Application of Propositional Logic 1) (Translahng English Sentinces Kinglish language is ambiguous. Converling English sentences in to compound statements of proposition removes ambiguity. example: You are not allowed to drive vehicles if your age is less than 18 years or you have no age proof step1: Find connectives which are connecting two proposition together. Step 2: Rinami the propositions. q: You are allowed to drave vehicles or: yours age is less than 1.8 8: You have age proof [(N N 75) -> 72]

System Speutication

Translating sentences of natural language in to logical expression is required has hardware and software system.

Eg, The automated reply, Cannot besent when system is full.

P - The automated capty can be sent 9 - The file system is full

Boolean Searches

Logical Connections are used extensively in Searches of large collection of Information. Searches of Neb pages => Booken Searches from Indexes of Neb pages => Booken Searches of Booken Searches of Connective AND is used to match record, that contain both of two Search term.

Logic Puzzlus

8

Puzzles that can be solved using logical reasoning are known as logic puzzles. Its done with rule of logic.

Design of Logic Circuit

A logic aracuit recuives input signal.

Pi 1 P2 -- Pn each a bit and produce
Output signals Si 1 Sz -- Sn. each a bit.

Digital circuits can be constructed from. 3 basic circuits called gates.

P Do TP
Propres
Propre

Design of Cercuit O. (PN Zq) V 77.

2 (PV77) 1 (7PV(9V7V))

Propositional Equivalences.

A compound proposition that is always true No matter what the truth values of the propositional variable in it is called tautology.

A compound proposition that is always false is contridiction.

A compound proposition that is neither tautology or contridiction is called Configency: tautology contridiction.

P 7P PV7P PN7P T F T F F		,	√ ,	<u></u> √
F T T F	P 1	7P '	PV7P	PATP
FTTF	1	F	. T.	F
	F	T	T	F

Logical Equivalence

- * Compound proposition that have same. truth value in all possible cases are Called logically equivalent.
- The compound proposition p and a are logically equivalent if p => 9.
 is a tautology.
 - nhe notation P = 9, denotes that P and a are logically equivalent.

7(P A 9) = 7PV79

7(pva) = 7P179.

		1		•	=	
P	9	Pv9	7(pv9)	77	79	7P179
T.	T	7	F '	FFT	F	F
F	T	T	F	T	1	T

① P→9 = 7PV9

D P ν (9 Λ ν) = (P ν 9) Λ (P ν ν)

Equivalence	Name
PATEP	Identity Law
PVTET	Domination
PVP=P PAP=P	Idempotent Law
7(7P)=P	Double Negation Law
PV9 = 9VP PA9 = 9AP	Commutative Law
$(p \vee q) \vee \gamma \equiv p \vee q \vee \gamma)$ $(p \wedge q) \vee \gamma = p \vee q \vee \gamma$	Associative
PN(QNV) 7(PNQ)=7PV72 (7(PV2)=7PA72	Demorgans
	bsorphon
The state of the s	egahon.

k

	$O + I = I = (O_1)$
	More explanation on Predicate Logic (ai)
	O: John is tall.
	tall (John) -> Either true or false.
	9: Jane lores Paul.
,	Love (Jane, Paul) Love' (Paul, Jane)
	7: The teacher saw
	s: that children
	Sec (Teacher, read (children, book)) All the below three statement have same predicte
	All the below three staturion
	P: All girls love Paul (Mini)
	p: Some girls love Paul (Mini)
	Love C. girls, paul). pini sini
	P: Girls don't love tand
	Love (girlipael) Pimian ()
-	Do well Quantifiers for specific meaning of statements

1			1	0
()	11	QM.	1	hers

2)] × x x Thore exist at least one element 2 such that

Existential Quantifier

(3) Tx xxx Foi no a holds that

Negahri Quanhhim

p: All hoguists an bald.

xx (Linguist(x) → Ball(x))

q: All girls lover Pauls

42 (Girls (x) -> Love (2, paul)).

Some linguest an bald.

Joe (Imgrot (x) Bald (x1)

Some girls bre paul

Jx (girl (x) & Love (x, paul))

p: No linguishe are bald.

7 Pa (Lingust (x) -> Bald (x))

No girls love paul.

7x (Girl(x) -> Love (xipaul))

Sct of onlines that an effected.

Bruybody is happy.

Ya (Person (x) -> Happy(x))

Nobody is Happy

7x (Puson (x) -> Happy (x))

Negating Quantified Expression 7 42 P(x) = 327P(x) 7 32 Q(x) = 4x 7 Q(x)

Sigunus

A sequence is a discrete structure used to. supresent an ordered list.

1, 2, 3, 5, 8 is a sequence of five teams 1, 3, 9, 27, 81.... 3ⁿ is an infinite Sequence.

{an? -> used to describe a sequence.

example: 1 $a_n = \frac{1}{n}$

The list of terms of this sequence beginning outh as

a11 a2 1 a3, a

 $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

Geometric Progression. A geometric progression is a sequence of the form a, an, an, an-1--where mihal term a and common. ratio or are real numbus 4^{13}_{1} 12^{13}_{1} 36^{13}_{1} f(x) = 0 g(x) = 1 a = 4 a = 3. Anithmetic Progression Anithmetre Pargnession is a sequence of the form a, a+d, a+2d, a+6+1).d... Where initial term a and common difference d are real number. Quonetric progression
12 years
2000 -> 10% -> Principal Rate of Amount Interest Rend of Ist year = 2000 + 2000 × 10 = 2000 (1+10) $= 2000 \left(\frac{11}{10} \right)$ und of 2nd year = $= 2000 \left(\frac{11}{10}\right) + \frac{10}{100} \times 2000 \left(\frac{11}{10}\right)$ $= 2000 \left(\frac{11}{10}\right) \left[1 + \frac{10}{100}\right] = 2000 \left(\frac{11}{10}\right) \left(\frac{11}{10}\right) = 2000 \left(\frac{11}{10}\right)$ Amount at end of 9 years = 2000 x (11) 3

acometric Sequence.

$$2000 \times (11) + 2000 \times (11)^{2} + 2000 \times (10)^{3}$$

$$Q = 2000 \times \left(\frac{11}{10}\right) \quad \gamma = \frac{11}{10} \quad \gamma = 12$$

Amount after
$$n$$
 years = $\alpha \gamma^{n-1}$

$$= 2000 \left(\frac{11}{10}\right) \times \left(\frac{11}{10}\right)^{12-1}$$

$$A = 2000 \left(\frac{11}{10}\right)^{12}.$$

+ 6

Arthmetic Progression Bust example is honey comb. -> 1 cell X of aing 1st aing - s 6 cell 2nd ning -> 12 cell 3rd ring -> 18 all 6, 12, 18, 24, 30 Ith ring how many cells. a = 1

> a + (n-1)d. $6 + 6 \times 6 = 42$ ulls

webich term of authomatic progression

$$0 = 3$$
 $0 = 8 - 3 = 5$

$$n = \frac{80}{5} = \frac{16}{5}$$

The eight term of an AP is half its Swend turn and dworth term exceeds one third of its fourth tumby 1. Find the. fifteenth tum.

$$a_n = a + (n-1)d$$
. $a_{15} = 9$
 $a_8 = \frac{1}{2}(a_2) \rightarrow 0$ $a_{15} = a + 14d$
 $a_{11} = \frac{1}{3}(a_4) + 1 \rightarrow 2$

$$a_8 = a + 4d.$$
 $a_2 = a + d.$
 $a_8 = \frac{1}{2} \times a_2.$

$$a_8 = \frac{1}{2} \times a_2.$$

$$a + 7d = \frac{1}{2}(a+d)$$

$$a + 10d = \frac{1}{3}(a+3d)+1$$

$$3a + 30d = a + 3d + 3$$

$$2a + 27d = 3 \longrightarrow G$$

$$a + 13d = 0 \longrightarrow G$$

$$9^{\times 2} 20 + 26d = 0 \rightarrow 6$$

$$-1d = -3$$
 $d = 3$

$$Q + 13 \times 3 = 0 \qquad \boxed{Q = 3}$$