Derivadas

Ricardo Mateos Matemáticas II

Departamento de Matemáticas UHEI - IVED

Derivada de una función en un punto

Derivadas laterales

Función derivada

Tasa de variación media

La tasa de variación media de una función f(x) en un intervalo [a,b] es igual al incremento de la función f(x) entre el incremento de la variable independiente x:

T.V.M.[a, b] =
$$\frac{f(b) - f(a)}{b - a}$$

Tasa de variación media

La tasa de variación media de una función f(x) en un intervalo [a,b] es igual al incremento de la función f(x) entre el incremento de la variable independiente x:

T.V.M.[a, b] =
$$\frac{f(b) - f(a)}{b - a}$$

La tasa de variación media de una función en un punto mide el aumento o la disminución de la función en dicho intervalo.

Ejemplo

Hallar la tasa de variación media de la función $f(x) = 3t^2 - 2t + 1$, en los intervalos [0,2] y [2,6]

Ejemplo

Hallar la tasa de variación media de la función $f(x) = 3t^2 - 2t + 1$, en los intervalos [0,2] y [2,6]

T.V.M.[0,2] =
$$\frac{f(2) - f(0)}{2 - 0} = \frac{9 - 1}{2 - 0} = 4$$

Ejemplo

Hallar la tasa de variación media de la función $f(x) = 3t^2 - 2t + 1$, en los intervalos [0,2] y [2,6]

T.V.M.[0,2] =
$$\frac{f(2) - f(0)}{2 - 0} = \frac{9 - 1}{2 - 0} = 4$$

T.V.M.[2,6] =
$$\frac{f(6) - f(2)}{6 - 2} = \frac{97 - 9}{6 - 2} = 22$$

Interpretación geométrica de la T.V.M

La tasa de variación media es la pendiente de la recta secante que pasa por los puntos (a, f(a)) y (b, f(b))

Derivada de una función en un punto

La derivada de una función en un punto a se llama f'(a) o $\frac{dy}{dx}$ y es igual a:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

si este límite existe y es finito.

Derivada de una función en un punto

La derivada de una función en un punto a se llama f'(a) o $\frac{dy}{dx}$ y es igual a:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

si este límite existe y es finito.

Si en la fórmula anterior hacemos que $x-a=h\Rightarrow \begin{cases} x=a+h\\ h\to 0 \end{cases}$

quedaría de la siguiente forma:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

y por lo tanto

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

y por lo tanto

$$f'(1) = \lim_{x \to 1} \frac{(x^2 + 2x - 2) - 1}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} = 4$$

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

y por lo tanto

$$f'(1) = \lim_{x \to 1} \frac{(x^2 + 2x - 2) - 1}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{\cancel{(x - 1)}(x + 3)}{\cancel{x} - 1} = 4$$

Aplicamos la segunda expresión:

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

y por lo tanto

$$f'(1) = \lim_{x \to 1} \frac{(x^2 + 2x - 2) - 1}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 3)}{x - 1} = 4$$

Aplicamos la segunda expresión:

Calculamos f(1) y f(1+h)

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

$$f(1+h) = (1+h)^2 + 2(1+h) - 2 = 1 + 2h + h^2 + 2 + 2h - 2 = h^2 + 4h + 1$$

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

y por lo tanto

$$f'(1) = \lim_{x \to 1} \frac{(x^2 + 2x - 2) - 1}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{\cancel{(x + 3)}}{\cancel{x}} = 4$$

Aplicamos la segunda expresión:

Calculamos f(1) y f(1+h)

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

$$f(1+h) = (1+h)^2 + 2(1+h) - 2 = 1 + 2h + h^2 + 2 + 2h - 2 = h^2 + 4h + 1$$

Hallamos el límite:

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

y por lo tanto

$$f'(1) = \lim_{x \to 1} \frac{(x^2 + 2x - 2) - 1}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{\cancel{(x - 1)}(x + 3)}{\cancel{x - 1}} = 4$$

Aplicamos la segunda expresión:

Calculamos f(1) y f(1+h)

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

$$f(1+h) = (1+h)^2 + 2(1+h) - 2 = 1 + 2h + h^2 + 2 + 2h - 2 = h^2 + 4h + 1$$

Hallamos el límite:

$$f'(1) = \lim_{h \to 0} \frac{h^2 + 4h + 1 - 1}{h} = \lim_{h \to 0} \frac{h^2 + 4h}{h} = \lim_{h \to 0} \frac{h(h + 4)}{h} = \lim_{h \to 0} (h + 4) = 4$$

$$\text{WHEI-IVED in the formal and in$$

Ejemplo

Hallar la derivada de la función $f(x) = x^2 + 2x - 2$ en el punto x = 1

Aplicamos la primera fórmula:

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

y por lo tanto

$$f'(1) = \lim_{x \to 1} \frac{(x^2 + 2x - 2) - 1}{x - 1} = \lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} = \lim_{x \to 1} \frac{\cancel{(x - 1)}(x + 3)}{\cancel{x - 1}} = 4$$

Aplicamos la segunda expresión:

Calculamos f(1) y f(1+h)

$$f(1) = 1^2 + 2 \cdot 1 - 2 = 1$$

$$f(1+h) = (1+h)^2 + 2(1+h) - 2 = 1 + 2h + h^2 + 2 + 2h - 2 = h^2 + 4h + 1$$

Hallamos el límite:

$$f'(1) = \lim_{h \to 0} \frac{h^2 + 4h + 1 - 1}{h} = \lim_{h \to 0} \frac{h^2 + 4h}{h} = \lim_{h \to 0} \frac{h(h + 4)}{h} = \lim_{h \to 0} (h + 4) = 4$$
UHEI-IVED

La derivada de f(x) en el punto x = 1 vale 4.

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada

La derivada de una función en un punto coincide con la pendiente de la recta tangente a la gráfica de la función en dicho punto.

f'(a) = pendiente de la recta tangente.

Q

La derivada de una función en un punto es un límite, por lo tanto, para que exista la derivada de una función en un punto tienen que existir los límites laterales y ser iguales.

La derivada de una función en un punto es un límite, por lo tanto, para que exista la derivada de una función en un punto tienen que existir los límites laterales y ser iguales.

Derivadas laterales

Las derivadas laterales de una función en un punto son:

• Derivada por la derecha:

$$f'(a^+) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$

La derivada de una función en un punto es un límite, por lo tanto, para que exista la derivada de una función en un punto tienen que existir los límites laterales y ser iguales.

Derivadas laterales

Las derivadas laterales de una función en un punto son:

• Derivada por la derecha:

$$f'(a^+) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$

• Derivada por la izquierda:

$$f'(a^{-}) = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h}$$

La derivada de una función en un punto es un límite, por lo tanto, para que exista la derivada de una función en un punto tienen que existir los límites laterales y ser iguales.

Derivadas laterales

Las derivadas laterales de una función en un punto son:

• Derivada por la derecha:

$$f'(a^+) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$

• Derivada por la izquierda:

$$f'(a^{-}) = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h}$$

Para que exista la derivada de la función en el punto tienen que existir ambas derivadas y ser iguales.

Ejemplo

Hallar las derivadas laterales de la función $f(x) = \begin{cases} x^2 + 1 & x \le 1 \\ 2x & x > 1 \end{cases}$ en el punto x = 1

Ejemplo

Hallar las derivadas laterales de la función $f(x) = \begin{cases} x^2 + 1 & x \le 1 \\ 2x & x > 1 \end{cases}$ en el punto x = 1

Primero hallamos cuanto vale f(1) y luego hallamos sus derivadas laterales.

$$f(1) = 1^2 + 1 = 2$$

Ejemplo

Hallar las derivadas laterales de la función $f(x) = \begin{cases} x^2 + 1 & x \le 1 \\ 2x & x > 1 \end{cases}$ en el punto x = 1

Primero hallamos cuanto vale f(1) y luego hallamos sus derivadas laterales.

$$f(1) = 1^2 + 1 = 2$$

$$f'(1^+) = \lim_{h \to 0^+} \frac{2(1+h) - 2}{h} = \lim_{h \to 0^+} \frac{2 + 2h - 2}{h} = \lim_{h \to 0^+} \frac{2h}{h} = 2$$

Ejemplo

Hallar las derivadas laterales de la función $f(x) = \begin{cases} x^2 + 1 & x \le 1 \\ 2x & x > 1 \end{cases}$ en el punto x = 1

Primero hallamos cuanto vale f(1) y luego hallamos sus derivadas laterales.

$$f(1) = 1^{2} + 1 = 2$$

$$f'(1^{+}) = \lim_{h \to 0^{+}} \frac{2(1+h) - 2}{h} = \lim_{h \to 0^{+}} \frac{2 + 2h - 2}{h} = \lim_{h \to 0^{+}} \frac{2h}{h} = 2$$

$$f'(1^{-}) = \lim_{h \to 0^{-}} \frac{((1+h)^{2} + 1) - 2}{h} = \lim_{h \to 0^{-}} \frac{1 + 2h + h^{2} + 1 - 2}{h} = \lim_{h \to 0^{-}} \frac{h(h + 2)}{h} = 2$$

Ejemplo

Hallar las derivadas laterales de la función $f(x) = \begin{cases} x^2 + 1 & x \le 1 \\ 2x & x > 1 \end{cases}$ en el punto x = 1

Primero hallamos cuanto vale f(1) y luego hallamos sus derivadas laterales.

$$f(1) = 1^{2} + 1 = 2$$

$$f'(1^{+}) = \lim_{h \to 0^{+}} \frac{2(1+h) - 2}{h} = \lim_{h \to 0^{+}} \frac{2 + 2h - 2}{h} = \lim_{h \to 0^{+}} \frac{2h}{h} = 2$$

$$f'(1^{-}) = \lim_{h \to 0^{-}} \frac{((1+h)^{2} + 1) - 2}{h} = \lim_{h \to 0^{-}} \frac{1 + 2h + h^{2} + 1 - 2}{h} = \lim_{h \to 0^{-}} \frac{h(h + 2)}{h} = 2$$

Luego existe la derivada de la función en el punto y es igual a 2 : f'(1) = 2

Derivabilidad y continuidad

Derivabilidad y continuidad

Para que una función sea derivable en un punto x=a la función tiene que ser continua en ese punto.

Esta es la condición necesaria pero no suficiente para que una función sea derivable en un punto.

Derivabilidad y continuidad

Derivabilidad y continuidad

Para que una función sea derivable en un punto x=a la función tiene que ser continua en ese punto.

Esta es la condición necesaria pero no suficiente para que una función sea derivable en un punto.

 Si una función en un punto es continua entonces puede ser derivable o no ser derivable.

Derivabilidad y continuidad

Derivabilidad y continuidad

Para que una función sea derivable en un punto x=a la función tiene que ser continua en ese punto.

Esta es la condición necesaria pero no suficiente para que una función sea derivable en un punto.

- Si una función en un punto es continua entonces puede ser derivable o no ser derivable.
- Si una función no es continua en un punto entonces no es derivable.

Ejemplo

Estudiar la continuidad y derivabilidad de la función f(x) = 3x + |x+3| en el punto x = -3

Ejemplo

Estudiar la continuidad y derivabilidad de la función f(x) = 3x + |x+3| en el punto x = -3

Para calcular la continuidad y derivabilidad de esta función vamos a expresarla como una función definida a trozos.

$$f(x) = 3x + |x + 3| = \begin{cases} 2x - 3 & x < -3\\ 4x + 3 & x \ge -3 \end{cases}$$

Ejemplo

Estudiar la continuidad y derivabilidad de la función f(x) = 3x + |x + 3| en el punto x = -3

Para calcular la continuidad y derivabilidad de esta función vamos a expresarla como una función definida a trozos.

$$f(x) = 3x + |x + 3| = \begin{cases} 2x - 3 & x < -3\\ 4x + 3 & x \ge -3 \end{cases}$$

Estudiamos la continuidad:

$$f(-3) = 4 \cdot (-3) + 3 = -9$$

$$\lim_{\substack{x \to 3^{-} \\ x \to 3^{+}}} (2x - 3) = -9$$

$$\lim_{\substack{x \to 3^{+} \\ x \to 3^{+}}} (4x + 3) = -9$$

$$\Rightarrow \lim_{\substack{x \to 3^{+} \\ x \to 3^{+}}} f(x) = -9$$

Ejemplo

Estudiar la continuidad y derivabilidad de la función f(x) = 3x + |x + 3| en el punto x = -3

Para calcular la continuidad y derivabilidad de esta función vamos a expresarla como una función definida a trozos.

$$f(x) = 3x + |x + 3| = \begin{cases} 2x - 3 & x < -3\\ 4x + 3 & x \ge -3 \end{cases}$$

Estudiamos la continuidad:

$$f(-3) = 4 \cdot (-3) + 3 = -9$$

$$\lim_{\substack{x \to 3^{-} \\ x \to 3^{+}}} (2x - 3) = -9$$

$$\lim_{\substack{x \to 3^{+} \\ x \to 3^{+}}} (4x + 3) = -9$$

$$\Rightarrow \lim_{\substack{x \to 3^{+} \\ x \to 3^{+}}} f(x) = -9$$

Como vemos existe la función y el límite en el punto y además son iguales, por lo tanto, la función es continua en el punto x=-3. Por lo tanto, la función puede ser derivable en dicho punto.

A continuación, estudiamos su derivabilidad:

A continuación, estudiamos su derivabilidad:

$$f'(-3^{-}) = \lim_{h \to 0^{-}} \frac{(2(-3+h)-3)-(-9)}{h} = \lim_{h \to 0^{-}} \frac{2h}{h} = 2$$
$$f'(-3^{+}) = \lim_{h \to 0^{+}} \frac{(4(-3+h)+3)-(-9)}{h} = \lim_{h \to 0^{+}} \frac{4h}{h} = 4$$
$$\Rightarrow \#f'(-3)$$

A continuación, estudiamos su derivabilidad:

$$f'(-3^{-}) = \lim_{h \to 0^{-}} \frac{(2(-3+h)-3)-(-9)}{h} = \lim_{h \to 0^{-}} \frac{2h}{h} = 2$$
$$f'(-3^{+}) = \lim_{h \to 0^{+}} \frac{(4(-3+h)+3)-(-9)}{h} = \lim_{h \to 0^{+}} \frac{4h}{h} = 4$$
$$\Rightarrow \#f'(-3)$$

La función no es derivable, ya que las derivadas laterales son distintas.

Función derivada

Función derivada

La función derivada de una función f(x) es una nueva función, f'(x), que asocia a cada punto x la derivada de esa función en ese punto.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

14

Tabla de derivadas

Función	Derivada	Función	Derivada
k	0	sin x	cos x
×	1	cos x	- sin <i>x</i>
x ⁿ	nx^{n-1}	tan x	$1+\tan^2 x$
e ^x	e ^x	tan x	$\frac{1}{\cos^2 x}$
a ^x	a [×] · In a	arcsin x	$\frac{1}{\sqrt{1-x^2}}$
ln x	$\frac{1}{x}$	arc cos x	$\frac{-1}{\sqrt{1-x^2}}$
log _a x	$\frac{1}{x \cdot \ln a}$	arctan x	$\frac{1}{1+x^2}$

Cuadro 1: Derivadas de las funciones elementales.

Álgebra de derivadas

Álgebra de derivadas

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(f(x) - g(x))' = f'(x) - g'(x)$$

$$(k \cdot f(x))' = k \cdot f'(x)$$

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$$

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

Derivadas

Ejemplo

Calcular las siguientes derivadas:

a)
$$f(x) = 5x^4 - 3x^3 + 4x - 2$$

b)
$$g(x) = 5x^3 - \sqrt[4]{x}$$

c)
$$h(x) = x^2 \cdot \sin x$$

d)
$$m(x) = \frac{3+2x}{x^2}$$

Derivadas

Ejemplo

Calcular las siguientes derivadas:

a)
$$f(x) = (x^3 + 3x - 2)^7$$

b)
$$g(x) = e^{x^2+3}$$

c)
$$h(x) = \ln(1 - 3x)$$

d)
$$m(x) = \cos(x^3 + 2x - 3)$$

Derivación logarítmica

Cuando queremos calcular la derivada de una función elevada a otra función, tenemos que tomar logaritmos en los dos miembros y luego derivar.

Derivación logarítmica

$$\begin{split} f(x) &= g(x)^{h(x)} \\ \ln f(x) &= \ln g(x)^{h(x)} = h(x) \cdot \ln g(x) \\ \frac{1}{f(x)} \cdot f'(x) &= h'(x) \cdot \ln g(x) + h(x) \cdot \frac{1}{g(x)} \cdot g'(x) \end{split}$$

Derivación logarítmica

Ejemplo

Hallar las derivadas de la siguientes funciones

a)
$$f(x) = x^x$$

b)
$$f(x) = (x - \sin x)^x$$

Ejemplo

Ejemplo

Calcular el valor de los parámetros para que la función:

$$f(x) = \begin{cases} ax + b & x < 0 \\ x^2 - 3x + 2 & x \ge 0 \end{cases}$$

Sea continua y derivable.

