# Kraniometrie klokanů

# Logistická regrese

Tomáš Spurný

## Nahrání dat, popis dat

Byly <u>nahrány knihovny, konstantní proměnné</u> MOTIV, VARIABLES, POHLAVI, a <u>vytvořeny dvě tabulky</u>, jedna dlouhého formátu dfL a druhá tzv. wide formátu dfW, kreré pojímali jen 6 původních proměnných.

Byly vypočítány <u>výběrové průměry a výběrové směrodatné odchylky</u> pro skupiny proměnných dělených dle pohlaví. Výsledek je v následující tabulce

#### Popisná statistika skupin dle pohlaví

| Veličina            | Výběrové | é průměry | Výběrové sm. Odchylky |        |  |
|---------------------|----------|-----------|-----------------------|--------|--|
| Velicilia           | Samci    | Samice    | Samci                 | Samice |  |
| Délka bazilární     | 1593,6   | 1394,6    | 146,75                | 93,75  |  |
| Délka čelisti       | 1361,8   | 1184,7    | 119,66                | 98,12  |  |
| Šířka čelisti       | 154,7    | 140,2     | 8,98                  | 9,92   |  |
| Šířka hřebene       | 129,5    | 159,5     | 31,50                 | 28,73  |  |
| Šířka lícní         | 958,3    | 866,4     | 65,59                 | 52,32  |  |
| Šířka očnicová      | 246,6    | 232,6     | 18,76                 | 17,09  |  |
| Počet ve skupinách: | 18       | 21        |                       |        |  |

Samci mají vždy větší rozměr lebeční části než samice, krom šířky hřebene. Také mají větší variabilitu v datech, až na šířku čelisti.

## Porovnávání skupin samci-samice

Pro zběžný přehled byl vykreslen maticový graf s XY diagramy, boxploty, korelacemi a hustotami rozdělení.



K porovnávání skupin bylo nejprve nutno ověřit předpoklady T-testů. Nejprve normalita graficky na QQ plotech:



Normalita by mohla být splněna, ale existuje podezření, že by některé body mohly být odlehlé, proto byl proveden před T-testy Shapiro-Wilkův test. Stojí za povšimnutí, že proložené přímky u mužů mají větší sklon (-> variabilitu) a jen u šířky hřebene leží křivka samců pod křivkou samic. Snad jen přímky u lícní šířky jsou skoro rovnoběžné.

Pro každou skupinu byla následně <u>provedena trojice testů</u>, jejichž p-hodnoty jsou uvedeny v následující tabulce. V algoritmu byl zohledněn výsledek F-testu na homogenitu rozptylů. Hodnoty, které jsou nejblíž hodnotě spolehlivosti (shora i zdola) jsou tučně.

P-hodnoty dvouvýběrových t-testů shody i s p-hodnotami předpokladů

| Skupina         | Э       | Pře               | Předpoklad                   |                          |  |  |
|-----------------|---------|-------------------|------------------------------|--------------------------|--|--|
| Proměnná        | Pohlaví | SW test normality | F-test stejnosti<br>rozptylů | - Dvouvýběrový<br>T-test |  |  |
| Délka bazilární | Samec   | 0,4990            | 0.0575                       | 0.00001                  |  |  |
| Deika Dazilarni | Samice  | 0,6391            | 0,0575                       | 0,00001                  |  |  |
| Šířka lícní     | Samec   | 0,6997            | 0.2215                       | 0.00003                  |  |  |
| Sirka lichi     | Samice  | 0,1564            | 0,3315                       | 0,00002                  |  |  |
| Šířka očnicová  | Samec   | 0,4498            | 0.6945                       | 0.02020                  |  |  |
| Sirka Ochicova  | Samice  | 0,6359            | 0,6845                       | 0,02020                  |  |  |
| Šířka hřebene   | Samec   | 0,9136            | 0,6874                       | 0,00362                  |  |  |
| Sirka iliebelle | Samice  | 0,2745            | 0,0674                       | 0,00362                  |  |  |
| Délka čelisti   | Samec   | 0,2745            | 0.2021                       | 0.00001                  |  |  |
| Deika Celisti   | Samice  | 0,1496            | 0,3931                       | 0,00001                  |  |  |
| Šířka čelisti   | Samec   | 0,5350            | 0.6936                       | 0.00003                  |  |  |
|                 | Samice  | 0,0716            | 0,6836                       | 0,00003                  |  |  |

Žádný test normalitu nezamítl. Proto nebyl problém přistoupit k F-testům, které taktéž nezamítly nulové hypotézy o shodě rozptylů. Naproti tomu Každý T-test zamítl, že by se skupiny v daném lebečním rozměru shodovali v průměru.

Vyneseno do boxplotů, lze pozorovat rozdíly v polohách mezi klokany a klokanicemi.



# Modelování logistické regrese

#### PLNÝ MODEL

Cílem je předpovědět pohlaví jedince na základě ostatních spojitých proměnných. Nejprve byl sestrojen <u>plný (bez interakcí)</u> a <u>nulový model</u> a navzájem otestovány F-testem.

Plný model

| Člen            | Odhad   | Sm. Chyba | Statistika | P-hodnota | e <sup>Odhad</sup> |
|-----------------|---------|-----------|------------|-----------|--------------------|
| (Intercept)     | 308,270 | 254,481   | 1,2114     | 0,2258    |                    |
| Délka bazilární | -0,153  | 0,150     | -1,0261    | 0,3049    | 0,86               |
| Šířka lícní     | 0,062   | 0,058     | 1,0683     | 0,2854    | 1,06               |
| Šířka očnicová  | -0,944  | 0,660     | -1,4297    | 0,1528    | 0,39               |
| Šířka hřebene   | 0,348   | 0,236     | 1,4749     | 0,1402    | 1,42               |
| Délka čelisti   | 0,138   | 0,171     | 0,8053     | 0,4206    | 1,15               |
| Šířka čelisti   | -0,921  | 0,994     | -0,9271    | 0,3539    | 0,40               |

Dle tohoto modelu nejvíce zvyšuje šanci na to, že daná lebka bude samičí, kladný přírustek v šířce hřebene. Nejvíce ji snižuje kladný přírůstek v očnicové šířce.

Nicméně všechny dílčí Waldovy statistiky se realizovali mimo kritický obor, tzn. v absolutní hodnotě do 1,96. Takže žádný člen dle nich není významný.

Plný model byl porovnán s nulovým. Dle p-hodnoty (2,68e-08) je významný oproti modelu konstanty.

#### STEPWISE PROCEDURY

Jak dopředné, tak zpětné <u>stepwise procedury</u> dospěly k modelu o třech členech bez interakcí: **Bazilární délce, Očnicové šířce a šířce hřebene**. P-hodnoty dílčích Waldových statistik se alespoň přiblížili k hranici 0,05.

Stepwise (pod)model

| Člen            | Odhad  | Sm. Chyba | Statistika | P-hodnota | e <sup>Odhad</sup> |
|-----------------|--------|-----------|------------|-----------|--------------------|
| (Intercept)     | 85,193 | 46,639    | 1,8267     | 0,0678    |                    |
| Délka bazilární | -0,015 | 0,011     | -1,4051    | 0,1600    | 0,99               |
| Šířka očnicová  | -0,356 | 0,195     | -1,8300    | 0,0673    | 0,70               |
| Šířka hřebene   | 0,153  | 0,084     | 1,8274     | 0,0676    | 1,16               |

Trendy jsou podobné jako v plném modelu (až na přesnou hodnotu koeficientů).

Pro připomenutí, v datech je 18 samců a 21 samic klokanů.... Pomocí <u>for-cyklu byly zjištěny</u> různá kritéria informující o vhodnosti modelů.

| _  |       |       |       |    |     |   |
|----|-------|-------|-------|----|-----|---|
| Тэ | bulka | Crove | 1 ání | ma | dol | ľ |
|    |       |       |       |    |     |   |

|                   |                            |       |          | ι                | Určení dle modelu v 4-polní tabulce |                         |                         |                    |       |
|-------------------|----------------------------|-------|----------|------------------|-------------------------------------|-------------------------|-------------------------|--------------------|-------|
| Model             | Nagelkerkeho<br>koeficient | AIC   | Deviance | Samci<br>správně | Samice<br>správně                   | Samec<br>jako<br>Samice | Samice<br>jako<br>Samec | Úspěch<br>zařazení | AUC   |
| Stepwise podmodel | 0,8925                     | 18,82 | 10,82    | 16               | 21                                  | 2                       | 0                       | 94,87 %            | 0,984 |
| Plný<br>model     | 0,9275                     | 21,61 | 7,62     | 17               | 20                                  | 1                       | 1                       | 94,87 %            | 0,995 |

Jelikož se v obou případech špatně určili celkem dva klokaní jedinci špatně je úspěšnost rozřazení stejná. Pro plný model mluví Nagelkerkeho koeficient (vysvětluje mírně více variability) a hodnota AUC, která je ale v obou případech výborná. Deviance je z teorie nižší. Pro stepwise podmodel hovoří Akaikovo kritérium.

ROC křivky se příliš neliší, ale jednoduší stepwise model má přeci jen menší plochu pod křivkou.



V následujících <u>proložených logistických funkcích</u> lze pozorovat, že plný model prohodil dva jedince a stepwise model určil dva samce jako samice. Také obor linkovacího skóre na ose x se liší – u stepwise modelu je menší.



Dále byly vytvořeny grafy, které vynášejí pravděpodobnost, že jedinec je samice <u>vůči hodnotám jednotlivých lebečních rozměrů u zkoumaných modelů</u>. Označeny jsou špatně určení jedinci (tj. 2. a 28., 2. a 9. pozorování). Za povšimnutí stojí jak jsou vůči sobě postavené mraky množin bodů a srovnat s boxploty.



Dále byl ještě proveden <u>ANOVA F-test těchto dvou modelů</u>. Jeho p-hodnota vyšla 0,3608 a tedy nezamítá hypotézu, že by se modely lišily – z hlediska deviancí není stepwise model lepší jak plný model.

Jelikož mezi modely není drastický rozdíl v kritériích pro vhodnost, zvolil bych radši jednodušší stepwise model (tedy dle Akaikova kritéria). Je to praktičtější, vzhledem k tomu, že nemusím měřit všechno (a tím i chybovat) a myslím, že si to můžu dovolit i vzhledem k tomu, že v modelu neuvažuji interakce.

Pomocí kódu byly spočteny poměry šancí a konfidenční intervaly do následující tabulky:

Tabulky poměrů šancí s Cl

|            |                   | Délka<br>bazilární | Šířka lícní | Šířka<br>očnicová | Šířka<br>hřebene | Délka<br>čelisti | Šířka<br>čelisti |
|------------|-------------------|--------------------|-------------|-------------------|------------------|------------------|------------------|
| e m.       | Odhad OR          | 0,99               |             | 0,70              | 1,16             |                  |                  |
| Stepwise   | CI pro OR (97,5%) | 9,96               |             | 1,69              | 4,70             |                  |                  |
| Ste        | CI pro OR (2,5%)  | 0,10               |             | 0,29              | 0,29             |                  |                  |
| odel       | Odhad OR          | 0,86               | 1,06        | 0,39              | 1,42             | 1,15             | 0,40             |
| Plný model | CI pro OR (97,5%) | 2,46               | 5,20        | 0,27              | 2,96             | 3,02             | 0,06             |
| Plr        | CI pro OR (2,5%)  | 0,30               | 0,22        | 0,56              | 0,68             | 0,44             | 2,56             |

Šance na to, že daná lebka bude samičí se zvyšuje 1,16-krát s dalším každým "milimetrem" šířky hřebene a zmenšuje s koeficientem 0,70 každým "milimetrem" očnicové šířky a s koeficientem 0,99 s každým "milimetrem" bazilární délky. Samice mají v průměru širší hřeben a kratší očnicovou šířku a bazilární délku.

Pokud bych použil plný model bude pravděpodobnost na ženu stoupat s každým "milimetrem":

- šířky hřebene 1,42-krát,
- délky čelisti 1,15-krát,
- lícní šířky 1,06 krát,

a klesat s každým "milimetrem":

- očnicové šířky 0,39 krát,
- šířky čelisti 0,4-krát,
- a bazilární délky 0,86-krát.

#### NAHRÁNÍ KNIHOVEN A KONSTANT

```
"GGally", "rsq", "ROCR", "clipr", "broom")
installed_libs <- libs %in% rownames(installed.packages())</pre>
if (any(installed libs == F)) {install.packages(libs[!installed libs])}
invisible(lapply(libs, library, character.only = T)); rm(libs, installed libs)
MOTIV <- theme(plot.background = element_rect(fill = "#dfebec"),
                  plot.title = element text(size = 20, face = "bold", vjust = 2),
                  plot.subtitle = element_text(size = 10),
                  axis.line = element_line(colour="black", linewidth = 0.6),
axis.ticks = element_line(colour="black", linewidth = 0.6),
panel.grid.major = element_line(colour="grey70", linewidth = 0.2),
panel.grid.minor = element_line(colour="grey70", linewidth = 0.2,
                  plot.margin=unit(c(5,5,5,5),"mm"),
panel.background = element_rect(fill = "white"),
                   legend.position = "right",)
POHLAVI <- c("Samice" = "#F96A93",
REV VARIABLES <- setNames (names (VARIABLES), VARIABLES)
```

#### NAHRÁNÍ DAT, VYTVOŘENÍ DATOVÝCH DABULEK

#### POPISNÁ STATISTIKA SKUPIN

```
Popis <- dfL |>
  group by(`Pohlaví`, Promenna) |>
  dplyr::summarise(`Směrodatná odchylka` = sd(Hodnoty),
                    `Průměr` = mean(Hodnoty),
Pocet = length(Hodnoty))
Popisy <- Popis |> split(f = Popis$`Pohlaví`)
Popisy$Samec
## # A tibble: 6 x 5
## # Groups:
               Pohlaví [1]
                              `Směrodatná odchylka` Průměr Pocet
   Pohlaví Promenna
##
                                              -
<dbl> <dbl> <int>
##
    <fct> <fct>
## 1 Samec Délka bazilární
                                              147.
                                                    1594.
                                                              18
                                                      1362.
## 2 Samec Délka čelisti
                                             120.
                                                               18
## 3 Samec
             Šířka čelisti
                                               8.98
                                                      155.
                                                               18
## 4 Samec
             Šířka hřebene
                                               31.5
                                                       130.
                                                               18
## 5 Samec
            Šířka lícní
                                               65.6
                                                       958.
                                                               18
            Šířka očnicová
## 6 Samec
                                               18.8
                                                       247.
                                                               18
Popisy$Samice
## # A tibble: 6 x 5
## # Groups: Pohlaví [1]
                              `Směrodatná odchylka` Průměr Pocet
   Pohlaví Promenna
##
                                              <dbl> <dbl> <int>
##
    <fct> <fct>
## 1 Samice Délka bazilární
                                               93.8 1395. 21
## 2 Samice Délka čelisti
## 3 Samice Šířka čelisti
## 4 Samice Šířka hřebene
                                               98.1
                                                     1185.
                                                               21
                                               9.92
                                                       140.
                                                               21
                                               28.7
                                                       159.
                                                               21
## 5 Samice Šířka lícní
                                                       866.
                                                               21
                                               52.3
## 6 Samice Šířka očnicová
                                               17.1
                                                       233.
                                                               21
```

#### VZTAHY MEZI POHLAVÍMI – MATICOVÝ GRAF

```
matgraf <- ggpairs(data=dfW, switch="both",</pre>
       mapping = aes(color=`Pohlaví`),
       upper = list(combo = wrap("box_no_facet", alpha=0.5),
                    continuous = wrap("cor", size=4, alignPercent=0.6)),
  theme_stata(base_size = 8) +
       colour_manual(values = POHLAVI) +
  scale_fill_manual(values = POHLAVI) +
plots = list()
for (i in 1:7) {
 plots <- c(plots, lapply(2:matgraf$ncol, function(j) getPlot(matgraf, i=i, j = j)))</pre>
ggmatrix (plots,
        ncol=matgraf$ncol-1,
        xAxisLabels = matgraf$xAxisLabels[2:matgraf$ncol],
        yAxisLabels = matgraf$yAxisLabels) +
  labs(x = "", y = "", title = "Maticový graf"
```

```
subtitle = "Pohlaví klokanů a rozměry lebek")+
theme(plot.background = element_rect(fill = "#dfebec"),
    strip.background = element_rect(colour = "black", fill = "#bcd3dc"),
    strip.text = element_text(face = "bold", size = 9),
    plot.title = element_text(size = 20, face = "bold", vjust = 2),
    legend.position = "bottom",
    axis.text.y = element_text(angle = 0),
    plot.subtitle = element_text(size = 10))
```

#### VZTAHY MEZI POHLAVÍMI – OO PLOTY

#### VZTAHY MEZI POHLAVÍMI- BOXPLOTY

#### T-TESTY A JEJICH PŘEDPOKLADY

#### PLNÝ MODEL

```
full = formula(`Pohlaví` ~ `Délka bazilární` +
                 `Šířka očnicová`+
                 `Šířka hřebene`
                 `Šířka čelisti`)
LRfull <- glm(formula = full, family = binomial(logit), data = dfW)
summary(LRfull)
## Call:
## glm(formula = full, family = binomial(logit), data = dfW)
##
## Deviance Residuals:
##
       Min
                  1Q
                         Median
                                        3Q
                                                 Max
## -1.91226 -0.00001 0.00000 0.00135
                                            1.31121
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
                                                    0.226
## (Intercept)
                     308.27026 254.48121
                                            1.211
## `Délka bazilární` -0.15345
                                  0.14955 -1.026
                                                       0.305
## `Šířka lícní`
                                   0.05773
                                            1.068
                      0.06167
                                                      0.285
## `Šířka očnicová`
                      -0.94356
                                  0.65998 -1.430
                                                      0.153
                                            1.475
## `Šířka hřebene`
                       0.34786
                                   0.23586
                                                       0 140
## `Délka čelisti`
                                             0.805
                       0.13797
                                   0.17132
                                                       0.421
## `Šířka čelisti`
                                   0.99361 -0.927
                      -0.92121
                                                       0.354
##
## (Dispersion parameter for binomial family taken to be 1)
##
\#\# Null deviance: 53.8345 on 38 degrees of freedom \#\# Residual deviance: 7.6172 on 32 degrees of freedom
## AIC: 21.617
## Number of Fisher Scoring iterations: 11
```

#### **NULOVÝ MODEL**

```
dataLR0 <- glm(formula = `Pohlaví` ~ 1, family = binomial(logit), data = dfW)
summary(dataLR0)
## Call:
## glm(formula = Pohlaví ~ 1, family = binomial(logit), data = dfW)
##
## Deviance Residuals:
## Min    1Q Median    3Q    Max
## -1.244    -1.244    1.113    1.113    1.113</pre>
```

```
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1542 0.3212 0.48 0.631
##
## (Dispersion parameter for binomial family taken to be 1)
##
   Null deviance: 53.834 on 38 degrees of freedom
## Residual deviance: 53.834 on 38 degrees of freedom
## AIC: 55.834
##
## Number of Fisher Scoring iterations: 3
```

#### SROVNÁNÍ PLNÝ MODEL – NULOVÝ MODEL

#### STEPWISE METODY MODELOVÁNÍ

```
stepBack <- step(glm(formula = full, family=binomial(logit), data=dfW),</pre>
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Start: AIC=21.62
## Pohlaví ~ `Délka bazilární` + `Šířka lícní` + `Šířka očnicová` +
##
       `Šířka hřebene` + `Délka čelisti` + `Šířka čelisti`
##
                       Df Deviance
## - `Délka čelisti
                       1
                           8.760 20.760
## - `Šířka lícní`
                            9.086 21.086
                       1
## - `Šířka čelisti`
                           9.254 21.254
                       1
## <none>
                            7.617 21.617
## - `Délka bazilární` 1
                          10.265 22.265
## - `Šířka hřebene`
                       1
                           23.237 35.237
## - `Šířka očnicová`
                       1
                           31.720 43.720
##
## Step: AIC=20.76
## Pohlaví ~ `Délka bazilární` + `Šířka lícní` + `Šířka očnicová` +
## `Šířka hřebene` + `Šířka čelisti`
                       Df Deviance
##
                           9.272 19.272
## - `Šířka čelisti`
                       1
## <none>
                            8.760 20.760
## - `Šířka lícní`
                       1
                          10.772 20.772
## - `Délka bazilární` 1
                           11.239 21.239
## -
     `Šířka hřebene`
                       1
                           23.801 33.801
## - `Šířka očnicová`
                          32.736 42.736
                       1
##
## Step: AIC=19.27
## Pohlaví ~ `Délka bazilární` + `Šířka lícní` + `Šířka očnicová` + `Šířka hřebene`
##
                       Df Deviance AIC
## - `Šířka lícní
                          10.824 18.824
                            9.272 19.272
## <none>
## - `Délka bazilární` 1
                          12.425 20.425
## - `Šířka hřebene`
                      1 24.536 32.536
## - `Šířka očnicová`
                       1 32.783 40.783
##
## Step: AIC=18.82
## Pohlaví ~ `Délka bazilární` + `Šířka očnicová` + `Šířka hřebene`
##
                      Df Deviance
```

```
## <none>
                                  10.824 18.824
## - `Délka bazilární` 1 13.354 19.354
## - `Šířka hřebene` 1 24.571 30.571
## - `Šířka očnicová` 1 33.446 39.446
## - `Sîřka očnicovà 1 33.446 39.446

stepForw <- step(glm(formula = `Pohlavî` ~ 1, family=binomial(logit), data=dfW),

scope = ~ `Délka bazilárnî` + `Šířka lícnî` + `Šířka očnicová`+

`Šířka hřebene` + `Délka čelisti` + `Šířka čelisti`,
## Start: AIC=55.83
## Pohlaví ~ 1
                             Df Deviance
## + `Délka bazilární` 1 34.458 38.458
## + `Délka čelisti`
## + `Šířka lícní`
                            1 34.920 38.920
                             1 35.371 39.371
## + `Šířka čelisti`
                              1
                                   36.604 40.604
## + `Šířka hřebene` 1 44.780 48.780
## + `Šířka očnicová` 1 47.974 51.974
## <none>
                                  53.834 55.834
##
## Step: AIC=38.46
## Pohlaví ~ `Délka bazilární`
                           Df Deviance
## + `Šířka očnicová` 1 24.571 30.571
                                 34.458 38.458
## <none>
                                33.446 39.446
33.871 39.871
## + `Šířka hřebene`
                            1
## + `Šířka čelisti`
                            1
## + `Šířka lícní`
## + `Šířka lícní` 1 34.181 40.181
## + `Délka čelisti` 1 34.448 40.448
##
## Step: AIC=30.57
## Pohlaví ~ `Délka bazilární` + `Šířka očnicová`
## Df Deviance AIC
## + `Šířka hřebene` 1 10.824 18.824
## <none>
                                24.571 30.571
## + `Délka čelisti` 1 23.773 31.774
## + `Šířka čelisti` 1 23.824 31.824
## + `Šířka lícní` 1 24.536 32.536
##
## Step: AIC=18.82
## Pohlaví ~ `Délka bazilární` + `Šířka očnicová` + `Šířka hřebene`
                                           AIC
                        Df Deviance
## <none>
                               10.8244 18.824
## + `Šířka lícní`
                               9.2724 19.272
## + `Délka čelisti` 1 10.3159 20.316
## + <u>`Šířka čelisti` 1 10.7717 20.772</u>
stepBoth <- step(glm(formula = full, family=binomial(logit), data=dfW),</pre>
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Start: AIC=21.62
## Pohlaví ~ `Délka bazilární` + `Šířka lícní` + `Šířka očnicová` +
## `Šířka hřebene` + `Délka čelisti` + `Šířka čelisti`
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
##
                             Df Deviance AIC
                             1 8.760 20.760
## - `Délka čelisti`
## - `Šířka lícní`
                             1
                                   9.086 21.086
## - `Šířka čelisti`
                             1 9.254 21.254
## <none>
                                    7.617 21.617
## - `Délka bazilární` 1 10.265 22.265
## - `Šířka hřebene` 1 23.237 35.237
## - `Šířka očnicová` 1 31.720 43.720
##
## Step: AIC=20.76
## Pohlaví ~ `Délka bazilární` + `Šířka lícní` + `Šířka očnicová` +
        `Šířka hřebene` + `Šířka čelisti`
##
                             Df Deviance AIC
##
                             1 9.272 19.272
## - `Šířka čelisti`
## <none>
                                   8.760 20.760
## - `Šířka lícní` 1 10.772 20.772
```

```
## - `Délka bazilární` 1
                           11.239 21.239
## + `Délka čelisti`
## - `Šířka hřebene`
                      1
                            7.617 21.617
                        1
                            23.801 33.801
                       1
## - `Šířka očnicová`
                            32.736 42.736
##
## Step: AIC=19.27
## Pohlaví ~ `Délka bazilární` + `Šířka lícní` + `Šířka očnicová` + `Šířka hřebene`
                                    AIC
##
                       Df Deviance
## - `Šířka lícní`
                          10.824 18.824
## <none>
                            9.272 19.272
## - `Délka bazilární`
                           12.425 20.425
                        1
## + `Šířka čelisti`
                           8.760 20.760
                        1
                            9.254 21.254
## + `Délka čelisti`
                        1
## - `Šířka hřebene`
                        1
                            24.536 32.536
## - `Šířka očnicová`
                        1
                           32.783 40.783
##
## Step: AIC=18.82
## Pohlaví ~ `Délka bazilární` + `Šířka očnicová` + `Šířka hřebene`
                                    AIC
##
                       Df Deviance
## <none>
                            10.824 18.824
## + `Šířka lícní`
                            9.272 19.272
                        1
## - `Délka bazilární` 1
                          13.354 19.354
## + `Délka čelisti`
                       1 10.316 20.316
## + `Šířka čelisti`
                        1
                            10.772 20.772
## - `Šířka hřebene`
                        1
                            24.571 30.571
## - `Šířka očnicová`
                        1
                            33.446 39.446
stepBoth$coefficients == stepBack$coefficients &
  stepBack$coefficients == stepForw$coefficients &
 stepBoth$coefficients == stepForw$coefficients
                                                            `Šířka hřebene
        (Intercept) `Délka bazilární`
                                         `Šířka očnicová`
##
##
                TRUE
                                  TRUE
summary(stepBack)
## Call:
## glm(formula = Pohlaví ~ `Délka bazilární` + `Šířka očnicová` +
       `Šířka hřebene`, family = binomial(logit), data = dfW)
##
##
## Deviance Residuals:
##
      Min 10
                        Median
                                      30
                                                Max
## -1.82697 -0.05102 0.00189 0.12860
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     85.19341 46.63912
                                          1.827 0.0678 .
## `Délka bazilární` -0.01490
                                0.01061 -1.405
                                                   0.1600
## `Šířka očnicová` -0.35594
                                 0.19451 -1.830
                                                   0.0673 .
                                                  0.0676 .
## `Šířka hřebene`
                     0.15261
                                0.08351 1.827
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
       Null deviance: 53.834 on 38 degrees of freedom
## Residual deviance: 10.824 on 35 degrees of freedom
## AIC: 18.824
## Number of Fisher Scoring iterations: 9
stepBack |> tidy() |> write_clip()
```

#### SROVNÁVÁNÍ MODELŮ

```
Srovnani <- list()
score_data <- list()
rocGrafy <- list()
lm_data <- list()

i = 1
modely = c(Stewise = list(stepBack), LRfull = list(LRfull))
for (each in modely){
   jmeno = c("Stepwise model", "Plný model")[i]

fitted <- data.frame(Predpoved = predict(each, newdata=dfW, type="response")) |>
```

```
mutate(Binarne = if else(Predpoved > 0.5, "SamiceM", "SamecM") |> as.factor())
  KontinTab <- table(fitted$Binarne, dfW$`Pohlavi`)</pre>
  auc <- performance(prediction(fitted$Predpoved,</pre>
                Model = jmeno,
                Nagelkerke = rsq(each, type='n'),
                McFadden = rsq(each, type='kl'),
CoxSnell = rsq(each, type='lr'),
                AICval = AIC(each),
                Deviance = each$deviance,
                OKSamec = c(KontinTab["SamecM", "Samec"]),
OKSamice = c(KontinTab["SamiceM", "Samice"]),
                RealSamecJakoSamiceM = c(KontinTab["SamiceM", "Samec"]),
RealSamiceJakoSamecM = c(KontinTab["SamecM", "Samice"]),
                SpravneUrcene = c(sum(diag(KontinTab)) / sum(KontinTab)),
                AUC = auc)
  score_data[[i]] <- data.frame(link = predict(each, dfW, type="link"),</pre>
                               response = fitted$Predpoved, Pohlaví = dfW$Pohlaví,
                               m = c(jmeno), stringsAsFactors=FALSE)
  prediktory <- names (coefficients (each)) [-1] |> str remove all("`")
  lm data[[i]] <- data.frame(response = fitted$Predpoved,</pre>
    m = c(jmeno)) |>
rownames_to_column("ID") |>
    mutate(Binarne = if_else(response > 0.5, "Samice", "Samec") |> as.factor()) |>
    bind_cols(dfW[c("Pohlavi", prediktory)]) |>
pivot_longer(names_to = "Promenna", values_to = "Hodnoty", cols = -c(1:5)) |>
    mutate(Prohozene = case when (Pohlaví != Binarne ~ ID, .default = c(""))) |>
    filter(Promenna %in% prediktory)
  roc <- performance(prediction(fitted$Predpoved,</pre>
                                     as.numeric(dfW$`Pohlavi`)), "tpr", "fpr")
  rocGrafy[[i]] <- data.frame(OsaX = c(roc@x.values[[1]]),</pre>
                             OsaY = c(roc@y.values[[1]]),
                             Model = c(jmeno))
score data <- do.call(rbind, score data); rocGrafy <- do.call(rbind, rocGrafy);</pre>
Srovnani <- do.call(rbind, Srovnani)
Srovnani |> write clip()
Srovnani
```

#### **ROC GRAFY**

```
rocGrafy |>
  ggplot(aes(x = OsaX, y = OsaY, color = Model)) +
  geom_line(linewidth = 0.8) +
  facet_wrap(~Model) +
  MOTIV +
  coord_equal() +
  labs(title = "ROC křivky",
        y = "Senzitivita",
        x = "1 - specificita")
```

#### LOGISTICKÉ PROLOŽENÍ

#### PARCIÁLNÍ GRAFY MODELU

#### ANOVA SROVNÁNÍ MODELŮ

#### VÝBĚR MODELU

```
stws <- list()
stws[[1]] <- coef(stepBack) |> exp()
stws[[2]] <- exp(coef(stepBack) - qnorm(0.975 * summary(stepBack)$coefficients[,2]))
stws[[3]] <- exp(coef(stepBack) + qnorm(0.975 * summary(stepBack)$coefficients[,2]))
stws <- do.call(rbind, stws)
stws |> write_clip()

fl <- list()
fl[[1]] <- coef(LRfull) |> exp()
fl[[2]] <- exp(coef(LRfull) - qnorm(0.975 * summary(LRfull)$coefficients[,2]))
fl[[3]] <- exp(coef(LRfull) + qnorm(0.975 * summary(LRfull)$coefficients[,2]))
fl <- do.call(rbind, fl)
fl |> write_clip()
```