Machine Learning Final Progress Report

Paula Lozano Gonzalo

April 21, 2025

1 Model Overview

This final report documents my complete journey in developing a classifier for diabetes prediction, culminating in the selection of an AdaBoost classifier as the production model. The key phases included:

- Initial exploration with SGDClassifier and Random Forest
- Addressing class imbalance through dataset balancing
- Extensive hyperparameter tuning with 300 iterations
- Evaluation of neural network architectures
- Final model selection based on comprehensive validation

The task remains binary classification - predicting diabetes outcomes based on patient characteristics, with particular emphasis on minimizing false negatives given the medical context.

2 Dataset & Preprocessing

The dataset processing evolved significantly through the project:

• Initial Dataset:

- Severe class imbalance (91,500 negative vs 8,500 positive cases)
- Total of 100,000 cases

• Balanced Dataset:

- Created equal classes (8,500 positive and negative cases)
- Total of 17,000 cases
- Split into training (10,880), validation (2,720), and test sets

• Preprocessing:

- Missing value imputation (most frequent for categorical, median for numerical)
- Binary encoding for categorical features
- Polynomial features (degree=2) for non-linear relationships

3 Training Progress

After extensive experimentation, the top performing models were:

Model	Training Acc.	Validation Acc.	Precision	Recall
Random Forest	0.843	0.836	0.905	0.904
AdaBoost	0.890	0.886	0.901	0.910
Neural Network (B)	0.756	0.762	0.761	0.972

Table 1: Performance comparison of top models

Confusion Matrices (Validation Data):

==== Random Forest ====	==== AdaBoost ====	==== Neural Net ====
t/p F T	t/p F T	t/p F T
F 1255.0 127.0	F 1249.0 133.0	F 975.0 407.0
T 129.0 1209.0	T 121.0 1217.0	T 38.0 1300.0
Precision: 0.905	Precision: 0.901	Precision: 0.762
Recall: 0.904	Recall: 0.910	Recall: 0.972
F1: 0.904	F1: 0.906	F1: 0.854

Figure 1: Precision-Recall Curve for AdaBoost (Final Model)

Key observations:

- AdaBoost achieved the best balance of precision (0.901) and recall (0.910)
- Random Forest showed strong performance but slightly lower recall

- Neural Network achieved exceptional recall (0.972) but at the cost of precision (0.762)
- All models showed significant improvement over initial imbalanced dataset results

The neural network model (Model B) architecture was as follows:

Layer (type)	Output Shape =====+	Param #
dense (Dense)	(None, 128)	9,984
batch_normalization (BatchNormalization)	(None, 128) 	512
dropout (Dropout)	(None, 128)	I 0 I
dense_1 (Dense)	(None, 64)	8,256
batch_normalization_1 (BatchNormalization)	(None, 64) 	256
dropout_1 (Dropout)	(None, 64)	I 0 I
dense_2 (Dense)	(None, 32)	2,080
batch_normalization_2 (BatchNormalization)	(None, 32) 	128
dense_3 (Dense)	(None, 2)	

4 Challenges & Solutions

Challenge 1: Class Imbalance

- Solution: Created balanced dataset by undersampling majority class
- Impact: Reduced false negatives from 240 to 121 (AdaBoost)

Challenge 2: Model Selection

- Solution: Conducted extensive hyperparameter search (300 iterations)
- Outcome: Discovered AdaBoost with learning_rate=0.1 performed best

Challenge 3: Neural Network Instability

- Solution: Tested multiple architectures (A, B, C)
- Outcome: Despite high recall, precision was unacceptable for medical use

Metric	Training	Validation
Accuracy	0.890	0.886
Precision	0.884	0.901
Recall	0.914	0.910
F1 Score	0.899	0.906

Table 2: Final model performance across datasets

5 Validation Performance

The selected AdaBoost model demonstrates consistent performance across metrics:

The model shows no significant overfitting, with validation metrics closely matching training performance. The confusion matrix reveals excellent performance on both classes:

• False positives: 133 (4.9% of negative cases)

• False negatives: 121 (4.4% of positive cases)

6 Next Steps

While the current model performs well, potential future improvements include:

- Alternative Balancing: Experiment with SMOTE or other oversampling techniques rather than undersampling. So, instead of removing data we could create some synthetic data from the one we have.
- Ensemble Methods: Combine predictions from top models (AdaBoost + Random Forest)

The current AdaBoost model provides a strong foundation for diabetes prediction, with balanced performance across all key metrics and particular strength in minimizing dangerous false negatives.

7 Test Set Performance

The final evaluation on the held-out test set confirmed the strong performance of our top models:

Model	Accuracy	Precision	Recall	F1 Score
AdaBoost	0.890	0.890	0.912	0.901
Random Forest	0.907	0.907	0.910	0.909
Neural Network (B)	0.769	0.770	0.970	0.858

Table 3: Test set performance of final models

Confusion Matrices (Test Data):

==== AdaBoost ==== ==== Random Forest ==== ==== Neural Net ==== Τ Τ t/p F F t/p F t/p F 1511.0 191.0 F 1544.0 158.0 F 1210.0 492.0 T 149.0 1549.0 T 153.0 1545.0 51.0 1647.0 Precision: 0.890 Precision: 0.907 Precision: 0.770 0.912 Recall: 0.910 Recall: 0.970 Recall: F1: 0.901 F1: 0.909 F1: 0.858

Key test set observations:

- Both AdaBoost and Random Forest maintain their strong performance from validation to test set
- Neural Network shows the same pattern of excellent recall but compromised precision
- AdaBoost achieves the best balance for our medical application:
 - Only 149 false negatives (4.4% of positive cases)
 - 191 false positives (5.6% of negative cases)
- Random Forest shows marginally better overall accuracy but slightly lower recall