Standardschaltnetze Parameter Kursinformationen Veranstaltung: Hochschule: Link auf GitHub: Autoren Sebastian Zug & André Dietrich & Fabian Bär Fragen an die Veranstaltung • Unterscheiden Sie Multiplexer und Demultiplexer. • Wie lassen sich mit einem Multiplexer beliebige Wahrheitstafeln abbilden. Welche Grenzen hat dieser Ansatz? • Welche Aufgaben realisieren Dekoder? • Nennen Sie Anwendungsbeispiele für einen Muliplexer. Abstraktionsebenen Problemorientierte Sprache Ebene 6 Anwendungssoftware Ebene 5 Assemblersprache Ebene 4 Betriebssystem Systemsoftware Ebene 3 Instruktionsset Maschinensprache Mikroarchitektur Ebene 2 Automaten, Speicher, Logik Ebene 1 Digitale Logik HIER SIND WIR! E-Technik, Physik Ebene 0 Analoge Phänomene

In der digitalen Elektronik ist ein Binärdecoder eine kombinatorische Logikschaltung, die binäre Informationen von den n codierten Eingängen in maximal $k=2^n$ eindeutige Ausgänge umwandelt. Sie werden zum Beispiel für die Ansteuerung von Siebensegmentanzeigen und als Adressdecoder für Speicher und Port-mapped I/O genutzt.

So kann z.B. ein abgewandeltes NOT Gatter als 1:2-Binärdecoder mit 1-Eingang und 2-Ausgänge klassifiziert werden, da er mit einem Eingang A zwei Ausgänge A und \overline{A} hat.

n-zu-k Dekodierer

3-8 Dekodierer

A	В	C	y_0	y_1	y_2	y_3	y_4	g runtime
			1					
		1		1				
	1				1			
	1	1				1		
1							1	
1		1						
1	1							
1	1	1						

Für jede Eingangskombination wird genau 1 Ausgang aktiviert.

$$y_0 = A \cdot B \cdot C$$

$$y_1 = \overline{A} \cdot \overline{B} \cdot C$$

$$y_2 = \overline{A} \cdot B \cdot \overline{C}$$

$$y_3 = \overline{A} \cdot B \cdot C$$

Adressdekoder

BCD Dekoder für 7 Segmentanzeige


```
1 const int PINS[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
  2 const int PAUSE = 1000;
  3 * byte segDigits[10][8] = {
       { 1,1,1,1,1,1,1,0 }, // = 0
 { 0,1,1,0,0,0,0,0 }, // = 1
  4
  5
       \{1,1,0,1,1,1,0,1\}, // = 2
  6
       { 1,1,1,1,1,0,0,1 }, // = 3
  7
  8
       \{0,1,1,0,0,0,1,1\}, // = 4
       \{1,0,1,1,1,0,1,1\}, // = 5
  9
 10
       11
       \{1,1,1,1,0,0,1,0\}, // = 7
       { 1,1,1,1,1,1,1,1 }, // = 8
 12
 13
       { 1,1,1,1,1,0,1,1 },
 14 };
15 void setup() {
 16 -
       for(int i=0;i<8;i++){</pre>
 17
       pinMode(PINS[i], OUTPUT);
18
```

Sketch uses 1092 bytes (3%) of program storage space. Maximum is 32256 bytes. Global variables use 109 bytes (5%) of dynamic memory, leaving 1939 bytes for local variables. Maximum is 2048 bytes.

Verschaltung von Dekodern

Realisierung eines 4-zu-16 Dekoders auf der Basis von zwei 3-zu-8 Dekodern

Loading runtime..

n-zu-k Kodierer

- ullet n Ausgänge y_0 , y_1 , ... , y_{n-1}
- $k=2^n$ Eingänge $x_0, x_1, ..., x_{k-1}$
- ullet nur genau eine Eingangsleitung darf auf 1 sein: $x_i=1,\,x_j<>i=0$

Jeder Eingangsleitung ist genau eine Kombination der möglichen Belegungen der Ausgangsleitungen zugeordnet, z.B. ihre binäre Repräsentation.

8-3 Kodierer

x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	y_2	y_1	y_0
1										
	1									1
		1							1	
			1						1	1
				1				1		
					1			1		1
						1		1	1	
						0	1	1	1	1
$y_0 = x_1 + x_3 + x_5 + x_7 \ y_1 = x_2 + x_3 + x_6 + x_7$										

$$y_1 = x_2 + x_3 + x_6 + x$$

$$y_2 = x_4 + x_5 + x_6 + x_7$$

Prioritätsencoder

Abhilfe schafft der Prioritätsencoder. Hier wird eine explizite Auswahl für verschiedene Eingangskonfigurationen getroffen.

x_3	x_2	x_1	x_0	y_1	y_0	Bemerkung
						ungültig
			1			
		1	Х		1	
	1	Х	Х	1		
1	X	Х	X	1	1	

$$y_0 = \overline{x}_3 \overline{x}_2 x_1 + x_3$$
 $y_2 = \overline{x}_2 x_2$

Und im echten Leben? Kommen noch einige Spezialeingänge / -ausgänge / azu Link.

$$Q_2 = D_4 + D_5 + D_6 + D_7$$

Analog Digitalwandler

Multiplexer / Demultiplexer

Der Begriff *Multiplexing* umfasst das serialisierte Senden eines oder mehrerer analoger oder digitaler Signale über eine gemeinsame Übertragungsleitung. Eine Mulitplexerschaltung bildet die Eingangssignale auf einen Kommunikationskanal ab, der Demultiplexer übernimmt die Abbildung auf n Ausgangsleitungen.

Multiplexer	Dekoder
mehrere Eingänge, ein Ausgang	mehrere Eingänge, mehrere Ausgänge
Steuerleitungen konfiguriereren die Weiterleitung	das Mapping wird allerdings durch die interne Logik bestimmt
wandelt den unären Code in einen binären Code um	wandelt den binären Code in einen unären Code um

Multiplexer

Generelle Konfiguration eines 1-aus-k Multiplexer:

- ullet n Steuerleitungen: $s_{n-1},...,s_1,s_0$
- $k=2^n$ Eingänge: $x_0,x_1,...,x_{k-1}$
- ein Ausgang: y
- $ullet y=x_i$ für $(s_{n-1},...,s_1,s_0)_2=i$

Beispiel: 1-zu-4 Multiplexer

Eine Wahrheitstabelle mit 4 Eingangsvariablen und 2 Steuersignalen würde eine entsprechende Größe aufweisen. Allerdings kann die Funktion auch sehr einfach hergeleitet werden. Ein Inputsignal wird nur dann durchgeleitet, wenn die zugehörige Kombination von Steuersignalen anliegt.

a_1	a_2	Signal
0	0	x_0
0	1	x_1
1	0	x_2
1	1	x_3

$$y = \overline{a_1} \cdot \overline{a_0} \cdot x_0 + \overline{a_1} \cdot a_0 \cdot x_1 + a_1 \cdot \overline{a_0} \cdot x_2 + a_1 \cdot a_0 \cdot x_3$$

Anwendung in Microcontrollern

Analog Digitalwandler [3]

Multiplexer als universelle boolsche Funktionsrepräsentation

x_2		x_0	y
	0	0	1
		1	
	1 Loading	runtime	
	1	1	1
1			1
1		1	
1	1		1
1	1	1	1

[3] Firma Microchip - ATmega328P8-bit AVR Microcontroller Datasheet Link

Demultiplexer

Generelle Konfiguration eines 1-aus-k Multiplexer

- ullet n Steuerleitungen: $s_{n-1},...,s_1,s_0$
- ullet $k=2^n$ Ausgänge: $y_0,y_1,...,y_{k-1}$
- ein Eingang: x
- $ullet \ y=x_i$ für $(s_{n-1},...,s_1,s_0)_2=i$

Beispiel: 2 Bit Adresse → 4 Ausgänge

	a_0	a_1	x	y_0	y_1	y_2	y_3		
			1	1					
		1							
		1	1		1				
	1								
	1		1			1			
	1	1							
	1	1	1				1		
1	$y_0 = x \cdot \overline{a_1} \cdot \overline{a_0}$ $y_1 = x \cdot \overline{a_1} \cdot a_0$ $y_2 = x \cdot a_1 \cdot \overline{a_0}$ $y_3 = x \cdot a_1 \cdot a_0$ $y_3 = x \cdot a_1 \cdot a_0$ $y_4 = x \cdot a_1 \cdot a_0$ $y_5 = x \cdot a_1 \cdot a_0$ $y_6 = x \cdot a_1 \cdot a_0$ $y_6 = x \cdot a_1 \cdot a_0$ $y_8 = x \cdot a_1 \cdot a_0$ $y_9 = x \cdot a_1 \cdot a_0$								
	Komperatoren								
	siehe Hausaufgabe								

Ausblick

Nunmehr können boolsche Funktionen als Schaltnetze abbilden? Was fehlt für den Rechner? Zwei Dinge ... Speicher und arithmetische Operationen.

Hausaufgaben

- 1. Entwerfen Sie einen Komperator, der zwei zweistellige Zahlen vergleicht. Definieren Sie dazu zunächst einen Ein-Bit Komperator und nutzen sie diesen als Grundlage für die Zwei-Bit-Variante
- 2. Entwickeln Sie ein Schaltnetz, dass die Teilbarkeit durch drei von einer 4-stelligen binären Zahl prüft. Stellen Sie dazu eine Wahrheitstafel auf, minimieren Sie den Ausdruck soweit wie möglich und skizzieren Sie die Verdrahtung der Gatter.