Corso di Laurea in Informatica - Fisica A AA 2018/19

Esercitazione 10

Esercizi svolti in aula

1. Nel circuito in Fig. 1 si ha $R_1 = 6 \Omega$, $R_2 = 3 \Omega$, $R_3 = 2 \Omega$, $\epsilon = 12 V$. Calcolare le correnti nelle tre resistenze e la tensione ai capi dell'induttanza subito dopo la chiusura del circuito e in condizioni di stazionarietà.

Figure 1: problema 1

[Subito dopo la chiusura: 0 A in R_1 ; 2.4 A in R_2 e in R_3 ; $V_L = 7.2$ V. In stazionarietà: 1 A in R_1 ; 2 A in R_2 ; 3 A in R_3 ; $V_L = 0$ V]

2. Nel circuito in Fig. 2 si ha $R_1=1~\Omega,~R_2=2~\Omega,~R_3=R_4=R_5=3~\Omega,~\epsilon=10~V,~L=1~\mu H,~C_1=0.5~\mu F,~C_2=1.5~\mu F.$ Calcolare la corrente che circola nelle resistenze R_1 e R_2 subito dopo la chiusura del circuito e in condizioni di stazionarietà. Sempre in condizioni di stazionarietà, determinare: la differenza di potenziale V_a - V_b , l'energia accumulata nell'induttanza, l'energia accumulata in ciascun condensatore.

[Subito dopo la chiusura: 1 A in R_1 ; 0.5 A in R_2 ; 1.5 A in R_3 e in R_5 ; 0 A in R_4 . In condizioni di stazionarietà: 1 A in R_1 ; 0.5 A in R_2 ; 1.5 A in R_3 e in R_4 ; 0 A in R_5 ; V_a - $V_b = 5.5$ V; 1.13 μ J in L; 5.06 μ J in C_1 ; 15.2 μ J in C_2]

3. Nel circuito in Fig. 3 si ha $R_1 = 2 \Omega$, $R_2 = 4 \Omega$, $R_3 = 6 \Omega$, $V_1 = V_2 = 14 V$, $L = 3 \mu H$, $C_1 = 0.5 \mu F$, $C_2 = 2 \mu F$. Dopo che i due interruttori sono stati per parecchio tempo nella posizione A, vengono commutati simultaneamente nella posizione B. Calcolare la corrente in R_1 , R_2 , R_3 e la carica nei due condensatori subito dopo lo spostamento degli interruttori, e quando è passato molto tempo dallo spostamento.

Figure 2: problema 2

Figure 3: problema 3

[All'inizio: $Q_1 = 7 \mu\text{C}$, $Q_2 = 0$, $I_1 = I_2 = I_3 = 1.17 \text{ A}$; alla fine: $I_1 = I_3 = 1.75 \text{ A}$, $I_2 = 0$, $Q_1 = Q_2 = 5.6 \mu\text{C}$]

4. Nel circuito in Fig. 4 si ha $R_1=R_2=R_3=1~\Omega,~\epsilon_1=6~V,~\epsilon_2=12~V.$ L'interruttore T viene chiuso dopo essere stato aperto per molto tempo. Calcolare intensità e verso della corrente in $R_1,~R_2,~R_3$ subito dopo la chiusura del circuito e quando è passato molto tempo dalla chiusura.

Figure 4: problema 4

[All'inizio: I_1 =1.5 A verso sinistra, I_2 =4.5 A verso sinistra, I_3 = 3 A verso il basso; alla fine: I_1 = 0, I_2 = 6 A verso sinistra, I_3 = 6 A verso il basso]