考试科目: 线性代数 期末考试 样卷 2

 $1.\ (15\ \mathrm{points},\,3\ \mathrm{points}$ each) Multiple Choice. Only one choice is correct.

(共 15 分, 每小题 3 分) 选择题. 每题只有一个选项是正确的.

- (1) Let A, B, C be $n \times n$ matrices with B invertible and AB = C. Which of the following must be true?
 - (A) The row spaces of A and C are the same.
 - (B) The null spaces of A and C are the same.
 - (C) The column spaces of A and C are the same.
 - (D) The determinants of A and C are the same.

设 A, B, C 为 $n \times n$ 矩阵, 其中 B 可逆且 AB = C. 下列陈述一定正确的是

- (A) A 和 C 的行空间相同.
- (B) A 和 C 的零空间相同.
- (C) A 和 C 的列空间相同.
- (D) A 和 C 的行列式相同.
- (2) Let P be a 5×5 permutation matrix. Which of the following is **false**?
 - (A) P is an orthogonal matrix.
 - (B) P must have real eigenvectors.
 - (C) There always exists an invertible real matrix Q such that $Q^{-1}PQ$ is diagonal.
 - (D) The equation Px = 0 has only zero solution.

设 P 为 5×5 置换矩阵. 下列陈述错误的是 ()

- (A) P 是正交矩阵.
- (B) P 一定有实特征向量.
- (C) 存在可逆的实矩阵 Q 使得 $Q^{-1}PQ$ 为对角阵.
- (D) 方程 Px = 0 仅有零解.
- (3) Let A be an $n \times n$ real symmetric matrix. Which of the following statements must be true?
 - (A) A must have n distinct eigenvalues.
 - (B) Some of the complex eigenvalues of A need not be real.
 - (C) Any n linearly independent eigenvectors of A are pairwise orthogonal.
 - (D) There is an orthogonal matrix Q, such that Q^TAQ is diagonal.

设 A 为 $n \times n$ 实对称矩阵. 则下列陈述一定正确的是 ()

- (A) A 一定有 n 个互不相同的特征值.
- (B) A 的一些复特征值可能不是实数.
- (C) A 的任意 n 个线性无关的特征向量两两正交.
- (D) 存在正交矩阵 Q, 使得 Q^TAQ 为对角矩阵.

()

(4) Let

$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \beta_1 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}, \beta_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

If γ can be written as a linear combination of α_1, α_2 , and γ can also be written as a linear combination of β_1, β_2 , then γ has the form

$$(A) \ k \begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix}, k \in \mathbb{R}.$$

$$(B) \ k \begin{bmatrix} 3 \\ 5 \\ 10 \end{bmatrix}, k \in \mathbb{R}.$$

$$(C) \ k \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}, k \in \mathbb{R}.$$

$$(D) \ k \begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}, k \in \mathbb{R}.$$

已知向量

$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \ \beta_1 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}, \ \beta_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

若 γ 既可由 α_1,α_2 线性表示, 也可由 β_1,β_2 线性表示, 则 γ 形如

(A)
$$k \begin{bmatrix} 1 \\ 5 \\ 8 \end{bmatrix}, k \in \mathbb{R}$$
.
(B) $k \begin{bmatrix} 3 \\ 5 \\ 10 \end{bmatrix}, k \in \mathbb{R}$.
(C) $k \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}, k \in \mathbb{R}$.
(D) $k \begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}, k \in \mathbb{R}$.

(5) Which of the following matrices is congruent to the identity matrix?

$$(A) \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right].$$

(B)
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 7 & 1 \\ 1 & 1 & 8 \end{bmatrix}$$
(C)
$$\begin{bmatrix} 2 & -1 & 2 \\ -1 & 3 & -3 \\ 2 & -3 & -4 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 2 & -1 & 2 \\ -1 & 3 & -3 \\ 2 & -3 & -4 \end{bmatrix}$$

$$(D) \begin{bmatrix}
 1 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 1
\end{bmatrix}.$$

下列矩阵中合同于单位阵的是

()

$$\begin{array}{ccccc}
(A) & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}
\end{array}$$

(A)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$
(B)
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 7 & 1 \\ 1 & 1 & 8 \end{bmatrix}.$$
(C)
$$\begin{bmatrix} 2 & -1 & 2 \\ -1 & 3 & -3 \\ 2 & -3 & -4 \end{bmatrix}.$$

- 2. (15 points, 3 points each) Fill in the blanks. (共 15 分, 每小题 3 分) 填空题.
 - (1) Let A be a 2×2 matrix, which has two linearly independent eigenvectors \mathbf{v}_1 and \mathbf{v}_2 such that $A^2(\mathbf{v}_1 - \mathbf{v}_2) = 2\mathbf{v}_1 + \mathbf{v}_2$. Then $\det(A^4) = \underline{\hspace{1cm}}$ 设 A 为 2×2 矩阵, 它有两个线性无关的特征向量 \mathbf{v}_1 和 \mathbf{v}_2 满足 $A^2(\mathbf{v}_1 - \mathbf{v}_2) = 2\mathbf{v}_1 + \mathbf{v}_2$. 则 $\det(A^4) =$ _____
 - (2) The singular values of the matrix $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$ are _____.

矩阵
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$$
 的奇异值是 ______.

(3) Let A be a 3×3 matrix which has eigenvalues -1, 0, 1. Suppose that $(A+aI_3)A(A-bI_3)=$ 0, where I_3 is the 3×3 identity matrix. Then $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}$ 设 A 为 3×3 矩阵, 它以 -1, 0, 1 为特征值. 假设 $(A+aI_3)A(A-bI_3)=0$, 其中 I_3 为

$$(4) \ \text{If } A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ x & 1 & 2x-3 \\ 1 & 0 & 0 \end{array} \right] \text{ is diagonalizable, then } x = \underline{\hspace{1cm}}.$$
 假设矩阵
$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ x & 1 & 2x-3 \\ 1 & 0 & 0 \end{array} \right] \text{ 可对角化, 则 } x = \underline{\hspace{1cm}}.$$

假设矩阵
$$A = \begin{bmatrix} 0 & 0 & 1 \\ x & 1 & 2x - 3 \\ 1 & 0 & 0 \end{bmatrix}$$
 可对角化,则 $x = \underline{\qquad}$.

(5) Let A be a 4×4 symmetric matrix such that $A^2 + A = 0$. Suppose that A has rank 3. A diagonal matrix that is similar to A is $\underline{}$

假设 4×4 对称矩阵 A 满足 $A^2 + A = 0$. 假设 A 的秩为 3. 与 A 相似的一个对角阵是

3. (20 points) Let A_n be the $n \times n$ matrix

$$A_n = \begin{bmatrix} 1 & -a & 0 & 0 & \cdots & 0 \\ -a & 1 & -a & 0 & \cdots & 0 \\ 0 & -a & 1 & -a & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -a & 1 & -a \\ 0 & 0 & \cdots & 0 & -a & 1 \end{bmatrix}$$

(a) Find constants b, c such that the sequence $det(A_n)$ satisfies

$$\det(A_n) = b \cdot \det(A_{n-1}) + c \cdot \det(A_{n-2}) \quad \text{ for all } n \ge 3.$$

- (b) Find a matrix B such that $\mathbf{x}_n = B\mathbf{x}_{n-1}$ for $n \geq 3$, where $\mathbf{x}_n = \begin{bmatrix} \det(A_n) \\ \det(A_{n-1}) \end{bmatrix}$.
- (c) For $a^2 = \frac{3}{16}$, find an expression for $\det(A_n)$ for all $n \geq 3$.
- (20 分) 设 A_n 为以下 $n \times n$ 矩阵:

$$A_n = \begin{bmatrix} 1 & -a & 0 & 0 & \cdots & 0 \\ -a & 1 & -a & 0 & \cdots & 0 \\ 0 & -a & 1 & -a & \cdots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & -a & 1 & -a \\ 0 & 0 & \cdots & 0 & -a & 1 \end{bmatrix}$$

(a) 求常数 b, c 使得数列 $det(A_n)$ 满足

对任意
$$n \ge 3$$
, $\det(A_n) = b \cdot \det(A_{n-1}) + c \cdot \det(A_{n-2})$.

- (b) 找出一个矩阵 B 使得 $\mathbf{x}_n = B\mathbf{x}_{n-1}$ 对所有 $n \geq 3$ 成立, 其中 $\mathbf{x}_n = \begin{bmatrix} \det(A_n) \\ \det(A_{n-1}) \end{bmatrix}$.
- (c) 假设 $a^2 = \frac{3}{16}$. 对于任意正整数 $n \geq 3$, 求出 $\det(A_n)$ 的表达式.

考试科目: 线性代数 期末考试 样卷 2

4. (20 points) Suppose α , $\theta \in (0, \pi/2)$.

(a) Compute
$$A_n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}^n$$
 for all $n \ge 1$.

- (b) Find a singular value decomposition (SVD) of A_n for each $n \ge 1$.
- (c) Show that the matrix A_1 is symmetric if and only if $\alpha = \theta$. (*Hint: the formula* $\sin(\theta - \alpha) = \sin\theta\cos\alpha - \cos\theta\sin\alpha$ may be useful.)
- (d) Prove that if A_1 is symmetric, then A_n is positive definite for every $n \ge 1$.
- (20 分) 设 α , $\theta \in (0, \pi/2)$.

(a) 对所有
$$n \ge 1$$
, 计算 $A_n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}^n$.

- (b) 对每个 $n \ge 1$, 求 A_n 的一个奇异值分解 (SVD).
- (c) 证明: 矩阵 A_1 是对称矩阵当且仅当 $\alpha = \theta$. (提示: 公式 $\sin(\theta \alpha) = \sin\theta\cos\alpha \cos\theta\sin\alpha$ 可能会有用.)
- (d) 证明: 如果 A_1 是对称阵, 那么对每一个 $n \ge 1$, 矩阵 A_n 是正定的.

考试科目: 线性代数 期末考试 样卷 2

- 5. (10 points) Consider the quadratic form $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 2x_3^2 4x_1x_3$.
 - (a) Find the symmetric matrix A such that $f(x) = x^T A x$ for all $x = (x_1, x_2, x_3)^T$, and find an orthogonal matrix Q such that $Q^T A Q$ is a diagonal matrix.
 - (b) The quadric surface defined by the equation f(x, y, z) = 2023 is _____.

 (A) a hyperboloid of one sheet (B) a hyperboloid of two sheets (C) an ellipsoid (D) none of the above.
 - (10 分) 考虑二次型 $f(x_1, x_2, x_3) = x_1^2 + 2x_2^2 2x_3^2 4x_1x_3$.
 - (a) 求对称矩阵 A 使得对任意 $x = (x_1, x_2, x_3)^T$ 均有 $f(x) = x^T A x$, 再求一个正交矩阵 Q 使得 $Q^T A Q$ 为对角阵.
 - (b) 由方程 f(x, y, z) = 2023 定义的二次曲面是 ______. (A) 一个单叶双曲面 (B) 一个双叶双曲面 (C) 一个椭球面 (D) 以上都不是.
- 6. (20 points) For any $a=(a_1,\cdots,a_n)^T\in\mathbb{R}^n$, put $||a||=\sqrt{a_1^2+\cdots+a_n^2}$. Let $x,y\in\mathbb{R}^n$ be nonzero vectors.
 - (a) Show that if there is an orthogonal matrix S such that Sx = y, then ||x|| = ||y||.
 - (b) Let N be the null space $N(x^T)$ of the $1 \times n$ matrix x^T . Show that dim N = n 1.
 - (c) Let $\alpha_2, \dots, \alpha_n$ be a basis of N. Show that the system $\alpha_1 := x, \alpha_2, \dots, \alpha_n$ is linearly independent.
 - (d) Let A be the matrix with $\alpha_1, \alpha_2, \dots, \alpha_n$ as its columns. Let A = QR be a factorization with Q orthogonal and R upper triangular. Write $R = (r_{ij})$. Show that $|r_{11}| = ||x||$.
 - (e) Prove that if ||x|| = ||y||, then there exists an orthogonal matrix S such that Sx = y.
 - (20 分) 对任意 $a = (a_1, \dots, a_n)^T \in \mathbb{R}^n$, 令 $||a|| = \sqrt{a_1^2 + \dots + a_n^2}$. 设 $x, y \in \mathbb{R}^n$ 为非零向量.
 - (a) 证明: 如果存在正交矩阵 S 使得 Sx = y, 则 ||x|| = ||y||.
 - (b) 设 N 为 $1 \times n$ 矩阵 x^T 的零空间 $N(x^T)$. 证明: dim N = n 1.
 - (c) 设 $\alpha_2, \dots, \alpha_n$ 为 N 的一组基. 证明: 向量组 $\alpha_1 := x, \alpha_2, \dots, \alpha_n$ 是线性无关的.
 - (d) 设 A 是以 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为列的矩阵. 设 A = QR 为一种分解式, 其中 Q 是正交矩阵, R 是上三角矩阵. 记 $R = (r_{ij})$. 证明: $|r_{11}| = ||x||$.
 - (e) 证明: 如果 ||x|| = ||y||, 那么存在正交矩阵 S 使得 Sx = y.