ЛАБОРАТОРНАЯ РАБОТА №12

ЭЛЕКТРОСТАТИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ПРОВОДНИКОВ

Поляков Даниил, 19.Б23-фз

Цель работы: экспериментальная проверка закона Кулона, исследование зависимости силы электростатического взаимодействия между зарядами от расстояния между ними и величины зарядов, определение электрической постоянной.

Схемы установок

Рисунок 1. Установка для измерения силы электростатического взаимодействия

- 1 металлизированный шарик, прикреплённый к датчику силы;
- 2 металлизированный шарик, прикреплённый к каретке;
- 3 высоковольтный источник питания;
- 4 датчик силы;
- 5 датчик вращательного движения;
- 6 интерфейс CASSY Lab;
- 7 каретка;
- 8 металлический рельс;
- 9 соединительный стержень;
- 10 высоковольтный кабель;
- 11 штатив;
- 12 изолирующий стержень;
- 13 грузик.

Рисунок 2.

Установка для измерения заряда

- 1 электрометрический усилитель;
- 2 цилиндр Фарадея;
- 3 конденсатор 10 н Φ ;
- 4 соединительный стержень;
- 5 мультиметр LD analog 20.

Расчётные формулы

Сила взаимодействия двух шариков (Закон Кулона):

$$F = \frac{qQ}{4\pi\varepsilon_0 r^2}$$

q — заряд подвижного шарика;

Q — заряд неподвижного шарика;

r — расстояние между центрами тяжести шариков;

 ε_0 — электрическая постоянная.

• Заряд конденсатора:

$$q = CU_C$$

C — ёмкость конденсатора;

 $U_{\rm C}$ — напряжение конденсатора.

Ёмкость уединённой сферы:

$$C_{c\phi} = 4\pi \, \varepsilon_0 R$$

R — радиус сферы;

 ε_0 — электрическая постоянная.

Экспериментальное определение электрической постоянной:

$$F = \frac{qQ}{4\pi\varepsilon_0 r^2} = \frac{a}{r^2} \Rightarrow a = \frac{qQ}{4\pi\varepsilon_0}$$

$$\Rightarrow c = \frac{Q}{4\pi\varepsilon_0} \Rightarrow \varepsilon_0 = \frac{Q}{4\pi c}$$

$$a = cq$$

F — сила взаимодействия двух шариков;

q — заряд подвижного шарика;

Q — заряд неподвижного шарика;

r — расстояние между центрами тяжести шариков;

 ε_0 — электрическая постоянная;

a, c — коэффициенты аппроксимации.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность прямых измерений:

$$\Delta_{\bar{\textbf{x}}} = \sqrt{t^2 \frac{\displaystyle\sum_{i=1}^{n} (\textbf{x}_i - \bar{\textbf{x}})^2}{n(n-1)}} + (\Delta_{\textbf{x}, \text{сист}})^2} \qquad \begin{array}{c} n - \text{количество измерений;} \\ t - \text{коэффициент Стьюдента;} \\ \Delta_{\textbf{x}, \text{сист}} - \text{систематическая погрешность.} \end{array}$$

n — количество измерений;

• Абсолютная погрешность косвенных измерений:

$$\Delta_{f(x_1,x_2,\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_1}\cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\cdot \Delta_{x_2}\right)^2 + \ldots}$$

$$\circ \ \Delta_q = \sqrt{\left(\frac{\partial q}{\partial C} \cdot \Delta_C\right)^2 + \left(\frac{\partial q}{\partial U_C} \cdot \Delta_{U_C}\right)^2} = \sqrt{\left(U_C \cdot \Delta_C\right)^2 + \left(C \cdot \Delta_{U_C}\right)^2}$$

2

$$\begin{array}{l} \circ \quad \Delta_{\varepsilon_{0}} = \sqrt{\left(\frac{\partial \varepsilon_{0}}{\partial Q} \cdot \Delta_{Q}\right)^{2} + \left(\frac{\partial \varepsilon_{0}}{\partial C} \cdot \Delta_{C}\right)^{2}} = \left|\varepsilon_{0}\right| \sqrt{\left(\frac{\Delta_{Q}}{Q}\right)^{2} + \left(\frac{\Delta_{C}}{C}\right)^{2}} \\ \circ \quad \Delta_{C_{c\phi}} = \left|\frac{\partial C_{c\phi}}{\partial R} \cdot \Delta_{R}\right| = 4\pi\varepsilon_{0} \cdot \Delta_{R} \end{array}$$

Порядок измерений

- 1. Запускаем программу CASSY Lab и производим её первоначальную настройку. Касаемся заземлённым стержнем до шариков. Устанавливаем шарики на одинаковой высоте. Размещаем шарики вплотную друг к другу и устанавливаем в программе значение расстояния между их центрами в данный момент, равное их диаметру: $d = 3.8 \, \mathrm{cm}$. Убеждаемся, что при удалении шариков расстояние, измеряемое программой, увеличивается. Устанавливаем в программе значение силы, действующей на шарик на датчике в данный момент, равным 0.
- 2. Включаем источник питания и устанавливаем максимальное напряжение (25.0 кВ). Берём высоковольтный щуп и заземлённый стержень. Щупом касаемся шарика на датчике силы и тем самым заряжаем его. Изменяем напряжение источника. Если нужно сменить полярность напряжения на щупе, переключаем щуп и земляную клемму на источнике тока местами. Касаемся щупом подвижного шарика. Уменьшаем напряжение до нуля на время проведения измерения, чтобы поле источника не искажало результаты измерения. Запускаем измерение расстояния d и силы F в программе и начинаем медленно придвигать подвижный шарик к шарику на датчике. После соприкосновения шариков возвращаем подвижный шарик в начало рельса и останавливаем измерения. Удаляем точки, связанные с разрядкой шариков при соприкосновении и возвратом их в начальное положение. Разряжаем шарики касанием заземлённого стержня. Повторяем измерения для других значений напряжения U на подвижном шарике, при этом напряжение на другом шарике всегда устанавливаем одинаковым, равным 25.0 кВ.
- 3. Переходим к измерению заряда на шарике. Сначала касаемся заземлённым стержнем цилиндра Фарадея и шарика. Устанавливаем напряжение U на источнике тока и касаемся щупом шарика. Отключаем блок питания на момент измерения. Перед передачей заряда с шарика касаемся цилиндра заземлённым стержнем. Берём шарик и касаемся им дна внутри цилиндра. Измеряем установившееся на конденсаторе напряжение U_C с помощью вольтметра. Повторяем измерения для данного напряжения источника ещё 3 раза. Потом повторяем такие серии из 4 измерений для других значений напряжения источника.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB. Погрешности прямых измерений и коэффициентов аппроксимации рассчитаны с доверительной вероятностью P = 95%.

1. Зависимость силы электростатического взаимодействия между зарядами от расстояния между ними

Постоянное напряжение, сообщавшееся неподвижному шарику при каждом измерении: $U_0 = 25.0 \text{ кB}$. Диаметр шариков: d = 3.8 см.

Учитывая большой объём данных (около 100 точек для каждой зависимости) отобразим в таблице только 10 точек с примерно равным промежутком расстояния для каждого значения напряжения источника.

Таблица 1. Зависимость силы взаимодействия между шариками от расстояния между ними при различном напряжении подвижного шарика

U = +2	25.0 кВ	U = +1	5 . 0 кВ	U = +	5.0 кВ	U=	0 кВ	U = -1	5.0 кВ	U = -1	5.0 кВ	U = -2	25.0 кВ
<i>r</i> , cm	<i>F</i> , мН	r, cm	F, м H	r, cm	<i>F</i> , мН	r, cm	<i>F</i> , мН	r, cm	<i>F</i> , мН	r, cm	<i>F</i> , мН	r, cm	F, м H
31.43	-0.23	31.40	-0.15	31.40	-0.26	31.34	-0.62	31.34	0.00	31.33	-0.31	31.32	-0.10
28.09	-0.04	28.25	-0.10	28.19	-0.12	28.18	-0.14	28.26	-0.04	28.17	-0.35	28.19	-0.27
25.08	0.02	25.07	-0.08	25.26	-0.04	25.11	-0.13	24.95	-0.10	25.14	-0.40	25.06	-0.23
22.05	0.09	22.16	-0.01	22.12	-0.13	22.07	-0.07	22.07	-0.15	22.15	-0.39	22.07	-0.25
19.14	0.22	19.21	0.10	19.00	-0.06	19.05	-0.09	19.11	-0.10	19.10	-0.44	19.21	-0.27
15.97	0.30	16.08	0.12	16.04	-0.10	16.01	-0.06	15.94	-0.11	16.04	-0.62	16.02	-0.34
12.75	0.67	13.21	0.41	13.02	-0.03	12.85	-0.08	12.99	-0.23	13.17	-0.85	13.11	-0.56
9.57	1.33	10.02	0.70	9.89	0.08	9.84	-0.07	9.82	-0.19	9.74	-1.24	9.97	-0.83
6.89	2.60	6.94	1.45	6.86	0.23	6.78	-0.19	6.97	-0.71	6.77	-2.29	6.96	-1.85
3.83	6.25	4.15	2.75	3.97	-1.34	3.91	-4.53	3.96	-7.24	4.10	-11.05	4.12	-8.14

Для проверки закона Кулона целесообразно будет построить линеаризованные графики. Изобразим зависимости $F(r^{-2})$ при различных значениях сообщённого подвижному шарику напряжения.

Линеаризованная зависимость силы взаимодействия между шариками от расстояния между ними при различном напряжении подвижного шарика

Наблюдаем, что графики не получились линейными. Это связано с тем, что закон Кулона в данной форме справедлив только для точечных зарядов. Заряды можно считать точечными, если расстояние между ними достаточно велико. Тогда полученные зависимости $F(r^{-2})$ могут быть линейными на участках с большими значениями r (или, соответственно, малыми r^{-2}). Изобразим графики этой же зависимости, но с точками r^{-2} в диапазоне от 0 до 0.02 см $^{-2}$ (что соответствует диапазону r от 7 см до бесконечности), и линейно аппроксимируем их.

График 2. Линеаризованная зависимость силы взаимодействия между шариками от расстояния между ними в диапазоне [0; 0.02] см⁻² при различном напряжении подвижного шарика

В целом, графики на выбранном диапазоне получились похожими на линейные. Аппроксимируем их линейным уравнением вида y = ax + b.

Таблица 2. Коэффициенты аппроксимации зависимостей $F(r^{-2})$ при различном напряжении, сообщённом подвижному шарику

<i>U</i> , кВ	+25.0	+15.0	+5.0	0	-5.0	-15.0	-25.0
a,	144	92	22	4	-29	-99	-80
$MH \cdot CM^2$	± 3	± 3	± 2	± 4	± 2	± 2	± 2
b,	-0.24	-0.224	-0.179	-0.13	-0.02	-0.212	-0.060
мН	± 0.02	± 0.014	± 0.013	± 0.02	± 0.02	± 0.010	± 0.010

Модуль коэффициента наклона при $U=-25.0~{\rm kB}$ сильно отличается от модуля коэффициента при $U=+25.0~{\rm kB}$. Видимо, при этом измерении произошла утечка заряда с одного из шариков.

2. Зависимость заряда на шарике от напряжения

Таблица 3.Зависимость напряжения и заряда на конденсаторе от напряжения шарика

II D II D II D II								
<i>U</i> , кВ	U_C , B	\bar{U}_C , B	<i>q</i> , нКл					
	4.4							
+25.0	4.6	4.5	46					
123.0	4.6	± 0.2	± 3					
	4.6							
	3.6							
+20.0	3.6	3.60	36					
120.0	3.6	± 0.10	± 2					
	3.6							
	2.8							
+15.0	2.8	2.7	27					
+15.0	2.6	± 0.2	± 2					
	2.6							
	1.70							
+10.0	1.80	1.75	17.5					
+10.0	1.75	± 0.07	± 1.1					
	1.75							
	0.82							
+5.0	0.82	0.83	8.3					
+5.0	0.84	± 0.02	± 0.5					
	0.84							
	-0.90							
-5.0	-0.92	-0.91	-9.1					
3.0	-0.90	± 0.02	± 0.5					
	-0.92							
	-1.80							
-10.0	-1.80	-1.78	-17.8					
10.0	-1.80	± 0.08	± 1.2					
	-1.70							
	-2.70							
-15.0	-2.65	-2.66	-26.6					
15.0	-2.65	± 0.05	± 1.4					
	-2.65							
	-3.6							
-20.0	-3.6	-3.60	-36					
20.0	-3.6	± 0.10	± 2					
	-3.6							
	-4.4							
-25.0	-4.6	-4.5	-45					
25.0	-4.4	± 0.2	± 3					
	-4.6							

Ёмкость конденсатора, которому передаётся заряд с шарика:

$$C = 10 \pm 0.5 \text{ н}\Phi$$

Определим электрическую ёмкость шарика $C_{\text{сф, эксп}}$ как коэффициент наклона графика зависимости q(U).

График 3. Зависимость заряда на шарике от напряжения

Получаем:

$$C_{\rm c\phi, \, 9KC\Pi} = 1.80 \pm 0.02 \, \Pi \Phi$$

Сравним полученную ёмкость с теоретической ёмкостью уединённой сферы с радиусом, равным радиусу исследуемого шарика $R=1.9\pm0.1$ см.

$$C_{\text{сф, теор}} = 2.11 \pm 0.11 \; \Pi \Phi$$

Значения ёмкостей совпадают по порядку, но значительно отличаются. Исследуемый шарик не является уединённым проводником.

3. Электрическая постоянная

Построим зависимость величины a, полученной в первой части работы, от заряда шарика q и аппроксимируем её линейным уравнением вида a=cq.

График 4. Зависимость величины а от заряда шарика

При аппроксимации зависимости a(q) была отброшена точка, соответствующая напряжению $U=-25.0~\mathrm{kB}$ (отмечена крестиком), т. к. значение a в этой точке по модулю сильно отличается от значения, соответствующего $U=+25.0~\mathrm{kB}$, и сильно отклоняется от прямой.

Коэффициент наклона полученной зависимости:

$$c = 330 \pm 30 \text{ H} \cdot \text{M}^2 \cdot \text{K} \pi^{-1}$$

Зная величину c и заряд неподвижного шарика Q (неподвижный шарик всегда заряжался напряжением +25.0 кВ. Он идентичен подвижному шарику, поэтому его заряд при данном напряжении равен 46 ± 3 нКл), можем рассчитать величину электрической постоянной:

$$\varepsilon_{0, \; \text{эксп}} = (10.9 \pm 1.3) \cdot 10^{-12} \; \Phi/\text{M}$$

Истинное значение электрической постоянной: $\varepsilon_0 = (8.854 \pm 0.001) \cdot 10^{-12} \, \Phi/\text{м}$. Полученное значение электрической постоянной больше истинного на 23%.

Выводы

В работе экспериментально подтверждена справедливость закона Кулона. При этом упрощённая формула, проверенная в работе, справедлива только для относительно больших значений расстояния между зарядами.

Были получены численные значения ёмкости шариков и электрической постоянной:

$$C_{\text{c}\phi} = 1.80 \pm 0.02 \,\text{m}\Phi$$

 $\varepsilon_0 = (10.9 \pm 1.3) \cdot 10^{-12} \,\Phi/\text{M}$

Значительное влияние на погрешность оказало наличие внешних полей, накапливание заряда на других телах, одежде, утечка заряда, явление электромагнитной индукции. В процессе работы наблюдалось изменение силы взаимодействия шариков при передвижении около установки. Также возможно, что датчик силы был недостаточно точным.