Résolution d'un problème d'optimisation différentiable

Marc Bourqui

Victor Constantin Floriant Simond Ian Schori

January 3, 2013

Énoncé du problème

Trouver (une approximation de) la solution du problème suivant en appliquant le théorème de la plus forte pente:

$$\min_{x \in \mathbb{R}^2} (x_1 - 2)^4 + (x_1 - 2)^2 x_2^2 + (x_2 + 1)^2 \tag{1}$$

Réponses aux questions

(a) Implémenter la méthode de plus forte pente (Algorithme 11.3) à l'aide du logiciel MATLAB. Déterminer la taille du pas en appliquant la recherche linéaire, Algorithme 11.2 (les deux conditions de Wolfe).

Listing 1: pfp.m

```
% Methodes de descente pour l'optimisation non lineaire
                                                                                                                                                                                                                                              %
                                                                                                                                                                                                                                              %
          % sans contraintes
                                                                                                                                                                                                                                              %
                                                                                                                                                                                                                                              %
          % BOURQUI Marc
                                                                                                                                                                                                                                              %
          % CONSTANTIN Victor
                                                                                                                                                                                                                                              %
           % SCHORI Ian
                                                                                                                                                                                                                                              %
           % SIMOND Floriant
                                                                                                                                                                                                                                              %
10
           \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1
11
            function x = pfp(f, x0, alpha, useRL)
12
13
14
           useRLInner = useRL;
15
16
          17
          % Interface
          19
20
          % nom de la fonction a minimiser, qui est specifiee dans ...
                          le fichier 'f.m'
          % et qui est declaree sous forme de string
           fct = f;
23
24
25 % point initial
x = x0;
27
          75777777777777777777777
28
           % Parametres
29
          30
          % pour le critere d'arret
           epsilon = 0.001;
```

```
maxIter = 200
34
35
36
  % initialisation du nombre d'iterations
37
38
  % initialisation de la matrice qui stocke tous les ier[U+FFFD]
39
  \% un le(U+FFFD)= une colonne de cette matrice
40
41
  stock(:,i) = x0;
42
43
  44
  % Boucle principale
                               %
45
46
  47
48
  \% Critere d'arret: x a ateint la precision demand[U+FFFD] OU nb ...
49
      iterations max ateint
50
  while ( \text{normGradient}(\text{fct}, \text{stock}(:, i)) >= \text{epsilon} ) \&\& ( i < ... 
51
      maxIter )
      % mise a jour du nombre d'iterations
52
      i = i+1;
53
54
      % calcul et stockage de la valeur du nouveau x
55
      stock(:,i) = pfpInnerLoop(fct, stock(:,i-1), useRLInner);
56
57
  end
58
59
  % Calcul de la taille de la matrice contenant tous les x
60
  taille = size(stock,2);
61
62
  % Evaluation de la fonction en chaque point
63
  for i=1:taille
64
      valeurstock(i)=feval(fct, stock(:,i));
65
66
67
  % Affichage des r[U+FFFD]sultats %
70
  71
72
  disp('Valeur de la suite des x :');
73
74
75
  76
  disp (['Nombre d''iterations :
      num2str(i-1)
  disp (['Valeur de la fonction a l''optimum : ' ...
     num2str(feval(fct, stock(:,i)))] );
  disp('Valeur de l''optimum : ')
  xOptim = stock(:,i)'
80
  81
82
```

Listing 2: pfpInnerLoop.m

```
function x = pfpInnerLoop(f, x0, useRL)
1
2
       x = x0;
        alpha = 1;
        [fx, gfx] = feval(f, x);
       d = -gfx;
6
        if useRL
8
            beta1 = 0.5;
9
            beta2 = 0.75;
10
            lambda = 2;
11
            alpha = rl(f, x, fx, gfx, alpha, beta1, beta2, ...
12
                lambda);
13
        else
            %Soit on peut utiliser la fonction dans b) pour ...
14
                calculer le pas
            alpha = tp(f,x);
15
       end
16
       x \,=\, x \,+\, alpha \ *\, d\,;
17
  end
18
```

Listing 3: rl.m

```
function alpha = rl(f, x, fx, gfx, alpha0, beta1, beta2, ...
        lambda)
        alpha = alpha0;
2
         alphal = 0;
3
         alphar = inf;
4
5
         [fxad, fgxad] = feval(f, x + alpha * -gfx);
6
7
         while (fxad > fx + alpha * beta1 * gfx' * -gfx) \mid \mid ...
8
             \left(\,fgxad\,\,{}^{\shortmid}\ \ast\,\,-gfx\,<\,\,beta2\,\,\ast\,\,gfx\,\,{}^{\backprime}\ \ast\,\,-gfx\,\right)
              if fxad > fx + alpha * beta1 * gfx' * -gfx
9
                   alphar = alpha;
10
                   alpha = (alphal + alphar)/2;
11
```

```
\textcolor{red}{\texttt{elseif}} \hspace{0.2cm} \texttt{fgxad'} \hspace{0.2cm} * \hspace{0.2cm} -\texttt{gfx} \hspace{0.2cm} < \hspace{0.2cm} \texttt{beta2} \hspace{0.2cm} * \hspace{0.2cm} \texttt{gfx'} \hspace{0.2cm} * \hspace{0.2cm} -\texttt{gfx}
12
13
                                 alphal = alpha;
14
                                  if alphar < inf
15
                                          alpha = (alphal + alphar)/2;
                                          alpha = lambda * alpha;
                                 \quad \text{end} \quad
                        end
19
20
                        [fxad, fgxad] = feval(f, x + alpha * -gfx);
21
               end
22
      end
23
```

(b) Implémenter une fonction qui donne la taille du pas suivant:

$$\alpha_k = \frac{\nabla f(x_k)^T \nabla f(x_k)}{\nabla f(x_k)^T \nabla^2 f(x_k) \nabla f(x_k)}$$
 (2)

Quelle est la nature de ce pas? D'où cette formule vient-elle?

- (c) Comparer le comportement de l'algorithme en utilisant les pas (a) et (b).
- (d) Comparer la methode de plus forte pente et la methode quasi-Newton (qui est déjà implementée Série 3).