班级: 姓名: 学号: 同组人:

实验5 数字式温度表的设计

一、实验目的

- 1. 了解数字式温度表的基本构成。
- 2. 熟悉数字温度表的工作原理。
- 3. 掌握电阻/电压转换电路、电压放大电路的设计方法。
- 4. 学会电子系统测量和调试技术。

二、实验内容及数据

1、确定设计方案

所谓设计方案就是对要做的设计先做一个大致的设想,这种设想常用方框图表示,下面 的方框图是可采纳的的方案之一。

图13-1总体设计方案

2、单元电路的设计

在总电路设计之前,可分别对电路的各部分进行设计。但要注意电源的选择应该合理, 使各部分电路的电源电压尽可能一致。

1) 电阻/电压转换电路

铂电阻的电阻值随温度而变化,见表13-1。在温度测量中,通常采用桥路来实现电阻量到电压量的转换。可参考图13-2,图中Rt是铂电阻Pt100。

图13-2 热电阻测量桥路

表13-1 Pt100 铂电阻0~200℃分度表

温度℃	电阻值Ω	温度℃	电阻值 Ω	温度℃	电阻值Ω	温度℃	电阻值Ω
0	100	50	119. 40	100	138. 50	150	157. 31
10	103. 90	60	123. 24	110	142. 29	160	161. 04
20	107. 79	70	127. 07	120	146. 06	170	164. 76
30	111. 67	80	130. 89	130	149. 82	180	168. 46
40	115. 54	90	134. 70	140	153. 58	190	172. 16
						200	175. 84

2) 放大电路

在精密测量仪器中,要使用高质量的差分放大器,要求其输入阻抗高,共模抑制比高,漂移小。这种放大器有组件式的,也有集成电路的。图13-3 就是用运算放大器组成的仪表放大器,其中A1、A2(即A1A、A1B)要求是采用低漂移集成运算放大器。稳压管采用元件模块1中稳压管。

图13-3 用运算放大器组成的仪表放大器

其中A1、A2的差模增益K1可按下面式子推出:

$$\frac{V_{o2} - V_{i2}}{R_{F2}} = \frac{V_{i1} - V_{o1}}{R_{F1}} = \frac{V_{i2} - V_{i1}}{R_{G}}, V_{o2} - V_{o1} = \left(1 + \frac{R_{F1} + R_{F2}}{R_{G}}\right)(V_{i2} - V_{i1})$$

解得:

$$K_1 = 1 + \frac{R_{F1} + R_{F2}}{R_G}$$

当
$$R_{r_2} = R_{r_2} = R_F$$
时, $K_1 = 1 + \frac{2R_F}{R_G}$ 。
$$A_5$$
的差模增益 $K_2 = \frac{KR}{R} = K$ 。

当 K=1 时,K₂=1,因此放大器增益 K_V = K₁K₂ =
$$(1 + \frac{R_{F1} + R_{F2}}{R_G})$$
K。

当
$$R_{r_2} = R_{r_2} = R_F$$
和 K=1 时, $K_V = 1 + \frac{2R_F}{R_G}$

3) A/D 转换、译码驱动和数字显示部分由3 位半数显电压表完成。数显电压表结构图见图13-4。

图 13-4 仪表放大电路和数显电压表面板

调试大致可分为以下步骤:

- (1) 放大器零点调试。在铂电阻Rt=100Ω 时,调节电桥中330Ω,使电桥输出为0,再调节LM741 运放电路中10K调零电位器,使数显电压表显示零。
- (2) 放大器放大倍数的调试。在铂电阻Rt=175.84 Ω 时(即200 $^{\circ}$ C),调节A1 模块中3K电位器,使数显电压表显示200。
- (3) 用标准电阻箱作为铂电阻接入电路,改变电阻箱的电阻值并记录好显示器所显示的相应的温度值。对照铂电阻的电阻~温度分度表,计算各温度点误差,以表格的形式表示。

表13-2 温度显示仪误差测试表

温度	电阻值	显示温度	误差	温度	电阻值	显示温度	误差
0	100			100	138.50		
10	103.90			110	142.29		
20	107.79			120	146.06		
30	111.67			130	149.82		
40	115.54			140	153.58		
50	119.40			150	157.31		
60	123.24			160	161.04		
70	127.07			170	164.76		
80	130.89			180	168.46		
90	134.70			190	172.16		
				200	175.84		

调试中应注意的问题:

发现电路有问题,不能正常工作,如电源短路或某些元件过热或电路没有任何反应时,应立即断开电源并检查原因。

三、画出总体电路图

四、调试中出现的问题及解决的方法