přísun vstupujících živin (Fm), respektive substrátu, a změny a trendu rozpuštěného kyslíku (DO), který je produkován bakteriemi *Pseudomonas*

putida a pomocí hřebenové regrese (v literatuře se vyskytuje také pod názvem Tichonova regularizace) je určován vývoj populace bakterií respektive stav bioprocesu. Vzhledem k tomu, že modely vývoje populace pro jednotlivé stavy jsou různé, mohlo by v průběhu experimentu dojít i k podstatným změnám v adaptivním modelu v okamžicích změn stavů kultivace. Tyto změny se mohli projevit neobvykle velkými přírůstky adaptivních parametrů.

Protože algoritmus Learning Entropy využívá přírůstku adaptivních parametrů, mohl by být vhodným nástrojem pro detekci změn stavů bioprocesu. Předpokládáme, že tedy existuje souvislost mezi změnami stavu bioprocesu a nárůstem Learning Entropy. Přestože může být proces kultivace bakterií *Pseudonomas Putidas* modelován různými a různě složitými modely, pro využití algoritmu Learning Entropy se jeví výhodné použít jednoduché prediktory nebo sledovače. Dosud publikované články využívali pro algoritmus LE pouze FIR filtry, případně Volterrovy filtry, které mají adaptivní parametry v lineární závislosti. V tomto experimentu je použit adaptivní fuzzy filtr, jehož struktura je specifikována v kapitole 2.1.4 a k jehož adaptaci byl použit algoritmus, který je uveden v kapitole 2.2.4.

Použitý adaptivní fuzzy filtr má 9 pravidel (M = 9), jehož l-té pravidlo je ve tvaru

$$IF\ do(k-1)\ is\ A_1^l\ AND\ do(k-6)\ is\ A_2^l\ AND\ do(k-19)\ is\ A_3^l\ THEN\ do(k)\ is\ B^l\ (5.34)$$

kde A_i^l je množina ve vstupním prostoru $U\subset R^3$ a B^l je fuzzy množina ve výstupním prostoru $V\subset R$. V uvedeném pravidle jsou do(k-1), do(k-6), do(k-19) a do(k) lingvistické proměnné, které vyjadřují koncentraci rozpuštěného kyslíku do v v diskrétních časových okamžicích k, k-1, k-6 respektive k-19, kde k je diskrétní časový index. Vzhledem k tomu, že uvedený adaptivní fuzzy filtr používá Gaussovské funkce příslušnosti (viz kapitola 2.1.4 je zobrazení popisující jeho výstup ve tvaru

$$\hat{y}(\mathbf{x}(k)) = \frac{\sum_{j=1}^{9} \overline{b}^{j} \left[\prod_{i=1}^{3} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right)\right) \right]}{\sum_{j=1}^{9} \left[\prod_{i=1}^{3} exp\left(-\left(\frac{x_{i} - \overline{x}_{i}^{j}}{\sigma_{i}^{j}}\right)\right) \right]}$$
(5.35)

kde vektor $\mathbf{x}(k)$ je

$$\mathbf{x}(k) = [do(k-1), do(k-6), do(k-19)]. \tag{5.36}$$

Protože hodnota koncetnrace rozpuštěného kyslíku je uváděna v procentech, platí pro všechna $x_i \in \langle 0; 100 \rangle$. K adaptování výše uvedeného filtru byl použit algoritmus gradient descent (viz kapitola 2.2.4. Maximální počet epoch byl stanoven na $q_{max}=100$ a požadovaná chyba predikce mezi výstupem adaptivního filtru a naměřenými daty na $\epsilon=0,001$. Rychlost učení byla během experimentů nastavena na $\mu=1$.

Pro vyhodnocení novosti byla použita přímá verze algoritmu LE, takže

$$E(k) = \max\{0, \sum_{j=1}^{9} z(|\Delta \overline{b^{j}})| - \beta\}$$
 (5.37)

kde funkce z je dána rovnicí (XY) a β je citlivostní parametr. Pro vyhodnocení novosti jsou tedy použity změny polohy středů množin ve výstupním prostoru, nikoliv změny parametrů fuzzy množin ve vstupním prostoru.

5.4.2 Experiment a zhodnocení

Experiment s použitím algoritmu LE a adaptivního fuzzy filtru byl uskutečněn na datech z kultivace bakterie $Pseudonomas\ Putida$, který byl uskutečněn na Ústavu počítačové a řídicí techniky VŠCHT Praha. Celkem byly zpracovávány hodnoty ze dvou kultivací. Přestože bylo během experimentu měřena sada různých veličin (např. teplota, pH, atd.), osvědčil se pro použití LE signál rozpustěného kyslíku $do\ [\%]$. Během experimentu bylo použito vzorkování $T=1\ min$, což je vzhledem k rychlosti celého procesu dostatečně rychlé vzorkování. Počáteční nastavení parametrů adaptivního fuzzy filtru bylo provedeno tak, jak je popsáné v kapitole 2.2.4. Podstatný vliv na výsledek detekce změn stavu bioprocesu měla volba volba délky okna pro vyhodnocení změn adaptabilních parametrů filtru M_{ND} . Na základě experimentů s různými délkami byla nakonec zvolena délka okna $M_{ND}=20$.

Na následujících obrázcích je znázorněn průběh signálu do během první kultivace (viz obrázek 5.26), chyba predikce (viz obrázek 5.27) a odpovídající hodnoty LE společně se stavy bioprocesu (viz obrázek 5.30). Význam stavů bioprocesu znázorněných na obrázku 5.27 respektive obrázku 5.31 jsou: 1 - nedoživení, 2 - živení, 3 - přeživení. Aby byli detekovány všechny změny stavu bioprocesů, byla stanovena hodnota parametru $\beta = 2,58$ (viz rovnice 5.37).

Data z druhé kultivace byla použita k ověření správného nastavení parametru β . Obrázek 5.29 zobrazuje průběh signálu do během druhého experimentu. Chyba predikce adaptivního fuzzy filtru je zobrazena na obrázku 5.28. Obrázek 5.31 zobrazuje stavy bioprocesu během kultivace a odpovídající hodnoty LE. S tímto nastavením parametru β se podařilo detekovat pouze tři změny bioprocesu. Nicméně pro jiné hodnoty délky okna M_{ND} a hodnoty parametru β se tyto změny detekovat podařilo. Je tedy zřejmé, že pro praktické použití je správná volba obou parametrů zásadní. Vzhledem k malému množství dat a časové náročnosti kultivace nebylo možné použít nějakou validační metodu.

Obrázek 5.26: Průběh signálu doběhem první kultivace

Obrázek 5.27: Chyba predikce \boldsymbol{e} během první kultivace

Obrázek 5.28: Stav bioprocesu a hodnota LE první kultivace

Obrázek 5.29: Průběh signáludoběhem druhé kultivace

Obrázek 5.30: Chyba predikce e během druhé kultivace

Obrázek 5.31: Stav bioprocesu a hodnota LEběhem druhé kultivace

6 Závěr

TODO

Publikace autora

[1] VRBA, Jan; MAREŠ, Jan. Introduction to Extreme Seeking Entropy. Entropy, 2020, 22.1: 93.

Literatura

- [1] MAREŠ, Jan, et al. Process state classification of fed-batch fermentation based on process variables analysis. Biochemical Engineering Journal, 2016, 112: 178-185.
- [2] ROWELL, D. 2.161 Signal Processing: Continuous and Discrete, Fall 2008. 2008.
- [3] MANDIC, Danilo P.; KANNA, Sithan; CONSTANTINIDES, Anthony G. On the intrinsic relationship between the least mean square and Kalman filters [Lecture Notes]. IEEE Signal Processing Magazine, 2015, 32.6: 117-122.
- [4] PROAKIS, John G. a Dimitris G. MANOLAKIS. Digital signal processing: principles, algorithms, and applications. 3rd ed. Upper Saddle River, N.J.: Prentice Hall, 1996. ISBN 0133737624.
- [5] OOSTENVELD, Robert; PRAAMSTRA, Peter. The five percent electrode system for high-resolution EEG and ERP measurements. Clinical neurophysiology, 2001, 112.4: 713-719.
- [6] HAYKIN, Simon S. Adaptive filter theory. Fifth edition. vyd. Upper Saddle River, New Jersey: Pearson, 2014. ISBN 978-0-13-267145-3.
- [7] STRICHARTZ, Robert S. A guide to distribution theory and Fourier transforms. World Scientific Publishing Company, 2003.
- [8] GERSHO, Allen; GRAY, Robert M. Vector quantization and signal compression. Springer Science & Business Media, 2012.
- [9] BUKOVSKY, Ivo; KINSNER, Witold; HOMMA, Noriyasu. Learning Entropy as a Learning-Based Information Concept. Entropy, 2019, 21.2: 166.
- [10] BUKOVSKY, Ivo. Learning entropy: Multiscale measure for incremental learning. Entropy, 2013, 15.10: 4159-4187.
- [11] CEJNEK, Matous; BUKOVSKY, Ivo. Concept drift robust adaptive novelty detection for data streams. Neurocomputing, 2018, 309: 46-53.

- [12] CEJNEK, Matous; BUKOVSKY, Ivo. Influence of type and level of noise on the performance of an adaptive novelty detector. In: 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC). IEEE, 2017. p. 373-377.
- [13] CEJNEK, Matous; BUKOVSKY, Ivo; VYSATA, Oldrich. Adaptive classification of EEG for dementia diagnosis. In: 2015 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM). IEEE, 2015. p. 1-5.
- [14] GERTLER, Janos. Fault detection and diagnosis in engineering systems. CRC press, 1998.
- [15] YU, Kangqing, et al. Real-time Outlier Detection over Streaming Data. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019. p. 125-132.
- [16] RAMEZANI, Ramin; ANGELOV, Plamen; ZHOU, Xiaowei. A fast approach to novelty detection in video streams using recursive density estimation. In: 2008 4th International IEEE Conference Intelligent Systems. IEEE, 2008. p. 14-2-14-7.
- [17] MARSLAND, Stephen; NEHMZOW, Ulrich; SHAPIRO, Jonathan. On-line novelty detection for autonomous mobile robots. Robotics and Autonomous Systems, 2005, 51.2-3: 191-206.
- [18] NEHMZOW, Ulrich, et al. Novelty detection as an intrinsic motivation for cumulative learning robots. In: Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, Berlin, Heidelberg, 2013. p. 185-207.
- [19] SCARROTT, Carl; MACDONALD, Anna. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT-Statistical Journal, 2012, 10.1: 33-60.
- [20] MACKEY, Michael C.; GLASS, Leon. Oscillation and chaos in physiological control systems. Science, 1977, 197.4300: 287-289.
- [21] SPANGENBERG, Mariana, et al. Detection of variance changes and mean value jumps in measurement noise for multipath mitigation in urban navigation. Navigation, 2010, 57.1: 35-52.
- [22] MAURYA, Mano Ram; RENGASWAMY, Raghunathan; VENKATASUBRAMANIAN, Venkat. Fault diagnosis using dynamic trend analysis: A review and recent developments. Engineering Applications of artificial intelligence, 2007, 20.2: 133-146.

- [23] L'ECUYER, Pierre. History of uniform random number generation. In: 2017 Winter Simulation Conference (WSC). IEEE, 2017. p. 202-230.
- [24] EGAN, J.P. Signal Detection Theory and ROC-analysis. Academic Press, 1975. Academic Press series in cognition and perception. ISBN 978-0-12-232850-3.
- [25] FAWCETT, Tom. An introduction to ROC analysis. Pattern recognition letters, 2006, 27.8: 861-874.
- [26] HOSKING, Jonathan RM; WALLIS, James R. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 1987, 29.3: 339-349.
- [27] DUMOUCHEL, William H. Estimating the stable index α in order to measure tail thickness: a critique, the Annals of Statistics, 1983, 1019-1031.
- [28] HALD, Anders. A History of Mathematical Statistics from 1750 to 1930. New York: Wiley, 1998.
- [29] MONTGOMERY, Douglas C.; RUNGER, George C. Applied Statistics and Probability for Engineers. 2007.
- [30] GRIMSHAW, Scott D. Computing maximum likelihood estimates for the generalized Pareto distribution. Technometrics, 1993, 35.2: 185-191.
- [31] SMITH, Richard L. Maximum likelihood estimation in a class of nonregular cases. Biometrika, 1985, 72.1: 67-90.
- [32] LUCEÑO, Alberto. Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators. Computational Statistics & Data Analysis [online]. 2006, 51(2), 904-917 [cit. 2020-09-25]. ISSN 01679473. Dostupné z: doi:10.1016/j.csda.2005.09.011
- [33] ZHANG, Jin. Likelihood moment estimation for the generalized Pareto distribution. Australian & New Zealand Journal of Statistics, 2007, 49.1: 69-77.
- [34] ZHAO, Xu, et al. A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework. Mathematics, 2019, 7.5: 406.
- [35] PARK, Myung Hyun; KIM, Joseph HT. Estimating extreme tail risk measures with generalized Pareto distribution. Computational Statistics & Data Analysis, 2016, 98: 91-104.
- [36] DE ZEA BERMUDEZ, P.; KOTZ, Samuel. Parameter estimation of the generalized Pareto distribution—Part I. Journal of Statistical Planning and Inference, 2010, 140.6: 1353-1373.

Příloha