623

(1)

空気抵抗の比例定数をCとおく。

空気抵抗Dは物体の速度に比例するので、

$$D = vC$$

終速度 v_f の時の空気抵抗Dと、重力Gが釣り合っているので、

(2)

電気力Fと重力Gが釣り合っているので、

$$F=mg=G$$
 $m=5.0\times 10^{-15}kg$, $g=9.8\,^m/_{S^2}$ を代入して、 $F=(5.0\times 10^{-15})\cdot 9.8$ $=4.9\times 10^{-14}N$

(3)

電荷の変化Agを与えられた油滴に生じる電気力の変化AFは、

$$\Delta F = \Delta q E$$
 となる。

この ΔF の向きは鉛直上向きなので、空気抵抗Dの向きは鉛直下向きとなる。 よって、『電気力 $F + \Delta F$ 』と『重力Gと空気抵抗Dの和』が釣り合うことになり、

$$F + \Delta F = mg + v_f'C = G + D$$
 が成り立つ。

$$F=mg$$
, $\Delta F=\Delta q E=\Delta q\cdot 3.5\times 10^4\, V/_m$, $v_f=1.5\times 10^{-5}\, m/_S$, $C=3.77\times 10^{-10}\, kg/s$ を代入して、 $mg+\Delta q\cdot (3.5\times 10^4)=mg+(1.5\times 10^{-5})\cdot (3.77\times 10^{-10})$ $\Delta q\cdot (3.5\times 10^4)=(1.5\times 10^{-5})\cdot (3.77\times 10^{-10})$ (mg を消去) $\Delta q=1.6\times 10^{-19}\, C$ $\frac{\Delta q}{e}=\frac{1.6\times 10^{-19}\, C}{1.6\times 10^{-19}}=1$ 倍

(4)

$$F=qE$$
 より、
$$F=4.9\times 10^{-14}N \ , \ E=3.5\times 10^4 \ V/m \$$
を代入して、 $4.9\times 10^{-14}=q\cdot 3.5\times 10^4$