[220] Database I

Meena Syamkumar Mike Doescher

Cheaters caught: 6

Work in progress: P6 to P10

Learning objectives – database topic

Today's lecture

- "narrowing down" specific data from a big table pandas
- SQL Data
 - schemas: tables, columns, types
 - advantages over JSON/CSV
- SQL Queries
 - select, where, limit, sort by
 - sqlite3 module
 - Pandas/DB integration

Next lecture

Summarizing data

Next to next lecture

worksheets - SQL practice

What we don't cover ...

- Schema design:
 - What tables does a database have?
 - What columns does a table have?
 - What are the relationship between the columns?
- Changes to database data:
 - Add a row, remove a row
- Concurrency
- Performance
- Joins:
 - Combining multiple tables with related information

220 Progress

Languages learned

- Python [Programming Language]
- HTML [Markup Language]

Data storage

- CSV files
- JSON files

220 Progress

Languages learned

- Python [Programming Language]
- HTML [Markup Language]
- SQL [Query Language]

Data storage

- CSV files
- JSON files
- SQL databases

structured query language

Learning Objectives Today

SQL Data

- schemas: tables, columns, types
- advantages over JSON/CSV

SQL Queries

- select, where, limit, sort by
- sqlite3 module
- Pandas/DB integration

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

CSV

State	Capital	Population	Area
WI	Madison	5795000	65498
•••	•••	•••	•••

Characteristics

one table

SQL Database

capitals

State	Capital
WI	Madison
• • •	•••

populations

State	Population
WI	5795000
•••	•••

counties

County	Pop	un_emp
Dane	536416	0.02
•••	•••	•••

areas

State	Area
WI	65498
•••	•••

Characteristics

• collection of tables, each named

CSV

State	Capital	Population	Area
WI	Madison	5795000	65498
• • •	• • •	• • •	• • •

Characteristics

- one table
- columns sometimes named

SQL Database

capitals

State	Capital
WI	Madison
•••	•••

populations

State	Population
WI	5795000
• • •	• • •

counties

County	Pop	un_emp
Dane	536416	0.02
• • •	• • •	• • •

areas

State	Area
WI	65498
•••	• • •

Characteristics

- collection of tables, each named
- columns always named

CSV

State	Capital	Population	Area
string	string	string	string
string	string	string	string
string	string	string	string
string	string	string	string
string	string	string	string
string	string	string	string
string	string	string	string

Characteristics

- one table
- columns sometimes named
- everything is a string

SQL Database

capitals

State	Capital
text	text

populations

State	Population
text	integer

counties

County	Pop	un_emp
Dane	536416	0.02
•••	•••	•••

areas

State	Area
WI	65498
• • •	•••

no text allowed

Characteristics

- collection of tables, each named
- columns always named
- types per column (enforced)

I. More Structure

Database

A	В	C
text	integer	real

same fields and same types in every column

CSV

A,B,C string,string,string string,string,string string,string,string string,string,string

everything is a string

JSON

[{"A":"val", "B":10, "C":3.14}, {"A":"val"}, {"A":"v2", "B": 9, "C":False},

types, but...
missing values
types may differ across columns

I. More Structure

2. Sharing

- I. More Structure
- 2. Sharing
- 3. Queries

which actor appeared in the most movies?

- I. More Structure
- 2. Sharing
- 3. Queries

- I. More Structure
- 2. Sharing
- 3. Queries
- 4. Performance

Let's play a game where we pretend to be a database!

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

namos	250	SCOKO
names	age	score
Parker	?	?
Heidy	?	?
Shirly	?	?
Arla	?	?
Bella	?	?
Bill	?	?
Hollis	?	?
Maurita	?	?
Milda	?	?
Pearline	?	?
Teresa	?	?
Ceola	?	?
Milford	?	?
Alisha	?	?
Antonetta	?	?
Ryan	?	?
Karma	?	?
Lashandra	?	?
Breana	?	?
Sara	?	?

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

names	age	score
Parker	26	?
Heidy	22	?
Shirly	27	?
Arla	21	?
Bella	22	?
Bill	28	?
Hollis	26	?
Maurita	22	?
Milda	22	?
Pearline	29	?
Teresa	25	?
Ceola	30	?
Milford	25	?
Alisha	30	?
Antonetta	28	?
Ryan	25	?
Karma	23	?
Lashandra	24	?
Breana	22	?
Sara	28	?

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

names	age	score
Parker	?	21
Heidy	?	22
Shirly	?	22
Arla	?	22
Bella	?	22
Bill	?	22
Hollis	?	23
Maurita	?	24
Milda	?	25
Pearline	?	25
Teresa	?	25
Ceola	?	26
Milford	?	26
Alisha	?	27
Antonetta	?	28
Ryan	?	28
Karma	?	28
Lashandra	?	29
Breana	?	30
Sara	?	30

How many people are 23 or younger?

Question 2:

How many people scored 23 or less?

Which question took longer to answer? Why?

names	age	score
Parker	26	21
Heidy	22	22
Shirly	27	22
Arla	21	22
Bella	22	22
Bill	28	22
Hollis	26	23
Maurita	22	24
Milda	22	25
Pearline	29	25
Teresa	25	25
Ceola	30	26
Milford	25	26
Alisha	30	27
Antonetta	28	28
Ryan	25	28
Karma	23	28
Lashandra	24	29
Breana	22	30
Sara	28	30

DBs can keep multiple copies of the same data

- which organizations to use are configured (indexing)
- which copy to use is used is automatically determined based on the question being asked

names	age	score
Arla	21	22
Heidy	22	22
Bella	22	22
Maurita	22	24
Milda	22	25
Breana	22	30
Karma	23	28
Lashandra	24	29
Teresa	25	25
Milford	25	26
Ryan	25	28
Parker	26	21
Hollis	26	23
Shirly	27	22
Sara	28	30
Bill	28	22
Antonetta	28	28
Pearline	29	25
Alisha	30	27
Ceola	30	26

names	age	score
Parker	26	21
Heidy	22	22
Shirly	27	22
Arla	21	22
Bella	22	22
Bill	28	22
Hollis	26	23
Maurita	22	24
Milda	22	25
Pearline	29	25
Teresa	25	25
Ceola	30	26
Milford	25	26
Alisha	30	27
Antonetta	28	28
Ryan	25	28
Karma	23	28
Lashandra	24	29
Breana	22	30
Sara	28	30

copy I

copy 2

- I. More Structure
- 2. Sharing
- 3. Queries
- 4. Performance

Why not use a database?

It's often overkill.

For many situations, a simple JSON or CSV is easier to use.

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Popular SQL Databases

There are minor differences in how you use these (e.g., what column types are available and how you query for data).

Most experience with one DB will translate to work with other DBs.

Popular SQL Databases

https://www.sqlite.org/mostdeployed.html

- Every Android device
- Every iPhone and iOS device
- Every Mac
- Every Windows 10 machine
- Every Firefox, Chrome, and Safari web browser
- Every instance of Skype
- Every instance of iTunes
- Every Dropbox client

in CS 220

Why learn SQLite?

- easy to install/use
- sqlite3 **module** comes with Python
- it's public domain
- several billion deployments

Download bus.db from today's lecture entry to follow along lecture demos

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Madison Bus Data: http://data-cityofmadison.opendata.arcgis.com/datasets/metro-transit-ridership-by-route-weekday

"Metro Transit ridership by route weekday. March, 2015.

Caution should be used with this data. Daily bus stop

boardings were estimated using a 12-day sample of weekday

farebox records and AVL logs, and the GTFS file, from March

2015 from Metro Transit."

Metro_Transit_Bus_Routes

OBJECTID	trips_routes_route_id	route_short_name	route_url	ShapeSTLength
63	8052	1	http://www.cityofmadison.com/Metro/schedules/Route01/	32379.426524261
64	8053	2	http://www.cityofmadison.com/Metro/schedules/Route02/	96906.9655714024
65	8054	3	http://www.cityofmadison.com/Metro/schedules/Route03/	76436.6456435859
66	8055	4	http://www.cityofmadison.com/Metro/schedules/Route04/	64774.1334846944
67	8056	5	http://www.cityofmadison.com/Metro/schedules/Route05/	61216.7226616153
68	8057	6	http://www.cityofmadison.com/Metro/schedules/Route06/	151142.298370202
69	8058	7	http://www.cityofmadison.com/Metro/schedules/Route07/	98617.0056650761
70	8059	8	http://www.cityofmadison.com/Metro/schedules/Route08/	56732.757385207
71	8060	10	http://www.cityofmadison.com/Metro/schedules/Route10/	113468.940882266

SQLite Database

File: bus.db

routes Table

Metro_Transit_Ridership_by_Route_Weekday

x	Y	OBJECTID	StopID	Route	Lat	Lon	DailyBoardings	DotSize
-89.385420971415726	43.073647056880461	13341	1163	27	43.073655	-89.385427	1.03	10323.2
-89.385420971415726	43.073647056880461	13342	1163	47	43.073655	-89.385427	0.11	1116.34
-89.385420971415726	43.073647056880461	13343	1163	75	43.073655	-89.385427	0.34	3406.36
-89.34001498094068	43.106457048781294	13344	1164	6	43.106465	-89.340021	10.59	105923.91
-89.369986975587182	43.07785905487895	13345	1167	3	43.077867	-89.369993	3.11	31128.99
-89.369986975587182	43.07785905487895	13346	1167	4	43.077867	-89.369993	2.23	22272.52
-89.369986975587182	43.07785905487895	13347	1167	10	43.077867	-89.369993	0.11	1112.87
-89.369986975587182	43.07785905487895	13348	1167	38	43.077867	-89.369993	1.36	13592
-89.329810986164361	43.089699051299455	13349	1169	3	43.089707	-89.329817	18.9	188997.43

SQLite Database

File: bus.db

routes Table boarding Table how do we use this data?

SQLite Database

File: bus.db

routes Table boarding Table

Modules we've learned this semester

- math
- collections
- json
- CSV
- sys
- os
- copy
- recordclass
- requests
- bs4 (BeautifulSoup)
- pandas integrates with SQLite
- sqlite3 directly access SQLite databases (comes with Python)

python this semester, we'll only your code query data through pandas pandas python's sqlite3 module sqlite3 tool boarding routes SQLite Database **Table Table** File: bus.db

```
import sqlite3
conn = sqlite3.connect("file.db")
```

connect for databases is
analogous to open for files

database filename

- represented as a string
- will create if doesn't already exist (no "w" necessary)

```
import sqlite3
conn = sqlite3.connect("file.db")
```

```
close it at the end
```

```
conn.close()
```

Demo Time

```
import os, sqlite3

assert os.path.exists("bus.db")

sqlite3.connect("bus.db")

for sql in pd.read_sql("select sql from sqlite_master", conn)["sql"]:
    print(sql)
    print()
```

```
pd.read_sql("select * from routes", conn)
```

	index	OBJECTID	trips_routes_route_id	route_short_name	route_url	ShapeSTLength
0	0	63	8052	1	http://www.cityofmadison.com/Metro/schedules/R	32379.426524
1	1	64	8053	2	http://www.cityofmadison.com/Metro/schedules/R	96906.965571
2	2	65	8054	3	http://www.citvofmadison.com/Metro/schedules/R	76436.645644

```
pd.read_sql("select * from boarding", conn)
```

	index	StopID	Route	Lat	Lon	DailyBoardings
0	0	1163	27	43.073655	-89.385427	1.03
1	1	1163	47	43.073655	-89.385427	0.11
^	0	1160	75	40 0706EE	00 205 407	0.24

demo: poke around DB (will explain more soon)

```
CREATE TABLE IF NOT EXISTS "boarding" (
"index" INTEGER,
 "StopID" INTEGER,
 "Route" INTEGER,
                                 table names
 "Lat" REAL,
 "Lon" REAL,
 "DailyBoardings" REAL
CREATE INDEX "ix boarding index"ON "boarding" ("index");
CREATE TABLE IF NOT EXISTS "routes" (
"index" INTEGER,
 "OBJECTID" INTEGER,
 "trips routes route id" INTEGER,
 "route short name" INTEGER,
 "route url" TEXT,
 "ShapeSTLength" REAL
CREATE INDEX "ix routes index"ON "routes" ("index");
```

```
CREATE TABLE IF NOT EXISTS "boarding" (
"index" INTEGER,
                           look for column names in parens
 "StopID" INTEGER,
                            columns
 "Route" INTEGER,
                               index
 "Lat" REAL,
                               StopID
                               Route
 "Lon" REAL,
                               Lat
                               Lon
 "DailyBoardings" REAL
                               Daily Boardings
CREATE INDEX "ix boarding_index"ON "boarding" ("index");
CREATE TABLE IF NOT EXISTS "routes" (
"index" INTEGER,
 "OBJECTID" INTEGER,
 "trips_routes_route_id" INTEGER,
 "route_short_name" INTEGER,
 "route_url" TEXT,
 "ShapeSTLength" REAL
CREATE INDEX "ix_routes_index"ON "routes" ("index");
```

```
CREATE TABLE IF NOT EXISTS "boarding" (
"index" INTEGER,
 "StopID" INTEGER,
 "Route" INTEGER,
                                     types...
 "Lat" REAL,
 "Lon" REAL,
 "DailyBoardings" REAL
CREATE INDEX "ix boarding index"ON "boarding" ("index");
CREATE TABLE IF NOT EXISTS "routes" (
"index" INTEGER,
 "OBJECTID" INTEGER,
 "trips_routes_route_id" INTEGER,
 "route_short_name" INTEGER,
 "route_url" TEXT,
 "ShapeSTLength" REAL
CREATE INDEX "ix routes index"ON "routes" ("index");
```


FROM: which table?

FROM: which table?

SELECT: which columns?

table I

table 2

table 3

col1 col2 col3

FROM: which table?

SELECT: which columns?

WHERE: which rows?

table I

table 2

table 3

FROM: which table?

SELECT: which columns?

WHERE: which rows?

LIMIT: how many rows?

table I

table 2

table 3

FROM: which table?

SELECT: which columns?

WHERE: which rows?

LIMIT: how many rows?

a query result looks like a table

coll	col3
Α	В
C	D

SELECT	FROM (
--------	--------	--	--

select	
from	;

select		
from		
	optional stuff) ;

select		
from	table name) ;

Syntax for SELECT (case and spacing don't matter):

select

from boarding;

Syntax for SELECT (case and spacing don't matter):

select

which columns

from boarding;

Syntax for SELECT (case and spacing don't matter):

star means all of them

select *
from boarding;

index	StopID	Route	Lat	Lon	DailyBoardings
0	1163	27	43.073655	-89.385427	1.03
1	1163	47	43.073655	-89.385427	0.11
2	1163	75	43.073655	-89.385427	0.34
3	1164	6	43.106465	-89.340021	10.59
4	1167	3	43.077867	-89.369993	3.11
5	1167	4	43.077867	-89.369993	2.23
6	1167	10	43.077867	-89.369993	0.11
7	1167	38	43.077867	-89.369993	1.36
8	1169	3	43.089707	-89.329817	18.90

Syntax for SELECT (case and spacing don't matter):

select Route, DailyBoardings from boarding;

Route	DailyBoardings
27	1.03
47	0.11
75	0.34
6	10.59
3	3.11
4	2.23
10	0.11
38	1.36
3	18.90

Syntax for SELECT (case and spacing don't matter):

select *

69

from routes;

index OBJECTID trips routes route id route short name

8058

mach	02020112	u.po_routoo_routo_ru		10010_011	e.iapee.ze.ig.ii
0	63	8052	1	http://www.cityofmadison.com/Metro/schedules/R	32379.426524
1	64	8053	2	http://www.cityofmadison.com/Metro/schedules/R	96906.965571
2	65	8054	3	http://www.cityofmadison.com/Metro/schedules/R	76436.645644
3	66	8055	4	http://www.cityofmadison.com/Metro/schedules/R	64774.133485
4	67	8056	5	http://www.cityofmadison.com/Metro/schedules/R	61216.722662
5	68	8057	6	http://www.cityofmadison.com/Metro/schedules/R	151142.298370

7 http://www.cityofmadison.com/Metro/schedules/R...

route url ShapeSTLength

98617.005665

Syntax for SELECT (case and spacing don't matter):

select route_url
from routes;

Result:

http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...
http://www.cityofmadison.com/Metro/schedules/R...

route url

Syntax for SELECT (case and spacing don't matter):

select * from boarding;

		.*****			
index	StopID	Route	Lat	Lon	DailyBoardings
0	1163	27	43.073655	-89.385427	1.03
1	1163	47	43.073655	-89.385427	0.11
2	1163	75	43.073655	-89.385427	0.34
3	1164	6	43.106465	-89.340021	10.59
4	1167	3	43.077867	-89.369993	3.11
5	1167	4	43.077867	-89.369993	2.23
6	1167	10	43.077867	-89.369993	0.11
7	1167	38	43.077867	-89.369993	1.36
8	1169	3	43.089707	-89.329817	18.90
4 5 6 7	1167 1167 1167 1167	3 4 10 38	43.077867 43.077867 43.077867 43.077867	-89.369993 -89.369993 -89.369993	3.11 2.23 0.11 1.36

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80;

Note: SQL only has one equal sign for equality!

But == does work

index	StopID	Route	Lat	Lon	DailyBoardings
732	2007	80	43.076436	-89.424388	72.82
733	2014	80	43.089239	-89.433760	99.50
735	2018	80	43.086293	-89.435043	6.23
737	2023	80	43.078800	-89.429795	100.05
738	2026	80	43.086248	-89.436661	18.45
739	2027	80	43.080259	-89.428067	4.34
740	2034	80	43.086445	-89.433772	120.73
741	2039	80	43.089158	-89.438057	86.27
742	2041	80	43.084252	-89.433487	1.56

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID;

_				
StopID	Route	Lat	Lon	DailyBoardings
5	80	43.070947	-89.406982	317.94
10	80	43.075933	-89.400154	750.61
39	80	43.071895	-89.397341	628.88
49	80	43.075529	-89.397191	690.92
52	80	43.076131	-89.405660	243.91
60	80	43.075996	-89.403660	160.42
61	80	43.070893	-89.403698	154.41
73	80	43.070820	-89.398650	412.10
	5 10 39 49 52 60 61	5 80 10 80 39 80 49 80 52 80 60 80 61 80 73 80	5 80 43.070947 10 80 43.075933 39 80 43.071895 49 80 43.075529 52 80 43.076131 60 80 43.075996 61 80 43.070893 73 80 43.070820	5 80 43.070947 -89.406982 10 80 43.075933 -89.400154 39 80 43.071895 -89.397341 49 80 43.075529 -89.397191 52 80 43.076131 -89.405660 60 80 43.075996 -89.403660 61 80 43.070893 -89.403698 73 80 43.070820 -89.398650

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID DESC;

descending means biggest first

CtonID		_		
эторір	Route	Lat	Lon	DailyBoardings
2996	80	43.076534	-89.413067	89.16
2978	80	43.076561	-89.416289	88.71
2881	80	43.084225	-89.429092	12.78
2442	80	43.076588	-89.419301	91.27
2349	80	43.078388	-89.430227	561.96
2267	80	43.076382	-89.419943	455.02
2240	80	43.078988	-89.426659	0.67
	2978 2881 2442 2349 2267	2978 80 2881 80 2442 80 2349 80 2267 80	2978 80 43.076561 2881 80 43.084225 2442 80 43.076588 2349 80 43.078388 2267 80 43.076382	2978 80 43.076561 -89.416289 2881 80 43.084225 -89.429092 2442 80 43.076588 -89.419301 2349 80 43.078388 -89.430227 2267 80 43.076382 -89.419943

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID ASC;

ascending means smallest first

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88
1095	49	80	43.075529	-89.397191	690.92
1099	52	80	43.076131	-89.405660	243.91
1104	60	80	43.075996	-89.403660	160.42
1106	61	80	43.070893	-89.403698	154.41
1109	73		43.070820	-89.398650	412.10

Syntax for SELECT (case and spacing don't matter):

select *
from boarding
where Route = 80
order by StopID ASC
limit 3;

only show the top N results

Result:

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88

3 results

Syntax for SELECT (case and spacing don't matter):

```
select *
from boarding
where Route = 80
order by StopID ASC
limit 3;
```

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88

Syntax for SELECT (case and spacing don't matter):

```
select *
from boarding
where Route = 80
order by StopID ASC
limit 3;
```

Result:

index	StopID	Route	Lat	Lon	DailyBoardings
1087	5	80	43.070947	-89.406982	317.94
1088	10	80	43.075933	-89.400154	750.61
1092	39	80	43.071895	-89.397341	628.88

You can use any combination of where, order by, and limit. But whichever you use, they must appear in that order!

Outline

Tabular Data: CSVs vs. Databases

Common SQL Databases

Example: Madison bus-route data

SQL: Structured Query Language

Demos

Demo I: How Many People Ride the Bus

Goal: add up all boardings across all bus stops/routes

Input:

- bus.db
- use DailyBoardings column in boarding table

Output:

• total riders

Demo 2: West-most Bus Route

Goal: which Madison bus goes farthest west?

Input:

• bus.db

Output:

 route number of bus that goes farthest west

Demo 3: Heart of Madison

Goal: what is the central-most location of all bus pickups?

Input:

bus.db

Output:

a latitude and longitude

Demo 4: Fifa

Goal: load Fifa.csv to a SQLite DB, then query it

Queries:

- who are the youngest players?
- who are the oldest players?
- who are the five oldest players?
- how many players are from Brazil?
- who are the oldest players from Brazil?
- who are the 5 oldest players from Brazil?
- what percent of leagues have players from Brazil? DISTINCT

Demo 5: Vocabulary Quiz

Goal: quiz user on words looked up while reading a Kindle

en:melanoma

2 en:prophylactic

melanoma

prophylactic

Input (vocab.db):

- table of kindle words lookups
- table of definitions

Output:

- random word
- real definition
- fake definitions

```
In [68]: pd.read sql("select * from definitions limit 3", conn)
Out[68]:
                index
                           word
                                                               definition
                    0
                           'hood
                                                    (slang) a neighborhood

    .22 caliber of or relating to the bore of a gun (or its am...

                    2 .38 caliber of or relating to the bore of a gun (or its am...
In [69]: pd.read_sql("select * from words limit 3", conn)
Out[69]:
                           id
                                     word
                                                 stem
                                                        lang
                                                             category
                                                                            timestamp profileid
                  en:practicing
                                 practicing
                                               practice
                                                                     0 1507696967592
                                                          en
```

melanoma

prophylactic

1508074078867

1508076287957