Non-Parametric Statistics - Problem Sets

Silvana, Florencia Luque, Simon Schmetz

2025-03-14

Introduction

In the following document, the solutions to three problem sets from Prof. Eduardo García-Portugués book on nonparametric Statistics (https://bookdown.org/egarpor/NP-UC3M/) as final assignment for the Course in Nonparametric Statistics at Universidad Carlos III de Madrid. Contributions made to this document are made are equal among each of the three authors

Excercise 4.21

```
#TODO: Silvana
```

Excercises 5.10

Investigate the accuracy of the naive bootstrap confidence intervals implemented in np::npplot. To do so:

1. Simulate M = 500 samples of size n = 100 from the regression model $Y = m(X) + \varepsilon$, where $m(x) = 0.25x^2 - 0.75x + 3$, $X \sim N(0, 1.5^2)$, and $\varepsilon \sim N(0, 0.75^2)$.

```
library(np)
```

```
## Nonparametric Kernel Methods for Mixed Datatypes (version 0.60-18)
## [vignette("np_faq",package="np") provides answers to frequently asked questions]
## [vignette("np",package="np") an overview]
## [vignette("entropy_np",package="np") an overview of entropy-based methods]
set.seed(1234)
```

```
set.seed(1234)
M = 500
n = 100
y_muestras = matrix(0,ncol = n,nrow = M)
m = function(a){
    0.25*a^2-0.75*a+3
}
for (i in 1:500){
    x = rnorm(100,0,1.5)
    epsilon = rnorm(100,0,0.75)
    y_muestras[i,] = m(x)+epsilon
}
```

2. Compute the 95% confidence intervals for m(x) along $x \leftarrow seq(-5, 5, by = 0.1)$, for each of the M samples. Do it for the normal approximation and quantile-based confidence intervals.

```
x_grid = seq(-5,5,by=0.1)
```

- 3. Check if m(x) belongs to each of the confidence intervals, for each x.
- 4. Approximate the actual coverage of the confidence intervals.

Excercise 6.8

#TODO: Simon