INDR 422/522

Fikri Karaesmen

Spring 2023

Estimators

March 2, 2023

Reminders

- Course TA's: Bijan Bibak (bibak20), Mert Gürel (fegurel)
- Blackboard page is becoming active
 - Last year's lecture slides
 - Will be uploading the current slides as we proceed
- Please follow announcements

- No participation taken this week but please participate in the polls for practice
- Participation will be taken starting next week

A typical operational problem

A standard optimization problem in operations looks like

$$\min_{\mathbf{z}} E[c(\mathbf{Y}, \mathbf{z})]$$

where z is a decision variable and Y is a random variable. In addition, there could be constraints on the decision variable (i.e. $z \in \mathcal{Z}$).

- To consider a concrete problem we can consider inventory planning at two stores with random demands (Y_1, Y_2) and the decisions could be the order quantities (z_1, z_2) that minimize the expected cost. This problem becomes interesting if inventory transshipments can take place between the stores.
 - We then need to consider the simultaneous decisions for (z_1, z_2) , taking into account the correlation structure of (Y_1, Y_2) .

A typical operational problem

- If we start with the assumption that the probability distribution of
 Y is known, then we have optimization frameworks (e.g.
 stochastic programming) to address such problems even at large scale.
- Some smaller scale problems can be solved analytically (the single-period random demand newsvendor problem is an example).

$$\min_{q} c_u E[(D-q)^+] + c_o E[(q-D)^+]$$

where D is the random demand, q is the order quantity and c_u and c_o are the underage and overage costs.

A typical operational problem

- Machine learning (in the supervised learning framework) starts with data $(y_1, x_1), (y_2, x_2)...(y_n, x_n)$ and focuses on the prediction problem of Y|X
- and proposes a number of effective tools.
- On the other hand, prescriptive analytics focuses on:

$$\min_{\mathbf{z}} E[c(\mathbf{Y}|\mathbf{X}=\mathbf{x},\mathbf{z})]$$

- and of course also on finding the minimizer **z***.
- Note that the typical ML-based problem is also an optimization problem where some error function is minimized.
- Prescriptive analytics therefore considers such nested optimization problems one for estimation, the other on operational cost minimization.

Semiconductor Yield: SECOM data

Date	Pass/Fail	f1	f2	f3	f4	 f589	f590
19/07/2008	1	3030.93	2564	2187.733	1411.127	NaN	NaN
19/07/2008	1	3095.78	2465.14	2230.422	1463.661	0.006	208.2045
19/07/2008	0	2932.61	2559.94	2186.411	1698.017	0.0148	82.8602
19/07/2008	1	2988.72	2479.9	2199.033	909.7926	0.0044	73.8432
19/07/2008	1	3032.24	2502.87	2233.367	1326.52	0.0044	73.8432
19/07/2008	1	2946.25	2432.84	2233.367	1326.52	0.0052	44.0077
19/07/2008	1	3030.27	2430.12	2230.422	1463.661	0.0052	44.0077
19/07/2008	1	3058.88	2690.15	2248.9	1004.469	0.0063	95.031
19/07/2008	1	2967.68	2600.47	2248.9	1004.469	0.0045	111.6525
19/07/2008	1	3016.11	2428.37	2248.9	1004.469	0.0073	90.2294
19/07/2008	0	2994.05	2548.21	2195.122	1046.147	0.0071	57.8122
19/07/2008	0	2928.84	2479.4	2196.211	1605.758	0.0081	75.5077
20/07/2008	1	2920.07	2507.4	2195.122	1046.147	0.0034	52.2039
21/07/2008	1	3051.44	2529.27	2184.433	877.6266	0.0034	52.2039
21/07/2008	0	2963.97	2629.48	2224.622	947.7739	0.0084	142.908
22/07/2008	1	2988.31	2546.26	2224.622	947.7739	0.0045	100.2745
22/07/2008	1	3028.02	2560.87	2270.256	1258.456	0.0042	82.0989
22/07/2008	1	3032.73	2517.79	2270.256	1258.456	0.0042	82.0989
22/07/2008	1	3040.34	2501.16	2207.389	962.5317	0.0042	82.0989

1567 observations for yield outcome with 590 associated features, https://archive.ics.uci.edu/ml/datasets/SECOM

The Lot-Sizing Problem: the Model with features

- In reality, D and Y may depend on some features X and W.
- Given that $\mathbf{X} = (x_1, x_2, ..., x_n)$ and $\mathbf{W} = (w_1, w_2, ..., w_n)$, we would then solve:

$$\min_{Q} bE[(D|(\mathbf{X}, \mathbf{W}) - QY|(\mathbf{X}, \mathbf{W}))^{+}] + hE[(QY|(\mathbf{X}, \mathbf{W}) - D|(\mathbf{X}, \mathbf{W}))^{+}]$$

Some of the things to do

- Use predictive methods to obtain a yield prediction as a function of the features
 - Model reduction: find those features that improve predictions and eliminate others
- Extract information about yield probability distribution to use in the optimization formulation
 - Predicting the average yield rate is not enough because defaulting a contract because of insufficient quantity is much more expensive than overproduction.
- Assess the benefits of using feature information to make the lot-size decision.

The Newsvendor Problem

- A single-period random demand inventory problem (the newsvendor problem). We have to order a quantity in advance of the demand realization.
- No opportunity to reorder during the sales season, unsatisfied demand is lost
- Unsold items are salvaged at a value below their purchasing cost.
- Since demand is not known with certainty, there will be a mismatch between the supply and demand.
- Assume that we somehow know the distribution of random demand D. We can the maximize the expected profit:

$$\max_{q} E \left[-cq + p \min(q, D) + s(q - D)^{+} \right]$$

p: sales price, c: purchase cost, s: salvage value and p>c>s.

The Newsvendor Problem

- In practice, we might have data that are past observations of realized demand $d_1, d_2, ..., d_n$.
- We then have two basic alternatives i) fit a probability distribution to the data and obtain the corresponding random variable D ii) Use the sample as our 'world' and perform empirical optimization. This is called sample average approximation (and empirical risk minimization in ML).
- We assign a weight that equals 1/n to each observation and solve the following deterministic problem

$$\max_{q} -cq + \frac{\sum_{i=1}^{n} p \min(q, d_i) + s(q - d_i)^{+}}{n}$$

 Note that the solution of the above problem finds the optimal order quantity that would maximize the average profit for the sample.

Where we are headed

- How should we solve such problems when there is data for Y?
- How should we solve such problems when there are features X for Y (covariates)?
- What if the data includes time series?
- We'll see that there can be many potential features even based on the time series information. Can we handle many features efficiently?
- What if the number of potential features is much larger than the sample size (200 features and a sample size of 100)?

Where we are headed

- Some relevant and interesting problems are dynamic in nature
- Can we handle data-based dynamic optimization?
 - Approximate stochastic dynamic programming / reinforcement learning

A typical problem

- In practice (reality), the probability distribution of Y is not known with certainty but we may have some past observations on hand for Y: (y₁, y₂,...y_n).
- We may have observed demands of (28,43) at the two stores on day 1, (52, 25) on day 2 and so on.
- We then have options to "fit" a joint probability distribution using the observations or use the demand observations as scenarios that become inputs to the optimization problem.
 - For instance, we may fit a bivariate normal distribution to the data that specifies, the means, the standard deviations and the correlation.
 - A little more on this later.

Fitting a probability distribution

- Let us assume that we have an i.i.d sample of observations for **Y** (after some data transformations).
 - Obtaining and i.i.d. sample requires cleaning up many things in practice through data transformations.
- Eventually, we have something that may look like: $y_1 = 24$, $y_2 = 35$, $y_3 = 11$, $y_4 = 48$,..., $y_n = 55$.
- Or: $y_1 = 24.2$, $y_2 = 35.4$, $y_3 = 11.9$, $y_4 = 48.1$,..., $y_n = 55.3$.
- We may plot the histogram of the data and explore its shape (monotone, unimodal, multimodal, symmetrical, skewed).
- And take a guess for continuous or a discrete distribution to fit.

Fitting a probability distribution

- Let's assume we have a sample of iid demand observations $d_1, d_2, ... d_n$.
- We think that this sample might correspond to a Poisson r.v. with parameter λ :

$$p_D(x) = \frac{\lambda^x e^{-\lambda}}{x!} \ x = 0, 1, 2, ...$$

• Since λ is not known, We look for the value of λ that makes the sample as likely as possible. This is an optimization problem:

$$\max_{\lambda} \prod_{i=1}^{n} p_D(d_i, \lambda) = \prod_{i=1}^{n} \frac{\lambda_i^d e^{-\lambda}}{d_i!}$$

This approach to find the optimal fit of the parameter through likelihood maximization is called Maximum Likelihood Estimation (MLE).

Fitting a probability distribution (MLE)

• The solution of the above problem:

$$\lambda^* = \arg\max_{\lambda} \prod_{i=1}^n p_D(d_i, \lambda)$$

corresponds to the value that maximizes the likelihood of the sample with respect to a given distribution.

And is called the Maximum Likelihood Estimation (MLE) estimator.

 To solve the optimization problem, we take the logarithm of the likelihood function to convert the product to a sum. Ex: Poisson (1), sample x, x, x, ... x,
The likelihood function:

 $L\left(x_{1},x_{1},x_{n};\lambda\right)=\frac{\lambda^{x_{1}}e^{-\lambda}}{x_{1}!}\frac{\lambda^{x_{1}}e^{-\lambda}}{x_{2}!}\frac{\lambda^{x_{1}}e^{-\lambda}}{x_{n}!}$

We take logs to concert the product to a sum

d (x1,x2...x1) = log [(x1,x2...xn;1) x,log \- \- log (x.!) + x2log \- \- log (x.!)
+... + xnlog \- \- \- log (xn!)

$$\frac{dl}{d\lambda} = \frac{\sum x_i}{\lambda} - n \Rightarrow \lambda^{\infty} = \frac{\sum x_i}{n}$$

Ex: Normal (M, J)

$$L(x_1, x_1, x_n; M, \sigma) = \frac{1}{\sqrt{2}} e^{\frac{|x_1, x_1|^2}{2\sigma^2}} \cdot \frac{1}{\sqrt{2\pi}} e^{\frac{|x_1, x_1|^2}{2\sigma^2}}$$

$$l(x_1, x_1, x_n; M, \sigma) = \frac{1}{2} \log(2\pi) - n \log \sigma - \frac{1}{2} (x_1, x_1)^2$$

$$\frac{dl}{dx} = \frac{1}{2} \frac{1}{2} \frac{1}{2} (x_1, x_1)^2 + \frac{1}{2} \frac{1}{2} (x_1, x_1)^2$$

$$\frac{dl}{d\sigma} = \frac{1}{2} \frac{1}{2} \frac{1}{2} (x_1, x_1)^2 + \frac{1}{2} \frac{1}{2} (x_1, x_1)^2$$

$$\frac{dl}{d\sigma} = \frac{1}{2} \frac{1}{2} \frac{1}{2} (x_1, x_1)^2 + \frac{1}{2} \frac{1}{2} (x_1, x_1)^2$$

$$\frac{dl}{d\sigma} = \frac{1}{2} \frac{1}{2} \frac{1}{2} (x_1, x_1)^2$$

$$\frac{dl}{d\sigma} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} (x_1, x_1)^2$$

$$\frac{dl}{d\sigma} = \frac{1}{2} \frac{1}$$

Fitting a probability distribution

- We are able to 'optimally' estimate the parameters of different distributions (e.g. Poisson, Binomial, negative binomial etc.) given the data available.
- We can then measure the distance of the candidate distribution to the sample by several different approaches.
- The Kolmogorov-Smirnov goodness-of-fit test uses the squared distance in an interval. We separate the real line into K intervals and for each interval we compute e_k the expected number of observations that falls in the interval in the candidate distribution and also count o_k , the number of observations that fall in the same interval.
- The K-S statistic:

$$\sum_{k=1}^K \frac{(o_k - e_k)^2}{e_k}$$

has a χ^2 distribution which leads to a simple hypothesis test.

Fitting a probability distribution

- We then find the best fitting distribution among many candidates by comparing the values of the K-S statistic.
- Or do the same for a different distance metric (such as the Kullback-Liebler (KL divergence))

$$KL(f:g) = \int f(x) \log \left(\frac{f(x)}{g(x)}\right) dx$$

Reminder: estimators and properties

- A crucial issue in statistics is to infer population properties from a finite sample. An estimator is a quantity that can be computed from the sample for this purpose.
- We might be interested in estimating the mean μ of a population for which have an iid sample $x_1, x_2, ..., x_n$.
- The average of the sample \bar{x} is an estimator.
- But there are other estimators than \bar{x} . x_1 is also an estimator, $(2x_1 + x_2)/3$ is another one.
- In fact, any $f(x_1, x_2, ...x_n)$ is a potential estimator.

Reminder: estimators and properties

- Let us note that sample based estimators are themselves random variables.
 Each time we draw a new random sample, we'll get a different value for our estimator.
- Unbiasedness: A desirable property for an estimator is that it does not have a systematic error on the average (in expectation). The sample mean \bar{X} is an unbiased estimator of the population mean since:

$$E[\bar{X}] = \mu.$$

• Note that there are many unbiased estimators: X_1 and $(2X_1 + X_2)/3$ are also unbiased. Since:

$$E[X_1] = E[(2X_1 + X_2)/3] = \mu.$$

Reminder: estimators and properties

- Variance of the Estimator: Among unbiased estimators, it makes sense to prefer one with a lower variance.
- Assuming that our sample has variance σ^2 :

$$Var[\bar{X}] = \frac{\sigma^2}{n}$$

• whereas for the other estimators:

$$Var[X_1] = \sigma^2 \text{ and } Var[(2X_1 + X_2)/3] = \frac{5\sigma^2}{9}.$$

• We will see that for demand forecasting there is a trade-off between responsiveness and low variance.