CTRP - A Toy Example

Data. Considering f = 5 predictors and B = 10 permutations, we simulate a $B \times f$ matrix of global test statistics:

		\mathbf{G}		
(1)	(2)	(3)	(4)	(5)
28.42	9.36	9.40	16.68	6.12
0.10	1.37	0.56	0.06	0.08
0.69	4.33	0.36	3.07	0.83
1.07	1.11	0.26	30.31	8.55
0.22	2.87	1.02	7.45	0.48
1.83	2.85	0.02	0.04	0.04
17.68	6.00	1.06	1.82	1.52
1.77	0.29	4.07	26.12	0.26
2.71	8.47	4.42	0.37	5.83
1.14	24.06	2.41	0.03	8.84

Assume that we want to test $S = \{3\}$ with significance level $\alpha = 0.20$.

Shortcut. The supersets of S have sizes 1 + v with $v = 0, \dots, 4$:

We define

- **D**, matrix of the centered test statistics in $F \setminus S$, where the indices appear in the order (5, 2, 4, 1) (since $g_5 \leq g_2 \leq g_3 \leq g_4 \leq g_1$);
- R, matrix obtained from D by sorting the elements within each row in decreasing order.

The lower and upper critical values, L_v and U_v , are the $(1-\alpha)$ -quantiles of

$$\mathbf{d}_{\tilde{V}} = \mathbf{d}_3 + \sum_{i=1}^{v} \mathbf{D}_i \qquad \qquad \mathbf{u}_v = \mathbf{d}_3 + \sum_{i=1}^{v} \mathbf{T}_i,$$

respectively.

\mathbf{d}_S	D				\mathbf{R}			
(3)	(5)	(2)	(4)	(1)				
0.00	0.00	0.00	0.00	0.00	0.00 (1) 0.00 (4) 0.00 (2) 0.00 (5)	_		
-8.84	-6.03	-7.99	-16.62	-28.32	-6.03 (5) $-7.99 (2)$ $-16.62 (4)$ $-28.32 (1)$.)		
-9.04	-5.29	-5.02	-13.61	-27.72	-5.02(2) $-5.29(5)$ $-13.61(4)$ $-27.72(1)$.)		
-9.14	2.43	-8.25	13.63	-27.34	13.63 (4) 2.43 (5) -8.25 (2) -27.34 (1)	.)		
-8.38	-5.63	-6.49	-9.23	-28.19	-5.63 (5) $-6.49 (2)$ $-9.23 (4)$ $-28.19 (1)$.)		
-9.38	-6.08	-6.51	-16.64	-26.59	-6.08 (5) $-6.51 (2)$ $-16.64 (4)$ $-26.59 (1)$.)		
-8.34	-4.59	-3.36	-14.86	-10.74	-3.36(2) $-4.59(5)$ $-10.74(1)$ $-14.86(4)$	F)		
-5.33	-5.85	-9.07	9.44	-26.65	9.44(4) $-5.85(5)$ $-9.07(2)$ $-26.65(1)$.)		
-4.98	-0.28	-0.89	-16.31	-25.71	-0.28 (5) -0.89 (2) -16.31 (4) -25.71 (1	.)		
-6.99	2.72	14.70	-16.65	-27.27	14.70 (2) $2.72 (5)$ $-16.65 (4)$ $-27.27 (1)$.)		

Since the first column of **R** having no positive elements has index w = 3, we start by computing L_v for v = 0, 1, 2.

No non-rejection is found, and thus we proceed by examining v > 2, until we find either a rejection or a negative U_v . Here U_v becomes negative for v = 3, hence the supersets with v = 3, 4 are automatically rejected.

Finally, we determine the indecisive values by looking at U_v . Here they are v=1,2.

Figure 1: Upper (red) and lower (blue) critical values and observed values (zero, black) by additional superset size v. The bounds for v = 4 have not been computed in the analysis.

\overline{v}	0	1	2	3	4
U_v	-5.26	4.19	1.38	-5.24	(-32.53)
L_v	-5.26	-5.06	-4.93	-5.24	(-32.53)
rejection	Τ	?	?	${ m T}$	${ m T}$

Branch and Bound when removing the highest statistic. The last index in \mathbf{D} , i = 1, determines the branching rule. We explore first the subspace where the index is removed.

$$\begin{array}{|c|c|c|c|c|}\hline & \text{remove} & & \text{keep} \\ \hline S \subseteq V \subseteq F \setminus \{1\} & & S \cup \{1\} \subseteq V \subseteq F \\ \hline 2 & \{2,3,4\} & \{2,3,5\} & \{3,4,5\} \\ 1 & \{2,3\} & \{3,4\} & \{3,5\} & & \{1,3,4\} & \{1,3,5\} \\ \hline \end{array}$$