Package 'trajeR'

May 21, 2025

```
Type Package
Title Group Based Modeling Trajectory
Description Estimation of group-
      based trajectory models, including finite mixture models for longitudinal data,
      supporting censored normal, zero-inflated Poisson, logit, and beta distributions,
      using expectation-maximization and quasi-Newton methods, with tools for model selection,
      diagnostics, and visualization of latent trajectory groups,
      <doi:10.4159/9780674041318>, Nagin, D. (2005). Group-
      Based Modeling of Development. Cambridge, MA: Harvard University Press.
      and Noel (2022), <a href="https://orbilu.uni.lu/">https://orbilu.uni.lu/</a>, thesis.
Version 0.11.1
Date 2025-05-18
License GPL (>= 2)
Imports Rcpp (>= 1.0.4.6), minpack.lm, numDeriv, ucminf, MASS,
      capushe, stats
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.3.2
Encoding UTF-8
URL https://github.com/gitedric/trajeR
BugReports https://github.com/gitedric/trajeR/issues
Depends R (>= 2.10)
Suggests spelling
Language en-US
LazyData true
NeedsCompilation yes
Author Cédric Noel [aut, cre],
      Jang Schiltz [aut]
Maintainer Cédric Noel < cedric.noel@univ-lorraine.fr>
Repository CRAN
Date/Publication 2025-05-21 15:50:02 UTC
```

2 adequacy

Contents

adequ	uacy Adequacy of the model
Index	39
	trajeRSH
	trajeRBIC
	trajeRAIC
	trajeR.ZIP
	trajeR.POIS
	trajeR.NL
	trajeR.LOGIT
	trajeR.CNORM
	trajeR
	print.Trajectory.ZIP
	print.Trajectory.POIS
	print Trajectory POIS
	print.Trajectory.LOGIT
	print.Trajectory.CNORM
	print.Trajectory.BETA
	plotrajeR.Trajectory.ZIP
	plotrajeR.Trajectory.POIS
	plotrajeR.Trajectory.NL
	plotrajeR.Trajectory.LOGIT
	plotrajeR.Trajectory.CNORM
	plotrajeR.Trajectory.BETA
	plotrajeR
	OCC
	GroupProfiles
	GroupProb
	fait
	diffaitbeta
	dataNORM01
	ConfIntT
	AvePP
	adequacy

Description

Calculate the summary of the five methods: assignment proportion, average posterior probability, confidence interval, odds of Correct Classification.

AvePP 3

Usage

```
adequacy(sol, Y, A, nb = 10000, alpha = 0.98)
```

Arguments

sol	Trajectory's object. An object of type Trajectory.
Υ	Matrix. A matrix containing the variables in the model.
A	Matrix. A matrix containing the time variable data.
nb	Integer. The numbers of repetitions in the bootstrap method.
alpha	Real. The degree of confidence of the interval.

Value

A table of reals. A table with 5 rows: the estimate probabilities, the two bounds of the confidence interval, the proportion of assignment, the Average Posterior Probability and the Odds of Correct Classification.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
adequacy(sol, Y = data[, 2:6], A = data[, 7:11])</pre>
```

AvePP

Average Posterior Probability

Description

Calculate the Average Posterior Probability. Average Posterior Probability (AvePP) is the average posterior probability of membership for each group for those individuals that were assigned to.

Usage

```
AvePP(sol, Y, A, X = NULL)
```

Arguments

sol	Trajectory's object. An object of type Trajectory.
Υ	Matrix. A matrix containing the variables in the model.
Α	Matrix. A matrix containing the time variable data.
X	Matrix. An optional matrix that modifies the probability of belong to group. By default its value is a one column matrix with value 1.

4 ConfIntT

Value

A vector of reals. The average posterior probability.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
AvePP(sol, Y = data[, 2:6], A = data[, 7:11])</pre>
```

ConfIntT

Confidence interval

Description

Calculate the confidence interval of the probabilities with bootstrap method. We have to specify the number of the repetitions of bootstrap and the degree of confidence.

Usage

```
ConfIntT(sol, Y, A, nb = 10000, alpha = 0.98)
```

Arguments

sol	Trajectory's object. An object of type Trajectory.
Υ	Matrix. A matrix containing the variables in the model.
A	Matrix. A matrix containing the time variable data.
nb	An integer. The number of repetitions in the bootstrap method.
alpha	A number. The degree of confidence of the interval.

Value

A vector of reals. The two bounds of the confidence interval given a degree of confidence.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
ConfIntT(sol, Y = data[, 2:6], A = data[, 7:11])</pre>
```

dataNORM01 5

dataNORM01	Simulated CNORM Dataset
------------	-------------------------

Description

The data01 dataset is a simulated dataset included in the package. It contains 500 trajectories with 10 time-points each, simulating a 3-group solution. The parameters for the groups are summarized in the table below:

(data01)

Parameter	Group 1	Group 2	Group 3
β_{k0}	2.797	7.000	19.545
β_{k1}	8.809	-0.297	-0.407
β_{k2}	-3.201	0.463	0.026
β_{k3}	0.000	-0.021	0.000
π_k	0.32	0.54	0.14
σ_k	4.000	4.000	4.000

Usage

dataNORM01

Format

A data frame with 500 rows and 43 columns:

Columns 2:11 Matrix of real numbers (variable of interest, Y).

Columns 12:21 Matrix of time points (1 to 10, A).

Columns 22:31 Matrix of binary values (0 or 1, time-dependent covariate W).

Columns 32:41 Matrix of real numbers (additional time-dependent covariate W).

Columns 42:43 Matrix of binary values (0 or 1, covariate X).

Details

The dataset includes the following variables:

- Y (columns 2:11): Matrix of real numbers representing the variable of interest.
- A (columns 12:21): Matrix of time points (1 to 10).
- W (columns 22:31): Matrix with values 0 and 1, indicating the presence or absence of a characteristic.
- W (columns 32:41): Matrix of real numbers (additional time-dependent covariate).
- X (columns 42:43): Matrix with values 0 and 1, influencing group membership probability.

Source

Simulated data for illustrative purposes.

6 fait

diffaitbeta	Differential
ulitaltbeta	Dijjerenna

Description

Differential

Usage

```
diffaitbeta(betak, i, t, A, TCOV, fct, diffct)
```

Arguments

betak	Vector of integer.
i	Integer.
t	Real.
A	Matrix of real.
TCOV	Matrix of real.
fct	Function.
diffct	Function.

Value

real. Compute the value of the differential function fct for individual i, time t and group k.

fait	Function fait	

Description

Function fait

Usage

```
fait(betak, i, t, A, TCOV, fct, diffct)
```

Vector of integer.

Arguments

betak

i	Integer.
t	Real.
Α	Matrix of real.
TCOV	Matrix of real.
fct	Function.
diffct	Function.

GroupProb 7

Value

real. Compute the value of the function fct for individual i, time t and group k.

|--|

Description

GroupProb calculate the membership probability of each value of the data.

Usage

```
GroupProb(Obj, Y, A, TCOV = NULL, X = NULL)
```

Arguments

0bj	Trajectory's object. A trajectory object that is return by trajeR function.
Υ	Matrix. A real matrix. The data.
Α	Matrix. A real matrix. The time variable.
TCOV	Matrix. A real matrix. Optional, by default the value is NULL. It contained the time dependent covariate.
X	Matrix. A real matrix. Optional, by default the value is NULL. It contained a covariate that modify the probability membership.

Value

a real matrix. For each individual i in the data, this matrix contained the membership probability of each group.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
GroupProb(sol, Y = data[, 2:6], A = data[, 7:11])</pre>
```

8 OCC

GroupProfiles

Profiles of each group

Description

GroupProfiles calculate the profile of a group regarding covariate. It is a cross tabulation of individual level trajectory group assignments with individual level characteristic that might be associated with trajectory group membership.

Usage

```
GroupProfiles(sol, Y, A, X)
```

Arguments

sol	Trajectory's object. A object of type trajectory.
Υ	Matrix. A matrix containing the variables in the model.
Α	Matrix. A matrix containing the time variable data.
Χ	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.

Value

A table of real.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(
   Y = data[, 2:6], A = data[, 7:11], Risk = data[, 12],
   degre = c(2, 2), Model = "CNORM", Method = "L"
)
GroupProfiles(sol, Y = data[, 2:6], A = data[, 7:11], X = data[, 12])</pre>
```

OCC

Odds of Correct Classification

Description

Calculate Odds of Correct Classification. The Odds of Correct Classification for group k (OCCj) is the ratio between the odds of a correct classification into group j on the basis of the posterior probability rule and the odds of correct assignment based on random assignments with the probability of assignment to group j is the probability estimate by the model.

plotrajeR 9

Matrix. A matrix containing the time variable data.

Usage

```
OCC(sol, Y, A)
```

Arguments

Α

Trajectory's object. An object of type Trajectory.Matrix. A matrix containing the variables in the model.

Value

A vector of reals. The Odds of Correct Classification.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
OCC(sol, Y = data[, 2:6], A = data[, 7:11])</pre>
```

plotrajeR

plot trajectory

Description

```
plot trajectory
```

Usage

```
plotrajeR(Obj, ...)
```

Arguments

Obj an object of class "Trajectory".
... optional parameters

Value

a graphic.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
plotrajeR(sol)</pre>
```

```
plotraje R. Trajectory. BETA \\ plot \textit{BETA trajectory}
```

```
plot BETA trajectory
```

Usage

```
## S3 method for class 'Trajectory.BETA'
plotrajeR(
   Obj,
   plotcov = NULL,
   col = "black",
   Y = NULL,
   A = NULL,
   Risk = NULL,
   TCOV = NULL,
   mean = FALSE,
   alpha = 1,
   ...
)
```

Arguments

Obj	an object of class "Trajectory.LOGIT".
plotcov	an optional vector or matrix with the same length as the time period. Default value is NULL.
col	an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
Υ	Matrix. A matrix containing the variables in the model.
Α	Matrix. A matrix containing the time variable data.
Risk	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV	Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
mean	an optional logical. Indicate if the mean of ech group and time value must be draw.
alpha	on optional real. Indicate the alpha channel of the points color.
	optional parameters

Value

a graphic.

```
{\it plot cnorm trajectory. CNORM trajectory}
```

```
plot CNORM trajectory
```

Usage

```
## S3 method for class 'Trajectory.CNORM'
plotrajeR(
   Obj,
   plotcov = NULL,
   col = "black",
   Y = NULL,
   A = NULL,
   Risk = NULL,
   mean = FALSE,
   alpha = 1,
   ...
)
```

Arguments

0bj	an object of class "Trajectory.CNORM".
plotcov	an optional vector or matrix with the same length as the time period. Default value is NULL.
col	an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
Υ	Matrix. A matrix containing the variables in the model.
Α	Matrix. A matrix containing the time variable data.
Risk	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
mean	an optional logical. Indicate if the mean of ech group and time value must be draw.
alpha	on optional real. Indicate the alpha channel of the points color.
	optional parameters

Value

```
a graphic.
```

```
{\it plot LOGIT} \\ {\it plot LOGIT trajectory}
```

```
plot LOGIT trajectory
```

Usage

```
## S3 method for class 'Trajectory.LOGIT'
plotrajeR(
   Obj,
   plotcov = NULL,
   dec = 0,
   col = "black",
   Y = NULL,
   A = NULL,
   Risk = NULL,
   mean = FALSE,
   alpha = 1,
   ...
)
```

Arguments

0bj	an object of class "Trajectory.LOGIT".
plotcov	an optional vector or matrix with the same length as the time period. Default value is NULL.
dec	an optional real. It precise the shift to draw the data points.
col	an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
Υ	Matrix. A matrix containing the variables in the model.
Α	Matrix. A matrix containing the time variable data.
Risk	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
mean	an optional logical. Indicate if the mean of ech group and time value must be draw.
alpha	on optional real. Indicate the alpha channel of the points color.
	optional parameters

Value

a graphic.

```
\verb|plotrajeR.Trajectory.NL|
```

plot Non Linear trajectory

Description

plot Non Linear trajectory

Usage

```
## S3 method for class 'Trajectory.NL'
plotrajeR(
   Obj,
   plotcov = NULL,
   col = "black",
   Y = NULL,
   A = NULL,
   Risk = NULL,
   mean = FALSE,
   alpha = 1,
   TCOV = NULL,
   ...
)
```

Arguments

0bj	an object of class "Trajectory.LOGIT".
plotcov	an optional vector or matrix with the same length as the time period. Default value is NULL.
col	an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
Υ	Matrix. A matrix containing the variables in the model.
A	Matrix. A matrix containing the time variable data.
Risk	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
mean	an optional logical. Indicate if the mean of ech group and time value must be draw.
alpha	on optional real. Indicate the alpha channel of the points color.
TCOV	Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
• • •	optional parameters

Value

a graphic.

```
{\it plot POIS trajectory.} \\ {\it plot POIS trajectory}
```

```
plot POIS trajectory
```

Usage

```
## S3 method for class 'Trajectory.POIS'
plotrajeR(
   Obj,
   plotcov = NULL,
   dec = 0,
   col = "black",
   Y = NULL,
   A = NULL,
   Risk = NULL,
   TCOV = NULL,
   mean = FALSE,
   alpha = 1,
   ...
)
```

Arguments

Obj	an object of class "Trajectory.POIS".
plotcov	an optional vector or matrix with the same length as the time period. Default value is NULL.
dec	an optional real. It precise the shift to draw the data points.
col	an optional vector. The vector of colors. It must contain a color for each trajectory and each points of groups. Its length is the double of the number of group. Default value is a grayscale.
Υ	Matrix. A matrix containing the variables in the model.
Α	Matrix. A matrix containing the time variable data.
Risk	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV	Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
mean	an optional logical. Indicate if the mean of ech group and time value must be draw.
alpha	on optional real. Indicate the alpha channel of the points color.
	optional parameters

Value

a graphic.

```
plotrajeR.Trajectory.ZIP

plot ZIP trajectory
```

Description

```
plot ZIP trajectory
```

Usage

```
## S3 method for class 'Trajectory.ZIP'
plotrajeR(
   Obj,
   plotcov = NULL,
   dec = 0,
   col = "black",
   Y = NULL,
   A = NULL,
   Risk = NULL,
   TCOV = NULL,
   mean = FALSE,
   alpha = 1,
   ...
)
```

Arguments

0bj	an object of class "Trajectory.LOGIT".	
plotcov	an optional vector or matrix with the same length as the time period. Default value is NULL.	
dec	an optional real. It precise the shift to draw the data points.	
col	an optional vector. The vector of colors. It must contain a color for each traje tory and each points of groups. Its length is the double of the number of group Default value is a grayscale.	
Υ	Matrix. A matrix containing the variables in the model.	
Α	Matrix. A matrix containing the time variable data.	
Risk	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.	
TCOV	Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.	

an optional logical. Indicate if the mean of ech group and time value must be mean draw.

alpha on optional real. Indicate the alpha channel of the points color.

optional parameters

Value

a graphic.

```
print.Trajectory.BETA Print BETA
```

Description

Print method for an object of class "Trajectory.BETA".

Usage

```
## S3 method for class 'Trajectory.BETA'
print(x, ...)
```

Arguments

```
Trajectory's object. An object of class "Trajectory.BETA".
optional parameters
```

Value

The print of Obj.

Examples

```
data <- read.csv(system.file("extdata", "BETA2gr.csv", package = "trajeR"))</pre>
data <- as.matrix(data)</pre>
data[, 2:6] \leftarrow data[, 2:6] * (nrow(data[, 2:6]) - 1 + 0.5) / nrow(data[, 2:6])
sol <- trajeR(</pre>
  Y = data[, 2:6], A = data[, 7:11], itermax = 50,
  degre = c(2, 2), degre.phi = c(1, 1), Model = "BETA", Method = "L"
)
sol
```

```
print.Trajectory.CNORM
```

Print CNORM

Description

Print method for an object of class "Trajectory. CNORM".

Usage

```
## S3 method for class 'Trajectory.CNORM'
print(x, ...)
```

Arguments

- x Trajectory's object. An object of class "Trajectory.CNORM".
- ... optional parameters

Value

The print of Obj.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
sol</pre>
```

```
print.Trajectory.LOGIT
```

Print LOGIT

Description

Print method for an object of class "Trajectory.LOGIT".

Usage

```
## S3 method for class 'Trajectory.LOGIT'
print(x, ...)
```

Arguments

- x Trajectory's object. . An object of class "Trajectory.LOGIT".
- ... optional parameters

Value

The print of Obj.

Examples

```
data <- read.csv(system.file("extdata", "LOGIT2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(1, 2), Model = "LOGIT", Method = "L")
sol</pre>
```

Description

Print method for an object of class "Trajectory.NL".

Usage

```
## S3 method for class 'Trajectory.NL'
print(x, ...)
```

Arguments

```
x Trajectory's object. An object of class "Trajectory.NL".... optional parameters
```

Value

The print of Obj.

```
print.Trajectory.POIS Print POIS
```

Description

Print method for an object of class "Trajectory.POIS".

Usage

```
## S3 method for class 'Trajectory.POIS' print(x, ...)
```

Arguments

```
Trajectory's object. . An object of class "Trajectory.POIS". . . . optional parameters
```

print.Trajectory.ZIP

Value

The print of Obj.

Examples

```
data <- read.csv(system.file("extdata", "POIS2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(
   Y = data[, 2:6], A = data[, 7:11],
   degre = c(2, 2), Model = "POIS", Method = "L", hessian = FALSE
)
sol</pre>
```

```
print.Trajectory.ZIP Print ZIP
```

Description

Print method for an object of class "Trajectory.ZIP".

Usage

```
## S3 method for class 'Trajectory.ZIP'
print(x, ...)
```

Arguments

```
x Trajectory's object. An object of class "Trajectory.ZIP".... optional parameters
```

Value

The print of Obj.

Examples

```
data <- read.csv(system.file("extdata", "ZIP2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(
   Y = data[, 2:6], A = data[, 7:11],
   degre = c(1, 2), degre.nu = c(1, 1), Model = "ZIP", Method = "L"
)
sol</pre>
```

20 trajeR

nro	asAg	ion

Assignment proportion

Description

Calculate the proportion of individuals in a given group. That is the ratio of the number of individuals in one group and all the individuals.

Usage

```
propAssign(sol, Y, A)
```

Arguments

Trajectory's object. An object of type Trajectory.
 Matrix. A matrix containing the variables in the model.
 Matrix. A matrix containing the time variable data.

Value

A vector of real. The proportion.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
propAssign(sol, Y = data[, 2:6], A = data[, 7:11])</pre>
```

trajeR

Fitting longitudinal mixture models

Description

trajeR is used to fit longitudinal mixture models. It used 3 types of mixture models: LOGIT, ZIP and censored Normal.

Usage

```
trajeR(
  Y,
  A,
  Risk = NULL,
  TCOV = NULL,
  degre = NULL,
```

trajeR 21

```
degre.nu = 0,
 degre.phi = 0,
 Model,
 Method = L,
 ssigma = FALSE,
 ymax = max(Y, na.rm = TRUE) + 1,
 ymin = min(Y, na.rm = TRUE) - 1,
 hessian = TRUE,
 itermax = 100,
 paraminit = NULL,
 ProbIRLS = TRUE,
 refgr = 1,
 fct = NULL,
 diffct = NULL,
 nbvar = NULL,
 ng.nl = NULL,
 nls.lmiter = 50
)
```

Arguments

Υ	Matrix. A matrix containing the variables in the model.	
Α	Matrix. A matrix containing the time variable data.	
Risk	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.	
TCOV	Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.	
degre	Vector of integer. The degree of every polynomial function.	
degre.nu	Vector of integer. The degree of all Poisson part for a ZIP model.	
degre.phi	Vector of integer. The degree of beta parameter for a BETA model.	
Model	String. The model used. The value are LOGIT for a Logit Mixture model CNORM for a Censored Normal Mixture Model or ZIP for Zero Inflated Poisson Mixture model.	
Method	String. Determine the method used for find the parameters of the model. The value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation Maximization method with Iterative Weighted Least Square.	
ssigma	Logical. By default its value is FALSE. For the CNORM model, indicate if we want the same sigma for all normal density function.	
ymax	Real. For the CNORM model, indicate the maximum value of the data. It concern only the model with censored data. By default its value is the maximum value of the data plus 1.	
ymin	Real. For the CNORM model, indicate the minimum value of the data. It concern only the model with censored data. By default its value is the maximum	

value of the data minus 1.

22 trajeR

hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If the method use is Likelihood, the hessian is calculated by inverting the Information 1. Fig. 1. Matrix To a likelihood in the line of the line of

tion's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function int he package MASS. If the method

is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax Integer. Indicate the maximal number of iteration for optim function or for the

EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial

value based of the range or the standard deviation.

ProbIRLS Logical. Indicate the method to sue in the search of predictor's probability. If

TRUE (by default) we use IRLS method and if FALSE we use optimization

method.

refgr Integer. The number of reference group. By default is 1.

fct Function. The definition of the function f in the definition in nonlinear model.

diffet Function. The differential of the function f in the nonlinear model.

nbvar Integer. The number of variable in the nonlinear model.

ng.nl Integer. The number of group for a non linear model.

nls.lmiter Integer. In the case of non linear model, the maximum number of iterations

allowed.

Details

Models for trajeR is, by default, a polynomial regression of the time value parameters for each groups. The number fo group is controlled by the integer ng. We can specify the degre of the polynomial shape for each groups by the vector degre.

Value

return an object of class "Trajectory.LOGIT". The generic accessor functions beta, delta, theta, sd, tab, Likelihood, ng, model and method extract various useful features of the value returned by trajeR.

An object of class "Trajectory.LOGIT" is a list containing at least the following components:

beta a vector of the parameters beta.

delta a vector of the parameter delta. Only if we use time covariate.

theta a vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.

sd a vector of the standard deviation of the parameters.

tab a matrix with all the parameters and standard deviation.

Likelihood a real with the Likelihood obtained by the parameters.

ng a integer with the number of group.

model a string with the model used.

method a string with the method used.

trajeR.BETA 23

Examples

```
data("dataNORM01")
solL <- trajeR(dataNORM01[, 1:5], dataNORM01[, 6:10],
   ng = 3, degre = c(2, 2, 2),
   Model = "CNORM", Method = "L", ssigma = FALSE,
   hessian = TRUE
)</pre>
```

trajeR.BETA

Internal function to fit Beta regression

Description

Internal function to fit Beta regression

Usage

```
trajeR.BETA(
 Υ,
 Α,
 Χ,
 TCOV,
 ng,
 nx,
 n,
 nbeta,
 nphi,
 nw,
 ntheta,
 period,
 degre,
  theta,
 beta,
  phi,
 delta,
 рi,
 Method,
 hessian,
  itermax,
 paraminit,
 EMIRLS,
  refgr
)
```

24 trajeR.BETA

Arguments

Y Matrix. A matrix containing the variables in the model.

A Matrix. A matrix containing the time variable data.

X Matrix. An optional matrix that modify the probability of belong to group. By

default its value is a matrix with one column with value 1.

TCOV Matrix. An optional matrix containing the time covariate that influence the tra-

jectory themselves. By default its value is NULL.

ng Integer. The number of groups.

nx Integer. The number of covariates.

n Integer. Number of individuals.

nbeta Vector of integers. Number of beta parameters for each group.

nphi Vector of integers. Number of phi parameters for each group.

nw Integer. Number of time dependent covariate.

ntheta Vector of integers. Number of theta parameters for each group.

period Integer.

рi

degre Vector of integer. The degree of every polynomial function.

theta Vector of real. The parameter for calculated the group membership probability.

beta Vector of real. The beta parameter.

phi Vector of real. The phi parameter.

delta Vector of real. The delta parameter.

Method String. Determine the method used for find the parameters of

Vector of real. The group membership probability.

String. Determine the method used for find the parameters of the model. The value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation

Maximization method with Iterative Weighted Least Square.

hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If

the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function inthe package MASS. If the method

is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax Integer. Indicate the maximal number of iteration for optim function or for the

EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial

value based of the range or the standard deviation.

EMIRLS Boolean. True if we use EMIRLS method.

refgr Integer. The number of reference group. By default is 1.

trajeR.CNORM 25

Value

return a object of class Trajectory.NL

- beta vector of the parameter beta.
- sigma vector of the parameters sigma.
- delta vector of the parameter delta. Only if we use time covariate.
- theta vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- sd vector of the standard deviation of the parameters.
- tab a matrix with all the parameters and standard deviation.
- Model a string with the model used.
- groups a integer with the number of group.
- Names strings with the name of the parameters.
- Method a string with the method used.
- Size a integer with the number of individuals.
- Likelihood a real with the Likelihood obtained by the parameters.
- Time a vector with the first row of time values.
- degre a vector with the degree of the polynomial shape.

trajeR.CNORM

Internal function to fit CNORM Model

Description

Internal function to fit CNORM Model

Usage

```
trajeR.CNORM(
Y,
A,
X,
TCOV,
ng,
nx,
n,
nbeta,
nw,
ntheta,
period,
degre,
theta,
beta,
```

26 trajeR.CNORM

```
sigma,
delta,
pi,
Method,
ssigma,
ymax,
ymin,
hessian,
itermax,
paraminit,
EMIRLS,
refgr
```

Arguments

Y Matrix. A matrix containing the variables in the model.

A Matrix. A matrix containing the time variable data.

X Matrix. An optional matrix that modify the probability of belong to group. By

default its value is a matrix with one column with value 1.

TCOV Matrix. An optional matrix containing the time covariate that influence the tra-

jectory themselves. By default its value is NULL.

ng Integer. The number of groups.

nx Integer. The number of covariates.

n Integer. Number of individuals.

nbeta Vector of integers. Number of beta parameters for each group.

nw Integer. Number of time dependent covariate.

ntheta Vector of integers. Number of theta parameters for each group.

period Integer.

degre Vector of integer. The degree of every polynomial function.

theta Vector of real. The parameter for calculated the group membership probability.

beta Vector of real. The beta parameter.
sigma Vector of real. The sigma parameter.
delta Vector of real. The delta parameter.

pi Vector of real. The group membership probability.

Method String. Determine the method used for find the parameters of the model. The

value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation

Maximization method with Iterative Weighted Least Square.

ssigma Logical. By default its value is FALSE. For the CNORM model, indicate if we

want the same sigma for all normal density function.

ymax Real. For the CNORM model, indicate the maximum value of the data. It

concern only the model with censored data. By default its value is the maximum

value of the data plus 1.

trajeR.CNORM 27

ymin Real. For the CNORM model, indicate the minimum value of the data. It concern only the model with censored data. By default its value is the maximum

value of the data minus 1.

hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If

the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function inthe package MASS. If the method

is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax Integer. Indicate the maximal number of iteration for optim function or for the

EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial

value based of the range or the standard deviation.

EMIRLS Boolean. True if we use EMIRLS method.

refgr Integer. The number of reference group. By default is 1.

Value

return a object of class Trajectory.CNORM

• beta - vector of the parameter beta.

- sigma vector of the parameters sigma.
- delta vector of the parameter delta. Only if we use time covariate.
- theta vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- sd vector of the standard deviation of the parameters.
- tab a matrix with all the parameters and standard deviation.
- Model a string with the model used.
- groups a integer with the number of group.
- Names strings with the name of the parameters.
- Method a string with the method used.
- Size a integer with the number of individuals.
- Likelihood a real with the Likelihood obtained by the parameters.
- Time a vector with the first row of time values.
- degre a vector with the degree of the polynomial shape.
- min a real with the minimum value for censored data.
- max a real with the maximum value for censored data.

28 trajeR.LOGIT

trajeR.LOGIT

Internal function to fit LOGIT Model

Description

Internal function to fit LOGIT Model

Usage

```
trajeR.LOGIT(
 Υ,
 Α,
 Χ,
 TCOV,
 ng,
 nx,
 n,
 nbeta,
 nw,
 ntheta,
 period,
 degre,
  theta,
 beta,
 delta,
 рi,
 Method,
 hessian,
 itermax,
 paraminit,
 EMIRLS,
  refgr
)
```

Arguments

Υ	Matrix. A matrix containing the variables in the model.
A	Matrix. A matrix containing the time variable data.
X	Matrix. An optional matrix that modify the probability of belong to group. By default its value is a matrix with one column with value 1.
TCOV	Matrix. An optional matrix containing the time covariate that influence the trajectory themselves. By default its value is NULL.
ng	Integer. The number of groups.
nx	Integer. The number of covariates.
n	Integer. Number of individuals.

trajeR.LOGIT 29

nbeta Vector of integers. Number of beta parameters for each group.

nw Integer. Number of time dependent covariate.

ntheta Vector of integers. Number of theta parameters for each group.

period Integer.

degre Vector of integer. The degree of every polynomial function.

theta Vector of real. The parameter for calculated the group membership probability.

beta Vector of real. The beta parameter.
delta Vector of real. The delta parameter.

pi Vector of real. The group membership probability.

Method String. Determine the method used for find the parameters of the model. The

value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation

Maximization method with Iterative Weighted Least Square.

hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If

the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function int he package MASS. If the method

is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax Integer. Indicate the maximal number of iteration for optim function or for the

EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial

value based of the range or the standard deviation.

EMIRLS Boolean. True if we use EMIRLS method.

refgr Integer. The number of reference group. By default is 1.

Value

return a object of class Trajectory.LOGIT

- beta vector of the parameter beta.
- delta vector of the parameter delta. Only if we use time covariate.
- theta vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- sd vector of the standard deviation of the parameters.
- tab a matrix with all the parameters and standard deviation.
- Model a string with the model used.
- groups a integer with the number of group.
- Names strings with the name of the parameters.
- Method a string with the method used.
- Size a integer with the number of individuals.
- Likelihood a real with the Likelihood obtained by the parameters.
- Time a vector with the first row of time values.
- degre a vector with the degree of the polynomial shape.

30 trajeR.NL

trajeR.NL

Internal function to fit Non Linear Model

Description

Internal function to fit Non Linear Model

Usage

```
trajeR.NL(
  Υ,
 Α,
 Χ,
  TCOV,
  ng,
  nx,
  n,
  nbeta,
  nw,
  ntheta,
  period,
  degre,
  theta,
  beta,
  sigma,
  рi,
 Method,
  ssigma,
  hessian,
  itermax,
  paraminit,
  EMIRLS,
  refgr,
  fct,
  diffct,
  nls.lmiter
)
```

Arguments

Υ	Matrix. A ma	trix containing	g the variables	in the model.
---	--------------	-----------------	-----------------	---------------

A Matrix. A matrix containing the time variable data.

X Matrix. An optional matrix that modify the probability of belong to group. By

default its value is a matrix with one column with value 1.

TCOV Matrix. An optional matrix containing the time covariate that influence the tra-

jectory themselves. By default its value is NULL.

trajeR.NL 31

ng Integer. The number of groups.

nx Integer. The number of covariates.

n Integer. Number of individuals.

nbeta Vector of integers. Number of beta parameters for each group.

nw Integer. Number of time dependent covariate.

ntheta Vector of integers. Number of theta parameters for each group.

period Integer.

degre Vector of integer. The degree of every polynomial function.

theta Vector of real. The parameter for calculated the group membership probability.

beta Vector of real. The beta parameter.
sigma Vector of real. The sigma parameter.

pi Vector of real. The group membership probability.

Method String. Determine the method used for find the parameters of the model. The

value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation

Maximization method with Iterative Weighted Least Square.

ssigma Logical. By default its value is FALSE. For the CNORM model, indicate if we

want the same sigma for all normal density function.

hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If

the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function inthe package MASS. If the method

is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax Integer. Indicate the maximal number of iteration for optim function or for the

EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial

value based of the range or the standard deviation.

EMIRLS Boolean. True if we use EMIRLS method.

refgr Integer. The number of reference group. By default is 1.

fct Function. The definition of the function f in the definition in nonlinear model.

diffct Function. The differential of the function f in the nonlinear model.

nls.lmiter Integer. In the case of non linear model, the maximum number of iterations

allowed.

Value

return a object of class Trajectory.NL

- beta vector of the parameter beta.
- sigma vector of the parameters sigma.
- delta vector of the parameter delta. Only if we use time covariate.

32 trajeR.POIS

• theta - vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.

- sd vector of the standard deviation of the parameters.
- tab a matrix with all the parameters and standard deviation.
- Model a string with the model used.
- groups a integer with the number of group.
- Names strings with the name of the parameters.
- Method a string with the method used.
- Size a integer with the number of individuals.
- Likelihood a real with the Likelihood obtained by the parameters.
- Time a vector with the first row of time values.
- degre a vector with the degree of the polynomial shape.
- fct the definition of the function used int this model.

trajeR.POIS

Internal function to fit poisson Model

Description

Internal function to fit poisson Model

Usage

```
trajeR.POIS(
  Υ,
  Α,
  Χ,
  TCOV,
  ng,
  nx,
  n,
  nbeta,
  nw,
  ntheta,
  period,
  degre,
  theta,
  beta,
  delta,
  рi,
  Method,
  hessian,
  itermax,
```

trajeR.POIS 33

```
paraminit,
EMIRLS,
  refgr
)
```

Arguments

Y Matrix. A matrix containing the variables in the model.

A Matrix. A matrix containing the time variable data.

X Matrix. An optional matrix that modify the probability of belong to group. By

default its value is a matrix with one column with value 1.

TCOV Matrix. An optional matrix containing the time covariate that influence the tra-

jectory themselves. By default its value is NULL.

ng Integer. The number of groups.

nx Integer. The number of covariates.

n Integer. Number of individuals.

nbeta Vector of integers. Number of beta parameters for each group.

nw Integer. Number of time dependent covariate.

ntheta Vector of integers. Number of theta parameters for each group.

period Integer.

degre Vector of integer. The degree of every polynomial function.

theta Vector of real. The parameter for calculated the group membership probability.

beta Vector of real. The beta parameter.

delta Vector of real. The delta parameter.

pi Vector of real. The group membership probability.

Method String. Determine the method used for find the parameters of the model. The

value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation

Maximization method with Iterative Weighted Least Square.

hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If

the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function inthe package MASS. If the method

is EM or EMIWRLS, the hessian is calculated by using Louis method.

itermax Integer. Indicate the maximal number of iteration for optim function or for the

EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial

value based of the range or the standard deviation.

EMIRLS Boolean. True if we use EMIRLS method.

refgr Integer. The number of reference group. By default is 1.

34 trajeR.ZIP

Value

return a object of class Trajectory.Pois

- beta vector of the parameter beta.
- delta vector of the parameter delta. Only if we use time covariate.
- theta vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- sd vector of the standard deviation of the parameters.
- tab a matrix with all the parameters and standard deviation.
- Model a string with the model used.
- groups a integer with the number of group.
- Names strings with the name of the parameters.
- Method a string with the method used.
- Size a integer with the number of individuals.
- Likelihood a real with the Likelihood obtained by the parameters.
- Time a vector with the first row of time values.
- degre a vector with the degree of the polynomial shape for the Poisson part.

trajeR.ZIP

Internal function to fit ZIP Model

Description

Internal function to fit ZIP Model

Usage

```
trajeR.ZIP(
  Υ,
  Α,
  Χ,
  TCOV,
  ng,
  nx,
  n,
  nbeta,
  nw,
  ntheta,
  period,
  degre,
  degre.nu,
  theta,
  beta,
```

trajeR.ZIP 35

```
nu,
delta,
pi,
Method,
hessian,
itermax,
paraminit,
EMIRLS,
refgr
```

Arguments

Y Matrix. A matrix containing the variables in the model.

A Matrix. A matrix containing the time variable data.

X Matrix. An optional matrix that modify the probability of belong to group. By

default its value is a matrix with one column with value 1.

TCOV Matrix. An optional matrix containing the time covariate that influence the tra-

jectory themselves. By default its value is NULL.

ng Integer. The number of groups.

nx Integer. The number of covariates.

n Integer. Number of individuals.

nbeta Vector of integers. Number of beta parameters for each group.

nw Integer. Number of time dependent covariate.

ntheta Vector of integers. Number of theta parameters for each group.

period Integer.

degre Vector of integer. The degree of every polynomial function.

degre.nu Vector of integer. The degree of all Poisson part for a ZIP model.

theta Vector of real. The parameter for calculated the group membership probability.

beta Vector of real. The beta parameter.

nu Vector of real. The nu parameter.

delta Vector of real. The delta parameter.

pi Vector of real. The group membership probability.

Method String. Determine the method used for find the parameters of the model. The

value are L for the Maximum Likelihood Estimation, EM for Expectation Maximization method with quasi newton method inside, EMIWRLS for Expectation

Maximization method with Iterative Weighted Least Square.

hessian Logical. Indicate if we want calculate the hessian matrix. Default is FALSE. If

the method use is Likelihood, the hessian is calculated by inverting the Information's Fisher Matrix. To avoid numerically singular matrix we find the pseudo inverse matrix by using the ginv function int he package MASS. If the method

is EM or EMIWRLS, the hessian is calculated by using Louis method.

36 trajeRAIC

itermax Integer. Indicate the maximal number of iteration for optim function or for the

EM algorithm.

paraminit Vector. The vector of initial parameters. By default trajeR calculate the initial

value based of the range or the standard deviation.

EMIRLS Boolean. True if we use EMIRLS method.

refgr Integer. The number of reference group. By default is 1.

Value

return a object of class Trajectory.ZIP

• beta - vector of the parameter beta.

- delta vector of the parameter delta. Only if we use time covariate.
- theta vector with the parameter theta if there exist a covariate X that modify the probability or the probability of group membership.
- nu vector of the parameters nu.
- sd vector of the standard deviation of the parameters.
- tab a matrix with all the parameters and standard deviation.
- Model a string with the model used.
- groups a integer with the number of group.
- Names strings with the name of the parameters.
- Method a string with the method used.
- Size a integer with the number of individuals.
- Likelihood a real with the Likelihood obtained by the parameters.
- Time a vector with the first row of time values.
- degre a vector with the degree of the polynomial shape for the Poisson part.
- degre.nu a vector with the degree of the polynomial shape for the exceeded zero state.

trajeRAIC AIC function to an trajectory object

Description

Calculate the AIC value to an trajectory object.

Usage

trajeRAIC(sol)

Arguments

sol Trajectory's object. An object of type trajectory.

trajeRBIC 37

Value

A real.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
trajeRAIC(sol)</pre>
```

trajeRBIC

BIC function to an trajectory object

Description

Calculate the BIC value to an trajectory object.

Usage

```
trajeRBIC(sol)
```

Arguments

sol

Trajectory's object. An object of type trajectory.

Value

A real.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
sol <- trajeR(Y = data[, 2:6], A = data[, 7:11], degre = c(2, 2), Model = "CNORM", Method = "EM")
trajeRBIC(sol)</pre>
```

38 trajeRSH

trajeRSH

SH function to an trajectory object

Description

Calculate the Slope Heuristic value to a list of trajectory objects.

Usage

```
trajeRSH(1)
```

Arguments

1

List. A list of objects of type trajectory.

Value

A vector of real.

Examples

```
data <- read.csv(system.file("extdata", "CNORM2gr.csv", package = "trajeR"))
data <- as.matrix(data)
degre <- list(c(2, 2), c(1, 1), c(1, 2), c(2, 1), c(0, 0),
c(0, 1), c(1, 0), c(0, 0), c(0, 2), c(2, 0))
sol <- list()
for (i in 1:10) {
    sol[[i]] <- trajeR(
        Y = data[, 2:6], A = data[, 7:11],
        degre = degre[[i]], Model = "CNORM", Method = "EM"
    )
}
trajeRSH(sol)</pre>
```

Index

```
* datasets
    dataNORM01, 5
adequacy, 2
AvePP, 3
ConfIntT, 4
dataNORM01, 5
diffaitbeta, 6
fait, 6
GroupProb, 7
GroupProfiles, 8
OCC, 8
plotrajeR,9
{\tt plotrajeR.Trajectory.BETA}, 10
\verb|plotrajeR.Trajectory.CNORM|, 11|
plotrajeR.Trajectory.LOGIT, 12
plotrajeR.Trajectory.NL, 13
plotrajeR.Trajectory.POIS, 14
plotrajeR.Trajectory.ZIP, 15
print.Trajectory.BETA, 16
print.Trajectory.CNORM, 17
print.Trajectory.LOGIT, 17
print.Trajectory.NL, 18
print.Trajectory.POIS, 18
print.Trajectory.ZIP, 19
propAssign, 20
trajeR, 20
trajeR.BETA, 23
trajeR.CNORM, 25
trajeR.LOGIT, 28
trajeR.NL, 30
trajeR.POIS, 32
trajeR.ZIP, 34
trajeRAIC, 36
trajeRBIC, 37
trajeRSH, 38
```