Introduction to Machine Learning

Advanced Classification Losses

Learning goals

- Know the (squared) hinge loss
- Know the L2 loss defined on scores
- Know the exponential loss
- Know the AUC loss

HINGE LOSS

- The intuitive appeal of the 0-1-loss is set off by its analytical properties ill-suited to direct optimization.
- The **hinge loss** is a continuous relaxation that acts as a convex upper bound on the 0-1-loss (for $y \in \{-1, +1\}$):

$$L(y, f(\mathbf{x})) = \max\{0, 1 - yf(\mathbf{x})\}.$$

- Note that the hinge loss only equals zero for a margin ≥ 1, encouraging confident (correct) predictions.
- It resembles a door hinge, hence the name:

SQUARED HINGE LOSS

• We can also specify a **squared** version for the hinge loss:

$$L(y, f(\mathbf{x})) = \max\{0, (1 - yf(\mathbf{x}))\}^{2}.$$

- The L2 form punishes margins $yf(\mathbf{x}) \in (0,1)$ less severely but puts a high penalty on more confidently wrong predictions.
- Therefore, it is smoother yet more outlier-sensitive than the non-squared hinge loss.

Introduction to Machine Learning - 2/5

SQUARED LOSS ON SCORES

 Analogous to the Brier score defined on probabilities we can specify a squared loss on classification scores (again, y ∈ {-1, +1}, using that y² ≡ 1):

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2 = y^2 - 2yf(\mathbf{x}) + (f(\mathbf{x}))^2 = 1 - 2yf(\mathbf{x}) + (yf(\mathbf{x}))^2 = (1 - yf(\mathbf{x}))^2$$

• This loss behaves just like the squared hinge loss for $yf(\mathbf{x}) < 1$, but is zero only for $yf(\mathbf{x}) = 1$ and actually increases again for larger margins (which is in general not desirable!)

CLASSIFICATION LOSSES: EXPONENTIAL LOSS

Another possible choice for a (binary) loss function that is a smooth approximation to the 0-1-loss is the **exponential loss**:

- $L(y, f(\mathbf{x})) = \exp(-yf(\mathbf{x}))$, used in AdaBoost.
- Convex, differentiable (thus easier to optimize than 0-1-loss).
- The loss increases exponentially for wrong predictions with high confidence; if the prediction is right with a small confidence only, there, loss is still positive.
- No closed-form analytic solution to (empirical) risk minimization.

CLASSIFICATION LOSSES: AUC-LOSS

- Often AUC is used as an evaluation criterion for binary classifiers.
- Let $y \in \{-1, +1\}$ with n_- negative and n_+ positive samples.
- The AUC can then be defined as

$$AUC = \frac{1}{n_{+}} \frac{1}{n_{-}} \sum_{i:y^{(i)}=1} \sum_{j:y^{(i)}=-1} [f^{(i)} > f^{(j)}]$$

- This is not differentiable w.r.t f due to $[f^{(i)} > f^{(j)}]$.
- But the indicator function can be approximated by the distribution function of the triangular distribution on [-1, 1] with mean 0.
- However, direct optimization of the AUC is numerically more difficult, and might not work as well as using a common loss and tuning for AUC in practice.

