EEE304 – Digital Design with HDL (II) Lecture 2

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Assessing and Understanding Performance

2

Defining Performance

Which airplane has the best performance?

Boeing 747

100000 200000 300000 400000

☐ Passengers x mph

Response Time and Throughput

- Response time
 - How long it takes to do a task
- Throughput
 - Total work done per unit time
- Will need different performance metrics as well as a different set of applications to benchmark embedded and desktop computers, which are more focused on response time, versus servers, which are more focused on throughput
- We'll focus on response time for now...

3

4

Relative Performance

- Define Performance = 1/Execution Time
- "X is *n* time faster than Y"

Performanc e_x /Performanc e_y = Execution time $_x$ /Execution time $_x$ = n

- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A
 = 15s / 10s = 1.5
 - So A is 1.5 times faster than B

5

CPU Clocking

 Operation of digital hardware governed by a constantrate clock

- Clock period: duration of a clock cycle
 - $e.g., 250ps = 0.25ns = 250 \times 10^{-12} s$
- Clock rate (frequency): cycles per second
 - $e.g., 4.0GHz = 4000MHz = 4.0 \times 10^9 Hz$

Measuring Execution Time

Elapsed time

- Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
- Determines system performance

CPU time

- Time spent processing a given job
 - Does not include time waiting for I/O or running other programs
- Comprises user CPU time and system CPU time
- Different programs are affected differently by CPU and system performance

6

CPU Time

CPU Time = CPU Clock Cycles \times Clock Cycle Time $= \frac{\text{CPU Clock Cycles}}{\text{Clock Rate}}$

- · Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- · Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 imes clock cycles
- · How fast must Computer B clock be?

$$\begin{aligned} & \text{Clock Rate}_{\text{B}} = \frac{\text{Clock Cycles}_{\text{B}}}{\text{CPU Time}_{\text{B}}} = \frac{1.2 \times \text{Clock Cycles}_{\text{A}}}{6\text{s}} \\ & \text{Clock Cycles}_{\text{A}} = \text{CPU Time}_{\text{A}} \times \text{Clock Rate}_{\text{A}} \\ & = 10\text{s} \times 2\text{GHz} = 20 \times 10^9 \\ & \text{Clock Rate}_{\text{B}} = \frac{1.2 \times 20 \times 10^9}{6\text{s}} = \frac{24 \times 10^9}{6\text{s}} = 4\text{GHz} \end{aligned}$$

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

$$\begin{aligned} &\mathsf{CPUTime}_{A} = \mathsf{Instruction}\,\mathsf{Count} \times \mathsf{CPI}_{A} \times \mathsf{Cycle}\,\mathsf{Time}_{A} \\ &= \mathsf{I} \times 2.0 \times 250 \mathsf{ps} = \mathsf{I} \times 500 \mathsf{ps} & \qquad \mathsf{A}\,\mathsf{is}\,\mathsf{faster}... \end{aligned}$$

$$&\mathsf{CPUTime}_{B} = \mathsf{Instruction}\,\mathsf{Count} \times \mathsf{CPI}_{B} \times \mathsf{Cycle}\,\mathsf{Time}_{B} \\ &= \mathsf{I} \times 1.2 \times 500 \mathsf{ps} = \mathsf{I} \times 600 \mathsf{ps} \\ &\frac{\mathsf{CPUTime}_{B}}{\mathsf{CPUTime}_{A}} = \frac{\mathsf{I} \times 600 \mathsf{ps}}{\mathsf{I} \times 500 \mathsf{ps}} = 1.2 & \qquad \mathsf{...}\,\mathsf{by}\,\mathsf{this}\,\mathsf{much} \end{aligned}$$

Instruction Count and CPI

Clock Cycles = Instruction Count \times Cycles per Instruction

CPU Time = Instruction Count \times CPI \times Clock Cycle Time

= $\frac{Instruction Count \times CPI}{Clock Rate}$

- · Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction (CPI)
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

10

CPI in More Detail

If different instruction classes take different numbers of cycles

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

Weighted average CPI

$$CPI = \frac{Clock \ Cycles}{Instruction \ Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction \ Count_i}{Instruction \ Count} \right)$$

Relative frequency

CPI Example

 Alternative compiled code sequences using instructions in classes A, B, C

Class	Α	В	С
CPI for class	1	2	3
IC in sequence 1	2	1	2
IC in sequence 2	4	1	1

- Sequence 1: IC = 5
 - Clock Cycles = $2 \times 1 + 1 \times 2 + 2 \times 3$ = 10
 - Avg. CPI = 10/5 = 2.0
- Sequence 2: IC = 6
 - Clock Cycles = $4 \times 1 + 1 \times 2 + 1 \times 3$
 - = 9
 - Avg. CPI = 9/6 = 1.5

13

Performance Summary

$$CPUTime = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Seconds}{Clock\ cycle}$$

- · Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, $T_{\rm c}$

Pitfall: Amdahl's Law

 Improving an aspect of a computer and expecting a proportional improvement in overall performance

$$\mathsf{T}_{\mathsf{improved}} = \frac{\mathsf{T}_{\mathsf{affected}}}{\mathsf{improvement}\,\mathsf{factor}} + \mathsf{T}_{\mathsf{unaffected}}$$

- Example: multiply accounts for 80s/100s
 - How much improvement in multiply performance to get $5\times$ overall?

$$20 = \frac{80}{n} + 20$$
 — Can't be done!

· Corollary: make the common case fast

Pitfall: MIPS as a Performance Metric

- MIPS: Millions of Instructions Per Second
 - Doesn't account for
 - Differences in ISAs between computers
 - · Differences in complexity between instructions

$$\begin{split} \text{MIPS} = & \frac{\text{Instruction count}}{\text{Execution time} \times 10^6} \\ = & \frac{\text{Instruction count}}{\frac{\text{Instruction count} \times \text{CPI}}{\text{Clock rate}}} \times 10^6 \\ & \frac{\text{Clock rate}}{\text{Clock rate}} \end{split}$$

- CPI varies between programs on a given CPU

14