MAST30027: Modern Applied Statistics

Week 10 Lab Sheet

Metropolis-Hastings Algorithm

Recall that $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$, iff \mathbf{X} has joint density

$$f_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) = \frac{1}{2\pi |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right),$$

where
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
.

- 1. Write an R function that evaluates the density of a bivariate normal distribution. The function should take as input the point \mathbf{x} , the mean $\boldsymbol{\mu}$ and the covariance matrix $\boldsymbol{\Sigma}$. You will find the functions solve and det useful.
- 2. Write a program in R that uses the Metropolis-Hastings algorithm to generate a sample of size n=1000 from the $N\left(\begin{pmatrix} 0\\0 \end{pmatrix},\begin{pmatrix} 4&1\\1&4 \end{pmatrix}\right)$ distribution. Use the symmetric random walk proposal distribution $N\left(\mathbf{x},\sigma^2I\right)$ with $\sigma=2.5$.

Use $\mathbf{X}(0) = \begin{pmatrix} 6 \\ -6 \end{pmatrix}$ as your initial state. Report the proportion of accepted values.

3. Let $\mathbf{X}(n)$ be the *n*-th sample point. Plot $X_i(n)$ and the cumulative averages $\overline{X}_i(n) = n^{-1} \sum_{j=1}^n X_i(j)$, for i = 1, 2 (over iteration numbers). The cumulative averages should give a rough idea of how quickly the $\mathbf{X}(n)$ converge in distribution.