Занятие от 10.12. Геометрия и топология. 1 курс. Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

11 декабря 2020 г.

Задача 56.

Лемма 1. Найдётся линейно независимый набор векторов $\{v_n\}_{n=0}^{\infty}$, что:

- $\forall n \in \mathbb{N} \cup \{0\}$ $||v_n|| = 1$.
- $\forall n \in \mathbb{N} \cup \{0\} \ \exists \varepsilon > 0 : \qquad U_{\varepsilon}(v_n) \cap \{v_k\}_{k=0}^{\infty} = \{v_n\}.$

Доказательство. Поскольку пространство бесконечномерное, то у него есть бесконечный базис Σ . Также сразу будем подразумевать под Σ множество $\{v/\|v\| \mid v \in \Sigma\}$.

Если в Σ есть такой вектор v, что для всякого $\varepsilon > 0$ верно, что

$$|\Sigma \setminus U_{\varepsilon}(v_n)| \in \mathbb{N},$$

то построим искомую последовательность следующим образом. На место v_0 возьмём любой элемент $\Sigma \setminus \{v\}$. Далее каждый следующий элемент v_{n+1} определим как случайный элемент

$$\Sigma \cap U_{d(v_n,v)/2}(v) \setminus \{v\};$$

это множество непусто, так как иначе Σ конечно. Следовательно для всяких m>n верно, что $d(v_m,v)>2d(v_n,v)$, а значит

$$d(v_m, v_n) \geqslant d(v_m, v) - d(v_n, v) > d(v_n, v) \qquad d(v_m, v_n) \geqslant d(v_m, v) - d(v_n, v) > d(v_m, v) / 2$$

Таким образом $U_{d(v_n,v)/2}(v_n) \cap \{v_k\}_{k=0}^{\infty} = \{v_n\}$ для всякого $n \in \mathbb{N} \cup \{0\}$.