Section 7.5: Iterated Rounding

Asif Al Shahriar 1905040

Department of CSE, BUET

1 December 2024

Limitation of Threshold Rounding

- ▶ Problems like MIN-WVC have an optimal solution where all the clauses have at least one variable $\geq 1/2$.
- ▶ What if there are not enough variables taking values at least 1/2 in the optimal fractional solution?

Limitation of Threshold Rounding

- ▶ Problems like MIN-WVC have an optimal solution where all the clauses have at least one variable $\geq 1/2$.
- ▶ What if there are not enough variables taking values at least 1/2 in the optimal fractional solution?

Solution: Partial Rounding with Residual Linear Program

Iterated Rounding

Basic Idea:

Suppose the fractional optimal solution of the residual linear program always contains a component of value greater than or equal to 1/2.

In that case, we can continue this rounding process and eventually obtain a feasible integer solution that is still a 2-approximation.

Problem Statement:

Given a graph G = (V, E) with edge costs c_e for each edge $e \in E$, and an integer k > 0, we aim to find a k-edge-connected subgraph F that minimizes the total edge cost.

Subgraph:

A subgraph F is k-edge-connected if, for every partition (S, V - S) of the vertex set V of G, there are at least k edges in F between S and V - S.

Based on all the aforementioned concepts, the problem can be formulated as the following Integer Linear Program (ILP):

$$\label{eq:subject_to_subject_to} \begin{array}{ll} \text{minimize} & \displaystyle \sum_{e \in E} c_e x_e \\ \\ \text{subject to} & \displaystyle \sum_{e \in \delta_G(S)} x_e \geq k, \quad \emptyset \neq S \subset V, \\ \\ & x_e \in \{0,1\}, \quad e \in E, \end{array}$$

where $\delta_G(S)$ denotes the set of edges with exactly one endpoint in S.

The LP relaxation of this ILP is as follows:

$$\label{eq:subject_to_subject_to} \begin{array}{ll} \text{minimize} & \displaystyle \sum_{e \in E} c_e x_e \\ \\ \text{subject to} & \displaystyle \sum_{e \in \delta_G(S)} x_e \geq k, \quad \emptyset \neq S \subset V, \\ \\ 0 \leq x_e \leq 1, \quad e \in E. \end{array}$$

The LP relaxation of this ILP is as follows:

$$\label{eq:subject_to_subject_to} \begin{array}{ll} \underset{e \in E}{\min \text{minimize}} & \sum_{e \in \mathcal{S}_G(S)} x_e \geq k, \quad \emptyset \neq S \subset V, \\ & 0 \leq x_e \leq 1, \quad e \in E. \end{array}$$

Perk of this algorithm:

Can be solved in polynomial time in |V| although having more than $2^{|V|}$ constraints.

Necessary Concepts

Ellipsoid Method:

- The feasible region is enclosed within an ellipsoid in high-dimensional space.
- At each step, the algorithm checks if the center of the ellipsoid satisfies all constraints.
- If not, it uses a violated constraint to refine the ellipsoid, reducing its size while ensuring it still contains the feasible region.
- The ellipsoid shrinks iteratively until the center satisfies all constraints.

Necessary Concepts-Continued

Separation Oracle:

- Given a candidate solution x, the oracle determines whether x satisfies all constraints.
- ► If x violates any constraint, the oracle returns that linear inequality to refine the ellipsoid.

Necessary Concepts-Continued

Separation Oracle:

- Given a candidate solution x, the oracle determines whether x satisfies all constraints.
- ▶ If x violates any constraint, the oracle returns that linear inequality to refine the ellipsoid.

Lemma

$$\Omega = \{x \mid Ax = b, x \ge 0\}.$$

If $\min_{x \in \Omega}(cx)$ has an optimal solution, then it can be found at one of its vertices.

Key Concept

Mapping our problem to Max-Flow Min-Cut Problem.

Why?

To construct separation oracles in polynomial time.

Problem Formulation

Assign each edge e, a capacity x_e .

Then x is feasible if and only if, for every two nodes s, t of graph G, the maximum flow from s to t is at least k.

Feasibility in Flow Networks

- ► Considering the constraint: $\sum_{e \in \delta_G(S)} x_e < k$
- The minimum cut (S, V S) can be found in polynomial time with respect to |V|
- ▶ If we make a partial assignment to the variables of the LP , the residual LP remains polynomial-time solvable with respect to |V|.

Residual LP Feasibility

Suppose for $e \in F \subset E$, x_e is already assigned value u_e .

If the assignment $(x_e)_{e \in E-F}$ is not feasible for the residual LP, then $(x_e)_{e \in E-F}$, together with $(u_e)_{e \in F}$, forms an infeasible assignment for the original LP.

Extending Supmodular Funtions

Weakly Supmodular Function:

A function $f: 2^V \to \mathbb{Z}$ is weakly supmodular if:

- (a) f(V) = 0,
- (b) For any two subsets $A, B \subseteq V$, either $f(A) + f(B) \le f(A \setminus B) + f(B \setminus A)$ or $f(A) + f(B) \le f(A \cap B) + f(A \cup B)$.

Understanding Lemma 7.21

Statement of Lemma 7.21:

▶ If $f: 2^V \to \mathbb{Z}$ is a weakly supmodular function, then for the linear program (LP) defined as:

$$\text{minimize } \sum_{e \in E} c_e x_e$$

subject to:

$$\sum_{e \in \delta_G(S)} x_e \ge f(S), \quad S \subseteq V,$$

$$0 \le x_e \le 1, \quad e \in E,$$

every basic feasible solution x contains at least one component $x_e \ge \frac{1}{3}$.

Additional Steps

Variables x_e that are at least $\frac{1}{3}$ can be rounded to 1.

After Rounding:

$$\text{minimize } \sum_{e \in E - F} c_e x_e$$

subject to:

$$\sum_{e \in \delta_{G-F}(S)} x_e \ge f(S) - |\delta_F(S)|, \quad S \subseteq V,$$
$$0 \le x_e \le 1, \quad e \in E.$$

▶ The function $f(S) - |\delta_F(S)|$ remains weakly supmodular.

GSN

Algorithm 1 Iterated Rounding Algorithm for GSN

```
Require: A graph G = (V, E) with an edge-cost function c : E \rightarrow
    \mathbb{Q}^+, and an integer k > 0.
 1: Construct an LP with f(S) defined previously and F = \emptyset.
 2: while F is not k-edge-connected do
       Find an optimal basic feasible solution x^* of the LP.
 3:
 4:
      for each edge e \in E do
         if x_e^* \geq \frac{1}{3} then
 5:
            Set x_e = 1 and add edge e to the set F.
 6:
         end if
 7.
      end for
 8.
       Update the residual LP based on the edges in F.
 9:
10: end while
```

Theorem 7.22: 3-Approximation for GSN

Formulation:

Suppose F is the output obtained from Algorithm through t iterations.

let F_i be the set of edges added to F in the first i iterations, thus, $F = F_t$.

 $F^i = E - F_i$. Also, let's x_i denote the optimal fractional solution for $F = F_i$.

Thus, under the condition that $x_e = 1$ for $e \in F_i$, x_i is a better solution to the residual LP than any other solution, including x_{i-1} .

3-Approximation for GSN-Continued

So this follows:

$$\sum_{e \in F} c_e \leq \sum_{e \in F_{t-1}} c_e + 3 \sum_{e \in F_{t-1}^i} c_e x_{t-1,e}$$

$$\leq \sum_{e \in F_{t-1}} c_e + 3 \sum_{e \in F_{t-1}^i} c_e x_{t-2,e}$$

$$\leq \sum_{e \in F_{t-2}} c_e + 3 \sum_{e \in F_{t-2}^i} c_e x_{t-2,e}$$

$$\leq \cdots \leq 3 \sum_{e \in F} c_e x_{0,e} \leq 3 \cdot \text{opt},$$

where opt is the value of the optimal integer solution for $F = \emptyset$.

Lemma 7.23

- ▶ **Given:** A basic feasible solution x of a linear program such that $0 < x_e < 1$ for all $e \in E$.
- ▶ **Goal:** Prove the existence of a laminar family *F* of active sets satisfying:
 - 1. |F| = |E|,
 - 2. The vectors a_S for all $S \in F$ are linearly independent,
 - 3. $f(S) \ge 1$ for all $S \in F$.

Key Concepts

- **Laminar Family:** A collection L of sets such that any two sets A, B ∈ L are either disjoint or one is contained in the other.
- ▶ **Active Set:** A set $S \subseteq V$ such that $f(S) = \sum_{e \in E(S, V \setminus S)} x_e$ satisfies a constraint. That means, for inequality , x_e gives a tight bound .

Proof Outline

- 1. Start with a maximal laminar family L of active sets.
- 2. Show that rank($\{a_S \mid S \in L\}$) = |E|. [Focus Point]
- 3. Assume, for contradiction, that rank($\{a_S \mid S \in L\}$) < |E|.
- 4. Use weak submodularity of f to derive the contradiction.

Contradiction Setup

- Assume rank($\{a_S \mid S \in L\}$) < |E|.
- ► There exists an active set A such that $a_A \notin \text{Span}(\{a_S \mid S \in L\})$.
- ▶ By maximality of L, A must cross at least one set $B \in L$.
- ▶ We choose *A* to be the active set that crosses the minimum number of sets in *L*.
- Decompose A and B:

$$S_1 = A \setminus B$$
, $S_2 = A \cap B$, $S_3 = B \setminus A$, $S_4 = V \setminus (A \cup B)$.

Where we consider the set $B \in L$, which is assumed to cross A but not cross S_1 .

Using Weak Submodularity

Assume:

$$f(A) + f(B) \le f(A \setminus B) + f(B \setminus A).$$

Define:

$$m_{i,j} = \sum_{e \in E(S_i, S_j)} x_e.$$

Since A and B are both active, we have

$$f(A) = m_{1,3} + m_{1,4} + m_{2,3} + m_{2,4},$$

$$f(B) = m_{1,2} + m_{1,3} + m_{2,4} + m_{3,4}.$$

Continued.

Moreover, for constraints S_1 and S_3 , we have

$$f(S_1) \leq m_{1,2} + m_{1,3} + m_{1,4},$$

$$f(S_3) \leq m_{1,3} + m_{2,3} + m_{3,4}.$$

Thus,

$$f(S_1) + f(S_3) + 2m_{2,4} \le f(A) + f(B).$$

By active constraints:

$$f(A) + f(B) = f(S_1) + f(S_3),$$

which implies S_1 and S_3 are active.

Deriving the Contradiction

▶ It follows that:

$$a_A + a_B = a_{S_1} + a_{S_3}.$$

- ▶ Since $a_A \notin \text{Span}(L)$ and $a_B \in \text{Span}(L)$, either a_{S_1} or $a_{S_3} \notin \text{Span}(L)$.
- ▶ Sets crossing S_1 or S_3 must also cross A, contradicting the minimal crossing assumption for A.

Case 1: $a_{S_1} \notin \operatorname{Span}(L)$

We begin by assuming that a_{S_1} is not in the span of the set of vectors $\{a_S \mid S \in L\}$. The goal is to derive a contradiction from this assumption.

Claim: Every Set $C \in L$ Crossing S_1 Must Also Cross A

▶ Let $C \in L$ be a set that crosses S_1 , meaning:

$$S_1 \cap C \neq \emptyset$$
 and $S_1 \setminus C \neq \emptyset$.

▶ Since A is a superset of S_1 , we have:

$$A \cap C \neq \emptyset$$
 and $A \setminus C \neq \emptyset$.

▶ Hence, any set C crossing S_1 must also cross A.

Closing Points

▶ Since B does not cross S_1 , we have:

$$B \cap S_1 = \emptyset$$
 and $B \setminus S_1 \neq \emptyset$.

▶ This gives us a contradiction, as it implies B crosses A but does not cross S_1 .

Number of sets crossing S_1 < Number of sets crossing A.

► This contradicts our assumption that *A* was the set minimizing the number of crossings.

Similarly we can prove that our case 2 , $a_{S_3} \notin \text{Span}(L)$ is also false.

Lemma 7.24: Statement

Lemma: Suppose x_e is fractional for every $e \in E$. Then the laminar family F from Lemma 7.23 contains a set S with $|\delta_G(S)| \leq 3$.

Proof Overview

Goal: Prove that F contains a set S such that $|\delta_G(S)| \leq 3$. **Assumption (for contradiction):** Suppose $|\delta_G(S)| \geq 4$ for every $S \in F$.

Approach:

- 1. Construct a **forest** T over F.
- 2. Count the number of **endpoints** (vertex-edge pairs) contributed by sets in F.
- 3. Derive a contradiction based on the total number of endpoints.

Step 1: Constructing the Forest *T*

Forest Construction: Each edge (A, B) in T satisfies:

- \triangleright $A \supset B$.
- ▶ There is no intermediate set C such that $A \supset C \supset B$.

Properties of T:

- T respects the laminar structure of F.
- T can be decomposed into subtrees.

Endpoints Definition:

For each edge e in G, define its endpoints (u, e):

- u is an endpoint of e.
- Assign (u,e) to a set $S \in F$ such that $u \in S$ but $u \notin S'$ for any proper subset $S' \subset S$

Step 2: Counting Endpoints

Leaf Sets: Each leaf S of T satisfies $|\delta_G(S)| \ge 4$. Hence, S contributes at least 4 endpoints.

Subtree Endpoint Claim: For any subtree T' of T, the number of endpoints |P(T')| satisfies:

$$|P(T')| \ge 2|V(T')| + 2,$$

where V(T') is the set of nodes in T'.

Proof by Induction:

Base Case:

For a single leaf *S*, $|P(S)| \ge 4 = 2|V(T')| + 2$.

Inductive Step: For a subtree T' with root R:

- If *R* has *k* children, apply the induction hypothesis to each child.
- Combine contributions from ${\it R}$ and its children to verify the claim.

Step 3: Deriving a Contradiction

Total Endpoints:

- Total endpoints $|P| \ge 2|F| + 2 = 2|E| + 2$.
- However, each edge contributes at most 2 endpoints.Hence, the total number of endpoints in E' is exactly 2|E|.

Contradiction:

- The two calculations of endpoints contradict each other. Therefore, the assumption $|\delta_G(S)| \ge 4$ for all $S \in F$ is false.

Conclusion: There exists a set $S \in F$ such that $|\delta_G(S)| \leq 3$.

Thank You. Any Questions