Overview of SQL

Structured Query Language (SQL)

- Developed to support translation from relational algebra to relational database technology.
- ANSI Standardized grammar introduced in 1986
 - Revised periodically; most recently in 2011
 - Standardization allows us to realize the idea of abstraction of the data from its use and access
- ANSI Standard SQL supported by most major database vendors
 - Though each usually offers its own "flavor" by extending the core SQL
 - Oracle: Procedural Language/SQL (PL/SQL)
 - Microsoft SQL Server: Transact-SQL (t-SQL)

SQL Standards

Year	Name	Highlights			
1986	SQL-86	First standard, referred to as SQL-87			
1989	SQL-89 (SQL1)	Minor revision, SQL baseline			
1992	SQL-92 (SQL2)	JOIN syntax added			
1999	SQL-99 (SQL3)	Boolean data types, structured user-defined types, recursive queries			
2003	SQL:2003	XML support, Windows functions, cursors, identity columns			
2006	SQL:2006	XQuery support			
2008	SQL:2008	Partitioned JOINs, TRUNCATE TABLE, other enhancements			
2011	SQL:2011	Support for temporal databases			

SQL: Language Breakdown

Domain	SQL Commands	Objects	
Metadata (DDL)	CREATE ALTER DROP	Tables, functions, views, procedures, etc	
DATA (DML)	C - INSERT R - SELECT U - UPDATE D - DELETE	Tables (as a target)	
Security (DCL)	GRANT REVOKE	Tables, functions, views, procedures, etc.	
Transactions (DTL)	BEGIN TRANS COMMIT ROLLBACK	Controls DML statements	

SQL Commands

- Data Definition Language
 - Commands that modify the schema (metadata objects)
 - Create and modify tables, functions, views, etc
 - Commands include:

```
    Create
```

Alter

Drop

```
⊨create table Member (
                    int identity
                                    not null
     MemberID
                 varchar(30)
                                    not null
     , FirstName
                    varchar(30)
     , LastName
                                    not null
      EmailAddress varchar(100)
      PhoneNumber
                    varchar(30)
     , constraint MemberPrimaryKey primary key(MemberID)
⊟alter table Member
     add MiddleInitial varchar(10);
 drop table Member;
```

SQL Commands

- Data Manipulation Language (DML)
 - Commands that modify the data
 - CRUD commands
 - Create

- Retrieve
- Update
- Delete

```
insert into Member
    (FirstName, LastName, EmailAddress)
    values
    ('Saul', 'Hudson', 'slash@gnr.com');
insert into Member
    (FirstName, LastName, EmailAddress)
    values
    ('Reginald', 'Dwight', 'ej@rocketman.org');
select * from Member;

update Member set MiddleInitial = 'S' where EmailAddress = 'slash@gnr.com';
delete from Member where EmailAddress = 'ej@rocketman.org';
```

SQL Language Internals

 SQL keywords are case insensitive. "SELECT" and "select" are the same command.

 SQL data comparisons can be case sensitive or case insensitive depending on the DBMS setup.

SQL isn't a programming language.

The Physical Domain

Levels of Data Model Abstraction

DBMS: Physical Domain

SQL Server	MySQL	What Is It?	
int	int	Signed Integer values -2G ⇔ +2G	
int identity	serial	Auto-incrementing integer (surrogate keys)	
bit	bit	Used for true/false yes/no values.	
<pre>decimal(n,d)</pre>	<pre>decimal(n,d)</pre>	A fixed-point signed decimal of n digits with d decimal places.	
char(n)	char(n)	Exactly n characters, useful for fixed-length data.	
varchar(n)	varchar(n)	Variable length of no more than n characters.	
text	text	Variable length of 2G characters; not index able	
datetime	datetime	For storing dates and or times.	

Notes:

- Different "flavors" of DBMSs use different data types.
- It's not part of the SQL spec but part of the DBMS implementation.
- There are more types than this. These are the most common.

Numbers and Numeric Data Types

- As a rule, store numeric data as numbers IF AND ONLY IF you're going to do math on the numbers.
- Not good as numeric data types
 - Postal codes
 - Phone numbers
- Avoid money as a data type. Use decimal instead.
- If you don't need decimal points, always use an integer data type.

Dates and Times

- Use datetime for dates and times.
- All computer systems store dates and times as decimal values.
- Everything to the left of the decimal point is the day, month, and year.
- Everything to the right of the decimal is the time in hours, minutes, seconds, and milliseconds.
- For instance, we see: 2016-06-02 23:12:32.783.
 SQL Server stores it on disk as: 42521.9670461034f

String Data

- char(n), varchar(n), or text?
- Avoid text as much as possible.
- While varchar is nice because it occupies only enough space to accommodate the data, it creates administrative overhead on the retrieval systems
- For the purposes of this class, varchar is ok.

Physical Storage

- SQL Server creates two files to store your data:
 - MDF file for the data
 - LDF file for the transaction log

Database files:									
Logical Name	File Type	Filegroup	Initial Siz	Autogrowth / Maxsize	Path	File Name			
AdventureWorks2014_Data	ROWS Data	PRIMARY	206	By 16 MB, Unlimited	C:\Prog	AdventureWorks2014_Data.mdf			
AdventureWorks2014_Log	LOG	Not Applicable	2	By 16 MB, Limited to 20	C:\Prog	AdventureWorks2014_Log.ldf			

School of Information Studies SYRACUSE UNIVERSITY