Introduction to Data Science CS61 June 12 - July 12, 2018

Dr. Ash Pahwa

Lesson 4: Statistics

Lesson 4.1: Covariance & Correlation

Outline

- Covariance
- Properties of Covariance
- Correlation Coefficient
- Properties of Correlation

Univariate and Bivariate data

- We examined a single variable
 - Univariate data
 - Mean, Median, Mode, Standard Deviation, Variance
- Now we will examine 2 variables
 - Bivariate data
 - Covariance, Correlation
 - Regression

Bivariate Variables

- Variables
 - Response variables
 - Explanatory or predictor variable
- Response variable
 - Whose value can be explained by the explanatory variable or predictor variable

- How to graphically represent bivariate data
- A scatter diagram is a graph that shows the relationship between 2 quantitative variables on the same individual

Club-head speed (mph)	Distance (yards)				
100	257				
102	264				
103	274				
101	266				
105	277				
100	263				
99	258				
105	275				

Covariance

Covariance

- The covariance measures the direction of the linear relationship between two quantitative variables.
- If the values of x and y become large or small, the covariance coefficient will also become large or small

Data:
$$\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}\$$

$$Cov(X, Y) = S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)}$$

Covariance Example 1

$$Cov(X,Y) = S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)}$$

	X	Y	Deviation in X Deviation in Y Product
1	6	5	6 - 14 = -8
2	10	3	10 - 14 = -4
3	14	7	14 - 14 = 0
4	19	8	19 - 14 = 5
5	21	12	21 - 14 = 7
Mean	14	7	Add up the products = $16 + 16 + 0 + 5 + 35 = 72$
			Divide by $(n-1) = (5-1) = 4$
_	Covariance	18	Cov=72/4=18

Property of Covariance

$$Cov(a + bX, c + dY) = bdCov(X, Y)$$

	Clipboard 😼		Fo	Font 🗔			Alignment 🖫		G _i 1	Number 1	
	18 ▼ (= f _x =COVARIANCE.S(H2:H6,I2:I6)				:16)						
	Α	В	С	D	Е	F		G	Н	1	
1		X	Υ		X*5	Υ			X*5	Y*10	
2		6	5		30	5			30	50	
3		10	3		50	3			50	30	
4		14	7		70	7			70	70	
5		19	8		95	8			95	80	
6		21	12		105	12			105	120	
7											
8		Covariance(X,Y)	18.000		Covariance(X*5,Y)	90.00	00		Covariance(X*5,Y*10)	900.000	
9											
10											
11											
12											
13											

- Covariance, unlike correlation, doesn't have to be between -1 and 1.
- Covariance doesn't give us a real sense of how negatively they are
 - If X and Y have large values, the covariance will be large as well
 - If suppose covariance is -100, it doesn't give us a real sense of how negatively related they are

Correlation

Correlation - Definition

- The correlation measures the strength and direction of the linear relationship between two quantitative variables.
- Correlation is usually written as "r"
 - 'r' can vary between -1 and 1

Total data points = n

x values: x is the mean, σ_x is the standard deviation

y values: y is the mean, σ_y is the standard deviation

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}} = \frac{\sum (x - \overline{x})(y - \overline{y})}{(n - 1)\sigma_x \sigma_y}$$

Covariance & Correlation

Covariance

Data:
$$\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

Cov(X, Y) =
$$S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)}$$

Correlation

$$r = \frac{S_{xy}}{\sigma_x \sigma_v}$$

 σ_x = Standard Deviation for x

 $\sigma_{\rm v}$ = Standard Deviation for y

$$\rho(\text{rho})$$
 = population correlation
r = sample correlation

Correlation Example 1

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{(n - 1)\sigma_x \sigma_y}$$

	X	Y	Deviation in X Deviation in Y Product	
1	6	5	6 - 14 = -8	
2	10	3	10 - 14 = -4	
3	14	7	14 - 14 = 0	
4	19	8	19 - 14 = 5	
5	21	12	21 - 14 = 7	
Mean	14	7	Add up the products = $16 + 16 + 0 + 5 + 35 = 72$	
Standard Dev	6.20	3.39	Divide by $(n-1) * \sigma_x * \sigma_y = (5-1)* 6.20 * 3.39 = 84.03$	7
	Correlation	0.855	r = 72/84.07 = 0.855	

Correlation - Values

Properties of the Correlation Coefficient

- Unlike covariance, correlation varies between -1 and 1
 - -1 <= r <= 1
 - r > 0
 - If y increases as x increases
 - r < 0
 - If y decreases as x increases
 - The more x and y are linearly related
 - The closer r will be to -1 or 1

Property of Correlation

Corr(a + bX, c + dY) = sign(bd)Corr(X, Y)

	Clippoard la Font		τ	la l	Aligr	ment	Number		
	I8 ▼ (=CORREL(H2:H6,I2:I6)								
	Α	В	С	D	Е	F	G	Н	I
1		X	Y		X*5	Y		X*5	Y*10
2		6	5		30	5		30	50
3		10	3		50	3		50	30
4		14	7		70	7		70	70
5		19	8		95	8		95	80
6		21	12		105	12		105	120
7									
8		Correlation(X,Y)	0.855		Correlation(X*5,Y)	0.855		Correlation(X*5,Y*10)	0.855
9									
10									
11									
12									
13									

Copyright 2018 - Dr. Ash Pahwa

Covariance and Correlation in R

```
> x < -c(6,10,14,19,21)
> y < -c(5,3,7,8,12)
> plot(x,y,pch=21,col="blue",bg="red")
> mean(x)
[1] 14
> mean(y)
[1] 7
> sd(x)
[1] 6.204837
> sd(y)
[1] 3.391165
> cov(x, y)
[1] 18
> cor(x, y)
[1] 0.8554472
> cov(x,y)/(sd(x)*sd(y))
[1] 0.8554472
> cov(5*x, 10*y)
[1] 900
> cor(5*x, 10*y)
[1] 0.8554472
```


Correlation: Python Pandas + Numpy

```
import numpy as np
import pandas as pd
# Correlation + Covariance in Pandas
df1 = pd.DataFrame(\{'A': [6,10,14,19,21], 'B': [5,3,7,8,12]\})
df1
Out[70]:
                                        import numpy as np
                                        import pandas as pd
                                        1 10 3
                                        # Correlation + Covariance in Numpy
2 14 7
3 19 8
                                        Alist = [6, 10, 14, 19, 21]
                                        Blist = [5, 3, 7, 8, 12]
                                        Aarray = np.array(Alist)
df1.corr()
                                        Barray = np.array(Blist)
Out[71]:
                                        np.corrcoef(Aarray, Barray)
A 1.000000 0.855447
                                        Out[801:
B 0.855447 1.000000
                                        array([[ 1. , 0.85544722],
                                              [ 0.85544722, 1.
df1.cov()
Out[72]:
                                        np.cov(Aarray, Barray)
  A B
                                        Out[81]:
A 38.5 18.0
                                        array([[ 38.5, 18.],
B 18.0 11.5
                                              [ 18. , 11.5]])
```


Linear Relationship

- If the correlation between 2 variables is high (close to +1 or -1)
 - We can conclude that there is a linear relationship between 2 variables

Correlation and Causation

- If 2 variables are correlated
 - We cannot conclude that they have casual relationship
- Lurking variable
 - Third variable that explains the relationship
 - Ac bill goes up, crime rate goes up
 - Ac bill and crime data is highly correlated
 - Lurking variable temperature
 - Temperature goes up, Ac bill goes up
 - Temperature goes up, crime rate goes up
 - Now it makes sense

Correlation and Causation

37. Television Stations and Life Expectancy Based on data obtained from the CIA World Factbook, the linear correlation coefficient between the number of television stations in a country and the life expectancy of residents of the country is 0.599. What does this correlation imply? Do you believe that the more television stations a country has, the longer its population can expect to live? Why or why not? What is a likely lurking variable between number of televisions and life expectancy?

Correlation and Causation

- The correlation between 'number of TV stations' and 'Life Expectancy' is 0.599. This means that as the number of TV stations will increase, life expectancy will also increase.
- However, correlation does not imply causation. By adding more number of TV stations will not increase life expectancy.
- There is a lurking variable here which is 'Economy'.
 - If economy improves,
 - number of TV stations will also increase.
 - As economy improves,
 - this will lead to higher per capita income,
 - which will lead to better health care,
 - which will lead to higher life expectancy.

Summary

- Covariance
- Properties of Covariance
- Correlation Coefficient
- Properties of Correlation