IR-VIC: Unsupervised Discovery of Sub-goals for Transfer in RL

Nirbhay Modhe¹

Prithvijit Chattopadhyay¹

Mohit Sharma¹

Abhishek Das¹

Devi Parikh^{1,2}

Dhruv Batra^{1,2}

Ramakrishna Vedantam²

¹Georgia Institute of Technology ²Facebook AI Research

Exploration with Sparse Rewards

Sparse reward, +1 for reaching goal

Transfer of Sub-goals

"...decomposing a complex problem into a set of simpler ones" - McGovern & Barto, 2001^[1]

Transfer of Sub-goals

Learn sub-goal detector in source environment

Transfer sub-goal detector to target environment

Challenges of Transfer

Challenges for sub-goal transfer:

Detector should be easy to train in source environments

Transferable to **novel target environments**

Improve performance in target environment's task

Information-based Sub-goals

Peaks in Relevant Goal Information (RGI)

Goal-informed actions

Default Behavior (Low RGI)

Goal-independent actions

Sub-goals discovered with goal-driven (extrinsic) rewards

Dijk & Polani "Grounding Subgoals in Information Transitions." 2011

Goyal et. al. "InfoBot: Transfer and Exploration via the Information Bottleneck." 2019

Sub-goal Identification

Sub-goals discovered with goal-driven (extrinsic) rewards

$$= f(\text{task , environment })$$

Sub-goals discovered with intrinsic rewards

$$= f(\text{ environment })$$

Sub-goal Identification

$$\Rightarrow$$
 = $f(\text{task , environment })$

- Require task specification in source environment
- May not generalize to different tasks in similar environments

$$= f(\text{ environment })$$

- Unsupervised, task-independent objective
- Exploits environment structure alone, generalizing better to similar environments

Unsupervised Sub-goal Discovery

Supervised goal:

External Reward

I(actions; goals)

$$\max_{\pi_{\theta}}[\ r - \beta I(A;G)\]$$

Maximize task reward with penalty for using goal information

Unsupervised Sub-goal Discovery

IR-VIC: Sub-goal discovery without external tasks

Supervised goal:

External Reward I(actions; goals)

Unsupervised goal:

I(actions; options)

Learn intrinsic options

Look at option sparingly

Maximize intrinsic reward with penalty for using option information

Learning Intrinsic Options

Unsupervised goal:

I(actions; options)

Learn intrinsic options

VIC: Variational Intrinsic Control^[1] (Gregor et al., 2016)

Unsupervised goal:

Intrinsic Control

 $I({
m actions}; {
m options})$

Enforce "default behavior" / option-independent actions

VIC: Variational Intrinsic Control^[1] (Gregor et al., 2016)

 Ω : option

Unsupervised goal:

Intrinsic Control

 $I({
m actions}; {
m options})$

Enforce "default behavior" / option-independent actions

Policy Parameterization

policy $\pi(a_t|s_t,\Omega)$

$$I(a_t;\Omega|s_t)$$
 $(z_t;\Omega|s_t)$

Ideal: Minimize action-goal information

Unsupervised goal:

Intrinsic Control

 $I({
m actions}; {
m options})$

Enforce "default behavior" / option-independent actions

Policy Parameterization

$$policy \ \pi(a_t|s_t,\Omega) \ encoder \ p_{enc}(z_t|s_t,\Omega) \ encoder \ p_{enc}(a_t|s_t,z_t)$$

$$I(a_t; \Omega|s_t) \leq I(z_t; \Omega|s_t)$$

Practical: Minimize upper bound

Unsupervised goal:

Intrinsic Control

 $I({
m actions}; {
m options})$

Enforce "default behavior" / option-independent actions

Policy Parameterization

$$policy \ \pi(a_t|s_t,\Omega) \ ext{encoder} \ p_{enc}(z_t|s_t,\Omega) \ ext{decoder} \ p_{dec}\left(a_t|s_t,z_t
ight)$$

$$I(a_t; \Omega|s_t) \le I(z_t; \Omega|s_t)$$

Sub-goals are peaks in MI

→ Sub-goal Transfer

Learn sub-goal detector for simple task

Sub-goal Transfer

Learn sub-goal detector for simple task

Sub-goal Transfer

Learn sub-goal detector for simple task

Experimental Evaluation

Set of environments: Gym-minigrid

$$s_t \to \text{NxN Image}$$
 $G_t \to \text{Vector to Goal}$
 $\mathcal{A} = \{\text{fwd, left, right, toggle}\}$

- External Task: Point-goal navigation (green square)
- External Reward: +1 (decaying) on goal reached

N: # of rooms S: max room size

Easy Transfer

Transfer experiments from Goyal et al.[1]

N: # of rooms S: max room size

Challenging Transfer

Increasing # of rooms and max size

N2 S10

N6 S25

Success Evaluation

Success: % of times goal reached over 512 different environments

S.E.M.: Standard error of mean over 10 random seeds

Method	MR-N3S4	MR-N5S4	MR-N6S25
$p_{\phi}(Z_t S_t,\Omega)$ pretrained on	MR-N2S6	MR-N2S6	MR-N2S10
InfoBot [Goyal et al., 2019]	90%	85%	N/A
InfoBot (Our Implementation) Count-based Baseline DIAYN Random Network Heuristic Baseline Ours $(\beta = 10^{-2})$	$99.9\% \pm 0.1\%$ $99.7\% \pm 0.1\%$ $99.7\% \pm 0.1\%$ $99.9\% \pm 0.1\%$ N/A $99.3\% \pm 0.3\%$	$79.1\%\pm11.6\%$ $99.7\%\pm0.1\%$ $95.4\%\pm4.1\%$ $98.8\%\pm0.7\%$ N/A $99.4\%\pm0.2\%$	$90.9\%\pm1.2\%$ $86.8\%\pm2.2\%$ $0.1\%\pm0.1\%$ $79.5\%\pm5.2\%$ $85.9\%\pm3.0\%$ $92.9\%\pm1.2\%$

Success % ± s.e.m.

Easy Transfer

Challenging Transfer

Average Return Evaluation

Summary

Unsupervised objective for sub-goal discovery

Transferable sub-goals

 Better exploration and sample efficiency in hard exploration tasks

Visit our poster or watch our 20 minute video for more details!

Code (coming soon): github.com/nirbhayjm/irvic

