ELÉCTRÓNICA – EXERCÍCIOS

Rudimentos de Electricidade e Magnetismo

1 Considere a forma de onda de corrente (i(t)) da Figura 1.

1.1	Diga qual é a o período (T), a
	frequência (f), e a frequência
	angular (ω) de $i(t)$.

$$T =$$

1.2 Qual é o valor médio de *i*(t)?

$$V_{med} =$$

1.3 Admitindo que i(t) é a forma de onda da corrente num indutor com um coeficiente de autoindução L=1 mH, esboce a forma de onda da tensão (v(t)) aos seus terminais.

Figura 1

2 Considere a forma de onda de tensão (v(t)) da Figura 1.

2.1 Diga qual é a o período (T), a frequência (f), e a frequência angular (ω) de v(t).

$$T = \underline{\hspace{1cm}}$$

$$f = \underline{\hspace{1cm}}$$

$$\omega =$$

2.2 Qual é o valor médio de v(t)?

$$V_{med} =$$

2.3 Admitindo que v(t) é a forma de onda da tensão num indutor com uma indutância L = 1 mH, esboce a forma de onda da corrente (i(t)) em L (suponha que em t = 0 a corrente é 0 A).

Figura 2

3 Na Figura 3, dois enrolamentos de cobre de N_1 e N_2 espiras abraçam um anel de material ferromagnético. Admita que a resistência dos enrolamentos é desprezável e que a relutância do anel é muito menor do que do meio envolvente.

Demonstre que $\frac{V_{+}}{V_{2}} \approx \frac{N_{+}}{N_{2}}$

Figura 3

4 Considere a experiência ilustrada pela Figura 4. Explique o que se observa quando se abre e fecha o interruptor.

Figura 4

5 Considere a experiência ilustrada pela Figura 5. Explique o que se observa quando se aproxima ou afasta o imane do enrolamento condutor.

Figura 5

6 Sabendo que a amplitude do vector indução magnética \vec{B} (Figura 6) é 0.2 T e que o condutor de comprimento l=10 cm é percorrido por uma corrente I=2 A, calcule a amplitude da força \vec{F} que actua sobre o condutor.

Figura 6

7 Sabendo que a amplitude do vetor indução magnética \bar{B} (Figura 7) é 0.5 T e que o condutor de comprimento l=1 m se desloca a uma velocidade v=10 m/s, calcule o valor da f.e.m. ($e_{\rm ind}$) induzida aos terminais.

Figura 7

Sistemas / Características de Sistemas

8 Qual das seguintes relações é linear?

(a)
$$y = 3x^2$$

(b)
$$y = 5x$$

(c)
$$y = 15\log(x)$$

(d)
$$y = 2x_1 + 3x_2$$

(e)
$$y = 10e^x$$

(f)
$$y = \frac{dx}{dt} + 2x + 4$$

- 9 Uma resistência de $10 \text{ k}\Omega$ possui uma tolerância de 5%. Quais são os limites (superior e inferior) para os valores que a resistência pode tomar?
- 10 Uma resistência variável de $10 \text{ k}\Omega$ apresenta uma resolução de 0.01% do fim de escala e uma linearidade de $\pm 50\Omega$.
- 10.1 Qual é a sua resolução em ohms?
- 10.2 Qual é a sua linearidade em percentagem do fim de escala?
- 10.3 Calcule a precisão em ohms no pior caso.
- 11 Um sistema de posicionamento possui uma sensibilidade de 0.2 cm / V e uma linearidade de $\pm 0.1 \text{ cm}$ para uma gama de operação entre 0-2 cm.
- 11.1 Qual é a variação da entrada que produz uma variação de 1.5 cm na saída?
- 11.2 Trace o gráfico da sensibilidade admitindo que o sistema era linear.
- 11.3 Trace o gráfico da sensibilidade admitindo uma linearidade independente
- 11.4 Trace o gráfico da sensibilidade admitindo uma linearidade terminal.
- 12 Um sistema de controlo de temperatura possui uma gama de utilização entre -20°C e +80°C. Quando a temperatura é ajustada para 28°C, a temperatura medida é 26.5°C.
- 12.1 Calcule a exatidão em percentagem do valor ajustado.
- 12.2 Calcule a exatidão em percentagem da gama de utilização.
- 13 Na Figura 8 apresenta-se as características de resistência em função da temperatura de dois sensores (de níquel e de platina). Considerando a gama de variação entre 100°C-400°C.
- 13.1 Qual dos sensores é mais sensível?
- 13.2 Qual dos sensores apresenta melhores características de linearidade?

Figura 8

Díodos

14 Calcule, para os circuitos seguintes, o potencial nos pontos indicados (considere a queda de tensão de condução directa nos díodos igual a 0,7 V).

Figura 9

- Escolha a afirmação verdadeira.
- A colocação do díodo impede que a lâmpada acenda, porque o potencial em C é negativo.
- ☐ Se inverter a polaridade do díodo a lâmpada acende.
- O díodo conduz porque está polarizado directamente e a lâmpada acende.
- Se o potencial em C for forçado a 0 V nunca existe corrente no circuito.

Figura 10

No circuito da Figura 11, L₁, L₂ e L₃ são lâmpadas de 12V. Qual (ou quais) da(s) lâmpada(s) acende quando o comutador está na posição 1, 2, e 3?

12 V

Figura 11

No circuito da Figura 12, o díodo de Zener de 6 V em paralelo com uma lâmpada de 6 V / 60 mA (L), está ligado através duma resistência de protecção a uma fonte de tensão ajustável. Descreva o comportamento da lâmpada à medida que se aumenta a tensão da fonte entre 3 V e 9 V.

Figura 12

18 Calcule, para o circuito da Figura 13, o potencial nos pontos indicados (considere a queda de tensão de condução direta nos díodos igual a 0,7 V):

+10V ο 220Ω ¥ — V — V — V — V 5.1 V — (b)

Figura 13

19 Calcule o potencial no ponto A do circuito da Figura 14 para as situações em que o interruptor se encontra nas posições I e II (considere como aproximação que a queda de tensão nos díodos quando directamente polarizados é 0.7 V).

Figura 14

20 Calcule, para o circuito da Figura 15, o potencial nos pontos A e B (considere a queda de tensão de condução direta nos díodos igual a 0,7 V):

Potencial	I₁ e I₂ abertos	I₁ fechado I₂ aberto	I ₁ aberto I ₂ fechado
А	V	V	V
В	V	V	V

Figura 15

21 Considere o circuito da figura ao lado. Determine o potencial no ponto A quando o

(admita que os díodos são ideais).

1_____

3

4

Figura 16

- 22 Considere o circuito da Figura 17.
- 22.1 Determine a tensão aos terminais de *R*_L do circuito para as situações em que o interruptor (*I*) se encontra aberto e fechado (tenha em consideração a queda de tensão no díodo em condução).

l'aberto:

I fechado:

Figura 17

- 22.2 Calcule a corrente na resistência de 2 Ω quando o interruptor está fechado
- 23 Considere o circuito da Figura 18.
- 23.1 Esboce as formas de onda da tensão e da corrente na carga (resistência *R*).
- 23.2 Esboce as formas de onda da tensão e da corrente no díodo.
- 23.3 Qual é o pico de tensão inversa no díodo?
- 23.4 Calcule os valores máximos da tensão e da corrente na carga.

Figura 18

- 24 Suponha que se coloca um condensador em paralelo com a carga conforme mostra a figura abaixo.
- 24.1 Qual é o valor máximo da tensão no condensador?
- 24.2 Qual o valor médio da tensão de saída em vazio?
- 24.3 Qual é o valor máximo da tensão inversa no díodo em vazio?
- 24.4 Qual o valor eficaz da tensão de saída em vazio.

- 25 A forma de onda à saída do bloco de filtragem duma fonte de alimentação é a da Figura 20 (para a corrente nominal).
- 25.1 De que tipo é o rectificador utilizado na fonte de alimentação?
- 25.2 Qual é o valor eficaz da tensão no secundário do transformador (desprezando a queda de tensão nos díodos do rectificador)?

25.3 Qual é o factor de "ripple" da fonte de alimentação?

- 26 Uma fonte de alimentação possui as seguintes características: Tensão de saída (em vazio) = +5.1V; Corrente nominal = 3A; Regulação = 2%; Factor de "*ripple*" = 0.5%.
- 26.1 Qual é o valor da tensão nominal da fonte (a tensão disponível quando a fonte fornece a uma carga uma corrente de 3A)?
- 26.2 Esboce a curva de regulação da fonte.
- 26.3 Qual é a sua resistência interna?
- 26.4 Qual é o "ripple" pico-a-pico para a corrente nominal (3A)?
- 27 Nas alíneas seguintes tenha em atenção a forma de onda aplicada à entrada dos circuitos para indicar qual a forma de onda correspondente à saída (considere o díodo ideal).
- 27.1 (Ver Figura 21.)

Figura 21

27.2 (Ver Figura 22.)

28 Considere o circuito da Figura 23 e, tendo em atenção a forma de onda aplicada à entrada à sua entrada indique qual a forma de onda correspondente à saída (considere o díodo ideal).

29 Considere o circuito da Figura 24 e, tendo em atenção o sinal aplicado à sua entrada, esboce a forma de onda observada na saída (considere o díodo ideal).

Sabendo que a tensão à entrada do circuito da Figura 25 ($v_{entrada}$) é uma sinusóide com 6 V de amplitude de pico, esboce a forma de onda à saída do circuito ($v_{saída}$).

Figura 25

Sabendo que a tensão à entrada do circuito da Figura 26 ($v_{entrada}$) é uma sinusóide com 5 V de amplitude de pico, esboce a forma de onda (em regime permanente) à saída do circuito ($v_{saída}$).

Figura 26

Transístor Bipolar

32 Relativamente aos circuitos das figuras seguintes, calcule os valores que estão por determinar (indicados com "?" e diga em que região se encontra a funcionar cada transístor. (Nota: é possível que alguns dos transístores estejam defeituosos.)

32.1 (ver Figura 27)

32.2 (ver Figura 28)

rigura

32.3 (ver Figura 29)

Figura 29

- 33 No circuito da Figura 30, $V_{CC} = 20$ V, $R_C = 1$ kΩ e $100 < \beta < 200$.
- 33.1 Dimensione R_B tal que o transístor funcione como um interruptor quando acionado por uma tensão não inferior a 5V.
- 33.2 Calcule a potência dissipada no transístor em cada estado (ligado e desligado)

Figura 30

- 34 No circuito da Figura 31, $V_{CC} = 20V$, $R_C = 1kΩ$ e β = 100.
- 34.1 Dimensione R_B de modo a ter $V_{CE} = 10$ V.
- 34.2 Qual a potência dissipada no transístor?
- 34.3 Qual seria o valor de V_{CE} para $\beta = 200$.

Figura 31

- 35 Considere o circuito da Figura 32.
- 35.1 Calcule V_0 quanto $V_i = +12$ V. Qual é nestas condições o modo de funcionamento do transístor?
- 35.2 Para $V_i = +12V$, qual é o maior valor possível para R_1 de tal modo que o funcione na saturação?
- 35.3 Se V_i = 1V e R_1 = 15 kΩ, qual o valor de V_0 ? Qual é, neste caso, a zona de funcionamento do transístor?

Figura 32

- **36** O transístor da figura ao lado possui um $\beta = 200$:
- 36.1 Qual seria a corrente $I_{\rm C}$ na saturação?
- 36.2 Qual seria a tensão $V_{\rm CE}$ no corte?
- 36.3 Esboce a reta de carga do transístor.
- 36.4 Indique o seu ponto de funcionamento.
- 36.5 O transístor está fortemente saturado?

Figura 33

- 37 Considere o circuito da Figura 34:
- 37.1 Desenhe a reta de carga do transístor, indicando os valores da corrente de saturação e da tensão de corte.
- 37.2 Qual é o valor da corrente de coletor?
- 37.3 Qual é a tensão entre o coletor e a massa?
- 37.4 Qual é a tensão coletor-emissor?

Figura 34

- **38** Considere o circuito da Figura 35:
- 38.1 Qual é o valor máximo de corrente possível para o coletor?
- 38.2 Se $V_{\rm BB}$ = -2V, qual é a tensão entre coletor e a massa?
- 38.3 Se $V_{BB} = +1V$, qual é a tensão coletor-emissor?

Figura 35

- Considere que o transístor da Figura 36 tem um $\beta_{\rm CC}$ de 80.
- 39.1 Qual é a tensão entre o coletor e a massa?
- 39.2 Desenhe a reta de carga do transístor e indique o seu ponto de funcionamento.
- 39.3 Para que valor aproximado de β_{cc} o transístor saturaria?

Figura 36

- **40** No circuito da Figura 37, $V_{CC} = 20V$, $R_C = 1$ kΩ e β = 100.
- 40.1 Dimensione R_1 , R_2 e R_E de modo a ter $V_C = 10 \text{ V e } V_{CE} = 5 \text{ V}$.
- 40.2 Qual seria o valor de V_C para $\beta = 200$?

Figura 37

- 41 Calcule, para o circuito da Figura 38, os seguintes valores:
- 41.1 A corrente Ic
- 41.2 A tensão Vo
- 41.3 A corrente I_C se a resistência de colector for substituída por uma de 500 Ω .
- 41.4 Como se comporta o circuito da Figura 38?

Figura 38

- 42 Considere o circuito da Figura 39:
- 42.1 Qual é o valor da corrente no LED para $V_{\rm BB} = 0$ V?
- 42.2 E para $V_{\rm BB} = 10 {\rm V}$

Figura 39

- 43 Considere o circuito da Figura 40:
- 43.1 Calcule a intensidade da corrente no LED.
- 43.2 Qual seria o valor da corrente se o zener fosse substituído por um outro de 4,7 V

Figura 40

- 44 A Figura 41 mostra uma ligação *Darlington* de dois transístores:
- 44.1 Qual é a tensão aos terminais da resistência de 100 Ω ?
- 44.2 Qual é o valor aproximado da corrente de colector do primeiro transístor se o segundo tiver $\beta_2 = 150$?
- 44.3 Se o primeiro transístor tiver $\beta_1 = 100$ e o segundo $\beta_2 = 150$, qual é, aproximadamente, a corrente de base no primeiro transístor?

Figura 41

45. No circuito da Figura 42 (a) o ganho do transístor (de silício) é β = 100 e o relé utilizado é de 6V/5mA. O componente designado por D_f é um fotodíodo, tratando-se de um sensor de luz cuja característica se apresenta na Figura 42 (b).

Figura 42

- 45.1 Explique com detalhe o funcionamento do circuito e indique pelo menos uma aplicação prática do mesmo.
- 45.2 Qual a iluminação mínima (intensidade de luz Lux) necessária para o relé atuar?
- 46. Considere o circuito da Figura 43.
- 46.1 Calcule o potencial na base, emissor e coletor (V_B , V_E e V_C) de cada transístor ($\beta = 100$).
- 46.2Calcule a potência dissipada em cada transístor.

Figura 43

- **47** Considere o circuito da Figura 44. Admita que transístores possuem um ganho típico de 100 para corrente contínua.
- 47.1 Calcule o ponto de funcionamento de cada transístor.
- 47.2 Calcule a potência dissipada em cada transístor.
- 47.3 Obtenha o circuito para pequenos sinais do amplificador.
- 47.4 Calcule um valor para a capacidade de C_1 que garanta que a frequência inferior de corte do amplificador não seja superior a 10 kHz.

Figura 44

Exercício extra

1. Considere o circuito da Figura a seguir. Admita que transístores possuem um ganho típico de β=100 para corrente contínua.

- a. Determine o ponto de funcionamento dos transístores T1 e T2.
- b. Esboce o circuito do amplificador para análise em corrente alternada (c.a.).
- c. Calcule a tensão de saída do amplificador. Indique ainda qual é a impedância de entrada e a impedância de saída do amplificador.
- d. Sabendo que $C1 = 1 \mu F$ determine a gama de frequências em que o amplificador funciona.

FET's

48 Para o *n*-MOSFET da Figura 45 $V_t = 1V$ e $k'_n W/L = 0.5 \text{ mA/V}^2$.

Determine o ponto de funcionamento $(V_{DS} \ e \ I_D)$ e diga em que região funciona o transístor para:

- (a) $V_{GS} = 0.5V$;
- (b) $V_{GS} = 3V$
- (c) $V_{GS} = 4V$.

- 49 Um *n*-MOSFET de intensificação com $V_t = 2V$ conduz uma corrente $I_D = 1$ mA quanto $V_{GS} = V_{DS} = 3$ V.
- 49.1 Admitindo que na zona de saturação I_D não depende de V_{DS} , calcule o valor da corrente de dreno para V_{GS} = 4 V e V_{DS} = 5 V.
- 49.2 Calcule o valor da resistência de dreno $r_{\rm DS}$, para $V_{\rm GS}$ = 4 V e pequenos valores de $V_{\rm DS}$.
- Para um transístor PMOS do tipo intensificação $K'_nW/L=100\mu A/V^2$ e $V_t=-2V$. A sua gate encontra-se ligada à massa e a fonte ligada a +5V.
- 50.1 Qual é o valor máximo da tensão que pode ser aplicada ao dreno de tal modo que o transístor funcione na zona de saturação?
- 50.2 Admitindo que na zona de saturação I_D não depende de V_{DS} , calcule o valor da corrente de dreno para $V_{GS} = -5$ V.
- 51 Para o *n*-MOSFET da Figura 46 $V_t = 2V$ e $k'_n W/L = 0.8 \text{ mA/V}^2$.

Dimensione os componentes do circuito de tal modo que I_D = 0.4 mA e V_D = +1 V.

Figura 46

- 52 Para o *n*-MOSFET da Figura 47, $V_t = 1 \text{V e } k'_n W/L = 1 \text{ mA/V}^2$.
- 52.1 Dimensione R_D de tal modo que e $V_{DS} = +0.1$ V.
- 52.2 Qual é o valor da resistência r_{DS} nestas condições?

- Para um transístor NMOS do tipo depleção, $K'_nW/L = 4 \text{ mA/V}^2 \text{ e V}_t = -2\text{V}$. Calcule o menor valor de V_{DS} para que o transístor funcione na região de saturação quando $V_{GS} = +1 \text{ V}$. Qual é o valor correspondente de I_D ?
- Para o *n*-MOSFET de depleção da Figura 48, $V_t = -1 \text{V e } k'_n W/L = 1 \text{ mA/V}^2$.
- 54.1 Dimensione R_S de tal modo que e $V_S = +9.9$ V.
- 54.2 Qual é o valor da resistência *r*_{DS} nestas condições?

Figura 48

- 55 Um JFET canal-*n* é caracterizado por uma tensão $V_P = -4$ V e $I_{DSS} = 10$ mA.
- 55.1 Para $V_{GS} = -2$ V qual é o menor valor de V_{DS} de tal modo que o transístor funcione no modo "pinch-off"?
- 55.2 Para $V_{GS} = -2$ V e $V_{DS} = 3$ V qual é o valor de I_D ?
- 55.3 Para $V_{DS} = 3$ V diga qual é a variação de I_D correspondente a uma variação de V_{GS} entre -2 V e -1.6 V.
- 55.4 Calcule o valor de r_{DS} para pequenos valores de V_{DS} , para $V_{GS} = 0$ V e $V_{GS} = -3$ V.
- **56** Para o JFET canal-n da Figura 49, I_{DSS} = 10 mA e V_P = -4 V. Determine o seu ponto de funcionamento (V_{GS}, I_D e V_{DS}).

Figura 49

Tirístor/Triac

No circuito da Figura 50 a tensão de entrada é da forma $v_i(t) = V_m \operatorname{sen}(\omega t)$.

Figura 50

- 57.1 Obtenha as formas de onda da tensão de saída (v_L), da tirístor (v_F) e da corrente no receptor (i_L) para $\alpha = 45^{\circ}$.
- 57.2 Obtenha a expressão do valor médio da tensão de saída em função do ângulo de disparo α.
- 57.3 Calcule o valor médio da tensão de saída e da corrente no receptor para $\alpha = 45^{\circ}$. Admita que $V_m = \sqrt{2} \cdot 230 \, V$ e que $R_L = 10 \, \Omega$.
- **58** No circuito da Figura 51 a tensão de entrada é da forma $v_i(t) = V_m \operatorname{sen}(\omega t)$.

- 58.1 Obtenha a expressão do valor médio da potência de saída (em R_L) em função do ângulo de disparo α (admita que a queda de tensão no triac em condução é 0 V).
- 58.2 Calcule, para $\alpha=30^\circ$, o valor médio da potência no receptor ($R_{\rm L}$). Admita que $V_{\rm m}=\sqrt{2}\cdot230\,V$ e que $R_{\rm L}=10~\Omega$.
- 58.3 Suponha que a potência de saída era controlada recorrendo a um reóstato ligado em série com o recetor (o reóstato substitui o triac na Figura 51). Qual seria a desvantagem de um circuito destes relativamente ao do TRIAC.

Famílias lógicas

59 Estude com atenção a seguinte tabela, que apresenta resultados do teste de algumas características elétricas de uma porta lógica NAND da família *LS TTL* ("Low Power Shotcky TTL") e diga quais são, para esta família, os valores da margem de ruído (e para ambos os níveis lógicos) e do "fan-out".

	Parâmetro	Condições do teste	Min.	Tip.	Máx.	Unid.
$V_{ m IH}$	(tensão de entrada no nível 'alto')	$V_{\rm CC} = 4.75 \rm V$	2			V
$V_{ m IL}$	(tensão de entrada no nível 'baixo')	$V_{\rm CC} = 5.25 \text{V}$			0.8	V
V_{OH}	(tensão de saída no nível 'alto')	$V_{\rm CC} = 4.75 \text{V}, I_{\rm OH} = -400 \mu \text{A}$	2.7	3.4		V
$V_{ m OL}$	(tensão de saída no nível 'baixo')	$V_{\rm CC} = 5.25 \text{V}, I_{\rm OL} = 8 \text{mA}$		0.35	0.5	V
$I_{ m IH}$	(corrente de entrada no nível 'alto')	$V_{\rm CC} = 5.25 \mathrm{V}, \ V_{\rm IH} = 2.7 \mathrm{V}$			20	μA
$I_{ m IL}$	(corrente de entrada no nível 'baixo')	$V_{\rm CC} = 5.25 \mathrm{V}, \ V_{\rm IL} = 0.4 \mathrm{V}$			-0.4	mA
I_{OH}	(corrente de saída no nível 'alto')	$V_{\rm CC} = 5.25 \text{V}$			-400	μA
I_{OL}	(corrente de saída no nível 'abaixo')	$V_{\rm CC} = 5.25 \text{V}$			8	mA

60 Na entrada (v_{ent}) da gate NAND TTL da Figura 52 são aplicados os sinais representados abaixo. Esboce a forma de onda do sinal de saída para caso ((a) e (b)).

Figura 52

(b)