6TE PRODUCTS CORP MOUNTAIN VIEW CA SYLVANIA SYSTEMS --ETC F/6 17/2 OSCAR PHASE 18 PROGRAM REVIEW.(U) FEB 81 N00039-79-C-0379 AD-A097 809 NL UNCLASSIFIED AU 1097809 END DATE 5-81 DTIC

OSCAR PHASE IB

PROGRAM REVIEW

FEBRUARY 18, 1981

608260 A dA

Contract NO0039-79-C-0379

DISTRIBUTION STATISMENT A Approved for public releases: Distribution Unitmitted

RAPPY THE DUE

Sylvania Systems Group Wostern Division

OSCAR PHASE IB

PROGRAM REVIEW.

FEBRUARY 18, 1981

11100037-1-1-0-051

Jattercation Accession For HIIS CEAR! DIIC I'S Vrannounced

Availed little ondes derbas Isagion By_Distribution/ Dim

140004

Systems

INTRODUCTION
 BEAM SHAPER PROGRESS; and

SYSTEMS ANALYSIS.

1

INTRODUCTION

- JULY 1980 DIRECTIONS:
- (1) SUSPEND SHAPER, SWITCH AND SCANNER WORK UNTIL THEIR GENERAL APPLICABILITY IS ASSURED
- REQUIREMENTS RELIEF (TIME, AREA) (2) SYSTEM ANALYSIS
- CONSIDER TECHNOLOGY LIMITATIONS
- CONSIDER OPERATION FROM LOWER ORBITS
- ADOPT AND IMPLEMENT NOSC PROPAGATION MODEL
- CONSIDER BUOY MOUNTED RECEIVERS

- **■** BEAM SHAPER APPROACH
- RECENT BEAM SHAPER PROGRESS

BEAM SCANNING AND SWITCHING FOR LOW EARTH ORBITS

Z

- DEAD TIME BETWEEN FRAMES: 0 to 4.88 MILLI SECONDS
 - RASTER SCAN, NOT RANDOM: (a) "RAPID" BUT NEARLY CONTINUOUS SCANNING
 - (b) NO SWITCH REQUIRED
- (C) RAPID BUT NEARLY CONTINUOUS SHAPING
- ONLY THE SHAPER HAS A COMMON RANGE OF REQUIREMENTS WITH THE HIGHER ORBIT DEVICES

LOW EARTH ORBITS

~10-20 X DIFF~10-20 X DIFF LIMIT LIMIT	~10-20 X DIFF LIMIT	~ 10-20 X DIFF LIMIT	INPUT BEAM QUALITY
~5 cm D1A ~5 cm D1A	~5 cm DIAMETER	~ 5 cm DIAMETER	INPUT BEAM SIZE
~5 millisec ~5 millisec (Continuous) (Continuous)	~ 1 msec	~ 1 msec	TIME BETWEEN SPOTS ⁺
X8 (cos 83 ⁰) ⁻¹ X1. 84 (cos 57 ⁰) ⁻ X3. 3 (cos72 ⁰) ⁻¹ X1. 2 (cos34 ⁰) ⁻¹	X3 (cos 70.5 ⁰) ⁻¹	X4 (cos 75.50) ⁻¹	MAX ANAMORPHIC RATIO (1 AXIS EXPANSION)
30-14.20++ 1.570-2.370++	0, 2-4 millirad	1-20 millirad	OUTPUT BEAM DIVERGENCE
"B" "B"	5 X SYNC	MOLNIYA	REQUIREMENT
COM EARIN ORBITS			

+ MIGHT REQUIRE MULTIPLE OUTPUT OPTICAL CHAINS

**ASSUMES SQUARE EQUAL-AREA SPOTS ACROSS THE SCAN

SPECIFICATIONS FOR BRASSBOARD SHAPING UNIT

INPUT BEAM SIZE: 50 mm DIAMETER

INPUT BEAM DIVERGENCE: $< 200 \,\mu$ RAD

OPERATING WAVELENGTH: 532 nm

OUTPUT BEAM SIZE: ≈50 mm DIAMETER

OUTPUT DIVERGENCE RANGE: 250 µRAD TO 50 mRAD, CONTINUOUS

OUTPUT ASPECT RATIO: SYMMETRIC TO 4:1 ANAMORPHIC (CONTINUOUS)

ORIENTATION OF ANAMORPHIC AXIS: 00 TO 1800, CONTINUOUS

ALL MOTIONS LINEAR (NO ROTATIONS)

BEAM SHAPING OPTICS - OPTICAL ISOMETRIC

Systems

MINIMUM OUTPUT DIVERGENCE: $< 250~\mu \text{RAD}$

MAXIMUM OUTPUT DIVERGENCE: >50 mRAD

RATE OF CHANGE (SYMMETRIC): 8.0 mRAD/mm LENS MOTION

FULL RANGE OF ELEMENT MOTIONS: ≈7 mm

MAXIMUM ANAMORPHIC RATIO: >4/1

ANAMORPHIC ORIENTATION: 0 TO 1800

BEAM SHAPING OPTICS - CONTROL EQUATION

DEFINITIONS

"AVERAGE DIVERGENCE" = (MAX + MIN)/2 =
$$\phi_{AVG}$$
"EXTRA DIVERGENCE" = MAX - AVG = AVG - MIN = ϕ_{EXT}

(ANAMORPHIC RATIO = MAX/MIN)

INPUTS

ф AVG

 ϕ EXT $\overline{\theta}$ (ORIENTATION OF MAJOR AXIS)

OUTPUTS

DIVERGENCE, 1st GROUP = $D_0 = 2/3 \Phi_{AVG} - 4/3 \Phi_{EXT} \cos 2 \theta$

DIVERGENCE, 3rd GROUP = D_{120} = 2/3 ϕ_{AVG} + 2/3 ϕ_{EXT} (COS 2 θ + $\sqrt{3}$ SIN 2 θ) DIVERGENCE, 2nd GROUP = D_{60} = 2/3 ϕ_{AVG} + 2/3 ϕ_{EXT} (COS $2\overline{\theta}$ - $\sqrt{3}$ SIN $2\overline{\theta}$)

LENSES REPOSITIONED FROM MOTION EQUATION (8 mRAD/mm)

DYNAMIC

AXIAL MOTION REPEATABILITY ±6 μm (±50 μRAD)

CONSTRUCTION AND STATIC PARAMETERS ANALYSED:

- RADII OF CYLINDRICAL CURVATURE
 - THICKNESS / AIRSPACE
 - **ELEMENT WEDGE**
- ELEMENT TILT
- SURFACE SKEW
- ELEMENT CENTERING
- ELEMENT SKEW

SUMMARY: TOLERANCES ARE IN "PRECISION" CLASS

SYSTEM MAY REQUIRE SOME "TUNING" AT ASSEMBLY

- MOTOR -- LINEAR BRUSHLESS DC TORQUE MOTORS
- POS ITION FEEDBACK -- LENS MOUNTED LED FOCUSED EMITTERS WITH FRAME MOUNTED POSITION SENSING DETECTORS.

BEAM SHAPING UNIT NEAR TERM PLANS

- PREPARE LENS DRAWINGS AND ORDER
- BREADBOARD MOTOR / POSITION CONTROL CIRCUIT
- PREPARE FINAL MECHANICAL DESIGN
- ESTABLISH PERFORMANCE EVALUATION PROCEDURES (INCLUDING COMMAND GENERATION APPROACH)
- DEVELOP SCORING SYSTEM

Sylvania Systems Group Western Division

- INTRODUCTION
- BEAM SHAPER PROGRESS
- SYSTEMS ANALYSIS

SYSTEMS ANALYSIS

Syrnenie

- CONTINUING HIGHER ORBIT ANALYSIS
- NAVY PROPAGATION MODEL REVISIONS AND RELATED TOPICS
- DEPTH NOMOGRAPH I

COVERAGE APPROACH

NUMBER OF SATELLITES

SCANNING CONSIDERATIONS

SYSTEM TRADEOFF EQUATIONS

MESSAGE DESIGN AND REMOTE SENSOR IMPACT

SYNCHRONIZATION

■ LAUNCH VEHICLE AND SPACECRAFT SIZING

■ SCALING OF ALLOWABLE PROPAGATION PATH LOSS

PREVIOUS LOW ORBIT ANALYSIS

- ▶ FULL TEMPORAL REQUIREMENT
- MAXIMUM ALLOWABLE ZENITH ANGLE ≤ 45°
- RESULT: 100 SATELLITES REQUIRED

ORBITS

- ▶ FIRST ORDER ANALYSIS
- CIRCULAR POLAR a) NEARLY FIXED SCAN RATE
- b) LATITUDE DEPENDENT AREA
- c) EASY TO VISUALIZE
- **ELLIPTICAL?**
- TWO GENER IC ORBITS:

NUMBER OF	TRACKS/24 HRS	16	12
1.11	nmi	151.6	910.9
ALTITUDE	Ē	175	1049
	ĸ	281	1688
		1.5 (90 MIN)	
;	NAME	⋖	B

COVERAGE APPROACH

 EACH ORBIT COVERS A SWATH EQUAL TO THE DISPLACEMENT OF ITS GROUND TRACK

ORBIT DISPLACEMENT

2502 km

3336 km

ZENITH ANGLES EXCEED THE PREVIOUS MAXIMUM OF 450

ZENITH ANGLE AT SWATH EDGE

 ORBIT
 AT EQUATOR
 AT 600 N

 A
 81.80
 69.20

 B
 55.90
 33.30

NUMBER OF SATELLITES

● FRACTION OF EARTH COVERED CIRCUMFERENCE

Sylvenia

FRACTION OF EARTH COVERED 1/8 ORBIT

1/6

■ T = REQUIRED COVERAGE TIME

■ NUMBER OF SATELLITES = [(PERIOD) (FRACTION COVERED PER ORBIT)]-1

NUMBER OF SATELLITES II

Systems

NUMBER OF SATELLITES REQUIRED

മ	~	2	2	m	9	ı
۷I	7	2	2	4	ı	∞
T (HRS)	12	∞	9	4	2	1.5

GENERAL RESULT:

 $\frac{12}{\text{NUMBER OF SATELLITES REQUIRED}} \approx \frac{12}{\text{T(HRS)}}$

SCANNING CONSIDERATIONS

■ SCAN SPEED ALONG TRACK = SPEED OF SUB-SATELLITE POINT ALONG GROUND TRACK

Sylvanit

7.41 km/SEC

5.56 km/SEC

■ SPOT SCAN ACROSS SWATH:

SQUARE SPOTS

 $N_{SPOTS} = \frac{SWATH WIDTH}{D_S}$

 $T_{SWATH} = (N_{SPOTS})(M_{w})$

• DURING T_{SWATH}, SUB-SATELLITE POINT MOVES $D_S = (T_{SWATH})(SPEED \text{ ON EARTH'S SURFACE})$

 $M_{W} = \frac{D_{S}^{2}}{(SWATH WIDTHXSPEED ON EARTH'S SURFACE)}$

 $18,800 \, (km^2)$

SCANNING CONSIDERATIONS II

Systems

M _W (SEC)	0.192	0.532
D _S (km)	09	100
ORBIT A OR B		

SPOT PARAMETERS:

	ANGULAR DIAMETER (AT NADIR)) IAMETER D IR)	NSF	Nspots
D _S (km)	۷I	\omega 1	۷I	60 l
40	8. 160	1.360	2	89
09	12. 260	2.040	43	57
100	20.5 ₀	3.40	92	7

SYSTEM TRADEOFF EQUATIONS

SYLVAN.

$$\frac{S}{N} \alpha \frac{E_p}{A_{SPOT}}$$

PPM:
$$E_p = \frac{P_A V}{PRF} \approx P_A V (2^{L} t_S)$$

$$\bullet ASPOT = \frac{ASWATH}{NSPOTS}$$

$$\bullet \ M_{W} = \frac{M_{L}}{2} \quad 2^{2} t_{S}$$

SYSTEM TRADEOFF EQUATIONS II

$$\frac{S}{N} \qquad \frac{E_p}{A_{SPOT}} \qquad \alpha \qquad \frac{P_{AV} \ell}{M_L (18,800 \text{ km}^2)}$$

MESSAGE DESIGN

$$\bullet 2^{\ell}t_{s} + t_{f} = \frac{1}{PRF}$$

• STANDARD
$$t_s$$
 AND PRF $\implies t_f = 4.88 (10^{-3})$ SECONDS

REMOTE SENSOR

- I: REMOTE SENSOR PREDICTS WIDE PULSE CONDITIONS \Longrightarrow GO TO A = 4, z^4t_s , Double dwell time in those areas
- II: NO REMOTE SENSOR INFORMATION AVAILABLE

$$t_s \implies 6t_s \implies M_W = 0.34 \text{ SECONDS}$$

DSPOT = 80 km

SCAN TIME (SECONDS) 10.88 14.28	
NSPOTS 32 42	
ORBIT A B	

• DEGRADATION: AREA
$$\left(\frac{69}{80}\right)^2$$
 = 0.74 \iff \mathcal{I} : $\frac{6}{8}$ = 0.75

AVERAGE SPOT SIZE

- GOOD REMOTE SENSOR: [60 km]² AVERAGE SPOT AREA
- MOLNIYA SINGLE SATELLITE IN PACIFIC: ASPOT [14]. 4 km]² - TWO SATELLITES IN ATLANTIC: ASPOT - [71.5 km]
- AVERAGE AVAILABILITY, OR, LOW EARTH ORBIT PROVIDES THE FOR SAME TECHNOLOGY, LOW EARTH ORBIT PROVIDES BETTER SAME AVERAGE AVAILABILITY FOR LOWER TECHNOLOGY (SMALLER SATELLITE)

LAUNCH VEHICLE AND SPACECRAFT SIZING

4 Age	LOW ORBIT (OPERATIONAL)	HIGH ORBIT (OPERATIONAL)
POWER REQUIRED	25 kW	25 KW
LASER COMM	2400 lbs	2400 lbs
SOLAR ARRAY	1560 at 4. 6K FT^2	860 at 256 FT ₂
HEAT DISSIP	$800 \text{ at } 310 \text{ FT}^2$	775 at 540 FT ²
POWER COND	200	1530
က်	300	300
GNC	140	140
ATTITUDE CONTROL	0	750
INTERSTAGE STRUCTURE	1500	1400
BATTERIES	2734	0
TOTAL	9934 at 4.6 FT ²	8155 at 540 FT ²
ORB IT ALTITUDE	500 nmi	25,000/400
INCLINATION	+00/	630
PER 10D	~105 min	12 HR
MIN LIFE	5 YEAR	5 YEAR
LAUNCH SITE	VAFB	KSC
BOOSTERS	SHUTTLE (3 oms	SH + 3-STAGE IUS
	KITS)	TITAN-CENTAUR

Sylvania Systems Group Western Division

TITAN IIIC

BATTERIES AND ORBITAL LIFE

		4
SPECIFIC CAPACITY	10 W/lb	25 W/lb
DEPTH OF DISCHARGE	20%	%09
CYCLE LIFE	20, 000	>5,000

田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.4 YEARS	4 YEARS	20 YEARS
ALTITUDE	350 nmi	440 nmi	500 nmi

GaAs	
SILICON	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

	50 W/Ib	17 W/SQ FT	\$20/CELL	17%	5%/YEAR	0.25%/ ⁰ C	YES
	50 W/lb	11 W/SQ FT	\$10/CELL	11%	55%/YEAR	0.5%/ ⁰ C	YES
SPECIFIC CAPACITY	BY WEIGHT	BY AREA	COST	EFF IC IENCY	RADIATION DEGRADATION/YEAR	TEMPERATURE DEGRADATION	FLOWN

YES

NO YES

Sylvania Systems Group Western Division

SCALING OF ALLOWABLE PATH LOSS

■ BIOLUMINESCENT LIMITED OPERATION: OLD STRENGTH

$$1 \text{ A/IM}^2 \implies ^{\text{P}} \text{BL} = 4 (10^{-9}) \text{ WATTS}$$

$$NEP_B = 6.55 (10^{-14} \text{K}\Delta t)^{-1/2} \text{ WATTS}$$

SNRREQ
$$\geq 8$$
; ASPOT = [80 km]²; E_p = 2 JOULES

$$r_a r_c r_{cw} r_{aw} r_w \ge \frac{r_a r_c r_{cw} r_{aw} r_w}{(\Delta t)^{1/2}}$$

9.86 (10⁻³) (SEC)^{-1/2}

SCALING II

•
$$\Delta t - 10^{-7} \tau$$

THICK CLOUD
$$\Longrightarrow$$
 τ_{cw} 1, τ_{aw} 0.8; τ_{a} 0.6

$$\frac{\tau_c \tau_w}{\tau_1 1/2} \ge 6.49 (10^{-6})$$

$$10 \log_{10} \left(\frac{r_c r_v}{r^{1/2}} \right) \ge -51.9 \text{ dB}$$

SCALING III

$$\bullet \frac{\tau_c \tau_W}{\tau^{1/2}} \alpha \left(\frac{1}{E_p}\right) (B_{OPT})^{1/2} \left(\frac{1}{d}\right) (A_{SPOT})$$

• 0.3 m/3 R
$$\Rightarrow \frac{\tau_c \tau_w}{\tau^{1/2}} \ge 4.23 (10^{-5}) \longrightarrow -43.7 \text{ dB}$$
 [51.9 dB]

▶ BEST CASE: T = 1; 1 B WATER AND BLUE LIGHT

0.3 m/3 Å -- 305 m (1001 FT)

SCALING IV: DAYTIME COVERAGE

SAME PR

• SOLAR LIMITED: $P_B = 4.8 (10^{-2}) (Ta Tc Tcw Taw Tw)$

$$NEP_B = 2.257 (10^{-10}) [Ta Tc Tcw Taw Tw Taw]^{1/2}$$

 $\frac{\tau_{SIG}}{[\tau_{SUN]^{1/2}}} \frac{1}{(\Delta t)^{1/2}} \ge 34.0$

 $\Delta t = 10^{-7}\tau$; $\tau_c = 0.6$; $\tau_{aw} = 0.8$; $\tau_{cw} = 1$

$$\frac{\tau_{c} s \tau_{w}}{|\tau_{c} s u \tau_{w}|^{1/2}} \frac{1}{\tau^{1/2}} \ge 1.55(10^{-2})$$

DAYTIME COVERAGE II

• THICK CLOUDS:
$$\tau_W^S = \tau_W^{SU}$$

 $\tau^S_C(\theta_S) \approx \tau_C(0) (\cos \theta_S)^{1/2}$

$$\tau^{\text{SU}}_{\text{c}}(\boldsymbol{\theta}_{\text{SU}}) \approx \tau_{\text{c}}(0) (\cos \boldsymbol{\theta}_{\text{SU}})^{3/2}$$

$$[\tau_{\text{c}(0)}]^{1/2} [\tau_{\text{w}}]^{1/2} [\cos \boldsymbol{\theta}_{\text{SU}}]^{1/2}$$

$$\tau^{1/2} [\cos \boldsymbol{\theta}_{\text{SU}}]^{3/2} \approx 1.55 (10^{-2})$$

•
$$\tau_{\text{OPT}} = 50$$
; $\tau_{\text{c}} = 0.17$; st = $10 \,\mu \,\text{seconds}$, $\theta_{\text{s}} = 45^{\circ}$

DEPTH (m)	48.7	<u>54.4</u>	30	38.8	20.8
$\overline{\mathbf{K}(\mathbf{m}^{-1})}$	0.033	0.03	0.062	0.062	0.116
g sn	0	8		40	

- NEAR EARTH ORBIT ANALYSIS
- CONTINUING HIGHER ORBIT ANALYSIS
- NAVY PROPAGATION MODEL REVISIONS AND RELATED TOPICS
- DEPTH NOMOGRAPH 1.

HIGHER ORBIT ANALYSIS

- ANAMORPHIC CORRECTION IMPACT
 - RANDOM SCAN "COST"
- CORRECTION TO REQUIRED SNR
- SPOT SHAPE, SPOT PATTERN CONSIDERATIONS
 - ADDITIONAL DCM RUNS

SINGLE PULSE SNR IMPACT - COS 4S

SYSTEM IMPACT - MAXIMUM ♠s

DISTRIBUTION OF \$

ANAMORPHIC II

SAMPLE DISTRIBUTIONS:

"UNIFORM"
$$P(\phi_s) = \frac{1}{\phi_M}$$

PEAKED AT LOW ANGLES:
$$P(\phi_S) =$$

(MOLNIYA)

cos φ_s sin φ_M

PEAKED AT LARGE ANGLES:
$$P(\phi_S) = \frac{\sin \phi_S}{1-\cos \phi_M}$$

$$\left[\begin{array}{c} \sinh \phi_{M} \\ \phi_{M} \end{array}\right]^{-1}; \text{ UNIFORM}$$

$$\overline{Ep} = \left[\int_0^{\phi_M} \cos \phi_s \ P(\phi_s) \ d\phi_s \right]^{-1} \ \left(1/2 \left[\cos \phi_M + \frac{\phi_M}{\sin \phi_M} \right] \right)^{-1}; \ PEAKED LOW$$

$$\left(1/2\left[\frac{\sin^2\phi_M}{1-\cos\phi_M}\right]\right)^{-1}; \text{ PEAKED HIGH}$$

Sylvania Systems Group

ANAMORPHIC III

		n d	
P(φs)	₀ 09 W ф	₀ 02 W\$	φW 730
UNIFORM	1. 21/0. 8 dB	1.30/1.14 dB	1.33/1.25 dB
PEAKED AT 0	1. 18/0. 7 dB	1. 22/0. 85 dB	1. 23/0. 91 dB
PEAKED AT ∲ M	1.33/1.25 dB	1. 50/1. 74 dB	1. 55/1. 9 dB

- ▶ PROBABLY A 1.5 dB TO 3 dB IMPACT
- RETAIN ANAMORPHIC CORRECTION

- PERFORMANCE
- COMPLEX ITY/COST
- RISK

- SINGLE PULSE SNR UNAFFECTED
- DEAD TIME BETWEEN MESSAGES -
- O, FOR (BASELINE) TWO OPTICAL TRANSMITTER HEADS
- SPOT OVERLAP FRACTION OF ILLUMINATED SPOT "COUNTED" AS COVERED

CIRCULAR SPOTS - (A) SQUARE IN CIRCLE → 0.6366
(B) STAGGERED SQUARES/CIRCLES → 0.815

RANDOM & RASTER

SQUARE SPOTS - RANDOM ⇒ 0.7225 FOR SMALLEST SPOT, DUE TO SUBMARINE ESCAPE

RASTER - 1.0

• FOR SQUARE SPOTS, AREA COVERAGE RATE \sim 38% FASTER WITH RASTER SCAN; \approx 1% TO 2% IN AVAILABILITY

RANDOM SCAN COMPLEXITY AND RISK

THREE AREAS:

- (1) TWO OPTICAL TRANSMITTER CHAINS
- (2) "DISJUNCT" SHAPER SETTINGS (VERSUS "CONTINUOUS" VARIATION)
- (3) POINTER REPEATABILITY
- (1) REDUNDANCY TWO CHAINS PRESENT
- (2) TWO CHAINS MAKES "DISJUNCT" SETTINGS FEASIBLE
- (3) RANDOM POINTER APPEARS FEASIBLE
- ▶ NEGLIGIBLE "COST" DIFFERENCE

CORRECTION TO REQUIRED SIGNAL-TO-NOISE RATIO

PREVIOUS EXPRESSION: P(err) = $\frac{(2^{4}-1) e^{-1/2(S/N)^{2}}}{\sqrt{2\pi} S/N}$

FROM PROBABILITY OF ANOISE SPIKE IN A NOISE-ONLY SLOT EXCEEDING THE SIGNAL LEVEL

BUT - (a) COMPARING SIGNAL + NOISE TO NOISE, AND (b) "NOISE" IS FLUCTUATIONS DUE TO AVERAGE BACKGROUND SHOT-NOISE ⇒ EFFECTIVE√2 DECREASE IN SIGNAL + NOISE LEVEL MUST **BEACCOMODATED**

• NEW EXPRESSION: P(err) = $\frac{(2^2 - 1)}{\sqrt{2\pi}} = \frac{e^{-1/2} (S/\sqrt{2} N)^2}{(S/\sqrt{2} N)}$ (BOUND)

Systems

SPOT SHAPE, SPOT PATTERN CONSIDERATIONS

ICIENCY	***
SCAN EFFICIENCY	EQUILATERAL TRIANGLE

41.35%

82.7%

63.66%

81.5%

STAGGERED SQUARE PATTERN

SELECTED APPROACH - ESCAPE PROBABILITY IMPACT TBD

Sylvania Systems Group Western Division

- ANAMORPHIC CORRECTION IMPACT
- RANDOM SCAN "COST"
- CORRECTION TO REQUIRED SNR
- SPOT SHAPE, SPOT PATTERN CONSIDERATIONS
- ADDITIONAL DCM RUNS

1	
۱	
Ì	

DCM LOG

ATE	
PROPAGATION MODEL: CLOUDS	CLOUDS
	WATER
	BLUE-SKY
	BIOLUMINESCENCE
MATA RASES. CLOUDS	

Syculation States

ADDITIONAL DCM RUNS

S/N)REG =

Sylvania Systems Group Western Division

DCM RUN NO. 2: RESULTS

MESSAGE LENGTH	DEPTH IN TYPE III WATER	DOWNLINK AVAILABILITY
EAM	FULL	0.78
EAM	75%	0.88
EAM	20%	6.0
16 B IT	FULL	0.86
16 817	75%	0.97
16 BIT	50%	0.99

Systems

DCM RUN NO. 4: RESULTS

DOWNLINK AVAILABILITY	0.48	0.73	0.61	0.85	
AREA	FULL	HALF ⁺	FULL	HALF ⁺	HALF AREA BELOW 340 N
LASER POWER (WATTS)	50	50	200	500	⁺ HALF ARE

DCM RUN NO. 5: RESULTS

INCREASE RELATIVE TO #4	0.0216	0.0421
AVAILABILITY	0.5016	0.6521
AREA	FULL	HALF

REQUIRED AREA

SYLVANIE OF

A SPOT NUMBER SPOTS

TIME TO COVER AREA

● NUMBER SPOTS = PER SPOT DWELL TIME

• $A_{SPOT} = (345 \text{ km})^2 = 9.3 (10^{10}) \text{m}^2$

Systems

AREA	DOWNLINK AVAILABILITY	DECREASE RELATIVE TO #5
FULL	0.3192	0. 1824
HALF+	0.415	0.2371
+ ALSO USINC	ALSO USING 345 km SPOTS	

DCM RUN NO. 7: RESULTS

DOWNLINK AVAILABILITY

1	0.5178	0.6731
9#	0.3192	0.415
#2	0.5016	0.6521
AREA	FULL	HALF

■ 10 dB IN SINGLE PULSE SNR PARAMETER COMPENSATED FOR

A. NO REMOTE SENSOR

AND B. CONSTANT SPOT AREA STRATEGY

SYSTEMS ANALYSIS

- NEAR EARTH ORBIT ANALYSIS
- CONTINUING HIGHER ORBIT ANALYSIS
- NAVY PROPAGATION MODEL REVISIONS AND RELATED TOPICS
- DEPTH NOMOGRAPH I

NAVY PROPAGATION MODEL REVISIONS AND RELATED ISSUES

Systems

- "RECENT" NOSC CHANGES TO THE PROPAGATION MODEL
- RECEIVER FIELD-OF-VIEW OPTIMIZATION
- ALTERNATE STRATEGY IF REMOTE SENSING IS NOT AVAILABLE

- NUMEROUS MINOR CHANGES
- MAJOR CHANGES CLEAR WEATHER WATER TRANSMISSION MODEL

BIOLUMINESCENT STRENGTH

K VALUES

COMPARE OLD AND NEW MODELS, AND THE SYSTEM IMPACT

OLD MODEL

$$\tau_{\rm W} = \pi \exp - (k_{\rm i} D_{\rm i}/\cos \phi_{\rm SW})$$

NEW MODEL

$$\tau_{W} = \tau(\phi_{SW}) F(\phi_{SW})$$
$$F(0) = 1$$

$$F(45^0) = 0.542$$

DEPTH:
$$< 30m$$
: $exp - (kD/cos \phi_{sw})$

30-50m: SAME, FOR
$$\phi_{SW} \le 30^{\circ}$$

$$: \left[\frac{-(k-30)}{e^{\cos \phi sw}} \right] \left[\frac{-k\rho (D-30)}{e^{\cos \phi sw}} \right]$$

> 50 m:
$$\left[\frac{-(k-50)}{\cos \phi \, \text{sw}} \right] \left[\frac{-kp \, (D-50)}{e} \right]$$

WATER TRANSMISSION MODEL II

WATER TYPE	18	=	Ξ
kp (m ⁻¹)	0.033	2/3 (0. 063)	1/3 (0. 116)

SYSTEM IMPACT:

(a) ENHANCED AVAILABILITY

(b) NO RECEIVER POINTING AT DEPTH

BIOLUMINESCENCE

NEW MODEL

OLD MODEL

NO FOV DEPENDENCE (
$$H_{BL} = 10^{-3} \frac{\text{WATTS}}{\text{m}^2 \text{SRAD} \mu \text{m}}$$

(1 - cos
$$\theta_R$$
) DEPENDENCE
H_{BL} = 6.38 (10⁻³) $\Big\{$ 1.067k + 0.033 $\Big\}$ m²SRADµm

SYSTEM IMPACT:

$$\frac{\text{K(m-1)}}{0.033}$$
 $\frac{\text{HBL}}{4.35 (10^{-4})}$ $\frac{\Delta S}{0.067}$ $6.67 (10^{-4})$ 0.116 10^{-3}

A SNR FOR BIOLUMINESCENT LIMITED OPERATION

K VALUES

OLD MODEL		NEW MODEL
	WATER TYPE	K BELOW THERMOCLINE
. 2/3 (SURFACE K)	8	AS ABOVE THERMOCLINE
W THERMOCLINE	=	2/3 OF k ABOVE
	=	1/3 OF k ABOVE

BELOW THERMOCLINE

SYSTEM IMPACT - ENHANCED PERFORMANCE

FIELD OF VIEW OPTIMIZATION

BLUE SKY

$$f(\phi_0, \theta_p, \delta_{sky}) 2\pi (1-\cos \theta_R) \longrightarrow f(\phi_0, \theta_R, \delta_{sky})$$

BIOLUMINESCENCE

$$1 \longrightarrow (1 - \cos \theta_{\mathbf{R}})$$

Systems

STRATEGY IN LIEU OF REMOTE SENSING

Systems

- EQUAL AREA SPOTS
- SPOT AREA DEPENDENT ON LONG-TERM KNOWLEDGE OF WATER AND CLOUD TYPE

$$NSP(IB) + NSP(II) + NSP(III) = NSP(TOTAL)$$

PACIFIC

DCM EXPERIENCE → A_{III} DOWN TO (40 km)²

A_{IB} UP TO (550 km)² AND

- NEAR EARTH ORBIT ANALYSIS
- CONTINUING HIGHER ORBIT ANALYSIS
- NAVY PROPAGATION MODEL REVISIONS AND RELATED TOPICS
 - DEPTH NOMOGRAPH I

Sylvania Systems Group Western Division

NOMOGRAPH I DEVELOPMENT

$$\left[\frac{E_{p}^{2} \eta d^{2} \gamma_{R}}{B_{OPT}}\right]^{1/2} \boxed{F}$$

- NEGLECT DEPTH DEPENDENCE OF ALL fi
- ONE BACKGROUND DOMINATES

SUN-LIMITED
$$\frac{\tau_{W}^{S}}{\left[\tau_{W}^{Su}\right]^{1/2}} = \left[\frac{E_{p}^{2} \eta d^{2} \gamma_{R}}{B_{OPT}}\right]^{-1/2} A_{1}$$

$$SKY-LIMITED
$$\frac{\tau_{W}^{S}}{\left[\tau_{W}^{Sky}\right]^{1/2}} = \left[\frac{E_{p}^{2} \eta d^{2} \gamma_{R}}{B_{OPT}}\right]^{-1/2} A_{2}$$

$$BIO-LIMITED \qquad \tau_{W}^{S} = \left[\frac{E_{p}^{2} \eta d^{2} \gamma_{R}}{B_{OT}}\right]^{-1/2} A_{3}$$$$

- Tw ARE CLOUD THICKNESS DEPENDENT TOO
- DEFINE F_1 : F_1 = $\cos \phi_S^W$

THIN CLOUD/B10

F₂ =
$$\frac{2\cos\phi_{SU}^{W}\cos\phi_{S}^{W}}{2\cos\phi_{SU}^{W}-\cos\phi_{S}^{W}}$$

THIN CLOUD/SUN

$$F_3 = \frac{2\cos\phi_S^W}{2-\cos\phi_S^W}$$

THIN CLOUD/SKY

THICK CLOUD/SUN OR SKY

THICK COULD/BIO

$$\implies \exp - \left(\frac{kD}{F_{\rm i}}\right) - A_{\rm j} \left[\frac{E_{\rm p}^2 \eta d^2 \gamma_{\rm R}}{B_{\rm OPT}}\right]^{-1/2}$$

NOMOGRAPH I DEVELOPMENT (CONT'D)

NORMALIZE TO REMOVE ALL AJ

$$\implies \exp \left[- \left[\frac{k (\Delta D)}{F_{I}} \right] = \left[\frac{E_{D}^{2}}{B} \frac{\vec{\eta} d^{2} \vec{\gamma}_{R}}{B_{OPT}} \right]^{-1/2}$$

$$k (\Delta D) = F_{i} \left(\phi_{S}^{W}, \phi_{SU}^{W} \right) G \left(\overline{B}_{OPI}, \overline{E}_{p}, \overline{\eta}, \overline{d}, \overline{\gamma}_{R} \right)$$

FOR

$$G = 2 \ln E_p + 2 \ln \bar{d} - \frac{1}{2} 2 \ln \bar{B}_{OPT} + \frac{1}{2} 2 \ln \bar{\gamma}_R + \frac{1}{2} 2 \ln \bar{\eta}$$

NOMOGRAPH I

	LOW-EARTH	HIGH-EARTH
PRIME POWER	25 KW	25 KW
EFFICIENCY	1%	1%
ORBIT INCLINATION	180	009
LIFE	5 YEARS	5 YEARS
SUN ACTIVITY	MAX	MAX
LAUNCH VEHICLE	SHUTTLE OR FREE-FLYER	
DRAG COEFFICIENT	2	N/A

CORRECTION TO REQUIRED SIGNAL-TO-NOISE RATIO

$$(2^{\mathcal{L}_{-1}})^{e} = (2^{-1/2}(S/N)^{2})$$

PREVIOUS EXPRESSION: P(err) = (BOUND) FROM PROBABILITY OF ANOISE SPIKE IN A NOISE-ONLY SLOT **EXCEEDING THE SIGNAL LEVEL** BUT - (a) COMPARING SIGNAL + NOISE TO NOISE, AND (b) "NOISE" IS FLUCTUATIONS DUE TO AVERAGE BACKGROUND SHOT-NOISE

⇒EFFECTIVE√2 DECREASE IN SIGNAL + NOISE LEVEL MUST **BE ACCOMODATED**

 $e^{-1/2}(S/\sqrt{2}N)^2$ (S/ \(\sqrt{2}\) NEW EXPRESSION: P(err) = $\frac{(2^{\mathcal{L}}-1)}{\sqrt{2\pi}}$ (BOUND)

Systems

SCAN EFFICIENCY

41.35%

$$\frac{2}{\pi} = 63.66\%$$

$$\frac{3\sqrt{3}}{\pi^2} = 82.7\%$$

$$\frac{1}{\pi (5/8)^2}$$

STAGGERED SQUARE PATTERN **EQUILATERAL TRIANGLE** HEXAGON IN CIRCLE SQUARE IN CIRCLE

■ SELECTED APPROACH - ESCAPE PROBABILITY IMPACT TBD

■ RANDOM SCAN "COST"

A CORRECTION TO REQUIRED SNR

🎍 > 20T SHAPE, SPOT PATTERN CONSIDERATIONS

ADDITIONAL DCM RUNS

DCM LOG

-		
DATE		
PROPAGATION MODEL: CLOUDS	N MODEL:	Sanota
		WATER
		BLUE-SKY
		BIOLIMINESCENCE
DATA BASES. CLOUDS	CLOUDS	
	WATER	
	BIOLUMIN	ESCENCE
	SUN LOCATION	NOIL

SYLVANIA SO

ADDITIONAL DCM RUNS

ENERGY PER PULSE PULSE REPETITION FREQUENCY OPTICAL FILTER BANDPASS

BITS PER PULSE MESSAGE TYPE

OPTICS TRANSMISSION: TRANSMITTER/RECEIVER DETECTOR QUANTUM EFFICIENCY

WAVELENGTH

RECEIVER APERTURE DIAMETER RECEIVER FIELD-OF-VIEW/POINTING STRATEGY LOCATION SATELLITE CHARACTERISTICS: NUMBER ORBITS INTER FRAME DEADTIME INTER MESSAGE DEADTIME REMOTE SENSING STRATEGY KEY POINT EXPLORED OVERLAP STRATEGY **SLOTWIDTH**

S/N)REQ =

Systems

DCM RUN NO. 2: RESULTS

0.78 0.88 0.9 0.97 0.99	
DEPTH IN TYPE III WATER FULL 50% FULL 75%	50%
MESSAGE LENGTH EAM EAM EAM 16 B IT	16 BIT

DCM RUN NO. 3: RESULTS

DOWNLINK AVAILABILITY	0.48	0.53	0.57	0.64	0.72	0.81
DEPTH IN TYPE III WATER	FULL	75%	20%	FULL	75%	20%
MESSAGE LENGTH	EAM	EAM	EAM	16 B I T	16 B IT	16 B IT

DCM RUN NO. 4: RESULTS

DOWNLINK AVAILABILITY	0.48	0.73	0.61	0.85
AREA	FULL	HALF	FULL	HALF+
LASER POWER (WATTS)	20	20	200	200

INCREASE RELATIVE TO #4	0.0216	0.0421
AVAILABILITY	0.5016	0.6521
AREA	FULL	HALF

CORRECTION TO REQUIRED SIGNAL-TO-NOISE RATIO

$$(2^{2}-1)^{2}$$
 $(2/N)^{2}$

12m SIN ▶ PREVIOUS EXPRESSION: P(err) = (BOUND) FROM PROBABILITY OF ANOISE SPIKE IN A NOISE-ONLY SLOT **EXCEEDING THE SIGNAL LEVEL** BUT - (a) COMPARING SIGNAL + NOISE TO NOISE, AND (b) "NOISE" IS FLUCTUATIONS DUE TO AVERAGE BACKGROUND SHOT-NOISE ⇒ EFFECTIVE√2 DECREASE IN SIGNAL + NOISE LEVEL MUST BE ACCOMODATED

• NEW EXPRESSION: P(err) =
$$\frac{(2\mathcal{L}_{-1})}{\sqrt{2\pi}} = \frac{e^{-1/2} (S/\sqrt{2} N)^2}{(S/\sqrt{2} N)}$$
(BOUND)

