

IIC1253 — Matemáticas Discretas — 1'2020

CONTROL 1

Indicaciones

- La duración del control es 1 hora y 30 minutos.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Debe entregar una copia digital de cada pregunta por el buzón del curso, antes de las 23:59 horas del día del control.
- Debe preocuparse que la copia digital y su calidad sea legible. Se recomienda usar hojas blancas y un lápiz oscuro que sea visible en la versión digital. En caso de no ser legible, no podrá ser evaluada su solución.
- En caso de hacer el control fuera del horario, se recomienda tomar el tiempo (1 hora y 30 minutos) y entregarlo justo después de concluido el tiempo.
- Durante la evaluación puede hacer uso de sus apuntes o slides del curso.
- Esta es una evaluación estrictamente individual y, por lo tanto, no puede compartir información con sus compañeros o usar material fuera de sus apuntes o slides del curso. En caso de hacerlo, el control no reflejará su progreso en el curso, viéndose perjudicada su formación personal y profesional.
- Al comienzo de cada pregunta debe escribir la siguiente oración y firmarla:

"Doy mi palabra que la siguiente solución de la pregunta X fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad."

En caso de no escribir esto al comienzo de cada pregunta, su solución no será evaluada.

Pregunta 1

Para esta pregunta considere la siguiente construcción recursiva de fórmulas en lógica proposicional:

```
\begin{array}{rcl} \varphi_{1}(p_{1},p_{2}) & := & p_{1} \leftrightarrow p_{2} \\ \varphi_{2}(p_{1},p_{2},p_{3},p_{4}) & := & \varphi_{1}(p_{1},p_{2}) \leftrightarrow \varphi_{1}(p_{3},p_{4}) \\ & \vdots \\ \varphi_{k}(p_{1},...,p_{2^{k}}) & := & \varphi_{k-1}(p_{1},...,p_{2^{k-1}}) \leftrightarrow \varphi_{k-1}(p_{2^{k-1}+1},...,p_{2^{k}}) \end{array}
```

- 1. Demuestre que para todo $k \ge 1$ la fórmula $\varphi_k(p_1,...,p_{2^{k-1}},p_1,p_2,...,p_{2^{k-1}})$ es una tautología.
- 2. Dada una valuación $v_1, ..., v_{2^k}$ para las variables $p_1, ..., p_{2^k}$, decimos que la inversa de $v_1, ..., v_{2^k}$ es cambiar todos los valores 1 por 0 y los valores 0 por 1, y lo denotamos por $\bar{v}_1, ..., \bar{v}_{2^k}$. Demuestre que para todo $k \ge 1$ y para todo valuación $v_1, ..., v_{2^k}$ se cumple que $\varphi_k(v_1, ..., v_{2^k}) = \varphi_k(\bar{v}_1, ..., \bar{v}_{2^k})$.

Nota: Para esta pregunta no puede usar inducción, dado que todavía no se ha visto en el curso.

Pregunta 2

Sea $E(\cdot,\cdot)$ un símbolo de predicado. Para una interpretación \mathcal{I} de E, decimos que \mathcal{I}' es una sub-interpretación de \mathcal{I} si: (1) el dominio de \mathcal{I}' es un subconjunto del dominio de \mathcal{I} y (2) para todo $a,b\in\mathcal{I}'(dom)$, se tiene que $\mathcal{I}'\models E(a,b)$ si, y solo si, $\mathcal{I}\models E(a,b)$. Por último, decimos que \mathcal{I} tiene dominio finito, si el dominio $\mathcal{I}(dom)$ es finito.

- 1. Decimos que α es una fórmula universal si α es de la forma $\forall x_1 \forall x_2 \dots \forall x_k$. $\beta(x_1, \dots, x_k)$ donde β no tiene cuantificadores existenciales ni universales. Por ejemplo, $\forall x \forall y \forall z . E(x,y) \land \neg E(y,z)$ es una fórmula universal.
 - Sea α una fórmula universal cualquiera sobre E. Demuestre que para toda interpretación \mathcal{I} , si $\mathcal{I} \models \alpha$, entonces para toda subinterpretación \mathcal{I}' de \mathcal{I} se tiene que $\mathcal{I}' \models \alpha$.
- 2. Decimos que α es una fórmula existencial si α es de la forma $\exists x_1 \exists x_2 \dots \exists x_k. \ \beta(x_1, \dots, x_k)$ donde β no tiene cuantificadores existenciales ni universales. Por ejemplo, $\exists x \exists y \exists z. \ E(x,y) \to E(y,z)$ es una fórmula existencial.
 - Sea α una fórmula existencial cualquiera sobre E. Demuestre que para toda interpretación \mathcal{I} , si $\mathcal{I} \models \alpha$, entonces existe una subinterpretación \mathcal{I}' de \mathcal{I} con dominio finito tal que $\mathcal{I}' \models \alpha$.