BỘ GIÁO DỰC VÀ ĐÀO TẠO

ĐỀ CHÍNH THỨC

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2014

Môn: TOÁN; Khối D

(Đáp án - Thang điểm gồm 03 trang)

ı	Đáp án	Điểm
	a) (1,0 điểm)	
đ)	• Tập xác định $D=\mathbb{R}$. • Sự biến thiên: - Chiều biến thiên: $y'=3x^2-3; \ y'=0 \Leftrightarrow x=\pm 1.$	0,25
	Các khoảng đồng biến: $(-\infty;-1)$ và $(1;+\infty)$; khoảng nghịch biến: $(-1;1)$. - Cực trị: Hàm số đạt cực đại tại $x=-1,\ y_{\text{CD}}=0$; đạt cực tiểu tại $x=1,\ y_{\text{CT}}=-4$. - Giới hạn tại vô cực: $\lim_{x\to -\infty}y=-\infty; \lim_{x\to +\infty}y=+\infty$.	0,25
	- Bảng biến thiên: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
	• Đồ thị: -1 -2 -4	0,25
	b) (1,0 điểm)	1
	$M \in (C) \Rightarrow M(a; a^3 - 3a - 2).$	0,25
	Hệ số góc của tiếp tuyến tại M bằng $9 \Leftrightarrow y'(a) = 9$	0,25
	$\Leftrightarrow 3a^2 - 3 = 9 \Leftrightarrow a = \pm 2.$	0,25
	Tọa độ điểm M thỏa mãn yêu cầu bài toán là $M(2;0)$ hoặc $M(-2;-4)$.	0,25
	Đặt $z=a+bi$ $(a,b\in\mathbb{R})$. Từ giả thiết ta được $[3(a+bi)-(a-bi)](1+i)-5(a+bi)=8i-1$	0,25
đ)	$\Leftrightarrow \begin{cases} 3a + 4b = 1\\ 2a - b = 8 \end{cases}$	0,25
	$\Leftrightarrow \begin{cases} a = 3 \\ b = -2. \end{cases}$	0,25
	Do đó môđun của z là $\sqrt{3^2+(-2)^2}=\sqrt{13}$.	0,25

Câu	Đáp án	Điểm
3 (1,0đ)	$I = \int_{0}^{\frac{\pi}{4}} (x+1) \sin 2x dx$. Đặt $u = x+1$ và $dv = \sin 2x dx$, suy ra $du = dx$ và $v = -\frac{1}{2} \cos 2x$.	0,25
	Ta có $I = -\frac{1}{2}(x+1)\cos 2x\Big _0^{\frac{\pi}{4}} + \frac{1}{2}\int_0^{\frac{\pi}{4}}\cos 2x dx$	0,25
	$= -\frac{1}{2}(x+1)\cos 2x\Big _0^{\frac{\pi}{4}} + \frac{1}{4}\sin 2x\Big _0^{\frac{\pi}{4}}$	0,25
	$=\frac{3}{4}$.	0,25
4 (1,0đ)	a) Điều kiện: $x>1$. Phương trình đã cho tương đương với $\log_2\frac{x-1}{3x-2}=-2$	0,25
	$\Leftrightarrow \frac{x-1}{3x-2} = \frac{1}{4} \Leftrightarrow x=2.$ Đối chiếu điều kiện, ta được nghiệm của phương trình đã cho là $x=2$.	0,25
	b) Số đường chéo của đa giác đều n đỉnh là ${\bf C}_n^2-n=\frac{n(n-3)}{2}.$	0,25
	Từ giả thiết ta có phương trình $\frac{n(n-3)}{2}=27\Leftrightarrow\left[\begin{array}{c}n=9\\n=-6.\end{array}\right]$ Do $n\in\mathbb{N}$ và $n\geq 3$ nên ta được giá trị n cần tìm là $n=9.$	0,25
5	Mặt cầu (S) có tâm $I(3;2;1)$ và bán kính $R=5.$	0,25
(1,0đ)	Ta có khoảng cách từ I đến (P) là $d(I,(P))=\frac{ 6.3+3.2-2.1-1 }{\sqrt{6^2+3^2+(-2)^2}}=3 < R.$	0,25
	Do đó (P) cắt (S) theo giao tuyến là một đường tròn (C) .	
	Tâm của (C) là hình chiếu vuông góc H của I trên (P) . Đường thẳng Δ qua I và vuông góc với (P) có phương trình là $\frac{x-3}{6}=\frac{y-2}{3}=\frac{z-1}{-2}$. Do $H\in\Delta$ nên $H(3+6t;2+3t;1-2t)$.	0,25
	Ta có $H \in (P)$, suy ra $6(3+6t)+3(2+3t)-2(1-2t)-1=0 \Leftrightarrow t=-\frac{3}{7}$. Do đó $H\left(\frac{3}{7};\frac{5}{7};\frac{13}{7}\right)$.	0,25
6 (1,0đ)	Gọi H là trung điểm của BC , suy ra $AH=\frac{BC}{2}=\frac{a}{2}$, $SH\perp(ABC),SH=\frac{\sqrt{3}a}{2}\text{và}S_{\Delta ABC}=\frac{1}{2}BC.AH=\frac{a^2}{4}.$	0,25
	Thể tích khối chóp là $V_{S.ABC} = \frac{1}{3}.SH.S_{\Delta ABC} = \frac{\sqrt{3} a^3}{24}.$	0,25
	Gọi K là hình chiếu vuông góc của H trên SA , suy ra $HK \perp SA$. Ta có $BC \perp (SAH)$ nên $BC \perp HK$. Do đó HK là đường vuông góc chung của BC và SA .	0,25
		0,25

Câu	Đáp án	Điểm
7 (1,0đ)	Tọa độ điểm A thỏa mãn hệ phương trình $\begin{cases} 3x+2y-9=0\\ x+2y-7=0. \end{cases}$ Suy ra $A(1;3)$.	0,25
	Gọi Δ là tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC và E là giao điểm của Δ với đường thẳng BC (do AD không vuông góc với Δ nên E luôn tồn tại và ta có thể giả sử $EB < EC$). Ta có $\widehat{EAB} = \widehat{ACB}$ và $\widehat{BAD} = \widehat{DAC}$, suy ra $\widehat{EAD} = \widehat{EAB} + \widehat{BAD} = \widehat{ACB} + \widehat{DAC} = \widehat{ADE}$. Do đó, tam giác ADE cân tại E .	0,25
	E là giao điểm của Δ với đường trung trực của đoạn AD , nên tọa độ điểm E thỏa mãn hệ phương trình $\left\{ \begin{array}{l} x+2y-7=0\\ y-1=0. \end{array} \right.$ Suy ra $E(5;1)$.	0,25
	Đường thẳng BC đi qua E và nhận $\overrightarrow{DE}=(4;2)$ làm vectơ chỉ phương, nên $BC:x-2y-3=0.$	0,25
8 (1,0đ)	Điều kiện: $x \ge -2$. Bất phương trình đã cho tương đương với $(x+1)(\sqrt{x+2}-2)+(x+6)(\sqrt{x+7}-3)-(x^2+2x-8)\ge 0$	0,25
	$\Leftrightarrow (x-2)\left(\frac{x+1}{\sqrt{x+2}+2} + \frac{x+6}{\sqrt{x+7}+3} - x - 4\right) \ge 0$ (1).	0,25
	Do $x \ge -2$ nên $x + 2 \ge 0$ và $x + 6 > 0$. Suy ra $\frac{x+1}{\sqrt{x+2}+2} + \frac{x+6}{\sqrt{x+7}+3} - x - 4 = \left(\frac{x+2}{\sqrt{x+2}+2} - \frac{x+2}{2}\right) + \left(\frac{x+6}{\sqrt{x+7}+3} - \frac{x+6}{2}\right) - \frac{1}{\sqrt{x+2}+2} < 0.$ Do đó $(1) \Leftrightarrow x \le 2$.	0,25
	Đối chiếu điều kiện, ta được nghiệm của bất phương trình đã cho là: $-2 \le x \le 2$.	0,25
9 (1,0đ)	Do $1 \le x \le 2$ nên $(x-1)(x-2) \le 0$, nghĩa là $x^2 + 2 \le 3x$. Tương tự, $y^2 + 2 \le 3y$. Suy ra $P \ge \frac{x+2y}{3x+3y+3} + \frac{y+2x}{3y+3x+3} + \frac{1}{4(x+y-1)} = \frac{x+y}{x+y+1} + \frac{1}{4(x+y-1)}$.	0,25
	Đặt $t = x + y$, suy ra $2 \le t \le 4$. Xét $f(t) = \frac{t}{t+1} + \frac{1}{4(t-1)}$, với $2 \le t \le 4$.	0,25
	Ta có $f'(t) = \frac{1}{(t+1)^2} - \frac{1}{4(t-1)^2}$. Suy ra $f'(t) = 0 \Leftrightarrow t = 3$. Mà $f(2) = \frac{11}{12}$; $f(3) = \frac{7}{8}$; $f(4) = \frac{53}{60}$ nên $f(t) \ge f(3) = \frac{7}{8}$. Do đó $P \ge \frac{7}{8}$.	0,25
	Khi $x=1,y=2$ thì $P=\frac{7}{8}$. Vậy giá trị nhỏ nhất của P là $\frac{7}{8}$.	0,25

----Hết----