The Nested Fixed Point Algorithm

Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher

Dynamic Programming and Structural Econometrics #6

Bertel Schjerning, University of Copenhagen

Structural Estimation in Microeconomics

Some methods for solving Dynamic Discrete Choice Models

- ▶ Rust (1987): MLE using Nested-Fixed Point Algorithm (NFXP)
- ► Hotz and Miller (1993): CCP estimator (two step estimator)
- ▶ Keane and Wolpin (1994): Simulation and interpolation
- Rust (1997): Randomization algorithm (breaks curse of dimensionality)
- Aguirregabiria and Mira (2002): Nested Pseudo Likelihood (NPL).
- ► Bajari, Benkard and Levin (2007): Two step-minimum distance (equilibrium inequalities).
- ► Arcidiacono Miller (2002): CCP with unobserved heterogeneity (EM Algorithm).
- Norets (2009): Bayesian Estimation (allows for serial correlation in ϵ)
- ► Su and Judd (2012): MLE using constrained optimization (MPEC)
- and MUCH more
- NFXP is still the Swiss-army knife for structural estimation of dynamic structural choice models
- Any estimator method or solution algorithm of DDC models must confront Harold Zurcher

The Nested Fixed Point Algorithm (NFXP)

Rust (ECTA, 1987):

OPTIMAL REPLACEMENT OF GMC BUS ENGINES: AN EMPIRICAL MODEL OF HAROLD ZURCHER

Harold Alois Zuercher June 16, 1926 - June 21, 2020 (age 94)

Rust (1987)

This is a path-breaking paper that introduces a methodology to estimate a single-agent dynamic discrete choice models.

Main contributions

- 1. An illustrative application in a simple model of engine replacement.
- 2. Development and implementation of Nested Fixed Point Algorithm
- Formulation of assumptions, that makes dynamic discrete choice models tractable.
- 4. The first researcher to obtain ML estimates of discrete choice dynamic programming models
- 5. Bottom-up approach: Micro-aggregated demand for durable assets

Policy experiments:

- ▶ How does changes in replacement cost affect?
 - the distribution of mileage
 - the demand for engines

Who cares about Harold Zurcher?

- Occupational Choice (Keane and Wolpin, JPE 1997)
- ► Retirement (Rust and Phelan, ECMA 1997)
- ▶ Brand choice and advertising (Erdem and Keane, MaScience 1996)
- ► Choice of college major (Arcidiacono, JoE 2004)
- Individual migration decisions (Kennan and Walker, ECMA 2011)
- High school attendance and work decisions (Eckstein and Wolpin, ECMA 1999)
- Sales and dynamics of consumer inventory behavior (Hendel and Nevo, ECMA 2006)
- Advertising, learning, and consumer choice in experience good markets (Ackerberg, IER 2003)
- ► Route choice models (Fosgerau et al, Transp. Res. B)
- Fertility and labor supply decisions (Francesconi, JoLE 2002)
- ► Car ownership, type choice and use (Gillingham et al, WP)
- ► Residential and Work-location choice (Carstensen et al, WP)
- ...and many more (2355 cites, Nov 2021)

Big Mac Index for Dynamic Structural Econometrics

Formulating, solving and estimating a dynamic model

Components of the dynamic model

- **Decision variables:** vector describing the choices, $d_t \in C(s_t)$
- \triangleright State variables: vector of variables, s_t , that describe all relevant information about the modeled decision process
- ▶ Instantaneous payoff: utility function, $u(s_t, d_t)$, with time separable discounted utility
- Motion rules: agent's beliefs of how state variable evolve through time, conditional on states and choices. Here formalized by a Markov transition density $p(s_{t+1} \mid s_t, d_t)$

Solution is given by:

- **Value function**: maximum attainable utility $V(s_t)$
- **Policy function**: mapping from state space to action space that returns the optimal choice, $d^*(s_t)$

Structural Estimation

- Parametrize model: utility function $u(s_t, d_t; \theta_u)$, motion rules for states $p(s_{t+1} | s_t, d_t; \theta_p)$, choice sets $C(s_t; \theta_c)$, etc.
- Search for (policy invariant) parameters θ so that model fits targeted aspects of data on (a subset of) decisions, states, payoff's, etc.

7 / 45

Zurcher's Bus Engine Replacement Problem

- ▶ Choice set: Binary choice set, $C(x_t) = \{0, 1\}$. Each bus comes in for repair once a month and Zurcher chooses between ordinary maintenance $(d_t = 0)$ and overhaul/engine replacement $(d_t = 1)$.
- ▶ State variables: Harold Zurcher observes $s_t = (x_t, \varepsilon_t)$:
 - x_t: mileage at time t since last engine overhaul/replacement
 - $\varepsilon_t = [\varepsilon_t(d_t = 0), \varepsilon_t(d_t = 1)]$: decision specific state variable
- ▶ Utility function: $U(x_t, \varepsilon_t, d_t; \theta_1) =$

$$u(x_t, d_t, \theta_1) + \varepsilon_t(d_t) = \begin{cases} -RC - c(0, \theta_1) + \varepsilon_t(1) & \text{if } d_t = 1\\ -c(x_t, \theta_1) + \varepsilon_t(0) & \text{if } d_t = 0 \end{cases}$$
(1)

- ► State variables process
 - \triangleright ε_t is iid with conditional density $q(\varepsilon_t|x_t,\theta_2)$
 - x_t (mileage since last replacement)

$$p(x_{t+1}|x_t, d_t, \theta_2) = \begin{cases} g(x_{t+1} - 0, \theta_3) & \text{if } d_t = 1\\ g(x_{t+1} - x_t, \theta_3) & \text{if } d_t = 0 \end{cases}$$
 (2)

If engine is replaced, state of bus regenerates to $x_t = 0$.

Parameters to be estimated $\theta = (RC, \theta_1, \theta_3)$ (Fixed parameters: (β, θ_2))

General Behavioral Framework

The decision problem

➤ The decision maker chooses a sequence of actions to maximize expected discounted utility over a (in)finite horizon

$$V_{ heta}\left(s_{t}
ight) = \sup_{\Pi} E\left[\sum_{j=0}^{T} eta^{j} U\left(s_{t+j}, d_{t+j}; heta_{1}
ight) | s_{t}, d_{t}
ight]$$

- $\beta \in (0,1)$ is the discount factor
- $V(s_t, d_t; \theta_1)$ is a choice and state specific utility function
- ightharpoonup We may consider an infinite horizon , i.e. $T=\infty$
- ightharpoonup E summarizes expectations of future states given s_t and d_t

Recursive form of the maximization problem

▶ By Bellman Principle of Optimality, the value function V(s) constitutes the solution of the following functional (Bellman) equation

$$V(x,\varepsilon) \equiv T(V)(x,\varepsilon) = \max_{d \in C(x)} \left\{ u(x,\varepsilon,d) + \beta E[V(x',\varepsilon') | x,\varepsilon,d] \right\}$$

Expectations are taken over the next period values of state $s' = (x', \varepsilon')$ given it's controlled motion rule, $p(s' \mid s, d)$

$$E[V(x',\varepsilon')|x,\varepsilon,d] = \int_X \int_\Omega V(x',\varepsilon')p(x',\varepsilon'|x,\varepsilon,d)dx'd\varepsilon'$$

where
$$\varepsilon = (\varepsilon(1), \dots, \varepsilon(J)) \in \mathbb{R}^J$$

Hard to compute fixed point V such that T(V) = V

- \triangleright x is continuous and ε is continuous and J-dimensional
- $V(x,\varepsilon)$ is high dimensional
- Evaluating E may require high dimensional integration
- ▶ Evaluating $V(x', \varepsilon')$ may require high dimensional interpolation/approximation
- $V(x,\varepsilon)$ is non-differentiable

Rust's Assumptions

1. Additive separability in preferences (AS):

$$U(s_t,d) = u(x_t,d;\theta_1) + \varepsilon_t(d)$$

2. Conditional independence (CI):

State variables, $s_t = (x_t, \varepsilon_t)$ obeys a (conditional independent) controlled Markov process with probability density

$$p(x_{t+1},\varepsilon_{t+1}|x_t,\varepsilon_t,d,\theta_2,\theta_3)=q(\varepsilon_{t+1}|x_{t+1},\theta_2)p(x_{t+1}|x_t,d,\theta_3)$$

3. Extreme value Type I (EV1) distribution of ε (EV) Each of the choice specific state variables, $\varepsilon_t(d)$ are assumed to be iid. extreme value distributed with CDF

$$F(\varepsilon_t(d);\mu,\lambda)=\exp(-\exp(-(\varepsilon_t(d)-\mu)/\lambda)) \text{ for } \varepsilon_t(d)\in\mathbb{R}$$
 with $\mu=0$ and $\lambda=1$

Rust's Assumptions simplifies DP problem

$$V(x,\varepsilon) = \max_{d \in C(x)} \left\{ u(x,d) + \varepsilon(d) + \beta \int_X \int_{\Omega} V(x',\varepsilon') p(x'|x,d) q(\varepsilon'|x') dx' d\varepsilon' \right\}$$

- 1. Separate out the deterministic part of choice specific value v(x, d) (assumptions SA and CI)
- Reformulate Bellman equation on reduced state space (assumption CI)
- Compute the expectation of maximum using properties of EV1 (assumption EV)

DP problem under AS and CI

Separate out the deterministic part of choice specific value v(x, d)

$$V(x,\varepsilon) = \max_{d \in C(x)} \left\{ u(x,d) + \beta \int_{X} \left(\int_{\Omega} V(x',\varepsilon') q(\varepsilon'|x') d\varepsilon' \right) p(x'|x,d) dx' + \varepsilon(d) \right\}$$

So that

$$V(x', \varepsilon') = \max_{d \in C} \{v(x', d) + \varepsilon'(d)\}$$

$$v(x, d) = u(x, d) + \beta E[V(x', \varepsilon')|x, d]$$

Bellman equation in expected value function space

Let $EV(x, d) = E[V(x', \varepsilon')|x, d]$ denote the expected value function.

Because of CI we can now express the Bellman equation in expected value function space

$$EV(x,d) = \Gamma(EV)(x,d) \equiv \int_X \int_\Omega \left[V(x',\varepsilon') q(\varepsilon'|x') d\varepsilon' \right] p(x'|x,d) dx'$$

$$V(x', \varepsilon') = \max_{d' \in C(x)} [u(x', d') + \beta EV(x', d') + \varepsilon'(d')]$$

- ▶ Γ is a contraction mapping with unique fixed point EV, i.e. $\|\Gamma(EV) \Gamma(W)\| \le \beta \|EV W\|$
- ► Global convergence of VFI
- \blacktriangleright EV(x,d) is lower dimensional: does not depend on ε

Bellman equation in integrated value function space

Let $\bar{V}(x) = E[V(x,\varepsilon) | x]$ denote the *integrated* value function

Because of CI we can express Bellman equation in integrated value function space

$$ar{V}(x) = ar{\Gamma}(ar{V})(x) \equiv \int_{\Omega} V(x, \varepsilon) q(\varepsilon|x) d\varepsilon$$

$$V(x,\varepsilon) = \max_{d \in C(x)} [u(x,d) + \varepsilon(d) + \beta \int_X \bar{V}(x')p(x'|x,d)dx']$$

- ▶ $\bar{\Gamma}$ is a contraction mapping with unique fixed point \bar{V} , i.e. $\|\bar{\Gamma}(\bar{V}) \bar{\Gamma}(W)\| \le \beta \|\bar{V} W\|$
- ► Global convergence of VFI
- $ar{V}(x)$ is lower dimensional: does not depend on ε and d

Compute the expectation of maximum under EV

We can express expectation of maximum using properties of EV1 distribution (assumption EV)

Expectation of maximum, $\bar{V}(x)$, can be expressed as "the log-sum"

$$\bar{V}(x) = E\left[\max_{d \in \{1, \dots, J\}} \{v(x, d) + \lambda \varepsilon(d)\} \mid x\right] = \lambda \log \sum_{j=1}^{J} \exp(v(x, d)/\lambda)$$

Conditional choice probability, P(x, d) has closed form logit expression

$$P(d \mid x) = E\left[\mathbb{1}\left\{d = \arg\max_{j \in \{1, \dots, J\}} \{v(x, j) + \lambda \varepsilon(j)\}\right\} \mid x\right]$$
$$= \frac{\exp(v(x, d)/\lambda)}{\sum_{j=1}^{J} \exp(v(x, j)/\lambda)}$$

HUGE benefits

- ightharpoonup Avoids J dimensional numerical integration over ε
- ▶ $P(d \mid x)$, $\bar{V}(x)$ and EV(x, d) are smooth functions.

The DP problem under AS, CI and EV

Putting all this together

Conditional Choice Probabilities (CCPs) are given by

$$P(d|x,\theta) = \frac{\exp\left\{u(x,d,\theta_1) + \beta EV_{\theta}(x,d)\right\}}{\sum_{i \in C(y)} \exp\left\{u(x,j,\theta_1) + \beta EV_{\theta}(x,j)\right\}}$$

► The expected value function can be found as the unique fixed point to the contraction mapping Γ_{θ} , defined by

$$EV_{\theta}(x, d) = \Gamma_{\theta}(EV_{\theta})(x, d)$$

$$= \int_{y} \ln \left[\sum_{d' \in D(y)} \exp \left[u(y, d'; \theta_{1}) + \beta EV_{\theta}(y, d') \right] \right]$$

$$p(dy|x, d, \theta_{2})$$

- We have used the subscript θ to emphasize that the Bellman operator, Γ_{θ} depends on the parameters.
- ▶ In turn, the fixed point, EV_{θ} , and the resulting CCPs, $P(d|x,\theta)$ are implicit functions of the parameters we wish to estimate.

Mileage is continuous. How to deal with continuous state?

Rust discretized the range of travelled miles into n=175 bins, indexed with i: $\hat{X} = \{\hat{x}_1, ..., \hat{x}_n\}$ with $\hat{x}_1 = 0$

Mileage transition probability: for j = 1, ..., J

$$p(x'|\hat{x}_k, d, \theta_2) = \begin{cases} Pr\{x' = \hat{x}_{k+j} | \theta_3\} = \theta_{3j} \text{ if } d = 0\\ Pr\{x' = \hat{x}_{1+j} | \theta_3\} = \theta_{3j} \text{ if } d = 1 \end{cases}$$

- \triangleright Mileage in the next period x' can move up at most J grid points
- ▶ *J* is determined by the distribution of mileage

Choice-specific expected value function for $\hat{x} \in \hat{X}$

$$\begin{split} EV_{\theta}(\hat{x},d) &= \hat{\Gamma}_{\theta}(EV_{\theta})(\hat{x},d) \\ &= \sum_{j}^{J} \ln \left[\sum_{d' \in D(y)} \exp[u(x',d';\theta_1) + \beta EV_{\theta}(x',d')] \right] p(x'|\hat{x},d,\theta_2) \end{split}$$

Bellman equation in matrix form (expected value)

The choice specific expected value function can be found as fixed point on the Bellman operator

$$EV(d) = \hat{\Gamma}(EV) = \Pi(d) * \ln \left[\sum_{d' \in D(y)} \exp[u(d') + \beta EV(d')] \right]$$

where

$$EV(d) = [EV(1, d), ..., EV(n, d)]$$
 and $u(d) = [u(1, d), ..., u(n, d)]$

 $\Pi(d)$ is a $n \times n$ state transition matrix conditional on decision d

Bellman equation in matrix form (integrated value)

The choice integrated value function can be found as fixed point on the Bellman operator

$$ar{V} = \hat{\Gamma}(ar{V}) = \operatorname{In}\left[\sum_{d' \in D(y)} \exp[u(d') + eta\Pi(d')ar{V})]
ight]$$

where

$$\bar{V} = [\bar{V}(1), ..., \bar{V}(n)]$$
 and $u(d) = [u(1, d), ..., u(n, d)]$

$$EV(d) = \Pi(d)\bar{V}$$

 $\Pi(d)$ is the $n \times n$ state transition matrix conditional on decision d

Transition matrix for mileage, d = 0

If not replacing (d = 0)

$$\Pi(d=0)_{n\times n} = \begin{pmatrix} \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & 0 \\ 0 & 0 & \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & 0 \\ \cdot & \cdot \\ 0 & \cdot & \cdot & 0 & \pi_0 & \pi_1 & \pi_2 & 0 \\ 0 & \cdot & \cdot & \cdot & 0 & \pi_0 & \pi_1 & \pi_2 \\ 0 & \cdot & \cdot & \cdot & \cdot & 0 & \pi_0 & 1 - \pi_0 \\ 0 & \cdot & \cdot & \cdot & \cdot & \cdot & 0 & 1 \end{pmatrix}$$

Transition matrix for mileage, d = 1

If replacing (d = 1)

$$\Pi(d=1)_{n imes n} = egin{pmatrix} \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \ \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \ |\pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \ \cdot & \cdot \ \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \ \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \ \pi_0 & \pi_1 & \pi_2 & 0 & \cdot & \cdot & \cdot & 0 \end{pmatrix}$$

Likelihood Function

Likelihood

lackbox Under assumption (CI) the likelihood function ℓ^f has the particular simple form

$$\ell^{f}(x_{1}, \dots x_{T}, d_{1}, \dots d_{r}|x_{0}, d_{0}, \theta) = \prod_{t=1}^{T} P(d_{t}|x_{t}, \theta) p(x_{t}|x_{t-1}, d_{t-1}, \theta_{3})$$

where $P(d_t|x_t,\theta)$ is the choice probability given the observable state variable, x_t .

How to compute the choice probability, $P(d_t|x_t,\theta)$?

► Need to solve dynamic program Formula given on slide 7: calc EV from solving Bellman

How to estimate the transition probability, $p(x_t|x_{t-1}, d_{t-1}, \theta_3)$?

Can be estimated in a first step without solving DP problem (non-parametrically or parametrically) ...or jointly with DP problem if $p(x_t|x_{t-1}, d_{t-1}, \theta_3)$ is fully specified.

Structural Estimation

Data:
$$(d_{i,t}, x_{i,t})$$
, $t = 1, ..., T_i$ and $i = 1, ..., N$

Log likelihood function

$$L(\theta, EV_{\theta})) = \sum_{i=1}^{N} \ell_{i}^{f}(\theta, EV_{\theta})$$

$$\ell_i^f(\theta, EV_{\theta}) = \sum_{t=2}^{T_i} log(P(d_{i,t}|x_{i,t}, \theta)) + \sum_{t=2}^{T_i} log(p(x_{i,t}|x_{i,t-1}, d_{i,t-1}, \theta_3))$$

where

$$P(d|x,\theta) = \frac{\exp\{u(x,d,\theta_1) + \beta EV_{\theta}(x,d)\}}{\sum_{d' \in \{0,1\}} \{u(x,d',\theta_1) + \beta EV_{\theta}(x,d')\}}$$

and

$$EV_{\theta}(x,d) = \Gamma_{\theta}(EV_{\theta})(x,d)$$

$$= \int_{y} \ln \left[\sum_{d' \in \{0,1\}} \exp[u(y,d';\theta_{1}) + \beta EV_{\theta}(y,d')] \right] p(dy|x,d,\theta_{3})$$

The Nested Fixed Point Algorithm

Since the contraction mapping Γ always has a unique fixed point, the constraint $EV = \Gamma_{\theta}(EV)$ implies that the fixed point EV_{θ} is an *implicit* function of θ .

Hence, NFXP solves the unconstrained optimization problem

$$\max_{\theta} L(\theta, EV_{\theta})$$

Outer loop (Hill-climbing algorithm):

- Likelihood function $L(\theta, EV_{\theta})$ is maximized w.r.t. θ
- Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
- ► Each evaluation of $L(\theta, EV_{\theta})$ requires solution of EV_{θ}

Inner loop (fixed point algorithm):

The implicit function EV_{θ} defined by $EV_{\theta} = \Gamma(EV_{\theta})$ is solved by:

- Successive Approximations (SA)
- ► Newton-Kantorovich (NK) Iterations

MATLAB implementation of the likelihood function

Abbreviated version of zucher.ll in zurcher.m

```
function [f,g,h]=ll(data, mp, theta)
    global V0;
2
3
4
    % Update model primitives
5
    6
    mp=vec2struct(theta, [mp.pnames u mp.pnames P], mp); % update model params.
7
    P = zurcher.statetransition(mp); % update transition matrices
8
    u = zurcher.u(mp); % Update pay-off
9
10
    % Solve model
11
12
    bellman= @(V) zurcher.bellman(V, mp, u, P);
    [V0, pk, dBellman dV]=dpsolver.poly(bellman, V0, mp.ap, mp.beta);
13
14
    % Evaluate likelihood function
15
    y_j=[(1-data.d) data.d]; % choice dummies [keep replace]
16
    px_j=[pk(data.x) 1-pk(data.x)]; % choice probabilities evaluated at observed
17
    logl=log(sum(y_j.*px_j,2)); % 1) log likelihood regarding replacement choice
18
    if n_P>0; % 2) add on log like for mileage process
19
20
      p=[mp.p; 1-sum(mp.p)];
      log1=log1 + log(p(1+ data.dx1));
21
    end
22
23
    f=mean(-log1); % Objective function (negative mean log likelihood)
24
25
26
  end
```

Python implementation of the likelihood function

```
def ll(theta, data, mp, pnames, ap,x_int):
1
       global ev; ev0 = ev
2
3
       #Update model parameters, payoffs and transition matrix
       mp = updatepar(mp,pnames,theta)
       c = mp.c*0.001*mp.grid
       P = zucher.state_transition(mp.p,mp.n)
7
       # Solve the model
a
       bellman_sa = lambda ev: zucher.bellman_equ(ev,P,c,mp,1)
10
       bellman_nk = lambda ev: zucher.bellman_equ(ev,P,c,mp,2)
11
       ev, pk, dev, _ , _ = Solve.poly(bellman_sa,bellman_nk,
12
                                       ev0, ap, mp. beta)
13
       # Evaluate likelihood function
14
       log_lik = pk[x_int]*(1-data.d)+(1-pk[x_int])*data.d
15
       if theta.size>2:
                             # add on log like for mileage
16
                                       process
           p = np.append(mp.p,1-np.sum(mp.p))
17
           dx1_int = data.dx1.astype(int) # recast type to int
18
           log_lik += np.log(p[dx1_int])
19
20
       return log_lik
21
```

Data

- ► Harold Zurcher's Maintenance records of 162 busses
- ▶ Monthly observations of mileage on each bus (odometer reading)
- ▶ Data on maintenance operations
 - 1. Routine, periodic maintenance (e.g. brake adjustments)
 - 2. Replacement or repair at time of failure
 - 3. Major engine overhaul and/or replacement
- Rust focus on 3)

Estimated Hazard Functions

Specification Search

TABLE VIII
SUMMARY OF SPECIFICATION SEARCH^a

		Bus Group	
Cost Function	1, 2, 3	4	1, 2, 3, 4
Cubic	Model 1	Model 9	Model 17
$e(x, \theta_1) = \theta_{11}x + \theta_{12}x^2 + \theta_{13}x^3$	-131.063	-162.885	-296.515
	-131.177	-162.988	-296.411
uadratic	Model 2	Model 10	Model 18
$\theta(x, \theta_1) = \theta_{11}x + \theta_{12}x^2$	-131.326	-163.402	-297.939
	-131.534	-163.771	-299.328
inear	Model 3	Model 11	Model 19
$\theta(x, \theta_1) = \theta_{11}x$	-132.389	-163.584	-300.250
	-134.747	-165.458	-306.641
quare root	Model 4	Model 12	Model 20
$\theta(x, \theta_1) = \theta_{11}\sqrt{x}$	-132.104	-163.395	-299.314
	-133.472	-164.143	-302.703
ower	Model 5 ^b	Model 13 ^b	Model 21 ^b
$\theta(x, \theta_1) = \theta_{11} x^{\theta_{12}}$	N.C.	N.C.	N.C.
. , , , , , , , , , , , , , , , , , , ,	N.C.	N.C.	N.C.
ryperbolic	Model 6	Model 14	Model 22
$e(x, \theta_1) = \theta_{11}/(91-x)$	-133.408	-165.423	-305.605
	-138.894	-174.023	-325.700
nixed	Model 7	Model 15	Model 23
$\theta(x, \theta_1) = \theta_{11}/(91-x) + \theta_{12}\sqrt{x}$	-131.418	-163.375	-298,866
	-131.612	-164.048	-301.064
onparametric	Model 8	Model 16	Model 24
(x, θ_1) any function	-110.832	-138.556	-261.641
	-110.832	-138.556	-261.641

[&]quot; First entry in each box is (partial) log likelihood value ℓ^2 in equation (5.2)) at β = .9999. Second entry is partial

Structural Estimates, n=90

Parameter		Data Sample			Heterogeneity Test	
Discount Factor	Estimates/ Log-Likelihood	Groups 1, 2, 3 3864 Observations	Group 4 4292 Observations	Groups 1, 2, 3, 4 8156 Observations	LR Statistic (df = 4)	Marginal Significance Level
β = .9999	RC θ_{11} θ_{30} θ_{31} LL	11.7270 (2.602) 4.8259 (1.792) .3010 (.0074) .6884 (.0075) -2708.366	10.0750 (1.582) 2.2930 (0.639) .3919 (.0075) .5953 (.0075) -3304.155	9.7558 (1.227) 2.6275 (0.618) .3489 (.0052) .6394 (.0053) -6055.250	85.46	1.2E – 17
eta=0	$egin{array}{c} RC \ heta_{11} \ heta_{30} \ heta_{31} \ LL \end{array}$	8.2985 (1.0417) 109.9031 (26.163) .3010 (.0074) .6884 (.0075) -2710.746	7.6358 (0.7197) 71.5133 (13.778) .3919 (.0075) .5953 (.0075) -3306.028	7.3055 (0.5067) 70.2769 (10.750) .3488 (.0052) .6394 (.0053) -6061.641	89.73	1.5E – 18
Myopia test:	LR Statistic $(df = 1)$	4.760	3.746	12.782		
$\beta = 0 \text{ vs. } \beta = .9999$	Marginal Significance Level	0.0292	0.0529	0.0035		

Structural Estimates, n=175

TABLE X
STRUCTURAL ESTIMATES FOR COST FUNCTION $c(x, \theta_1) = .001\theta_{11}x$ FIXED POINT DIMENSION = 175
(Standard errors in parentheses)

Parameter		Data Sample			Heterogeneity Test	
Discount Factor	Estimates Log-Likelihood	Groups 1, 2, 3 3864 Observations	Group 4 4292 Observations	Groups 1, 2, 3, 4 8156 Observations	LR Statistic (df = 6)	Marginal Significance Level
$\beta = .9999$	RC	11.7257 (2.597)	10.896 (1.581)	9.7687 (1.226)	237.53	1.89E - 48
,	θ_{11}	2,4569 (.9122)	1.1732 (0.327)	1.3428 (0.315)		
	θ_{30}	.0937 (.0047)	.1191 (.0050)	.1071 (.0034)		
	θ_{31}	.4475 (.0080)	.5762 (.0075)	.5152 (.0055)		
	θ_{32}	.4459 (.0080)	.2868 (.0069)	.3621 (.0053)		
	θ_{33}	.0127 (.0018)	.0158 (.0019)	.0143 (.0013)		
	ĽĽ	-3993.991	-4495.135	-8607.889		
$\beta = 0$	RC	8.2969 (1.0477)	7.6423 (.7204)	7.3113 (0.5073)	241.78	2.34E - 49
•	θ_{11}	56.1656 (13.4205)	36.6692 (7.0675)	36.0175 (5.5145)		
	θ_{30}	.0937 (.0047)	.1191 (.0050)	.1070 (.0034)		
	θ_{31}	.4475 (.0080)	.5762 (.0075)	.5152 (.0055)		
	θ_{32}	.4459 (.0080)	.2868 (.0069)	.3622 (.0053)		
$ heta_{33}$ LL		.0127 (.0018)	.0158 (.0019)	.0143 (.0143)		
	-3996.353	-4496.997	-8614.238			
Myopia tests: LR Statistic	LR	4.724	3.724	12.698		
	(df=1)					
$\beta = 0 \text{ vs. } \beta = .9999$	Marginal Significance Level	0.0297	0.0536	.00037		

MATLAB implementation:

Estimating parameters for bus types 1,2,3,4 (model 19)

Output from run_busdata.m:

```
f bertelschjerning — MATLAB_maci64 -nodesktop • matlab_helper — 94×20
>> run busdata
Structural Estimation using busdata from Rust(1987)
Beta
                     0.99990
                   175.00000
Sample size
                = 8156.00000
    Param.
                                Estimates
                                                    s.e.
                                                                 t-stat
    RC
                                   9.7712
                                                  1.2127
                                                                 8.0572
                                   1.3439
                                                  0.3236
                                                                 4.1529
                                   0.1070
                                                  0.0034
                                                                31.2090
                                   0.5152
                                                  0.0055
                                                                93.0605
                                   0.3622
                                                  0.0053
                                                                68.0442
                                   0.0143
                                                  0.0013
                                                                10.8946
                                                                 2.6469
                                   0.0009
                                                  0.0003
log-likelihood
                   = -8607.88684
runtime (seconds) =
                        0.41346
```

You will do a similar implementation for python in the exercise classes

Identification - scale of cost function

Identification problem?

- We only identify RC/σ and $c(x, \theta_1)/\sigma = 0.001 * \theta_1/\sigma * x$, (where σ is parameter that index the scale of the cost function).
- \triangleright σ is unidentified form mileage and replacement data

How to deal with identification problem related to scale of utility?

- Using replacement cost data and structural estimates we can obtain a scale estimate
- ▶ Scale the estimates with observed average replacement costs

Average Engine Replacement Costs

TABLE III

AVERAGE ENGINE REPLACEMENT COSTS^a

		Bus Group	
Operation	1, 2, 3	4	1, 2, 3, 4
Labor time ^b to drop engine	\$ 150	\$ 150	\$ 150
Labor time ^b to overhaul engine	3373	2870	3032
Parts required to overhaul engine	5826	4343	4730
Labor time ^b to re-install engine	150	150	150
Total cost of replacement	\$9499	\$7513	\$8062

- ► Replacement costs are *higher* for group 1,2,3 although engine replacements for this group occur 57.000 miles and 15 month *earlier*
- Presumably operating and maintenance costs for these busses increase much faster

Identification - scale of cost function

 Using replacement cost data (prev. slide) and structural estimates from Table IX (next slide) we can obtain a scale estimate

$$\sigma_{bus\ 1,2,3} = \frac{RC}{RC/\sigma}$$

$$= \$9499/11.7257$$

$$\sigma_{bus\ 4} = \$7513/10.0750$$

We can the obtain a dollar estimate of $c(x, \theta_1)$ (i.e monthly maintenance costs per accumulated 5000 miles)

$$c(x, \theta_1)_{bus \ 1,2,3} = \sigma * 0.001\theta_{11}/\sigma * x$$

$$= \$9499/11.725 * 0.001 * 4.82 * x = \$3.9 * x$$

$$c(x, \theta_1)_{bus \ 4} = \$7513/10.0750 * 0.001 * 2.2930 * x = \$1.7 * x$$

▶ Hence, a bus with mileage of 300.000 (i.e. x = 300.000/5.000) is (3.9 - 1.7) * 300000/5000 = \$132 more expensive to operate per month

Structural Estimates

TABLE IX STRUCTURAL ESTIMATES FOR COST FUNCTION $c(x,\theta_1)=.001\theta_{11}x$ Fixed Point Dimension = 90 (Standard errors in parentheses)

Parameter		Data Sample			Heterogeneity Test	
Discount Factor	Estimates/ Log-Likelihood	Groups 1, 2, 3 3864 Observations	Group 4 4292 Observations	Groups 1, 2, 3, 4 8156 Observations	LR Statistic (df = 4)	Marginal Significance Level
β = .9999	RC θ_{11} θ_{30} θ_{31} LL	11.7270 (2.602) 4.8259 (1.792) .3010 (.0074) .6884 (.0075) -2708.366	10.0750 (1.582) 2.2930 (0.639) .3919 (.0075) .5953 (.0075) -3304.155	9.7558 (1.227) 2.6275 (0.618) .3489 (.0052) .6394 (.0053) -6055.250	85.46	1.2E – 17
$\beta = 0$	$egin{array}{c} RC \ heta_{11} \ heta_{30} \ heta_{31} \ LL \end{array}$	8.2985 (1.0417) 109.9031 (26.163) .3010 (.0074) .6884 (.0075) -2710.746	7.6358 (0.7197) 71.5133 (13.778) .3919 (.0075) .5953 (.0075) -3306.028	7.3055 (0.5067) 70.2769 (10.750) .3488 (.0052) .6394 (.0053) -6061.641	89.73	1.5E – 18
Myopia test:	LR Statistic $(df = 1)$	4.760	3.746	12.782		
$\beta = 0 \text{ vs. } \beta = .9999$	Marginal Significance Level	0.0292	0.0529	0.0035		

Why a dynamic model?

Suppose the "true" β is > 0, but we estimate the model with $\beta=0$

- Our estimate of the replacement cost function will be biased.
- Parameters RC and θ_1 would be biased too (RC is upward biased and θ_1 is downward biased.)
- Predictions using the estimated model will be biased for two reasons:
 - 1. parameter estimates are biased
 - 2. the static model is not correct.
- ▶ Though the biases introduced by (1) and (2) might partly compensate each other, it will be a very unlikely coincidence that they compensate each other to make the bias negligible.
- ► Effect on equilibrium demand and hazard functions are very different!

Estimated Hazard Functions

Equilibrium bus mileage and demand for engines

- Let π be the long run stationary (or equilibrium) distribution of the controlled process $\{i_t, x_t\}$
- \blacktriangleright π is then given by the unique solution to the functional equation

$$\pi(x,i) = \int_{y} \int_{j} P(i|x,\theta)p(x|y,j,\theta_3)\pi(dy,dj)$$

- \blacktriangleright π is the ergodic distribution of the controlled state transition matrix
- ► Carly the equilibrium distribution of π is an implicit function of the structural parameters θ , which we emphasize by the notation π_{θ}
- ▶ Given π_{θ} , we can also obtain the following simple formula for annual equilibrium demand for engines as a function of RC

$$d(RC) = 12M \int_0^\infty \pi_\theta(dx, 1)$$

Equilibrium Bus mileage, bus group 4

Demand Function, bus group 4

Why not a reduced form for demand?

Reduced form

Regress engine replacements on replacement costs

Problem: Lack of variation in replacement costs

- ▶ Data would be clustered around the intersection of the demand curves for $\beta=0$ and $\beta=0.9999$ (both models predict that *RC* is around the actual RC of \$4343)
- ▶ Demand also depends on how operating costs varies with mileage
- Need exogenous variation in RC that doesn't vary with operating costs
- ► Even if we had exogenous variation, this does not help us to understand the underlying economic incentives

Structural Approach

Attractive features

- structural parameters have a transparent interpretation
- evaluation of (new) policy proposals by counterfactual simulations.
- economic theories can be tested directly against each other.
- economic assumptions are more transparent and explicit (compared to statistical assumptions)

Less attractive features

- ▶ We impose more structure and make more assumptions
- Truly "structural" (policy invariant) parameters may not exist
- The curse of dimensionality
- ► The identification problem
- The problem of multiplicity and indeterminacy of equilibria
- Intellectually demanding and a huge amount of work

Python resources: Ruspy

https://github.com/OpenSourceEconomics/ruspy

ruspy

Please visit our online documentation for tutorials and other information.