Name:

MATH 321: Homework 15

Due : Turn in a hard copy, neat and stapled.

1. An actuary determines that the annual number of tornadoes in counties X and Y are jointly distributed as follows:

$\begin{bmatrix} x \\ y \end{bmatrix}$	0	1	2	3
0	.12	.06	.05	.02
1	.13	.15	.12	.03
2	.05	.15	.10	.02

- (a) Construct pmf tables for the following conditional random variables: $X \mid Y = 1$ and $Y \mid X = 2$.
- ** Round to 2 decimals.
- (b) Find the following conditional probabilities:

$$P(X \ge 1 \mid Y = 1), P(X + Y \le 2 \mid Y = 1) \text{ and } P(Y^2 \le 2 \mid X = 2).$$

2. Let (X,Y) be a bivariate continuous random vector with joint pdf

$$f(x,y) = \frac{1}{4}(3x^2 + 2 - y)$$
 for $0 \le x \le 1, 0 \le y \le 2$

Find the conditional expected value $E(X^3 \mid Y = 0.6)$.

3. The stock prices of two companies at the end of any given year are modeled with random variables X and Y that follow a distribution with joint density function

$$f(x,y) = 2x$$
 for $0 < x < 1, x < y < x + 1$

Find the conditional variance $V(Y \mid X = x)$.

Select answers

1. (a)

(b)
$$P(X \ge 1 \mid Y = 1) = 0.70$$
, $P(X + Y \le 2 \mid Y = 1) = 0.65$ and $P(Y^2 \le 2 \mid X = 2) = 0.63$

- 2. $E(X^3 \mid Y = 0.6) = 17/48$
- 3. $V(Y \mid X = x) = 1/12$