Maliciously Secure Partitioning

Adria Gascon, Mariana Raykova, **Phillipp Schoppmann**, Karn Seth

Sharding MPC Clusters

Challenge: How to partition reports across shards, s.t. all reports of the same client end up in the same shard?

Goals

- Inputs from the same client end up in the same shard
- Low communication overhead and round complexity
- Partitioning must not affect correctness / utility of downstream computation
- Security against a single malicious party out of three

Assumptions

- Bound M on the number of contributions per client
- Lots of clients (billions), few shards (thousands)

Compiling to Malicious Security / Honest Majority

Compiling to Malicious Security / Honest Majority

- 1. Both real (malicious) servers implementing a virtual (semi-honest) party:
 - a. Run a malicious coin flipping protocol to sample joint randomness.
 - b. Generate all messages sent by the virtual party using the joint randomness.
 - Send messages to the real parties implementing the virtual recipient.
 Note: One of these will be one of the sender parties
- 2. The receiver parties each check that the messages received from the two senders match, and abort if they don't.

Building blocks:

- Multiplicatively homomorphic encryption scheme Enc_M
- Additively homomorphic encryption scheme Enc_A
- Rerandomizable encryption scheme Enc_R

Secret keys for all of these are assumed secret-shared between all parties.

OPRF public key: $PK_{PRF} = Enc_A(K_{PRF})$, where K_{PRF} is again secret-shared.

Dodis-Yampolskiy PRF: $F(i) = g^{1/(i+K_{PRF})}$

Dense Partitioning: Adding Dummies

M: Upper bound on the number of ciphertexts with the same index / from the same client

S: Number of shards

TSDLap(λ , t): Truncated, shifted, discrete Laplace distribution with mean t and scale λ

Expected #dummies per bucket for ϵ = 0.5 and δ = 10⁻¹¹: 49 * M per server

N, N': Number of ciphertexts before / after adding dummies

M, M': Upper bound on the number of ciphertexts with the same index

S: Number of shards

Observation: As long as $M' \ll \lceil N'/S \rceil$, the overhead will be small in practice.

N, N': Number of ciphertexts before / after adding dummies

M, M': Upper bound on the number of ciphertexts with the same index

S: Number of shards

Observation: As long as $M' \ll \lceil N'/S \rceil$, the overhead will be small in practice.

N, N': Number of ciphertexts before / after adding dummies

M, M': Upper bound on the number of ciphertexts with the same index

S: Number of shards

Observation: As long as $M' \ll \lceil N'/S \rceil$, the overhead will be small in practice.

N, N': Number of ciphertexts before / after adding dummies

M, M': Upper bound on the number of ciphertexts with the same index

S: Number of shards

Observation: As long as $M' \ll \lceil N'/S \rceil$, the overhead will be small in practice.

N, N': Number of ciphertexts before / after adding dummies

M, M': Upper bound on the number of ciphertexts with the same index

S: Number of shards

Observation: As long as $M' \ll \lceil N'/S \rceil$, the overhead will be small in practice.

Open Questions

- Most efficient instantiations of Enc_A, Enc_M, Enc_R?
 - Possible choice: $Enc_A = Carmenish-Shoup$, $Enc_M = ElGamal$, $Enc_R = ElGamal$
- More efficient protocol using oblivious transfer instead of AHE?
 - Recent paper to explore: https://eprint.iacr.org/2023/602
- Time spent on partitioning vs. time spent in MPC in each partition
 - Sparse OPRF removes the need to sort by match keys in MPC
 - But may require sorting by timestamps instead (assuming these are considered private)

Secret-Sharing Payloads

Secret-Sharing Payloads

Report Collector

V

Secret-Sharing Payloads

How to Ensure Encrypted Matchkeys are Genuine

Client:

- $e = Enc_{\Delta HF}(i)$: Encrypted matchkey i with randomness r
- p: Zero-knowledge proof of knowledge of i and r that encrypt to e.

```
P<sub>1</sub>SH:
```

Verify p w.r.t. e before starting the protocol.