# Math 120

Final Review

Nov 20 2024

# Contents

| Cnapter | Vectors and the Geometry of Space    | Page 2 |
|---------|--------------------------------------|--------|
|         | Three-Dimensional Coordinate Systems | 2      |
| Chapter | Vector Calculus                      | Page 6 |
|         | Curl and Divergence                  | 6      |
|         | Parametric Surfaces and Their Areas  | 6      |
|         | Surface Integral                     | 10     |
|         | Stokes' Theorem                      | 13     |

# 12 Vectors and the Geometry of Space

# 12.1 Three-Dimensional Coordinate Systems



# 13

- 13.1
- 13.2
- 13.3
- 13.4

# **14**

- 14.1
- 14.3
- 14.5
- 14.6
- 14.7
- 14.8

# **15**

- 15.1
- 15.2
- 15.3
- 15.6
- 15.7
- 15.8

# 16 Vector Calculus

- 16.1
- 16.2
- 16.3
- 16.4

# 16.5 Curl and Divergence

# 16.6 Parametric Surfaces and Their Areas

#### Parametric Surfaces

#### Definition 0.0.2: Parametric Surface

A parametric surface is a surface in three-dimensional space  $\mathbb{R}^3$  defined by a vector-valued function  $\mathbf{r}(u,v)$ , which depends on two parameters u and v. The function is expressed as:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k},$$

where x(u,v), y(u,v), and z(u,v) are the component functions of  $\mathbf{r}$ , representing the x-, y-, and zcoordinates of the surface, respectively. These functions are defined over a region D in the uv-plane. The
set of all points  $(x,y,z) \in \mathbb{R}^3$  that satisfy:

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v),$$

as (u, v) varies over D, forms the parametric surface S.



#### Parametric Equations

#### Definition 0.0.3: Parametric Equations

For a parametric surface the *parametric equations* are equations that describe the coordinates (x, y, z) of points on the surface as functions of two independent parameters u and v. For a parametric surface S, these equations are given by:

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v),$$

where x(u, v), y(u, v), and z(u, v) are the component functions of a vector-valued function  $\mathbf{r}(u, v)$ . These equations define the spatial coordinates of the surface for every pair of parameters (u, v) in a specified domain D in the uv-plane.

#### **Grid Curves**

#### Definition 0.0.4: Grid Curves

On a parametric surface s grid curves are families of curves defined by the vector function  $\mathbf{r}(u,v)$ . They are obtained by fixing one parameter and varying the other:

1. Curves with  $u = u_0$ : When u is held constant, the parametric surface reduces to a curve:

$$\mathbf{r}(u_0, v) = \langle x(u_0, v), y(u_0, v), z(u_0, v) \rangle,$$

which traces a curve  $C_1$  on the surface as v varies.

2. Curves with  $v = v_0$ : When v is held constant, the parametric surface reduces to a curve:

$$\mathbf{r}(u, v_0) = \langle x(u, v_0), y(u, v_0), z(u, v_0) \rangle,$$

which traces a curve  $C_2$  on the surface as u varies.

These two families of curves correspond to horizontal and vertical lines in the uv-plane and form a grid-like structure when plotted on the surface.

# **Spherical Coordinates**

#### **Surfaces of Revolution**

#### Definition 0.0.5: Surfaces of Revolution

A surface of revolution is generated by rotating a curve C, defined parametrically or as a function, about a fixed axis in three-dimensional space. The parametric equations of the surface can be expressed as:

$$x = u,$$
  

$$y = r(u)\cos\theta,$$
  

$$z = r(u)\sin\theta,$$

where:

- u is a parameter describing the curve C,
- r(u) is the radial distance of the curve from the axis of rotation,
- $\theta \in [0, 2\pi]$  is the angle of rotation.

The domain of the parameters u and  $\theta$  depends on the curve and the extent of rotation.



## **Tangent Planes**

#### Definition 0.0.6: Tangent Planes

The **tangent plane** to a parametric surface S at a point  $P_0(u_0, v_0)$  is the plane that best approximates S near  $P_0$ .

If S is defined by a vector-valued function:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k},$$

then the tangent plane at  $P_0$  is determined by the two tangent vectors at  $P_0$ :

$$\mathbf{r}_{u} = \frac{\partial \mathbf{r}}{\partial u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k},$$

$$\mathbf{r}_v = \frac{\partial \mathbf{r}}{\partial v} = \frac{\partial x}{\partial v} \mathbf{i} + \frac{\partial y}{\partial v} \mathbf{j} + \frac{\partial z}{\partial v} \mathbf{k}.$$

The tangent plane at  $P_0$  is spanned by  $\mathbf{r}_u$  and  $\mathbf{r}_v$ . A normal vector to the plane is given by:

$$\mathbf{n}=\mathbf{r}_u\times\mathbf{r}_v.$$

The equation of the tangent plane can be expressed in the point-normal form:

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}(u_0, v_0)) = 0$$

where  $\mathbf{r}(u_0, v_0)$  is the position vector of  $P_0$ .

For the tangent plane to exist, the cross product  $\mathbf{r}_u \times \mathbf{r}_v$  must be nonzero, ensuring that S is smooth at  $P_0$ .

#### Surface Area for a Parametric Surface

#### Definition 0.0.7: Surface Area for a Parametric Surface

The surface area of a smooth parametric surface S, defined by the vector-valued function:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}, \quad (u,v) \in D,$$

where D is the parameter domain, is given by the integral:

$$A(S) = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| \ dA,$$

where:

$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}, \quad \mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}.$$

The cross product  $\mathbf{r}_u \times \mathbf{r}_v$  represents a vector orthogonal to the tangent plane at each point on the surface, and its magnitude  $|\mathbf{r}_u \times \mathbf{r}_v|$  gives the infinitesimal area of a parallelogram spanned by the tangent vectors  $\mathbf{r}_u$  and  $\mathbf{r}_v$ . Integrating this quantity over the parameter domain D yields the total surface area of S.

## Surface Area of the Graph of a Function

#### Definition 0.0.8: Surface Area of the Graph of a Function

The surface area of the graph of a function z = f(x, y), where f(x, y) has continuous partial derivatives, over a region D in the xy-plane is given by:

$$A(S) = \iint_D \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \, dA.$$

# **Explanation**

• The parametric representation of the surface is:

$$\mathbf{r}(x,y) = x\mathbf{i} + y\mathbf{j} + f(x,y)\mathbf{k}.$$

• The tangent vectors are:

$$\mathbf{r}_x = \mathbf{i} + \frac{\partial f}{\partial x} \mathbf{k}, \quad \mathbf{r}_y = \mathbf{j} + \frac{\partial f}{\partial y} \mathbf{k}.$$

• The magnitude of the cross product of the tangent vectors is:

$$\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}}.$$

Integrating this quantity over the region D in the xy-plane gives the total surface area of the graph of f(x,y).

# 16.7 Surface Integral

#### Parametric Surfaces

#### Definition 0.0.9: Surface Integral for Parametric Surfaces

The surface integral of a scalar function f(x, y, z) over a parametric surface S, defined by the vector equation:

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}, \quad (u,v) \in D,$$

is given by:

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA.$$

## **Explanation**

- The parameter domain D is divided into subrectangles with dimensions  $\Delta u$  and  $\Delta v$ , and each corresponding surface patch is approximated as a parallelogram in the tangent plane.
- The area of a surface patch is approximated as:

$$\Delta S_{ij} \approx |\mathbf{r}_u \times \mathbf{r}_v| \Delta u \Delta v$$
.

• The surface integral is defined as the limit of a Riemann sum:

$$\iint_{S} f(x,y,z) dS = \lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^{*}) \Delta S_{ij}.$$

## **Key Components**

•  $\mathbf{r}_u$  and  $\mathbf{r}_v$  are the partial derivatives of  $\mathbf{r}(u,v)$  with respect to u and v, respectively:

$$\mathbf{r}_u = \frac{\partial \mathbf{r}}{\partial u}, \quad \mathbf{r}_v = \frac{\partial \mathbf{r}}{\partial v}.$$

•  $\mathbf{r}_u \times \mathbf{r}_v$  gives a vector normal to the surface at each point, and  $|\mathbf{r}_u \times \mathbf{r}_v|$  represents the infinitesimal surface area element.

This integral evaluates the contribution of f(x, y, z) across the entire surface S.



## **Graphs of Functions**

#### Definition 0.0.10: Surafe Integrals for Graphs of Functions

The surface integral of a scalar function f(x, y, z) over the graph of a function z = g(x, y), where g(x, y) has continuous partial derivatives, is given by:

$$\iint_{S} f(x,y,z) \, dS = \iint_{D} f(x,y,g(x,y)) \sqrt{\left(\frac{\partial g}{\partial x}\right)^{2} + \left(\frac{\partial g}{\partial y}\right)^{2} + 1} \, dA.$$

# Explanation

• The graph of the function z = g(x, y) can be regarded as a parametric surface with:

$$x = x$$
,  $y = y$ ,  $z = g(x, y)$ .

• The tangent vectors to this surface are:

$$\mathbf{r}_x = \mathbf{i} + \frac{\partial g}{\partial x}\mathbf{k}, \quad \mathbf{r}_y = \mathbf{j} + \frac{\partial g}{\partial y}\mathbf{k}.$$

• The cross product of the tangent vectors is:

$$\mathbf{r}_x \times \mathbf{r}_y = -\frac{\partial g}{\partial x}\mathbf{j} - \frac{\partial g}{\partial y}\mathbf{i} + \mathbf{k}.$$

• The magnitude of the cross product is:

$$\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| = \sqrt{\left(\frac{\partial g}{\partial x}\right)^{2} + \left(\frac{\partial g}{\partial y}\right)^{2} + 1}.$$

By integrating this quantity over the region D in the xy-plane, we account for the contributions of f(x, y, z) over the entire surface S.

#### **Oriented Surfaces**

#### Definition 0.0.11: Oriented Surfaces

An **oriented surface** is an orientable (two-sided) surface S where it is possible to define a continuous, unit normal vector  $\mathbf{n}$  at every point (x, y, z) on the surface, except possibly at boundary points.

### **Key Properties**

- Two Possible Orientations: For any orientable surface, there are two choices for the unit normal vector:
  - $-\mathbf{n}_1$ , the chosen unit normal vector.
  - $-\mathbf{n}_2 = -\mathbf{n}_1$ , the opposite orientation.
- A surface is called **orientable** if it is possible to assign **n** continuously over the entire surface S.
- A classic example of a non-orientable surface is the Möbius strip, which has only one side and no consistent orientation.

# Explanation

An oriented surface requires the existence of a consistent way to assign a "positive" or "negative" side across all points on the surface. The orientation is provided by the chosen direction of the normal vector **n**, which varies smoothly across the surface.

# Surface Integrals of Vector Fields; Flux

Definition 0.0.12: Flux

The surface integral of a vector field (also called the flux) over an oriented surface S with a unit normal vector  $\mathbf{n}$  is defined as:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS,$$

where:

- $\mathbf{F}$  is a continuous vector field defined on S,
- $\mathbf{n}$  is the unit normal vector to S,
- $\bullet$  dS represents the infinitesimal surface area element.

## **Physical Interpretation**

This integral measures the total "flow" of  $\mathbf{F}$  through the surface S in the direction of the normal vector  $\mathbf{n}$ . For example:

• If  $\mathbf{F} = \rho \mathbf{v}$ , where  $\rho(x, y, z)$  is the density of a fluid and  $\mathbf{v}(x, y, z)$  is the velocity field, the flux represents the mass flow rate of the fluid through S.

#### Parametric Form

If the surface S is parameterized by  $\mathbf{r}(u,v)$ , with tangent vectors:

$$\mathbf{r}_u = \frac{\partial \mathbf{r}}{\partial u}, \quad \mathbf{r}_v = \frac{\partial \mathbf{r}}{\partial v},$$

then the flux integral can be written as:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA,$$

where D is the parameter domain.

#### Notes

- The orientation of S determines the sign of the flux.
- If the opposite orientation is used, the flux is multiplied by -1.



# 16.8 Stokes' Theorem

### 16.9