Departamento de Engenharia Informática e de Sistemas

Metodologias de Otimização e Apoio à Decisão 1º Teste de Avaliação

Data: 26 de novembro de 2020 Duração: 1h 30m

Nota: <u>Apresente todos</u> os <u>cálculos</u> que efetuar, assim como, <u>todos</u> os <u>comentários</u>, <u>justificações</u> ou <u>conclusões</u> que achar convenientes.

1. Considere o seguinte problema de programação linear:

Maximizar
$$z = 2x_1 - x_2$$

sujeito a
 $x_1 + 2x_2 \ge 4$ (1)
 $3x_1 + x_2 \le 3$ (2)
 $x_1 \ge 0, x_2 \ge 0$

Considerando x₃ e x₄ as variáveis *surplus* e *artificial* da restrição funcional (1), e x₅ a variável *slack* da restrição funcional (2), o quadro ótimo do Simplex é:

	Ci	2	-1	0	-M	0	
ΧB	C _B \ X _i	X 1	X 2	Х3	X 4	X 5	b
X ₂	-1	0	1	-3/5	3/5	-1/5	9/5
X 1	2	1	0	1/5	-1/5	2/5	2/5
zj-cj		0	0	1	M-1	1	-1

a) Para cada uma das seguintes alterações no problema inicial determine, efetuando um estudo de <u>pós-otimização</u>, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes de:

[1.75 valores]

1) Alteração da função objetivo para Maximizar z = 3x₁ + x₂;

[1.50 valores]

2) Alteração do **vetor dos coeficientes da variável x**₁ nas restrições de $\begin{bmatrix} 1\\ 3 \end{bmatrix}$.

- [1.75 valores] b) Determine, efetuando um estudo de <u>análise de sensibilidade</u>, para que intervalo de b₂ (coeficiente do termo independente da 2ª restrição) a base ótima apresentada atrás continuará ótima.
 - **2.** Considere o seguinte problema de programação linear inteira mista:

Maximizar
$$z = x_1 + 2x_2 + x_3 + x_4$$

sujeito a
 $x_1 + 2x_2 + x_3 - x_4 \le 6$ (1)
 $2x_1 - x_2 + 2x_3 + x_4 \le 6$ (2)
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$
 x_2 e x_3 inteiros

Considerando x₅ e x₆ as variáveis *slack* das restrições (1) e (2), respetivamente, suponha que se aplicou o algoritmo de Gomory para PLIM a este mesmo problema e que no final do 1º passo, se obteve o quadro ótimo seguinte:

		Ci	1	2	1	1	0	0	
	ΧB	c _B \ x i	X 1	X ₂	X 3	X 4	X 5	X 6	b
	X 2	2	3	1	3	0	1	1	23/2
_	X ₄	1	5	0	5	1	1	2	17
zj-cj		10	0	10	0	3	4	40	

[3.00 valores]

a) Retire as suas conclusões e se achar necessário prossiga com o 2º passo do referido algoritmo, de forma a resolver o problema apresentado;

[0.50 valores]

b) Acha que o método de arredondamento funcionaria neste problema? Justifique.