Cache Memories

Professor Hugh C. Lauer CS-2011, Machine Organization and Assembly Language

(Slides include copyright materials from *Computer Systems: A Programmer's Perspective*, by Bryant and O'Hallaron, and from *The C Programming Language*, by Kernighan and Ritchie)

Today

- Cache memory organization and operation
- **■** Performance impact of caches

Reading Assignment: §6.1 – §6.5

- The memory mountain
- Rearranging loops to improve spatial locality
- Using blocking to improve temporal locality

Cache Memories in Processors

- Cache memories are small, fast SRAM-based memories managed automatically in hardware.
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.
- Typical system structure:

Caching issues

- How do you know whether an item is in the cache or not?
 - I.e., how do you find it quickly?
- What do you do when the item you want is not in the cache
 - And how do you make space for it?

Cache Organization (S, E, B)

Locate set **Cache Read** Check if any line in set has matching tag E = 2^e lines per set • Yes + line valid: hit Locate data starting at offset Address of word: t bits s bits b bits $S = 2^s$ sets tag block set index offset data begins at this offset **B-1** tag 0 valid bit bytes per cache block (the data)

7

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

No match: old line is evicted and replaced

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0	$[0000_{2}],$	miss
1	$[0\underline{001}_{2}],$	hit
7	$[0\overline{11}1_{2}],$	miss
8	$[1000_{2}^{-}],$	miss
0	[00002]	miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

A Higher Level Example

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}</pre>
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here

32 bytes = 4 doubles

blackboard

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

Address of short int:

t bits

valid? + match: yes = hit

v tag

0 1 2 3 4 5 6 7

v tag

0 1 2 3 4 5 6 7

block offset

short int (2 Bytes) is here

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0	$[00\underline{0}0_{2}],$	miss
1	$[0001_{2}],$	hit
7	$[01\underline{1}1_2],$	miss
8	$[10\underline{0}0_{2}],$	miss
0	$[00\underline{0}0_{2}]$	hit

	V	Tag	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]
Set 1	1	01	M[6-7]
	0		

A Higher Level Example

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
        sum += a[i][j];
   return sum;
}</pre>
```

Ignore the variables sum, i, j

32 bytes = 4 doubles

blackboard

What about writes?

Multiple copies of data exist:

L1, L2, Main Memory, Disk

What to do on a write-hit?

- Write-through (write immediately to memory)
- Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)

What to do on a write-miss?

- Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
- No-write-allocate (writes immediately to memory)

Typical

- Write-through + No-write-allocate
- Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way, Access: 4 cycles

L2 unified cache:

256 KB, 8-way, Access: 11 cycles

L3 unified cache:

8 MB, 16-way, Access: 30-40 cycles

Block size: 64 bytes for

all caches.

CS-2011, D-Term 2014 Cache Memories 18

Cache Performance

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 - = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 1-2 clock cycle for L1
 - 5-20 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Cache Performance (continued)

Average access time =

Hit time + miss_rate × miss penalty

Example

- Hit time for L1 cache = 1 cycle
- Miss penalty for L1 cache = 10 cycles
- Miss rate = 10%
- \Rightarrow Average access time = 1 + 0.1 * 10 = 2

Example 2

- Miss rate = 1%
- Average access time = 1 + 0.01 * 10 = 1.1

Think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

```
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
```

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

■ This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

See especially: §6.5

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.

Questions?

Today

- Cache organization and operation
- Performance impact of caches

See: §6.6

- The memory mountain
- Rearranging loops to improve spatial locality
- Using blocking to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)

- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

26

Memory Mountain Test Function

```
/* The test function */
void test(int elems, int stride) {
    int i, result = 0;
   volatile int sink;
    for (i = 0; i < elems; i += stride)</pre>
        result += data[i];
    sink = result; /* So compiler doesn't optimize away the loop */
/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
   double cycles;
    int elems = size / sizeof(int);
    test(elems, stride);
                                           /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0); /* call test(elems, stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
```

The Memory Mountain

All caches on-chip

The Memory Mountain

Intel Core i7 32 KB L1 i-cache 32 KB L1 d-cache 256 KB unified L2 cache 8M unified L3 cache

28

All caches on-chip

Today

- Cache organization and operation
- **■** Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Miss Rate Analysis for Matrix Multiply

Assume:

- Line size = 32B (big enough for four 64-bit words)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++)
for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
}
</pre>
```

Layout of C Arrays in Memory (review)

- C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = 4 bytes / B

Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - compulsory miss rate = 1 (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```

```
Inner loop:

(*,k)

(k,j)

A

B

C

T

Column-
wise

Column-
wise

(*,j)

Column-
wise
```

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```

```
Inner loop:

(*,k)

(k,j)

A

B

C

T

Column-

Wise

Column-

Wise

(*,j)

Column-

Wise
```

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.0	0.25	0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
       c[i][j] += r * b[k][j];
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.0	0.25	0.25

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
}</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
  for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = **1.25**

kij (& ikj):

- 2 loads, 1 store
- misses/iter = **0.5**

jki (& kji):

- 2 loads, 1 store
- misses/iter = **2.0**

Core i7 Matrix Multiply Performance

Today

- Cache organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
   int i, j, k;
   for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
        c[i*n+j] += a[i*n + k]*b[k*n + j];
}</pre>
```


n

Cache Miss Analysis

Assume:

- Matrix elements are doubles.
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

First iteration:

- n/8 + n = 9n/8 misses
- Afterwards in cache: (schematic)

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)

Second iteration:

Again: n/8 + n = 9n/8 misses

Total misses:

 $-9n/8 * n^2 = (9/8) * n^3$

Blocked Matrix Multiplication

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)
- Three blocks fit into cache: 3B² < C

First (block) iteration:

- B²/8 misses for each block
- 2n/B * B²/8 = nB/4 (omitting matrix c)

 Afterwards in cache (schematic)

n/B blocks

Block size B x B

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>
- Three block fit into cache: 3B² < C

Second (block) iteration:

- Same as first iteration
- $-2n/B * B^2/8 = nB/4$

Total misses:

 \blacksquare nB/4 * (n/B)² = n³/(4B)

Summary

- No blocking: (9/8) * n³
- Blocking: 1/(4B) * n³

Suggest largest possible block size B, but limit 3B²

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
 - Nested loop structure
 - Blocking is a general technique

All systems favor "cache friendly code"

- Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)

Questions?