Reading Quiz Section 3.1

1. Which of the following connectives makes the following true for any integers a, b and n > 0?

 $a \equiv b \pmod{n}$ a = b

- $(a) \Longrightarrow$
- (b) <==
- $(c) \iff$
- (d) ∧
- 2. Let $m, n \in \mathbb{Z}$ where n > 0. Is it possible that there are multiple pairs of integers q and r such that m = qn + r and $0 \le r < n$?
 - (a) It is never possible.
 - (b) It is sometimes possible, depending on what m and n are.
 - (c) It is always possible.
- 3. Which of the following are true statements for all integers a, b and n > 0? Select all that apply.
 - (a) a is congruent to exactly one of 0, 1, ..., n-1 modulo n.
 - (b) a can be congruent to more than one of $0, 1, \ldots, n-1$ modulo n.
 - (c) a is divisible by n if and only if $a \equiv 0 \pmod{n}$.
 - (d) $n \equiv 0 \pmod{n}$.

Practice Problems Section 3.1

1. Use the Division algorithm to show that any prime number $p \ge 5$ must have remainder 1 or 5 on division by 6. Use this to show that $p^2 + 2$ is composite for all such primes p.

Video Solution

2. Find the remainder of $57^{33} + 42^{100}$ upon division by 6.

Video Solution

3. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ for all $n \in \mathbb{Z}$.

Video Solution