Lecture 9 Divergence theorem

Objective

- To discuss about Divergence theorem
- To discuss application of Divergence theorem

Statement:

The surface integral of the normal component of a vector function **A** taken around a closed surface *S* is equal to the integral of the divergence of **A** taken over the volume *V* enclosed by the surface *S*.

Mathematically,

$$\int_{V} \nabla \cdot \mathbf{A} \, dv = \oint_{S} \mathbf{A} \cdot d\mathbf{s}$$

Example:

For the vector field $\mathbf{A} = \hat{\mathbf{x}} xz - \hat{\mathbf{y}} yz^2 - \hat{\mathbf{z}} xy$, verify the divergence theorem by computing

- (a) the total outward flux flowing through the surface of a cube centered at the origin and with sides equal to 2 units each and parallel to the Cartesian axes,
- (b) the integral of $\nabla \cdot \mathbf{A}$ over the cube's volume.

Solution:

Step 1: Evaluate the surface integral over the six faces.

i. Front face: x = 2, $d\mathbf{s} = \hat{\mathbf{x}} \, dydz$: $\int_{\text{face}} \mathbf{A} \cdot d\mathbf{s} = \int_0^2 \int_0^2 xz \, dy \, dz = 8$.

Solution:

ii. Back face:
$$x = 0$$
, $d\mathbf{s} = -\hat{\mathbf{x}} \, dy dz$: $\int_{\substack{\text{back} \\ \text{face}}} \mathbf{A} \cdot d\mathbf{s} = 0$.

iii. Right face:
$$y = 2$$
, $d\mathbf{s} = \hat{\mathbf{y}} \, dx dz$ $\therefore \int_{\text{right face}} \mathbf{A} \cdot d\mathbf{s} = \int_0^2 \int_0^2 -yz^2 dx dz = -\frac{32}{3}$.

iv. Left face:
$$y = 0$$
, $d\mathbf{s} = -\hat{\mathbf{y}} \, dx dz : \int_{\text{face}} \mathbf{A} \cdot d\mathbf{s} = 0$.

v. Top face:
$$z = 2$$
, $d\mathbf{s} = \hat{\mathbf{z}} \, dx dy$ $\therefore \int_{\text{face}} \mathbf{A} \cdot d\mathbf{s} = \int_0^2 \int_0^2 -xy dy dx = -4$.

vi. Bottom face:
$$z = 0$$
, $d\mathbf{s} = -\hat{\mathbf{z}} \, dx dy$: $\int_{\text{bottom face}} \mathbf{A} \cdot d\mathbf{s} = \int_0^2 \int_0^2 xy dy dx = 4$.

Solution:

Step 2: Adding the above six values.

Thus, we have
$$\oint_{S} \mathbf{A} \cdot d\mathbf{s} = 8 + 0 - \frac{32}{3} + 0 - 4 + 4 = -\frac{8}{3}$$
.

Step 3: Find the divergence of **A**.

$$\nabla \cdot \mathbf{A} = \frac{\partial}{\partial x}(xz) + \frac{\partial}{\partial y}(-yz^2) + \frac{\partial}{\partial z}(-xy) = z - z^2.$$

Hence
$$\int_{V} \nabla \cdot \mathbf{A} \, dv = \int_{0}^{2} \int_{0}^{2} \int_{0}^{2} (z - z^{2}) dx \, dy \, dz = -\frac{8}{3}$$

Step 4: Check whether $\int_{V} \nabla \cdot \mathbf{A} \, dv = \oint_{S} \mathbf{A} \cdot d\mathbf{s}$.

Since, the result of step 2 and step 3 are equal.

Therefore, The divergence theorem is therefore verified.

Sample Exercise

- 1. For the vector field $\mathbf{A} = \hat{\mathbf{x}} xy + \hat{\mathbf{y}} y^2z + \hat{\mathbf{z}} xz$, verify the divergence theorem by computing
- (a) the total outward flux flowing through the surface of a cube centered at the origin and with sides equal to 2 units each and parallel to the Cartesian axes,
- (b) the integral of $\nabla \cdot \mathbf{A}$ over the cube's volume.
- 2. Given $A = \hat{x} x^2 + \hat{y} xy + \hat{z} yz$, verify the divergence theorem over a cube one unit on each side. The cube is situated in the first octant of the Cartesian coordinate system with one corner at the origin.

Sample MCQ

• Which of the following is the mathematical definition of Divergence theorem?

a)
$$\int_{V} \nabla \cdot \mathbf{A} \, dv = \oint_{S} \mathbf{A} \cdot d\mathbf{s}$$
 b) $\int_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{s} = \oint_{C} \mathbf{A} \cdot d\mathbf{l}$. c) both d) none

Outcome

After this lecture student will

- know the basic idea of Divergence theorem
- be able to solve problem using Divergence theorem

Next class

• Divergence theorem in Cylindrical and Spherical coordinate