Kyle Kloberdanz 9 February 2022

Exercise 2.1.1: Prove that multiplication of complex numbers is associative. More precisely, let z = a + bi, w = c + di, and v = g + hi, and prove that z(wv) = (zw)v.

Proof. We must show that z(wv) = (zw)v

Let's start by assuming that they are equal. z(wv) = (zw)v

$$(a+bi)((c+di)(g+hi)) = ((a+bi)(c+di))(g+hi)$$

$$(a+bi)(cg+chi+dgi-dhi) = (ac+adi+bci-bd)(g+hi)$$

$$acg + achi + adgi - adh + bcgi - bch - bdg - bdhi = acg + adgi + bcgi - bdg + achi - adh - bch - bdhi$$

When alligned, we see that:

$$acg + achi + adgi - adh + bcgi - bdg - bch - bdhi =$$

 $acg + achi + adgi - adh + bcgi - bdg - bch - bdhi$

Therefore we can see that z(wv) = (zw)v

Exercise 2.1.2: Let z = a + bi, $w = c + di \in \mathbb{C}$ and prove each of the following statements:

(i) $z + \overline{z}$ is real and $z - \overline{z}$ is imaginary.

Proof. First let's begin with proving $z + \overline{z}$ is real. Recall that if z = a + bi, then $\overline{z} = a - bi$. Notice that complex numbers are the set $\{a + bi | a, b \in \mathbb{R}\}$

$$z + \overline{z} = (a + bi) + (a - bi) = 2a + bi - bi = 2a$$

Because $2 \in \mathbb{R}$ and $a \in \mathbb{R}$, and real numbers are closed under multiplication, 2a is also real, therefore $z + \overline{z}$ is real.

Next, we will prove that
$$z - \overline{z}$$
 is imaginary. $z - \overline{z} = (a + bi) - (a - bi) = a - a + bi + bi = 2bi$.

Because $2 \in \mathbb{R}$ and $b \in \mathbb{R}$, and real numbers are closed under multiplication, then $2b \in \mathbb{R}$. Imaginary numbers are the set $\{ci|c \in \mathbb{R}\}$. We can see that $2bi \in \{ci|c \in \mathbb{R}\}$, therefore $z - \overline{z}$ is imaginary.

(ii)
$$\overline{z+w} = \overline{z} + \overline{w}$$
.

Proof.
$$z + w = (a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d)i$$

$$\overline{z+w} = (a+c) - (b+d)i = a+c-bi-di = (a-bi) + (c-di) = \overline{z} + \overline{w}$$

(iii) $\overline{zw} = \overline{z} \overline{w}$.

Proof.
$$zw = (a+bi)(c+di) = ac+adi+bci-bd = (ac-bd)+(ad+bc)i$$

$$\overline{zw} = (ac - bd) - (ad + bc)i = ac - bd - adi - bci = (a - bi)(c - di) = \overline{z} \overline{w}$$

Exercise 2.2.1: Prove that if \mathbb{F} is a field and $a, b \in \mathbb{F}$ with ab = 0, then either a = 0 or b = 0.

Proof. We will demonstrate a proof by contradiction. We will show that for the statement ab=0 if neither a=0 nor b=0, i.e., $a\neq 0$ and $b\neq 0$, then this will result in a contradiction.

Recall from the definition of a field, that every nonzero element $a \in \mathbb{F}$ has a multiplicative inverse a^{-1} , such that $aa^{-1} = 1$

Because \mathbb{F} is a field, and we are assuming that $a \neq 0$ and $b \neq 0$, then we can take the multiplicative inverse of either in the statement ab = 0.

$$ab = 0$$
$$a^{-1}ab = 0a^{-1}$$
$$b = 0$$

We have thus contradicted the statement that $b \neq 0$. Let's try this again for a.

$$ab = 0$$
$$ab^{-1}b = 0b^{-1}$$
$$a = 0$$

Again we have contradicted the statement by finding that a = 0.

Because we have found a contradiction in statement that if ab=0 then $a\neq 0$ and $b\neq 0$, we have therefore proven the original statement to be true that if ab=0 then either a=0 or b=0

Exercise 2.2.2: Prove that $\mathbb{Q}(\sqrt{2})$ is a field. Hint: you should use the fact that $\sqrt{2} \notin \mathbb{Q}$.

Proof. Recall, from Example 2.2.4,
$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \in \mathbb{R} | a, b \in \mathbb{Q}\} \subset \mathbb{R}$$

Note: $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2})$ also $\mathbb{Q} \neq \mathbb{Q}(\sqrt{2})$ because $\sqrt{2} \notin \mathbb{Q}$

We will show that $\mathbb{Q}(\sqrt{2})$ is a subfield of \mathbb{R} , which because a subfield is also a field itself, means that $\mathbb{Q}(\sqrt{2})$ is itself a field.

We will now demonstrate that $\mathbb{Q}(\sqrt{2})$ is a subfield of \mathbb{R} . In order for a subset \mathbb{K} to be a subfield of a field \mathbb{F} , the following properties must hold for every $x,y\in\mathbb{K}$.

- (i) $\mathbb{K} \subset \mathbb{F}$
- (ii) The elements $0, 1 \in \mathbb{F}$ are also in \mathbb{K}
- (iii) $x + y, xy, -x \in \mathbb{K}$
- (iv) if $x \neq 0$ then $x^{-1} \in \mathbb{K}$

First, proving (i), Given the problem statement from the book, we see that $b\sqrt{2} \in \mathbb{R}$. Also, within the problem statement we can see $a \in \mathbb{Q}, a+b\sqrt{2} \in \mathbb{R}$. Because \mathbb{R} is a field with the two operations addition and multiplication, and $a \in \mathbb{Q} \subset \mathbb{R}$, then $(a+b\sqrt{2}) \in \mathbb{R}$, hence $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$.

Second, proving (ii), because \mathbb{Q} is a field, $0, 1 \in \mathbb{Q}$. Since $a, b \in \mathbb{Q}$, then if a = 1 and b = 0, then $1 + 0\sqrt{2} = 1$ and if a = 0 and b = 0, then $0 + 0\sqrt{2} = 0$, hence $0, 1 \in \mathbb{Q}(\sqrt{2})$.

Third, proving (iii): let $c, d, e, f \in \mathbb{Q}$, $x = c + d\sqrt{2}$, $y = e + f\sqrt{2}$.

$$x + y = (c + d\sqrt{2}) + (e + f\sqrt{2}) = ((c + e) + (d + f)\sqrt{2}) \in \mathbb{Q}(\sqrt{2})$$

$$xy = (c+d\sqrt{2})(e+f\sqrt{2}) = ce+cf\sqrt{2}+de\sqrt{2}+2df = ((ce+2df)+(cf+de)\sqrt{2}) \in \mathbb{Q}(\sqrt{2})$$

$$-x = -(c + d\sqrt{2}) = (-c + -d\sqrt{2}) \in \mathbb{Q}(\sqrt{2})$$

Also, we can see that -x is the additive inverse such that -x + x = 0. $-x + x = (-c + -d\sqrt{2}) + (c + d\sqrt{2}) = c - c + d\sqrt{2} - d\sqrt{2} = 0 + 0 = 0$

Finally, proving (iv), recall if $x \neq 0$ then $xx^{-1} = 1$.

We will now verify that if $x = c + d\sqrt{2} \neq 0$, then $(c + d\sqrt{2})^{-1} \neq 0 \in \mathbb{Q}(\sqrt{2})$ Observe that since $x \neq 0$, $c + d\sqrt{2} \neq 0$, furthermore $c^2 - 2d^2 \neq 0$.

$$x^{-1} = \frac{1}{x} = \frac{1}{c+d\sqrt{2}} = \frac{c-d\sqrt{2}}{(c+d\sqrt{2})(c-d\sqrt{2})} = \frac{c-d\sqrt{2}}{c^2-cd\sqrt{2}+cd\sqrt{2}-2d^2} = \frac{c-d\sqrt{2}}{c^2-2d^2} = \left(\frac{c}{c^2-2d^2}\right) + \left(\frac{-d}{c^2-2d^2}\right)\sqrt{2}$$

Because $\frac{c}{c^2-2d^2} \in \mathbb{Q}$ and $\frac{-d}{c^2-2d^2} \in \mathbb{Q}$, therefore $(\frac{c}{c^2-2d^2}) + (\frac{-d}{c^2-2d^2})\sqrt{2} \in \mathbb{Q}(\sqrt{2})$

By showing that $\mathbb{Q}(\sqrt{2})$ is a subfield of \mathbb{R} , which is itself a field, we have shown that $\mathbb{Q}(\sqrt{2})$ is a field.

Exercise 2.3.1: Prove parts (iii)-(v) of Proposition 2.3.2: Suppose \mathbb{F} is a field.

(i) Addition and multiplication are commutative, associative operations on $\mathbb{F}[x]$ which restrict to the operations of addition and multiplication on $\mathbb{F} \subset \mathbb{F}[x]$.

- (ii) Multiplication distributes over addition: f(g+h) = fg+gh for all $f,g,h \in \mathbb{F}[x]$
- (iii) $0 \in \mathbb{F}$ is an additive identity in $\mathbb{F}[x] : f + 0 = f$ for all $f \in \mathbb{F}[x]$.

Proof. Let

$$f \in \mathbb{F}[x], f = \sum_{k=0}^{n} a_k x^k$$

Observe:

$$f + 0 = \sum_{k=0}^{n} (a_k + 0)x^k = \sum_{k=0}^{n} a_k x^k = f$$

(iv) Every $f \in \mathbb{F}[x]$ has an additive inverse given by -f = (-1)f with f + (-f) = 0.

Proof. Let

$$f \in \mathbb{F}[x], f = \sum_{k=0}^{n} a_k x^k$$

Observe:

$$f+(-1)f = f+(-f) = \sum_{k=0}^{n} (a_k+(-1)a_k)x^k = \sum_{k=0}^{n} (a_k+(-a_k))x^k = \sum_{k=0}^{n} 0x^k = 0$$

(v) $1 \in \mathbb{F}$ is the multiplicative identity in $\mathbb{F}[x] : 1f = f$ for all $f \in \mathbb{F}[x]$.

Proof. Let

$$f \in \mathbb{F}[x], f = \sum_{k=0}^{n} a_k x^k$$

Observe:

$$(1)f = \sum_{k=0}^{n} (1)a_k x^k = \sum_{k=0}^{n} a_k x^k = f$$