

Interconnexion de Réseaux

INTERNET

2A SN

Julien Fasson – <u>julien.fasson@enseeiht.fr</u>

Vous avez dit « *Réseaux* »?

• Un réseau?

• Des réseaux?

• Un réseau de réseaux?

• Et l'interconnexion?

RAPPELS SUR INTERNET

- o Définir Internet
 - Temporel
 - Hier
 - Aujourd'hui
 - Demain
 - Commun
 - Technologique

RAPPELS SUR INTERNET

o Genèse:

- 1957 Spoutnik entraîne la création de l'ARPA (Advanced Research Projects Agency)
- 1967 Lancement du projet ARPANET
- 1969 ARPANET (4 machines)
- 1971 Premier mail (14 machines)
- 1972 Démonstration officielle (40 machines)

• Avènement:

- 1974 TCP/IP première proposition (Vinton Cerf & Robert Kahn)
- 1981 ARPANET (213 machines)
- 1983 TCP/IP protocoles officiels d'ARPANET
- 1983 DNS (562 machines)
- 1984 ARPANET (1024 machines)
- 1988 Internet worm de R Morris (10% de 60 000 machines)
- 1991 Gopher, World Wide Web
- 2001 125 888 197 machines répertoriées
- 2017 3,5 milliards d'utilisateurs

PLAN

Introduction

Partie 1 - IP un outil d'interconnexion

Les routeurs
IP sur tout
Un outil insuffisant

Partie 2 – Outils et solutions IP

Les tunnels Middleboxs

Conclusion

INTRODUCTION

• D'où vient le besoin d'interconnexion?

o D'où vient le problème que pose l'interconnexion?

Introduction

• Limites de l'interconnexion de niveau 2

o Question de l'extension à d'autres réseaux.

INTRODUCTION

- o Pourquoi passer du niveau 2 au niveau 3?
 - Limitations
 - Englober les problèmes d'hétérogénéité

Passage

- d'un monde opérateur homogène
 - Réseaux d'opérateurs
- À un monde hétérogène
 - Réseaux informatiques
 - Mode datagramme

1 - IP UN OUTIL D'INTERCONNEXION PLAN

1 – IP, un outil d'interconnexion

1.1 – Routeurs

1.2 – IP sur tout

1.3 – Manques, besoins et limites

Partie 1 – IP un outil d'interconnexion 1.1 Routeurs

- Quels sont les problèmes d'interconnexion pour le réseau?
 - Notion d'adressage
 - Notion de transfert de bout en bout
- Question d'adressage
 - Que représente une adresse?
 - Avantages
 - Limites
- Qu'appelle t'on le routage dans IP?
 - Différence entre algo de routage et protocole de routage

Partie 1 – IP un outil d'interconnexion 1.1 Routeurs

- Routeurs = cœur de l'interconnexion IP?
 - Fonctionnement/Principe

• Pourquoi?

• Intégration de l'hétérogénéité

• Modèle IP d'interconnexion = IP sur LAN

- Exemples
- Encapsulation
 - Question du coût de l'encapsulation
 - Question d'utilité de l'encapsulation
 - Question de multiplexage

Partie 1 – IP un outil d'interconnexion $1.2 \ IP \ SUR \ TOUT$

- o IP sur liaison série
 - Besoins
 - Que fait IP?
 - Que faut-il pour qu'IP fonctionne?
 - Exemples:
 - HDLC, LAP, PPP

- Une première conclusion
 - ✓ A IP s'appuie fortement sur le niveau 2 pour l'interconnexion
 - **B** IP ne demande rien, il interconnecte tout tout seul!
 - ✓ C Le niveau 2 doit permettre d'acheminer l'information
 - ✓ **D** IP est une solution par encapsulation
 - **E** L'adressage IP est un problème pour l'interconnexion
 - ✓ **F** IP ne fait pas forcement grand-chose, son atout est son omniprésence.

• IP sur MAN et sur WAN

- Exemples
 - MetroEthernet, X25, ATM,FR, SDH, SONET, PDH, ...
- IP = couche de convergence?
 - Redondance de fonctionnalités de niveau 3?
 - Encapsulations
 - Résolution d'adresses
 - Modes de communication différents
 - → Pas tout à fait/ Pas vraiment / Non

• Illustration IP sur ATM

- Besoins
 - Etablir/choisir un VP/VC
 - o Résolution d'adresse
 - Etablissement
 - Encapsulation
- Deux couches d'adaptation!
 - AAL5
 - Classical IP

Conclusion

- A IP est la couche de convergence nécessaire et suffisante
- \mathbf{B} IP ne sert à rien, vive ATM!
- ✓ C IP requiert une configuration, une adaptation, souvent spécifique au niveau sous-jacent.
 - **D** IP devrait intégrer une couche d'adaptation générique pour permettre une interconnection transparente.

o « On met de l'IP et ça marche! »

- Pourquoi ce postulat est-il vraiment à nuancer?
 - Brainstorm

- o L'empreinte du passé
 - Technologie non IP
 - Technologie ne supportant pas IP
 - Equipements terminaux
 - Ex: Embarqué

- Interconnexion de technologie non IP à travers IP
 - o Question de QoS
 - Comment assurer une QoS sur IP?

- IP ou IPs?
 - IPv4
 - IPv6
 - Multicast IP
 - Exemple: Mbone
- Plusieurs acteurs
 - Notion d'AS
 - o Entités administratives
 - Interconnexion entre AS
 - Peering
 - Relation Commerciale
 - Adressage
 - Privé
 - Public
 - Politique

- Evolutions
 - Technologies
 - Coexistence
 - Pas une seule solution
 - Utilisateurs
 - Nombres
 - Besoins des utilisateurs
 - Dynamique
 - o Applications évoluent très vites
 - o Cœur du réseau évolue très lentement
 - IP fait bloc
- IP ne fait pas tout... il fait peu

- o IP n'est pas suffisant en soit car:
 - Tout n'est pas encore IP
 - Hétérogénéité des supports
 - Hétérogénéité d'IP lui-même
 - De très nombreux acteurs avec leur propres règles, besoins et solutions
 - De multiple cas d'utilisations

• INTERNET est

- Une solution d'interconnexion globale
- Une multitude de problèmes d'interconnexion

- INTERNET Un unique réseau mondial?
 - Un lien entre toutes les entités du monde
 - Dans un réseau constituait de réseaux
 - Le plus grand problème d'interconnexion

- o Un réseau commun?
 - Du réseau local
 - Par un sur-réseau d'un FAI
 - o Réseaux d'accès
 - Quid des technologie hétérogènes?
 - o ADSL, 2G, 3G, Fibre optique, Ethernet, wifi, ...
 - o Interconnexion de réseaux
 - Quid des routes?
 - A un réseau de réseaux
 - o Des entités différentes
 - Gestion?
 - Qui paie?
 - Où s'interconnecter?
 - Comment?

2 – Outils et solutions IP

1.1 - Tunnels

Principe des tunnels Illustration en accès VPNs Implantations Exemples IPv4/IPv6 (TD)

1.2 - Middleboxes

2.1 Tunnels

PRINCIPE

- Encapsulation pour passer à travers
 - Un autre réseau
 - Une autre technologie
 - Un autre domaine
- o Abstraction des éléments traversés
 - Tout ne devient qu'un lien point à point
 - o Transparent pour le protocole encapsulé
 - o Peut-être invisible pour le protocole « encapsulant »
 - Construction d'un sur-réseau

→ Notion de tunnel

2.1 Tunnels

Cas d'utilisations

- o Réseaux d'accès
 - Technologies très hétérogènes
 - Acteurs nombreux (sous location)
 - Auto-configuration de l'utilisateur
- Réseaux privés
 - Virtual Private Network
 - Abstraction de la réalité d'interconnexion
 - « Sécurité »
- o Déploiement de nouveaux protocoles
- Gestion des flux intra-opérateur

→ Très variés et à toutes les sauces

2.1 Tunnels

Réseaux d'accès I

o Modem 56K via le RTC

2.1 Tunnels

Réseaux d'accès II

- ADSL
 - Hétérogénéité des technologies
 - Différents acteurs

2.1 Tunnels

2.1 Tunnels

Adaptations de PPP

• PPPoE

• PPPoA

• Au final PPP n'est pas plus une couche de convergence qu'IP.

2.1 Tunnels

L2TP (Layer 2 Tunnel Protocol) [RFC2661]

- Cisco + Microsoft 1999
- Rôles
 - Transporter des tunnels PPP pour dissocier l'extrémité du lien point à point (niveau 2) et la session PPP (cf. notre cas: dans PPP le point de terminaison de la liaison et serveur d'accès sont confondus)
 - Mise en œuvre de VPN sur IP
- Entités
 - L2TP Access Concentrator
 - L2TP Network Server

2.1 Tunnels

Virtual Private Network

Outils:

- Réseaux:
 - IPsec, GRE, ...
- Applicatif
 - Openvpn (au dessus de TCP/UDP avec openssl)
 - SSH
 - HTTP
 - o DNS
 - BGP

2.1 Tunnels et implantations

• GRE

- Dernier RFC 2890 en 2000 par CISCO
- Objectif = encapsuler un protocole dans un autre
 - Aussi appelé IP Tunneling
- Un en-tête très simple

o Illustration vue en TP

2.1 Tunnels et implantations

- Implantation par une interface virtuelle
 - Sous linux
 - Tun (network Tunnel)
 - Emulation de niveau 3
 - Tap (network Tap)
 - o Emulation de niveau 2
 - o « Véritable » VPN

2.1 Tunnels et Limites

- Coût d'une solution par encapsulation
 - Overhead
 - Redondance
- « Darknettisation »
- Préconfiguration
 - Solution difficile à automatiser
 - o Point d'entrée
 - o Point de sortie
 - Au cas par cas

2.2 MIDDLEBOXES

- Première définition
 - Points d'entrée et de sortie d'un tunnel
- Middlebox [RFC 3234]
 - Firewall/NAT
 - IDS
 - Load Balancing
 - QoS (WAN optimizers)
- Principe = lieu de l'interconnexion
 - Gestion de l'hétérogénéité
 - Rarement directement au niveau des *End-Users*
 - Mais pas que de l'interconnexion!

2.2 MIDDLEBOXES

- Equipements permettant
 - Agrandir Internet => Network address translators
 - Sécuriser Internet => Firewalls, VPNs, IDS
 - Interconnecter => Tunnels, passerelles applicatives
 - Améliorier => passerelles applicatives

Objectifs

Résoudre certains problèmes d'IP

Limites

• Introduit de nouveaux problèmes...

2.2 MIDDLEBOXES

- Neutralité du net et middleboxes
 - Définir la neutralité des réseaux

• La neutralité du net est-elle une vérité? Un but?

• Pourquoi les middleboxes vont-elles à l'encontre? (et l'interconnexion du fait?)

2.2 MIDDLEBOXES

- Les problèmes d'IP
 - Manque d'addresses IP
 - Mobilité des End-users
 - Sécurité
 - Performances
- Et les middleboxs
 - NATs
 - Ancres
 - Firewalls/IDS
 - CDN, prefectchers, proxy web

2 – Outils et solutions du monde IP Exercices

- o Privé/Public
 - Illustration par le NAT
 - Une question: où apparaît l'adresse IP?

o IPv4/IPv6

- Une première solution
- Discussion en TD

CONCLUSION

- Les forces d'IP
 - son omniprésence actuelle
 - il propose une forme d'interconnexion sans beaucoup de prérequis
- Les limites d'IP
 - seul, il est rarement suffisant (couches d'adaptation)
 - redondances des fonctionnalités
 - coût des solutions par encapsulation
- Solution classique
 - Méthode par encapsulation => tunnel

CONCLUSION

- Réflexions:
 - Tricher pour la bonne cause reste il tricher?
 - L'amélioration ne pourrait-elle-même entraîner des défauts pires que ce qu'elle apporte?