Lab 1 Naryshov Ernar ID: 20B030306

1.

- 1) $\Pi_{id, person_name}(\sigma_{employee.person_name=works.person_name ^ company_name= "BigBank"}$ (employee \bowtie works))
- 2) $\Pi_{id, person_name, pCity}(\sigma_{employee.person_name=works.person_name^company_name="BigBank"}(employee \bowtie works))$
- 3) Π_{id, person_name, street, pCity,} (σ_{employee.person_name=works.person_name ^ company_name= "BigBank"} ^ salary > 10000\$ (employee ⋈ works))
- 4) ∏_{id}, person_name, pCity, cCity($\sigma_{employee.person_name=works.person_name ^ works.company_name = company.company_name ^ cCity = pCity((employee ⋈ works ⋈ company))$

2.

- 1) $\Pi_{id, person_name}(\sigma_{employee.person_name=works.person_name} \land company_name \neq "BigBank" (employee <math>\bowtie works$))
- 2) $\Pi_{id, person_name}(\sigma_{employee.person_name=works.person_name ^ salary>avg(salary)}$ (employee \bowtie works))
- 3. Inserting a tuple:

(3135, Nazarbaev, Management, 55,000\$)

into the instructor table, where the department table does not have the department Management, would violate the foreign key constraint.

• Deleting the tuple:

(Chemistry, Sherlock, 89,000\$)

from the department table, where at least one student or instructor tuple has dept name as Chemistry, would violate the foreign key con-straint.

4. employee (<u>person name</u>, street, city)

works (<u>person name</u>, company name, salary) company (<u>company name</u>, city)