2019/3/28 17.htm

实验原理

一. Caesar(恺撒)密码

Caesar密码是传统的代替加密法,当没有发生加密(即没有发生移位)之前,其置换表如5-1-1所示。

表5-1-1 Caesar置换表

a	b	С	d	е	f	g	h	i	j	k	1	m
A	В	С	D	Е	F	G	Н	Ι	J	K	L	M
n	0	р	q	r	S	t	u	v	W	X	у	Z
N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z

加密时每一个字母向前推移k位,例如当k=5时,置换表如5-1-2所示。

表5-1-2 Caesar置换表

a	b	С	d	е	f	g	h	i	j	k	1	m
F	G	Н	Ι	Ј	K	L	M	N	0	Р	Q	R
n	0	р	q	r	s	t	u	V	W	Х	у	Z
S	Т	U	V	W	X	Y	Z	A	В	С	D	Е

于是对于明文: data security has evolved rapidly

经过加密后就可以得到密文: IFYF XJHZWNYD MFX JATQAJI WFUNIQD

若令26个字母分别对应整数 0 ~ 25, 如表5-1-3所示。

表5-1-3 Caesar置换表

a	b	С	d	е	f	g	h	i	j	k	1	m
0	1	2	3	4	5	6	7	8	9	10	11	12
n	0	р	q	r	S	t	u	v	W	X	у	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

则Caesar加密变换实际上是:

 $c = (m + k) \mod 26$

其中m是明文对应的数据,c是与明文对应的密文数据,k是加密用的参数,也称为密钥。

很容易得到相应的Caesar解密变换是:

 $m = D(c) = (c - k) \mod 26$

例如明文: data security 对应的数据序列:

3 0 19 0 18 4 2 20 17 8 19 24

当k = 5时经过加密变换得到密文序列:

8 5 24 5 23 9 7 25 22 13 24 3

对应的密文为:

I F Y F X J H Z W N Y D