Functional analysis

Mostly operator theory for now

Sudip Sinha

January 02, 2020

CONTENTS

Part 1 Operator theory	1
1.1 Elementary ideas	2
1.1.1 Definitions	2
1.1.2 Inclusions: $\mathcal{D} \subset \mathcal{B}^1 \subset \mathcal{B}^2 \subset \mathcal{K} \subset \mathcal{B}^{\infty}$	2
1.1.3 For $T \in \mathcal{B}^{\infty}$, $ T _{\infty} = \sup\{ \langle Tx, y \rangle : x = 1, y = 1\}$	2
$1.1.4 P _{\infty} \le 1$	2
1.1.5 Projection operator is compact iff its image is finite dimensional	2
1.2 Optimization	4
1.2.1 Duality in optimization is the same as duality in functional analysis	4
Bibliography	5

Part 1

OPERATOR THEORY

1.1 Elementary ideas

1.1.1 Definitions

Compact $T \in \mathcal{K} \iff \lambda \to 0$

Hilbert-Schmidt $T \in \mathcal{B}^2 \iff \lambda \in \ell^2$

Trace-class $T \in \mathcal{B}^1 \Longleftrightarrow \lambda \in \ell^1$

1.1.2 Inclusions: $\mathcal{D} \subset \mathcal{B}^1 \subset \mathcal{B}^2 \subset \mathcal{K} \subset \mathcal{B}^{\infty}$

 $\mathcal{K} \subseteq \mathcal{B}^{\infty}$ ((<BMC2009>), Proposition 4.6) If T is unbounded, we can find a sequence of unit vectors (e_n) such that $||Te_n|| \nearrow \infty$. So Te_n cannot have a convergent subsequence, for if $Te_n \to x$, then $||Te_n|| \to ||x||$.

 $\mathcal{K} \neq \mathcal{B}^{\infty}$ The identity operator $I \in \mathcal{B}^{\infty}$ is not compact because for the bounded sequence of unit vectors (e_n) , $Ie_n = e_n$ does not converge as $||e_n - e_m|| = \sqrt{2} \ \forall n \neq m$.

 $\mathcal{B}^2 \subseteq \mathcal{K}$ TODO

 $\mathcal{B}^2 \neq \mathcal{K}$ $T: \ell^2 \to \ell^2, Te_n = \frac{1}{\sqrt{n}}e_n; T \in \mathcal{K} \setminus \mathcal{B}^2.$

 $\mathcal{B}^1 \subseteq \mathcal{B}^2$ TODO

 $\mathcal{B}^1 \neq \mathcal{B}^2$ $T: \ell^2 \to \ell^2, Te_n = \frac{1}{n}e_n; T \in \mathcal{B}^2 \setminus \mathcal{B}^1.$

1.1.3 For $T \in \mathcal{B}^{\infty}$, $||T||_{\infty} = \sup\{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\}$

(\leq) Since $||Tx|| = \frac{||Tx||^2}{||Tx||} = \frac{\langle Tx, Tx \rangle}{||Tx||} = \langle Tx, \frac{Tx}{||Tx||} \rangle$, we have $||T||_{\infty} = \sup \{||Tx|| : ||x|| = 1\} \le \sup \{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\}$.

(\geq) On the other hand, $\langle Tx, y \rangle \leq ||Tx|| ||y|| \leq ||T||_{\infty} ||x|| ||y||$, so $\sup\{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\} \leq ||T||_{\infty}$.

$1.1.4 \|P\|_{\infty} \le 1$

Since $||Px||^2 = \langle Px, Px \rangle = \langle P^*Px, x \rangle = \langle PPx, x \rangle = \langle Px, x \rangle \leq ||Px|| \, ||x||$, we have $||P||_{\infty} \leq 1$.

1.1.5 Projection operator is compact iff its image is finite dimensional

(⇒) Let $P: H \to H$ be a projection operator, so that $P^2 = P$, or P(P - I) = 0.

(\Leftarrow) Since the image is finite dimensional, fix an orthonormal basis $e_1,...,e_n$ of im T.

1.2 Optimization

1.2.1 Duality in optimization is the same as duality in functional analysis

For an various intuitions of duality in optimization, see MSx223235. Let X and Y be Banach spaces, and X^* and Y^* be their (algebraic?) duals. Consider the two problems, with ϕ_0 , y_0 fixed. Here (\cdot, \cdot) denotes the canonical duality pairing.

See the following diagram for more details.

$$x \longmapsto T \\
x \longmapsto T \\
x \in X \xrightarrow{T} y_0 \quad \ni Tx, y_0 \\
\downarrow \qquad \qquad \downarrow \\
\phi_0, T^* \psi \in X^* \xleftarrow{T^*} y_0^* \quad \ni \psi$$

$$T^* \psi \xleftarrow{T^*} \psi$$

BIBLIOGRAPHY