怎么学习van Krevelen diagrams中的信息

1、了解不同物质的元素比与分子结构之间的关系

区域	分子类型	特征
脂肪族 (Lipid-like)	H/C 高, O/C 低	类似脂肪酸等疏水组分
碳水化合物(Carbohydrate-like)	H/C高, O/C高	葡萄糖、多糖类等
木质素类 (Lignin-like)	中等 H/C 和 O/C	富含芳环结构,来源于植物
鞣质类 (Tannin-like)	低 H/C, 高 O/C	多酚类,氧化性强
煤/石墨类(Condensed Aromatic)	H/C 和 O/C 都很低	强芳香性,高度碳化
蛋白质类 (Protein-like)	H/C≈1.5, O/C≈0.3	含氮类成分

上边是一些常见物质的分子类型的关系。

Figure 1. van Krevelen diagrams of the H/C and O/C ratios of DOM solubilized by (A) pyrophosphate, (B) HCl-hydroxylamine, and (C) dithionite-HCl extraction as detected by FT-ICR-MS; nested charts display the relative abundance of six assigned compound classes within the three selective dissolution extracts (PCA, polycyclic aromatic compounds).

这是我摘录的一个文献中的van Krevelen diagrams。没有上色的,想要发好的期刊还要有好看的配图。

每一个点代表一个有机分子的化学式(如 $C_xH_yO_zN_w$),通过高分辨率质谱(如 FT-ICR-MS 或 Orbitrap)确定其精确分子式后绘图。

2、掌握常见有机物在图中的分布区域

不用特意去记忆,遇到的时候,好好记忆一下这个有机物在图中的位置就好。大概的 H/C ratio、O/C ratio。

3、尝试从图中判断样品组成的演变趋势(如腐殖化、氧化、还原等)