

A Chalmers University of Technology Master's thesis template for LATEX

A Subtitle that can be Very Much Longer if Necessary

Master's thesis in Master Programme Name

MAGNUS GUSTAVER

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY

CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2023 www.chalmers.se

Master's thesis 2023

An Informative Headline describing the Content of the Report

A Subtitle that can be Very Much Longer if Necessary

NAME FAMILYNAME

Department of Some Subject or Technology

Division of Division name

Name of research group (if applicable)

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2023

An Informative Headline describing the Content of the Report A Subtitle that can be Very Much Longer if Necessary NAME FAMILYNAME

© NAME FAMILYNAME, 2023.

Supervisor: Name, Company or Department

Examiner: Name, Department

Master's Thesis 2023 Department of Some Subject or Technology Division of Division name Name of research group (if applicable) Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000

Cover: Wind visualization constructed in Matlab showing a surface of constant wind speed along with streamlines of the flow.

Typeset in I⁴TEX Printed by Chalmers Reproservice Gothenburg, Sweden 2023 An Informative Headline describing the Content of the Report A Subtitle that can be Very Much Longer if Necessary NAME FAMILYNAME Department of Some Subject or Technology Chalmers University of Technology

Abstract

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Keywords: lorem, ipsum, dolor, sit, amet, consectetur, adipisicing, elit, sed, do.

Acknowledgements

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Name Familyname, Gothenburg, Month Year

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in alphabetical order:

BES Battery Energy Storage
DER Distributed Energy Resource

MILP Mixed-Integer Linear Programming

MG Microgrid PV Photovoltaic

RES Renewable-based Energy Sources

Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been used throughout this thesis.

Indices

i,j Indices for distribution network bus	ses
--	-----

t Index for time step

Sets

\mathcal{D}	Set of	distribution	network	buses

 \mathcal{D}_s Set of substation buses

 \mathcal{H} Set of time steps (simulation/scheduling horizon)

 \mathcal{N} Set of buses

Parameters

γ	Penalty coefficient
Δt	Time discretization step (time interval)
η_j^{ch}	Charging efficiency of BES
η_j^{dis}	Discharging efficiency of BES

 $egin{array}{ll} egin{array}{ll} egin{array}{ll} A djacency matrix \\ N & Number of iterations \end{array}$

 $P_{j,t}^L$ Active power of load demand

 $P_{j,t}^{PV}$ Active power from solar generation

Variables

p_{j}	Active power injection at bus j
p_{ji}	Active power flow from bus j to bus i
v_i	Square of voltage magnitude at bus i

Contents

Li	ist of Acronyms	ix
N	omenclature	xi
Li	ist of Figures	xv
Li	ist of Tables	xvii
1	Introduction 1.1 Section levels	. 1 . 1 . 1
2	Transmission Concept	3
3	Our Method	5
4	PPM	9
5	On-Off Key (OOK)	13
6	In General	15
7	Reed-Solomon Codes	17
8	Theory 8.1 Figure 8.2 Equation 8.3 Table 8.4 Chemical structure 8.5 List 8.6 Source code listing 8.7 To-do note	. 19 . 19 . 20 . 20
9	Methods	21

Contents

10 Results	23
11 Conclusion	25
Bibliography	27
A Appendix 1	I

List of Figures

3.1	Table	5
3.2	Number of Photons Vs Number of Permutation	6
3.3	Number of Photons Vs Number of Bits per Symbol	6
3.4	Number of Photons Vs Number of Bits per Photon	6
3.5	Number of Photons Vs Number of Bits per Time Slot	7
4.1	Table	9
4.2	Number of Photons Vs Number of Permutation	10
4.3	Number of Photons Vs Number of Bits per Symbol	10
4.4	Number of Photons Vs Number of Bits per Photon	10
4.5	Number of Photons Vs Number of Bits per Time Slot	11
5.1	Table	13
5.2	Number of Photons Vs Number of Permutation	13
5.3	Number of Photons Vs Number of Bits per Symbol	14
5.4	Number of Photons Vs Number of Bits per Photon	14
5.5	Number of Photons Vs Number of Bits per Time Slot	14
8.1	Surface and contour plots showing the two dimensional function $z(x,y) =$	
	$\sin(x+y)\cos(2x)$	19

List of Tables

8.1	Values of $f($	(t) for $t =$	$0, 1, \dots 5.$								19
-----	----------------	---------------	------------------	--	--	--	--	--	--	--	----

Introduction

This chapter presents the section levels that can be used in the template.

1.1 Section levels

The following table presents an overview of the section levels that are used in this document. The number of levels that are numbered and included in the table of contents is set in the settings file Settings.tex. The levels are shown in Section 1.2.

Name	Command
Chapter	\chapter{Chapter name}
Section	$\scalebox{section} \{Section name\}$
Subsection	\slash subsection $\{Subsection\ name\}$
Subsubsection	$\sl Subsubsection \{Subsubsection\ name\}$
Paragraph	\paragraph{Paragraph name}
Subparagraph	$\paragraph{Subparagraph\ name}$

1.2 Section

1.2.1 Subsection

1.2.1.1 Subsubsection

1.2.1.1.1 Paragraph

1.2.1.1.1.1 Subparagraph

Transmission Concept

A super block is one symbol, which contains a number of blocks. Each block contains a number of time slots. For each super block length in blocks, we calculate 1. Number of ways to organize the blocks in a super block

n!

2. Number of Bits / Symbol

$$log_2(n!)$$

3. Number of Bits / Photon

$$\frac{log_2(n!)}{n}$$

4. Number of Bits / Time Slot

$$\frac{log_2(n!)}{n} \times \frac{n}{T}$$

For example, we have [1,2,3,4], there are 4! = 24 permutation of ways to organize the blocks to generate different super blocks representing the corresponding symbols as follow:

$$\begin{array}{l} [1,2,3,4] \rightarrow A, [1,2,4,3] \rightarrow B, [1,3,2,4] \rightarrow C, [1,3,4,2] \rightarrow D, [1,4,2,3] \rightarrow E, [1,4,3,2] \rightarrow F \\ [2,1,3,4] \rightarrow G, [2,1,4,3] \rightarrow H, [2,3,1,4] \rightarrow I, [2,3,4,1] \rightarrow J, [2,4,1,3] \rightarrow K, [2,4,3,1] \rightarrow L \\ [3,1,2,4] \rightarrow M, [3,1,4,2] \rightarrow N, [3,2,1,4] \rightarrow O, [3,2,4,1] \rightarrow P, [3,4,1,2] \rightarrow Q, [3,4,2,1] \rightarrow R \\ [4,1,2,3] \rightarrow S, [4,1,3,2] \rightarrow T, [4,2,1,3] \rightarrow U, [4,2,3,1] \rightarrow V, [4,3,1,2] \rightarrow W, [4,3,2,1] \rightarrow X \\ \end{array}$$
 The information content of the super block is

$$log_2(4!) = 4.6$$
 bits/symbol

For each photon, it contains

1.15 bits/photon

For each time slot, it has

0.33 bits/timeslot

Our Method

We define a block as an integral number of time bins (or time slots, or other encoding sources that are orthogonal, i.e., that can be perfectly discriminated).

Our method uses 4 photons in 14 time slots It means that our method has:

- 1. 4! = 24 ways to order them
- 2. 4.6 bits/symbol
- 3. 1.15 bits/photon
- 4. 0.33 bits / time slot

	Number of Photon	Number of Permutation	Number of Bits per Symbol	Number of Bits per Photon	Number of Bits per Time Slots
0	1.000000	1.000000	0.000000	0.000000	0.000000
1	2.000000	2.000000	1.000000	0.500000	0.000000
2	3.000000	6.000000	2.584963	0.861654	0.000000
3	4.000000	24.000000	4.584963	1.146241	0.000000
4	5.000000	120.000000	6.906891	1.381378	0.000000
5	6.000000	720.000000	9.491853	1.581976	0.000000
6	7.000000	5040.000000	12.299208	1.757030	0.000000
7	8.000000	40320.000000	15.299208	1.912401	0.000000
8	9.000000	362880.000000	18.469133	2.052126	0.000000
9	10.000000	3628800.000000	21.791061	2.179106	0.000000
10	11.000000	39916800.000000	25.250493	2.295499	0.000000
11	12.000000	479001600.000000	28.835455	2.402955	0.000000
12	13.000000	6227020800.000000	32.535895	2.502761	0.000000
13	14.000000	87178291200.000000	36.343250	2.595946	2.596000
14	15.000000	1307674368000.000000	40.250140	2.683343	2.683000
15	16.000000	20922789888000.000000	44.250140	2.765634	2.766000
16	17.000000	355687428096000.000000	48.337603	2.843388	2.843000
17	18.000000	6402373705728000.000000	52.507528	2.917085	2.917000
18	19.000000	121645100408832000.000000	56.755456	2.987129	2.987000
19	20.000000	2432902008176640000.000000	61.077384	3.053869	3.054000

Figure 3.1: Table

Figure 3.2: Number of Photons Vs Number of Permutation

Figure 3.3: Number of Photons Vs Number of Bits per Symbol

Figure 3.4: Number of Photons Vs Number of Bits per Photon

Figure 3.5: Number of Photons Vs Number of Bits per Time Slot

PPM

The representation of bits to symbol is as follow:

 $100000 \to A$

 $0100000 \to B$

 $001000 \rightarrow C$

 $000100 \to D$

 $000010 \to E$

 $000001 \to F$

PPM uses 1 photon in 14 time slots

It means that PPM has:

- 1. 14 ways to order them
- 2. 3.8 bits/symbol
- 3. 3.8 bits/photon
- 4. 0.27 bits / time slot

[?]

	Number of Photon	Number of Permutation	Number of Bits per Symbol	Number of Bits per Photon	Number of Bits per Time Slots
0	1.000000	14.000000	3.807355	3.807355	0.000000
1	2.000000	14.000000	3.807355	1.903677	0.000000
2	3.000000	14.000000	3.807355	1.269118	0.000000
3	4.000000	14.000000	3.807355	0.951839	0.000000
4	5.000000	14.000000	3.807355	0.761471	0.000000
5	6.000000	14.000000	3.807355	0.634559	0.000000
6	7.000000	14.000000	3.807355	0.543908	0.000000
7	8.000000	14.000000	3.807355	0.475919	0.000000
8	9.000000	14.000000	3.807355	0.423039	0.000000
9	10.000000	14.000000	3.807355	0.380735	0.000000
10	11.000000	14.000000	3.807355	0.346123	0.000000
11	12.000000	14.000000	3.807355	0.317280	0.000000
12	13.000000	14.000000	3.807355	0.292873	0.000000
13	14.000000	14.000000	3.807355	0.271954	0.272000
14	15.000000	14.000000	3.807355	0.253824	0.254000
15	16.000000	14.000000	3.807355	0.237960	0.238000
16	17.000000	14.000000	3.807355	0.223962	0.224000
17	18.000000	14.000000	3.807355	0.211520	0.212000
18	19.000000	14.000000	3.807355	0.200387	0.200000
19	20.000000	14.000000	3.807355	0.190368	0.190000

Figure 4.1: Table

Figure 4.2: Number of Photons Vs Number of Permutation

Figure 4.3: Number of Photons Vs Number of Bits per Symbol

Figure 4.4: Number of Photons Vs Number of Bits per Photon

Figure 4.5: Number of Photons Vs Number of Bits per Time Slot

5 On-Off Key (OOK)

 OOK uses 7 photons in average in 14 time slots

It means that PPM has:

- 1. $2^{14} = 16,384$ ways to order them
- 2. 14 bits/symbol
- 3. 2 bits/photon
- 4. 1 bits / time slot

	Number of Photon	Number of Permutation	Number of Bits per Symbol	Number of Bits per Photon	Number of Bits per Time Slots
0	1.000000	16384.000000	14.000000	14.000000	0.000000
1	2.000000	16384.000000	14.000000	7.000000	0.000000
2	3.000000	16384.000000	14.000000	4.666667	0.000000
	4.000000	16384.000000	14.000000	3.500000	0.000000
	5.000000	16384.000000	14.000000	2.800000	0.000000
	6.000000	16384.000000	14.000000	2.333333	0.000000
	7.000000	16384.000000	14.000000	2.000000	0.000000
	8.000000	16384.000000	14.000000	1.750000	0.000000
	9.000000	16384.000000	14.000000	1.555556	0.000000
	10.000000	16384.000000	14.000000	1.400000	0.000000
	11.000000	16384.000000	14.000000	1.272727	0.000000
	12.000000	16384.000000	14.000000	1.166667	0.000000
	13.000000	16384.000000	14.000000	1.076923	0.000000
13	14.000000	16384.000000	14.000000	1.000000	1.000000
	15.000000	16384.000000	14.000000	0.933333	0.933000
15	16.000000	16384.000000	14.000000	0.875000	0.875000
	17.000000	16384.000000	14.000000	0.823529	0.824000
	18.000000	16384.000000	14.000000	0.777778	0.778000
	19.000000	16384.000000	14.000000	0.736842	0.737000
19	20.000000	16384.000000	14.000000	0.700000	0.700000

Figure 5.1: Table

Figure 5.2: Number of Photons Vs Number of Permutation

Figure 5.3: Number of Photons Vs Number of Bits per Symbol

Figure 5.4: Number of Photons Vs Number of Bits per Photon

Figure 5.5: Number of Photons Vs Number of Bits per Time Slot

In General

In general, it takes 4 photons in 14 time slots

It means that it has:

- 1. 1,001 ways to order them
- 2. 10 bits/symbol
- 3. 2.5 bits/photon
- 4. 0.71 bits / time slot

Reed-Solomon Codes

The Reed-Solomon (RS) codes are the non-binary codes, they are important for the use in communication systems where errors appear in bursts rather than independent random errors.

RS codes were discovered by Reed and Solomon in 1960. The non-binary BCH block codes have $2^m(\{0,1,2,\ldots,2^m-1\})$ symbols with block length $n=2^m-1$, which can be extended to $n=2^m$ or $m=2^m+1$. RS codes can correct up to e_0 errors within a block of n symbols by using $n-k=n-2e_0=2^m-1-2e_0$ parity symbols.

RS code can achieve the maximum number of error correction by finding the largest possible $d_{min} = 2e_0 + 1$

Theory

In the following sections, examples of a figure, an equation, a table, a chemical structure, a list, a listing and a to-do note are shown.

8.1 Figure

Figure 8.1: Surface and contour plots showing the two dimensional function $z(x,y) = \sin(x+y)\cos(2x)$.

8.2 Equation

$$f(t) = \begin{cases} 1, & t < 1 \\ t^2 & t \ge 1 \end{cases}$$
 (8.1)

8.3 Table

Table 8.1: Values of f(t) for t = 0, 1, ... 5.

\overline{t}	0	1	2	3	4	5
f(t)	1	1	4	9	16	25

8.4 Chemical structure

8.5 List

- 1. The first item
 - (a) Nested item 1
 - (b) Nested item 2
- 2. The second item
- 3. The third item
- 4. ...

8.6 Source code listing

```
% Generate x- and y-nodes
x=linspace(0,1); y=linspace(0,1);

% Calculate z=f(x,y)
for i=1:length(x)
  for j=1:length(y)
   z(i,j)=x(i)+2*y(j);
  end
end
```

8.7 To-do note

The todo package enables to-do notes to be added in the page margin. This can be a very convenient way of making notes in the document during the process of writing. All notes can be hidden by using the option *disable* when loading the package in the settings.

Example of a to-do note.

Methods

Results

Conclusion

Bibliography

- [1] Gustaver, M. (2020) A Chalmers University of Technology Master's thesis template for LATEX. Unpublished.
- [2] Ziemer, R., Tranter, W. H. (2006). Principles of communications: system modulation and noise. John Wiley Sons.

A

Appendix 1

DEPARTMENT OF SOME SUBJECT OR TECHNOLOGY CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden www.chalmers.se

