

Stationary Information Sources

Aakash Ghosh

May 22, 2023

Timeline

We are going to look at:

- 1. Defining the space
- 2. Defining Ergodicity

Setting up our space

• For an alphabet A we define the space Ω such that if $x \in \Omega$ then

$$x = \{... x_{-2}, x_{-1}, x_0, x_1, x_2, hdots\}$$

Setting up our space

• For an alphabet A we define the space Ω such that if $x \in \Omega$ then

$$x = \{... x_{-2}, x_{-1}, x_0, x_1, x_2, hdots\}$$

• We define functions X_i such that $X_i(x) = x_i \forall i \in \mathbb{Z}$

Setting up our space

• For an alphabet A we define the space Ω such that if $x \in \Omega$ then

$$x = \{... x_{-2}, x_{-1}, x_0, x_1, x_2, hdots\}$$

- We define functions X_i such that $X_i(x) = x_i \forall i \in \mathbb{Z}$
- We take the sample space \mathcal{F} to be the smallest set such that all X_i are measurable.
- We define $[x_{i_1}x_{i_2}...x_{i_n}] = \{y|y_{i_j} = x_{i_j} \forall 1 \le j \le n\}$
- \bullet we define a probability measure μ on such as space.

• We want *x* to be some kind of information stream from the same source.

- We want *x* to be some kind of information stream from the same source.
- $\bullet~\mu$ shouldn't depend on the point from where we are parsing our stream

- We want x to be some kind of information stream from the same source.
- μ shouldn't depend on the point from where we are parsing our streami.e. μ is shift invariant.

- We want x to be some kind of information stream from the same source.
- μ shouldn't depend on the point from where we are parsing our streami.e. μ is shift invariant.
- We define T as the shift transformation. Tx = y if $x_i = y_{i-1} \forall \in \mathbb{Z}$

- We want x to be some kind of information stream from the same source.
- μ shouldn't depend on the point from where we are parsing our streami.e. μ is shift invariant.
- We define T as the shift transformation. Tx = y if $x_i = y_{i-1} \forall \in \mathbb{Z}$
- We assume $\mu T^{-1} = \mu$ (i.e. E and T(E) have the same measure)

- We want x to be some kind of information stream from the same source.
- μ shouldn't depend on the point from where we are parsing our streami.e. μ is shift invariant.
- We define T as the shift transformation. Tx = y if $x_i = y_{i-1} \forall \in \mathbb{Z}$
- We assume $\mu T^{-1} = \mu$ (i.e. E and T(E) have the same measure)

Relation between EIS and SIS

- From the shift invariance, it follows that random vectors $\{X_0, X_1 ... X_n\}$ and $\{X_i, X_{i+1}, X_{i+2} ... X_{i+n}\}$ have the same distribution.
- We can therefore define an EIS on A^n defined by

$$\mu_n({x_1, x_2 ... x_n}) = \mu([x_1, x_2, x_3 ... x_n])$$

Rate of information

• We therefore have an average rate of information gain in the first *n* steps as

$$-\frac{1}{n}\log\mu([x_1,x_2,x_3...x_n])$$

• Expectation of our random vector is given by

$$\frac{1}{n}H([X_1X_2...X_n])$$

Topological Nature of SIS

- We use discrete topology on individual bits.
- We define:

$$d(x,y) = \sum 2^{-|i|} d(x_i,y_i)$$

• If μ , ν are measures, then so is $t\mu + (1-t)\nu$, $0 \le t \le 1$ i.e. the space of probability measures are convex and compact.

Ergodicity

- We say f is T invariant if $f = f \circ T$ a.e.
- The indicator function 1_E is invariant iff $\mu(E\Delta T(E))=0$
- Define:

$$\mathcal{I}_{T,\mu} = \{ E | \mu(E\Delta T(E)) = 0 \}$$

All such sets are called invariant sets.

- If for $E \in \mathcal{I}$, $\mu E = 0$ or 1, then T is μ ergodic.
- A random variable is *T* invariant iff it is *I* measurable.

Time average and space average

We deine:

$$A_n f(\omega) = \frac{1}{n} \left(f(\omega) + f(T^1 \omega) + f(T^2 \omega) \dots + f(T^{n-1} \omega) \right)$$

 $A_n f(\omega)$ is the time average of ω under T

• Similarly, $E[f] = \int_{\omega} f(\omega) \mu(d\omega)$ is the space average of f.

Convergence of time average and space average

For an L^1 random variable f, $\lim_{n\to\infty} A_n f(\omega)$ exists and $\lim_{n\to\infty} A_n f(\omega) = E[f]$ almost surely and in L^1 .

Convergence of time average and space average

For an L^1 random variable f, $\lim_{n\to\infty} A_n f(\omega)$ exists and $\lim_{n\to\infty} A_n f(\omega) = E[f]$ almost surely and in L^1 .

Further, if μ is ergodic then $E[f|\mathcal{I}](\omega) = E[f]$ almost surely, and if f is L^p then convergence is in L^p as well.

