AKAI SERVICE MANUAL

Model:

LCT2716

Safety Instructions
Features & Specifications
Block Diagram
Circuit Diagram
Disassembly
Schematic & Component Diagrams
Bill of Material
Pin Descriptions
LCD Panel specification
Exploded View Diagram

This manual is the latest at the time of printing, and does not include the modification which may be made after the printing, by the constant improvement of product.

I. Safety Instructions

CAUTION

RISKOF ELECTRIC SHOCK DO NOT OPEN

CAUTION: TO REDUCETHERISK OF ELECTRIC SHOCK, DONOT REMOVE COVER (OR BACK). NO USER-SERVICEABLE PARTSINSIDE.REFER SERVICING TO QUALIFIED SERVICE PERSONNEL

The lightning flash with arrowhead symbol, within an equilateral triangle, is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclosure that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

PRECAUTIONS DURING SERVICING

- 1. In addition to safety, other parts and assemblies are specified for conformance with such regulations as those applying to spurious radiation. These must also be replaced only with specified replacements. Examples: RF converters, tuner units, antenna selection switches, RF cables, noise-blocking capacitors, noise-blocking filters, etc.
- 2. Use specified internal Wiring. Note especially:
 - 1) Wires covered with PVC tubing
 - 2) Double insulated wires
 - 3) High voltage leads
- 3. Use specified insulating materials for hazardous live parts. Note especially:
 - 1) Insulating Tape
 - 2) PVC tubing
 - 3) Spacers (insulating barriers)
 - 4) Insulating sheets for transistors
 - 5) Plastic screws for fixing micro switches
- 4. When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.), wrap ends of wires securely about the terminals before soldering.

- 5. Make sure that wires do not contact heat generating parts (heat sinks, oxide metal film resistors, fusible resistors, etc.)
- 6. Check if replaced wires do not contact sharply edged or pointed parts.
- 7. Make sure that foreign objects (screws, solder droplets, etc.) do not remain inside the set.

MAKE YOUR CONTRIBUTION TO PROTECT THE **ENVIRONMENT**

Used batteries with the ISO symbol for recycling as well as small accumulators (rechargeable batteries), mini-batteries (cells) and starter batteries should not be thrown into the garbage can.

Please leave them at an appropriate depot.

WARNING:

Before servicing this TV receiver, read the X-RAY RADIATION PRECAUTION, SAFETY INSTRUCTION and PRODUCT SAFETY NOTICE.

X-RAY RADIATION PRECAUTION

- 1. Excessively high can produce potentially hazardous X-RAY RADIATION. To avoid such hazards, the high voltage must not exceed the specified limit. The normal value of the high voltage of this TV receiver is 27 KV at zero bean current (minimum brightness). The high voltage must not exceed 30 KV under any circumstances. Each time when a receiver requires servicing, the high voltage should be checked. The reading of the high voltage is recommended to be recorded as a part of the service record, It is important to use an accurate and reliable high voltage meter.
- 2. The only source of X-RAY RADIATION in this TV receiver is the picture tube. For continued X-RAY RADIATION protection, the replacement tube must be exactly the same type as specified in the parts list.
- 3. Some parts in this TV receiver have special safety related characteristics for X-RADIATION protection. For continued safety, the parts replacement should be under taken only after referring the PRODUCT SAFETY NOTICE.

SAFETY INSTRUCTION

The service should not be attempted by anyone unfamiliar with the necessary instructions on this TV receiver. The following are the necessary instructions to be observed before servicing.

- 1. An isolation transformer should be connected in the power line between the receiver and the AC line when a service is performed on the primary of the converter transformer of the set.
- 2. Comply with all caution and safety related provided on the back of the cabinet, inside the cabinet, on the chassis or picture tube.
- 3. To avoid a shock hazard, always discharge the picture tube's anode to the chassis ground before removing the anode cap.

- 4. Completely discharge the high potential voltage of the picture tube before handling. The picture tube is a vacuum and if broken, the glass will explode.
- When replacing a MAIN PCB in the cabinet, always be certain that all protective are installed properly such as control knobs, adjustment covers or shields, barriers, isolation resistor networks etc.
- 6. When servicing is required, observe the original lead dressing. Extra precaution should be given to assure correct lead dressing in the high voltage area.
- 7. Keep wires away from high voltage or high tempera ture components.
- 8. Before returning the set to the customer, always perform an AC leakage current check on the exposed metallic parts of the cabinet, such as antennas, terminals, screwheads, metal overlay, control shafts, etc., to be sure the set is safe to operate without danger of electrical shock. Plug the AC line cord directly to the AC outlet (do not use a line isolation transformer during this check). Use an AC voltmeter having 5K ohms volt sensitivity or more in the following manner.

Connect a 1.5 K ohm 10 watt resistor paralleled by a 0.15 µF AC type capacitor, between a good earth ground (water pipe, conductor etc.,) and the exposed metallic parts, one at a time.

Measure the AC voltage across the combination of the 1.5K ohm resistor and 0.15 uF capacitor. Reverse the AC plug at the AC outlet and repeat the AC voltage measurements for each exposed metallic part.

The measured voltage must not exceed 0.3 V RMS. This corresponds to 0.5 mA AC. Any value exceeding this limit constitutes a potential shock hazard and must be corrected immediately.

The resistance measurement should be done between accessible exposed metal parts and power cord plug prongs with the power switch "ON". The resistance should be more than 6M ohms.

PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in this TV receiver have special safety-related characteristics. These characteristics are offer passed unnoticed by visual spection and the protection afforded by them cannot necessarily be obtained by using replacement components rates for a higher voltage, wattage, etc. The replacement parts which have these special safety characteristics are identified by A marks on the schematic diagram and on the parts list. Before replacing any of these components, read the parts list in this manual carefully. The use of substitute replacement parts which do not have the same safety characteristics as specified in the parts list may create shock, fire, X-RAY RADIATION or other hazards.

1. FEATURES	
- POWER SUPPLY	: AC 90~264V 50/60Hz
- MULTI TV SYSTEM	: NTSC M
- MULTISTANDARD SOUND PROCESSOR	S : BTSC+SAP
- MULTI VEDEO SYSTEM	: PAL/NTSC/SECAM
VERSATILE INPUT SOURCE	: TV, AV1, AV2, S- VIDEO,
	YCbCr, YPbPr, DVI, PC(ANALOG)
- FULL FUNCTION REMOTE CONTROLLI	ER
EXCELLENT SOUND EFFECT WITH VOI	LUME,
TRABLE, BASS, BALANCE, AVC ADJUST	ABLE
AUDIO MODE, SPACIAL EFFECT, EQUA	LIZER
- SMART SOUND SET	: PERSONAL, CINEMA, SPEECH, MUSIC,
PICTURE MODE SET	: STANDARD, PERSONAL, MILD, BRIGHT,
- ADAPTIVE 2/4 LINE COMB FILTER FOR	R PAL/NTSC
- VTR FOR WEAK AND DISTORETED	
- SIGNAL FROM VIDEO TAPE RECORDER	R
- AUTOMATICALLY TURN OFF THE SET	WHEN
- SIGNAL ABSENT LONGER THAN 10 MIN	IUTES
- 216 CHANNELS	
- BLUE SCREEN DISPLAY	
- / V-CHIP	
- FREEZE PICTURE	
- PROGRAM LABEL	
- SLEEP	
- SCREEN SIZE CHANGE	
- STANDBY	
- CHANNEL SWAP	
- VOG PIP (AT PC 1280X768/60Hz, TV WID	E FORMAT)

GENERAL SPECIFICATIONS ITEM DESCRIPTION

-POWER CONSUMPTION	180Watt (MAX.)
-10WER CONSUMITION	≤3Watt(STBY)
-TV RECEIVE SYSTEM	NTSC M
-VIDEO SYSTEM	PAL/ SECAM/ NTSC
-VISION INTERMEDIATE FREQUENCY	45.75MHz
-INTER-CARRIER FREQUENCY	

	4.5MHz (BTSC)				
CHROMA IF FREQUENCY	42.17MHz				
	USA 216 Channel				
CHANNELS RECEIVED	(AIR 2-83 Channel)				
	CAT V (STD IRC HRC) 1-134 Channel				
TUNING MODE	PLL SYSTEM				
	1 A V 1 in, 1 A V 2 in, 1 S-Video in				
AV IN / OUT	Y Cb Cr in ,Y Pb Pr in				
	1 AV out				
AV IN/OUT SPECIFICATION	Y/C in -Y: 1.0 ± 0.2 VP-P $75Ω$				
	C: 0.7 VP-P 75Ω				
	Video in 1.0 ± 0.2 VP-P 75Ω				
	Audio inApprox, 500mV				
	Video out1.0 \pm 0.2 VP-P 75Ω				
	Audio outApprox, 400mV				
	RGB IN: $\leq 0.7 \text{ VP-P}$				
ANTENNA INPUT IMPEDANCE	75 OHM				
OSD LANGUAGE	ENGLISH / SPAINISH / GERMAN /				
OSD LANGUAGE	FRENCH / PORTUGUES				
AUDIO OUTPUT POWER	6Wx2 (1KHz, 0.5Vrms, 10%THD)				
LED INDICATORS	Continue shine Power on Flash standby				
HAND SET POWER SUPLY	Battery 1.5V (AAA) x 2				

PART 2: PC RESOLUTION

ANALOG RGB IN		0.7 VP-P			
RESOLUTION	V. Feq. (Hz)	h. Feq. (Hz)	GRAPHIC MODE		
640X480	59.940	31.469	VGA		
800X600	60.317	37.879	VGA		
1024X768	60.004	48.363	VGA		
1280X720	59.870	47.776	VGA		

PART 3: PANEL

Brand & Model	CHIMEI/V270W1-L03
Resolution	1280X720
Displayable Colour	16.7MHz
Surface	Hard Coating + Anti-Radiation
Viewing Angle (H/V)	170° (Hor) / 170° (Ver)
Display Response Time	25ms
Contrast Ratio	1:600
Brightness	550nit
Aspect	16;9
Lamp Life	50,000Hrs
Bad Pixel Quality	2/6/8
(Bright/Dark/Total)	2/0/0

Block Diagram

Circuit diagram

	1	2	3	4	5	6	7	8
D								D
С								С
		CON6	IN TV-VIN DING BLANKING DIDIO					
В		CN12 R28 SD SD SR SD SR SCON6	0 RCA1 1 2 3					В
A	1	2	3	4	5	6	7	8 8

Disassembly

In case of trouble, etc., Necessitating disassemble, please disassemble in the order shown in the illustrations.

Reassemble in the reverse order.

1. Removal of the Back Cover

2. Removal of the MAIN PCB

- a. Remove the screws.
- b. Slide out the LCD chassis slightly; pull up the connector of AC cord from PCB; pull up the LCD PCB from LCD.
- c. Remove the Anode cap from Thepicture tube. To avaid a shock hazard, be sure to discharge
- d . Take out the LCD chassis.

POWER PCB

	TURNER. PCB	1.000	PCB		
413210450RZ00	CAP	2. 000	C2, C3		
	50V-104-Z				
414133R10RM00	CAP-EL ∮ 4*7	2. 000	C1, C4		
	CD110-10V-33uF-M				
1007m1 = 010000		1 000	0.74		
420ET15010920	SOCKET	1.000	CN1		
	DB9				
40000004101000	NAD OXIGMOD	1 000	T 4		
429EC041010R0	INDOUCTOR	1.000	LI		
	EC0410-100K 10uH 500mA				
4320006000500	WIRE 5mm	2.000	TA TE		
43200000000000	WIRE SIIIII	2.000	J4, J5		
4320006000750	WIRE 7.5mm	1.000	Ј3		
102000000100	WIRE I. Ohin	1.000	50		
4320006001000	WIRE 10mm	1.000	J1		
4320006001250	WIRE 12. 5mm	1.000	Ј2		
442JS6B312110	TUNER JS-6B3121/F2	1.000	TUNER		

7506T2601001F	MTV-2601B POWER PART	1.000				
. 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	TOTAL TANK	1.000				
4110PQ323A000	TRANSFORMER	1.000	T1			
	PQ32/30-40305A					
411EC42405250	TRANSFORMER	1.000	T2			
	KBEC42-40525B					
4121010118J40	CARBON RES	1.000	R7			
	1/8W-100 Ω - J					
4191010901 T40	CARBON RES	1.000	R53			
4121010201J40		1.000	ССЛ			
	1W-1K-J					
4121010214J40	CARBON RES1/4W-1K Ω	1.000	R49			
110101111111	erite erities 1/ 1// 1// 1// 1// 1// 1// 1// 1// 1//	1.000				
4121010314J40	CARBON RES1/4W-10K Ω	1.000	R54			
4121010514J40	CARBON RES1/4W-1MΩ	1.000	R14			
41010107074740	GARRON PEGI /AW 100	0.000	D00 D00			
4121010R14J40	CARBON RES1/4W-10 Ω	2.000	R23 R33			
4121020214J40	CARBON RES	2 000	R18 R43			
4141040414J40	1/4W-2K Ω - J	2.000	W10 W49			
	1/ 111 21/ 22]					
L			ı	1	1	1

4121024114J40	CARBON RES	1.000	R42		
	RT14-1/4W-240 Ω -J				
4121051214J40	CARBON RES1/4W-5. 1K Ω	1.000	R39		
4101051014540	GARRON PEGA / AW FAW O	1 000	DOO		
4121051314J40	CARBON RES1/4W-51K Ω	1.000	R38		
4123068305J20	METAL OXIDE RES	2.000	R17 R20		
112000000000	5W-68K-J	2.000	KII KEO		
41230R3305J20	METAL OXIDE RES	1.000	R40		
	RY-5W-0.33Ω-J				
41230R5105J20	METAL OXIDE RES	1.000	R13		
	5W-0.51R-J				
4129008R05A00	HEAT VARIABLE RES 5A 8R	1.000	RT1		
11230001001100	DIP	1.000	KII		
	D11				
412A07D471K00	PIEZORESISTANCE	1.000	RV1		
	ZOV-07D471K (HEL) DIP				
412A0R5105J00	WIREWOUND RES 5W-0. 51 Ω-J	1.000	R9		
1100100:00:00			21 1 222 222		
4130103102M03	HIGH VOLTAGE CERAMIC CAPACITOR	3. 000	C14 C23 C20		
	1KV-103-M				

4130151102M00	HIGH VOLTAGE CERAMIC CAPACITOR	3.000	C9 C21,			
	1000V-151-M					
4136104271M02	X CAP	1.000	C4			
	AC275V-104-M (K)					
4136221401M00	Y CAP221 400V	3.000	C1, C3, C26			
4196999951W00	V CAD	0.000	000 007			
4136222251M00	Y CAP	2.000	C29, C37			
	AC250V-222-M (K)					
4136684271M03	X CAP	1.000	C54			
4130004271M03	AC275V-684-M (K)	1.000	004			
	nearor our m (n)					
4138105401K00	METAL MYLAR CAP	1.000	C5			
	400V-105-K					
4140101451M00	CAP- EL DL:18*35(105°)	2.000	C7 C19			
	CD11G-450V-100u-M					
	CAP-EL 105° high frequency LOW					
414110125RM01	IMPEDANCER	4.000	C11 C17 C18 C28			
	CD11HL 25V-100uF-M					
	CAP-EL 47uF/10V ∮ 6	1.000	C64	l		
	CH EL MATTO V J O	1.000				
	CAP-EL 105° high frequency LOW			1	I.	
414110210RM02	IMPEDANCER	7.000	C41 C44 C46 C51 C	C53 C56 C5	57	

	10V-1000uF-M					
414110216RM01	CAP-EL 105° high frequency LOW IMPEDANCER 16V-1000uF-M	1.000	C48			
414122225RM01	CAP-EL 105° high frequency LOW IMPEDANCER 25V-2200uF-M	8. 000	C33 C36 C43 C52 C	59 C32 C3	5 C39	
414133235RM00	CAP-EL 105° high frequency LOW IMPEDANCER	4. 000	C47 C49 C50 C61			
	35V-3300uF-M Ф16*31					
414147R451M00	CAP-EL 105°	1.000	C16			
	450V-47uF-M					
4151000015070	CHIP ZENER 1206	1.000				
	15V 0.5W					
415300FR10740	DIODE FR107	1.000	D13 (OR 1N4935)			
41 F001N400700	DIODE (DOIS)	1 000	D.E.			
415301N400720	DIODE (D015) 1N4007	1. 000	סט			
41530UF400740	DIODE	2.000	D6 D11			
	UF4007					
4153MBR20100C	DIODE MBR20100CT TO-220	1.000	D17			

			1		
4153MBR20200C	DIODE MBR20200 T0-220	3, 000	D10 D10 D18		
TTOOMBREOZOGO		0.000	D10 D10 D10		
4153MUR180E00	DIODE MUR180E	2. 000	D8 D12		
	DO-15				
4153MUR480E00	DIODE MUR480E	1. 000	D2		
	D0-35				
4153MUR860T00	DIODE MUR860T	1. 000	D3		
	T0-220				
41540KBU6J000	BRIDGE RECTIFIER (DIP) 800V	1.000	D1		
	KBU6J (RS606)				
416000050000	MOCERT MEDIADAGUDI	2,000	00 00 010		
416000050P030	MOSFET MTP50P03HDL T0-220	3.000	Q3 Q9 Q12		
	10-220				
416002N540100	TRANSISTOR 2N5401	2.000	Q11 Q4		
11000211010100	THE RESIDENCE PROPERTY.	2.000	QII QI		
416002N555100	TRANSISTOR 2N5551	2. 000	Q13 Q14		
41602SK265100	MOSFET 2SK2651	1.000	Q5		

416FQP18N5000	MOSFET FQP18N50	1.000	Q1		
	T0-220				
416STW12NK800	MOSFET STW12NK80Z	1.000	Q2		
	T0-3P				
41700000P6210	IC P621[SFH615A-3][PC817]	3.000	PH1 PH2 PH3		
4170000TI 4010	TO 71 401 DID TO 00	0.000	114 115		
4170000TL4310	IC TL431 DIP TO-92	2.000	U4 U5		
41700DF108410	IC(DIP) DF1084-3.3V	1.000	U6		
1110001100110	T0-220	1.000			
4222500315210	FUSE T3. 15A 250V VDE/UL	1.000	FU1		
4290250100040	INDUCTOR 500 Ω	4. 000	L3 L5 L6 L7		
	(100MHz)				
42903040117B0	INDUCTOR	1.000	L4		
	PQ32/30-40117B				
4000004001600	TNDLIGHOD	0.000	11.10		
4290304021600	INDUCTOR	2.000	L1 L2		
	EE25-40216				
42903100K5210	INDUCTOR	2.000	L16 L15		
	T37-52-100K3A	2.000			
	TOT OF TOURON				
429035R0K5200	INDUCTOR	1.000	L13		

	T37-52-5R0K						
42903B60974A0	INDUCTOR	1.000	L12				
	DQG-B6-0974A						
42903B61042A0	INDUCTOR	1.000	L9				
	DQG-B6-1042A						
42903B61043A0	INDUCTOR	3. 000	L8 L10 L11				
	DQG-B6-1043A						
10000001005010	TURNISMOR	1 000	7.4.4				
42903T1605640	INDUCTOR	1.000	L14				
	LCL-T16-0564						
42907RHM40203	magnetic loop	3 000	D3*2, Q1(S) *1				
42307 KHW40203	RHM-004002003	3.000	D3*2, Q1(3) × 1				
	Ittin 001002000						
4320007000800	WIRE 8mm Φ0.7	2,000	J7 J23				
			0 - 0				
4320007001000	WIRE10mm Φ0.7	10.000	J4 J5 J8 J10 J11	J13 J14 J	17 J18 R3	1	
4320007001500	WIRE15mm Φ0.7	4.000	J22 J21 J20 J24				
					_	_	
4320007001700	WIRE17mm Φ0.7	1.000	J19				
4320007002000	WIRE20mm Φ0.7	2.000	Ј12 Ј9				

WIRE30mm Φ0.7 LEAD WIRE 70mm	1.000	J1				
	1.000	J1				
	1.000	J1				
EAD WIDE 70mm						
EAD WIPE 70mm						
EAD WIDE 70mm						
LEAD WIKE TOILLI	1.000	J2				
26"POWER300. PCB	1.000					
2004. 8. 11						
CHIP RES 1/4W-0Ω 1206 J	2.000	R57 R58				
CHIP RES 1/10W-0 Ω 0805	1.000	C27				
CHIP RES 1/10W-1K Ω 0805 J	5. 000	R12 R22 R35 R48 R	63			
CHIP RES 1/10W-10KΩ 0805 J	6.000	R1, R27 R32 R56 R6	1 R64			
CHIP RES 1/10W-100K Ω 0805 J	1.000	R37				
CHIP RES 1206	1.000	R15				
L/4W-1M-J						
CHIP RES 0805	2.000	R3 R24				
	CHIP RES 1/4W-0 Ω 1206 J CHIP RES 1/10W-0 Ω 0805 CHIP RES 1/10W-1K Ω 0805 J CHIP RES 1/10W-10K Ω 0805 J CHIP RES 1/10W-100K Ω 0805 J CHIP RES 1/206 /4W-1M-J	CHIP RES 1/4W-0 Ω 1206 J 2. 000 CHIP RES 1/10W-0 Ω 0805 1. 000 CHIP RES 1/10W-1K Ω 0805 J 5. 000 CHIP RES 1/10W-10K Ω 0805 J 6. 000 CHIP RES 1/10W-100K Ω 0805 J 1. 000 CHIP RES 1/10W-100K Ω 0805 J 1. 000 CHIP RES 1/10W-100K Ω 0805 J 1. 000	CHIP RES 1/4W-0 Ω 1206 J 2. 000 R57 R58 CHIP RES 1/10W-0 Ω 0805 1. 000 C27 CHIP RES 1/10W-1K Ω 0805 J 5. 000 R12 R22 R35 R48 R CHIP RES 1/10W-10K Ω 0805 J 6. 000 R1, R27 R32 R56 R6 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R37 CHIP RES 1/206 1. 000 R15	CHIP RES 1/4W-0 Ω 1206 J 2. 000 R57 R58 CHIP RES 1/10W-0 Ω 0805 1. 000 C27 CHIP RES 1/10W-1K Ω 0805 J 5. 000 R12 R22 R35 R48 R63 CHIP RES 1/10W-10K Ω 0805 J 6. 000 R1, R27 R32 R56 R61 R64 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R37 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R15 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R15	CHIP RES 1/10W-0 Ω 1206 J 2. 000 R57 R58 CHIP RES 1/10W-0 Ω 0805 1. 000 C27 CHIP RES 1/10W-1K Ω 0805 J 5. 000 R12 R22 R35 R48 R63 CHIP RES 1/10W-10K Ω 0805 J 6. 000 R1, R27 R32 R56 R61 R64 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R37 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R37 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R15	2. 000 R57 R58 CHIP RES 1/10W-0 Ω 0805 1. 000 C27 CHIP RES 1/10W-1K Ω 0805 J 5. 000 R12 R22 R35 R48 R63 CHIP RES 1/10W-10K Ω 0805 J 6. 000 R1, R27 R32 R56 R61 R64 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R37 CHIP RES 1/10W-100K Ω 0805 J 1. 000 R37

	1/4W-1M-J					
	_,					
4127010R1AJ60	CHIP RES 1/10W-10 Ω 0805 J	4. 000	R10 R4 R19, R8			
4127012314J70	CHIP RES 1206	1. 000	R2			
	1/4W-12K-J					ļ
4107015014170	CHIP PEG 1000	1 000	D 4.4			
4127015214J70	CHIP RES 1206	1.000	K44	_		
	1/4W-1K5-J					
412702021AJ60	CHIP RES 1/10W-2K Ω 0805 J	2 000	R29 R65			
11210202111300	CIII RES 1/ 10# 2R 22 0000 J	2.000	1123 1100			
				1		
412703011AJ60	CHIP RES 1/10W-300 Ω 0805 J	1.000	R25			
412704721AJ60	CHIP RES 1/10W-4. 7K Ω 0805 J	1. 000	R28			
4107047014770	CHIP PEG 1000	1 000	DO.			
4127047314J70	CHIP RES 1206	1.000	R3	_		
	1/4W-47K-J					
412704731AJ60	CHIP RES 1/10W-47K Ω 0805 J	2 000	R11 R16			
11210113111300	CITI KES 1/ 10# 17K == 0000 J	2.000	KII KIO			
412704731AJ70	CHIP RES 1206	1.000	R26			
	1/4W-47K-J					

412705121AJ60	CHIP RES 1/10W-5. 1K Ω 0805 J	4.000	R46, R36, R41 R62			
1105000011700		1 000	D0.4			
412706221AJ60	CHIP RES 1/10W-6. 2K Ω 0805 J	1.000	R34			
4127075R1AJ70	CHIP RES 1/8W-75 Ω 1206 J	1.000	R21			
413510150RJ40	CHIP CAP 50V-100P 0805 J NP0	4.000	C13 B1 A1 25			
413510150RJ50	CHIP CAP 1206	1.000	C22			
	50V-100P-J					
413510250RK40	CHIP CAP 0805	1.000	C8			
	50V-102-K					
413510350RK40	CHIP CAP 0805	1.000	C10			
	50V-10nF-K					
413510450RZ40	CHIP CAP 50V-104 0805 Z	10.000	C12 24 31 42 45 5	5 58 60 6	62 63	
413522450RZ40	CHIP CAP 50V-224 0805 Z	1.000	C6			
4151000015070	CHIP ZENER 1206	2.000	ZD1 ZD2			
	15V 0.5W					

	T		T	1	1	T	1
415201N414870	CHIP DIODE 1N4148 1206	2 000	D4 D9 D7				
410201N414670	CHIP DIODE IN4146 1200	3.000	זע פע 14				
41700001377B0	IC NCP1377B	1.000	U3				
11.000010.120	\$08	2.000					
4170000332600	IC MC33260D	1.000	U1				
	S08						
11501000000000	TO MODELOND AND	1 000	110				
41701203P6010	IC NCP1203D60R2	1.000	U2				
	SOP 8				1		
	TRANSISTOR 2N5551 SOT23	2 000	Q16 Q17				
	1101101010101210001 00120	2.000	Q10 Q17				
	TRANSISTOR 2N5401 SOT23	1.000	O18				
		1.000					
7516T2601000M	LCDTV-2627 KEY PCB PART	1.000					
40300T1701000	KEY	7. 000	P+, P-, V-, V+, MENU	J, SOURCE, PO	OWER		
	6*6*5mm				1		
4041920004010	SOCKET 4PIN/2. 0	1. 000	CN1				
4041920004010	SOCKET 41 IN/ 2. 0	1.000	CIVI				
4041920008010	SOCKET 8PIN/2. 0	1.000	CN2				
	TVM2627KEY100. PCB	1.000					

	2004. 10. 6				
4105010300010	LED 3mm GREEN	1.000	LED		
4300000000080	IR	1.000	REMOUT		
7516T2701002F	MTV-2601 TUNER SWITCH PCB	1.000			
4041920002010	SOCKET 2PIN/2. 0	2. 000	CN4, 6		
4041320002010	SOCKET 21 11/7 2. 0	2.000	CN4, U		
4041920003010	SOCKET 3PIN/2. 0	3.000	CN1, 2, 3		
			, ,		
4041920005010	SOCKET 5PIN/2.0	1.000	CN5		
	2627-TURNER300. PCB	1.000			
	2004. 10. 18				
414147116RM00	CAP-EL ∮8*12	1.000	C1		
414147110KM00	CD110-16V-470uF-M	1.000	CI		
	ODITO TOV TIOUT M				
420ET15010910	SOCKET	1.000	DB2		
	DB-9A				
420ET15010920	SOCKET	1.000	DB1		
	DB9				

4320005001000	WIRE 10mm	2.000	J1、J2				
	MTV-2701mainboard	0.000					
10.11.00000001.0	0.077777 0.0771/0.0	2 200	are are are				
4041920002010	SOCKET 2PIN/2.0	3. 000	CN5, CN3, CN13				
4041920003010	SOCKET 3PIN/2.0	3. 000	CN9, CN11, CN2				
1011320003010	SOCKET SITIVE. 0	3.000	0113, 01111, 0112				
4041920004010	SOCKET 4PIN/2.0	1.000	CN6				
4041920005010	SOCKET 5PIN/2.0	1.000	CN14				
4041920006010	SOCKET 6PIN/2.0	1.000	CN12				
104132000010	SOCKET OF THY 2. 0	1.000	CIVIZ				
4041920007010	SOCKET 7PIN/2.0	1.000	CN10				
4041920008010	SOCKET 8PIN/2.0	1.000	POWER1				
4041920010010	SOCKET 10PIN/2.0	1.000	KBD1				
414110116RM00	CAP-EL 16V-100uF M φ6*7	13 000	C168, C217, C220, C	225 C226	<u> </u> C231 C246	C250 C10	23 C62
1111101101110	on BB 101 100di m 1 011	10.000	C208, C249			, 0200, 010	, 20, 002,
414110210RM00	CAP-EL	2.000	C197, C227				
	10V-1000uF-M						
414110R16RM00	CAP-EL	3.000	C45-C47				
	16V-10uF-M						
41412R216RM00	CAP-EL	1.000	C233				

	16V-2. 2uF-M			I		
414147116RM00	CAP-EL	5 000	C124, C219, C221, C22	23 224		
11 11 11 11 11 11 11 11 11 11 11 11 11	CD110-16V-470uF-M	3.000	0121, 0213, 0221, 023	20, 221		
414147125RM00	CAP-EL 25V-470uF M≤ φ8*15	1.000	C222			
		27.000				
414147R16RM00	CAP-EL 16V-47uF M ф 5*7	12.000	C165-167, 196 C209-	-C216		
417000078L050	IC 78L05	1.000	IC9			
4202T27012010	AV SOCKET	1.000	RCA1			
	AV3-8. 4-20					
4202T30011210	RCA SOCKET AV8-8.4-7	1.000	RGA			
420AD10006110	S-SOCKET DSW-06P	1.000	S-VIDEO			
420DT15011510	SOCKET	1 000	VGA			
4200113011310		1.000	VGA			
424000006101A	DB-15 OSCILLATOR 〈49S〉 -10°C80°C	1.000	Х3			
42400000101A		1.000	ΛΟ			
	10M(+-20PPM, 20PF)					
424000256201A	OSCILLATOR<49S>−10°C−−−80°C	1.000	V1			
12 1000230201N	20. 25M(+-20PPM, 20PF)	1.000	X1			
424003186142A	OSCILLATOR (49S) -10°C80°C	1.000	X4			
12 10001001 1211	14. 31818M(+-15PPM, 20PF)	1.000	11.1			
405T2701A5302	2627A-pixwork300 PCB	1.000				
	MAINBOARD (04. 12. 17)	2. 550				
4105010300060	LED-CHIP GREEN 0805	1.000	LED1			
	SA0805G1C-1A-01					
412700R014J70	CHIP RES 1/4W-0 Ω 1206 J	1.000	L29			

412700R01AJ80	CHIP RES 1/10W-0 Ω 0603 J	22.000	R14, R40, R28, R81, R82, R142, R143, R178, 187, R233, R245-250
			R41, R66, C254–C256, R97
412701011AJ80	CHIP RES 1/10W-100 Ω 0603 J	1.000	R59
4107010014100	CVID DEG 1 /10W 1V 0 0000 T	5 000	DO D104 D100 D100 D000
412701021AJ80	CHIP RES 1/10W-1K Ω 0603 J	5. 000	R2, R134, R188, R190, R226
412701031AF80	CHIP RES 1/10W-10K 0603 F	2. 000	R232, R73
412701031AJ80	CHIP RES 1/10W-10K Ω 0603 J	19. 000	R29-30, R118, 119 R159-169, 179 183, 191 R228
412701221AJ80	CHIP RES 1/10W-1. 2K Ω 0603 J	1.000	R71
412702011AJ80	CHIP RES 1/10W-200 Ω 0603 J	3. 000	R116, R117, R153
412702021AJ80	CHIP RES 1/10W-2K Ω 0603 J	7. 000	R44-R48, R170, R49
412702221AJ80	CHIP RES 1/10W-2. 2K Ω 0603 J	2. 000	R36, R37
412702231AJ80	CHIP RES 1/10W-22K Ω 0603 J	1.000	R63
412702251AJ80	CHIP RES 0603	2. 000	R93, R130
4127022R1AJ80	1/10W-2. 2M-J CHIP RES 1/10W-22 Ω 0603 J	2. 000	R34, R35
412703011AJ80	CHIP RES 1/10W-300 Ω 0603 J	4. 000	R92, R128, R129, R174
412703321AJ80	CHIP RES 1/10W-3. 3K Ω 0603 J	26. 000	R90, R91, R104–R111, R135–R137, R144–R148, R171–R173, R227
			, R234, 238, R253, R255

412704711AJ80	CHIP RES 1/10W-470 Ω 0603 J	11. 000	R132, R133, R60, R61	, R67–R69,	R192-R194	, L43	
4127047R1AJ80	CHIP RES 1/10W-47 Ω 0603 J	14. 000	R13, R87, R88, R89, R	112-R115,	R138, R141	, R64, R101	, R102,
			R103				
412705121AJ80	CHIP RES 1/10W-5. 1K Ω 0603 J	1.000	R252				
412705621AJ80	CHIP RES 1/10W-5. 6K Ω 0603 J	1.000	R62				
412103021NJ00	CITI KES 1/ 10# 5. 0K == 0005 J	1.000	102				
412706811AJ80	CHIP RES 1/10W-680 Ω 0603 J	3. 000	R38, R39, R175				
412706821AJ80	CHIP RES 1/10W-6. 8K Ω 0603 J	3.000	R131, R75, R254				
4127075R1AJ80	CHIP RES 1/10W-75 Ω 0603 J	18.000	R50-R57, R58, R94-R	96, R98-R1	00, R184, R	74, R76	
413510250RK60	CHIP CAP 0603	5. 000	C31-C34, C137				
	50V-102-K		·				
413510450RZ60	CHIP CAP 50V-104 0603 Z	110.000	C2, C4-6, C9, C11-19	, C48–53, C	81–97, C99	–110, C114 [.]	-123,
			C138-142, 155-156 C169-C179, C181-185, C188-C190,				
			C126-129, C131, C63				
			C192-C195, C198-C207, C232, C234				
413510R50RJ60	CHIP CAP 50V-10P 0603 J NP0	5.000	C111, C143, C144, C1				
413520R50RJ60	CHIP CAP 50V-20P 0603 J NP0	9.000	C58-59, C112, 113, 1	86, 187, 14	6, 147, 148		
			, ,				
413522416RZ60	CHIP CAP 16V-0. 22u 0603 Z	8.000	C36-C40, C72, C73, C	74			
413522R50RJ60	CHIP CAP 50V-22P 0603 J NP0	2.000	C25, C26				
413533150RK60	CHIP CAP 50V-330P 0603 K	4. 000	C55-C57, C75				

413533R50RJ60	CHIP CAP 50V-33P J 0603 NP0	3. 000	C69, C70, C71		
413539250RK60	CHIP CAP 50V-392 0603 K	1.000	C132		
413539350RZ60	CHIP CAP 0603	1.000	C136		
	50V-39nF-Z	2.000			
413547350RZ60	CHIP CAP 0603	6.000	C42-C44, C133-C135		
	50V-47n-Z				
413568250RK60	CHIP CAP 0603	1.000	C77		
	50V-6. 8nF-K				
413568350RZ60	CHIP CAP 50V-0. 068 μ 0603 Z	1.000	C78		
413568410RZ60	CHIP CAP 0603	4.000	C27-C30		
	10V-0. 68uF-Z				
415200BAV9960	DIODE (SOT-23B)	7. 000	D1-D7		
	BAV99				
415201N414870	IODE 1N4148 1206	6.000	D11-13, 17, 18, D15		
4160000901421	CHIP TRANSISTOR (S0T23)	6. 000	Q3-7, Q10		-
	9014 NPN				
4160000901520	CHIP TRANSISTOR 9015	1.000	Q16		
416PCHAN20P03	MOSFET P-CHANNEL T0-252	1.000	Q8		
	MTD20P03HDLT4 OR 25P03				
417000024C320	IC (S08)	1.000	U5		
	24C32				
4170000AC3200	IC (S014)	1.000	UD		
	AC32				

4170000LM3580	IC(S0-8)	1.000	IIE		
4170000LM3300	LM358	1.000	OE		
41700074HC140	IC 74HC14[SOP]	1.000	113		
41700074HC140 417000HC37400	IC (SSOP20)	1.000			
417000HC37400	HC374	1.000	UZ		
4170074LV1960		2 000	IID IIA		
4170074LV1260	IC (S014)	2.000	UB UA		
41700AWC11170	SN74LV126	0.000	107 100		
41700AMS11170	IC AMS1117[SOP]3.3V	2.000	IC7, IC8		
41700ADI 11170	TC ADI 1117AD I COM 0007	0.000	100 105		
41700APL11170	IC APL1117ADJ[SOT-223]	2.000	IC2, IC5		
41700Z8622910	IC Z86229 S018	1.000	U7		
					_
41704M000161A	IC (TS0P54) HY57V641620HG	1.000	U9		
	4M*16 SDRAM 7ns				
4170LV800DT10	IC (TS0P48)	1.000	U18		
	AM29LV800DT-90EC				
4170LVC162440	IC (TSSOP48)	2.000	U14, U15		
	LVC16244				
4170MAX232A00	IC (S016)	1.000	U12		
	MAX232A				
4170MST988310	IC (LQFP80)	1.000	U11		
	MST9883B-C(/110)				
41763LVDM8310	IC THC63LVDM83A	1.000	U19		
	THINE				
417AZ1084S3V3	IC (T0-263)	1.000	IC4		
	AZ1084S-3. 3V				
417FSAV330M10	IC (S016)	1.000	U10		
	P15V330/FSAV330M				
417PW11320Q10	IC PW113-20Q [PQFP208]	1.000	U17		

		1	T T		1	1	1
417DW10050010	TO DWIGOE [DODDOE6]	1 000	IIO.				
417PW12350010	IC PW1235 [PQFP256]	1.000	UC				
417S0HCF40520	IC HCF4052 SOP	1.000	U21				
41730HCF40320	TC HCF4032 SUF	1.000	021				
417VPC3230D10	IC VPC3230D PQFP80	1.000	U4				
1111100200010	TO THEODOOD I QITOO	1.000					
420FT15013010	SOCKET SOP	1.000	CON1				
	DF14-30S-1.25C						
42847R0082010	CHIP RES 0603	20.000	RP7-RP20 RP33-38				
	47 Ω *4						
429025R6K0010	CHIP INDUCTOR 1210	5.000	L8 24 27 30 36				
	DR43-5R6K						
429042R2J7010	CHIP INDUCTOR 1210	10.000	21-23 26 31 33-35	37, L41			
	ALM322522-2R2K						
429043R3J5010	CHIP INDUCTOR 1206	1.000	L42				
	3. 3uH-J						
429043R3J8011	CHIP INDUCTOR 0603	5.000	L9-L11, L39, L38				
	3. 3uH-J						
4290511R08010	CHIP INDUCTOR 0603	7.000	L12-17, 44				
	11 OHM@100MHz						
4290512108010	CHIP INDUCTOR 0603	1.000	R11				
	BK1608HM121-T						
4290550108010	CHIP INDUCTOR 500 Ω 0603	1.000	R86				
		1 000					
7596T2701003F	2601B SOUND PCB	1.000					
4041020002010	COCKET ODIN /O. O.	F 000	CNO CNC CNO				
4041920002010	SOCKET 2PIN/2. 0	5. 000	CN3, CN6-CN9				

4041920003010	SOCKET 3PIN/2. 0	1.000	CN2		
4041920004010	SOCKET 4PIN/2. 0	1.000	CN5		
4041320004010	30CKE1 41 IN/ 2. 0	1.000	CIVO		
4041920005010	SOCKET 5PIN/2. 0	1. 000	CN1		
4041920006010	SOCKET 6PIN/2. 0	1. 000	CN10		
4121010214J40	CARBON RES 1/4W-1KΩ	4. 000	R35-R38		
414022125RM00	CAP-EL 25V-220uF M	1. 000	C42		
41404R716RM00	CAP-EL 16V-4. 7uF M	1. 000	C47		
414110116RM00	CAP-EL 16V-100uF M ф 6*7	5. 000	C49 C55 C59 C60 C63	1	
414110R16RM00	CAP-EL	6.000	C16-21		
TI TI TORTORIMO	16V-10uF-M	0.000	010 21		
414122R16RM00	CAP-EL ∮ 5*11	1. 000	C48		
	CD110-16V-22uF-M				1

414147125RM00	CAP-EL 25V-470uF M≤ φ 8*15	7, 000	C1, C41, C43, C56, 57	, 58, C51		
				, ,		
415201N414840	DIODE 1N4148	1.000	D1			
417TDA8947J10	IC TDA8947J SOT243-1	1.000	U2			
4202T30011310	RCA SOCKET	1. 000	RCA			
4202130011310	AV6-8. 4-20	1.000	NOA			
	1110 0.1 20					
4204T15010310	EAR SOCKET	1.000	РНО			
	EJ-0357-3P					
424004326183A	OSCILLATOR49S −10°C−−−80°C	1.000	X1			
	18.432MHz ±15PPM, 15P					
405#0701050D0	OCOTCOLINDOOO DOD	1 000				
405T2701059B0	2627SOUND300. PCB	1.000				
412700R01AJ80	CHIP RES 1/10W-0 Ω 0603.J	1.000	R26			
412701021AJ80	CHIP RES 1/10W-1K Ω 0603 J	5. 000	R1, R2, R24, R27, R33			
412701031AJ80	CHIP RES 1/10W-10K Ω 0603 J	6.000	R3, R7, R8, R25, R29, I	R34		

			T	ı		Ī
412702021AJ80	CHIP RES 1/10W-2K Ω 0603 J	1. 000	B30			
11210202111300	CIM RES 1/10" 2K == 0000 J	1.000	1.50			
412702211AJ80	CHIP RES 1/10W-220 Ω 0603 J	1.000	R12			
412702231AJ80	CHIP RES 1/10W-22K Ω 0603 J	1.000	R4			
412703021AJ80	CHIP RES 1/10W-3K Ω 0603 J	3.000	R6, R9, R13			
412704731AJ80	CHIP RES 1/10W-47K Ω 0603 J	4. 000	R18-R21			
4127047R1AJ80	CHIP RES 1/10W-47 Ω 0603 J	1.000	R14			
412705121AJ80	CHIP RES 1/10W-5. 1K Ω 0603 J	2.000	R31 R32			
412705611AJ80	CHIP RES 1/10W-560 Ω 0603 J	1.000	R10			
1121 0001111,000	FIN 125 1, 101 000 - 0000 J	11.000				
412705621AJ80	CHIP RES 1/10W-5. 6K Ω 0603 J	1.000	R28			
413510150RJ60	CHIP CAP 50V-100P 0603 J NP0	1.000	C2			

413510250RK60	CHIP CAP 0603	2.000	C26, C27		
	50V-102-K				
413510425RZ60	CHIP CAP 25V-104 0603 Z	11.000	C3, C28–C36, C40		
410515050DVC0	CHID CAR FOULTFOOD ACCOUNT	0.000	050 054		
413515250RK60	CHIP CAP 50V-1500P 0603 K	3.000	C52-C54		
413520R50RJ60	CHIP CAP 50V-20P 0603 J NP0	2 000	C22, C23		
110020110011300	erm erm oor zor oood y m o	2.000	022, 020		
413533416RZ60	CHIP CAP 0603	9.000	C4-C12		
	16V-0. 33uF-Z				
413547150RK60	CHIP CAP 50V-470P 0603 K	3. 000	C37-C39		
410FFCDF0DTC0	CHID CAD FOU FCD OCOO I NDO	2 000	010 015		
413556R50RJ60	CHIP CAP 50V-56P 0603 J NP0	3.000	C13-C15		
4160000901421	CHIP CAP (SOT23)	6 000	Q3, Q5, Q6, Q1, Q7, Q8		
1100000001121	9014 NPN	0.000	40, 40, 40, 41, 41, 40		
4160000901520	CHIP TRANSISTOR 9015	1.000	Q4	 	

41700APL11170	IC APL1117ADJ[SOT-223]	1.000	IC1			
417MSP3450G10	IC MSP3450G-QA-C12-001	1.000	U1			
	[PQFP80]					
429025R6K0010	CHIP INDUCTOR 1210	1.000	L2			
	DR43-5R6K					
429042R2J7010	CHIP INDUCTOR 1210	2.000	L3, L4			
	ALM322522-2R2K					
				·		

IC SPECIFICATION

- -PW113 (Top View)
- -PW1235
- -MST9883B
- -Z86229
- -THC63LVDM83R
- -MSP34XOG
- -TDA8947J
- -VPC323XD

.....

Figure 2-1 Pin Locations

2.3 Pin Descriptions

<u>Table 2-1</u> provides detailed Video Port pin descriptions.

Table 2-1 Video Port Pin Descriptions

Name	Pin(s)	Type	Function
VCLK	71	ID 5	VPort Pixel Clock. The VCLK pin is used for video port image capture. The polarity can be selected by the VCLKPOL bit.
vvs	74	ID 5	VPort Vertical Sync. Indicates start of next field or frame of input data. This signal is internally polarity corrected so VVS can be either active-high or active-low. The current status of the VVS signal is given by VPOL and VSOK status bits when the video port is selected by the PORTSEL bit. VVS is not used when a composite digital sync source is used (COMPEN). VVS is required in ITUR656 input mode.
VHS	75	ID 5	VPort Horizontal Sync. Indicates start of next line of data input. This signal is internally polarity corrected and monitored for composite sync content. The current status of the GHS signal is given by the HPOL, HSOK & COMP status bits when the video port is selected by the PORTSEL bit. VHS can supply horizontal sync information or digital composite sync information depending on the COMPEN bit. VHS is required in ITUR656 input mode.
VPEN	70	ID 5	VPort Pixel Enable. Used when external flow control capture mode is enabled by the EXTFCE bit. When VPEN is active, the input data is valid. The polarity can be selected by the PENPOL bit. Use of this pin allows non-contiguous input data.
VFIELD	69	ID 5	VGPort Field Input. Video or Graphics port odd/even field indicator specifies whether odd or even field of interlaced input is being captured. This pin is enabled by the FLDSEL bit and the polarity can be specified by the FLDINV bit. Field information can also be derived from VVS and VHS, so VFIELD is not required in some applications.

<u>Table 2-2</u> provides detailed Graphics Port pin descriptions.

Table 2-2 Graphics Port Pin Descriptions

Name	Pin(s)	Туре		Function	
GCLK	31	ID 5	capture. T	Clock. The GCLK pin is used for graphics port image he polarity can be selected by the GCKPOL bit. The GCLK be disabled by the GCLKOFF bit to reduce power on.	
GVS	32	ID 5	GPort Vertical Sync. Indicates start of next field or frame of data. This signal is internally polarity corrected so GVS can be either active-high or active-low. The current status of the GVS signal is given by VPOL and VSOK status bits when the graphics port is selected by the PORTSEL bit. GVS is not used when a composite digital sync source is used which can be specified by the SOGSEL and COMPEN bits.		
GPEN	34	ID 5	enabled by The polarity	Enable. Used when external flow control capture mode is the EXTFCE bit. When GPEN is active, the input data is valid. <i>y</i> can be selected by the GPENPOL bit. Use of this pin allows yous input data.	
				zontal Sync/GPort Sync-on-Green. This pin has two different epending on the SOGSEL bit:	
			SOGSEL	GHSSOG Function	
GHSSOG	GHSSOG 33	ID 5	0	GHS: GPort Horizontal Sync. Indicates the start of the next line of input data. This signal is internally polarity corrected and monitored for composite sync content. The current status of the GHS signal is given by the HPOL, HSOK & COMP status bits when the graphics port is selected by the PORTSEL bit. GHS can supply horizontal sync information or digital composite sync information depending on the COMPEN and SOGSEL bits.	
			1	SOG: Pin is sync-on-green. Driven by an external sync stripper circuit, this pin is monitored (SOGACT status bit) and can supply composite sync information (depending on SOGSEL & COMPEN bits).	
GCOAST	36	os	vertical blai	Coast. Tells the PLL when to coast (ignore GREF) during nking. Used to prevent the PLL from reacting to extra or missing during vertical blanking. Coast duration and polarity is able through the PLLCM, PLLCB & PLLCE bits.	
				When PC	Feedback / Line Advance Input. DRTSEL=0, this pin is not used. DRTSEL=1, this pin has two different functions depending on the bit:
			EXTFCE	GFBK Function	
GFBK	35	ID 5	0	GFBK: An input that is typically driven by the FBK output of an ADC/PLL device. In free running capture mode this signal is used to define the horizontal capture region (along with the CAPL and CAPW registers), and advances the GPort capture controller to the next input line. The LAVPOL bit is used to select the polarity of GFBK.	
			1	GLAV: An input to the graphics port line advance. Used in external flow control capture mode. When GLAV transitions (depending on LAVPOL and LAVMOD bits), the GPort capture controller advances to the next input line.	

Table 2-2 Graphics Port Pin Descriptions (continued)

Name	Pin(s)	Туре	Function
GRE0	20	ID 5	
GRE1	21	ID 5	
GRE2	22	ID 5	
GRE3	23	ID 5	GPort Red Pixel Data. GPort Red Even Pixel Data when in 48-bit input
GRE4	24	ID 5	mode.
GRE5	25	ID 5	
GRE6	26	ID 5	
GRE7	27	ID 5	
GGE0	10	ID 5	
GGE1	11	ID 5	
GGE2	12	ID 5	
GGE3	13	ID 5	GPort Green Pixel Data. GPort Green Even Pixel Data when in 48-bit input
GGE4	14	ID 5	mode.
GGE5	15	ID 5	
GGE6	18	ID 5	
GGE7	19	ID 5	
GBE0	2	ID 5	
GBE1	3	ID 5	
GBE2	4	ID 5	
GBE3	5	ID 5	GPort Blue Pixel Data. GPort Blue Even Pixel Data when in 48-bit input
GBE4	6	ID 5	mode.
GBE5	7	ID 5	
GBE6	8	ID 5	
GBE7	9	ID 5	

<u>Table 2-3</u> provides detailed Display/Graphics Port pin descriptions.

Table 2-3 Display/Graphics Port Pin Descriptions

Name	Pin(s)	Туре	Function
DGR0	136	I/O SR5	
DGR1	135	I/O SR5	
DGR2	134	I/O SR5	DGPort Red Pixel Data. In dual pixel output mode these pins are the OD red outputs. In single pixel output mode these pins are not used.
DGR3	133	I/O SR5	
DGR4	132	I/O SR5	
DGR5	131	I/O SR5	
DGR6	130	I/O SR5	
DGR7	129	I/O SR5	

Table 2-3 Display/Graphics Port Pin Descriptions (continued)

Name	Pin(s)	Туре	Function
DGG0	128	I/O SR5	
DGG1	127	I/O SR5	
DGG2	126	I/O SR5	
DGG3	125	I/O SR5	DGPort Green Pixel Data. In dual pixel output mode these pins are the
DGG4	122	I/O SR5	ODD green outputs. In single pixel output mode these pins are not used.
DGG5	121	I/O SR5	
DGG6	120	I/O SR5	
DGG7	119	I/O SR5	
DGB0	118	I/O SR5	
DGB1	117	I/O SR5	
DGB2	116	I/O SR5	
DGB3	115	I/O SR5	DGPort Blue Pixel Data. In dual pixel output mode these pins are the ODD
DGB4	114	I/O SR5	blue outputs. In single pixel output mode these pins are not used.
DGB5	113	I/O SR5	
DGB6	112	I/O SR5	
DGB7	111	I/O SR5	

<u>Table 2-4</u> provides detailed Display Port pin descriptions.

Table 2-4 Display Port Pin Descriptions

Name	Pin(s)	Туре	Function
DCLK	106	OSR	DPort Pixel Clock. Output clock for the display port pixel data. DCLK is enabled by the DCLKEN bit and can be inverted by the DCPOL bit. DCLK can be set to run at ½ pixel rate, for dual pixel output mode, by setting the DCK2EN bit. The DCLK output can be disabled by the DCLKOFF bit to reduce power consumption.
DCLKNEG	107	OSR	DPort Pixel Clock.
DVS	108	os	DPort Vertical Sync. DVS can be either active-high or active-low depending on the VSPOL bit. Width and timing is controlled by the VPLSE and VDLY registers.
DHS	109	os	DPort Vertical Sync. DHS can be either active-high or active-low depending on the HSPOL bit. Sync width can be controlled by the HPLSE register.

Table 2-4 Display Port Pin Descriptions (continued)

Name	Pin(s)	Туре	Function
DEN	110	OS	DPort Pixel Enable. This signal is active whenever valid data is present. The polarity is specified by the DENPOL bit.
DR0	103	OSR	
DR1	102	OSR	
DR2	101	OSR	
DR3	100	OSR	DPort Red Pixel Data. In dual pixel output mode these pins are the EVEN
DR4	99	OSR	red outputs.
DR5	98	OSR	
DR6	97	OSR	
DR7	96	OSR	
DG0	95	OSR	
DG1	94	OSR	
DG2	93	OSR	
DG3	92	OSR	DPort Green Pixel Data. In dual pixel output mode these pins are the
DG4	91	OSR	EVEN green outputs. These pins can also be used in conjunction with the PORTB pins for higher color depth.
DG5	90	OSR	
DG6	89	OSR	
DG7	88	OSR	
DB0	83	OSR	
DB1	82	OSR	
DB2	81	OSR	
DB3	80	OSR	DPort Blue Pixel Data. In dual pixel output mode these pins are the EVEN
DB4	79	OSR	blue outputs.
DB5	78	OSR	
DB6	77	OSR	
DB7	76	OSR	-

<u>Table 2-5</u> provides detailed Microprocessor Interface pin descriptions.

Table 2-5 Microprocessor Interface Pin Descriptions

Name	Pin(s)	Туре	Function
WR	194	I/O D5	Write Enable. Low indicates a write to external RAM or other devices.
RD	195	I/O D5	Read Enable. Low indicates a read to external RAM or other devices.
ROMOE	196	OS	ROM Output Enable. Low output indicates a read from external ROM.
ROMWE	197	OS	ROM Write Enable. Low indicates a write to external ROM.
CS0	198	I/O D5	Miscellaneous Chip Select 0. Low selects external devices.
CS1	199	I/O D5	Miscellaneous Chip Select 1. When EXTRAMEN=0, low selects external devices. Chip select for external RAM. When EXTRAMEN=1, low selects external RAM. (RAMCS)
NMI	193	ID 5	Non-Maskable Interrupt. A high input triggers a non-maskable interrupt to the on-chip microprocessor.
A1	192	I/O D5	
A2	191	I/O D5	
A3	190	I/O D5	
A4	189	I/O D5	
A5	188	I/O D5	
A6	187	I/O D5	7
A7	184	I/O D5	
A8	183	I/O D5	
A9	182	I/O D5	
A10	181	I/O D5	Microprocessor address bus output bits (19:1).
A11	180	I/O D5	
A12	179	I/O D5	
A13	178	I/O D5	
A14	177	I/O D5	
A15	176	I/O D5	
A16	175	I/O D5	
A17	174	I/O D5	
A18	173	I/O D5	
A19	164	I/O D5	

Table 2-5 Microprocessor Interface Pin Descriptions (continued)

Name	Pin(s)	Type	Function
D0	163	I/O D5	
D1	162	I/O D5	
D2	161	I/O D5	
D3	160	I/O D5	
D4	159	I/O D5	
D5	158	I/O D5	
D6	157	I/O D5	
D7	156	I/O D5	Microprocessor 16-bit bidirectional data bus.
D8	155	I/O D5	inicroprocessor to-bit bidirectional data bus.
D9	154	I/O D5	
D10	153	I/O D5	
D11	152	I/O D5	
D12	151	I/O D5	
D13	150	I/O D5	
D14	149	I/O D5	
D15	148	I/O D5	

<u>Table 2-6</u> provides detailed Peripheral Interface pin descriptions.

Table 2-6 Peripheral Interface Pin Descriptions

Name	Pin(s)	Type	Function
PORTA0	207	I/O U5	General-purpose I/O port bit controlled by PADAT0 and PAEN0. This pin has one other possible function when EXTRAMEN=1.
FORTAU	TONIAU 201		When EXTRAMEN=1 and PAEN0=0, PORTA1 is microprocessor address bit 0 (A0).
P∩RT∆1	PORTA1 206	I/O U5	General-purpose I/O port bit controlled by PADAT1 and PAEN1. This pin has one other possible function when EXTRAMEN=1.
TORIAL			When EXTRAMEN=1 and PAEN1=0, PORTA1 is microprocessor bytehigh enable (BHEN)
		I/O U5	General-purpose I/O port bit controlled by PADAT2 and PAEN2. This pin has one other possible function when GREFEN=1.
PORTA2	A2 205		When GREFEN=1 and PAEN2=0, PORTA2 is GPort PLL reference out, a delayed version of internal horizontal sync (typically connected to the external PLLs reference input) (GREF)
PORTA3	204	I/O U5	General-purpose I/O port bit controlled by PADAT3 and PAEN3. This pin can also function as an external clock source for DCLK (DCLKEXT) when the internal PLLs are disabled.
DODTA4	203	I/O LIE	General-purpose I/O port bit controlled by PADAT4 and PAEN4. This pin has one other possible function when IREN=1.
FORTA4	PORTA4 203	I/O U5	When IREN=1 and PAEN4=1, this pin can function as an input to the on- chip IR receiver 0. (IRRCVR0)

Table 2-6 Peripheral Interface Pin Descriptions (continued)

Name	Pin(s)	Туре	Function
PORTA5	202	I/O U5	 General-purpose I/O port bit controlled by PADAT5 and PAEN5. This pin has other possible functions depending on the IREN, EIEN registers. When EIEN=1 and PAEN5=1, this pin can function as an external interrupt to the on-chip CPU. When IREN=1 and PAEN5=1, this pin can function as an input to the on-chip IR receiver 1. (IRRCVR1).
PORTA6	201	I/O U5	 General-purpose I/O port bit controlled by PADAT6 and PAEN6. This pin can also function as BLKSPL when BLKSMPLEN=1. When BLKSMPLEN=1 and PAEN6=0, PORTA6 is GPORT black sample clamp pulse output (typically used as port of an external DC restoration circuit) (BLKSPL) This pin has one other possible function when PREF1EN=1. When PREF1EN=1 and PAEN6=0, PORTA6 is a variable duty-cycle pulse reference generator (PWM) output controlled by PREF1HI and PREF1LO.
PORTA7	200	I/O D5	General-purpose I/O port bit controlled by PADAT7 and PAEN7. This pin has one other possible function when PREF0EN=1. When PREF0EN=1 and PAEN7=0, PORTA7 is a variable duty-cycle pulse reference generator (PWM) output controlled by PREF0HI and PREF0LO.
PORTB0	57	I/O D5	General purpose I/O port bit controlled by PBDAT0 and PBEN0. PORTB0 can also function as GRO0 when in 48 bit graphics input mode; VR0 when in 24 bit RGB video input mode; Y0 when in 24 bit YUV video input mode.
PORTB1	58	I/O D5	General purpose I/O port bit controlled by PBDAT1 and PBEN1. PORTB1 can also function as GRO1 when in 48 bit graphics input mode; VR1 when in 24 bit RGB video input mode; Y1 when in 24 bit YUV video input mode.
			General purpose I/O port bit controlled by PBDAT2 and PBEN2. PORTB2 can also function as:
			Function When in
			DB1E Dual-pixel 27-bit output mode
PORTB2	E0	I/O D5	DB0 30-bit output mode
PURIBZ	59	1/0 05	GRO2 48-bit graphics input mode
			VR2 24-bit RGB video input mode
			Y2 24-bit YUV video input mode
			Cb0 30-bit YCbCr input mode (CSCD30BIT).
			General purpose I/O port bit controlled by PBDAT3 and PBEN3. PORTB3 can also function as:
			Function When in
			DB1O Dual-pixel 27-bit output mode
DODTD2	60	I/O DE	DB1 30-bit output mode
PORTB3	60	I/O D5	GRO3 48-bit graphics input mode
			VR3 24-bit RGB video input mode
			Y3 24-bit YUV video input mode
			Cb1 30-bit YCbCr input mode (CSCD30BIT).

Table 2-6 Peripheral Interface Pin Descriptions (continued)

I/O D5	General purpose I/O port bit controlled by PBDAT4 and PBEN4. I can also function as: Function When in DG1E Dual-pixel 27-bit output mode DG0 30-bit output mode GRO4 48-bit graphics input mode VR4 24-bit RGB video input mode Y4 24-bit YUV video input mode Y0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in DG10 Dual-pixel 27-bit output mode DG1 30-bit output mode GRO5 48-bit graphics input mode GRO5 48-bit graphics input mode	
	DG1E Dual-pixel 27-bit output mode DG0 30-bit output mode GRO4 48-bit graphics input mode VR4 24-bit RGB video input mode Y4 24-bit YUV video input mode Y0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in DG10 Dual-pixel 27-bit output mode DG1 30-bit output mode	PORTB5
	DG0 30-bit output mode GRO4 48-bit graphics input mode VR4 24-bit RGB video input mode Y4 24-bit YUV video input mode Y0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in	PORTB5
	GRO4 48-bit graphics input mode VR4 24-bit RGB video input mode Y4 24-bit YUV video input mode Y0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in DG10 Dual-pixel 27-bit output mode DG1 30-bit output mode	PORTB5
	VR4 24-bit RGB video input mode Y4 24-bit YUV video input mode Y0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in DG10 Dual-pixel 27-bit output mode DG1 30-bit output mode	PORTB5
I/O D5	Y4 24-bit YUV video input mode Y0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in	PORTB5
I/O D5	Y0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in DG10 Dual-pixel 27-bit output mode DG1 30-bit output mode	PORTB5
I/O D5	General purpose I/O port bit controlled by PBDAT5 and PBEN5. I can also function as: Function When in DG10 Dual-pixel 27-bit output mode DG1 30-bit output mode	PORTB5
I/O D5	can also function as: Function When in	PORTB5
I/O D5	DG10 Dual-pixel 27-bit output mode DG1 30-bit output mode	
I/O D5	DG1 30-bit output mode	
I/O D5	·	
#0 B0	GRO5 48-bit graphics input mode	
	VR5 24-bit RGB video input mode	
	Y5 24-bit YUV video input mode	
	Y1 30-bit YCbCr input mode (CSCD30BIT).	
	General purpose I/O port bit controlled by PBDAT6 and PBEN6. I can also function as: Function When in	PORTB6
	DR1E Dual-pixel 27-bit output mode	
I/O D5	·	
	· ·	
	·	
	The state of the s	
	General purpose I/O port bit controlled by PBDAT7 and PBEN7. I can also function as:	PORTB7
	Function When in	
	DR10 Dual-pixel 27-bit output mode	
I/O D5	DR1 30-bit output mode	
1,0 00	GRO7 48-bit graphics input mode	
	VR7 24-bit RGB video input mode	
	Y7 24-bit YUV video input mode	
	Cr1 30-bit YCbCr input mode (CSCD30BIT).	
	I/O D5	GRO6 48-bit graphics input mode VR6 24-bit RGB video input mode Y6 24-bit YUV video input mode Cr0 30-bit YCbCr input mode (CSCD30BIT). General purpose I/O port bit controlled by PBDAT7 and PBEN7 can also function as: Function When in DR10 Dual-pixel 27-bit output mode DR1 30-bit output mode GRO7 48-bit graphics input mode VR7 24-bit RGB video input mode Y7 24-bit YUV video input mode

Table 2-6 Peripheral Interface Pin Descriptions (continued)

Name	Pin(s)	Type	Function
PORTC0	39	I/O D5	General purpose I/O port controlled by PCDAT(7:0) and PCEN(7:0).
PORTC1	40	I/O D5	PORTC(7:0) can also function as:
PORTC2	41	I/O D5	Function When
PORTC3	42	I/O D5	GBO(7:0) 48-bit graphics input mode
PORTC4	43	I/O D5	VB(7:0) 24-bit RGB video input mode
PORTC5	44	I/O D5	U(7:0) 24-bit YUV video input mode
PORTC6	45	I/O D5	UV(7:0) 16-bit YUV video input mode
PORTC7	46	I/O D5	
RXD	67	I/O U5	Serial Receive Data. RXD is the serial receive data for the on-chip serial port. This pin can also function as the 2-wire master data pin when 2WMEN=16.
TXD	68	I/O U5	Serial Transmit Data. TXD is the serial transmit data for the on-chip serial port. This pin can also function as the 2-wire master clock output pin when 2WMEN=16.

<u>Table 2-7</u> provides detailed Miscellaneous pin descriptions.

Table 2-7 Miscellaneous Pin Descriptions

Name	Pin(s)	Туре	Function
TESTEN	142	ID 5	Test Mode Enable. Connect to ground for normal operation.
RESET_N	139	BOD	 Bidirectional reset pin. This pin requires a pull-up resistor to V33 (VDDQ3). The typical value is 3.3K ohm. When EXTRSTEN=1, RESET_N is an input. When EXTRSTEN=0, RESET_N is an output. In either case a low indicates reset.
EXTRSTEN	28	ID 5	 External Reset Enable. When EXTRSTEN=1, the internal reset is disabled and an external reset must be supplied on the RESET_N pin. When EXTRSTEN=0, the internal reset is enabled and RESET_N becomes a bidirectional pin that can be used to either drive external logic in the system or receive an external reset signal.
XI	169	I	Crystal Input. Connect to external crystal. XI can also function as the MCLK input LVTTL-level signal from an external oscillator.
XO	170	0	Crystal Output. Connect to external crystal.

Table 2-8 provides detailed Microprocessor Debug Port pin descriptions.

Table 2-8 Microprocessor Debug Port Pin Descriptions

Name	Pin(s)	Type	Function
TRST_N	147	ID 5	Debug port reset (low true). Leave floating if debug port is not being used.
TCK	146	ID 5	Debug port serial data clock. Leave floating if debug port is not being used.
TMS	145	ID 5	Debug port mode select. Leave floating or pull to ground to disable.
TDI	144	ID 5	Debug port serial data in. Leave floating if debug port is not being used.
TDO	143	I/O D5	Debug port serial data out. Leave floating if debug port is not being used.

<u>Table 2-9</u> provides detailed Power and Ground pin descriptions.

Table 2-9 Power and Ground Pin Descriptions

Name	Pin(s)	Type	Function
VDD1	16,37,65,84, 137,185	Р	1.8V digital core power.
VSS	17,38,66,85, 138,186	Р	Digital core ground.
VDDQ3	29,52,72,86, 104,123,140, 171,208	Р	3.3V digital I/O power.
VSSQ	1, 30, 53, 73, 87, 105, 124, 141, 172,	Р	Digital I/O ground.
VDDPA1	167	Р	1.8V analog clock generator power.
VDDPA2	165	Р	1.8V analog clock generator power.
VSSPA1	168	Р	Clock generator analog ground.
VSSPA2	166	Р	Clock generator analog ground.

Pinout Information Pin Descriptions

Figure 2-1 Pin Layout

Pin Descriptions Pinout Information

2.2.1 Video Port Pins

Table 2-1 provides detailed pin descriptions for the Video Port.

Table 2-1 Video Port Pin Descriptions

Name	Pin(s)	Type	Function		
PVHS	28	I	Primary Video (PV) Port horizontal sync input. Indicates start of next line of input data. This signal is internally polarity corrected (PVHS_POL) so PVHS can be either active-high or active-low. [Input, pull-down, 5V-tolerant]		
PVVS	27	I	Primary Video (PV) Port vertical sync input. Indicates start of next field or frame of input data. This signal is internally polarity corrected (PVVS_POL) so PVVS can be either active-high or active-low. [Input, pull-down, 5V-tolerant]		
CREF	26	I	Video input clock reference. [Input, pull-down, 5V-tolerant] • cref_mode = 1 PVCLK CREF VR, VG, VB O 1 Sampling points VR, VG, VB O 1 N-1 N Sampling points		
PVCLK	25	I	Primary Video (PV) Port pixel clock input. [Input, pull-down, 5V-tolerant]		
SVVS	12	I	Secondary Video (SV) Port (ITU-R BT656 format) vertical sync input. Indicates start of next field or frame of input data. This signal is internally polarity corrected (svvs_pol) so SVVS can be either active-high or active-low. [Input, pull-down, 5V-tolerant]		
SVHS	11	I	Secondary Video (SV) Port (ITU-R BT656 format) horizontal sync input. This signal is internally polarity corrected (<i>svhs_pol</i>) so SVHS can be either active-high or active-low. [Input, pull-down, 5V-tolerant]		
SVCLK	13	I	Secondary Video (SV) Port (ITU-R BT656 format) pixel clock input. [Input, pull-down, 5V-tolerant]		

Pinout Information Pin Descriptions

Table 2-1 Video Port Pin Descriptions (continued)

Name	Pin(s)	Type	Function				
VR0	30	I	· ·	Video port red data input. These pins have different functions depending on the			
VR1	31	I	settings of the P	ettings of the <i>PVmode</i> register. [Input, pull-down, 5V-tolerant]			
VR2	32	I	PV_mode	VR[7:0] Pin Function			
VR3	33	ı	00	Reserved.			
VR4	35	I	01	Primary Video (PV) Port.			
VR5	36	I		UV[7:4]: ITU-R BT601 YUV 4:1:1 UV pixel data.			
VR6	37	ı	10	Primary Video (PV) Port UV[7:0]: ITU-R BT601 YUV 4:2:2 UV pixel data.			
VR7	38	I	11	Primary Video (PV) Port. R[7:0]: red pixel data or V[7:0]: ITU-R BT601 YUV 4:4:4 pixel data.			
VG0	15	I	Video port green	data input. These pins have different functions depending on the			
VG1	16	I	settings of the Pr	rimary Video (PV) Port mode registers. [Input, pull-down, 5V-toleran			
VG2	17	I	PV_mode	VG[7:0] Pin Function			
VG3	18		00	Reserved.			
VG4	20	I	01	Primary Video (PV) Port.			
VG5	21	l		Y[7:0]: 110-R B1601 YUV 4:1:1 UV pixel data.			
VG6	22	l	10	Primary Video (PV) Port. Y[7:0]: ITU-R BT601 YUV 4:2:2 UV pixel data.			
VG7	23	I	11	Primary Video (PV) Port. G[7:0]: green pixel data or Y[7:0]: ITU-R BT601 YUV 4:4:4 pixel data.			
VB0	1	l	Video port blue d	lata input. These pins have different functions depending on the			
VB1	2	I	settings for the P	rimary Video (PV) Port mode registers. [Input, pull-down, 5V-toleral			
VB2	3	I	PV_mode	VB[7:0] Pin Function			
VB3	4	l I	00	Reserved.			
VB4	6	l I	01	Secondary Video (SV) Port			
VB5	7	I	10	YUV[7:0]: ITU-R BT656 format pixel data.			
VB6	8	l		Primary Video (PV) Port. B[7:0]: blue pixel data or			
VB7	9	ı	_	U[7:0]: ITU-R BT601 YUV 4:4:4 pixel data.			

2.2.2 Digital/Graphics (DG) Port Pins

Table 2-2 provides detailed pin descriptions for the Digital/Graphics (DG) Port.

Table 2-2 Digital/Graphics (DG) Port Pin Descriptions

Name	Pin(s)	Type	Function		
DGS	67	,	Digital/Graphics (DG) port vertical sync.		
DGS	07	I	[Tri-state output, 4mA drive, 5V-tolerant]		
DGHS	66	00 1	Digital/Graphics (DG) port horizontal sync.		
DGHS	DGU2 00		[Tri-state output, 4mA drive, 5V-tolerant]		
DOCLK	60		Digital/Graphics (DG) port pixel clock.		
DGCLK	68	I	[Tri-state output, 8mA drive, 5V-tolerant]		

Pin Descriptions Pinout Information

Table 2-2 Digital/Graphics (DG) Port Pin Descriptions (continued)

Name	Pin(s)	Type	Function		
DGR0	91	ı	Digital/Graphics (DG) port red data. [Bi-directional, input with pull-down, tri-state 4mA		
DGR1	92	I	drive output, 5V-tolerant]		
DGR2	94	I	DGR[7:0] Pin Function		
DGR3	95	I	Digital/Graphics (DG) Port input (single pixel mode). R[7:0]: red pixel data or		
DGR4	97	I	V[7:0]: YUV 4:4:4 pixel data.		
DGR5	98	I			
DGR6	99	I			
DGR7	100	I			
DGG0	81	I	Digital/Graphics (DG) port green data. [Bi-directional, input with pull-down, tri-state		
DGG1	82	I	4mA drive output, 5V-tolerant]		
DGG2	83	I	DGG[7:0] Pin Function		
DGG3	84	I	Digital/Graphics (DG) Port input (single pixel mode).		
DGG4	86	I	G[7:0]: green pixel data or Y[7:0]: YUV 4:4:4 pixel data.		
DGG5	87	I			
DGG6	88	I			
DGG7	89	I			
DGB0	70	I	Digital/Graphics (DG) port blue data. [Bi-directional, input with pull-down, tri-state 4mA		
DGB1	71	I	drive output, 5V-tolerant]		
DGB2	72	ı	DGB[7:0] Pin Function		
DGB3	73	I	Digital/Graphics (DG) Port input (single pixel mode). B[7:0]: blue pixel data or		
DGB4	75	I	U[7:0]: YUV 4:4:4 pixel data.		
DGB5	76	I			
DGB6	78	I			
DGB7	79	I			

2.2.3 System Power Pins

<u>Table 2-3</u> provides detailed pin descriptions for System Power.

Table 2-3 System Power Pin Descriptions

Name	Pin(s)	Type	Function	
VDD	5, 34, 93, 123, 140, 175, 205, 235	Р	Digital core power (2.5V).	
VSS	19, 49, 77, 112, 134, 187, 219, 251	G	Digital core ground.	

Pinout Information Pin Descriptions

Table 2-3 System Power Pin Descriptions (continued)

Name	Pin(s)	Type	Function			
PVDD	14, 29, 42, 54, 64, 69, 80, 90, 101, 109, 120, 131, 143, 165, 180, 200, 208, 216, 224, 230, 237, 243, 249, 256	Р	Digital I/O power (3.3V).			
PVSS	10, 24, 39, 46, 57, 65, 74, 85, 96, 105, 115, 126, 137, 147, 171, 189, 193, 202, 212, 222, 228, 233, 240, 246, 253	G	Ground.			
MPAVDD	60	Р	Memory PLL analog power 2.5V.			
MPAVSS	61	G	Memory PLL analog ground.			
MPDVDD	58	Р	Memory PLL guard ring / digital power 2.5V.			
MPDVSS	59	G	Memory PLL guard ring / digital ground.			
DPAVDD	197	Р	Display PLL analog power 2.5V.			
DPAVSS	196	G	Display PLL analog ground.			
DPDVDD	199	Р	Display PLL digital power 2.5V.			
DPDVSS	198	G	Display PLL digital ground.			
AVD33R	157	Р	Analog power (+3.3V) for R (V/Pr) channel.			
AVD33G	154	Р	Analog power (+3.3V) for G (Y/Y) channel.			
AVD33B	151	Р	Analog power (+3.3V) for B (U/Pb) channel.			
AVS33R	158	G	Analog ground for R (V/Pr) channel.			
AVS33G	155	G	Analog ground for G (Y/Y) channel.			
AVS33B	152	G	Analog ground for B (U/Pb) channel.			
ADAVDD	163	Р	Analog power supply (+2.5V) for the analog display port.			
ADAVSS	164	G	Analog ground for the analog display port.			
ADDVDD	149	Р	Digital power supply (+2.5V) for the analog display port.			
ADDVSS	148	G	Digital ground for the analog display port.			
ADGVDD	166	Р	Guard ring power for the analog display port.			
ADGVSS	167	G	Guard ring ground for the analog display port.			

Pin Descriptions Pinout Information

2.2.4 Miscellaneous Pins

<u>Table 2-4</u> provides detailed descriptions for Miscellaneous Pins.

Table 2-4 Miscellaneous Pin Descriptions

Name	Pin(s)	Type	Function		
XTALI	40	I	Crystal oscillator input. Connect to an external 10MHz crystal.		
XTALO	41	0	Crystal oscillator output. Connect to an external 10MHz crystal.		
RESETn	55	I	Hardware asynchronous reset. The signal is active low. Must be continuously asserted for a minimum of 100 µs after power-up to satisfy the SDRAM power-up requirement. [Input, Schmitt trigger, pull-up, 5V-tolerant]		
CGMS	146	I	CGMS Enable		
TCK	50	I	Debug port test data clock. TCK provides the clock input for the Test Bus (also known as the Test Access Port).		
TDI	51	I	Debug port test data in. TDI transfers serial test data into VISTA. TDI provides the serial input necessary for JTAG specification support.		
TDO	48	0	Debug port test data out. TDO transfers serial test data out of VISTA. TDO provides the serial input necessary for JTAG specification support.		
TMS	52	I	Debug port test mode select. TMS is a JTAG specification support signal used by debug tools.		
TRSTn	53	I	Debug port test reset. TRSTn resets the Test Access Port (TAP) logic. TRSTn must be driven low during power on RESETn.		
TEST	56	I	Test mode. Active high. Must be low during normal operation. [Input, pull-down, 5V-tolerant]		
TESTCLK	144	I	Used for testing, can be used to supply display clock. [Input, pull-down, 5V-tolerant]		
NC	201	-	No connect.		
NC	62, 63, 194,195	-	No connect.		

2.2.5 Host Interface Pins

<u>Table 2-5</u> provides detailed pin descriptions for the Host Interface.

Table 2-5 Host Interface Pin Descriptions

Name	Pin(s)	Type	Function	
2WCLK	45	I	Clock signal of two-wire serial bus. [Input, pull-up, 5V-tolerant]	
2WDAT	47	I/O	Data signal of two-wire serial bus. [Bi-directional, tri-state 4mA drive output, 5V-tolerant]	
2WA1	43	I	Programmable two-wire serial bus address bit 1. [Input, pull-down, 5V-tolerant]	
2WA2	44	I	Programmable two-wire serial bus address bit 2. [Input, pull-down, 5V-tolerant]	

2.2.6 Memory Pins

Table 2-6 provides detailed pin descriptions for Memory.

Table 2-6 Memory Pin Descriptions

Name	Pin(s)	Туре	Function	
MCLK	229	()	SDRAM clock. This signal is rising edge active. [Tri-state output, 8mA drive, 5V-tolerant]	
MCLKFB	223	I	SDRAM clock feedback. For latching in read data. [Input, 5V-tolerant]	

Pinout Information Pin Descriptions

Table 2-6 Memory Pin Descriptions (continued)

Name	Pin(s)	Type	Function			
MRAS	225	0	SDRAM row address strobe. This signal is active low. [Tri-state output, 8mA drive,			
IVINAS	225	U	5V-tolerant]			
MCAS	226	0	SDRAM column address strobe. This signal is active low. [Tri-state output, 8mA drive, 5V-tolerant]			
MWE	227	0	SDRAM write enable. This signal is active low. [Tri-state output, 8mA drive, 5V-tolerant]			
MA0	213	0				
MA1	210	0				
MA2	207	0				
MA3	204	0				
MA4	203	0	SDRAM address bus. Multiplexed row and column address and bank select. Row			
MA5	206	0	addresses use MA[11:0] for 8MB SDRAM and MA[10:0] for 2MB SDRAM. Column			
MA6	209	0	addresses use MA[7:0]. [Tri-state output, 8mA drive, 5V-tolerant]			
MA7	211	0	Note : MA10 is a control signal during column address charging and pre-charging.			
MA8	214	0	For 8MB SDRAM the bank select pins ba0 and ba1 should be connected to MA12 and			
MA9	217	0	MA13, respectively. For 2MB SDRAM, connect ba0 to MA12.			
MA10	215	0				
MA11	220	0				
MA12	221	0				
MA13	218	0				
MD0	255	I/O				
MD1	252	I/O				
MD2	248	I/O				
MD3	245	I/O				
MD4	242	I/O				
MD5	239	I/O				
MD6	236	I/O				
MD7	232	I/O	CDDAM data bug. [Di directional tri state 9mA drive output pull up. 5\/ televent1			
MD8	231	I/O	SDRAM data bus. [Bi-directional, tri-state 8mA drive output, pull-up, 5V-tolerant]			
MD9	234	I/O				
MD10	238	I/O				
MD11	241	I/O				
MD12	244	I/O				
MD13	247	I/O				
MD14	250	I/O	7			
MD15	254	I/O	1			

2.2.7 Digital Display Output Port Pins

<u>Table 2-7</u> provides detailed pin descriptions for the Digital Display Output Port.

Table 2-7 Digital Display Output Port Pin Descriptions

Name	Pin(s)	Type	Function		
DVS	103	0	Digital display output port vertical sync. [Tri-state output, 4mA drive, 5V-tolerant]		
DHS	104	0	Digital display output port horizontal sync. [Tri-state output, 4mA drive, 5V-tolerant]		
DCLK	102	0	Digital display output port pixel clock. [Tri-state output, 8mA drive, 5V-tolerant]		

Pin Descriptions Pinout Information

Table 2-7 Digital Display Output Port Pin Descriptions (continued)

Name	Pin(s)	Type	Function				
DENR	108	0	Display pixel enable red. [Tri-state output, 4mA drive, 5V-tolerant]				
DENG	106	0	Digital display pixel enable green. [Tri-state output, 4mA drive, 5V-tolerant]				
DENB	107	0	Digital display pixel	enable blue.	[Tri-state output, 4mA drive, 5V-tolerant]		
DEN	145	I	Digital display output port output enable. [Input, pull-up, 5V-tolerant] Active level controlled by DEN_POL [reg 0x61 bit 2]. Note: DEN <i>only</i> controls the data bus [DR(7:0), DG(7:0), DB(7:0)] and not the controls ignals [DVS, DHS, DCLK, DENR, DENG, DENB].				
DR0	132	0	Digital display outp	ut port red da	ta. [Tri-state output, 4mA drive, 5V-tolerant]		
DR1	133	0		uv_mode	DR[7:0] Pin Function		
DR2	135	0			DPort single pixel output.		
DR3	136	0		000	R[7:0]: red pixel data or V[7:0]: YUV 4:4:4 pixel data.		
DR4	138	0		011	UV[7:0]: ITU-R BT601 YUV 4:2:2 pixel data		
DR5	139	0		011	0 V[7.0]. 110-11 B1001 10 V 4.2.2 pixel data		
DR6	141	0					
DR7	142	0					
DG0	121	0	Digital display outp	ut port green	data. [Tri-state output, 4mA drive, 5V-tolerant]		
DG1	122	0		uv_mode	DG[7:0] Pin Function		
DG2	124	0			DPort single pixel output.		
DG3	125	0		000	G[7:0]: green pixel data or Y[7:0]: YUV 4:4:4 pixel data		
DG4	127	0		011	Y[7:0]: ITU-R BT601 YUV 4:2:2 pixel data		
DG5	128	0		011	T[1:0]: TO TESTOOT FOR TILES pixel data		
DG6	129	0					
DG7	130	0					
DB0	110	0	Divital Paula and	1 (1.1	oto ET i stato o do di AsiA di il EVitalo di		
DB1	111	0	Digital display outp		ata. [Tri-state output, 4mA drive, 5V-tolerant]		
DB2	113	0		uv_mode	DB[7:0] Pin Function		
DB3	114	0		VVV	DPort single pixel output. B[7:0]: blue pixel data or		
DB4	116	0		XXX	U[7:0]: YUV 4:4:4 pixel data.		
DB5	117	0		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
DB6	118	0					
DB7	119	0					

2.2.8 Analog Display Port Pins

Table 2-8 provides detailed pin descriptions for the Analog Display Port.

Table 2-8 Analog Display Port Pin Descriptions

Name	Pin(s)	Type	Function	
ADR	156	0	Analog display port red (V/Pr) data.	
ADG	153	0	Analog display port green (Y/Y) data.	
ADB	150	0	Analog display port blue (U/Pb) data.	
VREFIN	161	I	Reference voltage input.	
VREFOUT	162	0	Voltage reference output. This output nominally delivers 1.23v reference voltage from bandgap reference block. It is normally connected to VREFIN pin.	

Pinout Information Pin Descriptions

Table 2-8 Analog Display Port Pin Descriptions (continued)

Name	Pin(s)	Type	Function		
RSET	159	I/O	Full-Scale adjust resistor. A resistor should be connected between this pin and AVS33 to control the magnitude of the full-scale video signal. RSET(ohm)=VREFIN(V)*10.66/IOFS(A),		
			where IOFS is full-scale output current.		
COMP	160	i/O	Compensation pin. This pin should be connected through 0.1uF ceramic capacito AVD33 (+3.3v) externally.		

PIN CONFIGURATION

PIN DESCRIPTIONS

Pin Name	Pin Type	Function	Pin Number(s)
RED _{IN}	Analog Input	Red analog input	54
GRN _{IN}	Analog Input	Green analog input	48
BLU _{IN}	Analog Input	Blue analog input	43
SOG _{IN}	Analog Input	Sync on Green analog input	49
CLAMP	Digital CMOS Input	External Clamp Input	38
HSYNC	Digital CMOS Input	Horizontal SYNC Input	30
VSYNC	Digital CMOS Input	Vertical SYNC Input	31
COAST	Digital CMOS Input	Hold PLL Frequency, do not track HSYNC	29
		-	
SCL	Digital CMOS Input	Serial Interface clock	56
SDA	Digital CMOS Input/Output	Serial Interface data pin	57
A_0	Digital CMOS Input	Serial interface address pin	55
R [7:0]	Digital CMOS 3-state Output	Red output data	70-77
G [7:0]	Digital CMOS 3-state Output	Green output data	2-9
B [7:0]	Digital CMOS 3-state Output	Blue output data	12-19
DCK	Digital CMOS 3-state Output	Output data clock	67
HSOUT	Digital CMOS 3-state Output	HSYNC output	66
VSOUT	Digital CMOS 3-state Output	VSYNC output	64
SOG _{OUT}	Digital CMOS 3-state Output	SYNC on Green Slicer Output	65
FILT		No Connection	33
FILI		NO CONNECTION	33
VREF	Reference	Internal Reference Bypass	58
MIDSCV	Reference	Internal Mid-Scale Voltage Bypass	37
	1	1	1
AV _{DD}	3.3v Power	Analog Power	39,42,45,46,51,52,59,62
PV_{DD}	3.3v Power	PLL Power	26,27,34,35
V_{DD}	3.3v Power	Digital Output Power	11,22, 23, 69,78,79
GND	System Ground	System Ground	1,10,20,21,24,25,28,32,36,4 0,41,44,47,50,53,60,61,63,6 8,80

PIN CONFIGURATION

PIN DESCRIPTION

PIN	PIN NAME	DESCRIPTION
CLK	Clock	The system clock input. All other inputs are registered to the SDRAM on the rising edge of CLK
CKE	Clock Enable	Controls internal clock signal and when deactivated, the SDRAM will be one of the states among power down, suspend or self refresh
CS	Chip Select	Enables or disables all inputs except CLK, CKE and DQM
BA0,BA1	Bank Address Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity	
A0 ~ A11	Address : RA0 ~ RA11, Column Address : CA0 ~ CA7 Auto-precharge flag : A10	
RAS, CAS, WE	Row Address Strobe, Column Address Strobe, Write Enable	RAS, CAS and WE define the operation Refer function truth table for details
LDQM, UDQM	Data Input/Output Mask	Controls output buffers in read mode and masks input data in write mode
DQ0 ~ DQ15	Data Input/Output	Multiplexed data input / output pin
VDD/VSS	Power Supply/Ground	Power supply for internal circuits and input buffers
VDDQ/VSSQ	Data Output Power/Ground	Power supply for output buffers
NC	No Connection	No connection

CONNECTION DIAGRAMS

This device is also available in Known Good Die (KGD) form. Refer to publication number 21536 for more information.

21490G-2

CONNECTION DIAGRAMS

This device is also available in Known Good Die (KGD) form. Refer to publication number 21536 for more information.

			Top View,	FBGA Balls Fac	ing Down	l	
(A6)	(B6)	(C6)	(D6)	(E6)	F6	G6	H6)
A13	A12	A14	A15	A16	BYTE#	DQ15/A-1	V _{SS}
(A5)	(B5)	C5	D5)	E5	(F5)	(G5)	H5)
A9	A8	A10	A11	DQ7	DQ14	DQ13	DQ6
(A4)	B4	C4	D4)	E4	F4	G4	H4)
WE#	RESET#	NC	NC	DQ5	DQ12	V _{CC}	DQ4
A3)	B3	C3	D3)	E3	F3	G3	H3
RY/BY#	NC	A18	NC	DQ2	DQ10	DQ11	DQ3
(A2)	B2	C2	D2	E2	F2	G2	H2
A7	A17	A6	A5	DQ0	DQ8	DQ9	DQ1
A1	B1	(C1)	D1)	E1	F1	G1	H1
A3	A4	A2	A1	A0	CE#	OE#	V _{SS}

.

Special Handling Instructions for FBGA Package

Special handling is required for Flash Memory products in FBGA packages.

Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.

PIN CONFIGURATION

A0-A18 = 19 addresses

DQ0-DQ14 = 15 data inputs/outputs

DQ15/A-1 = DQ15 (data input/output, word mode),

A-1 (LSB address input, byte mode)

BYTE# = Selects 8-bit or 16-bit mode

CE# = Chip enable

OE# = Output enable

WE# = Write enable

RESET# = Hardware reset pin, active low

RY/BY# = Ready/Busy# output

 V_{CC} = 3.0 volt-only single power supply

(see Product Selector Guide for speed

options and voltage supply tolerances)

 V_{SS} = Device ground

NC = Pin not connected internally

LOGIC SYMBOL

PIN DESCRIPTION

Figure 2. Z86229 Pin Configuration

Table 1. Z86229 Pin Identification*

No.	Symbol	Function	Direction			
1	I ² C SEL	I ² C Address Selection	Input			
2	GREEN	Video Output	Output			
3	BLUE	Video Output	Output			
4	SEN	Serial Enable	Input			
5	HIN	Horizontal In	Input			
6	SMS	Serial Mode Select	Input			
7	VIDEO	Composite Video	Input			
8	CSYNC	Composite Sync	Output			
9	LPF	Loop Filter	Output			
10	RREF	Resistor Reference	Input			
11	V _{SS} (A)	Pwr. Supply (Analog) GND				
12	V _{DD}	Power Supply				
			1 /0			
13	V _{IN} /INTRO	Vertical In/Interrupt Out	In/Output			
14	SDA	Serial Data	In/Output			
15	SCK	Serial Clock	Input			
16	SDO	Serial Data Out	Output			
17	BOX	OSD Timing Signal	Output			
18	RED	Video Output	Output			
Note	Note: *DIP and SOIC pin configurations are identical.					

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.5 to 6.0	V
V _{IN}	DC Input Voltage	-0.5 to V _{DD} +0.5	V
V _{OUT}	DC Output Voltage	-0.5 to V _{DD} +0.5	V
I _{IN}	DC Input Current per Pin	+ 10	mA
l _{out}	DC Output Current per Pin	+ 20	mA
I _{DD}	DC Supply Current	+ 30	mA
P _D	Power Dissipation per Device	300	mW
T _{STG}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature, 1 mm from Case for 10 seconds	260	°C

Notes:

*Voltages referenced to V_{SS} (A). Values beyond the maximum ratings listed above may cause damage to the device. Functional operation should be restricted to the limits specified in the DC and AC Characteristics tables or Pin Description section.

PIN DEFINITIONS

Inputs

I²C SEL (Pin 1). This pin selects 28h for writing and 29h for reading when this input is Low(0). When the input is High(1), the device selects 2Ah for writing and 2Bh for reading.

SEN (Pin 4). This pin enables the signal for the SPI mode of operation on the Serial Control Port. When this pin is Low (0), the SPI port is disabled and the SDO pin is in the high-impedance state. Transitions on the SCK and SDA pins are ignored. SPI mode operation is enabled when SMS is High (1).

HIN (Pin 5). For this pin, the Horizontal Sync input signal at the CMOS level must be supplied. When the device is used in VIDEO-LOCK mode, the signal pulls the on-chip VCO within the proper range. The circuit uses the frequency of this signal, which must be within $\pm 3\%$ F_h, but the overall signal can be of either polarity. When used in the H-lock mode, the VCO phase locks to the rising edge of this signal. The HPOL bit of the H Position register can be set to operate with either polarity of input signal. This signal is usually the H Flyback signal. The timing difference between HIN rising edge and the leading edge of composite sync (of VID-EO input) is one of the factors which affects the horizontal position of the display. Any shift resulting from the timing of this signal can be compensated for with the horizontal timing value in the H Position Register. H-lock is intended for use when the part is generating an OSD display when no video signal is present.

SMS (Pin 6). This pin allows the mode select pin for the Serial Control Port. When this input is at a CMOS High state (1), the Serial Control Port operates in the SPI mode. When the input is Low (0), the Serial Control Port operates in the I²C slave mode. In SPI mode, the SEN pin must be tied High. (See Reset Operation section.)

VIDEO (Pin 7). This pin is a composite NTSC video input, 1.0V p-p (nom), band limited to 600 kHz. The circuit operates with signal variation between 0.7–1.4V p-p. The polarity is sync tips negative. This signal pin should be AC coupled through a $0.1~\mu F$ capacitor, driven by a source impedance of 470 ohms or less.

SCK (Pin 15). This pin is an input for a serial clock signal from the master control device. In I²C mode operation, the clock rate is expected to be within I²C limits. In SPI mode, the maximum clock frequency is 10 MHz.

Reset Operation. When the SMS and SEN pins are both in the Low (0) state, the part is in the Reset state; therefore, in the I²C mode, the SEN pin can be used as an NReset input. When SPI mode is used, if three wire operation is required, both SMS and SEN can be tied together and used as the NReset input. In either mode, NReset must be held Low (0) for at least 100 ns.

Input/Output

 V_{IN} /INTRO (Pin 13). In external (EXT) vertical lock mode of operation, the internal vertical sync circuits lock to the V_{IN} input signal applied at this pin. The part locks to the rising or falling edge of the signal in accordance with the setting of the V Polarity command. The default is rising edge. The V_{IN} pulse must be at least 2 lines wide.

In INTRO Mode, when configured for internal vertical synchronization, this pin is an output pin providing an interrupt signal to the master control device in accordance with the settings in the Interrupt Mask Register.

SDA (Pin 14). When the Serial Control Port has been set to I^2C mode operation, this pin serves as the bidirectional data line for sending and receiving serial data. In SPI mode operation, the device operates as a serial data input. SPI mode output data is available on the SDO pin.

Outputs

RED, GREEN, BLUE (Pins 2, 3, 18). These pins are ositive-acting CMOS-level signals.

- Color Mode: Red, Green, and Blue characters are incorporated as video outputs for use in a color receiver
- Mono Mode: In this mode, all three outputs carry the character luminance information

Note: The selection of Color/Mono Mode is user controlled in bit D_1 of the Configuration Register (Address=00h). (See Internal Registers section.)

CSync (Pin 8). Sync slice level. A 0.1 μ F capacitor must be tied between this pin and analog ground $V_{SS}(A)$. This capacitor stores the sync slice level voltage.

LPF (Pin 9). Loop Filter. A series RC low-pass filter must be tied between this pin and analog ground $V_{SS}(A)$. There must also be second capacitor from the pin to $V_{SS}(A)$.

PIN DEFINITIONS (Continued)

RREF (Pin 10). Reference setting resistor. Resistor must be 10 kOhms, ±2%.

SDO (Pin 16). This pin provides the serial data output when SPI mode communications have been selected. This pin is not used in I²C mode operation.

BOX (Pin 17). Black box keying output is an active High, CMOS-level signal used to key in the black box for captions/text displays. This output is in a high-impedance state when the background attribute has been set to semi-transparent.

Power Supply

V_{SS} (Pins 11). These pins are the lowest potential power pins for the analog and digital circuits. They are normally tied to system ground.

 V_{DD} (Pin 12). The voltage on this pin is nominally 5.0 Volts, and may range between 4.75 to 5.25 Volts with respect to the V_{SS} pins.

Note: The recommended printed circuit pattern for implementing the power connection and critical components is referenced in the Recommended Application Information section on page 49.

General Description

The MM74HC374 high speed Octal D-Type Flip-Flops utilize advanced silicon-gate CMOS technology. They possess the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads. Due to the large output drive capability and the 3-STATE feature, these devices are ideally suited for interfacing with bus lines in a bus organized system.

These devices are positive edge triggered flip-flops. Data at the D inputs, meeting the setup and hold time requirements, are transferred to the Q outputs on positive going transitions of the CLOCK (CK) input. When a high logic level is applied to the OUTPUT CONTROL (OC) input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The 74HC logic family is speed, function, and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\mbox{\footnotesize CC}}$ and ground.

Features

- Typical propagation delay: 20 ns
- Wide operating voltage range: 2–6V
- Low input current: 1 µA maximum
- Low quiescent current: 80 μA maximum
- Compatible with bus-oriented systems
- Output drive capability: 15 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC374WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC374SJ M20D 20-Le		20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC374MTC MTC20 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO		20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC374N N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0,300" Wid		20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP

Truth Table

Output Control	Clock	Data	Output
L	1	Н	Н
L	1	L	L
L	L	X	Q_0
Н	X	X	Z

- H = HIGH Level
- L = LOW Level
- X = Don't Care
- ↑ = Transition from LOW-to-HIGH
- $Z = \mbox{High Impedance State}$ $Q_0 = \mbox{The level of the output before steady state input conditions were$

Pin Out

THC63LVDM83R Pin Description

Pin Name	Pin#	Туре	Description	
TA+, TA-	47, 48	LVDS OUT		
TB+, TB-	45, 46	LVDS OUT	LVDSD (O)	
TC+, TC-	41, 42	LVDS OUT	LVDS Data Out.	
TD+, TD-	37, 38	LVDS OUT		
TCLK+, TCLK-	39, 40	LVDS OUT	LVDS Clock Out.	
TA0 ~ TA6	51, 52, 54, 55, 56, 3, 4	IN		
TB0 ~ TB6	6, 7, 11, 12, 14, 15, 19	IN	Pinal Data Lucreta	
TC0 ~ TC6	20, 22, 23, 24, 27, 28, 30	IN	Pixel Data Inputs.	
TD0 ~ TD6	50, 2, 8, 10, 16, 18, 25	IN		
/PDWN	32	IN	H: Normal operation, L: Power down (all outputs are Hi-Z)	
RS	1	IN	LVDS swing control. RS LVDS swing VCC 350mV : : GND 200mV	
R/F	17	IN	Input Clock Triggering Edge Select. H: Rising edge, L: Falling edge	
VCC	9, 26	Power	Power Supply Pins for TTL inputs and digital circuitry.	
CLKIN	31	IN	Clock in.	
GND	5, 13, 21, 29, 53	Ground	Ground Pins for TTL inputs and digital circuitry.	
LVDS VCC	44	Power	Power Supply Pins for LVDS Outputs.	
LVDS GND	36, 43, 49	Ground	Ground Pins for LVDS Outputs.	
PLL VCC	34	Power	Power Supply Pin for PLL circuitry.	
PLL GND	33, 35	Ground	Ground Pins for PLL circuitry.	

THC63LVDM63R Pin Description

Pin Name	Pin#	Туре	Description		
TA+, TA-	40, 41	LVDS OUT			
TB+, TB-	38, 39	LVDS OUT	LVDS Data Out.		
TC+, TC-	34, 35	LVDS OUT			
TCLK+, TCLK-	32, 33	LVDS OUT	LVDS Clock Out.		
TA0 ~ TA6	44, 45, 47, 48, 1, 3, 4	IN			
TB0 ~ TB6	6, 7, 9, 10, 12, 13, 15	IN	Pixel Data Inputs.		
TC0 ~ TC6	16, 18, 19, 20, 22, 23, 25	IN			
/PDWN	27	IN	H: Normal operation,		
	_,		L: Power down (all outputs are Hi-Z)		
			LVDS swing control.		
			RS LVDS swing		
RS	2	IN	VCC 350mV		
			: :		
			GND 200mV		

Pin Name	Pin#	Туре	Description
R/F	14	IN	Input Clock Triggering Edge Select.
K/F	14	IIN	H: Rising edge, L: Falling edge
VCC	8, 21	Power	Power Supply Pins for TTL inputs and digital circuitry.
CLKIN	26	IN	Clock in.
GND	5, 11, 17, 24, 46	Ground	Ground Pins for TTL inputs and digital circuitry.
LVDS VCC	37	Power	Power Supply Pins for LVDS Outputs.
LVDS GND	36, 42	Ground	Ground Pins for LVDS Outputs.
PLL VCC	29	Power	Power Supply Pin for PLL circuitry.
PLL GND	28, 30	Ground	Ground Pins for PLL circuitry.

Absolute Maximum Ratings 1

Supply Voltage (V _{CC})	-0.3V ~ +4.0V
CMOS/TTL Input Voltage	-0.3V ~ (V _{CC} + 0.3V)
CMOS/TTL Output Voltage	-0.3V ~ (V _{CC} + 0.3V)
LVDS Driver Output Voltage	-0.3V ~ (V _{CC} + 0.3V)
Output Current	continuous
Junction Temperature	+150°C
Storage Temperature Range	-65°C ~ +150°C
Lead Temperature (Soldering, 4sec)	+260°C
Maximum Power Dissipation @+25°C	1.4W

Electrical Characteristics

CMOS/TTL DC Specifications

 $V_{CC} = 3.0V \sim 3.6V$, $Ta = -10^{\circ}C \sim +70^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	High Level Input Voltage		2.0		V_{CC}	V
V _{IL}	Low Level Input Voltage		GND		0.8	V
I _{INC}	Input Current	$0V \le V_{IN} \le V_{CC}$			±10	μΑ
I _{PD}	Pull Down Current	R/F pin, VIH=V _{CC}			100	μΑ
I _{RS}	RS Pull Down Current	RS pin, VIH=V _{CC}			100	μΑ

^{1. &}quot;Absolute Maximum Ratings" are those valued beyond which the safety of the device can not be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Pin Connections and Short Descriptions

NC = not connected; leave vacant LV = if not used, leave vacant

X = obligatory; connect as described in circuit diagram

DVSS: if not used, connect to DVSS

AHVSS: connect to AHVSS

Pin No.				Pin Name Type	Туре		Short Description	
PLCC 68-pin	PSDIP 64-pin	PSDIP 52-pin	PQFP 80-pin	PLQFP 64-pin			(if not used)	
1	16	14	9	8	ADR_WS	OUT	LV	ADR word strobe
2	-	-	-	=	NC		LV	Not connected
3	15	13	8	7	ADR_DA	OUT	LV	ADR data output
4	14	12	7	6	I2S_DA_IN1	IN	LV	I ² S1 data input
5	13	11	6	5	I2S_DA_OUT	OUT	LV	I ² S data output
6	12	10	5	4	I2S_WS	IN/OUT	LV	I ² S word strobe
7	11	9	4	3	I2S_CL	IN/OUT	LV	I ² S clock
8	10	8	3	2	I2C_DA	IN/OUT	X	I ² C data
9	9	7	2	1	I2C_CL	IN/OUT	Х	I ² C clock
10	8		1	64	NC	HEPORTER	LV	Not connected
11	7	6	80	63	STANDBYQ	IN	X	Stand-by (low-active)
12	6	5	79	62	ADR_SEL	IN	X	I ² C Bus address select
13	5	4	78	61	D_CTR_I/O_0	IN/OUT	LV	D_CTR_I/O_0
14	4	3	77	60	D_CTR_I/O_1	IN/OUT	LV	D_CTR_I/O_1
15	3	_	76	59	NC	RINE 50	LV	Not connected
16	2	-	75	58	NC	SEING CO	LV	Not connected
17	- 10	_	7/_1	-	NC		LV	Not connected
18	1	2	74	57	AUD_CL_OUT	OUT	LV	Audio clock output (18.432 MHz)
19	64	1	73	56	TP	IVERING	LV	Test pin
20	63	52	72	55	XTAL_OUT	OUT	X	Crystal oscillator
21	62	51	71	54	XTAL_IN	IN	X	Crystal oscillator
22	61	50	70	53	TESTEN	IN	X	Test pin
23	60	49	69	52	ANA_IN2+	IN	AVSS via 56 pF / LV	IF input 2 (can be left vacant, only if IF input 1 is also not in use)
24	59	48	68	51	ANA_IN-	IN	AVSS via 56 pF / LV	IF common (can be left vacant, only if IF input 1 is also not in use)

PLCC	PSDIP	Pin No.	PQFP	PLQFP	Pin Name	Туре	Connection (if not used)	Short Description
68-pin 25	64-pin 58	52-pin 47	80-pin 67	64-pin 50	ANA_IN1+	IN	LV	IF input 1
26	57	46	66	49	AVSUP	- G	X	Analog power supply 5 \
_	0)	_	65	_	AVSUP	3	X	Analog power supply 5 V
_	6/1	_	64	-	NC		LV	Not connected
_	100	_	63	-	NC	17	LV	Not connected
27	56	45	62	48	AVSS	1	X	Analog ground
_		-	61	-	AVSS	1.66.7	X	Analog ground
28	55	44	60	47	MONO_IN	IN	LV	Mono input
_	-	-	59	-	NC	5 W	LV	Not connected
29	54	43	58	46	VREFTOP		×	Reference voltage IF A/D converter
30	53	42	57	45	SC1_IN_R	IN	LV	SCART 1 input, right
31	52	41	56	44	SC1_IN_L	IN	LV	SCART 1 input, left
32	51	-	55	43	ASG		AHVSS	Analog Shield Ground
33	50	40	54	42	SC2_IN_R	IN	LV	SCART 2 input, right
34	49	39	53	41	SC2_IN_L	IN	LV	SCART 2 input, left
35	48	- (697)	52	40	ASG	75	AHVSS	Analog Shield Ground
36	47	38	51	39	SC3_IN_R	IN	LV	SCART 3 input, right
37	46	37	50	38	SC3_IN_L	IN	LV	SCART 3 input, left
38	45	-/-/	49	37	ASG	(8)-	AHVSS	Analog Shield Ground
39	44	-	48	36	SC4_IN_R	IN	LV	SCART 4 input, right
40	43	-\	47	35	SC4_IN_L	IN	LV	SCART 4 input, left
41	-	- 1	46	4.34	NC	V	LV or AHVSS	Not connected
42	42	36	45	34	AGNDC	\	X	Analog reference voltage
43	41	35	44	33	AHVSS		X	Analog ground
-	-	2	43	1	AHVSS		X	Analog ground
_	-		42	-	NC		LV	Not connected
-	-	-	41	-	NC		LV	Not connected
44	40	34	40	32	CAPL_M		X	Volume capacitor MAIN
45	39	33	39	31	AHVSUP		X	Analog power supply 8 \
46	38	32	38	30	CAPL_A		X	Volume capacitor AUX
47	37	31	37	29	SC1_OUT_L	OUT	LV	SCART output 1, left

		Pin No.	•		Pin Name	Туре	Connection	Short Description
PLCC 68-pin	PSDIP 64-pin	PSDIP 52-pin	PQFP 80-pin	PLQFP 64-pin			(if not used)	
48	36	30	36	28	SC1_OUT_R	OUT	LV	SCART output 1, right
49	35	29	35	27	VREF1		Х	Reference ground 1
50	34	28	34	26	SC2_OUT_L	OUT	LV	SCART output 2, left
51	33	27	33	25	SC2_OUT_R	OUT	LV	SCART output 2, right
52	-	-	32	_	NC		LV	Not connected
53	32		31	24	NC ·		LV	Not connected
54	31	26	30	23	DACM_SUB	ОИТ	LV	Subwoofer output
55	30	-	29	22	NC		LV	Not connected
56	29	25	28	21	DACM_L	OUT	LV	Loudspeaker out, left
57	28	24	27	20	DACM_R	оит	LV	Loudspeaker out, right
58	27	23	26	19	VREF2		х	Reference ground 2
59	26	22	25	18	DACA_L	OUT	LV	Headphone out, left
60	25	21	24	17	DACA_R	OUT	LV	Headphone out, right
_	-		23	-	NC		LV	Not connected
_	_	_	22	_	NC	-	LV	Not connected
61	24	20	21	16	RESETQ	IN	х	Power-on-reset
62	23	-	20	15	NC		LV	Not connected
63	22	-	19	14	NC		LV	Not connected
64	21	19	18	13	NC		LV	Not connected
65	20	18	17	12	I2S_DA_IN2	IN	LV	I ² S2-data input
66	19	17	16	11	DVSS		Х	Digital ground
_	-	_	15	-	DVSS		х	Digital ground
-	-	-	14	_	DV\$S		X	Digital ground
67	18	16	13	10	DVSUP		x	Digital power supply 5 V
		_	12	-	DVSUP		X	Digital power supply 5 V
_			11	-	DVSUP		Х	Digital power supply 5 V
68	17	15	10	9	ADR_CL	OUT	LV	ADR clock

4.3. Pin Descriptions

Pin numbers refer to the PQFP80 package.

Pin 1, NC - Pin not connected.

Pin 2, **I2C_CL** – I²C Clock Input/Output (Fig. 4–18) Via this pin, the I²C-bus clock signal has to be supplied. The signal can be pulled down by the MSP in case of wait conditions.

Pin 3, $I2C_DA - I^2C$ Data Input/Output (Fig. 4–18) Via this pin, the I^2C -bus data is written to or read from the MSP.

Pin 4, $I2S_CL - I^2S$ Clock Input/Output (Fig. 4–19) Clock line for the I^2S bus. In master mode, this line is driven by the MSP; in slave mode, an external I^2S clock has to be supplied.

Pin 5, **I2S_WS** – I²S Word Strobe Input/Output (Fig. 4–19)

Word strobe line for the I²S bus. In master mode, this line is driven by the MSP; in slave mode, an external I²S word strobe has to be supplied.

Pin 6, I2S_DA_OUT – I²S Data Output (Fig. 4–23) Output of digital serial sound data of the MSP on the I²S bus.

Pin 7, I2S_DA_IN1 – I²S Data Input 1 (Fig. 4–15) First input of digital serial sound data to the MSP via the I²S bus.

Pin 8, ADR_DA – ADR Bus Data Output (Fig. 4–23) Output of digital serial data to the DRP 3510A via the ADR bus.

Pin 9, **ADR_WS** – ADR Bus Word Strobe Output (Fig. 4–23)

Word strobe output for the ADR bus.

Pin 10, ADR_CL – ADR Bus Clock Output (Fig. 4–23) Clock line for the ADR bus.

Pins 11, 12, 13, **DVSUP*** – Digital Supply Voltage Power supply for the digital circuitry of the MSP. Must be connected to a +5 V power supply.

Pins 14, 15, 16, **DVSS*** – Digital Ground Ground connection for the digital circuitry of the MSP.

Pin 17, I2S_DA_IN2 – I²S Data Input 2 (Fig. 4–15) Second input of digital serial sound data to the MSP via the I²S bus.

Pins 18, 19, 20, NC - Pins not connected.

Pin 21, **RESETQ** – Reset Input (Fig. 4–11) In the steady state, high level is required. A low level resets the MSP 34x0G.

Pins 22, 23, NC - Pins not connected.

Pins 24, 25, **DACA_R/L** – Headphone Outputs (Fig. 4–21)

Output of the headphone signal. A 1-nF capacitor to AHVSS must be connected to these pins. The DC off set on these pins depends on the selected headphone volume.

Pin 26, VREF2 - Reference Ground 2

Reference analog ground. This pin must be connected separately to ground (AHVSS). VREF2 serves as a clean ground and should be used as the reference for analog connections to the loudspeaker and head phone outputs.

Pins 27, 28, **DACM_R/L** – Loudspeaker Outputs (Fig. 4–21)

Output of the loudspeaker signal. A 1-nF capacitor to AHVSS must be connected to these pins. The DC off set on these pins depends on the selected loud speaker volume.

Pin 29, NC - Pin not connected.

Pin 30, **DACM_SUB** – Subwoofer Output (Fig. 4–21) Output of the subwoofer signal. A 1-nF capacitor to AHVSS must be connected to this pin. Due to the low frequency content of the subwoofer output, the value of the capacitor may be increased for better suppression of high-frequency noise. The DC offset on this pidepends on the selected loudspeaker volume.

Pins 31, 32, NC - Pin not connected.

Pins 33, 34, **SC2_OUT_R/L** – SCART2 Outputs (Fig. 4–22)

Output of the SCART2 signal. Connections to thes pins must use a $100-\Omega$ series resistor and are intende to be AC-coupled.

Pin 35, **VREF1** – Reference Ground 1 Reference analog ground. This pin must be connecte separately to ground (AHVSS). VREF1 serves as clean ground and should be used as the reference for analog connections to the SCART outputs.

Pins 36, 37, **SC1_OUT_R/L** – SCART1 Outputs (Fig. 4–22)

Output of the SCART1 signal. Connections to these pins must use a $100-\Omega$ series resistor and are intende to be AC-coupled.

Pin 38, **CAPL_A** – Volume Capacitor Headphone (Fig. 4–24)

A 10- μ F capacitor to AHVSUP must be connected to this pin. It serves as a smoothing filter for headphone volume changes in order to suppress audible plops. The value of the capacitor can be lowered to 1- μ F if faster response is required. The area encircled by the trace lines should be minimized; keep traces as short as possible. This input is sensitive for magnetic induction.

Pin 39, AHVSUP* – Analog Power Supply High Voltage

Power is supplied via this pin for the analog circuitry of the MSP (except IF input). This pin must be connected to the +8 V supply.

Pin 40, CAPL_M - Volume Capacitor Loudspeaker (Fig. 4--24)

A 10- μ F capacitor to AHVSUP must be connected to this pin. It serves as a smoothing filter for loudspeaker volume changes in order to suppress audible plops. The value of the capacitor can be lowered to 1 μ F if faster response is required. The area encircled by the trace lines should be minimized; keep traces as short as possible. This input is sensitive for magnetic induction.

Pins 41, 42, NC - Pins not connected.

Pins 43, 44, **AHVSS*** + Ground for Analog Power Supply High Voltage

Ground connection for the analog circuitry of the MSP (except IF input).

Pin 45, **AGNDC** – Internal Analog Reference Voltage This pin serves as the internal ground connection for the analog circuitry (except IF input). It must be connected to the VREF pins with a 3.3-μF and a 100-nF capacitor in parallel. This pins shows a DC level of typically 3.73 V.

Pin 46, NC - Pin not connected.

Pins 47, 48, **SC4_IN_L/R** – SCART4 Inputs (Fig. 4–14)

The analog input signal for SCART4 is fed to this pin. Analog input connection must be AC-coupled.

Pin 49, **ASG** – Analog Shield Ground Analog ground (AHVSS) should be connected to this pin to reduce cross-coupling between SCART inputs.

Pins 50, 51, **SC3_IN_L/R** – SCART3 Inputs (Fig. 4–14)

The analog input signal for SCART3 is fed to this pin. Analog input connection must be AC-coupled.

Pin 52, **ASG** – Analog Shield Ground Analog ground (AHVSS) should be connected to this pin to reduce cross-coupling between SCART inputs. Pins 53, 54, **SC2_IN_L/R** – SCART2 Inputs (Fig. 4–14)

The analog input signal for SCART2 is fed to this pin. Analog input connection must be AC-coupled.

Pin 55, ASG - Analog Shield Ground

Analog ground (AHVSS) should be connected to this pin to reduce cross-coupling between SCART inputs.

Pins 56, 57, **SC1_IN_L/R** – SCART1 Inputs (Fig. 4–14)

The analog input signal for SCART1 is fed to this pin. Analog input connection must be AC-coupled.

Pin 58, **VREFTOP** – Reference Voltage IF A/D Converter (Fig. 4–16)

Via this pin, the reference voltage for the IF A/D converter is decoupled. It must be connected to AVSS pins with a 10-µF and a 100-nF capacitor in parallel. Traces must be kept short.

Pin 59. NC - Pin not connected.

Pin 60, **MONO_IN** – Mono Input (Fig. 4–14) The analog mono input signal is fed to this pin. Analog input connection must be AC-coupled.

Pins 61, 62, **AVSS*** – Ground for Analog Power Supply Voltage

Ground connection for the analog IF input circuitry of the MSP.

Pins 63, 64, NC - Pins not connected.

Pins 65, 66, **AVSUP*** – Analog Power Supply Voltage Power is supplied via this pin for the analog IF input circuitry of the MSP. This pin must be connected to the +5 V supply.

Pin 67, ANA_IN1+ - IF Input 1 (Fig. 4-16)

The analog sound IF signal is supplied to this pin. Inputs must be AC-coupled. This pin is designed as symmetrical input: ANA_IN1+ is internally connected to one input of a symmetrical op amp, ANA_IN- to the other

Pin 68, **ANA_IN**- – **IF** Common (Fig. 4–16) This pins serves as a common reference for ANA_IN1/2+ inputs.

Pin 69, **ANA**_**:IN2**+ - **IF** Input 2 (Fig. 4–16)

The analog sound if signal is supplied to this pin. Inputs must be AC-coupled. This pin is designed as symmetrical input: ANA_IN2+ is internally connected to one input of a symmetrical op amp, ANA_IN- to the other.

Pin 70, **TESTEN** – Test Enable Pin (Fig. 4–12) This pin enables factory test modes. For normal operation, it must be connected to ground. Pins 71, 72, **XTAL_IN**, **XTAL_OUT** — Crystal Input and Output Pins (Fig. 4–20)

These pins are connected to an 18.432 MHz crystal oscillator which is digitally tuned by integrated shunt capacitances. An external clock can be fed into XTAL_IN. The audio clock output signal AUD_CL_OUT is derived from the oscillator. External capacitors at each crystal pin to ground (AVSS) are required. It should be verified by layout, that no supply current for the digital circuitry is flowing through the ground connection point.

Pin 73, **TP** – This pin enables factory test modes. For normal operation, it must be left vacant.

Pin 74, **AUD_CL_OUT** – Audio Clock Output (Fig. 4–20)
This is the 18.432 MHz main clock output.

,

Pins 75, 76, NC - Pins not connected.

Pins 77, 78, **D_CTR_I/O_1/0** – Digital Control Input/ Output Pins (Fig. 4–19) General purpose input/output pins. Pin D_CTR_I/O_1

General purpose input/output pins. Pin D_CTR_I/O_1 can be used as an interrupt request pin to the controller.

Pin 79, **ADR_SEL** – I²C Bus Address Select (Fig. 4–17)

By means of this pin, one of three device addresses for the MSP can be selected. The pin can be connected to ground (12 C device addresses 80/81_{hex}), to +5 V supply ($^{84/85}$ _{hex}), or left open ($^{88/89}$ _{hex}).

Pin 80, STANDBYQ - Stand-by

In normal operation, this pin must be high. If the MSP 34x0G is switched off by first pulling STANDBYQ low and then (after >1µs delay) switching off DVSUP and AVSUP, but keeping AHVSUP ('Standby'-mode), the SCART switches maintain their position and function.

* Application Note:

All ground pins should be connected to one low-resistive ground plane. All supply pins should be connected separately with short and low-resistive lines to the power supply. Decoupling capacitors from DVSUP to DVSS, AVSUP to AVSS, and AHVSUP to AHVSS are recommended as closely as possible to these pins. Decoupling of DVSUP and DVSS is most important. We recommend using more than one capacitor. By choosing different values, the frequency range of active decoupling can be extended. In our application boards we use: 220 pF, 470 pF, 1.5 nF, and 10 μF . The capacitor with the lowest value should be placed nearest to the DVSUP and DVSS pins.

The ASG pins should be connected as closely as possible to the MSP ground. If they are lead with the SCART-inputs as shielding lines, they should not be connected to ground at the SCART connector.

Fig. 4-10: PLQFP64 package

Product Features:

- High-performance, low-cost solution to switch between video sources
- Wide bandwidth: 200 MHz
- Low ON-resistance: 3Ω
- Low crosstalk at 10 MHz: -58 dB
- Ultra-low quiescent power (0.1 μA typical)
- Single supply operation: +5.0V
- · Fast switching: 10 ns
- High-current output: 100 mA
- Packages available:
 - 16-pin 300-mil wide plastic SOIC (S)
 - 16-pin 150-mil wide plastic SOIC (W)
 - 16-pin 150-mil wide plastic QSOP (Q)

Functional Block Diagram

Truth Table

EN	IN	ON Switch
0	0	Sla, Slb, Slc, Sld
0	ì	S2A, S2B, S2c, S2D
1	X	Disabled

Low ON-Resistance Wideband/Video Quad 2-Channel MUX/DEMUX

Product Description:

Pericom Semiconductor's PI5V series of mixed signal video circuits are produced in the Company's advanced CMOS low-power technology, achieving industry leading performance.

The PI5V330 is a true bidirectional Quad 2-channel multiplexer/demultiplexer that is recommended for both RGB and composite video switching applications. The VideoSwitchTM can be driven from a current output RAMDAC or voltage output composite video source.

Low ON-resistance and wide bandwidth make it ideal for video and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today. A single 5V supply is all that is required for operation.

The PI5V330 offers a high-performance, low-cost solution to switch between video sources. The application section describes the PI5V330 replacing the HC4053 multiplier and buffer/amplifier.

16-Pin Product Configuration

Product Pin Description

Pin Name	Description
SIA, S2A	Analog Video I/O
S1B, S2B	
S1c, S2c	·
\$16, \$26	
IN	Select Input
ĒN	Enable
Da, Db,	Analog Video I/O
Dc, Do	
GND	Ground
Vcc	Power

Pinning information

Pinning

Fig 2. Pin configuration.

Pin description

Table	3:	Pin o	descr	iption

Table 3:	Pin description	
Symbol	Pin	Description ,
OUT1+	1	non inverted loudspeaker output of channel 1
GND1	2	ground of channels 1 and 2
V _{CC1}	3	supply voltage channels 1 and 2
OUT2-	4	inverted loudspeaker output of channel 2
MODE2	5	mode selection 2 input: mute and on for channels 3 and 4
IN2+	6	input channel 2
SGND	7	signal ground .
IN1+	8	input channel 1
IN3+	9	input channel 3
MODE1	10	mode selection 1 input: standby, mute and on for all channels
SVR	11	half supply voltage decoupling (ripple rejection)
IN4+	12.	input channel 4

11/200		
Symbol	Pin	Description
CIV	13	common input voltage decoupling
OUT3-	14	inverted loudspeaker output of channel 3
GND2	15	ground of channels 3 and 4
V _{CC2}	16	supply voltage channels 3 and 4
OUT4+	17	non inverted loudspeaker output of channel 4
TAB	-	back side tab or heats spreader has to be connected to ground

Input configuration

The input cut-off frequency is:

$$f_{i(cut-off)} = \frac{I}{2\pi(R_i \times C_i)}$$

For SE application $R_i = 60 \text{ k}\Omega$ and $C_i = 220 \text{ nF}$:

$$f_{i(cut-off)} = \frac{1}{2\pi(60 \times 10^3 \times 220 \times 10^{-9})} = 12 \text{ Hz}$$

For BTL application $R_i = 30 \text{ k}\Omega$ and $C_i = 470 \text{ nF}$:

$$f_{l(cut-off)} = \frac{1}{2\pi(30 \times 10^{3} \times 470 \times 10^{-9})} = 11 \text{ Hz}$$

As shown in Equation 2 and Equation 3, large capacitor values for the inputs are not necessary, so the switch-on delay during charging of the input capacitors can be minimized. This results in a good low frequency response and good switch-on behavior.

Power amplifier

The power amplifier is a BTL and/or SE amplifier with an all-NPN output stage, capable of delivering a peak output current of 4 A.

Using the TDA8947J as a BTL amplifier offers the following advantages:

- · Low peak value of the supply current
- · Ripple frequency on the supply voltage is twice the signal frequency
- No expensive DC-blocking capacitor
- · Good low frequency performance.

. Specifications

Outline Dimensions

Fig. 4-1: 80-Pin Plastic Quad Flat Package (PQFP80)
Weight approximately 1.61 g
Dimensions in mm

4.2. Pin Connections and Short Descriptions

NC = not connected LV = if not used, leave vacant X = obligatory; connect as described in circuit diagram SUPPLYA=4.75...5.25V, SUPPLYD=3.15...3.45V

Pin No. PQFP 80-pln	Pin Name	Туре	Connection (if not used)	Short Description
1	B1/CB1IN	IN	VREF	Blue1/Cb1 Analog Component Input
2	G1/Y1IN	IN	VREF	Green1/Y1 Analog Component Input
3	R1/CR1IN	IN	VREF	Red1/Cr1 Analog Component Input
4	B2/CB2IN	IN	VREF	Blue2/Cb2 Analog Component Input
5	G2/Y2IN	IN	VREF	Green2/Y2 Analog Component Input
6	R2/CR2IN	IN	VREF	Red2/Cr2 Analog Component Input
7	ASGF		X	Analog Shield GND _F
9	V _{SUPCAP}	SUPPLYD	X	Supply Voltage, Digital Decoupling Circuitry
10	V _{SUPD}	SUPPLYD	х	Supply Voltage, Digital Circuitry
11	GND _D	SUPPLYD	х	Ground, Digital Circuitry
12	GND _{CAP}	SUPPLYD	х	Ground, Digital Decoupling Circuitry
13	SCL	IN/OUT	х	I ² C Bus Clock
14	SDA	IN/OUT	Х	I ² C Bus Data

Pin No. PQFP 80-pin	Pin Name	Туре	Connection (if not used)	Short Description
15	RESQ	IN	Х	Reset Input, Active Low
16	TEST	IN	GND _D	Test Pin, connect to GND _D
17	VGAV	IN	GND _D	VGAV Input
18	YCOEQ	IN	V _{SUPD}	Y/C Output Enable Input, Active Low
19	FFIE	OUT	LV	FIFO Input Enable
20	FFWE	OUT	LV	FIFO Write Enable
21	FFRSTW	OUT	LV	FIFO Reset Write/Read
22	FFRE	ОИТ	LV	FIFO Read Enable
23	FFOE	OUT	LV	FIFO Output Enable
24	CLK20	IN/OUT	LV	Main Clock Output 20.25 MHz
25	GND _{PA}	SUPPLYD	х	Ground, Pad Decoupting Circuitry
26	V _{SUPPA}	SUPPLYD	х	Supply Voltage, Pad Decoupling Circuitry
27	LLC2	OUT	LV	Double Clock Output
28	LLC1	IN/OUT	LV	Clock Output
29	V _{SUPLLC}	SUPPLYD	х	Supply Voltage, LLC Circuitry
30	GND _{LLC}	SUPPLYD	Х	Ground, LLC Circuitry .
31	Y7	OUT	GND _Y	Picture Bus Luma (MSB)
32	Y6	OUT	GND _Y	Picture Bus Luma
33	Y5	ОПТ	GND _Y	Picture Bus Luma
34	Y4	OUT	GND _Y	Picture Bus Luma
35	GND _Y	SUPPLYD	х	Ground, Luma Output Circuitry
36	V _{SUPY}	SUPPLYD	х	Supply Voltage, Luma Output Circuitry
37	Y3	OUT	GND _Y	Picture Bus Luma
38	Y2	OUT	GND _Y	Picture Bus Luma
39	Y1	ОИТ	GND _Y	Picture Bus Luma
40	Y0	OUT	GND _Y	Picture Bus Luma (LSB)
41	C7	OUT	GND _C	Picture Bus Chroma (MSB)
42	C6	ОЏТ	GND _C	Picture Bus Chroma
43	C5	OUT	GND _C	Picture Bus Chroma
44	C4	ОИТ	GND _C	Picture Bus Chroma
45	V _{SUPC}	SUPPLYD	х	Supply Voltage, Chroma Output Circuitry

Pin No. PQFP 80-pin	Pin Name	Туре	Connection (if not used)	Short Description
46	GND _C	SUPPLYD	×	Ground, Chroma Output Circuitry
47	С3	OUT	GND _C	Picture Bus Chroma .
48	C2	OUT	GNDC	Picture Bus Chroma
49	C1	OUT	GND _C	Picture Bus Chroma
50	CO	OUT	GND _C	Picture Bus Chroma (LSB)
51	GND _{SY}	SUPPLYD	×	Ground, Sync Pad Circuitry
52	V _{SUPSY}	SUPPLYD	×	Supply Voltage, Sync Pad Circuitry
53	INTLC	OUT	LV	Interlace Output
54	AVO	OUT	LV	Active Video Output
55	FSY/HC	OUT	LV	Front Sync/ Horizontal Clamp Pulse
56	MSY/HS	IN/OUT	LV	Main Sync/Horizontal Sync Pulse
57	vs	OUT	LV	Vertical Sync Pulse
58	FPDAT	IN/OUT	LV	Front-End/Back-End Data
59	V _{STBY}	SUPPLYA	×	Standby Supply Voltage
60	CLK5	OUT	LV	CCU 5 MHz Clock Output
62	XTAL1	IN	×	Analog Crystal Input
63	XTAL2	OUT	×	Analog Crystal Output
64	ASGF		×	Analog Shield GND _F
65	GND _F	SUPPLYA	×	Ground, Analog Front-End
66	VRT	OUTPUT	×	Reference Voltage Top, Analog
67	I2CSEL	IN AND	×	I ² C Bus Address Select
68	ISGND	SUPPLYA .	x	Signal Ground for Analog Input, connect to GND _F
69	V _{SUPF}	SUPPLYA	×	Supply Voltage, Analog Front-End
70	VOUT	OUT	LV	Analog Video Output
71	CIN	IN	LV*	Chroma / Analog Video 5 Input
72	VIN1	IN	VRT*	Video 1 Analog Input
73	VIN2	IN	VRT	Video 2 Analog Input
74	VIN3	IN	VRT	Video 3 Analog Input
75	VIN4	IN	VRT	Video 4 Analog Input
76	V _{SUPAI}	SUPPLYA	×	Supply Voltage, Analog Component Inputs Front-End

Pin No. PQFP 80-pin	Pin Name	Туре	Connection (if not used)	Short Description
77	GND _{Al}	SUPPLYA	Х	Ground, Anatog Component Inputs Front-End
78	VREF	OUTPUT	x	Reference Voltage Top, Analog Component Inputs Front-End
79	FB1IN	IN	VREF	Fast Blank Input
80	AISGND	SUPPLYA	x	Signal Ground for Analog Component Inputs, connect to GND _{Al}
8, 61	NC		LV OR GND _D	Not connected

^{*)} chroma selector must be set to 1 (CIN chroma select)

4.3. Pin Descriptions (pin numbers for PQFP80 package)

Pins 1-3 - Analog Component Inputs RGB1/YC_rC_b1 (Fig. 4-11)

These are analog component inputs with fast blank control. A RGB or YC_rC_b signal is converted using the component AD converter. The input signals must be AC-coupled.

Pins 4-6 – Analog Component Inputs RGB2/YC_rC_b2 (Fig. 4--11)

These are analog component inputs without fastblank control. A RGB or YC_rC_b signal is converted using the component AD converter. The input signals must be AC-coupled.

Pin 7, 64 - Ground, Analog Shield Front-End GND_F

Pin 9 – Supply Voltage, Decoupling Circuitry V_{SUPCAP} This pin is connected with 220 nF/1.5 nF/390 pF to GND_{CAP}

Pin 10 - Supply Voltage, Digital Circuitry V_{SUPD}

Pin 11 – Ground, Digital Circuitry GND_D

Pin 12 – Ground, Decoupling Circuitry GND_{CAP}

Pin 13- I²C Bus Clock SCL (Fig. 4-3) This pin connects to the I²C bus clock line.

Pin 14-- I²C Bus Data SDA (Fig. 4–12)
This pin connects to the I²C bus data line.

Pin 15 – Reset Input RESQ (Fig. 4–3) A low level on this pin resets the VPC 32xx.

Pin 16 – Test Input TEST (Fig. 4–3) This pin enables factory test modes. For normal operation, it must be connected to ground. Pin 17 - VGAV-Input (Fig. 4-3)

This pin is connected to the vertical sync signal of a VGA signal.

Pin 18 – YC Output Enable Input YCOEQ (Fig. 4–3) A low level on this pin enables the luma and chroma outputs.

Pin 19 – FIFO Input Enable FFIE (Fig. 4–4)
This pin is connected to the IE pin of the external field memory.

Pin 20 – FIFO Write Enable FFWE (Fig. 4–4)
This pin is connected to the WE pin of the external field memory.

Pin 21 -- FIFO Reset Write/Read FFRSTW (Fig. 4-4) 'This pin is connected to the RSTW pin of the external field memory.

Pin 22 – FIFO Read Enable FFRE (Fig. 4–4)
This pin is connected to the RE pin of the external field memory.

Pin 23 – FIFO Output Enable FFOE (Fig. 4–4)
This pin is connected to the OE pin of the external field memory.

Pin 24 – Main Clock Output CLK20 (Fig. 4-4) This is the 20.25 MHz main clock output.

Pin 25 - Ground, Analog Pad Circuitry GND_{PA}

Pin 26 – Supply Voltage, Analog Pad Circuitry V_{SUPPA} This pin is connected with 47 nF/1.5 nF to GND_{PA}

Pin 27 - Double Output Clock, LLC2 (Fig. 4-4)

Pin 28 – Output Clock, LLC1 (Fig. 4–4)
This is the clock reference for the luma, chroma, and status outputs.

Pin 29 – Supply Voltage, LLC Circuitry V_{SUPLLC} This pin is connected with 68 nF to GND_{LLC}

Pin 30 – Ground, LLC Circuitry GND_{LLC}

Pins 31 to 34,37 to 40 – Luma Outputs Y7 – Y0 (Fig. 4–4)

These output pins carry the digital luminance data. The outputs are clocked with the LLC1 clock. In ITUR656 mode the Y/C data is multiplexed and clocked with LLC2 clock.

Pin 35– Ground, Luma Output Circuitry GND_Y This pin is connected with 68 nF to GND_Y

Pin 36 – Supply Voltage, Luma Output Circuitry V_{SUPY}

Pins 41 to 44,47 to 50 – Chroma Outputs C7–C0 (Fig. 4–4) These outputs carry the digital CrCb chrominance data. The outputs are clocked with the LL1 clock. The CrCb data is sampled at half the clock rate and multiplexed. The CrCb multiplex is reset for each TV line. In ITUR656 mode, the chroma outputs are tri-stated.

Pin 45 – Supply Voltage, Chroma Output Circuitry V_{SUPC}

This pin is connected with 68 nF to GND_C

Pin 46 - Ground, Chroma Output Circuitry GND_C

Pin 51 – Ground, Sync Pad Circuitry GND_{SY}.

Pin 52 – Supply Voltage, Sync Pad Circuitry V_{SUPSY} This pin is connected with 47 nF/1.5 nF to GND_{SY}

Pin 53 Interlace Output, INTLC (Fig. 4–4) This pin supplies the interlace information, 0 indicates first field, 1 indicates second field.

Pin 54 - Active Video Output, AVO (Fig. 4–4) This pin indicates the active video output data. The signal is clocked with the LLC1 clock.

Pin 55 – Front Sync/Horizontal Clamp Pulse, FSY/HC (Fig. 4-4)

This signal can be used to clamp an external video signal, that is synchronous to the input signal. The timing is programmable. In DIGIT3000 mode, this pin supplies the front sync information.

Pin 56 – Main Sync/Horizontal Sync Pulse MSY/HS (Fig. 4–4)

This pin supplies the horizontal sync pulse information in line-locked mode. In DIGIT3000 mode, this pin is the main sync input.

Pin 57 – Vertical Sync Pulse, VS (Fig. 4–4) This pin supplies the vertical sync signal.

Pin 58 – Front-End/Back-End Data FPDAT (Fig. 4–5) This pin interfaces to the DDP 3300A back-end pro-

cessor. The information for the deflection drives and for the white drive control, i. e. the beam current limiter, is transmitted by this pin.

Pin 59 – Standby Supply Voltage V_{STDBY} In standby mode, only the clock oscillator is active, GND_F should be ground reference. Please activate RESQ before powering-up other supplies

Pin 60 – CCU 5 MHz Clock Output CLK5 (Fig. 4–10) This pin provides a clock frequency for the TV microcontroller, e.g. a CCU 3000 controller. It is also used by the DDP 3300A display controller as a standby clock.

Pins 62and 63 – XTAL1 Crystal Input and XTAL2 Crystal Output (Fig. 4–7)

These pins are connected to an 20.25 MHz crystal oscillator which is digitally tuned by integrated shunt capacitances. The CLK20 and CLK5 clock signals are derived from this oscillator. An external clock can be fed into XTAL1. In this case, clock frequency adjustment must be switched off.

Pin 65 – Ground, Analog Front-End GND_F

Pin 66 – Reference Voltage Top VRT (Fig. 4–8) Via this pin, the reference voltage for the A/D converters is decoupled. The pin is connected with 10 μ F/47 nF to the Signal Ground Pin.

Pin 67 I²C Bus address select I2CSEL This pin determines the I²C bus address of the IC.

Table 4-1: VPC32xxD I²C address select

12CSEL	I ² C Add.
GND _F	88/89 hex
VRT	8C/8D hex
V _{SUPF}	8E/8F hex

Pin 68 – Signal GND for Analog Input ISGND (Fig. 4–10) This is the high quality ground reference for the video input signals.

Pin 69 – Supply Voltage, Analog Front-End V_{SUPF} (Fig. 4–8)

This pin is connected with 220 nF/1.5 nF/390 pF to $\mbox{GND}_{\mbox{\scriptsize F}}$

Pin 70 – Analog Video Output, VOUT (Fig. 4–6) The analog video signal that is selected for the main (luma, CVBS) ADC is output at this pin. An emitter follower is required at this pin.

Pin 71 – Chroma Input CIN (Fig. 4–9)

This pin is connected to the S-VHS chroma signal. A resistive divider is used to bias the input signal to the

middle of the converter input range. CIN can only be connected to the chroma (Video 2) A/D converter. The signal must be AC-coupled.

Pins 72-75 – Video Input 1–4 (Fig. 4–11)
These are the analog video inputs. A CVBS or S-VHS luma signal is converted using the luma (Video 1) AD converter. The VIN1 input can also be switched to the chroma (Video 2) ADC. The input signal must be AC-coupled.

Pin 76 – Supply Voltage, Analog Component Inputs Front-End V_{SUPAl} This pin is connected with 220 nF/1.5 nF/390 pF to GND_{Al}

Pin 77 – Ground, Analog Component Inputs Front-End $\mathsf{GND}_{\mathsf{Al}}$

Pin 78 – Reference Voltage Top VREF (Fig. 4–8) Via this pin, the reference voltage for the analog component A/D converters is decoupled. The pin is connected with 10 μ F/47 nF to the Analog Component Signal Ground Pin.

Pin 79 – Fast Blank Input FB1IN (Fig. 4–10) This pin is connected to the analog fast blank signal. It controls the insertion of the RGB1/YC $_r$ C $_b$ 1 signals. The input signal must be DC-coupled.

Pin 80 – Signal GND for Analog Component Inputs AISGND (Fig. 4–10)
This is the high quality ground reference for the component input signals.

Pin Configuration

Fig. 4-2: 80-pin PQFP package

TFT LCD Approval Specification

MODEL NO.: V270W1 - L03

Customer:
Approved by:
Note:

LCE	TV Head Division
Director	和推定

QRA Dept.	TD Division	DDII	DDI
Approval	Approval	Approval	Approval
速动一	李冠泽	餘木慶	林女鞭

LCD TV Marketin	g and Pr	oject	Manag	ement	De	ot.
Project Manager	专用	京	和	了東	1	近

Approval

CHIMEI OPTOELECTRONICS CORP.

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 6
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 BLOCK DIAGRAM OF INTERFACE 5.4 LVDS INTERFACE 5.5 COLOR DATA INPUT ASSIGNMENT	 11
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 17
8. PACKAGING 8.1 PACKING SPECIFICATIONS 8.1 PACKING METHOD	 21
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL	 23
10. PRECAUTIONS 10.1 ASSEMBLY AND HANDLING PRECAUTIONS 10.2 SAFETY PRECAUTIONS	 24
11. MECHANICAL CHARACTERISTICS	 25

Approval

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	August 1,03	All	All	Preliminary Specification is first issued.
Ver 2.0	Sep. 18,03	17	7.2	Contrast ratio:Typ. (600)→600
				Response time T _R :Typ. (15)→15
				T _{F:} Typ. (10)→10
				Gray to Gray: Typ (16.6)→16.6
				Center Luminance of White: Min. (450)→450
				Typ. (550)→550
				Average Luminance of White: Min. (400)→400
				Typ. (450)→450
				Color Chromaticity Min. Typ. Max. Min. Typ. Max.
				Red Rx $(0.616)(0.646)(0.676) \rightarrow 0.616 0.646 0.676$
				$Ry (0.302)(0.332)(0.362) \rightarrow 0.302 0.332 0.362$
				Green $Gx(0.239)(0.269)(0.299) \rightarrow 0.239 0.269 0.299$
				$Gy(0.570)(0.600)(0.630) \rightarrow 0.570 0.600 0.630$
				Blue Bx(0.112)(0.142)(0.172) \rightarrow 0.112 0.142 0.172
				By(0.042)(0.072)(0.102) \rightarrow 0.042 0.072 0.102
				Viewing Angle Horizontal θ _x + Typ. (85)→85
				θ_{x} - Typ. (85) \rightarrow 85
				Vertical θ _Y + Typ. (85)→85 θ _Y - Typ. (85)→85
		5	2.1	Shock (Non-Operating) Max. Value (100)→100
		3	2.1	Vibration (Non-Operating) Max. Value (1.0)→1.0
				Vibration (Non Operating) Max. Value (1.0) 7 1.0

Approval

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V270W1- L03 is a 27" TFT Liquid Crystal Display module with 14-CCFL Backlight unit and 1ch-LVDS interface. This module supports 1280 x 720 WXGA format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is build-in.

1.2 FEATURES

- -Ultra wide viewing angle Super MVA technology
- -High brightness (550 nits)
- High contrast ratio (600:1)
- Fast response time
- High color saturation NTSC 75%
- WXGA (1280 x 720 pixels) resolution, true HDTV format.
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface

1.3 APPLICATION

- TFT LCD TVs

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	597.12(H) x 335.88 (V) (26.97" diagonal)	mm	(1)
Bezel Opening Area	603.22 (H) x 341.98 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 720	pixel	-
Pixel Pitch (Sub Pixel)	0.1555 (H) x 0.4665 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
	Anti-glare with anti-reflective coating		
Surface Treatment	Hard coating (2H), Haze: 40%	-	-
	Reflection Rate: < 2%		

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note	
Horizontal(H)				637.55		mm	Module Size
Module Size	Modulo Sizo Vertical(V)			379.8		mm	Depth(D)
	Depth(D)	W/O INV	-		36	mm	Deptii(D)
Deptii(D)		W/I INV	40	40.5	41	mm	
,	Weight			4300		g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

Model No.: V270W - L03

Approval

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	100	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The temperature of panel display area surface should be 0 °C Min. and 60 °C Max.
- Note (3) 2 ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.
- Note (4) 10 ~ 500 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Model No.: V270W - L03

Approval

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)
Logic Input Voltage	V_{IN}	-0.3	4.3	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbo	Test	Min.	Туре	Max.	Unit	Note
Lamp Voltage	V_L	_	0	_	3.0K	V_{RMS}	(1) , (2) , $I_L = 4.7 \text{ mA}$
On/Off Control Voltage	V_{BLON}						
Internal/External PWM Select Voltage	V _{SEL}		-0.3	_	7	V	
Internal PWM Control Voltage	V _{IPWM}	_					
External PWM Control Voltage	V_{EPWM}	_					
Operating Temperature	T _{OP}	5∼95% RH	0	_	75	$^{\circ}\!\mathbb{C}$	(2)
Storage Temperature	T _{ST}	5∼95% RH	-30		80	$^{\circ}$	(3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Note (3) Protect inverters from moisture condensation and freezing.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol		Value		Unit	Note
		Symbol	Min.	Тур.	Max.	Offic	NOLE
Power Supply Voltage		Vcc	4.5	5.0	5.5	V	-
Ripple Voltage		V_{RP}	ı	-	200	mV	-
Rush Current		I _{RUSH}	ı	2.1	3	Α	(2)
	White		ı	1.4	-	Α	(3)a
Power Supply Current	Black	Icc	-	1	-	Α	(3)b
	Vertical Stripe		-	1.2	-	Α	(3)c
LVDS differential input h	igh threshold	V_{TH}	-	-	+100	mV	
voltage							
LVDS differential input lo	ow threshold	V_{TL}	-100	_	_	mV	
voltage		- 1					
LVDS common input voltage		Vic	1.125	1.25	1.375	V	
Terminating Resistor		RT	-	100	-	ohm	

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Note (3) The specified power supply current is under the conditions at Vcc = 5 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, $f_v = 60 \,\text{Hz}$, whereas a power dissipation check pattern below is displayed.

Active Area

b. Black Pattern

Active Area

c. Vertical Stripe Pattern

Active Area

3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note		
	Syllibol	Min. Typ. Max.			Offic	Note	
Lamp Input Voltage	V_L	1008	1120	1232	V_{RMS}	$I_{L} = 4.7 \text{ mA}$	
Lamp Current	ΙL	4.4	4.7	5.0	mA_{RMS}	(1)	
Lamp Turn On Voltage	Vs	1200	-	3000	V_{RMS}	(2), Ta = 25 °C	
Lamp rum On voitage	V _S	1790	-	3000	V_{RMS}	(2), Ta = 0 °C	
Operating Frequency	F_L	54	56	58	KHz	(3)	
Lamp Life Time	L_BL	50K	-	-	Hrs	(5)	
Power Consumption	P_L	-	92	-	W	(4), Inverter Input	

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup.

Model No.: V270W - L03

Approval

Otherwise the lamp may not be turned on.

- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = (\sum_{l} lamp1-lamp14 | l_L \times V_L)/0.8$, P_L is based on the inverter efficiency, which is 80%.
- Note (5) The lifetime of a lamp is defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = $(4.35) \sim (4.95)$ mArms until one of the following events occurs:
 - (a) When the brightness becomes equal or less than 50% of its original value.
 - (b) When the effective discharge length becomes equal or less than 80% of its original value. (Effective discharge length is defined as an area that has equal or more than 70% brightness compared to the brightness at the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Lamp connector

HV: BHR-03-VS-1(JST) *7

LV: ZHR-2 (JST) *1

Approval

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description
1	NC	No Connection
2	NC	No Connection
3	NC	No Connection
4	NC	No Connection
5	NC	No Connection
6	NC	No Connection
7	NC	No Connection
8	GND	Ground
9	RX3+	Positive LVDS differential data input. Channel 3
10	RX3-	Negative LVDS differential data input. Channel 3
11	RXCLK+	Positive LVDS differential clock input.
12	RXCLK-	Negative LVDS differential clock input.
13	GND	Ground
14	GND	Ground
15	RX2+	Positive LVDS differential data input. Channel 2
16	RX2-	Negative LVDS differential data input. Channel 2
17	RX1+	Positive LVDS differential data input. Channel 1
18	RX1-	Negative LVDS differential data input. Channel 1
19	RX0+	Positive LVDS differential data input. Channel 0
20	RX0-	Negative LVDS differential data input. Channel 0
21	GND	Ground
22	GND	Ground
23	GND	Ground
24	GND	Ground
125	GND	Ground
26	VCC	+5.0V power supply
27	VCC	+5.0V power supply
28	VCC	+5.0V power supply
29	VCC	+5.0V power supply
30	VCC	+5.0V power supply

Note (1) Connector Part No.: FI-SE30P-HF (JAE)

Note (2) The first pixel is even.

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) Connector Part No.: BHR-03VS-1 (JST) or equivalent

Note (2) User's connector Part No.: SM02(8.0)B-BHS-1TB (JST) or equivalent

Pin	Symbol	Description	Color
1	LV	Low Voltage	Gray
2	NC	No Connection	

Note (1) Connector Part No.: ZHR-2 (JST) or equivalent

Note (2) User's connector Part No.: S2B-ZR-SM3A-TF (JST) or equivalent

Approval

5.3 BLOCK DIAGRAM OF INTERFACE

R0~R7 : Pixel R Data
G0~G7 : Pixel G Data
B0~B7 : Pixel B Data

DE : Display timing signal

Notes: 1) The system must have the transmitter to drive the module.

2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Approval

5.4 LVDS INTERFACE

	SIGNAL		SMITTER BLVDM83A	INTERFACE CO	ONNECTOR	-	RECEIVER FHC63LVDF84A	TFT CONTROL
	0.0	PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	INPUT
	R0	51	TxIN0			27	Rx OUT0	R0
	R1	52	TxIN1			29	Rx OUT1	R1
	R2	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2
	R3	55	TxIN3			32	Rx OUT3	R3
	R4	56	TxIN4			33	Rx OUT4	R4
	R5	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5
	G0	4	TxIN7			37	Rx OUT7	G0
	G1	6	TxIN8			38	Rx OUT8	G1
	G2	7	TxIN9			39	Rx OUT9	G2
	G3	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3
	G4	12	TxIN13			45	Rx OUT13	G4
	G5	14	TxIN14			46	Rx OUT14	G5
	В0	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	В0
	B1	19	TxIN18			51	Rx OUT18	B1
	B2	20	TxIN19			53	Rx OUT19	B2
	В3	22	TxIN20			54	Rx OUT20	В3
24bit		23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4
	B5	24	TxIN22			1	Rx OUT22	B5
	DE	30	TxIN26			6	Rx OUT26	DE
	R6	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6
	R7	2	TxIN5			34	Rx OUT5	R7
	G6	8	TxIN10			41	Rx OUT10	G6
	G7	10	TxIN11			42	Rx OUT11	G7
	B6	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	B6
	B7	18	TxIN17			50	Rx OUT17	B7
	RSVD 1	25	TxIN23			2	Rx OUT23	Not connect
	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	Not connect
	RSVD 3	28	TxIN25			5	Rx OUT25	Not connect
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLK IN+ RxCLK IN-	26	RxCLK OUT	DCLK

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE : Display timing signal

Notes: 1)RSVD(reserved)pins on the transmitter shall be "H" or "L".

Model No.: V270W - L03

Approval

5.5 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

												Da		Sigr											
	Color				Re									reer							Bl				
	Disale	R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	B3		B1	-
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Green Blue	0	0	0	0	0	0	0	0	1	1	1	1 0	1	1	1	1 0	0	0	0	0	0	0	0	0
Colors		0	0	0	0	0	0	0	0	1	0	0 1	1	0 1	1	0 1	1	1	1	1	1	1	1	1	
Colors	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	Ó	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0
Gray	:	·			:	:	:	:			:	•		:	·	•	:	:	:	:	:	·	:		
Scale		:					:	:	:		:	:	:	:		:	:	:	:	:	:	:			:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	1	0	0	0	0	0	Ö	0	0	0
Gray															Ĭ	Ċ						Ĭ			.
Scale		:					:		:		:	:	:			:		:	:	:	:	:			
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diac	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Approval

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Clock	Frequency	1/Tc	70	74.25	80	MHZ	-
	Frame Rate	Fr	48	60	-	Hz	Tv=Tvd+Tvb
Vertical Active Display Term	Total	Tv	730	750	850	Th	-
Vertical Active Display Terri	Display	Tvd	720	720	720	Th	-
	Blank	Tvb	10	30	130	Th	-
Horizontal Active Display Term	Total	Th	1450	1650	2000	Tc	Th=Thd+Thb
	Display	Thd	1280	1280	1280	Tc	-
	Blank	Thb	170	370	720	Tc	-

Note: Because of this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Approval

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power of and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Model No.: V270W - L03

Approval

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	5.0	V
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"
Inverter Current	L	4.7	mA
Inverter Driving Frequency	F_L	56	KHz
Inverter			

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (7).

Contrast Ratio CR 400 600 - T _R - 15 25 n	Unit - ms ms	Note Note(2) Note(3)
T _R - 15 25 n Response Time - 10 20 n	ms	
Response Time - 10 20 n		Note(3)
Response time	ms	Note(3)
Gray to		
	ms	Note(4)
gray		NOIE(4)
Center Luminance of White L _C 450 550 - cd	d/m ²	Note(5)
Average Luminance of White L _{AVE} 400 450 - cd	d/m²	
White Variation δW $\theta_x = 0^\circ, \theta_Y = 0^\circ$ - 1.6	-	Note(8)
Cross Talk CT Viewing Normal Angle 4.0	%	Note(6)
Rx 0.616 0.646 0.676	-	
Red Ry 0.302 0.332 0.362	-	
Gran Gx 0.239 0.269 0.299	-	
Color Green Gy 0.570 0.600 0.630	-	
Chromaticity Bx 0.112 0.142 0.172	-	
Blue By 0.042 0.072 0.102	-	
Wx 0.255 0.285 0.315	-	0 2001/
White Wy 0.263 0.293 0.323	-	9, 300K
Herizontal θ_{x} + 85 -		
Viewing A - 85 -		No gray
Angle A.+ CR≥10 85 - D	Deg.	scale
Vertical θ_{Y^-} 85 -		inversion

Approval

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Eldim EZ-Contrast 160R

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (8).

Note (3) Definition of Response Time (T_R, T_F):

18 / 26

Note (4) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0,63,127,191,255.

Note (5) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L(5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L (x) is corresponding to the luminance of the point X at the figure in Note (8).

Note (6) Definition of Cross Talk (CT):

$$CT = |Y_B - Y_A| / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

19 / 26

Model No.: V<u>270W - L03</u>

Approval

Note (7) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.

Note (8) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Model No.: V270W - L03

Approval

8. PACKAGING

8.1 PACKING SPECIFICATIONS

- (1) 4 LCD TV Modules / Carton
- (2) Carton Dimensions: 742(L) X 327 (W) X 510 (H)
- (3) Weight: Approximately 19Kg (4 Modules Per Carton)

8.2 PACKING METHOD

Figures 8-1 and 8-2 are the packing method

Figure.8-1 packing method

Corner Protector:L1020*50mm*50mm

Pallet:L1100*W1100*H135mm

Bottom Cap:L1100*W1100*H120mm Pallet Stack:L1100*W1100*H1163mm

Gross Weight: 180kg

Figure. 8-2 packing method

Approval

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V270W1-L03
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I ,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Approval

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

11. MECHANICAL CHARACTERISTICS

Exploded View Diagram

