La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona consta de dues opcions, A o B, entre les quals cal triar-ne una.

Primera part

Exercici 1 [2,5 punts]

[Per a cada qüestió només es pot triar una resposta. Resposta ben contestada: 0,5 punts; resposta mal contestada: –0,16 punts; resposta no contestada: 0 punts]

Qüestió 1

Els sistemes de gran potència treballen amb corrent altern perquè:

- a) En ser més complicat que el continu, hi ha menys competència entre els instal·ladors.
- b) Les funcions sinusoïdals tenen més complexitat matemàtica.
- c) En ser variable, permet l'ús de transformadors.
- d) Els ordinadors el necessiten.

Qüestió 2

Quatre bateries idèntiques, de tensió interna (fem) $E=12,6\ V$ i resistència interna $R_{\rm i}=0,04$, es connecten en sèrie. El seu comportament és equivalent a una bateria de tensió interna $E_{\rm e}$ i una resistència interna $R_{\rm ie}$ de valors:

- a) $E_{e} = 50.4 \text{ V i } R_{ie} = 0.01 .$
- b) $E_{\rm e} = 50.4 \text{ V i } R_{\rm ie} = 0.16$.
- c) $E_{\rm e} = 3.15 \text{ V i } R_{\rm ie} = 0.01$.
- d) $E_{e} = 3.15 \text{ V i } R_{ie} = 0.16$.

Qüestió 3

En un circuit de corrent altern, la potència mitjana absorbida per un condensador:

- a) És sempre positiva.
- b) És sempre negativa.
- c) Pot ser positiva o negativa.
- d) És sempre nul·la.

Qüestió 4

Un motor de corrent continu d'excitació independent amb imants permanents acciona un eix amb un parell resistent que es pot considerar constant. Quan la tensió que s'aplica al motor és V i el corrent d'induït és I, la velocitat de l'eix és ω . Si es redueix la tensió a 0,5 V, quin serà ara el corrent del motor?

- a) *I*
- b) 0,51
- c) 21
- d) 1,5/

Qüestió 5

Un fusible protegeix de:

- a) Sobretensions de curta durada.
- b) Curtcircuits.
- c) Subtensions.
- d) Fuites de corrent.

Exercici 2 [2,5 punts]

$U_1 = 46 \text{ V}$	$U_2 = 48 \text{ V}$
$R_1 = 2$	$R_2 = 4$
$R_3 = 10$	$R_4 = 40$

Per al circuit de la figura, determineu:

a) La resistència equivalent de R_3 i R_4 .

[0,5 punts]

b) Els corrents subministrats per les fonts de tensió.

[1 punt]

c) Les potències subministrades per les fonts de tensió.

[0,5 punts] [0,5 punts]

d) La diferència de tensió entre els extrems de la resistència R_4 .

Segona part

OPCIÓ A

Exercici 3 [2,5 punts]

<i>U</i> = 50 V	$R_1 = 100$
$R_2 = 400$	$C = 400 \mu F$

El condensador del circuit de la figura està inicialment descarregat i es tanca l'interruptor. Determineu:

- a) La constant de temps del circuit.
- [0,5 punts]
- b) La tensió i la càrrega en el condensador transcorreguts 64 ms després del tancament de l'interruptor. [1 punt]
- c) L'energia emmagatzemada en el condensador i la intensitat que subministra la font de tensió 64 ms després del tancament de l'interruptor i molt () temps després.

Exercici 4 [2,5 punts]

En la figura següent es representa la taula de veritat de la funció lògica S (a, b, c).

а	b	С	S
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	1

- a) Simplifiqueu la funció donant l'expressió booleana més curta possible. (Es pot emprar el mètode Karnaugh.) [1 punt]
- b) Dibuixeu la implementació lògica de la funció simplificada utilitzant exclusivament portes NAND. [1,5 punts]

OPCIÓ B

Exercici 3 [3 punts]

$$V_1 = 220 \text{ V}$$
 $f = 50 \text{ Hz}$
 $A_2 = 7 \text{ A}$ $A_3 = 14 \text{ A}$

Per al circuit de la figura, determineu:

Amb l'interruptor obert:

a) El diagrama vectorial dels corrents del circuit i la lectura de l'amperímetre A,

[1,5 punts]

b) Les potències activa, reactiva i aparent, així com el factor de potència del conjunt del circuit. [0,5 punts]

Amb l'interruptor tancat:

c) El valor de la reactància del condensador C_2 per tal que la lectura de l'amperímetre A_1 sigui $A_1 = 20$ A. [1 punt]

Exercici 4 [2 punts]

Un consum monofàsic de tensió nominal $U_{\rm N}$ = 220 V i potència nominal $P_{\rm N}$ = 2,2 kW té un factor de potència unitari i s'alimenta amb un cable de longitud I = 200 m format per conductors de resistivitat ρ = 17,86 · 10⁻⁹ m.

a) Determineu la resistència màxima que pot tenir cadascun dels conductors que formen el cable per tal que la caiguda de tensió no superi el 5 % de la nominal.

[1 punt]

b) Escolliu de manera justificada la secció normalitzada més escaient d'entre les següents: 1,5; 2,5; 4; 6; 10; 16; 25 mm². [1 punt]

La prova consta de dues parts de dos exercicis cadascuna. La primera part és comuna i la segona consta de dues opcions, A o B, entre les quals cal triar-ne una.

Primera part

Exercici 1 [2,5 punts]

Resposta ben contestada: [Per a cada qüestió només es pot triar una resposta. 0,5 punts; resposta mal contestada: -0,16 punts; resposta no contestada: 0 punts]

Qüestió 1

La codificació binària del número decimal 136 és:

- a) 10010010
- b) 01001010
- c) 10000100
- d) 10001000

Qüestió 2

La sortida d'una porta NOR de dues entrades, A i B, implementa la funció lògica:

- $a)^{\overline{A}} \overline{B} + A$
- b) \overline{A} B + A
- c) A+ B
- d) $\overline{A + B}$

Qüestió 3

La velocitat de sincronisme en una màquina de corrent altern de quatre parells de pols (p = 4) connectada a una xarxa de 50 Hz és:

- a) 1000 min⁻¹
- b) 750 min⁻¹
- c) 1200 min-1
- d) 900 min⁻¹

Qüestió 4

Un motor de corrent altern connectat a una xarxa de 400 V i 50 Hz ha perdut la placa de característiques. Primer es fa treballar a un determinat parell i la velocitat a la qual qira és 1000 min-1. Després es fa treballar al doble de parell i la velocitat segueix sent de 1000 min-1. Quin tipus de motor és?

- a) D'inducció.
- b) Síncron.
- c) No pot ser de corrent altern.
- d) No hi ha cap motor que tingui aquest comportament.

Qüestió 5

Un condensador de tàntal:

- a) Funciona correctament tant en corrent altern com en corrent continu.
- b) Només funciona correctament en corrent continu.
- c) Només funciona correctament en corrent continu i amb una determinada polaritat.
- d) Només funciona correctament en corrent altern.

Exercici 2 [2,5 punts]

R = 10	<i>X</i> = 10
R = 10	X = 10

El consum trifàsic de la figura s'alimenta amb una tensió (composta o de línia) U = 400 V. Determineu:

a) Els corrents de línia i del neutre. [1,5 punts]

b) Les potències activa, reactiva i aparent del consum. [0,5 punts]

c) La caiguda de tensió a les reactàncies. [0,5 punts]

Segona part

OPCIÓ A

Exercici 3 [2,5 punts]

La font de tensió del circuit de la figura pot treballar a tensió *U* i freqüència *f* variables. Per tal de determinar els valors dels elements del circuit es fa un assaig a dues tensions i freqüències diferents. En un dels assaigs es mesura la potència activa absorbida pel circuit. Els resultats dels assaigs es troben en els quadres adjunts:

$$f = 50 \text{ Hz}$$
 $U = 100 \text{ V}$
 $A_1 = 5 \text{ A}$ $P = 500 \text{ W}$

$$f = 100 \text{ Hz}$$
 $U = 256 \text{ V}$
 $A_1 = 5 \text{ A}$

Determineu:

a) El valor de R. [0,5 punts]

b) Els valors de la reactància equivalent del circuit a 50 Hz (X_{50}) i a 100 Hz (X_{100}) . (Feu atenció a les potències activa, reactiva i aparent del consum.) [1 punt]

c) Els valors de L i C. [1 punt]

Exercici 4 [2,5 punts]

 $D_{\rm m} = 80 \ {\rm mm}$ $S = 314,16 \ {\rm mm}^2$ $\mu_{\rm r} = 2000$ $\mu_{\rm 0} = 4 \cdot 10^{-7} \ {\rm Wb \ m}^{-1} \ {\rm A}^{-1}$ N = 40

Sobre un nucli toroïdal de material ferromagnètic, de secció S, es fa un debanat de N voltes per obtenir una inductància de valor L. Es pot considerar que el camí de les línies de camp té la mateixa longitud per a totes, corresponent al perímetre del diàmetre mitjà $D_{\rm m}$. Si el material ferromagnètic té una permeabilitat relativa $\mu_{\rm r}$, determineu:

- a) La reluctància magnètica d'aquest nucli. [1 punt]
- b) La inducció màxima B_{max} i el flux màxim Φ_{max} que hi haurà en l'interior del nucli quan el debanat estigui recorregut per un corrent altern sinusoïdal de valor eficaç $I_{ef}=1~A.$ [1,5 punts]

OPCIÓ B

Exercici 3 [2,5 punts]

$$U_1 = 46 \text{ V}$$
 $U_2 = 42 \text{ V}$
 $R_1 = 10$ $R_2 = 1$
 $R_3 = 1$ $R_4 = 2$

Per al circuit de la figura, determineu:

- a) Els corrents subministrats per les fonts de tensió. [1,5 punts]
- b) La diferència de tensió entre els extrems de R_1 . [0,5 punts]
- c) Les potències subministrades per cadascuna de les bateries. [0,5 punts]

Exercici 4 [2,5 punts]

En un habitatge hi ha una línia d'endolls (monofàsics) que alimenta una rentadora i una cuina a 220 V. La rentadora consumeix 1,5 kW amb un factor de potència fdp = 0.8 inductiu, mentre que les resistències de la cuina consumeixen 3 kW. Per al consum format pels dos electrodomèstics funcionant simultàniament, determineu:

a) Les potències activa, reactiva i aparent del consum. [1 punt]

b) El corrent per la línia.

[0,5 punts]

c) El factor de potència.

[0,5 punts]

d) Escolliu de manera justificada el calibre mínim del Petit Interruptor Automàtic (PIA) que protegeix la línia d'entre els següents: 7,5; 10; 15; 20; 25; 35 A.

[0,5 punts]