Experimentos en Física Moderna

Luis Demetrio López-Carreño, Dr, Sc.

Idlopezca@unal.edu.co Of:404-357 Lab:405-111

Grupo de Materiales con Aplicaciones Tecnológicas, GMAT

Departamento de Física

Facultad de Ciencias

Universidad Nacional de Colombia

Experimentos en Física Moderna

"No son los más fuertes de la especie los que sobreviven, ni los más inteligentes. Sobreviven los más flexibles y adaptables a los cambios"

Charles Darwin

Efecto fotoeléctrico

 $URL: https://lh3.googleusercontent.com/proxy/g6RH1tNkmuTEWP_MMmlbnAUxJ2PNhXTj14BvcFM3qRrNmr$

FX3O5BoBnquMdybolOcUsVHeTA01YBqwRB4T0QqYqsl5jOT7j9zk8

 DEFINICIÓN
 El efecto fotoeléctrico consiste en la emisión de electrones por un material cuando se hace incidir sobre él, radiación electromagnética, (luz visible o ultravioleta, en general), de cierta frecuencia.

EFECTO FOTOELÉCTRICO

$$e|V_o| = k_{max}$$

$$e|V_o| = k_{max}$$

$$e|V_o| = k_{max}$$

- ① Existe una frecuencia umbral ν_o , de la radiación incidente, por debajo de la cual no se observa la emisión de fotoelectrones, cualquiera que sea la intensidad de la radiación y el tiempo.
- 2 El tiempo de emisión de los fotoelectrones es del orden de $t \approx 10^{-9} \ {\rm s}.$
- $oldsymbol{3}$ Si se fija la frecuencia u, de la radiación incidente y se varía la intensidad media I_m , las curvas I-V presentan el mismo potencial de frenado pero, la corriente de saturación es proporcional a la intensidad de la onda incidente.

- Resultados experimentales
 - f 4 Si se fija la intensidad media I_m de la radiación incidente y se varía la frecuencia u, las curvas I-V presentan la misma corriente de saturación, mientras que el potencial de frenado varía, siendo éste proporcional a la frecuencia de la onda incidente.
 - **5** La energía cinética máxima de los fotoelectrones aumenta con la frecuencia de la radiación incidente.

- Modelo Clásico
 - La radiación son ondas electromagnéticas (OEM).
 - Las OEM son ondas transversales originadas en las oscilaciones sincronizadas de las campos eléctrico, \vec{E} y magnético, \vec{B} .
 - La dirección de propagación de una OEM queda definida por el vector de onda, \vec{k} .

$$\vec{k} = \frac{\vec{E} \times \vec{B}}{|\vec{E} \times \vec{B}|}$$

- Las OEM se propagan a una velocidad igual a c.
- La ecuación de onda electromagnética se deriva de las ecuaciones de Maxwell.

$$\nabla^2 \vec{E}(\vec{r}) = \frac{1}{c^2} \frac{\partial^2 \vec{E}(\vec{r})}{\partial t^2}$$

- Modelo Clásico
 - En la dirección del eje \hat{x} se tiene:

$$E = E_o \sin(kx - \omega t) \qquad B = B_o \sin(kx - \omega t)$$
$$\frac{E_o}{B_o} = c$$

 Las ondas electromagnéticas portan energía (vector de Poynting):

$$\vec{S} = \frac{1}{\mu_o} \left(\vec{E} \times \vec{B} \right)$$

$$|\vec{S}| = \frac{1}{\mu_o} |\vec{E}| |\vec{B}|$$

- Modelo Clásico
 - La luz, (OEM), pueden caracterizarse mediante la *intensidad* media, I_m , y por la frecuencia, ν asociada a las oscilaciones temporales de los campos, eléctrico y magnético.
 - La intensidad media, I_m , de una onda plana está dada por:

$$I_m = |\vec{S}| = \frac{1}{c\mu_o} \frac{|E_o|^2}{2}$$

- Modelo Clásico Análisis de los resultados
 - La luz, (OEM), pueden caracterizarse mediante la intensidad media, I_m , y por la frecuencia, ν asociada a las oscilaciones temporales de los campos, eléctrico y magnético.
 - En física del estado sólido, la función trabajo, es la energía mínima, necesaria para extraer un electrón de un sólido, a un punto inmediatamente fuera de la superficie del sólido (o la energía necesaria para mover un electrón desde el nivel de energía de Fermi hasta el vacío).

- Modelo Clásico Análisis de los resultados
 - (1) La existencia de una frecuencia umbral ν_o , de la radiación incidente.....
 - Esto contradice la teoría electromagnética, según la cual la densidad de energía (por unidad de volumen) de una onda luminosa es proporcional a su intensidad (suma de los cuadrados de los módulos de las amplitudes de los campos eléctrico y magnético correspondientes).
 - A pesar de que la frecuencia de la luz sea muy baja, con suficiente intensidad luminosa o tiempo debería llegar un momento en el que los electrones adquiriesen la energía necesaria para escapar de la superficie del cátodo.

- Modelo Clásico Análisis de los resultados
 - 2 La energía cinética de los fotoelectrones aumenta con la frecuencia de la radiación incidente.
 - Esto nuevamente resulta incompatible con la electrodinámica de Maxwell, donde la densidad de energía de una onda luminosa no tiene relación alguna con su frecuencia.

- Modelo Clásico Análisis de los resultados
 - 3 La ausencia de tiempo de retardo en la emisión de fotoelectrones, con independencia del valor de la intensidad de la radiación incidente.
 - 4 En 1928, Lawrence y Beams demostraron que este tiempo de retardo no podía ser superior a 3×10^{-9} s.
 - Según la teoría electromagnética debe existir un tiempo de retardo inversamente proporcional a la intensidad de la onda incidente
 - Este retraso, entre el instante de incidencia de la radiación y el de emisión de fotoelectrones, se debe a que para intensidades de iluminación muy bajas, los fotoelectrones requieren un cierto tiempo para adquirir la energía necesaria para abandonar el metal

- Modelo Cuántico Modelo de Einstein
 - Einstein logró explicar el efecto fotoeléctrico en su artículo de 1905, "Sobre un punto de vista heurístico concerniente a la producción y transformación de la luz".

- Modelo de Einstein
 - Consideraciones del modelo:
 - 1 La energía de la radiación no está distribuida de manera continua, como en una onda luminosa, sino de manera discreta, en paquetes indivisibles de energía. Posteriormente G.N. Lewis llamaría a estos paquetes de energía, Fotones.

$$E = h\nu$$

 $u \longrightarrow \text{representa la frecuencia.}$

- Modelo de Einstein
 - Consideraciones del modelo:
 - **2** La intensidad, *I*, de la radiación queda definida mediante la expresión:

$$I = N(h\nu)$$

 $N \longrightarrow \text{representa el número de fotones}.$

EFECTO FOTOELÉCTRICO

- Modelo de Einstein
 - Consideraciones del modelo:
 - **2** La intensidad, *I*, de la radiación queda definida mediante la expresión:

$$I = N(h\nu)$$

 $N \longrightarrow \text{representa el número de fotones}.$

- Modelo de Einstein
 - Consideraciones del modelo:
 - 3 En las interacciones entre luz y materia, la energía se intercambia de forma localizada, mediante la absorción o emisión de un cuanto luminoso.
 - 4 Einstein consideró que el efecto fotoeléctrico se produce cuando sobre la superficie metálica que hace de electrodo incide un número finito de, *quanta* de luz, de energía $h\nu$, que interactúan con los electrones del cátodo.

- Modelo de Einstein
 - Consideraciones del modelo:
 - **6** Cada *quantum* es absorbido por un único electrón al que le transfiere toda su energía.
 - 6 Los electrones excitados, pierden parte de esta energía en el trabajo de extracción, (función trabajo, W), que deben realizar para escapar de las fuerzas que les mantienen ligados al metal.
 - 7 Si uno de esos fotoelectrones absorbe un fotón de energía, $E=h\nu$, su energía cinética puede expresarse de la forma,

$$h\nu = W + k_{max}$$

8 k_{max}, no depende de la intensidad de la radiación incidente puesto que cada electrón interactúa con un único textitquantum de energía.

EFECTO FOTOELÉCTRICO

- Modelo de Einstein
 - Consideraciones del modelo:
 - ① De la ecuación anterior se desprende que, el fotoelectrón sólo puede emitirse si el *quantum* de radiación incidente tiene una energía, igual o superior, a la función trabajo. Por tanto, la frecuencia umbral, ν_o , del *quantum* luminoso será:

$$k_{max} = 0$$

$$h\nu = W$$

$$\nu_o = \frac{W}{h}$$

EFECTO FOTOELÉCTRICO

El experimento

Montaje experimental

EL EXPERIMENTO

- El equipo
 - Lámpara de mercurio de alta presión
 - Fuente de alto voltaje
 - Diafragma óptico
 - Lente convergente, f = 100 mm
 - Rueda de filtros de color
 - Fotocelda
 - pico-Amplificador de corriente
 - Interfase de adquisición de datos
 - Divisor de tensión
 - Computador

EL EXPERIMENTO

- Equipo
 - Lámpara de mercurio

3Wb47Z8KISmC2bMbbgr26DVg&usqp=CAU

EL EXPERIMENTO

- Equipo
 - Diafragma

El experimento

- Equipo
 - Rueda de filtros de color

EL EXPERIMENTO

- Equipo
 - Fotocelda

 $URL:\ https://encrypted-tbn0.gstatic.com/images?q=tbn\%3AANd9GcTXuKk-like the following the properties of the propertie$

3XTfS1EvReGFHDF4a4ze_6U3yZiC4w&usqp=CAU

El experimento

- Equipo
 - Espectro de emisión Lámpara de Hg

URL: https://www.foro-

EL EXPERIMENTO

- Procedimiento
 - Parte I
 - ① Tomar las curvas de $I_e[u.a]$ vs $V_r[V]$, (sólo la parte negativa), para la misma intensidad y diferentes longitudes de onda.

$$\lambda \longrightarrow 365 \,\mathrm{nm}; \ 405 \,\mathrm{nm}; \ 436 \,\mathrm{nm}; \ 546 \,\mathrm{nm}; \ 578 \,\mathrm{nm}$$

- 2 Determinar el potencial de frenado, V_o .
- 3 Verificar la ecuación de Einstein para el efecto fotoeléctrico.

$$h\nu = W + k_{max}$$

$$h\nu = W + eV_o$$

$$V_o = \left(\frac{h}{e}\right)\nu - \left(\frac{W}{e}\right)$$

EL EXPERIMENTO

- Procedimiento
 - Parte II
 - 1 Tomar las curvas de $I_e[u.a]$ vs $V_r[V]$, (sólo la parte negativa), para la misma longitud de onda, (frecuencia), y diferentes intensidades.
 - 2 Repetir para cada una de las longitudes de onda.

$$\lambda \longrightarrow 365 \,\mathrm{nm}; \ 405 \,\mathrm{nm}; \ 436 \,\mathrm{nm}; \ 546 \,\mathrm{nm}; \ 578 \,\mathrm{nm}$$

- 3 Determinar el potencial de frenado, V_o .
- ① Verificar, para cada una de las longitudes de onda, que el potencial de frenado, V_o , no depende de la intensidad de la radiación incidente.

EL EXPERIMENTO - ANÁLISIS DE LOS RESULTADOS

- Determinación del potencial de frenado, V_o .
 - Método 1
 - Curva I vs V, característica.

El experimento - Análisis de los resultados

- Determinación del potencial de frenado, V_o .
 - Método 1
 - Curva I vs V. Background, I_o .

El experimento - Análisis de los resultados

- Determinación del potencial de frenado, V_o .
 - Método 1
 - ullet Curva I vs V.

$$I_o = \langle I_o \rangle \pm 3\sigma_o$$

- ullet Determinación del potencial de frenado, V_o .
 - Método 1

- Determinación del potencial de frenado, V_o.
 - Método 1
 - Apreciación de la escala del voltaje: A = 0.02 V
 - Incertidumbre de la escala del voltaje: $\Delta V = 0.01 \, V$
 - Límite inferior del intervalo: $V_{o-inf} = -1.49 \pm 0.01 \, V$
 - Límite superior del intervalo: $V_{o-sup} = -1.53 \pm 0.01 \, V$
 - Rango del intervalo: $R = \frac{|V_{o-sup} V_{o-inf}|}{2} = 0.02 \pm 0.01 \, V$ Valor central del intervalo: $R = \frac{V_{o-sup} + V_{o-inf}}{2} = -1.51 \, V$

 - El potencial de frenado:

$$V_o = -(1.51 \pm 0.01) V$$

EL EXPERIMENTO - ANÁLISIS DE LOS RESULTADOS

- Determinación del potencial de frenado, V_o .
 - Método 2
 - Curva I vs V, característica.

EL EXPERIMENTO - ANÁLISIS DE LOS RESULTADOS

- Determinación del potencial de frenado, V_o .
 - Método 2
 - ullet Curva I vs V. Ajuste lineal MMC

$$I = (96.5 \pm 0.1) + (108.6 \pm 0.4) V$$

- Determinación del potencial de frenado, V_o .
 - Método 2
 - Curva I vs V, característica.

- Determinación del potencial de frenado, V_o .
 - Método 2
 - Curva I vs V, característica.

- Determinación del potencial de frenado, V_o .
 - Método 2

•
$$I_o = \langle I_o \rangle \pm 3\sigma_o$$

•
$$\langle I_o \rangle = -0.7 \, u.a;$$
 $\sigma_o = 0.07 \, u.a$

•
$$\langle I_o \rangle_{(-)} = -0.9 \, u.a$$
 $\langle I_o \rangle_{(+)} = -0.5 \, u.a$

•
$$I = (96.5 \pm 0.1) + (108.6 \pm 0.4) V$$

- El potencial de frenado:
- $V_{o(-)}$ -0.5 = 96.5 + 108.6 $V_{o(-)}$ $V_{o(-)} = -0.893186 V$

•
$$V_{o(+)}$$

-0.9 = 96.5 + 108.6 $V_{o(+)}$ $V_{o(+)} = -0.896869 V$

•
$$R = \frac{|V_{o(+)} - V_{o(-)}|}{2} = 0.003683 V$$

EL EXPERIMENTO - ANÁLISIS DE LOS RESULTADOS

- Determinación del potencial de frenado, V_o .
 - Método 2
 - El potencial de frenado:

•
$$R = \frac{|V_{o(+)} - V_{o(-)}|}{2} = 0.003683 V$$

•
$$\Delta V_o = \frac{R}{2} = 0.001842 \, V \approx 0.002 \, V$$

•
$$V_o = \frac{|V_{o(+)}^{\top} + V_{o(-)}|}{2} = -0.895028 V$$

 $V_o = -(0.895 \pm 0.002) V$

- Determinación del potencial de frenado, V_o .
 - Método 3
 - Curva I vs V, característica.

- Determinación del potencial de frenado, V_o .
 - Método 3
 - Curva $\left(\frac{dI}{dV}\right)$ vs V.

- Determinación del potencial de frenado, V_o .
 - Método 3
 - Curva $\left(\frac{dI}{dV}\right)$ vs V.

- Determinación del potencial de frenado, V_o .
 - Método 3
 - Curva Curva $\left(\frac{dI}{dV}\right)$ vs V.

- Determinación del potencial de frenado, V_o .
 - Método 3
 - Ajuste lineal $V \leq V_o$
 - $\frac{dI}{dV} = (-0.2406 \pm 1.4071) + (0.0370 \pm 0.5028) \, V$ Ajuste lineal $V \geq V_o$

 - $\frac{dI}{dV}$ = $(91.9749 \pm 9.0561) + (58.3781 \pm 8.3609) V$

$$V_o = -(1.5806 \pm 0.4193) V$$

$$V_o = -(1.5806 \pm 0.4) V$$

$$V_o = -(1.6 \pm 0.4) V$$

EFECTO FOTOELÉCTRICO

El experimento - Análisis de los resultados El modelo de Einstein

