Персонализация важна в различных сервисах

+\$2.93 млрд дополнительно к бюджету компании после внедрения рекомендательной системы во все сервисы

80% того, что смотрят пользователи является результатом рекомендаций; итог: экономия \$1 млрд

Spotify достиг 96 миллионов премиальных подписок за 2018; средняя выручка с подписки – €4.89

Что такое рекомендательная система?

Примеры:

- Amazon
- Netflix
- Spotify
- Ozon

Множество областей применения: e-commerce, новости, туризм, развлечения, образование...

Цель: предсказать пользовательские предпочтения на основе его предыдущих действий

В более общем смысле

Рекомендательные системы ставят целью восстановить **частично наблюдаемые взаимоотношения** между **двумя или более типами объектов**.

Социальные сети: пользователь ↔ пользователь Данные на основе последовательностей: предмет → предмет (порядок имеет значение)

Множественные отношения: пользователь → действие → место

Процесс создания и использования модели рекомендаций

Цель: предсказать пользовательские предпочтения на основе его предыдущих действий.

Пример: развлечения

Аудитория Netflix

Распределение интернет трафика

Примеры: финансовый сектор

Возможные сценарии:

- Индивидуальные рекомендации банковских продуктов
- Транзакции пользователей могут быть использованы для угадывания возможных интересов:
 - посетить торговый центр неподалеку
 - приобрести определенные продукты

Что это дает:

- увеличивает привязанность к банковским услугам
- позволяет удобным образов описать возможные интересы пользователей
- улучшает связность и надежность накопленной информации о пользователях
- дает новые инсайты для принятия бизнес-решений и формирования маркетинговой стратегии

Ведет к увеличению выручки в долгосрочной перспективе

Смешные ошибки рекомендательных систем

"Если вам нравится книга Diversity Myth Питера Тиля, то вам может понравиться гиря"

"Ищете запчасти для двигателя? Вам могут пригодиться женские туфли"

Не такие смешные ошибки рекомендательных систем

Циклическая обратная связь

Радикализация взглядов пользователей YouTube

Bias

Алгоритмы могут смещены по переменным, которых нет в данных.

The New York Times ② @nytimes · Jun 8

Caleb Cain was a college dropout looking for direction. He was then pulled into YouTube's far-right universe, watching thousands of videos filled with conspiracy theories, misogyny and racism. "I was brainwashed."

The Making of a YouTube Radical

Caleb Cain was a college dropout looking for direction. He turned to YouTube, where he was pulled into a world filled with conspiracy theories... \mathcal{S} nytimes.com

https://habr.com/ru/post/437572/

https://www.nytimes.com/interactive/2019/06/08/technology/youtube-radical.html

https://www.fast.ai/2019/05/28/google-nyt-mohan/

Как оценить качество рекомендательных систем

Поиск vs Рекомендации

Поисковая система использует запрос.

Рекомендательная система – поиск без запроса.

Machine Learning for Recommender systems — Part 2 (Deep ...

https://medium.com/.../machine-learning-for-recommender-systems-part-2-deep-reco... ▼
Jun 7, 2018 - There are several ways how to utilize deep learning in recommender
systems. Neural networks can be trained to predict ratings or interactions ...

История Netflix prize: октябрь 2006 – июнь 2009

NETFLIX

<u>Условия соревнования:</u> На основе предоставленной компанией информации об оценках пользователей выбранным фильмам, улучшить точность предсказания оценок хотя ба на 10% относительно внутреннего алгоритма Netflix

Приз: \$1,000,000

Соревнование продемонстрировало важность области для индустрии

Интересный факт: решение победителей не было использовано в produciton

Проблемы:

• Умение точно предсказывать оценку ≠ умение выдавать релевантные рекомендации

Оценки качества рекомендательных систем

Netflix использовал корень из среднеквадратичной оценки RMSE на оценках.

Проблемы RMSE:

- У ошибок в бизнесе разный вес: сравните 5 vs 3 и 3 vs 1. Так как фильм с оценкой 1 или 3 мы рекомендовать не будем, а с оценкой 5 будем.
- Не отражает бизнес суть задачи!

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Точность и специфичность

Precision, точность – доля релевантных для пользователя объектов относительно всех, которые были ему показаны.

Мотивация: пользователю нельзя показать все наши продукты, блок предложений конечен.

Recall, специфичность – доля всех показанных объектов относительно релевантных объектов.

Метрики, учитывающие порядок рекомендаций

- Normalized Discounted Cumulative Gain (NDCG) штрафует алгоритм за неправильный порядок рекомендаций.
- При этом переставить местами 1 и 2 элемент наказывается сильнее, чем, например 5 и 6.
- Мотивация чем выше релевантность объекта тем он должен быть выше.

Если ошибаемся в хвосте рекомендаций – не так страшно.

Дополнительные экзотические метрики

- Разнообразие
- Покрытие запроса
- Новизна
- Неожиданность

Если клиент купил молоко и хлеб можно не рекламировать ему яйца – он с высокой вероятностью их и так купит.

Нужно рекомендовать что-то с более низкой вероятностью покупки, но более разнообразное и интересное.

Бизнес метрики

- Конверсия
- Клики
- Retention
- Прибыль
- LTV life-time value

У рекомендательной системы много нематематических аспектов: место расположения, дизайн, и т.д.

Чтобы это корректно оценивать – нужны АВ тесты на пользователях.

АВ тесты часто единственный способ честно оценить бизнес ценность модели.

Sad but true: Такие метрики тяжело прогнозировать.

Метрики

Основаны на ошибке

RMSE, MAE

Основаны на релевантности

precision, recall

F1-score, accuracy

HR (hit rate)

Основаны на ранжировании

nDCG (normalized discounted cumulative gain),

MRR (mean reciprocal rank),

ATOP (area under the TOPK-curve)

AUC (area under the ROC-curve)

Измеряем другие аспекты:

- Покрытие (Coverage)
- Новизна (Novelty)
- Неожиданность (Serendipity)
- Разнообразие (Diversity)
- Доверие (Trust)
- Полезность (Utility)

Подробнее: "Evaluating Recommendation Systems", Guy Shani and Asela Gunawardana, 2011

Алгоритмы построения рекомендательных систем

Данные для построения рекомендательной системы

Задача: найти функцию полезности f_U , генерирующую предсказания для любой пары:

 f_U : пользователь + предмет \rightarrow релевантность

Если мы умеем считать расстояния между пользователями, то можем использовать коллаборативную фильтрацию по схожести пользователей (user-based)

Если мы умеем считать расстояния между предметами, то можем использовать коллаборативную фильтрацию по схожести предметов (item-based)

Немного о более сложных методах

Как пишут в статьях

Как все работает на практике

Матричная факторизация у 3 из 4 топовых алгоритмов

Персонализация контента – трудная задача

Пропуски в данных

• 99.99...% неизвестных значений

• смещенность оценки, Missing Not at Random (MNAR)

«длинный хвост»

• 5% предметов могут покрывать 40% всех взаимодействий

• нишевые рекомендации

оценка качества

- Выбор метрики качества, нестандартные метрики (novelty, diversity...)
- проверка качества оффлайн vs. A/B тестирование

холодный старт

- неопределенность в том, что рекомендовать
- сложно подобрать наиболее репрезентативные рекомендации

усложнение моделей

- включение признаковой информации
- включение контекста взаимодействия

вычислительная скорость

- вычисление модели за разумное время
- выдача рекомендаций в реальном времени

Холодный старт

Проблема всех рекомендательных систем:

Первое время нет информации о предпочтениях пользователя.

Решения:

- Использовать профиль «среднего» пользователя
- Рекомендовать самые популярные товары

Длинный хвост

Популярные товары покупают часто. Большинство товаров покупают редко.

<u>Замкнутый круг:</u> про длинный хвост мало статистики – система его не рекомендует – мало статистики.

Отсутствует новизна предложений. Гибридные подходы.

Решение:

Продуктовое – создавать категории новинок, иногда рекомендовать 1-2 случайных товара из хвоста.

Гибридные подходы:

Ансамбли из рекомендательных алгоритмов. Минусы: долго вычисляется, сложно поддерживать

Дополнительные материалы

Кратко и на русском:

- Серия постов С. Николенко на habr.com
- "Как работают рекомендательные системы", М. Ройзнер, https://habr.com/ru/company/yandex/blog/241455/
- Анатомия рекомендательных систем:
 - Часть 1: https://habr.com/ru/company/lanit/blog/420499/
 - Часть 2: https://habr.com/ru/company/lanit/blog/421401/

Кейсы:

- Что происходит в мире рекомендательных систем прямо сейчас https://youtu.be/8bqgkVmwXi0
- Рекомендации в Okko https://habr.com/ru/company/okko/blog/454224/
- Как рекомендовать музыку, Яндекс https://habr.com/ru/company/yandex/blog/441586/
- 10 уроков рекомендательной системы Quora https://habr.com/ru/company/retailrocket/blog/341346/

Книжки:

- Recommender Systems Handbook, 2015, 2nd edition; F. Ricci, L. Rokach, B. Shapira
- Recommender Systems. The Textbook, 2016; Charu C. Aggarwal
- Recommender Systems: An Introduction, 2010; D.Jannach, M.Zanker, A.Felfernig, G.Friedrich
- Collaborative Recommendations: Algorithms, Practical Challenges and Applications; S. Berkovsky, I. Cantador and D. Tikk.

Матричная факторизация

Представление пользователей и предметов – способ подсчитать релевантность

Мы построили представление размерности r для пользователей и предметов

Представление фильмов

Представление пользователя

Релевантность – расстояние между пользователями и предметами

$$r_{ij} \approx \boldsymbol{p}_i^T \boldsymbol{q}_j = \sum_{t=1}^k p_{it} q_{jt}$$

$$m{p}_i = (p_{i1}, p_{i2}, \dots, p_{ik})$$
 — вектор скрытых признаков пользователя i $m{q}_j = (q_{i1}, q_{i2}, \dots, q_{ik})$ — вектор скрытых признаков предмета j

Как получить представления пользователей: матричная факторизация

Основное предположение:

n предметов

относительно небольшое количество шаблонов поведения + небольшие вариации за счет индивидуальных особенностей

$$\mathcal{L}(A, P, Q) = |A - PQ^T|_2$$

Строки матриц P и Q дают представление пользователей и предметов на основе набора скрытых признаков

$$a_{ij} \approx r_{ij} = \boldsymbol{p}_i^T \boldsymbol{q}_j = \sum_{t=1}^k p_{it} q_{jt}$$

Релевантности должны быть похожи на элементы исходной матрицы A

Дополнительные слайды

Фреймворки и библиотеки

Frameworks

Surprise

https://github.com/NicolasHug/Surprise

Polara

https://github.com/evfro/polara

Collaborative Filtering – Apache Spark http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html (Neighborhood models and MF)

Turi Create (acquired by Apple) https://turi.com/learn/userguide/recommender/introduction.html

Microsoft Azure https://github.com/Microsoft/Recommenders

Полезные библиотеки

Collaborative Filtering for Implicit Feedback Datasets https://github.com/benfred/implicit (fastest) https://github.com/quora/qmf (by Quora) https://github.com/MrChrisJohnson/logistic-mf (as in Spotify)

Factorization Machines https://github.com/srendle/libfm

Другие библиотеки

Нейронные сети

https://github.com/maciejkula/spotlight

https://github.com/MrChrisJohnson/deep-mf

https://github.com/songgc/TF-recomm

https://github.com/Netflix/vectorflow (by Netflix)

Билинейные модели

https://github.com/lyst/lightfm/

http://www.recsyswiki.com/wiki/SVDFeature

MyMediaLite (used to be popular)

http://www.mymedialite.net

Модели с латентными факторами

https://github.com/zhangsi/CisRec

Простой движок для рекомендаций на основе контента

https://github.com/groveco/content-engine

Логистическая матричная факторизация

https://github.com/MrChrisJohnson/implicit-mf

Hermes (поддерживает Spark)

https://github.com/Lab41/hermes

Задачи классификации/регрессии vs задача предсказания предпочтений

Классов в задаче классификации – немного

Объектов в рекомендательных системах – очень много

Структура данных в задаче классификации Структура данных в рекомендательных системах

Разбиение на обучающую и тестовую выборку

Данные разбиваются по пользователям, а не взаимодействиям.

Обычно Обучение = Наблюдения U Тест.

Соотношение: 80/20.

Валидация может содержать топовые или случайные объекты.

Тест и валидация – те же пользователи.