HOMEWORK 3. PROJECTED GD AND PROXIMAL GD

Hao Yuan Kun Yuan

October 12, 2023

Attention: Turn in your homework at the beginning of our lecture on Oct.17, 2023

1 Convergence Analysis of Projected GD

Use Lemma 2.3 in our notes for Projected gradient descent to prove the following theorem.

Theorem 1.1. Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a closed convex set, $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable, L-smooth and μ -strongly convex. If $\gamma = \frac{1}{L}$, projected gradient descent with arbitrary $x_0 \in \mathcal{X}$ satisfies

$$||x_K - x^*|| \le (1 - \frac{\mu}{L})^K ||x_0 - x^*||, \quad K > 0.$$

2 Proximity Operator of ℓ_1 -norm

Show that

$$\forall x \in \mathbb{R}^d, h(x) = ||x||_1, \left(\text{prox}_{th}(x) \right)_i = \text{sign}(x_i) \max\{|x_i| - t, 0\}, i = 1, \dots, d.$$