AMD Barcelona microprocessor,	Antialiasing, address translation, B-38	definition, 15
Google WSC server, 467	Antidependences	heterogeneous, 262
AMD Fusion, L-52	compiler history, L-30 to L-31	microarchitecture, 15-16, 247-254
AMD K-5, L-30	definition, 152	stack, A-3, A-27, A-44 to A-45
AMD Opteron	finding, H-7 to H-8	Areal density, disk storage, D-2
address translation, B-38	loop-level parallelism calculations,	Argument pointer, VAX, K-71
Amazon Web Services, 457	320	Arithmetic intensity
architecture, 15	MIPS scoreboarding, C-72, C-79	as FP operation, 286 , 286–288
cache coherence, 361	Apogee Software, A-44	Roofline model, 326 , 326–327
data cache example, B-12 to B-15,	Apollo DN 10000, L-30	Arithmetic/logical instructions
B-13	Apple iPad	desktop RISCs, K-11 , K-22
Google WSC servers, 468–469	ARM Cortex-A8, 114	embedded RISCs, K-15 , K-24
inclusion, 398	memory hierarchy basics, 78	Intel 80x86, K-49 , K-53
manufacturing cost, 62	Application binary interface (ABI),	SPARC, K-31
misses per instruction, B-15	control flow	VAX, B-73
MOESI protocol, 362	instructions, A-20	Arithmetic-logical units (ALUs)
multicore processor performance,	Application layer, definition, F-82	ARM Cortex-A8, 234 , 236
400–401	Applied Minds, L-74	basic MIPS pipeline, C-36
multilevel exclusion, B-35	Arbitration algorithm	branch condition evaluation, A-19
NetApp FAS6000 filer, D-42	collision detection, F-23	data forwarding, C-40 to C-41
* *	commercial interconnection	
paged virtual memory example, B-54 to B-57	networks, F-56	data hazards requiring stalls, C-19
	*	to C-20
vs. Pentium protection, B-57	examples, F-49	data hazard stall minimization,
real-world server considerations,	Intel SCCC, F-70	C-17 to C-19
52–55	interconnection networks, F-21 to	DSP media extensions, E-10
server energy savings, 25	F-22, F-27, F-49 to F-50	effective address cycle, C-6
snooping limitations, 363–364	network impact, F-52 to F-55	hardware-based execution, 185
SPEC benchmarks, 43	SAN characteristics, F-76	hardware-based speculation,
TLB during address translation,	switched-media networks, F-24	200–201, 201
B-47	switch microarchitecture, F-57 to	IA-64 instructions, H-35
AMD processors	F-58	immediate operands, A-12
architecture flaws vs. success, A-45	switch microarchitecture	integer division, J-54
GPU computing history, L-52	pipelining, F-60	integer multiplication, J-48
power consumption, F-85	system area network history, F-100	integer shifting over zeros, J-45 to
recent advances, L-33	Architect-compiler writer relationship,	J-46
RISC history, L-22	A-29 to A-30	Intel Core i7, 238
shared-memory multiprogramming	Architecturally visible registers,	ISA operands, A-4 to A-5
workload, 378	register renaming vs.	ISA performance and efficiency
terminology, 313-315	ROB, 208–209	prediction, 241
tournament predictors, 164	Architectural Support for Compilers	load interlocks, C-39
Virtual Machines, 110	and Operating Systems	microarchitectural techniques case
VMMs, 129	(ASPLOS), L-11	study, 253
Amortization of overhead, sorting case	Architecture, see also Computer	MIPS operations, A-35, A-37
study, D-64 to D-67	architecture; CUDA	MIPS pipeline control, C-38 to C-39
AMPS, see Advanced mobile phone	(Compute Unified	MIPS pipeline FP operations, C-52
service (AMPS)	Device Architecture);	to C-53
Andreessen, Marc, F-98	Instruction set	MIPS R4000, C-65
Android OS, 324	architecture (ISA);	operand forwarding, C-19
Annulling delayed branch,	Vector architectures	operands per instruction example,
instructions, K-25	compiler writer-architect	A-6
Antenna, radio receiver, E-23	relationship, A-29 to A-30	parallelism, 45
moma, radio receiver, E-23	101au0115111p, A-27 to A-30	paranensin, 73

Arithmetic-logical units (continued)	ARM Thumb	ASPLOS, see Architectural Support
pipeline branch issues, C-39 to	addressing modes, K-6	for Compilers and
C-41	arithmetic/logical instructions,	Operating Systems
pipeline execution rate, C-10 to	K-24	(ASPLOS)
C-11	characteristics, K-4	Assembly language, 2
power/DLP issues, 322	condition codes, K-14	Association of Computing Machinery
RISC architectures, K-5	constant extension, K-9	(ACM), L-3
RISC classic pipeline, C-7	data transfer instructions, K-23	Associativity, see also Set
RISC instruction set, C-4	embedded instruction format, K-8	associativity
simple MIPS implementation,	ISAs, 14	cache block, B-9 to B-10, B-10
C-31 to C-33	multiply-accumulate, K-20	cache optimization, B-22 to B-24,
TX-2, L-49	RISC code size, A-23	B-26, B-28 to B-30
ARM (Advanced RISC Machine)	unique instructions, K-37 to K-38	cloud computing, 460–461
addressing modes, K-5, K-6	ARPA (Advanced Research Project	loop-level parallelism, 322
arithmetic/logical instructions,	Agency)	multilevel inclusion, 398
K-15, K-24	LAN history, F-99 to F-100	Opteron data cache, B-14
characteristics, K-4	WAN history, F-97	shared-memory multiprocessors,
condition codes, K-12 to K-13	ARPANET, WAN history, F-97 to	368
constant extension, K-9	F-98	Astronautics ZS-1, L-29
control flow instructions, 14	Array multiplier	Asynchronous events, exception
data transfer instructions, K-23	example, J-50	requirements, C-44 to
embedded instruction format, K-8	integers, J-50	C-45
GPU computing history, L-52	multipass system, J-51	Asynchronous I/O, storage systems,
ISA class, 11	Arrays	D-35
memory addressing, 11	access age, 91	Asynchronous Transfer Mode (ATM)
multiply-accumulate, K-20	blocking, 89–90	interconnection networks, F-89
operands, 12	bubble sort procedure, K-76	LAN history, F-99
RISC instruction set lineage, K-43	cluster server outage/anomaly	packet format, F-75
unique instructions, K-36 to K-37	statistics, 435	total time statistics, F-90
ARM AMBA, OCNs, F-3	examples, 90	VOQs, F-60
ARM Cortex-A8	FFT kernel, I-7	as WAN, F-79
dynamic scheduling, 170	Google WSC servers, 469	WAN history, F-98
ILP concepts, 148	Layer 3 network linkage, 445	WANs, F-4
instruction decode, 234	loop interchange, 88-89	ATA (Advanced Technology
ISA performance and efficiency	loop-level parallelism	Attachment) disks
prediction, 241-243	dependences, 318–319	Berkeley's Tertiary Disk project,
memory access penalty, 117	ocean application, I-9 to I-10	D-12
memory hierarchy design, 78,	recurrences, H-12	disk storage, D-4
114–117, 115	WSC memory hierarchy, 445	historical background, L-81
memory performance, 115-117	WSCs, 443	power, D-5
multibanked caches, 86	Array switch, WSCs, 443-444	RAID 6, D-9
overview, 233	ASC, see Advanced Simulation and	server energy savings, 25
pipeline performance, 233–236,	Computing (ASC)	Atanasoff, John, L-5
235	program	Atanasoff Berry Computer (ABC), L-5
pipeline structure, 232	ASCI, see Accelerated Strategic	ATI Radeon 9700, L-51
processor comparison, 242	Computing Initiative	Atlas computer, L-9
way prediction, 81	(ASCI)	ATM, see Asynchronous Transfer
ARM Cortex-A9	ASCII character format, 12, A-14	Mode (ATM)
vs. A8 performance, 236	ASC Purple, F-67, F-100	ATM systems
Tegra 2, mobile vs. server GPUs,	ASI, see Advanced Switching	server benchmarks, 41
323–324, 324	Interconnect (ASI)	TP benchmarks, D-18

Atomic exchange	centralized shared-memory	integrated units, 207–208
lock implementation, 389-390	architectures, 351–352	return address predictors,
synchronization, 387-388	definition, B-30 to B-31	206–207
Atomic instructions	memory hierarchy basics, 75-76	interconnection networks, F-28
barrier synchronization, I-14	miss penalty reduction, B-32	multi-device networks, F-25 to
Core i7, 329	via miss rates, B-29 , B-29 to B-30	F-29
Fermi GPU, 308	as processor performance	performance considerations,
T1 multithreading unicore	predictor, B-17 to B-20	F-89
performance, 229	Average reception factor	two-device networks, F-12 to
Atomicity-consistency-isolation-durab	centralized switched networks,	F-20
ility (ACID), vs. WSC	F-32	vs. latency, 18–19, 19
storage, 439	multi-device interconnection	memory, and vector performance,
Atomic operations	networks, F-26	332
cache coherence, 360–361	AVX, see Advanced Vector	memory hierarchy, 126
snooping cache coherence	Extensions (AVX)	network performance and
implementation, 365	AWS, see Amazon Web Services	topology, F-41
"Atomic swap," definition, K-20	(AWS)	OCN history, F-103
Attributes field, IA-32 descriptor	(AW3)	performance milestones, 20
table, B-52	В	
Autoincrement deferred addressing,	B	point-to-point links and switches, D-34
	Back-off time, shared-media	routing, F-50 to F-52
VAX, K-67	networks, F-23	
Autonet, F-48	Backpressure, congestion	routing/arbitration/switching
Availability	management, F-65	impact, F-52
commercial interconnection	Backside bus, centralized	shared- vs. switched-media
networks, F-66	shared-memory	networks, F-22
computer architecture, 11, 15	multiprocessors, 351	SMP limitations, 363
computer systems, D-43 to D-44,	Balanced systems, sorting case study,	switched-media networks, F-24
D-44	D-64 to D-67	system area network history, F-101
data on Internet, 344	Balanced tree, MINs with nonblicking,	vs. TCP/IP reliance, F-95
fault detection, 57–58	F-34	and topology, F-39
I/O system design/evaluation,	Bandwidth, see also Throughput	vector load/store units, 276-277
D-36	arbitration, F-49	WSC memory hierarchy, 443–444,
loop-level parallelism, 217–218	and cache miss, B-2 to B-3	444
mainstream computing classes, 5	centralized shared-memory	Bandwidth gap, disk storage, D-3
modules, 34	multiprocessors,	Banerjee, Uptal, L-30 to L-31
open-source software, 457	351–352	Bank busy time, vector memory
RAID systems, 60	communication mechanism, I-3	systems, G-9
as server characteristic, 7	congestion management, F-64 to	Banked memory, see also Memory
servers, 16	F-65	banks
source operands, C-74	Cray Research T3D, F-87	and graphics memory, 322-323
WSCs, 8, 433-435, 438-439	DDR DRAMS and DIMMS, 101	vector architectures, G-10
Average instruction execution time,	definition, F-13	Banks, Fermi GPUs, 297
L-6	DSM architecture, 379	Barcelona Supercomputer Center,
Average Memory Access Time	Ethernet and bridges, F-78	F-76
(AMAT)	FP arithmetic, J-62	Barnes
block size calculations, B-26 to	GDRAM, 322–323	characteristics, I-8 to I-9
B-28	GPU computation, 327–328	distributed-memory
cache optimizations, B-22, B-26 to	GPU Memory, 327	multiprocessor, I-32
B-32, B-36	ILP instruction fetch	symmetric shared-memory
cache performance, B-16 to B-21	basic considerations, 202–203	multiprocessors, I-22,
calculation, B-16 to B-17	branch-target buffers, 203–206	I-23 , I-25

Barnes-Hut <i>n</i> -body algorithm, basic	example, F-33	NEWS communication, F-42
concept, I-8 to I-9	BER, see Bit error rate (BER)	topology, F-39
Barriers	Berkeley's Tertiary Disk project	Bisection bandwidth, WSC array
commercial workloads, 370	failure statistics, D-13	switch, 443
Cray X1, G-23	overview, D-12	Bisection traffic fraction, network
fetch-and-increment, I-20 to I-21	system log, D-43	performance and
hardware primitives, 387	Berners-Lee, Tim, F-98	topology, F-41
large-scale multiprocessor	Bertram, Jack, L-28	Bit error rate (BER), wireless
synchronization, I-13 to	Best-case lower bounds, multi-device	networks, E-21
I-16, I-14 , I-16 , I-19 ,	interconnection	Bit rot, case study, D-61 to D-64
I-20	networks, F-25	Bit selection, block placement, B-7
synchronization, 298, 313, 329	Best-case upper bounds	Black box network
BARRNet, see Bay Area Research	multi-device interconnection	basic concept, F-5 to F-6
Network (BARRNet)	networks, F-26	effective bandwidth, F-17
Based indexed addressing mode, Intel	network performance and	performance, F-12
80x86, K-49, K-58	topology, F-41	switched-media networks, F-24
Base field, IA-32 descriptor table,	Between instruction exceptions,	switched network topologies, F-40
B-52 to B-53	definition, C-45	Block addressing
Base station	Biased exponent, J-15	block identification, B-7 to B-8
cell phones, E-23	Bidirectional multistage	interleaved cache banks, 86
wireless networks, E-22	interconnection	memory hierarchy basics, 74
Basic block, ILP, 149	networks	Blocked floating point arithmetic,
Batch processing workloads	Beneŝ topology, F-33	DSP, E-6
WSC goals/requirements, 433	characteristics, F-33 to F-34	Block identification
WSC MapReduce and Hadoop,	SAN characteristics, F-76	memory hierarchy considerations,
437–438	Bidirectional rings, topology, F-35 to	B-7 to B-9
Bay Area Research Network	F-36	virtual memory, B-44 to B-45
(BARRNet), F-80	Big Endian	Blocking
BBN Butterfly, L-60	interconnection networks, F-12	benchmark fallacies, 56
BBN Monarch, L-60	memory address interpretation,	centralized switched networks,
Before rounding rule, J-36	A-7	F-32
Benchmarking, see also specific	MIPS core extensions, K-20 to	direct networks, F-38
benchmark suites	K-21	HOL, see Head-of-line (HOL)
desktop, 38–40	MIPS data transfers, A-34	blocking
EEMBC, E-12	Bigtable (Google), 438, 441	network performance and
embedded applications	BINAC, L-5	topology, F-41
basic considerations, E-12	Binary code compatibility	Blocking calls, shared-memory
power consumption and	embedded systems, E-15	multiprocessor
efficiency, E-13	VLIW processors, 196	workload, 369
fallacies, 56	Binary-coded decimal, definition, A-14	Blocking factor, definition, 90
instruction set operations, A-15	Binary-to-decimal conversion, FP	Block multithreading, definition,
as performance measurement,	precisions, J-34	L-34
37–41	Bing search	Block offset
real-world server considerations,	delays and user behavior, 451	block identification, B-7 to B-8
52–55	latency effects, 450–452	cache optimization, B-38
response time restrictions, D-18	WSC processor cost-performance,	definition, B-7 to B-8
server performance, 40–41	473	direct-mapped cache, B-9
sorting case study, D-64 to D-67	Bisection bandwidth	example, B-9
Beneŝ topology	as network cost constraint, F-89	main memory, B-44
centralized switched networks,	network performance and	Opteron data cache, B-13 , B-13 to
F-33	topology, F-41	B-14

Block placement	chip comparison, J-60 to J-61	early schemes, L-27 to L-28
memory hierarchy considerations,	integer multiplication, J-49	ideal processor, 214
B-7	Bose-Einstein formula, definition, 30	ILP exploitation, 201
virtual memory, B-44	Bounds checking, segmented virtual	instruction fetch bandwidth, 205
Block replacement	memory, B-52	integrated instruction fetch units,
memory hierarchy considerations,	Branch byte, VAX, K-71	207
B-9 to B-10	Branch delay slot	Intel Core i7, 166-167, 239-241
virtual memory, B-45	characteristics, C-23 to C-25	misprediction rates on SPEC89, 166
Blocks, see also Cache block; Thread	control hazards, C-41	static, C-26 to C-27
Block	MIPS R4000, C-64	trace scheduling, H-19
ARM Cortex-A8, 115	scheduling, C-24	two-bit predictor comparison, 165
vs. bytes per reference, 378	Branches	Branch-prediction buffers, basic
compiler optimizations, 89-90	canceling, C-24 to C-25	considerations, C-27 to
definition, B-2	conditional branches, 300-303,	C-30, C-29
disk array deconstruction, D-51,	A-17, A-19 to A-20,	Branch registers
D-55	A-21	IA-64, H-34
disk deconstruction case study,	control flow instructions, A-16,	PowerPC instructions, K-32 to K-33
D-48 to D-51	A-18	Branch stalls, MIPS R4000 pipeline,
global code scheduling, H-15 to	delayed, C-23	C-67
H-16	delay slot, C-65	Branch-target address
L3 cache size, misses per	IBM 360, K-86 to K-87	branch hazards, C-42
instruction, 371	instructions, K-25	MIPS control flow instructions,
LU kernel, I-8	MIPS control flow instructions,	A-38
memory hierarchy basics, 74	A-38	MIPS pipeline, C-36, C-37
memory in cache, B-61	MIPS operations, A-35	MIPS R4000, C-25
placement in main memory,	nullifying, C-24 to C-25	pipeline branches, C-39
B-44	RISC instruction set, C-5	RISC instruction set, C-5
RAID performance prediction,	VAX, K-71 to K-72	Branch-target buffers
D-57 to D-58	WCET, E-4	ARM Cortex-A8, 233
TI TMS320C55 DSP, E-8	Branch folding, definition, 206	branch hazard stalls, C-42
uncached state, 384	Branch hazards	example, 203
Block servers, vs. filers, D-34 to D-35	basic considerations, C-21	instruction fetch bandwidth,
Block size	penalty reduction, C-22 to C-25	203–206
vs. access time, B-28	pipeline issues, C-39 to C-42	instruction handling, 204
memory hierarchy basics, 76	scheme performance, C-25 to C-26	MIPS control flow instructions,
vs. miss rate, B-27	stall reduction, C-42	A-38
Block transfer engine (BLT)	Branch history table, basic scheme,	Branch-target cache, see Branch-target
Cray Research T3D, F-87	C-27 to C-30	buffers
interconnection network	Branch offsets, control flow	Brewer, Eric, L-73
protection, F-87	instructions, A-18	Bridges
BLT, see Block transfer engine (BLT)	Branch penalty	and bandwidth, F-78
Body of Vectorized Loop	examples, 205	definition, F-78
definition, 292 , 313	instruction fetch bandwidth,	Bubbles
GPU hardware, 295–296, 311	203–206	and deadlock, F-47
GPU Memory structure, 304	reduction, C-22 to C-25	routing comparison, F-54
NVIDIA GPU, 296	simple scheme examples, C-25	stall as, C-13
SIMD Lane Registers, 314	Branch prediction	Bubble sort, code example, K-76
Thread Block Scheduler, 314	accuracy, C-30	Buckets, D-26
Boggs, David, F-99	branch cost reduction, 162–167	Buffered crossbar switch, switch
BOMB, L-4	correlation, 162–164	microarchitecture, F-62
Booth recoding, J-8 to J-9, J-9 , J-10 to	cost reduction, C-26	Buffered wormhole switching,
J-11	dynamic, C-27 to C-30	F-51

Buffers	Tomasulo's algorithm, 180, 182	multiprocessors, I-22,
branch-prediction, C-27 to C-30,	Bypassing, see also Forwarding	I-25, I-25
C-29	data hazards requiring stalls, C-19	shared-memory multiprogramming
branch-target, 203-206, 204, 233,	to C-20	workload, 375–377, 376
A-38, C-42	dynamically scheduled pipelines,	way prediction, 81
DSM multiprocessor cache	C-70 to C-71	write invalidate protocol
coherence, I-38 to I-40	MIPS R4000, C-65	implementation,
Intel SCCC, F-70	SAN example, F-74	356–357
interconnection networks, F-10 to	Byte displacement addressing, VAX,	write strategy, B-10
F-11	K-67	Cache coherence
memory, 208	Byte offset	advanced directory protocol case
MIPS scoreboarding, C-74	misaligned addresses, A-8	study, 420–426
network interface functions, F-7	PTX instructions, 300	basic considerations, 112–113
ROB, 184-192, 188-189 , 199 ,	Bytes	Cray X1, G-22
208–210, 238	aligned/misaligned addresses, A-8	directory-based, see
switch microarchitecture, F-58 to	arithmetic intensity example, 286	Directory-based cache
F-60	Intel 80x86 integer operations, K-51	coherence
TLB, see Translation lookaside	memory address interpretation,	enforcement, 354–355
buffer (TLB)	A-7 to A-8	extensions, 362–363
translation buffer, B-45 to B-46	MIPS data transfers, A-34	hardware primitives, 388
write buffer, B-11, B-14, B-32,	MIPS data types, A-34	Intel SCCC, F-70
B-35 to B-36	operand types/sizes, A-14	large-scale multiprocessor history,
Bundles	per reference, vs. block size, 378	L-61
IA-64, H-34 to H-35, H-37	Byte/word/long displacement	large-scale multiprocessors
Itanium 2, H-41	deferred addressing,	deadlock and buffering, I-38 to
Burks, Arthur, L-3	VAX, K-67	I-40
Burroughs B5000, L-16	, , ,	directory controller, I-40 to
Bus-based coherent multiprocessors,	C	I-41
L-59 to L-60	CAC, see Computer aided design	DSM implementation, I-36 to
Buses	(CAD) tools	I-37
barrier synchronization, I-16	Cache bandwidth	overview, I-34 to I-36
cache coherence, 391	caches, 78	latency hiding with speculation,
centralized shared-memory	multibanked caches, 85–86	396
multiprocessors, 351	nonblocking caches, 83–85	lock implementation, 389–391
definition, 351	pipelined cache access, 82	mechanism, 358
dynamic scheduling with	Cache block	memory hierarchy basics, 75
Tomasulo's algorithm,	AMD Opteron data cache, B-13 ,	multiprocessor-optimized
172, 175	B-13 to B-14	software, 409
Google WSC servers, 469	cache coherence protocol, 357–358	multiprocessors, 352–353
I/O bus replacements, D-34, D-34	compiler optimizations, 89–90	protocol definitions, 354–355
large-scale multiprocessor	critical word first, 86–87	single-chip multicore processor
synchronization, I-12 to	definition, B-2	case study, 412–418
I-13	directory-based cache coherence	single memory location example,
NEWS communication, F-42	protocol, 382–386, 383	352
scientific workloads on symmetric	false sharing, 366	snooping, see Snooping cache
shared-memory	GPU comparisons, 329	coherence
multiprocessors, I-25	inclusion, 397–398	state diagram, 361
Sony PlayStation 2 Emotion	memory block, B-61	steps and bus traffic examples, 391
Engine, E-18	miss categories, B-26	write-back cache, 360
vs. switched networks, F-2	miss rate reduction, B-26 to B-28	Cache definition, B-2
switch microarchitecture, F-55 to	scientific workloads on symmetric	Cache hit
F-56	shared-memory	AMD Opteron example, B-14
	Shared inclinery	This option example, B 17

definition, B-2	Cache organization	miss rate reduction, B-28
example calculation, B-5	blocks, B-7, B-8	multilevel caches, B-33
Cache latency, nonblocking cache,	Opteron data cache, B-12 to B-13,	and relative execution time, B-34
83–84	B-13	scientific workloads
Cache miss	optimization, B-19	distributed-memory
and average memory access time,	performance impact, B-19	multiprocessors, I-29 to
B-17 to B-20	Cache performance	I-31
block replacement, B-10	average memory access time, B-16	symmetric shared-memory
definition, B-2	to B-20	multiprocessors, I-22 to
distributed-memory	basic considerations, B-3 to B-6,	I-23, I-24
multiprocessors, I-32	B-16	shared-memory multiprogramming
example calculations, 83–84	basic equations, B-22	workload, 376
Intel Core i7, 122	basic optimizations, B-40	virtually addressed, B-37
interconnection network, F-87	cache optimization, 96	CACTI
large-scale multiprocessors, I-34 to	case study, 131–133	cache optimization, 79–80, 81
I-35	example calculation, B-16 to B-17	memory access times, 77
nonblocking cache, 84	out-of-order processors, B-20 to	Caller saving, control flow
single vs. multiple thread	B-22	instructions, A-19 to
executions, 228	prediction, 125–126	A-20
WCET, E-4	Cache prefetch, cache optimization, 92	Call gate
Cache-only memory architecture	Caches, see also Memory hierarchy	IA-32 segment descriptors, B-53
(COMA), L-61	access time vs. block size, B-28	segmented virtual memory, B-54
Cache optimizations	AMD Opteron example, B-12 to	Calls
basic categories, B-22	B-15, B-13 , B-15	compiler structure, A-25 to A-26
basic optimizations, B-40	basic considerations, B-48 to B-49	control flow instructions, A-17 ,
case studies, 131–133	coining of term, L-11	A-19 to A-21
compiler-controlled prefetching,	definition, B-2	CUDA Thread, 297
92–95	early work, L-10	dependence analysis, 321
compiler optimizations, 87–90	embedded systems, E-4 to E-5	high-level instruction set, A-42 to
critical word first, 86–87	Fermi GPU architecture, 306	A-43
energy consumption, 81	ideal processor, 214	Intel 80x86 integer operations,
hardware instruction prefetching,	ILP for realizable processors,	K-51
91–92, 92	216–218	invocation options, A-19
hit time reduction, B-36 to B-40	Itanium 2, H-42	ISAs, 14
miss categories, B-23 to B-26	multichip multicore	MIPS control flow instructions,
miss penalty reduction	multiprocessor, 419	A-38
via multilevel caches, B-30 to	parameter ranges, B-42	MIPS registers, 12
B-35	Sony PlayStation 2 Emotion	multiprogrammed workload,
read misses vs. writes, B-35 to	Engine, E-18	378
B-36	vector processors, G-25	NVIDIA GPU Memory structures,
miss rate reduction	vs. virtual memory, B-42 to B-43	304–305
via associativity, B-28 to B-30	Cache size	return address predictors, 206
via block size, B-26 to B-28	and access time, 77	shared-memory multiprocessor
via cache size, B-28	AMD Opteron example, B-13 to	workload, 369
multibanked caches, 85–86, 86	B-14	user-to-OS gates, B-54
nonblocking caches, 83–85, 84	energy consumption, 81	VAX, K-71 to K-72
overview, 78–79	highly parallel memory systems,	Canceling branch, branch delay slots,
pipelined cache access, 82	133	C-24 to C-25
simple first-level caches, 79–80	memory hierarchy basics, 76	Canonical form, AMD64 paged virtual
techniques overview, 96	misses per instruction, 126, 371	memory, B-55
way prediction, 81–82	miss rate, B-24 to B-25	Capabilities, protection schemes, L-9
write buffer merging, 87, 88	vs. miss rate, B-27	to L-10

Capacity misses	control flow instruction addressing	CCD, see Charge-coupled device
blocking, 89–90	modes, A-18	(CCD)
and cache size, B-24	return address predictors, 206	C/C++ language
definition, B-23	Case studies	dependence analysis, H-6
memory hierarchy basics, 75	advanced directory protocol,	GPU computing history, L-52
scientific workloads on symmetric	420–426	hardware impact on software
shared-memory	cache optimization, 131-133	development, 4
multiprocessors, I-22,	cell phones	integer division/remainder, J-12
I-23 , I-24	block diagram, E-23	loop-level parallelism
shared-memory workload, 373	Nokia circuit board, E-24	dependences, 318,
CAPEX, see Capital expenditures	overview, E-20	320–321
(CAPEX)	radio receiver, E-23	NVIDIA GPU programming, 289
Capital expenditures (CAPEX)	standards and evolution, E-25	return address predictors, 206
WSC costs, 452–455, 453	wireless communication	CDB, see Common data bus (CDB)
WSC Flash memory, 475	challenges, E-21	CDC, see Control Data Corporation
WSC TCO case study, 476–478	wireless networks, E-21 to	(CDC)
Carrier sensing, shared-media	E-22	CDF, datacenter, 487
networks, F-23	chip fabrication cost, 61-62	CDMA, see Code division multiple
Carrier signal, wireless networks,	computer system power	access (CDMA)
E-21	consumption, 63–64	Cedar project, L-60
Carry condition code, MIPS core, K-9	directory-based coherence,	Cell, Barnes-Hut <i>n</i> -body algorithm,
to K-16	418–420	I-9
Carry-in, carry-skip adder, J-42	dirty bits, D-61 to D-64	Cell phones
Carry-lookahead adder (CLA)	disk array deconstruction, D-51 to	block diagram, E-23
chip comparison, J-60	D-55, D-52 to D-55	embedded system case study
early computer arithmetic, J-63	disk deconstruction, D-48 to D-51,	characteristics, E-22 to E-24
example, J-38	D-50	overview, E-20
integer addition speedup, J-37 to	highly parallel memory systems,	radio receiver, E-23
J-41	133–136	standards and evolution, E-25
with ripple-carry adder, J-42	instruction set principles, A-47 to	wireless network overview,
tree, J-40 to J-41	A-54	E-21 to E-22
Carry-out	I/O subsystem design, D-59 to D-61	Flash memory, D-3
carry-lookahead circuit, J-38	memory hierarchy, B-60 to B-67	GPU features, 324
floating-point addition speedup,	microarchitectural techniques,	Nokia circuit board, E-24
J-25	247–254	wireless communication
Carry-propagate adder (CPA)	pipelining example, C-82 to C-88	challenges, E-21
integer multiplication, J-48, J-51	RAID performance prediction,	wireless networks, E-22
multipass array multiplier, J-51	D-57 to D-59	Centralized shared-memory
Carry-save adder (CSA)	RAID reconstruction, D-55 to	multiprocessors
integer division, J-54 to J-55	D-57	basic considerations, 351–352
integer multiplication, J-47 to J-48,	Sanyo VPC-SX500 digital camera,	basic structure, 346–347, 347
J-48	E-19	cache coherence, 352–353
Carry-select adder	single-chip multicore processor,	cache coherence enforcement,
characteristics, J-43 to J-44	412–418	354–355
chip comparison, J-60	Sony PlayStation 2 Emotion	cache coherence example,
example, J-43	Engine, E-15 to E-18	357–362
Carry-skip adder (CSA)	sorting, D-64 to D-67	cache coherence extensions,
characteristics, J-41 to J43	vector kernel on vector processor	362–363
example, J-42 , J-44	and GPU, 334–336	invalidate protocol
CAS, see Column access strobe (CAS)	WSC resource allocation, 478–479	implementation,
Case statements	WSC TCO 476–478	356–357

SMP and snooping limitations,	CERN, see European Center for	interconnected networks, F-50
363–364	Particle Research	Circulating water system (CWS)
snooping coherence	(CERN)	cooling system design, 448
implementation,	CFM, see Current frame pointer	WSCs, 448
365–366	(CFM)	CISC, see Complex Instruction Set
snooping coherence protocols,	Chaining	Computer (CISC)
355–356	convoys, DAXPY code, G-16	CLA, see Carry-lookahead adder
Centralized switched networks	vector processor performance,	(CLA)
example, F-31	G-11 to G-12, G-12	Clean block, definition, B-11
routing algorithms, F-48	VMIPS, 268–269	Climate Savers Computing Initiative,
topology, F-30 to F-34, F-31	Channel adapter, see Network	power supply
Centrally buffered switch,	interface	efficiencies, 462
microarchitecture, F-57	Channels, cell phones, E-24	Clock cycles
Central processing unit (CPU)	Character	basic MIPS pipeline, C-34 to C-35
Amdahl's law, 48	floating-point performance, A-2	and branch penalties, 205
average memory access time, B-17	as operand type, A-13 to A-14	cache performance, B-4
cache performance, B-4	operand types/sizes, 12	FP pipeline, C-66
coarse-grained multithreading, 224	Charge-coupled device (CCD), Sanyo	and full associativity, B-23
early pipelined versions, L-26 to	VPC-SX500 digital	GPU conditional branching, 303
L-27	camera, E-19	ILP exploitation, 197, 200
exception stopping/restarting, C-47	Checksum	ILP exposure, 157
extensive pipelining, C-81	dirty bits, D-61 to D-64	instruction fetch bandwidth,
Google server usage, 440	packet format, F-7	202–203
GPU computing history, L-52	Chillers	instruction steps, 173–175
vs. GPUs, 288	Google WSC, 466, 468	Intel Core i7 branch predictor, 166
instruction set complications, C-50	WSC containers, 464	MIPS exceptions, C-48
MIPS implementation, C-33 to	WSC cooling systems, 448–449	MIPS pipeline, C-52
C-34	Chime	MIPS pipeline FP operations, C-52
MIPS precise exceptions, C-59 to	definition, 309	to C-53
C-60	GPUs vs. vector architectures, 308	MIPS scoreboarding, C-77
MIPS scoreboarding, C-77	multiple lanes, 272	miss rate calculations, B-31 to B-32
performance measurement history,	NVIDIA GPU computational	multithreading approaches,
L-6	structures, 296	225–226
pipeline branch issues, C-41	vector chaining, G-12	pipelining performance, C-10
pipelining exceptions, C-43 to	vector execution time, 269, G-4	processor performance equation, 49
C-46	vector performance, G-2	RISC classic pipeline, C-7
pipelining performance, C-10	vector sequence calculations, 270	Sun T1 multithreading, 226–227
Sony PlayStation 2 Emotion	Chip-crossing wire delay, F-70	switch microarchitecture
Engine, E-17	OCN history, F-103	pipelining, F-61
SPEC server benchmarks, 40	Chipkill	vector architectures, G-4
TI TMS320C55 DSP, E-8	memory dependability, 104-105	vector execution time, 269
vector memory systems, G-10	WSCs, 473	vector multiple lanes, 271–273
Central processing unit (CPU) time	Choke packets, congestion	VLIW processors, 195
execution time, 36	management, F-65	Clock cycles per instruction (CPI)
modeling, B-18	Chunk	addressing modes, A-10
processor performance	disk array deconstruction, D-51	ARM Cortex-A8, 235
calculations, B-19 to	Shear algorithm, D-53	branch schemes, C-25 to C-26,
B-21	CIFS, see Common Internet File	C-26
processor performance equation,	System (CIFS)	cache behavior impact, B-18 to
49–51	Circuit switching	B-19
processor performance time, 49	congestion management, F-64 to	cache hit calculation, B-5
Cerf, Vint, F-97	F-65	data hazards requiring stalls, C-20

Clock cycles per instruction (<i>continued</i>) extensive pipelining, C-81	DDR DRAMS and DIMMS, 101 ILP for realizable processors, 218	CMOS DRAM, 99
floating-point calculations, 50–52	Intel Core i7, 236–237	first vector computers, L-46, L-48
ILP concepts, 148–149, 149	microprocessor advances, L-33	ripple-carry adder, J-3
ILP exploitation, 192	microprocessors, 24	vector processors, G-25 to G-27
Intel Core i7, 124, 240 , 240–241	MIPS pipeline FP operations, C-53	Coarse-grained multithreading,
microprocessor advances, L-33	multicore processor performance,	definition, 224–226
MIPS R4000 performance, C-69	400	Cocke, John, L-19, L-28
miss penalty reduction, B-32	and processor speed, 244	Code division multiple access (CDMA),
multiprocessing/	Clocks, processor performance	cell phones, E-25
multithreading-based	equation, 48–49	Code generation
performance, 398–400	Clock skew, pipelining performance,	compiler structure, A-25 to A-26,
multiprocessor communication	C-10	A-30
calculations, 350	Clock ticks	dependences, 220
pipeline branch issues, C-41	cache coherence, 391	general-purpose register
pipeline with stalls, C-12 to C-13	processor performance equation,	computers, A-6
pipeline structural hazards, C-15 to	48–49	ILP limitation studies, 220
C-16	Clos network	loop unrolling/scheduling, 162
pipelining concept, C-3	Beneŝ topology, F-33	Code scheduling
processor performance	as nonblocking, F-33	example, H-16
calculations, 218–219	Cloud computing	parallelism, H-15 to H-23
processor performance time, 49–51	basic considerations, 455–461	superblock scheduling, H-21 to
and processor speed, 244	clusters, 345	H-23, H-22
RISC history, L-21	provider issues, 471–472	trace scheduling, H-19 to H-21, H-20
shared-memory workloads,	utility computing history, L-73 to	Code size
369–370	L-74	architect-compiler considerations,
simple MIPS implementation,	Clusters	A-30
C-33 to C-34	characteristics, 8, I-45	benchmark information, A-2
structural hazards, C-13	cloud computing, 345	comparisons, A-44
Sun T1 multithreading unicore	as computer class, 5	flawless architecture design, A-45
performance, 229	containers, L-74 to L-75	instruction set encoding, A-22 to A-23
Sun T1 processor, 399	Cray X1, G-22	ISA and compiler technology,
Tomasulo's algorithm, 181	Google WSC servers, 469	A-43 to A-44
VAX 8700 vs. MIPS M2000, K-82	historical background, L-62 to	loop unrolling, 160–161
	L-64	
Clock cycle time	IBM Blue Gene/L, I-41 to I-44,	multiprogramming, 375–376 PMDs, 6
and associativity, B-29	I-43 to I-44	RISCs, A-23 to A-24
average memory access time, B-21 to B-22	interconnection network domains,	VAX design, A-45
cache optimization, B-19 to B-20,	F-3 to F-4	VAX design, A-43 VLIW model, 195–196
В-30	Internet Archive Cluster, see	Coefficient of variance, D-27
cache performance, B-4	Internet Archive Cluster	Coerced exceptions
<u>*</u>		definition, C-45
CPU time equation, 49–50, B-18	large-scale multiprocessors, I-6 large-scale multiprocessor trends,	exception types, C-46
MIPS implementation, C-34 miss penalties, 219	L-62 to L-63	
pipeline performance, C-12, C-14	outage/anomaly statistics, 435	Coherence, <i>see</i> Cache coherence Coherence misses
to C-15		definition, 366
	power consumption, F-85	
pipelining, C-3	utility computing, L-73 to L-74 as WSC forerunners, 435–436,	multiprogramming, 376–377 role, 367
shared- vs. switched-media networks, F-25	as wSC forerunners, 435–436, L-72 to L-73	
Clock periods, processor performance	WSC storage, 442–443	scientific workloads on symmetric shared-memory
equation, 48–49	Cm*, L-56	multiprocessors, I-22
Clock rate	C.mmp, L-56	snooping protocols, 355–356
CIOCK TAIL	C.IIIIIP, L-30	shooping protocols, 333-330

Cold-start misses, definition, B-23	FP unit with Tomasulo's	types and classes, A-28
Collision, shared-media networks, F-23	algorithm, 185	Compiler scheduling
Collision detection, shared-media	reservation stations/register tags,	data dependences, 151
networks, F-23	177	definition, C-71
Collision misses, definition, B-23	Tomasulo's algorithm, 180, 182	hardware support, L-30 to L-31
Collocation sites, interconnection	Common Internet File System (CIFS),	IBM 360 architecture, 171
networks, F-85	D-35	Compiler speculation, hardware support
COLOSSUS, L-4	NetApp FAS6000 filer, D-41 to	memory references, H-32
Column access strobe (CAS), DRAM,	D-42	overview, H-27
98–99	Communication bandwidth, basic	preserving exception behavior,
Column major order	considerations, I-3	H-28 to H-32
blocking, 89	Communication latency, basic	Compiler techniques
stride, 278	considerations, I-3 to I-4	dependence analysis, H-7
COMA, see Cache-only memory	Communication latency hiding, basic	global code scheduling, H-17 to
architecture (COMA)	considerations, I-4	H-18
Combining tree, large-scale	Communication mechanism	ILP exposure, 156–162
multiprocessor	adaptive routing, F-93 to F-94	vectorization, G-14
synchronization, I-18	internetworking, F-81 to F-82	vector sparse matrices, G-12
Command queue depth, vs. disk	large-scale multiprocessors	Compiler technology
throughput, D-4	advantages, I-4 to I-6	and architecture decisions, A-27 to
Commercial interconnection networks	metrics, I-3 to I-4	A-29
congestion management, F-64 to	multiprocessor communication	Cray X1, G-21 to G-22
F-66	calculations, 350	ISA and code size, A-43 to A-44
connectivity, F-62 to F-63	network interfaces, F-7 to F-8	multimedia instruction support,
cross-company interoperability,	NEWS communication, F-42 to	A-31 to A-32
F-63 to F-64	F-43	register allocation, A-26 to A-27
DECstation 5000 reboots, F-69	SMP limitations, 363	structure, A-24 to A-26, A-25
fault tolerance, F-66 to F-69	Communication protocol, definition,	Compiler writer-architect relationship,
Commercial workloads	F-8	A-29 to A-30
execution time distribution, 369	Communication subnets, see	Complex Instruction Set Computer
symmetric shared-memory	Interconnection	(CISC)
multiprocessors,	networks	RISC history, L-22
367–374	Communication subsystems, see	VAX as, K-65
Commit stage, ROB instruction,	Interconnection	Compulsory misses
186–187, 188	networks	and cache size, B-24
Commodities	Compare instruction, VAX, K-71	definition, B-23
Amazon Web Services, 456–457	Compares, MIPS core, K-9 to K-16	memory hierarchy basics, 75
array switch, 443	Compare-select-store unit (CSSU), TI	shared-memory workload, 373
cloud computing, 455	TMS320C55 DSP, E-8	Computation-to-communication ratios
cost vs. price, 32–33	Compiler-controlled prefetching, miss	parallel programs, I-10 to I-12
cost trends, 27–28, 32	penalty/rate reduction,	scaling, I-11
Ethernet rack switch, 442	92–95	Compute-optimized processors,
HPC hardware, 436	Compiler optimizations	interconnection
shared-memory multiprocessor,	blocking, 89–90	networks, F-88
441	cache optimization, 131-133	Computer aided design (CAD) tools,
WSCs, 441	compiler assumptions, A-25 to	cache optimization,
Commodity cluster, characteristics,	A-26	79–80
I-45	and consistency model, 396	Computer architecture, see also
Common data bus (CDB)	loop interchange, 88–89	Architecture
dynamic scheduling with	miss rate reduction, 87–90	coining of term, K-83 to K-84
Tomasulo's algorithm,	passes, A-25	computer design innovations, 4
172, 175	performance impact, A-27	defining, 11

Computer architecture (continued)	carry-skip adder, J-41 to J43,	Computer design principles
definition, L-17 to L-18	J-42	Amdahl's law, 46–48
exceptions, C-44	overview, J-37	common case, 45–46
factors in improvement, 2	integer arithmetic	parallelism, 44–45
flawless design, K-81	language comparison, J-12	principle of locality, 45
flaws and success, K-81	overflow, J-11	processor performance equation,
floating-point addition, rules, J-24	Radix-2 multiplication/	48–52
goals/functions requirements, 15,	division, J-4, J-4 to	Computer history, technology and
15–16, 16	J-7	architecture, 2–5
high-level language, L-18 to L-19	restoring/nonrestoring division,	Computer room air-conditioning
instruction execution issues, K-81	J-6	(CRAC), WSC
ISA, 11–15	ripply-carry addition, J-2 to J-3,	infrastructure, 448–449
multiprocessor software	J-3	Compute tiles, OCNs, F-3
development, 407–409	signed numbers, J-7 to J-10	Compute Unified Device Architecture,
parallel, 9–10	systems issues, J-10 to J-13	see CUDA (Compute
WSC basics, 432, 441–442	integer division	Unified Device
array switch, 443	radix-2 division, J-55	Architecture)
memory hierarchy, 443–446	radix-4 division, J-56	Conditional branches
storage, 442–443	radix-4 SRT division, J-57	branch folding, 206
Computer arithmetic	with single adder, J-54 to J-58	compare frequencies, A-20
chip comparison, J-58 , J-58 to	SRT division, J-45 to J-47, J-46	compiler performance, C-24 to
J-61, J-59 to J-60	integer-FP conversions, J-62	C-25
floating point	integer multiplication	control flow instructions, 14, A-16,
exceptions, J-34 to J-35	array multiplier, J-50	A-17 , A-19, A-21
fused multiply-add, J-32 to J-33	Booth recoding, J-49	desktop RISCs, K-17
IEEE 754, J-16	even/odd array, J-52	embedded RISCs, K-17
iterative division, J-27 to J-31	with many adders, J-50 to J-54	evaluation, A-19
and memory bandwidth, J-62	multipass array multiplier, J-51	global code scheduling, H-16, H-16
overview, J-13 to J-14	signed-digit addition table,	GPUs, 300–303
precisions, J-33 to J-34	J-54	ideal processor, 214
remainder, J-31 to J-32	with single adder, J-47 to J-49,	ISAs, A-46
special values, J-16	J-48	MIPS control flow instructions,
special values and denormals,	Wallace tree, J-53	A-38, A-40
J-14 to J-15	integer multiplication/division,	MIPS core, K-9 to K-16
underflow, J-36 to J-37, J-62	shifting over zeros, J-45	PA-RISC instructions, K-34, K-34
floating-point addition	to J-47	predictor misprediction rates, 166
denormals, J-26 to J-27	overview, J-2	PTX instruction set, 298–299
overview, J-21 to J-25	rounding modes, J-20	static branch prediction, C-26
speedup, J-25 to J-26	Computer chip fabrication	types, A-20
floating-point multiplication	cost case study, 61-62	vector-GPU comparison, 311
denormals, J-20 to J-21	Cray X1E, G-24	Conditional instructions
examples, J-19	Computer classes	exposing parallelism, H-23 to H-27
overview, J-17 to J-20	desktops, 6	limitations, H-26 to H-27
rounding, J-18	embedded computers, 8-9	Condition codes
integer addition speedup	example, 5	branch conditions, A-19
carry-lookahead, J-37 to J-41	overview, 5	control flow instructions, 14
carry-lookahead circuit, J-38	parallelism and parallel	definition, C-5
carry-lookahead tree, J-40	architectures, 9-10	high-level instruction set, A-43
carry-lookahead tree adder,	PMDs, 6	instruction set complications, C-50
J-41	servers, 7	MIPS core, K-9 to K-16
carry-select adder, J-43, J-43 to	and system characteristics, E-4	pipeline branch penalties, C-23
J-44, J-44	warehouse-scale computers, 8	VAX, K-71

Conflict misses	early computer arithmetic, J-64	Control Processor
and block size, B-28	first dynamic scheduling, L-27	definition, 309
cache coherence mechanism, 358	MIPS scoreboarding, C-75, C-77	GPUs, 333
and cache size, B-24 , B-26	multiple-issue processor	SIMD, 10
definition, B-23	development, L-28	Thread Block Scheduler, 294
as kernel miss, 376	multithreading history, L-34	vector processor, 310 , 310–311
L3 caches, 371	RISC history, L-19	vector unit structure, 273
memory hierarchy basics, 75	Control Data Corporation (CDC)	Conventional datacenters, vs. WSCs,
OLTP workload, 370	STAR-100	436
PIDs, B-37	first vector computers, L-44	Convex Exemplar, L-61
shared-memory workload, 373	peak performance vs. start-up	Convex processors, vector processor
Congestion control	overhead, 331	history, G-26
commercial interconnection	Control Data Corporation (CDC)	Convolution, DSP, E-5
networks, F-64	STAR processor, G-26	Convoy
system area network history, F-101	Control dependences	chained, DAXPY code, G-16
Congestion management, commercial	conditional instructions, H-24	DAXPY on VMIPS, G-20
interconnection	as data dependence, 150	strip-mined loop, G-5
networks, F-64 to F-66	global code scheduling, H-16	vector execution time, 269–270
Connectedness	hardware-based speculation,	vector starting times, G-4
dimension-order routing, F-47 to	183	Conway, Lynn, L-28
F-48	ILP, 154–156	Cooling systems
interconnection network topology,	ILP hardware model, 214	Google WSC, 465–468
F-29	and Tomasulo's algorithm, 170	mechanical design, 448
Connection delay, multi-device	vector mask registers, 275–276	WSC infrastructure, 448–449
interconnection	Control flow instructions	Copper wiring
networks, F-25	addressing modes, A-17 to A-18	Ethernet, F-78
Connection Machine CM-5, F-91,	basic considerations, A-16 to	interconnection networks, F-9
F-100	A-17, A-20 to A-21	"Coprocessor operations," MIPS core
Connection Multiprocessor 2, L-44,	classes, A-17	extensions, K-21
L-57	conditional branch options, A-19	Copy propagation, definition, H-10 to
Consistency, see Memory consistency	conditional instructions, H-27	H-11
Constant extension	hardware vs. software speculation,	Core definition, 15
desktop RISCs, K-9	221	Core plus ASIC, embedded systems,
embedded RISCs, K-9	Intel 80x86 integer operations, K-51	E-3
Constellation, characteristics, I-45	ISAs, 14	Correlating branch predictors, branch
Containers	MIPS, A-37 to A-38, A-38	costs, 162–163
airflow, 466	procedure invocation options,	Cosmic Cube, F-100, L-60
cluster history, L-74 to L-75	A-19 to A-20	Cost
Google WSCs, 464–465, 465	Control hazards	Amazon EC2, 458
Context Switching	ARM Cortex-A8, 235	Amazon Web Services, 457
definition, 106, B-49	definition, C-11	bisection bandwidth, F-89
Fermi GPU, 307	Control instructions	branch predictors, 162-167, C-26
Control bits, messages, F-6	Intel 80x86, K-53	chip fabrication case study, 61-62
Control Data Corporation (CDC), first	RISCs	cloud computing providers,
vector computers, L-44	desktop systems, K-12, K-22	471–472
to L-45	embedded systems, K-16	disk storage, D-2
Control Data Corporation (CDC) 6600	VAX, B-73	DRAM/magnetic disk, D-3
computer architecture definition,	Controllers, historical background,	interconnecting node calculations,
L-18	L-80 to L-81	F-31 to F-32, F-35
dynamically scheduling with	Controller transitions	Internet Archive Cluster, D-38 to
scoreboard, C-71 to	directory-based, 422	D-40
C-72	snooping cache, 421	internetworking, F-80

Cost (continued)	CPA, see Carry-propagate adder	Cray X-MP, L-45
I/O system design/evaluation,	(CPA)	first vector computers, L-47
D-36	CPI, see Clock cycles per instruction	Cray XT3, L-58, L-63
magnetic storage history, L-78	(CPI)	Cray XT3 SeaStar, F-63
MapReduce calculations, 458–459,	CPU, see Central processing unit	Cray Y-MP
459	(CPU)	first vector computers, L-45 to
memory hierarchy design, 72	CRAC, see Computer room	L-47
MINs vs. direct networks, F-92	air-conditioning	parallel processing debates, L-57
multiprocessor cost relationship,	(CRAC)	vector architecture programming,
409	Cray, Seymour, G-25, G-27, L-44,	281 , 281–282
multiprocessor linear speedup, 407	L-47	CRC, see Cyclic redundancy check
network topology, F-40	Cray-1	(CRC)
PMDs, 6	first vector computers, L-44 to L-45	Create vector index instruction (CVI)
server calculations, 454, 454–455	peak performance vs. start-up	sparse matrices, G-13
server usage, 7	overhead, 331	Credit-based control flow
SIMD supercomputer	pipeline depths, G-4	InfiniBand, F-74
development, L-43	RISC history, L-19	interconnection networks, F-10,
speculation, 210	vector performance, 332	F-17
torus topology interconnections,	vector performance measures, G-16	CRISP, L-27
F-36 to F-38	as VMIPS basis, 264, 270–271,	Critical path
tournament predictors, 164-166	276–277	global code scheduling, H-16
WSC array switch, 443	Cray-2	trace scheduling, H-19 to H-21, H-2
WSC vs. datacenters, 455–456	DRAM, G-25	Critical word first, cache optimization
WSC efficiency, 450–452	first vector computers, L-47	86–87
WSC facilities, 472	tailgating, G-20	Crossbars
WSC network bottleneck, 461	Cray-3, G-27	centralized switched networks,
WSCs, 446–450, 452–455, 453	Cray-4, G-27	F-30, F-31
WSCs vs. servers, 434	Cray C90	characteristics, F-73
WSC TCO case study, 476–478	first vector computers, L-46, L-48	Convex Exemplar, L-61
Cost associativity, cloud computing,	vector performance calculations,	HOL blocking, F-59
460–461	G-8	OCN history, F-104
Cost-performance	Cray J90, L-48	switch microarchitecture, F-62
commercial interconnection	Cray Research T3D, F-86 to F-87,	switch microarchitecture
networks, F-63	F-87	pipelining, F-60 to F-61
computer trends, 3	Cray supercomputers, early computer	F-61
extensive pipelining, C-80 to C-81	arithmetic, J-63 to J-64	VMIPS, 265
IBM eServer p5 processor, 409	Cray T3D, F-100, L-60	Crossbar switch
sorting case study, D-64 to D-67	Cray T3E, F-67, F-94, F-100, L-48,	centralized switched networks, F-30
WSC Flash memory, 474–475	L-60	interconnecting node calculations.
WSC goals/requirements, 433	Cray T90, memory bank calculations,	F-31 to F-32
WSC hardware inactivity, 474	276	Cross-company interoperability,
WSC processors, 472–473	Cray X1	commercial
Cost trends	cluster history, L-63	interconnection
integrated circuits, 28–32	first vector computers, L-46, L-48	networks, F-63 to F-64
manufacturing vs. operation, 33	MSP module, G-22 , G-23 to G-24	Crusoe, L-31
overview, 27	overview, G-21 to G-23	Cryptanalysis, L-4
vs. price, 32–33	peak performance, 58	CSA, see Carry-save adder (CSA);
time, volume, commoditization,	Cray X1E, F-86, F-91	Carry-skip adder (CSA),
27–28	characteristics, G-24	C# language, hardware impact on
Count register, PowerPC instructions,	Cray X2, L-46 to L-47	software development,
K-32 to K-33	first vector computers, L-48 to	CSSU, see Compare-select-store unit
CP-67 program, L-10	L-49	(CSSU)
or or program, in 10	L T/	(5550)

CUDA (Compute Unified Device	Cyclic redundancy check (CRC)	dynamically scheduling with
Architecture)	IBM Blue Gene/L 3D torus	scoreboard, C-71
GPU computing history, L-52	network, F-73	example calculations, H-3 to H-4
GPU conditional branching, 303	network interface, F-8	hazards, 153–154
GPUs vs. vector architectures,	Cydrome Cydra 6, L-30, L-32	ILP, 150–152
310	5	ILP hardware model, 214–215
NVIDIA GPU programming,	D DeCombination	ILP limitation studies, 220
289	DaCapo benchmarks	vector execution time, 269
PTX, 298, 300	ISA, 242	Data fetching
sample program, 289–290	SMT, 230–231, 231	ARM Cortex-A8, 234
SIMD instructions, 297	DAMQs, see Dynamically allocatable	directory-based cache coherence
terminology, 313–315	multi-queues (DAMQs) DASH multiprocessor, L-61	protocol example,
CUDA Thread	<u> </u>	382–383
CUDA programming model, 300, 315	Database program speculation, via multiple branches, 211	dynamically scheduled pipelines, C-70 to C-71
definition, 292, 313	Data cache	ILP, instruction bandwidth
definitions and terms, 314	ARM Cortex-A8, 236	basic considerations, 202-203
GPU data addresses, 310	cache optimization, B-33, B-38	branch-target buffers, 203-206
GPU Memory structures, 304	cache performance, B-16	return address predictors,
NVIDIA parallelism, 289–290	GPU Memory, 306	206–207
vs. POSIX Threads, 297	ISA, 241	MIPS R4000, C-63
PTX Instructions, 298	locality principle, B-60	snooping coherence protocols,
SIMD Instructions, 303	MIPS R4000 pipeline, C-62 to	355–356
Thread Block, 313	C-63	Data flow
Current frame pointer (CFM), IA-64	multiprogramming, 374	control dependence, 154-156
register model, H-33 to	page level write-through, B-56	dynamic scheduling, 168
H-34	RISC processor, C-7	global code scheduling, H-17
Custom cluster	structural hazards, C-15	ILP limitation studies, 220
characteristics, I-45	TLB, B-46	limit, L-33
IBM Blue Gene/L, I-41 to I-44,	Data cache miss	Data flow execution, hardware-based
I-43 to I-44	applications vs. OS, B-59	speculation, 184
Cut-through packet switching, F-51	cache optimization, B-25	Datagrams, see Packets
routing comparison, F-54	Intel Core i7, 240	Data hazards
CVI, see Create vector index	Opteron, B-12 to B-15	ARM Cortex-A8, 235
instruction (CVI)	sizes and associativities, B-10	basic considerations, C-16
CWS, see Circulating water system	writes, B-10	definition, C-11
(CWS)	Data cache size, multiprogramming,	dependences, 152-154
CYBER 180/990, precise exceptions,	376–377	dynamic scheduling, 167-176
C-59	Datacenters	basic concept, 168-170
CYBER 205	CDF, 487	examples, 176–178
peak performance vs. start-up	containers, L-74	Tomasulo's algorithm,
overhead, 331	cooling systems, 449	170–176, 178–179
vector processor history, G-26 to	layer 3 network example, 445	Tomasulo's algorithm
G-27	PUE statistics, 451	loop-based example,
CYBER 250, L-45	tier classifications, 491	179–181
Cycles, processor performance	vs. WSC costs, 455–456	ILP limitation studies, 220
equation, 49	WSC efficiency measurement,	instruction set complications, C-50
Cycle time, see also Clock cycle time	450–452	to C-51
CPI calculations, 350	vs. WSCs, 436	microarchitectural techniques case
pipelining, C-81	Data dependences	study, 247–254
scoreboarding, C-79	conditional instructions, H-24	MIPS pipeline, C-71
vector processors, 277	data hazards, 167–168	RAW, C-57 to C-58

Data hazards	vector execution time, 268-271	Data types
stall minimization by forwarding,	vector-length registers,	architect-compiler writer
C-16 to C-19, C-18	274–275	relationship, A-30
stall requirements, C-19 to C-21	vector load-store unit	dependence analysis, H-10
VMIPS, 264	bandwidth, 276-277	desktop computing, A-2
Data-level parallelism (DLP)	vector-mask registers, 275-276	Intel 80x86, K-50
definition, 9	vector processor example,	MIPS, A-34, A-36
GPUs	267–268	MIPS64 architecture, A-34
basic considerations, 288	VMIPS, 264–267	multimedia compiler support, A-31
basic PTX thread instructions,	vector kernel implementation,	operand types/sizes, A-14 to A-15
299	334–336	SIMD Multimedia Extensions,
conditional branching, 300-303	vector performance and memory	282–283
coprocessor relationship,	bandwidth, 332	SPARC, K-31
330–331	vector vs. scalar performance,	VAX, K-66 , K-70
Fermi GPU architecture	331–332	Dauber, Phil, L-28
innovations, 305-308	WSCs vs. servers, 433–434	DAXPY loop
Fermi GTX 480 floorplan, 295	Data link layer	chained convoys, G-16
mapping examples, 293	definition, F-82	on enhanced VMIPS, G-19 to G-21
Multimedia SIMD comparison,	interconnection networks, F-10	memory bandwidth, 332
312	Data parallelism, SIMD computer	MIPS/VMIPS calculations,
multithreaded SIMD Processor	history, L-55	267–268
block diagram, 294	Data-race-free, synchronized	peak performance vs. start-up
NVIDIA computational	programs, 394	overhead, 331
structures, 291–297	Data races, synchronized programs, 394	vector performance measures,
NVIDIA/CUDA and AMD	Data transfers	G-16
terminology, 313–315	cache miss rate calculations, B-16	VLRs, 274–275
NVIDIA GPU ISA, 298–300	computer architecture, 15	on VMIPS, G-19 to G-20
NVIDIA GPU Memory	desktop RISC instructions, K-10,	VMIPS calculations, G-18
structures, 304 , 304–305	K-21	VMIPS on Linpack, G-18
programming, 288–291	embedded RISCs, K-14, K-23	VMIPS peak performance, G-17
SIMD thread scheduling, 297	gather-scatter, 281, 291	D-caches
terminology, 292	instruction operators, A-15	case study examples, B-63
vs. vector architectures,	Intel 80x86, K-49, K-53 to K-54	way prediction, 81-82
308–312, 310	ISA, 12–13	DDR, see Double data rate (DDR)
from ILP, 4–5	MIPS, addressing modes, A-34	Deadlock
Multimedia SIMD Extensions	MIPS64, K-24 to K-26	cache coherence, 361
basic considerations, 282-285	MIPS64 instruction subset, A-40	dimension-order routing, F-47 to
programming, 285	MIPS64 ISA formats, 14	F-48
roofline visual performance	MIPS core extensions, K-20	directory protocols, 386
model, 285–288, 287	MIPS operations, A-36 to A-37	Intel SCCC, F-70
and power, 322	MMX, 283	large-scale multiprocessor cache
vector architecture	multimedia instruction compiler	coherence, I-34 to I-35,
basic considerations, 264	support, A-31	I-38 to I-40
gather/scatter operations,	operands, A-12	mesh network routing, F-46
279–280	PTX, 305	network routing, F-44
multidimensional arrays,	SIMD extensions, 284	routing comparison, F-54
278–279	"typical" programs, A-43	synchronization, 388
multiple lanes, 271–273	VAX, B-73	system area network history, F-101
peak performance vs. start-up	vector vs. GPU, 300	Deadlock avoidance
overhead, 331	Data trunks, MIPS scoreboarding,	meshes and hypercubes, F-47
programming, 280–282	C-75	routing, F-44 to F-45

Deadlock recovery, routing, F-45	instruction execution issues, K-81	Dell servers
Dead time	instruction operator categories,	economies of scale, 456
vector pipeline, G-8	A-15	real-world considerations, 52–55
vector processor, G-8	instruction set complications, C-49	WSC services, 441
Decimal operands, formats, A-14	to C-50	Demodulator, radio receiver, E-23
Decimal operations, PA-RISC	integer overflow, J-11	Denormals, J-14 to J-16, J-20 to
instructions, K-35	vs. MIPS, K-82	J-21
Decision support system (DSS),	vs. MIPS32 sort, K-80	floating-point additions, J-26 to
shared-memory	vs. MIPS code, K-75	J-27
workloads, 368–369,	miss rate vs. virtual addressing,	floating-point underflow, J-36
369 , 369–370	B-37	Dense matrix multiplication, LU
Decoder, radio receiver, E-23	operands, K-66 to K-68	kernel, I-8
Decode stage, TI 320C55 DSP, E-7	operand specifiers, K-68	Density-optimized processors, vs.
DEC PDP-11, address space, B-57 to	operands per ALU, A-6 , A-8	SPEC-optimized, F-85
B-58	operand types/sizes, A-14	Dependability Dependability
DECstation 5000, reboot	operation count, K-70 to K-71	benchmark examples, D-21 to
measurements, F-69	operations, K-70 to K-72	D-23, D-22
DEC VAX	operators, A-15	definition, D-10 to D-11
addressing modes, A-10 to A-11,	overview, K-65 to K-66	disk operators, D-13 to D-15
A-11 , K-66 to K-68	precise exceptions, C-59	integrated circuits, 33–36
address space, B-58	replacement by RISC, 2	Internet Archive Cluster, D-38 to
architect-compiler writer	RISC history, L-20 to L-21	D-40
relationship, A-30	RISC instruction set lineage, K-43	memory systems, 104–105
branch conditions, A-19	sort, K-76 to K-79	WSC goals/requirements, 433
branches, A-18	sort code, K-77 to K-79	WSC memory, 473–474
jumps, procedure calls, K-71 to	sort register allocation, K-76	WSC storage, 442–443
K-72	swap, K-72 to K-76	Dependence analysis
bubble sort, K-76	swap code, B-74 , K-72, K-74	basic approach, H-5
characteristics, K-42	swap full procedure, K-75 to K-76	example calculations, H-7
cluster history, L-62, L-72	swap and register preservation,	limitations, H-8 to H-9
compiler writing-architecture	B-74 to B-75	Dependence distance, loop-carried
relationship, A-30	unique instructions, K-28	dependences, H-6
control flow instruction branches,	DEC VAX-11/780, L-6 to L-7, L-11,	Dependences Dependences
A-18	L-18	antidependences, 152, 320, C-72,
data types, K-66	DEC VAX 8700	C-79
early computer arithmetic, J-63 to	vs. MIPS M2000, K-82 , L-21	CUDA, 290
J-64	RISC history, L-21	as data dependence, 150
early pipelined CPUs, L-26	Dedicated link network	data hazards, 167–168
exceptions, C-44	black box network, F-5 to F-6	definition, 152–153, 315–316
extensive pipelining, C-81	effective bandwidth, F-17	dynamically scheduled pipelines,
failures, D-15	example, F-6	C-70 to C-71
flawless architecture design, A-45,	Defect tolerance, chip fabrication cost	dynamically scheduling with
K-81	case study, 61–62	scoreboard, C-71
high-level instruction set, A-41 to	Deferred addressing, VAX, K-67	dynamic scheduling with
A-43	Delayed branch	Tomasulo's algorithm,
high-level language computer	basic scheme, C-23	172
architecture, L-18 to L-19	compiler history, L-31	hardware-based speculation,
history, 2–3	instructions, K-25	183
immediate value distribution, A-13	stalls, C-65	hazards, 153–154
instruction classes, B-73	Dell Poweredge servers, prices, 53	ILP, 150–156
instruction encoding, K-68 to	Dell Poweredge Thunderbird, SAN	ILP hardware model, 214–215
K-70. K-69	characteristics. F-76	ILP limitation studies, 220

Dependences (continued)	Deterministic routing algorithm	desktop multimedia support, E-11
loop-level parallelism, 318–322,	vs. adaptive routing, F-52 to F-55,	embedded RISC extensions, K-19
H-3	F-54	examples and characteristics, E-6
dependence analysis, H-6 to H-10	DOR, F-46	media extensions, E-10 to E-11
MIPS scoreboarding, C-79	Dies	overview, E-5 to E-7
as program properties, 152	embedded systems, E-15	saturating operations, K-18 to
sparse matrices, G-13	integrated circuits, 28-30, 29	K-19
and Tomasulo's algorithm, 170	Nehalem floorplan, 30	TI TMS320C6x, E-8 to E-10
types, 150	wafer example, 31 , 31–32	TI TMS320C6x instruction packet,
vector execution time, 269	Die yield, basic equation, 30–31	E-10
vector mask registers, 275-276	Digital Alpha	TI TMS320C55, E-6 to E-7, E-7 to
VMIPS, 268	branches, A-18	E-8
Dependent computations, elimination,	conditional instructions, H-27	TI TMS320C64x, E-9
H-10 to H-12	early pipelined CPUs, L-27	Dimension-order routing (DOR),
Descriptor privilege level (DPL),	RISC history, L-21	definition, F-46
segmented virtual	RISC instruction set lineage, K-43	DIMMs, see Dual inline memory
memory, B-53	synchronization history, L-64	modules (DIMMs)
Descriptor table, IA-32, B-52	Digital Alpha 21064, L-48	Direct attached disks, definition, D-35
Design faults, storage systems, D-11	Digital Alpha 21264	Direct-mapped cache
Desktop computers	cache hierarchy, 368	address parts, B-9
characteristics, 6	floorplan, 143	address translation, B-38
compiler structure, A-24	Digital Alpha MAX	block placement, B-7
as computer class, 5	characteristics, K-18	early work, L-10
interconnection networks, F-85	multimedia support, K-18	memory hierarchy basics, 74
memory hierarchy basics, 78	Digital Alpha processors	memory hierarchy, B-48
multimedia support, E-11	addressing modes, K-5	optimization, 79–80
multiprocessor importance, 344	arithmetic/logical instructions, K-11	Direct memory access (DMA)
performance benchmarks, 38–40	branches, K-21	historical background, L-81
processor comparison, 242	conditional branches, K-12, K-17	InfiniBand, F-76
RAID history, L-80	constant extension, K-9	network interface functions,
RISC systems	control flow instruction branches,	F-7
addressing modes, K-5	A-18	Sanyo VPC-SX500 digital camera,
addressing modes and	conventions, K-13	E-19
instruction formats, K-5	data transfer instructions, K-10	Sony PlayStation 2 Emotion
to K-6	displacement addressing mode,	Engine, E-18
arithmetic/logical instructions,	A-12	TI TMS320C55 DSP, E-8
K-22	exception stopping/restarting, C-47	zero-copy protocols, F-91
conditional branches, K-17	FP instructions, K-23	Direct networks
constant extension, K-9	immediate value distribution, A-13	commercial system topologies,
control instructions, K-12	MAX, multimedia support, E-11	F-37
conventions, K-13	MIPS precise exceptions, C-59	vs. high-dimensional networks,
data transfer instructions, K-10 ,	multimedia support, K-19	F-92
K-21	recent advances, L-33	vs. MIN costs, F-92
examples, K-3, K-4	as RISC systems, K-4	topology, F-34 to F-40
features, K-44	shared-memory workload,	Directory-based cache coherence
FP instructions, K-13 , K-23	367–369	advanced directory protocol case
instruction formats, K-7	unique instructions, K-27 to K-29	study, 420–426
multimedia extensions, K-16 to	Digital Linear Tape, L-77	basic considerations, 378–380
K-19, K-18	Digital signal processor (DSP)	case study, 418–420
system characteristics, E-4	cell phones, E-23, E-23 , E-23 to	definition, 354
Destination offset, IA-32 segment,	E-24	distributed-memory
B-53	definition, E-3	multiprocessor, 380

large-scale multiprocessor history,	microarchitectural techniques case	DLX
L-61	study, 247–254	integer arithmetic, J-12
latencies, 425	Displacement addressing mode	vs. Intel 80x86 operations, K-62,
protocol basics, 380-382	basic considerations, A-10	K-63 to K-64
protocol example, 382-386	MIPS, 12	DMA, see Direct memory access
state transition diagram, 383	MIPS data transfers, A-34	(DMA)
Directory-based multiprocessor	MIPS instruction format, A-35	DOR, see Dimension-order routing
characteristics, I-31	value distributions, A-12	(DOR)
performance, I-26	VAX, K-67	Double data rate (DDR)
scientific workloads, I-29	Display lists, Sony PlayStation 2	ARM Cortex-A8, 117
synchronization, I-16, I-19 to I-20	Emotion Engine, E-17	DRAM performance, 100
Directory controller, cache coherence,	Distributed routing, basic concept,	DRAMs and DIMMS, 101
I-40 to I-41	F-48	Google WSC servers, 468-469
Dirty bit	Distributed shared memory (DSM)	IBM Blue Gene/L, I-43
case study, D-61 to D-64	basic considerations, 378–380	InfiniBand, F-77
definition, B-11	basic structure, 347–348, 348	Intel Core i7, 121
virtual memory fast address	characteristics, I-45	SDRAMs, 101
translation, B-46	directory-based cache coherence,	Double data rate 2 (DDR2), SDRAM
Dirty block	354, 380 , 418–420	timing diagram, 139
definition, B-11	multichip multicore	Double data rate 3 (DDR3)
read misses, B-36	multiprocessor, 419	DRAM internal organization, 98
Discrete cosine transform, DSP, E-5	snooping coherence protocols,	GDRAM, 102
Disk arrays	355	Intel Core i7, 118
deconstruction case study, D-51 to	Distributed shared-memory	SDRAM power consumption, 102.
D-55, D-52 to D-55	multiprocessors	103
RAID 6, D-8 to D-9	cache coherence implementation,	Double data rate 4 (DDR4), DRAM,
RAID 10, D-8	I-36 to I-37	99
RAID levels, D-6 to D-8, D-7	scientific application performance,	Double data rate 5 (DDR5), GDRAM
Disk layout, RAID performance	I-26 to I-32, I-28 to I-32	102
prediction, D-57 to D-59	Distributed switched networks,	Double-extended floating-point
Disk power, basic considerations, D-5	topology, F-34 to F-40	arithmetic, J-33 to J-34
Disk storage	Divide operations	Double failures, RAID reconstruction.
access time gap, D-3	chip comparison, J-60 to J-61	D-55 to D-57
areal density, D-2 to D-5	floating-point, stall, C-68	Double-precision floating point
cylinders, D-5	floating-point iterative, J-27 to	add-divide, C-68
deconstruction case study, D-48 to	J-31	AVX for x86, 284
D-51, D-50	integers, speedup	chip comparison, J-58
DRAM/magnetic disk cost vs.	radix-2 division, J-55	data access benchmarks, A-15
access time, D-3	radix-4 division, J-56	DSP media extensions, E-10 to
intelligent interfaces, D-4	radix-4 SRT division, J-57	E-11
internal microprocessors, D-4	with single adder, J-54 to J-58	Fermi GPU architecture, 306
real faults and failures, D-10 to	integer shifting over zeros, J-45 to	floating-point pipeline, C-65
D-11	J-47	GTX 280, 325, 328–330
throughput vs. command queue	language comparison, J-12	IBM 360, 171
depth, D-4	<i>n</i> -bit unsigned integers, J-4	MIPS, 285, A-38 to A-39
Disk technology	PA-RISC instructions, K-34 to	MIPS data transfers, A-34
failure rate calculation, 48	K-35	MIPS registers, 12, A-34
Google WSC servers, 469	Radix-2, J-4 to J-7	Multimedia SIMD vs. GPUs, 312
performance trends, 19–20, 20	restoring/nonrestoring, J-6	operand sizes/types, 12
WSC Flash memory, 474–475	SRT division, J-45 to J-47, J-46	as operand type, A-13 to A-14
Dispatch stage	unfinished instructions, 179	operand usage, 297
instruction steps, 174	DLP, see Data-level parallelism (DLP)	pipeline timing, C-54
	, = paramemom (DEI)	r-r

Double-precision (continued)	Dynamically shared libraries, control	WSC memory costs, 473-474
Roofline model, 287, 326	flow instruction	WSC memory hierarchy, 444-445
SIMD Extensions, 283	addressing modes, A-18	WSC power modes, 472
VMIPS, 266 , 266–267	Dynamic energy, definition, 23	yield, 32
Double rounding	Dynamic network reconfiguration,	Dynamic scheduling
FP precisions, J-34	fault tolerance, F-67 to	first use, L-27
FP underflow, J-37	F-68	ILP
Double words	Dynamic power	basic concept, 168-169
aligned/misaligned addresses, A-8	energy efficiency, 211	definition, 168
data access benchmarks, A-15	microprocessors, 23	example and algorithms,
Intel 80x86, K-50	vs. static power, 26	176–178
memory address interpretation,	Dynamic random-access memory	with multiple issue and
A-7 to A-8	(DRAM)	speculation, 197–202
MIPS data types, A-34	bandwidth issues, 322-323	overcoming data hazards,
operand types/sizes, 12, A-14	characteristics, 98-100	167–176
stride, 278	clock rates, bandwidth, names, 101	Tomasulo's algorithm, 170-176,
DPL, see Descriptor privilege level	cost vs. access time, D-3	178–179, 181–183
(DPL)	cost trends, 27	MIPS scoreboarding, C-79
DRAM, see Dynamic random-access	Cray X1, G-22	SMT on superscalar processors, 230
memory (DRAM)	CUDA, 290	and unoptimized code, C-81
DRDRAM, Sony PlayStation 2, E-16	dependability, 104	Dynamic voltage-frequency scaling
to E-17	disk storage, D-3 to D-4	(DVFS)
Driver domains, Xen VM, 111	embedded benchmarks, E-13	energy efficiency, 25
DSM, see Distributed shared memory	errors and faults, D-11	Google WSC, 467
(DSM)	first vector computers, L-45, L-47	processor performance equation,
DSP, see Digital signal processor	Flash memory, 103–104	52
(DSP)	Google WSC servers, 468–469	Dynamo (Amazon), 438, 452
DSS, see Decision support system	GPU SIMD instructions, 296	(
(DSS)	IBM Blue Gene/L, I-43 to I-44	E
Dual inline memory modules (DIMMs)	improvement over time, 17	Early restart, miss penalty reduction,
clock rates, bandwidth, names, 101	integrated circuit costs, 28	86
DRAM basics, 99	Intel Core i7, 121	Earth Simulator, L-46, L-48, L-63
Google WSC server, 467	internal organization, 98	EBS, see Elastic Block Storage (EBS)
Google WSC servers, 468–469	magnetic storage history, L-78	EC2, see Amazon Elastic Computer
graphics memory, 322–323	memory hierarchy design, 73, 73	Cloud (EC2)
Intel Core i7, 118, 121	memory performance, 100–102	ECC, see Error-Correcting Code
Intel SCCC, F-70	multibanked caches, 86	(ECC)
SDRAMs, 101	NVIDIA GPU Memory structures,	Eckert, J. Presper, L-2 to L-3, L-5, L-19
WSC memory, 473–474	305	Eckert-Mauchly Computer
Dual SIMD Thread Scheduler,	performance milestones, 20	Corporation, L-4 to L-5,
example, 305–306	power consumption, 63	L-56
DVFS, see Dynamic	real-world server considerations,	ECL minicomputer, L-19
voltage-frequency	52–55	Economies of scale
scaling (DVFS)	Roofline model, 286	WSC vs. datacenter costs, 455–456
Dynamically allocatable multi-queues	server energy savings, 25	WSCs, 434
(DAMQs), switch	Sony PlayStation 2, E-16 , E-17	EDSAC (Electronic Delay Storage
microarchitecture, F-56	speed trends, 99	Automatic Calculator),
to F-57	technology trends, 17	L-3
Dynamically scheduled pipelines	vector memory systems, G-9	EDVAC (Electronic Discrete Variable
basic considerations, C-70 to C-71	vector memory systems, G-9 vector processor, G-25	Automatic Computer),
with scoreboard, C-71 to C-80	WSC efficiency measurement, 450	L-2 to L-3
WILL SCOLUDIALU, V.= / I TO V.= OU	WOULDING THEASUREMENT 4 10	L=Z, (O L=3

EEMBC, see Electronic Design News Embedded Microprocessor Benchmark Consortium	Electronically Erasable Programmable Read-Only Memory, see EEPROM (Electronically Erasable	media extensions, E-10 to E-11 overview, E-5 to E-7 TI TMS320C6x, E-8 to E-10 TI TMS320C6x instruction
(EEMBC)	Programmable	packet, E-10
EEPROM (Electronically Erasable	Read-Only Memory)	TI TMS320C55, E-6 to E-7 ,
Programmable	Electronic Delay Storage Automatic	E-7 to E-8
Read-Only Memory)	Calculator (EDSAC), L-3	TI TMS320C64x, E-9
compiler-code size considerations,	Electronic Design News Embedded	EEMBC benchmark suite, E-12
A-44	Microprocessor	overview, E-2
Flash Memory, 102-104	Benchmark Consortium	performance, E-13 to E-14
memory hierarchy design, 72	(EEMBC)	real-time processing, E-3 to E-5
Effective address	benchmark classes, E-12	RISC systems
ALU, C-7, C-33	ISA code size, A-44	addressing modes, K-6
data dependences, 152	kernel suites, E-12	addressing modes and
definition, A-9	performance benchmarks, 38	instruction formats, K-5
execution/effective address cycle,	power consumption and efficiency	to K-6
C-6, C-31 to C-32,	metrics, E-13	arithmetic/logical instructions,
C-63	Electronic Discrete Variable	K-24
hardware-based speculation, 186,	Automatic Computer	conditional branches, K-17
190, 192	(EDVAC), L-2 to L-3	constant extension, K-9
load interlocks, C-39	Electronic Numerical Integrator and	control instructions, K-16
load-store, 174, 176, C-4	Calculator (ENIAC),	conventions, K-16
RISC instruction set, C-4 to C-5	L-2 to L-3, L-5 to L-6,	data transfer instructions, K-14 ,
simple MIPS implementation,	L-77	K-23
C-31 to C-32	Element group, definition, 272	DSP extensions, K-19
simple RISC implementation,	Embedded multiprocessors,	examples, K-3, K-4
C-6	characteristics, E-14 to	instruction formats, K-8
TLB, B-49	E-15	multiply-accumulate, K-20
Tomasulo's algorithm, 173 , 178, 182	Embedded systems benchmarks	Sanyo digital camera SOC, E-20
Effective bandwidth	basic considerations, E-12	Sanyo VPC-SX500 digital camera case study, E-19
definition, F-13	power consumption and	Sony PlayStation 2 block diagram,
example calculations, F-18	efficiency, E-13	E-16
vs. interconnected nodes, F-28	cell phone case study	Sony PlayStation 2 Emotion
interconnection networks	Nokia circuit board, E-24	Engine case study, E-15
multi-device networks, F-25 to	overview, E-20	to E-18
F-29	phone block diagram, E-23	Sony PlayStation 2 Emotion
two-device networks, F-12 to	phone characteristics, E-22 to	Engine organization,
F-20	E-24	E-18
vs. packet size, F-19	radio receiver, E-23	EMC, L-80
Efficiency factor, F-52	standards and evolution, E-25	Emotion Engine
Eight-way set associativity	wireless networks, E-21 to	organization modes, E-18
ARM Cortex-A8, 114	E-22	Sony PlayStation 2 case study,
cache optimization, B-29	characteristics, 8-9, E-4	E-15 to E-18
conflict misses, B-23	as computer class, 5	empowerTel Networks, MXP
data cache misses, B-10	digital signal processors	processor, E-14
Elapsed time, execution time, 36	definition, E-3	Encoding
Elastic Block Storage (EBS),	desktop multimedia support,	control flow instructions, A-18
MapReduce cost	E-11	erasure encoding, 439
calculations, 458–460,	examples and characteristics,	instruction set, A-21 to A-24, A-22
459	E-6	Intel 80x86 instructions, K-55, K-58

Encoding (continued)	Erasure encoding, WSCs, 439	barrier synchronization, I-15
ISAs, 14, A-5 to A-6	Error-Correcting Code (ECC)	block size and average memory
MIPS ISA, A-33	disk storage, D-11	access time, B-26 to B-28
MIPS pipeline, C-36	fault detection pitfalls, 58	branch predictors, 164
opcode, A-13	Fermi GPU architecture, 307	branch schemes, C-25 to C-26
VAX instructions, K-68 to K-70,	hardware dependability, D-15	branch-target buffer branch
K-69	memory dependability, 104	
VLIW model, 195–196	RAID 2, D-6	penalty, 205–206 bundles, H-35 to H-36
Encore Multimax, L-59 End-to-end flow control	and WSCs, 473–474	cache behavior impact, B-18, B-21
	Error handling, interconnection	cache hits, B-5
congestion management, F-65	networks, F-12	cache misses, 83–84, 93–95
vs. network-only features, F-94 to F-95	Errors, definition, D-10 to D-11	cache organization impact, B-19 to
	Escape resource set, F-47	B-20
Energy efficiency, see also Power	ETA processor, vector processor	carry-lookahead adder, J-39
consumption	history, G-26 to G-27	chime approximation, G-2
Climate Savers Computing	Ethernet	compiler-based speculation, H-29
Initiative, 462	and bandwidth, F-78	to H-31
embedded benchmarks, E-13	commercial interconnection	conditional instructions, H-23 to
hardward fallacies, 56	networks, F-63	H-24
ILP exploitation, 201	cross-company interoperability, F-64	CPI and FP, 50–51
Intel Core i7, 401–405	interconnection networks, F-89	credit-based control flow, F-10 to
ISA, 241–243	as LAN, F-77 to F-79	F-11
microprocessor, 23–26	LAN history, F-99	crossbar switch interconnections,
PMDs, 6	LANs, F-4	F-31 to F-32
processor performance equation, 52	packet format, F-75	data dependences, H-3 to H-4
servers, 25	shared-media networks, F-23	DAXPY on VMIPS, G-18 to G-20
and speculation, 211–212	shared- vs. switched-media	dependence analysis, H-7 to H-8
system trends, 21–23	networks, F-22	deterministic vs. adaptive routing,
WSC, measurement, 450–452	storage area network history,	F-52 to F-55
WSC goals/requirements, 433	F-102	dies, 29
WSC infrastructure, 447–449	switch vs. NIC, F-86	die yield, 31
WSC servers, 462–464	system area networks, F-100	dimension-order routing, F-47 to
Energy proportionality, WSC servers,	total time statistics, F-90	F-48
462	WAN history, F-98	disk subsystem failure rates, 48
Engineering Research Associates	Ethernet switches	fault tolerance, F-68
(ERA), L-4 to L-5	architecture considerations, 16	fetch-and-increment barrier, I-20
ENIAC (Electronic Numerical	Dell servers, 53	to I-21
Integrator and	Google WSC, 464–465, 469	FFT, I-27 to I-29
Calculator), L-2 to L-3,	historical performance milestones,	fixed-point arithmetic, E-5 to E-6
L-5 to L-6, L-77	20	floating-point addition, J-24 to J-25
Enigma coding machine, L-4	WSCs, 441-444	floating-point square root, 47–48
Entry time, transactions, D-16, D-17	European Center for Particle Research	GCD test, 319, H-7
Environmental faults, storage systems,	(CERN), F-98	geometric means, 43-44
D-11	Even/odd array	hardware-based speculation,
EPIC approach	example, J-52	200–201
historical background, L-32	integer multiplication, J-52	inclusion, 397
IA-64, H-33	EVEN-ODD scheme, development,	information tables, 176–177
VLIW processors, 194 , 196	D-10	integer multiplication, J-9
Equal condition code, PowerPC, K-10	EX, see Execution address cycle (EX)	interconnecting node costs, F-35
to K-11	Example calculations	interconnection network latency
ERA, see Engineering Research	average memory access time, B-16	and effective bandwidth,
	average memory access time, b-10	and effective bandwidth,

I/O system utilization, D-26	scoreboarding, C-77	return address buffer, 207
L1 cache speed, 80	sequential consistency, 393	ROB instructions, 190
large-scale multiprocessor locks,	server costs, 454–455	speculative execution, 222
I-20	server power, 463	stopping/restarting, C-46 to C-47
large-scale multiprocessor	signed-digit numbers, J-53	types and requirements, C-43 to
synchronization, I-12 to	signed numbers, J-7	C-46
I-13	SIMD multimedia instructions,	Execute step
loop-carried dependences, 316,	284–285	instruction steps, 174
H-4 to H-5	single-precision numbers, J-15,	Itanium 2, H-42
loop-level parallelism, 317	J-17	ROB instruction, 186
loop-level parallelism	software pipelining, H-13 to H-14	TI 320C55 DSP, E-7
dependences, 320	speedup, 47	Execution address cycle (EX)
loop unrolling, 158–160	status tables, 178	basic MIPS pipeline, C-36
MapReduce cost on EC2, 458–460	strides, 279	data hazards requiring stalls, C-21
memory banks, 276	TB-80 cluster MTTF, D-41	data hazard stall minimization,
microprocessor dynamic energy/	TB-80 IOPS, D-39 to D-40	C-17
power, 23	torus topology interconnections,	exception stopping/restarting, C-46
MIPS/VMIPS for DAXPY loop,	F-36 to F-38	to C-47
267–268	true sharing misses and false	hazards and forwarding, C-56 to
miss penalty, B-33 to B-34	sharing, 366–367	C-57
miss rates, B-6, B-31 to B-32	VAX instructions, K-67	MIPS FP operations, basic
miss rates and cache sizes, B-29 to	vector memory systems, G-9	considerations, C-51 to
B-30	vector performance, G-8	C-53
miss support, 85	vector vs. scalar operation, G-19	MIPS pipeline, C-52
M/M/1 model, D-33	vector sequence chimes, 270	MIPS pipeline control, C-36 to
MTTF, 34–35	VLIW processors, 195	C-39
multimedia instruction compiler	VMIPS vector operation, G-6 to	MIPS R4000, C-63 to C-64, C-64
support, A-31 to A-32	G-7	MIPS scoreboarding, C-72, C-74,
multiplication algorithm, J-19	way selection, 82	C-77
network effective bandwidth, F-18	write buffer and read misses, B-35	out-of-order execution, C-71
network topologies, F-41 to F-43	to B-36	pipeline branch issues, C-40, C-42
Ocean application, I-11 to I-12	write vs. no-write allocate, B-12	RISC classic pipeline, C-10
packet latency, F-14 to F-15	WSC memory latency, 445	simple MIPS implementation,
parallel processing, 349–350, I-33	WSC running service availability,	C-31 to C-32
to I-34	434–435	simple RISC implementation, C-6
pipeline execution rate, C-10 to	WSC server data transfer, 446	Execution time
C-11	Exceptions	Amdahl's law, 46-47, 406
pipeline structural hazards, C-14 to	ALU instructions, C-4	application/OS misses, B-59
C-15	architecture-specific examples,	cache performance, B-3 to B-4,
power-performance benchmarks,	C-44	B-16
439–440	categories, C-46	calculation, 36
predicated instructions, H-25	control dependence, 154–155	commercial workloads, 369-370,
processor performance	floating-point arithmetic, J-34 to	370
comparison, 218–219	J-35	energy efficiency, 211
queue I/O requests, D-29	hardware-based speculation, 190	integrated circuits, 22
queue waiting time, D-28 to D-29	imprecise, 169–170, 188	loop unrolling, 160
queuing, D-31	long latency pipelines, C-55	multilevel caches, B-32 to B-34
radix-4 SRT division, J-56	MIPS, C-48 , C-48 to C-49	multiprocessor performance,
redundant power supply reliability,	out-of-order completion, 169–170	405–406
35	precise, C-47, C-58 to C-60	multiprogrammed parallel "make"
ROB commit, 187	preservation via hardward support,	workload, 375
ROB instructions, 189	H-28 to H-32	multithreading, 232

Execution time (continued)	RAID row-diagonal parity, D-9	RAID, D-7
performance equations, B-22	rate calculations, 48	SAN example, F-74
pipelining performance, C-3, C-10	servers, 7, 434	WSC memory, 473–474
to C-11	SLA states, 34	WSC network, 461
PMDs, 6	storage system components, D-43	Fault-tolerant routing, commercial
principle of locality, 45	storage systems, D-6 to D-10	interconnection
processor comparisons, 243	TDP, 22	networks, F-66 to F-67
processor performance equation,	Tertiary Disk, D-13	FC, see Fibre Channel (FC)
49, 51	WSC running service, 434–435	FC-AL, see Fibre Channel Arbitrated
reduction, B-19	WSCs, 8, 438–439	Loop (FC-AL)
second-level cache size, B-34	WSC storage, 442–443	FC-SW, see Fibre Channel Switched
SPEC benchmarks, 42-44, 43 , 56	False sharing	(FC-SW)
and stall time, B-21	definition, 366–367	Feature size
vector length, G-7	shared-memory workload, 373	dependability, 33
vector mask registers, 276	FarmVille, 460	integrated circuits, 19–21
vector operations, 268–271	Fast Fourier transformation (FFT)	FEC, see Forward error correction
Expand-down field, B-53	characteristics, I-7	(FEC)
Explicit operands, ISA classifications,	distributed-memory	Federal Communications Commission
A-3 to A-4	multiprocessor, I-32	(FCC), telephone
Explicit parallelism, IA-64, H-34 to	example calculations, I-27 to I-29	company outages, D-15
H-35	symmetric shared-memory	Fermi GPU
Explicit unit stride, GPUs vs. vector	multiprocessors, I-22,	architectural innovations, 305–308
architectures, 310	I-23 , I-25	future features, 333
Exponential back-off	Fast traps, SPARC instructions, K-30	Grid mapping, 293
large-scale multiprocessor	Fat trees	multithreaded SIMD Processor,
synchronization, I-17	definition, F-34	307
spin lock, I-17	NEWS communication, F-43	NVIDIA, 291, 305
Exponential distribution, definition,	routing algorithms, F-48	SIMD, 296–297
D-27	SAN characteristics, F-76	SIMD Thread Scheduler, 306
Extended accumulator	topology, F-38 to F-39	Fermi Tesla, GPU computing history,
flawed architectures, A-44	torus topology interconnections,	L-52
ISA classification, A-3	F-36 to F-38	Fermi Tesla GTX 280
1574 classification, 74-5	Fault detection, pitfalls, 57–58	GPU comparison, 324–325, 325
F	Fault-induced deadlock, routing, F-44	memory bandwidth, 328
F Facebook, 460	Faulting prefetches, cache	raw/relative GPU performance,
Failures, see also Mean time between	optimization, 92	328
failures (MTBF); Mean	Faults, see also Exceptions; Page	synchronization, 329
time to failure (MTTF)	faults	weaknesses, 330
Amdahl's law, 56	address fault, B-42	Fermi Tesla GTX 480
Berkeley's Tertiary Disk project,	definition, D-10	floorplan, 295
D-12	and dependability, 33	GPU comparisons, 323–330, 325
cloud computing, 455	dependability benchmarks, D-21	Fetch-and-increment
	programming mistakes, D-11	large-scale multiprocessor
definition, D-10 dependability, 33–35	storage systems, D-6 to D-10	synchronization, I-20 to
* · · · · · · · · · · · · · · · · · · ·	Tandem Computers, D-12 to D-13	I-21
dirty bits, D-61 to D-64	VAX systems, C-44	sense-reversing barrier, I-21
DRAM, 473	Fault tolerance	
example calculation, 48		synchronization, 388
Google WSC networking, 469–470	and adaptive routing, F-94 commercial interconnection	Fetching, see Data fetching
power failure, C-43 to C-44, C-46		Fetch stage, TI 320C55 DSP, E-7
power utilities, 435	networks, F-66 to F-69	FFT, see Fast Fourier transformation
RAID reconstruction, D-55 to	DECstation 5000 reboots, F-69	(FFT)
D-57	dependability benchmarks, D-21	Fibre Channel (FC), F-64, F-67, F-102

file system benchmarking, D-20	ISAs, 14	IEEE 754 FP standard, J-16
NetApp FAS6000 filer, D-42	Fixed-length vector	ILP exploitation, 197–199
Fibre Channel Arbitrated Loop	SIMD, 284	ILP exposure, 157–158
(FC-AL), F-102	vector registers, 264	ILP in perfect processor, 215
block servers vs. filers, D-35	Fixed-point arithmetic, DSP, E-5 to	ILP for realizable processors,
SCSI history, L-81	E-6	216–218
Fibre Channel Switched (FC-SW),	Flags	independent, C-54
F-102	performance benchmarks, 37	instruction operator categories,
Field-programmable gate arrays	performance reporting, 41	A-15
(FPGAs), WSC array	scoreboarding, C-75	integer conversions, J-62
switch, 443	Flash memory	Intel Core i7, 240 , 241
FIFO, see First-in first-out (FIFO)	characteristics, 102–104	Intel 80x86, K-52 to K-55, K-54 ,
Filers	dependability, 104	K-61
vs. block servers, D-34 to D-35	disk storage, D-3 to D-4	Intel 80x86 registers, K-48
NetApp FAS6000 filer, D-41 to	embedded benchmarks, E-13	ISA performance and efficiency
D-42	memory hierarchy design, 72	prediction, 241
Filer servers, SPEC benchmarking,	technology trends, 18	Itanium 2, H-41
D-20 to D-21	WSC cost-performance, 474-475	iterative division, J-27 to J-31
Filters, radio receiver, E-23	FLASH multiprocessor, L-61	latencies, 157
Fine-grained multithreading	Flexible chaining	and memory bandwidth, J-62
definition, 224–226	vector execution time, 269	MIPS, A-38 to A-39
Sun T1 effectiveness, 226–229	vector processor, G-11	Tomasulo's algorithm, 173
Fingerprint, storage system, D-49	Floating-point (FP) operations	MIPS exceptions, C-49
Finite-state machine, routing	addition	MIPS operations, A-35
implementation, F-57	denormals, J-26 to J-27	MIPS pipeline, C-52
Firmware, network interfaces, F-7	overview, J-21 to J-25	basic considerations, C-51 to
First-in first-out (FIFO)	rules, J-24	C-54
block replacement, B-9	speedup, J-25 to J-26	execution, C-71
cache misses, B-10	arithmetic intensity, 285–288, 286	performance, C-60 to C-61,
definition, D-26	branch condition evaluation, A-19	C-61
Tomasulo's algorithm, 173	branches, A-20	scoreboarding, C-72
First-level caches, see also L1 caches	cache misses, 83–84	stalls, C-62
ARM Cortex-A8, 114	chip comparison, J-58	MIPS precise exceptions, C-58 to
cache optimization, B-30 to B-32	control flow instructions, A-21	C-60
hit time/power reduction, 79–80	CPI calculations, 50–51	MIPS R4000, C-65 to C-67, C-66
inclusion, B-35	data access benchmarks, A-15	to C-67
interconnection network, F-87	data dependences, 151	MIPS scoreboarding, C-77
Itanium 2, H-41	data hazards, 169	MIPS with scoreboard, C-73
memory hierarchy, B-48 to B-49	denormal multiplication, J-20 to	misspeculation instructions, 212
miss rate calculations, B-31 to	J-21	Multimedia SIMD Extensions, 285
B-35	denormals, J-14 to J-15	multimedia support, K-19
parameter ranges, B-42	desktop RISCs, K-13 , K-17 , K-23	multiple lane vector unit, 273
technology trends, 18	DSP media extensions, E-10 to E-11	multiple outstanding, C-54
virtual memory, B-42	dynamic scheduling with	multiplication
First-reference misses, definition,	Tomasulo's algorithm,	examples, J-19
B-23	171–172, 173	overview, J-17 to J-20
FIT rates, WSC memory, 473-474	early computer arithmetic, J-64 to	multiplication precision, J-21
Fixed-field decoding, simple RISC	J-65	number representation, J-15 to J-16
implementation, C-6	exceptions, J-34 to J-35	operand sizes/types, 12
Fixed-length encoding	exception stopping/restarting, C-47	overflow, J-11
general-purpose registers, A-6	fused multiply-add, J-32 to J-33	overview, J-13 to J-14
instruction sets, A-22	IBM 360, K-85	parallelism vs. window size, 217

Floating-point operations (continued)	dependence analysis, H-6	Full adders, J-2, J-3
pipeline hazards and forwarding,	integer division/remainder, J-12	Fully associative cache
C-55 to C-57	loop-level parallelism	block placement, B-7
pipeline structural hazards, C-16	dependences, 320-321	conflict misses, B-23
precisions, J-33 to J-34	MIPS scoreboarding, C-77	direct-mapped cache, B-9
remainder, J-31 to J-32	performance measurement history,	memory hierarchy basics, 74
ROB commit, 187	L-6	Fully connected topology
SMT, 398-400	return address predictors, 206	distributed switched networks,
SPARC, K-31	Forward error correction (FEC), DSP,	F-34
SPEC benchmarks, 39	E-5 to E-7	NEWS communication, F-43
special values, J-14 to J-15	Forwarding, see also Bypassing	Functional hazards
stalls from RAW hazards, C-55	ALUs, C-40 to C-41	ARM Cortex-A8, 233
static branch prediction, C-26 to	data hazard stall minimization,	microarchitectural techniques case
C-27	C-16 to C-19, C-18	study, 247–254
Tomasulo's algorithm, 185	dynamically scheduled pipelines,	Functional unit (FU)
underflow, J-36 to J-37, J-62	C-70 to C-71	FP operations, C-66
VAX, B-73	load instruction, C-20	instruction execution example,
vector chaining, G-11	longer latency pipelines, C-54 to	C-80
vector sequence chimes, 270	C-58	Intel Core i7, 237
VLIW processors, 195	operand, C-19	Itanium 2, H-41 to H-43
VMIPS, 264	Forwarding table	latencies, C-53
Floating-point registers (FPRs)	routing implementation, F-57	MIPS pipeline, C-52
IA-64, H-34	switch microarchitecture	MIPS scoreboarding, C-75 to C-80
IBM Blue Gene/L, I-42	pipelining, F-60	OCNs, F-3
MIPS data transfers, A-34	Forward path, cell phones, E-24	vector add instruction, 272,
MIPS operations, A-36	Fourier-Motzkin algorithm, L-31	272–273
MIPS64 architecture, A-34	Fourier transform, DSP, E-5	VMIPS, 264
write-back, C-56	Four-way conflict misses, definition,	Function calls
Floating-point square root (FPSQR)	B-23	GPU programming, 289
calculation, 47–48	FP, see Floating-point (FP) operations	NVIDIA GPU Memory structures,
CPI calculations, 50-51	FPGAs, see Field-programmable gate	304–305
Floating Point Systems AP-120B,	arrays (FPGAs)	PTX assembler, 301
L-28	FPRs, see Floating-point registers	Function pointers, control flow
Floppy disks, L-78	(FPRs)	instruction addressing
Flow-balanced state, D-23	FPSQR, see Floating-point square root	modes, A-18
Flow control	(FPSQR)	Fused multiply-add, floating point,
and arbitration, F-21	Frame pointer, VAX, K-71	J-32 to J-33
congestion management, F-65	Freeze, branch penalty reduction,	Future file, precise exceptions, C-59
direct networks, F-38 to F-39	C-22	
format, F-58	Frequency modulation (FM), wireless	G
interconnection networks, F-10 to	neworks, E-21	Gateways, Ethernet, F-79
F-11	Front-end stage, Itanium 2, H-42	Gather-Scatter
system area network history, F-100	FU, see Functional unit (FU)	definition, 309
to F-101	Fujitsu Primergy BX3000 blade	GPU comparisons, 329
Fluent, F-76, F-77	server, F-85	multimedia instruction compiler
Flush, branch penalty reduction, C-22	Fujitsu VP100, L-45, L-47	support, A-31
FM, see Frequency modulation (FM)	Fujitsu VP200, L-45, L-47	sparse matrices, G-13 to G-14
Form factor, interconnection	Full access	vector architectures, 279–280
networks, F-9 to F-12	dimension-order routing, F-47 to	GCD, see Greatest common divisor
FORTRAN	F-48	(GCD) test
compiler types and classes, A-28	interconnection network topology,	GDDR, see Graphics double data rate
compiler vectorization, G-14, G-15	F-29	(GDDR)

GDRAM, see Graphics dynamic	Global optimizations	computing history, L-52
random-access memory	compilers, A-26, A-29	definition, 9
(GDRAM)	optimization types, A-28	DLP
GE 645, L-9	Global Positioning System, CDMA, E-25	basic considerations, 288
General-Purpose Computing on GPUs	Global predictors	basic PTX thread instructions,
(GPGPU), L-51 to L-52	Intel Core i7, 166	299
General-purpose electronic computers,	tournament predictors, 164–166	conditional branching, 300–303
historical background,	Global scheduling, ILP, VLIW	coprocessor relationship,
L-2 to L-4	processor, 194	330–331
General-purpose registers (GPRs)	Global system for mobile	definitions, 309
advantages/disadvantages, A-6	communication (GSM),	Fermi GPU architecture
IA-64, H-38	cell phones, E-25	innovations, 305–308
Intel 80x86, K-48	Goldschmidt's division algorithm,	Fermi GTX 480 floorplan, 295
ISA classification, A-3 to A-5	J-29, J-61	GPUs vs. vector architectures,
MIPS data transfers, A-34	Goldstine, Herman, L-2 to L-3	308–312, 310
MIPS operations, A-36	Google	mapping examples, 293
MIPS64, A-34	Bigtable, 438, 441	Multimedia SIMD comparison,
VMIPS, 265	cloud computing, 455	312
GENI, see Global Environment for	cluster history, L-62	multithreaded SIMD Processor
Network Innovation	containers, L-74	block diagram, 294
(GENI)	MapReduce, 437 , 458–459, 459	NVIDIA computational
Geometric means, example	server CPUs, 440	structures, 291–297
calculations, 43–44	server power-performance	NVIDIA/CUDA and AMD
	1 1	
GFS, see Google File System (GFS)	benchmarks, 439–441	terminology, 313–315
Gibson mix, L-6	WSCs, 432, 449	NVIDIA GPU ISA, 298–300
Giga Thread Engine, definition, 292,	containers, 464–465, 465	NVIDIA GPU Memory
314	cooling and power, 465–468	structures, 304 , 304–305
Global address space, segmented	monitoring and repairing,	programming, 288–291
virtual memory, B-52	469–470	SIMD thread scheduling, 297
Global code scheduling	PUE, 468	terminology, 292
example, H-16	servers, 467 , 468–469	fine-grained multithreading, 224
parallelism, H-15 to H-23	Google App Engine, L-74	future features, 332
superblock scheduling, H-21 to	Google Clusters	gather/scatter operations, 280
H-23, H-22	memory dependability, 104	historical background, L-50
trace scheduling, H-19 to H-21,	power consumption, F-85	loop-level parallelism, 150
H-20	Google File System (GFS)	vs. MIMD with Multimedia SIMD,
Global common subexpression	MapReduce, 438	324–330
elimination, compiler	WSC storage, 442–443	mobile client/server features, 324,
structure, A-26	Google Goggles	324
Global data area, and compiler	PMDs, 6	power/DLP issues, 322
technology, A-27	user experience, 4	raw/relative performance, 328
Global Environment for Network	Google search	Roofline model, 326
Innovation (GENI),	shared-memory workloads, 369	scalable, L-50 to L-51
F-98	workload demands, 439	strided access-TLB interactions,
Global load/store, definition, 309	Gordon Bell Prize, L-57	323
Global Memory	GPGPU (General-Purpose Computing	thread count and memory
definition, 292, 314	on GPUs), L-51 to L-52	performance, 332
GPU programming, 290	GPRs, see General-purpose registers	TLP, 346
locks via coherence, 390	(GPRs)	vector kernel implementation,
Global miss rate	GPU (Graphics Processing Unit)	334–336
definition, B-31	banked and graphics memory,	vs. vector processor operation,
multilevel caches, B-33	322–323	276

GPU Memory	SIMD Processors, 295	data flow execution, 184
caches, 306	Thread Blocks, 295	FP unit using Tomasulo's
CUDA program, 289	Grid computing, L-73 to L-74	algorithm, 185
definition, 292, 309, 314	Grid topology	ILP
future architectures, 333	characteristics, F-36	data flow execution, 184
GPU programming, 288	direct networks, F-37	with dynamic scheduling and
NVIDIA, 304 , 304–305	GSDRAM, see Graphics synchronous	multiple issue, 197–202
splitting from main memory, 330	dynamic random-access	FP unit using Tomasulo's
Gradual underflow, J-15, J-36	memory (GSDRAM)	algorithm, 185
Grain size	GSM, see Global system for mobile	key ideas, 183–184
MIMD, 10	communication (GSM)	multiple-issue processors, 198
TLP, 346	Guest definition, 108	reorder buffer, 184–192
Grant phase, arbitration, F-49	Guest domains, Xen VM, 111	vs. software speculation,
Graph coloring, register allocation,	Suest domains, Hen VIII, 111	221–222
A-26 to A-27	н	key ideas, 183–184
Graphics double data rate (GDDR)	Hadoop, WSC batch processing, 437	Hardware faults, storage systems,
characteristics, 102	Half adders, J-2	D-11
Fermi GTX 480 GPU, 295, 324	Half words	Hardware prefetching
Graphics dynamic random-access		cache optimization, 131–133
memory (GDRAM)	aligned/misaligned addresses, A-8 memory address interpretation,	miss penalty/rate reduction, 91–92
bandwidth issues, 322–323	A-7 to A-8	NVIDIA GPU Memory structures,
		305
characteristics, 102 Graphics-intensive benchmarks,	MIPS data types, A-34	SPEC benchmarks, 92
•	operand sizes/types, 12	
desktop performance, 38	as operand type, A-13 to A-14	Hardware primitivies
Graphics pipelines, historical	Handshaking, interconnection	basic types, 387–389
background, L-51	networks, F-10	large-scale multiprocessor
Graphics Processing Unit, see GPU	Hard drive, power consumption, 63	synchronization, I-18 to
(Graphics Processing	Hard real-time systems, definition, E-3	I-21
Unit)	to E-4	synchronization mechanisms,
Graphics synchronous dynamic	Hardware	387–389
random-access memory	as architecture component, 15	Harvard architecture, L-4
(GSDRAM),	cache optimization, 96	Hazards, see also Data hazards
characteristics, 102	compiler scheduling support, L-30	branch hazards, C-21 to C-26,
Graphics Synthesizer, Sony	to L-31	C-39 to C-42, C-42
PlayStation 2, E-16 ,	compiler speculation support	control hazards, 235, C-11
E-16 to E-17	memory references, H-32	detection, hardware, C-38
Greater than condition code,	overview, H-27	dynamically scheduled pipelines,
PowerPC, K-10 to K-11	preserving exception behavior,	C-70 to C-71
Greatest common divisor (GCD) test,	H-28 to H-32	execution sequences, C-80
loop-level parallelism	description notation, K-25	functional hazards, 233, 247–254
dependences, 319, H-7	energy/performance fallacies, 56	instruction set complications, C-50
Grid	for exposing parallelism, H-23 to	longer latency pipelines, C-54 to
arithmetic intensity, 286	H-27	C-58
CUDA parallelism, 290	ILP approaches, 148, 214–215	structural hazards, 268–269, C-11,
definition, 292, 309, 313	interconnection networks, F-9	C-13 to C-16, C-71,
and GPU, 291	pipeline hazard detection, C-38	C-78 to C-79
GPU Memory structures, 304	Virtual Machines protection, 108	HCAs, see Host channel adapters
GPU terms, 308	WSC cost-performance, 474	(HCAs)
mapping example, 293	WSC running service, 434–435	Header
NVIDIA GPU computational	Hardware-based speculation	messages, F-6
structures, 291	basic algorithm, 191	packet format, F-7

switch microarchitecture	High-level language computer	Hops
pipelining, F-60	architecture (HLLCA),	direct network topologies, F-38
TCP/IP, F-84	L-18 to L-19	routing, F-44
Head-of-line (HOL) blocking	High-level optimizations, compilers,	switched network topologies, F-40
congestion management, F-64	A-26	switching, F-50
switch microarchitecture, F-58 to	Highly parallel memory systems, case	Host channel adapters (HCAs)
F-59, F-59 , F-60, F-62	studies, 133–136	historical background, L-81
system area network history, F-101	High-order functions, control flow	switch vs. NIC, F-86
virtual channels and throughput,	instruction addressing	Host definition, 108, 305
F-93	modes, A-18	Hot swapping, fault tolerance, F-67
Heap, and compiler technology, A-27	High-performance computing (HPC)	HPC, see High-performance
to A-28	InfiniBand, F-74	computing (HPC)
HEP processor, L-34	interconnection network	HPC Challenge, vector processor
Heterogeneous architecture,	characteristics, F-20	history, G-28
definition, 262	interconnection network topology,	HP-Compaq servers
Hewlett-Packard AlphaServer,	F-44	price-performance differences, 441
F-100	storage area network history, F-102	SMT, 230
Hewlett-Packard PA-RISC	switch microarchitecture, F-56	HPSm, L-29
addressing modes, K-5	vector processor history, G-27	Hypercube networks
arithmetic/logical instructions,	write strategy, B-10	characteristics, F-36
K-11	vs. WSCs, 432, 435–436	deadlock, F-47
characteristics, K-4	Hillis, Danny, L-58, L-74	direct networks, F-37
conditional branches, K-12, K-17,	Histogram, D-26 to D-27	vs. direct networks, F-92
K-34	History file, precise exceptions, C-59	NEWS communication, F-43
constant extension, K-9	Hitachi S810, L-45, L-47	HyperTransport, F-63
conventions, K-13	Hitachi SuperH	NetApp FAS6000 filer, D-42
data transfer instructions, K-10	addressing modes, K-5, K-6	Hypertransport, AMD Opteron cache
EPIC, L-32	arithmetic/logical instructions,	coherence, 361
features, K-44	K-24	Hypervisor, characteristics, 108
floating-point precisions, J-33	branches, K-21	
FP instructions, K-23	characteristics, K-4	1
MIPS core extensions, K-23	condition codes, K-14	IAS machine, L-3, L-5 to L-6
multimedia support, K-18, K-18,	data transfer instructions, K-23	IBM
K-19	embedded instruction format, K-8	Chipkill, 104
unique instructions, K-33 to K-36	multiply-accumulate, K-20	cluster history, L-62, L-72
Hewlett-Packard PA-RISC MAX2,	unique instructions, K-38 to K-39	computer history, L-5 to L-6
multimedia support,	Hit time	early VM work, L-10
E-11	average memory access time, B-16	magnetic storage, L-77 to L-78
Hewlett-Packard Precision	to B-17	multiple-issue processor
Architecture, integer	first-level caches, 79-80	development, L-28
arithmetic, J-12	memory hierarchy basics, 77-78	RAID history, L-79 to L-80
Hewlett-Packard ProLiant BL10e G2	reduction, 78, B-36 to B-40	IBM 360
Blade server, F-85	way prediction, 81–82	address space, B-58
Hewlett-Packard ProLiant SL2x170z	HLLCA, see High-level language	architecture, K-83 to K-84
G6, SPECPower	computer architecture	architecture flaws and success,
benchmarks, 463	(HLLCA)	K-81
Hewlett-Packard RISC	HOL, see Head-of-line blocking	branch instructions, K-86
microprocessors, vector	(HOL)	characteristics, K-42
processor history, G-26	Home node, directory-based cache	computer architecture definition,
Higher-radix division, J-54 to J-55	coherence protocol	L-17 to L-18
Higher-radix multiplication, integer,	basics, 382	instruction execution frequencies,
J-48	Hop count, definition, F-30	K-89
	=	

IBM 360 (continued)	commercial interconnection	multiprocessing/
instruction operator categories,	networks, F-63	multithreading-based
A-15	computing node, I-42 to I-44, I-43	performance, 398–400
instruction set, K-85 to K-88	as custom cluster, I-41 to I-42	multithreading history, L-35
instruction set complications, C-49	deterministic vs. adaptive routing,	IBM Power 7
to C-50	F-52 to F-55	vs. Google WSC, 436
integer/FP R-R operations, K-85	fault tolerance, F-66 to F-67	ideal processors, 214–215
I/O bus history, L-81	link bandwidth, F-89	multicore processor performance,
memory hierarchy development,	low-dimensional topologies, F-100	400–401
L-9 to L-10	parallel processing debates, L-58	multithreading, 225
parallel processing debates, L-57	software overhead, F-91	IBM Pulsar processor, L-34
protection and ISA, 112	switch microarchitecture, F-62	IBM RP3, L-60
R-R instructions, K-86	system, I-44	IBM RS/6000, L-57
RS and SI format instructions,	system area network history, F-101	IBM RT-PC, L-20
K-87	to F-102	IBM SAGE, L-81
RX format instructions, K-86 to	3D torus network, F-72 to F-74	IBM servers, economies of scale, 456
K-87	topology, F-30, F-39	IBM Stretch, L-6
SS format instructions, K-85 to	IBM CodePack, RISC code size, A-23	IBM zSeries, vector processor history,
K-88	IBM CoreConnect	G-27
IBM 360/85, L-10 to L-11, L-27	cross-company interoperability,	IC, see Instruction count (IC)
IBM 360/91	F-64	I-caches
dynamic scheduling with	OCNs, F-3	case study examples, B-63
Tomasulo's algorithm,	IBM eServer p5 processor	way prediction, 81–82
170–171	performance/cost benchmarks, 409	ICR, see Idle Control Register (ICR)
early computer arithmetic, J-63	SMT and ST performance, 399	ID, see Instruction decode (ID)
history, L-27	speedup benchmarks, 408,	Ideal pipeline cycles per instruction,
speculation concept origins, L-29	408–409	ILP concepts, 149
IBM 370	IBM Federation network interfaces,	Ideal processors, ILP hardware model,
architecture, K-83 to K-84	F-17 to F-18	214–215, 219–220
characteristics, K-42	IBM J9 JVM	IDE disks, Berkeley's Tertiary Disk
early computer arithmetic, J-63	real-world server considerations,	project, D-12
integer overflow, J-11	52–55	Idle Control Register (ICR), TI
protection and ISA, 112	WSC performance, 463	TMS320C55 DSP, E-8
vector processor history, G-27	IBM PCs, architecture flaws vs.	Idle domains, TI TMS320C55 DSP,
Virtual Machines, 110	success, A-45	E-8
IBM 370/158, L-7	IBM Power processors	IEEE 754 floating-point standard, J-16
IBM 650, L-6	branch-prediction buffers, C-29	IEEE 1394, Sony PlayStation 2
IBM 701, L-5 to L-6	characteristics, 247	Emotion Engine case
IBM 702, L-5 to L-6	exception stopping/restarting, C-47	study, E-15
IBM 704, L-6, L-26	MIPS precise exceptions, C-59	IEEE arithmetic
IBM 705, L-6	shared-memory multiprogramming	floating point, J-13 to J-14
IBM 801, L-19	workload, 378	addition, J-21 to J-25
IBM 3081, L-61	IBM Power 1, L-29	exceptions, J-34 to J-35
IBM 3090 Vector Facility, vector	IBM Power 2, L-29	remainder, J-31 to J-32
processor history, G-27	IBM Power 4	underflow, J-36
IBM 3840 cartridge, L-77	multithreading history, L-35	historical background, J-63 to J-64
IBM 7030, L-26	peak performance, 58	iterative division, J-30
IBM 9840 cartridge, L-77	recent advances, L-33 to L-34	−x vs. 0 −x, J-62
IBM AS/400, L-79	IBM Power 5	NaN, J-14
IBM Blue Gene/L, F-4	characteristics, F-73	rounding modes, J-20
adaptive routing, F-93	Itanium 2 comparison, H-43	single-precision numbers, J-15 to
cluster history, L-63	manufacturing cost, 62	J-16

IEEE standard 802.3 (Ethernet), F-77	Indirect addressing, VAX, K-67	Input buffered switch
to F-79	Indirect networks, definition, F-31	HOL blocking, F-59, F-60
LAN history, F-99	Inexact exception	microarchitecture, F-57, F-57
IF, see Instruction fetch (IF) cycle	floating-point arithmetic, J-35	pipelined version, F-61
IF statement handling	floating-point underflow, J-36	Input-output buffered switch,
control dependences, 154	InfiniBand, F-64, F-67, F-74 to F-77	microarchitecture, F-57
GPU conditional branching, 300,	cluster history, L-63	Instruction cache
302–303	packet format, F-75	AMD Opteron example, B-15
memory consistency, 392	storage area network history,	antialiasing, B-38
vectorization in code, 271	F-102	application/OS misses, B-59
vector-mask registers, 267, 275-276	switch vs. NIC, F-86	branch prediction, C-28
Illiac IV, F-100, L-43, L-55	system area network history, F-101	commercial workload, 373
ILP, see Instruction-level parallelism	Infinite population model, queuing	GPU Memory, 306
(ILP)	model, D-30	instruction fetch, 202–203, 237
Immediate addressing mode	In flight instructions, ILP hardware	ISA, 241
ALU operations, A-12	model, 214	MIPS R4000 pipeline, C-63
basic considerations, A-10 to A-11	Information tables, examples,	miss rates, 161
MIPS, 12	176–177	multiprogramming workload,
MIPS instruction format, A-35	Infrastructure costs	374–375
MIPS operations, A-37	WSC, 446–450, 452–455, 453	prefetch, 236
value distribution, A-13	WSC efficiency, 450–452	RISCs, A-23
IMPACT, L-31	Initiation interval, MIPS pipeline FP	TI TMS320C55 DSP, E-8
Implicit operands, ISA classifications,	operations, C-52 to C-53	Instruction commit
A-3	Initiation rate	hardware-based speculation,
Implicit unit stride, GPUs vs. vector	floating-point pipeline, C-65 to	184–185, 187–188, 188 ,
architectures, 310	C-66	190
Imprecise exceptions	memory banks, 276–277	instruction set complications, C-49
data hazards, 169–170	vector execution time, 269	Intel Core i7, 237
	Inktomi, L-62, L-73	
floating-point, 188		speculation support, 208–209
IMT-2000, see International Mobile	In-order commit	Instruction count (IC)
Telephony 2000	hardware-based speculation, 188–189	addressing modes, A-10
(IMT-2000)		cache performance, B-4, B-16
Inactive power modes, WSCs, 472	speculation concept origins, L-29	compiler optimization, A-29 , A-29
Inclusion	In-order execution	to A-30
cache hierarchy, 397–398	average memory access time, B-17	processor performance time, 49–51
implementation, 397–398	to B-18	RISC history, L-22
invalidate protocols, 357	cache behavior calculations, B-18	Instruction decode (ID)
memory hierarchy history, L-11	cache miss, B-2 to B-3	basic MIPS pipeline, C-36
Indexed addressing	dynamic scheduling, 168–169	branch hazards, C-21
Intel 80x86, K-49, K-58	IBM Power processors, 247	data hazards, 169
VAX, K-67	ILP exploitation, 193–194	hazards and forwarding, C-55 to
Indexes	multiple-issue processors, 194	C-57
address translation during, B-36 to	superscalar processors, 193	MIPS pipeline, C-71
B-40	In-order floating-point pipeline,	MIPS pipeline control, C-36 to
AMD Opteron data cache, B-13 to	dynamic scheduling,	C-39
B-14	169	MIPS pipeline FP operations, C-53
ARM Cortex-A8, 115	In-order issue	MIPS scoreboarding, C-72 to C-74
recurrences, H-12	ARM Cortex-A8, 233	out-of-order execution, 170
size equations, B-22	dynamic scheduling, 168–170,	pipeline branch issues, C-39 to
Index field, block identification, B-8	C-71	C-41, C-42
Index vector, gather/scatter operations,	ISA, 241	RISC classic pipeline, C-7 to C-8,
279–280	In-order scalar processors, VMIPS, 267	C-10

Instruction decode (continued)	MIPS core, K-6 to K-9	overcoming data hazards,
simple MIPS implementation, C-31	MIPS core extensions, K-19 to	167–176
simple RISC implementation, C-5	K-24	Tomasulo's algorithm,
to C-6	MIPS unaligned word reads,	170–176, 178–179,
Instruction delivery stage, Itanium 2,	K-26	181–183
H-42	multimedia extensions, K-16 to	early studies, L-32 to L-33
Instruction fetch (IF) cycle	K-19	exploitation methods, H-22 to
basic MIPS pipeline, C-35 to C-36	overview, K-5 to K-6	H-23
branch hazards, C-21	SPARC-unique, K-29 to K-32	exploitation statically, H-2
branch-prediction buffers, C-28	SuperH-unique, K-38 to K-39	exposing with hardware support,
exception stopping/restarting, C-46	Thumb-unique, K-37 to K-38	H-23
to C-47	Instruction groups, IA-64, H-34	GPU programming, 289
MIPS exceptions, C-48	Instruction issue	hardware-based speculation,
MIPS R4000, C-63	definition, C-36	183–192
pipeline branch issues, C-42	DLP, 322	hardware vs. software speculation,
		221–222
RISC classic pipeline, C-7, C-10	dynamic scheduling, 168–169,	
simple MIPS implementation,	C-71 to C-72	IA-64, H-32
C-31	ILP, 197, 216–217	instruction fetch bandwidth
simple RISC implementation, C-5	instruction-level parallelism, 2	basic considerations, 202–203
Instruction fetch units	Intel Core i7, 238	branch-target buffers, 203–206,
integrated, 207–208	Itanium 2, H-41 to H-43	204
Intel Core i7, 237	MIPS pipeline, C-52	integrated units, 207–208
Instruction formats	multiple issue processor, 198	return address predictors,
ARM-unique, K-36 to K-37	multithreading, 223, 226	206–207
high-level language computer	parallelism measurement, 215	Intel Core i7, 236–241
architecture, L-18	precise exceptions, C-58, C-60	limitation studies, 213–221
IA-64 ISA, H-34 to H-35, H-38,	processor comparison, 323	microarchitectural techniques case
H-39	ROB, 186	study, 247–254
IBM 360, K-85 to K-88	speculation support, 208, 210	MIPS scoreboarding, C-77 to C-79
Intel 80x86, K-49, K-52, K-56 to	Tomasulo's scheme, 175, 182	multicore performance/energy
K-57	Instruction-level parallelism (ILP)	efficiency, 404
M32R-unique, K-39 to K-40	ARM Cortex-A8, 233–236,	multicore processor performance,
MIPS16-unique, K-40 to K-42	235–236	400
PA-RISC unique, K-33 to K-36	basic concepts/challenges,	multiple-issue processors, L-30
PowerPC-unique, K-32 to K-33	148–149, 149	multiple issue/static scheduling,
RISCs, K-43	"big and dumb" processors, 245	192–196
Alpha-unique, K-27 to K-29	branch-prediction buffers, C-29 ,	multiprocessor importance, 344
arithmetic/logical, K-11 , K-15	C-29 to C-30	multithreading, basic
branches, K-25	compiler scheduling, L-31	considerations, 223–226
control instructions, K-12 ,	compiler techniques for exposure,	multithreading history, L-34 to L-35
K-16	156–162	name dependences, 152–153
data transfers, K-10 , K-14 ,	control dependence, 154–156	perfect processor, 215
K-21	=	
	data dependences, 150–152	pipeline scheduling/loop unrolling, 157–162
desktop/server, K-7	data flow limit, L-33	
desktop/server systems, K-7	definition, 9, 149–150	processor clock rates, 244
embedded DSP extensions,	dynamic scheduling	realizable processor limitations,
K-19	basic concept, 168–169	216–218
embedded systems, K-8	definition, 168	RISC development, 2
FP instructions, K-13	example and algorithms,	SMT on superscalar processors,
hardware description notation,	176–178	230–232
K-25	multiple issue, speculation,	speculation advantages/
MIPS64-unique, K-24 to K-27	197–202	disadvantages, 210–211

speculation and energy efficiency,	basic considerations, A-16 to	registers, A-34
211–212	A-17, A-20 to A-21	usage, A-39
speculation support, 208–210	conditional branch options,	MIPS64, 14 , A-40
speculation through multiple	A-19	multimedia instruction compiler
branches, 211	procedure invocation options,	support, A-31 to A-32
speculative execution, 222–223	A-19 to A-20	NVIDIA GPU, 298–300
Sun T1 fine-grained multithreading	Cray X1, G-21 to G-22	operand locations, A-4
effectiveness, 226–229	data access distribution example,	operands per ALU instruction, A-6
switch to DLP/TLP/RLP, 4–5	A-15	operand type and size, A-13 to
TI 320C6x DSP, E-8	definition and types, 11–15	A-14
value prediction, 212–213	displacement addressing mode,	operations, A-14 to A-16
Instruction path length, processor	A-10	operator categories, A-15
performance time, 49	encoding considerations, A-21 to	overview, K-2
Instruction prefetch	A-24, A-22 , A-24	performance and efficiency
integrated instruction fetch units,	first vector computers, L-48	prediction, 241–243
208	flawless design, A-45	and protection, 112
miss penalty/rate reduction, 91–92	flaws vs. success, A-44 to A-45	RISC code size, A-23 to A-24
SPEC benchmarks, 92	GPR advantages/disadvantages,	RISC history, L-19 to L-22, L-21
Instruction register (IR)	A-6	stack architectures, L-16 to L-17
basic MIPS pipeline, C-35	high-level considerations, A-39,	top 80x86 instructions, A-16
dynamic scheduling, 170	A-41 to A-43	"typical" program fallacy, A-43
MIPS implementation, C-31	high-level language computer	Virtual Machines protection,
Instruction set architecture (ISA), see	architecture, L-18 to	107–108
also Intel 80x86	L-19	Virtual Machines support,
processors; Reduced	IA-64	109–110
Instruction Set	instruction formats, H-39	VMIPS, 264–265
Computer (RISC)	instructions, H-35 to H-37	VMM implementation, 128–129
addressing modes, A-9 to A-10	instruction set basics, H-38	Instructions per clock (IPC)
architect-compiler writer	overview, H-32 to H-33	ARM Cortex-A8, 236
relationship, A-29 to	predication and speculation,	flawless architecture design, A-45
A-30	H-38 to H-40	ILP for realizable processors, 216–218
ARM Cortex-A8, 114	IBM 360, K-85 to K-88	
case studies, A-47 to A-54	immediate addressing mode, A-10	MIPS scoreboarding, C-72
class code sequence example, A-4	to A-11	multiprocessing/
classification, A-3 to A-7	literal addressing mode, A-10 to A-11	multithreading-based
code size-compiler considerations,		performance, 398–400
A-43 to A-44 compiler optimization and	memory addressing, A-11 to A-13 memory address interpretation,	processor performance time, 49 Sun T1 multithreading unicore
	A-7 to A-8	performance, 229
performance, A-27 compiler register allocation, A-26	MIPS	Sun T1 processor, 399
to A-27	addressing modes for data	Instruction status
compiler structure, A-24 to A-26	transfer, A-34	dynamic scheduling, 177
compiler technology and	basic considerations, A-32 to	MIPS scoreboarding, C-75
architecture decisions,	A-33	Integer arithmetic
A-27 to A-29	control flow instructions, A-37	addition speedup
compiler types and classes, A-28	to A-38	carry-lookahead, J-37 to J-41
complications, C-49 to C-51	data types, A-34	carry-lookahead circuit, J-38
computer architecture definition,	dynamic instruction mix, A-41	carry-lookahead tree, J-40
L-17 to L-18	to A-42, A-42	carry-lookahead tree adder,
control flow instructions	FP operations, A-38 to A-39	J-41
addressing modes, A-17 to	instruction format, A-35	carry-select adder, J-43 , J-43 to
A-18	MIPS operations, A-35 to A-37	J-44, J-44
A-10	MIII 5 operations, A-55 to A-57	J⁻┭┮, J⁼┭ ┮

Integer arithmetic (continued)	desktop benchmarks, 38-39	Integrated circuit basics
carry-skip adder, J-41 to J43,	displacement values, A-12	cell phones, E-24, E-24
J-42	exceptions, C-43, C-45	cost trends, 28–32
overview, J-37	hardware ILP model, 215	dependability, 33–36
division	hardware vs. software speculation,	logic technology, 17
radix-2 division, J-55	221	microprocessor developments, 2
radix-4 division, J-56	hazards, C-57	power and energy, 21–23
radix-4 SRT division, J-57	IBM 360, K-85	scaling, 19–21
with single adder, J-54 to J-58	ILP, 197–200	Intel 80286, L-9
FP conversions, J-62	instruction set operations, A-16	Intel Atom 230
language comparison, J-12	Intel Core i7, 238, 240	processor comparison, 242
multiplication	Intel 80x86, K-50 to K-51	single-threaded benchmarks, 243
array multiplier, J-50	ISA, 242, A-2	Intel Atom processors
Booth recoding, J-49	Itanium 2, H-41	ISA performance and efficiency
even/odd array, J-52	longer latency pipelines, C-55	prediction, 241–243
with many adders, J-50 to J-54	MIPS, C-31 to C-32, C-36, C-49,	performance measurement,
multipass array multiplier, J-51	C-51 to C-53	405–406
signed-digit addition table,	MIPS64 ISA, 14	SMT, 231
J-54	MIPS FP pipeline, C-60	WSC memory, 474
with single adder, J-47 to J-49,	MIPS R4000 pipeline, C-61, C-63,	• •
J-48	C-70	WSC processor cost-performance, 473
Wallace tree, J-53	misspeculation, 212	Intel Core i7
multiplication/division, shifting	MVL, 274	vs. Alpha processors, 368
over zeros, J-45 to J-47	pipeline scheduling, 157	architecture, 15
overflow, J-11	precise exceptions, C-47, C-58,	basic function, 236–238
Radix-2 multiplication/division,	C-60	"big and dumb" processors, 245
J-4 , J-4 to J-7	processor clock rate, 244	branch predictor, 166–167
restoring/nonrestoring division,	R4000 pipeline, C-63	clock rate, 244
J-6	realizable processor ILP, 216–218	dynamic scheduling, 170
ripply-carry addition, J-2 to J-3,	RISC, C-5, C-11	GPU comparisons, 324–330, 325
.I-3	scoreboarding, C-72 to C-73, C-76	hardware prefetching, 91
signed numbers, J-7 to J-10	SIMD processor, 307	ISA performance and efficiency
SRT division, J-45 to J-47, J-46	SPARC, K-31	prediction, 241–243
systems issues, J-10 to J-13	SPEC benchmarks, 39	L2/L3 miss rates, 125
Integer operand	speculation through multiple	memory hierarchy basics, 78,
flawed architecture, A-44	branches, 211	117–124, 119
GCD, 319	static branch prediction, C-26 to	memory hierarchy design, 73
graph coloring, A-27	C-27	memory performance, 122–124
instruction set encoding, A-23	T1 multithreading unicore	MESIF protocol, 362
MIPS data types, A-34	performance, 227–229	microprocessor die example, 29
as operand type, 12, A-13 to A-14	Tomasulo's algorithm, 181	miss rate benchmarks, 123
Integer operations	tournament predictors, 164	multibanked caches, 86
addressing modes, A-11	VMIPS, 265	multithreading, 225
ALUs, A-12 , C-54	Integer registers	nonblocking cache, 83
ARM Cortex-A8, 116 , 232 , 235 ,	hardware-based speculation, 192	performance, 239 , 239–241, 240
236	IA-64, H-33 to H-34	performance/energy efficiency,
benchmarks, 167 , C-69	MIPS dynamic instructions, A-41	401–405
	to A-42	
branches, A-18 to A-20, A-20		pipeline cache access, 82
cache misses, 83–84	MIPS floating-point operations,	pipeline structure, 237
data access distribution, A-15	A-39	processor comparison, 242
data dependences, 151	MIPS64 architecture, A-34	raw/relative GPU performance, 328
dependences, 322	VLIW, 194	Roofline model, 286–288, 287

Intel Core i7 (continued)	vs. RISC, 2, A-3	IA-64
single-threaded benchmarks, 243	segmented scheme, K-50	functional units and instruction
SMP limitations, 363	system evolution, K-48	issue, H-41 to H-43
SMT, 230-231	top instructions, A-16	instruction latency, H-41
snooping cache coherence	typical operations, K-53	overview, H-40 to H-41
implementation, 365	variable encoding, A-22 to A-23	performance, H-43
three-level cache hierarchy, 118	virtualization issues, 128	peak performance, 58
TLB structure, 118	Virtual Machines ISA support, 109	SPEC benchmarks, 43
write invalid protocol, 356	Virtual Machines and virtual	Intelligent devices, historical
Intel 80x86 processors	memory and I/O, 110	background, L-80
address encoding, K-58	Intel 8087, floating point remainder,	Intel MMX, multimedia instruction
addressing modes, K-58	J-31	compiler support, A-31
address space, B-58	Intel i860, K-16 to K-17, L-49, L-60	to A-32
architecture flaws and success, K-81	Intel IA-32 architecture	Intel Nehalem
architecture flaws vs. success,	call gate, B-54	characteristics, 411
A-44 to A-45	descriptor table, B-52	floorplan, 30
Atom, 231	instruction set complications, C-49	WSC processor cost-performance,
cache performance, B-6	to C-51	473
characteristics, K-42		
	OCNs, F-3, F-70	Intel Paragon, F-100, L-60 Intel Pentium 4
common exceptions, C-44	segment descriptors, B-53	
comparative operation	segmented virtual memory, B-51	hardware prefetching, 92
measurements, K-62 to	to B-54	Itanium 2 comparison, H-43
K-64	Intel IA-64 architecture	multithreading history, L-35
floating-point operations, K-52 to	compiler scheduling history, L-31	Intel Pentium 4 Extreme, L-33 to L-34
K-55, K-54 , K-61	conditional instructions, H-27	Intel Pentium II, L-33
instruction formats, K-56 to K-57	explicit parallelism, H-34 to H-35	Intel Pentium III
instruction lengths, K-60	historical background, L-32	pipelined cache access, 82
instruction mix, K-61 to K-62	ISA	power consumption, F-85
instructions vs. DLX, K-63 to	instruction formats, H-39	Intel Pentium M, power consumption,
K-64	instructions, H-35 to H-37	F-85
instruction set encoding, A-23,	instruction set basics, H-38	Intel Pentium MMX, multimedia
K-55	overview, H-32 to H-33	support, E-11
instruction set usage	predication and speculation,	Intel Pentium Pro, 82, L-33
measurements, K-56 to	H-38 to H-40	Intel Pentium processors
K-64	Itanium 2 processor	"big and dumb" processors, 245
instructions and functions, K-52	instruction latency, H-41	clock rate, 244
instruction types, K-49	overview, H-40 to H-41	early computer arithmetic, J-64 to
integer operations, K-50 to K-51	performance, H-43, H-43	J-65
integer overflow, J-11	multiple issue processor	vs. Opteron memory protection, B-57
Intel Core i7, 117	approaches, 194	pipelining performance, C-10
ISA, 11-12, 14-15, A-2	parallelism exploitation statically,	segmented virtual memory
memory accesses, B-6	H-2	example, B-51 to B-54
memory addressing, A-8	register model, H-33 to H-34	SMT, 230
memory hierarchy development,	RISC history, L-22	Intel processors
L-9	software pipelining, H-15	early RISC designs, 2
multimedia support, K-17	synchronization history, L-64	power consumption, F-85
operand addressing mode, K-59 ,	Intel iPSC 860, L-60	Intel Single-Chip Cloud Computing
K-59 to K-60	Intel Itanium, sparse matrices, G-13	(SCCC)
operand type distribution, K-59	Intel Itanium 2	as interconnection example, F-70
overview, K-45 to K-47	"big and dumb" processors, 245	to F-72
process protection, B-50	clock rate, 244	OCNs, F-3
1 T 111111 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		

Intel Streaming SIMD Extension	commercial	network-only features, F-94 to
(SSE)	congestion management, F-64	F-95
basic function, 283	to F-66	NIC vs. I/O subsystems, F-90 to
Multimedia SIMD Extensions,	connectivity, F-62 to F-63	F-91
A-31	cross-company interoperability,	OCN characteristics, F-73
vs. vector architectures, 282	F-63 to F-64	OCN example, F-70 to F-72
Intel Teraflops processors, OCNs, F-3	DECstation 5000 reboots, F-69	OCN history, F-103 to F-104
Intel Thunder Tiger 4 QsNet ^{II} , F-63,	fault tolerance, F-66 to F-69	protection, F-86 to F-87
F-76	commercial routing/arbitration/	routing, F-44 to F-48, F-54
Intel VT-x, 129	switching, F-56	routing/arbitration/switching
Intel x86	communication bandwidth, I-3	impact, F-52 to F-55
Amazon Web Services, 456	compute-optimized processors vs.	SAN characteristics, F-76
AVX instructions, 284	receiver overhead, F-88	software overhead, F-91 to F-92
clock rates, 244	density- vs. SPEC-optimized	speed considerations, F-88
computer architecture, 15	processors, F-85	storage area networks, F-102 to
conditional instructions, H-27	device example, F-3	F-103
GPUs as coprocessors, 330–331	direct vs. high-dimensional, F-92	switching, F-50 to F-52
Intel Core i7, 237–238	domains, F-3 to F5, F-4	switch microarchitecture, F-57
Multimedia SIMD Extensions,	Ethernet, F-77 to F-79, F-78	basic microarchitecture, F-55 to
282–283	Ethernet/ATM total time statistics,	F-58
NVIDIA GPU ISA, 298	F-90	buffer organizations, F-58 to
parallelism, 262–263	examples, F-70	F-60
performance and energy	HOL blocking, F-59	pipelining, F-60 to F-61, F-61
efficiency, 241	IBM Blue Gene/L, I-43	switch vs. NIC, F-85 to F-86, F-86
vs. PTX, 298	InfiniBand, F-75	system area networks, F-72 to
RISC, 2	LAN history, F-99 to F-100	F-74, F-100 to F-102
speedup via parallelism, 263	link bandwidth, F-89	system/storage area network, F-74
Intel Xeon	memory hierarchy interface, F-87	to F-77
Amazon Web Services, 457	to F-88	TCP/IP reliance, F-95
cache coherence, 361	mesh network routing, F-46	top-level architecture, F-71
file system benchmarking, D-20	MIN vs. direct network costs, F-92	topology, F-44
InfiniBand, F-76	multicore single-chip	basic considerations, F-29 to
multicore processor performance,	multiprocessor, 364	F-30
400–401	multi-device connections	Beneŝ networks, F-33
performance, 400	basic considerations, F-20 to	centralized switched networks,
performance measurement,	F-21	F-30 to F-34, F-31
405–406	effective bandwidth vs. nodes,	direct networks, F-37
SMP limitations, 363	F-28	distributed switched networks,
SPECPower benchmarks, 463	latency vs. nodes, F-27	F-34 to F-40
WSC processor cost-performance,	performance characterization,	performance and costs, F-40
473	F-25 to F-29	performance effects, F-40 to
Interactive workloads, WSC goals/	shared-media networks, F-22 to	F-44
requirements, 433	F-24	ring network, F-36
Interarrival times, queuing model,	shared- vs. switched-media	two-device interconnections
D-30	networks, F-22	basic considerations, F-5 to F-6
Interconnection networks	switched-media networks, F-24	effective bandwidth vs. packet
adaptive routing, F-93 to F-94	topology, routing, arbitration,	size, F-19
adaptive routing and fault	switching, F-21 to F-22	example, F-6
tolerance, F-94	multi-device interconnections,	interface functions, F-6 to F-9
arbitration, F-49 , F-49 to F-50	shared- vs.	performance, F-12 to F-20
basic characteristics, F-2, F-20	switched-media	structure and functions, F-9 to
bisection bandwidth, F-89	networks, F-24 to F-25	F-12

virtual channels and throughput,	cost, F-80	inclusion, B-34
F-93	definition, F-2	Multimedia SIMD vs. GPUs, 312
WAN example, F-79	enabling technologies, F-80 to	multiprocessor cost effectiveness,
WANs, F-97 to F-99	F-81	407
wormhole switching performance,	OSI model layers, F-81, F-82	performance, D-15 to D-16
F-92 to F-93	protocol-level communication,	SANs, F-3 to F-4
zero-copy protocols, F-91	F-81 to F-82	shared-media networks, F-23
Intermittent faults, storage systems,	protocol stack, F-83, F-83	switched networks, F-2
D-11	role, F-81	switch vs. NIC, F-86
Internal fragmentation, virtual	TCP/IP, F-81, F-83 to F-84	Virtual Machines impact, 110-111
memory page size	TCP/IP headers, F-84	write strategy, B-11
selection, B-47	Interprocedural analysis, basic	Xen VM, 111
Internal Mask Registers, definition,	approach, H-10	I/O interfaces
309	Interprocessor communication,	disk storage, D-4
International Computer Architecture	large-scale	storage area network history,
Symposium (ISCA),	multiprocessors, I-3 to	F-102
L-11 to L-12	I-6	I/O latency, shared-memory
International Mobile Telephony 2000	Interrupt, see Exceptions	workloads, 368–369,
(IMT-2000), cell phone	Invalidate protocol	371
standards, E-25	directory-based cache coherence	I/O network, commercial
Internet	protocol example,	interconnection network
Amazon Web Services, 457	382–383	connectivity, F-63
array switch, 443	example, 359, 360	IOP, see I/O processor (IOP)
cloud computing, 455–456, 461	implementation, 356–357	I/O processor (IOP)
data-intensive applications, 344	snooping coherence, 355 , 355–356	first dynamic scheduling, L-27
dependability, 33	Invalid exception, floating-point	Sony PlayStation 2 Emotion
Google WSC, 464	arithmetic, J-35	Engine case study, E-15
Layer 3 network linkage, 445	Inverted page table, virtual memory	I/O registers, write buffer merging, 87
Netflix traffic, 460	block identification,	I/O subsystems
SaaS, 4	B-44 to B-45	design, D-59 to D-61
WSC efficiency, 452	I/O bandwidth, definition, D-15	interconnection network speed,
WSC memory hierarchy, 445	I/O benchmarks, response time	F-88
WSCs, 432-433, 435, 437, 439,	restrictions, D-18	vs. NIC, F-90 to F-91
446, 453–455	I/O bound workload, Virtual Machines	zero-copy protocols, F-91
Internet Archive Cluster	protection, 108	I/O systems
container history, L-74 to L-75	I/O bus	asynchronous, D-35
overview, D-37	historical background, L-80 to L-81	as black box, D-23
performance, dependability, cost,	interconnection networks, F-88	dirty bits, D-61 to D-64
D-38 to D-40	point-to-point replacement, D-34	Internet Archive Cluster, see
TB-80 cluster MTTF, D-40 to	Sony PlayStation 2 Emotion	Internet Archive Cluster
D-41	Engine case study, E-15	multithreading history, L-34
TB-80 VME rack, D-38	I/O cache coherency, basic	queing theory, D-23
Internet Protocol (IP)	considerations, 113	queue calculations, D-29
internetworking, F-83	I/O devices	random variable distribution, D-26
storage area network history,	address translation, B-38	utilization calculations, D-26
F-102	average memory access time, B-17	IP, see Intellectual Property (IP) cores;
WAN history, F-98	cache coherence enforcement, 354	Internet Protocol (IP)
Internet Protocol (IP) cores, OCNs, F-3	centralized shared-memory	IPC, see Instructions per clock (IPC)
Internet Protocol (IP) routers, VOQs,	multiprocessors, 351	IPoIB, F-77
F-60	future GPU features, 332	IR, see Instruction register (IR)
Internetworking	historical background, L-80 to	ISA, see Instruction set architecture
connection example, F-80	L-81	(ISA)

ISCA, see International Computer Architecture	GPU conditional branching, 301–302	ARM Cortex-A8, 116, 116 , 235 ARM Cortex-A8 vs. A9, 236
Symposium (ISCA)	MIPS control flow instructions,	ARM Cortex-A8 example, 117
iSCSI	A-37 to A-38	cache optimization, B-31 to B-33
NetApp FAS6000 filer, D-42	MIPS operations, A-35	case study examples, B-60, B-63 to
storage area network history, F-102	return address predictors, 206	B-64
Issue logic	RISC instruction set, C-5	directory-based coherence, 418
ARM Cortex-A8, 233	VAX, K-71 to K-72	Fermi GPU, 306
ILP, 197	Just-in-time (JIT), L-17	hardware prefetching, 91
longer latency pipelines, C-57	JVM, see Java Virtual Machine (JVM)	hit time/power reduction, 79–80
multiple issue processor, 198	· · · · · · · · · · · · · · · · · · ·	inclusion, 397–398, B-34 to B-35
register renaming vs. ROB, 210	K	Intel Core i7, 118–119 , 121–122,
speculation support, 210	Kahle, Brewster, L-74	123 , 124, 124 , 239, 241
Issue stage	Kahn, Robert, F-97	invalidate protocol, 355, 356–357
ID pipe stage, 170	<i>k</i> -ary <i>n</i> -cubes, definition, F-38	memory consistency, 392
instruction steps, 174	Kendall Square Research KSR-1, L-61	memory hierarchy, B-39
MIPS with scoreboard, C-73 to C-74	Kernels	miss rates, 376–377
out-of-order execution, C-71	arithmetic intensity, 286, 286-287,	multiprocessor cache coherence,
ROB instruction, 186	327	352
Iterative division, floating point, J-27	benchmarks, 56	multiprogramming workload, 374
to J-31	bytes per reference, vs. block size,	nonblocking cache, 85
	378	NVIDIA GPU Memory, 304
J	caches, 329	Opteron memory, B-57
Java benchmarks	commercial workload, 369-370	processor comparison, 242
Intel Core i7, 401–405	compilers, A-24	speculative execution, 223
SMT on superscalar processors,	compute bandwidth, 328	T1 multithreading unicore
230–232	via computing, 327	performance, 228
without SMT, 403–404	EEMBC benchmarks, 38, E-12	virtual memory, B-48 to B-49
Java language	FFT, I-7	L2 caches, see also Second-level
dependence analysis, H-10	FORTRAN, compiler	caches
hardware impact on software	vectorization, G-15	ARM Cortex-A8, 114, 115–116 ,
development, 4	FP benchmarks, C-29	235–236 ARM Cortex-A8 example, 117
return address predictors, 206 SMT, 230–232, 402–405	Livermore Fortran kernels, 331 LU, I-8	cache optimization, B-31 to B-33,
SPECjbb, 40	multimedia instructions, A-31	B-34
SPECpower, 52	multiprocessor architecture, 408	case study example, B-63 to B-64
virtual functions/methods, A-18	multiprogramming workload,	coherency, 352
Java Virtual Machine (JVM)	375–378, 377	commercial workloads, 373
early stack architectures, L-17	performance benchmarks, 37, 331	directory-based coherence, 379,
IBM, 463	primitives, A-30	418–420, 422, 424
multicore processor performance,	protecting processes, B-50	fault detection, 58
400	segmented virtual memory, B-51	Fermi GPU, 296, 306, 308
multithreading-based speedup, 232	SIMD exploitation, 330	hardware prefetching, 91
SPECjbb, 53	vector, on vector processor and	IBM Blue Gene/L, I-42
JBOD, see RAID 0	GPU, 334–336	inclusion, 397-398, B-35
Johnson, Reynold B., L-77	virtual memory protection, 106	Intel Core i7, 118, 120-122, 124,
Jump prediction	WSCs, 438	124–125 , 239, 241
hardware model, 214		invalidation protocol, 355, 356-357
ideal processor, 214	L	and ISA, 241
Jumps	L1 caches, see also First-level caches	memory consistency, 392
control flow instructions, 14, A-16,	address translation, B-46	memory hierarchy, B-39, B-48,
A-17 , A-21	Alpha 21164 hierarchy, 368	B-57

L2 caches (continued)	DSM multiprocessor, I-36 to I-37	ILP exposure, 157
multithreading, 225, 228	overview, I-34 to I-36	ILP without multithreading, 225
nonblocking cache, 85	classification, I-45	ILP for realizable processors,
NVIDIA GPU Memory, 304	cluster history, L-62 to L-63	216–218
processor comparison, 242	historical background, L-60 to	Intel SCCC, F-70
snooping coherence, 359–361	L-61	interconnection networks, F-12 to
speculation, 223	IBM Blue Gene/L, I-41 to I-44,	F-20
L3 caches, <i>see also</i> Third-level caches	I-43 to I-44	multi-device networks, F-25 to
Alpha 21164 hierarchy, 368	interprocessor communication, I-3	F-29
coherence, 352	to I-6	Itanium 2 instructions, H-41
commercial workloads, 370, 371,	for parallel programming, I-2	microarchitectural techniques case
374	scientific application performance	study, 247–254
directory-based coherence, 379, 384	distributed-memory	MIPS pipeline FP operations, C-52
IBM Blue Gene/L, I-42	multiprocessors, I-26 to	to C-53
IBM Power processors, 247	I-32, I-28 to I-32	misses, single vs. multiple thread
inclusion, 398	parallel processors, I-33 to I-34	executions, 228
Intel Core i7, 118, 121, 124,	symmetric shared-memory	multimedia instruction compiler
124–125 , 239, 241,	multiprocessor, I-21 to	support, A-31
403–404	I-26, I-23 to I-25	NVIDIA GPU Memory structures,
invalidation protocol, 355,	scientific applications, I-6 to I-12	305
356–357, 360	space and relation of classes, I-46	OCNs vs. SANs, F-27
memory access cycle shift, 372	synchronization mechanisms, I-17	out-of-order processors, B-20 to
miss rates, 373	to I-21	B-21
multicore processors, 400-401	synchronization performance, I-12	packets, F-13 , F-14
multithreading, 225	to I-16	parallel processing, 350
nonblocking cache, 83	Latency, see also Response time	performance milestones, 20
performance/price/power	advanced directory protocol case	pipeline, C-87
considerations, 52	study, 425	ROB commit, 187
snooping coherence, 359, 361, 363	vs. bandwidth, 18–19, 19	routing, F-50
LabVIEW, embedded benchmarks,	barrier synchronization, I-16	routing/arbitration/switching
E-13	and cache miss, B-2 to B-3	impact, F-52
Lampson, Butler, F-99	cluster history, L-73	routing comparison, F-54
Lanes	communication mechanism, I-3 to	SAN example, F-73
GPUs vs. vector architectures, 310	I-4	shared-memory workloads, 368
Sequence of SIMD Lane	definition, D-15	snooping coherence, 414
Operations, 292 , 313	deterministic vs. adaptive routing,	Sony PlayStation 2 Emotion
SIMD Lane Registers, 309, 314	F-52 to F-55	Engine, E-17
SIMD Lanes, 296–297, 297 ,	directory coherence, 425	Sun T1 multithreading, 226–229
302–303, 308, 309 ,	distributed-memory	switched network topology, F-40
311–312, 314	multiprocessors, I-30,	to F-41
vector execution time, 269	I-32	system area network history, F-101
vector instruction set, 271–273	dynamically scheduled pipelines,	vs. TCP/IP reliance, F-95
Vector Lane Registers, 292	C-70 to C-71	throughput vs. response time, D-17
Vector Lanes, 292 , 296–297, 309,	Flash memory, D-3	utility computing, L-74
311	FP operations, 157	vector memory systems, G-9
LANs, see Local area networks	FP pipeline, C-66	vector start-up, G-8
(LANs)	functional units, C-53	WSC efficiency, 450–452
Large-scale multiprocessors	GPU SIMD instructions, 296	WSC memory hierarchy, 443,
cache coherence implementation	GPUs vs. vector architectures, 311	443–444, 444 , 445
deadlock and buffering, I-38 to	hazards and forwarding, C-54 to	WSC processor cost-performance,
I-40 directory controller, I-40 to I-41	C-58 hiding with speculation, 396–397	472–473 WSCs vs. datacenters, 456
directory conditions, 1 to to 1 +1		Ses 75. datacontors, 100

Layer 3 network, array and Internet	VMIPS performance, G-17 to	synchronization, 388-389
linkage, 445	G-19	Load locked, synchronization,
Layer 3 network, WSC memory	Linux operating systems	388–389
hierarchy, 445	Amazon Web Services, 456–457	Load memory data (LMD), simple
LCA, see Least common ancestor	architecture costs, 2	MIPS implementation,
(LCA)	protection and ISA, 112	C-32 to C-33
LCD, see Liquid crystal display	RAID benchmarks, D-22 , D-22 to	Load stalls, MIPS R4000 pipeline,
(LCD)	D-23	C-67
Learning curve, cost trends, 27	WSC services, 441	Load-store instruction set architecture
Least common ancestor (LCA),	Liquid crystal display (LCD), Sanyo	basic concept, C-4 to C-5
routing algorithms, F-48	VPC-SX500 digital	IBM 360, K-87
Least recently used (LRU)	camera, E-19	Intel Core i7, 124
AMD Opteron data cache, B-12,	LISP	Intel 80x86 operations, K-62
B-14	RISC history, L-20	as ISA, 11
block replacement, B-9	SPARC instructions, K-30	ISA classification, A-5
memory hierarchy history, L-11	Lisp	MIPS nonaligned data transfers,
virtual memory block replacement,	ILP, 215	K-24, K-26
B-45		
	as MapReduce inspiration, 437	MIPS operations, A-35 to A-36,
Less than condition code, PowerPC,	Literal addressing mode, basic considerations, A-10 to	A-36
K-10 to K-11		PowerPC, K-33
Level 3, as Content Delivery Network,	A-11	RISC history, L-19
460	Little Endian	simple MIPS implementation, C-32
Limit field, IA-32 descriptor table,	Intel 80x86, K-49	VMIPS, 265
B-52	interconnection networks, F-12	Load/store unit
Line, memory hierarchy basics, 74	memory address interpretation,	Fermi GPU, 305
Linear speedup	A-7	ILP hardware model, 215
cost effectiveness, 407	MIPS core extensions, K-20 to K-21	multiple lanes, 273
IBM eServer p5 multiprocessor,	MIPS data transfers, A-34	Tomasulo's algorithm, 171–173,
408	Little's law	182, 197
multicore processors, 400, 402	definition, D-24 to D-25	vector units, 265, 276–277
performance, 405–406	server utilization calculation, D-29	Load upper immediate (LUI), MIPS
Line locking, embedded systems, E-4	Livelock, network routing, F-44	operations, A-37
to E-5	Liveness, control dependence, 156	Local address space, segmented
Link injection bandwidth	Livermore Fortran kernels,	virtual memory, B-52
calculation, F-17	performance, 331, L-6	Local area networks (LANs)
interconnection networks, F-89	LMD, see Load memory data (LMD)	characteristics, F-4
Link pipelining, definition, F-16	Load instructions	cross-company interoperability, F-6-
Link reception bandwidth, calculation,	control dependences, 155	effective bandwidth, F-18
F-17	data hazards requiring stalls, C-20	Ethernet as, F-77 to F-79
Link register	dynamic scheduling, 177	fault tolerance calculations, F-68
MIPS control flow instructions,	ILP, 199 , 201	historical overview, F-99 to F-100
A-37 to A-38	loop-level parallelism, 318	InfiniBand, F-74
PowerPC instructions, K-32 to	memory port conflict, C-14	interconnection network domain
K-33	pipelined cache access, 82	relationship, F-4
procedure invocation options,	RISC instruction set, C-4 to C-5	latency and effective bandwidth,
A-19	Tomasulo's algorithm, 182	F-26 to F-28
synchronization, 389	VLIW sample code, 252	offload engines, F-8
Linpack benchmark	Load interlocks	packet latency, F-13 , F-14 to F-16
cluster history, L-63	definition, C-37 to C-39	routers/gateways, F-79
parallel processing debates, L-58	detection logic, C-39	shared-media networks, F-23
	Load linked	
vector processor example,		storage area network history,
267–268	locks via coherence, 391	F-102 to F-103

switches, F-29	CUDA, 290	data cache misses, B-10
TCP/IP reliance, F-95	definition, 315–316	LUI, see Load upper immediate (LUI)
time of flight, F-13	dependence distance, H-6	LU kernel
topology, F-30	dependent computation	characteristics, I-8
Locality, see Principle of locality	elimination, 321	distributed-memory
Local Memory	example calculations, H-4 to H-5	multiprocessor, I-32
centralized shared-memory	GCD, 319	symmetric shared-memory
architectures, 351	loop-level parallelism, H-3	multiprocessors, I-22,
definition, 292, 314	as recurrence, 318	I-23 , I-25
distributed shared-memory, 379	recurrence form, H-5	
Fermi GPU, 306	VMIPS, 268	M
Grid mapping, 293	Loop exit predictor, Intel Core i7, 166	MAC, see Multiply-accumulate
multiprocessor architecture, 348	Loop interchange, compiler	(MAC)
NVIDIA GPU Memory structures,	optimizations, 88-89	Machine language programmer, L-17
304 , 304–305	Loop-level parallelism	to L-18
SIMD, 315	definition, 149–150	Machine memory, Virtual Machines,
symmetric shared-memory	detection and enhancement	110
multiprocessors,	basic approach, 315-318	Macro-op fusion, Intel Core i7,
363–364	dependence analysis, H-6 to	237–238
Local miss rate, definition, B-31	H-10	Magnetic storage
Local node, directory-based cache	dependence computation	access time, D-3
coherence protocol	elimination, 321–322	cost vs. access time, D-3
basics, 382	dependences, locating,	historical background, L-77 to
Local optimizations, compilers, A-26	318-321	L-79
Local predictors, tournament	dependent computation	Mail servers, benchmarking, D-20
predictors, 164–166	elimination, H-10 to	Main Memory
Local scheduling, ILP, VLIW	H-12	addressing modes, A-10
processor, 194-195	overview, H-2 to H-6	address translation, B-46
Locks	history, L-30 to L-31	arithmetic intensity example, 286,
via coherence, 389–391	ILP in perfect processor, 215	286–288
hardware primitives, 387	ILP for realizable processors,	block placement, B-44
large-scale multiprocessor	217–218	cache function, B-2
synchronization, I-18 to	Loop stream detection, Intel Core i7	cache optimization, B-30, B-36
I-21	micro-op buffer, 238	coherence protocol, 362
multiprocessor software	Loop unrolling	definition, 292, 309
development, 409	basic considerations, 161–162	DRAM, 17
Lock-up free cache, 83	ILP exposure, 157–161	gather-scatter, 329
Logical units, D-34	ILP limitation studies, 220	GPU vs. MIMD, 327
storage systems, D-34 to D-35	recurrences, H-12	GPUs and coprocessors, 330
Logical volumes, D-34	software pipelining, H-12 to H-15,	GPU threads, 332
Long displacement addressing, VAX,	H-13, H-15	ILP considerations, 245
K-67	Tomasulo's algorithm, 179,	interlane wiring, 273
Long-haul networks, see Wide area	181–183	linear speedups, 407
networks (WANs)	VLIW processors, 195	memory hierarchy basics, 76
Long Instruction Word (LIW)	Lossless networks	memory hierarchy design, 72
EPIC, L-32	definition, F-11 to F-12	memory mapping, B-42
multiple-issue processors, L-28,	switch buffer organizations, F-59	MIPS operations, A-36
L-30	Lossy networks, definition, F-11 to	Multimedia SIMD vs. GPUs, 312
Long integer	F-12	multiprocessor cache coherence,
operand sizes/types, 12	LRU, see Least recently used (LRU)	352
SPEC benchmarks, A-14	Lucas	paging vs. segmentation, B-43
Loop-carried dependences	compiler optimizations, A-29	partitioning, B-50

Main Memory (continued)	Matrix multiplication	vs. block size, B-28
processor performance	benchmarks, 56	cache hit calculation, B-5 to B-6
calculations, 218–219	LU kernel, I-8	Cray Research T3D, F-87
RISC code size, A-23	multidimensional arrays in vector	data hazards requiring stalls, C-19
server energy efficiency, 462	architectures, 278	to C-21
symmetric shared-memory	Mauchly, John, L-2 to L-3, L-5, L-19	data hazard stall minimization,
multiprocessors, 363	Maximum transfer unit, network	C-17, C-19
vector processor, G-25	interfaces, F-7 to F-8	distributed-memory
vs. virtual memory, B-3, B-41	Maximum vector length (MVL)	multiprocessor, I-32
virtual memory block	Multimedia SIMD extensions, 282	exception stopping/restarting, C-46
identification, B-44 to	vector vs. GPU, 311	hazards and forwarding, C-56 to
B-45	VLRs, 274-275	C-57
virtual memory writes, B-45 to	M-bus, see Memory bus (M-bus)	instruction set complications, C-49
B-46	McCreight, Ed, F-99	integrated instruction fetch units,
VLIW, 196	MCF	208
write-back, B-11	compiler optimizations, A-29	MIPS data transfers, A-34
write process, B-45	data cache misses, B-10	MIPS exceptions, C-48 to C-49
Manufacturing cost	Intel Core i7, 240–241	MIPS pipeline control, C-37 to
chip fabrication case study, 61–62	MCP operating system, L-16	C-39
cost trends, 27	Mean time between failures (MTBF)	MIPS R4000, C-65
modern processors, 62	fallacies, 56–57	multimedia instruction compiler
vs. operation cost, 33	RAID, L-79	support, A-31
MapReduce	SLA states, 34	pipeline branch issues, C-40, C-42
cloud computing, 455	Mean time to failure (MTTF)	RISC classic pipeline, C-7, C-10
cost calculations, 458–460, 459	computer system power	shared-memory workloads, 372
Google usage, 437	consumption case study,	simple MIPS implementation,
reductions, 321	63–64	C-32 to C-33
WSC batch processing, 437–438	dependability benchmarks, D-21	simple RISC implementation, C-6
WSC cost-performance, 474	disk arrays, D-6	structural hazards, C-13 to C-14
Mark-I, L-3 to L-4, L-6	example calculations, 34–35	vector architectures, G-10
Mark-II, L-4	I/O subsystem design, D-59 to	Memory addressing
Mark-III, L-4	D-61	ALU immediate operands, A-12
Mark-IV, L-4	RAID reconstruction, D-55 to	basic considerations, A-11 to A-13
Mask Registers	D-57	compiler-based speculation, H-32
basic operation, 275–276	SLA states, 34	displacement values, A-12
definition, 309	TB-80 cluster, D-40 to D-41	immediate value distribution, A-13
Multimedia SIMD, 283	WSCs vs. servers, 434	interpretation, A-7 to A-8
NVIDIA GPU computational	Mean time to repair (MTTR)	ISA, 11
structures, 291	dependability benchmarks, D-21	vector architectures, G-10
vector compilers, 303	disk arrays, D-6	Memory banks, see also Banked
vector complicis, 505 vector vs. GPU, 311	RAID 6, D-8 to D-9	memory
VMIPS, 267	RAID 6, D-6 to D-9 RAID reconstruction, D-56	gather-scatter, 280
		multiprocessor architecture, 347
MasPar, L-44	Mean time until data loss (MTDL), RAID reconstruction,	parallelism, 45
Massively parallel processors (MPPs) characteristics, I-45	D-55 to D-57	=
	Media, interconnection networks, F-9	shared-memory multiprocessors, 363
cluster history, L-62, L-72 to	to F-12	strides, 279
L-73		
system area network history, F-100	Media extensions, DSPs, E-10 to E-11	vector load/store unit bandwidth,
to F-101	Mellanox MHEA28-XT, F-76	276–277
Matrix 300 kernel	Memory access	vector systems, G-9 to G-11
definition, 56	ARM Cortex-A8 example, 117	Memory bus (M-bus)
prediction buffer, C-29	basic MIPS pipeline, C-36	definition, 351

Google WSC servers, 469	development, L-9 to L-12	cache size and misses per
interconnection networks, F-88	inclusion, 397–398	instruction, 126
Memory consistency	interconnection network	DDR2 SDRAM timing diagram,
basic considerations, 392–393	protection, F-87 to F-88	139
cache coherence, 352	levels in slow down, B-3	highly parallel memory systems,
compiler optimization, 396	Opteron data cache example, B-12	133–136
development of models, L-64	to B-15, B-13	high memory bandwidth, 126
directory-based cache coherence	Opteron L1/L2, B-57	instruction miss benchmarks, 127
protocol basics, 382	OS and page size, B-58	instruction simulation, 126
multiprocessor cache coherency,	overview, B-39	Intel Core i7, 117–124, 119 ,
353	Pentium vs. Opteron protection,	123–125
relaxed consistency models,	B-57	Intel Core i7 three-level cache
394–395	processor examples, B-3	hierarchy, 118
single-chip multicore processor	process protection, B-50	Intel Core i7 TLB structure, 118
case study, 412–418	terminology, B-2 to B-3	Intel 80x86 virtualization issues,
speculation to hide latency, 396–397	virtual memory	128
Memory-constrained scaling,	basic considerations, B-40 to	memory basics, 74–78
scientific applications	B-44, B-48 to B-49	overview, 72–74
on parallel processors,	basic questions, B-44 to B-46	protection and ISA, 112
I-33	fast address translation, B-46	server vs. PMD, 72
Memory hierarchy	overview, B-48	system call virtualization/
address space, B-57 to B-58	paged example, B-54 to B-57	paravirtualization
basic questions, B-6 to B-12	page size selection, B-46 to	performance, 141
block identification, B-7 to B-9	B-47	virtual machine monitor, 108–109
block placement issues, B-7	segmented example, B-51 to	Virtual Machines ISA support,
block replacement, B-9 to B-10	B-54	109–110
cache optimization	write strategy, B-10 to B-12	Virtual Machines protection,
basic categories, B-22	WSCs, 443 , 443–446, 444	107–108
basic optimizations, B-40	Memory hierarchy design	Virtual Machines and virtual
hit time reduction, B-36 to	access times, 77	memory and I/O,
B-40	Alpha 21264 floorplan, 143	110–111
miss categories, B-23 to B-26	ARM Cortex-A8 example,	virtual memory protection,
miss penalty reduction	114–117, 115–117	105–107
via multilevel caches, B-30	cache coherency, 112–113	VMM on nonvirtualizable ISA,
to B-35	cache optimization	128–129
read misses vs. writes, B-35	case study, 131–133	Xen VM example, 111
to B-36	compiler-controlled	Memory Interface Unit
miss rate reduction	prefetching, 92–95	NVIDIA GPU ISA, 300
via associativity, B-28 to	compiler optimizations, 87–90	vector processor example, 310
B-30	critical word first, 86–87	Memoryless, definition, D-28
via block size, B-26 to B-28	energy consumption, 81	Memory mapping
via cache size, B-28	hardware instruction	memory hierarchy, B-48 to B-49
pipelined cache access, 82	prefetching, 91–92, 92	segmented virtual memory, B-52
cache performance, B-3 to B-6	multibanked caches, 85–86, 86	TLBs, 323
average memory access time,	nonblocking caches, 83–85, 84	virtual memory definition, B-42
B-17 to B-20	overview, 78–79	Memory-memory instruction set
basic considerations, B-16	pipelined cache access, 82	architecture, ISA
basic equations, B-22	techniques overview, 96	classification, A-3, A-5
example calculation, B-16	way prediction, 81–82	Memory protection
out-of-order processors, B-20	write buffer merging, 87, 88	control dependence, 155
to B-22	cache performance prediction,	Pentium vs. Opteron, B-57
case studies, B-60 to B-67	125–126	processes, B-50
		r

Memory protection (continued)	Memory technology basics	ARM Cortex-A8, 241
safe calls, B-54	DRAM, 98 , 98–100, 99	Cray X1, G-21 to G-22
segmented virtual memory	DRAM and DIMM characteristics,	data hazards, 168
example, B-51 to B-54	101	ILP exploitation, 197
virtual memory, B-41	DRAM performance, 100–102	Intel Core i7, 236–237
Memory stall cycles	Flash memory, 102–104	Nehalem, 411
average memory access time, B-17	overview, 96–97	OCNs, F-3
definition, B-4 to B-5	performance trends, 20	out-of-order example, 253
miss rate calculation, B-6	SDRAM power consumption, 102,	PTX vs. x86, 298
	103	switches, see Switch
out-of-order processors, B-20 to		
B-21	SRAM, 97–98	microarchitecture
performance equations, B-22	Mesh interface unit (MIU), Intel	techniques case study, 247–254
Memory system	SCCC, F-70	Microbenchmarks
cache optimization, B-36	Mesh network	disk array deconstruction, D-51 to
coherency, 352–353	characteristics, F-73	D-55
commercial workloads, 367,	deadlock, F-47	disk deconstruction, D-48 to D-51
369–371	dimension-order routing, F-47 to	Microfusion, Intel Core i7 micro-op
computer architecture, 15	F-48	buffer, 238
C program evaluation, 134–135	OCN history, F-104	Microinstructions
dependability enhancement,	routing example, F-46	complications, C-50 to C-51
104–105	Mesh topology	x86, 298
distributed shared-memory, 379, 418	characteristics, F-36	Micro-ops
gather-scatter, 280	direct networks, F-37	Intel Core i7, 237, 238–240, 239
GDRAMs, 323	NEWS communication, F-42 to	processor clock rates, 244
GPUs, 332	F-43	Microprocessor overview
ILP, 245	MESI, see Modified-Exclusive-	clock rate trends, 24
hardware vs. software	Shared-Invalid (MESI)	cost trends, 27–28
speculation, 221–222	protocol	desktop computers, 6
speculative execution, 222–223	Message ID, packet header, F-8, F-16	embedded computers, 8–9
Intel Core i7, 237, 242	Message-passing communication	energy and power, 23–26
latency, B-21	historical background, L-60 to	inside disks, D-4
MIPS, C-33	L-61	integrated circuit improvements, 2
multiprocessor architecture, 347	large-scale multiprocessors, I-5 to	and Moore's law, 3–4
multiprocessor cache coherence,	I-6	performance trends, 19–20, 20
352	Message Passing Interface (MPI)	power and energy system trends,
multiprogramming workload,	function, F-8	21–23
377–378	InfiniBand, F-77	recent advances, L-33 to L-34
page size changes, B-58	lack in shared-memory	technology trends, 18
price/performance/power	multiprocessors, I-5	Microprocessor without Interlocked
considerations, 53	Messages	Pipeline Stages, see
RISC, C-7	adaptive routing, F-93 to F-94	MIPS (Microprocessor
Roofline model, 286	coherence maintenance, 381	without Interlocked
shared-memory multiprocessors,	InfiniBand, F-76	Pipeline Stages)
363	interconnection networks, F-6 to	Microsoft
SMT, 399–400	F-9	cloud computing, 455
	= *	containers, L-74
stride handling, 279	zero-copy protocols, F-91	•
T1 multithreading unicore	MFLOPS, see Millions of	Intel support, 245
performance, 227	floating-point	WSCs, 464–465
vector architectures, G-9 to G-11	operations per second	Microsoft Azure, 456, L-74
vector chaining, G-11	(MFLOPS)	Microsoft DirectX, L-51 to L-52
vector processors, 271, 277	Microarchitecture	Microsoft Windows
virtual, B-43, B-46	as architecture component, 15–16	benchmarks, 38

multithreading, 223	conditional instructions, H-27	hazards and forwarding, C-54
RAID benchmarks, D-22 , D-22 to	control flow instructions, 14	to C-58
D-23	data dependences, 151	precise exceptions, C-58 to
time/volume/commoditization	data hazards, 169	C-60
impact, 28	dynamic scheduling with	multimedia support, K-19
WSC workloads, 441	Tomasulo's algorithm,	multiple-issue processor history,
Microsoft Windows 2008 Server	171, 173	L-29
real-world considerations, 52-55	early pipelined CPUs, L-26	operands, 12
SPECpower benchmark, 463	embedded systems, E-15	performance measurement history,
Microsoft XBox, L-51	encoding, 14	L-6 to L-7
Migration, cache coherent	exceptions, C-48, C-48 to C-49	pipeline branch issues, C-39 to
multiprocessors, 354	exception stopping/restarting, C-46	C-42
Millions of floating-point operations	to C-47	pipeline control, C-36 to C-39
per second (MFLOPS)	features, K-44	pipe stage, C-37
early performance measures, L-7	FP pipeline performance, C-60 to	processor performance
parallel processing debates, L-57	C-61, C-62	calculations, 218-219
to L-58	FP unit with Tomasulo's	registers and usage conventions, 12
SIMD computer history, L-55	algorithm, 173	RISC code size, A-23
SIMD supercomputer	hazard checks, C-71	RISC history, L-19
development, L-43	ILP, 149	RISC instruction set lineage, K-43
vector performance measures,	ILP exposure, 157–158	as RISC systems, K-4
G-15 to G-16	ILP hardware model, 215	scoreboard components, C-76
MIMD (Multiple Instruction Streams,	instruction execution issues, K-81	scoreboarding, C-72
Multiple Data Streams)	instruction formats, core	scoreboarding steps, C-73, C-73 to
and Amdahl's law, 406-407	instructions, K-6	C-74
definition, 10	instruction set complications, C-49	simple implementation, C-31 to
early computers, L-56	to C-51	C-34, C-34
first vector computers, L-46, L-48	ISA class, 11	Sony PlayStation 2 Emotion
GPU programming, 289	ISA example	Engine, E-17
GPUs vs. vector architectures, 310	addressing modes for data	unaligned word read instructions,
with Multimedia SIMD, vs. GPU,	transfer, A-34	K-26
324–330	arithmetic/logical instructions,	unpipelined functional units, C-52
multiprocessor architecture,	A-37	vs. VAX, K-65 to K-66, K-75 ,
346–348	basic considerations, A-32 to	K-82
speedup via parallelism, 263	A-33	write strategy, B-10
TLP, basic considerations, 344–345	control flow instructions, A-37	MIPS16
Minicomputers, replacement by	to A-38, A-38	addressing modes, K-6
microprocessors, 3–4	data types, A-34	arithmetic/logical instructions,
Minniespec benchmarks	dynamic instruction mix, A-41,	K-24
ARM Cortex-A8, 116 , 235	A-41 to A-42, A-42	characteristics, K-4
ARM Cortex-A8 memory,	FP operations, A-38 to A-39	constant extension, K-9
115–116	instruction format, A-35	data transfer instructions, K-23
MINs, see Multistage interconnection	load-store instructions, A-36	embedded instruction format, K-8
networks (MINs)	MIPS operations, A-35 to A-37	instructions, K-14 to K-16
MIPS (Microprocessor without	registers, A-34	multiply-accumulate, K-20
Interlocked Pipeline	usage, A-39	RISC code size, A-23
Stages)	Livermore Fortran kernel	unique instructions, K-40 to K-42
addressing modes, 11–12	performance, 331	MIPS32, vs. VAX sort, K-80
basic pipeline, C-34 to C-36	memory addressing, 11	MIPS64
branch predictor correlation, 163	multicycle operations	addressing modes, K-5
cache performance, B-6	basic considerations, C-51 to	arithmetic/logical instructions,
conditional branches, K-11	C-54	K-11

MIPS64 (continued)	pipeline structure, C-62 to C-63	ILP speculative execution, 223
conditional branches, K-17	MIPS R8000, precise exceptions, C-59	memory hierarchy basics, 75-76
constant extension, K-9	MIPS R10000, 81	nonblocking cache, 83
conventions, K-13	latency hiding, 397	out-of-order processors, B-20 to
data transfer instructions, K-10	precise exceptions, C-59	B-22
FP instructions, K-23	Misalignment, memory address	processor performance
instruction list, K-26 to K-27	interpretation, A-7 to	calculations, 218-219
instruction set architecture formats,	A-8, A-8	reduction via multilevel caches,
14	MISD, see Multiple Instruction	B-30 to B-35
instruction subset, 13, A-40	Streams, Single Data	write buffer merging, 87
in MIPS R4000, C-61	Stream	Miss rate
nonaligned data transfers, K-24 to	Misprediction rate	AMD Opteron data cache, B-15
K-26	branch-prediction buffers, C-29	ARM Cortex-A8, 116
RISC instruction set, C-4	predictors on SPEC89, 166	average memory access time, B-16
MIPS2000, instruction benchmarks,	profile-based predictor, C-27	to B-17, B-29
K-82	SPECCPU2006 benchmarks, 167	basic categories, B-23
MIPS 3010, chip layout, J-59	Mispredictions	vs. block size, B-27
MIPS core	ARM Cortex-A8, 232 , 235	cache optimization, 79
compare and conditional branch,	branch predictors, 164-167, 240,	and associativity, B-28 to B-30
K-9 to K-16	C-28	and block size, B-26 to B-28
equivalent RISC instructions	branch-target buffers, 205	and cache size, B-28
arithmetic/logical, K-11	hardware-based speculation, 190	cache performance, B-4
arithmetic/logical instructions,	hardware vs. software speculation,	and cache size, B-24 to B-25
K-15	221	compiler-controlled prefetching,
common extensions, K-19 to	integer vs. FP programs, 212	92–95
K-24	Intel Core i7, 237	compiler optimizations, 87-90
control instructions, K-12, K-16	prediction buffers, C-29	early IBM computers, L-10 to L-11
conventions, K-16	static branch prediction, C-26 to	example calculations, B-6, B-31 to
data transfers, K-10	C-27	B-32
embedded RISC data transfers,	Misses per instruction	hardware prefetching, 91-92
K-14	application/OS statistics, B-59	Intel Core i7, 123 , 125 , 241
FP instructions, K-13	cache performance, B-5 to B-6	memory hierarchy basics, 75-76
instruction formats, K-9	cache protocols, 359	multilevel caches, B-33
MIPS M2000, L-21, L -21	cache size effect, 126	processor performance
MIPS MDMX	L3 cache block size, 371	calculations, 218–219
characteristics, K-18	memory hierarchy basics, 75	scientific workloads
multimedia support, K-18	performance impact calculations,	distributed-memory
MIPS R2000, L-20	B-18	multiprocessors, I-28 to
MIPS R3000	shared-memory workloads, 372	I-30
integer arithmetic, J-12	SPEC benchmarks, 127	symmetric shared-memory
integer overflow, J-11	strided access-TLB interactions,	multiprocessors, I-22,
MIPS R3010	323	I-23 to I-25
arithmetic functions, J-58 to J-61	Miss penalty	shared-memory multiprogramming
chip comparison, J-58	average memory access time, B-16	workload, 376 , 376–377
floating-point exceptions, J-35	to B-17	shared-memory workload,
MIPS R4000	cache optimization, 79, B-35 to	370–373
early pipelined CPUs, L-27	B-36	single vs. multiple thread
FP pipeline, C-65 to C-67, C-66	cache performance, B-4, B-21	executions, 228
integer pipeline, C-63	compiler-controlled prefetching,	Sun T1 multithreading unicore
pipeline overview, C-61 to C-65	92–95	performance, 228
pipeline performance, C-67 to	critical word first, 86-87	vs. virtual addressed cache size,
C-70	hardware prefetching, 91-92	B-37

WITT Raw, characteristics, F-73	Moore's law	mstorical background, L-04 to
Mitsubishi M32R	DRAM, 100	L-65
addressing modes, K-6	flawed architectures, A-45	Multicore processors
arithmetic/logical instructions,	interconnection networks, F-70	architecture goals/requirements, 15
K-24	and microprocessor dominance,	cache coherence, 361-362
characteristics, K-4	3–4	centralized shared-memory
condition codes, K-14	point-to-point links and switches,	multiprocessor
constant extension, K-9	D-34	structure, 347
data transfer instructions, K-23	RISC, A-3	Cray X1E, G-24
embedded instruction format, K-8	RISC history, L-22	directory-based cache coherence,
multiply-accumulate, K-20	software importance, 55	380
unique instructions, K-39 to K-40	switch size, F-29	directory-based coherence, 381,
MIU, see Mesh interface unit (MIU)	technology trends, 17	419
Mixed cache	Mortar shot graphs, multiprocessor	DSM architecture, 348, 379
AMD Opteron example, B-15	performance	multichip
commercial workload, 373	measurement, 405–406	cache and memory states, 419
Mixer, radio receiver, E-23	Motion JPEG encoder, Sanyo	with DSM, 419
Miya, Eugene, L-65	VPC-SX500 digital	multiprocessors, 345
M/M/1 model	camera, E-19	OCN history, F-104
example, D-32 , D-32 to D-33	Motorola 68000	performance, 400–401, 401
overview, D-30	characteristics, K-42	performance gains, 398–400
RAID performance prediction, D-57	memory protection, L-10	performance milestones, 20
sample calculations, D-33	Motorola 68882, floating-point	single-chip case study, 412–418
M/M/2 model, RAID performance	precisions, J-33	and SMT, 404–405
prediction, D-57	Move address, VAX, K-70	snooping cache coherence
MMX, see Multimedia Extensions	MPEG	implementation, 365
(MMX)	Multimedia SIMD Extensions	SPEC benchmarks, 402
Mobile clients	history, L-49	uniform memory access, 364
data usage, 3	multimedia support, K-17	write invalidate protocol
GPU features, 324	Sanyo VPC-SX500 digital camera,	implementation,
vs. server GPUs, 323–330	E-19	356–357
Modified-Exclusive-Shared-Invalid	Sony PlayStation 2 Emotion	Multics protection software, L-9
(MESI) protocol,	Engine, E-17	Multicycle operations, MIPS pipeline
characteristics, 362	MPI, see Message Passing Interface	basic considerations, C-51 to C-54
Modified-Owned-Exclusive-Shared-In	(MPI)	hazards and forwarding, C-54 to
valid (MOESI) protocol,	MPPs, see Massively parallel	C-58
characteristics, 362	processors (MPPs)	precise exceptions, C-58 to C-60
Modified state	MSP, see Multi-Streaming Processor	Multidimensional arrays
coherence protocol, 362	(MSP)	dependences, 318
directory-based cache coherence	MTBF, see Mean time between	in vector architectures, 278–279
protocol basics, 380	failures (MTBF)	Multiflow processor, L-30, L-32
large-scale multiprocessor cache	MTDL, see Mean time until data loss	Multigrid methods, Ocean application,
coherence, I-35	(MTDL)	I-9 to I-10
snooping coherence protocol,	MTTF, see Mean time to failure (MTTF)	Multilevel caches
358–359	MTTR, see Mean time to repair (MTTR)	cache optimizations, B-22
Modula-3, integer division/remainder,	Multibanked caches	centralized shared-memory
J-12	cache optimization, 85–86	architectures, 351
Module availability, definition, 34	example, 86	memory hierarchy basics, 76
Module reliability, definition, 34	Multichip modules, OCNs, F-3	memory hierarchy history, L-11
MOESI, see Modified-Owned-	Multicomputers	miss penalty reduction, B-30 to
Exclusive-Shared-Invali	cluster history, L-63	B-35
d (MOESI) protocol	definition, 345, L-59	miss rate vs. cache size. B-33

Multilevel caches (continued)	Multiple Instruction Streams, Single	Wallace tree, J-53
Multimedia SIMD vs. GPU, 312	Data Stream (MISD),	integer shifting over zeros, J-45 to
performance equations, B-22	definition, 10	J-47
purpose, 397	Multiple-issue processors	PA-RISC instructions, K-34 to
write process, B-11	basic VLIW approach, 193-196	K-35
Multilevel exclusion, definition, B-35	with dynamic scheduling and	unfinished instructions, 179
Multilevel inclusion	speculation, 197–202	Multiprocessor basics
definition, 397, B-34	early development, L-28 to L-30	architectural issues and
implementation, 397	instruction fetch bandwidth,	approaches, 346–348
memory hierarchy history, L-11	202–203	architecture goals/requirements, 15
Multimedia applications	integrated instruction fetch units,	architecture and software
desktop processor support,	207	development, 407–409
E-11	loop unrolling, 162	basic hardware primitives,
GPUs, 288	microarchitectural techniques case	387–389
	study, 247–254	
ISA support, A-46		cache coherence, 352–353
MIPS FP operations, A-39	primary approaches, 194	coining of term, L-59
vector architectures, 267	SMT, 224, 226	communication calculations, 350
Multimedia Extensions (MMX)	with speculation, 198	computer categories, 10
compiler support, A-31	Tomasulo's algorithm, 183	consistency models, 395
desktop RISCs, K-18	Multiple lanes technique	definition, 345
desktop/server RISCs, K-16 to	vector instruction set, 271–273	early machines, L-56
K-19	vector performance, G-7 to G-9	embedded systems, E-14 to E-15
SIMD history, 262, L-50	vector performance calculations,	fallacies, 55
vs. vector architectures, 282–283	G-8	locks via coherence, 389–391
Multimedia instructions	Multiple paths, ILP limitation studies,	low-to-high-end roles, 344–345
ARM Cortex-A8, 236	220	parallel processing challenges,
compiler support, A-31 to A-32	Multiple-precision addition, J-13	349–351
Multimedia SIMD Extensions	Multiply-accumulate (MAC)	for performance gains, 398–400
basic considerations, 262, 282–284	DSP, E-5	performance trends, 21
compiler support, A-31	embedded RISCs, K-20	point-to-point example, 413
DLP, 322	TI TMS320C55 DSP, E-8	shared-memory, see
DSPs, E-11	Multiply operations	Shared-memory
vs. GPUs, 312	chip comparison, J-61	multiprocessors
historical background, L-49 to	floating point	SMP, 345, 350, 354–355, 363–364
L-50	denormals, J-20 to J-21	streaming Multiprocessor, 292,
MIMD, vs. GPU, 324-330	examples, J-19	307, 313–314
parallelism classes, 10	multiplication, J-17 to J-20	Multiprocessor history
programming, 285	precision, J-21	bus-based coherent
Roofline visual performance	rounding, J-18 , J-19	multiprocessors, L-59 to
model, 285–288, 287	integer arithmetic	L-60
256-bit-wide operations, 282	array multiplier, J-50	clusters, L-62 to L-64
vs. vector, 263–264	Booth recoding, J-49	early computers, L-56
Multimedia user interfaces, PMDs, 6	even/odd array, J-52	large-scale multiprocessors, L-60
Multimode fiber, interconnection	issues, J-11	to L-61
networks, F-9	with many adders, J-50 to J-54	parallel processing debates, L-56
Multipass array multiplier, example,	multipass array multiplier, J-51	to L-58
J-51	<i>n</i> -bit unsigned integers, J-4	recent advances and developments,
Multiple Instruction Streams, Multiple	Radix-2, J-4 to J-7	L-58 to L-60
Data Streams, see	signed-digit addition table,	SIMD computers, L-55 to L-56
MIMD (Multiple	J-54	synchronization and consistency
Instruction Streams,	with single adder, J-47 to J-49,	models, L-64
Multiple Data Streams)	J-48	virtual memory, L-64
manipic Data Streams)	9 10	

Multiprogramming	Multithreading	<i>n</i> -bit unsigned integer division, J-4
definition, 345	coarse-grained, 224–226	N-body algorithms, Barnes
multithreading, 224	definition and types, 223–225	application, I-8 to I-9
performance, 36	fine-grained, 224–226	NBS DYSEAC, L-81
shared-memory workload	GPU programming, 289	N-cube topology, characteristics, F-36
performance, 375–378,	historical background, L-34 to	NEC Earth Simulator, peak
377	L-35	performance, 58
shared-memory workloads,	ILP, 223–232	NEC SX/2, L-45, L-47
374–375	memory hierarchy basics, 75-76	NEC SX/5, L-46, L-48
software optimization, 408	parallel benchmarks, 231, 231–232	NEC SX/6, L-46, L-48
virtual memory-based protection,	for performance gains, 398-400	NEC SX-8, L-46, L-48
105–106, B-49	SMT, see Simultaneous	NEC SX-9
workload execution time, 375	multithreading (SMT)	first vector computers, L-49
Multistage interconnection networks	Sun T1 effectiveness, 226–229	Roofline model, 286–288, 287
(MINs)	MVAPICH, F-77	NEC VR 4122, embedded
bidirectional, F-33 to F-34	MVL, see Maximum vector length	benchmarks, E-13
crossbar switch calculations, F-31	(MVL)	Negative acknowledge (NAK)
to F-32	MXP processor, components, E-14	cache coherence, I-38 to I-39
vs. direct network costs, F-92	Myrinet SAN, F-67	directory controller, I-40 to I-41
example, F-31	characteristics, F-76	DSM multiprocessor cache
self-routing, F-48	cluster history, L-62 to L-63, L-73	coherence, I-37
system area network history, F-100	routing algorithms, F-48	Negative condition code, MIPS core,
to F-101	switch vs. NIC, F-86	K-9 to K-16
topology, F-30 to F-31, F-38 to	system area network history, F-100	Negative-first routing, F-48
F-39	•	Nested page tables, 129
Multistage switch fabrics, topology,	N	NetApp, see Network Appliance
F-30	NAK, see Negative acknowledge	(NetApp)
Multi-Streaming Processor (MSP)	(NAK)	Netflix, AWS, 460
Cray X1, G-21 to G-23, G-22,	Name dependences	Netscape, F-98
G-23 to G-24	ILP, 152–153	Network Appliance (NetApp)
Cray X1E, G-24	locating dependences, 318–319	FAS6000 filer, D-41 to D-42
first vector computers, L-46	loop-level parallelism, 315	NFS benchmarking, D-20
Multithreaded SIMD Processor	scoreboarding, C-79	RAID, D-9
block diagram, 294	Tomasulo's algorithm, 171–172	RAID row-diagonal parity, D-9
definition, 292, 309, 313–314	Nameplate power rating, WSCs, 449	Network attached storage (NAS)
Fermi GPU architectural	NaN (Not a Number), J-14, J-16, J-21,	block servers vs. filers, D-35
innovations, 305–308	J-34	WSCs, 442
Fermi GPU block diagram, 307	NAND Flash, definition, 103	Network bandwidth, interconnection
Fermi GTX 480 GPU floorplan,	NAS, see Network attached storage	network, F-18
295 , 295–296	(NAS)	Network-Based Computer Laboratory
GPU programming, 289–290	NAS Parallel Benchmarks	(Ohio State), F-76,
GPUs vs. vector architectures, 310,	InfiniBand, F-76	F-77
310–311	vector processor history, G-28	Network buffers, network interfaces,
Grid mapping, 293	National Science Foundation, WAN	F-7 to F-8
NVIDIA GPU computational	history, F-98	Network fabric, switched-media
structures, 291	Natural parallelism	networks, F-24
NVIDIA GPU Memory structures,	embedded systems, E-15	Network File System (NFS)
304 , 304–305	multiprocessor importance, 344	benchmarking, D-20, D-20
Roofline model, 326	multithreading, 223	block servers vs. filers, D-35
Multithreaded vector processor	<i>n</i> -bit adder, carry-lookahead, J-38	interconnection networks, F-89
definition, 292	<i>n</i> -bit number representation, J-7 to	server benchmarks, 40
Fermi GPII comparison 305	I-10	TCP/IP F-81

Networking costs, WSC vs.	Newton's iteration, J-27 to J-30	vector processor, 310, 310–311,
datacenters, 455	NFS, see Network File System (NFS)	G-25
Network injection bandwidth	NIC, see Network interface card (NIC)	North-East-West-South
interconnection network, F-18	Nicely, Thomas, J-64	communication,
multi-device interconnection	NMOS, DRAM, 99	network topology
networks, F-26	NoC, see Network on chip (NoC)	calculations, F-41 to
Network interface	Nodes	F-43
fault tolerance, F-67	coherence maintenance, 381	North-last routing, F-48
functions, F-6 to F-7	communication bandwidth, I-3	Not a Number (NaN), J-14, J-16, J-21,
message composition/processing,	direct network topology, F-37	J-34
F-6 to F-9	directory-based cache coherence,	Notifications, interconnection
Network interface card (NIC)	380	networks, F-10
functions, F-8	distributed switched networks,	NOW project, L-73
Google WSC servers, 469	F-34 to F-36	No-write allocate
vs. I/O subsystem, F-90 to F-91	IBM Blue Gene/L, I-42 to I-44	definition, B-11
storage area network history,	IBM Blue Gene/L 3D torus	example calculation, B-12
F-102	network, F-73	NSFNET, F-98
vs. switches, F-85 to F-86, F-86	network topology performance and	NTSC/PAL encoder, Sanyo
zero-copy protocols, F-91	costs, F-40	VPC-SX500 digital
Network layer, definition, F-82	in parallel, 336	camera, E-19
Network nodes	points-to analysis, H-9	Nullification, PA-RISC instructions,
direct network topology, F-37	Nokia cell phone, circuit board, E-24	K-33 to K-34
distributed switched networks,	Nonaligned data transfers, MIPS64,	Nullifying branch, branch delay slots,
F-34 to F-36	K-24 to K-26	C-24 to C-25
Network on chip (NoC),	Nonatomic operations	NUMA, see Nonuniform memory
characteristics, F-3	cache coherence, 361	access (NUMA)
Network ports, interconnection	directory protocol, 386	NVIDIA GeForce, L-51
network topology, F-29	Nonbinding prefetch, cache	NVIDIA systems
Network protocol layer,	optimization, 93	fine-grained multithreading, 224
interconnection	Nonblocking caches	GPU comparisons, 323–330,
networks, F-10	cache optimization, 83-85,	325
Network reception bandwidth,	131–133	GPU computational structures,
interconnection	effectiveness, 84	291–297
network, F-18	ILP speculative execution,	GPU computing history, L-52
Network reconfiguration	222–223	GPU ISA, 298–300
commercial interconnection	Intel Core i7, 118	GPU Memory structures, 304,
networks, F-66	memory hierarchy history, L-11	304–305
fault tolerance, F-67	Nonblocking crossbar, centralized	GPU programming, 289
switch vs. NIC, F-86	switched networks, F-32	graphics pipeline history, L-51
Network technology, see also	to F-33	scalable GPUs, L-51
Interconnection	Nonfaulting prefetches, cache	terminology, 313–315
networks	optimization, 92	N-way set associative
Google WSC, 469	Nonrestoring division, J-5, J-6	block placement, B-7
performance trends, 19–20	Nonuniform memory access	conflict misses, B-23
personal computers, F-2	(NUMA)	memory hierarchy basics, 74
trends, 18	DSM as, 348	TLBs, B-49
WSC bottleneck, 461	large-scale multiprocessor history,	NYU Ultracomputer, L-60
WSC goals/requirements, 433	L-61	
Network of Workstations, L-62, L-73	snooping limitations, 363–364	0
NEWS communication, see	Non-unit strides	Observed performance, fallacies, 57
North-East-West-South	multidimensional arrays in vector	Occupancy, communication
communication	architectures, 278–279	bandwidth, I-3

Ocean application	optimization, 79	Open Systems Interconnect (OSI)
characteristics, I-9 to I-10	SRAM, 98–99	Ethernet, F-78 to F-79
distributed-memory	On-chip memory, embedded systems,	layer definitions, F-82
multiprocessor, I-32	E-4 to E-5	Operand addressing mode, Intel
distributed-memory	On-chip networks (OCNs)	80x86, K-59 , K-59 to
multiprocessors, I-30	basic considerations, F-3	K-60
example calculations, I-11 to I-12	commercial implementations, F-73	Operand delivery stage, Itanium 2,
miss rates, I-28	commercial interconnection	H-42
symmetric shared-memory	networks, F-63	Operands
multiprocessors, I-23	cross-company interoperability,	DSP, E-6
OCNs, see On-chip networks (OCNs)	F-64	forwarding, C-19
Offline reconstruction, RAID, D-55	DOR, F-46	instruction set encoding, A-21 to
Offload engines	effective bandwidth, F-18,	A-22
network interfaces, F-8	F-28	Intel 80x86, K-59
TCP/IP reliance, F-95	example system, F-70 to F-72	ISA, 12
Offset	historical overview, F-103 to	ISA classification, A-3 to A-4
addressing modes, 12	F-104	MIPS data types, A-34
AMD64 paged virtual memory,	interconnection network domain	MIPS pipeline, C-71
B-55	relationship, F-4	MIPS pipeline FP operations, C-52
block identification, B-7 to B-8	interconnection network speed,	to C-53
cache optimization, B-38	F-88	NVIDIA GPU ISA, 298
call gates, B-54	latency and effective bandwidth,	per ALU instruction example, A-6
control flow instructions, A-18	F-26 to F-28	TMS320C55 DSP, E-6
directory-based cache coherence	latency vs. nodes, F-27	type and size, A-13 to A-14
protocols, 381–382	link bandwidth, F-89	VAX, K-66 to K-68, K-68
example, B-9	packet latency, F-13 , F-14 to F-16	vector execution time, 268–269
gather-scatter, 280	switch microarchitecture, F-57	Operating systems (general)
IA-32 segment, B-53	time of flight, F-13	address translation, B-38
instruction decode, C-5 to C-6	topology, F-30	and architecture development, 2
main memory, B-44	wormhole switching, F-51	communication performance, F-8
memory mapping, B-52	One's complement, J-7	disk access scheduling, D-44 to
MIPS, C-32	One-way conflict misses, definition,	D-45, D-45
MIPS control flow instructions,	B-23	memory protection performance,
A-37 to A-38	Online reconstruction, RAID, D-55	B-58
misaligned addresses, A-8	On-Line Transaction Processing	miss statistics, B-59
Opteron data cache, B-13 to B-14	(OLTP)	multiprocessor software
pipelining, C-42	commercial workload, 369, 371	development, 408
PTX instructions, 300	server benchmarks, 41	and page size, B-58
RISC, C-4 to C-6	shared-memory workloads,	segmented virtual memory, B-54
RISC instruction set, C-4	368–370, 373–374	server benchmarks, 40
TLB, B-46	storage system benchmarks, D-18	shared-memory workloads,
Tomasulo's approach, 176	OpenCL	374–378
virtual memory, B-43 to B-44,	GPU programming, 289	storage systems, D-35
B-49, B-55 to B-56	GPU terminology, 292 , 313–315	Operational costs
OLTP, see On-Line Transaction	NVIDIA terminology, 291	basic considerations, 33
Processing (OLTP)	processor comparisons, 323	WSCs, 434, 438, 452, 456, 472
Omega	OpenGL, L-51	Operational expenditures (OPEX)
example, F-31	Open source software	WSC costs, 452–455, 454
packet blocking, F-32	Amazon Web Services, 457	WSC TCO case study, 476–478
topology, F-30	WSCs, 437	Operation faults, storage systems, D-11
OMNETPP, Intel Core i7, 240–241	Xen VMM, see Xen virtual	Operator dependability, disks, D-13 to
On-chip cache	machine	D-15
±	***	-

OPEX, see Operational expenditures (OPEX)	microarchitectural techniques case study, 247–254	Overlapping triplets historical background, J-63
Optical media, interconnection	MIPS pipeline, C-71	integer multiplication, J-49
networks, F-9	miss penalty, B-20 to B-22	Oversubscription
Oracle database	performance milestones, 20	array switch, 443
commercial workload, 368	power/DLP issues, 322	Google WSC, 469
	processor comparisons, 323	
miss statistics, B-59	± -	WSC architecture, 441, 461
multithreading benchmarks, 232	R10000, 397	5
single-threaded benchmarks, 243	SMT, 246	P
WSC services, 441	Tomasulo's algorithm, 183	Packed decimal, definition, A-14
Ordering, and deadlock, F-47	Out-of-order processors	Packet discarding, congestion
Organization	DLP, 322	management, F-65
buffer, switch microarchitecture,	Intel Core i7, 236	Packets
F-58 to F-60	memory hierarchy history, L-11	ATM, F-79
cache, performance impact,	multithreading, 226	bidirectional rings, F-35 to F-36
B-19	vector architecture, 267	centralized switched networks,
cache blocks, B-7 to B-8	Out-of-order write, dynamic	F-32
cache optimization, B-19	scheduling, 171	effective bandwidth vs. packet size
coherence extensions, 362	Output buffered switch	F-19
computer architecture, 11, 15–16	HOL blocking, F-60	format example, F-7
DRAM, 98	microarchitecture, F-57, F-57	IBM Blue Gene/L 3D torus
MIPS pipeline, C-37	organizations, F-58 to F-59	network, F-73
multiple-issue processor, 197, 198	pipelined version, F-61	InfiniBand, F-75, F-76
Opteron data cache, B-12 to B-13,	Output dependence	interconnection networks,
B-13	compiler history, L-30 to L-31	multi-device networks,
pipelines, 152	definition, 152–153	F-25
processor history, 2-3	dynamic scheduling, 169-171, C-72	latency issues, F-12, F-13
processor performance equation,	finding, H-7 to H-8	lossless vs. lossy networks, F-11 to
49	loop-level parallelism calculations,	F-12
shared-memory multiprocessors,	320	network interfaces, F-8 to F-9
346	MIPS scoreboarding, C-79	network routing, F-44
Sony PlayStation Emotion Engine,	Overclocking	routing/arbitration/switching
E-18	microprocessors, 26	impact, F-52
TLB, B-46	processor performance equation,	switched network topology, F-40
Orthogonality, compiler	52	switching, F-51
writing-architecture	Overflow, integer arithmetic, J-8, J-10	switch microarchitecture, F-57 to
relationship, A-30	to J-11, J-11	F-58
OSI, see Open Systems Interconnect	Overflow condition code, MIPS core,	switch microarchitecture
(OSI)	K-9 to K-16	pipelining, F-60 to F-61
Out-of-order completion	Overhead	TI TMS320C6x DSP, E-10
data hazards, 169	adaptive routing, F-93 to F-94	topology, F-21
MIPS pipeline, C-71	Amdahl's law, F-91	virtual channels and throughput,
MIPS R100000 sequential	communication latency, I-4	F-93
consistency, 397	interconnection networks, F-88,	Packet transport, interconnection
precise exceptions, C-58	F-91 to F-92	networks, F-9 to F-12
Out-of-order execution	OCNs vs. SANs, F-27	Page coloring, definition, B-38
and cache miss, B-2 to B-3	vs. peak performance, 331	Paged segments, characteristics, B-43
cache performance, B-21	shared-memory communication,	to B-44
data hazards, 169–170	I-5	Paged virtual memory
hardware-based execution, 184	sorting case study, D-64 to D-67	Opteron example, B-54 to B-57
ILP, 245	time of flight, F-14	protection, 106
memory hierarchy, B-2 to B-3	vector processor, G-4	vs. segmented, B-43
	. cottor processor, G .	ro. ooginened, D-To

cache optimization, A-46 segmented virtual memory, B-51 L-60 to L-61 exceptions, C-43 to C-44 virtual memory block recent advances and developme hardware-based speculation, 188 identification, B-44 L-58 to L-60 and memory hierarchy, B-3 virtual-to-physical address scientific applications, I-33 to I	-34
hardware-based speculation, 188 identification, B-44 L-58 to L-60	-34
and memory hierarchy, B-3 virtual-to-physical address scientific applications, I-33 to I	
and memory meraneny, 2 5 Trada to physical address scientific approaches, 1 55 to 1)
MIPS exceptions, C-48 mapping, B-45 SIMD computer history, L-55 t	
Multimedia SIMD Extensions, 284 Paired single operations, DSP media L-56	
stopping/restarting execution, C-46 extensions, E-11 synchronization and consistence	/
virtual memory definition, B-42 Palt, definition, B-3 models, L-64	
virtual memory miss, B-45 Papadopolous, Greg, L-74 virtual memory history, L-64	
Page offset Parallelism Parallel programming	
cache optimization, B-38 cache optimization, 79 computation communication, I-	10
main memory, B-44 challenges, 349–351 to I-12	
TLB, B-46 classes, 9–10 with large-scale multiprocessors	I-2
virtual memory, B-43, B-49, B-55 computer design principles, 44–45 Parallel Thread Execution (PTX)	
to B-56 dependence analysis, H-8 basic GPU thread instructions,	299
Pages DLP, see Data-level parallelism GPU conditional branching,	
definition, B-3 (DLP) 300–303	
vs. segments, B-43 Ethernet, F-78 GPUs vs. vector architectures, 3	80
size selection, B-46 to B-47 exploitation statically, H-2 NVIDIA GPU ISA, 298–300	
virtual memory definition, B-42 to exposing with hardware support, NVIDIA GPU Memory structure	es,
B-43 H-23 to H-27 305	
virtual memory fast address global code scheduling, H-15 to Parallel Thread Execution (PTX)	
translation, B-46 H-23, H-16 Instruction	
Page size IA-64 instruction format, H-34 to CUDA Thread, 300	
cache optimization, B-38 H-35 definition, 292 , 309 , 313	
definition, B-56 ILP, see Instruction-level GPU conditional branching, 302-	303
memory hierarchy example, B-39, parallelism (ILP) GPU terms, 308	
B-48 loop-level, 149–150, 215, NVIDIA GPU ISA, 298, 300	
and OS, B-58 217–218, 315–322 Paravirtualization	
OS determination, B-58 MIPS scoreboarding, C-77 to C-78 system call performance, 141	
paged virtual memory, B-55 multiprocessors, 345 Xen VM, 111	
selection, B-46 to B-47 natural, 223, 344 Parity	
virtual memory, B-44 request-level, 4–5, 9, 345, 434 dirty bits, D-61 to D-64	
Page Table Entry (PTE) RISC development, 2 fault detection, 58	
AMD64 paged virtual memory, software pipelining, H-12 to H-15 memory dependability, 104–10)
B-56 for speedup, 263 WSC memory, 473–474	
IA-32 equivalent, B-52 superblock scheduling, H-21 to PARSEC benchmarks	
Intel Core i7, 120 H-23, H-22 Intel Core i7, 401–405	
main memory block, B-44 to B-45 task-level, 9 SMT on superscalar processors	
paged virtual memory, B-56 TLP, see Thread-level parallelism 230–232, 231	
TLB, B-47 (TLP) speedup without SMT, 403–404	
Page tables trace scheduling, H-19 to H-21, Partial disk failure, dirty bits, D-61 address translation. B-46 to B-47 H-20 D-64	ιο
,	
AMD64 paged virtual memory, vs. window size, 217 Partial store order, relaxed consister. B-55 to B-56 WSCs vs. servers, 433–434 models, 395	icy
descriptor tables as, B-52 Parallel processors Partitioned add operation, DSP me	1:0
IA-32 segment descriptors, B-53 areas of debate, L-56 to L-58 extensions, E-10	ııd
main memory block, B-44 to B-45 bus-based coherent multiprocessor Partitioning	
multiprocessor software history, L-59 to L-60 Multimedia SIMD Extensions,	282
development, 407–409 cluster history, L-62 to L-64 virtual memory protection, B-5	
multithreading, 224 early computers, L-56 WSC memory hierarchy, 445	-

Pascal programs	Performability, RAID reconstruction,	ILP for realizable processors,
compiler types and classes, A-28	D-55 to D-57	216–218
integer division/remainder, J-12	Performance, see also Peak	Intel Core i7, 239–241, 240 ,
Pattern, disk array deconstruction, D-51	performance	401–405
Payload	advanced directory protocol case	Intel Core i7 memory, 122-124
messages, F-6	study, 420–426	interconnection networks
packet format, F-7	ARM Cortex-A8, 233-236, 234	bandwidth considerations, F-89
b bits, J-21 to J-23, J-25, J-36 to J-37	ARM Cortex-A8 memory,	multi-device networks, F-25 to
PC, see Program counter (PC)	115–117	F-29
PCI bus, historical background, L-81	bandwidth vs. latency, 18-19	routing/arbitration/switching
PCIe, see PCI-Express (PCIe)	benchmarks, 37–41	impact, F-52 to F-55
PCI-Express (PCIe), F-29, F-63	branch penalty reduction, C-22	two-device networks, F-12 to
storage area network history,	branch schemes, C-25 to C-26	F-20
F-102 to F-103	cache basics, B-3 to B-6	Internet Archive Cluster, D-38 to
PCI-X, F-29	cache performance	D-40
storage area network history,	average memory access time,	interprocessor communication, I-3
F-102	B-16 to B-20	to I-6
PCI-X 2.0, F-63	basic considerations, B-3 to	I/O devices, D-15 to D-16
PCMCIA slot, Sony PlayStation 2	B-6, B-16	I/O subsystem design, D-59 to
Emotion Engine case	basic equations, B-22	D-61
study, E-15	basic optimizations, B-40	I/O system design/evaluation,
PC-relative addressing mode, VAX,	example calculation, B-16 to	D-36
K-67	B-17	ISA, 241–243
PDP-11, L-10, L-17 to L-19, L-56	out-of-order processors, B-20	Itanium 2, H-43
PDU, see Power distribution unit	to B-22	large-scale multiprocessors
		scientific applications
(PDU)	compiler optimization impact,	
Peak performance	A-27	distributed-memory
Cray X1E, G-24	cost-performance	multiprocessors, I-26 to
DAXPY on VMIPS, G-21	extensive pipelining, C-80 to	I-32, I-28 to I-30, I-32
DLP, 322	C-81	parallel processors, I-33 to
fallacies, 57–58	WSC Flash memory, 474–475	I-34
multiple lanes, 273	WSC goals/requirements, 433	symmetric shared-memory
multiprocessor scaled programs,	WSC hardware inactivity, 474	multiprocessor, I-21 to
58	WSC processors, 472–473	I-26, I-23 to I-25
Roofline model, 287	CUDA, 290–291	synchronization, I-12 to I-16
vector architectures, 331	desktop benchmarks, 38–40	MapReduce, 438
VMIPS on DAXPY, G-17	directory-based coherence case	measurement, reporting,
WSC operational costs, 434	study, 418–420	summarization, 36–37
Peer-to-peer	dirty bits, D-61 to D-64	memory consistency models, 393
internetworking, F-81 to F-82	disk array deconstruction, D-51 to	memory hierarchy design, 73
wireless networks, E-22	D-55	memory hierarchy and OS, B-58
Pegasus, L-16	disk deconstruction, D-48 to D-51	memory threads, GPUs, 332
PennySort competition, D-66	DRAM, 100-102	MIPS FP pipeline, C-60 to C-61
Perfect Club benchmarks	embedded computers, 9, E-13 to	MIPS M2000 vs. VAX 8700, K-82
vector architecture programming,	E-14	MIPS R4000 pipeline, C-67 to
281 , 281–282	Google server benchmarks,	C-70, C-68
vector processor history, G-28	439–441	multicore processors, 400–401,
Perfect processor, ILP hardware	hardward fallacies, 56	401
model, 214–215, 215	high-performance computing, 432,	multiprocessing/multithreading,
Perfect-shuffle exchange,	435–436, B-10	398–400
interconnection network	historical milestones, 20	multiprocessors, measurement
topology, F-30 to F-31	ILP exploitation, 201	issues, 405–406
1 05,		

multiprocessor software development, 408–409 network topologies, F-40 , F-40 to F-44 observed, 57 peak DLP, 322 fallacies, 57–58 multiple lanes, 273	vector processor, G-2 to G-7 DAXPY on VMIPS, G-19 to G-21 sparse matrices, G-12 to G-14 start-up and multiple lanes, G-7 to G-9 vector processors chaining, G-11 to G-12 chaining/unchaining, G-12	page table-based mapping, B-45 safe calls, B-54 segmented virtual memory, B-51 sharing/protection, B-52 translation, B-36 to B-39 virtual memory definition, B-42 Physical cache, definition, B-36 to B-37 Physical channels, F-47 Physical layer, definition, F-82
Roofline model, 287	vector vs. scalar, 331–332	Physical memory
vector architectures, 331	VMIPS on Linpack, G-17 to G-19	centralized shared-memory
WSC operational costs, 434	wormhole switching, F-92 to F-93	multiprocessors, 347
pipelines with stalls, C-12 to C-13	Permanent failure, commercial	directory-based cache coherence,
pipelining basics, C-10 to C-11	interconnection	354
processors, historical growth, 2–3,	networks, F-66	future GPU features, 332
3	Permanent faults, storage systems,	GPU conditional branching, 303
quantitative measures, L-6 to L-7	D-11	main memory block, B-44
real-time, PMDs, 6	Personal computers	memory hierarchy basics, B-41 to
real-world server considerations,	LANs, F-4	B-42
52–55	networks, F-2	multiprocessors, 345
results reporting, 41	PCIe, F-29	paged virtual memory, B-56
results summarization, 41–43, 43	Personal mobile device (PMD)	processor comparison, 323
RISC classic pipeline, C-7	characteristics, 6	segmented virtual memory, B-51
server benchmarks, 40–41	as computer class, 5	unified, 333
as server characteristic, 7	embedded computers, 8–9	Virtual Machines, 110
single-chip multicore processor	Flash memory, 18	Physical transfer units (phits), F-60
case study, 412–418	integrated circuit cost trends, 28	Physical volumes, D-34
single-thread, 399	ISA performance and efficiency	PID, see Process-identifier (PID) tags
processor benchmarks, 243	prediction, 241–243	Pin-out bandwidth, topology, F-39
software development, 4	memory hierarchy basics, 78	Pipeline bubble, stall as, C-13
software overhead issues, F-91 to	memory hierarchy design, 72	Pipeline cycles per instruction
F-92	power and energy, 25	basic equation, 148
sorting case study, D-64 to D-67	processor comparison, 242	ILP, 149
speculation cost, 211	PetaBox GB2000, Internet Archive	processor performance
Sun T1 multithreading unicore,	Cluster, D-37	calculations, 218–219
227–229	Phase-ordering problem, compiler	R4000 performance, C-68 to C-69
superlinear, 406	structure, A-26	Pipelined circuit switching, F-50
switch microarchitecture	Phits, see Physical transfer units	Pipelined CPUs, early versions, L-26
pipelining, F-60 to F-61	(phits)	to L-27
symmetric shared-memory	Physical addresses	Pipeline delays
multiprocessors,	address translation, B-46	ARM Cortex-A8, 235
366–378	AMD Opteron data cache, B-12 to	definition, 228
scientific workloads, I-21 to	B-13	fine-grained multithreading, 227
I-26, I-23	ARM Cortex-A8, 115	instruction set complications, C-50
system call virtualization/	directory-based cache coherence	multiple branch speculation, 211
paravirtualization, 141	protocol basics, 382	Sun T1 multithreading unicore
transistors, scaling, 19–21	main memory block, B-44	performance, 227–228
vector, and memory bandwidth,	memory hierarchy, B-48 to B-49	Pipeline interlock
332	memory hierarchy basics, 77–78	data dependences, 151
vector add instruction, 272	memory mapping, B-52	data hazards requiring stalls, C-20
vector kernel implementation,	paged virtual memory, B-55 to	MIPS R4000, C-65
334–336	B-56	MIPS vs. VMIPS, 268

Pipeline latches	example, C-8	switch microarchitecture, F-60 to
ALU, C-40	exception stopping/restarting, C-46	F-61
definition, C-35	to C-47	unoptimized code, C-81
R4000, C-60	exception types and requirements,	Pipe segment, definition, C-3
stopping/restarting execution, C-47	C-43 to C-46	Pipe stage
Pipeline organization	execution sequences, C-80	branch prediction, C-28
dependences, 152	floating-point addition speedup,	data hazards, C-16
MIPS, C-37	J-25	definition, C-3
Pipeline registers	graphics pipeline history, L-51	dynamic scheduling, C-71
branch hazard stall, C-42	hazard classes, C-11	FP pipeline, C-66
data hazards, C-57	hazard detection, C-38	integrated instruction fetch units,
data hazard stalls, C-17 to C-20	implementation difficulties, C-43	207
definition, C-35	to C-49	MIPS, C-34 to C-35, C-37, C-49
example, C-9	independent FP operations, C-54	MIPS extension, C-53
MIPS, C-36 to C-39	instruction set complications, C-49	MIPS R4000, C-62
MIPS extension, C-53	to C-51	out-of-order execution, 170
PC as, C-35	interconnection networks, F-12	pipeline stalls, C-13
pipelining performance issues,	latencies, C-87	pipeling performance issues, C-10
C-10	MIPS, C-34 to C-36	register additions, C-35
RISC processor, C-8, C-10	MIPS control, C-36 to C-39	RISC processor, C-7
Pipeline scheduling	MIPS exceptions, C-48, C-48 to	stopping/restarting execution, C-46
basic considerations, 161–162	C-49	WAW, 153
vs. dynamic scheduling, 168-169	MIPS FP performance, C-60 to	pjbb2005 benchmark
ILP exploitation, 197	C-61	Intel Core i7, 402
ILP exposure, 157–161	MIPS multicycle operations	SMT on superscalar processors,
microarchitectural techniques case	basic considerations, C-51 to	230–232, 231
study, 247–254	C-54	PLA, early computer arithmetic, J-65
MIPS R4000, C-64	hazards and forwarding, C-54	PMD, see Personal mobile device
Pipeline stall cycles	to C-58	(PMD)
branch scheme performance, C-25	precise exceptions, C-58 to C-60	Points-to analysis, basic approach, H-9
pipeline performance, C-12 to C-13	MIPS R4000	Point-to-point links
Pipelining	FP pipeline, C-65 to C-67,	bus replacement, D-34
branch cost reduction, C-26	C-67	Ethernet, F-79
branch hazards, C-21 to C-26	overview, C-61 to C-65	storage systems, D-34
branch issues, C-39 to C-42	pipeline performance, C-67 to	switched-media networks, F-24
branch penalty reduction, C-22 to	C-70	Point-to-point multiprocessor,
C-25	pipeline structure, C-62 to C-63	example, 413
branch-prediction buffers, C-27 to	multiple outstanding FP	Point-to-point networks
C-30, C-29	operations, C-54	directory-based coherence, 418
branch scheme performance, C-25	performance issues, C-10 to C-11	directory protocol, 421-422
to C-26	performance with stalls, C-12 to	SMP limitations, 363–364
cache access, 82	C-13	Poison bits, compiler-based
case studies, C-82 to C-88	predicted-not-taken scheme, C-22	speculation, H-28, H-30
classic stages for RISC, C-6 to	RISC instruction set, C-4 to C-5,	Poisson, Siméon, D-28
C-10	C-70	Poisson distribution
compiler scheduling, L-31	simple implementation, C-30 to	basic equation, D-28
concept, C-2 to C-3	C-43, C-34	random variables, D-26 to D-34
cost-performance, C-80 to C-81	simple RISC, C-5 to C-6, C-7	Polycyclic scheduling, L-30
data hazards, C-16 to C-21	static branch prediction, C-26 to	Portable computers
definition, C-2	C-27	interconnection networks, F-85
dynamically scheduled pipelines,	structural hazards, C-13 to C-16,	processor comparison, 242
C-70 to C-80	C-15	Port number, network interfaces, F-7

Position independence, control flow	ALU, K-5	Predicate Registers
instruction addressing	arithmetic/logical instructions,	definition, 309
modes, A-17	K-11	GPU conditional branching, 300-301
Power	branches, K-21	IA-64, H-34
distribution for servers, 490	cluster history, L-63	NVIDIA GPU ISA, 298
distribution overview, 447	conditional branches, K-17	vectors vs. GPUs, 311
and DLP, 322	conditional instructions, H-27	Predication, TI TMS320C6x DSP, E-10
first-level caches, 79-80	condition codes, K-10 to K-11	Predicted-not-taken scheme
Google server benchmarks,	consistency model, 395	branch penalty reduction, C-22,
439–441	constant extension, K-9	C-22 to C-23
Google WSC, 465–468	conventions, K-13	MIPS R4000 pipeline, C-64
PMDs, 6	data transfer instructions, K-10	Predictions, see also Mispredictions
real-world server considerations,	features, K-44	address aliasing, 213-214, 216
52–55	FP instructions, K-23	branch
WSC infrastructure, 447	IBM Blue Gene/L, I-41 to I-42	correlation, 162–164
WSC power modes, 472	multimedia compiler support,	cost reduction, 162-167, C-26
WSC resource allocation case	A-31, K-17	dynamic, C-27 to C-30
study, 478–479	precise exceptions, C-59	ideal processor, 214
WSC TCO case study, 476–478	RISC architecture, A-2	ILP exploitation, 201
Power consumption, see also Energy	RISC code size, A-23	instruction fetch bandwidth, 205
efficiency	as RISC systems, K-4	integrated instruction fetch
cache optimization, 96	unique instructions, K-32 to K-33	units, 207
cache size and associativity, 81	PowerPC ActiveC	Intel Core i7, 166–167, 239–241
case study, 63–64	characteristics, K-18	static, C-26 to C-27
computer components, 63	multimedia support, K-19	branch-prediction buffers, C-27 to
DDR3 SDRAM, 103	PowerPC AltiVec, multimedia	C-30, C-29
disks, D-5	support, E-11	jump prediction, 214
embedded benchmarks, E-13	Power-performance	PMDs, 6
GPUs vs. vector architectures, 311	low-power servers, 477	return address buffer, 207
interconnection networks, F-85	servers, 54	2-bit scheme, C-28
ISA performance and efficiency	Power Supply Units (PSUs),	value prediction, 202, 212-213
prediction, 242–243	efficiency ratings, 462	Prefetching
microprocessor, 23–26	Power utilization effectiveness (PUE)	integrated instruction fetch units,
SDRAMs, 102	datacenter comparison, 451	208
SMT on superscalar processors,	Google WSC, 468	Intel Core i7, 122, 123-124
230–231	Google WSC containers, 464–465	Itanium 2, H-42
speculation, 210–211	WSC, 450–452	MIPS core extensions, K-20
system trends, 21–23	WSCs vs. datacenters, 456	NVIDIA GPU Memory structures,
TI TMS320C55 DSP, E-8	WSC server energy efficiency, 462	305
WSCs, 450	Precise exceptions	parallel processing challenges, 351
Power distribution unit (PDU), WSC	definition, C-47	Prefix, Intel 80x86 integer operations,
infrastructure, 447	dynamic scheduling, 170	K-51
Power failure	hardware-based speculation,	Presentation layer, definition, F-82
exceptions, C-43 to C-44, C-46	187–188, 221	Present bit, IA-32 descriptor table,
utilities, 435	instruction set complications, C-49	B-52
WSC storage, 442	maintaining, C-58 to C-60	Price vs. cost, 32–33
Power gating, transistors, 26	MIPS exceptions, C-48	Price-performance ratio
Power modes, WSCs, 472	Precisions, floating-point arithmetic,	cost trends, 28
PowerPC	J-33 to J-34	Dell PowerEdge servers, 53
addressing modes, K-5	Predicated instructions	desktop comptuers, 6
AltiVec multimedia instruction	exposing parallelism, H-23 to H-27	processor comparisons, 55
compiler support, A-31	IA-64, H-38 to H-40	WSCs, 8, 441

Primitives	high-level instruction set, A-42 to	multithreading, 224
architect-compiler writer	A-43	PID, B-37
relationship, A-30	IA-64 register model, H-33	virtual memory-based protection,
basic hardware types, 387-389	invocation options, A-19	B-49 to B-50
compiler writing-architecture	ISAs, 14	Producer-server model, response time
relationship, A-30	MIPS control flow instructions, A-38	and throughput, D-16
CUDA Thread, 289	return address predictors, 206	Productivity
dependent computation	VAX, B-73 to B-74 , K-71 to K-72	CUDA, 290-291
elimination, 321	VAX vs. MIPS, K-75	NVIDIA programmers, 289
GPU vs. MIMD, 329	VAX swap, B-74 to B-75	software development, 4
locks via coherence, 391	Process concept	virtual memory and programming,
operand types and sizes, A-14 to	definition, 106, B-49	B-41
A-15	protection schemes, B-50	WSC, 450
PA-RISC instructions, K-34 to	Process-identifier (PID) tags, cache	Profile-based predictor, misprediction
K-35	addressing, B-37 to	rate, C-27
synchronization, 394, L-64	B-38	Program counter (PC)
Principle of locality	Process IDs, Virtual Machines, 110	addressing modes, A-10
bidirectional MINs, F-33 to F-34	Processor consistency	ARM Cortex-A8, 234
cache optimization, B-26	latency hiding with speculation,	branch hazards, C-21
cache performance, B-3 to B-4	396–397	branch-target buffers, 203,
coining of term, L-11	relaxed consistency models, 395	203–204, 206
commercial workload, 373	Processor cycles	control flow instruction addressing
computer design principles, 45	cache performance, B-4	modes, A-17
definition, 45, B-2	definition, C-3	dynamic branch prediction, C-27
lock accesses, 390	memory banks, 277	to C-28
LRU, B-9	multithreading, 224	exception stopping/restarting, C-46
memory accesses, 332, B-46	Processor-dependent optimizations	to C-47
memory hierarchy design, 72	compilers, A-26	GPU conditional branching, 303
multilevel application, B-2	performance impact, A-27	Intel Core i7, 120
multiprogramming workload, 375	types, A-28	M32R instructions, K-39
scientific workloads on symmetric	Processor-intensive benchmarks,	MIPS control flow instructions,
shared-memory	desktop performance, 38	A-38
multiprocessors, I-25	Processor performance	multithreading, 223-224
stride, 278	and average memory access time,	pipeline branch issues, C-39 to
WSC bottleneck, 461	B-17 to B-20	C-41
WSC efficiency, 450	vs. cache performance, B-16	pipe stages, C-35
Private data	clock rate trends, 24	precise exceptions, C-59 to C-60
cache protocols, 359	desktop benchmarks, 38, 40	RISC classic pipeline, C-8
centralized shared-memory	historical trends, 3, 3–4	RISC instruction set, C-5
multiprocessors,	multiprocessors, 347	simple MIPS implementation,
351–352	uniprocessors, 344	C-31 to C-33
Private Memory	Processor performance equation,	TLP, 344
definition, 292, 314	computer design	virtual memory protection, 106
NVIDIA GPU Memory structures,	principles, 48–52	Program counter-relative addressing
304	Processor speed	control flow instructions, A-17 to
Private variables, NVIDIA GPU	and clock rate, 244	A-18, A-21
Memory, 304	and CPI, 244	definition, A-10
Procedure calls	snooping cache coherence, 364	MIPS instruction format, A-35
compiler structure, A-25 to A-26	Process switch	Programming models
control flow instructions, A-17,	definition, 106, B-49	CUDA, 300, 310, 315
A-19 to A-21	miss rate vs. virtual addressing,	GPUs, 288–291
dependence analysis, 321	B-37	latency in consistency models, 397

202	WANTE TOO	NotA and EA CCOOR Class D. 41 45
memory consistency, 393	WAN history, F-98	NetApp FAS6000 filer, D-41 to
Multimedia SIMD architectures, 285	Quantitative performance measures, development, L-6 to L-7	D-42 overview, D-6 to D-8, D-7
vector architectures, 280–282		
WSCs, 436–441	Queue definition, D-24	performance prediction, D-57 to D-59
Programming primitive, CUDA	waiting time calculations, D-28 to	reconstruction case study, D-55 to
Thread, 289	D-29	D-57
Program order	Queue discipline, definition, D-26	row-diagonal parity, D-9
cache coherence, 353	Queuing locks, large-scale	WSC storage, 442
control dependences, 154–155	multiprocessor	RAID 0, definition, D-6
data hazards, 153	synchronization, I-18 to	RAID 1
dynamic scheduling, 168–169, 174	I-21	definition, D-6
hardware-based speculation, 192	Queuing theory	historical background, L-79
ILP exploitation, 200	basic assumptions, D-30	RAID 2
name dependences, 152–153	Little's law, D-24 to D-25	definition, D-6
Tomasulo's approach, 182	M/M/1 model, D-31 to D-33, D-32	historical background, L-79
Protection schemes	overview, D-23 to D-26	RAID 3
control dependence, 155	RAID performance prediction,	definition, D-7
development, L-9 to L-12	D-57 to D-59	historical background, L-79 to
and ISA, 112	single-server model, D-25	L-80
network interfaces, F-7	Quickpath (Intel Xeon), cache	RAID 4
network user access, F-86 to F-87	coherence, 361	definition, D-7
Pentium vs. Opteron, B-57		historical background, L-79 to
processes, B-50	R	L-80
safe calls, B-54	Race-to-halt, definition, 26	RAID 5
segmented virtual memory	Rack units (U), WSC architecture, 441	definition, D-8
example, B-51 to B-54	Radio frequency amplifier, radio	historical background, L-79 to
Virtual Machines, 107-108	receiver, E-23	L-80
virtual memory, 105-107, B-41	Radio receiver, components, E-23	RAID 6
Protocol deadlock, routing, F-44	Radio waves, wireless networks, E-21	characteristics, D-8 to D-9
Protocol stack	Radix-2 multiplication/division, J-4 to	hardware dependability, D-15
example, F-83	J-7, J-6 , J-55	RAID 10, D-8
internetworking, F-83	Radix-4 multiplication/division, J-48	RAM (random access memory), switch
Pseudo-least recently used (LRU)	to J-49, J-49 , J-56 to	microarchitecture, F-57
block replacement, B-9 to B-10	J-57 , J-60 to J-61	RAMAC-350 (Random Access
Intel Core i7, 118	Radix-8 multiplication, J-49	Method of Accounting
PSUs, see Power Supply Units (PSUs)	RAID (Redundant array of	Control), L-77 to L-78,
PTE, see Page Table Entry (PTE)	inexpensive disks)	L-80 to L-81
PTX, see Parallel Thread Execution	data replication, 439	Random Access Method of
(PTX)	dependability benchmarks, D-21,	Accounting Control,
PUE, see Power utilization	D-22	L-77 to L-78
effectiveness (PUE)	disk array deconstruction case	Random replacement
Python language, hardware impact on	study, D-51, D-55	cache misses, B-10
software development, 4	disk deconstruction case study,	definition, B-9
	D-48	Random variables, distribution, D-26
Q	hardware dependability, D-15	to D-34
QCDOD, L-64	historical background, L-79 to	RAR, see Read after read (RAR)
QoS, see Quality of service (QoS)	L-80	RAS, see Row access strobe (RAS)
QsNet ^{II} , F-63, F-76	I/O subsystem design, D-59 to	RAW, see Read after write (RAW)
Quadrics SAN, F-67, F-100 to F-101	D-61	Ray casting (RC)
Quality of service (QoS)	logical units, D-35	GPU comparisons, 329
dependability benchmarks, D-21	memory dependability, 104	throughput computing kernel, 327

RDMA, see Remote direct memory	Rearrangeably nonblocking,	Redundant multiplication, integers,
access (RDMA)	centralized switched	J-48
Read after read (RAR), absence of	networks, F-32 to F-33	Redundant power supplies, example
data hazard, 154	Receiving overhead	calculations, 35
Read after write (RAW)	communication latency, I-3 to I-4	Reference bit
data hazards, 153	interconnection networks, F-88	memory hierarchy, B-52
dynamic scheduling with	OCNs vs. SANs, F-27	virtual memory block replacement,
Tomasulo's algorithm,	time of flight, F-14	B-45
170–171	RECN, see Regional explicit	Regional explicit congestion
first vector computers, L-45	congestion notification	notification (RECN),
hazards, stalls, C-55	(RECN)	congestion
hazards and forwarding, C-55 to	Reconfiguration deadlock, routing,	management, F-66
C-57	F-44	Register addressing mode
instruction set complications, C-50	Reconstruction, RAID, D-55 to D-57	MIPS, 12
microarchitectural techniques case	Recovery time, vector processor, G-8	VAX, K-67
study, 253	Recurrences	Register allocation
MIPS FP pipeline performance,	basic approach, H-11	compilers, 396, A-26 to A-29
C-60 to C-61	loop-carried dependences, H-5	VAX sort, K-76
MIPS pipeline control, C-37 to C-38	Red-black Gauss-Seidel, Ocean	VAX swap, K-72
MIPS pipeline FP operations, C-53	application, I-9 to I-10	Register deferred addressing, VAX,
MIPS scoreboarding, C-74	Reduced Instruction Set Computer,	K-67
ROB, 192	see RISC (Reduced	Register definition, 314
TI TMS320C55 DSP, E-8	Instruction Set	Register fetch (RF)
Tomasulo's algorithm, 182	Computer)	MIPS data path, C-34
unoptimized code, C-81	Reductions	MIPS R4000, C-63
Read miss	commercial workloads, 371	pipeline branches, C-41
AMD Opteron data cache, B-14	cost trends, 28	simple MIPS implementation,
cache coherence, 357, 358,	loop-level parallelism	C-31
359–361	dependences, 321	simple RISC implementation, C-5
coherence extensions, 362	multiprogramming workloads, 377	to C-6
directory-based cache coherence	T1 multithreading unicore	Register file
protocol example, 380,	performance, 227	data hazards, C-16, C-18, C-20
382–386	WSCs, 438	dynamic scheduling, 172, 173,
memory hierarchy basics, 76–77	Redundancy	175, 177–178
memory stall clock cycles, B-4	Amdahl's law, 48	Fermi GPU, 306
miss penalty reduction, B-35 to	chip fabrication cost case study,	field, 176
B-36	61–62	hardware-based speculation, 184
Opteron data cache, B-14	computer system power	longer latency pipelines, C-55 to
vs. write-through, B-11	consumption case study,	C-57
Read operands stage	63–64	MIPS exceptions, C-49
ID pipe stage, 170	index checks, B-8	MIPS implementation, C-31, C-33
MIPS scoreboarding, C-74 to C-75	integrated circuit cost, 32	MIPS R4000, C-64
out-of-order execution, C-71	integrated circuit failure, 35	MIPS scoreboarding, C-75
Realizable processors, ILP limitations,	simple MIPS implementation,	Multimedia SIMD Extensions,
216–220	C-33	282, 285
Real memory, Virtual Machines, 110	WSC, 433, 435, 439	multiple lanes, 272, 273
Real-time constraints, definition, E-2	WSC bottleneck, 461	multithreading, 224
Real-time performance, PMDs, 6	WSC storage, 442	OCNs, F-3
Real-time performance requirement,	Redundant array of inexpensive disks,	precise exceptions, C-59
definition, E-3	see RAID (Redundant	RISC classic pipeline, C-7 to C-8
Real-time processing, embedded	array of inexpensive	RISC instruction set, C-5 to C-6
systems, E-3 to E-5	disks)	scoreboarding, C-73, C-75

speculation support, 208	Register tag example, 177	Replication
structural hazards, C-13	Register windows, SPARC	cache coherent multiprocessors, 354
Tomasulo's algorithm, 180, 182	instructions, K-29 to	centralized shared-memory
vector architecture, 264	K-30	architectures, 351–352
VMIPS, 265, 308	Regularity	coherence enforcement, 354
Register indirect addressing mode,	bidirectional MINs, F-33 to F-34	R4000 performance, C-70
Intel 80x86, K-47	compiler writing-architecture	RAID storage servers, 439
Register management,	relationship, A-30	TLP, 344
software-pipelined	Relative speedup, multiprocessor	virtual memory, B-48 to B-49
loops, H-14	performance, 406	WSCs, 438
Register-memory instruction set	Relaxed consistency models	Reply, messages, F-6
architecture	basic considerations, 394-395	Reproducibility, performance results
architect-compiler writer	compiler optimization, 396	reporting, 41
relationship, A-30	WSC storage software, 439	Request
dynamic scheduling, 171	Release consistency, relaxed	messages, F-6
Intel 80x86, K-52	consistency models, 395	switch microarchitecture, F-58
ISA classification, 11, A-3 to A-6	Reliability	Requested protection level, segmented
Register prefetch, cache optimization,	Amdahl's law calculations, 56	virtual memory, B-54
92	commercial interconnection	Request-level parallelism (RLP)
Register renaming	networks, F-66	basic characteristics, 345
dynamic scheduling, 169-172	example calculations, 48	definition, 9
hardware vs. software speculation,	I/O subsystem design, D-59 to	from ILP, 4–5
222	D-61	MIMD, 10
ideal processor, 214	modules, SLAs, 34	multicore processors, 400
ILP hardware model, 214	MTTF, 57	multiprocessors, 345
ILP limitations, 213, 216–217	redundant power supplies, 34-35	parallelism advantages, 44
ILP for realizable processors, 216	storage systems, D-44	server benchmarks, 40
instruction delivery and	transistor scaling, 21	WSCs, 434, 436
speculation, 202	Relocation, virtual memory, B-42	Request phase, arbitration, F-49
microarchitectural techniques case	Remainder, floating point, J-31 to	Request-reply deadlock, routing, F-44
study, 247–254	J-32	Reservation stations
name dependences, 153	Remington-Rand, L-5	dependent instructions, 199-200
vs. ROB, 208–210	Remote direct memory access	dynamic scheduling, 178
ROB instruction, 186	(RDMA), InfiniBand,	example, 177
sample code, 250	F-76	fields, 176
SMT, 225	Remote node, directory-based cache	hardware-based speculation, 184,
speculation, 208–210	coherence protocol	186, 189–191
superscalar code, 251	basics, 381–382	ILP exploitation, 197, 199–200
Tomasulo's algorithm, 183	Reorder buffer (ROB)	Intel Core i7, 238–240
WAW/WAR hazards, 220	compiler-based speculation, H-31	loop iteration example, 181
Register result status, MIPS	dependent instructions, 199	microarchitectural techniques case
scoreboard, C-76	dynamic scheduling, 175	study, 253–254
Registers	FP unit with Tomasulo's	speculation, 208–209
DSP examples, E-6	algorithm, 185	Tomasulo's algorithm, 172, 173,
IA-64, H-33 to H-34	hardware-based speculation,	174–176, 179, 180 ,
instructions and hazards, C-17	184–192	180–182
Intel 80x86, K-47 to K-49, K-48	ILP exploitation, 199–200	Resource allocation
network interface functions, F-7	ILP limitations, 216	computer design principles, 45
pipe stages, C-35	Intel Core i7, 238	WSC case study, 478–479
PowerPC, K-10 to K-11	vs. register renaming, 208–210	Resource sparing, commercial
VAX swap, B-74 to B-75	Repeat interval, MIPS pipeline FP	interconnection
Register stack engine, IA-64, H-34	operations, C-52 to C-53	networks, F-66

Response time, see also Latency	RISC (Reduced Instruction Set	M32R-unique instructions, K-39 to
I/O benchmarks, D-18	Computer)	K-40
performance considerations, 36	addressing modes, K-5 to K-6	MIPS16-unique instructions, K-40
performance trends, 18–19	Alpha-unique instructions, K-27 to	to K-42
producer-server model, D-16	K-29	MIPS64-unique instructions, K-24
server benchmarks, 40–41	architecture flaws vs. success,	to K-27
storage systems, D-16 to D-18	A-45	MIPS core common extensions,
vs. throughput, D-17	ARM-unique instructions, K-36 to	K-19 to K-24
user experience, 4	K-37	MIPS M2000 vs. VAX 8700, L-21
WSCs, 450	basic concept, C-4 to C-5	Multimedia SIMD Extensions
Responsiveness	basic systems, K-3 to K-5	history, L-49 to L-50
PMDs, 6	cache performance, B-6	operations, 12
as server characteristic, 7	classic pipeline stages, C-6 to C-10	PA-RISC-unique, K-33 to K-35
Restartable pipeline	code size, A-23 to A-24	pipelining efficiency, C-70
definition, C-45	compiler history, L-31	PowerPC-unique instructions,
exceptions, C-46 to C-47	desktop/server systems, K-4	K-32 to K-33
Restorations, SLA states, 34	instruction formats, K-7	Sanyo VPC-SX500 digital camera,
Restoring division, J-5, J-6	multimedia extensions, K-16 to	E-19
Resume events	K-19	simple implementation, C-5 to C-6
control dependences, 156	desktop systems	simple pipeline, C-7
exceptions, C-45 to C-46	addressing modes, K-5	SPARC-unique instructions, K-29
hardware-based speculation, 188	arithmetic/logical instructions,	to K-32
Return address predictors	K-11, K-22	Sun T1 multithreading, 226–227
instruction fetch bandwidth,	conditional branches, K-17	SuperH-unique instructions, K-38
206–207	constant extension, K-9	to K-39
prediction accuracy, 207	control instructions, K-12	Thumb-unique instructions, K-37
Returns	conventions, K-13	to K-38
Amdahl's law, 47	data transfer instructions, K-10,	vector processor history, G-26
cache coherence, 352-353	K-21	Virtual Machines ISA support, 109
compiler technology and	features, K-44	Virtual Machines and virtual
architectural decisions,	FP instructions, K-13, K-23	memory and I/O, 110
A-28	multimedia extensions, K-18	RISC-I, L-19 to L-20
control flow instructions, 14, A-17,	development, 2	RISC-II, L-19 to L-20
A-21	early pipelined CPUs, L-26	RLP, see Request-level parallelism
hardware primitives, 388	embedded systems, K-4	(RLP)
Intel 80x86 integer operations,	addressing modes, K-6	ROB, see Reorder buffer (ROB)
K-51	arithmetic/logical instructions,	Roofline model
invocation options, A-19	K-15, K-24	GPU performance, 326
procedure invocation options,	conditional branches, K-17	memory bandwidth, 332
A-19	constant extension, K-9	Multimedia SIMD Extensions,
return address predictors, 206	control instructions, K-16	285–288, 287
Reverse path, cell phones, E-24	conventions, K-16	Round digit, J-18
RF, see Register fetch (RF)	data transfers, K-14, K-23	Rounding modes, J-14, J-17 to J-19,
Rings	DSP extensions, K-19	J-18, J-20
characteristics, F-73	instruction formats, K-8	FP precisions, J-34
NEWS communication, F-42	multiply-accumulate, K-20	fused multiply-add, J-33
OCN history, F-104	historical background, L-19 to	Round-robin (RR)
process protection, B-50	L-21	arbitration, F-49
topology, F-35 to F-36, F-36	instruction formats, K-5 to K-6	IBM 360, K-85 to K-86
Ripple-carry adder, J-3, J-3 , J-42	instruction set lineage, K-43	InfiniBand, F-74
chip comparison, J-60	ISA performance and efficiency	Routers
Ripple-carry addition, J-2 to J-3	prediction, 241	BARRNet, F-80

Ethernet, F-79	storage area network history, F-103	cloud computing, 456
Routing algorithm	Saturating arithmetic, DSP media	computation-to-communication
commercial interconnection	extensions, E-11	ratios, I-11
networks, F-56	Saturating operations, definition, K-18	DVFS, 25, 52, 467
fault tolerance, F-67	to K-19	dynamic voltage-frequency, 25,
implementation, F-57	SAXPY, GPU raw/relative	52, 467
Intel SCCC, F-70	performance, 328	Intel Core i7, 404
interconnection networks, F-21 to	Scalability	interconnection network speed, F-8
F-22, F-27 , F-44 to F-48	cloud computing, 460	multicore vs. single-core, 402
mesh network, F-46	coherence issues, 378–379	processor performance trends, 3
network impact, F-52 to F-55	Fermi GPU, 295	scientific applications on parallel
OCN history, F-104	Java benchmarks, 402	processing, I-34
and overhead, F-93 to F-94	multicore processors, 400	shared- vs. switched-media
SAN characteristics, F-76	multiprocessing, 344, 395	networks, F-25
switched-media networks, F-24	parallelism, 44	transistor performance and wires,
switch microarchitecture	as server characteristic, 7	19–21
pipelining, F-61	transistor performance and wires,	VMIPS, 267
system area network history, F-100	19–21	Scan Line Interleave (SLI), scalable
Row access strobe (RAS), DRAM, 98	WSCs, 8, 438	GPUs, L-51
Row-diagonal parity	WSCs vs. servers, 434	SCCC, see Intel Single-Chip Cloud
example, D-9	Scalable GPUs, historical background,	Computing (SCCC)
RAID, D-9	L-50 to L-51	Schorr, Herb, L-28
Row major order, blocking, 89	Scalar expansion, loop-level parallelism	Scientific applications
RR, see Round-robin (RR)	dependences, 321	Barnes, I-8 to I-9
RS format instructions, IBM 360,	Scalar Processors, see also	basic characteristics, I-6 to I-7
K-87	Superscalar processors	cluster history, L-62
Ruby on Rails, hardware impact on	definition, 292 , 309	distributed-memory
software development, 4	early pipelined CPUs, L-26 to L-27	multiprocessors, I-26 to
RX format instructions, IBM 360,	lane considerations, 273	I-32, I-28 to I-32
K-86 to K-87	Multimedia SIMD/GPU	FFT kernel, I-7
	comparisons, 312	LU kernel, I-8
S	NVIDIA GPU, 291	Ocean, I-9 to I-10
S3, see Amazon Simple Storage	prefetch units, 277	parallel processors, I-33 to I-34
Service (S3)	vs. vector, 311, G-19	parallel program computation/
SaaS, see Software as a Service (SaaS)	vector performance, 331-332	communication, I-10 to
Sandy Bridge dies, wafter example, 31	Scalar registers	I-12, I-11
SANs, see System/storage area	Cray X1, G-21 to G-22	parallel programming, I-2
networks (SANs)	GPUs vs. vector architectures, 311	symmetric shared-memory
Sanyo digital cameras, SOC, E-20	loop-level parallelism	multiprocessors, I-21 to
Sanyo VPC-SX500 digital camera,	dependences, 321–322	I-26, I-23 to I-25
embedded system case	Multimedia SIMD vs. GPUs, 312	Scoreboarding
study, E-19	sample renaming code, 251	ARM Cortex-A8, 233, 234
SAS, see Serial Attach SCSI (SAS)	vector vs. GPU, 311	components, C-76
drive	vs. vector performance, 331–332	definition, 170
SASI, L-81	VMIPS, 265–266	dynamic scheduling, 171, 175
SATA (Serial Advanced Technology	Scaled addressing, VAX, K-67	and dynamic scheduling, C-71 to
Attachment) disks	Scaled speedup, Amdahl's law and	C-80
Google WSC servers, 469	parallel computers,	example calculations, C-77
NetApp FAS6000 filer, D-42	406–407	MIPS structure, C-73
power consumption, D-5	Scaling	NVIDIA GPU, 296
RAID 6, D-8	Amdahl's law and parallel	results tables, C-78 to C-79
vs. SAS drives, D-5	computers, 406–407	SIMD thread scheduler, 296

Scripting languages, software	safe calls, B-54	DSM multiprocessor cache
development impact, 4	sharing and protection, B-52 to	coherence, I-37
SCSI (Small Computer System	B-53	hardware primitives, 387
Interface)	Self-correction, Newton's algorithm,	multiprocessor cache coherency,
Berkeley's Tertiary Disk project,	J-28 to J-29	353
D-12	Self-draining pipelines, L-29	page tables, 408
dependability benchmarks, D-21	Self-routing, MINs, F-48	snooping coherence protocols, 356
disk storage, D-4	Semantic clash, high-level instruction	write invalidate protocol
historical background, L-80 to L-81	set, A-41	implementation, 356
I/O subsystem design, D-59	Semantic gap, high-level instruction	Serpentine recording, L-77
RAID reconstruction, D-56	set, A-39	Serve-longest-queue (SLQ) scheme,
storage area network history,	Semiconductors	arbitration, F-49
F-102	DRAM technology, 17	ServerNet interconnection network,
SDRAM, see Synchronous dynamic	Flash memory, 18	fault tolerance, F-66 to
random-access memory	GPU vs. MIMD, 325	F-67
(SDRAM)	manufacturing, 3-4	Servers, see also Warehouse-scale
SDRWAVE, J-62	Sending overhead	computers (WSCs)
Second-level caches, see also L2	communication latency, I-3 to I-4	as computer class, 5
caches	OCNs vs. SANs, F-27	cost calculations, 454 , 454–455
ARM Cortex-A8, 114	time of flight, F-14	definition, D-24
ILP, 245	Sense-reversing barrier	energy savings, 25
Intel Core i7, 121	code example, I-15, I-21	Google WSC, 440, 467, 468–469
interconnection network, F-87	large-scale multiprocessor	GPU features, 324
Itanium 2, H-41	synchronization, I-14	memory hierarchy design, 72
memory hierarchy, B-48 to B-49	Sequence of SIMD Lane Operations,	vs. mobile GPUs, 323–330
miss penalty calculations, B-33 to	definition, 292, 313	multiprocessor importance, 344
B-34	Sequency number, packet header, F-8	outage/anomaly statistics, 435
miss penalty reduction, B-30 to	Sequential consistency	performance benchmarks, 40-41
B-35	latency hiding with speculation,	power calculations, 463
miss rate calculations, B-31 to	396–397	power distribution example, 490
B-35	programmer's viewpoint, 394	power-performance benchmarks,
and relative execution time, B-34	relaxed consistency models,	54 , 439–441
speculation, 210	394–395	power-performance modes, 477
SRAM, 99	requirements and implementation,	real-world examples, 52-55
Secure Virtual Machine (SVM), 129	392–393	RISC systems
Seek distance	Sequential interleaving, multibanked	addressing modes and
storage disks, D-46	caches, 86, 86	instruction formats, K-5
system comparison, D-47	Sequent Symmetry, L-59	to K-6
Seek time, storage disks, D-46	Serial Advanced Technology	examples, K-3, K-4
Segment basics	Attachment disks, see	instruction formats, K-7
Intel 80x86, K-50	SATA (Serial Advanced	multimedia extensions, K-16
vs. page, B-43	Technology	to K-19
virtual memory definition, B-42 to	Attachment) disks	single-server model, D-25
B-43	Serial Attach SCSI (SAS) drive	system characteristics, E-4
Segment descriptor, IA-32 processor,	historical background, L-81	workload demands, 439
B-52, B-53	power consumption, D-5	WSC vs. datacenters, 455–456
Segmented virtual memory	vs. SATA drives, D-5	WSC data transfer, 446
bounds checking, B-52	Serialization	WSC energy efficiency, 462–464
Intel Pentium protection, B-51 to	barrier synchronization, I-16	vs. WSC facility costs, 472
B-54	coherence enforcement, 354	WSC memory hierarchy, 444
memory mapping, B-52	directory-based cache coherence,	WSC resource allocation case
vs. paged, B-43	382	study, 478–479

vs. WSCs, 432–434	Shadow page table, Virtual Machines,	snooping coherence protocols,
WSC TCO case study, 476–478	110	355–356
Server side Java operations per second	Sharding, WSC memory hierarchy,	WSCs, 435, 441
(ssj_ops)	445	Shared-memory synchronization,
example calculations, 439	Shared-media networks	MIPS core extensions,
power-performance, 54	effective bandwidth vs. nodes,	K-21
real-world considerations, 52-55	F-28	Shared state
Server utilization	exampl, F-22	cache block, 357, 359
calculation, D-28 to D-29	latency and effective bandwidth,	cache coherence, 360
queuing theory, D-25	F-26 to F-28	cache miss calculations, 366-367
Service accomplishment, SLAs, 34	multiple device connections, F-22	coherence extensions, 362
Service Health Dashboard, AWS, 457	to F-24	directory-based cache coherence
Service interruption, SLAs, 34	vs. switched-media networks, F-24	protocol basics, 380,
Service level agreements (SLAs)	to F-25	385
Amazon Web Services, 457	Shared Memory	private cache, 358
and dependability, 33	definition, 292 , 314	Sharing addition, segmented virtual
WSC efficiency, 452	directory-based cache coherence,	memory, B-52 to B-53
Service level objectives (SLOs)	418–420	Shear algorithms, disk array
and dependability, 33	DSM, 347-348, 348 , 354-355,	deconstruction, D-51 to
WSC efficiency, 452	378–380	D-52, D-52 to D-54
Session layer, definition, F-82	invalidate protocols, 356–357	Shifting over zeros, integer
Set associativity	SMP/DSM definition, 348	multiplication/division,
and access time, 77	terminology comparison, 315	J-45 to J-47
address parts, B-9	Shared-memory communication,	Short-circuiting, see Forwarding
AMD Opteron data cache, B-12 to	large-scale	SI format instructions, IBM 360, K-87
B-14	multiprocessors, I-5	Signals, definition, E-2
ARM Cortex-A8, 114	Shared-memory multiprocessors	Signal-to-noise ratio (SNR), wireless
block placement, B-7 to B-8	basic considerations, 351–352	networks, E-21
cache block, B-7	basic structure, 346-347	Signed-digit representation
cache misses, 83-84, B-10	cache coherence, 352-353	example, J-54
cache optimization, 79-80, B-33 to	cache coherence enforcement,	integer multiplication, J-53
B-35, B-38 to B-40	354–355	Signed number arithmetic, J-7 to J-10
commercial workload, 371	cache coherence example,	Sign-extended offset, RISC, C-4 to
energy consumption, 81	357–362	C-5
memory access times, 77	cache coherence extensions,	Significand, J-15
memory hierarchy basics, 74, 76	362–363	Sign magnitude, J-7
nonblocking cache, 84	data caching, 351-352	Silicon Graphics 4D/240, L-59
performance equations, B-22	definition, L-63	Silicon Graphics Altix, F-76, L-63
pipelined cache access, 82	historical background, L-60 to	Silicon Graphics Challenge, L-60
way prediction, 81	L-61	Silicon Graphics Origin, L-61, L-63
Set basics	invalidate protocol	Silicon Graphics systems (SGI)
block replacement, B-9 to B-10	implementation,	economies of scale, 456
definition, B-7	356–357	miss statistics, B-59
Set-on-less-than instructions (SLT)	limitations, 363–364	multiprocessor software
MIPS16, K-14 to K-15	performance, 366-378	development, 407-409
MIPS conditional branches, K-11	single-chip multicore case study,	vector processor history, G-27
to K-12	412–418	SIMD (Single Instruction Stream,
Settle time, D-46	SMP and snooping limitations,	Multiple Data Stream)
SFF, see Small form factor (SFF) disk	363–364	definition, 10
SFS benchmark, NFS, D-20	snooping coherence	Fermi GPU architectural
SGI, see Silicon Graphics systems	implementation,	innovations, 305–308
(SGI)	365–366	GPU conditional branching, 301

SIMD (continued)	Vector Registers, 309	NVIDIA GPU, 296
GPU examples, 325	SIMD Lane Registers, definition, 309,	NVIDIA GPU ISA, 298
GPU programming, 289–290	314	NVIDIA GPU Memory structures,
GPUs vs. vector architectures,	SIMD Lanes	305
308 –309	definition, 292, 296, 309	scheduling example, 297
historical overview, L-55 to L-56	DLP, 322	vector vs. GPU, 308
loop-level parallelism, 150	Fermi GPU, 305, 307	vector processor, 310
MapReduce, 438	GPU, 296–297, 300, 324	SIMD Thread Scheduler
memory bandwidth, 332	GPU conditional branching,	definition, 292, 314
multimedia extensions, see	302–303	example, 297
Multimedia SIMD	GPUs vs. vector architectures, 308,	Fermi GPU, 295, 305–307, 306
Extensions	310 , 311	GPU, 296
multiprocessor architecture, 346	instruction scheduling, 297	SIMT (Single Instruction, Multiple
multithreaded, see Multithreaded	multimedia extensions, 285	Thread)
SIMD Processor	Multimedia SIMD vs. GPUs, 312,	GPU programming, 289
NVIDIA GPU computational	315	vs. SIMD, 314
structures, 291	multithreaded processor, 294	Warp, 313
NVIDIA GPU ISA, 300	NVIDIA GPU Memory, 304	Simultaneous multithreading
power/DLP issues, 322	synchronization marker, 301	(SMT)
speedup via parallelism, 263	vector vs. GPU, 308, 311	characteristics, 226
supercomputer development, L-43	SIMD Processors, see also	definition, 224–225
to L-44	Multithreaded SIMD	historical background, L-34 to
system area network history, F-100	Processor	L-35
Thread Block mapping, 293	block diagram, 294	IBM eServer p5 575, 399
TI 320C6x DSP, E-9	definition, 292, 309, 313–314	ideal processors, 215
SIMD Instruction	dependent computation	Intel Core i7, 117–118, 239–241
CUDA Thread, 303	elimination, 321	Java and PARSEC workloads,
definition, 292, 313	design, 333	403–404
DSP media extensions, E-10	Fermi GPU, 296, 305–308	multicore performance/energy
function, 150, 291	Fermi GTX 480 GPU floorplan,	efficiency, 402–405
GPU Memory structures, 304	295 , 295–296	multiprocessing/
GPUs, 300, 305	GPU conditional branching, 302	multithreading-based
Grid mapping, 293	GPU vs. MIMD, 329	performance, 398–400
IBM Blue Gene/L, I-42	GPU programming, 289–290	multithreading history, L-35
Intel AVX, 438	GPUs vs. vector architectures, 310 ,	superscalar processors, 230–232
multimedia architecture	310–311	Single-extended precision
programming, 285	Grid mapping, 293	floating-point
multimedia extensions, 282–285,	Multimedia SIMD vs. GPU, 312	arithmetic, J-33 to J-34
312	multiprocessor architecture, 346	Single Instruction, Multiple Thread,
multimedia instruction compilers,	NVIDIA GPU computational	see SIMT (Single
A-31 to A-32	structures, 291	Instruction, Multiple
Multithreaded SIMD Processor	NVIDIA GPU Memory structures,	Thread)
	304–305	Single Instruction Stream, Multiple
block diagram, 294 PTX, 301	processor comparisons, 324	Data Stream, see SIMD
Sony PlayStation 2, E-16	Roofline model, 287 , 326	(Single Instruction
Thread of SIMD Instructions,	system area network history, F-100	Stream, Multiple Data
295–296	SIMD Thread	Stream)
thread scheduling, 296–297, 297 ,	GPU conditional branching,	Single Instruction Stream, Single Data
305	301–302	Stream, see SISD
vector architectures as superset,	Grid mapping, 293	(Single Instruction
263–264	Multithreaded SIMD processor,	Stream, Single Data
vector/GPU comparison, 308	294	Stream)

Single-level cache hierarchy, miss	SMT, see Simultaneous	large-scale multiprocessor
rates vs. cache size,	multithreading (SMT)	synchronization, I-17 to
B-33	Snooping cache coherence	I-18
Single-precision floating point	basic considerations, 355-356	network interfaces, F-7
arithmetic, J-33 to J-34	controller transitions, 421	vs. TCP/IP reliance, F-95
GPU examples, 325	definition, 354–355	Virtual Machines protection, 108
GPU vs. MIMD, 328	directory-based, 381, 386,	WSC running service, 434–435
MIPS data types, A-34	420–421	Solaris, RAID benchmarks, D-22,
MIPS operations, A-36	example, 357–362	D-22 to D-23
Multimedia SIMD Extensions, 283	implementation, 365-366	Solid-state disks (SSDs)
operand sizes/types, 12, A-13	large-scale multiprocessor history,	processor performance/price/
as operand type, A-13 to A-14	L-61	power, 52
representation, J-15 to J-16	large-scale multiprocessors, I-34 to	server energy efficiency, 462
Single-Streaming Processor (SSP)	I-35	WSC cost-performance, 474–475
Cray X1, G-21 to G-24	latencies, 414	Sonic Smart Interconnect, OCNs, F-3
Cray X1E, G-24	limitations, 363–364	Sony PlayStation 2
Single-thread (ST) performance	sample types, L-59	block diagram, E-16
IBM eServer p5 575, 399, 399	single-chip multicore processor	embedded multiprocessors, E-14
Intel Core i7, 239	case study, 412–418	Emotion Engine case study, E-15
ISA, 242	symmetric shared-memory	to E-18
processor comparison, 243	machines, 366	Emotion Engine organization,
SISD (Single Instruction Stream,	SNR, see Signal-to-noise ratio	E-18
Single Data Stream), 10	(SNR)	Sorting, case study, D-64 to D-67
SIMD computer history, L-55	SoC, see System-on-chip (SoC)	Sort primitive, GPU vs. MIMD, 329
Skippy algorithm	Soft errors, definition, 104	Sort procedure, VAX
disk deconstruction, D-49	Soft real-time	bubble sort, K-76
sample results, D-50	definition, E-3	example code, K-77 to K-79
SLAs, see Service level agreements	PMDs, 6	vs. MIPS32, K-80
(SLAs)	Software as a Service (SaaS)	register allocation, K-76
SLI, see Scan Line Interleave (SLI)	clusters/WSCs, 8	Source routing, basic concept, F-48
SLOs, see Service level objectives	software development, 4	SPARCLE processor, L-34
(SLOs)	WSCs, 438	Sparse matrices
SLQ, see Serve-longest-queue (SLQ)	WSCs vs. servers, 433–434	loop-level parallelism
scheme	Software development	dependences, 318–319
SLT, see Set-on-less-than instructions	multiprocessor architecture issues,	vector architectures, 279–280,
(SLT)	407–409	G-12 to G-14
SM, see Distributed shared memory	performance vs. productivity, 4	vector execution time, 271
(DSM)	WSC efficiency, 450–452	vector mask registers, 275
Small Computer System Interface, see	Software pipelining	Spatial locality
SCSI (Small Computer	example calculations, H-13 to	coining of term, L-11
System Interface)	H-14	definition, 45, B-2
Small form factor (SFF) disk, L-79	loops, execution pattern, H-15	memory hierarchy design, 72
Smalltalk, SPARC instructions, K-30	technique, H-12 to H-15, H-13	SPEC benchmarks
Smart interface cards, vs. smart	Software prefetching, cache	branch predictor correlation,
switches, F-85 to F-86	optimization, 131–133	162–164
Smartphones	Software speculation	desktop performance, 38-40
ARM Cortex-A8, 114	definition, 156	early performance measures, L-7
mobile vs. server GPUs, 323-324	vs. hardware speculation, 221–222	evolution, 39
Smart switches, vs. smart interface	VLIW, 196	fallacies, 56
cards, F-85 to F-86	Software technology	operands, A-14
SMP, see Symmetric multiprocessors	ILP approaches, 148	performance, 38
(SMP)	large-scale multiprocessors, I-6	performance results reporting, 41

SPEC benchmarks (continued)	SPECfp benchmarks	Itanium 2, H-43
processor performance growth, 3	hardware prefetching, 91	nonblocking caches, 84
static branch prediction, C-26 to	interconnection network, F-87	SPECInt92 benchmarks
C-27	ISA performance and efficiency	Intel 80x86 vs. DLX, K-63
storage systems, D-20 to D-21	prediction, 241–242	Intel 80x86 instruction lengths,
tournament predictors, 164	Itanium 2, H-43	K-60
two-bit predictors, 165	MIPS FP pipeline performance,	Intel 80x86 instruction mix, K-62
vector processor history, G-28	C-60 to C-61	Intel 80x86 operand type
SPEC89 benchmarks	nonblocking caches, 84	distribution, K-59
branch-prediction buffers, C-28 to	tournament predictors, 164	nonblocking cache, 83
C-30, C-30	SPECfp92 benchmarks	SPECint95 benchmarks,
MIPS FP pipeline performance,	Intel 80x86 vs. DLX, K-63	interconnection
C-61 to C-62	Intel 80x86 instruction lengths,	networks, F-88
misprediction rates, 166	K-60	SPECINT2000 benchmarks, MIPS
tournament predictors, 165–166	Intel 80x86 instruction mix, K-61	dynamic instruction
VAX 8700 vs. MIPS M2000, K-82	Intel 80x86 operand type	mix, A-41
SPEC92 benchmarks	distribution, K-59	SPECINT2006 benchmarks
hardware vs. software speculation,	nonblocking cache, 83	Intel processor clock rates, 244
221	SPECfp2000 benchmarks	nonblocking cache, 83
ILP hardware model, 215	hardware prefetching, 92	SPECintRate benchmark
MIPS R4000 performance, C-68 to	MIPS dynamic instruction mix,	multicore processor performance,
C-69, C-69	A-42	400
misprediction rate, C-27	Sun Ultra 5 execution times, 43	multiprocessor cost effectiveness,
SPEC95 benchmarks	SPECfp2006 benchmarks	407
return address predictors, 206–207,	Intel processor clock rates, 244	SMT, 398–400
207	nonblocking cache, 83	SMT on superscalar processors,
way prediction, 82	SPECfpRate benchmarks	230
SPEC2000 benchmarks	multicore processor performance,	SPEC Java Business Benchmark
ARM Cortex-A8 memory,	400	(JBB)
115–116	multiprocessor cost effectiveness,	multicore processor performance,
cache performance prediction,	407	400
125–126	SMT, 398-400	multicore processors, 402
cache size and misses per	SMT on superscalar processors,	multiprocessing/
instruction, 126	230	multithreading-based
compiler optimizations, A-29	SPEChpc96 benchmark, vector	performance, 398
compulsory miss rate, B-23	processor history, G-28	server, 40
data reference sizes, A-44	Special-purpose machines	Sun T1 multithreading unicore
hardware prefetching, 91	historical background, L-4 to L-5	performance, 227-229,
instruction misses, 127	SIMD computer history, L-56	229
SPEC2006 benchmarks, evolution, 39	Special-purpose register	SPECJVM98 benchmarks, ISA
SPECCPU2000 benchmarks	compiler writing-architecture	performance and
displacement addressing mode,	relationship, A-30	efficiency prediction,
A-12	ISA classification, A-3	241
Intel Core i7, 122	VMIPS, 267	SPECMail benchmark, characteristics
server benchmarks, 40	Special values	D-20
SPECCPU2006 benchmarks	floating point, J-14 to J-15	SPEC-optimized processors, vs.
branch predictors, 167	representation, J-16	density-optimized, F-85
Intel Core i7, 123-124, 240,	SPECINT benchmarks	SPECPower benchmarks
240–241	hardware prefetching, 92	Google server benchmarks,
ISA performance and efficiency	interconnection network, F-87	439–440, 440
prediction, 241	ISA performance and efficiency	multicore processor performance,
Virtual Machines protection, 108	prediction, 241–242	400

real-world server considerations,	SPECWeb99 benchmarks	Spin locks
52–55	multiprocessing/	via coherence, 389–390
WSCs, 463	multithreading-based	large-scale multiprocessor
WSC server energy efficiency,	performance, 398	synchronization
462–463	Sun T1 multithreading unicore	barrier synchronization, I-16
SPECRate benchmarks	performance, 227, 229	exponential back-off, I-17
Intel Core i7, 402	Speedup	SPLASH parallel benchmarks, SMT
multicore processor performance,	Amdahl's law, 46-47	on superscalar
400	floating-point addition, J-25 to	processors, 230
multiprocessor cost effectiveness,	J-26	Split, GPU vs. MIMD, 329
407	integer addition	SPRAM, Sony PlayStation 2 Emotion
server benchmarks, 40	carry-lookahead, J-37 to J-41	Engine organization,
SPECRate2000 benchmarks, SMT,	carry-lookahead circuit, J-38	E-18
398-400	carry-lookahead tree, J-40 to	Sprowl, Bob, F-99
SPECRatios	J-41	Squared coefficient of variance, D-27
execution time examples, 43	carry-lookahead tree adder,	SRAM, see Static random-access
geometric means calculations,	J-41	memory (SRAM)
43–44	carry-select adder, J-43, J-43 to	SRT division
SPECSFS benchmarks	J-44, J-44	chip comparison, J-60 to J-61
example, D-20	carry-skip adder, J-41 to J43,	complications, J-45 to J-46
servers, 40	J-42	early computer arithmetic, J-65
Speculation, see also Hardware-based	overview, J-37	example, J-46
speculation; Software	integer division	historical background, J-63
speculation	radix-2 division, J-55	integers, with adder, J-55 to J-57
advantages/disadvantages,	radix-4 division, J-56	radix-4, J-56, J-57
210–211	radix-4 SRT division, J-57	SSDs, see Solid-state disks (SSDs)
compilers, see Compiler	with single adder, J-54 to J-58	SSE, see Intel Streaming SIMD
speculation	integer multiplication	Extension (SSE)
concept origins, L-29 to L-30	array multiplier, J-50	SS format instructions, IBM 360, K-85
and energy efficiency, 211–212	Booth recoding, J-49	to K-88
FP unit with Tomasulo's	even/odd array, J-52	ssj_ops, see Server side Java
algorithm, 185	with many adders, J-50 to J-54	operations per second
hardware vs. software, 221-222	multipass array multiplier,	(ssj_ops)
IA-64, H-38 to H-40	J-51	SSP, see Single-Streaming Processor
ILP studies, L-32 to L-33	signed-digit addition table,	(SSP)
Intel Core i7, 123-124	J-54	Stack architecture
latency hiding in consistency	with single adder, J-47 to J-49,	and compiler technology, A-27
models, 396-397	J-48	flaws vs. success, A-44 to A-45
memory reference, hardware	Wallace tree, J-53	historical background, L-16 to
support, H-32	integer multiplication/division,	L-17
and memory system, 222-223	shifting over zeros, J-45	Intel 80x86, K-48, K-52, K-54
microarchitectural techniques case	to J-47	operands, A-3 to A-4
study, 247–254	integer SRT division, J-45 to J-46,	Stack frame, VAX, K-71
multiple branches, 211	J-46	Stack pointer, VAX, K-71
register renaming vs. ROB,	linear, 405–407	Stack or Thread Local Storage,
208–210	via parallelism, 263	definition, 292
SPECvirt_Sc2010 benchmarks, server,	pipeline with stalls, C-12 to C-13	Stale copy, cache coherency, 112
40	relative, 406	Stall cycles
SPECWeb benchmarks	scaled, 406–407	advanced directory protocol case
characteristics, D-20	switch buffer organizations, F-58	study, 424
dependability, D-21	to F-59	average memory access time, B-17
parallelism, 44	true, 406	branch hazards, C-21
server benchmarks, 40	Sperry-Rand, L-4 to L-5	branch scheme performance, C-25

Stall cycles (continued)	Start-up time	dependability benchmarks, D-21 to
definition, B-4 to B-5	DAXPY on VMIPS, G-20	D-23
example calculation, B-31	memory banks, 276	dirty bits, D-61 to D-64
loop unrolling, 161	page size selection, B-47	disk array deconstruction case
MIPS FP pipeline performance,	peak performance, 331	study, D-51 to D-55,
C-60	vector architectures, 331, G-4,	D-52 to D-55
miss rate calculation, B-6	G-4, G-8	disk arrays, D-6 to D-10
out-of-order processors, B-20 to	vector convoys, G-4	disk deconstruction case study,
B-21	vector execution time, 270-271	D-48 to D-51, D-50
performance equations, B-22	vector performance, G-2	disk power, D-5
pipeline performance, C-12 to	vector performance measures, G-16	disk seeks, D-45 to D-47
C-13	vector processor, G-7 to G-9, G-25	disk storage, D-2 to D-5
single-chip multicore	VMIPS, G-5	file system benchmarking, D-20,
multiprocessor case	State transition diagram	D-20 to D-21
study, 414–418	director vs. cache, 385	Internet Archive Cluster, see
structural hazards, C-15	directory-based cache coherence,	Internet Archive Cluster
Stalls	383	I/O performance, D-15 to D-16
AMD Opteron data cache, B-15	Statically based exploitation, ILP, H-2	I/O subsystem design, D-59 to
ARM Cortex-A8, 235, 235-236	Static power	D-61
branch hazards, C-42	basic equation, 26	I/O system design/evaluation,
data hazard minimization, C-16 to	SMT, 231	D-36 to D-37
C-19, C-18	Static random-access memory	mail server benchmarking, D-20 to
data hazards requiring, C-19 to	(SRAM)	D-21
C-21	characteristics, 97-98	NetApp FAS6000 filer, D-41 to
delayed branch, C-65	dependability, 104	D-42
Intel Core i7, 239–241	fault detection pitfalls, 58	operator dependability, D-13 to
microarchitectural techniques case	power, 26	D-15
study, 252	vector memory systems, G-9	OS-scheduled disk access, D-44 to
MIPS FP pipeline performance,	vector processor, G-25	D-45, D-45
C-60 to C-61, C-61 to	yield, 32	point-to-point links, D-34, D-34
C-62	Static scheduling	queue I/O request calculations,
MIPS pipeline multicycle	definition, C-71	D-29
operations, C-51	ILP, 192–196	queuing theory, D-23 to D-34
MIPS R4000, C-64 , C-67 , C-67 to	and unoptimized code, C-81	RAID performance prediction,
C-69, C-69	Sticky bit, J-18	D-57 to D-59
miss rate calculations, B-31 to	Stop & Go, see Xon/Xoff	RAID reconstruction case study,
B-32	Storage area networks	D-55 to D-57
necessity, C-21	dependability benchmarks, D-21 to	real faults and failures, D-6 to
nonblocking cache, 84	D-23, D-22	D-10
pipeline performance, C-12 to	historical overview, F-102 to	reliability, D-44
C-13	F-103	response time restrictions for
from RAW hazards, FP code, C-55	I/O system as black blox, D-23	benchmarks, D-18
structural hazard, C-15	Storage systems	seek distance comparison, D-47
VLIW sample code, 252	asynchronous I/O and OSes, D-35	seek time vs. distance, D-46
VMIPS, 268	Berkeley's Tertiary Disk project,	server utilization calculation, D-28
Standardization, commercial	D-12	to D-29
interconnection	block servers vs. filers, D-34 to	sorting case study, D-64 to D-67
networks, F-63 to F-64	D-35	Tandem Computers, D-12 to D-13
Stardent-1500, Livermore Fortran	bus replacement, D-34	throughput vs. response time,
kernels, 331	component failure, D-43	D-16 , D-16 to D-18,
Start-up overhead, vs. peak	computer system availability, D-43	D-17
performance, 331	to D-44, D-44	TP benchmarks, D-18 to D-19

transactions components, D-17	DAXPY on VMIPS, G-20	conditional branches, K-10,
web server benchmarking, D-20 to	definition, 292	K-17
D-21	multidimensional arrays, 278	conditional instructions, H-27
WSC vs. datacenter costs, 455	Thread Block comparison, 294	constant extension, K-9
WSCs, 442–443	vector-length registers, 274	conventions, K-13
Store conditional	Strip mining	data transfer instructions, K-10
locks via coherence, 391	DAXPY on VMIPS, G-20	fast traps, K-30
synchronization, 388-389	GPU conditional branching, 303	features, K-44
Store-and-forward packet switching,	GPUs vs. vector architectures, 311	FP instructions, K-23
F-51	NVIDIA GPU, 291	instruction list, K-31 to K-32
Store instructions, see also Load-store	vector, 275	integer arithmetic, J-12
instruction set	VLRs, 274–275	integer overflow, J-11
architecture	Strong scaling, Amdahl's law and	ISA, A-2
definition, C-4	parallel computers, 407	LISP, K-30
instruction execution, 186	Structural hazards	MIPS core extensions, K-22 to K-23
ISA, 11, A-3	basic considerations, C-13 to C-16	overlapped integer/FP operations,
MIPS, A-33, A-36	definition, C-11	K-31
NVIDIA GPU ISA, 298	MIPS pipeline, C-71	precise exceptions, C-60
Opteron data cache, B-15	MIPS scoreboarding, C-78 to C-79	register windows, K-29 to K-30
RISC instruction set, C-4 to C-6,	pipeline stall, C-15	RISC history, L-20
C-10	vector execution time, 268–269	as RISC system, K-4
vector architectures, 310	Structural stalls, MIPS R4000	Smalltalk, K-30
Streaming Multiprocessor	pipeline, C-68 to C-69	synchronization history, L-64
definition, 292 , 313–314	Subset property, and inclusion, 397	unique instructions, K-29 to K-32
Fermi GPU, 307	Summary overflow condition code,	Sun Microsystems SPARCCenter, L-60
Strecker, William, K-65	PowerPC, K-10 to K-11	Sun Microsystems SPARCstation-2,
Strided accesses	Sun Microsystems	F-88
Multimedia SIMD Extensions, 283	cache optimization, B-38	Sun Microsystems SPARCstation-20,
Roofline model, 287	fault detection pitfalls, 58	F-88
TLB interaction, 323	memory dependability, 104	Sun Microsystems SPARC V8,
Strided addressing, see also Unit stride	Sun Microsystems Enterprise, L-60	floating-point
addressing	Sun Microsystems Niagara (T1/T2)	precisions, J-33
multimedia instruction compiler	processors	Sun Microsystems SPARC VIS
support, A-31 to A-32	characteristics, 227	characteristics, K-18
Strides	CPI and IPC, 399	multimedia support, E-11, K-18
gather-scatter, 280	fine-grained multithreading, 224,	Sun Microsystems Ultra 5,
highly parallel memory systems,	225 , 226–229	SPECfp2000 execution
133	manufacturing cost, 62	times, 43
multidimensional arrays in vector	multicore processor performance,	Sun Microsystems UltraSPARC, L-62,
architectures, 278–279	400–401	L-73
NVIDIA GPU ISA, 300	multiprocessing/	Sun Microsystems UltraSPARC T1
vector memory systems, G-10 to	multithreading-based	processor,
G-11	performance, 398–400	characteristics, F-73
VMIPS, 266	multithreading history, L-34	Sun Modular Datacenter, L-74 to L-75
String operations, Intel 80x86, K-51,	T1 multithreading unicore	Superblock scheduling
K-53	performance, 227–229	basic process, H-21 to H-23
Stripe, disk array deconstruction, D-51	Sun Microsystems SPARC	compiler history, L-31
Striping	addressing modes, K-5	example, H-22
disk arrays, D-6	ALU operands, A-6	Supercomputers
RAID, D-9	arithmetic/logical instructions,	commercial interconnection
Strip-Mined Vector Loop	K-11, K-31	networks, F-63
convoys, G-5	branch conditions, A-19	direct network topology, F-37
•	· · · · · · · · · · · · · · · · · · ·	1 00

Supercomputers (continued)	OCN history, F-104	Symmetric multiprocessors (SMP)
low-dimensional topologies, F-100	topology, F-40	characteristics, I-45
SAN characteristics, F-76	Switches	communication calculations, 350
SIMD, development, L-43 to L-44	array, WSCs, 443–444	directory-based cache coherence,
vs. WSCs, 8	Beneŝ networks, F-33	354
Superlinear performance,	context, 307, B-49	first vector computers, L-47, L-49
multiprocessors, 406	early LANs and WANs, F-29	limitations, 363–364
Superpipelining Superpipelining	Ethernet switches, 16, 20 , 53,	snooping coherence protocols,
definition, C-61	441–444, 464–465, 469	354–355
performance histories, 20	interconnecting node calculations,	system area network history, F-101
Superscalar processors	F-35	TLP, 345
coining of term, L-29	vs. NIC, F-85 to F-86, F-86	Symmetric shared-memory
ideal processors, 214–215	process switch, 224, B-37, B-49 to	multiprocessors, see
ILP, 192–197, 246	B-50	also Centralized
studies, L-32	storage systems, D-34	shared-memory
microarchitectural techniques case	switched-media networks, F-24	multiprocessors
study, 250–251	WSC hierarchy, 441–442, 442	data caching, 351–352
multithreading support, 225	WSC infrastructure, 446	limitations, 363–364
recent advances, L-33 to L-34	WSC network bottleneck, 461	performance
register renaming code, 251	Switch fabric, switched-media	commercial workload, 367–369
rename table and register	networks, F-24	commercial workload
substitution logic, 251	Switching	measurement, 369–374
SMT, 230–232	commercial interconnection	multiprogramming and OS
VMIPS, 267	networks, F-56	workload, 374–378
Superscalar registers, sample	interconnection networks, F-22,	overview, 366–367
renaming code, 251	F-27 , F-50 to F-52	scientific workloads, I-21 to I-26,
Supervisor process, virtual memory	network impact, F-52 to F-55	I-23 to I-25
protection, 106	performance considerations, F-92	Synapse N + 1, L-59
Sussenguth, Ed, L-28	to F-93	Synchronization
Sutherland, Ivan, L-34	SAN characteristics, F-76	AltaVista search, 369
SVM, see Secure Virtual Machine	switched-media networks, F-24	basic considerations, 386–387
(SVM)	system area network history, F-100	basic hardware primitives,
Swap procedure, VAX	Switch microarchitecture	387–389
code example, K-72, K-74	basic microarchitecture, F-55 to	consistency models, 395–396
full procedure, K-75 to K-76	F-58	cost, 403
overview, K-72 to K-76	buffer organizations, F-58 to F-60	Cray X1, G-23
register allocation, K-72	enhancements, F-62	definition, 375
register preservation, B-74 to B-75	HOL blocking, F-59	GPU comparisons, 329
Swim, data cache misses, B-10	input-output-buffered switch, F-57	GPU conditional branching,
Switched-media networks	pipelining, F-60 to F-61, F-61	300–303
basic characteristics, F-24	Switch ports	historical background, L-64
vs. buses, F-2	centralized switched networks, F-30	large-scale multiprocessors
effective bandwidth vs. nodes,	interconnection network topology,	barrier synchronization, I-13 to
F-28	F-29	I-16, I-14 , I-16
example, F-22	Switch statements	challenges, I-12 to I-16
latency and effective bandwidth,	control flow instruction addressing	hardware primitives, I-18 to
F-26 to F-28	modes, A-18	I-21
vs. shared-media networks, F-24 to	GPU, 301	sense-reversing barrier, I-21
F-25	Syllable, IA-64, H-35	software implementations, I-17
Switched networks	Symbolic loop unrolling, software	to I-18
centralized, F-30 to F-34	pipelining, H-12 to	tree-based barriers, I-19
DOR. F-46	H-15. H-13	locks via coherence, 389–391

message-passing communication,	shared-media networks, F-23	memory hierarchy basics, 74
I-5	System Performance and Evaluation	memory hierarchy basics, 77-78
MIMD, 10	Cooperative (SPEC),	virtual memory fast address
MIPS core extensions, K-21	see SPEC benchmarks	translation, B-46
programmer's viewpoint, 393-394	System Processor	write strategy, B-10
PTX instruction set, 298–299	definition, 309	Tag check (TC)
relaxed consistency models,	DLP, 262, 322	MIPS R4000, C-63
394–395	Fermi GPU, 306	R4000 pipeline, B-62 to B-63
single-chip multicore processor	GPU issues, 330	R4000 pipeline structure, C-63
case study, 412–418	GPU programming, 288–289	write process, B-10
vector vs. GPU, 311	NVIDIA GPU ISA, 298	Tag fields
VLIW, 196	NVIDIA GPU Memory, 305	block identification, B-8
WSCs, 434	processor comparisons, 323–324	dynamic scheduling, 173, 175
Synchronous dynamic random-access	synchronization, 329	Tail duplication, superblock
memory (SDRAM)	vector vs. GPU, 311–312	scheduling, H-21
ARM Cortex-A8, 117	System response time, transactions,	Tailgating, definition, G-20
DRAM, 99	D-16, D-17	Tandem Computers
vs. Flash memory, 103	Systems on a chip (SOC), cost trends,	cluster history, L-62, L-72
IBM Blue Gene/L, I-42	28	faults, D-14
Intel Core i7, 121	System/storage area networks (SANs)	overview, D-12 to D-13
performance, 100	characteristics, F-3 to F-4	Target address
power consumption, 102, 103	communication protocols, F-8	branch hazards, C-21, C-42
SDRAM timing diagram, 139	congestion management, F-65	branch penalty reduction, C-22 to
Synchronous event, exception		C-23
•	cross-company interoperability, F-64	
requirements, C-44 to	effective bandwidth, F-18	branch-target buffer, 206
C-45	example system, F-72 to F-74	control flow instructions, A-17 to
Synchronous I/O, definition, D-35	fat trees, F-34	A-18
Synonyms	fault tolerance, F-67	GPU conditional branching, 301
address translation, B-38	InfiniBand example, F-74 to F-77	Intel Core i7 branch predictor, 166
dependability, 34	interconnection network domain	MIPS control flow instructions,
Synthetic benchmarks	relationship, F-4	A-38
definition, 37	LAN history, F-99	MIPS implementation, C-32
typical program fallacy, A-43	latency and effective bandwidth,	MIPS pipeline, C-36, C-37
System area networks, historical	F-26 to F-28	MIPS R4000, C-25
overview, F-100 to	latency vs. nodes, F-27	pipeline branches, C-39
F-102	packet latency, F-13 , F-14 to F-16	RISC instruction set, C-5
System calls	routing algorithms, F-48	Target channel adapters (TCAs),
CUDA Thread, 297	software overhead, F-91	switch vs. NIC, F-86
multiprogrammed workload, 378	TCP/IP reliance, F-95	Target instructions
virtualization/paravirtualization	time of flight, F-13	branch delay slot scheduling, C-24
performance, 141	topology, F-30	as branch-target buffer variation,
virtual memory protection, 106	System Virtual Machines, definition,	206
System interface controller (SIF), Intel	107	GPU conditional branching, 301
SCCC, F-70		Task-level parallelism (TLP),
System-on-chip (SoC)	T	definition, 9
cell phone, E-24	Tag	TB, see Translation buffer (TB)
cross-company interoperability,	AMD Opteron data cache, B-12 to	TB-80 VME rack
F-64	B-14	example, D-38
embedded systems, E-3	ARM Cortex-A8, 115	MTTF calculation, D-40 to D-41
Sanyo digital cameras, E-20	cache optimization, 79-80	TC, see Tag check (TC)
Sanyo VPC-SX500 digital camera,	dynamic scheduling, 177	TCAs, see Target channel adapters
E-19	invalidate protocols, 357	(TCAs)

TCO, see Total Cost of Ownership	Think time, transactions, D-16, D-17	snooping coherence protocols,
(TCO)	Third-level caches, see also L3 caches	355–356
TCP, see Transmission Control	ILP, 245	definition, 9
Protocol (TCP)	interconnection network, F-87	directory-based cache coherence
TCP/IP, see Transmission Control	SRAM, 98–99	case study, 418-420
Protocol/Internet	Thrash, memory hierarchy, B-25	protocol basics, 380-382
Protocol (TCP/IP)	Thread Block	protocol example, 382-386
TDMA, see Time division multiple	CUDA Threads, 297, 300, 303	DSM and directory-based
access (TDMA)	definition, 292, 313	coherence, 378-380
TDP, see Thermal design power	Fermi GTX 480 GPU flooplan,	embedded systems, E-15
(TDP)	295	IBM Power7, 215
Technology trends	function, 294	from ILP, 4-5
basic considerations, 17–18	GPU hardware levels, 296	inclusion, 397–398
performance, 18–19	GPU Memory performance, 332	Intel Core i7 performance/energy
Teleconferencing, multimedia support,	GPU programming, 289–290	efficiency, 401–405
K-17	Grid mapping, 293	memory consistency models
Temporal locality	mapping example, 293	basic considerations, 392–393
blocking, 89–90	multithreaded SIMD Processor, 294	compiler optimization, 396
cache optimization, B-26	NVIDIA GPU computational	programming viewpoint,
coining of term, L-11	structures, 291	393–394
definition, 45, B-2	NVIDIA GPU Memory structures,	relaxed consistency models,
memory hierarchy design, 72	304	394–395
ΓERA processor, L-34	PTX Instructions, 298	speculation to hide latency,
Terminate events	Thread Block Scheduler	396–397
exceptions, C-45 to C-46	definition, 292, 309, 313–314	MIMDs, 344–345
hardware-based speculation, 188	Fermi GTX 480 GPU flooplan, 295	multicore processor performance,
loop unrolling, 161	function, 294, 311	400–401
Tertiary Disk project	GPU, 296	multicore processors and SMT,
failure statistics, D-13	Grid mapping, 293	404–405
overview, D-12	multithreaded SIMD Processor, 294	multiprocessing/
system log, D-43	Thread-level parallelism (TLP)	multithreading-based
Test-and-set operation,	advanced directory protocol case	performance, 398–400
synchronization, 388	study, 420–426	multiprocessor architecture,
Texas Instruments 8847	Amdahl's law and parallel	346–348
arithmetic functions, J-58 to J-61	computers, 406–407	multiprocessor cost effectiveness, 407
chip comparison, J-58	centralized shared-memory	multiprocessor cost effectiveness, 407
		405–406
chip layout, J-59 Texas Instruments ASC	multiprocessors	
	basic considerations, 351–352	multiprocessor software
first vector computers, L-44	cache coherence, 352–353	development, 407–409
peak performance vs. start-up	cache coherence enforcement,	vs. multithreading, 223–224
overhead, 331	354–355	multithreading history, L-34 to L-35
TFLOPS, parallel processing debates,	cache coherence example,	parallel processing challenges,
L-57 to L-58	357–362	349–351
TFT, see Thin-film transistor (TFT)	cache coherence extensions,	single-chip multicore processor
Thacker, Chuck, F-99	362–363	case study, 412–418
Thermal design power (TDP), power	invalidate protocol	Sun T1 multithreading, 226–229
trends, 22	implementation,	symmetric shared-memory
Thin-film transistor (TFT), Sanyo	356–357	multiprocessor
VPC-SX500 digital	SMP and snooping limitations,	performance
camera, E-19	363–364	commercial workload, 367–369
Thinking Machines, L-44, L-56 Thinking Multiprocessors CM 5, L-60	snooping coherence	commercial workload
I hinking Multiprocessors ('M 5 1 60)	implementation 365 366	maggirament 360 37/1

multiprogramming and OS	servers, 7	definition, F-29
workload, 374–378	storage systems, D-16 to D-18	direct networks, F-37
overview, 366-367	uniprocessors, TLP	distributed switched networks,
synchronization	basic considerations, 223–226	F-34 to F-40
basic considerations, 386–387	fine-grained multithreading on	interconnection networks, F-21 to
basic hardware primitives,	Sun T1, 226–229	F-22, F-44
387–389	superscalar SMT, 230-232	basic considerations, F-29 to
locks via coherence, 389-391	and virtual channels, F-93	F-30
Thread Processor	WSCs, 434	fault tolerance, F-67
definition, 292, 314	Ticks	network performance and cost,
GPU, 315	cache coherence, 391	F-40
Thread Processor Registers, definition,	processor performance equation,	network performance effects, F-40
292	48–49	to F-44
Thread Scheduler in a Multithreaded	Tilera TILE-Gx processors, OCNs,	rings, F-36
CPU, definition, 292	F-3	routing/arbitration/switching
Thread of SIMD Instructions	Time-cost relationship, components,	impact, F-52
characteristics, 295-296	27–28	system area network history, F-100
CUDA Thread, 303	Time division multiple access	to F-101
definition, 292, 313	(TDMA), cell phones,	Torus networks
Grid mapping, 293	E-25	characteristics, F-36
lane recognition, 300	Time of flight	commercial interconnection
scheduling example, 297	communication latency, I-3 to I-4	networks, F-63
terminology comparison, 314	interconnection networks, F-13	direct networks, F-37
vector/GPU comparison, 308-309	Timing independent, L-17 to L-18	fault tolerance, F-67
Thread of Vector Instructions,	TI TMS320C6x DSP	IBM Blue Gene/L, F-72 to F-74
definition, 292	architecture, E-9	NEWS communication, F-43
Three-dimensional space, direct	characteristics, E-8 to E-10	routing comparison, F-54
networks, F-38	instruction packet, E-10	system area network history, F-102
Three-level cache hierarchy	TI TMS320C55 DSP	TOS, see Top Of Stack (TOS) register
commercial workloads, 368	architecture, E-7	Total Cost of Ownership (TCO), WSC
ILP, 245	characteristics, E-7 to E-8	case study, 476–479
Intel Core i7, 118, 118	data operands, E-6	Total store ordering, relaxed
Throttling, packets, F-10	TLB, see Translation lookaside buffer	consistency models, 395
Throughput, see also Bandwidth	(TLB)	Tournament predictors
definition, C-3, F-13	TLP, see Task-level parallelism	early schemes, L-27 to L-28
disk storage, D-4	(TLP); Thread-level	ILP for realizable processors, 216
Google WSC, 470	parallelism (TLP)	local/global predictor
ILP, 245	Tomasulo's algorithm	combinations, 164–166
instruction fetch bandwidth, 202	advantages, 177–178	Toy programs, performance
Intel Core i7, 236–237	dynamic scheduling, 170–176	benchmarks, 37
kernel characteristics, 327	FP unit, 185	TP, see Transaction-processing (TP)
memory banks, 276	loop-based example, 179, 181–183	TPC, see Transaction Processing
multiple lanes, 271	MIP FP unit, 173	Council (TPC)
parallelism, 44	register renaming vs. ROB, 209	Trace compaction, basic process, H-19
performance considerations, 36	step details, 178, 180	Trace scheduling
performance trends, 18–19	TOP500, L-58	basic approach, H-19 to H-21
pipelining basics, C-10	Top Of Stack (TOS) register, ISA	overview, H-20
precise exceptions, C-60	operands, A-4	Trace selection, definition, H-19
producer-server model, D-16	Topology	Tradebeans benchmark, SMT on
vs. response time, D-17	Benŝ networks, F-33	superscalar processors,
routing comparison, F-54	centralized switched networks,	230 Traffic intensity, quanting theory, D. 25
server benchmarks, 40–41	F-30 to F-34, F-31	Traffic intensity, queuing theory, D-25

Trailer	RISC instructions, A-3	Transmission speed, interconnection
messages, F-6	shrinking, 55	network performance,
packet format, F-7	static power, 26	F-13
Transaction components, D-16, D-17 ,	technology trends, 17-18	Transmission time
I-38 to I-39	Translation buffer (TB)	communication latency, I-3 to I-4
Transaction-processing (TP)	virtual memory block	time of flight, F-13 to F-14
server benchmarks, 41	identification, B-45	Transport latency
storage system benchmarks, D-18	virtual memory fast address	time of flight, F-14
to D-19	translation, B-46	topology, F-35 to F-36
Transaction Processing Council (TPC)	Translation lookaside buffer (TLB)	Transport layer, definition, F-82
benchmarks overview, D-18 to	address translation, B-39	Transputer, F-100
D-19, D-19	AMD64 paged virtual memory,	Tree-based barrier, large-scale
parallelism, 44	B-56 to B-57	multiprocessor
performance results reporting, 41	ARM Cortex-A8, 114-115	synchronization, I-19
server benchmarks, 41	cache optimization, 80, B-37	Tree height reduction, definition, H-11
TPC-B, shared-memory	coining of term, L-9	Trees, MINs with nonblocking, F-34
workloads, 368	Intel Core i7, 118 , 120–121	Trellis codes, definition, E-7
TPC-C	interconnection network	TRIPS Edge processor, F-63
file system benchmarking,	protection, F-86	characteristics, F-73
D-20	memory hierarchy, B-48 to B-49	Trojan horses
IBM eServer p5 processor, 409	memory hierarchy basics, 78	definition, B-51
multiprocessing/	MIPS64 instructions, K-27	segmented virtual memory, B-53
multithreading-based	Opteron, B-47	True dependence
performance, 398	Opteron memory hierarchy, B-57	finding, H-7 to H-8
multiprocessor cost	RISC code size, A-23	loop-level parallelism calculations,
effectiveness, 407	shared-memory workloads,	320
single vs. multiple thread	369–370	vs. name dependence, 153
executions, 228	speculation advantages/	True sharing misses
Sun T1 multithreading unicore	disadvantages, 210–211	commercial workloads, 371, 373
performance, 227–229,	strided access interactions,	definition, 366–367
229	323	multiprogramming workloads, 377
WSC services, 441	Virtual Machines, 110	True speedup, multiprocessor
TPC-D, shared-memory	virtual memory block	performance, 406
workloads, 368–369	identification, B-45	TSMC, Stratton, F-3
TPC-E, shared-memory	virtual memory fast address	TSS operating system, L-9
workloads, 368–369	translation, B-46	Turbo mode
Transfers, see also Data transfers	virtual memory page size selection,	hardware enhancements, 56
as early control flow instruction	B-47	microprocessors, 26
definition, A-16	virtual memory protection,	Turing, Alan, L-4, L-19
Transforms, DSP, E-5	106–107	Turn Model routing algorithm,
Transforms, Bot, B 5 Transient failure, commercial	Transmission Control Protocol (TCP),	example calculations,
interconnection	congestion	F-47 to F-48
networks, F-66	management, F-65	Two-level branch predictors
Transient faults, storage systems, D-11	Transmission Control Protocol/	branch costs, 163
Transient rauts, storage systems, D-11 Transistors	Internet Protocol (TCP/	Intel Core i7, 166
clock rate considerations, 244	IP)	tournament predictors, 165
dependability, 33–36	ATM, F-79	Two-level cache hierarchy
energy and power, 23–26	headers, F-84	cache optimization, B-31
ILP, 245	internetworking, F-81, F-83 to	ILP, 245
performance scaling, 19–21	F-84, F-89	Two's complement, J-7 to J-8
processor comparisons, 324	reliance on, F-95	Two-way conflict misses, definition,
processor trends, 2	WAN history, F-98	B-23
processor actios, 2	W AIN 1115101 y, 1'-70	D-23

Two-way set associativity	Uninterruptible instruction	Up*/down* routing
ARM Cortex-A8, 233	hardware primitives, 388	definition, F-48
cache block placement, B-7, B-8	synchronization, 386	fault tolerance, F-67
cache miss rates, B-24	Uninterruptible power supply (UPS)	UPS, see Uninterruptible power
cache miss rates vs. size, B-33	Google WSC, 467	supply (UPS)
cache optimization, B-38	WSC calculations, 435	USB, Sony PlayStation 2 Emotion
cache organization calculations,	WSC infrastructure, 447	Engine case study, E-15
B-19 to B-20	Uniprocessors	Use bit
commercial workload, 370–373,	cache protocols, 359	address translation, B-46
371	development views, 344	segmented virtual memory, B-52
multiprogramming workload,	linear speedups, 407	virtual memory block replacement,
374–375	memory hierarchy design, 73	B-45
nonblocking cache, 84	memory system coherency, 353,	User-level communication, definition,
Opteron data cache, B-13 to B-14	358	F-8
2:1 cache rule of thumb, B-29	misses, 371, 373	User maskable events, definition, C-45
virtual to cache access scenario,	multiprogramming workload,	to C-46
B-39	376–377	User nonmaskable events, definition,
TX-2, L-34, L-49	multithreading	C-45
"Typical" program, instruction set	basic considerations, 223-226	User-requested events, exception
considerations, A-43	fine-grained on T1, 226-229	requirements, C-45
	simultaneous, on superscalars,	Utility computing, 455-461, L-73 to
U	230–232	L-74
U, see Rack units (U)	parallel vs. sequential programs,	Utilization
Ultrix, DECstation 5000 reboots, F-69	405–406	I/O system calculations, D-26
UMA, see Uniform memory access	processor performance trends, 3-4,	queuing theory, D-25
(UMA)	344	UTP, see Unshielded twisted pair
Unbiased exponent, J-15	SISD, 10	(UTP)
Uncached state, directory-based cache	software development, 407-408	
coherence protocol	Unit stride addressing	V
basics, 380, 384-386	gather-scatter, 280	Valid bit
Unconditional branches	GPU vs. MIMD with Multimedia	address translation, B-46
branch folding, 206	SIMD, 327	block identification, B-7
branch-prediction schemes, C-25	GPUs vs. vector architectures, 310	Opteron data cache, B-14
to C-26	multimedia instruction compiler	paged virtual memory, B-56
VAX, K-71	support, A-31	segmented virtual memory, B-52
Underflow	NVIDIA GPU ISA, 300	snooping, 357
floating-point arithmetic, J-36 to	Roofline model, 287	symmetric shared-memory
J-37, J-62	UNIVAC I, L-5	multiprocessors, 366
gradual, J-15	UNIX systems	Value prediction
Unicasting, shared-media networks,	architecture costs, 2	definition, 202
F-24	block servers vs. filers, D-35	hardware-based speculation, 192
Unicode character	cache optimization, B-38	ILP, 212–213, 220
MIPS data types, A-34	floating point remainder, J-32	speculation, 208
operand sizes/types, 12	miss statistics, B-59	VAPI, InfiniBand, F-77
popularity, A-14	multiprocessor software	Variable length encoding
Unified cache	development, 408	control flow instruction branches,
AMD Opteron example, B-15	multiprogramming workload, 374	A-18
performance, B-16 to B-17	seek distance comparison, D-47	instruction sets, A-22
Uniform memory access (UMA)	vector processor history, G-26	ISAs, 14
multicore single-chip	Unpacked decimal, A-14, J-16	Variables
multiprocessor, 364	Unshielded twisted pair (UTP), LAN	and compiler technology, A-27 to
SMP, 346–348	history, F-99	A-29
	- ·	

Variables (continued)	vector-register characteristics, G-3	Vector-length register (VLR)
CUDA, 289	Vector Functional Unit	basic operation, 274-275
Fermi GPU, 306	vector add instruction, 272-273	performance, G-5
ISA, A-5, A-12	vector execution time, 269	VMIPS, 267
locks via coherence, 389	vector sequence chimes, 270	Vector load/store unit
loop-level parallelism, 316	VMIPS, 264	memory banks, 276-277
memory consistency, 392	Vector Instruction	VMIPS, 265
NVIDIA GPU Memory, 304-305	definition, 292, 309	Vector loops
procedure invocation options,	DLP, 322	NVIDIA GPU, 294
A-19	Fermi GPU, 305	processor example, 267
random, distribution, D-26 to D-34	gather-scatter, 280	strip-mining, 303
register allocation, A-26 to A-27	instruction-level parallelism, 150	vector vs. GPU, 311
in registers, A-5	mask registers, 275-276	vector-length registers, 274-275
synchronization, 375	Multimedia SIMD Extensions, 282	vector-mask registers, 275-276
TLP programmer's viewpoint, 394	multiple lanes, 271–273	Vector-mask control, characteristics,
VCs, see Virtual channels (VCs)	Thread of Vector Instructions, 292	275–276
Vector architectures	vector execution time, 269	Vector-mask registers
computer development, L-44 to L-49	vector vs. GPU, 308, 311	basic operation, 275-276
definition, 9	vector processor example, 268	Cray X1, G-21 to G-22
DLP	VMIPS, 265–267, 266	VMIPS, 267
basic considerations, 264	Vectorizable Loop	Vector Processor
definition terms, 309	characteristics, 268	caches, 305
gather/scatter operations,	definition, 268, 292 , 313	compiler vectorization, 281
279–280	Grid mapping, 293	Cray X1
multidimensional arrays,	Livermore Fortran kernel	MSP modules, G-22
278–279	performance, 331	overview, G-21 to G-23
multiple lanes, 271–273	mapping example, 293	Cray X1E, G-24
programming, 280–282	NVIDIA GPU computational	definition, 292, 309
vector execution time, 268-271	structures, 291	DLP processors, 322
vector-length registers,	Vectorized code	DSP media extensions, E-10
274–275	multimedia compiler support, A-31	example, 267–268
vector load/store unit	vector architecture programming,	execution time, G-7
bandwidth, 276-277	280–282	functional units, 272
vector-mask registers, 275–276	vector execution time, 271	gather-scatter, 280
vector processor example,	VMIPS, 268	vs. GPUs, 276
267–268	Vectorized Loop, see also Body of	historical background, G-26
VMIPS, 264–267	Vectorized Loop	loop-level parallelism, 150
GPU conditional branching, 303	definition, 309	loop unrolling, 196
vs. GPUs, 308–312	GPU Memory structure, 304	measures, G-15 to G-16
mapping examples, 293	vs. Grid, 291, 308	memory banks, 277
memory systems, G-9 to G-11	mask registers, 275	and multiple lanes, 273, 310
multimedia instruction compiler	NVIDIA GPU, 295	multiprocessor architecture, 346
support, A-31	vector vs. GPU, 308	NVIDIA GPU computational
vs. Multimedia SIMD Extensions,	Vectorizing compilers	structures, 291
282	effectiveness, G-14 to G-15	overview, G-25 to G-26
peak performance vs. start-up	FORTRAN test kernels, G-15	peak performance focus, 331
overhead, 331	sparse matrices, G-12 to G-13	performance, G-2 to G-7
power/DLP issues, 322	Vector Lane Registers, definition, 292	start-up and multiple lanes, G-7
vs. scalar performance, 331–332	Vector Lanes	to G-9
start-up latency and dead time, G-8	control processor, 311	performance comparison, 58
strided access-TLB interactions,	definition, 292 , 309	performance enhancement
323	SIMD Processor, 296–297, 297	chaining G-11 to G-12

DAXPY on VMIPS, G-19 to	sample code, 252	system call performance, 141
G-21	TI 320C6x DSP, E-8 to E-10	Virtual Machines support, 109
sparse matrices, G-12 to G-14	VGA controller, L-51	VMM implementation, 128–129
PTX, 301	Video	Virtualizable GPUs, future
Roofline model, 286–287, 287	Amazon Web Services, 460	technology, 333
vs. scalar processor, 311, 331, 333,	application trends, 4	Virtual machine monitor (VMM)
G-19	PMDs, 6	characteristics, 108
vs. SIMD Processor, 294–296	WSCs, 8, 432, 437, 439	nonvirtualizable ISA, 126,
Sony PlayStation 2 Emotion	Video games, multimedia support,	128–129
Engine, E-17 to E-18	K-17	requirements, 108-109
start-up overhead, G-4	VI interface, L-73	Virtual Machines ISA support,
stride, 278	Virtual address	109–110
strip mining, 275	address translation, B-46	Xen VM, 111
vector execution time, 269–271	AMD64 paged virtual memory, B-55	Virtual Machines (VMs)
vector/GPU comparison, 308	AMD Opteron data cache, B-12 to	Amazon Web Services, 456–457
vector kernel implementation,	B-13	cloud computing costs, 471
334–336	ARM Cortex-A8, 115	early IBM work, L-10
VMIPS, 264–265	cache optimization, B-36 to B-39	ISA support, 109–110
VMIPS on DAXPY, G-17	GPU conditional branching, 303	protection, 107–108
VMIPS on Linpack, G-17 to G-19	Intel Core i7, 120	protection and ISA, 112
Vector Registers	mapping to physical, B-45	server benchmarks, 40
definition, 309	memory hierarchy, B-39 , B-48 ,	and virtual memory and I/O,
execution time, 269, 271	B-48 to B-49	110–111
gather-scatter, 280	memory hierarchy basics, 77-78	WSCs, 436
multimedia compiler support, A-31	miss rate vs. cache size, B-37	Xen VM, 111
Multimedia SIMD Extensions, 282	Opteron mapping, B-55	Virtual memory
multiple lanes, 271–273	Opteron memory management,	basic considerations, B-40 to B-44,
NVIDIA GPU, 297	B-55 to B-56	B-48 to B-49
NVIDIA GPU ISA, 298	and page size, B-58	basic questions, B-44 to B-46
performance/bandwidth trade-offs,	page table-based mapping, B-45	block identification, B-44 to B-45
332	translation, B-36 to B-39	block placement, B-44
processor example, 267	virtual memory, B-42, B-49	block replacement, B-45
strides, 278–279	Virtual address space	vs. caches, B-42 to B-43
vector vs. GPU, 308, 311	example, B-41	classes, B-43
VMIPS, 264–267, 266	main memory block, B-44	definition, B-3
Very-large-scale integration (VLSI)	Virtual caches	fast address translation, B-46
early computer arithmetic, J-63	definition, B-36 to B-37	Multimedia SIMD Extensions, 284
interconnection network topology,	issues with, B-38	multithreading, 224
F-29	Virtual channels (VCs), F-47	paged example, B-54 to B-57
RISC history, L-20	HOL blocking, F-59	page size selection, B-46 to B-47
Wallace tree, J-53	Intel SCCC, F-70	parameter ranges, B-42
Very Long Instruction Word (VLIW)	routing comparison, F-54	Pentium vs. Opteron protection,
clock rates, 244	switching, F-51 to F-52	B-57
compiler scheduling, L-31	switch microarchitecture	protection, 105-107
EPIC, L-32	pipelining, F-61	segmented example, B-51 to B-54
IA-64, H-33 to H-34	system area network history, F-101	strided access-TLB interactions,
ILP, 193–196	and throughput, F-93	323
loop-level parallelism, 315	Virtual cut-through switching, F-51	terminology, B-42
M32R, K-39 to K-40	Virtual functions, control flow	Virtual Machines impact, 110-111
multiple-issue processors, 194,	instructions, A-18	writes, B-45 to B-46
L-28 to L-30	Virtualizable architecture	Virtual methods, control flow
multithreading history, L-34	Intel 80x86 issues, 128	instructions, A-18

Virtual output queues (VOQs), switch	Volume-cost relationship,	definition, 345
microarchitecture, F-60	components, 27–28	and ECC memory, 473–474
VLIW, see Very Long Instruction	Von Neumann, John, L-2 to L-6	efficiency measurement, 450–452
Word (VLIW)	Von Neumann computer, L-3	facility capital costs, 472
VLR, see Vector-length register	Voodoo2, L-51	Flash memory, 474–475
(VLR)	VOQs, see Virtual output queues	Google
VLSI, see Very-large-scale integration	(VOQs)	containers, 464–465
(VLSI)	VRC, see Voltage regulator controller	cooling and power, 465–468
VMCS, see Virtual Machine Control	(VRC)	monitoring and repairing,
State (VMCS)	VRMs, see Voltage regulator modules	469–470
VME rack	(VRMs)	PUE, 468
example, D-38		server, 467
Internet Archive Cluster, D-37	W	servers, 468–469
VMIPS	Wafers	MapReduce, 437–438
basic structure, 265	example, 31	network as bottleneck, 461
DAXPY, G-18 to G-20	integrated circuit cost trends,	physical infrastructure and costs,
DLP, 265–267	28–32	446–450
double-precision FP operations,	Wafer yield	power modes, 472
266	chip costs, 32	programming models and
enhanced, DAXPY performance,	definition, 30	workloads, 436-441
G-19 to G-21	Waiting line, definition, D-24	query response-time curve, 482
gather/scatter operations, 280	Wait time, shared-media networks,	relaxed consistency, 439
ISA components, 264–265	F-23	resource allocation, 478-479
multidimensional arrays, 278-279	Wallace tree	server energy efficiency, 462-464
Multimedia SIMD Extensions, 282	example, J-53, J-53	vs. servers, 432–434
multiple lanes, 271–272	historical background, J-63	SPECPower benchmarks, 463
peak performance on DAXPY,	Wall-clock time	switch hierarchy, 441–442, 442
G-17	execution time, 36	TCO case study, 476–478
performance, G-4	scientific applications on parallel	Warp, L-31
performance on Linpack, G-17 to	processors, I-33	definition, 292 , 313
G-19	WANs, see Wide area networks	terminology comparison, 314
sparse matrices, G-13	(WANs)	Warp Scheduler
start-up penalties, G-5	WAR, see Write after read (WAR)	definition, 292 , 314
vector execution time, 269–270,	Warehouse-scale computers (WSCs)	Multithreaded SIMD Processor,
G-6 to G-7	Amazon Web Services, 456–461	294
vector vs. GPU, 308	basic concept, 432	Wavelength division multiplexing
vector-length registers, 274	characteristics, 8	(WDM), WAN history,
vector load/store unit bandwidth,	cloud computing, 455–461	F-98
276	cloud computing providers,	WAW, see Write after write (WAW)
vector performance measures,	471–472	Way prediction, cache optimization,
G-16	cluster history, L-72 to L-73	81–82
vector processor example,	computer architecture	Way selection, 82
267–268	array switch, 443	WB, see Write-back cycle (WB)
VLR, 274	basic considerations, 441–442	WCET, see Worst-case execution time
VMM, see Virtual machine monitor	memory hierarchy, 443 ,	(WCET)
(VMM)	443–446, 444	WDM, see Wavelength division
VMs, see Virtual Machines (VMs)	storage, 442–443	multiplexing (WDM)
Voltage regulator controller (VRC),	as computer class, 5	Weak ordering, relaxed consistency
Intel SCCC, F-70	computer cluster forerunners,	models, 395
Voltage regulator modules (VRMs),	435–436	Weak scaling, Amdahl's law and
WSC server energy	cost-performance, 472–473	parallel computers,
efficiency, 462	costs, 452–455, 453–454	406–407
,	10000, 102 100, 100 101	

Web index search, shared-memory	Windows operating systems, see	dynamic scheduling with
workloads, 369	Microsoft Windows	Tomasulo's algorithm,
Web servers	Wireless networks	170–171
benchmarking, D-20 to D-21	basic challenges, E-21	hazards and forwarding, C-55
dependability benchmarks, D-21	and cell phones, E-21 to E-22	ILP limitation studies, 220
ILP for realizable processors, 218	Wires	MIPS scoreboarding, C-72, C-74
performance benchmarks, 40	energy and power, 23	to C-75, C-79
WAN history, F-98	scaling, 19–21	multiple-issue processors, L-28
Weighted arithmetic mean time, D-27	Within instruction exceptions	register renaming vs. ROB, 208
Weitek 3364	definition, C-45	ROB, 192
arithmetic functions, J-58 to J-61	instruction set complications, C-50	TI TMS320C55 DSP, E-8
chip comparison, J-58	stopping/restarting execution, C-46	Tomasulo's advantages, 177–178
chip layout, J-60	Word count, definition, B-53	Tomasulo's algorithm, 182–183
West-first routing, F-47 to F-48	Word displacement addressing, VAX,	Write after write (WAW)
Wet-bulb temperature	K-67	data hazards, 153, 169
Google WSC, 466	Word offset, MIPS, C-32	dynamic scheduling with
WSC cooling systems, 449	Words	Tomasulo's algorithm,
Whirlwind project, L-4	aligned/misaligned addresses, A-8	170–171
Wide area networks (WANs)	AMD Opteron data cache, B-15	execution sequences, C-80
ATM, F-79	DSP, E-6	hazards and forwarding, C-55 to
characteristics, F-4	Intel 80x86, K-50	C-58
cross-company interoperability, F-64	memory address interpretation,	ILP limitation studies, 220
effective bandwidth, F-18	A-7 to A-8	microarchitectural techniques case
fault tolerance, F-68	MIPS data transfers, A-34	study, 253
historical overview, F-97 to F-99	MIPS data types, A-34	MIPS FP pipeline performance,
InfiniBand, F-74	MIPS unaligned reads, K-26	C-60 to C-61
interconnection network domain	operand sizes/types, 12	MIPS scoreboarding, C-74, C-79
relationship, F-4	as operand type, A-13 to A-14	multiple-issue processors, L-28
latency and effective bandwidth,	VAX, K-70	register renaming vs. ROB, 208
F-26 to F-28	Working set effect, definition, I-24	ROB, 192
offload engines, F-8	Workloads	Tomasulo's advantages, 177–178
packet latency, F-13 , F-14 to F-16	execution time, 37	Write allocate
routers/gateways, F-79	Google search, 439	AMD Opteron data cache, B-12
switches, F-29	Java and PARSEC without SMT,	definition, B-11
switching, F-51	403–404	example calculation, B-12
time of flight, F-13	RAID performance prediction,	Write-back cache
topology, F-30	D-57 to D-59	AMD Opteron example, B-12, B-14
Wilkes, Maurice, L-3	symmetric shared-memory	coherence maintenance, 381
Winchester, L-78	multiprocessor	coherency, 359
Window	performance, 367–374,	definition, B-11
latency, B-21	I-21 to I-26	directory-based cache coherence,
processor performance	WSC goals/requirements, 433	383, 386
calculations, 218	WSC resource allocation case	Flash memory, 474
scoreboarding definition, C-78	study, 478–479	FP register file, C-56
TCP/IP headers, F-84	WSCs, 436–441	invalidate protocols, 355–357, 360
Windowing, congestion management,	Wormhole switching, F-51, F-88	memory hierarchy basics, 75
F-65	performance issues, F-92 to F-93	snooping coherence, 355,
Window size	system area network history, F-101	356–357, 359
ILP limitations, 221	Worst-case execution time (WCET),	Write-back cycle (WB)
ILP for realizable processors,	definition, E-4	basic MIPS pipeline, C-36
216–217	Write after read (WAR)	data hazard stall minimization,
vs. parallelism, 217	data hazards, 153-154, 169	C-17

Write-back cycle (continued) execution sequences, C-80 hazards and forwarding, C-55 to C-56 MIPS exceptions, C-49 MIPS pipeline, C-52 MIPS pipeline control, C-39 MIPS R4000, C-63, C-65 MIPS scoreboarding, C-74 pipeline branch issues, C-40 RISC classic pipeline, C-7 to C-8,	Write merging example, 88 miss penalty reduction, 87 Write miss AMD Opteron data cache, B-12, B-14 cache coherence, 358 , 359 , 360 , 361 definition, 385 directory-based cache coherence, 380–383, 385–386 example calculation, B-12	coherency, 352 invalidate protocol, 356 memory hierarchy basics, 74–75 miss penalties, B-32 optimization, B-35 snooping coherence, 359 write process, B-11 to B-12 Write update protocol, definition, 356 WSCs, <i>see</i> Warehouse-scale computers (WSCs)
C-10 simple MIPS implementation,	locks via coherence, 390 memory hierarchy basics, 76–77	X XBox, L-51
C-33	memory stall clock cycles, B-4	Xen Virtual Machine
simple RISC implementation, C-6	Opteron data cache, B-12, B-14	Amazon Web Services, 456–457
Write broadcast protocol, definition, 356	snooping cache coherence, 365 write process, B-11 to B-12	characteristics, 111 Xerox Palo Alto Research Center,
Write buffer	write speed calculations, 393	LAN history, F-99
AMD Opteron data cache, B-14	Write result stage	XIMD architecture, L-34
Intel Core i7, 118, 121	data hazards, 154	Xon/Xoff, interconnection networks,
invalidate protocol, 356	dynamic scheduling, 174-175	F-10, F-17
memory consistency, 393	hardware-based speculation, 192	
memory hierarchy basics, 75	instruction steps, 175	Υ
miss penalty reduction, 87, B-32,	ROB instruction, 186	Yahoo!, WSCs, 465
B-35 to B-36	scoreboarding, C-74 to C-75, C-78	Yield
write merging example, 88	to C-80	chip fabrication, 61–62
write strategy, B-11	status table examples, C-77	cost trends, 27–32
Write hit	Tomasulo's algorithm, 178, 180,	Fermi GTX 480, 324
cache coherence, 358	190	_
directory-based coherence, 424	Write serialization	Z
single-chip multicore	hardware primitives, 387	Z-80 microcontroller, cell phones,
multiprocessor, 414	multiprocessor cache coherency,	E-24
snooping coherence, 359	353	Zero condition code, MIPS core, K-9
write process, B-11	snooping coherence, 356	to K-16
Write invalidate protocol	Write stall, definition, B-11	Zero-copy protocols
directory-based cache coherence	Write strategy	definition, F-8
protocol example,	memory hierarchy considerations,	message copying issues, F-91
382–383	B-6, B-10 to B-12	Zero-load latency, Intel SCCC,
example, 359, 360	virtual memory, B-45 to B-46	F-70
implementation, 356–357	Write-through cache	Zuse, Konrad, L-4 to L-5
snooping coherence, 355–356	average memory access time, B-16	Zynga, FarmVille, 460