第二章基本放大电路(3)

2.5 晶体管单管放大电路的三种基本接法

2.5.1 共 集 放 大 电 路

一、电路的组成

信号从基极输入,从发射极输出

基本共集放大电路

2.5.1 共 集 放 大 电 路

二、静态工作点

由基极回路求得静态基极电流

$$I_{BQ} = \frac{V_{CC} - U_{BEQ}}{R_b + (1 + \beta)R_e}$$

$$I_{\rm CO} \approx \beta I_{\rm BO}$$

$$U_{\text{CEQ}} = V_{\text{CC}} - I_{\text{EQ}} R_{\text{e}}$$
$$\approx V_{\text{CC}} - I_{\text{CQ}} R_{\text{e}}$$

(a) 电路图 图 2.5.1 共集电极放大电路

2.5.1 共 集 放 大 电 路

三、电流放大倍数

$$\dot{I}_{i} = \dot{I}_{b}$$
 $\dot{I}_{o} = -\dot{I}_{e}$ $\dot{A}_{i} = \frac{\dot{I}_{o}}{\dot{I}_{i}} = -\frac{\dot{I}_{e}}{\dot{I}_{b}} = -(1 + \beta)$

$$\dot{U}_{\rm o} = \dot{I}_{\rm e} R_{\rm e}' = (1 + \beta) \dot{I}_{\rm b} R_{\rm e}'$$

$$\dot{U}_{i} = \dot{I}_{b}r_{be} + \dot{I}_{e}R'_{e} = \dot{I}_{b}r_{be} + (1+\beta)\dot{I}_{b}R'_{e}$$

$$\dot{A}_{u} = \frac{U_{o}}{\dot{U}_{i}} = \frac{(1+\beta)R'_{e}}{r_{be} + (1+\beta)R'_{e}}$$

$$R_{\rm e}' = R_{\rm e} // R_{\rm L}$$

2.5.1 共寨放大电路

结论: 电压放大倍数恒小于 1, 而接近 1, 且输出电压与输入电压同相, 又称射极跟随器。

五、输入电阻

$$R_{\rm i} = R_{\rm b} // r_{\rm be}$$

$$R_{\rm i} = R_b / [r_{\rm be} + (1 + \beta)R_{\rm e}']$$

输入电阻较大

六、输出电阻

$$R_{\rm o} = R_{\rm e} / \frac{r_{\rm be} + R_{\rm s}'}{1 + \beta}$$
 $\sharp \ R_{\rm s}' = R_{\rm s} / / R_{\rm b}$

 R_S \dot{U}_i R_b $\beta \dot{I}_b$ R_e R_e R_L \dot{U}_C \dot{U}_S \dot{U}

 $R_{\rm o} = R_{\rm c}$

输出电阻低, 故带载能力比较强

图 2.5.4 共基极放大电路

 V_{EE} 保证发射结正偏; V_{CC} 保证集电结反偏;三极管工作在放大区。

实际电路采用一个电源 $V_{\rm CC}$,用 $R_{\rm b1}$ 、 $R_{\rm b2}$ 分压提供基极正偏电压。

一、静态工作点 $(I_{BO}, I_{CO}, U_{CEO})$

$$I_{\scriptscriptstyle \mathrm{EQ}} = rac{U_{\scriptscriptstyle \mathrm{BQ}} - U_{\scriptscriptstyle \mathrm{BEQ}}}{R_{\scriptscriptstyle \mathrm{e}}}$$

$$= \frac{1}{R_{\rm b1}} \left(\frac{R_{\rm b1}}{R_{\rm b1} + R_{\rm b2}} V_{\rm CC} - U_{\rm BEQ} \right)$$

$$\approx I_{\rm co}$$

$$I_{\mathrm{BQ}} = \frac{I_{\mathrm{EQ}}}{1 + \beta}$$

$$U_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{c}} - I_{\text{EQ}} R_{\text{e}}$$
$$\approx V_{\text{CC}} - I_{\text{CO}} (R_{\text{c}} + R_{\text{e}})$$

二、电流放大倍数

微变等效电路

由图可得:

$$\dot{I}_{\rm i} = -\dot{I}_{\rm e}$$
, $\dot{I}_{\rm o} = \dot{I}_{\rm c}$

所以

$$\dot{A}_i = \frac{\dot{I}_o}{\dot{I}_i} = -\frac{\dot{I}_c}{\dot{I}_e} = -\alpha$$

由于 α 小于 1 而近似等于 1 ,所以共 基极放大电路没有电流放大作用。

图 2.5.4(c) 共基极放大电路的

三、电压放大倍数

由微变等效电路可得

$$\dot{U}_{
m i} = -\dot{I}_{
m b}r_{
m be}$$
 $\dot{U}_{
m o} = -eta\dot{I}_{
m b}R_{
m L}'$ 所以 $\dot{A}_{
m u} = rac{\dot{U}_{
m o}}{\dot{U}_{
m i}} = rac{eta R_{
m L}'}{r_{
m be}}$

$$R'_{\scriptscriptstyle
m L} = R_{\scriptscriptstyle
m C} // R_{\scriptscriptstyle
m L}$$

$$\dot{A}_{V} = -\frac{\beta \cdot (R_{c} // R_{L})}{r_{be}}$$

共基极放大电路没有电流放大作用,但是具有电压放大作用。 电压放大倍数与共射电路相等,但没有负号,说明该电路输入、输出 信号同相位。

输入电阻

暂不考虑电阻 Re 的作用

$$R_{i} = \frac{\dot{U}_{i}}{\dot{I}_{i}} = \frac{-\dot{I}_{b}r_{be}}{-(1+\beta)\dot{I}_{b}} = \frac{r_{be}}{1+\beta}$$

如考虑电阻 R_e 的作用

$$R_{\rm i} = \frac{\dot{U}_{\rm i}}{\dot{I}_{\rm i}} = R_{\rm e} // \frac{r_{\rm be}}{1 + \beta}$$

五、输出电阻

$$R_0 = R_C$$

组态性能	共 射 组 态	共 集 组 态	共基组态
电	$R_{\rm b}$ $R_{\rm c}$ $+V_{\rm CC}$	$R_{\rm b}$ + $V_{\rm CC}$	<mark>+ " \</mark>
路	$\begin{array}{c c} C_1 \\ + \\ \dot{U}_i \\ \hline \end{array}$	$\begin{array}{c c} & C_2 \\ & \dot{U}_i \\ & R_e \\ & R_L \\ & \dot{U}_O \\ & \vdots $	$ \begin{array}{c c} \dot{U}_{i} & R_{e} \\ \hline \dot{C}_{b} & R_{b1} \\ \hline \end{array} $ $ \begin{array}{c c} R_{b2} & R_{L} & \dot{U}_{O} \\ \hline R_{b1} & V_{CC} \\ \hline \end{array} $
\dot{A}_i	大 <i>β</i>	$+$ $-(1+\beta)$	/J\ - α
	大	小	大(数值同共射,但同相)
\dot{A}_u	$-rac{oldsymbol{eta R'_L}}{oldsymbol{r_{be}}}$	$\frac{(1+\beta)R'_{\rm e}}{r_{\rm be}+(1+\beta)R'_{\rm e}}$	$rac{oldsymbol{eta R_{ m L}'}}{oldsymbol{r_{ m be}}}$

组态性能	共射组态	共集组态	共 基 组 态
	中	大	/]\
$R_{\rm i}$	<i>I</i> be	$r_{\text{be}} + (1 + \beta)R_e$	$\frac{r_{\text{be}}}{1 + \beta}$
	大	小	大
$R_{\rm o}$	R_{c}	$R_{\rm e} // \frac{r_{\rm be} + R_{\rm s}'}{1 + \beta}$	R_c
频率 响应	差	较好	好

例 如图属于何种组态? 其输出电压的波形是否正确? 若有错,请改正。

解 共集电极组态

不正确。

共集电极电路特点:

- ◆ 电压增益小于1但接近于1, U₀与U_i同相。
- ◆ 输入电阻大,对电压信号源衰减小
- ◆ 输出电阻小,带负载能力强

例:电路如图所示,BJT的电流放大系数为 β ,输入电阻为 r_{be} ,略去了偏置电路。试求下列三种情况下的电压增益 A_v 、输入电阻 R_i 和输出电阻 R_0

- ① v_{s2} =0,从集电极输出;
- ②v_{s1}=0,从集电极输出;
- ③ v_{s2} =0,从发射极输出。

解 ① 共发射极接法

$$\dot{A}_{V} = \frac{\dot{V}_{o}}{\dot{V}_{i}} = \frac{-\beta \cdot \dot{I}_{b} R_{c}}{\dot{I}_{b} [r_{be} + (1+\beta) R_{e}]} = -\frac{\beta \cdot R_{c}}{r_{be} + (1+\beta) R_{e}}$$

$$R_{\scriptscriptstyle \rm i} = \frac{\dot{V_{\scriptscriptstyle \rm i}}}{\dot{I}_{\scriptscriptstyle \rm i}} = r_{\scriptscriptstyle \rm be} + (1+\beta)R_{\scriptscriptstyle \rm e}$$

$$R_{\rm o} \approx R_{\rm c}$$

v_{s1}=0,从集电极输出

$$\dot{A}_{V} = \frac{\dot{V}_{o}}{\dot{V}_{i}} = \frac{-\beta \cdot \dot{I}_{b} R_{c}}{-\dot{I}_{b} [r_{be} + (1+\beta)R_{e}]} = \frac{\beta \cdot R_{c}}{r_{be} + (1+\beta)R_{e}} \qquad R_{i} = \frac{\dot{V}_{i}}{\dot{I}_{i}} = R_{e} + \frac{r_{be}}{1+\beta} \qquad R_{o} \approx R_{C}$$

$$R_{\rm i} = rac{\dot{V}_{\rm i}}{\dot{I}_{\rm i}} = R_{\rm e} + rac{r_{be}}{1+eta} \qquad R_{
m o} pprox R_{
m C}$$

$$\dot{A}_{V} = \frac{\dot{V}_{o}}{\dot{V}_{i}} = \frac{(1+\beta) \cdot \dot{I}_{b} R_{e}}{\dot{I}_{b} [r_{be} + (1+\beta) R_{e}]} = \frac{(1+\beta) \cdot R_{e}}{r_{be} + (1+\beta) R_{e}}$$

$$R_{i} = \frac{\dot{V}_{i}}{\dot{I}_{i}} = r_{be} + (1+\beta) R_{e} \qquad R_{o} = \frac{R_{e}}{1+\beta} \frac{r_{be}}{1+\beta}$$

2.6 晶体管基本放大电路的派生电路

2.6.1 复合管放大电路

复合管的组成: 多只管子合理连接等效成一只管子。

目的: 增大β, 减小前级驱动电流, 改变管子的类型。

2.6 晶体管基本放大电路的派生电路

2.6.1 复合管放大电路

复合管的组成: 多只管子合理连接等效成一只管子。

目的: 增大β, 减小前级驱动电流, 改变管子的类型。

$$i_{\rm E} = i_{\rm B1}(1+\beta_1)(1+\beta_2)$$

$$\beta \approx \beta_1 \beta_2$$

iB方向决定复合管的类型。

2.6.1 复合管放大电路

构成复合管时注意事项

- (1) 前后两个三极管连接关系上,应保证前级输出电流与后级输入电流 实际方向一致。
- (2) 外加电压的极性应保证前后两个管子均为发射结正偏,集电结反偏, 使管子工作在放大区。

2.6.1 复合管放大电路

图 2.6.1 复合管

2.6 晶体管基本放大电路的派生电路

2.6.1 复合管放大电路

讨论一: 判断下列各图是否能组成复合

在合适的外加电压下,每只管子的电流都有合适的通路,才能组成复合管。

2.6 晶体管基本放大电路的派生电路

2.6.1 复合管放大电路

对论二:图示电路的 $R_i=?R_o=?$

$$R_{o} = R_{e} / \frac{r_{be2} + \frac{r_{be1} + R_{b} / R_{s}}{1 + \beta_{1}}}{1 + \beta_{2}}$$

$$R_{\rm i} = R_{\rm b} \ /\!\!/ \{r_{\rm be1} + (1 + \beta_1)[r_{\rm be2} + (1 + \beta_2)(R_{\rm e} \ /\!\!/ R_{\rm L})]\}$$

2.6.1 复合管放大电路

- 1. 两个同类型的三极管组成复合管,其类型与原来相同。复合管的 $\beta \approx \beta_1 \beta_2$, 复合管的 $r_{be} = r_{be1} + (1+\beta_1) r_{be2}$ 。
- 2. 两个不同类型的三极管组成复合管, 其类型与前级三极管相同。复合管 的 $\beta \approx \beta_1 \beta_2$,复合管的 $r_{\text{be}} = r_{\text{be}1}$ 。
- 3. 在集成运放中,复合管不仅用于中间级,也常用于输入级 和输出级。

可以获得很高的电流放大系数 β ;

优点 〈提高中间级的输入电阻;

提高了集成运放总的电压放大倍数。

2.7 场效应管放大电路

场效应管是电压控制电流元件,具有高输入阻抗。

2.7.1 场效应管放大电路的三种接法

图2.7.1场效应管放大电路的三种接法 (以N沟道结型场效应管为例)

- (a) 共源电路 (b) 共漏电路 (c) 共栅电路

一、基本共源放大电路

与双极型三极管对应关系

$$b \rightarrow G$$
, $e \rightarrow S$, $c \rightarrow D$

为了使场效应管工作 在恒流区实现放大作 用,应满足:

$$u_{\rm GS} > U_{\rm T}$$

$$u_{\rm DS} > u_{\rm GS} - U_{\rm T}$$

 $(U_{\mathrm{T}}$: 开启电压)

图 2.7.2 基本共源放大电路

(N 沟道增强型 MOS 管组成的放大电路)

静态分析 $- U_{GSQ} \setminus I_{DQ} U_{DSQ}$ 两种方法 $\left\{ \begin{array}{ll} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{array} \right\}$ 图解法

(一) 近似估算法

MOS 管栅极电流

为零,当 $u_I = 0$ 时

$$U_{\mathrm{GSQ}} = V_{\mathrm{GG}}$$

而 i_D 与 u_{GS} 之间近似满足

式中 I_{DO} 为 $u_{GS} = 2U_T$ 时的值。

图 2.7.2 基本共源放大电路 则静态漏极电流为

$$I_{DQ} = I_{DO} \left(\frac{U_{GSQ}}{U_{T}} - 1 \right)^{2}$$

$$U_{DSQ} = V_{DD} - I_{DQ} R_{D}$$

(二)图解法

利用式 $u_{DS} = V_{DD} - i_{D}R_{D}$ 画出直流负载线。

图中 I_{DQ} 、 U_{DSQ} 即为静态值。

图 2.7.3 图解法求基本共源放 大电路的 静态工作点

二、自给偏压电路

Q点:
$$U_{
m GSQ}$$
、 $I_{
m DQ}$ 、 $U_{
m DSQ}$

已知 $U_{
m P}$ 或 $U_{
m GS}$ (Off)

$$\begin{cases} U_{\text{GSQ}} = -I_{\text{DQ}}R \\ U_{\text{DSQ}} = V_{\text{DD}} - I_{\text{DQ}}(R_{\text{d}} + R) \\ I_{\text{DQ}} = I_{\text{DSS}} \left(1 - \frac{U_{\text{GSQ}}}{U_{\text{D}}}\right)^{2} \end{cases}$$

可解出Q点的 $U_{GS\,Q}$ 、 I_{DQ} 、 U_{DSQ} 图2.7.4(a) JFET自给偏压共源电路

如知道FET的特性曲线,也可采用图解法。

耗尽型MOS管自给偏压共源电路的分析方法相同。

三、分压式偏置电路

(一)Q点近似估算法

根据输入回路列方程

$$\begin{cases} U_{\text{GSQ}} = \frac{R_1}{R_1 + R_2} V_{\text{DD}} - I_{\text{DQ}} R_{\text{S}} \\ I_{\text{DQ}} = I_{\text{DO}} (\frac{U_{\text{GSQ}}}{U_{\text{T}}} - 1)^2 \end{cases}$$

解联立方程求出 $U_{\rm GSQ}$ 和 $I_{\rm DQ}$ 。

列输出回路方程求 U_{DSQ}

$$U_{\rm DSQ} = V_{\rm DD} - I_{\rm DQ}(R_{\rm D} + R_{\rm S})$$

图2.7.5分压式偏置电路

将I_{DQ} 代入,求出U_{DSQ}

(二)图解法

由式
$$u_{GS} = U_{GQ} - i_D R_S$$

$$= \frac{R_1}{R_1 + R_2} V_{DD} - i_D R_S$$
 可做出一条直线,

另外, $i_{\rm D}$ 与 $u_{\rm GS}$ 之间满足转移特性曲线的规律,二者之间交点为静态工作点,确定 $U_{\rm GSO}$, $I_{\rm DO}$ 。

图 2.7.5 分压 式偏置电路

根据漏极回路方程

$$u_{\rm DS} = V_{\rm DD} - i_{\rm D}(R_{\rm D} + R_{\rm S})$$

在漏极特性曲线上做直流负载线, 与 $u_{GS} = U_{GSQ}$ 的交点确定 Q,由 Q 确定 U_{DSQ} 和 I_{DQ} 值。

2.7.3 场效应管放大电路的动态分析

一、场效应管的低频小信号等效模型

$$: i_{D} = f(u_{GS}, u_{DS})$$

in的全微分为

$$\mathbf{d}i_{D} = \frac{\partial i_{D}}{\partial u_{GS}}\bigg|_{U_{DS}} \mathbf{d}u_{GS} + \frac{\partial i_{D}}{\partial u_{DS}}\bigg|_{U_{GS}} \mathbf{d}u_{DS}$$

上式中定义:

2.7.3 场效应管放大电路的动态分析

如果输入正弦信号,则可用相量代替上式中的变量。

成为: $\dot{I}_{\rm d} = g_{\rm m}\dot{U}_{\rm gs} + \frac{1}{r_{\rm DS}}\dot{U}_{\rm dS}$

根据上式做等效电路如图所示。

由于没有栅极电流,所以栅源是悬空的。 $g_{\mathrm{m}}\dot{U}_{\mathrm{gs}}$ 是一个受控源。 MOS管的低频小信号等效模型

微变参数 $g_{\rm m}$ 和 $r_{\rm DS}$

- (1) 根据定义通过在特性曲线上作图方法中求得
- (2) 用求导的方法计算 $g_{\rm m}$

$$g_{\rm m} = \frac{di_{\rm D}}{du_{\rm GS}} = \frac{2I_{\rm DO}}{U_{\rm T}} (\frac{u_{\rm GS}}{U_{\rm T}} - 1) = \frac{2}{U_{\rm T}} \sqrt{I_{\rm DO}i_{\rm D}}$$
 $i_{\rm D} = I_{\rm DO} (\frac{u_{\rm GS}}{U_{\rm T}} - 1)^2$

在Q点附近,可用 I_{DO} 表示上式中 i_{D_1} 则

$$g_{\rm m} = \frac{2}{U_{\rm T}} \sqrt{I_{\rm DO} I_{\rm DQ}}$$

一般 $g_{\rm m}$ 约为 0.1 至 20 mS。 $r_{\rm DS}$ 为几百千欧的数量级。 当 $R_{\rm D}$ 比 $r_{\rm DS}$ 小得多时,可认为等效电路的 $r_{\rm DS}$ 开路。

二、基本共源放大电路的动态分析

1.基本共源放大电路动态分析

将
$$r_{\rm DS}$$
 开路

$$\dot{U}_{\rm i} = \dot{U}_{\rm gs}$$

而

$$\dot{U}_{\rm o} = -\dot{I}_{\rm d}R_{\rm D} = -g_{\rm m}\dot{U}_{\rm gs}R_{\rm D}$$

$$\dot{A}_{u} = \frac{U_{o}}{\dot{U}_{i}} = -g_{m}R_{D}$$

输出电阻

$$R_{\rm o} = R_{\rm D}$$

MOS 管输入电阻高达 $10^9 \Omega$ 。

基本共源放大电路的等效电路

2.分压式偏置电路的动态分析

等效电路入图所示 由图可知

$$\dot{U}_{o} = -\dot{I}_{d}R'_{D} = -g_{m}\dot{U}_{gs}R'_{D}$$
$$R'_{D} = R_{D} // R_{L}$$

电压放大倍数

$$\dot{A}_{u} = \frac{U_{o}}{\dot{U}_{i}} = -g_{m}R_{D}'$$

输入、输出电阻分别为

$$R_{i} = R_{G} + (R_{1} // R_{2})$$

$$R_{_{\mathrm{o}}} = R_{_{\mathrm{D}}}$$

分压式偏置电路等效电路

三、基本共漏放大电路

——源极输出器或源极跟随器

典型电路如右图所示。

1.静态分析

分析方法与"分压-自偏压 式共源电路"类似,可采 用估算法和图解法。

图 2.7.9基本共漏放大电路

2.动态分析

(1) 电压放大倍数

$$\dot{U}_{\mathrm{o}} = g_{\mathrm{m}} \dot{U}_{\mathrm{gs}} R_{\mathrm{s}}'$$
 $R_{\mathrm{s}}' = R_{\mathrm{s}} /\!/ R_{\mathrm{L}}$

微变等效电路 图 2.7.10

$$\dot{\boldsymbol{U}}_{\mathrm{i}} = \dot{\boldsymbol{U}}_{\mathrm{gs}} + \dot{\boldsymbol{U}}_{\mathrm{o}} = (1 + \boldsymbol{g}_{\mathrm{m}} \boldsymbol{R}_{\mathrm{s}}') \dot{\boldsymbol{U}}_{\mathrm{gs}}$$

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{g_{m}R'_{S}}{1 + g_{m}R'_{S}}$$

 $\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{g_{m}R'_{S}}{1 + g_{m}R'_{S}}$ $| \overrightarrow{D} \overrightarrow{U}, A_{u} < 1, \stackrel{\text{deg}}{=} g_{m}R'_{S} >> 1$ $| \overrightarrow{D} \overrightarrow{U}, A_{u} \approx 1.$

(2) 输入电阻

$$R_{\rm i} = R_{\rm G} + (R_1 /\!/ R_2)$$

(3) 输出电阻

在电路中,外加 \dot{U}_0 , 令 $\dot{U}_i = 0$, 并使 R_L 开路

$$\dot{I}_{\mathrm{o}} = \frac{\dot{U}_{\mathrm{o}}}{R_{\mathrm{S}}} - g_{\mathrm{m}}\dot{U}_{\mathrm{gs}}$$

因输入端短路,故

$$\dot{m{U}}_{\mathbf{gs}} = -\dot{m{U}}_{\mathbf{o}}$$

$$\dot{I}_{0} = \frac{\dot{U}_{0}}{R_{S}} + g_{m}\dot{U}_{0} = (\frac{1}{R_{S}} + g_{m})\dot{U}_{0}$$

所以

$$R_{\rm o} = \frac{\dot{U}_{\rm o}}{\dot{I}_{\rm o}} = \frac{1}{g_{\rm m} + \frac{1}{R_{\rm S}}} = \frac{1}{g_{\rm m}} //R_{\rm S}$$

实际工作中经常 使用的是共源、 共漏组态。

2.7.4 场效应管放大电路

- 1. 场效应管是电压控制元件;
- 2. 栅极几乎不取用电流,输入电阻非常高;
- 3. 一种极性的载流子导电,噪声小,受外界温度及辐射影响小;
- 4. 制造工艺简单,有利于大规模集成;
- 5. 存放管子应将栅源极短路,焊接时烙铁外壳应接地良好,防止漏电击穿管子;
- 6. 跨导较小,电压放大倍数一般比三极管低。