LINEAR REGRESSION FORMULA SHEET

Note: This is not a cheat sheet. You cannot use this during the exam.

EQUATIONS TO MEASURE RELATIONSHIPS BETWEEN VARIABLES

Sample mean of x	\overline{x}	$\frac{1}{n}\sum x_i$	Average X_i $E(x_i) = \overline{x}, \forall_i$
Sample variance of x	s _x ² var(x)	$\frac{\sum (x_i - \overline{x})^2}{n - 1} = \frac{S_{xx}}{n - 1}$	Variation in X_i about \overline{X}
Sample standard deviation of x	s _x sd(x)	$\sqrt{s_{_{\scriptscriptstyle X}}^2}$	Average distance of X_i from \overline{X}
Sample covariance of x and y	s _{xy} cov(x,y)	$\frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n - 1} = \frac{S_{xy}}{n - 1}$	Measures direction of relationship: if y goes up or down when x goes up or down. Is not predictive!
Sample estimate of the correlation between x and y	r _{xy} corr(x,y)	$\frac{s_{xy}}{s_x s_y} = \frac{\text{cov}(x, y)}{s_x s_y}$	Correlation is the standardized (unit-less) version of covariance. The correlation ranges between -1 and +1, inclusively.
Not quite the variance (uppercase 'S')	S_{xx}	$\sum (x_i - \overline{x})^2 = \sum (x_i - \overline{x}) \cdot x_i$	Used in equations below. This is a mathematical "shorthand"; it doesn't have meaning in and of itself.
Not quite the covariance (uppercase 'S')	S_{xy}	$\sum (x_i - \overline{x})(y_i - \overline{y}) = \sum (x_i - \overline{x}) \cdot y_i$	Used in equations below. This is a mathematical "shorthand"; it doesn't have meaning in and of itself.

BIVARIATE REGRESSION EQUATIONS

 y_i = sample value; \overline{y} = average of the sample values; \hat{y} = value predicted by model; $e_i = y_i - \hat{y}$ = residual

Two-variable linear model		Population model: $y = \alpha + \beta x + \varepsilon$ Sample model: $y = a + bx + e$ Estimated model: $\hat{y} = a + bx$	E = unobservable errorse = residual errorsNo error term in the estimate!
OLS estimate for α	а	$\overline{y} - b\overline{x}$	a is the y-intercept
OLS estimate for β	b	$\frac{S_{xy}}{S_{xx}} = \frac{S_{xy}}{S_x^2}$	b is the slope of the regression line. A one- unit change in <i>x</i> causes a change of <i>b</i> in <i>y</i> . <i>b</i> is predictive!
Total sum of squared deviations SST = SSE + SSR	SST (TSS)	$\sum (y_i - \overline{y})^2$	How much the actual sample points vary from the sample average.
Explained sum of squared deviations SSE = SST - SSR	SSE (ESS)	$\sum (\hat{y}_i - \bar{y})^2 = b^2 \cdot \sum (x_i - \bar{x})^2 = b^2 \cdot S_{xx}$	How much the predicted points vary from the sample average.
Residual sum of squared deviations. SSR = SST - SSE	SSR (RSS)	$\sum e_i^2 = \sum (y_i - \hat{y}_i)^2$	How much the actual sample points vary from the predicted points.
Coefficient of determination	R ²	$\frac{SSE}{SST} = 1 - \frac{SSR}{SST}$	Proportion of the total sum of squares that is explained by <i>x</i> ; how well <i>x</i> predicts <i>y</i> . Convert to percentage.
Standard error of the entire regression	se	SSR	N = total observations k = # of independent variables
An <u>estimate</u> of the population std error.	root MSE	$\sqrt{N-(k+1)}$	Note: This is not the standard error of the population, but an estimate of the population standard error.
Estimated variance of the error	se ²	$\frac{SSR}{N - (k+1)}$	Measure of variance in <i>y</i> not explained by the variance in <i>x</i> for the entire model.

PP240B, Spring 2007 1 OF 2 February 15, 2007

Variance of the estimator b	Var(b)	$\frac{se^2}{S_{xx}} = \frac{se^2}{(n-1)s_x^2}$	
Standard error of the estimator b	se _b	$\sqrt{\operatorname{var}(b)}$	Standard error of the estimator for the x coefficient – i.e. the width of the estimator's sampling distribution.
Variance of the estimator a	Var(a)	$se^2 \cdot \left(\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}}\right)$	
Standard error of the estimator a	se _a	$\sqrt{\operatorname{var}(a)}$	Standard error of the estimator for the y intercept – i.e. the width of the estimator's sampling distribution.
Using statistical inference, how to tell if b is significantly different from β	t	$\frac{b-\beta}{se_b}$	Test statistic for testing the significance of the predicted x effect on y. Usually, set β =0

MULTIVARIATE REGRESSION EQUATIONS

Multivariate linear model		Population model: $y = \alpha + \beta x + \gamma z + \varepsilon$ Sample model: $y = a + bx + gz + e$ Estimated model: $\hat{y} = a + bx + gz$	ε = unobservable errors e = residual errors No error term in the estimate!
OLS estimate for α	а	$\overline{y} - b\overline{x} - g\overline{z}$	
OLS estimate for β	b	$\frac{S_{xy}S_{zz} - S_{zy}S_{xz}}{S_{xx}S_{zz} - S_{xz}^{2}}$	Holding constant all other explanatory variables in the model, a one-unit change in <i>x</i> causes a change of <i>b</i> in <i>y</i> . Depends on the relationship between <i>x</i> and <i>z</i> , and <i>z</i> and <i>y</i> .
OLS estimate for γ	g	$\frac{S_{zy}S_{xx} - S_{xy}S_{xz}}{S_{xx}S_{zz} - S_{xz}^{2}}$	Ceteris paribus, a one-unit change in <i>z</i> causes a change of <i>g</i> in <i>y</i> . Depends on the relationship between <i>z</i> and <i>x</i> , and <i>x</i> and <i>y</i>
Variance of the estimator b Precision This is also known as precision or efficiency: smaller var(b) means higher precision.	Var(b)	$\frac{se^2}{n \cdot s_x^2} \cdot \frac{1}{1 - r_{x,z}^2}$	$r_{x,z}^2$ is the sample correlation between x & z. If x and z are not correlated, we recover the bivariate formula (almost – need 'n-1' instead of 'n'). If x and z are perfectly correlated, the standard error blows up. In general, as x and z approach perfect correlation, se blows up.
Standard error of the estimator b	se _b	$\sqrt{\operatorname{var}(b)}$	See comments above.
Omitted variable bias	E(b)	$\beta + \gamma \cdot \left(\frac{\operatorname{cov}(x, z)}{\operatorname{var}(x)}\right)$	The second term is the effect of x on z . It's magnitude of the bias. $E(b) = \beta \ \underline{if} \ \gamma = 0 \ \text{or} \ \underline{if} \ \text{cov}(x,z) = 0$ Not solving for numbers, just positive or negative signs which tell you "understated" or "overstated" effect of the omitted variable Note: var(x) is always positive.

PP240B, SPRING 2007 2 0F 2 FEBRUARY 15, 2007