20 20~ 2021 学年第 2 学期

开课字院 <u>电气与电子上程字院</u> 课程名称 <u>信号与系统</u> 考核方式 <u>闭卷</u> (闭卷/开卷)
考试时间 <u>120</u> 分钟 <u>B 卷</u> (A/B/C) 共 <u>4</u> 页第 <u>1</u> 页
考生姓名 考生班级 考生学号
一、填空题(每小题2分,共20分) 1. 持续时间无限、幅度有限的非周期信号能量值是:。
2. 函数式 $\varepsilon \left(\cos \frac{\pi}{2} t\right)$ 表示的信号波形为。
3. $\int_{-\infty}^{\infty} \sin \pi t \delta(t) dt = \underline{\qquad}; \int_{-\infty}^{\infty} \sin \pi t \delta\left(t - \frac{1}{2}\right) dt = \underline{\qquad}.$
4. 描述某连续系统的微分方程为 $\frac{dy(t)}{dt} + \frac{1}{2}y(t) = f(t)$,则其冲激响应 $h(t)$ 。
5. $\cos 2t * \delta(t) =$; $\cos 2t * \delta'(t) =$
6. 周期信号频谱的特点是。
7. 已知 $f(t)$ 的傅里叶变换为 $F(\omega)$,则 $f_1(t) = f(-t-1)$ 的傅里变换为。
8. 若 $x(t)$ 的带宽是 $\Delta \omega$, $x\left(\frac{t}{3}\right)$ 的带宽是; $x(3t)$ 的带宽。
9. 信号 $f(t)=t^n\varepsilon(t)$ 的收敛域为。
10. 离散时间序列 $f[k] = A \sin \frac{\pi}{5} k + B \cos \frac{\pi}{3} k$ 是 (A. 周期信号; B. 非周期信号)。若是周
期信号,则周期 $N=$ 。
二、单项选择题(从每小题的四个备选答案中,选出一个正确的答案,每小题2分,共20分)
1. 下列各表达式中错误的是:。
(A) $\delta'(t) = -\delta'(-t)$ (B) $\delta'(t-t_0) = \delta'(t_0-t)$ (C) $\int_{-\infty}^{\infty} \delta'(t) dt = 0$ (D) $\int_{-\infty}^{t} \delta'(\tau) d\tau = \delta(t)$
2. 已知 $f(t)$ 的频谱函数 $F(\omega) = \begin{cases} 1 & \omega \le 1 rad / s \\ 0 & \omega > 1 rad / s \end{cases}$,则对 $f\left(\frac{1}{2}t\right)$ 进行均匀抽样的奈奎斯特抽样
间隔T _S 为:。
(A) $\frac{\pi}{2}s$ (B) $\frac{\pi}{4}s$ (C) πs (D) $2\pi s$

20 20~ 2021 学年第 2 学期

开课学院 <u>电气与电子工程学院</u> 课程名称 <u>信号与系统</u> 考核方式 <u>闭卷</u> (闭卷/开卷)
考试时间 <u>120</u> 分钟 <u>B 卷</u> (A/B/C) 共 <u>4</u> 页第 <u>2</u> 页
考生姓名 考生班级 考生学号
3. 已知 $f_1(t) = \varepsilon(t)$, $f_2(t) = \varepsilon(t) - \varepsilon(t-2)$, 设 $y(t) = f_1(t) * f_2(t)$, 则 $y(2)$ 为:。
(A) 0 (B) 1 (C) 2 (D) 3
4. 已知: $f[k] \Leftrightarrow F(z), a < z < b$,如果 $Z[f[-k]]$ 存在,则其收敛域一定为。
(A) $a < z < b$ (B) $1/b < z < 1/a$ (C) $b < z < a$ (D) $1/a < z < 1/b$
5. 信号 $e^{-j2t}\delta(t)$ 的傅里叶变换为:。
(A) 1 (B) $j(\omega-2)$ (C) $j(\omega+2)$ (D) $2+j\omega$
c ** c() 目录便录数 ** 则甘蔗用此家校 p() 目
6. 若 $f(t)$ 是实偶函数,则其傅里叶变换 $F(\omega)$ 是
(A) 实奇函数 (B) 实偶函数 (C) 虚奇函数 (D) 虚偶函数 7. 已知 $F(\omega) = 2\pi\delta(\omega - \omega_0)$,则信号 $f(t)$ 是
(A) 1 (B) $e^{-j\omega_0 t}$ (C) $e^{j\omega_0 t}$ (D) 2π
8. 单边拉氏变换 $F(s) = \frac{se^{-s}}{s^2 + 1}$ 的原函数等于。
(A) $\cos(t-\pi)\varepsilon(t)$ (B) $\cos(t-1)\varepsilon(t)$ (C) $\cos(t-\pi)\varepsilon(t-\pi)$ (D) $\cos(t-1)\varepsilon(t-1)$
$(h) \cos(i-\pi)\varepsilon(i) (b) \cos(i-1)\varepsilon(i) (c) \cos(i-\pi)\varepsilon(i-\pi) (b) \cos(i-1)\varepsilon(i-1)$
9. 离散系统的单位序列响应 $h(n) = \left(-\frac{1}{2}\right)^n \varepsilon(n)$,则描述该系统的差分方程是
(A) $y(n) - \frac{1}{2}y(n-1) = f(n)$ (B) $y(n) + \frac{1}{2}y(n-1) = f(n)$
(A) $y(n) - \frac{1}{2}y(n-1) = f(n)$ (B) $y(n) + \frac{1}{2}y(n-1) = f(n)$ (C) $y(n) + \frac{1}{2}y(n-1) = f(n)$ (A) $y(n) + \frac{1}{2}y(n+1) = f(n)$
(C) $y(n) + \frac{1}{2}y(n-1) = f(n)$ (A) $y(n) + \frac{1}{2}y(n+1) = f(n)$ 10. 信号 $f(t) = \varepsilon(t+1) - \varepsilon(t-1)$ 的单边拉氏变换 $F(s) = \underline{\hspace{1cm}}$
(C) $y(n) + \frac{1}{2}y(n-1) = f(n)$ (A) $y(n) + \frac{1}{2}y(n+1) = f(n)$

20 20~ 2021 学年第 2 学期

开课学院_	电气与电子工程学院		_课程名称_	信号与系统	考核方式_	闭卷	(闭卷/开卷)		
考试时间_	120	分钟	В	<u>卷</u> (A/B/C)	共	4	_页第_	3	_页
老牛姓名			老牛班级		老牛学号				

- 三、简单分析题(每小题5分,共25分)
- 1. 系统模型为: y(t) = tf(t) (其中 f(t) 为激励、 y(t) 为响应),试分析系统是否线性、时不变及 因果系统? 说明原因。
- 2. 某一线性连续系统在相同的初始状态条件下,当激励 $f_1(t)=\varepsilon(t)$ 时,其全响应为: $y_1(t)=4e^{-t}\varepsilon(t)+2\varepsilon(t)$;激励为 $f_2(t)=-\varepsilon(t)$ 时,其全响应为: $y_2(t)=2e^{-t}\varepsilon(t)-2\varepsilon(t)$;求全响应 $y_1(t)$ 的零输入响应和零状态响应。
- 3. 已知信号 f(t)的波形如图所示,试画出信号 $y(t) = f(-2t-2) * \delta(t-1)$ 的波形。

4. $F(\omega)$ 的图形如图所示,求原函数 f(t)。

5. 简述周期矩形脉冲信号的频谱与周期 T 和脉冲持续时间 τ 的关系。

20 20~ 2021 学年第 2 学期

开课学院_	电气与电子工程学院		_课程名称_	信号与系统	考核方式 闭剂		<u>卷</u> (闭卷/开卷)		
考试时间_	120	_分钟 _	В	卷 (A/B/C)	共	4	_页第_	4	_页
考生姓名			考生班级		考生学号				

四、已知系统函数 $H(s) = \frac{s^2}{s^2 + 3s + 2}$, 零输入响应初始值 $y(0_-) = 1$, $y'(0_-) = -2$.

今欲使系统的全响应 y(t)=0, 求: (12分)

- (1) 激励 f(t);
- (2) 系统的单位冲激响应 h(t);
- (3) 判断系统是否稳定,说明原因。

五、如图所示信号处理系统。(12分)

- (1) 画出信号的频谱图:
- (2) 欲使信号中包含信号 f(t) 中的全部信息,则 $\delta_{\scriptscriptstyle T}(t)$ 的最大抽样间隔 (即奈奎斯特间隔) $T_{\scriptscriptstyle N}$ 应为多少?
- (3) 分别画出在奈奎斯特角频率 Ω_N 及 $2\Omega_N$ 时的 $f_s(t)$ 的频谱图;
- (4) 在 $2\Omega_N$ 的抽样频率时,欲使响应信号 y(t)=f(t),则理想低通滤波器 $H_2(\omega)$ 截止频率 ω_C 的最小值应为多大?

(注:此题可以画图解答)

六、某离散系统的差分方程为 y[k]-3y[k-1]+2y[k-2]=e[k],已知 $e[k]=\varepsilon[k]$,初始条件 y[-1]=1,y[-2]=2,试求: (11 分)

- (1) 系统的零输入响应、零状态响应和全响应;
- (2) 判定该系统是否稳定:
- (3) 画出该系统的模拟图。