

LECTURE - 01 ELECTROCHEMISTRY

Today's Goal

Electro Chemical Cell

Electro Chemical Cell

The device which is used to convert chemical energy into electrical energy

Liquid – Liquid Junction Potential

Op Point – KCl can not be used as inert electrolyte when following Metal electrodes are used

Emf of cell Ni | Ni²⁺ (1.0 M) || Au³⁺ (1.0 M) | Au is ..., If E^0 for Ni²⁺ | Ni is -0.25 V, E^0 for Au^{3+} | Au is 1.50 V

+ 1.25 V

+ 1.75 V

- 1.75 V

+ 4.0 V

Saturated solution of KNO₃ is used to make 'salt-bridge' because -

Velocity of K⁺ is greater than of NO₃⁻

Velocity of NO₃ is greater than that of K⁺

Velocity of both K⁺ and NO₃ are nearly the same

KNO₃ is highly soluble in water

THANK YOU!!

Homework

REVISE FORMULA OF LAST CHAPTER
DPP Of this Lecture

