Application aux perturbations

17 septembre 2014

Table des matières

I Points fixes, systèmes différentiels

2

Première partie

Points fixes, systèmes différentiels

On va travailler avec des systèmes de la forme

$$\frac{dX}{dt} = f(X), \ X \in \mathbb{R}^n, \ f : \mathbb{R}^n \to \mathbb{R}^n$$
 (1)

C'est une équation autonome : $\frac{\partial f}{\partial t} = 0 \mathbb{R}^n$: espace des phases f: champ de vecteurs

On appelle orbite, trajectoire ou orbite solution issue de X_0 :

$$\{X(t), t \ge 0 \text{ avec } X(0) = X_0\}$$

⇔ Théorème: d'existence locale et d'unicité de la solution

 $U \subset \mathbb{R}^n$ ouvert, $f: U \to \mathbb{R}^n$ c
pntinument différentiable. Soit $X_0 \in U$. Alors $\exists C > 0$ et une solution unique $\phi_0(X_0, \bullet) : [-C, C] \to U$ qui satisfait $\dot{X} = f(X)$ avec $X(0) = X_0$.

♣ Définition: Point fixe

 x^* est un point fixe si et seulement si $f(x^*) = 0$

Stabilité simple : toute orbite issue d'un voisinage de X^* ranste dans le voisinage de X^* pour t > 0. Stabilité asymptotique : X^* stable et $\lim_{t\to+\infty} X(t) = X^*$

⇒ Théorème: de Lyapounov

Si X^* est un point fixe de (1) et si on peut définir une fonction $V: W \to \mathbb{R}, W \subset V_{X^*}$, et si :

- 1. $V(X^*) = 0$ et V(X) > 0 pour $X \neq X^*$. 2. $\frac{dV}{dt} = \sum_{j=1}^{n} \frac{\partial V}{\partial x_j} \dot{x_j} = \nabla V.f \leq 0$ dans $W \setminus \{X^*\}$ alors X^* est stable.
- 3. $\frac{dV}{dt}$ < 0, alors X^* est asymptotiquement stable.

V difficile à trouver sauf quand on a une formulation variationnelle (Mécanique, éléctromagnétisme).

I Propriété: Exponentielle de matrice

1. Si
$$\exists T$$
, inversible, telle que $B = TAT^{-1}$, alors $e^B = Te^AT^{-1}$
2. Si $AB = BA$ alors $e^{A+B} = e^Ae^B$
3. $e^{-A} = (e^A)^{-1}$
4. Si $A = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$ alors $e^A = e^\alpha \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$