

FLScalize: Federated Learning Lifecycle Management Platform

Yang Semo

목차

- Introduction
- Related Research
- FLScalize System Design & Architecture
- Experimental Environment Setup
- Implementation and Result
- Conclusion and Future work
- FLScalize 실습

Introduction

- 연합학습 수명주기 관리와 운영
 - 연합학습 구현을 위해 다양한 연합학습 프레임워크 등장
 - 많은 연구에서 연합학습 성능 향상을 위한 알고리즘 연구 수행
 - Real-World Project에 연합학습을 적용하여 수명주기 관리 및 운영할 수 있는 환경 필요
 - 현재, AI 연구 분야에서는 MLOps를 활용하여 데이터 파이프라인, 모델 설계/학습, 배포 기능 제공

• 기존 MLOps는 수많은 Client를 보유하고 있는 연합학습 환경에 적합하지 않음 => 기존 MLOps를 확장시킨 Federated Learning Operation (FedOps) 필요

Introduction

■ 연합학습 수명주기 관리와 운영

Introduction

- FLScalize Contribution
 - Easily application of data and models to the FL environment
 - Manager component that checks the state of FL client and server
 - Continuous integration/deployment/training
 - Providing simulation environments for two categories of FL that occur in the real world (System/Data Heterogeneity)
 - FL lifecycle management applicable to real projects

Related Research

Comparision of FLScalize with Existing FL Frameworks

	TFF	FATE	FedScale	EasyFL	FLScalize
Simple application of data and model	0	0	0	0	✓
FL client/server management	X	X	X	X	✓
Heterogeneous system and data	0	0	0	\checkmark	✓
Multi-client CI/CD/CT	X	0	X	X	✓
FL lifecycle management	X	0	X	0	✓

FLScalize System Design & Architecture

FL Lifecycle Management

FLScalize System Design & Architecture

FL Lifecycle Process

Experimental Environment Setup

FLScalize Environment

Server Name	CPU	GPU
D Server	Intel i9-9900KF (8core)	NVIDIA®2080Ti (2)
E Server	Intel Xeon Silver 4214R (12core)	NVIDIA®3090Ti (2)
X Server	Intel i9-10980XE (18core)	NVIDIA®3070Ti (2)

microk8s cluster

Dataset	Model	Sample
CIFAR-10	CNN	60,000
MNIST	ResNet50	70,000
FASHION MNIST	VGG16	70,000

data/model

Non-IID	Description
Imbalanced Data	Each client is randomly distributed in different sizes
Skewed Data	Each client has only one class (or two/three classes)
Imbalanced /Skewed Data	Each client has only one class and is distributed in different sizes

data partition

Implementation and Result

Deploying and running five client pods using ArgoCD

Implementation and Result

 Creating three FL tasks (CIFAR-10, MNIST, and FASHION MNIST) to support a workflow that creates an FL round

Implementation and Result

System/Data Heterogeneity Result

Client Group	System	Each Round Time	Local Training Time	Total Time
Group 1	CPU 1,	66.7 s	48.2 s	1,346.4 s
огоир 1	Memory 2 GB	00.7 8	70.28	1,570.7 8
Group 2	CPU 3,	60.5 s	44.3 s	1,224.1 s
_	Memory 4 GB			
Group 3	CPU 1, GPU 1,	61.1 s	44.7 s	1,243.4 s
	Memory 2 GB			

Time Cost

	CIFAR-10		FASHIO:	FASHION MNIST		MNIST	
Data Heterogeneity	Local Model	Global Model	Local Model	Global Model	Local Model	Global Model	
IID	91.8%	91.4%	96.6%	89.8%	95.6%	91.7%	
Imbalanced	91.3%	91.1%	84.2%	80.6%	94.9%	91.5%	
Skewed One Class	84.2%	81.9%	14.7%	32.1%	26.8%	13.4%	
Skewed Two Class	88.6%	88.3%	25.2%	12.7%	25.9%	25.2%	
Skewed Three Class	90.4%	89.7%	59.3%	55.9%	38.9%	33.6%	
Imbalanced/ Skewed Three Class	89.3%	88.5%	49.1%	47.3%	29.9%	25.7%	

Accuracy

Conclusion and Future work

FLScalize

- data와 model을 연합학습 환경에 간편하게 적용하고 다양한 FL Task 생성
- client/server 상태를 지속적으로 확인하고 관리하는 Manager Component와 Multi-Client의 Resource 구성 환경
- 지속적인 통합/배포 및 학습할 수 있는 Federated Learning Lifecycle Management
- 자신의 FL Task 실험을 위해 System/Data Heterogeneity Simulation 환경 제공

FLScalize of the Future => FedOps

- microk8s 서버환경이 아닌 실제 여러 Client와 Server를 분리한 환경에서의 FL Lifecycle Management 지원
- 실제 디바이스(Mobile/IoT/PC)를 Client로 적용하여 Real Multi FL Client 관리/모니터링/운영 서비스 제공 => FedOps Platform으로 확장

- docker 설치 (https://www.docker.com/)
- anaconda prompt 실행
- FedOps Git clone
- -mac: git clone https://github.com/Kwangkee/Gachon.git && mv Gachon/pratice/FedOps . && rm rf Gachon
- -window: git clone https://github.com/Kwangkee/Gachon.git && move Gachon\\practice\\FedOps . && del Gachon
- conda create –n fedops python=3.9
- conda activate fedops
- git clone해서 받은 폴더로 이동 => cd FedOps
- pip install –r requirements.txt
- conda install tensorflow==2.10.0 keras==2.10.0
- pip install numpy —-upgrade

- 1. Server Manager 실행
 - cd FedOps/server_manager
 - conda activate fedops
 - python app.py
- 2. FL Server 실행
 - 또 다른 shell 창 실행
 - cd FedOps/server
 - conda activate fedops
 - python app.py

- 3. Client Docker Compose 실행
 - docker 실행
 - 또 다른 shell 창 실행
 - cd FedOps/server
 - cd git_clone경로/FedOps/cross_silo
 - sh monitoring.sh
 (window는 git bash에서 실행)
 (window는 맨 마지막 커맨드 주석 해제)
 - error 발생 시

=> docer-compose-monitoring.yaml 파일에서 fl-client, client_manager의 cpus 변경 fl-client -> "1" client manager -> "0.5"

Client Monitoring Dashboard 설정

■ Client Monitoring Dashboard 설정

- Fedops/cross_silo 디렉토리에 있는 파일 import
- "FedOps_Client_Dashboard_V3.ndjson"

Client Monitoring Dashboard 설정

