Project 3 - Rotobrush

Segmenting Deformable Objects in a Video

Segmentation

- ullet Given a point/pixel $x_{i,j}$ in an image, where does it belong?
- Why do we need segmentation?
 - Localization
 - ∘ Object Detection
 - Tracking

Deformable Objects

- Objects that change shape
- Changing shape \rightarrow Can't use static Mask

SnapCut

- 1. Segmenting object of interest in first frame
 - \circ Call it foreground, F
 - \circ Everything else is the background B
- 2. Create Local Classifiers
 - \circ Local windows along edge of initial mask W_k^t
 - Must have *some* overlap between windows (20-30%)
- 3. For each local window
 - 1. Initialize Color Model for GMM
 - 2. Initialize Shape Model
 - 3. Combine Shape + Color
 - 4. Update Color + Shape Model

Digging Deeper

- Use *roipoly()* to select mask
- ullet Select k points around object
 - \circ k ~60×60 windows \rightarrow Must have overlap
- Color Model
 - ∘ Per window

$$p_c(x) = rac{p_c(x|F)}{(p_c(x|F) + p_c(x|B))}$$

- \circ Fit GMM model \rightarrow can use MATLAB functions
- Find probabilities of foreground

Color Confidence

• Are foreground and background separable?

$$f_c = 1 - rac{\int_{W_c} |L^t(x) - p_c(x)| \cdot \omega_c(x) dx}{\int_{W_b} \omega_c(x) dx}$$

d = euclidean distance between x and foreground boundary

$$\omega_c = e^{rac{-d^2(x)}{\sigma_c^2}}$$

- \circ f_c is a single value
- \circ ω_c o Weight function
- \circ |L^t(x) p_c(x) | = Subtract probabilities from mask
- ullet After doing this for every window ullet Will have border around object
- Shape Model

$$f_s(x)=1-e^{rac{-d^2(x)}{\sigma_s^2}}$$

 σ_s is a parameter

• Shape confidence decreases as color confidence increases

• Local Window Propagation

- \circ Use SIFT features ightarrow track k points across frames
- Update window based on matched point in next frame
 - Use optical flow (MATLAB functions) to update windows
- \circ Update Color and Shape Models with next frame data

$$p_F^k(x) = f_s(x) L^{t+1}(x) + (1 - f_s(x)) p_c(x) \ p_F(x) = rac{\sum_k p_F^k(x) (|x - c_k| + \epsilon)^{-1}}{\sum_k (|x - c_k| + \epsilon)^{-1}}$$

 c_k is the center of the window \implies closer points to center weighted more heavily ϵ is a small value to regulate points next to or on center

• Visualization functions given