VERTEX ALGEBRAS

github.com/danimalabares/vertex-algebras

Contents

1.	Cartan subalgebra, Cartan matrix and Serre relations	1
2.	Some infinite dimensional Lie algebras	2
3.	Kac-Moody algebras	3
References		5

1. CARTAN SUBALGEBRA, CARTAN MATRIX AND SERRE RELATIONS

Kac-Moody algebras are Lie algebras, whose definition is motivated by the structure of finite-dimensional simple Lie algebras over \mathbb{C} .

Let \mathfrak{g} be a finite-dimensional semisimple Lie algebra over \mathbb{C} . Then \mathfrak{g} has a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ (abelian $+ \dots$) (see [Kac10, Definition 8.2]). Fixing $\mathfrak{h} \subset \mathfrak{g}$ gives a root space decomposition (see [Kac10, Proposition 8.5])

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in\Delta}\mathfrak{g}_lpha$$

where $\Delta \subset \mathfrak{h}^*$ linear dual, and, by definition

$$\mathfrak{g}_{\alpha} = \{ X \in \mathfrak{g} | [H, X] = \alpha(H)X \ \forall H \in \mathfrak{h} \}$$

Turns out the \mathfrak{g}_{α} are all 1-dimensional, though this property is lost when we go to Kac-Moody algebras.

$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subset\mathfrak{g}_{\alpha+\beta}$$

The Killing form $\kappa: \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$, $\kappa(x,y) = \operatorname{Tr}_{\mathfrak{g}} \operatorname{ad}(x) \operatorname{ad}(y)$ is nondegenerate. "This is kind of the definition of semisimple." (Think of \mathfrak{h} as \mathfrak{g}_0 , btw.)

 $\kappa|_{\mathfrak{g}_{\alpha}\times\mathfrak{g}_{\beta}}\neq 0$ only when $\beta=-\alpha$. $\kappa|_{\mathfrak{h}\times\mathfrak{h}}$ is non-degenerate. This gives a linear isomorphism $\mathfrak{h}\stackrel{\nu}{\to}\mathfrak{h}$ via $\nu(H)(H')=\kappa(H,H')$.

So, \mathfrak{h}^* comes with a non-degenerate bilinear form.

The reflection
$$r_{\alpha}: \mathfrak{h} \to \mathfrak{h}^*$$
 in $\alpha \in \mathfrak{h}^*$ (usually a root) is $r_{\alpha}(\lambda) = \lambda - 2\frac{(\lambda,\alpha)}{(\alpha,\alpha)} \cdot \alpha$.

"Classify root systems [...] classify semisimple Lie algebras" It is a fact that $r_{\alpha}(\Delta) = \Delta$ for all $\alpha \in \Delta$, which motivates the definition of root system (see [Kac10, Definition 15.1]) and permits classification. (See [Kac10, Lecture 17] for comments on correspondence of root systems and semisimple Lie algebras.)

Example 1.1. $\mathfrak{g} = \mathfrak{sl}_2$, $\mathfrak{h} = \text{diagonal matrices}$

$$\begin{pmatrix} 1 & & \\ & -1 & \\ & & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & & \\ & 1 & \\ & & -1 \end{pmatrix}$$

is a basis of \mathfrak{h} . There are 6 roots vectors

$$E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $E_{23}, E_{13}, \text{ etc.}$

Exercise 1.2.
$$[H_1, E_{12}] = 2E_{12}, [H_2, E_{12}] = -E_{12}, \alpha_{12} = (2, -1).$$

[Drawing of roots]

Notions of positive roots and simple roots (set of rank simple roots has ℓ elements, where $\ell = \dim(\mathfrak{h}^*)$. (See [Kac10, Definition 17.1].) This will also fail for Kac-Moody algebras more generally). Next write the Cartan matrix (see [Kac10, Definition 17.2])

$$A = (a_{ij}),$$
 $a_{ij} = 2\frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$

for $1 \le i, j \le \ell$.

Example 1.3. \mathfrak{sl}_3 . [Picture, hexagonal pattern]. $(\alpha_1, \alpha_1) = (\alpha_2, \alpha_2) = 2, (\alpha_1, \alpha_2) = -1$, so

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Example 1.4. \mathfrak{sl}_5 . [Picture, square pattern]. $|\alpha_2| = 1$, $|\alpha_1| = 2$, $(\alpha_1, \alpha_2) = -2$, so

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

Remark 1.5. Since \mathfrak{g}_{α} is 1-dimensional, set $\mathfrak{g}_{\alpha} = \mathbb{C}E_{\alpha}$ and $E_i = E_{\alpha_i}$, $i = 1, 2, \dots, \ell$ (simple root vectors). It turns out that

$$ad(E_i)^{1-a_{ij}}E_j = 0.$$

This is called a Serre relation.

2. Some infinite dimensional Lie algebras

Let g be a finite-dimensional semisimple Lie algebra, and define the loop algebra

$$\begin{split} L\mathfrak{g} &= \mathfrak{g}[t,t^{-1}], \text{ (with basis } at^m|^{a \in \text{a basis of } \mathfrak{g}} \text{)} \\ &= \mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}[t,t^{-1}] \end{split}$$

with the Lie bracket

$$[at^m, bt^n] = [a, b]t^{m+n}.$$

"This construction is absurdely general — we don't need ${\mathfrak g}$ to be semisimple $[\dots]$ "

Take $\mathfrak{g} = \mathfrak{sl}_2$. Recall that

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

[Picture with $F, H, E, Ft, Ht, Et, Et^2...$] E was a root vector, corresponding to the unique root in \mathfrak{sl}_2 , call it α_1 . We seem to have a second simple root α_0 , corresponding to Ft.

This looks like it wants to have a Cartan matrix

$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

We will indeed recover (a variant of) $L\mathfrak{g}$ as a Lie algebra "built from" $A=\begin{pmatrix}2&-2\\-2&2\end{pmatrix}$, a Kac-Moody algebra. But note first, $\mathfrak{h}=\mathbb{C}H$ is too small. "Problem with α_0 and α_1 being linearly independent . . . "

We can consider $L\mathfrak{g} \oplus \mathbb{C}d$, and set $[d, at^m] = mat^n$

Exercise 2.1. Check this defines a Lie algebra.

The Kac-Moody algebra turns out to be, not quite this, but slightly larger still.

Definition 2.2. Given \mathfrak{g} simple, with $(\cdot,\cdot):\mathfrak{g}\times\mathfrak{g}\to\mathbb{C}$ invariant bilinear form, there is a Lie algebra

$$\hat{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K,$$

with $[K, \hat{\mathfrak{g}}] = 0$, and $[at^m, bt^n] = [a, b]t^{m+n} + m(a, b)\delta_{m_1} - nK$. $[K, \hat{\mathfrak{g}}] = 0$, K: central.

"For the construction to work it doesn't actually have to be nondegenerate."

This is called an affine Lie algebra. We also have $\tilde{\mathfrak{g}} = L\mathfrak{g} \oplus \mathbb{C}K \oplus \mathbb{C}d$, extended affine Lie algebra, $[d, at^m] = mat^m$ as before, and [K, d] = 0.

The extended affine Lie algebra is an example of a Kac-Moody algebra.

3. Kac-Moody algebras

Recall the notion of the free Lie algebra on a vector space V of generators (or a set X, think of V as a vector space with basis X):

Definition 3.1. The *free Lie algebra* on V is characterized by the universal property

That is, for any linear map $f:V\to \mathfrak{g}$ with \mathfrak{g} Lie algebra, there exists a unique \tilde{f} homomorphism of Lie algebras $F(V)\to \mathfrak{g}$ such that $\tilde{f}\circ i=f$.

$$\operatorname{Hom}_{\operatorname{Lie}}(F(V),\mathfrak{g}) = \operatorname{Hom}_{\operatorname{Vec}}(V,\mathfrak{g})$$

naturally.

That is, F and the forgetful functor $G: \underline{\text{Lie}} \to \underline{\text{Vec}}$ are adjoint:

$$\operatorname{Hom}_{\operatorname{Lie}}(F(V),\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Hom}_{\operatorname{Vec}}(V,G(\mathfrak{g}))$$

A realisation of F(V). Let

$$T(V) = \mathbb{C} \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \dots$$

be the tensor algebra of V.

Then inside T(V) consider F(V) the span of iterated commutators of elements of V.

Proposition 3.2. This realises the free Lie algebra.

Proof. In online notes.

In the finite dimensional simple case, we had

$$a_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)},$$

which we think also as $\alpha_i, \alpha_j \in \mathfrak{h}^*$, and $\alpha_i^{\vee} = \frac{2}{(\alpha_i, \alpha_i)} \nu^{-1}(\alpha_i) \in \mathfrak{h}$.

Clearly, $\alpha_{ii} = 2$ for all i. a_{ij} misht not equal a_{ji} , but certainly $a_{ij} = 0 \iff a_{ji} = 0$. And $\forall i \neq j, a_{ij} \leq 0$.

One further property. Set

$$\varepsilon_i = \frac{2}{(\alpha_i, \alpha_i)},$$
 and $D = \frac{\text{diagonal matrix}}{\text{with entries } \varepsilon_i}$

Then A = DB, where $B = ((\alpha_i, \alpha_j))$ is symmetric. If a matrix A is equal to (diag)(symm), we call it *symmetrizable*.

Definition 3.3. A generalized Cartan matrix is an integer matrix $A = (a_{ij})$ which is

- symmetrizable,
- $a_{ii} = 2$ for all i,
- $\bullet \ a_{ij} = 0 \iff a_{ji} = 0,$
- $a_{ij} \leq 0$ for $i \neq j$.

Definition 3.4. A *realisation* of a generalized Cartan matrix is a complex vector space \mathfrak{h} , and two sets

$$\Pi^{\vee} = \{\alpha_1^{\vee}, \alpha_2^{\vee}, \dots, \alpha_n^{\vee}\}, \text{ and,}$$
$$\Pi = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$

such that $\langle \alpha_i^{\vee}, \alpha_j \rangle = a_{ij}, 1 \leq i, j \leq n$.

Exercise 3.5. $\dim(\mathfrak{h}) \geq 2n - \operatorname{rank}(A)$.

Proof. For
$$A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$
, a realisation is given by

$$\Pi^{\vee} = \{H_1, H_0\}, \qquad \Pi = \{\alpha_0, \alpha_1\}$$

$$\mathfrak{h} = \mathbb{C}H, \mathbb{C}d, \mathbb{C}K,$$
$$\mathfrak{h}^* = \mathbb{C}\alpha_1 + \mathbb{C}\delta + \mathbb{C}\Lambda_0$$

(Canonical dual, $\langle \alpha_1, H \rangle = 2$, $\langle \delta, d \rangle = 1 = \langle \Lambda_0, K \rangle$, every other pairing 0.) Then

$$\begin{cases} \alpha_1 = \alpha_1 \\ \alpha_0 = \delta - \alpha_1 \end{cases} \qquad \begin{cases} \alpha_1^{\vee} = H \\ \alpha_0^{\vee} = K - H \end{cases}$$

So we obtain

$$\langle \alpha_0^{\vee}, \alpha_1 \rangle = \langle K - H, \alpha_1 \rangle = 2$$
$$\langle \alpha_1^{\vee}, \alpha_0 \rangle = \langle H, \delta - \alpha_1 \rangle = -2$$
$$\langle \alpha_0^{\vee}, \alpha_0 \rangle = \langle K - H, \delta - \alpha_1 \rangle = +2$$

Finally let's define Kac-Moody algebras.

Let A be a generalized Cartan matrix. Let

$$\tilde{\mathfrak{n}}_+ = F(e_1, \dots, e_n),$$

the free Lie algebra on n generators, and similarly

$$\tilde{\mathfrak{n}}_- = F(f_1, \ldots, f_n).$$

Let \mathfrak{h} be a realisation of A. Set $\tilde{\mathfrak{g}}(A) = \tilde{\mathfrak{n}}_- \oplus \mathfrak{h} \oplus \tilde{\mathfrak{n}}_+$.

Make $\tilde{\mathfrak{g}}(A)$ a Lie algebra by defining

- $\bullet \ [\mathfrak{h},\mathfrak{h}]=0,$
- $\forall H \in \mathfrak{h}$, $[H, e_i] = \langle \alpha_i, H \rangle e_i = \alpha_i(H)e_i$. And similarly, $[H, f_i] = -\alpha_i(H)f_i$.
- $[e_i, f_i] = \delta_{ij} \alpha_i^{\vee}$.

Then $\tilde{\mathfrak{g}}(A)$ is a Lie algebra (though not yet the Kac-Moody algebra). See Kac, [Kac90, Thorem 1.2].

Remark 3.6. In \mathfrak{h} we have a lattice

$$Q^{\vee} = \mathbb{Z}\alpha_1^{\vee} + \ldots + \mathbb{Z}\alpha_n^{\vee}, \text{ and}$$

 $Q = \mathbb{Z}\alpha_1 + \ldots + \mathbb{Z}\alpha_n \text{ in } \mathfrak{h}^*$

(root and coroot lattices). $\tilde{\mathfrak{g}}(A)$ is naturally Q-graded, with

$$\tilde{\mathfrak{g}}(A)_{\beta} = \operatorname{span}\{\text{commutators of } e_i \text{ with } \sum \alpha_i = \beta\}.$$

 $\tilde{g}(A) = \mathfrak{h}.$

Theorem 3.7 (Gabber-Kac). Denote by $I \subset \tilde{\mathfrak{g}}(A)$ the maximal Q-graded ideal, such that $I \cap \mathfrak{h} = \{0\}$. Then I is generated by the Serre relations

$$ad(e_i)^{1-a_{ij}}e_j$$
 and $ad(f_i)^{1-a_{ij}}f_j$, $i \neq j$.

Proof. [Kac90, Theorem 9.11].

(The existence of the ideal I does not need the theorem; it's importance is providing an expression for the generators.)

Definition 3.8. The Kac-Moody algebra $\mathfrak{g}(A)$ is $\tilde{\mathfrak{g}}(A)/I$.

References

[Kac90] V.G. Kac, Infinite-dimensional lie algebras, Progress in mathematics, Cambridge University Press, 1990.

[Kac10] Victor Kac, Lecture notes of 18.745 - introduction to lie algebras (fall 2010), https://math.mit.edu/classes/18.745/classnotes.html, 2010, Lecture notes, MIT.