Formularium Digital Signal Processing

• f(t) is periodiek met periode T

Definitie

$$f(t) = \sum_{n=0}^{\infty} \{ a_n \cdot \cos(n \cdot \omega_0 \cdot t) + b_n \cdot \sin(n \cdot \omega_0 \cdot t) \}$$

Coëfficiënten

$$a_0 = \frac{1}{T} \cdot \int_{-T/2}^{T/2} f(\tau) d\tau$$

$$a_n = \frac{2}{T} \cdot \int_{-T/2}^{T/2} f(\tau) \cdot \cos(n \cdot \omega_0 \cdot \tau) \cdot d\tau$$
 met n = 1,2,3...

$$b_n = \frac{2}{T} \cdot \int_{-T/2}^{T/2} f(\tau) \cdot \sin(n \cdot \omega_0 \cdot \tau) \cdot d\tau$$
 met n = 1,2,3...

Convolutie

$$y[n] = x[n] * h[n]$$
$$= \sum_{k=-\infty}^{\infty} x[n-k].h[k]$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau) . h(t - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} h(\tau) . x(t - \tau) d\tau$$

• Fourier reeksontwikkeling

x(t) is periodiek met een pulsatie ω_0

$$X[n] = \frac{1}{T} \cdot \int_0^T x(t) \cdot e^{-j \cdot n \cdot \omega_0 \cdot t} \cdot dt$$

$$x(t) = \sum_{n=-\infty}^{\infty} X[n]. e^{+j.n.\omega_0.t}$$

• Fouriertransformatie

$$X(\omega) = \int_{-\infty}^{\infty} x(t). e^{-j.\omega.t}.dt$$

$$x(t) = \frac{1}{2.\pi} \cdot \int_{-\infty}^{\infty} X(\omega) \cdot e^{+j.\omega \cdot t} \cdot d\omega$$

• DTFT

$$X(e^{j.\omega}) = \sum_{n=-\infty}^{\infty} x[n].e^{-j.\omega.n}$$

• IDTFT

$$x[n] = \frac{1}{2.\pi} \int_{-\pi}^{+\pi} X(e^{j.\omega}).e^{+j.\omega.n}.d\omega$$

• Fouriertabellen

Table 3.1: Symmetry relations of the discrete-time Fourier transform of a complex sequence.

Sequence	Discrete-Time Fourier Transform	
x[n]	$X(e^{j\omega})$	
x[-n]	$X(e^{-j\omega})$	
$x^*[-n]$	$X^*(e^{j\omega})$	
$\text{Re}\{x[n]\}$	$X_{\rm cs}(e^{j\omega}) = \frac{1}{2} \{X(e^{j\omega}) + X^*(e^{-j\omega})\}$	
$j\operatorname{Im}\{x[n]\}$	$X_{ca}(e^{j\omega}) = \frac{1}{2} \{X(e^{j\omega}) - X^*(e^{-j\omega})\}$	
$x_{cs}[n]$	$X_{re}(e^{j\omega})$	
$x_{ca}[n]$	$jX_{\mathrm{im}}(e^{j\omega})$	

Note: $X_{cs}(e^{j\omega})$ and $X_{ca}(e^{j\omega})$ are the conjugate-symmetric and conjugate-antisymmetric parts of $X(e^{j\omega})$, respectively. Likewise, $x_{cs}[n]$ and $x_{ca}[n]$ are the conjugate-symmetric and conjugate-antisymmetric parts of x[n], respectively.

Table 3.2: Symmetry relations of the discrete-time Fourier transform of a real sequence.

Sequence	Discrete-Time Fourier Transform	
x[n]	$X(e^{j\omega}) = X_{\text{re}}(e^{j\omega}) + jX_{\text{im}}(e^{j\omega})$	
$x_{\text{ev}}[n]$	$X_{\rm re}(e^{j\omega})$	
$x_{od}[n]$	$jX_{\rm im}(e^{j\omega})$	
	$X(e^{j\omega}) = X^*(e^{-j\omega})$ $X_{re}(e^{j\omega}) = X_{re}(e^{-j\omega})$	
Symmetry relations	$X_{\rm im}(e^{j\omega}) = -X_{\rm im}(e^{-j\omega})$	
	$ X(e^{j\omega}) = X(e^{-j\omega}) $	
	$\arg\{X(e^{j\omega})\} = -\arg\{X(e^{-j\omega})\}$	

Note: $x_{ev}[n]$ and $x_{od}[n]$ denote the even and odd parts of x[n], respectively.

Table 3.3: Commonly used discrete-time Fourier transform pairs.

Sequence	Discrete-Time Fourier Transform	
$\delta[n]$	1	
$1, \ (-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
$\mu[n]$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$	
$e^{j\omega_o n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_o + 2\pi k)$	
$\alpha^n \mu[n], (\alpha < 1)$	$\frac{1}{1-\alpha e^{-j\omega}}$	
$(n+1)\alpha^n\mu[n],\ (\alpha <1)$	$\frac{1}{(1-\alpha e^{-j\omega})^2}$	
$h_{LP}[n] = \frac{\sin \omega_c n}{\pi n}, \ (-\infty < n < \infty)$	$H_{LP}(e^{j\omega}) = \begin{cases} 1, & 0 \le \omega \le \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$	

Table 3.4: Discrete-time Fourier transform theorems.

Theorem	Sequence	Discrete-Time Fourier Transform	
	g[n]	$G(e^{j\omega})$	
	h[n]	$H(e^{j\omega})$	
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$	
Time-reversal	g[-n]	$G(e^{-j\omega})$	
Time-shifting	$g[n-n_o]$	$e^{-j\omega n_o}G(e^{j\omega})$	
Frequency-shifting	$e^{j\omega_o n}g[n]$	$G\left(e^{j\left(\omega-\omega_{o}\right)}\right)$	
Differentiation-		$dG(e^{j\omega})$	
in-frequency	ng[n]	$j\frac{dG(e^{j\omega})}{d\omega}$	
Convolution	$g[n] \circledast h[n]$	$G(e^{j\omega})H(e^{j\omega})$	
Modulation	g[n]h[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$	
Parseval's Relation	$\sum_{n=-\infty}^{\infty} g[n]h^*$	$[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^*(e^{j\omega}) d\omega$	

• DFT tabellen

Table 3.5: General properties of the DFT.

Type of Property	Length-N Sequence	N-point DFT
	g[n] h[n]	G[k] $H[k]$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G[k] + \beta H[k]$
Circular time-shifting	$g[\langle n-n_o\rangle_N]$	$W_N^{kn_o}G[k]$
Circular frequency-shifting	$W_N^{-k_on}g[n]$	$G[\langle k-k_o\rangle_N]$
Duality	G[n]	$Ng[\langle -k \rangle_N]$
N-point circular convolution	$\sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N]$	G[k]H[k]
Modulation	g[n]h[n]	$\frac{1}{N} \sum_{m=0}^{N-1} G[m] H[\langle k-m \rangle_N]$
Parseval's relation	$\sum_{n=0}^{N-1} x[n] ^2 =$	$= \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$

Table 3.6: Symmetry properties of the DFT of a complex sequence.

Length-N Sequence	N-point DFT	
x[n]	X[k]	
$x^*[n]$	$X^*[\langle -k \rangle_N]$	
$x^*[\langle -n \rangle_N]$	$X^*[k]$	
$Re\{x[n]\}$	$X_{\text{pcs}}[k] = \frac{1}{2} \{ X[\langle k \rangle_N] + X^*[\langle -k \rangle_N] \}$	
$j \operatorname{Im}\{x[n]\}$	$X_{\text{pca}}[k] = \frac{1}{2} \{ X[\langle k \rangle_N] - X^*[\langle -k \rangle_N] \}$	
$x_{pcs}[n]$	$Re\{X[k]\}$	
$x_{pca}[n]$	$j \operatorname{Im}\{X[k]\}$	

Note: $x_{pcs}[n]$ and $x_{pca}[n]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of x[n], respectively. Likewise, $X_{pcs}[k]$ and $X_{pca}[k]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of X[k], respectively.

Table 3.7: Symmetry properties of the DFT of a real sequence.

Length-N Sequence	N-point DFT	
x[n]	$X[k] = \text{Re}\{X[k]\} + j \text{ Im}\{X[k]\}$	
$x_{pe}[n]$	$Re\{X[k]\}$	
$x_{po}[n]$	j Im{X[k]}	
	$X[k] = X^*[\langle -k \rangle_N]$	
	$\operatorname{Re} X[k] = \operatorname{Re} X[\langle -k \rangle_N]$	
Symmetry relations	$\operatorname{Im} X[k] = -\operatorname{Im} X[\langle -k \rangle_N]$	
	$ X[k] = X[\langle -k \rangle_N] $	
	$\arg X[k] = -\arg X[\langle -k \rangle_N]$	

Note: $x_{pe}[n]$ and $x_{po}[n]$ are the periodic even and periodic odd parts of x[n], respectively.

Table 5.1: Symmetry properties of the DFT of a complex sequence.

Length-N Sequence	N-point DFT	
$x[n] = x_{re}[n] + jx_{im}[n]$	$X[k] = X_{\text{re}}[k] + jX_{\text{im}}[k]$	
x*[n]	$X^*[\langle -k \rangle_N]$	
$x^*[\langle -n \rangle_N]$	$X^*[k]$	
$x_{re}[n]$	$X_{cs}[k] = \frac{1}{2} \{X[k] + X^*[(-k)_N]\}$	
jx_{im}	$X_{ca}[k] = \frac{1}{2} \{X[k] - X^*[\langle -k \rangle_N]$	
$x_{cs}[n]$	$X_{re}[k]$	
$x_{ca}[n]$	$jX_{im}[k]$	

Note: $x_{cs}[n]$ and $x_{ca}[n]$ are the circular conjugate-symmetric and circular conjugate-antisymmetric parts of x[n], respectively. Likewise, $X_{cs}[k]$ and $X_{ca}[k]$ are the circular conjugate-symmetric and circular conjugate-antisymmetric parts of X[k], respectively.

Table 5.2: Symmetry properties of the DFT of a length-N real sequence.

Length-N Sequence	N-point DFT	
$x[n] = x_{\text{ev}}[n] + x_{\text{od}}[n]$	$X[k] = X_{\rm re}[k] + jX_{\rm im}[k]$	
$x_{\text{ev}}[n]$	$X_{re}[k]$	
$x_{\text{od}}[n]$	$jX_{\text{im}}[k]$	
	$X[k] = X^*[\langle -k \rangle_N]$	
	$X_{re}[k] = X_{re}[\langle -k \rangle_N]$	
Symmetry relations	$X_{\rm im}[k] = -X_{\rm im}[\langle -k \rangle_N]$	
	$ X[k] = X[\langle -k \rangle_N] $	
	$\arg X[k] = -\arg X[\langle -k \rangle_N]$	

Note: $x_{ev}[n]$ and $x_{od}[n]$ are the circular even and circular odd parts of x[n], respectively.

Table 5.3: DFT Theorems.

Theorem	Length-N Sequence	N-point DFT
	g[n] h[n]	G[k] $H[k]$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G[k] + \beta H[k]$
Circular time-shifting	$g[\langle n-n_o\rangle_N]$	$W_N^{-kn_o}G[k]$
Circular frequency-shifting	$W_N^{-k_o}g[n]$	$G[\langle k-k_o\rangle_N]$
Duality	G[n]	$Ng[\langle -k \rangle_N]$
N-point circular convolution	$\sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N]$	G[k]H[k]
Modulation	g[n]h[n]	$\frac{1}{N} \sum_{m=0}^{N-1} G[m] H[\langle k-m \rangle_N]$
Parseval's relation	$\sum_{n=0}^{N-1} g[n] ^2 =$	$= \frac{1}{N} \sum_{k=0}^{N-1} G[k] ^2$

• DFT: x[n] is periodiek met periode N

$$X[k] = \sum_{n=0}^{N-1} x[n]. e^{-\frac{j.2.\pi.k.n}{N}}$$

• IDFT

$$x[n] = \frac{1}{N} \cdot \sum_{k=0}^{N-1} X[k] \cdot e^{+\frac{j \cdot 2 \cdot \pi \cdot k \cdot n}{N}}$$

• Circulaire convolutie

$$\begin{split} y_c[n] &= g[n] \bigotimes h[n] \\ &= \sum_{k=0}^{N-1} g[k]. \, h[< n-k>_N] \\ &\quad \text{Als: } 0 \leq n-k: \\ &\quad h[< n-k>_N] = h[n-k] \\ &\quad \text{Als: } n-k < 0: \\ &\quad h[< n-k>_N] = h[N+n-k] \end{split}$$

• Z-getransformeerde

$$X(\rho, e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]. \rho^{-n}. e^{-j.\omega.n}$$

Stel
$$z = \rho . e^{+j.\omega}$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]. z^{-n}$$

Table 3.8: Some commonly used z-transform pairs.

Sequence	z-Transform	ROC
$\delta[n]$	1	All values of z
$\mu[n]$	$\frac{1}{1-z^{-1}}$	z > 1
$\alpha^n \mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$(r^n \cos \omega_o n)\mu[n]$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
$(r^n \sin \omega_o n) \mu[n]$	$\frac{(r\sin\omega_o)z^{-1}}{1 - (2r\cos\omega_o)z^{-1} + r^2z^{-2}}$	z > r

Table 6.1: Some commonly used z-transform pairs.

Sequence	z-Transform	ROC
$\delta[n]$	1	All values of z
$\mu[n]$	$\frac{1}{1-z^{-1}}$	z > 1
$\alpha^n \mu[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$n \alpha^n \mu[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$(n+1)\alpha^n\mu[n]$	$\frac{1}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$(r^n \cos \omega_o n)\mu[n]$	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
$(r^n \sin \omega_o n) \mu[n]$	$\frac{(r \sin \omega_0) z^{-1}}{1 - (2r \cos \omega_0) z^{-1} + r^2 z^{-2}}$	z > r