$$y' + 3y = 5$$
 (E)

1.
$$f(x) = \alpha$$
 soit solution de (E) .

$$f' = 0 \implies 0 + 3\alpha = 5 \implies \omega = \frac{5}{3}$$

2. I)
$$y' + 3y = 0$$

 $y_0(x) = Ke^{-3x}$

II)
$$f(x) = \frac{5}{3}$$
 est solution de (E)

$$\gamma_{E}(x) = Ke^{-3x} + \frac{5}{3}$$

Ex 7

$$y' - \lambda y = 0 \qquad f(0) = 2$$

I) les soluitions sont:
$$y_0(x) = Ke^{\frac{-2}{1}x} = Ke^{2x}$$

II)
$$f(x)$$
 est solution => $f(x) = Ke^{2x}$
 $f(0) = Ke^{0} = K => K = 2$
 $Donc f(x) = 2e^{2x}$

$$\frac{E_{\times}8}{y'+y=0}$$
 $f(-1)=3$
I) Les solutions sent: $y_{o}(x)=Ke^{-x}$
I) $f(x)=Ke^{-x} \Rightarrow f(-1)=Ke^{-(-1)}=Ke$
 $\Rightarrow Ke=3 \Rightarrow K=\frac{3}{e}=3e^{-1}$

Danc
$$f(x) = 3e^{-1}e^{-x} = 3e^{-x-1}$$