Computer exercise

Maximum Likelihood Classification of Satellite Images

Number of object class: 5 (as shown in Fig)

Feature vector: $\mathbf{x} = [R \ G \ B]^T$

Step 1: Randomly select 10 points from each class as training data \mathbf{x}_{k}^{n} (k=1, 2, ..., 5; n=1, 2, ..., 10)

Step 2: Calculating mean vector μ_k and covariance matrix Σ_k for each class using its training data \mathbf{x}_k^n .

Step 3: $\mathbf{x} = [R(i,j) \ G(i,j) \ B(i,j)]^T$ for pixel (i,j)

Step 4: Calculate likelihood $p(\mathbf{x}|k)$ for all classes (k=1, 2,..., 5).

Step 5: Classify the pixel (i,j) to class c, if $p(\mathbf{x}|c) = \max p(\mathbf{x}|k)$.

Step 6: Repeat step 3-5 for all pixels