Wildlife health perceptions and monitoring in protected areas

Diego Montecino-Latorre Mathieu Pruvot Sarah H Olson

Introduction

Surveillance systems monitoring wildlife and livestock health in protected areas and fostering the early detection and timely communication of morbidity and mortality events are essential to track, prioritize threats, and activate contingency plans under high-risk scenarios for wildlife, human, and livestock health. However, effective surveillance systems involving wildlife are uncommon, especially in high-risk areas of pathogen emergence, such as the human-wildlife-livestock interfaces nearby protected areas. Logistical challenges associated with surveillance in locations hard to access exacerbate the task's difficulty.

Leveraging stakeholders already present at key interfaces is a potentially efficient strategy to establish baseline scanning wildlife health surveillance in these areas at a minimal cost (IUCN and EcoHealth Alliance 2022). Rangers and natural resource authorities (hereafter "rangers") are responsible for conservation and law enforcement in protected areas. On a global scale, rangers patrol thousands of square kilometers at critical wildlife-livestock-human interfaces where they can generate eyes-on-the-field health intelligence, detecting injured, sick, and dead animals; trigger investigations; and provide data for trend assessments (Montecino-Latorre et al. 2020; Kuisma et al. 2019).

Domestic animals...

However, to date there is little to no information about: i) the importance given to wildlife health in protected area conservation programs globally, ii) the extent rangers are mandated to record wildlife health during their patrols in protected areas, and iii) how wildlife health data are collected and the potential for comparability of measures across spatial units (if collected at all).

The "Spatial Monitoring and Reporting Tool" (SMART) is a suite of technological tools designed to manage protected areas. This suite is composed by SMART Desktop, a desktop computer software, SMART Mobile, a mobile device application, and SMART Connect, a server-based cloud. SMART was founded in 2011, and to-date it is currently use in more than one thousand protected areas in more than 70 countries distributed across the World.

We aimed to learn from protected area managers if: i) they consider wildlife health relevant from a One Health perspective, ii) dead, sick, or injured wildlife are observed in protected areas and recorded by rangers, iii) the presence and recording of domestic animals including dead, sick, or injured animals, and iv) health data is stored in SMART databases. We also asked for the current status of SMART in the protected areas. To accomplish this objective, we reached global distributed protected area managers belonging to the SMART user community through the SMART Partnership and request to complete an online survey.

perceptions regarding wildlife health and potential consequences of pathogen transmission among wildlife, domestic animals and people.

Methods

We developed a web-based questionnaire aimed at protected area managers. The survey had five sections. Under section 1, we asked managers to rank their overall agreement with the affirmations: "Wildlife health, including infectious and non-infectious diseases, is important to achieve the conservation goals of the protected areas where I work", "Human or livestock pathogens can affect wildlife populations inhabiting the protected area I work in", "Pathogens carried by wildlife inhabiting the protected area I work in can affect public health", and "Pathogens carried by wildlife inhabiting the protected area I work in can affect livestock health".

Under section 2, we requested managers to rank the overall frequency of encounters with dead, sick, or injured wildlife in protected areas and their documentation when found during patrols.

Under section 3, we asked managers to rank their agreement with the affirmation "Introduced domestic animals (e.g., dogs, cats, cattle, pigs, cats) are a concern for the conservation goals of the protected areas where I work". We also assess the presence of domestic animals at these sites and their recording, including health status. Likert scales were used in sections 1 - 3, specifically in those questions involving rankings.

Under section 4, we asked about data storage practices.

Under section 5, we asked about the current state of SMART and its components.

An introductory webpage explained that the survey was voluntary, anonymous, aimed at protected area managers administering SMART data. The webpage also clarified that clicking the "Start the survey" button constituted consent. The survey was built on Google Forms, which has a translation tool. We provided a tutorial on translating it into the preferred language (https://sites.google.com/wcs.org/smarttorecordwildlifehealth/home). The survey was exempt from IRB review (ref #22-53 Wildlife Conservation Society Internal Review Board).

The survey was distributed globally to the SMART Community (SMART Community Forum users https://forum.smartconservationtools.org/) by the SMART Partnership via email in October 2022, and it remained open for three months. As the closing date approached, a reminder was sent to the SMART Community three weeks in advance.

Responses could represent a single or multiple protected areas. However, our analysis focused on responses representing one or two individual terrestrial protected areas to gain insights into specific local realities. Therefore, responses representing more than two protected areas were filtered out. The resulting dataset could have a specific protected area represented by single responses, by responses that included two protected areas, or a combination of both. We duplicated the responses that were representing two protected areas but left a single protected area for each one, so each row in the dataset implied a unique protected area. One of the responses representing the same protected area after this step were filtered out to leave a unique representation completion and consistency of answers, and respondent's alignment with the intended target audience of the survey.

The protected areas included in the responses were classified as marine or terrestrial based on the World Database on Protected Areas (https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA). Marine protected areas were removed.

The questionnaire, survey data, data cleaning and filtering, and descriptive analysis scripts can be found at https://github.com/dmontecino/SMART_survey.

Results

General results

The total number of responses was 129.

Seven responses were removed because they included a given name instead of the protected area name and one response was removed because it did not have a protected area name. Twenty-four responses representing more than two protected areas were filtered out and other six were removed because they involved protected areas that were represented once already. Sixteen responses were removed because the respondent did not match the target audience.

The final dataset described below excluded four marine protected areas leading to the removal of another four responses, for a total of 76 protected areas represented by 71 answered surveys (66 responses representing a single protected area and 5 representing two protected areas) from 19 countries.

Section 1: Perceptions regarding wildlife health and potential consequences of pathogen transmission among wildlife, domestic animals and people

The ranking distribution with the overall agreement with the affirmations odf section is shown in Figure 1.

Figure 1: Distribution protected area managers responses regarding the importance of wildlife health to achieve the conservation goals of protected area(s) where they work in (row 1), human or livestock pathogens can affect wildlife populations inhabiting the protected area(s) where they work in (row 2), pathogens carried by wildlife inhabiting the protected area(s) where they work in can affect public health (row 3), and pathogens carried by wildlife inhabiting the protected area(s) where they work in can affect livestock health (row 4).

The most common ranking combination for the four affirmations was "Strongly agree" with the four affirmations (n=9; 12.7%), followed by "Agree" (n=4; 5.6% of the responses). Twenty-eight (39.44%) of the respondents answered either "Strongly agree" or "Agree" to the four affirmations. The ranking combinations and number of responses are provided in Appendix 1.

Section 2: Overall frequency of encounters with dead, sick, or injured wildlife in the protected areas and their documentation when found during patrols.

Fifty-six responses (78.9%) reported that either dead, sick, or injured wildlife found during patrols are recorded. Twenty out of the 71 respondents (28.2%) answered that dead wildlife found during patrols are not recorded as a specific category. Of this set, only three responses (15%) claimed that dead wildlife are "Never" encountered in the protected area(s). The overall distribution of responses across dead wildlife encountering frequency in the protected area(s) and recording when found during a patrol is shown in Figure 2.

Figure 2: Distribution of protected area managers responses regarding the recording of dead wildlife found during ranger patrols as a specific category of animals across the overall encountering frequency with dead wildlife in the protected area(s) where they work in.

Forty-eight out of the 71 respondents (67.6%) answered that sick wildlife found during patrols are not recorded as a specific category. Of this set, only five responses (10.4%) claimed that sick and injured wildlife are "Never" encountered in the protected area(s). The overall distribution of responses across sick wildlife encountering frequency in the protected area(s) and recording when found during a patrol is shown in Figure 3.

Figure 3: Distribution of protected area managers responses regarding the recording of sick wildlife found during ranger patrols as a specific category of animals across the overall encountering frequency with sick or injured wildlife in the protected area(s) where they work in.

Forty out of the 71 respondents (56.3%) answered that injured wildlife found during patrols are not recorded as a specific category. Of this set, only five responses (12.5%) claimed that sick and injured wildlife are "Never" encountered in the protected area(s). The overall distribution of responses across injured wildlife encountering frequency in the protected area(s) and recording when found during a patrol is shown in Figure 4.

Figure 4: Distribution of protected area managers responses regarding the recording of injured wildlife found during ranger patrols as a specific category of animals across the overall encountering frequency with sick or injured wildlife in the protected area(s) where they work in.

The agreement of protected area managers with the assertion "Wildlife health, including in-

fectious and non-infectious diseases, is important to achieve the conservation goals of the protected areas where I work" in the subgroup of responses reporting sick, injured, or dead wildlife sighting but no recording if found during patrols is shown in Figure 5.

Figure 5: Distribution of the agreement regarding the importance of wildlife health to achieve the conservation goals of protected area(s) provided by managers of protected areas where sick, injured, or dead wildlife is observed with at least a minimal frequency but they are not recorded if found during patrols.

All 17 respondents in the subgroup with minimal observation of dead wildlife but no recording either "Agreed" or "Strongly agreed" with the statement. The percentages of respondents that either "Agreed" or "Strongly agreed" with the statement in the subgroups with minimal observation of sick or injured wildlife but no recording were 90.7 and 94.29%.

The methods to record either sick, injured, or dead wildlife found during a patrol (when registered): "Each animal is an individual observation", "Part of the full count of the species" (stratification of the animals of a specific species per health status), "Present/absent", and "Recorded in another way" were reported in 94.6, 51.8, 23.2, and 17.9% of the 56 responses that reported the recording of any of these wildlife health status categories when found during patrols. The distribution of the recording methods across healthy, sick, injured, or dead wildlife is shown in Figure 6.

Figure 6: Distribution of protected area managers responses regarding how healthy, sick, injured, and dead wildlife found during patrols are recorded.

The most common combination of methods to register either sick, injured, or dead wildlife was the recording of dead wildlife by itself with each dead individual as a unique observation (19.6% of the responses), followed by "Each animal is an individual observation" for the three health categories (10.7% of the responses). The number of responses per method used per health category are provided in Appendix 2.

The number of responses including specific data types collected across sick, injured, or dead wildlife (for the set of 56 responses reporting the recording of at least one of these categories) was 55, 51, 41, 37, 33, 30, 25, 21, 17 for the items Species, Photographs, Suspect cause, Sex, Condition, Age, Anomalies, Other. The distribution of the data items collected per each health status category is shown in Figure 7.

Figure 7: The recording of different data items across different categories of wildlife based on their health status. The size of the circles is proportional to the percentagez observed.

Section 3: Importance of introduced domestic animals for the conservation goals of the protected areas

Fifty managers responded that domestic animals are observed in the corresponding protected area(s; 70.4%). Thirty-five managers of this subset claimed that domestic animals are documented if observed during patrols (70%), but only 9 of these managers reported the recording of the health status of these animals. The distribution of manager responses across the overall ranking of domestic animals as a conservation concern, their documentation, and recording of their health status is shown in Figure 8.

	Domestic animals are a concern for conservation goals					
	Strongly disagree	Disagree	Somewhat disagree	Neutral	Agree	Strongly agree
Domestic animals found during patrols are not documented			www.		7	6
Domestic animals found during patrols are documented				3 2	9 2	11 5

Figure 8: Distribution of protected area manager responses where domestic animals are observed regarding the recording of domestic animals found during ranger patrols across their overall agreement with domestic animals as a concern for conservation goals in protected areas. The dashed area of the polygons represent the subset of responses without health status of domestic animals recording. The responses included in this figure are those of managers that reported the presence of domestic animals in the corresponding protected area.

Section 4: Data storage practices

Health data storage in a SMART database across widlife health status category for the subset of responses reporting the recording of sick, injured, or dead wildlife is shown in Figure 9 (percentages). When sick, injured, or dead wildlife were recorded but their data was not stored in a SMART database ("None of these items are entered in a SMART database"), a range of options were employed instead, including paper forms, reports, and spreadsheets.

Figure 9: Health data storage practices with respect to the use of SMART in the subgroup of responses reporting the recording of dead, sick, and i injured wildlife across categories of wildlife health status. The size the circles is proportional to the percentages observed.

Thirty-one of the 35 managers (88.6%) reporting the recording of domestic animal sighted during patrols responded that this information was stored in a SMART database. All managers reporting the recording of health status in domestic animals responded that this information is stored in a SMART database.

Section 5: Current state of SMART components

Discussion

We developed a web-based questionnaire aimed at protected area managers around the globe to learn about their perceptions regarding wildlife health; the monitoring of dead, sick, and injured wildlife and domestic animals in protected areas; health monitoring data storage practices at these sites; and local status of SMART. We obtained 71 responses from protected area managers that involved 76 protected areas administered with the support of a SMART system version distributed in 19 countries.

Wildlife health is usually considered relevant for the conservation goals of protected areas by managers and they have a general understanding that pathogens can be transmitted among wildlife, humans, and livestock and affect any of these groups. It could be possible that recent and ongoing global pathogen-driven crises, such as SARS-CoV-2, H5N1 High Pathogenic Avian Influenza (HPAI), Ebola Fever virus, and African Swine Fever virus able to infect or indirectly impact wildlife, people, and domestic animals (citation), could have sensitize this stakeholder group (paulo's paper). We are not aware of previous assessments regarding wildlife health relevance for our targeted audience to compare potential changes in these perceptions.

We did not assess factors that could impact dead, sick, or injured wildlife detection in the represented protected areas such as habitat, wildlife densities, animal sizes, carcass removal rates, etc., but several protected area managers confirmed that these animals are observed at least "very rarely". Between 25% to over 50% of this set of responses, depending on the wildlife health status category, asserted that these animals were not registered when found during patrols. A handful of wildlife health monitoring efforts that have explicitly indicated the participation of rangers show their value and the value of their collected data to assess health-risks, establish trends, and trigger responses to outbreaks (montecino, kuisma, etc), including for diseases of global concern such as Ebola fever disease (kiusma).

The subgroup of managers responding that sick, injured, or dead wildlife observed during patrols are registered presented variability in the recording methodology, so these animals can be reported as present/absent, individually, or grouped within a species. These differences occur even within responses (e.g., sick animals are recorded differently compared to dead animals in proteted areas under the same manager). The specific information collected from these animals also varied across and within each wildlife group (demographic data, signs in animals, etc.) with only the species and photographs being consistently recorded. Current differences in methodology and information gathered can complicate or impede health assessments across different temporal and spatial scales.

Most respondents did "Agree" or "Strongly agree" with the affirmation "Introduced domestic animals (e.g., dogs, cats, cattle, pigs, cats) are a concern for the conservation goals of the protected areas where I work" and reported the presence of these animals in the protected area(s). Yet, 30% of this subgroup of managers informed that these animals are not recorded when found during patrols (n=15) and only a minority of responses confirmed the recording of domestic animals and also their health status. Wildlife can be impacted by domestic animals directly through predation, competition, inter-breeding, or disturbance and indirectly through land-use change. However, historical and recent experiences have shown the negative outcomes of pathogen maintenance in domestic animals and transmission to wildlife. Remarkable examples are Canine distemper and Pest du Petit Ruminants viruses, and *Pastereulla multocida* and *Corynebacterium pseudotuberculosis* bacteria (citations()).

Responses regarding data storage practices revealed that despite SMART is available to support the management of protected areas represented in the responses, over 30% to 50% protected area managers reported that a SMART database was not employed to manage data regarding sick, injured, or injured wildlife when these animals were actually recorded. On

the contrary, health data from domestic animals, when recorded, was stored in a SMART database. The alternatives used reported do not guarantee appropriate data governance and they almost guarantee non-reporting of findings, sparsity of files, and the loss or uselessness of information. Inadequate management of data from wildlife health monitoring is not surprising and has been previously reported for wildlife surveillance systems in developed countries as well.

, establishing "normality" levels of morbidity and mortality, or timely sharing health "intelligence" information Consequently, our findings imply the loss of relevant and no-cost information for One Health surveillance. Harmonization of data is a foundational pillar of wildlife health surveillance systems (Lawson et al. 2021; Sleeman et al. 2012; Stephen et al. 2018; Merianos 2007; Worsley-Tonks et al. 2022; World Bank and Food and Agriculture O...; Pruvot et al. 2023; Machalaba et al. 2021; World Organisation for Animal Health ...; Stephen and Berezowski 2022; Ryser-Degiorgis 2013; Hayman et al. 2023; World Organisation for Animal Health ...; Heiderich et al. 2023) gaining insights The existence of a database is a second foundational pillar of wildlife health surveillance. SMART system can properly manage this information completeness of data not assessed. In a world with active encroachment into natural habitats, ubiquitous stressors for wildlife, and continuous disease transmission at human-wildlife-livestock interfaces, domestic animals and their health should be included in protected area monitoring planning.

Potnetial to be health sentinels...trainingm, no health background. Based on the responses to our survey, there are good conditions to leverage many rangers as health sentinels opportunistically recording wildlife health events found during patrols. Nevertheless, it is imperative to to standardize what is a wildlife health event for rangers already collecting data on dead, sick, or injured wildlife and for those rangers leveraged this audience and the recording of these events. and how the data is managed

Need of harmonization -> definition of a willife heath event in rangers at a global scale, level the field so dead, sick, inure andd ead wildlife and domestic animals are homogeneously recorded, The WildlHealthNet initiative is an approach to establish wildlife health surveillance networks based on in-country resources and four pillars (policy development, capacity bridging, surveillance) that has actively engaged rangers as scanning surveillance health sentinels fo Therefore, and potentially leverage hundreds of rangers in wildlife health surveillance at key human-wildlife-livestock interfaces globally. The willingness to correct this situation is likely present as most of the subgroup of managers responding that non-healthy wildlife is observed at least minimally but not registered did "agree" or "strongly agree" with the importance of wildlife health for the conservation goals of protected areas. agree with this statement but did not record health status of domestic animals - > could also change given their agreement with wildlife heaelth importance and dmoestic animal pathogne impacts on wildlife

Conclusions

Responses from protected area managers to our survey suggest that: i) wildlife health tends to be considered relevant for the conservation goals of protected areas and there is a general understanding that pathogens can be transmitted among wildlife, humans, and livestock and affect any of these groups; ii) dead, sick, or injured wildlife might not be recorded if found during ranger patrols regardless of these animals being observed with certain frequency in protected areas; iii) registered dead, sick, and injured wildlife found in patrols are recorded following different methodologies within and among sites, whilst the specific information collected is also variable; iv) domestic animals tend to be considered a concern for the conservation goals of protected areas, they are usually found at these sites and recorded but their health status is mostly not registered; v) health data when collected in protected areas might not be properly managed as this information is either not stored or it is partially stored in a SMART database and the alternatives employed are not adequate.

Appendices

Appendix 1. Frequency of response combinations to the four affirmations of Section 1.

Appendix 2. Frequency of response combinations to the recording methods for sick, injured, and dead wildlife of Section 2. Cells without information means that the corresponding health categories were not recorded.

Wildlife health is important	Human and livestock	Wildlife pathogens can	Wildlife pathogens can	Number of responses
	pathogens can	impact human	impact livestock	
	impact wildlife health	health	health	
Strongly agree	Strongly agree	Strongly agree	Strongly agree	9
Agree	Agree	Agree	Agree	4
Agree	Strongly agree	Neutral	Strongly agree	3
Strongly agree	Agree	Neutral	Neutral	3
Strongly agree	Agree	Strongly agree	Agree	3
Agree	Neutral	Neutral	Neutral	2
Agree	Strongly agree	Neutral	Agree	2
Strongly agree	Agree	Agree	Agree	2
Strongly agree	Agree	Strongly agree	Strongly agree	2
Strongly agree	Neutral	Neutral	Agree	2
Strongly agree	Strongly agree	Agree	Agree	2
Strongly agree	Strongly agree Strongly agree	Somewhat Disagree	Agree	2
Strongly agree	Strongly agree Strongly agree	Strongly disagree	Strongly disagree	2
Agree	Agree Agree	Agree	Strongly disagree Strongly agree	1
Agree	Agree	Neutral	Neutral	1
Agree	Agree	Somewhat Disagree	Agree	1
Agree	Agree	Somewhat Disagree	Somewhat Disagree	1
Agree	Agree		Agree	1
		Strongly agree Strongly agree	Strongly agree	1
Agree Agree	Agree Disagree	Disagree Disagree	Disagree Disagree	1
Agree	Disagree	Neutral	Agree	1
0	9	Neutral	Neutral	1
Agree	Disagree Neutral	Disagree	Neutral	1
Agree	Neutral	Neutral		1
Agree	Neutral	Neutral	Agree	1
Agree		Neutral	Disagree	1
Agree	Somewhat Disagree		Disagree	1
Agree	Strongly agree	Agree	Somewhat Disagree	
Agree	Strongly agree	Neutral	Neutral	1
Agree	Strongly agree	Somewhat Disagree	Disagree	1
Agree	Strongly agree	Strongly disagree	Strongly disagree	1
Disagree	Agree	Disagree	Strongly disagree	1
Neutral	Agree Neutral	Neutral	Neutral Neutral	1
Neutral Neutral		Disagree		
Neutral	Strongly agree	Agree	Agree Neutral	1 1
	Strongly agree	Disagree		
Strongly agree	Agree	Agree	Strongly agree	1
Strongly agree	Agree	Strongly agree	Neutral	1
Strongly agree	Disagree	Strongly disagree	Strongly agree	1
Strongly agree	Neutral	Somewhat Disagree	Somewhat Disagree	1
Strongly agree	Strongly agree	Agree	Strongly agree	
Strongly agree	Strongly agree	Disagree	Agree	1
Strongly agree	Strongly agree	Disagree	Disagree	
Strongly agree	Strongly agree	Neutral	Strongly agree	1
Strongly agree	Strongly agree	Strongly agree	Agree	1
Strongly agree	Strongly agree	Strongly agree	Somewhat Disagree	1
Strongly disagree	Strongly disagree	Neutral	Neutral	1

How sick wildlife is recorded	How injured wildlife is recorded	How dead wildlife is recorded	Number of responses
	recorded	Each animal is an	11
		individual observation	11
Each animal is an	Each animal is an	Each animal is an	6
individual observation	individual observation	individual observation	0
Individual object various	marviadar observacion	Recorded in another	5
		way	•
Part of the full count	Part of the full count	Part of the full count	5
of the species	of the species	of the species	
-		Present/absent	3
	Each animal is an	Each animal is an	3
	individual observation	individual observation	
	Part of the full count	Part of the full count	3
	of the species	of the species	
	Present/absent	Present/absent	2
Each animal is an individual observation	,	,	2
Part of the full count		Part of the full count	2
of the species		of the species	
Recorded in another	Each animal is an	Each animal is an	2
way	individual observation	individual observation	
		Part of the full count	1
		of the species	
	Each animal is an	Present/absent	1
	individual observation		
	Each animal is an	Recorded in another	1
	individual observation	way	
	Present/absent		1
	Present/absent	Each animal is an	1
		individual observation	
	Recorded in another	Each animal is an	1
	way	individual observation	
Each animal is an		Each animal is an	1
individual observation		individual observation	
Each animal is an	Each animal is an		1
individual observation	individual observation		
Part of the full count	Each animal is an	Each animal is an	1
of the species	individual observation	individual observation	
Part of the full count	Part of the full count	Each animal is an	1
of the species	of the species	individual observation	
Present/absent	Present/absent	Present/absent	1
Recorded in another	Each animal is an		1
way	individual observation		