• Que faire dans ces situations ?

Soft (bruit)

Hard (Intrinsèquement non linéaire)

Intrinsèquement non linéaire réel

Que faire dans ces situations?

Soft (bruit)

Presque Linéaire (bruit ?)

Hard (Intrinsèquement non linéaire)

Intrinsèquement non linéaire réel

Que faire dans ces situations?

Soft (bruit)

Presque Linéaire (bruit ?)

Hard (Intrinsèquement non linéaire)

Intrinsèquement non linéaire réel

De quelle linéarité parle-t-on dans le cas du perceptron ?

De quelle linéarité parle-t-on dans le cas du perceptron ?

Linéaire en fonction de W, pas de X!

Transformation non linéaire des données d'entrée

Transformation non linéaire sur les entrées...

X = (x,y,1)

 $X = (x^2, y^2, 1)$

Transformation non linéaire sur les entrées...

... et classement dans ce nouvel espace par un perceptron!

$$X = (x,y,1)$$

$$X = (x^2, y^2, 1)$$

Le perceptron semble avoir toujours le même nombre d'entrées

=> Capacité de généralisation inchangée ? ©

$$X = (x^2, y^2, 1)$$

Le perceptron semble avoir toujours le même nombre d'entrées

=> Capacité de généralisation inchangée ? ©

$$X = (x^2, y^2, 1)$$

Données non linéaire

séparables

ceptron se cité de oir toujours le meme nombre d'

on inchangée ? 😊

$$X = (x^2)^2$$

Nous avons choisi cette transformation en particulier ...

Nous avons choisi cette transformation en particulier ...

... car nous avons observé les données !!!

X = (x,y,1)

 $X = (x^2, y^2, 1)$

Données non linéaire

séparables

avons choi car ng ransionnation en particulier ...

servé les données 🛚

$$X = (x^2)^2$$

Entrées réelles :

$$X = (1,x,y)$$

$$X = (1, x^2, y^2) \longleftrightarrow X = (1, x, y, xy, x^2, y^2)$$

Si on fixe
$$w_1 = w_2 = w_3 = 0$$

Comment correctement estimer le prix de transformations non linéaires des entrées vis-à-vis de la généralisation?

Perceptron Multi Couches

Intuition: mettre des perceptrons en série et en parallèle ...

Intuition: mettre des perceptrons en série et en parallèle ...

Perceptron multi couches pour la classification

Perceptron multi couches pour la régression

Intuition : mettre des perceptrons en série et en parallèle ...

Paramètres : ensemble des poids

Perceptron multi couches pour la classification

Perceptron multi couches pour la régression

Nous n'utilisons pas le signe de la somme des entrées pour chaque perceptron, mais une fonction dite « d'activation » sigmoïde.

Soit w_{ij}^l le poids de la couche l liant le neurone i de la couche l-1 au neurone j de la couche l.

Soit s_j^l le signal (somme pondérée des entrées) du neurone j de la couche l.

Soit θ la fonction sigmoïde appliquée au signal de chaque neurone intermédiaire (on utilisera Tanh).

Soit x_j^l la valeur de sortie effective d'un neurone.

Soit d^l le nombre de neurones appartenant à la couche l (sans compter le neurone de biais)

Soit x_j^l la valeur de sortie effective du neurone j de la couche l.

Règle récursive de calcul des X:

$$x_j^l = \theta(s_j^l) = Tanh(\sum_{i=0}^{d^{l-1}} w_{ij}^l x_i^{l-1})$$

Comment trouver les w_{ij}^l minimisant l'erreur de classification sur la base d'exemples?

Rétropropagation du gradient

Pour la classification, répéter :

- Prendre un exemple étiqueté au hasard : $\begin{bmatrix} x_1^{\upsilon} \\ \vdots \\ x_{d^0}^{0} \end{bmatrix} \rightarrow \begin{bmatrix} y_0 \\ \vdots \\ y_{d^L} \end{bmatrix}$
- Pour tous les neurones j de la dernière couche L calculer :

$$\delta_i^L = (1 - (x_i^L)^2) \times (x_i^L - y_i)$$

• En déduire pour tous les autres neurones de l'avant dernière couche à la première :

$$\delta_i^{l-1} = (1 - (x_i^{l-1})^2) \times \sum_{i=1}^{d^l} (w_{ij}^l \times \delta_j^l)$$

• Puis mettre à jour tous les w_{ij}^l : $w_{ij}^l \leftarrow w_{ij}^l - \alpha x_i^{l-1} \delta_j^l$

Rétropropagation du gradient

Pour la régression, répéter :

- Prendre un exemple étiqueté au hasard : $\begin{bmatrix} x_1^0 \\ \vdots \\ x_{d^0}^0 \end{bmatrix} \rightarrow \begin{bmatrix} y_0 \\ \vdots \\ y_{d^L} \end{bmatrix}$
- Pour tous les neurones j de la dernière couche L calculer :

$$\delta_j^L = (x_j^L - y_j)$$

• En déduire pour tous les autres neurones de l'avant dernière couche à la première :

$$\delta_i^{l-1} = (1 - (x_i^{l-1})^2) \times \sum_{j=1}^{a} (w_{ij}^l \times \delta_j^l)$$

• Puis mettre à jour tous les w_{ij}^l : $w_{ij}^l \leftarrow w_{ij}^l - \alpha x_i^{l-1} \delta_j^l$