INTRODUCTION

La machine à brouillard du Plateau de Saclay serait-elle le seul artefact intemporel dans cet environnement métropolitain qui se cherche toujours? Projetons nous en 2100, dans cette banlieue sud de ce qui sera toujours Paris. Les bouleversements locaux ont bien eu lieu, mais pas de la façon attendue, le climat local étant toujours féru de ce fameux brouillard. Par contre, l'environnement urbain et la relation à la ville sont entièrement conditionnés par une grande proximité aux lignes de transport lourd : la disparition des moyens de transport thermiques, puis de l'ensemble des véhicules légers par échec technologiques des alternatives électriques, ont exacerbé le rôle des lignes de train ou de metro existantes. Les densités ont progressivement augmenté autour des gares pour produire d'impressionnants complexes de tours, tandis que les espaces péri-urbains se vidaient progressivement. Les infrastructures de transport sont quant à elles restées quasiment à l'identique après 2030, le peu de ressources disponibles étant dédié à leur entretien, et leur extension étant conjointement sortie rapidement des agendas politiques. Ce plateau est alors rempli de bâtiments à l'abandon, puisqu'il attend toujours ce tronçon du Grand Paris Express qui n'aura finalement jamais été réalisé. La nature reprend peu à peu ses droits.

Ce pitch pour film d'anticipation à petit budget a pour avantage de nous révéler l'existence de processus complexes intriqués à différentes échelles de temps et d'espace dans la fabrique des villes : le développement historique du réseau ferroviaire en région parisienne a conditionné les évolutions futures, le RER B a suivi l'ancienne Ligne de Sceaux; le plan de Delouvrier pour le développement régional et son execution partielle sont des éléments d'explication de la structure du réseau parisien de transports en commun qui conditionnent fortement le développement urbain dans notre scenario; les processus de relocalisation au sein de l'espace de la métropole, liés à une plus ou moins grande nécessité de proximité ou d'accessibilité selon les modes de transports utilisés, participent à l'évolution urbaine; dans le cas du plateau de Saclay des processus de planification spécifiques à différents niveaux jouent un rôle crucial dans la différentiation du territoire.

La liste pourrait être ainsi continuée indéfiniment, chaque approche apportant sa vision mature correspondant à un corpus de connaissances scientifiques dans des disciplines diverses comme la géographie, l'économie urbaine, les transports. Ce scénario d'anticipation est suffisant pour faire ressentir la complexité des systèmes territoriaux que nous étudierons. Notre but ici est de se plonger dans cette complexité, et en particulier de donner un point de vue original sur l'étude des relations entre réseaux de transport et territoires. Le choix

4 Introduction

de cette position sera largement discuté dans une partie thématique, et nous nous concentrons à présent sur l'originalité du point de vue que nous allons prendre.

DE LA POSITION GÉNÉRALE

L'ambition de cette thèse est de ne pas avoir d'ambition a priori. Cette entrée en matière, rude en apparence, contient à différents niveaux les logiques sous-jacentes à notre processus de recherche. Au sens propre, nous nous plaçons tant que possible dans une démarche constructive et exploratoire, autant sur les plans théorique et méthodologique que thématique, mais encore proto-méthodologique (outils appliquant la méthode): si des ambitions unidimensionnelles ou intégrées devaient émerger, elles seraient conditionnées par l'arbitraire choix d'un échantillon temporel parmi la continuité de la dynamique qui structure tout projet de recherche. Au sens structurel, l'auto-référence qui soulève une contradiction apparente met en exergue l'aspect central de la réflexivité dans notre démarche constructive, autant au sens de la récursivité des appareils théoriques, de celui de l'application des outils et méthodes développés au travail lui-même ou que de celui de la co-construction des différentes approches et des différents axes thématiques. Le processus de production de connaissance pourra ainsi être lu comme une métaphore des processus étudiés. Enfin, sur un plan plus enclin à l'interprétation, cela suggérera la volonté d'une position délicate liant une conscience politique dont la nécessité est intrinsèque aux sciences humaines (par exemple ici contre l'application technocratique des modèles, ou pour le développement d'outils luttant pour une science ouverte) à une rigueur d'objectivité plus propre aux autres champs abordés, position forçant à une prudence accrue.

CONTEXTE SCIENTIFIQUE : PARADIGMES DE LA COMPLEXITÉ

Pour une meilleure introduction du sujet, il est nécessaire d'insister sur le cadre scientifique dans lequel nous nous positionnons. Ce contexte est crucial à la fois pour comprendre les concepts épistémologiques implicites dans nos questions de recherche, et aussi pour être conscient de la variété de méthodes et outils utilisés.

La science contemporaine prend progressivement le tournant de la complexité dans de nombreux champs que nous illustrerons par la suite, ce qui implique une mutation épistémologique pour abandonner le réductionnisme² strict qui a échoué dans la majorité de ses tentatives de synthèse [Anderson, 1972]. [Arthur, 2015] a rap-

² De manière schématique, le réductionnisme consiste en la position épistémologique que les systèmes sont entièrement compréhensibles à partir des éléments fondamentaux les constituant et des lois régissant leur évolution. Les niveaux supérieurs n'ont ni autonomie ni pouvoirs causaux irréductibles.

pelé récemment qu'une mutation des méthodes et paradigmes en était également un enjeu, par la place grandissante prise par les approches computationnelles qui remplacent les résolutions purement analytiques généralement limitées en possibilités de modélisation et de résolution. La capture des *propriétés émergentes* par des modèles de systèmes complexes est une des façons d'interpréter la philosophie de ces approaches.

Ces considérations sont bien connues des Sciences Humaines et Sociales (qualitatives et quantitatives) pour lesquelles la complexité des agents et systèmes étudiés est une des justifications de leur existence : si les humains étaient effectivement des particules, on pourrait s'attendre à ce que la majorité des disciplines les prenant comme objet d'étude n'aient jamais émergé puisque la thermodynamique aurait alors résolu la majorité des problèmes sociaux³. Elles sont au contraire moins connues et acceptées en sciences "dures" comme la physique : [Laughlin, 2006] développe une vision de la physique à la même position de "frontière des connaissances" que d'autres champs plus récents qui pourraient sembler en être encore à leur genèse. La plupart des connaissances actuelles concernent des structures classiques simples, alors qu'un grand nombre de systèmes présentent des propriétés d'auto-organisation, au sens où les lois microscopiques ne sont pas suffisantes pour inférer les propriétés macroscopiques du système à moins que son évolution ne soit entièrement simulée (plus précisément cette vision peut être prise comme une définition de l'émergence sur laquelle nous reviendrons par la suite, or des propriétés auto-organisées sont par nature émergentes). Cela correspond au premier cauchemar du Démon de Laplace développé dans [Def-FUANT et al., 2015].

A la croisée de positionnements épistémologiques, de méthodes et de champs d'application, les *Sciences de la complexité* se concentrent sur l'importance de l'émergence et de l'auto-organisation dans la plupart des phénomènes réel, ce qui les place plus proche de la frontière des connaissances que ce que l'on peut penser pour des disciplines classiques [Laughlin, 2006]. Ces concepts ne sont pas récents et avaient déjà été mis en valeur par [Anderson, 1972]. On peut aussi interpréter la Cybernétique comme un précurseur des Sciences de la Complexité en la lisant comme un pont entre technologie et sciences cognitives [Wiener, 1948], et surtout en développant les notions de rétroaction et de contrôle.

Plus tard, la Synergétique [HAKEN, 1980] a posé les bases d'approches théoriques des phénomènes collectifs en physique. Les causes possibles de la croissance récente du nombre de travaux se réclamant d'approches complexes sont nombreuses. L'explosion de la puissance

³ Bien que cette affirmation soit elle-même discutable, les sciences physiques classiques ayant également échoué à prendre en compte l'irréversibilité et l'évolution de systèmes complexes adaptatifs comme le soulignent [PRIGOGINE et STENGERS, 1997].

de calcul en est certainement une vu le rôle central que jouent les simulations numériques [Varenne, 2010b]. Elles peuvent aussi être à chercher auprès de progrès en épistémologie : introduction de la notion de perspectivisme [Giere, 2010c], reflexions plus fine autour de la nature des modèles [Varenne et Silberstein, 2013]⁴.

Les potentialités théoriques et empiriques de telles approchent jouent nécessairement un rôle dans leur succès⁵, comme le confirme les domaines très variés d'application (voir [NEWMAN, 2011] pour une revue très générale), comme par exemple la Science des Réseaux [BARA-BASI, 2002]; les Neurosciences [Koch et Laurent, 1999]; les Sciences Humaines et Sociales, dont la Géographie [Manson, 2001; Pumain, 1997]; la Finance avec les approches éconophysiques [STANLEY et al., 1999]; l'Ecologie [GRIMM et al., 2005]. La Feuille de Route des Systèmes Complexes [Bourgine, Chavalarias et al., 2009] propose une double lecture des travaux en Complexité : une approche horizontale faisant la connexion entre champs d'étude par des questions transversales sur les fondations théoriques de la complexité et des faits stylisés empiriques communs, et une approche verticale, dans le but de construire des disciplines intégrées et les modèles multi-scalaires hétérogènes correspondants. L'interdisciplinarité est ainsi cruciale pour notre contexte scientifique.

INTERDISCIPLINARITÉ

Il est important d'insister sur le rôle de l'interdisciplinarité dans la position de recherche prise ici. Il s'agit autant d'un travail en Géographie Théorique et Quantitative qu'en Modélisation de Systèmes Complexes, étant finalement les deux à la fois selon le point de vue que prendra le lecteur. En ce sens, nous le réclamons de la *Science des Systèmes Complexes* que nous tenterons de positionner comme discipline propre à travers cette implémentation précise⁶. Ce n'est pas sans risques d'être lu avec méfiance voir défiance par les tenants des disciplines classiques, comme des exemples récents de malentendus ou conflits ont récemment illustré [Dupuy et Benguigui, 2015]. Il faut se rappeler l'importance de la spirale vertueuse de Banos entre disciplinarité et interdisciplinarité [Banos, 2013]. Celle-ci doit nécessairement impliquer différents agents scientifiques, et il est compliqué

⁴ Dans ce cadre, les progrès scientifiques et épistémologiques ne peuvent pas être dissociés et peuvent être vus comme étant en co-évolution, au sens d'une forte inter-dépendance et d'une adaptation mutuelle.

⁵ Même si l'adoption de nouvelles pratiques scientifiques peut par ailleurs être biaisé par l'imitation et le manque d'originalité [DIRK, 1999], ou de façon plus ambivalente, par des stratégies de positionnement indépendante des stratégies de connaissance, puisque le combat pour les fonds est un obstacle croissant à une recherche saine [Bollen et al., 2014].

⁶ Un niveau de lecture abstrait du travail dans son ensemble apportera des informations sur la production de connaissance elle-même, comme nous le développerons en 8.3.

pour un agent de se positionner dans les deux branches; notre fond scientifique devra nous permettre de ne pas de nous positionner uniquement dans la *disciplinarité géographique* (même si celle-ci sera simultanément une composante cruciale) mais bien aussi dans celle des Systèmes Complexes (qui est interdisciplinaire, voir 3.3 pour contourner la contradiction apparente), et notre sensibilité scientifique et épistémologique nous pousse à faire de même.

L'évolution scientifique des sciences de la complexité, qui est vue par certains comme une révolution [Colander, 2003], ou même comme un nouveau type de science [Wolfram, 2002], pourrait affronter des difficultés intrinsèques dues aux comportements et a-priori des chercheurs en tant qu'êtres humains. Plus précisément, le besoin d'interdisciplinarité qui fait la force des Sciences de la Complexité pourrait devenir une de ses grandes faiblesses, puisque la structure fortement en silo de la science peut avoir des impacts négatifs sur les initiatives impliquant des disciplines variées. Nous n'évoquons pas les problèmes de sur-publication, quantification, compétition, qui sont plus liés à des questions de Science Ouverte et de son éthique, de toute aussi grande importance mais d'une autre nature. Cette barrière qui nous hante et que nous pourrions ne pas surmonter, a pour plus évident symptôme des divergences culturelles disciplinaires, et les conflits d'opinion en résultant. Ce drame du malentendu scientifique est d'autant plus grave qu'il peut en effet détruire totalement certains progrès en interprétant comme une falsification des travaux qui traitent une question toute différente.

L'exemple récent en économie d'un travail sur les inégalités liées aux hauts revenus présenté dans [AGHION et al., 2015], et dont les conclusions ont été commentées comme s'opposant aux thèses de [PI-KETTY, 2013], est typique de ce schéma. Ce second se concentre sur la construction de bases de données propres sur le temps long pour les revenus et montre empiriquement une récente accélération des inégalités de revenus, son modèle visant à lier ce fait stylisé avec l'accumulation de capital a été critiqué comme trop simpliste. D'autre part, [AGHION et al., 2015] montrent par des analyses économétriques que s'il existe bien un lien de causalité de l'innovation vers les inégalités de haut salaires, l'innovation accroit cependant la mobilité sociale, étant donc également moteur de réduction des inégalités. D'où des conclusions divergentes sur le rôles des capitaux personnels dans une économie, notamment sur leur relation ambigüe à l'innovation. Mais des point de vue ou interprétations différentes ne signifient pas une incompatibilité scientifique, et on pourrait même imaginer rassembler ces deux approches dans un cadre et modèle unifié, produisant des interprétations possiblement similaires et potentiellement encore nouvelles. Une telle approche intégrée aura de grandes chances de contenir plus d'information (selon la façon dont le couplage est opéré) et d'être une avancée scientifique.

Cette expérience de pensée illustre les potentialités et la nécessité de l'interdisciplinarité. Dans une autre veine assez similaire, [Holmes et al., 2017] ré-analyse des données biologiques d'une expérience de 1943 qui prétendait confirmer l'hypothèse des processus d'évolution Darwiniens par rapport aux processus Lamarckiens, et montrent que les conclusions ne tiennent plus dans le contexte actuel d'analyse de données (avances énormes sur la théorie et les possibilités de traitement) et scientifique (avec d'autres nombreuses preuves de nos jours des processus Darwiniens) : c'est un bon exemple de malentendu sur le contexte, et la manière selon laquelle le cadre de travail à la fois technique et thématique influence fortement les conclusions scientifiques. Nous développons à présent divers exemples révélateurs de la manière dont des conflits entre disciplines peuvent être dommageables.

Comme déjà mentionné, Dupuy et Benguigui soulignent dans [Du-PUY et BENGUIGUI, 2015] le fait que dans le domaine de l'urbanisme, ont récemment éclaté des conflits ouverts entre les tenants classiques des disciplines et des nouveaux arrivants, en particulier les physiciens, même si leur entrée dans le domaine n'est pas nouvelle. La disponibilité de grands jeux de données d'un nouveau type (réseaux sociaux, données des nouvelles technologies de la communication) ont attiré l'attention d'un plus grand nombre sur des objets plus traditionnellement étudiés par les sciences humaines, puisque les méthodes analytiques et computationnelles de la physique statistique sont devenues applicables. Bien que ces travaux soient généralement présentés comme la construction d'une approche scientifique des villes, tout en discutant la nature scientifique des approches existantes, la nouveauté réelle des résultats obtenus et la non-légitimation des approches "classiques" sont discutables. Pour citer quelques exemples, [Barthelemy et al., 2013] concluent que Paris a subit une transition pendant la période d'Haussman et ses opérations de planification globale, qui sont des faits naturellement connus depuis longtemps en Histoire Urbaine et Géographie Urbaine. [CHEN, 2009] redécouvre que le modèle gravitaire est amélioré par l'introduction de décalages dans les interactions et dérive analytiquement l'expression d'une force d'interaction entre les villes, sans se placer dans un cadre théorique ou thématique. De tels exemples peuvent être multipliés, confirmant l'inconfort courant entre physiciens et géographes. Des bénéfices significatifs pourraient résulter d'une intégration raisonnée des disciplines [O'Sullivan et Manson, 2015] mais la route semble être bien longue encore.

Des conflits similaires se rencontrent à l'interface des relations entre économie et géographie : comme le décrit [MARCHIONNI, 2004], la discipline de la géographique économique, traditionnellement proche de la géographie, a fortement critiqué à son émergence l'approche relativement récente de la *Nouvelle Economie Géographique*. Celle-ci pro-

vient de l'économie et son but est la prise en compte de l'espace par les méthodes économiques classiques. Elles n'ont en fait pas les mêmes desseins et buts, et le conflit apparaît comme un malentendu complet vu d'un oeil extérieur. Par exemple, la Nouvelle Economie Géographique privilégiera des explications impliquant des processus économiques universels et indépendant des échelles, tandis que la Géographie Economique basera son argumentation sur les particularité locales et la contingence des processus. Les hypothèses épistémologiques sous-jacentes sont également très différentes, comme par exemple la relation au réalisme, la première étant fondée sur un réalisme abstrait pas forcément concrètement réaliste (utilisation de processus abstraits), tandis que la deuxième sera plus pragmatique. La mesure dans laquelle ces deux approches sont complémentaires ou incompatibles reste toutefois une question ouverte d'après [Mar-CHIONNI, 2004]. Des relations disciplinaires similaires seront rencontrées dans notre travail, comme entre la physique et la géographie. Nous illustrons par ailleurs cette question en C.6 par une exploration des liens entre économie et géographie du point de vue de la modélisation.

Des conflits disciplinaires peuvent aussi se manifester sous la forme d'un rejet de méthodes nouvelles par les courants dominants. Suivant [Farmer et Foley, 2009], l'échec opérationnel de la plupart des approches économiques classiques pourrait être compensé par un usage plus systématique de la modélisation et simulation basées sur les agents. L'absence de résolution analytique qui est inévitable pour l'étude de la plupart des systèmes complexes adaptatifs semble rebuter une grande partie des économistes. Or, [Barthelemy, 2016b] insiste sur la déconnexion exacerbée entre de nombreux modèles et théories économiques et les observations empiriques, du moins dans le domaine de l'économie urbaine. Celle-ci pourrait être un symptôme de la déconnexion disciplinaire évoquée ci-dessus. Toujours en économie, [Storper et Scott, 2009] proposent aussi des changements de paradigmes par un retour à l'agent et une construction associée de théories evidence-based.

La finance quantitative peut être instructive pour notre propos et sujet, de par les similarités de la cuisine interdisciplinaire avec notre domaine (rapport avec la physique et l'économie, champs plus ou moins "rigoureux", etc.). Dans ce domaine coexistent divers champs de recherche ayant très peu d'interactions entre eux. On peut considérer deux exemples. D'une part, les statistiques et l'économétrie sont extrêmement avancées en mathématiques théoriques, utilisant par exemple des méthodes de calcul stochastique et de théorie des probabilités pour obtenir des estimateurs très raffinés de paramètres pour un modèle donné (voir par exemple [Barndorff-Nielsen et al., 2011]). D'autre part, l'éconophysique a pour but d'étudier des faits stylisés empiriques et inférer les lois correspondantes pour ten-

ter d'expliquer des phénomènes économiques, par exemple ceux liés à la complexité des marchés financiers [Stanley et al., 1999]. Ceux-ci incluent les cascades menant aux ruptures de marché, les propriétés fractales des signaux des actifs, la structure complexe des réseaux de corrélation. Chacun a ses avantages dans un contexte particulier et gagnerait à des interactions accrues entre les deux domaines.

Ces divers exemples pris au fil du vent sont de brèves illustrations du caractère crucial de l'interdisciplinarité et de la difficulté à la pratiquer. Sans presque exagérer, on pourrait imaginer l'ensemble des chercheurs se plaindre de mauvaises ou difficiles expériences d'interdisciplinarité, avec un retour largement positif lors des rares succès. Nous allons tenter par la suite d'emprunter ce chemin étroit, empruntant des idées, théories et méthodes de diverses disciplines, dans l'idéal de la construction d'une connaissance intégrée.

PARADIGMES DE LA COMPLEXITÉ EN GÉOGRAPHIE

Pour revenir à notre anecdote introductive, nous nous concentrons sur l'étude d'un objet thématique qui sera les systèmes territoriaux : à l'échelle microscopique, les agents peuvent bien être vus comme éléments constitutifs fondamentaux du territoire, qui émergera comme processus complexe à différentes échelles. Plus généralement, il s'agit par commencer de brosser une revue du rôle de la complexité en géographie. Les géographes sont naturellement familiers avec la complexité, puisque l'étude des interactions spatiales est l'un de leurs objets de prédilection. La variété de champs en géographie (géomorphologie, géographie physique, géographie environnementale, géographie humaine, géographie de la santé, etc. pour en nommer certains) a sûrement joué un rôle clé dans la constitution d'une pensée géographique subtile, qui considère des processus hétérogènes et multi-scalaires.

[Pumain, 2003] donne une histoire subjective de l'émergence des paradigmes de la complexité en géographie, que nous restituons ici. La cybernétique a produit des théories des systèmes comme celle utilisée pour les premiers modèles de dynamique des systèmes visant à simuler l'évolution de variables caractérisant un territoire, sous la forme d'équations différentielles couplées, comme [Chamussy et al., 1984] l'illustrent pour un modèle couplant population, emplois et stock de logements. Plus tard, le glissement vers les concepts de criticalité auto-organisée et d'auto-organisation en physique ont conduit aux développements correspondants en géographie, comme [Sanders, 1992] qui témoigne de l'application des concepts de la synergétique aux dynamiques des systèmes urbains.

Enfin, les paradigmes actuels des systèmes complexes ont été introduits par plusieurs entrées relativement indépendantes. On peut nommer parmi celles-ci les concepts issus des fractales, les automates

cellulaires, le *Scaling*, et la théorie évolutive des villes. Nous revoyons brièvement ces approches ci-dessous.

L'étude de la nature fractale de la forme urbaine a été introduite par [BATTY et LONGLEY, 1986], plus tard synthétisée par [BATTY et LONGLEY, 1994] et a eu de nombreuses applications jusqu'à des développements plus récents comme [Keersmaecker, Frankhauser et Thomas, 2003] pour l'analyse de la forme urbaine ou [Tannier et al., 2010] pour l'élaboration de planifications urbaines durables.

La théorie du *Scaling* a par ailleurs été importée de la physique et de la biologie (relations allométriques) pour expliquer les lois d'échelle urbaines comme propriétés universelles liées au type d'activité : infrastructure et économies d'agglomération (*scaling* infralinéaire) ou résultante d'un processus d'interactions sociales (*scaling* supralinéaire), et suppose les villes comme versions à l'échelle l'une de l'autre [Bettencourt et al., 2007]. Nous n'utiliserons pas explicitement ces deux approches mais celles-ci restent sous-jacentes dans les paradigmes utilisés⁷.

Les automates cellulaires, introduits en géographie par TOBLER [COUCLELIS, 1985], sont une autre entrée des approches complexes pour la modélisation urbaine. BATTY en propose une synthèse jointe avec les modèles basés agents et les fractales dans [BATTY, 2007]. Ce type de modèle prendra une place modeste mais non négligeable dans notre travail.

Une autre introduction de la complexité en géographie fut pour le cas des systèmes urbains à travers la théorie évolutive des villes de Pumain. Nous nous placerons plus particulièrement dans la lignée de celle-ci et la développons ainsi avec plus de détails. En interaction intime avec la modélisation dès ses débuts (le premier modèle Simpop décrit par [Sanders et al., 1997] rentre dans le cadre théorique de [Pumain, 1997]), cette théorie vise à comprendre les systèmes de villes comme des systèmes d'agents adaptatifs en co-évolution, aux interactions multiples, avec différents aspects mis en valeur comme l'importance de la diffusion des innovations.

La série des modèles Simpop [Pumain, 2012a] a été conçue pour tester différentes hypothèses de la théorie, comme par exemple le rôle des processus de diffusion de l'innovation dans l'organisation du système urbain. Ainsi, des régimes sous-jacent différents ont été mis en évidence pour les systèmes de ville en Europe et aux Etats-unis [Bretagnolle et Pumain, 2010a].

A d'autres échelles de temps et dans d'autres contextes, le modèle SimpopLocal [SCHMITT, 2014] a pour but d'étudier les conditions pour l'émergence de systèmes urbains hiérarchiques à partir d'établissements disparates. Un modèle minimal (au sens de paramètres nécessaires et suffisants) a été isolé grace à l'utilisation de calcul inten-

⁷ Par exemple, les lois d'échelles ont une place privilégiée dans l'application de la théorie évolutive des villes [Pumain et al., 2006].

sif via le logiciel d'exploration de modèles OpenMole [SCHMITT et al., 2015], ce qui était un résultat impossible à atteindre de manière analytique pour un tel type de modèle complexe. Les progrès techniques d'OpenMole [Reuillon, Leclaire et Rey-Coyrehourcq, 2013] ont été menés simultanément avec les avances théoriques et empiriques.

Les avancées épistémologiques ont également été cruciales dans ce cadre, comme [Rey-Coyrehourcq, 2015] le développe, et de nouveaux concepts comme la modélisation incrémentale [Cottineau, Cha-PRON et REUILLON, 2015] ont été découverts, avec de puissantes applications concrètes : [Cottineau, 2014] l'applique sur le système de villes soviétiques et isole les processus socio-économiques dominants, par un test systématique des hypothèses thématiques et des fonctions d'implémentation. Des directions pour le développement de telles pratiques de modélisation et simulation en géographie quantitative ont récemment été introduits par [Banos, 2013]. Il conclut par neuf principes⁸, parmi lesquels nous pouvons citer l'importance de l'exploration intensive des modèles computationnels et l'importance du couplage de modèles hétérogènes, qui sont avec d'autre principes tel la reproductibilité au centre de l'étude des systèmes complexes géographiques selon le point de vue décrit précédemment. Nous nous positionnerons en grande partie dans l'héritage de cette ligne de recherche, travaillant de manière conjointe sur les aspects théoriques, empiriques, épistémologiques et de modélisation.

VILLES, SYSTÈMES DE VILLES, TERRITOIRES

Entrons à présent dans le vif du sujet pour construire progressivement la problématique précise qui s'inscrira dans le contexte global développé jusqu'ici. Nos objets géographiques élémentaires (au sens de précurseurs dans notre genèse théorique) sont la *Ville*, le *Système de Villes*, et le *Territoire*, que nous allons à présent définir.

Un élément central des systèmes socio-géographiques est l'objet Ville, sur lequel nous nous positionnons pour une cohérence épis-témologique propre. La question de la définition de la ville a fait couler beaucoup d'encre. [Robic, 1982] montre par exemple que Reynaud avait déjà conceptualisé la ville comme lieu central d'un espace géographique, permettant agrégation et échanges, théorie qui sera reformulée par Christaller comme Théorie des Lieux Centraux. Cette définition théorique est rejointe par la conception de Pumain qui considère la ville comme une entité spatiale clairement identifiable, constituée d'agents sociaux (élémentaires ou non) et d'artefacts techniques, et qui est l'incubateur du changement social et de l'innovation [Pumain, 2010]. Nous prendrons cette définition dans notre

⁸ Cela doit-il devenir les dix commandements? René Doursat soulignait l'absence du dernier commandement de Banos, l'essence intrinsèque de notre entreprise est peut être en partie liée à sa recherche.

travail. Il faut toutefois garder à l'esprit que la définition concrète d'une ville en terme d'entités géographiques et d'étendue spatiale est problématique : des définitions morphologiques (c'est-à-dire se basant sur la forme et la distribution du bâti), fonctionnelles (se basant sur l'utilisation des fonctions urbaines par les agents, par exemple par aire de déplacement domicile-travail dominant), administratives, etc., sont partiellement orthogonales et plus ou moins adaptées au problème étudié [Guérois et Paulus, 2002]. Récemment, un certain nombre d'études ont montré la forte sensibilité des lois d'échelles urbaines⁹ aux délimitations choisies pour l'estimation, pouvant entrainer une inversion des propriétés qualitatives attendues (voir par exemple [Arcaute et al., 2015]). Les variations des exposants estimés en fonction de paramètres de définition, comme effectué par [Cottineau et al., 2015], peut être interprété comme une propriété plus globale et une signature du système urbain.

Cela confirme la nécessité de considérer les villes dans leur système, et l'importance de la notion de *Système Urbain*¹⁰. Un système urbain peut être considéré comme un ensemble de villes en interaction, dont les dynamiques seront plus ou moins fortement couplées. [Berry, 1964] considère les villes comme "systèmes dans des systèmes de villes", appuyant sur le caractère multi-scalaire (au sens d'échelles emboîtées ayant un certain niveau d'autonomie)¹¹ et nécessairement complexe, conception reprise et étendue par la théorie évolutive des villes détaillée précédemment. Le terme de *Système de Villes* sera utilisé lorsque nous pourrons clairement identifier des villes comme sous-systèmes, et nous parlerons de système urbain de manière plus générale (une ville elle-même étant un système urbain).

Enfin, sous-jacente à la compréhension des dynamiques des systèmes urbains intervient la notion de *Territoire*. Polymorphe et correspondant à des visions multiples, celle-ci, que nous développerons en profondeur en 1.1, peut être définie de manière préliminaire simplement. Le territoire désigne alors la distribution spatiale des activités urbaines, des agents les exerçant ou les développant, et des artefacts

⁹ Les lois d'échelle consistent en une régularité statistique observable au sein d'un ensemble de ville, reliant par exemple une variable caractéristique Y_i à la population P_i sous la forme d'une loi puissance $Y_i = Y_0 \cdot (P_i/P_0)^{\alpha}$.

¹⁰ Concernant la définition d'un système, nous pourrons la prendre en toute généralité comme un ensemble d'éléments en interaction, présentant une certaine structure déterminée par celle-ci, et possédant un certain niveau d'autonomie avec son environnement. Il peut s'agir d'une autonomie majoritairement ontologique dans le cas d'un système ouvert, ou d'une autonomie réelle dans le cas d'un système fermé.

¹¹ La définition de l'échelle est ambigüe en géographie, puisque selon [Hypergeo 2017], l'échelle désigne à la fois une étendue spatiale et/ou temporelle (échelle de la carte) et une représentation abstraite de "niveaux qui ont sens par rapport à une problématique particulière". Comme l'indique [Manson, 2008], l'échelle se place en fait dans un continuum épistémologique, des conceptions réalistes à celles constructivistes, et celles la faisant correspondre aux niveaux d'auto-organisation intrinsèque du système considéré. Nous nous placerons de manière privilégiée dans cette dernière logique de complexité.

techniques, dont l'infrastructure, les supportant, ainsi que la superstructure¹² qui leur est associée¹³.

RÉSEAUX, INTERACTIONS ET CO-ÉVOLUTION

Une caractéristique fondamentale des systèmes urbains et des territoires est leur inscription simultanée dans l'espace et le temps, qui transparaît dans leurs dynamiques spatio-temporelles, à de multiples échelles. La notion de *processus* au sens de [*Hypergeo* 2017], c'est-à-dire l'enchainement dynamique de faits aux propriétés causales¹⁴, permet de capturer les relations entre composantes de ces dynamiques, et est ainsi une notion clé pour une compréhension partielle de ces systèmes. Toute compréhension partielle sera associée au choix d'échelles et d'une *ontologie* qui correspond à la spécification des objets réels étudiés¹⁵. Nous allons à présent spécifier ces concepts abstraits, en introduisant les *réseaux*, leurs *interactions* avec les territoires et leur approche par la *co-évolution*.

Une ontologie particulière retiendra notre attention : au sein des territoires émergent des *Réseaux Physiques*, qui peuvent être compris selon [Dupuy, 1987] comme la matérialisation d'un ensemble de connexions potentielles entre agents du territoire. La question de l'implication de ces réseaux et de leur dynamique dans les dynamiques territoriales, qu'on peut synthétiser comme *interactions entre réseaux et territoires*, a fait l'objet d'abondants débats scientifiques et techniques, notamment dans le cas des réseaux de transport. Nous reviendrons sur la nature et le positionnement de ceux-ci au Chapitre 1, mais nous pouvons d'ores et déjà prendre certaines des difficultés soulevées comme point de départ de notre questionnement. L'un des aspects récurrents est celui du *mythe des effets structurants*, consacré par [Offner, 1993] en critique d'une utilisation exagérée par les planificateurs et les poli-

¹² Nous comprenons la superstructure au sens marxiste, c'est-à-dire la structure organisationnelle et l'ensemble des idées d'une société, incluant les structures politiques.

¹³ Le lien entre le Territoire et la Ville, ou le Système de Villes, sera également creusé plus loin lors de la construction approfondie du concept.

¹⁴ Nous prendrons la causalité au sens de causalité circulaire dans les systèmes complexes, qui considère des cycles d'entrainement entre phénomènes, ou des structures plus complexes. La causalité linéaire, c'est-à-dire un phénomène entrainant un autre, est un cas particulier idéalisé de celle-ci. Nous reviendrons en détail sur la notion de causalité et sur ses différentes approches par les géographes en section 4.2.

¹⁵ Plus précisément, nous utilisons la définition de [Livet et al., 2010] qui couple l'approche ontologique du point de vue de la philosophie, c'est-à-dire "l'étude de ce qui peut exister", et celui de l'informatique qui consiste à définir les classes, les objets et leurs relations qui constituent la connaissance d'un domaine. Cet usage de la notion d'ontologie biaise naturellement notre recherche vers des paradigmes de modélisation, mais nous prenons la position (développée en détails plus loin) de comprendre toute construction scientifique comme un modèle, rendant la frontière entre théories et modèles moins pertinentes que pour des visions plus classiques. Toute théorie doit faire des choix sur les objets décrits, leur relations et les processus impliqués, et contient donc une ontologie dans ce sens.

tiques d'un concept scientifique dont les fondements empiriques sont encore discutés. La question fondamentale sous-jacente que nous reformulons est la suivante : dans quelle mesure est-il possible d'associer des dynamiques territoriales à une évolution de l'infrastructure de transport ? Nous pouvons poser la question de manière réciproque, et même la généraliser : quels sont les processus capturant les interactions entre ces deux objets ?

Une approche permettant de poser différemment le problème est la notion de co-evolution, utilisée en théorie évolutive des villes pour qualifier les processus fortement couplés¹⁶ d'évolution des villes comme utilisé par [Paulus, 2004], et appliqué aux relations entre réseaux et villes par [Bretagnolle, 2009]¹⁷. Cette dernière distingue une phase "d'adaptation mutuelle" entre réseaux et villes, correspondant à une dynamique dans laquelle des effets causaux sont clairement attribuables à l'un sur le développement de l'autre (par exemple, les nouvelles lignes de transport répondent à une demande croissante induite par la croissance urbaine, ou inversement la croissance urbaine est favorisée par une nouvelle connectivité au réseau), de la phase de co-évolution, qu'elle définit comme une "interdépendance forte" (p. 150) dans laquelle les rétroactions jouent un rôle privilégié et "la dynamique du système de villes n'est plus contrainte par le développement des réseaux de transport" (p. 170). Ces boucles de rétroaction et cette interdépendance mutuelle, vus dans leur perspective dynamique, correspondent à des relations causales circulaires (au sens donné plus haut) difficiles à séparer. Nous prendrons comme définition préliminaire de la co-évolution entre deux composantes d'un système l'existence d'un couplage fort, correspondant généralement à des relations causales circulaires.

¹⁶ On parlera de *couplage* de systèmes ou de processus pour désigner la constitution d'un système englobant les éléments couplés, par l'émergence de nouvelles interactions ou de nouveaux éléments. La définition de la nature et de la force d'un couplage est une question ouverte, et nous utiliserons la notion de manière intuitive, pour désigner un plus ou moins grand niveau d'interdépendance entre les soussystèmes couplés.

^{17 [}PAULUS, 2004] transfère directement le concept biologique de co-évolution (qui consiste en une interdépendance forte entre deux espèces dans leurs trajectoires évolutives, et qui en fait correspond à l'existence d'une niche écologique constituée par les espèces comme nous le développerons plus loin en 8.2), et parle de villes qui "se concurrencent, s'imitent, coopèrent". Ce transfert reste flou (sur les échelles temporelles impliquées, le statut des objets qui co-évoluent) et finalement non exploré. Des trajectoires similaires ne peuvent suffire à exhiber des interdépendances fortes comme il affirme en conclusion, celles-ci pouvant être fortuites. De plus, le transfert de concepts entre disciplines est une opération pour laquelle prudence doit être de mise (nous illustrerons cela par l'étude interdisciplinaire de la morphogenèse, concept initialement biologique, en Chapitre 5).

PROBLÉMATIQUE

Ce cadre permet de capturer un certain degré de complexité, mais reste cependant flou ou trop général dans sa caractérisation, à la fois théorique et empirique. Nous ferons ici le pari de mettre à l'épreuve et d'approfondir cette approche, pour éclaircir ses apports potentiels pour la compréhension des interactions entre réseaux et territoires. La clarification d'une part de ce qu'elle signifie et d'autre part de son existence empirique sera un noeud gordien de notre démarche. Notre problématique générale se décompose alors en deux axes complémentaires :

- 1. Comment définir et/ou caractériser les processus de co-évolution entre réseaux de transports et territoires?
- 2. Comment modéliser ces processus, à quelles échelles et par quelles ontologies?

Le deuxième aspect découle de notre positionnement scientifique, qui postule l'utilisation de la modélisation, et plus particulièrement de la simulation de modèle, comme un instrument fondamental de connaissance des processus au sein des systèmes complexes.

ORGANISATION GÉNÉRALE

Nous proposons de répondre à la problématique ci-dessus par la stratégie suivante. Une première partie posera les fondations nécessaires, en précisant les définitions, concepts et objets étudiés, en dessinant le paysage scientifique gravitant autour de la question, et en raffinant le positionnement épistémologique. Cette partie est composée de trois chapitres :

- 1. Un premier chapitre développe la question des interactions entre réseaux et territoires, d'un point de vue théorique mais aussi en les illustrant par des études de cas et des éléments de terrain. Il permet de situer la notion de co-évolution à la fois de manière concrète et abstraite.
- 2. Un deuxième chapitre se charge d'une manière similaire de clarifier le positionnement au regard de la modélisation de la co-évolution. L'état de l'art est complété par une cartographie des disciplines scientifiques concernées et par une modélographie, c'est-à-dire une classification et décomposition systématique d'un corpus de modèles afin de comprendre les ontologies utilisées et de possibles déterminants de celles-ci.
- 3. Un troisième chapitre développe notre positionnement épistémologique, qui s'avère avoir une influence considérable sur les

choix de modélisation qui seront opérés par la suite. Nous y développons les questions liées au pratiques de modélisation, de datamining et de calcul intensif, des questions de reproductibilité et d'ouverture, et des considérations épistémologiques plus générales intrinsèques aux systèmes étudiés.

De ces analyses complémentaires se dégagent deux positionnements thématiques correspondant à deux échelles de modélisation, peu explorés pour notre question particulière : la théorie évolutive des villes qui induit une modélisation macroscopique au niveau du système de ville, et la morphogenèse urbaine qui permet de considérer les liens entre forme et fonction à l'échelle mesoscopique. La deuxième partie s'attèlera donc à construire les briques élémentaires à partir de ces approches, qui serviront par la suite à la construction des modèles :

- 4. Le quatrième chapitre traite de différents aspects impliqués par la théorie évolutive des villes. Le caractère non-stationnaire des processus dans l'espace est un élément crucial, que nous démontrons empiriquement dans une première section par l'étude des corrélations spatiales entre forme urbaine et topologie du réseau routier pour l'Europe et la Chine. Ensuite, la notion de causalité circulaire est explorée, et nous développons une méthode permettant d'isoler ce qu'on appelle des régimes de causalité, c'est-à-dire des configurations typiques d'interaction capturées par les motifs de corrélation retardée. Celle-ci est testée sur données synthétiques et données observées dans le cas de l'Afrique du Sud, où l'on démontre un effet des politiques de ségrégation sur les interactions réseaux-territoires elles-mêmes. Cette première partie du chapitre complète de manière empirique la caractérisation de la co-évolution ébauchée en première partie. Enfin, nous construisons un modèle de système urbain basé sur les interactions entre villes, qui permet de démontrer indirectement l'existence d'effets de réseau.
- 5. Le cinquième chapitre creusera la notion de *morphogenèse*, en commençant par en proposer un point de vue cohérent au travers de différentes disciplines la mobilisant, afin d'en dégager une caractérisation se reposant sur l'émergence d'une architecture par relations causales circulaires entre forme et fonction. Cette précision sera cruciale dans la nature des modèles mis en place. Une deuxième section développe un modèle simple de croissance urbaine prenant en compte la distribution de la population seule, et capturant les forces contradictoires de concentration et de dispersion. Nous démontrons sa capacité à reproduire des formes urbaines existantes à partir des données de forme urbaine calculées précédemment. Il est ensuite couplé séquentiellement à un modèle de génération de réseau, ce qui per-

met d'exhiber un large spectre de corrélations potentiellement générées.

A ce stade, nous bâtissons dans la troisième partie sur les fondations et avec les briques élémentaires notre construction fondamentale, qui consiste en différents modèles de co-évolution, que nous différencions selon les deux approches considérées. Toujours dans une logique d'approches parallèles et complémentaires, nous élaborons les développements des deux chapitres précédents, dans deux chapitres modélisant la co-évolution :

- 6. Le sixième chapitre développe un modèle de co-évolution à l'échelle macroscopique. Dans un premier temps, nous explorons de manière systématique l'unique modèle analogue existant. Nous développons ensuite le modèle par extension du modèle d'interaction déjà introduit. Son exploration systématique révèle sa capacité à produire différents régimes de co-évolution, certains témoignant de causalités circulaires. Il est également calibré sur le système de villes français sur le temps long, sur données de population et de réseau ferroviaire, ce qui permet d'inférer des informations indirectes sur les processus impliqués.
- 7. Le septième chapitre s'intéresse aux modèles de morphogenèse urbaine capturant les processus de co-évolution. La question des heuristiques de génération de réseau est d'abord traitée, en comparant les potentialités de diverses méthodes. Dans une démarche de multi-modélisation, celles-ci sont ensuite intégrées dans une famille de modèles de morphogenèse, qui sont calibrés sur les indicateurs de forme urbaine et de topologie de réseau, au premier ordre (valeurs des indicateurs) et au second ordre (matrices des corrélations). Nous ébauchons ensuite un modèle plus complexe, visant à intégrer les processus de gouvernance dans la croissance du réseau de transport. Celui-ci est exploré de manière préliminaire.

Après avoir démontré les capacités de nos deux approches à capturer certains aspects de la co-évolution et d'informer les processus correspondants, nous procédons finalement à une ouverture :

8. Le huitième et dernier chapitre consiste en une ouverture théorique et épistémologique. Nous faisons dans un premier temps un bilan de nos contributions et les mettons en perspective. Nous esquissons ensuite une réconciliation théorique de la morphogenèse et de la théorie évolutive, dans laquelle la co-évolution est centrale. Ce développement pourrait poser les bases d'une théorie et de modèles multi-échelle pour la co-évolution. Nous développons enfin dans une démarche réflexive un cadre de connaissance pour l'étude des systèmes complexes, à la fois produit et précurseur de l'ensemble de notre démarche.

Nous résumons cette organisation, ainsi que les dépendances directes ou indirectes entre les différents chapitres, dans l'Encadré 1 page suivante.

* *

*

ENCADRÉ 1: **Organisation générale du mémoire.** Les flèches pleines donnent une dépendance directe (enchainement logique ou extensions), les flèches pointillées une dépendance indirecte (réutilisation de données ou de méthodes).