Содержание

1. Теорема Больцано-Вейерштрасса и критерий Коши схо	димости чис-
ловой последовательности	2
1.1. Теорема Больцано-Вейерштрасса	2
1.2. Критерий Коши	4
2. Ограниченность функции, непрерывной на отрезке, дос	тижение точ-
ных верхней и нижней граней	4
2.1. Ограниченность функции, непрерывной на отрезке	4
2.2. Лостижение точных верхних и нижних граней	5

ГОС по матану

Disclaymer: доверять этому конспекту или нет выбирайте сами

1. Теорема Больцано-Вейерштрасса и критерий Коши сходимости числовой последовательности

1.1. Теорема Больцано-Вейерштрасса

Определение 1.1.1: Если $E \subset \mathbb{R}$ – ограниченное сверху (снизу) множество, то $M(m) \in \mathbb{R}$ такое, что

$$\forall x \in E : x \leq M(x \geq m)$$

называется **верхней (нижней) гранью** множества E.

Определение 1.1.2: Наименьшая из верхних граней множества E называется **точной верхней гранью**: $\sup E$.

Наибольшая из нижних граней множества E называется **точной нижней гранью**: inf E.

Теорема 1.1.1 (О существовании точной верхней (нижней) грани): Любое ограниченное сверху (снизу) непустое множество $E \subset \mathbb{R}$ имеет точную верхнюю (нижнюю) грань.

Доказательство: Пусть B – множество верхних граней множества E. Введём обозначение $A \coloneqq \mathbb{R} \setminus B$.

Тогда если произвольное число a меньше какого-то $x \in E$, то оно точно не верхняя грань $E \Rightarrow a \in A$.

Заметим также свойство множества B:

$$\forall b \in B : \forall x > b : x \in B$$

Тогда по одной из аксиом действительных чисел

$$\exists c \in R : \forall a \in A : \forall b \in B : \ a \le c \le b$$

Пусть $\sup E := c$. Проверим свойства точной верхней грани:

 $1. \ c$ является верхней гранью

От противного. Пусть $c \notin B$, тогда $\exists x \in B : x > c$, причём $c < \frac{x+c}{2} < x$. Но тогда заметим, что $\frac{x+c}{2} \in A$, что противоречит выбору c как числа

больше либо равного любого элемента A

 $2.\ c$ является наименьшей из верхних граней

От противного. Пусть $\exists M \in B: M < c$. Но тогда $M < \frac{M+c}{2} < c$, причём $\frac{M+c}{2} \in B$, что противоречит выбору c как числа меньше либо равного любого элемента B.

Теорема 1.1.2 (Вейерштрасса): Каждая ограниченная сверху (снизу) неубывающая (невозрастающая) последовательность сходится, причём её предел равен точной верхней (нижней) грани.

 Доказательство: $\{x_n\}_{n=1}^{\infty}$ ограничена сверху $\Rightarrow \exists \sup \{x_n\}_{n=1}^{\infty} = l$ Отсюда:

- $1. \ \forall n \in \mathbb{N} : x_n \leq l < l + \varepsilon$
- 2. $\forall \varepsilon > 0 : \exists N \in \mathbb{N} : l \varepsilon < x_N$ (по определению супремума)

Заметим, что получилось в точности определение предела.

Теорема 1.1.3 (Принцип Кантора вложенных отрезков): Всякая последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty},$ то есть

$$\forall n \in \mathbb{N} : [a_n, b_n] \supset \stackrel{n-1}{\supseteq} [a_{n+1}, b_{n+1}]$$

имеет непустое пересечение, то есть $\bigcap_{n=1}^{\infty} [a_n,b_n] \neq \emptyset$

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

Доказательство: Из вложенности очевидно следует

$$\forall n \in \mathbb{N} : a_{n+1} \ge a_n, \ b_{n+1} \le b_n$$

Тогда заметим, что

$$\forall n \in \mathbb{N}: a_n \leq b_1, b_n \geq a_1$$

Тогда по теореме Вейерштрасса:
$$\lim_{n\to\infty}a_n=\sup\left\{a_n\right\}_{n=1}^\infty=a$$

$$\lim_{n\to\infty} b_n = \inf\{b_n\}_{n=1}^{\infty} = b$$

А значит отрезок [a,b] (возможно вырожденный) включён в пересечение всех отрезков.

Теорема 1.1.4 (Больцано-Вейерштрасса): Из каждой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

 Доказательство: Пусть $\left\{x_n\right\}_{n=1}^{\infty}$ – рассматриваемая ограниченная последовательность, то есть

 $\exists a_1,b_1\in\mathbb{R}: \forall n\in\mathbb{N}: a_1\leq x_n\leq b_1$ Заметим, что один из отрезков $\left[a_1,\frac{a_1+b_1}{2}\right],\left[\frac{a_1+b_1}{2},b_1\right]$ содержит бесконечно много элементов последовательности.

Пусть $[a_2,b_2]$ – тот из отрезков, который содержит бесконечно много элементов.

Продолжая данный трюк счётное количество раз получим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$. Также заметим, что данные отрезки стягиваются:

$$0 < b_n - a_n = \tfrac{b_1 - a_1}{2^n}$$

Тогда по принципу Кантора:

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$$

 $\bigcap_{n=1}^\infty [a_n,b_n]=\{c\}$ Осталось построить подпоследовательность, будем брать $x_{n_k}\in [a_k,b_k],$ причём так, чтобы $n_k > n_{k-1}$. Очевидно, $n_1 = 1$. Существование предела также очевидно:

$$0 \le \left| c - x_{n_k} \right| \le b_k - a_k = \frac{b_1 - a_1}{2^k} \underset{k \to \infty}{\longrightarrow} 0$$

1.2. Критерий Коши

Определение 1.2.1: Последовательность $\{x_n\}_{n=1}^{\infty}$ называется фундаментальной, если

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left| x_{n+p} - x_n \right| < \varepsilon$$

Теорема 1.2.1 (Критерий Коши сходимости числовой последовательности): Числовая последовательность сходится \Leftrightarrow она фундаментальна.

$$\exists l \in \mathbb{R} : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |x_n - l| < \frac{\varepsilon}{2}$$

Тогда по неравенству треугольника в условиях предела:

$$|x_{n+p} - x_n| = |x_{n+p} - l + l - x_n| \le |x_{n+p} - l| + |x_n - l| < \varepsilon$$

 $|x_{n+p}-x_n|=|x_{n+p}-l+l-x_n|\leq |x_{n+p}-l|+|x_n-l|<arepsilon$ \Leftarrow Вначале докажем, что из фундаментальности следует ограниченность:

$$\varepsilon\coloneqq 1:\exists N\in\mathbb{N}:\forall n>N:\forall p\in\mathbb{N}:\ \left|x_{n+p}-x_{n}\right|<1$$

Тогда заметим, что

$$\forall n \in \mathbb{N} : \min(x_1, ..., x_N, x_{N+1} + 1) \le x_n \le \max(x_1, ..., x_N, x_{N+1} + 1)$$

 $\forall n\in\mathbb{N}: \min(x_1,...,x_N,x_{N+1}+1)\leq x_n\leq \max(x_1,...,x_N,x_{N+1}+1)$ Тогда из ограниченной последовательности $\{x_n\}_{n=1}^\infty$ по теореме Больца-

но-Вейерштрасса достанем сходящуюся подпоследовательность:
$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \exists l : \forall \varepsilon > 0 : \exists K(\varepsilon) \in \mathbb{N} : \forall k > K(\varepsilon) : \ \left| x_{n_k} - l \right| < \frac{\varepsilon}{2}$$

Также по определению фундаментальности:

$$\forall \varepsilon > 0: \exists N(\varepsilon) \in \mathbb{N}: \forall n > N(\varepsilon): \forall p \in \mathbb{N}: \ \left|x_{n+p} - x_n\right| < \varepsilon$$

Объединим эти два условия и получим требуемое:

$$\forall \varepsilon > 0: \exists N_0 = \max \bigl(N(\varepsilon), n_{K(\varepsilon)+1}\bigr): \forall n > N_0:$$

$$|x_n-l| = \left|x_n - x_{n_{K(\varepsilon)+1}} + x_{n_{K(\varepsilon)+1}} - l\right| \leq \left|x_n - x_{n_{K(\varepsilon)+1}}\right| + \left|x_{n_{K(\varepsilon)+1}} - l\right| < \varepsilon$$

2. Ограниченность функции, непрерывной на отрезке, достижение точных верхней и нижней граней

2.1. Ограниченность функции, непрерывной на отрезке

Определение 2.1.1: Пусть f определена в некоторой окрестности $U_{\delta_0}(x_0),$ где $x_0 \in \mathbb{R}$. Если $\lim_{x \to x_0} f(x) = f(x_0)$, то функция называется **непрерывной** в точке x_0 .

Определение 2.1.2: f называется непрерывной на множестве $X \subset \mathbb{R}$, если

$$\forall x_0 \in X: \forall \varepsilon > 0: \exists \delta > 0: \forall x \in X, |x - x_0| < \delta: \ |f(x) - f(x_0)| < \varepsilon$$

Теорема 2.1.1 (Первая теорема Вейшерштрасса о непрерывной на отрезке функции): Если f непрерывна на [a,b], то f ограничена на [a,b].

 $\sup_{x \in [a,b]} f(x) = +\infty$

То есть

$$\forall n \in \mathbb{N} : \exists x_n \in [a, b] : \ f(x_n) > n$$

 $\forall n\in\mathbb{N}:\exists x_n\in[a,b]:\ f(x_n)>n$ Причём $\forall n\in\mathbb{N}:a\leq x_n\leq b,$ то есть $\left\{x_n\right\}_{n=1}^\infty$ — ограниченная, тогда по теореме Больцано-Вейерштрасса

$$\exists \left\{ x_{n_k} \right\}_{k=1}^\infty : \ \lim_{k \to \infty} x_{n_k} = x_0 \Rightarrow \lim_{k \to \infty} f \Big(x_{n_k} \Big) = f(x_0)$$
 Однако из $f(x_n) > n$ следует, что $f(x_0) = \infty$. Противоречие.

2.2. Достижение точных верхних и нижних граней

Теорема 2.2.1 (Вторая теорема Вейерштрасса о непрерывных на отрезке функциях): Если f непрерывна на [a,b], то

$$\exists x', x'' \in [a, b]: \ f(x') = \sup_{x \in [a, b]} f(x); \quad f(x'') = \inf_{x \in [a, b]} f(x)$$

 \mathcal{A} оказательство: Пусть $M=\sup_{x\in[a,b]}f(x)$. Тогда по определению супремума

$$\forall \varepsilon>0:\exists x\in[a,b]:\ M-\varepsilon< f(x)\leq M$$
 В том числе для $\left\{\varepsilon_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$:
$$\exists \left\{x_{n}\right\}_{n=1}^{\infty}\subset[a,b]:\forall n\in\mathbb{N}:\ M-\frac{1}{n}< f(x_{n})\leq M$$
 Тогда по теореме Больцано-Вейерштрасса:
$$\exists \left\{x_{n_{k}}\right\}_{k=1}^{\infty}:\ \lim_{k\to\infty}x_{n_{k}}=x_{0}\Rightarrow \lim_{k\to\infty}f\left(x_{n_{k}}\right)=f(x_{0})=M$$

$$\exists \{x_n\}_{n=1}^{\infty} \subset [a,b] : \forall n \in \mathbb{N}: \ M - \frac{1}{n} < f(x_n) \leq M$$

$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \ \lim_{k \to \infty} x_{n_k} = x_0 \Rightarrow \lim_{k \to \infty} f \Big(x_{n_k} \Big) = f(x_0) = M$$

Последнее равенство было получено устремлением $k \to \infty$ в неравенстве $M - \frac{1}{n_k} < f(x_{n_k}) \le M.$

Таким образом, M действительно достижим функцией f в точке x_0 . Для инфимума аналогично.