Universidad de El Salvador. 27.10.2018 Álgebra II. Examen parcial 1 (repetido). Soluciones

Problema 1 (2 puntos). Sea $C(\mathbb{R})$ el anillo de las funciones continuas $f: \mathbb{R} \to \mathbb{R}$ con operaciones punto por punto.

- 1) ¿Es un dominio de integridad? Justifique su respuesta. [1 punto]
- 2) Para cualquier $x \in \mathbb{R}$ demuestre que

$$\mathfrak{m}_x := \{ \text{funciones continuas } f \colon \mathbb{R} \to \mathbb{R} \mid f(x) = 0 \}$$

es un ideal maximal en $\mathcal{C}(\mathbb{R})$. [1 punto]

Solución. El anillo $\mathcal{C}(\mathbb{R})$ no es un dominio de integridad: es fácil encontrar dos funciones continuas $f,g \neq 0$ tales que fg = 0 (tome dos funciones lineales por partes con soporte disjunto). La aplicación

$$\operatorname{ev}_{x} \colon \mathcal{C}(\mathbb{R}) \to \mathbb{R}, \quad f \mapsto f(x)$$

es un homomorfismo sobreyectivo de anillos y su núcleo es precisamente \mathfrak{m}_x . Entonces, $\mathcal{C}(\mathbb{R})/\mathfrak{m}_x \cong \mathbb{R}$ y esto es un cuerpo. Note que este argumento es casi idéntico a la prueba que (X-c) es un ideal maximal en el anillo de polinomios k[X].

Problema 2 (2 puntos).

- 1) Demuestre que para cualquier cuerpo k el anillo de polinomios k[X] no es local. [1 punto]
- 2) Demuestre que el anillo de series de potencias $\mathbb{Z}[X]$ no es local. [1 punto]

Solución. En el caso 1) bastaría notar que, por ejemplo, $\mathfrak{m}=(X-c)$ para diferentes $c\in k$ son diferentes ideales maximales. En efecto, si $(X-c_1)=(X-c_2)=\mathfrak{m}$ para $c_1\neq c_2$, entonces $(X-c_1)-(X-c_2)=c_2-c_1\in \mathfrak{m}$. Esto contradice el hecho de que $c_2-c_1\neq 0$ es un elemento invertible.

De la misma manera, en el caso 2) se podía encontrar diferentes ideales maximales en $\mathbb{Z}[X]$: para cualquier número primo p

$$\mathbb{Z}[X]/(p,X) \cong \mathbb{F}_p$$

es un cuerpo, así que (p, X) es un ideal maximal en $\mathbb{Z}[X]$. Para diferentes primos $p \neq q$ tenemos

$$\mathbb{Z}[X]/(p,X) \ncong \mathbb{Z}[X]/(q,X),$$

así que hay una familia de diferentes ideales maximales.

También se podía recordar que un anillo es local si y solo si todos sus elementos no invertibles forman un ideal. En el anillo k[X] los elementos no invertibles son

$$k[X] \setminus k[X]^{\times} = k[X] \setminus k^{\times} = \{ f \in k[X] \mid \deg f > 0 \} \cup \{ 0 \}.$$

Esto no es un ideal: por ejemplo, los polinomios X y -X+1 no son invertibles, pero su suma es invertible. De la misma manera,

$$\mathbb{Z}[X] \setminus \mathbb{Z}[X]^{\times} = \{ f = a_0 + a_1 X + a_2 X^2 + \dots \in \mathbb{Z}[X] \mid a_0 \neq \pm 1 \}$$

no es un ideal: por ejemplo, las series $f=3+a_1\,X+a_2\,X^2+\cdots$ y $g=-2+b_1\,X+b_2\,X^2+\cdots$ no son invertibles, pero su suma $f+g=1+(a_1+b_1)\,X+(a_2+b_2)\,X^2+\cdots$ es invertible.

Problema 3 (2 puntos). Determine si el ideal generado por el polinomio $X^2 + 1$ es maximal en el anillo

$$\mathbb{R}[X]$$
, $\mathbb{C}[X]$, $\mathbb{Z}[X]$, $\mathbb{F}_2[X]$.

 $[\frac{1}{2}$ punto por cada respuesta correcta y justificada]

Solución. Tenemos $\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$, lo que es un cuerpo, así que el ideal (X^2+1) es maximal en $\mathbb{R}[X]$.

En $\mathbb{C}[X]$, el ideal (X^2+1) no es primo (y en particular no es maximal): para $f=X+\sqrt{-1}$ y $g=X-\sqrt{-1}$ se tiene $fg\in (X^2+1)$, pero $f,g\notin (X^2+1)$ (ningún polinomio lineal pertenece a este ideal). De modo similar, en $\mathbb{F}_2[X]$ se tiene $X^2+1=(X+1)^2$, así que el ideal no es primo: para f=X+1 se tiene $f^2\in (X^2+1)$, aunque $f\notin (X^2+1)$.

En $\mathbb{Z}[X]$, el ideal $(X^2 + 1)$ sí es primo, pero no es maximal. En efecto, tenemos $\mathbb{Z}[X]/(X^2 + 1) \cong \mathbb{Z}[\sqrt{-1}]$, lo que es un dominio de integridad, pero no es un cuerpo.

Problema 4 (2 puntos). Sea R un anillo conmutativo. Denotemos por

$$N(R) := \{ x \in R \mid x^n = 0 \text{ para algún } n = 1, 2, 3, \ldots \}$$

el nilradical. Demuestre que para todo subconjunto multiplicativo $U\subseteq R$ se tiene

$$N(R[U^{-1}]) = N(R)R[U^{-1}].$$

[1 punto por cada una de las inclusiones " \subseteq " y " \supseteq "]

Solución. Si $\frac{x}{u} \in N(R)R[U^{-1}]$, esto significa que $x^n = 0$ para algún n. Luego $\left(\frac{x}{u}\right)^n = \frac{x^n}{u^n} = \frac{0}{u^n} = \frac{0}{1}$, así que $\frac{x}{u} \in N(R[U^{-1}])$. Viceversa, si $\frac{x}{u} \in N(R[U^{-1}])$, entonces $\left(\frac{x}{u}\right)^n = \frac{x^n}{u^n} = \frac{0}{1} = 0$, lo que significa que $vx^n = 0$ para algún $v \in U$. Luego, $(vx)^n = v^nx^n = 0$. Escribiendo $\frac{x}{u} = \frac{vx}{u^n}$, podemos concluir que $\frac{x}{u} \in N(R)$ $R[U^{-1}]$.

Problema 5 (2 puntos). Sean R un anillo conmutativo y $x \in R$ algún elemento no nulo.

- 1) Demuestre que Ann $(x) := \{r \in R \mid rx = 0\}$ es un ideal propio en R. [1 punto]
- 2) Demuestre que existe un ideal maximal $\mathfrak{m} \subset R$ tal que $\frac{x}{1} \neq \frac{0}{1}$ en la localización $R_{\mathfrak{m}}$. [1 *punto*]

Solución. Es fácil comprobar que $\mathrm{Ann}(x)$ es un ideal y está claro que $1 \notin \mathrm{Ann}(x)$, dado que $x \neq 0$. Luego, el lema de Zorn nos garantiza que $\mathrm{Ann}(x) \subseteq \mathfrak{m}$ para algún ideal maximal $\mathfrak{m} \subset R$. Supongamos que $\frac{x}{1} = \frac{0}{1}$ en $R_{\mathfrak{m}}$. Esto significa que ux = 0 para algún $u \notin \mathfrak{m}$, lo que no es posible, puesto que todos los elementos que aniquilan a x pertenecen al ideal \mathfrak{m} .