Lista 3

Problema 1 Seja $f: X \to Y$ un difeomorfismo entre duas variedades orientadas conexas. Prove que df_x preserva orientação para um ponto $x \in X$ se, e somente se, df_x preserva orientação para todo ponto $x \in X$.

Demostração. Considere

$$D: X \longrightarrow \mathbb{R}$$
$$x \longmapsto \det d_x f$$

É uma função contínua que nunca pode ser zero. Como é positiva em x, deve ser positiva sempre. \Box

Problem 2 Seja X uma variedade orientável. Prove que a orientação induzida em $X \times X$ é independente da orientação de X.

Demostração. A orientação de $X \times X$ está dada como segue: uma base (β_1, β_2) do espaço tangente $T_{(x,y)}X \times X$ é orientada se β_1 e β_2 são bases orientadas de X.

Agora considere a mesma construção usando -X. A base $(\tilde{\beta_1}, \tilde{\beta_2})$ de $-X \times -X$ é orientada se $\tilde{\beta_1}$ e $\tilde{\beta_2}$ são bases orientadas de -X.

Porém, é equivalente que (β_1, β_2) seja orientada em $X \times X$ e que $(\tilde{\beta}_1, \tilde{\beta}_2)$ seja orientada em $-X \times -X$: tanto a transformação que manda $\beta_1 \mapsto \tilde{\beta}_1$ quanto a transformação que manda $\beta_2 \mapsto \tilde{\beta}_2$ tem determinante negativo, de modo que a transformação que manda $(\beta_1, \beta_2) \mapsto (\tilde{\beta}_1, \tilde{\beta}_2)$ tem determinante positivo!

Problem 3 Prove que SO(n) é uma variedade orientável e calcule a sua dimensão. Usando teoria da interseção prove que $\chi(SO(n)) = 0$.

Demostração. First notice that SO(n) is one of the connected components of O(n). Indeed, $SO(n) = det^{-1}(1)$ for the submersion $det: O(n) \to \{\pm 1\}$, making into a codimension-0 submanifold of O(n) since $dim\{\pm 1\} = 0$. This means that computing the dimension of SO(n) is the same as computing the dimension of O(n).

Now observe that a matrix in O(n) is the same as an orthonormal frame of \mathbb{R}^n : the column vectors of any $A \in O(n)$ unitary and mutually orthogonal since $AA^T = Id$ says $\sum_k \alpha_{ik} \alpha_{jk} = \delta_{ij}$ for every i, j.

We can compute the dimension of O(n) as follows. Take a vector v_1 in S^{n-1} , then a unitary vector in the orthogonal complement of v_1 , i.e. a vector in S^{n-2} , and so on until we choose either of the two vectors in S^0 . This means that we are choosing points in

 $S^{n-1}\times S^{n-2}\times\ldots\times S^0$, which gives $dim\,O(n)=\sum_{i=0}^{n-1}i$. It is well known that this number is $\frac{n(n-1)}{2}$.

To orient SO(n) just notice that it acts on itself homogeneously (by orientation-preserving diffeomorphisms). Taking a basis at the identity matrix and moving it around our manifold using this action generates a smooth global choice of local orientations; i.e. a global orientation.

The fact that $\chi(SO(n))=0$ is immediate from the fact that its tangent bundle is trivial: there is a nowhere vanishing vector field (the orbit of any nonzero vector), giving the result by Poincaré-Hopf theorem.

Problem 4 Seja Σ uma superfície de gênero g. Construa um campo vetorial em Σ com um único zero de índice 2-2g.

Solution. Primeiro note que é suficiente construir um campo vetorial com um único zero, já que pelo teorema do índice de Hopf ele necessariamente vai ter índice $2-2g=\chi(\Sigma)$. (Um modo de comprovar que essa é a característica de Euler de Σ é usando o campo gradiente da função altura, que tem dois zeros de índice 2 e 2g zeros de índice -1.)

Para constuir um campo vetorial com um único zero usarei ideas de StackExchange.

Sabemos que Σ pode ser vista como um polígono com certas identificações no bordo. Podemos dar uma decomposição simplicial dele simplesmente botando um vértice no centro do polígono e as aristas que ligam os vértices do polígono com o centro. Ussando o campo vetorial para triangulações discutido em aula,

obtemos um campo vetorial em Σ com uma quantidade finita de zeros.

A ideia é construir um grafo conexo em Σ cujos vértices sejam os zeros do campo, e que não tenha ciclos i.e. uma árvore. Desse jeito, uma vizinhança tubular do grafo é homeomorfa a um disco, e a restrição do campo a esse disco não tem zeros no bordo. Daí conseguirmos perturbar o campo ussando à "Adaptação do truque de Alexander":

Lemma Se v é um campo vetorial suave em D^2 sem zeros no bordo, existe outro campo vetorial suave com um único zero que coincide com v no bordo.

Prova do lema. Como ν não tem zeros no bordo (e o nosso ν na verdade tem uma quantidade finita de zeros) podemos pegar um $\varepsilon < 1$ tal que os zeros de ν estão na bola B_{ε} . Daí pegamos uma bump function ρ que tenha um único zero em zero e seja constante 1 fora de B_{ε} .

Então defina

$$w(r,\theta) = \begin{cases} v(r,\theta) & r \geqslant \epsilon \\ \rho(r)v(\epsilon,\theta) & r \leqslant \epsilon \end{cases}$$

Problem 5 Seja A uma matriz de $n \times n$ com coeficientes inteiros e seja $f : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ tal que f(x) = Ax. Calcule o grau de f.

Demostração. To compute the degree of f it's enough to compute the number of preimages of $[0] \in \mathbb{R}^n/\mathbb{Z}^n$. To do this consider the fundamental domain $[0,1)^n$ and map it with A to \mathbb{R}^n . When we take the quotient, all the points with integer coordinates will be glued together in the class [0]. I.e. we are looking for the number of points with integer coordinates in $P := A([0,1)^n)$.

I claim that this number is the volume of P, i.e. the determinant of A. While this is intuitively clear, I was unable to produce a formal proof.

Example for $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$, with determinant 5

Problem 6 Prove que $\mathbb{R}P^{2n+1}$ é orientável e que $\mathbb{R}P^{2n}$ não é orientável.

Demostração. First notice that - Id preserves orientation iff n is odd. This map is a composition of n reflections, one about every axis of $\mathbb{R}^{n+1} \supset S^n$. Each of these reflections is

orientation-reversing, and composing a map with an orientation-reversing map reverses orientation by the chain rule.

Now recall that $\mathbb{R}P^n = S^n/-Id$. Suppose $\mathbb{R}P^n$ is orientable, so that the quotient map is orientation-preserving since it is a submersion: the determinant of its differential is a nowhere-zero continuous function on a connected manifold, so it cannot be positive somewhere and negative elsewhere.

Choose an oriented basis of the tangent space of $\mathbb{R}P^n$ at $[e_1]$. Pull back the basis using quotient map, this produces a basis at each of the preimages, namely e_1 and $-e_1$. These two bases must be in the same orientation of S^n since the quotient map is orientation-preserving and they are mapped to the same basis in the quotient. However, this only happens when $-\operatorname{Id}$ is orientation-preserving.