ALG 11

Dynamické programování

Úloha batohu neomezená

Úloha batohu 0/1

Úloha batohu / Knapsack problem

Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2, ..., N) a batoh s kapacitou váhy K.
Máme naložit batoh těmito předměty tak, aby kapacita K nebyla překročena a obsah měl maximální cenu.

Neomezená varianta -- Každý předmět lze použít libovolněkrát.

0/1 varianta

-- Každý předmět lze použít nejvýše jednou.

Schematický batoh s kapacitou 10

Předměty s uvedenou cenou, váha ~ výška

30 16 14 9

Několik možných konfigurací

Neomezená úloha batohu

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K. Hodnotu optimálního naplnění batohu s kapacitou K Ize získat jako maximum z hodnot

- -- (optimalní naplnění batohu o kapacitě K V1) + C1,
- -- (optimalní naplnění batohu o kapacitě K V2) + C2,

-- (optimalní naplnění batohu o kapacitě K - VN) + CN.

Optimální naplnění batohu o kapacitě K - Vi (i = 1..N) je stejnou úlohou, jen s menšími daty. Hodnoty předpočítáme standardně metodou DP do 1D tabulky.

Neomezenou úlohu batohu lze přímo vyjádřit jako úlohu nalezení nejdelší cesty v DAG. Postup řešení je identický.

Neomezená úloha batohu -- převod na DAG

DAG:

Uzly: Kapacity 0, 1, 2, 3, ..., K.

Hrany: Z uzlu X vedou hrany po řadě do uzlů X+V1, X+V2, ..., V+VN,

jsou po řadě ohodnoceny cenami C1, C2, ..., CN.

Příklad

K = 10, N = 4, Vi = (2, 3, 4, 6), Ci = (9, 14, 16, 30), i = 1..4.

Neomezená úloha batohu -- jako DAG

Neomezená úloha batohu

Nejdelší cesta odpovídá optimálnímu naplnění batohu. Dvě hrany s cenou 9 a jedna hrana s cenou 30, celkem cena = 48.

Batoh optimálně naplníme dvěma předměty s váhou 2 a cenou 9 a jedním předmětem s váhou 6 a cenou 30.

Neomezená úloha batohu -- asymptotická složitost

DAG obsahuje K+1 uzlů a méně než K*N hran. Má tedy $V = \Theta(K)$ uzlů a E = O(K*N) hran. Asymptotická složitost hledání nejdelší cesty je $\Theta(V+E)$, máme tedy pro neomezenou úlohu batohu asymptotickou složitost O(K + K*N) = O(K*N).

Neomezená úloha batohu -- Asymptotická složitost

Zdánlivá nesrovnalost

- 1. Literatura: NP těžký problém, není znám efektivní algoritmus.
- 2. ALG OI: DP řeší úlohu v čase v O(N*K), tedy efektivně?

Délka výpočtu DP je lineárně závislá na velikosti kapacity K.

Příklad

Velkou kapacitu 2⁶⁴ lze zadat velmi krátkým zápisem Kapacita = 18446744073709551616.

N = 3. Položky (váha, cena): (2, 345), (3, 456), (5, 678). Vstupní data lze zapsat do cca 100 bitů < 16 Bytů < "dva longy"

Výpočet pomocí DP potrvá přes 584 roky za předpokladu, že za 1 sec vyplní 10⁹ prvků tabulky.

Délka výpočtu DP je exponenciálně závislá na délce řetězce definujícího kapacitu K.

Každý předmět lze použít nejvýše 1 krát.

Máme vybrat vhodnou podmnožinu předmětů splňující zadání úlohy. Každé podmnožině lze přiřadit charakteristický vektor z hodnot 0/1 délky N. Pozice ve vektoru odpovídá předmětu, 0 resp. 1 odpovídá nepřítomnosti resp. přítomnosti předmětu v této podmnožině. Binárních vektorů délky N je celkem 2^N, systematické probírání všech možných podmnožin bude mít exponenciální asymptotickou složitost, nehodí se.

DP poskytuje (pro relativně nevelké kapacity) výhodnější postup.

Příklad

Všech 16 podmnožin čtyř předmětů a jejich ceny

4 16

6 30

0/1 úloha batohu -- řešení

Použijeme K+1 batohů, o kapacitách 0, 1, 2, 3, ..., K. Použijeme N+1 souborů předmětů.

Soubor 0 neobsahuje žádný předmět.

Soubor 1 obsahuje předmět 1.

Soubor 2 obsahuje předměty 1 a 2.

Soubor 3 obsahuje předměty 1, 2, 3.

Soubor N obsahuje předměty 1, 2, 3, ..., N.

Na pořadí předmětů nezáleží, je ale zafixované.

Pro každou kapacitu a pro každý soubor budeme řešit stejnou úlohu metodou DP, v pořadí od menších hodnot k větším.

0/1 úloha batohu -- řešení

Označme symbolem U(x, y) úlohu se souborem předmětů 1, 2, ..., x a s kapacitou batohu y a symbolem Opt(x, y) optimální řešení této úlohy.

Pro řešení U(x,y) použijeme optimální řešení úloh U(x-1, _):

Buď do Opt(x, y) zahrneme předmět x nebo jej nezahrneme. V prvním případě použijeme hodnotu řešení pro batoh s kapacitou menší o velikost váhy Vx, tedy hodnotu Opt(x-1, y-Vx), ke které přičteme cenu Cx předmětu x.

V druhém případě beze změny použijeme hodnotu Opt(x-1, y). Z obou hodnot vybereme tu výhodnější a dostáváme tak:

$$Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).$$

Dále zřejmě platí Opt(0, y) = Opt(x, 0) = 0, pro x = 0..N, y = 0..K.

0/1 úloha batohu -- řešení

Pro
$$x = 1..N$$
, $y = 0..K$:

Opt(x, y) = max(Opt(x-1, y), Opt(x-1, y-Vx) + Cx).

Opt(0, y) = Opt(x, 0) = Opt(0, 0) = 0.

Pokud y-Vx < 0, položíme Opt(x, y-Vx) = $-\infty$ (a netabelujeme).

Hodnoty Opt(x,y) tabelujeme ve 2D tabulce velikosti $(N+1)\times(K+1)$ s řádkovým indexem x (předměty) a sloupcovým indexem y (kapacity menších batohů).

Pro rekonstrukci optimálního řešení použijeme tabulku předchůdců stejné velikosti jako tabulku pro Opt(x, y). Předchůdce leží vždy v předchozím řádku x-1, stačí registrovat buď pozici y (beze změny) nebo pozici y-Vx (přidán předmět x).

Příklad

N = 4 Kapacita = 10

Váha 2 3 4 6 Cena 9 14 16 30

9-

14

16

30

01	(20 20)	<u> </u>										
Opt(x, y)		0	1	2	3	4	5	6	7	8	9	10
	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	9	9	9	9	9	9	9	9	9
	2	0	0	9	141	14	23	23	23	23	23	23
	3	0	0	9	14	163	023	25	30	30	39	4 39
	4	lo	0	9	14	16	23	30	30	39	44	46

Drod(x x)													
Pred(x, y)		0	1	2	3	4	5	6	7	8	9	10	
		0											
		1	0	1	0	1	2	3	4	5	6	7	8
		2	0	1	2	0	1	2	3	4	5	6	7
		3	0	1	2	3	0	5	2	3	4	5	6
		4	0	1	2	3	4	5	0	7	2	3	4

Vyjádření jako optimální cesty v DAG

Uzly DAG budou jednotlivé hodnoty Opt(x, y), x = 0..N, y = 0..K, celkem bude mít DAG (N+1)*(K+1) uzlů. Do uzlu Opt(x, y) povede hrana

- -- Opt(x-1, y) --> Opt(x, y)
 ohodnocená 0 (žádný přidaný předmět),
- a pokud y-Vx ≥ 0, také hrana
 Opt(x-1, y-Vx) --> Opt(x, y)
 ohodnocená cenou Cx (cenou přidaného předmětu x).

V takto zkonstruovaném DAG hledáme nejdelší (= nejcennější) cestu standardní DP metodou.

Jaké je topologické uspořádání tohoto DAG?

0/1 úloha batohu - topologické uspořádání DAG

DAG můžeme uvažovat nakreslený formálně do DP tabulky, přičemž uzel Opt(x, y) leží v buňce s indexy x a y. Pak hrany DAG vedou vždy pouze z předchozího řádku do následujícího řádku. Pokud tento DAG procházíme shora po řádcích, to jest ve stejném pořadí, v němž vyplňujeme DP tabulku, respektujeme jeho topologické uspořádání.

V tomto případě není nutno uzly DAG v topologickém uspořádání uvažovat v jedné přímce, "tabulkové" uspořádání je přehlednější.

0/1 úloha batohu -- rekonstrukce optimálního řešení pomocí tabulky předchůdců

	0	1	2	3	4	5	6	7	8	9	10
Pred(x, y)											
	. 0	1	0	1	2	3	4	5	6	7	8
D 2	0	1	2	0	1	2	3	4	5	6	7
<u>F</u> 3	0	1	2	3	0	5	2	3	4	5	6
4	. 0	1	2	3	4	5	0	7	2	3	4
	(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)	(0,8)	(0,9)	0,10
-9		9 0	9 0		9 0	9 0	9 0	9 0 (9 0	0
Ľ											
_	_ (1,0)	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	(1,8)	(1,9)	(1,10)
1	4	14	14 0 1	4 0	4	0 1	4 0 1	4 0	14 0	0	•
_										14	
	- $(2,0)$	2,1	(2,2)	2,3 6 0 1	2,4	(2,5)	(2,6)	2,7	(2,8)	(2,9)	2,10
1	6	0	16 0 1		(a) (a) (a)	16 0 1	6 0 1	<u>6</u>) (0)	0	0	0
	(3,0)	(3,1)	(3,2)	$\begin{bmatrix} 3,3 \end{bmatrix}$	$\begin{bmatrix} 3,4 \end{bmatrix}$	$\begin{bmatrix} 3,5 \end{bmatrix}$	(3,6)	(3,7)	(3,8)	(3,9)	(3,10)
3	0 0	30	0				<u> </u>	<u>(0)</u>	0	0	0
						(4.5)		(17)			
	4,0	4,1	4,2	4,3	(4,4)	(4,5)	4,6	4,7	4,8	4,9	4,10

Asymptotická složitost

Tabulka ... Velikost ... $(N+1)^*(K+1) \in \Theta(N^*K)$ Vyplnění jedné buňky ... $\Theta(1)$ Vyplnění tabulky ... $\Theta(N^*K^*1) = \Theta(N^*K)$. Rekonstrukce optimálního řešení $\Theta(N)$. Celkem ... $\Theta(N^*K + N) = \Theta(N^*K)$.

DAG Uzlů ... $(N+1)*(K+1) \in \Theta(N*K)$. Hran ... nejvýše 2*(N+1)*(K+1), $tj \in O(N*K)$. Nalezení optimální cesty ... $\Theta(uzlů+hran) = \Theta(N*K)$.

Řešení obou variant úlohy batohu, neomezené i 0/1, má asymptotickou složitost Θ(N*K).

Přitom zárověň platí:

Asymptotická složitost DP řešení je exponenciální vzhledem k délce řetězce definujícího kapacitu K.