TA section 2

JERRY C.

108354501@nccu.edu.tw jerryc520.github.io/teach/MS.html

March 28, 2024

Homework 1 (part II)

§5.3 #1. #2. #11. #18. #19

1. 設 X_1, X_2 爲由p.d.f. $f(x|\alpha) = \alpha x^{\alpha-1} e^{-x^{\alpha}}, x > 0, \alpha > 0$, 所產生之隨 機樣本。試證 $\log X_1/\log X_2$ 爲一輔助統計量。

Definition

•

A statistic A(X) is ancillary if the distribution of A(X) does not depend on the unknown parameter θ .

• Let $Y = \log X$. $\mathbb{P}(Y \le y) = \mathbb{P}(\log X \le y) = \mathbb{P}(X \le e^y)$. Thus,

$$f_Y(y|\alpha) = f_X(e^y|\alpha)e^y = \alpha(e^y)^{\alpha - 1}e^{-(e^y)^\alpha}e^y = \alpha e^{\alpha y - e^{\alpha y}}, y \in \mathbb{R}.$$

$$f_Y(y|\alpha) = \frac{1}{1/\alpha} \exp\left[\frac{y}{1/\alpha} - e^{y/(1/\alpha)}\right],$$

belongs to a scale family with scale parameter $1/\alpha$.

• Let $Y_i := (1/\alpha)Z_i$, where the distribution of Z_i has the form of $f(z) \propto \exp(z - e^z)$ which is free of α .

$$T:=\frac{\log X_1}{\log X_2}=\frac{Y_1}{Y_2}=\frac{(1/\alpha)Z_1}{(1/\alpha)Z_2}=\frac{Z_1}{Z_2}, \text{ whose distribution does not involve }\alpha.$$

• 另種做法: 令 $Y_i = \alpha \log X_i$, 可求得聯合 pdf:

$$f_{Y_1,Y_2}(y_1,y_2) = e^{y_1+y_2}e^{-(e^{y_1}+e^{y_2})}$$

與 α 無關。 So, the distribution of $T = \alpha \log X_1/\alpha \log X_2$ does not depend on α .

- 2. 設 X_1, \dots, X_n 爲一組由一位置族分佈所產生之隨機樣本。令M表樣本中位數。試證 $M \overline{X}_n$ 爲一輔助統計量。
- $X \in$ location family, such that $X = Z + \mu$, i.e., $F_X(x) = F_Z(x \mu)$ or $f_X(x) = f_Z(x \mu)$, where μ is the location parameter.
- Fact: $X \in$ location family, and if the statistic S(X) is location invariant, such that S(X) = S(X + c), then S(X) is an A.S.. [proof] $\mathbb{P}(S(X) < x) = \mathbb{P}(S(Z + \mu) < x) = \mathbb{P}(S(Z) < x)$, which is free of μ .
- $X \in$ scale family, such that $X = \theta Z$, i.e., $F_X(x) = F_Z(x/\theta)$ or $f_X(x) = f_Z(x/\theta)/\theta$, where θ is the scale parameter.
- Fact: $X \in$ scale family, and if the statistic S(X) is scale invariant, such that S(X) = S(cX), then S(X) is an A.S..

• Given $X_i = Z_i + \mu \Rightarrow \bar{X} = \bar{Z} + \mu$ and $M(X) = M(Z) + \mu$.

$$\begin{split} \mathbb{P}(S(\boldsymbol{X}) \leq x) &= \mathbb{P}(M(\boldsymbol{X}) - \bar{X} \leq x) \\ &= \mathbb{P}(S(\boldsymbol{Z} + \mu) \leq x) \\ &= \mathbb{P}(M(\boldsymbol{Z}) + \mu - (\bar{Z} + \mu) \leq x) = \mathbb{P}(M(\boldsymbol{Z}) - \bar{Z} \leq x) \\ &= \mathbb{P}(S(\boldsymbol{Z}) \leq x), \text{ is free of } \mu. \end{split}$$

So,
$$S(\boldsymbol{X}) = M(\boldsymbol{X}) - \bar{X}$$
 is an A.S..

11. 設 X_1, \dots, X_n 爲一組由 $Ge(\theta)$ 分佈所產生之隨機樣本, $0 < \theta < 1$,令 $X = (X_1, \dots, X_n)$ 。試證 $T(X) = \sum_{i=1}^n X_i$ 爲 θ 之一充分統計量。又試判定T是否有完備性。

$$f(x;\theta) = \theta \exp(x \log(1-\theta)) =: h(x)c(\theta) \exp(t(x)w(\theta)),$$

belongs to the 1-dimensional exponential family, where h(x) = 1, $x = 0, 1, 2, \dots$; $c(\theta) = \theta/(1-\theta)$; t(x) = x; $w(\theta) = \log(1-\theta)$.

• $T(X) = \sum_{i=1}^{n} X_i$ is a S.S.

•

• $C:=\{\log(1-\theta), \theta\in(0,1)\}\subset\mathbb{R}$, contains an open interval in \mathbb{R} . So, $T(\boldsymbol{X})$ is a C.S.S. by 課本 定理 **3.2**.

←□ ト ←団 ト ← 豆 ト ← 豆 ・ 夕 へ ○

定理 3.2

Theorem

令 X_1, \cdots, X_n 為一組由 k 個參數之指數族分佈所產生之隨機樣本, 其 pdf 可表示成:

$$f(x;\theta) = h(x)c(\theta) \exp\left(\sum_{j=1}^{k} w_j(\theta)t_j(x)\right),$$

其中 $C:=\{w_1(\theta),\cdots,w_k(\theta)\}\subset\mathbb{R}^k$ 其值域包含一非空開矩形 (nonempty open set in \mathbb{R}^k), 則統計量 $T(\boldsymbol{X})=(\sum_{i=1}^n t_1(X_i),\cdots,\sum_{i=1}^n t_k(X_i))$ 為一完備充份統計量。

By definition...

Definition

設 $T:=T(\boldsymbol{X})$ 為一統計量,T 之 pdf 為 $f(t;\theta)$, $\theta\in\Omega$. 對一函數 g, 若 $\mathbb{E}_{\theta}[g(T)]=0$, $\forall \theta\in\Omega$, 則 $\mathbb{P}(g(T)=0)=1$, $\forall \theta\in\Omega$ i.e., g(T)=0 almost surely。故稱 T 為一完備統計量。

- $T = \sum_{i=1}^{n} X_i \sim NB(n, \theta)$, i.e., $f_T(t|\theta) = {t+n-1 \choose n-1} \theta^n (1-\theta)^t$, for $t = 0, 1, 2, \cdots$ (you can use MGF to prove it).
- $0 = \mathbb{E}_{\theta}[g(T)] = \sum_{t=0}^{\infty} g(t) {t+n-1 \choose n-1} \theta^n (1-\theta)^t = \theta^n \sum_{t=0}^{\infty} a_t u^t < \infty \quad \forall \theta$, where $a_t := g(t) {t+n-1 \choose n-1}$ and $u := 1 \theta \in (0,1)$.
- g(t) must be 0 for all $t \ge 0$ for the power series to sum to zero. That is, $\mathbb{P}(g(T) = 0) = 1 \ \forall \theta \in (0,1).$
- So, T is complete.

18. 設 X_1, \dots, X_n 爲一組由 $U(\theta, 2\theta)$ 分佈所產生之隨機樣本, $\theta > 0$ 。試 求 θ 之一最小充分統計量, 並問此統計量是否具有完備性。

$$\frac{f(\boldsymbol{x}|\theta)}{f(\boldsymbol{y}|\theta)} = \frac{\theta^{-n}\boldsymbol{I}(\theta < x_i < 2\theta)}{\theta^{-n}\boldsymbol{I}(\theta < y_i < 2\theta)}, i = 1, 2, \dots, n.$$

$$= \frac{\theta^{-n}\boldsymbol{I}(\theta < x_{(1)})\boldsymbol{I}(\theta > x_{(n)}/2)}{\theta^{-n}\boldsymbol{I}(\theta < y_{(1)})\boldsymbol{I}(\theta > y_{(n)}/2)},$$

which is free of θ iff

.

$$x_{(1)} = y_{(1)}, \quad x_{(n)} = y_{(n)}.$$

Let
$$T(\boldsymbol{x}) = (x_{(1)}, x_{(n)})$$
 and $T(\boldsymbol{y}) = (y_{(1)}, y_{(n)}).$

 $\bullet \ \, \mathsf{So}, \, T(\boldsymbol{X}) = (X_{(1)}, X_{(n)}) \, \, \mathsf{is a M.S.S for} \, \, \theta.$

- $T=(X_{(1)},X_{(n)})$ is not complete. Consider $g(T)=R-{\rm I\!E}_{\theta}[R]$, with $R=X_{(n)}-X_{(1)}$ which is an A.S. (and is not independent of T).
- $\mathbb{E}_{\theta}[g(T)] = \mathbb{E}_{\theta}[R] \mathbb{E}_{\theta}[R] = 0$, but $\mathbb{P}(g(T) \neq 0) > 0$. So, T is not complete.
- 另解: 因為

$$f(x|\theta) = \frac{1}{\theta} \mathbf{I}(\theta < x < 2\theta) = h(x/\theta)/\theta,$$

where $h(x/\theta) = I(1 < x/\theta < 2)$, which is free of θ . So, $X \in$ scale family with the scale parameter θ . 可得知 $U := X_{(n)}/X_{(1)}$ is scale invariant, and is thus an A.S.

[proof] Let $X_i = \theta Z_i \Rightarrow X_{(n)} = \theta Z_{(n)}$ and $X_{(1)} = \theta Z_{(1)}$, where $Z \sim f(z)$ which is free of θ . So, $\mathbb{P}(U(\boldsymbol{X}) \leq u) = \mathbb{P}(X_{(n)}/X_{(1)} \leq u) = \mathbb{P}(Z_{(n)}/Z_{(1)} \leq u) = \mathbb{P}(U(\boldsymbol{Z}) \leq u)$, which is free θ . \square

• 令 $g(T) := U - \mathbb{E}_{\theta}[U]$, 其分佈也與 θ 無關。則 $\mathbb{E}_{\theta}[g(T)] = 0$ but $\mathbb{P}(g(T) \neq 0) > 0$. Thus, T is not complete.

- 19. 設 X_1, \dots, X_n 爲一組由 $\mathcal{P}(\theta)$ 分佈所產生之隨機樣本, $\theta=1,2$ 。試證此分佈族並無完備性(本題可與例3.6比較)。
- Need to find a counter-example, which is a function g such that $\mathbb{E}_{\theta}[g(T)] = 0$, but $g(T) \neq 0$ for some θ .

• For
$$\theta = 1$$
,

$$0 = \mathbb{E}[g(T)|\theta = 1] = \sum_{t=0}^{\infty} g(t)1^{t}e^{-1}/t!$$

• For
$$\theta=2$$
,

$$0 = \mathbb{E}[g(T)|\theta = 2] = \sum_{t=0}^{\infty} g(t)2^{t}e^{-2}/t!$$

Consider

$$g(t) = \begin{cases} 2, & t = 0, 2 \\ -3, & t = 1 \\ 0, & o.w. \end{cases}$$

Then,

$$\sum_{t=0}^{\infty} g(t)/t! = g(0)/0! + g(1)/1! + g(2)/2! = 2 - 3 + 1 = 0;$$

$$\sum_{t=0}^{\infty} 2^t g(t)/t! = g(0)/0! + 2g(1)/1! + 2^2 g(2)/2! = 2 - 6 + 4 = 0.$$

That is, $\mathbb{E}[g(T)|\theta=1]=0$ and $\mathbb{E}[g(T)|\theta=2]=0$. But, $g(t)\neq 0$ for $\theta\in\{1,2\}$.

