Probabilités

<u>I Langage des probabilités</u>

1) Exemples de situations aléatoires

Situation 1 : On lance une fois un dé cubique non truqué et on note le nombre de points figurant sur la face supérieure lorsque le dé s'est immobilisé.

Situation 2 : On lance une fois un dé cubique non truqué portant un disque vert sur trois faces, un disque rouge sur une face, la lettre H sur une face et le chiffre 2 sur une face ; on note le résultat obtenu sur la face supérieure du dé lorsqu'il s'est immobilisé.

Situation 3 : On tire au hasard une carte d'un jeu de 32 cartes.

Dans chacune de ces situations on dispose de certaines informations mais le résultat ne peut pas être prévu à l'avance car le hasard intervient : il s'agit d'expériences aléatoires.

2) Univers

<u>Définition</u>: Dans une expérience aléatoire, l'univers est l'ensemble de tous les résultats possibles.

En général l'univers est noté Ω .

Exemples:

Dans la situation 1 : Ω_1 = {1;2;3;4;5;6}

Dans la situation 2 : Ω_2 = {disque vert ; disque rouge ; H ; 2 }

 Ω_3 est l'ensemble des 32 cartes du jeu.

3) Évènements

<u>Définition</u>: Un évènement est une partie de l'univers.

Exemple:

Dans la situation 1 « Obtenir un nombre strictement supérieur à 4 » correspond à l'ensemble A = { 5 ; 6 }

Remarques:

- L'univers Ω est un cas particulier d'événement, on l'appelle **événement certain**.
- L'ensemble vide \varnothing est appelé **événement impossible**, aucune issue ne le réalise.
- Certains événements ne comporte qu'un seul élément on les appelle **événements élémentaires**. Exemple : Dans la situation 1, {5} est l'événement élémentaire « obtenir la face 5 lors du lancer du dé ».
- l'événement contraire de A est noté \overline{A} et il est constitué des éléments de Ω n'appartenant pas à A. Exemple: Dans la situation 1 si $A = \{5, 6\}$ alors $\overline{A} = \{1; 2; 3; 4\}$

II Calcul des probabilités

1) Définitions et exemples

Définition : Soit Ω un univers fini.

Définir une **loi de probabilité** sur Ω , c'est associer à chaque issue x_i un nombre p_i , positif ou nul de telle façon que $p_1 + p_2 + ... + p_n = 1$.

Ce nombre p_i est appelé probabilité de l'issue x_i .

<u>Définition</u>: La probabilité d'un événement A est noté P(A) et est égale à la somme des probabilités des issues qui le réalisent.

<u>Propriétés</u>:

- 1) $P(\emptyset) = 0$
- 2) $P(\Omega) = 1$
- 3) Pour tout événement A on a $0 \le P(A) \le 1$

C'est une erreur grossière de donner une probabilité négative ou strictement supérieure à 1

2) Cas particulier : équiprobabilité

a) Définition :

L'équiprobabilité correspond au cas où tous les événements élémentaires ont la même probabilité.

<u>Exemples</u>: Les situations 1 et 3 sont des situations d'équiprobabilité. La situation 2 n'est pas une situation d'équiprobabilité.

b) Probabilité d'un événement élémentaire

Théorème : Dans le cas d'une situation d'équiprobabilité, la probabilité d'un événement élémentaire est égale a 1

nombre d'éléments de Ω

c) Probabilité d'un événement quelconque

Théorème : Dans le cas d'une situation d'équiprobabilité, la probabilité d'un événement A est :

 $P(A) = \frac{\text{nombre d'éléments de } A}{\text{nombre d'éléments de } \Omega} = \frac{\text{nombre de cas favorables}}{\text{nombre de cas possibles}}$

III Intersection et réunion de deux événements

<u>Définition</u>: Soient A et B deux événements

L'intersection de A et B est l'événement, noté $A \cap B$ formé des issues qui réalisent à la fois l'événement A et l'événement B

La réunion de A et B est l'événement, noté $A \cup B$ formé des issues qui réalisent à la fois l'événement A ou l'événement B, c'est-à-dire au moins l'un des deux.

1) Probabilité de la réunion d'événements disjoints

<u>Définition</u>: Deux événements A et B sont disjoints (on dit aussi incompatibles) si et seulement si $A \cap B = \emptyset$

Ici A et B sont disjoints

Exemple:

Dans la situation 1 on considère : $A = \{1, 2, 3\}$, $B = \{5, 6\}$ et $C = \{3, 4\}$

A et B sont disjoints car $A \cap B = \emptyset$

Par contre $A \cap C = \{3\}$ donc les événements A et C ne sont pas incompatibles.

On s'intéresse à la probabilité de l'événement $A \cup B$:

On a $A \cup B = \{1; 2; 3; 5; 6\}$

Donc $P(A \cup B) = \frac{5}{6}$ et on remarque que $P(A \cup B) = P(A) + P(B)$

Théorème : Pour tous événements disjoints A et B on a $P(A \cup B) = P(A) + P(B)$

2) Probabilité d'un événement contraire

Théorème : Pour tout événement A on a : P(\overline{A}) = 1 - P(A)

3) Cas général

Toujours dans la situation 1 on considère $A = \{1, 2, 3\}$ et $C = \{3,4\}$. On a déjà vu que A et C ne sont pas disjoints. $A \cap C = \{3\}$

$$P(A) = \frac{3}{6}$$

$$P(C) = \frac{2}{6}$$

$$P(A \cap C) = \frac{1}{6}$$

On a $A \cup C = \{1; 2; 3; 4\}$

donc $P(A \cup C) = \frac{4}{6}$ et on remarque que $P(A \cup C) = P(A) + P(C) - P(A \cap C)$.

Théorème : Pour tous événements A et B on a $P(A \cup B) = P(A) + P(B) - P(A \cap B)$