Permutation (বিন্যাস)

যোজন বিধিঃ একটি কাজ a সংখ্যক উপায়ে এবং অন্য একটি কাজ আলাদাভাবে b সংখ্যক উপায়ে সম্পূর্ণ করা হলে দুটি কাজ একত্রে (a+b) সংখ্যক উপায়ে সম্পূর্ণ করা যায়।

Remember : যোজন বিধি তখনই ব্যবহার করা যাবে যখন কাজ সম্পূর্ণ ভাবে শেষ হয়ে যায়। ভণন বিধি ঃ একটি কাজ a সংখ্যক উপায়ে এবং প্রথমটির উপর নির্ভরশীল অন্য একটি কাজ b সংখ্যক উপায়ে সম্পূর্ণ করা গেলে কাজ দুইটি মোট $(a \times b)$ উপায়ে করা যাবে।

Remember : গুণন বিধি ব্যবহার করা হয় কাজ আংশিক হলে।

১। n সংখ্যক জিনিস হতে r সংখ্যক জিনিস নিয়ে সাজানো সংখ্যা $= n_{P_r} (n \ge r)$

 $2 \cdot n! = 1 \times 2 \times 3 \times 4 \times ... \times n$ (অর্থাৎ যত Factorial বলবে 1 থেকে শুরু করে তত পর্যন্ত গুণ করতে হবে)

যেমন ঃ
$$1! = 1$$
 ; $2! = 1 \times 2 = 2$; $3! = 1 \times 2 \times 3 = 6$; $4! = 1 \times 2 \times 3 \times 4 = 24$ $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$ Remember : $0! = 1$

৩ ৷ n! = n(n-1)! যেমনঃ $8! = 8 \times 7!$ এবং $5! = 5 \times 4!$; (n-2)! = (n-2). (n-3)!

$$8 + n_{P_r} = \frac{n!}{(n-r)!} \quad \& + n_{P_0} = 1, n_{P_n} = n!, \quad n_{P_1} = n \, \& + n_{P_2} = n(n-1), \quad n_{P_3} = n(n-1)(n-2)$$

যেমনঃ $7_{P_3}=7 imes6 imes5$; $9_{P_5}=9 imes8 imes7 imes6 imes5$ অর্থাৎ $n_{P_r} o r$ এর মান যত থাকবে n থেকে শুরু করে ততটি উৎপাদক

৭। (i) n সংখ্যক জিনিসের সবগুলি ভিন্ন ভিন্ন হলে সবগুলি মাত্র একবার ব্যবহার করে সাজানো সংখ্যা $= n_{P_n} = n!$

(ii) n সংখ্যক জিনিসের a সংখ্যক একজাতীয়, b সংখ্যক আরেকজাতীয় এবং c সংখ্যক অন্য একজাতীয় হলে সাজানো সংখ্যা $= rac{n!}{a! \ b! \ c!}$

যেমন ঃ (i)Bangladesh শব্দে মোট অক্ষর 10 টি যার মধ্যে a=2 টি,অন্য 8 টি ভিন্ন । \therefore সাজানো সংখ্যা $=\frac{(10)!}{2!}$

৮। **ছান পরিবর্তন না করে / নির্দিষ্ট ছান দখল করলে** এদেরকে অন্তর্ভুক্ত না রেখে /বাদ দিয়ে বিন্যস্ত কর**লে**ই নির্ণেয় বিন্যাস পাওয়া যাবে

৯। **আপেক্ষিক অবস্থান পরিবর্তন না করে বিন্যাস** = ১ম গ্রুপের নিজেদের মধ্যে বিন্যাস 🗴 ২য় গ্রুপের নিজেদের মধ্যে বিন্যাস

১০। পুনর্বিন্যাস / পুনরায় বিন্যাস = মোট বিন্যাস -1

১১। n সংখ্যক জিনিস হতে r সংখ্যক জিনিস নিয়ে সাজানো সংখ্যা

(i) যখন q সংখ্যক বস্তু অবশ্যই থাকবে = r p_{q} imes $^{n-q}$ p_{r-q} (ii) যখন q সংখ্যক বস্তু কখনই থাকবে না = $^{n-q}$ p_{r}

১২। পুনরাবৃত্তিমূলক বিন্যাস ঃ n সংখ্যক জিনিস হতে r সংখ্যক জিনিস নিয়ে সাজানো সংখ্যা $= n^r$

১৩। চক্র বিন্যাস ঃ (i) n সংখ্যক জিনিসকে (অপ্রতিসম) গোলাকার / বৃত্তাকারভাবে সাজানোর উপায় =(n-1)!

 $(ii)\ n$ সংখ্যক জিনিসকে **(প্রতিসম/বন্ধ**) গোলাকার / বৃত্তাকারভাবে সাজানোর উপায় $= rac{(n-1)!}{2}$

(iii) দুটি গ্রুপের লোকজন গোলটেবিল বৈঠক করার (যেন একই গ্রুপের লোকজন পাশাপাশি না বসে)

উপায় $=(n-1)! \times n!$ এখানে, n= প্রতি গ্রুপে লোকসংখ্যা

Combination (সমাবেশ)

১। (i) n সংখ্যক জিনিস হতে r সংখ্যক জিনিস নিয়ে বাছাই/সমাবেশ সংখ্যা = n $_{C}$ $_{r}$ $(n \ge r)$

(ii)
$$n_{C_r} = \frac{n!}{r!(n-r)!} + n_{C_n} = 1$$
, $n_{C_0} = 1$ $v + n_{C_r} \times r! = n_{P_r}$

$$8 + n_{C_1} + n_{C_2} + n_{C_3} + n_{C_4} + n_{C_5} + \dots + n_{C_n} = 2^n - 1$$

৫। যেকোন তিনটি অসমরেখ বিন্দু হলে n সংখ্যক বিন্দু দ্বারা $(n\geq \!\! 3)$

$$(i)$$
 বাহুর সংখ্যা $=$ n (ii) সরলরেখা $=$ n C_2 (iii) কর্ণ $=$ n C_2 n (iv) ত্রিভুজ $=$ n C_3 (v) চতুর্ভুজ $=$ n C_4

Note-1: (i) ত্রিভুজের দুই বাহুর সমষ্টি ৩য় বাহু অপেক্ষা বৃহত্তর (ii) চতুর্ভুজের তিন বাহুর সমষ্টি ৪র্থ বাহু অপেক্ষা বৃহত্তর

Note-2:
$$n$$
 সংখ্যক বিন্দুর মধ্যে p সংখ্যক সমরেখ হলে (i) সরলরেখা = $n_{C_2} - p_{C_2} + 1$ (ii) ত্রিভুজ= $n_{C_3} - p_{C_3}$

৬। সম্পূরক সমাবেশ ৪ (i)
$$n_{C_r} = n_{C_{n-r}}$$
 (ii) $n_{C_r} + n_{C_{r-1}} = {}^{n+1}c_r$

৭। n সংখ্যক জিনিস হতে r সংখ্যক জিনিস নিয়ে বাছাই সংখ্যা

$$({
m i})~{
m q}$$
 সংখ্যক জিনিস সর্বদাই অন্তর্ভুক্ত থাকবে $=$ $^{n-q}C_{r-q}~({
m ii})~{
m q}$ সংখ্যক জিনিস কখনই থাকবে না $=$ $^{n-q}C_r$

৮। a সংখ্যক একজাতীয়, b সংখ্যক আরেক জাতীয়, c সংখ্যক অন্য একজাতীয় এবং k সংখ্যক ভিন্ন ভিন্ন হতে যেকোন জিনিস (এক বা একাধিক) নিয়ে সমাবেশ সংখ্যা $=(a+1)(b+1)(c+1)2^k-1$

৯। n সংখ্যক জিনিস হতে (ভিন্ন) **প্রত্যেকবার অন্তত একটি (এক বা একাধিক)** জিনিস নিয়ে গঠিত সমাবেশ সংখ্যা $= C^n - 1$ (যাদের প্রতিটির জন্য C ভাবে বাছাই করা যায়)

১০। (a+b)সংখ্যক জিনিসকে দুইটি দলে (একদলে a সংখ্যক ও অন্য দলে b সংখ্যক জিনিস থাকে) বিভক্ত করার উপায় $=rac{(a+b)!}{a!b!}$

- ১১। (i) n সংখ্যক জিনিসকে a সংখ্যক ব্যক্তির মধ্যে সমান ভাগে ভাগ করার উপায় $=rac{n!}{(q!)^a}$
 - (ii) n সংখ্যক জিনিসকে a সংখ্যক সমান ভাগে/গ্রুপে ভাগ করার উপায় $= \frac{n!}{(q!)^a \times a!}$ এখানে , q= প্রতি ভাগে জিনিস সংখ্যা

১২ ৷
$$n_{c_r} = \frac{n_{P_r}}{r!}$$
 যেমনঃ $12_{C_r} = \frac{12_{P_5}}{5!} = \frac{12 \times 11 \times 10 \times 9 \times 8}{1 \times 2 \times 3 \times 4 \times 5} = 792$