

Geometry

CS 432 Interactive Computer Graphics Prof. David E. Breen Department of Computer Science

Objectives

- Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 - Line segments
 - Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space $\mathbf{p}=(x,y,z)$
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Scalars

- Need three basic elements in geometry
 - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication $u=\alpha v$
 - Vector-vector addition: w=u+v
- Expressions such as

$$v = u + 2w - 3r$$

Make sense in a vector space

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

- Vectors spaces insufficient for geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- For any point define
 - $-1 \cdot P = P$
 - $0 \cdot P = 0$ (zero vector)

Lines

- Consider all points of the form
 - $P(\alpha)=P_0+\alpha d$
 - Set of all points that pass through P₀ in the direction of the vector **d**

Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: y = mx + h
 - Implicit: ax + by +c =0
 - Parametric:

$$\mathbf{x}(\alpha) = \alpha \mathbf{x}_0 + (1 - \alpha)\mathbf{x}_1$$

$$y(\alpha) = \alpha y_0 + (1 - \alpha) y_1$$

Rays and Line Segments

• If $\alpha >= 0$, then $P(\alpha)$ is the *ray* leaving P_0 in the direction **d**

If we use two points to define v, then

$$P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$$
$$= \alpha R + (1-\alpha)Q$$

For $0 \le \alpha \le 1$ we get all the points on the *line segment* joining R and Q

Convexity

• An object is *convex* iff for any two points in the object all points on the line segment between these points are also in the

object

Affine Sums

Consider the "sum"

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

lf

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

in which case we have the *affine sum* of the points $P_1, P_2, \dots P_n$

• If, in addition, $\alpha_i >= 0$, we have the *convex* hull of $P_1, P_2, \dots P_n$

Convex Hull

- Smallest convex object containing P₁,P₂,.....P_n
- Formed by "shrink wrapping" points

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- Surfaces are formed from two-parameter functions $P(\alpha, \beta)$
 - Linear functions give planes and polygons

Planes

 A plane can be defined by a point and two vectors or by three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-R)$$

Triangles

for $0 \le \alpha, \beta \le 1$, we get all points in triangle

Barycentric Coordinates

Triangle is convex so any point inside can be represented as an affine sum

$$P(\alpha_1, \alpha_2, \alpha_3) = \alpha_1 P + \alpha_2 Q + \alpha_3 R$$

where

$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$

$$\alpha_i \ge 0$$

The representation is called the **barycentric coordinate** representation of P

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form $P(\alpha,\beta)=R+\alpha u+\beta v$, we know we can use the cross product to find $n=u\times v$ and the equivalent form

P

$$(P(\alpha)-P) \cdot n=0$$

Representation

Objectives

- Introduce concepts such as dimension and basis
- Introduce coordinate systems for representing vectors spaces and frames for representing affine spaces
- Discuss change of frames and bases
- Introduce homogeneous coordinates

Linear Independence

• A set of vectors $v_1, v_2, ..., v_n$ is *linearly independent* if

$$\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n = 0 \text{ iff } \alpha_1 = \alpha_2 = ... = 0$$

- If a set of vectors is linearly independent, we cannot represent one in terms of the others
- If a set of vectors is linearly dependent, at least one can be written in terms of the others

Dimension

- In a vector space, the maximum number of linearly independent vectors is fixed and is called the *dimension* of the space
- In an n-dimensional space, any set of n linearly independent vectors form a basis for the space
- Given a basis $v_1, v_2,, v_n$, any vector v can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where the $\{\alpha_i\}$ are unique

Representation

- Until now we have been able to work with geometric entities without using any frame of reference, such as a coordinate system
- Need a frame of reference to relate points and objects to our physical world.
 - For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- Consider a basis v_1, v_2, \ldots, v_n
- A vector is written $v=\alpha_1v_1+\alpha_2v_2+....+\alpha_nv_n$
- The list of scalars $\{\alpha_1, \alpha_2, \alpha_n\}$ is the representation of v with respect to the given basis
- We can write the representation as a row or column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Example

- $v = 2v_1 + 3v_2 4v_3$
- $a = [2 \ 3 \ -4]^T$
- Note that this representation is with respect to a particular basis
- For example, in OpenGL we start by representing vectors using the object basis but later the system needs a representation in terms of the camera or eye basis

Coordinate Systems

• Which is correct?

Both are because vectors have no fixed location

Frames

- A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

Representation in a Frame

- Frame determined by (P_0, v_1, v_2, v_3)
- Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

Confusing Points and Vectors

Consider the point and the vector

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$$

They appear to have the similar representations

$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3]$$
 $\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3]$ which confuses the point with the vector \mathbf{v} A vector has no position

Vector can be placed anywhere

point: fixed

A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$$

Thus we obtain the four-dimensional homogeneous coordinate representation

$$\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0]^{\mathrm{T}}$$
$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^{\mathrm{T}}$$

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional point [x y z] is given as

$$\mathbf{p} = [\mathbf{x'} \ \mathbf{y'} \ \mathbf{z'} \ \mathbf{w}]^T = [\mathbf{wx} \ \mathbf{wy} \ \mathbf{wz} \ \mathbf{w}]^T$$

We return to a three dimensional point (for $w\neq 0$) by

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions

For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain $w\!\!=\!\!0$ for vectors and $w\!\!=\!\!1$ for points
 - For perspective we need a perspective division

Change of Coordinate Systems

 Consider two representations of the same vector with respect to two different bases.
 The representations are

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3]$$
$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3]$$

where

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3] [v_1 v_2 v_3]^T$$

$$= \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = [\beta_1 \beta_2 \beta_3] [u_1 u_2 u_3]^T$$

Representing second basis in terms of first

Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

$$u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3}$$

$$u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3}$$

$$u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3}$$

Matrix Form

The coefficients define a 3 x 3 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix}$$

and the bases can be related by

$$a=M^Tb$$

see text for numerical examples

Change of Frames

 We can apply a similar process in homogeneous coordinates to the representations of both points and vectors

Consider two frames:

$$(P_0, v_1, v_2, v_3)$$

 (Q_0, u_1, u_2, u_3)

- Any point or vector can be represented in either frame
- We can represent Q_0 , u_1 , u_2 , u_3 in terms of P_0 , v_1 , v_2 , v_3

Representing One Frame in Terms of the Other

Extending what we did with change of bases

$$u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3}$$

$$u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3}$$

$$u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3}$$

$$Q_{0} = \gamma_{41}v_{1} + \gamma_{42}v_{2} + \gamma_{43}v_{3} + \gamma_{44}P_{0}$$

defining a 4 x 4 matrix

$$\mathbf{M} = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

Working with Representations

Within the two frames any point or vector has a representation of the same form

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4]$$
 in the first frame $\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4]$ in the second frame

where $\alpha_4 = \beta_4 = 1$ for points and $\alpha_4 = \beta_4 = 0$ for vectors and

$$a=M^Tb$$

The matrix M is 4 x 4 and specifies an affine transformation in homogeneous coordinates

The World and Camera Frames

- When we work with representations, we work with n-tuples or arrays of scalars
- Changes in frame are then defined by 4 x 4 matrices
- In OpenGL, the base frame that we start with is the world frame
- Eventually we represent entities in the camera frame by changing the world representation using the model-view matrix
- Initially these frames are the same (M=I)

Moving the Camera

If objects are on both sides of z=0, we must move camera frame

