len I breit 1 Usporiadané okruhy

Dominik Cholax

Bez fažkostí sa môžeme presvedčiť, že (A.) a (A.) spĺňajú podmienky lemy 1.2.2 (Urobte to!) Zrejme (A.) = (A.) Na základe vety 1.2.4 vidime, že okruh Zlý Sa d

spôsobmi. Usporiadanie s pozitívnymi prvkami A; usporiadať dvoma rozličnými voláme <u>lexikografickým</u> a to druhé <u>antilexikografickým</u> Skôr ako sa budeme podrobnejšie zaoberať usporiadanými obormi integrity,

zavedieme ďalší pojem.

Definicia 1.2.4. Zobrazenie f(A)—A medzi usporiadanými okruhmi A +, A -, A a A : A

$$f(x + y) = f(x) + f(y)$$
 a $f(xy) = f(x) \cdot f(y)$ (2)

$$\underline{x} < \underline{y}$$
 implikuje $f(\underline{x}) < f(\underline{y})$ (3)

Ak f je naviac prosté zobrazenje, tak f nazývame <u>vnorením</u> do do Usporiadané okruhy do do volame <u>izomorfnými</u>, ak existuje izomorfné zobrazenie medzi do k. j. f je <u>bijektívny homomorfizmus</u>.

Veta 1.2.5. Nech (1) +, ·, <) je usporiadaný obor integrity. Nech g je jednotkový prvok v (2) Potom zobrazenie

je vnorením usporiadaného oboru integrity celých čísel Z (s obvyklým usporiadaném) do daného usporiadaného oboru integrity (a)

Dôkaz: Pripomeńme si, že ak n je celé číslo, tak ne je prvok, ktorý bol definovaný (v súlade s definiciou mocniny prvku grupy s multiplikatívnym zápisom) takto:

a) pre prirodzené číslo n indukciou:

$$\underline{1}\underline{e} = \underline{e}$$
 $(\underline{n+1})\underline{e} = \underline{n}\underline{e} + \underline{1}\underline{e}$,

b) pre n=0 rovnosťou 0e=0,
 c) pre záporné celé číslo n rovnosťou ne=-(-n)e.

Dokážte, že n je okruhový homomorfizmus, t. j. (n+m)e = ne + me a (nm)e = -(ne)(me) pre každé n $m\in \mathbb{Z}$ (tobili sme to už v prvom diele tejto knihy). ne, že n je prosté zobrazenie. Teraz stačí už len ukázať, že Ker n = (0) (prečo?). Predpokladajme, že by existovalo 0 ≠ n ∈ Ker n. Pretože Ker n. je ideálom okruhu Z, tak aj - n∈Ker n. Z toho vidime, že môžeme dokonca predpoklaontohou \underline{c}_n (a. a. $\underline{a}_n = \underline{n} \in \text{Ket } \underline{n}$). Lono visime, \underline{c} mozeme dokonca predpoktada $\underline{n} \in \text{Ne}(\underline{n})$ zmamená $\underline{n} \in \underline{n}$ 0, ėp v spore s charakteristikou o okruhu $\underline{0}$ (veta 1.2.2). Teda Ker $\underline{n} = [\underline{0}]$ a \underline{n} je prosté zobrazenie. Ostáva ešte dokázaí, že \underline{n} je izotónnym zobrazenim. Vezmime celé čísla $\underline{n} < \underline{m}, \underline{1}, \underline{1}, \underline{m} - \underline{n} > \underline{0}$. Ale $\underline{m} = -\underline{n} \in (\underline{m} - \underline{n})\underline{e}$, lebo \underline{n} je okruhový homomorfizmus. Pretože $\underline{e} > \underline{0}$

1.2 Usporiadané okruhy a m-n je prirodzené číslo, tak

0 < e < e + e = 2e < ... < (m - n)e = e + ... + e((m - n)-krát)

Vidime, $\tilde{z}e \underline{m}e - \underline{n}e > 0$, čo implikuje $\underline{n}e < \underline{m}e \vee A$ i \underline{n} je izotónnym zobrazením. Záverom sme dokázali, $\tilde{z}e \underline{n}$ je vnorením. D Dôsledok. Obor integrity celých čísel \underline{z} sa dá usporiadať len jediným záchovené

spôsobom.

Dôkaz: Predpokladajme, že ⊏ je reláciou usporiadania na Ztak, že (Z; +.·, ⊑

tvorí usporiadaný obor integrity. Podľa predchádzajúcej vety mámo yporenie 1 Souleste $\underline{\eta}: \underline{n} \mapsto \underline{ne} = \underline{n} \underline{1} = \underline{n}$

 $(Z_1 + \dots, <)$ do $(Z_1 + \dots, \subseteq)$. Pretoże <u>n</u> je identické zobrazenie, <u>n < m</u> implikuje <u>n = m</u> (lema 1.1.1). Obrátene, majme $\underline{r} = \underline{s}$. Zrejme $\underline{r} + \underline{s}$. Potom alebo $\underline{s} < r$, alebo $\underline{s} < r$, z trichotómie usporiadania < . Lenže $\underline{s} < r$ by znamenalo $\underline{s} \subseteq r$, čo by bol spor s r s. Ostáva len r < s. Teda relácia s rovná relácii < . s. Na opís usporiadaných oborov integrity Z a Q budeme potrebovať ďalšie dôležité

Definicia 1.2.5. Hovoríme, že usporiadaný okruh $(A; +, \cdot, <)$ je <u>archimedovsky usporiadaný</u>, ak ku každým dvom prvkom $0 < \underline{a} < \underline{b}, \underline{a}, \underline{b} \in A$ existuje také prirodzené číslo \underline{n}_i že $\underline{b} < \underline{n}\underline{a}$.

Definícia 1.3.6. Aspoň dvojprvková usporiadaná množina (\underline{T} ; <) sa nazýva husto usporiadaná, ak $x, y \in T$ a x < y implikuje existenciu $z \in T$ s vlastnosťou

Lema 1.2.3. Nech usporiadané okruhy $(x, +, \cdot, \cdot)$ a $(x, +, \cdot, \cdot)$ su izomorfné. Ak je z nich archimedovsky usporiadaný jeden, druhý je tiež. Dôkaz: Nech (x, \cdot) je izomorfizmus usporiadaných okruhov. Predpokladajme, že (x, \cdot) je archimedovsky usporiadaný. (Ak by bol taký (x, \cdot) uvánu urobime pre (x, \cdot) (x, \cdot) je vyánu urobime pre (x, \cdot) (x, \cdot) Najme (x, \cdot) Potom existujú (x, \cdot) (x, \cdot) V tak, že (x, \cdot) (x, \cdot) Potom (x, \cdot) Potom (x, \cdot) Pretože (x, \cdot) je izomorfizmus, tak (x, \cdot) Potom (x, \cdot) Pretože (x, \cdot) Pre

riadaný. □ Veta 1.2.6. Usporiadané obory integrity Z a Q s obvyklými usporiadaniami sú archimedovsky usporiadané. Q je husto usporiadané.

Dôkaz: Zrejme $1 \le n < m$ implikuje m < (m+1)n v okruhu Z. Teda Z je archimedovsky usporiadaný obor integrity. Predpokladajme, že racionálne čísla P

a $\frac{r}{s}$ máme napísané vo vykrátenom tvare. Nech $0 < \frac{r}{q} < \frac{r}{s}$ v usporiadanom obore integrity 0. Na základe príkladu 1.1.1 je to ekvivalentné s 0 < r < r 1.