

Examen, Vendredi 08 Avril 2022 Durée : 1h30

TECHNIQUES QUANTITATIVES & REPRÉSENTATIONS

A.U.: 2021-2022 **Prof.** H. El-Otmany

Règlement: Documents écrits, électroniques et téléphones portables interdits.

La copie que vous rendrez contiendra impérativement vos feuilles de brouillon (même inutilisées) ainsi que l'énoncé de l'examen. Bon courage!

Questions de cours [3 points] Les assertions suivantes sont-elles vraies? Justifiez.

- 1. Les intérêts composés se calculent uniquement sur le capital initial durant la période du placement.
- 2. Pour $1000 \in$ investi avec un taux annuel i=2%, les intérêts simples et composés sont égaux pendant la première année.
- 3. La droite de régression de y en x est $y = (x \overline{x})a + \overline{y}$ avec $a = \frac{Cov(X,Y)}{V(X)}$.
- 4. La droite de régression calculée sur la série statistique (x, y) passe par le point moyen $(\overline{y}, \overline{x})$.
- 5. Le coefficient de corrélation linéaire r(x, y) est toujours positif et inférieur à 1.
- 6. Les séries chroniques sont des séries statistiques de variables quantitatives permettant de décrire les phénomènes dans le temps.

Exercice n°1 [4 points]

- 1. Un conseiller financier vous propose de placer 10000€ à un taux annuel 2.75% pendant 4 ans puis à un taux annuel 3.25% durant les 3 années suivantes. En distinguant les intérêts (simples ou composés), calculer
 - a) la valeur de votre placement au terme des sept années.
 - b) le taux moyen du placement.
- 2. Vous acceptez l'offre à condition de pouvoir retirer votre argent à tout moment au cours de la 7^{ème} année. Les intérêts seront alors considérés comme simples entre le début de la 7^{ème} année et la fin du placement.
 - a) Calculer le capital acquis si vous retirez votre argent après six ans et neufs mois?
 - b) Calculer le capital que vous auriez placer pour retirer 13000€ au bout de six ans et trois mois.

Exercice n°2 [5 points]

- 1. Le 30 avril 2023, vous pensez verser une première somme d'argent $S \in \mathbb{C}$ sur un compte dédié à la retraire avec un taux annuel 3% où les intérêts sont composés. Ensuite, vous verserez à la fin de chaque mois 0.5% de plus que le mois précédent jusqu'à votre retraite le 30 Juillet 2059. Vous espérez ainsi obtenir un complément de retraite de $1000 \in \mathbb{C}$ par mois. Déterminer la valeur de S dans les cas suivantes :
 - a) le complément de retraite est versé durant dix ans à la fin de chaque mois.
 - b) le complément de retraite est versé de façon perpétuelle la fin de chaque mois.
 - c) le complément de retraite est versé durant onze ans au début de chaque mois.
- 2. En juin 2023, vous emprunterez 100000€ à un taux annuel 4%, pour acheter un appartement, que vous rembourserez grâce à 6 annuités consécutives versées de juin 2024 à juin 2029. Dressez le tableau d'amortissement de cet emprunt sachant que
 - (i) les deux premières annuités sont égales.
 - (ii) les annuités augmentent de 1000€ chaque année de juin 2025 à juin 2027.
 - (iii) les annuités augmentent de 2% par an de juin 2027 juin 2029.

Exercice $n^{\circ}3$ [5 points] On souhaite étudier la répartition des salaires des employés dans une université en fonction de leurs âges. Le tableau reporte les résultats où X désigne l'âge en années et Y désigne le salaire en euros.

X (années) Y(€)	[19; 25[[25; 35[[35; 45[[45; 55[[55; 65[
[1100; 1300[130	2	3	6	2
[1300; 1500[109	4	5	1	5
[1500; 1700[56	5	7	2	5
[1700; 2000[25	5	7	2	5
[2000; 3000[0	5	7	2	5
[3000; 5000[0	5	7	2	5

- 1. Établir le tableau des distributions en fréquences.
- 2. Donner la distribution marginale (en effectif et en fréquence) de X.
- 3. Calculer la moyenne marginale et la variance marginale de X.
- 4. Donner les distributions conditionnelles de $X_{|Y=[2000;3000]}$ et de $Y_{|X=25;35|}$.
- 5. Les variables X et Y sont-elles indépendantes? Commenter le résultat.

Exercice $n^{\circ}4$ [5 points] Une entreprise innovante envisage de lancer sur le marché un téléphone rechargeable avec mouvement pour remédier au problème d'autonomie des batteries. Le tableau ci-dessous reporte une partie des résultats d'une enquête réalisée pour déterminer le nombre d'acheteurs potentiels noté y en fonction du prix de vente des produits en euros, noté x.

	30 /					
y	632	475	305	275	266	234

Pour simplifier le traitement des données, on décide d'effectuer le changement de variables $z = \ln(y)$.

1. Recopier et remplir le tableau ci-dessous en donnant des valeurs approchées de z à 10^{-4} .

x	30	50	70	80	90	100
z						

- 2. Dresser le nuages de points de la série statistique et placer le point moyen associé.
- 3. Calculer le coefficient de corrélation de cette série statistique double avec une précision de 10^{-4} . Commenter le résultat.
- 4. Déterminer une équation de la droite D obtenue par ajustement linéaire de selon la méthode des moindres carrés sous la forme z=ax+b où a et b seront donnés à 10^{-4} près. Tracer Cette droite sur le même graphique de la question 2.
- 5. Déduire une estimation du nombre d'acheteurs potentiels y en fonction du prix de vente x, sous la forme $y = Ce^{-Kx}$ où C et K sont des constantes à préciser.
- 6. En utilisant ce modèle, estimer le nombre d'acheteurs potentiels pour un produit pour déterminer le nombre d'acheteurs potentiels pour un produit vendu à 89 euros.