Portfolio Selection Harry Markowitz (1452)			
5. Introduction - Portfolio selection can be br	othen down ware two phases		
1) Predictions of asset returns			
2) Selection of assets			
- Assertion: investors should attemp expected return and minimize			
5, On Diversification - The assertion above without consid	Lewiset was found to desirable lead to		
	nd place all their investments in the		
shape security with the highest			
Analy House R . Z Z dit Yi X	where: di, s discount rate for asset i ar		
= Ž X Ž dit A:t	where: di, a discount rate for amet i ar		
$R_i = \xi_i d_i v_i$ Thus, $R = \sum X_i R_i$	fit veturn of i at t Xi weight of amet i in portfolio		
Assuming ZX1 = 1, R is a weighted		. I	
Is any Ran for a = 1th,			
then max R is any portfolio when			
Thus, in no case is a divenified for that	io aphysas		
S, The E-V Rule			
- Investors face a trade-off between			
* Ekicient partfolios ave those that a specifical variance or minimize	waximize expected veturns at		
return.			
- It is an 'exception' to see a dive	_ _ _ _ _ _ _ _ _ _		
maximizes expected return and	MINIMITED VANIANIE.		
Sy Mattematical Statistics			
- Random Variable: Y can take on 4.			
- Expected Value: ELY] = P.4, -P.42 + Variance: V = P.(4,-E)2 + P.(4,-E)2 +			
- Standard Deviation: 0=1V			
- Coeficient of Variation FE			
- Random Variable: Linear Combination of P-a, R, + of R2 +			
- Expected Value : E[2] = a. E[2.] + a. E[2.] • « « [[2]		
- Variance: 1) Covariance: O; = E			
3) Variance: V(R)=			
	Ž, Ž, a,a, o,		
Sr Ellieut Frontier			