

Outline

- Introduction to collaborative filtering
- Main framework
- Memory-based collaborative filtering approach
- Model-based collaborative filtering approach
 - Aspect model & Two-way clustering model
 - Flexible mixture model
 - Decouple model
- Unified filtering by combining content and collaborative filtering

What is Collaborative Filtering?

Collaborative Filtering (CF):

Making recommendation decisions for a specific user based on the judgments of users with similar tastes

Content-Based Filtering: Recommend by analyzing the content information

Collaborative Filtering: Make recommendation by judgments of similar users

What is Collaborative Filtering?

Collaborative Filtering (CF): Making recommendation decisions for a specific user based on the judgments of users with similar tastes

	Romance		A	ATLANTIS	ET. (1)
Train_User 1	1	5	3	3	4
Train_User 2	4	1	5	3	2
Test User	1	?	3		4

What is Collaborative Filtering?

Collaborative Filtering (CF): Making recommendation decisions for a specific user based on the judgments of users with similar tastes

	Romance	WARE	AU	ATLANTIS	ET (
Train_User 1	1	5	3	3	4
Train_User 2	4	1	5	3	2
Test User	1	5	3		4

Why Collaborative Filtering?

- Advantages of Collaborative Filtering
 - Collaborative Filtering does not need content information as required by CBF
 - The contents of items belong to the third-party (not accessible or available)
 - The contents of items are difficult to index or analyze (e.g., multimedia information)
- Problems of Collaborative Filtering
 - Privacy issues, how to share one's interest without disclosing too much detailed information?

- **Applications Collaborative Filtering**
 - E-Commerce

- Email ranking: borrow email ranking from your office mates (be careful...)
- Web search? (e.g., local search)

Formal Framework for Collaborative Filtering

What we have:

- Assume there are some ratings by training users
- Test user provides some amount of additional training data

What we do:

Predict test user's rating based training information

- Memory-Based Approaches
 - Given a specific user u, find a set of similar users
 - Predict u's rating based on ratings of similar users
- Issues
 - How to determine the similarity between users?
 - How to combine the ratings from similar users to make the predictions (how to weight different users)?

Memory-Based Approaches

- Measure the similarity in rating patterns between different users

Pearson Correlation Coefficient Similarity

$$w_{u,u'} = \frac{\sum (R_{u'}(o) - \bar{R}_{u'})(R_u(o) - \bar{R}_u)}{\sqrt{\sum (R_{u'}(o) - \bar{R}_{u'})^2} \sqrt{\sum (R_u(o) - \bar{R}_u)^2}} \qquad w_{u,u'} = \frac{\sum R_{u'}(o)R_u(o)}{\sqrt{\sum R_{u'}(o)^2} \sqrt{\sum R_u(o)^2}}$$
Average Ratings

Prediction:
$$\hat{R}_{u'}(o) = \bar{R}_{u'} + \frac{\sum_{u} w_{u,u'}(R_u(o) - \bar{R}_u)}{\sum_{u} \left| w_{u,u'} \right|}$$

- How to combine the ratings from similar users for predicting?
 - Weight similar users by their similarity with a specific user; use these weights to combine their ratings.

Memory-Based Approaches

Remove User-specific Rating Bias

					**
	Romane	WAR	Jan J	JUNE 2001	ET (
Train_User 1	1	5	3	3	4
Sub Mean (Train1)	-2.2	1.8	-0.2	-0.2	8.0
Train_User 2	4	1	5	3	2
Sub Mean (Train2)	1	-2	2	0	-1
Test User	1	?	3		4
Sub Mean (Test)	-1.667		0.333		1.33

Normalize Rating

Memory-Based Approaches

					•
	Runance	TAR.		JUNE 2001	ET.
Train_User 1	1	5	3	3	4
Sub Mean (Train1)	-2.2	1.8	-0.2	-0.2	8.0
Train_User 2	4	1	5	3	2
Sub Mean (Train2)	1	-2	2	0	-1
Test User	1	?	3		4
Sub Mean (Test)	-1.667		0.333		1.33

Calculate Similarity: Wtrn1_test=0.92; Wtrn2_test=-0.44;

					•
	Runance	WAR		JUNE 2001	ET.
Train_User 1	1	5	3	3	4
Sub Mean (Train1)	-2.2	1.8	-0.2	-0.2	0.8
Train_User 2	4	1	5	3	2
Sub Mean (Train2)	1	-2	2	0	-1
Test User	1	?	3		4
Sub Mean (Test)	-1.667		0.333		1.33

Make Prediction: 2.67+(1.8*0.92+(-2)*(-0.44))/(0.92+0.44)=4.54

Memory-Based Approaches

	Remane			ATLANTIS	ET. (1) Calculation (1) Calcul
Train_User 1	1	5	3	3	4
Sub Mean (Train1)	-2.2	1.8	-0.2	-0.2	8.0
Train_User 2	4	1	5	3	2
Sub Mean (Train2)	1	-2	2	0	-1
Test User	1	5	3		4
Sub Mean (Test)	-1.667		0.333		1.33

Make Prediction: 2.67+(1.8*0.92+(-2)*(-0.44))/(0.92+0.44)=4.54

- Problems with memory-based approaches
 - Associated a large amount of computation online costs (have to go over all users, any fast indexing approach?)
 - Heuristic method to calculate user similarity and make user rating prediction
- Possible Solution
 - Cluster users/items in offline manner, save for online computation cost
 - Proposal more solid probabilistic modeling method

- Model-Based Approaches:
- Aspect Model (Hofmann et al., 1999)
 - Model individual ratings as convex combination of preference factors

$$P(o_{(l)}, u_{(l)}, r_{(l)}) = \sum_{z \in Z} P(z) P(o_{(l)} \mid z) P(u_{(l)} \mid z) P(r_{(l)} \mid z)$$

Two-Sided Clustering Model (Hofmann et al., 1999)

Assume each user and item belong to one user and item group.

$$P(o_{(l)},u_{(l)},r_{(l)}) = P(o_{(l)})P(u_{(l)})\sum_{v,u}I_{x_{(l)}v}J_{y_{(l)}u}C_{vu} \qquad \begin{array}{c} \mathbf{I_{x(l)v}}\mathbf{J_{y(l)u}}:\mathbf{Indicator} \\ \mathbf{Variables} \ \ \mathbf{C_{vu}}:\mathbf{Associaion} \end{array}$$

Parameter

Collaborative Filtering

- Model-Based Approaches:
- Aspect Model (Hofmann et al., 1999)
 - Model individual ratings as convex combination of preference factors

$$P(o_{(l)}, u_{(l)}, r_{(l)}) = \sum_{z \in Z} P(z) P(o_{(l)} \mid z) P(u_{(l)} \mid z) P(r_{(l)} \mid z)$$

Brief description for the expectation maximization training process...

Thoughts:

- Previous algorithms all cluster users and objects either implicitly (memory-based) or explicitly (model-based)
 - Aspect model allows users and objects to belong to different classes, but cluster them together
 - Two-sided clustering model clusters users and objects separately, but only allows them to belong to one single class

 $(P(Z_y)$

 $(P(r|Z_0,Z_0)$

 $\mathbf{P}(\mathbf{y}|\mathbf{Z}_{\mathbf{u}})$

 $\mathbf{P}(\mathbf{Z}_{\alpha})$

 $P(o|Z_o)$

Flexible Mixture Model (FMM):

Cluster users and objects separately AND allow them to belong to different classes

$$P(o_{(l)}, u_{(l)}, r_{(l)}) = \sum_{Z_o, Z_u} P(Z_o) P(Z_u) P(o_{(l)} \mid Z_o) P(u_{(l)} \mid Z_u) P(r_{(l)} \mid Z_o, Z_u)$$

 Training Procedure: Annealed Expectation Maximization (AEM) algorithm

E-Step: Calculate Posterior Probabilities

$$P(z_{o}, z_{u} \mid o_{(l)}, u_{(l)}, r_{(l)}) = \frac{(P(Z_{o})P(Z_{u})P(o_{(l)} \mid Z_{o})P(u_{(l)} \mid Z_{u})P(r_{(l)} \mid Z_{o}, Z_{u}))^{b}}{\sum_{Z_{o}, Z_{u}} (P(Z_{o})P(Z_{u})P(o_{(l)} \mid Z_{o})P(u_{(l)} \mid Z_{u})P(r_{(l)} \mid Z_{o}, Z_{u}))^{b}}$$

Collaborative Filtering

$$P(Z_o); P(Z_u); P(o_{(l)} | Z_o); P(u_{(l)} | Z_u); P(r_{(l)} | Z_o, Z_u)$$

M-Step: Update Parameters

Prediction Procedure:
 Fold-In process to calculate join probabilities

$$P(o, u^{t}, r_{(l)}) = \sum_{Z_{o}, Z_{u}} P(Z_{o}) P(Z_{u}) P(o \mid Z_{o}) P(u^{t} \mid Z_{u}) P(r \mid Z_{o}, Z_{u})$$

Fold-in process by EM algorithm

Calculate expectation for prediction

$$\hat{R_{u^t}}(o) = \sum_{r} r \frac{P(o, u^t, r)}{\sum_{r} P(o, u^t, r')}$$

"Flexible Mixture Model for Collaborative Filtering", ICML'03

Thoughts:

 Previous algorithms address the problem that users with similar tastes may have different rating patterns implicitly (Normalize user rating)

Decoupled Model (DM)

 $P(Z_u)$

Decoupled Model (DM):

Separate preference value

$$Z_{pref} \in [1,...,k]$$
 (1 disfavor, k favor)

from rating $r \in \{1, 2, 3, 4, 5\}$

Joint Probability:

$$P(o_{(l)}, u_{(l)}, r_{(l)}) = \sum_{Z_o, Z_u, Z_R} P(Z_o) P(Z_u) P(o_{(l)} \mid Z_o) P(u_{(l)} \mid Z_u) P(Z_R \mid u_{(l)}) [\sum_{Z_{pre}} P(Z_{pre} \mid Z_u, Z_o) P(r_{(l)} \mid Z_{pre}, Z_R)] P(r_{(l)} \mid Z_{pre}, Z_R)$$

"Preference-Based Graphical Model for Collaborative Filtering", UAI'03
"A study of Mixture Model for Collaborative Filtering", Journal of IR

Experimental Data

Datasets:

MovieRating and EachMovie

Evaluation:

MAE: average absolute deviation of the predicted ratings to the actual ratings on items.

$$MAE = \frac{1}{L_{Test}} \sum_{l} |r_{(l)} - R_{o_{(l)}}(u_{(l)})|$$

Vary Number of Training Users

Test behaviors of algorithms with different amount of training data

- For MovieRating
 100 and 200 training users
- For EachMovie
 200 and 400 training users

Vary Amount of Given Information from the Test User

Test behaviors of algorithms with different amount of given information from test user

For both testbeds

Vary among given 5, 10, or 20 items

Experimental Results Improved by Combing FMM and DM

Training Users Size	Algorithms	5 Items Given	10 Items Given	20 Items Given
100	FMM	0.829	0.822	0.807
	FMM+DM	0.792	0772	0.741
200	FMM	0.800	0.787	0.768
	FMM+DM	0.770	0.750	0.728

Results on Movie Rating

Training Users Size	Algorithms	5 Items Given	10 Items Given	20 Items Given
200	FMM	1.07	1.04	1.02
	FMM+DM	1.06	1.01	0.99
400	FMM	1.05	1.03	1.01
400	FMM+DM	1.04	1.00	0.97

Results on Each Movie

Combine Collaborative Filtering and Content-Based Filtering

Content-Based Filtering (CBF): Recommend by analyzing the content information

Content information is very useful when few users have rated an object.

A group of aliens visit earth...... Science Fiction? kind of friendship in which E.T learns.......... Yes

Young Harry is in love and wants to marry an actress, much to the displeasure of his family....

No

Unified Filtering (UF): Combining both the content-based information and the collaborative rating information for more accurate recommendation

Content-Based Filtering and Unified Filtering

Content-Based Filtering (CF):

- Generative Methods (e.g. Naïve Bayes)
- Discriminative Methods (e.g. SVM, Logistic Regression)
 - Usually more accurate
 - Can be used to combine features (e.g., actors for movies)

Unified Filtering by combining CF and CBF:

- · Linearly combine the scores from CF and CBF
- Personalized linear combination of the scores
- Bayesian combination with collaborative ensemble learning

Unified Filtering by flexible mixture model and exponential model

Training Procedure:

E-Step: Calculate posterior probabilities

Expectation Step of EM

M-Step: Update parameters

Second, refine the object cluster distribution Iterative Scaling with content information by maximizing Training

"Unified Filtering by Combining Collaborative Filtering and Content-Based Filtering via Mixture Model and Exponential Model", CIKM'04

Experiment Results

Training Users Size	Algorithms	0 Items Given	5 Items Given	10 Items Given	20 Items Given
	CBF	1.43	1.21	1.24	1.19
50	CF	1.21	1.14	1.13	1.12
	UFME	1.19	1.11	1.10	1.09
	CBF	1.43	1.23	1.21	1.19
100	CF	1.17	1.08	1.07	1.05
	UFME	1.17	1.08	1.06	1.05

Experiment Results

 $P_{\theta}(Z_{o} \mid w)$

Table. Five most indicative words (with highest values) for 5 movie clusters, sorted by

Each column corresponds to a different movie cluster. All listed words are stemmed.

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
forev	previou	mad	inhabit	custom
depress	passion	hang	dress	hang
mate	court	rape	relat	forev
broken	forget	finish	door	water
abandon	sea	arrest	younger	food

Summary

What we talked about so far?

- · Proposed the flexible mixture model
 - Demonstrates the power of clustering users and objects separately AND allowing them to belong to different classes
- Proposed the decoupled model
 - Demonstrates the power of extracting preference values from the surface rating values
- Proposed the unified probabilistic model for unified filtering
 - Demonstrates the power of taking advantage of content information with limited rating information