SEQUENCE LISTING

```
<110> Caskey, C. Thomas
         Shumaker, John
         Metspalu, Andres
   <120> PARALLEL PRIMER EXTENSION APPROACH TO
     NUCLEIC ACID SEQUENCE ANALYSIS
   <130> 2875.1001-007
   <150> US 08/564,100
   <151> 1994-06-22
    <150> SE 9302152-5
    <151> 1993-06-22
    <160> 22
    <170> FastSEQ for Windows Version 4.0
    <210> 1
    <211> 30
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> polynucleotide of interest
                                                                        30
    <400> 1
    gatagcaatc gcttacggta atccggcctg
    <210> 2
1
    <211> 10
     <212> DNA
    <213> Artificial Sequence
     <220>
     <223> Oligonucleotide primer
                                                                         10
     <400> 2
     gatagcaatc
     <210> 3
     <211> 10
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Oligonucleotide primer
                                                                         10
      <400> 3
     atagcaatcg
      <210> 4
      <211> 10
      <212> DNA
```

ij.

Ĭd

T

L

```
<213> Artificial Sequence
    <223> Oligonucleotide primer
    <400> 4
                                                                         10
    tagcaatcgc
    <210> 5
    <211> 10
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Oligonucleotide primer
    <400> 5
                                                                          10
    agcaatcgct
    <210> 6
    <211> 10
    <212> DNA
    <213> Artificial Sequence
    <223> Oligonucleotide primer
|=L
ļ-h
     <400> 6
-ţ=
                                                                          10
     gcaatcgctt
T
     <210> 7
     <211> 10
     <212> DNA
izb
     <213> Artificial Sequence
ļsb
] ala
     <220>
     <223> Oligonucleotide primer
W
<400> 7
                                                                           10
     caatcgctta
     <210> 8
     <211> 10
      <212> DNA
     <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 8
                                                                           10
      aatcgcttac
      <210> 9
      <211> 10
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
```

	<400> 9	10
	atcgcttacg	10
	<210> 10	
	<211> 10	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Oligonucleotide primer	
	<400> 10	
	tcgcttacgg	10
	<210> 11	
	<211> 10	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Oligonucleotide primer	
{****	<u> </u>	
taal . 17%	<400> 11	1.0
	cgcttacggt	10
	<210> 12	
}	<210> 12 <211> 10	
	<212> DNA	
-	<213> Artificial Sequence	
124	10.10	
n	<220>	
5 i	<223> Oligonucleotide primer	
ļuk	.400. 12	
[=	<400> 12 gaatgccatt	10
	gaacgecace	
Ų.	<210> 13	
	<211> 10	
	<212> DNA	
,	<213> Artificial Sequence	
	.220.	
	<220> <223> Oligonucleotide primer	
	(223) Oligonacicociae primor	
	<400> 13	
	aatgccatta	10
	<210> 14	
	<211> 10	
	<212> DNA <213> Artificial Sequence	
	ZIDV MICILIOTAL BOGACHOO	
	<220>	
	<223> Oligonucleotide primer	
	<400> 14	10
	atgccattag	10
	<210> 15	
	(210) 13	

	<211> 10	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Oligonucleotide primer</pre>	
	2237 Oligonaciosias Films.	
	<400> 15	
	tgccattagg	10
	.210. 16	
	<210> 16 <211> 10	
	<212> DNA	
	<213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
	<2235 Oligonacieocide primer	
	<400> 16	
	gccattaggc	10
ini ini	<210> 17	
.A	<211> 10 <212> DNA	
1.1	<213> Artificial Sequence	
<u></u>		
lab	<220>	
	<223> Oligonucleotide primer	
	<400> 17	
Ţ1	ccattaggcc	10
ŧ		
į=L	<210> 18 <211> 10	
ļ-k	<212> DNA	
l=L	<213> Artificial Sequence	
	<220>	
	<223> Oligonucleotide primer	
	<400> 18	
	cattaggccg	10
	<210> 19	
	<211> 10 <212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
	<223> Oligonucleotide primer	
	<400> 19	
	attaggccgg	10
	<210> 20	
	<211> 10 <212> DNA	
	<213> Artificial Sequence	

	<220>	
	<223> Oligonucleotide primer	
	<400> 20	
	ttaggccgga	10
	<210> 21	
	<211> 10	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Oligonucleotide primer	
	<400> 21	
	taggccggac	10
	<210> 22	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
ar.	<220>	
	<223> polynucleotide of interest	
4 <u>1</u>	<400> 22	
	caggccggat taccgtaagc gattgctatc	30
≥ İ s 		