EE-209 Eléments de Statistiques pour les Data Sciences

Feuille d'exercices 6

Exercise 6.1 L'expérience sera répétée trois fois.

In various experimental sciences, it is common to repeat an experiment three times to get an idea of the uncertainty in the result. A chemist tries to determine the amount of a chemical element in water in millimoles per liter (mmol/l). He repeats the experiment which allows him to obtain a measurement three times and he obtains: 3.36, 2.67 and 2.65.

(a) Assuming that the data follows a Gaussian distribution with unknown mean and variance, determine a Student confidence interval at 95%. For convenience we provide some quantiles of Student distributions with different degrees of freedom. More precisely, if $t_{\alpha}^{(n)}$ denotes the quantile of the Student distribution with n degrees of freedom at level α , then we have:

$$\begin{split} t_{0.9}^{(1)} &= 3.078, \quad t_{0.95}^{(1)} = 6.314, \quad t_{0.975}^{(1)} = 12.706, \\ t_{0.9}^{(2)} &= 1.886, \quad t_{0.95}^{(2)} = 2.920, \quad t_{0.975}^{(2)} = 4.303, \\ t_{0.9}^{(3)} &= 1.638, \quad t_{0.95}^{(3)} = 2.353, \quad t_{0.975}^{(3)} = 3.182 \,. \end{split}$$

Exercise 6.2 Luminosity of a star. We wish to estimate the luminosity of a distant star using a CCD sensor. The luminosity of the star can be related to the photon flux (average number of photons per second) θ hitting the detector given the distance of the star and the size of the detector. We will concentrate on estimating the photon flux θ . At each second we get a readout of the number of photons received from that star.

We obtain the following n = 12 observations: 62, 54, 56, 62, 62, 62, 62, 54, 59, 51, 52, 84, 69.

- (a) What is the form of the maximum likelihood estimator for θ based on an i.i.d. sample of observations x_1, \ldots, x_n ?
- (b) Derive the expression of the Fisher information $I(\theta)$.
- (c) Deduce from the previous question the form of a Wald confidence interval for θ .
- (d) Calculate a 99% Wald confidence interval based on the data.
- (e) Is correct to say that for the confidence interval that we have computed there is 99% chance that the true mean is within the interval?

Exercise 6.3 Time to breakdown. A theoretical model suggests that the time to breakdown of an insulating fluid between electrodes at a particular voltage has an exponential distribution with parameter λ . A random sample of n=50 breakdown times has been obtained. The empirical mean of the sample is $\overline{x}=42.8$ and the sample variance (unbiased variance estimate) is $s^2=2043.6$. We wish to obtain a 95% confidence interval for λ and for the average breakdown time $\mu=1/\lambda$.

- (a) Express the variance of an exponential random variable X as a function of λ .
- (b) Write the form of the likelihood, the log-likelihood, and the score function in the exponential model for a sample of n i.i.d. observations.
- (c) Determine the form of the maximum likelihood estimator for λ in the exponential model, based on n i.i.d. observations.
- (d) Determine the form of the Fisher information $I(\lambda)$.
- (e) Using the results from the previous questions, determine the form of a Wald confidence interval for λ .
- (f) We now wish to estimate the average breakdown time $\mu = \frac{1}{\lambda}$; what is the maximum likelihood estimator for μ ?
- (g) Propose two different asymptotic confidence intervals for μ based on $\widehat{\mu}_{MLE}$, using, in one case, the classical CLT and, in the other, the CLT with Slutsky.
- (h) Calculate the numerical value of these two confidence intervals for a nominal level of 0.95.
- (i) (**) Compare these two asymptotic confidence intervals. Can you think of reasons to use one rather than the other?
- (j) Use the two confidence intervals obtained in (h) to propose confidence intervals for λ .
- (k) (**) Which confidence interval do you propose to use for λ in the end?

Updated: April 19, 2023