Chapitre ²

Suites de nombres réels

3.1 Définitions

Définition 3.1.1 Une suite réelle $(u_n)_{n\in\mathbb{N}}$ est la donnée d'une application u de l'ensemble des entiers naturels \mathbb{N} à valeurs dans \mathbb{R} .

$$u: \mathbb{N} \to \mathbb{R}$$
 $n \mapsto u(n) = u_n$

- u_n est appelé terme général de la suite $(u_n)_{n\in\mathbb{N}}$ et u_0 est appelé premier terme de la suite.
- $(u_n)_{n\in\mathbb{N}}$ est dite suite arithmétique s'il existe $a\in\mathbb{R}$, tel que $u_{n+1}-u_n=a$, dans ce cas on a : $u_n=u_0+na$; $\forall n\in\mathbb{N}$.
- $(u_n)_{n\in\mathbb{N}}$ est dite suite géométrique s'il existe $a\in\mathbb{R}$, tel que $\frac{u_{n+1}}{u_n}=a$, dans ce cas on $a:u_n=u_0.a^n$; $\forall n\in\mathbb{N}$.

3.2 Monotonie d'une suite réelle

Définition 3.2.1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle,

- $(u_n)_{n\in\mathbb{N}}$ est dite croissante (resp. strictement croissante) si : $\forall n\in\mathbb{N}; \ u_{n+1}-u_n\geq 0 \ (\text{resp. si}\ \forall n\in\mathbb{N}; u_{n+1}-u_n>0).$
- $(u_n)_{n\in\mathbb{N}}$ est dite décroissante (resp. strictement décroissante) si : $\forall n\in\mathbb{N}; u_{n+1}-u_n\leq 0 \text{ (resp. si } \forall n\in\mathbb{N}; u_{n+1}-u_n<0).$
- $(u_n)_{n\in\mathbb{N}}$ est dite monotone si elle est soit croissante soit décroissante.
- $(u_n)_{n\in\mathbb{N}}$ est dite strictement monotone si elle est soit strictement croissante soit strictement décroissante.

Exemples 3.2.2 1. Pour $u_n = n^2 - 2n$, $n \in \mathbb{N}$; la suite $(u_n)_{n \in \mathbb{N}}$ est croissante. En effet;

$$u_{n+1} - u_n = (n+1)^2 - 2(n+1) = n^2 - 1 \ge 0, \forall n \in \mathbb{N}.$$

2. Pour $u_n = \frac{1}{n!}$, $n \in \mathbb{N}$; la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante. En effet;

$$u_{n+1} - u_n = \frac{-n}{(n+1)!} \le 0, \forall n \in \mathbb{N}.$$

3.3 Suites réelles et relation d'ordre

Définition 3.3.1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- $(u_n)_{n\in\mathbb{N}}$ est dite majorée $si: \exists M\in\mathbb{R}; \forall n\in\mathbb{N}; u_n\leq M.$
- $(u_n)_{n\in\mathbb{N}}$ est dite minorée $si: \exists m\in\mathbb{R}; \forall n\in\mathbb{N}; m\leq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est dite bornée si elle est majorée et minorée ou s'il existe M>0 tel que $|u_n|\leq M$.

Exemples 3.3.2 1. Si $\forall n \in \mathbb{N}$, $u_n = \cos n$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est bornée. $En \ effet \ ; \ |u_n| \le 1, \forall n \in \mathbb{N}.$

2. Si $\forall n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{k^2}$, alors la suite $(u_n)_{n \in \mathbb{N}^*}$ est majorée par 2. En effet; on a $\forall k \in \mathbb{N}^*$:

$$k \ge k - 1 \Leftrightarrow k^2 \ge k(k - 1) > 0 \Leftrightarrow \frac{1}{k^2} \le \frac{1}{k(k - 1)}$$

d'où

$$\sum_{k=2}^{n} \frac{1}{k^2} \le \sum_{k=2}^{n} \frac{1}{k(k-1)} \Rightarrow \sum_{k=1}^{n} \frac{1}{k^2} \le 1 + \sum_{k=2}^{n} \frac{1}{k(k-1)}$$

 $or \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}, d'où$

$$u_n \le 1 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right)$$

$$\Leftrightarrow u_n \le 1 + \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots - \frac{1}{n-1} + \frac{1}{n-1} - \frac{1}{n} \right)$$

et par conséquent

$$u_n \le 2 - \frac{1}{n} \le 2, \forall n \in \mathbb{N}^*.$$

3.4 Sous-suites

Définition 3.4.1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et φ une application strictement croissante de \mathbb{N} dans \mathbb{N} , la suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ est dite sous-suite ou suite extraite de $(u_n)_{n\in\mathbb{N}}$.

Exemple 3.4.2 Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle telle que $u_n = \frac{(-1)^n}{n}$, on peut en extraire les deux sous-suites $(u_{2n})_{n\in\mathbb{N}^*}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ telles que :

$$u_{2n} = \frac{1}{2n}, \forall n \in \mathbb{N}^* \ et \ u_{2n+1} = \frac{-1}{2n+1}, \forall n \in \mathbb{N}.$$

Analyse 1

3.5 Convergence d'une suite

Définition 3.5.1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle, on dit que $(u_n)_{n\in\mathbb{N}}$ est convergente s'il existe un réel $l\in\mathbb{R}$, tel que

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; (n \ge n_{\varepsilon} \Rightarrow |u_n - l| < \varepsilon).$$

on note $\lim_{n \to +\infty} u_n = l$ et on dit que l est la limite de $(u_n)_{n \in \mathbb{N}}$.

Exemple 3.5.2 On considère la suite $(u_n)_{n\in\mathbb{N}}$, telle que $u_n = 1 - \frac{2}{5^n}$. Montrons que $(u_n)_{n\in\mathbb{N}}$ est convergente vers 1.

$$\left(\lim_{n \to +\infty} u_n = 1\right) \Leftrightarrow (\forall \varepsilon > 0, \exists ? n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; (n \ge n_{\varepsilon} \Rightarrow |u_n - 1| < \varepsilon))$$

$$|u_n - 1| < \varepsilon \Leftrightarrow \frac{2}{5^n} < \varepsilon \Leftrightarrow \frac{2}{\varepsilon} < 5^n \Leftrightarrow \frac{\ln\left(\frac{2}{\varepsilon}\right)}{\ln 5} < n$$

alors il suffit de prendre $n_{\varepsilon} = \left\lceil \frac{\left|\ln\left(\frac{2}{\varepsilon}\right)\right|}{\ln 5}\right\rceil + 1.$

Théorème 3.5.3 Si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente alors sa limite est unique.

Preuve

Supposons par l'absurde que $(u_n)_{n\in\mathbb{N}}$ est convergente vers deux limites différentes l_1, l_2 , telles que $l_1 \neq l_2$, alors on a :

$$\left(\lim_{n \to +\infty} u_n = l_1\right) \Leftrightarrow \left(\forall \varepsilon > 0, \exists n_\varepsilon \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_\varepsilon \Rightarrow |u_n - l_1| < \frac{\varepsilon}{2}\right)$$

$$\left(\lim_{n \to +\infty} u_n = l_2\right) \Leftrightarrow \left(\forall \varepsilon > 0, \exists n'_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n'_{\varepsilon} \Rightarrow |u_n - l_2| < \frac{\varepsilon}{2}\right)$$

Comme

$$|l_2 - l_1| = |(u_n - l_1) + (l_2 - u_n)|,$$

alors si on pose $n_{\varepsilon}'' = \max(n_{\varepsilon}, n_{\varepsilon}')$, on a

$$\forall \varepsilon > 0, \exists n_{\varepsilon}'' \in \mathbb{N}; \forall n \in \mathbb{N}; (n \ge n_{\varepsilon}'' \Rightarrow |l_2 - l_1| \le |(u_n - l_1)| + |(u_n - l_2)| < \varepsilon).$$

d'où

$$\forall \varepsilon > 0, \exists n_{\varepsilon}'' \in \mathbb{N}; \forall n \in \mathbb{N}; n \geq n_{\varepsilon}'' \Rightarrow |l_2 - l_1| < \varepsilon$$

par conséquent $l_1 = l_2$; absurde.

Remarque: Une suite est dite divergente si elle tend vers l'infini ou bien si elle admet plusieurs limites différentes.

3.6 Suites divergentes

Définition 3.6.1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle,

$$\left(\lim_{n \to +\infty} u_n = +\infty\right) \Leftrightarrow (\forall A > 0, \exists n_A \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_A \Rightarrow u_n > A)$$

$$\left(\lim_{n \to +\infty} u_n = -\infty\right) \Leftrightarrow (\forall B < 0, \exists n_B \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_B \Rightarrow u_n < B)$$

$$\lim_{n \to +\infty} u_n = +\infty \ (resp. \lim_{n \to +\infty} u_n = -\infty),$$

Proposition 3.6.2 Si $(u_n)_{n\in\mathbb{N}}$ est une suite divergente, telle que $\lim_{\substack{n\to+\infty\\n\to+\infty}}u_n=+\infty$ (resp. $\lim_{\substack{n\to+\infty\\n\to+\infty}}u_n=-\infty$), et $(v_n)_{n\in\mathbb{N}}$ une suite telle que $u_n\leq v_n$ (resp. $u_n\geq v_n$), $\forall n\in\mathbb{N}$; alors la suite $(v_n)_{n\in\mathbb{N}}$ est divergente et on a $\lim_{n\to+\infty}v_n=+\infty$ (resp. $\lim_{n\to+\infty}v_n=-\infty$).

$$\lim_{n \to +\infty} v_n = +\infty \ (resp. \lim_{n \to +\infty} v_n = -\infty)$$

Preuve:

En effet, on a

$$\forall A > 0, \exists n_A \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_A \Rightarrow u_n > A$$

et

$$u_n \leq v_n, \forall n \in \mathbb{N}$$

alors

$$\forall A > 0, \exists n_A \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_A \Rightarrow v_n > A,$$

d'où

$$\lim_{n \to +\infty} v_n = +\infty.$$

Proposition 3.6.3 Toute suite convergente est bornée.

Remarques:

- 1. Par contraposée; une suite non bornée est divergente.
- 2. La réciproque n'est pas vraie, une suite bornée n'est pas toujours convergente.

Exemple 3.6.4 Soit $u_n = (-1)^n$, $\forall n \in \mathbb{N}$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est bornée car

$$\forall n \in \mathbb{N}; \ |(-1)^n| \le 1.$$

et $(u_n)_{n\in\mathbb{N}}$ est divergente car elle admet deux limites différentes :

$$\lim_{n \to +\infty} u_n = \begin{cases} 1 & \text{si } n \text{ est pair} \\ -1 & \text{si } n \text{ est impair} \end{cases}$$

Proposition 3.6.5 Si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente alors toutes ses sous-suites sont convergentes vers la même limite.

Remarque: Par contraposée, il suffit de trouver deux sous-suites qui ne convergent pas vers la même limite pour dire qu'une suite est divergente.

3.7 Opérations sur les suites convergentes

Théorème 3.7.1 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergentes repectivement vers les limites l_1, l_2 et soit $\lambda \in \mathbb{R}$, alors les suites $(u_n + v_n)_{n\in\mathbb{N}}$, $(\lambda u_n)_{n\in\mathbb{N}}$, $(u_n \cdot v_n)_{n\in\mathbb{N}}$, $(u_n \cdot v_n)_{n\in\mathbb{N}}$, $(|u_n|)_{n\in\mathbb{N}}$ convergent aussi et on a :

1.
$$\lim_{n \to +\infty} (u_n + v_n) = l_1 + l_2$$
.

2.
$$\lim_{n \to +\infty} (\lambda u_n) = \lambda l_1.$$

3.
$$\lim_{n \to +\infty} (u_n.v_n) = l_1.l_2.$$

4.
$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{l_1}{l_2} \text{ si } l_2 \neq 0.$$

5.
$$\lim_{n \to +\infty} |u_n| = |l_1|$$
.

Remarques:

- 1. La somme de deux suites divergentes peut être convergente.
- 2. La valeur absolue d'une suite divergente peut être convergente.

Exemples 3.7.2 1. Soient les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, telles que $\forall n\in\mathbb{N}$

$$u_n = 2n \ et \ v_n = -2n + e^{-n},$$

 $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont divergentes or la suite $(u_n+v_n)_{n\in\mathbb{N}}$ est convergente car $u_n+v_n=8, \forall n\in\mathbb{N}$.

2. Soit $u_n = (-1)^n$, $\forall n \in \mathbb{N}$. La suite $(u_n)_{n \in \mathbb{N}}$ est divergente or on a $|u_n| = 1$, $\forall n \in \mathbb{N}$, d'où la suite $(|u_n|)_{n \in \mathbb{N}}$ est convergente.

Propriétés 11 1. Si $(u_n)_{n\in\mathbb{N}}$ est une suite convergente telle que $u_n > 0$, $\forall n \in \mathbb{N}$ (resp. $u_n < 0$, $\forall n \in \mathbb{N}$), alors

$$\lim_{n \to +\infty} u_n \ge 0 \ (resp. \lim_{n \to +\infty} u_n \le 0).$$

2. $Si(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ sont deux suites convergentes telles que $u_n < v_n, \forall n \in \mathbb{N}$ alors

$$\lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n.$$

Preuve:

1. On a $u_n > 0$, $\forall n \in \mathbb{N}$ et soit $l = \lim_{n \to +\infty} u_n$. Montrons que $l \ge 0$. Supposons par l'absurde que l < 0, et soit $\varepsilon = \frac{|l|}{2} > 0$ alors on a :

$$\exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; (n \ge n_{\varepsilon} \Rightarrow |u_n - l| < \frac{|l|}{2}),$$

d'où

$$l - \frac{|l|}{2} < u_n < l + \frac{|l|}{2} < 0,$$

ce qui est absurde car $u_n > 0, \forall n \in \mathbb{N}$.

2. On a $u_n < v_n$, $\forall n \in \mathbb{N}$, soient $l_1 = \lim_{n \to +\infty} u_n$ et $l_2 = \lim_{n \to +\infty} v_n$, Supposons par l'absurde que $l_2 < l_1$, et soit $\varepsilon = \frac{l_1 - l_2}{2} > 0$ alors on a :

$$\exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; n \geq n_{\varepsilon} \Rightarrow |u_n - l_1| < \frac{l_1 - l_2}{2},$$

d'où

$$l_1 - \frac{l_1 - l_2}{2} < u_n < l_1 + \frac{l_1 - l_2}{2} \Leftrightarrow \frac{l_1 + l_2}{2} < u_n < \frac{3l_1 - l_2}{2} \dots (1)$$

et on a

$$\exists n'_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; n \geq n'_{\varepsilon} \Rightarrow |v_n - l_2| < \frac{l_1 - l_2}{2},$$

d'où

$$l_2 - \frac{l_{1,} - l_2}{2} < v_n < l_2 + \frac{l_{1,} - l_2}{2} \Leftrightarrow \frac{3l_2 - l_1}{2} < v_n < \frac{l_1 + l_2}{2} \dots (2)$$

posons $n''_{\varepsilon} = \max(n_{\varepsilon}, n'_{\varepsilon})$, alors de (1) et (2) on a

$$\exists n_{\varepsilon}'' \in \mathbb{N}; \forall n \in \mathbb{N}; (n \ge n_{\varepsilon}'' \Rightarrow v_n < \frac{l_1 + l_2}{2} < u_n)$$

donc $v_n < u_n$, ce qui est absurde car $u_n < v_n$, $\forall n \in \mathbb{N}$.

Ou bien on peut simplement voir cette propriété comme conséquence directe de la première, où il suffit de poser $w_n = v_n - u_n$.

$$w_n > 0, \forall n \in \mathbb{N} \Rightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} w_n \ge 0$$

 $\Leftrightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} (v_n - u_n) \ge 0$
 $\Leftrightarrow \lim_{\substack{n \to +\infty \\ n \to +\infty}} v_n \ge \lim_{\substack{n \to +\infty \\ n \to +\infty}} u_n.$

Théorème 3.7.3 Toute suite croissante (resp. décroissante) et majorée (resp. minorée) est convergente vers sa borne supérieure (resp. inférieure).

Preuve:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante et majorée alors :

$$\forall n \in \mathbb{N} : u_n \leq u_{n+1} \text{ et } \exists M \in \mathbb{R}; u_n \leq M$$

posons $E = \{u_n, n \in \mathbb{N}\}\$ et $u = \sup E$; on a alors d'après la caractérisation

de la borne supérieure :

$$\forall \varepsilon > 0, \exists p \in \mathbb{N}, u - \varepsilon < u_p,$$

et comme $(u_n)_n$ est croissante alors :

$$\forall n \in \mathbb{N} : n \ge p \Rightarrow u_p \le u_n$$

or $u_n \leq u$, d'où

$$u - \varepsilon < u_n \le u_n \le u < u + \varepsilon$$
,

par suite on a

$$\forall \varepsilon > 0, \exists p \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq p \Rightarrow |u_n - u| < \varepsilon$$

alors
$$\lim_{n \to +\infty} u_n = \sup E$$
.

Théorème 3.7.4 (Encadrement d'une suite) Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ trois suites réelles, telles que: $\forall n \geq n_0$; $u_n \leq v_n \leq w_n$ et $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = l$, alors $\lim_{n \to +\infty} v_n = l$.

Preuve:

Soit $\varepsilon > 0$ alors on a $\exists n_1 \in \mathbb{N}, \forall n \in \mathbb{N}; \ n \geq n_1$:

$$|u_n - l| < \varepsilon \Leftrightarrow l - \varepsilon < u_n < l + \varepsilon$$

et on a $\exists n_2 \in \mathbb{N}, \forall n \in \mathbb{N}; n \geq n_1$:

$$|w_n - l| < \varepsilon \Leftrightarrow l - \varepsilon < w_n < l + \varepsilon$$

posons $n_3 = \max(n_0, n_1, n_2)$, alors $\exists n_3 \in \mathbb{N}, \forall n \in \mathbb{N}; n \geq n_3$:

$$l - \varepsilon < u_n < v_n < w_n < l + \varepsilon \Rightarrow l - \varepsilon < v_n < l + \varepsilon \Leftrightarrow |v_n - l| < \varepsilon$$

d'où

$$\forall \varepsilon > 0, \exists n_3 \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_3 \Rightarrow |v_n - l| < \varepsilon,$$

donc

$$\lim_{n \to +\infty} v_n = l.$$

Exemple 3.7.5 $u_n = \frac{(-1)^n \ln n}{n}, \forall n \in \mathbb{N}^*.$

On $a \ \forall n \in \mathbb{N}^*$:

$$-1 \le (-1)^n \le 1 \Leftrightarrow \frac{-\ln n}{n} \le \frac{(-1)^n \ln n}{n} \le \frac{\ln n}{n}, \ car \ \ln n \ge 0.$$

et

$$\lim_{n \to +\infty} \frac{-\ln n}{n} = \lim_{n \to +\infty} \frac{\ln n}{n} = 0,$$

alors

$$\lim_{n \to +\infty} \frac{(-1)^n \ln n}{n} = 0.$$

Théorème 3.7.6 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles, telles que : $\lim_{n\to+\infty}u_n=0$ et $(v_n)_{n\in\mathbb{N}}$ est bornée; alors $\lim_{n\to+\infty}u_nv_n=0$.

Preuve:

Comme $(v_n)_{n\in\mathbb{N}}$ est bornée alors $\exists M>0, \, \forall n\in\mathbb{N}: |v_n|\leq M$ et on a :

$$\lim_{n \to +\infty} u_n = 0 \Leftrightarrow \forall \varepsilon > 0, \exists n_\varepsilon \in \mathbb{N}, \forall n \in \mathbb{N}; \ n \ge n_\varepsilon \Rightarrow |u_n| < \frac{\varepsilon}{M}$$

d'où

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; \ n \ge n_{\varepsilon} \Rightarrow |u_n v_n| < \varepsilon,$$

$$\operatorname{donc} \lim_{n \to +\infty} u_n v_n = 0.$$

Théorème 3.7.7 (Bolzano-weiestrass) Toute suite réelle bornée $(u_n)_{n\in\mathbb{N}}$ admet une sous suite convergente.

Preuve:

On utilise la méthode de Dichotomie. La suite $(u_n)_{n\in\mathbb{N}}$ étant bornée, il existe $A,B\in\mathbb{R}$ tels que $A\leq u_n\leq B, \forall n\in\mathbb{N}$, on construit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ et une application strictement croissante φ de \mathbb{N} dans \mathbb{N} telles que

$$A_0 = A, B_0 = B, \varphi(0) = 0$$

L'un des deux intervalles (segments) $[A_0, \frac{A_0+B_0}{2}]$, $[\frac{A_0+B_0}{2}, B_0]$ contient les termes de la suite pour une infinité d'indices n, on note $[A_1, B_1]$ cet intervalle et φ (1) un entier tel que φ (1) $> \varphi$ (0) et $u_{\varphi(1)} \in [A_1, B_1]$. En répétant cette opération, on a pour tout entier naturel n un intervalle $[A_n, B_n]$ de longueur $\frac{B-A}{2^n}$ et un entier φ (n) $> \varphi$ (n-1) tel que $u_{\varphi(n)} \in [A_n, B_n]$, d'où $(u_{\varphi(n)})_{n \in \mathbb{N}}$ est une sous suite de $(u_n)_{n \in \mathbb{N}}$. Par construction la suite $(A_n)_{n \in \mathbb{N}}$ est croissante et $(B_n)_{n \in \mathbb{N}}$ est décroissante et $\lim_{n \to +\infty} B_n - A_n = \lim_{n \to +\infty} \frac{B-A}{2^n} = 0$, d'où les suites $(A_n)_{n \in \mathbb{N}}$ et $(B_n)_{n \in \mathbb{N}}$ sont adjacentes donc convergent vers la même limite l et comme pour tout $n \in \mathbb{N}$: $A_n \leq u_{\varphi(n)} \leq B_n$ alors d'après le théorème de l'encadrement d'une suite (3.7.4) $\lim_{n \to +\infty} u_{\varphi(n)} = l$.

Remarque : Ce théoème est une autre propriété caractéristique de l'ensemble des nombres réels \mathbb{R} . Ce n'est pas vrai dans \mathbb{Q} .

3.8 Suites adjacentes

Définition 3.8.1 Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles, telles que $(u_n)_{n\in\mathbb{N}}$ est croissante et $(v_n)_{n\in\mathbb{N}}$ est décroissante.

$$(u_n)_{n\in\mathbb{N}}$$
 et $(v_n)_{n\in\mathbb{N}}$ sont dites adjacentes si $\lim_{n\to+\infty} (u_n-v_n)=0$.

Théorème 3.8.2 Deux suites réelles adjacentes sont convergentes vers la même limite.

Exemple 3.8.3 Les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ telles que : $\forall n\in\mathbb{N}^*$;

 $u_n = \sum_{k=1}^n \frac{1}{k!}$, et $v_n = u_n + \frac{1}{n!}$; convergent vers la même limite car elles sont adjacentes.

En effet, $(u_n)_{n\in\mathbb{N}^*}$ est croissante, $(v_n)_{n\in\mathbb{N}^*}$ est décroissante et on a $\lim_{n\to +\infty} (v_n-u_n) = \lim_{n\to +\infty} \frac{1}{n!} = 0.$

3.9 Suites de Cauchy

Définition 3.9.1 Une suite réelle $(u_n)_{n\in\mathbb{N}}$ est dite de Cauchy si :

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall p, q \in \mathbb{N}; \ (p \ge n_{\varepsilon} \ et \ q \ge n_{\varepsilon} \Rightarrow |u_p - u_q| < \varepsilon).$$

Théorème 3.9.2 Une suite réelle est convergente si et seulement si elle est de Cauchy.

Preuve:

 (\Rightarrow) Etant donnée une suite réelle $(u_n)_{n\in\mathbb{N}}$, si $(u_n)_{n\in\mathbb{N}}$ est convergente vers un nombre réel l alors on a :

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}; \ n \ge n_{\varepsilon} \Rightarrow |u_n - l| < \frac{\varepsilon}{2}.$$

Soient $p, q \in \mathbb{N}$ tels que $p \ge n_{\varepsilon}$ et $q \ge n_{\varepsilon}$ alors

$$|u_p - l| < \frac{\varepsilon}{2} \text{ et } |u_q - l| < \frac{\varepsilon}{2},$$

or $|u_p - u_q| = |u_p - l + l - u_q|$ d'où

$$|u_p - u_q| \le |u_p - l| + |u_q - l| < \varepsilon,$$

par conséquent $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.

 (\Leftarrow) Si la suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy alors

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall p, q \in \mathbb{N}; \ \left(p \ge n_{\varepsilon} \text{ et } q \ge n_{\varepsilon} \Rightarrow |u_p - u_q| < \frac{\varepsilon}{3} \dots \right)$$

d'où

$$u_q - \frac{\varepsilon}{3} < u_p < u_q + \frac{\varepsilon}{3},$$

pour $q \ge n_{\varepsilon}$ fixé, alors la suite $(u_p)_{p \in \mathbb{N}}$ est bornée, car même si $p < n_{\varepsilon}$ alors la suite $(u_p)_{p \in \mathbb{N}}$ a pour valeurs $\{u_0, u_1, ..., u_{n_{\varepsilon}-1}\}$.

Posons $A_n = \{u_k, k \geq n\} = \{u_n, u_{n+1}, ..., ...\}$, on remarque que A_n est un ensemble borné car $(u_n)_{n \in \mathbb{N}}$ est bornée, d'où sup A_n et inf A_n existent, notons inf $A_n = a_n$ et sup $A_n = b_n$ donc $a_n \leq u_k \leq b_n$, $\forall k \geq n$.

On a $\forall n \in \mathbb{N} : A_{n+1} \subset A_n$, d'où

$$\begin{cases} \sup A_{n+1} \le \sup A_n \\ \inf A_n \le \inf A_{n+1} \end{cases} \Leftrightarrow \begin{cases} b_{n+1} \le b_n \\ a_n \le a_{n+1} \end{cases}$$

alors $(a_n)_{n\in\mathbb{N}}$ est une suite croissante et $(b_n)_{n\in\mathbb{N}}$ une suite décroissante. On a aussi:

$$\sup A_n = b_n \Leftrightarrow \forall \varepsilon > 0, \exists p \in \mathbb{N}; p \ge n : 0 \le b_n - u_p < \frac{\varepsilon}{3} ... (2)$$

$$\inf A_n = a_n \Leftrightarrow \forall \varepsilon > 0, \exists q \in \mathbb{N}; q \ge n : 0 \le u_q - a_n < \frac{\varepsilon}{3} ... (3)$$

Par suite; comme

$$|b_n - a_n| = |b_n - u_p + u_p - u_q + u_q - a_n|,$$

alors

$$|b_n - a_n| \le |b_n - u_p| + |u_p - u_q| + |u_q - a_n|$$

d'où

$$(1) \wedge (2) \wedge (3) \Rightarrow |b_n - a_n| < \varepsilon$$

or $b_n \geq a_n, \forall n \in \mathbb{N}$; alors

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}; \forall n \geq n_{\varepsilon} \Rightarrow b_n - a_n < \varepsilon,$$

par suite

$$\lim_{n \to +\infty} (b_n - a_n) = 0.$$

par conséquent $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes et donc convergent vers la même limite l, et comme $a_n \leq u_k \leq b_n$, $\forall k \geq n$, alors $(u_n)_{n\in\mathbb{N}}$ est convergente aussi vers la même limite l.

Exemple 3.9.3 La suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_n = \sum_{k=1}^n \frac{\cos k}{k(k+1)}$ est convergente car elle

est de Cauchy. En effet, soient $p, q \in \mathbb{N}$, tels que $p \geq q$, et soit $\varepsilon > 0$

$$|u_{p} - u_{q}| = \left| \sum_{k=q+1}^{p} \frac{\cos k}{k (k+1)} \right| \Rightarrow |u_{p} - u_{q}| \le \sum_{k=q+1}^{p} \left| \frac{\cos k}{k (k+1)} \right| \le \sum_{k=q+1}^{p} \frac{1}{k (k+1)}$$
$$\Rightarrow |u_{p} - u_{q}| \le \sum_{k=q+1}^{p} \left(\frac{1}{k} - \frac{1}{k+1} \right) \Rightarrow |u_{p} - u_{q}| \le \frac{1}{q+1} - \frac{1}{p+1} < \frac{1}{q+1},$$

alors il suffit que $\frac{1}{q+1} < \varepsilon$, ce qui équivaut à $q > \frac{1}{\varepsilon} - 1$, et donc il suffit de prendre $n_{\varepsilon} = \left[\left| \frac{1}{\varepsilon} - 1 \right| \right] + 1$, pour avoir :

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall p, q \in \mathbb{N}; \ (p \ge n_{\varepsilon} \land q \ge n_{\varepsilon} \Rightarrow |u_p - u_q| < \varepsilon)$$

Par conséquent; la suite $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.

Remarque: Pour montrer qu'une suite est divergente il suffit de montrer qu'elle n'est pas de Cauchy, en utilisant la négation du critère de Cauchy.

$$\exists \varepsilon > 0, \forall n \in \mathbb{N}, \exists p, q \in \mathbb{N}; p \geq n_{\varepsilon} \land q \geq n_{\varepsilon} \land |u_p - u_q| \geq \varepsilon.$$

3.10Suites récurrentes

Définition 3.10.1 Soit $f: D \subset \mathbb{R} \to \mathbb{R}$ une fonction, telle que $f(D) \subset D$. On appelle suite récurrente une suite $(u_n)_{n\in\mathbb{N}}$; définie par la donnée de $u_0\in D$ et la relation de récurrence $u_{n+1} = f(u_n)$.

- Si la fonction f est croissante alors la monotonie de $(u_n)_{n\in\mathbb{N}}$ revient à l'étude du signe de la différence $f(u_0) - u_0$.
 - Si $f(u_0) u_0 < 0$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.
 - Si $f(u_0) u_0 > 0$, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.
- Si la fonction f est monotone et continue sur D et la suite $(u_n)_{n\in\mathbb{N}}$ est convergente vers une limite $l \in D$ alors sa limite vérifie l'équation f(l) = l (point fixe).

Enoncés des exercices 3.11

Exercice 1:

En utilisant la définition de la limite d'une suite, montrer que :

Exercice 2:

Calculer les limites des suites suivantes de terme général :
1.
$$U_n = \frac{\cos(2n^3 - 5)}{3n^3 + 2n^2 + 1}$$
, 2. $U_n = \frac{(2n^4 - 8n^2)}{3n^4 + \cos n + \frac{1}{n^5}}$, $3.U_n = \frac{3^n + (-3)^n}{3^n}$,