16. Wykresy ruchu drgającego. Przemiany energii

1. Na rysunku przedstawiono kolejne położenia huśtawki wychylonej maksymalnie w lewo (położenie 1) i puszczonej. W położeniu 6 huśtawka zatrzymuje się i zaczyna poruszać się w lewo.

Oceń prawdziwość zdań. **Zaznacz** P – jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

1.	W położeniu 4 huśtawka ma największą energię kinetyczną i najmniejszą energię potencjalną grawitacji wśród wszystkich przedstawionych położeń.	P	F
2.	Przemieszczając się od położenia 5 do 6, huśtawka zwiększa zarówno energię kinetyczną, jak i potencjalną grawitacji.	P	F
3.	Przemieszczając się z położenia 2 do 3, huśtawka zwiększa swoją prędkość oraz energię potencjalną grawitacji.	P	F
4.	W położeniach 1 oraz 6 całkowitą energię mechaniczną huśtawki stanowi jedynie energia potencjalna grawitacji.	P	F
5.	W położeniu 4 huśtawka ma największą prędkość wśród wszystkich przedstawionych położeń.	P	F

Przykład 1

Na wykresie przedstawiono zależność wychylenia od czasu dla drgającej kulki zawieszonej na nici. Przyjmujemy, że dodatnia współrzędna odpowiada wychyleniu w prawo z położenia równowagi, a ujemna – wychyleniu w lewo.

a) Ile wynosi okres drgań wahadła?

Rozwiązanie:

Na wykresie widzimy, że wahadło przechodzi przez położenie równowagi (położenie x = 0) co 0,6 s, więc okres drgań wynosi 1,2 s.

b) Ile wynosi amplituda drgań?

Rozwiazanie:

Z wykresu odczytujemy, że wahadło wychyla się 2,5 cm w prawo i 2,5 cm w lewo, czyli amplituda drgań jest równa 2,5 cm.

c) Ile wynosi częstotliwość drgań wahadła?

Rozwiązanie:

Częstotliwość to odwrotność okresu: $f = \frac{1}{T} = \frac{1}{1.2 \text{ s}} \approx 0.83 \text{ Hz.}$

d) Na którym rysunku przedstawiono położenie wahadła w chwili t = 1,5 s?

Rozwiązanie:

Na rysunku II – z wykresu można odczytać, że w chwili t=1,5 s wahadło maksymalnie wychyla się w prawo.

2. Na wykresie przedstawiono zależność wychylenia od czasu dla ciężarka zawieszonego na sprężynie. Zakładamy, że dodatnia współrzędna odpowiada wychyleniu do góry z położenia równowagi, a ujemna – wychyleniu w dół. Korzystając z powyższego przykładu, **odpowiedz** na pytania.

- a) Ile wynosi okres drgań ciężarka?
- **b**) Ile wynosi amplituda drgań? _____
- c) Ile wynosi częstotliwość drgań ciężarka?

d) Na którym rysunku przedstawiono położenie ciężarka na sprężynie w chwili t = 0.9 s?

Przykład 2

Na wykresie przedstawiono zależność wychylenia z położenia równowagi od czasu dla drgającego ciała.

a) W których chwilach drgające ciało osiąga maksymalną energię potencjalną?

Rozwiązanie:

Drgające ciało ma największą energię potencjalną, gdy jest **maksymalnie wychylone** z położenia równowagi, czyli w tym przypadku w chwilach: 0,5 s, 1,5 s, 2,5 s oraz 3,5 s.

b) W których chwilach drgające ciało osiąga maksymalną energię kinetyczną?

Rozwiązanie:

Drgające ciało ma największą energię kinetyczną, gdy ma **maksymalną prędkość** (a więc w chwili przejścia przez położenie równowagi), czyli w chwilach: 0 s, 1 s, 2 s, 3 s oraz 4 s.

3. Na podstawie powyższego przykładu **rozwiąż** zadanie.

Na wykresie przedstawiono zależność wychylenia z położenia równowagi od czasu dla drgającego ciała.

a)	Odpowiedz na pytania.
	W których chwilach drgające ciało osiąga maksymalną energię potencjalną?
	W których chwilach drgające ciało osiąga maksymalną energię kinetyczną?
b)	Uzupełnij zdania i podkreśl poprawne odpowiedzi.
	Drgające ciało osiąga maksymalną energię kinetyczną co, czyli co <i>pół / ćwierć</i> okresu drgań.
	Drgające ciało osiąga maksymalną energię potencjalną co, czyli co pół / ćwierć okresu drgań.