Class06

Sindy Chavez

Table of contents

Function basics	1
Q1. Write a function grade() to determine an overall grade from a vector of student homework assignment scores dropping the lowest single score We need another way	2 3
Q2. Grade a class	5
Q3 Which homework was the toughest on students (aka lowest scores)	7
Q4 Optional Extension Which Homework was most predictive of overall score?	7
Q5 Can we render this page?	8

Function basics

All functions in R have at least 3 things:

- A name (we pick this),
- Input arguments (there can be loads comma separated)
- A **body** (the R code that does the work)

Write chunks of R script as you would write a paragraph. Don't write everything in one R script chunk

Q1. Write a function grade() to determine an overall grade from a vector of student homework assignment scores dropping the lowest single score

Write a function

```
# Example input vectors to start with
   student1 <- c(100, 100, 100, 100, 100, 100, 90)
   student2 <- c(100, NA, 90, 90, 90, 90, 97, 80)
   student3 <- c(90, NA, NA, NA, NA, NA, NA, NA)
I can use the 'mean()' function to get the average
  mean(student1)
[1] 98.75
I can find the lowest value with the 'min()' value
  min(student1)
[1] 90
'min()' function on its own is not that useful. We looked up more related functions and found
'which.min'function, what does it do?
  which.min(student1)
[1] 8
8 is the position of the lowest score in the vector
  student1[1:7]
[1] 100 100 100 100 100 100 100
Can we use the minus 'student1[-8]' index trick?
```

```
student1[-8]
[1] 100 100 100 100 100 100 100
Yes, we can use it. It can exclude whatever you tell it to.
  student1[ -which.min(student1)]
[1] 100 100 100 100 100 100 100
To get the average, use the mean function on this.
  mean(student1[ -which.min(student1)])
[1] 100
What about student 2 (won't work because there is an NA in the vector)
  mean(student2[ -which.min(student2)])
[1] NA
What about student3?
  mean(student3, na.rm = T)
[1] 90
The average doesn't actually give a real answer for student2 and student3. We need to try
something else.
We need another way
Can I replace NA values with zero? No homework = 0
  student2
[1] 100 NA
             90 90 90 97
```

```
is.na(student2)
```

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE

True is in the second position, where the NA is

```
# Make NA zeros
student2[ is.na(student2)] <- 0
student2

[1] 100     0     90     90     90     97     80

mean(student2[ -which.min(student2)])

[1] 91

positions <- is.na(student3)
student3[ positions ] <- 0
student3

[1] 90     0     0     0     0     0

mean(student3[ -which.min(student3)])</pre>
```

[1] 12.85714

Re-write my snippet to be more simple

Replace student with x, then tell R what you want x to be

```
x <- student1
x[ is.na(x)] <- 0
mean(x[ -which.min(x)])</pre>
```

[1] 100

Now to make a true function

```
grade <- function(x) {
    x[ is.na(x)] <- 0
    mean(x[ -which.min(x)])
    }
Highlight, Code, extract function, or Ctrl + Alt + X
Now use that to grade student1, etc. ?
    grade(student1)</pre>
```

[1] 100

Q2. Grade a class

CSV comma separated file

Using your grade() function and the supplied gradebook . To tell you who is the top scorer in the gradebook.

```
gradebook <- read.csv("https://tinyurl.com/gradeinput",
row.names = 1)
head(gradebook)</pre>
```

```
hw1 hw2 hw3 hw4 hw5
student-1 100
               73 100
                       88
                           79
student-2
           85
               64
                   78
                       89
                           78
student-3
                           77
           83
               69
                   77 100
student-4
           88
               NA
                   73 100
                           76
student-5
           88 100
                   75
                       86
                           79
student-6
           89
              78 100
                           77
```

Now I want to introduce the 'apply()' function. Appplies functions to whatever data that you want to look at

apply(x,margin,fun) x=the thing we want to grade (here it's gradebook) margin=1 or 2 for either rows or columns (reads things either by row or column, row=you get the avg for each student, column=you get the average for each homework, dropping the lowest score each time because that's what our function does) fun=funtion

apply(gradebook, 1, grade)

```
student-3 student-4 student-5 student-6 student-7
 student-1
           student-2
     91.75
                82.50
                           84.25
                                      84.25
                                                  88.25
                                                             89.00
                                                                        94.00
           student-9 student-10 student-11 student-12 student-13 student-14
student-8
     93.75
                87.75
                           79.00
                                      86.00
                                                  91.75
                                                             92.25
                                                                        87.75
student-15 student-16 student-17 student-18 student-19 student-20
     78.75
                89.50
                           88.00
                                      94.50
                                                  82.75
                                                             82.75
```

```
apply(gradebook, 2, grade)
```

hw1 hw2 hw3 hw4 hw5 89.36842 76.63158 81.21053 89.63158 83.42105

Question 2 answer

```
results <- apply(gradebook, 1, grade)
results</pre>
```

```
student-1 student-2 student-3 student-4 student-5 student-6 student-7
     91.75
                82.50
                           84.25
                                      84.25
                                                 88.25
                                                            89.00
                                                                        94.00
student-8
           student-9 student-10 student-11 student-12 student-13 student-14
    93.75
                87.75
                           79.00
                                      86.00
                                                 91.75
                                                            92.25
                                                                       87.75
student-15 student-16 student-17 student-18 student-19 student-20
                89.50
     78.75
                           88.00
                                      94.50
                                                 82.75
                                                            82.75
```

I can use the 'which.max()' to find where the largest/max value is in this results vector

```
which.max(results)
```

student-18

18

which max only returns one highest score, unlike the sort function, which will return more than one if there was more than one high score

Q3 Which homework was the toughest on students (aka lowest scores)

We want to use 'apply()' and look at the columns, but without dropping the lowest grades

```
homeworks <- apply(gradebook, 2, sum, na.rm=TRUE)
homeworks

hw1 hw2 hw3 hw4 hw5
1780 1456 1616 1703 1585

The lowest score
which.min(homeworks)

hw2
2
```

Q4 *Optional Extension* Which Homework was most predictive of overall score?

```
The highest score
```

```
which.max(homeworks)
hw1
1
```

Looking at the lowest and highest scoring homeworks can give the instructor insight as to which homeworks were good (students could score highly) and bad (all students did poorly)

```
Pearson correlation cor(x, y)
```

```
plots things x vs y
```

```
mask <- gradebook
mask[ is.na(mask) ] <- 0</pre>
```

```
cor(mask$hw5, results)
```

[1] 0.6325982

Can I apply the 'cor()'function ovver the masked gradebook? Sure!

```
apply(mask,2, cor, y=results)
```

hw1 hw2 hw3 hw4 hw5 0.4250204 0.1767780 0.3042561 0.3810884 0.6325982

Q5 Can we render this page?

Aparently yes