BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS FIRST SEMESTER 2019-2020 Handout II

Date: 17/8/2022

Course No. : CHE G622

Course Title : Advanced Chemical Engineering Thermodynamics

Instructor-in-Charge : Prof. Vikranth Kumar Surasani Instructor Mr. DasikaPrabhatSourya

1. Course Description: Review of fundamental principles; statistical foundations; thermodynamic properties of pure substances and mixtures, their estimation and correlation; stability and equilibrium criteria for homogeneous and heterogeneous systems; thermodynamics of irreversible processes.

2. Scope & Objective:

The objective of this course is to learn how to apply thermodynamics to phenomena and processes of interest to chemical engineers. The content is advanced and based on prior knowledge of courses taken at the undergraduate level. This course aims to provide further depth with major focus on phase equilibrium thermodynamics. Solving phase equilibria problems involves general computational techniques that have widespread application in other areas of engineering. Another objective of this course is to provide experience in fitting mathematical models to experimental data, using phase equilibria calculations. A small part of the course is devoted to statistical mechanics and its relation to thermodynamics.

Learning objective:

At the end of the course student will be able to

- Apply the principles of thermodynamics for the energy requirements , feasibility of the processes and predict reaction equilibria
- Predict the phase behavior and properties of multicomponent system.
- Use tools such as ASPEN for solving calculations useful in thermodynamics.

3. Text Book (TB):

J. M. Smith, H. C. Van Ness and M. M. Abbott, "Introduction to Chemical EngineeringThermodynamics", MGHFSE, 7th Edition

Reference Books: (RB)

RB1: Y. V. C. Rao, "Chemical Engineering Thermodynamics", Universities Press, 1997

RB2: R. P. Rastogi& R. R. Mishra, "An Introduction to Chemical Thermodynamics", Vikas

Publishing House Pvt. Ltd., 6th Revised Edition (1995)

RB2: John M.Prausnitz; Rüdiger N. Lichtenthaler; Edmundo Gomes de Azevedo,

"Molecular Thermodynamics of Fluid Phase Equilibria", Prentice Hall, 3rd Edition

4. Course Plan:

Lec. No.	Learning Objectives	Topics to be covered	Reference
1-2	Introduction	Review of Basics, First Law of Thermodynamics, Second Law	Chap. 1,2,3,4
		of Thermodynamics Entropy, Entropybalance and	TB/Lecture

	al. No Topic		
42	Thermodynamics	Partition functions of polyatomic molecules	notes
40 –	Statistical	Thermodynamic properties in terms of partitionfunctions,	/ Lecture
37-33	Thermoughannes	June	Chap. 6 RB2
37-39	Thermodynamics	same	notes
	Statistical	Distribution Law, Partition function and expressions forthe	/Lecture
50	oranoncai i nermonynamics	entropy Molecular basis of residual entropy, Boltzmann's	Chap. 6 RB2
36	StatisticalThermodynamics	mechanics, Thermodynamic probability, Probability and	Lecture notes
35 –		Introduction, Quantum mechanical aspects, Role ofstatistical	Chap. 6 RB2 /
34	ReactionEquilibria	simultaneous reactions, Heterogeneous reactions	Chap 14 RB1
32 –	Chemical	Homogeneous gas and liquid phase reactionsEquilibrium with	Chap. 13 TB /
31	(review)	equilibrium	Chap 14 RB1
21	ReactionEquilibria	Relation between equilibrium constants and species activities at	Chap. 14 DB1
	Chemical	energy change and Equilibrium constant, vant' Hoffequation,	Chan 12 TP /
	Chan to 1	Review of multi-reaction Stoichiometry, standard Gibbsfree	
29 - 30	Fluidequilibria	liquidequilibrium	Chap 14 T2
	Other Fluid –	liquidequilibrium & Liquid-Liquid equilibrium, solid	Chap. 11 TB/
		The solubility of gas in a liquid, Vapour liquid-	
28	Vapor-LiquidEquilibrium	VLE data, Descriptive VLE	Chap 12 RB1
27 –		Multi-component VLE, Thermodynamic consistencytest of	Chap. 10 TB /
26	Vapor-LiquidEquilibrium	moderatepressures (review only), Azeotropic system	Chap 12 RB1
25 –		Fundamental VLE equation, VLE at low and	Chap. 10 TB /
24	forsolutions	Correlative activity coefficient models	Chap 11 RB1
22 –	Gibbs energycalculations		Chap. 9 TB /
21	forsolutions	coefficient, Gibbs Duhem relation	Chap 11 RB1
20 –	Gibbs energycalculations	Lewis Randall rule, Excess properties, concept ofactivity	Chap. 9 TB /
19	for realgas mixtures	gas mixtures	Chap 9 RB1
18 –	Gibbs energycalculations	Mixing rules, Estimation of pure component fugacity forreal	Chap. 9 TB /
16 - 17	Gibbs energycalculations	ofspecies in mixture	Chap 9 RB1
		andfugacity coefficient for pure gas, Fugacity co-efficient	TB/
	•	Review of fugacity and estimation of fugacity	Chap. 7/9
15	Multi-componentmixtures	phase equilibrium	Chap. 8 / TB
13 –		Criteria for chemical equilibrium and combinedchemical and	
	man componentimixtures	Criteria for phase equilibrium in multi-componentsystems,	Simp. 5 Infi
11 – 12	Multi-componentmixtures	Equations	Chap. 9 RB1
11 –		molar property, Chemical potential, GeneralizedGibbs-Duhem	Chap. 8 TB /
9 – 10	ofThermodynamicsystems	criteria to equation of state Thermodynamic description of mixtures, review ofpartial	Chap. 10 RB1
0 10	Stability	Stability criteria, Application of equilibrium andstability	Chap. 7 TB /
6 – 8	ThermodynamicPotentials	for equilbrium, Energy minimum and maximumprinciple	Chap 7. TB
C 0	The same of constant in the state of the	Legendre Transformations, Thermodynamic potentials, Criteria	Chap. 6 RB1/
4 – 5	of Fluids	ofMaxwell equations	Chap. 6 T2
	ThermodynamicProperties	Fundamental Property relations, Equilibrium, Review	O1 0 7 7 7
3	forPVT behaviour	only)	T2
2	GeneralizedCorrelations	State, Generalized correlations forgases and liquids (Review	TB / Chap 3
	Equations of state(EOS),	PVT behaviour, Review of Virial Equation, Cubic Equations of	Chap. 6.6, 6.7
		Reversibility, Third Law of Thermodynamics	1,2, 5 T2
			notes / Chap

Practical. No	Topic
1	Introduction to ASPEN Plus: Getting Started

2	Physical Properties		
	i) Pure Component Properties		
	ii) Vapor Pressure		
3-6	Thermodynamic Data		
	i) Flash Model & Heat of Evaporation		
	ii) Stream Engine and Refrigeration		
	iii) Txy Diagram –VLLE		
	iv) Ternary Maps LLE		
	v) Residue Curve Maps		
7-8	Material and Energy Balances		
9-13	Simulation of distillation and reactor models and Networks		
	(Note: Students need to perform individual projects during these practical Hrs.)		

5. Evaluation Scheme:

Component	Duration	Weightage	Data&Time	Remark
Mid Term	90 minutes	20	05/11 11.00 -	CB
			12.30PM	
Comprehensive	180 minutes	40	29/12 FN	OB
Class Tests (min	20 minutes	15		СВ
3)				
Project +	-	25		OB
Practical				

- **6. Chamber Consultation Hours:** To be announced in the class.
- **7. Notice:** Notices will be put on CMS
- **8.** Make-**up** will be granted for genuine cases only. Prior permission of IC is compulsory.
- **9. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-chargeCHE G622