《计算机组成与设计》 书后作业

姓名:刘韬学院:竺可桢学院专业:人工智能邮箱:3220103422@zju.edu.cn

日期: 2024年4月4日____

chapter1

1.1

- 1. PC:personal computer, 个人计算机,是一种供个人使用的小型计算机。它的特点是体积小, 价格相对便宜,操作简单,功能强大。
- 2. server: 服务器,是一种提供服务的计算机,通常用于存储数据、提供网络服务等。
- 3. embedded computer: 嵌入式计算机,是一种专用计算机,通常用于控制设备、嵌入到其他 设备中。
- 4. supercomputer: 超级计算机, 是一种计算能力极强的计算机, 通常用于科学计算、模拟等。

1.2

- ♦ a. Performance via Pipelining
- ♦ b. Dependability via Redundancy
- ♦ c. Performance via Prediction
- ♦ d. Make the Common Case Fast
- ♦ e. HierarchyofMemories
- ♦ f. PerformanceviaParallelism
- ♦ g. DesignforMoore'sLaw
- ♦ h. UseAbstractiontoSimplifyDesign

1.4

- ♦ a. 1280 × 1024 pixels = 1,310,720 pixels => 1,310,720 × 3 = 3,932,160 bytes/ frame.
- ♦ b. 3,932,160 bytes×(8 bits/byte)/100e6 bits/second = 0.31 seconds

1.6

- $\lozenge \ \ \text{CPI(P1)} = \frac{1 \times 1e5 + 2 \times 2e5 + 3 \times 5e5 + 3 \times 2e5}{1e6} = 2.6$
- $\lozenge \ \ \mathrm{CPI}(\mathrm{P2}) = \tfrac{2 \times 1e5 + 2 \times 2e5 + 2 \times 5e5 + 2 \times 2e5}{1e6} = 2.0$
- \diamond clock cycles(P1) = $1e6 \times 2.6 = 2.6e6$
- \diamond clock cycles(P2) = $1e6 \times 2.0 = 2.0e6$

- 1. $CPI = \frac{T_{exec} \times$ 时钟速率 Num_{instr}
 - ♦ compiler A CPI = 1.1
 - ♦ compiler B CPI = 1.25
- 2. $\frac{f_B}{f_A} = \frac{T_{\text{execB}}}{T_{\text{execA}}} = 1.36$ 3. $T_{\text{new}} = \frac{6.0e8 \times 1.1}{1e9} = 0.66s$
 - $\Diamond \ \ \frac{T_A}{T_{\rm new}} = 1.67$

$$\Diamond \frac{T_B}{T_{
m new}} = 2.27$$

1.14.1

Clock cycles =
$$5.12e8$$
, $T_{\rm CPU}=\frac{\rm Clock\ cycles}{\rm clock\ rate}=0.256s$ 假设要提升到 2 倍,那么 Clock cycles 变为 $1/2$,那么 $\rm CPI_{improved}=\frac{256-462}{50}<0$ 这不可能

1.14.2

$$\mathrm{CPI}_{\mathrm{improved}} = \tfrac{256-198}{80} = 0.725$$

1.14.3

```
T_{\mathrm{CPU}} (before improv.) = 0.256 s 
 T_{\mathrm{CPU}} (after improv.) = 0.1712 s
```

chapter2

2.3

```
sub x30, x28, x29 # x30 = i - j

slli x30, x30, 3 # x30 = (i - j) * 8

add x30, x30, x10 # x30 = &A[i-j]

ld x30, 0(x30) # x30 = A[i-j]

sd x30, 64(x11) # B[8] = A[i-j]
```

2.4

```
B[g] = A[f] + A[f+1]
```

Address	little-endian	big-endian
0x00	0x12	0xab
0x01	0xef	0xcd
0x02	0xcd	0xef
0x03	0xab	0x12

2.11.1

$$128 + x6 > 2^{63} - 1$$
 即 $x6 > 2^{63} - 129$ 或者 $128 + x6 < -2^{63}$ 即 $x6 < -128 - 2^{63}$,这不成立

2.11.2

128 - x6 >
$$2^{63}$$
 -1 即 x6 < 129 - 2^{63} 或者 128 - x6 < -2^{63} 即 x6 > 128 + 2^{63} ,这不成立

2.11.3

$$x6 - 128 > 2^{63} - 1$$
 即 $x6 > 127 + 2^{63}$ 这不成立
或者 $x6 - 128 < -2^{63}$ 即 $x6 < 128 - 2^{63}$

2.12

R-type: add x1, x1, x1

2.13

sd x5,32(x30) S-type:0x025F3023

2.23

2.23.1

The UJ instruction format would be most appropriate

2.23.2

```
loop:
addi x29, x29, -1
bgt x29, x0, loop
addi x29, x29, 1
```

2.24

2.24.1

2.24.2

```
acc = 0, i = 10;

while(i != 0)

{

i = i - 1;

acc = acc + 2;

}
```

2.24.3

4*N + 1

2.24.4

```
acc = 0, i = 10;

while(i >= 0)

{

i = i - 1;

acc = acc + 2;

}
```

2.25

```
addi x7, x0, 0
LoopI:
    bge x7, x5, LoopJ
    addi x30, x10, 0
    addi x29, x0, 0
LoopJ:
    bge x29, x6, EndJ
   add x31, x7, x29
   slli x32, x29, 2
   add x32, x32, x30
    sd x31, 0(x32)
    addi x29, x29, 1
   jal x0, LoopJ
EndJ:
    addi x7, x7, 1
   jal x0, LoopI
EndI:
```

2.26

13 条 risc-v 指令, $12 \times 10 + 3 = 123$

```
f:
    addi x2, x2, -16
    sd x1, 0(x2)
    add x5, x12, x13
    sd x5, 8(x2)
    jal x1, g
    ld x11, 8(x2)
    jal x1, g
    ld x1, 0(x2)
    addi x2, x2, 16
    jalr x0, x1
```

2.35.1

0x11

2.35.2

0x88

2.36

```
lui x10, 0x11223
addi x10, x10, 0x344
slli x10, x10, 32
lui x5, 0x55667
addi x5, x5, 0x788
add x10, x10, x5
```

2.40

2.40.1

$$2 \times 0.7 + 6 \times 0.1 + 3 \times 0.2 = 2.6$$

2.40.2

$$\begin{aligned} \text{CPI} &= 2.6 \times 0.75 = 1.95 \\ \frac{1.95 - 6 \times 0.1 - 3 \times 0.2}{0.7} &= 1.07 \end{aligned}$$

2.40.3

$$\begin{aligned} \text{CPI} &= 2.6 \times 0.5 = 1.3 \\ \frac{1.3 - 6 \times 0.1 - 3 \times 0.2}{0.7} &= 0.14 \end{aligned}$$

chapter3

3.1

5730

3.5

 $4365 - 3412 = \left(753\right)_{8}$

3.8

63,不溢出

3.9

151 + 214 = 365, 溢出 饱和值为 255

iteration	step	Multiplier	Multiplicand	Product
0	Initial values	1100	0011 1110	0000 0000
1	1: $0 \Rightarrow \text{No operation}$	1100	0011 1110	0000 0000
	2: Shift left Multiplicand	1100	0111 1100	0000 0000
	3: Shift right Multiplier	0110	0111 1100	0000 0000
2	1: $0 \Rightarrow \text{No operation}$	0110	0111 1100	0000 0000
	2: Shift left Multiplicand	0110	1111 1000	0000 0000
	3: Shift right Multiplier	0011	1111 1000	0000 0000
3	$1a: 1 \Rightarrow Prod = Prod + Mcand$	0011	1111 1000	1111 1000
	2: Shift left Multiplicand	0011	0001 1111 0000	0111 1100
	3: Shift right Multiplier	0001	0001 1111 0000	0111 1100
4	$1a: 1 \Rightarrow Prod = Prod + Mcand$	0001	0001 1111 0000	0010 1111 0100
	2: Shift left Multiplicand	0001	0011 1110 0000	0010 1111 0100
	3: Shift right Multiplier	0000	0011 1110 0000	0010 1111 0100

iteration	step	divisor	remainder	
0	Initial values	0001 0101	0000 0000 0100 1010	
	Shift remainder left 1	0001 0101	0000 0000 1001 0100	
1	1. remainder=remainder-divisor	0001 0101	1110 1010 1001 0100	
	2b: remainder $< 0 \Rightarrow$ + divisor, sll R,	0001 0101	0000 0001 0010 1000	
	$R_0 = 0$			
2	1. remainder=remainder-divisor	0001 0101	1110 1100 0010 1000	
	2b: remainder $< 0 \Rightarrow$ + divisor, sll R,	0001 0101	0000 0010 0101 0000	
	$R_0 = 0$			
	1. remainder=remainder-divisor	0001 0101	1110 1101 0101 0000	
3	2b: remainder $< 0 \Rightarrow$ + divisor, sll R,	0001 0101	0000 0100 1010 0000	
	$R_0 = 0$	0001 0101	0000 0100 1010 0000	
4	1. remainder=remainder-divisor	0001 0101	1110 1111 1010 0000	
	2b: remainder $< 0 \Rightarrow$ + divisor, sll R,	0001 0101	0000 1001 0100 0000	
	$R_0 = 0$	0001 0101		
5	1. remainder=remainder-divisor	0001 0101	1110 0100 0100 0000	
	2b: remainder $< 0 \Rightarrow$ + divisor, sll R,	0001 0101	0001 0010 1000 0000	
	$R_0 = 0$	0001 0101		
6	1. remainder=remainder-divisor	0001 0101	1111 1101 1000 0000	
	2b: remainder $< 0 \Rightarrow$ + divisor, sll R,	0001 0101	0010 0101 0000 0000	
	$R_0 = 0$	0001 0101	0010 0101 0000 0000	
7	1. remainder=remainder-divisor	0001 0101	0001 0000 0000 0000	
	2a: remainder >0 \Rightarrow sll R, $R_0=1$	0001 0101	0010 0000 0000 0001	
8	1. remainder=remainder-divisor	0001 0101	0000 1011 0000 0001	
	2a: remainder >0 \Rightarrow sll R, $R_0=1$	0001 0101	0001 0110 0000 0011	
	Shift left half of remainder right 1	quotient = 0000 0011	remainder = 0000 1011	

3.20

都是 201326592, 正数的补码是本身, 等于无符号整数

3.21

3.22

$$=(-1)^0 \times (1+0) \times 2^{24-127} = 2^{-103}$$

3.24

$$63.25 = 111111.01 \times 2^0 = 1.11111101 \times 2^5$$

 $sign = 0,exp = 1023 + 5 = 1028 = 10000000100, frac = 100000000100$

3.27

$$-1.5625 \times 10^{-1} = -0.15625 \times 10^{0} = -0.00101 \times 2^{0} = -1.01 \times 2^{-3}$$
 sign = 1,exp = 15 - 3 = 12 = 01100, frac = 0100000000 half float = 1011 0001 0000 0000

◇ 半精度的表示范围, 假设是规格数

▷ 最小

- $-\exp = 00001 \text{ actual } \exp = -14 \text{ frac} = 00000000000$
- $-\pm 1.0 \times 2^{-14} \approx \pm 6.1 \times 10^{-5}$

▷ 最大

- exp = 11110 actual exp = 15 frac = 1111111111
- $-\pm 2.0 \times 2^{15} \approx \pm 65536$

3.29

$$2.6125 \times 10^1 + 4.150390625 \times 10^{-1}$$
 $2.6125 \times 10^1 = 11010.001 \times 2^0 = 1.1010001 \times 2^4$ $4.150390625 \times 10^{-1} = 0.01101010111 = 1.11010100111 \times 2^{-2}$ 然后对齐到小数点,把小的左移六位,相加得到

 $1.1010100011 \times 2^4 = 11010.100011 \times 2^0 = 26.546875 = 2.6546875 \times 10^1$