Introducción a la Lógica y la Computación, 06/12/2007.

Apellido y Nombre:

T V 2 . 2	13	4	
1			
X			

(1) M(a) Defina L(r), el lenguaje denotado por una expresión regular, y L(M), el lenguaje aceptado por un NFA con mov. ε.

Y(b) Enuncie Teorema de Kleene.

 $\mathfrak{S}(c)$ Considere el siguiente autómata, con estados finales q_0,q_2 :

Utilice el método de la prueba del Teorema de Kleene para encontrar una expresión regular que denote el lenguaje aceptado por el autómata.

 $\sqrt{2}$ Considere la gramática $S \to aS \mid bB \mid a$, $B \to bB \mid \epsilon$. Pruebe por inducción que w es generada por la gramática sii $w=a^nb^m$, para ciertos n,m tales que $n\geq 1$ o $m\geq 1$.

(3) (a) Sean (P, \leq) , (Q, \leq') dos posets (conjuntos parcialmente ordenados), y sea $f: P \to Q$ un isomorfismos de posets. Pruebe que si $S \subset P$ tiene supremo a entonces f(S) tiene un isomorfismos de posets. Pruebe que si $S\subseteq P$ tiene supremo a entonces f(S) tiene supremo, y concide con f(a).

 $\mathfrak{S}(\mathfrak{b})$ Pruebe que todo reticulado satisface $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z)$.

 $\mathcal{K}(c)$ Pruebe si B es un álgebra de Boole y P es un filtro, entonces P es primo si y sólo si Pes maximal.

(4) Hallar derivaciones que muestren:

$$\mathcal{F}(\mathbf{a}) \vdash p \lor q \to ((p \leftrightarrow q) \to p \land q)$$

$$v(b) \vdash p \lor q \to (\neg p \to q)$$

(5) Suponga I consistente. Pruebe

 Γ es consistente maximal si y sólo si para toda $\varphi \in PROP$, $[\varphi \in \Gamma \circ \neg \varphi \in \Gamma]$.

Ejercicios para alumnos libres: (1) Sea el NFA $M=(\{q_0,q_1,q_2,q_1\},\{0,1\},\delta,q_0,\{q_2\})$ donde δ viene dada por la siguiente tabla de transición:

	1 0	1	ϵ	
90	$\{q_0, q_1, q_2\}$	$\{q_3, q_2\}$	Ø	Ī
q_1	Ø	$\{q_0,q_1\}$	Ø	
q_2	$\{q_1\}$	Ø	$\{q_1\}$	
q_3	$\{q_0, q_2\}$	Ø	Ø	

Hacer el diagrama de transición de M.

(2) Determine cuales de las siguientes palabras son aceptadas: 001, 0011, 11, 111, 1111.

(3) Definir una gramática (no necesariamente regular) que genere L(M). Hacerlo a partir del autómata original.

