Solamente usando NAND: diseñar NOT, AND, OR, NOR y XOR

А	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0

Para NOT:

А	А	NAND
0	0	1
1	1	0

Para AND: se puede pensar como NAND + NOT

А	В	NAND	AND
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Para OR: por Ley de Morgan se puede pensar $\overline{\overline{A}*\overline{B}} = \overline{\overline{A+B}} = A+B$

А	В	$\overline{A}*\overline{B}$	OR
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

Para NOR: se puede pensar como OR + NOT

А	В	OR	NOR
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Para XOR: se debe reusar la salida de NAND para cada entrada, y luego volver a usar NAND

А	В	NAND	XOR
0	0	1	0
0	1	1	1
1	0	1	1
1	1	0	0

Se da a entender que: $\overline{\left(\overline{A*\overline{(A*B)}}\right)*\overline{\left(\overline{(A*B)}*B\right)}} = A(\overline{A}+\overline{B}) + B(\overline{A}+\overline{B}) = A\overline{B}+\overline{A}B$

Solamente usando NOR: NOT, AND, OR, NAND y XOR

А	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Para NOT:

А	А	NOR
0	0	1
1	1	0

Para OR: se puede pensar como NOR + NOT

А	В	NOR	OR
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

Para AND: por Ley de Morgan $\overline{\overline{A} + \overline{B}} = \overline{\overline{A*B}} = A*B$

А	В	$\overline{A} + \overline{B}$	AND
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Para NAND: se puede pensar como AND + NOT

А	В	AND	NAND
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Para XOR: nuevamente queda algo complejo

А	В	NOR	XOR
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	0

En este último caso se da a entender que NOR(AND, NOR) = XOR

$$F = \overline{AB + \overline{(A+B)}} = \overline{(A*B)} * (A+B) = (\overline{A} + \overline{B}) * (A+B) = \overline{A}B + A\overline{B}$$

EJERCICIO 16 – SOLO NAND

Aunque se puede simplificar por Ley de Morgan: $\overline{\overline{A} + \overline{B}} = A * B$

Entonces solo necesitamos simular compuertas AND

