SIP 111-1 FINAL PROJECT: A 11-INSTRUCTION PROGRAMMABLE PROCESSOR

FOUR-INSTRUCTION PROGRAMMABLE PROCESSOR (BASIC)

- o Instruction Set − List of allowable instructions and their representation in memory, e.g.,
 - Load instruction—0000 r₃r₂r₁r₀ d₇d₆d₅d₄d₃d₂d₁d₀
 MOV Ra, d specifies the operation RF[a]=D[d]
 - *Store* instruction—0001 $r_3r_2r_1r_0 d_7d_6d_5d_4d_3d_2d_1d_0$
 - MOV d, Ra specifies the operation D[d] = RF[a]
 - Add instruction—0010 ra₃ra₂ra₁ra₀ rb₃rb₂rb₁rb₀ rc₃rc₂rc₁rc₀
 - ADD Ra, Rb, Rc specifies the operation RF[a] = RF[b] + RF[c]
 - *Stop* instruction—1111 0000 0000 0000
 - Stop —specifies the operation : stop the processor and reset

ADD 7 MORE INSTRUCTIONS (1/2)

- Let's add 7 more instructions:
 - Load-constant instruction—0011 $r_3r_2r_1r_0$ $c_7c_6c_5c_4c_3c_2c_1c_0$
 - MOV Ra, #c—specifies the operation *RF[a]=c*
 - For simple implementation, we define that "c" is an 8 bits unsigned number.
 - Add-Immediate instruction—0100 ra₃ra₂ra₁ra₀ rb₃rb₂rb₁rb₀ c₃c₂c₁c₀
 - ADD Ra, Rb, #c—specifies the operation RF[a] = RF[b] + c
 - we define that "c" is a 4 bits signed number. Note that we need to extend the sign bit before addition if necessary.
 - Subtract instruction—0101 ra₃ra₂ra₁ra₀ rb₃rb₂rb₁rb₀ rc₃rc₂rc₁rc₀
 - SUB Ra, Rb, Rc—specifies the operation RF[a]=RF[b] RF[c]

ADD 7 MORE INSTRUCTIONS (2/2)

- Let's add 7 more instructions:
 - Jump-if-zero instruction—0110 $ra_3ra_2ra_1ra_0$ $o_7o_6o_5o_4o_3o_2o_1o_0$
 - JMPZ Ra, offset—specifies the operation PC = PC + offset if RF[a] is 0
 - Note that "offset" is an 8 bits signed number
 - Jump-if-not-zero instruction—0111 $ra_3ra_2ra_1ra_0$ $O_7O_6O_5O_4O_3O_2O_1O_0$
 - JMPNZ Ra, offset—specifies the operation PC = PC + offset if RF[a] is not 0
 - Note that "offset" is an 8 bits signed number
 - Jump instruction—1000 0000 0706050403020100
 - JMP offset —specifies the operation PC = PC + offset
 - Note that "offset" is an 8 bits signed number
 - Jump-if-equal instruction—1001 ra₃ra₂ra₁ra₀ rb₃rb₂rb₁rb₀ o₃o₂o₁o₀
 - JMPEQ Ra, Rb, offset
 - —specifies the operation PC = PC + offset if RF[a] == RF[b]
 - Note that "offset" is an 4 bits signed number (2's complement) Note that we need to extend the sign bit before addition if necessary. 4

INTERFACE OF SPU (SYSTEM BLOCK)

INTERFACE OF SPU (TABLE LIST)(1/2)

Signal name	I/O	Width	Simple Description	
rst	input	1	Asynchronous reset (active high)	
clk	input	1	System clock (positive edge)	
start	input	1	This signal is to start the processor. (active high)	
stop	output	1	This signal represents that the processor has stopped. (active high)	
im_r_data	input	16	16-bit read data of instruction memory	
im_addr	output	8	8-bit data address of instruction memory	
im_rd	output	1	read enable of instruction memory	

INTERFACE OF SPU (TABLE LIST)(2/2)

Signal name	I/O	Width	Simple Description	
dm_addr	output	8 8-bit data address of data memory		
dm_r_data	input	16	16-bit read data of data memory	
dm_rd	output	1	read enable of data memory	
dm_w_data	output	16	16-bit write data of data memory	
dm_wr	output	1	write enable of data memory	

FINAL PROJECT: 進行方式

登入工作站複製如下目錄:

DICS01> cd \square ~/SIP

FINAL PROJECT: RTL_SIM 下的檔案

tb/	spu_tb.v	合成前的測試檔(自行修改)	
run/	im_data.txt	instruction memory test data (自行修改,合成前與合成後可以用相同檔案	
	dm_data.txt	Data memory test data (自行修改,合成前與合成後可以用相同檔案	
	dm_ex_out.txt	測試後(合成前與合成後), Data memory updated data	
	run.f	模擬使用的 run.f	
	run_sim.sh	合成前的執行測試 shell 檔 DICS01> sh run_sim.sh run.f	
	spu_tb.fsdb	合成前的FSDB 測試波形檔,執行 "run_sim.sh" shell 檔之後產生	

FINAL PROJECT: GATE_SIM 下的檔案

tb/	spu_syn_tb.v	合成後的測試檔(自行修改,搭配合成前的測 試檔)
	im_data.txt	instruction memory test data (自行修改,合成前與合成後可以用相同檔案)
	dm_data.txt	Data memory test data (自行修改,合成前與合成後可以用相同檔案)
/	dm_ex_out.txt	測試後(合成前與合成後), Data memory updated data
run/	run_syn_sim.sh	合成後的執行測試 shell 檔 DICS01> sh run_syn_sim
	spu_syn_tb.fsdb	合成後的FSDB 測試波形檔,執行 "run_syn_sim.sh" shell 檔之後產生
	spu_syn.sdf	合成後的時序資訊

FINAL PROJECT:繳交資料

- 期末報告檔(PPT)
 - 說明此作業的工作站工作目錄(一個組員帳號為代表)
 - •工作目錄請設定如下: ../../帳號/SIP/spu/ (請按照此命名)
 - 目錄說明
 - 設計說明(含架構)(詳述完成哪些指令)
 - 電路合成圖(截圖)
 - 電路的 timing (setup & hold)
 - area 的資訊(截圖)
 - 測試檔說明(須撰寫一段機器碼,測試到所有指令,自由發揮)
 - 合成前與合成後 timing 波形圖(截圖)(截一筆運算即可)
 - 各組員工作項目與貢獻度
- 簡報檔上傳到 Eclass Final Project
 - 其他檔案不用上傳,將所有檔案放在工作站指定目錄下即可
 - Deadline 2022/1/12 00:10
 - 2022/1/12 當天上台報告(5~8分鐘)(小組互評)

FINAL PROJECT:分數標準

- 實作評分(60%)
 - 無法完成任何新增指令(4-instruction(70分)(但請改變測試程式碼)
 - 完成 5-instruction (75分)
 - 完成 6-instruction (80分)
 - 完成 7-instruction (85分)
 - 完成 8-instruction (90分)
 - 完成 9-instruction (92分)
 - 完成 10-instruction (94分)
 - 完成 11-instruction (96分)
- 上台報告(各組互評)(30%)
 - 80分~95分
- 小組人數(10%)
 - 3人 (70分)
 - 2人(80分)
 - 1人(100分)

上台報告(各組互評)

項目	普通 (80)	不錯(85)	好(90)	讚(95)
口條表達 (40%)	沒甚麼特殊 之處	口條清晰	口條清晰, 表達清楚	口條清晰,表達清楚,台風穩健.
報告內容 (60%) (不考慮實現 (不考慮數,只 新對是否數, 計數是否的 等別 等別 等別 等別 等別 等 等 等 等 等 等 等 等 等 等 等 等	沒甚麼特殊 之處	內容完整	內容完整,測 試機械碼能 驗證功能, 簡報圖文 賞心悅目	內容完整,測 試機械碼,則 驗證功能,且 考慮周延. 簡報圖文賞 心悅目有巧 思