The Hong Kong University of Science & Technology $MATH3423 - Statistical\ Inference$ $Midterm\ Examination\ -\ Fall\ 2013/2014$

Date: 17 October 2013

Answer \underline{ALL} Questions

Full marks: $30 + 3$ marks for Bonus	Time Allowed: 75 minutes					
• DO NOT open the exam paper until instructed to do so.						
• It is a closed-book examination.						
• Only the calculator approved by H.K.E.A. is allowed in the exa	mination.					
• Three questions are included in the paper.						
• Last page of each question is blank. You may write down your answer for this question if the provided spaces are not enough.						
Name :						
Student Number :						
Signature :						

1. (8 marks, 1 mark each) Let $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Define

$$\bar{X}_k = \frac{1}{k} \sum_{i=1}^k X_i$$

$$\bar{X}_{n-k} = \frac{1}{n-k} \sum_{i=k+1}^n X_i$$

and

$$S_k^2 = \frac{1}{k-1} \sum_{i=1}^k (X_i - \bar{X}_k)^2,$$

$$S_{n-k}^2 = \frac{1}{n-k-1} \sum_{i=k+1}^n (X_i - \bar{X}_{n-k})^2,$$

Answer the following:

(a) What is the distribution of $((k-1)S_k^2 + (n-k-1)S_{n-k}^2)/\sigma^2$?

(b) What is the distribution of S_k^2/S_{n-k}^2 ?

(c) What is the distribution of $(\bar{X}_k + \bar{X}_{n-k})/2$?

(d) What is the distribution of $(\bar{X}_n - \mu)/(S_n/\sqrt{n})$?

If $\mu = 0$ $\sigma = 1$,

(e) What is the distribution of $k\bar{X}_k^2 + (n-k)\bar{X}_{n-k}^2$?

(f) What is the distribution of X_1^2/X_2^2 ?

(g) What is the distribution of X_1/X_2 ?

(h) What is the distribution of $(X_1 + X_2)^2/(X_1 - X_2)^2$?

This page is blank.

2.	(14 marks + 3 marks for Bomus)	Let $U_1,, U_n$	be	${\it a\ random}$	sample	${\rm from}$	the	$U(0,\theta),$
	where θ is the unknown parameter.							

(a) (2 marks) Find the moment estimator of θ . Is it unbiased? Hence or otherwise, find an unbiased estimator for θ .

(b) (3 marks) Find the maximum likelihood estimator of θ . Is it unbiased? Hence or otherwise, find an unbiased estimator for θ .

(c)	(4 marks) estimator fo				sed estimat	fors from	(a) and (1	b). Which	unbiased
(d)	(2 marks) as follow:	Suppose a	a random	sample	with samp	le size of	six is dra	wn. The	values are

0.3, 1.2, 1.8, 2.4, 4.1, 5.5

Calculate estimates from methods of moment and maximum likelihood. Hence or other-

wise, state one problem of moment estimator other than efficiency

(e)	(2 marks) Given that $\theta > 1$, find the maximum likelihood estimator of θ .
(c)	(4 1) D: 1/1 MID (03
(1)	(1 mark) Find the MLE for θ^3 .
(g)	(Bonus: 3 marks) Calculate the variance of MLE for θ^3 . Hence or otherwise, find its Mean Squared Error (MSE).

This page is blank.

- 3. (8 marks) Let $U_1, ..., U_n$ be a random sample from the U(0,1).
 - (a) (2 marks) Let $X = -\log(U)$. Find the distribution of X.

(b) (6 marks) Let $Y = \frac{1}{\prod_{i=1}^{n} U_{i}^{\frac{1}{n}}}$, where $U_{1},...,U_{n}$ be a random sample from the U(0,1) and n is very large. Using Central Limit Theorem and Delta method to find the approximate distribution of Y.

This page is blank.

****** END ******