THE UNIVERSITY OF TEXAS AT DALLAS Department Of Electrical Engineering

EECT 6326 ANALOG IC DESIGN

Design of Analog Multiplier based on 2 stage Op-Amp design.

DHRUV M GHADIA
2021366612
Dmg170230@utdallas.edu

Problem Statement:

The project is aimed at designing an analog signal multiplier/AM-modulator using a OP-AMP designed for a gain of 60 dB. The multiplication is achieved by using a a MOSFET in Triode region whose resistance varies with the input information signal. Thus it provides for a basic multiplier with a simple topology and low power dissipation. The Op-amp needs to have a high CMRR to achieve a good multiplication of the signals.

Design Specifiaction of Op-amp:

Differential voltage gain: Avd ≥ 60dB.

Output voltage swing range: OVSR = $Vo(max) - Vo(min) \ge 2V$.

Slew rate: SR ≥ 20 V/ μ S into 2 pF.

Input common mode max: 3.0V

Input common mode min: 1.2V

Common mode rejection ratio: CMRR ≥ 60 dB.

Unity Gain-bandwidth: GB ≥ 30 MHz with a 2 pF load capacitance.

Phase Margin: $f(GB) \ge 60^{\circ}$ with a 2 pF load capacitance.

Power dissipation: Pdiss ≤ 1 mW.

Op-amp Design procedure:

Vin Janvin TC, ER, Janevi ER, TC2 OP-AMP tanget specifications:	Vou	Eighal Model:	C.	
the state of the s	C. ER, @ 9112 VI ER + C.	in squarvin=	7 11 1	
000 3 6 10	ications:	1P tayed speci	cations:	d e lale
Gain bandwidth product GBW ≥ 30 MHz	(0.1)	gain 2 60 dB	(0.1)	
Gain bandwidth product GBW ≥ 30 MHz Phase Margin Z 60°	GBW = 30 MHz	Margin Z 60°	GBW ≥ 30 M	\ _Z

v) Vop = 3.3 V Viii) ICMR MOR = 3.0 V Power dissipation = Inv ix ICHR Min = 1.21 Load Capacitance = 2 pF FOR Designing we use 350 nm process taking Left = 500 nm for all transitions - used Test signilation to calculate the process Transcanductance parameters Nmos: Beff = 2.161 m => K'n ≈ 2204 Ртов: Вен = 566.6 и ⇒ Кр № 60 и Now just we choose a value for Componsation capacitor Jan a phase mappin ≥ 60° Cc Z 0.22 x CL Cc Z 0.22 x 2 Cc Z 0.440F :. Chapte | Cc = 0.8 oF Next we find the tail current Is for the differential input stage from the slew Rate condition : 5R = I5 :. Is= 5R x Cc

:. I5 = 1 20 x 106 x 0.8 x 10 12
I5 = 16 × 10-6 A
i. we choose a toil current ITE = 20 uf
To get (W/L) of input transisters M, and Mz us use the gain bandwidth product specification
: GBW = 9m
C _C
GBW (in Hz) = 4m1
Ccx2m
: 9m = GBW x Cc x 2x
: 9m = GBW x Cc x 27 9m = 30 x 106 x 0.8 x 10 2 x 27 = 150 us
in we set a target gay so 160 us.
10 8 10 10 10 10 10 10 10 10 10 10 10 10 10
Now we know that IDI = IDS = 204 - 10AA
also gn= 2BIO,
$160 \mu = \sqrt{2 \times \beta \times 10}$ $(160)^{2} \times 10^{-12} = 2 \times 10^{-12} \times 10 \times 10^{-6}$ $(\frac{W}{L})_{12} = -160 \times 10^{-12}$
$(160)^2 \times 10^{-12} = 2 \times 10^{-12} \times 10^{-1$
(W) - 160 × 10-12
$\frac{(W)}{(L)_{1,2}} = \frac{160^{2} \times 10^{-12}}{2 \times 220 \times 10^{-6} \times 10 \times 10^{-6}}$
= 5.81 ~
5 5.61
(w) & 6

	North we utilize the ICHR more range of 3.00 to get the (WIL) 3.4
+	to get the (WIL) s.4
	ICMR man = 3.0 V
ł	: VDD - V563 + VTH, = 3.0
	V563 = 2 I D3 + Vrypl man V BP Vrypl man + Vry = 3.0 PP PP Vrypl man + Vry = 3.0
-	: VOD - 2ID3 - NTHP WANT + VTH, = 3.0
-	VAN - 3.0 - NTHD + THI = 2 IO3
	(3:3-3.0 - WTHP VTHI)2 = 2103 K'p (WIL)3
-	:. (W/L) = 2 I 03 K'p(0.3 - VTHP + VTH) ²
1	from Text simulation use get VTHP max = 720 mV
	And VTH, min = 600 mV
	:. (W/L)314 = 2x 10x10-6 60 x 10-6 (6.3 - 0.72 + 0.6)2
	= 10.28
	[(W/L)314 ≈ 11]

Similarly we can use ICMR min to get it	ما
ICMR min = 1.2 V	
: ICMR min = Voys + VGSI	
1	
√ B ₁	
The Mark of the Control of the Contr	
= 2 ID1 + VTH, + VOSat 5	
ν β,	
Vosat 5 = ICMR min - 2IDI VTHI	
V 5.	
= 1.2 - 2×10 VTH	
√ 220 x 6	
= 1.2 - 0.13 -0.91	
1 - 1	
Vosat 5 ≈ 0.17V	_
1)1881 2 ~ 0.114	
0 (1 1)	
i. IDS = B (Vosat)	
L	
20 = K'n (WIL) = (Volate)=	
2-	
40 - 220 x (0-17) (WIL)5	
$\left \begin{array}{c} \cdot \cdot \cdot \left(\mathbf{W} \right) = 7 \end{array} \right $	
(L)s	
	_

```
Daipo of M6
      60° phase margin
      gms 2 10 gm,
gms 2 10 x 160 x 10 6
       gmg 2 1600 us
for proper minoring we want
    Vasms = Vasma = Vasma
  IDG= up Cox (W) (VGS - IVTHP)?
    (WL)6_
               T06_
                      = 9ms
           12 x 4p(0x x 11 x 10x 106
         Zu P8.411 =
    gm4_
      2mx = 115 ms
     (W/L)6 = 9m6 x (W/D4
                gn4
              1600 x10-6 x 11
                 115 x10-6
              153.04
               154
```

Now,			a la col	11/25	W ₂
I6 - (W	11/6				
I4 (h	112/4				
. IDT = 106	= (N/L)6 x	7.01	to Jakiu A	164	
-01 - 208	(W/L)4	- Did	i de la constantina		
9		5-6			
	" "	Α.	1-1-1-1	J.W	-
I06	= 140 4A)	-		(4)	
alsa In	= (WIL)7				
I.5	(W/L)5			- 17	
· (n) -	IOTX(W/L)	5	1477 Past 1		
(L)7 =	I-05			7	
	= 140 x 7				
	20	2 (1)	1	0.3	i ia
1(W/L)7	= 49		2		
	3.3 Voc)			
		12 11-11		10.0	
I : Zoun (4/20	(t) =11 1/4	(건) = 154		
		+ 000] Vaul	Ų.	
	+ 1	-, C			
1	- (N) 6	I Vin	T 201		
4.16.	1 1 (6),2	£1-11			
	- 12.		K (WIL) ==	L 9	
17(11)	18=7 15 (1016	de=1	C. Lett	T-1-	

	Power dissipation = NOOX I Total
	= 100 x (204 + 204 + 1404)
	=: 3.3 x 200 u
	W M 099 = 1
	Power dissipation = 0.6 mm
	<u> </u>
+	Poles and Zeros
	P ₁ = -1
	9m6. (noe 11 nou) (noe11 nor) x Cc 1600 ux 277 k x 20.42 k x 1.50
	P1 = 104.55 kHz
	1
	P2= 9m6 = 1600 = 800 MHZ
	CL 2P
	R.H.P Zezo = 9n6 = 1600 x 10-6
	Cc 1.5x10-12
	= 1.066 GHZ
_	

•	Avi= 9m1 20= 0.11
	9ds2 + 9ds4 2p = 0.25
	= 2.9m
_	$I_{5}(\lambda_{1}+\lambda_{4})$
	= 2×160 A
	204(0.25+0.11)
-	Av. = 44.44
	Ave = 9m6
-	
	9 ds 6 + 9 ds 7
	$= \frac{9n6}{I(26+22)}$
	= 1600
	140(0.25+0.11)
	Ave = 31.74
	The second of th
	i. Total open loop gain Avid = Avi-Ave
	- 44.44 x 31.74
	: AV(6) = 1410.79
	Aug) = 20 log (1410.79)
	= 62.98 dB
	(AVO) = 63 AB

A	OUTPUT YOUTAGE SWING.	
	Void min = Voit	_
T	= Vosat 7	
	= 2.107	
1	√ B	
-		
-	En 140	
-	1 220×49	
4	Voit rin = 161 mV	
4		
_	Vont max = Voo - Vosat 6	
	- Vosal 6 = 210	ij
	g _n	
	$= 2 \times 140 = 175 \text{mV}$	
	1600	_
	Vout non = 3.3-0.175 = 3.125 V]	
	· Total output voltage swing = Vout max - Vout run	
T	3.125 - 0.161	
	Total output vallage bring = 2.964 V	
-	ipon Galon Agorth	
-		
_		

Op-amp SIMULATIONS:

Schematic

Frequency response, Phase Margin, Gain Bandwidth

From the Above plots we see the differential gain Adm=64.88 dB, GBW=32.56 MHz,

Phase Margin= -180-(-120.7)=59.3 degree

Slew Rate:

1	Positive blow Rote from simulation:
-	Lower pulse vollage = 1.2 v
-	upper pulse voltage = 3.00
-	
-	10% of lower pulse = 1.2 + 0.12
-	= 1.32 V
	10% of upper pulse voltage = 3.0-0.3
-	= 2.7
	Positive slew rate = 2.7-1.32
-	1.106a-1.009a
	= 14.22 V/us
-	
	Negatur 8lew rate = 2.7-1.32
	1.275 - 2.385
_	= 12·54 V/45
_	
_	Total flew Rate = 13.38 V/45

Positive Slew rate: 14.22 V/us

Negative Slew Rate: 13.38 V/us

Output Voltage Swing:

We see that the output voltage Vomax is 3.03V and Vomin is 0.0835V. Total OVSR=2.9465 V

Common Mode Gain:

We get a **common mode gain of -12.21 dB** from simulations.

CMRR=64.88-(-12.21)=77.09 dB

Input Common Mode Range ICMR:

We see a minimum ICMR of 2.509V for which the gain stays in the 3 dB range of its value where Avdm=64.88 dB

Power Dissipation:

Correlation of Simulation and Hand Calculation:

Parameter	Hand-Calculation	Simulation
Differential voltage gain	63 dB	64.88 dB
Output voltage swing range	Vomin: 0.161V Vomax: 3.125V OVSR: 2.964V	Vomin: 0.083V Vomax: 3.03V OVSR: 2.947V
Phase Margin: f(GB)	60°	59.3°
Unity Gain-bandwidth: GB	30 MHz	32.56 MHz
Slew rate:	20 V/us	13.3 V/us
Input common mode max	3.0 V	3.15 V
Input common mode min	1.2 V	0.7 V
Common mode rejection ratio: CMRR	69.83 dB	77.09 dB
Power dissipation	0.69 mW	0.692 mW

Parameters Tweaked after Simulation:

- 1. Initial gain achieved was 55 dB \rightarrow Increased the size of input transistors to increase gm1 and thus the gain.
- 2. Phase Margin achieved was $60^{\circ} \rightarrow$ increased the Compensation capacitor Cc to 1.5 pF to get a better phase margin at the cost of Slew rate.
- 3. Slew rate is less then target value as the Compensation capacitor Cc was increased.

Multiplier Theory Of Operation:

The multiplication is achieved by transistors M1 and M2 operating in the Triode region. The Drawback of the circuit is that multiplication for signals less than 1mV in amplitude with a carrier of amplitude less than 1mV cannot give a efficient output waveform. For uV level signal multiplication we need to design a more sensitive Op-amp.

The frequency ratio is also important here and the multiplier works for signals with frequency ratio f1/f2 less than 1/100.

The gain of the Op-amp of which is greater than 1000 limits the upper value of amplitude that can be multiplied to a few mV

The amplitude of the carrier has to be always greater than the amplitude of information signal.

The resistors $Rf_{(1,2)}R_{(1,2)}$ are chosen such that the ratio is $Rf_{(1,2)}/R_{(1,2)}=1/100$

The size of M1 and M2 is chosen to be large as they are the input stage for the Op-amp and have to provide a larger range of operation.

 $(W/L)_{1,2} = 200$

The resistors in the Difference amplifier stage are chosen to cancel out this ratio in the final output signal. i.e $Rf_{(3)}/R_{(3,4)}=100$.

Here we have taken

Carrier: v1=a1.cos($2\pi f1t$), where f1=100 kHz, a1= 10mV

Modualting Signal: $v2=a2.cos(2\pi f 2t)$, where f2=1kHz, a2=5mV

 $V_{CM}=2.1V$, $V_{Th}=0.573V$

Thus we Select VG0 such that we can eliminate the common mode term from the output signal.

 $V_{G0} = V_{CM} + V_{Th} = 2.1 + 0.573 = 2.573V$

in linear region of apperation and the VCM of V. is such that it satisfies the DC voltage requirement of the OP-AMP. [Vo.s] = V_1 = A, cas (0, t)
the DC voltage requirement of the OP-AMP. Ivo,sl = v. = A, cas w, t
the DC voltage requirement of the OP-AMP. Ivo,sl = v. = A, cas w, t
$ v_{0,s} = v_1 = \Delta$, $\cos \omega_1 t$
· To. B [2 (V + VG = - V - VG + - VT)] V BU2
:. Io: B[2(V2+VGO-V,-VCM-VT)]V, -BV,2
= B[{(VGO - VCM - VT) + (Ve-V1)}]V1 - BU2
= D [((A20 ACM - AL) + (A6 A1)]] A1 - PAT
= B (VGO-VCM-VT)V, + BVEV, - V,2- B 1,2
= 18 (VGO-VCM-VT,) V, + 18 VEV, - V, - 15 V,
ID = 18 (VGO - VCM - VT)V1 + BV2V1 - 3B V12
11.1 - [0(1, 1, 1, 1, 1, 1, 28,12]0
Vout = [B(VGO-VCM-VT,)V, + BV2V, -38 V,2].RJ
Now to discinate the B(VGO-VCM-VT)V, term
we set the Oc voltage at gate of M, such that
VGO = VCM+ VTH,
To climinate the -3 BV,2 term from Vont,
2
expression we apply a 180° phase shifted information
Ajgna)
:. 12= A2 cos (wet + 180°)
Vz = - az con wet
Nho, nus
IO2= B(VGO-VCM-VT2)V, -BV2V, - 3BV,2
2

Multiplier Macro model: VCVS gain = -1000

Output:(Ideal)

Schematic of Macro Model

Multiplier Schematic:

Multiplier Output: using the designed Op-amp.

For a Vcm closer to the ICMR min range of OP-amp i.e Vcm=1V

VCM set at half of ICMR of Op-amp i.e 2.1V gives a more balanced modulated output waveform.

Conclusion:

Thus, we have Successfully designed a multiplier and a 2-stage miller compensated Op-amp with parameters that meet the target specs and also has Low power dissipation. The multiplier is also able to provide stable performance for a wide range of signal amplitudes and frequencies and due to the Op-amps high CMRR we are able to eliminate the Common mode signals generated as byproduct of the quadratic multiplication operation. The Multiplier can be further improved by designing an OP-amp with higher CMRR and a larger range of operating frequency.