YZV102E - Introduction to Programming for Data Science (Python) Lab 5

27.03.2023

Res. Asst. Erhan Biçer (bicer21@itu.edu.tr Res. Asst. Uğur Önal (onalug@itu.edu.tr) Res. Asst. Sümeyye Öztürk (ozturks20@itu.edu.tr) Res. Asst. Barış Bilen (bilenb20@itu.edu.tr) Res. Asst. Püren Tap (tap23@itu.edu.tr)

1 Exercise 1

In this part, you will complete the following tasks;

- 1. Define a function named recursive_sum_of_digits_in_integer that takes an integer as an argument. It calculates the sum of the digits in the integer in a recursive way. **Note:** The input integer will not be a negative value.
- 2. Get an integer named num1 from the user.
- 3. Call the function $recursive_sum_of_digits_in_integer$ with num1 as an argument.
- 4. Print the result.
- 5. Test the function with the cases given in Table 1.

Table 1: Test Case for Example 1

Test Cases			
Test Case #	Input	Output	
1	98756	35	
2	65789	35	
3	0	0	
4	123	6	

In this part, you will complete the following tasks;

- 1. Define a function named reverse_string that takes a string as an argument. It reverses the given string in a recursive way.
- 2. Get a string from the user named word.
- 3. Call the function $reverse_string$ with word as an argument.
- 4. Print the result.
- 5. Test the function with the cases given in Table 2.

Table 2: Test Case for Example 2

Test Cases			
Test Case #	Input	Output	
1	pencil	licnep	
2	knits	stink	
3	exercise	esicrexe	

In this part, we will complete the following tasks;

- 1. Define a function named *is_polindrome* that takes a string as an argument. The function *is_polindrome* returns a Boolean value. If the string is a palindrome, it returns True; else, False. A **palindrome** is a word, number, phrase, or another sequence of characters that reads the same backward as forward, such as madam or racecar.
- 2. Test the function with the cases given in Table 3.

Table 3: Test Case for Example 3

		_	
Test Cases			
Test Case #	Input	Output	
1	madam	True	
2	Madam	True	
3	butterfly	False	

In this part, you will complete the following tasks;

- 1. Define a function named *is_prime* that takes an integer as an argument. The function *is_prime* returns a Boolean value. If the number is prime, it returns True; else, False.
- 2. Test the function with the cases given in Table 4.

Table 4: Test Case for Example 4

Test Cases			
Test Case #	Input	Output	
1	-4	False	
2	1	False	
3	2	True	
4	3	True	
5	4	False	
6	17	True	
7	21	False	
8	53	True	

In this part, we will complete the following tasks;

- 1. Define a function named $sum_binaries$ that takes two strings as input. The function $sum_binaries$ calculates the sum of the binary inputs and returns the sum.
- 2. Test the function with the cases given in Table 5.

Table 5: Test Case for Example 5

Test Cases		
Test Case #	Input	Output
1	'11', '1'	'100'
2	'10', '10'	'100'
3	'111', '111'	'1110'
4	'11111111', '1'	'10000000'
5	'0101', '00011'	'1000'