# МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет обшей и прикладной физики

# Отчет о выполнении лабораторной работы 2.2.3: Определение коэффициента теплопроводности при атмосферном давлении

Автор: Студент гр. Б02-304 Головинов. Г.А.



Долгопрудный, 2024

## Аннотация

**Цель работы:** измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью, термостат, вольтметр и амперметр, источник постоянного напряжения, магазин сопротивлений.

## Основные теоретические сведения

Теплопроводность – процесс передачи тепловой энергии от нагретых частей системы к холодным за счет хаотического движения частиц среды. В газах теплопроводность осуществляется за счет непосредственной передачи кинетической энергии от быстрых молекул к медленным. Перенос тепла описывается законом Фурье.

**Закон Фурье** Этот закон утверждает, что плотность потока энергии  $\vec{q}$  (количество теплоты, переносимое через единичную площадку за единицу времени) пропорциональна градиенту температуры  $\nabla T$ :

$$\vec{q} = -\varkappa \nabla T \tag{1}$$

где  $\varkappa$  – коэффициент теплопроводности.  $[\varkappa] = \frac{B_T}{M \cdot K}$ 

Молекулярно-кинетическая теория дает оценку коэффициента теплопроводности газов:

$$\varkappa \sim \lambda \vec{v} \cdot nC_V$$
(2)

здесь  $\lambda$  — длина свободного пробега молекул газа,  $\vec{v}=\sqrt{\frac{8kT}{\pi m}}$  — средняя скорость теплового движения, n — концентрация молекул,  $C_V=\frac{i}{2}k$  — теплоемкость при постоянном объеме в расчете на одну молекулу

Формула (2) дает лишь оценку по порядку величины, а также правильную функциональную зависимость. Коэффициент перед этой формулой

зависит от закона взаимодействия молекул и не может быть вычислено методами общей физики. Также не подлежит прямому измерению длина свободного пробега.

Ее можно оценить как  $\lambda=1/n\sigma$ , где  $\sigma$  – эффективное сечение столкновения молекул друг с другом – величина, характеризующая вероятность существенного отклонения налетающей частицы при взаимодействии с некоторым рассеивающим центром. В общем случае определяется как отношение плотности потока рассеянных частиц к плотности потока падающих, имеет размерность площади.

В простейшей модели  $\sigma=const$ , а коэффициент теплопроводности пропорционален корню абсолютной температуры:  $\varkappa\sim\vec{v}/\sigma\sim\sqrt{T}$ . На практике сечение  $\sigma$  зависит от температуры и его следует считать медленно убывающей функцией.

Рассмотрим теплопроводность в цилиндрической геометрии:

Пусть тонкая нить радиусом  $r_1$  и длиной L помещена на оси цилиндра радиуса  $r_0$ . Температура стенок  $T_0$  поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q [Вт]. Если цилиндр длинный  $(L\gg r_0)$ , то можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния r до оси цилиндра, а поток  $\vec{q}$  — направленным строго радиально (от оси).



Рис. 1: Геометрия установки

Вместо уравнения (1) имеем теперь:

$$q = -\varkappa \frac{dT}{dr} \tag{3}$$

В стационарном состоянии полный поток тепла через цилиндрическую поверхность радиуса r и площадью  $S=2\pi rL$  должен быть одинаков и равен Q=qS:

$$Q = -2\pi r L \cdot \varkappa \frac{dT}{dr} = const \tag{4}$$

Считая перепад температуры сильно меньшим чем само значение температуры ( $\Delta \ll T_0$ ) можно пренебречь изменением теплопроводности  $\varkappa$ 

от радиуса. Тогда можно проинтегрировать по радиусу и температуре:

$$Q \int_{r_1}^{r_0} \frac{dr}{r} = -2\pi L \cdot \varkappa \int_{T_1}^{T_0} dT$$

$$Q \ln(r_0/r_1) = 2\pi L \cdot \varkappa \Delta T, \quad \Delta T = T_1 - T_0$$

$$Q = \frac{2\pi L \varkappa \Delta T}{\ln(r_0/r_1)}$$
(5)

Оценка времени установления равновесия Когда в процессе работы мы меняем (желаемую) температуру на термостате требуется некоторое время, чтобы жидкость достигла этой температуры, затем некоторое время, чтобы жидкость достигла стенок цилиндра, затем некоторое время, чтобы воздух в цилиндре тоже прогредся до новой температуры. Оценим время установления нового состояния в системе (без учета нагрева термостата).

Рассмотрим плоский слой толщиной a и сечением S, заполненный газом при постоянном давлении. Пусть температура одной из граней выросла на некоторую  $\Delta T$ . Это вызовет поток тепла в сторону более холодной грани, величину которого можно оценить по закону Фурье:  $q \sim \varkappa \Delta T/a$ . Для того чтобы весь слой прогредся на  $\Delta T$  в него должно поступить тепло  $nSa \cdot C_p \Delta T$ , где  $C_p$  — теплоемкость при постоянном давлении в расчете на одну молекулу.

С другой стороны, поступившее за это время  $\tau$  тепло можно вычислить как  $qS\tau=\varkappa \frac{\Delta T}{a}S\tau$ . Приравнивая находим:

$$nSaC_p\Delta T = \varkappa \frac{\Delta T}{a}S\tau$$

тогда

$$\tau \sim \frac{C_p a^2 n}{\varkappa} \tag{6}$$

Коэффициент  $\chi=\frac{\varkappa}{C_pn}$  называется температуропроводностью среды. Для воздуха при нормальных условиях  $\chi\sim 0.2cm^2/s$ , что при размере  $a\sim 1cm$  имеет характерное время  $\tau\sim 5s$ 

Таким образом, состояние в установке может устанавливаться в течение нескольких десятков секунд, поэтому, учитывая также прогрев трубок, стоит ждать несколько минут после достижения термостатом желаемой температуры.

**Пределы применимости теории** Закон Фурье может нарушаться, когда масштабы установки соизмеримы с длиной свободного пробега молекул. Это может привести к эффекту, известному как «температурный скачок», явление, когда температура нити может отличаться от температуры окружающего газа. В данной работе этим можно пренебречь, так как при нормальных условиях  $\lambda \sim 10^{-5} cm$ , что сильно меньше размеров системы, и даже размеров нити.

Также возможны другие механизмы теплопередачи: конвекция и излучение. Конвекция возникает в поле тяжести только при больших вертикальных градиентах температуры, поэтому установка расположена вертикально. Мощность излучения можно оценить по закону Стефана-Больцмана:

$$Q_{rad} = \epsilon S \sigma_S (T_1^4 - T_0^4) \approx 4\epsilon S \sigma_S T_0^3 \Delta T \tag{7}$$

где S – площадь поверхности нити,  $\sigma_S = 5.67 \cdot 10^{-8} W/(m^2 K^4)$  – постоянная Стефана-Больцмана,  $\epsilon$  – безразмерный «коэффициент черноты», зависящий от качества и материала излучающей поверхности. Для металлов с полированной поверхностью можно принять  $\epsilon \sim 0.1 - 0.2$ . По формуле (7) находим мощность излучения:

$$Q_{max} \approx 1.5 mW$$

### Экспериментальная установка

Установка представляет собой цилиндрическую трубку длиной L=40cm, диаметром  $2r_0=1cm$ , диаметр нити  $2r_1=50\mu m$ . Трубка заполнена воздухом, через небольшое отверстие воздух внутри системы может сообщаться с атмосферой. Стенки трубки помещены в кожух, через который пропускается вода из термостата, так что температура стенок  $T_0$  поддерживается постоянной. Трубка расположена вертикально для предот-



вращения влияния конвекции, как было обговорено ранее.

Нить служит источником тепла:

$$Q = UI \tag{8}$$

где  ${\rm Q}$  – мощность нагрева нити,  ${\rm U}$  – напряжение на нити,  ${\rm I}$  – сила тока.

Также нить является способом измерения температуры. Сопротивление нити можно найти по закону Ома:

$$R = \frac{U}{I} \tag{9}$$

Электрические приборы и нить подключены согласно следующей схеме:



Рис. 2: Схема цепи

Предполагая, что все компоненты цепи идеальны, измерив напряжение U и силу тока I можно найти мощность, выделяемую на нити и ее сопротивление. По этим данным мы будем строить зависимость R(Q) – нагрузочная кривая.

Уменьшая сопротивление магазина мы увеличиваем значение силы тока в цепи. Есть некоторое значение силы тока  $I_{max}$ , выше которой теплопроводности воздуха перестанет хватать, чтобы отводить тепло, выделяющееся на нити. Если это значение превысить, нить может перегореть.

Найдем максимальную мощность отвода воздуха по формуле (5), затем используя формулу  $Q_w=I^2R$ , считая  $R\approx 20\Omega$  получим, что  $I_{max}\approx 137mA$ , если максимальная разница температур  $\Delta T\approx 20K$ 

Зависимость R(T) — сопротивления от температуры при температурах около комнатной (0-100 $C^{\circ}$ ) можно с достаточно большой точностью считать линейной зависимостью:

$$R(T) \approx R_0(1 + \alpha(T - T_0))$$

гда  $\alpha$  – коэффициент пропорциональности,  $R_0$  – сопротивление при температуре  $T_0$ . Мы в ходе работы также проверим ее линейность.

# Результаты измерения и их обработка

В результате измерений получены значения для четырех температур. Таблицы с данными приведены в приложении.

Атмосферное давление во время эксперимента  $\approx 96.73~kPa$ , температура воздуха  $T\approx 24.2~C^{\circ}$ .



Рис. 3: Нагрузочные кривые для разных температур

Погрешности учитываются следующим образом:

$$\sigma_R = R\sqrt{\left(\frac{\sigma_U}{U}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}$$

$$\sigma_Q = Q\sqrt{\left(\frac{\sigma_U}{U}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}$$

При малых сопротивлениях магазина (т.е. при больших токах и напряжениях) влияние погрешности мало. Поэтому апроксимировать будем методом МНК.

Погрешность каждого  $R_0$  будем определять по формуле:

$$\sigma_k = \sqrt{\frac{1}{n-2} \left( \frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2 \right)}$$
$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle}$$

$$\sigma_b = \sigma_k \sqrt{\langle x \rangle}$$

где  $b \equiv R_0$ 

$$R_0 \approx 22.102 \pm 0.012, \ 22.744 \pm 0.011, \ 23.406 \pm 0.017, \ 24.050 \pm 0.016 \ \Omega$$

Коэффициенты наклона прямых:

$$k_1 = 4.535 \pm 0.136$$
  
 $k_2 = 4.655 \pm 0.120$ 

$$k_3 = 4.795 \pm 0.155$$

$$k_4 = 4.925 \pm 0.143$$

где 
$$k_1$$
 – для  $T=41.5C^\circ$ , а  $k_4$  – для  $T=68.5C^\circ$ 

Построим зависимость  $R_0(T)$ :



Рис. 4: Зависимость сопротивления нити от температуры

Угловой коэффициент прямой  $k=0.07035\pm0.00901~\Omega/K$ , экстраполируя зависимость до T=273K получим  $R_{273}\approx19.21\pm0.21~\Omega$ . Получим коэффициент  $\alpha$ :

$$\alpha = \frac{k}{R_{273}} \approx (3.66 \pm 0.46) \cdot 10^{-3} \ K^{-1}$$

Найдем теперь наклон  $Q(\Delta T)$  — мощность, выделяемая на нити от ее перегрева относительно стенок по формуле:

$$\frac{dQ}{dT} = \frac{dR}{dT} \cdot \frac{dQ}{dR}$$

подставляя известные значения получим:

$$\frac{dQ}{dT} = 0.0143 \pm 0.0019 \quad T = 41.5C^{\circ}$$

$$\frac{dQ}{dT} = 0.0147 \pm 0.0019 \quad T = 50.5C^{\circ}$$

$$\frac{dQ}{dT} = 0.0151 \pm 0.0020 \quad T = 59.5C^{\circ}$$

$$\frac{dQ}{dT} = 0.0155 \pm 0.0020 \quad T = 68.5C^{\circ}$$

Учитывая формулу (5):

$$\varkappa = \frac{dQ}{dT} \cdot \frac{\ln(r_0/r_1)}{2\pi L}$$



Рис. 5: Зависимость логарифма коэффициента теплопроводности  $\varkappa$  от логарифма температуры



Рис. 6: Зависимость логарифма коэффициента теплопроводности  $\varkappa$  от логарифма температуры

Угловой коэффициент наклона графика равен показателю  $\beta$ , если  $\varkappa \sim T^{\beta}$ . По МНК  $\beta=1.01\pm0.13$  Можно считать, что при комнатных температурах коэффициент теплопроводности  $\varkappa$  зависит от температуры линейно.

#### Сами значения и:

$$\varkappa_1 = 0.0284 \pm 0.0037$$
 $\varkappa_2 = 0.0292 \pm 0.0038$ 
 $\varkappa_3 = 0.0301 \pm 0.0040$ 
 $\varkappa_4 = 0.0309 \pm 0.0041$ 

## Обсуждение результатов и выводы

Мы построили зависимости R(Q) – сопротивления нити от выделяемого на ней тепла, проверили его линейность. По y—интерсепту этих графиков нашли зависимость  $R_0(T)$ , которая тоже хорошо легла на прямую. Тем самым подтверждено линейное приближение зависимости сопротивления от температуры.

Найден коэффициент  $\alpha$  в зависимости R(T), который попадает в пределы  $\pm 1\sigma$  от табличного. Достаточно высокая погрешность некоторых величин может быть объяснена малым количеством экспериментальных точек.

Найден наклон зависимости  $Q(\Delta T)$ , а по нему найден коэффициент теплопроводности  $\varkappa$ . Из построенной зависимости  $\ln \varkappa(\ln T)$  получена постоянная  $\beta \approx 1$ , которая показывает, что зависимость  $\varkappa(T)$  линейна (по крайней мере при T близким к комнатной температуре).

# Приложение А

# Результаты измерений

| n | $R, \Omega$ | I, mA   | V, mV    | $Q = UI, \ \mu W$ | $R_w, \Omega$ |
|---|-------------|---------|----------|-------------------|---------------|
| 1 | 2000        | 2.0190  | 44.630   | 90.108            | 22.105        |
| 2 | 1000        | 3.9850  | 88.080   | 350.999           | 22.103        |
| 3 | 500         | 7.7640  | 171.630  | 1332.535          | 22.106        |
| 4 | 300         | 12.5010 | 276.480  | 3456.276          | 22.117        |
| 5 | 100         | 32.0710 | 712.580  | 22853.153         | 22.219        |
| 6 | 70          | 41.8700 | 933.580  | 39088.995         | 22.297        |
| 7 | 50          | 52.5700 | 1177.800 | 61916.946         | 22.404        |

Рис. А.1: Результаты измерений при  $T=41.5C^{\circ}$ 

| n  | $R, \Omega$ | I, mA  | V, mV   | $Q = UI, \ \mu W$ | $R_w, \Omega$ |
|----|-------------|--------|---------|-------------------|---------------|
| 1  | 2000        | 2.019  | 45.92   | 92.717            | 22.745        |
| 2  | 1500        | 2.680  | 60.95   | 163.338           | 22.741        |
| 3  | 1000        | 3.983  | 90.58   | 360.796           | 22.743        |
| 4  | 900         | 4.412  | 100.37  | 442.832           | 22.749        |
| 5  | 800         | 4.945  | 112.49  | 556.263           | 22.748        |
| 6  | 700         | 5.624  | 127.94  | 719.535           | 22.749        |
| 7  | 600         | 6.520  | 148.32  | 967.046           | 22.748        |
| 8  | 500         | 7.754  | 176.42  | 1367.961          | 22.752        |
| 9  | 400         | 9.563  | 217.60  | 2080.909          | 22.754        |
| 10 | 300         | 12.477 | 283.98  | 3543.218          | 22.760        |
| 11 | 250         | 14.718 | 335.13  | 4932.443          | 22.770        |
| 12 | 200         | 17.941 | 408.74  | 7333.204          | 22.782        |
| 13 | 100         | 31.911 | 729.50  | 23279.075         | 22.860        |
| 14 | 70          | 41.603 | 954.28  | 39700.911         | 22.938        |
| 15 | 50          | 52.144 | 1201.68 | 62660.402         | 23.045        |
| 16 | 40          | 59.660 | 1380.66 | 82370.176         | 23.142        |
| 17 | 30          | 69.657 | 1622.50 | 113018.483        | 23.293        |
| 18 | 15          | 92.625 | 2196.71 | 203470.264        | 23.716        |

Рис. А.2: Результаты измерений при  $T=50.5C^{\circ}$ 

| n  | $R, \Omega$ | I, mA  | V, mV   | $Q = UI, \ \mu W$ | $R_w, \Omega$ |
|----|-------------|--------|---------|-------------------|---------------|
| 1  | 2000        | 2.018  | 47.29   | 95.431            | 23.434        |
| 2  | 1000        | 3.980  | 93.19   | 370.896           | 23.415        |
| 3  | 500         | 7.745  | 181.27  | 1403.936          | 23.405        |
| 4  | 300         | 12.452 | 291.55  | 3630.381          | 23.414        |
| 5  | 150         | 22.887 | 536.74  | 12284.368         | 23.452        |
| 6  | 100         | 31.750 | 746.35  | 23696.613         | 23.507        |
| 7  | 70          | 41.328 | 974.90  | 40290.667         | 23.589        |
| 8  | 50          | 51.713 | 1225.42 | 63370.144         | 23.697        |
| 9  | 30          | 68.900 | 1649.20 | 113629.880        | 23.936        |
| 10 | 20          | 82.440 | 1993.00 | 164302.920        | 24.175        |
| 11 | 15          | 91.316 | 2223.47 | 203038.387        | 24.349        |

Рис. А.3: Результаты измерений при  $T=59.5C^{\circ}$ 

| n  | $R, \Omega$ | I, mA   | V, mV   | $Q = UI, \ \mu W$ | $R_w, \Omega$ |
|----|-------------|---------|---------|-------------------|---------------|
| 1  | 2000        | 2.018   | 48.58   | 98.034            | 24.073        |
| 2  | 1000        | 3.978   | 95.71   | 380.734           | 24.060        |
| 3  | 500         | 7.735   | 186.05  | 1439.097          | 24.053        |
| 4  | 300         | 12.427  | 299.00  | 3715.673          | 24.061        |
| 5  | 150         | 22.804  | 549.60  | 12533.078         | 24.101        |
| 6  | 100         | 31.591  | 763.04  | 24105.197         | 24.154        |
| 7  | 70          | 41.061  | 994.96  | 40854.053         | 24.231        |
| 8  | 50          | 51.295  | 1248.48 | 64040.782         | 24.339        |
| 9  | 30          | 68.173  | 1674.80 | 114176.140        | 24.567        |
| 10 | 20          | 81.422  | 2018.96 | 164387.761        | 24.796        |
| 11 | 15          | 90.063  | 2248.93 | 202545.383        | 24.971        |
| 12 | 10          | 100.603 | 2535.90 | 255119.148        | 25.207        |

Рис. А.4: Результаты измерений при  $T=68.9C^{\circ}$