

CLAIMS:

1. A signal comprising a runlength limited (RLL) encoded binary d,k channel bitstream, wherein parameter d defines a minimum number and parameter k defines a maximum number of zeroes between any two ones of said bitstream or vice versa, comprising

5 a number of sections of respectively N successive RLL channel bits, called RLL rows, each RLL row representing a parity-check code-word, called row parity-check code-word, in which a so-called row-based parity-check constraint for said RLL row has been realized; characterized in that

K sections of respectively N successive channel bits, called column parity-check rows, are
10 located at predetermined positions of a group of M RLL rows, K , N and M being integer values, said column parity-check rows comprising a plurality of column parity-check enabling channel words,
wherein each of said column parity-check enabling channel words realizes a so-called column-based parity-check constraint for all so-called corresponding segments of at least said
15 M RLL rows of said group that correspond to a specific column parity-check enabling channel word, hereby constituting a column parity-check codeword.

2. A signal according to claim 1, characterized in that the number K of column parity-check rows is at least 2.

20 3. A signal according to claim 1, characterized in that each one of said row parity-check code-words comprises a row parity-check enabling channel word being appended to RLL encoded user data without itself containing user data.

25 4. A signal according to claim 1, characterized in that each one of said row parity-check code-words comprises a row parity-check enabling channel word being encoded user data.

5. A signal according to claim 1, characterized in that each of said row parity-check code-words comprises a parity-check bit p_{2H} realizing the row-based parity-check constraint

$$p_{2H} = \text{Mod} \left[\sum_{i=0}^{N-1} i \cdot b_i, 2 \right]$$

5 which is at an encoder set to a predetermined value, known at an decoder, that is, it is either set to 0 or to 1, with b_i being successive bits of said d,k channel bitstream of an RLL row.

6. A signal according to claim 1, characterized in that said corresponding segments of RLL rows being respectively a certain bit at a predetermined position of each of 10 said RLL rows and a respective single-bit wide column parity-check enabling channel word or words is or are located at the same position of each of said K column parity-check rows.

7. A signal according to claim 6, characterized in that the number K of column parity-check rows is an integer value with $K \geq 1/R$, with R being the code rate of the RLL 15 code with RLL constraints d and k .

8. A signal according to claim 7, characterized in that each of said single-bit wide column parity-check enabling channel words is an encoded symbol of a parity-check bit p_{2V} realizing the column-based parity-check constraint

$$p_{2V} = \text{mod} \left[\sum_{i=0}^{M+K-1} b_i, 2 \right]$$

20 which is at the encoder set to a predetermined value, known at the decoder, that is, either set to 0 or to 1, with b_i being bits of the RLL rows of said group at a certain position, wherein the bits of said symbol are spread over said K column parity-check rows, one bit per row.

25 9. A signal according to claim 8, characterized in that said symbol is selected from a number of different symbols realizing said column-based parity-check constraint p_{2V} in order to realize the d,k constraints of the RLL code within said column parity-check rows as well.

30 10. A signal according to claim 6, characterized in that said single-bit wide column parity-check enabling channel words are located at each channel bit position of a

column parity-check row, hereby constituting at every bit-wide column a column parity-check codeword.

11. A signal according to claim 6, characterized in that said single-bit wide column parity-check enabling channel words are located at every second channel bit position only, hereby constituting at every second bit-wide column a column parity-check codeword.
12. A signal according to claim 11, characterized in that channel bits between said second bit positions are used as merging bits in order to realize said d,k constraints of said RLL code and/or any desired spectral property of the code like DC-control.
13. A signal according to claim 1, characterized in that said predetermined position of a row parity-check enabling channel word is at the end of an RLL row.
14. A signal according to claim 1, characterized in that said K column parity-check rows are arranged successively.
15. A signal according to claim 1, characterized in that said M RLL rows are arranged successively.
16. A signal according to claim 1, characterized in that said predetermined position of said K column parity-check rows is at the end of said group.
17. A signal according to claim 1, characterized in that said predetermined position of said K column parity-check rows is in front of said group.
18. A signal according to claim 1, characterized in that said predetermined position of said K column parity-check rows is within said group.
19. A signal according to claim 1, characterized in that the number K of column parity-check rows is two,
each of said column parity-check rows is divided into segments of at least two types, and in the case of two types, of more than one successive channel bits of alternating

segment width N_1 or N_2 , N_1 and N_2 being integer values, N_1 being the width of the first column parity-check segment and N_2 being the width of the second parity-check segment,

wherein in each column parity-check row only every second segment is a column parity-check enabling channel word and

5 wherein only one of both column parity-check rows starts with a column parity-check enabling channel word,

whereas in the other column parity-check row the first column parity-check enabling channel word is at the second segment position.

10 20. A signal according to claim 19, characterized in that within each column parity-check row the so-called merging segments in front of or behind a column parity-check enabling channel word do not contain any user data, but are designed such to realize said d,k constraints of said RLL code and/or any desired spectral property of the code like DC-control.

15 21. A signal according to claim 19, characterized in that in the first one of both column parity-check rows the parity-check information of each column parity-check enabling channel word realizes said parity-check constraint only for said column parity-check enabling channel word in addition to said corresponding segments of said M RLL rows of said group.

20 22. A signal according to claim 21, characterized in that in the second one of both column parity-check rows the parity-check information of each column parity-check enabling channel word realizes said parity-check constraint only for said column parity-check enabling channel word in addition to said corresponding segments of said M RLL rows of said group.

25 23. A signal according to claim 21, characterized in that in the second one of both column parity-check rows the parity-check information of each column parity-check enabling channel word realizes said parity-check constraint for said column parity-check enabling channel word as well as the corresponding merging segment of said first column parity-check row in addition to said corresponding segment of said M RLL rows of said group.

30 24. A signal according to claim 19, characterized in that said segment or channel word widths N_1 and N_2 are in the range of $d \leq N_{1,2} \leq k$.

25. A signal according to claim 21 or 22, characterized in that said parity-check constraint is

$$V = \text{Mod} \left[\sum_{j=1}^{M+1} w_j, q_1 \right]$$

being set to a predetermined value at the encoder, known at the decoder, and is preferably set

5 to 0, wherein j is a unique index associated with each RLL row for $1 \leq j \leq M$ and an index associated with the actual column parity-check row for $j = M + 1$, and wherein w_j is a unique index associated with each word W_j which defines one of a number of possible d,k constrained sequences of said segment width (N_1, N_2) , wherein such a word W_j is comprised in each corresponding segment.

10

26. A signal according to claim 23, characterized in that said column based parity-check constraint is

$$V = \text{Mod} \left[\sum_{j=1}^{M+2} w_j, q_1 \right]$$

being set to a predetermined value at the encoder, known at the decoder, and is preferably set

15 to 0, wherein j is a unique index associated with each RLL row for $1 \leq j \leq M$ and with each column parity-check row for $j = M + 1, M + 2$, and wherein w_j is a unique index associated with each word W_j which defines one of the a number of possible d,k constrained sequences of said segment width (N_1, N_2) , wherein such a word W_j is comprised in each corresponding segment.

20

27. A signal according to claim 25 or 26, characterized in that said unique index w_j is

$$w_j = \sum_{i=0}^{N_{1,2}-1} b_i^j \cdot N_d(i)$$

wherein b_i^j denotes bit number i of word W_j in row j and wherein $N_d(i)$ is the number of

25 possible d,k constrained sequences of length i .

28. A signal according to claim 1, characterized by a waveform comprising said d,k channel bitstream, wherein said waveform transitions between two states (land, pit) whenever a one occurs in said d,k channel bitstream and keeps its actual state whenever a 30 zero occurs in said d,k channel bitstream or vice versa.

29. A storage medium storing a signal according to any one of claims 1 to 28.

30. A storage medium according to claim 29, characterized in that said storage
5 medium is a recorded optical, magnetic, or magneto-optical disc or recorded magnetic tape.

31. A method for encoding a stream of user data bits comprising the steps of:
runlength limited (RLL) encoding said stream of user data bits into a binary d,k channel
bitstream comprising a number of sections of respectively N successive RLL channel bits,
10 called RLL rows, wherein parameter d defines a minimum number and parameter k defines a
maximum number of zeroes between any two ones of said bitstream or vice versa,
each RLL row representing a parity-check code-word, called row parity-check code-word in
which a so-called row-based parity-check constraint for said RLL row has been realized,
characterized by the further step of
15 generating K sections of respectively N successive channel bits, called column parity-check
rows, at predetermined positions of a group of M RLL rows, K , N and M being integer
values, said column parity-check rows comprising a plurality of column parity-check
enabling channel words,
wherein each of said column parity-check enabling channel words realizes a so-called
20 column-based parity-check constraint for so-called corresponding segments of at least said M
RLL rows of said group that correspond to a specific column parity-check enabling channel
word, hereby constituting a column parity-check codeword.

32. A method according to claim 31, characterized by generating a signal
25 according to any one of claims 1 to 30.

33. A device for encoding a stream of user data bits comprising:
encoding means for runlength limited (RLL) encoding a stream of user data bits into a binary
 d,k channel bitstream comprising a number of sections of respectively N successive RLL
30 channel bits, called RLL rows, wherein parameter d defines a minimum number and
parameter k defines a maximum number of zeroes between any two ones of said bitstream or
vice versa,

wherein each RLL row represents a parity-check code-word, called row parity-check code-word in which a so-called row-based parity-check constraint for said RLL row has been realized,

characterized in that

- 5 said encoding means being designed for generating K sections of respectively N successive channel bits, called column parity-check rows, at predetermined positions of a group of M RLL rows, K , N and M being integer values, said column parity-check rows comprising a plurality of column parity-check enabling channel words, wherein each of said column parity-check enabling channel words realizes a so-called column-based parity-check constraint for all so-called corresponding segments of at least said M RLL rows of said group that correspond to a specific column parity-check enabling channel word, hereby constituting a column parity-check codeword.
- 10

34. A device according to claim 33, characterized in that said device comprising means for performing a method according to claims 31 or 32 in order to generate a signal according to any one of claims 1 to 30.
- 15

35. A method for decoding a signal according to any one of claims 1 to 30 or a signal being encoded according to a method of claim 31 or 32, comprising the steps of:
 - 20 checking for each RLL row a so-called row-based parity-check constraint,
 - checking for each column parity-check segment of said column parity-check rows a so-called column-based parity-check constraint along all corresponding segments of at least said M RLL rows that correspond to said column parity-check enabling channel word,
 - and
 - determining an erroneous channel word based on said checking steps.
- 25

36. A method according to claim 35, wherein said determining step includes locating an erroneous segment at a crossing point of
 - a) an erroneous RLL row that violates said row-based parity-check constraint for said RLL row and
 - b) an erroneous column comprising all corresponding segments that correspond to a specific column parity-check enabling channel word, wherein said column violates said column-based parity-check constraint.
- 30

37. A method according to claim 36, wherein an located erroneous segment is corrected if a single erroneous segment occurs.

38. A method according to claim 35, wherein said determining step is further 5 based on channel side-information if more than a single erroneous segment occurs.

39. A method according to claim 38, wherein said channel side-information is phase-error information of bit transitions in the channel words of the segments at said crossing points.

10 40. A method according to claim 39, wherein a phase-error with the largest absolute value is determined and the corresponding one-bit of the d,k channel bitstream is shifted by one bit position.

15 41. A method according to claim 35, wherein said signal comprises said column parity-check enabling channel words at every second channel bit position only, and wherein said determining step includes, upon detecting a first erroneous column, the step of deciding whether another erroneous column is positioned to the left or to the right of said first erroneous column.

20 42. A method according to claim 41, wherein said decision step is based on channel-side information.

25 43. A method according to claim 35, wherein said signal comprises segments of more than one successive channel bits of alternating segment width N_1 or N_2 , and wherein a single-bit transition-shift error is determined internal of such a segment, namely
a) a transition-shift error is determined from bit position i to the right to bit position $i+1$, if the detected column-based parity-check constraint is detected as

$$V_{\text{as-detected}} = N_d(i+1) - N_d(i)$$

30 and

b) a transition-shift error is determined from bit position i to the left to bit position $i-1$, if the detected column-based parity-check constraint is detected as

$$V_{\text{as-detected}} = N_d(i-1) - N_d(i)$$

wherein $N_d(i-1)$, $N_d(i)$, $N_d(i+1)$ are the numbers of possible d,k constrained sequences of length $i-1$, i , $i+1$, respectively.

44. A method according to claim 35, wherein said signal comprises segments of
5 more than one successive channel bits of alternating segment width N_1 or N_2 , and
wherein a single-bit transition-shift error is determined crossing the left boundary of such a
segment, namely

- a) a transition-shift error is determined from the last bit position of the previous
segment to the first bit position of the present segment, if the detected column-based parity-
10 check constraint is detected for the present column as

$$V_{\text{as-detected, present}} = +N_d(0)$$

and if the detected column-based parity-check constraint is detected for the previous column
as

$$V_{\text{as-detected, previous}} = -N_d(N_{1,2} - 1)$$

15 or

- b) a transition-shift error is determined from the first bit position of the present
segment to the last bit position of the previous segment, if the detected column-based parity-
check constraint is detected for the present column as

$$V_{\text{as-detected, present}} = -N_d(0)$$

20 and if the detected column-based parity-check constraint is detected for the previous column
as

$$V_{\text{as-detected, previous}} = +N_d(N_{1,2} - 1)$$

wherein $N_d(0) = 1$ and $N_d(N_{1,2} - 1)$ is the number of possible d,k constrained sequences of
length $N_{1,2} - 1$.

25

45. A method according to claim 35, wherein said signal comprises segments of
more than one successive channel bits of alternating segment width N_1 or N_2 , and
wherein a single-bit transition-shift error is determined crossing the right boundary of such a
segment, namely

- 30 a) a transition-shift error is determined from the last bit position of the present
segment to the first bit position of the subsequent segment, if the detected column-based
parity-check constraint is detected for the present column as

$$V_{\text{as-detected, present}} = -N_d(N_{1,2} - 1)$$

and if the detected column-based parity-check constraint is detected for the subsequent column as

$$V_{\text{as-detected, subsequent}} = +N_d(0)$$

or

- 5 b) a transition-shift error is determined from the first bit position of the subsequent segment to the last bit position of the present segment, if the detected column-based parity-check constraint is detected for the present column as

$$V_{\text{as-detected, present}} = +N_d(N_{1,2} - 1)$$

- and if the detected column-based parity-check constraint is detected for the subsequent 10 column as

$$V_{\text{as-detected, subsequent}} = -N_d(0)$$

wherein $N_d(0) = 1$ and $N_d(N_{1,2} - 1)$ is the number of possible d,k constrained sequences of length $N_{1,2} - 1$.

- 15 46. A method according to claim 43, wherein a segment with a determined single-bit transition-shift error is corrected by being replaced by a segment having said unique index
 $w_j = w'_j - V_{\text{as-detected}}$
 wherein w'_j is an as-detected index of said segment to be replaced, wherein

$$w'_j = \sum_{i=0}^{N_{1,2}-1} b_i^j \cdot N_d(i)$$

- 20 wherein b_i^j denotes as-detected bit-value for the bit with number i of said segment in row j and wherein $N_d(i)$ is the number of possible d,k constrained sequences of length i .

47. A device for decoding a signal according to any one of claims 1 to 30 or a signal being encoded according to a method of claim 31 or 32, comprising:

- 25 parity-check means for checking for each RLL row a row-based parity-check constraint, and for checking for each column parity-check enabling channel word of said column parity-check rows a so-called column-based parity-check constraint along all corresponding segments of at least said M RLL rows that correspond to said column parity-check enabling channel word, and

- 30 determining means for determining an erroneous channel word based on the result of said parity-checking.

48. A device according to claim 47, wherein said device comprising means for performing a method according to any one of claims 35 to 46.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.