

RIYA Week 1 Presentation

Review and Exploration of MATLAB Code

Jacob Thomas Sony
IIT Bombay

Objective

 To annotate, review and explore the MATLAB Code used to analyse the forcedeflection behavior and other characteristics of the 2-spring stack

Tasks accomplished

- Refactored and simplified sections of code for better readability
- Improved graph quality by adding labels and title
- Created a crude GUI for visualizing the results better
- Altered parameters to see different results

Annotated and simplified code

```
Editor - /Users/jacobsony/Documents/IITB/RIYA/RIYA project/Code/stack_equations_solver_mm_2spring
  stack_equations_solver_mm_2springs_annotated.m
         %% Annotated and simplified version of the MATLAB Code used to analyse the 2-spring stack
        % The code below is used to solve the 2-spring stack non-linear equations
 3
         % in order to obtain the force-deflection behaviour and potential energy
        % curves of the 2-spring stack
 5
 6
         clear all;
         close all;
         clc;
         Colors = lines(6);
10
11
         % Parameters - Material Properties and Spring Geometry
12
         E = 200*10^9/1e6; % N/mm^2
13
         a = 34.5/2;
                          % outer diameter, mm
14
                     % inner diameter, mm
        b = 22.4/2;
15
16
        t = 0.5;
                           % thickness, mm
17
18
         % h/t ratios of Spring 1
        ht1_list = 1.6;
19
        %ht1_list =1.69;
         %ht1_list = 1.18:.01:1.41;
21
22
         %ht1_list = 1.30:.04:2.2;
23
        % h/t ratios of Spring 2
24
        ht2_list = 2.1;
25
26
         %ht2_list =1.75;
         %ht2_list = 1.19:.01:1.41;
27
         %ht2_list = 1.28:.04:2.2;
28
29
         dx = .04; % step size [mm] - Smalleset variation in delta_st
30
         closeness_tolerance = .1475; % Used in algorithm for detecting snap-through evenets
31
         direction = 1; % Forward or reverse sweep (1 or -1);
32
```

Improved visualization - 1

Case 1:
$$\frac{h_1}{t} = \frac{h_2}{t} = 1.41$$

Improved visualization - 2

Case 2:
$$\frac{h_1}{t} = 1.41, \frac{h_2}{t} = 1.75$$

Improved visualization - 3

Case 3:
$$\frac{h_1}{t} = 1.6, \frac{h_2}{t} = 2.1$$

Scope for Future work

- Abstract sections of code using functions
- Rename some of the variables for better personal interpretability
- Possible improvement in code efficiency preallocate arrays beforehand, etc
- Improve the graphical interface / windows for seeing the graphs better
- Incorporate an animation that shows the compression of the spring-stack