Laboratorium Podstaw Elektroniki					
Kierunek	Specjalność Rok studiów Symbol grupy lab.				
Informatyka	_	I	<i>I3</i>		
Temat Laboratorium	·	Numer lab.			
Układy Diodowe					
Skład grupy ćwiczeniowej oraz numery indeksów					
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)					
Uwagi			Ocena		

1 Charakterystyka stałoprądowa dla diody złączowej

1.1 Cel zadania

Zbadanie charakterystyki stałoprądowej dla diody złączeniowej.

1.2 Przebieg zadania

Rzeczywista wartość rezystancji rezystora $1k\Omega$ wyniosła $0.977k\Omega$.

1.2.1 Kierunek przewodzenia

Rysunek 1: Układ do badania charakterystyki statycznej diody (Kierunek przewodzenia)

U_{in}	[V]	U_R $[V]$	$U_D = U_{in} - U_R [V]$	$I_D = \frac{U_R}{R}$ $[mA]$
	0.5	0.102	0.398	0.104
	1	0.553	0.447	0.566
	1.5	1.017	0.483	1.041
	2	1.551	0.449	1.588
	2.5	2.063	0.437	2.112
	3	2.495	0.505	2.554
	3.5	3.048	0.452	3.12
	4	3.518	0.482	3.601
	4.5	3.995	0.505	4.089
	5	4.495	0.505	4.601

Tablica 1: Tablela przedstawiająca wyniki pomiarów i obliczeń dla kierunku przewodzenia

1.2.2 Kierunek zaporowy

Rysunek 2: Układ do badania charakterystyki statycznej diody (Kierunek zaporowy)

U_{in}	[V]	U_R	[mV]	$U_D = U_{in} - U_R$	[V]	$I_D = \frac{U_R}{R}$	[mA]
	5	_	0.003		5		0
	10	_	0.001		10		0
	15	_	0.002		15		0

Tablica 2: Tablela przedstawiająca wyniki pomiarów i obliczeń dla kierunku zaporowego

1.2.3 Przebieg charakterystyki $I_D=f(U_D)$ dla diody spolaryzowanej w kierunku zaporowym i przewodzenia

Przebieg charakterystyki $I_D = f(U_D)$ dla diody spolaryzowanej w kierunku zaporowym i przewodzenia.

Wartości napięcia zasilania źródła U_{in} V

2 Badanie prostownika jednopołówkowego

2.1 Cel zadania

Badanie prostownika jednopołówkowego.

2.2 Przebieg zadania

Rzeczywista wartość rezystancji rezystora $10k\Omega$ wyniosła $9.899k\Omega$.

Rysunek 3: Układ pomiarowy dla badania własności prostownika jednopołówkowego

Rysunek 4: Kształat przebiegu napięcia na wejściu i wyjściu prostownika przy częstotliwości rzebiegu wejściowego równej 50Hz

Przy częstotliwości wejściowej równej 50Hz amplituda napięcia przebiegu wejściowego wyniosła 1.94V, a 1.24V na przebiegu wyjściowym . Różnica między przebiegiem wejściowym oraz wyjściowym wyniosła 0.70V i jest spowodowana stratą napięcia na diodzie.

Rysunek 5: Układ pomiarowy dla badania własności prostownika jednopołówkowego

R $[\Omega]$	C_f [μF]	$U_{R(DC)}$ [V]	$U_{R(AC)}$ [V]	$U_{R(pp)}$ [V]
220	2.2	0.434	0.579	1.560
2200	2.2	0.810	0.628	2.000
2200	22	1.564	0.163	0.680
220	22	0.621	0.462	1.440

Tablica 3: Tabela wyników

Rysunek 6: Oscylogram dla $R=200\Omega$ i $C_f=2.2\mu F$

Rysunek 7: Oscylogram dla $R=2200\Omega$ i $C_f=2.2\mu F$

Rysunek 8: Oscylogram dla $R=2200\Omega$ i $C_f=22\mu F$

Rysunek 9: Oscylogram dla $R=200\Omega$ i $C_f=22\mu F$

2.3 Wnioski

Wraz z wzrostem pojemności filtrującej C_f dla tych samych oporników, napięcie międzyszczytowe tętnień wzrasta.

3 Diody świecące

3.1 Cel zadania

Badanie diod świecących.

3.2 Przebieg zadania

Rysunek 10: Schemat układu pomiarowego do badania diod świecących

Rysunek 11: Zdjęcie świecących diod przy napięciu zasilania 5V

Rysunek 12: Zdjęcie świecących diod przy napięciu zasilania 10V

[V]	D_1	[mV]	(green)	D_2	[mV]	(red)
5			2041			1724
10			2150			1846

Tablica 4: Tabela prezentująca wyniki

3.3 Wnioski

Wraz z wzrostem spadków napięć na diodach diody świecą jaśniej.

4 Wyświetlacz LED

4.1 Cel zadania

Badanie siedmosegmentowego wyświetlacza LED.

4.2 Przebieg zadania

fritzing

Rysunek 13: Schemat zrealizowanych połączeń

Rysunek 14: Na zdjęciu widać zdjęcie wyświetlacza 7-elementowego pokazującego cyfrę 1

Literatura

- [1] S. Bolkowski, *Teoria obwodów elektrycznych* , ser. Elektrotechnika teoretyczna. Wydawnictwa Naukowo-Techniczne, 1986,
- [2] P. Horowitz and W. Hill, Sztuka elektroniki. WKiŁ, 2003, vol. 1.
- [3] D. Halliday, R. Resnick, and J. Walker, *Podstawy fizyki*. PWN, 2003, vol. 3.

- [4] J. Watson, Elektronika. WKiŁ, 1999.
- [5] Z. Nosal and J. Baranowski, Układy elektroniczne. WNT, 2003.

Spis treści

1	Cha	Charakterystyka stałoprądowa dla diody złączowej								
	1.1	1.1 Cel zadania								
	1.2	Przebieg zadania	1							
		1.2.1 Kierunek przewodzenia	1							
		1.2.2 Kierunek zaporowy	2							
		1.2.3 Przebieg charakterystyki $I_D = f(U_D)$ dla diody spolaryzowanej w kierunku zaporowym i								
		przewodzenia	2							
2	Bad	anie prostownika jednopołówkowego								
	2.1	Cel zadania	3							
		Przebieg zadania	3							
	2.3	Wnioski	6							
3	Dioc	dy świecące	6							
	3.1	Cel zadania	6							
	3.2	Przebieg zadania	6							
	3.3	Wnioski	8							
4	Wyś	świetlacz LED								
	4.1	Cel zadania	8							
	4.2	Przebieg zadania	9							