Теория автоматов Лекция 7: ДКА = регекс

Дьулустан Никифоров

Кафедра ИТ Северо-Восточный Федеральный Университет

Осень 2024

- Теперь мы знаем, что такое конечные автоматы и как с ними работать;
- Мы знаем, что такое регулярные выражения и как с ними работать;
- Эти две конструкции выглядят совершенно по разному и работают по непохожим принципам.
- Однако, удивительный факт в том, что оба вида "машин" описывают одно и то же множество языков — регулярные языки!

Theorem

Язык регулярный тогда и только тогда, когда какое-то регулярное выражение распознает его.

Утверждение теоремы состоит из двух частей:

- ullet регулярный язык \Rightarrow регекс;
- ullet регекс \Rightarrow регулярный язык.

Theorem

Язык регулярный тогда и только тогда, когда какое-то регулярное выражение распознает его.

Утверждение теоремы состоит из двух частей:

- регулярный язык ⇒ регекс;
- ullet регекс \Rightarrow регулярный язык.

Поэтому доказательство тоже будет состоять из двух частей:

- Регекс \Rightarrow регулярный язык. Для этого мы придумаем алгоритм превращения [регекс \rightarrow HKA].
- Регулярный язык \Rightarrow регекс. Для этого мы придумаем алгоритм превращения [ДКА \rightarrow регекс].

Доказательство позволяет увидеть глубокую фундаментальную связь между НКА и регексами.

Proof: [регекс \rightarrow HKA]

Пусть нам дан регекс R. Тогда, по определению, он выглядит как один из этих случаев:

- ullet a для некоторого $a\in \Sigma$,
- ε,
- Ø,
- ullet (R_1+R_2) , где R_1 и R_2 регулярные выражения,
- ullet (R_1R_2) , где R_1 и R_2 регулярные выражения, или
- R_1^* , где R_1 регулярное выражение.

Регекс \rightarrow HKA

Proof: [регекс \rightarrow HKA]

ullet a для некоторого $a \in \Sigma$:

ε:

• Ø:

Регекс \rightarrow HKA

Proof: [регекс \rightarrow HKA]

- ullet R_1+R_2 : строим НКА для R_1 и $R_2\Rightarrow$ далее строим НКА для (R_1+R_2) ;
- R_1R_2 : строим НКА для R_1 и $R_2 \Rightarrow$ далее строим НКА для R_1R_2 ;
- ullet R_1^* : строим НКА для $R_1 \Rightarrow$ далее строим НКА для R_1^* .

Пример 1: $(ab+a)^* \to \mathsf{HKA}.$ По алгоритму:

Пример 1: $(ab+a)^* \to \mathsf{HKA}$.

По алгоритму:

a:

b:

ab:

ab + a:

 $(ab + a)^*$:

Полученный НКА достаточно очевидно можно сократить:

Можно было такой НКА построить сразу из регекса (юзать мозг).

Далее, можем также НКА превратить в ДКА:

Таким образом, можно регекс превратить в эквивалентный ей ДКА!

Регекс ightarrow HKA: примеры

Пример 2: $(a+b)^*aba \rightarrow \mathsf{HKA}$

a:

b:

a+b:

Регекс ightarrow HKA: примеры

$$(a + b)^*$$
:

aba:

 $(a+b)^*aba$:

$extstyle{Д} extstyle{K} extstyle{A} o extstyle{P} extstyle{e} extstyle{E}$

Proof: [ДКА \rightarrow Регекс]

Вот это более сложное доказательство и алгоритм!

Конструкцию будем делать в два этапа:

- ullet ДКА o ОНКА (обобщенный НКА).
- ullet OHKA o perekc.

ОНКА — обощение НКА, которому мы разрешаем в переходах кушать не просто символы, но и целые регексы.

ДКА ightarrow ОНКА $^{'}$

Пример ОНКА:

$ДKA \rightarrow OHKA$

Алгоритм превращения ДКА в ОНКА (1-й этап построения регекса):

- Добавить новое начальное состояние s (старое нач. состояние перестает быть начальным). Направить от s ε -переходы в старое начальное состояние.
- Добавить новое принимающее состояние f (остальные перестают быть принимающими). Направить от всех старых принимающих состояний ε -переходы к f.
- Для любых двух состояний i,j, все переходы $i \to j$ объединяем в один переход (например, переходы по буквам x,y,z объединяются в переход x+y+z).

ДКА ightarrow ОНКА $^{\prime}$

Пример:

OHKA → Регекс

OHKA \rightarrow Perekc:

- ОНКА с k состояниями убрать одно из состояний, кроме начального состояния s и принимающего состояния f.
- Починить оставшийся автомат так, чтобы скоменсировать потерю состояния (как это сделать — на следующем слайде).
- ullet Получили ОНКА с k-1 состояниями: repeat until k=2.
- В конце остается ОНКА только с двумя состояниями s и f. На переходе $s \to f$ написан желаемый регекс!

$OHKA \rightarrow Pегекс$

OHKA \rightarrow Регекс:

Если убрали состояние γ , то необходимо для $\mathit{всеx}$ пар состояний α, β дополнить переход $\alpha \to \beta$ (точнее, его регекс) всеми возможными путями через γ :

Это надо проделать для всех пар состояний α, β таких, что есть путь $\alpha \to \gamma \to \beta$.

$ДKA \rightarrow$ Регекс: Примеры

Пример 1: ДКА ightarrow ОНКА ightarrow Регекс Сначала превращаем в подходящий ОНКА.

$ДKA \rightarrow \mathsf{Регекс}$: Примеры

Пример 1: ДКА ightarrow ОНКА ightarrow Регекс

Сначала избавились от состояния 2, потом от состояния 1. Можно и в другом порядке.

Ответ: a*b(a + b)*

Можно было сразу получить ответ, юзая мозг.

$\mathsf{ДKA} \to \mathsf{Регекс}$: Примеры

Пример 2: ДКА ightarrow ОНКА ightarrow Регекс

$ДKA \rightarrow$ Регекс: Примеры

Пример 2: HKA ightarrow OHKA ightarrow Регекс Сначала превращаем в подходящий ОНКА.

b a 3 3 b

$ДКA \rightarrow$ Регекс: Примеры

Пример 2: HKA ightarrow OHKA ightarrow Регекс

Избавились от состояния 1.

ДKA oРегекс: Примеры

Пример 2: HKA \rightarrow **OHKA** \rightarrow **Perekc** Избавились от состояния 2.

Пример 2: HKA ightarrow OHKA ightarrow Регекс

Избавились от состояния 3.

Получили отличный регекс!

Ответ:

$$(a(aa + b)^*ab + b)((ba + a)(aa + b)^*ab + bb)^*$$
$$((ba + a)(aa + b)^* + \varepsilon) + a(aa + b)^*$$

Без алгоритма вряд ли получилось бы!

$ДКA \rightarrow \mathsf{Регекс}$: Примеры

Пример 3: HKA ightarrow OHKA ightarrow Регекс

ДКА \rightarrow Регекс: Примеры

Пример 3: HKA ightarrow OHKA ightarrow Регекс

$ДKA \rightarrow$ Регекс: Примеры

Пример 3: HKA ightarrow OHKA ightarrow регекс

ДKA oРегекс: Примеры

Пример 3: HKA ightarrow OHKA ightarrow регекс

Пример 3: HKA ightarrow OHKA ightarrow регекс

Видим, можно полученный регекс сократить. Лучше было сокращать сразу в ходе удаления состояний (естественным образом).

Ответ: $(0+1)^*(0+11)(0+1)^*(0+\varepsilon)$.

Тоже несложно получить напрямую мозгом, глядя на исходный автомат.

