Matrix Computations Chapter 5: Positive Semidefinite Matrices Section 5.2 Examples of Applications

Jie Lu ShanghaiTech University

Application: Spectral Analysis via Subspace

Consider the complex harmonic time-series

$$y_t = \sum_{i=1}^k \alpha_i e^{j2\pi f_i t} + w_t, \quad t = 0, 1, ..., T - 1$$

where $\alpha_i \in \mathbb{C}$ is the amplitude-phase coefficient of the *i*th sinusoid; $f_i \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ is the frequency of the *i*th sinusoid; w_t is noise; T is the observation time length

- **Aim**: Estimate the frequencies f_1, \ldots, f_k from $\{y_t\}_{t=0}^{T-1}$
 - Can be done by applying the Fourier transform
 - The spectral resolution of Fourier-based methods is often limited by T
- Our interest: study a subspace approach which can enable "super-resolution" ¹

Illustration

An illustration of the Fourier spectrum. T = 64, k = 5, $\{f_1, \dots, f_k\} = \{-0.213, -0.1, -0.05, 0.3, 0.315\}$

Spectral Analysis: Formulation

Let $z_i = e^{j2\pi f_i}$. Given a positive integer d, let

$$\mathbf{y}_t = \begin{bmatrix} y_t \\ y_{t+1} \\ \vdots \\ y_{t+d-1} \end{bmatrix} = \sum_{i=1}^k \alpha_i \begin{bmatrix} z_i^t \\ z_i^{t+1} \\ \vdots \\ z_i^{t+d-1} \end{bmatrix} + \begin{bmatrix} w_t \\ w_{t+1} \\ \vdots \\ w_{t+d-1} \end{bmatrix} = \sum_{i=1}^k \alpha_i \begin{bmatrix} 1 \\ z_i \\ \vdots \\ z_i^{d-1} \end{bmatrix} z_i^t + \begin{bmatrix} w_t \\ w_{t+1} \\ \vdots \\ w_{t+d-1} \end{bmatrix}$$

Let $\mathbf{Y} = [\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{T_d-1}]$ where $T_d = T - d + 1$. We can write

$$Y = ADS + W,$$

where $\mathbf{A} = [~\mathbf{a}_1, \dots, \mathbf{a}_k~],~\mathbf{D} = \mathrm{Diag}(\alpha_1, \dots, \alpha_k),~\mathbf{W} = [~\mathbf{w}_0, \dots, \mathbf{w}_{\mathcal{T}_d-1}~],$

$$\mathbf{S} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{T_d-1} \\ \vdots & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix}$$

Spectral Analysis: Formulation (cont'd)

Let $\mathbf{R}_y = \frac{1}{T_d} \sum_{t=0}^{T_d-1} \mathbf{y}_t \mathbf{y}_t^H = \frac{1}{T_d} \mathbf{Y} \mathbf{Y}^H$ be the correlation matrix of \mathbf{y}_t

$$\mathbf{R}_{y} = \mathbf{A} \underbrace{\left(\frac{1}{T_{d}} \mathbf{D} \mathbf{S} \mathbf{S}^{H} \mathbf{D}^{H}\right)}_{=\mathbf{\Phi}} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{A} \mathbf{D} \mathbf{S} \mathbf{W}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{S}^{H} \mathbf{D}^{H} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{W}^{H}$$

(This requires knowledge of random processes) Assume that w_t is a temporally white circular Gaussian process with mean zero and variance σ^2 . Then, as $T_d \to \infty$,

$$\frac{1}{T_d} \mathbf{S} \mathbf{W}^H \to \mathbf{0}, \qquad \frac{1}{T_d} \mathbf{W} \mathbf{W}^H \to \sigma^2 \mathbf{I}$$

Therefore, we can approximate \mathbf{R}_{ν} by

$$\mathbf{R}_{y} = \mathbf{A}\mathbf{\Phi}\mathbf{A}^{H} + \sigma^{2}\mathbf{I}$$

Spectral Analysis: Formulation (cont'd)

Model: The correlation matrix $\mathbf{R}_y = \frac{1}{T_d} \mathbf{Y} \mathbf{Y}^H$ is modeled as

$$\mathbf{R}_{y} = \mathbf{A}\mathbf{\Phi}\mathbf{A}^{H} + \sigma^{2}\mathbf{I}$$

where $\sigma^2 > 0$ is the noise power; $\Phi = \frac{1}{T_d} \mathbf{DSS}^H \mathbf{D}^H$; $\mathbf{D} = \mathrm{Diag}(\alpha_1, \dots, \alpha_k)$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & & z_k \\ \vdots & \vdots & & \vdots \\ z_1^{d-1} & z_2^{d-1} & \dots & z_k^{d-1} \end{bmatrix} \in \mathbb{C}^{d \times k}, \ \mathbf{S} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \\ 1 & z_2 & z_2^2 & \dots & z_1^{T_d-1} \\ \vdots & & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix} \in \mathbb{C}^{k \times T_d},$$

with $z_i = e^{\mathbf{j} 2\pi f_i}$

Observation: **A** and S^H are both Vandemonde

Spectral Analysis: Subspace Properties

Assumptions:

- 1. $\alpha_i \neq 0$ for all i
- 2. $f_i \neq f_j$ for all $i \neq j$
- 3. d > k
- 4. $T_d \ge k$

Consequences:

- A has full column rank, S has full row rank
- Φ is positive definite (and thus nonsingular)
 - Proof: $\mathbf{x}^H \mathbf{D} \mathbf{S} \mathbf{S}^H \mathbf{D}^H \mathbf{x} = \| \mathbf{S}^H \mathbf{D}^H \mathbf{x} \|_2^2$, and $\mathbf{S}^H \mathbf{D}^H \mathbf{x} = \mathbf{0} \Longleftrightarrow \mathbf{x} = \mathbf{0}$ because \mathbf{S}^H has full column rank and \mathbf{D} has full rank
- $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \mathcal{R}(\mathbf{A})$
 - Proof: \mathbf{A}^H has full row rank \Longrightarrow rank($\mathbf{\Phi}\mathbf{A}^H$) = rank($\mathbf{\Phi}$). Since $\mathbf{\Phi}$ is PD (and thus full rank), $\mathbf{\Phi}\mathbf{A}^H$ has full row rank. Then use the property on the last page of Section 5.1
- $rank(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = rank(\mathbf{A}) = k$, and $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$ has k nonzero eigenvalues

Spectral Analysis: Subspace Properties (cont'd)

Consider the eigendecomposition of $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$. Let $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H = \mathbf{V}\Lambda\mathbf{V}^H$ and assume $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$ are the eigenvalues of $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$

Since $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$ is PSD, we have $\lambda_i > 0$ for i = 1, ..., k and $\lambda_i = 0$ for i = k + 1, ..., d

$$\mathbf{A}\mathbf{\Phi}\mathbf{A}^{H} = \begin{bmatrix} \mathbf{V}_{1} & \mathbf{V}_{2} \end{bmatrix} \begin{bmatrix} \Lambda_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{H} \\ \mathbf{V}_{2}^{H} \end{bmatrix} = \mathbf{V}_{1}\Lambda_{1}\mathbf{V}_{1}^{H}$$

where $\mathbf{V}_1 = [\mathbf{v}_1, \dots, \mathbf{v}_k] \in \mathbb{C}^{d \times k}$, $\mathbf{V}_2 = [\mathbf{v}_{k+1}, \dots, \mathbf{v}_d] \in \mathbb{C}^{d \times (d-k)}$, $\Lambda_1 = \operatorname{Diag}(\lambda_1, \dots, \lambda_k)$

Consequence: $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \mathcal{R}(\mathbf{V}_1), \ \mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H)^{\perp} = \mathcal{R}(\mathbf{V}_2)$

Spectral Analysis: Subspace Properties (cont'd)

Now consider the eigendecomposition of \mathbf{R}_{ν}

$$\mathbf{R}_{y} = \begin{bmatrix} \mathbf{V}_{1} & \mathbf{V}_{2} \end{bmatrix} \begin{bmatrix} \Lambda_{1} + \sigma^{2} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \sigma^{2} \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{V}_{1}^{H} \\ \mathbf{V}_{2}^{H} \end{bmatrix}$$

Consequences:

- $\mathbf{V}(\Lambda + \sigma^2 \mathbf{I})\mathbf{V}^H$ is the eigendecomposition of \mathbf{R}_y
- V_1 can be obtained from R_y by finding the eigenvectors associated with the first k largest eigenvalues of R_y

Spectral Analysis: Subspace Properties (cont'd)

• Compute the eigenvector matrix $\mathbf{V} \in \mathbb{C}^{d \times d}$ of \mathbf{R}_y . Partition $\mathbf{V} = [\ \mathbf{V}_1, \mathbf{V}_2\]$ where $\mathbf{V}_1 \in \mathbb{C}^{n \times k}$ corresponds the first k largest eigenvalues. Then,

$$\mathcal{R}(\mathbf{V}_1) = \mathcal{R}(\mathbf{A}), \qquad \mathcal{R}(\mathbf{V}_2) = \mathcal{R}(\mathbf{A})^{\perp}$$

• Idea of subspace methods: Let

$$\mathbf{a}(z) = \begin{bmatrix} 1 \\ z \\ \vdots \\ z^{d-1} \end{bmatrix}.$$

Find any $f \in [-\frac{1}{2}, \frac{1}{2})$ that satisfies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$

Spectral Analysis via Subspace: Subspace Properties

Question: it is true that $f \in \{f_1, \dots f_k\}$ implies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$. But is it also true that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$ implies $f \in \{f_1, \dots f_k\}$?

Answer: Yes if d > k

Theorem

Let $\mathbf{A} \in \mathbb{C}^{d \times k}$ any Vandemonde matrix with distinct roots z_1, \dots, z_k and with d > k + 1. Then.

$$z \in \{z_1, \ldots, z_k\} \iff \mathbf{a}(z) \in \mathcal{R}(\mathbf{A}).$$

Spectral Analysis: Algorithm

There are many subspace methods, and Multiple Signal Classification (MUSIC) is most well-known

MUSIC uses the fact that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A}) \Longleftrightarrow \mathbf{V}_2^H \mathbf{a}(e^{\mathbf{j}2\pi f}) = \mathbf{0}$

Algorithm: MUSIC

input: the correlation matrix $\mathbf{R}_y \in \mathbb{C}^{d \times d}$ and the model order k < d Perform eigendecomposition $\mathbf{R}_y = \mathbf{V} \Lambda \mathbf{V}^H$ with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$. Let $\mathbf{V}_2 = [\mathbf{v}_{k+1}, \ldots, \mathbf{v}_d]$, and compute

$$S(f) = \frac{1}{\|\mathbf{V}_2^H \mathbf{a}(e^{\mathbf{j}2\pi f})\|_2^2}$$

for $f \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ (done by discretization). **output:** S(f)

Spectral Analysis: Algorithm (cont'd)

An illustration of the MUSIC spectrum. T = 64, k = 5, $\{f_1, \ldots, f_k\} = \{-0.213, -0.1, -0.05, 0.3, 0.315\}$

Application: Euclidean Distance Matrices

- Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ be a collection of points, and let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$
- Let $d_{ij} = \|\mathbf{x}_i \mathbf{x}_i\|_2$ be the Euclidean distance between points i and j
- **Problem**: Given d_{ij} for all $i, j \in \{1, ..., n\}$, recover **X**
 - This is called the Euclidean distance matrix (EDM) problem
- Applications: sensor network localization (SNL), molecule conformation, etc.

Applications of EDM

(a) Sensor network localization (SNL) (b) Molecular transformation²

²P. Stoica and R. L. Moses, *Introduction to Spectral Analysis*, Prentice Hall, 1997.

EDM: Formulation

- Let $\mathbf{R} \in \mathbb{R}^{n \times n}$ be s.t. $r_{ij} = d_{ij}^2$ for all $i, j = 1, \dots, n$
- Note from

$$r_{ij} = d_{ij}^2 = \mathbf{x}_i^T \mathbf{x}_i - 2\mathbf{x}_i^T \mathbf{x}_j + \mathbf{x}_j^T \mathbf{x}_j$$

that **R** can be written as

$$\mathbf{R} = \mathbf{1}(\operatorname{diag}(\mathbf{X}^{T}\mathbf{X}))^{T} - 2\mathbf{X}^{T}\mathbf{X} + (\operatorname{diag}(\mathbf{X}^{T}\mathbf{X}))\mathbf{1}^{T}$$
 (*)

where $\operatorname{diag}(\mathbf{Y}) := [y_{11}, \dots, y_{nn}]^T$ for any square matrix \mathbf{Y}

- Observation: (*) Also holds if we replace X by
 - $\tilde{\mathbf{X}} = [\mathbf{x}_1 + \mathbf{b}, \dots, \mathbf{x}_n + \mathbf{b}]$ for any $\mathbf{b} \in \mathbb{R}^d$ $(d_{ij} = ||\tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i||_2)$
 - $\tilde{\mathbf{X}} = \mathbf{Q}\mathbf{X}$ for any orthogonal \mathbf{Q} ($\tilde{\mathbf{X}}^T\tilde{\mathbf{X}} = \mathbf{X}^T\mathbf{X}$)
- Implication: recovery of X from R is subjected to translations and rotations/reflections
 - In SNL we can use anchors to fix this issue

EDM: Formulation (cont'd)

EDM: Formulation (cont'd)

• WLOG, assume $\mathbf{x}_1 = \mathbf{0}$

$$\mathbf{r}_1 = \begin{bmatrix} \|\mathbf{x}_1 - \mathbf{x}_1\|_2^2 \\ \|\mathbf{x}_2 - \mathbf{x}_1\|_2^2 \\ \vdots \\ \|\mathbf{x}_n - \mathbf{x}_1\|_2^2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \|\mathbf{x}_2\|_2^2 \\ \vdots \\ \|\mathbf{x}_n\|_2^2 \end{bmatrix}, \qquad \operatorname{diag}(\mathbf{X}^T\mathbf{X}) = \begin{bmatrix} \|\mathbf{x}_1\|_2^2 \\ \|\mathbf{x}_2\|_2^2 \\ \vdots \\ \|\mathbf{x}_n\|_2^2 \end{bmatrix} = \mathbf{r}_1$$

• Combining the above with (*) gives

$$\mathbf{X}^T\mathbf{X} = -\frac{1}{2}(\mathbf{R} - \mathbf{1}\mathbf{r}_1^T - \mathbf{r}_1\mathbf{1}^T)$$

• Idea: do a symmetric factorization $G = X^T X$ for

$$\mathbf{G} = -\frac{1}{2}(\mathbf{R} - \mathbf{1}\mathbf{r}_1^T - \mathbf{r}_1\mathbf{1}^T)$$

to recover X

EDM: Method

- Assumption: X has full row rank
- It can be shown that **G** is PSD, $rank(\mathbf{G}) = d$, and **G** has d nonzero eigenvalues
- Let $\mathbf{G} = \mathbf{V} \Lambda \mathbf{V}^T$ be the eigendecomposition of \mathbf{G} with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$

$$\mathbf{G} = \begin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} \begin{bmatrix} \Lambda_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix} = (\Lambda^{1/2} \mathbf{V}_1^T)^T (\Lambda^{1/2} \mathbf{V}_1^T)$$

where $\mathbf{V}_1 \in \mathbb{R}^{d \times d}$, $\Lambda_1 = \mathrm{Diag}(\lambda_1, \dots, \lambda_d)$

- **EDM solution**: Take $\hat{\mathbf{X}} = \Lambda^{1/2} \mathbf{V}_1^T$ as an estimate of \mathbf{X}
- Recovery guarantee: From the last property of Section 5.1, $\hat{\mathbf{X}} = \mathbf{Q}\mathbf{X}$ for some orthogonal \mathbf{Q}

EDM: Further Discussion

- In applications such as SNL, not all pairwise distances d_{ij} 's are available, so that there are missing entries in \mathbf{R}
- Possible solution: Apply low-rank matrix completion (cf. Section 3.4) to recover the full R
- To use low-rank matrix completion, we need a bound on rank(R)
- Using $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$, we have

$$\begin{aligned} \operatorname{rank}(\mathbf{R}) \leq & \operatorname{rank}(\mathbf{1}(\operatorname{diag}(\mathbf{X}^T\mathbf{X}))^T) + \operatorname{rank}(-2\mathbf{X}^T\mathbf{X}) \\ & + \operatorname{rank}((\operatorname{diag}(\mathbf{X}^T\mathbf{X}))\mathbf{1}^T) \\ \leq & 1 + d + 1 = d + 2 \end{aligned}$$

 Other issues:³ Noisy distance measurements, resolving the orthogonal rotation problem with X

³I. Dokmanić, R. Parhizkar, J. Ranieri, and Vetterli, "Euclidean distance matrices," IEEE Signal Processing

Magazine, vol. 32, no. 6, pp. 12–30, Nov. 2015.