Real Analysis Reference Sheet

σ -Algebras

- **Def.** (Algebra) An algebra of set on $X(\neq \emptyset)$ is a nonempty collection \mathcal{A} of subsets of X that is closed under finite unions and complements.
- **Def.** (σ -algebra) A σ -algebra is an algebra that is closed under countable unions.
- **Def.** (Borel σ -algebra) If X is a metric or topological space, then the σ -algebra generated by the family of open sets in X is called the Borel σ -algebra on X and is denoted \mathcal{B}_X .
- **Def.** (product σ -algebra) Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be an indexed collection of nonempty sets. Let $X=\prod_{{\alpha}\in A}X_{\alpha}$ and $\pi_{\alpha}:X\to X_{\alpha}$ the coordinate maps. If \mathcal{M}_{α} is a σ -algebra on X_{α} for each α , the product σ -algebra on X is the σ -algebra generated by the set

$$\{\pi_{\alpha}^{-1}(E_{\alpha}): E_{\alpha} \in \mathcal{M}_{\alpha}, \alpha \in A\}$$

Measures

- **Def.** (Measure) Let X be a nonempty set equipped with σ -algebra, \mathcal{M} . A measure on (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that
 - (i) $\mu(\varnothing) = 0$
 - (ii) If $(E_j)_1^{\infty}$ is a sequence of disjoint sets in \mathcal{M} , then $\mu(\bigcup_1^{\infty} E_j) = \sum_1^{\infty} \mu(E_j)$. (Countable additivity).
- Thm 1.8 (Properties of measures). Let (X, \mathcal{M}, μ) be a measure space.
 - (a) (Monotonicity) If $E, F \in \mathcal{M}$ and $E \subseteq F$, then $\mu(E) \leq \mu(F)$.
 - (b) (Subadditivity) If $(E_j)_1^{\infty} \subset \mathcal{M}$, then $\mu(\bigcup_1^{\infty} E_j) \leq \sum_1^{\infty} \mu(E_j)$.
 - (c) (Continuity from below) If $(E_j)_1^{\infty}$ is an increasing sequence in \mathcal{M} , then $\mu(\bigcup_1^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.

- (d) (Continuity from above) If $(E_j)_1^{\infty}$ is a decreasing sequence in \mathcal{M} and $\mu(E_1) < \infty$, then $\mu(\bigcap_{1}^{\infty} E_j) = \lim_{j \to \infty} \mu(E_j)$.
- (Types of measures) If $\mu(X) < \infty$ then μ is called a finite measures. If there exists a sequence $(E_j)_1^{\infty} \subset \mathcal{M}$ such that $X = \bigcup_1^{\infty} E_j$ and $\mu(E_j) < \infty$ for all $j \in \mathbb{N}$, then μ is called a σ -finite measure. If for each $E \in \mathcal{M}$ with $\mu(E) = \infty$, there exists $F \in \mathcal{M}$ with $F \subset E$ and $0 < \mu(F) < \infty$, then μ is called a semifinite measure.
- **Def.** (Complete measure) A measure, μ , whose domain (the σ -alg.) contains all subsets of null-sets is called complete. Null-sets are sets, $N \in \mathcal{M}$ such that $\mu(N) = 0$.
- Thm 1.9 Suppose (X, \mathcal{M}, μ) is a measure space. Let $\mathcal{N} = \{N \in \mathcal{M} : \mu(N) = 0\}$ and $\overline{\mathcal{M}} = \{E \cup F : E \in \mathcal{M} \text{ and } F \subset N \text{ for some } N \in \mathcal{N}\}$. Then $\overline{\mathcal{M}}$ is a σ -algebra, and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$. The measure $\overline{\mu}$ is called the completion of μ and $\overline{\mathcal{M}}$ is called the completion of \mathcal{M} w.r.t. μ .
- **Def.** (Outer measure) An outer measure on $X(\neq \varnothing)$ is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ that satisfies
 - (i) $\mu^*(\emptyset) = 0$
 - (ii) $\mu^*(A) \le \mu^*(B)$ if $A \subseteq B$
 - (iii) $\mu^*(\bigcup_1^\infty A_j) \le \sum_1^\infty \mu^*(A_j)$.
- **Def.** (μ^* -measurable sets) A set $A \subseteq X$ is called μ^* -measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$
 for all $E \subseteq X$

- Thm 1.11 (Caratheodory's Theorem) If μ^* is an outer measure on X, the collection \mathcal{M} of μ^* measurable sets forms a σ -algebra, and the restriction of μ^* to \mathcal{M} is a complete measure.
- **Def.** (premeasure) If \mathcal{A} is an algebra on X, then a function $\mu_0 : \mathcal{A} \to [0, \infty]$ is called a premeasure if $\mu_0(\emptyset) = 0$ and μ_0 is countably additive on disjoint sets.
- (Outer measure induced by premeasure, 1.12) $\mu^*(E) = \inf \{ \sum_{i=1}^{\infty} \mu_0(A_i) : A_i \in \mathcal{A}, E \subseteq \bigcup_{i=1}^{\infty} A_i \}$

- **Prop 1.13** If μ_0 is a permeasure on \mathcal{A} and μ^* is an induced outer measure, then $\mu^*|_{\mathcal{A}} = \mu_0$ and every set in \mathcal{A} is μ^* -measurable.
- (Caratheodory's contruction of measures) Start with a premeasure μ_0 on an algebra \mathcal{A} , use μ_0 to induce an outer measure μ^* , and then extend μ_0 to a complete measure $\mu = \mu^*|_{\mathcal{M}}$ defined on the σ -algebra, \mathcal{M} , of μ^* -measurable sets.
- **Def.** (Lebesgue-Stieltjes measure) Let $F : \mathbb{R} \to \mathbb{R}$ be an increasing, right continuous function. Then there is a unique measure on $\mathcal{B}_{\mathbb{R}}$ (Borel σ -alg. on \mathbb{R}) such that the measure of any interval (a,b) is simply its length b-a for all $a,b \in \mathbb{R}$. Caratheodory's contruction may then be applied to extend this measure to a complete measure, denoted μ_F , whose domain, \mathcal{M}_{μ} , is strictly larger than $\mathcal{B}_{\mathbb{R}}$. This complete measure is called the Lebesgue-Stieltjes measure associated to F and

$$\mu_F(E) = \inf \left\{ \sum_{1}^{\infty} \left[F(b_j) - F(a_j) \right] : E \subseteq \bigcup_{1}^{\infty} (a_j, b_j) \right\}$$

- Prop 1.20 If $E \in \mathcal{M}_{\mu}$ and $\mu(E) < \infty$, then for every $\epsilon > 0$ there is a set A that is a finite union of open intervals such that $\mu(E \triangle A) < \epsilon$.
- **Def.** (Lebesgue measure) The Lebesgue measure is the complete measure μ_F associated to the function F(x) = x. We denote this measure by $m : \mathcal{L} \to [0, \infty]$ where \mathcal{L} denotes the set of Lebesgue measurable sets (m-measurable). Note $\mathcal{B}_{\mathbb{R}} \subset \mathcal{L}$ strictly.

The most significant properties of the Lebesgue measure are its invariance under translations and simple behavior under dilation.

Measurable Functions

• **Def.** (Measurable functions) Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measure spaces. Then a mapping $f: X \to Y$ is called $(\mathcal{M}, \mathcal{N})$ -measurable or just measurable if $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$.

This is similar to the definition of continuous mappings between topological spaces. If \mathcal{N} is a σ -algebra generated by some set \mathcal{E} , then we may simply show $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{E}$.

For complex-valued functions on X, we say they are measurable if it is $(\mathcal{M}, \mathcal{B}_{\mathbb{C}})$ -measurable. Such functions have nice closure properties. If $f, g: X \to \mathbb{C}$ are measurable, then so are f+g, fg, $\max\{f,g\}$ and $\min\{f,g\}$.

• **Def.** (simple function) A simple function on X is a finite linear combination of characteristic functions of sets in \mathcal{M} with complex coefficients.

$$f = \sum_{1}^{n} z_j \chi_{E_j}$$

where $E_j = f^{-1}(\{z_j\})$ and range $(f) = \{z_j : 1 \le j \le n\}$. This is called the standard representation.

- Thm 2.10 If $f: X \to \mathbb{C}$ is measurable, there is a sequence $(\phi_n)_1^{\infty}$ of simple functions such that $0 \le |\phi_1| \le |\phi_2| \le \cdots \le |f|, \ \phi_n \to f$ pointwise, and $\phi_n \to f$ uniformly on any set on which f is bounded.
- **Prop 2.11** The following are true iff μ is complete:
 - (a) If f is measurable and $f = g \mu$ -a.e., then g is measurable.
 - (b) If f_n is measurable for $n \in \mathbb{N}$ and $f_n \to f$ μ -a.e., then f is measurable.

Integration

• (Integration of nonnegative functions) Define the space $L^+(X)$ to the set of measurable nonnegative functions on X. If ϕ is a simple function in $L^+(X)$ with standard representation $\phi = \sum_{1}^{n} a_j \chi_{E_j}$, then define the integral of ϕ w.r.t. μ by

$$\int_X \phi \ d\mu = \sum_1^n a_j \mu(E_j).$$

and for $A \in \mathcal{M}$, $\int_A \phi \ d\mu = \int_X \phi \chi_A \ d\mu$. Some general properties:

- (a) If $c \ge 0$, $\int c\phi = c \int \phi$.
- (b) $\int (\phi + \psi) = \int \phi + \int \psi$
- (c) If $\phi \leq \psi$, then $\int \phi \leq \int \psi$.
- (d) The map $A \mapsto \int_A d\mu$ is a measure on \mathcal{M} .

Now, for any $f \in L^+(X)$, we define its integral by

$$\int f \ d\mu = \sup \left\{ \int \phi \ d\mu : 0 \le \phi \le f, \right.$$

$$\phi \text{ is simple}$$

• (Integration of complex-valued functions) For a real-valued function, f, if f^+ , f^- are its positive and negative parts and at least one of $\int f^+$ and $\int f^-$ is finite, then we define $\int f = \int f^+ - \int f^-$. If both $\int f^+$, $\int f^-$ are finite, then we say f is integrable. Note $|f| = f^+ + f^-$ and $f = f^+ - f^-$.

Next, for a complex-valued function, f, we say that f is integrable on a set E if $\int_E |f| < \infty$ and define

$$\int f = \int \operatorname{Re} f + i \int \operatorname{Im} f$$

Note that the space of complex-valued integrable functions is a complex vector space and the integral is a linear functional on it. The space if integrable complex-valued functions on X is denoted $L^1(X)$ or $L^1(\mu)$. Two functions f,g are equivalent in $L^1(X)$ is f=g μ -a.e. $L^1(X)$ is also a metric space with distance $\int |f-g|d\mu$.

- Thm 2.26 If $f \in L^1(\mu)$ and $\epsilon > 0$, there is an integrable simple function $\phi = \sum_{1}^{n} a_j \chi_{E_j}$ such that $\int |f \phi| d\mu < \epsilon$. That is, the integrable simple functions are dense in L^1 in its metric.
- Cor 3.6 If $f \in L^1(\mu)$, for every $\epsilon > 0$ there exists $\delta > 0$ such that $|\int_E f d\mu| < \epsilon$ whenever $\mu(E) < \delta$.
- Thm 2.14 (The Monotone Convergence Theorem) If $(f_n)_1^{\infty} \subset L^+$ such that $f_j \leq f_{j+1}$ for all j, and $f = \lim_{n \to \infty} (= \sup_n f_n)$, then $\int f = \lim_{n \to \infty} \int f_n$
- Prop 2.16 If $f \in L^+$ then $\int f = 0$ iff f = 0 a.e.

• Lemma 2.18 (Fatou's Lemma) If $(f_n)_1^{\infty}$ is any sequence in L^+ , then

$$\int (\liminf f_n) \le \liminf \int f_n.$$

- Thm 2.24 (Dominated Convergence Theorem) Let $(f_n) \subseteq L^1(X)$ such that
 - (a) $f_n \to f \mu$ -a.e.
 - (b) There exists $g \in L^1$, $g \ge 0$ such that $|f_n| \le g \mu$ -a.e. for all n

Then $f \in L^1$ and $\int_X f = \lim_{n \to \infty} \int_X f_n$.

- Thm 2.28. (Relation between the Lebesgue and Riemann integrals) Let f be a bounded real-valued function on [a, b].
 - (a) If f is Riemann integrable, then f is Lebesgue measurable (and hence integrable on [a, b] since it is bounded), and

$$\int_{a}^{b} f(x)dx = \int_{[a,b]} f \ dm.$$

- (b) f is Riemann integrable iff the set of points $x \in [a, b]$ such that f is discontinuous at x has Lebsegue measure zero.
- Thm 2.26 If $f \in L^1(m)$ then there is a continuous function g that vanishes outside a bounded interval such that $||f g||_1 < \epsilon$
- Thm 2.27 (Differentiation under the integral sign) Suppose that $f: X \times [a, b] \to \mathbb{C}$ and that $f(\cdot, t): X \to \mathbb{C}$ is integrable for each $t \in [a, b]$. Let $F(t) = \int_X f(x, t) d\mu(x)$.
 - (a) Suppose that there exists $g \in L^1(\mu)$ such that $|f(x,t)| \leq g(x)$ for all x,t. If $\lim_{t\to t_0} f(x,t) = f(x,t_0)$ for every x, then $\lim_{t\to t_0} F(t) = F(t_0)$; in particular, if $f(x,\cdot)$ is continuous for each x, then F is continuous.
 - (b) Suppose that $\partial f/\partial t$ exists and there is a $g \in L^1(\mu)$ such that $|(\partial f/\partial t)(x,t)| \leq g(x)$ for all x,t. Then F is differentiable and $F'(x) = \int (\partial f/\partial t)(x,t)d\mu(x)$.

Modes of Convergence

- **Def.** (pointwise convergence) If $(f_n)_1^{\infty}$ is a sequence of measurable complex-valued functions then $f_n \to f$ pointwise if $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in X$. We may also define pointwise μ -a.e. convergence similarly.
- **Def.** (uniform convergence) $(f_n)_1^{\infty}$ converges to f uniformly if $||f_n f||_{\infty} = \sup_{x \in X} |f_n(x) f(x)| \to 0$.
- **Def.** (Convergence in measure) $(f_n)_1^{\infty}$ converges to f in measure if for every $\epsilon > 0$

$$\mu(\{x \in X : |f_n(x) - f(x)| \ge \epsilon\}) \to 0$$

as $n \to \infty$.

- **Def.** (Convergence in L^p space) $(f_n)_1^{\infty}$ converges to f if $||f_n f||_p = (\int |f_n f|^p)^{1/p} \to 0$ as $n \to \infty$.
- (Relationships between modes of convergence)
 - 1. Uniform conv. \Longrightarrow Pointwise conv. \Longrightarrow μ -a.e. conv.
 - 2. If $f_n \to f$ in L^1 then $f_n \to f$ in measure
 - 3. If $f_n \to f$ in L^1 then there is a subsequence of f_n that converges to f μ -a.e.
- Thm 2.33 (Egoroff's Theorem) Suppose that $\mu(X) < \infty$ and $(f_n)_1^{\infty}$ and f are all measurable complex-valued functions on X such that $f_n \to f$ μ -a.e. Then for every $\epsilon > 0$ there exists $E \subset X$ such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on E^c .
- Exc 2.44 (Lusin's Theorem) If $f:[a,b] \to \mathbb{C}$ is Lebesgue measurable and $\epsilon > 0$, there is a compact set $E \subseteq [a,b]$ such that $\mu(E^c) < \epsilon$ and $f|_E$ is continuous.

Product Measures

• Thm 2.37 (The Fubini-Tonelli Theorem) Suppose that (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ -finite measure spaces.

(a) (Tonelli) If $f \in L^+(X \times Y)$, then the functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and $L^+(Y)$, respectively, and

$$\int f d(\mu \times \nu) = \int \left[\int f(x, y) d\nu(y) \right] d\mu(x)$$
$$= \int \left[\int f(x, y) d\mu(x) \right] d\nu(y)$$

- (b) (Fubini) If $f \in L^1(\mu \times \nu)$, then $f_x \in L^1(\nu)$ for a.e. $x \in X$, $f^y \in L^1(\mu)$ for a.e. $y \in Y$, the a.e.-defined functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\mu$ are in $L^1(\mu)$ and $L^1(\nu)$ respectively and the integral equality of Tonelli's holds as well.
- **Def.** (Lebesgue measure on \mathbb{R}^n) The Lebesgue measure on \mathbb{R}^n denoted m^n is the product of Lebesgue measure on \mathbb{R} with itself n times on the n times product space of $\mathcal{B}_{\mathbb{R}}$ or \mathcal{L} .

Differentiation of Measures

- **Def.** (signed measure) A signed measure on (X, \mathcal{M}) is a function $\nu : \mathcal{M} \to [-\infty, \infty]$ such that $\nu(\emptyset) = 0$, ν can only map to either $+\infty$ or $-\infty$ but not both, and if $(E_j)_1^\infty \subset \mathcal{M}$ is disjoint, then $\nu(\bigcup_1^\infty E_j) = \sum_1^\infty \nu(E_j)$ where this sum converges absolutely if $\nu(\bigcup_1^\infty) < \infty$. Every signed measure ν can either be represented as the difference between two positive measures $\mu_1 \mu_2$ or if μ is a measure on \mathcal{M} and $f: X \to [-\infty, \infty]$ is a measurable function such that at least one of $\int f^+ d\mu$ or $\int f^- d\mu$ is finite, then defining $\nu(E) = \int_E f d\mu$ also produces a signed measure.
- Thm 3.3 (The Hahn Decomposition Theorem) If ν is a signed measure on (X, \mathcal{M}) , there exists a positive set P and a negative set N for ν such that $P \cup N = X$, $P \cap N = \emptyset$. If another such pair P', N' exists, then $P \triangle P'$ and $N \triangle N'$ are null for ν .
- **Def.** (mutually singular measures) Two signed measures μ, ν on (X, \mathcal{M}) are mutually singular if there exists $E, F \in \mathcal{M}$ such that $E \cap F = \emptyset$, $E \cap F = X$ and E is null for μ and F is null for ν . We denote this by $\mu \perp \nu$.

• Thm 3.4 (The Jordan Decomposition Theorem) If ν is a signed measure, there exists unique positive measures ν^+, ν^- such that $\nu = \nu^+ - \nu^-$ and $\nu^+ \perp \nu^-$.

Def. (total variation) The total variation of a signed measure ν is $|\nu| = \nu^+ + \nu^-$.

- **Def.** (absolutely continuous measures) Suppose ν is a signed measure and μ is a positive measure on (X, \mathcal{M}) . We say that ν is absolutely continuous w.r.t. μ if $\nu(E) = 0$ whenever $\mu(E) = 0$. We denote this by $\nu \ll \mu$.
- Thm 3.8 (The Lebesgue-Radon-Nikodym Theorem) Let ν be a σ -finite signed measure and μ a σ -finite positive measure on (X, \mathcal{M}) . There exists a unique σ -finite signed measure λ, ρ on (X, \mathcal{M}) such that

$$\lambda \perp \mu, \ \rho \ll \mu, \ \nu = \lambda + \rho.$$

Moreover, there is an extended μ -integrable function $f: X \to \mathbb{R}$ such that

$$d\rho = f d\mu \Leftrightarrow \rho(E) = \int_{E} f d\mu, \ \forall E \in \mathcal{M}$$

and any two such functions are equal μ -a.e. The decomposition $\nu = \lambda + \rho$ is called the Lebesgue decomposition of ν w.r.t. μ . When $\nu \ll \mu$, we have that $d\nu = f d\mu$ for some f and this f is called the Radon-Nikodym derivative of ν w.r.t. μ . and is denoted $f = d\nu/d\mu$.

• **Def.** (Hardy-Littlewood maximal function). Let $f \in L^1_{loc}$, i.e. that f is integrable on any bounded measurable subset of \mathbb{R}^n , then

$$H(f)(x) = \sup_{r>0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(y)| dy$$

• **Def.** (Lebesgue set) For $f \in L^1_{loc}$, the Lebesgue set, L_f is defined to be the following:

$$\left\{ x : \lim_{r \to 0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(y) - f(x)| dy = 0 \right\}$$

• Def. (The Lebesgue Differentiation Theorem) Suppose $f \in L^1_{loc}$. For every x the Lebesgue set of f, in particular, for almost every x, we have

$$\lim_{r \to 0} \frac{1}{m(E_r)} \int_{E_r} |f(y) - f(x)| dy = 0$$

and

$$\lim_{r \to 0} \frac{1}{m(E_r)} \int_{E_r} f(y) dy = f(x)$$

for every family $\{E_r\}_{r>0}$ that shrinks nicely to x. $\{E_r\}$ shrinks nicely to x if $E_r \subseteq B_r(x)$ for each r>0 and there is some constant α independent of r such that $m(E_r) > \alpha m(B_r(x))$.

• Thm 3.22 Let ν be a regular signed or complex Borel measure on \mathbb{R}^n , and let $d\nu = d\lambda + fdm$ be its Lebesgue-Radon-Nikodym representation. Then for m-a.e. $x \in \mathbb{R}^n$,

$$\lim_{r \to 0} \frac{\nu(E_r)}{m(E_r)} = f(x)$$

for every family $\{E_r\}_{r>0}$ that shrinks nicely to x. It is particularly useful in application to use balls centered around x.

Differentiation of functions on \mathbb{R}

- **Def.** (regular measure) A Borel measure ν on \mathbb{R} will be called regular if $\nu(K) < \infty$ for every compact set K and $\nu(E) = \inf\{\nu(U) : U \text{ open, } E \subseteq U\}$ for every $E \in \mathcal{B}_{\mathbb{R}}$. A signed or complex measure will be called regular if its total variation is regular.
- **Def.** (total variation of a function) Let $F: \mathbb{R} \to \mathbb{C}$. The total variation of F on [a,b] is defined as

$$T_F([a, b]) = \sup \{ \sum_{1}^{n} |F(x_j) - F(x_{j-1})| : n \in \mathbb{N}$$

 $a = x_0 < \dots < x_n = b \}$

- **Def.** (bounded variation) If $T_F([a,b]) < \infty$ then F is of bounded variation and we denote $F \in BV([a,b])$.
- **Def.** (absolutely continuous function) A function $F: \mathbb{R} \to \mathbb{C}$ is called absolutely continuous if for every $\epsilon > 0$ there exists $\delta > 0$ such that for any finite set of disjoint intervals $\{(a_j, b_j)\}_{1}^{N}$,

$$\sum_{1}^{N} (b_j - a_j) < \delta \implies \sum_{1}^{N} |F(b_j) - F(a_j)| < \epsilon$$

- Thm 3.35 (The Fundamental Theorem of Calculus for Lebesgue Integrals) If $-\infty < a < b < \infty$ and $F: [a, b] \to \mathbb{C}$, the following are equivalent:
 - (a) F is absolutely continuous on [a, b].
 - (b) $F(x) F(a) = \int_a^x f(t)dt$ for some $f \in L^1([a,b],m)$,
 - (c) F is differentiable a.e. on [a,b], $F' \in L^1([a,b],m)$, and $F(x)-F(a)=\int_a^x F'(t)dt$.

Point Set Topology

- **Def.** (topology) A topology on X is a family \mathcal{T} of subsets of X that contains \emptyset and X and is closed under arbitrary unions and finite intersections.
- **Def.** (neighborhood base) If \mathcal{T} is a topology on X, a neighborhood base for \mathcal{T} at $x \in X$ is a family $\mathcal{N} \subseteq \mathcal{T}$ such that
 - (i) $x \in V$ for all $V \in \mathcal{N}$
 - (ii) If $U \in \mathcal{T}$ and $x \in U$, there exists $V \in \mathcal{N}$ such that $x \in V$ and $V \subseteq U$.

A base for \mathcal{T} is a family $\mathcal{B} \subseteq \mathcal{T}$ that contains a neighborhood base for \mathcal{T} at each $x \in X$.

- **Def.** (first and second countable) A topological space (X, \mathcal{T}) is first countable if there is a countable neighborhood base for \mathcal{T} at every point of X. The space is second countable if \mathcal{T} has a countable base.
- **Def.** (separable space) (X, \mathcal{T}) is separable if X has a countable dense subset. Every second countable space is separable.
 - **Def.** (Hausdorff space) A space is called Hausdorff if for all $x, y \in X$, $x \neq y$, there are disjoint open sets U, V with $x \in U$ and $y \in V$.
- **Def.** (weak topology) The weak topology of a topological space (X, \mathcal{T}) is the weakest topology (the one with the least open sets) under which every element of X^* is continuous on X.
- **Def.** (weak* topology) The weak* topology is the weakest topology on X^* such that the maps, $T_x(\phi) = \phi(x)$ is continuous on X^* for

- any $x \in X$. Convergence in the weak* topology is essentially pointwise convergence. That is $f_n \to f$ iff $f_n(x) \to f(x)$ for all $x \in X$.
- **Def.** (nets) To develop a generalization of sequences that work well in arbitrary topological spaces, begin by defining a type of indexed set called a directed set, which is a set $A(\neq \varnothing)$ equipped with a binary relation \lesssim such that
 - (i) $\alpha \lesssim \alpha$ for all $\alpha \in A$.
 - (ii) if $\alpha \lesssim \beta$ and $\beta \lesssim \gamma$ then $\alpha \lesssim \gamma$.
 - (iii) for any $\alpha, \beta \in A$ there exists $\gamma \in A$ such that $\alpha \lesssim \gamma$ and $\beta \lesssim \gamma$.

A net in a set X is a mapping $\alpha \mapsto x_{\alpha}$ from a directed set A into X. Denote such a mapping by $\langle x_{\alpha} \rangle_{\alpha \in A}$. Let X be a topological space and E a subset of X. A net $\langle x_{\alpha} \rangle_{\alpha \in A}$ is eventually in E if there exists $\alpha_0 \in A$ such that $x_{\alpha} \in E$ for $\alpha \gtrsim \alpha_0$. A point $x \in X$ is a limit of $\langle x_{\alpha} \rangle$ if for every neighborhood U of x, $\langle x_{\alpha} \rangle$ is eventually in U.

- **Def.** (local compactness) A topological space is locally compact if every $x \in X$ has a neighborhood whose closure is compact.
- **Def.** We call locally compact Hausdorff spaces LCH spaces for short.
- **Def.** The support of a complex-valued function $f: X \to \mathbb{C}$ is defined as

$$\operatorname{supp}(f) := \overline{\{x \in X : f(x) \neq 0\}}$$

then define the following spaces:

- 1. $C(X) = \{f : X \to \mathbb{C} \text{ is continuous}\}\$
- 2. $BC(X) = \{ f \in C(X) : f \text{ bounded} \}$
- 3. $C_c(X) = \{ f \in C(X) : \operatorname{supp}(f) \operatorname{compact} \}$
- 4. $C_0(X) = \{ f \in C(X) : f \text{ vanishes at } \infty \}$

It may be shown that

$$C_c(X) \subset C_0(X) \subset BC(X) \subset C(X)$$

- Lemma 4.32 (Urysohn's Lemma) If X is an LCH space and $K \subseteq U \subseteq X$ where K is compact and U is open, there exists $f \in C(X, [0, 1])$ such that f = 1 on K and f = 0 outside a compact subset of U.
- Prop 4.35 If X is an LCH space, then $C_0(X) = \overline{C_c(X)}$ in $\|\cdot\|_{\infty}$.

Elements of Functional Analysis

- **Def.** (Banach space) A normed vector space that is complete w.r.t. the norm metric is called a Banach space.
- **Def.** (bounded linear map) A linear map $T: X \to Y$ between two normed vector spaces is called bounded if there exists $C \geq 0$ such that $\|T(x)\|_Y \leq C\|x\|_X$ for all $x \in X$. If T is linear then continuity on X and boundedness on X are equivalent.
- **Def.** (operator norm) Let L(X, Y) be the space of bounded linear maps from $X \to Y$. Then L(X, Y) is a vector space and the function $T \mapsto ||T||$ is defined by

$$||T|| = \sup_{\substack{x \in X \\ ||x||_X = 1}} ||T(x)||_Y$$

- **Def.** (isometry) If $T \in L(X,Y)$, T is called an isometry if $||T(x)||_Y = ||x||_X$. An isometry is injective but not necessarily surjective. It is, however an isomorphism onto its range (i.e. bijective and T^{-1} is bounded).
- **Def.** (dual space) If X is a vector space over \mathbb{C} , then a linear map from $X \to \mathbb{C}$ is called a linear functional. If X is a normed vector space then the space $L(X,\mathbb{C})$ of bounded linear functionals on X is called the dual space of X and is denoted by X^* . X^* is a Banach space with its operator norm.
- Thm 5.6 (The Hahn-Banach Theorem) Let X be a real vector space, ρ a sublinear functional on X, \mathcal{M} a subspace of X, and fa complex linear functional on \mathcal{M} such that $|f(x)| \leq \rho(x)$ for all $x \in \mathcal{M}$. Then there exists a complex linear functional F on X such that $|F(x)| \leq \rho(x)$ for all $x \in X$ and $F_{\mathcal{M}} = f$.
- Thm 5.8 (Consequences of the Hahn-Banach Thm) Let X be a normed vector space.
 - (a) If \mathcal{M} is a closed subspace of X and $x \in X \setminus \mathcal{M}$, there exists $f \in X^*$ such that $f(x) \neq 0$ and $f|_{\mathcal{M}} = 0$.
 - (b) If $x \neq 0 \in X$, there exists $f \in X^*$ such that ||f|| = 1 and f(x) = ||x||.

- (c) The bounded linear functions on X separate points.
- (d) If $x \in X$, define $\hat{x}: X^* \to \mathbb{C}$ be $\hat{x}(f) = f(x)$. Then the map $x \mapsto \hat{x}$ is a linear isometry from X into X^{**} (the dual of X^*).
- Thm 5.9 (The Baire Category Theorem) Let X be a complete metric space.
 - (a) If $(U_n)_1^{\infty}$ is a sequence of open dense subsets of X, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X
 - (b) X is not a countable union of nowhere dense sets, i.e. not meager.
- Def. (meager set) If X is a topological space, a set E ⊆ X is called meager if E is a countable union of nowhere dense sets. A set is called nowhere dense if its closure has empty interior (i.e. no point in it can be contained in an open ball that's contained in the set). Otherwise, E is called residual. Intuitively, nowhere dense sets are naturally very small, so a meager set still has a sense of smallness, but has nicer properties than nowhere dense sets. (σ-ideal).
- Thm 5.10 (The Open Mapping Theorem) Let X, Y both be Banach spaces. If $T \in L(X, Y)$ is surjective, then T is open, i.e. that T(U) is open in Y whenever U is open in X.
- Thm 5.12 (The Closed Graph Theorem) If X, Y are normed vector spaces and T is a linear map from $X \to Y$, define the graph of T to be $\Gamma(T) = \{(x, y) \in X \times Y : y = T(x)\}$. Then T is closed if $\Gamma(T)$ is a closed subspace of $X \times Y$.
 - If X, Y are Banach spaces and $T: X \to Y$ is a closed linear map, then T is bounded.
- Thm 5.13 (The Uniform Boundedness Principle) Suppose that X, Y are normed vector spaces and A is a subset of L(X, Y).
 - (a) If $\sup_{T \in A} ||T(x)||_Y < \infty$ for all x in some nonmeager subset of X, then $\sup_{T \in A} ||T|| < \infty$
 - (b) If X is a Banach space and $\sup_{T \in A} ||T(x)||_Y$ is finite for all $x \in X$, then $\sup_{T \in A} ||T|| < \infty$.

• **Def.** (weak convergence) Let X be a normed vector space. A net $\langle x_{\alpha} \rangle_{\alpha \in A}$ is said to converge weakly to $x \in X$ iff $f(x_{\alpha}) \to f(x)$ for all $f \in X^*$.

Hilbert Spaces

- **Def.** (Hilbert Space) Let \mathcal{H} be a complex vector space. An inner product on \mathcal{H} is a map $(x,y) \mapsto \langle x,y \rangle$ from $\mathcal{H} \times \mathcal{H} \to \mathbb{C}$ such that
 - (i) $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ for all $x, y, z \in \mathcal{H}$, and $a, b \in \mathbb{C}$.
 - (ii) $\langle y, x \rangle = \overline{\langle x, y \rangle}$
 - (iii) $\langle x, x \rangle \in (0, \infty)$ for all nonzero $x \in \mathcal{H}$.
 - $\langle \cdot, \cdot \rangle$ induces a norm $||x|| = \sqrt{\langle x, x \rangle}$ on \mathcal{H} and if \mathcal{H} is complete w.r.t $|| \cdot ||$ then we say \mathcal{H} is a Hilbert space, a special kind of Banach space which generalizes finite Euclidean spaces. Structurally, every Hilbert space looks like some ℓ^2 space (prop 5.30).
- Thm 5.19 (The Schwarz Inequality) $|\langle x,y\rangle| \leq ||x|| ||y||$ for all $x,y \in \mathcal{H}$ with equality iff x,y are linearly independent.
- Thm 5.22 (The Parallelogram Law) For all $x, y \in \mathcal{H}, ||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$
- Thm 5.23 (The Pythagorean Theorem) If $(x_j)_1^n \subset \mathcal{H}$ and $x_j \perp x_k$ for $j \neq k$, then

$$\|\sum_{1}^{n} x_{j}\|^{2} = \sum_{1}^{n} \|x_{j}\|^{2}$$

- $L^2(X,\mu)$ is a Hilbert space with inner product $\langle f,g\rangle = \int f\overline{g}d\mu$. An important special case of this is obtained by taking μ to be counting measure on $(X,\mathcal{P}(X))$. Here we denote $L^2(X,\mu)$ be $\ell^2(X,\mu)$ the set of functions $f:X\to\mathbb{C}$ such that $\sum_{x\in X}|f(x)|^2<\infty$.
- Thm 5.24 If \mathcal{M} is a closed subspace of \mathcal{H} , then $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$; that is, each $x \in \mathcal{H}$ can be uniquely expressed as x = y + z where $y \in \mathcal{M}$ and $z \in \mathcal{M}^{\perp}$. Moreover, y, z are the unique elements of $\mathcal{M}, \mathcal{M}^{\perp}$ whose distance to x is minimal. Note \mathcal{M}^{\perp} is called the orthogonal complement of \mathcal{M} .

- Thm 5.25 (Riesz Representation Theorem for Hilbert Spaces) If $f \in \mathcal{H}^*$, there is a unique $y \in \mathcal{H}$ such that $f(x) = \langle x, y \rangle$ for all $x \in \mathcal{H}$.
- Thm 5.26 (Bessel's Inequality) If $\{u_{\alpha}\}_{{\alpha}\in A}$ is an orthonormal set in \mathcal{H} , then for any $x\in \mathcal{H}$, $\sum_{{\alpha}\in A}|\langle x,u_{\alpha}\rangle|^2\leq ||x||^2$. In particular, the set $\{\alpha: |\langle x,u_{\alpha}\rangle|^2\neq 0\}$ is countable.
- Thm 5.27 (Parseval's Identity) If $\{u_{\alpha}\}_{{\alpha}\in A}$ is an orthonormal set in \mathcal{H} , the following are equivalent:
 - (a) If $\langle x, u_{\alpha} \rangle = 0$ for all $\alpha \in A$, then x = 0.
 - (b) (Parseval's) $||x||^2 = \sum_{\alpha \in A} |\langle x, u_\alpha \rangle|^2$ for all $x \in \mathcal{H}$
 - (c) For each $x \in \mathcal{H}$, $x = \sum_{\alpha \in A} \langle x, u_{\alpha} \rangle u_{\alpha}$, which converges.
- (Some bounded linear operators) Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces.
 - 1. A unitary map is an invertible (inverse is bounded) map $U: \mathcal{H}_1 \to \mathcal{H}_2$ that preserves inner product. Unitary maps are the true isomorphisms in the category of Hilbert spaces.
 - 2. Let \mathcal{H} be a Hilbert space and $T \in L(\mathcal{H}, \mathcal{H})$. Then there is a unique $T^* \in L(\mathcal{H}, \mathcal{H})$ called the adjoint of T, such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in \mathcal{H}$. Note T is unitary iff T is invertible and $T^{-1} = T^*$.
 - 3. Let $\mathcal{M} \subseteq \mathcal{H}$ be a closed subspace of \mathcal{H} and for $x \in \mathcal{H}$, define P(x) to be the element of \mathcal{M} such that $x P(x) \in M^{\perp}$. If defined so, $P \in L(\mathcal{H}, \mathcal{H})$ and $P^* = P$, $P^2 = P$, range $(P) = \mathcal{M}$ and $\ker(P) = \mathcal{M}^{\perp}$. P is called the orthogonal projection onto \mathcal{M} .

L^p Spaces

• **Def.** (L^p space) We define L^p space by the set of measurable functions $f: X \to \mathbb{C}$ such that $\|f\|_p < \infty$ where

$$||f||_p = \left[\int_X |f|^p d\mu\right]^{1/p}$$

If our measure is the counting measure on X then we usually denote L^p space by ℓ^p .

- Two real numbers p > 1 and q > 1 are called conjugate exponents if $\frac{1}{p} + \frac{1}{q} = 1$. If p = 1. then we generally say $q = \infty$ (for norms).
- (Young's Inequality) If a, b are nonnegative real numbers and if p, q are conjugate exponents, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

where equality holds iff $a^p = b^q$.

• Thm 6.2 (Holder's Inequality) Suppose p, q are conjugate exponents. If f, g are measurable functions on X, then

$$||fg||_1 \le ||f||_p ||g||_q$$

In particular, if $f \in L^p$ and $g \in L^q$, then $fg \in L^q$, and in this case equality holds above iff $\alpha |f|^p = \beta |g|^q$ a.e. for some α, β not both zero.

• Thm 6.5 (Minkowski's Inequality) If $1 \le p < \infty$ and $f, g \in L^p$, then

$$||f + g||_p \le ||f||_p + ||g||_p.$$

- Thm 6.6 For every finite p, L^p is a Banach space.
- **Prop 6.7** For finite p, the set of simple functions $f = \sum_{1}^{n} a_{j} \chi_{E_{j}}$, where $\mu(E_{j}) < \infty$ for all j, is dense in L^{p} .
- Thm 6.8cde
 - (c) $||f_n f||_{\infty} \to 0$ iff there exists $E \in \mathcal{M}$ such that $\mu(E^c) = 0$ and $f_n \to f$ uniformly on E.
 - (d) L^{∞} is a Banach space.
 - (e) The simple function are dense in L^{∞} .
- **Prop 6.10** (Interpolation) If 0 , then

$$L^p \cap L^r \subseteq L^q$$
 and $||f||_q \leq ||f||_p^{\lambda} ||f||_r^{1-r}$

where $\lambda \in (0,1)$ is defined by

$$\lambda = \frac{q^{-1} - r^{-1}}{p^{-1} - r^{-1}}$$

• **Prop 6.12** (Relationship between L^p spaces) If $\mu(X) < \infty$ and $0 , then <math>L^p(\mu) \supseteq L^q(\mu)$ and

$$||f||_p \le ||f||_q \mu(X)^{(1/p)-(1/q)}$$

- The most important L^p spaces are L^1 for integrability, L^2 because it is a Hilbert space, and L^{∞} because its topology is closely related to that of uniform convergence.
- Thm 6.15 (Representation of $(L^p)^*$) Let p,q be conjugate exponents. If $1 , then for each <math>\phi \in (L^p)^*$ there exists $g \in L^q$ such that $\phi(f) = \int fg$ for all $f \in L^p$, and hence L^q is isometrically isomorphic to $(L^p)^*$. The same conclusion holds for p = 1 provided μ is σ -finite.

Radon Measures

• **Def.** (regular measure) If μ is a Borel measure on X and E a Borel subset of X. The measure μ is called outer regular on E if

$$\mu(E) = \inf \{ \mu(U) : U \supseteq E, U \text{ open} \}$$

and inner regular on E if

$$\mu(E) = \sup{\{\mu(K) : K \subseteq E, K \text{ compact}\}}$$

 μ is called regular if μ is both outer and inner regular.

- If $f \in C_c(X)$ with $0 \le f \le 1$ for all $x \in X$, we write
 - 1. $K \prec f$ if f(x) = 1 for all $x \in K$ where K is compact.
 - 2. $f \prec V$ if $supp(f) \subseteq V$ where V is open.
- **Def.** A Borel measure on X is called a Radon measure if
 - (i) $\mu(K) < \infty$ for K compact.
 - (ii) μ is outer regular for all Borel sets E.
 - (iii) μ is inner regular for all open sets E or σ -finite E.
 - (iv) μ is complete.

- Thm 7.2 (The Riesz Representation Theorem for positive linear functions) If I is a positive linear functional on $C_c(X)$, there is a unique Radon measure μ on X such that $I(f) = \int f d\mu$ for all $f \in C_c(X)$. Thus, there is a 1-1 correspondence between the set of positive linear functions on $C_c(X)$ and the set of Radon measures on X.
- **Prop 7.9** If μ is a Radon measure on X, $C_c(X)$ is dense in $L^p(\mu)$ for $1 \le p < \infty$.
- Due to the representation theorem, we have 2 ways to determine any Radon measure μ on X:
 - 1. Either normally by $\mu(E) = \int \chi_E d\mu$, for $E \in \mathcal{M}$
 - 2. or $\mu(E) = \int_X f d\mu$ for the correct $f \in C_c(X)$.

The reason is that one can approximate χ_E by $f \in C_c(X)$ when E is nice.

- Lemma 7.15 If $I \in (C_0(X,\mathbb{R}))^*$, there exists positive functions $I^{\pm} \in (C_0(X,\mathbb{R}))^*$ such that $I = I^+ I^-$. This is a "Jordan decomposition" for real linear functionals on $C_0(X,\mathbb{R})$.
- Thm 7.17 (The Riesz Representation Theorem for $(C_0(X))^*$) Let X be a LCH space, and for $\mu \in M(X)$ the space of complex Radon measures on X, and $f \in C_0(X)$ let $I_{\mu}(f) =$ $\int f d\mu$. Then the map $\mu \mapsto I_{\mu}$ is an isometric isomorphism from $M(X) \to (C_0(X))^*$.
- Cor 7.18 If X is a compact Hausdorff space, then $(C(X))^*$ is isometrically isomorphic to M(X).

Elements of Fourier Analysis

- $C^{\infty}(\mathbb{R}^n)$ is the set of infinitely continuously differentiable functions on \mathbb{R}^n .
- **Def.** (multi-index notation) We first abbreviate partial derivatives by $\partial_j := \frac{\partial}{\partial x_j}$ in \mathbb{R}^n . Now for $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}^n$, we set

$$|\alpha| = \sum_{1}^{n} \alpha_{j},$$

and

$$X^{\alpha}\partial^{\beta} = \left(\prod_{1}^{n} \alpha_{j}\right) \frac{\partial^{|\beta|}}{\partial x_{1}^{\beta_{1}} \cdots \partial x_{n}^{\beta_{n}}}$$

• One useful C^{∞} space is C_c^{∞} , the space of compactly supported C^{∞} functions. One nontrivial example in this space is

$$\psi(x) = \begin{cases} e^{\frac{1}{|x|^2 - 1}}, & |x| < 1\\ 0, & |x| \ge 1 \end{cases}$$

• **Def.** (locally convex space and Frechet space) Recall a seminorm is a norm that isn't positive definite (i.e. $\rho(x) = 0$ iff x = 0). A family of seminorms $\{\rho_{\alpha}\}_{{\alpha}\in A}$ is said to separate points if $\rho_{\alpha}(x) = 0$ for all $\alpha \in A$ iff x = 0.

A locally convex space is a vector space X with a family of seminorms that separate points. The natural topology on such a space is the weakest topology in which all ρ_{α} and addition are continuous. This topology may be generated by the set of all open balls w.r.t to each seminorm.

A locally convect space that is defined by a countable family of seminorms and is complete is called a Frechet space.

• **Def.** (Schwartz space) Schwartz space, \mathcal{S} , consists of C^{∞} functions which, together with their derivatives, vanish at infinity faster that any power of |x|. That is, for any $N \in \mathbb{N}$ and $\alpha \in \mathbb{N}^n$ we define

$$||f||_{(N,\alpha)} = \sup_{x \in \mathbb{R}^n} (1 + |x|)^N |\partial^{\alpha} f(x)|$$

then

$$\mathcal{S} = \{ f \in C^{\infty} : ||f||_{(N,\alpha)} < \infty \text{ for all } N, \alpha \}$$

It is important to note that if $f \in \mathcal{S}$, then $\partial^{\alpha} f \in L^{p}$ for all α and all $p \in [1, \infty]$.

- **Prop 8.3** If $f \in C^{\infty}$, then $f \in \mathcal{S}$ iff $x^{\beta}\partial^{\alpha}f$ is bounded for all multi-indices $\alpha, \beta \in \mathbb{R}^n$ iff $\partial^{\alpha}(x^{\beta}f)$ is bounded for all multi-indices $\alpha, \beta \in \mathbb{R}^n$. This is a very useful alternative definition for Schwartz functions.
- **Prop 8.2** S is a Frechet space with the topology defined by the seminorms $\|\cdot\|_{(N,\alpha)}$

• **Def.** (convolution) Let f, g be measurable functions on \mathbb{R}^n . The convolution of f and g is the function f * g defined by

$$(f * g)(x) = \int f(x - y)g(y)dy$$

for all x such that the integral exists.

- **Prop 8.6** Assuming that all integrals in question exist, we have
 - (a) f * q = q * f
 - (b) (f * g) * h = f * (g * h)
 - (c) For $z \in \mathbb{R}^n$, $\tau_z(f * g) = (\tau_z f) * g = f * (\tau_z g)$ where $\tau_z(f) = f(x - z)$ for all $x \in \mathbb{R}^n$.
 - (d) If A is the closure of $\{x+y : x \in \text{supp}(f), y \in \text{supp}(g)\}$, then $\text{supp}(f * g) \subseteq A$.
- Prop 8.9 (Young's Inequality) Suppose $1 \le p, q, r \le \infty$ and $p^{-1} + q^{-1} = r^{-1} + 1$. Then if $f \in L^p$ and $g \in L^q$, then $f * g \in L^r$ and $||f * g||_r \le ||f||_p ||g||_q$.
- Thm 8.15 (Approximate identities) For a function ϕ on \mathbb{R}^n and t > 0 we define

$$\phi_t(x) = t^{-n}\phi(t^{-n}x)$$

If $\phi \in L^1$ and $\int \phi(x)dx = a$ then

- (a) If $f \in L^p$ $(1 \le p < \infty)$, then $f * \phi_t \to af$ in the L^p norm as $t \to 0$.
- (b) If f is bounded and uniformly continuous, then $f * \phi_t \to af$ uniformly as $t \to 0$.
- (c) If $f \in L^{\infty}$ and f is continuous on an open set U, then $f * \phi_t \to af$ uniformly on compact subsets of U as $t \to 0$.
- Prop 8.17 C_c^{∞} (and hence also S) is dense in L^p $(1 \le p < \infty)$ and in C_0 .
- Thm 8.20 Let $E_k(x) = e^{2\pi i k x}$, then $\{E_k : k \in \mathbb{Z}^n\}$ is an orthonormal basis of $L^2(\mathbb{T}^n)$. It is also dense in $C(\mathbb{T}^n)$ which is dense in $L^2(\mathbb{T}^n)$
- **Def.** (Fourier transform on $L^2(\mathbb{T}^n)$) If $f \in L^2(\mathbb{T}^n)$, we define its Fourier transform \hat{f} , a function on \mathbb{Z}^n , by

$$\mathcal{F}(f)(k) = \hat{f}(k) = \langle f, E_k \rangle = \int f(x)e^{-2\pi ikx}dx$$

and we call the series

$$\sum_{k \in \mathbb{Z}^n} \hat{f}(k) E_k$$

the Fourier series of f. The Fourier transform maps $L^2(\mathbb{T}^n)$ onto $\ell^2(\mathbb{Z}^n)$ with $\|\hat{f}\|_2 = \|f\|_2$, and that the Fourier series of f converges to f in the L^2 norm.

- Thm 8.21 (The Hausdorff-Young Inequality) Suppose that $1 \leq p \leq 2$ and q is the conjugate exponent of p. If $f \in L^p(\mathbb{T}^n)$, then $\hat{f} \in \ell^q(\mathbb{Z}^n)$ and $\|\hat{f}\|_q \leq \|f\|_p$.
- **Def.** (Fourier transform on $L^1(\mathbb{R}^n)$) Let $f \in L^1$. Then

$$\mathcal{F}(f)(\xi) = \hat{f}(\xi) = \int f(x)e^{-2\pi i \xi x} dx$$

- Thm 8.22 (Elementary properties of the Fourier transform) Suppose $f, g \in L^1(\mathbb{R}^n)$.
 - (a) $(\tau_y f)(t) = e^{-2\pi i t y} \hat{f}(t)$ and $\tau_y(\hat{f}) = \hat{h}$ where $h(x) = e^{2\pi i y x} f(x)$.
 - (b) If T is an invertible linear tranformation of \mathbb{R}^n and $S = (T^*)^{-1}$ is its inverse transpose, then $(f \circ \widehat{T}) = \widehat{f} \circ T$; and if $T(x) = y^{-1}x$, (y > 0), then $(f \circ \widehat{T})(t) = y^n \widehat{f}(yt)$, so that $(f_y)(t) = \widehat{f}(yt)$ where $f_y(t) = y^{-n}f(y^{-1}t)$
 - (c) $(f * \widehat{g}) = \widehat{f}\widehat{g}$.
 - (d) If $x^{\alpha} f \in L^1$ for $|\alpha| \leq k$ then $\hat{f} \in C^k$ and $\partial^{\alpha} \hat{f} = [(-2\pi i x)^{\alpha} \hat{f}]$.
 - (e) If $f \in C^k$, $\partial^{\alpha} f \in L^1$ for $|\alpha| \leq k$, and $\delta^{\alpha} f \in C_0$ for $|\alpha| \leq k 1$, then $(\partial^{\alpha} f)(t) = (2\pi i t)^{\alpha} \hat{f}(t)$
 - (f) (The Riemann-Lebesgue Lemma) $\mathcal{F}(L^1(\mathbb{R}^n)) \subset C_0(\mathbb{R}^n)$.
- Thm 8.26 (The Fourier Inversion Theorem) If $f \in L^1$, we define

$$\mathcal{F}^{-1}(f)(x) = \hat{f}(-x) = \int f(\xi)e^{2\pi i \xi x} d\xi.$$

if $\hat{f} \in L^1$ as well, then f agrees almost everywhere with a continuous function f_0 , and $\mathcal{F}^{-1}(\hat{f}) = \hat{\mathcal{F}}^{-1}(f) = f_0$.

References

- 1. G.B. Folland, Real Analysis: Modern Techniques and Their Applications 2nd Edition.
- 2. UCR's Real Analysis Qual. Syllabus.
- 3. University of Houston's Real Analysis Qual. Syllabus.
- 4. Z. Zhang, UCR Math209C Lecture Notes, 2021.