CSU44004 Formal Verification: First Order Logic Natural Deduction Solutions

By: Alexander Sepelenco

Note

This document will contain 9 years of first order logic natural deduction solutions ranging from 2022 to 2015. I will create helper proofs for future questions:

$$\neg \to e$$

$$\neg \forall x.A \to \exists x. \neg A,$$

$$\neg \exists x.A \to \forall x. \neg A,$$

Prove: $\neg(p \to q) \vdash p \land \neg q$

1.	$\neg(p \to q)$	premise
2.	$\neg(p \land \neg q)$	assumption
3.	p	assumption
4.	$ \neg q$	assumption
5.	$ \ \ p \land \neg q$	$\wedge i, 3, 4$
6.		$\neg e, 5, 2$
7.	$\neg \neg q$	¬i, 4–6
8.	q	¬¬e, 6
9.	p o q	\rightarrow i, 3–7
10.		$\neg e, 9, 1$
11.	$\neg\neg(p \land \neg q)$	$\neg i, 2-10$
12.	$p \wedge \neg q$	$\neg \neg e, 12$

Prove: $\neg \forall x.A \vdash \exists x. \neg A$

1.	$\neg \forall x. A$	premise
2.	$\neg \exists x. \neg A$	assumption
3.	xo	
4.	$\neg A$	assumption
5.	$\exists x. \neg A$	∃i, 4
6.		¬e, 5, 2
7.	A	PBC, 4-6
8.	$\forall x.A$	$\forall i, 3-7$
9.		¬e, 8, 1
10.	$\exists x. \neg A$	PBC, 2–9

Prove: $\neg \exists x.A \vdash \forall x. \neg A$

1.	$\neg \exists x. A$	
2.	$\neg \forall x. \neg A$	assumption
3.	xo	
4.	A	assumption
5.	$\exists x.A$	∃i, 4
6.		¬e, 5,1
7.	$\neg A$	¬i, 4–6
8.	$\forall x. \neg A$	∀i, 3–7
9.	Т.	¬e, 8, 2
10.	$\forall x. \neg A$	PBC, 2–9

2022 Q2

(c) Prove: $\neg \exists x. \forall y. S(x,y) \vdash \forall x. \exists y. \neg S(x,y)$

- 1. $\neg \exists x. \forall y. S(x, y)$ premise
- 2. $\forall x. \neg \forall y. S(x,y) \quad \neg \exists x. A \rightarrow \forall x. \neg A, 1$
- 3. *xc*
- 4. $\neg \forall y. S(xo, y) \quad \forall e, 2$
- 5. $\exists y. \neg S(xo, y) \qquad \neg \forall x. A \rightarrow \exists x. \neg A, 4$
- 6. $\forall x. \exists y. \neg S(x,y) \quad \forall i, 3-5$

Here's a slightly outdated in lined version just so you can laugh at how horrible of a proof this is Prove: $\neg \exists x. \forall y. S(x,y) \vdash \forall x. \exists y. \neg S(x,y)$

1.	$\neg \exists x. \forall y. S(x,y)$	premise
2.	$\neg \forall x. \neg \forall y. S(x,y)$	assumption
3.	$\neg \exists x. \neg \neg \forall y. S(x,y)$	assumption
4.	xo	
5.	$\neg \neg \forall y. S(xo, y)$	assumption
6.		∃i, 5
7.		¬e, 6, 3
8.	$\neg \forall y. S(xo, y)$	<i>PBC</i> , 5–7
9.	$\exists x. \neg \forall y. S(x,y)$	∃i, 8
10.		$\neg e, 9, 1$
11.	$\forall x.\bot$	∀i, 4–10
12.		∀e, 11
13.	$\exists x. \neg \neg \forall y. S(x,y)$	PBC, 3–12
14.	xo	
15.	$\neg\neg\forall y.S(xo,y)$	assumption
16.	$\forall y.S(xo,y)$	¬¬e, 13
17.	$\exists x. \forall y. S(x,y)$	∃i, 16
18.		¬e, 17, 1
19.	1	∃e, 13, 14–18
20.	$\forall x. \neg \forall y. S(x,y)$	PBC, 2–19
21.	xo	
22.	$\neg \forall y. S(xo,y)$	∀e, 20
23.	$\neg \exists y. \neg S(xo, y)$	assumption
24.	zo	
25.	$\neg S(xo, zo)$	assumption
26.	$\exists y. \neg S(xo, y)$	∃i, 25
27.		¬e, 26, 23
28.	S(xo, zo)	PBC, 25–27
29.	$\forall y. S(xo, y)$	∀i, 24–28
30.		¬e, 29, 22
31.	$\exists y. \neg S(xo, y)$	PBC, 23–30
32.	$\forall x. \exists y. \neg S(x,y)$	$\forall i, 21–31$

$2021~\mathrm{Q2}$

(c) This question has been done, view blackboard for solution

$2020~\mathrm{Q2}$

(c) Prove: $\forall x.\exists y.R(x,y) \vdash \neg \forall y. \forall z. (R(a,y) \rightarrow \neg R(y,z))$

1.	$\forall x. \exists y. R(x,y)$	premise
2.	$\neg\neg\forall y.\forall z(R(a,y)\to\neg R(y,z))$	assumption
3.	$\forall y. \forall z. (R(a,y) \rightarrow \neg R(y,z))$	¬¬e, 2
4.	xo	
5.	$\exists y.R(xo,y)$	∀e, 1
6.	$\forall z. (R(a, xo) \to \neg R(xo, z))$	$\forall e, 3$
7.	yo	
8.	$ \ \ \ \ \ \ \ \ \ \$	assumption
9.	$ \ \ \ \ \ \ \ \ \ \$	∀e, 6
10.	$ \ \ \ \neg R(a, xo)$	MT, 8, 9
11.	$\exists y. \neg R(a, y)$	∃i, 10
12.	$\exists y. \neg R(a, y)$	∃e, 5, 7–11
13.		
14.	$ \ \ \ \ \ \ \ \ \ \$	assumption
15.		
16.	$ \ \ \ \neg R(a, ao)$	assumption
17.	$ \ \ \ \ \ \ \ \ \ \$	copy, 14
18.	$ \ \ \ \ \ \ \ \ \ \$	= e, 17, = e, 17
19.		¬e, 18, 16
20.		∃e, 12, 15–19
21.		$\exists e, 5, 13-20$
22.	$\forall x. \bot$	$\forall i, 4-21$
23.	Т	$\neg e, \forall e, 22$
24.	$\neg \forall y. \forall z. (R(a,y) \rightarrow \neg R(y,z))$	PBC, 2–23

2019 Q2

(c)

(i) Prove: $\neg \forall x. D(x) \vdash \exists y. \neg D(y)$

1.	$\neg \forall x. D(x)$	premise
2.	$\neg \exists y. \neg D(y)$	assumption
3.	yo	
4.	$\neg D(yo)$	assumption
5.	$ \ \ \exists y. \neg D(y)$	∃i, 4
6.		$\neg e, 5, 2$
7.	D(yo)	PBC, 4-6
8.	$\forall x.D(x)$	∀i, 3–7
9.		¬e, 8, 1
10.	$\exists y. \neg D(y)$	PBC, 2–9

(ii) Prove: $\vdash \exists x. (D(x) \rightarrow \forall y. D(y))$

1.	$\neg \exists x. (D(x) \to \forall y. D(y))$	assumption
2.	xo	
3.	$D(xo) \to \forall y.D(y)$	assumption
4.	$\exists x. D(x) \to \forall y. D(y)$	∃i, 3, 1
5.		$\neg e, 4, 1$
6.	$\neg (D(xo) \to \forall y.D(y))$	¬i, 3–5
7.	$\forall z.D(z)$	assumption
8.	D(xo)	assumption
9.	$\forall y.D(y)$	∀i, 8
10.		\rightarrow i, 8–9
11.	<u> </u>	¬e, 10, 6
12.	$\neg \forall z. D(z)$	¬e, 7–11
13.	$\exists y. \neg D(y)$	$\neg \forall x. D(x) \to \exists y. \neg D(y), 12$
14.	y1	
15.	$\neg D(y1)$	assumption
16.		$\forall i_1, 15$
17.		MI, 16
18.		∃i, 17
19.		¬e, 18, 1
20.		∃e, 13, 14–19
21.	$\forall x. \bot$	∀i, 2–20
22.		$\forall e, 21$
	$\exists x. (D(x) \to \forall y. D(y))$	PBC, 1–22

2018 January Q2

(c)

(i) Prove: $\exists x.S(x) \lor \exists x.T(x) \vdash \exists x.(S(x) \lor T(x))$

1.	$\exists x. S(x) \lor \exists x. T(x)$	premise
2.	$\exists x.S(x)$	assumption
3.	xo	
4.	S(xo)	assumption
5.	$ S(xo) \lor T(xo)$	$\forall i_1, 4$
6.	$\exists x. S(x) \lor T(x)$	∃i, 5
7.	$\exists x. S(x) \lor T(x)$	∃e, 2, 3–6
8.	$\exists x.T(x)$	assumption
9.	yo	
10.	T(yo)	assumption
11.	$ S(yo) \lor T(yo)$	$\forall i_2, 10$
12.	$\exists x. S(x) \lor T(x)$	∃i, 11
13.	$\exists x. S(x) \lor T(x)$	∃e, 8, 9–12
14.	$\exists x.(S(x) \lor T(x))$	$\vee e, 1, 2-7, 8-13$

(ii) Prove: $\exists x.\exists y.(P(x,y) \lor P(y,x)), \neg \exists z.P(z,z) \vdash \neg \forall x.\forall y.(x=y)$

2018 January Q2

(c)

(i)	Prove: $\forall x. \forall y.$	$(R(x,y) \land \neg (x=y) \rightarrow \neg R(y,x)) \vdash \forall x. \forall y. (R(x,y))$	$y) \wedge R(y, x) \to x = y)$
	1.	$\forall x. \forall y. (R(x,y) \land \neg(x=y) \rightarrow \neg R(y,x))$	premise
	2.	xo	
	3.	$\forall y. (R(xo,y) \land \neg (xo=y) \rightarrow \neg R(y,xo))$	$\forall e, 1$
	4.	yo	
	5.	$(R(xo,yo) \land \neg(xo=yo)) \to \neg R(yo,xo)$	$\forall e, 3$
	6.	$\neg (R(xo, yo) \land \neg (xo = yo)) \lor \neg R(yo, xo)$	MI, 5
	7.	$R(xo, yo) \wedge R(yo, xo)$	assumption
	8.	R(xo, yo)	$\wedge e_1, 7$
	9.	$\neg (R(xo, yo) \land \neg (xo = yo))$	assumption
	10.		TAUT2, 9
	11.	$\bigcap R(xo, yo)$	assumption
	12.		¬e, 11, 8
	13.		⊥e, 12
	14.	$ \neg \neg (xo = yo)$	assumption
	15.	xo = yo	¬¬e, 14
	16.	xo = yo	∨e, 10, 11–13, 14–15
	17.	$\neg R(yo, xo)$	assumption
	18.	R(yo,xo)	$\wedge e_2, 7$
	19.		¬e, 18, 17
	20.	xo = yo	⊥e, 19
	21.	xo = yo	∨e, 6, 9–16, 17–20
	22.	$R(xo, yo) \land R(yo, xo) \rightarrow xo = yo$	\rightarrow i, 7–21
	23.	$\forall y. (R(xo,y) \land R(y,xo) \rightarrow xo = y)$	$\forall i, 4-22$
	24.	$\forall x. \forall y. (R(x,y) \land R(y,x) \rightarrow x = y)$	$\forall i, 2-23$

(ii) Prove:
$$\exists x.P(x) \to \exists y.(Q(y) \land R(y)), \exists z.(R(z) \lor S(z)) \to \forall w.T(w) \vdash \forall v.(P(v) \to T(v))$$

1. $\exists x.P(x) \to \exists y.(Q(y) \land R(y))$ premise

2. $\exists z.(R(z) \lor S(z)) \to \forall w.T(w)$ premise

3. $\neg \forall v.(P(v) \to T(v))$ assumption

4. $\exists v.\neg(P(v) \to T(v))$ assumption

7. $\forall v.(P(v) \to T(v))$ assumption

8. $\forall v.(P(v) \to T(v))$ assumption

9. $\forall v.(P(v) \to T(v))$ assumption

10. $\forall v.(P(v) \to T(v))$ assumption

11. $\forall v.(P(v) \to T(v))$ assumption

12. $\forall v.(P(v) \to T(v))$ assumption

13. $\forall v.(P(v) \to T(v))$ assumption

14. $\forall v.(P(v) \to T(v))$ assumption

15. $\forall v.(P(v) \to T(v))$ assumption

16. $\forall v.(P(v) \to T(v))$ assumption

17. $\forall v.(P(v) \to T(v))$ assumption

18. $\forall v.(P(v) \to T(v))$ assumption

19. $\forall v.(P(v) \to T(v))$ assumption

10. $\forall v.(P(v) \to T(v))$ assumption

11. $\forall v.(P(v) \to T(v))$ assumption

12. $\forall v.(P(v) \to T(v))$ assumption

13. $\forall v.(P(v) \to T(v))$ assumption

14. $\forall v.(P(v) \to T(v))$ assumption

15. $\forall v.(P(v) \to T(v))$ assumption

16. $\forall v.(P(v) \to T(v))$ assumption

17. $\forall v.(P(v) \to T(v))$ assumption

18. $\forall v.(P(v) \to T(v))$ assumption

19. $\forall v.(P(v) \to T(v)$ assumption

 $\forall v. (P(v) \to T(v))$

25.

PBC, 3–24

2017

(i) Prove: $\exists x. (P(x) \land \forall y. Q(x,y)) \vdash \exists z. Q(z,z)$

1.
$$\exists x.(P(x) \land \forall y.Q(x,y))$$

2. $\neg \exists z.Q(z,z)$ assumption
3. $\forall z.\neg Q(z,z)$ $\neg \exists z.A \rightarrow \forall z.\neg A, 2$
4. zo $P(xo) \land \forall y.Q(xo,y)[xo/z]$ assumption
6. $\forall y.Q(xo,y)$ $\land e_2, 5$
7. $Q(xo,xo)[xo/y]$ $\forall e, 6$
8. $\neg Q(xo,xo)[xo/z]$ $\forall e, 3$
9. \bot $\neg e, 7, 8$
10. \bot $\exists z.Q(z,z)$ $PBC, 2-10$

(i) Prove: $\forall x. \forall y. (R(x,y) \rightarrow (x=y)) \vdash \forall z. \neg \exists w. (R(z,w) \land \neg (z=w))$

1.
$$\forall x. \forall y. (R(x,y) \rightarrow (x=y))$$
 premise

2. $\neg \forall z. \neg \exists w. (R(z,w) \land \neg (z=w))$ assumption

3. $\exists z. \neg \neg \exists w. (R(z,w) \land \neg (z=w))$ $\neg \forall x. A \rightarrow \exists x. \neg A, 2$

4. zo

5. $\neg \neg \exists w. (R(zo,w) \land \neg (zo=w))$ assumption

6. $\exists w. (R(zo,w) \land \neg (zo=w))$ $\neg \neg e, 5$
 $\forall y. (R(zo,y) \rightarrow (zo=y))$ $\forall e, 1$

8. yo

9. yo

10. yo

11. yo

12. yo

13. yo

14. yo

15. yo

16. yo

17. yo

18. yo

18. yo

19. yo

10. yo

10. yo

10. yo

11. yo

12. yo

13. yo

14. yo

15. yo

16. yo

17. yo

18. yo

19. yo

10. yo

10. yo

10. yo

11. yo

12. yo

13. yo

14. yo

15. yo

16. yo

17. yo

18. yo

19. yo

10. yo

10. yo

10. yo

11. yo

12. yo

13. yo

14. yo

15. yo

16. yo

17. yo

18. yo

19. yo

10. yo

2016

(c)

(i) Prove: $\forall x. \forall y. (P(y) \rightarrow Q(x)) \vdash \exists y. P(y) \rightarrow \forall x. Q(x)$

1.	$\forall x. \forall y. (P(y) \to Q(x))$	premise
2.	$\neg(\exists y. P(y) \to \forall x. Q(x))$	assumption
3.	$\exists y. P(y) \land \neg \forall x. Q(x)$	$\neg \to e, 2$
4.	$\exists y. P(y)$	$\wedge e_1, 3$
5.	$\neg \forall x. Q(x)$	$\wedge e_2, 3$
6.	$\exists x. \neg Q(x)$	$\neg \forall x. A \to \exists x. \neg A, 5$
7.	yo	
8.	P(yo)	assumption
9.	xo	
10.	$ \ \ \ \forall y.(P(y) \to Q(xo))$	$\forall e, 1$
11.	$ \ \ \ P(yo) \rightarrow Q(xo)$	∀e, 10
12.	$ \ \ \ \ \ \ \ \ \ \$	\rightarrow e, 9, 11
13.	$\forall x.Q(x)$	∀i, 8–12
14.		¬e, 13, 5
15.		∃e, 4, 7–14
16.	$\exists y. P(y) \to \forall x. Q(x)$	PBC, 2–15

(ii) Prove:
$$\exists x.\exists y.(H(x,y)\vee H(y,x)), \neg\exists z.H(z,z) \vdash \exists x.\exists y.\neg(x=y)$$

1. $\exists x.\exists y.(H(x,y)\vee H(y,x))$ premise

2. $\neg\exists z.H(z,z)$ premise

3. $\forall z.\neg H(z,z)$ $\neg\exists x.A \rightarrow \forall x.\neg A, 2$

4. $\neg\exists x.\exists y.\neg(x=y)$ assumption

5. $\forall x.\neg\exists y.\neg(x=y)$ $\neg\exists x.A \rightarrow \forall x.\neg A, 4$

6. $\forall xo$ $\exists y.(H(xo,y)\vee H(y,xo))$ assumption

8. $\neg\exists y.\neg(xo=y)$ $\forall e, 3$

9. $\neg\exists y.\neg(xo=y)$ $\forall e, 5$

10. $\forall y.\neg\neg(xo=y)$ $\forall e, 5$

11. 12. $\forall yo$ $\forall y.\neg\neg(xo=y)$ $\forall x.A \rightarrow \forall x.\neg A, 9$

11. 12. $\forall yo$ $\forall y$

2015

20.

21.

22.

23.

24.

 \perp

 \perp

 \perp

 \perp

(d) Prove: $\neg \forall x. \neg P(x) \dashv \vdash \exists x. P(x)$ I will prove this without using my proofs from the start $(\neg \forall x. A \rightarrow \exists x. \neg A)$ First prove: $\neg \forall x. \neg P(x) \vdash \exists x. P(x)$

 $\exists x. \exists y. \neg (x = y)$

1.	$\neg \forall x. \neg P(x)$	premise
2.	$\neg \exists x. P(x)$	assumption
3.	xo	
4.	P(xo)	assumption
5.	$\exists x.P(x)$	∃i, 4
6.		¬e, 5, 2
7.	$\neg P(xo)$	¬i, 4–6
8.	$\forall x. \neg P(x)$	∀i, 3–7
9.		¬e, 8, 1
10.	$\exists x. P(x)$	PBC, 2–9

 $\neg e, 19, 8$

 $\exists e, 7, 11-21$

 $\exists e, 1, 6-22$

PBC, 4-24

 \vee e, 16, 17–18, 19–20

Lastly prove: $\neg \forall x. \neg P(x) \dashv \exists x. P(x)$

1.	$\exists x. P(x)$	premise
2.	$\neg\neg \forall x. \neg P(x)$	assumption
3.	$\forall x. \neg P(x)$	¬¬e, 2
4.	xo	
5.	P(xo)	assumption
6.	$\neg P(xo)$	∀e, 3
7.		¬e, 5, 6
8.		∃e, 1, 4–7
9.	$\neg \forall x. \neg P(x)$	PBC, 2–8