Statistics for the Sciences

Moving Beyond Linearity

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- Polynomial Regression
- Local Regression
- Lab

 Example (caley.csv): We will use the data to examine the regression of local species richness against regional species richness just for North America and at a sampling scale of 10% of the region. Although there was some evidence that both local and regional species richness were skewed, we will, like the original authors, analyze untransformed variables.

Response variable: 1spp10

Predictor: rspp10

##		taxon	lspp10	rspp10
##	1	AMPH	6	9
##	2	BIRDS	187	207
##	3	BUTTER	103	145
##	4	FISH	26	36
##	5	MAMMALS	66	117
##	6	REPTILES	59	80
##	7	ANGIOSP	130	172
##	8	GYMNOSP	9	11

Scatter Plot of lspp10 vs rspp10

- SLR model fit
 - ► There seems a non-liner relationship between 1spp10 and rspp10

```
##
## Call:
## lm(formula = lspp10 ~ rspp10, data = caley)
##
## Residuals:
      Min 1Q Median 3Q
                                    Max
##
## -23.630 -6.147 1.496 5.718 23.194
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.79758 8.87011 -0.766 0.473
         0.82417 0.07397 11.142 3.12e-05 ***
## rspp10
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.72 on 6 degrees of freedom
## Multiple R-squared: 0.9539, Adjusted R-squared: 0.9462
## F-statistic: 124.2 on 1 and 6 DF, p-value: 3.116e-05
```

Call:

• The standard way to extend linear regression to nonlinear is to replace the standard linear model with a polynomial function

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d + \varepsilon_i$$

• Now we fit a Quadratic regression model lspp10 ~ rspp10 + rspp10^2

```
## lm(formula = lspp10 \sim rspp10 + I(rspp10^2), data = caley)
##
  Residuals:
##
## -4.595 5.332 -1.087 5.225 -10.227 12.739 -5.181 -2.207
##
  Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.1242187 6.7487986 1.204 0.2825
## rspp10 0.2488822 0.1700660 1.463 0.2032
## I(rspp10^2) 0.0028478 0.0008137 3.500 0.0173 *
##
                        Xuemao Zhang East Stroudsburg University
```


- In performing a polynomial regression we must decide on the degree of the polynomial to use. One way to do this is by using hypothesis tests by comparing the models by performing an analysis of variance in order to test the null hypothesis that a model \mathcal{M}_1 is sufficient to explain the data against the alternative hypothesis that a more complex model \mathcal{M}_2 is required. Unfortunately, SPSS is not designed to compare models.
- For example, compare the following models

```
▶ y ~ x
```

$$y \sim x + x^2 + x^3 + x^4$$

Local Regression

• Local regression is a different approach for fitting flexible non-linear functions, which involves computing the fit at a target point x_0 using only the nearby observations.

Local Regression

Local Regression

- With a sliding weight function, we fit separate linear fits over the range of X by weighted least squares.
 - Weighted least squares seems to have been rarely applied in the biological literature, so we skip the topic in this course.
- Algorithm: Local Regression At $X = x_0$
 - Gather the fraction s = k/n of training points whose x_i are closest to x_0 .
 - Assign a weight K_{i0} = K(x_i, x₀) to each point in this neighborhood, so that the point furthest from x₀ has weight zero, and the closest has the highest weight. All but these k nearest neighbors get weight zero.
 - 1 Fit a weighted least squares regression of the y_i on the x_i using the aforementioned weights, by finding $\hat{\beta}_0$ and $\hat{\beta}_0$ that minimize

$$\sum_{i=1}^{n} K_{i0}(y_i - \beta_0 - \beta_1 x_i)^2$$

▶ **1** The fitted value at x_0 is given by $\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

 Consider data caley.csv. After importing the data, conver the predictor and response to scale measure

• Check the scatter plot of rspp10(x-axis) versus lspp10 (y-axis).

 Add three more columns of data: rspp102=rspp10^2, rspp103=rspp10^3, and rspp104=rspp10^4

• Then we use stepwise regression to check which predictors among rspp10, rspp102, rspp103, rspp104 are significant:

• We can see that the final model is lspp10 ~ rspp102

Coefficients^a

		Unstandardiz	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	15.746	4.683		3.362	.015
	rspp102	.004	.000	.990	17.560	<.001

a. Dependent Variable: lspp10

Excluded Variablesa

Model		Beta In	t	Sig.	Partial Correlation	Collinearity Statistics Tolerance
1	rspp10	.295 ^b	1.463	.203	.548	.066
	rspp103	219 ^b	649	.545	279	.031
	rspp104	094 ^b	463	.663	203	.089

a. Dependent Variable: lspp10

b. Predictors in the Model: (Constant), rspp102

- If we want to follow the hierarchical principle, we can refit the model lspp10
 - ~ rspp10 + rspp102

$ANOVA^a$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	27806.880	2	13903.440	184.582	<.001 ^b
	Residual	376.620	5	75.324		
	Total	28183.500	7			

a. Dependent Variable: lspp10

b. Predictors: (Constant), rspp102, rspp10

Coefficients^a

		Unstandardiz	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	8.124	6.749		1.204	.283
	rspp10	.249	.170	.295	1.463	.203
	rspp102	.003	.001	.705	3.500	.017

a. Dependent Variable: lspp10

- Another way is we can manually compare the Adjusted R-squares of the models and SPSS can give polynomial model up to degree 3.
 - ▶ The final model is different from stepwise regression.

Linear

Model Summary

		Adjusted R	Std. Error of the
R	R Square	Square	Estimate
.977	.954	.946	14.715

The independent variable is rspp10.

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	26884.243	1	26884.243	124.152	<.001
Residual	1299.257	6	216.543		
Total	28183.500	7			

The independent variable is rspp10.

Quadratic

Model Summary

	R	R Square	Adjusted R Square	Std. Error of the Estimate
Ξ	.993	.987	.981	8.679

The independent variable is rspp10.

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	27806.880	2	13903.440	184.582	<.001
Residual	376.620	5	75.324		
Total	28183.500	7			

The independent variable is rspp10.

Cubic

Model Summary

R	R Square	Adjusted R Square	Std. Error of the Estimate
.997	.995	.991	6.102

The independent variable is rspp10.

ANOVA

	Sum of Squares	df	Mean Square	F	Sig.
Regression	28034.577	3	9344.859	250.998	<.001
Residual	148.923	4	37.231		
Total	28183.500	7			

The independent variable is rspp10.

- LOESS is available from the Fit Line tab of the Properties panel when you edit a scatterplot in the chart editor.
- ullet Create a scatter plot using Graphs o Chart Builder.
- Double-click on the scatter plot to open the Chart Editor.

- ullet In the Chart Editor, go to the Elements tab o Fit line at Total
 - Adjust the Smoothing Parameter if necessary

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.