日本国特許庁 JAPAN PATENT OFFICE

02.11.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 3月10日

REC'D 2 6 NOV 2004

PCT

WIPO

出 願 番 号 Application Number:

特願2004-067146

[ST. 10/C]:

[JP2004-067146]

出 願 人
Applicant(s):

住友化学工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 9月29日

特許願 【書類名】 P156774 【整理番号】 【提出日】 平成16年 3月10日 特許庁長官 殿 【あて先】 【国際特許分類】 CO7C 11/107 【発明者】 大阪府大阪市此花区春日出中3丁目1番98号 住友化学工業株 【住所又は居所】 式会社内 岩倉 和憲 【氏名】 【発明者】 大阪府大阪市此花区春日出中3丁目1番98号 住友化学工業株 【住所又は居所】 式会社内 【氏名】 柳川 正生 【発明者】 大阪府大阪市此花区春日出中3丁目1番98号 住友化学工業株 【住所又は居所】 式会社内 小田 精二 【氏名】 【特許出願人】 000002093 【識別番号】 【氏名又は名称】 住友化学工業株式会社 【代理人】 【識別番号】 100093285 【弁理士】 【氏名又は名称】 久保山 隆 06-6220-3405 【電話番号】 【選任した代理人】 100113000 【識別番号】 【弁理士】 【氏名又は名称】 中山亨 06-6220-3405 【電話番号】 【選任した代理人】 100119471 【識別番号】 【弁理士】 榎本 雅之 【氏名又は名称】 【電話番号】 06-6220-3405 【先の出願に基づく優先権主張】 特願2003-375296 【出願番号】 【出願日】 平成15年11月 5日 【手数料の表示】 【予納台帳番号】 010238 21,000円 【納付金額】

特許請求の範囲 1

明細書 1

要約書 1

0212949

【提出物件の目録】

【物件名】

【物件名】

【物件名】

【包括委任状番号】

出証特2004-3087052

【書類名】特許請求の範囲

【請求項1】

タンタル化合物と金属を含有するアルキル化剤とを含む触媒系を用いてエチレンの三量化 反応を実施するに際し、反応系内の水分量がタンタル原子の2モル倍以下である条件下で 実施することを特徴とする1ーヘキセンの製造方法。

【請求項2】

反応系内の水分量がタンタル原子の1モル倍以下である請求項1記載の製造方法。

【請求項3】

実質的に無水の条件下に実施する請求項1記載の製造方法。

【請求項4】

タンタル化合物がハロゲン化タンタルである請求項1~3のうちの一の請求項に記載の製造方法。

【請求項5】

タンタル化合物が五塩化タンタルまたは五臭化タンタルである請求項1~3のうちの一の 請求項に記載の製造方法。

【請求項6】

アルキル化剤がヒドロカルビル金属、ヒドロカルビル金属ハロゲン化物またはアルキルアルミノキサンである請求項1~5のうちの一の請求項に記載の製造方法。

【請求項7】

アルキル化剤が、テトラメチルスズ、テトラエチルスズ、ジメチル亜鉛、メチルリチウム、トリメチルアルミニウム、n-ブチルリチウム、アリルトリフェニルスズ、トリエチルアルミニウム、ジメチルアルミニウムクロリド、テトラフェニルスズ、メチルアルミノキサンまたはメチルマグネシウムブロミドである請求項 $1\sim5$ 記載のうちの一の請求項に記載製造方法。

【書類名】明細書

【発明の名称】1-ヘキセンの製造方法

【技術分野】

[0001]

本発明はエチレンを三量化する1-ヘキセンの製造方法に関するものである。更に詳しくは、本発明は、タンタル化合物を用いてエチレンを三量化する方法であって、優れた選択性で安定的に1-ヘキセンを製造することができるという特徴を有する1-ヘキセンの製造方法に関するものである。

【背景技術】

[0002]

タンタル化合物を用いてエチレンを三量化する方法としては、特許文献1および非特許 文献1に、タンタル化合物とアルキル化剤とからなる触媒系を用いる方法が開示されてい る。

[0003]

【特許文献 1 】 US6,344,594

【非特許文献 1 】 J. Am. Chem. Soc., 2001, 123, 7423

【発明の開示】

【発明が解決しようとする課題】

[0004]

上記2件の開示情報では、反応に及ぼす水分の量が規定されておらず、脱水が不十分な 触媒、エチレンガス、溶媒等を使用すると反応が全く進行しないという問題点があった。

[0005]

かかる状況において、本発明が解決しようとする課題は、タンタル化合物を用いてエチレンを三量化する方法であって、優れた選択性で安定的に1-ヘキセンを製造することができるという特徴を有する1-ヘキセンの製造方法を提供する点にある。

【課題を解決するための手段】

[0006]

本発明者らは、上記課題を解決するために鋭意検討を行った結果、反応系内の水分量を制御することにより、上記の課題を解決し得ることを見出し、本発明に至った。

[0007]

すなわち、本発明は、タンタル化合物と金属を含有するアルキル化剤とを含む触媒系を 用いてエチレンの三量化反応を実施するに際し、反応系内の水分量がタンタル原子の2モル倍以下である条件下で実施することを特徴とする1-ヘキセンの製造方法に係るもので ある。

【発明の効果】

[0008]

本発明によれば、タンタル化合物と金属を含有するアルキル化剤とからなる触媒を用いてエチレンの三量化反応を実施するに際し、反応系内の水分量がタンタル原子の2モル倍以下である条件下実施することにより、優れた選択性で安定的に1-ヘキセンを製造することができる。

【発明を実施するための最良の形態】

[0009]

本発明で使用されるタンタル化合物としては、ハロゲン化タンタルが好ましく、具体例として、五弗化タンタル、五塩化タンタル、五臭化タンタル、五沃化タンタル等が挙げられ、好ましくは五塩化タンタルまたは五臭化タンタルである。

[0010]

タンタル化合物と共に使用される金属を含有するアルキル化剤としては、ヒドロカルビル金属、ヒドロカルビル金属ハロゲン化物、アルキルアルミノキサン等が挙げられ、好ましくは、金属種としてスズ、亜鉛、アルミニウム、リチウム、マグネシウムを含む低級アルキル金属化合物であり、好ましくは低級アルキルアリール金属化合物が挙げられ、更に

好ましくは、テトラメチルスズ、テトラエチルスズ、ジメチル亜鉛、メチルリチウム、トリメチルアルミニウム、nープチルリチウム、アリルトリフェニルスズ、トリエチルアルミニウム、ジメチルアルミニウムクロリド、テトラフェニルスズ、メチルアルミノキサン、メチルマグネシウムプロミド等が例示される。

[0011]

上記アルキル化剤は単独で使用することもできるが、2種類以上を混合して使用することもできる。

[0012]

タンタル化合物とアルキル化剤は、最適な1-ヘキセン選択性および最高の触媒活性を得るために最適の割合で混合される。タンタル金属/アルキル化剤のモル比は $0.1\sim1$ 0が好ましく、更に好ましくは $0.25\sim2$ であり、更に好ましくは $0.5\sim2$ である。該モル比が過小であったり、過大であったりすると、三量化反応の触媒活性が低下する場合がある。

[0013]

タンタル化合物とアルキル化剤の混合およびエチレン三量化反応は通常溶媒の存在下で実施される。溶媒としては、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、シクロペンタン、シクロペナサン、メチルシクロペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン、クメン、エチルベンゼン、モノクロロベンゼン、ジクロロベンゼン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1、1ージクロロエタン等のハロゲン化炭化水素;1ープテン、1ーヘキセン、1ーオクテン等のオレフィン類等が挙げられる。触媒活性および1ーヘキセンの選択率の観点から、好ましい溶媒としては、芳香族炭化水素が挙げられ、更に好ましくはベンゼン、トルエン、キシレン、モノクロロベンゼンが挙げられる。これらの溶媒は単独で使用してもよいし、2種類以上を混合して使用してもよい。

[0014]

タンタル化合物とアルキル化剤の混合およびエチレン三量化反応を実施する際の溶媒中のタンタル化合物の濃度は、特に制限されないが、通常溶媒1リットルあたり0.0001マイクロモル ~100 1 リモル、好ましくは0.001マイクロモル ~100 1 リモルの範囲である。タンタル化合物の濃度が低すぎると生産性が低下し、一方タンタル化合物の濃度が高すぎると操作性が悪化する場合がある。

[0015]

本発明のエチレン三量化反応に用いる触媒系は、タンタル化合物と金属を含有するアルキル化剤とを含むものであり、タンタル化合物とアルキル化剤を混合させることにより調製できる。調製方法は特に限定されないが、例えばタンタル化合物とアルキル化剤とを無溶媒もしくは溶媒中で混合させる方法を挙げることができる。タンタル化合物とアルキル化剤の混合を前もって行い、その後エチレンと接触させて三量化反応を実施することができる。また、タンタル化合物とアルキル化剤の混合をエチレン存在下に行い、タンタル化合物とアルキル化剤の混合をエチレン存在下に行い、タンタル化合物とアルキル化剤の混合を開始することも可能である。なお、これら原料の混合順序は特に制限されないが、触媒活性および1ーヘキセンの選択率の観点から、タンタル化合物にアルキル化剤を添加していく方が好ましい。

[0016]

本反応の三量化反応の温度は、通常0~100℃であり好ましくは25~70℃である。反応温度が低すぎると触媒活性が低下する場合があり、一方反応温度が高すぎると副反応が増加する場合がある。反応圧力は、通常絶対圧力0~300MPaであり、好ましくは0.1~30MPaである。反応圧力が低すぎると触媒活性が低下する場合があり、一方反応圧力が高すぎると副反応が増加する場合がある。

[0017]

本発明は反応系内の水分量がタンタル原子の2モル倍以下、好ましくは1モル倍以下、より好ましくは0.5モル倍以下であり、更に好ましくは実質的に無水の条件下で実施される。該全水分量が本発明の範囲を超えると触媒が失活し、三量化反応が進行しなくなる

[0018]

エチレン三量化反応時に反応系中の水分量を本発明の範囲に制御する方法としては、三 量化反応前に触媒、エチレンガス、溶媒等を脱水剤で処理する方法、三量化反応を脱水剤 の存在下で実施する方法または溶媒を蒸留する方法を例示することができる。使用される 脱水剤は反応に悪影響を及ぼさないものであればよく、特に限定はされないが、例えば、 リチウム、ナトリウム、カリウム、マグネシウム、カルシウム等の周期表1族および2族 元素単体;水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム、水 素化アルミニウム等の周期表1、2、13族元素水素化物;メチルリチウム、ジメチル亜 鉛、トリメチルアルミニウム、nーブチルリチウム、トリエチルアルミニウム、ジメチル アルミニウムクロリド、メチルアルミノキサンまたはメチルマグネシウムプロミド等の周 期表1、2、12、13族元素からなる有機金属化合物;酸化リチウム、酸化ナトリウム 、酸化カリウム、酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化アルミニウム、酸 化ケイ素、五酸化リン等の周期表1、2、13、14、15族元素酸化物;塩化マグネシ ウム、塩化カルシウム、塩化チタン、塩化亜鉛、塩化アルミニウム、塩化スズ、三塩化リ ン、塩化チオニル等の周期表2、4、12、13、14、15、16族ハロゲン化物;モ レキュラーシーブス等のゼオライト等が例示される。これら乾燥剤は単独で使用してもよ いし、2種類以上を混合して使用してもよい。

[0019]

本反応は、回分式、半連続式、連続式のいずれでも実施しうる。反応終了後、反応液に、例えば水、アルコール、塩酸、水酸化ナトリウム水溶液等の失活剤を添加して反応を停止させる。反応停止後、蒸留や抽出と言った公知の操作により目的とする1-ヘキセンを分離することができる。また、反応を停止させることなく、蒸留によって目的とする1-ヘキセンを分離することもできる。

【実施例】

[0020]

以下に、本発明を実施例を用いて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。

[0021]

実施例1~4

実施例	1	2	3	4	5
TaCl5 (μmol)	5	5	5	5	5
含水トルエン (mL)	0	0. 10	0. 55	1. 44	3. 22
全水分量(μ mol)	1. 6	2. 5	5	10	20
反応時間 (時間)	1. 1	1. 3	1. 6	2. 7	3. 0
生成物組成(wt%)					
プテン類	0.8	0	0. 4	0. 4	16.0
ヘキセン類	98.3 (99.1)	98. 7 (100)	97.6 (100)	98. 4 (100)	36. 0 (58. 1)
固体成分(PE)	0	0	0	0	0
1ーヘキセン生成活性 (mol/mol-Ta/h)	287	102	172	73	2

生成物組成中へキセン類括弧内の数値は1-ヘキセンの純度 ((1-ヘキセン/ヘキセン類各異性体の合計)×100)

【書類名】要約書

【要約】

【課題】 タンタル化合物と金属を含有するアルキル化剤とを含む触媒系を用いてエチレンの三量化反応を実施する方法であって、優れた選択性で安定的に1-ヘキセンを製造する方法を提供する。

【解決手段】 反応系内の水分量がタンタル原子の2モル倍以下、好ましくは1モル倍以下、より好ましくは0.5モル倍以下であり、更に好ましくは実質的に無水の条件下で実施される。該全水分量が本発明の範囲を超えると触媒が失活し、三量化反応が進行しなくなる。該水分量とは、触媒、エチレンガス、溶媒等に含まれる反応系の全水分量であり、通常、カールフィッシャー水分計等により測定される。タンタル化合物としては、ハロゲン化タンタルが好ましく、具体例として、五弗化タンタル、五塩化タンタル、五臭化タンタル、五沃化タンタル等が挙げられ、好ましくは五塩化タンタルまたは五臭化タンタルである。

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号 特願2004-067146

受付番号 50400393881

書類名 特許願

担当官 第六担当上席 0095

作成日 平成16年 3月15日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000002093

【住所又は居所】 大阪府大阪市中央区北浜4丁目5番33号

【氏名又は名称】 住友化学工業株式会社

【代理人】 申請人

【識別番号】 100093285

【住所又は居所】 大阪府大阪市中央区北浜4-5-33 住友化学

知的財産センター株式会社内

【氏名又は名称】 久保山 隆

【選任した代理人】

【識別番号】 100113000

【住所又は居所】 大阪府大阪市中央区北浜4-5-33 住友化学

知的財産センター株式会社内

【氏名又は名称】 中山 亨

【選任した代理人】

【識別番号】 100119471

【住所又は居所】 大阪府大阪市中央区北浜四丁目5番33号 住友

化学知的財産センター株式会社

【氏名又は名称】 榎本 雅之

特願2004-067146

出願人履歴情報

識別番号

[000002093]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府大阪市中央区北浜4丁目5番33号

氏 名

住友化学工業株式会社