K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Oscillator Circuits

Numerical 1:

In a Hartley oscillator, amplifier components are $R_1=100k\Omega$, $R_2=18k\Omega$, $R_C=12k\Omega$, $R_E=1k\Omega$, $C_{C_1}=1\mu F$, $C_E=1\mu F$, $C_{C_2}=1\mu F$, $V_{CC}=10V$. Select the LC tank circuit elements such that frequency of oscillation is close to 225kHz. BJT transistor: 2N2222

Figure 1: Circuit 1

Solution:

Frequency of oscillation,

$$f_{o} = \frac{1}{2\pi\sqrt{L_{eq}C_{1}}}$$

$$225kHz = \frac{1}{2\pi\sqrt{L_{eq}C_{1}}}$$

$$225kHz \times 2\pi = \frac{1}{\sqrt{L_{eq}C_{1}}}$$
Let $C_{1} = 47nF$

$$225kHz \times 2\pi \times \sqrt{47nF} = \frac{1}{\sqrt{L_{eq}}}$$

$$306.331 = \frac{1}{\sqrt{L_{eq}}}$$

$$\therefore \sqrt{L_{eq}} = \frac{1}{306.331}$$

$$\sqrt{L_{eq}} = 3.264 \times 10^{-3}$$

$$\therefore L_{eq} = \mathbf{10.656} \mu \mathbf{H}$$

$$\therefore L_{eq} = L_1 + L_2 + 2M$$

Where M is the mutual inductance and M=0, if both the inductors $(L_1 \text{ and } L_2)$ are not wound on the same core.

$$\therefore L_{eq} = L_1 + L_2$$

$$\therefore L_{eq} = L_1 + L_1 \qquad (\because L_1 = L_2)$$

$$\therefore L_{eq} = 2L_1$$

$$10.656\mu F = 2L_1$$

$$\therefore L_1 = \mathbf{5.328}\mu\mathbf{F}$$

$$\therefore L_1 = L_2$$

$$L_2 = 5.328 \mu F$$

k(feedback fraction) of LC tank circuit,

$$\mathbf{k} = \frac{V_f}{V_o}$$

$$\mathbf{k} = \frac{L_2}{L_1}$$

$$= \frac{5.328\mu F}{5.328\mu F} = \mathbf{1}$$

... Phase shift offered by LC tank circuit is 180°

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 2: Circuit Schematic 1

Figure 3: Output wave before zooming in

Figure 4: Output wave after zooming in

Figure 5: Peak to peak values of V_{out} and V_f

Figure 6: Phase difference between V_{out} and V_f

Comparison between theoretical and simulated values:

Parameters	Theoretical values	Simulated values
Frequency of oscillations (f_o)	225kHz	$224.5370 \mathrm{kHz}$
Timeperiod of oscillations (T)	$4.44 \mu s$	$4.4750 \mu s$
Amplitude of oscillations	_	5.4247V
Feedback signal VF amplitude and phase w.r.t V_{out}	_	5.3801V, 180°
Feedback fraction in dB	1	0.9917
Phase shift offered by LC tank circuit	180°	180°

Table 1: Numerical 1

Numerical 2:

In a Colpitts oscillator, amplifier components are $R_1 = 100k\Omega$, $R_2 = 18k\Omega$, $R_C = 12k\Omega$, $R_E = 1k\Omega$, $C_{C_1} = 1\mu F$, $C_{C_2} = 1\mu F$, $V_{CC} = 10V$. Select the LC tank circuit elements such that frequency of oscillation is close to 620kHz. BJT transistor: 2N2222 Comment on phase shift offered by LC tank circuit.

Figure 7: Circuit 2

Solution:

Frequency of oscillation,

Frequency of oscillation,
$$f_o = \frac{1}{2\pi\sqrt{L_1C_{eq}}}$$

$$620kHz = \frac{1}{2\pi\sqrt{L_1C_{eq}}}$$

$$620kHz \times 2\pi = \frac{1}{\sqrt{L_1C_{eq}}}$$
Let $L_1 = 1\mu H$

$$620kHz \times 2\pi \times \sqrt{1\mu H} = \frac{1}{\sqrt{C_{eq}}}$$

$$3893.6 = \frac{1}{\sqrt{C_{eq}}}$$

$$\therefore \sqrt{C_{eq}} = \frac{1}{3893.6}$$

$$\sqrt{C_{eq}} = 2.56 \times 10^{-4}$$

$$\therefore C_{eq} = \mathbf{65.96nF}$$

$$\therefore C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

$$\therefore \frac{C_1 C_2}{C_1 + C_2} = 65.96nF$$

$$\therefore \frac{C_1 C_1}{C_1 + C_1} = 65.96nF \qquad (\because C_1 = C_2)$$

$$\therefore \frac{{C_1}^2}{2C_1} = 65.96nF$$

$$\therefore C_1 = 2 \times 65.96nF$$

$$\therefore C_1 = \mathbf{0.13}\mu\mathbf{F}$$

$$C_1 = C_2$$

$$C_2 = \mathbf{0.13}\mu\mathbf{F}$$

Time period of oscillations(T) =
$$\frac{1}{frequency\ of\ oscillation(f_o)}$$

= $\frac{1}{620kHz}$ = 1.61 μ s

k(feedback fraction) of LC tank circuit,

$$k = \frac{V_f}{V_o}$$

$$k = \frac{C_1}{C_2}$$

$$= \frac{0.13\mu F}{0.13\mu F} = \mathbf{1}$$

... Phase shift offered by LC tank circuit is 180°

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 8: Circuit Schematic

Figure 9: Output wave before zooming in

Figure 10: Output wave after zooming in

Figure 11: Peak to peak values of V_{out} and V_f

Figure 12: Phase difference between V_{out} and V_f

Comparison between theoretical and simulated values:

Parameters	Theoretical values	Simulated values
Frequency of oscillations (f_o)	620kHz	619.6560kHz
Timeperiod of oscillations (T)	$1.61 \mu s$	$1.6137 \mu s$
Amplitude of oscillations	_	3.7311V
Feedback signal VF amplitude and phase w.r.t V_{out}	_	$3.7356V, 180^{\circ}$
Feedback fraction in dB	1	0.9917
Phase shift offered by LC tank circuit	180°	180°

Table 2: Numerical 2
