

Leveraging Large Language Models for Creative Story Generation

Yuetian Chen & Brendan Capuzzo

CSCI 4968-01 Machine Learning and Optimization, Spring 2023

Motivation

Interactive authoring system for story generation

Commercial AI text generators

→ Jasper: <u>https://www.jasper.ai/</u>

 \rightarrow Rytr: <u>https://rytr.me/</u>

. . .

- No direct control over the generated content
- No image generation
 - → Even if invoking a separate image generation process
 - → Can't incorporate content from the generated images into future storytelling
- Interactive authoring system
 - → Control story with keywords and emotions
 - → Image generation
 - → Efficient knowledge distillation

Related Work

Interactive authoring system for story generation

Neural-based story generation

- → Tambwekar, P.; et al. 2019. *Controllable Neural Story Plot Generation via Reward Shaping*.
- → Lili Yao; et al. 2019. *Plan-and-Write: Towards Better Automatic Storytelling*.

Knowledge Distillation

- → Zhen Huang; et al. 2021. *Revisiting knowledge distillation: An inheritance and exploration framework*
- → Yoon Kim; et al. 2016. Sequence-level knowledge distillation
- → Victor Sanh; et al. 2020. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter

Statement of the work

Interactive authoring system for story generation

- Separate authoring need from story composition
 - → User-controlled story generation with:
 - User's intention on key information
 - Priori knowledge of language models
- Knowledge distillation in finetuning procedure
 - → Transfer knowledge to a smaller student model
 - → Resulting model is more efficient with reduced computational resources
- Image generation prompted by text content
 - → Enhance the flexibility in generation
 - → Create immersion for design process
 - → Provide potential creation suggestions based on image content

Bring Language Model to Story Generation

Basic Principle: Visual + Text Interactive Generation

Dataset Format & Story Generation Process

ROCStories (Story Cloze Test)

- → A dataset evaluating narrative structure learning
 - *98,159* stories
- → Each story has a similar structure
 - Short narrative with *five* sentences
 - Logic & progression between sentences

Writing Prompts

- → 303,358 pairs of writing prompts and humanwritten stories
- → Sourced from Reddit's r/WritingPrompts forum
- → Diverse topics, lengths, and ideas

index	Sentence		
0	Marcus was collecting shells on the beach.		
1	He picked up a large beautiful shell.		
2	He put it in his pocket to save for later.		
3	Suddenly he felt a sharp pinch.		
4	A crab was inside the shell pinching his leg.		

index	Sentence		
0	Oswald decided to write a novel.		
1	He worked on his book for several months.		
2	Oswald took his book to a publisher.		
3	The publisher rejected his book almost immediately.		
4	Oswald decided to give up on writing.		

Text pipeline

Encode emotion information as the input of model

$$\rightarrow \forall \vec{C} \in D, \vec{C} = \begin{bmatrix} e_1 \\ \vdots \\ e_8 \end{bmatrix}, e \in [0, 1]$$

- \rightarrow 8-label prediction using RoBERTa_{large}
 - 78.3% Macro ROC AUC
- \rightarrow *Objective:*
 - generate confidence level of each emotion categories based on input sentence
- Generate a set of entities for next sentence
 - → Named entity extraction using sng_parser
 - \rightarrow *Objective:*
 - generate a set of entities based on context

Bring Language Model to Story Generation

Basic Principle: Visual + Text Interactive Generation

Text pipeline – Teacher Model

Teacher network: OPT 1.3B

- → Source of knowledge for the student model
- → Large, pre-trained language model
- → Trained on massive datasets; capture intricate

Model	# Parameters	Comparison
OPT 1.3B	1,300,000,000 (1.3b)	OPT is 5.9x more than T5
T5-Base	220,000,000 (220m)	

Architectural enhancements

- → Different positional encoding for processing large inputs
- → Contributes to coherent, contextually appropriate text generation

Text pipeline – Student Model

- Multi-task pre-training on multiple datasets
 - → CommenGen
 - mrm8488/t5-base-finetuned-common_gen
 - Constrained text generation task
 - Objective:
 - Vocabulary-based sentence construction

 hole

 LM

 A man is digging a hole
 near a tree
 - → Story Commonsense
 - Bring keywords and prompt template to task
 - Objective:
 - Generate next sentence based on input

Text pipeline – Implementation & Evaluation

Knowledge distillation process

$$\rightarrow \mathcal{L}_{ce} = KL\left(\sigma_m\left(\frac{logits_{student}}{T}\right) \mid\mid \sigma_m\left(\frac{logits_{teacher}}{T}\right)\right)$$

- $\rightarrow \mathcal{L}_{mlm} = \ell_{cross\ entropy}(logits_{student},\ input\ ids)$
- $\rightarrow \mathcal{L}_{cos} = \ell_{cosine \ loss}(h_{student}, h_{teacher}, target)$
- $\rightarrow \mathcal{L}_{total} = \alpha_{ce} \mathcal{L}_{ce} + \alpha_{mlm} \mathcal{L}_{mlm} + \alpha_{cos} \mathcal{L}_{cos}$
- \rightarrow Optimal: T=2, $\alpha_{ce}=0.4$, $\alpha_{mlm}=0.5$, $\alpha_{\cos}=0.1$.

• Evaluation metrics for generated content

- → BLEU, BERT-score, METEOR, SacreBLEU
- → Measures exact word matching, stemming, synonym matching

• Experimental results

- → Improvements in evaluation metrics compared to baseline model
- → Emotions, keywords, and knowledge distillation enhance story generation quality

Demo

http://vsg-ek.herokuapp.com/

Future Works & Conclusion

Visual Story Generation Based on Emotional and Keyword Scheme

Two key directions

→ Replace KL divergence with *Jensen-Shannon divergence*

$$JS(P,Q) = \frac{1}{2}KL(P \mid\mid M) + \frac{1}{2}KL(Q \mid\mid M), M = \frac{1}{2}(P + Q)$$

- Symmetry: consistent distance measure
- Smoothness: robust to noise and local minima
- → Explore *self-distillation* for language generation
 - *Regularization:* better generalization, reduced overfitting
 - *Simplification* of implementation: reduced computational overhead

Reference

- Banerjee, S., and Lavie, A. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the ACL Work- shop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, 65–72. Ann Arbor, Michigan: Association for Computational Linguistics.
- Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hierarchical neural story generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 889–898. Melbourne, Australia: Association for Computational Linguistics.
- Gerv as, P.; D az-Agudo, B.; Peinado, F.; and Herv as, R. 2005. Story plot generation based on cbr. In Knowl. Based Syst.
- Ibrahim, B. I. E.; Eyharabide, V.; Le Page, V.; and Billiet, F. 2022. Few-shot object detection: Application to medieval musicological studies. Journal of Imaging 8(2).
- Kiros, R.; Zhu, Y.; Salakhutdinov, R. R.; Zemel, R.; Urta- sun, R.; Torralba, A.; and Fidler, S. 2015. Skip-thought vectors. In Cortes, C.; Lawrence, N.; Lee, D.; Sugiyama, M.; and Garnett, R., eds., Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.
- Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013. Story generation with crowdsourced plot graphs. Proceed- ings of the 27th AAAI Conference on Artificial Intelligence, AAAI 2013 598–604.
- Lin, C.-Y., and Och, F. J. 2004. ORANGE: a method for evaluating automatic evaluation metrics for machine trans- lation. In COLING 2004: Proceedings of the 20th International Conference on Computational Linguistics, 501–507. Geneva, Switzerland: COLING.
- Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C. L.; and Doll ar, P. 2014. Microsoft coco: Common objects in context.
- Lin, T.-Y.; Doll'ar, P.; Girshick, R.; He, K.; Hariharan, B.; and Belongie, S. 2016. Feature pyramid networks for object detection.
- Lin, B. Y.; Zhou, W.; Shen, M.; Zhou, P.; Bhagavatula, C.; Choi, Y.; and Ren, X. 2019. Commongen: A constrained text generation challenge for generative commonsense rea-soning. arXiv preprint arXiv:1911.03705.
- Liu, D.; Li, J.; Yu, M.-H.; Huang, Z.; Liu, G.; Zhao, D.; and Yan, R. 2020. A character-centric neural model for auto- mated story generation. Proceedings of the AAAI Confer- ence on Artificial Intelligence 34(02):1725–1732.
- Meehan, J. R. 1977. Tale-spin, an interactive program that writes stories. In IJCAI.
- Montfort, N. 2007. Generating narrative variation in inter- active fiction. Dissertations available from ProQuest.
- Mostafazadeh, N.; Chambers, N.; He, X.; Parikh, D.; Batra, D.; Vanderwende, L.; Kohli, P.; and Allen, J. 2016a. A corpus and evaluation framework for deeper understanding of commonsense stories. arXiv preprint arXiv:1604.01696.
- Mostafazadeh, N.; Grealish, A.; Chambers, N.; Allen, J.; and Vanderwende, L. 2016b. CaTeRS: Causal and temporal re-lation scheme for semantic annotation of event structures. In Proceedings of the Fourth Workshop on Events, 51–61. San Diego, California: Association for Computational Linguis- tics.
- Onega, S., and Landa, J. A. G. 2014. Narratology: an intro-duction. Routledge.
- Post, M. 2018. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine Trans-lation: Research Papers, 186–191. Belgium, Brussels: As-sociation for Computational Linguistics.
- Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; Krueger, G.; and Sutskever, I. 2021. Learning transferable visual models from natural language supervision.

Q & A

1. State-of-the-art Work of Short Narrative Creation

- Separate authoring need from story composition need
- Prompt-based learning for image generation

2. Statement of the work

• Basic Principle: Visual + Text Interactive Generation

3. Implementation of an End-to-end Pipeline

- Part 1 Suggester & Prompt Learning
 - → Named Entities + Sentiments Label + Context = Controlled story...
- Part 2 Knowledge distillation

4. Demo - http://vsg-ek.herokuapp.com/

Modify suggested keywords for real-time plot changes based on requirements

5. Future Improvement & Conclusion

• Jensen-Shannon divergence & self-distillation...