9. 관계 데이타 연산

관계 데이타 연산(시스템)

- □ 관계 데이타 언어(사용자)
 - i . 관계 대수(relational algebra)
 - ◆ 절차언어: how, what
 - ii. 관계해석(relational calculus)
 - ♦ 비절차언어: what
 - ◆ 투플 관계해석
 - ◆ 도메인 관계해석
- □ 관계 해석과 관계 대수는 표현이나 기능면에서 동등
- □ 상용 관계 데이터 언어
 - 관계 대수와 관계 해석을 기초로 함.
 - SQL, QUEL, QBE

9.1 관계대수(Relational Algebra)

- □ 릴레이션 조작을 위한 연산의 집합
- 폐쇄성질 (closure property)
 - 피연산자와 연산 결과가 모두 릴레이션
 - 중첩(nested)된 수식의 표현이 가능
- ㅁ 구성
 - 릴레이션: 투플의 집합
 - 일반 집합 연산자: 합집합(union)

교집합(intersection) 차집합(difference)

카티션 프로덕트(cartesian product)

- 순수 관계 연산자 : 실렉트(select)

프로젝트(project)

조인(join) 디비전(division)

Hyeokman Kim

9.1.1 일반 집합 연산자

- □ 합집합 (union, U)
 - 정의: RUS = { t | t∈R ∨ t∈S }
 - Cardinality: $\max\{|R|,|S|\} \le |R \cup S| \le |R| + |S|$
- □ 교집합 (intersect, ∩)
 - 정의: RNS = { t | t∈R ∧ t∈S }
 - Cardinality: $0 \le |R \cap S| \le \min\{|R|, |S|\}$
- □ 차집합 (difference, -)
 - 정의: R-S = { t | t∈R ∧ t∉S }
 - Cardinality: $0 \le |R-S| \le |R|$
- □ 카티션 프로덕트 (cartesian product, ×)
 - 정의: $R \times S = \{ r \cdot s \mid r \in R \land s \in S \}$
 - 단, · : 접속(concatenation)
 - Cardinality: $|R \times S| = |R| \times |S|$
 - 차수(degree): R의 차수 + S의 차수

Hyeokman Kim

KMU 국민대학교 KOOKMIN UNIVERSIT

□ Note

- 합병가능(union-compatible)한 릴레이션
 - ◆ ∪, ∩, 연산의 피연산자들은
 - i . 차수가 같아야 함
 - ii. 대응 애트리뷰트 별로 도메인이 같아야 함
- U, ∩, × 연산은 결합적(associative)임 AUBUC = (AUB)UC = AU(BUC)
- ∪, ∩, × 연산은 교환적(commutative)임 A∪B = B∪A

Hyeokman Kim

Example: 대학(University) 관계 데이타베이스

학생 (STUDENT)

학번	선 이름 학년		학과
(SNO)	(SNANE)	(YEAR)	(DEPT)
100	나 연 묵	4	컴퓨터
200	이 찬 영	3	전기
300	정 기 태	1	컴퓨터
400	송 병 호	4	컴퓨터
500	박 종 화	2	산공

과목 (COURSE)

1	바목번호	과목이름	학점	학과	담당교수
	(CNO)	(CNANE)	(CREDIT)	(DEPT)	(PRNAME)
	C123	프로그래밍	3	컴퓨터	김성기
	C312	자료 구조	3	컴퓨터	황수찬
	C324	파일 처리	3	컴퓨터	이규철
	C413	데이타 베이스	3	컴퓨터	이석호
	C412	반 도 체	3	전자	홍봉희

등록 (ENROL)

학번 (SNO)	과목번호 (CNO)	성적 (GRADE)	중간성적 (MIDTERM)	기말성적 (FINAL)
100	C413	Α	90	95
100	E412	Α	95	95
200	C123	В	85	80
300	C312	Α	90	95
300	C324	С	75	75
300	C413	Α	95	90
400	C312	Α	90	95
400	C324	Α	95	90
400	C413	В	80	85
400	E412	С	65	75
500	C312	В	85	80

Hyeokman Kim

9.1.2 순수 관계 연산자

□ Symbolic notations

- 릴레이션 : R(X) = R(A₁, ... , A_n)

- R의 투플: $r = \langle a_1, ..., a_n \rangle \in R$

- 투플 r에 대한 애트리뷰트 A_i의 값

 \bullet r.A_i = r[A_i] = a_i

RMU 국민대학교 KOOKMIN UNIVERSITY

실렉트 (SELECT, σ)

- □ 정의
 - A, B가 릴레이션 R의 애트리뷰트일 때,

$$\begin{array}{l} \sigma_{A\theta v}(R) \; = \; \{\; r \; | \; r \in R \; \land \; \underbrace{r.A\theta v} \; \} \\ \sigma_{A\theta B}(R) \; = \; \{\; r \; | \; r \in R \; \land \underbrace{r.A\theta r.B} \; \} \end{array}$$

조건식(predicate)

□ 선택 조건을 만족하는 릴레이션의 수평적 부분집합 (horizontal subset)

Hyeokman Kim

- □ Example
 - σ _{학과='컴퓨터'} (학생)
 - σ _{학번=300 ∧ 과목번호='C312'}(등록)
 - σ _{중간성적<기말성적} (등록)
- □ 데이타 언어식 표현
 - WHERE 조건식
- □ 실렉트 연산은 교환적(commutative)임
 - $\quad \sigma_{\text{$\underline{\mathtt{T}}$2}}(\sigma_{\text{$\underline{\mathtt{T}}$2}}(\mathsf{R})) = \sigma_{\text{$\underline{\mathtt{T}}$2}}(\sigma_{\text{$\underline{\mathtt{T}}$2}}(\mathsf{R})) = \sigma_{\text{$\underline{\mathtt{T}}$2}}(\mathsf{R})$
- □ 선택도(selectivity)
 - 조건식에 의해 선택된 투플의 비율

프로젝트 (PROJECT, Π)

- □ 정의
 - 릴레이션 R(X)에서 X={A₁,A₂, ...,A_n}, Y={B₁,B₂, ...,B_m}, n≥m이고 Y⊆X 이면,

$$\Pi_{Y}(R) = \{ \langle r.B_1, ..., r.B_m \rangle \mid r \in R \}$$

- example
 - 학생(학번,이름,학년)에서 $\Pi_{0|}$ (학생)
- □ 릴레이션의 수직적 부분집합(vertical subset)
- □ 생성된 중복 투플은 제거
- $\square \ \Pi_{Y}(\Pi_{X}(R)) = \Pi_{Y}(R)$

Hyeokman Kim

조인 (JOIN, 🖂)

- 비사하고 세타조인 (theta-join)
 - R(X), S(Y), A∈X, B∈Y 에 대하여 (A,B는 조인 애트리뷰트)

$$\begin{array}{l} \text{R} \not\bowtie_{A\Theta B} S = \{ \text{ } r \cdot \text{s} \mid r \in \text{R} \land \text{s} \in \text{S} \land (\underline{r.A\Theta s.B}) \ \} \\ = \sigma_{A\Theta B} \ (\text{R} \times \text{S}) \end{array}$$

- 결과 차수 = R의 차수 + S의 차수
- example
 - 학생 ⋈_{학번=학번} 등록
- □ 동일조인 (equi-join)
 - 세타조인에서 θ가 "="인 경우

$$R \bowtie_{A=B} S = \{ r \cdot s \mid r \in R \land s \in S \land (\underline{r.A = s.B}) \}$$

□ 자연조인 (natural join, ⋈_N)

- R(X), S(Y)의 <u>조인</u> 애트리뷰트를 Z(=XNY)라 하면

```
\begin{array}{l} R \bowtie_N S = \{ \; \underline{< r \cdot s > [X \cup Y]} \; | \; r \in R \; \land \; s \in S \; \land \; \underline{r[Z] = s[Z]} \; \} \\ = \; \Pi_{X \cup Y}(\sigma_{Z = Z}(R \times S)) \\ = \; \Pi_{X \cup Y}(R \bowtie_{Z = Z} S) \end{array}
```

- Note

```
동일조인: R \bowtie_{A=B}S = \{ \ \underline{\langle r \cdot s \rangle} \mid r \in R \land s \in S \land \underline{r[Z] = s[Z]} \} 세타조인: R \bowtie_{A \in B}S = \{ \ \underline{\langle r \cdot s \rangle} \mid r \in R \land s \in S \land \underline{r[Z] \theta s[Z]} \}
```

- 즉 동일조인의 결과 릴레이션에서 애트리뷰트의 중복을 제거함.
- 결과 차수 = R의 차수 + S의 차수 XNY

국민대학교 Modelin Hampler

디비전 (DIVISION, ÷)

□ 정의

Hyeokman Kim

- 릴레이션 R(X), S(Y) 에 대하여 Y⊆ X이고 X-Y=Z이면, R(X)=R(Z,Y)로 표현 가능.
- 따라서 R(Z,Y), S(Y) 에 대하여

 $R \div S = \{ t \mid \underline{t \in \Pi_7(R)} \land \underline{t \cdot s \in R \text{ for all } s \in S} \}$

□ e>	kample			
등록	₹(E)	과목1(C1)	과목2(C2)	과목3(C3)
확번 (SNO) 100 100 200 300	과목번호 (CNO) C413 E412 C123 C312	과목번호 (CNO) C413	과목번호 (CNO) C312 C413	과목번호 (CNO) C312 C413 E412
300 300 400	C324 C413 C312	E÷C1	E÷C2	E÷C3
400 400 400 500	C324 C413 E412 C312	학번 (SNO) 100 300	학번 (SNO) 300 400	학번 (SNO) 400
Hyeokman F	1	400		국민대학교 Montes (Miller)

작명 연산 (RENAME, ρ)

- □ 중간 결과 릴레이션에 이름을 붙이거나 애트리뷰트 이름을 변경할 때 사용
 - ① ρ_S(E) 관계 대수식 E의 결과 릴레이션의 이름을 S로 지정
 - ② ρ_{S(B1,B2,...,Bm)}(E) 관계 대수식 E의 결과 릴레이션의 이름을 S로 하면서 애트리뷰트 이름을 B₁,B₂,...,B_m 으로 지정

9.1.3 근원 연산과 복합 연산

- 근원연산 (primitive operations)
 - 합집합, 차집합, 카티션 프로덕트, 프로젝트, 실렉트
- 복합연산 (composite operations)
 - 교집합, 조인, 디비전
- □ 복합연산은 근원연산으로 표현 가능
 - $R \cap S = R (R S) = S (S R)$ = $(R \cup S) - ((R - S) \cup (S - R))$
 - R $M_{A\Theta B}$ S = $\sigma_{A\Theta B}$ (R×S)
 - $R(Z,Y) \div S(Y) = R[Z] ((R[Z] \times S) R)[Z]$

Hyeokman Kim

로만대학교 KNOKMIN UNIVERSITY

9.1.4 관계 대수의 확장

- ㅁ 세미조인
- □ 외부조인
- □ 외부 합집합
- □ 집단 연산

세미조인 (SEMIJOIN, ⋉)

- □ 정의
 - R(X), S(Y)의 조인 애트리뷰트를 XNY라 하면,

$$R \bowtie S = R \bowtie_N (\Pi_{X \cap Y}(S)) = \Pi_X (R \bowtie_N S)$$

- □ S와 자연조인을 할 수 있는 R의 투플
- □ 특징
 - R | S ≠ S | R

Hyeokman Kim

RMU 국민대학교 KOOKMIN UNIVERSITY

$R \bowtie S$

R

a1	a2		ai		an
			11		
			14		
	R⋉s		17		
			13		
			14		
			6		
			7		
			9		
			9		
			2 5		
			7		
				•	

74 11 13

56

14

Hyeokman Kim

RMU 국민대학교 KDOKMIN UNIVERSITO

□ 분산 환경 (R: 서울, S: 부산)

- $R \bowtie_N S = (R \bowtie_N S) \bowtie_N S = (R \bowtie_N (\Pi_{X \cap Y}(S))) \bowtie_N S$

◆ 질의: 부산

- $R \bowtie_N S = (S \bowtie_R) \bowtie_N R$

◆ 질의: 서울

 $- R \bowtie_{N} S = (R \bowtie S) \bowtie_{N} (S \bowtie R)$

◆ 질의: 제3의 장소

외부조인 (OUTERJOIN, ⋈+)

□ 정의

- 조인시 한 릴레이션에 있는 투플이 조인할 상대 릴레이션에 대응되는 투플이 없을 경우, 상대를 널(null) 투플로 만들어 결과 릴레이션에 포함
- □ 두 조인 릴레이션의 모든 투플들이 결과 릴레이션에 포함됨

외부 합집합 (OUTER-UNION, U+)

□ 정의

- 합병가능하지 않은(부분적으로 합병 가능한) 두 릴레이션을 차수를 확장시켜 합집합으로 만듬.

> KMU) 국민대학교 KOOKMIN UNIVERSITY

집단 연산

- □ 수학적 집단 연산
 - SUM, AVG, MAX, MIN, COUNT
 - AVG_{성적}(등록)
 - ◆ 등록 릴레이션에 있는 성적 애트리뷰트 값들에 대해 평균값 계산
 - 중복값이 있더라도 제외하지 않고 그대로 적용.
- □ 그룹 연산
 - GROUP_{학년}(학생)
 - ◆ 학생 릴레이션의 투플들을 학년 값에 따라 그룹 짓게 함
- □ 일반 형식
 - 일반형식: F_B(G_A(E))
 - ◆ E:관계 대수식
 - ◆ G: 그룹연산
 - ◆ F: 집단 함수 (SUM, AVG, MAX, MIN, COUNT)
 - ◆ B:집단 함수의 적용 대상 애트리뷰트
 - ◆ A: 그룹 함수가 적용할 애트리뷰트
 - 먼저 그룹 연산을 적용한후, 각 그룹에 대해 집단 함수를 젊용.

Hyeokman Kim

Example: 대학(University) 관계 데이타베이스

학생 (STUDENT)

학번	이름	학년	학과
(SNO)	(SNANE)	(YEAR)	(DEPT)
100	나 연 묵	4	컴퓨터
200	이 찬 영	3	전기
300	정 기 태	1	컴퓨터
400	송 병 호	4	컴퓨터
500	박 종 화	2	산공

과목 (COURSE)

과목번호	과목이름	학점	학과	담당교수
(CNO)	(CNANE)	(CREDIT)	(DEPT)	(PRNAME)
C123	프로그래밍	3	컴퓨터	김성기
C312	자료 구조	3	컴퓨터	황수찬
C324	파일 처리	3	컴퓨터	이규철
C413	데이타 베이스	3	컴퓨터	이석호
C412	반 도 체	3	전자	홍봉희

RMU 국민대학교 KOOKME UNIVERSITY

등록 (ENROL)

학번 (SNO)	과목번호 (CNO)	성적 (GRADE)	중간성적 (MIDTERM)	기말성적 (FINAL)
100	C413	Α	90	95
100	E412	Α	95	95
200	C123	В	85	80
300	C312	Α	90	95
300	C324	С	75	75
300	C413	Α	95	90
400	C312	Α	90	95
400	C324	Α	95	90
400	C413	В	80	85
400	E412	С	65	75
500	C312	В	85	80

Hyeokman Kim

9.1.5 관계대수의 질의문 표현

□ 모든 학생의 이름과 학과를 보여라.

	모든	과목에	수강하고	있는	학생의	학번,	이름은	?
Hyeol	kman Kim						KMU	국민대학교 KOOKMEN INVIDINTY

9.2 관계 해석 (Relational Calculus)

- □ Predicate calculus에 기반
- □ 관계 데이타 모델의 연산 표현 방법
- 비절차적(non-procedural)
 - 원하는 정보가 무엇이라는 것만 선언
- □ 종류
 - 투플 관계 해석 (tuple relational calculus)
 - 도메인 관계 해석 (domain relational calculus)

Hyeokman Kim

9.2.1 투플 관계해석

- □ 원하는 릴레이션을 투플해석식(tuple calculus expression)으로 명세
- □ 투플 해석식의 구성 요소
 - i . 투플변수(tuple variable) 또는 범위변수(range variable): t
 - ◆ 범위식(range formula): R(t)
 - ii. 한정(qualified) 애트리뷰트 : t.A 또는 t[A]
 - ◆ 투플 변수 t가 나타내는 투플의 어떤 애트리뷰트 A의 값

iii. 원자(atom)

① R(t)

t : 투플변수

R : t의 범위 릴레이션

② t.A θ u.B

t. u : 투플변수

A, B : t와 u에 대한 한정 애트리뷰트 θ : 비교 연산자(=, ≠, <, ≤, >,≥)

₃ t.Aθc

A : 투플변수 t에 대한 한정 애트리뷰트

c : 상수

- 원자의 실행 결과는 반드시 참(True) 또는 거짓(False)

= KMU 국민대학교 KOKKIN UNIVERSIT

Hyeokman Kim

iv. 정형식(WFF, Well-formed formula)

- 원자, 불리언 연산자(△, ∨, ¬), 정량자 (∀,∃)가 다음 규칙에 따라 결합된 식
 - ① 모든 원자는 WFF
 - ② F가 WFF이면, (F)와 ¬F도 WFF
 - ③ F와 G가 WFF이면, F∧G와 F∨G도 WFF
 - ④ F가 WFF이고 t가 자유변수이면, ∀t(F)와 ∃t(F)도 WFF
 - ⑤ 위의 규칙만을 반복 적용해서 만들어진 식은 WFF
- 정형식의 예
 - s.SNO = 100
 - c.CNO#e.CNO

s.SNO = e.SNO \wedge e.CNO \neq c.CNO

 $(\exists e)(e.SNO = s.SNO \land e.CNO = 'C413')$

Note

- 그 속박변수(bound variable)
 - 정량자로 한정된 투플 변수
 - ∀ : 전칭 전량자(Universal quantifier)
 - ∃: 존재 전량자(Existential quantifier)
- 마 자유변수(free variable)
 - 정량자로 한정되지 않는 투플 변수

Hyeokman Kim

투플 해석식 (Tuple calculus expression)

□ 형식

{ $t_1.A_1, t_2.A_2, ..., t_n.A_n | F(t_1, ..., t_n, t_{n+1}, ..., t_{n+m})$ }

- t_i:투플 변수
- F(t₁,..., t_n, t_{n+1},..., t_{n+m}): t_i가 연관된 정형식
- 막대(|) 왼편에 나온 한정 애트리뷰트들은 목표 리스트로서, 막대(|) 오른편에 명세된 조건을 만족하는 결과로 추출 됨
- - { s.SNAME | STUDENT(s) }
 - { s.SNAME | STUDENT(s)∧s.DEPT='컴퓨턴'}

투플 해석식의 질의문 표현

- □ 과목 C413에서 성적이 A인 모든 학생의 학번은?
 - { e.SNO | ENROL(e) ∧ e.CNO='C413' ∧ e.GRADE='A' }
- □ 과목 C413을 등록한 모든 학생의 이름과 학과는?
 - { s.SNAME, s.DEPT | STUDENT(s) \land \exists e (ENROL(e) \land s.SNO=e.SNO \land e.CNO='C413') }

Hyeokman Kim

- □ 모든 과목에 등록한 학생의 이름을 전부 기술하라.
 - { s.SNAME | STUDENT(s) \land (\forall c)(\exists e) (COURSE(c) \land ENROL(e) \land e.SNO=s.SNO \land e.CNO=c.CNO) }
- □ 과목 C413에 등록하지 않은 학생의 이름 전부를 기술하라.
 - {s.SNAME | STUDENT(s) ∧
 (¬∃e) (ENROL(e) ∧ s.SNO=e.SNO ∧ e.CNO='C413') }

9.2.3 도메인 관계해석

- □ 원하는 릴레이션을 도메인 해석식(domain calculus expression)으로 명세
- □ 도메인 해석식의 구성요소
 - i . 도메인 변수(domain variable)
 - ♦ dSNO, dSNAME, ...
 - ◆ 범위식
 - STUDENT(dSNO, dSNAME, dDEPT, dYEAR)

Hyeokman Kim

- ii. 원자(atom)
 - ① $R(x_1, x_2, ..., x_n)$

x; : 도메인 변수

. R : x_i의 범위 릴레이션

 $< x_1, x_2, ... x_n >$ 에 해당하는 값의 리스트는 릴레이션 R의 투플

② xθy

x, y : 도메인 변수

θ: 비교 연산자(=, ≠, <, ≤, >,≥)

3 хθс

x : 도메인 변수

θ: 비교 연산자

c : x가 정의된 도메인 값의 상수

- 원자의 실행 결과는 반드시 참(True) 또는 거짓(False)

iii. 정형식(WFF, Well-formed formula)

- 원자, 불리언 연산자(∧,∨,¬), 정량자(∀,∃)가 다음 규칙에 따라 결합되어 표현된 식
 - ① 모든 원자는 WFF
 - ② F가 WFF이면, (F)와 ¬ F도 WFF
 - ③ F와 G가 WFF이면, F∧G와 F∨G도 WFF
 - ④ F가 WFF이고 x가 자유변수이면, (∀x)(F)와 (∃x)(F)도 WFF
 - ⑤ 위의 규칙만을 반복 적용해서 만들어진 식은 WFF

Hyeokman Kim

도메인 해석식(Domain calculus expression)

□ 형식

{ $x_1, x_2, ..., x_n | F(x_1, ..., x_n, x_{n+1}, ..., x_{n+m})$ }

- x_i:도메인변수
- F(x₁, ... x_n, x_{n+1}, ..., x_{n+m}): x_i에 대한 정형식
- 막대(|) 왼편에 나온 도메인 변수들은 목표리스트로서, 막대(|)
 오른편에 명세된 조건을 만족하는 도메인 값으로 만들어지는 투플
- Example
 - { dSNAME | STUDENT(dSNO, dSNAME, dYEAR, dDEPT)}프로젝트SNAME(Student)
 - { dSNAME | (∃dDEPT) (STUDENT(dSNO, dSNAME, dYEAR, 셀벡,프로젝 한거 dDEPT)∧ dDEPT='컴퓨터') }
 - { dSNO, dDEPT | STUDENT(dSNO, dSNAME, dYEAR, dDEPT) ∧ (∃ ddSNO)(∃ dGRADE)(ENROL(ddSNO, dCNO, dGRADE, dMIDTERM, dFINAL) ∧ dSNO=ddSNO ∧ dGRADE='A')

등록테이블은 dd로 헷갈리니까

도메인 해석식의 질의문 표현

- □ 컴퓨터학과 3,4 학년의 이름을 보여라.
 - {dSNAME | (∃dYEAR)(∃dDEPT)(STUDENT(dSNO, dSNAME, dYEAR, dDEPT) ∧ dYEAR ≥ 3 ∧ dDEPT='컴퓨터') }
- □ 과목 C413에서 성적이 A인 모든 학생의 학번은?
 - { dSNO | (∃dCNO)(∃dGRADE)(ENROL(dSNO, dCNO, dGRADE, dMIDTERM, dFINAL) ∧ dCNO= 'C413' ∧ dGRADE='A') }

Hyeokman Kim

- □ 기말 성적이 90점 이상인 학생의 학번과 이름을 보여라.
 - {dSNO,dSNAME | (STUDENT(dSNO,dSNAME,dYEAR,dDE PT) \land (\exists dFINAL)(\exists ddSNO) (ENROL(ddSNO, dCNO, dGRADE, dMIDTERM, dFINAL) \land dSNO=ddSNO \land dFINAL \geq 90) }
- □ 과목 C324에 등록하지 않은 학생의 이름은?
 - { dSNAME | (∃dSNO)((STUDENT(dSNAME, dSNO, dYEAR, dDEPT) ∧ (∃ddSNO) (∃dCNO) (ENROL(ddSNO, dCNO, dGRADE, dMIDTERM, dFINAL) ∧ dSNO=ddSNO ∧ dCNO='C324')) }

9.3 QBE

- □ QBE (Query By Example)
- □ 1975, IBM
- □ 도메인 관계 해석 사용
- □ 그래픽 디스플레이 단말기 사용
- ㅁ 이차원 구문(two-dimensional syntax) 언어
- □ 테이블 형태
- □ 예(example)를 질의문 명세에 사용
 - 예제 원소(example element) : 도메인 변수

프 국민대학교 KOOKAN UNIVERSIT

Hyeokman Kim

데이타 검색

- □ 단순 조건 검색
 - 4학년 학생의 학번과 이름을 보여라

STUDENT	SNO	SNAME	YEAR	DEPT
	Р.	Р.	4	컴퓨터

- 중복되는 것은 자동적으로 제거됨
- 'ALL'을 삽입하면 중복이 가능
- □ 테이블 전체의 검색

STUDENT	SNO	SNAME	YEAR	DEPT
	Ρ.	Р.	Ρ.	Р.

□ 복수 조건 검색

- 'OR' 조건 : 두 개의 행, 다른 예제 원소
 - ◆ 기말성적이 85점 이상이거나 과목번호 'C413'에 등록한 학생의 학번을 검색하라

ENROL	SNO	CNO	FINAL	MIDTERM
	PSTX		≥85	
	PSTY	C413		

- 'AND' 조건 : 하나의 행, 같은 예제 원소
 - ◆ 과목번호가 'C413'이고 기말성적이 85점 이상인 학생의 학번

ENROL	SNO	CNO	FINAL	MIDTERM
	Ρ.	C413	≥85	

Hyeokman Kim

- 조건 상자(condition box)의 사용

ENROL	SNO	CNO	FINAL	MIDTERM
	Р.	_EC	_EF	

CONDITIONS _EC=C413 AND _EF ≥85

- □ 복수 테이블에서 검색
 - 기말성적이 85점 이상이거나 과목 'C413'을 등록한 학생의 이름

ENROL	SNO	CNO	FINAL	MIDTERM
	_STX _STY	C413	≥85	

STUDENT	SNO	SNAME	YEAR	DEPT
	_STX _STY	P. P.		

Hyeokman Kim

데이타의 삽입

- □ 단순 레코드의 삽입
 - 학번이 100이고 과목번호가 'C413'인 투플 삽입

ENROL	SNO	CNO	GRADE	MIDTERM	FINAL
1.	100	C413			

- □ 투플 검색을 이용한 삽입
 - 4학년 학생의 학번을 학생테이블로부터 검색해서 SENIOR 테이블에 삽입하라.

SENIOR	SNO	STUDENT	SNO	SNAME
I.	_STX		_STX	

KMU 국민대학교 KOOKMR UNIVERSITY

DEPT

YEAR

4

데이타의 삭제

- □ 한 테이블에서의 삭제
 - 학번이 100인 학생을 학생 테이블에서 삭제

 STUDENT
 SNO
 SNAME
 YEAR
 DEPT

 D.
 100
 DEPT
- ㅁ 복수 테이블에서의 레코드 삭제
 - 기말성적이 60점 미만인 학생을 등록 테이블과 학생테이블에서 삭제

ENROL	SNO	CNO	GRADE	MIDTERM	FINAL
D.	_STX _STX				<60
STUDENT	SNO	SNAME	YEAR	DEPT	
D.	_STX				

Hyeokman Kim

데이타의 갱신

- □ 필드값의 단순 갱신
 - 학번이 300인 학생의 학년을 2로 변경

STUDENT	SNO	SNAME	YEAR	DEPT
	300		U.2	

STUDENT	SNO	SNAME	YEAR	DEPT
U.	300		2	

- □ 산술식을 이용한 갱신
 - 과목 'C413'에 등록한 학생의 기말 성적(FINAL)에 5점을 가산

ENROL	SNO	CNO	FINAL	MIDTERM
U.			_G+5	
		C413	_G	

