Recommender System

Spring 2024

Hongchang Gao

Review

Step 1: Mean subtraction

$$\tilde{X} = X - \frac{1}{n} X \mathbf{1} \mathbf{1}^T$$

• Step 2: Compute the covariance matrix

$$A = \tilde{X}\tilde{X}^T$$

Step 3: Eigen-decomposition

$$A = U\Sigma U^T$$

• Step 4: Keep the largest k eigenvectors

$$W = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k] \in \mathbb{R}^{d \times k}$$

Introduction

- Recommender Systems
 - A particular type of personalized Web-based applications
 - Provide users personalized recommendations about content they may be interested
- Example:
 - Amazon: product recommendation
 - Netflix: movies recommendation
 - Google: news recommendation

Example

Kindle □□□

Book Recommendation: a lot of sales from recommendations

Paperback

Have one to sell? Sell on Amazon

Hardcover

Just released Transformers for Natural Language < Transformers for Natural

Language Processing: Build innovative deep neural network ... Denis Rothman **★★★★☆ 20** Paperback \$39.96 yprime

Controlled Experiments (A Practical Guide to A/B Testing) Ron Kohavi **★★★★☆** 140 Paperback

\$34.99 yprime

Hands-On Recommendation Systems with Python: Start building .. Rounak Banik **★★★☆☆ 20** Paperback \$29.99 \prime

The Economics of Data. Analytics, and Digital Transformation: The theorems, laws, a... Bill Schmarzo **★★★★☆ 24** Paperback

\$29.99 \rime

Artificial Intelligence: System Design Interview What You Need to Know - An insider's guide, About Machine Learning. Second Edition Alex Xu Robotics, De... **** 495 Neil Wilkins ★★★★☆ 13 Paperback \$24.99 \(\text{prime} \)

Building a Recommendation System with R Suresh K. Gorakala ★★★☆☆ 14 Paperback \$29.99 \rime

Customers who viewed this item also viewed

Recommender Systems Statistical Methods for The Textbook **Recommender Systems** > Charu C. Aggarwal Deepak K. Agarwa **★★★★☆ 42** ***** Hardcover Hardcover \$53.99 Prime FREE Delivery prime FREE Delivery

Practical Recommender Systems > Kim Falk **★★★☆☆20** Paperback \$45.49

prime FREE Delivery

\$13.34 \rightarrow prime

Hands-On Recommendation Systems with Python:... > Rounak Banik **★★★☆☆ 20** Paperback \$29.99

√prime FREE Delivery

SYSTEM DESIGN

INTERVIEW ♣ 🖳 ⊕ 🛢

Recommendation **Engines (The MIT Press** Essential Knowledge... > Michael Schrage **★★★☆☆ 40** Paperback \$14.97 ✓prime FREE Delivery

An Introduction to Statistical Learning: with Applications in R (Springer Texts in... > Gareth James **★★★★★** 1,086 Hardcover \$43.95

Recommender System

- 1. Content-based filtering
 - recommendations based on item descriptions/features

Content-based: "Show me more of the same what I've liked"

Recommender System

- 2. Collaborative filtering
 - Look at the ratings of like-minded users to provide recommendations
 - Users who have expressed similar interests in the past will share common interests in the future.

Collaborative Filtering

- Given
 - Set of users
 - Set of items (movies, books, news, ...)
 - Feedback (ratings, ...)
- Predict the preference of each user for each item
 - Assumption: similar feedback ←→ similar taste

	Avatar	The Matrix	Up
Marco	?	4	2
Luca	3	2	?
Anna	5	?	3

Collaborative Filtering

Memory based CF

- Memory based collaborative filtering
 - User based CF
 - Item based CF

- User-CF:
 - Idea
 - If users have similar tastes in the past, they will have similar tastes in the future
 - Recommend item i to Alice?
 - Find a set of users (peers/nearest neighbors) who liked the same items as the target user (Alice) in the past and who have rated item i

• Illustration:

- A database of ratings of the current user, Alice, and some other users is given
- Determine whether Alice will like or dislike *Item5*, which Alice has not yet rated or seen

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

• Questions:

- How do we measure similarity?
- How many neighbors should we consider?
- How do we generate a prediction from the neighbors' ratings?

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

- How to measure the user similarity?
 - Pearson correlation

a, b: users

 $r_{a,p}$: rating of user a for item p

P: set of items, rated by both a and b

• Possible similarity values between -1 and 1

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

Pearson correlation

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

	Item1	Item2	Item3	Item4	ltem5	
Alice	5	3	4	4	?	ı
User1	3	1	2	3	3	•
User2	4	3	4	3	5	4
User3	3	3	1	5	4	4
User4	1	5	5	2	1	4

- How to make predictions?
 - Use similarity threshold or fixed number of neighbors

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

- Calculate, whether the neighbors' ratings for the unseen item are higher or lower than their average
- Combine the rating differences use the similarity with a as a weight
- Add/subtract the neighbors' bias from the active user's average and use this
 as a prediction

• Prediction

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

	Item1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	ı
User1	3	1	2	3	3	•
User2	4	3	4	3	5	•
User3	3	3	1	5	4	•
User4	1	5	5	2	1	•

- Idea:
 - Use the similarity between items (and not users) to make predictions

• Idea:

• Use the similarity between items (and not users) to make predictions

• Steps:

- Look for items that are similar to item5
- Take Alice's ratings for these items to predict the rating for item5

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

- How to measure the item similarity?
 - Cosine similarity

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|}$$

• Ratings are seen as vector in n-dimensional space

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

How to make prediction?

$$pred(u, p) = \frac{\sum_{i \in ratedItem(u)} sim(i, p) * r_{u,i}}{\sum_{i \in ratedItem(u)} sim(i, p)}$$

- Neighborhood size is typically also limited to a specific size
- Not all neighbors are taken into account for the prediction

	Item1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Evaluation

- 1. MAE and RMSE
 - Mean Absolute Error (MAE) computes the deviation between predicted ratings and actual ratings

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$$

• Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - r_i)^2}$$

Evaluation

Actually good
Item 237
Item 899

Recommended (predicted as good)	
Item 345	
Item 237	
Item 187	

- 2. Precision and Recall
 - Precision: a measure of exactness, determines the fraction of relevant items retrieved out of all items retrieved
 - E.g. the proportion of recommended movies that are actually good

$$Precision = \frac{tp}{tp + fp} = \frac{|good\ movies\ recommended|}{|all\ recommendations|}$$

- Recall: a measure of completeness, determines the fraction of relevant items retrieved out of all relevant items
 - E.g. the proportion of all good movies recommended

$$Recall = \frac{tp}{tp + fn} = \frac{|good\ movies\ recommended|}{|all\ good\ movies|}$$