Single Cell Sequencing: Techniques, Analysis, and Visualization.

Tyler Garvin

Roadmap

Introduction

Implementation

Live Demonstration

Validation and Recommendations

Tissue Targets

Germ Cells

Recombination & crossover events

Heterogeneous Tumors

Clonal expansion

Heterogeneous Tissues: blood and lymph

Isolating unique cell types

Whole Genome Amplification

- 1) MDA: Multiple displacement amplification
- 2) DOP-PCR: Degenerate oligonucleotide-primed PCR
- 3) MALBAC: Multiple annealing and looping-based amplification

MDA

MALBAC

DOP-PCR

Degenerate base pairing

Low initial annealing temperatures

Copy Number Variants

Copy Number Variants

Copy Number Variants

Underlying Concept

Data is noisy

Data is noisy

- Riddled with biases
 - WGA
 - Wet bench
 - Sequencing
 - Introduced through downstream analysis

Implementation

1) Binning: fixed vs. variable length bins

- Variable length bins
 - Extract read from each position across genome (3.2 billion in total)
 - Uniquely map reads to genome
 - Generate bins such that each bin shares the same number of uniquely mappable positions.

2) Normalization

3) Segmentation

Circular Binary Segmentation (CBS)

4) Estimating Copy Number

$$CN = argmin \left\{ \sum_{i,j} (\hat{Y}_{i,j} - Y_{i,j}) \right\}$$

Demo: tumor metastasis

Tumor evolution inferred from single cell sequencing. Navin, N. *et al.* (2011) *Nature*.

http://qb.cshl.edu/ginkgo/

Probing the limits of single cell analysis

- Validation
- Exploring the effects of WGA on data quality
 - 1) GC biases
 - 2) Coverage dispersion
 - 3) Detecting integer copy number states
- Recommendations for single cell projects

Validating Ginkgo (5 independent studies)

Tumour evolution inferred by single-cell sequencing

Nicholas Navin^{1,2}, Jude Kendall¹, Jennifer Troge¹, Peter Andrews¹, Linda Rodgers¹, Jeanne McIndoo¹, Kerry Cook¹, Asya Stepansky¹, Dan Levy¹, Diane Esposito¹, Lakshmi Muthuswamy³, Alex Krasnitz¹, W. Richard McCombie¹, James Hicks¹ & Michael Wigler¹

Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients

Xiaohui Ni^{a,b,1}, Minglei Zhuo^{c,1}, Zhe Su^{a,1}, Jianchun Duan^{c,1}, Yan Gao^{a,1}, Zhijie Wang^{c,1}, Chenghang Zong^{b,1,2}, Hua Bai^c, Alec R. Chapman^{b,d}, Jun Zhao^c, Liya Xu^a, Tongtong An^c, Qi Ma^a, Yuyan Wang^c, Meina Wu^c, Yu Sun^e, Shuhang Wang^c, Zhenxiang Li^c, Xiaodan Yang^c, Jun Yong^b, Xiao-Dong Su^a, Youyong Lu^f, Fan Bai^{a,3}, X. Sunney Xie^{a,b,3}, and Jie Wang^{c,3}

Probing Meiotic Recombination and Aneuploidy of Single Sperm Cells by Whole-Genome Sequencing

Sijia Lu et al. Science 338, 1627 (2012);

DOI: 10.1126/science.1229112

Mosaic Copy Number Variation in Human Neurons

Michael J. McConnell et al. Science 342, 632 (2013); DOI: 10.1126/science.1243472

Genome Analyses of Single Human Oocytes

Reproducible copy number variation patters among single circulating tumor cells of lung cancer patients. Ni, Xiaohui *et al.* (2013) *PNAS.*

Comparing Single Cell Sequencing Techniques

Study	WGA Method	Disease State	Tissue Type	Accession
Kirkness et al.	MDA	None	Sperm	SRP017516
Wang et al.	MDA	None	Sperm	SRA053375
Evrony et al.	MDA	None	Neuron	SRA056303
Lu et al.	MALBAC	None	Sperm	SRA060945
Ni et al.	MALBAC	Cancer	Lung	SRP029757
Hou et al.	MALBAC	None	Oocyte	SRA091188
Navin et al.	DOP-PCR	Cancer	Breast (T10)	SRX021401
Navin et al.	DOP-PCR	Cancer	Breast (T16P/M)	SRX037035/132
McConnnell et al.	DOP-PCR	None	Neuron	SRP030642

% Bins w/ Bounded GC Bias

GC Biases

Measuring Coverage Dispersion

Median absolute deviation (MAD) – median of the absolute deviation from the data's median. Measure of the statistical dispersion.

Calculate all pairwise differences between neighboring bins (d)

 $MAD = median(| d_i - median(d) |)$

Detecting Integer Copy Number States

Histograms of Normalized Bin Counts

Conclusions and Recommendations

- Don't use MDA! For CNV analysis we recommend using DOP-PCR for WGA.
 - Sequence healthy diploid cells for reference
 - Plan for 25% of cells to be filtered out
 - Save your FACS data
 - Start with 500kb bins: 100 reads/bin (~1-1.5 million reads per cell)
 - Control for gender

Acknowledgments

Mike Schatz

Rob Aboukhalil

James Gurtowski

Srividya Ramakrishnan

Hayan Lee

Giuseppe Narzisi

Shoshana Marcus

Maria Nattestad

Han Fang

Ginkgo Team

Jude Kendall

Timour Baslan

Mickey Atwal

Jim Hicks

Mike Wigler

Committee and Collaborators

Dick McCombie

Dave Tuveson

Zach Lippman

Lloyd Trotman

Josh Huang

CSH Cold Spring Harbor Laboratory

John and Amy Phelan Fellowship

WATSON SCHOOL

of BIOLOGICAL SCIENCES

