Introduction to Machine Learning

Supervised Regression In a Nutshell

Learning goals

- Understand basic concept of regressors
- Understand difference between L1 and L2 Loss
- Know basic idea of OLS estimator

LINEAR REGRESSION TASKS

- Learn linear combination of features for predicting the target variable
- Find best parameters of the model by training w.r.t. a loss function $CreditBalance = \theta_0 + \theta_1 Rating + \theta_2 Income + \theta_3 CreditLimit$

Training

Prediction

Credit Card Credit Limit Rating Balance 107 32.318 4351 ? 471 88.180 5042 ? 512 121.218 8101 ?

Input: Unlabeled data

Input: Labeled data

Prediction

Output

Regressor	Credit Card Balance	
	482	
	720	
	987	

LINEAR MODELS: L1 VS L2 LOSS

Loss can be characterized as a function of residuals $r = y - f(\mathbf{x})$

- L(r) = |r|
- Robust to outliers

•
$$L(r) = r^2$$

LINEAR MODELS: L1 VS L2 LOSS

- L1 Loss is not differentiable in r = 0
- Optimal parameters are computed numerically

- L2 is a smooth function hence it is differentiable everywhere
- Optimal parameters can be computed analytically or numerically

LINEAR MODELS: L1 VS L2 LOSS

• The parameter values of the best model depend on the loss type

• $\hat{\theta}_{L_1} = 0.14 \rightarrow$ if the Credit Limit increases by 1\$ the Credit Balance increases by 14 Cents

• $\hat{\theta}_{L_2} = 0.19 \rightarrow \text{if the Credit Limit}$ increases by 1\$ the Credit Balance increases by 19 Cents

OLS ESTIMATOR

Ordinary-Least-Squares (OLS) estimator:

- Analytical solution for linear models with L2 loss
- Best parameters can be computed via derivation of the empirical risk
- ullet Solution: $\hat{oldsymbol{ heta}} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$

OLS ESTIMATOR

Components of **OLS** estimator:

• X: Features + extra column for intercept

• y: Label vector

Intercept	Rating	Income	Credit Limit
1	283	14.891	3606
1	483	106.025	6645
1	514	104.593	7075

Credit Card Balance
333
903
580

POLYNOMIAL REGRESSION

- Adding polynomial terms to the linear combination leads to more flexible regression functions
- Too high degrees can lead to overfitting

