

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

CENTRUM FÜR INFORMATIONS- UND SPRACHVERARBEITUNG STUDIENGANG COMPUTERLINGUISTIK

KLAUSUR ZUM BACHELORMODUL "PROBEKLAUSUR ÜBUNG COMPUTERLINGUISTISCHE ANWENDUNGEN"

PROBEKLAUSUR, Dr. Benjamin Roth

KLAUSUR AM

NACHNAME: MATRIKELNUMM STUDIENGANG:	ER:			
	ER:			
CTIDIENC AND				\equiv
	□ P. Co. Computor	rlinguistik □ D Sa Inf	formatile	
STUDIENGANG.		☐ B.Sc. Computerlinguistik, ☐ B.Sc. Informatik, ☐ Magister		
	□ anderer:			
<i>V</i> erwenden Sie einen do nittel zugelassen, auße	icht ausreicht, benutzen Sie okumentenechten Kugelschr er ein selbst von Hand bes e	reiber oder Füller, ke chriebenes DIN A4	eine Bleistifte. Es sin - Blatt . Geben Sie P	d keine
	ie können Fragen auf Eng			
Sie die Aufgaben lösen,	auf allen Seiten Ihren Nan	nen ein und füllen S	ie die Titelseite aus.	
Sie die Aufgaben lösen, Aufgabe	auf allen Seiten Ihren Nan	nen ein und füllen S mögliche Punkte		
Sie die Aufgaben lösen, Aufgabe	auf allen Seiten Ihren Nan e uierung von Klassifikatoren	nen ein und füllen S mögliche Punkte	ie die Titelseite aus.	
Sie die Aufgaben lösen, Aufgabe 1. Evalu 2. Unit-	auf allen Seiten Ihren Nan e uierung von Klassifikatoren	men ein und füllen S mögliche Punkte 2	ie die Titelseite aus.	
Sie die Aufgaben lösen, Aufgabe 1. Evalu 2. Unit-	auf allen Seiten Ihren Nan e nierung von Klassifikatoren Testing	men ein und füllen S mögliche Punkte 2 4	ie die Titelseite aus.	
Aufgaben lösen, Aufgabe 1. Evalu 2. Unit- 3. Doku 4. Git 5. Naive	auf allen Seiten Ihren Nan e uierung von Klassifikatoren Testing umenten-Retrieval e Bayes Klassifikator	men ein und füllen S mögliche Punkte 2 4 6	ie die Titelseite aus.	
Aufgaben lösen, Aufgabe 1. Evalu 2. Unit- 3. Doku 4. Git 5. Naive 6. K-nea	auf allen Seiten Ihren Nan e nierung von Klassifikatoren Testing menten-Retrieval e Bayes Klassifikator nrest neighbors	men ein und füllen S mögliche Punkte 2 4 6 4 5 4	ie die Titelseite aus.	
Aufgaben lösen, Aufgabe 1. Evalu 2. Unit- 3. Doku 4. Git 5. Naive	auf allen Seiten Ihren Nan e nierung von Klassifikatoren Testing menten-Retrieval e Bayes Klassifikator nrest neighbors	men ein und füllen S mögliche Punkte 2 4 6 4 5 4 4	ie die Titelseite aus.	
Aufgaben lösen, Aufgabe 1. Evalu 2. Unit- 3. Doku 4. Git 5. Naive 6. K-nea	auf allen Seiten Ihren Nan dierung von Klassifikatoren Testing dmenten-Retrieval e Bayes Klassifikator drest neighbors ans	men ein und füllen S mögliche Punkte 2 4 6 4 5 4	ie die Titelseite aus.	

Aufgabe 1 Evaluierung von Klassifikatoren

Gegeben ein binärer Klassifikator für die Klassen True und False.

(a) Gegeben zwei Listen, die jeweils die vorhergesagten bzw. tatsächlichen Labels (True bzw False) eines Testsets enthalten. Vervollständigen Sie die Funktion unten, die die Accuracy berechnen soll.

```
# Beispielargumente fuer accuracy(y, pred)
example_y = [True, False, False, True]
example_pred = [True, True, True, False]
def accuracy(y, pred):
```

return

Aufgabe 2 Unit-Testing

Was ist der Unterschied zwischen dem doctest und unittest Modul? Definieren Sie eine Funktion my_square(x), die Zahlen quadriert, und schreiben Sie dafür je einen Test mit doctest und unittest.

4 PUNKTE

Aufgabe 3 Dokumenten-Retrieval

Im Folgenden werden Bag-of-Words Dokumentvektoren wie in der Vorlesung als Dictionaries (Word \rightarrow Count) repräsentiert.

(a) Vervollständigen Sie den Programmcode zur Berechnung des Vektor-Produkts (*dot product*) zweier Dokumentvektoren.

```
def dot(dictA, dictB):
    """
    >>> dot({'a':1, 'b':2, 'c': 3}, {'a':4, 'c': 6})
    22
    """
```

return

(b) Vervollständigen Sie den Programmcode zur Berechnung der Kosinus-Ähnlichkeit zweier Dokumentvektoren (verwenden Sie die Funktion dot aus der vorhergehenden Aufgabe; wenden Sie **keine** TF-IDF Gewichtung an).

```
def cosine(dictA, dictB):
    """
    >>> cosine({'a':1, 'b':2, 'c': 3}, {'a':4, 'c': 6})
    0.8153742483272114
    """
```

return

Aufgabe 4 Git

Sie arbeiten mit mehreren Teammitgliedern an einer Aufgabe, und verwenden git (mit Gitlab remote) als Versionskontrolle.

- Erklären Sie kurz (jeweils ein Satz), die Funktion der folgenden git-Befehle:
 - (a) git pull
 - (b) git add .
 - (c) git push
 - (d) git commit -m "Solution to exercise 2."
- In welcher Reihenfolge wenden Sie die oben angebenen Befehle sinnvollerweise an, wenn Sie eigene Änderungen zum Gitlab remote hinzufügen wollen, und eines Ihrer Team-Mitglieder möglicherweise auch Änderungen vorgenommen hat? Begründen Sie die gewählte Reihenfolge.

Aufgabe 5 Naive Bayes Klassifikator

(a) Vervollständigen Sie die Funktion $log_probability$, die die logarithmierte Wahrscheinlichkeit log P(word) eines Wortes aus der Anzahl der Vorkommen des Wortes im Korpus wordcount (Integer), der Vokabulargröße vocab_size (Integer) und der Summe aller Wortvorkommen total (Integer) berechnet. Verwenden Sie addiere- λ -Glättung, mit Parameter smoothing (Float).

def log_probability(self, wordcount, vocab_size, total, smoothing):

return

(b) Vervollständigen Sie die Funktion sentence_log_probability, die die logarithmierte Wahrscheinlichkeit $\log P(sentence)$ eines Satzes sentence (Liste von Strings) berechnet. Das Dictionary word_to_count enthält alle Wörter des Vokabulars als keys, und die Anzahl der entsprechenden Wortvorkommen im Korpus als Value.

Wie oben gibt smoothing (Float) den Glättungsparameter an. Sie können log_probability von Teil (a) der Aufgabe verwenden (berechnen Sie vocab_size und total aus dem Dictionary word_to_count).

def sentence_log_probability(self, sentence, word_to_count, smoothing):

return

Aufgabe 6 K-nearest neighbors

Gegeben eine Liste mit den Dokumentkategorien und deren Kosinus-Ähnlichkeiten. Implementieren Sie folgende Funktionen:

- 1. order_nearest_to_farthest soll die Liste nach der Kosinus-Ähnlichkeit sortieren (vom ähnlichsten Dokument bis zum wenig ähnlichsten).
- 2. labels_k_closest soll die Liste der k ähnlichsten Kategorien zurückgeben.

```
def order_nearest_to_farthest(distances):
    """
    >>> order_nearest_to_farthest([(0.2, "news"), (0.5, "cars"), (0.7, "sport")])
    [(0.7, "sport"), (0.5, "cars"), (0.2, "news")]
    """
```

4 PUNKTE

Aufgabe 7 K-Means

Gegeben eine Liste mit den Dokumentvektoren (inputs) und deren Clusters (assignments). Berechen Sie den Cluster Zentroid (vector mean) für den Cluster i.

```
def vector_mean(inputs, assignments, i):
    import numpy as np
    """
    >>> vector_mean([[1,2,3],[4,5,6],[7,8,9]], [0,0,1], 0)
       [2.5, 3.5, 4.5]
```

4 PUNKTE