Medidas físicas

Algarismos significativos

 Os algarismos significativos são os algarismos no valor de uma medida (ou no resultado de cálculos com valores de medidas) que incluem todos os algarismos exatos mais o algarismo seguinte que tem uma incerteza de medida (duvidoso).

O último algarismos significativo de uma medida é sempre duvidoso. Uma medida não pode ter 2 algarismos duvidosos.

Número de algarismos significativos

- Quando tratamos apenas com matemática, podemos dizer, por exemplo, que 5 = 5,0 = 5,00 = 5,000. Contudo, ao lidarmos com resultados de medidas devemos sempre lembrar que 5 cm ≠ 5,0 cm ≠ 5,00 cm ≠ 5,000 cm, já que essas medidas têm diferentes números de algarismos significativos. Em outras palavras, a precisão de cada uma delas é diferente.
- O número de algarismos significativos é o número de algarismos escritos do valor medido ou calculados de uma grandeza que indicam a precisão atribuída a este valor. Assim, são quatro os algarismos significativos em 5,000 cm, enquanto em 5,00 cm são três, dois em 5,0 cm e um em 5 cm

Regras para contar os algarismos significativos, numa dada grandeza medida

- Todos os algarismos registrados são significativos, exceto os zeros no início do número e talvez zeros terminais (um ou mais zeros à direita do número). Assim, 9,12 cm, 0,912 cm e 0,00912 cm têm, todos, três algarismos significativos.
- 2) Os zeros terminais à direita, depois da vírgula decimal, são significativos. Cada número seguinte tem três algarismos significativos: 9,00 cm, 9,10 cm, 90,0 cm.
- 3) Os zeros terminais de um número, sem vírgula decimal, podem ou não ser significativos. Se o resultado de uma medida é dado como 900 cm, não se percebe se tem um, dois ou três algarismos significativos. Se o resultado de uma medida for escrito como 900, cm (observe a vírgula decimal), os zeros são significativos. De maneira mais geral, a incerteza nestes casos desaparece quando se escrevem os resultados das medidas em notação científica.

Notação Científica

A notação científica é a representação de um número na forma A . 10^n , onde A é um número menor que 10 e maior ou igual a 1 ($1 \le A < 10$) e n é um número inteiro. Na notação científica, a medida 900 cm, com precisão de dois algarismos significativos, escreve-se 9,0 . 10^2 cm. Se a precisão for de três algarismos significativos, escreve-se 9,00 . 10^2 cm.

■ A notação científica é conveniente para se exprimirem grandezas muito grandes ou muito pequenas. É muito mais fácil (e também muito mais simples nos cálculos) escreverse a velocidade da luz com precisão de três algarismos significativos como 3,00 . 10⁸ metros por segundo do que 300 000 000 metros por segundo

Notação Científica - Exemplos

- \blacksquare 300 = 3.10² = 3,00.10²
- \blacksquare 300 cm = 3,00.10² cm
- \blacksquare 4 523,350 km = 4,523 350.10³ km
- \bullet 0,000 000 009 8 = 9,8.10⁻⁹
- $12950,307.10^{-25}$ g = $1,2950397.10^{-21}$ g
- \bullet 0,003 87.10⁻⁵ kg = 3,87.10⁻⁸ km

Arredondamentos¹

Utilização da Norma da Associação Brasileira de Normas Técnicas – NBR 5891:2014 • Regras de Arredondamento

- O arredondamento é o procedimento de abandonar os algarismos não significativos no resultado de um cálculo e de ajustar o último algarismo aceito. O arredondamento deve ocorrer quando operações matemáticas são feitas com medidas, ou nos casos em que exercícios solicitarem este procedimento.
- O procedimento geral é o seguinte:
- Observa-se o primeiro algarismo a ser abandonado. O arredondamento é o procedimento de abandonar os algarismos não significativos no resultado de um cálculo e de ajustar o último algarismo aceito. O procedimento geral é o seguinte.
- Observa-se o primeiro algarismo a ser abandonado.

1. As regras utilizadas neste item são recomendadas pelo BIPM – Bureau International des Poids et Measures

Arredondamentos

- 1) Quando o algarismo a ser conservado for seguido de algarismo inferior a 5, permanece o algarismo a ser conservado e retiram-se os posteriores. Exemplo:
- 1,333 3 arredondado à primeira decimal torna-se 1,3
- 2) Quando o algarismo a ser conservado for seguido de algarismo superior a 5, ou igual a 5 seguido de no mínimo um algarismo diferente de zero, soma-se uma unidade ao algarismo a ser conservado e retiram-se os posteriores. Exemplos:
- 1,666 6 arredondado à primeira decimal torna-se 1,7
- 4,850 5 arredondado à primeira decimal torna-se 4,9

Arredondamentos

- 3) Quando o algarismo a ser conservado for ímpar, seguido de 5 e posteriormente de zeros, soma-se uma unidade ao algarismo a ser conservado e retiram-se os posteriores Exemplo:
- 4,750 0 arredondado à primeira decimal torna-se 4,8
- 4) Quando o algarismo a ser conservado for par, seguido de 5 e posteriormente de zeros, permanece o algarismo a ser conservado e retiram-se os posteriores. Exemplo:
- 4,850 0 arredondado à primeira decimal torna-se 4,8

Arredondamentos

- Nos cálculos com duas ou mais etapas, é desejável reter algarismos não significativos nos resultados intermediários. Essa retenção assegura que os pequenos erros de arredondamento não se acumulem e apareçam no resultado final. Com uma calculadora, basta usar os números tal como aparecem, um depois do outro, efetuar as operações e fazer o arredondamento da resposta final. Para acompanhar o número correto de algarismos significativos é conveniente registrar as respostas intermediárias sublinhando o último
- Exemplo: 4,18 58,16 . (3,38 3,01)

Efetua-se a subtração entre parênteses, sublinhando o último algarismo significativo.

$$4,18 - 58,16 . (3,38 - 3,01) = 4,18 - 58,16 . 0,37$$

Como é claro, efetua-se a multiplicação antes da subtração.

■
$$4,18 - 58,16 \cdot 0,37 = 4,18 - 21,5192 = -17,3392$$

A resposta final é – 17. algarismo significativo.

Números exatos

- Número exato é um número que aparece quando se contam unidades discretas ou quando se definem certas unidades.
- Por exemplo, quando se diz que são 9 as moedas num porta-moedas, afirma-se que são exatamente 9 e não 8,9 ou 9,1.
- Também, quando se diz que são 100 os centímetros num metro, quer-se afirmar que são exatamente 100.
- Analogamente, quando se define a polegada como 2,54 cm, o número 2,54 é exato.

Números exatos

- As convenções dos algarismos significativos não se aplicam aos números exatos. Assim, o número 2,54 na expressão "1 polegada é igual a 2,54 cm" não deve ser interpretado como o valor de medida com três algarismos significativos.
- Na realidade, o 2,54 tem um número infinito de algarismos significativos (precisão infinita), mas seria impossível escrevê-lo com estes algarismos.
- É preciso ter atenção sobre quaisquer números num cálculo que sejam exatos, pois não influenciam o número de algarismos significativos do resultado.
- O número de algarismos significativos no resultado de um cálculo depende somente do número de algarismos significativos dos valores que têm incertezas.
- Por exemplo, suponhamos que se deseje calcular a massa de nove moedas e que cada moeda tenha massa de 3,0 gramas.
- O cálculo é: 3,0 g . 9 = 27 g

Algarismos significativos nos cálculos

1) Multiplicação e divisão. Ao multiplicar ou dividir valores de grandezas medidas, a resposta terá tantos algarismos significativos quanto o valor que tiver o menor número de algarismos significativos.

2) Adição e subtração. Devem-se inicialmente reduzir todas as parcelas à mesma unidade. Ao realizar estas operações, o resultado deve apresentar apenas um algarismo duvidoso, ou seja: ao somar ou subtrair valores de grandezas medidas, a reposta terá o mesmo número de casas decimais que o valor que tiver o menor número de casas decimais.

Exemplos

- (18,45 + 2,7 + 25,383) g = 46,533 g = 46,5 g
- \blacksquare (89,59 12,0) cm = 77,59 cm = 77,6 cm
- \bullet 9,42 cm .3,3 cm = 31, \bullet 86 = 31 cm²
- \blacksquare 3,27 m . 4,25 m = 13,8975 = 13,9 m²
- $1,20.10^{-3}$ km $\cdot 0,1234.10^{7}$ km $\cdot 5,31$ km = $7,86\frac{3}{2}048.10^{3}$ = $7,86.10^{3}$ km³
- \blacksquare (6,82 L / 5,4 min) = 1,2 $\stackrel{6}{=}$ 30 = 1,3 L/min
- \blacksquare (76,91 m/4,2 s) = 18, \blacksquare 32 = 18 m/s

UNIDADES SI

Em 1791, um comitê da Academia de Ciências da França propôs este sistema, denominado sistema métrico decimal.

Estrutura Metrológica

Convenção do Metro:

- ✓ Autoriza a CGPM, o CIPM e o BIPM a agirem sobre questões da metrologia mundial.
- ✓ Estabelece uma estrutura organizacional permanente para que os estados membros possam agir em questões relacionadas as unidades de medidas.

CGPM (Conferência Geral de Pesos e Medidas)

✓ Formada com participação de representantes dos estados membros analisa e decide sobre as propostas encaminhadas pelo CIPM

CIPM (Comitê Internacional de Pesos e Medidas)

✓ Objetiva assegurar a uniformidade das unidades de medidas no mundo todo e elabora propostas neste sentido a serem encaminhadas à CGPM.

BIPM (Bureau Internacional des Poids et Mesures)

Tratado do metro

Unidades Fundamentais do SI

- Em 1960, a Conferência Geral de Pesos e Medidas adotou o Sistema Internacional de unidades (ou SI, conforme a denominação francesa Sistème International d'Unités), que é a escolha especial das unidades métricas.
- Este sistema tem sete unidades SI fundamentais e todas as outras unidades SI podem ser derivadas destas sete.
- A tabela a seguir relaciona as unidades fundamentais e os símbolos que as representam.

Unidades de Base ou Fundamentais do SI

Grandeza	Unidade	Símbolo
comprimento	metro	m
massa	quilograma	kg
tempo	segundo	S
corrente elétrica	ampère	Α
temperatura termodinâmica	kelvin	K
Intensidade Iuminosa	candela	cd
quantidade de matéria	mol	mol

Prefixos SI

Fator	Nome	Símbolo	Fator	Nome	Símbolo
10¹	deca	da	10-1	deci	d
10^{2}	hecto	h	10-2	centi	c
10^{3}	quilo	k	10-3	mili	m
10^{6}	mega	M	10-6	micro	μ
109	giga	G	10-9	nano	n
1012	tera	T	10 ⁻¹²	pico	p
1015	peta	P	10-15	femto	f
1018	exa	E	10-18	atto	a
10^{21}	zetta	Z	10 ⁻²¹	zepto	z
10^{24}	yotta	Y	10-24	yocto	y