

26 SEPTEMBER 2024

ASE 367K: FLIGHT DYNAMICS

TTH 09:30-11:00 CMA 2.306

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Topics for Today

- Topic(s):
 - Gliding Flight
 - Climbing Flight
 - Flight Envelope
 - Maneuvering

GLIDING FLIGHT

Copyrighted by Robert Stengel and used with permission: http://www.stengel.mycpanel.princeton.edu/MAE331.html

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Equilibrium Gliding Flight

$$C_{D} \frac{1}{2} \rho V^{2} S = -W \sin \gamma$$

$$C_{L} \frac{1}{2} \rho V^{2} S = W \cos \gamma$$

$$\dot{h} = V \sin \gamma$$

$$\dot{r} = V \cos \gamma$$

Gliding Flight

- Thrust = 0
- Flight path angle < 0 in gliding flight
- Altitude is decreasing
- Airspeed ~ constant
- Air density ~ constant

Gliding flight path angle

$$\tan \gamma = -\frac{D}{L} = -\frac{C_D}{C_L} = \frac{\dot{h}}{\dot{r}} = \frac{dh}{dr}; \quad \gamma = -\tan^{-1}\left(\frac{D}{L}\right) = -\cot^{-1}\left(\frac{L}{D}\right)$$

Corresponding airspeed

$$V_{glide} = \sqrt{\frac{2W}{\rho S \sqrt{C_D^2 + C_L^2}}}$$

Maximum Steady Gliding Range

Maximum Steady Gliding Range

- Glide range is maximum when γ is least negative, i.e., most positive
- This occurs at (L/D)_{max}

$$\gamma_{\text{max}} = -\tan^{-1}\left(\frac{D}{L}\right)_{\text{min}} = -\cot^{-1}\left(\frac{L}{D}\right)_{\text{max}}$$

$$\tan \gamma = \frac{\dot{h}}{\dot{r}} = negative \ constant = \frac{\left(h - h_o\right)}{\left(r - r_o\right)}$$

$$\Delta r = \frac{\Delta h}{\tan \gamma} = \frac{-\Delta h}{-\tan \gamma} = maximum \ when \ \frac{L}{D} = maximum$$

Sink Rate, m/s

Lift and drag define γ and V in gliding equilibrium

$$D = C_D \frac{1}{2} \rho V^2 S = -W \sin \gamma$$

$$\sin \gamma = -\frac{D}{W}$$

$$L = C_L \frac{1}{2} \rho V^2 S = W \cos \gamma$$

$$V = \sqrt{\frac{2W \cos \gamma}{C_L \rho S}}$$

$$L = C_L \frac{1}{2} \rho V^2 S = W \cos \gamma$$

$$V = \sqrt{\frac{2W \cos \gamma}{C_L \rho S}}$$

Sink rate = altitude rate, dh/dt (negative)

$$\begin{split} \dot{h} &= V \sin \gamma \\ &= -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \left(\frac{D}{W}\right) = -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \left(\frac{L}{W}\right) \left(\frac{D}{L}\right) \\ &= -\sqrt{\frac{2W \cos \gamma}{C_L \rho S}} \cos \gamma \left(\frac{1}{L/D}\right) \end{split}$$

Conditions for Minimum Steady Sink Rate

- Minimum sink rate provides maximum endurance
- Minimize sink rate by setting $\partial (dh/dt)/\partial C_L = 0$ (cos $\gamma \sim 1$)

$$\begin{split} \dot{h} &= -\sqrt{\frac{2W\cos\gamma}{C_L\rho S}}\cos\gamma\left(\frac{C_D}{C_L}\right) \\ &= -\sqrt{\frac{2W\cos^3\gamma}{\rho S}}\left(\frac{C_D}{C_L^{3/2}}\right) \approx -\sqrt{\frac{2}{\rho}\left(\frac{W}{S}\right)}\left(\frac{C_D}{C_L^{3/2}}\right) \end{split}$$

$$C_{L_{ME}} = \sqrt{\frac{3C_{D_o}}{\varepsilon}}$$
 and $C_{D_{ME}} = 4C_{D_o}$

L/D and V_{ME} for Minimum Sink Rate

$$\left(\frac{L}{D}\right)_{ME} = \frac{1}{4} \sqrt{\frac{3}{\varepsilon C_{D_o}}} = \frac{\sqrt{3}}{2} \left(\frac{L}{D}\right)_{\text{max}} \approx 0.86 \left(\frac{L}{D}\right)_{\text{max}}$$

$$V_{ME} = \sqrt{\frac{2W}{\rho S \sqrt{C_{D_{ME}}^2 + C_{L_{ME}}^2}}} \approx \sqrt{\frac{2(W/S)}{\rho}} \sqrt{\frac{\varepsilon}{3C_{D_o}}} \approx 0.76 V_{L/D_{\text{max}}}$$

CLIMBING FLIGHT

Copyrighted by Robert Stengel and used with permission: http://www.stengel.mycpanel.princeton.edu/MAE331.html

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Climbing Flight

Flight path angle

$$\dot{V} = 0 = \frac{\left(T - D - W \sin \gamma\right)}{m}$$

$$\sin \gamma = \frac{\left(T - D\right)}{W}; \quad \gamma = \sin^{-1} \frac{\left(T - D\right)}{W}$$

Required lift

$$\dot{\gamma} = 0 = \frac{\left(L - W\cos\gamma\right)}{mV}$$

$$L = W\cos\gamma$$

Rate of climb, dh/dt = Specific Excess Power

$$\dot{h} = V \sin \gamma = V \frac{\left(T - D\right)}{W} = \frac{\left(P_{thrust} - P_{drag}\right)}{W}$$

$$Specific Excess Power (SEP) = \frac{Excess Power}{Unit Weight} \equiv \frac{\left(P_{thrust} - P_{drag}\right)}{W}$$

Steady Rate of Climb

Climb rate

$$\dot{h} = V \sin \gamma = V \left[\left(\frac{T}{W} \right) - \frac{\left(C_{D_o} + \varepsilon C_L^2 \right) \overline{q}}{\left(W/S \right)} \right]$$

$$C_L = \left(\frac{W}{S} \right) \frac{\cos \gamma}{\overline{q}}$$

$$V = \sqrt{2 \left(\frac{W}{S} \right) \frac{\cos \gamma}{C}}$$

$$L = C_L \overline{q}S = W \cos \gamma$$

$$C_L = \left(\frac{W}{S}\right) \frac{\cos \gamma}{\overline{q}}$$

$$V = \sqrt{2\left(\frac{W}{S}\right) \frac{\cos \gamma}{C_L \rho}}$$

Note significance of thrust-to-weight ratio and wing loading

$$\dot{h} = V \left[\left(\frac{T}{W} \right) - \frac{C_{D_o} \overline{q}}{(W/S)} - \frac{\varepsilon(W/S) \cos^2 \gamma}{\overline{q}} \right] \\
= V \left(\frac{T(h)}{W} \right) - \frac{C_{D_o} \rho(h) V^3}{2(W/S)} - \frac{2\varepsilon(W/S) \cos^2 \gamma}{\rho(h) V} \right]$$

Condition for Maximum Steady Rate of Climb

$$\dot{h} = V\left(\frac{T}{W}\right) - \frac{C_{D_o}\rho V^3}{2(W/S)} - \frac{2\varepsilon(W/S)\cos^2\gamma}{\rho V}$$

Necessary condition for a maximum with respect to airspeed

$$\left| \frac{\partial \dot{h}}{\partial V} = 0 = \left[\left(\frac{T}{W} \right) + V \left(\frac{\partial T / \partial V}{W} \right) \right] - \frac{3C_{D_o} \rho V^2}{2(W/S)} + \frac{2\varepsilon (W/S) \cos^2 \gamma}{\rho V^2}$$

Maximum Steady Rate of Climb:

Propeller-Driven Aircraft

True Airspeed

At constant power

$$\frac{\partial P_{thrust}}{\partial V} = 0 = \left[\left(\frac{T}{W} \right) + V \left(\frac{\partial T / \partial V}{W} \right) \right]$$

• With $\cos^2 \gamma \sim 1$, optimality condition reduces to

$$\frac{\partial \dot{h}}{\partial V} = 0 = -\frac{3C_{D_o}\rho V^2}{2(W/S)} + \frac{2\varepsilon(W/S)}{\rho V^2}$$

Airspeed for maximum rate of climb at maximum power, P_{max}

$$V^{4} = \left(\frac{4}{3}\right) \frac{\varepsilon \left(W/S\right)^{2}}{C_{D_{o}} \rho^{2}}; \quad V = \sqrt{2 \frac{\left(W/S\right)}{\rho} \sqrt{\frac{\varepsilon}{3C_{D_{o}}}}} = V_{ME}$$

Maximum Steady Rate of Climb: Jet-Driven Aircraft

True Airspeed

Condition for a maximum at constant thrust and $\cos^2 \gamma \sim 1$

$$\frac{\partial \dot{h}}{\partial V} = 0$$

$$-\frac{3C_{D_o}\rho}{2(W/S)}V^4 + \left(\frac{T}{W}\right)V^2 + \frac{2\varepsilon(W/S)}{\rho} = 0$$

$$-\frac{3C_{D_o}\rho}{2(W/S)}(V^2)^2 + \left(\frac{T}{W}\right)(V^2) + \frac{2\varepsilon(W/S)}{\rho} = 0$$

Quadratic in V²

Airspeed for maximum rate of climb at maximum thrust, T_{max}

$$0 = ax^2 + bx + c \text{ and } V = +\sqrt{x}$$

FLIGHT ENVELOPE

Copyrighted by Robert Stengel and used with permission: http://www.stengel.mycpanel.princeton.edu/MAE331.html

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Flight Envelope Determined by Available Thrust

All altitudes and airspeeds at which an aircraft can fly

Additional Factors Define the Flight Envelope

Lockheed U-2 "Coffin Corner"

Stall buffeting and Mach buffeting are limiting factors Narrow corridor for safe flight

MANEUVERING

Copyrighted by Robert Stengel and used with permission: http://www.stengel.mycpanel.princeton.edu/MAE331.html

JOHN-PAUL CLARKE

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

Typical Maneuvering Envelope: V-n Diagram

- Maneuvering envelope: limits on normal load factor and allowable equivalent airspeed
 - Structural factors
 - Maximum and minimum achievable lift coefficients
 - Maximum and minimum airspeeds
 - Protection against overstressing due to gusts
 - Corner Velocity: Intersection of maximum lift coefficient and maximum load factor

- Typical positive load factor limits
 - Transport: > 2.5Utility: > 4.4Aerobatic: > 6.3
 - Fighter: > 9

- Typical negative load factor limits
 - Transport: < –1</p>
 - Others: < -1 to -3

Level Turning Flight

- Level flight = constant altitude
- Sideslip angle = 0
- Vertical force equilibrium

$$L\cos\mu = W$$

Load factor

$$n = \frac{L}{W} = \frac{L}{mg} = \sec \mu, "g"s$$

Thrust required to maintain level flight

$$T_{req} = \left(C_{D_o} + \varepsilon C_L^2\right) \frac{1}{2} \rho V^2 S = D_o + \frac{2\varepsilon}{\rho V^2 S} \left(\frac{W}{\cos \mu}\right)^2$$
$$= D_o + \frac{2\varepsilon}{\rho V^2 S} (nW)^2$$

Maximum Bank Angle in Steady Level Flight

Bank angle

$$\cos \mu = \frac{W}{C_L \overline{q}S}$$

$$= \frac{1}{n}$$

$$= W \sqrt{\frac{2\varepsilon}{(T_{req} - D_o)\rho V^2 S}}$$

$$\mu = \cos^{-1}\left(\frac{W}{C_L \overline{q}S}\right)$$

$$= \cos^{-1}\left(\frac{1}{n}\right)$$

$$= \cos^{-1}\left[W\sqrt{\frac{2\varepsilon}{\left(T_{req} - D_o\right)\rho V^2 S}}\right]$$

Bank angle is limited by

$$C_{L_{\max}}$$
 or T_{\max} or n_{\max}

Turning Rate and Radius in Level Flight

Turning rate

$$\dot{\xi} = \frac{C_L \overline{q} S \sin \mu}{mV}$$

$$= \frac{W \tan \mu}{mV}$$

$$= \frac{g \tan \mu}{V}$$

$$= \frac{\sqrt{L^2 - W^2}}{mV}$$

$$= \frac{W \sqrt{n^2 - 1}}{mV}$$

$$= \frac{\sqrt{(T_{req} - D_o)\rho V^2 S/2\varepsilon - W^2}}{mV}$$

Turning rate is limited by

$$C_{L_{\max}}$$
 or T_{\max} or n_{\max}

Turning radius

$$R_{turn} = \frac{V}{\dot{\xi}} = \frac{V^2}{g\sqrt{n^2 - 1}}$$

Maximum Turn Rates

