PROJECT REPORT

Team ID	PNT2022TMID25946
Project Name	ESTIMATE THE CROP YIELD USING DATA ANALYTICS

1. INTRODUCTION

1.1 Project Overview

Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops. For this project, we are using Data Analytics. Analytics is the interpretation of data pattern that assist decision- making and performance improvement. As per this project we will be analyzing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India. A dashboard helps us to monitor events or activities at a glance by providing key insights and analysis about our data on one or more pages or screens. In this project, we visualize, analyse and gain most of the insights by creating a dashboard.

1.2 Purpose

Crop yeild Estimation is of great importance to global food production. But, crop yield prediction is one of the challenging tasks in agriculture. The main purpose of this estimation is to predict the future outcomes based on historical and current agricultural data. This is done by analysing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India. Farmers require accurate yield estimates for a number of reasons like crop insurance purposes, delivery estimates, planning harvest and storage requirements. The prediction of crop yield can be based on the above problems and Farmers can estimate yields themselves or utilize data compiled by others.

2. LITERATURE SURVEY

2.1 Existing Problem

Farmers must meet the changing needs of our planet and the expectations of regulators, consumers, and food processors and retailers. There are increasing pressures from climate change, soil erosion and biodiversity loss and from consumers' changing tastes in food and concerns about how it is produced. In addition to this problems, there are certain other problems related to farm lands. If all the farmland was a single large continuous farm the analysis of the crops would be far easier – however, farms tend to be a mixture of small farms and large agribusiness varying in size by the owner, the crop and the economics of the country. Identifying different farms, and what they are growing at different scales becomes complex and prone to error. And the natural world that farming works with – plants, pests and diseases – continue to pose their own challenges. While modern agriculture provides a large number of solutions, the outcome is not always the same because each farm is unique: different landscapes, soils, available technology and potential yields.

2.2 References

- **I.** Surya, P. and Aroquiaraj, I.L., 2018. Crop yield prediction in agriculture using data mining predictive analytic techniques. International Journal of Research and Analytical Reviews, 5(4), pp.783-787.
- II. Nishant, P.S., Venkat, P.S., Avinash, B.L. and Jabber, B., 2020, June. Crop yield prediction based on indian agriculture using machine learning. In 2020 International Conference for Emerging Technology (INCET) (pp. 1-4). IEEE.

III. Nasira, G.M. and Hemageetha, N., 2012. Forecasting model for vegetable price using back propagation neural network. International Journal of Computational Intelligence and Informatics, 2(2), pp.110-115.

IV. Surya, P. and Aroquiaraj, I.L., 2018. Crop yield prediction in agriculture using data mining predictive analytic techniques. International Journal of Research and Analytical Reviews, 5(4), pp.783-787.

V. Antony, B., 2021. Prediction of the production of crops with respect to rainfall. Environmental Research, 202, p.111624.

2.3 Problem Statement Definition

Crop yield prediction is an important agricultural problem. Data Analytics can be used in crop yield prediction in order to assure food security by guiding the farmers. Yield prediction in developing countries can help prevent famine, support the local economy, and improve sustainable agricultural practices. The Agricultural yield primarily depends on weather conditions, pesticides. Accurate information about history of crop yield is important for making better decisions.

The Problem Statement revolves around prediction of crop yield using Machine Learning Techniques. The goal of the project is to help the users choose a suitable crop to grow in order to maximize the yield and hence the profit. The system proposed tries to overcome the drawbacks of existing systems and make predictions by analyzing structured data. The solution we are proposing is to design a system taking into consideration the most influencing parameters to grow a crop and to get a better selection of crops which can be grown over the season. This would help reduce the difficulties faced by the farmers in selecting the crop to get high yield.

3.1 Empathy Map Canvas

Empathy Map Canvas

Gain insight and understanding on solving customer problems.

Build empathy and keep your focus on the user by putting yourself in their shoes.

3.2 Ideation and Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem	With the changing of climate,
	to be solved)	without caring much about soil
		replenishing and due to several crop
		diseases, agriculture faces
		increasing problems leading to
		considerable yield losses of crops.
2.	Idea / Solution description	Crop yeild predicition is of great
		importance to global food
		production. The four most important
		factors that influence crop yield are
		soil fertility, availability of water,
		climate, and diseases or
		pests.Estimation of these, will help

	1	1
		to increase the crop production. An
		accurate crop yield prediction model
		can help farmers to decide on what
		to grow and when to grow.
3.	Novelty / Uniqueness	Great dashboards are clear, intuitive,
		and customizable. They display
		information clearly and efficiently
		with several visualizations. They
		show trends and changes in data
		over time. The most important
		widgets and data components are
		effectively presented in a limited
		space.
4.	Social Impact / Customer	Crop yield simulations help to
	Satisfaction	understand the cumulative effects of
		water and nutrient deficiencies,
		pests, diseases, the impact of crop
		yield variability, and other field
		conditions over the growing season.
		Accurate yield predictions not only
		help farmers make informed
		economic and management
		decisions but also support famine
		prevention efforts.
5.	Business Model (Revenue	Estimation of crop yield is created
	Model)	as a dashboard. This will be utilized
		by food production companies and
		beverages. By this way, the product

		will fetch more revenue to the organisation.
6.	Scalability of the Solution	A dashboard is created. And this will be useful not only for farmers to increase crop production, but also for Department of Agriculture and Farmers Welfare to make better decisions and also for agricultural students to understand better about agriculture.

3.4 Problem Solution Fit

4. REQUIREMENT ANALYSIS

4.1 Functional Requirement

FR No.	Functional Requirement	Sub Requirement (Story /Sub-
	(Epic)	Task)
FR-1	User Registration	Registration through Gmail
FR-2	Login to Dashboard	Visualizations of crop growth rate
FR-3	Interactive Dashboard	Change the fields of
		visualizations according to
		user needs

$4.2 \ \textbf{Non-Functional Requirement}$

FR No.	Non-Functional	Description
	Requirement	
NFR-1	Usability	Easy to access and usethe Dashboard effectively
NFR-2	Security	User login credentials aremaintained in a secured manner and restricted to unauthorised access
NFR-3	Reliability	Dataset used are collected from trustworthy sites and it is up-to date
NFR-4	Performance	Higher performance
NFR-5	Availability	Actively available to all sources
NFR-6	Scalability	It is scalable sinceit has interactive Dashboard

5. PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution And Technical Architecture

5.3 User Stories

User Type	Functional Requirem ent (Epic)	User Story Numb er	User Story / Task	Acceptanc e criteria	Priori ty	Relea se
Customer (Mobile user)	Registratio n	USN-1	As a user, I can register for the	I can access my account / dashboard	High	Sprint -1

			application by entering my email, password.			
	Login	USN-2	As a user, I can log into the application by entering email & password	I can enter the user name and password	High	Sprint -1
	Dashboard	USN-3	Estimation of crop yield will be displayed	I can access the dashboard	High	Sprint -1
Customer (Web user)	Accessing the dashboard	USN-1	View the estimation of crops available on the dashboard and take decisions accordingly	I can use the informatio n for crop yielding	High	Sprint -1
Customer Care Executive	Connects the user	USN-1	Connects the user with the dashboard	I can access the services	Mediu m	Sprint -3
Administra tor	Provides services	Admin	Estimate the crop yield and display the visualizati ons on the dashboard	I can update visualizati ons	High	Sprint -1

6. PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning And Estimation

Spri nt	FunctionalRequi rement (Epic)	User Story Num ber	User Story / Task	Stor y Poi nts	Prior ity	Team Members
Spri nt-1	Registration	USN-	As a user, I can register for the application by entering my email and password	10	High	Merlin White
	Login	USN- 2	As a user, I can log into the application by entering email & password.	10	High	Merlin White, Varshini
Spri nt-2	Working with the Dataset	USN-1	Importing the dataset on cognos platform and understand, clean and prepare the dataset.	10	High	Nivetha, Merlin White
	Data Visualization chart	USN- 2	After importing the dataset, we create some visualizations t o understand mor e about the soil, crop yield, crop rotation, etc.	10	High	Varshini
			Building visualizations to show crop	4	Low	Nivetha

			production in each state.			
			Building visualizations to show crop growth from	6	Medi um	Merlin White
Spri nt-3	Creating the Dashboard	USN-6	Creating the dashboard to display the visualizations which gives insights o f Crop production in I ndia.	10	High	MerlinWhite,N ivetha, Varshini
Spri nt-4	Export the Analy tics	USN-7	Exporting the created dashboard to showcase the work to others.	10	High	Merlin White,N ivetha, Varshini

6.2 Sprint Delivery Schedule

Spri nt	Total Sto ry Points	Durati on	Sprint St art Date	_	Completed (as on Planned End D ate)	Date(
Sprin t-1	20	6 Days	24 Oct 2022	24 Oct 2022	20	29 Oct 2022

Sprin t-2	20	6 Days	31 Oct	05	20	04
t-2			2022	Nov 2022		Nov 202
						2
Sprin t-3	20	6 Days	07 Nov	12	20	11
t-3			2022	Nov 2022		Nov 202
						2
Sprin t-4	20	6 Days	14 Nov	19	20	19
t-4			2022	Nov 2022		Nov 202
						2

6.3 Reports From JIRA

	ОСТ	NOV	DEC
Sprints	ECYU	ECYU ECYU ECYU	
✓ ECYUDA-11 Registration			
ECYUDA-1 As a user, I can DONE MERLIN W			
ECYUDA-2 As a user, I will r DONE MERLIN W			
ECYUDA-3 As a user, I can DONE NIVETHA K			
✓ ☑ ECYUDA-12 login			
ECYUDA-4 As a user, I can I DONE VARSHINI B			
✓ ECYUDA-13 Working with Dataset			
ECYUDA-5 Importing the d DONE NIVETHA K			
✓ ECYUDA-14 Data Visualization chart			
■ ECYUDA-6 After importing t DONE MERLIN W			
■ ECYUDA-7 Building visualiz DONE VARSHINI B			
■ ECYUDA-8 Building visualiz DONE VARSHINI B			
✓ ECYUDA-15 Creating Dashboard			
■ ECYUDA-9 Creating the das DONE MERLIN W			
✓ ▼ ECYUDA-16 Exporting the Analytics			
ECYUDA-10 Exporting t IN REVIE NIVETHA K			

7. CODING AND SOLUTIONING

7.1 Feature 1

Registration

The new user should register with username, password and Email-id to access the website. After registering, user's login credentials will be stored in the database.

Coding

```
<html>
<head>
  <title>Register</title>
  <link rel="stylesheet" type="text/css" href="style.css">
</head>
<body>
  <hr>>
  <center><h1>Registration Form</h1></center>
  <section id="form-details" class="section-p1">
    <center>
    <form action="register.php" method="post" name="form1">
    <label class="11">Name</label>
```

```
<input type="text" name="name" required>
     <label class="11">Email</label>
       <input type="email" name="email" required>
     <label class="11">Password</label>
     <input type="password" name="password" required>
     <input type="submit" class="normal" name="register"
value="Register">
     <a href="/ibm/" class="brd">Login</a>
   <?php
   //including the database connection file
   include_once("db-config.php");
   // Check If form submitted, insert user data into database.
   if (isset($_POST['register'])) {
```

```
= $_POST['name'];
       $name
       $email = $_POST['email'];
       $password = $_POST['password'];
       // If email already exists, throw error
       $email_result = mysqli_query($mysqli, "select 'email' from users where
email='$email' and password='$password''');
       // Count the number of row matched
       $user_matched = mysqli_num_rows($email_result);
       // If number of user rows returned more than 0, it means email already
exists
       if (\$user\_matched > 0) {
         echo "<br/>>div id='msg'><strong>Error: </strong> User
already exists with the email id </div>";
       } else {
         // Insert user data into database
         $result = mysqli_query($mysqli, "INSERT INTO
users(name,email,password) VALUES('$name','$email','$password')");
         // check if user data inserted successfully.
         if ($result) {
```

```
echo "<br/>div id='msg'><h3>User Registered
successfully.</h3></div>";
         } else {
            echo "<br/>br/><div id='msg'><h3>Registration error. Please try
again." . mysqli_error($mysqli)."</h3></div>";
         }
       }
     }
    ?>
  </form>
  </center>
  <div class="imgsec">
    <div>
       <img class="a1" src="img/reg.jpg">
    </div>
  </div>
</section>
</body>
</html>
```

Login

Once registered, the user can directly login to the website by using their login credentials. There is no need to register each and every time the user tries to access the website.

Coding

```
<?php
 session_start();
// Create database connection using config file
include_once("db-config.php");
// If form submitted, collect email and password from form
if (isset($_POST['login'])) {
  $email
          = POST['email'];
  $password = $_POST['password'];
 // Check if a user exists with given username & password
  $result = mysqli_query($mysqli, "select 'email', 'password' from users
   where email='$email' and password='$password''');
 // Count the number of user/rows returned by query
  $user_matched = mysqli_num_rows($result);
 // Check If user matched/exist, store user email in session and redirect
  if (\sup_{m \in \mathbb{Z}} \text{matched} > 0) {
     $_SESSION["email"] = $email;
     header("location: project.php");
  } else {
     echo "<div id='msg'>User email or password is not matched <br/></div>";
}
```

```
?>
<!DOCTYPE html>
<html>
<head>
 <title>Login</title>
 <link rel="stylesheet" type="text/css" href="style.css">
</head>
<body class="b1">
 <center><h1>Login Form</h1></center>
 <section id="form-details" class="section-p1">
   <center>
 <form action="index.php" method="post" name="form1">
   <label class="11">Email</label>
       <input type="text" name="email">
     <label class="l1">Password</label>
       <input type="password" name="password">
```

```
<input type="submit" class="normal" name="login"
value="Login">
      <a href="register.php" class="brd">Register</a>
  </form>
  </center>
  <div class="imgsec">
    <div>
      <img class="a1" src="img/reg.jpg">
     </div>
  </div>
</section>
</body>
</html>
  Style Coding
*{
     margin: 0;
     padding: 0;
     box-sizing: border-box;
```

```
font-family: 'Spartan', sans-serif;
}
h1{
      font-size: 50px;
      line-height: 64px;
      color: #222;
}
h2{
      font-size: 46px;
      line-height: 54px;
      color: #222;
}
h4{
      font-size: 20px;
      color: #222;
}
h6{
      font-weight: 700;
      font-size: 12px;
}
p\{
      font-size: 16px;
```

```
color: #465b52;
      margin: 15px 0 20px 0;
}
      . section-p1 \{\\
      padding: 40px 80px;
}
.normal \{\\
font-size: 14px;
font-weight: 600;
padding: 15px 30px;
color: #000;
background-color: #2ddfc3;
border-radius: 4px;
cursor: pointer;
border: none;
outline: none;
transition: 0.2s;
#msg {
  padding: 20px 20px;
  text-align: center;
  background-color: tomato;
```

```
margin: 20px 300px 20px 300px;
  border-radius: 50px;
  color: antiquewhite;
}
body{
      width: 100%;
      background-image: url("img/crop1.jpg");
      background-repeat: no-repeat;
      background-size: cover;
}
.b1{
      background-image: url("img/crop2.jpg");
      background-repeat: no-repeat;
      background-size: cover;
}
. section-p1 \{\\
      padding: 40px 80px;
}
img.a1 {
  width: 100%;
}
```

```
.imgsec {
  width: 30%;
}
.11 {
  color: aliceblue;
}
/* Form */
#form-details{
  display: flex;
  justify-content: space-between;
  margin: 30px;
  padding: 80px;
}
#form-details form{
      width: 600px;
      display: flex;
      flex-direction: column;
      align-items: flex-start;
}
```

```
#form-details form span{
      font-size: 12px;
}
#form-details form h2{
      font-size: 26px;
      line-height: 35px;
      padding: 20px 0;
}
#form-details form input{
      border-radius: 10px;
      width: 100%;
      padding: 12px 15px;
      outline: none;
      margin-bottom: 20px;
      border: 1px solid #e1e1e1;
}
#form-details form button{
      background-color: #088178;
      color: #fff;
}
#form-details .imgsec div{
```

```
padding-bottom: 25px;
}
```

7.2 Feature 2

Creating Website

We are creating a website to export the created dashboard to showcase the work to others. It is done with the help of IBM Cognos and IBM Cloud.

Coding

```
<body>
<header>
      <nav>
           <div>
              <a href="#about">About</a>
              <a href="#dataset">Dataset</a>
              <a href="#visualizations">Visualizations</a>
              <a href="#algorithm">Algorithms</a>
      </nav>
  <section>
    <div>
          <h1>Estimation Of Crop Yeild </h1>
          <h1 id="head">Using </h1>
          <h1 id="head">Data Analytics</h1>
    </div>
  </section>
</header>
<section id="about" class="section"><br>
  <div id="con">
     <h2>Data Analytics</h2><br>
     Data science is the practice of mining large data sets of raw data, both
structured and
```

unstructured, to identify patterns and extract actionable insight from them. This is an

interdisciplinary field, and the foundations of data science include statistics, inference,

computer science, predictive analytics, machine learning algorithm development, and

new technologies to gain insights from big data.

Data analytics is one of the fields of Data science. Data analytics is the process of exploring and analyzing large datasets to find hidden patterns, unseen trends, discover correlations, and derive valuable insights to make business predictions.
br>

<P>In this project, we are going to estimate the crop yeild using Data analytics. Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops. As per this project we will be analyzing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India. This website will be useful for farmers to make better decisions related to agriculture.

```
</div>
</section>
<section id="dataset" class="section">
<h2>Dataset</h2>
```

A Dataset is a set or collection of data. This set is normally presented in a tabular pattern. Every column describes a particular variable. And each row corresponds to a given member of the data set.

The dataset, we are working with, has 2,46,092 data points (rows) and 6 features (columns) describing each crop production related details. Let's understand the data we're working with and give a brief overview of what each feature represents or should represent State Name - All the Indian State names, District Name -Different District names, Crop Year- contains the crop years, Season – Different seasons for crop production, Area- Total number of areas covered, Production- production of crops.

Data visualization is the practice of translating information into a visual context, such as a map or graph, to make data easier for the human brain to understand and pull insights from. The main goal of data visualization is to make it easier to identify patterns, trends and outliers in large data sets.

br>

Using the Crop production in Indian dataset, we plan to create various graphs and charts to highlight the insights and visualizations.

Seasons.

Showcase the Yearly usage of Area in Crop Production.

Suild a visualization to show case top 10 States in Crop Yeild Production by Area.

Suild the required Visualization to showcase the Crop Production by State.

Build Viusal analytics to represent the Sates with Seasonsal Crop
Production using a Text representation.

>

<iframe

src="https://us3.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef =.my_folders%2FSprint2&closeWindowOnLastView=true&ui_appba r=false&ui_navbar=false&shareMode=embedded&action=view &mode=dashboard&subView=model000001845cd66489_00000003" width="1200" height="1000" frameborder="0" gesture="media" allow="encrypted-media" allowfullscreen=""></iframe>

</section>

<section id="algorithm" class="section">

<div id="con">

<h2>Algorithms</h2>

An Algorithm in Data analytics is a set of heuristics and calculations that creates a model from data. To create a model, the algorithm first analyzes the data you provide, looking for specific types of patterns or trends. There are

several algorithms available in Data analytics. Choosing the best algorithm to use for a specific analytical task can be a challenge. Each algorithm produces a different result, and some algorithms can produce more than one type of result. Some of them are,

<b style="font-size: 1.5em;">Linear Regression Algorithm:

Linear regression is one of the easiest and most popular Machine
Learning algorithms. It is a statistical method that is used for predictive
analysis. Linear regression makes predictions for continuous/real or numeric
variables.

<b style="font-size: 1.5em;">Logistic Regression Algorithm:

Logistic regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables. Therefore the outcome must be a categorical or discrete value.

<b style="font-size: 1.5em;">K-Nearest Neighbor(KNN) Algorithm:

K-nearest neighbors (kNN) is a supervised machine learning technique that may be used to handle both classification and regression tasks and is also frequently used in missing value imputation. It is based on the idea that the observations closest to a given data point are the most "similar" observations in a data set, and we can therefore classify unforeseen points based on the values of the closest existing points.

<b style="font-size: 1.5em;">Decision Tree Algorithm:

Decision Tree is a supervised machine learning algorithm where all the decisions were made based on some conditions. The decision tree has a root node and leaf nodes extended from the root node. These nodes were decided based on some parameters like Gini index, entropy, information gain.

```
</div>
</section>
<footer>
     <div class="footer">
           \langle ul \rangle
                 <br>>
                       Related Data Analytics Project Ideas
                 <br>
                 <
                       <a href="https://www.interviewbit.com/blog/data-
analytics-projects/">Advanced Project Ideas</a>
                 <
                       <a href="https://www.coursera.org/articles/data-
analytics-projects-for-beginners">Beginners Project Ideas</a>
                 <br>
           <u1>
                 <br>>
```

```
For Dataset Refer
                <
                    <a href="https://www.kaggle.com/datasets">Kaggle
Site</a>
                <
                      <a href="https://data.gov.in/">Government Site</a>
                <br>
     </div>
</footer>
</body>
</html>
  Style Coding
*{
    margin: 0;
    padding: 0;
}
header{
     background-image: url("Agriculture.jpg");
     background-repeat: no-repeat;
```

```
background-size: cover;
      overflow-x: hidden;
      overflow-y: hidden;
      width: 100%;
      height: 100vh;
}
header h1{
      text-align: center;
      text-transform: capitalize;
      font-size: 3em;
      padding-top: 25vh;
}
#head{
      text-align: center;
      text-transform: capitalize;
      font-size: 3em;
      padding-top: 1vh;
}
header p{
      text-align: center;
      text-transform: capitalize;
      font-size: 1.5em;
```

```
padding-top: 10vh;
      padding-left: 30vh;
      padding-right: 30vh;
}
nav div{
      background-color: #E1C16E;
      width: 100%;
      height: 40px;
}
nav a:hover, footer a:hover{
      background-color: #ffffff;
}
nav a{
      color: #000;
      font-size: 1.5em;
      text-decoration: none;
      text-transform: capitalize;
      display: inline-block;
      width: 150px;
      text-align: center;
      padding: 10px 0;
}
```

```
footer{
      background-color: #E1C16E;
      width: 100%;
      height: 100%;
}
footer div{
      display: grid;
      grid-gap: 10px;
      grid-template-columns: repeat(3, 1fr);
      text-align: left;
     padding-left: 10vh;
}
footer a{
      font-size: 0.7em;
      color: #000000;
      text-decoration: none;
}
footer ul{
      list-style: none;
}
footer li{
```

```
font-size: 1.5em;
      color: #000000;
}
.section ul{
      font-size: 1.5em;
}
.section \ p\{
      font-size: 1.5em;
}
.section h2{
      text-align: center;
      padding: 15px;
}
#about{
    background-image: url("Data Analytics.jpeg");
      background-repeat: no-repeat;
      background-size: cover;
      overflow-x: hidden;
      overflow-y: hidden;
      width: 100%;
      height: 100vh;
```

```
padding-right: 20vh;
      padding-left: 20vh;
      padding-top: 40px;
      padding-bottom: 40px;
    color: #ffffff;
    text-align: justify;
}
#con {
  width: 85%;
}
a.brd {
  background-color: aliceblue;
  padding: 4px;
  border-radius: 30px;
}
#dataset{
    padding-right: 10vh;
      padding-left: 10vh;
      padding-top: 40px;
      padding-bottom: 40px;
    text-align: justify;
}
```

```
#visualizations{
    padding-right: 10vh;
      padding-left: 10vh;
      padding-top: 40px;
      padding-bottom: 40px;
}
#algorithm{
    background-image: url("Algorithm.jpg");
      background-repeat: no-repeat;
      background-size: cover;
      overflow-x: hidden;
      overflow-y: hidden;
      width: 100%;
    padding-right: 10vh;
      padding-left: 10vh;
      padding-top: 40px;
      padding-bottom: 40px;
    color: #ffffff;
    text-align: justify;
}
#indent{
```

```
padding-left: 15vh;
}
```

7.3 Database Schema

We are using Database Connectivity to store user's login credentials. This helps us to authenticate the user.

Coding

```
<?php
$databaseHost = 'localhost';
$databaseName = 'crop_yield';
$databaseUsername = 'root';
$databasePassword = ";
$mysqli = mysqli_connect($databaseHost, $databaseUsername,
$databasePassword, $databaseName);</pre>
```

8. TESTING

8.1 Test Cases

Test case ID	Feature Type	Component	Test Scenario
LoginPage_TC_O O1	Functional	Home Page	Verify user is able to see the Login/Signup popup when user clicked on My account button
LoginPage_TC_O O2	UI	Home Page	Verify the UI elements in Login/Signup popup
LoginPage_TC_O O3	Functional	Home page	Verify user is able to log into application with Valid credentials
LoginPage_TC_O O4	Functional	Login page	Verify user is able to log into application with InValid credentials
LoginPage_TC_O O5	Functional	Login page	Verify user is able to log into application with InValid credentials

LoginPage_TC_O O6	Functional	Login page	Verify user is able to log into application with InValid credentials
LoginPage_TC_O O7	Functional	Home Page	User must be able to navigate between different sections
LoginPage_TC_O O8			User must be able to change the visualizations according to their requirements
LoginPage_TC_O Functional O9		Home Page	User must be able to navigate to different tabs using the given link

8.2 User Acceptance Testing

Purpose

The purpose is to briefly explain the test coverage and open issues of the project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	8	2	2	2	14
Duplicate	2	0	2	0	4
External	3	2	0	1	6
Fixed	9	1	3	17	30
Not Reproduced	0	0	0	0	0
Skipped	0	0	0	2	2
Won'tFix	0	4	1	1	6
Totals	22	9	8	23	62

Testcase AnalysisThis report shows the number of test cases that have passed, failed, and untested.

Section	Total Cases	Not Tested	Fail	Pass
PrintEngine	7	0	0	7
Client Application	51	0	2	49
Security	3	0	1	2
Outsource Shipping	3	0	1	2
Exception Reporting	9	0	0	9
FinalReport Output	4	0	0	4
Version Control	2	0	1	1

9. RESULTS

9.1 Performance Metrics

S.No.	Parameter	Screenshot / Values
1.	Dashboard design	No of Visulizations / Graphs - 5
2.	Data	1.Seasons With Average Productions
	Responsiveness	2.With Years Usage Of Area And Production3.Top 10 States With Most Area
		4.State With Crop Production
		5.States With The Crop Production Along
		With Season
3.	Amount Data to	The Dataset is trained and visualized using
	Rendered (DB2	IBM Cognos and it is Connected to IBM
	Metrics)	Cloud
4.	Utilization of Data	Visulizations are utilized inorder to filter the
	Filters	Data
5.	Effective User Story	No of Scene Added - 7
6.	Descriptive Reports	No of Visulizations / Graphs - 5

10. ADVANTAGES AND DISADVANTAGES

Advantages

Crop yield Estimation is essential for planning and evaluation of agricultural investments to improve the productivity and profitability of smallholder farming systems. Early detection of problems and management of that problems can help the farmers for better crop yield. This helps the farmer to understand better about the soil, weather conditions and mixed cropping, which in turn will help the farmer for better crop. Also it helps the farmers to do crop rotation to increase the crop yield. In this project, we have created an interactive dashboard, which will help farmer to make changes according to their needs.

Disadvantages

In this project, the visualizations and dashboard created are done with the limited datas. If in case the Estimation fails, then it will lead to lose for the end user. Any mismatch in the crop's climate and soil adaptations compared to the actual climate/soil conditions that it's grown in, will result in wrong prediction.

11. CONCLUSION

Data Analytics is used for the Estimation of crop yield. In this project, we are analyzing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India. We visualize, analyse and gain most of the insights by creating an interactive dashboard. An interactive dashboard helps the user to make changes in the visualizations based on their requirements. Finally, we create a website and collaborate dashboard with the created website.

12. FUTURE SCOPE

Farmers can estimate yields themselves or utilize data compiled by others. The USDA's National Agricultural Statistics Service (NASS) publishes crop yield estimates in their Crop Production Reports. These estimates are national averages and based on farmer yield surveys and field data collected by the agency.

13. APPENDIX SOURCE CODING

REGISTRATION PAGE:

```
<html>
<head>
<title>Register</title>
link rel="stylesheet" type="text/css" href="style.css">
</head>
<body>
<br/>
<br/>
<center><h1>Registration Form</h1></center>
<section id="form-details" class="section-p1">
<center>
<form action="register.php" method="post" name="form1">
```

```
<input type="text" name="name" required>
     <label class="11">Email</label>
       <input type="email" name="email" required>
     <label class="11">Password</label>
     <input type="password" name="password" required>
     <input type="submit" class="normal" name="register"
value="Register">
     <a href="/ibm/" class="brd">Login</a>
   <?php
   //including the database connection file
   include_once("db-config.php");
   // Check If form submitted, insert user data into database.
   if (isset($_POST['register'])) {
```

<label class="11">Name</label>

```
= $_POST['name'];
       $name
               = $_POST['email'];
       $email
       $password = $_POST['password'];
       // If email already exists, throw error
       $email_result = mysqli_query($mysqli, "select 'email' from users where
email='$email' and password='$password''');
       // Count the number of row matched
       $user_matched = mysqli_num_rows($email_result);
       // If number of user rows returned more than 0, it means email already
exists
       if (\sup_{m \in \mathbb{Z}} \text{matched} > 0) {
          echo "<br/><br/><div id='msg'><strong>Error: </strong> User
already exists with the email id </div>";
       } else {
          // Insert user data into database
          $result = mysqli_query($mysqli, "INSERT INTO
users(name,email,password) VALUES('$name','$email','$password')");
          // check if user data inserted successfully.
          if ($result) {
            echo "<br/>div id='msg'><h3>User Registered
successfully.</h3></div>";
          } else {
```

```
echo "<br/>br/><div id='msg'><h3>Registration error. Please try
again." . mysqli_error($mysqli)."</h3></div>";
         }
       }
     }
    ?>
  </form>
  </center>
  <div class="imgsec">
    <div>
       <img class="a1" src="img/reg.jpg">
    </div>
  </div>
</section>
</body>
</html>
LOGIN
<?php
 session_start();
// Create database connection using config file
include_once("db-config.php");
```

```
// If form submitted, collect email and password from form
if (isset($_POST['login'])) {
  = \text{POST['email']};
  $password = $_POST['password'];
  // Check if a user exists with given username & password
  $result = mysqli_query($mysqli, "select 'email', 'password' from users
    where email='$email' and password='$password''');
  // Count the number of user/rows returned by query
  $user_matched = mysqli_num_rows($result);
  // Check If user matched/exist, store user email in session and redirect
  if ($user_matched > 0) {
    $_SESSION["email"] = $email;
    header("location: project.php");
  } else {
    echo "<div id='msg'>User email or password is not matched <br/></div>";
  }
}
?>
<!DOCTYPE html>
<html>
<head>
  <title>Login</title>
```

```
<link rel="stylesheet" type="text/css" href="style.css">
</head>
<body class="b1">
 <center><h1>Login Form</h1></center>
 <section id="form-details" class="section-p1">
   <center>
 <form action="index.php" method="post" name="form1">
   <label class="11">Email</label>
       <input type="text" name="email">
     <label class="11">Password</label>
       <input type="password" name="password">
     <input type="submit" class="normal" name="login"
value="Login">
```

```
<a href="register.php" class="brd">Register</a>
  </form>
  </center>
  <div class="imgsec">
    <div>
       <img class="a1" src="img/reg.jpg">
     </div>
  </div>
</section>
</body>
</html>
STYLE
*{
      margin: 0;
      padding: 0;
      box-sizing: border-box;
      font-family: 'Spartan', sans-serif;
}
h1\{
      font-size: 50px;
      line-height: 64px;
      color: #222;
```

```
h2{
      font-size: 46px;
      line-height: 54px;
      color: #222;
}
h4{
      font-size: 20px;
      color: #222;
}
h6{
      font-weight: 700;
      font-size: 12px;
}
p{
      font-size: 16px;
      color: #465b52;
      margin: 15px 0 20px 0;
}
.section-p1{
      padding: 40px 80px;
}
```

```
.normal{
font-size: 14px;
font-weight: 600;
padding: 15px 30px;
color: #000;
background-color: #2ddfc3;
border-radius: 4px;
cursor: pointer;
border: none;
outline: none;
transition: 0.2s;
}
#msg {
  padding: 20px 20px;
  text-align: center;
  background-color: tomato;
  margin: 20px 300px 20px 300px;
  border-radius: 50px;
  color: antiquewhite;
}
body{
      width: 100%;
```

```
background-image: url("img/crop1.jpg");
      background-repeat: no-repeat;
      background-size: cover;
}
.b1{
      background-image: url("img/crop2.jpg");
      background-repeat: no-repeat;
      background-size: cover;
}
.section-p1{
      padding: 40px 80px;
}
img.a1 {
  width: 100%;
}
.imgsec {
  width: 30%;
}
.11 {
  color: aliceblue;
```

```
}
/* Form */
#form-details{
  display: flex;
  justify-content: space-between;
  margin: 30px;
  padding: 80px;
}
#form-details form{
      width: 600px;
      display: flex;
      flex-direction: column;
      align-items: flex-start;
}
#form-details form span{
      font-size: 12px;
}
#form-details form h2{
      font-size: 26px;
      line-height: 35px;
      padding: 20px 0;
}
```

```
#form-details form input{
      border-radius: 10px;
      width: 100%;
     padding: 12px 15px;
     outline: none;
      margin-bottom: 20px;
      border: 1px solid #e1e1e1;
}
#form-details form button{
      background-color: #088178;
     color: #fff;
}
#form-details .imgsec div{
      padding-bottom: 25px;
}
CROP YIELD WEBPAGE
 <?php
   session_start();
  if (empty($_SESSION)){
     header("location:index.php");
   }
?>
```

```
<!DOCTYPE html>
<html>
<head>
      <meta charset="utf-8">
      <title>IBM PROJECT</title>
     <link rel="stylesheet" type="text/css" href="project css.css">
</head>
<body>
<header>
      <nav>
           <div>
              <a href="#about">About</a>
              <a href="#dataset">Dataset</a>
              <a href="#visualizations">Visualizations</a>
              <a href="#algorithm">Algorithms</a>
      </nav>
  <section>
    <div>
          <h1>Estimation Of Crop Yeild </h1>
          <h1 id="head">Using </h1>
          <h1 id="head">Data Analytics</h1>
    </div>
```

```
</section>
</header>
<section id="about" class="section"><br>
<div id="con">
<h2>Data Analytics</h2><br>
```

Data science is the practice of mining large data sets of raw data, both structured and

unstructured, to identify patterns and extract actionable insight from them. This is an

interdisciplinary field, and the foundations of data science include statistics, inference,

computer science, predictive analytics, machine learning algorithm development, and

new technologies to gain insights from big data.

Data analytics is one of the fields of Data science. Data analytics is the process of exploring and analyzing large datasets to find hidden patterns, unseen trends, discover correlations, and derive valuable insights to make business predictions.
br>

<P>In this project, we are going to estimate the crop yeild using Data analytics. Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops. As per this project we will be analyzing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India. This website will be useful for farmers to make better decisions related to agriculture.

```
</div>
</section>
<section id="dataset" class="section">
<h2>Dataset</h2>
```

A Dataset is a set or collection of data. This set is normally presented in a tabular pattern. Every column describes a particular variable. And each row corresponds to a given member of the data set.

The dataset, we are working with, has 2,46,092 data points (rows) and 6 features (columns) describing each crop production related details. Let's understand the data we're working with and give a brief overview of what each feature represents or should represent State Name - All the Indian State names, District Name -Different District names, Crop Year- contains the crop years, Season – Different seasons for crop production, Area- Total number of areas covered, Production- production of crops.

Data visualization is the practice of translating information into a visual context, such as a map or graph, to make data easier for the human brain to understand and pull insights from. The main

goal of data visualization is to make it easier to identify patterns, trends and outliers in large data sets.

Using the Crop production in Indian dataset, we plan to create various graphs and charts to highlight the insights and visualizations.

Seasons.

Showcase the Yearly usage of Area in Crop Production.

Suild a visualization to show case top 10 States in Crop Yeild Production by Area.

Suild the required Visualization to showcase the Crop Production by State.

Build Viusal analytics to represent the Sates with Seasonsal Crop
Production using a Text representation.

<iframe

src="https://us3.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef =.my_folders%2FSprint2&closeWindowOnLastView=true&ui_appba r=false&ui_navbar=false&shareMode=embedded&action=view &mode=dashboard&subView=model000001845cd66489_00000003" width="1200" height="1000" frameborder="0" gesture="media" allow="encrypted-media" allowfullscreen=""></iframe>

</section>

An Algorithm in Data analytics is a set of heuristics and calculations that creates a model from data. To create a model, the algorithm first analyzes the data you provide, looking for specific types of patterns or trends. There are several algorithms available in Data analytics. Choosing the best algorithm to use for a specific analytical task can be a challenge. Each algorithm produces a different result, and some algorithms can produce more than one type of result.Some of them are,

br>

<b style="font-size: 1.5em;">Linear Regression Algorithm:

Linear regression is one of the easiest and most popular Machine
Learning algorithms. It is a statistical method that is used for predictive
analysis. Linear regression makes predictions for continuous/real or numeric
variables.

<b style="font-size: 1.5em;">Logistic Regression Algorithm:

Logistic regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables. Therefore the outcome must be a categorical or discrete value.

<b style="font-size: 1.5em;">K-Nearest Neighbor(KNN) Algorithm:

K-nearest neighbors (kNN) is a supervised machine learning technique that may be used to handle both classification and regression tasks and is also frequently used in missing value imputation. It is based on the idea that the observations closest to a given data point are the most "similar"

observations in a data set, and we can therefore classify unforeseen points based on the values of the closest existing points.

<b style="font-size: 1.5em;">Decision Tree Algorithm:

Decision Tree is a supervised machine learning algorithm where all the decisions were made based on some conditions. The decision tree has a root node and leaf nodes extended from the root node. These nodes were decided based on some parameters like Gini index, entropy, information gain.

```
</div>
</section>
<footer>
     <div class="footer">
           <u1>
                 <br>>
                       Related Data Analytics Project Ideas
                 <br>
                 <
                       <a href="https://www.interviewbit.com/blog/data-
analytics-projects/">Advanced Project Ideas</a>
                 <1i>>
```

Beginners Project Ideas

```
<br>
          \langle ul \rangle
                <br>>
                     For Dataset Refer
                <br>
                <
                     <a href="https://www.kaggle.com/datasets">Kaggle
Site</a>
                <
                     <a href="https://data.gov.in/">Government Site</a>
                <br>
     </div>
</footer>
</body>
</html>
STYLE
*{
    margin: 0;
```

```
padding: 0;
}
header{
      background-image: url("Agriculture.jpg");
      background-repeat: no-repeat;
      background-size: cover;
      overflow-x: hidden;
      overflow-y: hidden;
      width: 100%;
      height: 100vh;
}
header h1{
      text-align: center;
      text-transform: capitalize;
      font-size: 3em;
      padding-top: 25vh;
}
#head{
      text-align: center;
      text-transform: capitalize;
      font-size: 3em;
      padding-top: 1vh;
```

```
}
header p{
      text-align: center;
      text-transform: capitalize;
      font-size: 1.5em;
      padding-top: 10vh;
      padding-left: 30vh;
      padding-right: 30vh;
}
nav div{
      background-color: #E1C16E;
      width: 100%;
      height: 40px;
}
nav a:hover, footer a:hover{
      background-color: #ffffff;
}
nav a{
      color: #000;
      font-size: 1.5em;
      text-decoration: none;
      text-transform: capitalize;
```

```
display: inline-block;
      width: 150px;
      text-align: center;
      padding: 10px 0;
}
footer{
      background-color: #E1C16E;
      width: 100%;
      height: 100%;
}
footer div{
      display: grid;
      grid-gap: 10px;
      grid-template-columns: repeat(3, 1fr);
      text-align: left;
    padding-left: 10vh;
}
footer a{
      font-size: 0.7em;
      color: #000000;
      text-decoration: none;
```

```
}
footer ul{
      list-style: none;
}
footer li{
      font-size: 1.5em;
      color: #000000;
}
.section ul{
      font-size: 1.5em;
}
.section\ p\{
      font-size: 1.5em;
}
. section \ h2 \{
      text-align: center;
      padding: 15px;
}
#about{
    background-image: url("Data Analytics.jpeg");
      background-repeat: no-repeat;
```

```
background-size: cover;
      overflow-x: hidden;
      overflow-y: hidden;
      width: 100%;
      height: 100vh;
    padding-right: 20vh;
      padding-left: 20vh;
      padding-top: 40px;
      padding-bottom: 40px;
    color: #ffffff;
    text-align: justify;
}
#con {
  width: 85%;
}
a.brd {
  background-color: aliceblue;
  padding: 4px;
  border-radius: 30px;
}
#dataset{
    padding-right: 10vh;
```

```
padding-left: 10vh;
      padding-top: 40px;
      padding-bottom: 40px;
    text-align: justify;
}
#visualizations{
    padding-right: 10vh;
      padding-left: 10vh;
      padding-top: 40px;
      padding-bottom: 40px;
}
#algorithm{
    background-image: url("Algorithm.jpg");
      background-repeat: no-repeat;
      background-size: cover;
      overflow-x: hidden;
      overflow-y: hidden;
      width: 100%;
    padding-right: 10vh;
      padding-left: 10vh;
      padding-top: 40px;
```

```
padding-bottom: 40px;
    color: #ffffff;
    text-align: justify;
}
#indent{
    padding-left: 15vh;
}
DATABASE CONNECTIVITY
<?php
$databaseHost = 'localhost';
$databaseName = 'crop_yield';
$databaseUsername = 'root';
$databasePassword = ";
$mysqli = mysqli_connect($databaseHost, $databaseUsername,
$databasePassword, $databaseName);
Project Demo Link
https://cropyield.ml/vid1.html
https://youtu.be/RPZcIwl2oMU
Github
```

https://github.com/IBM-EPBL/IBM-Project-1986-1658422207