A Study on Speech Enhancement Based on Diffusion Probabilistic Model

Yen-Ju Lu, Yu Tsao, Shinji Watanabe

Outline

- Introduction
- Diffusion Model
- Experiments
- Conclusion

Introduction

Diffusion Model is a novel generation method that has achieved good results in both image and speech generation tasks.

Based on this, DiffWave has become the state of the art in speech synthesis with only a few parameters.

Introduction

This paper attempts to apply DiffWave to Speech Enhancement and proposes a Supportive Reverse Process (SRP) specifically designed for this task to replace the original Reverse Process (RP).

Diffusion Model

Params Equation

Param	Eq
$oldsymbol{eta}_t$	$\{eta_t\}_{t=1}^T$
$lpha_t$	$1-eta_t$
$ar{lpha}_t$	$\prod_{s=1}^t lpha_s$
σ_t^2	$rac{(1-ar{lpha}_{t-1})}{1-ar{lpha}_t}eta_t$
γ_t	$rac{\sigma_t}{\sqrt{ar{lpha}_{t-1}}}$

Train

$$\|
abla_{ heta}\|\epsilon-\epsilon_{ heta}(x_t,t)\|_2^2$$

Reverse Process

$$egin{aligned} x_{t-1} &= \mu_{ heta}(x_t,t) + \sigma_t z \ &= rac{1}{\sqrt{lpha_t}}(x_t - rac{1-lpha_t}{\sqrt{1-arlpha_t}}\epsilon_{ heta}(x_t,t)) + \sigma_t z \end{aligned}$$

$$egin{aligned} rac{1}{\sqrt{lpha_t}}x_t &= rac{\sqrt{arlpha_t}x_0 + \sqrt{1-arlpha_t}\epsilon}{\sqrt{lpha_t}} \ &= \sqrt{arlpha_{t-1}}x_0 + rac{\sqrt{1-arlpha_t}}{\sqrt{lpha_t}}\epsilon \end{aligned}$$

$$egin{aligned} \det \epsilon_{ heta}(x_t,t) &= \epsilon \ rac{\sqrt{1-ar{lpha}_t}}{\sqrt{lpha_t}}\epsilon - rac{1-lpha_t}{\sqrt{1-ar{lpha}_t}}\epsilon &= rac{lpha_t-ar{lpha}_t}{\sqrt{a_t}\sqrt{1-ar{a}_t}}\epsilon \ &= ilde{\sigma}\epsilon \end{aligned}$$

$$egin{aligned} \sigma_t^2 &= rac{(1-arlpha_{t-1})(1-lpha_t)}{1-arlpha_t} \; for \; t > 1 \; and \; \sigma_1^2 = 1-lpha_1 \ & \; ilde\sigma\epsilon + \sigma_t z \sim N(0, ilde\sigma^2 + \sigma_t^2) \ & \; ilde(統計獨立的常態隨機變數相加) \ & \; areta^2 + \sigma_t^2 = 1 - arlpha_{t-1} \ & \; o ilde\sigma\epsilon + \sigma_t z \sim N(0, 1-arlpha_{t-1}) \end{aligned}$$

$$egin{align} x_{t-1} &= \mu_{ heta}(x_t,t) + \sigma_t z \ &= \sqrt{arlpha}_{t-1} x_0 + ilde\sigma\epsilon + \sigma_t z \ &= \sqrt{arlpha}_{t-1} x_0 + \sqrt{1 - arlpha}_{t-1}\epsilon' \ &\epsilon' \sim N(0,I) \ \end{pmatrix}$$

DiffSE Model

$$\epsilon_{ heta}(x_t,t)
ightarrow \epsilon_{ heta}(x_t,t, extbf{condition})$$

condition =

 $if\ pretrain:$

 $Clean\ Mel\ Spectrogram$

else:

 $Noisy\ Mel\ Spectrogram$

Supportive Reverse Process

$$egin{aligned} x_T &= y = noisy \, speech \ \hat{\mu}_{ heta}(x_t,t) &= (1-\gamma_t)\mu_{ heta}(x_t,t) + \gamma_t\sqrt{ar{lpha}_{t-1}}y \ \hat{\sigma}_t &= max(\sigma_t - \gamma_t\sqrt{lpha_{t-1}},0) \ x_{t-1} &= \hat{\mu}_{ heta}(x_t,t) + \hat{\sigma}_t z \end{aligned}$$

Experiments

VoiceBank DEMAND Dataset

	Train	Test
Speaker	28	2
SNR	0 \ 5 \ 10 \ 15 dB	2.5 \ 7.5 \ 12.5 \ 17.5 dB
Sampling Rate	16k Hz	

Hyper Params

Param	Value
T_{Base}	50
T_{Large}	200
$eta_t(base)$	$1 imes10^{-4}~to~0.05$
$oxed{eta_t(large)}$	$1 imes10^{-4}~to~0.02$
$eta_t(fast\&base)$	[1e-4, 1e-3, 1e-2, 0.05, 0.2, 0.5]
$oxed{eta_t(fast\&large)}$	[1e-4, 1e-3, 1e-2, 0.05, 0.2, 0.7]

Results

- ullet Reverse Process
- RP- N_{in} : 使用 Noisy Speech 而非 Gaussian Noise 作為輸入
- \overline{RP} - N_{out} :將 \overline{RP} 生成的輸出與 Noisy Speech以 4:1 的比例混和
- $RP ext{-}N_{in+out}:RP ext{-}N_{in}$ 與 $RP ext{-}N_{out}$ 一同使用
- ullet SRP: Supportive Reverse Process

Base DiffuSE	Schedule	PESQ	CSIG	СВАК	COVL
Noisy	-	1.97	3.35	2.44	2.63
PR	Fast	1.96	3.13	2.22	2.52
	Full	1.97	3.21	2.22	2.57
$PR\text{-}N_{in}$	Fast	2.07	3.21	2.57	2.62
	Full	2.05	3.27	2.48	2.64
PR- N_{out}	Fast	2.05	3.31	2.21	2.64
	Full	2.12	3.38	2.25	2.72
$PR ext{-}N_{in+out}$	Fast	2.29	3.47	2.67	2.85
	Full	2.31	3.51	2.61	2.88
SRP	Fast Full	2.41 2.39	3.61 3.60	2.82 2.79	2.99 2.97

Large DiffuSE	Schedule	PESQ	CSIG	СВАК	COVL
Noisy	-	1.97	3.35	2.44	2.63
PR	Fast	2.09	3.29	2.31	2.67
	Full	2.16	3.39	2.31	2.75
PR- N_{in}	Fast	2.18	3.35	2.60	2.74
	Full	2.20	3.42	2.48	2.78
PR- N_{out}	Fast	2.16	3.42	2.30	2.76
	Full	2.17	3.45	2.29	2.78
$PR\text{-}N_{in+out}$	Fast	2.37	3.56	2.69	2.94
	Full	2.33	3.55	2.56	2.91
SRP	Fast Full	2.43 2.39	3.63 3.63	2.81 2.75	3.00 2.99

vs Time Domain SOTA

Method	PESQ	CSIG	CBAK	COVL
Noisy	1.97	3.35	2.44	2.63
SEGAN	2.16	3.48	2.94	2.80
DSEGAN	2.39	3.46	3.11	3.50
SE-Flow	2.28	3.70	3.03	2.97
DiffuSE(Base)	2.41	3.61	2.82	2.99
DiffuSE(Large)	2.43	3.63	2.81	3.00

Conclusion

- SRP gets better results than RP by adding (Noisy) Speech information in the reverse process.
- In the reverse process, only a few key steps need to be performed to get good results.
- Can real-world noise be used instead of gaussian noise for training during the diffusion process?