Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims: .

- 1. (Canceled)
- 2. (Currently Amended) The empound method of claim $\underline{20}$ 1, wherein each R^4 is independently
 - (a) H,
 - (b) halo,
 - (e) SR^{12} ,
 - (f) $S(O)_m R^{13}$,
 - (g) NR^9R^{10} ,
 - (h) $NR^{9}S(O)_{m}R^{13}$,
 - (i) $NR^9C(=O)OR^{13}$,
 - (j) phenyl optionally substituted by one or more R⁸,
 - (k) heteroaryl optionally substituted by one or more R⁸,
 - (l) cyano,
 - (m) nitro,
 - (n) $CONR^9R^{10}$,
 - (o) CO_2R^{12} ,
 - (p) $C(=O)R^{13}$,
 - (q) $C(=NOR^{12})R^{13}$,
 - (s) $NR^9C(=O)-R^{12}$,
- (t) C_{1-7} alkyl, C_{1-7} alkenyl or C_{1-7} alkynyl each of which is optionally partially unsaturated and is optionally substituted by one or more R^{11} , or
 - (u) het optionally substituted by one or more R⁸.
- 3. (Currently Amended) The eompound method of claim 2, wherein each R⁴ is independently selected from NO₂, H, Br, F, CF₃, CN, NH₂, -C(O)-OCH₃, -S-CH₃, -S(O)₂-CH₃, -N(OCH₃)-CH₃, -NH-C(O)-O-tbutyl, -NH-C(O)-CH₃, heteroaryl optionally

substituted by one or more R^8 , het¹ optionally substituted by one or more R^8 , -S(O)₂-CH₃, or phenyl optionally substituted by one or more of NO₂, Cl, F, -OCH₃, and -OCF₃.

- 4. (Currently Amended) The compound method of claim $\underline{20}$ 1, wherein each R^3 is H.
- 5. (Currently Amended) The compound method of claim $\underline{20}$ 1, wherein R^1 is $-C(O)R^6$.
- 6. (Currently Amended) The compound method of claim $\underline{20}$ 1, wherein R^2 is $-C(0)R^7$.
- 7. (Currently Amended) The compound method of claim 6, wherein R^1 is $-C(O)R^6$
- 8. (Currently Amended) The compound method of claim 7, wherein R^6 and R^7 form $-N(R^{17})-C(O)-N(R^{17})$ or $-N(R^{17})-C(S)-N(R^{17})$ -.
 - 9. (Canceled)
 - 10. (Canceled)
- 11. (Currently Amended) The eompound method of claim $20 ext{ } 10$, wherein each R^{15} is independently H, C_{1-7} alkyl optionally substituted by one or more R^{11} substituents.
- 12. (Currently Amended) The empound method of claim 11, wherein X is $-C(H)(C_{1-4}$ alkyl)-O- $C(H)(C_{1-4}$ alkyl)- .
- 13. (Currently Amended) The compound method of claim 20 10, wherein the compound has the formula of

$$(R^{4})_{1-3} \xrightarrow{R^{3} R^{3} R^{1}} \\ R_{5} \xrightarrow{R} \\ R_{20} \xrightarrow{R}_{15}$$

and each R₁₅ is independently (b), (c), (d), (e), (f),

or (g).

14. (Currently Amended) The compound method of claim 20 10, wherein the compound has the formula of

$$(R^4)_{1-3}$$
 R_5
 R_{20}
 R_{15}
 R_{15}

and each R₁₅ is independently (b), (c), (d), (e), (f),

or (g).

15. (Currently Amended) The compound method of claim $\underline{20}$ 10, wherein R^{16} is (C=O)OR¹³ or C₁₋₇ alkyl.

- 16. (Currently Amended) The compound method of claim $20 \, 1$, wherein each R^5 is independently H or C_{1-7} alkyl.
- 17. (Currently Amended) A <u>The method of claim 20 wherein the compound</u> comprises selected from

(2R,4S,4aS)-2,4-dimethyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;

1,2,4,4a-Tetrahydro- 2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;

8-Bromo-1,2,4,4a-tetrahydro-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;

8-Fluoro-1,2,4,4a-tetrahydro-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;

- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-trifluoromethylspiro[[1,4]oxazino]4,3-a] quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;
- 1,1',2, 3'4,4',4a, 6'-Octrahydro-2,4',6'-trioxospiro[[1,4]oxazino[4,3-a] quinoline-5(6H), 5' (2' H)-pyrimidine]-8-carbonitrile;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-carboxamidespiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;
- 1,2,4,4a-Tetrahydro-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;
- 1,2,4,4a-Tetrahydro-1,4a-dimethyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione;
- 8-Bromo-1,2,4,4a-tetrahydro-cis-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-4'-thioxo-2',6' (1' H,3' H)-dione;
- 8-Bromo-1,2,4,4a-tetrahydro-cis-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2'H)pyrimidine]-2',4',6' (1' methyl, 3' methyl)-trione;

N-[1,1',2,3',4,4',4a,6'-Octahydro-2,4-dimethyl-2',4',6'-

- trioxospiro[[1,4]oxazino[4,3-a]quinolone-5(6H),5'(2'H)-pyrimidin]-8-yl]acetamide; tert-butyl 1,1',2, 3',4,4',4a,6'-Octahydro-2,4-dimethyl-2',4',6'-
- trioxospiro[[1,4]oxazino[4,3-a]quinolone-5(6H),5'(2'H)-pyrimidin]-8-ylcarbamate;
- 8-Amino-1,2,4,4a-tetrahydro-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinolone-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione monohydrochloride;
- 9-Bromo-1,2,4,4a-tetrahydro-2,4-dimethyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 8-Acetyl-1,2,4,4a-tetrahydro-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2H)-pyrimidine)-2',4',6' (1'H,3'H)-trione;
- 8-Ethanone-O-methyloxime-l-1,2,4,4a-tetrahydro-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2H)-pyrimidine)-2',4',6' (1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-(methylsulfonyl)spiro[[1,4]oxazino [4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;

- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-(methylsulfinyl)spiro[[1,4]oxazino [4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-(methylthio)spiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-9-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'methyl,3'methyl)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'methyl)-trione;
- 1,2, 4,4a-Tetrahydro-4-methyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-2-methyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3's)-trione;
- 1,1',2'3'4'4'a-Hexahydro-2',4'-dimethyl-1,3-dioxospiro[2*H*-indene-2,5'(6'*H*)-[1,4]oxazino[4,3-*a*]quinoline]-8'-carbonitrile;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl[1,4]oxazino[4,3-a]quinoline-5,5,8(6H)-tricarbonitrile;
- 8-Bromo-1,2,4-4a-tetrhydro-2,4-dimethyl[1,4]oxazino[4,3-a]quinoline-5,5(6H)-dicarbonitrile;
- 9-(4-Chlorophenyl)-1,2,4,4a-tetryhydro-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrhydro-2,4-dimethyl-9-[4-(trifluoromethyoxy)phenyl] spiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)pyrimidine]-2'4'6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-9-(methoxyphenyl)-2,4-dimethylspiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 9-(3-Chloro-4-fluorophenyl)-1,2,4,4a,-tetrahydro-2,4-dimethylsprio[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-9-(3-nitrophenyl)spiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)trione;

1,1',2,3',4,4',4a,6'-Octahydro-2-4-dimethyl-2',4',6'-

trioxospiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5(2'H)-pyrimidin]-9-yl]benzonitrile;

1,2,4,4a-Tetrahydro-2,4-dimethyl-9-[4-(methylsulfonyl)phenyl] spiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;

1,2,4,4a-Tetrahydro-2,4-dimethyl-9-(4-pyridinyl)spiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'('H,3'H)-trione;

Methyl-1,1'-2,3',4,4a,6'-Octahydro-2,4-dimethyl-2',4',6'-trioxospiro[[1,4]oxazino [4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-9-carboxylate; and or

Methyl-1,1'-2,3',4,4a,6'-Octahydro-2,4-dimethyl-2',4',6'-trioxospiro[[1,4]oxazino [4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-8-carboxylate.

18. (Currently Amended) A <u>The method of claim 20 wherein the compound</u> comprises selected from

19. (Canceled)

20. (Currently Amended) A method for the treatment of bacterial infections in mammals comprising administration of an effective amount of <u>a</u> compound of <u>elaim 1</u> formula I, including enantiomeric, diastereomeric, or tautomeric isomers thereof, or any <u>pharmaceutically acceptable salt thereof</u> to said mammal;

$$R^3 R^3 R^1$$
 R^2
 R^5
 R^5
 R^2

I

wherein,

 R^1 is

(a) R^{12}
(b) $C(=0)R^6$, or

(c) CN ;

 R^2 is

(a) R^{12}
(b) $C(=0)R^7$,
(c) CN ,
(d) $-CH_2-R^7$,
(e) $-NR^{17}R^7$,

(f)	-CH ₂ COR ⁷ ,		
(g)	-CH ₂ CH ₂ COR ⁷ ;		
Each R ³ is independently			
(a)	<u>H,</u>		
(b)	R^{12} ,		
(c)	C ₁₋₇ alkyl, C ₁₋₇ alkenyl or C ₁₋₇ alkynyl each of which is optionally		
substituted by one or	r more R ¹¹ ,		
(d)	C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of		
which is optionally	substituted by one or more R ¹¹ ,		
(e)	aryl optionally substituted by one or more R ⁸ ,		
(f)	heteroaryl optionally substituted by one or more R ⁸ ,		
(g)	halo, or		
(h)	both R ₃ taken together are oxo;		
Each R ⁴ is in	dependently		
(a)	<u>H,</u>		
(b)	halo,		
(c)	OR^{12} ,		
(d)	$OC(=O) NR^9 R^{10}$		
(e)	SR ¹² ,		
(f)	$S(O)_m R^{13}$		
(g)	NR^9R^{10} ,		
(h)	$NR^{9}S(O)_{m}R^{13}$,		
(i)	$NR^{9}C(=O)OR^{13}$		
(j)	phenyl optionally substituted by one or more R ⁸ ,		
(k)	heteroaryl optionally substituted by one or more R ⁸ ,		
(1)	cyano,		
(m)_	nitro,		
(n)	$CONR^9R^{10}$,		
(o)	CO_2R^{12} ,		
(p)	$C(=O)R^{13}$,		
(q)	$C(=NOR^{12})R^{13}$		

		•
	(r)	$S(O)_mNR^9R^{10}$,
	(s)	$NR^{9}C(=O)-R^{12}$
	(t)	C_{1-7} alkyl, C_{1-7} alkenyl or C_{1-7} alkynyl each of which is optionally
substitu	uted by one or	more R^{11} ,
	(u)	C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of
which	is optionally s	ubstituted by one or more R ¹¹ ,
	(v)	N_{3} ,
	(w)_	het ¹ optionally substituted by one or more R ⁸ , or
	(x)	$C(O)O-C_{1-4}$ alkyl- R^{12} ;
	Each R ⁵ is in	dependently,
	(a)	<u>H</u> ,
	(b)	C_{1-7} alkyl, C_{1-7} alkenyl or C_{1-7} alkynyl each of which is optionally
substitu	uted by one or	more R ¹¹ ,
	(c)	C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of
which	<u>is optionally s</u>	ubstituted by one or more R ¹¹ ,
	(d)	aryl optionally substituted by one or more R ⁸ , or
	(e)	heteroaryl optionally substituted by one or more R ⁸ ;
	R ⁶ and R ⁷ are	independently;
	(a)	OR^{12}
	(b)	NR^9R^{10}
	(c)	R^{13} , or
	(e)	R ⁶ and R ⁷ together with the 2 carbons to which they are attached
form c	yclohexane-1,	3-dione optionally substituted by one or more R ¹³ , cyclopentane-1,3-
dione o	optionally sub	stituted by one or more R^{13} , R^6 and R^7 together form $-N(R^{17})-S(O)_{m^2}$
$N(R^{17})$	-, -N(R ¹⁷)-C(0	$0)-N(R^{17})-,$
$-N(R^{17}$)-C(S)-N(R ¹⁷)	-, $-N(R^{17})-N(R^{17})-$, $-N(R^{17})-C(O)-$, or $-N(R^{17})-$, or R^6 and R^7 together
form a	phenyl ring;	
	R^8 is	
	(a)	<u>H</u> ,
	(b)	halo,
	(c)	OR^{12} ,

	(d)	OCF ₃ ,
	(e)	SR^{12} ,
	(f)	$S(O)_m R^{13}$
	(g)	NR^9R^{10} ,
	(h)	$NR^9S(O)_mR^{13}$
	(i)	$NR^9C(=O)OR^{13}$
	(j)	phenyl optionally substituted by halo, cyano, C ₁₋₇ alkyl, or C ₁ .
<u>7</u> alkoxy, in 1	the alkyl	portion of the C_{1-7} alkyl and C_{1-7} alkoxy is optionally substituted by
one or more	R^{11} ;	
	(k)	heteroaryl optionally substituted by halo, C ₁₋₇ alkyl, or C ₁₋₇ alkoxy,
	<u>(l)</u>	cyano,
	(m)	nitro,
	(n)	$CONR^9R^{10}$,
	(o)	CO_2R^{12} ,
	(p)	$C(=O)R^{13}$
	(g)	$C(=NOR^{12})R^{13}$,
	(r)	$S(O)_{m}NR^{9}R^{10}$
	(s)	$NR^{9}C(=O)-R^{12}$,
	(t)	C_{1-7} alkyl, C_{1-7} alkenyl or C_{1-7} alkynyl each of which is optionally
substituted	by one or	more R ¹¹ ,
	(u)	C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of
which is op	tionally s	substituted by one or more R ¹¹ ,
	(v)	-C(O)H, or
	(w)	het ¹ ;
R^9 a	nd R ¹⁰ ar	e independently
	(a)	<u>H</u> ,
	(b)	OR^{12} ,
	(c)	aryl optionally substituted by one or more R ¹⁴ ,
	(d)	heteroaryl optionally substituted by one or more R ¹⁴ ,
	(e)	C_{1-7} alkyl which is optionally substituted by one or more R^{11} ,
	(f)	C ₃₋₈ cycloalkyl which is optionally substituted by one or more R ¹¹ ,

	(g)	$(C=O)R^{13}$, or
	(h)	R ⁹ and R ¹⁰ together with the nitrogen to which they are attached
form morphol	ine, pyr	rolidine, piperidine, thiazine, piperazine, each of the morpholine,
pyrrolidine, pi	iperidin	e, thiazine, piperazine being optionally substituted with R ¹¹ ;
$\underline{\mathbf{R}^{11}}$ is		
	(a)	oxo,
	(b)	phenyl optionally substituted by one or more R ¹⁴ ,
	(c)	OR^{12}
	(<u>d</u>)	SR ¹² ,
	(e)	$NR^{12}R^{12}$,
	(f)	halo,
	(g)	CO_2R^{12} ,
	(h)	CONR ¹² R ¹² ,
	(i) .	C ₁₋₇ alkyl, C ₁₋₇ alkenyl or C ₁₋₇ alkynyl each of which is optionally
substituted by	one or	more oxo, halo, OR ¹² , SR ¹² , C ₁₋₇ alkyl, or NR ¹² R ¹² substituents, or
	(j)	C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of
which is option	onally si	ubstituted by one or more oxo, halo, OR ¹² , SR ¹² , C ₁₋₇ alkyl, or
NR ¹² R ¹² subst	tituents;	
$\underline{R^{12}}$ is		
	(a)	Н,
	(b)	C ₁₋₇ alkyl, C ₁₋₇ alkenyl or C ₁₋₇ alkynyl each of which is optionally
substituted by	oxo, h	alo, C ₁₋₇ alkyl, or C ₁₋₇ alkoxy substituents,
	(c)	C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of
which is option	onally s	ubstituted by one or more oxo, halo, C_{1-7} alkyl, or C_{1-7} alkoxy
substituents,		·
	(d)	aryl optionally substituted by one or more halo, C ₁₋₇ alkyl, or C ₁₋
<u>7</u> alkoxy subst	ituents,	<u>or</u>
	(e)	heteroaryl optionally substituted by one or more halo, C ₁₋₇ alkyl, or
C ₁₋₇ alkoxy su	bstituer	uts;
$\underline{\mathbf{R}^{13}}$ is		

	(a)	C ₁₋₇ alkyl which is optionally substituted by one or more by oxo,
halo, carb	oxyl, C ₁₋₇ al	kyl, or C ₁₋₇ alkoxy substituents,
	(b)	C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of
which is	optionally s	ubstituted by one or more by oxo, halo, C ₁₋₇ alkyl, or C ₁₋₇ alkoxy
substituer	nts,	
_	(c)	aryl optionally substituted by one or more halo, C ₁₋₇ alkyl, or C ₁ -
₇ alkoxy s	ubstituents;	
	(d)	heteroaryl optionally substituted by one or more halo, C _{1.7} alkyl, or
C ₁₋₇ alkox	y substituer	nts,
_	(e)	-C(O)OH
<u>R</u>	¹⁴ is	
	(a)	<u>H</u> ,
_	(b)	halo,
_	(c)	C ₁₋₇ alkyl,
_	(d)	OR^{12}
	(e)	OCF ₃ ,
	(f)	SR^{12} ,
	(g)	$S(O)_m R^{13}$
	. (h)	$NR^{12}R^{12}$,
	(i)	$NR^{12}S(O)_{m}R^{13}$,
_	(j)	$NR^{12}C(=O)OR^{13}$
_	(k)	phenyl optionally substituted by halo, C_{1-7} alkyl, or C_{1-7} alkoxy,
	(1)	heteroaryl optionally substituted by halo, C ₁₋₇ alkyl, or C ₁₋₇ alkoxy,
_	(m)	cyano,
	(n)	nitro,
_	(o)	$CONR^{12}R^{12},$
_	(p)	CO_2R^{12} ,
	(g)	$C(=O)R^{13}$,
_	(r)	$C(=NOR^{12})R^{13}$,
	(s)	$S(O)_{m}NR^{12}R^{12}$,
	(+)	$NP^{9}C(-0) P^{12}$

(u) C_{1-7} alkyl, C_{1-7} alkenyl or C_{1-7} alkynyl each of which is optionally substituted by oxo, halo, OR¹², SR¹², C₁₋₇alkyl, or NR¹²R¹² substituents, or (v) C₃₋₈ cycloalkyl, C₃₋₈ cycloalkenyl or C₃₋₈ cycloalkynyl each of which is optionally substituted by oxo, halo, OR¹², SR¹², C₁₋₇alkyl, or NR¹²R¹² substituents; X is $-C(R^{15})_2-O-C(R^{15})_2-$; Each R¹⁵ is independently (a) H, OR^{11} , (b) (c) Oxo, C₁₋₇ alkyl which is optionally substituted by one or more R¹¹ (d) substituents, C₃₋₈ cycloalkyl, C₃₋₈ cycloalkenyl or C₃₋₈ cycloalkynyl each of (e) which is optionally substituted by one or more R¹¹ substituents, aryl optionally substituted by one or more R⁸, or (f) heteroaryl optionally substituted by one or more R⁸; (g) R^{16} is (a) H OR^{12} (b) $(C=O)R^{13}$, (c) $(C=O)OR^{13}$ (d) $(C=O)NR^9R^{10}$ (e) $S(O)_{m}R^{13}$ (f) $S(O)_{m}NR^{9}R^{10}$ (g) C₁₋₇ alkyl which is optionally substituted by one or more R¹¹ (h) substituents, C₃₋₈ cycloalkyl, C₃₋₈ cycloalkenyl or C₃₋₈ cycloalkynyl each of (i) which is optionally substituted by one or more R¹¹ substituents, aryl optionally substituted by one or more R⁸, or (i) heteroaryl optionally substituted by one or more R⁸; (k)

USSN: 10/677,551

 R^{17} is

<u> </u>		
(b) -OH, or		
$\underline{\qquad \qquad (c) \qquad C_{1-4}alkyl;}$		
$\underline{\mathbf{R^{19}}}$ is		
(a) H,		
(b) OR^{11} ,		
(c) Oxo,		
(d) C_{1-7} alkyl which is optionally substituted by one or more R^{11}		
substituents,		
(e) C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of		
which is optionally substituted by one or more R ¹¹ substituents,		
(f) aryl optionally substituted by one or more R ⁸ , or		
(g) heteroaryl optionally substituted by one or more R ⁸ ;		
$\underline{\mathbf{R}^{20}}$ is		
(a) H,		
(b) C_{1-7} alkyl, C_{1-7} alkenyl or C_{1-7} alkynyl each of which is optionally		
substituted by one or more R ¹¹ ,		
(c) C ₃₋₈ cycloalkyl, C ₃₋₈ cycloalkenyl or C ₃₋₈ cycloalkynyl each of		
which is optionally substituted by one or more R ¹¹ ,		
(d) aryl optionally substituted by one or more \mathbb{R}^8 ,		
(e) heteroaryl optionally substituted by one or more R ⁸ , or		
(f) R^{20} and R^{19} , taken together, form- CH_2 -;		
wherein, "aryl" denotes a phenyl radical or an ortho-fused bicyclic		
carbocyclic radical having about nine to ten ring atoms in which at least one ring is		
aromatic;		
wherein, "heteroaryl" encompasses a radical attached via a ring carbon or		
ring nitrogen of a monocyclic aromatic ring containing five or six ring atoms consisting		
of carbon and 1, 2, 3, or 4 heteroatoms, selected from oxygen (-O-), sulfur (-S-),		
oxygenated sulfur such as sulfinyl (S=O) and sulfonyl (S(=O) ₂), or nitrogen $N(Z)$		
wherein Z is absent or is H, O, C ₁₋₄ alkyl, phenyl or benzyl, or a radical of an ortho-fused		
bicyclic heterocycle of about eight to ten ring atoms derived therefrom;		

het¹ is a C- or N- linked five- (5), six- (6), seven- (7), or eight- (8) membered mono- or bicyclic ring, each mono- or bicyclic ring being fully saturated or partially unsaturated, and having 1-4 heteroatoms selected from the group consisting of oxygen, sulfur, and nitrogen; het¹ being optionally substituted by 1-2 substituents selected from C_1 - C_4 alkyl, amino, C_1 - C_4 alkylamino, C_1 - C_4 alkyloxy, halogen -CN, =O, =S;

each m is independently 0, 1, or 2; and each n is independently 1, 2, or 3.

- 21. (Currently Amended) The method of claim 20 wherein said compound of claim 1-is administered to the mammal orally, parenterally, transdermally, or topically in a pharmaceutical composition.
- 22. (Original) The method of claim 20 wherein said compound is administered in an amount of from about 0.1 to about 100 mg/kg of body weight/day.
- 23. (Original) The method of claim 20 wherein said compound is administered in an amount of from about 1 to about 50 mg/kg of body weight/day.
 - 24. (Canceled)
 - 25. (Canceled)
- 26. (Currently Amended) The composition method of claim 25 20 wherein the composition comprises an enantiomerically enriched form of a compound of formula I.
- 27. (Currently Amended) The composition method of claim 26, wherein the composition comprises at least 50% of one enantiomer of a compound of formula I relative to the other enantiomer of the compound.
- 28. (Currently Amended) The compositions method of claim 27, wherein the composition comprises at least 80% of one enantiomer of a compound of formula I relative to the other enantiomer of the compound.

- 29. (Currently Amended) The compositions method of claim 27, wherein the composition comprises at least 90% of one enantiomer of a compound of formula I relative to the other enantiomer of the compound.
- 30. (Currently Amended) A <u>The method of claim 20 wherein the compound</u> selected from comprises
- (2S,4R,4aR)-4-isopropyl-2-methyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2R,4S,4aS)-2,4-diethyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2R,4S,4aS)-2,4-dimethyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2R,4S,4aS)-8-acetyl-9,10-difluoro-2,4-dimethyl-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2R,4S,4aS)-10-fluoro-2,4-dimethyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2R,4S,4aS)-2,4-dimethyl-8-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- 1,2,4,4a-Tetrahydro-2,4-dimethyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H),5'(2'H)-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2S,4R,4aR)-2-isopropyl-4-methyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2S,4R,4aR)-2-isopropyl-4-methyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2R,4S,4aS)-2,4-diisopropyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2R,4S,4aS)-2,4-dimethyl-8-(3-methyl-1,2,4-oxadiazol-5-yl)-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;
- (2S,4R,4aR)-8-acetyl-10-fluoro-2,4-dimethyl-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;

8-bromo-2,4-dimethyl-10-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;

(2R,4S,4aS)-2,4-dimethyl-8-(5-methyl-1,2,4-oxadiazol-3-yl)-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;

(2S,4S,4aS)-4-methyl-8-nitro-2-(trifluoromethyl)-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione;

4-azido-3-iodobenzyl (2R,4S,4aS)-2,4-dimethyl-2',4',6'-trioxo-1,1',2,3',4,4',4a,6'-octahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-8-carboxylate; or (2S,4S,4aS)-2,4-dimethyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione.

31. (New) The method of claim 20 wherein:

when each R_4 is H, that R_1 and R_2 are not simultaneously H, CN, or -C(O)-OCH₃ or that R_1 is not CN and R_2 is not -C(O)-OC₁₋₄alkyl;

when the compound is 1,2,4,4a-Tetrahydro-cis-2,4-dimethyl-8-nitrospiro[[1,4]oxazino[4,3-a]quinoline-5(6H), 5' (2' H)-pyrimidine]-2',4',6' (1' H,3' H)-trione that the compound is enantiomerically enriched (-) form of (2R,4S,4aS)-2,4-dimethyl-8-nitro-1,2,4,4a-tetrahydro-2'H,6H-spiro[1,4-oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione.

32. (New) The method of claim 20 wherein the compound of formula I is administered as a pharmaceutical composition, wherein the pharmaceutical composition additionally comprises a pharmaceutically acceptable carrier.

33. (New) The method of claim 4 wherein:

 R^{1} is $-C(O)R^{6}$;

 R^2 is $-C(O)R^7$;

each R⁴ is independently selected from H, F and heteroaryl optionally substituted by one or more R⁸;

each R^5 is H; R^6 and R^7 form $-N(R^{17})-C(O)-N(R^{17})-$; each R^{17} is H;

```
R<sup>20</sup> is H; and
         X is -C(H)(C_{1-4} \text{ alkyl})-O-C(H)(C_{1-4} \text{ alkyl})-.
                            The method of claim 33 wherein R^8 is C_{1-7} alkyl.
         34. (New)
                            The method of claim 13 wherein:
         35. (New)
         R^{1} is -C(O)R^{6};
         R^{2} is -C(O)R^{7};
         each R<sup>3</sup> is H;
         each R<sup>4</sup> is independently selected from H, F and heteroaryl optionally substituted
by one or more R<sup>8</sup>;
         each R<sup>5</sup> is H;
         R^6 and R^7 form -N(R^{17})-C(O)-N(R^{17})-;
         each R<sup>15</sup> is C<sub>1.7</sub> alkyl;
         each R<sup>17</sup> is H; and
         R<sup>20</sup> is H.
                            The method of claim 35 wherein R^8 is C_{1-7} alkyl.
         36. (New)
```