Линал++.

Вектора из \mathbb{R}^n будем обозначать жирными буквами, а значения отдельных чисел в векторе – той же буквой, только нежирной и с индексом. Например x_i – это i-тое число в векторе ${\bf x}$. Жирные задачи важны для понимания дальнейшего материала, а не жирные просто к слову пришлись.

Определение 1. Скалярное произведение на \mathbb{R}^n это любая функция $\langle \cdot, \cdot \rangle$ от двух векторов такая что:

- $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (симметричность)
- $\langle \mathbf{x}_1 + \mathbf{x}_2, \mathbf{y} \rangle = \langle \mathbf{x}_1, \mathbf{y} \rangle + \langle \mathbf{x}_2, \mathbf{y} \rangle$ и $\langle c \cdot \mathbf{x}, \mathbf{y} \rangle = c \cdot \langle \mathbf{x}, \mathbf{y} \rangle$ (билинейность) $\langle \mathbf{x}, \mathbf{x} \rangle \geqslant 0$ при этом $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$ (положительная определенность)

Задача 1. Проверьте, что операция $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i \cdot y_i$ является скалярным произведением. Ее называют стандартным скалярным произведением.

Задача 2. Проверьте, что скалярное произведение векторов на плоскости из геометрии (произведение длин на косинус) является скалярным произведением в смысле определения 1.

Задача 3. С легкостью (и алгебраично!) выведите теорему косинусов из предыдущей задачи.

Определение 2. **Норма** (она же длина) вектора $\mathbf{x} \in \mathbb{R}^n$ это $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$, (заметьте, что определение нормы зависит от выбора скалярного произведения)

Задача 4 (многомерная теорема Пифагора). а) Пусть вектора х и у ортогональны, то есть $\langle {\bf x}, {\bf y} \rangle = 0$. Убедитесь что $\|{\bf x} + {\bf y}\| = \sqrt{\|{\bf x}\|^2 + \|{\bf y}\|^2}$.

б) Пусть есть много попарно ортогональных векторов $x_1, x_2, \dots x_k$. Докажите что:

$$\|\mathbf{x_1} + \mathbf{x_1} + \ldots + \mathbf{x_k}\| = \sqrt{\|\mathbf{x_1}\|^2 + \|\mathbf{x_2}\|^2 + \ldots + \|\mathbf{x_k}\|^2}.$$

Задача 5. Пусть $\langle \cdot, \cdot \rangle$ – (произвольное) скалярное произведение на плоскости.

- а) Докажите, что есть базис (v_1, v_2) , такой что $\langle v_1, v_2 \rangle = 0$ и $||v_1|| = ||v_2|| = 1$ (такой базис называется *ортоормальным*).
- **б)** Докажите, что в системе координат, заданной ортонормальным базисом $\langle \cdot, \cdot \rangle$ является стандартным скалярным произведением.
 - в) Обобщите результат предыдущих пунктов на \mathbb{R}^n .
- г) Выведите из б) эквивалентность двух определений скалярного произведения на плоскости (через косинус и через координаты).

 $Onpedenehue 3. Функция <math>l: \mathbb{R}^n \to \mathbb{R}$ называется линейной, если:

- $\forall \mathbf{x} \in \mathbb{R}^n, c \in \mathbb{R} : l(c \cdot \mathbf{x}) = c \cdot l(\mathbf{x})$
- $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n : l(\mathbf{x} + \mathbf{y}) = l(\mathbf{x}) + l(\mathbf{y})$

Задача 6. Докажите, что линейность функции l равносильна следующему:

$$\exists \mathbf{v} \in \mathbb{R}^n : l(\mathbf{x}) = \langle \mathbf{x}, \mathbf{v} \rangle.$$

Задача 7 (неравенство Коши-Буняковского-Шварца). Докажите что :

$$\langle \mathbf{x}, \mathbf{y} \rangle \leqslant \|\mathbf{x}\| \cdot \|\mathbf{y}\|$$

- **a)** для \mathbb{R}^2 (через **5a**, **б**)
- $\mathbf{6}$) для \mathbb{R}^n (через пункт \mathbf{a})
- в) для любых (возможно бесконечномерных) векторных пространств над \mathbb{R} .

Задача 8. Проверьте свойства нормы:

- а) $\|\mathbf{x}\| \geqslant 0$, при этом $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \overrightarrow{\mathbf{0}}$.
- 6) $||c \cdot \mathbf{x}|| = |c| \cdot ||\mathbf{x}||$.
- в) (многомерное неравенство треугольника) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (используйте КБШ).

Задача 9. Пусть a+b+c=1. Докажите, что $a^2+b^2+c^2\geqslant \frac{1}{2}$

¹ Есть еще стандартное доказательство и мерзкое через буковки.

Задача 10. Пусть $a_1,\ldots,a_n>0$. Докажите, что $(a_1+\ldots+a_n)\left(\frac{1}{a_1}+\ldots+\frac{1}{a_n}\right)\geqslant n^2$ Определение 4. Ковариация двух случайных величин X и Y это

$$Cov(X, Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$$

Определение 5. Дисперсия случайной величины X это $\mathbb{D}(X) = Cov(X,X)$. Определение 6. Корреляция двух случайных величин X и Y это

$$corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{\mathbb{D}X \cdot \mathbb{D}Y}}.$$

Задача 11. Докажите, что корреляция может принимать значения только в отрезке [-1,1]. Т. е. для любых X и Y верно: $-1 \leqslant corr(X,Y) \leqslant 1$.