IMO Mock 001

Time: 4:30 hours Total Marks: 21

Problem 1: Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, the following equation holds:

$$f(xy + f(x)) = x f(y) + f(x)$$

Problem 2: The points A_1 , B_1 , C_1 lie on the sides BC, CA and AB of $\triangle ABC$ respectively. Suppose that $AB_1 - AC_1 = CA_1 - CB_1 = BC_1 - BA_1$. Let O_A , O_B and O_C be the circumcentres of triangles AB_1C_1 , A_1BC_1 and $A_1B_1C_2$ respectively. Prove that $\triangle ABC$ and $\triangle O_AO_BO_C$ have same incentre.

Problem 3: Fine all positive integers $m, n \ge 2$, such that

- (i) m+1 is a prime number of type 4k-1
- (ii) there is a (positive) prime number p and non-negative integer a, such that

$$\frac{m^{2^n-1}-1}{m-1} = m^n + p^a.$$

Problems collected by Adib Hasan (http://www.facebook.com/phlembac.hidden)