WHAT IS CLAIMED IS:

The state of the s

1	1.	An apparatus comprising:	
2		a substrate; and	
3		a carbon nanotube layer deposited on the substrate, the carbon nanotube layer	
4	including an alkali material.		
1	2.	The apparatus as recited in claim 1, wherein the alkali material is deposited as a layer	
2	onto the	e carbon nanotube layer.	
1	3.	The apparatus as recited in claim 1, wherein the alkali material is doped into the	
2	carbon	nanotube layer.	
1	4.	The apparatus as recited in claim 1, wherein the alkali material is intercalated with	
2	the carb	oon nanotube layer.	

1	5. An apparatus comprising:
2	a substrate; and
3	a carbon nanotube layer deposited on the substrate, the carbon nanotube layer
4	including a separate low work function material.
1	6. The apparatus as recited in claim 1, wherein the low work function material is
2	deposited as a layer onto the carbon nanotube layer.
=	
1	7. The apparatus as recited in claim 1, wherein the low work function material is doped
2	into the carbon nanotube layer.
1	8. The apparatus as recited in claim $\frac{1}{1}$, wherein the low work function material is
2	intercalated with the carbon nanotube layer. $ brace$
1	9. The apparatus as recited in claim 1, wherein the low work function material is an
2	alkali material.

1	10.	A field emission apparatus comprising:			
2		a cathode comprising:			
3		a substrate; and			
4		a carbon nanotube layer deposited on the substrate, the carbon nanotube layer			
5	includi	including an alkali material.			
1	11.	The apparatus as recited in claim 10, wherein the alkali material is deposited as a			
2	layer o	layer onto the carbon nanotube layer.			
1	12.	The apparatus as recited in claim 10, wherein the alkali material is doped into the			
2	carbon nanotube layer.				
1	13.	The apparatus as recited in claim 10, wherein the alkali material is intercalated with			
2	the carb	oon nanotube layer.			
1	14.	The apparatus as recited in claim 10, further comprising a conductive layer deposited			
2	between	n the substrate and the carbon nanotube layer.			

The state of the s

1	15.	A method for making a field emission cathode comprising the steps of:
2		providing a substrate;
3		depositing a carbon nanotube layer on the substrate; and
4		inserting an alkali material into the carbon nanotube layer.
1	16.	The method as recited in claim 15, wherein the inserting step further comprises the
2	step of	
3		depositing a layer of the alkali material on the carbon nanotube layer.
1	17.	The method as recited in claim 15, wherein the inserting step further comprises the
2	step of:	
3		doping the carbon nanotube layer with the alkali material.
1	18.	The method as recited in claim 15, wherein the inserting step further comprises the
2	step of:	
3		intercalating the alkali material into the carbon nanotube layer.

A service of the serv