COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Preliminaries

Paul Rosen Assistant Professor University of South Florida

BASIC OBJECTS OF CG

- POINT—SPECIFIED BY TWO COORDINATES (X,Y)
- LINE—EXTENDS TO INFINITY IN BOTH DIRECTIONS
- LINE SEGMENT—SPECIFIED BY 2 ENDPOINTS
- RAY—EXTENDS TO INFINITY IN I DIRECTION

BASIC OBJECTS OF CG

- Polygon
 - We assume edges do not cross
- CONVEX POLYGON
 - Every interior angle is at most 180 degrees
 - Precise definition of *convex*: For any 2 points inside the polygon, the line segment joining them lies entirely inside the polygon (we'll cover this later)

What's the distance between these points?

Choice 1: difference between

 $P_2(x_2, y_2)$ the point locations

Choice 2: Euclidean distance

Choice 3: Commute time

distance

Choice 4: Ill-defined question

EUCLIDEAN DISTANCE

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

EUCLIDEAN DISTANCE

- Performance Trick
 - Square root is kind of slow and imprecise
 - If we only need to check whether the distance is less than some certain length, say $\cal R$

if
$$((x_2 - x_1)^2 + (y_2 - y_1)^2 < R^2)$$
...

VECTORS

$$\overrightarrow{v_{12}} = P_2 - P_1$$
 $= \langle x_2 - x_1, y_2 - y_1 \rangle$
 $P_2(x_2, y_2)$

VECTOR LENGTH/MAGNITUDE

VECTOR LENGTH/MAGNITUDE

Equivalent to Euclidean distance...

$$\alpha = \tan^{-1} \frac{y}{x}$$
or
$$\alpha = \arctan\left(\frac{y}{x}\right)$$
(results in radians, not degrees)

Problems?

- PROBLEM I: DIVISION BY ZERO
 - When α is $\frac{\pi}{2}$ or $-\frac{\pi}{2}$
- PROBLEM 2: $\frac{y}{x}$ DOESN'T GIVE A I-TO-I MAPPING

- PROBLEM I: DIVISION BY ZERO
 - When α is $\frac{\pi}{2}$ or $-\frac{\pi}{2}$
- PROBLEM 2: $\frac{y}{x}$ DOESN'T GIVE A I-TO-I MAPPING
- SOLUTION: $\alpha = \operatorname{atan} 2(y, x)$
 - Note: the arguments are (y, x), not (x, y)!!!

DOT PRODUCT

CROSS PRODUCT

$$\overrightarrow{a} \times \overrightarrow{b} = a_x b_y - a_y b_x$$

$$\overrightarrow{b} \times \overrightarrow{a} = b_x a_y - b_y a_x$$

$$\cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|} \qquad \sin \alpha = \frac{\|\overrightarrow{a} \times \overrightarrow{b}\|}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|}$$

ORIENTATION OF TRIANGLES

How do you use the tools just discussed to determine orientation?

ORIENTATION OF TRIANGLES

How do you use the tools just discussed to determine

orientation?

<u>Choice 1</u>: difference in angles

Choice 2: dot product

<u>Choice 3</u>: cross product

STORING POINTS

X List	Y List
x_1	y_1
x_2	y_2
x_3	y_3
x_4	y_4
•••	•••
x_n	y_n

STORING EDGES AS INDICES

Edge List		
0	3	
1	3	
2	3	
0	1	
•••		

Point List	
0	(x_1, y_1)
1	(x_2, y_2)
2	(x_3, y_3)
3	(x_4, y_4)
•••	•••
n-1	(x_n, y_n)

STORING POINTS AS POINTERS

STORING TRIANGLES WITH INDICES

Triangle List		
0	1	2
0	1	3
	•••	

Point List	
0	(x_1,y_1)
1	(x_2, y_2)
2	(x_3, y_3)
3	(x_4, y_4)
•••	•••
n-1	(x_n, y_n)

STORING TRIANGLES WITH INDICES

Point List	
0	(x_1,y_1)
1	(x_2, y_2)
2	(x_3, y_3)
3	(x_4, y_4)
•••	•••
n-1	(x_n, y_n)

STORING POLYGONS WITH INDICES

Ро	lygo	on L	ist
0	2	1	3
	•••		

Point List	
0	(x_1,y_1)
1	(x_2,y_2)
2	(x_3, y_3)
3	(x_4, y_4)
•••	•••
n-1	(x_n, y_n)

STORING POLYGONS WITH INDICES

Ро	lygo	on L	ist
0	2	1	3
	•••		

Point List	
0	(x_1,y_1)
1	(x_2, y_2)
2	(x_3,y_3)
3	(x_4, y_4)
•••	•••
n-1	(x_n, y_n)

Storing Polygons with Indices

Point List	
0	(x_1, y_1)
1	(x_2, y_2)
2	(x_3, y_3)
3	(x_4, y_4)
•••	•••
n-1	(x_n, y_n)

LINEAR INTERPOLATION

$$P_2(x_2, y_2)$$

LINEAR INTERPOLATION

LINEAR INTERPOLATION

$$lerp(P_0, P_1, 1)$$

$$lerp(P_0, P_1, 0.8)$$

$$lerp(P_0, P_1, 0.4)$$

$$lerp(P_0, P_1, 0.4)$$

$$P_2(x_2, y_2)$$

$$lerp(P_0, P_1, 0)$$

$$P_1(x_1, y_1)$$

$$lerp(P_1, P_2, a) = P_1(1 - a) + P_2a$$

GRAPHS AND TREES

- A graph is construct of two finite sets
 - Vertices, $V = \{v_1, v_2, \dots, v_n\}$; Edges, $E = \{e_1, e_2, \dots, e_m\}$
- A walk from v_i to v_n is a sequence of edges $(v_i, v_j), (v_j, v_k), \dots, (v_m, v_n)$
- A path is a walk in which no edge is repeated
- A simple path is a path in which no vertex is repeated
- A cycle with base v_i is a walk from v_i to itself with no repeated edges
- A loop is an edge from a vertex to itself

TREES

 A tree is a directed graph that has no cycles, and that has one distinct vertex (the root)

FUNCTIONS

- A FUNCTION IS A RULE THAT ASSIGNS TO ELEMENTS OF ONE SET A UNIQUE ELEMENT OF ANOTHER SET
 - $f: S_1 \to S_2$,
 - Where the domain of f is a subset of S_1 and the range of f is the subset of S_2
 - f is a total function on S_1 if the domain of f is all of S_1 ; otherwise f is a partial function

RELATIONS

- Some functions can be represented by a set of pairs $\{(x_1,y_1),(x_2,y_2),...\}$, where x_i is an element in the domain of the function, and y_i is the corresponding value in its range
- For such a set to define a function, each x_i can occur at most once as the first element s_1 R s_2 of a pair.
- If this is not satisfied, the set is called a relation.

FUNCTIONS

- THE BEHAVIOR OF FUNCTIONS:
 - Big O
 - f has order at most g
 - $f(n) \le c|g(n)| \to f(n) = O(g(n))$
 - Big Omega
 - f has order at least g
 - $|f(n)| \ge c|g(n)| \to f(n) = \Omega(g(n))$
 - Big Theta
 - f has the same order of magnitude as g
 - $c_1|g(n)| \le |f(n)| \le c_2|g(n)| \to$ $f(n) = \Theta(g(n))$

FUNCTION EXAMPLES

- THE BEHAVIOR OF FUNCTIONS:
 - Big O
 - f has order at most g
 - $f(n) \le c|g(n)| \to f(n) = O(g(n))$
 - Big Omega
 - f has order at least g
 - $|f(n)| \ge c|g(n)| \to f(n) = \Omega(g(n))$
 - Big Theta
 - f has the same order of magnitude as g
 - $c_1|g(n)| \le |f(n)| \le c_2|g(n)| \to$ $f(n) = \Theta(g(n))$

- $f(n) = 2n^2 + 4n,$
- $g(n) = n^3$,
- $h(n) = 9n^2 + 300$

TRUE/FALSE

1.
$$f(n) = O(g(n))$$
?

2.
$$g(n) = \Omega(h(n))$$
?

3.
$$f(n) = \Theta(h(n))$$
?

4.
$$O(n) + O(n) = 2(O(n))$$
?

Proof Techniques

 A PROOF IS A SEQUENCE OF STEPS THAT LEAD FROM SOME KNOWN FACTS TO THE DESIRED CONCLUSION; EACH STEP MUST BE OBVIOUSLY CORRECT

Proof techniques

- PROOF BY CONTRADICTION:
 - To prove some fact P, we show that "not P" is false
 - That is, we suppose "not P" and demonstrate that it leads to an obviously wrong result
 - E.g.: Prove that $\sqrt{2}$ is not rational. Suppose that is rational, that is $\sqrt{2} = \frac{m}{n}$, where n and m do not have common factors

PROOF TECHNIQUES

- PROOF BY INDUCTION
 - We show that some fact is true for every natural number n, using two arguments:
 - Base: It is true for n = 1 (or for some small number)
 - Step: If it is true for n, then it is true for n + 1
 - E.g.: prove that $1 + 2 + \cdots + n = n(n+1)/2$

