

Cambridge International AS & A Level

CHEMISTRY 9701/01

Paper 1 Multiple Choice

For examination from 2022

SPECIMEN PAPER 1 hour 15 minutes

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do **not** use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
- Any rough working should be done on this question paper.

1	Which m	olecule	contains	eiaht	honding	electrons?
1	VVIIICIIII	iolecule	CUITIAIIIS	CIGIII	DOHUHIY	CICCHOHS!

A CO₂

B C₂H₂

 \mathbf{C} C_3H_6

 $D NH_3$

2 Beams of charged particles are deflected by an electric field. In identical conditions the angle of deflection of a particle is proportional to its charge/mass ratio.

In an experiment, protons are deflected by an angle of +15°. In another experiment under identical conditions, particle Y is deflected by an angle of -5°.

What could be the composition of particle Y?

	protons	neutrons	electrons
Α	1	2	1
В	3	3	5
С	4	5	1
D	4	5	3

3 The mass spectrum of a sample of lithium shows that it contains two isotopes, ⁶Li and ⁷Li.

The isotopic abundances are shown in the table.

isotope	isotopic abundance
⁶ Li	7.42%
⁷ Li	92.58%

What is the relative atomic mass of this sample of lithium, given to three significant figures?

A 6.07

B 6.50

C 6.90

D 6.93

4 Diamond, graphite and buckminsterfullerene are different forms of the element carbon.

Which statement is correct for all three substances?

- **A** Bond angles of 120° are present.
- **B** Delocalised electrons are present.
- **C** Giant molecular crystalline lattice structures are present.
- **D** σ bonds are present.

A medal has a total surface area of 150 cm². It is evenly coated with silver by electrolysis. Its mass 5 increases by 0.216 g.

How many atoms of silver are deposited per cm² on the surface of the medal?

- 8.0×10^{18}
- **B** 1.8×10^{19} **C** 8.7×10^{20} **D** 1.2×10^{21}
- 6 Nitrogen has a higher first ionisation energy than oxygen.

Which statement explains this observation?

- The radius of an oxygen atom is smaller.
- В An oxygen atom has more electron shells occupied.
- C Oxygen has paired electrons in the 2p sub-shell.
- D An oxygen atom has more protons in the nucleus.
- 7 Which molecule has the largest overall dipole moment?

$$C = C$$
 Cl
 CH_3

The complete combustion of 2 moles of an alkane produces 665 dm³ of carbon dioxide measured 8 at 400 K and 1×10^5 Pa. Carbon dioxide can be assumed to behave as an ideal gas under these conditions.

What is the formula of the alkane?

- C_5H_{12}
- **B** C_8H_{18} **C** $C_{10}H_{22}$
- 9 Which expression gives the standard enthalpy change of combustion of methane?
 - **A** $\Delta H_f^{\bullet}(CH_A) + \Delta H_f^{\bullet}(CO_2) 2\Delta H_f^{\bullet}(H_2O)$
 - **B** $\Delta H_f^{\Theta}(CO_2) + 2\Delta H_f^{\Theta}(H_2O) + \Delta H_f^{\Theta}(CH_A)$
 - $\mathbf{C} \quad \Delta H_{f}^{e}(CH_{4}) + 2\Delta H_{f}^{e}(H_{2}O) \Delta H_{f}^{e}(CO_{2})$
 - **D** $\Delta H_f^{\bullet}(CO_2) + 2\Delta H_f^{\bullet}(H_2O) \Delta H_f^{\bullet}(CH_A)$

10 Solutions containing chlorate(I) ions are used as household bleaches and disinfectants. These solutions decompose on heating as shown.

$$3ClO^- \rightarrow ClO_3^- + 2Cl^-$$

Which oxidation states are shown by chlorine in these three ions?

	C10 ⁻	ClO ₃	C <i>l</i> ⁻
Α	+1	+3	-1
В	– 1	+3	+1
С	+1	+5	– 1
D	– 1	+5	+1

11 When K₂MnO₄ is dissolved in water, the following reaction occurs.

$$a\mathsf{MnO_4}^{2-}(\mathsf{aq}) \ + \ b\mathsf{H_2O(I)} \ \rightarrow \ c\mathsf{MnO_4}^-(\mathsf{aq}) \ + \ d\mathsf{MnO_2(s)} \ + \ e\mathsf{OH^-(aq)}$$

What could be the values of a and c in the balanced chemical equation?

	а	С
Α	2	1
В	3	1
С	3	2
D	4	3

12 Methanol can be produced from hydrogen and carbon monoxide.

$$2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$$

What is the expression for $K_{\rm p}$ for this reaction?

$$\mathbf{A} \quad \mathbf{K}_{\mathrm{p}} = \frac{2p_{H_2}^2 \times p_{\mathrm{CO}}}{p_{\mathrm{CH_3OH}}}$$

$$\mathbf{B} \quad \mathbf{K}_{\mathrm{p}} = \frac{p_{\mathrm{H}_{2}}^{2} \times p_{\mathrm{CO}}}{p_{\mathrm{CH}_{3}\mathrm{OH}}}$$

$$\mathbf{C} \qquad \mathbf{K}_{\mathrm{p}} = \frac{p_{\mathrm{CH_{3}OH}}}{p_{H_{2}}^{2} \times p_{\mathrm{CO}}}$$

$$\mathbf{D} \quad K_{p} = \frac{p_{\text{CH}_{3}\text{OH}}}{2p_{H_{2}}^{2} \times p_{\text{CO}}}$$

4.0 g of powdered calcium carbonate, $M_r = 100$, are added to $100 \, \text{cm}^3$ of $0.10 \, \text{mol dm}^{-3}$ hydrochloric acid. The volume of carbon dioxide produced is recorded every 30 seconds.

time/s	30	60	90	120	150	180	210	240
total volume of carbon dioxide given off/cm ³	40	70	88	101	110	116	120	120

Which row of the table is correct?

	why the rate of the reaction changes with time	why the reaction stops
Α	fewer collisions between reacting molecules occur	the calcium carbonate is used up
В	fewer collisions between reacting molecules occur	the hydrochloric acid is used up
С	more collisions between reacting molecules occur	the calcium carbonate is used up
D	more collisions between reacting molecules occur	the hydrochloric acid is used up

- **14** Which statement about ideal gases is correct?
 - A Ideal gases have finite particle volume and no intermolecular forces of attraction.
 - **B** Ideal gases have finite particle volume and weak intermolecular forces of attraction.
 - C Ideal gases have zero particle volume and no intermolecular forces of attraction.
 - **D** Ideal gases have zero particle volume and weak intermolecular forces of attraction.
- A mixture of gases consists of 12.0 g of hydrogen, 42.0 g of nitrogen and 4.0 g of helium. What is the mole fraction of hydrogen in the mixture?
 - **A** 0.21
 - **B** 0.60
 - **C** 0.71
 - **D** 0.75
- **16** What is the definition of the bond energy of the Br–Br covalent bond?
 - **A** The energy required to produce one mole of bromine atoms in the gaseous state.
 - **B** The energy required to produce one mole of bromine atoms in the liquid state.
 - **C** The energy required to break one mole of Br–Br bonds in the gaseous state.
 - **D** The energy required to break one mole of Br–Br bonds in the liquid state.

17 Which graph correctly shows the relative melting points of the elements Mg, A*l*, Si and P plotted against their relative electronegativities?

18 An excess of MgO is shaken with water. The resulting mixture is filtered, this is filtrate W. Two drops of dilute sulfuric acid are added and any observation is noted.

An excess of BaO is shaken with water. The resulting mixture is filtered, this is filtrate X. Two drops of dilute sulfuric acid are added and any observation is noted.

Which row is correct?

	filtrate of higher pH	observation on addition of sulfuric acid to the filtrate of higher pH
Α	W	no change
В	W	white precipitate
С	X	no change
D	X	white precipitate

19 Samples of magnesium carbonate, MgCO₃, are placed in crucibles R and S. The sample in crucible R is heated until there is no further loss in mass, and then allowed to cool. The sample in crucible S is left unheated.

Dilute hydrochloric acid is then added to both crucibles.

On adding the dilute hydrochloric acid, which observations are correct?

	R	S
Α	gas produced	gas produced
В	gas produced	no gas produced
С	no gas produced	gas produced
D	no gas produced	no gas produced

20 When concentrated sulfuric acid reacts with sodium iodide the products include sulfur, iodine, hydrogen sulfide and sulfur dioxide.

Which statement is correct?

- **A** Hydrogen sulfide is the product of a reduction reaction.
- **B** lodide ions are stronger oxidising agents than sulfate ions.
- **C** Sulfur atoms from the sulfuric acid are both oxidised and reduced.
- **D** Sulfur atoms from the sulfuric acid are oxidised to make sulfur dioxide.
- 21 A solution of sodium hydroxide reacts with 3 mol of chlorine under certain conditions. The reaction produces 5 mol of sodium chloride and 1 mol of X, the only other chlorine-containing product.

What is the formula of compound X?

- 22 Redox reactions are common in the chemistry of Group 17 elements.

Which statement is correct?

- $\textbf{A} \quad \text{Br}^- \text{ ions will reduce C} \ l_2 \text{ but } \textbf{not } \ I_2.$
- **B** Cl_2 will oxidise Br⁻ ions but **not** I⁻ ions.
- **C** F_2 is the weakest oxidising agent out of F_2 , Cl_2 , Br_2 and I_2 .
- **D** I⁻ ions are the weakest reducing agent out of F⁻, Cl⁻, Br⁻ and I⁻.

- 23 Which statements describe a trend in Period 3 between **every pair** of adjacent elements from sodium to chlorine?
 - A The atomic radius decreases.
 - **B** The first ionisation energy decreases.
 - **C** The melting point decreases.
 - **D** The electrical conductivity increases.
- 24 Nitrogen forms pollutant oxide Y in a car engine.

Further oxidation of Y to Z occurs in the atmosphere. In this further oxidation, 1 mol of Y reacts with 0.5 mol of gaseous oxygen molecules.

Which statement is correct?

- A Compound Z does **not** react further in the atmosphere.
- **B** A molecule of Y has 15 electrons.
- **C** The oxidation number of nitrogen increases by one from Y to Z.
- **D** Y is a non-polar molecule.
- 25 Structural isomerism and stereoisomerism should be considered when answering this question.

Each of the following carbonyl compounds is reacted with NaBH₄. The product of each reaction is heated with Al_2O_3 at 600 °C, giving either only one isomer or a mixture of isomers.

Which carbonyl compound will produce the most isomers?

- A butanal
- **B** butanone
- C pentan-3-one
- **D** propanone

26 The drug cortisone has the formula shown.

In addition to those chiral centres marked by an asterisk (*), how many **other** chiral centres are present in the cortisone molecule?

- **A** 0
- В
- **C** 2
- **D** 3

27 An alkene is reacted with acidified manganate(VII) ions, MnO₄⁻. The organic product has a relative molecular mass greater than that of the alkene by 34.

What conditions should be used?

- A cold, concentrated MnO₄
- B cold, dilute MnO₄
- **C** hot, concentrated MnO_₄
- **D** hot, dilute MnO_₄

28 The diagram shows a short length of an addition polymer chain.

The polymer has a relative molecular mass of approximately 10 000.

Approximately how many monomer units are joined together in each polymer molecule?

- **A** 180
- **B** 360
- **C** 625
- **D** 710

29 Lactide is an intermediate in the manufacture of a synthetic fibre.

Which compound, on heating with an acid catalyst, can produce lactide?

- A hydroxyethanoic acid
- B 2-hydroxybutanoic acid
- C 2-hydroxypropanoic acid
- D 3-hydroxypropanoic acid
- 30 Diols in which both hydroxy groups are bonded to the same carbon atom spontaneously eliminate a molecule of water to produce a carbonyl compound.

Which compound is hydrolysed to form a product that gives a positive reaction with 2,4-dinitrophenylhydrazine but **not** with Fehling's reagent?

- **A** 1,1-dibromopropane
- **B** 1,2-dibromopropane
- C 1,3-dibromopropane
- **D** 2,2-dibromopropane
- 31 X and Y are the reagents required to convert 1-bromopropane into butanoic acid in the following reaction.

What are the correct identities of X and Y?

	X	Y
Α	HCN	HC <i>l</i> (aq)
В	KCN in C ₂ H ₅ OH	NaOH(aq)
С	KCN in C ₂ H ₅ OH	HC <i>l</i> (aq)
D	HCN	NaOH(aq)

32 Q is a compound with the molecular formula $C_4H_{10}O$. Q can be oxidised with acidified potassium dichromate(VI). Q **cannot** be made by reducing a carboxylic acid with LiA lH_4 .

What is the structure of Q?

- A CH₃CH(OH)CH₂CH₃
- B CH₃CH₂CH₂CH₂OH
- \mathbf{C} (CH₃)₃COH
- **D** (CH₃)₂CHCH₂OH
- 33 A sample of 2.30 g of ethanol is mixed with an excess of aqueous acidified potassium dichromate(VI). The reaction mixture is then boiled under reflux for one hour. The required organic product is then collected by distillation. The yield of product is 60.0%.

Which mass of product is collected?

- **A** 1.32 g
- **B** 1.38 g
- **C** 1.80 g
- **D** 3.00 g
- **34** Compound R gives a positive test with alkaline aqueous iodine. Compound R does **not** display stereoisomerism.

What could be compound R?

- A CH₃COCH₂CH₂OH
- B CH₃CH₂CH(OH)CHO
- C CH₃COCH(OH)CH₃
- \mathbf{D} (CH₃)₂C(OH)CHO

35 Citral is found in lemongrass oil. It can react to give compound W.

What could compound W be?

36 P and Q are alkenes. They are geometric isomers of each other.

Which statement is correct?

- A P and Q give different products with hot, concentrated, acidified potassium manganate(VII).
- **B** P and Q have different empirical formulae.
- C P and Q have different functional groups.
- **D** P and Q have different skeletal formulae.
- 37 The following statements are about the reaction of NaOH(aq) with the three chloroalkanes shown.

$$CH_3CH_2CHClCH_3$$
 $(CH_3)_2CHCH_2Cl$ $(CH_3)_3CCl$

Which statement is correct?

- **A** $(CH_3)_2CHCH_2Cl$ reacts with NaOH(aq) by an S_N^2 mechanism.
- **B** The tertiary chloroalkane reacts more quickly than the others because the carbon atom bonded to the C*l* atom is more positive in this molecule.
- **C** The Cl atoms in the three chloroalkanes are attacked by OH^- .
- ${f D}$ The molecular formula of the major product is ${f C}_4{f H}_8$ for each reaction.

38 For which mixture is the observation described correctly?

	reagents	observation
A	pentanal + Fehling's reagent	blue solution changes to orange/red precipitate
В	pentanal + hot, acidified potassium dichromate(VI)	green solution changes to orange solution
С	pentan-2-one + warm Tollens' reagent	colourless solution changes to silver mirror
D	C ₆ H ₁₄ + acidified potassium manganate(VII)	purple solution changes to colourless solution

39 Which statement is correct?

- $A = C_3H_7COOH$ can be used to form propyl propanoate in a single reaction.
- **B** The empirical formula of C_3H_7COOH is the same as its molecular formula.
- **C** Each of C₃H₇OH and C₃H₇COOH reacts separately with NaBH₄.
- **D** Each of C_3H_7OH and C_3H_7COOH reacts separately with sodium metal.

40 Compound X consists of carbon, hydrogen and oxygen only. It has only one functional group.

bond	functional group containing the bond	characteristic infra-red absorption range (in wavenumbers)/cm ⁻¹
C-O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–3100
N–H	amine, amide	3300–3500
О–Н	carboxyl hydroxy	2500–3000 3200–3650

What can be deduced about X?

- **A** X is an aldehyde or ketone.
- **B** X is an alcohol.
- **C** X is a carboxylic acid.
- **D** X is an alkene.

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J} \mathrm{K}^{-1} \mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 \rm K (25 ^{\circ} C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

The Periodic Table of Elements

	18	- 5	e L	helium 4.0	10	Ne	neon	18	Ā	argon 39.9	36	궃	krypton 83.8	22	×e	xenon 131.3	98	몬	radon	118	Og	oganesson -									
	17				6	ш	fluorine	17	ľ	chlorine 35.5	35	ä	bromine 79.9	53	н	iodine 126.9	85	¥	astatine	117	<u>r</u>	tennessine									
	16				8	0	oxygen 16.0	16	်	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъ	moloulum -	116	۲	livermorium -									
	15				7	z	nitrogen 14.0	5. 5.	· 🗅	phosphorus 31.0	33	As	arsenic 74.9	51	Sp	antimony 121.8	83	<u>:</u>	bismuth 209.0	115	Mc	moscovium -									
	14				9	ပ	carbon	14	: <u>'</u>	silicon 28.1	32	Ge	germanium 72.6	20	S	tin 118.7	82	Ъ	lead 207.2	114	Εl	flerovium —									
	13				2	Ф	boron 40 B	23 5	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	п	indium 114.8	81	11	thallium 204.4	113	R	nihonium –									
										12	30	Zu	zinc 65.4	48	ප	cadmium 112.4	80	롼	mercury 200.6	112	ပ်	copernicium									
																			7	59	ى ك	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium -
Group										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	귙	platinum 195.1	110	Ds	darmstadtium -									
Ğ						,					6	27	රි	cobalt 58.9	45	윤	rhodium 102.9	77	ä	iridium 192.2	109	Ĭ	meitnerium -								
		- :	I.	hydrogen 1.0						8	56	Pe	iron 55.8	4	R	ruthenium 101.1	9/	SO	osmium 190.2	108	¥	hassium -									
								_		7	25	M	manganese 54.9	43	ည	technetium -	75	Re	rhenium 186.2	107	뮵	bohrium									
								_	pol		800		9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg	seaborgium -						
		Key	Key	atomic number	atomic symbo	name rolotivo otomio moss	all ve a louine ille		2	23	>	vanadium 50.9	41	g	niobium 92.9	73	<u>⊾</u>	tantalum 180.9	105	9	dubnium -										
				.0		atc	-			4	22	F	titanium 47.9	40	Ż	zirconium 91.2	72	Ξ	hafnium 178.5	104	쬬	rutherfordium -									
										က	21	လွ	scandium 45.0	39	>	yttrium 88.9	57–71	lanthanoids		89–103	actinoids										
	2				4	Be	beryllium	3.0	Mg	magnesium 24.3	20	Sa	calcium 40.1	38	ഗ്	strontium 87.6	99	Ba	barium 137.3	88	Ra	radium									
	_				3	=	lithium	5. E	Na	sodium 23.0	19	エ	potassium 39.1	37	Вb	rubidium 85.5	55	S	caesium 132.9	87	ъ.	francium —									

11		lutetium	175.0	103	۲	lawrencium	ı
70	Υp	ytterbium	173.1	102	Š	nobelium	1
69	E	thulium	168.9	101	ΡW	mendelevium	ı
89	ш	erbium	167.3	100	Fm	ferminm	ı
29	운	holmium	164.9	66	Es	einsteinium	I
99	ò	dysprosium	162.5	86	ర	californium	ı
65	Q L	terbium	158.9	26	ձ	berkelium	ı
28	ပ ြ	gadolinium	157.3	96	CB	curium	ı
63	Ш	europium	152.0	98	Am	americium	ı
62	Sm	samarium	150.4	94	Pu	plutonium	1
61	ВШ	promethium	ı	93	ď	neptunium	1
09	2	neodymium	144.4	92	⊃	uranium	238.0
29	Ā	praseodymium	140.9	91	Ра	protactinium	231.0
58	o C	cerium	140.1	06	T	thorium	232.0
57	Гa	lanthanum	138.9	68	Ac	actinium	ı

lanthanoids

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.