

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

Название: <u>Функция eval</u>

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии (ИУ7)

ОТЧЕТ

по лабораторной работе № __3__

Дисциплина:	<u>Функциона</u>	льное и ло	гическое	программи	рование

Студент	ИУ7-63Б		В.П. Федоров
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Н.Б. Толпинская
		(Подпись, дата)	(И.О. Фамилия)

Цели работы:

- изучить правила работы функции eval на структурированных списках-аргументах, построить диаграммы работы функции eval (выполнения функций);
- проанализировать работу функции eval при обработке стандартных функций и функций, определенных пользователем.

Задача 1. Диаграммы состояний.


```
> (equal (x 4 7) 21)
       > (x 4 2)
     21 Grizvenseta k 21
     => equal nonumera x 28 4 21
d)
       -> (equal (* 2 3) (+72))
         > (x 2 3)
        2 RWZMAN. x 2
3 KWZMAN. x 3
        5 × normenaetes x 2 4 3
        P> (+ 7 2)
         7 Borraca. K7
2 Romaca. L2
        ( ) + nounewater x 2 4 2
        equal nounensers K 649
```

```
> ( equal (-93) ( × 3 2))
      7 Chronomatica & D
       3 Barranaeta x3
     3 - MPHAMEMACON x 7 43
     (× 3 2)
      . 3 Chroson. k s
2 Chroso. k s
      F> * hornensetia k 3 42
      => equal inprimension x 4 4 6
      LY NIL
        -> (equal (abs (-2 4)) 3))
f)
            -> (06S (-24))
           2 2 4 4 ) 2 2 4 y 6 6 1 7 4 4 4 4
           =>- normensetes x 2 4 4
         => 9BS hPrinehaeta K-2
        3 biruchseres 4 3
        => 29491 BARRAGERONS HALLENSONS K 2 43
```

Задача 2.

Написать функцию, вычисляющую длину гипотенузы прямоугольного треугольника по двум его сторонам

Листинг 2.1: Функция, вычисляющая гипотенузу, на языке LISP

```
(defun hypotenuz(x y)
(sqrt (+ (* x x) (* y y)))
```

(hypotenus 3 4) 3 harzuca k 3 4 Roman K 4 => hypotenus homensetta o de de C aparmentana 3 44 cosdula X 6 Jun. 3 > cosdains y a sun 4 > sqrt (+ x x) (+ y y) > (+ (* x x) (* y y)) K Burney. K3 X Barbyen. k 3 $\frac{7}{5}$ * brunensutu * 3 43 (* Y Y) Y luma. k & y Brown k 4 + househoes & 9 4 16 Sgrt mormenaes w 4

Задача 3. Написать функция, вычисляющую объем параллелепипеда по трем его сторонам

```
(defun get_s(a b c)
(* a b c)
```

```
= (get - 5 2 3 5)
     3 Gurman. Kg
the for both on generation
   Cardina
       get-s hpurienseria c aprime 47944 2,3 45
   my the workers)
       Cosdaerca a Co shap 2
       Cosdada 6 Co sune 3
       cosdaera c co 3 mas. 5
     > (x q b c)
       a laruchante K 2
       6 borner. × 3
       C British E 5
        * homenacia k 9,6 4 C.
```

Задача 4.

выражение	результат
(list 'a 'b c)	error: The variable c is unbound
(cons 'a (b c))	error: The variable c is unbound
(cons 'a '(b c))	(a b c)
(caddr (1 2 3 4 5))	error: illegal function call
(cons 'a 'b 'c)	error: invalid number of arguments: 3
(list 'a (b c))	error: The variable c is unbound
(list a '(b c))	error: The variable a is unbound
(list (+ 1 '(length '(1 2 3))))	error: The value (length '(1 2 3) is not of type NUMBER

Задача 5. Написать функцию longer_then от двух списков аргументов, которая возвращает T, если первый аргумент имеет большую длину.

Задача 6.

выражение	результат
(cons 3 (list 5 6))	(3 5 6)
(cons 3 '(list 5 6))	(3 LIST 5 6)
(list 3 'from 9 'gives (- 9 3))	(3 from 9 gives 6)
(+ (length '(1 foo 2 too))(car '(21 22 23)))	25
(cdr '(cons is short for and))	(is short for and)
(car (list one two))	error: The variable one in unbound
(car (list 'one 'two))	one

Задача 6 (часть 2).

Дана функция:

(defun mystery (x) (list (second x) (first x)))

выражение	результат	
(mystery '(one two))	(two one)	
(mystery 'free)	error: the value free is not of type LIST	
(mystery (last 'one 'two))	error: the variable one is unbound	

(mystery 'one 'two)	error: invalid number of arguments: 2
---------------------	---------------------------------------

Контрольные вопросы.

- 1. Классификация функций в LISP
- по аргументам и поведения
 - Чистые функции фиксированное количество аргументов, для определенного набора аргументов есть фиксированный результат;
 - Функции формы (специальные функции) функции, которые принимают произвольное количество аргументов или по разному обрабатывают результат;
 - Функции высшего порядка (Функционалы) принимают или возвращают в качестве результата функцию.
 - о псевдофункции создают эффект на экране;

• по именованию:

- о именованные можно определить через defun;
- о неименованные определяются через lambda.

2. Базис языка LISP

Базис - минимальный набор возможностей, (средств) с помощью которых можно решить какую-то задачу.

Базис Lisp образуют атомы, структуры, базовые функции и функционалы.

3. Список: представление и интерпретация

Список - структура данных, состоящая из элементов, которыми могут быть атомы или другие списки. Список также может не содержать элементов вовсе, такой список называется пустым и обозначается как **Nil** или ().

Список является фундаментом языка LISP и может представлять как данные, так и код.

4. Как выполняются car и cdr? Какие результаты? Примеры. Функции car и cdr служат для выделения головы и хвоста списка соответственно. Функции car и cdr можно применять только к списку и точечной паре. Попытка применить car и cdr к атому приведет к ошибке ERRSTATE. Примеры:

(car '(1 2 3))	1
(cdr '(1 2 3))	2 3
(cdr (cdr '(1 2 3)))	3
(cdr (cdr (cdr '(1 2 3))))	Nil
(car '(a . b))	a
(cdr '(a . b))	b
(car 2)	ERRSTATE
(cdr 3)	ERRSTATE

5. Отличия в выполнении list и cons.

list можно применить для произвольного количества аргументов, cons работает только для двух. cons объединяет значение двух своих аргументов в точечную пару, lisp формирует список.