COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Segment Intersection AABB Algorithm

Paul Rosen Assistant Professor University of South Florida

Intersection of >2 Line Segments

Intersection of >2 Line Segments

INTERSECTION OF LINE SEGMENTS

- PROBLEM DEFINITION
 - Given N line segments in the plane, report all their points of intersection (pairwise).
- LINE SEGMENT INTERSECTION
 - Instance:
 - Set $S = \{s_1, s_2, ..., s_N\}$ of line segments in the plane;
 - For $1 \le i \le N$, $s_i = (P_{i1}, P_{i2})$ (endpoints of the segments); and
 - For $1 \le j \le 2$, $P_{ij} = (x_{ij}, y_{ij})$ (coordinates of the endpoints).
 - Question:
 - Report all points of intersection of segments in S.

INTERSECTION OF LINE SEGMENTS

- ALGORITHM (BRUTE FORCE ALGORITHM)
 - For every pair of segments in S, test the two segments for intersection.
 - (Segment intersection test can be done in constant time using one of the methods we've already discussed.)
- Analysis (Preprocessing, Query, and Storage costs)
 - Preprocessing: None
 - Query: $O(N^2)$; there are $\frac{N(N-1)}{2} = O(N^2)$ pairs, each requiring a constant time test.
 - Storage: O(N); for S.

Naïve Intersection of >2 Line Segments

- What is the worst case number of intersections?
 - Choice I: *O*(*n*)
 - Choice 2: $O(n \log n)$
 - Choice 3: $O(n^2)$

Naïve Intersection of >2 Line Segments

- What is the worst case number of intersections?
 - If all pairs intersect there are (n^2) intersections, then our time bound is optimal as a function of n.
- CAN WE IMPROVE PERFORMANCE?
 - Yes, we will look for output-sensitive algorithms.

OBSERVATIONS?

AXIS ALIGNED BOUNDING BOXES (AABB)

AXIS ALIGNED BOUNDING BOXES (AABB)

- MANY REPRESENTATIONS
 - 2 Points
 - Point, width, height
 - Intervals
- FOR OUR CONTEXT, WE WILL USE INTERVALS
 - $x \in [\min(x_1, x_2), \max(x_1, x_2)]$
 - $y \in [\min(y_1, y_2), \max(y_1, y_2)]$

AABB INTERSECTION

- GIVEN A SET OF N AXIS-PARALLEL RECTANGLES IN THE PLANE, REPORT ALL INTERSECTING PAIRS
 - Intersect ≡ share at least one point

Intersection of rectangles Problem definition

- RECTANGLE INTERSECTION
- INSTANCE: Set $S = \{r_1, r_2, ..., r_N\}$ of rectangles in the plane.
- For $1 \le i \le N$, $r_i = ([x_{i1}, x_{i2}], [y_{i1}, y_{i2}])$
- QUESTION: Report all pairs of rectangles that intersect
 - (Edge and interior intersections should be reported.)

CHECKING IF 2 RECTANGLES INTERSECT

- $r_1 \cap r_2$, IF?
 - $[x_{11}, x_{12}] \cap [x_{21}, x_{22}] \neq \emptyset \text{ AND}$ $[y_{11}, y_{12}] \cap [y_{21}, y_{22}] \neq \emptyset$
- How do we code this intersection?
 - $[x_{11}, x_{12}] \cap [x_{21}, x_{22}] =$ $[\max(x_{11}, x_{21}), \min(x_{12}, x_{22})]$
 - $[y_{11}, y_{12}] \cap [y_{21}, y_{22}] =$ $[\max(y_{11}, y_{21}), \min(y_{12}, y_{22})]$
 - Check that the range of both intersections is ≥ 0

INTERSECTION OF A SET OF RECTANGLES

Brute force algorithm

- 1. for every pair (r_i, r_j) of rectangles $\in S, i < j$
- 2. if $(r_i \cap r_i \neq \emptyset)$ then
- 3. report (r_i, r_j)

- ANALYSIS
 - Preprocessing?
 - None
 - Query?

$$\bullet \quad \frac{N(N-1)}{2} = O(N^2)$$

- Storage?
 - \bullet O(N)
- Does this really help us with the Segment intersection problem?

Algorithm using interval trees

- 1. Plane sweep algorithm, vertical (top-to-bottom) sweep Event points are Beginning and end of rectangle intervals
- 2. At the starting interval:
- 3. Compare rectangle x-interval to active set for overlap.
- 4. Add rectangle x-interval to active set.
- 5. At the ending interval remove rectangle X-interval from active set.

ANALYSIS

- Preprocessing: $O(N \log N)$; ordering intervals for sweep
- Query: Worst case $O(N^2)$; Best case O(N)
- Storage: O(N); active rectangles O(N), event queue O(N).

COMMENTS

- We haven't improved worst case, but the best case has gotten significantly better.
- We are now output sensitive.
- Can we do any better?

ID CENTERED INTERVAL TREES

- TREE-BASED DATA STRUCTURE
- EACH NODE STORES A CENTER
 POINT
 - Intervals are placed into 3 group,
 - Left of center—placed in left subtree
 - Right of center—placed in right subtree
 - Covering center—placed in a specialized list*

ID CENTERED INTERVAL TREES

- Performance Analysis
 - Insertion/removal: $O(\log N)$
 - Query: $O(\log N + K)$
 - Storage: O(N)

ANALYSIS

- Preprocessing: $O(N \log N)$; ordering intervals for sweep
- Query: $O(N \log N + K)$
- Storage: O(N); interval tree O(N), event queue O(N).

COMMENTS

- $O(N \log N + K)$ is lower bound for rectangle intersection problem. Can be shown by lower bounds proof.
- We've gone to a lot of trouble to improve the time from $O(N^2)$ to $O(N \log N)$ via the interval tree, for good reason.
 - E.g. if $N = 10^6$, $N^2 = 10^{12}$ and $N \log N = 2 \cdot 10^7$

BACK TO THE SEGMENT INTERSECTION PROBLEM

 CAN WE DO BETTER THAN REDUCING IT TO THE AABB INTERSECTION PROBLEM?

• YES AND NO, CAN'T DO BETTER THAN $O(N \log N + K)$, BUT CAN IMPROVE CONSTANTS

