Exercícios - Cálculo IV - Aula 1 - Semana 24/8 - 28/8 Sequências Numéricas I

Uma sequência de números reais é uma função $n \in \mathbb{N} \mapsto x_n \in \mathbb{R}$, ou seja, uma função cujo domínio é o conjunto dos números naturais e o contradomínio é o conjunto dos números reais. A imagem x_n de $n \in \mathbb{N}$ se chama termo da sequência, enquanto a própria sequência é denotada por (x_n) . Também se usa a expressão: a sequência x_0, x_1, x_2, \ldots , ou ainda: a sequência $x_n \in \mathbb{R}, n = 0, 1, 2 \ldots$

Talvez por influência das notações, é comum pensar-se erroneamente que uma sequência é o conjunto formado por seus termos, $\{x_n \in \mathbb{R} : n = 0, 1, ...\}$. Entretanto, nota-se, por exemplo, que a sequência $((-1)^n)$ é diferente da sequência $((-1)^{n+1})$ e, apesar disso, ambas têm o mesmo conjunto de termos $\{-1, 1\}$.

Exemplo 0. Em cada um dos seguintes exemplos, definimos uma sequência (x_n) dando um fórmula explicita para seu n-ésimo termo:

- (a) $x_n = 1$, isto é, $1, 1, 1, \ldots$;
- (b) $x_n = (1 (-1)^n)/2$, isto é, 0, 1, 0, 1, 0 . . . ;
- (c) $x_n = 1/n$, isto é, $1, \frac{1}{2}, \frac{1}{3}, \dots$;
- (d) $x_n = 2^n$, isto é, 1, 2, 4, 8, 16, ...;

(e)
$$x_n = \sum_{i=1}^n \frac{1}{i}$$
, isto é, 1, $1 + \frac{1}{2}$, $1 + \frac{1}{2} + \frac{1}{3}$, $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$, ...;

(f)
$$x_{n+1} = \sqrt{2x_n}, n \ge 1, x_0 = 1$$
, isto é, $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$

Definição. Uma sequência (x_n) se diz convergente se existe uma número $L \in \mathbb{R}$, chamado limite de (x_n) , tal que, para todo $\epsilon > 0$, existe $N \in \mathbb{N}$ de modo que

$$n \ge N \quad \Rightarrow \quad |x_n - L| < \epsilon.$$

Neste caso, diz-se que (x_n) converge para L e denota-se

$$x_n \to L$$
, com $n \to \infty$, ou $\lim_{n \to \infty} x_n = L$.

Se (x_n) não for convergente, diz-se que ela é divergente.

Exemplo 1. Considere a sequência (x_n) , cujo n-ésimo termo é $x_n = (n-1)/n$:

$$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$$

Esta sequência parece convergir para o número 1. De fato, para cada $n \in \mathbb{N}$, $n \ge 1$, temos

$$|x_n - 1| = \left| \frac{n-1}{n} - 1 \right| = \left| -\frac{1}{n} \right| = \frac{1}{n}.$$

Dado $\epsilon > 0$, existe $N \in \mathbb{N}$ tal que $\frac{1}{N} < \epsilon$. Assim,

$$n \ge N \quad \Rightarrow \quad |x_n - 1| = \frac{1}{n} \le \frac{1}{N} < \epsilon,$$

como queríamos verificar.

Exemplo 2. A sequência $((-1)^n)$ é divergente. Para ver isto é preciso verificar que qualquer número real não é o limite dessa sequência. De fato, seja $L \in \mathbb{R}$ qualquer. Se L = 1, considere $0 < \epsilon < 2$. Notando que

$$|(-1)^n - 1| = \begin{cases} 0 & \text{se } n \text{ for par,} \\ 2 & \text{se } n \text{ for impar,} \end{cases}$$

obtemos

$$|(-1)^n - 1| = 2 > \epsilon$$
, para todo $n \in \mathbb{N}$ ímpar.

Portanto, $(-1)^n$ não converge para 1. Se L=-1, basta repetir o esse mesmo argumento. Se $L \in \mathbb{R} \setminus \{-1,1\}$, considere $0 < \epsilon < \min\{|1-L|, |-1-L|\}$. Notando que

$$|(-1)^n - L| = \begin{cases} |1 - L| & \text{se } n \text{ for par,} \\ |-1 - L| & \text{se } n \text{ for impar,} \end{cases}$$

obtemos

$$|(-1)^n - L| > \epsilon$$
, para todo $n \in \mathbb{N}$.

Portanto, $((-1)^n)$ não converge para L.

É claro que continuam valendo para as sequências as técnicas e os resultados sobre limites no infinito de funções em geral estudados no Cálculo I. Com se tratam dos mesmos resultados, é desnecessário pormerizar e apresentar as demonstração outra vez. Nesse sentido, temos a seguinte reformulação para o Teorema de Confronto.

Teorema de Confronto. Se $x_n \leq y_n \leq z_n$ para todo $n \geq N$, para algum $N \in \mathbb{N}$, e $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = L$, então $\lim_{n \to \infty} y_n = L$.

Exemplo 3. Se $|x_n| \to 0$, então $x_n \to 0$. De fato, basta observar que

$$-|x_n| \le x_n \le |x_n|, \ \forall \, n \in \mathbb{N}$$

e, como $-|x_n| \to 0$ e $|x_n| \to 0$, segue do Teorema do Confronto que $x_n \to 0$.

Exemplo 4. $\frac{\cos n}{n} \to 0$. De fato, note que

$$\frac{-1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}, \quad n = 1, 2, \dots$$

e use o Teorema do Confronto.

Exemplo 5. Usando as regras operatórias de limites no infinito podemos calcular os seguintes limites:

(a)
$$\lim_{n \to \infty} \frac{2n^3 + n - 5}{7n^3 - 2n^2 + 4} = \lim_{n \to \infty} \frac{2 + 1/n^2 - 5/n^3}{7 - 2/n + 4/n^3} = \frac{2}{7}.$$

(b) $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$

Observação 1. Se reconhecermos uma sequência (x_n) como a restrição a \mathbb{N} de uma função $f:(0,\infty)\to\mathbb{R}$, isto é, $x_n=f(n)$, tal que $\lim_{x\to\infty}f(x)=\alpha,\ \alpha\in\mathbb{R}\cup\{-\infty,+\infty\}$, então $x_n\to\alpha$.

Exemplo 6.

(a)
$$\lim_{n \to \infty} \frac{\ln n}{n} = 0.$$

De fato, aplicando a regra de L'Hôpital, obtemos que $\lim_{x\to\infty} \frac{\ln x}{x} = 0$.

(b)
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$
.

De fato, com $f(x) = (1 + \frac{1}{x})^x$, basta aplicar o segundo limite fundamental estudado no Cálculo I.

(c) A sequência geométrica (r^n) converge para 0 se |r| < 1. De fato, pelo Exemplo 3, basta mostrar que $(|r|^n)$ converge para 0. Para tanto, considere a função exponencial relacionada $f(x) = |r|^x$. Usando que $\ln |r| < 0$, temos

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} |r|^x = \lim_{x \to \infty} e^{x \ln|r|} = 0.$$

Pela Observação 1, $\lim_{n\to\infty}|r|^n=0$. Pelo Exemplo 3, $\lim_{n\to\infty}r^n=0$.

Observação 2. Lembre-se de que se f é uma função contínua em um ponto de acumulação L do domínio de f, então $f(x) \to f(L)$, com $x \to L$. Esta ideia se aplica a sequências também. Suponha que uma sequência $x_n \to L$ e uma função f seja contínua em L. Então $f(x_n) \to f(L)$. Essa propriedade geralmente nos permite encontrar limites para sequências complicadas. Por exemplo, considere a sequência $\left(\sqrt{5-\frac{3}{n^2}}\right)$. Como $5-\frac{3}{n^2}\to 5$ e \sqrt{x} é contínua em x=5,

$$\lim_{n \to \infty} \sqrt{5 - \frac{3}{n^2}} = \sqrt{\lim_{n \to \infty} \left(5 - \frac{3}{n^2}\right)} = \sqrt{5}.$$

Exercício 1. Determine se a sequência $\left(\cos\left(\frac{2n+1}{3n+5}\right)\right)$ converge. Se convergir, encontre seu limite.

Exercício 2. Determine se a sequência $a_n = \left(\frac{n+3}{n+2}\right)^n$ é convergente ou divergente e, caso convergente, determine o seu limite.

Agora voltamos nossa atenção para um dos teoremas mais importantes envolvendo sequências: o Teorema da Convergência Monótona. Antes de enunciar o teorema, precisamos apresentar alguma terminologia e motivação. Começamos definindo o que significa uma sequência ser limitada

Definição. Uma sequência (x_n) é limitada superiormente se existe um número real M tal que

$$x_n \le M$$
 para todo $n \in \mathbb{N}$.

Uma sequência (x_n) é limitada inferiormente se existe um número real K tal que

$$K \leq x_n$$
 para todo $n \in \mathbb{N}$.

Uma sequência (x_n) é uma sequência limitada se for limitada inferiormente e superiormente. Se uma sequência não for limitada diz-se ilimitada.

Exemplo 7.

- (a) A sequência $(\sin(n))$ é limitada.
- (b) A sequência geométrica (e^n) é limitada inferiormente, mas não é limitada superiormente, portanto, é ilimitada.
- (c) A sequência $x_n = \sum_{i=1}^n \frac{1}{i}$ é limitada inferiormente, mas não é limitada superiormente (verifique), portanto, é ilimitada.

Discutimos agora a relação entre limitação e convergência. Suponha que uma sequência (x_n) seja ilimitada. Então, ele não é limitado superiormente, ou inferiormente, ou ambos. Em ambos os casos, existem termos x_n que são arbitrariamente grandes em magnitude à medida que n aumenta. Como resultado, a sequência (x_n) não pode convergir. Portanto, ser limitado é uma condição necessária para que uma sequência convirja, ou seja:

Teorema. Se (x_n) é uma sequência convergente, então ela é limitada.

Observe que uma sequência ser limitada não é uma condição suficiente para convergir. Por exemplo, a sequência $((-1)^n)$ é limitada, mas é divergente.

Definição. Uma sequência (x_n) é crescente todo $n \geq N$ se

$$x_n \leq x_{n+1}$$
 para todo $n \geq N$.

Uma sequência (x_n) é decrescente todo $n \geq N$ se

$$x_n \ge x_{n+1}$$
 para todo $n \ge N$.

Uma sequência (x_n) é uma sequ
ncia monótona para todo $n \ge N$ se for crescente para todo $n \ge N$ ou decrescente para todo $n \ge N$.

Discutimos agora uma condição suficiente (mas não necessária) para que uma sequência limitada convirja. Considere uma sequência limitada (x_n) . Suponha que a sequência (x_n) seja crescente. Como a sequência (x_n) é crescente, os termos não estão oscilando. Portanto, existem duas possibilidades. A sequência pode divergir para o infinito ou pode convergir. No entanto, como a sequência é limitada, ela é limitada superiormente e a sequência não pode divergir para o infinito e, portanto, concluímos que (x_n) converge.

Teorema da Convergência Monótona. Se (x_n) é uma sequência limitada e existe um inteiro positivo N tal que (x_n) é monótona para todo $n \ge N$, então (x_n) converge.

Exemplo 8. Para cada uma das seguintes sequências, use o Teorema da Convergência Monótona para mostrar a convergência da sequência e encontrar seu limite.

- (a) $\left(\frac{4^n}{n!}\right)$.
- (b) (x_n) é definida recursivamente de modo que

$$x_1 = 2 \text{ e } x_{n+1} = \frac{x_n}{2} + \frac{1}{2x_n} \text{ para todo } n \ge 1.$$

(a) Escrevendo os primeiros termos, vemos que

$$\left(\frac{4^n}{n!}\right) = \left(4, 8, \frac{32}{3}, \frac{32}{3}, \frac{128}{15}, \dots\right).$$

No início, os termos aumentam. No entanto, após o terceiro termo, os termos diminuem. Na verdade, os termos diminuem para todos os $n \geq 3$. Podemos mostrar isso da seguinte maneira.

$$x_{n+1} = \frac{4^{n+1}}{(n+1)!} = \frac{4}{n+1} \frac{4^n}{n!} = \frac{4}{n+1} x_n \le x_n \text{ se } n \ge 3.$$

Portanto, a sequência é decrescente para todo $n \geq 3$. Além disso, a sequência é limitada inferiormente por 0 porque $\frac{4^n}{n!} > 0$ para todo $n \in \mathbb{N}$. Portanto, pelo Teorema da Convergência Monóna, a sequência converge.

Para encontrar o limite, usamos o fato de que a sequência converge e seja $L = \lim_{n \to \infty} x_n$. Agora observe esta importante observação: considere $\lim_{n \to \infty} x_{n+1}$. Desde que

$$(x_{n+1}) = (x_2, x_3, x_4, \dots),$$

a única diferença entre as sequências (x_{n+1}) e (x_n) é que (x_{n+1}) omite o primeiro termo. Uma vez que um número finito de termos não afeta a convergência de uma sequência,

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n = L.$$

Combinando este fato com a equação

$$x_{n+1} = \frac{4}{n+1}x_n$$

e tomando o limite de ambos os lados da equação, obtemos

$$L = 0L = 0$$
.

(b) Escrevendo os primeiros termos,

$$\left(2, \frac{5}{4}, \frac{41}{40}, \frac{3281}{3280}, \dots\right).$$

podemos conjecturar que a sequência é decrescente e limitada inferiormente por 1. Para mostrar que a sequência é limitada inferiormente por 1, primeiro reescreva

$$x_{n+1} = \frac{x_n}{2} + \frac{1}{2x_n} = \frac{x_n^2 + 1}{2x_n}$$

Portanto,

$$\frac{x_n^2+1}{2x_n} \ge 1$$
 se, e somente se, $x_n^2+1 \ge 2x_n$.

Reescrevendo a desigualdade $x_n^2 + 1 \ge 2x_n$ como $x_n^2 - 2x_n + 1 \ge 0$, e usando o fato de que

$$x_n^2 - 2x_n + 1 = (x_n - 1)^2 \ge 0,$$

podemos concluir que $x_n^2 + 1 \ge 2x_n$ para todo $n \ge 1$ e, portanto,

$$x_{n+1} = \frac{x_n^2 + 1}{2x_n} \ge 1.$$

Para mostrar que a sequência é decrescente, devemos mostrar que $x_{n+1} \leq x_n$ para todo $n \geq 1$. Como $1 \leq x_n^2$, somando x_n^2 em ambos lados dessa última inequação, segue que

$$x_n^2 + 1 \le 2x_n^2.$$

Dividindo os dois lados por $2x_n$, obtemos

$$\frac{x_n}{2} + \frac{1}{2x_n} \le x_n.$$

Usando a definição de x_{n+1} , concluímos que

$$x_{n+1} = \frac{x_n}{2} + \frac{1}{2x_n} \le x_n.$$

Visto que (x_n) é limitada inferiormente e decrescente, pelo Teorema da Convergência Monótona, (x_n) converge. Para encontrar o limite, seja $L = \lim_{n \to \infty} x_n$. Então, usando a relação de recorrência e o fato de que $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n$, temos

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(\frac{x_n}{2} + \frac{1}{2x_n} \right),$$

e portanto

$$L = \frac{L}{2} + \frac{1}{2L}.$$

Assim,

$$2L^2 = L^2 + 1.$$

Resolvendo esta equação para L, concluímos que $L^2=1$, o que implica $L=\pm 1$. Como todos os termos são positivos, o limite L=1.

Observação 3 (Método dos babilônios para o cálculo de raiz quadrada). O item (b) do Exemplo 8 pode ser generalizado para obter uma aproximação (por falta) da raiz quadrada de um número real positivo. Considere a sequência (x_n) dada por

$$x_{n+1} = \frac{x_n}{2} + \frac{\alpha}{2x_n}$$
 para todo $n \ge 1$,

onde x_1 e α são números reais positivos dados. O leitor pode repetir os argumentos da solução do item (b) do Exemplo 8 para mostrar que $x_n \geq \sqrt{\alpha}$ para todo $n \geq 2$ e (x_n) é decrescente para todo $n \geq 2$. Assim, (x_n) é convergente. Repetindo o argmento do item (b) do Exemplo 8, o limite de (x_n) é $L = \sqrt{\alpha}$. O fato de $x_n \geq \sqrt{\alpha}$ é o que significa x_n ser uma aproximação por falta de $\sqrt{\alpha}$.

Exemplo 9. (Exemplo da Parte 4 da Aula 1) Determine se a sequência definida a seguir tem um limite. Em caso afirmativo, encontre o limite.

$$a_1 = \sqrt{2}, a_2 = \sqrt{2\sqrt{2}}, a_3 = \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

Note que (a_n) pode ser definida recursivamente como $a_1 = \sqrt{2}$ e $a_{n+1} = \sqrt{2a_n}$ para $n \ge 1$.

- (a) Prove que $a_n < a_{n+1} < 2$ para todo $n \ge 1$. Isto mostra que (a_n) é crescente e limitada superiormente e, portanto, convergente a um limite $L \le 2$.
- (b) Mostre que L=2.

Solução.

(a) Usaremos o Princípio da Indução Matemática¹ para provar que a sequência é crescente. A afirmação que queremos provar envolvendo um número natural é

$$a_n < a_{n+1}, \ \forall n \ge 1.$$

O passo base (1) é verdadeiro porque

$$a_1 = \sqrt{2} < \sqrt{2\sqrt{2}} = a_2.$$

Para provar o passo indutivo (2), suponha que a afirmação é verdadeira para $n \ge 1$ (isto é, $a_n < a_{n+1}$) e provemos a afirmação é verdadeira para n+1. De fato, como $a_{n+2} = \sqrt{2a_{n+1}}$. Pela hipótese de indução, $a_n < a_{n+1}$. Assim, $a_{n+2} = \sqrt{2a_{n+1}} > \sqrt{2a_n} = a_{n+1}$, como queríamos provar. Pelo princípio de indução matemática, $a_n < a_{n+1}$, $\forall n \ge 1$.

Vamos provar agora que $a_n < 2$ para todo $n \ge 1$. Poderíamos usar novamente princípio de indução matemática para fazer isso, mas vamos usar o fato que a sequência é crescente. De fato, para todo $n \ge 1$,

$$a_n < a_{n+1} = \sqrt{2a_n}.$$

Elevando o quadrado em ambos os lados, temos

$$a_n^2 < 2a_n$$
.

Usando que a_n é positivo para todo $n \ge 1$ $(a_n \ge a_1 = \sqrt{2})$, segue que $a_n < 2$ para todo $n \ge 1$.

(b) Pelo item (a) e o Teorema da Convergência Monótona, existe $L \in \mathbb{R}$ tal que $L = \lim_{n \to \infty} a_n$. Fazendo $n \to \infty$ na fórmula $a_{n+1} = \sqrt{2a_n}$, obtemos

$$L = \sqrt{2L}.$$

Elevando o quadrado em ambos os lados e usando que L > 0 (isto porque $a_1 > 0$ e (a_n) é crescente), obtemos L = 2.

Observação 4. Um outro modo de resolução do Exemplo 9 seria obter uma fórmula explicita para a_n em termos de n. Podemos usar o princípio de indução matemática para mostrar que a sequência (a_n) do Exemplo 7 pode ser escrita explicitamente por

$$a_n = 2^{\left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}\right)}$$

Como

$$\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} = \frac{1}{2} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{n-1}} \right) = \frac{1}{2} \left(\frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} \right) = 1 - \left(\frac{1}{2}\right)^n.$$

- (1) Prove que $P(n_0)$ é verdadeiro.
- (2) Prove que para qualquer $n \ge n_0$, se P(n) for verdadeiro (chamada hipótese de indução), então P(n+1) é verdadeiro.

O princípio de indução matemática afirma que se o passo base (1) e o passo indutivo (2) forem provados, então P(n) é verdadeira para todos os números naturais $n \ge n_0$.

 $^{^1}$ O Princípio da Indução Matemática é um axioma do sistema de números que pode ser usado para provar afirmações matemáticas envolvendo um número natural n, como $1+2+\cdots+n=n(n+1)/2$. Para provar que uma afirmação P(n) é verdadeira para todos os números naturais $n \geq n_0$, onde n_0 é um número natural, procedemos da seguinte forma:

Portanto,

$$a_n = 2^{\left(1 - \left(\frac{1}{2}\right)^n\right)} \to 2^1 = 2, \text{ com } n \to \infty.$$

Exercício 3. Verifique se existe $\lim_{n\to\infty} a_n$ se

$$a_n = \frac{1}{n} \frac{3.6.9.\dots(3n)}{1.4.7.\dots(3n-2)}.$$

Sugestão: mostre que (a_n) é decrescente e limitada inferiormente.

Exercício 4. Determine se a sequência definida a seguir tem um limite. Em caso afirmativo, encontre o limite.

 $a_1 = \sqrt{a}$, $a_2 = \sqrt{a + \sqrt{a}}$, $a_3 = \sqrt{a + \sqrt{a + \sqrt{a}}}$, ..., onde a > 0 um número real fixo.

Exercício 5. Determine se a sequência definida a seguir tem um limite. Em caso afirmativo, encontre o limite.

$$a_1 = 3, a_n = \sqrt{2a_{n-1}}, n = 2, 3, \dots$$

Observação 4. Combinando o Exemplo 9 e o Exercício 5, podemos nos perguntar quais valores de a_1 determinam que (a_n) é crescente ou decrescente? Outro fato interessante é que independente do valor de $a_1 > 0$, a sequência (a_n) converge para 2, o qual é o ponto fixo da função $f(x) = \sqrt{2x}$, $x \in (0, \infty)$ (Figuras 1 e 2 acima).

y = y a_2 a_3 $y = \sqrt{2x}$ $y = \sqrt{2x}$ $y = \sqrt{2x}$

Figure 1: $a_1 < 2$

Figure 2: $a_1 > 2$

Exercício 6. Mostre que se $a_n \to 0$ e a sequência (b_n) é limitada, então $a_n b_n \to 0$. Use isso para mostrar que $e^{-n} \cos \frac{n\pi}{4} \to 0$.

Exercício 7. Calcule $\lim_{n\to\infty} x_n$ se

(a)
$$x_n = \sqrt{n} \left(\sqrt{n+a} - \sqrt{n} \right)$$
. (resp.: $a/2$)

(b)
$$x_n = n \left[\left(a + \frac{1}{n} \right)^4 - a^4 \right]$$
. (resp.: $4a^3$)

Observação 6. Nesta disciplina, a discussão de sequências numéricas é bem resumida e é apresentado o suficiente para o estudo razoavelmente satisfatório de séries numéricas, o qual está baseado na definição de convergência de sequências. No entanto, sequências numéricas é um tema riquísimo. Para citar um exemplo, os números primos formam uma das sequência mais interessantes

Um teorema da Teoria dos Números mostra que há infinitos primos. A sequência dos números primos é divergente, e pode parecer que o conceito de convergência de sequências tem pouco ou

nada de relevante com relação aos números primos. Em verdade, essa impressão é errônea, pois a convergência de certas sequências está intimamente ligado à teoria do números primos. Para reforçar essa observação, citamos o interessante teorema sobre o valor aproximado do n-ésimo primo: se p_n denota o n-ésimo primo, então p_n é "assintoticamente igual" a $n \ln n$, no sentido que

$$\lim_{n \to \infty} \frac{p_n}{n \ln n} = 1.$$

EXTRA: Números de Fibonacci (comentados na Aula 1)

Os números de Fibonacci são definidos recursivamente pela sequência F_n onde $F_0=0,\,F_1=1$ e para $n\geq 2,\,F_n=F_{n-1}+F_{n-2}.$

Aqui, examinamos as propriedades dos números de Fibonacci.

- 1. Escreva os primeiros vinte números de Fibonacci.
- 2. Encontre uma fórmula fechada para a sequência de Fibonacci usando as seguintes etapas.
 - a. Considere a sequência definida recursivamente (x_n) onde $x_0 = c$ e $x_{n+1} = ax_n$. Mostre que essa sequência pode ser descrita pela fórmula fechada $x_n = ca^n$ para todo $n \ge 0$.
 - b. Usando o resultado da parte a. como motivação, procure uma solução para a equação

$$F_n = F_{n-1} + F_{n-2}$$

da forma $F_n=c\lambda^n$. Determine quais são os dois valores de λ que permitirão a F_n satisfazer esta equação.

- c. Considere as duas soluções da parte b.: λ_1 e λ_2 . Seja $F_n = c_1 \lambda_1^n + c_2 \lambda_2^n$. Use as condições iniciais F_0 e F_1 para determinar os valores para as constantes c_1 e c_2 e escreva a fórmula fechada F_n .
- 3. Use a resposta em 2 c. para mostrar que

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2}.$$

O número $\phi = \frac{1+\sqrt{5}}{2}$ é conhecido como a razão áurea.

Figure 3: As sementes do girassol exibem padrões de espiral curvando-se para a esquerda e para a direita. O número de espirais em cada direção é sempre um número de Fibonacci. (crédito: modificação do trabalho de Esdras Calderan, Wikimedia Commons)