Chapitre X

Limites de Fonctions

I. LIMITES D'UNE FONCTION EN L'INFINI

A. Limite en $+\infty$

1. Définitions

Soit une fonction f définie au moins sur $[a; +\infty[$, où a est un réel.

— On dit que f a pour limite $+\infty$ en $+\infty$ si pour tout réel M positif, il existe un réel A, tel que x > A implique $f(x) \ge M$.

Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x)

On note:

peut être aussi grand que l'on veut.

Figure 10.1. – Représentation Graphique d'une Fonction qui Semble Tendre vers $+\infty$ en $+\infty$

— On dit que f a pour limite $-\infty$ en $+\infty$ si pout tout réel m négatif, il existe un réel A, tel que x > A, $f(x) \le m$.

Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) est négatif et peut être aussi grand que l'on veut en valeur absolue.

On note:

$$\lim_{x \to +\infty} f(x) = -\infty$$

On note:

FIGURE 10.2. – Représentation Graphique d'une Fonction qui Semble Tendre vers $-\infty$ en $+\infty$

— On dit que f a pour limite l en $+\infty$ où l est un réel si pour tout intervalle ouvert I contenant l, il existe un réel A tel que x > A implique $f(x) \in$ I Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) peut être aussi près de l que l'on veut.

FIGURE 10.3. – Représentation Graphique d'une Fonction qui Semble Tendre vers l en $+\infty$

$$\begin{aligned} \text{H.P.} : \forall \epsilon > 0, \ \exists \mathbf{A} \in \mathbb{R}, \ \forall x \in \mathcal{D}_f \\ \left(x > \mathbf{A} \implies \left| f(x) - l \right| < \epsilon \right) \text{ou} \left(x > \mathbf{A} \implies f(x) \in \left] l - \epsilon \right. ; l + \epsilon \left[\right) \end{aligned}$$

2. Définition

Soit f une fonction définie au moins sur $[A; +\infty[$, où A est un réel, et $\mathscr C$ sa courbe représentative dans un repère.

Si $\lim_{x \to +\infty} f(x) = l$ alors $\mathscr C$ admet une <u>asymptote horizontale</u> en $+\infty$ d'équation y = l.

3. Remarque

Une fonction n'admet pas forcément de limite en $+\infty$, par exemple, les fonctions sin et cos sont bornées et n'admettent pas de limites en l'infini.

B. Limite en $-\infty$

1. Définitions

Soit f une fonction définie au moins sur $]-\infty$; a[, où a est un réel.

— On dit que f a pour limite $+\infty$ en $-\infty$ si pour tout réel M, positif, il existe un réel A tel que x < A implique f(x) ≥ M Autrement dit, lorsque x prend des valeurs négatives de plus en plus grandes en valeur absolue, f(x) peut être aussi grand que l'on veut. On note :

Figure 10.4. – Représentation Graphique d'une Fonction qui Semble Tendre vers $+\infty$ en $-\infty$

— On dit que f a pour limite $-\infty$ en $-\infty$ si pour tout réel m négatif, il existe un réel A tel que x < A implique $f(x) \le m$ On note :

Figure 10.5. – Représentation Graphique d'une Fonction qui Semble Tendre vers $-\infty$ en $-\infty$

- On dit que f a pour limite l en $-\infty$ où l est un réel, si pour tout intervalle ouvert I contenant l, on peut trouver un réel A tel que si $x \le A$, f(x) appartient à I.
 - Autrement dit, lorsque x prend des valeurs négatives, de plus en plus grandes en valeur absolue, f(x) peut être aussi près de l que l'on veut.

Figure 10.6. – Représentation Graphique d'une Fonction qui Semble Tendre vers l en $+\infty$

$$\begin{aligned} \text{H.P.} : \forall \epsilon > 0, \; \exists \mathbf{A} \in \mathbb{R}, \; \forall x \in \mathcal{D}_f \\ \left(x < \mathbf{A} \implies \left| f(x) - l \right| < \epsilon \right) \text{ou} \left(x < \mathbf{A} \implies f(x) \in \left] l - \epsilon \; ; l + \epsilon \right[\right) \end{aligned}$$

2. Définition

Si $\mathscr C$ est la courbe représentative de f dans un repère. $\lim_{x \to -\infty} f(x) = l$ alors $\mathscr C$ admet une asymptote horizontale en $-\infty$ d'équation y = l.