

On the Parameterized Complexity of Semitotal Dominating Set On Graph Classes

Lukas Retschmeier

Informatik 7 - Theoretical Foundations of Artificial Intelligence Faculty of Informatics Technical University of Munich

February 28th, 2023

Creative Introduction

Manue.

.....

Definit

Rule

Rulo

Bulo

Reference

Our Plan for Today

Retschmeie

Motivation

2 Theory

3 Kernel

Definitions

Rule 1

Rule 2

Rule 3

Lukas Retschmeier

Motivation

Motivation

Kernel

Rule 1

Rule 2

Rule 3

Reference

DOMINATING SET

Question

Input Graph $G = (V, E), k \in \mathbb{N}$

Is there a set $D \subseteq V$ of size at most k such that

$$N[D] = V$$
?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- **Observation:** In connected G every $v \in D$ has another $z \in D$ with $d(v, z) \leq 3$.

Retschmeier

Motivation

Motivation

TOTAL DOMINATING SET

Graph $G = (V, E), k \in \mathbb{N}$ Input

Question Is there a set $D \subseteq V$ of size at most k such that for

all $d_1 \in X$ exists $d_2 \in X \setminus \{d_1\}$ s.t. $d(d_1, d_2) \leq 1$?

 The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.

Lukas Retschmeier

Motivation

Motivation

Kerne

Definition Rule 1

Rule 2 Rule 3

Reference

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$ Question Is there a subset $D \subseteq V$

Is there a subset $D\subseteq V$ with $|D|\leq k$ such that

N[D] = V and for all $d_1 \in X$ there exists another

 $d_2 \in X$ such that $d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of a sds of G, denoted as $\gamma_{2t}(G)$.
- Observation: $\gamma(G) \leq \gamma_{2t}(G) \leq \gamma t(G)$

Retschmeier

Motivation

Thoom

Kerne

Rule 1

Rule 2

Rule 3

Reference:

DOMINATING SET

SEMITOTAL DOMINATING SET

TOTAL DOMINATING SET

Lukas Retschmeier

Motiv

Theory

Kernel
Definition
Rule 1

Reference

Parameterized Complexity

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ...

If possible, the problem is **fixed-parameter tractable**.

Fixed-Parameter Intractability

Retschmeier

Motiva

Theory

Kernel Definitio Rule 1

Reference

• Class NP corresponds to whole hierarchy W[i] in parameterized setting.

- Problems at least W[1]-hard considered **fixed-parameter intractable**
- Dominating Set is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeie

Theory

Kernel

Rule 1

Rule 2 Rule 3

Reference

Warmup: Intractability Results

 ω_2 hard on split, chordal and bipartite graphs

- Split Graph: G = Clique + IndependentSet
- Assuming parameterization by solution size

Lukas Retschmeier

Motiva

Theory

Kerne Definition

> Rule 2 Rule 3

Reference

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is ω_2 -hard

Proof by fpt-reduction from Planar Dominating Set on split graphs:

- **1** Construct G^* by adding v with pendant z to clique. G^* split
- 2 If ds D in G, $D* = D \cup \{v\}$ is sds D*.
- 3 If sds D* in G*, $D \setminus \{v\}$ is D in G
- 4 Parameter k only changed by constant

Lukas Retschmeier

Motiva

Theory

Kerne Definition

Rule 1 Rule 2

Rule 2 Rule 3

References

Bipartite Graphs

Semitotal Dominating Set on *bipartite* graphs is ω_2 -hard

Proof by fpt-reduction from PLANAR DOMINATING SET on bipart. graphs:

- **1 Construct** Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- 2 If ds D in G, then $D* = D \cup \{d_1, d_2\}$ is sds in G*
- **3** Assume sds D* in G*. If $a_i \in D*$ (b_i) , flip. $D = D* \setminus \{d_1, d_2\}$ is ds in G

Lukas

Kernelization

Theory

Definiti

Rule 1

Rule 2

Reference

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Lukas Retschmeier

Theory

Kerne

- .

Rule 1

Rule 2

Reference

Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Lukas

Motivat

Theory

Kerne

Dofiniti

Rule 1

Rule 2

Reference

Complexity Status

Lukas Retschmeie Ш

__

Kernel

Definit

Rule

....

Rule 3

Reference

A Linear Kernel for Planar Semitotal Dominating Set

The main result of the thesis

Lukas Retschmeier

Related Works

Motivation

Theor

Kernel

....

Defini

nuie

Rule

.

Reference

Problem PLANAR DOMINATING SET PLANAR TOTAL DOMINATING SET PLANAR SEMITOTAL DOMINATING SET	$\begin{array}{c} \textbf{Size} \\ 67k \\ 410k \\ xxxxk \end{array}$	Source Diekert and Durand 2005 Garnero and Sau 2018 This work
PLANAR EDGE DOMINATING SET PLANAR EFFICIENT DOMINATING SET PLANAR RED-BLUE DOMINATING SET	14k $84k$ $43k$	Guo and Niedermeier 2007 Guo and Niedermeier 2007 Garnero, Sau, and Thilikos 2017
PLANAR CONNECTED DOMINATING SET PLANAR DIRECTED DOMINATING SET	130k Linear	Luo et al. 2013 Alber, Dorn, and Nieder- meier 2006

Retschmeier

Definitions

Main Theorem

The Main Theorem

The SEMITOTAL DOMINATING SET problem parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G, k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| \le xxx \cdot k$.

Introducing *D-region decomposition*

Hotoumic

....

Theo

Kernel

Definitions Rule 1

Rule 2

Referenc

D-region decomposition

Given G=(V,W) and $D\subseteq V$, a D-region decomposition is a set $\mathfrak R$ with poles in D such that:

• for any vw-region $R \in \mathfrak{R}$, it holds that $D \cap$

$\mathbf{Splitting}\;\mathbf{up}\;N(v)$

Kernel

_

Rule 1

Rule 2

Reference

Lukas Retschmeier

Motivat

Kerne

Definition

Rule 2

Rule 3

Reference:

Rule 1, Appetizer: Shrinking $N_3(v)$

Let G = (V, E) be a graph and let $v \in V$. If $|N_3(v)| \ge 1$:

- remove $N_{2,3}(v)$ from G,
- add a vertex v' and an edge $\{v, v'\}$.

- Idea: Removing isolated vertices
- Correctness: Omitted

Rule 2

Retschmei

Motiva

Theo

Kern

Defini

Rule 2

Hule

Referenc

Lukas Retschmeier

....

Korno

Kernel
Definitions
Rule 1
Rule 2

Rule 3

Rule 3: Shrinking the size of simple regions

Let G=(V,E) be a plane graph, $v,w\in V$ and R be a simple region between v and w. If $|V(R)\setminus \{v,w\}|\geq 5$ apply the following:

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- $\bullet \ \ \mathsf{remove} \ V(R \setminus \partial R)$
- add vertex y with edges $\{v, y\}$ and $\{y, w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v, y\}, \{v, y'\}, \{y, w\}$ and $\{y', w\}$

Lukas Retschmeier

Motiva

Thoon

Kernel
Definition

Rule 3

Reference

Rule 3: Shrinking the size of simple regions

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v, y\}$ and $\{y, w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v, y\}, \{v, y'\}, \{y, w\}$ and $\{y', w\}$

Lukas Retschmeier

Motiva

Theor

Kernel
Definition
Rule 1

Rule 3

Rule 3: Shrinking the size of simple regions

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v, y\}$ and $\{y, w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v,y\}$, $\{v,y'\}$, $\{y,w\}$ and $\{y',w\}$

Retschmeier

Notes

Thoo

Kernel
Definitio
Rule 1

Rule 3

All the rule are sound

- and only change the solution size by a constant factor
- they can be applied in pplynomial-time
- Rule 3 is a swiss-army-knife to be found on many surprising places

Bounding the Kernel: Idea 1

Karn

Rule

Rule 2

Dofoso

Bounding the Kernel: Idea 2

THEO

Kern

Definit

Rulo

Rule 3

Reference

Bounding the Kernel: Idea 3

Motivat

17.....

D - 41-1

nuie

Rule 2

Reference

Lukas Retschmeier

Summary: Bounding Kernel Size

Motiv

__

Kernel
Definition

Rule 3

Reference

Let D be sds of size k. There exists a maximal D-region decomposition \mathfrak{R} such that:

- **1** \mathfrak{R} has only at most 3k-6 regions (Alber, Fellows, and Niedermeier 2004);
- 2 There are at most $97 \cdot k$ vertices outside of any region;
- **3** Each region $R \in \mathfrak{R}$ contains at most 87 vertices.

Hence: $87 \cdot (3k-6) + 97 \cdot k + k < 359 \cdot k$

Lukas Retschmeier

rictsomm

Kernel

Rule :

Rule 3

Reference

Main Theorem

The Main Theorem

The Semitotal Dominating Set problem parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| \leq xxx \cdot k$.

Proof: Add Proof here.

Rule 3

Future Work:

• Improve Kernel Size

• Solve complexities for...

Т

Conclusions

Results:

References I

Alber, Jochen, Britta Dorn, and Rolf Niedermeier (2006). "A General Data Reduction Scheme for Domination in Graphs". In: SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21-27, 2006, Proceedings. Ed. by Jiri Wiedermann et al. Vol. 3831. Lecture Notes in Computer Science. Springer, pp. 137–147. DOI: 10.1007/11611257_{1}{1}. URL: https://doi.org/10.1007/11611257_11.

Alber, Jochen, Michael R. Fellows, and Rolf Niedermeier (May 2004).

"Polynomial-time data reduction for dominating set". In: pp. 363–384. DOI: 10.1145/990308.990309. URL:

https://doi.org/10.1145/990308.990309.

Diekert, Volker and Bruno Durand, eds. (2005). STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany,

References II

February 24-26, 2005, Proceedings. Vol. 3404. Lecture Notes in Computer Science. Springer. ISBN: 3-540-24998-2. DOI: 10.1007/b106485.

Garnero, Valentin and Ignasi Sau (May 2018). "A Linear Kernel for Planar Total Dominating Set". In: Discrete Mathematics & Theoretical Computer Science Vol.

20 no. 1. Sometimes we explicitly refer to the arXiv preprint version:

https://doi.org/10.48550/arXiv.1211.0978. DOI:

10.23638/DMTCS-20-1-14. eprint: 1211.0978. URL:

https://dmtcs.episciences.org/4487.

Garnero, Valentin, Ignasi Sau, and Dimitrios M. Thilikos (2017). "A linear kernel for planar red-blue dominating set". In: *Discret. Appl. Math.* 217, pp. 536–547. DOI: 10.1016/j.dam.2016.09.045.

Guo, Jiong and Rolf Niedermeier (2007). "Linear Problem Kernels for NP-Hard Problems on Planar Graphs". In: *Automata, Languages and Programming.*

References III

Ed. by Lars Arge et al. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 375–386. ISBN: 978-3-540-73420-8.

Luo, Weizhong et al. (2013). "Improved linear problem kernel for planar connected dominating set". In: *Theor. Comput. Sci.* 511, pp. 2–12. DOI: 10.1016/j.tcs.2013.06.011.