

Emmy Fortunato, Sean Jung, Stephen Thomas, Qiyu Wang

For this presentation, we will follow CRISP-DM

Business Understanding

We are motivated by answering the following business question:

How can we use machine learning to predict the annual percentage of female representation on the board of directors of S&P 1500 American corporations?

Gender-based diversity stimulates firm success

Data Understanding

We have used the following data sources.

ExecuComp: Director Compensation	Compustat: Financial Ratios	BoardEx: Organization Summary Analytics
 107,908 observations and 107 columns 2,162 unique companies Captures annual metrics regarding directors' compensation and personal characteristics Age Gender Location Company headquarters 	 480,739 observations and 76 columns Firms' financial data: Capitalization Efficiency Financial soundness Solvency Liquidity Profitability Valuation ratios 	 □ 757,192 observations and 60 columns □ Annual board-related metrics: □ Directors' tenure on their respective boards and in their respective companies, □ Overall size of each director's network □ Degree of nationality □ Diversity of their board

Our target variable and features are defined as:

Data Preparation

This is how we engineered the target variable

- Aggregated director-level instances by company and year to get the average board characteristics and company information on company-level
- Used the financial metrics from the last month of each year for each company; the year-end records present the snapshot/summary of performances of the year.
- Merged the three datasets based on common keys: 'TICKER' and 'YEAR'
- **Normalization** since we used kNN and neural nets

This is how we engineered the features

- CEO_FEMALE → Binary variable indicating whether the CEO is female or not
- EXECDIR_COUNT → Number of board members who served as executive director that year
- EXEC_COUNT → Number of board members
- LENGTH_TERM → The length of term CEO serve
- FEMALE_PCT_LAST → Last year's percentage of female representation for each company

Modeling

Modeling Processes

- Target variable → A numeric/fractional value, a percentage of female representation in each company for each year
- Linear Regression → Better speed of learning and comprehensibility
- Ensemble Methods → Better generalization performance
- 80(train)/20(test) split \rightarrow Evaluate the final performance
- Cross-validation with five folds → Optimize the hyperparameters of each model

Results from Models

Ordinary Least	t Squares Regressions	
	OLS (statistical analysis)	OLS (machine learning)
R-squared	0.722	0.708
MAE	n/a	0.044
RMSE	n/a	0.005

Ridge, Lasso, I	Elastic Net Regresion		
	Ridge (L2) Regression	Lasso (L1) Regression	Elastic Net (L1 +L2) Regression
R-squared	0.720	0.635	0.703
MAE	0.043	0.061	0.048
RMSE	0.005	0.005	0.005

Results from Models

Ensemble Reg	gressions		
	Stacking Regressor	AdaBoost Regressor	Bagging Regressor
R-squared	0.856	0.702	0.713
MAE	0.029	0.047	0.048
RMSE	0.002	0.005	0.005

Tree-based Regressions			
	Decision Tree Regression	Random Forest Regressor	ExtraTrees Regressor
R-squared	0.692	0.759	0.762
MAE	0.044	0.038	0.039
RMSE	0.005	0.004	0.004

Gradient Boosted Tree Regression	Hist Gradient Boosting Regression
0.692	0.732
0.043	0.042
0.005	0.005

Evaluation and Deployment

Our final model selected was a Stacking model.

Performance Metrics

 $R^2 = .856$

RMSE = .051

MAE = .030

One deployment use case is understanding the impact of the most influential features.

	Board Characteristics	Financial Ratios	<u>Industries</u>
Negative	Average Director AgeAverage DirectorSalary	High ProfitLow Debt	ConstructionFuelManufacturingTechnology
Positive	 StDev Director Ages StDev Director Tenure Nationality Mix Network Size 	Low Invested	AcademiaConsumer GoodsArts and Travel

Another deployment use case is using predictions to establish company gender diversity benchmarks.

^{*}Data is a snapshot of the state of the company very end of the calendar year.

Thank you!