

Représentations numériques et codes (ex. NUM)

Exercises Solutions Conception Numérique

2	Systèmes de numération						
2.1	Déterminer jusqu'à quelle valeur on peut compter avec des nombres codés sur :						
	a) 0 to 15	d) 0 to 65535					
	b) 0 to 255	e) 0 to 4'294'967'295 (4 Gbit)					
	c) 0 to 1023						
2.2	Déterminer jusqu'à quelle valeur codés sur :	on peut compter avec des nombres hexadécimau					
	a) 0 to 65535	b) 0 to 4'294'967'295 (4 Gbit)					
3	Conversion d'un systèmes	de numération à un autre					
3.1	Effectuer la conversion des nombres binaires purs suivants en format décimal :						
	a) 6 ₁₀	d) 11 ₁₀					
	b) 15 ₁₀	e) 255 ₁₀					
	c) 74 ₁₀						
3.2	Effectuer la conversion des nombres décimaux suivants en format binaire :						
	a) 111'1101 ₂	d) 1'0000'0000 ₂					
	b) 1'0000 ₂	e) 1001 ₂					
	c) 1111'1110'0101'1001 ₂						
3.3	Effectuer la conversion des nom	bres hexadécimaux suivants en format binaire :					
	a) 1110 ₂	d) 1001'1111'0111 ₂					
	b) 1'0101'1100 ₂	e) 10'0011'0100'0110 ₂					

c) 1010'1011'0011'1101₂

3 4	Effectuer	la conversion	des nombres	hinaires nurs	suivants en	format l	nexadécimal	
J.4	Lilectuei	ia conversion	ues nombres	Dillalles Duis	Suivants en	ionnat i	lexaueciiilai	

- a) A_{16}
- b) 6₁₆
- c) EB_{16}

- d) $2F_{16}$
- e) C_{16}

3.5	Effectuer la	conversion des	nombres	hexadécimaux	suivants	en format	décimal	
-----	--------------	----------------	---------	--------------	----------	-----------	---------	--

- a) 13₁₀
- b) 348₁₀
- c) 564_{10}

- d) 254₁₀
- e) 42681₁₀

3	.6	Effectuer I	a conversion	des nombres	décimaux	suivants en	format	hexadécimal	

- a) 80₁₆
- b) 10₁₆
- c) $FE59_{16}$

- d) D1₁₆
- e) 9_{16}

4 Opération sur les nombres logiques

4.1 Effectuer dans le système binaire les additions suivantes :

- a) 0010'1010₂
- b) 0110'1001₂

d) 1000'0000₂

c) 1011'0011₂

4.2 Effectuer dans le système binaire les soustractions suivantes :

- a) 0011'1010₂
- b) 0011'1010₂
- c) 0000'1100₂

d) 0111'1111₂

4.3 Effectuer dans le système binaire les multiplications suivantes :

- a) 0011'1100₂
- b) 0011'1100₂
- c) 0011'0000₂

d) 0110'0010₂

4.4 Effectuer dans le système hexadécimal les additions suivantes :

- a) 1300_{16}
- b) 8984₁₆
- c) 1333₁₆

d) 13534₁₆

- 4.5 Déterminer l'expression binaire de :
 - a) 1001₂
 - b) 110001₂
 - c) 11100001₂

d) 111110000001_2 ; $(2^{n-1}-1)*2^{n+1}+1$

- 5 Codes
- 5.1 Effectuer les additions sur les nombres BCD suivants :
 - a) 0100'0100'0100_{BCD}
 - b) 0110'0011'0011_{BCD}
 - c) 1001'0010_{BCD}

- d) 0001'0000'0000_{BCD}
- 5.2 Convertir à l'aide de la formule de récurrence du polycopié le code de Gray 1001_{Gray} en nombre binaire.

 1110_{2}

- 6 Représentation des nombres signés
- 6.1 Donner la représentation en signe-amplitude, complément à 1 et complément à 2 sur huit bits des nombres décimaux et binaires purs suivants :
 - a) $0001'0010_s$ $0001'0010_{1cl}$ $0001'0010_{2cl}$
 - b) 1000'0011_s 1111'1100_{1cl} 1111'1101_{2cl}
 - c) $0000^{1}0000_{s}$; $1000^{1}0000_{s}$ $0000^{1}0000_{1cl}$; $1111^{1}1111_{1cl}$ $0000^{1}0000_{2cl}$
 - d) 0001'1010_s

- 0001'1010_{1cl} 0001'1010_{2cl}
- e) 0000'1010_s 0000'1010_{1cl} 0000'1010_{2cl}
- f) 1110'0100_s 1001'1011_{1cl} 1001'1100_{2cl}
- 6.2 Effectuer un changement de signe sur les nombres suivants codés en complément à 2 :
 - a) 1111'1111₂
 - b) 1000'1000₂
 - c) 0001'0000₂
 - d) FF₁₆

- e) BC_{16}
- f) $7F_{16}$

6.3 Soit les nombres arithmétiques binaires 0001_2 et 1001_2 exprimés en complément à 2 sur 4 bits. Représenter ces même nombres en complément à 2 sur 8 bits.

0000'0001;1111'1001