CSE 460: VLSI Design (Lab)

Experiment 3, Part 2:

Sequential Circuits Real-life Projects

Vending Machine

What is Vending Machine?

What is Vending Machine?

What is Vending Machine?

Application Description

10 Tk Product Case (State Diagram)

Money in/Purchase, Change

10 Tk Product Case (State Table)

Present		Next	State	9				Out	put					
State		Y ₂	Y ₁			- 1	Z		C ₂ C ₁					
(y_2y_1)		(w ₂ w ₁)				(w ₂ w ₁)				c(w ₂ w ₁)				
	00	01	10	11	00	01	10	11	00	01	10	11		
S0	S0	S1	S0	S0	0	0	1	1	00	00	00	10		
S1	S0	S0	S0	S0	0	1	1	1	01	00	01	11		

State Table

Present		Next State						Out	tput					
State		Y ₂ Y ₁					Z		C ₂ C ₁					
(y_2y_1)		(w ₂ w ₁)				(w_2w_1)				c(w ₂ w ₁)				
	00	01	10	11	00	01	10	11	00	01	10	11		
00	00	01	00	00	0	0	1	1	00	00	00	10		
01	00	00	00	00	0	1	1	1	01	00	01	11		

State Assigned Table

Present		Next State						Out	put				
State		Y ₂	Y ₁			- 1	Z		C ₂ C ₁				
(y_2y_1)		(w ₂ w ₁)			(w_2w_1)				c(w ₂ w ₁)				
	00	01	10	11	00	01	10	11	00	01	10	11	
00	00	01	00	00	0	0	1	1	00	00	00	10	
01	00	00	00	00	0	1	1	1	01	00	01	11	

State Assigned Table


```
state0: if(cash in == 2'b00)
            begin
                next state = state0;
                purchase =0;
                cash return =0;
            end
        else if(cash in == 2'b01)
            begin
                next state=statel;
                purchase = 0;
                cash return = 0;
            end
        else if(cash in == 2'bl0)
            begin
                next state=state0;
                purchase=1;
                cash return=0;
            end
        else if(cash in == 2'bll)
            begin
                next state = state0;
                purchase = 1;
                cash return = 2'bl0;
            end
```

Present	Present Next Stat							Out	put				
State		Y_2Y_1					Z		C ₂ C ₁				
(y ₂ y ₁)		(w ₂ w ₁)			(w ₂ w ₁)				c(w ₂ w ₁)				
	00	01	10	11	00	01	10	11	00	01	10	11	
00	00	01	00	00	0	0	1	1	00	00	00	10	
01	00	00	00	00	0	1	1	1	01	00	01	11	

State Assigned Table

```
BRAC
UNIVERSITY
Inspiring Excellence
```

```
statel: if (cash in == 2'b00)
                begin
                    next_state = state0;
                    purchase = 0;
                    cash return = 2'b01;
                end
                else if (cash_in ==2'b01)
                begin
                    next_state = state0;
                    purchase = 1;
                    cash return = 0;
                end
                else if (cash_in ==2'bl0)
                begin
                    next_state = state0;
                    purchase = 1;
                    cash return = 2'b01;
                end
                else if (cash_in ==2'bll)
                    next_state = state0;
                    purchase = 1;
                    cash return = 2'bl1;
                end
    endcase
    always @ (posedge rst, posedge clk)
    if (rst == 1)
        current state <= state0;
    else
        current state <= next state;
endmodule
```

15 Tk Product Case (State Diagram)

15 Tk Product Case (State Table)

Present		Next	State	9				Out	put					
State		Y ₂	Y ₁			- 2	Z		C ₂ C ₁					
(y_2y_1)		(w ₂ w ₁)				(w_2w_1)				c(w ₂ w ₁)				
	00	01	10	11	00	01	10	11	00	01	10	11		
S ₀	S ₀	S ₁	S ₂	S ₀	0	0	0	1	00	00	00	01		
S ₁	S ₀	S ₂	S ₀	S ₀	0	0	1	1	01	00	00	10		
S ₂	S ₀	S ₀	S ₀	So	0	1	1	1	10	00	01	11		

State Table

15 Tk Product Case (State Assigned Table)

Present	ı	Next State						Out	put					
State		Y ₂	Y ₁			z C ₂ C ₁								
(y ₂ y ₁)		(w ₂ w ₁)				(w_2w_1)				c(w ₂ w ₁)				
	00	01	10	11	00	01	10	11	00	01	10	11		
S ₀	S ₀	S ₁	S ₂	S ₀	0	0	0	1	00	00	00	01		
S ₁	S ₀	S ₂	S ₀	S ₀	0	0	1	1	01	00	00	10		
S ₂	S ₀	S ₀	S ₀	S ₀	0	1	1	1	10	00	01	11		

State Table

Present		Next State				Output									
State		Y ₂	Y ₁			7	Z		C_2C_1						
(y ₂ y ₁)		(w ₂	w ₁)			(w_2w_1)				(w ₂ w ₁)					
	00	01	10	11	00	01	10	11	00	01	10	11			
00	00	01	10	00	0	0	0	1	00	00	00	01			
01	00	10	00	00	0	0	1	1	01	00	00	10			
10	00	00	00	00	0	1	1	1	10	00	01	11			
11	d	d d d d			d	d	d	d	d	d	d	d			

State Assigned Table

Present		Next State				Output									
State		Y ₂	Y ₁			;	Z		C ₂ C ₁						
(y ₂ y ₁)		(w ₂	w ₁)		(w_2w_1)				(w ₂ w ₁)						
	00	01	10	11	00	01	10	11	00	01	10	11			
00	00	01	10	00	0	0	0	1	00	00	00	01			
01	00	10	00	00	0	0	1	1	01	00	00	10			
10	00	00	00	00	0	1	1	1	10	00	01	11			
11	d	d	d	d	d	d	d	d	d	d	d	d			

State Assigned Table


```
state0: if(cash in == 2'b00)
            begin
                next state = state0;
                purchase =0;
                cash return =0;
            end
        else if (cash in == 2'b01)
            begin
                next state=statel;
                purchase = 0;
                cash return = 0;
            end
        else if(cash in == 2'bl0)
            begin
                next state=state2;
                purchase=0;
                cash return=0;
            end
        else if(cash in == 2'bll)
            begin
                next state = state0;
                purchase = 1;
                cash return = 2'b01;
            end
```

14

Present		Next State				Output									
State		Y ₂	Y ₁			7	Z		C ₂ C ₁						
(y ₂ y ₁)		(w ₂ w ₁)			(w_2w_1)				(w ₂ w ₁)						
	00	01	10	11	00	01	10	11	00	01	10	11			
00	00	01	10	00	0	0	0	1	00	00	00	01			
01	00	10	00	00	0	0	1	1	01	00	00	10			
10	00	00	00	00	0	1	1	1	10	00	01	11			
11	d	d	d	d	d	d	d	d	d	d	d	d			

State Assigned Table

```
BRAC
UNIVERSITY
Inspiring Excellence
```

```
state2: if(cash in == 2'b00)
            begin
                next state = state0;
                purchase =0;
                cash return =2'bl0;
            end
        else if(cash in == 2'b01)
            begin
                next state=state0;
                purchase = 1;
                cash return = 0;
            end
        else if(cash in == 2'bl0)
            begin
                next state=state0;
                purchase=1;
                cash return=2'b01;
            end
        else if(cash in == 2'bll)
            begin
                next state = state0;
                purchase = 1;
                cash return = 2'bl1;
            end
```

20 Tk Product Case (State Diagram)

Thank you!

7/1/2022 CSE 460: VLSI Design 17