Basic number theory in competitive programming

Gleb Evstropov

Primality testing and factorization

- 1. Naïve algorithm just checks all candidate divisors from 1 to x. Runs in O(p)
- 2. If p is not prime, it can be represented as $x \cdot y = p$, x > 1, y > 1
- 3. Either x or y should be less than \sqrt{p}
- 4. Consecutively try each value from 2 to \sqrt{p} , divide if possible
- 5. Check whether remaining value is > 1
- 6. We have found each prime and its degree that is called factorization
- 7. Every divisor can be expressed as a tuple
- 8. Faster factorization algorithms and primality tests are out of focus

Euclidean algorithm

- 1. GCD stands for Greatest Common Divisor
- 2. First we compute GCD of x > 0 and y > 0.
- 3. gcd(x, y) = gcd(x + y, y)
- 4. The above implies that gcd(x, y) = gcd(x y, y)
- 5. The above implies that $gcd(x, y) = gcd(x \mod y, y)$
- 6. Continue the process until x = 0 or y = 0
- 7. This process is often referred as Euclid algorithm

Modulo operation

- 1. You can add, subtract and multiply modulo non-prime m
- 2. If m is prime division is defined for any x and y (y > 0)
- 3. Little Fermat's theorem claims $a^p \equiv a \pmod{p}$
- 4. Thus $a^{p-2} \equiv a^{-1} \pmod{p}$ so $\frac{a}{b} \equiv a \cdot b^{p-2} \pmod{p}$
- 5. To compute $a^b mod c$ use binary exponentiation (by squaring)
- 6. If $b \mod 2 = 1$ then $a^b \mod c = a^{b-1} \cdot a \mod c$
- 7. If $b \mod 2 = 0$ then $a^b \mod c = (a^{\frac{b}{2}})^2 \mod c$

Euler function

- 1. Euler function $\phi(n)$ is the number of co-prime (x, n), where 0 < x < n
- 2. $\phi(1)$ is explicitly set to 1
- 3. $\phi(p) = p 1$ and $\phi(p^k) = p^k p^{k-1}$
- 4. $\phi(a \cdot b) = \phi(a) \cdot \phi(b)$ for co-prime a and b
- 5. Can be computed fast if factorization is known
- 6. $n = p_1^{d_1} p_2^{d_2} p_3^{d_3} \dots p_k^{d_k}$
- 7. $\phi(n) = \phi(p_1)\phi(p_2)...\phi(p_k) = (p_1^{d_1} p_1^{d_1-1}) (p_2^{d_2} p_2^{d_2-1})...(p_k^{d_k} p_k^{d_k-1})$

Diophantine equation

- 1. Polynomial equations for which integer solution is sought
- 2. Linear equation of one variable is trivial ax = b
- 3. Linear equation of two variables ax + by = c
- 4. Let d = gcd(a, b), if c is not divisible by d there is no solution
- 5. Divide a, b and c by d
- 6. We actually need to solve ax + by = 1, as we can simply multiply its solution by c to get solution for ax + by = c
- 7. If a and b are co-prime (and they are after step 5) the solution always exists and can be found with Extended Euclidean algorithm

Extended Euclidean algorithm

- 1. Let us have an equation ax + by = 1
- 2. Without loss of generality assume $a \ge b$
- 3. Let x' and y' be solutions of (a b)x' + by' = 1
- 4. Then x = x' and y = y' + x'
- 5. Let a = kb + r, x' and y' be such that rx' + by' = 1
- 6. Then x = x' and y = y' + kx'
- 7. The above algorithm works in logarithmic time

Chinese Remainder Theorem

- 1. Given $n = n_1 n_2 n_3 \dots n_k$
- 2. For any $i \neq j$ values n_i and n_j are co-prime
- 3. We know $x \equiv x_i \pmod{n_i}$, find any valid x from 0 to n 1
- 4. If x is valid solution, $x + k \cdot n$ is a valid solution for any integer k
- 5. Consider $x \equiv x_1 \pmod{n_1}$ and $x \equiv x_2 \pmod{n_2}$
- 6. $x = an_1 + x_1$ for first equation and $x = bn_2 + x_2$ for second
- 7. Thus $an_1 + x_1 = bn_2 + x_2$, i. e. $an_1 bn_2 = x_2 x_1$
- 8. The above can be solved with Extended Euclidean algorithm
- 9. New equation $x \equiv an_1 + x_1 \pmod{n_1n_2}$ is introduced

Sieve of Eratosthenes

- 1. For each integer from 1 to n find out whether it is prime
- 2. Initially set each prime mark p(x) = true except for p(1) = false
- 3. Go from 2 to n, if p(x) is true we should exclude all integers $x \cdot y \le n$
- 4. Works in O(n log n) time is we consider y from 2 to n / x for any integer
- 5. Actual complexity is O(n log log n) as we try y's only for prime x
- 6. We can compute minimal divisor (non-trivial) for every n in the same way
- 7. Array d(i) stores minimum prime divisor of i
- 8. Value d(i) = i means i is prime
- 9. Assign $d(x \cdot y) = min(d(x \cdot y), x)$ for each y from x to n / x

Wikipedia references

- 1. https://en.wikipedia.org/wiki/Factorization
- 2. https://en.wikipedia.org/wiki/Euclidean_algorithm
- 3. https://en.wikipedia.org/wiki/Euler_function
- 4. https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
- 5. https://en.wikipedia.org/wiki/Chinese_remainder_theorem
- 6. https://en.wikipedia.org/wiki/Diophantine_equation

Bonus read

- 1. https://en.wikipedia.org/wiki/RSA_(cryptosystem)
- 2. https://en.wikipedia.org/wiki/Miller-Rabin_primality_test
- 3. https://en.wikipedia.org/wiki/Pollard_rho_algorithm