Mathematische Brückenkurs

Dr. Joseph Rudzinski

Abteilung Theorie der Polymere, Max-Planck-Institut für Polymer Forschung

Wintersemester 2021/22

Definition

Sei U eine Teilmenge des \mathbb{R}^n . Wir betrachten Funktionen

$$f: U \to \mathbb{R},$$

$$(x_1, \dots, x_n) \to f(x_1, \dots, x_n)$$

Beispiel

$$U = \mathbb{R}^2$$
, $f(x_1, x_2) = x_1^2 + x_2^2$

Partielle Ableitung

Definition

Die Funktion f ist partiell differenzierbar in der i-ten Koordinate falls der Grenzwert

$$\lim_{h\to 0} \frac{f(x_1, \dots, x_i + h, \dots x_n) - f(x_1, \dots, x_i, \dots x_n)}{h}$$

existiert.

Man schreibt

$$\frac{\partial}{\partial x_i} f(x_1, \dots, x_i, \dots, x_i) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}$$

Partielle Ableitung

$$\frac{\partial}{\partial x_i} f(x_1, \dots, x_i, \dots x_n) = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots x_n) - f(x_1, \dots, x_i, \dots x_n)}{h}$$

Diese Formel zeigt auch, wie man die i-ten partielle Abteilung berechnet: Man hält alle anderen Variablen $x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ fest und nimmt die gewöhnliche Abteilung nach der Variable x_i .

Partielle Differenzierbarkeit

Definition

Wir nennen eine Funktion partiell differenzierbar, falls sie in allen Variablen partiell differnzierbar ist.

Definition

Ebenso nennen wir eine Funktion stetig partiell differenzierbar, falls sie partiell differnzierbar ist und alle Ableitungen stetig sind.

Partielle Ableitung

Beispiel

Wir betrachten die Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, (x_1, x_2, x_3) \to \sqrt{x_1 + x_2 + x_3}.$$

Es ist

$$\frac{\partial}{\partial x_1} f(x_1, x_2, x_3) = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}, \quad \frac{\partial}{\partial x_2} f(x_1, x_2, x_3) = \frac{x_2}{\sqrt{x_1^2 + x_2^2 + x_3^2}},$$

$$\frac{\partial}{\partial x_3} f(x_1, x_2, x_3) = \frac{x_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}}.$$

Quiz

$$f(x,t) = A \sin(x - vt), \quad \frac{\partial}{\partial t} f(x,t) =$$
?

- (A) $A \cos(x vt)$
- (B) $-A\cos(x-vt)$
- (C) $vA\cos(x-vt)$
- (D) $-vA\cos(x-vt)$

Höhere partielle Ableitungen

DR. JOSEPH RUDZINSKI (MPIP)

Definition

Wir können partielle Ableitung auch hintereinander ausführen und erhalten höhere Ableitungen:

$$\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f(x_1, \dots, x_n) = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f(x_1, \dots, x_n) \right).$$

Man beachtet, dass diese Schreibweise impliziert, dass zunächst die Ableitung nach x_i ausgeführt wird, und das Zwischenergebniss dann nach x_i abgeleitet wird.

Wir interessieren uns dafür unter welchen Voraussetzungen das Endergebniss nicht von der Reihenfolge der Ableitungen abhängt.

Höhere partielle Ableitungen

Satz

Sei f zweimal stetig partiell differenzierbar. Dann gilt für die

partiellen Ableitungen

$$\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f(x_1, \dots, x_n) = \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} f(x_1, \dots, x_n)$$

Höhere partielle Ableitungen

Satz

Allgemeiner gilt: Ist f k – mal stetig partiell differenzierbar, so vertauschen die k-ten partiellen Ableitungen:

$$\frac{\partial}{\partial x_{i_1}} \cdots \frac{\partial}{\partial x_{i_k}} f(x_1, \dots, x_n) = \frac{\partial}{\partial x_{\sigma(i_1)}} \cdots \frac{\partial}{\partial x_{\sigma(i_k)}} f(x_1, \dots, x_n)$$

wobei σ eine Permutation von (i_1, \ldots, i_k) ist.

Höhere partielle Ableitungen

Beispiel

Wir betrachten die Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, (x_1, x_2, x_3) \to x_1^3 + 3x_1x_2^2 + x_1x_2x_3$$

Es ist

$$\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f(x_1, x_2, x_3) = \frac{\partial}{\partial x_1} (0 + 6x_1 x_2 + x_1 x_3) = 6x_2 + x_3$$

$$\frac{\partial^2}{\partial x_1^2} f(x_1, x_2, x_3) = \frac{\partial}{\partial x_1} (3x_1^2 + 3x_2^2 + x_2 x_3) = 6x_1 + 0 + 0 = 6x_1$$

Quiz

$$f(x_1, x_2) = 3x_1^2 x_2^3, \quad \frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f(x_1, x_2) = ?$$

- **(A)** 0
- **(B)** $9x_1^2$
- (C) $18x_1x_2^2$
- **(D)** $9x_1^2x_2^2 + 6x_1x_2^3$

Lokale Maxima und Minima

Definition

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine zweimal stetig partiell differenzierbare Funktion. Wir sagen, dass f in $\overrightarrow{x_0} \in \mathbb{R}^n$ ein lokales Maximum hat, falls eine

$$f(\overrightarrow{x_0}) \ge f(\overrightarrow{x}), \quad \forall \overrightarrow{x} \in U.$$

Definition

Gilt dagegen

$$f(\overrightarrow{x_0}) \le f(\overrightarrow{x}), \quad \forall \overrightarrow{x} \in U,$$

so spricht man von einem lokalen Minimum

13

Lokale Maxima und Minima

Eine notwendige Bedingung für das Vorliegen eines lokalen Minimums Oder lokalen Maximums ist das Verschwinden aller partiellen

Ableitungen an der Stelle $\vec{x_0}$:

$$\frac{\partial}{\partial x_i} f(\overrightarrow{x}) \bigg|_{\overrightarrow{x} = \overrightarrow{x_0}} = 0.$$

Würde eine partielle Ableitung nicht verschwinden, so gibt es in jeder Umgebung von $\overrightarrow{x_0}$ einen Punkt, an dem $f(\overrightarrow{x}) < f(\overrightarrow{x_0})$ gilt, sowie einen Punkt an dem $f(\overrightarrow{x}) > f(\overrightarrow{x_0})$ gilt. Ist zum Beispiel die i-te partielle Ableitung ungleich Null, so betrachtet man hierzu zwei Punkte, die um einen infinitessimalen positiven bzw. negativen Wert in Richtung des i-ten Einheitsvektors verschoben sind.

Die Hessische Matrix

Um eine hinreichende Bedingung für das Vorliegen eines lokalen Minimums oder Maximums zu finden betrachten wir die zweiten Ableitungen und definieren die Hessesche Matrix:

Definition

$$H_{ij}(\overrightarrow{x}) = \frac{\partial^2}{\partial x_i \partial x_j} f(\overrightarrow{x}), \quad 1 \le i, j \le n.$$

Da nach Voraussetzung f zweimal stetig differenzierbar ist, vertauschen die partiellen Ableitungen und die Hessesche Matrix ist offensichtliche symmetrisch: $H_{ij}(\overrightarrow{x}) = H_{ji}(\overrightarrow{x})$.

Positiv definit, negativ definit, und indefinit

Definition

Wir bezeichnen eine symmetrische $n \times n$ Matrix A als positiv definit falls für alle $\xi \in \mathbb{R}^n \setminus \{\overrightarrow{0}\}$ gilt: $\xi \uparrow A \xi > 0$.

Definition

Wir bezeichnen sie als negativ definit, falls für alle $\vec{\xi} \in \mathbb{R}^n \setminus \{\vec{0}\}$ gilt: $\vec{\xi} \cap A \neq 0$.

Positiv definit, negativ definit, und indefinit

Definition

Wir bezeichnen sie als indefinit, falls es ein $\overrightarrow{\xi} \in \mathbb{R}^n$ und ein $\overrightarrow{\eta} \in \mathbb{R}^n$ gibt, so dass

$$\overrightarrow{\xi}^{\mathsf{T}} A \overrightarrow{\xi} > 0, \quad \overrightarrow{\eta}^{\mathsf{T}} A \overrightarrow{\eta} < 0.$$

Positiv semi-definit, negativ semi-definit

Definition

Eine symmetrische $n \times n$ Matrix A nennt man positiv semi-definit bzw. negativ semi-definit, falls für alle $\overrightarrow{\xi} \in \mathbb{R}^n$ gilt:

$$\overrightarrow{\xi}^{\mathsf{T}} A \overrightarrow{\xi} \geq 0, \quad \overrightarrow{\xi}^{\mathsf{T}} A \overrightarrow{\xi} \leq 0.$$

Hurwitz-Kriterium

Um zu entscheiden, ob eine symmetrische Matrix positiv definit ist kann das Hurwitz-Kriterium verwendet werden:

Satz

Sei

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

eine reelle symmetrische $n \times n$ Matrix. A ist positiv definit, falls

$$\begin{vmatrix} a_{11} & \cdots & a_{1k} \\ \cdots & \cdots & \cdots \\ a_{k1} & \cdots & a_{kk} \end{vmatrix} > 0, \quad \forall k \in \{1, ..., n\} \text{ gilt.}$$

Hurwitz-Kriterium

Beispiel

Die Matrix

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 5 \end{pmatrix}$$

ist positiv definit:

$$|3| = 3$$

$$\begin{vmatrix} 3 & 1 \\ 1 & 4 \end{vmatrix} = 11,$$

$$\begin{vmatrix} 3 & 1 \\ 1 & 4 \end{vmatrix} = 11, \qquad \begin{vmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 5 \end{vmatrix} = 50.$$

Hurwitz-Kriterium

Satz

Eine reelle Diagonalmatrix

$$A = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

ist positiv definit, falls all Diagonaleinträge positiv sind:

$$\lambda_j > 0$$
, $\forall 1 \leq j \leq n$.

ist negativ definit, falls all Diagonaleinträge negativ sind:

$$\lambda_j < 0, \ \forall \ 1 \le j \le n.$$

Hurwitz-Kriterium

Beispiel

Die Diagonalmatrix

$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

ist positiv definit:

DR. JOSEPH RUDZINSKI (MPIP)

Quiz

Die Matrix

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & -2
\end{pmatrix}$$

- (A) positiv definit
- (B) negativ definit
- (C) negativ semi-definit
- (D) indefinit

Lokale Extremwerte

Wir kehren zur Betrachtung der lokalen Minima und Maxima einer Funktion zurück. Wir erhalten die folgende Aussage:

Satz

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine zweimal stetig partiell differnzierbare Funktion und $\overrightarrow{x_0} \in \mathbb{R}^n$ ein Punkt, so dass

$$\left. \frac{\partial}{\partial x_j} f(\overrightarrow{x}) \right|_{\overrightarrow{x} = \overrightarrow{x_0}} = 0, \quad \forall \ 1 \le j \le n.$$

Lokale Extremwerte

Satz (Fortsetzung)

- Ist die Hessesche Matrix $H_{ij}(\overrightarrow{x_0})$ positiv definit, so besitzt f in $\overrightarrow{x_0}$ ein lokales Minimum.
- Ist sie negativ definit, so besitzt f in $\vec{x_0}$ ein lokales Maximum. $\vec{x_0}$ ein lokales Minimum.
- Ist die Hessesche Matrix indefinit, so sagt man, dass f in $\overrightarrow{x_0}$ einen Sattelpunkt besitzt.

Beispiel 1

Beispiel

Sei

$$f(x,y) = x^2 + y^2$$

Im Punkte $\vec{x}_0 = (0,0)$ verschwinden die partiellen Ableitungen:

$$\left. \frac{\partial f}{\partial x} \right|_{\overrightarrow{x} = (0,0)} = 2x \bigg|_{\overrightarrow{x} = (0,0)} = 0, \qquad \left. \frac{\partial f}{\partial y} \right|_{\overrightarrow{y} = (0,0)} = 2y \bigg|_{\overrightarrow{y} = (0,0)} = 0.$$

$$\left| \frac{\partial f}{\partial y} \right|_{\overrightarrow{y} = (0,0)} = 2y \Big|_{\overrightarrow{y} = (0,0)} = 0.$$

Beispiel 1

Beispiel (Forsetzung)

Die Hessesche Matrix ist gegeben durch

$$H(\overrightarrow{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Diese Matrix ist positiv definit und f hat an der stelle $\overrightarrow{x} = (0,0)$ ein Minimum.

Beispiel 1

Beispiel 2

Beispiel

Sei nun

$$f(x,y) = x^2 - y^2$$

Im Punkte $\vec{x}_0 = (0,0)$ verschwinden die partiellen Ableitungen:

$$\left. \frac{\partial f}{\partial x} \right|_{\overrightarrow{x} = (0,0)} = 2x \left|_{\overrightarrow{x} = (0,0)} = 0, \qquad \left. \frac{\partial f}{\partial y} \right|_{\overrightarrow{y} = (0,0)} = -2y \left|_{\overrightarrow{y} = (0,0)} = 0.$$

Beispiel 2

Beispiel (Forsetzung)

Die Hessesche Matrix ist gegeben durch

$$H(\overrightarrow{x}) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

Diese Matrix ist indefinit und f hat an der stelle $\overrightarrow{x} = (0,0)$ einen Sattelpunkt.

Beispiel 2

