

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

482739647

CHEMISTRY 9701/35

Advanced Practical Skills

October/November 2010

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 13 and 14.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session
Laboratory

For Examiner's Use				
1				
2				
3				
Total				

This document consists of 13 printed pages and 3 blank pages.

DC (NF) 28264/3 © UCLES 2010

[Turn over

1 FA 1 is an aqueous solution of hydrochloric acid, HC*l.* FA 2 is aqueous sodium hydroxide containing 10.00 g dm⁻³ NaOH.

For Examiner's Use

You are to determine the concentration, in mol dm⁻³, of the hydrochloric acid in **FA 1**.

(a) Method

- Fill a burette with FA 2.
- Pipette 10.0 cm³ of **FA 1** into a conical flask.
- Add to the flask a few drops of the acid-base indicator provided.
- Place the flask on a white tile.
- Titrate the acid in the flask with FA 2.

You should perform a rough titration.

In the space below record your burette readings for this rough titration.

The rough titre is		cm ³ .
--------------------	--	-------------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Record in a suitable form below all of your burette readings and the volume of FA 2 added in each accurate titration.
- Make certain any recorded results show the precision of your practical work.

I	
II	
Ш	
IV	
V	
VI	
VII	

[7]

(b) From your titration results obtain a suitable value to be used in your calculation. Show clearly how you have obtained this value.

 $10.0\,\text{cm}^3$ of **FA 1** required cm³ of **FA 2**.

[1]

_			
Γ		latio	nc
Ua.	Lu	latic	כווי

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(c) (i) Calculate the concentration, in mol dm $^{-3}$, of the sodium hydroxide in FA 2. FA 2 contains 10.00 g dm $^{-3}$ NaOH. [A_r : H, 1.0; O, 16.0; Na, 23.0]

The concentration of sodium hydroxide in **FA 2** is mol dm⁻³.

(ii) Calculate how many moles of sodium hydroxide are contained in the volume recorded in (b).

..... mol of NaOH.

(iii) Deduce how many moles of hydrochloric acid were pipetted into the conical flask and calculate the concentration, in mol dm⁻³, of the hydrochloric acid in **FA 1**.

 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$

I II

[Total: 10]

4

BLANK PAGE

2 FA 3 is crushed impure calcium carbonate, CaCO₃.

FA 4 is 0.500 mol dm⁻³ hydrochloric acid

FA 5 is 0.280 mol dm⁻³ sodium hydroxide.

For Examiner's Use

You are to determine the percentage purity of calcium carbonate by dissolving a measured mass of **FA 3** in a known volume of hydrochloric acid, which is in excess.

The hydrochloric acid remaining after all the calcium carbonate has dissolved can be determined by titration with aqueous sodium hydroxide, **FA 4**.

You may assume that any impurity present in the calcium carbonate does **not** react with hydrochloric acid.

(a) Method – Read through the instructions before starting any practical work.

- Weigh and record the mass of an empty boiling-tube.
- Add to the boiling-tube between 2.60 g and 2.80 g of FA 3.
- Reweigh the tube and its contents.
- In part **(b)** of the method you will tip the **FA 3** into hydrochloric acid, then re-weigh the tube and any residual **FA 3**.

In the space below record, in an appropriate form, all of the balance readings and the mass of **FA 3** used in the experiment.

I	
II	

[2]

(b) Method – Read through the instructions before starting any practical work.

- Pour approximately 150 cm³ of **FA 4** into a 250 cm³ beaker.
- Add, a little at a time with constant stirring, the weighed FA 3 to the acid in the beaker.
- After each small addition stir until the effervescence has ceased and all the solid has dissolved.
- Reweigh the tube and any residual **FA 3**. Record the mass in **(a)**.
- Transfer the solution in the beaker to the 250 cm³ graduated (volumetric) flask labelled FA 6.
- Rinse the beaker several times with <u>a small amount of FA 4</u> and add the rinsings to the graduated flask.
- Make up the solution to the 250 cm³ mark by adding FA 4, not water.
- Shake the flask to obtain a uniform solution.

Titration

Fill a burette with FA 5.

Pipette 25.0 cm³ of FA 6 from the graduated flask into a conical flask.

- Add to the flask a few drops of the acid-base indicator provided.
- Place the flask on a white tile.
- Titrate the acid in the flask with FA 5.

You should perform a rough titration.

In the space below record your burette readings for this rough titration.

The rough titre is		cm ³
--------------------	--	-----------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Record in a suitable form below all of your burette readings and the volume of **FA 5** added in each titration.
- Make certain any recorded results show the precision of your practical work.

ı	
II	

[2]

(c) From your titration results obtain a suitable value to be used in your calculation. Show clearly how you have obtained this value.

 $25.0\,\text{cm}^3$ of **FA 6** required cm³ of **FA 5**.

((d)	Ca	lcu	ıla	tic	วท	s
٠,	w,	Οu		IIG	.,	,,,	v

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

Remember – **FA 4** is 0.500 mol dm⁻³ hydrochloric acid **FA 5** is 0.280 mol dm⁻³ sodium hydroxide.

(i) Calculate how many moles of sodium hydroxide are contained in the volume recorded in (c).

..... mol of NaOH

(ii) Deduce how many moles of hydrochloric acid reacted with the sodium hydroxide in (i) and calculate how many moles of hydrochloric acid were present in the 250 cm³ graduated flask labelled **FA 6**.

 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H₂O(l)$

..... mol of HC1 were present in the graduated flask.

(iii) Calculate how many moles of hydrochloric acid were present in 250 cm³ of **FA 4**.

250 cm³ of **FA 4** contained mol HC*l*.

(iv) Calculate the following.

(answer to (d)(iii) – answer to (d)(ii))

This is the amount of hydrochloric acid that reacted with the calcium carbonate in the weighed sample of **FA 3**.

..... mol of HC1 reacted with the calcium carbonate in g FA 3.

Ш

IV

٧

	(v)	with hydrochloric acid. This is the mass of pure CaCO ₃ in the weighed sample of FA 3 .
		$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$
		[A _r : Ca, 40.0; C, 12.0; O, 16.0]
		The weighed sample of FA 3 contains g of CaCO ₃ .
	(vi)	Calculate the percentage of calcium carbonate, CaCO ₃ , in FA 3 by evaluating the following expression.
		$\frac{\text{mass of CaCO}_3 \text{ from (d)(v)}}{\text{mass of FA 3 used, from (a)}} \times 100$
		Complete your evaluation even if your answer is greater than 100%
		FA 3 contains % calcium carbonate. [5]
(e)		5g of pure calcium carbonate are required to neutralise all the hydrochloric acid in 0 cm ³ of FA 4 .
		were instructed to measure a mass between 2.60g and 2.80g of FA 3 in this eriment.
		at difficulties might you encounter if you used a mass of about 5.50 g of FA 3 in this eriment?
		[1]

((f) (i)	Com	plete	the	follov	vina	table
١	٠.	, ,	•	00111	PICIC		101101	V 11 19	labic

The balance used in the experiment displays the mass to		decimal places.
The maximum error in a single balance reading is	±	g.
The maximum error in measuring the mass of FA 3 is	±	g.

For
Examiner's
Use

(g) (i) The percentage of calcium carbonate in the weighed sample of FA 3 can also be

The maximum error in the mass of **FA 3** is %.

(ii) Calculate the maximum percentage error in the mass of FA 3 measured in (a).

found by investigating the thermal decomposition of the compound into calcium oxide and carbon dioxide.

Write a balanced equation, including state symbols, for this thermal decomposition.

(ii) Briefly outline the key measurements to be made in order to find the percentage of calcium carbonate in FA 3 by this method.

1.	
2.	
4.	
5.	
6.	

(You do not have to use all of the numbered steps in your answer)

[2]

[Total: 14]

3 FA 7, **FA 8** and **FA 9** are aqueous solutions, each containing one cation and one anion from those listed on pages 13 and 14 in the Qualitative Analysis Notes.

For Examiner's Use

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate** place in your observations.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling-tube MUST be used. Rinse and reuse test-tubes wherever possible.

(a) Use aqueous sodium hydroxide and aqueous ammonia, in separate tests, to identify the cation present in FA 7, FA 8 and FA 9.

Present your results for each of the solutions in a suitable form below.

Conclusion

Complete the following table.

solution	cation	supporting evidence
FA 7		
FA 8		
FA 9		

[6]

FA 7	on	SC) ₄ ^{2–} present	
FA 8				
FA 9				
Select a further reagent that will enab	ole you to ic	dentify the I	nalide ion pr	esent in any
Reagent				

[5]

(c) FA 10 is a white crystalline solid which turns into another white solid, FA 11, when heated strongly.

For Examiner's Use

Carry out the tests on **FA 10** and **FA 11** in the table below.

Observe carefully at each stage and record all of your observations in the table.

	test	observations
(i)	Place 1 spatula measure of FA 10 in a hard glass test-tube. Heat the solid very strongly until no further change is seen.	
(ii)	Place 1 <u>small</u> spatula measure of FA 11 in a test-tube and add 1 cm depth of dilute hydrochloric acid.	
	As soon as you have complete	d your observation in (ii), fill the test-tube with water.

I	
II	
Ш	
IV	
V	

[5]

[Total: 16]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ia.a	reaction with			
ion	NaOH(aq)	NH ₃ (aq)		
aluminium, Al^{3+} (aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on heating	_		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.		
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.		
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess		
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess		
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess		
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess		

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate,	CO ₂ liberated by dilute acids
CO ₃ ²⁻	
chromate(VI),	yellow solution turns orange with H ⁺ (aq);
CrO ₄ ²⁻ (aq)	gives yellow ppt. with Ba ²⁺ (aq);
010 ₄ (aq)	gives bright yellow ppt. with Pb ²⁺ (aq)
chloride,	gives white ppt. with Ag+(aq) (soluble in NH ₃ (aq));
C <i>l</i> ⁻(aq)	gives white ppt. with Pb ²⁺ (aq)
bromide,	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq));
Br ⁻ (aq)	gives white ppt. with Pb ²⁺ (aq)
iodide,	gives yellow ppt. with Ag+(aq) (insoluble in NH ₃ (aq));
I ⁻ (aq)	gives yellow ppt. with Pb ²⁺ (aq)
nitrate,	$\mathrm{NH_3}$ liberated on heating with $\mathrm{OH^-}(\mathrm{aq})$ and $\mathrm{A}\mathit{l}$ foil
NO ₃ ⁻ (aq)	
nitrite,	$\mathrm{NH_3}$ liberated on heating with $\mathrm{OH^-}(\mathrm{aq})$ and $\mathrm{A}\mathit{l}$ foil,
NO ₂ -(aq)	NO liberated by dilute acids (colourless NO → (pale) brown NO ₂ in air)
sulfate,	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute
SO ₄ ²⁻ (aq)	strong acid)
sulfite,	SO ₂ liberated with dilute acids;
SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) from orange to green

15

BLANK PAGE

16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

