Models with Latent Variables. EM algorithm

Evgeny Burnaev

Skoltech, Moscow, Russia

Burnaev, Bayesian ML

Outline

- Mullback-Leibler divergence
- 2 EM algorithm
- Other models
- Principal Component Analysis
- Probabilistic PCA
- 6 Bayesian PCA

Burnaev, Bayesian ML

- Mullback-Leibler divergence
- 2 EM algorithm
- Other models
- Principal Component Analysis
- Probabilistic PCA
- 6 Bayesian PCA

 Measure of divergence between two distributions defined on the same domains

$$\begin{split} KL(q||p) &= \int q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x} = \\ &= -\int q(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} = \mathbb{E}_{\mathbf{x} \sim q(\cdot)} - \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \\ &\geq -\log \mathbb{E}_{\mathbf{x} \sim q(\cdot)} \frac{p(\mathbf{x})}{q(\mathbf{x})} = -\log \int q(\mathbf{x}) \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} = -\log 1 = 0 \end{split}$$

Information theoretic interpretation

$$KL = Cross Entropy - Entropy$$

• If we minimize KL w.r.t. $q(\cdot)$ the approximation should be good where $q(\cdot)$ has large values

Burnaev, Bayesian ML

- (a) Blue contours: bimodal mixture of two Gaussians distribution $p(\mathbf{z})$. Red contours: single Gaussian distribution $q(\mathbf{z})$ that best approximates $p(\mathbf{z})$ by minimizing $KL(p\|q)$
- (b) As in (a) but now $q(\mathbf{z})$ is found by numerical minimization of $KL(q\|p)$
- (c) As in (b) but showing a different local minimum of KL(q||p)

Burnaev, Bayesian ML

Latent Variable Modeling: Example

• We have a set of points generated from a Gaussian

$$x_i \sim \mathcal{N}(x_i|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

ullet We estimate its parameters μ and σ : sample mean and variance

Latent Variable Modeling: Example

Several sets of points from different gaussians

 We have to estimate the parameters of those gaussians and their weights

- The problem is as easy if we know what objects were generated from each gaussian
- Using a single gaussian model leads to inaccurate results

Mixture of Gaussians

- ullet For each x_i we introduce additional z_i denoting the index of Gaussian from which i-th object was generated
- The model is

$$p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i, z_i|\boldsymbol{\theta}) =$$

$$= \prod_{i=1}^{m} p(x_i|z_i, \boldsymbol{\theta}) p(z_i|\boldsymbol{\theta})$$

$$= \prod_{i=1}^{m} \pi_{z_i} \mathcal{N}(x_i|\mu_{z_i}, \sigma_{z_i}^2)$$

- Here $\pi_j = p(z_i = j)$ are prior probability of j-th Gaussian and $\pmb{\theta} = \{\mu_j, \sigma_j, \pi_j\}_{j=1}^K$ are the parameters to be estimated
- ullet If we know both ${f X}$ and ${f Z}$, we use MLE

$$\boldsymbol{\theta}_{MLE} = \arg\max_{\boldsymbol{\theta}} p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$$

Burnaev, Bayesian ML

- Mullback-Leibler divergence
- 2 EM algorithm
- Other models
- Principal Component Analysis
- Probabilistic PCA
- 6 Bayesian PCA

ullet We do not know ${f Z}$ \Rightarrow we maximize w.r.t. $m{ heta}$ the log of incomplete likelihood

$$\log p(\mathbf{X}|\boldsymbol{\theta})$$

ullet For any distribution $q(\mathbf{Z})$ we get that

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \int q(\mathbf{Z}) \log p(\mathbf{X}|\boldsymbol{\theta}) d\mathbf{Z}$$

• Since $p(\mathbf{Z}|\mathbf{X}, \pmb{\theta}) \cdot p(\mathbf{X}|\pmb{\theta}) = p(\mathbf{Z}, \mathbf{X}|\pmb{\theta})$, we get

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \int q(\mathbf{Z}) \log p(\mathbf{X}|\boldsymbol{\theta}) d\mathbf{Z} =$$

$$= \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})} d\mathbf{Z} = \int q(\mathbf{Z}) \log \frac{q(\mathbf{Z})p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})} d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} d\mathbf{Z} + \int q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})} d\mathbf{Z}$$

We get

$$\begin{split} \log p(\mathbf{X}|\boldsymbol{\theta}) &= \\ &= \underbrace{\int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{q(\mathbf{Z})} d\mathbf{Z}}_{\text{Evidence Lower Bound}} + \underbrace{\int q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})} d\mathbf{Z}}_{\text{Non-negative}}_{\text{ELBO } \mathcal{L}(q, \boldsymbol{\theta})} \end{split}$$

Thus

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + KL(q||p) \ge \mathcal{L}(q, \boldsymbol{\theta})$$

- Instead of optimizing $\log p(\mathbf{X}|\boldsymbol{\theta})$ we optimize ELBO $\mathcal{L}(q,\boldsymbol{\theta})$ w.r.t. both θ and $q(\mathbf{Z})$
- The block-coordinate algorithm is known as EM-algorithm

Burnaev, Bayesian ML 11/56

Variational Lower Bound

- Function $g(\xi, \mathbf{x})$ is called a variational lower bound for $f(\mathbf{x})$ iff
 - For all ξ and for all \mathbf{x} it follows $f(\mathbf{x}) \geq g(\xi, \mathbf{x})$
 - For any \mathbf{x}_0 there exists $\xi(\mathbf{x}_0)$ such that $f(\mathbf{x}_0) = g(\xi(\mathbf{x}_0), \mathbf{x}_0)$
- If we managed to find such variational lower bound, then instead of solving

$$f(\mathbf{x}) \to \max_{\mathbf{x}}$$

we can iteratively perform block-coordinate updates of $g(\xi,\mathbf{x})$

$$\mathbf{x}_i = \arg\max_{\mathbf{x}} g(\xi_{i-1}, \mathbf{x}), \ \xi_i = \xi(\mathbf{x}_i) = \arg\max_{\xi} g(\xi, \mathbf{x}_i)$$

To solve

$$\mathcal{L}(q, \boldsymbol{\theta}) = \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q(\mathbf{Z})} d\mathbf{Z} \to \max_{q, \boldsymbol{\theta}}$$

we start from initial $oldsymbol{ heta}_0$ and iteratively repeat optimize w.r.t. q and $oldsymbol{ heta}$

• Let us find $\arg\max_q \mathcal{L}(q, \boldsymbol{\theta}_0)$. Since $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}) \cdot p(\mathbf{X}|\boldsymbol{\theta}) = p(\mathbf{Z}, \mathbf{X}|\boldsymbol{\theta})$

$$\mathcal{L}(q, \boldsymbol{\theta}_0) = \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}_0)}{q(\mathbf{Z})} d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}_0) \cdot p(\mathbf{X}|\boldsymbol{\theta}_0)}{q(\mathbf{Z})} d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{X}|\boldsymbol{\theta}_0) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \log \frac{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} d\mathbf{Z} + \log p(\mathbf{X}|\boldsymbol{\theta}_0)$$

$$= -KL(q||p) + \log p(\mathbf{X}|\boldsymbol{\theta}_0)$$

Thus we get that

$$\arg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}_{0}) = \arg \min KL(q||p) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}_{0})$$

Skoltech

Thus to solve

$$\mathcal{L}(q, \boldsymbol{\theta}) = \int q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{q(\mathbf{Z})} d\mathbf{Z} \to \max_{q, \boldsymbol{\theta}}$$

we start from initial θ_0 and iteratively repeat

• E-step: find

$$q(\mathbf{Z}) = \arg\max_{q} \mathcal{L}(q, \boldsymbol{\theta}_0) = \arg\min_{q} KL(q||p) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}_0)$$

• M-step: solve

$$\theta_* = \arg \max_{\theta} \mathcal{L}(q, \theta) = \arg \max_{\theta} \mathbb{E}_{\mathbf{Z}} \log p(\mathbf{X}, \mathbf{Z} | \theta),$$

set $\theta_0 = \theta_*$ and go to **E-step** until convergence

• The EM algorithm monotonically increases the lower bound and converges to stationary point of $\log p(\mathbf{X}|\boldsymbol{\theta})$

Burnaev, Bayesian ML Skoltech

Is EM worth to use?

- In many cases (e.g. for the mixture of Gaussians) E-step and M-step can be performed in closed forms
- Allows to build more complicated models of data using mixtures of simple distributions
- If true posterior $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$ is intractable we may search for the closest $q(\mathbf{Z})$ among tractable distributions by solving optimization problem
- Allows to process missing data by treating it as latent variables

- EM algorithm allows to fill in arbitrary gaps in data
- May deal with both discrete and continuous variables
- Always converges
- Allows multiple extensions

Burnaev, Bayesian ML

- Mullback-Leibler divergence
- 2 EM algorithm
- 3 Other models
- Principal Component Analysis
- Probabilistic PCA
- 6 Bayesian PCA

Categorical Latent Variables

ullet Assume all $z_i \in \{1, \dots, K\}$ then the marginal

$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \sum_{k=1}^{K} p(\mathbf{x}_i|k,\boldsymbol{\theta}) p(z_i = k|\boldsymbol{\theta})$$

is a finite mixture of distributions

E-step can be performed in closed form

$$q(z_i = k) = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = \frac{p(\mathbf{x}_i | k, \boldsymbol{\theta}) p(z_i = k | \boldsymbol{\theta})}{\sum_{l=1}^{K} p(\mathbf{x}_i | l, \boldsymbol{\theta}) p(z_i = l | \boldsymbol{\theta})}$$

M-step is simply a sum of finite terms

$$\mathbb{E}_{\mathbf{Z}} \log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) = \sum_{i=1}^{m} \mathbb{E}_{z_i} \log p(x_i, z_i | \boldsymbol{\theta}) = \sum_{i=1}^{m} \sum_{k=1}^{K} q(z_i = k) \log p(x_i, k | \boldsymbol{\theta})$$

- Real datasets: data points lie close to a manifold of much lower dimensionality
- 100×100 grey-scale image, i.e. 10^4 dimensional data space
- three degrees of variability: the vertical/horizontal translations and the rotations, described by some latent variables
- three dimensional nonlinear manifold
- real digit image data: a further degrees of freedom from scaling, variability in an individuals writing, writing styles
- In practice, the data points will not be confined precisely to a smooth low-dimensional manifold: can be interpreted as noise

Burnaev, Bayesian ML

Continuous Latent Variables

 Continuous variables can be considered as a mixture of a continuum of distributions

$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \int p(\mathbf{x}_i, \mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i = \int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i$$

 E-step can be done in closed form only in case of conjugate distributions

$$q(\mathbf{z}_i) = p(\mathbf{z}_i|\mathbf{x}_i, \boldsymbol{\theta}) = \frac{p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta})p(\mathbf{z}_i|\boldsymbol{\theta})}{\int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta})p(\mathbf{z}_i|\boldsymbol{\theta})d\mathbf{z}_i}$$

 Typically continuous latent variables are used for dimension reduction also known as representation learning

EM methodology

- Develop probabilistic parametric data model
- Include additional (latent) variables until model becomes simple enough, e.g. belongs to exponential class
- Treat all missing values in data as latent variables
- When fitting the model to data (e.g. using MLE) run EM
- Estimate a distribution on latent variables
- Maximize the expectation w.r.t. latent variables of joint log-likelihood w.r.t. parameters

Burnaev, Bayesian ML Skoltech

Problems with EM

- Each object has multi-dimensional discrete latent variable ⇒ exponentially large sums
- Object has both discrete and continuous latent variables (e.g. mixture of low-dimensional manifolds) ⇒ mixed discrete-continuous distributions over latent variables
- Continuous latent variables come from non-conjugate priors ⇒ intractable multi-dimensional integrals
- Further approach: Large-Scale Variational Bayes

Burnaev, Bayesian ML

- Mullback-Leibler divergence
- 2 EM algorithm
- 3 Other models
- Principal Component Analysis
- Probabilistic PCA
- 6 Bayesian PCA

Maximum variance formulation

- ullet $\{\mathbf{x}_i\}_{i=1}^m$, $\mathbf{x}_i \in \mathbb{R}^d$ is a sample
- \bullet Goal: project the data onto a space with dimensionality q < d , while maximizes the variance of the projected points
- Let q=1 and denote by $\mathbf{u}_1\in\mathbb{R}^d$ a d-dimensional vector, s.t. $\mathbf{u}_1^{\top}\mathbf{u}_1=1$

Maximum variance formulation

• If we denote by $\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$, then the variance of the projected data is

$$\frac{1}{m} \sum_{i=1}^{m} \{ \mathbf{u}_{1}^{\mathsf{T}} \mathbf{x}_{i} - \mathbf{u}_{1}^{\mathsf{T}} \overline{\mathbf{x}} \}^{2} = \mathbf{u}_{1}^{\mathsf{T}} \mathbf{S} \mathbf{u}_{1},$$

where
$$\mathbf{S} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i - \overline{x}) (\mathbf{x}_i - \overline{x})^{\top}$$

• Setting the derivative of $\mathbf{u}_1^{\top}\mathbf{S}\mathbf{u}_1 + \lambda_1(1-\mathbf{u}_1^{\top}\mathbf{u}_1)$ to zero, we get that

$$\mathbf{S}\mathbf{u}_1 = \lambda_1\mathbf{u}_1$$

• By induction: the optimal linear projections with maximal variance are defined by the q eigenvectors $\mathbf{u}_1,\ldots,\mathbf{u}_q$ of the data covariance matrix \mathbf{S} , corresponding to the q largest eigenvalues $\lambda_1,\ldots,\lambda_q$

Minimum-error formulation

• We introduce a complete orthonormal set of d-dimensional basis vectors $\{\mathbf{u}_i\}_{i=1}^d$, s.t.

$$\mathbf{u}_i^{\top} \mathbf{u}_j = \delta_{ij}$$

- Thus it holds for any \mathbf{x}_i : $\mathbf{x}_i = \sum_{i=1}^d \alpha_{ij} \mathbf{u}_j$
- Due to orthonormality we get that $\alpha_{ij} = \mathbf{x}_i^{\top} \mathbf{u}_j$, i.e.

$$\mathbf{x}_i = \sum_{j=1}^d (\mathbf{x}_i^\top \mathbf{u}_j) \mathbf{u}_j$$

 The q-dimensional linear subspace is represented by the first q of the basis vectors, so the approximation of \mathbf{x}_i is

$$\widetilde{\mathbf{x}}_i = \sum_{j=1}^q z_{ij} \mathbf{u}_j + \sum_{j=q+1}^d b_j \mathbf{u}_j,$$

where $\{b_i\}$ are constants, that are the same for all data points

The distortion measure

$$J = \frac{1}{m} \sum_{i=1}^{m} \|\mathbf{x}_i - \widetilde{\mathbf{x}}_i\|^2$$

Setting derivatives to zero we get that

$$\{z_{ij} = \mathbf{x}_i^\top \mathbf{u}_j\}_{j=1}^q, \ \{b_j = \overline{\mathbf{x}}^\top \mathbf{u}_j\}_{j=q+1}^d$$

ullet Since $\mathbf{x}_i - \widetilde{\mathbf{x}}_i = \sum_{j=q+1}^d \{ (\mathbf{x}_i - \overline{\mathbf{x}})^{ op} \mathbf{u}_j \} \mathbf{u}_j$, then

$$J = \frac{1}{m} \sum_{i=1}^{m} \sum_{j=q+1}^{d} (\mathbf{x}_{i}^{\top} \mathbf{u}_{j} - \overline{\mathbf{x}}^{\top} \mathbf{u}_{j})^{2} = \sum_{j=q+1}^{d} \mathbf{u}_{j}^{\top} \mathbf{S} \mathbf{u}_{j}$$

• E.g. in case d=2: by minimizing

$$J = \mathbf{u}_2^{\top} \mathbf{S} \mathbf{u}_2 + \lambda_2 (1 - \mathbf{u}_2^{\top} \mathbf{u}_2)$$

we get that

$$\mathbf{S}\mathbf{u}_2 = \lambda_2 \mathbf{u}_2, \ J = \lambda_2,$$

i.e. we should choose the principal subspace to be aligned with the eigenvector having the larger eigenvalue

• In general case $\{\mathbf{u}_i\}_{i=1}^q$ are eigenvectors $\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ and

$$J = \sum_{i=q+1}^{d} \lambda_i$$

Applications of PCA

Mean

• PCA approximation to a data vector \mathbf{x}_n

$$egin{aligned} \widetilde{\mathbf{x}}_i &= \sum_{j=1}^q (\mathbf{x}_i^ op \mathbf{u}_j) \mathbf{u}_j + \sum_{j=q+1}^d (\overline{\mathbf{x}}^ op \mathbf{u}_j) \mathbf{u}_j \ &= \overline{\mathbf{x}} + \sum_{j=1}^q (\mathbf{x}_j^ op - \overline{\mathbf{x}}^ op \mathbf{u}_j) \mathbf{u}_j, \end{aligned}$$

where we used the relation $\overline{\mathbf{x}} = \sum_{i=1}^{d} (\overline{\mathbf{x}}^{\top} \mathbf{u}_i) \mathbf{u}_i$

Figure - Eigenvalue spectrum (left). Sum of the discarded eigenvalues (right)

Figure – PCA reconstructions of the off-line digits data set. $q=d=28\times 28=784$ is already perfect reconstruction

- Mullback-Leibler divergence
- 2 EM algorithm
- Other models
- Principal Component Analysis
- Probabilistic PCA
- 6 Bayesian PCA

- Probabilistic PCA represents a constrained form of the Gaussian distribution
- Provides EM algorithm for PCA: computationally efficient since we can calculate only needed components
- \bullet Probabilistic model + EM = to deal with missing values
- Mixtures of probabilistic PCA models can be formulated in a principled way and trained using the EM algorithm
- The existence of a likelihood function ⇒ direct comparison with other probabilistic density models
- Probabilistic PCA can be used to model class-conditional densities
- The probabilistic PCA model can be run generatively to provide samples from the distribution

Burnaev, Bayesian ML

- We assume that $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}), \ \mathbf{z} \in \mathbb{R}^q \ (q < d)$
- Similarly

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2\mathbf{I}), \text{ i.e. } \mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}, \, \mathbf{x} \in \mathbb{R}^d,$$
 where $\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon}|\mathbf{0}, \sigma^2\mathbf{I})$

Skoltech

• We would like to determine ${\bf W}$ and σ^2 . Thus we need a marginal $p({\bf x})$

$$p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

• We get that $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{C})$, where

$$\mathbf{C} = \mathbf{W} \mathbf{W}^{\top} + \sigma^2 \mathbf{I}$$

• There is redundancy in this parametrization corresponding to rotations of the latent space coordinates: for $\widetilde{\mathbf{W}} = \mathbf{W}\mathbf{R}$, where \mathbf{R} is an orhtogonal matrix, we get that

$$\widetilde{\mathbf{W}}\widetilde{\mathbf{W}}^\top = \mathbf{W}\mathbf{R}\mathbf{R}^\top\mathbf{W}^\top = \mathbf{W}\mathbf{W}^\top$$

• Inversion of $d \times d$ matrix **C**:

$$\mathbf{C}^{-1} = \sigma^{-1} \mathbf{I} - \sigma^{-2} \mathbf{W} \mathbf{M}^{-1} \mathbf{W}^{\top},$$

where $q \times q$ matrix **M** has the form

$$\mathbf{M} = \mathbf{W}^{\mathsf{T}} \mathbf{W} + \sigma^2 \mathbf{I}$$

- ullet Thus the cost of inverting ${f C}$ is reduced from $O(d^3)$ to $O(q^3)$
- The posterior $p(\mathbf{z}|\mathbf{x})$

$$p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\mathbf{M}^{-1}\mathbf{W}^{\top}(\mathbf{x} - \boldsymbol{\mu}), \sigma^{-2}\mathbf{M})$$

ullet Given a data set $\mathbf{X}_m = \{\mathbf{x}_i\}_{i=1}^m$ the log-likelihood

$$\log p(\mathbf{X}_m | \mathbf{W}, \boldsymbol{\mu}, \sigma^2) = \sum_{i=1}^m \log p(\mathbf{x}_i | \mathbf{W}, \boldsymbol{\mu}, \sigma^2)$$
$$= -\frac{md}{2} \log(2\pi) - \frac{m}{2} \log |\mathbf{C}| - \frac{1}{2} \sum_{i=1}^m (\mathbf{x}_i - \boldsymbol{\mu})^\top \mathbf{C}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})$$

Burnaev, Bayesian ML

ullet Optimizing w.r.t. $oldsymbol{\mu}$ we get $oldsymbol{\mu}=\overline{\mathbf{x}}$ and

$$\log p(\mathbf{X}_m | \mathbf{W}, \boldsymbol{\mu}, \sigma^2) = -\frac{m}{2} \{ d \log(2\pi) + \log |\mathbf{C}| + \text{Tr}(\mathbf{C}^{-1}\mathbf{S}) \},$$

where S is the data covariance matrix

• ML for ${\bf W}$ and σ^2 : all the stationary points of the log-likelihood has the form

$$\mathbf{W}_{ML} = \mathbf{U}_q (\mathbf{L}_q - \sigma_{ML}^2 \mathbf{I})^{1/2} \mathbf{R}, \ \sigma_{ML}^2 = \frac{1}{d-q} \sum_{i=q+1}^a \lambda_i$$

where

- $\mathbf{U}_q \in \mathbb{R}^{d \times q}$ is a matrix whose columns are given by any subset (of size q) of the eigenvectors of the data covariance matrix \mathbf{S} ,
- \mathbf{L}_q is a $q \times q$ diagonal matrix with elements λ_i ,
- **R** is an arbitrary $q \times q$ orthogonal matrix

Skoltech

ullet For an unconditional $p(\mathbf{x})$ we get that

$$\mathbb{E}[\mathbf{x}] = \mathbb{E}[\mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}] = \boldsymbol{\mu}$$
$$\operatorname{cov}[\mathbf{x}] = \mathbb{E}[(\mathbf{W}\mathbf{z} + \boldsymbol{\epsilon})(\mathbf{W}\mathbf{z} + \boldsymbol{\epsilon})^{\top}] = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I} = \mathbf{C}$$

ullet Thus ${f C}$ is independent of ${f R}$ for

$$\mathbf{W}_{ML} = \mathbf{U}_q (\mathbf{L}_q - \sigma_{ML}^2 \mathbf{I})^{1/2} \mathbf{R}$$

- If ${\bf v}$ is orthogonal to the principal subspace, then ${\bf v}^{\top}{\bf U}={\bf 0}$, i.e. ${\bf v}^{\top}{\bf C}{\bf v}=\sigma^2$
- If $\mathbf{v} = \mathbf{u}_i$, then $\mathbf{v}^{\top} \mathbf{C} \mathbf{v} = (\lambda_i \sigma^2) + \sigma^2 = \lambda_i$
- ullet For ${f R}={f I}$ we get a usual PCA, otherwise columns of ${f W}$ need not be orthogonal

Skoltech

- Conventional PCA: projection of points from the d- dimensional data space onto an q-dimensional linear subspace (d > q)
- Probabilistic PCA: mapping from the latent space into the data space. We can reverse this mapping using Bayes theorem (visualization and data compression)
- The mean is given by

$$\mathbb{E}[\mathbf{z}|\mathbf{x}] = \mathbf{M}^{-1}\mathbf{W}_{ML}^{\top}(\mathbf{x} - \overline{\mathbf{x}})$$

• The posterior covariance is $cov[\mathbf{z}] = \sigma^2 \mathbf{M}^{-1}$

- Usual Gaussian distribution: d(d+1)/2 parameters.
- ullet Probabilistic PCA: define d-dimensional Gaussian retaining the q most significant correlations. The number of degress of freedom in the covariance matrix ${f C}$ is given by

$$dq + 1 - q(q-1)/2,$$

since

- -dq+1 for **W** and σ^2
- minus q(q-1)/2 parameters for ${\bf R}$ (redundancy in parametrization associated with rotations)

- We have already obtained an exact closed-form solution for the MLE. Why do we need EM?
- In spaces of high dimensionality, there may be computational advantages in using an iterative EM procedure rather than working directly with the sample covariance matrix
- General framework for EM
 - we write down the complete-data log likelihood
 - take its expectation w.r.t. the posterior distribution of the latent distribution with "old" parameters
 - maximization of this expected complete data log-likelihood then yields the "new" parameter values

The complete-data log likelihood function takes the form

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^2) = \sum_{n=1}^{m} \{\log p(\mathbf{x}_n | \mathbf{z}_n) + \log p(\mathbf{z}_n)\}$$

• MLE for μ is equal to \overline{x} , thus substituting the sample mean, and taking the expectation with respect to the posterior distribution over the latent variables

$$\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \mathbf{W}, \sigma^2)] = -\sum_{n=1}^{m} \left\{ \frac{d}{2} \log(2\pi\sigma^2) + \frac{1}{2} \text{Tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}]) + \frac{1}{2\sigma^2} \|\mathbf{x}_n - \boldsymbol{\mu}\|^2 - \frac{1}{\sigma^2} \mathbb{E}[\mathbf{z}_n]^{\top} \mathbf{W}^{\top}(\mathbf{x}_n - \boldsymbol{\mu}) + \frac{1}{2\sigma^2} \text{Tr}(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}] \mathbf{W}^{\top} \mathbf{W}) \right\}$$

In the E step we use the old parameter values to evaluate

$$\mathbb{E}[\mathbf{z}_n] = \mathbf{M}^{-1} \mathbf{W}^{\top} (\mathbf{x}_n - \overline{\mathbf{x}})$$
$$\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}] = \text{cov}[\mathbf{z}_n] + \mathbb{E}[\mathbf{z}_n] \mathbb{E}[\mathbf{z}_n]^{\top}$$

In the M step we maximize w.r.t. \mathbf{W} and σ^2 :

$$\mathbf{W}_{\text{new}} = \left[\sum_{n=1}^{m} (\mathbf{x}_n - \overline{\mathbf{x}}) \mathbb{E}[\mathbf{z}_n]^{\top} \right] \left[\sum_{n=1}^{m} \mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}] \right]^{-1}$$

$$\sigma_{\text{new}}^2 = \frac{1}{md} \sum_{n=1}^{m} \{ \|\mathbf{x}_n - \overline{\mathbf{x}}\|^2 - 2\mathbb{E}[\mathbf{z}_n]^{\top} \mathbf{W}_{\text{new}}^{\top} (\mathbf{x}_n - \overline{\mathbf{x}}) + \text{Tr} \left(\mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}] \mathbf{W}_{\text{new}}^{\top} \mathbf{W}_{\text{new}} \right)$$

- Benefit of the iterative EM algorithm for PCA: computational efficiency for large-scale applications
- \bullet PCA: $O(d^3)$ for an eigendecomposition or $O(qd^2)$ if we need the first q eigenvectors
- ullet However, we need $O(md^2)$ to calculate the covariance matrix.
- In case of EM algorithm we need only O(mdq) steps which is better than $O(md^2)$ for $d\gg q$
- We can do EM incrementally
- Probabilistic PCA can deal with missing values by marginalizing over the distribution over unobserved variables

Burnaev, Bayesian ML

Effective number of parameters

- Probabilistic PCA: visualization of 100 data points.
- Left: the posterior mean projections of the data points on the principal subspace.
- \bullet Right: is obtained by first randomly omitting 30% of the variable values and then using EM to handle the missing values

- Mullback-Leibler divergence
- 2 EM algorithm
- 3 Other models
- Principal Component Analysis
- Probabilistic PCA
- 6 Bayesian PCA

Burnaev, Bayesian ML

- How to select q?
- ullet We need to marginalize out the model parameters $oldsymbol{\mu}, \mathbf{W}$ and σ^2
- Here we consider a simpler approach: evidence approximation
- ullet lpha governs which latent dimensions should be pruned

PCA Model Selection

 We use ARD prior (Automatic Relevance Determination) that allows surplus dimensions in the principal subspace to be pruned out of the model

$$p(\mathbf{W}|\boldsymbol{\alpha}) = \prod_{i=1}^{q} \left(\frac{\alpha_i}{2\pi}\right)^{d/2} \exp\left\{-\frac{1}{2}\alpha_i \mathbf{w}_i^{\top} \mathbf{w}_i\right\}$$

 \bullet The values of α_i are re-estimated during training by maximizing the log marginal likelihood given by

$$p(\mathbf{X}_m | \boldsymbol{\alpha}, \boldsymbol{\mu}, \sigma^2) = \int p(\mathbf{X}_m | \mathbf{W}, \boldsymbol{\mu}, \sigma^2) p(\mathbf{W} | \boldsymbol{\alpha}) d\mathbf{W}$$

PCA Model Selection

Since the integral is not tractable, we use the Laplace approximation and an iterative estimation algorithm:

- Initialize α_i
- Apply EM-algorithm to estimate W and σ^2 . The only change is to the M-step equation for W

$$\mathbf{W}_{\text{new}} = \left[\sum_{n=1}^{m} (\mathbf{x}_n - \overline{\mathbf{x}}) \mathbb{E}[\mathbf{z}_n]^{\top} \right] \left[\sum_{n=1}^{m} \mathbb{E}[\mathbf{z}_n \mathbf{z}_n^{\top}] + \sigma^2 \boldsymbol{\alpha} \right]^{-1},$$

where $\alpha = \operatorname{diag}(\alpha_i)$. The value of μ is given by the sample mean, as before

— Re-estimate α_i maximizing $p(\mathbf{X}_m | \boldsymbol{\alpha}, \boldsymbol{\mu}, \sigma^2)$:

$$\alpha_i^{\text{new}} = \frac{d}{\mathbf{w}_i^{\top} \mathbf{w}_i}$$

— Usually we start from some $q \leq d-1$. If some α_i go to infinity we can delete the corresponding dimensions

EM can

- fill in missing data
- reveal data structure (manifolds, clusters)
- find hidden information in training data
- ullet handle unknown factors caused by our choice of ullet, e.g. in reinforcement learning
- be used to construct more flexible models of data with better predictive abilities
- used for large datasets, as training time is approximately the same as for analogous models without latent variables

Burnaev, Bayesian ML