Algorithms and Analysis

Lesson 13: Make a hash of it

Hash tables, separate chaining, open addressing, linear/quadratic probing, double hashing

Outline

- 1. Why Hash?
- 2. Separate Chaining
- 3. Open Addressing
 - Quadratic Probing
 - Double Hashing
- 4. Hash Set and Map

- Suppose we have a list of objects which we want to look up according to its contents
- This is often referred to as associative memory structures
- A classical example would be a telephone directory
 - ★ We look up a name
 - * We want to know the number
- What data structure should we use?

- Suppose we have a list of objects which we want to look up according to its contents
- This is often referred to as associative memory structures
- A classical example would be a telephone directory
 - ★ We look up a name
 - * We want to know the number
- What data structure should we use?

- Suppose we have a list of objects which we want to look up according to its contents
- This is often referred to as associative memory structures
- A classical example would be a telephone directory
 - ★ We look up a name
 - * We want to know the number
- What data structure should we use?

- Suppose we have a list of objects which we want to look up according to its contents
- This is often referred to as associative memory structures
- A classical example would be a telephone directory
 - ★ We look up a name
 - * We want to know the number
- What data structure should we use?

- Suppose we have a list of objects which we want to look up according to its contents
- This is often referred to as associative memory structures
- A classical example would be a telephone directory
 - ★ We look up a name
 - * We want to know the number
- What data structure should we use?

- To find an entry in a normal list takes $\Theta(n)$ operations
- If we had a sorted list we could use "binary search" to reduce this to $\Theta(\log(n))$
 - ★ We will study binary search later
 - \star Maintaining an ordered list is costly ($\Theta(n)$ insertions)
- We could use a binary search tree
 - \star Search is $\Theta(\log(n))$
 - \star Insertion/deletion is $\Theta(\log(n))$

- To find an entry in a normal list takes $\Theta(n)$ operations
- If we had a sorted list we could use "binary search" to reduce this to $\Theta(\log(n))$
 - ★ We will study binary search later
 - \star Maintaining an ordered list is costly ($\Theta(n)$ insertions)
- We could use a binary search tree
 - \star Search is $\Theta(\log(n))$
 - \star Insertion/deletion is $\Theta(\log(n))$

- To find an entry in a normal list takes $\Theta(n)$ operations
- If we had a sorted list we could use "binary search" to reduce this to $\Theta(\log(n))$
 - ★ We will study binary search later
 - \star Maintaining an ordered list is costly ($\Theta(n)$ insertions)
- We could use a binary search tree
 - \star Search is $\Theta(\log(n))$
 - \star Insertion/deletion is $\Theta(\log(n))$

- To find an entry in a normal list takes $\Theta(n)$ operations
- If we had a sorted list we could use "binary search" to reduce this to $\Theta(\log(n))$
 - ★ We will study binary search later
 - \star Maintaining an ordered list is costly ($\Theta(n)$ insertions)
- We could use a binary search tree
 - \star Search is $\Theta(\log(n))$
 - \star Insertion/deletion is $\Theta(\log(n))$

- To find an entry in a normal list takes $\Theta(n)$ operations
- If we had a sorted list we could use "binary search" to reduce this to $\Theta(\log(n))$
 - ★ We will study binary search later
 - \star Maintaining an ordered list is costly ($\Theta(n)$ insertions)
- We could use a binary search tree
 - \star Search is $\Theta(\log(n))$
 - \star Insertion/deletion is $\Theta(\log(n))$

- To find an entry in a normal list takes $\Theta(n)$ operations
- If we had a sorted list we could use "binary search" to reduce this to $\Theta(\log(n))$
 - ★ We will study binary search later
 - \star Maintaining an ordered list is costly ($\Theta(n)$ insertions)
- We could use a binary search tree
 - \star Search is $\Theta(\log(n))$
 - \star Insertion/deletion is $\Theta(\log(n))$

- To find an entry in a normal list takes $\Theta(n)$ operations
- If we had a sorted list we could use "binary search" to reduce this to $\Theta(\log(n))$
 - ★ We will study binary search later
 - \star Maintaining an ordered list is costly ($\Theta(n)$ insertions)
- We could use a binary search tree
 - \star Search is $\Theta(\log(n))$
 - \star Insertion/deletion is $\Theta(\log(n))$

- As with many data structures thinking about the problem differently can lead to much better solutions
- Let us consider the content we want to search on as a key
- For telephone numbers the key would be the name of the person we want to phone
- We could get O(1) search, insertion and deletion if we used the key as an index into a big array
- That is the key is a string of, say, 100 characters so can be represented by an 800 digit binary number
- We could look up the key in a table of 2^{800} items

- As with many data structures thinking about the problem differently can lead to much better solutions
- Let us consider the content we want to search on as a key
- For telephone numbers the key would be the name of the person we want to phone
- We could get O(1) search, insertion and deletion if we used the key as an index into a big array
- That is the key is a string of, say, 100 characters so can be represented by an 800 digit binary number
- ullet We could look up the key in a table of 2^{800} items

- As with many data structures thinking about the problem differently can lead to much better solutions
- Let us consider the content we want to search on as a key
- For telephone numbers the key would be the name of the person we want to phone
- We could get O(1) search, insertion and deletion if we used the key as an index into a big array
- That is the key is a string of, say, 100 characters so can be represented by an 800 digit binary number
- We could look up the key in a table of 2^{800} items

- As with many data structures thinking about the problem differently can lead to much better solutions
- Let us consider the content we want to search on as a key
- For telephone numbers the key would be the name of the person we want to phone
- ullet We could get O(1) search, insertion and deletion if we used the key as an index into a big array
- That is the key is a string of, say, 100 characters so can be represented by an 800 digit binary number
- We could look up the key in a table of 2^{800} items

- As with many data structures thinking about the problem differently can lead to much better solutions
- Let us consider the content we want to search on as a key
- For telephone numbers the key would be the name of the person we want to phone
- We could get O(1) search, insertion and deletion if we used the key as an index into a big array
- That is the key is a string of, say, 100 characters so can be represented by an 800 digit binary number
- We could look up the key in a table of 2^{800} items

- As with many data structures thinking about the problem differently can lead to much better solutions
- Let us consider the content we want to search on as a key
- For telephone numbers the key would be the name of the person we want to phone
- We could get O(1) search, insertion and deletion if we used the key as an index into a big array
- That is the key is a string of, say, 100 characters so can be represented by an 800 digit binary number
- ullet We could look up the key in a table of 2^{800} items

- This approach is slightly wasteful of memory
- Almost all memory locations would be empty
- We can save on memory by folding up the table up onto itself

- This approach is slightly wasteful of memory
- Almost all memory locations would be empty
- We can save on memory by folding up the table up onto itself

- This approach is slightly wasteful of memory
- Almost all memory locations would be empty
- We can save on memory by folding up the table up onto itself

- This approach is slightly wasteful of memory
- Almost all memory locations would be empty
- We can save on memory by folding up the table up onto itself

Hashing Codes

- A hashing function hashCode(x) takes an object, x, and returns a positive integer, the hash code
- To turn the hash code into an address take the modulus of the table size

```
int index = abs(hashCode(x) % tableSize);
```

• If $tableSize = 2^n$ we can compute this more efficiently using a mask

```
int index = abs(hashCode(x) & (tableSize -1));
```

Hashing Codes

- A hashing function hashCode (x) takes an object, x, and returns a positive integer, the hash code
- To turn the hash code into an address take the modulus of the table size

```
int index = abs(hashCode(x) % tableSize);
```

• If $tableSize = 2^n$ we can compute this more efficiently using a mask

```
int index = abs(hashCode(x) & (tableSize -1));
```

Hashing Codes

- A hashing function hashCode(x) takes an object, x, and returns a positive integer, the hash code
- To turn the hash code into an address take the modulus of the table size

```
int index = abs(hashCode(x) % tableSize);
```

ullet If tableSize $=2^n$ we can compute this more efficiently using a mask

```
int index = abs(hashCode(x) & (tableSize -1));
```

- Hashing functions take an object and return an integer
- Hashing functions aren't magic
 - They tend to add up integers representing the parts of the object
- We want the integers to be close to random so that similar objects are mapped to different integers
- Sometimes two objects will be mapped to the same address—this
 is known as a collision
- Collision resolution is an important part of hashing

- Hashing functions take an object and return an integer
- Hashing functions aren't magic
 - They tend to add up integers representing the parts of the object
- We want the integers to be close to random so that similar objects are mapped to different integers
- Sometimes two objects will be mapped to the same address—this
 is known as a collision
- Collision resolution is an important part of hashing

- Hashing functions take an object and return an integer
- Hashing functions aren't magic
 - * They tend to add up integers representing the parts of the object
- We want the integers to be close to random so that similar objects are mapped to different integers
- Sometimes two objects will be mapped to the same address—this
 is known as a collision
- Collision resolution is an important part of hashing

- Hashing functions take an object and return an integer
- Hashing functions aren't magic
 - They tend to add up integers representing the parts of the object
- We want the integers to be close to random so that similar objects are mapped to different integers
- Sometimes two objects will be mapped to the same address—this
 is known as a collision
- Collision resolution is an important part of hashing

- Hashing functions take an object and return an integer
- Hashing functions aren't magic
 - They tend to add up integers representing the parts of the object
- We want the integers to be close to random so that similar objects are mapped to different integers
- Sometimes two objects will be mapped to the same address—this
 is known as a collision
- Collision resolution is an important part of hashing

- Hashing functions take an object and return an integer
- Hashing functions aren't magic
 - They tend to add up integers representing the parts of the object
- We want the integers to be close to random so that similar objects are mapped to different integers
- Sometimes two objects will be mapped to the same address—this
 is known as a collision
- Collision resolution is an important part of hashing

- Hashing functions take an object and return an integer
- Hashing functions aren't magic
 - They tend to add up integers representing the parts of the object
- We want the integers to be close to random so that similar objects are mapped to different integers
- Sometimes two objects will be mapped to the same address—this
 is known as a collision
- Collision resolution is an important part of hashing

Hashing Strings

A strings might be hashed using a function

```
unsigned long long hash(string const& s) {
  unsigned long long results = 12345;

for (auto ch = s.begin(); ch != s.end(); ++ch) {
    results = 127*results + static_cast<unsigned char>(*ch);
  }
  return results;
}
```

• The numbers 12345 and 127 is to try to prevent clashes

Hashing Strings

A strings might be hashed using a function

```
unsigned long long hash(string const& s) {
  unsigned long long results = 12345;

for (auto ch = s.begin(); ch != s.end(); ++ch) {
    results = 127*results + static_cast<unsigned char>(*ch);
  }
  return results;
}
```

• The numbers 12345 and 127 is to try to prevent clashes

Hashing Strings

A strings might be hashed using a function

```
unsigned long long hash(string const& s) {
  unsigned long long results = 12345;

for (auto ch = s.begin(); ch != s.end(); ++ch) {
    results = 127*results + static_cast<unsigned char>(*ch);
  }
  return results;
}
```

• The numbers 12345 and 127 is to try to prevent clashes

Hashing Strings

A strings might be hashed using a function

```
unsigned long long hash(string const& s) {
  unsigned long long results = 12345;

for (auto ch = s.begin(); ch != s.end(); ++ch) {
    results = 127*results + static_cast<unsigned char>(*ch);
  }
  return results;
}
```

The numbers 12345 and 127 is to try to prevent clashes—there are lots of alternatives

Hashing Strings

A strings might be hashed using a function

```
unsigned long long hash(string const& s) {
  unsigned long long results = 12345;

for (auto ch = s.begin(); ch != s.end(); ++ch) {
    results = 127*results + static_cast<unsigned char>(*ch);
  }
  return results;
}
```

- The numbers 12345 and 127 is to try to prevent clashes—there are lots of alternatives
- What we want is that strings that might be similar receive very different hash codes

- The unordered_set<T, Hash<T> > allows you to define your own hash function
- By default this is set to std::hash<T>(T)
- Not all classes have hash function defined so you will need to do this
- Care is needed to make you hash function produce near random hash codes

- The unordered_set<T, Hash<T> > allows you to define your own hash function
- By default this is set to std::hash<T>(T)
- Not all classes have hash function defined so you will need to do this
- Care is needed to make you hash function produce near random hash codes

- The unordered_set<T, Hash<T> > allows you to define your own hash function
- By default this is set to std::hash<T>(T)
- Not all classes have hash function defined so you will need to do this
- Care is needed to make you hash function produce near random hash codes

- The unordered_set<T, Hash<T> > allows you to define your own hash function
- By default this is set to std::hash<T>(T)
- Not all classes have hash function defined so you will need to do this
- Care is needed to make you hash function produce near random hash codes

Outline

- 1. Why Hash?
- 2. Separate Chaining
- 3. Open Addressing
 - Quadratic Probing
 - Double Hashing
- 4. Hash Set and Map

- Collisions are inevitable and must be dealt with
- There are two commonly used strategies
 - ★ Separate chaining—make a hash table of lists
 - ⋆ Open addressing—find a new position in the hash table
- Collisions add computational cost
- They occur when the hash table becomes full
- If the hash table becomes too full then it may need to be resized

- Collisions are inevitable and must be dealt with
- There are two commonly used strategies
 - ★ Separate chaining—make a hash table of lists
 - ⋆ Open addressing—find a new position in the hash table
- Collisions add computational cost
- They occur when the hash table becomes full
- If the hash table becomes too full then it may need to be resized

- Collisions are inevitable and must be dealt with
- There are two commonly used strategies
 - * Separate chaining—make a hash table of lists
 - ⋆ Open addressing—find a new position in the hash table
- Collisions add computational cost
- They occur when the hash table becomes full
- If the hash table becomes too full then it may need to be resized

- Collisions are inevitable and must be dealt with
- There are two commonly used strategies
 - ★ Separate chaining—make a hash table of lists
 - * Open addressing—find a new position in the hash table
- Collisions add computational cost
- They occur when the hash table becomes full
- If the hash table becomes too full then it may need to be resized

- Collisions are inevitable and must be dealt with
- There are two commonly used strategies
 - ★ Separate chaining—make a hash table of lists
 - ⋆ Open addressing—find a new position in the hash table
- Collisions add computational cost
- They occur when the hash table becomes full
- If the hash table becomes too full then it may need to be resized

- Collisions are inevitable and must be dealt with
- There are two commonly used strategies
 - ★ Separate chaining—make a hash table of lists
 - ⋆ Open addressing—find a new position in the hash table
- Collisions add computational cost
- They occur when the hash table becomes full
- If the hash table becomes too full then it may need to be resized

- Collisions are inevitable and must be dealt with
- There are two commonly used strategies
 - ★ Separate chaining—make a hash table of lists
 - ⋆ Open addressing—find a new position in the hash table
- Collisions add computational cost
- They occur when the hash table becomes full
- If the hash table becomes too full then it may need to be resized

- Resizing a hash table is easy
 - * Create a new hash table of, say, twice the size
 - Iterate through the old hash table adding each element to the new hash table
- Note that you have to recompute all the hash codes
- Resizing a hash table has a modest amortised cost, but can give you a very hiccupy performance
- The size of a hash table is a classic example of a memory-space versus execution time trade off—using bigger (sparser) hash tables speeds up performance

- Resizing a hash table is easy
 - * Create a new hash table of, say, twice the size
 - Iterate through the old hash table adding each element to the new hash table
- Note that you have to recompute all the hash codes
- Resizing a hash table has a modest amortised cost, but can give you a very hiccupy performance
- The size of a hash table is a classic example of a memory-space versus execution time trade off—using bigger (sparser) hash tables speeds up performance

- Resizing a hash table is easy
 - * Create a new hash table of, say, twice the size
 - * Iterate through the old hash table adding each element to the new hash table
- Note that you have to recompute all the hash codes
- Resizing a hash table has a modest amortised cost, but can give you a very hiccupy performance
- The size of a hash table is a classic example of a memory-space versus execution time trade off—using bigger (sparser) hash tables speeds up performance

- Resizing a hash table is easy
 - * Create a new hash table of, say, twice the size
 - Iterate through the old hash table adding each element to the new hash table
- Note that you have to recompute all the hash codes
- Resizing a hash table has a modest amortised cost, but can give you a very hiccupy performance
- The size of a hash table is a classic example of a memory-space versus execution time trade off—using bigger (sparser) hash tables speeds up performance

- Resizing a hash table is easy
 - * Create a new hash table of, say, twice the size
 - Iterate through the old hash table adding each element to the new hash table
- Note that you have to recompute all the hash codes
- Resizing a hash table has a modest amortised cost, but can give you a very hiccupy performance
- The size of a hash table is a classic example of a memory-space versus execution time trade off—using bigger (sparser) hash tables speeds up performance

- Resizing a hash table is easy
 - * Create a new hash table of, say, twice the size
 - Iterate through the old hash table adding each element to the new hash table
- Note that you have to recompute all the hash codes
- Resizing a hash table has a modest amortised cost, but can give you a very hiccupy performance
- The size of a hash table is a classic example of a memory-space versus execution time trade off—using bigger (sparser) hash tables speeds up performance

- Resizing a hash table is easy
 - * Create a new hash table of, say, twice the size
 - Iterate through the old hash table adding each element to the new hash table
- Note that you have to recompute all the hash codes
- Resizing a hash table has a modest amortised cost, but can give you a very hiccupy performance
- The size of a hash table is a classic example of a memory-space versus execution time trade off—using bigger (sparser) hash tables speeds up performance

 In separate chaining we build a singly-linked list at each table entry

loading factor, $\lambda = \frac{0}{10}$

0	null
1	null
2	null
3	null
4	null
5	null
6	null
7	null
8	null
9	null

- To find an entry in a hash table we again use the hash function on a key to find the table entry and then we search the list
- The time complexity depends on where objects are hashed
- If the objects are evenly dispersed in the table, search (and insertion) is $\Omega(1)$
- If the objects are hashed to the same entry in the hash table then search is ${\cal O}(n)$
- Provided you have a good hashing function and the hash table isn't too full you can expect $\Theta(1)$ average case performance

- To find an entry in a hash table we again use the hash function on a key to find the table entry and then we search the list
- The time complexity depends on where objects are hashed
- If the objects are evenly dispersed in the table, search (and insertion) is $\Omega(1)$
- If the objects are hashed to the same entry in the hash table then search is ${\cal O}(n)$
- Provided you have a good hashing function and the hash table isn't too full you can expect $\Theta(1)$ average case performance

- To find an entry in a hash table we again use the hash function on a key to find the table entry and then we search the list
- The time complexity depends on where objects are hashed
- \bullet If the objects are evenly dispersed in the table, search (and insertion) is $\Omega(1)$
- If the objects are hashed to the same entry in the hash table then search is ${\cal O}(n)$
- Provided you have a good hashing function and the hash table isn't too full you can expect $\Theta(1)$ average case performance

- To find an entry in a hash table we again use the hash function on a key to find the table entry and then we search the list
- The time complexity depends on where objects are hashed
- If the objects are evenly dispersed in the table, search (and insertion) is $\Omega(1)$
- ullet If the objects are hashed to the same entry in the hash table then search is O(n)
- Provided you have a good hashing function and the hash table isn't too full you can expect $\Theta(1)$ average case performance

- To find an entry in a hash table we again use the hash function on a key to find the table entry and then we search the list
- The time complexity depends on where objects are hashed
- If the objects are evenly dispersed in the table, search (and insertion) is $\Omega(1)$
- If the objects are hashed to the same entry in the hash table then search is ${\cal O}(n)$
- Provided you have a good hashing function and the hash table isn't too full you can expect $\Theta(1)$ average case performance

- To iterate over a hash table we
 - ★ Iterate through the array
 - At each element we iterate through the linked list
- The order of the elements appears random
- This becomes more efficient as the table becomes fuller

- To iterate over a hash table we
 - ★ Iterate through the array
 - At each element we iterate through the linked list
- The order of the elements appears random
- This becomes more efficient as the table becomes fuller

- To iterate over a hash table we
 - ★ Iterate through the array
 - At each element we iterate through the linked list
- The order of the elements appears random
- This becomes more efficient as the table becomes fuller

- To iterate over a hash table we
 - ★ Iterate through the array
 - At each element we iterate through the linked list
- The order of the elements appears random
- This becomes more efficient as the table becomes fuller

Outline

- 1. Why Hash?
- 2. Separate Chaining
- 3. Open Addressing
 - Quadratic Probing
 - Double Hashing
- 4. Hash Set and Map

Open Addressing

- In open addressing we have a single table of objects (without a linked-list)
- In the case of a collision a new location in the table is found
- The simplest mechanism is known as linear probing where we move the entry to the next available location

Open Addressing

- In open addressing we have a single table of objects (without a linked-list)
- In the case of a collision a new location in the table is found
- The simplest mechanism is known as linear probing where we move the entry to the next available location

Open Addressing

- In open addressing we have a single table of objects (without a linked-list)
- In the case of a collision a new location in the table is found
- The simplest mechanism is known as linear probing where we move the entry to the next available location

loading factor, $\lambda = \frac{0}{10}$

0	null
1	null
2	null
3	null
4	null
5	null
6	null
7	null
8	null
9	null

- The entries will tend to pile up or cluster—this is sometimes referred to as primary clustering
- Clusters become worse as the number of entries grow
- Clusters will increase the number of probes needed to find an insert location
- The proportion of full entries in the table is known as the loading factor

- The entries will tend to pile up or cluster—this is sometimes referred to as primary clustering
- Clusters become worse as the number of entries grow
- Clusters will increase the number of probes needed to find an insert location
- The proportion of full entries in the table is known as the loading factor

- The entries will tend to pile up or cluster—this is sometimes referred to as primary clustering
- Clusters become worse as the number of entries grow
- Clusters will increase the number of probes needed to find an insert location
- The proportion of full entries in the table is known as the loading factor

- The entries will tend to pile up or cluster—this is sometimes referred to as primary clustering
- Clusters become worse as the number of entries grow
- Clusters will increase the number of probes needed to find an insert location
- The proportion of full entries in the table is known as the loading factor

To avoid clustering we can use quadratic probing

To avoid clustering we can use quadratic probing or double hashing

- In quadratic probing we try the locations $h(x) + d_i$ where h(x) is the original hash code and $d_i = i^2$
- That is we takes steps 1, 4, 9, 16, . . .
- Quadratic probing prevents primary clustering so dramatically decreases the number of probes needed to find a free location when the table is reasonably full
- One problem is that if we are unlucky we might not be able to add an element to the hash table even if the table isn't full
- However, if the size of the table is prime then quadratic probing will always find a free position provided it is not more than half full

- In quadratic probing we try the locations $h(x)+d_i$ where h(x) is the original hash code and $d_i=i^2$
- That is we takes steps 1, 4, 9, 16, . . .
- Quadratic probing prevents primary clustering so dramatically decreases the number of probes needed to find a free location when the table is reasonably full
- One problem is that if we are unlucky we might not be able to add an element to the hash table even if the table isn't full
- However, if the size of the table is prime then quadratic probing will always find a free position provided it is not more than half full

- In quadratic probing we try the locations $h(x)+d_i$ where h(x) is the original hash code and $d_i=i^2$
- That is we takes steps 1, 4, 9, 16, . . .
- Quadratic probing prevents primary clustering so dramatically decreases the number of probes needed to find a free location when the table is reasonably full
- One problem is that if we are unlucky we might not be able to add an element to the hash table even if the table isn't full
- However, if the size of the table is prime then quadratic probing will always find a free position provided it is not more than half full

- In quadratic probing we try the locations $h(x)+d_i$ where h(x) is the original hash code and $d_i=i^2$
- That is we takes steps 1, 4, 9, 16, . . .
- Quadratic probing prevents primary clustering so dramatically decreases the number of probes needed to find a free location when the table is reasonably full
- One problem is that if we are unlucky we might not be able to add an element to the hash table even if the table isn't full
- However, if the size of the table is prime then quadratic probing will always find a free position provided it is not more than half full

- In quadratic probing we try the locations $h(x)+d_i$ where h(x) is the original hash code and $d_i=i^2$
- That is we takes steps 1, 4, 9, 16, . . .
- Quadratic probing prevents primary clustering so dramatically decreases the number of probes needed to find a free location when the table is reasonably full
- One problem is that if we are unlucky we might not be able to add an element to the hash table even if the table isn't full
- However, if the size of the table is prime then quadratic probing will always find a free position provided it is not more than half full

- An alternative strategy is to known as double hashing where the locations tried are $h(x) + d_i$ where $d_i = i \times h_2(x)$
- $h_2(x)$ is a second hash function that depends on the key
- A good choice is $h_2(x) = R (x \mod R)$ where R is a prime smaller than the table size
- It is important that $h_2(x)$ is not a divisor of the table size
 - * Either make sure the table size is prime or
 - \star Set the step size to 1 if $h_2(x)$ is a divisor of the table size

- An alternative strategy is to known as double hashing where the locations tried are $h(x) + d_i$ where $d_i = i \times h_2(x)$
- $h_2(x)$ is a second hash function that depends on the key
- A good choice is $h_2(x) = R (x \mod R)$ where R is a prime smaller than the table size
- It is important that $h_2(x)$ is not a divisor of the table size
 - * Either make sure the table size is prime or
 - \star Set the step size to 1 if $h_2(x)$ is a divisor of the table size

- An alternative strategy is to known as double hashing where the locations tried are $h(x) + d_i$ where $d_i = i \times h_2(x)$
- $h_2(x)$ is a second hash function that depends on the key
- A good choice is $h_2(x) = R (x \mod R)$ where R is a prime smaller than the table size
- It is important that $h_2(x)$ is not a divisor of the table size
 - * Either make sure the table size is prime or
 - \star Set the step size to 1 if $h_2(x)$ is a divisor of the table size

- An alternative strategy is to known as double hashing where the locations tried are $h(x) + d_i$ where $d_i = i \times h_2(x)$
- $h_2(x)$ is a second hash function that depends on the key
- A good choice is $h_2(x) = R (x \mod R)$ where R is a prime smaller than the table size
- It is important that $h_2(x)$ is not a divisor of the table size
 - * Either make sure the table size is prime or
 - \star Set the step size to 1 if $h_2(x)$ is a divisor of the table size

- An alternative strategy is to known as double hashing where the locations tried are $h(x) + d_i$ where $d_i = i \times h_2(x)$
- $h_2(x)$ is a second hash function that depends on the key
- A good choice is $h_2(x) = R (x \mod R)$ where R is a prime smaller than the table size
- It is important that $h_2(x)$ is not a divisor of the table size
 - * Either make sure the table size is prime or
 - \star Set the step size to 1 if $h_2(x)$ is a divisor of the table size

- An alternative strategy is to known as double hashing where the locations tried are $h(x) + d_i$ where $d_i = i \times h_2(x)$
- $h_2(x)$ is a second hash function that depends on the key
- A good choice is $h_2(x) = R (x \mod R)$ where R is a prime smaller than the table size
- It is important that $h_2(x)$ is not a divisor of the table size
 - * Either make sure the table size is prime or
 - \star Set the step size to 1 if $h_2(x)$ is a divisor of the table size

Problems with Remove

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of \boldsymbol{x}
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of \boldsymbol{x}
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of x
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of \boldsymbol{x}
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of \boldsymbol{x}
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of \boldsymbol{x}
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of \boldsymbol{x}
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- For all open addressing hash systems removing an entry is a problem
- Remember our strategy to find an input x is
 - 1. Compute the array index based on the hash code of \boldsymbol{x}
 - 2. If the array location is empty then the search fails
 - 3. If the array location contains the key the search succeeds
 - 4. otherwise find a new location using an open addressing strategy and go to 2
- If we remove an entry then find might reach an empty location which was previously full
- This can prevent us finding a true entry

- One easy fix is to mark the deleted table with a special entry
- A find method would consider this entry as full
- An iterator would ignore this entry
- An insert operator could insert a new entry in these special locations

- One easy fix is to mark the deleted table with a special entry
- A find method would consider this entry as full
- An iterator would ignore this entry
- An insert operator could insert a new entry in these special locations

- One easy fix is to mark the deleted table with a special entry
- A find method would consider this entry as full
- An iterator would ignore this entry
- An insert operator could insert a new entry in these special locations

- One easy fix is to mark the deleted table with a special entry
- A find method would consider this entry as full
- An iterator would ignore this entry
- An insert operator could insert a new entry in these special locations

Outline

- 1. Why Hash?
- 2. Separate Chaining
- 3. Open Addressing
 - Quadratic Probing
 - Double Hashing
- 4. Hash Set and Map

- Most libraries including the STL (and the Java Collection class) use separate chaining
- This has the advantage that its performance does not degrade badly as the number of entries increase
- This reduces the need to resize the hash table
- The C++ standard did not include a hash table until C++11
 □—although very good hash tables existed in C++

- Most libraries including the STL (and the Java Collection class) use separate chaining
- This has the advantage that its performance does not degrade badly as the number of entries increase
- This reduces the need to resize the hash table
- The C++ standard did not include a hash table until C++11
 —although very good hash tables existed in C++

- Most libraries including the STL (and the Java Collection class) use separate chaining
- This has the advantage that its performance does not degrade badly as the number of entries increase
- This reduces the need to resize the hash table
- The C++ standard did not include a hash table until C++11
 □—although very good hash tables existed in C++

- Most libraries including the STL (and the Java Collection class) use separate chaining
- This has the advantage that its performance does not degrade badly as the number of entries increase
- This reduces the need to resize the hash table
- The C++ standard did not include a hash table until C++11
 —although very good hash tables existed in C++

- Most libraries including the STL (and the Java Collection class) use separate chaining
- This has the advantage that its performance does not degrade badly as the number of entries increase
- This reduces the need to resize the hash table
- The C++ standard did not include a hash table until C++11
 —although very good hash tables existed in C++

Hash Sets and Maps

- C++ also provides an unordered_map<Key, V> class
- It's performance is asymptotically superior to map, O(1) rather than $O(\log(n))$
- Hash functions can take time to compute (it is often $O(\log(n))$) so unordered_sets might not be faster than sets
- One major difference is that the iterator for sets return the elements in order, undordered_set's iterator doesn't

Hash Sets and Maps

- C++ also provides an unordered_map<Key, V> class
- It's performance is asymptotically superior to map, O(1) rather than $O(\log(n))$
- Hash functions can take time to compute (it is often $O(\log(n))$) so unordered_sets might not be faster than sets
- One major difference is that the iterator for sets return the elements in order, undordered_set's iterator doesn't

Hash Sets and Maps

- C++ also provides an unordered_map<Key, V> class
- It's performance is asymptotically superior to map, O(1) rather than $O(\log(n))$
- Hash functions can take time to compute (it is often $O(\log(n))$) so unordered_sets might not be faster than sets
- One major difference is that the iterator for sets return the elements in order, undordered_set's iterator doesn't

- Hash tables are used everywhere
- E.g. most databases use hash tables to speed up search
- In many document applications hash tables will be being generated in the background
- Content addressability is ubiquitous to many application where hash tables are used as standard

- Hash tables are used everywhere
- E.g. most databases use hash tables to speed up search
- In many document applications hash tables will be being generated in the background
- Content addressability is ubiquitous to many application where hash tables are used as standard

- Hash tables are used everywhere
- E.g. most databases use hash tables to speed up search
- In many document applications hash tables will be being generated in the background
- Content addressability is ubiquitous to many application where hash tables are used as standard

- Hash tables are used everywhere
- E.g. most databases use hash tables to speed up search
- In many document applications hash tables will be being generated in the background
- Content addressability is ubiquitous to many application where hash tables are used as standard

- Hash tables are one of the most useful tools you have available
- They aren't particularly difficult to understand, but you need to know about
 - hashing functions
 - ★ collision strategies
 - ★ performance (i.e. when they work)

- Hash tables are one of the most useful tools you have available
- They aren't particularly difficult to understand, but you need to know about
 - hashing functions
 - ★ collision strategies
 - ★ performance (i.e. when they work)

- Hash tables are one of the most useful tools you have available
- They aren't particularly difficult to understand, but you need to know about
 - ★ hashing functions
 - ★ collision strategies
 - ★ performance (i.e. when they work)

- Hash tables are one of the most useful tools you have available
- They aren't particularly difficult to understand, but you need to know about
 - ★ hashing functions
 - ★ collision strategies
 - ★ performance (i.e. when they work)

- Hash tables are one of the most useful tools you have available
- They aren't particularly difficult to understand, but you need to know about
 - hashing functions
 - ★ collision strategies
 - ★ performance (i.e. when they work)