Generacion Fotovoltaica

Estudio Tecnico Economico

Tabla de contenidos

1. Welcome to MkDocs	3
1.1 Commands	3
1.2 Project layout	3
2. Pliego de Condiciones Técnicas	5

- 2/8 - Asolear

1. Welcome to MkDocs

For full documentation visit mkdocs.org.

1.1 Commands

- mkdocs new [dir-name] Create a new project.
- mkdocs serve Start the live-reloading docs server.
- mkdocs build Build the documentation site.
- mkdocs -h Print help message and exit.

1.2 Project layout

```
mkdocs.yml  # The configuration file.

docs/
  index.md  # The documentation homepage.
  ...  # Other markdown pages, images and other files.
```

 $[a=b/2 a=\frac{fasdfa}{fasdfa}\ fasfdf]$

```
pk@pk: ~/estudio — 

pk@pk: ~/estudio 77x16

home/pk/.bash_aliases_24.sh
k@pk:~$ mkdor estudio

command 'mkdor' not found, did you mean:

command 'mkdir' from deb coreutils (8.30-3ubuntu2)

ry: sudo apt install <deb name>

k@pk:~$ mkdir estudio
k@pk:~$ cd estudio
k@pk:~$estudio$ mkdocs new .

NFO - Writing config file: ./mkdocs.yml

NFO - Writing initial docs: ./docs/index.md
k@pk:~/estudio$ code .

k@pk:~/estudio$ [
```

- 3/8 - Asolear

- 4/8 - Asolear

2. Pliego de Condiciones Técnicas

Pliego de Condiciones Técnicas de Instalaciones Conectadas a Red

1 Objeto

- 1.1 Fijar las condiciones técnicas mínimas que deben cumplir las instalaciones solares fotovoltaicas conectadas a red que se realicen en el ámbito de actuación del IDAE (proyectos, líneas de apoyo, etc.). Pretende servir de guía para instaladores y fabricantes de equipos, definiendo las especificaciones mínimas que debe cumplir una instalación para asegurar su calidad, en beneficio del usuario y del propio desarrollo de esta tecnología.
- 1.2 Valorar la calidad final de la instalación en cuanto a su rendimiento, producción e integración.
- 1.3 El ámbito de aplicación de este Pliego de Condiciones Técnicas (en lo que sigue, PCT) se extiende a todos los sistemas mecánicos, eléctricos y electrónicos que forman parte de las instalaciones.
- 1.4 En determinados supuestos, para los proyectos se podrán adoptar, por la propia naturaleza de los mismos o del desarrollo tecnológico, soluciones diferentes a las exigidas en este PCT, siempre que quede suficientemente justificada su necesidad y que no impliquen una disminución de las exigencias mínimas de calidad especificadas en el mismo.

2 Generalidades

- 2.1 Este Pliego es de aplicación a las instalaciones solares fotovoltaicas conectadas a la red de distribución.
 Quedan excluidas expresamente las instalaciones aisladas de la red.
- 2.2 Podrá, asimismo, servir como guía técnica para otras aplicaciones especiales, las cuales deberán cumplir los requisitos de seguridad, calidad y durabilidad establecidos. En la Memoria de Diseño o Proyecto se incluirán las características de estas aplicaciones.
- 2.3 En todo caso serán de aplicación todas la normativas que afecten a instalaciones solares fotovoltaicas, y en particular las siguientes:
- - Ley 54/1997, de 27 de noviembre, del Sector Eléctrico.
- Norma UNE-EN 62466: Sistemas fotovoltaicos conectados a red. Requisitos mínimos de documentación, puesta en marcha e inspección de un sistema.
- Resolución de 31 de mayo de 2001 por la que se establecen modelo de contrato tipo y modelo de factura

para las instalaciones solares fotovoltaicas conectadas a la red de baja tensión.

- Real Decreto 1663/2000, de 29 de septiembre, sobre conexión de instalaciones fotovoltaicas a la red de baja tensión.
- Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica.
- Real Decreto 842/2002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico para Baja Tensión (B.O.E. de 18-9-2002).
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
- Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial.
- Real Decreto 1110/2007, de 24 de agosto, por el que se aprueba el Reglamento Unificado de puntos de medida del sistema eléctrico.
- Real Decreto 1578/2008, de 26 de septiembre, de retribución de la actividad de producción de energía eléctrica mediante tecnología solar fotovoltaica para instalaciones posteriores a la fecha límite de mantenimiento de la retribución del Real Decreto 661/2007, de 25 de mayo, para dicha tecnología.

3 Definiciones

3.1 RADIACIÓN SOLAR

• 3.1.1 Radiación solar

Energía procedente del Sol en forma de ondas electromagnéticas.

• 3.1.2 Irradiancia

Densidad de potencia incidente en una superficie o la energía incidente en una superficie por unidad de tiempo y unidad de superficie. Se mide en $kW/m\ 2$.

• 3.1.3 Irradiación

Energía incidente en una superficie por unidad de superficie y a lo largo de un cierto período de tiempo. Se mide en kWh/m 2, o bien en MJ/m 2.

3.2 INSTALACIÓN

• 3.2.1 Instalaciones fotovoltaicas

- 5/8 - Asolear

Aquellas que disponen de módulos fotovoltaicos para la conversión directa de la radiación solar en energía eléctrica sin ningún paso intermedio.

• 3.2.2 Instalaciones fotovoltaicas interconectadas

Aquellas que disponen de conexión física con las redes de transporte o distribución de energía eléctrica del sistema, ya sea directamente o a través de la red de un consumidor.

• 3.2.3 Línea y punto de conexión y medida

La línea de conexión es la línea eléctrica mediante la cual se conectan las instalaciones fotovoltaicas con un punto de red de la empresa distribuidora o con la acometida del usuario, denominado punto de conexión y medida.

• 3.2.4 Interruptor automático de la interconexión

Dispositivo de corte automático sobre el cual actúan las protecciones de interconexión.

• 3.2.5 Interruptor general

Dispositivo de seguridad y maniobra que permite separar la instalación fotovoltaica de la red de la empresa distribuidora.

• 3.2.6 Generador fotovoltaico

Asociación en paralelo de ramas fotovoltaicas.

- 3.2.7 Rama fotovoltaica Subconjunto de módulos interconectados en serie o en asociaciones serie-paralelo, con voltaje igual a la tensión nominal del generador.
- 3.2.8 Inversor Convertidor de tensión y corriente continua en tensión y corriente alterna. También se denomina ondulador.
- 3.2.9 Potencia nominal del generador Suma de las potencias máximas de los módulos fotovoltaicos.
- 3.2.10 Potencia de la instalación fotovoltaica o potencia nominal Suma de la potencia nominal de los inversores (la especificada por el fabricante) que intervienen en las tres fases de la instalación en condiciones nominales de funcionamiento.

3.3 MÓDULOS

• 3.3.1 Célula solar o fotovoltaica

Dispositivo que transforma la radiación solar en energía eléctrica

• 3.3.2 Célula de tecnología equivalente (CTE)

Célula solar encapsulada de forma independiente, cuya tecnología de fabricación y encapsulado es idéntica a la de los módulos fotovoltaicos que forman la instalación.

3.3.3 Módulo o panel fotovoltaico

Conjunto de células solares directamente interconectadas y encapsuladas como único bloque, entre materiales que las protegen de los efectos de la intemperie.

• 3.3.4 Condiciones Estándar de Medida (CEM)

Condiciones de irradiancia y temperatura en la célula solar, utilizadas universalmente para caracterizar células, módulos y generadores solares y definidas del modo siguiente: – Irradiancia solar: 1000 W/m 2 – Distribución espectral: AM 1,5 G – Temperatura de célula: 25 °C

• 3.3.5 Potencia pico

Potencia máxima del panel fotovoltaico en CEM.

• 3.3.6 TONC

Temperatura de operación nominal de la célula, definida como la temperatura que alcanzan las células solares cuando se somete al módulo a una irradiancia de 800 W/ m 2 con distribución espectral AM 1,5 G, la temperatura ambiente es de 20 °C y la velocidad del viento, de 1 m/s.

3.4 INTEGRACIÓN ARQUITECTÓNICA

Según los casos, se aplicarán las denominaciones siguientes:

• 3.4.1 Integración arquitectónica de módulos fotovoltaicos

Cuando los módulos fotovoltaicos cumplen una doble función, energética y arquitectónica (revestimiento, cerramiento o sombreado) y, además, sustituyen a elementos constructivos convencionales.

• 3.4.2 Revestimiento

Cuando los módulos fotovoltaicos constituyen parte de la envolvente de una construcción arquitectónica.

• 3.4.3 Cerramiento

Cuando los módulos constituyen el tejado o la fachada de la construcción arquitectónica, debiendo garantizar la debida estanguidad y aislamiento térmico.

• 3.4.4 Elementos de sombreado

Cuando los módulos fotovoltaicos protegen a la construcción arquitectónica de la sobrecarga térmica causada por los rayos solares, proporcionando sombras en el tejado o en la fachada. 3.4.5 La colocación de módulos fotovoltaicos paralelos a la envolvente del edificio sin la doble funcionalidad definida en 3.4.1, se denominará superposición y no se considerará integración arquitectónica. No se aceptarán, dentro del concepto de superposición, módulos horizontales.

- 6/8 - Asolear

4 Diseño

4.1 DISEÑO DEL GENERADOR FOTOVOLTAICO

4.1.1 Generalidades

- 4.1.1.1 El módulo fotovoltaico seleccionado cumplirá las especificaciones del apartado 5.2. 4.1.1.2 Todos los módulos que integren la instalación serán del mismo modelo, o en el caso de modelos distintos, el diseño debe garantizar totalmente la compatibilidad entre ellos y la ausencia de efectos negativos en la instalación por dicha causa.
- 4.1.1.3 En aquellos casos excepcionales en que se utilicen módulos no cualificados, deberá justificarse debidamente y aportar documentación sobre las pruebas y ensayos a los que han sido sometidos. En cualquier caso, han de cumplirse las normas vigentes de obligado cumplimiento.

4.1.2 Orientación e inclinación y sombras

 4.1.2.1 La orientación e inclinación del generador fotovoltaico y las posibles sombras sobre el mismo serán tales que las pérdidas sean inferiores a los límites de la tabla I. Se considerarán tres casos: general, superposición de módulos e integración arquitectónica, según se define en el apartado 3.4. En todos los casos han de cumplirse tres condiciones: pérdidas por orientación e inclinación, pérdidas por sombreado y pérdidas totales inferiores a los límites estipulados respecto a los valores óptimos.

	Orientación e inclinación (OI)	Sombras (S)	Total (OI + S)
General	10 %	10 %	15 %
Superposición	20 %	15 %	30 %
Integración arquitectónica	40 %	20 %	50 %

- 4.1.2.2 Cuando, por razones justificadas, y en casos especiales en los que no se puedan instalar de acuerdo con el apartado 4.1.2.1, se evaluará la reducción en las prestaciones energéticas de la instalación, incluyéndose en la Memoria del Proyecto.
- 4.1.2.3 En todos los casos deberán evaluarse las pérdidas por orientación e inclinación del generador y sombras. En los anexos II y III se proponen métodos para el cálculo de estas pérdidas, que podrán ser utilizados para su verificación.
- 4.1.2.4 Cuando existan varias filas de módulos, el cálculo de la distancia mínima entre ellas se realizará de acuerdo al anexo III.

4.2 DISEÑO DEL SISTEMA DE MONITORIZACIÓN

4.2.1 El sistema de monitorización proporcionará medidas, como mínimo, de las siguientes

variables:

- - Voltaje y corriente CC a la entrada del inversor.
- Voltaje de fase/s en la red, potencia total de salida del inversor.
- Radiación solar en el plano de los módulos, medida con un módulo o una célula de tecnología equivalente.
- - Temperatura ambiente en la sombra.
- Potencia reactiva de salida del inversor para instalaciones mayores de 5 kWp.
- Temperatura de los módulos en integración arquitectónica y, siempre que sea posible, en potencias mayores de 5 kW.

- 7/8 - Asolean

4.2.2 Los datos se presentarán en forma de medias horarias. Los tiempos de adquisición, la precisión

de las medidas y el formato de presentación se hará conforme al documento del JRC-Ispra "Guidelines for the Assessment of Photovoltaic Plants - Document A", Report EUR16338 EN.

4.2.3 El sistema de monitorización sera fácilmente accesible para el usuario.

4.3 INTEGRACIÓN ARQUITECTÓNICA

4.3.1 En el caso de pretender realizar una instalación integrada desde el punto de vista arquitectóni co según lo estipulado en el punto 3.4, la Memoria de Diseño o Proyecto especificarán las condiciones de la construcción y de la instalación, y la descripción y justificación de las soluciones elegidas.

- 8/8 - Asolear