

Universidad de Buenos Aires Facultad de Ingeniería

2do Cuatrimestre de 2023 Análisis Numérico I (75.12)

Ecuaciones Diferenciales Ordinarias

Curso:

Sassano

Integrantes:

Francisco Orquera Lorda	forqueral@fi.uba.ar	105554
Carolina Di Matteo	cdimatteo@fi.uba.ar	103963
Anita Vernieri	avernieri@fi.uba.ar	104734
María Zanatta	mzanatta@fi.uba.ar	108148

Lenguajes Elegidos: Python

Tabla de Contenidos

Tabla de Contenidos	1
Objetivo del Trabajo	1
Introducción	1
Desarrollo	2
a) Discretización a través del Método de Runge-Kutta de Orden 2	2
b) Simulación a través del Método de Runge-Kutta de Orden 4	
c) Gráfico de las Soluciones Obtenidas	4
Resultados	4
Tabla simulación método Runge-Kutta de Orden 4.	4
Ecuaciones	5
Conclusiones	5
Referencias	7

Objetivo del Trabajo

Con el objeto de completar las solicitudes que respecta al enunciado del Segundo Trabajo Práctico de la materia Análisis Numérico I, estudiaremos y desarrollaremos

- La resolución en cuaderno de una Ecuación Diferencial Ordinaria a través del método de Runge-Kutta de orden dos.
- La resolución en computadora de una EDO a través de una simulación usando el método de Runge-Kutta de orden cuatro.
- La representación gráfica de las soluciones obtenidas.

Introducción

Este trabajo práctico se centra en implementar métodos numéricos de resolución de ecuaciones diferenciales, en particular el método de Runge-Kutta.

El sistema que se busca resolver es el del modelo de depredador-presa conocido como las ecuaciones de LotkaVolterra. El ejemplo más simple de este sistema es el siguiente:

$$(1) \quad \frac{\delta x}{\delta t} = ax - bxy$$

$$(2) \quad \frac{\delta y}{\delta t} = dxy - cy$$

Dónde \mathbf{x} es el número de presas, \mathbf{y} es el número de depredadores, \mathbf{a} es la razón de crecimiento de las presas, \mathbf{c} es la razón de muerte del depredador y \mathbf{b} y \mathbf{d} son la razón que caracteriza el efecto de interacción presa – depredador sobre la muerte de presas y el crecimiento del depredador respectivamente. En este trabajo práctico se utilizarán los siguientes valores para los parámetros: a = 1, 2, b = 0, 6, c = 0, 8, d = 0, 3.

En primer lugar se va a realizar *a mano* (describiendo formalmente las ecuaciones utilizadas) la discretización a través del método de Runge-Kutta de Orden 2, planteando la respuesta en función de las condiciones iniciales para luego resolver dos avances de este.

Luego se va a realizar una simulación en computadora a través del método de Runge-Kutta de Orden 4 para obtener las soluciones desde t=0 hasta t=30 que, por último, serán graficadas en un gráfico de *población-tiempo*.

Desarrollo

Partiendo del sistema de ecuaciones de *LoktaVolterra*, desarrollaremos el análisis realizado para cada uno de los incisos planteados en el enunciado propuesto.

a) Discretización a través del Método de Runge-Kutta de Orden 2

Para la resolución del ejercicio, y con el objetivo de facilitar las cuentas que este implica, tomamos $a_2 = 1$ tal que el método de Runge-Kutta se denomina como *del punto medio*. Luego, usando un paso de 0, 1 tenemos:

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + 0,1 \begin{bmatrix} m_2 \\ k_2 \end{bmatrix}$$

$$\begin{split} m_1 &= 1, 2 \cdot x_i - 0, 6 \cdot x_i \cdot y_i \\ k_1 &= 0, 3 \cdot x_i \cdot y_i - 0, 8 \cdot y_i \\ m_2 &= f \Big(t_i + 0, 05, x_i + 0, 05 \cdot m_1, y_i + 0, 05 \cdot k_1 \Big) = \dots \\ \dots &= 1, 2 \cdot \Big(x_i + 0, 05 \cdot m_1 \Big) - 0, 6 \cdot \Big(x_i + 0, 05 \cdot m_1 \Big) \cdot \Big(y_i + 0, 05 \cdot k_1 \Big) \\ k_2 &= g \Big(t_i + 0, 05, x_i + 0, 05 \cdot m_1, y_i + 0, 05 \cdot k_1 \Big) = \dots \\ \dots &= 0, 3 \cdot \Big(x_i + 0, 05 \cdot m_1 \Big) \cdot \Big(y_i + 0, 05 \cdot k_1 \Big) - 0, 8 \cdot \Big(y_i + 0, 05 \cdot k_1 \Big) \end{split}$$

1er Iteración

$$\begin{split} i &= 0, \ x_0 = 2, \ y_0 = 1 \\ m_1 &= 1, 2 \cdot x_0 - 0, 6 \cdot x_0 \cdot y_0 = 1, 2 \cdot 2 - 0, 6 \cdot 2 \cdot 1 = 1, 2 \\ k_1 &= 0, 3 \cdot x_0 \cdot y_0 - 0, 8 \cdot y_0 = 0, 3 \cdot 2 \cdot 1 - 0, 8 \cdot 1 = -0, 2 \\ m_2 &= 1, 2 \cdot \left(x_0 + 0, 05 \cdot m_1\right) - 0, 6 \cdot \left(x_0 + 0, 05 \cdot m_1\right) \cdot \left(y_0 + 0, 05 \cdot k_1\right) = \dots \\ \dots &= 1, 2 \cdot (2 + 0, 05 \cdot 1, 2) - 0, 6 \cdot (2 + 0, 05 \cdot 1, 2) \cdot (1 + 0, 05 \cdot (-0, 2)) = 1,24836 \\ k_2 &= 0, 3 \cdot \left(x_0 + 0, 05 \cdot m_1\right) \cdot \left(y_0 + 0, 05 \cdot k_1\right) - 0, 8 \cdot \left(y_0 + 0, 05 \cdot k_1\right) = \dots \\ \dots &= 0, 3 \cdot (2 + 0, 05 \cdot 1, 2) \cdot (1 + 0, 05 \cdot (-0, 2)) - 0, 8 \cdot (1 + 0, 05 \cdot (-0, 2)) = -0,18018 \end{split}$$

Luego,

$$\begin{bmatrix} x(0,1) \\ y(0,1) \end{bmatrix} \approx \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 0,1 \begin{bmatrix} 1,24836 \\ -0,18018 \end{bmatrix} = \begin{bmatrix} 2,124836 \\ 0,981982 \end{bmatrix}$$

2da Iteración

$$\begin{split} i &= 1, \ x_{_1} = 2,124836, \ y_{_1} = 0,981982 \\ m_{_1} &= 1,2 \cdot x_{_1} - 0,6 \cdot x_{_1} \cdot y_{_1} = 1,2 \cdot 2,124836 - 0,6 \cdot 2,124836 \cdot 0,981982 = 1,29787 \\ k_{_1} &= 0,3 \cdot x_{_1} \cdot y_{_1} - 0,8 \cdot y_{_1} = 0,3 \cdot 2,124836 \cdot 0,981982 - 0,8 \cdot 0,981982 = -0,15962 \\ m_{_2} &= 1,2 \cdot \left(x_{_1} + 0,05 \cdot m_{_1}\right) - 0,6 \cdot \left(x_{_1} + 0,05 \cdot m_{_1}\right) \cdot \left(y_{_1} + 0,05 \cdot k_{_1}\right) = \dots \\ \dots &= 1,2 \cdot (2,124836 + 0,05 \cdot 1,29787) - \dots \\ \dots &= 0,6 \cdot (2,124836 + 0,05 \cdot 1,29787) \cdot (0,981982 + 0,05 \cdot (-0,15962)) = 1,3480 \end{split}$$

$$\begin{aligned} k_2 &= 0, 3 \, \cdot \left(x_1 + 0,05 \cdot m_1\right) \cdot \left(y_1 + 0,05 \cdot k_1\right) - \, 0, 8 \, \cdot \left(y_1 + 0,05 \cdot k_1\right) = \dots \\ &\dots &= 0, 3 \, \cdot \left(2,124836 + 0,05 \cdot 1,29787\right) \cdot \left(0,981982 + 0,05 \cdot \left(-0,15962\right)\right) - \dots \\ &\dots &= - \, 0, 8 \, \cdot \left(0,981982 + 0,05 \cdot \left(-0,15962\right)\right) = - \, 0,13936 \end{aligned}$$
 Luego,

$$\begin{bmatrix} x(0,2) \\ y(0,2) \end{bmatrix} \approx \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 2,124836 \\ 0,981982 \end{bmatrix} + 0,1 \begin{bmatrix} 1,3480 \\ -0,13936 \end{bmatrix} = \begin{bmatrix} 2,25964 \\ 0,96805 \end{bmatrix}$$

b) Simulación a través del Método de Runge-Kutta de Orden 4

Realizando una simulación a través del Método de Runge-Kutta de Orden 4 con paso 0,1 desde t=0 hasta t=30 obtenemos:

t_{i}	x_{i}	y_i
0.00000	2.00000	1.00000
0.10000	2.12486	0.98201
0.20000	2.25968	0.96811
0.30000	2.40476	0.95842
0.40000	2.56030	0.95312
0.50000	2.72640	0.95242
29.60000	4.12319	3.27674
29.70000	3.80375	3.40677
29.80000	3.48473	3.50811
29.90000	3.17604	3.57853
30.00000	2.88520	3.61763

c) Gráfico de las Soluciones Obtenidas

Gráfico 1: gráfico de poblaciones de presa y predador obtenido con los resultados del método de Runge-Kutta de orden 4

Resultados

Tabla simulación método Runge-Kutta de Orden 4

Veamos en detalle los resultados obtenidos para la simulación a través del Método de Runge-Kutta de Orden Cuatro:

t_i	x_i		y_i
0.00000	2.00000		1.00000
0.10000	2.12486		0.98201
0.20000	2.25968		0.96811
0.30000	2.40476		0.95842
0.40000	2.56030		0.95312
0.50000	2.72640		0.95242
0.60000	2.90298		0.95664
0.70000	3.08972		0.96612
0.80000	3.28605		0.98133
0.90000	3.49103		1.00279
1.00000	3.70326		1.03116
	•••		
29.00000	5.40725		2.19342
29.10000	5.31550		2.37845
29.20000	5.16652		2.56978
29.30000	4.96413		2.76186
29.40000	4.71566		2.94823
29.50000	4.43134	ĺ	3.12204

29.60000	4.12319	3.27674
29.70000	3.80375	3.40677
29.80000	3.48473	3.50811
29.90000	3.17604	3.57853
30.00000	2.88520	3.61763

Ecuaciones

• Sistema de ecuaciones de estudio: (sistema Lotka-Volterra)

$$f(t, x, y) = \frac{\delta x}{\delta t} = a \cdot x - b \cdot x \cdot y = 1, 2 \cdot x - 0, 6 \cdot x \cdot y$$
$$g(t, x, y) = \frac{\delta y}{\delta t} = d \cdot x \cdot y - c \cdot y = 0, 3 \cdot x \cdot y - 0, 8 \cdot y$$

• Método de Runge-Kutta del punto medio

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + h \begin{bmatrix} m_2 \\ k_2 \end{bmatrix}$$

$$\begin{split} m_1 &= f \Big(t_{i'} \, x_{i'} \, y_{i} \Big) \\ k_1 &= g \Big(t_{i'} \, x_{i'} \, y_{i} \Big) \\ m_2 &= f \Big(t_i + \frac{h}{2}, x_i + \frac{h}{2} \cdot m_1, y_i + \frac{h}{2} \cdot k_1 \Big) \\ k_2 &= g \Big(t_i + \frac{h}{2}, x_i + \frac{h}{2} \cdot m_1, y_i + \frac{h}{2} \cdot k_1 \Big) \end{split}$$

• Método de Runge-Kutta de orden 4

$$\begin{bmatrix} x_{i+1} \\ y_{i+1} \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + h/6 \begin{bmatrix} m_1 + 2m_2 + 2m_3 + m_4 \\ k_1 + 2k_2 + 2k_3 + k_4 \end{bmatrix}$$

$$\begin{split} m_1 &= f \Big(t_{i'} x_{i'} y_{i} \Big) \\ k_1 &= g \Big(t_{i'} x_{i'} y_{i} \Big) \\ m_2 &= f \Big(t_i + \frac{h}{2}, x_i + \frac{h}{2} \cdot m_1, y_i + \frac{h}{2} \cdot k_1 \Big) \\ k_2 &= g \Big(t_i + \frac{h}{2}, x_i + \frac{h}{2} \cdot m_1, y_i + \frac{h}{2} \cdot k_1 \Big) \\ m_3 &= f \Big(t_i + \frac{h}{2}, x_i + \frac{h}{2} \cdot m_2, y_i + \frac{h}{2} \cdot k_2 \Big) \\ k_3 &= g \Big(t_i + \frac{h}{2}, x_i + \frac{h}{2} \cdot m_2, y_i + \frac{h}{2} \cdot k_2 \Big) \\ m_4 &= f \Big(t_i + h, x_i + h \cdot m_3, y_i + h \cdot k_3 \Big) \\ k_4 &= g \Big(t_i + h, x_i + h \cdot m_3, y_i + h \cdot k_3 \Big) \end{split}$$

Conclusiones

Bajo el sistema Lotka-Volterra fue posible describir una dinámica, a través de la simulación del método de Runge-Kutta, para analizar cómo se desarrollaría una coexistencia de dos especies, *presa* y *predador*. En el gráfico

obtenido se puede observar cómo se forma un equilibrio entre ambas especies pareciendo sus ecuaciones de población oscilatorias, que se mantienen dentro de una amplitud y nunca llegan a 0 (las especies no llegan a extinguirse).

Referencias

- 1. Análisis Numérico Richard L. Burden
- 2. Diapositivas de Clase