STIC-ILL

From:

Steadman, David (AU1652) Friday, April 13, 2001 11:20 AM

Sent: To:

STIC-ILL

Subject:

Literature/ILL Request

Art Unit: 1652 Room #: 8B-11

Mailbox #: 10C-01 M3 Serial #:09/520,538

Please provide the following references:

1) Mol Microbiol 1998 Apr;28(1):131-41

Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR. O'Neill E, Ng LC, Sze CC, Shingler V.

Yhic Dhl, T8

2) J Bacteriol 1994 Dec;176(24):7550-7

An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols. Pavel H, Forsman M, Shingler V.

3) Biodegradation 1994 Dec;5(3-4):219-36

Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600.

Powlowski J, Shingler V.

4) J Bacteriol 1994 Aug;176(16):5052-8

Cross-regulation by XyIR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes.

Fernandez S, Shingler V, De Lorenzo V.

Thank you, David Steadman

Cross-Regulation by XylR and DmpR Activators of Pseudomonas putida Suggests that Transcriptional Control of Biodegradative Operons Evolves Independently of Catabolic Genes

SILVIA FERNÁNDEZ, VICTORIA SHINGLER, AND VÍCTOR DE LORENZO 1*

Centro de Investigaciones Biológicas (CSIC), Mudrid 28006, Spain, and Department of Cell and Molecular Biology, University of Umeå, S-90 187 Umeå, Sweden

Received 22 March 1994/Accepted 3 June 1994

The Pu promoter of the toluene degradation plasmid pWW0 of Pseudomonas putida drives expression of an operon involved in the sequential oxidation of toluene and m- and p-xylenes to benzoate and toluates, respectively. Similarly, the Po promoter of plasmid pVI150 controls expression of an operon of Pseudomonas sp. strain CF600 which is required for the complete catabolism of phenol and cresols. These promoters, which both belong to the σ^{54} -dependent class, are regulated by their cognate activators, XylR and DmpR, respectively. XylR and DmpR are homologous proteins, and both require aromatic compounds as effector molecules for activity. However, these two proteins respond to different profiles of aromatic compounds. The activity of each promoter in the presence of the heterologous regulator was monitored using lacZ and luxAB reporter systems. Genetic evidence is presented that the two activators can functionally substitute each other in the regulation of their corresponding promoters by binding the same upstream DNA segment. Furthermore, when coexpressed, the two proteins appear to act simultaneously on each of the promoters, expanding the responsiveness of these systems to the presence of effectors of both proteins. Potential mechanisms for the occurrence of evolutionary divergence between XylR and DmpR are discussed in view of the DNA sequence similarities among Pu, Po, and a third XylR-responsive promoter, Ps.

Many strains of Pseudomonas species and related gramnegative bacteria are able to use a variety of unusual aromatic chemicals, including many xenobiotic compounds, as carbon sources (15). This ability is frequently determined by large, low-copy-number plasmids that express one or more catabolic operons. The toluene degradation (TOL) plasmid, pWW0, of Pseudomonas putida mt-2 (3) and the pVI150 plasmid of Pseudomonas sp. strain CF600 (36, 40) are two prototypes. Plasmid pWW0 encodes two operons (Fig. 1) as follows: the first codes for the oxidative transformation of toluene and mand p-xylenes to the corresponding benzoate and toluates, respectively (upper pathway operon), and the second encodes the subsequent metabolism of the carboxylic acids via a meta ring cleavage pathway to tricarboxylic acid cycle intermediates (lower pathway operon [15, 37]). The catabolic plasmid pVII50 encodes a single gene cluster, the dmp operon, for the catabolism of phenol and cresols via hydroxylation and a subsequent meta cleavage pathway (Fig. 1). The Pu promoter of the upper TOL operon (7, 21, 25, 28) and the Po promoter of the dmp operon (39) are two examples of σ^{54} -dependent promoters. Their respective regulators, XylR and DmpR, activate transcription from their cognate promoters upon exposure of the cells to distinct pathway substrates (2, 41), such as m-xylene in the case of XylR and phenol in the case of DmpR. These two proteins belong to the NtrC family of transcriptional activators. members of which are composed of distinct functional domains in a fashion reminiscent of that found in eukaryotic enhancerbinding proteins (32). Despite regulating expression of func-

MATERIALS AND METHODS

Strains, plasmids, and general procedures. The relevant strains and constructions used in this work are listed in Table 1. Recombinant DNA methods were carried out according to published protocols (27). Predetermined deletions at the Pu promoter region were introduced through site-directed mutagenesis (26) and were confirmed by DNA sequencing. Transposon vectors carrying different insertions were integrated into the chromosomes of target bacteria, as described elsewhere (8). Broad-host-range plasmids were introduced into Pseudomonas strains by electroporation (41) or by mobilization from Escherichia coli by triparental matings (8) with the helper strain E. coli HB101 (RK600).

Activity assays. β -Galactosidase (β -Gal) levels in cells permeabilized with chloroform and sodium dodecyl sulfate were determined (29). The linearity of the β -Gal assays within the range of cell densities and the times of reaction with o-nitro-

tionally different operons and being responsive to distinct effector profiles, XylR and DmpR are remarkably similar throughout their entire sequences (39), suggesting a common evolutionary origin. This homology has permitted us to experimentally address one question concerning the acquisition of a transcriptional control by degradative pathways, namely, whether regulators and the cognate DNA sequences to which they bind are recruited by catabolic systems together or independently. Our results clearly show that XylR and DmpR can efficiently cross-activate each other's promoter in spite of the different organizations of the *Pu* and *Po* regions. These data support the idea that genes for off-dependent activators may have evolved along with discrete binding sequences as regulatory modules that end up controlling transcription of unrelated pathways.

^{*} Corresponding author. Mailing address: Centro de Investigaciones Biológicas, C/Velázquez 144, 28006 Madrid, Spain. Phone: (341) 5611800. Fax: (341) 5627518. Electronic mail address: CIBLP70(a CC.CSIC.ES.

FIG. 1. (A) The regulatory cascade of the xyl genes in the TOL plasmid pWW0. In the presence of upper pathway substrates like mxylene, the *upper* operon promoter Pu and the xylS promoter Ps are activated by XylR (22) in combination with σ^{53} -RNAP. Subsequently, an excess of XylS product or XylS bound to its effectors (i.e., substrates of the meta pathway) activates Pm. Note that there is no physical continuity between the upper and the meta operons (3, 15, 28). Below the scheme of the pathway, the Pu promoter region is expanded, showing the relevant flanking DNA. This includes UASs for XylR, the sequences between -12 and -24 recognized by or54-RNAP, and an IHF-binding site located within the intervening region. Upon binding this target DNA sequence in Pu, IHF induces a sharp DNA bend that brings into close contact the prebound or RNAP and the activator protein attached to the distant UAS (7). Repeated DNA sequences within the UAS are indicated by arrows (7). The portion of the Pu sequence which displays maximum nucleotide sequence similarity to Po is shown as a horizontal hatched bar. (B) Regulation of the pVI150-encoded dmp operon. The phenol- and cresol-responsive dmpR gene product activates transcription of the divergently transcribed dmp operon from the Po promoter. A subset of the dmp genes is involved in phenol hydroxylation, while the rest encode enzymatic activities of the meta cleavage pathway for dissimilation of the catechol intermediate. The C2,3O encoded by dmpB is homologous to other meta ring cleavage enzymes (12, 18). The Po promoter region is expanded below the scheme of the dmp pathway. Relevant portions of the sequence are pinpointed, including a long imperfect inverted repeat, the region of homology to Pu, and a potential IHF-binding site (39). (C) DNA sequence homology among the upstream regions of Pu, Po, and Ps. The sequences on the top align the regions of maximum nucleotide sequence similarity found in Pu, Po, and Ps, the last being the other XylRdependent TOL promoter (see above). The same sequences are shown below as imperfect inverted repeats, and the numbers of matching bases between the different promoter regions are indicated.

phenyl- β -D-galactopyranoside (ONPG) were verified in all cases. Data for β -Gal activity are the averages of duplicate samples from a minimum of three independent experiments, values for which were within a variation of 15%. Light emission resulting from expression of the *luxAB* genes was measured

using an LKB Luminometer 1250 set at 1 V as described elsewhere (34). Data for light emission are the averages of triplicate determinations from two independent experiments that gave values that differed by less than 20%. The specific activities (in units per milligram of protein) of the *dmpB*-encoded catechol-2, 3-dioxygenase (C2,3O) of crude extracts were determined as previously described (33). Cells from 2 to 40 ml of culture, depending on the optical density at 600 nm (OD₆₀₀), were harvested, washed in ice-cold 0.1 M phosphate buffer (pH 7.4), resuspended in 250 µl of the same buffer, and then disrupted by sonication. Cell debris was removed by centrifugation, and the supernatants were used as crude extracts. The variability between duplicate determinations did not exceed 10%.

Construction and chromosomal integration of Pu-lacZ. To faithfully monitor Pu activity, a monocopy gene dosage transcriptional lucZ gene fusion was constructed by first cloning a 312-bp EcoRI-BamHI Pu-containing fragment from pEZ9 (7) in pBK16 (24). The resulting Pu-lacZ fusion plasmid, pBK16Pu, was introduced by conjugation in a P. putida strain harboring a chromosomally located minitransposon that provides homology to the sequences flanking the insertion in pBK16Pu. Double recombination between the plasmid and the minitransposon sequences results in the generation of a chromosomal Pu-lacZ fusion, which was readily identified by using vector selection markers (24). An equivalent insertion of a lacZ transcriptional fusion to $Pu\Delta UAS$ (a Pu derivative from which the upstream activating sequences which span the binding site for XylR had been deleted) was made by cloning the EcoRI-BamHI restriction fragment of pFH15 (Table 1) into the lacZ vector pUJ8 (6). The resulting Pu \(\Delta UAS-lacZ \) fusion was excised as a 4-kb NotI fragment and cloned in the transposon delivery plasmid pUT/mini-Tn5 Sm (6) for further insertion into the chromosome of P. putida KT2442 as previously described (8). Irrespective of the method used, the chromosomal insertions with the lacZ constructs are organized such that the fusions are transcriptionally shielded upstream by the Ω element and downstream by a strong T7 terminator. For XylR-DmpR competition assays, a transposon, mini-Tn5 XvIR/Pu-lacZ (5), was used to generate a monocopy Pu-lacZ fusion identical to that described above but accompanied by a 2.4-kb DNA segment of the TOL plasmid spanning the xylR gene expressed under the control of its native constitutive promoter (5).

Construction and integration of the Po-luxAB fusion. Activity of the Po promoter in monocopy gene dosage was monitored through light emission resulting from expression of the luxAB genes of Vibrio harveyi. For this, we constructed a specialized Pseudomonas reporter strain in which a Po-luxAB reporter cassette was engineered as follows. A 2.8-kb Sall-to-Smal fragment from pVI360 (41), which carries a 478-bp Po promoter region (positions -477 to +2 with respect to the transcription initiation site) controlling expression of the promoterless huxAB genes, was cloned between the Sall and EcoRV sites of pBluescript SK(+), in which an additional NotI site had been introduced in place of the XhoI site. The resulting construct allowed excision of the fusion as a 2.8-kb Not1 fragment that was subsequently cloned into pUT/mini-Tn5 Sm (6) and inserted into the chromosome of P. putida KT2440 as described elsewhere (8).

Induction conditions. The different P. putida strains were grown overnight at 30°C in Luria-Bertani (LB) medium supplemented, when required, with adequate antibiotics to retain a plasmid of interest. The cultures were diluted 1:200 in the same prewarmed medium and were grown in duplicate with good aeration to an OD_{NOO} of 0.1 to 0.5, as indicated for each

TABLE 1. Bacteria and plasmids used in this study

Strain or plasmid	Relevant genotype and characteristic(s)	Deference
E. coli K-12		Reference or orig
CC118	Δ(ara-leu) araD ΔlacX74 galE galK phoA thi-I rpsE rpoB argE(Am) recAI	
CC118supF	CC118 with a chromosomal insertion; mini-Tn5 Cm supF	17
CC118Apir	CC118 lysogenized with \pir phage	24
S17-1λ <i>pir</i>	Tp' Sm' recA thi hsdRM+ RP4::2-Tc::Mu::Km Tn7 λpir phage lysogen	17
HB101	Sm' recA thi pro leu hsdRM* (E. coli K-12/E. coli B hybrid)	8
_	(L. COII K-12/E. COII B RYDNG)	27
P. putida		
KT2440	Prototrophic; reference strain	
KT2442	Prototrophic; Rif derivative of KT2440	K. N. Tim: :is
KT2442hom. fg.	Km'; KT2442 inserted with a DNA segment homologous to the flanking sequences of	17
	pBK16	24
SF05	KT2442 with chromosomal insertion; ΩSm/Sp Pu-lacZ	
SF05A	KT2442 with chromosomal insertion; mini-Tn5 Sm/Sp Pu\(\Delta UAS\)-lucZ	This work
207	KT2440 with chromosomal insertion; mini-Tn5 Sm/Sp Pu\(\Delta\)UAS-lucZ	This work
CNB3	KT2442 with chromosomal insertion; mini-1no Sm/Sp Po-lux-IB	41
CF600	KT2442 with chromosomal insertion mini-Tn5 XylR/Pu-lacZ	This work
	Wild-type strain; contains dmp ⁺ plasmid pVII50; Hg'; growth on phenols and cresols as the sole carbon source	36
	sole carbon source	
lasmids		
pUT/mini-Tn5 Sm	Ap' Sm'/Sp'; R6Kori/ RP4oriT, mini-Tn5 Sm transposon vector delivery plasmid	
pCNB3-lacZ	Ap' Sm'; R6KoriV RP4oriT; pUT/mini-Tn5 XylR/Pu-lucZ	6
pUT/PuΔUAS	Sm'/Sp'; R6KoriV; RP4oriT; pUT/mini-Th5 Sm inserted with the 4-kb Not1 fragment of	5
	pUJPuΔUAS; PuΔUAS-lacZ transcriptional fusion	This work
pUT/ <i>Po-lux</i>	Sm'/Sn': R6KariV: RPAnit - all T/min Tas S -	
	Sm ¹ /Sp ² ; R6KoriV: RP4orT; pUT/mini-Tn5 Sm inserted with a 2.8-kb Not1 fragment containing Po-lux4B fusion	41
pVI360	Apr; Po-luxAB reporter plasmid	
RK600	Cm'; ColEloriV; RK2mob + tra +	41
pUJ8	An't provided to the state of t	24
pUCI8 Not	Apr; ttp:://acZ promoter probe vector, lacZ fusion sequence flanked by Not1 sites	6
pVI361	· · P · · · · · · · · · · · · · · · · ·	17
F. 100.	Ap'; DmpR gene cloned in the <i>EcoRV</i> site of pBS(+) as a 4.3-kb <i>Smal</i> fragment from pVI150	This work
pUC-DmpR		I III3 WOIK
pKT231	Ap': DmpR gene cloned as an EcoRI-KpnI 4.4-kb fragment of pVI361 in pUC18Not	This work
pFH51		10 WOLK
pTK19	Nm; px (23) inserted with dmpR* as a 4.4-bb Food I power for	
pEZ9		This work
pezs	The process inscribed with a 512-tip CCORI-Bam HI tragment spanning the entire D.	5 7
pCG2		′
pGC2Pu	Ap'; ColElon; M13on; vector for site-directed mutagenesis	31
F	Ap , pc.02 inserted with the 312-bp EcoRI-RumHI fragment of pE70 includes the p	This work
pFH15		I IIIS WOLK
p. 1115	Ap': same as pCG2Pu but with an EcoRI site created by site-directed mutagenesis at	This work
pBK16		I IIIS WUIK
POINT	Sm'/Spr. trp::lacZ promoter probe vector, supF-suppressible amber codons in aadA and lacZ sequences	24
pBK!6Pir		4
pUJ <i>Pu∆UAS</i>	Sm'/Sp'; pBK16 inserted with the Pu-containing 312-bp EcoRI-BamHI fragment of pEZ9	This work
P-01 (140/11)	Ap'; pUJ8 inserted with the 208-bp EcoRI-BamHI fragment of pFH15 containing PuΔUAS	This work

experiment. Subsequently, cultures were exposed to saturating vapors of the XylR effector (toluene or xylenes) and/or to a final concentration of 2.5 mM DmpR effectors (phenol or cresols). Under these conditions, the concentration of effector molecules was found to result in maximum activation of each of the reporter systems used. The cultures were then further grown as specified in each case, and aliquots were sampled at the indicated time points.

RESULTS

XylR and DmpR can replace each other for the activation of their cognate promoters. To determine whether the similarity between the XylR and DmpR regulators was sufficient to detect some level of cross-regulation between their respective promoters, we used the reporter strain *P. putida* 270 (*P. putida* KT2440::mini-Tn5 Sm *Po-luxAB*), which contains a chromosomal *Po-luxAB* fusion. This strain harboring either pTK19, an

RSF1010 derivative which determines constitutive expression of the wiR gene from its own promoter, or pFH51, an equivalent construct expressing dmpR from its native promoter, was subjected to induction assays with a range of substrates of the TOL upper pathway and the dmp pathway. The data shown in Fig. 2 clearly demonstrate that the response of the Po promoter was totally shifted from TOL substrates to dmp substrates and vice versa by changing the regulator encoded by the resident plasmid. This result is somewhat surprising because, in spite of the homology between the two proteins, the organization of the functional DNA elements within the Po promoter is different from that of the Pu promoter (Fig. 1). To examine whether such responsiveness to the two regulators (and hence, to their respective effectors) was also true for the Pu promoter, we carried out an equivalent experiment with the reporter strain P. putida SF05 (P. putida KT2442::mini-Tn5 Sm Pu-lacZ), which contains a transcrip-

FIG. 2. Cross-activation of the Po promoter by XylR. The drawing at the top (not to scale) illustrates the structure of the hybrid mini-Tn5 element containing the transcriptional fusion Po-luxAB inserted into the chromosome (zigzag lines) of P. putida 270 used in the experiment. The Sm'/Sp' selection marker of the hybrid transposon is indicated, as are the positions of the I and O ends of Tn5, the locations of transcriptional terminators (T. represented by circles on stalks) shielding the reporter system, and the directions of transcription of the Po promoter. For induction experiments, P. putida 270 cells harboring either pFH51 ($dmpR^+$) or pTK19 ($xylR^+$) were grown at 30°C in LB medium to an OD_{O(X)} of 0.5 and exposed either to saturating vapors of toluene and xylenes (XylR effectors) or to 2.5 mM phenol and cresols (DmpR effectors). The cells were left for a further 2 h and then assayed for light emission. The results are the averages of triplicate determinations performed on each of two independent cultures. Note that the only activator present in the strain is from the plasmid.

tional Pu-lac Z fusion in its chromosome. As shown in Fig. 3, P. putida SF05 (pFH51- $dmpR^+$) accumulated β -Gal in the presence of phenol but not when exposed to m-xylene, while P. putida SF05 (pTK19-xyl R^+) was nonresponsive to phenol but, as expected, was strongly induced by its native effector, m-xylene. Figure 3 also shows that under the conditions used, full Pu induction was more dependent on growth phase when the promoter was regulated by DmpR than when it was activated by XylR.

The phenol-degrading pathway of Pseudomonas sp. strain CF600 is strongly induced by XyIR in response to TOL effectors. To determine whether the cross-regulation of the Po promoter by XyIR detected with the luxAB fusion would be significant under more physiological conditions, we directly examined the effect of XyIR on the expression of the phenol-degrading pathway of Pseudomonas sp. strain CF600. For this, we monitored the dmpB-encoded C2,3O activity resulting from expression of the 8th gene of the dmp operon. The response of Pseudomonas sp. strain CF600 (with and without the pTK19 [xyIR]) plasmid) in the presence of different aromatic compounds was measured. The results, summarized in Fig. 4, show not only that XyIR can substitute DmpR to make the phenol-

FIG. 3. Induction profile of the Pu promoter in response to DmpR-and XylR-specific effectors. The organization of the chromosomal insert containing the reporter Pu-lacZ transcriptional fusion of P-putida SF05 is indicated at the top. For the experiment shown, P-putida SF05 cells harboring either pFH51 ($dmpR^+$) or pTK19 ($xylR^+$) were grown to an OD_{toto} of 0.5 and were subsequently exposed to either m-xylene vapor or 2.5 mM phenol as indicated. The course of β -Gal accumulation during subsequent growth was monitored for the next 16 h.

degrading pathway responsive to toluene and m-xylene but also that under the conditions of the experiment, XylR can trigger expression of the products of the pathway to levels approximately fivefold higher than those elicited by the native DmpR regulator. Furthermore, Pseudomonas sp. strain CF600 harboring pTK19-xylR⁺ was poorly induced by phenol, to about a third of the level of the same strain without the plasmid. This reduction is probably due to the nonproductive

FIG. 4. Expression of C2.3O activity by *Pseudomonas* sp. strain CF600 with and without a plasmid expressing the xy/R gene. The relevant elements involved in the expression of the dmpB-C2,3O gene from the *Po* promoter of the dmp operon are summarized at the top (not to scale). *Pseudomonas* sp. strain CF600 cells alone (left) or harboring pTK19 (xy/R^+) (right) were grown to an OD_{M00} of 0.1 and exposed to the aromatic effectors indicated in each case. The cells were then harvested at different time points and sonicated, and the resulting extracts were assayed for C2.3O activity as explained in Materials and Methods.

occupation by XylR of coincident or nearby DmpR target sites within the *Po* promoter (see Discussion).

DmpR and XylR simultaneously activate the Pu promoter in response to phenol and m-xylene. Since an excess of xylR copy number with respect to that of dmpR repressed the induction of Po in response to phenol somewhat (see above), we asked whether coexpressed DmpR and XyIR could influence Pu so that it could simultaneously respond to the presence of the effectors of both regulators. To examine this issue, we constructed the reporter strain P. putida CNB3 (P. putida KT2442::mini-Tn5 XylR/Pu-lacZ) and introduced the pFH51 (dmpR*) plasmid. The resulting strain was then subjected to the various coinduction assays with m-xylene and phenol as shown in Fig. 5. In this case, although the presence of the extra dmpR gene copies reduced the induction of Pu by m-xylene, the P. putida CNB3 (pFH51-dmpR+) strain was similarly responsive to both effectors either alone or in combination. Maximal expression levels were obtained only when the effectors of both regulators were present.

DmpR and XylR recognize the same DNA region in Pu. To determine whether the observed cross-regulation effects were due to binding of DmpR and XylR to the same cognate DNA sequences within the upstream activating regions of their respective promoters, or alternatively, whether they were due to an activation phenomenon independent of DNA binding (as has been observed with other regulators of the family [20]), we constructed isogenic P. putida KT2442 derivatives carrying Pu-lacZ fusions differing solely by the presence or absence of the upstream region known to be involved in XyIR binding (1, 7, 21). Each of these strains was then transformed with either pTK19 (xylR⁺) or pFH51 (dmpR⁺) and subjected to induction assays with either phenol or m-xylene. As shown in Fig. 6, in the absence of the Pu region upstream from -106 with respect to the transcription initiation site, the Pu promoter became totally nonresponsive, irrespective of the presence of activators and their effectors. This result suggests that cross-activation requires actual binding of either DmpR or XylR to target sequences located in the same upstream region of Pu.

FIG. 6. Requirement of UAS for activation of Pu by XylR and DmpR. The relevant portions of the Pu promoter segments included in the two lacZ elements inserted in the chromosomes of isogenic strains P. putida SF05 (Pu-lacZ) and P. putida SF05 Δ ($Pu\Delta UAS$ -lacZ) are shown above the appropriate bar diagram. Strains SF05 and SF05 Δ alone or harboring either pTK19 ($xylR^+$) or pFH51 ($dmpR^+$) were induced overnight with m-xylene or phenol as indicated in each case. Under all conditions tested, the activity of the $Pu\Delta UAS$ promoter was negligible.

DISCUSSION

Both XylR and DmpR belong to the NtrC family of transcriptional activators (23, 30, 39) which characteristically exert their action in concert with RNA polymerase containing the alternative factor σ^{54} (σ^{54} -RNAP). These two proteins are virtually identical in size (63.7 and 63.3 kDa, respectively) and share a high degree of sequence identity throughout their entire lengths (>67%). Maximum similarity (>79%) is found within the central domain, which is thought to interact with the polymerase (30, 32). The amino-terminal A domains, which span the leading third of the proteins, have been shown by genetic means to directly interact with the aromatic effector (4, 41) and mediate inducer specificity. The A domains of DmpR and XylR share >64% similarity and can be swapped, thus completely shifting the effector specificity of the resulting chimeric activator (41). Despite the homology between the two regulators, the promoters they control transcribe different operons. The Pu promoter drives expression of a cluster of six cistrons involved in the bioconversion of toluene and m- and p-xylenes into benzoate and toluates, respectively (Fig. 1). The first functional gene of the upper TOL operon encodes benzaldehyde dehydrogenase (14). On the other hand, Po directs transcription of a large polycistronic operon of 15 genes in response to the presence of phenol or cresols (36, 42). The first genes of the operon encode the polypeptides of a multicomponent phenol hydroxylase (40). Therefore, the similarity of

最上直接をおからかれる これみ

the promoter regions does not extend into the first operonic

Although both Pu and Po belong to the σ^{54} -dependent class of promoters, comparative analysis of the corresponding regions reveals that they are also considerably different. There is no significant nucleotide sequence similarity downstream of the binding sites for the σ^{54} -RNAP at positions -12 to -24. Furthermore, the Pu promoter has a functional integration host factor (IHF)-binding site between positions -52 and -79 which is absent (or placed elsewhere [Fig. 1]) in Po. However, a region of approximately 50 bp shows considerable sequence similarity between positions -124 and -175 of Pu and positions -123 and -174 of Po (Fig. 1C). These regions are also homologous to a segment (-136 to -187) upstream of Ps, the other XylR-dependent TOL promoter (11, 19) (Fig. 1A). The homologous region in Pu, Po, and Ps has been shown, in the case of Pu, to include the binding sites for XylR, as revealed by in vitro (7) and in vivo (1) footprinting.

The results shown in this paper demonstrate that XylR and DmpR recognize overlapping or nearby DNA sequences located within the same region of the Pu promoter and, most likely, within the Po promoter as well. Although we have not rigorously proven that the two activators recognize the same DNA sequence (see below), it is clear that the mutual interchange for the activation of each other's cognate promoter is not just a residual cross-talk but is a significant and highly specific cross-activation. Both regulators affect the promoters at comparable levels in vivo, and, in at least one case (Fig. 4), XylR stimulates the production of the catabolic enzymes for the degradation of phenol to much higher levels than those afforded by the native DmpR regulator of the system. However, as indicated by the results shown in Fig. 2 and 3, the operative binding of DmpR and XylR to both Pu and Po seems to be similar. In comparable situations, namely, those involving a chromosomal promoter-reporter fusion and the regulator cloned in an RSF1010 derivative, both Pu and Po respond to the two types of effectors (phenol and m-xylene) within the same range. An interesting observation resulting from the data shown in Fig. 4 and 5 is that when one of the two regulators is present at a gene copy number exceeding that of the other by about 20-fold (because of the plasmid vector used), the responses of both promoters to the low-abundance regulator are decreased. This may be due to the nonproductive occupation of some of the promoter-UAS sequences by the unactivated regulator which is in excess. This is consistent with our previous observation that XylR can bind Pu regardless of the presence of its effector (1, 7). Additional support for the idea of nonproductive occupancy of the promoters by unactivated regulators comes from the dual-effector induction experiment shown in Fig. 5. In this case, simultaneous exposure of coexpressed DmpR and XylR to effectors of both regulators resulted in the full activation of the *Pu-lacZ* reporter system. This result may simply reflect the net effect of Pu being occupied by a mixture of activated DmpR and XylR. Alternatively, there is the intriguing possibility that the activation is the consequence of formation of functional DmpR-XylR pairs.

A question raised by our results is the precise nature of the DNA sequence recognized by XylR and DmpR. The 20amino-acid helix-turn-helix motifs located at the carboxyl ends of the two proteins and thought to constitute the actual DNA-binding domains (30) have 16 residues in common (39). XylR and DmpR may, therefore, recognize similar, even identical nucleotide sequences. DNase I footprints with XylR span a relatively long region of the Pu promoter (7) which includes an inverted repeat of the sequence 5'-TTGANC AAATC-3'. However, although XylR binds with a defined

pattern of interactions throughout the -121-to--178 region of Pu, the actual sequence recognized by XyIR ultimately remains undefined. Shorter motifs appear repeatedly throughout the 52-bp segment of maximum nucleotide sequence similarity in Pu, Po, and Ps (Fig. 1C), such as 5'-TTGNNCAA-3', 5'-TTGAT-3', or 5'-CAAATC-3'. Interestingly, regardless of the sequence used as a reference for comparisons, Po systematically resembles Pu and Ps to a greater extent than Pu and Ps resemble each other. These results support the idea that the regulators of the NtrC family (such as DmpR and XylR) have the potential to coevolve along with their target sequences as regulatory cassettes which can eventually be recruited by different operons. Perhaps the basic unit includes the activator gene constitutively and divergently expressed from the σ^{54} dependent promoter that it regulates, as is the case with Po and Ps (Fig. 1). Other gene clusters could then come under the same regulatory control by simple acquisition of a properly positioned UAS.

DNA and amino acid sequence comparisons among the members of the NtrC family of proteins (30) have revealed that their functional domains are arranged in modules, the most invariant of which is the central portion of the proteins thought to interact directly with the σ^{54} -RNAP. However, phylogenetic relationships among the leading amino-terminal domains (involved in signal reception) and the carboxyl-terminal domains (DNA binding) indicate that the functionally distinct domains have evolved quite independently of each other and of the central portions of the proteins. For instance, the C-terminal domain of NtrC is related to the factor for inversion stimulation (FIS protein) of E. coli (32). Unlike NtrC, however, the sequences of the carboxyl-terminal domains of XylR of P. putida and AlgB of Pseudomonas aeruginosa are much more similar than are their central domains, thus suggesting that the DNA-binding domains of these proteins (but not the other portions of the polypeptide) have the same and perhaps more recent origin within the Pseudomonas genus (30). These observations imply that both coding and regulatory sequences must be shuffled among distant locations of the genetic complement during their evolutionary divergence (9, 13, 16, 35, 38, 43).

ACKNOWLEDGMENTS

We are indebted to M. Gullberg for critical reading of the manu script.

This work was supported by grant BIO92-1018-CO2-01 of the Spanish Comisión Interministerial de Ciencia y Tecnología (CICYT), by EC contract BIO2-CT92-0084 to V.d.L., and by the Swedish National Research Council for Natural (9840-340) and Engineering (93-443) Science to V.S. Interchanges between the CIB and the University of Umeå were funded by the Spanish Program of Scientific Collaboration with Swedish Institutions of the Ministerio de Asuntos Exteriores, 1992-1993.

REFERENCES

- 1. Abril, M. A., M. Buck, and J. L. Ramos. 1991. Activation of the Pseudomonas TOL plasmid upper pathway operon: identification of binding sites for the positive regulator XylR and for integration host factor protein. J. Biol. Chem. 266:5832-5838.
- 2. Abril, M. A., C. Michan, K. N. Timmis, and J. L. Ramos. 1989. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol. 171:6782-6790.
- 3. Assinder, S. J., and P. A. Williams. 1990. The TOL plasmids: determinants of the catabolism of toluene and xylenes. Adv. Microb. Physiol. 31:1-69.
- 4. Delgado, A., and J. L. Ramos. 1994. Genetic evidence for activation of the positive transcriptional regulator XylR, a member of

- the NtrC family of regulators, by effector binding. J. Biol. Chem. 269:8059-8062.
- de Lorenzo, V., S. Fernández, M. Herrero, U. Jacubzik, and K. N. Timmis. 1993. Engineering alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of *Pseudomonas*. Gene 130:41– 46.
- de Lorenzo, V., M. Herrero, U. Jacubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172:6568-6572.

de Lorenzo, V., M. Herrero, M. Metzke, and K. N. Timmis. 1991.
 An upstream XylR- and IHF-induced nucleoprotein complex regulates the σ⁵⁴-dependent Pu promoter of TOL plasmid. EMBO

J. 10:1159-1167.

 de Lorenzo, V., and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol. 235:386-405.

 Deretic, V., W. M. Konyecsni, C. D. Mohr, D. W. Martin, and N. S. Hibler. 1989. Common denominators of promoter control in Pseudomonas and other bacteria. Bio/Technology 7:1249-1254.

 Franklin, F. C. H. 1985. Broad host range cloning vectors for gram-negative bacteria, p. 165-184. In D. M. Glover (ed.), DNA cloning—a practical approach, vol. 1. IRL Press, Oxford.

- Gomada, M., S. Inouye, H. Imaishi, A. Nakazawa, and T. Nakazawa. 1992. Analysis of an upstream regulatory sequence required for activation of the regulatory gene xylS in xylene metabolism directed by the TOL plasmid of *Pseudomonas putida*. Mol. Gen. Genet. 233:419-426.
- Harayama, S., M. Kok, and E. L. Neidle. 1992. Functional and evolutionary relationships between diverse oxygenases. Annu. Rev. Microbiol. 46:565-601.
- Harayama, S., M. Rekik, A. Bairoch, E. L. Neidle, and L. N. Ornston. 1991. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J. Bacteriol. 173: 7540-7548.
- Harayama, S., M. Rekik, M. Wubbolts, M. Rose, R. A. Leppik, and K. N. Timmis. 1989. Characterization of five genes in the upper pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products. J. Bacteriol. 171:5048– 5055
- Harayama, S., and K. N. Timmis. 1992. Aerobic biodegradation of aromatic hydrocarbons by bacteria, p. 99-156. In H. Sigel and A. Sigel (ed.). Metal ions in biological systems, vol. 28. Marcel Dekker Inc., New York.
- Hartnett, C. S., E. L. Neidle, K. L. Ngai, and L. N. Ornston. 1990.
 DNA sequences of genes encoding Acinetobacter calcoaceticus protocatechuate 3,4-dioxygenase: evidence indicating shuffling of genes and of DNA sequences within genes during their evolutionary divergence. J. Bacteriol. 172:956-966.
- Herrero, M., V. de Lorenzo, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172:6557-6567.
- Hofer, B., L. D. Eltis, D. N. Dowling, and K. N. Timmis. 1993.
 Genetic analysis of a *Pseudomonus* locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130:47-55.
- Holtel, A., K. N. Timmis, and J. L. Ramos. 1992. Upstream binding sequences of the XylR activator protein and integration host factor in the xylS gene promoter region of *Pseudomonas* TOL plasmid. Nucleic Acids Res. 20:1755-1762.
- Huala, E., and F. M. Ausubel. 1989. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti nifH promoter. J. Bacteriol. 171:3354-3365.
- Inouye, S., M. Gomada, U. M. X. Sangodkar, A. Nakazawa, and T. Nakazawa. 1990. Upstream regulatory sequences for transcriptional activator XylR in the first operon of xylene metabolism of the TOL plasmid. J. Mol. Biol. 216:251-260.
- Inouye, S., A. Nakazawa, and T. Nakazawa. 1987. Expression of the regulatory gene xylS on the TOL plasmid is positively con-

- trolled by the xylR gene product. Proc. Natl. Acad. Sci. USA 84:5182-5186
- Inouye, S., A. Nakazawa, and T. Nakazawa. 1988. Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida. Gene 66:301-306.
- 24. Kessler, B., V. de Lorenzo, and K. N. Timmis. 1992. A general system to integrate lacZ fusions into the chromosomes of gramnegative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233:293-301.
- Köhler, T., S. Harayama, J. L. Ramos, and K. N. Timmis. 1989. Involvement of *Pseudomonas putida* RpoN σ factor in regulation of various metabolic functions. J. Bacteriol. 171:4326–4333.
- Kunkel, T., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-directed mutagenesis without phenotypic selection. Methods Enzymol. 154:367-382.
- Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Marques, S., and J. L. Ramos. 1993. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol. Mi-crobiol. 9:923-929.
- Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Morett, E., and L. Segovia. 1993. The σ⁵³ bacterial enhancerbinding protein family: mechanism of action and phylogenetic relationship of their functional domains. J. Bacteriol. 175:6067– 6074.
- Myers, R. M., L. S. Lerman, and T. Maniatis. 1985. A general procedure for saturation mutagenesis of cloned DNA fragments. Science 229:242-247.
- North, A., K. E. Klose, K. M. Stedman, and S. Kustu. 1993. Prokaryotic enhancer-binding proteins reflect eukaryote-like modularity: the puzzle of nitrogen regulatory protein C. J. Bacteriol. 175:4267-4273.
- Nozaki, M. 1970. Metapyrocatechase (Pseudomonas). Methods Enzymol. 17:522-525.
- Olsson, O., C. Konez, and A. A. Szalay. 1988. The use of the luxA gene of the bacterial luciferase operon as a reporter gene. Mol. Gen. Genet. 215:1-9.
- Ornston, L. N., and W. K. Yeh. 1979. Origins of metabolic diversity: evolutionary divergence by sequence repetition. Proc. Natl. Acad. Sci. USA 76:3996-4000.
- Powlowski, J., and V. Shingier. Genetics and biochemistry of phenol degradation by *Pseudomonas*. Biodegradation, in press.
- 37. Ramos, J. L., A. Stolz, W. Reineke, and K. N. Timmis. 1986. Altered effector specificities in regulators of gene expression: TOL plasmid vy/S mutants and their use to engineer expansion of the range of aromatic degraded by bacteria. Proc. Natl. Acad. Sci. USA 83:8467-8471.
- Shapiro, J. A. 1993. Natural genetic engineering of the bacterial genome. Curr. Opin. Genet. Dev. 3:845-848.
- Shingler, V., M. Bartilson, and T. Moore. 1993. Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J. Bacteriol. 175:1596-1604.
- Shingler, V., F. C. H. Franklin, M. Tsuda, D. Holroyd, and M. Bagdasarian. 1989. Molecular analysis of a plasmid encoded phenol hydroxylase of *Pseudomonas* CF600. J. Gen. Microbiol. 135:1083-1092.
- Shingler, V., and T. Moore. 1994. Sensing aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing *Pseudo-monas* sp. strain CF600. J. Bacteriol. 176:1555–1560.
- 42. Shingler, V., J. Powłowski, and U. Marklund. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4dimethylphenol catabolic pathway of *Pseudomonas* sp. strain CF600. J. Bacteriol. 174:711-724.
- Yeh, W. K., and L. N. Ornston. 1980. Origins of metabolic diversity: substitutions of homologous sequences into genes for enzymes with different catalytic activities. Proc. Natl. Acad. Sci. USA 143:5365-5369.