Como \overline{IQ} é a distância de r a α , segue da última desigualdade que a distância da reta r ao plano α é menor do que ou igual à distância entre dois pontos quaisquer I de r e P de s.

Fig. 4.26

Exemplo. Determine a distância entre as retas reversas

$$x = 2 + t$$
 $x = -5 + 4t$
 $r: y = 1 - 3t$ $s: y = 6 - 5t$
 $z = 1 + 2t$. $z = 4 + 3t$.

Solução. Primeiro, por um ponto de s, (-5, 6, 4), por exemplo, tracemos a reta s' paralela a r. Como o vetor

$$(1, -3, 2) \times (4, -5, 3) = (1, 5, 7)$$

é perpendicular ao plano α definido por s e s', uma equação de α é

$$1(x+5) + 5(y-6) + 7(z-4) = 0$$
 ou $x + 5y + 7z = 53$.

Tomemos agora um ponto qualquer de r, P(2 + t, 1 - 3t, 1 + 2t). Aplicando a fórmula da distância de um ponto a um plano, obtemos

$$d(P,\alpha) = \frac{|2+t+5(1-3t)+7(1+2t)-53|}{\sqrt{1^2+5^2+7^2}} = \frac{3 + 9}{\sqrt{75}},$$

que \acute{e} a menor distância entre as retas $r \in s$.

Exercícios

4.51. Escreva equações paramétricas da interseção dos planos

a)
$$2x + y - z = 0$$
 e $x + y + z = 1$;
b) $x + 2y = 1$ e $z = 2$.

b)
$$x + 2y = 1$$

124 Geometria Analítica

4.52. Determine o ponto de interseção da reta

$$x = 1 + t$$

$$y = -2$$

$$z = 4 + 2t$$

com cada um dos seguintes planos;

a)
$$x - 2y + 3z = 8$$
;

b)
$$2x + z = 5$$
;

c)
$$x = 2$$
.

4.53. Verifique que a reta

$$x = -1 + t$$
$$y = 2 + 3t$$
$$z = 5t$$

está contida no plano 2x + y - z = 0.

4.54. Verifique que a reta

$$x = 2 + 2t$$
$$y = 1 + t$$
$$z = 2 + 3t$$

não intercepta o plano x + y - z = 3.

4.55. Determine os valores de a e b para que as retas

$$x = 1 + at$$
 $x = 2 + t$
 $r: y = 2 + bt$ $s: y = 1 + bt$
 $z = -1 + 2t$ $z = -1 + 2t$

sejam:

- a) paralelas;
- b) concorrentes;
- c) reversas.
- 4.56. Determine os valores de a, b e d para que o plano ax + by + 3z = d seja
 - a) paralelo ao plano 2x + y 5z = 4;
 - b) represente o mesmo plano que 2x + y 5z = 4.
- 4.57. Verifique que as retas

$$x = 1 + t$$
 $x = -2 + 2t$
 $x : y = 2 - t$ $x : y = -5 + 3t$
 $x = 5 + t$ $x = 2 + 2t$

são concorrentes e determine uma equação do plano por elas definido.

4.58. Determine a distância do ponto (2, 1, 3) a cada um dos planos

a)
$$x - 2y + z = 1$$
;

b)
$$x + y - z = 0$$
;
c) $x - 5z = 8$.

c)
$$x - 5z = 8$$
.

4.59. Determine:

a) a distância do ponto (5, 4, -7) à reta

$$x = 1 + 5t$$

$$s: y = 2 - t$$

$$z = t;$$

b) a distância do ponto (2, 3, 5) a cada um dos eixos do sistema de coordenadas.

4.60. Escreva uma equação do plano que contém o ponto (1, -2, 3) e é perpendicular a cada um dos planos 2x + y - z = 2 e x - y - z = 3.

4.61. Escreva as equações paramétricas do plano paralelo ao eixo z e que contém a interseção dos planos x + 2y + 3z = 4 e 2x + y + z = 2.

4.62. a) Determine as equações paramétricas da projeção da reta

$$x = 3 + 3t$$

$$r: y = -1 + t$$

$$z = -3 + 2t$$

sobre o plano

$$\alpha$$
: $2x - y + 2z = 1$.

- b) Determine o ângulo da reta r com o plano α .
- 4.63. Escreva as equações paramétricas e cartesiana do plano que contém a reta

$$x = 1 + 2t$$

$$r: y = -2 - 3t$$

$$z = 2 + 2t$$

e é perpendicular ao plano α de equação 3x + 2y - z = 5. Este plano é chamado *plano projetante* de r sobre α .

4.64. Determine o ângulo agudo entre as retas

$$x = 1 + 2t$$
 $x = 4 + t$
 $x = 2 + t$ $x = 4 + t$
 $x = 4 + t$
 $x = 4 + t$
 $x = 4 + t$
 $x = 4 + t$
 $x = 4 + t$
 $x = 5 + t$

- 4.65. Determine o ângulo agudo entre os planos 2x y + 3z = 0 e x + y 8y = 1.
- 4.66. a) Verifique que qualquer ponto da reta

$$x = 2$$

$$r: y = 2 + t$$

$$z = 3 - t$$

é equidistante de A(1, 2, 1), B(1, 4, 3) e C(3, 2, 1).

- b) Determine o ponto de r mais próximo destes pontos.
- 4.67. a) Dados os pontos A(2, 1, 1), B(-1, 2, 1) e C(3, -2, 4), determine no plano 2x y + 5z = 2 um ponto equidistante dos vértices do triângulo ABC.
 - b) Determine o circuncentro do triângulo ABC.
- 4.68. Dados A(2, 1, 3), B(4, -1, 1) e o plano α de equação 2x y + 2z = 3, determine as equações paramétricas de uma reta r de α tal que todo ponto de r é equidistante de A e B.
- 4.69. Escreva as equações paramétricas da bissetriz do ângulo menor das retas

$$x = t$$
. $x = 6 - t$
 $r: y = 1 + t$ $s: y = -2 + 2t$
 $z = 1 - t$ $z = 1 - t$.

- 4.70. Determine o simétrico do ponto P(2, 1, 3) em relação
 - a) ao ponto O(3, -1, 1);
 - b) à reta

$$x = 1 - 2t$$

$$y = t$$

$$z = 2 + t$$

- c) ao plano 2x 2y + 3z = 2.
- 4.71. Escreva as equações paramétricas da simétrica da reta

$$x = 3 - 2t$$

$$y = 2 + 3t$$

$$z = 2 - t$$

em relação ao plano x - 2y + 3z = 1.

4.72. Escreva as equações paramétricas da reta que contém o ponto P(1, 3, 5) e é concorrente com as retas

$$x = -1 + 3t$$
 $x = 2 + 2t$
 $x = -3 - 2t$ $y = -1 + 3t$
 $x = 2 + 2t$
 $x = 2 + 2t$
 $x = 2 + 2t$
 $x = 2 + 2t$

4.73. Dadas as retas reversas

$$x = 2 - t$$
 $x = t$
 $y = 1 + 3t$ $z = 5 + t$ $x = t$
 $x = t$ $y = 4t$ $z = 2 + 3t$