Формулы к физическим диктантам за 10 класс

	Формула	Название
1	$\vec{r} = \overrightarrow{r_0} + \vec{v}t$	Уравнение равномерного прямолинейного движения в векторной форме
2	$x = x_0 + v_x t$	Уравнение равномерного прямолинейного движения в координатной форме
3	$\overrightarrow{v_{\text{HCO}}} = \overrightarrow{v_{\text{IICO}}} + \overrightarrow{v_{\text{OTH}}}$	Закон сложения скоростей
4	$\overrightarrow{\Delta r_{ ext{HCO}}} = \overrightarrow{\Delta r_{ ext{ICO}}} + \overrightarrow{\Delta r_{ ext{OTH}}}$	Закон сложения перемещений
5	$\vec{v} = \frac{\overrightarrow{\Delta r}}{t}$	Скорость при равномерном прямолинейном движении
6	$\vec{v} = \frac{\overrightarrow{\Delta r}}{t}$ $\vec{v} = \frac{\overrightarrow{\Delta r}}{\Delta t} (\Delta t \to 0)$	Мгновенная скорость в векторной форме
7	$v_x = \frac{\Delta x}{\Delta t} (\Delta t \to 0)$	Мгновенная скорость в координатной форме
8	$\vec{a} = \frac{\overrightarrow{\Delta v}}{\Delta t} (\Delta t \to 0)$	Ускорение в векторной форме
9	$a_{x} = \frac{\Delta v_{x}}{\Delta t} (\Delta t \to 0)$	Ускорение в координатной форме
10	$\vec{r} = \overrightarrow{r_0} + \overrightarrow{v_0}t + \frac{\vec{a}t^2}{2}$	Уравнение равноускоренного прямолинейного движения в векторной форме
11	$x = x_0 + v_{0x}t + \frac{a_x t^2}{2}$	Уравнение равноускоренного прямолинейного движения в координатной форме
12	$\vec{v} = \overrightarrow{v_0} + \vec{a}t$	Уравнение скорости при равноускоренном прямолинейном движении в векторной форме
13	$v_x = v_{0x} + a_x t$	Уравнение скорости при равноускоренном прямолинейном движении в координатной форме
14	$s_x = \frac{v_x^2 - v_{0x}^2}{2a_x}$	Уравнение для перемещения при равноускоренном прямолинейном движении (без времени)
15	$v_y = v_{0y} + g_y t$ $h_y = v_{0y} t + \frac{g_y t^2}{2}$ $h_y = \frac{v_y^2 - v_{0y}^2}{2g_y}$ $T = \frac{2\pi R}{r}$	Уравнения для свободного падения тела в проекциях на ось ОҮ
16	$T = \frac{2\pi R}{v}$	Период вращения по окружности с постоянной скоростью
17	$v = \frac{N}{t} = \frac{1}{T}$	Частота вращения по окружности с постоянной скоростью

18	$a_n = \frac{v^2}{R} = \omega^2 R$	Центростремительное (нормальное) ускорение при вращении по окружности с постоянной скоростью
19	$\omega = 2\pi \nu = \frac{2\pi}{T}$	Угловая частота
20	$\omega = \frac{\Delta \varphi}{t}$	Угловая скорость
21	$l = \varphi R$ $v = \omega R$	Связь линейных и угловых величин
22	$\vec{a} = \frac{\overrightarrow{F_{\text{pabh}}}}{m}$	Второй закон Ньютона
23	$\overrightarrow{F_{\text{pabh}}} = \sum_{i=1}^{n} \overrightarrow{F_i} = \overrightarrow{F_1} + \overrightarrow{F_2} + \cdots$	Принцип суперпозиции сил
24	$\overrightarrow{F_{12}} = -\overrightarrow{F_{21}}$	Третий закон Ньютона
25	$F_{\text{\tiny TMT}} = G \frac{M_1 M_2}{R^2}$	Закон всемирного тяготения
26	$\overrightarrow{F_{\scriptscriptstyle exttt{THK}}} = m \vec{g}$	Сила тяжести
27	$g=Grac{M_{\Pi\Pi}}{R_{\Pi\Pi}^2}$	Ускорение свободного падения на планете
28	$g=Grac{M_{\Pi\Pi}}{R_{\Pi\Pi}^2}$ $g'=Grac{M_{\Pi\Pi}}{(R_{\Pi\Pi}+h)^2}$	Ускорение свободного падения на высоте над поверхностью планеты
29	$v_I = \sqrt{Grac{M_{\scriptscriptstyle \Pi,\Pi}}{R_{\scriptscriptstyle \Pi,\Pi}}}$	Первая космическая скорость
30	$\overrightarrow{F_{\rm ynp}} = -k\overrightarrow{\Delta x}$	Закон Гука в векторной форме
31	$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}$	Эквивалентная жёсткость при последовательном соединении пружин
32	$k = k_1 + k_2$	Эквивалентная жёсткость при параллельном соединении пружин
33	$F_{\mathrm{Tp}} = \mu N$	Сила трения скольжения (закон Амонтона-Кулона)
34	$M = F \cdot l$	Момент силы
35	$\overrightarrow{F_1} + \overrightarrow{F_2} + \dots = 0$	Первое условие равновесия твердого тела (отсутствие поступательного движения)
36	$M_1 + M_2 + \dots = 0$	Второе условие равновесия твердого тела (отсутствие вращательного движения)
37	$\vec{p}=m\vec{v}$	Импульс тела
38	$\vec{I} = \vec{F}t$	Импульс силы
39	$\vec{I} = \vec{p} - \overrightarrow{p_0}$	Второй закон Ньютона в импульсной форме

40	$\sum_{i=1}^{n} \overrightarrow{p_i} = const$	Закон сохранения импульса
41	$A = \vec{F} \vec{s} \cos\alpha$	Механическая работа
42	$N = \frac{A}{t}$	Механическая мощность
43	$N = F \cdot v$	Мгновенная мощность (мощность силы)
44	$\eta = \frac{A_{\text{пол}}}{A_{\text{затр}}} \cdot 100\%$	КПД
45	$E_{\text{\tiny KUH}} = \frac{mv^2}{2}$	Кинетическая энергия
46	$A = E_{\text{кин}} - E_{\text{кин0}}$	Теорема об изменении кинетической энергии
47	$E_{\scriptscriptstyle{\Pi m OT}} = mgh$	Потенциальная энергия тела при взаимодействии с Землей
48	$E_{\text{not}} = \frac{k\Delta x^2}{2}$	Потенциальная энергия пружины
49	$E_{\text{Mex}} = E_{\text{KUH}} + E_{\text{HOT}} = const$	Закон сохранения механической энергии
50	$d \sim 10^{-10} \text{M}$	Диаметр молекулы
51	$M_r = \frac{m_o}{\frac{1}{12} m_c}$	Относительная молекулярная масса
52	$N_a = 6.02 * 10^{23} \frac{1}{\text{моль}}$ $N = N = N$	Постоянная Авогадро
53	$v = \frac{N}{N_a} = \frac{m}{\mu}$	Кол-во в-ва
54	$n = \frac{N}{V}$	Концентрация
55	$ ho = m_o n$	ρ — плотность
56	$\frac{m}{\mu} = \frac{N}{N_a} \Rightarrow m_o = \frac{\mu}{N_a}$	m_o - отн. мол. масса одной молекулы
57	$p = \frac{1}{3}m_0n\bar{v}^2$	Основное уравнение МКТ
58	$p = \frac{1}{3}m_0n\bar{v}^2$ $\bar{E}_K = \frac{m_0\bar{v}^2}{2}$ $p = \frac{2}{3}n\bar{E}_K$ $k = 1.38 * 10^{-23} \frac{\rlap/\mbox{M} \mbox{K}}{\mbox{K}}$ $p = nkT$	Средняя кинетическая энергия
59	$p = \frac{2}{3}n\bar{E}_{\rm K}$	Связь давления со средней кинетической энергией
60	$k = 1.38 * 10^{-23} \frac{\text{Дж}}{\text{K}}$	Постоянная Больцмана
61	p = nkT	Связь давления, концентрации, температуры
62	$\bar{E_{\scriptscriptstyle \mathrm{K}}} = \frac{3}{2}kT$	Средняя кинетическая энергия (связь с температурой)

63	$PV = \frac{m}{\mu}RT$	Ур-е состояния идеального газа (ур-е Менделеева-Клапейрона)
64	PV = const(при T = const)	Закон Бойля-Мариотта
65	$\frac{V}{T} = const($ при $P = const)$	Закон Гей-Люссака
66	$\frac{P}{T} = const($ при $V = const)$	Закон Шарля
67	$\frac{PV}{T} = const($ при $m = const)$	Закон Клапейрона
68	$\frac{Tm}{Tm} = const($ при $m \neq const)$	Объединённый газовый закон
69	$ ho_{ m a6c} = rac{m_{ m \pi apa}}{V_{ m возд}}$	Абсолютная влажность
70	$\varphi = \frac{\rho_{a6c}}{\rho_{Hac}} * 100\%$ $\varphi = \frac{P}{P_{Hac}} * 100\%$ $U = \frac{i}{2} \nu RT$	Относительная влажность
71	$U = \frac{i}{2} \nu RT$	Внутренняя энергия i — число степеней свободы 1-атомный газ: i = 3 2-атомный газ: i = 5 3 и более-атомный газ: i = 6
72	$Q_{\text{получ}} = \Delta U + A_{\text{собств}}$	Первое начало термодинамики
73	$A = p\Delta V$ (при $p = const$)	Работа газа
74	$Q = cm\Delta T$ $Q = C\Delta T$ $Q = c_m \nu \Delta T$	Теплота, не знаю, будет ли в диктанте, но добавил
75	$c_m \to \infty$, $c = 0$ (при $T = const$)	Теплоёмкости при изотермическом процессе (возможно, нужно)
76	$c_{mv} = \frac{i}{2}R(\text{при } V = const)$	Молярная теплоёмкость при изохорном процессе
77	$c_{mv} = \frac{\iota}{2} R($ при $V = const)$ $c_{mp} = \frac{\iota + 2}{2} R($ при $P = const)$	Молярная теплоёмкость при изобарном процессе
78	$c_{mp} = c_{mv} + R$	Уравнение Майера
79	$c_m = 3R$	Закон Дюлонга-Пти
80	$\eta = rac{A}{Q_{ ext{Harp}}} * 100\%$ $\eta = rac{Q_{ ext{Harp}} - Q_{ ext{xo}\pi}}{Q_{ ext{Harp}}} * 100\%$	КПД теплового двигателя
81	$\eta = \frac{T_{\text{Harp}} - T_{\text{XOJ}}}{T_{\text{Harp}}} * 100\%$	КПД идеальной тепловой машины
82	$k = \frac{Q_{\text{XOJ}}}{4} * 100\%$	Холодильный коэффициент

	$k = \frac{Q_{\text{хол}}}{Q_{\text{нагр}} - Q_{\text{хол}}} * 100\%$	
83	$k = \frac{T_{\text{XOJ}}}{T_{\text{Harp}} - T_{\text{XOJ}}} * 100\%$	Холодильный коэффициент идеальной холодильной установки
84	$P_{\text{общ}} = P_1 + P_2 + \cdots$	Закон Дальтона
85	$\bar{v} = \frac{l}{\Delta t}$	Средняя путевая скорость. Формулу взялиз инета, скорее всего правильная. Не вектор
86	$\eta_{ ext{ m Hacoca}} = rac{Q_{ ext{ m Harp}}}{A} = rac{Q_{ ext{ m Harp}}}{Q_{ ext{ m Harp}} - Q_{ ext{ m хол}}}$	Кпд теплового насоса. Может быть > 1
87	$\eta_{ ext{ iny Hacoca}} = rac{T_{ ext{ iny Harp}}}{T_{ ext{ iny Harp}} - T_{ ext{ iny XOJ}}}$	Кпд идеального теплового насоса. Може быть > 1
88	$\sigma = \frac{\Delta A}{\Delta S}$ $\sigma = \frac{F_{\text{пов}}}{l}$ $P_{\text{л}} = \sigma * \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ $h = \frac{-2\sigma * \cos\theta}{\rho gr}$ $h = \frac{2\sigma * \cos\theta}{\rho gr}$ $PU' = \cos\theta$	Коэффициент поверхностного натяжени
89	$P_{\pi} = \sigma * \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$	Давление Лапласа
90	$h = \frac{-2\sigma * \cos\theta}{\rho gr}$	Высота поднятия жидкости для выпукломиниска
91	$h = \frac{2\sigma * cos\theta}{\rho gr}$	Высота поднятия жидкости в капиллярно трубке (смачивание)
92	$PV^{\gamma} = const$	Закон (уравнение) Пуассона для адиабатного процесса
93	$\gamma = \frac{c_{mp}}{c_{mv}} = \frac{i+2}{i}$	Показатель из адиабатного процесса (скорее всего не будет)
94	$\sum_{i=1}^{n} q_i = const$	Закон сохранения заряда
95	$q_e = 1.6 * 10^{-19}$ Кл	Элементарный заряд
96	$F_{_{\rm KJI}} = k * \frac{ q_1 q_2 }{r^2}$	Сила Кулона
97	$k = 9 * 10^9 \frac{\text{H} * \text{M}^2}{\text{K}\pi^2}$	Коэфф проп. в з-не Кулона
98	$\varepsilon_0 = 8.85 * 10^{-12} \frac{\text{K}\pi^2}{\text{H} * \text{m}^2}$	Универсальная электрическая постоянна
99	$F_{KJ} = k * \frac{ q_1 q_2 }{r^2}$ $k = 9 * 10^9 \frac{\text{H} * \text{M}^2}{\text{K}J^2}$ $\varepsilon_0 = 8,85 * 10^{-12} \frac{\text{K}J^2}{\text{H} * \text{M}^2}$ $\vec{E} = \frac{\vec{F}}{q}$	Напряжённость электрического поля
100 ypa	$\vec{E} = \sum_{i} \vec{E_i}$	Принцип суперпозиции полей
101	$E = \frac{1}{4 \pi \epsilon_0} * \frac{ q }{\epsilon r^2} = k * \frac{ q }{r^2}$	Напряженность для точечных зарядов и шаров

102	$E = \frac{\sigma}{2}$	Напр для плоскости
	$^{-}$ $2\epsilon_{0}\epsilon$	
103	$E = \frac{1}{2\epsilon_0 \epsilon}$ $\sigma = \frac{q}{S}$	Поверхностная плотность заряда
104	$A = qE(d_1 - d_2)$	Работа по перемещению заряда в поле
105	$W_p = qEd$	Потенциальная энергия в точке поля
106	$arphi=rac{W_p}{q}$	Потенциал поля
107	$\Delta \varphi = \varphi_2 - \varphi_1$	Разность потенциалов
108	$\Delta \varphi = \frac{A}{q}$	
109	$\Delta \varphi = \frac{A}{q}$ $\varphi = k \frac{Q}{r}$ $C = \frac{q}{r}$	Потенциал поля, созданного зарядом Q на расстоянии r
110	ψ	Электроёмкость уединённого проводника
111	$C_{\text{mapa}} = 4\pi\varepsilon\varepsilon_0 R$	Ёмкость шара
112	$C_{ exttt{ iny B3AMM}} = rac{q}{\Delta arphi}$	Взаимная электроёмкость
113	$C_{ ext{взаим}} = rac{q}{\Delta arphi}$ $C = rac{arepsilon arepsilon_0 S}{d}$ $1 1 1$	Ёмкость плоского конденсатора
114	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$	Последовательное соединение конденсаторов
115	$\frac{\overline{C}}{C} = \frac{\overline{C_1}}{C_1} + \frac{\overline{C_2}}{C_2}$ $C = C_1 + C_2$	Параллельное соединение конденсаторов
116	$W = \frac{q^2}{2C} = \frac{q\Delta\varphi}{2} = \frac{C\Delta\varphi^2}{2}$	Потенциальная энергия конденсатора. Можно любую из 3
117	$\omega = \frac{\varepsilon \varepsilon_0 E^2}{2}$	Объёмная плотность энергии
118	$E = \frac{\overline{U}}{d}$	Напряженность поля (между пластинами)