REGRESIE SI INTERPOLARE

Problema

- Se da o multime de puncte. Sa se gaseasca o functie continua si diferentiabila care sa se "potriveasca" acestor puncte.
- Abordari:
 - Se pune conditia ca graficul functiei sa treaca prin punctele date.
 Aceasta abordare se numeste interpolare.
 - Se pune conditia ca graficul functiei sa aproximeze cat mai bine punctele (adica graficul functiei sa treaca cat mai aproape de puncte. Aceasta abordare se numeste **regresie**.

Interpolare

Interpolare: O solutie directa

Se dau n puncte $(x_i, y_i)_{i=1,2,...,n}$. Se cauta o functie=polinom de gradul n-1 al carei grafic sa treaca prin aceste puncte.

Se cauta f de forma $f(x) = a_{n-1}x_i^{n-1} + a_{n-2}x_i^{n-2} + ... + a_1x + a_0$ astfel incat $f(x_i) = y_i$ pentru orice i = 1, 2, ..., n.

Se pun conditiile:

$$a_{n-1}x_i^{n-1} + a_{n-2}x_i^{n-2} + \dots + a_1x + a_0 = y_i$$

pentru orice i = 1, 2, ..., n. Am obtinut un sistem de n ecuatii cu n necunoscute care se poate rezolva cu metode directe sau iterative.

Polinomul de interpolare Lagrange

Sa pp ca se dau punctele (x_0, y_0) , (x_1, y_1) si (x_2, y_2) .

Vrem sa gasim un polinom de grad 2 de forma

$$f(x) = a_0(x - x_1)(x - x_2) + a_1(x - x_0)(x - x_2) + a_2(x - x_0)(x - x_1)$$

care sa treaca prin cele trei puncte.

 a_0 , a_1 si a_2 se determina din conditia ca graficul lui f(x) sa treaca prin cele 3 puncte.

$$f(x_i) = y_i$$

▶
$$i = 0$$
 implica $y_0 = a_0(x_0 - x_1)(x_0 - x_2) \longrightarrow a_0 = \frac{y_0}{(x_0 - x_1)(x_0 - x_2)}$

▶
$$i = 1$$
 implica $y_1 = a_1(x_1 - x_0)(x_1 - x_2) \longrightarrow a_1 = \frac{y_1}{(x_1 - x_0)(x_1 - x_2)}$

▶
$$i = 0$$
 implica $y_2 = a_2(x_2 - x_0)(x_2 - x_1) \longrightarrow a_2 = \frac{y_2}{(x_2 - x_0)(x_2 - x_1)}$

Deci
$$f(x) = \sum_{i=0}^{2} y_i \prod_{j=0, j \neq i}^{2} \frac{x - x_j}{x_i - x_j}$$

Date n+1 puncte $(x_i, y_i)_{i=0,1,2,...,n}$, polinomul de interpolare Lagrange de ordin n este:

$$f(x) = \sum_{i=0}^{n} y_i \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

Regresia liniara

• Date punctele(x_1,y_1), (x_2,y_2), ...,(x_n,y_n), cautam o functie simpla (polinom de grad I), f(x) = a+bx al carei grafic (dreapta y=a+bx) sa aproximeze cat mai bine punctele.

Vrem sa determinam a si b astfel incat dreapta

$$y=a+b x$$

sa aproximeze bine aceste puncte adica sa treaca suficient de aproape de puncte

Metoda celor mai mici patrate

- Masuram distantele de la fiecare punct la punctul corespunzator de pe dreapta,
- (x_i, y_i) -> (x_i, ŷ_i)
 distanta = | y_i ŷ_i | pt fiecare i=1,n
 S= suma patratelor acestor distante

Cautam a si b astfel incat S sa fie minima.

Metoda celor mai mici patrate

•
$$S = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 =$$

$$\bullet = \sum_{i=1}^{n} (y_i - a - b x_i)^2$$

- S = S(a,b) = functie de doua variabile.
- S este minima cand $\frac{\partial S}{\partial a} = \frac{\partial S}{\partial b} = 0$

• Se rezolva sistemul

•
$$a * n + b \sum x_i = \sum y_i$$

•
$$a * \sum x_i + b \sum x_i^2 = \sum x_i y_i$$

Exercitiu

- Se dau punctele (1, 0.4), (2, 1), (3, 1.1). Sa se gaseasca dreapta care aproximeaza cel mai bine aceste puncte.
- Rezolvare:
- Sistemul:
 - 3a+6b=2.5
 - 6a+14b=5.7
- Y = 0.13333 + 0.35 x

Regresie liniara in MATLAB

- function z = regres_lin (x, y)
- A=[length(x) sum(x); sum(x) sum(x.^2)]
- B=[sum(y); sum(x.*y)]
- z=A\B
- endfunction

EXEMPLU 1

- Analiza relatiei dintre pretul unui apartament si suprafata lui intr-o zona dintr-un oras.
- Estimarea pretului in functie de suprafata

•	Re [.]	for	m	ul	ar	. 6 .
	''	-		чι	uп	- •

 Se dau punctele (90,110), (45, 60), (75,80) reprezentand pretul versus suprafata unui apartament. Sa se estimeze pretul unui apartament cu suprafata de 60 m^2, folosind metoda celor mai mici patrate.

SUPRAFATA (m2)	PRET (mii Euro)
90	110
45	60
75	80
60	????

SUPRAFATA (m2)	PRET (Euro)
90	110000
45	60000
75	80000

Estimare pret in functie de suprafata

EXEMPLU 2

- Analiza relatiei dintre greutatea unei persoane si inaltimea sa
- Estimarea greutatii in functie de inaltime sau invers

Inaltime (cm)	Greutate (kg)
160	54
165	60
170	85
185	90

Exemplu – Regresie liniara

Evolutia nr cazurilor confirmate de COV-ID 19 in statul New York

Perioada: 17.03.2020 - 30.03.2020					
	Nr cazuri				
Data	confirmate				
3/17/2020	1374				
3/18/2020	2481				
3/19/2020	4597				
3/20/2020	7245				
3/21/2020	10356				
3/22/2020	15168				
3/23/2020	20875				
3/24/2020	25665				
3/25/2020	30811				
3/26/2020	37258				
3/27/2020	44635				
3/28/2020	52318				
3/29/2020	59513				
3/30/2020	68369				

Regresie patratica

