Endogenous Politics and the Design of Trade Institutions

Kristy Buzard Syracuse University kbuzard@syr.edu

January 7, 2017

The Questions

- 1. When is endogenizing political pressure important for answering optimal design questions?
 - ► Exogenous vs. endogenous politics
- 2. Can trade agreements be used to manipulate domestic lobbying incentives?
 - ► Government objective function

Political Economy of Trade Institutions

With a few exceptions, TA design literature has taken political economy forces to be exogenous. I:

- ► endogenize politics into a standard model for studying TA design questions
- ► carefully distinguish between dynamics induced by exogenous and endogenous politics for
 - ▶ base case with tariff caps
 - ► tariff caps with escape clause
- ► examine escape clause design when both exogenous and endogenous forces are present

Results

- ► Show that TAs may be used to manipulate domestic political actors (no long-run distortions)
- ► For both tariff caps and escape clauses, outcomes are very different with endogenous politics
- ► Demonstrate that (standard, theoretical) escape clause can't work in the presence of endogenous political pressure
 - Points to real-world design of WTO Agreement on Safeguards
 - ▶ May explain why escape clause has fallen out of use

Economy

Two countries: home and foreign (*)

- ightharpoonup Separable in two goods: X and Y
 - \triangleright P_i : home price of good i
 - \triangleright P_i^* : foreign price of good i
- ▶ Demand identical for both goods in both countries
 - $\triangleright D(P_i) = 1 P_i$
- ▶ Supply: $Q_X^*(P_X) > Q_X(P_X) \ \forall P_X$; symmetric for Y
 - $Q_X(P_X) = \frac{P_X}{2}; \ Q_Y(P_Y) = P_Y$
 - \blacktriangleright Home net importer of X, net exporter of Y

Policy and Politics

Home levies τ on X, Foreign levies τ^* on Y

- $\blacktriangleright \ P_X = P_X^{\,W} + \tau \ \text{increasing in} \ \tau$
- ▶ $\pi_X(P_X)$ increasing in P_X , therefore also τ

Non-tradable specific factors motivate political activity

Timeline

Each period:

- 1. Trade Agreement Formed
 - i. Governments set trade policy in international agreement
- 2. Domestic Politics Played Out
 - i. Exogenous shocks are realized AND/OR
 - ii. Import-competing industry lobbies government for protection
- 3. Tariffs are Applied
 - Given political pressure, governments choose applied tariff levels

Applied Tariff Decision

Baldwin-style government objective function:

$$W = CS_X(\tau) + \gamma(s, e)\pi_X(\tau) + CS_Y(\tau^*) + \pi_Y(\tau^*) + TR(\tau)$$

- ▶ Standard except weight on import-competing industry profits $\gamma(s, e)$:
 - ► s: exogenous shock
 - ▶ e: lobbying effort
- ▶ Optimal applied tariff is a function of $\gamma(s, e)$
 - ► Ignores foreign welfare
 - ► Takes into account trade agreement enforcement
- Assume γ , γ^* is private info of each government

Domestic Political Pressure

Two potential sources

- 1. Exogenous shocks
 - ▶ Shock directly to γ as in Bagwell & Staiger (2005): γ , γ^* with CDF $H(\gamma)$ on support $[\gamma, \overline{\gamma}]$; or
 - ▶ Can take γ as a function of s: $\gamma(s)$
- 2. Endogenous effort choice of lobby, e
 - ▶ Lobby chooses effort to maximize profits, $\pi(\cdot)$, net of lobbying effort, e
 - ▶ Call lobby's optimal effort choice e^L

$$e^{L} = \max_{e} \pi(\tau(\gamma(e))) - e$$

Trade Agreement Negotiation

Model as Nash bargain between the two countries' governments

- ► Maximize joint political welfare
- ▶ Disagreement point: non-cooperative outcome

Once agreement is set, cooperation enforced by repeated-game punishments conditioned on history, history + DSB signal

Design of Trade Agreements

- ► Tariff caps: Bagwell and Staiger 2005, Horn et al 2010, Amador and Bagwell 2012; Beshkar and Bond 2012
- ► Escape clause: Bagwell and Staiger 2005, Horn et al 2010,
- ► Shallow vs. deep integration: Bagwell and Staiger 2001, DeRemer 2014
- ▶ Dispute settlement: Maggi 1999, Ludema 2001, Maggi and Staiger 2011/2013, Klimenko et al 2008
- ► Property vs. liability rules: Pauwelyn 2008, Beshkar 2010, Maggi and Staiger 2014
- ► Retaliation: Bown 2002/2004, Beshkar 2010

Role of Trade Agreements: TOT Externality

Bagwell and Staiger (2002)

- ▶ Joint social welfare maximized at free trade
- ► Trade war (i.e. no agreement)
 - ► Maximize with respect to home country welfare only
 - ► Terms of trade (TOT) externality ⇒ positive tariffs
- ► Trade agreements
 - ► Now take into account impact on foreign welfare
 - ▶ Internalize TOT externality \Rightarrow free trade

Role of Trade Agreements: TOT Externality

Grossman and Helpman (1995)

- ► Add endogenous politics
- ▶ Now in "Trade War": two reasons for positive tariff
 - ► TOT externality + pressure from import competing lobby
- ► Trade agreement: only internalizes TOT externality

Role of Trade Agreements: Domestic Commitment

- ▶ Maggi and Rodriguez-Clare (1998, 2007)
 - ► Allow for (imperfect) capital mobility
 - ► Domestic investment decisions depend on level of protection
 - ► Inability to commit ⇒ investment too high b/c importers know protection will respond
 - ► Trade agreements provide commitment device
- ► Mitra (2002)
 - ▶ Here distortion is wasted resources in lobby formation

Restraining Political Pressure through TAs

- Will TA be used to discourage lobbying? Depends on how gov't welfare varies in γ
- With standard Baldwin-style objective function, welfare always increases with γ

$$W = \mathit{CS}_X(\tau) + \gamma \pi_X(\tau) + \mathit{CS}_Y(\tau^*) + \pi_Y(\tau^*) + \mathit{TR}(\tau)$$

- ▶ Isomorphic to 'Protection for Sale' objective function
- ▶ If weights must sum to 1, welfare no longer monotonic in γ

Tariff Caps: Exogenous vs. Endogenous γ

Must set tariff at or below specified level (aka tariff cap)

- γ exogenous (Bagwell & Staiger 2005): Negotiated weak bindings (a) are higher than those gov'ts would choose if they instead negotiated strong bindings and (b) imply that governments with low realizations of γ set their applied tariffs strictly below the bound level.
- γ endogenous: Governments will not set applied tariffs strictly below the bound level. They may use the weak tariff binding either to encourage and/or restrain endogenous political pressure.

Tariff Caps with Self Enforcement

- γ exogenous (Bagwell & Staiger 2005): if governments patient enough (δ high enough), optimal externally-enforced weak binding can be self-enforced
- ightharpoonup endogenous: optimal externally-enforced weak binding may not be self-enforcing
 - ▶ Problem: lobby is an additional repeated-game player
 - Lobby's incentive constraint is harder to satisfy as δ increases

▶ Repeated Game Intuition

Escape Clause with Exogenous Politics

When γ is only exogenous (Bagwell & Staiger 2005):

- ► Simple escape clause: add a second (higher) negotiated weak binding
 - Escape clause is designed to allow higher applied tariff when realization of γ is high
- ► Improves political efficiency
- ► Can improve self-enforcement
- ▶ Incentive compatibility becomes an issue

Incentive compatibility

Escape clause is meant to allow higher applied tariff when realized γ is high

- \triangleright γ is private information
- ► We want truthful revelation, but truth-telling must be in the best interest of each gov't
- Gov't can exploit TOT externality by reporting high γ even when γ is low
 - ► Only way to prevent this is with some cost of using escape clause

Escape Clause with Endogenous Politics

When γ is *only* endogenous:

- ▶ Benefit of escape clause from exogenous case is gone
- ► Assuming lower binding is set to maximize political welfare, escape clause encourages inefficiently high lobbying effort / protection
- ► (Incentive compatibility still an issue, but often not the central one)
 - (If lobby's preferred tariff ≥ escape clause binding, gov't experiences high γ, no need to lie)

If γ is only endogenous, escape clause causes problems, provides no benefits

When the world is more complicated...

Now suppose political pressure is a result of both endogenous and exogenous forces (i.e. $\gamma(s, e)$):

- ▶ Want escape clause to deal with exogenous shock
- ▶ But endogenous part ⇒ lobbying incentives make it hard to implement escape clause

Ineffectiveness of Political Criterion for Escape Clause

Assume $\gamma(s,e)=\gamma(s)+\gamma(e)$. If an escape clause conditions on $\gamma(s,e)$ and $\gamma(s^L)<\gamma(s^H)<\gamma(e^L)$, the lower "normal" tariff binding will never be applied.

When the world is more complicated... (con't)

- ightharpoonup To make escape clause work, can't use γ
 - ► Need signal of shock that is not influenced by endogenous pressure
- ightharpoonup Can condition directly on s
 - ► This seems to be what the WTO actually does

An Escape Clause for Endogenous Politics

Assume a WTO-like set up: gov't can choose between τ^a , 'escape' tariff $\tau(s)$, or politically-optimal τ matched to $\gamma(s,e)$

- ► Assume s verifiable, so no punishment for $\tau(s)$
- ▶ Punishment for $\tau(\gamma(s, e)) > \tau(s)$

Optimal τ^a may lead government to apply $\tau(\gamma(s, e))$

- ▶ When this happens, it leads to dispute, not valid escape
- ▶ Otherwise, no extra rent-seeking is encouraged

May explain why escape clause has fallen out of use

Conclusion

Taking into account endogenous political forces alongside exogenous ones...

- ► helps explain the structure and enforcement of the WTO Safeguards measure
- can help us think about optimal design of trading institutions
- ► demonstrates that TAs can be used to discourage lobbing activity in general
- ▶ provides additional general explanation for tariff caps

Future Work

- ▶ Application of framework to other design questions
- ▶ Interactions between $\gamma(s)$ and $\gamma(e)$
- ► Choice between protective measures over time

Repeated Game Intuition

Legislature: break agreement if punishment not strong enough

▶ i.e. if one period of gain from cheater's payoff is greater than T-periods of loss from trade-war

Lobby: solve for lowest effort (\overline{e}_b) that breaks this constraint

▶ pay \overline{e}_b if it's less than gain from T periods of trade-war profits

Executives: set lowest τ^a that makes paying \overline{e}_b unprofitable and satisfies legislature's condition

- $\Rightarrow e_b = 0$, agreement remains in force
- ▶ High tariffs, no lobbying, no trade disruptions

