## 1 Задача 1

Построить конечный автомат, распознающий язык:

1. L = 
$$\left\{w \in \left\{a, b, c\right\} * ||w|_c = 1\right\}$$



2. L =  $\{w \in a, b*||w|_a \le 2, |w|_b \ge 2\}$ Рассмотрим как прямое произведение двух автоматов:  $|w|_b \ge 2$ 



 $|w|_a \le 2$ 



$$\begin{split} \sum_{} &= \left\{a, b\right\} \\ S &= ad \\ T &= < cd, ce, cf > \end{split}$$



3. L =  $\{w \in \{a, b\} * ||w|_a \neq |w|_b\}$ 

Рассмотрим L как  $L=Q_1\cup Q_2$ , где  $Q_1=\left\{w\in \left\{a,b\right\}*||w|_a<|w|_b\right\}$ ,

а  $Q_2 = \{w \in \{a,b\} * ||w|_a > |w|_b\}$   $Q_1$  и  $Q_2$  не являются регулярными и следовательно L не регулярный и его нельзя описать с помощью конечного автомата.

4.  $L = \{ w \in a, b * | ww = www \}$ 

Если расмотреть относительно длины слова, то |ww| = |www| только в том случае когда  $w = \lambda$ . L описывает пустые слова.

#### Задача 2 2

Построить автомат используя прямое произведение.

1.  $L = \{w \in \{a, b\} * ||w|_a \ge 2 \land |w|_b \ge 2\}$ 

Опишем два языка один их которых задает  $|w|_a \geq 2$ , а второй  $|w|_b \geq 2$ . Их произведение даст нам искомых язык.

Автомат которые описывает язык для которого  $|w|_a \ge 2$ 



Автомат которые описывает язык для которого  $|w|_b \geq 2$ 



$$\begin{split} &\sum \left\{a,b\right\} \\ &Q = \left\{ad,ae,af,bd,be,bf,cd,ce,cf\right\} \\ &s = < ad > \\ &T = < cf > \\ &\text{Прямое произведение:} \end{split}$$



2.  $L = \{w \in \{a,b\} * ||w| \ge 3 \land |w| odd\}$  Опишем два языка которые описывают |w| - нечетное и  $|w| \ge 3$ 



Прямое произведение:

$$\sum \{a,b\}$$

 $\sum_{a,b} \{a,b\}$   $Q = \{ae, af, ag, be, bf, bg, ce, cf, cg, de, df, dg\}$   $s = \langle ae \rangle$ 

$$T = < df >$$

Результат прямого произведения. Как видно содержит ветви, не выходящие из начального состояния - можно отбросить.



Результат в итоге:



3.  $L=\left\{w\in\left\{a,b\right\}*||w|_aeven\wedge|w|_bdivisible3\right\}$  Опишем два языка, которые описывают  $|w|_aeven\wedge|w|_bdivisible3$ 





$$\sum \{a,b\}$$

Прямое произведение: 
$$\sum \left\{a,b\right\}$$
 
$$Q = \left\{ac,ad,ae,bc,bd,be\right\}$$
 
$$s = < ac >$$

$$s = \langle ac \rangle$$

$$T=$$

Автомат получанный в результате:



4. 
$$L_4 = \overline{L}_3$$
  

$$\sum \{a, b\}$$

$$Q = \{ac, ad, ae, bc, bd, be\}$$

$$s = \langle ac \rangle$$

$$T = Q \backslash T_3 = ad, ae, bc, bd, be$$



5.  $L_5 = L_2 \backslash L_3$   $L_5 = L_2 \backslash L_3 = L_2 \cap \overline{L}_3$  Переименуем состояния чтобы было удобнее работать  $L_2$ :



 $\backslash L_3$ :







После упрощения



# 3 Задача 3

Построить минимальный ДКА, который допускает язык, описанный регулярным выражением

1. (ab+aba)\*а Построим в НДА:



Построим эквивалентный ДКА по НКА по алгоритму Томпсона

| Q    | a    | b |
|------|------|---|
| 1    | 25   | - |
| 25   | _    | 3 |
| 3    | 1245 | - |
| 1245 | 25   | 3 |

Минимальный ДКА:



2. a(a(ab)\*b)\*(ab)\* Построим НКА:



Нам повезло и это минимальный ДКА

3. (a+(a+b)(a+b)b)\* Построим НКА:



Построим эквивалентный ДКА по НКА по алгоритму Томпсона

| Q   | a   | b   |
|-----|-----|-----|
| 1   | 12  | 2   |
| 12  | 123 | 23  |
| 123 | 123 | 123 |
| 23  | 3   | 13  |
| 13  | 12  | 12  |
| 2   | 3   | 3   |
| 3   | _   | 1   |

### Построим ДКА



Минимизируем:

|     | Trimming ip y cm. |   |   |    |    |    |     |
|-----|-------------------|---|---|----|----|----|-----|
|     | 1                 | 2 | 3 | 12 | 13 | 23 | 123 |
| 1   |                   | + | + | +  | +  | +  | +   |
| 2   | +                 |   | + | +  | +  | +  | +   |
| 3   | +                 | + |   | +  | +  | +  | +   |
| 12  | +                 | + | + |    | +  | +  | +   |
| 13  | +                 | + | + | +  |    | +  | +   |
| 23  | +                 | + | + | +  | +  |    | +   |
| 123 | +                 | + | + | +  | +  | +  |     |

Полученный ДКА минимальный

4. (b+c)((ab)\*c+(ba)\*)\* Построим НДА:



Получен ДКА, минимизируем

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| 1 |   | + | + | + | + | + | + | + | + |
| 2 | + |   | + | + | + | + | + | + | + |
| 3 | + | + |   | + | + | + | + | + | + |
| 4 | + | + | + |   | + | + | + | + | + |
| 5 | + | + | + | + |   | + | + | + |   |
| 6 | + | + | + | + | + |   | + | + | + |
| 7 | + | + | + | + | + | + |   | + | + |
| 8 | + | + | + | + | + | + | + |   | + |
| 9 | + | + | + | + |   | + | + | + |   |

Перестроим с состояниями <1,2,3,4,59,6,7,8>



5.  $(a+b)^+(aa+bb+abab+baba)(a+b)^+$  Построим НКА:



ДКА:

| Q       | a       | b       |
|---------|---------|---------|
| 1       | 2       | 2       |
| 2       | 23      | 24      |
| 23      | 239     | 245     |
| 239     | 23910   | 24510   |
| 245     | 2368    | 249     |
| 24      | 236     | 249     |
| 23910   | 23910   | 24510   |
| 24510   | 236810  | 24910   |
| 2368    | 239     | 24579   |
| 249     | 23610   | 24910   |
| 236     | 239     | 2457    |
| 236810  | 23910   | 2457910 |
| 24910   | 23610   | 24910   |
| 24579   | 2368910 | 24910   |
| 23610   | 23910   | 245710  |
| 2457    | 23689   | 249     |
| 2457910 | 2368910 | 24910   |
| 2368910 | 23910   | 2457910 |
| 245710  | 2368910 | 24910   |
| 23689   | 23910   | 2457910 |



# 4 Задача 4

Построить автомат если язык регулярный или доказать обратное с помощью леммы о разростании

1. 
$$L = \{(aab)^n b (aba)^m | n \ge 0, m \ge 0\}$$



2. 
$$L = \{uaav | u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$$

Воспользуемся леммой о разарстании.

Зафиксируем <br/> <br/> и рассмотрим слово вида  $w=b^naaa^n\in L$ 

Данное слово принадлежит языку и  $|w| = 2n + 2 \ge n$ 

$$w=xyz$$
 где  $y \neq \lambda$  и  $|xy| \leq n$ 

Рассмотрим разбиаение

$$x = b^l, y = b^m, z = b^{n-l-m}aaa^n$$

Такие что  $l+m \le n$  и m>0

Рассмотрим  $\mathbf{k}=0$ : тогда  $w=xyz=xz=b^lb^{n-l-m}aaa^n=b^{n-m}aaa^n\notin L$ 

Таким образом лемма не выполняется. Следовательно L не регулярный.

## 3. $L = \{a^m w | w \in \{a, b\}^*, 1 \le |w|_b \le m\}$

Воспользуемся леммой о разарстании. Зафиксируем <br/> и и рассмотрим слово вида  $w=a^nb^n$ 

Данное слово принадлежит языку и  $|w|=2n\geq n$ 

$$w=xyz$$
 где  $y \neq \lambda$  и  $|xy| \leq n$ 

Рассмотрим разбиение

$$x = a^{l}, y = a^{m}, z = a^{n-l-m}b^{n}$$

Такие что 
$$l+m \leq n$$
 и  $m>0$ 

Пусть 
$$k = 0$$
, тогда  $w = xy^0z = a^la^{n-l-m}b^n = a^{n-m}b^n$ 

Заметим что 
$$n-m < n$$
 и слеовательно  $w = a^{n-m}b^n \notin L$ 

Таким образом лемма не выполняется и L не регулярный

4. 
$$L = \{a^k b^m a^n | k = n \lor m > 0\}$$

Воспользуемся леммой о разарстании. Зафиксируем <br/> и и рассмотрим слово вида  $w=a^nba^n$ 

Данное слово принадлежит языку тк k = n, m = 1

$$|w| = 2n + 1 \ge n$$

$$w=xyz$$
 где  $y 
eq \lambda$  и  $|xy| \le n$ 

Рассмотрим разбиение

 $x=a^m,y=a^l,z=a^{n-m-l}ba^n$  Такие что  $l+m\leq n$  и l>0 Рассмотим произвольный  $k\geq 0$ :  $w=xy^kz=a^ma^{lk}a^{n-m-l}ba^n=a^{n-l+lk}ba^n$  Заметим что при  $k\neq 1:w\notin L$  То есть лемма не выполняется

5. 
$$L = \{ucv | u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$$