#### 1. INTRODUCTION

According to the World Health Organization's (WHO) September 2022's Key Facts on Diabetes, the number of people with Diabetes has increased 74% between 1980 and 2014. WHO also states that "Diabetes is a major cause of blindness, kidney failure, heart attacks, strokes and lower limb amputation." For health insurance companies and the medical professions, it is important to know the factors that impact such a devastating disease and how to expand the number of patients who successfully live with well-controlled diabetes. That is why the chosen dataset has us examining which factors are most important in their contribution to Diabetes (from Efron, B., Hastie, T., Johnstone, J., and Tibshirani, R. (2004). Least Angle Regression. Annals of Statistics, 32, 407-499).

This dataset contains ten baseline variables that are possible predictors to whether or not the disease is worse (greater than 200) or better (less than 200) after a one year baseline. The number 200 was chosen because it is the accepted "line in the sand" in which blood sugars higher than 200 on the Glucose Tolerance Test or the Random Blood Sugar Test indicate the patient is diabetic (<a href="https://www.cdc.gov/diabetes/basics/getting-tested.html">https://www.cdc.gov/diabetes/basics/getting-tested.html</a>). The variables included in the dataset include the patient's age, Gender, Body Mass Index (BMI), and Blood Pressure (BP). It also includes test results found on the standard Lipid Panel Blood Test: Total Cholesterol, Low-Density Lipoproteins (LDL), High-Density Lipoproteins (HDL), and the Total Cholesterol ratio (Total Cholesterol divided by HDL or simply, TCH). Then there are the Logarithm of Triglycerides (LTG) and a Fasting Glucose Score, both of which are two types of sugars located in the body.

Our chosen response variable is a new variable, Y Binary, which has been calculated using the Test Score from the Glucose Tolerance Test or the Random Blood Sugar Test which indicate the patient is diabetic. Through a formula which assigns "Higher" to a test score above 200 and "Lower" to a score that is lower o equal to 200. SAS's JMP software automatically turns this into a binary integer since the applied formula only has two categories.

By applying 5 different estimation models to our dataset, we aim to determine which of these variables most impact the one-year score so that it is lower than 201. The first estimation model is the Standard or Ordinary Logistic Regression (OLS). Then 4 Penalized Logistic Regression Estimation models will be chosen: Lasso, Adaptive Lasso (ALasso), Elastic Net, and Adaptive Elastic Net (AENet). The advantage of the Penalized Estimation Models is that they reduce unimportant variables down to zero, effectively removing them from the model. This is sometimes called "Applying Regularization" and it's goal is to overcome overfitting the model and minimizing outliers.

### 2. ANALYSIS

The following chart quickly summarizes the differences between the 5 chosen Estimation Models:

| Type of Method                                         | Advantages                                                                                                                                       | Disadvantages                                                                                           |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Ordinary / Standard Least Squares                      | It is well-known, easy to explain and easy to understand.                                                                                        | It is sensitive to outliers and does not deal well with singularities.                                  |  |  |  |
| Lasso Regression                                       | Avoids overfitting models and removes variables that do not affect the response variable                                                         | Shrinks uninformative coefficients all the way to zero. Arbitrarily picks variables that are correlated |  |  |  |
| Adaptive Lasso<br>Regression                           | Consistent variable selection where adaptive weights are used for penalizing different coefficients in the L1 penalty                            | Like Lasso, it cannot do group selection with highly correlated variables.                              |  |  |  |
| Elastic Net Regression Adaptive Elastic Net Regression | Keeps correlated variables and adds weighted penalties to them.  Encourages a grouping effect: either selects the correlated group or omits them | Takes more time to compute since it combines Ridge and Lasso.  Increase in computational time.          |  |  |  |

For the overall analysis of the data set, cross validation was used to determine the best parameters for the variable in the data set. So, a random Validation Column was created with a Seed of 123. The data was split into three subsets of data: Training Subset which was 60% of the data, Validation Subset which was 20% of the data set and Testing Subset which was also 20% of the data set. While the OLS Model keeps all of the ten of the data variables previously described, the Penalized Logistic Regression Methods concurrently train and estimate those parameters so that the end result includes only the variables which have a larger impact on the response variable, Y Binary in this case, are left.

#### 3. MODEL COMPARISON

Starting with the OLS estimation model, and going through the Lasso, Adaptive Lasso, Elastic Net

and Adaptive Elastic
Net, columns were
inserted into the data
set representing each
method's estimation.
Then JMP's Model
Comparison tool was
used to collectively
compare the columns

| Validation | Creator                              | 2.4.6.8 | Entropy<br>RSquare | Generalized<br>RSquare | Mean -Log p | RASE   | Mean<br>Abs Dev | Misclassification<br>Rate | N   | AUC    |
|------------|--------------------------------------|---------|--------------------|------------------------|-------------|--------|-----------------|---------------------------|-----|--------|
| Training   | Fit Nominal Logistic                 |         | 0.4012             | 0.5458                 | 0.3568      | 0.3387 | 0.2294          | 0.1774                    | 265 | 0.8937 |
| Training   | Fit Generalized Lasso                |         | 0.3854             | 0.5289                 | 0.3661      | 0.3446 | 0.2460          | 0.1811                    | 265 | 0.8871 |
| Training   | Fit Generalized Adaptive Lasso       |         | 0.3577             | 0.4984                 | 0.3827      | 0.3497 | 0.2635          | 0.2000                    | 265 | 0.8809 |
| Training   | Fit Generalized Elastic Net          |         | 0.3847             | 0.5281                 | 0.3666      | 0.3447 | 0.2470          | 0.1811                    | 265 | 0.8880 |
| Training   | Fit Generalized Adaptive Elastic Net |         | 0.3575             | 0.4982                 | 0.3828      | 0.3498 | 0.2636          | 0.2038                    | 265 | 0.8809 |
| Validation | Fit Nominal Logistic                 |         | 0.3027             | 0.4111                 | 0.3423      | 0.3228 | 0.2034          | 0.1023                    | 88  | 0.8351 |
| Validation | Fit Generalized Lasso                |         | 0.3236             | 0.4352                 | 0.332       | 0.3179 | 0.2127          | 0.1364                    | 88  | 0.8434 |
| Validation | Fit Generalized Adaptive Lasso       |         | 0.3416             | 0.4556                 | 0.3232      | 0.3103 | 0.2240          | 0.1136                    | 88  | 0.8799 |
| Validation | Fit Generalized Elastic Net          |         | 0.3237             | 0.4354                 | 0.3319      | 0.3178 | 0.2136          | 0.1364                    | 88  | 0.8434 |
| Validation | Fit Generalized Adaptive Elastic Net |         | 0.3416             | 0.4556                 | 0.3232      | 0.3102 | 0.2241          | 0.1136                    | 88  | 0.8799 |
| Test       | Fit Nominal Logistic                 |         | 0.3307             | 0.4760                 | 0.4224      | 0.3749 | 0.2355          | 0.2135                    | 89  | 0.8856 |
| Test       | Fit Generalized Lasso                |         | 0.3237             | 0.4679                 | 0.4269      | 0.3740 | 0.2512          | 0.2022                    | 89  | 0.8747 |
| Test       | Fit Generalized Adaptive Lasso       |         | 0.3737             | 0.5245                 | 0.3953      | 0.3588 | 0.2601          | 0.1910                    | 89  | 0.8960 |
| Test       | Fit Generalized Elastic Net          |         | 0.3253             | 0.4697                 | 0.4258      | 0.3737 | 0.2522          | 0.2022                    | 89  | 0.8753 |
| Test       | Fit Generalized Adaptive Elastic Net |         | 0.3737             | 0.5246                 | 0.3953      | 0.3588 | 0.2602          | 0.1910                    | 89  | 0.8960 |

which designated the probability that the test score was "High" or over 200. Since we only wanted to look at the Test subset portion of the cross validation, we examined the Misclassification Rate and the Area Under the Curve (AUC) for the 89 observations in the Test subset. As seen below, the Adaptive Lasso and the Adaptive Elastic Net resulted in equal Misclassification and AUC values as shown below).

| rget Y binary | missing a predictor for category Low | 63          |                    |                        |             |        |                 |                           |     |      |
|---------------|--------------------------------------|-------------|--------------------|------------------------|-------------|--------|-----------------|---------------------------|-----|------|
| Predicto      | rs                                   |             |                    |                        |             |        |                 |                           |     |      |
| Measure       | s of Fit for Y Binary                |             |                    |                        |             |        |                 |                           |     |      |
| Validation    | Creator                              | .2 .4 .6 .8 | Entropy<br>RSquare | Generalized<br>RSquare | Mean -Log p | RASE   | Mean<br>Abs Dev | Misclassification<br>Rate | N   | AU   |
| Training      | Fit Nominal Logistic                 |             | 0.4012             | 0.5458                 | 0.3568      | 0.3387 | 0.2294          | 0.1774                    | 265 | 0.89 |
| Training      | Fit Generalized Adaptive Lasso       |             | 0.3577             | 0.4984                 | 0.3827      | 0.3497 | 0.2635          | 0.2000                    | 265 | 0.88 |
| Training      | Fit Generalized Adaptive Elastic Net |             | 0.3575             | 0.4982                 | 0.3828      | 0.3498 | 0.2636          | 0.2038                    | 265 | 0.88 |
| Validation    | Fit Nominal Logistic                 |             | 0.3027             | 0.4111                 | 0.3423      | 0.3228 | 0.2034          | 0.1023                    | 88  | 0.83 |
| Validation    | Fit Generalized Adaptive Lasso       |             | 0.3416             | 0.4556                 | 0.3232      | 0.3103 | 0.2240          | 0.1136                    | 88  | 0.87 |
| Validation    | Fit Generalized Adaptive Elastic Net |             | 0.3416             | 0.4556                 | 0,3232      | 0.3102 | 0.2241          | 0.1136                    | 88  | 0.87 |
| Test          | Fit Nominal Logistic                 |             | 0.3307             | 0.4760                 | 0.4224      | 0.3749 | 0.2355          | 0.2135                    | 89  | 0.88 |
| Test          | Fit Generalized Adaptive Lasso       |             | 0.3737             | 0.5245                 | - 0.3953    | 0.3588 | 0.2601-         | 0.1910                    | 89  | 0.89 |
| Test          | Fit Generalized Adaptive Elastic Net |             | 0.3737             | 0.5246                 | 0.3953      | 0.3588 | 0.2602          | 0.1910                    | 89  | 0.89 |

So, the top three models with the highest AUC (OLS, Adaptive Lasso and Adaptive Elastic Net) were put into a comparison on their own. The results showed that the Adaptive Lasso and the Adaptive Elastic Net were extremely similar. After adding in the AUC Comparison, again only the Testing subset was examined. When this tool compared the OLS Model to the Adaptive Model, and to the Adaptive Elastic Net Model, the values were identical (see the top picture on the next page).

When it compared the Adaptive Lasso to the Adaptive Elastic Net, it literally found no difference between the two methods of Estimation. Ultimately, the Adaptive Lasso was chosen because the Adaptive Elastic Net Method is simple a combination of the Lasso and the Ridge Model with a weighted L1 and L2 errors. The results basically said that the Elastic Net model eliminated the Ridge Method in its calculations.

| AUC Comparison for Y Bina<br>for Validation=Training     | ry=Hig              | ıh              |                |           |        |        |           |        |        |
|----------------------------------------------------------|---------------------|-----------------|----------------|-----------|--------|--------|-----------|--------|--------|
| AUC Comparison for Y Bina<br>for Validation = Validation | ry=Hig              | jh              |                |           |        |        |           |        |        |
| AUC Comparison for Y Bina                                | ry=Hig              | h for Val       | idation=Tes    | t         |        |        |           |        |        |
| Predictor                                                | AUC                 | Std Error       | Lower 95%      | Upper 95% |        |        |           |        |        |
| OLS Prob[High]                                           | 0.8856              | 0.0337          | 0.8015         | 0.9369    |        |        |           |        |        |
| ALasso Probability (Y Binary=High)                       | 0.8960              | 0.0324          | 0.8133         | 0.9445    |        |        |           |        |        |
| AENet Probability (Y Binary=High)                        | 0.8960              | 0.0324          | 0.8133         | 0.9445    |        |        |           |        |        |
| _                                                        | - 100 <u>- 1</u> 00 | 2000            |                | AUC       |        |        |           |        |        |
| Predictor                                                | vs. Pred            | Andrew Commence |                |           |        |        | Upper 95% |        |        |
| OLS Prob[High]                                           | ALasso              | Probability (   | Y Binary=High) | -0.010    | 0.0160 | -0.042 | 0.0209    | 0.4203 | 0.5168 |
| OLS Prob[High]                                           | AENet P             | robability (    | Y Binary=High) | -0.010    | 0.0160 | -0.042 | 0.0209    | 0.4203 | 0.5168 |
| ALasso Probability (Y Binary=High)                       | AFNIet P            | robability (    | ( Rinany-High) | 0.0000    | 0.0000 | 0.0000 | 0.0000    |        |        |

#### 4. INTERPRETATION

After the Adaptive Lasso Model was chosen, it was run again. Looking at the Parameter Estimates in the chart to the right, there were five unimportant variables eliminated as designated by zeroes in the chart on the right: Age, Gender, Low-Density Lipoproteins (LDL), Total Cholesterol

| Term              | Estimate  | Std Error | Wald<br>ChiSquare | Prob ><br>ChiSquare | Lower 95% | Upper 95% |
|-------------------|-----------|-----------|-------------------|---------------------|-----------|-----------|
| Intercept         | -13.9585  | 2.4468621 | 32.543056         | <.0001*             | -18.75426 | -9.162735 |
| Age               | 0         | 0         | 0                 | 1.0000              | 0         | 0         |
| Gender[1-2]       | 0         | 0         | 0                 | 1.0000              | 0         | (         |
| -BMI              | 0.1479024 | 0.0372935 | 15.7284           | <.0001*             | 0.0748085 | 0.2209963 |
| -BP               | 0.0375169 | 0.0126637 | 8.7767838         | 0.0031*             | 0.0126966 | 0.0623372 |
| Total Cholesterol | -7.231e-5 | 0.0059682 | 0.0001468         | 0.9903              | -0.01177  | 0.0116252 |
| LDL               | 0         | 0         | 0                 | 1.0000              | 0         | (         |
| HDL               | -0.019621 | 0.0143958 | 1.8576481         | 0.1729              | -0.047836 | 0.0085944 |
| TCH               | 0         | 0         | 0                 | 1.0000              | 0         | C         |
| LTG               | 1.2948845 | 0.4490309 | 8.3159062         | 0.0039*             | 0.4148001 | 2.1749689 |
| Glucose           | 0         | 0         | 0                 | 1.0000              | 0         | 0         |

Ratio (TCH), and Fasting Glucose. There were five variables left in the model: Body Mass Index (BMI), Blood Pressure (BP), Total Cholesterol (TCH), and Logarithm of Triglycerides (LTG). It could be construed that the Total Cholesterol Ratio (TCH) was nearly zero with a negative parameter estimate of -7.231e-5, but it was kept because Adaptive Lasso felt it was slightly important to predict our response variable. As it turned out, the Total Cholesterol Ratio remained the 5<sup>th</sup> most important indicator that patients would remain diabetic one year after their baseline.

Column

BP

HDI

While utilizing the Variable
Importance Tool under JMP's Profiler,
it was noted that LTG and BMI made
up around 80% of the Total Effect on
the Response Variable. The Adaptive
Lasso Model was run a few times and the
Most Important Variable Model flip flopped
between these two import variables.

Blood Pressure remained the 3<sup>rd</sup> most

important contributor to the Response on diabetes with High-Density Lipoproteins slightly more important than Total Cholesterol.



.2 .4 .6 .8

Main Effect Total Effect

0.383

0.193

0.042

0.401

0.148

0.024

### 5. NEW CASE

There are a few options in JMP to test the chosen model by inserting new observations. A single patient was chosen with the following data: Age: 47, Gender=1,



BMI=45, BP=109, Total Cholesterol=237, LDL=100.2, HDL=70, TCH=3, LTG=5.2149, Glucose=107. One option to test these values would be to manipulate the Prediction Filer's graphs to align with data presented above. As the picture directly above demonstrates, the Adaptive Lasso Model would only use the five most important variables. It gives an estimate of approximately a 90% chance that the patient would test as diabetic one year after the baseline score. It is worth noting that this estimate varies with subsequent Model runs.

An alternative was of testing values would be to insert a new row into the data set itself, using the above values as corresponding column entries. An additional data entry of Y was necessary for JMP to calculate the estimate directly into the table and the chosen value for this was 300. The results were similar to when the model itself was run with an estimate of approximately 90%. However, this method would allow instance comparison in all the models in the table.

| <ul><li>□</li><li>□</li></ul> | F   | Υ   | Y<br>Binary | Age | Gender | ВМІ  | ВР    | Total<br>Choleste | LDL   | HDL | тсн  | LTG    | Glucose | Validation | OLS<br>Lin[High] | OLS<br>Prob[High] | OLS<br>Prob[Low] | OLS Most Likely<br>Y Binary | ALasso Probability (Y<br>Binary=High) |
|-------------------------------|-----|-----|-------------|-----|--------|------|-------|-------------------|-------|-----|------|--------|---------|------------|------------------|-------------------|------------------|-----------------------------|---------------------------------------|
|                               | 440 | 132 | Low         | 60  | 2      | 24.9 | 99.67 | 162               | 106.6 | 43  | 3.77 | 4.1271 | 95      | Training   | -2.764229        | 0.05928805        | 0.94071194       | Low                         | 0.1142842402                          |
|                               | 441 | 220 | High        | 36  | 1      | 30.0 | 95    | 201               | 125.2 | 42  | 4.79 | 5.1299 | 85      | Validation | 0.2975018        | 0.57383170        | 0.42616829       | High                        | 0.4617503657                          |
|                               | 442 | 57  | Low         | 36  | 1      | 19.6 | 71    | 250               | 133.2 | 97  | 3    | 4.5951 | 92      | Validation | -6.936688        | 0.00097053        | 0.99902946       | Low                         | 0.0125292391                          |
| •                             | 443 | 300 | High        | 47  | 1      | 45.0 | 109   | 237               | 100.2 | 70  | 3    | 5.2149 | 107     | •          | 0.5602968        | 0.63652122        | 0.36347877       | High                        | 0.8955335851                          |