Learning Based Model Predictive Control

Saket Adhau

MIS: 121717001

Guide: Dr. Dayaram Sonawane

April 11, 2021

Problem Statement

Administration of Anesthesia to control pain during surgery

Saket Adhau (COEP) April 11, 2021

General Anesthesia

Breathing Mask/Intubation

General Anesthesia

Breathing Mask/Intubation

Intravenous (IV) line

3 / 28

4 / 28

4 / 28

BODY TEMPERATURE

4 / 28

Bispectral Index (BIS)

- Depth of Anesthesia
- Scale 0 100

Drug Administration Strategies

Experience Based

Saket Adhau (COEP) April 11, 2021

Drug Administration Strategies

Experience Based

Algorithm Based

6 / 28

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based control
 - 2. Constraint handling
- Deep Neural Network based MPC
 - Robustness to uncertainties in mode
 - 2. Less Computational Complexity as compared to MPC

Saket Adhau (COEP) April 11, 2021

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based control
 - 2. Constraint handling
- Deep Neural Network based MPC
 - 1. Robustness to uncertainties in model
 - 2. Less Computational Complexity as compared to MPG

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based contro
 - 2. Constraint handling
- Deep Neural Network based MPC
 - 1. Robustness to uncertainties in mode
 - 2. Less Computational Complexity as compared to MPC

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based control
 - Constraint handling
- Deep Neural Network based MPC
 - 1. Robustness to uncertainties in model
 - 2. Less Computational Complexity as compared to MPC

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based control
 - 2. Constraint handling
- Deep Neural Network based MPC
 - 1. Robustness to uncertainties in model
 - 2. Less Computational Complexity as compared to MPC

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based control
 - 2. Constraint handling
- Deep Neural Network based MPC
 - 1. Robustness to uncertainties in mode
 - 2. Less Computational Complexity as compared to MPC

Saket Adhau (COEP) Appal 11, 2021

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based control
 - 2. Constraint handling
- Deep Neural Network based MPC
 - 1. Robustness to uncertainties in model
 - 2. Less Computational Complexity as compared to MPC

Saket Adhau (COEP) April 11, 2021

- Proportional-Integral-Derivative (PID)
 - 1. Simplest Controller
- Model Predictive Control (MPC)
 - 1. Model based control
 - 2. Constraint handling
- Deep Neural Network based MPC
 - 1. Robustness to uncertainties in model
 - 2. Less Computational Complexity as compared to MPC

Saket Adhau (COEP) April 11, 2021

PK-PD Model of the Patient

Pharmacodynamics

8 / 28

Saket Adhau (COEP) Modelling April 11, 2021

Model Predictive Control (MPC)

Use a dynamical model of the process to predict its future evolution and choose the "best" control action

Saket Adhau (COEP) April 11, 2021

Embedded Control Systems: Main Requirements

Model-based, optimal performance, constraints

Control law simple enough for software certification

Require simple hardware (e.g., cheap and fast FPGA)

• Speed: fast dynamics \Rightarrow short sample time (< 1 μ s)

 Well defined worst-case execution time, to certify hard real-time system properties

Main Drawbacks of On-line Optimization

Excellent QP solvers available today

but ...

- Computation time may be too long
- © Requires relatively expensive hardware
- Cannot handle uncertainties in the model
- O Not suitable of safety critical applications

Saket Adhau (COEP) April 11, 2021

Deep Neural Networks

How it works?

A neural network consists of highly connected networks of neurons that relate the inputs to the desired outputs. The network is trained by iteratively modifying the strengths of the connections so that given inputs map to the correct response.

Saket Adhau (COEP) DNIVANC April 11, 2021

Deep Neural Networks

Best used for:

- · For modeling highly nonlinear systems
- When data is available incrementally and you wish to constantly update the model
- When there could be unexpected changes in your input data

13 / 28

Saket Adhau (COEP) DWV-MPC April 11, 2021

Deep Neural Networks based MPC

Figure: Replacing MPC with deep neural network trained model.

Saket Adhau (COEP) SNN-MVC April 11, 2021

Saket Adhau (COEP) DNN-MPC April 11, 2021

Saket Adhau (COEP) DISSAMPS April 11, 2021

Saket Adhau (COEP) DNIVANC April 11, 2021

Saket Adhau (COEP) April 11, 2021

Training of the Controller

Scenario	Target Values	MSE	
Training	35000	6.28241×10^{-9}	
Validation	7500	1.14839×10^{-6}	
Testing	7500	1.40538×1^{-8}	

Table: Training statistics with 50000 data-points in which 70% was allocated for training while 15% each for testing and validation

Saket Adhau (COEP) DNN-WFC April 11, 2021

Training Performance

Training Auto-Correlation

Saket Adhau (COEP) DNIVANC April 11, 2021

Embedded Implementation of DNN-MPC

Atmel's ARM Cortex-M3:

- 32-bit microcontroller running at 84MHz.
- 512kB of program memory and 96kB of SRAM.
- Mostly prefer in embedded automotive applications.

19 / 28

Saket Adhau (COEP) DINNAMS April 11, 2021

Hardware-in-loop (HIL) Work Flow

Saket Adhau (COEP) DNASMIS April 11, 2021

Case Study

- Patient of age 25 years and 63 kg weight
- BIS between 40 60
- Input constraints $0-20~{
 m mg/kg/h}$

Saket Adhau (COEP) SNN-MVC April 11, 2021

Saket Adhau (COEP) DINVANC April 11, 2021

Saket Adhau (COEP) DISSAME April 11, 2021

Saket Adhau (COEP) DNNSMIS April 11, 2021

Saket Adhau (COEP) April 11, 2021

Computational Time and Memory Calculations

Controller	Memory [%]		Run-time
	% Data Usage	% Program Usage	[ms]
Linear MPC	3.50	4.90	11.354
DNN MPC	3.01	3.92	2.999

Table: Memory footprints and run-time results of proposed DNN-MPC and LMPC.

Saket Adhau (COEP) DNN-MPS April 11, 2021

Conclusion

- This work proposes the use of deep neural networks to approximate linear MPC control law, efficiently and effectively with minimal computational efforts for real-time embedded implementation.
- Computational time reduced to as much as $4 \times$ times
- Promising approach for safety-critical applications running on embedded systems.
- Future work will include to make complex non-linear MPC solutions using deep neural networks to use them on embedded hardware.

Saket Adhau (COEP) DNN-MPC April 11, 2021

Publications

- [1] S. Adhau, S. Patil, D. Ingole, and D. Sonawane, "Embedded Implementation of Deep Learning-based Linear Model Predictive Control," (Submitted).
- [2] S. Adhau, S. Patil, D. Ingole, and D. Sonawane, "Implementation and Analysis of Nonlinear Model Predictive Controller on Embedded Systems for Real-Time Applications," in 2019 European Control Conference (ECC), Naples, Italy. IEEE, 2019.
- [3] S. Adhau, K. Phalke, A. Nalawade, D. Ingole, S. Patil and D. Sonawane, "Implementation and Analysis of Offset-Free Explicit Model Predictive Controller on FPGA," in 2019 Fifth Indian Control Conference (ICC), New Delhi, India, 2019, pp. 231-236.
- [4] S. Adhau, S. Dani, D. Ingole, S. Patil and D. Sonawane, "Embedded Model Predictive Controller on Low-Cost Low-End Microcontroller for Electrical Drives," in 2018 I2CT, India, 2018.

Saket Adhau (COEP) DNVMIC April 11, 2021

References

- [1] S. Lucia, D. Navarro, B. Karg, H. Sarnago, and O. Lucia, "Deep Learning-Based Model Predictive Control for Resonant Power Converters," *arXiv preprint arXiv:1810.04872*, 2018..
- [2] U. Rosolia and F. Borrelli, "Learning model predictive control for iterative tasks. a data-driven control framework," *IEEE Transactions on Automatic Control*, pp. 1883–1896, 2017.
- [3] Y. Sawaguchi, E. Furutani, G. Shirakami, M. Araki, and K. Fukuda, "A model-predictive hypnosis control system under total intravenous anesthesia," *IEEE transactions on biomedical engineering*, pp. 874–887, 2008.
- [4] D. Ingole and M. Kvasnica, "FPGA implementation of explicit model predictive control for closed loop control of depth of anesthesia," *IFAC-PapersOnLine*, pp. 483–488, 2015.

Saket Adhau (COEP) DNIVANC April 11, 2021

Back-up Slides

Saket Adhau (COEP) Basis Saket Basis Saket

PK Model

$$A = \begin{bmatrix} -\frac{k_1 + k_2 + k_3 + k_4}{V_1} & \frac{k_2}{V_1} & \frac{k_3}{V_1} & \frac{k_4}{V_1} \\ \frac{k_2}{V_2} & -\frac{k_2}{V_2} & 0 & 0 \\ \frac{k_3}{V_3} & 0 & -\frac{k_3}{V_3} & 0 \\ \frac{k_4}{V_4} & 0 & 0 & -\frac{k_4}{V_4} \end{bmatrix},$$

$$B = \begin{bmatrix} \frac{1}{V_1} & 0 & 0 & 0 \end{bmatrix}^T, \ C = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T, \text{ and } D = \begin{bmatrix} 0 \end{bmatrix}.$$

Saket Adhau (COEP) Back-up Shides April 11, 2021

Model Parameters

Parameter	Value
1.	$0.0595^{0.75}$ L/min (age ≤ 60)
k_1	$(0.0595 \text{BW}^{0.75} - 0.45 \text{AGE} + 2.7) \text{ L/min (age} > 60)$
k_2	$0.0969 \mathrm{BW}^{0.62}$ L/min
k_3	$0.0889 \mathrm{BW}^{0.55}$ L/min
k_4	0.12 L/min
V_1	$1.72 \mathrm{BW}^{0.71} \mathrm{AGE}^{-0.39} \ \mathrm{L}$
V_2	$3.32 {\rm BW}^{0.61} {\rm L}$
V_3	266 L
V_4	$0.01V_1$ L

Saket Adhau (COEP) Bradsum Sides April 11, 2021