FLS 6441 - Methods III: Explanation and Causation

Week 5 - Natural Experiments

Jonathan Phillips

April 2019

Classification of Research Designs

	Independence of Treatment Assignment?	Researcher Controls Treatment Assignment?
Controlled Experiments	✓	\checkmark
Natural Experi- ments	✓	
Observational Studies		

Classification of Research Designs

		Independence of Treatment Assignment	Researcher Controls Treatment Assignment?
Controlled	Field Experiments	✓	√
Experiments	Survey and Lab Experiments	✓	√
Natural Experiments	Natural Experiments	√	
	Instrumental Variables	√	
	Discontinuities	√	
	Difference-in-Differences		
Observational Studies	Controlling for Confounding		
	Matching		
	Comparative Cases and Process Tracing		

Section 1

Natural Experiments

Advantages:

 We don't need to run our own experiment! (Too expensive, unethical or politically impossible)

Advantages:

- We don't need to run our own experiment! (Too expensive, unethical or politically impossible)
- Still have independence of potential outcomes from treatment

Advantages:

- We don't need to run our own experiment! (Too expensive, unethical or politically impossible)
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

Advantages:

- We don't need to run our own experiment! (Too expensive, unethical or politically impossible)
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

Disadvantages:

 We can never be sure randomization really worked

Advantages:

- We don't need to run our own experiment! (Too expensive, unethical or politically impossible)
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

Disadvantages:

- We can never be sure randomization really worked
- We don't get to choose the treatments we want to evaluate, just 'discover' them

Advantages:

- We don't need to run our own experiment! (Too expensive, unethical or politically impossible)
- Still have independence of potential outcomes from treatment
- Treatment may be more 'realistic' than in a controlled experiment

Disadvantages:

- We can never be sure randomization really worked
- We don't get to choose the treatments we want to evaluate, just 'discover' them
- ► We don't get to choose the population and sample

► If it's an important treatment, *someone* had an incentive to try and alter it

- ► If it's an important treatment, *someone* had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?

- ► If it's an important treatment, *someone* had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?
- ► Two strategies:

- If it's an important treatment, someone had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?
- ► Two strategies:
 - 1. Check balance on lots of variables
 - ► Especially variables that are potential omitted variables

- If it's an important treatment, someone had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?
- ► Two strategies:
 - 1. Check balance on lots of variables
 - Especially variables that are potential omitted variables
 - 2. Causal Process Observations

- If it's an important treatment, someone had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?
- Two strategies:
 - 1. Check balance on lots of variables
 - Especially variables that are potential omitted variables
 - 2. Causal Process Observations
 - ► Documents/code/video evidence

- ► If it's an important treatment, *someone* had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?
- Two strategies:
 - 1. Check balance on lots of variables
 - Especially variables that are potential omitted variables

2. Causal Process Observations

- ► Documents/code/video evidence
- ► Interviews with eyewitnesses

- ► If it's an important treatment, *someone* had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?
- ► Two strategies:
 - 1. Check balance on lots of variables
 - Especially variables that are potential omitted variables

2. Causal Process Observations

- ► Documents/code/video evidence
- ► Interviews with eyewitnesses
- Verifying treatment assignment matches documents

- ► If it's an important treatment, *someone* had an incentive to try and alter it
- ► The burden of proof is on us: How can we increase confidence that assignment was (as-if) random?
- ► Two strategies:
 - 1. Check balance on lots of variables
 - Especially variables that are potential omitted variables

2. Causal Process Observations

- ► Documents/code/video evidence
- ► Interviews with eyewitnesses
- Verifying treatment assignment matches documents
- Identify risks of reverse causation, omitted variables, (Self-)selection

► How does Snow argue that households' assignment to water company is as-if random?

- ► How does Snow argue that households' assignment to water company is as-if random?
- ▶ How do we know that Brazil's municipal audits are random?

► "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)

- "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)
- Treatment and control groups are defined after randomization - it's our responsibility to make sure:

- "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)
- ► Treatment and control groups are defined *after* randomization it's our responsibility to make sure:
 - 1. **These two groups actually are comparable** (POs are independent of treatment)

- "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)
- ► Treatment and control groups are defined *after* randomization it's our responsibility to make sure:
 - 1. **These two groups actually are comparable** (POs are independent of treatment)
 - We can only compare those units that were part of the original randomization

- "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)
- ► Treatment and control groups are defined *after* randomization it's our responsibility to make sure:
 - 1. **These two groups actually are comparable** (POs are independent of treatment)
 - We can only compare those units that were part of the original randomization
 - 2. That the treatment is the factor we actually want to study

- "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)
- ► Treatment and control groups are defined *after* randomization it's our responsibility to make sure:
 - These two groups actually are comparable (POs are independent of treatment)
 - We can only compare those units that were part of the original randomization
 - 2. That the treatment is the factor we actually want to study
 - ► We have to 'interpret' the treatment

- "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)
- ► Treatment and control groups are defined *after* randomization it's our responsibility to make sure:
 - 1. **These two groups actually are comparable** (POs are independent of treatment)
 - We can only compare those units that were part of the original randomization
 - 2. That the treatment is the factor we actually want to study
 - ► We have to 'interpret' the treatment
 - Sometimes treatments are 'bundles'

- "Random assignment of the intervention is not sufficient to provide an unbiased estimate of the causal effect." (Sekhon and Titunik 2012)
- ► Treatment and control groups are defined *after* randomization it's our responsibility to make sure:
 - 1. **These two groups actually are comparable** (POs are independent of treatment)
 - We can only compare those units that were part of the original randomization
 - 2. That the treatment is the factor we actually want to study
 - ► We have to 'interpret' the treatment
 - ► Sometimes treatments are 'bundles'
 - Sometimes treatments are 'repeated', creating interactions or changing expectations

	A's Original Voters	Switched Voters	B's Original Voters
2000 election context		Same	Same
Duration of expo- sure to incumbent in district B		4 years	10 years
1996 and prior election context	Same	Same	

	A's Original Voters vs. Switched Vot- ers	B's Original Voters vs. Switched Vot- ers
Potential Outcomes Independent of Treatment Assign- ment?	Yes	No
What is 'Treat- ment'?	Different elec- tion context, different candi- dates	Difference in duration of exposure to incumbent

Section 2

Randomized Natural Experiments

Ferraz and Finan (2008)

Do voters punish corrupt politicians?

Ferraz and Finan (2008)

- ► Do voters punish corrupt politicians?
- Corruption is hard to manipulate (ethically)

Ferraz and Finan (2008)

- Do voters punish corrupt politicians?
- Corruption is hard to manipulate (ethically)
- ► We can also look at voters' information about corruption

- ► **Population:** Brazilian municipalities with population less than 450,000
- ► **Sample:** 373 Municipalities with audits either side of 2004 elections and first-term mayors
- ► Treatment: CGU Audit before election
- ► Control: Audit after election
- ► Treatment Assignment Mechanism: Randomized (Caixa)
- ▶ Outcome: Vote Share for the Incumbent

- Methodology
 - ► $VS_{ms} = \alpha + \beta \text{Audited Early}_{ms} + X_{ms} + FE_s + \epsilon_{ms}$

- ► Methodology
 - ► $VS_{ms} = \alpha + \beta \text{Audited Early}_{ms} + X_{ms} + FE_s + \epsilon_{ms}$
 - ► Result: No Effect

► The importance of a theoretical model:

- ▶ The importance of a theoretical model:
- ▶ Treatment is the release of information, but the *theory* they seek to test is when voters learn something about candidates

- ► The importance of a theoretical model:
- Treatment is the release of information, but the theory they seek to test is when voters learn something about candidates
- ► So we need treatment and control groups reflecting the theory

- ► The importance of a theoretical model:
- Treatment is the release of information, but the theory they seek to test is when voters learn something about candidates
- So we need treatment and control groups reflecting the theory
- Voters' priors about the candidate's corruption vary

- ► The importance of a theoretical model:
- Treatment is the release of information, but the theory they seek to test is when voters learn something about candidates
- So we need treatment and control groups reflecting the theory
- Voters' priors about the candidate's corruption vary
- ► And the *content* of the information varies

- ► The importance of a theoretical model:
- Treatment is the release of information, but the theory they seek to test is when voters learn something about candidates
- So we need treatment and control groups reflecting the theory
- Voters' priors about the candidate's corruption vary
- ► And the *content* of the information varies
- ► It's the interaction of expectations and information content that matters

- ► Methodology
 - So expected results are conditional on content of the audit report

- Methodology
 - So expected results are conditional on content of the audit report
 - ► $VS_{ms} = \alpha + \beta \text{Audited Early}_{ms} + \beta_2 \text{Corruption}_{ms} + \beta_3 \text{Audited Early}_{ms} * \text{Corruption}_{ms} + X_{ms} + \text{FE}_s + \epsilon_{ms}$

► Results

- ► Results
 - Strong corruption information (2 violations) reduces re-election by 7% points

- ▶ Results
 - Strong corruption information (2 violations) reduces re-election by 7% points
 - Stronger corruption information (3 violations) reduces re-election by 14% points

▶ Results

- Strong corruption information (2 violations) reduces re-election by 7% points
- Stronger corruption information (3 violations) reduces re-election by 14% points
- Strong corruption information (2 violations) with local radio reduces re-election by 11% points

Section 3

► How can we achieve causal inference without randomization?

- ► How can we achieve causal inference without randomization?
- ► Our assumption is always "The Treatment Assignment Mechanism is independent of potential outcomes"

- ► How can we achieve causal inference without randomization?
- Our assumption is always "The Treatment Assignment Mechanism is independent of potential outcomes"
- ► Can we find real-world treatment assignments that ignored potential outcomes?

- ► How can we achieve causal inference without randomization?
- Mechanism is independent of potential outcomes"

 Can we find real-world treatment assignments that ignore

➤ Our assumption is always "The Treatment Assignment

- Can we find real-world treatment assignments that ignored potential outcomes?
 - "As good as random", "As-if random"

► There are good reasons to be skeptical: Humans are strategic and anticipate potential outcomes

- There are good reasons to be skeptical: Humans are strategic and anticipate potential outcomes
 But sometimes they are trying to alter outcomes different to
- ▶ But sometimes they are trying to alter outcomes different to the potential outcomes we care about

- There are good reasons to be skeptical: Humans are strategic and anticipate potential outcomes
 But sometimes they are trying to alter outcomes different to
- ▶ But sometimes they are trying to alter outcomes different to the potential outcomes we care about
 - If these outcomes are not correlated with (/'orthogonal to'/'independent of') our own potential outcomes, we might be okay

- There are good reasons to be skeptical: Humans are strategic and anticipate potential outcomes
 But sometimes they are trying to alter outcomes different to
- ▶ But sometimes they are trying to alter outcomes different to the potential outcomes we care about
 - If these outcomes are not correlated with (/'orthogonal to'/'independent of') our own potential outcomes, we might be okay
 - But we cannot test this

- There are good reasons to be skeptical: Humans are strategic and anticipate potential outcomes
 But sometimes they are trying to alter outcomes different to
- ► But sometimes they are trying to alter outcomes different to the potential outcomes we care about
 - If these outcomes are not correlated with (/'orthogonal to'/'independent of') our own potential outcomes, we might be okay
 - But we cannot test this
 - We have to rely on qualitative evidence of the treatment assignment mechanism

► **Hypothesis:** Cultural differences become political cleavages when the cultural groups are large portions of the population

- ► **Hypothesis:** Cultural differences become political cleavages when the cultural groups are large portions of the population
- ➤ **Treatment:** Smaller country (relative to size of ethnic group)

- ► **Hypothesis:** Cultural differences become political cleavages when the cultural groups are large portions of the population
- ➤ **Treatment:** Smaller country (relative to size of ethnic group)
- ► Control: Larger country

- Hypothesis: Cultural differences become political cleavages when the cultural groups are large portions of the population
- ➤ **Treatment:** Smaller country (relative to size of ethnic group)
- ► Control: Larger country
- ► **Potential Outcomes:** Degree of political conflict between ethnic groups in larger/smaller countries

- Hypothesis: Cultural differences become political cleavages when the cultural groups are large portions of the population
- ➤ **Treatment:** Smaller country (relative to size of ethnic group)
- ► Control: Larger country
- ► **Potential Outcomes:** Degree of political conflict between ethnic groups in larger/smaller countries
- ➤ Treatment Assignment Mechanism: African borders that cross ethnic group boundaries

► African colonial borders assigned people to be 'Zambian' or 'Malawian'.

- African colonial borders assigned people to be 'Zambian' or 'Malawian'.
- Straight lines drawn with a ruler in Berlin

- African colonial borders assigned people to be 'Zambian' or 'Malawian'.
- Straight lines drawn with a ruler in Berlin
- ► Little knowledge of local geography or populations

- African colonial borders assigned people to be 'Zambian' or 'Malawian'.
- Straight lines drawn with a ruler in Berlin
- ► Little knowledge of local geography or populations
- ► Zambia-Malawi border defined by geography: by the watershed of the hills

- African colonial borders assigned people to be 'Zambian' or 'Malawian'.
- Straight lines drawn with a ruler in Berlin
- ► Little knowledge of local geography or populations
- Zambia-Malawi border defined by geography: by the watershed of the hills
- ► Splitting the Chewa and Tumbuka groups

► What is treatment here?

► What is treatment here? Being in Zambia/Malawi

- ▶ What is treatment here? Being in Zambia/Malawi
- ▶ What is Posner interested in?

- ► What is treatment here? Being in Zambia/Malawi
- ► What is Posner interested in? Large ethnic groups relative to country size

- ► What is treatment here? Being in Zambia/Malawi
- What is Posner interested in? Large ethnic groups relative to country size
- ▶ But lots of things are different about Zambia!

- ► What is treatment here? Being in Zambia/Malawi
- What is Posner interested in? Large ethnic groups relative to country size
- But lots of things are different about Zambia!
- ► Eg. Zambia is *much* richer than Malawi due to copper revenues maybe politics doesn't need to be as conflictual