Développement 24. Surjectivité de l'exponentielle matricielle

Théorème 1. Soit $A \in \mathcal{M}_n(\mathbf{C})$ une matrice à coefficients complexes. Alors l'exponentielle matricielle complexe induit une surjection

$$\exp \colon \mathbf{C}[A] \longrightarrow \mathbf{C}[A]^{\times}.$$

Preuve Tout d'abord, vérifions que l'exponentielle matricielle envoie un élément de l'algèbre $\mathbf{C}[A]$ sur un élément du groupe $\mathbf{C}[A]^{\times}$. Soit $M \in \mathbf{C}[A]$. La matrice $\exp M$ est inversible d'inverse $\exp(-M)$. Par ailleurs, l'algèbre $\mathbf{C}[M]$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbf{C})$, donc elle est fermée dans $\mathcal{M}_n(\mathbf{C})$. Comme la matrice $\exp M$ est une limite d'éléments de $\mathbf{C}[M]$, on en déduit $\exp M \in \mathbf{C}[M] \subset \mathbf{C}[A]$. D'où $\exp M \in \mathbf{C}[A]^{\times}$.

Montrons que le groupe $\mathbf{C}[A]^{\times} = \mathbf{C}[A] \cap \mathrm{GL}_n(\mathbf{C})$ est un ouvert connexe de $\mathbf{C}[A]$. C'est un ouvert puisque le groupe $\mathrm{GL}_n(\mathbf{C})$ est un ouvert de $\mathscr{M}_n(\mathbf{C})$. Maintenant, on va montrer qu'il est connexe par arcs. Soient $M, N \in \mathbf{C}[A]^{\times}$. Considérons l'application

$$\Gamma: z \in \mathbf{C} \longmapsto zM + (1-z)N \in \mathbf{C}[A].$$

Le chemin $\Gamma|_{[0,1]}$ ne convient pas car il est seulement à valeurs dans l'algèbre $\mathbf{C}[A]$. Remédions-y. La fonction $P\colon z\in\mathbf{C}\longmapsto\det\Gamma(z)\in\mathbf{C}$ est polynomiale et elle n'est pas nul puisque $P(0)=\det M\neq 0$. Cette fonction ne possède donc qu'un nombre fini de zéro. Soit $\gamma\colon [0,1]\longrightarrow\mathbf{C}$ un chemin évitant ces zéros. Alors le chemin $\Gamma\circ\gamma$ relie les matrices M et N dans le groupe $\mathbf{C}[A]^\times$. Ce dernier est donc connexe par arcs et a fortiori connexe.

Revenons en arrière et justifions qu'on peut choisir un tel chemin γ . En effet, pour un nombre réel $a \in \mathbf{R}$, introduisons le chemin

$$\gamma_a : t \in [0,1] \longmapsto t + iat(1-t) \in \mathbf{C}.$$

Notons $Z \subset \mathbf{C}$ les zéros de la fonction P. On veut montrer qu'il existe un réel $a \in \mathbf{R}$ tel que $\operatorname{Im} \gamma_a \subset \mathbf{C} \setminus Z$. Raisonnons par l'absurde et supposons le contraire. Dans ce cas, pour tout réel $a \in \mathbf{R}$, il existe un réel $t_a \in [0,1]$ tel que

$$\gamma_a(t_a) \in Z$$
.

et, comme $\gamma_a(0)=0\notin Z$ et $\gamma_a(1)=1\notin Z$, on obtient $t_a\in]0,1[$. Mais on remarque que l'application $(t,a)\in]0,1[\times \mathbf{R}\longmapsto \gamma_a(t)$ est injective ce qui implique que l'application $a\in \mathbf{R}\longmapsto \gamma_a(t_a)\in Z$ est injective ce qui est impossible car l'ensemble Z est fini (cela marcherait également si on le supposais seulement dénombrable). Cela justifie donc l'existence d'un tel chemin γ .

Grâce à la connexité du groupe $\mathbf{C}[A]^{\times}$ et pour conclure, il suffit de montrer que l'image $\exp \mathbf{C}[A]$ est à la fois ouverte et fermée dans $\mathbf{C}[A]^{\times}$. Montrons d'abord qu'elle est ouverte. Le développement en série entière de la fonction $\exp \colon \mathscr{M}_n(\mathbf{C}) \longrightarrow \mathrm{GL}_n(\mathbf{C})$ donne la différentielle

$$d\exp(0) = \operatorname{Id}_{\mathscr{M}_n(\mathbf{C})} \in \operatorname{GL}(\mathscr{M}_n(\mathbf{C}))$$

et il en va de même pour la fonction exp: $\mathbf{C}[A] \longrightarrow \mathbf{C}[A]^{\times}$. Cette dernière étant de classe \mathscr{C}^1 , le théorème d'inversion locale assure l'existence d'un voisinage $\mathscr{U} \subset \mathbf{C}[A]$ de la matrice nulle et d'un voisinage $\mathscr{V} \subset \mathbf{C}[A]^{\times}$ de la matrice identité I_n tels que la restriction exp: $\mathscr{U} \longrightarrow \mathscr{V}$ soit un \mathscr{C}^1 -difféomorphisme. Comme l'algèbre $\mathbf{C}[A]$ est

commutative et l'exponentielle est un morphisme de groupes, on peut écrire

$$\mathbf{C}[A] \supset \exp(A + \mathcal{U}) = \exp A \exp \mathcal{U} = (\exp A)\mathcal{V}.$$

Comme $I_n \in \mathcal{V}$ et $\exp A \in GL_n(\mathbf{C})$, l'ensemble $(\exp A)\mathcal{V} \subset \exp \mathbf{C}[A]$ est un voisinage ouvert dans $\mathbf{C}[A]^{\times}$ de la matrice $\exp A$. Ceci montre que l'image $\exp \mathbf{C}[A]$ est ouverte dans $\mathbf{C}[A]^{\times}$.

Il reste à montrer qu'elle est fermée dans $\mathbf{C}[A]^{\times}$, c'est-à-dire que son complémentaire $\mathscr{X} := \mathbf{C}[A]^{\times} \setminus \exp \mathbf{C}[A]$ est ouvert. Pour cela, montrons l'égalité

$$\mathscr{X} = \bigcup_{B \in \mathscr{X}} B \exp \mathbf{C}[A]. \tag{1}$$

Pour l'inclusion \subset , toute matrice $M \in \mathcal{X}$ s'écrit $M \exp 0$ avec $0 \in \mathbf{C}[A]$. Réciproquement, soient $B \in \mathcal{X}$ et $C \in \mathbf{C}[A]$. Montrons que $M := B \exp C \in \mathcal{X}$. Comme les matrices B et $\exp C$ sont inversibles, leur produit M est bien inversible. Par ailleurs, comme $B = M \exp(-C) \notin \exp \mathbf{C}[A]$, on trouve $M \notin \exp \mathbf{C}[A]$. D'où $M \in \mathcal{X}$. Ceci conclut l'égalité (1). Comme les ensembles $B \exp \mathbf{C}[A]$ avec $B \in \mathcal{X}$ sont ouverts, l'ensemble \mathcal{X} est aussi ouvert.

En conclusion, l'image $\exp \mathbf{C}[A]$ est à la fois ouverte et fermée dans la partie connexe $\mathbf{C}[A]^{\times}$. On en déduit $\exp \mathbf{C}[A] = \mathbf{C}[A]^{\times}$.

Corollaire 2. L'exponentielle matricielle complexe induit une surjection

$$\exp: \mathscr{M}_n(\mathbf{C}) \longrightarrow \mathrm{GL}_n(\mathbf{C}).$$

De plus, l'image de l'exponentielle matricielle réelle est

$$\exp \mathcal{M}_n(\mathbf{R}) = \mathrm{GL}_n(\mathbf{R})^{\times 2} := \{ M^2 \mid M \in \mathrm{GL}_n(\mathbf{R}) \}.$$

Preuve Montrons la première affirmation. L'inclusion $\exp \mathcal{M}_n(\mathbf{C}) \subset \operatorname{GL}_n(\mathbf{C})$ a déjà été montrée. Réciproquement, soit $A \in \operatorname{GL}_n(\mathbf{C})$. Alors $A \in \mathbf{C}[A]^{\times}$, donc le théorème donne $A \in \exp \mathbf{C}[A] \subset \exp \mathcal{M}_n(\mathbf{C})$. Finalement, on obtient $\exp \mathcal{M}_n(\mathbf{C}) = \operatorname{GL}_n(\mathbf{C})$

Montrons la seconde affirmation. Pour l'inclusion directe, soit $A \in \mathcal{M}_n(\mathbf{R})$. Montrons que la matrice exp A est un carré dans $GL_n(\mathbf{R})$. Ceci est évident puisque

$$\exp A = \exp(\frac{1}{2}A)^2 \in \operatorname{GL}_n(\mathbf{R})^{\times 2}.$$

Réciproquement, soit $A \in \mathrm{GL}_n(\mathbf{R})$. Montrons que son carré est dans l'image de l'exponentielle. Comme $A \in \mathbf{C}[A]^{\times}$, le théorème nous donne un polynôme $P \in \mathbf{C}[X]$ tel que $A = \exp P(A)$. Mais comme la matrice A est réelle, on a $A = \exp \overline{P}(A)$ de telle sorte que

$$A^2=\exp((P+\overline{P})(A))\quad\text{avec}\quad (P+\overline{P})(A)\in\mathbf{R}[A]\subset\mathcal{M}_n(\mathbf{R})$$
ce qui montre $A^2\in\exp\mathcal{M}_n(\mathbf{R})$.

Maxime Zavidovique. Un Max de Math. Calvage & Mounet, 2013.