Oaktree Manual

April 20, 2012

Contents

1	Introduction	2
2	Installation	3
3	Running	4
4	Input 4.1 SIMULATION	5 6 6 6 6
5	Output	8
6	Viewer	9
7	Tutorials	10
8	Theory	11

Introduction

Installation

Running

Input

Oaktree input language extends Python. Subroutines and objects related to input processing are listed below.

4.1 SIMULATION

SIMULATION object stores data specific to one distinct analysis.

obj = SIMULATION (outpath, duration, step, grid, cutoff, extents)

- **obj** SIMULATION object
- outpath output directory path
- duration simulation duration
- step time step
- $\bullet\,$ ${\bf grid}$ regular size of octree grid
- cutoff cutoff length below which geometrical details are not resolved
- extents tuple $(x_{min}, y_{min}, z_{min}, x_{max}, y_{max}, z_{max})$ of domain extents beyond which bodies are deleted

4.2 CUBE

A cube shape.

obj = CUBE (corner, u, v, w, vcolor, scolor)

- \bullet **obj** SHAPE object
- corner tuple (x, y, z) defining the minimum coordinate corner
- ullet u length along x
- ullet w length along z
- vcolor integer volume color
- scolor integer tuple $(s_{xmin}, s_{ymax}, s_{zmin}, s_{xmax}, s_{ymax}, s_{zmax})$ of surface colors

CHAPTER 4. INPUT 6

4.3 UNION

Set theoretic union of two shapes.

obj = UNION (shape1, shape2)

- \bullet **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.4 INTERSECTION

Set theoretic intersection of two shapes.

obj = INTERSECTION (shape1, shape2)

- \bullet **obj** SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.5 DIFFERENCE

Set theoretic difference of two shapes.

obj = DIFFERENCE (shape1, shape2)

- $\bullet \ \mathbf{obj}$ SHAPE object
- shape1 first input SHAPE object
- shape2 second input SHAPE object

4.6 MOVE

Move shape linearly.

MOVE (shape, vector)

- shape input SHAPE object
- vector tuple (u, v, w) defining the translation

4.7 ROTATE

Rotate shape about an axis.

CHAPTER 4. INPUT 7

MOVE (shape, point, vector, angle)

- shape input SHAPE object
- ullet point tuple (x,y,z) defining axis point
- ullet vector tuple (u, v, w) defining axis direction
- \bullet $\,$ angle oriented angle in degrees

4.8 SOLID

A solid is created in a simulation.

obj = SOLID (simu, shape, label)

- $\bullet \ \mathbf{obj}$ SOLID object
- \bullet simu simulation in which the solid is created
- \bullet **shape** solid shape
- label solid label

Output

Viewer

Tutorials

Theory