

VICTOR KONG KAREN LI ANNA LIU ERIC QIN SOPHIA XIA

PROJECT DELTA

BACKGROUND

The Paper

- From OpenFMRI.org (ds005)
- "The Neural Basis of Loss Aversion in Decision Making"
- Sabrina M. Tom et al. (2007) in <u>Science</u>

The Data

- 16 subjects, 1 task per subject, 3 runs per task
- Examine neural systems that process decision utility with fMRI data
- Task:
 - Subjects offered 50/50 wager
 - Varying potential gains/losses
 - Prompted for decision to accept or decline

COMPLETING AND/OR IN PROGRESS

Data Fetching and Preprocessing

- Download from <u>OpenFMRI.org</u> and decompress
- Plot to explore potentially useful information
- Drawing summary statistics from plotted data
- Smoothing seasonal noise

Initial Analysis

- Hypothesis testing
- Convolution
- Logistic Regression
- Linear regression
 - Multiple and single regression with stimulus

OUR PLAN

Goal

- To reproduce methods as well as adding our own thoughts into it
- Using other methods that may or may not come to the same conclusion

Methods and Analyses to Perform

- Hypothesis tests
- Linear regression, Logistic regression, Correlation analysis
- Robust regression analysis, Principle component analysis

OUR PLAN

Methods and Analyses to Perform (cont'd)

- Support vector machines
 - Process: draw boundaries between clusters
 - Classify brain parts:
 - Parts (de)activate most when making decisions?
 - Parts are active given a good/bad/obvious/etc. wager?
 - Are these parts the same or different?
- Decision trees
 - Process: analyze inputs consecutively
 - Models human decision-making well
 - MANY questions:
 - What results from combinations of parts activating?
 - What results from combinations of gains/losses?
 - What parts activate given combinations of gains/losses?

OUR PLAN

- Simplification steps
- Issues we have discussed
- Methods of validating models
 - t-tests
 - RSS
 - Cross-validation

OUR PROCESS

Most Difficult Parts of the Project

- Size of data
 - Spent much time deciphering format
 - What we need and don't need
- Writing tests for functions
 - Lack small piece of data that we know all about
 - Can improvise for simple functions only

Issues Working as a Team

- Difficult for all to meet together
- Different styles of coding and documenting
- Difficult to communicate what we want to do
 - Don't tell each other what we plan to do
- Organizing GitHub repository

OUR PROCESS

Most Useful Parts of the Class

- Linear modelling
- Correlation per voxel

Least Helpful Parts of the Class

- Comparison to R
- Mathematical writing

What We Need to Accomplish in the Project

Potential Topics to Cover in Future

- More linear regression, ANOVA, Principle component analysis
- Machine learning (classification, regression, cross-validation)
- Permutation tests (bootstrap)
- Software tools (Git, Python)