Augment-and-Conquer Negative Binomial Processes

Mingyuan Zhou and Lawrence Carin

Department of Electrical & Computer Engineering Duke University, Durham, NC 27708, USA

NIPS, Lake Tahoe, December 05, 2012

- We view mixture modeling as a count-modeling problem
 - Number of words assigned to topic k in document j (we are modeling a $K \times J$ count matrix in a mixed-membership model)
- ▶ The NB distribution $x \sim NB(r, p)$ can be augmented as
 - ▶ a gamma-Poisson mixture distribution
 - ▶ a compound Poisson distribution
- We discover a Poisson-logarithmic bivariate count distribution The joint distribution of the customer count and table count are equivalent:

Draw NegBino(r, p) customers

Assign customers to tables using a Chinese restaurant process with concentration parameter *r*

Draw Poisson(--rln (1 -- p)) tables

Draw Logarithmic(p) customers on each table

Poster: W31

- ▶ The NB process $X \sim \mathsf{NBP}(G_0, p)$ augmented as $X \sim \sum_{t=1}^{L} \mathsf{Log}(p), \ L \sim \mathsf{PP}(-G_0 \ln(1-p))$ is equivalent in distribution to $L \sim \mathsf{CRTP}(X, G_0), \ X \sim \mathsf{NBP}(G_0, p).$
- ▶ Gamma-NB Process: $X_j \sim \mathsf{NBP}(G, p_j), \ G \sim \mathsf{GaP}(c, G_0)$
- ▶ Beta-NB Process: $X_j \sim \text{NBP}(r_j, B), \ B \sim \text{BP}(c, B_0)$
- ▶ Marked-BNBP: $X_j \sim \text{NBP}(R, B), (R, B) \sim \text{MBP}(c, G_0, B_0)$

Table: The negative binomial process family: $X_j(\omega_k) \sim NB(r_{(j,k)}, p_{(j,k)})$.

Algorithms	r_k	rj	p_k	p j	π_k	Related Algorithms
NB-LDA		√		√		NMF, LDA, Dir-PFA
NB-HDP	√			0.5		HDP, DILN-HDP
NB-FTM	√			0.5	√	FTM, S γ Γ -PFA
Beta-NB		√	√			Beta-Geometric, BNBP
Gamma-NB	√			√		CRF-HDP
Marked-Beta-NB	√		√			BNBP

Figure: Distinct sharing mechanisms and model properties are evident between various NB processes, by comparing their inferred parameters.

Figure: Comparison of per-word perplexities between various algorithms.