COGNOME	NOME	MATRICOLA
○ Gr. 1 Bader (A-G)	○ Gr. 2 Cio	offi (H-Z)

Risolvere gli esercizi inserendo le risposte negli **spazi predisposti** con indicazione dei **calcoli** effettuati e fornendo **spiegazioni** chiare ed essenziali.

NON SI ACCETTANO RISPOSTE SU ALTRI FOGLI.

1. Si scriva un sistema lineare in 3 incognite su \mathbb{R} che ammetta infinite soluzioni, tra cui il vettore (1,2,3).

- 2. Dire (senza dimostrarlo) quale dei seguenti sottoinsiemi è sottospazio e, per quelli che lo sono, scrivere una base:
 - (1) $\{(a, -2a+1) \mid a \in \mathbb{R}\};$
 - (2) $\{(a, \sqrt{2a}, b a) \mid a, b \in \mathbb{R}\};$
 - (3) L((1,0,2),(2,0,-3),(0,0,0)).

 ${\bf 3.} \quad {\bf Scrivere} \ {\bf la} \ {\bf definizione} \ {\bf di} \ {\bf sistema} \ {\bf di} \ {\bf vettori} \ {\it linearmente} \ {\it indipendente}.$

4. Scrivere la definizione di endomorfismo di uno spazio vettoriale V sul campo reale.

5. Calcolare una base e scrivere una rappresentazione cartesiana del sottospazio $U = L\{(1, 2, 1, 4), (3, 0, 3, 6), (0, 2, 0, 2)\}$ nel riferimento canonico di \mathbb{R}^4 (ossia, un sistema lineare omogeneo il cui insieme delle soluzioni sia U).

6. È vero che $\{(0,0),(-1,1),(1,-1)\}$ è un sottospazio di \mathbb{R}^2 di dimensione uno? \bigcirc si \bigcirc no Perché?

7. Scrivere la definizione di *autovalore* di un endomorfismo $f: \mathbb{R}^4 \mapsto \mathbb{R}^4$.

- **8.** Data la matrice $A = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$
 - (i) calcolare una base per il nucleo ed una base per l'immagine dell'applicazione lineare ad essa associata nel riferimento canonico di \mathbb{R}^3 .
 - (ii) Calcolare autovalori ed autospazi di A.
 - (iii) Stabilire se A è diagonalizzabile.

9. Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'unico endomorfismo di \mathbb{R}^2 per il quale f(1,0) = (0,0) e f(1,1) = (2,2). Senza calcolare f e senza calcolare il polinomio caratteristico, dire perché f è diagonalizzabile.

10. Fissato nel piano un riferimento cartesiano monometrico ortogonale, rappresentare la retta r per A(1,-2) ortogonale alla retta congiungente A con l'origine e scrivere una (qualsiasi) delle due rette a distanza 1 da r.

11. Fissato nel piano un riferimento cartesiano monometrico ortogonale, siano date le rette r: $\begin{cases} x-y &= 0 \\ 3y-2z &= 3 \end{cases}$ e s: (x,y,z) = (2,2,1) + t(1,1,1). Dimostrare che r e s sono complanari e rappresentare il piano che le contiene.