Matemática Discreta I - 2020 - 2^{do} semestre

Práctico 3: Funciones y número de Stirling.

Ref. Grimaldi Secciones 5.2 y 5.3

Repaso de definiciones: Dados dos conjuntos A y B, su producto cartesiano es $A \times B := \{(a,b) : a \in A \setminus B : a \in A \setminus B \}$ $A, b \in B$. Una función $f: A \to B$ es un subconjunto de $A \times B$ tal que para cada $a \in A$ existe un único $b \in B$ tal que $(a,b) \in f$ (denotamos ese b=f(a)). El conjunto imagen es $f(A):=\{f(a):a\in A\} \subseteq B$. Cuando se cumple que f(A) = B decimos que f es sobreyectiva. Si $\forall a, a' \in A, a \neq a'$ se tiene que $f(a) \neq f(a')$ entonces decimos que f es inyectiva. Una función es biyectiva si es inyectiva y sobreyectiva. Denotamos por $Sob(m, n) := \#\{f : A \to B : f \text{ sobreyectiva}\}\ donde\ |A| = m, |B| = n.$

Ejercicio 1 Sean $A = \{-2, -1, 0, 1, 2\}$ y $B = \mathbb{Z}$.

- a. Exprese la función $f: A \to B$ dada por $f(x) = x^2 1$ como un subconjunto de $A \times B$.
- **b.** Sea $f = \{(-2,5), (-1,-1), (0,-3), (1,-1), (2,5)\}$. Hallar $a, b \in \mathbb{Z}$ tal que $f(x) = ax^2 + b, \forall x \in A$.

Ejercicio 2 Sean $f:A\longrightarrow B$ y $g:B\longrightarrow C$ dos funciones y $g\circ f$ la composición de f con g, es decir que $(q \circ f)(x) = q(f(x))$. Si considera que los conjuntos A, B y C son finitos, pruebe o encuentre un contraejemplo a las siguientes afirmaciones:

- **a.** Si f y g son invectivas también lo es $g \circ f$. **d.** Si $g \circ f$ es invectiva también lo es g.
- b. Si $f \vee g$ son sobrevectivas también lo es $g \circ f$. e. Si $g \circ f$ es sobrevectiva también lo es f.
- **c**. Si $g \circ f$ es invectiva también lo es f.
- **f**. Si $g \circ f$ es sobrevectiva también lo es g.

Ejercicio 3 Sean m', m, n enteros positivos con $m' \le m$ y sean $A = \{1, 2, ..., m\}$ y $B = \{1, 2, ..., n\}$. Calcule el número de funciones $f: A \to B$ tales que:

a. no hay restricciones para f.

- **d.** f es biyectiva.
- **b.** f(x) = 1 para todo $x \in \{1, 2, ..., m'\}$.
- **e**. f(i) < f(j) para todo i < j en A.

c. f es invectiva.

f. $f(i) \leq f(j)$ para todo $i \leq j$ en A.

Ejercicio 4 Sea $\mathcal{P}(A) := \{X : X \subseteq A\}$ el conjunto potencia de A.

- **a.** Considere las funciones $f:A\longrightarrow \mathcal{P}(A)$ que verifican $f(x)\neq \{x\}, \ \forall x\in A$. ¿Cuántas de dichas funciones hay? (Examen Agosto 2003)
- **b.** Considere las funciones $f:\{1,2,\ldots,6\}\to\mathcal{P}(\{1,2,\ldots,6\})$ inyectivas, tales que $1\notin f(1),2\notin$ f(2). ¿Cuántas de dichas funciones hay? (Parcial de mayo de 2018)
- c. Calcule el número de funciones $f: \mathcal{P}(\{1,2,3\}) \to \mathcal{P}(\{1,2,3\})$ tales que $f(X) \subseteq X$ para todo $X \subseteq \{1, 2, 3\}$. (Parcial Julio 2020)

Ejercicio 5 (Parcial 2000) Considere los conjuntos $A = \{1, 2, 3, \dots, 10\}$ y $B = \{1, 2, 3, 4, 5, 6, 7\}$. ¿Cuántas funciones $f: A \to B$ satisfacen $|f(A)| \leq 3$? Indique la opción correcta:

a. Sob(10, 3).

d. $\binom{7}{3}$ Sob $(10,3)+\binom{7}{2}$ Sob $(10,2)+\binom{7}{1}$ Sob(10,1).

b. $3^{10} - \text{Sob}(10, 3)$.

c. $\binom{7}{3}$ Sob $(10,3) - \binom{7}{2}$ Sob $(10,2) + \binom{7}{1}$ Sob(10,1). **e**. $\binom{7}{3}$ Sob(10,3).

Ejercicio 6 El número de Stirling de 2da especie S(m,n) se define como S(m,n) = Sob(m,n)/n!. Un desarreglo de tamaño k es una biyección $f:\{1,2,\ldots,k\}\to\{1,2,\ldots,k\}$ sin puntos fijos (i.e. $\forall x: f(x) \neq x$). Dé un argumento combinatorio para probar que para todo n y m naturales vale:

a.
$$n^m = \sum_{i=1}^n \binom{n}{i} \operatorname{Sob}(m, i)$$
.

b. Sob(m+1, n) = n(Sob(m, n-1) + Sob(m, n)).

c.
$$S(m+1,n) = S(m,n-1) + n S(m,n)$$
.

d. Sob $(m, n) = \sum_{i=1}^{m-(n-1)} {m \choose i}$ Sob(m-i, n-1).

e. $n! = \sum_{k=0}^{n} \binom{n}{k} d_k$, donde $d_0 = 1$ y d_k es el número de desarreglos de tamaño k.

Ejercicio 7 (Parcial 2016) Juan quiere guardar 10 libros diferentes en 7 estantes vacíos diferentes y quiere que al menos 5 de ellos posean un libro. ¿De cuántas maneras puede realizar esta tarea?

a. $Sob(10,7) + Sob(10,6)\binom{7}{6} + Sob(10,5)\binom{7}{5}$.

b. $CR(7,5) = \binom{11}{6}$.

c. $CR(5,7) = \binom{11}{4}$.

d. $S(10,7) + S(10,6) {7 \choose 6} + S(10,5) {7 \choose 5}$.

e. Sob(10,7) + Sob(10,6) + Sob(10,5).