MACHINE LEARNING IN BIOINFORMATICS

INTRODUCTION

Philipp Benner philipp.benner@bam.de

VP.1 - eScience Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

[Aranda et al., 2015]

[Aranda et al., 2015]

Khorana, Holley and Nirenberg (1953-1965): Discovery of the Genetic Code

[Aranda et al., 2015]

Human Genome Project (1990-2003): Identify DNA sequence (3 billion basepairs)

[Aranda et al., 2015]

GENCODE Project (since 2003): Identify location of genes (20,000 protein coding genes)

[Aranda et al., 2015]

ENCODE Project (since 2003): Identify cell type-specific epigenetic marks

GENE EXPRESSION REGULATION

[Mitchell and Tjian, 1989]

GENE EXPRESSION REGULATION

[Mitchell and Tjian, 1989]

- Gene expression is regulated by promoters and enhancers
- Enhancer activity is highly cell type-specific
- Activation through transcription factors

OBJECTIVES

If we knew...

- all transcription factors
- their binding preferences
- and interactions
- all promoters
- all enhancers and their targets

we should be able to predict cell type-specific gene expression

APPLICATION OF MACHINE LEARNING IN UNDERSTAND-ING GENE REGULATION

- Study how the expression of genes is regulated
- How is formation about gene expression encoded in the DNA?
- How do promoters control gene expression?
- What is the role of enhancers?
- When do enhancers get active?
- How do enhancers link to promoters?

APPLICATIONS OF ML

APPLICATION 1: PROMOTER ACTIVITY (REGRESSION)

How much control do promoters have over gene expression?

Approach: Develop machine learning method that predicts gene expression values from promoters

APPLICATION 1: DATA

Expression values are cell type-specific. We only look at expression levels in liver:

Gene	Promoter sequence	Motif scores	Expression
1	CGTAGAAGC	0.23,0.53,,0.90	100
2	CTTGGACCC	0.03,0.87,,0.93	328
•••		•••	•••
N	GGACGAAAT	0.69,0.21,,0,43	0

Last column shows expression levels derived from total RNA-seq

APPLICATION 1: How do we know the position of genes?

- Option 1: RNA-seq experiments of all tissues
- Option 2: Predictions from DNA-sequence
 - ► Hidden Markov model for gene structure prediction

[Burge and Karlin, 1997]

APPLICATION 2: ENHANCER ACTIVITY (CLASSIFICATION)

Unterstand to what extent and how cell type-specific enhancer activity is encoded in the DNA sequence

Approach: Develop machine learning method that identifies relevant patterns

APPLICATION 2: DATA

Enhancer activity is highly cell type-specific. We consider enhancers active in liver:

Enhancer	Sequence	Motif scores	Active	
1	CGTAGAAGC	0.23,0.53,,0.90	1	
2	CTTGGACCC	0.03,0.87,,0.93	1	
• • •	• • •	•••	•••	
N	GGACGAAAT	0.69,0.21,,0,43	0	

Last column encodes if an enhancer is active (1) or inactive (0) in liver

Enhancers are commonly identified from genome segmentations using hidden Markov models (HMMs):

Enhancers are commonly identified from genome segmentations using hidden Markov models (HMMs):

	Genome E	nhand	er	Р	romot	er H > 1	— III>— I	1-010		I-0∙0-÷	-0-0-00-0	
	Genomic bins →											
Features	DNase	\			1							
	H3K27ac	>			\							
	H3K4me1	>										
	H3K4me3				1							
	H3K36me3					1	>	>	>	>	>	
	RNA-seq					1	1	1	1	1	1	

Enhancers are commonly identified from genome segmentations using hidden Markov models (HMMs):

Enhancers are commonly identified from genome segmentations using hidden Markov models (HMMs):

ENCODE Mouse Embryo Data

Enhancers are more difficult to identify. We need data from many different cell types:

	Forebrain	Midbrain	Hindbrain	Liver	Lung	Kidney	Heart	Limb
Day 11.5	1	1	✓	1				
Day 12.5	1	1	✓	1				
Day 13.5	1	1	✓	1				
Day 14.5	1	/	✓	1	1	✓	1	1
Day 15.5	1	/	✓	1	1	✓	1	✓
Day 16.5	✓	/	✓	1	✓	1		

3

RELATED STUDIES

PREDICTION OF ACCESSIBLE REGIONS FROM DNA SEQUENCE [HASHIMOTO ET AL., 2016]

PREDICTION OF ACCESSIBLE REGIONS FROM DNA SE-QUENCE [HASHIMOTO ET AL., 2016]

PREDICTION OF ACCESSIBLE REGIONS FROM DNA SEQUENCE [HASHIMOTO ET AL., 2016]

SOFTWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

- Python (\geq 3.7) environment [Recommended: Anaconda]
- Python Packages:
 - ► Scikit-learn
 - ► Pandas
 - Numpy
 - ► PyTorch
- Editor for Jupyter Notebooks (e.g. VS Code)
- gkmSVM https://www.beerlab.org/gkmsvm/

REFERENCES I

Burge, C. and Karlin, S. (1997).

PREDICTION OF COMPLETE GENE STRUCTURES IN HUMAN GENOMIC DNA. *Journal of molecular biology*, 268(1):78–94.

Hashimoto, T., Sherwood, R. I., Kang, D. D., Rajagopal, N., Barkal, A. A., Zeng, H., Emons, B. J., Srinivasan, S., Jaakkola, T., and Gifford, D. K. (2016).

A SYNERGISTIC DNA LOGIC PREDICTS GENOME-WIDE CHROMATIN ACCESSIBILITY.

Genome research, 26(10):1430-1440.

MITCHELL, P. J. AND TJIAN, R. (1989).

TRANSCRIPTIONAL REGULATION IN MAMMALIAN CELLS BY SEQUENCE-SPECIFIC DNA BINDING PROTEINS.

Science. 245(4916):371–378.