群在集合上的作用

- 1. 置换表示: 群 G 到 S_X 的同态 $f: G \to S_X$;
 - (a) 忠实表示: 若f为单射,则称其为忠实表示;
 - (b) 等价关系: 设 $\rho: G \to S_X$ 是置换表示, 定义 X 上的关系"~"为 $\forall a,b \in X, a \sim b \Leftrightarrow \exists g \in G, s.t. ga = b, 则 ~ 为等价关系;$
 - i. 等价类: 对任意 $a \in X$, a 所在的等价类 $[a] = Ga = \{ga|g \in G\}$;
 - (c) 轨道: 每个等价类叫做一个 G- 轨道, 或简称轨道;
 - i. 拆分: 集合 X 的拆分 $X = \bigcup_{a \in I} [a]$ (不交并)= $\bigcup_{a \in I} Ga$ (不交并);
 - ii. 传递: 若 G 在 X 上的作用只有一个轨道, 则称 G 在 X 上是传递的;
 - (d) Cayley 定理:每个群均同构于某个置换群;
- 2. 固定子群: 设群 G 作用在集合 X 上, 对 $\forall a \in X$, 记 $G_a = \{g \in G | ga = a\} (\leq G)$ 称为元素 a 的固定子群;
 - (a) 轨道公式: 设 G 是有限群, G 作用于集合 X, $a \in X$, 则 $|G| = |G_a||[a]|$;
 - i. 设 $G \stackrel{\cdot}{=} 2n$ 阶群, $2 \nmid n$, 则G 必有指数为2 的正规子群;
 - ii. 设 G 是有限群, $|G| \ge 6$ 且 $|G| = 2 \pmod{4}$, 则 G 不是单群;
 - iii. 设 G 是有限群, p 是 |G| 的最小素因子, 如果 $N \leq G$, [G:N] = p, 则 $N \triangleleft G$;
- 3. 线性表示: $f: G \to GL(V)$;
- 4. $H \leq G \Rightarrow |H||G|$. 反之不成立, 即 d||G|, 群 G 未必有 d 阶子群;
- 5. Sylow 定理: 设 $p^r||G|$, 其中 p 为素数, 以 N(n) 表示 G 中 n 阶子群的个数, 则 $N(p^r) = 1 \pmod{p}$. 特别地, 若 $p^r||G|$, 则 G 至少存在一个 p^r 阶子群;
 - (a) Sylow-p 子群: 设 G 为 $p^r n$ 阶群, 其中 p 为素数, $r \ge 1, p \nmid n$, 则 G 的每个 p^r 阶子群均叫做 G 的西罗 p— 子群;
 - (b) 设 G 为有限群,则:

- i. 对 |G| 的每个素因子 p, 均存在 G 的西罗 p— 子群;
- ii. G 的西罗 p- 子群彼此共轭;
- iii. G 的西罗 p— 子群的个数恒等于 $1 \pmod{p}$;
- iv. 设 P 为 G 的一个西罗 p— 子群, 则 G 的西罗 p— 子群的个数 为 $[G:N_G(P)]$;
- (c) 设素数 p||G|, 则 G 的每个 p 方幂阶的子群 B 均包含在 G 的某个 西罗 p- 子群内;
- (d) 设 $P \neq G$ 的西罗 p- 子群, $A \leq G$, 且 $N_G(P) \leq A$, 则 $N_G(A) = A$;
- (e) Fratini 定理: $M \triangleleft G$, P 为 M 的西罗 p- 子群, 则 $G = MN_G(P)$;

6. 一些结论:

- (a) 设p和q是两个素数,则pq阶群G不是单群;
- (b) 设p和q是两个素数,则 p^2q 阶群G不是单群;