

Computer Networks 1

DATA TRANSMISSION

Fatemeh Rezaei

DEFINITIONS

- Data
 - Entities that convey meaning
- Signals
- Electric or electromagnetic representations of data
- Data Transmission
- Communication of data
- Through propagation and processing of signals representing them

DATA COMMUNICATIONS SYSTEM

DATA TYPES

Analog Data

- Continuous values
- Examples
 - audio, video

Digital Data

- Discrete values (not necessarily binary)
- Examples
 - integers, text characters
 - 194, "Hello", Chapter 12

SIGNAL TYPES

Analog signal

Continuously variable in time and amplitude

Digital signal

 Amplitude takes only a finite number of discrete levels

ANALOGUE & DIGITAL SIGNALS

CONTINUOUS VERSUS DISCRETE

Availability of the signal over the horizontal axis

Continuous:

Signal is defined at *all points* on the horizontal axis

Discrete:

Signal is defined
Only at certain points
on the horizontal axis

SINE WAVES

 ω

- □ General form: $x(t) = A \sin(2\pi f t + \phi)$
- Angular Frequency (ω), Radians/s ω = radians per second = 2π f = 2π /T
- \square Temporal (time) Period, T = 1/f
- \square Phase Angle (ϕ), Radians

FREQUENCY DOMAIN CONCEPTS

- Response of systems to a sine waves is easy to analyze
- signals we deal with in practice are not all sine waves
- Can we relate waves we deal with in practice to sine waves?
- Fourier analysis shows that any signal can be treated as the sum of many sine wave components having different frequencies, amplitudes, and phases
- ☐ This forms the basis for frequency domain analysis
- Dealing with functions in the frequency domain is simpler

ASYMPTOTICALLY APPROACHING A SQUARE WAVE

Combining the fundamental + an infinite number of odd harmonics at proper amplitudes

SPECTRUM & BANDWIDTH OF A SIGNAL

- ■Spectrum of a signal
 - Range of frequencies contained in a signal
- Absolute (theoretical) Bandwidth (BW):
 - Is the full width of spectrum = fmax-fmin
 - But in many situations, fmax = ∞ ! (e.g. a square wave)

- ☐ Effective Bandwidth
 - Often called just bandwidth
 - Narrow band of frequencies containing most of the signal energy
 - Somewhat arbitrary: what is "most"?
 - e.g. that contains say 95% of the energy of the signal

DATA COMMUNICATIONS SYSTEM

TRANSMISSION SYSTEM

- Transmission Medium:
 - Transmitting Electromagnetic Wave
 - Channel
 - Designing of Tx/Rx

TRANSMISSION MEDIA

KEY CONCERNS OF TRANSMISSION MEDIUM

BANDWIDTH OF A TRANSMISSION SYSTEM

- Is the Range of signal frequencies that are adequately passed by the system
- ☐ Effectively, the transmission system (TX, medium, RX) acts as a filter
 - Poor transmission media, e.g. twisted pairs, have a narrow bandwidth

TRANSMITTER/ RECEIVER FUNCTIONS

Transmitter

Amplification

Modulation

Coding

Receiver

Amplification

Demodulation

Decoding

Filtering

MODULATION

ANALOG DATA TO ANALOG SIGNAL SPEECH TRANSMISSION

- Mechanical sound waves (data)
 - Easily converted into electromagnetic signal
 - For processing and transmission
 - Mechanical waves (Sound) of varying pitch and loudness (Data)

is represented as:

Electromagnetic signals of different frequencies and amplitudes (Signal)

ENCODING

TYPES OF MODULATION AND ENCODING

Line Coding

Digital Data, Digital Signals

Source Coding

Analog Data, Digital Signals

Digital Modulation

Digital Data, Analog Signals

Analog Modulation

Analog Data, Analog Signals

DIGITAL DATA, DIGITAL SIGNAL

- ☐ The simplest form
 - Assigning one voltage level to binary one and another to binary zero
- More complex encoding schemes
 - Using to improve performance
 - □Altering the spectrum of the signal
 - Providing synchronization capability

ANALOG DATA, DIGITAL SIGNAL

- Digitizing analog data to use digital transmission facilities
- The simplest technique
 - Pulse code modulation (PCM)
 - Sampling the analog data
 - Quantizing the samples

ANALOG SIGNALING

- Carrier signal
 - A continuous constant-frequency signal
 - Its frequency is compatible with the transmission medium
- Modulation
 - ullet Encoding source data onto a carrier signal with frequency $f_{\mathcal{C}}$
 - Operation on one or more of the 3 fundamental parameters
 - Amplitude
 - Frequency
 - Phase

DIGITAL DATA, ANALOG SIGNAL

- A modem converts digital data to an analog signal
- ■To be transmitted over an analog line
- Altering one or more characteristics of a carrier signal to represent binary data
- The basic techniques
 - Amplitude shift keying (ASK)
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)

ANALOG DATA, ANALOG SIGNAL

- Analog data are modulated by a carrier signal
- Produce an analog signal in a different frequency band
- Can be utilized on an analog transmission system
- The basic techniques
 - ■Amplitude modulation (AM)
 - ☐ Phase modulation (PM)
 - Frequency modulation (FM)

ENCODING AND MODULATION TECHNIQUES

(b) Modulation onto an analog signal

ANALOG TRANSMISSION

- Transmitting analog signals
 - Without regard to their content
 - Signals may represent analog data or digital data
- Amplifiers overcome attenuation
- Amplifiers boosts the noise components
 - Cumulative noise and distortion
- More distortion in case of cascaded amplifiers
- Introducing errors in digital data

DIGITAL TRANSMISSION

- Assume digital content
 - Transmitted signal can be digital or analog
- Repeaters overcome attenuation
- Extract the data bit stream from the received signal
- Recovers the pattern of 1s and 0s
- Retransmit a fresh, strong signal representing the bit stream
- Noncumulative noise and distortion

SIGNALS AND TRANSMISSION

	Analog Transmission	Digital Transmission
Analog Signal	Analog Data/ Digital Data	Digital Data
Digital Signal	Not used	Digital Data/ Encoded Analog Data

DIGITAL TRANSMISSION ADVANTAGES

- Digital technology
 - Cheaper and Smaller
- Data integrity
 - Noncumulative noise and distortion
 - Transmit data longer distances
- Capacity utilization
 - More easily and cheaply multiplexing (TDM)
- Security and privacy
 - Easily apply encryption techniques
- Integration
 - Similarly treat with voice, video, and digital data