TÀI LIỆU LUYỆN THI OLYMPIC TOÁN SINH VIÊN

Phần I

Giải tích

1 Dãy số và hàm số

1.1 Tóm tắt lý thuyết

Định nghĩa 1.1. Dãy (a_n) đơn điệu tăng (tương ứng giảm) nếu $a_n \leq a_{n+1}, \ \forall n \in \mathbb{Z}^+$ (tương ứng \geq). Dãy tăng (hoặc giảm) gọi chung là đơn điệu.

Định nghĩa 1.2. Dãy (a_n) bị chặn trên (tương ứng dưới) nếu $\exists C, \ a_n \leq C, \ \forall n \in \mathbb{Z}^+$ (tương ứng \geq).

Định lý 1.1. Dãy (a_n) tăng và bị chặn trên (tương ứng dưới) bởi C thì có giới hạn L và $u_n \leq L \leq C$, $\forall n \in \mathbb{Z}^+$ (tương ứng \geq).

Định lý 1.2 (Nguyên lý kẹp). Cho các dãy (a_n) , (b_n) , (c_n) . Giả sử

a)
$$\exists n_0, \ a_n \leq b_n \leq c_n, \ \forall n \geq n_0; \ \ v\grave{a}$$

b)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$$

Khi đó
$$\lim_{n\to\infty} b_n = L$$
.

Định lý 1.3 (Nguyên lý Cauchy). Dãy (a_n) hội tụ \Leftrightarrow nó là dãy cơ bản (dãy Cauchy):

$$\forall \varepsilon > 0, \ \exists n_0, \ \forall n, m > n_0, \ |a_n - a_m| < \varepsilon.$$

Đinh lý 1.4 (Stolz). Cho hai dãy (a_n) , (b_n) . Giả sử

a)
$$\lim_{n\to\infty} b_n = \infty$$
; $v\dot{a}$

b)
$$\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = L$$

Khi đó
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$

Hệ quả 1.1. Cho dãy số dương (a_n) . Khi đó $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L\Rightarrow\lim_{n\to\infty}\sqrt[n]{a_n}=L$.

HD. Áp dụng định lý Stolz với hai dãy (ln a_n) và (n).

Định lý 1.5 (Đ/I trung bình Cesàro). $\lim_{n\to\infty} a_n = L \Rightarrow \lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = L$

Chú ý 1.1. Cho dãy $a_{n+1} = f(a_n)$. Xét hàm f(x).

a) Giả sử
$$\alpha < f(x) < \beta$$
, $\forall x \in (\alpha, \beta)$. Khi đó $a_{n_0} \in (\alpha, \beta) \Rightarrow a_n \in (\alpha, \beta)$, $\forall n \geq n_0$.

- b) f'(x) > 0, $\forall x \in (\alpha, \beta) \Rightarrow \text{dãy } (a_n)_{n > n_0}$ tăng (tương ứng giảm) nếu $a_{n_0} \leq a_{n_0+1}$ (tương ứng \geq).
- c) f'(x) < 0, $\forall x \in (\alpha, \beta) \Rightarrow$ dãy chẵn (x_{2n}) đơn điệu và dãy lẻ (x_{2n-1}) cũng đơn điệu.

Gợi ý. (Quy nạp)

b)
$$a_{n+1} \ge a_n \Rightarrow a_{n+2} = f(a_{n+1}) \ge f(a_n) = a_{n+1}$$

c)
$$g(x) = f[f(x)] \Rightarrow g'(x) = f'[f(x)]f'(x) > 0$$
, và $x_{n+2} = f(x_{n+1}) = f[f(x_n)] = g(x_n)$.

Chú ý 1.2. Cho f(x) liên tục tại a. Khi đó $\lim_{n\to\infty} x_n = a \Rightarrow \lim_{n\to\infty} f(x_n) = f(a)$.

Chú ý 1.3. Cho dãy (a_n) , xác định bởi $a_{n+1} = f(a_n)$ trong đó f là hàm liên tục. Khi đó $\lim_{n \to \infty} a_n = L \Rightarrow L = f(L)$.

Định lý 1.6 (Nguyên lý ánh xạ co). Cho dãy (a_n) xác định bởi $a_{n+1}=f(a_n)$, $\alpha \leq a_0 \leq \beta$. Giả sử

a)
$$\alpha \leq f(x) \leq \beta$$
, $\forall x \in [\alpha, \beta]$

b)
$$\exists q \leq (0,1), |f(x) - f(y)| \leq q |x - y|, \forall x, y \in [\alpha, \beta].$$

Khi đó

a)
$$\lim_{n\to\infty} a_n = L \in [\alpha, \beta]$$
 và $L = f(L)$

b) $V\acute{o}i n > 1$

$$|a_n - L| \le \frac{q^n}{1 - q} |a_1 - a_0|$$

 $|a_n - L| \le \frac{q}{1 - q} |a_n - a_{n-1}|$

Chứng minh. a)
$$|a_{n+k} - a_n| = \left| \sum_{i=n+1}^{n+k} \left(a_i - a_{i-1} \right) \right| \le \sum_{i=n+1}^{n+k} |a_i - a_{i-1}|$$

$$|a_i - a_{i-1}| = \left| f \left(a_{i-1} \right) - f \left(a_{i-2} \right) \right| \le q |a_{i-1} - a_{i-2}| \le q^2 |a_{i-2} - a_{i-3}| \le \dots \le q^{i-1} |a_1 - a_0|$$

$$|a_{n+k} - a_n| \le \sum_{i=n+1}^{n+k} q^{i-1} |a_1 - a_0| = q^n \frac{1 - q^k}{1 - q} |a_1 - a_0| \le \frac{q^n}{1 - q} |a_1 - a_0| \xrightarrow{n \to \infty, k > 0} 0 \Rightarrow (a_n) \text{ là dãy Cauchy.}$$

Chú ý 1.4. Điều kiện (b) trong Định lý 1.6 thỏa mãn nếu $|f'(x)| \le q < 1$, $\forall x \in [\alpha, \beta]$. Thật vậy theo định lý Lagrange, $\exists c \in (x, y)$, f(x) - f(y) = f'(c)(x - y), suy ra

$$|f(x) - f(y)| = |f'(c)| \times |x - y| \le q|x - y|$$

Các dạng sau gồm Định lý 1.7, Mệnh đề 1.1 thì ít gặp hơn

Định lý 1.7 (Phương pháp Newton trong giải tích số). *Cho dãy* (a_n) *xác định bởi* $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$, $a_0 \in [\alpha, \beta]$ trong đó

2

thinhnd@huce.edu.vn

Nguyễn Đức Thịnh

a) f', f'' không đổi dấu trên $\left[\alpha, \beta\right]$; và

c)
$$f(a_0) f'' > 0$$

b) $f(\alpha) f(\beta) < 0$; và

Khi đó

- a) Dãy (a_n) tăng (tương ứng giảm) nếu f' f'' < 0 (tương ứng >)
- b) $\lim_{n\to\infty} a_n = L$, và L là nghiệm duy nhất của f trên $\left[\alpha,\beta\right]$

c)

$$|a_n - L| \le \frac{M}{2m} |a_n - a_{n-1}|^2, \ \forall n \ge 1$$

 $|a_n - L| \le \frac{|f(a_n)|}{m}, \ \forall n$

trong đó $M \ge |f''(x)|$, $0 < m \le |f'(x)|$, $\forall x \in [a, b]$

Chú ý 1.5 (Phương pháp Newton cải biên). Nếu $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_0)}$, thì các các mục trong Định lý 1.7 vẫn đúng trừ kết luân (c).

Mệnh đề 1.1 (Phương pháp dây cung trong giải tích số). *Cho dãy* (x_n) *xác định bởi* $a_{n+1} = a_n - \frac{f(a_n)}{f(a_n) - f(r)} (a_n - r)$, trong đó

a) f', f'' không đổi dấu trên $[x_0, r]$; và

c) f'f'' > 0 ứng với $x_0 < r$, và ngược lại

b) $f(x_0) f(r) < 0$; và

Khi đó

- a) Dãy (a_n) tăng (tương ứng giảm) nếu f'f'' > 0 (tương ứng <)
- b) $\lim_{n\to\infty} a_n = L$, và L là nghiệm duy nhất của f trên $[x_0, r]$

c)

$$|a_n - L| \le \left(\frac{M}{m} - 1\right) |a_n - a_{n-1}|^2, \ \forall n \ge 1$$
 $|a_n - L| \le \frac{|f(a_n)|}{m}, \forall n$

trong đó $0 < m \le |f'(x)| \le M, \ \forall x \in [a_0, r]$

1.2 Kiến thức bổ sung

1.2.1 Nguyên lý quy nap

Xét khẳng định S(n), $n \ge n_0$.

Dạng đơn giản Giả sử

- a) Khẳng định đúng tại $n = n_0$.
- b) Nếu khẳng định đúng tại n, $n \ge n_0$, thì cũng đúng tại n + 1.

Khi đó, khẳng định S(n) đúng $\forall n \geq n_0$.

Dạng tổng quát Giả sử

- a) Khẳng định đúng với $n = n_0, n_0 + 1, ..., n_1$.
- b) Nếu khẳng định đúng **từ n_0 tới n**, $n \ge n_1$, thì cũng đúng tại n + 1.

Khi đó, khẳng định S(n) đúng $\forall n \geq n_0$.

Chú ý 1.6. Khi chứng minh S(n), chỉ cần giả thiết của S(n), S(n-1),..., và xa nhất là S(n-k), $k \ge 0$, thì $n_1 = n_0 + k$.

1.2.2 Khai triển Taylor, Maclaurin

1.3 Đề thi chính thức các năm

Ví dụ 1.1 (2022). Cho dãy (u_n) xác định bởi $u_n = \sum_{k=1}^n \frac{1}{k!} = \frac{1}{1!} + \cdots + \frac{1}{n!}, n \ge 1.$

- a) Tìm tất cả các số nguyên dương n sao cho $u_n > \frac{3}{2}$
- b) Chứng minh (u_n) hội tụ.
- c) (A) Chứng minh giới hạn của dãy số là một số vô tỷ.

HD. c) (Phương pháp phản chứng)

Giả sử
$$e = \frac{a}{b}$$
, $a, b \in \mathbb{Z}^+$ là số hữu tỷ. Xét $x = b! \left(e - \sum_{n=0}^b \frac{1}{n!} \right)$

1.
$$x = b! \left(\frac{a}{b} - \sum_{n=0}^{b} \frac{1}{n!} \right) = a(b-1)! - \sum_{n=0}^{b} \frac{b!}{n!} \in \mathbb{Z}$$

2.
$$x = b! \left(\frac{a}{b} - \sum_{n=0}^{b} \frac{1}{n!} \right) = b! \left(\sum_{n=0}^{\infty} \frac{1}{n!} - \sum_{n=0}^{b} \frac{1}{n!} \right) = \sum_{n=b+1}^{\infty} \frac{b!}{n!} > 0$$

3.
$$n \ge b+1 \Rightarrow \frac{b!}{n!} = \frac{1}{(b+1)(b+2)\cdots n} \le \frac{1}{(b+1)^{n-b}}$$
, và nhỏ hơn thực sự nếu $n \ge b+2$

$$\Rightarrow x = \sum_{n=b+1}^{\infty} \frac{b!}{n!} < \sum_{n=b+1}^{\infty} \frac{1}{(b+1)^{n-b}} = \sum_{k=1}^{\infty} \frac{1}{(b+1)^k} = \frac{\frac{1}{b+1}}{1 - \frac{1}{b+1}} = \frac{1}{b} \le 1$$

Ví dụ 1.2 (2019). Cho dãy (x_n) xác định bởi $x_1 = 2019$, $x_{n+1} = \ln(1 + x_n) - \frac{2x_n}{2 + x_n}$. Chứng minh

a) Dãy (x_n) không âm.

b)
$$\exists c \in (0,1), |x_{n+1} - x_n| \le c |x_n - x_{n-1}|, \forall n \ge 2.$$

c) (x_n) có giới hạn hữu hạn. Tìm giới hạn đó.

Ví dụ 1.3 (2018). Cho dãy (x_n) xác định bởi $x_1 = 2019$, $x_{n+1} = \frac{1}{2018}x_n^2 + \frac{2017}{2018}x_n$.

a) Chứng minh (x_n) tăng, không bị chặn trên.

b) Chứng minh
$$\frac{x_n}{x_{n+1} - 1} = 2018 \left(\frac{1}{x_n - 1} - \frac{1}{x_{n+1} - 1} \right)$$

c) Tim
$$\lim_{n\to\infty} \sum_{k=1}^{\infty} \frac{x_k}{x_{k+1}-1}$$

Chú ý 1.7. Tổng quát cho $x_1 = a > 0$, $x_{n+1} = bx_n^2 + (1-b)x_n$ với 0 < b < 1.

Ví dụ 1.4 (2017). Cho dãy (u_n) xác định bởi $u_1 = 1$, $u_{n+1} = \frac{1}{2}u_n^2 - 1$.

Bảng A: Chứng minh (u_n) hội tụ, và tìm $\lim_{n\to\infty} u_n$

Bảng B: Chứng minh

a)
$$-1 < u_n < 0, \ \forall n \ge 2$$

b) (u_n) có giới hạn, và giới hạn đó là $1-\sqrt{3}$

Ví dụ 1.5 (2016). Cho dãy (u_n) xác định bởi $u_1 = a$, $u_{n+1} = u_n^2 - u_n + 1$.

- a) Tìm a để (u_n) hội tụ
- b) Tìm giới hạn của (u_n) khi nó hội tụ

Chú ý 1.8. Tổng quát cho $u_{n+1} = u_n + (u_n - b)^2$.

Ví dụ 1.6 (2015). Cho dãy (a_n) xác định bởi $2a_{n+1} - 2a_n + a_n^2 = 0$, $n \ge 0$.

- a) Chứng minh (a_n) đơn điệu
- b) Cho $a_0 = 1$. Tîm $\lim_{n \to \infty} a_n$
- c) Tìm tất cả giá trị của a_0 để (a_n) có giới hạn hữu hạn. Khi đó tìm $\lim_{n\to\infty} na_n$

Ví dụ 1.7 (2014). Cho dãy (u_n) xác định bởi $u_1 = 1$, $u_{n+1} = \sqrt{u_n^2 + a^n}$, $a \ge 0$. Tìm a để (u_n) hội tụ, và tìm giới hạn đó.

HD. Bình phương hệ thức rồi khử \rightarrow tính u_n^2 theo a

Ví dụ 1.8 (2013). Cho dãy (x_n) xác định bởi $x_1 = a \in \mathbb{R}$, $(n+1)^2 x_{n+1} = n^2 x_n + 2n + 1$. Tìm $\lim_{n \to \infty} x_n$.

Ví dụ 1.9 (2012). Cho dãy (a_n) xác định bởi $a_1 = \alpha$, $a_{n+1} = \frac{n+1}{n}a_n - \frac{2}{n}$, $n \ge 1$. Tìm α để dãy (a_n) hội tụ.

Ví dụ 1.10 (2011). Cho hàm số $f(x) = \frac{e^x}{(x+1)^2}$. Chứng minh

- a) Phương trình f(x) = x có nghiệm duy nhất trong $\left[\frac{1}{2}, 1\right]$, và f'(x) đồng biến.
- b) Dãy (u_n) xác định bởi $u_1=1,\ u_{n+1}=f(u_n)$ thỏa mãn $u_n\in\left[\frac{1}{2},1\right],\ \forall n.$

Ví dụ 1.11 (2011). Cho hai dãy (x_n) , (y_n) thỏa mãn $x_{n+1} \ge \frac{x_n + y_n}{2}$, và $y_{n+1} \ge \sqrt{\frac{x_n^2 + y_n^2}{2}}$ với $n \in \mathbb{N}$.

- a) Chứng minh các dãy $(x_n + y_n)$, $(x_n y_n)$ là những dãy đơn điệu tăng.
- b) Giả sử (x_n) , (y_n) bị chặn. Chứng minh chúng cùng hội tụ về một điểm.

 $\text{V\'i dụ 1.12 (2011). Cho } \alpha,\beta \in \mathbb{R} \text{ thỏa mãn } \left(1+\frac{1}{n}\right)^{\alpha+n} < e < \left(1+\frac{1}{n}\right)^{\beta+n}, \ \forall n \in \mathbb{Z}^+. \text{ Tìm min } |\alpha-\beta|.$

Ví dụ 1.13 (2010). Cho dãy (x_n) xác định bởi $x_1 = 1$, $x_{n+1} = x_n \left(1 + x_n^{2010}\right)$, $n \ge 1$.

Tính
$$\lim_{x \to +\infty} \left(\frac{x_1^{2010}}{x_2} + \frac{x_2^{2010}}{x_3} + \dots + \frac{x_n^{2010}}{x_{n+1}} \right).$$

Ví dụ 1.14 (2009). Cho dãy (x_n) xác định bởi $x_1 = x_2 = 1$, $x_n = (n-1)\left(x_{n-1} + x_{n-2}\right)$, $n \geq 3$. Tính x_{2009} .

Ví dụ 1.15 (2009). Cho hai dãy (x_n) , (y_n) xác định bởi

$$x_1 = y_1 = \sqrt{3}$$
, $x_{n+1} = x_n + \sqrt{1 + x_n^2}$, $y_{n+1} = \frac{y_n}{1 + \sqrt{1 + y_n^2}}$, $n \ge 1$

Chứng minh $x_n, y_n \in (2,3)$ với $n \ge 2$, và $\lim_{n \to \infty} y_n = 0$.

Ví dụ 1.16 (2008). Cho dãy (a_n) xác định bởi $a_1 = a_2 = 1$, $a_{n+2} = \frac{1}{a_{n+1}} + a_n$, $n \ge 1$. Tính a_{2008} .

Ví dụ 1.17 (2008).
$$\lim_{n\to\infty} \frac{1^{2008} + 2^{2008} + \cdots + n^{2008}}{n^{2009}}$$
.

Ví dụ 1.18 (2007). Cho dãy (x_n) xác định bởi $x_0 = 2007$, $x_n = -2007 \frac{x_0 + x_1 + \dots + x_{n-1}}{n}$, $n \ge 1$.

Tìm liên hệ giữa x_n, x_{n-1} với $n \ge 1$. Từ đó tính tổng $S = x_0 + 2x_1 + 4x_2 + \cdots + 2^{2007}x_{2007}$.

Ví dụ 1.19 (2007). Cho $a, b, c, \alpha \in \mathbb{R}, \alpha \neq c - b$. Dãy $(u_n), (v_n)$ xác định bởi

$$u_1 = a$$
, $u_{n+1} = \frac{u_n^2 + bu_n}{c}$, $v_n = \sum_{k=1}^n \frac{u_k}{u_{k+1} + b - c}$, $n \ge 1$

Biết lim $u_n = \alpha$, tìm lim v_n .

Ví dụ 1.20 (2006). Cho dãy (a_n) thỏa mãn $x_1 = 2$, $x_1 + x_2 + \cdots + x_n = n^2 x_n$, $n \ge 2$. Tính x_{2006} .

Ví dụ 1.21 (2006). (Lời giải có vấn đề!) Xác định các dãy số (x_n) biết $x_{2n+1} = 3x_n + 2$, n = 0, 1, 2 ...

Luyên tâp

Ví dụ 1.22 (Olympic SV Bắc Mỹ).
$$x_n = \underbrace{\sqrt[3]{6 + \sqrt[3]{6 + \dots + \sqrt[3]{6}}}}_{n \, \text{lần}} \text{Tìm } \lim_{n \to \infty} 6^n (2 - x_n).$$

HD. 1.
$$x_1 = \sqrt[3]{6}$$
, $x_{n+1} = \sqrt[3]{6 + x_n}$

2.
$$f(x) = \sqrt[3]{6+x}$$
, $f'(x) = \frac{1}{3 \cdot \sqrt[3]{(6+x)^2}}$

3. Dự đoán
$$L = \lim_{n \to \infty} x_n = 2$$
: $L = f(L)$

4.
$$0 < x_n < 2, \ \forall n$$

5.
$$(x_n)$$
 tăng

6.
$$L = 2$$

7.
$$2-x_n=f(2)-f\left(x_{n-1}\right)=f'(c)\left(2-x_{n-1}\right)<\frac{1}{3\cdot\sqrt[3]{(6+0)^2}}\left(2-x_{n-1}\right)$$

8. Đặt
$$q = \frac{1}{3 \cdot \sqrt[3]{36}} < \frac{1}{6} \Rightarrow 2 - x_n < q^{n-1} (1 - x_1) \Rightarrow 6^n (2 - x_n) = \frac{1 - x_1}{q} (6q)^n$$

Chú ý 1.9. Tương tự với $x_n = \underbrace{\sqrt{a + \sqrt{a + \dots + \sqrt{a}}}}_{n}$ khi $a \in \{2, 6, 12, 20\}$, hoặc $x_n = \underbrace{\sqrt[3]{a + \sqrt[3]{a + \dots + \sqrt[3]{a}}}}_{n}$ khi $a \in \{24, 60, 120\}$. Riêng $x_n = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{n} = 2\cos\frac{\pi}{2^{n+1}}$

khi
$$a \in \{24, 60, 120\}$$
. Riêng $x_n = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{n} = 2 \cos \frac{\pi}{2^{n+1}}$

Ví dụ 1.23 (Olympic SV Bắc Mỹ). Cho $a_0 = a$, $x_1 = b$, $x_n = \left(1 - \frac{1}{n}\right) x_{n-1} + \frac{1}{n} x_{n-2}$. Tìm $\lim_{n \to \infty} x_n$.

HD. 1.
$$x_n - x_{n-1}$$

2. *x*_n

Ví dụ 1.24. Cho dãy (x_n) xác định bởi $x_1 \in (0, 1), x_{n+1} = \ln(1 + x_n)$. Tìm $\lim_{n \to \infty} nx_n$

Ví dụ 1.25. Cho dãy (x_n) xác định bởi $x_0 = 1$, $x_{n+1} = x_n - \frac{x_n^2}{2002}$. Chứng minh $x_{2002} < \frac{1}{2}$.

Ví dụ 1.26. Tính
$$\lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{C_n^k}\right)^n$$

Nguyễn Đức Thịnh

2 Khai triển Taylor, Maclaurin

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o\left[(x - x_0)^n\right], \quad f \in C^n(a, b), \ x_0 \in (a, b)$$

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + o\left(x^n\right), \quad f \in C^n(a, b), \ 0 \in (a, b)$$

$$(1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \dots + \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} x^n + \dots, \quad -1 < x < 1$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n!} + \dots, \quad -1 < x < 1$$

Ví dụ 2.1. Chứng minh π là số vô tỷ.

3 Giới hạn của hàm số

3.1 Tóm tắt lý thuyết

3.1.1 Lân cân của một điểm

Định nghĩa 3.1. Cho $a \in \mathbb{R}$, $\varepsilon > 0$. Khoảng $U_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$ gọi là ε –lân cận của a

 $V \subset \mathbb{R}$ gọi là một lân cận của a nếu $\exists \varepsilon > 0 \quad U_{\varepsilon}$ (a) $\subset V$

3.1.2 Điểm tụ của một tập

Định nghĩa 3.2. $a \in \mathbb{R}$ gọi là điểm tụ (điểm giới hạn) của $A \subset \mathbb{R}$ nếu \forall lân cận V của $a, V \cap (A \setminus \{a\}) \neq \varnothing$ Tập các điểm tụ của A gọi là tập dẫn xuất của A, ký hiệu A'

3.1.3 Giới han của hàm số

Đinh nghĩa 3.3. *Cho f* : $A \subset \mathbb{R} \to \mathbb{R}$, $a \in A'$

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in A \quad 0 < |x - a| < \delta \to |f(x) - L| < \varepsilon$$

Định lý 3.1. Cho
$$f: A \to \mathbb{R}$$
. Khi đó $\exists \lim_{x \to a} f(x) = L \in R \Leftrightarrow \forall \{x_n\}_n \in A \setminus \{a\}$ $\lim_{n \to \infty} x_n = a \to \lim_{n \to \infty} f(x_n) = L$

3.1.4 Tính chất của giới hạn hàm số

Định lý 3.2. Cho $f, g: A \subset \mathbb{R} \to \mathbb{R}, a \in A'$. Khi đó nếu $\exists \delta > 0$ $f(x) \leq g(x)$ $\forall x \in A, 0 < |x - a| < \delta$ thì $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$ nếu các giới hạn đó tồn tại.

Định lý 3.3. Cho $f: A \to \mathbb{R}$, $a \in A'$. Nếu $\lim_{x \to a} f(x) > L$ (tương ứng < L) thì $\exists \delta > 0$ f(x) > L $\forall x \in A$, $0 < |x - a| < \delta$ (tương ứng < L).

Định lý 3.4. Cho $f, g, h : A \to \mathbb{R}$, $a \in A'$. Khi đó nếu

1)
$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L, va$$

2)
$$\exists \delta > 0$$
 $f(x) \leq g(x) \leq h(x)$ $\forall x \in A, 0 < |x - a| < \delta$

thì $\lim_{x\to a} g(x) = L$.

Định lý 3.5. Cho $f,g:A\subset\mathbb{R}\to\mathbb{R}$, $a\in A'$. Giả sử $\lim_{x\to a}f(x)=L_1$, $\lim_{x\to a}g(x)=L_2$. Khi đó

a)
$$\lim_{x\to a} \left[f(x) + g(x) \right] = L_1 + L_2$$

c) Nếu
$$L_2 \neq 0$$
 thì $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L_1}{L_2}$

b)
$$\lim_{x \to a} \left[f(x) g(x) \right] = L_1 L_2$$

Hệ quả 3.1.
$$\lim_{x\to a} f(x) = L \Rightarrow \lim_{x\to a} [c \cdot f(x)] = cL \quad \forall c \in \mathbb{R}$$

3.1.5 Tiêu chuẩn Cauchy

Định lý 3.6 (Cauchy). Cho $f: A \subset \mathbb{R} \to \mathbb{R}, \ a \in A'$. Khi đó $\exists \lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow \exists \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x, x' \in A \quad 0 < |x - a| < \delta, \ 0 < |x' - a| < \delta \to \left| f(x) - f(x') \right| < \varepsilon$

3.1.6 Giới hạn phải và giới hạn trái

Định nghĩa 3.4. Cho $A \subseteq \mathbb{R}$. Ký hiệu $A^+ = \{x \in A \mid x > a\}$, và $A^- = \{x \in A \mid x < a\}$. Giả sử a là điểm tụ của A, A^+ và A^- , xét $f : A \to \mathbb{R}$.

•
$$f\left(a^{+}\right) = \lim_{x \to a^{+}} f\left(x\right) = L \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in A \quad a < x < a + \delta \to |f\left(x\right) - L| < \varepsilon$$

•
$$f\left(a^{-}\right) = \lim_{x \to a^{-}} f\left(x\right) = L \Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in A \quad a - \delta < x < a \to |f\left(x\right) - L| < \varepsilon$$

Chú ý 3.1. Cho a là điểm tụ của A, A^+ và A^- . Khi đó $\lim_{x\to a} f(x) = L \Leftrightarrow f(a^+) = f\left(a^-\right) = L$.

3.1.7 Sư tồn tai giới han của hàm đơn điệu

...loading

3.1.8 Giới hạn vô hạn

...loading

3.1.9 Vô cùng bé (VCB) và vô cùng lớn (VCL)

...loading

4 Hàm số liên tục

4.1 Tóm tắt lý thuyết

Mệnh đề 4.1. Cho $f:A\subset\mathbb{R}\to\mathbb{R}$. Nếu f thỏa mãn điều kiện Lipschitz

$$\exists L \ |f(x) - f(y)| \le L|x - y| \ \forall x, y \in A$$

thì f liên tục trên A.

5 Tích phân xác định

5.1 Tóm tắt lý thuyết

5.1.1 Định nghĩa tích phân xác định. Điều kiện khả tích

...loading

5.1.2 Công thức tính tích phân xác định

...loading

5.1.3 Đinh lý về giá tri trung bình

Định lý 5.1 (Định lý trung bình thứ nhất). a) Cho $f \in C[a, b]$. Khi đó

$$\exists c \in (a, b) \quad \int_a^b f(x) dx = f(c) \cdot (b - a).$$

b) Cho f(x), $\varphi(x)$ khả tích trên [a,b], $\varphi(x)$ không đổi dấu trên (a,b). Đặt $M=\sup_{x\in [a,b]}f(x)$, $m=\inf_{x\in [a,b]}f(x)$. Khi đó

$$\exists \mu, \ m \leq \mu \leq M$$
 $\int_a^b f(x) \varphi(x) dx = \mu \int_a^b \varphi(x) dx.$

$$\textit{Hon n\~ua}, f \in \textit{C}\left[a,b\right] \Rightarrow \exists c \in \left[a,b\right] \quad \int_{a}^{b} f\left(x\right) \varphi\left(x\right) \, dx = f\left(c\right) \int_{a}^{b} \varphi\left(x\right) \, dx.$$

Định lý 5.2 (Định lý trung bình thứ hai). Cho f(x), $\varphi(x)$ khả tích trên [a, b], $và \varphi(x)$ đơn điệu trên (a, b).

a)
$$\int_{a}^{b} f(x) \varphi(x) dx = \varphi(a^{+}) \int_{a}^{\xi} f(x) dx + \varphi(b^{-}) \int_{\xi}^{b} f(x) dx$$
, trong đó $a \leq \xi \leq b$.

b) Nếu
$$\varphi(x)$$
 đơn điệu giảm, không âm trên (a,b) thì $\int_a^b f(x) \varphi(x) dx = \varphi(a^+) \int_a^\xi f(x) dx$, $a \le \xi \le b$.

c) Nếu
$$\varphi$$
 (x) đơn điệu tăng, không âm trên (a , b) thì $\int_{a}^{b} f(x) \, \varphi(x) \, dx = \varphi\left(b^{-}\right) \int_{\xi}^{b} f(x) \, dx$, $a \leq \xi \leq b$.

Định lý 5.3 (Newton-Leibnitz). $N \acute{e}u$ (1) $f \in C[a, b]$, $v \grave{a}$ (2) F'(x) = f(x) $\forall x \in [a, b]$ $th \grave{a}$

$$\int_{a}^{b} f(x) dx = F(x)|_{a}^{b} = F(b) - F(a)$$

Chú ý 5.1. Nếu (1) $F(x) = \int_{a}^{x} f(t) dt$ $\forall x \in (a, b)$ và (2) f liên tục tại $x_0 \in (a, b)$ thì $F'(x_0) = f(x_0)$

Định lý 5.4.
$$f(x) = \int_{a(x)}^{b(x)} g(x, t) dt \Rightarrow f'(x) = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} g(x, t) dt + b'(x) g[x, b(x)] - a'(x) g[x, a(x)]$$

Chú ý 5.2.
$$f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$$
, với $a < b$

5.2 Đề thi chính thức các năm

Ví dụ 5.1 (2023A). Cho $f:[0,1] \to \mathbb{R}$ là hàm số liên tục.

- a) Chứng minh rằng nếu $\int_0^1 f(x) [P(x)]^m = 0$ với mọi $m \in \mathbb{N}$ và đa thức bậc hai P thì $f \equiv 0$ trên [0,1]
- b) Kết luận ở ý (a) còn đúng không nếu điều kiện P là đa thức bậc hai được thay bằng điều kiện P là đa thức bậc nhất?

Ví dụ 5.2 (2023B). Cho $f:[0,1] \to \mathbb{R}$ là hàm số liên tục.

- a) Chứng minh rằng nếu $\int_0^1 f(x) g(x) dx = 0$ với mọi hàm liên tục $g:[0,1] \to \mathbb{R}$ thỏa mãn điều kiện g(0) = g(1) = 0 thì $f \equiv 0$ trên [0,1]
- b) Kết luận ở ý (a) còn đúng không nếu ta thêm điều kiện $g\left(\frac{1}{2}\right)=0$?

Ví dụ 5.3 (2022). Gọi $\mathcal F$ là lớp tất cả các hàm $f:[-1,1] \to [0,\infty)$ sao cho f(-1)=f(1)=1 và

$$|f(x) - f(y)| \le 2022 |x - y|, \quad \forall x, y \in [-1, 1]$$

a) Chứng minh rằng nếu $f \in \mathcal{F}$ thì f liên tục

b) Chứng minh rằng nếu
$$f \in \mathcal{F}$$
 thì $\int_{-1}^{1} f(x) dx \geq \frac{1}{2022}$

c) (A) Dấu đẳng thức trong ý (b) có đạt được hay không? (Nếu câu trả lời là "không", hãy chứng minh; nếu câu trả lời là "có", hãy chỉ ra ví dụ về một hàm f làm cho đẳng thức xảy ra.)

HD. a) Áp dụng Mệnh đề 4.1

Ví du 5.4 (2019). Cho f là một hàm số khả vi liên tục trên [0, 1] và có f(1) = 0.

- a) Chứng minh $\int_0^1 |f(x)| dx \le \int_0^1 x |f'(x)| dx$
- b) Tìm ví dụ về một hàm số f khả vi liên tục trên [0, 1], với f(1) = 0, sao cho $\int_0^1 |f(x)| dx < \int_0^1 x |f'(x)| dx$

Ví dụ 5.5 (2019). Cho $f:[0,\infty) \to [0,\infty)$ là một hàm số liên tục và đơn điệu không tăng.

a) Giả sử tồn tại giới hạn
$$\lim_{x\to\infty}\left[f(x)+\int_0^x f(t)\,dt\right]<\infty$$
. Chứng minh $\lim_{x\to\infty}xf(x)=0$

b) Tìm ví dụ về một hàm số $f:[0,\infty) \to [0,\infty)$ liên tục, đơn điệu không tăng, sao cho

$$\lim_{x \to \infty} \left[f(x) + \int_0^x f(t) dt \right] = \infty \quad \text{và} \quad \lim_{x \to \infty} x f(x) = 0$$

Ví dụ 5.6 (2018A). Giả sử $f:[0,1]\to\mathbb{R}$ là một hàm số khả vi sao cho $\int_0^1 f(x)\,dx=\int_0^1 xf(x)\,dx$. Chứng minh rằng tồn tại số thực $c\in(0,1)$ sao cho $f(c)=2018f'(c)\int_0^c f(x)\,dx$

Ví dụ 5.7 (2018A). Cho hai số thực a < b. Giả sử $f: [a,b] \to \mathbb{R}$ là một hàm số khả vi liên tục sao cho $\int_a^b f(x) \, dx = 0.$ Chứng minh $\max_{x \in [a,b]} \left| \int_a^x f(t) \, dt \right| \le \frac{(b-a)^2}{8} \max_{x \in [a,b]} |f'(x)|$

HD. Áp dụng định lý trung bình thứ hai, rồi xét hàm
$$G(x) = e^{-kf(x)} \int_0^x f(t) dt$$

Ví dụ 5.8 (2018B). Giả sử $f:[0,1] \to \mathbb{R}$ là một hàm số liên tục sao cho $\int_0^1 f(x) dx = \int_0^1 x f(x) dx$. Chứng minh $\exists c \in (0,1)$ sao cho $f(c) = 2018 \int_0^c f(x) dx$

HD. Áp dụng định lý trung bình thứ hai, rồi xét hàm
$$G(x) = e^{-kx} \int_0^x f(t) dt$$

Ví dụ 5.9 (2017A). Giả sử $f: \mathbb{R} \to \mathbb{R}$ là một hàm số liên tục thỏa mãn đồng thời hai điều kiện $\int_0^1 f(x) dx = 0$ và $\int_0^1 x^2 f(x) dx = 1$

- a) Tìm một ví dụ về hàm số liên tục f thỏa mãn cả hai điều kiện trên
- b) Chứng minh rằng tồn tại một khoảng mở $(a, b) \subset (0, 1)$ không rỗng, sao cho $|f(x)| > 4 \quad \forall x \in (a, b)$

Ví dụ 5.10 (2017B). Tính
$$\int_0^3 \sqrt{2 + \sqrt{1 + x}} dx$$

Ví dụ 5.11 (2016A). Với mỗi số thực $0 < \alpha \neq 1$, gọi f_{α}) là hàm số được xác định trên khoảng $(1, \infty)$ bởi công thức $f_{\alpha}(x) = \int_{x}^{x^{\alpha}} \frac{dt}{\ln t}$, (x > 1)

- a) Chứng minh rằng f_{α} là một phép đồng phôi, tức là một song ánh liên tục, từ khoảng $(1,\infty)$ lên một khoảng $I_{\alpha} \subset \mathbb{R}$ nào đó sao cho ánh xạ ngược $f_{\alpha}^{-1}:I_{\alpha}\to (1,\infty)$ cũng liên tục
- b) Tîm I_{α}

Ví dụ 5.12 (2016B). Cho $f:(1,\infty)\to\mathbb{R}$ là hàm số được xác định bởi công thức $f(x)=\int_{\sqrt{x}}^x \frac{dt}{\ln t},\quad (x>1).$ Tìm tập giá trị của f

Ví dụ 5.13 (2015A). Cho $f:[0,\infty)\to[0,\infty)$ là một hàm liên tục. Biết rằng tồn tại giới hạn $\lim_{x\to\infty}f(x)\int_0^x [f(t)]^2dt=a\in(0,\infty)$. Hãy tìm $\lim_{x\to\infty}\sqrt[3]{x}f(x)$

Ví dụ 5.14 (2015B). Cho $f:[0,1] \to (-\infty,1]$ là một hàm liên tục, thỏa mãn điều kiện $\int_0^1 f(x) dx = 0$. Chứng minh $\int_0^1 [f(x)]^3 dx \le \frac{1}{4}$

Ví dụ 5.15 (2015B). Cho $f:[0,\infty)\to (0,\infty)$ là một hàm liên tục. Đặt $g(x)=\sqrt[3]{f(x)}\int_0^x\frac{dt}{f(t)},\quad (x\geq 0).$ Chứng minh rằng g không bị chặn trên $[0,\infty)$

Ví dụ 5.16 (2014). a) Cho hàm số f đơn điệu trên $[0, +\infty)$, và $\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt = +\infty$. Chứng minh $\lim_{x \to +\infty} f(x) = +\infty$.

b) Kết luận trên còn đúng không khi f là hàm liên tục trên $[0, +\infty)$ nhưng không đơn điệu trên khoảng đó? Tại sao?

Ví dụ 5.17 (2014). Cho f là hàm số liên tục trên $[0, +\infty)$. Giả sử $\int_0^x f^2(t) dt \le \frac{x^3}{3}$, $\forall x \ge 0$. Chứng minh $\int_0^x f(t) dt \le \frac{x^2}{2}$, $\forall x \ge 0$.

Ví dụ 5.18 (2013). Tìm $\lim_{n\to\infty} \int_0^1 \frac{nx^n}{2013 + x^n} dx$.

Ví dụ 5.19 (2013). Cho f(x) là hàm dương, liên tục trên [0,1], và $f(x) + f\left[\left(1 - \sqrt{x}\right)^2\right] \le 1$, $\forall x \in [0,1]$. Chứng minh $\int_0^1 \sqrt{f(x)} dx \le \frac{\pi\sqrt{5}}{8}$.

Hãy chỉ ra rằng dấu đẳng thức không thể xảy ra.

Ví dụ 5.20 (2013). Cho $f \in C[0,1]$. Chứng minh rằng nếu tồn tại hàm $g \in C[0,1]$ đơn điệu thực sự sao cho

$$\int_{0}^{1} f(x) g^{k}(x) dx = 0, \quad \forall k = 0, 1, 2, ..., 2013$$

thì phương trình f(x) = 0 có ít nhất 2014 nghiệm phân biệt nằm trong khoảng (0, 1). Hãy chỉ ra ví dụ nếu bỏ tính đơn điệu của g(x) thì khẳng định có thể không đúng.

6 Đề thi vòng loại 2024

Ví dụ 6.1. Cho dãy (x_n) xác định bởi $x_1 = 2$, $x_{n+1} = \frac{3x_n + 1}{x_n + 2}$, $n \ge 1$.

- a) Chứng minh dãy đơn điệu giảm.
- b) Tìm $\lim_{n\to\infty} x_n$.

Ví dụ 6.2. Cho dãy (a_n) thỏa mãn $a_{n+1} = a_n^2 - 2a_n + 2$, $n \ge 1$.

a) Với
$$a_1 = \frac{3}{2}$$
, tìm $\lim_{n \to \infty} a_n$.

b) Tìm a₁ để dãy hội tụ.

Ví dụ 6.3. Cho hàm số $f_n(x) = \cos(x) \cdot \cos(2x) \cdot \cos(3x) \cdot \cdots \cdot \cos(nx)$. Tìm số tự nhiên n nhỏ nhất để $|f_n''(0)| \ge 120$.

Ví dụ 6.4. a) Cho hàm số $f(x) = \begin{cases} \cos \frac{1}{x}, & \text{nếu } x \neq 0 \\ 0, & \text{nếu } x = 0 \end{cases}$. Chứng minh hàm số gián đoạn tại x = 0. Khi đó x = 0 là điểm gián đoạn loại mấy?

b) Cho hàm số
$$f(x) = \begin{cases} \sin x, & \text{nếu } x \text{ là số hữu tỷ} \\ \cos x, & \text{nếu } x \text{ là số vô tỷ} \end{cases}$$
. Chứng minh f liên tục tại $x = \frac{\pi}{4}$.

Ví dụ 6.5. Một lỗi tính toán rất hay gặp đó là khi tính đạo hàm, một số người lầm tưởng rằng quy tắc tính đạo hàm của tích đó là (fg)' = f'g'.

- a) Hãy chỉ ra ví dụ để chứng minh quy tắc trên là sai.
- b) Hãy đưa ra ví dụ hai hàm f và g không phải hàm hằng trên một khoảng mở (a, b) nào đó mà quy tắc trên vẫn đúng.

Phần II

Đại số

7 Đề thi vòng loại trường 2024

Ví dụ 7.1. Cho định thức $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$, trong đó a, b, c là ba nghiệm của phương trình $x^3 - 2024x + 2025 = 0$.

Ví dụ 7.2. Cho ma trận $A = (a_{ij})_{4\times 4}$, biết a_{ij} là số các cặp số tự nhiên (m, n) sao cho mi + nj = 4, ví dụ, $a_{11} = 5$. Tính det A.

Ví dụ 7.3. Tìm hạng của ma trận
$$A = \begin{bmatrix} 0 & -1 & -1 & 1 & 1 \\ 1 & 0 & -1 & -1 & 1 \\ 1 & 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 1 & 0 \end{bmatrix}$$
.

Ví du 7.4. Tìm $m \in \mathbb{Z}$ để đa thức $P(x) = x^4 + 9x^3 + mx^2 + 9x + 4$ có 4 nghiệm phân biệt.

Ví du 7.5. a) Cho A là ma trận vuông cấp 2 thỏa mãn $A^{2024} = O$. Chứng minh $A^2 = O$.

b) Cho A, B là hai ma trận vuông cùng cấp, biết I + AB khả nghịch. Chứng minh I + BA cũng khả nghịch.

HD. a) Xét 2 khả năng

1)
$$A$$
 chéo hóa được. Khi đó $A = C^{-1}DC$, trong đó $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$. Suy ra $A^{2024} = C^{-1}D^{2024}C$, trong đó $D^{2024} = \begin{bmatrix} \lambda_1^{2024} & 0 \\ 0 & \lambda_2^{2024} \end{bmatrix}$
$$A^{2024} = O \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow A = O.$$

2)
$$A$$
 không chéo hóa được, thì A có dạng Jordan, $A = C^{-1}JC$, trong đó $J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$. Khi đó $A^{2024} = C^{-1}J^{2024}C$, trong đó $J^{2024} = \begin{bmatrix} \lambda^{2024} & 2024\lambda^{2023} \\ 0 & \lambda^{2024} \end{bmatrix}$ $A^{2024} = O \Rightarrow \lambda = 0 \Rightarrow J^2 = O \Rightarrow A^2 = O$.

Bô môn Toán Ứng dung