General Linear Model

Part 3.3 Linear Regression, Correlation, Hypothesis Testing

Types of Relationships

Types of Relationships

Types of Relationships

No relationship

Relationships Between Variables

Some examples:

- 1. X = Advertisement, Y = Sales
- 2. X = Money growth, Y = Inflation
- 3. X = Income, Y = Willingness to pay for a car

Goal:

Explain relationship between X and Y

Focus:

Linear relationships

Linear Regression: Roadmap

Simple (Linear) Regression

$$Y = \frac{\beta_0}{\beta_1} + \frac{\beta_1}{\beta_1} X + \varepsilon$$

 $(\varepsilon : unknown error term)$

Multiple (Linear) Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

 $(\varepsilon : unknown error term)$

The approaches we have used so far (normal distribution, point estimation, interval estimation, hypothesis testing,) are applied to each β_j and to ε .

Simple Linear Regression

One outcome variable: *Y*

One predictor variable: X

Data (paired): (X, Y)

The basic ideas

- Y as a linear function of X
- Explain the impact of changes in X on Y
- Predict the value of Y based on a given value of X

Example: Car Dealership

A key piece of information for securing the sale of a car is understanding the willingness to pay of the potential customer.

This helps the salesperson focusing on a certain range of car makes and models that might secure the sale at the best possible competitive price.

How can income information be used?

- → Use it to predict customers' spending?
- → How accurate is the spending prediction?

Example: Car Dealership

1. What are we modeling?

2. How do we interpret the model?

Population Model

... describes our assumptions about the population relationship between Y and X.

Assumptions:

- 1. Y and X are <u>linearly related</u> (sometimes called the <u>tendency</u>).
- 2. Individual observations can differ from the tendency in a random way (These differences are called error terms).
- 3. The error terms follow a standard normal distribution.

Let's look at some pictures to show these assumptions!

Simple Linear Regression: Population

Simple Linear Regression: Tendency

Simple Linear Regression: Tendency

Simple Linear Regression: Tendency

Simple Linear Regression

Linear Regression: Population vs Sampling

Population Model vs Sample Model

• Regression equation for the *population model*:

$$Y = \beta_0 + \beta_1 X + \varepsilon, \qquad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

• Regression equation for the *sample model*:

$$Y = \widehat{\beta}_0 + \widehat{\beta}_1 X, \qquad \varepsilon \sim N(0, S_{\varepsilon}^2)$$

Estimate The Regression Line

Estimate The Regression Line

Consider the i^{th} person

- y_i is the observed value of Y when $X = x_i$
- \hat{y}_i is the estimated value of Y when $X = x_i$; $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- Residual: $e_i = y_i \hat{y}_i$, i = 1, ..., n

Choose $\hat{\beta}_0$, $\hat{\beta}_1$ so that the sum squared residuals is as small as possible, i.e., minimize

$$SSE = \sum_{i} (\mathbf{e_i})^2 = \sum_{i} (\mathbf{y_i} - \hat{\mathbf{y}_i})^2$$

Wiggle the estimated regression line around until you find the minimum of SSE.

Least Squares Method

Python does it for us!

Estimate The Regression Line

Choose $\hat{\beta}_0$, $\hat{\beta}_1$ so that the sum squared residuals is as small as possible:

Focus 1: Estimate the Linear Relationship

- Obtain the regression line (Get $\hat{\beta}_0$, $\hat{\beta}_1$, S_{ε})
- Point estimation of β_0 and β_1 (Interpret the regression line)

Example Pittsburgh Housing Prices

Population Model vs. Sample Model

Regression equation for the *population model*:

$$Y = \beta_0 + \beta_1 X + \varepsilon, \qquad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

Regression equation for the *sample model*:

$$Y = \widehat{\beta}_0 + \widehat{\beta}_1 X, \qquad \varepsilon \sim N(0, S_{\varepsilon}^2)$$

Example Pittsburgh Housing Prices

```
housing_raw = pd.read_csv('pgh_housing_raw.csv', low_memory=False)
housing_raw.columns
```

```
import pandas as pd
import statsmodels.api as sm

# Prepare variables
X = sm.add_constant(housing['FINISHEDLIVINGAREA'])
y = housing['SALEPRICE']

# Run regression
model = sm.OLS(y, X).fit()

# Print results
print(model.summary())
```

Example

Pittsburgh Housing Prices = -44610 + 98.473 X

 $Y = \hat{\beta}_0 + \hat{\beta}_1 X$

	0LS	Regression	Results
--	-----	------------	---------

Dep. Variable:	SALEPRICE	R-squared:	0.143
Model:	0LS	Adj. R-squared:	0.143
Method:	Least Squares	F-statistic:	3.546e+04
Date:	Tue, 03 Dec 2024	<pre>Prob (F-statistic):</pre>	0.00
Time:	12:30:39	Log-Likelihood:	-2.8852e+06
No. Observations:	212020	AIC:	5.770e+06
Df Residuals:	212018	BIC:	5.770e+06
D C 14 1 7			

Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-4.461e+04	994.845	-44.837	0.000	-4.66e+04	-4.27e+04
FINISHEDLIVINGAREA	98.4736	0.523	188.300		97.449	99.499

Omnibus:	919112.701	Durbin-Watson:	1.745
Prob(Omnibus):	0.000	Jarque-Bera (JB):	10774647866709.926
Skew:	132.135	Prob(JB):	0.00
Kurtosis:	34925.579	Cond. No.	4.43e+03

X

 $\hat{\beta}_0$

Population Model vs. Sample Model

Regression equation for the *population model*:

$$Y = \beta_0 + \beta_1 X + \varepsilon, \qquad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

Regression equation for the *sample model*:

$$Y = \widehat{\beta}_0 + \widehat{\beta}_1 X, \qquad \varepsilon \sim N(0, S_{\varepsilon}^2)$$

Example

Pittsburgh Housing Prices = -44610 + 98.473 X

 $Y = \hat{\beta}_0 + \hat{\beta}_1 X$

	0LS	Regression	Results
--	-----	------------	---------

Dep. Variable:	SALEPRICE	R-squared:	0.143
Model:	0LS	Adj. R-squared:	0.143
Method:	Least Squares	F-statistic:	3.546e+04
Date:	Tue, 03 Dec 2024	<pre>Prob (F-statistic):</pre>	0.00
Time:	12:30:39	Log-Likelihood:	-2.8852e+06
No. Observations:	212020	AIC:	5.770e+06
Df Residuals:	212018	BIC:	5.770e+06
D C 14 1 7			

Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-4.461e+04	994.845	-44.837	0.000	-4.66e+04	-4.27e+04
FINISHEDLIVINGAREA	98.4736	0.523	188.300		97.449	99.499

Omnibus:	919112.701	Durbin-Watson:	1.745
Prob(Omnibus):	0.000	Jarque-Bera (JB):	10774647866709.926
Skew:	132.135	Prob(JB):	0.00
Kurtosis:	34925.579	Cond. No.	4.43e+03

X

 $\hat{\beta}_0$

Example Pittsburgh Housing Prices

```
Inp.sqrt(model.scale) Y = \hat{\beta}_0 + \hat{\beta}_1 X \qquad \text{where } \varepsilon \sim N(0, S_{\epsilon}^2) = -44610 + 98.473 X \qquad \text{where } \varepsilon \sim N(0, 196615^2)
```

Std. Err. Reg.

Standard Error of regression (S_{ε})

- $\approx \sigma_{\varepsilon}$ in the distribution of the error term $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$
- Average deviation from the best fit line

Example Pittsburgh Housing Prices

```
Inp. sqrt (model. scale) Y = \hat{\beta}_0 + \hat{\beta}_1 X \qquad \text{where } \varepsilon \sim N(0, S_{\epsilon}^2) = -44610 + 98.473 X \qquad \text{where } \varepsilon \sim N(0, 197.3^2) Std. Err. Reg. Price = -44610 + 98.473 Area, \qquad \varepsilon \sim N(0, 196615^2)
```

Standard Error of regression (S_{ε})

- $\approx \sigma_{\varepsilon}$ in the distribution of the error term $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$
- Average deviation from the best fit line

Summary

Simple regression

- *Y*: dependent variable; *X*: independent variable
- Population model: $Y = \beta_0 + \beta_1 X + \varepsilon$, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$
- Sample model: $Y = \hat{\beta}_0 + \hat{\beta}_1 X$, $\varepsilon \sim N(0, S_{\varepsilon}^2)$

Regression output

- Standard error of the regression (S_{ε} as the estimate of σ_{ε})
- for the intercept β_0 and the slope β_1 : $\hat{\beta}$

Focus 1: Estimate the Linear Relationship

- Obtain the regression line (Get $\hat{\beta}_0$, $\hat{\beta}_1$, S_{ε})
- Point estimation of β_0 and β_1 (Interpret the regression line)
- Interval estimation of β_0 and β_1
- Inferences about the slope β_1

$$H_0: \beta_1 = 0$$

 H_0 : β_1 = some number other than 0

Example

const

FINISHEDLIVINGAREA

 $Price = -44.9781 + 0.0997 Area, \varepsilon \sim N(0, 197.3^2)$

99.499

Pittsburgh Housing Prices

OLS Regression Results			
Dep. Variable: Model: Method: Date: Time:		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood:	0.143 0.143 3.546e+04 0.00 -2.8852e+06
No. Observations: Df Residuals: Df Model: Covariance Type:	212020 212018 1 nonrobust	AIC: BIC:	5.770e+06 5.770e+06

 \hat{eta}_1 : point estimate of eta_1

 $S_{\widehat{\beta}_1}$: std. dev. (std. error) of $\hat{\beta}_1$

units of $S_{\widehat{\beta}_1}$ that $\hat{\beta}_1$ is from 0

p-value to test H_0 : $\beta_1 = 0$ I p < 0.05, $\beta_1 \neq 0$ at 95%

0.000

97.449

188.300

95% C.I for β_1

Omnibus: 919112.701 Durbin-Watson: 1.745 Prob(Omnibus): Jarque-Bera (JB): 10774647866709.926 0.000 Prob(JB): Skew: 132.135 0.00 Kurtosis: 34925.579 4.43e+03 Cond. No.

0.523

98.4736

 $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$

Summary

- Standard Error of $\hat{\beta}_i$
- Confident interval of β_i
- Hypothesis testing on the slope coefficient β_1

$$H_0: \beta_1 = 0$$

 H_0 : β_1 = some number other than 0

Focus 2: How good is the model fit?

• Does the relationship between X and Y follow:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$

- Does the population model (population relationship) exist at all?
- There are different ways to answer this question
 - 1. Test statistics, *p*-value of the regression coefficient
 - 2. Standard Error of the Regression
 - 3. R^2 (Coefficient of Determination)

Example

Covariance Type:

 $Price = -44.9781 + 0.0997 Area, \varepsilon \sim N(0, 197.3^2)$

Pittsburgh Housing Prices

OLS Regression Results

Dep. Variable: **SALEPRICE** R-squared: 0.143 Model: 0.143 0LS Adj. R-squared: Method: Least Squares F-statistic: 3.546e+04 Tue, 03 Dec 2024 Prob (F-statistic): Date: -2.8852e+06 Time: 12:30:39 Log-Likelihood: No. Observations: 212020 AIC: 5.770e+06 5.770e+06 Df Residuals: 212018 BIC: Df Model:

nonrobust

Proportion of the variation in Y

R²: Coefficient of Determination

explained by the regression model

std err [0.025 0.975] P>|t| coef -4.461e+04 -44.8370.000 -4.66e+04 -4.27e+04const 994.845 FINISHEDLIVINGAREA 98.4736 0.523 188.300 0.000 97.449 99.499

Omnibus: 919112.701 Durbin-Watson: 1.745

Prob(Omnibus): 0.000 Jarque-Bera (JB): 10774647866709.926

 Skew:
 132.135
 Prob(JB):
 0.00

 Kurtosis:
 34925.579
 Cond. No.
 4.43e+03

 $\beta_1 \neq 0$, linear relationship exists

Proportion of the variation in Y that can be explained by the regression model:

$$Y = \hat{\beta}_0 + \hat{\beta}_1 X$$

Proportion of the variation in Y that can be explained by:

- (1) the variation in X
- (2) the estimated relationship $Y = \hat{\beta}_0 + \hat{\beta}_1 X$

Measures of Variation

Measures of Variation

Measures of Variation

Sum Squared Total

Fixed by data

• Measures total sample variation of Y around its mean \overline{Y}

Sum Squared Regression

$$|SSR| = \sum (\hat{Y}_i - \overline{Y})^2$$

want this large

• Measures variation in *Y* attributable to the regression line (i.e. factors that can be explained by *X* and the regression line)

Sum Squared Error

$$|SSE| = \sum (Y_i - \widehat{Y}_i)^2$$

want this small

• Measures variation in *Y* attributable to factors other than *X* (i.e., factors not captured by *X* and the regression line)

... the proportion of the variation in Y in the sample that can be explained by the regression model.

$$R^2 = \frac{\text{SSR}}{\text{SST}} \qquad 0 \le R^2 \le 1$$

... the proportion of the variation in Y in the sample that can be explained by the regression model.

Perfect linear relationship between X and Y:

• 100% of the variation in Y is explained by variation in X

... the proportion of the variation in Y in the sample that can be explained by the regression model.

Weaker linear relationship between X and Y:

• Some but not all the variation in Y is explained by variation in X

But be careful...

 R^2 has a very appealing interpretation but...

- Often meaningless to compare R^2 between models.
- Might provide no info on the prediction power and inferential quality of the model
- Could be more worthwhile to explain 50% variation of *Y* in Model 1 than to explain 70% variation of *Y* in Model 2.

Always think about the goal of your analysis:

• What are you using a regression for?

Summary

Simple regression

- *Y*: dependent variable; *X*: independent variable
- Population model: $Y = \beta_0 + \beta_1 X + \varepsilon$, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$
- Sample model: $Y = \hat{\beta}_0 + \hat{\beta}_1 X$, $\varepsilon \sim N(0, S_{\varepsilon}^2)$
- Regression output
 - Standard error of the regression: S_{ε}
 - Coefficient of determination: R^2
 - Point & interval estimations, and hypothesis testing of $\hat{\beta}_i$