Devoir à la maison n°02

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 ★★

Formule de Vandermonde

On convient que pour $(n, k) \in \mathbb{N} \times \mathbb{Z}$, $\binom{n}{k} = 0$ si k < 0 ou k > n. On admet que les relations classiques sur les coefficients binomiaux restent encore vraies dans ces cas.

1. Démontrer que :

$$\forall (n, m, p) \in \mathbb{N}^3, \ \sum_{k=0}^p \binom{n}{k} \binom{m}{p-k} = \binom{n+m}{p}$$

- **2.** En déduire la valeur de $S_n = \sum_{k=0}^n \binom{n}{k}^2$ pour $n \in \mathbb{N}$.
- 3. A l'aide du changement d'indice $\ell = n k$, déterminer la valeur de $T_n = \sum_{k=0}^n k \binom{n}{k}^2$ pour $n \in \mathbb{N}$.
- **4.** En déduire que si n est un entier naturel impair, $\binom{2n}{n}$ est pair.

Exercice 2 *

Exprimer $P_n = \prod_{k=1}^n \frac{2k}{2k-1}$ à l'aide de factorielles.

Exercice 3 ★

1. Montrer que pour tout $x \in \mathbb{R}$,

$$\sin(3x) = 3\sin(x) - 4\sin^3(x)$$

2. On fixe $x \in \mathbb{R}$ et on pose pour $n \in \mathbb{N}$

$$u_n = \sum_{k=0}^n 3^k \sin^3\left(\frac{x}{3^k}\right)$$

Déterminer une expression simple de u_n .

3. Déterminer la limite de la suite (u_n) .