OPTMIMIZING WATER DISTRIBUTION IN HARARE

About the dataset

1. Introduction

This document provides a detailed overview of the **Water Distribution Dataset for Harare**, covering the years 2020 through 2024. The dataset simulates water availability and demand across 50 unique areas in Harare, Zimbabwe, on a monthly basis. It is designed to aid researchers, urban planners, and policymakers in understanding water distribution priorities and challenges in the region.

2. Dataset Description

2.1 Purpose and Scope

The dataset aims to provide a comprehensive synthetic representation of water distribution factors in Harare, enabling:

- Prioritization of water allocation based on demand and availability.
- Analysis of population and industrial impacts on water resources.
- Support for decision-making in urban water management.

2.2 Geographical and Temporal Coverage

- **Geographical Coverage:** 50 distinct areas within Harare, identified by unique numeric ArealDs (1 to 50). These areas represent diverse urban, suburban, and industrial zones.
- **Temporal Coverage:** Monthly data from January 2020 to December 2024, totaling 5 years of data.

3. Dataset Structure and Content

3.1 Data Format and Volume

- File Format: CSV (Comma-Separated Values)
- Total Records: 3,000 (50 areas × 5 years × 12 months)
- Data Types: All numeric columns are integers for consistency and ease of analysis.

3.2 Detailed Column Descriptions

Column Name	Description	Data Type	Range / Values
ArealD	Unique identifier for each geographical area within Harare.	Integer	1 to 50
YearID	Numeric identifier for the year, where 1 = 2020, 2 = 2021 5 = 2024.	Integer	1 to 5
month	Month of the year for the data record.	Integer	1 (January) to 12 (December)
water_availability	Percentage of water availability in the area relative to demand.	Integer	10 to 100 (%)
population_density	Number of people per square kilometer in the area.	Integer	50 to 2000 people/km²
industrial_activity	Index representing the intensity of industrial activity influencing water demand.	Integer	0 to 100 (index)
high_priority_class	Scale indicating availability of water-dependent jobs/businesses (1 = very low, 5 = very high).	Integer	1 to 5
distribution_priority	Priority level for water distribution based on combined factors.	Integer	0 = Low, 1 = Medium, 2 = High

Explanation of Columns and Values

ArealD

- Represents a unique area within Harare.
- Numeric IDs from 1 to 50 correspond to distinct neighborhoods or districts.
- Used as a key to link with other geographic or demographic datasets.

YearID

- Encodes the calendar year for easier numerical processing.
- YearID = 1 corresponds to 2020, incrementing by 1 each year up to 2024.
- Facilitates time series analysis without string date parsing.

Month

- Indicates the month of the year (1 for January through 12 for December).
- Enables seasonal and monthly trend analysis.

Water Availability

- Integer percentage representing the proportion of water supply available relative to demand.
- Values range from 10% (very low availability) to 100% (full availability).
- Critical for identifying areas facing water scarcity.

Population Density

- Number of residents per square kilometer.
- Reflects urban density and potential water demand pressure.
- Higher values indicate densely populated areas.

Industrial Activity

- An index from 0 to 100 quantifying industrial water demand intensity.
- Higher values indicate more industrial operations consuming water.
- Useful for understanding non-domestic water usage.

High Priority Class

- A categorical scale from 1 (very low) to 5 (very high).
- Represents the availability of jobs or businesses that rely heavily on water.
- Helps identify economic zones where water supply is critical.

Distribution Priority

- Computed priority for water distribution based on combined factors.
- Values:

- 0 = Low priority (normal conditions)
- 1 = Medium priority (moderate concern)
- 2 = High priority (urgent need)
- Assigned using the following rules:
 - High priority if water availability < 30% and population density > 1000, or high priority class ≥ 4.
 - Medium priority if water availability < 50% **and** industrial activity > 60.
 - Otherwise, low priority.

4. Data Generation Methodology

4.1 Synthetic Data Generation Process

- Data values were generated using pseudo-random number generators with fixed seed (np.random.seed(42)) to ensure reproducibility.
- Ranges for each variable were chosen based on typical urban water distribution scenarios.
- The dataset simulates realistic but synthetic conditions to support modeling and analysis without revealing sensitive real-world data.

4.2 Priority Assignment Logic

- The priority classification combines multiple variables to reflect water distribution urgency.
- The logic balances scarcity (low water availability), demand pressure (population and industrial activity), and economic importance (high priority class).

4.3 Assumptions and Limitations

- The dataset is not based on real-time measurements or official statistics.
- Area identifiers are anonymized and do not correspond to official administrative boundaries.
- Population density and industrial activity are static within each month and do not account for intra-month fluctuations.
- Users should treat the dataset as a synthetic benchmark for modeling rather than a definitive source of water distribution data.

5. Usage Guidelines

5.1 Accessing and Loading the Dataset

The dataset is stored as a CSV file named csv_water_distribution.csv in Google Drive.

Example: Loading in Python (Google Colab)

```
from google.colab import drive
import pandas as pd

drive.mount('/content/drive')

csv_path = '/content/drive/My
Drive/csv_water_distribution.csv'

data = pd.read_csv(csv_path)

print(data.head())
```

5.2 Example Applications

- Water Distribution Modeling: Prioritize water delivery based on area needs.
- **Urban Planning:** Analyze how population and industry affect water demand.
- **Policy Simulation:** Test impact of interventions on water scarcity.
- Machine Learning: Train predictive models for water shortages or demand forecasting.

6. Glossary

- Water Availability: Percentage of water supply relative to demand.
- **Population Density:** Number of people per square kilometer.
- Industrial Activity: Index of industrial water consumption.
- **High Priority Class:** Scale indicating critical water-dependent economic activity.
- **Distribution Priority:** Urgency level for water allocation.

7. Contact Information

For questions or support, please contact:

Name: Angeline Tsatsa

Email: <u>ATsatsa@HarareCity.co.zw</u>
Organization: City Of Harare

Date: 05 May 2025