Assignment 1

- 1. The CPU clock speed is around:
- a. 1-4 THz
- b. 1-4 GHz
- c. 1-4 MHz
- d. 1-4 KHz

Correct answer: b

- 2. What is the precision of float16 variables?
- a. 20 digits
- b. 16 digits
- c. 7 digits
- d. 3 digits

Correct answer: d

- 3. How many cores are there in the Rome processor?
- a. 64
- b. 128
- c. 256
- d. 512

Correct answer: a

- 4. Consider a 16-core processor with a clock speed of 4 GHz. Assume that each core performs 32 single-precision operations per second. Estimate the peak performance of this processor.
- a. 128 GFLOPS
- b. 256 GFLOPS
- c. 1024 GFLOPS
- d. 2048 GFLOPS

Correct answer: d

Clock speed = 4 GHz = 4*10^9 cycles/second

Single precision floating point operations (FLOPS) per cycle per core = 32

FLOPS per core: 32*clock speed = 32*4*10^9 = 128*10^9 = 128 GFLOPs

Multiply the FLOPS per core by the number of cores = 16*128 GFLOPs = 2048 GFLOPs single-precision peak performance: 2048 GFLOPs.

- 5. How much memory is required to store a matrix A of dimension (N, N, N), where N=10³, if the elements are stored as doubles?
- a. 8*10⁹ bits
- b. 8*10⁹ bytes
- c. $4*10^6$ bits
- d. 4*10⁶ bytes

Correct answer: b

Explanation: The total number of elements in the matrix is $NXNXN = (1000)^3 = 10^9$ Each double occupies 8 bytes.

Total Memory = Bytes per elements*Number of elements

Total Memory = $8*10^9$ bytes.

- 6. If at a certain year the number of transistors in an IC is 2000, then according to Moore's Law, how many transistors will be in an IC after four years?
- a. 4000
- b. 8000
- c. 16000
- d. 32000

Correct answer: b

According to Moore's Law the number of transistors in IC double every two years.

The number of doublings after six years = 4/2= 2 doublings

Increase by $2^2 = 4$

Transistors after four years = 8000

- 7. How much time will it take to do elementwise addition of two arrays with 10⁹ elements, using vectorization with vectors of 8 elements, on a processor with clock speed 2 GHz (in milliseconds)?
- a. 62.5
- b. 125
- c. 500
- d. 1000

Correct answer: a

Assume 1 vector addition per clock cycle. Each vectorized operation handles 8 elements.

To process 10^9 additions: Number of vector additions: $10^9/8 = 1.25*10^8$

If 1 vectorized addition takes 1 clock cycle, the total number of cycles required is equal to the number of vectorized additions: 1.25*10⁸ cycles required

Time taken = Cycles required/Clock speed = 1.25*108 /2*109

Time = 0.0625 seconds or 62.5 milliseconds

- 8. Approximately how many FLOPs are required to multiply two matrices of dimension NXN if N is large?
- a. 2N
- b. 2N²
- c. $2N^3$
- d. $2N^4$

Correct option: c

Explanation: The elements of the resulting C matrix can be written as C[i,j] = sum from k=1 to k=N (A[i,k]*B[k,j])

To compute one element: N(multiplications) + N-1(additions) = 2N-1 FLOPs

If N is large, FLOPs for one element = 2N For N2 elements: 2N*N^2 = 2N^3 FLOPs

- 9. To compute the expression A*A + 1, in Python, where A is a 3D array of size 500x500x500 containing double-precision data, how many floating-point operations are required?
- (a) 25 MFLOPs
- (b) 125 MFLOPS
- (c) 250 MFLOPS
- (d) 625 MFLOPs

Correct option: c

Explanation: A*A does element wise multiplication in python, meaning each element is multiplied by itself. And A*A+1, adds 1 to each element after multiplication. Multiplication takes approximately 1 FLOP. And addition, also takes 1 FLOP each. The total FLOP for one element is: 1+1 = 2FLOPs.

There are (500)^3 elements in the matrix. Total FLOPs = 2* (500)^3 FLOPS or 250 MLOPs

10. In the previous question, assume the computation is performed on a processor with a clock speed of 5 GHz. The time required to compute the expression is (in milliseconds):

- (a) 5
- (b) 25
- (c) 50
- (d) 125

Correct option: c

The total number of cycles required is equal to the total number of FLOPs: $250*10^6$ Time taken = Cycles required*Time per cycle = Cycle required/Clock speed Time = $250*10^6$ / $5*10^9$ = .050 seconds