Student's Code [Ndeye Bineta Dieng] May 25, 2025 | May 25, 2025 | Computer vision | Deadline |

Lecturer: [Lecturer Name]

Project 1: Brain Tumor Classification

This project aims to design a complete image classification pipeline for brain MRI tumors (glioma, meningioma, notumor, pituitary). Two CNN models were implemented: one in PyTorch and another in TensorFlow, both based on ResNet50 through transfer learning. The goal was to integrate them into a web classification interface.

Pipeline and Models

- **Preprocessing**: resize to 224 × 224, normalization, RGB conversion.
- Augmentation: flips, zoom, rotation.
- Data split: balanced train/val/test sets.
- Optimization: Adam optimizer, cross-entropy loss, early stopping.

TensorFlow Model (bineta_model.tensorflow):

- Based on ResNet50 with ImageNet weights (frozen layers).
- Additions: GlobalAveragePooling, Dense(128), Dropout, Softmax.

PyTorch Model (bineta_model.torch):

- Fine-tuned ResNet50.
- Custom head: Dropout Linear(128) ReLU Dropout Softmax.

Model Results

PyTorch Model

Classification	Report:
Classification	report.

Class	Precision	Recall	F1-score	Support
Glioma	0.97	0.99	0.98	300
Meningioma	0.99	0.94	0.96	306
No tumor	0.99	1.00	0.99	405
Pituitary	0.98	0.99	0.99	300
Accuracy	98% (1311 images)			

TensorFlow Model

• Overall Accuracy: 75% on 1311 images.

Web Interface

- Built with Flask, styled using HTML/CSS.
- ComboBox to choose the model (PyTorch or TensorFlow).
- Image upload and classification result display.

GitHub Repository: https://github.com/opendatame/Bineta_computerv-io Deployed Interface (static): https://opendatame.github.io/Bineta_computerv-io/Note: The deployed link shows the interface structure only (frontend via GitHub Pages). Model prediction is not active in this static version, as Flask requires a backend server to run locally.

Conclusion

The PyTorch model achieved strong performance (98% accuracy), while the TensorFlow model remains functional for demonstration (75%). Both were successfully integrated into a user-friendly web application. Future improvements may include deeper fine-tuning, use of specialized neural architectures, and more robust class balancing strategies.

