Сама тема стосується квадратичних форм і в контрольній роботі буде як вправа на зведення загального рівняння лінії другого порядку до канонічного виду. А Приклад 13.1.-потрібен для підготовки до державного іспиту.

Для читання цієї теми треба мати на увазі кілька понять з інших тем.

По-перше: теорема 4.3, про яку згадується на першій сторінці теми (ст 157). Стосується кількості розв'язків системи лінійних алгебраїчних рівнянь (СЛАР) в залежності від рангу.

Твердження 4.3. Якщо ранг матриці $A_{m \times n}$ однорідної СЛАР дорівнює r, то система має n-r лінійно незалежних (а, отже, ненульових) розв'язків.

По-друге, мова йтиме про лінійні перетворення. Нехай на площині задано базис із двох неколінеарних векторів $\{\overline{e}_1, \overline{e}_2\}$.

Означення 14.5. Перетворення вектора

$$\overline{x} = x_1 \overline{e}_1 + x_2 \overline{e}_2 = \vec{x}_{\{\overline{e}_1, \overline{e}_2\}} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\{\overline{e}_1, \overline{e}_2\}}$$

у вектор

означене співвідношенням

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Leftrightarrow \vec{y} \, = \, A\vec{x},$$

називають *лінійним перетворенням* площини, а матрицю A — *матрицею перетворення*.

Це перетворення вектори базису

$$\overline{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\{\overline{e}_1, \overline{e}_2\}}, \overline{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}_{\{\overline{e}_1, \overline{e}_2\}}$$

переводить у вектори

$$\overline{a}_1 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = a_{11} \overline{e}_1 + a_{21} \overline{e}_2;$$

$$\overline{a}_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = a_{12} \overline{e}_1 + a_{22} \overline{e}_2.$$

Отже, стовиці матриці лінійного перетворення ϵ координатами образів базисних векторів.

Приклади лінійних перетворень: повертання на кут φ (рис. 14.14); розтягання в k разів (рис. 14.15).

Рис. 14.14

Рис. 14.15

Розгляньмо детальніше повертання на кут φ . Після такого перетворення ортонормований базис $\{\overline{i},\overline{j}\}$ ПДСК Oxy переходить у базис $\{\overline{i}',\overline{j}'\}$ ПДСК Ox'y' (п. 14.5):

$$\overline{i}' = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}_{\{\overline{i}, \overline{j}\}}, \quad \overline{j}' = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}_{\{\overline{i}, \overline{j}\}}.$$

Отже, матриця цього лінійного перетворення

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

Її визначник

$$\det A = \cos^2 \varphi + \sin^2 \varphi = 1,$$

а оберненою до неї ε матриця

$$A^{-1} = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} = A^{\mathrm{T}}.$$

Квадратні оборотні матриці A^{-1} , які мають властивість

$$A^{-1} = A^{\mathrm{T}},$$

називають *ортогональними*. Вони задають *ортогональні* перетворення, які зберігають довжини і кути. Визначник таких матриць дорівнює 1 або -1. Справді,

$$AA^{-1} = AA^{\mathrm{T}} = E_n \Rightarrow (\det A)^2 = \det E_n = 1 \Rightarrow \det A = \pm 1.$$

По-трет€, згадуються векторні простори.

У курсах математичного аналізу та лінійної алгебри доводиться мати справу з об'єктами розмаїтої природи — дійсними та комплексними числами, геометричними та арифметичними векторами, матрицями. Для кожного з таких об'єктів установлені дії додавання об'єктів та множення їх на число. Ці дії, попри відмінності в їх означенні, у природі об'єктів, над якими вони виконуються, мають істотні спільні властивості. Вивчення спільних властивостей об'єктів та абстрагування від конкретної природи цих об'єктів приводить до поняття лінійного простору.

Означення 13.1. Множину \mathbb{V} називають *лінійним* (\Leftrightarrow *векторним*) *простором*, якщо:

1) є правило, згідно з яким кожним двом елементам $\overline{v}_1,\overline{v}_2$ з $\mathbb V$ відповідає третій елемент із $\mathbb V$, який називають *сумою* \overline{v}_1 та \overline{v}_2 і позначають $\overline{v}_1\oplus\overline{v}_2$:

$$\forall \overline{v}_1, \overline{v}_2 \, \in \, \mathbb{V} \, \Rightarrow \, \overline{v}_1 \, \oplus \, \overline{v}_2 \, \in \, \mathbb{V};$$

2) є правило, згідно з яким кожному елементу $\overline{v} \in \mathbb{V}$ і будь-якому числу $\alpha \in \mathbb{R}$ відповідає елемент із \mathbb{V} , який називають <u>добутком елемента</u> \overline{v} на число α і позначають $\alpha \odot \overline{v}$:

$$\forall \overline{v} \in \mathbb{V}, \forall \alpha \in \mathbb{R} \Rightarrow \alpha \odot \overline{v} \in \mathbb{V};$$

3) запроваджені операції справджують певні умови — аксіоми лінійного простору. $\forall \overline{v}, \overline{v}_1, \overline{v}_2, \overline{v}_3 \in \mathbb{V}, \ \forall \alpha, \beta \in \mathbb{R}$:

 $I.\overline{v}_1 \oplus \overline{v}_2 = \overline{v}_2 \oplus \overline{v}_1.$

 $\mathrm{II.}(\overline{v}_1 \oplus \overline{v}_2) \oplus \overline{v}_3 = \overline{v}_1 \oplus (\overline{v}_2 \oplus \overline{v}_3).$

 $\mathrm{III}.\exists\overline{0}\in\mathbb{V}:\overline{v}\oplus\overline{0}=\overline{0}\oplus\overline{v}=\overline{v}.$ Елемент $\overline{0}$ називають *нульовим*.

 IV . $\exists (\ominus \overline{v}): \overline{v} \oplus (\ominus \overline{v}) = \overline{0}$. Елемент $(\ominus \overline{v})$ називають *протилежним* \overline{v} .

$$V.\alpha\odot(\overline{v}_1\oplus\overline{v}_2)=(\alpha\odot\overline{v}_1)\oplus(\alpha\odot\overline{v}_2).$$

$$VI.(\alpha + \beta) \odot \overline{v} = (\alpha \odot \overline{v}) \oplus (\beta \odot \overline{v}).$$

VII.
$$(\alpha\beta) \odot \overline{v} = \alpha \odot (\beta \odot \overline{v}).$$

VIII.1 $\odot \overline{v} = \overline{v}$.

Елементи лінійного простору $\mathbb V$ називають *векторами* (незалежно від їх природи).

Дія додавання векторів — комутативна (I), асоціативна (II), для неї існує нейтральний елемент — нуль-вектор $\overline{0}$ (III) та симетричний елемент — протилежний вектор (IV).

Дія множення вектора на число — дистрибутивна щодо додавання векторів (V), дистрибутивна щодо додавання чисел (VI), асоціативна (VII), для неї існує нейтральний елемент — $1 \ (VIII)$.

Вектор $\overline{v}_1\oplus(\ominus\overline{v}_2)$ називають *різницею векторів* \overline{v}_1 та \overline{v}_2 і позначають $\overline{v}_1\ominus\overline{v}_2$.

Наслідки з аксіом I. — VIII.

- 1. Існує лише один нульовий вектор.
- **2.** Існує лише один протилежний вектор $(\ominus \overline{v}) = (-1) \odot \overline{v}$.
- 3. $\forall \overline{u}, \overline{v} \in \mathbb{V}$ рівняння $\overline{u} \oplus \overline{x} = \overline{v}$ має єдиний розв'язок $\overline{x} = \overline{v} \ominus \overline{u}$.
- **4.** $\forall \overline{v} \in \mathbb{V} : 0 \odot \overline{v} = 0.$
- **5.** $\forall \alpha \in \mathbb{R} : \alpha \odot \overline{0} = \overline{0}$.
- **6.** Сума будь-якої кількості векторів не залежить від порядку доданків і способу розставляння дужок.

Приклади лінійних просторів

- 1. Сукупність вільних векторів із запровадженими лінійними діями над векторами.
- **2.** Множина дійсних чисел \mathbb{R} .
- **3.** Сукупність упорядкованих наборів $(x_1; x_2; ...; x_n)$ з n дійсних чисел, якщо рівність наборів, додавання та множення набору на число означити поелементно.
- **4.** Сукупність матриць $\mathbb{R}^{m \times n}$ розміру $m \times n$ з означеними діями додавання матриць та множення матриці на число. Зокрема, сукупність матриць-рядків завдовжки $n \mathbb{R}^{1 \times n}$ та матриць-стовпців заввишки $n \mathbb{R}^{n \times 1}$.

Для того щоб з'ясувати, чи ϵ деяка множина лінійним простором щодо запроваджених на ній дій додавання і множення елемента на число, треба перевірити виконання аксіом I— VIII лінійного простору.

Приклад 13.1. Перевірмо, чи є лінійним простором множина додатних чисел P, якщо під додаванням векторів (\oplus) розуміти множення чисел, а під множенням вектора на число α (\odot) — піднесення його до степеня α : $\overline{x} \oplus \overline{y} = xy$; $\alpha \odot \overline{x} = x^{\alpha}$.

О Перевіряємо виконання аксіом І—VIII:

$$\overline{x} \oplus \overline{y} = xy \in P$$
:

$$I.\overline{x} \oplus \overline{y} = xy = yx = \overline{y} \oplus \overline{x}.$$

$$\mathrm{II}.(\overline{x}\oplus\overline{y})\oplus\overline{z}=xyz=x(yz)=\overline{x}\oplus(\overline{y}\oplus\overline{z}).$$

$$III.\exists \overline{0} = 1 : \overline{x} \oplus \overline{0} = x \cdot 1 = \overline{x}.$$

$$\text{IV.} \exists (\ominus \overline{x}) = \frac{1}{x} : \overline{x} \oplus (\ominus \overline{x}) = x \cdot \frac{1}{x} = 1 = \overline{0}.$$

$$\alpha \odot \overline{x} = x^{\alpha} \in P$$
:

$$V.\alpha \odot (\overline{x} \oplus \overline{y}) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (\alpha \odot \overline{x}) \oplus (\alpha \odot \overline{y}).$$

VI.
$$(\alpha + \beta) \odot \overline{x} = x^{\alpha + \beta} = x^{\alpha} x^{\beta} = (\alpha \odot \overline{x}) \oplus (\beta \odot \overline{y}).$$

VII.
$$\alpha \odot (\beta \odot \overline{x}) = (x^{\beta})^{\alpha} = x^{\alpha\beta} = (\alpha\beta) \odot \overline{x}.$$

VIII.1
$$\odot \overline{x} = x^1 = \overline{x}$$
.

Отже, P ϵ лінійним простором. Розгляньмо будь-який «ненульовий елемент» цього простору $a \neq 1$:

$$\forall x \in P \,\exists \alpha = \log_a x : x = \alpha \odot a = a^{\log_a x}.$$

13.6. Базис лінійного простору

Нехай \mathbb{V} — довільний лінійний простір, що містить не лише нульовий вектор. Це означає, що в ньому є хоча б один ненульовий вектор, а, отже, існує лінійно незалежна система принаймні з одного вектора. Можливі два випадки:

- 1) у просторі міститься скінченна кількість лінійно незалежних векторів;
- 2) у просторі міститься нескінченна кількість лінійно незалежних векторів.

Означення 13.2. *Базисом* лінійного простору називають будь-яку лінійно незалежну систему з найбільшою можливою кількістю векторів. Кількість векторів базису простору називають його *вимірністю*.

Лінійний простір називають *скінченновимірним* (позначають \mathbb{V}^n), якщо він має базис із скінченної кількості векторів (а саме n) та *нескінченновимірним*, якщо в ньому існує будь-яка кількість лінійно незалежних векторів.

Приклади базисів

У кожному лінійному просторі можна вказати скільки завгодно базисів, але при цьому всі базиси простору містять однакову кількість векторів.

1. «Стандартний» базис простору \mathbb{R}^n n-вимірних арифметичних векторів утворюють вектори

$$\overline{e}_j = (0, ..., 0, 1, 0, ..., 0), j = \overline{1, n}.$$

2. Базис простору $\mathbb{R}^{2\times 2}$ квадратних матриць порядку 2 утворюють матриці:

$$D_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, D_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, D_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, D_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Отже, цей простір — чотиривимірний.

3. Базис простору розв'язків однорідної системи

$$A_{m \times n} \vec{x} = \vec{0},$$

що має ненульові розв'язки, утворює її ФСР. Вимірність цього лінійного простору дорівнює кількості елементів ФСР, тобто n-r, де r — ранг матриці однорідної системи, а n — кількість невідомих.

13.7. Евклідові простори

Означення 13.3. Лінійний простір \mathbb{E} називають *евклідовим*, якщо кожній парі векторів $\overline{x}, \overline{y}$ з \mathbb{E} поставлено у відповідність дійсне число $(\overline{x}, \overline{y})$, яке називають *скалярним добутком*, що справджує аксіоми:

I. $(\overline{x}, \overline{y}) = (\overline{y}, \overline{x})$ (симетричність).

II. $(\alpha \overline{x}, \overline{y}) = \alpha(\overline{x}, \overline{y})$ (однорідність за першим співмножником).

III. $(\overline{x}+\overline{y},\overline{z})=(\overline{x},\overline{z})+(\overline{y},\overline{z})$ (лінійність за першим співмножником).

IV.
$$(\overline{x},\overline{x})=\left|\overline{x}\right|^2\geq 0, (\overline{x},\overline{x})=0\Leftrightarrow \overline{x}=\overline{0}$$
 (додатна визначеність).

Простір \mathbb{R}^n n-вимірних арифметичних векторів стає евклідовим, якщо для векторів

$$\begin{split} \overline{x} &= x_1 \overline{e}_1 + x_2 \overline{e}_2 + \ldots + x_n \overline{e}_n, \\ \overline{y} &= y_1 \overline{e}_1 + y_2 \overline{e}_2 + \ldots + y_n \overline{e}_n \end{split}$$

означити скалярний добуток формулою

$$(\overline{x}, \overline{y}) = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i \Leftrightarrow (\overline{x}, \overline{y}) = \overleftarrow{x} \cdot \overrightarrow{y} = \overleftarrow{y} \cdot \overrightarrow{x}.$$

Означення 13.4. *Нормою* (*довжиною*) вектора $\overline{x} \in \mathbb{E}$ називають число

$$\|\overline{x}\| \stackrel{\text{def}}{=} \sqrt{(\overline{x}, \overline{x})}.$$

Із формули для скалярного добутку одержимо формулу для норми вектора $\overline{x} \in \mathbb{R}^n$:

$$\|\overline{x}\| = \sqrt{(x_1)^2 + (x_2)^2 + \dots + (x_n)^2}.$$

Запроваджене таким чином поняття норми вектора узагальнює поняття довжини вектора у просторі $\mathbb{R}^3.$

Твердження 13.1. Якщо $\overline{x},\overline{y}\in\mathbb{E},\lambda\in\mathbb{R},$ то:

$$(\overline{x}, \overline{y}) | \leq ||\overline{x}|| ||\overline{y}||;$$

17. Зведення рівняння ліній 2-го порядку до канонічного вигляду

17.1. Квадратичні форми

В аналітичній геометрії теорія квадратичних форм потрібна як засіб для дослідження ліній і поверхонь 2-го порядку.

Розгляньмо симетричну матрицю $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, тобто $a_{12}=a_{21}$.

Означення 17.1. Вираз

$$a_{11}x_1^2 + a_{22}x_2^2 + 2a_{12}x_1x_2$$

називають $\kappa вадратичною формою змінних <math>x_1, x_2$. Матрицю A називають матрицею $\kappa вадратичної форми.$

Симетрична матриця A квадратичної форми задає певне лінійне перетворення (п. 14.6)

$$\vec{y} = A\vec{x}$$
.

Упорядкований набір чисел x_1, x_2 можна розглядати як координати вектора $\overline{x} \in \mathbb{V}^2$ в деякому ортонормованому базисі $\{\overline{e}_1, \overline{e}_2\}$ простору \mathbb{V}^2 , тобто

$$\overline{x} = x_1 \overline{e}_1 + x_2 \overline{e}_2.$$

Тоді квадратична форма

$$Q(\overline{x}) = Q(x_1, x_2) = a_{11}x_1^2 + a_{22}x_2^2 + 2a_{12}x_1x_2.$$

 ϵ числовою функцією векторного аргумента \overline{x} , яка означена в усьому просторі \mathbb{V}^2 .

Приміром,

$$Q(x,y) = 2x^2 - 3xy + y^2$$

 ϵ квадратичною формою змінних $x_1 = x, x_2 = y.$

Тут

$$a_{11} = 2$$
, $a_{12} = a_{21} = -\frac{3}{2}$, $a_{22} = 1 \Rightarrow A = \begin{pmatrix} 2 & -3/2 \\ -3/2 & 1 \end{pmatrix}$.

Квадратична форма $Q(\overline{x})$ має у вибраному базисі *канонічний вигляд*, якщо матриця квадратичної форми у цьому базисі діагональна, тобто $a_{12}=a_{21}=0.$

Твердження 17.1. Для будь-якої квадратичної форми існує базис, у якому вона має канонічний вигляд.

17.2. Власні числа і власні вектори матриці

Означення 17.2. Ненульовий стовпець \vec{x} називають власним вектором квадратної матриці $A_{n \times n}$, якщо існує таке число λ , що

$$A\vec{x} = \lambda \vec{x}$$
.

Число λ називають власним числом матриці A, що відповідає власному вектору \vec{x} .

Матричне рівняння $A\vec{x} = \lambda \vec{x}$ еквівалентне однорідній системі лінійних алгебричних рівнянь

$$(A - \lambda E_n)\vec{x} = \vec{0},$$

де E_n — одинична матриця.

На підставі теореми 4.3 ця система (а, отже, і матричне рівняння) матиме ненульові розв'язки, якщо

$$\operatorname{rang}(A - \lambda E_n) < n \Rightarrow |A - \lambda E_n| = 0.$$

Матрицю

$$A - \lambda E_n = \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

де λ — незалежна змінна; називають *характеристичною матрицею* матриці A.

Визначник характеристичної матриці

$$\begin{vmatrix} A - \lambda E_n \\ = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

 a_{n1} a_{n2} ... е називають *характеристичним многочленом* матриці

Рівняння $|A - \lambda E_n| = 0$ називають характеристичним рівнянням матриці A.

Твердження 17.2. Власні числа матриці $A \in \kappa$ коренями характеристичного многочлена $\left|A-\lambda E_{n}\right|$ цієї матриці. Власні вектори є ненульовими розв'язками однорідної СЛАР

$$(A - \lambda E_n)\vec{x} = \vec{0}.$$

Зауваження 17.1. Кількість власних чисел матриці скінченна, натомість кількість власних векторів — нескінченна, оскільки нескінченною ϵ множина розв'язків виродженої однорідної системи, розв'язками якої і ϵ власні вектори.

Приклад 17.1. Знайдімо власні числа матриці $A = \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$.

 \mathbf{O} Записуємо характеристичне рівняння для матриці \acute{A} :

$$\begin{vmatrix} 5 - \lambda & 2 \\ 2 & 8 - \lambda \end{vmatrix} = 0;$$

$$(5 - \lambda)(8 - \lambda) - 4 = 0;$$

$$\lambda^2 - 13\lambda + 36 = 0.$$

Розв'язуючи характеристичне рівняння, дістаємо, що власними числами матриці A є $\lambda_1=4$ та $\lambda_2=9$.

17.3. Побудова канонічних систем координат для кривих 2-го порядку

Рис. 17.1

Рис. 17.2

Рис. 17.3

Рис. 17.4

1. Лінія з рівнянням

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, a \ge b > 0,$$

 ϵ еліпсом (рис. 17.1). Канонічну систему координат для цього еліпса дістаємо із заданої повертанням на $\begin{pmatrix} \pi \end{pmatrix}$

KYT
$$\left(-\frac{\pi}{2}\right)$$
.

2. Лінія з рівнянням

$$\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right)^2 = 1, a > b > 0,$$

 ϵ еліпсом (рис. 17.2). Канонічну систему координат для цього еліпса дістаємо із заданої паралельним перенесенням початку координат у точку $(x_0; y_0)$.

3. Лінії, які задані рівняннями

$$y^2 = -2px, x^2 = 2py, x^2 = -2py, p > 0,$$

є параболами (рис. 17.3). Канонічну систему координат для цих парабол дістаємо із заданої переорієнтуванням або повертанням осей.

4. Лінія з рівнянням

$$(y - y_0)^2 = 2p(x - x_0), p > 0,$$

 ϵ параболою (рис. 17.4). Канонічну систему координат для цієї параболи дістаємо із заданої паралельним перенесенням початку координат в точку $(x_0; y_0)$.

5. Лінія з рівнянням

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1, \ a,b > 0,$$

 ϵ гіперболою. Канонічну систему координат для цієї гіперболи дістаємо із заданої паралельним перенесенням початку в точку $(x_0;y_0)$.

6. Лінія з рівнянням

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1, b, a > 0,$$

є гіперболою, спряженою до канонічної (рис. 17.5).

Загальний випадок

Розгляньмо загальне рівняння геометричного образу 2-го порядку на площині

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0,$$
 (17.1)

де a_{11}, a_{12} та a_{22} не дорівнюють нулю одночасно.

У разі, якщо $a_{12}=0$, то це рівняння можна перетворити до канонічного вигляду (тим самим будуючи відповідну канонічну систему координат) паралельним перенесенням осей координат.

Отже, нехай $a_{12} \neq 0$. Розгляньмо матрицю

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \ a_{21} = a_{12},$$

квадратичної форми

$$Q(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2.$$

Повертанням координатних осей на певний кут φ можна анулювати коефіцієнт при добуткові змінних. Для цього будують ортонормований базис площини із власних векторів матриці A, у якому матриця квадратичної форми набуде діагонального вигляду

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},$$

де λ_1, λ_2 — власні числа матриці A.

Алгоритм зведення рівняння лінії 2-го порядку до канонічного вигляду

Крок 1. Записуєють матрицю квадратичною форми.

 $\mathit{Kpok}\,2.$ Знаходять власні числа λ_1 та λ_2 матриці A.

Крок 3. Знаходять одиничні власні вектори
$$\vec{e}_1 = \begin{pmatrix} \alpha_{11} \\ \alpha_{21} \end{pmatrix}$$
 та $\vec{e}_2 = \begin{pmatrix} \alpha_{12} \\ \alpha_{22} \end{pmatrix}$

матриці A.

Крок 4. Записують матрицю лінійного перетворення координат, що задає водночас і повертання координатних осей на кут φ :

$$H = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

Тобто

$$\begin{cases} x = x' \cos \varphi - y' \sin \varphi, \\ y = x' \sin \varphi + y' \cos \varphi. \end{cases}$$
 (17.2)

Крок 5. Переходячи до нових координат x' та y', з рівняння (17.1) дістають

$$\lambda_1 x'^2 + \lambda_2 y'^2 + 2b_{13}x' + 2b_{23}y' + b_{33} = 0, b_{33} = a_{33}.$$
 (17.3)

Крок 6. Паралельним перенесенням ПДСК знищують один або обидва лінійних доданки в рівнянні 17.3 і дістають канонічне рівняння лінії 2-го порядку.

17.4. Класифікація ліній 2-го порядку

Інваріантом рівняння ліній 2-го порядку (17.1) називають функцію від коефіцієнтів цього рівняння, значення якої не змінюється після переходу від однієї ПДСК до іншої. Величини

$$J_1 = a_{11} + a_{22}, \ J_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \ J_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix},$$

де $a_{21}=a_{12},\ a_{31}=a_{13},\ a_{32}=a_{23},\ \epsilon$ інваріантами рівняння (17.1) лінії 2-го порядку.

Значення інваріантів визначають геометричні характеристики лінії.

Інваріантами ϵ також характеристичний многочлен матриці

$$A=egin{pmatrix} a_{11}&a_{12}\ a_{21}&a_{22} \end{pmatrix}$$
 і власні числа λ_1 та λ_2 матриці $A.$

Усі геометричні образи 2-го порядку поділяють на три типи:

- 1) якщо $J_2>0$, то геометричний образ еліптичного типу;
- 2) якщо $J_2=0,\;$ то геометричний образ параболічного типу;
- 3) якщо $J_2 < 0$, то геометричний образ гіперболічного типу.

Тип лінії зберігається у разі зміни ПДСК.

За допомогою перетворення координат рівняння (17.1) можна звести до одного з таких типів:

- 1) $\lambda_1 x^2 + \lambda_2 y^2 + m = 0$ (для еліпсів і гіпербол);
- 2) $\lambda_1 x^2 + 2ky = 0$ (для парабол);
- 3) $\lambda_1 x^2 + n = 0$ (для вироджених парабол),

а коефіцієнти цих рівнянь можна виразити через інваріанти:

$$\begin{split} J_1 &= a_{11} + a_{22} = \lambda_1 + \lambda_2; \\ J_2 &= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} = \lambda_1 \lambda_2; \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & m \end{vmatrix} = \lambda_1 \lambda_2 m. \end{split}$$

3 поданих рівностей і теореми Вієта випливає, що власні числа λ_1 та λ_2 є коренями квадратного рівняння

$$\lambda^2 - J_1 \lambda + J_2 = 0; \ m = \frac{J_3}{J_2}.$$

Зауважимо, що рівняння (17.1) може задавати:

- $1) \quad \text{порожню} \quad \text{множину} \quad (J_2>0,J_3>0 \quad \text{ або} \quad J_2=J_3=0,$ $(a_{31})^2-a_{11}a_{33}<0);$
 - 2) точку $(J_2 > 0, J_3 = 0);$
 - 3) пару перетинних прямих $(J_2 < 0, J_3 = 0);$
 - 4) пару паралельних прямих $(J_2 = J_3 = 0, (a_{31})^2 a_{11}a_{33} > 0);$
 - 5) еліпс $(J_2 > 0, J_3 < 0)$;
 - 6) параболу $(J_2 = 0, J_3 \neq 0)$;
 - 7) гіперболу $(J_2 < 0, J_3 \neq 0)$.

Приклад 17.2. Визначмо, яку криву задає у ПДСК рівняння

$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0.$$

Знайдімо її канонічне рівняння і побудуймо відповідну канонічну систему координат.

ОКрок 1. Записуємо матрицю квадратичної форми

$$Q(x,y) = 9x^2 - 4xy + 6y^2$$

для рівняння геометричного образу 2-го порядку, враховуючи, що $-4=2a_{12}=2a_{21}$:

$$A = \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix}.$$

 $\mathit{Kpok}\ 2.$ Знаходимо власні числа матриці A як корені характеристичного многочлена матриці

$$\begin{vmatrix} 9-\lambda & -2 \\ -2 & 6-\lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 15\lambda + 50 = 0 \Leftrightarrow \lambda_1 = 5; \ \lambda_2 = 10.$$

Оскільки,

$$J_2 = \begin{vmatrix} 5 & 0 \\ 0 & 10 \end{vmatrix} = 50 > 0.$$

то досліджувана крива еліптичного типу.

 $\mathit{Kpok}\ 3.\$ Знаходимо одиничні власні вектори матриці $A,\$ що відповідають власним числам.

Для $\lambda_1 = 5$ маємо:

$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1/2 \end{pmatrix} \Rightarrow \alpha_{11} - \frac{1}{2} \alpha_{12} = 0; \ \alpha_{11} = \frac{1}{2} \alpha_{12}.$$

$$\vec{z}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}; \ |\vec{z}_1| = \sqrt{1^2 + 2^2} = \sqrt{5};$$

$$\vec{e}_1 = \frac{\vec{z}_1}{|\vec{z}_1|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}.$$

Для $\lambda_2 = 10$ маємо:

$$\begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \end{pmatrix} \Rightarrow \alpha_{12} + 2\alpha_{22} = 0; \ \alpha_{12} = -2\alpha_{22}.$$

$$\vec{z}_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}; \ \ \left| \vec{z}_2 \right| = \sqrt{(-2)^2 + 1^2} = \sqrt{5};$$

$$\vec{e}_2 = \frac{\vec{z}_2}{\left| z_2 \right|} = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix}.$$

Крок 4. Отже, шукане перетворення координат задає матриця

$$H = \begin{pmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix};$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = H \begin{pmatrix} x' \\ y' \end{pmatrix} \Leftrightarrow \begin{cases} x = \frac{1}{\sqrt{5}} x' - \frac{2}{\sqrt{5}} y'; \\ y = \frac{2}{\sqrt{5}} x' + \frac{1}{\sqrt{5}} y'. \end{cases}$$

Крок 5. Переходимо до нових координат у рівнянні кривої:

$$5x'^2 + 10y'^2 - 8\sqrt{5}y' - 2 = 0.$$

$$5x'^2 + 10\left(y' - \frac{2}{\sqrt{5}}\right)^2 - 10 = 0.$$

Крок 6. Паралельно переносячи осі ПДСК за формулами:

$$\begin{cases} x' = x'', \\ y' = y'' + \frac{2}{\sqrt{5}}, \end{cases}$$

дістаємо рівняння еліпса (рис. 17.6)

$$\frac{x''^2}{2} + \frac{y''^2}{1} = 1.$$

Систему координат Oxy перетворюємо на систему координат O''x''y'' за допомогою рівностей

Рис. 17.6

$$\begin{cases} x = \frac{1}{\sqrt{5}} x'' - \frac{2}{\sqrt{5}} y'' - \frac{4}{5}, \\ y = \frac{2}{\sqrt{5}} x'' + \frac{1}{\sqrt{5}} y'' + \frac{2}{5}, \end{cases}$$

які задають перенесення початку координат у точку $O''\left(-\frac{4}{5};\frac{2}{5}\right)$ і повертання на кут $\phi=\arctan 2$.