# **BATTLE OF**

# **NEIGHBORHOODS**

# NEW YORK CITY - PROPERTY SALES ANALYSIS TO FIND THE BEST HOME FOR YOU

KARTIK NAIR

JULY 2020

#### 1. INTRODUCTION

## 1.1 BACKGROUND

For people trying to find the best places to live, it's always a good idea to compare cities and if possible, to compare neighborhoods to see if its suites your taste and fits your budget. The cost of living in the neighbour hood and the amenities with the property and nearby it is a top concern when moving to a new area. For some its a restaurant nearby for some a coffee shop, in all everyone has their requirements which are needeed to be looked out for.

### 1.2 PROBLEM

The Property Sales dataset of New York has sales details with price of different types of houses sold in each borough of New York over the years 2010-2019. The market price of each place changes with time. This project aims to select the boroughs in NYC based on the highest number of sales, explore the neighborhoods of that borough to find the 10 most common venues in each neighborhood and finally cluster the neighborhoods using k-mean clustering.

## 2. Data

There were two main datasets used in this project, one being the New York City Property Sales dataset 2010-2019 and the other dataset contained all the neighbourhoods of NYC with their geographical coordinates. But for Comfort The Geographical coordinates was merged with the Property sales dataset

## 2.1 Dataset

### 2.1.1 NYC Property Sales Dataset

#### Let's have a quick look at our dataset:-

| C• | Unnamed:<br>0 | NEIGHBORHOOD | LATITUDE  | LONGITUDE  | TYPE OF HOME             | NUMBER OF<br>SALES | LOWEST SALE<br>PRICE | AVERAGE SALE<br>PRICE | MEDIAN SALE<br>PRICE | HIGHEST SALE<br>PRICE | YEAR | BOROUGH |
|----|---------------|--------------|-----------|------------|--------------------------|--------------------|----------------------|-----------------------|----------------------|-----------------------|------|---------|
| 0  | 0             | WAKEFIELD    | 40.894705 | -73.847201 | 01 ONE FAMILY<br>HOMES   | 41                 | 158000               | 316531                | 335000               | 505056                | 2010 | BRONX   |
| 1  | 1             | WAKEFIELD    | 40.894705 | -73.847201 | 02 TWO FAMILY<br>HOMES   | 40                 | 165000               | 369935                | 361975               | 576600                | 2010 | BRONX   |
| 2  | 2             | WAKEFIELD    | 40.894705 | -73.847201 | 03 THREE FAMILY<br>HOMES | 7                  | 200000               | 373190                | 380000               | 509000                | 2010 | BRONX   |
| 3  | 3             | WAKEFIELD    | 40.894705 | -73.847201 | 01 ONE FAMILY<br>HOMES   | 33                 | 186666               | 300295                | 320000               | 475000                | 2011 | BRONX   |
| 4  | 4             | WAKEFIELD    | 40.894705 | -73.847201 | 02 TWO FAMILY<br>HOMES   | 46                 | 193800               | 387640                | 371250               | 572868                | 2011 | BRONX   |

#### Some Important Columns :

- 1.NEIGHBORHOOD: This column has the neighborhood name of each sale
- 2. NUMBER OF SALES :- This numeric column indicates the total sales done in each neighborhood of a particular type of house.
- 3. BOROUGH :- This column is very important for our project this column indicates the borough of the sale

And 11 more columns for now, some will be cleaned later and these columns are not relevant to our analysis either.

#### 2.2 Data Cleaning

The New York Sales Dataset needs a few minor cleaning,

- 1. Duplicate rows needed to be removed
- 2. Uneccessary columns to be dropped
- 3. And Column Names to be renamed for further processes
- 4. Total number of sales per Borough needed

These all processes were done using the Pandas Library as follows:

```
[ ] df_n2.columns = ["Borough", "Neighborhood", "Latitude", "Longitude"]
```

4.

#### TO GET NUMBER OF SALES PER BOROUGH

```
[ ] df1=df.groupby(['BOROUGH'])['NUMBER OF SALES'].sum()
    df1.to_frame()
    df1.head()
    dfp = pd.DataFrame(data=df1)
    dfp.head()
```

C→ NUMBER OF SALES

#### BOROUGH

| 13527 |
|-------|
| 49434 |
| 308   |
| 74964 |
| 30574 |
|       |

### 3. METHODOLOGY

# 3.1 Exploratory Data Analysis

Let's Visualize The Sales in each borough

|               | NUMBER ( | OF SALES |
|---------------|----------|----------|
| BOROUGH       |          |          |
| BRONX         |          | 13527    |
| BROOKLYN      |          | 49434    |
| MANHATTAN     |          | 308      |
| QUEENS        |          | 74964    |
| STATEN ISLAND |          | 30574    |
|               |          |          |



Comparing five boroughs it is evident that Queens has the highest Property Sales recorded followed by Brooklyn, Staten Island, Bronx and Manhattan

It's clearly seen that people prefer QUEENS than any other borough so that's our first preference so we'll explore this.

# 3.1.2 Neighborhoods in QUEENS

Exploring the Queens Borough showed that only a single borough won't have enough neighbourhoods for a person to choose from . Hence under this case we will take 3 Borough with most property sales which are

- QUEENS
- BROOKLYN
- STATEN ISLAND

# 3.1.3 Visualize the neighbourhoods

Firstly, we select the neighbourhoods only from these 3 Boroughs, that is Bronx, Queens and Staten Island, and save them in a new dataframe.

```
df_n2 = df_n.loc[['QUEENS','BROOKLYN','STATEN ISLAND'],:].reset_index()
df_n2.columns = ['BOROUGH', 'NEIGHBORHOOD', 'LATITUDE', 'LONGITUDE']
df_n2.head()
```

|   | BOROUGH | NEIGHBORHOOD | LATITUDE  | LONGITUDE  |
|---|---------|--------------|-----------|------------|
| 0 | QUEENS  | MURRAY HILL  | 40.764126 | -73.812763 |
| 1 | QUEENS  | MURRAY HILL  | 40.764126 | -73.812763 |
| 2 | QUEENS  | MURRAY HILL  | 40.764126 | -73.812763 |
| 3 | QUEENS  | MURRAY HILL  | 40.764126 | -73.812763 |
| 4 | QUEENS  | MURRAY HILL  | 40.764126 | -73.812763 |

The dataframe has 3 boroughs and 130 neighborhoods.

We find that there are 130 neighbourhoods recorded in the 3 Boroughs

# To visualize this we use the Folium Library



# 3.2 Modelling

Using the final dataset containing the neighbourhoods with the latitude and longitude, we can find all the venues within a 500 meter radius of each neighbourhood by connecting to the Foursquare API. This returns a json file containing all the venues in each neighbourhood which is converted to a pandas dataframe. This data frame contains all the venues along with their coordinates and category.

| ₽ |   | Neighborhood | Neighborhood Latitude | Neighborhood Longitude | Venue                   | Venue Latitude | Venue Longitude | Venue Category      |
|---|---|--------------|-----------------------|------------------------|-------------------------|----------------|-----------------|---------------------|
|   | 0 | MURRAY HILL  | 40.764126             | -73.812763             | Hahm Ji Bach - 함지박      | 40.763022      | -73.815042      | Korean Restaurant   |
|   | 1 | MURRAY HILL  | 40.764126             | -73.812763             | Coffee Factory          | 40.763125      | -73.814341      | Coffee Shop         |
|   | 2 | MURRAY HILL  | 40.764126             | -73.812763             | Mapo BBQ                | 40.762309      | -73.814880      | Korean Restaurant   |
|   | 3 | MURRAY HILL  | 40.764126             | -73.812763             | Kum Sung Chik Naengmyun | 40.763122      | -73.815091      | Korean Restaurant   |
|   | 4 | MURRAY HILL  | 40.764126             | -73.812763             | Northern Sushi          | 40.764717      | -73.811235      | Japanese Restaurant |

One hot encoding is done on the venues data. (One hot encoding is a process by which categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction). The Venues data is then grouped by the Neighbourhood and the mean of the venues are calculated, finally the 10 common venues are calculated for each of the neighbourhoods.

To help people find similar neighbourhoods in the safest borough we will be clustering similar neighbourhoods using K - means clustering which is a form of unsupervised machine learning algorithm that clusters data based on predefined cluster size. We used the elbow

method to find the best cluster size and found 5 clusters to be ideal.

The reason to conduct a K- means clustering is to cluster neighbourhoods with similar venues together so that people can shortlist the area of their interests based on the venues/amenities around each neighbourhood.

# 4. Results

After running the K-means clustering we can access each cluster created to see which neighborhoods were assigned to each of the five clusters. Looking into the neighborhoods in the first cluster

| C• |      | Neighborhood        | 1st Most<br>Common Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue | 4th Most<br>Common Venue | 5th Most Common<br>Venue           | 6th Most<br>Common Venue  | 7th Most<br>Common Venue | 8th Most<br>Common Venue | 9th Most<br>Common Venue | 10th Most<br>Common Venue |
|----|------|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------------|---------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
|    | 588  | SOUTH OZONE<br>PARK | Park                     | Deli / Bodega            | Bar                      | Donut Shop               | Food                               | Fast Food<br>Restaurant   | Sandwich Place           | Food Truck               | Hotel                    | Dessert Shop              |
|    | 648  | WHITESTONE          | Boxing Gym               | Dance Studio             | Deli / Bodega            | Bubble Tea<br>Shop       | Candy Store                        | Women's Store             | Fish & Chips<br>Shop     | Falafel<br>Restaurant    | Farm                     | Farmers Market            |
|    | 1260 | JAMAICA<br>ESTATES  | Bus Station              | Intersection             | Plaza                    | Fish & Chips<br>Shop     | Event Service                      | Event Space               | Falafel<br>Restaurant    | Farm                     | Farmers Market           | Fast Food<br>Restaurant   |
| 9  | 1314 | LAURELTON           | Cosmetics Shop           | Caribbean<br>Restaurant  | Train Station            | Park                     | Sculpture Garden                   | Deli / Bodega             | Cuban<br>Restaurant      | Ethiopian<br>Restaurant  | Event Service            | Event Space               |
| 1  | 2141 | EAST NEW<br>YORK    | Deli / Bodega            | Bus Station              | Spanish<br>Restaurant    | Event Service            | Fast Food<br>Restaurant            | Asian<br>Restaurant       | Music Venue              | Caribbean<br>Restaurant  | Fried Chicken<br>Joint   | Pizza Place               |
|    | 2344 | DYKER<br>HEIGHTS    | Cosmetics Shop           | Bagel Shop               | Burger Joint             | Golf Course              | Filipino Restaurant                | Event Service             | Event Space              | Falafel<br>Restaurant    | Farm                     | Farmers Market            |
| 3  | 2485 | OCEAN HILL          | Deli / Bodega            | Bus Stop                 | Grocery Store            | Fried Chicken<br>Joint   | Southern / Soul Food<br>Restaurant | Supermarket               | Metro Station            | Mexican<br>Restaurant    | Playground               | Food                      |
|    | 2627 | CHELSEA             | Bus Stop                 | Steakhouse               | Spanish<br>Restaurant    | Sandwich Place           | Italian Restaurant                 | Park                      | Fast Food<br>Restaurant  | Ethiopian<br>Restaurant  | Event Service            | Event Space               |
|    | 2709 | NEW<br>BRIGHTON     | Bus Stop                 | Deli / Bodega            | Park                     | Laundromat               | Playground                         | Discount Store            | Filipino<br>Restaurant   | Event Service            | Event Space              | Falafel<br>Restaurant     |
|    | 2796 | GRYMES HILL         | Bus Stop                 | Deli / Bodega            | American<br>Restaurant   | Dog Run                  | Fish Market                        | Event Space               | Falafel<br>Restaurant    | Farm                     | Farmers Market           | Fast Food<br>Restaurant   |
| :  | 3102 | TOTTENVILLE         | Cosmetics Shop           | Home Service             | Mexican<br>Restaurant    | Bus Stop                 | Italian Restaurant                 | Thrift / Vintage<br>Store | Frame Store              | Deli / Bodega            | Dance Studio             | Falafel<br>Restaurant     |
|    |      |                     |                          | American                 |                          |                          | 200                                | Fish & Chins              | - 120                    | Falafel                  | -                        |                           |

Upon closely examining these neighborhoods we can see that the most common venues in these neighborhoods are Bus Stop, Coffee shops and restaurants.

Similarly looking at the 2nd cluster we see that it mainly consists of the neighbourhoods with venues such as be Bar, Pizza Place, Pharmacy.

|    | Neighborhood        | 1st Most<br>Common Venue     | 2nd Most<br>Common Venue     | 3rd Most<br>Common Venue     | 4th Most<br>Common Venue | 5th Most<br>Common Venue     | 6th Most<br>Common Venue     | 7th Most<br>Common Venue | 8th Most<br>Common Venue    | 9th Most<br>Common Venue | 10th Most<br>Common Venue    |
|----|---------------------|------------------------------|------------------------------|------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|-----------------------------|--------------------------|------------------------------|
| 0  | MURRAY HILL         | Korean<br>Restaurant         | Supermarket                  | Coffee Shop                  | Bar                      | Bank                         | Deli / Bodega                | Pizza Place              | Bath House                  | Fish & Chips<br>Shop     | Breakfast Spot               |
| 2  | ASTORIA             | Bar                          | Middle Eastern<br>Restaurant | Hookah Bar                   | Greek<br>Restaurant      | Indian Restaurant            | Seafood<br>Restaurant        | Deli / Bodega            | Mediterranean<br>Restaurant | Café                     | Pizza Place                  |
| 2  | WOODSIDE            | Grocery Store                | Thai Restaurant              | Bakery                       | Filipino<br>Restaurant   | Latin American<br>Restaurant | Donut Shop                   | American<br>Restaurant   | Pub                         | Pizza Place              | Bar                          |
| 2  | JACKSON<br>HEIGHTS  | Latin American<br>Restaurant | Peruvian<br>Restaurant       | South American<br>Restaurant | Bakery                   | Thai Restaurant              | Mexican<br>Restaurant        | Mobile Phone<br>Shop     | Empanada<br>Restaurant      | Spanish<br>Restaurant    | Shoe Store                   |
| 12 | ELMHURST            | Thai Restaurant              | Mexican<br>Restaurant        | Chinese<br>Restaurant        | Bubble Tea<br>Shop       | Vietnamese<br>Restaurant     | Colombian<br>Restaurant      | Snack Place              | Malay Restaurant            | Sushi Restaurant         | Salon /<br>Barbershop        |
| 42 | HOWARD<br>BEACH     | Pharmacy                     | Bagel Shop                   | Italian Restaurant           | Sandwich<br>Place        | Fast Food<br>Restaurant      | Deli / Bodega                | Donut Shop               | Clothing Store              | Chinese<br>Restaurant    | Diner                        |
| 72 | CORONA              | Mexican<br>Restaurant        | Sandwich Place               | Supermarket                  | Bakery                   | Italian Restaurant           | South American<br>Restaurant | Empanada<br>Restaurant   | Basketball Court            | Chinese<br>Restaurant    | Donut Shop                   |
| 02 | FOREST HILLS        | Gym                          | Gym / Fitness<br>Center      | Convenience<br>Store         | Thai<br>Restaurant       | Park                         | Yoga Studio                  | Pizza Place              | Pharmacy                    | Snack Place              | Bagel Shop                   |
| 31 | KEW GARDENS         | Chinese<br>Restaurant        | Bank                         | Pizza Place                  | Indian<br>Restaurant     | Cosmetics Shop               | Bar                          | Sandwich Place           | Gourmet Shop                | Juice Bar                | Donut Shop                   |
| 61 | RICHMOND HILL       | Latin American<br>Restaurant | Pizza Place                  | Lounge                       | Bank                     | Gym / Fitness<br>Center      | Bus Station                  | Moving Target            | Supermarket                 | Caribbean<br>Restaurant  | Sandwich Place               |
| 91 | LONG ISLAND<br>CITY | Hotel                        | Coffee Shop                  | Bar                          | Pizza Place              | Mexican<br>Restaurant        | Café                         | Deli / Bodega            | Office                      | Supermarket              | Gym / Fitness<br>Center      |
| 21 | SUNNYSIDE           | Pizza Place                  | Italian<br>Restaurant        | Chinese<br>Restaurant        | Theater                  | Bakery                       | Deli / Bodega                | Bar                      | Coffee Shop                 | Discount Store           | South American<br>Restaurant |

Similarly, we can examine each cluster to find out which neighbourhoods suits our best interest by looking at the most common venues.

Finally lets visualize the clustered neighbourhoods using Folium Library.



# 5. Discussion

The aim of this project is to help people who want to relocate to the Best borough in New York city, expats can choose the neighbourhoods to which they want to relocate based on the most common venues in it. For example, if a person is looking for a neighbourhood with good connectivity and public transportation we can see that Cluster 1 has and Bus stops as the most common venues. If a person is looking for a neighbourhood with stores and restaurants in a close proximity, then the neighbourhoods in the second cluster is suitable. The choices of neighbourhoods may vary from person to person.

# **6.Conclusion**

This project helps a person get a better understanding of the neighbourhoods with respect to the most common venues in that neighbourhood. It is always helpful to find out more about places before moving into a neighbourhood. We have just taken Price (Budget) as a primary concern to shortlist the best boroughs in New York city.

The future of this project includes taking other factors such as saefty in the areas into consideration to shortlist the borough, such as

filtering areas based on a Number of Crimes Recorded in the Borough.