Math 10A Fall 2024 Worksheet 15

October 17, 2024

1 Quotient rule

- 1. Compute the derivative of the given function.
 - (a) $P(x) = \frac{\sin(x)}{x^3 1}$
 - (b) $L(x) = \frac{(1-4x)(2+x)}{3+9x}$
 - (c) $f(z) = \frac{3z+z^4}{2z^2+1}$
 - (d) $g(x) = \frac{1}{\arctan(x)}$
- 2. Derive the formulas for the derivatives of tan(x), cot(x), sec(x), and csc(x) by using the quotient rule and the derivatives of cos(x) and sin(x).
- 3. Compute the second derivatives of all six inverse trig functions.
- 4. Suppose f(x) = g(x)/h(x) and that g(a) = 1, h(a) = 2, g'(a) = 3, and h'(a) = 4. Compute f'(a).

2 Logarithmic and implicit differentiation

- 1. Use logarithmic differentiation to compute the derivatives of the following functions. (You can do some of these without logarithmic differentiation, but it might be a lot harder).
 - (a) x^x
 - (b) $f(x) = (2x+1)^5(x^4-3)^6$
 - (c) $f(z) = \sqrt{z}e^{z^2}(z^2+1)^{10}$
 - (d) $h(y) = y^{1/(1+y^2)}$
- 2. Explain why the chain rule, power rule, and the formula for the derivative of an exponential are unhelpful for computing $\frac{d}{dx}x^x$ without taking logarithms first.
- 3. (a) Compute $\frac{dy}{dx}$ if $y^x = x^y$ (for x, y > 0).
 - (b) Is y a function of x?
 - (c) Compute the tangent line to this curve at the point (1,1).
 - (d) Something weird should happen when you try to find $\frac{dy}{dx}$ at the point (e, e). What's going on?
 - (e) Graph $y^x = x^y$ on Desmos to check your work and get a better sense of what is going on.

3 Linear approximation

- 1. Use a first-order linear approximation to estimate the following numbers.
 - (a) $e^{0.05}$
 - (b) $\sin(3.1)$
 - (c) $(1.01)^{-20}$
 - (d) $\log_2(257)$
 - (e) $\arcsin(0.99)$
 - (f) $\tan(\pi/4 + 0.02)$
- 2. Justify the following approximation: $\sin(x) \approx \tan(x) \approx e^x 1 \approx x$ when |x| is small.
- 3. In which of the following cases should you suspect that the linearization of f(x) at a might be a poor estimate of f(a+h)?
 - (a) When |h| is large.
 - (b) When |a| is large.
 - (c) When |f(a)| is large.
 - (d) When f(x) has a jump discontinuity at b for some a < b < a + h.
 - (e) When f(x) is a polynomial.
 - (f) When you have to use the quotient rule to compute the derivative of f at a.

4 Solutions

4.1 Quotient Rule

1. (a)

$$P'(x) = \frac{\cos(x)(x^3 - 1) - 3x^2 \sin(x)}{(x^3 - 1)^2}$$

(b)

$$L'(x) = \frac{d}{dx} \left(\frac{-4x^2 - 7x + 2}{3 + 9x} \right) = \frac{(-8x - 7)(9x + 3) - (-4x^2 - 7x + 2)(9)}{(9x + 3)^2}$$

(c)

$$f'(z) = \frac{(4z^3 + 3)(2z^2 + 1) - (4z)(z^4 + 3z)}{(2z^2 + 1)^2}$$

(d) We have $\tan(\tan^{-1}(x)) = x$, so if $f(x) = \tan^{-1}(x)$, the chain rule shows

$$\frac{1}{\cos(\tan^{-1}(x))^2} \cdot f(x) = 1.$$

From right triangle trigonometry, $\cos(\tan^{-1}(x)) = \frac{1}{\sqrt{x^2+1}}$, so the derivative of $\tan^{-1}(x)$ is $\frac{1}{\sqrt{x^2+1}}$. Therefore,

$$g'(x) = \frac{-1}{\tan^{-1}(x)^2 \cdot \sqrt{x^1 + 1}}.$$

 $2. \quad (a)$

$$\frac{d}{dx}\tan(x) = \frac{\cos(x)^2 - \sin(x)(-\sin(x))}{\cos(x)^2} = \frac{1}{\cos(x)^2}$$

(b)

$$\frac{d}{dx}\cot(x) = \frac{(-\sin(x))\sin(x) - \cos(x)^2}{\sin(x)^2} = \frac{-1}{\sin(x)^2}$$

(c)

3.

4.