2021年全国高考乙卷数学(理)试卷

一、单选题

1. $\mathfrak{G}_2(z+\bar{z})+3(z-\bar{z})=4+6i$, $\mathfrak{M}_z=$

A. 1 - 2i

B. 1 + 2i

C. 1 + i

D. 1 - i

2. 已知集合 $S = \{s | s = 2n + 1, n \in \mathbb{Z}\}, T = \{t | t = 4n + 1, n \in \mathbb{Z}\}, 则 S \cap T = \underline{\hspace{1cm}}$

B. S

C. T

3. 已知命题 $p: \exists x \in \mathbb{R}, \sin x < 1;$ 命题 $q: \forall x \in \mathbb{R}, e^{|x|} \ge 1,$ 则下列命题中为真命题的是

A. $p \wedge q$

B. $\neg p \land q$

C. $p \land \neg q$

D. $\neg (p \lor q)$

4. 设函数 $f(x) = \frac{1-x}{1+x}$,则下列函数中为奇函数的是_____

A. f(x-1)-1 B. f(x-1)+1 C. f(x+1)-1 D. f(x+1)+1

5. 在正方体ABCD – $A_1B_1C_1D_1$ 中,P为 B_1D_1 的中点,则直线PB与AD₁所成的角为_____

A. $\frac{\pi}{2}$

B. $\frac{\pi}{2}$

C. $\frac{\pi}{4}$

D. $\frac{\pi}{6}$

6. 将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训, 每名 志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有

A. 60种

B. 120种

C. 240种

D. 480种

7. 把函数y = f(x)图像上所有点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把所得曲线向右

A. $\sin(\frac{x}{2} - \frac{7\pi}{12})$ C. $\sin(2x - \frac{7\pi}{12})$

B. $\sin\left(\frac{x}{2} + \frac{\pi}{12}\right)$

D. $\sin(2x + \frac{\pi}{12})$

8. 在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于 $\frac{7}{4}$ 的概率为____

C. $\frac{9}{32}$

9. 魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作, 其中第一题是测海岛的高. 如图, 点E, H, G在水平线AC上, DE和FG是两个垂直于水平面且等高的测量标杆的高度, 称 为"表高",EG称为"表距",GC和EH都称为"表目距",GC与EH的差称为"表目 距的差"则海岛的高AB=

B. 表高×表距

表高×表距 表高×表距 +表距

表高 × 表距 – 表距 10. 设 $a \neq 0$, 若x = a为函数 $f(x) = a(x - a)^2(x - b)$ 的极大值点,则_____

A. a < b

B. a > b

C. $ab < a^2$

D. $a b > a^2$

11. 设B是椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的上顶点,若C上的任意一点P都满足 $|PB| \leqslant 2b$,则C的 离心率的取值范围是

A. $\left[\frac{\sqrt{2}}{2},1\right)$

B. $\left[\frac{1}{2}, 1\right)$

C. $(0, \frac{\sqrt{2}}{2}]$

D. $(0,\frac{1}{2}]$

12. 设 $a = 2 \ln 1.01$, $b = \ln 1.02$, $c = \sqrt{1.04} - 1$. 则

A. a < b < c

B. b < c < a C. b < a < c

D. c < a < b

二、填空题

13. 已知双曲线C: $\frac{x^2}{m} - y^2 = 1 (m > 0)$ 的一条渐近线为 $\sqrt{3} x + m y = 0$,则C的焦距为_____.

14. 已知向量 $\vec{a} = (1,3), \vec{b} = (3,4), \ \vec{a}(\vec{a} - \lambda \vec{b}) \perp \vec{b}, \ \ \emptyset \lambda =$

15. 记 \triangle ABC的内角A, B, C的对边分别为a, b, c, 面积为 $\sqrt{3}$, $B=60^{\circ}$, $a^2+c^2=3ac$, 则 b = .

16. 以图①为正视图, 在图②③④⑤中选两个分别作为侧视图和俯视图, 组成某个三棱锥的三 视图,则所选侧视图和俯视图的编号依次为____(写出符合要求的一组答案即可).

三、解答题

17. 某厂研制了一种生产高精产品的设备, 为检验新设备生产产品的某项指标有无提高, 用一 台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:

旧设备	9.8	10.3	10.0	10.2	9.9	9.8	10.0	10.1	10.2	9.7
新设备	10.1	10.4	10.1	10.0	10.1	10.3	10.6	10.5	10.4	10.5

旧设备和新设备生产产品的该项指标的样本平均数分别记为和, 样本方差分别记为和.

(1) $\bar{\mathbf{x}}\bar{x}, \bar{y}, s_1^2, s_2^2$;

(2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 $\bar{y} - \bar{x} \ge$ $2\sqrt{rac{s_1^2+s_2^2}{10}}$,则认为新设备生产产品的该项指标的均值较旧设备有显著提高, 否则不认为有 显著提高).

2

18. 如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.

- (1) 求BC;
- (2) 求二面角A-PM-B的正弦值.
- 19. 设 S_n 为数列 $\{a_n\}$ 的前n项和, b_n 为数列 $\{S_n\}$ 的前n项积,已知 $\frac{2}{S_n} + \frac{1}{b_n} = 2$.
 - (1) 证明:数列 $\{b_n\}$ 是等差数列;
 - (2) 求 $\{a_n\}$ 的通项公式.
- 20. 设函数 $f(x) = \ln(a-x)$, 已知 x = 0 是函数 y = x f(x) 的极值点.
 - (1) 求a;
 - (2) 设函数 $g(x) = \frac{x + f(x)}{x f(x)}$. 证明: g(x) < 1.
- 21. 已知抛物线C: $x^2 = 2 p y(p > 0)$ 的焦点为F,且F与圆M: $x^2 + (y+4)^2 = 1$ 上点的距离的最小值为4.
 - (1) 求p;
 - (2) 若点P在M上,PA,PB是C的两条切线,A,B是切点,求 ΔPAB 面积的最大值.
- 22. 在直角坐标系x O y中, $\odot C$ 的圆心为C(2,1),半径为1.
 - (1) 写出⊙C的一个参数方程;
 - (2) 过点F(4,1)作 $\odot C$ 的两条切线. 以坐标原点为极点, x轴正半轴为极轴建立极坐标系, 求这两条切线的极坐标方程.
- 23. 已知函数 $\frac{|\mathrm{OB}|}{|\mathrm{OA}|} = \frac{\rho_1}{\rho_2} = \frac{1}{4} \times 2 \sin \alpha (\sqrt{3} \cos \alpha + \sin \alpha) = \frac{1}{4} \left[2 \sin \left(2 \alpha \frac{\pi}{6} \right) + 1 \right].$
 - (1) 当a=1时,求不等式 $f(x) \ge 6$ 的解集;
 - (2) 若 $f(x) > -\alpha$, 求a的取值范围.