n-step temporal difference learning

Discounted future rewards

$$G_t = r_{\ell} + V(s')$$

$$r_{\ell} + \gamma r_{\ell'} + \gamma^{\ell} r_{\ell'} \dots + V(f_{\ell t_n})$$

Truncated future rewards

With 1-step learning						
State	Action					
	North	South	East	West		
(0,0)	0	0	0	0		
(0,1)	0	0	0	0		
(0,2)	0	0	0	0		
(1,2)	0	0	0	0		
(2,1)	0	0	0	0		
(2,2)	0	0 (0.45	0		
(2,3)	0	0	0	0		
•••						

SARSA:
$$Q(s,a) := Q(s,a) + \alpha [r + \gamma Q(s',a') - Q(s,a)]$$

Change the update:

Initialize
$$Q(s,a)$$
 arbitrarily, for all $s \in S$, a $e \in A$. Initialize $P(s,a)$ arbitrarily, for all $s \in S$, a $e \in A$. Initialize $P(s,a)$ arbitrarily, for all $s \in S$, a $e \in A$. Initialize $P(s,a)$ be eigendy with respect to Q , or to a fixed given policy Parameters: step size $a \in (0,1]$, small $\varepsilon > 0$, a positive integer n . All store and access operations (for S_1 , A_1 , and R_i) can take their index mod n . Repeat (for each epicode):

Initialize and store $S_1 \neq s$ terminal Select and store an action $A_0 \sim \pi(|S_0|)$
 $T \leftarrow \infty$

For $t = 0, 1, 2, \dots$:

If $t \in T$, then:

 $T \leftarrow t \leftarrow t \rightarrow T$, it is terminal, then:

 $T \leftarrow t \leftarrow t \rightarrow T$, then $T \leftarrow T$ is the time whose estimate is being updated)

If $T \geq 0$:

 $T \leftarrow t \rightarrow T$, then $T \leftarrow T$ then $T \leftarrow T$ is the $T \sim T$ in $T \sim T$. Then $T \sim T$ is the $T \sim T$ in $T \sim T$. Then $T \sim T$ is the $T \sim T$ in $T \sim T$

Exercise: Grid World

Compute 5-step SARSA update
$$\alpha = 0.5 \\ \gamma = 0.9$$

$$G_{-5} = \gamma \cdot I$$

$$G_{-4} = c \cdot \gamma^{1} \cdot I$$

$$G_{-3} = C + c + \gamma^{3} \cdot I$$

$$G_{-2} = \vdots$$

$$G_{-1} = \gamma^{5} \cdot I$$

$$Q(s_{(2,2)},E) = 0 + c \cdot S(S_{-5} + C - c) = c \cdot 4S$$

$$Q(s_{(1,2)},N) = C + c \cdot S(S_{-5} + C - c) = c \cdot 4sS$$

$$\vdots$$

$$Q(s_{(2,2)},S) = \gamma^{5} \cdot I$$

With 1-step learning

State	Action				
	North	South	East	West	
(0,0)	0	0	0	0	
(0,1)	0	0	0	0	
(0,2)	0	0	0	0	
(1,2) (2,1) (2,2) (2,3)	0 0 0	0 0 0 0	0.45	0 0 0	

With 5-step learning							
State	Action						
	North	South	East	West			
(0,0)	0	0	0	0			
(0,1)	0	0	0	0			
(0,2)	0	0	0.2953	0			
(1,2)	0	0	0.3281	0			
(2,1) (2,2) (2,3)	0.405	0 4	0	0			
(2,2)	0	0.3645	0.45	0			
(2,3)	0	0	0	0			

Example: Random walk

MCTS + Reinforcement learning

