UMA205: Introduction to Algebraic Structures

Naman Mishra

January 2024

Contents

Definition 0.1 (Cartesian product). Let A and B be sets. Then $A \times B = \{(a,b) \mid a \in A, b \in B\}$ is called the *Cartesian product* of A and B.

Lecture 04: Wed 10 Jan '24

This exists by virtue of the axiom of powers (0.1).

Definition 0.2 (Relation). Let A and B be sets. Then a subset R of $A \times B$ is called a (binary) *relation* from A to B. If B = A, we say that R is a relation on A.

We define some properties of relations.

Definition 0.3. Let R be a relation on a set A. We say that R is

- (i) **reflexive** if $(a, a) \in R$ for all $a \in A$,
- (ii) symmetric if $(a, b) \in R \implies (b, a) \in R$,
- (iii) **antisymmetric** if $(a, b) \in R \land (b, a) \in R \implies a = b$,
- (iv) **transitive** if $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$.

If R satisfies (i), (ii) and (iv), it is said to be an equivalence relation. We write $a \sim_R b$ for $(a, b) \in R$.

If R satisfies (i), (iii) and (iv), it is a partial order. We write $a \leq_R b$ or $a \geq_R b$ for $(a,b) \in R$.

Definition 0.4 (Equivalence class). Let X be a set and \sim_R an equivalence relation on X. The equivalence class associated with $x \in X$ is

$$[x] = \{ y \in X \mid y \sim_R x \}.$$

Definition 0.5 (Partition). A (set) partition of a set X is a family $\{X_{\alpha} \mid \alpha \in I\}$, where I is some indexing set, such that,

- (i) $X_{\alpha} \cap X_{\beta} = \emptyset$ for all $\alpha \neq \beta \in I$, (ii) $\bigcup_{\alpha \in I} X_{\alpha} = X$.

This is also written as simply

$$\bigsqcup_{\alpha \in I} X_{\alpha} = X.$$

Proposition 0.6 (Fundamental theorem of equivalence relations). Let X be a set and \sim_R an equivalence relation on X. Then the family of equivalence classes $\{[x] \mid x \in X\}$ forms a partition of X. Conversely, every partition arises from an equivalence relation.

Proof. Exercise.

Definition 0.7. Let X be a set and \sim_R an equivalence relation on X. Then the set $X/\sim_R=\{[x]\mid x\in X\}$ is called the quotient set of

Examples.

- Consider N with the relation $a \sim_R b \iff a \equiv b \pmod{3}$. The quotient set \mathbb{N}/R is $\{[0], [1], [2]\}$, which is morally the same as $\{0, 1, 2\}$.
- For any set A with the equality relation =, the quotient set A/= is the (morally) the same as A.
- Consider \mathbb{R}^2 with $(x,y) \sim (z,w)$ if $x^2 + y^2 = z^2 + w^2$. Then $\mathbb{R}^2/\sim =$ $\{[(r,0)] \mid r \in \mathbb{R}\}$ which is morally just the set of non-negative reals.

Definition 0.8 (Function). Let A and B be sets. A relation f from A to B is said to be a function if for all $a \in A$, there exists a unique $b \in B$ such that $(a, b) \in f$.

A is said to be the *domain*, B is said to be the *range* or *codomain* of f. For a subset $C \subseteq A$, the image of C under f is $f(C) = \{f(a) \mid a \in C\}$.

For a subset $D \subseteq B$, the *preimage* or *inverse image* of D under f is $f^{-1}(D) = \{a \in A \mid f(a) \in D\}.$

Note that f(C) exists by the axiom of replacement.

Examples.

• $A = B = \mathbb{N}, f(a) = a_{++}$. Then $f(\mathbb{N}) = \mathbb{N} \setminus \{0\}$.

$$f^{-1}(\{a\}) = \begin{cases} \{a-1\} & \text{if } a > 0\\ \varnothing & \text{if } a = 0 \end{cases}$$

Definition 0.9. Two functions f and g with the same domain X and range Y are equal if f(x) = g(x) for all $x \in X$.

Definition 0.10 (Composition). If $f: X \to Y$ and $g: Y \to Z$, then the *composition* $g \circ f$ is a function $g \circ f: X \to Z$ given by

$$(g \circ f)(x) = g(f(x)).$$

Definition 0.11. A function $f: A \to B$ is said to be

- injective, if f(x) = f(y) implies x = y,
- surjective, if f(A) = B,
- bijective, if it is both injective and surjective.
- an involution, if f(f(x)) = x for all $x \in A$.

Exercise 0.12. Let $f: A \to B$ be an involution. Show that f is bijective.

Solution. f is surjective since everything is in the range. Injective since $f(x) = f(y) \implies f(f(x)) = f(f(y)) \implies x = y$.

A function is bijective iff for any $b \in B$ there is a unique $a \in A$ such that

Lecture 05: Fri 12 Jan '24

f(a) = b.

Definition 0.13. Let $f: A \to B$ be bijective. The *inverse* of f is the function $f^{-1}: B \to A$ where $f^{-1}(b)$ is the unique $a \in A$ such that f(a) = b.

Axiom 0.1 (Powers). Let X and Y be sets. Then there exists a set, denoted Y^X , consisting of all functions from $X \to Y$.

Exercise 0.14. Let X be a set. Then $\{Y \mid Y \subseteq X\}$ is also a set.

Solution. The property $P(F, X_F)$ given by

$$P(F, X_F) \iff F \in 2^X \land X_F = \{x \in X \mid F(x) = 1\}$$

is satisfied by at most one X_F for any F. Thus applying the axiom of replacement on 2^S gives the desired set.

Axiom 0.2 (Unions). Let A be a set whose elements are also sets. Then there exists a set, denoted $\bigcup A$, whose elements are the elements of the elements of A. Thus $x \in \bigcup A \iff x \in S$ for some $S \in A$.

Remarks. This axiom implies ??.

Let I be a set such that A_{α} is a set for all $\alpha \in I$. Then $\{A_{\alpha} \mid \alpha \in I\}$ is a set by the axiom of replacement. Thus $\bigcup_{\alpha \in I} A_{\alpha}$ is a set.

Definition 0.15. Two sets X and Y are said to have the same cardinality if there exists a bijection $f: X \to Y$.

Let $n \in \mathbb{N}$. If a set X has the same cardinality as $\{0, 1, \dots, n-1\}$, then X is said to be *finite* and have cardinality n.

Definition 0.16. A set X is countably infinite or countable if it has the same cardinality as \mathbb{N} , is at most countable if it is finite or countable, and is uncountable otherwise.

Exercise 0.17. Let m < n be naturals. Show that there is

- (i) no surjection from [m] to $[n]^1$.
- (ii) no injection from [n] to [m].
- (iii) a bijection from [a] to [b] iff a = b.

Exercise 0.18 (Properties of countable sets).

- (i) If X and Y are countable, then so is $X \cup Y$.
- (ii) The set $\{(n,m) \in \mathbb{N} \times \mathbb{N} \mid 0 \le m \le n\}$ is countable.
- (iii) $\mathbb{N} \times \mathbb{N}$ is countable.

Theorem 0.19. Let X be an arbitrary set. Then X and 2^X cannot have the same cardinality.

Proof. Let $f: X \to 2^X$. Consider $A = \{x \in X \mid x \notin f(x)\} \subseteq X$. So $A \in 2^X$. Since for any $x \in X$, $x \in A \iff x \notin f(x)$, we have $f(x) \neq A$ for all $x \in X$. Thus f is not surjective.

News: Quiz 1 tomorrow. Material upto and including lecture 6.

r all luct

Lecture 06: Mon

15 Jan '24

Definition 0.20. Let I be a possibly infinite indexing set and for all $\alpha \in I$ let X_{α} be a set. Then its (possibly infinite) Cartesian product is defined as

$$\prod_{\alpha \in I} X_{\alpha} = \left\{ (x_{\alpha})_{\alpha \in I} \in \left(\bigcup_{\beta \in I} X_{\beta} \right)^{I} \mid x_{\alpha} \in X_{\alpha} \text{ for all } \alpha \in I \right\}$$

Exercise 0.21. For any sets I and X, $\prod_{\alpha \in I} X = X^I$.

Axiom 0.3 (Choice). Let I be a set and for all $\alpha \in I$ let $X_{\alpha} \neq \emptyset$. Then $\prod_{\alpha \in I} X_{\alpha}$ is non-empty.

Definition 0.22. A choice function on X is a function $f: 2^X \setminus \emptyset \to X$ such that for all non-empty $S \subseteq X$, $f(S) \in S$.

 $^{^{1}[}n] = \{1, \dots, n\}$

Fact 0.23. The existence of a choice function for every X is equivalent to the axiom of choice.

Remarks. A variant of AoC is the axiom of countable choice, which requires I to be at most countable.

Lemma 0.24. Let E be a bounded above non-empty subset of \mathbb{R} . Then there exists a sequence $(a_n)_{n\in\mathbb{N}}$ such that $a_n\in E$ for all n and $\lim_{n\to\infty}a_n=\sup E$.

Proof. Let $X_n = \{x \in E \mid \sup E - \frac{1}{n} \le x \le \sup E\}$. Each X_n is non-empty. By AoC, there exists a sequence $(a_n)_{n \in \mathbb{N}}$ such that for all $n, a_n \in X_n$. Thus $a_n \in E$ for all n and $\lim_{n \to \infty} a_n = \sup E$.

Definition 0.25. Let (P, \leq) be a poset. A subset $Y \subseteq P$ is called a *chain* or *totally ordered* if for any $y, y' \in Y$, either $y \leq y'$ or $y' \leq y$.

Definition 0.26. Let (P, \leq) be a poset and $Y \subseteq P$. We say that y is a *minimal* (resp. *maximal*) element of Y if there is no $y' \in Y$ such that y' < y (resp. y' > y).

Definition 0.27. Let (P, \leq) be a poset and $Y \subseteq P$ be a chain. We say that Y is *well-ordered* if every non-empty subset of Y has a minimal element.

Axiom 0.3 (Well-ordering principle). Given any set X, there exists a well-ordering on X.

Axiom 0.3 (Zorn's lemma). Let (X, \leq) be a non-empty poset such that every chain Y of X has an upper bound (there exists an $x \in X$ such that $y \leq x$ for all $y \in Y$). Then X has a maximal element.

Fact 0.28. The axiom of choice, well-ordering principle, and Zorn's lemma are equivalent.

Proof. **Zorn** \Longrightarrow **AoC.** Let $X \neq \emptyset$ and let P be the set of ordered pairs (Y, f) where $Y \subseteq X$ and f is a choice function on Y. Define

 $(Y, f) \leq (Y', f')$ if $Y \subseteq Y'$ and $f'|_Y = f$. P is non-empty because $\{x\} \subseteq X$ has a choice function for all $x \in X$.

Let C be a chain in P. Then let $\overline{Y} = \bigcup_{(Y,f)\in C} Y$ and define \overline{f} by setting $\overline{f}(S) = f(S)$ for any f for which f(S) is defined. Then $(\overline{Y}, \overline{f})$ is an upper bound for C.

By Zorn's lemma, there exists a maximal element of P, say (Y, f). If $x \in X \setminus Y$, we can extend f to $Y \cup \{x\}$ by defining f(S) = x for any S containing x. This contradicts the maximality of (Y, f). Thus $X \setminus Y$ must be empty, and so f is a choice function on X.

AoC \Longrightarrow **Zorn.** Let P be a poset whose every chain has an upper bound. Suppose P has no maximal element. Pick $x_0 \in P$ using a choice function. Since x_0 is not maximal, there exists an x_1 larger than x_0 , and x_2 larger than x_1 , and so on. This gives a chain $x_0 < x_1 < x_2 < \ldots$ But then x_{ω} is an upper bound for this chain. This gives another chain $x_{\omega} < x_{\omega+1} < \ldots$ But then $x_{2\omega}$ is an upper bound for this chain.

Continuing in this way, we get a chain which is "larger" than P itself, a contradiction.