(III) Air resistance acting on a falling body can be taken into account by the approximate relation for the acceleration:

$$a = \frac{dv}{dt} = g - kv,$$

where k is a constant. (a) Derive a formula for the velocity of the body as a function of time assuming it starts from rest (v = 0 at t = 0). [Hint: Change variables by setting u = g - kv.] (b) Determine an expression for the terminal velocity, which is the maximum value the velocity reaches.

HAYANSHOE YCNOBUE:
$$\frac{1}{k}$$
 en $|g-k\cdot\theta|=C$

ROGCTABUM KONCTANTY β (1):

 $\Rightarrow t = -\frac{1}{k}$ en $|g-k\cdot\tau|$
 $\Rightarrow t = -\frac{1}{k}$ en $|g-k\cdot\tau|$
 $\Rightarrow t = -\frac{1}{k}$ en $|g-k\cdot\theta|=C$
 $\Rightarrow t = -\frac{1}{k}$ en $|g-k\cdot$

Просят найти \sqrt{max} или значение в монент насыщения заметин, что график функули \sqrt{t} монотонно возрастает (часть склейки $\sqrt{t} < \frac{9}{k}$) нарищем график вблизи $\sqrt{t} = \frac{9}{k}$

