SC3.316: Mathematical Methods in Biology Midterm 2 solutions

1. (15 points) Find the reduced echelon form of the following matrix:

$$A = \begin{pmatrix} 1 & 2 & 1 & 9 \\ 2 & 4 & 1 & 18 \\ 3 & 5 & 1 & 24 \end{pmatrix}$$

Solution:

1.
$$R_2 = R_2 - 2R_1$$
: (2 marks)

$$\begin{pmatrix}
1 & 2 & 1 & 9 \\
0 & 0 & -1 & 0 \\
3 & 5 & 1 & 24
\end{pmatrix}$$

2.
$$R_3 = R_3 - 3R_1$$
: (2 marks)

2.
$$R_3 = R_3 - 3R_1$$
: (2 marks)
$$\begin{pmatrix} 1 & 2 & 1 & 9 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & -2 & -3 \end{pmatrix}$$

3. Swap the second and third rows: (2 marks)

$$\begin{pmatrix} 1 & 2 & 1 & 9 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

4.
$$R_2 = -R_2$$
 (2 marks)

$$\begin{pmatrix}
1 & 2 & 1 & 9 \\
0 & 1 & 2 & 3 \\
0 & 0 & -1 & 0
\end{pmatrix}$$

5.
$$R_1 = R_1 - 2R_2$$
 (2 marks)

$$\begin{pmatrix}
1 & 0 & -3 & 3 \\
0 & 1 & 2 & 3 \\
0 & 0 & -1 & 0
\end{pmatrix}$$

6.
$$R_3 = -R_3$$
 (2 marks)

$$\begin{pmatrix}
1 & 0 & -3 & 3 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

7.
$$R_1 = R_1 + 3R_3$$
 (2 marks)

$$\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

8.
$$R_2 = R_2 - 2R_3$$
 (1 mark)

$$\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2. (10 points) State the Deficiency Zero Theorem.

Solution:

Let (S, C, R) be a reaction network of deficiency zero.

- 1. If the network is not weakly reversible, then for any arbitrary choice of kinetics, the differential equations for the kinetic system (S, C, R, K) cannot admit a positive equilibrium. (4 marks)
- 2. If the network is weakly reversible, then assuming mass-action kinetics, the following holds: (2 marks)
 - (a) Within each positive stoichiometric compatibility class, there exists exactly one positive equilibrium. (2 marks)
 - (b) The equilibrium is asymptotically stable. (2 marks)
- 3. (15 points) Consider a reaction network with l linkage classes. Let δ_i denote the deficiency of the $i^{\rm th}$ linkage class and let δ denote the deficiency of the whole network. If $\delta = 0$, then $\delta_i = 0$ for every linkage class.

Solution:

Note that
$$\sum_{i=1}^{l} \delta_i = \sum_{i=1}^{l} (n_i - 1 - s_i) = n - l - \sum_{i=1}^{l} s_i$$
. (7 marks)

In addition,
$$\delta = n - l - s$$
. Since $\sum_{i=1}^{l} s_i \ge s$, we get $\delta \ge \sum_{i=1}^{l} \delta_i$. (5 marks)

This implies that if $\delta = 0$, then $\delta_i = 0$ for every linkage class. (3 marks)

4. (15 points) A reaction network is "forest-like" if every direct link connecting two complexes in a linkage class is a cut-link. Show that every forest-like weakly reversible reaction network is reversible.

Solution:

For contradiction, assume that the forest-like weakly reversible reaction network is not reversible. (3 marks)

Then there exists complexes y_0, y'_0 such that there is a reaction from y_0 to y'_0 , no reaction from y'_0 to y_0 (5 marks)

and a reaction pathway from y_0' to y_0 (due to weak reversibility). (5marks)

Then the link from y_0 to y'_0 is not a cut-link, contradicting the fact that the reaction network is "forest-like". (2 marks)

5. (15 points) A reaction network is consistent if there exists positive real numbers $c_{y\to y'}$ such that

$$\sum_{y \to y'} c_{y \to y'}(y' - y) = 0. \tag{1}$$

Show that a weakly reversible reaction network is consistent.

Solution:

Consider a weakly reversible consisting of a single cycle. (3 marks)

In this case, we can choose $c_{y\to y'}=1$ for each reaction $y\to y'\in E$ so that the network is consistent. (7 marks)

Repeating this argument for multiple cycles, we get that a weakly reversible reaction network is consistent. (5 marks)

6. (15 points) Show that a reversible star-like network (as in Figure 1) is quasi-thermodynamic.

Figure 1: Star-like network.

Solution:

Since the network is reversible, it is weakly reversible and hence a positive equilibrium exists. Let us call the positive equilibrium c^* . Let C^* denote the set of all complexes except y_0 . Therefore, we have

$$\sum_{y \in C^*} k_{y \to y_0}(c^*)^y (y_0 - y) + \sum_{y \in C^*} k_{y_0 \to y}(c^*)^{y_0} (y - y_0) = 0 \ (2 \operatorname{marks})$$

This implies that

$$\sum_{y \in C^*} k_{y \to y_0}(c^*)^y (y_0 - y) = \sum_{y \in C^*} k_{y_0 \to y}(c^*)^{y_0} (y_0 - y) \ (2 \, marks) \tag{2}$$

Define $\mu(c) = \log(c) - \log(c^*)$. (1 mark)

This means that the rate function can be written as

$$f(c) = \sum_{y \to y' \in \mathcal{R}} k_{y \to y'} c^y (y' - y)$$

$$= \sum_{y \to y' \in \mathcal{R}} k_{y \to y_0} (c^*)^y e^{y \cdot \mu(c)} (y_0 - y)$$

$$= \sum_{y \in C^*} k_{y \to y_0} (c^*)^y e^{y \cdot \mu(c)} (y_0 - y) - e^{y_0 \cdot \mu(c)} \sum_{y \in C^*} k_{y_0 \to y} (c^*)^{y_0} (y_0 - y) (4 \operatorname{marks})$$

Using Equation 2, we get that

$$f(c) = \sum_{y \in C^*} k_{y \to y_0} (c^*)^y (e^{y \cdot \mu(c)} - e^{y_0 \cdot \mu(c)}) (y_0 - y)$$

Hence
$$\log(c) - \log(c^*) \cdot f(c) = \sum_{y \in C^*} k_{y \to y_0} (c^*)^y (e^{y \cdot \mu(c)} - e^{y_0 \cdot \mu(c)}) (y_0 \cdot \mu(c) - y \cdot \mu(c)).$$
 (2 marks)

Since the exponential function is increasing, we have $(x_2 - x_1)(e^{x_1} - e^{x_2}) \le 0$. This implies that

$$\mu(c) \cdot f(c) < 0.$$

with equality holding iff $(y - y_0) \cdot \mu(c)$ for all $y \in C^*$. (1 mark)

We still need to show that the dynamical system is quasi-static, i.e., show that the set of equilibria is identical to the set $E = \{c \in \mathbb{R}^S_{>0} : \log(c) - \log(c^*) \in S^{\perp}\}$. If c is an equilibrium, then we have equality in Equation 3. This implies that $\log(c) - \log(c^*) \in S^{\perp}$. Conversely, if $\log(c) - \log(c^*) \in S^{\perp}$, then we have equality in Equation 3. Therefore, the dynamical system is quasi-thermodynamic. (3 marks)

- 7. (15 points) Let $A_{n\times n}$ be a square matrix and let $x\in\mathbb{R}^n$. Show that the following are equivalent
 - 1. For every vector $b \in \mathbb{R}^n$, the system Ax = b has at least one solution.
 - 2. For every vector $b \in \mathbb{R}^n$, the system Ax = b has exactly one solution.

Solution:

 $(1 \Rightarrow 2)$ This is certainly true since if for every $b \in \mathbb{R}^n$, the system Ax = b has a unique solution, then it has at least one solution. (2 marks)

 $(2 \Rightarrow 1)$ Take $b = e_j$, where e_j is the j^{th} column vector of the identity matrix. Then the consistency of $Ax = e_j$ yields a vector x_j such that $Ax_j = e_j$. (3 marks)

Let B be the matrix with vectors $[x_1, x_2, ..., x_n]$. Then

$$AB = A[x_1, x_2, ..., x_n]$$

$$= [Ax_1, Ax_2, ..., Ax_n]$$

$$= [e_1, e_2, ..., e_n]$$
(3)

This implies that AB = I. (5 marks)

We now show that the matrix B is invertible. Towards this we show that Bx = 0 has only the trivial solution $(x_1 = x_2 =, = x_n = 0)$. If Bx = 0, then A(Bx) = 0 = A0 = 0, which implies x = 0. So B is invertible. (3 marks)

This implies that $ABB^{-1} = IB^{-1}$ so that $A = B^{-1}$. Thus A is invertible and the system Ax = b has the unique solution $x = A^{-1}b$. (2 marks)