PAT-NO: JP02000046939A

DOCUMENT-IDENTIFIER: JP 2000046939 A

TITLE: SYSTEM AND METHOD FOR DETECTING POSITION OF WIRELESS

CARD AND STORAGE MEDIUM RECORDING POSITION DETECTION

PROGRAM

PUBN-DATE: February 18, 2000

INVENTOR-INFORMATION:

NAME COUNTRY
YAMAMOTO, HIDEAKI N/A
OTANI, YOSHIMITSU N/A
SUZUKI, TAKAFUMI N/A
CHO, KEIZO N/A
NAKAJIMA, HIDEKI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY NIPPON TELEGR & TELEPH CORP <NTT> N/A

APPL-NO: JP10218305

APPL-DATE: July 31, 1998

INT-CL (IPC): G01S013/74, H04Q007/34, G01S003/72, G01S007/42

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain a position detection system for accurately detecting a position and is capable of communication stably over the entire traveling path of a wireless card.

SOLUTION: A wireless card position detection system consists of a wireless base station 10 for transmitting electronic waves, a wireless card 20 for measuring the strength of electric field by receiving the electronic waves, a control device 30, and a database 40 storing an electric field strength data. In this case, the wireless card receives the electronic waves and divides them into vertical and horizontal polarization constituents, and measures the electric field strength. The control device compares a measurement result according to the vertical polarization constituent with the database, indexes a first group of points where the wireless card exists, at the same time compares the measurement result according to the horizontal polarization constituent with the database, indexes a second group of points where the wireless card can exist, and specifies the position of the wireless card with the product set of the first and second groups of points.

COPYRIGHT: (C) 2000, JPO

Rest Available Copy

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-46939 (P2000-46939A)

(43)公開日 平成12年2月18日(2000.2.18)

(51) Int.Cl. ⁷ G 0 1 S 13/ H 0 4 Q 7/ # G 0 1 S 3/		F I G 0 1 S 13/74 3/72 7/42	テーマコート゚(参考) 5 J O 7 O 5 K O 6 7
	42	H 0 4 B 7/26	106B
		次簡未 	請求項の数12 OL (全 14 頁)
(21)出願番号	特願平10-218305	(71)出願人 000004 日本電	
(22)出顧日	平成10年7月31日(1998.7.31)	(72)発明者 山本 : 東京都	千代田区大手町二丁目3番1号 英朗 新宿区西新宿三丁目19番2号 日本 話株式会社内
			佳光 新宿区西新宿三丁目19番2号 日本 話株式会社内
		(74)代理人 100064 弁理士	908 志賀 正武
			最終頁に続く

(54) 【発明の名称】 ワイヤレスカード位置検出システム及び方法及び位置検出プログラムを記録した記録媒体

(57)【要約】

【課題】 高精度な位置検出が可能で、ワイヤレスカードの移動経路全般にわたって安定した通信を行うことができる位置検出システムを提供する。

【解決手段】 電波を送信するワイヤレス基地局10 と、電波を受信し電界強度を測定するワイヤレスカード20と、制御装置30と、電界強度分布データが格納されているデータベース40とから構成されるワイヤレスカード位置検出システムにおいて、ワイヤレスカードは、電波を受信して垂直偏波成分と水平偏波成分とに分解し、これらの電界強度を測定し、制御装置は、垂直偏波成分による測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第1の地点群を割り出すとともに、水平偏波成分による測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第2の地点群を割り出し、第1の地点群と第2の地点群との積集合を以てワイヤレスカードの位置を特定する。

B@@@□\$@ ~86* +N□•X□■B B@□@□@@@

【特許請求の範囲】

【請求項1】 電波を送信する少なくとも1台のワイヤレス基地局と、

このワイヤレス基地局からの電波を受信し、受信した電 波の電界強度を測定する少なくとも1枚のワイヤレスカ ードと、

前記ワイヤレス基地局に接続された制御装置と、

この制御装置に接続されていて、複数の電界強度分布データが格納されているデータベースとから構成されるワイヤレスカード位置検出システムにおいて、

前記ワイヤレスカードには電波を受信するためのアンテナが設けられていて、

このアンテナは、ワイヤレス基地局から発射された電波を受信して、垂直偏波成分と水平偏波成分とに分解し、ワイヤレスカードは、垂直偏波成分と水平偏波成分とに分解された電界強度を測定し、測定結果をワイヤレス基地局を介して制御装置に返信し、

制御装置は、垂直偏波成分によって得られた測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第1の地点群を割り出すとともに、水平偏波成分によ 20って得られた測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第2の地点群を割り出し、第1の地点群と第2の地点群との積集合を以てワイヤレスカードの位置を特定することを特徴とするワイヤレスカード位置検出システム。

【請求項2】 前記ワイヤレス基地局は、時間をずらして電波を複数回発信し、

前記制御装置は、複数回発信された電波の垂直偏波成分 および水平偏波成分から割り出されたワイヤレスカード の存在しうる地点群の積集合を以てワイヤレスカードの 30 位置を特定することを特徴とする請求項1に記載のワイ ヤレスカード位置検出システム。

【請求項3】 前記ワイヤレス基地局は、送信周波数が 互いに異なる複数の電波を同時に送信し、

前記制御装置は、周波数が互いに異なる電波の垂直偏波 成分および水平偏波成分から割り出されたワイヤレスカ ードの存在しうる地点群の積集合を以てワイヤレスカー ドの位置を特定することを特徴とする請求項1または2 に記載のワイヤレスカード位置検出システム。

【請求項4】 前記制御装置が行う、電界強度の測定結 40 果とデータベースとを照合するステップは、複数の電波の垂直偏波成分と水平偏波成分とを、ワイヤレスカードの位置座標に変換するステップを有することを特徴とする請求項2または3に記載のワイヤレスカード位置検出システム。

【請求項5】 前記データベースには、垂直偏波成分と 水平偏波成分との電界強度の比に関するデータが記憶さ れていて、

前記制御装置は、垂直偏波成分と水平偏波成分との電界 と水平偏波成強度の比を計算して、前記データベースと照合し、ワイ 50 されていて、

ヤレスカードの位置を特定することを特徴とする請求項 1ないし4のいずれかに記載のワイヤレスカード位置検 出システム。

【請求項6】 電波を送信する少なくとも1枚のワイヤレスカードと、このワイヤレスカードからの電波を受信し、受信した電波の電界強度を測定する少なくとも1台のワイヤレス基地局と、

このワイヤレス基地局に接続された制御装置と、

この制御装置に接続されていて、複数の電界強度分布デ 10 ータが格納されているデータベースとから構成されるワ イヤレスカード位置検出システムにおいて、

前記ワイヤレス基地局には電波を受信するためのアンテナが設けられていて、

このアンテナは、ワイヤレスカードから発射された電波 を受信して、垂直偏波成分および水平偏波成分に分解 1.

ワイヤレス基地局は、垂直偏波成分および水平偏波成分 に分解された電界強度を測定し、測定結果を制御装置に 送り、

20 制御装置は、垂直偏波成分によって得られた測定結果を データベースと照合して、ワイヤレスカードが存在しう る第1の地点群を割り出すとともに、水平偏波成分によって得られた測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第2の地点群を割り出し、第 1の地点群と第2の地点群との積集合を以てワイヤレスカードの位置を特定することを特徴とするワイヤレスカード位置検出システム。

【請求項7】 前記ワイヤレスカードは、時間をずらして電波を複数回発信し、

が記制御装置は、複数回発信された電波の垂直偏波成分 および水平偏波成分から割り出されたワイヤレスカード の存在しうる地点群の積集合を以てワイヤレスカードの 位置を特定することを特徴とする請求項6に記載のワイヤレスカード位置検出システム。

【請求項8】 前記ワイヤレスカードは、送信周波数が 互いに異なる複数の電波を同時に送信し、

前記制御装置は、周波数が互いに異なる電波の垂直偏波 成分および水平偏波成分から割り出されたワイヤレスカードの存在しうる地点群の積集合を以てワイヤレスカー ドの位置を特定することを特徴とする請求項6または7 に記載のワイヤレスカード位置検出システム。

【請求項9】 前記制御装置が行う、電界強度の測定結果とデータベースとを照合するステップは、複数の電波の垂直偏波成分と水平偏波成分とを、ワイヤレスカードの位置座標に変換するステップを有することを特徴とする請求項7または8に記載のワイヤレスカード位置検出システム。

【請求項10】 前記データベースには、垂直偏波成分と水平偏波成分との電界強度の比に関するデータが記憶されていて

前記制御装置は、垂直偏波成分と水平偏波成分との電界 強度の比を計算して、前記データベースと照合し、ワイヤレスカードの位置を特定することを特徴とする請求項 6ないし9のいずれかに記載のワイヤレスカード位置検 出システム。

【請求項11】 少なくとも1台のワイヤレス基地局が 電波を送信し、

送信された電波を少なくとも1枚のワイヤレスカードが 受信し、

受信した電波の電界強度を測定し、

この測定結果とデータベースに格納された複数の電界強 度データとを比較し、ワイヤレスカードの位置を特定す るワイヤレスカード位置検出方法において、

前記ワイヤレスカードは、ワイヤレス基地局から発射された電波を受信して、垂直偏波成分および水平偏波成分 に分解し、分解された各偏波成分の電界強度を測定し、測定結果をワイヤレス基地局を介して制御装置に返信

制御装置は、垂直偏波成分によって得られた測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第1の地点群を割り出すとともに、水平偏波成分によって得られた測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第2の地点群を割り出し、第1の地点群と第2の地点群との積集合を以てワイヤレスカードの位置を特定することを特徴とするワイヤレスカード位置検出方法。

【請求項12】 少なくとも1台のワイヤレス基地局が 電波を送信し、

送信された電波を少なくとも 1 枚のワイヤレスカードが 受信し、

受信した電波の電界強度を測定し、

この測定結果とデータベースに格納された複数の電界強度データとを比較し、ワイヤレスカードの位置を特定するワイヤレスカード位置検出方法において、

前記ワイヤレスカードは、ワイヤレス基地局から発射された電波を受信して、垂直偏波成分および水平偏波成分に分解し、分解された電界強度を測定し、測定結果をワイヤレス基地局を介して制御装置に返信し、

制御装置は、垂直偏波成分によって得られた測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第1の地点群を割り出すとともに、水平偏波成分によって得られた測定結果をデータベースと照合して、ワイヤレスカードが存在しうる第2の地点群を割り出し、第1の地点群と第2の地点群との積集合を以てワイヤレスカードの位置を特定することを特徴とするワイヤレスカード位置検出方法を実行するための位置検出プログラムを記録した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、無線端末と基地局 50 を管理するようなシステムに用いる場合、移動途中でワ

とを用いた無線端末の位置検出システムおよび方法およ び位置検出プログラムを格納した記録媒体に関するもの である。

[0002]

【従来の技術】従来、無線端末を用いて、この無線端末の位置を検出する技術があった。具体的には、PHS(Personal Handy-phone System)や、微弱電波ワイヤレスカードを用いたものである。PHSは、通信エリアが、半径100m~数100mの範囲であることを利用して屋外での位置10検出に利用されており、徘徊癖を有する人の行動管理等に用いられている。微弱電波ワイヤレスカードを用いた位置検出は、例えば特開平9・200112号公報に開示されているように、無線基地局の通信エリア半径が約10mの範囲であることを利用して、屋内での位置検出に用いられている。

【0003】ここで、ワイヤレスカードシステムについて詳細に説明する。従来のワイヤレスカードシステムでは、ワイヤレス基地局からワイヤレスカードに信号を送り、その信号を受け取ったワイヤレスカードが肯定信号をワイヤレス基地局に返信することによって、ワイヤレスカードがワイヤレス基地局に認識される。ただし、ワイヤレス基地局からは1波しか送信されていない。【0004】このようなシステムで、例えばワイヤレスカードを持った人が部屋を移動して位置検出を行う場合、ワイヤレスカードがワイヤレス基地局から発射された電波の電界強度を測定し、この測定値をワイヤレス基地局に返信し、ワイヤレス基地局に接続されたデータベースに格納されている電界強度分布と照合して、ワイヤレス基地局からワイヤレスカードまでの距離を割り出す20というものがあった。

[0005]

【発明が解決しようとする課題】しかし、1波のみの電界強度に依存してワイヤレス基地局からワイヤレスカードまでの距離を割り出すシステムでは、情報の正確さに欠けることもあった。すなわち、電界強度の測定値には、周囲の環境による受信レベル変動によって測定誤差が発生することが避けられず、データベースに格納されているシミュレーションによる電界強度分布とかけ離れた値になる場合もあった。結果として、正確な位置検出を行うことができない場合もあった。

【0006】さらに、マルチパスによって急激に電界強度が落ち込む場所もあり、ワイヤレスカードの位置によってはワイヤレス基地局からの電波がワイヤレスカードに届かないこともある。このような場合、制御装置はワイヤレス基地局からの距離を算出することができず、ワイヤレスカードの移動途中でワイヤレス基地局とワイヤレスカードとの間の通信が途絶える可能性がある。

【0007】特に、屋内においてワイヤレスカードの移動経路を時々刻々プロットし、徘徊癖を有する人の行動

イヤレス基地局とワイヤレスカードとの間の通信が途絶 えることによって、ワイヤレスカード所持者の位置のプ ロットが困難になるといった問題がある。

【0008】本発明は、これらの問題を解決するために なされたもので、高精度な位置検出が可能で、しかもワ イヤレスカードの移動経路全般にわたって安定した通信 を行うことができる位置検出システムを提供するもので ある。

[0009]

【課題を解決するための手段】請求項1に記載の発明 は、電波を送信する少なくとも1台のワイヤレス基地局 と、このワイヤレス基地局からの電波を受信し、受信し た電波の電界強度を測定する少なくとも1枚のワイヤレ スカードと、前記ワイヤレス基地局に接続された制御装 置と、この制御装置に接続されていて、複数の電界強度 分布データが格納されているデータベースとから構成さ れるワイヤレスカード位置検出システムにおいて、前記 ワイヤレスカードには電波を受信するためのアンテナが 設けられていて、このアンテナは、ワイヤレス基地局か ら発射された電波を受信して、垂直偏波成分と水平偏波 20 成分とに分解し、ワイヤレスカードは、垂直偏波成分と 水平偏波成分とに分解された電界強度を測定し、測定結 果をワイヤレス基地局を介して制御装置に返信し、制御 装置は、垂直偏波成分によって得られた測定結果をデー タベースと照合して、ワイヤレスカードが存在しうる第 1の地点群を割り出すとともに、水平偏波成分によって 得られた測定結果をデータベースと照合して、ワイヤレ スカードが存在しうる第2の地点群を割り出し、第1の 地点群と第2の地点群との積集合を以てワイヤレスカー ドの位置を特定することを特徴とするワイヤレスカード 30 位置検出システムである。

【0010】請求項2に記載の発明は、前記ワイヤレス 基地局は、時間をずらして電波を複数回発信し、前記制 御装置は、複数回発信された電波の垂直偏波成分および 水平偏波成分から割り出されたワイヤレスカードの存在 しうる地点群の積集合を以てワイヤレスカードの位置を 特定することを特徴とする請求項1に記載のワイヤレス カード位置検出システムである。

【0011】請求項3に記載の発明は、前記ワイヤレス 基地局は、送信周波数が互いに異なる複数の電波を同時 40 に送信し、前記制御装置は、周波数が互いに異なる電波 の垂直偏波成分および水平偏波成分から割り出されたワ イヤレスカードの存在しうる地点群の積集合を以てワイ ヤレスカードの位置を特定することを特徴とする請求項 1または2に記載のワイヤレスカード位置検出システム である。

【0012】請求項4に記載の発明は、前記制御装置が 行う、電界強度の測定結果とデータベースとを照合する ステップは、複数の電波の垂直偏波成分と水平偏波成分 とを、ワイヤレスカードの位置座標に変換するステップ 50 とを、ワイヤレスカードの位置座標に変換するステップ

6 を有することを特徴とする請求項2または3に記載のワ イヤレスカード位置検出システムである。

【0013】請求項5に記載の発明は、前記データベー スには、垂直偏波成分と水平偏波成分との電界強度の比 に関するデータが記憶されていて、前記制御装置は、垂 直屑波成分と水平偏波成分との電界強度の比を計算し て、前記データベースと照合し、ワイヤレスカードの位 置を特定することを特徴とする請求項1ないし4のいず れかに記載のワイヤレスカード位置検出システムであ 10 る。

【0014】請求項6に記載の発明は、電波を送信する 少なくとも1枚のワイヤレスカードと、このワイヤレス カードからの電波を受信し、受信した電波の電界強度を 測定する少なくとも1台のワイヤレス基地局と、このワ イヤレス基地局に接続された制御装置と、この制御装置 に接続されていて、複数の電界強度分布データが格納さ れているデータベースとから構成されるワイヤレスカー ド位置検出システムにおいて、前記ワイヤレス基地局に は電波を受信するためのアンテナが設けられていて、こ のアンテナは、ワイヤレスカードから発射された電波を 受信して、垂直偏波成分および水平偏波成分に分解し、 ワイヤレス基地局は、垂直偏波成分および水平偏波成分 に分解された電界強度を測定し、測定結果を制御装置に 送り、制御装置は、垂直偏波成分によって得られた測定 結果をデータベースと照合して、ワイヤレスカードが存 在しうる第1の地点群を割り出すとともに、水平偏波成 分によって得られた測定結果をデータベースと照合し て、ワイヤレスカードが存在しうる第2の地点群を割り 出し、第1の地点群と第2の地点群との積集合を以てワ イヤレスカードの位置を特定することを特徴とするワイ ヤレスカード位置検出システムである。

【0015】請求項7に記載の発明は、前記ワイヤレス カードは、時間をずらして電波を複数回発信し、前記制 御装置は、複数回発信された電波の垂直偏波成分および 水平偏波成分から割り出されたワイヤレスカードの存在 しうる地点群の積集合を以てワイヤレスカードの位置を 特定することを特徴とする請求項6に記載のワイヤレス カード位置検出システムである。

【0016】請求項8に記載の発明は、前記ワイヤレス カードは、送信周波数が互いに異なる複数の電波を同時 に送信し、前記制御装置は、周波数が互いに異なる電波 の垂直偏波成分および水平偏波成分から割り出されたワ イヤレスカードの存在しうる地点群の積集合を以てワイ ヤレスカードの位置を特定することを特徴とする請求項 6または7に記載のワイヤレスカード位置検出システム である。

【0017】請求項9に記載の発明は、前記制御装置が 行う、電界強度の測定結果とデータベースとを照合する ステップは、複数の電波の垂直偏波成分と水平偏波成分 を有することを特徴とする請求項7または8に記載のワイヤレスカード位置検出システムである。

【0018】請求項10に記載の発明は、前記データベースには、垂直偏波成分と水平偏波成分との電界強度の比に関するデータが記憶されていて、前記制御装置は、垂直偏波成分と水平偏波成分との電界強度の比を計算して、前記データベースと照合し、ワイヤレスカードの位置を特定することを特徴とする請求項6ないし9のいずれかに記載のワイヤレスカード位置検出システムである。

【0019】請求項11に記載の発明は、少なくとも1 台のワイヤレス基地局が電波を送信し、送信された電波 を少なくとも1枚のワイヤレスカードが受信し、受信し た電波の電界強度を測定し、この測定結果とデータベー スに格納された複数の電界強度データとを比較し、ワイ ヤレスカードの位置を特定するワイヤレスカード位置検 出方法において、前記ワイヤレスカードは、ワイヤレス 基地局から発射された電波を受信して、垂直偏波成分お よび水平偏波成分に分解し、分解された各偏波成分の電 界強度を測定し、測定結果をワイヤレス基地局を介して 20 制御装置に返信し、制御装置は、垂直偏波成分によって 得られた測定結果をデータベースと照合して、ワイヤレ スカードが存在しうる第1の地点群を割り出すととも に、水平偏波成分によって得られた測定結果をデータベ ースと照合して、ワイヤレスカードが存在しうる第2の 地点群を割り出し、第1の地点群と第2の地点群との積 集合を以てワイヤレスカードの位置を特定することを特 徴とするワイヤレスカード位置検出方法である。

【0020】請求項12に記載の発明は、少なくとも1 台のワイヤレス基地局が電波を送信し、送信された電波 30 を少なくとも1枚のワイヤレスカードが受信し、受信し た電波の電界強度を測定し、この測定結果とデータベー スに格納された複数の電界強度データとを比較し、ワイ ヤレスカードの位置を特定するワイヤレスカード位置検 出方法において、前記ワイヤレスカードは、ワイヤレス 基地局から発射された電波を受信して、垂直偏波成分お よび水平偏波成分に分解し、分解された電界強度を測定 し、測定結果をワイヤレス基地局を介して制御装置に返 信し、制御装置は、垂直偏波成分によって得られた測定 結果をデータベースと照合して、ワイヤレスカードが存 40 在しうる第1の地点群を割り出すとともに、水平偏波成 分によって得られた測定結果をデータベースと照合し て、ワイヤレスカードが存在しうる第2の地点群を割り 出し、第1の地点群と第2の地点群との積集合を以てワ イヤレスカードの位置を特定することを特徴とするワイ ヤレスカード位置検出方法を実行するための位置検出プ ログラムを記録した記録媒体である。

【0021】一般に、垂直偏波成分による電界強度分布 界強度測定値をデータベースと、水平偏波成分による電界強度分布とは異なることが 分布と照合することによって知られている。本発明は、この異なる電界強度分布をデ 50 存在しうる領域を算出する。

ータベースとして、ワイヤレスカードの位置検出に利用するので、高精度な位置検出を行うことができる。また、本発明は、単一の偏波のみでは認識されなかった地点を補完するので、移動経路全般にわたって交信の途絶えない安定した通信を行うことができる。

[0022]

【発明の実施の形態】本発明の一実施形態であるワイヤレスカード位置検出システムの基本構成を図1に示す。このシステムは、ワイヤレス基地局10、ワイヤレスカ10 ード20、制御装置30、データベース40で構成されている。

【0023】ワイヤレス基地局10は、システム上の座標を表すための二次元平面50上の所定の座標位置にあり、この二次元平面50の各座標位置に電波を発射する。ワイヤレスカード20は二次元平面50上のいずれかに存在するものとする。ワイヤレスカード20には、ワイヤレス基地局10からの電波を受信し、この電波を垂直偏波成分と水平偏波成分とに分解する機能をもつアンテナと、これらの成分の電界強度を測定する機能とが搭載されている。さらに、垂直偏波成分および水平偏波成分の電界強度の測定値をワイヤレス基地局10に返送する機能を有している。

【0024】通常用いられている偏波ダイバーシティ受信においては、受信側のアンテナが、受信する垂直偏波成分と水平偏波成分のうち、受信レベルの強いほうに切り替えて良好な通信を行っている。しかし、本実施形態におけるワイヤレスカード20には、2本の直交するアンテナが設けられていて、受信した電波を垂直偏波成分と水平偏波成分とに分解し、その両方を利用する。

【0025】ワイヤレス基地局10は、制御装置30に接続されていて、この制御装置30によって制御される。また、ワイヤレスカード20からワイヤレス基地局10に垂直偏波成分および水平偏波成分の電界強度の測定値が返送されると、これらの測定値は、制御装置30に送られる。

【0026】制御装置30は、入力された電界強度測定値の垂直偏波成分および水平偏波成分を電界強度分布関数上の特定値に変換する写像を有する。電界強度を求める方法として、時間領域差分法、幾何光学的手法、有限要素法等が知られているが、測定対象となる空間の形状、障害物の有無、および使用する電波の周波数によって、最適な方法を選択するものとする。

【0027】制御装置30には、さらにデータベース4 0が接続されている。データベース40には、ワイヤレス基地局10を任意の場所に置いたときの垂直偏波成分および水平偏波成分の電界強度分布が格納されている。 制御装置30は、垂直偏波成分および水平偏波成分の電界強度測定値をデータベース40に格納された電界強度分布と照合することによって、ワイヤレスカード20が左右1つる領域を管出する 【0028】次に、本発明の実施形態の動作を説明する。なお、以下に説明する第1から第5の各実施形態は、全て図1に示した共通の構成を有する。すなわち、二次元平面50上には、ワイヤレス基地局10が1台と、ワイヤレスカード20が1枚あるものとする。また、ワイヤレス基地局10の位置は固定されており、ワイヤレスカード20は静止しているものとする。

【0029】まず、本発明の第1実施形態の動作を図2 および時刻はにおける位置座標群を参照して説明する。なお、この動作のフローチャート らはの間にワイヤレスカード20: を図7に示す。以下の説明におけるS1~S11は、こ 10 群(Xe, Ye)を算出する(S24)。 のフローチャートにおけるステップを示す。 【0035】なお、上記第2実施

【0030】ワイヤレス基地局10から電界強度 P_0 、周波数 f_0 の電波が送信される。本実施形態では、 f_0 =300MH zとする。ワイヤレスカード20はワイヤレス基地局10から送信された電波をアンテナ21で受信し、垂直偏波成分 P_0 、および水平偏波成分 P_0 、に分解する(S1)。ただし、 P_0 、 v^2 + P_0 h^2 = P_0 e^2 である。ワイヤレスカード e^2 0 はこれら二つの成分の電界強度を測定し、測定値をワイヤレス基地局 e^2 10は、返信された測定値を制御装置 e^2 30に送る(e^2 30。

【0031】制御装置30は、送られてきた測定値と、データベース40に格納されている電界強度分布とを照合し、垂直偏波成分の電界強度Povを満足する位置候補を算出し(S4~6)、さらに水平偏波成分の電界強度Pohを満足する位置候補を算出する(S7~9)。そして、これら2つの位置候補の積をとってワイヤレスカード20が存在しうる位置を算出する(S10~11)。なお、上記第1実施形態では、データベースとの照合をPov、Pohの順に行っているが、実際の使用においてはそ30の順序は任意である。

【0032】次に、本発明の第2実施形態の動作を図3を参照して説明する。なお、この動作のフローチャートを図8および図9に示す。図8のΦは、図9のΦへ続くことを示している。また、以下の説明におけるS12~S24は、これらのフローチャートにおけるステップを示す。

【0033】ワイヤレス基地局10から電界強度 P_0 、周 変数 f_0 の電波が送信される。時刻 f_1 において、ワイヤレスカード20がワイヤレス基地局10からの電波を受信 40 関数 g_2 によって垂直偏波成分 f_1 でおる。ワイヤレスカード20はこれら各成分の電 7強度を測定し(S13)、測定値をワイヤレス基地局 10を介して制御装置30に返信する(S14)。制御装置30は、送られてきた測定値と、データベース40に格納されている電界強度分布とを照合し(S14 群A(f_1 , f_1)を算出する(S15~17)。次に時刻 f_2 において、時 20039】な 刻 f_1 と同様にワイヤレスカード20が電波を受信し、垂 50 換してもよい。

直 信波成分P2v および水平偏波成分P2hの測定値が制御装置30に送られる(S18~20)。制御装置30は、送られてきた測定値と、データベース40に格納されている電界強度分布とを照合し(S20a)、電界強度P2v、P2hに対応した位置座標群(X2,Y2)を算出する(S21~23)。

1.0

【0034】制御装置30は時刻t1における位置座標群および時刻t2における位置座標群の積をとって時刻t1からt2の間にワイヤレスカード20が存在しうる位置座標群(Xo, Yo)を算出する(S24)。

【0035】なお、上記第2実施形態では時刻t1においてワイヤレスカードの位置候補を算出したあと時刻t2において位置候補の算出を行っているが、時刻t2の時点で一括して位置候補を算出してもよい。すなわち、時刻t2の時点で電界強度P1v、P1h、P2v、P2hの4変数に対応した位置座標(X0, Y0)を算出してもよい。さらに、電界強度の測定間隔を短くすればその分だけワイヤレスカードの存在しうる位置を絞り込むことができる。

【0036】次に、本発明の第3実施形態を図4を参照して説明する。なお、この動作のフローチャートを図10および図11に示す。図10の②は、図11の②へ続くことを示している。また、以下の説明におけるS25~S34は、これらのフローチャートにおけるステップを示す。

【0037】ワイヤレス基地局10から電界強度 P_0 、周波数 f_1 の電波、および電界強度 P_0 、周波数 f_2 の電波が同時に送信される。ただし、 f_1 と f_2 は互いに異なるものとする。ワイヤレスカード20では、これらの周波数の異なる2波が、アンテナ21によって、それぞれ垂直偏波成分、水平偏波成分に分解される(S25)。受信点における周波数 f_1 の電波の垂直偏波成分および水平偏波成分をそれぞれ P_1 v、 P_1 h、周波数 f_2 の電波の垂直偏波成分および水平偏波成分および水平偏波成分をそれぞれ P_2 v、 P_2 hとする。

【0038】ワイヤレスカード20は、分解された各偏波成分の電界強度を測定し、測定値をワイヤレス基地局10を介して制御装置30に返信する(S26~27)。制御装置30は、測定値 $P_{1}v$ 、 $P_{1}h$ を満足する位置座標群A(X_{1} , Y_{1})を関数 g_{1} によって算出し(S27a~30)、測定値 $P_{2}v$ 、 $P_{2}h$ を満足する位置座標群B(X_{2} , Y_{2})を関数 g_{2} によって算出する(S30a~33)。ここで、一般に、周波数が異なる電波の電界強度分布は、異なっている。そこで、これら2つの位置候補群AとBとの積をとる関数hによって、ワイヤレスカード20が存在しうる位置座標群(X_{0} , Y_{0})を算出する(S34)。

【0039】なお、上記第3実施形態では、各電界強度成分 P_{1v} 、 P_{1h} 、 P_{2v} 、 P_{2h} を関数 g_1 、 g_2 によって位置座標群 $A(X_1,Y_1)$ 、 $B(X_2,Y_2)$ に変換し、次に関数hによって位置座標 (X_0,Y_0) を求めているが、 P_{1v} 、 P_{1h} 、 P_{2v} 、 P_{2h} の4変数を関数 g_1*g_2*h によって位置座標 (X_0,Y_0) に直接変換してもよい。

【0040】次に、本発明の第4実施形態の動作を図5を参照して説明する。なお、この動作のフローチャートを図12および図13に示す。図12の**②**は、図13の**②**へ続くことを示している。また、以下の説明におけるS35~S51は、これらのフローチャートにおけるステップを示す。

【0041】まず、時刻 t_1 において、ワイヤレスカード 20はワイヤレス基地局10からの電波を受信し、垂直 偏波成分 t_1 でと水平偏波成分 t_1 でとた分解する(t_2 5)。分解された測定値 t_2 t_3 7)、制御装置 t_4 30は、送られた測定値 t_4 t_4 t_5 t_6 t_7 t_8 t_8

である。次に、比例定数 α 、 β を計算する(S38)。 ただし、

 $P_{1\nu} = \alpha P_1$

 $P_{1h} = \beta P_1$

である。そして、計算された α 、 β から、 β/α を算出する(S39)。さらに、制御装置30は、算出された β/α をデータベース40に格納されている電界強度分布と照合し(S39a)、 β/α を満足する領域を算出する(S40~42)。

【0042】次に、時刻 t_1 において、時刻 t_1 と同様の動作を行う。すなわち、ワイヤレスカード20はワイヤレス基地局10からの電波を受信し、垂直偏波成分 $P_{2\nu}$ と水平偏波成分 $P_{2\nu}$ と水平偏波成分 $P_{2\nu}$ とに分解し(S43)、これらの測定値 $P_{2\nu}$ 、 P_{2h} は制御装置30に送られる(S44 \sim 45)。制御装置30は、これらの測定値 $P_{2\nu}$ 、 P_{2h} から電界強度 P_{2} を計算し、 γ および δ を計算し(S46)、 δ / γ を算出する(S47)。ただし、

 $P_{2\nu}^{2}+P_{2h}^{2}=P_{2}^{2}$

 $P_{2\nu} = \gamma P_2$

 $P_{2h} = \delta P_2$

である。さらに、制御装置30は、算出された δ/γ をデータベース40に格納されている電界強度分布と照合し(S47a)、 δ/γ を満足する領域を算出する(S48~50)。最後に、制御装置30は、上記2つの領域の積をとることによって、時刻 t_1 から t_2 の間にワイヤレスカード20が存在しうる領域を算出する(S51)。

【0043】次に、本発明の第5実施形態の動作を図6を参照して説明する。なお、この動作のフローチャートを図14および図15に示す。図14のΦは、図15のΦへ続くことを示している。また、以下の説明におけるS52~S65は、これらのフローチャートにおけるステップを示す。

【0044】ワイヤレス基地局10から電界強度P1、周波数f1の電波、および電界強度P2、周波数f2の電波が同時に送信される。ただし、f1とf2は互いに異なるものとする。ワイヤレスカード20は、アンテナ21によっ

12

【0045】制御装置30は、ワイヤレスカード20から送信された測定値を基に、 β/α および δ/γ を計算す 300(300)。ただし、

 $P_{1}v^{2}+P_{1}h^{2}=P_{1}^{2}$

 $P_{1v} = \alpha P_1$

 $P_{1h} = \beta P_{1}$

 $P_{2v}^{2}+P_{2h}^{2}=P_{2}^{2}$

 $P_{2v} = \gamma P_2$

 $P_{2h} = \delta P_2$

である。

【0046】さらに制御装置30は、計算された β/α および δ/γ と、データベース40に格納されている電界強度分布とを照合し、 β/α および δ/γ を満足する領域を算出する(S58a \sim 64)。最後に制御装置30 は、これら2つの領域の積をとってワイヤレスカード20が存在しうる領域を算出する(S65)。

【0047】上記第4 および第5 実施形態では、垂直偏波成分および水平偏波成分の電界強度の比のみでワイヤレスカード20が存在しうる領域を算出している。従って、ある地点において電界強度 P_1 あるいは P_2 が時間的に変動しても、 β/α および δ/γ の値は不変である。電界強度は外来ノイズ等によって時間的変動を受けやすい

30 が、上記のシステムを用いることによって、電界強度の時間的変動に左右されない安定した位置検出を行うことができる。なお、上記第4および第5実施形態では、β/αおよびδ/γを制御装置30にて計算したが、この計算機能をワイヤレスカード20側に搭載してもよい。

【0048】なお、上記第1から第5の各実施形態で

は、ワイヤレス基地局10が1台かつワイヤレスカード 20が1枚の場合について述べたが、複数台のワイヤレ ス基地局や複数枚のワイヤレスカードを用いることもで きる。複数台のワイヤレス基地局を設けた場合には、発 射する電波の周波数を変えることによって上記実施形態 と同様の動作が可能である。また、複数のワイヤレス基 地局を時分割制御することによって、基地局間干渉を回 避してもよい。複数枚のワイヤレスカードを用いる場合 には、これらのワイヤレスカードからID番号を送信す ることによって、各ワイヤレスカードの認識をすること ができる。

【0049】また、上記第1から第5の各実施形態においては、各偏波成分に分離する装置をワイヤレスカードに搭載したシステムについて述べたが、ワイヤレスカー50 ドが電波を発信して、ワイヤレス基地局がこの電波を受

信する構成として、ワイヤレス基地局に各項波成分に分離する装置を搭載してもよい。この場合、ワイヤレスカードは電波を送信し、ワイヤレス基地局はワイヤレスカードからの電波を受信するのみなので、送受信装置を各1台にでき、より簡単な構成とすることができる。

【0050】また、上記第1から第5の各実施形態においてはワイヤレスカード20が静止している場合について述べたが、ワイヤレスカード20が移動する場合は上記のプロセスを繰り返すことによって、各時刻におけるワイヤレスカードの位置を検出できる。

【0051】さらに、上記のプロセスを実行するプログラムを、制御装置に接続されるディスク装置、フロッピーディスク、またはCD-ROM等の可搬記憶媒体に格納しておき、本発明を実行する際に制御装置にインストールすることによって、上記のプロセスを実現することもできる。

[0052]

【発明の効果】以上説明したように、本発明は、電波を 送信する少なくとも1台のワイヤレス基地局と、このワ イヤレス基地局からの電波を受信し、受信した電波の電 20 界強度を測定する少なくとも1枚のワイヤレスカード と、前記ワイヤレス基地局に接続された制御装置と、こ の制御装置に接続されていて、複数の電界強度分布デー 夕が格納されているデータベースとから構成されるワイ ヤレスカード位置検出システムにおいて、前記ワイヤレ スカードには電波を受信するためのアンテナが設けられ ていて、このアンテナは、ワイヤレス基地局から発射さ れた電波を受信して、垂直偏波成分と水平偏波成分とに 分解し、ワイヤレスカードは、垂直偏波成分と水平偏波 成分とに分解された電界強度を測定し、測定結果をワイ 30 ヤレス基地局を介して制御装置に返信し、制御装置は、 垂直偏波成分によって得られた測定結果をデータベース と照合して、ワイヤレスカードが存在しうる第1の地点 群を割り出すとともに、水平偏波成分によって得られた 測定結果をデータベースと照合して、ワイヤレスカード が存在しうる第2の地点群を割り出し、第1の地点群と 第2の地点群との積集合を以てワイヤレスカードの位置 を特定することを特徴とするワイヤレスカード位置検出 システムなので、垂直偏波成分および水平偏波成分の電 界強度からワイヤレスカードの存在しうる領域を算出す 40 るので、単一の電波を用いる場合よりもワイヤレスカー ドの位置をより絞り込むことができ、高精度な位置検出 を行うことができる。

【0053】さらに、このシステムを用いることによって、垂直偏波用の受信アンテナでは電波が受信できない場所を水平偏波用の受信アンテナで補完し、またその逆についても補完することができるので、ワイヤレスカードの移動経路全般にわたって交信の途絶えない安定したワイヤレス基地局/ワイヤレスカード間通信を行うこと

ができる。

【0054】また、前記ワイヤレス基地局は、送信周波数が互いに異なる複数の電波を同時に送信し、前記制御装置は、周波数が互いに異なる電波の垂直偏波成分および水平偏波成分から割り出されたワイヤレスカードの存在しうる地点群の積集合を以てワイヤレスカードの位置を特定すれば、周波数fiでは電波が届かない場所を周波数fiの電波で補完し、またその逆についても補完することができるので、ワイヤレスカードの移動経路全般にわたって交信の途絶えない安定したワイヤレス基地局/ワイヤレスカード間通信を行うことができる。

14

【図面の簡単な説明】

【図1】 本発明の一実施形態の概要を示す図である。

【図2】 ワイヤレスカードが存在しうる位置を検出する方法を示す図である。

【図3】 ワイヤレスカードが存在しうる位置を検出する方法を示す図である。

【図4】 ワイヤレスカードが存在しうる位置を検出する方法を示す図である。

20 【図5】 ワイヤレスカードが存在しうる位置を検出する方法を示す図である。

【図6】 ワイヤレスカードが存在しうる位置を検出する方法を示す図である。

【図7】 本発明の実施形態の動作を示すフローチャートである。

【図8】 本発明の実施形態の動作を示すフローチャートである。

【図9】 本発明の実施形態の動作を示すフローチャートである。

30 【図10】 本発明の実施形態の動作を示すフローチャートである。

【図11】 本発明の実施形態の動作を示すフローチャートである。

【図12】 本発明の実施形態の動作を示すフローチャートである。

【図13】 本発明の実施形態の動作を示すフローチャートである。

【図14】 本発明の実施形態の動作を示すフローチャートである。

40 【図15】 本発明の実施形態の動作を示すフローチャートである。

【符号の説明】

10 ワイヤレス基地局

20 ワイヤレスカード

21 アンテナ

30 制御装置

40 データベース

50 二次元平面

【図1】

【図2】

[図3]

【図4】

【図5】

[図6]

フロントページの続き

(72)発明者 鈴木 尚文

東京都新宿区西新宿三丁目19番2号 日本電信電話株式会社内

(72)発明者 長 敬三

東京都新宿区西新宿三丁目19番2号 日本電信電話株式会社内

(72)発明者 中嶋 秀樹

東京都新宿区西新宿三丁目19番2号 日本電信電話株式会社内

Fターム(参考) 5J070 AB01 AC01 AC02 AD06 AD15

AE09 AH33 AK22 BC06 BC08

BC14 BC29

5K067 AA23 BB33 DD44 EE02 FF03

JJ53 JJ54 KK01

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.