ESERCIZI PER IL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18

DISPENSA 3

Nota: gli esercizi asteriscati sono un po' più difficili degli altri.

- (1) Dimostrare che se $f: X \subset \mathbb{R} \to \mathbb{R}$ è strettamente crescente in X, allora $f^{-1}: \mathrm{Imm}(f) \to X$ è strettamente crescente. Analogamente, se f è strettamente decrescente, allora f^{-1} è strettamente decrescente.
- (2) Dimostrare che se $f: X \to Y$ e $g: Y \to Z$, con $X, Y, Z \subset \mathbb{R}$, sono suriettive, allora $X_0 = X$ e $g \circ f: X \to Z$ è suriettiva (X_0 è il dominio della composizione, come definito in aula).
- (3) Prima trovare il "dominio naturale", poi usare il risultato del punto precedente per trovare l'immagine delle seguenti funzioni:

$$e^{\sin x}$$
, $e^{\tan x}$, $\log_{10}(\sqrt{x}+1)$, $\arctan(\cos(x))$, $\tan\left(\frac{\pi}{4}\sin(x)\right)$.

(4) * Dimostrare usando l'induzione che per ogni numero $q \neq 1$

$$\sum_{k=0}^{n} q^k = \frac{q^{n+1} - 1}{q - 1}.$$

(5) Dimostrare usando (la piccola variante del) principio d'induzione che

$$n! > 3^{n-2}$$

per ogni $n \geq 2$.

(6) Scrivere come composizione di funzioni elementari e trovare il "dominio naturale" delle seguenti funzioni di variabile reale:

$$\sqrt{|x+3|-1}$$
, $\frac{1}{|x+1|}$, $\log_{\frac{1}{2}}(2|\sin x|-1)$, $\ln\left(\frac{|x-3|}{x^2-3x+2}\right)$.

- (7) Trovare l'immagine delle prime due funzioni dell'esercizio precedente.
- (8) Mostrare con la definizione che

$$\lim_{n \to +\infty} \frac{2n+3}{n-1} = 2, \qquad \lim_{n \to +\infty} \frac{n^2}{n+1} = +\infty,$$
$$\lim_{n \to +\infty} e^{n^2} = +\infty, \qquad \lim_{n \to +\infty} \log_3 \left(\frac{1}{n}\right) = -\infty.$$