

NLP Presentation

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

집현전 초급 오새찬

RNN Based NLP Model

RNN Based NLP Model

RNN Based NLP Model

How -> 잘 (?)

출력된 문장의 순서는 잘 지켜지는가?

고질적인 기울기 소실 문제

3개의 입력에서 2개의 출력

Seq2Seq Model

입력을 해석하는 부분(인코더)과 출력하는 부분을 구분(디코더)

고정된 크기의 문맥 벡터를 생성 후 전달

- Bottleneck problem
 - "We show that the neural machine translation performs relatively well on short sentences without unknown words, but its performance degrades rapidly as the length of the sentence and the number of unknown words increase." (Cho et al. 2014)

Attention Mechanism

Transformer

Transformer

BERT input representation

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

our input representation is able to unambiguously represent both a single sentence and a pair of sentences

BERT input representation

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

$$I \rightarrow T.E \quad [0.1,0.3,0.7]$$

S.E $[0.8,0.2,0.5] \Rightarrow [2.0,2.0,1.3)$
any $P.E = [1.1,1.5,0.1]$

Scaled Dot-Product Attention

 W_Q

1) Concatenate all the attention heads

Zo)	Z		\mathbf{Z}_{2}	2	Z	3	Z	Z 4	2	Z 5	2	Z 6		Z 7	

1) Concatenate all the attention heads

Z)	Z		\mathbf{Z}_{2}	2	Z	3	Z	Z 4	2	Z 5	2	Z 6		Z 7	

Scaled Dot-Product Attention

Config

Model Architecture

L: the number of layers

H: the hidden size

A: the number of self-attention heads

BERT_{BASE}

BERT_{LARGE}

L = 12

H = 768

A = 12

Total Parameters = 110M

Chosen to have the same model size as OpenAl GPT for comparison purposes

L = 24

H = 1024

A = 16

Total Parameters = 340M

Pre-Training

Pre-training Data

For the pre-training corpus we use the BooksCorpus (800M words) and English Wikipedia (2,500M words)

Task1: Masked Language Model (MLM)

- We mask 15% of all WordPiece tokens in each sequence at random
- the [MASK] token does not appear during fine-tuning

(80%)	mу	dog	is	hairy	\rightarrow	mУ	dog	is	[MASK]
(10%)	my	dog	is	hairy	\rightarrow	my	dog	is	apple
(10%)	my	dog	is	hairy	\rightarrow	my	dog	is	hairy

Ma	sking R	ates	Dev Set Results						
MASK	SAME	RND	MNLI	NER					
			Fine-tune	Fine-tune	Feature-based				
80%	10%	10%	84.2	95.4	94.9				
100%	0%	0%	84.3	94.9	94.0				
80%	0%	20%	84.1	95.2	94.6				
80%	20%	0%	84.4	95.2	94.7				
0%	20%	80%	83.7	94.8	94.6				
0%	0%	100%	83.6	94.9	94.6				

Pre-Training

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Pre-Training

Task2: Next Sentence Prediction (NSP)

- Many important downstream tasks such as Question Answering (QA) and Natural Language Inference (NLI) are based on understanding the relationship between two sentences
- 50% of the time B is the actual next sentence that follows A (labeled as IsNext), and 50% of the time it is a random sentence from the corpus (labeled as NotNext).
- this task is very beneficial to both QA and NLI.

Config

- **batch size**: 256 sequences
- **Adam optimizer**, learning rate : 1e-4, β1=0.9, β2=0.999,
- L2 weight decay of 0.01
- Dropout prob: 0.1 for all layers
- using gelu activation
- **BERT_base** 4 TPUs, **BERT_large** 16 TPUs For 4 days

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Experiment

	Dev Set									
Tasks	MNLI-m	QNLI	MRPC	SST-2	SQuAD					
	(Acc)	(Acc)	(Acc)	(Acc)	(F1)					
BERTBASE	84.4	88.4	86.7	92.7	88.5					
No NSP	83.9	84.9	86.5	92.6	87.9					
LTR & No NSP	82.1	84.3	77.5	92.1	77.8					
+ BiLSTM	82.1	84.1	75.7	91.6	84.9					

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

NSP 없이 MLM만을 실험한 모델 LTR(Left-To-Right) 모델에 no NSP로 실험하는 경우.

LTR 인 경우 masking없이 모든 단어를 예측

Conclustion

- Recent empirical improvements due to transfer learning with language models have demonstrated that rich, unsupervised pretraining is an integral part of many language understanding systems.
- Our major contribution is further generalizing these findings to deep bidirectional architectures, allowing the same pre-trained model to successfully tackle a broad set of NLP tasks.

Thank You

감사합니다.