Exercici 19. Establiu criteris de divisibilitat que, donat un nombre enter $n \ge 1$ expressat en base 10, decideixin quan aquest nombres és divisible per un enter d tal que $1 \le d \le 11$.

Solució 19. Para obtener los distintos criterios de divisibilidad se utilizan las congruencias, con esto se obtienen los restos potenciales que servirán para sacar la expresión del criterio.

Criterio de divisibilidad del 1:

Cualquier número $n \in \mathbb{Z}$ es divisible por 1, ya que siempre se puede expresar como 1 * n.

Criterio de divisibilidad del 2:

$$10^{0} \equiv 1 \pmod{2}$$

$$10^{1} \equiv 0 \pmod{2}$$

$$10^{3} \equiv 0 \pmod{2}$$

$$10^{4} \equiv 0 \pmod{2}$$

$$\vdots$$

$$\vdots$$

$$10^{k-1} \equiv 0 \pmod{2}$$

$$10^{k} \equiv 0 \pmod{2}$$

El criterio de divisibilidad del 2 es $a \equiv a_k \cdot 0 + a_{k-1} \cdot 0 + ... + a_1 \cdot 0 + a_0 \cdot 1 \pmod{2}$. Observando las el desarrollo de las congruencias se puede llegar a la conclusión de que el único resto potencial distinto de 0 es r_0 que vale 1, por lo que solo importa el valor de a_0 que tendrá que ser divisible por 2 para que todo el número lo sea.

Todos los números pares cumplen el criterio de divisibilidad del 2.

Criterio de divisibilidad del 3:

$$10^{0} \equiv 1 \pmod{3}$$

$$10^{1} \equiv 1 \pmod{3}$$

$$10^{2} \equiv 1 \pmod{3}$$

$$\vdots$$

$$\vdots$$

$$10^{k-1} \equiv 1 \pmod{3}$$

$$10^{k} \equiv 1 \pmod{3}$$

El criterio de divisibilidad del 3 es $a \equiv a_k \cdot 1 + a_{k-1} \cdot 1 + ... + a_1 \cdot 1 + a_0 \cdot 1 \pmod{3}$.

Si la suma de los dígitos de un número es divisible por 3 entonces ese número será también divisible.

Criterio de divisibilidad del 4:

$$10^0 \equiv 1 \pmod{4}$$

 $10^1 \equiv 2 \pmod{4}$
 $10^2 \equiv 0 \pmod{4}$
 $10^3 \equiv 0 \pmod{4}$

.

$$10^{k-1} \equiv 0 \pmod{4}$$
$$10^k \equiv 0 \pmod{4}$$

El criterio de divisibilidad del 4 es $a \equiv a_k \cdot 1 + a_{k-1} \cdot 1 + ... + a_1 \cdot 2 + a_0 \cdot 1 \pmod{4}$.

Sus dos últimas cifras tienen que ser divisible por 4 para que el número lo sea.

Criterio de divisibilidad del 5:

 $10^0 \equiv 1 \pmod{5}$

 $10^1 \equiv 0 \pmod{5}$

 $10^2 \equiv 0 \pmod{5}$

 $10^3 \equiv 0 \pmod{5}$

•

 $10^{k-1} \equiv 0 \pmod{5}$

 $10^k \equiv 0 \pmod{5}$

El criterio de divisibilidad del 5 es $a \equiv a_k \cdot 0 + a_{k-1} \cdot 0 + ... + a_1 \cdot 0 + a_0 \cdot 0 \pmod{5}$.

Si el número termina en 0 o 5 es divisible.

Criterio de divisibilidad del 6:

 $10^0 \equiv 1 \pmod{6}$

 $10^1 \equiv 4 \pmod{6}$

 $10^2 \equiv 4 \pmod{6}$

 $10^3 \equiv 4 \pmod{6}$

٠

 $10^{k-1} \equiv 4 \pmod{6}$

 $10^k \equiv 4 \pmod{6}$

El criterio de divisibilidad del 6 es $a \equiv a_k \cdot 4 + a_{k-1} \cdot 4 + \ldots + a_1 \cdot 4 + a_0 \cdot 1 \pmod{6}$.

Un número es divisible por 6 si se cumple el criterio de divisibilidad del 2 y a la vez el del 3.

Criterio de divisibilidad del 7:

 $10^0 \equiv 1 \pmod{7}$

 $10^1 \equiv 3 \pmod{7}$

 $10^2 \equiv 2 \pmod{7}$

 $10^3 \equiv 6 \pmod{7}$

$$10^4 \equiv 4 \pmod{7}$$

$$10^5 \equiv 5 \pmod{7}$$

$$10^6 \equiv 1 \pmod{7}$$

$$10^7 \equiv 3 \pmod{7}$$

Cada seis cifras se observa una repetición de los restos potenciales.

 $\begin{array}{c}
\vdots \\
10^{k-5} \equiv 1 \pmod{7} \\
10^{k-4} \equiv 3 \pmod{7} \\
10^{k-3} \equiv 2 \pmod{7} \\
10^{k-2} \equiv 6 \pmod{7} \\
10^{k-1} \equiv 4 \pmod{7} \\
10^k \equiv 5 \pmod{7}
\end{array}$

El criterio de divisibilidad del 6 es $a \equiv a_k \cdot 5 + a_{k-1} \cdot 4 + a_{k-2} \cdot 6 + a_{k-3} \cdot 2 + a_{k-4} \cdot 3 + a_{k-5} \cdot 1 \dots + a_7 \cdot 3 + a_6 \cdot 1 + a_5 \cdot 5 + a_4 \cdot 4 + a_3 \cdot 6 + a_2 \cdot 2 + a_1 \cdot 3 + a_0 \cdot 1 \pmod{7}$.

Criterio de divisibilidad del 9:

$$10^{0} \equiv 1 \pmod{9}$$

$$10^{1} \equiv 1 \pmod{9}$$

$$10^{2} \equiv 1 \pmod{9}$$

$$10^{3} \equiv 1 \pmod{9}$$

$$\vdots$$

$$\vdots$$

$$10^{k-1} \equiv 1 \pmod{9}$$

$$10^{k} \equiv 1 \pmod{9}$$

El criterio de divisibilidad del 9 es $a \equiv a_k \cdot 1 + a_{k-1} \cdot 1 + \dots + a_1 \cdot 1 + a_0 \cdot 1 \pmod{9}$.

Un número es divisible por 9 si la suna de sus cifras lo es.

Criterio de divisibilidad del 10:

$$10^{0} \equiv 1 \pmod{10}$$

$$10^{1} \equiv 0 \pmod{10}$$

$$10^{2} \equiv 0 \pmod{10}$$

$$10^{3} \equiv 0 \pmod{10}$$

$$\vdots$$

$$\vdots$$

$$10^{k-1} \equiv 0 \pmod{10}$$

$$10^{k} \equiv 0 \pmod{10}$$

El criterio de divisibilidad del 10 es $a \equiv a_k \cdot 1 + a_{k-1} \cdot 1 + ... + a_1 \cdot 2 + a_0 \cdot 1 \pmod{10}$.

Para que sea divisible por 10 el número tiene que acabar en 0.