Espaces métriques, notions de topologie

Ivan Lejeune*

8 février 2024

1 Espaces métriques

Definition 1.1. Un espace métrique est un ensemble X munit d'une application

$$d \coloneqq X \times X \to \mathbb{R}$$

tel que pour tout $x, y \in X$ on a

- (i) $d(x,y) \ge 0$;
- (ii) $d(x,y) = 0 \iff x = y \text{ (séparation)};$
- (iii) d(x,y) = d(y,x) (symétrie);
- (iv) $\forall z \in X, d(x,y) + d(y,z) \ge d(x,z)$ (inégalité triangulaire);

On appelle d la **distance** (ou métrique) sur X.

Exemple 1.1. Soit X un ensemble, on considère

$$\delta(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$$

C'est une distance, appelée la distance discrète, qu'on verra en TD.

Definition 1.2. Une **norme** sur E est une application

$$\mathcal{N} \coloneqq E \to \mathbb{R}^+$$

telle que pour tout $x, y \in E, \lambda \in \mathbb{R}$, on a

- (i) $\mathcal{N}(x) = 0 \iff x = 0$;
- (ii) $\mathcal{N}(\lambda x) = |\lambda| \mathcal{N}(x)$;
- (iii) $\mathcal{N}(x+y) \leq \mathcal{N}(x) + \mathcal{N}(y)$;

Pour $E = \mathbb{R}$ -ev, on a (E, \mathcal{N}) espace vectoriel normé.

Exercice 1.1. Montrer que $d(x,y) = \mathcal{N}(y-x)$ est une distance sur E.

Remarque 1.1. Si (E, \mathcal{N}) est un evn, alors (E, \mathcal{N}) est un espace métrique

Exercice 1.2. Montrer que evn \Longrightarrow espace métrique pour

• $(\mathbb{R}^n \text{ euclidiens})$

^{*}Cours inspiré de M. Charlier et M. Akrout

• ({fonctions bornées sur [0,1]})

$$\Rightarrow ||f||_{\infty} = \sup |f|$$

 $\Rightarrow ||f||_{p} = \left(\int_{0}^{1} |f(t)|^{p} dt\right)^{\frac{1}{p}} \text{ pour } f \text{ continue born\'ee}$

Exemple 1.2. Soit (X,d) un espace métrique et $A \subset X$. On a $(A,d|_{A\times A})$ espace métrique.

Exercice 1.3. Le montrer pour $S^2 \subset \mathbb{R}^3$.

Rappel.

$$S^2 = \left\{ x^2 + y^2 + z^2 = 1 \right\}$$

Definition 1.3. Pour $x \in X$ et $\varepsilon \ge 0$:

• La **boule ouverte** de centre x et de rayon ε est

$$B(x,\varepsilon[= \{ y \in X, d(x,y) < \varepsilon \})$$

• La boule fermée de centre x et de rayon ε est

$$B(x,\varepsilon] = \{ y \in X, d(x,y) \le \varepsilon \}$$

Exemple 1.3. Pour $X = \mathbb{R}$ et d(x,y) = |x-y|, on a

$$B(x,\varepsilon[=]x - \varepsilon, x + \varepsilon[$$

$$B(x,\varepsilon] = [x - \varepsilon, x + \varepsilon]$$

Definition 1.4. Soit X un ensemble et U une partie de X. Les assertions suivantes sont équivalentes :

- (i) U est un ouvert de X
- (ii) Pour tout $x \in U$, il existe $\varepsilon > 0$ tel que

$$B(x,\varepsilon) \subset U$$

Exemple 1.4. Une boule ouverte est un ouvert.

Preuve. Laissée en exercice.

Remarque 1.2. Si (X,d) est un espace métrique alors

- 1. \emptyset et X des ouverts;
- 2. toute intersection finie d'ouverts de X est un ouvert de X;
- 3. toute union quelconque d'ouverts de X est un ouvert de X.

Preuve. Il suffit de vérifier les 3 propriétés :

1. On a

$$\forall x \in X, B(x, 1) \subset X$$
 et

 $\forall x \in \emptyset$, la propriété est toujours vrai

Donc (1) est vérifié.

2. Soient U_1, \ldots, U_n ouverts. On pose

$$U = \bigcap_{i=1}^{n} U_i$$

Soit $x \in U$, pour tout $i \in \{1, ..., n\}$ on a $x \in U_i$ ouvert donc il existe $\varepsilon_i > 0$ tel que

$$B(x, \varepsilon_i [\subset U_i)$$

On pose $\varepsilon = \inf(\varepsilon_1, \dots, \varepsilon_n) > 0$.

Pour tout $i \in \{1, ..., n\}$, on a alors

$$B(x,\varepsilon[\subset B(x,\varepsilon_i[\subset U_i$$

Et donc

$$B(x,\varepsilon[\subset U$$

Soit que U est ouvert, et donc (2) est vérifié.

3. Soient U_1, \ldots, U_n ouverts. On pose

$$U = \bigcup_{i=1}^{n} U_i$$

Soit $x \in U$, il existe $i \in \{1, ..., n\}$ tel que pour $x \in U_i$ ouvert, il existe $\varepsilon_i > 0$ tel que

$$B(x,\varepsilon[\subset U_i \subset U$$

Soit que U est ouvert, et donc (3) est vérifié.

Remarque 1.3. On note

$$\mathcal{T}_d = \{U \in \mathscr{P}(X), U \text{ est ouvert pour } d\}$$

2 Espaces topologiques

On considère X un ensemble quelconque.

Definition 2.1. On dit que $\mathcal{T} \subset \mathscr{P}(X)$ est une **topologie** sur X si :

- (i) $\emptyset \in \mathcal{T}$ et $X \in \mathcal{T}$
- (ii) \mathcal{T} est stable par intersection finie
- (iii) \mathcal{T} est stable par union quelconque

Les éléments de \mathcal{T} sont dit **ouverts**.

Exemple 2.1. Si (X,d) est métrique, \mathcal{T}_d est une topologie.

Exemple 2.2. Pour X est un ensemble, les ensembles suivants sont des topologies :

- $\mathcal{T} := \mathscr{P}(X)$ appelée topologie discrète;
- $\mathcal{T} \coloneqq \{\emptyset, X\}$ appelée topologie grossière ;
- \mathcal{T}_d , la topologie associée à la métrique d;
- Si $X = \{a, b\}$ on a aussi la topologie

$$\mathcal{T} = \{\{a,b\},\{a\},\varnothing\}$$

A partir de maintenant, on considère (X,T) un espace topologique avec T l'ensemble des ouverts de X

Definition 2.2. Une partie $F \subset X$ est dite **fermée** si $X \setminus F$ est **ouvert**

Exemple 2.3. Pour (X,d) un espace métrique, on a B(x,r] fermée

Preuve. Laissée en exercice.

Remarque 2.1. On n'a pas F non ouvert $\Longrightarrow F$ fermé.

Exemple 2.4. Pour $I = [0, 1] \subset \mathbb{R}$, on a

- 1. I n'est pas ouvert (problème en 0)
- 2. I n'est pas fermé (problème en 1)

Proposition 2.1. Les assertions suivantes sont vraies.

- 1. \emptyset et X sont fermés
- 2. Une union finie de fermés est fermé
- 3. Une intersection quelconque de fermés est fermé

Rappel.

$$X \smallsetminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} X \smallsetminus A_i$$

$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} X \setminus A_i$$

Remarque 2.2. Une topologie peut-être définie à partir de ses fermés (au lieu de ses ouverts).

2.1 Adhérence, intérieur (version topologique)

Proposition - Définition 2.1. Soit (X, \mathcal{T}) un espace topologique et $A \subset X$.

- 1. Il existe un plus grand ouvert (au sens de l'inclusion) noté $\overset{\circ}{A}$ tel que $\overset{\circ}{A} \subset A$ $\overset{\circ}{A}$ est appelé intérieur de A
- 2. Il existe un plus petit fermé (au sens de l'inclusion) noté \overline{A} tel que $A \subset \overline{A}$ \overline{A} est appelé adhérence de A

Proposition 2.2. On ${\bf a}$

- 1. $x \in \mathring{A} \iff$ il existe $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset A$
- 2. $x \in \overline{A} \iff \text{pour tout } \varepsilon > 0, B(x, \varepsilon[\cap A \neq \emptyset))$

Preuve. Pour le 1., on commence par le sens direct :

 \implies On a $x \in \mathring{A}$ ouvert donc il existe $\varepsilon > 0$ tel que

$$B(x,\varepsilon[\ \subset \mathring{A} \ \underset{\mathrm{def}}{\subset} \ A$$

 \longleftarrow Par hypothèse, on a $B(x, \varepsilon \in A$ un ouvert de A pour $\varepsilon > 0$ donc

$$x \in B(x, \varepsilon) \subset \mathring{A}$$

Pour le 2. cela revient à montrer que

$$x \in \overline{A} \iff \exists \varepsilon > 0 \text{ tq } B(x, \varepsilon[\subset X \setminus A$$

$$x \in X \setminus \overline{A} \iff x \in X \setminus \overline{A}$$

$$x \in X \setminus \overline{A} \Longleftrightarrow x \in X \setminus X$$

Il suffit de montrer que

$$X \setminus \overline{A} = X \setminus A$$

4

Lemme 2.1. Soit (X,T) espace topologique et $A \subset X$. Alors

$$X \setminus \overline{A} = \overbrace{X \setminus A}^{\circ}$$

Preuve. On démontre le lemme pour démontrer la proposition précédente

 $\subset \ \overline{A}$ fermé, $X \smallsetminus \overline{A}$ ouvert, $A \subset \overline{A}$ donc

$$X \setminus A \supset X \setminus \overline{A}$$

D'où

$$X \setminus \overline{A} \subset \overset{\circ}{X \setminus A}$$

 $\supset X \smallsetminus \left(\overbrace{X \smallsetminus A} \right) \text{ ferm\'e donc}$

$$X \setminus \left(\stackrel{\circ}{X \setminus A}\right) \supset X \setminus (X \setminus A) = A$$

donc

$$X \setminus \left(\overrightarrow{X \setminus A}\right) \supset \overline{A} = X \setminus \left(X \setminus \overline{A}\right)$$

donc

$$X \times A \subset X \times \overline{A}$$

Donc 2. est vérifié

Remarque 2.3. Soit X un espace topologique et $A \subset X$. On a

$$\mathring{A} \subset A \subset \overline{A}$$

Exercice 2.1. Montrer que

- 1. A ouvert $\iff A = \mathring{A}$
- 2. A fermé $\iff A = \overline{A}$

3 Applications continues

Definition 3.1. Soient X, Y deux espaces topologiques.

Une application $f: X \to Y$ est **continue** si et seulement si pour tout U ouvert dans Y, $f^{-1}(U)$ est ouvert dans X.

Remarque 3.1. On a $f^{-1}(Y \setminus U) = X - f^{-1}(U)$.

f est continue si et seulement si pour tout fermé $F \subset Y$, on a $f^{-1}(F)$ fermé.

3.1 Voisinages

Definition 3.2. Soit X un espace topologique, $x \in X$. $N \subset X$ est un **voisinage** de x si il existe U ouvert avec $x \in U \subset N$.

Exemple 3.1. Soit (X, d) un espace métrique avec $x \in X$ et $\varepsilon > 0$.

On a $B(x, \varepsilon[$ et $B(x, \varepsilon]$ voisinages de x

Exemple 3.2. X est voisinage de chaque $x \in X$

Definition 3.3. Soient X, Y des espaces topologiques et $f: X \to Y$. Soit $x \in X$. On dit que f est **continue** en x si pour tout voisinage N de f(x), on a $f^{-1}(N)$ voisinage de x.

Remarque 3.2. f est continue en x si et seulement si, pour tout voisinage N de f(x), il existe un voisinage M de x tel que $f(M) \subset N$.

Proposition 3.1. Soit f une application de $X \to Y$. f est continue si et seulement si pour tout $x \in X$, f est continue en x.

Preuve.

 \Longrightarrow Soit $x \in X$ et N un voisinage de f(x). Il existe V ouvert de Y avec $f(x) \in V \subset N$. En conséquence, on a $x \in f^{-1}(V) \subset f^{-1}(N)$.

ouvert

Pour l'autre sens, commençons par démontrer le lemme nécessaire.

Lemme 3.1. Soit X un espace topologique et $U \subset X$. On a U ouvert si et seulement si

$$\forall x \in U, U \in \mathcal{V}(x)$$

avec V(x) l'ensemble des voisinages de x

Preuve.

- \implies Soit $x \in U$, il existe un ouvert U de X tel que $x \in U$ et $U \subset X$
- Soit $x \in U$, il existe un **ouvert** V_x de X tel que $x \in V_x \subset U$. Ainsi

$$U = \bigcup_{x \in U} \underbrace{V_x}_{\text{ouver}}$$

Soit $U \subset Y$ ouvert, il faut montrer que $f^{-1}(U)$ est ouvert.

Si $x \in f^{-1}(U)$, alors $f(x) \in U$ et donc $U \in \mathcal{V}(f(x))$.

donc $f^{-1}(U) \in \mathcal{V}(x)$.

D'où pour tout $x \in f^{-1}(U), f^{-1}(U)$ est voisinage de x.

 \iff D'après le lemme, $f^{-1}(U)$ est ouvert

Cas de $f:(X,d_X) \to (Y,d_Y)$ avec $(X,d_X),(Y,d_Y)$ des espaces métriques.

Proposition 3.2. Soit $f: X \to Y$ continue si et seulement si

$$\forall x \in X, \forall \varepsilon > 0, \exists \lambda > 0 \text{ tq } d_X(x,y) \leq \delta \Longrightarrow d_Y(f(x),f(y)) < \varepsilon$$

Preuve.

Soit $x \in X$, $\varepsilon > 0$. On a $B(f(x), \varepsilon[$ ouvert. Donc f continue, $f^{-1}(B)$ ouvert et $x \in f^{-1}(B)$. Cela revient à dire qu'il existe $\delta > 0$ tel que

$$B(x,\delta[\subset f^{-1}(B(f(x),\varepsilon[)$$

 \Longrightarrow Soit $V \subset Y$ ouvert. Montrons que f^{-1} est ouvert. Soit $x \in f^{-1}(V), f(x) \in V$ ouvert. Alors il existe ε_0 tel que

$$B(f(x), \varepsilon_0 [\subset V$$

Par hypothèse, il existe alors δ tel que

$$x \in B(x, \delta[\subset f^{-1}(B(f(x), \varepsilon_0[) \subset f^{-1}(V)$$

En conclusion, $f^{-1}(V)$ est un voisinage de tous ses points, donc $f^{-1}(V)$ est ouvert.

Definition 3.4. Soient X, Y des espaces topologiques. On dit que $f: X \to Y$ est un homéomorphisme si

- (i) f continue
- (ii) f bijective (et donc f^{-1} existe)
- (iii) f^{-1} continue

Remarque 3.3. On n'a pas $(i) + (ii) \Longrightarrow (iii)$.

Exemple 3.3. On prend $X = [0,1] \cup [2,3]$ et Y = [0,2]. Muni de la distance

$$d(x,y) = |x - y|$$

Definition 3.5. Soit $f:(X,d_X) \to (Y,d_Y)$. On dit que f est une isométrie si f est bijective et

$$d_Y(f(x), f(y)) = d_X(x, y)$$

Remarque 3.4. Une isométrie est un homéomorphisme.

4 Construction d'espaces topologiques

4.1 Sous-espaces

On se place dans le cadre de \mathbb{R} et \mathbb{R}^2 . Même si intuitivement ces deux espaces sont différents, "ensemblistement" ils sont identiques :

Il existe $\varphi:\mathbb{R}\to\mathbb{R}^2$ bijective. Il faut d'abord voir que d'après le corollaire de Cantor Bernstein, on a

$$|X \times Y| = \max(|X|, |Y|)$$

On va travailler sur $]0,1[\simeq \mathbb{R}$ et on considère

$$x = 0, x_1 x_2 \dots x_n \in]0, 1[$$

 $y = 0, y_1 y_2 \dots y_n \in]0, 1[$

On considère alors

$$\varphi:]0,1[^2 \rightarrow]0,1[$$

$$(x,y) \mapsto 0, x_1y_1x_2y_2\dots x_ny_n$$

qui est alors clairement une bijection.

Or, \mathbb{R}^2 n'est pas homéomorphe à \mathbb{R} .

Definition 4.1. Soit X, \mathcal{T} un espace topologique et $A \subset X$. On pose

$$\mathcal{T}_A = \left\{ A \cap \tilde{U} \text{ avec } \tilde{U} \in \mathcal{T} \right\}$$

Proposition - Définition 4.1. \mathcal{T}_A est une topologie sur A appelée **topologie induite** par \mathcal{T} sur A.

Preuve. Laissée en exercice, il faut voir que

$$\bigcap \bigcup = \bigcup \bigcap$$

Exemple 4.1. On considère (X,d) métrique avec \mathcal{T}_d la topologie associée à d. On a alors

$$A \subset X \rightsquigarrow (A, d|_A) \rightsquigarrow \mathcal{T}_{d_A}$$

où \mathcal{T}_{d_A} est la topologie associée à $d|_A$.

Proposition 4.1. La topologie \mathcal{T}_{d_A} associée à d_A est la topologie induite par \mathcal{T}_d sur A.

Exemple 4.2. On considère

$$A = [0,1] \subset (\mathbb{R},|\cdot|)$$

Alors, $\left\lfloor \frac{1}{2},1\right\rfloor$ est ouvert pour la topologie induite dans A. Alors

$$\left[\frac{1}{2}, 1\right] = A \cap \left[\frac{1}{2}, \frac{3}{2}\right] = B_{\mathbb{R}}(1, \frac{1}{2})$$
 ouvert

Dans la suite, tous les ensembles seront des espaces topologiques.

Proposition 4.2. Soit $f: X \to Y$ continue et $A \subset X$. Alors, $f|_A$ continue.

Preuve. On prend V un ouvert dans Y, alors

$$f|_A^{-1}(V) = A \cap \underbrace{f^{-1}(V)}_{\text{ouvert dans } X}$$

Remarque 4.1. Toutes les fonctions continues sur A ne proviennent pas forcément de fonctions continues sur X.

Exemple 4.3. Il suffit de prendre $x \mapsto \frac{1}{x}$ sur \mathbb{R}^* . Cette fonction n'est pas la restriction d'une application continue de $\mathbb{R} \to \mathbb{R}$.

Exercice 4.1. Soit X un espace topologique et $A \subset X$. Alors :

A ouvert dans
$$X \iff \mathcal{T}_A = \{U \subset X \text{ ouverts dans } X, U \subset A\}$$

Exemple 4.4.

$$S^n = \{X \in \mathbb{R}^{n+1}, ||X||_2 = 1\}$$

La sphère S^n correspond à

(ii)

 $\mathbb{N} \subset \mathbb{R}$

qui a une topologie induite = discrète.

(iii)

 $\mathbb{Q} \subset \mathbb{R}$

qui a une topologie induite = le bordel

4.2 Base d'une topologie

Soit (X, \mathcal{T}) un espace topologique.

Definition 4.2. On considère $\mathscr{B} \subset \mathscr{P}(X)$. \mathscr{B} est une base d'ouverts pour \mathcal{T} si tout ouvert de X est réunion d'éléments de \mathscr{B} .

Proposition 4.3. On considère B si et seulement si

U ouvert \iff pour tout $x \in U$, il existe $B_x \in \mathcal{B}$ avec $x \in B_x \subset U$.

Preuve. Laissée en exercice

Exemple 4.5. (i) Pour (X, d) un espace métrique, on a

$$\mathcal{B} = \{B(x, \varepsilon[, x \in X, \varepsilon > 0)\}$$

(ii) Pour (X,d) un espace métrique, on a

$$\mathscr{B} = \left\{ B(x, \frac{1}{n}[, x \in X, n \in \mathbb{N}^*] \right\}$$

(iii) On se place dans $(\mathbb{R}^n, ||\cdot||_2)$. Alors

$$\mathcal{B} = \underbrace{\{B(\alpha, \frac{1}{n}[, \alpha \in \mathbb{Q}^N, n \in \mathbb{N}^*\}\}}_{\text{dénombrable}}$$

- (iv) Pour (X, δ) un espace discret, l'ensemble des singletons est une base.
- (v) $\mathscr{B} = \mathcal{T}$ est une base de \mathcal{T} .

Proposition 4.4. Soit X un ensemble, $\mathscr{B} \subset \mathscr{P}(X)$ telle que

- (i) $\emptyset \in \mathcal{B}$
- (ii) Stable par intersection finie
- (iii) $\bigcup_{A \in \mathscr{B}} A = X$.

alors, il existe une unique topologie \mathcal{T} dont \mathscr{B} est une base.

Preuve. On a

 $\mathcal{T} = \{\text{unions d'éléments de } \mathcal{B}\}$

Soit

$$\mathcal{T} = \left\{ \bigcup_{v \in S} V, S \subset \mathcal{B} \right\}$$

Qui est stable par intersection.