

General Description

Maxim's MAX312/MAX313/MAX314 analog switches feature low on-resistance (10 Ω max) and 1.5 Ω on-resistance matching between channels. These switches conduct equally well in either direction. They offer low leakage over temperature (2.5nA at +85°C). Low power consumption and ESD tolerance greater than 2000V per Method 3015.7 are guaranteed.

The MAX312/MAX313/MAX314 are quad, singlepole/single-throw (SPST) analog switches. The MAX312 is normally closed (NC), and the MAX313 is normally open (NO). The MAX314 has two NC switches and two NO switches. All three devices operate from a single supply of +4.5V to +30V or from dual supplies of ±4.5V to $\pm 20V$.

Applications

Test Equipment Communication Systems PBX, PABX Systems Audio Signal Routing

Avionics

Sample-and-Hold Circuits

Data Acquisition Systems

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

Features

- ♦ Pin Compatible with DG411/DG412/DG413
- **♦** Low On-Resistance (6.5Ω typical)
- ♦ Guaranteed Ron Match Between Channels (1.5Ω max)
- ♦ Guaranteed Ron Flatness over Specified Signal Range (2Ω max)
- ♦ Guaranteed ESD Protection > 2000V per Method 3015.7
- ♦ Crosstalk > 96dB at 20kHz
- ♦ Single-Supply Operation: +4.5V to +30V Dual-Supply Operation: ±4.5V to ±20V
- ♦ Rail-to-Rail® Signal Handling

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX312CPE	0°C to +70°C	16 Plastic DIP
MAX312CSE	0°C to +70°C	16 Narrow SO
MAX312CUE	0°C to +70°C	16 TSSOP
MAX312C/D	0°C to +70°C	Dice*
MAX312EPE	-40°C to +85°C	16 Plastic DIP
MAX312ESE	-40°C to +85°C	16 Narrow SO
MAX312EUE	-40°C to +85°C	16 TSSOP
MAX312MJE	-55°C to +125°C	16 CERDIP**

Ordering Information continued at end of data sheet.

- * Contact factory for dice specifications.
- **Contact factory for availability.

Pin Configurations/Functional Diagrams/Truth Tables

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND	Continuous Power Dissipation ($T_A = +70$ °C)
V+0.3V to +44V	Plastic DIP (derate 10.53mW/°C above +70°C)842mW
V+0.3V to -44V	Narrow SO (derate 8.70mW/°C above +70°C)696mW
V+ to V0.3V to +44V	CERDIP (derate 10.00mW/°C above +70°C)800mW
VL(GND - 0.3V) to (V+ + 0.3V)	TSSOP (derate 6.7mW/°C above +70°C)457mW
All Other Pins (Note 1)(V 2V) to (V+ + 2V)	Operating Temperature Ranges
or 30mA (whichever occurs first)	MAX31_C0°C to +70°C
Continuous Current (COM_, NO_, NC_)±100mA	MAX31_E40°C to +85°C
Peak Current (COM_, NO_, NC_)±300mA	MAX31_M55°C to +125°C
	Storage Temperature Range65°C to +150°C
	Lead Temperature (soldering 10s) +300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current rating.

ELECTRICAL CHARACTERISTICS—Dual Supplies

(V+ = 15V, V- = -15V, VL = 5V, GND = 0V, VINH = 2.4V, VINL = 0.8V, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH	•							
Analog Signal Range	VCOM_, VNO_, VNC_	(Note 3)			V-		V+	V
		Ι	T _A =	C, E		6.5	10	
On-Resistance	Ron	$I_{COM} = 10 \text{mA},$ $V_{NO} \text{ or } V_{NC} = \pm 10 \text{V}$	+25°C	М			9	Ω
		1110_01 1110_ = ±101	T _A = T _{MIN}	to T _{MAX}			15	
On-Resistance Match Between	A.D.o.i	I _{COM} = 10mA,	$T_A = +25^{\circ}$	С		0.3	1.5	.5 Ω
Channels (Note 4)	ΔRon	V_{NO} or $V_{NC} = \pm 10V$ $T_A = T_{MIN}$ to T_{MAX}		to T _M AX			3	22
On-Resistance Flatness	$I_{COM} = 10$ mA, $T_{A} = +25$ °C		С		0.2	2	Ω	
(Note 5)	RFLAT(ON)	V_{NO} or V_{NC} = -5V, OV , 5V	T _A = T _{MIN}	to T _{MAX}			4	52
Off Leakage Current			T _A = +25°	С	-0.5	-0.02	0.5	
(NO_ or NC_)	INC	$V_{COM} = \pm 10V$, V_{NO} or $V_{NC} = \pm 10V$	T _A = T _{MIN}	C, E	-2.5		2.5	nA
(Note 6)	INC	V_{NO} or $V_{NC} = \pm 10$	to T _{MAX}	М	-40		40	
			T _A = +25°	C	-0.5	-0.02	0.5	
COM Off Leakage Current	INC(OFF)	$V_{COM} = \pm 10V,$ V_{NO} or $V_{NC} = \pm 10V$	T _A = T _{MIN}	C, E	-2.5		2.5	nA
(Note 6)			to TMAX	М	-40		40	
00140		V _{COM} = ±10V, V _{NO} or V _{NC} = ±10V	T _A = +25°	Ċ	-1	-0.04	1	
COM On Leakage Current (Note 6)	ICOM(ON)		T _A = T _{MIN}	C, E	-5		5	nA
(14010-0)			to T _{MAX}	М	-100		100	

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V+ = 15V, V- = -15V, VL = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	COND	MIN	TYP (Note 2)	MAX	UNITS	
LOGIC INPUT		I					
Input Current with Input Voltage High	linh	IN_ = 2.4V, all others = 0.8V		-0.500	0.005	0.500	μΑ
Input Current with Input Voltage Low	I _{INL}	IN_ = 0.8V, all others =	= 2.4V	-0.500	0.005	0.500	μΑ
POWER SUPPLY				•			
Power-Supply Range				±4.5		±20.0	V
Positive Supply Current	l+	All channels on or off, V _{IN} = 0V or 5V,	T _A = +25°C	-1	0.0001	1	μA
		V+ = 16.5V V- = -16.5V	TA = TMIN to TMAX	-5		5	
Negative Supply Current	-	All channels on or off, VIN = 0V or 5V,	T _A = +25°C	-1	0.0001	1	μΑ
Trogative dappi, dalient	·	V+ = 16.5V V- = -16.5V	TA = TMIN to TMAX	-5		5	μ.· .
Logic Supply Current	IL	All channels on or off, V _{IN} = 0V or 5V,	T _A = +25°C	-1	0.0001	1	μA
Logic Supply Guiterit	'L	V+ = 16.5V V- = -16.5V	$T_A = T_{MIN}$ to T_{MAX}	-5		5	
Ground Current	IGND		-1	-0.0001	1	μA	
around current	IGND		$T_A = T_{MIN}$ to T_{MAX}	-5		5	μΛ
DYNAMIC							
Turn-On Time	ton	$V_{COM} = \pm 10V$ $T_A = T_{MIN}$ to	T _A = +25°C		70	225	ns
	CON		$T_A = T_{MIN}$ to T_{MAX}			275	1115
Turn-Off Time	toff	Figure 2,	T _A = +25°C		65	185	ns
	1011	$V_{COM} = \pm 10V$	$T_A = T_{MIN}$ to T_{MAX}			235	
Break-Before-Make Time Delay	t _D	$\begin{aligned} &\text{MAX314 only, Figure 3,} \\ &\text{R}_{\text{L}} = 300\Omega, \\ &\text{C}_{\text{L}} = 35\text{pF} \end{aligned}$	T _A = +25°C	1	5		ns
Charge Injection (Note 3)	VCTE	$C_L = 1.0nF$ $V_{GEN} = 0V$, $R_{GEN} = 0\Omega$, Figure 4	T _A = +25°C	-30	20	30	рС
Off Isolation (Note 7)	V _{ISO}	$R_L = 50\Omega,$ $C_L = 5pF,$ $f = 1MHz, Figure 5$	T _A = +25°C		-65		dB
Crosstalk (Note 8)	V _{CT}	$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 6	T _A = +25°C		-85		dB
NC or NO Capacitance	C(OFF)	f = 1MHz, Figure 7	T _A = +25°C		15		pF
COM Off Capacitance	C(COM)	f = 1MHz, Figure 7	T _A = +25°C		15		pF
On Capacitance	C(COM)	f = 1MHz, Figure 7	T _A = +25°C		47		pF

ELECTRICAL CHARACTERISTICS—Single Supply

 $(V+ = 12V, V- = 0V, VL = 5V, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP (Note 2)	MAX	UNITS
ANALOG SWITCH	•			•			
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}	(Note 3)		0		V+	V
Channel On-Resistance	RON	I _{COM} = 10mA,	T _A = +25°C		12.5	25	Ω
Charmer On-Hesistance	TION	V _{NC} _ or V _{NO} _ +10V	$T_A = T_{MIN}$ to T_{MAX}			35	52
POWER SUPPLY							
Positive Supply Current	l+	V+ = 13.2V all channels on or off.	T _A = +25°C	-1	0.0001	1	- μΑ
T OSILIVE Supply Surrent	I T	$V_{IN} = 0V \text{ or } 5V$	$T_A = T_{MAX}$	-5		5	
Logic Supply Current	IL all ch	$V_L = 5.5V$ all channels on or off.	T _A = +25°C	-1	0.0001	1	
Logic Supply Current		V _{IN} = 0V or 5V	TA = TMAX	-5		5	μΑ
Ground Current	love	$V_L = 5.5V$ all channels on or off, $V_{IN} = 0V$ or $5V$ $T_A = +25^{\circ}C$ $T_A = T_{MAX}$	T _A = +25°C	-1	-0.0001	1	μΑ
Ground Current	IGND		TA = TMAX	-5		5	
DYNAMIC	•						
Turn-On Time	ton	Figure 2,	T _A = +25°C		100	325	ns
(Note 3)	ton	V_{NO} or V_{NC} = 8V	TA = TMIN to TMAX			425	115
Turn-Off Time	torr	Figure 2,	T _A = +25°C		95	175	ns
(Note 3)	iOFF	toff $V_{NO_}$ or $V_{NC_} = 8V$ $T_A = T_{MIN}$ to T_{MIN}				225	115
Break-Before-Make Time Delay (Note 3)	t _D	MAX314 only, Figure 3 $R_L = 300\Omega$, $C_L = 35pF$	T _A = +25°C		5		ns
Charge Injection (Note 3)	Vсте	Figure 4, C _L = 1.0nF, VGEN = 0V, RGEN = 0V	T _A = +25°C		-5		рС

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- **Note 4:** $\Delta R_{ON} = \Delta R_{ON} \max \Delta R_{ON} \min$.
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.
- Note 7: Off isolation = $20\log_{10} [V_{COM} / (V_{NC} \text{ or } V_{NO})]$, $V_{COM} = \text{output}$, $V_{NC} \text{ or } V_{NO} = \text{input to off switch}$.
- Note 8: Between any two switches.
- **Note 9:** Leakage testing at single supply is guaranteed by testing with dual supplies.

Typical Operating Characteristics

TEMPERATURE (°C)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

V_{COM} (V)

_Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

	PIN		NAME	FUNCTION		
MAX312	MAX313	MAX314	NAME	TONOTION		
1, 8, 9, 16	1, 8, 9, 16	1, 8, 9, 16	IN2, IN4, IN3, IN2	Logic Level Inputs		
2, 7, 10, 15	2, 7, 10, 15	2, 7, 10, 15	COM1, COM4, COM3, COM2	Analog Signal Common Terminals		
3, 6, 11, 14	_	_	NC1, NC4, NC3, NC2	Analog Signal Normally Closed Terminals		
_	3, 6, 11, 14	_	NO1, NO4, NO3, NO2	Analog Signal Normally Open Terminals		
_	_	3, 6	NO1, NO4	Analog Signal Normally Open Terminals		
_	_	11, 14	NC3, NC2	Analog Signal Normally Closed Terminals		
4	4	4	V-	Negative Analog Supply Input (connect to GND for single-supply operation)		
5	5	5	GND	Logic Level Ground		
12	12	12	VL	Logic Supply Voltage		
13	13	13	V+	Positive Analog Supply Input		

__ /VI/IXI/VI

Applications Information

Low-Distortion Audio

The MAX312/MAX313/MAX314, having very low RON and very low RON variation with signal amplitude, are well suited for low-distortion audio applications. The *Typical Operating Characteristics* show Total Harmonic Distortion (THD) vs. Frequency graphs for several signal amplitudes and impedances. Higher source and load impedances improve THD, but reduce off isolation.

Off Isolation at High Frequencies

In 50Ω systems, the high-frequency on-response of these parts extends from DC to above 100MHz with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor, and off isolation decreases with increasing frequency. (Above 300MHz, the switch actually passes more signal turned off than turned on.) This effect is more pronounced with higher source and load impedances.

Above 5MHz, circuit board layout becomes critical, and it becomes difficult to characterize the response of the switch independent of the circuit. The graphs shown in the *Typical Operating Characteristics* were taken using a 50Ω source and load connected with BNC connections.

tors to a circuit board deemed "average"; that is, designed with isolation in mind, but not using strip-line or other special RF circuit techniques. For critical applications above 5MHz, use the MAX440, MAX441, and MAX442, which are fully characterized up to 160MHz.

Figure 1. Overvoltage Protection Using External Blocking Diodes

Figure 2. Switching-Time Test Circuit

Figure 3. Break-Before-Make Test Circuit (MAX314 only)

Figure 4. Charge Injection Test Circuit

Figure 5. Off-Isolation Test Circuit

Figure 6. Crosstalk Test Circuit

Figure 7. Channel-Off Capacitance Test Circuit

Figure 8. Channel-On Capacitance Test Circuit

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
PARI	TEMP. RANGE	PIN-PACKAGE
MAX313CPE	0°C to +70°C	16 Plastic DIP
MAX313CSE	0°C to +70°C	16 Narrow SO
MAX313CUE	0°C to +70°C	16 TSSOP
MAX313C/D	0°C to +70°C	Dice*
MAX313EPE	-40°C to +85°C	16 Plastic DIP
MAX313ESE	-40°C to +85°C	16 Narrow SO
MAX313EUE	-40°C to +85°C	16 TSSOP
MAX313MJE	-55°C to +125°C	16 CERDIP**
MAX314CPE	0°C to +70°C	16 Plastic DIP
MAX314CSE	0°C to +70°C	16 Narrow SO
MAX314CUE	0°C to +70°C	16 TSSOP
MAX314C/D	0°C to +70°C	Dice*
MAX314EPE	-40°C to +85°C	16 Plastic DIP
MAX314ESE	-40°C to +85°C	16 Narrow SO
MAX314EUE	-40°C to +85°C	16 TSSOP
MAX314MJE	-55°C to +125°C	16 CERDIP**

^{*} Contact factory for dice specifications.

MAX312		MAX	K313	MAX314		
PIN	NAME	PIN	NAME	PIN	NAME	
А	NC1	А	NO1	А	NO1	
В	NC4	В	NO4	В	NO4	
С	NC3	С	NO3	С	NC3	
D	NC2	D	NO2	D	NC2	

TRANSISTOR COUNT: 100 SUBSTRATE CONNECTED TO V+

^{**}Contact factory for availability.

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

__Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Printed USA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAX312CSE+ MAX312CUE+ MAX312ESE+ MAX313CPE+ MAX313CSE+ MAX313CUE+ MAX313ESE+
MAX314CSE+ MAX314ESE+ MAX312CPE+ MAX312CSE+T MAX312CUE+T MAX312EPE+ MAX312ESE+T

MAX312EUE+ MAX312EUE+T MAX313CSE+T MAX313CUE+T MAX313EPE+ MAX313ESE+T MAX313EUE+

MAX313EUE+T MAX314CPE+ MAX314CSE+T MAX314CUE+ MAX314CUE+T MAX314EPE+ MAX314ESE+T

MAX314EUE+ MAX314EUE+T MAX313ESE MAX313ESE-T MAX313MJE MAX314MJE MAX312MJE