

PROYECTO DE GRADO

Presentado ante la ilustre Universidad de Los Andes como requisito final para obtener el Título de Ingeniero de Sistemas

DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA WEB PARA EL SIMULADOR DE EVENTOS DISCRETOS GALATEA.

Por

Br. Erik Velásquez

Tutor: Dr. Jacinto Dávila Tutor: Prof. Kay Tucci

Octubre 2016

©2016 Universidad de Los Andes Mérida, Venezuela

Diseño e implementación de un Sistema Web para el Simulador de Eventos Discretos GALATEA.

Br. Erik Velásquez

Proyecto de Grado — Sistemas Computacionales, 68 páginas

Resumen: El objetivo principal de este proyecto consiste en buscar, mediante el uso de un sistema web, una solución al problema actual existente entre los usuarios y usuarias del Centro de Simulación y Modelado (CESIMO) de la Universidad de los Andes, que suelen tener muchas dificultades para ejecutar los modelos de simulación en el simulador GALATEA, especialmente al momento de configurar y activar todas sus funcionalidades. Se busca implementar y desplegar como servicio, una aplicación utilizada para modelar y simular eventos discretos en sistemas distribuidos, utilizando como medio los servicios web. Esto es conocido como Simulación Distribuida, la cual posee una serie de protocolos para su desarrollo e interoperabilidad. Dicha interoperabilidad se consigue mediante la adopción de estándares abiertos, como es el caso de XML, que habrá de fungir como el medio encargado de transportar los mensajes en un formato estandarizado lo cual lo hace accesible a prácticamente cualquier dispositivo. Como su nombre lo propone, en éste caso se hace uso del paradigma de arquitectura orientada a servicios (SOA: Service Oriented Architecture). Lo cual se propone desarrollar mediante un sistema web.

Palabras clave: Servicios Web, Sistemas Distribuidos, Web Semántica, Arquitectura Orientada a Servicios, Simulación.

Nadie.

Nadie.

Nadie.

Índice

ij	$\frac{1}{2}$ ndi	ce de Tablas	vi
\mathbf{A}	grad	ecimientos	vii
1	Intr	roducción	1
	1.1	Antecedentes	1
	1.2	Planteamiento del problema	2
	1.3	Justificación	3
	1.4	Alcance	3
	1.5	Objetivos	3
		1.5.1 Objetivo general	3
		1.5.2 Objetivos específicos	3
	1.6	Metodología	4
	1.7	Estructura del documento	4
2	Mai	rco teórico	6
	2.1	Simulación Distribuida	6
	2.2	Simulación de Eventos Discretos	7
	2.3	GALATEA	7
		2.3.1 La arquitectura de la plataforma Galatea	8
	2.4	Servicio Web	8
	2.5	Arquitectura Orientada a Servicios	9
	2.6	Herramientas usadas para el desarrollo del sistema	9
		2.6.1 Modelo Vista Controlador (MVC)	9
		2.6.2 Django	11
		2.6.3 Bases de Datos	12
		2.6.4 JSON	12
		2.6.5 AJAX	12
	27	Ontimización y acionación de recursos	19

	2.8	Lógica	Difusa	13
		2.8.1	Conjuntos clásicos	14
		2.8.2	Conjuntos difusos	14
		2.8.3	Operaciones sobre conjuntos difusos	16
		2.8.4	Sistemas de inferencia difusa	16
3	Des	arrollo	del Sistema WEB	20
	3.1	Planta	profesoral	20
	3.2	Activi	dades en la Facultad de Ingeniería de la Universidad de Los Andes	21
		3.2.1	Actividades de Docencia	21
		3.2.2	Actividades de Investigación	24
		3.2.3	Actividades Administrativas	25
		3.2.4	Actividades de Extensión	26
		3.2.5	Actividades de Mejoramiento	27
	3.3	Evalua	ación de las actividades docentes	27
	3.4	Dinám	ica de asignación de nuevos cargos docentes	28
4	Inte	egració	n de GALATEA	32
5	Pru	ebas		33
	5.1	Criteri	os y variables	33
		5.1.1	Estudio preliminar de criterios y variables	33
		5.1.2	Pruebas preliminares	46
	5.2	Consti	rucción del modelo	51
		5.2.1	Definición del sistema de inferencia	51
		5.2.2	Estructura del sistema difuso	52
6	Cor	clusio	nes	64
	6.1	Recom	nendaciones	65
Bi	bliog	grafía		67

Índice de Tablas

3.1	Horas semanales según dedicación	21
3.2	Ponderación de las actividades docentes de pregrado y postgrado	22
3.3	Valoración de las actividades de investigación	24
3.4	Resumen de actividades de un departamento	28
3.5	Variación con aumento de 40 horas.	29
3.6	Resumen con un aumento de 80 horas	29
3.7	Datos de un departamento	30
3.8	Promedio inicial de los datos	30
3.9	Promedio de los datos con aumento de 40 horas	31
3.10	Promedio de los datos con aumento de 80 horas	31
٠.		~~
5.1	Datos recogidos por los departamentos de la EISULA. Año 2014	35
5.2	Comparación de diferencias basada en datos de la EISULA. Año 2014	36
5.3	Datos de entrada. Porcentaje de actividades del departamento "x"	40
5.4	Pesos de cada área	40
5.5	Indicadores resultantes	40
5.6	Algunas reglas sobre los indicadores	41
5.7	Datos para los Departamentos A y B	46
5.8	Resultados y comparación de los Departamentos A y B	49
5.9	Datos de entrada. Segunda prueba	50
5.10	Asignación de cargos.	61

Agradecimientos

Nadie.			
Nadie.			

Capítulo 1

Introducción

El siguiente estrato, introduce una descripción de cómo se ha desarrollado el servicio que prestará una aplicación basada en simulación de eventos discretos, que estará fundamentado en GALATEA (Uzcátegui et al., 2011), el cual es un software para simulación de sistemas multi-agentes producto de dos líneas de investigación: lenguajes de simulación basados en la teoría de simulación de Zeigler y agentes basados en lógica. Esta concepción, está enfocada en los nuevos paradigmas de la arquitectura orientada a servicios (SOA), por el que, a partir funciones débilmente acopladas proveerá la capacidad de intercambiar funcionalidades de componentes dando escalabilidad a futuras extensiones. El propósito es que sirva para proveer un servicio de simulación de evento discretos al usuario desde cualquier punto. Así también, se pretende analizar conceptos de seguridad mediante el cual, ante una petición al computador (request), ésta sea procesada sólo si ha sido previamente validada. Dicho mecanismo es denominado SAML (Security Assertion Markup Language) (Fawcett et al., 2012).

1.1 Antecedentes

Como trabajos similares a esta propuesta se puede mencionar los realizado por (Uzcátegui et al., 2011) el cual relata la fase de desarrollo, cómo surge y hacia donde se proyecta GALATEA. Implementada como una plataforma libre de código abierto para simulación de sistemas multi-agente que incorpora estrategias de simulación bien conocidas con la que cualquier modelista o simulista puede ensayar dichas estrategias en problemas de simulación de sistemas complejos. Por otra parte, otro precedente tomado en cuenta ha sido (Rengifo, 2011), el cual trata de una tesis de pre-grado que expone el desarrollo de un servicio web para la Modeloteca del Sistema Nacional de Simulación. La misma consistió en buscar, mediante el uso de una aplicación web, la solución al problema existente en el Centro de Simulación y Modelado (CESIMO) de la Universidad de Los Andes, en el cual había dificultades para mantener un registro referente a los proyectos que allí se desarrollaban, lo que como resultado provocaba que a menudo se perdiera información referente a los mismos, ó que incluso se

llevara a cabo proyectos de forma innecesaria, ya que trabajos parecidos habrían sido realizado antes. Resultados que, debido a la falta de un repositorio institucional compartido, resultan imposibles de reusar o integrar. A partir de estos dos antecedentes lo que se pretende es, tomando como base GALATEA, adaptarlo como un servicio web en el cual el usuario pueda interactuar con el simulador, sin tener las limitaciones tales como las que pueden suelen surgir al usar sistemas operativos o navegadores diferentes, incluso ante arquitecturas distintas. A su vez, de (Rengifo, 2011), se busca obtener la experiencia ganada al desarrollar un Servicio Web en sí. Al igual se toma en cuenta a (Marcano, 2015), se acomete implementar y desplegar como servicio, una aplicación utilizada para modelar y simular eventos discretos en sistemas distribuidos, utilizando como medio los servicios web. A pesar de que ambas experiencias desarrollaron soluciones, aún no es posible contar con la experiencia de uso remoto de GALATEA como un servicio Web configurado por expertos administradores, pero con todas las facilidades y características del simulador al alcance de cualquier usuario registrado.

1.2 Planteamiento del problema

La preocupación por los sistemas distribuidos y de cómo diferentes máquinas podían comunicarse entre sí surgió en la década de los 90. Hasta ese momento, era suficiente con que las aplicaciones de un mismo ordenador pudieran establecer una comunicación. Los servicios Web son muy prácticos es que pueden aportar gran independencia entre la aplicación que usa el servicio Web y el propio servicio. De esta forma, los cambios a lo largo del tiempo en uno no debe afectar al otro. Esta flexibilidad será cada vez más importante, dado que la tendencia a construir grandes aplicaciones a partir de componentes distribuidos más pequeños es cada día más utilizada. En la medida que se ha avanzado en términos tecnológicos, se percibe un crecimiento proporcional de la información que se genera en todos los ámbitos, sea científico, humanístico, económico etc. Estos fenómenos no suceden como acontecimientos aislados, sino que son posibles gracias al conocimiento adquirido y al esfuerzo de muchos, de ponerlo a disposición de quien desee acceder a ellos. Teniendo en cuenta esta premisa, surge el planteamiento del problema, el cual tiene dos vertientes, la primera, consiste en que no se dispone de una plataforma acondicionada para que, de manera fácil y rápida se pueda hacer uso del simulador GALATEA. Si bien se posee un servidor académico en CESIMO, es necesario desarrollar mecanismos que posibiliten el uso de las herramientas que éste ofrece, por ello la necesidad de servicios web que permitan que las funcionalidades que posee el simulador estén disponibles tanto a nivel local como a nivel externo (Sistema Distribuido). En cuanto al otro aspecto, consiste en verificar que la integridad de la información estén garantizados, en especial cuando el usuario desee enviar algún dato, o realizar alguna consulta, por lo cual el sistema debe validar a dicho usuario previamente.

1.3 Justificación 3

1.3 Justificación

La principal razón para usar servicios Web es que se pueden utilizar con HTTP sobre TCP (Transmission Control Protocol) en el puerto 80. Dado que las organizaciones protegen sus redes mediante firewalls -que filtran y bloquean gran parte del tráfico de Internet-, cierran casi todos los puertos TCP salvo el 80, que es, precisamente, el que usan los navegadores. Los servicios Web utilizan este puerto, por la simple razón de que no resultan bloqueados. Es importante señalar que los servicios web se pueden utilizar sobre cualquier protocolo, sin embargo, TCP es el más común. La principal motivación para realizar este trabajo, es la de desarrollar un sistema web que sirva como base para la simulación de eventos discretos de sistemas que utilizan la tecnología de agentes con el fin de desplegarlo para redes externas (Sistema Distribuido) todo ello a partir del servidor académico localizado en CESIMO.

1.4 Alcance

Se desea culminar este proyecto, con el diseño de una arquitectura de software que permita desarrollar un sistema web para el uso de GALATEA. Se desarrollará un prototipo de esa arquitectura, implementando el sistema web para la ejecución de los modelos de simulación. El prototipo debe cubrir todo lo referente al modelado de los eventos discretos, para el funcionamiento adecuado del sistema. Adicionalmente, la arquitectura del mismo debe permitirles adaptarse al contexto del usuario, y reaccionar en base a la interacción del usuario con el sistema.

1.5 Objetivos

1.5.1 Objetivo general

Diseñar e implementar un sistema web para los usuarios y usuarias, modelistas y simulistas del simulador de eventos discretos GALATEA, que les permita realizar todas las tareas habituales de modelado, codificación y análisis en sus computadores y en la forma que prefieran, pero permitiéndoles realizar las tareas automáticas de compilación, gestión de archivos, simulación y gestión de salidas, en el espacio y con los recursos compartidos de un servidor Web.

1.5.2 Objetivos específicos

- 1. Desarrollar un sistema web que permita el control de usuarios junto con los roles a ser utilizados en el sistema.
- 2. Diseñar e implementar una arquitectura de software que permita la comunicación entre el software de simulación y el sistema web.

1.6 Metodología

3. Instalar y configurar en un servidor la arquitectura de software para el sistema de simulación.

4. Incorporar el simulador GALATEA como servicio para el sistema web.

 Diseñar y desarrollar un cliente GUI/controlador para un modelo que se pueda gestionar archivos y simular con GALATEA a través del sistema web desarrollado.

6. Sistematizar la experiencia de uso del sistema web para simulación.

7. Analizar el sistema web desarrollado y establecer las conclusiones.

1.6 Metodología

Para el desarrollo del proyecto, se pretende utilizar el método SCRUM de desarrollo de software. El mismo "es una metodología de desarrollo muy simple, que requiere trabajo duro, porque la gestión no se basa en el seguimiento de un plan, sino en la adaptación continua a las circunstancias de la evolución del proyecto". Entre sus características se encuentra que:

1. Es un método de desarrollo de carácter adaptable.

2. Es orientado a las personas, antes que a los procesos.

3. Emplea desarrollo ágil, interactivo e incremental.

1.7 Estructura del documento

Capítulo I. Introducción.

En esa sección se describe brevemente las características del problema abordado en el proyecto, delimitando los objetivos y estableciendo la metodología con que se procedió al estudió y resolución del mismo. Algunos problemas similares han sido tratados anteriormente, lo cual se muestra en los antecedentes especificados.

Capítulo II. Marco teórico.

En ese sección se exponen algunos conceptos relacionados con el problema planteado en el proyecto. Se da una breve introducción sobre los términos y herramientas utilizados para desarrollar el mismo.

Capitulo III. Desarrollo del Sistema WEB.

Explicar aquí.

Capitulo IV. Integración de GALATEA.

Explicar aquí.

Capítulo V. Pruebas.

Explicar aquí.

Capítulo VI. Conclusiones.

Explicar aquí.

Capítulo 2

Marco teórico

La simulación por computadora se ha convertido en una parte útil del modelado de muchos sistemas naturales en física, química y biología, y sistemas humanos como la economía y las ciencias sociales (sociología computacional), así como en dirigir para ganar la penetración (profundidad) su comportamiento cambiará cada simulación según el conjunto de parámetros iniciales supuestos por el entorno. En éste capítulo se explican en detalle las herramientas, tecnologías y conceptos usados para la consecución del proyecto que se propone. Definimos la simulación de eventos discretos DEVS (Discrete Event Simulation), así mismo nos introducimos en GALATEA, con el fin de proporcionar una base inicial para la codificación del nuevo sistema. Explicamos las ventajas de un servicio web y las herramientas empleadas para el desarrollo del mismo, como lo serian el Patrón de diseño Modelo Vista Controlador (MVC) y Django.

2.1 Simulación Distribuida

Los sistemas de simulación distribuidos son herramientas muy útiles en las labores de investigación porque permiten reducir el tiempo necesario para ejecutar experimentos. Las simulaciones distribuidas pueden hacerse de forma que se acelere una simulación o que se acelere la ejecución de un conjunto de simulaciones. Los sistemas de simulación basados en agentes se pueden utilizar con éxito en ambos tipos de simulaciones distribuidas Santana et al. (2004).

La Simulación Distribuida, es la que permite conducir modelos de simulación a través de múltiples hosts o computadoras separados por redes, se ocupa de cuestiones que surgen de la distribución de un programa de simulación de eventos discretos en varias computadoras Banks et al. (2010). La simulación paralela de eventos discretos se refiere a la ejecución en plataformas multi-procesador que contienen múltiples unidades de procesamiento central que interaccionan entre sí con frecuencia, por ejemplo, miles de veces por segundo.

2.2 Simulación de Eventos Discretos

La simulación de eventos discretos es la "imitacion" de un proceso de operación o de un sistema del mundo real construido sobre la base del tiempo Banks et al. (2010). Esta codifica el comportamiento de sistemas complejos como una secuencia de eventos ordenados y bien definidos. En simulación de eventos discretos (DEVS por sus siglas en ingles), el funcionamiento de un sistema se representa como una secuencia cronológica de los acontecimientos. Cada evento tiene lugar en un instante de tiempo y marca un cambio de estado en el sistema. Frente a su homóloga, la simulación de tiempo continuo, esta se caracteriza por un control en la variable del tiempo que permite avanzar a éste a intervalos variables, en función de la planificación de ocurrencia de tales eventos a un tiempo futuro. Estos sistemas se caracterizan por mantener un estado interno global del sistema, que puede no obstante estar física o lógicamente distribuido, y que cambia parcialmente debido a la ocurrencia de un evento. La ejecución de un evento puede desencadenar la generación de nuevos eventos futuros. Cada uno está marcado por su tiempo, por lo que el orden de generación puede no coincidir con el orden de ejecución.

2.3 GALATEA

Galatea es una plataforma para simulación de eventos discretos, DEVS, con una semántica basada a una red de nodos como metáfora del sistema a simular, la misma semántica matríz del sistema Glider, el proyecto paterno local, que fuera formalizada como parte del nuevo proyecto y luego generalizada para luego re-acomodar la simulación continua, la simulación de sistemas multi-agentes y la simulación distribuida, simulación con autómatas celulares y simulación con modelos explícitos de espacios urbanos o arquitectónicos Uzcátegui et al. (2011).

Podemos explicar de forma breve y concisa en que consiste la misma, segun Uzcátegui et al. (2011):

Galatea es una plataforma libre de código abierto para simulación de sistemas multi-agente que incorpora estrategias de simulación bien conocidas con la que cualquier modelista o simulista puede ensayar esas estrategias en problemas de simulación de sistemas complejos. La historia de Galatea comienza mucho antes que se planteara formalmente el proyecto con ese nombre. En 1993, nuestro muy joven Centro de Simulación y Modelos, CeSiMo, propone un proyecto para explorar la re-implementación de la plataforma de simulación Glider sobre una plataforma orientada a objetos dando origen a un prototipo experimental. El problema del cambio estructural, inspirado por investigaciones en economía, se había convertido entonces en uno de los objetivos de investigación fundamentales del CeSiMo y vendría a dictar también la pauta para Galatea. La noción de agente hizo su aparición en algunos reportes internos en los que se enfatizaba su importancia para modelar sistemas complejos como una economía nacional. En 1998 se planteó la posibilidad de integrar Glider con herramientas de inteligencia artificial para modelar agentes. En el 2000, un

2.4 Servicio Web

proyecto vendría a combinar aquel prototipo de 1993, con una teoría de agentes basada en lógica computacional que se planeaba integrar en una nueva teoría de simulación de sistemas multi-agentes. Allí nació Galatea. El logro fundamental para el proyecto, sin embargo, llegaría con las aplicaciones. En 2004, Galatea fue incorporada al banco de pruebas de un proyecto en biocomplejidad.

2.3.1 La arquitectura de la plataforma Galatea

La arquitectura de GALATEA está basada en objetos. Tanto los agentes como el simulador principal están desarrollados de acuerdo a dicho diseño (orientado a objetos OOD), para apoyar la distribución, la modularidad, la escalabilidad y la interactividad como lo exige la especificación HLA (High Level Architecture). El lenguaje base usado para su desarrollo es el Java, bien especificado en Uzcátegui et al. (2011). Usando como lenguaje base Java, se especifico un nuevo lenguaje de simulación al que denominan lenguaje Galatea. La sintaxis del lenguaje Galatea es, de hecho una mezcla de la sintaxis Glider, las estructuras básicas de Java y las reglas de conductas de los agentes escritas en los lenguajes de programación lógica Actilog. La compleja semántica de Galatea establece que el código Java sea compilado y ejecutado por el motor de simulación de eventos discretos, mientras que las reglas de los agentes son interpretadas por un motor de inferencia implementado sobre una máquina Prolog Uzcátegui et al. (2011). Es una plataforma mixta, que corre sobre máquinas virtuales Java y Prolog.

2.4 Servicio Web

Un servicio web (Web Service) es una tecnología que utiliza un conjunto de protocolos y estándares que sirven para intercambiar datos entre aplicaciones. Distintas aplicaciones de software desarrolladas en lenguajes de programación diferentes, y ejecutadas sobre cualquier plataforma, pueden utilizar los servicios web para intercambiar datos en redes de ordenadores como Internet. La World Wide Web Consortium lo define como "...un sistema de software diseñado para soportar interacción interoperable máquina a máquina sobre una red. Este tiene una interface descrita en un formato procesable por una máquina (específicamente WSDL). Otros sistemas interactúan con el servicios web en una manera prescrita por su descripción usando mensajes SOAP, típicamente enviados usando HTTP con una serialización XML en relación con otros estándares relacionados con la web" Machuca (2011). Se puede definir de manera más sencilla como un conjunto de tecnologías estándares de software para el intercambio de datos entre aplicaciones tales como SOAP, WDSL y UDDI. Estos pueden ser desarrollados en una gran variedad de lenguajes para ser implementados sobre muchos tipos de redes de computadores. El éxito de la interoperabilidad se consigue gracias es la adopción de protocolos y estándares abiertos.

2.5 Arquitectura Orientada a Servicios

Una arquitectura orientada a servicios (SOA, Service Oriented Architecture), es una arquitectura de estilo técnico que proporciona los medios para integrar sistemas dispares y descubrir las funciones de negocio reutilizables. Es un paradigma de arquitectura para diseñar y desarrollar sistemas distribuidos. Las soluciones SOA han sido creadas para satisfacer los objetivos de negocio las cuales incluyen facilidad y flexibilidad de integración con sistemas legados, alineación directa a los procesos de negocio reduciendo costos de implementación, innovación de servicios a clientes y una adaptación ágil ante cambios incluyendo reacción temprana ante la competitividad Quiroga (2011).

La definición de SOA por el W3C es: "Conjunto de componentes, los cuales pueden ser invocados y cuyas descripciones de interfaces pueden ser invocadas y descubiertas".

Gartner: "SOA es una arquitectura de software que comienza con una definición de interfaz y construye toda la topología de la aplicación como una topología de interfaces, implementaciones y llamadas a interfaces. Sería más adecuado llamarla "arquitectura orientada a interfaces". SOA es una relación de servicios y consumidores de servicios, ambos suficientemente amplios para representar una función de negocios completa".

SOA no es sólo una arquitectura de servicios visto desde una perspectiva de la tecnología, si no las políticas, prácticas y frameworks con los que se garantiza la forma correcta de que los servicios sean provistos y consumidos. Es importante que si un servicio no va a ser usado por múltiples consumidores, la especificación sea generalizada; los servicios necesitan ser extraídos de la implementación y los desarrolladores de las aplicaciones del consumidor no deberían necesitar saber nada sobre los modelos de bajo nivel y sus reglas Quiroga (2011).

2.6 Herramientas usadas para el desarrollo del sistema

A continuación se describen las herramientas usadas para el desarrollo del sistema web de simulación de eventos discretos GALATEA:

2.6.1 Modelo Vista Controlador (MVC)

El modelo vista controlador (MVC) es un patrón de diseño de software, que separa los datos y la lógica de una aplicación de la interfaz de usuario y el módulo encargado de gestionar los eventos y las comunicaciones. Para ello MVC propone la construcción de tres componentes distintos que son el modelo, la vista y el controlador, es decir, por un lado define componentes para la representación de la información, y por otro lado para la interacción del usuario. Este patrón de arquitectura de software se basa en las ideas de reutilización de código y la separación de conceptos, características que buscan facilitar la tarea de desarrollo de aplicaciones y su posterior mantenimiento. Este patrón de diseño es muy popular en el marco de aplicaciones web ya que su abstracción permite escribir

software altamente desacoplado y fácil de mantener y escalar. La figura 2.1 muestra la relación entre los módulos de MVC.

Los modelos son los componentes de la aplicación del sistema que realmente hacen el trabajo. Se mantienen muy distintos de las vistas, que muestran aspectos de los modelos. Los controladores se utilizan para enviar mensajes a los modelos, y proporcionar la interfaz entre el modelo con sus vistas asociadas y los dispositivos de interfaz de usuario interactivas (por ejemplo, teclado, ratón). Cada vista se puede pensar que está estrechamente vinculada con un controlador, que tienen cada uno exactamente un modelo, sino un modelo puede tener muchos pares vista / controlador Krasner y Pope, 1988.

Modelo

El modelo es un conjunto de clases que representan la información del mundo real que el sistema debe procesar, así por ejemplo un sistema de administración de datos climatológicos tendrá un modelo que representará la temperatura, la humedad ambiental, el estado del tiempo esperado, etc. sin tomar en cuenta ni la forma en la que esa información va a ser mostrada ni los mecanismos que hacen que esos datos estén dentro del modelo, es decir, sin tener relación con ninguna otra entidad dentro de la aplicación Pantoja (2004).

Vista

Las vistas son el conjunto de clases que se encargan de mostrar al usuario la información contenida en el modelo. Una vista está asociada a un modelo, pudiendo existir varias vistas asociadas al mismo modelo; así por ejemplo, se puede tener una vista mostrando la hora del sistema como un reloj analógico y otra vista mostrando la misma información como un reloj digital Pantoja (2004).

Controlador

El controlador es un objeto que se encarga de dirigir el flujo del control de la aplicación debido a mensajes externos, como datos introducidos por el usuario u opciones del menú seleccionadas por él. A partir de estos mensajes, el controlador se encarga de modificar el modelo o de abrir y cerrar vistas. El controlador tiene acceso al modelo y a las vistas, pero las vistas y el modelo no conocen de la existencia del controlador Pantoja (2004).

Figura 2.1: Relaciones entre los módulos del patrón MVC.

2.6.2 Django

Django es un framework de desarrollo web de código abierto, escrito en Python, que respeta el patrón de diseño conocido como Modelo-vista-controlador. La meta fundamental de Django es facilitar la creación de sitios web complejos. Django pone énfasis en el re-uso, la conectividad y extensibilidad de componentes, el desarrollo rápido y el principio No te repitas (DRY, Don't Repeat Yourself). Python es usado en todas las partes del framework, incluso en configuraciones, archivos, y en los modelos de datos. Django permite construir aplicaciones web rápidamente, gracias a su filosofía de baterías incluidas, es decir, que incluye una inmensa gama de características comunes a la mayoría de las aplicaciones web como las validaciones, autentificación de usuarios, manejo de sesiones entre muchos otros Fundation (2015).

Cuando Django recibe una petición ésta pasa por un despachador de URLs (URL Dispatcher), cuya tarea es emparejar el URL con una vista y delegar a la vista el manejo de la petición. La vista contiene la lógica necesaria pa atender la petición entrante. Generalmente esto consiste en retirar o actualizar algunos datos del modelo, que a su vez se comunica con el manejador de base de datos, finalmente la vista combina los datos retirados de la base de datos, la petición y la sesión activa con

una plantilla (template) para generar la respuesta de será devuelta.

Django ha demostrado ser escalable y flexible, se sabe de instancias de Django atendiendo ráfagas de cincuenta mil peticiones por segundo, además es de código abierto, gratuito y cuenta con una extensa comunidad de colaboradores y amplia documentación.

2.6.3 Bases de Datos

Una base de datos o banco de datos es un conjunto de datos pertenecientes a un mismo contexto y almacenados sistemáticamente para su posterior uso. En este sentido; una biblioteca puede considerarse una base de datos compuesta en su mayoría por documentos y textos impresos en papel e indexados para su consulta. Actualmente, y debido al desarrollo tecnológico de campos como la informática y la electrónica, la mayoría de las bases de datos están en formato digital, siendo este un componente electrónico, por tanto se ha desarrollado y se ofrece un amplio rango de soluciones al problema del almacenamiento de datos.

Definir

MySQL

Definir

PostgreSQL

Definir

Mapeo Objeto-Relacional

Definir

2.6.4 JSON

Definir

2.6.5 AJAX

Definir

2.7 Optimización y asignación de recursos

En el área de investigación de operaciones, optimizar se refiere a encontrar la mejor solución (mejor valor: máximo o mínimo), entre un conjunto de soluciones factibles, es decir, que satisfacen ciertos criterios impuestos al modelo representativo del problema en estudio (Taha, 2014).

En los problemas de asignación se necesita distribuir una serie de recursos o tareas de la mejor manera posible. Generalmente se busca la optimización de la asignación para minimizar costos o tiempo, o para maximizar ganancias. La investigación de operaciones ofrece técnicas clásicas para el tratamiento de problemas, haciendo uso de programación lineal y no lineal, programación entera, entre otras. El uso de estos métodos provee soluciones óptimas para los problemas planteados. Aun así, la complejidad de algunos problemas aumenta, y en esos casos los métodos clásicos no son suficientemente buenos para resolverlos. Estos pueden ser tratados en cambio con técnicas heurísticas, metaheurísticas e inteligencia artificial, con el objetivo de encontrar una solución lo suficientemente buena y aceptable (Taha, 2014).

Velez y Montoya (2007) exponen lo siguiente sobre metaheurísticas:

Los meta-heurísticos son métodos aproximados diseñados para resolver problemas de optimización combinatoria, en los que los heurísticos clásicos no son efectivos. Los meta-heurísticos proporcionan un marco general para crear nuevos algoritmos híbridos, combinando diferentes conceptos derivados de la inteligencia artificial, la evolución biológica y los mecanismos estadísticos (Osman and Kelly, 1996).

Los problemas de asignación pueden ser vistos como problemas combinatorios de optimización, los cuales contienen una complejidad que es manejada de mejor forma por los métodos metaheurísticos o y el uso de reglas empíricas (Taha, 2014).

Entre los métodos metaheurísticos más utilizados se encuentran el recocido simulado, búsqueda tabú, algoritmos genéticos y las redes neuronales artificiales (Velez y Montoya, 2007). Para el problema planteado en este proyecto se consideraron posibles técnicas para su resolución tales como los algoritmos genéticos, el recocido simulado y las redes neuronales conjuntamente con lógica difusa. Tomando en cuenta la adaptación y efectividad, el manejo de conocimiento subjetivo o con incertidumbre sobre los datos, el desarrollo del modelo se enfoca en el concepto de Lógica Difusa.

2.8 Lógica Difusa

La lógica difusa es una metodología usada ampliamente en el tratamiento de problemas complejos basados en razonamientos cuantitativos, donde abunda la interpretación subjetiva propia del pensamiento humano en cuanto a la clasificación de objetos y conceptos (Cerrada y Rodríguez, 2001). La representación del conocimiento impreciso es de vital importancia en problemas donde la información no siempre es exacta.

El enfoque ofrecido por la lógica difusa es de mucha utilidad en problemas que involucran juicios humanos, generalmente interpretados con etiquetas linguísticas y representaciones de conceptos con lenguaje natural. Por ejemplo, calificar algo como "bueno", "regular", "malo"; calificativos para la altura como "alto", "mediano", "bajo"; calificativos para la velocidad como "lento", "rápido", "muy rápido", entre otros.

A través del proceso de fusificación se adquiere la habilidad para modelar problemas reales de este tipo y una metodología para tratar con conocimiento impreciso (?).

La lógica difusa fue introducida como teoría por Lofti A. Zadeh, en 1965. Se fundamenta en el manejo de conjunto difusos en lugar de conjuntos clásicos con lógica bivaluada, lo que permite cubrir un espectro amplio en el tratamiento de problemas (?).

A continuación se abarca brevemente el concepto de conjunto clásico, y la noción de conjunto difuso como concepto central de la Lógica Difusa.

2.8.1 Conjuntos clásicos

Un conjunto se define a través de una función característica, la cual especifica cuáles elementos del universo X son miembros del conjunto y cuáles no lo son (?). La función de mapeo de un conjunto clásico es:

$$\mu_A(x) = \begin{cases} 1 & \forall x \in A \\ 0 & \forall x \notin A \end{cases}$$
 (2.1)

De acuerdo a la ecuación (2.1), se dice que x es miembro de A cuando $\mu_A(x) = 1$, y que no es miembro de A cuando $\mu_A(x) = 0$.

Figura 2.2: Función característica de un conjunto clásico.

Cerrada y Rodríguez (2001), ofrecen explicaciones detalladas sobre las operaciones.

Algunas operaciones y propiedades referentes a conjuntos clásicos son extensivas a los conjuntos difusos. En la siguiente sección se da una breve introducción al comportamiento de los conjuntos difusos como generalización de los conjuntos clásicos.

2.8.2 Conjuntos difusos

Al igual que los conjuntos clásicos, un conjunto difuso también cuenta con una función característica que especifica qué elementos pertenecen a él, con la diferencia de que determina un grado de pertenencia al conjunto asociado que varía en el rango real [0-1]. Esta función característica es

usualmente denominada función de pertenencia o de membresía (Cerrada y Rodríguez, 2001). Esto implica que un elemento puede pertenecer en mayor o menor grado a un conjunto, lo que amplía sus posibilidades de clasificación e inyecta la flexibilidad necesaria para manejar conceptos subjetivos.

Figura 2.3: Función característica de un conjunto difuso.

Este tipo de enfoque es de mucha utilidad en problemas que involucran juicios humanos, generalmente interpretados con etiquetas lingüísticas y representaciones de conceptos con lenguaje natural. Por ejemplo, calificar a una persona como alta, mediana o baja. Las funciones más comunes utilizadas para definir funciones de pertenencia de conjuntos difusos son las triangulares o las trapezoidales (ver figura 2.4 y figura 2.5). Además, se pueden definir funciones personalizadas que sean de utilidad en problemas particulares.

Figura 2.4: Funciones de membresía triangulares.

Figura 2.5: Funciones de membresía trapezoidales.

Como se apuntó anteriormente, las operaciones y propiedades de los conjuntos clásicos pueden ser extendidas al concepto de conjunto difuso, de tal manera que también son aplicables la unión, intersección, complemento, asociatividad, distributividad, entre otras.

2.8.3 Operaciones sobre conjuntos difusos

Las siguientes operaciones son definidas por Cerrada y Rodríguez (2001) sobre conjuntos difusos, generalizando operaciones de conjuntos clásicos.

ullet Unión: Sean A y B conjuntos difusos sobre X entonces

$$A \cup B = Max(\mu_A(x), \mu_B(x)) \quad \forall x \in X$$
 (2.2)

 \bullet Intersección: Sean A y B conuntos difusos sobre X, entonces

$$A \cap B = Min(\mu_A(x), \mu_B(x)) \quad \forall x \in X$$
 (2.3)

Figura 2.6: Unión de conjuntos difusos.

Figura 2.7: Intersección de conjuntos difusos.

• Otra forma de intersección viene dada por la función producto 2.4:

$$A \cap B = A * B \quad \forall x \in X \tag{2.4}$$

Sobre los conjuntos difusos pueden ser aplicadas una serie de operaciones equivalentes a la unión, intersección y complemento. Tales operaciones pueden ser definidas siempre y cuando cumplan con axiomas establecidos para ello. Las operaciones de intersección son generalizadas bajo el concepto de *T-normas* y las de unión bajo el concepto de *T-conormas* o *S-normas*.

2.8.4 Sistemas de inferencia difusa

Los sistemas de inferencia difusa son construidos con base en una colección de conjuntos difusos que modelen el problema a tratar, y reglas difusas que definan las relaciones entre las variables de entrada. En la figura 2.8 se expone un diagrama típico del funcionamiento de un sistema de inferencia difusa.

Figura 2.8: Sistema de inferencia difusa.

Reglas Si-Entonces

La especificación de problemas construidos sobre conocimiento impreciso puede hacerse mediante etiquetas lingüísticas tal que se relacione el estado o función de un objeto de forma sencilla. Las reglas del tipo Si-Entonces ayudan a relacionar conceptos difusos por medio de sus antecedentes y consecuentes, por ejemplo, "Si la temperatura es alta entonces disminuir la llama". En esta proposición la variable temperatura puede tomar distintos valores definidos de forma difusa. A la sentencia "temperatura es baja" se le conoce como antecedente. El consecuente viene dado por la acción que resulta de la evaluación de los antecedentes, en este caso "disminuir la llama". La regla Si-Entonces se define como (?):

$$\operatorname{Si} V \operatorname{es} V_i \operatorname{entonces} Y \operatorname{es}, y_i$$
 (2.5)

El antecedente y consecuente pueden estar compuestos por varias proposiciones que se combinan mediante operadores lógicos y, o. Se define como forma general:

Si
$$V_1$$
 es V_{1i} y V_2 es V_{2i} y \cdots y V_n es V_{ni} entonces Y_1 es Y_{1i} y Y_2 es Y_{2i} y \cdots y Y_n es Y_{ni} (2.6)

Los distintos tipos de reglas, según el número de antecedentes y consecuentes son llamados SISO (Single input-single output), MISO (Multiple input-single output) y MIMO (multiple input-mutiple output) (Cerrada y Rodríguez, 2001).

Implicación y agregación

La implicación es el proceso a través del cual los antecedentes afectan a los consecuentes de un conjunto de reglas difusas. La implicación puede operar a través de la función minimo (2.7), o la función producto (2.8).

$$A(x) \to B(x) = \min(A(x), B(x)) \tag{2.7}$$

$$A(x) \to B(x) = A(x) * B(x) \tag{2.8}$$

Otra operación de importancia en los sistemas difusos es la agregación. A través de este proceso es

posible combinar varios conjuntos difusos para obtener sólo uno. Esta operación es de utilidad en los sistemas de inferencia difusos cuando se tienen varios conjuntos difusos como salidas de varias reglas. Un función de agregación se define como e la ecuación (2.9):

$$H(A_1, A_2, A_3 \cdots A_n) \quad \text{con} \quad n \ge 2 \tag{2.9}$$

La función de agregación general (2.10), está dada por (?):

$$h_{\alpha}(A_1, A_2, \cdots, A_n) = \left(\frac{A_1^{\alpha} + A_2^{\alpha} + \cdots + A_n^{\alpha}}{n}\right)^{\frac{1}{\alpha}}$$

$$(2.10)$$

Adicionalmente se pueden utilizar algunas *S-normas* para agregar conjuntos difusos de forma sencilla (máximo, suma algebraica, suma producto).

Fusificación y defusificación

Los procesos de fusificación y defusificación tienen como función trasformar las entradas y salidas del sistema de tal forma que valores de entrada no difusos puedan ser procesados bajo la lógica difusa, y los valores de salida puedan ser interpretados en valores cuantificables que sean de interés al problema real.

El método mas común utilizado para la defusificación es llamado *método del centroide*, el cual consiste en calcular el centroide del área final resultante del proceso de agregación. Está definido por Cerrada y Rodríguez (2001), según la ecuación (2.11):

$$x* = \sum_{i=1}^{n} \frac{w_i x_i}{\sum_{i=1}^{n} w_i}$$
 (2.11)

Donde $\mu_A(x_i) = w_i$, es el resultado de la implicación de la entrada x_i sobre el conjunto de salida, siendo A un conjunto difuso definido sobre el universo $X = x_1, \dots, x_n$. En la figura 2.9 se ilustra el procedimiento.

Existen varios métodos de inferencia para el procesamiento dentro de un sistema difuso. Los principales son el tipo Mamdani y el tipo Takagi-Sugeno-Kang (Cerrada y Rodríguez, 2001).

Inferencia tipo Mamdani

El método de inferencia difusa del tipo Mamdani considera las funciones de pertenencia de la salida como conjuntos difusos. A través del proceso de agregación, se obtiene un conjunto difuso por cada variable de salida, los cuales tendrán que ser defusificados. El método más común para llevar a cabo este proceso es el método del centroide, aunque existen otros como el centro de gravedad. En la figura 2.9 se muestra el proceso mencionado.

Figura 2.9: Proceso de Agregación. Centroide. Inferencia tipo Mamdani.

Inferencia tipo Takagi-Sugeno-Kang (TSK)

En este tipo de modelo difuso se consideran los consecuentes como funciones cuantitativas lineales o constantes, y los antecedentes con naturaleza difusa. La expresión general de las reglas de un modelo TSK se define en la ecuación (2.12):

Si
$$U_1$$
 es $B_m 1$ y U_2 es $B_m 2$ y \cdots y U_r es $B_m r$ entonces $y_m = b_{m0} + b_{m1} u_1 + \cdots + b_{mr} u_r$. (2.12)

Donde B_{ij} son etiquetas lingüísticas: $i=1\cdots m$ y $j=1\cdots r$. Y u son los valores de entrada: $u=u_1\cdots u_r$.

El cálculo de la salida para un sistema TSK viene dado por el promedio ponderado de las respuestas de cada regla, representado por la ecuación (2.13):

$$Y = \frac{\sum_{i=1}^{n} w_i y_i}{\sum_{i=1}^{n} w_i} \tag{2.13}$$

Donde w_i es la fuerza de disparo de cada regla, definido como $w_i = O(F_i 1 \cdots F_i m)$, donde $F_i m(x)$ es la evaulación del m-ésimo antecendente de la i-ésima regla, y O es el operador correspondiente entre los antecedentes.

Capítulo 3

Desarrollo del Sistema WEB

Este capítulo se enfoca en describir la organización de la Facultad de Ingeniería de la ULA, de su planta docente, los métodos utilizados para la evaluación de los profesores y la dinámica de asignación de nuevos cargos docentes. De igual manera se tratan los conceptos de docencia, investigación, extensión, mejoramiento y administración, enfocados en el tratamiento que se les da en la institución como información relevante para el desarrollo y comprensión de este proyecto.

3.1 Planta profesoral

La planta profesoral de la Facultad de Ingeniería de la ULA cuenta con una composición diversa en la que los profesores se categorizan según su antigüedad, nivel de formación, entre otros aspectos.

Al momento del desarrollo de este proyecto, la Facultad de Ingeniería está compuesta por aproximadamente 270 profesores dedicados a la docencia, investigación, extensión, administración y mejoramiento.

Según el ?, art. 8¹, el personal docente y de investigación en la ULA está clasificado en condición de: Ordinario, Especial, Honorario y Jubilado.

- Miembros Ordinarios: todos los profesores con escalafón de instructor, asistente, agregado, asociado y titular.
- Miembros Especiales: los auxiliares docentes y de investigación, investigadores y docentes libres, profesores contratados, profesores invitados y visitantes.
- Profesores Honorarios: aquellos que según sus méritos científicos, culturales y profesionales les sea otorgada tal distinción por el Consejo Universitario.
- Profesores Jubilados: profesores que han cumplido los requisitos establecidos en el artículo 102 de la Ley de Universidades y en el título III del libro III del ?, y sean declarados tales por el Consejo Universitario.

¹Estatuto del Personal Docente y de Investigación.

Los profesores cumplirán con sus actividades en el tiempo establecido según su dedicación. Las dedicaciones establecidas en la facultad se denominan como: dedicación exclusiva, tiempo completo, medio tiempo y tiempo convencional (?, art. 109). Las horas correspondientes a cada tipo de dedicación se muestran en la tabla 3.1.

Tabla 3.1: Horas semanales según dedicación.

El escalafón de un profesor se refiere al estado en que se encuentra o al que puede ascender el profesor de acuerdo con sus credenciales, méritos científicos, méritos académicos y años de servicio. Se categoriza como: instructor, asistente, agregado, asociado y titular (?, art. 161-162). Los profesores en cualquiera de estos estados son categorizados como miembros ordinarios del personal docente y de investigación (?, art. 8).

3.2 Actividades en la Facultad de Ingeniería de la Universidad de Los Andes

Según el ?², en su artículo 2, las actividades que realizan los docentes de la institución se categorizan en distintas áreas: Actividades de docencia, actividades de investigación, actividades de extensión, actividades administrativas y actividades de mejoramiento.

En lo que sigue se introduce una descripción del tratamiento de cada actividad dentro de la Facultad de Ingeniería, según los reglamentos pertinentes.

3.2.1 Actividades de Docencia

En cuanto a las actividades de docencia, el ?, art. 3 especifica:

Las actividades de docencia se subdividen en actividades de enseñanza y otras actividades de docencia. Las de enseñanza se refieren al dictado de clases en pregrado, postgrado y sus respectivas evaluaciones. Las otras actividades de docencia se refieren a: publicaciones para fines didácticos (apuntes, guías, problemarios, etc.); asesorías o tutorías de tesis, trabajos de grado, pasantías, planes de formación, jurado de: trabajos de ascenso, concurso para

²Reglamento para la evaluación de actividades de los profesores de la Facultad de Ingeniería de la Universidad de Los Andes

cargos docentes, tesis, trabajos de grado, pasantías y preparadurías. Otras actividades aprobadas por la unidad académica correspondiente." (p. 1)

La tabla 3.2 resume la valoración de las actividades de docencia en la Facultad de Ingeniería. Otras actividades de docencia tomadas en cuenta se muestran en los apéndices ??.

Tabla 3.2: Ponderación de las actividades docentes de pregrado y postgrado.

De acuerdo a las actividades que se realizan en la facultad en cuanto a docencia, se listan algunas características a considerar para la creación de posibles criterios e indicadores para el proyecto.

- Número de alumnos de cada departamento de la escuela.
- Número de alumnos por secciones. Cantidad promedio o esperada de alumnos para las secciones de las asignaturas de los departamentos de la escuela. Según el ?, art. 32³, se sugiere la proporción Profesor-Alumno como sigue:
 - Laboratorios, seminarios y talleres: no más de veinticuatro (24) alumnos por profesor.
 - Idiomas: no más de veinticinco (25) alumnos por curso.
 - Clases teóricas: no más de sesenta (60) alumnos por curso.
 - Pasantías clínicas: no más de veinte (20) alumnos por profesor.

La ?⁴, en su cláusula n° 30, establece las cantidades siguientes:

- Clases teóricas: no más de treinta (30) alumnos por aula.
- Clases teórico-prácticas: no más de veinte (20) alumnos por actividad.
- Clases en Laboratorios: no más de dieciséis (16) alumnos por laboratorio.
- Clase de taller: no más de dieciséis (16) alumnos por taller.
- Trabajos de campo: no más de veinte (20) alumnos por actividad.

³Acta convenio entre APULA y la Universidad de Los Andes

 $^{^4\}mathrm{I}$ Convención colectiva única de trabajadores del sector universitario.

- Trabajos dirigidos: no más de veinte (20) alumnos por actividad.
- Prácticas deportivas: no más de veinte (20) alumnos por sección.
- Pasantías industriales: no más de ocho (8) alumnos por docente.
- Servicio Comunitario: no más de ocho (8) alumnos por docente.

Estas cantidades están sujetas a las condiciones físicas y recursos disponibles para el desarrollo de cada actividad.

- Secciones ofertadas / secciones requeridas. Secciones que deberían ofertarse según la cantidad de alumnos inscritos, la proporción profesor-alumnos acordada en el departamento y profesores disponibles. Secciones requeridas de acuerdo a la demanda de alumnos.
- Profesores disponibles / horas disponibles. Disponibilidad de profesores y horas de docencia de acuerdo la planta profesoral del departamento y dedicación de los mismos.
- Profesores requeridos / horas requeridas. Profesores que se requieren para cubrir la demanda, según las secciones, número de alumnos, etc.
- Número promedio de secciones por profesor.
- Profesores jubilados en los últimos años, profesores jubilados activos, profesores jubilables.
- Secciones atendidas por profesores jubilados y jubilables.
- Materias / departamentos. Asignaturas ofrecidas por los departamentos.
- Factores de multiplicación para ponderación de horas de clases, prácticas, laboratorios, etc. (Tabla 1).
- Dedicación del profesor.
- Según el ?, art. 11, sobre la Carga académica, "los profesores a dedicación exclusiva o a tiempo completo dictarán un máximo de hasta (10) diez horas teóricas semanales distintas, o su equivalente en otras modalidades de la enseñanza, siempre y cuando el resto del tiempo lo justifique con actividades académicas." (p. 7).

La valoración de las horas de clase se establece allí como sigue:

- Por una hora teórica distinta: 03 horas.
- $-\,$ Por una hora teórica repetida: 02 horas.
- Por una hora de trabajo de laboratorio, seminario, taller, trabajo de campo o tutorías: 02 horas.
- Por una hora de actividad clínica: 02 horas.
- Condición, escalafón y estado del profesor.
- Número de profesores con estados de Becario, Sabático, Autorizado u otra actividad por la cual se prescinda de su presencia en la Escuela/Facultad. Según la Norma para la Aplicación

del Programa de Formación y Perfeccionamiento Académico del Personal Docente y de Investigación Ordinario de la Universidad de Los Andes, ningún departamento podrá mantener simultáneamente a más del 10 % de sus profesores en beca, 10 % en año sabático ni más del 10 % en la condición de autorizado, exceptuando a los departamentos que tengan un número menor de diez (10) profesores. En este caso el departamento debe comprometerse a cubrir la carga de los profesores becarios (?, art. 11, art. 24).

- Horas del profesor dedicadas a otras actividades de docencia (Tutorías, jurado, publicaciones, referidas a la actividad docente (ver tabla ??)).
- Horas en conjunto de los profesores de cada departamento de la escuela dedicadas a otras actividades de docencia.

3.2.2 Actividades de Investigación

Para las actividades de investigación, el?, art. 4 establece:

Las actividades de investigación se refieren a: publicaciones como resultados de trabajos de investigación (artículos, libros especializados, etc.), capítulos en libros especializados, participación con trabajo o invitado a plenaria en eventos científicos; trabajo de investigación conducente a ascenso; producción tecnológica (patente, producto, etc., que tenga factibilidad y/o posibilidad de implementación para resolver algún otro problema tecnológico)(p. 1).

En la tabla 3.3.	se listan s	alounas	actividades	de	investigación	establecidas	en	ച	?
Lii ia tabia o.o.	ac natan a	ura umas	actividades	uc	III V Co (1 g aCIOII	Cotabiccidao	$_{\rm UII}$	$^{\circ}$	• •

Actividades de Investigación	Hrs. Semana	Semanas	Hrs. Anuales
Artículo científico en revista indizada	8	42	336
Artículo científico en revista con arbitraje	5	42	210
Libro especializado publicado en Editorial reconocida	14	42	588
Capítulo en libro especializado publicado en editorial reconocida	5	42	210
Conferencia plenaria en congreso internacional	6	42	252
Conferencia plenaria en congreso nacional	3	42	126
Patente	12	42	504
Ponencia en congreso internacional	5	42	210
Ponencia en congreso nacional	3	42	126
Producto evaluado por organización, financiado o comisión ad-hoc	6	42	252

Tabla 3.3: Valoración de las actividades de investigación.

De acuerdo a lo anterior se observan algunas características de la investigación que pueden ser consideradas como posibles criterios, indicadores, variables para el proyecto.

La Facultad de Ingeniería cuenta con diversos grupos, laboratorios e institutos dedicados a la investigación, formados por profesores y personal de las distintas escuelas de la facultad. Algunos aspectos a considerar en la construcción de criterios dirigidos al proyecto son:

- Horas dedicadas por el profesor en actividades de investigación como publicación de libros, artículos, ponencias, congresos (considerando la valoración de la tabla 3.3).
- Horas dedicadas en conjunto por los profesores de cada departamento de la escuela en actividades de investigación.
- Promedio de horas dedicadas por los profesores de cada departamento a la investigación.
- Cantidad de artículos publicados por profesores del departamento.
- Cantidad de conferencias y de ponencias aceptadas a los profesores del departamento en eventos de investigación y desarrollo.
- Productos de investigación (Cantidad, impacto, importancia).
- Reputación de cada departamento de la escuela en el área de investigación.
- Proporción de profesores de cada departamento que hacen investigación.

3.2.3 Actividades Administrativas

Respecto a las actividades administrativas, el?, art. 6 dice:

"Las actividades administrativas se refieren a aquellas desarrolladas por: Autoridades Universitarias, Direcciones, Jefaturas, Coordinaciones, Comisiones, Representación Gremial, Jurado de Concursos para Cargos Administrativos, Miembros de Cuerpos Colegiados." (p. 2).

En el ?, se especifica la valoración de los distintos cargos administrativos como se muestra en los apéndices ?? y ??. Las actividades administrativas comprenden una parte fundamental y de importancia para el funcionamiento de la universidad. Los cargos administrativos ejercidos por los miembros de la planta profesoral están dirigidos al control de las actividades que sostienen a la institución. Las características siguientes se consideran como posibles puntos a tomar en cuenta en el proyecto:

- Carga administrativa de profesores de cada departamento de la escuela.
- Número de profesores miembros de comisiones.
- Número de profesores representantes ante comisiones o consejos.
- Número de profesores miembros de juntas o comités.
- Número de profesores con cargos de coordinador.
- Direcciones de departamentos (Número de departamentos de la escuela).
- Jefatura de laboratorios o centros (Número de laboratorios o centros de cada departamento).
- Profesores con cargos de Decano, Rector, Vicerrector, etc.
- Carga administrativa total de cada departamento.

- Total de cargos administrativos cubiertos por cada departamento.
- Promedio de horas empleadas en actividades administrativas por profesor.
- Proporción de profesores del departamento con cargos administrativos.

3.2.4 Actividades de Extensión

El?, art. 5 señala la naturaleza de las actividades de extensión:

"Las actividades de extensión se refieren a aquellas relacionadas con entes externos. Puede incluir: cursos, charlas, conferencias, asesorías, autorizadas por la unidad académica correspondiente; comisiones y postgrados por convenios previamente autorizados por el Consejo de Facultad donde se especifique las horas de dedicación reconocidas." (p. 1).

Según la ORIFI⁵, como se especifica en su sitio web (?), algunas de las actividades de extensión que se realizan en la facultad comprenden las siguientes:

- Programación de Pasantías.
- Asistencia Técnica a numerosas empresas del Estado Mérida.
- Proyectos de Control de Calidad e Ingeniería Económica.
- Perfiles Económicos y Estudios de Factibilidad Económica y Tecnológica.
- Apoyo ejecutivo a eventos.
- Organiza y programa Foros, Seminarios, Talleres y Cursos que se dictan desde el nivel de especialización, Actualización y Perfeccionamiento para profesionales y/o personal de nómina mayor del sector Industrial hasta el nivel de adiestramiento y formación para el personal de nómina menor y/o público en general.
- Organiza y programa presentaciones de grupos artísticos (Música Folklórica, Poesía, Teatro, etc.).
- Organiza conciertos de la Coral "Vinicio Adames", grupo artístico de la Facultad de Ingeniería.
- Adelanta conjuntamente con las Facultades de Ciencias, Ciencias Forestales y la Dirección General de Cultura y Extensión (DIGECEX) el proyecto "Circuito de la Universidad de Los Andes para el Manejo Integral de Desechos" (CIULAMIDE).
- Organiza en forma periódica (trianual), las Jornadas Científico-Técnicas de la Facultad de Ingeniería.

⁵Oficina de Relaciones Institucionales de la Facultad de Ingeniería

3.2.5 Actividades de Mejoramiento

Según el ?, art. 58, n° 2 es obligación del profesor "Mejorar constantemente su capacidad científica y pedagógica", por lo que los instructores y asistentes deben "someterse a programas de formación y mejoramiento". Los programas de mejoramiento ejecutados en la Facultad de Ingeniería incluyen becas, años sabáticos, planes de formación, y otras actividades que sean consideradas por la unidad académica correspondiente. Los profesores adscritos de la Facultad de Ingeniería (dedicación exclusiva y tiempo completo*) deben reportar las actividades cumplidas y propuestas durante el período académico, tomando en cuenta las especificaciones anteriores sobre la valoración de cada actividad. Esto a través de las planillas "Informe de actividades cumplidas" y "Plan de Actividades Propuestas", según el ?.

3.3 Evaluación de las actividades docentes

El ?, indica que los profesores deben presentar informes sobre las actividades cumplidas y propuestas anualmente. Estos informes son recogidos por medio del llenado de las planillas "Informe de Actividades Cumplidas" y "Plan de Actividades Propuestas". Los informes de actividades cumplidas recogen el rendimiento de cada profesor en el transcurso de un año, respecto a las cinco áreas de actividades de la facultad; es decir, docencia, investigación, extensión, mejoramiento y administración.

Esta información se considera de utilidad para los fines de este proyecto, dado que pueden ser tomados como variables principales para la medición de la prioridad de cada departamento o unidad académica, en el caso de las asignaciones de nuevos cargos.

Con el fin de comprender y analizar el rendimiento de las unidades académicas de la Facultad de Ingeniería, se propuso como fase preliminar estudiar el registro de datos sobre las actividades realizadas en la misma.

Se recolectó información sobre las actividades de docencia, investigación, extensión y administración, contenidos en resúmenes e informes correspondientes a los años 2010, 2011, 2012 y 2013, de los tres departamentos miembros de la Escuela de Sistemas: Computación, Sistemas de Control e Investigación de Operaciones.

En el caso de la Escuela de Sistemas, se cuenta con un formato elaborado en *Excel*, para facilitar el registro de las actividades. De igual forma, los departamentos miembros de la Escuela deben presentar un resumen anual de las actividades de acuerdo a los informes individuales de los profesores adscritos.

En los apéndices ??, ??, ?? y ??, se anexa el informe sobre los análisis realizados a las planillas de actividades cumplidas y los resúmenes. El informe incluye también recomendaciones sobre el registro de datos en la Facultad de Ingeniería y recoge la construcción de nuevos formatos que faciliten el manejo de la información.

3.4 Dinámica de asignación de nuevos cargos docentes

En esta sección se muestran cálculos realizados sobre los porcentajes de actividades recogidos en el resumen de un departamento, para ilustrar los cambios que se dan debido al aumento de horas disponibles del departamento en caso de que se le asigne un nuevo cargo. En la tabla 3.4 se muestra el registro de los totales de un resumen de actividades cumplidas y el promedio para la unidad académica.

					TOTA:	LES DE	LA UNID	AD AC	ADEMICA	1				
TAD	PDAD	TOAD	PDOAD	TAI	PDAI	TAM	PDAM	TAA	PDAA	TAEX	PDAEX	THSA	HSC	PR
272,2	-	78,5	-	29,5	-	46,8	-	76,1	-	0,0	-	503,2	404,0	-
				F	PROMED	IOS PA	RA LA UN	NIDAD .	ACADEM	ICA				
TAD	PDAD	TOAD	PDOAD	TAI	PDAI	TAM	PDAM	TAA	PDAA	TAEX	PDAEX	THSA	HSC	PR
22,7	71,24 %	6,5	16,54 %	2,5	6,14 %	3,9	15,93 %	6,3	16,01 %	0,0	0,00 %	41,9	33,7	125,86 %

Tabla 3.4: Resumen de actividades de un departamento.

La descripción de cada rótulo se especifica a continuación:

TAD: Total de actividades de docencia.

TOAD: Total de otras actividades de docencia.

TAI: Total de actividades de investigación.

TAM: Total de actividades de mejoramiento.

TAA: Total de actividades de administración.

TAEX: Total de actividades de extensión.

PDAD: Porcentaje de actividades de docencia.

PDOAD: Porcentaje de otras actividades de docencia.

PDAI: Porcentaje de actividades de investigación.

PDAM: Porcentaje de actividades de mejoramiento.

PDAA: Porcentaje de actividades de administración.

PDAEX: Porcentaje de actividades de extensión.

THSA: Total de horas anuales.

HSC: Total de horas semanales de carga según dedicación de los profesores.

PR: Porcentaje de rendimiento.

En este resumen, los totales de la unidad académica son calculados como:

TAD =suma de actividades de docencia de todos los profesores. Para las demás actividades se procede análogamente.

THSA = suma de las THSA individuales.

HSC = suma de todas las HSC individuales.

Los promedios para la unidad académica se calculan como se muestra a continuación, o en el caso de la hoja de cálculo se utiliza la función PROMEDIO() de Excel.

• Promedios de actividades de docencia:

$$\frac{\text{TAD}}{NP}$$

donde NP es el número de profesores.

- Promedio de porcentajes de actividades: Suma de porcentaje de actividades.
- \bullet THSA:

 $\frac{\text{Suma de todas la THSA individuales}}{NP}$

 \bullet HSC:

 $\frac{\text{Suma de todas las HSC individuales}}{NP}$

 \bullet Promedio del porcentaje de rendimiento (PR):

 $\frac{\text{Suma de los porcentajes de rendimiento}}{NP}$

Si al registro mostrado en la figura anterior se le anexan 40 horas, equivalente a un (1) cargo de dedicación exclusiva, repartidas entre todos los profesores, sin aumentar las horas de las actividades realizadas, los porcentajes de rendimiento varían como se muestra en la tabla 3.5:

					TOTA	LES DE	LA UNID	AD AC	ADEMICA	1				
TAD	PDAD	TOAD	PDOAD	TAI	PDAI	TAM	PDAM	TAA	PDAA	TAEX	PDAEX	THSA	HSC	PR
272,2	-	78,5	-	29,5	-	46,8	-	76,1	-	0,0	-	503,2	444,0	-
				F	PROMED	IOS PA	RA LA UN	NIDAD .	ACADEMI	ICA				
TAD	PDAD	TOAD	PDOAD	TAI	PDAI	TAM	PDAM	TAA	PDAA	TAEX	PDAEX	THSA	HSC	PR
22,7	60,37%	6,5	15,25 %	2,5	5,67 %	3,9	12,15 %	6,3	14,77 %	0,0	0,00 %	41,9	37,0	108,21 %

Tabla 3.5: Variación con aumento de 40 horas.

Si se le anexan 80 horas equivalente a 2 cargos de dedicación exclusiva, varía según la tabla (3.6).

					TOTAL	LES DE	LA UNIDA	AD AC	ADEMICA					
TAD	PDAD	TOAD	PDOAD	TAI	PDAI	TAM	PDAM	TAA	PDAA	TAEX	PDAEX	THSA	HSC	PR
272,2	-	78,5	-	29,5	-	46,8	-	76,1	-	0,0	-	503,2	484,0	-
				P	ROMED	IOS PAF	RA LA UN	TDAD A	ACADEMI	CA				
TAD	PDAD	TOAD	PDOAD	TAI	ROMEDI PDAI	IOS PAI TAM	RA LA UN PDAM	TAA	ACADEMI PDAA	CA TAEX	PDAEX	THSA	HSC	PR

Tabla 3.6: Resumen con un aumento de 80 horas.

Como se puede observar, el porcentaje de rendimiento se reduce con cada cargo agregado. Igualmente, el porcentaje de las actividades se ve reducido en los dos casos planteados (usando como base el número de profesores y usando como base el número de horas de dedicación).

A continuación se comparan los porcentajes de actividades y rendimiento al agregar nuevas horas (cargos nuevos) a un departamento. Las entradas al proceso son los totales de cada actividad de cada profesor (estos datos están disponibles en los resúmenes de actividades cumplidas), y la carga horaria de cada profesor según su dedicación (HSC).

TAD	TAOD	TAI	TAM	TAA	TAEX	HSC	THSA
13,00	2,95	3,00	0,00	39,00	0,00	43,64	57,95
9,00	$5,\!43$	$2,\!29$	$29,\!52$	$3,\!52$	0,76	$43,\!64$	$50,\!52$
4,00	0,00	0,00	0,00	0,00	0,00	7,64	4,00
30,31	$5,\!52$	2,43	6,00	5,00	$2,\!29$	$43,\!64$	$51,\!55$
29,89	$0,\!24$	0,00	0,00	2,95	1,00	40,64	34,08
4,00	0,00	0,00	0,00	0,00	0,00	$7,\!64$	4,00
22,00	$3,\!33$	85,00	1,90	$1,\!45$	0,00	$43,\!64$	113,69
$30,\!86$	0,19	$6,\!57$	0,00	$2,\!43$	$0,\!57$	$43,\!64$	40,62
24,92	0,62	15,00	0,00	1,00	0,00	$43,\!64$	$41,\!54$
$37,\!34$	2,62	0,00	0,00	16,71	0,00	$43,\!64$	$56,\!67$
4,00	0,00	0,00	0,00	1,00	0,00	8,64	5,00
209,32	20,90	114,29	37,43	73,07	4,62	370,00	459,63

Tabla 3.7: Datos de un departamento.

A partir de estos datos, se calcular los porcentajes promedios de cada actividad para el departamento. *THSA* se calcula como la suma de las horas de cada actividad. Los cálculos son realizados como se especificó anteriormente. El diagrama 3.1 ilustra el proceso que se lleva a cabo con los datos:

Figura 3.1: Diagrama del proceso de cálculo.

En la salida se reflejará el cambio cada vez que se introduzcan nuevas horas a aumentar para HSC, para visualizar el resultado con las horas originales. En el caso inicial, con la carga horaria original para el departamento se tiene que el rendimiento PR es de 124,22 %.

PDAD	PDAOD	PDAI	PDAM	PDAA	PDAEX	THSA	PR
56.57 %	5.65 %	30.89 %	10.12 %	19.75 %	1.25 %	41.78	124.22 %

Tabla 3.8: Promedio inicial de los datos.

Agregándole 40 horas al departamento para simular la asignación de 1 cargo de dedicación exclusiva se tiene un PR de 112,11 %.

Tabla 3.9: Promedio de los datos con aumento de 40 horas.

Suponiendo que se agregan 2 cargos (80 horas), el PR disminuye a 102,14 %.

PDAD	PDAOD	PDAI	PDAM	PDAA	PDAEX	THSA	PR
46,52 %	4,64 %	25,40 %	8,32 %	16,24 %	1,03 %	41,78	102,14 %

Tabla 3.10: Promedio de los datos con aumento de 80 horas.

Capítulo 4

Integración de GALATEA

Integración de GALATEA aquí.

Capítulo 5

Pruebas

Los análisis realizados en distintas fuentes de información sobre los departamentos, ayudan a delimitar y especificar los datos y variables que influyen en sus necesidades, y a comprender el funcionamiento y el papel que juega cada uno en la situación docente y estudiantil. Anteriormente en la Universidad de Los Andes se han propuesto algunas herramientas que han sido de utilidad en el proceso de asignación de cargos, como son los baremos elaborados en la Facultad de Arquitectura y Diseño, y en la Escuela de Ingeniería Eléctrica.

5.1 Criterios y variables

La revisión y análisis de los informes de actividades cumplidas, cuya función es recoger información sobre las actividades de los profesores para evaluar su rendimiento, se detalla en el apéndice ??. Este estudio preliminar también contribuye en la construcción de variables de interés, por medio de un análisis interpretativo de los valores plasmados.

5.1.1 Estudio preliminar de criterios y variables

El baremo de la Escuela de Ingeniería Eléctrica fue desarrollado como herramienta para argumentar la solicitud de nuevos cargos docentes en la unidad académica (Viloria, 2015). Este baremo está basado en el desarrollado en la Facultad de Arquitectura y Diseño (Rodríquez, 2010). En la versión de la Escuela de Ingeniería Eléctrica se observan cálculos sobre la deficiencia de profesores para cada materia, el cual es extendido luego para cada departamento y para la escuela.

La necesidad de cargos de una escuela dependerá de la disponibilidad horaria de cada profesor. La disponibilidad horaria influye a su vez en la cantidad de secciones que se pueden ofertar de cada materia. La cantidad de secciones influye en el número de alumnos que tendrá cada sección. El número de alumnos inscritos es una variable externa dada por datos del semestre inmediato anterior o actual.

Los siguientes valores influyen en la disponibilidad horaria de un profesor: horas de carga asignada, que va ligada a la dedicación del profesor, que puede ser dedicación exclusiva (DE), tiempo completo (TC), medio tiempo (MT) o tiempo convencional (Tconv); horas dedicadas a las actividades de administración; profesores en estado de beca, plan de formación, año sabático, permiso remunerado o no remunerado, entre otros.

Los límites sugeridos en cantidad de alumnos por sección están establecidos en normas o reglamentos (??), los cuales dependen de la modalidad del curso. En la revisión al baremo construido para la Escuela de Eléctrica, se encontraron los siguientes puntos:

- Los cálculos se hacen en base a las materias de cada área de conocimiento.
- Cada materia puede ser dictada por un conjunto de profesores pertenecientes al área correspondiente.
- El cálculo de las secciones de la materia que pueden ser atendidas se basa en la capacidad horaria de los profesores a DE y TC. Se utiliza como horas disponibles para clases un límite de 30.
- El número de alumnos que debe tener cada sección, según sugerencias por modalidad del curso, varía entre 15 y 30.
- El número de alumnos que deben inscribirse se toma como el número de alumnos inscritos para cada materia en OREFI, es decir, la cantidad real del semestre actual o más cercano.
- El número de profesores requeridos para la asignatura se basa en un cálculo que utiliza factores ligados al tipo de materia (especial o estándar) y factores ligados a la dedicación del profesor.
- Se calcula el déficit de profesores como la diferencia de los profesores requeridos y los disponibles. Luego se anexa también el déficit de profesores debido al porcentaje reglamentario de profesores que puede estar de sabático, beca, permiso, etc. En este caso se ha usado el 20 % del total de profesores. Según el ?, art. 11, art. 24, es un 10 % de profesores para becas, un 10 % para años sabáticos, sólo en caso de que sean más de 10 profesores.
- Se anexa también el déficit por carga administrativa, para lo cual se toma en cuenta solo aquellos cargos que tengan más de 10 horas administrativas.
- Se anexa las horas sobrantes en la carga académica.
- Finalmente se combinan cada déficit para obtener el total por área académica y facultad.
- No se especifica realmente la cantidad de profesores en beca, sabático, etc. Sólo se asume el 20 % de déficit total.
- No se especifica la cantidad de profesores jubilables o jubilados activos.
- No se toman en cuenta explícitamente las áreas de investigación y extensión.

Por otro lado, se encuentran algunas restricciones en los informes de actividades que impiden realizar cálculos similares a los del baremo de la Escuela de Ingeniería Eléctrica:

 En la planilla debe estar recogido el número de estudiantes en cada sección para poder aplicar correctamente los factores de ponderación de horas teóricas. En caso de que sea usado debidamente, no se debe incluir nuevamente el estudio de la cantidad deseable de alumnos por sección y la cantidad real inscrita de alumnos por sección, ya que estaría incluido implícitamente los factores utilizados.

• En el baremo de la Escuela de Ingeniería Eléctrica, las horas que dedica un profesor a DE o TC a clases deben ser 30. Según esto, el Porcentaje de Actividades Docentes (PAD) calculado en las planillas de informes de actividades cumplidas debe reflejar como máximo, 75 % para DE y 85,7 % para TC. El resto debería ser repartido entre las otras actividades. Otro tema a recordar en este punto es el llenado de los informes sólo por personal a DE, como lo establece el ?, art.58, num 2.a, o discutir si este debe extenderse a todo el personal docente, como parecer suceder actualmente para el caso del personal a TC, MT y Tconv.

En resumen, los valores plasmados en los informes de actividades miden el desempeño del departamento según las horas dedicadas a las actividades. Por la naturaleza comprimida de los valores, se hace difícil la interpretación de los mismos para un análisis más detallado en cuanto a número de estudiantes, límites de alumnos y secciones, y estado de los profesores. Por estas razones se considera seleccionar algunas variables de interés basadas en las observaciones de los baremos de la Escuela de Ingeniería Eléctrica y la Facultad de Arquitectura y Diseño, además de observaciones realizadas en informes proporcionados por los departamentos en cuanto a situación docente y estudiantil (ver apéndice ??).

Cada departamento de la Escuela de Sistemas recoge datos de importancia para el proyecto, relacionados a la demanda estudiantil. Entre los datos que recogen se tiene información sobre la situación estudiantil y docente junto con los indicadores: número de estudiantes por profesor, número promedio de secciones por profesor, número de secciones atendidas por profesores jubilados y jubilables, porcentaje de profesores jubilables, entre otros. En la tabla 5.1 se muestra el resumen de estos datos por cada departamento para el año 2014.

Tabla 5.1: Datos recogidos por los departamentos de la EISULA. Año 2014.

Si se observan detenidamente los valores en la tabla 5.1, se puede inferir que el departamento con más necesidad es el " D_3 ", debido a que cuenta con valores mayores para los factores considerados como indicadores: mayor cantidad de estudiantes y secciones por profesor, mayor presencia de profesores jubilados y jubilables, y mayor número de secciones requeridas. Probablemente debido a esto no

alcanza su capacidad para cubrir el 100 % de secciones requeridas.

El límite de alumnos por sección utilizado es de 30, sin hacer distinción entre materias teóricas, laboratorios o prácticas. Cada departamento establece un "número de materias que deberían dictarse" y se compara con las que se han podido ofertar. La tabla 5.2 muestra los valores resumidos. En la fila "Promedios" se calcula la media de los valores para cada columna. Luego para cada departamento, se calcula la diferencia entre su valor y la media obtenido, de igual forma para todos los factores especificados en la tabla 5.1. Por ejemplo, para la columna "Estudiantes por profesor", se obtiene el promedio como:

Promedio =
$$\frac{20, 6+40, 2+44, 1}{3} = 35, 0$$

Mientras que las diferencias para cada departamento se calculan como:

$$D_1 = 20, 6 - 35, 0 = -14, 6$$

 $D_2 = 40, 2 - 35, 0 = 5, 2$
 $D_3 = 44, 1 - 35, 0 = 9, 1$

Esto refleja la distancia que existe entre los valores medios y los valores correspondientes a cada uno, mostrando los excesos o faltas que tengan los departamentos, para cada factor.

Los totales de la última columna son calculados como la suma de las diferencias para cada factor. De esta manera se construye un valor que resuma las diferencias entre las medias y los factores de cada departamento. Los valores altos positivos reflejan la posición del departamento por encima de la media total, mientras que los negativos indican que el departamento ocupa una posición por debajo del promedio, considerando así a los departamentos con mayor valor positivo como los de mayor necesidad.

Tabla 5.2: Comparación de diferencias basada en datos de la EISULA. Año 2014.

Al analizar esta tabla, según los valores reflejados se puede llegar a la conclusión de que el departamento con mayor necesidad de nuevos cargos es " D_3 ". Suponiendo que se compara cada valor con el promedio entre los 3 departamentos, el resultado indica que el departamento de " D_3 " (con la suma más alta) refleja mayor necesidad, como se había sugerido anteriormente.

Análisis de conceptos para la estructura del modelo

Se puede pensar en las áreas de investigación, extensión, mejoramiento, administración como áreas de apoyo y servicio a la docencia. De esta manera, cabe preguntarse cómo influye cada área en la disponibilidad de los profesores para cubrir las actividades de docencia urgentes y hasta qué límite se le debe dar importancia a cada área. Indudablemente la urgencia de atención de las actividades de docencia depende de la cantidad de alumnos que demandan cupos en las materias, combinado con la restricción de cantidad deseable de alumnos, que generalmente por el déficit de profesores disponibles termina siendo relegada, lo que puede afectar el rendimiento de los estudiantes. La figura 5.1 muestra algunos factores de interés sobre la necesidad del departamento.

Figura 5.1: Factores de interés sobre la necesidad de un departamento.

¿Qué papel jugarían los valores recogidos en los informes de actividades? Si se utiliza un esquema similar al baremo de eléctrica, los valores PAD, POAD, PAI, PAM, PAEX, PAA, no permitirían estudiar individualmente variables como el número de alumnos por sección, debido a que está implícita en el valor PAD, o POAD. De la misma manera, el número de cargos administrativos estaría implícito en PAA, y el número de profesores en beca, sabático, etc., estaría implícito en PAM. Por otro lado, la interpretación de estos valores y sus promedios, por su naturaleza resumida, se hace difícil. Determinar los límites aceptables de estos valores puede presentar contradicciones. Por ejemplo, si un profesor (o departamento) tiene un rendimiento PAI de 150 %, ¿es malo o bueno? ¿En qué medida se incurre en exceso? ¿En qué medida se considera insuficiente? Que un departamento tenga un PR total por encima de 150 %, puede indicar que los profesores están saturados de actividades, por lo que tendrían urgencia de nuevos cargos, o puede indicar que incurren en excesos en el resto de las áreas, no necesariamente en docencia.

Estudiar y analizar cada porcentaje sin desligarse de los otros podría ayudar a entender cómo se distribuyen las horas del departamento en las actividades, y tomar decisiones sobre los ajustes a realizar. ¿Implica esto que no se debería incentivar la investigación, extensión, y mejoramiento del personal? Dependiendo del enfoque que se tenga respecto a las prioridades de la facultad o escuela, la importancia de cada área debe ser establecida. Un enfoque equitativo para cada área quizás no sea conveniente, teniendo en cuenta el esfuerzo que debe hacerse siempre en el área de docencia por la creciente demanda de los estudiantes.

Dado que se pretenden incluir como base de comparación para la asignación de cargos las distintas áreas que se llevan a cabo en la Facultad, se consideran los valores plasmados en los informes de actividades cumplidas de la Facultad de Ingeniería, además del análisis realizado sobre los baremos mencionados, como preliminares para elaborar una estructura que responda al objetivo del proyecto. De modo que se estudiaron los valores de PAD, POAD, PAI, PAA, PAM, PAEX, además de considerar algunas otras variables de interés y distintas formas de agrupación de variables, con el fin de realizar pruebas sobre la utilidad, influencia y relevancia de cada valor dentro de la toma de decisiones, y su adaptación en modelos de lógica difusa. Para tomar en cuenta las distintas áreas de actividades se especifican variables que consideren la Docencia, Investigación, Extensión, Administración y Mejoramiento. Algunas ideas sobre la agrupación de las variables se muestran a continuación:

• Opción 1: DIEO

- Docencia: se propone combinar en una sola variable los factoress: PAD, POAD (tomadas de los informes de actividades), proporción de profesores jubilables, promedio de alumnos por profesor, promedio de secciones por profesor, entre otras.
- Investigación: se propone tomar PAI.
- Extensión: se propone tomar PAEX.
- Otras: se propone combinar en una sola variable los factores PAA y PAM.

Desventajas: Las variables PAD y POAD incluyen implícitamente información sobre alumnos por profesor, secciones, etc, por lo que incluir estos factores podría resultar en redundancia. No hay seguridad de que sea conveniente combinar los factores PAA y PAM debido a la naturaleza distinta de las áreas.

• Opción 2: DIEMA

- Las áreas de Docencia, Investigación y Extensión se toman de la misma manera que la opción 1.
- Las variables sobre Administración y Mejoramiento se toman separadas.

Este caso presenta dificultades similares a la opción 1, pero toma las actividades PAA y PAM como individuales.

• Opción 3: DIEMA más otras.

- Docencia: se toma la combinación de PAD y POAD.

- Investigación: se toma PAI.

Extensión: se toma PAEX.

- Mejoramiento: se toma PAM.

Administración: se toma PAA.

Luego podría incluirse el resto de variables y se evalúa con el sistema difuso: Proporción de profesores jubilables, promedio de alumnos por profesor, promedio de secciones por profesor, proporción de profesores en beca-sabático, proporción de profesores con cargos administrativos.

Desventajas: Los valores resumidos del rendimiento en cada área no permiten analizar de forma más detallada la situación estudiantil y docente del departamento, como el déficit de profesores, promedios, etc.

Una estructura posible se puede desarrollar con la opción 1 de la manera que se muestra en la figura 5.2, junto con el flujo del proceso para modelos de lógica difusa. La entrada al sistema difuso estaría compuesta por indicadores construidos a partir de las variables anteriores, por medio de pesos de importancia para cada área. En esta estructura, PAP es el promedio de alumnos por profesor, PS es el promedio de secciones por profesor y PJ es la proporción de profesores jubilables.

Con el fin de manejar los distintos porcentajes de rendimiento en cada actividad, los pesos que se le asignarían a cada área podrían ser de ayuda en este caso. Las áreas que se consideren de mayor importancia en el momento de la asignación de cargos, tendrán un peso acorde con los requerimientos. En este diagrama se observa que se construyen indicadores para cada área luego del cálculo de cada variable. Se obtiene la prioridad para cada departamento y se comparan durante ciclos para realizar las asignaciones. Durante el ciclo se actualizan los datos de departamento (se modifican los datos de informes de actividades y se repite el ciclo hasta que se acaben los cargos). Este enfoque puede resultar en un procesamiento lento y necesita obligatoriamente la revisión de los informes de actividades actualizados en cada ejecución.

Sobre indicadores

En el siguiente apartado se muestran algunos análisis y pruebas sobre el uso de pesos dentro de la construcción de indicadores de interés para el sistema difuso.

Se asume que las variables tomadas se referirán a cada área y a cada una se le asocia un α_i tal que: α_i es el grado de importancia o peso para cada área.

 X_i es el porcentaje de cada actividad cubierta por el departamento.

Por lo tanto, $\frac{X_i}{\alpha_i}$ indica la medida en que un departamento cubre los requerimientos del momento para la asignación. A continuación se muestra un ejemplo con la aplicación de indicadores. La tabla 5.3, recoge los porcentajes de actividades y de rendimiento de un departamento

Figura 5.2: Una estructura de procesamiento preliminar.

PAD_x	PAI_x	$PAEX_x$	PAM_x	PAA_x
63,43	34,63	1,40	11,34	22,14

Tabla 5.3: Datos de entrada. Porcentaje de actividades del departamento "x".

α_1	α_2	α_3	α_4	α_5
45 %	20 %	5 %	20 %	5 %

Tabla 5.4: Pesos de cada área.

IAD_x	IAI_x	$IAEX_x$	IAM_x	IAA_x
1,41	1,73	0,28	$0,\!57$	4,48

Tabla 5.5: Indicadores resultantes.

IAD: Indicador de Actividades de Docencia.

IAI: Indicador de Actividades de Investigación.

IAEX: Indicador de Actividades de Extensión.

IAM: Indicador de Actividades de Mejoramiento.

IAA: Indicador de Actividades de Administración.

En este caso, para las actividades de Administración se estableció una importancia o peso de 5 % sobre todas las actividades. IAA indica que el porcentaje de actividad está por encima de lo que se requeriría. Estos indicadores pueden ser usados para construir conjuntos que puedan utilizarse en un modelo de Lógica Difusa. Se pueden construir rangos o conjuntos para etiquetar cada indicador, como por ejemplo: Bajo, Regular, Aceptable, Alto, como se muestra en la figura 5.3.

Figura 5.3: Funciones de pertenencia para los indicadores.

En la tabla 5.6 se muestra un ejemplo de clasificación para las combinaciones de conjuntos de los indicadores anteriores. Por ejemplo:

Si hay 5 actividades en Bajo entonces Prioridad es Baja.

Si hay 5 actividades en Alto entonces Prioridad es Alta.

Si hay 2 en Bajo y 3 en Aceptable entonces Prioridad es Normal.

BAJO	REGULAR	ACEPT	ALTO	PRIORIDAD	BAJO	REGULAR	ACEPT	ALTO	PRIORIDAD
5	0	0	0	BAJA	2	2	1	0	MEDIA
0	5	0	0	MEDIA	2	2	0	1	NORMAL
0	0	5	0	NORMAL	2	1	2	0	NORMAL
0	0	0	5	ALTA	2	1	0	2	NORMAL
4	1	0	0	BAJA	1	2	2	0	NORMAL
4	0	1	0	BAJA	1	2	0	2	ALTA
4	0	0	1	BAJA	3	1	1	0	BAJA
1	4	0	0	MEDIA	3	1	0	1	BAJA
1	0	4	0	NORMAL	1	3	1	0	MEDIA
1	0	0	4	ALTA	1	3	0	1	MEDIA
2	3	0	0	MEDIA	1	1	3	0	ALTA
2	0	3	0	MEDIA	1	1	0	3	ALTA
2	0	0	3	NORMAL	2	1	1	1	MEDIA
3	2	0	0	BAJA	1	2	1	1	MEDIA
3	0	2	0	BAJA	1	1	2	1	NORMAL
3	0	0	2	BAJA	1	1	1	2	NORMAL

Tabla 5.6: Algunas reglas sobre los indicadores.

Estos estudios son tomados como base para la comprensión del manejo de las variables en dirección

a la construcción de una estructura eficiente para la asignación de cargos. De este modo se continúa con la búsqueda de esta estructura, como lo muestra la siguiente sección, con la especificación de datos y el uso de los mismos dentro de la construcción de variables, así como formas de asignación de cargos.

Definición y manejo de variables. Otro enfoque

En esta sección continúa el estudio sobre las distintas configuraciones que pueden tomarse en cuenta para el procesamiento de datos, tratamiento de variables y ejecución del sistema difuso.

• Área de docencia: Como se ha mencionado anteriormente, la necesidad de un departamento en el área de Docencia puede ser determinada en función de variables como: proporción de profesores jubilables, proporción de profesores jubilados activos, promedio de alumnos por sección, promedio de alumnos por profesor, porcentaje de rendimiento en docencia, entre otras que sean consideradas influyentes para los asuntos docentes. De acuerdo a esto, se proponen las siguientes definiciones para variables que puedan ser tomadas para el sistema difuso.

Descripción de variables:

- PAD: es el porcentaje de actividades de docencia (registrado en los informes de actividades cumplidas).
- Proporción de profesores jubilables (PJ): Proporción de profesores del departamento que han cumplido con la antigüedad para jubilarse. La presencia de profesores jubilables en un departamento puede afectar la capacidad para cubrir la demanda de secciones y alumnos por atender. Si la proporción de profesores jubilables es alta, el departamento podría tener una necesidad de cargos importante para períodos próximos, principalmente para cubrir la docencia. Se debe considerar un aumento en la prioridad del departamento (a través de un factor de ajuste). La definición de la proporción como alta debe ser establecida de acuerdo a los datos observados. Si la proporción de profesores jubilables es baja, la prioridad del departamento no debe modificarse.

$$PJ = \frac{\text{Número de profesores jubilables}}{\text{Número total de profesores del departamento}}$$

Ejemplo: Un departamento tiene 10 profesores en total, y entre ellos hay 3 profesores jubilables, por lo tanto $PJ = \frac{3}{10} = 0,33$. Este valor puede servir como factor para modificar el valor de la necesidad del departamento, como se verá más adelante.

 - PJA: Proporción de profesores Jubilados activos. La presencia de profesores jubilados activos representa un riesgo latente de disminución de la capacidad del departamento. Mientras aumente esta proporción, aumenta la necesidad de cargos del departamento.

De forma análoga a la definida para la proporción de profesores jubilables (PJ), se calcula el factor PJA como sigue:

$$PJA = \frac{\text{N\'umero de profesores jubilados activos}}{\text{N\'umero total de profesores del departamento}}$$

La medida de la necesidad de un departamento en el área de Docencia puede ser definida como D (Docencia), de la siguiente manera:

$$D = PAD * (1 + PJ + PJA)$$

De esta manera, PAD aumenta de acuerdo a la proporción de los factores PJ y PJA. Esto significa que mientras más riesgo de perder cargos activos tenga el departamento, mayor será el valor de D. Este valor será utilizado en el sistema difuso, el cual evalúa las prioridades del departamento en cada área. Si el indicador de necesidad en cada área es categorizado como muy alto (mucho más del 100 % requerido), se asume que el departamento tiene una sobrecarga de actividades en el área, por lo que se concluye que asignándole un nuevo cargo, disminuirían las cargas excesivas para los profesores.

Ejemplo: Un departamento con 50 % de actividades docentes cumplidas (de la carga total), PJ = 0,3 y PJA = 0,02, tendría un valor D = 50 * (1 + 0,3 + 0,2) = 75. Si las proporciones PJ y PJA son 0, entonces se toma como indicador el PAD de 50 %.

Otra variable que se puede tomar en consideración para modificar D, es el promedio de alumnos por sección, o el promedio de alumnos por profesor. En base a una cantidad de alumnos por sección recomendada, se puede determinar si un departamento tiene sobrecarga en ese sentido. El enfoque mostrado sobre esta variable, y la manera como se aplican los factores sobre el rendimiento de docencia, debe ser estudiado y analizado a fondo para determinar si es conveniente este tratamiento.

- Promedio de alumnos por profesor, alumnos por sección (PAP, PAS):

El cálculo de promedios de alumnos por sección o alumnos por profesor implica la consideración de algunos detalles tales como la cantidad de secciones que atiende un profesor y la cantidad de alumnos que están inscritos en varias secciones (asignaturas distintas). A partir de este valor y con base en la cantidad de alumnos recomendados para cada sección, denotado por K, se puede calcular la sobrecarga de alumnos por sección del departamento. Ejemplo: Si el promedio de alumnos por sección (PAS) es 25,72 y la cantidad recomendada es K=20, entonces $\frac{PAS}{K}=1,28$. Este valor puede ser tomado como un indicador a considerar para el sistema difuso. Suponiendo que entre 0 y 1,5 se considera un valor

dentro de lo normal, y si es mayor que 1,5 el valor es excesivo, entonces el indicador de necesidad de la Docencia puede ser modificado como sigue:

$$\begin{cases} D = PAD * (1 + PJ + PJA + PAS/K) & PAS/K > 1, 5 \\ D = PAD * (1 + PJ + PJA) & 0 < PAS/K < 1, 5 \end{cases}$$

Es decir, en el caso en que el promedio de alumnos por sección sobrepase en más de 50 % a la cantidad recomendada, se aumenta la necesidad del departamento en el área de docencia en proporción al exceso de alumnos por sección. En caso contrario, la necesidad del departamento permanece igual.

 Para las áreas de Investigación y extensión también se toman, como en opciones anteriores, los valores de rendimiento de los informes de actividades, es decir:

$$I = PAI.$$

$$E = PAEX.$$

Uso de los indicadores en el caso actual

Para determinar la necesidad del departamento en cuanto a la asignación de cargos, se consideran las opiniones de los profesores sobre la importancia de cada área de actividades al momento de la asignación. Esta importancia es interpretada como un peso para cada área, el cuál será usado para construir los indicadores que permitan estudiar la necesidad de cada departamento. Suponiendo que los pesos para cada área son α_D , α_I , y $\alpha_E s$, los indicadores, de manera similar a enfoques anteriores, son:

$$ID = \frac{D}{\alpha_D}$$
 $II = \frac{I}{\alpha_I}$ $IE = \frac{E}{\alpha_E}$

Estos indicadores serían utilizados como entradas al sistema difuso que determine las prioridades de cada departamento, para apoyar la toma de decisiones sobre la asignación de cargos.

Algunas consideraciones adicionales

A continuación se exponen algunas consideraciones sobre los conceptos y variables tratados para el proyecto.

- Las variables para las áreas de Administración y Mejoramiento pueden ser tomadas de la misma manera que Investigación y Extensión, o si se requiere anexar alguna otra variable que influya en una de ellas, proceder como en el caso de la Docencia.
- En el caso de las actividades administrativas: En el informe de actividades cumplidas se recogen las horas dedicadas a estas actividades. Como variable alternativa se pudiese usar la proporción

de profesores con cargos administrativos. En el baremo de la Escuela de Eléctrica, se toman en cuenta los cargos administrativos con más de 10 horas (Decanato, jefes de departamento, jefes de laboratorios, entre otros), y estos se anexan al cálculo del déficit de profesores disponibles (para la docencia).

• En el caso de las actividades de mejoramiento: En el informe de actividades cumplidas se recogen las horas dedicadas a estas actividades. Como variable alternativa se pudiese usar la proporción de profesores en becas, sabáticos y demás actividades de mejoramiento que impliquen la ausencia del profesor en las aulas de clases. En el baremo de la Escuela de Eléctrica, se toma en cuenta el número de profesores que pueden tener este estado y se anexan al déficit de profesores disponibles (para la docencia).

Rangos, conjuntos y funciones de pertenencia

Cada conjunto difuso constaría de 2 o 3 funciones de pertenencia, dependiendo de qué tan específica se quiere la clasificación, reduciendo la complejidad al manejar el número de reglas resultantes. Por ejemplo: para el indicador de Docencia, se podrían definir 2 funciones de pertenencia: Bajo, Alto, o 3 funciones de pertenencia: Bajo, Normal, Alto. Para el conjunto de salida (que indique la Prioridad o nivel de Necesidad del departamento), se construirían funciones similares: Baja, Alta o Baja, Normal, Alta.

Asignación de cargos

Suponiendo que las salidas del sistema difuso (prioridad) para cada departamento son: $P_1, P_2, P_2, \dots, P_n$, donde n es el número de departamentos en estudio, la cantidad de cargos a asignar se puede determinar como:

- Opción 1: Asignar un cargo al departamento con mayor prioridad. Repetir el ciclo de cálculos con valores actualizados hasta que se acaben los cargos.
- Opción 2: Calcular la proporción de cargos B correspondiente a cada departamento. Para el departamento x se tiene:

$$B_x = \frac{P_x}{\sum_{x=1}^n P_x} \tag{5.1}$$

Si C es el número de cargos disponibles para la asignación, entonces los cargos a asignar al departamento x se denota por A_x :

$$A_x = B_x * C \quad \forall x \in [1 \cdots n] \tag{5.2}$$

Teniendo en cuenta las consideraciones realizadas en las distintas estructuras mostradas, se procede a realizar algunas pruebas que permitan delimitar el modelo final. Las mismas se muestran en la

sección siguiente.

5.1.2 Pruebas preliminares

Se realizaron algunas pruebas en el módulo de Lógica Difusa de Matlab[®] para observar el comportamiento del sistema. El siguiente ejemplo hace uso de una estructura de variables que puede ser extendida al resto de las estructuras propuestas, y se ejecuta con el fin de avanzar en la elaboración de un modelo preliminar de Lógica Difusa. Los datos utilizados son ficticios.

Primera prueba

El proceso se da en las siguientes fases:

Fase 1: Procesamiento preliminar de datos.

Se tienen los porcentajes de Actividades de Investigación de dos Departamentos A y B.

Se tienen las proporciones de profesores jubilables de cada departamento.

Para el procesamiento preliminar, debe establecerse el peso o importancia para cada área de actividades. En este, caso para simplificar el problema, se tiene sólo un área, por lo que el peso (determinado como α) será de 100 %. Dado α y el Porcentaje de Actividad de Investigación (PAI) de cada departamento, se calcula el siguiente indicador, el cual refleja el rendimiento del departamento en dicha actividad:

$$I = \frac{PAI}{\alpha}$$

Figura 5.4: Flujo del proceso.

Luego, el indicador I, será una de las entradas al Sistema de Inferencia Difuso, junto con la variable Proporción de Profesores Jubilables (PJ).

Departamento	PAI	α	Ι	PJ
A	53,9	100 %	0,54	0,273
В	28,4	100 %	$0,\!28$	$0,\!286$

Tabla 5.7: Datos para los Departamentos A y B.

El sistema de inferencia difuso tendrá como salida el conjunto difuso Prioridad, el cual reflejará el nivel de prioridad para asignación de cargos que tenga el Departamento, omo se muestra en

la figura 5.5.

Figura 5.5: Estructura del Sistema de Inferencia Difuso.

El sistema de inferencia difuso contendrá las definiciones de las funciones de membresía para cada entrada, además de las reglas Si-Entonces que definan las relaciones entre las variables.

Fase 2: Se definen las funciones de membresía para cada variable. Utilizando la herramienta para Lógica Difusa de Matlab[®], se construyen las funciones tal como se muestra en las figuras 5.6, 5.7 y 5.8:

Figura 5.6: Funciones de Membresía para la variable ${\cal I}$ Indicador.

Figura 5.7: Funciones de Membresía para la variable PJ (Proporción de profesores jubilables).

Figura 5.8: Funciones de membresía para la salida Prioridad.

El sistema de inferencia de tipo Mamdani, consta entonces de dos variables de entrada y una variable de salida (ver figura 5.9).

Figura 5.9: Sistema de inferencia difuso tipo Mamdani.

Las reglas Si-Entonces se establecen con ayuda de la herramienta (ver figura 5.10). Considerando que la variable I puede pertenecer a 4 conjuntos distintos, la variable PJ puede pertenecer a 3, la salida Prioridad puede resultar en 3 conjuntos diferentes, y asumiendo reglas con el operador AND, se construyeron 12 reglas distintas para evaluar.

- Si I es Bajo y PJ es Bajo entonces Prioridad es Baja
- Si I es Bajo y PJ es Medio entonces Prioridad es Baja
- Si I es Bajo y PJ es Alto entonces Prioridad es Media
- Si I es Regular y PJ es Bajo entonces Prioridad es Baja
- Si I es Regular y PJ es Medio entonces Prioridad es Media
- Si I es Regular y PJ es Alto entonces Prioridad es Media
- Si I es Aceptable y PJ es Bajo entonces Prioridad es Baja
- Si I es Aceptable y PJ es Medio entonces Prioridad es Media
- Si I es Aceptable y PJ es Alto entonces Prioridad es Alta
- Si I es Alto y PJ es Bajo entonces Prioridad es Media
- Si I es Alto y PJ es Medio entonces Prioridad es Alta
- Si I es Alto y PJ es Alto entonces Prioridad es Alta

```
1. If (Indicador is Bajo) and (Proporción_de_Jubilables is Bajo) then (Prioridad is Baja) (1)
2. If (Indicador is Bajo) and (Proporción_de_Jubilables is Medio) then (Prioridad is Baja) (1)
3. If (Indicador is Bajo) and (Proporción_de_Jubilables is Alto) then (Prioridad is Media) (1)
4. If (Indicador is Regular) and (Proporción_de_Jubilables is Bajo) then (Prioridad is Media) (1)
5. If (Indicador is Regular) and (Proporción_de_Jubilables is Medio) then (Prioridad is Media) (1)
6. If (Indicador is Regular) and (Proporción_de_Jubilables is Medio) then (Prioridad is Media) (1)
7. If (Indicador is Aceptable) and (Proporción_de_Jubilables is Medio) then (Prioridad is Media) (1)
9. If (Indicador is Aceptable) and (Proporción_de_Jubilables is Medio) then (Prioridad is Media) (1)
10. If (Indicador is Alto) and (Proporción_de_Jubilables is Medio) then (Prioridad is Media) (1)
11. If (Indicador is Alto) and (Proporción_de_Jubilables is Bajo) then (Prioridad is Media) (1)
12. If (Indicador is Alto) and (Proporción_de_Jubilables is Medio) then (Prioridad is Alta) (1)
12. If (Indicador is Alto) and (Proporción_de_Jubilables is Medio) then (Prioridad is Alta) (1)
```

Figura 5.10: Conjunto de reglas en Matlab $^{\mathbb{R}}$.

Fase 3: Introduciendo variables de entrada para dos Departamentos A y B, y utilizando los datos recogidos en la Fase 1, se obtienen los resultados mostrados en las figuras 5.11 y 5.12.

Figura 5.11: Resultados para el Departamento A.

Figura 5.12: Resultados para el Departamento B.

Como se observa en las imágenes, el departamento con mayor Prioridad al momento de asignar nuevos cargos es el Departamento A.

Departamento	Salida (Conjunto)	Salida (Valor)
A	Media	0,384
В	Baja	0,127

Tabla 5.8: Resultados y comparación de los Departamentos A y B.

Segunda prueba

Otra prueba ejecutada con un enfoque similar en Matlab[®] incluye variables para las áreas de docencia, investigación y extensión, de tres departamentos. Los datos utilizados no pertenecen a ningún departamento real de la facultad. Los datos de entrada y la salida del sistema se especifican en la tabla 5.9.

Dpto	D	I	E	Prioridad
A	0,2	0,3	0,4	0,2508
В	0,3	0,5	0,1	0,2732
С	0,2	0,4	0,3	0,2508

Tabla 5.9: Datos de entrada. Segunda prueba.

Regla de ejemplo:

Si Indicador de Docencia es Alto e Indicador de Investigación es Alto e Indicador de Extensión es Alto entonces Prioridad es Alta.

Luego de obtenidas las prioridades para cada departamento, la repartición de cargos puede hacerse con enfoques distintos:

 Opción 1: Asignar cargo al departamento con mayor prioridad y repetir el proceso según el número de cargos disponibles.

Se genera la lista de departamentos ordenados por prioridad, en orden descendente. Se asigna entonces un cargo al departamento de mayor prioridad y seguidamente se repite el procesamiento de datos tal como en la figura 5.2, es decir, actualizando los datos para el departamento al que se le asignó el cargo, y reiniciando el ciclo de asignación según los cargos disponibles.

Salida:

PA 0,2508

PB 0,2732

PC 0,2508

• Opción 2: Calcular las proporciones de cargos correspondientes a cada departamento, tal como en la ecuación (5.1) especificada anteriormente en la asignación de cargos.

Y siendo C el número de cargos disponibles para la asignación, y n el número de departamentos, se asignan los cargos para cada uno como en la ecuación 5.2 establecida anteriormente.

Si el número de cargos es: 6, y se tienen 3 departamento a,b,c, entonces se calculan las proporciones de cargos B correspondientes a cada uno:

$$B_a = \frac{0.2508}{0.77428} = 0.32$$
 $B_b = \frac{0.2732}{0.7748} = 0.35$ $B_c = \frac{0.2508}{0.77428} = 0.32$

Finalmente, los cargos a asignar (A) a cada departamento serían:

 $A_a = 1,92$ cargos

 $A_b = 2, 1$ cargos

 $A_c = 1,92$ cargos

5.2 Construcción del modelo

En base a las investigaciones y pruebas realizadas, comparando las distintas opciones sobre agrupación de variables, modos de asignación de cargos, datos necesarios e influyentes en el rendimiento de los departamentos, se determinan aspectos relevantes que ayuden a elaborar la estructura final que recoja en mejor medida la necesidad de cargos de un departamento. Con esto en mente, se sigue el camino para determinar qué valores usar, de qué manera usarlos, qué enfoque tomar, cómo manejar valores implícitos, etc. En esta sección se especifican los puntos escogidos según la evaluación y pruebas y se desarrolla la estructura final para las variables y el sistema difuso.

5.2.1 Definición del sistema de inferencia

Luego de las pruebas realizadas, con base en los datos de los informes de actividades cumplidas, se reconstruye una nueva estructura considerando los análisis, resultado de las observaciones de las planillas y los baremos estudiados, y finalmente combinando los puntos que se destacan con mayor relevancia para la asignación de cargos. Para definir la estructura del modelo, en primer lugar se especifican los datos necesarios para el proceso, recordando que se utilizará un sistema de inferencia difusa para obtener el resultado que apoye la toma de decisiones.

Datos de entrada

Los datos requeridos para el cálculo de las distintas variables que son de relevancia como entrada al sistema difuso se especifican a continuación. Estos datos deben ser facilitados por el departamento o la escuela en conjunto.

- Datos de profesores (por departamento o escuela): nombres y apellidos, cédula, fecha de ingreso (fecha en la que el profesor inició el ejercicio de actividades en la universidad), escalafón (Titular, Asociado, Agregado, Asistente, Instructor), condición (Ordinario, Contratado, Jubilado activo, Interino, Visitante, Colaborador), dedicación, horas asignadas para las actividades del profesor según su Dedicación, estado (beca, sabático, permiso remunerado o no remunerado, jubilado activo, autorizado, plan de formación, activo, suspendido), carga administrativa (Cadm), escuela, departamento, área de conocimiento.
- Datos de materias (por departamento o escuela): código, nombre, escuela, departamento, área
 de conocimiento, horas de clases teóricas (HCT), horas de laboratorio o taller (HL), horas de
 práctica (HP), horas de campo (Hcamp), horas de seminario (Hsem), horas de régimen especial
 (HRE), límite de alumnos por sección.
- Datos sobre actividades cumplidas (por departamento, de los resúmenes de actividades cumplidas): departamento, AÑO, PAD, POAD, PAI, PAEX, PAM, PAA.
- De los inscritos (por materias del departamento): Código de materia, nombre de materia, número de inscritos, sección, profesor.

Los siguientes son constantes que serán utilizadas en el procesamiento de datos como se muestra en la sección 5.2.2.

• Factores de dedicación y factores de ponderación de horas.

Dedicación	Ponderación de horas
de = 1	FPHCT = 3
tc = 1	FPHL = 2
mt = 1/2	FPHP = 2
tconv = 1/3	FPHcamp = 2
jubact = 2/5	FPHsem = 2
	FPHRE = 1

FPHT = Factor de ponderación de horas teóricas.

FPHP = Factor de ponderación de horas prácticas.

FPHL = Factor de ponderación de horas de laboratorio.

FPHcamp = Factor de ponderación de horas de trabajo de campo.

FPHsem = Factor de ponderación de horas de seminario.

FPHRE = Factor de ponderación de horas de régimen especial.

El factor de ponderación HCT, para horas teóricas, se muestra aquí como el promedio aritmético de los factores para horas teóricas de la tabla (3.2). Alternativamente pueden usarse estos factores especificándolos para cada materia según los factores de mayor frecuencia, o según el conocimiento de experiencias anteriores. Para esto se manejaría una tabla alternativa con la información deseada, la cual sería usada posteriormente en el procesamiento de las variables. Según la tabla de ponderación de horas del Reglamento de Evaluación de Actividades de la Facultad de Ingeniería, los FPH dependerán de la modalidad de evaluación del profesor en la materia y del número de estudiantes que se hayan inscrito. Esto fue establecido para usarse en las planillas de informes de actividades de la facultad que debe presentar cada profesor de TC o DE.

• Datos constantes requeridos: Secciones por profesor (Ssp), porcentaje de actividades de investigación (ReqI), porcentaje de actividades de extensión. (ReqE), porcentaje de otras actividades de docencia (ReqOA), horas ponderadas de materia optativa, cargos u horas disponibles para la asignación.

5.2.2 Estructura del sistema difuso

Una vez definidos los datos necesarios para la construcción del modelo y por medio de los análisis, pruebas y observaciones realizadas anteriormente, se establecen las variables que se usarán como entrada al sistema de inferencia. Éstos cálculos se basan en los baremos de la Escuela de Eléctrica y

de la Facultad de Arquitectura mencionados anteriormente.

Cálculo de variables

En la siguiente sección se muestra el procesamiento de los datos para la construcción de variables intermedias y finales, de interés para el sistema difuso. Para cada materia del departamento, se tiene:

• *HPT_i*: Horas ponderadas totales semanales para cada materia.

$$HPT_{i} = HCT_{i} * FPHT + HP_{i} * FPHP + HL_{i} * FPHL$$

$$+ Hcamp_{i} * FPHcamp + Hsem_{i} * FPHsem + HRE_{i} * FPHRE$$

$$(5.3)$$

• $Pdem_i$: Se define como el número de profesores requeridos para la materia i.

$$Pdem_i = \frac{Sdem_i}{Spos_i} \tag{5.4}$$

 $Sdem_i$: Es el número de secciones que deben ofertarse de la materia i, según la demanda de estudiantes.

 $Spos_i$: Es el número de secciones de la materia i que pueden ser atendidas por profesores TC o DE (con un límite de horas para clases de 30 horas semanales).

Para calcular $Pdem_i$, se debe conocer primero el valor de cada una de estas variables intermedias. $Sdem_i$ viene dado por:

$$Sdem_i = \left\lceil \frac{Nalum_i}{Lalum_i} \in \mathbb{N} \right\rceil \tag{5.5}$$

 $Nalum_i$: Es el número de alumnos que deben inscribir la asignatura i, según los inscritos en OREFI, o según datos de inscripción del departamento.

Lalum_i: Es el número de alumnos sugeridos por sección para la materia i.

De la misma forma, $Spos_i$ es un valor entero determinado por:

$$Spos_i = \left| \frac{HC}{HPT_i} \in \mathbb{N} \right| \tag{5.6}$$

Donde HC es una constante que representa las horas de clase disponibles de un profesor TC o DE (30 horas máximas para clases).

• $Pdem_a$: Se define como el número de profesores requeridos para el área a. Se calcula según la ecuación (5.7):

$$Pdem_a = \sum_{i=1}^{n} (Pdem_i) \quad \forall i \in a$$
 (5.7)

Donde n es el número de materias pertenecientes al área de conocimiento a.

• $Pdisp_a$: Profesores disponibles de un departamento pertenecientes al área de conocimiento a.

$$Pdisp_a = \sum_{j=1}^{m} (fd_j) \tag{5.8}$$

Donde m es el número de profesores del área de conocimiento correspondiente a, y fd es el factor de dedicación del profesor.

• $Pdisp_d$: Profesores disponibles adscritos al departamento d.

$$Pdisp_d = \sum_{k=1}^{r} (fd_k) \tag{5.9}$$

Donde r es el número de profesores pertenecientes al departamento d.

• $Preq_a$: Profesores requeridos por área. Se refiere a la cantidad de profesores que hacen falta para cubrir totalmente la carga de secciones de materias pertenecientes al área a. Si un área de conocimiento cuenta con un total de 10 profesores, y en esa misma área se requieren 12 profesores (denotado por $Pdem_a$), entonces los profesores requeridos son 2. Se calcula como en la ecuación (5.10):

$$Preq_a = Pdisp_a - Pdem_a \tag{5.10}$$

Si $Preq_a$ es negativo, entonces el área de conocimiento a requiere de profesores para cubrir la demanda. Si $Preq_a$ tiene un valor positivo, los requerimientos de profesores del área a se consideran cubiertos. Un área cuya $Ptotal_a$ sea 10 y $Pdem_a$ sea 9, puede cubrir la demanda de profesores ($Preq_a = 1$). En el código que procesa estas variables, se reemplazan con 0 los valores de $Preq_a$ que sean positivos, lo cual significa que no hay profesores requeridos, de esta forma $Preq_a$ será siempre menor o igual que cero (≤ 0).

• $Pmej_a$: Profesores en mejoramiento por área de conocimiento. Se refiere al total de profesores que está en estado de mejoramiento, lo cual incluye actividades como becas, sabáticos, permisos, etc. En los datos de entrada se diferencian de los profesores que tienen estado "activo". Se calcula según la ecuación (5.11):

$$Pmej_a = \sum_{j=1}^{m} (fd_j) \quad \forall j \mid \text{estado} \neq \text{``activo''}$$
 (5.11)

Donde m es el número de profesores del área de conocimiento a.

• $Pmej_d$: Profesores en mejoramiento por departamento. De forma similar a la anterior, se contabilizan los profesores en estado de mejoramiento para cada departamento según la ecuación (5.12).

$$Pmej_d = \sum_{k=1}^{r} (fd_k) \quad \forall k \in d$$
 (5.12)

Donde r es el número de profesores pertenecientes al departamento d.

• $Padm_d$: Se refiere a la carga administrativa del departamento d expresada en número de profesores. Se toman en cuenta los cargos con más de 10 horas administrativas.

$$Padm_d = \sum_{i=1}^{n} \frac{Cadm_i}{HC} \quad \forall i: 1 \quad hasta \quad n \quad | \quad \text{carga administrativa} \ge 10$$
 (5.13)

• $Hsob_i$: Es el número de horas sobrantes de la carga académica. Si un profesor perteneciente al área a, es asignado a 2 secciones $(Spos_i)$, de la materia i, con carga de 12 horas $(Hpond_i)$, entonces las horas sobrantes son 6, suponiendo que la constante HC = 30. Así se muestra en la ecuación (5.14). Se denotan como "horas sobrantes" debido a que no son suficientes para cubrir una nueva sección completa con carga de 12 horas, en este caso.

$$Hsob_i = HC - Hpond_i * Spos_i \quad \forall \quad i : i$$
-ésima materia (5.14)

• $Opos_i$: Electivas posibles según horas sobrantes de la carga académica. Esta son las materias que pueden ofertarse según las horas sobrantes calculadas anteriormente por cada materia (ver ecuación 5.14), y las horas ponderadas de la materia electiva (Hop). Se utiliza un valor constante promedio general para el valor Hop, tal como se muestra en la ecuación (5.15).

$$Oppos_i = \frac{Hsob_i}{Hop} \tag{5.15}$$

• Op_a : Electivas posibles por área. Es la sumatoria de las electivas que pueden ofrecerse según las materias pertenecientes al área de conocimiento a.

$$Op_a = \sum_{i=1}^n Oppos_i \quad \forall i \in a \tag{5.16}$$

Donde n es el número de materias pertenenecientes al área a.

 Op_d: Electivas posibles por departamento. Es la sumatoria de las electivas que pueden ofrecerse según las áreas de conocimiento pertenecientes al departamento d.

$$Op_d = \sum_{x}^{p} Op_x \quad \forall x : a, b, c, \cdots, p \quad | \quad x \in d$$
 (5.17)

• Psob_a: Es el número de profesores disponibles según horas sobrantes de la carga académica, por área. Este valor representa la cantidad de profesores en base a las horas sobrantes de la carga académica, tal como se expone en la ecuación (5.14). Es decir, a un profesor se le asignan una o mas secciones de una materia del área a de acuerdo a su carga horaria, según su dedicación, es posible que sobren algunas horas por utilizar. Por ejemplo, si una materia obligatoria tiene 2 secciones de 12 horas ponderadas, y las horas máximas de clases de un profesor son 30 (HC), entonces las horas sobrantes son 6. Si Hop es menor o igual que 6, entonces se considera que hay horas disponibles para dictarla. Estas horas restantes se contabilizan para el área a. La ecuación (5.18) simplifica el cálculo. De esta manera se procede con cada materia del área a y según ellas se representa la fracción de profesores disponibles según las horas sobrantes, que pueden impartir materias electivas, según Hop.

$$Psob_a = \frac{(Pdisp_a * Hop)}{HC} \tag{5.18}$$

• $Psob_d$: Es el número de profesores disponibles según horas sobrantes de la carga académica, por departamento.

$$Psob_d = \sum_{x}^{p} Psob_x \quad \forall x : \{a, b, c \cdots p\} \quad | \quad x \in d$$
 (5.19)

- PAI y PAEX y POAD son los valores tomados de las planillas resúmenes de informes de actividades del departamento (Porcentajes).
- $Pjub_d$: Profesores jubilables del departamento d. Son los profesores que cumplen con el tiempo necesario para iniciar el proceso de jubilación. Se toma en cuenta su fecha de ingreso, con un límite de 25 años para jubilación, tal como muestra la ecuación (5.20).

$$Pjub_d = \sum_{k=1}^{r} (fd_k) \quad \forall k \mid fecha \quad actual - (fecha \quad ingreso)_k \ge 25$$
 (5.20)

Donde r es el número de profesores pertenecientes al departamento d.

Indicadores y conjuntos difusos

En este apartado se desarrolla el enfoque para el modelo difuso, utilizando las variables procesadas anteriormente. Se inicia construyendo los siguientes Indicadores:

- I1: Concerniente al rendimiento en actividades de Investigación del departamento.
- I2: Concerniente al rendimiento en actividades de Extensión del departamento.
- I3: Concerniente al rendimiento en Otras actividades de docencia del departamento.
- I4: Concerniente a la proporción de profesores jubilables del departamento.
- R: Concerniente al déficit de profesores del departamento.

I1: Actividades de Investigación.

Para este indicador se toma el porcentaje de rendimiento PAI de los resúmenes de informes de actividades cumplidas del departamento. El indicador se construye como sigue (5.21):

$$I1 = \frac{PAI}{ReqI} \tag{5.21}$$

donde ReqI es un valor fijado en consenso como el valor deseado del porcentaje de actividades de investigación.

Las funciones de pertenencia para este indicador, mostradas en la figura 5.13, se dividen como:

- Muy Bajo: El rendimiento del departamento en las áreas es muy bajo. No se considera prioritario para la asignación de cargos.
- 2. Bajo: El rendimiento del departamento en las áreas es bajo. La prioridad es escasa para la asignación de cargos.
- 3. Moderado: El rendimiento aún se mantiene por debajo de lo deseado. Se considera medianamente la asignación de cargos.
- 4. Alto: El rendimiento cubre los valores deseados.
- Muy alto: El rendimiento excede los valores propuestos, lo que se considera como desequilibrio del departamento respecto a los requerimientos. No se considera prioritario asignar cargos.

Figura 5.13: Funciones de pertenencia para I1.

I2: Actividades de Extensión.

Se construye análogamente al indicador I1 con el uso de la variable PAEX del informe de actividades, y ReqEx como requerimiento para el área (5.22. Las funciones de pertenencia son equivalentes.

$$I2 = \frac{PAEX}{ReqEx} \tag{5.22}$$

I3: Otras actividades de docencia.

De manera similar a I1 e I2, utilizando POAD de los informes de actividades y ReqOA como requerimiento de entrada se construye I3 (5.23). Las funciones d epertenencia son equivalentes a las dos anteriores:

$$I3 = \frac{POAD}{RegOA} \tag{5.23}$$

I4: Proporción de profesores jubilables.

Este indicador se construye con base en la variable Pjub y el total de profesores del departamento, de la siguiente manera (5.24):

$$I4 = \frac{Pjub_d}{Ptotal_d} \tag{5.24}$$

Las funciones de pertenencia para este conjunto son:

- 1. Bajo: Se considera una proporción tolerable de profesores jubilables del departamento que no afecta en gran medida las necesidades.
- 2. Moderado: La proporción requiere de atención por encontrarse en un nivel que puede afectar la disponibilidad de profesores en los períodos próximos.

3. Alto: Se considera de alta prioridad la asignación de profesores para cubrir el aumento de la demanda próxima.

Figura 5.14: Funciones de pertenencia para I4.

R: La cantidad de profesores requeridos en el departamento estaría determinado por (5.25):

$$R = Preq_d - Pmej_d - Padm_d + Psob_d \tag{5.25}$$

Siendo el valor de $Preq_d$ siempre menor o igual a cero, se adicionan al déficit los profesores que están en mejoramiento, y los profesores no disponibles debido a las cargas administrativas. Además, se suman los profesores que sí estan disponibles según las horas sobrantes en la carga académica $(Psob_d)$, de ésta manera se obtiene el valor total para el déficit de profesores R que presenta el departamento d. R será un valor menor o igual que cero (≤ 0) .

Los primeros 4 indicadores serán procesados bajo el sistema difuso a través de un conjunto de reglas, para obtener como resultado la prioridad de cada departamento en la asignación de cargos. Este conjunto de salida cuenta con 6 funciones de pertenencia (ver figura 5.15):

- 1. Mínimo: No tiene prioridad alguna.
- 2. Muy baja: Prioridad es de muy poca relevancia para optar a cargos nuevos.
- 3. Baja: Poca urgencia para la asignación de cargos.
- 4. Media: Prioridad media, con oportunidad a asignaciones en última instancia.
- 5. Alta: Prioridad relevante para la asignación de nuevos cargos en primera instancia.
- 6. Muy Alta: Prioridad suficiente para la asignación de cargos urgente en primera instancia.

Figura 5.15: Funciones de pertenencia para Prioridad.

Reglas del sistema difuso

La cantidad de reglas totales, según el número de conjuntos y funciones de pertenencia, son 375. Para definir la salida de cada regla, se procedió a evaluarlas cuidadosamente considerando analogías y equivalencias en reglas similares. El conjunto de reglas se muestran en los apéndices ??, ??, ??, ??.

En la fase final de asignación, los cargos se asignan según el valor defusificado de la salida obtenida. El conjunto salida da como resultado un valor entre 0 y 100, el cual será tomado como el porcentaje de cargos que deben ser asignados al departamento. Se genera una lista ordenada de los departamentos según su prioridad.

Una vez obtenida la prioridad para cada departamento, se aplica este porcentaje al número de cargos requeridos. De esta forma se obtiene la cantidad de cargos que deberían asignarse, ajustada al rendimiento que tiene el departamento en las actividades. El número de cargos requeridos refleja el déficit de profesores que demuestra tener el departamento según demanda y oferta de profesores. Los cálculos correspondientes fueron especificados anteriormente. Esta lista de información estará ordenada según la prioridad obtenida.

Finalmente, en el momento de la asignación de cargos, se debe tener conocimiento de cuántos cargos están disponibles para la repartición. Teniendo la lista ordenada de prioridades y cargos que deberían asignarse, se realiza la asignación según los cargos disponibles hasta agotarse.

En este caso existe la posibilidad de que los cargos no sean suficientes para cubrir la necesidad de todos los departamentos involucrados según el orden de la lista. El orden de la lista justifica la prioridad de cada departamento, en este sentido los que están en posición menos privilegiada pueden no percibir asignación alguna según la disponibilidad. El escenario ideal sería aquel en el que los cargos disponibles son suficientes para cubrir las asignaciones sugeridas por el sistema, pero el hecho de la escasez de cargos precisamente es la base para el ordenamiento por prioridades de la lista resultado

según el rendimiento.

En la tabla 5.10 se muestra un ejemplo de asignación, con la lista ordenada según las prioridades, suponiendo que se tienen 5 cargos disponibles para la asignación. Nótese que en este caso se pudo cubrir la demanda del departamento con menos prioridad sólo parcialmente.

Departamento	Prioridad	R	Cargos a asignar	Cargos asignados
A	60	5	3	3
В	45	3	1,35	1,35
C	30	4	1,2	0,65

Tabla 5.10: Asignación de cargos.

*Se recuerda que se interpreta la cantidad asignada en base a cargos de DE (ver tabla 3.1); es decir, de 40 horas:

cargo DE: 1
 cargo TC: 0,87
 cargo MT: 0,45
 cargo Tconv: < 0,3

Con esta nueva estructura se espera abarcar la información de influencia en la necesidad de los departamentos, ya que toma en cuenta un amplio número de factores referidos a la situación estudiantil y docente, administrativa, de investigación y extensión simultáneamente. En la figura 5.16, se ilustra el proceso y las variables involucradas.

Figura 5.16: Estructura definitiva para el sistema difuso.

En las figuras 5.17, 5.18, 5.19, se muestran con mayor detalle los datos que son de influencia para cada variable calculada.

Figura 5.17: Diagrama de influencias. Profesores demandados, disponibles y jubilables.

Figura 5.18: Diagrama de influencias. Cargos administrativos, horas sobrantes, mejoramiento.

Figura 5.19: Diagrama de influencias. Investigación, extensión, otras actividades de docencia.

Capítulo 6

Conclusiones

Se pudo corroborar que el uso de la Lógica Difusa resulta ser un buen enfoque para el tratamiento del problema de asignación, permitió de manera flexible la inclusión de variables y su manejo e interpretación para los resultados. La naturaleza del problema, que involucra información imprecisa y subjetiva, puede suponer un riesgo en la construcción de modelos, por lo que debe definirse y ajustarse correctamente para el problema en cuestión, para que arroje resultados veraces. La Lógica Difusa se muestra como una herramienta potente que ataca este tipo de obstáculos.

Durante la realización de este proyecto se pudo observar cómo se evalúan las actividades de los profesores de la Facultad de Ingeniería, y los factores principales involucrados en el proceso. Los análisis realizados como base para el inicio de este proyecto, sobre este sistema de evaluación, permitieron detallar algunos puntos importantes relacionados con su aplicación, tal como especifican los reglamentos correspondientes. A partir de dichos análisis, como se expone en el informe anexo a este documento, se pretende aportar ideas y recomendaciones para mejorar la evaluación de los profesores por esta vía. Se facilita el uso de nuevos formatos dirigidos a este fin. Para mejorar la utilidad de los valores recogidos por los informes y resúmenes de actividades se indican algunos puntos que fueron observados durante el proyecto.

El modelo elaborado abarca las áreas de actividades que tienen lugar en la Facultad de Ingeniería: docencia, investigación, extensión, mejoramiento y administración, tal como se propuso estudiar en este proyecto; además de los aspectos relacionados con las demandas a nivel estudiantil, y la disponibilidad y rendimiento de los profesores. Durante las pruebas realizadas se pudo comprobar el funcionamiento adecuado del modelo, verificando los cambios en los resultados, mediante variaciones sobre los datos utilizados. Las reglas que conforman el Sistema de Inferencia Difuso pueden ser modificadas cuidadosamente de acuerdo con las demandas del momento, igualmente pueden ser modificadas las constantes requeridas, establecidas mediante consenso, de forma que el modelo

6.1 Recomendaciones 65

cuenta con una capacidad de adaptación deseable para la evaluación de los conceptos subjetivos inherentes al problema de asignación de cargos. La extrapolación del modelo a otras unidades académicas es posible, en la medida que se adapten los registros necesarios consistentes en los datos de entrada requeridos. Debido a estas razones se puede concluir que el modelo logró cubrir los objetivos planteados en el proyecto, y además cuenta con el potencial necesario para apoyar la toma de decisiones en la Facultad de Ingeniería de la ULA.

Las herramientas utilizadas para la implementación del modelo se adaptaron con facilidad a las necesidades que se presentaron en cuanto al manejo de grandes cantidades de datos y cálculos estadísticos, por medio del lenguaje de programación R, y la fase correspondiente a los sistemas de inferencia difusa se completó de manera satisfactoria, a través del software matemático Matlab[®].

6.1 Recomendaciones

Sobre los datos y su recolección, se recomienda que su recopilación, orden y archivado correspondientes a los profesores de los departamentos, sean realizados bajo pautas estándares de tal manera que sea relativamente fácil su ubicación, revisión y consulta. El registro digital de estos datos, adicional al registro físico, permitiría un acceso más rápido de la información disponible, así como también la elaboración fiable de los resúmenes de actividades para cada departamento.

Se recomienda una cuidadosa revisión y verificación de los informes entregados, así como también su agrupamiento en los resúmenes, tanto por parte del profesor remitente como por parte del personal encargado de su archivo. De esta forma se asegura que los valores sean confiables y útiles para el departamento.

Los profesores y demás miembros involucrados en su evaluación, deben estar suficientemente informados sobre los reglamentos, sus contenidos, sus deberes y derechos. De esta forma mejorar el registro de informes de actividades cumplidas y propuestas, y la comprensión e interpretación de los valores que ellos contienen. Con un adecuado conocimiento de los reglamentos y deberes se disminuyen las dudas y los errores causados debido a la confusión al momento del registro de informes, como el llenado de tareas compartidas, las tareas que pueden ser incluidas, los porcentajes y horas tabuladas, entre otros. Se espera que los nuevos formatos elaborados sean utilizados correctamente con este propósito.

La automatización de la recolección de los registros de evaluación y demás información de los profesores y actividades que sean de importancia para los informes, se perfila como un posterior proyecto que pudiese ponerse en marcha para la mejora de los procesos de asignación de cargos, y en general para el análisis del rendimiento de los profesores. Esto puede estar dirigido a la construcción de

6.1 Recomendaciones 66

un sistema para reportes y evaluación profesoral. Debido a las incidencias y confusiones encontradas durante la revisión de informes y resúmenes, cabe preguntarse si la estructura del reglamento para la evaluación es la adecuada o debe adaptarse a las necesidades actuales del personal docente.

Para el mejoramiento del modelo planteado se sugiere recoger mayor información y estudiar más a fondo el problema, dando mayor importancia a la opinión de los miembros involucrados en la asignación de cargos, consultando las visiones sobre la importancia de las áreas estudiadas y la interpretación de las soluciones, lo cual sirve como conocimiento experto que imprima mayor utilidad a los resultados.

Bibliografía

- Banks, J., Carson, J. S., Nelson, B. L., y Nicol, D. M. (2010). Discrete-Event System Simulation. Pearson, 5 edition.
- Cerrada, M. y Rodríguez, W. (2001). Introducción a la técnicas de computación inteligente, chapter Lógica Difusa, pages 53–101.
- Fawcett, J., Quin, L., y Ayers, D. (2012). Beginning XML. Wrox, 5 edition.
- Fundation, D. S. (2015). The web framework for perfectionists with deadlines. 5 edition.
- Krasner, G. E. y Pope, S. T. (1988). A description of the model-view-controller user interface paradigm in the smalltalk-80 system. Technical report, ParcPlace Systems, Inc., Mountain View.
- Machuca, C. A. M. (2011). Estado del arte: Servicios web. Technical report, Universidad Nacional de Colombia, Bogotá, Colombia.
- Marcano, G. (2015). Desarrollo de un servicio web para el simulador de eventos discretos galatea. Technical report, Universidad de Los Andes, Merida, Venezuela.
- Pantoja, E. B. (2004). El patrón de diseño modelo-vista-controlador (mvc) y su implementación en java swing. Technical report, ParcPlace Systems, Inc.
- Quiroga, M. G. (2011). Estado del arte: Servicios web. Technical report, Universidad Politecnica de Catalunya, Barcelona, España.
- Rengifo, B. (2011). Desarrollo de un servicio web para la modeloteca del sistema nacional de simulación. Technical report, Universidad de Los Andes, Merida, Venezuela.
- Rodríquez, J. (2010). Cálculo de capacidad de matrícula y demanda de profesores.
- Santana, Y. C., Ángel Mateo Pla, M., y Terol, J. P. (2004). Herramienta de simulacion distribuida mediantes agentes moviles jade. Technical report, Conferência IADIS Ibero-Americana.
- Taha, H. (2014). Investigación de Operaciones. Pearson, 9 edition. Edición traducida al español.

BIBLIOGRAFÍA 68

Uzcátegui, M., Dávila, J., y Tucci, K. (2011). Galatea: una historia de modelado y simulación. Revista Ciencia e Ingeniería, (1316-7081):85–94.

Velez, M. y Montoya, J. (2007). Metaheurísticos: Una alternativa para la solución de problemas combinatorios en administración de operaciones. *Revista EIA*, (8):99–115.

Viloria, F. J. (2013-2015). Cálculo de demanda de profesores.