Newbies

Project		Capacity
• House	House of classical ciphers (GUI)	
0	Implement 6 classical ciphers and their cracking algorithms.	
0	Cracking can be brute force or other analysis methods	
0	You must explain each cipher and how to break it.	
 Secur 	re data communication and key exchange	2 teams
0	A client-server application to establish a secure connection between a	
	client and a server thorough a key-exchange protocol	
0	After exchanging a secret key, the users create a shared symmetric key	
	to encrypt the data using a symmetric encryption algorithm	

Average

Project		Capacity	
 Parall 	el Blake3 hash function	2 teams	
0	Implement Blake3 hash function		
0	Parallelize the computation		
0	Explain the algorithm and how it works		
0	Demonstrate the performance on large files		
 Password manager with cryptographic Security (GUI) 		2 teams	
0	Implement a tool that reads plaintext password from a user, encrypting		
	it, and storing it.		
0	You must use secure cryptographic algorithms to maintain the		
	confidentiality of the passwords		
0	You must ensure the integrity of the encrypted passwords.		
0	The main application must be protected by a username and a master		
	password		
Hash	cracking tool	3 teams	
0	Implement a basic tool (similar to JohnTheRipper and HashCat) to		
	crack 3 types of hashes.		
0	The program should be multithreaded		
0	Your program must maintain a wordlist of common passwords and their		
	hashes to recover the hash from it		
0	(optional) can you implement a hash type detection tool?		
• End2E	End chat application (GUI)	2 teams	
0	A secure instant message application that encrypts the messages		
	between two users		
0	The application allows each user to have a public key and a private key.		
0	When two users start a conversation, they exchange a shared secret		
	key.		
0	The shared secret key is passed to a KDF to generate a symmetric		
	secret key to be used with a stream cipher		
0	The exchanged messages are encrypted with the stream cipher		
0	Your program must do all the encryption/decryption operations		
	automatically.		

Crypto affection

Project		Capacity
 (Educational) Public-key crypto is fun (GUI) 		3 teams
0	Choose 3 algorithms of set below to implement.	
0	Your program should be used to teach students the nuts and bolts of	
	public key cryptographic algorithms	
0	You program must demonstrate the math and the steps of key	
	generation, encryption, and decryption	
Suggested al	gorithms: RSA, DH/ElGamal, Elliptic curves, Rabin Cryptosystem	
 Secur 	e Multiparty Computation (MPC)	2 teams
0	Solve at least two of the open issues related to secure multiparty	
	computations using the Nada framework, available here: here	
	https://github.com/NillionNetwork/nada-by-example/issues	
0	You should fork the repo to your profile and work on it.	
0	You must explain what MPC is	
Simulate MQV (Menezes–Qu–Vanstone) key exchange protocol (GUI)		2 team
0	A program that simulates a client-server application	
(Educational) Side channels simulation-RSA		2 teams
0	A program that simulates a side-channel attack on the RSA algorithm	
0	Your program should be used to teach students how side-channel	
	attack can exploit the RSA algorithm to recover the private key	
ECDSA		1 team
0	Implement the Elliptic Curve Digital Signature Algorithm to sign and	
	verify PDF documents and images.	
0	Implement a function that breaks the ECDSA algorithm given two	
	signatures as explained in the class	

Math maniac

Project		
PQS – NTRU cryptosystem	3 teams	
 This project mainly aims to exploring Post Quantum Cryptography 		
 The focus is on the NTRU cryptosystem 		
 Implement (basic implementation) the key generation, encryption, and 		
decryption of the NTRU cryptosystem		
 (optional) you can use existing libraries to demonstrate the NTRU 		
cryptosystem in secure chat application		
 Helpful resources: https://github.com/pointedsphere/NTRU_python, 		
https://medium.com/@vihren.stoev/the-essence-of-ntru-key-generation-		
encryption-decryption-7c0540ef8441		
PQS – Digital Signatures	3 teams	
 This project mainly aims to exploring Post Quantum Cryptography. 		
 The focus is on the ML-DSA standard for digital signatures 		
 The goal is to explain how key generation, signature generation, and 		
verification work (without from scratch implementation)		
 Use existing libraries to demonstrate it in secure chat application 		
 Helpful resources: https://github.com/itzmeanjan/ml-dsa, 		
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.204.pdf#page=2.09		

Other

• If you have any other ideas, discuss it with me.

General instructions

- Teams should consist of 3-5 people
- Choose your own programming language
- It's **very recommended** to develop GUI applications as a web application and, if possible, deploy it on GitHub (http://pages.github.com/)
- Account for 10-min quick presentation no slides needed
- Due date: TBD