Logika i struktury formalne

Rafal Wlodarczyk

INA 1 Sem. 2023

1 Rachunek zdań - logika bez kwantyfikatorów

$$(p \land q) \implies (r \lor \neg q)$$

1.1 Konstrukcja języka rachunku zdań

- Mamy ustaloną rodzinę zmiennych zdaniowych. $P = \{p, q, r, s\}$ lub $P = \overline{\{p_1, p_2, p_3, \dots\}}$
- Mamy ustaloną rodzinę spójników logicznych. $\neg, \land, \lor, \implies, \iff$
- Mamy (,) nawiasy
- Mamy symbole \top, \bot prawda, fałsz
- Konstrukcja języka $\mathcal{L}(\mathcal{P})$
- 1. Zmienne zdaniowe oraz symbole \top, \bot są zdaniami (języka predykatów $\mathcal{L}(\mathcal{P})$)
- 2. Jeśli φ, ψ są zdaniami, to również napisy $\neg \varphi, (\varphi \land \psi), (\varphi \lor \psi), (\varphi \implies \psi), (\varphi \iff \psi)$ są zdaniami.
- 3. Wyrażenie φ nazywamy zdaniem jeśli w skończonej liczbie kroków może być skonstruowane za pomocą reguł (1) i (2)

Przykład 1.1.1. Niech P = p, q, r. Przykłady zdań w $\mathcal{L}(\mathcal{P})$:

- $p;q;r;\top;\perp$
- $(p \land \top), (p \lor q), (p \Longrightarrow \top)$
- $(r \land (p \lor q)), ((p \lor q) \lor (p \Longrightarrow \top))$

Przykład 1.1.2. Rozważmy następujące działanie: $x=(10\cdot 8)/(7\cdot 3)$. Skąpilowane C zwraca 3.

Definicja 1.1.1. Jeśli φ jest z $\mathcal{L}(\mathcal{P})$, to wtedy φ ma parzystą liczbę nawiasów.

Dowód. Niech X oznacza kolekcje napisów o parzystej liczbie nawiasów.

- 1. zmienne zdaniowe 0 nawiasów, \top , \bot
- 2. załóżmy, że φ, ψ są w X. Wtedy $(\varphi \wedge \psi), ...(\varphi \iff \psi)$ są w X.

1.2 Zadanie

Naucz się alfabetu greckiego.

SYNTAKTYKA - badanie wyrażeń.

SEMANTYKA - badanie wartości.

1.3 Wartości logiczne

• Wartości logiczne: 0,1 - fałsz, prawda

• Funktory logiczne: \neg , \wedge , \vee , \Longrightarrow , \Longleftrightarrow

• Tablice prawdy:

X	Y	$\neg X$	$X \wedge Y$	$X \vee Y$	$X \implies Y$
0	0	1	0	0	1
0	1	1	0	1	1
1	0	0	0	1	0
1	1	0	1	1	1

Definicja 1.3.1. Waluacją nazywamy dowolne przyporządowanie π , które zmiennym zdamiowym przyporządkowuje wartości 0, 1.

Przykład 1.3.1. Rozważmy następujący przykład waluacji $\pi\colon$

$$P = \{p_0, p_1, p_2, ...\}$$

$$\pi = \{0, 0, 0, ...\}$$

$$p = \{0, 1, 0, 1, ...\}$$

 $val(\pi : waluacja, \varphi : zdanie)$ LOGICAL $0 \lor 1$

Przykład 1.3.2. Dla $\varphi \in \mathcal{L}(\mathcal{P})$:

- $val(\pi, p_i) = \pi(p_i)$
- $val(\pi, \top) = 1$
- $val(\pi, \perp) = 0$
- $val(\pi, (\varphi \wedge \psi)) = val(\pi, \varphi) \wedge val(\pi, \psi)$
- $val(\pi, \neg \varphi) = \neg val(\pi, \varphi)$

Definicja 1.3.2. φ jest tautologią, jeśli dla dowolnej waluacji π mamy $val(\pi, \varphi) = 1$.

$$(\models \varphi)$$
 - Zapis

2 Wykład drugi

 \dots tbd

3 Wykład trzeci

... tbd

4 Wykład czwarty

4.1 Własności implikacji

 $\models ((p \implies q) \land (q \implies r)) \implies (p \implies r)$ - przechodniość implikacji Weźmy dowolną waluację π oraz załóżmy, że $val(\pi, \varphi) = 0$, wtedy:

$$val(\pi, ((p \implies q) \land (q \implies r)) \implies (p \implies r)) = 1$$

 $val(\pi, p \implies r) = 0$

Wtedy:

- $\pi(p) = 1, \pi(r) = 0$
- $val(\pi, p \implies q) = 1 \text{ oraz } val(\pi, q \implies r) = 1$
- $\pi(q) = 1$
- $\pi(r) = 1$

Otrzymaliśmy sprzeczność, zatem tautologia zachodzi.

Własności

1.
$$\models (p_1 \implies p_2) \land (p_2 \implies p_3) \land (p_3 \implies p_4) \implies (p_1 \implies p_4)$$

2.
$$\models (p \implies q) \iff (\neg q \implies \neg p) <$$
- Rozumowanie nie wprost D-d. $(\neg q) \implies (\neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p))$
 $\equiv (\neg p \lor q) \equiv (p \implies q)$

3.
$$\models ((p \Longrightarrow q) \land (q \Longrightarrow p) \Longleftrightarrow (p \Longleftrightarrow q))$$
, czyli $((p \Longrightarrow q) \land (q \Longrightarrow p) \equiv (p \Longleftrightarrow q))$

4.2 Rozumowania matematyczne

1. Rozumowania wprost.

P. Jeżeli
$$a,b\in\mathbb{Z}$$
 są parzyste to $a+b$ jest parzyste. D-d. Załóżmy, że $a=2k\wedge b=2l$ dla pewnych $k,l\in\mathbb{Z}$ $a+b=2k+2l=2\cdot(k+l),$ więc $a+b$ jest parzyste, bo $k+l\in\mathbb{Z}$ \square

2. Rozumowania nie wprost.
$$(p \Longrightarrow q) \Longleftrightarrow (\neg q \Longrightarrow \neg p)$$
 P. Jeśli $\frac{x+y}{2} \geqslant a$, to $x \geqslant a \lor y \geqslant a$ D-d. $\frac{x+y}{2} \geqslant a \Longrightarrow x \geqslant a \lor y \geqslant a$ Mamy $\neg (x \geqslant a \lor y \geqslant a) \equiv (x \leqslant a \land y \leqslant a)$ $x < a \land y < a$ $x + y < 2a \equiv \frac{x+y}{2} < a \equiv \neg(\frac{x+y}{2} \geqslant a)$

(Korzystając z własności $\neg(x \ge a) \equiv (x < a)$).

P. Pracujemy w \mathbb{R} . Jeśli $x \in \mathbb{R}^+, a, b \in \mathbb{R}^+$ oraz $a \cdot b = x$ to $a \leqslant \sqrt{x} \lor b \leqslant \sqrt{x}$. D-d. $\neg (a \leqslant \sqrt{x} \lor b \leqslant \sqrt{x}) \equiv (a > \sqrt{x} \land b > \sqrt{x})$ $a \cdot b > \sqrt{x} \cdot \sqrt{x} = x$ $a \cdot b \neq x$ \square

- P. Jeśli liczba $p \in \mathbb{N}$ nie jest pierwsza, to istnieje $d \leq \sqrt{p}$, taka że d|p.
- 3. Rozumowanie przez rozważenie przypadków. $\models ((p \implies q) \land (\neg p \implies q) \implies q)$ P. Dla dowolnych liczb rzeczywistych zachodzi $|x+y| \leqslant |x| + |y| \ (\equiv q)$

$$\begin{array}{ll} \text{(a)} \ \ p = "x + y \geqslant 0" \implies |x + y| = x + y \leqslant |x| + |y| \\ \text{(b)} \ \ p = "x + y < 0" \implies |x + y| = -x - y = |-x| + |-y| \leqslant |x| + |y| \end{array}$$

Zachodzą wszystkie przypadki zatem teza jest prawdziwa. \Box

4.3 Rozważania cykliczne

Twierdzenie 4.3.1. Następujące zdania z_1, z_2, z_3, z_4, z_5 są równoważne:

 $\models (p_1 \implies p_2) \land (p_2 \implies p_3) \land (p_3 \implies p_1) \implies (p_1 \iff p_2) \land (p_2 \iff p_3) \land (p_3 \iff p_1)$ Narysuj kółeczko strzałek z (p_1, \dots, p_3) ...

Narysuj kółeczko strzałek z (p_1, \ldots, p_4) ...

Korzystamy następnie z przechodniości implikacji.

Oszczędność n - implikacji, zamiast $\frac{n(n-1)}{2}$ implikacji.

4.4 Pojęcie dedukcji

CEL. "Ze zdań $\varphi_1,\dots,\varphi_n$ mogę wywnioskować ψ P. Ze zdań $p,p\implies q,q\implies r$ mogę wywnioskować r

Definicja 4.4.1. Niech $\varphi_0, \dots, \varphi_n$ będą zdaniami R.Z.

$$\{\varphi_1,\ldots,\varphi_n\} \models \psi$$

Jeśli dla dowolnej waluacji π , że:

$$val(\pi, \varphi_1) = \dots = val(\pi, \varphi_n) = 1$$

Mamy również:

$$val(\pi, \psi) = 1$$

Przykłady P. Rozważmy następujący przykład:

$$\{p\} \models p$$

$$\{p\} \models p \lor q$$

Weźmy waluację π taką, że $val(\pi, p) = \pi(p) = 1$, wtedy: $val(\pi, p \vee q) = val(\pi, p) \vee val(\pi, q) = 1 \vee val(\pi, q) = 1$

P.
$$\{p \land q\} \models p$$

Bierzemy π taką, że $val(\pi, p \land q) = 1$, wtedy:

 $1 = val(\pi, p) \wedge val(\pi, q)$, wiec $val(\pi, p) = 1$

Twierdzenie 4.4.1. $\{\varphi_1,\ldots,\varphi_n\} \models \psi$, czyli $\models (\wedge_{l=1}^n \varphi_i) \implies \psi$ D-d. Załóżmy, że $\{\varphi_1,\ldots,\varphi_n\} \models \psi$. Weźmy dowolną waluację π

- 1. $val(\pi, (\wedge_{i=1}^n \varphi_i)) = 0$, wtedy: $val(\pi, (\wedge_{l=1}^n \varphi_i \implies \psi)) = val(\pi, (\wedge_{l=1}^n \varphi_i)) \implies val(\pi, \psi) = 0 \implies val(\pi, \psi) = 1$
- 2. Załóżmy, że $val(\pi, (\wedge_{l=1}^n \varphi_i)) = 1$, wtedy: $val(\pi, \varphi_1) = \dots = val(\pi, \varphi_n) = 1$, ale: $\{\varphi_1,\ldots,\varphi_n\} \models \psi$, wiec $val(\pi,\psi)=1$

2 do 1 Załóżmy, że $(\wedge_{l=1}^n \varphi_i) \implies \psi$

Rozważmy dowolną π taką, że $val(\pi, \varphi_1) = \dots = val(\pi, \varphi_n) = 1$

Wtedy $(\wedge_{l=1}^n \varphi_i) = 1$

Ale $1 = val((\wedge_{l=1}^n \varphi_i) \implies \psi) = val(\pi, \wedge_{l=1}^n \varphi_i) \implies val(\pi, \psi)$

Zatem $val(\pi, \psi) = 1$

Semantyczna dedukcja |=

Definicja 4.4.2. $\{\varphi_1, \dots, \varphi_n\}$ jest sprzeczny jak:

$$\{\varphi_1,\ldots,\varphi_n\} \models \bot$$

Wnioski:

P.
$$\{p, \neg p\} \models \bot (\equiv \models (p \land \neg p \implies \bot))$$

W. $\{\varphi_1, \ldots, \varphi_n\}$ - sprzeczny. Wtedy dla dowolnego zdania ψ mamy:

$$\{\varphi_1,\ldots,\varphi_n\}\models\psi$$

Uwaga Założmy, że $\{\varphi_1, \ldots, \varphi_n\} \models \alpha$

Wtedy dla dowolnego ψ następujące wzory są równoważne:

- 1. $\{\varphi_1, \ldots, \varphi_n\} \models \psi$
- 2. $\{\varphi_1, \ldots, \varphi_n, \alpha\} \models \psi$
- 3. $(1) \implies (2)$ trywialne
- $4. (2) \Longrightarrow (1)$

Przykład 4.4.1. Reguła rezolucji:

$$\{\psi\vee\alpha,\neg\psi\vee\beta\}\models\alpha\vee\beta\text{ równoważnie: }\frac{\{\psi\vee\alpha,\neg\psi\vee\beta\}}{\alpha\vee\beta}$$

D-d: Załóżmy waluację π taką, że $val(\pi, \varphi \vee \alpha) = val(\pi, \neg \varphi \vee \beta) = 1$

1. $val(\pi, \varphi) = 1$, wtedy:

$$1 = val(\pi, \neg \varphi \lor \beta) = val(\pi, \neg \varphi) \lor val(\pi, \beta) = 0 \lor val(\pi, \beta) = val(\pi, \beta)$$

2. $val(\pi, \varphi) = 0$, wtedy:

$$1 = val(\pi, \varphi \vee \alpha) = val(\pi, \varphi) \vee val(\pi, \alpha) = 0 \vee val(\pi, \alpha) = val(\pi, \alpha)$$
$$val(\alpha \vee \beta) = 1 \quad \Box$$

Przykład 4.4.2. Dowodzenie za pomocą metody rezolucji: $\{p \implies q, q \implies r, r \implies s\} \models p \implies s$ Przekształćmy zdania $\{(\neg p \lor q), (\neg q \lor r), (\neg r \lor s)\}$

$$\{p \implies q, q \implies r, r \implies s\} \models p \implies s$$

- $1. \ \, \neg p \vee q, \neg q \vee r \implies \neg p \vee r$
- $2. \ \, \neg p \lor r, \neg r \lor s \implies \neg p \lor s \equiv p \implies s$