Implementação N. 04 - Fluxo Máximo

Aluna: Caroline Freitas Alvernaz

Disciplina: Teoria dos Grafos e Computabilidade

Professor: Zenilton Kleber Gonçalves do Patrocínio Júnior

Para a realização do trabalho, foi adaptado uma implementação baseada na técnica de Edmonds-Karp que utiliza a busca em largura para encontrar caminhos aumentantes e o processo se repete até que não haja mais caminhos disjuntos possíveis. Além disso, foi feita uma implementação de um gerador de grafos que gera grafos aleatórios direcionados e do tipo "grid" e, portanto, foram utilizados números quadrados perfeitos para a implementação. Os grafos gerados foram de tamanhos 100, 14.444, 10.000 e 45.729.

Grafos Aleatórios

Para grafos aleatórios, foram obtidos os seguintes resultados:

Tabela 1 – resultados para Grafos Aleatórios

Número de vértices	Tempo gasto	Número de caminhos
	(em ms)	disjuntos
100	0	1
1.444	0	2
10.000	14	3
49.729	7	2

Conforme mostra a tabela, o algoritmo apresenta grande eficiência, pois os tempos de execução são baixos, mesmo para grafos com muitos vértices. Para um grafo com 10.000 vértices, o tempo gasto foi de apenas 14 ms, e para 49.729 vértices, surpreendentemente menor de 7 ms. Esse comportamento mostra que o algoritmo continua rápido mesmo quando o tamanho do grafo aumenta bastante, graças ao uso da busca em largura (BFS) como base para o cálculo dos caminhos.

O gráfico abaixo demonstra a oscilação do tempo médio de execução apresentado:

A eficácia do algoritmo está relacionada à sua capacidade de encontrar corretamente todos os caminhos disjuntos possíveis entre dois vértices em um grafo. Nos testes realizados com grafos direcionados aleatórios, o número de caminhos encontrados variou conforme o tamanho e a estrutura de cada grafo. Em grafos menores, como o de 100 vértices, foi identificado apenas 1 caminho disjunto, o que é esperado, já que a chance de haver várias rotas independentes é menor em estruturas pequenas e menos conectadas. À medida que o número de vértices aumenta, a conectividade tende a melhorar, o que possibilitou a descoberta de mais caminhos como ocorreu com o grafo de 10.000 vértices que obteve 3 caminhos disjuntos.

Grafos Grid

Para grafos do tipo grid, ou seja, grafos onde os vértices estão organizados em forma de malha bidimensional de tamanho 10 x 10, por exemplo, foram obtidos os seguintes resultados:

Tabela 2 – resultados para Grafos Grid

Número de vértices	Tempo gasto	Número de caminhos
	(em ms)	disjuntos
100	0	2
1444	0	2
10000	7	2
49729	5	2

Para grafos do tipo grid, o algoritmo também demonstrou grande eficiência, com tempos de execução muito baixos mesmo para grafos maiores. Por exemplo, no grafo

com 10.000 vértices, o tempo foi de apenas 7 milissegundos, e para 49.729 vértices, o tempo caiu para 5 milissegundos, confirmando que o desempenho se mantém estável conforme o grafo cresce.

Gráfico 2 - Tempo médio de compilação para Grafos Grid $\begin{pmatrix}
8 \\
0 \\
0
\end{pmatrix}$ 0 10000 20000 30000 40000 50000 60000 Número de Vértices

O gráfico a seguir ilustra a variação no tempo médio de execução observado.

Quanto à eficácia, o número de caminhos disjuntos encontrados foi constante em todos os casos, encontrando sempre 2 caminhos entre origem e destino. Esse resultado é esperado na estrutura de grid, já que o padrão fixo de ligações entre os vértices limita o número de rotas independentes entre vértices localizados em cantos opostos da malha.

Comparação entre os dois tipos de grafos

A tabela abaixo demonstra um comparativo entre os resultados obtidos para os dois tipos de grafos:

Tabela 3 – comparação dos desempenhos para os dois tipos de grafos

Tempo gasto (em ms)

Número de caminhos disj

		Tempo gasto (em ms)		Número de caminhos disjuntos	
Número	de	Grafos Alatórios	Grafos Grid	Grafos Alatórios	Grafos Grid
vértices					
100		0	0	1	2
1444		0	0	2	2
10000		14	7	3	2
49729		7	5	2	2

Os resultados demonstram que o algoritmo apresenta ótima eficiência, com tempos de execução muito baixos mesmo em grafos com grande número de vértices. Em

grafos aleatórios com 10.000 vértices, o tempo foi de 14 milissegundos, e em grafos ainda maiores, como o de 49.729 vértices, o tempo foi de apenas 7 ms. Nos grafos grid, os tempos foram ainda menores, variando entre 0 e 7 ms. Isso mostra que o algoritmo mantém um desempenho rápido e estável mesmo quando aumenta o número de vértices e a complexidade estrutural dos grafos, independentemente de seus tipos.

Em relação à eficácia, o número de caminhos disjuntos encontrados nos grafos aleatórios varia conforme a conectividade entre os vértices. Já para grafos grid, o número de caminhos disjuntos permaneceu constante em todos os tamanhos testados (2 caminhos).

A seguir, os gráficos fornecem uma comparação visual entre os desempenhos do algoritmo ao processar grafos aleatórios e grafos grid, em diferentes tamanhos:

O Gráfico 3 demonstra como o tempo médio de execução varia conforme o tipo e o tamanho do grafo. Observa-se que, mesmo em grafos com um número elevado de vértices, o tempo de execução permanece baixo, o que evidencia a eficiência do algoritmo. Além disso, grafos do tipo grid tendem a ter um tempo ligeiramente menor, possivelmente devido à sua estrutura mais regular e previsível.

Já o Gráfico 4 permite avaliar a eficácia do algoritmo com base na quantidade de caminhos disjuntos encontrados. Percebe-se que os grafos aleatórios apresentam uma variação maior na quantidade de caminhos, enquanto os grafos grid mantêm uma quantidade constante (2 caminhos), o que é esperado devido à sua topologia restrita.

Os resultados demonstraram que o algoritmo é eficiente, apresentando tempos de execução baixos mesmo em grafos com grande quantidade de vértices, e eficaz, ao identificar corretamente os caminhos disjuntos entre dois vértices. A comparação entre grafos aleatórios e grafos do tipo grid evidenciou que o desempenho e a quantidade de caminhos encontrados variam de acordo com a forma como os grafos são construídos, reforçando a confiabilidade do algoritmo nos diferentes cenários testados.