

CS 6301 Special Topics: Introduction to Robot Manipulation and Navigation

Professor Yu Xiang

The University of Texas at Dallas

Robotics

What is the common phenomenon in these robots? Motion

Robot Mechanisms

Links and Joints

Franka Emika

Robot Mechanisms

Links and Joints

Fetch Mobile Manipulator

Robot Mechanisms

Links and Joints

 $\underline{https://thenewstack.io/boston-dynamics-agile-wheel-legged-humanoid-robot-performs-incredible-stunts/}$

Every joint connects exactly two links

- Revolute joint (R)
 - Hinge joint
 - Allows rotation motion about the joint axis

- Prismatic Joint (P)
 - Sliding joint or linear joint
 - Allows translational motion along the direction of the joint axis

- Helical Joint (H)
 - Screw joint
 - Allows rotation and translatio about a screw axis

- Cylindrical joint (C)
 - Allows independent translations and rotations about a single fixed joint axis

Cylindrical (C)

- Universal joint (U)
 - A pair of revolute joints with orthogonal joint axes

Universal (U)

- Spherical joint (S)
 - Ball-and-socket joint

Spherical (S)

https://youtu.be/kztZu3uTyvM

Every joint connects exactly two links

Degrees of Freedom

Maximum number of logically independent values

Specify the position of a rigid body

Degrees of Freedom of Robot Joints

- Revolute joint
 - 1 DOF
- Prismatic joint
 - 1 DOF
- Helical joint
 - 1 DOF

Degrees of Freedom of Robot Joints

- Cylindrical joint
 - 2 DOF
- Universal joint
 - 2 DOF
- Spherical joint
 - 3 DOF

Degrees of Freedom of Robot Joints

		Constraints c	Constraints c
		between two	between two
Joint type	$\operatorname{dof} f$	planar	spatial
		rigid bodies	rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

Degrees of Freedom of a Robot

- 4 revolute joints
- 4 DOFs

- 7 revolute joints for the arm
- 7 DOFs

Configuration Space of a Robot

- The configuration of a robot is a complete specification of the position of every point of the robot.
- The minimum number n of real-valued coordinates needed to represent the configuration is the number of degrees of freedom (DOF) of the robot.
- The n-dimensional space containing all possible configurations of the robot is called the configuration space (C-space).
- The configuration of a robot is represented by a point in its C-space.

- 4 revolute joints
- 4 DOFs

Configuration Space of a Robot

 The configuration space of the Fetch arm is a 7D space

 Each value in the 7D vector indicates the value of the revolute joint

Grübler's Formula

 The number of degrees of freedom of a mechanism with links and joints can be calculated using Grübler's formula

```
degrees of freedom = (sum of freedoms of the bodies) –

(number of independent constraints)
```

- Consider the following setting
 - A robot with N links, J joints (consider ground as one link)
 - Each link has m DOF (planar link? spatial link?)
 - Number of freedoms by joint i f_i
 - Number of constraints by joint i \mathcal{C}_i

$$f_i + c_i = m$$

Grübler's Formula

$$\mathrm{dof} = \underbrace{m(N-1)}_{\mathrm{rigid\ body\ freedoms}} - \underbrace{\sum_{i=1}^{J} c_i}_{\mathrm{joint\ constraints}}$$
 Ground is regarded as a link

$$= m(N-1) - \sum_{i=1}^{J} (m - f_i)$$

$$= m(N - 1 - J) + \sum_{i=1}^{J} f_i.$$

Assume all joint constraints are independent.

8/24/2022 Yu Xiang 19

Open-Chain vs. Closed-Chain

- Open-chain mechanisms: without a closed loop
- Closed-chain mechanisms: with a closed loop

- Examples
 - A person standing with both feet

Stewart-Gough platform

20

Grübler's Formula

The planar four-bar linkage

- How many links?
 - 4 (one is ground)
- Each link has m DOF. What is m?
 - m=3

$$\mathrm{DOF} \, = m(N-1-J) + \sum_{i=1}^J f_i$$

$$= 3(4-1-4) + \sum_{i=1}^{n} 1$$

Grübler's Formula

Slider-crank mechanism (planar)

- How many links?
 - 4 (one is ground)
- Each link has m DOF. What is m?
 - m=3
- How many joints?
 - 3 revolute joints, 1 prismatic joint

$$\begin{aligned} \text{DOF} &= m(N-1-J) + \sum_{i=1}^J f_i \\ &= 3(4-1-4) + \sum_{i=1}^4 1 \end{aligned}$$

- Configuration specifies the position of a robot
- ullet For a robot with n joints, the configuration is a vector in \mathbb{R}^n
 - C-space

Joints may have limits, upper bound and lower bound

- Topology: shape of the space
 - Consider all the feasible points in the configuration space

- ullet n-dimensional Euclidean space \mathbb{R}^n
- ullet n-dimensional sphere in a (n+1)-dimensional Euclidean space S^n

- ullet Two-dimensional surface of a sphere in three-dimensional space S^2
- The C-space can have different representations, but its shape is the same
 - A point on a circle, angle heta , coordinates (x, y) $x^2+y^2=1$

 S^2

- C-space as Cartesian product
 - A rigid body in the plane $~\mathbb{R}^2 imes S^1$
 - A PR robot (Prismatic-Revolute) $~\mathbb{R}^1 imes S^1$
 - Ignore joint limits
 - A 2R robot $S^1 \times S^1 = T^2$

n-dimensional surface of a torus in an (n+1)-dimensional space

$$T^2 = S^1 \times S^1$$

$$[0,2\pi)\times[0,2\pi)$$

sample representation

C-space of a planar rigid body with a 2R robot arm

$$\mathbb{R}^2 \times S^1 \times T^2 = \mathbb{R}^2 \times T^3$$

- C-space of a rigid body in 3D space
 - 3D translation
 - 3D rotation

$$\mathbb{R}^3 \times S^2 \times S^1$$

Summary

Robot links and joints

Degrees of freedom of joints and robots

• Grübler's Formula

Configuration space

Further Reading

 Chapter 2 in Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st Edition, 2017 http://hades.mech.northwestern.edu/images/7/7f/MR.pdf

 T. Lozano-Perez. Spatial planning: a configuration space approach. A.I. Memo 605, MIT Artificial Intelligence Laboratory, 1980. http://people.csail.mit.edu/tlp/

 W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, 2002.