Dimensionality Reduction

전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

- Dimensionality reduction
 - One type of unsupervised learning problem

- What is dimensionality reduction?
 - More collected features than needed
 - Can we "simplify" our data set in a rational and useful way?
 - Example
 - Redundant data set different units for same attribute
 - ➤ Reduce data to 1D (2D → 1D)

- Data redundancy can happen when different teams are working independently
 - Often generates redundant data (especially if we do not control data collection)

- Another example
 - Helicopter flying
 - A survey of pilots (x_1 : skill, x_2 : pilot enjoyment)
 - These features may be highly correlated

This correlation can be combined into a single attribute called aptitude (for example)

- What is dimensionality reduction?
 - More collected features than needed
 - Can we "simplify" our data set in a rational and useful way?
 - Example
 - Redundant data set different units for same attribute
 - ➤ Reduce data to 1D (2D → 1D)

Reduce data from 2D to 1D

$$x^{(1)} \in R^2 \rightarrow z^{(1)} \in R$$

$$x^{(2)} \in R^2 \rightarrow z^{(2)} \in R$$

$$\vdots$$

$$x^{(m)} \in R^2 \rightarrow z^{(m)} \in R$$

- So we can approximate original examples
 - Allows us to half the amount of storage

- Reduce data from 3D to 2D
 - The following data are given: $x^{(i)} \in \mathbb{R}^3$
 - All the data may lie in one plane
 - > e.g. all are sitting inside the right shallow tray
 - So, one of dimension can be ignored.
 - Can draw two new axis along the plane of this tray

Reduce data from 3D to 2D

$$x^{(i)} \in R^3, \ z^{(i)} = \begin{bmatrix} z_1^{(i)} \\ z_2^{(i)} \end{bmatrix} \in R^2$$

Reduce data from 3D to 2D

$$x^{(i)} \in R^3, \ z^{(i)} = \begin{bmatrix} z_1^{(i)} \\ z_2^{(i)} \end{bmatrix} \in R^2$$

In reality, we would normally try and do 1,000D → 100D

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

Visualization

- Hard to visualize highly dimensional data
 - Dimensionality reduction can improve how we display information in a tractable manner for human
 - Why do we care?
 - Often helps to develop algorithms if we can understand our data better
 - Dimensionality reduction helps us do this
 - Good for explaining something to someone if we can "show" it in the data

Example

A large data set about many facts of a country around the world

Country	GDP (trillions of US\$)	Per capita GDP (thousands of intl. \$)	Human Development Index	Life Expectancy	Poverty Index (Gini as percentage)	Mean household Income (thousands of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

- x_1 : GDP, ..., x_6 : Mean household income
- Assume 50 features per country
 - How can we understand this data better?
 - Very hard to plot 50 dimensional data

- Using dimensionality reduction,
 - instead of each country being represented by a 50D feature vector
 - Come up with a different feature representation (z values) which summarize these features

(Country	z_1	Z_2	
Canada		1.6	1.2	
	China	1.7	0.3	
	India	1.6	0.2	
	Russia	1.4	0.5	
S	ingapore USA	0.5	1.7	
	USA	2	1.5	

- This gives us a 2-dimensional vector
 - Reduce 50D → 2D
 - Plot as a 2D plot

- Typically we do not generally ascribe meaning to the new features
 - so we have to determine what these summary values mean
- So despite having 50 features, there may be two "dimensions" of information, with features associated with each of those dimensions
 - It is up to us to asses what of the features can be grouped to form summary features, and how best to do that (feature scaling is probably important)
- Helps show the two main dimensions of variation in a way that is easy to understand

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

- PCA(Principle Component Analysis)
 - The most commonly used algorithm for the problem of dimensionality reduction

- PCA(Principle Component Analysis)
 - For example, we have a 2D data set which we wish to reduce to 1D
 - In other words, find a single line onto which to project this data

PCA(Principle Component Analysis)

PCA(Principle Component Analysis)

PCA(Principle Component Analysis)

- PCA(Principle Component Analysis)
 - Distance btw each point and the projected version should be small
 - (red lines in the previous slide are short)
 - PCA tries to find a lower dimensional surface so the sum of squares onto that surface is minimized
 - The red lines are sometimes called the projection error
 - PCA tries to find the surface (a straight bold red line in the previous slide) which has the minimum projection error
 - Before applying PCA,
 - we should normally do mean normalization and feature scaling on our data

- PCA(Principle Component Analysis)
 - Reduce from 2-dim to 1-dim:
 - Find a direction (a vector $u^{(1)} \in R$) onto which to project the data so as to minimize the projection error.

- PCA(Principle Component Analysis)
 - Reduce from n-dim to k-dim:
 - Find k vectors $u^{(1)}$, $u^{(2)}$, ..., $u^{(k)}$ onto which to project the data, so as to minimize the projection error.
 - (e.g. 3D → 2D)

■ PCA is **not** linear regression

- PCA is **not** linear regression
 - For linear regression,
 - fitting a straight line to minimize the **straight line** btw a point $(x^{(i)}, y^{(i)})$ and its predicted point $(x^{(i)}, ax^{(i)} + b)$
 - > VERTICAL distance btw points
 - For PCA,
 - minimizing the magnitude of the shortest orthogonal distance
 - Gives very different effects

- PCA is **not** linear regression
 - More generally
 - With linear regression
 - We are trying to predict "y"
 - With PCA
 - > there is no "y"
 - Instead we have a list of features and all features are treated equally
 - If we have 3D dimensional data 3D →2D
 - Have 3 features treated symmetrically

■ PCA is **not** linear regression

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

- Given a training set: $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$ data preprocessing is necessary before applying PCA
 - Mean normalization

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j^{(i)} - \mu_j$

- Feature scaling (depending on data)
 - If different features on different scales (e.g., x_1 = size of house, x_2 = number of bedrooms), scale features to have comparable range of values.

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j}$$

where s_i is some measure of the range

- biggest smallest
- standard deviation (more commonly)

- With preprocessing done,
 - PCA finds the lower dimensional sub-space which minimizes the sum of the square (e.g. 2D → 1D, 3D → 2D)

- With preprocessing done,
 - PCA finds the lower dimensional sub-space which minimizes the sum of the square (e.g. 2D → 1D, 3D → 2D)

- With preprocessing done,
 - PCA finds the lower dimensional sub-space which minimizes the sum of the square (e.g. 2D → 1D, 3D → 2D)

- PCA need to compute two things;
 - Compute the u vectors
 - The new planes
 - Compute the z vectors
 - z vectors are the new, lower dimensionality feature vectors

PCA Problem

Reduce data from 2D to 1D

PCA Problem

Reduce data from 2D to 1D

PCA Problem

Reduce data from 2D to 1D

- Reduce data from 3D to 2D.

- Reduce data from 3D to 2D.
 - $x^{(i)} \in R^3 \implies z^{(i)} \in R^2$

- Reduce data from 3D to 2D.
 - $x^{(i)} \in R^3 \implies z^{(i)} \in R^2$

- Reduce data from 3D to 2D.
 - $x^{(i)} \in R^3 \implies z^{(i)} \in R^2$

Singular Value Decomposition (SVD)

Given an $m \times n$ matrix, A, then there exits a factorization

$$A = U\Sigma V^*$$

where

U is an $m \times m$ unitary matrix (i.e. $UU^* = U^*U = I$)

- If $U \in \mathbb{R}^{m \times m}$, U is orthogonal s.t. $UU^T = U^TU = I$
- Column vectors form a set of orthonormal vectors

$$\triangleright u_i^T u_i = 1$$
 and $u_i^T u_j = 0$ for $i \neq j$

 Σ is a diagonal $m \times n$ matrix with non-negative real numbers on the diagonal,

- The diagonal entries σ_i of Σ are known as the singular values of A
- $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ for $m \geq n$, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m \geq 0$ for m < n

V is an $n \times n$ unitary matrix

Singular Value Decomposition (SVD)

Example 1

Given a
$$2 \times 3$$
 matrix, $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$,

$$A = U\Sigma V^* = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{18}} & \frac{4}{\sqrt{18}} \\ \frac{2}{3} & -\frac{2}{3} & -\frac{1}{3} \end{bmatrix}$$

Singular Value Decomposition (SVD)

Example 2

Given a
$$3 \times 3$$
 matrix, $A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$,

$$A = U\Sigma V^* = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{3}{\sqrt{12}} & \frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- Reduce data from n dim to k dim
 - Compute "covariance matrix"

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T}$$

- Compute "eigenvectors" of matrix Σ
 - [U,S,V] = svd(sigma)
 - > svd → singular value decomposition
 - More numerically stable than eig
 - ▶ eig → also gives eigenvector
- U,S and V are matrices
 - U matrix: an [n x n] matrix
 - > The columns of U are the u vectors we want
 - \triangleright So to reduce a system from $n-\dim to k-\dim t$
 - Just take the first k-vectors from U (first k columns)

 $\in R^{n \times \overline{n}}$

- Reduce data from n -dim to k -dim
 - From [U,S,V] = svd(sigma),

$$U = \begin{bmatrix} | & | & | & | \\ u^{(1)} & u^{(2)} & u^{(3)} & \cdots & u^{(n)} \\ | & | & | & | \end{bmatrix} \in R^{n \times n}$$

$$z^{(i)} = (\boldsymbol{U_{reduce}})^T x^{(i)}$$

$$z^{(i)} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ u^{(1)} & u^{(2)} & \cdots & u^{(k)} \end{bmatrix}^T x^{(i)} = \begin{bmatrix} - & (u^{(1)})^T & - \\ - & (u^{(2)})^T & - \\ \vdots & & \vdots & \\ - & (u^{(k)})^T & - \end{bmatrix} x^{(i)}$$

$$n \times k \quad (U_{reduce})$$

$$n \times 1$$

 $k \times 1$

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T}$$

```
[U,S,V] = svd(sigma);
```

$$Ureduce = U(:,1:k);$$

- Preprocessing (mean normalization & feature scaling)
- Calculate sigma (covariance matrix)
- Calculate eigenvectors with svd
- Take k vectors from U (U_{reduce} = U(:,1:k);)
- Calculate z (z =U_{reduce} ' * x;)

- Reduce data from 3D to 2D.
 - $x^{(i)} \in R^3 \implies z^{(i)} \in R^2$

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

Reconstruction from Compressed Rep.

- PCA: A compression algorithm
- Decompression of the data

from lower dim back to a higher dim format

$$z = U_{reduce}^T x$$

Reconstruction from Compressed Rep.

- Reconstruction
 - Given a point z¹, how can we go back to the 2D space?
- Considering $z^{(i)} = (\boldsymbol{U_{reduce}})^T x^{(i)}$, $x_{approx}^{(i)} = \boldsymbol{U_{reduce}} z^{(i)}$

- We lose some of the information
 - (i.e. everything is now ON that line)
- but it is now projected into 2D space

$$x_{approx}^{(i)} = U_{reduce} z^{(i)}$$

 x_2

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

PCA tries to minimize average squared projection error

$$\frac{1}{m} \sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}$$

Total variation in data

$$\frac{1}{m} \sum_{i=1}^{m} ||x^{(i)}||^2$$

 \blacksquare Typically, choose k to be smallest value so that

$$\frac{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}}{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} \right\|^{2}} \le 0.01$$
 (1%)

"99% of variance is retained"

 \blacksquare Typically, choose k to be smallest value so that

$$\frac{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}}{\frac{1}{m}\sum_{i=1}^{m} \|x^{(i)}\|^{2}} \le 0.01$$

- "99% of variance is retained"
- If this ratio is small, then the numerator is small
 - The numerator is small when $x^{(i)}$ is very close to $x_{approx}^{(i)}$
 - i.e. we lose very little information in the dimensionality reduction, so when we decompress, we regenerate the same data
- Often can significantly reduce data dimensionality while retaining the variance

Algorithm:

- Try PCA with k = 1
- Compute
 - $U_{reduce}, z^{(1)}, ..., z^{(m)},$
 - $x_{approx}^{(1)}, \dots, x_{approx}^{(m)}$
- Check if

$$\frac{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}}{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} \right\|^{2}} \le 0.01$$

Algorithm:

- Try PCA with k = 1
- Compute
 - $U_{reduce}, z^{(1)}, ..., z^{(m)},$
 - $x_{approx}^{(1)}, \dots, x_{approx}^{(m)}$
- Check if

$$\frac{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} - x_{approx}^{(i)} \right\|^{2}}{\frac{1}{m}\sum_{i=1}^{m} \left\| x^{(i)} \right\|^{2}} \le 0.01$$

[U,S,V] = svd(Sigma)

For given *k*

$$1 - \frac{\sum_{i=1}^{k} s_{ii}}{\sum_{i=1}^{n} s_{ii}} \le 0.01$$

$$\frac{\sum_{i=1}^{k} s_{ii}}{\sum_{i=1}^{n} s_{ii}} \ge 0.99$$

- [U,S,V] = svd(Sigma)
- Pick the smallest value of k for which

$$\frac{\sum_{i=1}^{k} s_{ii}}{\sum_{i=1}^{n} s_{ii}} \ge 0.99$$

(99% of variance retained)

Outline

- Data compression
- Data visualization
- Principal component analysis problem formulation
- Principal component analysis algorithm
- Reconstruction from compressed representation
- Choosing the number of principal components
- Advice for applying PCA

Supervised Learning Speedup

- Training set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$
 - $x^{(i)} \in R^{10000}$ 100 image

- Extract inputs
 - Unlabeled dataset: $x^{(1)}, x^{(2)}, ..., x^{(m)} \in R^{10000}$ $z^{(1)}, z^{(2)}, ..., z^{(m)} \in R^{100}$
- New training set: $(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), ..., (z^{(m)}, y^{(m)})$
- Mapping $x^{(i)} \rightarrow z^{(i)}$ should be defined by running PCA only on the training set.
 - This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets.

Compression

- Reduce memory/disk needed to store data
- Speed up learning algorithm
- How choose k?
 - % of variance retained

Visualization

- Typically k = 2 or 3
 - We can plot these values (k = 2 or 3)

- A bad use of PCA
 - Use it to prevent overfitting
 - Use $z^{(i)} \in \mathbb{R}^k$ instead of $x^{(i)} \in \mathbb{R}^n$ to reduce the number of features k < n (e.g. k = 1,000, n = 10,000)
 - → Thus, fewer features, less likely to overfit.
 - → This might work OK, but is not a good way to address ovefitting
- Use regularization for preventing overfitting

$$\min_{\theta} \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- A bad use of PCA
 - Use it to prevent overfitting
- **→**
- PCA does NOT use the labels $y^{(i)}$
 - PCA is just looking our inputs $x^{(i)}$ to find a lower dimensional approximation to our data
 - PCA throws away some information (or reduce the dim of our data) without knowing what the values of y is
 - This might be probably OK if we are keeping most of the variance (e.g. 99% of the variance)
 - > But it might also throw away some valuable information

- A bad use of PCA
 - Use it to prevent overfitting
- **→**

- Retaining 99% of the variance or 95% or whatever,
 - Just using regularization will often give us AT LEAST as good a way for preventing overfitting
 - Regularization knows what the values of y are, so is less likely to throw away some valuable information
 - while PCA does not make use of the labels and it is more likely to throw away valuable information

- PCA is used for compression or visualization
 - good

- But PCA is sometimes used where it should not be
 - Design of ML system with PCA form the outset
 - Get training set $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$
 - Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
 - Train logistic regression on $(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$
 - Test on test set:
 - \triangleright Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$.
 - ightharpoons Run $h_{\theta}(z)$ on $\left(z_{test}^{(1)}, y_{test}^{(1)}\right)$, $\left(z_{test}^{(2)}, y_{test}^{(2)}\right)$, ..., $\left(z_{test}^{(2)}, y_{test}^{(2)}\right)$

- But PCA is sometimes used where it should not be
 - Design of ML system with PCA form the outset
 - Get training set $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})$
 - Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
 - Train logistic regression on $(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$
 - Test on test set:
 - \triangleright Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$.
 - ightharpoons Run $h_{\theta}(z)$ on $\left(z_{test}^{(1)}, y_{test}^{(1)}\right)$, $\left(z_{test}^{(2)}, y_{test}^{(2)}\right)$, ..., $\left(z_{test}^{(2)}, y_{test}^{(2)}\right)$

- How about doing the whole thing without using PCA?
 - Before implementing PCA, first try running whatever we want to do with the original/raw data $x^{(i)}$.
 - Only if that does not do what we want, then implement PCA and consider using $z^{(i)}$.

References

- https://www.coursera.org/learn/machine-learning
- http://www.holehouse.org/mlclass/14_Dimensionality_Reduction.html