Problema de Steiner em Grafos

Alunos: Carla Nicole e Filipe Falcão **Disciplina:** Pesquisa Operacional

1. Problema

Seja um grafo G = (V, E) com pesos em cada uma de suas arestas (c_e , $\forall e \in E$), e um conjunto obrigatório de vértices terminais $T \in V$. Devemos conectar o conjunto de n vértices terminais de forma a gerar uma árvore com um caminho de custo mínimo, eventualmente utilizando os demais vértices do grafo original G como passagem entre os terminais.

2. Modelagem

2.1. Variáveis

Sejam: (i) V o conjunto de vértices de G; (ii) E o conjunto de arestas com custo c_e que conectam os vértices de G; e (iii) $\delta(E)$ denota um corte no grafo G definido pelas arestas com início em um vértice V_1 e término em um vértice V_2 . Temos que a variável do problema será:

 x_e , onde $e \in E$. É uma variável booleana que terá o valor 1 quando a aresta e se encontrar na árvore de caminho mínimo.

2.2. Objetivo

O objetivo do problema será minimizar o somatório dos custos de cada aresta utilizada para conectar os vértices terminais. Logo, a função objetivo será:

$$min \sum_{e} c_e \cdot x_e$$

2.3. Restrições

São necessárias as seguintes restrições:

 $\sum\limits_{e\;\in\;\delta(E)}x_{e}\geq1$, é necessário para garantir que para cada corte no grafo G, em que

um vértice terminal esteja em cada um dos lados, exista pelo menos uma aresta que conecta estes terminais.