Planche 3

Questions de cours

Question P3 : Caractériser l'évolution temporelle d'un oscillateur harmonique en utilisant les notions d'amplitude, de phase, de période, de fréquence, de pulsation.

Exercice: Oscillateur vertical avec rupture

Une masse m=0.5 kg est suspendue à un ressort vertical de raideur k=50 N/m et de longueur à vide $\ell_0=20$ cm. On note z l'altitude de la masse, l'axe (Oz) étant vertical ascendant avec origine au point d'accroche du ressort.

Partie A: Oscillations libres

- 1. Déterminer la position d'équilibre z_e de la masse. Application numérique.
- 2. Établir l'équation différentielle du mouvement en posant $Z = z z_e$. Identifier la pulsation propre ω_0 .
- 3. La masse est lâchée sans vitesse initiale depuis $z_0 = z_e + A$ avec A = 5 cm. Déterminer z(t).

Partie B: Rupture du ressort

Le ressort ne peut supporter qu'une tension maximale $T_{max} = 30 \text{ N}$.

- 4. Déterminer l'amplitude maximale A_{max} des oscillations avant rupture du ressort.
- 5. Pour $A = A_{max}$, déterminer l'instant t_r de rupture du ressort et la position z_r correspondante.
- 6. Établir l'équation du mouvement après rupture. En déduire z(t) pour $t > t_r$.
- 7. Déterminer l'altitude maximale z_{max} atteinte par la masse après rupture.

Partie C : Analyse énergétique

- 8. Calculer l'énergie mécanique avant rupture et après rupture (au point le plus haut). Commenter.
- 9. Quelle est l'énergie dissipée lors de la rupture?