

Applied Natural Language Processing

Info 256

Lecture 17: Interpretability (Oct. 21, 2021)

David Bamman, UC Berkeley

Prediction

= kaggle

Interpretability

- Lots of scenarios where you need to understand the decisions your model is making:
 - Is your classifier using the right information to make decisions? How robust and transferable is it to new data that does not look exactly like the training data?
 - Is your classifier using information not aligned with your ethical values?
 - You want to use your model to interrogate the differences between categories

Insight

What makes a haiku?

Whitecaps on the bay: A broken signboard banging In the April wind.

— Richard Wright

Insight

What makes a haiku?

Three spirits came to me
And drew me apart
To where the olive boughs
Lay stripped upon the ground;
Pale carnage beneath bright mist.

— Fzra Pound

Logistic regression

$$P(y = 1 \mid x, \beta) = \frac{1}{1 + \exp\left(-\sum_{i=1}^{F} x_i \beta_i\right)}$$

 Global explanations describe the behavior of an entire model.

```
-2.850
        UNIGRAM scientist
-2.798
        UNIGRAM earth
-2.127
        UNIGRAM alien
-1.919
        UNIGRAM mysterious
-1.897
        UNIGRAM dr.
-1.849
        UNIGRAM planet
-1.715
        UNIGRAM brain
-1.626
        UNIGRAM world
-1.570
        UNIGRAM robot
-1.565
        UNIGRAM space
2.808
        UNIGRAM love
1.826
        UNIGRAM wedding
1.783
        UNIGRAM relationship
1.620
        UNIGRAM her
1.589
        UNIGRAM money
1.486
        UNIGRAM she
1.457
        UNIGRAM men
1.437
        UNIGRAM_marriage
1.437
        UNIGRAM college
1.416
        UNIGRAM marry
```

Local explanation

- Local explanations explain the classification decision for a single data point.
- What's the minimal set of features for a given data point that, if removed, would lead us to predict the opposite class?
 [Martens and Provost 2014]

"Dr. Strangelove, is a 1964 black comedy film that satirizes the Cold War fears of a nuclear conflict between the Soviet Union and the United States." → SCIENCE FICTION

```
UNIGRAM scientist
-2.850
-2.798
        UNIGRAM earth
-2.127
        UNIGRAM alien
-1.919
        UNIGRAM mysterious
-1.897
        UNIGRAM dr.
-1.849
       UNIGRAM_planet
-1.715
       UNIGRAM brain
-1.626
        UNIGRAM world
-1.570
        UNIGRAM robot
-1.565
        UNIGRAM space
2.808
        UNIGRAM love
1.826
        UNIGRAM wedding
1.783
        UNIGRAM_relationship
1.620
        UNIGRAM her
1.589
        UNIGRAM money
1.486
        UNIGRAM she
1.457
        UNIGRAM men
1.437
        UNIGRAM_marriage
1.437
        UNIGRAM college
1.416
        UNIGRAM marry
```

Logistic regression

Interpretability

 Intrinsic methods use information about the model to provide an interpretation (e.g., attention weights); post-hoc methods tend to be model-agnostic.

Intrinsic methods

 When used for explanation, attention is an intrinsic method — a component of the model itself is used to provide the explanation (here, the distribution of attention weights over the input).

Attention

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

original
$$\alpha$$
 $f(x|\alpha,\theta)=0.01$

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

adversarial
$$\tilde{\alpha}$$
 $f(x|\tilde{\alpha},\theta)=0.01$

[Submitted on 26 Feb 2019 (v1), last revised 8 May 2019 (this version, v3)]

Attention is not Explanation

Sarthak Jain, Byron C. Wallace

Base model	brilliant	and	moving	performances	by	tom	and	peter	finch
Jain and Wallace (2019)	brilliant	and	moving	performances	by	tom	and	peter	finch
Our adversary	brilliant	and	moving	performances	by	tom	and	peter	finch

Figure 2: Attention maps for an IMDb instance (all predicted as positive with score > 0.998), showing that in practice it is difficult to learn a distant adversary which is consistent on all instances in the training set.

[Submitted on 13 Aug 2019 (v1), last revised 5 Sep 2019 (this version, v2)]

Attention is not not Explanation

Sarah Wiegreffe, Yuval Pinter

Interpretability

- Plausibility: an explanation should be understandable by people and convincing to them.
- Fidelity (faithfulness): an explanation should reflect the underlying decision process a model made in making its prediction.

Post-hoc Interpretability

- Input features
- Adversarial examples
- Natural language explanations

Input Features

How important is a given token in the input for the prediction that's made?

Gradient

x = inputs

$$\frac{d}{dx}f(x)_{c}$$

the output of the full model for class c

• The gradient in general measures how much the output of a function changes with respect to a change in the input → how important that input is for the final decision for a particular class.

Gradient

Logistic regression

$$P(Y = y \mid X = x; \beta) = \frac{\exp\left(x^{\mathsf{T}}\beta_{y}\right)}{\sum_{y' \in \mathscr{Y}} \exp\left(x^{\mathsf{T}}\beta_{y'}\right)}$$

$$y = x^{T} \beta$$

$$\frac{\partial}{\partial x_i} x^{\mathsf{T}} \beta = \beta_i$$

This is the method of interpretability we've been using all along for linear models

Logistic regression

$$P(y = 1 \mid x, \beta) = \frac{1}{1 + \exp\left(-\sum_{i=1}^{F} x_i \beta_i\right)}$$

```
UNIGRAM_scientist
-2.850
-2.798
       UNIGRAM earth
-2.127
       UNIGRAM alien
-1.919
        UNIGRAM mysterious
-1.897
        UNIGRAM dr.
-1.849
       UNIGRAM planet
-1.715
       UNIGRAM brain
-1.626
        UNIGRAM world
-1.570
        UNIGRAM robot
-1.565
        UNIGRAM space
2.808
        UNIGRAM love
1.826
        UNIGRAM_wedding
1.783
        UNIGRAM_relationship
1.620
        UNIGRAM her
1.589
        UNIGRAM money
1.486
        UNIGRAM she
1.457
        UNIGRAM men
1.437
        UNIGRAM_marriage
1.437
        UNIGRAM college
1.416
        UNIGRAM marry
```

Integrated gradient

- The gradient method can violate "sensitivity" that if x and x' have different predictions and differ only in feature f, then f should be given high attribution for neural components where gradients are flat (e.g., ReLU).
- The method of integrated gradients addresses this by additional introduction a baseline another data point b that the feature importance of x is calculated with respect to and integrating the gradients for all points along the path between x and b.
- For NLP, the baseline can just be a neutral data point e.g., all [PAD] tokens.

Adversarial examples

 Adversarial examples are data points that a classifier predicts incorrectly and that appear to be similar to data points a classifier predicts correctly.

A dark dystopian noir and Brad Pitt was terrific	\rightarrow	positive
A dark dystopian noir and Brad Pritt was terrific		negative

 These examples help provide interpretability by surfacing the aspects of an input that would cause a prediction to be different if they were changed.

HotFlip

One way of finding such adversarial examples is to find the inputs that
would lead to the greatest change in the resulting loss — e.g., for a training
data point <x, y=1>, a model that may predict 0.99 for original input x (so
small loss); what token t can be we change from v to ~v in x to make it
predict 0 (and so have high loss)?

$$\mathscr{L}\left(y, \tilde{x}_{t:v \to \tilde{v}}\right) - \mathscr{L}(y, x) \approx \frac{\partial \mathscr{L}(y, x)}{\partial x_{t, \tilde{v}}} - \frac{\partial \mathscr{L}(y, x)}{\partial x_{t, v}}$$

The difference in losses between the original input x and an altered one ~x

Is about equal to the difference in loss gradients with respect to each of those different inputs

HotFlip

$$\mathsf{HotFlip}(x) = \arg\max_{\tilde{x}_t: v \to \tilde{v}} \frac{\partial \mathscr{L}(y, x)}{\partial x_{t, \tilde{v}}} - \frac{\partial \mathscr{L}(y, x)}{\partial x_{t, v}}$$

• We can compute these gradients for every token in the input and select the ones that lead to the greatest change.

HotFlip

- Remember adversarial examples still need to be semantically similar to an original example.
- HotFlip contains the token swaps to be only among pairs of words that have a cosine similarity > 0.80.
- Semantically equivalent adversaries (Ribeiro et al. 2018) incorporate a paraphrase model to further satisfy this constraint.

Natural language explanations

A dark dystopian noir and the acting was terrific
→ positive

"People like good acting"

Intrinsic NL explanations

Intrinsic NL explanations

 Train a model to generate explanations for each possible class (in NLI: entail, contradict, neutral) on human-created explanations.

• Classifier inputs the text (hypothesis + premise) and the explanation in order to make a prediction about the class.

CAGE

- Solicit human-created explanations for answers in the Commonsense question answering dataset (CQA).
- Fine-tune GPT-2 on the question, answer, and explanation.
- Explanations do not necessarily need to be faithful to the model decisionmaking process.

Question: While eating a hamburger with friends, what are people trying to do?

Choices: have fun, tasty, or indigestion

CoS-E: Usually a hamburger with friends indicates a

good time.

Question: After getting drunk people couldn't

understand him, it was because of his what?

Choices: lower standards, slurred speech, or falling

down

CoS-E: People who are drunk have difficulty speaking.

Question: People do what during their time off from

work?

Choices: take trips, brow shorter, or become hysterical

CoS-E: People usually do something relaxing, such as

taking trips, when they don't need to work.

Activity

9.neural/Interpretability

• Explore using integrated gradients to uncover what tokens in the input are most important for contributing to the model prediction.