12강. 일반선형모형 [1]

◈ 담당교수 : 김성수 교수

■ 주요용어

용어	해설
일반화선형모형	일반화선형모형은 세 가지 구성성분 즉, 1)반응변수의 분포 2)선형예측자 3)연결함수로 이루어지며 이들 세 성분을 확정함으로써 구체적인 분석모형이 설정된다. 이러한 모형구성방법을 통하여 일반화선형모형은 고전적인 회귀모형인 선형회귀모형을 확장한 모형을 말한다.
선형예측자	선형예측자(linear predictor)는 모형에 있는 설명변수들의 선형결합을 말한다. 기로 표기하며 모형에 포함될 설명변수가 결정되면 해당 설명변수의 효과를 크기를 나타내는 미지의 모수 β들과 결합하여 선형 식으로 표시된다.
연결함수	일반화선형모형에서 반응변수의 평균과 선형예측자와의 수학적 함수관계를 설정하는 연결함수 (link function)를 $g(\cdot)$ 로 표기하면 다음의 방정식이 설립한다고 가정한다. $\eta = g(\mu) = x'\beta = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n$
로지스틱회귀모형	로지스틱회귀모형은 로짓함수를 연결함수로 설정하는 모형으로 다음과 같다. $\eta = \log(t(\pi)) = \log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ 여기서 $\pi = \mu = E(Y)$ 이다.

■ 연습문제

1. 일반화선형모형은 세 가지 구성성분은 ?

정답 및 해설 : 반응변수의 분포, 선형예측자, 연결함수

2. 다음 지료에서 occur을 반응변수(1=yes, 0=no) 로 하여 로지스틱 회귀모형을 적합하고자 한다. (a)에 들어갈 옵션은 ?

```
> head(glider,3)
p_no occurr con_metric p_size_km
1 1 1 0.650 130.9
2 2 0 0.610 104.1
3 3 0 0.744 132.3
> #모형적합
> logit_m1 <- glm(occurr~p_size_km+con_metric, family= ( a ) (link=logit), data=glider)
```

정답 및 해설 : binomial

3. 다음은 로지스틱 회귀모형 적합 결과이다. 적합된 로지스틱 회귀식을 쓰시오.

```
> summary(logit_m1)
Call:
glm(formula = occurr ~ p_size_km+con_metric, family = binomial(link =
logit), data = glider)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.4969 -0.8829 -0.3884 0.8766 2.0515
Coefficients:
 Estimate Std. Error z value Pr ( > | z |)
(Intercept) -3.606207 1.436391 -2.511 0.01205 *
p_size_km 0.023566  0.007462  3.158  0.00159 **
con_metric 1.631800 1.642758 0.993 0.32055
(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 68.994 on 49 degrees of freedom
 Residual deviance: 54.661 on 47 degrees of freedom
 AIC: 60.661
 Number of Fisher Scoring iterations: 4
```

정답 및 해설:

$$\log\!\!\left(\!\frac{\hat{\pi}}{1-\hat{\pi}}\!\right)\!\!=\!\!=\!\!-3.606+0.024^*x_1+1.632^*x_2$$

■ 참고사이트

- 강명욱,김영일,안철환,이용구,『회귀분석』, 율곡출판사, 1996.
- 박성현, 『회귀분석』(제3판), 민영사, 2007.
- Faraway, J.J. (2002), Practical Regression and Anova Using R, (www.google.com에서 검색 후, pdf 파일로 다운받을 수 있음)
- McCullagh, P. and Nelder, J.A., Generalized Linear Models, 2nd ed, Chapman & Hall / CRC., 1999.
- Neter et al. Applied Linear Statistical Models, 4th ed. IRWIN, 1996.
- R 사이트 http://www.r-project.org/
- R Studio 사이트 https://www.rstudio.com/