Technologia informacyjna

Wybrane pojęcia i definicje

1

Dane i informacje

Czym są dane?

Dane to liczby, pojęcia lub rozkazy przedstawione w sposób dogodny do przesyłania, interpretacji, przetwarzania metodami ręcznymi lub automatycznymi.

Czym jest informacja?

Informacja to treść komunikatu przekazywanego za pomocą danych.

Dane i informacje

Czym są dane?

Dane to:

- nieprzypadkowe symbole, liczby, wartości lub słowa;
- fakty zarejestrowane przez obserwatora lub pozyskane dzięki przeprowadzonym badaniom naukowym;
- zbiór nieprzypadkowych faktów.

3

Dane i informacje

Czym jest informacja?

Informacja to:

- dane, które zostały przetworzone i dzięki temu mają określone znaczenie;
- dane przetworzone w określonym celu;
- Dane, które zostały zinterpretowane i są zrozumiałe dla odbiorcy.

Czym jest informacja?

Definicja informacji łączy takie pojęcia jak:

- ▶ dane, informacje, wiedza i ludzie:
- **1. Dane** to fakty. Dana, jako jednostka danych, jest to jeden lub kilka symboli, użytych do reprezentowania czegoś.
- **2. Informacja** to zinterpretowane dane. Informacje to dane umieszczone w znaczącym kontekście.
- **3. Informacja ma charakter subiektywny.** Informacja musi być zawsze rozpatrywana w kontekście jej odbiorcy. Te same dane mogą być różnie interpretowane przez różnych ludzi, w zależności od posiadanej wiedzy.

5

Dane i informacje

Procesy przetwarzania danych:

Selekcja – wybór danych wg. określonych kryteriów

Klasyfikacja – podział danych na kategorie

Sortowanie – grupowanie danych

w określonym porządku

Obliczenia - np. wyliczanie określonych wartości statystycznych

Dane i informacje

- Postacie danych
 - Znaki
 - Mowa
 - Obrazy
 - Wykresy
- Nośniki przenoszenia danych
 - Dźwięki
 - Zapachy
 - Błyski (impulsy świetlne)
 - Kartki papieru
 - Impulsy elektryczne

7

Jakość informacji

Ocena jakości informacji.

Jakość informacji może być rozpatrywana w następujących wymiarach:

- w wymiarze czasu;
- w wymiarze treści;
- w wymiarze formy.

Jakość informacji - czas

Ocena jakości informacji w wymiarze czasu dotyczy aktualności informacji, czyli dostarczania informacji kiedy jest potrzebna z określoną częstotliwością, ale także rozpatrywania informacji w określonym przedziale czasu dotyczącym przeszłości, teraźniejszości i przyszłości.

9

Jakość informacji - treść

Oceniając jakoś informacji w wymiarze treści należy wziąć pod uwagę następujące cechy informacji:

- Dokładność
- Odpowiedniość
- Kompletność
- Zwięzłość
- Zakres

Jakość informacji - forma

Oceniając jakości informacji w wymiarze formy należy wziąć pod uwagę następujące cechy prezentacji informacji:

- Przejrzystość
- Szczegółowość
- Uporządkowanie
- Forma prezentacji i rodzaj mediów

11

Charakterystyka systemu informacyjnego

Elementy składowe	Struktura	Zasoby
 Nadawcy i odbiorcy informacji Zbiory informacji Kanały informacji Metody i techniki przetwarzania informacji 	 Funkcjonalna Informacyjna Techniczna Przestrzenna Konstrukcyjnotechnologiczna 	■Ludzkie ■Informacyjne ■Proceduralne ■Techniczne

Funkcje systemu informacyjnego

- a) gromadzenie informacji
- b) przetwarzanie danych
- c) przechowywanie informacji
- d) prezentowanie informacji
- e) przesyłanie informacji.

13

Zadania systemu informacyjnego

- Podstawowe zadanie:
 - dostarczenie użytkownikom informacji, na podstawie których podejmowane i wprowadzane są w życie decyzje, regulujące funkcjonowanie obiektów gospodarczych.
- System informacyjny w obiekcie gospodarczym zwykle lokalizuje się w systemie zarządzania.

System informatyczny

Kluczowym zadaniem systemu informatycznego jest przetwarzanie danych. Może być ono realizowane za pomocą różnych technologii informacyjnych lub ręcznie (np. kalkulator)

SYSTEM INFORMACYJNY ORGANIZACJI SYSTEM PRZETWARZANIA DANYCH

SYSTEM INFORMATYCZNY

15

Elementy systemu informatycznego

ZASOBY OSOBOWE		
ELEMENTY ORGANIZACYJNE	ELEMENTY INFORMACYJNE	
SPRZĘT	OPROGRAMOWANIE	

Podstawowe struktury danych

Rekord	Tablica
Grupa danych, różnego typu, posiadająca pewną strukturę z możliwością modyfikacji, zapisu i odczytu	Struktura danych jednakowego typu, dostęp do danych za pomocą indeksu(ów)

17

Podstawowe struktury danych

Lista	Drzewo
Struktura danych, składająca się z połączonych za sobą w łańcuszek komórek, zawierających dane.	Hierarchiczna struktura danych

Podstawowe struktury danych

Stos	Kolejka
Liniowa struktura danych przypominająca stos talerzy, dane są dokładane i pobierane z wierzchołka stosu.	Jest to struktura danych, w której nowe dane dokładane są na końcu zaś pobierane z początku kolejki.

19

Algorytmy

- Definicja: Uporządkowany zestaw jednoznacznych wykonywalnych kroków, określających skończony proces, w tym czynności koniecznych do wykonania pewnego zadania w skończonej liczbie kroków.
- Algorytm może zostać zaimplementowany w postaci programu komputerowego lub układu elektronicznego.

Sposoby przedstawienia algorytmów

- Zapis słowny w postaci listy zadań do wykonania;
- Schemat blokowy;
- Język formalny (pseudokod);
- Język programowania;

Sposoby działania algorytmów:

- sekwencyjny (liniowy);
- równoległy;
- rekurencyjny;
- iteracyjny;

21

Złożoność obliczeniowa algorytmu

Złożoność obliczeniowa to ilość zasobów komputerowych koniecznych do wykonania programu realizującego algorytm.

Przedstawiamy ją jako funkcję pewnego parametru, określającego rozmiar rozwiązywanego zadania.

Ponieważ w przypadku szacowania złożoności obliczeniowej mówimy o czasie i pamięci, to wyróżniamy złożoność pamięciową i czasową.

Sieć Internet

Internet (skrótowiec od ang. *inter-network*, dosłownie "między-sieć") – ogólnoświatowy system połączeń między komputerami, określany również jako sieć sieci.

Internet to zespół urządzeń identyfikowanych za pomocą adresów IP takich jak hosty, serwery i inne urządzenia wyposażone w karty sieciowe połączonych za pomocą urządzeń sieciowych, takich jak modemy, routery, koncentratory i przełączniki i komunikujących się za pomocą zestawu protokołów internetowych z wykorzystaniem infrastruktury telekomunikacyjnej.

23

World Wide Web

Sieć WWW (WWW lub W3) to system powszechnie akceptowanych standardów do przechowywania, pobierania, formatowania i wyświetlania informacji za pośrednictwem architektury klient/serwer.

Sieć obsługuje wszystkie rodzaje informacji cyfrowych, w tym tekst, grafikę i dźwięk.

Zastosowanie graficznego interfejsu użytkownika (GUI) ułatwia nawigację i korzystanie z zasobów sieci WWW.

Internet funkcjonuje jako mechanizm transportowy, podczas gdy sieć WWW jest aplikacją, która używa tych funkcji transportowych.

Intranet, ekstranet

- Intranet wydzielona sieć komputerowa np. w firmie, oparta na protokołach internetowych, oferująca usługi typu poczta elektroniczna, strony WWW, usługi bazodanowe etc., ale tylko pracownikom danej firmy
- Ekstranet zamknięta sieć komputerowa oparta na protokołach internetowych przeznaczona do wymiany informacji z partnerami biznesowymi posiadającymi odpowiednie uprawnienia

25

Portal, Wortal

- Portal internetowy rodzaj serwisu informacyjnego zawierającego aktualne wiadomości polityczne, pogodowe, sportowe i inne. Posiada także tematyczny katalog stron, wyszukiwarkę treści w nim zawartych lub w zasobach całego Internetu.
- Wortal szczególny rodzaj portalu, publikujący informacje tematycznie poświęcone jednej dziedzinie: np. wortal filmowy, teleinformatyczny, sportowy

E-Learning i Distance Learning

E-learning odnosi się do nauki wspieranej przez Internet.

Nauka może odbywać się w salach lekcyjnych jako wsparcie dla konwencjonalnego nauczania, na przykład gdy uczniowie pracują w sieci podczas zajęć.

Może również odbywać się w trybie wirtualnym (online), a studenci nie spotykają się twarzą w twarz. W tym przypadku, e-learning jest częścią nauczania na odległość (DL).

Distance Learning (nauczanie na odległość) odnosi się do każdej sytuacji uczenia się, w której nauczyciele i uczniowie nie spotykają się twarzą w twarz.

27

E-Commerce i E-Business

E-commerce to proces kupowania, sprzedawania, przekazywania lub wymiany produktów, usług lub informacji za pośrednictwem sieci komputerowych, w tym Internetu.

E-biznes to pojęcie nieco szersze. Oprócz kupna i sprzedaży towarów i usług, e-biznes to również obsługa klientów, współpraca z partnerami biznesowymi oraz wykonywanie transakcji elektronicznych w ramach organizacji.

Internet rzeczy (Internet of Things) Internet Wszechrzeczy (Internet of Everything)

TERMIN "INTERNET RZECZY" w uproszczeniu oznacza ekosystem, w którym wyposażone w sensory przedmioty komunikują się z komputerami lub smartfonami.

Dynamiczny rozwój urządzeń posiadających dostęp do sieci spowodował, że idea ta stała się nie tylko realna, ale jest wręcz wskazywana przez firmy doradcze jako jeden z kluczowych motorów rozwojowych światowej gospodarki przyszłości.

29

Internet rzeczy (Internet of Things) Obszary zastosowania

Obszary zastosowania	
 □ Ochrona środowiska i gospodarka wodna □ Przemysł □ Transport □ Energetyka □ Zarządzanie miastami □ Zarządzanie mieszkaniami i budynkami □ Ochrona zdrowia □ Handel □ Życie codzienne □ Obronność 	

Internet rzeczy (Internet of Things) Geneza i definicje

Koncepcję "Internet of Things" stworzył brytyjski przedsiębiorca i twórca start-upów – Kevin Ashton. Ideę tę sformułował w 1999 roku w celu opisania systemu, w którym świat materialny komunikuje się z komputerami (wymienia dane) za pomocą wszechobecnych sensorów.

Prawie dekadę później, na przełomie 2008 i 2009 roku, liczba urządzeń podłączonych do sieci przekroczyła liczbę mieszkańców naszego globu. Moment ten, według Cisco, to prawdziwe narodziny "Internetu Rzeczy"

31

Internet rzeczy (Internet of Things) Geneza i definicje

Internet Rzeczy rozumiany jest jako ekosystem, w którym przedmioty mogą komunikować się między sobą, za pośrednictwem człowieka lub bez jego udziału. Aby mogło dojść do wymiany informacji, między dwiema "rzeczami", muszą zostać spełnione trzy warunki.

- □ niezbędne jest urządzenie wyposażone w sensor, które jest w stanie zebrać z otoczenia określone informacje, a następnie przekazać je dalej;
- potrzebne jest urządzenie, które będzie w stanie odebrać przesyłany sygnał, przetworzyć go i wywołać określoną reakcje;
- potrzebny jest środek komunikacji, czyli sposób przesyłania danych;

Internet rzeczy - Beacon

Beacony to małe urządzenia wysyłające sygnał radiowy i komunikujące się np. ze smartfonami za pomocą połączenia Bluetooth (wykorzystują czwartą generację technologii Bluetooth – tzw. Bluetooth Smart lub Bluetooth Low Energy).

36

Cloud Computing - definicja

❖ IBM

Cloud Computing jest nowym modelem wykorzystania (IT) i stylem przetwarzania, w którym procesy biznesowe, aplikacje, dane i zasoby IT są dostarczane do użytkowników w formie usług.

Wikipedia

Cloud Computing jest rodzajem przetwarzania opartym na Internecie*, gdzie współdzielone zasoby, oprogramowanie i informacja są dostarczane do komputerów i innych urządzeń, na żądanie, jak elektryczność.

^{*} w praktyce CC może być realizowany wewnątrz sieci firmowych w ramach Intranetu, czy na niższym poziomie, po prostu w sieci LAN

Cloud Computing - definicja

NIST (National Institute of Standards and Technology) Cloud computing to nowy model dostarczania i korzystania z zasobów informatycznych, takich jak zasoby obliczeniowe (serwerowe), magazynowanie danych, przepustowość sieci, a nawet aplikacje. Model cechuje się takimi funkcjami, jak samoobsługa na żądanie, duża elastyczność, taryfikacja usług (pay-as-you-use), implementacja puli zasobów i szeroki dostęp do sieci.

41

Modele dostarczania Usług CC

Chmura prywatna (Private Cloud)

Zasoby potrzebne dla usługi IT należą do jednego przedsiębiorstwa. Dostawca i odbiorca to jednostki organizacyjne tego samego przedsiębiorstwa.

- Chmura dedykowana (Community Cloud) "Chmura" obsługuje określoną grupę Odbiorców (np. tylko państwowe wyższe uczelnie).
- Chmura publiczna (Public Cloud)
 Dostawca oferuje usługi "w chmurze" publicznie, dla wielu odbiorców.
- Chmura hybrydowa (mieszana) (Hybrid Cloud) Kombinacja przedstawionych wyżej.

Typy Usług Cloud Computing

· Infrastruktura jako usługa

(Infrastructure as a Service - IaaS)
Odbiorca dostaje wirtualny serwer (serwery) z
określonymi zasobami (CPU, RAM, Dyski) z
zainstalowanym (lub nie) systemem operacyjnym.
Opcją IaaS może być również tylko przestrzeń
dyskowa.

Platforma jako usługa

(Platform as a Service -PaaS)

Odbiorca dostaje gotową platformę do rozwoju aplikacji zgodnie ze specyfikacją (baza danych, serwer aplikacji, narzędzia programistyczne), np. kompletne środowisko SOA.

43

Typy Usług Cloud Computing

 Oprogramowanie jako usługa (Software as a Service – SaaS)

Odbiorca dostaje gotową aplikację lub platformę biznesową, np. CRM, eCommerce, e-mail.

 Proces biznesowy jako usługa (Business Process as a Service - BPaaS)

Odbiorca zleca wykonanie określonego procesu biznesowego np., Help Desk, eLearning, księgowość, pozostawiając sobie funkcje kontrolne.

Kolokacja

Najprostsza forma "usług w chmurze", czyli udostępnianie serwerowni, klimatyzowanego pomieszczenia z szafą serwerową na własny sprzęt, zasilaniem.

Zalety Cloud Computing

Skalowalność

Dynamicznego przydzielania zasobów wraz ze wzrostem zapotrzebowania

Dostępność

Usługi w chmurze są dostępne z każdego komputera podłączonego do Internetu.

Wydajność

Centra obliczeniowe, będące największymi chmurami publicznymi, oferują moc nieosiągalną dla nawet najbardziej rozbudowanej stacji roboczej.

Łatwe zarządzanie

Firma korzystająca z kompleksowego zestawu usług w chmurze może nimi zarządzać za pomocą wygodnego w obsłudze oprogramowania i pojedynczego punktu, z którego można zawiadywać całością (aplikacjami w chmurze, przechowywanymi w niej danymi itp.)

45

Zalety Cloud Computing

Elastyczność

Dzięki chmurom w niektórych przypadkach rozwój technik informatycznych jest prostszy niż w klasycznym ujęciu.

Niezawodność

Koszty bezpiecznej infrastruktury są bardzo duże. Centra obliczeniowe dużych firm oferujących usługi CC mogą sobie na to pozwolić, w przeciwieństwie do małych firm czy użytkowników indywidualnych będących ich klientami.

Ekologia

Efektywniejsze wykorzystanie pamięci, mocy obliczeniowej i przestrzeni na dane przekłada się na mniejsze zużycie zasobów naturalnych (energii, paliw itp.) niż w tradycyjnym IT.

Wady Cloud Computing

Bezpieczeństwo

Ryzyko ataku DDoS (ang. distributed denial of service, rozproszona odmowa usługi)

Ograniczone rozwiązania

Zakres usług jest ograniczony i faktycznie narzucony przez dostawcę.

Wydajność

Faktyczna wygoda korzystania z poszczególnych rozwiązań jest ograniczona szybkością transmisji danych pomiędzy komputerem użytkownika a chmurą. Nawet najszybsze centrum danych niewiele zmieni, jeśli czas reakcji programu działającego online będzie fatalny za sprawą łącza o małej przepustowości.

47

Sztuczna inteligencja

Jest to nazwa technologii i dziedzina badań naukowych informatyki na styku z neurologią i psychologią. Głównym celem prowadzonych badań jest stworzenie urządzeń czy programów komputerowych zdolnych do realizacji wybranych funkcji umysłu i ludzkich zmysłów.

Zastosowanie:

- Systemy ekspertowe (np. badanie zdolności kredytowej);
- Rozpoznawanie optyczne lub rozpoznawanie mowy;
- Programy gier np. szachy czy go;
- Maszynowe tłumaczenie tekstów.

Dziedziny zastosowań TI

- Informatyka biurowa
- Informatyka edukacyjna
- · Informatyka ekspercka
- Informatyka gospodarcza
- Informatyka medyczna
- Informatyka przemysłowa
- Informatyka rynkowa
- Informatyka transakcyjna
- Informatyka zarządcza
- Informatyka rozrywkowa

50

Specjalności informatyczne

- Grafika komputerowa i DTP.
- Informatyka medyczna.
- Informatyczne systemy zarządzania.
- Informatyka wsparcia.
- Projektowanie aplikacji internetowych.
- Sieci komputerowe.
- Sprzedaż technologii i usług informatycznych.