电子技术实验

实验报告

(2020 - 2021 学年度 秋季学期)

实验名称 ______实验六 实验考核

姓名刘祖炎学号2019010485院系自动化系教师陈莉平时间2020 年 12 月 16 日

1. 实验目的

- 复习常用电子仪器的正确使用方法。
- 复习正确使用集成电路芯片、面包板以及在面包板上安装电路的方法。
- 总结电路按功能模块进行分析、设计与调试的方法。
- 总结使用仪器分析、查找、排除电路故障的方法。

2. 预习任务

2.1 分析实验任务中测量电路的工作原理,设计电路参数

图 1: 电路图

555 构成多谐振荡电路,可产生宽度固定的矩形脉冲波,且高电平时间远大于低电平时间,取反后脉冲宽度极小。 R_3 与 C_3 构成微分电路,可取:

$$R_3 = 1k\Omega$$

$$C_3 = 10nF$$

555 输出取反后得到的 V_a 的宽度 t_W 与 R_W 、 R_2 、 C_x 有关:

$$t_W = (R_W + R_2)C_x \ln 2$$

 V_I 输入和 V_a 与非后因而计数器显示数值为:

$$n = (R_2 + R_W)C_x f \ln 2$$

因此:

$$R_W = \frac{n}{C_x f \ln 2} - R_2$$

由此可根据接入电容 C_x 的值求得 R_W 的取值。

表 1: 电阻取值表

A	В	数码管显示	$R_W(A)/\Omega$	$R_W(B)/\Omega$
$1\mu F$	$0.1\mu F$	1	1885.39	27853.9
$2.2\mu F$	$0.22\mu F$	2	1623.08	25230.8
$4.7 \mu F$	$0.47\mu F$	4	1455.65	23556.5

题二中, $C_x = 0.47 \mu F$, $R_2 = 1k\Omega$, 根据公式:

$$6 = (R_2 + R_W)C_1 f \ln 2$$

$$R_W = \frac{6}{C_1 f \ln 2} - R_2 = \frac{18417383.5}{f} - 1000$$

2.2 按功能划分模块,写出调试电路的方法和步骤

电路可分为多谐振荡电路、微分电路、信号处理电路(使用简单的门电路实现,用于将多谐振荡电路的输出和输入 V_I 综合起来得到计数器的 CLK 信号)、计数电路、显示电路。

若结果不符合预期,可按以下步骤调试:

- 利用示波器检查多谐振荡电路输出的频率、占空比。
- 利用示波器检查微分电路输出的脉冲幅度、宽度。
- 利用示波器检查输入信号。
- 检查电路连接是否有误。

2.3 其他需要用到的引脚图、数据手册等

表 2: 74HC 芯片功能表

芯片	功能	芯片	功能
74HC00	2 输入四与非门	74HC02	2 输入四或非门
74HC08	2 输入四与门	74HC11	3 输入三与门
74HC14	六倒相器 (施密特触发)	74HC161	4 位二进制同步计数器
74HC20	4 输入双与非门	74HC27	3 输入三或非门
74HC74	双上升沿 D 触发器	74HC86	2 输入四异或门

