Лекция 8 Периферийные модули: DMA, USB, Ethernet

План курса «Встраиваемые микропроцессорные системы»:

Лекция 1: Введение. Язык программирования С

Лекция 2: Язык программирования С. Стандартная библиотека языка С

Лекция 3: Применение языка С для встраиваемых систем

Лекция 4: Микроконтроллер

Лекция 5: Этапы разработки встраиваемых систем

Лекция 6: Разработка и отладка программ для встраиваемых систем

Лекция 7: Архитектура программ для встраиваемых систем

Лекция 8: Периферийные модули: DMA, USB, Ethernet

Прямой доступ к памяти

Прямой доступ к памяти (ПДП, DMA – Direct Memory Access) – режим обмена данными в микропроцессорной системе в котором центральный процессор не участвует.

Контроллер DMA – периферийный модуль микропроцессорной системы, реализующий режим прямого доступа к памяти.

Причины использования прямого доступа к памяти

- 1. При копировании данных из памяти в память:
 - снижение накладных расходов на одну пересылку;
- 2. При обмене данными с периферийным модулем:
 - исключение ожидания флага окончания передачи (преобразования);
 - исключение вызова обработчика прерывания по окончанию передачи (преобразования).

Настройка контроллера прямого доступа к памяти

- 1. Событие запуска:
 - Программный запуск запись в регистр специальных функций контроллера ПДП;
 - По прерыванию:
 - Окончание преобразования АЦП;
 - Таймер;
 - Окончание передачи/буфер передатчика пуст по UART, SPI, USB, I2C;
 - Окончание приема/буфер приемника заполнен по UART, SPI, USB, I2C.
- 2. Адрес источника данных;
- 3. Адрес приемника данных;
- 4. Количество пересылок;
- 5. Направление передачи:
 - память память;
 - периферия память;
 - память периферия;
- 6. Размер передаваемого слова (8 бит, 16 бит, 32 бита);
- 7. Разрешение генерации прерывания по окончании всех пересылок;
- 8. Режим пакетный (burst)/однократный (single-cycle).

Направление передачи

• Память – память: инкремент адреса источника и приемника;

• Периферия – память: инкремент только адреса приемника;

• Память – периферия: инкремент только адреса источника.

Пример: Копирование блоков памяти

- Инкремент адреса источника и адреса приемника;
- Размер слова минимальный размер элемента массива/структуры;
- Количество пересылок размер массива;
- Генерация прерывания по окончанию пересылки;
- Программный пуск;
- Пакетный режим.

Пример: Копирование в интерфейс передачи/ЦАП

- Инкремент только адреса источника;
- Размер слова размер передаваемого слова;
- Количество пересылок количество данных для пересылки;
- Генерация прерывания по окончанию пересылки;
- Пуск по окончанию передачи/опустошении буфера/таймеру;

• Однократный режим – передачи по готовности одного слова.

Пример: Копирование из интерфейса передачи/АЦП

- Инкремент только адреса приемника;
- Размер слова размер передаваемого слова;
- Количество пересылок количество данных для пересылки;
- Генерация прерывания по окончанию пересылки;
- Пуск по окончании приема/заполнении буфера/таймеру/АЦП;

Пример: Работа с АЦП/ЦАП в режиме «пинг-понг»

Пример генерации сигнала ЦП и передачи на ЦАП через ПДП с двумя буферами.

Когда ПДП передаст буфер Б, назначения буфером меняются. ЦП генерирует данные в буфер Б, ПДП передает данные из буфера А

Буфер Б		Буфер А	
Готово	→	Пере дано	-
ЦП формирует буфер со своей скоростью		в ЦАІ	ередает буфер П на частоте кретизации

Аналогично для работы с АЦП. ПДП заполняет буфер А, ЦП — обрабатывает буфер Б. После заполнения буфера А, назначение буферов меняются.

Пример: Работа с АЦП/ЦАП в режиме «пинг-понг»

USB

USB (Universal Serial Bus) - это универсальный последовательный интерфейс, который используется для подключения периферийных устройств к компьютерам и другим микропроцессорным системам.

Версии USB:

- USB 1.0 первая версия USB, выпущенная в 1996 году. Поддерживает скорость передачи данных до 1,5 Мбит/с.
- USB 1.1 улучшенная версия USB 1.0, выпущенная в 1998 году. Поддерживает скорость передачи данных до 12 Мбит/с.
- USB 2.0 вторая версия USB, выпущенная в 2000 году. Поддерживает скорость передачи данных до 480 Мбит/с.
- USB 3.0 третья версия USB, выпущенная в 2008 году. Поддерживает скорость передачи данных до 5 Гбит/с.
- USB 4 последняя версия, выпущеная в 2020 году. Поддерживает скорость передачи данных до 40 Гбит/с.

Во встраиваемых системах чаще всего применяются USB 1.1 и USB 2.0.

USB: термины и определения

USB Host (USB хост) – это устройство, которое управляет передачей данных между USBустройствами. USB Host может быть встраиваемая система или персональный компьютер.

USB Device (USB устройство) — это периферийное устройство, которое подключается к компьютеру или другому устройству через интерфейс USB. Как правило, USB Device это встраиваемая система. Пример: USB флеш накопитель, принтер, другие устройства.

USB Device может быть со своим источником питания (как принтер) или питаться от USB Host (как флеш накопитель).

USB OTG (On-The-Go) – это технология, которая позволяет USB-устройству выступать как в роли хоста (Host), так и в роли периферии (Device).

VID — это 16-битный номер, который присваивается производителю USB-устройства. Чтобы получить VID, производитель должен зарегистрироваться в USB Implementers Forum (USB-IF).

PID – это 16-битный номер, который присваивается производителю для каждого конкретного продукта. PID может быть любым числом от 0 до 65535.

Чтобы пользоваться лого USB нужно быть членом USB-IF (иметь VID) и устройство должно пройти тестирование на соответствие стандарту.

USB: разъемы

USB Type-A – используется в Host устройствах.

USB Type-B – используется в Device устройствах.

USB mini-B – используется в Device устройствах.

USB micro-B – используется в Device устройствах.

USB Type-C – используется в Host и Device устройствах.

#	Название	Цвет провода	Описание
1	V _{BUS}	Красный	+5 V
2	D-	Белый	Data-
3	D+	Зеленый	Data+
4	ID	Нет провода	ID OTG A разъем (Host): GND B резъем (Device): не подключен
5	GND	Черный	GND

Micro-A

USB: протокол

Стек протокола USB:

- Физический уровень это уровень, который отвечает за передачу данных по физической линии связи. В USB применяется дифференциальный сигнал (DP и DN) с частотой передачи 12 МГц или 480 МГц.
- Логический уровень это уровень, который отвечает за форматирование данных для передачи. В производится пакетная передача данных с длиной пакета от 8 до 64 байт.
- Уровень управления это уровень, который отвечает за управление взаимодействием между USB устройствами и USB хостами. В нем применяется набор команд для управления подключением, отключение, передачей данных и т.д.
- Классовый уровень это уровень, который отвечает за реализацию конкретных функций USB-устройства. В нем используется набор классов для поддержки различных типов устройств, таких как клавиатуры, мыши, принтеры, флэш-накопители и т.д.

USB: классы устройств

Основные классы USB:

Hub Class – класс для поддержки концентраторов.

Device Class – базовый класс для всех USB-устройств.

Human Interface Device Class (HID) – класс для поддержки устройств вводавывода, таких как клавиатуры, мыши, джойстики и т.д.

Mass Storage Class (MSC) — класс для поддержки устройств хранения данных, таких как флэш-накопители и внешние жесткие диски.

Communications and CDC Control Class (CDC) – класс для поддержки устройств связи, таких как модемы, телефоны и сетевые адаптеры.

Audio Class – класс для поддержки аудиоустройств, таких как звуковые карты, микрофоны и колонки.

USB: реализация в встраиваемой системе

• Преобразователь USB-UART Bo всех МК имеется интерфейс UART. По UART к МК подключается внешняя интегральная схема (например, FT232 или CP2102), которая содержит в себе полный стек протокола USB и работает как Communications and CDC Control Class. Производитель предоставляет драйверы VCP (Virtual COM Port) этого устройства для всех ОС. В ОС устройства отображатся как COMx или /dev/ttyUSBx, /dev/cu.x.

USB: реализация в встраиваемой системе

Контроллер USB в МК и стек протокола
В некоторых МК имеется периферийный модуль USB. Как правило этот модуль
поддерживает только первые три уровня стека протокола. Классовый уровень
реализуется программным обеспечение. Можно реализовать любой класс
устройств.

USB: источник питания

Существует множество протоколов зарядки по USB, которые обеспечивают различные скорости зарядки и возможности.

- USB Power Delivery (PD) универсальный протокол, который поддерживает широкий диапазон мощностей от 5 до 100 Вт. Используется большинством современных устройств, включая смартфоны, планшеты, ноутбуки и другие устройства.
- Quick Charge (QC) это протокол, разработанный компанией Qualcomm, который поддерживает скорости зарядки до 18 Вт. QC используется в некоторых смартфонах и планшетах, а также в некоторых зарядных устройствах.

Другие протоколы: Pump Express (27 Bt, MediaTek), VOOC (Voltage Open Loop Multi-Step Constant-Current Charging, 65Bt, OPPO), SuperCharge (до 100 Bt, Huawei)

Протоколы зарядки по USB обычно используют различные комбинации напряжения и тока для достижения различных мощностей зарядки. Например, протокол PD может использовать напряжение от 5 до 20 В и ток до 5 А, что обеспечивает максимальную мощность 100 Вт.

Ethernet

Ethernet (IEEE 802.3) — это семейство технологий пакетной передачи данных между устройствами в компьютерных и промышленных сетях. Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде на канальном уровне модели OSI.

Ethernet состоит из двух уровеней:

- Физический уровень (PHY): Ethernet определяется рядом стандартов IEEE 802.3, которые описывают физические и канальные уровни сетевой модели OSI. Это включает в себя различные типы кабелей (например, витая пара, коаксиальный, оптоволокно) и скорости передачи данных (от 10 Мбит/с до 100 Гбит/с и выше).
- Уровень доступа к среде (MAC): Ethernet использует метод доступа CSMA/CD (Carrier Sense Multiple Access with Collision Detection) для управления доступом к сети. Это означает, что каждое устройство "слушает" сеть перед отправкой данных, чтобы убедиться, что никакие другие устройства не передают в тот же момент. Если происходит коллизия (два устройства начинают передачу одновременно), каждое устройство останавливает передачу и ждет случайный период времени перед повторной попыткой.

Ethernet: уровень MAC

Кадр Ethernet включает в себя поля для MAC-адресов отправителя и получателя, типа протокола, полезной нагрузки (данные) и контрольной суммы для обнаружения ошибок.

Ethernet использует MAC-адреса (Media Access Control) для идентификации устройств в сети. Каждое устройство имеет уникальный MAC-адрес, который используется для обеспечения доставки кадров на канальном уровне. Пример адреса: ee:69:70:82:71:58

Ethernet совместим с большинством сетевых протоколов верхних уровней, включая TCP/IP, что делает его универсальным решением для построения сетевых инфраструктур.

Ethernet: реализация в встраиваемой системе

• Преобразователь UART-Ethernet_TCP/IP Выпускаются отдельные системы на модуле, которые содержат в себе полноценный Ethernet с TCP/IP стеком. Пример — TCP232.

• Контроллер Ethernet MAC в MK, PHY интегральная схема и стек протокола TCP/IP. PHY подключается к MK через MII/RMII Пример STM32F205 + RTL8201 + IwIP.

TCP/IP

TCP/IP - это сетевая модель, которая описывает процесс передачи данных в цифровом виде. TCP/IP является стандартом де-факто для передачи данных в сети. Он используется в большинстве современных сетей, включая интернет.

Прикладной (Application Layer)	HTTP, FTP, DNS, Modbus TCP, PTP, NTP, SNMP, MQTT, CoAP	
Транспортный (Transport Layer)	TCP, UDP, SCTP, DCCP, RIP	
Сетевой (Межсетевой) (Network Layer)	IP, ICMP, IGMP	
Уровень сетевого доступа (Канальный)(Link Layer)	Ethernet, IEEE 802.11, WLAN, SLIP, Token Ring, ATM и MPLS, физическая среда и принципы кодирования информации, T1, E1	

Заключение

- 1. Применение режима ПДП позволяет существенно разгрузить центральный процессор (в особенности с архитектурой LOAD/STORE) от задач пересылки данных;
- 2. Связка «ПДП Последовательный интерфейс» часто применяется когда микропроцессорная система использует одновременно множество интерфейсов;
- 3. Связка «Таймер АЦП ПДП», а также «Таймер ЦАП ПДП» часто применяется в задачах контроля аналогового сигнала и генерации аналогового сигнала.
- 4. USB приборный интерфейс, которые можно применять даже в самых простых современных МК.
- 5. Для задач сетевого взаимодействия используется интерфейс Ethernet с протоколом TCP/IP.

