

Aprendizaje de Máquina

ITAM Semestre agosto-diciembre 2017

Menu

- In this session we will see how to use what we know about doing linear regression to perform classification
 - We are going to see the perceptron model

Suppose we have the following data

How to convert a regressor into a classifier

How to convert a regressor into a classifier

- It doesnt make much sense to allow our model to take values higher than 1 and lower than -1. There is no data with such values
- Solution: Limit the possible to this range via a transfer function---a function that takes the output of the regressor and transforms it into someting else

The perceptron: a model neuron

The function that represents the activation of the perceptron is

•
$$g(x_1, x_2, ..., x_n) = \begin{cases} 1 \text{ si } w_o + \sum_{i=1,n} w_i x_i >= 0 \\ -1 \text{ otherwise} \end{cases}$$

- We can think of w_o as a threshold value since it does not depende on an input variable.
- We could say that the perceptron fires if there is enough stimulus in the input, if the weighed sum of the inputs is greater than -w_o.

Perceptron Transfer function: Step function

Representational ability Perceptron

- To ilustrate the representation power of the perceptron we can plot the equiation ∑_{i=0,n}w_ix_i = 0
- Since when ∑_{i=0,n}w_ix_i is greater that or equal to zero it classifies an input as 1 and -1 otherwise
 - $\sum_{i=0.n} w_i x_i = 0$ represents a decision barrier

From the above example

Learning Algorithm Perceptron

- For each training example(X,y)
 - Calculate g with the current w's
 - For each w_i,
 - $w_i < ---w_i + \eta(y-g(X)) x_i$
- Where η is a small constant lower than 1 (learning constant)
- The rule is applied iteratively a fixed number of times or until the error reaches a desired value or if no further decrease in the error is detected
- Note again that the difference with the iterative regression is the function g

$$g(x_1,x_2,...,x_n) = \begin{cases} 1 \text{ si } \sum_{i=0,n} w_i x_i > 0 \\ -1 \text{ de otra forma} \end{cases}$$

Example

	X0	X1	X2	X3	X4	X5	X6
x´s	1	1	1	0	2	0	1
w´s	-1	-0.5	1	0.5	0	1	1
X _i W _i	-1	-0.5	1	0	0	0	1

Before without g: y=-1, $V^{(X)}=0.5$, Error=-1-0.5=-1.5, $\eta = 0.1$

Now: y=-1, $V^{(X)}=g(X)=1$, Error=-1-1=-2.0, $\eta = 0.1$

$$w0 = -1 + 0.1(-2.0)1 = -1.2$$
 $w4 = 0 + 0.1(-2.0)2 = -0.4$
 $w1 = -0.5 + 0.1(-2.0)1 = -0.7$ $w6 = 1 + 0.1(-2.0)1 = 0.8$
 $w2 = 1 + 0.1(-2.0)1 = 0.8$

Exercise

- Modify the iterative regression algorithm to include the step function as a transfer function
- Generate data for the logical and function

X1	X2	X1 and X2
0	0	0
0	1	0
1	0	0
1	1	1

- Train the perceptron this data set
 - Visualize the data
 - Plot the decision boundary
 - Calculate the classification error
 - Number of misses over number of examples

Exercise

Repeat for the XOR function

X1	X2	X1 xor X2
0	0	0
0	1	1
1	0	1
1	1	0

- For those that finish early
 - Try with large initial weights
 - Try with regularization

Representation Power Perceptrón

 White and black circles belong to different categories