BACCALAURÉAT GÉNÉRAL

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2023

MATHÉMATIQUES JOUR 2

Durée de l'épreuve : 4 heures

L'usage de la calculatrice avec mode examen actif est autorisé
L'usage de la calculatrice sans mémoire, « type collège » est autorisé

Dès que le sujet est remis, assurez-vous qu'il est complet.

Ce sujet comporte 5 pages numérotées de 1/5 à 5/5.

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu'il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l'appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses seront valorisées.

23-MATJ2AS1 Page **1/5**

EXERCICE 1 (5 points)

Partie A

Un jeu proposé dans une fête foraine consiste à effectuer trois tirs successivement sur une cible mouvante. On a constaté que :

- Si le joueur atteint la cible lors d'un tir alors il ne l'atteint pas lors du tir suivant dans 65 % des cas ;
- Si le joueur n'atteint pas la cible lors d'un tir alors il l'atteint lors du tir suivant dans 50 % des cas.

La probabilité qu'un joueur atteigne la cible lors de son premier tir est de 0,6.

Pour tout événement A, on note P(A) sa probabilité et \bar{A} l'événement contraire de A.

On choisit au hasard un joueur à ce jeu de tirs. On considère les événements suivants :

- A_1 : « Le joueur atteint la cible lors du 1^{er} tir »
- A_2 : « Le joueur atteint la cible lors du 2^e tir »
- A_3 : « Le joueur atteint la cible lors du 3^e tir ».
- 1. Recopier et compléter, avec les probabilités correspondantes sur chaque branche, l'arbre pondéré ci-dessous modélisant la situation.

Soit *X* la variable aléatoire qui donne le nombre de fois où le joueur atteint sa cible au cours des trois tirs.

- **2.** Montrer que la probabilité que le joueur atteigne exactement deux fois la cible au cours des trois tirs est égale à 0,4015.
- 3. L'objectif de cette question est de calculer l'espérance de la variable aléatoire X, notée E(X).
 - **a.** Recopier et compléter le tableau ci-dessous donnant la loi de probabilité de la variable aléatoire *X*.

$X = x_i$	0	1	2	3
$P(X = x_i)$	0,1			0,0735

- **b.** Calculer E(X).
- c. Interpréter le résultat précédent dans le contexte de l'exercice.

23-MATJ2AS1 Page **2/5**

Partie B

On considère N, un entier naturel supérieur ou égal à 1.

Un groupe de *N* personnes se présente à ce stand pour jouer à ce jeu dans des conditions identiques et indépendantes. Un joueur est déclaré gagnant lorsqu'il atteint trois fois la cible. On note *Y* la variable aléatoire qui compte parmi les *N* personnes le nombre de joueurs déclarés gagnants.

- **1.** Dans cette question, N = 15.
 - **a.** Justifier que Y suit une loi binomiale dont on déterminera les paramètres.
 - **b.** Donner la probabilité, arrondie à 10^{-3} , qu'exactement 5 joueurs soient gagnants à ce jeu.
- 2. Par la méthode de votre choix, que vous expliciterez, déterminer le nombre minimum de personnes qui doivent se présenter à ce stand pour que la probabilité qu'il y ait au moins un joueur gagnant soit supérieure ou égale à 0,98.

EXERCICE 2 (5 points)

Dans un repère orthonormé $(0; \vec{\iota}, \vec{j}, \vec{k})$, on considère les points : A(1; 1; -4), B(2; -1; -3), C(0; -1; -1) et $\Omega(1; 1; 2)$.

- 1. Démontrer que les points A, B, et C définissent un plan.
- 2. a. Démontrer que le vecteur \vec{n} de coordonnées $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ est normal au plan (ABC).
 - **b.** Justifier qu'une équation cartésienne du plan (ABC) est x + y + z + 2 = 0.
- 3. a. Justifier que le point Ω n'appartient pas au plan (ABC).
 - **b.** Déterminer les coordonnées du point H, projeté orthogonal du point Ω sur le plan (ABC).

On admet que $\Omega H = 2\sqrt{3}$. On définit la sphère S de centre Ω et de rayon $2\sqrt{3}$ comme l'ensemble de tous les points M de l'espace tels que $\Omega M = 2\sqrt{3}$.

4. Justifier, sans calcul, que tout point N du plan (ABC), distinct de H, n'appartient pas à la sphère *S*.

On dit qu'un plan \mathcal{P} est tangent à la sphère S en un point K lorsque les deux conditions suivantes sont vérifiées :

- $K \in \mathcal{P} \cap S$
- $(\Omega K) \perp \mathcal{P}$
- 5. Soit le plan \mathcal{P} d'équation cartésienne x + y z 6 = 0 et le point K de coordonnées K(3; 3; 0). Démontrer que le plan \mathcal{P} est tangent à la sphère S au point K.
- **6.** On admet que les plans (ABC) et \mathcal{P} sont sécants selon une droite (Δ). Déterminer une équation paramétrique de la droite (Δ).

23-MATJ2AS1 Page **3/5**

EXERCICE 3 (5 points)

Soit la suite (u_n) définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 5u_n - 8n + 6$.

- **1.** Calculer u_1 et u_2 .
- **2.** Soit *n* un entier naturel.

Recopier et compléter la fonction suite_u d'argument n ci-dessous, écrite en langage Python, afin qu'elle retourne la valeur de u_n .

```
def suite_u(n):
    u = ...
    for i in range(1,n+1):
        u = ...
    return u
```

- 3. a. Démontrer par récurrence que, pour tout $n \in \mathbb{N}$, $u_n \ge 2n$.
 - **b.** En déduire la limite de la suite (u_n) .
 - c. Soit $p \in \mathbb{N}^*$. Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout entier naturel n vérifiant, $n \ge n_0$, $u_n \ge 10^p$?
- **4.** Démontrer que la suite (u_n) est croissante.
- 5. On considère la suite (v_n) , définie pour tout $n \in \mathbb{N}$, par $v_n = u_n 2n + 1$.
 - **a.** En dessous de la fonction suite_u précédente, on a écrit la fonction suite_v cidessous :

```
def suite_v(n):
    L = []
    for i in range(n+1):
        L.append(suite_u(i)-2*i+1)
    return L
```

La commande « L.append » permet de rajouter, en dernière position, un élément dans la liste L.

Lorsqu'on saisit suite_v(5) dans la console, on obtient l'affichage suivant :

```
>>> suite_v(5)
[1, 5, 25, 125, 625, 3125]
```

Conjecturer, pour tout entier naturel n, l'expression de v_{n+1} en fonction de v_n . Démontrer cette conjecture.

b. En déduire, pour tout entier naturel n, la forme explicite de u_n en fonction de n.

23-MATJ2AS1 Page **4/5**

EXERCICE 4 (5 points)

Soit la fonction f définie sur \mathbb{R} par $f(x) = \ln(1 + e^{-x}) + \frac{1}{4}x$.

On note C_f la courbe représentative de la fonction f dans un repère orthonormé $(0; \vec{\iota}, \vec{j})$ du plan.

Partie A

- **1.** Déterminer la limite de f en $+\infty$.
- **2.** On admet que la fonction f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée.
 - **a.** Montrer que, pour tout réel x, $f'(x) = \frac{e^{x}-3}{4(e^{x}+1)}$.
 - **b.** En déduire les variations de la fonction f sur \mathbb{R} .
 - **c.** Montrer que l'équation f(x) = 1 admet une unique solution α dans l'intervalle [2; 5].

Partie B

On admettra que la fonction f' est dérivable sur \mathbb{R} et pour tout réel x, $f''(x) = \frac{e^x}{(1+e^x)^2}$.

On note Δ la tangente à la courbe \mathcal{C}_f au point d'abscisse 0.

Dans le graphique ci-dessous, on a représenté la courbe C_f , la tangente Δ et le quadrilatère MNPQ tel que M et N sont les deux points de la courbe C_f d'abscisses respectives α et $-\alpha$, et Q et P sont les deux points de la droite Δ d'abscisses respectives α et $-\alpha$.

- **1. a.** Justifier le signe de f''(x) pour $x \in \mathbb{R}$.
 - **b.** En déduire que la portion de la courbe C_f , sur l'intervalle $[-\alpha; \alpha]$, est inscrite dans le quadrilatère MNPQ.
- **2. a.** Montrer que $f(-\alpha) = \ln(e^{-\alpha} + 1) + \frac{3}{4}\alpha$
 - **b.** Démontrer que le quadrilatère *MNPQ* est un parallélogramme.