Physical Constants and Characteristics

Gravitational constant: $G = 6.673 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$

Stefan-Boltzmann constant: $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

GM Sun: $\mu_{Sun} = 1.327 \times 10^{20} \text{ m}^3 \text{ s}^{-2}$

GM Earth: $\mu_{Earth} = 3.986 \times 10^{14} \text{ m}^3 \text{ s}^{-2}$

GM Moon: $\mu_{Moon} = 4.903 \times 10^{12} \text{ m}^3 \text{ s}^{-2}$

GM Mercury: $\mu_{Mercury} = 2.094 \times 10^{13} \text{ m}^3 \text{ s}^{-2}$

GM Venus: $\mu_{Venus} = 3.249 \times 10^{14} \text{ m}^3 \text{ s}^{-2}$

GM Mars: $\mu_{Mars} = 4.269 \times 10^{13} \text{ m}^3 \text{ s}^{-2}$

GM Jupiter: $\mu_{\text{Jupiter}} = 1.267 \times 10^{17} \text{ m}^3 \text{ s}^{-2}$

Solar Constant: $S = 1.361 \times 10^3 \text{ W m}^{-2} \text{ at } 1 \text{ AU}$

Sun radius (equatorial): $R_{Sun} = 6.955 \times 10^8 \, \text{m}$

Astronomical Unit: $1 AU = 1.496 \times 10^{11} \text{ m}$

Earth mass: $M_{Earth} = 5.973 \times 10^{24} \text{ kg}$

Earth radius (equatorial): $R_{Earth} = 6.378 \times 10^6 \text{ m}$

Earth's gravitational acceleration: $g = 9.80665 \text{ m s}^{-2}$

Sidereal day: 23h 56min 04.09 sec

Moon mass: $M_{Moon} = 7.348 \times 10^{22} \text{ kg}$

Moon radius: $R_{Moon} = 1.738 \times 10^6 \text{ m}$

Moon's mean distance from Earth: $d_{Moon} = 3.844 \times 10^8 \, \text{m}$

Mercury's mean distance from Sun: $D_{Mercury} = 0.387 \text{ AU}$

Venus' mean distance from Sun: $D_{Venus} = 0.723 \text{ AU}$

Mars' mean distance from Sun: $D_{Mars} = 1.524 \text{ AU}$

Jupiter's mean distance from Sun: D_{Jupiter}= 5.204 AU