Cálculo Numérico - IME/UERJ

Gabarito - Lista de Exercícios 2

Série de Taylor e Raízes de funções

- 1. Numa calculadora aproxima-se o valor de e^x , para todo $x \in [-1, 1]$, pelo valor do polinomio de Taylor de grau 3, obtido através da expansão de e^x em série de Taylor em torno do ponto $x_0 = 0$.
 - (a) Qual a aproximação de $e^{0.5}$ fornecida pela calculadora?
 - (b) Utilizando a expressão do erro cometido ao se aproximar a função e^x pela sua expansão em série de Taylor, forneça um limitante superior para o erro cometido no item (a).

Resposta:

(a) Na aproximação de f(x) por um polinômio de Taylor de grau 3, $P_3(x)$, em torno de x_0 , temos:

$$P_3(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3.$$

Como $f^{(i)}(x_0) = e^{x_0}, i = 0, 1, 2, \dots$, então:

$$P_3(x) = e^{x_0} + e^{x_0}(x - x_0) + \frac{e^{x_0}}{2}(x - x_0)^2 + \frac{e^{x_0}}{3!}(x - x_0)^3.$$

Quando x = 0.5 e $x_0 = 0$, temos:

$$P_3(0.5) = e^0 + e^0(0.5 - 0) + \frac{e^0}{2}(0.5 - 0)^2 + \frac{e^0}{3!}(0.5 - 0)^3.$$

Ou seja,

$$P_3(0.5) = 1 + 0.5 + \frac{1}{2}(0.5)^2 + \frac{1}{3!}(0.5)^3.$$

$$P_3(0.5) \approx 1.64583.$$

(b) A expressão do erro cometido ao se aproximar f(x) de $P_3(x)$ é dada pelo valor residual:

$$R_3(x) = \frac{f^{(iv)}(\xi)}{4!}(x-x_0)^4$$
, onde $\xi \in (x_0, x)$ ou $\xi \in (x, x_0)$.

Quando x = 0.5 e $x_0 = 0$, temos:

$$R_3(0.5) = \frac{e^{\xi}}{4!}(0.5)^4$$
, onde $\xi \in (0, 0.5)$.

Logo, um limitante superior para o erro é dado por

$$R_3(0.5) \le \frac{M_4}{4!}(0.5)^4$$
, onde $M_4 = \max_{\xi \in (0.0.5)} |e^{\xi}| = e^{0.5} \approx 1.64872$.

Assim,

$$R_3(0.5) \le \frac{1.64872}{4!}(0.5)^4 \approx 4.29354 \times 10^{-3}.$$

- 2. Seja $f(x) = \ln(x+1)$.
 - (a) Obtenha a série de Taylor ao redor de 0 para f(x).
 - (b) Obtenha o polinômio de Taylor de terceira ordem ao redor de 0 da função f(x) do item anterior e calcule $P_3(0.5)$. Qual o erro verdadeiro cometido?
 - (c) Encontre a expressão analítica para o erro de truncamento $R_3(x)$ e estime o erro máximo em módulo ao se usar $P_3(0.5)$ para aproximar f(0.5). Mostre que o resultado é compatível com o erro que foi encontrado no item (b).
 - (d) Determine o número mínimo de termos que deve ter o polinômio de Taylor para que $\ln(1.5)$ seja calculado com um erro de truncamento menor que 10^{-8} .

Resposta:

(a) A função e suas derivadas em $x_0 = 0$ são:

$$f(x) = \ln(x+1) \Rightarrow f(0) = \ln(1) = 0$$

$$f'(x) = \frac{1}{x+1} \Rightarrow f'(0) = 1$$

$$f''(x) = -\frac{1}{(x+1)^2} \Rightarrow f''(0) = -1, \text{ ou seja, } f''(0) = -1!$$

$$f'''(x) = \frac{2}{(x+1)^3} = \frac{2!}{(x+1)^3} \Rightarrow f'''(0) = 2!$$

$$f^{(iv)}(x) = -\frac{2 \cdot 3}{(x+1)^4} = -\frac{3!}{(x+1)^4} \Rightarrow f^{(iv)}(0) = -3!$$

$$f^{(v)}(x) = \frac{2 \cdot 3 \cdot 4}{(x+1)^5} = \frac{4!}{(x+1)^5} \Rightarrow f^{(iv)}(0) = 4!$$

Generalizando, o para $n \geq 1$, temos:

$$f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(x+1)^n} \Rightarrow f^{(n)}(0) = (-1)^{n-1} (n-1)!$$

Então, a série de Taylor de f(x) em torno de 0 é dada por

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{(iv)}(0)}{4!}x^4 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

Substituindo os valores de $f^{(i)}(0)$ para i = 0, 1, 2, ..., temos:

$$f(x) = x - \frac{1!}{2!}x^2 + \frac{2!}{3!}x^3 - \frac{3!}{4!}x^4 + \dots + \frac{(-1)^{n-1}(n-1)!}{n!}x^n + \dots$$

Ou seja, a série de Taylor ao redor de 0 para f(x) é:

$$f(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots + \frac{(-1)^{n-1}}{n}x^n + \dots = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i}x^i$$

(b) Aproximando a série de Taylor encontrada no item (a) por um polinômio de grau 3, temos:

$$P_3(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3.$$

Então, quando x = 0.5, temos:

$$P_3(0.5) = 0.5 - \frac{1}{2}(0.5)^2 + \frac{1}{3}(0.5)^3 \approx 0.4167.$$

O erro absoluto cometido é:

$$|f(0.5) - P_3(0.5)| = |\ln(1.5) - P_3(0.5)| \approx 0.0112.$$

(c) A expressão analítica para o erro de truncamento $R_3(x)$ é:

$$R_3(x) = \frac{f^{(iv)}(\xi)}{4!}(x - x_0)^4.$$

Tomando x = 0.5 e $x_0 = 0$, temos:

$$R_3(0.5) = \frac{f^{(iv)}(\xi)}{4!}(0.5)^4.$$

Como $\xi \in (0,0.5)$ não é conhecido, só podemos calcular o limitante superior do erro dado por:

$$|R_3(0.5)| \le \frac{M_4}{4!} |0.5|^4$$
, onde $M_4 = \max_{\xi \in (0.0.5)} |f^{(iv)}(\xi)|$.

Assim,

$$M_4 = \max_{\xi \in (0,0.5)} |f^{(iv)}(\xi)| = \max\{|f^{(iv)}(0)|, |f^{(iv)}(0.5)|\} = \max\{3!, 1.18519\}$$

$$\Rightarrow M_4 = 3!.$$

Portanto.

$$|R_3(0.5)| \le \frac{3!}{4!} |0.5|^4 = \frac{1}{4} |0.5|^4 \Rightarrow |R_3(0.5)| \le 0.015625.$$

O valor do erro cometido no item (b) foi 0.0112. Como 0.0112 < 0.015625, o resultado é compatível.

(d) O limitante superior do erro de truncamento ao se aproximar f(0.5) por $P_n(0.5)$ em torno de 0 é dado por:

$$|R_n(0.5)| \le \frac{M_{n+1}}{(n+1)!} |0.5|^{n+1}$$
, onde $M_{n+1} = \max_{\xi \in (0,0.5)} |f^{(n+1)}(\xi)|$

Como

$$M_{n+1} = \max_{\xi \in (0,0.5)} |f^{(n+1)}(\xi)| = \max_{\xi \in (0,0.5)} \left| (-1)^n \frac{n!}{(\xi+1)^{n+1}} \right| = \max_{\xi \in (0,0.5)} \left| \frac{n!}{(\xi+1)^{n+1}} \right|,$$

entao

$$M_{n+1} = \max\left\{ \left| \frac{n!}{(0+1)^{n+1}} \right|, \left| \frac{n!}{(0.5+1)^{n+1}} \right| \right\} = \max\left\{ n!, \frac{n!}{(1.5)^{n+1}} \right\} = n!$$

Assim,
$$|R_n(0.5)| \le \frac{n!}{(n+1)!} |0.5|^{n+1} = \frac{|0.5|^{n+1}}{n+1}.$$

Portanto, para o erro de truncamento ser menor que 10^{-8} , temos:

$$|R_n(0.5)| \le \frac{|0.5|^{n+1}}{n+1} < 10^{-8}.$$

Arrumando a última inequação, obtemos:

$$\frac{|0.5|^{n+1}}{n+1} < 10^{-8} \Rightarrow \frac{(0.5)^{n+1}}{n+1} < 10^{-8} \Rightarrow \frac{(2^{-1})^{n+1}}{n+1} < 10^{-8}$$
$$\Rightarrow \frac{1}{2^{n+1}(n+1)} < 10^{-8} \Rightarrow 2^{n+1}(n+1) > 10^{8}.$$

Testando na calculadora para alguns valores de $n \ge 10$, encontramos:

$$n = 10 \Rightarrow 2^{11} \times 11 \approx 2.25 \times 10^4$$
 (menor que 10^8 , não serve!)

$$n = 20 \Rightarrow 2^{21} \times 21 \approx 4.4 \times 10^7$$
 (menor que 10^8 , não serve!)

$$n=21 \Rightarrow 2^{22} \times 22 \approx 9.2 \times 10^7$$
 (menor que 10^8 , não serve!)

$$n = 22 \Rightarrow 2^{23} \times 23 \approx 1.93 \times 10^9$$
 (maior que 10⁸, ok!)

Logo, o polinômio de Taylor é $P_{22}(x)$ que tem 22 termos.

- 3. Seja $f(x) = \frac{1}{x}$.
 - (a) Calcule a série de Taylor ao redor de 8.
 - (b) Determine um limitante inferior e outro superior do erro de truncamento para o polinômio de Taylor de ordem 4 de f(x) em x = 10 ao redor de 8.
 - (c) Obtenha uma aproximação de 0.1 usando o polinômio de ordem 4 e verifique que o erro cometido fica entre os limites encontrados em (b).
 - (d) Calcule a expressão binária de 0.1 a partir de (a).
 - (e) Determine uma aproximação binária de 0.1 a partir de (b).
 - (f) De que ordem deve ser o polinômio de Taylor para obter uma aproximação de 0.1 com erro inferior a 10^{-8} ?

Resposta:

(a)
$$\frac{1}{x} = \frac{1}{2^3} - \frac{1}{2^6}(x-8) + \frac{1}{2^9}(x-8)^2 - \frac{1}{2^{12}}(x-8)^3 + \dots = \sum_{i=0}^{\infty} \frac{(-1)^i(x-8)^i}{2^{3(i+1)}}.$$

- (b) Limitante superior: $|R_4(10)| \le 0.12 \times 10^{-3}$; Limitante inferior: $|R_4(10)| > 0.032 \times 10^{-3}$.
- (c) Para obter a aproximação de 0.1, terei que usar x=10, pois f(10)=0.1. Portanto,

$$P_4(10) = \frac{1}{2^3} - \frac{1}{2^6}(2) + \frac{1}{2^9}(2)^2 - \frac{1}{2^{12}}(2)^3 + \frac{1}{2^{15}}(2)^4$$

$$P_4(10) = \frac{1}{2^3} - \frac{1}{2^5} + \frac{1}{2^7} - \frac{1}{2^9} + \frac{1}{2^{11}} = \left(\frac{1}{2^3} + \frac{1}{2^7} + \frac{1}{2^{11}}\right) - \left(\frac{1}{2^5} + \frac{1}{2^9}\right) \approx 0.1.$$

(d) Lembrando novamente que para obter a aproximação de 0.1, terei que usar x = 10, pois f(10) = 0.1.

Então,

$$(0.1)_{10} = f(10) = \frac{1}{2^3} - \frac{1}{2^5} + \frac{1}{2^7} - \frac{1}{2^9} + \frac{1}{2^{11}} - \frac{1}{2^{13}} + \frac{1}{2^{15}} - \frac{1}{2^{17}} + \cdots$$

$$= \left(\frac{1}{2^3} - \frac{1}{2^5}\right) + \left(\frac{1}{2^7} - \frac{1}{2^9}\right) + \left(\frac{1}{2^{11}} - \frac{1}{2^{13}}\right) + \left(\frac{1}{2^{15}} - \frac{1}{2^{17}}\right) + \cdots$$

$$= \left(\frac{2^2 - 1}{2^5}\right) + \left(\frac{2^2 - 1}{2^9}\right) + \left(\frac{2^2 - 1}{2^{13}}\right) + \left(\frac{2^2 - 1}{2^{17}}\right) + \cdots$$

$$= \left(\frac{2 + 1}{2^5}\right) + \left(\frac{2 + 1}{2^9}\right) + \left(\frac{2 + 1}{2^{13}}\right) + \left(\frac{2 + 1}{2^{17}}\right) + \cdots$$

$$= \frac{2}{2^5} + \frac{1}{2^5} + \frac{2}{2^9} + \frac{1}{2^9} + \frac{2}{2^{13}} + \frac{1}{2^{13}} + \frac{2}{2^{17}} + \frac{1}{2^{17}} + \cdots$$

$$= \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{12}} + \frac{1}{2^{13}} + \frac{1}{2^{16}} + \frac{1}{2^{17}} + \cdots$$

$$= 2^{-4} + 2^{-5} + 2^{-8} + 2^{-9} + 2^{-12} + 2^{-13} + 2^{-16} + 2^{-17} + \cdots$$

$$= (0.000110011001100110011 \dots)_2$$

(e)

$$P_4(10) = \frac{1}{2^3} - \frac{1}{2^5} + \frac{1}{2^7} - \frac{1}{2^9} + \frac{1}{2^{11}}$$

$$= \left(\frac{1}{2^3} - \frac{1}{2^5}\right) + \left(\frac{1}{2^7} - \frac{1}{2^9}\right) + \frac{1}{2^{11}}$$

$$= \left(\frac{2^2 - 1}{2^5}\right) + \left(\frac{2^2 - 1}{2^9}\right) + \frac{1}{2^{11}}$$

$$= \left(\frac{2 + 1}{2^5}\right) + \left(\frac{2 + 1}{2^9}\right) + \frac{1}{2^{11}}$$

$$= \frac{2}{2^5} + \frac{1}{2^5} + \frac{2}{2^9} + \frac{1}{2^9} + \frac{1}{2^{11}}$$

$$= \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{11}}$$

$$= 2^{-4} + 2^{-5} + 2^{-8} + 2^{-9} + 2^{-11}$$

$$= (0.00011001101)_2$$

- (f) n = 11.
- 4. Calcule uma aproximação de $x^*=\sqrt[3]{25}$ com uma tolerância $\xi=10^{-4}$ pelo método da Bisseção.

Resposta:

O problema é equivalente a resolver $f(x) = x^3 - 25 = 0$. Como $f(2) \cdot f(3) < 0$, então a raiz $r \in (2,3)$. Uma aproximação com erro $b_{14} - a_{14} < 0.0001$ é $r \approx 2.924042$.

5. Determine uma aproximação da raiz da equação $x + \log(x) = 0$ com tolerância $\xi = 0.001$ pelo método da Bisseção no intervalo [0.1, 0.6].

Resposta: $r \approx 0.3988$.

6. Considere o método da bisseção. Quantas iterações são necessárias para encontrar uma aproximação da solução de $x-0,5(\operatorname{sen}(x)+\cos(x))=0$ com 3 casas decimais corretas sendo [0,1] o intervalo inicial?

Resposta: Com tolerância $\epsilon = 0.0001$, $k_{\min} = 14$.

7. Considere o polinômio $p(x) = (x-1)(x-2.5)^2(x-4)^3$ Quais zeros não podem ser determinadas usando o método da bisseção? Justifique a sua resposta.

Resposta: Vamos calcular os valores de p(x) em pontos suficientemente próximos das raízes. Assim, temos a tabela:

		0.5					3			4.5
p(x)	400	85.75	0	-7.8125	- 2	0	- 0.5	- 0.3125	0	1.75

Analisando o sinal de p(x) para os valores da tabela, concluímos que nas proximidades da raiz 2.5, no intervalo (2,3), a função p(x) não mudou de sinal. Portanto, o método da Bisseção não funciona para a raiz 2.5.

8. Determine um intervalo [a, b] para iniciar o cálculo de $\ln(10)$ usando o método da bisseção. Explique. Quantas iterações são necessárias para obter $\ln(10)$ com erro menor ou igual a 10^{-3} ?

Resposta:

O problema é equivalente a resolver $f(x) = e^x - 10 = 0$. Como $f(2) \cdot f(3) < 0$, então a raiz $r \in (2,3)$. Número de iterações: $k_{\min} = 10$.

9. Determine um intervalo (a, b) e uma função de iteração $\varphi(x)$ associada, de tal forma que $\forall x_0 \in (a, b)$, a função de iteração gere uma sequência convergente para a(s) raiz(es) de cada uma das funções abaixo, usando o método iterativo do ponto fixo (ou método da iteração linear (MIL)).

- (a) $f_1(x) = \sqrt{x} e^{-x}$.
- (b) $f_2(x) = \ln(x) x + 2$.
- (c) $f_3(x) = e^{x/2} x^3$.

- (d) $f_4(x) = \text{sen}(x) x^2$.
- (e) $f_5(x) = x/4 \cos(x)$.

Resposta:

- (a) $\varphi_1(x) = e^{-2x}$. Como $|\varphi_1'(x)| = 2 \cdot e^{-2x} < 1 \Rightarrow x > 0.34657$, um bom intervalo é (0.34657, 0.5), pois $f_1(0.34657) \cdot f_1(0.5) < 0$.
- (b) Vejamos as estimativas para as raízes graficamente:

$$f_2(x) = 0 \Rightarrow \ln(x) = x - 2.$$

Vemos que as raízes são: $r_1 \in (0, 0.5), r_2 \in (3, 3.5).$

Então, uma boa estimativa inicial de raiz para r_1 é $x_0 = 0.2$ e uma boa estimativa inicial para r_2 é $x_0 = 3.2$.

Fazendo $f_2(x) = 0$ e isolando a variável x, obtemos:

$$\ln(x) = x - 2 \Rightarrow x = e^{x-2}.$$

Logo, uma função de iteração é $\varphi_2(x) = e^{x-2}$.

Pelo Teorema do Método do Ponto Fixo, quando $|\varphi'_2(x)| < 1$ para todo $x \in I$, sendo I centrado na raiz, existe uma sequência $\{x_k\}$ que converge para a raiz usando a iteração $x_{k+1} = \varphi_2(x_k)$.

Então, vamos analisar o que acontece com as estimativas iniciais:

Sabemos que $|\varphi'_2(x)| = e^{x-2}$.

Assim,

Para r_1 : $|\varphi_2'(0.2)| = e^{0.2-2} = e^{-1.8} \approx 0.1653 < 1 \Rightarrow \varphi_2(x)$ converge para r_1 .

Para r_2 : $|\varphi_2'(3.2)| = e^{3.2-2} = e^{1.2} \approx 3.3201 > 1 \Rightarrow \varphi_2(x)$ não converge para r_2 .

Então, neste item, para que tenhamos uma função de iteração que gere uma sequência convergente para a raiz, um intervalo (a, b) para a raiz é (3, 3.5) e uma função de iteração associada é $\varphi_2(x) = e^{x-2}$.

(c)
$$\varphi_3(x) = e^{x/6}$$
; $r \in (1, 2)$.

- (d) $\varphi_{41}(x) = \sqrt{\sin(x)}$; $r_1 \in (0.8, 0.9)$. A raiz $r_2 \in (-0.1, 0.1)$ deve ser encontrada em $\varphi_{42}(x) = -\sqrt{\sin(x)}$.
- (e) Vejamos as estimativas para as raízes graficamente:

$$f_5(x) = 0 \Rightarrow \frac{x}{4} = \cos(x)$$

Vemos que as raízes são: $r_1 \in (-4, -3), r_2 \in (-3, -2)$ e $r_3 \in (1, \pi/2)$.

Então, uma boa estimativa inicial de raiz para r_1 é $x_0=-3.8$, uma boa estimativa inicial para r_2 é $x_0=-2.1$ e uma boa estimativa inicial para r_3 é $x_0=1.2$.

Fazendo $f_5(x) = 0$ e isolando a variável x, obtemos:

$$\frac{x}{4} = \cos(x) \Rightarrow x = \arccos(x/4).$$

Logo, uma função de iteração que podemos usar é $\varphi_5(x) = \arccos(x/4)$.

Então, vamos analisar o que acontece com as estimativas iniciais:

Sabemos que
$$|\varphi_5'(x)| = |-\frac{1}{4\sqrt{1-(x/4)^2}}| = \frac{1}{4\sqrt{1-(x/4)^2}} = \frac{1}{\sqrt{16-x^2}}$$

Para
$$r_1$$
: $|\varphi_5'(-3.8)| = \frac{1}{\sqrt{16 - (-3.8)^2}} \approx 0.8006 < 1 \Rightarrow \varphi_2(x)$ converge para r_1 .

Para
$$r_2$$
: $|\varphi_5'(-2.1)| = \frac{1}{\sqrt{16 - (-2.1)^2}} \approx 0.2937 < 1 \Rightarrow \varphi_2(x)$ converge para r_2 .

Para
$$r_3$$
: $|\varphi_5'(1.2)| = \frac{1}{\sqrt{16 - (1.2)^2}} \approx 0.2621 < 1 \Rightarrow \varphi_2(x)$ converge para r_3 .

Então, neste item, para que tenhamos uma função de iteração que gere uma sequência convergente para a raiz, temos três intervalos (-4, -3), (-3, -2) e $(1, \pi/2)$, respectivamente, para as raízes r_1 , r_2 , r_3 e uma função de iteração associada $\varphi_5(x) = \arccos(x/4)$.

10. A equação $x^2 - 7x + 12 = 0$ tem 3 e 4 como raízes. Considere a função de iteração dada por $\varphi(x) = x^2 - 6x + 12$. Determine o intervalo (a,b), onde para qualquer que seja x_0 escolhido a sequência $x_{n+1} = \varphi(x_n)$ converge para a raiz x = 3. Mostre que a convergência é quadrática.

Resposta:

Um intervalo que contém a raiz é (2.5, 3.5). Para mostrar que a convergência é quadrática, faça $\lim_{k\to\infty} \frac{|x_{k+1}-3|}{|x_k-3|^2} = \lim_{k\to\infty} \frac{|\varphi(x_k)-3|}{|x_k-3|^2} = C$. O limite resulta em C=1.

11. As funções de iterações $\varphi_1(x) = \frac{x^2}{2} - 2x + 4$ e $\varphi_2(x) = \frac{x^2}{2} - 2.5x + 5$ geram sequências convergentes para a raiz x = 2, para qualquer aproximação inicial $x_0 \in (1.5, 3)$. Qual das duas funções geram sequências mais rapidamente convergentes para esta raiz? Justifique a resposta.

Resposta:

Como $|\varphi_1'(2)| < |\varphi_2'(2)| < 1$, logo $\varphi_1(x)$ gera sequências mais rapidamente convergentes para a raiz.

12. Para determinar a raiz quadrada de um número $c \geq 0$, basta resolver a equação $x^2 - c = 0$. E possível determinar sua raiz quadrada usando a função de iteração $\varphi(x) = c/x$? Justifique a resposta.

Resposta:

$$|\varphi'(x)| = \frac{c}{|x|^2} < 1 \Rightarrow x < -\sqrt{c} \text{ ou } x > \sqrt{c}, \text{ ou seja, } I = (-\infty, -\sqrt{c}) \cup (\sqrt{c}, +\infty).$$
 Como as raízes da equação são $r_1 = -\sqrt{c}$ e $r_2 = \sqrt{c}$, então não é possível determinar

a raiz usando a função de iteração $\varphi(x)$, pois r_1 e r_2 estão fora do intervalo I.

13. Determine as raízes do exercício 9, usando o Método de Newton-Raphson com tolerância $\varepsilon \leq 1 \cdot 10^{-4}$.

Resposta:

- (a) $r \approx 0.4267$.
- (b) $r_1 \approx 0.1586$; $r_2 \approx 3.1462$.
- (c) $r \approx 1.2270$.
- (d) $r_1 \approx 0.8768$; $r_2 \approx 0$.
- (e) $r_1 \approx -3.5953$, $r_2 \approx -2.1333$, $r_3 \approx 1.2524$.
- 14. Os zeros da função $f(x) = x^4 12x^3 + 47x^2 60x$ são: $x_1 = 0, x_2 = 3, x_3 = 4$ e $x_4 = 5$.
 - (a) Calcule uma iteração do método de Newton-Raphson a partir de $x_0 = 2$. A

sequência parece convergir para que raiz?

- (b) Repita o processo a partir de $x_0 = 1$. O que acontece neste caso?
- (c) É possível aplicar o método da bisseção no intervalo [2, 3.5]? Justifique a resposta. No caso afirmativo, obtenha o número de iterações a partir da qual obtém-se uma aproximação de a menos de 0.001.

Resposta:

- (a) A sequência converge para r=3.
- (b) A sequência converge para r = 5.
- (c) Sim. Porque f(2)f(3.5) < 0 e pelo Teorema de Bolzano, quando isso ocorre, existe uma raiz no intervalo (2,3.5).
- 15. O zero da função $f(x) = \arctan(x)$ é $x^* = 0$. Considere o método de Newton-Raphson. Verifique se:
 - (a) o ponto inicial é $x_0 = 1.3917452$, então temos a sequência de iterações $x_1 = -1.3917$; $x_2 = 1.3917$; $x_3 = -1.3917$; . . .
 - (b) o ponto inicial é $x_0 = 1.3$, então a sequência converge a x^* .
 - (c) $x_0 = 1.5$, então a sequência diverge.
- 16. Calcular as raízes dos polinômios abaixo, por Birge-Vieta, usando uma casa decimal com erro menor que 0,1.

(a)
$$P(x) = x^3 - 21x^2 + 95x - 75 = 0$$
.

Resposta:

Primeira raiz:

$$x_0 = 0$$
 $1,0$ -21 95 -75 $x_0 = 0$ $1,0$ -21 95 $-75 = P(0)$ $x_0 = 0$ $1,0$ -21 $95 = P'(0)$

$$x_2 = 0.8 - \frac{(-11.9)}{63.3} \approx 1.0.$$

	1,0	-21	95	-75
$x_2 = 1, 0$	1,0	-20	75	0 = P(1,0)
$x_2 = 1, 0$	1,0	-19	56 = P'(1,0)	

$$x_3 = 1, 0 - \frac{0}{56} \approx 1, 0.$$

Como $|x_3 - x_2| = 0 < 0, 1, \log_0, \mathbf{r_1} \approx \mathbf{1}, \mathbf{0}.$

Segunda raiz:

$$x_0 = 1, 0$$
 $1, 0$ -20 75 $x_0 = 1, 0$ $1, 0$ -19 $56 = P(1, 0)$ $x_0 = 1, 0$ $1, 0$ $-18 = P'(1, 0)$

$$x_1 = 1, 0 - \frac{56}{(-18)} \approx 4, 1.$$

$$1,0$$
 -20 75
 $x_1 = 4,1$ $1,0$ -15,9 $9,8 = P(4,1)$
 $x_1 = 4,1$ $1,0$ -11,8 = $P'(1,6)$

$$x_2 = 4, 1 - \frac{9, 8}{(-11, 8)} \approx 4, 9.$$

$$x_3 = 4,9 - \frac{1,0}{(-10,2)} \approx 5,0.$$

$$x_4 = 5, 0 - \frac{0}{(-10)} \approx 5, 0.$$

Como $|x_4 - x_3| = 0 < 0, 1, \log_0, \mathbf{r_2} \approx 5, \mathbf{0}.$

Terceira raiz:

$$x_1 = 5, 0 - \frac{-10}{1, 0} = 15.$$

$$\begin{array}{c|cccc} & 1, 0 & -15 \\ \hline x_1 = 15 & 1, 0 & 0 = P(15) \\ \hline x_1 = 15 & 1, 0 = P'(15) \end{array}$$

$$x_2 = 15 - \frac{0}{1,0} = 15, 0.$$

Como $|x_2 - x_1| = 0 < 0, 1, \log_0, \mathbf{r_3} \approx \mathbf{15}, \mathbf{0}.$

(b)
$$P(x) = x^4 - 18x^3 + 97x^2 - 180x + 100 = 0.$$

17. Seja $x = \xi$ uma raiz de f(x), tal que $f'(\xi) \neq 0$ e $f''(\xi) = 0$. Mostre que neste caso o Método de Newton-Raphson tem convergência cúbica.