Department of Mathematics and Statistics MATH 375Handout # 2 First Order Ordinary Differential Equations

1. Find the general solution of the following differential equations

a) $xy' - y = y^3$ b) $xyy' = 1 - x^2$ c) $y' \tan x = y$ d) $y' = 10^{x+y}$

2. Find the solution of the following initial value problems

a) $(x^2 - 1)y' + 2xy^2 = 0$, y(0) = 1

b) $y' \sin x = y \ln y$, $y(\frac{\pi}{2}) = 1$

3. Find the general solution of the following differential equations

a) $y' + y = xy^3$

 $b) x^2 y' = y(x+y)$

c) $y' + x\sqrt[3]{y} = 3y$

4. Find the general solution of the following differential equations

 $a) y' = \frac{2xy}{x^2 + u^2}$

b) $x - y \cos\left(\frac{y}{x}\right) + x \cos\left(\frac{y}{x}\right) y' = 0$

5. Find the solution of the initial value problem $2xyy' + x^2 - y^2 = 0$, y(1) = 0.

6. If possible, find the values of α and β such that the equation $xy^{\beta}y' = 3x^{\alpha} + x^{3}y^{3}$ is

b) separable; c) homogeneous; a) linear: d) Bernoulli?

7. Find α and β such that the following equations are exact:

a) $x^{\alpha}y^{2} + x^{3}y^{\beta}y' = 0$

b) $6x^{\beta}e^y dx + x^{\beta+\alpha}e^y dy = 0$

c) $e^{\alpha x + \beta y}(3 + y') = 0$

8. Find the general solution of the following differential equations

a) $(2 - 9xy^2)x dx + (4y^2 - 6x^3)y dy = 0$ b) $1 + y^2 \sin 2x - 2yy' \cos^2 x = 0$ c) $x dx + y dy = \frac{xdy - ydx}{x^2 + y^2}$

9. Find the general solution of the following differential equations.

a) y' = 2xy + x

b) 2xy' = y

c) $x^2 + 2xy^3 + (y^2 + 3x^2y^2)y' = 0$

10. Use the appropriate existence and uniqueness theorem to find the largest interval (a, b)on which the solution to each the following equations is guaranteed to exist:

a)
$$y' + \frac{t}{t^2 - 1}y = \sqrt{5 - t}$$
, $y(4) = -3$

b)
$$(t-6)y' + ty = \ln\left(t - \frac{4}{t}\right), \ y(3) = 7$$

11. Find the general solution of the following differential equations

a)
$$(1+2y)y' + 2(y+y^2) = 0;$$

b)
$$\left(x^2 + \frac{x}{\cos^2 y}\right)y' + 3xy + 2tany = 0.$$