

School of Computing

Tutorial 1: Asymptotic Analysis

August 22, 2022

Gu Zhenhao

* Partly adopted from tutorial slides by Wang Zhi Jian.

About Me

Hello, I am Gu Zhenhao (Gary)!

- Year 2, MComp (CS) candidate,
- Interests: Algorithm & theory research,
 Computational Biology, openworld/MOBA games,
- E-mail: zhenhao.gu@u.nus.edu
- Telegram: 0garygzh
- GitHub: GZHoffie

About this Tutorial

- **Time**: 10:00 11:00 A.M. every Monday.
- Zoom Link: See Canvas → Zoom or Telegram group.
- **Content**: Review key concepts in lectures and teach problem-solving recipes.

About this Tutorial

- **Slides**: will be uploaded to Telegram group and my repository.
- Notes:
 - 1. Attendance & participation will be taken. (3% of course grade)
 - 2. Try to think of the tutorial problems ahead of time.

Slides with star *

Slides with star * contain additional content that are **not required in CS2040S**, e.g.

- 1. More complicated exercises,
- 2. Hints to understand the concepts,
- 3. More advanced topics.

How to describe the efficiency of an algorithm?

Purpose: to measure the worst possible performance of an algorithm given large input size n.

Figure: comparison of f(n) = 100n (blue) and $f(n) = 2n^2$ (orange)

Recipe 1: Suppose we have running time f(n), express it using big-O notation,

- 1. Ignore constant coefficients, e.g. $2n^2 + 100n \equiv n^2 + n$
- 2. Retain only the most dominant part. e.g. $n^2 + n = O(n^2)$

After simplifying all with big-O notation, we can compare them,

$$0 < c < 1$$

$$O(1) < O(\log n) < O(n^c) < O(n) < O(n\log n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$$
 Constant Logarithmic Fractional Linear Linearithmic Polynomial Exponential Factorial Power

You can find a more complete list <u>here</u>.

What if my formula is not on the list?

$$f(n) \prec g(n) \Leftrightarrow \frac{f(n)}{g(n)} \to 0 \text{ (or } \frac{g(n)}{f(n)} \to \infty) \text{ as } n \text{ approaches infinity.}$$

e.g. we can verify that $O(2^n) \prec O(3^n)$ because

$$\frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n \xrightarrow{n \to \infty} 0.$$

Rearrange the following functions in ascending order:

$4n^2$	$\log_3 n$	20n	$n^{2.5}$
$n^{0.00000001}$	$\log n!$	n^n	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

To compare them, use big-O notation!

$4n^2 = \mathbf{O}(n^2)$	$\log_3 n$	20n	$n^{2.5}$
$n^{0.00000001}$	$\log n!$	n^n	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$$4n^2 \equiv n^2 = O(n^2)$$

Find the tightest big-O complexity:

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n	$n^{2.5}$
$n^{0.00000001}$	$\log n!$	n^n	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$$\log_3 n = \frac{\log n}{\log 3} \equiv \log n = O(\log n)$$

Note: $\log_b a = \log_k a / \log_k b$ (change of base rule)

Pause and Ponder 1

Based on change of base rule we can ignore the base in logarithm factor, e.g. $\log_k n = O(\log n)$

Question 1: can we write $n^{\log_a b} = O(n^{\log b})$?

Question 2: can we write $\log_b n = O(\log n)$ if b is some <u>variable</u> dependent on n?

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	$20n = 0(\mathbf{n})$	$n^{2.5}$
$n^{0.00000001}$	$\log n!$	n^n	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = 0(\mathbf{n}^{2.5})$
$n^{0.00000001}$	$\log n!$	n^n	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = \mathbf{O}(n^{0.00000001})$	$\log n!$	n^n	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

Find the tightest big-O complexity:

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = \boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	n^n	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

 $\log n! = \log(n \times (n-1) \times \dots \times 2 \times 1) = \log n + \log(n-1) + \dots + \log 1$
 $< \log n + \log n + \dots + \log n = n \log n = O(n \log n)$

Note: $\log ab = \log a + \log b$, $\log(a/b) = \log a - \log b$.

Pause and Ponder 2

 $\log n! = \log(n \times (n-1) \times \dots \times 2 \times 1) = \log n + \log(n-1) + \dots + \log 1$
 $< \log n + \log n + \dots + \log n = n \log n = O(n \log n)$

Question: How do we know $O(n \log n)$ is the tightest bound? Is $\log n! \equiv n \log n$?

Find the tightest big-O complexity:

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = \boldsymbol{O}(\boldsymbol{n^n})$	2^n
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

Question: Which one is larger, $O(n^n)$ or O(n!)?

$$O(n!) < O(n^n)$$
. We can verify that $\frac{n!}{n^n} = \frac{n \cdot (n-1) \cdot \dots \cdot 1}{n \cdot n \cdot \dots \cdot n} < \frac{1}{n} \xrightarrow{n \to \infty} 0$.

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = \boldsymbol{O}(2^n)$
2^{n+1}	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = \boldsymbol{O}(2^n)$	2^{2n}	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$$2^{n+1} = 2^1 \cdot 2^n = O(2^n)$$

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = \boldsymbol{O}(4^n)$	3^n	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$$2^{2n} = (2^2)^n = 4^n = O(4^n)$$

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = O(4^n)$	$3^n = \boldsymbol{O}(3^n)$	$n \log n$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = O(4^n)$	$3^n = O(3^n)$	$n\log n = \boldsymbol{O}(n\log n)$
$100n^{\frac{2}{3}}$	$\log[(\log n)^2]$	n!	(n-1)!

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = O(4^n)$	$3^n = O(3^n)$	$n\log n = O(n\log n)$
$100n^{\frac{2}{3}} = \mathbf{o}(n^{\frac{2}{3}})$	$\log[(\log n)^2]$	n!	(n-1)!

Find the tightest big-O complexity:

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = O(4^n)$	$3^n = O(3^n)$	$n\log n = O(n\log n)$
$100n^{\frac{2}{3}} = O(n^{\frac{2}{3}})$	$\log[(\log n)^2] = \mathbf{O}(\log \log n)$	n!	(n-1)!

$$\log[(\log n)^2] = 2\log(\log n) = \log(\log n) = O(\log\log n)$$

Note: $\log b^c = c \log b$

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = O(4^n)$	$3^n = O(3^n)$	$n\log n = O(n\log n)$
$100n^{\frac{2}{3}} = O(n^{\frac{2}{3}})$	$\log[(\log n)^2] = O(\log\log n)$	$n! = \boldsymbol{O}(\boldsymbol{n}!)$	(n-1)!

Find the tightest big-O complexity:

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.00000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = O(4^n)$	$3^n = O(3^n)$	$n\log n = O(n\log n)$
$100n^{\frac{2}{3}} = O(n^{\frac{2}{3}})$	$\log[(\log n)^2] = O(\log\log n)$	n! = O(n!)	$(n-1)! = \mathbf{O}((\mathbf{n-1})!)$

Question: Can we say (n-1)! = O(n!)?

No! We have (n-1)! < n! Because $\frac{(n-1)!}{n!} = \frac{1}{n} \xrightarrow{n \to \infty} 0$.

Find the tightest big-O complexity:

$4n^2 = O(n^2)$	$\log_3 n = O(\log n)$	20n = O(n)	$n^{2.5} = O(n^{2.5})$
$n^{0.00000001} = O(n^{0.000000001})$	$\log n! = O(n \log n)$	$n^n = O(n^n)$	$2^n = O(2^n)$
$2^{n+1} = O(2^n)$	$2^{2n} = O(4^n)$	$3^n = O(3^n)$	$n\log n = O(n\log n)$
$100n^{\frac{2}{3}} = O(n^{\frac{2}{3}})$	$\log[(\log n)^2] = O(\log\log n)$	n! = O(n!)	$(n-1)! = \mathbf{O}((\mathbf{n-1})!)$

Based on <u>this list</u>, $\log[(\log n)^2] < \log_3 n < n^{0.00000001} < 100n^{\frac{2}{3}} < 20n < n \log n = \log n! < 4n^2 < n^{2.5} < 2^n = 2^{n+1} < 3^n < 2^{2n} < (n-1)! < n! < n^n.$

Running Time Analysis

Given an algorithm, how to determine its run time?

Non-recursive Algorithms

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("*");
    }
}</pre>
```

Recipe 2: Given a piece of code,

- 1. Count how many times each line is executed,
- 2. Multiply with the run time of each line,
- 3. Express the run time using big-O notation.

Problem 2.a

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("*");
    }
}</pre>
```

Run
$$1 + 2 + \cdots + n =$$

 $n(n+1)/2 = O(n^2)$ time.
Each run costs $O(1)$ time.
In total $O(n^2)$ time.

Problem 2.b

```
int i = 1;
while (i <= n) {
    System.out.println("*");
    i = 2 * i;
}</pre>
```

```
Run 1+1+\cdots+1=O(\log n) times, each run costs O(1).
```

Problem 2.c

```
int i = n;
while (i > 0) {
    for (int j = 0; j < n; j++)
        System.out.println("*");
    i = i / 2;
}</pre>
```

```
Run n + n + \cdots + n = O(n \log n)
times, each run costs O(1).
```

Problem 2.c

```
int i = n;
while (i > 0) {
    for (int j = 0; j < n; j++)
        System.out.println("*");
    i = i / 2;
}</pre>
```

Run $\log n$ times, each run costs O(1).

Problem 2.c

```
int i = n;
while (i > 0) {
    for (int j = 0; j < n; j++)
        System.out.println("*");
    i = i / 2;
}</pre>
In total, n \log n + \log n = O(n \log n) time.
```

Problem 2.d

```
while (n > 0) {
    for (int j = 0; j < n; j++)
        System.out.println("*");
    n = n / 2;
}</pre>
```

Run

$$n + \frac{n}{2} + \frac{n}{4} + \dots + 1$$
= $2^{\log n} + 2^{\log n - 1} + \dots + 2^0$
= $2^{\log n + 1} - 1$ (geometric series)
= $2n - 1$
= $O(n)$

Times, each run costs O(1).

Problem 2.e

```
String x; // String x has length n
String y; // String y has length m
String z = x + y;
System.out.println(z);
```

Java strings are immutable.

- 1. Copy string x to z,
- 2. Content of y is appended to z.

Run 1 time, which costs O(m + n).

Recursive Algorithms

```
void foo(int n){
    if (n <= 1)
        return;
    System.out.println("*");
    foo(n/2);
    foo(n/2);
}</pre>
```

Recipe 3: Given a piece of code,

- 1. Denote times used as T(n),
- 2. Build the recursive formula and solve it.

Problem 2.f

```
T(n)
```

```
void foo(int n){
    if (n <= 1)
        return;
    System.out.println("*");
    foo(n/2);
                     2T(n/2)
    foo(n/2);
```

Recurrence relation:

$$T(n) = 2T(n/2) + 1$$

Problem 2.f

```
T(n)
```

```
void foo(int n){
    if (n <= 1)
        return;
    System.out.println("*");
    foo(n/2);
                     2T(n/2)
    foo(n/2);
```

$$T(n/2) = 2T(n/4) + 1$$

 $T(n) = 2T(n/2) + 1$
 $= 4T(n/4) + 3$
 $= \cdots$
 $= nT(1) + (n - 1)$
 $= 2n - 1$
 $= O(n)$

Problem 2.f

Alternatively, build a recursion tree:

```
void foo(int n){
                                                n
    if (n <= 1)
         return;
    System.out.println("*");
                                                                                 og n levels
                                      n/2
                                                       n/2
    foo(n/2);
    foo(n/2);
```

Problem 2.g

```
void foo(int n){
    if (n <= 1)
                                 n
        return;
    for (int i = 0; i < n; i++) {</pre>
        System.out.println("*");
    foo(n/2);
                          2T(n/2)
    foo(n/2);
```

Recurrence relation:

$$T(n) = 2T(n/2) + n$$

Problem 2.g

T(n)

```
void foo(int n){
    if (n <= 1)
                                 n
        return;
    for (int i = 0; i < n; i++) {</pre>
        System.out.println("*");
    foo(n/2);
                           2T(n/2)
    foo(n/2);
```

$$T(n/2) = 2T(n/4) + n/2$$

$$T(n) = 2T(n/2) + n$$

$$= 4T(n/4) + n + n$$

$$= \cdots$$

$$= nT(1) + \underbrace{n + n + \cdots + n}_{\log n \text{ of them}}$$

$$= n + n \log n$$

$$= O(n \log n)$$

Problem 2.h

T(n,m)

```
void foo(int n, int m){
    if (n <= 1) {
        for (int i = 0; i < m; i++) {</pre>
            System.out.println("*");
                            1 if n > 1
        return;
                            m if n=1
    foo(n/2, m);
                            2T(n/2,m)
    foo(n/2, m);
```

Recurrence relation:

here
$$n > 1$$

$$\begin{cases} T(n,m) = 2T(n/2,m) + 1 \\ T(1,m) = m \end{cases}$$

Problem 2.h

T(n,m)

```
void foo(int n, int m){
    if (n <= 1) {
        for (int i = 0; i < m; i++) {</pre>
            System.out.println("*");
                            1 if n > 1
        return;
                            m if n=1
    foo(n/2, m);
                            2T(n/2,m)
    foo(n/2, m);
```

```
T(n,m) = 2T(n/2,m) + 1
= 4T(n/4,m) + 3
= ...
= nT(1,m) + (n-1)
= mn + n - 1
= O(mn)
```

Appendix

Master Theorem *

An easier way of solving recurrence relationship.

Master Theorem. Given a recurrence relationship T(n) = aT(n/b) + f(n),

$$T(n) = \begin{cases} O(n^{\log_b a}), & \text{if } f(n) < n^{\log_b a} \\ O(n^{\log_b a} \log n), & \text{if } f(n) \equiv n^{\log_b a} \\ O(f(n)), & \text{if } f(n) > n^{\log_b a} \end{cases}$$

Master Theorem *

Recall in problem 2.g, we have T(n) = 2T(n/2) + O(n), here

$$\begin{cases} a = 2 \\ b = 2 \\ f(n) = O(n) \equiv n^{\log_b a} \end{cases}$$

Therefore it's the second case, $T(n) = O(n^{\log_b a} \log n) = O(n \log n)$.

Pause and Ponder 1

Question 1: can we write $n^{\log_a b} = O(n^{\log b})$?

Not unless a = 2! because

$$n^{\log_a b} = n^{\frac{\log b}{\log a}} = (n^{\log b})^{\frac{1}{\log a}}$$

Is only equivalent to $n^{\log b}$ when $1/\log a$ is 1, i.e. a=2.

Pause and Ponder 1

Question 2: can we write $\log_b n = O(\log n)$ if b is some <u>variable</u> dependent on n?

Not unless b is a constant value! We still have

$$\log_b n = \frac{\log n}{\log b}$$

But this time $1/\log b$ cannot be treated as constant coefficient and ignored.

Pause and Ponder 2 *

Question: How do we know $O(n \log n)$ is the tightest bound? Is $\log n! \equiv n \log n$?

To prove $f(n) \equiv g(n)$, we have two ways:

Method 1: $f(n) \equiv g(n) \Leftrightarrow \frac{f(n)}{g(n)} \to C$ as n goes to infinity (C is a positive constant).

Method 2: find a lower bound and an upper bound for f(n) that are both $\equiv g(n)$.

Pause and Ponder 2: Method 1 *

Question: How do we know $O(n \log n)$ is the tightest bound? Is $\log n! \equiv n \log n$?

We actually have

$$\frac{\log n!}{n\log n} \xrightarrow{n \to \infty} 1 > 0$$

But this result is actually quite hard to get (need some calculus)... Method 2 would be more feasible.

Pause and Ponder 2: Method 2 *

Upper bound is already proved:

$$\log n! = \log(n \times (n-1) \times \dots \times 2 \times 1) = \log n + \log(n-1) + \dots + \log 1 < \log n + \log n + \dots + \log n \equiv n \log n$$

Lower bound:

$$\log n! > \log n + \log(n-1) + \dots + \log(n/2)$$

$$> \underbrace{\log(n/2) + \log(n/2) + \dots + \log(n/2)}_{n/2 \text{ of them}} = \frac{n \log(n/2)}{2} = \frac{n \log n - n}{2} \equiv n \log n$$

End of File

Thank you very much for your attention :-)