Clustering grouped data via hierarchical mixture models a finite dimensional perspective

Raffaele Argiento

Università degli Studi di Bergamo

Montréal, June 26th - July 1st 2022

Alessandro Colombi

Federico Camerlenghi

Lucia Paci

Grouped data

- ✓ Observations are organized in different groups
- ✓ Partially exchangeable data
- ✓ Sharing of information across groups to learn distinctive features of the units

Dealing with grouped data

- ✓ Main approaches to model grouped data in Bayesian nonparametrics:
 - Hierarchical processes (Teh et al., 2006; Camerlenghi et al., 2019; Argiento et al., 2020)
 - 2. Nested process (Rodríguez et al., 2008) and the recent extensions have been proposed by Denti et al. (2021) and Beraha et al. (2021)
 - 3. Clayton-Levy copulas Betatrice Franzolin talk

Our proposal

- A Bayesian hierarchical mixture model where the group-specific mixing distribution belongs to the class of finite Dirichlet Processes (Argiento and De Iorio, 2022), i.e. Gibbs priors with negative parameter (De Blasi et al., 2013)
- We assign the joint law of the mixing distributions assuming a shared support (D'Angelo et al., 2022) and allowing clustering within and between groups

Mixture model

Let y_{ji} be the observed variable for group $j=1,\ldots,d$, and individual $i=1,\ldots,n_j$

We assume that the data in each group j come from a finite mixture with random number, M, of components (i.e. mixture of finite mixture) that is

$$y_{j1}, \ldots, y_{jn_j} \mid w_{jm}, \tau_m, M \sim \sum_{l=1}^{M} w_{jm} f(y_{ji} \mid \tau_m),$$

where

- $f(y_{ii} \mid \tau_m)$ are the kernels of the mixture
- $\{\tau_m, m = 1, \dots M\} \subset \Theta$ are kernel parameters shared across groups.
- $\{w_{im}, j = 1, \dots, M\}$ are the group-specific mixing weights
- M is the shared number of components

R. Argiento

The vector of mixing distributions

- ✓ Let $P_j := \sum_{m=1}^{M} w_{jm} \delta_{\tau_m}$, we consider hierarchical mixture model where P_j is a group specific **mixing distribution**
- \checkmark ($P_1, ..., P_d$) is a **vector** of species sampling processes (see Antonio Lijoi keynote lecture)

The vector of mixing distributions

- ✓ Let $P_j := \sum_{m=1}^{M} w_{jm} \delta_{\tau_m}$, we consider hierarchical mixture model where P_j is a group specific **mixing distribution**
- ✓ $(P_1, ..., P_d)$ is a **vector** of species sampling processes (see Antonio Lijoi keynote lecture)
- ✓ The sampling model in group j = 1, ..., d is

$$y_j|P_j \sim \int_{\Theta} f(y_j|\theta)P_j(\mathrm{d}\theta)$$

Prior via normalization

We assign a prior distribution on the mixing weights by normalization

$$S_{j1},\ldots,S_{jM},\mid M,\gamma_j\stackrel{iid}{\sim} \mathsf{Gamma}(\gamma_j,1)$$
 $T_j=\sum_{m=1}^M S_{jm}$

so that

$$w_{j1} = \frac{S_{j1}}{T_j}, \dots, w_{jM} = \frac{S_{jM}}{T_j} \sim \mathsf{Dirichlet}_M(\gamma_j, \dots, \gamma_j)$$

Prior via normalization

We assign a prior distribution on the mixing weights by normalization

$$S_{j1},\dots,S_{jM},\mid M,\gamma_j \stackrel{iid}{\sim} \mathsf{Gamma}(\gamma_j,1) \quad T_j = \sum_{m=1}^M S_{jm}$$

so that

$$w_{j1} = \frac{S_{j1}}{T_j}, \dots, w_{jM} = \frac{S_{jM}}{T_j} \sim \mathsf{Dirichlet}_M(\gamma_j, \dots, \gamma_j)$$

For one group, i.e. d = 1, Argiento and De Iorio (2022)

- ✓ obtain an analytical expression of the clustering eppf
- ✓ design an a priori/a posterior Chinese Restaurant type process yielding to an "easy" marginal posterior sampler
- ✓ characterize the posterior distribution of P₁ and design a conditional sampler

R. Argiento ISBA 2022

The latent θ_{ii} 's

Summary of the model

$$y_{ji} \mid \theta_{ji} \stackrel{\mathsf{ind}}{\sim} f(y_{ji} \mid \theta_{ji}) \qquad i = 1, \dots, n_{j}$$
 $\theta_{j1}, \dots, \theta_{jn_{j}} \mid P_{j} \stackrel{\mathsf{iid}}{\sim} P_{j} \quad j = 1, \dots, d$ $P_{1}, \dots, P_{d} \mid \gamma_{j}, \Lambda \sim Vector\text{-}Fin\text{-}Dirichlet}(\gamma_{j}, \Lambda, p_{0})$

- ✓ $f(y \mid \theta)$: is the density of a $N(\mu, \sigma^2)$
- ✓ M is assumed to be a 1—shifted Poisson distribution with parameter Λ
- ✓ S_j : are independent Gamma $(\gamma_j, 1)$
- ✓ $p_0(\tau)$: is the conjugate Norm-Inv-Gamma $(\mu_0, \kappa_0, \nu_0, \sigma_0^2)$
- ✓ Additional level of hierarchy can be added by assuming a prior on Λ and the γ_j 's

Group specific clustering

 \checkmark For each group j consider the vector latent parameters:

$$\theta_{j1},\ldots,\theta_{jn_j}|P_j\stackrel{iid}{\sim}P_j$$

✓ As customary in mixture model framework we denote by

$$\mathcal{T}_j = \{\theta_{j1}^{\star}, \dots \theta_{jK_i}^{\star}\}$$

the set of the K_j unique values among the θ 's

Group specific clustering

 \checkmark For each group j consider the vector latent parameters:

$$\theta_{j1},\ldots,\theta_{jn_j}|P_j\stackrel{iid}{\sim}P_j$$

✓ As customary in mixture model framework we denote by

$$\mathcal{T}_j = \{\theta_{j1}^{\star}, \dots \theta_{jK_i}^{\star}\}$$

the set of the K_i unique values among the θ 's

✓ Let's now

$$\mathcal{T} = \cup_{j=1}^{d} \mathcal{T}_{j}$$

Group specific clustering

 \checkmark For each group j consider the vector latent parameters:

$$\theta_{j1},\ldots,\theta_{jn_j}|P_j\stackrel{iid}{\sim}P_j$$

✓ As customary in mixture model framework we denote by

$$\mathcal{T}_j = \{\theta_{j1}^{\star}, \dots \theta_{jK_i}^{\star}\}$$

the set of the K_i unique values among the θ 's

✓ Let's now

$$\mathcal{T} = \bigcup_{i=1}^{d} \mathcal{T}_i = \{\theta_1^{\star\star}, \dots, \theta_K^{\star\star}\}\$$

the set of unique values among the θ^{\star} 's

 \checkmark we refer to K as number of global clusters

 \checkmark We define a **local clustering** for group j by letting

$$\rho_j = \{A_{j1}, \ldots, A_{jK}\}$$

where for each $i = 1, \ldots, n_i$

$$(j,i) \in A_{jk}$$
 iff $\theta_{ji} = \theta_k^{\star\star}$ $k = 1,\ldots,K$

 \checkmark this is a pseudo-clustering, indeed A_{jk} can be an empty set and then

$$\#A_{jk}:=n_{jk}\geq 0$$

 \checkmark We define a **local clustering** for group j by letting

$$\rho_j = \{A_{j1}, \ldots, A_{jK}\}$$

where for each $i = 1, \ldots, n_i$

$$(j,i) \in A_{jk}$$
 iff $\theta_{ji} = \theta_k^{\star\star}$ $k = 1,\ldots,K$

✓ this is a pseudo-clustering, indeed A_{jk} can be an empty set and then $\#A_{ik} := n_{ik} > 0$

✓ The global clustering is given by merging the local clusterings

$$\rho = \{A_1, \dots, A_K\}$$

where $A_k = \cup_{j=1}^d A_{jk}$ and clearly

$$\#A_k = n_k = \sum_i n_{jk} > 0$$

Characterization of the local clustering

Theorem - partial eppf

The **joint distribution** of the local clusterings ρ_1, \ldots, ρ_d and K, induced by our hierarchical mixture model on the data indices, is characterized via the following *partial* exchangeable partition probability function

$$\pi\left(\rho_{1},...,\rho_{d},K\right)=V(n_{1},...,n_{d},K)\prod_{j=1}^{d}\prod_{k=1}^{M^{(n_{d})}}\frac{\Gamma(\gamma_{j}+n_{kj})}{\Gamma(\gamma_{j})}$$

where

$$V(n_1,...,n_d,K) = \int_0^\infty \cdots \int_0^\infty \prod_{j=1}^d \frac{1}{\Gamma(n_j)} \frac{u_j^{n_j-1}}{(u_j+1)^{n_j+\gamma_j K}} \left[\Lambda \prod_{j=1}^d \psi_{\gamma_j}(u_j) + K \right]$$
$$\Lambda^{K-1} \exp \left[-\Lambda \left(\prod_{j=1}^d \psi_{\gamma_j}(u_j) - 1 \right) \right] du_1 \dots du_d$$

and

$$\psi_{\gamma_j}(\mathit{u}_j) = \frac{1}{(\mathit{u}_j + 1)^{\gamma_j}}$$
 is the Laplace transform of a gamma distribution

R. Argiento ISBA 2022

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a
 dish (colour).

1,1 (C ₁₁)	 	

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a dish (colour). Each restaurant lays a table serving the same dish $M^{(na)} = 1$

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a dish (colour). Each restaurant lays a table serving the same dish $M^{(na)} = 1$
- ✓ then the i-th customer of the j-th restaurant

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a dish (colour). Each restaurant lays a table serving the same dish $M^{(na)} = 1$
- ✓ then the i-th customer of the j-th restaurant

<u>C</u> 11	
-------------	--

1. Pr(Sits to a table serving a new dish)

$$=\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K+1)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}\Lambda\gamma_j$$

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a dish (colour). Each restaurant lays a table serving the same dish $M^{(na)} = 1$
- ✓ then the i-th customer of the j-th restaurant

1. Pr(Sits to a table serving a new dish)

$$=\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K+1)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}\Lambda\gamma_j$$

In this case a new table serving the new dish is laid in every restaurant $M^{(na)} = M^{(na)} + 1$

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a dish (colour). Each restaurant lays a table serving the same dish $M^{(na)} = 1$
- ✓ then the i-th customer of the j-th restaurant

1. Pr(Sits to a table serving a new dish)

$$=\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K+1)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}\Lambda\gamma_j$$

In this case a new table serving the new dish is laid in every restaurant $M^{(na)}=M^{(na)}+1$

2. Pr(Sits to an existing table)

$$\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}(n_j+\gamma_j)$$

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a dish (colour). Each restaurant lays a table serving the same dish $M^{(na)} = 1$
- ✓ then the i-th customer of the j-th restaurant

1. Pr(Sits to a table serving a new dish)

$$=\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K+1)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}\Lambda\gamma_j$$

In this case a new table serving the new dish is laid in every restaurant $M^{(na)}=M^{(na)}+1$

2. Pr(Sits to an existing table)

$$\frac{\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}(n_j+\gamma_j)}{(n_j+\gamma_j)}$$

- ✓ A restaurant franchise with a *shared menu across the restaurants*
- ✓ The first customer of the first restaurant seats at table one and choose a dish (colour). Each restaurant lays a table serving the same dish $M^{(na)} = 1$
- ✓ then the i-th customer of the j-th restaurant

1. Pr(Sits to a table serving a new dish)

$$=\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K+1)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}\Lambda\gamma_j$$

In this case a new table serving the new dish is laid in every restaurant $M^{(na)}=M^{(na)}+1$

2. Pr(Sits to an existing table)

$$\frac{V(n_1,\ldots,n_j+1,\ldots,n_d,K)}{V(n_1,\ldots,n_j,\ldots,n_d,K)}(n_j+\gamma_j)$$

Allocated and non allocated components

- ✓ hierarchical mixture with M = 5 shared components
- ✓ I draw $n_j = 200$ observation for each group
- ✓ $K_1 = 2$ clusters in the first group and $K_2 = 2$ clusters in the second group
- ✓ For a total of $M^{(a)} = 3$ allocated components. Note that $M^{(a)} = K$
- ✓ and a total of $M^{(na)} = M M^{(a)} = 2$ non-allocated (empty) components

Posterior Characterization 1/2

Theorem 2 – Posterior law

Given the sequence of partitions ρ_1,\ldots,ρ_d , the number of clusters K and the unique values $\theta_1^{\star\star},\ldots,\theta_K^{\star\star}$ for each j there exists an auxiliary random variable U_j such that conditionally to $U_j=u_j$ the law of P_j coincides with the normalization of the following:

$$\sum_{k=1}^{K} S_{jk}^{(a)} \delta_{\theta_{k}^{\star\star}}(\cdot) + \sum_{m=1}^{M^{(na)}} S_{jm}^{(na)} \delta_{\tau_{m}}(\cdot) \qquad \tau_{m} \overset{\text{i.i.d.}}{\sim} p_{0}$$

1. **Allocated** jumps: for each k = 1, ..., K

$$S_{jk}^{(a)} \sim \mathsf{gamma}(n_{jk} + \gamma_j, u_j + 1)$$

2. Non-allocated jumps: for each $m = 1, ..., M^{(na)}$

$$S_{jm}^{(na)} \sim \mathsf{gamma}(\gamma_j, u_j + 1)$$

R. Argiento

Posterior Characterization 2/2

Theorem 2 – Posterior law

3. Number of non-allocated components

$$M^{(na)} \sim \mathit{Q}_1\mathscr{P}_0(\Lambda \prod_{j=1}^d \psi_{\gamma_j}(\mathit{u}_j)) + (1-\mathit{Q}_1)\mathscr{P}_1(\Lambda \prod_{j=1}^d \psi_{\gamma_j}(\mathit{u}_j))$$

where \mathcal{P}_i is the *i*-shifted Poisson distribution, and Q_1 is a simple algebraic expression depending on $\psi(u_i)$, Λ and $M^{(a)}$.

4. Latent variable: For each j = 1, ..., d

$$[U_j|\boldsymbol{S}_j^{(a)},\boldsymbol{S}_j^{(na)}]\sim \mathsf{Gamma}(n_j,\sum_k S_{jk}^{(a)}+\sum_m S_{jm}^{(na)})$$

- ✓ This result is the finite dimensional counterpart of the posterior characterization for the Normalized Completely Random Measures (Camerlenghi et al., 2019)
- ✓ quasi-conjugacy: conditionally to the latent variables U_j the posterior weights can still be obtained by normalization of independent gamma r.v.'s with updated parameters

Conditional blocked Gibbs sampler: sketch

Augment the state space introducing the rv's U_j

Parameters:
$$U_j$$
, θ_j , P_j $j = 1, \ldots, d$

Conditional blocked Gibbs sampler: sketch

Augment the state space introducing the rv's U_j

Parameters:
$$U_j$$
, θ_j , P_j $j = 1, ..., d$

Sequentially update the parameter as follows:

- **1.** sample $U_j|rest$ from a Gamma $(n_j, \sum_m S_{jm})$
- 2. Sample $heta_j|rest$, for each $i=1,\ldots,n_j$ consider the discrete distribution

$$Pr(\theta_{ji} = \tau_m | rest) \propto S_{jm} f(y_{ji} | \tau_m), \quad m = 1, \dots, M$$

3. Update the r.p.m. $P_j|rest$ using the posterior characterization provided by Theorem 2

A hint to the simulation study

n = 200 observations from two groups, both with two components, one shared component. y_{new}

$$y_{1i} \overset{\mathrm{i.i.d.}}{\sim} w_{11} N\left(\mu_{1}, \sigma_{1}^{2}\right) + w_{12} N\left(\mu_{2}, \sigma_{2}^{2}\right), i = 1, \dots, n_{1}$$
 $y_{2i} \overset{\mathrm{i.i.d.}}{\sim} w_{21} N\left(\mu_{2}, \sigma_{2}^{2}\right) + w_{22} N\left(\mu_{3}, \sigma_{3}^{2}\right), i = 1, \dots, n_{2},$

- ✓ $(w_{11}, w_{12}) = (0.2, 0.8)$ and $(w_{21}, w_{22}) = (0.1, 0.9)$.
- \checkmark $(\mu_1, \sigma_1^2) = (-3, 0.1), (\mu_{12}, \sigma_{12}^2) = (\mu_{21}, \sigma_{21}^2) = (0, 0.5), \text{ and } (\mu_3, \sigma_3^2) = (1, 1.5).$

Results

Wrap-up

- ✓ A novel Bayesian hierarchical model for analyzing grouped data yielding to a clustering within and between groups
- Analytical expression of the partial exchangeable partition probability function (eppf), i.e., the law of the random partition induced by the model and a posterior characterization of the hierarchical process
- ✓ Restaurant Franchise process and set up both marginal and conditional Gibbs sampler
- ✓ Preliminary results are promising in terms of clustering identification and density estimation

Wrap-up

- ✓ A novel Bayesian hierarchical model for analyzing grouped data yielding to a clustering within and between groups
- Analytical expression of the partial exchangeable partition probability function (eppf), i.e., the law of the random partition induced by the model and a posterior characterization of the hierarchical process
- ✓ Restaurant Franchise process and set up both marginal and conditional Gibbs sampler
- Preliminary results are promising in terms of clustering identification and density estimation

Thanks!!!

Biased Bibliography

- Camerlenghi, F., Lijoi, A., Orbanz, P., & Prünster, I. (2019). Distribution theory for hierarchical processes. The Annals of Statistics, 47(1), 67-92.
- ✓ Raffaele Argiento, Andrea Cremaschi & Marina Vannucci (2020) Hierarchical Normalized Completely Random Measures to Cluster Grouped Data, Journal of the American Statistical Association, 318-333
- ✓ Argiento, R., & De Iorio, M. (2022). Is infinity that far? A Bayesian nonparametric perspective of finite mixture models. Annals of Statistics (accepted)

References

- Argiento, R., Cremaschi, A., and Vannucci, M. (2020). Hierarchical normalized completely random measures to cluster grouped data. *Journal of the American Statistical Association*.
- Argiento, R. and De Iorio, M. (2022). Is infinity that far? a Bayesian nonparametric perspective of finite mixture models. *Annals of Statistics*.
- Beraha, M., Guglielmi, A., and Quintana, F. A. (2021). The Semi-Hierarchical Dirichlet Process and Its Application to Clustering Homogeneous Distributions. *Bayesian Analysis*, pages 1 33.
- Camerlenghi, F., Lijoi, A., Orbanz, P., and Prünster, I. (2019). Distribution theory for hierarchical processes. The Annals of Statistics, 47(1):67–92.
- D'Angelo, L., Canale, A., Yu, Z., and Guindani, M. (2022). Bayesian nonparametric analysis for the detection of spikes in noisy calcium imaging data. *Biometrics*.
- De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I., and Ruggiero, M. (2013). Are gibbs-type priors the most natural generalization of the dirichlet process? *IEEE transactions on pattern analysis and machine intelligence*, 37(2):212–229.
- Denti, F., Camerlenghi, F., Guindani, M., and Mira, A. (2021). A common atoms model for the Bayesian nonparametric analysis of nested data. *Journal of the American Statistical Association*, in press.
- Rodríguez, A., Dunson, D. B., and Gelfand, A. E. (2008). The nested Dirichlet process. *Journal of the American Statistical Association*, 103(483):1131–1154.
- Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical dirichlet processes. *Journal of the american statistical association*, 101(476):1566–1581.

R. Argiento ISBA 2022