MATLAB实例: PCA降维

作者: 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1. iris数据

5. 1, 3. 5, 1. 4, 0. 2, 1 4. 9, 3. 0, 1. 4, 0. 2, 1 4. 7, 3. 2, 1. 3, 0. 2, 1 4. 6, 3. 1, 1. 5, 0. 2, 1 5. 0, 3. 6, 1. 4, 0. 2, 1 5. 4, 3. 9, 1. 7, 0. 4, 1 4. 6, 3. 4, 1. 4, 0. 3, 1 5, 0, 3, 4, 1, 5, 0, 2, 1 4, 4, 2, 9, 1, 4, 0, 2, 1 4. 9, 3. 1, 1. 5, 0. 1, 1 5. 4, 3. 7, 1. 5, 0. 2, 1 4. 8, 3. 4, 1. 6, 0. 2, 1 4. 8, 3. 0, 1. 4, 0. 1, 1 4. 3, 3. 0, 1. 1, 0. 1, 1 5. 8, 4. 0, 1. 2, 0. 2, 1 5. 7, 4. 4, 1. 5, 0. 4, 1 5, 4, 3, 9, 1, 3, 0, 4, 1 5, 1, 3, 5, 1, 4, 0, 3, 1 5. 7, 3. 8, 1. 7, 0. 3, 1 5. 1, 3. 8, 1. 5, 0. 3, 1 5, 4, 3, 4, 1, 7, 0, 2, 1 5. 1, 3. 7, 1. 5, 0. 4, 1 4. 6, 3. 6, 1. 0, 0. 2, 1 5. 1, 3. 3, 1. 7, 0. 5, 1 4. 8, 3. 4, 1. 9, 0. 2, 1 5, 0, 3, 0, 1, 6, 0, 2, 1 5, 0, 3, 4, 1, 6, 0, 4, 1 5. 2, 3. 5, 1. 5, 0. 2, 1 5. 2, 3. 4, 1. 4, 0. 2, 1 4. 7, 3. 2, 1. 6, 0. 2, 1 4. 8, 3. 1, 1. 6, 0. 2, 1 5. 4, 3. 4, 1. 5, 0. 4, 1 5. 2, 4. 1, 1. 5, 0. 1, 1 5. 5, 4. 2, 1. 4, 0. 2, 1 4. 9, 3. 1, 1. 5, 0. 1, 1 5. 0, 3. 2, 1. 2, 0. 2, 1 5. 5, 3. 5, 1. 3, 0. 2, 1 4. 9, 3. 1, 1. 5, 0. 1, 1 4. 4, 3. 0, 1. 3, 0. 2, 1 5. 1, 3. 4, 1. 5, 0. 2, 1 5. 0, 3. 5, 1. 3, 0. 3, 1 4. 5, 2. 3, 1. 3, 0. 3, 1 4. 4, 3. 2, 1. 3, 0. 2, 1 5. 0, 3. 5, 1. 6, 0. 6, 1 5. 1, 3. 8, 1. 9, 0. 4, 1 4. 8, 3. 0, 1. 4, 0. 3, 1 5. 1, 3. 8, 1. 6, 0. 2, 1 4. 6, 3. 2, 1. 4, 0. 2, 1 5. 3, 3. 7, 1. 5, 0. 2, 1 5. 0, 3. 3, 1. 4, 0. 2, 1 7. 0, 3. 2, 4. 7, 1. 4, 2 6. 4, 3. 2, 4. 5, 1. 5, 2 6. 9, 3. 1, 4. 9, 1. 5, 2 5. 5, 2. 3, 4. 0, 1. 3, 2 6. 5, 2. 8, 4. 6, 1. 5, 2 5. 7, 2. 8, 4. 5, 1. 3, 2 6. 3, 3. 3, 4. 7, 1. 6, 2 4. 9, 2. 4, 3. 3, 1. 0, 2 6. 6, 2. 9, 4. 6, 1. 3, 2 5. 2, 2. 7, 3. 9, 1. 4, 2 5, 0, 2, 0, 3, 5, 1, 0, 2 5, 9, 3, 0, 4, 2, 1, 5, 2 6, 0, 2, 2, 4, 0, 1, 0, 2 6. 1, 2. 9, 4. 7, 1. 4, 2 5. 6, 2. 9, 3. 6, 1. 3, 2 6, 7, 3, 1, 4, 4, 1, 4, 2 5, 6, 3, 0, 4, 5, 1, 5, 2 5, 8, 2, 7, 4, 1, 1, 0, 2 6. 2, 2. 2, 4. 5, 1. 5, 2 5. 6, 2. 5, 3. 9, 1. 1, 2 5. 9, 3. 2, 4. 8, 1. 8, 2 6. 1, 2. 8, 4. 0, 1. 3, 2 6. 3, 2. 5, 4. 9, 1. 5, 2 6. 1, 2. 8, 4. 7, 1. 2, 2 6, 4, 2, 9, 4, 3, 1, 3, 2 6, 6, 3, 0, 4, 4, 1, 4, 2 6, 8, 2, 8, 4, 8, 1, 4, 2 6. 7, 3. 0, 5. 0, 1. 7, 2 6. 0, 2. 9, 4. 5, 1. 5, 2 5. 7, 2. 6, 3. 5, 1. 0, 2 5. 5, 2. 4, 3. 8, 1. 1, 2 5. 5, 2. 4, 3. 7, 1. 0, 2 5. 8, 2. 7, 3. 9, 1. 2, 2 6. 0, 2. 7, 5. 1, 1. 6, 2 5, 4, 3, 0, 4, 5, 1, 5, 2 6, 0, 3, 4, 4, 5, 1, 6, 2 6. 7, 3. 1, 4. 7, 1. 5, 2 6. 3, 2. 3, 4. 4, 1. 3, 2 5. 6, 3. 0, 4. 1, 1. 3, 2 5. 5, 2. 5, 4. 0, 1. 3, 2 5. 5, 2. 6, 4. 4, 1. 2, 2 6. 1, 3. 0, 4. 6, 1. 4, 2 5. 8, 2. 6, 4. 0, 1. 2, 2 5, 0, 2, 3, 3, 3, 1, 0, 2 5. 6, 2. 7, 4. 2, 1. 3, 2 5. 7, 3. 0, 4. 2, 1. 2, 2 5. 7, 2. 9, 4. 2, 1. 3, 2 6. 2, 2. 9, 4. 3, 1. 3, 2 5. 1, 2. 5, 3. 0, 1. 1, 2 5. 7, 2. 8, 4. 1, 1. 3, 2 6. 3, 3. 3, 6. 0, 2. 5, 3 5. 8, 2. 7, 5. 1, 1. 9, 3 7, 1, 3, 0, 5, 9, 2, 1, 3 6. 3, 2. 9, 5. 6, 1. 8, 3 6. 5, 3. 0, 5. 8, 2. 2, 3 7. 6, 3. 0, 6. 6, 2. 1, 3 4. 9, 2. 5, 4. 5, 1. 7, 3 7. 3, 2. 9, 6. 3, 1. 8, 3 6. 7, 2. 5, 5. 8, 1. 8, 3 7. 2, 3. 6, 6. 1, 2. 5, 3 6. 5, 3. 2, 5. 1, 2. 0, 3 6. 4, 2. 7, 5. 3, 1. 9, 3 6. 8, 3. 0, 5. 5, 2. 1, 3 5. 7, 2. 5, 5. 0, 2. 0, 3 5. 8, 2. 8, 5. 1, 2. 4, 3 6. 4, 3. 2, 5. 3, 2. 3, 3 6. 5, 3. 0, 5. 5, 1. 8, 3 7, 7, 3, 8, 6, 7, 2, 2, 3 7. 7, 2. 6, 6. 9, 2. 3, 3 6. 0, 2. 2, 5. 0, 1. 5, 3 6. 9, 3. 2, 5. 7, 2. 3, 3 5. 6, 2. 8, 4. 9, 2. 0, 3 7, 7, 2, 8, 6, 7, 2, 0, 3 6. 3, 2. 7, 4. 9, 1. 8, 3 6. 7, 3. 3, 5. 7, 2. 1, 3 7. 2, 3. 2, 6. 0, 1. 8, 3 6, 2, 2, 8, 4, 8, 1, 8, 3 6. 1, 3. 0, 4. 9, 1. 8, 3 6. 4, 2. 8, 5. 6, 2. 1, 3 7. 2, 3. 0, 5. 8, 1. 6, 3 7. 4, 2. 8, 6. 1, 1. 9, 3

```
7. 9, 3, 8, 6, 4, 2, 0, 3
6, 4, 2, 8, 5, 6, 2, 2, 3
6. 3, 2, 8, 5, 1, 1, 5, 3
6. 1, 2. 6, 5. 6, 1. 4, 3
7. 7, 3. 0, 6. 1, 2. 3, 3
6. 3, 3, 4, 5, 6, 2, 4, 3
6, 4, 3, 1, 5, 5, 1, 8, 3
6, 0, 3, 0, 4, 8, 1, 8, 3
6. 9, 3. 1, 5. 4, 2. 1, 3
6. 7, 3. 1, 5. 6, 2. 4, 3
6. 9, 3. 1, 5. 1, 2. 3, 3
5. 8, 2. 7, 5. 1, 1. 9, 3
6. 8, 3. 2, 5. 9, 2. 3, 3
6. 7, 3. 3, 5. 7, 2. 5, 3
6. 7, 3. 0, 5. 2, 2. 3, 3
6, 3, 2, 5, 5, 0, 1, 9, 3
6, 5, 3, 0, 5, 2, 2, 0, 3
6. 2, 3. 4, 5. 4, 2. 3, 3
5. 9, 3. 0, 5. 1, 1. 8, 3
```

2. MATLAB程序

```
function [COEFF, SCORE, latent, tsquared, explained, mu, data PCA] = pca demo()
x=load('iris.data');
\lceil \tilde{d} \rceil = \operatorname{size}(x):
k=d-1; %前k个主成分
x=zscore(x(:,1:d-1)); %归一化数据
[COEFF, SCORE, latent, tsquared, explained, mu]=pca(x):
% 1) 获取样本数据 X , 样本为行, 特征为列。
% 2) 对样本数据中心化,得S(S=X的各列减去各列的均值)。
% 3) 求 S 的协方差矩阵 C = cov(S)
% 4) 对协方差矩阵 C 进行特征分解 [P, Lambda] = eig(C);
% 5) 结束。
% 1、输入参数 X 是一个 n 行 p 列的矩阵。每行代表一个样本观察数据,每列则代表一个属性,或特征。
% 2、COEFF 就是所需要的特征向量组成的矩阵,是一个 p 行 p 列的矩阵,没列表示一个出成分向量,经常也称为(协方差矩阵的)特征向量。并且是按照对应特征值降序排列的。所以,如果只需要前 k 个主成分向量,可通过: COEFF(:,1:k) 来获得。
% 3、SCORE 表示原数据在各主成分向量上的投影。但注意: 是原数据经过中心化后在主成分向量上的投影。即通过: SCORE = x0*COEFF 求得。其中 x0 是中心平移后的 X(注意: 是对维度进行中心平移, 而非样本。), 因此在重建时, 就需要加上这个马
% 4、latent 是一个列向量,表示特征值,并且按降序排列。
% 5、tsquared Hotelling的每个观测值X的T平方统计量
% 6、explained 由每个主成分解释的总方差的百分比
% 7、mu 每个变量X的估计平均值
% x = bsxfun(@minus, x, mean(x, 1));
data PCA=x*COEFF(:,1:k):
latent1=100*latent/sum(latent):%将latent总和统一为100,便于观察贡献率
pareto(latent1);%调用matla画图 pareto仅绘制累积分布的前95%, 因此y中的部分元素并未显示
xlabel('Principal Component');
ylabel ('Variance Explained (%)');
% 图中的线表示的累积变量解释程度
```

3. 结果

iris pca: 前两个主成分

print(gcf,'-dpng','Iris PCA.png');
iris_pac=data_PCA(:,1:2);
save iris pca iris pac

```
-2.25698063306803
                       0.504015404227653
-2.07945911889541
                       -0.653216393612590
-2.36004408158421
                       -0.317413944570283
-2.29650366000389
                       -0.573446612971233
-2.38080158645275
                       0.672514410791076
-2.06362347633724
                       1.51347826673567
-2.43754533573242
                       0.0743137171331950
-2.22638326740708
                       0. 246787171742162
                       -1.09148977019584
-2.33413809644009
-2.18136796941948
                       -0.447131117450110
-2.15626287481026
                       1.06702095645556
-2.31960685513084
                       0.158057945820095
```

-2. 21665671559727	-0.706750478104682
-2. 63090249246321	-0. 935149145374822
-2. 18497164997156	1. 88366804891533
-2. 24394778052703	2. 71328133141014
-2. 19539570001472	1. 50869601039751
-2. 18286635818774	0. 512587093716441
-1. 88775015418968	1. 42633236069007
-2. 33213619695782	1. 15416686250116
-1. 90816386828207	0. 429027879924458
-2. 19728429051438	0. 949277150423224
-2. 76490709741649	0. 487882574439700
-1. 81433337754274	0. 106394361814184
-2. 22077768737273	0. 161644638073716
-1.95048968523510	-0.605862870440206
-2.04521166172712	0. 265126114804279
-2.16095425532709	0.550173363315497
-2.13315967968331	0.335516397664229
-2. 26121491382610	-0.313827252316662
-2. 13739396044139	-0. 482326258880086
-1.82582143036022	0.443780130732953
-2. 59949431958629	1.82237008322707
-2. 42981076672382	2. 17809479520796
-2. 18136796941948	-0. 447131117450110
-2. 20373717203888	-0. 183722323644913
-2. 03759040170113	
	0.682669420156327
-2. 18136796941948	-0. 447131117450110
-2. 42781878392261	-0.879223932713649
-2. 16329994558551	0. 291749566745466
-2. 27889273592867	0. 466429134628597
-1. 86545776627869	-2. 31991965918865
-2. 54929404704891	-0. 452301129580194
-1. 95772074352968	0. 495730895348582
-2. 12624969840005	1.16752080832811
-2.06842816583668	-0.689607099127106
-2.37330741591874	1.14679073709691
-2. 39018434748641	-0.361180775489047
-2. 21934619663183	1.02205856145225
-2. 19858869176329	0.0321302060908945
1.10030752013391	0.860230593245533
0. 730035752246062	0. 596636784545418
1. 23796221659453	0. 612769614333371
0. 395980710562889	-1. 75229858398514
1. 06901265623960	-0. 211050862633647
0. 383174475987114	-0. 589088965722193
0. 746215185580377	0. 776098608766709
-0. 496201068006129	-1.84269556949638
0. 923129796737431	0. 0302295549588077
0.00495143780650871	-1. 02596403732389
-0.124281108093219	-2.64918765259090
0. 437265238506424	-0. 0586846858581760
0. 549792126592992	-1.76666307900171
0. 714770518429262	-0. 184815166484382
-0. 0371339806719297	-0. 431350035919633
0.872966018474250	0.508295314415273
0.346844440799832	-0. 189985178614466
0.152880381053472	-0.788085297090142
1.21124542423444	-1.62790202112846
0. 156417163578196	-1. 29875232891050
0.735791135537219	0.401126570248885
0.470792483676532	-0. 415217206131680
1.22388807504403	-0. 937773165086814
0. 627279600231826	-0.415419947028686
0. 698133985336190	-0.0632819273014206
0. 870620328215835	0. 249871517845242
1. 25003445866275	-0. 0823442389434431
1. 35370481019450	0. 327722365822153
0. 659915359649250	-0. 223597000167979
-0. 0471236447211597	-1. 05368247816741
0. 121128417400412	-1. 55837168956507
0. 0140710866007487	-1. 56813894313840
	-0. 773333046281646
0. 235222818975321	0. 110000040201040

1.05316323317206	-0. 634774729305402
0. 220677797156699	-0. 279909968621073
0. 430341476713787	0.852281697154445
1. 04590946111265	0.520453696157683
1. 03241950881290	-1.38781716762055
0.0668436673617666	-0. 211910813930204
0. 274505447436587	-1.32537578085168
0. 271425764670620	-1.11570381243558
0.621089830946741	0.0274506709978046
0. 328903506457842	-0.985598883763833
-0. 372380114621411	-2. 01119457605980
0. 281999617970590	-0. 851099454545845
0. 0887557702224096	-0. 174324544331148
0. 223607676665854	-0. 379214256409087
0. 571967341693057	-0. 153206717308028
-0. 455486948803962	-1.53432438068788
0. 251402252309636 1. 84150338645482	-0. 593871222060355 0. 868786147264828
1. 14933941416981	-0. 698984450845645
2. 19898270027627	0. 552618780551384
1. 43388176486790	-0. 0498435417617587
1. 86165398830779	0. 290220535935809
2. 74500070081969	0. 785799704159685
0. 357177895625210	-1. 55488557249365
2. 29531637451915	0.408149356863061
1. 99505169024551	-0.721448439846371
2. 25998344407884	1.91502747107928
1. 36134878398531	0.691631011499905
1. 59372545693795	-0. 426818952656741
1.87796051113409	0.412949339203311
1. 24890257443547	-1.16349352357816
1. 45917315700813	-0. 442664601834978
1. 58649439864337	0. 674774813132046
1. 46636772102851	0. 252347085727036
2. 42924030093571	2. 54822056527013
3. 29809226641255	-0.00235343587272177
1. 24979406018816 2. 03368323142868	-1.71184899071237
0. 970663302005081	0. 904369044486726 -0. 569267277965818
2. 88838806680663	0. 396463170625287
1. 32475563655861	-0. 485135293486995
1. 69855040646181	1.01076227706927
1. 95119099025002	0. 999984474306318
1. 16799162725452	-0. 317831851008113
1. 01637609822602	0.0653241212065782
1.78004554289349	-0.192627479858818
1.85855159177699	0.553527164026207
2. 42736549094542	0.245830911619345
2. 30834922706014	2.61741528404554
1.85415981777379	-0.184055790370030
1. 10756129219332	-0. 294997832217552
1. 19347091639304	-0. 814439294423699
2. 79159729280499	0.841927657717863
1. 57487925633390	1.06889360300461
1. 34254676764379	0. 420846092290459
0. 920349720485088	0.0191661621187343
1. 84736314547313 2. 00942543830962	0. 670177571688802 0. 608358978317639
1. 89676252747561	0. 683734258412757
1. 14933941416981	-0. 698984450845645
2. 03648602144585	0.861797777652503
1. 99500750598298	1. 04504903502442
1. 86427657131500	0. 381543630923962
1. 55328823048458	-0. 902290843047121
1.51576710303099	0.265903772450991
1.37179554779330	1.01296839034343
0.956095566421630	-0.0222095406309480

可见:前两个主成分已经占了95%的贡献程度。这两个主成分可以近似表示整个数据。

4. pca_data.m

其中normlization.m见MATLAB实例:聚类初始化方法与数据归一化方法

```
function data=pca_data(data, choose)
% PCA降维,保留90%的特征信息
data = normlization(data, choose); %归一化
score = 0.90; %保留90%的特征信息
[num, dim] = size(data);
xbar = mean(data, 1);
means = bsxfun(@minus, data, xbar);
cov = means'*means/num;
[V,D] = eig(cov);
eigval = diag(D);
[~, idx] = sort(eigval, 'descend');
eigval = eigval(idx);
V = V(idx, :);
p = 0;
for i=1:dim
   perc = sum(eigval(1:i))/sum(eigval);
   if perc > score
       p = i;
```

```
break;
end
end
E = V(1:p,:);
data= means*E';
```

参考:

Junhao Hua. <u>Distributed Variational Bayesian Algorithms</u>. Github, 2017.

MATLAB实例: PCA (主成成分分析) 详解