Example of Genetic algorithm

The MAXONE problem: Suppose we want to maximize the number of ones in a string of L binary digits.

An individual is encoded (naturally) as a string of L binary digits. Let's say L = 10. Then, L = 0000000001 (10 bits)

The fitness function is:

 $f(chromosome) = COUNTONE(S_i)$

We start with a population of n random strings. Suppose that L = 10 and n = 6 We toss a fair coin 60 times and get the following initial population:

S1 = 1111010101 S2 = 0111000101 S3 = 1110110101 S4 = 0100010011 S5 = 1110111101S6 = 0100110000

Solution No.	Solution	f(chromosome) =	%pi=fi/ ∑fi *100
		COUNTONE(Si)	
S1	1111010101	7	20.59
S2	0111000101	5	14.71
S3	1110110101	7	20.50
S4	0100010011	4	11.76
S5	1110111101	8	23.52
S6	0100110000	3	8.82
Σ		34	100

Reproduction:

Roulette Wheel selection is used for generating four chromosomes for the next generation. Suppose that, after performing selection, we get the following population:

S1` = 1111010101 (S1) S2` = 1110110101 (S3) S3` = 1110111101 (S5) S4` = 0111000101 (S2) S5` = 0100010011 (S4) S6` = 1110111101 (S5)

Crossover

Suppose that we decide to actually perform crossover only for couples (S1`, S2`) and (S5`, S6`). For each couple, we randomly extract a crossover point, for instance 2 for the first and 5 for the second.

Before Crossover:

S1' = 1111010101	S5' = 0100010011
S2' = 1110110101	S6' = 1110111101

After Crossover:

S1'' = 1110110101	S5'' = 0100011101
S2'' = 1111010101	S6'' = 1110110011

Mutation

Before applying mutation:

S1` = 11101**1**0101 S2` = 1111**0**1010**1** S3` = 1110111101 S4` = 0111000101 S5` = 0**1**00011101 S6` = 111**0**110**0**11

After applying mutation:

S1``` = 1110100101 (6) S2``` = 1111110100 (7) S3``` = 1110111101 (8) S4``` = 0111000101 (5) S5``` = 0000011101 (4) S6``` = 1111110111 (9)

In one generation, the total population fitness changed from 34 to 39, thus improved by $\sim 13\%$.

At this point, we go through the same process all over again, until a stopping criterion is met.

Solution No.	Solution	f(chromosome) = COUNTONE(Si)	%pi=fi/ ∑fi *100
S1	1110100101	6	15.38
S2	1111110100	7	17.95
S3	1110111101	8	20.51
S4	0111000101	5	12.82
S5	0000011101	4	10.26
S6	1111110111	9	23.08
Σ		39	100

Reproduction:

Roulette Wheel selection is used for generating four chromosomes for the next generation. Suppose that, after performing selection, we get the following population:

```
S1` = 1110100101 (S1)

S2` = 1110111101 (S3)

S3` = 1111110111 (S6)

S4` = 0000011101 (S5)

S5` = 1111110111 (S6)

S6` = 1111110100 (S2)
```

Crossover

Suppose that we decide to actually perform crossover only for couples (S1`, S2`) and (S5`, 6`). For each couple, we randomly extract a crossover point, for instance 2 for the first and 5 for the second.

Before Crossover:

S1` = 1110100101	S5` = 1111110111
S2` = 1110111101	S6` = 1111110100

After Crossover:

S1`` = 1110111101	S5`` = 1111110100
S2``= 1110100101	S6`` = 1111110111

Mutation:

Before applying mutation:

```
S1` = 1110111101

S2` = 1110100111

S3` = 1111110111

S4` = 0000011101

S5` = 1111110100

S6` = 1111110111
```

After applying mutation:

```
S1``` = 1110101101 (7)

S2``` = 1110100111 (7)

S3``` = 1111110111 (9)

S4``` = 0000011101 (4)

S5``` = 1111110110 (8)

S6``` = 111111111 (10)
```

Thus the solution S6``` is {1111111111} that has highest fitness value has been found.

Exur	nple2			
			m maximize	
over	{0,1,2,.	153	with initial	oc vanc
05.	{1,6,8,10}	Initial	$f(x)=x^2$	0/081=51/251 *100
	x-value	0001	1	0.49
5,		000)		17 01
SZ	6	0110	36	17.91
53	8	1000	64	31.84
54	10	1010	100	49.75
E			201	

Repadaction

- Rowette wheel selection is used for generating four chromosomes for the next generation
- suppose after performing selection, we get the following population

$$S_1' = 10000 (S_3)$$

$$s_3' = 0110 (s_2)$$

$$S_{4}' = 1010 (S_{4})$$

CROSSOVER

- suppose that we decide to persorm crossover

=) Aster crossover

Mutation

Besore applying mutation

	applying	Mutation X-Vaine	$f(x) = x^2$	10Pi = fi/Esix100
5, =	1100	12	144	30.25
52 =	1110	14	196	41.18
53" =	0110	6	36	7.56
54" =	1010	10	100	21