Data Structures and Algorithms

Conf. dr. ing. Guillaume Ducoffe

guillaume.ducoffe@fmi.unibuc.ro

Algorithms on **Sets**

 $\underline{Reminder}: \ Set = Unordered \ data \ collection \ with \ no \ repeated \ element.$

Q1: How to represent a set?

Today's main objectives: Operations on Sets

- Disjoint Sets Data Structure ("Union Find")
- Partition Refinement.

Representation of a Set

Reminder: no repeated elements.

 \rightarrow Could be naively checked by maintaining a sorted collection.

Ex.: self-balanced Binary Search Trees.

A more efficient (and general) approach:

Element Uniqueness

Input: a dataset

Question: are all elements pairwise different?

- Can be solved using a Hash Table.
- \rightarrow A Set = a Hash Table + $\frac{Any}{Any}$ Data structure on the same elements.

Disjoint Sets

A Disjoint Sets Data Structure maintains a collection of pairwise disjoint sets. It supports the following three basic operations:

- makeset(x): If x is not already present in the collection, then add a new singleton set whose unique elements equals x.
- find(x): outputs the unique identifier of the set containing x.
 - \rightarrow In general, find(x) outputs an element of the set, also called its "representative".
 - \rightarrow We may force this representative to have special properties (e.g., largest element in the set) with no computational overhead.
- union(x,y): merge the respective sets of x,y into one.
 - \rightarrow In some implementations, has $\mathcal{O}(n)$ worst-case complexity. But the amortized cost can be much lower than that.

Naive implementation

Assumption for what follows: The universe is $\{0, 1, 2, \dots, n-1\}$.

• We simply store an *n*-vector associating to each element in a set its representative.

typedef vector<int> DisjointSets;

[-1,1,2,1,2,1,2,1,2]

Operations

```
//Complexity: \mathcal{O}(1)
void makeset(DisjointSets& F, int x) {
   if(F[x] == -1) F[x] = x:
//Complexity: \mathcal{O}(1)
int find(DisjointSets& F, int x) {
   return F[x];
//Complexity: O(n)
void union(DisjointSets& F, int x, int y) {
   for(int i = 0; i < F.size(); i++)</pre>
      if(F[i]==F[x]) F[i] = F[y];
The Amortized cost of union also is \mathcal{O}(n): consider union(0,1), union(0,2),
\ldots, union(0,i), \ldots union(0,n-1).
```

A Better Approach

• We keep the vector of representatives. However, for each element x that is a representative, we now keep the list of all elements in its set in a separate array of lists (indexed by all elements).

```
typedef struct {
   vector<int> rep;
   vector< list<int> > set;
} DisjointSets;
```



```
rep: [-1,1,2,1,2,1,2,1,2]
```

```
set: [[],[1,3,5,7],[2,4,6,8],[],[],[],[],[],[]]
```

Operations

```
//Complexity: \mathcal{O}(1)
void makeset(DisjointSets& F, int x) {
    if(F.rep[x] == -1) {
        F.rep[x] = x; F.set[x].push_back(x);
//Complexity: \mathcal{O}(1)
int find(DisjointSets& F, int x) {
    return F.rep[x];
//Complexity: \mathcal{O}(n)
void union(DisjointSets& F, int x, int y) {
    int p = F.rep[x], q = F.rep[y];
    //Always merge the smallest set
    if(F.set[p].size() <= F.set[q].size()) {</pre>
        for(int i : F.set[p]) { F.set[q].push_back(i); F.rep[i]=q; }
        F.set[p].erase(F.set[p].begin(),F.set[p].end());
    }else union(F,y,x);
```

Amortized complexity

Theorem

The cost of executing m operations is in $\mathcal{O}(m \log n)$.

 \rightarrow Equivalently: Amortized complexity is in $\mathcal{O}(\log n)$.

Proof:

- 1) We pay $\mathcal{O}(1)$ per makeset/find operation: $\mathcal{O}(m)$ in total
- 2) Each time an element changes her set, the size of her set doubles (at least).
- 3) Consequence: each element changes her set at most $\mathcal{O}(\log n)$ times.
- 4) The total number of elements changing their group at least once is no more than m.

A different perspective: Representing sets as **trees**

• The elements of each set are the nodes of a tree, whose root is the representative of this set.

Consequence: We can simulate Disjoint Sets with a **Dynamic Forest**

- makeset(x): create a new tree whose unique node is x
- find(x): reduces to findRoot
- union(x,y): reduces to link(findroot(x),findroot(y))
- $\implies \mathcal{O}(\log n)$ worst-case per operation.

Improvements: Path Compression

Operation find

In order to access to the root (representative), we climb in the tree. On our way, all visited nodes are reconnected as children of the root.

 \rightarrow Speed-up of subsequent find operations.

Improvements: Union by rank/size

- Solution 1: Union by size.
 - Each node stores the size of its rooted subtree. If we merge two sets, then the root of the new set is the root of the biggest tree.

- Solution 2: Union by ranks.
 - Each node keeps a rank: **upper bound** on its depth. If we merge two sets, then the root of the new set is the root of larger rank.

Remark: both approaches ensure logarithmic depth.

Optimality

• Find/Union in worst-case $\mathcal{O}(\log n)$. – Trivial.

Define
$$\log^{(i)} n = \log \left(\log^{(i-1)} n \right)$$
.
Then, $\log^* n = \min\{i \mid \log^{(i)} n \leq 1\} \ll \log n$ is the iterated logarithm.

• (Hopcroft & Ullman, 1973): Find/Union in amortized $\mathcal{O}(\log^* n)$.

Optimality

• Find/Union in worst-case $\mathcal{O}(\log n)$. – Trivial.

Define
$$\log^{(i)} n = \log \left(\log^{(i-1)} n \right)$$
.

Then, $\log^* n = \min\{i \mid \log^{(i)} n \le 1\} \ll \log n$ is the iterated logarithm.

• (Hopcroft & Ullman, 1973): Find/Union in amortized $\mathcal{O}(\log^* n)$.

Recall Ackermann function:

$$A(0,n) = n+1; \ A(m+1,0) = A(m,1); \ A(m+1,n+1) = A(m,A(m+1,n)).$$

Its **inverse** is $\alpha(m, n) = \min\{i \ge 1 \mid A(i, \lfloor m/n \rfloor) \ge \log n\}$.

Theorem (Tarjan, 1979)

The amortized complexity of Find/Union is in $\mathcal{O}(\alpha(n, m))$.

This result cannot be improved.

Union/Find with Deletions

<u>Remark</u>: the standard Disjoint-Set data structure does not support deletions.

- To support deletion, each node is augmented with a Boolean field: indicating whether this element got deleted.
- Each root (representative) stores two pieces of information:
 - The size of its tree (Rk: this is > than the size of the set)
 - The number of deleted elements in its tree.
- delete(x): mark x as deleted.

The representative of x (operation find) increases the counter of deleted elements. If more than half of the nodes are deleted, then we completely rebuild this tree (using makeset/union operations).

ightarrow Amortized complexity remains in $\mathcal{O}(\alpha(m,n))$ for m operations.

Special Cases

Definition

A graph is a pair (V, E), where each element of E (called an edge) is a two-set of V (elements of V are called vertices).

- Given a sequence S of m operations, define the graph G(S) as follows:
 - For each makeset(x) operation, add a new vertex x to the graph.
 - For each union(x,y) operation, add an edge between x,y.

Theorem (Gabow & Tarjan, 1985)

If we are given the m operations in advance ("offline" setting) and G(S) is a forest, then we can execute all m operations in O(m).

A simpler case: G(S) is a path.

• We partition in $\mathcal{O}(n/b)$ sub-paths of length $\leq b$.

• If $b \ll logn$ then each sub-path is a binary word (Bitwise manipulation).

representative nodes \iff bits set to 0.

• We further maintain a classical Disjoint-Set data structure, *but* where in each set we only keep the roots r_i of the sub-paths.

Operations

- makeset(x): corresponding bit set to 0
- find(x): in the word of x's sub-path, find the next 0 after x.
 - Consider the word's complement (bitwise XOR). Discard all bits before x, Reverse the word, and then Use the logarithm function.
- \rightarrow Allows to find the representative if in the same sub-path.
- \rightarrow Otherwise, x is in the set of the sub-path root r. Call find operation on the Disjoint-Set data structure for roots. Let r' be the representative. Find the representative of r' in its sub-path.
- union(x,y): x's bit set to 1. If x, y contain roots r_i in their respective sets, then also do a union in the Disjoint-Set data structure for the roots.
 - x's set contains a root \iff all bits before/after x are set to 1.

Complexity:
$$\mathcal{O}(m) + \mathcal{O}(\frac{n}{b} \times \alpha(m, \frac{n}{b})) = \mathcal{O}(m)$$

Partition Refinement

- Data Structure that maintains an ordered collection of pairwise disjoint sets, subject to the following basic operations:
 - init(V): initialize the structure with one set, equal to V.
 - refine(S): for each set X such that $X \cap S \neq \emptyset$ and $X \setminus S \neq \emptyset$, we replace X by the two consecutive new sets $X \cap S$ and $X \setminus S$.

• Operation init(V) is in worst-case $\mathcal{O}(|V|)$. Each operation refine(S) is in worst-case $\mathcal{O}(|S|)$. Note that these are optimal runtimes!

Implementation

- Elements in V are maintained in a doubly-linked list \mathcal{L} , such that all elements in a same set X are consecutive.
- Each set X of the partition is represented by a structure with two fields: pointers to its first and last elements in \mathcal{L} .
- ullet Each node in the list ${\mathcal L}$ further stores a pointer to the set of its element. This mutual dependency between ${\mathcal L}$ and the set structures can be overcome by using an auxiliary Hash-table.

Refinement

- To each set X, associate an empty list L[X].
- For each $s \in S$, access to its set X and add a pointer to the node containing s in L[X]. Put a pointer to X in an auxiliary Hash-table \mathcal{H} (the keys of \mathcal{H} are the sets intersecting S).
- For each set X in \mathcal{H} , if $L[X] \neq X$, then:
 - Update the first and last element of X as its first and last element snot in S (forward/backward search in \mathcal{L}).
 - Remove all elements in L[X] from \mathcal{L} ;
 - Reinsert L[X] immediately before the first element of X (or immediately after the last element of X);
 - Create a new set from L[X].

Questions

