## 2 Asymptotes à une courbe représentative

La courbe  $\mathscr{C}$  est la courbe représentative de la fonction f.

• Si  $\lim_{x \to a} f(x) = + \infty$  ou  $\lim_{x \to a} f(x) = -\infty$ ,

alors la droite D d'équation x = a est asymptote à  $\mathcal{C}$ .

• Si  $\lim_{x \to +\infty} f(x) = \ell$  ou  $\lim_{x \to +\infty} f(x) = \ell$ ,

alors la droite D d'équation  $y = \ell$  est asymptote à  $\mathcal{C}$ .

 $f(x) - \ell = y_M - y_H$ ; le signe de  $f(x) - \ell$  détermine la position de  $\mathscr C$  par rapport à D.

• Si  $\lim_{\substack{x \to +\infty \\ (a), y \to -\infty}} [f(x) - (ax + b)] = 0$ , alors la droite D

d'équation y = ax + b est asymptote à  $\mathscr{C}$ .

$$y_M - y_H = f(x) - (ax + b);$$

le signe de f(x) – (ax + b) détermine la position de  $\mathscr{C}$  par rapport à D.



## 3 Opérations sur les limites

a désigne un réel ou +  $\infty$  ou -  $\infty$  ;  $\ell$  et  $\ell'$  désignent des réels.

 $\infty^*$  désigne –  $\infty$  ou +  $\infty$ ; le signe est déterminé par une règle analogue à celle donnant le signe du produit ou du quotient de deux réels.

? signifie que, dans le cas envisagé, on ne peut pas conclure directement.

## 1. Somme

| Si lim f en a =               | l              | l   | l   | + ∞ | - ∞ | + ∞ |
|-------------------------------|----------------|-----|-----|-----|-----|-----|
| et lim $g$ en $a =$           | ℓ′             | + ∞ | - ∞ | + ∞ | - ∞ | - ∞ |
| alors $\lim (f + g)$ en $a =$ | $\ell + \ell'$ | + ∞ | - ∞ | + ∞ | - ∞ | ?   |

## 2. Produit

| Si lim $f$ en $a =$      | l                   | ℓ ≠ <b>0</b> | + ∞ ou - ∞ | 0          |
|--------------------------|---------------------|--------------|------------|------------|
| et lim $g$ en $a$ =      | ℓ′                  | + ∞ ou - ∞   | + ∞ ou - ∞ | + ∞ ou - ∞ |
| alors $\lim fg$ en $a =$ | $\ell \times \ell'$ | ∞*           | ∞*         | ?          |