

DPP - 5 (Thermodynamics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/60

Video Solution on YouTube:-

https://youtu.be/CeDk07-SCXI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/78

- Q 1. Sixty per cent of given sample of oxygen gas when raised to a high temperature dissociates into atoms. Ratio of its initial heat capacity (at constant volume) to the final heat capacity (at constant volume) will be:
 - (a) $\frac{8}{7}$
- (b) $\frac{25}{26}$
- (c) $\frac{10}{7}$
- (d) $\frac{\frac{26}{25}}{27}$
- Q 2. P-V diagram of a diatomic gas is a straight line passing through origin. The molar heat capacity of the gas in the process will be:
 - (a) 4R
- (b) 2.5R
- (c) 3 R
- (d) $\frac{4R}{3}$
- Q 3. The figure shows two paths for the change of state of a gas from A to B. The ratio of molar heat capacities in path 1 and path 2 is:

- (a) >1
- (b) < 1
- (c) 1
- (d) data insufficient
- Q 4. The molar heat capacity in a process of a diatomic gas if it does a work of $\frac{Q}{4}$ when a heat of Q is supplied to it is:
 - (a) $\frac{2}{5}$
- (b) $\frac{5}{2}$ R
- (c) $\frac{10}{3}$ R
- $(d) \frac{\overline{6}}{7} R$
- Q 5. Ideal monoatomic gas is taken through a process dQ = 2dU. The molar heat capacity for the process is: (where dQ is heat supplied and dU is change in internal energy)
 - (a) 5 R
- (b) 3 R
- (c) R
- (d) None

hysicsaholics

Q 6. n moles of a monoatomic gas undergo a cyclic process ABCDA as shown in figure. Process AD is isobaric, BC is adiabatic, CD is isochoric and DA is isothermal. The maximum and minimum temperature in the cycle are $4T_0$ and T_0 respectively. Then:

- (a) $T_B > T_C > T_D$
- (b) heat is released by the gas in the process CD
- (c) heat is supplied to the gas in the process AB
- (d) total heat supplied to the gas is 2nRT₀ In (2)
- At ordinary temperatures, the molecules of an ideal gas have only translational Q 7. and rotational kinetic energies. At high temperatures they may also have vibrational energy. As a result of this at higher temperatures : (Cv = molar) heat capacity at constant volume)
 - (a) $C_V = 3/2R$ for a monoatomic gas
 - (b) $C_V > 3/2$ R for a monoatomic gas
 - (c) $Cv < \frac{5}{2}R$ for a diatomic gas
 - (d) $C_V > \frac{5}{2} R$ for a diatomic gas
- Q 8. An ideal gas with adiabatic exponent ($\gamma = 1.5$) undergoes a process in which work done by the gas is same as increase in internal energy of the gas. The molar heat capacity of gas for the process is:
 - (A)C = 4R
- (B) C = 0
- (C) C = 2R
- (D) C = R
- Q9. A mixture of ideal gasses N_2 and He are taken in the mass ratio of 14: 1 respectively. Molar heat capacity of the mixture at constant pressure is.
 - (a) $\frac{19R}{}$

- (B) $\frac{6R}{19}$ (D) $\frac{6R}{13}$
- Q 10. The molar heat capacity for an ideal gas
 - (a) cannot be negative
 - (b) must be equal to either C_V or C_p
 - (c) must lie in the range $C_V \le C \le C_p$
 - (d) may be zero

hysicsaholics

Q 11.

STATEMENT-1: The specific heat of a monatomic gas has value between 0 and ∞ . **because**

STATEMENT–2: $c_P = \frac{5}{2}R$ and $c_V = \frac{3}{2}R$ for a monoatomic gas.

Q.1	c	Q.2	c	Q.3	b	Q.4	c	Q.5 b
Q.6	a,b,c	Q.7	a,d	Q.8	a	Q.9	a	Q.10 d
Q.11	d							