Problem plecakowy	(Knapsack problem - engl.)
Many: 1) "plecak" ma mak	symalna wages (allo pojemność) Wmax każdego przedmistu wiadomo vages w: i jego ilość maksymalnam:, i-1.2,, n.
jego cenes C; jego a	sage, w: i jego ilość maksymalna, n:, i=1,2,,n.
gólng	Decyzyjny
Trzeba znależć taki wektor (K, kz,, kn),	Trzela znależó taki wektor (ks, kz,, kn),
Ograniczenia	gdzie k; = 0 albo ki = 1, i=1,2,,n.
$\int O \leq k_i \leq m_i$ $\sum_{i=1}^{n} k_i w_i \leq W_{max}$	Ograniczenie Zikiwi Z Wmgx
	Janie C = Tkici -> max

Algoryton zahtanny 1 500566 Posortoneé predmiety wg. cen $C_1 \ge C_2 \ge \cdots \ge C_n$ Posortować przedmioty wg. wag 2 spossil W₂ ≤ W₂ ≤ ... ≤ W₂

 $\frac{3}{2}$ sposse Posordowae' przednioty wg. opłacalności $\frac{C_1}{W_1} \gg \frac{C_2}{W_2} \sim \dots \gg \frac{C_n}{W_n}$

Algoryam (zahtanny) 1) Posortowae przedmisty wg. jednego z 3 sposobów 2) Dla wszystkich przedmiodów (for i = 1 to n) 2a) zhalezé ilosé i-tego przedmiotu tak, żely UEK; Em: i k; W; E Wmax 26) Wmax = Wmax - kiwi (ile miejsca zostato?) 20) i = i+1 i wiscié na 2a) 3) (= 57kici - cena Wyniki (ki, kz, .., k) -ilości przedmiotów () - cena

Przykład Wmax=10 Mamy 6 przedmistów, kasre opisane w czarnej części tablicy																			
14	zykt	ad	Wma	x=10)	Mame) 6	biseq	te;ml	خس, ا	K438	و ه	isa.	ve m	1205	nej c	₹esc i	+a6(10	y
	P.	Ci	wi	0	0	2	3 6	9	5	G	70	0	9	0				,	D
	P	75	7	0	0	0	0	0	0	0	75	75	75	75	285	5)-		aksyma	(ua
	P2	150	8	0	0	0	0	0	0	0	75	150	150	150	(0		ceva 11	20	, _
	Ps	250	6	0	0	0	0	0	9	250	250	250	250	250	()	ue,	k+05	U10/	
	P4			0	0	0	0	35	35	250	250	250	250	285					
		10	3	0	0	0	10	35	35	250	250	250	260	285					
	PG	100	9	0	0	0	13	35	35	250	2 50	250	160	285					
		-					(0)				16	50	(2	50+1	7				

Niech Ti, - elementy tablicy, i=0,1,2,..., N, j=0,1,2,..., Wmax Realizacia 1) Tij = Odla i=0 i Tij=0 dla j=0 2) Dla wszystkich przedmiotów (for i = 1 to n) Dla wszystkich wag maksymalnych (for j-1 to Wnex) Jeśli Wi & j Włedy Tij = max { Tij; Ci+ Tij,j-vi} inacres Tij=Ti-s,j Zeby znaleží jakie przedmioty zostaty wybrane, trzeba zbudować dodatkowa tellice Kis, i=0.1,..., y=0,1,..., Wmax 1) Kij= Odla (=0, Kij= odla j=0 2) Dla wszystkich przedwiodów Dla oszystkich wag maksymalnych Jeśli (vi≤j) i (Ti-s; < C; + Ti-s; -wi) wtedy Kij= 1 inaczej Kij= O

Zeby wyprintować numery wybranych przedmiotów 1) j = Wmax 2) for i=n downto 1 (licznik i zmniejsza się 6d n do 1) jeśli Kij = 1

Wtesy a) Print (i) (i-ty przednist

B) j=j-wi

B) j=j-wi