# Nagindas Khandwala College (Autonomous)



Revised Syllabus

And

Question Paper Pattern

Of Course

Of

Bachelor of Science (BSC CS & IT) Programme

Department Of IT/Computer Science First Year Semester II

(To be implemented from Academic Year- 2019-2020)

# **Bachelor of Science (BSC CS/IT) Program**

Under Choice Based Credit, Grading and Semester System
Course Structure

# FYBSC CS/IT

(To be implemented from Academic Year- 2019-2020)

| FYBSC CS/IT – SEMESTER II                                            |                           |                           |               |     |       |         |  |
|----------------------------------------------------------------------|---------------------------|---------------------------|---------------|-----|-------|---------|--|
|                                                                      | Hrs. of Instructio n/Week | Exam                      | Maximum Marks |     |       |         |  |
| Course                                                               |                           | Instructio Duratio n      | CIE           | SEE | Total | Credits |  |
| Core 1 Programming and Application Development in Python             | 4                         | 2 <sup>1/2</sup><br>Hours | 25            | 75  | 100   | 3       |  |
| Core 2: Object Oriented Programming                                  | 4                         | 2 <sup>1/2</sup><br>Hours | 25            | 75  | 100   | 3       |  |
| Core 3:  Database Management Systems I                               | 4                         | 2 <sup>1/2</sup><br>Hours | 25            | 75  | 100   | 3       |  |
| Skill Enhancement: Web Programming II                                | 4                         | 2 <sup>1/2</sup><br>Hours | 25            | 75  | 100   | 3       |  |
| Allied: Discrete Mathematics II                                      | 4                         | 2 <sup>1/2</sup><br>Hours | 25            | 75  | 100   | 2       |  |
| Core 1 Practical:  Programming and Application Development in Python | 2                         | 2 Hours                   | -             | 50  | 50    | 1       |  |

| Core 2 Practical:  Object Oriented Programming                    | 2  | 2 Hours | -  | 50 | 50  | 1  |
|-------------------------------------------------------------------|----|---------|----|----|-----|----|
| Core 3 Practical:  Database Management Systems I                  | 2  | 2 Hours | -  | 50 | 50  | 1  |
| Skill Enhancement Practical: Web Programming II                   | 2  | 2 Hours | -  | 50 | 50  | 1  |
| Ability Enhancement Practical:  IT platforms, Tools and Practices | 2  | 2 Hours | 25 | 75 | 100 | 2  |
| TOTAL                                                             | 30 |         |    |    | 800 | 20 |

| G                                                         | Hrs. of Exam Instruct Duration |         | Ma  | G 114 |       |         |
|-----------------------------------------------------------|--------------------------------|---------|-----|-------|-------|---------|
| Course                                                    | ion/<br>week                   | (Hours) | CIE | SEE   | Total | Credits |
| Core 1  Programming and Application Development in Python | 4                              | 2 ½ hrs | 25  | 75    | 100   | 3       |

| Sr.<br>No. | Modules / Units                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1          | UNIT 1                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            | GUI Programming in Python (using Tkinter/wxPython/Qt):                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            | What is GUI, Advantages of GUI, Introduction to GUI library, Layout management, events, and bindings, fonts, colors, drawing on canvas (line, oval, rectangle, etc.).                                                                                                                                                      |  |  |  |  |  |  |
|            | Widgets such as: frame, label, button, checkbutton, entry, listbox, message,                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|            | radiobutton, text, spinbox etc.                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| 2          | UNIT 2                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            | <b>Database connectivity in Python:</b> Installing mysql connector, accessing connector module using connect, cursor, execute & close functions, reading single & multiple results of query execution, executing different types of statements, executing transactions, understanding exceptions in database connectivity. |  |  |  |  |  |  |
| 3          | UNIT 3                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            | <b>Python File Input-Output:</b> Opening and closing files, various types of file modes, reading and writing to files, manipulating directories. Iterables, iterators and their Problem solving applications. Python Modules and Packages, Lambda function.                                                                |  |  |  |  |  |  |
| 4          | UNIT 4                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|            | Regular Expressions: Concept of regular expression, various types of regular expressions, using match function.  Python and the Web: Screen scraping, Web Scraping (Using Scrapy/Selinium/BeautifulSoup etc.).                                                                                                             |  |  |  |  |  |  |
| 5          | UNIT 5                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

**Network connectivity:** Socket module, creating server-client programs, sending Email, reading from URL

**Project:** Semester end project.

# **Reference Books**

# **Programming and Application Development in Python**

#### Text book:

- 1. Paul Gries, Jennifer Campbell, Jason Montojo, Practical Programming: An Introduction to Computer Science Using Python 3, Pragmatic Bookshelf, 2/E 2014
- 2. Python Programming for the Absolute Beginner by Michael Dawson Paperback, Second Edition, 472 pages Published November 8th, 2005 by Course Technology PTR
- 3. James Payne, Beginning Python: Using Python 2.6 and Python 3, Wiley India, 2010

- 1. Programs to read and write files.
- 2. Programs with iterables and iterators.
- 3. Program to connect to a DB and execute various SQL queries.
- 4. Program to demonstrate the use of regular expressions.
- 5. Program to show draw shapes & GUI controls. (Mini project including database connectivity)
- 6. Program to create server-client and exchange basic information.
- 7. Use Scrapy/Selinium/BeautifulSoup for web mining.
- 8. Program to send email & read contents of URL.

|                                     | Hrs. of<br>Instruct | Exam             | Ma  |     |       |         |
|-------------------------------------|---------------------|------------------|-----|-----|-------|---------|
| Course                              | ion/<br>week        | Duration (Hours) | CIE | SEE | Total | Credits |
| Core 2: Object Oriented Programming | 4                   | 2 ½ hrs          | 25  | 75  | 100   | 3       |

| Sr.<br>No. | Modules / Units                                                                                                                                                                                                                                                                                                          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | UNIT 1                                                                                                                                                                                                                                                                                                                   |
|            | <b>Introduction:</b> A look at Procedure-Oriented Programming, OOP Paradigm, Basic concepts of OOP, Benefits of OOP, OOP Languages, Applications of OOP.                                                                                                                                                                 |
|            | <b>Objects Everywhere:</b> Recognizing objects from nouns, Generating blueprints for objects, Recognizing attributes/behaviour, Recognizing actions from verbs – methods, Organizing the blueprints – classes using UML diagrams.                                                                                        |
| 2          | UNIT 2                                                                                                                                                                                                                                                                                                                   |
|            | Classes and Objects: Understanding classes and objects, Understanding constructors and destructors, Creating classes, Customizing constructors, Customizing destructors, Creating objects of classes                                                                                                                     |
| 3          | UNIT 3                                                                                                                                                                                                                                                                                                                   |
|            | <b>Encapsulation of Data:</b> Understanding the different members of a class, Protecting and hiding data, Adding attributes to a class, Adding properties to a constructor function, Hiding data using prefixes, Using access modifiers, Using property getters and setters, Using methods to add behaviours to classes. |
| 4          | UNIT 4                                                                                                                                                                                                                                                                                                                   |
|            | Inheritance and Specialization: Using classes to abstract behaviour, Understanding inheritance, Polymorphism, Understanding method overloading and overriding, Understanding operator overloading, Taking advantage of polymorphism.                                                                                     |
| 5          | UNIT 5                                                                                                                                                                                                                                                                                                                   |
|            | Interfaces, Multiple Inheritance, and Composition: Understanding the requirement to work with multiple base classes, Working with multiple inheritance, Declaring base classes for multiple inheritance, Declaring classes that override methods, Declaring a class with multiple base classes, Working                  |

with objects of classes that use multiple inheritance, Working with abstract base classes.

**Data Visualization:** Introduction, History, Importance, Benefits, Data visualization in today's world, How it is used, How it works.

#### **Reference Books**

# **Object Oriented Programming**

#### **References:**

- 1. Learning Object-Oriented Programming, Gaston C. Hillar, Packt, 1<sup>st</sup> Edition, 2015.
- 2. Python 3 Object-oriented Programming, Dusty Phillips, Packt, 2<sup>nd</sup> Edition, 2015.
- 3. The Object-Oriented Thought Process, Matt Weisfeld, 3<sup>rd</sup> Edition, 2009
- 4. https://www.sas.com/en\_in/insights/big-data/data-visualization.html
- 5. https://realpython.com/python3-object-oriented-programming/#how-to-define-a-class-in-python

- 1. Creating Class diagram with the abstract class, subclasses, their attributes and methods.
- 2. Defining and using a class.
- 3. Defining methods with and without attributes in a class.
- 4. Creating and using constructor and Destructor.
- 5. Using property getters and setters.
- 6. Implementing various forms of Inheritance.
- 7. Implementing Polymorphism by Overloading Overriding methods.
- 8. Implementing concept of Operator Overloading.
- 9. Implementing abstract classes and interfaces.
- 10. Implementing concept of Composition.

|                                        | Hrs. of              | Exam                      | Max | imum M | arks  |         |
|----------------------------------------|----------------------|---------------------------|-----|--------|-------|---------|
| Course                                 | Instruction<br>/Week | Duration (Hours)          | CIE | SEE    | Total | Credits |
| Core 3:  Database Management Systems I | 4                    | 2 <sup>1/2</sup><br>Hours | 25  | 75     | 100   | 3       |

| Sr.<br>No. | Modules / Units                                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | UNIT 1                                                                                                                                                                                                                                                                                     |
|            | <b>Introduction to DBMS:</b> Definition, Overview of DBMS, Advantages of DBMS, Purpose of Database Systems, View of Data, Database Languages, , Levels of abstraction, Data independence, DBMS Architecture, Limitation of DBMS, Introduction of NoSQL, Comparison between DBMS and RDBMS. |
|            | <b>Data Models:</b> The importance of data models, Basic building blocks, Business rules, Client/Server Architecture, Object Based Logical Model, Record Based Logical Model (relational, hierarchical, network), Degrees of data abstraction.                                             |
| 2          | UNIT 2                                                                                                                                                                                                                                                                                     |
|            | <b>ER-Diagram</b> : Database design and ER Model: Overview, ER-Model, Constraints, ER Diagrams, ERD Issues, weak entity sets, Codd's rules, Relational Schemas                                                                                                                             |
|            | <b>Relational Database design</b> : Features of good relational database design, atomic domain and Normalization (1NF, 2NF, 3NF, BCNF).                                                                                                                                                    |
|            | <b>Relational Algebra:</b> Operations - selection, projection, Set operations-union, intersection, difference, cross product, Joins —conditional, equi join and natural joins, division operator                                                                                           |
| 3          | UNIT 3                                                                                                                                                                                                                                                                                     |
|            | Joining tables: Inner, Equi, Outer, Cross and Self join                                                                                                                                                                                                                                    |
|            | <b>Sub queries:</b> Sub queries with IN, EXISTS, correlated sub queries, queries with modified comparison operations, SELECT INTO operation, UNION operation. Sub queries in the HAVING clause                                                                                             |

|   | Views: Meaning of view, Data independence provided by views, creating, altering dropping, renaming and manipulating views using SQL.                                                                                                                                                                                                                   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | UNIT 4                                                                                                                                                                                                                                                                                                                                                 |
|   | <b>Transaction Management and Concurrency Control:</b> Concept of a transaction, ACID properties, Serial and serializable schedules, Conflict and View Serializability, Precedence graphs and test for conflict seralizability.                                                                                                                        |
|   | <b>Enforcing serializability by locks:</b> Concept of locks, the locking scheduler, Two phase Locking, upgrading and down grading locks, Concept of dead locks, Concurrency control by time stamps, The Thomas Write rule.                                                                                                                             |
|   | <b>Crash Recovery:</b> ARIES algorithm, The log based recovery, recovery related structures like transaction and dirty page table, check points, recovery from a system crash.                                                                                                                                                                         |
| 5 | UNIT 5                                                                                                                                                                                                                                                                                                                                                 |
|   | Introduction to SQL: SQL commands - Data Definition Language Commands, Data Manipulation Language Commands, The Data types a cell can hold; insertion of data into the tables; Viewing of data into the tables; Deletion operations; updating the contents of the table; modifying the structure of the table; renaming table; destroying tables; Data |
|   | Constraints; Type of Data Constraint; Column Level Constraint; Table Level Constraint; Null value Concepts; The UNIQUE Constraint; The PRIMARY constraint; The FOREIGN key constraint; The CHECK Constraint; Viewing the User Constraints.  Viewing The Data: Computations on Table Data; Arithmetic Operators;                                        |
|   | Level Constraint; Null value Concepts; The UNIQUE Constraint; The PRIMARY constraint; The FOREIGN key constraint; The CHECK Constraint; Viewing the User Constraints.                                                                                                                                                                                  |

# **Database Management Systems I**

- 1) Ramakrishnam, Gehrke, "Database Management Systems", McGraw-Hill.
- 2) Ivan Bayross, "SQL,PL/SQL -The Programming language of Oracle", B.P.B. Publications
- 3) Elsmasri and Navathe, "Fundamentals of Database Systems", Pearson Education.

- 1. Draw ER diagram for the given scenario and convert it into table.
- 2. Study of Data Definition Language Statement
- 3. Study of Data Manipulation Language Statement
- 4. Study of various type of JOINS.
- 5. Study of subqueries with all its clauses.
- 6. Study of various types of SET OPERATORS.
- 7. Study of various types of views.
- 8. Study of different functions.
- 9. Study of Transaction (Commit/Rollback), Locks
- 10. Implementing deadlocks.

|                                       | Hrs. of              | Exam                      | Max | imum M |       |         |
|---------------------------------------|----------------------|---------------------------|-----|--------|-------|---------|
| Course                                | Instruction<br>/Week | Duration (Hours)          | CIE | SEE    | Total | Credits |
| Skill Enhancement: Web Programming II | 4                    | 2 <sup>1/2</sup><br>Hours | 25  | 75     | 100   | 3       |

| Sr.<br>No. | Modules / Units                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | UNIT 1                                                                                                                                                                                                      |
|            | <b>XML</b> : Introduction to XML, Anatomy of an XML document, Creating XML Documents, Creating XML DTDs, XML Schemas, XSL                                                                                   |
| 2          | UNIT 2                                                                                                                                                                                                      |
|            | PHP: Introduction of PHP, Server-side scripting.                                                                                                                                                            |
|            | <b>PHP BASICS</b> :PHP syntax and variables, comments, types, constants, control structures, branching, looping, termination, functions, arrays, passing information with PHP, GET, POST                    |
| 3          | UNIT 3                                                                                                                                                                                                      |
|            | <b>PHP:</b> formatting form variables, superglobal arrays, strings and string functions, regular expressions, arrays, number handling, basic PHP errors/problems, working with files and operating systems. |
| 4          | UNIT 4                                                                                                                                                                                                      |
|            | Advanced PHP and MySQL :                                                                                                                                                                                    |
|            | MYSQL basics, PHP/MySQL Functions, Integrating web forms and databases, authenticating your users, Displaying queries in tables.                                                                            |
| 5          | UNIT 5                                                                                                                                                                                                      |
|            | Building Forms from queries, String and Regular Expressions, Sessions, Cookies and HTTP, handling file uploads <b>networking</b> - E-Mail, securing your website, <b>XML parsing</b>                        |

# **Web Programming II**

- 1. XML: The Complete Reference –Heather Williamson.
- 2. Beginning php and mysql from novice to professional 4<sup>th</sup> edition
- 3. MySQL-PHP Database Applications.
- 4. Practical PHP and MySQL, Jono Bacon, Prentice Hall.

# **Practical**

- 1. XML
  - a. Design a DTD, corresponding XML document and display it in browser using CSS.
  - b. Design an XML document and display it in browser using XSL.
  - c. Design XML Schema and corresponding XML document.
- 2. PHP Basics-II
  - a. Write a PHP Program to accept a number from the user and print it factorial.
  - b. Write a PHP program to accept a number from the user and print whether it is prime or not.
- 3. PHP Basics- II
  - a. Write a PHP code to find the greater of 2 numbers. Accept the no. from the user.
  - b. Write a PHP program to display the following Binary Pyramid:

1

0 1

101

0101.

- 4. String Functions and arrays
  - a. Write a PHP program to demonstrate different string functions.
  - b. Write a PHP program to create one dimensional array.
- 5. PHP and Database
  - a. Write a PHP code to create: (i) Create a database College (ii) Create a table Department (Dname, Dno, Number\_Of\_faculty)
  - b. Write a PHP program to create a database named "College". Create a table named "Student" with following fields (sno, sname, percentage). Insert 3 records of your choice. Display the names of the students whose percentage is between 35 to 75 in a tabular format.
  - c. Design a PHP page for authenticating a user.
  - d. Write a program to send email with attachment
- 6. Write a program to demonstrate use of sessions and cookies.
- 7. Create a shopping cart using php and Mysql.
- 8. Write a program to demonstrate XML parsing with php.
- 9. Design a web page demonstrating Platform as a service (PAAS) with google cloud.
- 10. Demonstrate json with php.

|                                   | Hrs. of              | Exam                      | Max |     |       |         |
|-----------------------------------|----------------------|---------------------------|-----|-----|-------|---------|
| Course                            | Instruction<br>/Week | Duration (Hours)          | CIE | SEE | Total | Credits |
| Allied:  Discrete Mathematics  II | 4                    | 2 <sup>1/2</sup><br>Hours | 25  | 75  | 100   | 2       |

| Sr.<br>No. | Modules / Units                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | UNIT 1                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Matrices: Introduction, Matrix Arithmetic, Properties of matrices, Transposes and Powers of Matrices, Inverse of a matrix, Elementary transformation, Rank of matrix, Echelon or normal form, Linear equations, Linear dependence and independence of vectors.  Determinants: General definition, determinants and inverses of 2 x 2 matrices, Properties of determinants.                                                          |
| 2          | UNIT 2                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | Linear Transformation of matrices: Characteristics roots and characteristics vectors, their properties, Cayley-Hamilton theorem, Similarity of matrices, Reduction of matrix to a diagonal matrix.  Counting Principles: Sum and Product Rules, Two-way counting, Tree diagram for solving counting problems, Pigeonhole Principle (without proof); Simple examples, Inclusion Exclusion Principle (Sieve formula) (Without proof). |
| 3          | UNIT 3                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <b>Permutations and Combinations:</b> Partition and Distribution of objects, Permutation with distinct and indistinct objects, Binomial numbers, Combination with identities: Pascal Identity, Vandermonde's Identity, Pascal triangle, Binomial theorem, Combination with indistinct objects.                                                                                                                                      |
| 4          | UNIT 4                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <b>Graphs</b> : Definition and elementary results, Adjacency matrix, path matrix, Representing relations using diagraphs, Warshall's algorithm-shortest path, Linked representation of a graph, Operations on graph with                                                                                                                                                                                                            |

|   | algorithms - searching in a graph; Insertion in a graph, Deleting from a     |
|---|------------------------------------------------------------------------------|
|   | graph, Traversing a graph- Breadth-First search and Depth-First search.      |
|   |                                                                              |
| 5 | UNIT 5                                                                       |
|   |                                                                              |
|   | <b>Trees:</b> Definition and elementary results. Ordered rooted tree, Binary |
|   | trees, Complete and extended binary trees, representing binary trees in      |
|   | memory, traversing binary trees, binary search tree, Algorithms for          |
|   | searching and inserting, traversing binary trees, binary search tree,        |
|   | Algorithms for searching and inserting, in binary search trees, Algorithms   |
|   | for deleting in a binary search tree                                         |

# **Discrete Mathematics II**

- 1. Discrete Mathematics with Applications, Sussana S. Epp, Cengage Learning, 4th Edition, 2010.
- 2. Discrete Mathematics, Schaum's Outline Series, Seymour Lipschutz, Tata McGraw Hill, 2007.
- 3. Discrete Mathematics and its Applications, Kenneth H.Rosen, Tata McGraw Hill, 2015.
- 4. Discrete Mathematical Structures, 6<sup>th</sup> Ed., Kolmann R. C. Busby, S. Ross, PHI, 2009.
- 5. Elements of Discrete Mathematics, 4<sup>th</sup> Ed., C. L. Liu, D. P. Mohapatra, Tata McGraw Hill, 2012.

|                                                         | Hrs. of<br>Instruc<br>tion/<br>week | Exam Duratio n (Hours) | Maximum Marks |             |       |         |
|---------------------------------------------------------|-------------------------------------|------------------------|---------------|-------------|-------|---------|
| Course                                                  |                                     |                        | CIE           | SEE         | Total | Credits |
| Ability Enhancement:  IT platforms, Tools and Practices | 2                                   | 2 hrs                  | 25            | 75<br>(Pr.) | 100   | 2       |

| Sr.<br>No. | Modules / Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | UNIT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Free and Open Source Softwares Introduction: Introduction: Open Source, Free Software, Free Software vs. Open Source software, Public Domain Software, FOSS does not mean no cost. History: BSD, The Free Software Foundation and the GNU Project. GitHub: Introduction to GitHub, preparing the environment: Install Git on our machine, create a GitHub account, create a workspace on our machine GitHub workflow and the environment: Creating a repository, creating workspace, cloning the repository, creating a branch, committing the changes, merging the changes, Introduction to Wikipedia, contributing to Wikipedia |
| 2          | UNIT 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Coding Practices: Variable Naming Conventions, Constant Naming Conventions, Indentations, General Practices, Commenting, Advantages of Coding guidelines, pair programming/code review, Refactoring, Reduction of Complexity, JavaScript best Practices, Java best Practices, Python best Practices, Python best practices (PEP 8), Code analysis tools (Pylint)                                                                                                                                                                                                                                                                  |
| 3          | UNIT 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Introduction to Semantic Web: Limitations of current Web – Development of Semantic Web – Emergence of the Social Web – Social Network analysis: Development of Social Network Analysis – Key concepts and measures in network analysis – Electronic sources for network analysis: Electronic discussion networks, Blogs and online communities – Web-based networks – Applications of Social Network Analysis.                                                                                                                                                                                                                    |
| 4          | UNIT 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|   | Social Media Platforms: Case study on Google docs, Facebook, Blogs(WordPress or Blogger), Youtube, Twitter, Storify, Instagram, LinkedIn, TedEd etc                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | UNIT 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Green Computing Minimizing Power Usage: Power Problems, Monitoring Power Usage, Servers, Low-Cost Options, Reducing Power Use, Low-Power Computers, PCs, Linux, Components, Servers, Computer Settings, Storage, Monitors, Power Supplies, Wireless Devices, Software.  Going Paperless: Paper Problems, The Environment, Costs: Paper and Office, Practicality, Storage, Destruction, Going Paperless, Organizational Realities, Changing Over, Paperless Billing, Handheld Computers vs. the Clipboard, Unified Communications, Intranets, What to Include, Building |
|   | an Intranet, Microsoft Office SharePoint Server 2007, Electronic Data Interchange (EDI), Nuts and Bolts, Value Added Networks, Advantages, Obstacles.  Green Data Storage: Introduction, Storage Media Power Characteristics, Energy Management Techniques for Hard Disks, System-Level Energy Management                                                                                                                                                                                                                                                              |

- 1. Create a project, repository and workspace in GitHub.
- 2. Clone the Repositories in GitHub.
- 3. Creating a branch in GitHub.
- 4. Committing the changes in GitHub.
- 5. Merging the changes in GitHub.
- 6. Working on Wikipedia.
- 7. Implementing coding practices in Python using Pylint.
- 8. Implementing coding practices in Python using PEP8.
- 9. Implementing coding practices in Java.
- 10. Implementing coding practices in JavaScript.

# IT platforms, Tools and Practices

#### **REFERENCES:**

#### Unit1-

- 1. Open Source Initiative: https://opensource.org/
- 2. Github: https://help.github.com/
- 3. https://medium.freecodecamp.org/how-you-can-learn-git-and-github-while-youre-learning-to-code-7a592ea287ba
- 4. https://medium.com/quick-code/top-tutorials-to-learn-git-for-beginners-622289ffdfe5
- 5. Wikipedia: https://en.wikipedia.org/

#### Unit 2:

- 1. https://developer.mozilla.org/en-US/docs/Mozilla/Developer\_guide/Coding\_Style
- 2. https://www.castsoftware.com/glossary/coding-in-software-engineering-best-practices-good-standards

# Unit 3&4:

- 1. Peter Mika, —Social Networks and the Semantic Web, First Edition, Springer 2007.
- 2. Borko Furht, —Handbook of Social Network Technologies and Applications, 1st Edition, Springer, 2010.

## Unit 5-

- 11. Toby Velte, Anthony Velte, Robert Elsenpeter, Green IT, McGraw Hill, 2008
- 12. Alvin Galea, Michael Schaefer, Mike Ebbers, Green Data Center: Steps for the Journey, Shroff Publishers and Distributers, 2011

# **Evaluation Scheme**

# I. Internal Exam-25 Marks

(i) Test-20 Marks - Duration 40 mins

It will be conducted either as a written test or using any open source learning management system such as Moodle (Modular object-oriented dynamic learning environment) Or a test based on an equivalent online course on the contents of the concerned course(subject) offered by or build using MOOC (Massive Open Online Course)platform.

(ii) **5 Marks -** Active participation in routine class instructional deliveries: Overall conduct as a responsible student, manners, skill in articulation, leadership qualities demonstrated through organizing co-curricular activities, etc.

#### II. External Examination- 75 Marks

- (i) Duration 2.5 Hours.
- (ii) Theory question paper pattern:-

| All questions are compulsory. |                            |                                      |  |  |  |  |
|-------------------------------|----------------------------|--------------------------------------|--|--|--|--|
| Question                      | Based on                   | Marks                                |  |  |  |  |
| Q1                            | Unit 1, 2, 3, 4, 5         | 4 out of 5 questions (05 marks each) |  |  |  |  |
| Q2                            | Unit 1, 2, 3, 4, 5         | 3 out of 5 questions (07 marks each) |  |  |  |  |
| Q3                            | Unit 1, 2, 3, 4, 5         | 3 out of 5 questions (08 marks each) |  |  |  |  |
| Q4                            | Based on multiple<br>Units | 1 out of 2 questions (10 marks)      |  |  |  |  |

# III. Practical Examination – 50 marks (Duration: 2 Hours)

- Each practical course carries 50 Marks : 40 marks + 05 marks (journal)+ 05 marks(viva)
- Minimum 75% practical from each core/allied course are required to be completed and written in the journal.

(Certified Journal is compulsory for appearing at the time of Practical Examination)