ETSI TS 155 236 V14.0.0 (2017-04)

Digital cellular telecommunications system (Phase 2+) (GSM); Specification of A8_V MILENAGE Algorithm: An example algorithm for the key generation function A8_V (3GPP TS 55.236 version 14.0.0 Release 14)

Reference RTS/TSGS-0355236ve00 Keywords GSM.SECURITY

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from: http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx

Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2017.
All rights reserved.

DECT[™], **PLUGTESTS**[™], **UMTS**[™] and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**[™] and **LTE**[™] are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the <u>ETSI Drafting Rules</u> (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

Contents

Intell	ectual Property Rights	2
Forev	vord	2
	al verbs terminology	
	vord	
1	Scope	
2	References	
3	Definitions, symbols and abbreviations	
3.1	Definitions	5
3.2 3.3	Symbols	
	Abbreviations	
4 4.1	Introductory information	
4.2	Notation	
4.2.1	Bit/byte ordering	
4.2.2	List of symbols	
4.3	List of variables	
4.4	Algorithm inputs and outputs	
5	The A8_V MILENAGE algorithm	7
6	Test data for A8_V MILENAGE	7
6.1	Introduction	7
6.2	Format	7
6.3	Test Sets	8
Anne	ex A (informative): Change history	12
Histo	rv	13

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document contains an example algorithm which may be used as the VSTK key generation function A8_V as described in TS 43.020 [4]. (It is not mandatory that the particular algorithm specified in this document is used - the A8_V function is operator-specifiable rather than being fully standardised.)

Clause 4 introduces the algorithm and describes the input and output parameters. Clause 5 defines the algorithm. Clause 6 provides test data.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TS 35.206: "3G Security; Specification of the MILENAGE algorithm set: An example algorithm Set for the 3GPP Authentication and Key Generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 2: Algorithm specification".
- [2] 3GPP TS 35.207: "3G Security; Specification of the MILENAGE Algorithm Set: An example algorithm set for the 3GPP authentication and key generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 3: Implementors' test data".
- [3] 3GPP TS 35.208: "3G Security; Specification of the MILENAGE Algorithm Set: An example algorithm set for the 3GPP authentication and key generation functions f1, f1*, f2, f3, f4, f5 and f5*; Document 4: Design conformance test data".
- [4] 3GPP TS 43.020: "Security related network functions".
- [5] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [5], TS 35.206 [1] and TS 43.020 [4], and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [5], TS 35.206 [1] or TS 43.020 [4].

3.2 Symbols

- = The assignment operator.
- || The concatenation of the two operands.
- X[i] The ith bit of the variable **X**. $(\mathbf{X} = \mathbf{X}[0] \parallel \mathbf{X}[1] \parallel \mathbf{X}[2] \parallel \dots)$.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [5], TS 35.206 [1] and TS 43.020 [4], and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [5], TS 35.206 [1] or TS 43.020 [4].

VBS Voice Broadcast Service VGCS Voice Group Call Service

4 Introductory information

4.1 Introduction

For VGCS and VBS ciphering in the GSM system the security function A8_V has been specified. The operation of this function falls completely within the domain of an individual operator, and the function is therefore to be specified by each operator rather than being fully standardized. The algorithm specified in this document is an example that may be used by an operator which does not wish to design its own.

The inputs and outputs of the function A8_V is defined in clause 4.4.

4.2 Notation

4.2.1 Bit/byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on the left hand side and the least significant bit (or byte) on the right hand side. Where a variable is broken down into a number of substrings, the leftmost (most significant) substring is numbered 0, the next most significant is numbered 1, and so on through to the least significant. When a variable, with bit length L, is shown in hexadecimal format, bit 0 is the most significant bit of the leftmost hexadecimal digit, and bit L-1 is the least significant bit of the rightmost hexadecimal digit.

4.2.2 List of symbols

See clause 3.2

4.3 List of variables

For V_Ki, VSTK_RAND and VSTK see TS 43.020 [4]

For all f3-function related variables see TS 35.206 [1]

4.4 Algorithm inputs and outputs

The inputs to the algorithm are given in table 1, the output in table 2 below.

Table 1: Inputs to A8_V

Parameter	Size (bits)	Comment
V_K _i	128	Group key V_K _i [0]V_K _i [127]
VSTK_RAND	36	Random challenge VSTK_RAND[0]VSTK_RAND[35]

Table 2: Outputs from A8_V

Parameter	Size (bits)	Comment
VSTK	128	Cipher key VSTK[0]VSTK[127]

5 The A8_V MILENAGE algorithm

An example algorithm set for UMTS, called MILENAGE (see Note 1), is specified in TS 35.206 [1]. A8_V MILENAGE makes use of MILENAGE.

Specifically, the function f3 from the UMTS MILENAGE is making use of (all input and output names are prefixed by "MIL3G-" to distinguish them clearly from the inputs and outputs of A8_V MILENAGE):

Function	Inputs	Output
f3	MIL3G-K[0]MIL3G-K[127]	MIL3G-CK[0]MIL3G-CK[127]
	MIL3G-RAND[0]MIL3G-RAND[127]	

The A8_V MILENAGE functions are defined as follows:

- Let $(MIL3G-K[0]...MIL3G-K[127]) = (V_K_i[0]...V_K_i[127])$
- Let $(MIL3G-RAND[0]...MIL3G-RAND[127]) = (EXP_RAND[0]...EXP_RAND[127])$

Whereby

EXP_RAND[bits $0,1, \dots 126,127$] = **EXPAND**[bits $0,1, \dots 39$] || **EXPAND**[bits $0,1, \dots 39$] || **EXPAND**[bits $0,1, \dots 39$] || '11111111'

EXPAND [bits 0,1,...39] = '1111' || **VSTK_RAND**[bits 0,1,...35]

- Compute MIL3G-CK from MIL3G-K and MIL3G-RAND, using the MILENAGE function f3
- Set (VSTK[0]...VSTK[127]) = (MIL3G-CK[0]...MIL3G-CK[127])

NOTE 1: MILENAGE uses a 128-bit operator-specific constant **OP**; a value has to be assigned to this constant for MILENAGE to be fully specified.

6 Test data for A8_V MILENAGE

6.1 Introduction

The test data sets presented here have been derived from the MILENAGE test sets in [3].

6.2 Format

The format of each test data set is as follows:

Test Set n	
V_Ki	secret group key
VSTK_RAND	36-bit random challenge
MIL3G-RAND	128-bit expansion of VSTK_RAND according to clause 4
OP	operator-specific MILENAGE constant
OPc	derived from OP and V_Ki — see [1]
MIL3G-CK (VSTK)	MILENAGE 13 output, that equals the Short Term Key for use
WILSG-CK (VSTK)	in VGCS and VBS ciphering

All test data in this tabular format is shown in hexadecimal representation. The first test set is also shown in binary, to show explicitly the relationship between the binary data and the hexadecimal representation.

6.3 Test Sets

Test Set 1 in binary for	rmat						
V_Ki	01000110 0	01011011	01011100	11101000	10110001	10011001	10110100
	10011111 1	10101010	01011111	00001010	00101110	11100010	00111000
	10100110 1	10111100					
VSTK_RAND	00100011 0	01010101	00111100	10111110	1001		
MIL3G-RAND	11110010 0	00110101	01010011	11001011	11101001	11110010	00110101
	01010011 1	11001011	11101001	11110010	00110101	01010011	11001011
	11101001 1	11111111					
OP	11001101 1	11000010	00000010	11010101	00010010	00111110	00100000
	11110110 0	00101011	01101101	01100111	01101010	11000111	00101100
	10110011 0	00011000					
OPc	11001101 0	01100011	11001011	01110001	10010101	01001010	10011111
	01001110 0	01001000	10100101	10011001	01001110	00110111	10100000
	00101011 1	10101111					
MIL3G-CK (VSTK)	11010111 0	01110011	11000111	11111111	11000110	01000000	11001101
	00100100 1	10000001	11110101	00010010	11011100	10111101	01011100
	11000000 1	11110110					

Test Set 1				
V_Ki	465b5ce8	b199b49f	aa5f0a2e	e238a6bc
VSTK_RAND	23553cbe	9		
MIL3G-RAND	f23553cb	e9f23553	cbe9f235	53cbe9ff
OP	cdc202d5	123e20f6	2b6d676a	c72cb318
OPc	cd63cb71	954a9f4e	48a5994e	37a02baf
MIL3G-CK (VSTK)	d773c7ff	c640cd24	81f512dc	bd5cc0f6

Test Set 2				
V_Ki	fec86ba6	eb707ed0	8905757b	1bb44b8f
VSTK_RAND	9f7c8d02	1		
MIL3G-RAND	f9f7c8d0	21f9f7c8	d021f9f7	c8d021ff
OP	dbc59adc	b6f9a0ef	735477b7	fadf8374
OPc	1006020f	0a478bf6	b699f15c	062e42b3
MIL3G-CK (VSTK)	a0b28afe	ca802828	c324eb86	a7b06903

Test Set 3				
V_Ki	9e5944ae	a94b8116	5c82fbf9	f32db751
VSTK_RAND	ce83dbc5	4		
MIL3G-RAND	fce83dbc	54fce83d	bc54fce8	3dbc54ff
OP	223014c5	806694c0	07caleee	f57f004f
OPc	a64a507a	ela2a98b	b88eb421	0135dc87
MIL3G-CK (VSTK)	f2abba4c	9d52cf6b	99b43d2a	799e9470

Test Set 4				
V_Ki	4ab1deb0	5ca6ceb0	51fc98e7	7d026a84
VSTK_RAND	74b0cd60	3		
MIL3G-RAND	f74b0cd6	03f74b0c	d603f74b	0cd603ff
OP	2d16c5cd	1fdf6b22	383584e3	bef2a8d8
OPc	dcf07cbd	51855290	b92a07a9	891e523e
MIL3G-CK (VSTK)	d4500866	a11b5b7d	3d89d485	d25e14da

Test Set 5				
V_Ki	6c38a116	ac280c45	4f59332e	e35c8c4f
VSTK_RAND	ee6466bc	9		
MIL3G-RAND	fee6466b	c9fee646	6bc9fee6	466bc9ff
OP	1ba00a1a	7c6700ac	8c3ff3e9	6ad08725
OPc	3803ef53	63b947c6	aaa225e5	8fae3934
MIL3G-CK (VSTK)	bafd96fb	7c417cce	58597e0f	118b6a02

Test Set 6				
V_Ki	2d609d4d	b0ac5bf0	d2c0de26	7014de0d
VSTK_RAND	194aa756	0		
MIL3G-RAND	f194aa75	60f194aa	7560f194	aa7560ff
OP	460a4838	5427aa39	264aac8e	fc9e73e8
OPc	c35a0ab0	bcbfc925	2caff15f	24efbde0
MIL3G-CK (VSTK)	b4d5f9b7	94d269c5	706ee6e3	1453a426

Test Set 7				
V_Ki	a530a7fe	428fad10	82c45edd	fce13884
VSTK_RAND	3a4c2b32	4		
MIL3G-RAND	f3a4c2b3	24f3a4c2	b324f3a4	c2b324ff
OP	511c6c4e	83e38c89	b1c5d8dd	e62426fa
OPc	27953e49	bc8af6dc	c6e730eb	80286be3
MIL3G-CK (VSTK)	b8b143ae	303bbdd6	8539ee34	a69c530e

Test Set 8				
V_Ki	d9151cf0	4896e258	30bf2e08	267b8360
VSTK_RAND	f761e5e9	3		
MIL3G-RAND	ff761e5e	93ff761e	5e93ff76	1e5e93ff
OP	75fc2233	a44294ee	8e6de25c	4353d26b
OPc	c4c93eff	e8a08138	c203d4c2	7ce4e3d9
MIL3G-CK (VSTK)	6e6aa729	1a54c264	6188e2e0	2002fda5

Test Set 9				
V_Ki	a0e2971b	6822e8d3	54a18cc2	35624ecb
VSTK_RAND	08eff828	b		
MIL3G-RAND	f08eff82	8bf08eff	828bf08e	ff828bff
OP	323792fa	ca21fb4d	5d6f13c1	45a9d2c1
OPc	82a26f22	bba9e948	8f949a10	d98e9cc4
MIL3G-CK (VSTK)	e360f5fe	8a5b1602	5fb8acbf	f3b9cbb2

Test Set 10				
V_Ki	0da6f7ba	86d5eac8	a19cf563	ac58642d
VSTK_RAND	679ac4db	a		
MIL3G-RAND	f679ac4d	baf679ac	4dbaf679	ac4dbaff
OP	4b9a26fa	459e3acb	ff36f401	5de3bdc1
OPc	0db1071f	8767562c	a43a0a64	c41e8d08
MIL3G-CK (VSTK)	805879c0	53864ea5	a8c41c18	95976d41

Test Set 11				
V_Ki	77b45843	c88e58c1	0d202684	515ed430
VSTK_RAND	4c47eb30	7		
MIL3G-RAND	f4c47eb3	07f4c47e	b307f4c4	7eb307ff
OP	bf3286c7	a51409ce	95724d50	3bfe6e70
OPc	d483afae	562409a3	26b5bb0b	20c4d762
MIL3G-CK (VSTK)	74909b16	e577b2d4	cf1ff01a	213cfc54

Test Set 12				
V_Ki	729b1772	9270dd87	ccdf1bfe	29b4e9bb
VSTK_RAND	311c4c92	9		
MIL3G-RAND	f311c4c9	29f311c4	c929f311	c4c929ff
OP	d04c9c35	bd2262fa	810d2924	d036fd13
OPc	228c2f2f	06ac3268	a9e616ee	16db4ba1
MIL3G-CK (VSTK)	b102a313	d2692e01	1b7301c2	ad188adc

Test Set 13				
V_Ki	d32dd23e	89dc6623	54ca12eb	79dd32fa
VSTK_RAND	cf7d0ab1	d		
MIL3G-RAND	fcf7d0ab	1dfcf7d0	abldfcf7	d0ab1dff
OP	fe75905b	9da47d35	6236d031	4e09c32e
OPc	d22a4b41	80a53257	08a5ff70	d9f67ec7
MIL3G-CK (VSTK)	995729ba	d5e7c84d	46d0980a	4729351f

Test Set 14				
V_Ki	af7c65e1	927221de	591187a2	c5987a53
VSTK_RAND	1f0f8578	4		
MIL3G-RAND	f1f0f857	84f1f0f8	5784f1f0	f85784ff
OP	0c7acb8d	95b7d4a3	1c5aca6d	26345a88
OPc	a4cf5c81	55c08a7e	ff418e54	43b98e55
MIL3G-CK (VSTK)	485e7bfd	24492467	420b93ad	3fce8ac2

Test Set 15				
V_Ki	5bd7ecd3	d3127a41	d12539be	d4e7cf71
VSTK_RAND	59b75f14	2		
MIL3G-RAND	f59b75f1	42f59b75	f142f59b	75f142ff
OP	f967f760	38b920a9	cd25e10c	08b49924
OPc	76089d3c	0ff3efdc	6e36721d	4fceb747
MIL3G-CK (VSTK)	1b32d440	99fb51f5	0505149d	a25e7760

Test Set 16				
V_Ki	6cd1c6ce	b1e01e14	f1b82316	a90b7f3d
VSTK_RAND	f69b78f3	0		
MIL3G-RAND	ff69b78f	30ff69b7	8f30ff69	b78f30ff
OP	078bfca9	564659ec	d8851e84	e6c59b48
OPc	a219dc37	f1dc7d66	738b5843	c799f206
MIL3G-CK (VSTK)	c7ada658	f4bf89dc	184b1d31	9df554d9

Test Set 17				
V_Ki	b73a90cb	cf3afb62	2dba83c5	8a8415df
VSTK_RAND	b120f1c1	a		
MIL3G-RAND	fb120f1c	lafb120f	1c1afb12	0f1c1aff
OP	b672047e	003bb952	dca6cb8a	f0e5b779
OPc	df0c6786	8fa25f74	8b7044c6	e7c245b8
MIL3G-CK (VSTK)	ca8cf524	d78c8c55	aa5aba14	22737909

Test Set 18				
V_Ki	51222502	14c33e72	3a5dd523	fc145fc0
VSTK_RAND	81e92b6c	0		
MIL3G-RAND	f81e92b6	c0f81e92	b6c0f81e	92b6c0ff
OP	c9e87632	86b5b9ff	bdf56e12	97d0887b
OPc	981d464c	7c52eb6e	50362349	84ad0bcf
MIL3G-CK (VSTK)	a8d5cdb6	47335bf5	8e2c884d	a5efcdd5

Test Set 19				
V_Ki	90dca4ed	a45b53cf	0f12d7c9	c3bc6a89
VSTK_RAND	9fddc720	9		
MIL3G-RAND	f9fddc72	09f9fddc	7209f9fd	dc7209ff
OP	3ffcfe5b	7b111158	9920d352	8e84e655
OPc	cb9cccc4	b9258e6d	ca476037	9fb82581
MIL3G-CK (VSTK)	c699833a	2c22bf44	b6473390	8a7142c3

Annex A (informative): Change history

Change history									
Date	TSG #	TSG Doc.	CR	Rev	Cat	Subject/Comment	Old	New	
2005-11	SA3#41	-	-	-	-	Draft version presented at SA3#41		0.1.0	
2006-02	SA3#42	-	-	-	-	Inclusion of Test Sets generated by ETSI SAGE	0.1.0	1.0.0	
2006-02						Editorial clean up by MCC to conform to 21.801.	1.0.0	1.0.1	
2006-02						Raised to 1.0.2 to accept changes for presentation to SA #31	1.0.1	1.0.2	
2006-03	-	-	-	-	-	Editorial update to stylesheet and removal of comment	1.0.2	1.0.3	
2006-03	SP-31	SP-060059	-	-	-	Approved at SA #31	1.0.3	6.0.0	
2006-06	SP-32	SP-060378	0001	-	F	Missing bit in MIL3G RAND test set 1 example and correcting used functions	6.0.0	6.1.0	
2007-06	SP-36	-	-	-	-	Update to Rel-7 version (MCC)	6.1.0	7.0.0	
2008-12	SP-42	-	-	-	-	Update to Rel-8 version (MCC)	7.1.0	8.0.0	
2009-12	-	-	-	-	-	Update to Rel-9 version (MCC)	8.0.0	9.0.0	
2011-03	-	-	-	-	-	Update to Rel-10 version (MCC)	9.0.0	10.0.0	
2012-09	-	-	-	-	-	Update to Rel-11 version (MCC)	10.0.0	11.0.0	
2014-09	-	-	-	-	-	Update to Rel-12 version (MCC)	11.0.0	12.0.0	
2016-01	-	-	-	-	-	Update to Rel-13 version (MCC)	12.0.0	13.0.0	
2017-03	SA#75	-	-	-	-	Promotion to Release 14 without technical change	13.0.0	14.0.0	

History

Document history						
V14.0.0	April 2017	Publication				