Lecture 9: FPGAs vs. ASICs

Spectrum of Design Choices

General FPGA Layout

 "Wires" (Routing) implemented by programming connectivity boxes (CBs) and switch boxes (SB)

- "Logic gates" implemented by programming configurable logic blocks (CLBs)
- Modern FPGAs have more than 1 million equivalent logic gates

Configurable Logic Blocks

- Basic CLB comprises "Lookup Table" (LUT) and D-Flip Flop
- The MUX allows selection of either the LUT output or the D-FF output

Lookup Tables (LUTs)

- Combinational functions created with programmed "tables" connected to cascaded multiplexers
- LUT inputs are MUX select lines

Intel Stratix II FPGA Architecture

The basic "Adaptive Logic Module (ALM) Block Diagram"

 Note the fast adder carry chain (does not require going out to programmable switch boxes) 5

ALM Flexibility

Each ALM can be configured to one or two logic functions

e-LUT	One Stratix II ALM can input any 6-input function.
4-LUT	One Stratix II ALM can be configured to implement 2 independent 4-input or smaller LUTs. This configuration can be viewed as the "backward-compatibility" mode. Designs that are optimized for the traditional 4-LUT FPGAs can easily be migrated to the Stratix II family.
S-LUT 3-LUT	One Stratix II ALM can be configured to implement a 5-LUT and 3-LUT. The inputs to the two LUTs are independent of each other. The 3-LUT can be used to implement any logic function that has 3 or fewer inputs. Therefore, a 5-LUT/2-LUT combination is also available.

7

ALM Flexibility

ALM Flexibility

One Stratix II ALM in the extended mode can implement a subset of a 7-variable function. The Quartus II sofware automatically recognizes the applicable 7-input function and fits it into an ALM. Refer to the *Stratix II Device Handbook* for detailed information about the types of 7-input functions that can be implemented in an ALM.

9

Connectivity Between ALMs

Latest Stratix 10

- Intel Stratix 10 GX 5500/SX 5500 FPGAs implemented in 14
 nm process
- Contains 1,867,680 ALMs, which can implement roughly
 5,510,000 logic elements (logic gates).
- Contains 7,470,720 ALM registers
- Also contains Quad ARM Cortex-A53 CPU cores

11

Integrated Quad ARM Cores

Many Built-In Interfaces

Modern FPGAs have many built-in interfaces.

- DRAM
- PCI Express
- USB
- SATA (disk drives)
- etc

Makes them easy to integrate into compute environments

FPGA vs. ASIC

L3

ASICs

- ASIC (Application-Specific Integrated Circuit) designs are usually implemented using "standard cells"
- Standard cells are pre-designed layouts of transistors for implementation of common logic gates and registers (D-Flip Flops)
- Standard cells are be pre-characterized in terms of cell area, cell delay, and cell power consumption
- Simplifies design flow, design verification, and timing analysis

15

CMOS

 N-Channel MOS (NMOS) transistors turn "ON" when the Gate voltage = "1"

 P-Channel MOS (PMOS) transistors turn "ON" when the Gate voltage = "0"

CMOS Inverter Layout

Figure derived from slides by S. Edwards from his CSEE4840 class

17

CMOS NAND Gate

Two-input NAND gate: two n-FETs in series; two p-FETs in parallel

CMOS NAND Gate

Both inputs 0:
Both p-FETs turned on
Output pulled high

Figure derived from slides by S. Edwards from his CSEE4840 class

19

CMOS NAND Gate

One input 1, the other 0:
One p-FET turned on
Output pulled high
One n-FET turned on, but does not control output

CMOS NAND Gate

Both inputs 1:

Both n-FETs turned on

Output pulled low

Both p-FETs turned off

Figure derived from slides by S. Edwards from his CSEE4840 class

21

Standard Cells of Logic Gates

NOR-3 XOR-2

22

CMOS D-Flip Flop

A "negative level-sensitive" latch

A "positive level-sensitive" latch

23

Standard Cell of D-Flip Flop

Edge-Triggered D-Flip Flop with Asynchronous Reset

Standard Cell Layout

25

Standard Cell Layout

Standard Cell Layout

NVIDIA GeForce 8800

(600+ million transistors, about 60+ million gates)

27

Latest NVIDIA GPU

- NVIDIA Tesla GV100 GPU in 12 nm process
- Contains 23 billion transistors

Design Flows

• FPGA and ASIC have similar design flows

