Font generation

Alena Shilova, Darina Dvinskikh

Skoltech, Deep learning

May 25,2017

Outline

- 1 Problem statement
- 2 Data
 - Data presentation
 - Data prepossessing
- 3 Algorithms
 - Neural Network with 12 loss
 - Variational autoencoder
 - Generative adversarial networks
- 4 Results
 - Generative neural network with 12 loss
 - Variational autoencoder
 - Generative adversarial network

Problem statement

We had two goals which we wanted to achieve:

- to build and train neural networks which could generate already existing fonts for different letters
- to build and train neural networks which could create new fonts for different letters

Outline

- 1 Problem statement
- 2 Data
 - Data presentation
 - Data prepossessing
- 3 Algorithms
 - Neural Network with 12 loss
 - Variational autoencoder
 - Generative adversarial networks
- 4 Results
 - Generative neural network with 12 loss
 - Variational autoencoder
 - Generative adversarial network

Data presentation

Data prepossessing

Convert letters by means of One Hot Encoder

- A [1000000000]
- B [0100000000]
- C [0010000000]
- D [0001000000]
- E [0000100000]

- F [0000010000]
- G [0000001000]
- H [000000100]
- I [000000010]
- J [000000001]

In total, there are 1873 different fonts in train data set, for each of them we have also applied One Hot Encoder

Outline

- 1 Problem statement
- 2 Data
 - Data presentation
 - Data prepossessing
- 3 Algorithms
 - Neural Network with 12 loss
 - Variational autoencoder
 - Generative adversarial networks
- 4 Results
 - Generative neural network with 12 loss
 - Variational autoencoder
 - Generative adversarial network

Neural Network with 12 loss

Architecture

- 2 input layers for encoded letter and for encoded font style respectively
- 2 fully connected layers for each input layer correspondingly
- Layer for merging the layers mentioned above
- Reshape layer (to obtain 128 feature maps with the size 8×8)
- ullet 2 combinations of layers Upscaling + Convolutional + Convolutional

Variational autoencoder

Variational autoencoder

Generator

Architecture

- 2 input layers for encoded noise and for encoded letter respectively
- 2 fully connected layers with 1024 neurons and tangent function of activation for each input layer correspondingly
- Concatenation layer
- Fully connected layer with 10*8*8 neurons and tangent function of activation
- Reshape layer (to obtain 10 feature maps with the size 8×8)
- Combination of 4 Deconvolution layers and 1 upscale layers
- Convolution layer with filter size 3

Discriminant

Architecture

- Input layer for encoded real image
- Combination of 2 Convolution layers and Pooling
- 2 fully connected layers with 128 neurons and tangent function of activation applied to previous layers and letter input correspondingly
- Deconvolution layer with 128 neurons and filter size 5
- Concatenation layer
- 2 fully connected layers with sigmoid function of activation in the last layer

Outline

- 1 Problem statement
- 2 Data
 - Data presentation
 - Data prepossessing
- 3 Algorithms
 - Neural Network with 12 loss
 - Variational autoencoder
 - Generative adversarial networks
- 4 Results
 - Generative neural network with I2 loss
 - Variational autoencoder
 - Generative adversarial network

Results

Generation of letter A

Generation of letter B

Generation of letter F

Generation of letter H

Mixture of fonts

Results

Variational autoencoder

Transformations using VAE

E transformation

Results

Generative adversarial networks

4□ → 4□ → 4 □ → 1□ → 10 ○ ○

Generation of letter F

Generation of letter H

Generative letters VS real letters

Conclusion

- VAE, GAN and other generative neural network with I2-loss were built and trained
- generative neural network with l2-loss was used to adapt a new font style for a fixed letter given some other letters with that style and also to mix different font styles to get a new one
- VAE was tested on ability "to subtract or to add" differnt styles to a fixed letter
- GAN is capable of generating new font styles which are noticeably different from existing ones