Computer Graphics 2

Tiene

Shadows

Marek Zimányi Michal Valient

Katedra aplikovanej informatiky, OPGSO, FMFI UK, Bratislava

www.uniba.sk/~zimanyi 2004/2005

History

Leonardo Da Vinci

Dôležitosť tieňov

- Vnímanie
 - Orientačný prvok
 - Vzťahy medzi objektami
- Umelecký prvok
 - vyjadrenie nálady scény
 - ostré tiene

Dôležitosť tieňov II

Area lights

Hard shadows vs soft shadows

Viac-nasobne svetlá

Pojmy

- Zdroj svetla
 - Bodové vs plošné
- Occluders & receivers
 - Occluder (Tienidlo) tienove teleso
 - Receiver (Zatieneny objekt) teleso, na ktorý je vrhaný tien
- Tiene
 - Hlavný tieň Umbra
 - Polotieň Penumbra

Pojmy II

- Ostrosť tieňa
 - Mäkké tiene (Soft shadows)
 - Ostré tiene (Hard shadows)

- Druh tieňa
 - Vlastný (Self shadow)
 - Vrhnutý (Cast shadow)

Ako pridat tiene do sceny?

$$I = I_{a}k_{a}O_{d\lambda} + \sum_{1 \leq i \leq m} S_{i}f_{att_{i}}I_{L_{i}}\left(k_{d}O_{d\lambda}\left(\overrightarrow{L} \cdot \overrightarrow{N}\right) + k_{s}O_{s\lambda}\left(\overrightarrow{R_{i}} \cdot \overrightarrow{V}\right)^{n}\right)$$

$$S_i = \begin{cases} 0, \text{ ak svetlo } i \text{ je zakryt\'e v tomto bode} \\ 1, \text{ ak svetlo } i \text{ nie je zakryt\'e v tomto bode} \end{cases}$$

- Projekčné metódy
- Tienove teleso
- Tieňová pamäť hĺbky
 Shadow maps
- Optimalizacie

- Projective shadows
- Shadow volumes
- Shadow optimizations

Tiene v OpenGL

- Falošné tiene (Fake methods)
 - Jednoduche zlepšenie priestorového dojmu
- Analytické metody
 - Výpočet geometrických (projekčných) transformaácii v scéne.
- Rasterizačné metody
 - Algoritmus pracuje na rastri v scene

Falošné tiene

Fake methods

Images from TombRaider. ©Eidos Interactive.

- Jednoduche tiene (elipsy ...)
- Žiadny globalny vplyv

Rovinne tiene

- Planar Shadows
- Premietnutie geometrie tienidla do roviny (zatieneny objekt)
 - Objektovo-orientovaný (Object space precision)
 - Z-bias artefakty
- Dve metody
 - Projekcne tiene
 - Tienove teleso

Planar Soft Shadows

- Zakladna idea:
 - Navzorkovat viacnasobne svetelný zdroj a exportovat vysledky (accumulation buffer) do textury
- Gooch et al: pohybovat rovinu vo vertikalnom smere
 - Vnorene tiene (Nested shadows) → menej krokov

- [Blinn88] Me and my fake shadow
 - Tiene dopadajú na vybrané veľké polygóny
 - Rovina podlahy
 - Steny

Príklad: Tienene teleso je xz rovina; y=0

$$\vec{p} = \vec{l} + t(\vec{v} - \vec{l})$$

$$t = \frac{l_y}{l_y - v_y}$$

Transformácia def. maticou 4x4

$$p_{x} = \frac{l_{y}v_{x} - l_{x}v_{y}}{l_{y} - v_{y}}$$

$$p_{z} = \frac{l_{y}v_{z} - l_{z}v_{y}}{l_{y} - v_{y}}$$

$$\vec{p} = \begin{pmatrix} l_{y} & -l_{x} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -l_{z} & l_{y} & 0 \\ 0 & -1 & 0 & l_{y} \end{pmatrix} \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \\ 1 \end{pmatrix}$$

Vo všeobecnosti: tienený objekt je rovina E

$$E: \vec{n} \bullet \vec{x} + d = 0$$

$$\vec{p} = \vec{l} - \frac{d + \vec{n} \bullet \vec{l}}{\vec{n} \bullet (\vec{v} - \vec{l})} (\vec{v} - \vec{l})$$

- Základný algoritmus:
 - Render scenu (uplné osvetlenie)
 - Pre každý zatienený polygon
 - Vypočítaj projekčnú maticu M
 - Vynasobenie s aktuálnou transformaciou (modelview)
 - Render vyznačenú (occluder) geometriu
 - Darken/Black

Rovinne tiene - problemy

 Svetelný zdroj vnútri objektu, alebo medzi tienidlom a tieneným objektom (Antishadows)

- Riesenie je orezavanie...
- Tienený objekt môže byt len rovina
 - → žiadne vlastne tiene

Projekčné tiene - problemy

Zhrnutie:

- Praktická implemetacia len pre niekoľko, veľkých tienených objektov (plôch)
- L'ahko implementovatel'né
- Použitie stencil buffra (z fighting, overlap, receiver)
- Možné renderovanie do textúry, ak tienidlo a aj tienený objekt sú dostatočne dlho statické objekty

- Shadow volumes
- [Crow77] Shadow algorithms for computer graphics
 - Výpočet oblasti tieňa v 3D
 - Objektovo orientovaný algoritmus

Tieň je vrhaný na ľubovoľné tienené teleso

- Základná myšlienka -> vytvorenie pomocného telesa
- Rozšírenie tienidlových polygonov do formy 3D telies
 - Svetelný zdroj je stred projekcie
 - Všetko za tienidlom je v tieni
 - Test či bod leží aspoň v jedenom tieňovom objeme!

Rozšírenie na výpočet mimo pohľadový objem (view frustum)

Marek Zimányi, DCC

polygon

objem

pohledový objem

(2D pripad)

- Vytváranie tieňového telesa
 - Jednoduchý prístup:
 - Jeden objem pre každý polygón
 - Zlepšenie
 - Siluetovo orientovaný prístup
 - Výhoda: Jedno tieňové teleso
 - Len určitá množina tienidiel

- Detekcia siluet
 - Uhol normál susedných stien (odvrátenáprivrátená stena)

Silhouette Edge (v0,v1)!

No Silhouette Edge!

Light Source

- Test na tien: in-out počitadlo
 - Counter == 0: osvetleny
 - Counter >=0: tieneny

- Detaily základného algoritmu:
 - Vypočítaj tienove telesa
 - Pohladovo nezávistlé!
 - Vyčisti stencil buffer
 - Renderuj scenu bez difuzneho/spec osvetlenia
 - "Render" predných stien tieňových telies
 - Turn off color, depth updates (but leave depth test on)
 - Visible polygons increment pixel stencil buffer count
 - "Render" zadných stien tieňových telies
 - Turn off color, depth updates (but leave depth test on)
 - Visible polygons decrement pixel stencil buffer count
 - Renderuj scenu len s diffuse/spec zložkou
 - Update pixels len vtedy keď stencil = 0

- Výhody
 - Presnosť
 - Všetky typy svetiel
- Nevýhody
 - Počítanie shadow volume
 - Fillrate

- Výhoda:
 - Robustný
 - Self-shadowing
 - GPU
- Nevýhoda:
 - Limitovaný geometriou
 - Stencil polygons
 - Multi-pass scene geometry
 - Stencil test per pixel drahý
 - Ostré tiene

Mäkké tieňové telesá

- Tieňové telesa pre každý roh plošného telesa ^{2D:}

HM.

Z-Buffer Shadow Algorithm

Tieňová pamäť hĺbky – "Shadow mapping" Dva kroky:

- zobrazenie scény z pohľadu svetla, z-buffrom => hĺbková mapa, HM (depth map) Pixle nesú info o svojej vzdialenosti ku zdroju a nie svoju farbu.
- zobrazenie scény z pohľadu pozorovateľa z-buffrom.
 Pixle z tejto HM sa transformujú do pohľadu svetla, a porovnávajú sa.
 Ak leží bod, získaný z pohľadu kamery, bližšie než z pohľadu svetla => je v tieni
 Ak je zdrojov viacej, tak sa to opakuje pre každú uloženú

Shadow mapping

- Metóda "Shadow mapping"
 - Lance Williams 1978
 - Dvoj krokový algoritmus
 - Rendering z pohľadu svetla a uloženie z-buffra
 - Rendering scény z pohľadu kamery
 - s projekciou uloženého z-buffra na geometriu a porovnaním vzdialenosti od svetla

Shadow mapping

- Zobraz scénu z pohľadu svetelného zdroja;
 Hlbkovu mapu (z-buffer) odloz do H_i
- Zobraz scenu z pohladu kamery pomocou pamati hlbky
- 3. Pre vsetky pixely [u,v] (s hlbkou w) zobrazenej sceny do:
 - (a) $[u,v,w] \rightarrow do suradnic svetla L_i a ziskaj nove [x,y,z]$
 - (b) $A = H_i[x,y]$
 - (c) B = z
 - (d) Ak (A<B) tak je pixel [u,v] v tieni, inak je osvetleny L_i .

Shadow Maps

Shadow map

Final scene

(c) Stefan Brabec

- Chyby pri porovnávaní hĺbky
 - "Depth bias problem"
 - Dajú sa obmedziť pripočítaním malej hodnoty (depth bias) k uloženým vzdialenostiam alebo sa bude ukladat priemer vzdialenosti dvoch najblizsich.
 - Lepšie riešenie: do z-buffra vykresľovať len plochy odvrátené od svetla.
 - Umožňuje použitie textúr s nižším počtom bit/pixel
 - Dá sa kombinovať s predchádzajúcim riešením

©Michal Valient

- Chyby spôsobené rozmermi z-buffra
 - Hranaté tiene
 - Priamočiare filtrovanie nefunguje
 - Percentage closer filtering (Reeves 1987)
 - najskôr je porovnávaná hĺbka v určitej oblasti
 - zo vzniknutej binárnej mapy sa vypočíta priemerná hodnota

0.6	0.4	0.7	z>0.4?	0	1	0	average 0.55
0.45	X 0.6	0.3		0	X 0	1	
0.2	0.1	0.2		1	1	1	

- Bilineárne filtrovaný PCF
 - Vkladá medzikrok s bilineárnou filtráciou

Shadow maps - examples

Shadow maps - examples

Shadow maps - examples

Shadow Silouette Maps

- Pradeep Sen, Mike Cammarano and Pat Hanrahan
- Rozšírenie shadow mappingu o ďaľšiu informáciu
 - Aproximácia siluety objektu

- hrany siluety sa posunie do tej istej vzdialenosti od svetla ako ten bližší
- b) Tvorba prednej a zadnej steny
- c) Pravá stena
 - obsahuje e'₀
 - vektor kolmý na e₁e'₀ a e'₀l_c
 - "dotýka" sa plochy svetla
 - L'avá stena podobne
- n Finálny klin

- Výhody
 - Nezávislosť jednotlivých klinov
 - rýchlosť
- Nevýhody
 - zbytočne veľké pri hranách s väčšími vzdialenosťami
 - fillrate

Shadow volumes - literature

- Crow, F. C. "Shadow algorithms for computer graphics", ACM Siggraph 1977.
- Heidmann, T. "Real Shadows, Real Time", Iris Universe, 1991.
- C. Everitt and M. Kilgard, "Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering", http://developer.nvidia.com/, 2002.
- U. Assarsson and T. Akenine-Möller, "A Geometry-Based Soft Shadow Volume Algorithm using Graphics Hardware", ACM SIGGRAPH, July 2003.