IS pro správu inteligentního domu

Tomáš Silber

Seznam použitých knihoven a frameworků

• Klient:

- OpenjFX (JavaFX)
- OkHttp
- Gson

• Server:

- Spring Data JPA
- Spring Boot
- JUnit

SWOT analýza

Silné stránky	Slabé stránky
1. Přehledná uživatelská aplikace a její	7. Vysoké náklady spojené s prvotním pořízením
snadné ovládání	a zavedením systému
2. Existence stávajících čidel	8. Slabé zabezpečení
3. Přehled dat na jednom místě	9. Možná nekompatibilita existujících čidel se systémem
4. Ušetření peněz za vytápění	
5. Správa systému z jakéhokoliv zařízení	
6. Zvýšení hodnoty domu	
Příležitosti	Hrozby
10. Instalace solárních panelů	15. Hrozba útoku zvenčí z důvodu slabého zabezpečení
11. Vyšší automatizace domu do budoucna	16. Ukončení podpory ze strany výrobce SW
12. Kompenzace vstupních nákladů	17. Nedostatek financí pro úplnou integraci domu
13. Využití statistik ze systému k inovaci	se systémem
14. Sledování trendů v oblasti zabezpečení	
IoT	

Strategie

- 2 + 4 / 7: Existence již zavedených čidel v domě a úspora peněz za vytápění kompenzují vysoké vstupní náklady s prvotním pořízením a zavedením systému.
- 3 + 5 / 15: Správa systému z jakéhokoliv zařízení a přehled dat na jednom místě umožňuje vyšší míru kontroly a včasného záchytu útoku zvenčí.
- 12 + 2 / 15: Vykompenzované vstupní náklady díky úsporám za existenci již stávajících čidel můžeme investovat do zvýšení bezpečnosti systému.
- 10 / 16 + 17: Instalované solární panely mohou ušetřit energii i přes počáteční náklady, které mohou být pak investovány do upgradu nebo změny systému v případě ukončení podpory ze strany výrobce.
- 14 / 8 + 16: Komparace nabídek v oblasti nových trendů zabezpečení IoT a orientace v nabídkách podpory ze strany jiných poskytovatelů(výrobců) podpory můžeme snížit případné riziko ukončení podpory ze strany původního výrobce. Zvyšování bezpečnosti systému nesnižuje hodnotu domu.
- 1 / 7: Pro běžného uživatele bez hloubkových technických znalostí jsou vyšší vstupní náklady akceptovatelné, pokud zvyšují komfort ovládání chytrého domu.

EPC diagram – ovládání teploty

Use case a scénáře

uc: Správa domu

popis: Uživatel manuálně zapne topení v celém domě

actors: Uživatel precondition:

Je funkční připojení k serveru

Topení je vypnuto

· Uživatel se nachází v hlavní obrazovce aplikace

basic flow:

1. Uživatel přepne stav topení na zapnuto

2. Aplikace pošle žádost na server pro zapnutí topení

3. Server odešle potvrzení

alternative flow:

Aplikace nedostane potvrzení o změně stavu topení

3a. Aplikace informuje uživatele o chybě

postcondition:

Uživatel manuálně zapne topení v domě

uc: Správa místnosti

popis: Nastavení požadované teploty pro místnost

actors: Uživatel precondition:

Je funkční připojení k serveru

· Uživatel se nachází v hlavní obrazovce aplikace

basic flow:

1. Uživatel se přepne do okna se seznamem místností

2. Uživatel vybere místnost ze seznamu

3. Aplikace zobrazí uživateli formulář s polem pro nastavení teploty

4. Uživatel zadá požadovanou teplotu

5. Aplikace pošle žádost na změnu teploty na server

alternative flow:

Uživatel zadal neplatnou hodnotu teploty

4a. Aplikace upozorní uživatele chybovou hlášku

4b. Uživatel zadá platnou hodnotu

4c. tok pokračuje na bod č. 5

postcondition:

Místnost má nastavenou požadavanou teplotu

uc: Zobrazení statistik

popis: Zobrazení statistik za jednotlivé měsíce

actors: Uživatel precondition:

· Je funkční připojení k serveru

· uživatel se nachází v hlavní obrazovce

basic flow:

1. Uživatel otevře okno se statistikami

2. Aplikace načte statistiky ze serveru

3. Aplikace zobrazí uživateli statistiky místností za jednotlivé měsíce

alternative flow:

Načtení dat ze serveru se nezdařilo

2a. Aplikace informuje uživatele o chybě pomocí chybové hlášky

postcondition:

Uživatel uvidí statistiky místností pro jednotlivé měsíce

Sekvenční analytický diagram získání měsíčních statistik

Sekvenční návrhový diagram získání měsíčních statistik

