Entrotto the source of the sou

Robert R. Enderlein

Easy: Find the permutation

There are five cables, hence 5! = 120 possible permutations. Find the correct one...

- Using brute force and checks (manual or automatic)
- Using linguistic insights (letter frequencies, letter combinations, single-character words, diphtongs, ...)
- Start with the diagonal entries (a,g,n,t,z)

atk	.1	.2	.3	.4	.5	
1.	a	b	С	d	e	
2.	f	g	h	i	k	
3.	1	m	n	O	p	
4.	q	r	S	t	u	
5.	V	W	X	y	Z	

Medium: Reverse the encryption

Encrypt every possible plaintext, and check whether the ciphertext is obtained ⇒ on average 2¹⁵ encryptions

Observe how the encryption works.

Run the loop backwards: For each round i

$$\blacksquare R_i = L_{i+1}$$

$$L_i = R_{i+1} \oplus F(L_{i+1}, K_i)$$

Hard: Crack the system

Try out every possible pair of keys K_1 , K_2 Check whether encrypt(P, K_1 , K_2) = C Needs 2^{31} trials on average

Meet-in-the-middle attack: encrypt(P, K_1 , K_2) = C \Leftrightarrow encrypt(P, K_1) = decrypt(C, K_2)

- Precompute intermediate cyphertexts for all 2¹⁶ K₁, store them in a hashmap
- Try out all 2¹⁶ K₂, and see whether a match is found in the hashmap

Needs on average 2^{16.58} calls to encrypt, and some map lookups

open systems

00000000000000

