Задание №1

Даны следующие данные

\mathbf{x}_{i}	a_1	a_2	a_3	Class
\mathbf{x}_1	T	T	5.0	Y
\mathbf{x}_2	T	T	7.0	Y
X ₃	T	F	8.0	N
\mathbf{x}_4	F	F	3.0	Y
X 5	F	T	7.0	N
\mathbf{x}_6	F	T	4.0	N
X 7	F	F	5.0	N
\mathbf{x}_8	T	F	6.0	Y
X 9	F	T	1.0	N

Используя наивный байесовский классификатор определите класс точки (Т,F,1.0)

```
import numpy as np
from scipy import stats
```

$$p_{Y} = 4/9$$

 $p_{N} = 5/9$

```
a3_Y = np.array([5, 7, 3, 6])
a3_N = np.array([8, 7, 4, 5, 1])
p_a3_Y = stats.norm.pdf(1, a3_Y.mean(), a3_Y.std())
p_a3_N = stats.norm.pdf(1, a3_N.mean(), a3_N.std())
```

False

 $p_x N > p_x Y =>$ <u>точка относится к классу N</u>

Задание №2

Даны два класса c₁ and c₂ со следующими мат. ожиданиями и матрицами ковариации:

$$\mu_1 = (1,3) \qquad \qquad \mu_2 = (5,5)$$

$$\Sigma_1 = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} \qquad \qquad \Sigma_2 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Классифицируйте точку (3,4) используя Байесовский вывод, предположив, что классы распределены по нормальному закону, и P(c1) = P(c2) = 0.5

```
m1 = np.array([1, 3])
m2 = np.array([5, 5])

cov1 = np.array([[5, 3], [3, 2]])
    cov2 = np.array([[2, 0], [0, 1]])

p_c1 = p_c2 = 1/2

p_x_c1 = stats.multivariate_normal.pdf([3, 4], m1, cov1) * p_c1

p_x_c2 = stats.multivariate_normal.pdf([3, 4], m2, cov2) * p_c2

p_x_c1 > p_x_c2

Table

Table
```

True

 $p_x_c1 > p_x_c2 =>$ <u>точка принадлежит классу с1</u>

Задание №3

Даны следующие данные

Point	Age	Car	Risk
\mathbf{x}_1	25	Sports	L
\mathbf{x}_2	20	Vintage	H
x ₃	25	Sports	L
\mathbf{x}_4	45	SUV	H
X 5	20	Sports	H
\mathbf{x}_6	25	SUV	H

Постройте решающее дерево используя порог для чистоты (purity threshold) равным 100%.

В качестве критерия для разделения используйте энтропию. Классифицируйте наблюдение (Age=27,Car=Vintage)

1) Age

Средние точки Age = {22.5, 35}

H при Age 22.5-: 2 L при Age 22.5-: 0 H при Age 35-: 3 **L** при Age 35-: 2

2) Car

H при SUV: 2 H при Sports: 0
 L при Sports: 2

(Age=27,Car=Vintage) относится к классу L