Programming Assignment 1: Brief Overview

First: Array Sorting

- Sorts an input array
- Input
 - First line specifies number of array elements
 - Second line specifies the array
- Output
 - Odds in ascending order, Evens in descending order
- Example:

```
Input: [I 8 I2 3 5 8 2 4 -5]
```

Sorted Array: [-5 | 1 | 3 | 5 | 12 | 8 | 8 | 4 | 2]

Second: Hash Table

- Hash Table with 10,000 buckets
- Given hash table operations, manipulate hash table
 - i <value> : insert into hash table
 - prints "inserted" if value successfully inserted into hash table
 - prints "duplicate" if value already exists in hash table
 - s <value> : search hash table
 - prints "present" if value is in hash table
 - prints "absent" if value is NOT in hash table
- Hash is <value> modulo <# of buckets>
- Don't forget about negative values
 - A negative value might yield you a negative hash value
 - Ex. -5 % 2 = -1, there is no such index as -1

Second: Hash Table (Example)

Example with 5 buckets

example_file.txt output • i 10 inserted inserted • i 3 inserted • i4 inserted • i 12 inserted • s 10 present duplicate • i 10 • s 4 present • i -5 inserted

• s 5

absent

Third: Bit Function

- Take a value X and perform bit operations on it
- Operations:
 - set <n> <v> : Set the nth bit of X to v and print the value
 - get <n> <v> : Get the value of the nth bit and print it (eg. I or 0)
 - comp <n> <v> : Modify the nth bit to its complement
 (eg. I if 0 or 0 if I) and print the resulting X value
- Input
 - First line specifies the initial value X
 - Rest of lines specifies the bit operations to carry out
- Only use bitwise and assignment operators, no arithmetic
- Example:

<u>example_file.txt</u>	<u>state</u>	<u>output</u>
• 5	5 (0101)	<none></none>
• get 0 0	• 0101	•
• comp 0 0	• $0101 -> 0100 = 4$	• 4
• set	• $0100 -> 0110 = 6$	• 6

Fourth: One Shot Learning

 Carry out One-Shot Learning in C to predict the price of an unknown house

• Input:

- File of training data with prices and attributes for a house in each row
- File of attributes unknown houses

Output:

The predicted prices for each of the unknown houses

The Problem

- Someone out there is pricing houses based on several attributes
 - Ex. # of bedrooms, total size of house, # of baths, etc.
 - $x_1, x_2, x_3, x_4, \dots$
- All these attributes contribute to the final house price
- However all attributes may not contribute to the final price the same way
 - Not all attributes have the same weight on the price
- Would look more like the following:
 - $price = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + \dots$
 - Each attribute x_i has some weight w_i
 - Note: x_0 is implicitly I as w_0 would basically serve as a constant

The Problem

- Given some houses we do know the attributes and prices of, can we predict what the potential price of an unknown house?
- Example:

House Price

• Recall: $price = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + \dots$

Price Constant

_	nouse rrice		Frice Constant		# Dedi Ooms)	# 3Q IL	<u># L</u>	<u>Jauri Ooms</u>
•	• 350,000		I		4		3000		1
•	• 200,000		1		2		2000		1
•	• 577,000		1		5		8000		3
•	• 400,000		1		3		5000		2
•	• 300,000		1		3		4000		2
•	• ?		1		3		5000		3
_	House Price		Price Constant		# bedrooms		# sq ft	# t	<u>oathrooms</u>
-	House Price 350,000	=	Price Constant w_0 I	+	# bedrooms w_1 4	+	# sq ft w ₂ 3000	# <u>t</u> +	w_3 I
		= =	_	+ +	_		•		•
	• 350,000	= = =	w_0 !		<i>w</i> ₁ 4	+	w_2 3000	+	w_3 I
•	• 350,000 • 200,000	= = = =	w_0 w_0 .	+	w ₁ 4 w ₁ 2	+	w_2 3000 w_2 2000 w_2 8000	+	w ₃ w ₃
•	350,000200,000577,000	= = = = =	$egin{array}{c} w_0 I \ w_0 I \ \end{array}$	++	w ₁ 4 w ₁ 2 w ₁ 5	+ + + +	w_2 3000 w_2 2000 w_2 8000	+ + + +	w ₃ I w ₃ I w ₃ 3

hadrooms

 $w_0 I$ + $w_1 3$ + $w_2 5000$ + $w_3 3$

sa ft

hathrooms

• Can we learn weights w_0 , w_1 , w_{2} , and w_3 to predict the unknown house price?

The Problem Generalized

Lets solve the weights with what we know

House Pric	e Price Constant	# bedrooms	# sq ft	# bathrooms
• 350,000	1	4	3000	1
• 200,000	1	2	2000	1
• 577,000	1	5	8000	3
• 400,000	1	3	5000	2
• 300,000	I	3	4000	2

- Represent attributes and prices as matrices
- Let matrix X be a matrix of all the attributes we know
 - Each row corresponds to the attributes of a house
 - The ith column corresponds to the ith attribute
- Let W be a vector of all weights
- Let Y be the house prices

$$\begin{bmatrix} 1 & 4 & 3000 & 1 \\ 1 & 2 & 2000 & 1 \\ 1 & 5 & 8000 & 3 \\ 1 & 3 & 5000 & 2 \\ 1 & 3 & 4000 & 2 \end{bmatrix} \quad \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 350,000 \\ 200,000 \\ 577,000 \\ 400,000 \\ 300,000 \end{bmatrix}$$

$$X \qquad \qquad Y$$

Solution

- We have the equation XW = Y
- We know X and Y
- We need to solve with for W
- We can do this using the following equation:
 - $W = (X^T X)^{-1} X^T Y$
- Method of Least Squares
 - Do not worry to much about the details
 - If interested look here: https://en.wikipedia.org/wiki/Linear_least_squares
- ullet All you need to know is that it will approximate W
- Once we know W we can use it to predict the price of any house

Things you need to know

- Solving for the weights:
 - $W = (X^T X)^{-1} X^T Y$
- Predicting Price of Unknown House:
 - Y = XW
- Matrix Multiplication
 - https://www.mathsisfun.com/algebra/matrix-multiplying.html
 - <a href="https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98369efdf:matrices/x9e81a4f9889effdf:matrices/x9e81a4f9889effdf:matrices/x9e81a4f989effdf:matrices/x9e81a4f989effdf:matrices/x9e81a4f989effdf:matrices/x9e81a4f989effdf:matrices/x9e81a4f989effdf:matric
- Transposing A Matrix
 - https://mathinsight.org/matrix_transpose
 - https://www.khanacademy.org/math/linear-algebra/matrix-transformations/matrix-transpose/v/linear-algebra-transpose-of-a-matrix
- Inverting a Matrix
 - https://www.mathsisfun.com/algebra/matrix-inverse-row-operations-gauss-jordan.html
 - https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-determinants-and-inverses-of-large-matrices/v/inverting-matrices-part-3