Lenguajes Formales

Clase Teórica

Autómatas de pila y gramáticas libres de contexto

Segundo Cuatrimestre 2024

Bibliografía: Capítulos 6 y 7, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Ejemplo

Autómata de pila que acepta $\mathcal{L} = \{\omega\omega^R : \alpha \in \Sigma^*\}$:

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$$

$$Q = \{q_0, q_1, q_2, q_3\}, \quad \Sigma = \{a, b\}, \quad \Gamma = \{Z_0, A, B\}, \quad F = \{q_0, q_3\}$$

Definición (Oettinger 1961, Schutzenberger 1963)

Un autómata de pila está definido por

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$$

donde:

- Q es el conjunto de estados
- \triangleright Σ es el alfabeto de entrada
- ightharpoonup Γ es el alfabeto de la pila
- $ightharpoonup q_0 \in Q$ es el estado inicial
- $ightharpoonup Z_0 \in \Gamma$ es la configuración inicial de la pila
- $ightharpoonup F \in Q$ es el conjunto de estados finales
- $\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*)$ es la función de transición:

$$\delta(q, x, Z) = \{(p_1, \gamma_1), (p_2, \gamma_2), \dots, (p_m, \gamma_m)\}\$$

La interpretación de $\delta(q,x,Z)=\{(p_1,\gamma_1),(p_2,\gamma_2),\ldots,(p_n,\gamma_n)\}$, con $q,p_1,\ldots,p_n\in Q,\ x\in (\Sigma\cup\{\lambda\}),\ Z\in \Gamma$, y $\gamma_i\in \Gamma^*$ es la siguiente.

Cuando el estado del autómata es q, el símbolo que la cabeza lectora está inspeccionando en ese momento es x, y en el tope de la pila nos encontramos el símbolo Z, se realizan las siguientes acciones:

- 1. Si $x \in \Sigma$, es decir no es la cadena vacía, la cabeza lectora avanza una posición para inspeccionar el siguiente símbolo.
- 2. Se elimina el símbolo Z de la pila del autómata.
- 3. Se selecciona un par (p_i,γ_i) entre los existentes en la definición de $\delta(q,x,Z)$.
- 4. Se apila la cadena $\gamma_i = c_1 c_2 \dots c_k$, con $c_i \in \Gamma$ en la pila del autómata, quedando el símbolo c_1 en el tope de la pila.
- 5. Se cambia el control del autómata al estado p_i .

Ejemplo

Autómata de pila que acepta $\mathcal{L} = \{a^nb^n : n \geq 1\}$:

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$$

$$Q = \{q_0, q_1, q_2, q_3\}, \quad \Sigma = \{a, b\}, \quad \Gamma = \{Z_0, I\}, \quad F = \{q_3\}$$

Autómatas de pila determinísticos

Definición

Un autómata de pila $M=\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ es determinístico si para todo $q \in Q, x \in \Sigma, Z \in \Gamma$, se cumplen:

- 1. $\#\delta(q, x, Z) \leq 1$
- $2. \# \delta (q, \lambda, Z) \leq 1$
- 3. si $\#\delta\left(q,\lambda,Z\right)=1$ entonces $\#\delta\left(q,x,Z\right)=0$

Teorema

No es cierto que para cada autómata de pila no determinístico existe otro determinístico que reconoce el mismo lenguaje.

Demostración. $\mathcal{L} = \{\omega\omega^R\}$ es aceptado por un AP, pero no es aceptado por ningún AP determinístico (ver Hopcroft, Motwani Ulman (2001), página 249).

Intuición: Tomando $\Sigma = \{0, 1\}.$

- Supongamos que el autómata ve n 0s; irá apilando algún símbolo para llevar la cuenta de los 0s.
- Si luego ve 110^n , para validar la cantidad de 0s, debería desapilar los símbolos (y si la cadena termina acá, aceptar, tomando $\omega = 0^n 1$).
- ▶ Si después de esto vuelve a ver 0^n110^n , debería aceptar (tomando $\omega = 0^n110^n$)...
- Pero si ve $0^m 110^m$ con $m \neq n$, debería rechazar. Sin embargo, al estar la pila vacía, es imposible distinguir entre n y m.

Sea un autómata de pila $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$.

Definición (Configuración de un autómata de pila)

Es una tripla $(q, \omega, \gamma) \in Q \times \Sigma^* \times \Gamma^*$ donde:

- $ightharpoonup q \in Q$ es el estado actual,
- $m{\omega} \in \Sigma^*$ es la parte de la cadena de entrada que falta procesar,
- $ightharpoonup \gamma \in \Gamma^*$ es el contenido de la pila.

La configuración inicial del autómata para la cadena ω_0 es (q_0,ω_0,Z_0) .

Definición (Cambio de configuración ⊢)

Para todo $x\in \Sigma$, $\omega\in \Sigma^*$, $Z\in \Gamma$, $\gamma,\pi\in \Gamma^*,q,q'\in Q$

- $\blacktriangleright \ (q,x\omega,Z\pi) \vdash (q',\omega,\gamma\pi) \ \text{si} \ (q',\gamma) \in \delta \, (q,x,Z).$
- $(q, \omega, Z\pi) \vdash (q', \omega, \gamma\pi) \text{ si } (q', \gamma) \in \delta(q, \lambda, Z).$

Definición (Lenguaje reconocido)

Sea un autómata de pila $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$.

El lenguaje reconocido por M por **estado final** es

$$\mathcal{L}(M) = \left\{ \omega \in \Sigma^* : \exists (p \in F, \gamma \in \Gamma^*) \ (q_0, \omega, Z_0) \stackrel{*}{\vdash} (p, \lambda, \gamma) \right\}$$

El lenguaje reconocido por M por **pila vacía** es

$$\mathcal{L}_{\lambda}\left(M\right) = \left\{\omega \in \Sigma^{*} : \exists (p \in Q) \ (q_{0}, \omega, Z_{0}) \overset{*}{\vdash} (p, \lambda, \lambda)\right\}$$

Ejemplo

Sea un AP $M=\langle Q,\Sigma,\Gamma,\delta,q_0,Z_0,\varnothing\rangle$, donde $Q=\{q_0,q_1,q_2\}$, $\Sigma=\{a,b\},\ \Gamma=\{Z_0,I\}$, y δ está dada por el siguiente dibujo:

Notar que $\delta(q_0,a,Z_0)=\{(q_1,I)\}$, por lo tanto en la transición de q_0 a q_1 el símbolo Z_0 fue removido de la pila.

El lenguaje reconocido por M por pila vacía es

$$\mathcal{L}_{\lambda}(M) = \{a^n b^n : n \ge 1\}$$

Ejemplo

El siguiente autómata de pila ${\cal M}$ es determinístico

$$\mathcal{L}_{\lambda}\left(M\right) = \left\{\omega \# \omega^{R} : \omega \in \left(\Sigma \setminus \{\#\}\right)^{*}\right\}$$

Teorema

Para cada AP M existe un AP M^\prime tal que

$$\mathcal{L}\left(M\right) = \mathcal{L}_{\lambda}\left(M'\right).$$

Demostración. Sea AP $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$. Definimos

$$M' = \langle Q \cup \{q_{\lambda}, q'_{0}\}, \Sigma, \Gamma \cup \{X_{0}\}, \delta', q'_{0}, X_{0}, \varnothing \rangle$$

- $(M' \text{ entra al estado inicial de } M \text{ con } Z_0X_0 \text{ en la pila, así evita pila vacía}).$
- 2. $\forall (q \in Q, x \in \Sigma \cup \{\lambda\}, Z \in \Gamma), \quad \delta'(q, x, Z) = \delta(q, x, Z).$ (M' simula M).
- 3. $\forall (q \in F, Z \in \Gamma \cup \{X_0\}), (q_\lambda, \lambda) \in \delta'(q, \lambda, Z)$
- 4. $\forall (Z \in \Gamma \cup \{X_0\}), \quad (q_\lambda, \lambda) \in \delta' (q_\lambda, \lambda, Z).$ (Si M entra en un estado final, M' debe ir a vaciar la pila).

Veamos que $\mathcal{L}(M) \subseteq \mathcal{L}_{\lambda}(M')$.

Si $\omega \in \mathcal{L}\left(M\right)$ entonces $(q_0,\omega,Z_0) \overset{\circ}{\underset{M}{\mid}} (q,\lambda,\gamma)$, con $q \in F$, $\gamma \in \Gamma^*$.

Por definición de δ' , $\delta'\left(q_0',\lambda,X_0\right)=\{(q_0,Z_0X_0)\}$, entonces $(q'_0,\omega,X_0) \vdash_{M'} (q_0,\omega,Z_0X_0).$

Por definición de
$$\delta'$$
, $\forall (q \in Q, x \in \Sigma \cup \{\lambda\}, Z \in \Gamma), \ \delta'(q, x, Z) = \delta(q, x, Z),$
$$(q_0, \omega, Z_0) \overset{*}{\underset{M'}{\vdash}} (q, \lambda, \gamma).$$

Entonces $(q'_0, \omega, X_0) \vdash_{M'} (q_0, \omega, Z_0 X_0) \vdash_{M'}^* (q, \lambda, \gamma X_0).$

Por definición de δ' , $\forall (q \in F, Z \in \Gamma \cup \{X_0\})$, $(q_{\lambda}, \lambda) \in \delta'(q, \lambda, Z)$ y $(q_{\lambda}, \lambda) \in \delta'(q_{\lambda}, \lambda, Z)$.

Entonces $(q, \lambda, \gamma X_0) \stackrel{*}{\vdash} (q_{\lambda}, \lambda, \lambda)$. Por lo tanto, $(q'_0, \omega, X_0) \stackrel{*}{\vdash} (q_{\lambda}, \lambda, \lambda)$. Concluimos que, si $\omega \in \mathcal{L}\left(M\right)$ entonces $\omega \in \mathcal{L}_{\lambda}\left(M'\right)$.

Veamos que $\mathcal{L}_{\lambda}\left(M'\right)\subseteq\mathcal{L}\left(M\right)$.

Si $\omega \in \mathcal{L}_{\lambda}(M')$, entonces existe la secuencia

$$(q'_0, \omega, X_0) \underset{M'}{\vdash} \underbrace{(q_0, \omega, Z_0 X_0) \underset{M'}{\stackrel{*}{\vdash}} (q, \lambda, \gamma X_0)}_{A} \underbrace{\underset{M'}{\vdash}} (q_{\lambda}, \lambda, \lambda),$$

Pero la transición en A implica

$$(q_0, \omega, Z_0) \stackrel{*}{\underset{M}{\vdash}} (q, \lambda, \gamma).$$

Por lo tanto, si $\omega \in \mathcal{L}_{\lambda}\left(M'\right)$ entonces $\omega \in \mathcal{L}\left(M\right)$.

Teorema (Chomsky 1962, Evey 1963)

Para cada AP $M'=\langle Q',\Sigma,\Gamma',\delta',q'_0,X_0,\varnothing\rangle$ existe un AP $M=\langle Q,\Sigma,\Gamma,\delta,q_0,Z_0,F\rangle$ tal que

$$\mathcal{L}(M) = \mathcal{L}_{\lambda}(M').$$

Demostración. Sea AP $M' = \langle Q', \Sigma, \Gamma', \delta', q'_0, X_0, \varnothing \rangle$.

Definimos $M = \langle Q' \cup \{q_0, q_f\}, \Sigma, \Gamma' \cup \{Z_0\}, \delta, q_0, Z_0, \{q_f\} \rangle$ donde

- $\delta(q_0, \lambda, Z_0) = \{(q'_0, X_0 Z_0)\},$ así desde un principio M simula M', con $X_0 Z_0$ en la pila.
- $\forall (q \in Q', x \in \Sigma \cup \{\lambda\}, Z \in \Gamma'), \quad \delta\left(q, x, Z\right) = \delta'\left(q, x, Z\right)$ así M simula M'.
- $\forall (q \in Q'), \quad (q_f, \lambda) \in \delta (q, \lambda, Z_0)$ así cuando se vacía la pila simulada de M', M salta al estado final q_f .

Nos queda por argumentar que $\omega \in \mathcal{L}_{\lambda}\left(M'\right)$ si y solo si $\omega \in \mathcal{L}\left(M\right)$.

► Si $\omega \in \mathcal{L}_{\lambda}\left(M'\right)$ entonces $\left(q'_{0}, \omega, X_{0}\right) \overset{*}{\underset{M'}{\vdash}} \left(q, \lambda, \lambda\right)$. La definición de M asegura

$$(q_0, \omega, Z_0) \stackrel{\vdash}{\underset{M}{\vdash}} (q'_0, \omega, X_0 Z_0) \stackrel{*}{\underset{M}{\vdash}} (q, \lambda, Z_0) \stackrel{*}{\underset{M}{\vdash}} (q_f, \lambda, \lambda),$$

y por lo tanto $\omega \in \mathcal{L}(M)$.

▶ Si $\omega \in \mathcal{L}(M)$ entonces

$$(q_0, \omega, Z_0) \stackrel{\vdash}{\underset{M}{\vdash}} (q'_0, \omega, X_0 Z_0) \stackrel{*}{\underset{M}{\vdash}} (q, \lambda, Z_0) \stackrel{*}{\underset{M}{\vdash}} (q_f, \lambda, \lambda),$$

pero por definición de M,

$$(q_0',\omega,X_0Z_0)\stackrel{*}{\underset{M}{\vdash}}(q,\lambda,Z_0)$$
 si y solo si $(q_0',\omega,X_0)\stackrel{*}{\underset{M'}{\vdash}}(q,\lambda,\lambda).$

Concluimos $(q'_0, \omega, X_0) \stackrel{*}{\underset{M'}{\vdash}} (q, \lambda, \lambda)$, y por lo tanto $\omega \in \mathcal{L}_{\lambda}(M')$. \square

Ejercicios

- 1. Indicar verdadeo o falso y justificar: Si $M=\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, \varnothing \rangle$ es un autómata de pila entonces cada palabra $\omega \in \mathcal{L}_{\lambda}(M)$ es reconocida por M en a lo sumo $|\omega| * \#Q * \#\Gamma$ transiciones; es decir, existe $n \leq |\omega| * \#Q * \#\Gamma$, existe $p \in Q$, tal que $(q_0, \omega, Z_0) \stackrel{n}{\underset{M}{\vdash}} (p, \lambda, \lambda)$.
- 2. Dado un autómata finito $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ dar un autómata de pila $M'=\langle Q', \Sigma, \Gamma', \delta', q_0', Z_0', \varnothing \rangle$ tal que $\mathcal{L}(M)=\mathcal{L}_{\lambda}(M')$
- 3. Consideremos la demostración del Teorema que afirma que para cada autómata $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ existe M' tal que $\mathcal{L}\left(M\right) = \mathcal{L}_{\lambda}\left(M'\right)$. ¿Si M es determinístico, el autómata M' construido en la demostración también lo es?
- 4. Consideremos la demostración del Teorema que afirma que dado $M' = \langle Q', \Sigma, \Gamma', \delta', q'_0, X_0, \varnothing \rangle$ existe M tal que $\mathcal{L}_{\lambda}\left(M'\right) = \mathcal{L}\left(M\right)$. ¿Si M' es determinístico, el autómata M construido en la demostración también lo es?

Gramáticas libres de contexto

Recordemos la definición.

Definición

Una gramática $G=\langle V_N,V_T,P,S\rangle$ es libre de contexto si las producciones en P son de la forma

$$A \to \alpha$$
, con $A \in V_N$ y $\alpha \in (V_N \cup V_T)^*$.

Demostraremos que para cada gramática libre de contexto G hay un autómata de pila M que acepta el lenguaje generado por dicha gramática y viceversa.

Dada una gramática libre de contexto G, se puede reconocer si una palabra pertenece a $\mathcal{L}(G)$ en tiempo del orden cúbico de la longitud de la palabra. En casos especiales (determinismo), se puede reconocer en tiempo lineal. Lo veremos próximamente.

Lenguaje generado por una gramática

Definición (Derivación ⇒)

Sea $G = (V_N, V_T, P, S)$ una gramática.

Si $\alpha, \beta, \gamma_1, \gamma_2 \in (V_N \cup V_T)^*$ y $\alpha \to \beta \in P$ entonces

$$\gamma_1 \alpha \gamma_2 \Rightarrow \gamma_1 \beta \gamma_2$$

La relación \Rightarrow es un subconjunto de $(V_N \cup V_T)^* \times (V_N \cup V_T)^*$ y significa derivar en un solo paso.

Las relaciones $\stackrel{+}{\Rightarrow}$ y $\stackrel{*}{\Rightarrow}$ son la clausura transitiva y reflexo-transitiva respectivamente (uno o más pasos de derivación, y cero o más pasos).

Si $\alpha \in (V_N \cup V_T)^*$ y $S \stackrel{*}{\Rightarrow} \alpha$ decimos que α es una forma sentencial de G.

Definición (Lenguaje generado por una gramática G)

Dada una gramática $G = (V_N, V_T, P, S)$,

$$\mathcal{L}(G) = \{ \omega \in T^* : S \stackrel{+}{\Rightarrow} \omega \}$$

Ejemplo

Sea $G=\langle V_N,V_T,P,S\rangle$ la gramática libre de contexto tal que $V_N=\{E\},\ V_T=\{+,*,\mathbf{id},(,)\},\ S=E$ y P tiene

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

En cada paso de la derivación debemos elegir qué símbolo no terminal reescribiremos y luego debemos elegir una producción que tenga ese símbolo del lado izquierdo.

Si elegimos el no terminal más a la izquierda,

$$E \stackrel{*}{\Rightarrow} (\mathbf{id})$$
, porque $E \Rightarrow (E) \Rightarrow (\mathbf{id})$

$$E \stackrel{*}{\Rightarrow} (\mathbf{id} + \mathbf{id})$$
, porque $E \Rightarrow (E) \Rightarrow (E + E) \Rightarrow (\mathbf{id} + E) \Rightarrow (\mathbf{id} + \mathbf{id})$.

Si elegimos el no terminal más a la derecha,

$$E \Rightarrow (E) \Rightarrow (E + E) \Rightarrow (E + id) \Rightarrow (id + id).$$

Un autómata de pila para esta gramática libre de contexto

Ejemplo

Sea
$$G=\langle V_N,V_T,P,S\rangle$$
 la gramática libre de contexto tal que $V_N=\{E\}$, $V_T=\{+,*,\mathbf{id},(,)\}$, $S=E$ y P tiene $E\to E+E\mid E*E\mid (E)\mid \mathbf{id}$ Sea $M=\langle Q,\Sigma,\Gamma,\delta,q_0,Z_0,\varnothing\rangle$ con $Q=\{q_0\},\Sigma=V_T,\Gamma=V_N\cup V_T$ y $Z_0=S$.

$$\longrightarrow \overbrace{q_0} \ \lambda, E|\mathbf{id}; \quad \lambda, E|(E); \quad \lambda, E|E+E; \quad \lambda, E|E*E \\ +, +|\lambda; \quad *, *|\lambda; \quad \mathbf{id}, \mathbf{id}|\lambda; \quad (, (|\lambda; \quad),)|\lambda$$

Si en el tope de la pila hay un símbolo no terminal, el autómata M lo reemplazará en la pila por el lado derecho de alguna producción.

Si en el tope de la pila hay un símbolo terminal el autómata M constatará que es igual al próximo símbolo en la cadena de entrada y lo desapilará.

Este autómata acepta $\mathcal{L}(G)$ por pila vacía.

Teorema (Chomsky 1962, Evey 1963)

Para cada gramática ${\cal G}$ libre de contexto existe un autómata de pila ${\cal M}$ tal que

$$\mathcal{L}\left(G\right)=\mathcal{L}_{\lambda}\left(M\right).$$

Demostración del Teorema. Sea GLC $G = \langle V_N, V_T, P, S \rangle$. Definimos el AP

$$M = \langle \{q\}, V_T, V_N \cup V_T, \delta, q, S, \varnothing \rangle$$

donde $\delta: Q \times (V_T \cup \{\lambda\}) \times (V_N \cup V_T) \to \mathcal{P}\left(Q \times \left(V_N \cup V_T\right)^*\right)$ es tal que

- ightharpoonup si $(A o lpha) \in P$, entonces $(q, lpha) \in \delta \, (q, \lambda, A)$.
- $\forall (x \in V_T), \ \delta(q, x, x) = \{(q, \lambda)\}.$

Queremos ver que

$$S \overset{\pm}{\Rightarrow} \omega \ \text{ si y solo si } \ (q,\omega,S) \overset{*}{\underset{M}{\vdash}} (q,\lambda,\lambda) \, .$$

Lema

$$\forall (A \in V_N, \omega \in V_T^*), \ A \stackrel{*}{\Rightarrow} \omega \ \text{ si y solo si } \ (q, \omega, A) \stackrel{*}{\underset{M}{\vdash}} (q, \lambda, \lambda).$$

Demostración. Por inducción en m, la cantidad de pasos de la derivación.

- ► Caso base, m=1. Tenemos $A \stackrel{1}{\Rightarrow} \omega$ para $\omega = x_1 \dots x_k$, con $k \geq 0$, si y solo si $(q,x_1 \dots x_k,A) \vdash_M (q,x_1 \dots x_k,x_1 \dots x_k) \vdash_M (q,\lambda,\lambda)$.
- ightharpoonup Caso inductivo, m > 1.

$$\mathbf{HI} \text{: Para todo } j < m, \ A \overset{\underline{j}}{\Rightarrow} \omega \quad \text{si y solo si} \quad (q, \omega, A) \overset{*}{\underset{M}{\vdash}} (q, \lambda, \lambda).$$

Por definición de derivación, $A \stackrel{m}{\Rightarrow} \omega$ si y solo si $A \to X_1 \dots X_k$ está en P tal que para cada i, $X_i \stackrel{m_i}{\Rightarrow} \omega_i$, para algún $m_i < m$ y $\omega_1 \dots \omega_k = \omega$.

Por def. de M, $(A \to X_1 \dots X_k) \in P$ sii $(q, \omega, A) \vdash_M (q, \omega, X_1 \dots X_k)$.

Si
$$X_i \in V_N$$
, entonces por hipótesis inductiva, $(q, \omega_i, X_i) \stackrel{*}{\underset{M}{\vdash}} (q, \lambda, \lambda)$.

Si
$$X_i \in V_T$$
, entonces $\omega_i = X_i$ y por def. de M , $(q, \omega_i, X_i) \vdash_M (q, \lambda, \lambda)$.

Por lo tanto,

$$(q, \omega, A) \vdash_{M} (q, \omega_{1} \dots \omega_{k}, X_{1} \dots X_{k}) \vdash_{M}^{*} (q, \omega_{2} \dots \omega_{k}, X_{2} \dots X_{k}) \vdash_{M}^{*} \dots$$

$$\vdash_{M}^{*} (q, \omega_{k}, X_{k}) \vdash_{M}^{*} (q, \lambda, \lambda).$$

Continuación demostración del Teorema.

El Lema dice que para cualquier A en V_N , $\omega \in V_T^*$

$$A \overset{*}{\Rightarrow} \omega \quad \text{si y solo si} \quad \left(q, \omega, A\right) \overset{*}{\underset{M}{\vdash}} \left(q, \lambda, \lambda\right).$$

Luego, para cualquier $\omega \in V_T^*$,

$$S \stackrel{+}{\Rightarrow} \omega$$
 si y solo si $(q, \omega, S) \stackrel{+}{\underset{M}{\vdash}} (q, \lambda, \lambda)$.

por lo tanto
$$\mathcal{L}\left(G\right)=\mathcal{L}_{\lambda}\left(M\right)$$
.

Teorema (Chomsky 1962, Evey 1963)

Si M es un autómata de pila, entonces $\mathcal{L}_{\lambda}\left(M\right)$ es libre de contexto.

Demostración del Teorema. Dado AP $M=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,\varnothing)$ definimos $G=\langle V_N,V_T,P,S\rangle$ donde S es un símbolo nuevo, $V_N=\{[q,Z,p]:q\in Q,Z\in\Gamma,p\in Q\}\cup\{S\},\ V_T=\Sigma$ y P:

- $ightharpoonup S
 ightarrow [q_0, Z_0, q]$ en P, para cada q en Q.
- ▶ $[q, Z, q_1] \rightarrow x$ en P si y solo si $(q_1, \lambda) \in \delta(q, x, Z)$.
- $ightharpoonup [q, Z, q_1] \to \lambda$ en P si y solo si $(q_1, \lambda) \in \delta(q, \lambda, Z)$.
- Para cada $q, q_1, q_2, \ldots, q_{m+1} \in Q$, $x \in \Sigma$ y $Z, Y_1, \ldots, Y_m \in \Gamma$,
 - $[q, Z, q_{m+1}] \to x[q_1, Y_1, q_2] \dots [q_m, Y_m, q_{m+1}]$ en P si y solo si $(q_1, Y_1 \dots Y_m) \in \delta(q, x, Z)$.
 - $[q,Z,q_{m+1}] \rightarrow [q_1,Y_1,q_2] \dots [q_m,Y_m,q_{m+1}] \text{ en } P \text{ si y solo si } (q_1,Y_1\dots Y_m) \in \delta(q,\lambda,Z).$

(G es tal que su derivación más a la izquierda es una simulación de M).

Lema

Para todo $q \in Q, Z \in \Gamma, p \in Q$,

$$(q,\omega,Z) \stackrel{*}{\underset{M}{\vdash}} (p,\lambda,\lambda)$$
 si y solo si $[q,Z,p] \stackrel{*}{\underset{G}{\Rightarrow}} \omega.$

Demostración del Lema.

Veamos primero de autómata M a gramática G.

Veamos por inducción que para todo $i \ge 1$,

$$\mathrm{Si}\ (q,\omega,Z) \overset{i}{\underset{M}{\vdash}} (p,\lambda,\lambda) \quad \text{ entonces } [q,Z,p] \overset{*}{\underset{G}{\Rightarrow}} \omega.$$

Escribimos x para denotar un símbolo de Σ o λ .

- ► Caso i=1. Tenemos $(q,x,Z) \overset{1}{\overset{}{\vdash}} (p,\lambda,\lambda)$. Entonces, $(p,\lambda) \in \delta(q,x,Z)$. Y por definición de G, $[q,Z,p] \to x$. Por lo tanto, $[q,Z,p] \overset{}{\Rightarrow} x$.
- ► Caso i>1. Tenemos $\omega=x\omega'$ con $\omega'\in\Sigma^*$, $(q,\omega,Z)\overset{i}{\vdash}(p,\lambda,\lambda)$ Existen $Y_1,..,Y_n$ en Γ tales que $(q,x\omega',Z)\overset{i}{\vdash}(q_1,\omega',Y_1,\ldots,Y_n)\overset{i-1}{\vdash}(p,\lambda,\lambda)$. Necesariamente ω' se descompone como $\omega'=\omega'_1\ldots\omega'_n$, tales que para $1\leq j\leq n,\,\omega_1\ldots\omega_j$ hacen que Y_j quede en el tope de pila.

Por hipótesis inductiva, para cada $1 \le j \le n$,

$$\mathsf{si}\ (q_j,\omega_j',Y_j) \overset{k_i}{\underset{M}{\longleftarrow}} (q_{j+1},\lambda,\lambda) \quad \mathsf{entonces} \quad [q_j,Y_j,q_{j+1}] \overset{*}{\underset{G}{\rightleftharpoons}} \omega_j'.$$

Pero en G tenemos la producción

$$[q, Z, q_{n+1}] \to x[q_1, Y_1, q_2] \dots [q_n, Y_n, q_{n+1}].$$

Usando que para cada j, $[q_j, Y_j, q_{j+1}] \stackrel{*}{\Rightarrow} \omega'_j$, obtenemos

$$[q, Z, q_{n+1}] \stackrel{*}{\Rightarrow} x\omega'_1 \dots \omega'_n = x\omega' = \omega.$$

Veamos ahora de gramática G a autómata M.

Veamos por inducción sobre i que para todo $i \ge 1$,

$$\mathrm{Si}\ [q,Z,p] \overset{i}{\underset{G}{\Rightarrow}} \omega \ \mathrm{entonces}\ (q,\omega,Z) \overset{*}{\underset{M}{\vdash}} (p,\lambda,\lambda) \,.$$

Escribimos x para denotar un símbolo de Σ o λ .

- ▶ Para i=1. Si $[q,Z,p] \stackrel{1}{\Rightarrow} x$, entonces $[q,Z,p] \to x$ es producción de G y por definición de M, $(p,\lambda) \in \delta(q,x,Z)$.
- Para i>1. Si $[q,Z,p] \stackrel{i}{\underset{G}{\rightleftharpoons}} \omega$, $[q,Z,p] \stackrel{}{\underset{G}{\Rightarrow}} x[q_1,Y_1,q_2] \dots [q_n,Y_n,p] \stackrel{i-1}{\underset{G}{\rightleftharpoons}} \omega$. Descomponemos ω como $\omega=x\omega_1\dots\omega_n$ tal que para cada $1\leq j\leq n$, cada derivación toma menos de i pasos: $[q_j,Y_j,q_{j+1}] \stackrel{k_i}{\underset{G}{\rightleftharpoons}} \omega_j$, con $k_i< i$.

Por hipótesis inductiva, para cada $1 \leq j \leq n$, $(q_j, \omega_j, Y_j) \overset{*}{\underset{M}{\vdash}} (q_{j+1}, \lambda, \lambda)$.

Entonces
$$(q_j, \omega_j, Y_j Y_{j+1} \dots Y_n) \vdash_{M} (q_{j+1}, \lambda, Y_{j+1} \dots Y_n)$$
.

Partimos de $[q, Z, p] \Rightarrow x[q_1, Y_1, q_2] \dots [q_n, Y_n, p].$

Por definicion de M, $(q, x, Z) \vdash_{M} (q_1, \lambda, Y_1 \dots Y_n)$.

Llamando p al q_{n+1} , obtenemos

$$(q, xy_1 \dots y_n, Z) \vdash_{M} (q_1, y_1 \dots y_n, Y_1 \dots Y_n) \vdash_{M}^{*} (p, \lambda, \lambda).$$

Continuación demostración del Teorema.

Por el Lema, para todo $q \in Q, Z \in \Gamma, p \in Q$,

$$(q,\omega,Z) \overset{*}{\underset{M}{\vdash}} (p,\lambda,\lambda) \qquad \text{si y solo si} \qquad [q,Z,p] \overset{*}{\underset{G}{\Rightarrow}} \omega.$$

Tomando $q = q_0$ y $Z = Z_0$,

$$(q_0,\omega,Z_0)\stackrel{*}{\underset{M}{\vdash}}(p,\lambda,\lambda)$$
 si y solo si $[q_0,Z_0,p]\stackrel{*}{\underset{G}{\rightleftharpoons}}\omega.$

Por la definición de $G, S \rightarrow [q_0, Z_0, p]$ está en P, entonces,

$$(q_0, \omega, Z_0) \stackrel{*}{\underset{M}{\vdash}} (p, \lambda, \lambda)$$
 si y solo si $S \stackrel{*}{\Rightarrow} \omega$.

O, lo que es lo mismo

$$\omega \in \mathcal{L}_{\lambda}(M)$$
 si y solo si $\omega \in \mathcal{L}(G)$. \square