

Jeśli napięcie U_1 i moc P_1 są miarami intensywności tego samego sygnału (oraz analogicznie - U_2 i P_2) to $K_p[dB]=K_u[dB]$).

 $P[dBm] = 10 \lg P[mW]$ $U[dB\mu V] = 20 \lg U[\mu V]$

 $\frac{\text{Nie pewność myniku pomieru}}{\delta[dB]} = 10 \lg \frac{W_0}{W_u} = 10 \lg(1+\delta)$ Dla mocy, energii... $\frac{\delta[dB] \approx \delta[\%] \frac{1}{23}}{\log \frac{W_0}{W_u}} = 20 \lg(1+\delta)$ Dla napięcia, prądu, natężenia pola... $\delta[dB] \approx \delta[\%] \frac{1}{11,5}$

wybrane wartości napięć, mocy, poziomów:

(dla $Z_o = R = 50 \Omega$)

Р		U	P _{dBm} [dBm]	U _{dBm} [dBm]	U _{dBμ} ν [dBμV]
1 r	nW	224 mV	0	0	107
2 r	nW	316 mV	3	3	110
4 r	nW	448 mV	6	6	113
5 r	nW	500 mV	7	7	114
10 r	nW	707 mV	10	10	117
20 r	nW	1 V	13	13	120
10	μW	22.4 mV	-20	-20	87
100	nW	2.24 mV	-40	-40	67
20	nW	1 mV	-47	-47	60
20	fW	1 μV	-107	-107	0

Rozwiążmy zadanie (1): Proszę obliczyć wartość skuteczną nap $\dot{z}e~\omega_b=2~\omega_a;~\omega_c$ Zestaw $\bf A$: B, C, F, G Zestaw $\bf B$: H, K, M Zestaw $\bf C$: P Zestaw $\bf D$: L, Ś, T, W

		U_a	U _b	U _c
	zestaw danych A	4 [mV]	2 [mV]	3 [mV]
	zestaw danych B	5 [mV]	4 [mV]	3 [mV]
, z	zestaw danych C	5 [mV]	4 [mV]	8 [mV]
	zestaw danych D	2 [mV]	5 [mV]	3 [mV]

1	Zadanie 21
C	Rozwiążmy zadanie (2):
	Wartość skuteczna napięcia na oporniku o rezystancji 50 Ω wynosi:
	A: 200 [μV] B: 4 [mV] C: 0,5 [mV] (D: 2 [mV])
	Proszę obliczyć:
_	• poziom sygnału 6.6 [dBμV]
	 poziom sygnału τ. Υ. Δ [dBm] moc wydzielaną w oporniku ឱ Ω [nW.]
	Gdyby poziom sygnału został zwiększony o 12 [dB] napięcie wyniosłoby [mV], a moc/12 6 [nW]
	1 = 2001
	INCL = 2 mV
	7 3
	u dbuv = 120+ 20 19(2-10) 266 dBUV
	U[dBm]= U dBuV -107= 66-107 [dBm]=-4/dBm
	$0 - U_{sk}^{2} - 4 \cdot 10^{-6} MV^{2} - 2011$
	TOD.
	U2 = Ku[dB] => U1 = (1.10 \ 20 = 2mv · 10 \ 20 \ 736 mv= 8
	10 10
	P2-10 KP[dB] => P2 = M.10 KP[dB) = 80nW.10 AD AD R1268 NW
	P 10 10 => P2 = M. 10 10 = 80 nW · 10 10 0 0 0 1268 nW
)	jesti zwicksanny o 12 olb to: 3+3+3+3(dD)
	ORAZE wzrost o 3dB to dwwkrotmy wzrost mocy
10 4 5	
TMA	
	+ T + V + + + + + + + + + + + + + + + + + + +

Proband=10. Lop 5 R 7 dBm	
Zadanie 4.	
Rozwiążmy zadanie (4): Sygnał składa się z dwóch sinusoid o różnych częstotliwościach, poziom pierwszej składowej wynosi -32 dBm -40 dBm -43 dBm -50 dBm a moc drugiej jest 16 20 10 40 razy mniejsza niż pierwszej. Proszę podać bezwzględny	
pierwszej $\frac{12.7}{1.2}$ i drugiej $\frac{1.4.0}{1.0}$ [d.Bm] $\frac{1}{1.5.00}$ pierwszej $\frac{1.2.7}{1.2}$ i drugiej $\frac{1.4.0}{1.5.00}$ [d.Bm] $\frac{1}{1.5.00}$ pierwszej $\frac{1.2.7}{1.2}$ i drugiej $\frac{1.4.0}{1.5.00}$ [d.Bm] $\frac{1}{1.5.00}$ pierwszej $\frac{1.2.7}{1.2}$ i drugiej $\frac{1.4.0}{1.5.00}$ [d.Bm] $\frac{1}{1.5.00}$ pierwszej $\frac{1.2.7}{1.5.00}$ i drugiej $\frac{1.4.0}{1.5.00}$ [d.Bm] $\frac{1}{1.5.00}$ pierwszej $\frac{1.2.7}{1.5.00}$ pierwszej $\frac{1.2.7}{1.5.00}$ pierwszej $\frac{1.2.7}{1.5.00}$ pierwszej $\frac{1.2.7}{1.5.00}$ pierwszej $\frac{1.2.7}{1.5.00}$ pierwszej $\frac{1.2.7}{1.5.00}$ pierwszej $\frac{1.2.0}{1.5.00}$ pierwszej $\frac{1.2.000}{1.5.00}$ pierwszej	100Bm
P U [dBm] [dBm] [dBμV] 1 mW 224 mV 0 0 107 2 mW 316 mV 3 3 110 4 mW 448 mV 6 6 113 5 mW 500 mV 7 -/17 114 10 mW 707 mV 10 10 117 20 mW 1 V 13 13 120 10 μW 22.4 mV -20 -20 87 100 nW 2.24 mV -40 -40 67 20 nW 1 mV -47 -47 60	-53d b n
20 fW 1 μV -107 -107 0 Cadanic 5, jak μγλοσί nam 20 mato, to ya minus Rozwiążmy zadanie (5): Wzorcowy woltomierz wskazał 10,24 mV, a	ie ,
wynik pomiaru naszym woltomierzem to 10 mV. Proszę podać wartości błędu pomiaru: $ -2,34 [\%] $ $ -0,206. [dB] $ (uwaga: znak jest bardzo ważny) $ \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{5}$	70