Performance Metrics

Deep Analytics and Visualization

Evaluate Techniques for Wi-Fi Locationing

Greg Hepguler

DATA ANALYTICS OBJECTIVES

- Develop a Wi-Fi Fingerprinting model to locate people indoors in 3 large buildings in a campus
- Use Wi-Fi fingerprint characterized by Wireless Access Points (WAPs) and the corresponding RSSI: Received Signal Strength Intensity
- Compare of the models produced by at least three different algorithms
- Recommend the algorithm that is best suited for this data and a justification why it is the preferred choice
- Recommend improvements that can be achieved, based on research on indoor locationing or experimentation with the dataset.

METRICS for the **RESULTS**

Accuracy and Kappa are gathered as the two performance metrics from each model

ACCURACY is calculated as the proportion that represents the number of true positives and

true negatives, divided by the total number of predictions

$$Accuracy = (TP+TN)/(TP+TN+FP+FN)$$

		Predictions		
		no	yes	
Actuals	ou	TN	FP	
Actı	yes	FN	TP	

- KAPPA adjusts ACCURACY by accounting for the possibility of correct prediction by chance
 - alone. A common interpretation is shown as follows*:
- The criteria for the "best model" is the highest value
 for Accuracy and Kappa when predicting the LOCATION

Карра:			
Poor agreement	< 0.20		
Fair agreement	0.20	to	0.40
Moderate agreement	0.40	to	0.60
Good agreement	0.60	to	0.80
Very Good agreement	0.80	to	1.00

^{*} Machine Learning with R, Brett Lantz

• Accuracy and Kappa are obtained by post resampling predicted values against actuals in the validation/testing subset, which is 30% of the original Training dataset in this project.

RESULTS:

MODEL ALGORITHMS, PARAMETERS and METRICS of PREDICTING LOCATION								
		Model Parameter		Parameter Value Selected				
Algorithms	Run	(tunegrid)	Parameter Values	Model	Accuracy	Карра		
kNN	Last	k values	k = 1, 2, 3, 4	k = 1	0.575	0.573		
RF	Last	mtry	mtry = 16, 32, 48	mtry = 32	0.701	0.700		
C50 Las	Last	trials	trials = 48, 96	trials = 96	0.602	0.600		
		winnow, trials	winnow = (TRUE, FALSE), trials=(32,	winnow = FALSE, trials=24,				
C50	Next	(Boosting Iterations)	48, 64), model=("tree", "rules")	model="rules"	0.601	0.599		
kNN	First	k values	k = 5, 7, 9, 11, 13, 15, 17	k = 5	0.465	0.462		
RF F	First	mtry	mtry = 1, 2, 3, 5	mtry = 5	0.587	0.585		
		winnow, trials	winnow = (TRUE, FALSE),					
C50	First	(Boosting Iterations)	trials=c(2, 8, 24),	winnow = FALSE, trials=24	0.587	0.584		

ACCURACY of each Model on the Prediction of LOCATION by Building (1st run)

KAPPA for each Model on the Prediction of LOCATION by Building (1st run)

Metrics for each Model on the Prediction of LOCATION by Building (1st run)

Metrics for each Model on the Prediction of LOCATION by Building (Final run)

ACCURACY for each Model on the Prediction of LOCATION (Final run)

KAPPA for each Model on the Prediction of LOCATION (Final run)

Accuracy & KAPPA for Prediction of LOCATION (Final Results)

