Classification with Separating Hyperplanes

- 1 Linear separation
- Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Non-separable Classes

- 1 Linear separation
- Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Mon-separable Classes

Concept Learning

- Concept Learning:
 - Supervised learning of Boolean-valued functions
 - ► Learn from positive and negative examples to classify (yes/no) correctly
- Examples of concepts
 - Concrete things: "Dog", "Mammal", "Vehicle", ...
 - ▶ Abstract: "Criminal offence", "Critical thinking", ...
- Input is an array of attribute values

Neuron caricature, "artificial neuron"

- Weighted input signals
- Summing
- Thresholded output

Artificial Neuron

What can a single "artificial neuron" compute?

- \vec{x} Input in vector format
- w Weights in vector format
- b Threshold
- y Output (True/False, encoded as +1/-1)

$$y = \operatorname{sign}\left(\sum_{i} x_{i} w_{i} - b\right)$$

Artificial Neuron

Geometrical interpretation

$$y = \operatorname{sign}\left(\sum_{i} x_{i} w_{i} - b\right)$$

$$y < 0$$

$$y < 0$$

$$\frac{b}{\|\overline{w}\|}$$

Common trick: treat the variable threshold (b) as an extra weight

Some examples of neuronal learning for classification

But these ...? How to do that?

Training a linear separator

What does learning mean here?

Learning means finding the best weights w_i

Two good algorithms exist:

- Perceptron Learning
- Delta Rule

Perceptron Learning [binary output]

- Incremental learning
- Weights only change when the output is wrong
- Update rule: $w_i \leftarrow w_i + \eta(t-o)x_i$
- Always converges if the problem is solvable

Delta Rule (LMS-rule) [continuous output]

- Incremental learning
- Weights always change
- $w_i \leftarrow w_i + \eta(t \vec{w}^T \vec{x}) x_i$
- Converges only in the mean
- Will find an optimal solution even if the problem can not be fully solved

Linear Separation

Many acceptable solutions \rightarrow bad generalization

- Works well for all training data, but creates Structural Risk
- Future data samples might get mis-classified

- 1 Linear separation
- Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Non-separable Classes

Hyperplane with margins

Training data points are at least a distance d from the plane

Less arbitrariness \rightarrow better generalization

- Wide margins restrict the possible hyperplanes to choose from
- Less risk to choose a bad hyperplane by accident
- Reduced risk for bad generalization

Minimization of the structural risk \equiv maximization of the margin

Out of all hyperplanes which solve the problem, the one with widest margin will probably generalize best

Mathematical Formulation

Separating Hyperplane

$$\vec{w}^T \vec{x} = 0$$

Hyperplane with a margin

$$\vec{w}^T \vec{x} \ge 1$$
 when $t = 1$ (i.e. a positive target) $\vec{w}^T \vec{x} \le -1$ when $t = -1$ (i.e. a negative target)

Combined

$$t\vec{w}^T\vec{x} \geq 1$$

How wide is the margin?

1 Select two points, \vec{p} and \vec{q} , on the two margins:

$$\vec{w}^T \vec{p} = 1$$
 $\vec{w}^T \vec{q} = -1$

② Distance between \vec{p} and \vec{q} along \vec{w} :

$$2d = \frac{\vec{w}^T}{||\vec{w}||}(\vec{p} - \vec{q})$$

Simplify:

$$2d = \frac{\vec{w}^T \vec{p} - \vec{w}^T \vec{q}}{||\vec{w}||} = \frac{1 - (-1)}{||\vec{w}||} = \frac{2}{||\vec{w}||}$$

Maximal margin corresponds to minimal length of the weight vector

Best Separating Hyperplane

Minimize

$$\vec{w}^T \vec{w}$$

Constraints

$$t_i \vec{w}^T \vec{x}_i > 1 \quad \forall i$$

- 1 Linear separation
- 2 Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Non-separable Classes

Observation

Almost everything becomes linearly separable when represented in high-dimensional spaces

"Ordinary" low-dimensional data can be "scattered" into a high-dimensional space.

Two problems emerge

- lacktriangledown Many free parameters o bad generalization
- Extensive computations

Support Vector Machines

- Transform the input to a suitable high-dimensional space
- Choose the unique separating hyperplane that has maximal margins

2D-3D example

great, but computationally expensive

Support Vector Machines

- Advantages
 - Very good generalization
 - Works well even with few training samples
 - Fast classification
- Disadvantages
 - Non-local weight calculation
 - Hard to implement efficiently

What is the "correct" mapping to high dimensional spaces to use?

- 1 Linear separation
- Structural Risk Minimization
- Support Vector Machines
- 4 Kernels
- Non-separable Classes

Kernels: Only *pretend* that we transform the input data into a high-dimensional feature space!

Idea behind Kernels

Utilize the advantages of a high-dimensional space without actually representing anything high-dimensional

- Condition: The only operation done in the high-dimensional space is to compute *scalar products* between pairs of items
- Trick: The high-dimensional scalar product is computed using the original (low-dimensional) representation

Example

Points in 2D

$$\vec{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

Transformation to 4D

$$\phi(\vec{x}) = \begin{bmatrix} x_1^3 \\ \sqrt{3}x_1^2x_2 \\ \sqrt{3}x_1x_2^2 \\ x_2^3 \end{bmatrix}$$

$$\phi(\vec{x})^T \cdot \phi(\vec{y}) = x_1^3 y_1^3 + 3x_1^2 y_1^2 x_2 y_2 + 3x_1 y_1 x_2^2 y_2^2 + x_2^3 y_2^3$$

$$= (x_1 y_1 + x_2 y_2)^3$$

$$= (\vec{x}^T \cdot \vec{y})^3$$

$$= \mathcal{K}(\vec{x}, \vec{y})$$

Common Kernels

Polynomials

$$\mathcal{K}(\vec{x}, \vec{y}) = (\vec{x}^T \vec{y} + 1)^p$$

Radial Bases

$$\mathcal{K}(\vec{x}, \vec{y}) = e^{-\frac{1}{2\rho^2}||\vec{x} - \vec{y}||^2}$$

Structural Risk Minimization

Minimize

$$\vec{w}^T \vec{w}$$

Constraints

$$t_i \vec{w}^T \vec{x}_i \geq 1 \quad \forall i$$

• Non-linear transformation ϕ of input \vec{x}

New formulation

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w}$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 \quad \forall i$$

Structural Risk Minimization

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w}$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 \quad \forall i$$

Lagranges Multiplier Method

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

Minimize w.r.t. \vec{w} , maximize w.r.t. $\alpha_i \geq 0$

$$\frac{\partial L}{\partial \vec{w}} = 0$$

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$
$$\frac{\partial L}{\partial \vec{w}} = 0 \implies \vec{w} - \sum_i \alpha_i t_i \phi(\vec{x}_i) = 0$$
$$\vec{w} = \sum_i \alpha_i t_i \phi(\vec{x}_i)$$

Use

$$\vec{w} = \sum_{i} \alpha_{i} t_{i} \phi(\vec{x}_{i})$$

to eliminate \vec{w}

$$L = \frac{1}{2} \vec{w}^T \vec{w} - \sum_i \alpha_i \left[t_i \vec{w}^T \phi(\vec{x}_i) - 1 \right]$$

$$L = \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) - \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j) + \sum_i \alpha_i$$
$$L = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j t_i t_j \phi(\vec{x}_i)^T \phi(\vec{x}_j)$$

The Dual Problem

Maximize

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$

Under the constraints

$$\alpha_i \geq 0 \quad \forall i$$

- \vec{w} has disappeared
- $\phi(\vec{x})$ only appear in scalar product pairs

- Choose a suitable kernel function
- **2** Compute α_i (solve the maximization problem)
- \vec{x}_i corresponding to $\alpha_i \neq 0$ are called support vectors
- Classify new data points via

$$\sum_{i} \alpha_{i} t_{i} \mathcal{K}(\vec{x}, \vec{x_{i}}) > 0$$

non-separable classes? all classes are separable, but is this what we want?

generalization / specialization tradeoff

instead introduce ... slack ...

None-Separable Training Samples

Allow for Slack

Re-formulation of the minimization problem

Minimize

$$\frac{1}{2}\vec{w}^T\vec{w} + C\sum_i \xi_i$$

Constraints

$$t_i \vec{w}^T \phi(\vec{x}_i) \geq 1 - \xi_i$$

 ξ_i are called *slack variables*

Dual Formulation with Slack

Maximize

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} t_{i} t_{j} \phi(\vec{x}_{i})^{T} \phi(\vec{x}_{j})$$

With constraints

$$0 \le \alpha_i \le C \quad \forall i$$

Otherwise, everything remains as before