Question 1

```
In [58]:
         import string
         import pandas as pd
         import numpy as np
         from collections import Counter
         aas = sorted(set(string.ascii_uppercase) - set("BJOZXU"))
         def numerator(s,p):
             c = Counter()
             for x,y in zip(s,p):
                if y == 'H':
                    if x in c:
                        c[x] += 1
                    else:
                        c[x] = 1
             c = {x:y / s.count(x) for x,y in c.items()}
             for a in aas:
                if a not in c:
                    c[a] = 0
             return c
         def denom(p):
             return p.count('H') / len(p)
         def prop(s,p):
             d = {x : y / denom(p) for x,y in numerator(s,p).items()}
             df = pd.DataFrame(data = [d.values()]).T
             df.index = d.keys()
             df.columns = ["Propensity"]
             return df
In [59]:
         s = "LGASGIAAFAFGSTAILIILFNMAAEVHFDPLQFFRQFFWLGLYPPKAQYGMGIPPLHDGGWWLMAGLFMTLSLGSWWIRVYSRARALGLGTHIAWNFAAAIFFVLCIG
         prop(s,p)
Out[59]:
           Propensity
         G
            1.061224
             1.551020
         Α
         S
            1.360544
            1.200480
         I
            1.020408
            0.765306
         Т
            1.224490
         Ν
            1.360544
             1.530612
         M
         Ε
            0.408163
         W
             1.113173
            0.680272
         R
         V
            0.583090
            0.583090
         Υ
         Н
            0.874636
         С
             1.020408
             0.226757
            0.000000
            0.000000
            0.000000
```

Question 2

Amino Acid	In Helix	In Seqeunce	N(Helix)	Seq length	Propensity
Α	19	25	98	200	1.551020408
С	2	4	98	200	1.020408163
D	0	5	98	200	0
E	1	5	98	200	0.4081632653
F	10	20	98	200	1.020408163
G	13	25	98	200	1.06122449
Н	3	7	98	200	0.8746355685
I	10	17	98	200	1.200480192
K	0	1	98	200	0
L	12	20	98	200	1.224489796
М	3	4	98	200	1.530612245
N	2	3	98	200	1.360544218
Р	1	9	98	200	0.2267573696
Q	0	4	98	200	0
R	3	9	98	200	0.6802721088
S	6	9	98	200	1.360544218
Т	3	8	98	200	0.7653061224
V	2	7	98	200	0.583090379
W	6	11	98	200	1.113172542
Y	2	7	98	200	0.583090379

Question 3

```
In [4]:
         helices = []
         strands = []
         while(i < len(s)-5):
             if sum([npa[aa] for aa in s[i:i+6]]) >= 4:
                 while (sum([pa[aa] for aa in s[j:j+4]]) >= 4):
                     j += 1
                 helices.append(s[i:j+3])
                 i = j+3
             i += 1
         i = 0
         while(i < len(s)-4):
             if sum([npb[aa] for aa in s[i:i+5]]) >= 3:
                 j = i+2
                 while(sum([pb[aa] for aa in s[j:j+3]]) \geq= 3):
                     j += 1
                 strands.append(s[i:j+2])
                 i = j+2
             i += 1
         hr = []
         br = []
         for x in helices:
             for y in strands:
                 if x in y or y in x:
                     seq = sorted([x,y], key = len)[0]
                     if sum([pa[aa] for aa in seq]) > sum([pb[aa] for aa in seq]):
                         br.append(y)
                     else:
                         hr.append(x)
         df = pd.DataFrame([set(helices)-set(hr), set(strands)-set(br)]).T
         df.columns = ["Helices", "Strands"]
```

Out[4]:		Helices	Strands
	0	RCELAAAMKRH	TDYGILQIN

MNAWVAWRN GTDVQAWIRGCRL

3. Alpha helix = RCELAAMKRH

WVCAA None None VFGRC

Question 4

A) Alpha Helix			
1. Checking if	simplified propensitites of a 6 se	egement residue sur	ms up, atleast to 4
Sequence	Breakdown	Sum	
KVFGRC	0.5 + 1 + 1 - 1 + 0 + 0	1.5	
VFGRCE	1+1-1+0+0+1	2	
FGRCEL	1 - 1 + 0 + 0 + 1 + 1	2	
GRCELA	-1 + 0 + 0 + 1 + 1 + 1	2	
RCELLA	0+0+1+1+1+1	4	Condition satisfied
2. Extending th	ne sequence		
Sequence	Breakdown	Sum	
ELAA	1.53 + 1.34 + 1.45 + 1.45	5.77	
LAAM	1.34 + 1.45 + 1.45 + 1.20	5.69	
AAMK	1.45 + 1.45 + 1.20 + 1.07	5.55	
AMKR	1.45 + 1.20 + 1.07 + 0.79	4.51	
MKRH	1.20 + 1.07 + 0.79 + 1.24	4.3	
KRHG	1.07 + 0.79 + 1.24 + 0.53	2.64	Stop Extending

B) Beta Strand				
1. Checking if	simplified propensitites of a	5 segement residue	e sur	ns up, atleast to 3
Sequence	Breakdown	Sum		
KVFGR	-1 + 1 + 1 + 0 + 0		1	
VFGRC	1+1+0+0+1		3	Condition Satisfied
2. Extending th	ne sequence			
Sequence	Breakdown	Sum		
GRC	0.81 + 0.9 + 1.3	;	3.01	
RCE	0.9 + 1.3 + 0.26		2.46	Stop Extending
3. Beta Strand	= VFGRC			