

Quad channel high-side driver with CurrentSense analog feedback for automotive applications

Datasheet - production data

Features

Max transient supply voltage	Vcc	40 V
Operating voltage range	Vcc	4 to 28 V
Typ. on-state resistance (per Ch)	Ron	50 mΩ
Current limitation (typ)	I _{LIMH}	27 A
Stand-by current (max)	I _{STBY}	0.5 μΑ

- Automotive qualified
- General
 - Quad channel smart high-side driver with CS analog feedback
 - Very low standby current
 - Compatible with 3 V and 5 V CMOS outputs
- CurrentSense diagnostic functions
 - Analog feedback of load current with high precision proportional current mirror
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication
 - OFF-state open-load detection
 - Output short to V_{CC} detection
 - Sense enable/disable
- Protections
 - Undervoltage shutdown
 - Overvoltage clamp
 - Load current limitation

- Self limiting of fast thermal transients
- Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin
- Loss of ground and loss of Vcc
- Reverse battery with external components
- Electrostatic discharge protection

Applications

- All types of Automotive resistive, inductive and capacitive loads
- Specially intended for Automotive Signal Lamps (up to P27W or SAE1156 or LED Rear Combinations)

Description

The device is a quad channel high-side driver manufactured using ST proprietary VIPower® M0-7 technology and housed in PowerSSO-16 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.

A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices.

Contents

1	Block d	iagram ar	nd pin description	5
2	Electric	al specific	cation	7
	2.1	-	maximum ratings	
	2.2		datad	
	2.3		ctrical characteristics	
	2.4	Waveforr	ns	16
	2.5	Electrical	characteristics curves	19
3	Protecti	ons		23
	3.1	Power lin	nitation	23
	3.2	Thermal	shutdown	23
	3.3	Current li	mitation	23
	3.4	Negative	voltage clamp	23
4	Applica	tion infor	mation	24
	4.1		tection network against reverse battery	
		4.1.1	Diode (DGND) in the ground line	
	4.2	Immunity	against transient electrical disturbances	25
	4.3		s protection	
	4.4	CS - ana	log current sense	26
		4.4.1	Principle of CurrentSense signal generation	27
		4.4.2	Short to VCC and OFF-state open-load detection	29
5	Maximu	ım demag	netization energy (VCC = 16 V)	31
6	Package	e and PCE	3 thermal data	32
	6.1	PowerSS	O-16 thermal data	32
7	Package	e informa	tion	35
	7.1	PowerSS	O-16 package information	35
	7.2		O-16 packing information	
	7.3	PowerSS	O-16 marking information	39
8	Order c	odes	-	40
0		n hiotom		11

VNQ7050AJ List of tables

List of tables

Table 1: Pin functions	5
Table 2: Suggested connections for unused and not connected pins	
Table 3: Absolute maximum ratings	
Table 4: Thermal data	
Table 5: Power section	8
Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified)	9
Table 7: Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C)	10
Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C)	10
Table 9: CurrentSense (7 V < VCC < 18 V; -40°C < Tj < 150°C)	11
Table 10: Truth table	15
Table 11: Current sense multiplexer addressing	16
Table 12: ISO 7637-2 - electrical transient conduction along supply line	
Table 13: CurrentSense pin levels in off-state	29
Table 14: PCB properties	
Table 15: Thermal parameters	
Table 16: PowerSSO-16 mechanical data	
Table 17: Reel dimensions	37
Table 18: PowerSSO-16 carrier tape dimensions	38
Table 19: Device summary	40
Table 20: Document revision history	41

List of figures

Figure 1: Block diagram	5
Figure 2: Configuration diagram (top view)	
Figure 3: Current and voltage conventions	
Figure 4: Switching times and Pulse skew	
Figure 5: Current sense timings (current sense mode)	
Figure 6: TDSKON	
Figure 7: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)	
Figure 8: Latch functionality - behavior in hard short circuit condition	
Figure 9: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)	
Figure 10: Standby mode activation	
Figure 11: Standby state diagram	
Figure 12: OFF-state output current	
Figure 13: Standby current	
Figure 14: IGND(ON) vs Tcase	
Figure 15: Logic Input high level voltage	
Figure 16: Logic Input low level voltage	
Figure 17: High level logic input current	
Figure 18: Low level logic input current	
Figure 19: Logic Input hysteresis voltage Figure 20: FaultRST Input clamp voltage	
Figure 21: Undervoltage shutdownFigure 22: On-state resistance vs Tcase	
Figure 23: On-state resistance vs VCC	
Figure 24: Turn-on voltage slope	
Figure 25: Turn-off voltage slope	
Figure 26: Won vs Tcase	
Figure 27: Woff vs Tcase	
Figure 28: ILIMH vs. Tcase	
Figure 29: OFF-state open-load voltage detection threshold	21
Figure 30: Vsense clamp vs. Tcase	
Figure 31: Vsenseh vs. Tcase	
Figure 32: Application diagram	
Figure 33: Simplified internal structure	
Figure 34: CurrectSense and diagnostic – block diagram	
Figure 35: CurrentSense block diagram	27
Figure 36: Analogue HSD – open-load detection in off-state	
Figure 37: Open-load / short to VCC condition	29
Figure 38: Maximum turn off current versus inductance	
Figure 39: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 40: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on)	
Figure 42: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)	
Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-16	
Figure 44: PowerSSO-16 package dimensions	
Figure 45: PowerSSO-16 reel 13"	
Figure 46: PowerSSO-16 carrier tape	
Figure 47: PowerSSO-16 schematic drawing of leader and trailer tape	
Figure 48: PowerSSO-16 marking information	

1 Block diagram and pin description

Channel 3 Channel 2 Channel 1 Control & Diagnostic Channel0 FaultRST -INPUT₃ V_{cc} – OUT Clamp OUTPUT₃ INPUT₂ INPUT₁ OUTPUT₂ INPUT₀ □ OUTPUT V_{on} Limitation SEL₀ 🗅 SEn 🗅 Power Limitation
Overtemperature MUX cs 🗅 Short to V_C Open-Load in OFF Fault GND 🖨 OUTPUT GAPGCFT00605

Figure 1: Block diagram

Table 1: Pin functions

Name	Function
Vcc	Battery connection.
OUTPUT _{0,1,2,3}	Power output.
GND	Ground connection. Must be reverse battery protected by an external diode / resistor network.
INPUT _{0,1,2,3}	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state.
CS	Analog current sense output pin delivers a current proportional to the load current.
SEn	Active high, compatible with 3 V and 5 V CMOS outputs input pin; it enables the CS diagnostic pin.
SEL _{0,1}	Active high, compatible with 3 V and 5 V CMOS outputs input pin; They address the CS multiplexer.
FaultRST	Active low, compatible with 3 V and 5 V CMOS outputs input pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.

Figure 2: Configuration diagram (top view)

Table 2: Suggested connections for unused and not connected pins

Connection / pin	cs	N.C.	Output	Input	SEn, SELx, FaultRST			
Floating	Not allowed	X (1)	Х	X	X			
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor			

Notes:

⁽¹⁾X: do not care.

2 Electrical specification

Figure 3: Current and voltage conventions

 $V_{Fn} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3: "Absolute maximum ratings"* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	DC supply voltage	38	\ \
-Vcc	Reverse DC supply voltage	0.3	V
Vссрк	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; RL = 4 $\Omega)$	40	٧
VccJs	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
Іоит	OUTPUT _{0,1,2,3} DC output current	Internally limited	Α
-Іоит	Reverse DC output current	16	
I _{IN}	INPUT _{0,1,2,3} DC input current		
I _{SEn}	SEn DC input current	1 to 10	A
I _{SEL}	SEL _{0,1} DC input current	-1 to 10	mA
I _{FR}	FaultRST DC input current		
V_{FR}	FaultRST DC input voltage	7.5	٧

Symbol	Parameter	Value	Unit
1	CS pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	A
ISENSE	CS pin DC output current in reverse (Vcc < 0 V)	-20	mA
Емах	Maximum switching energy (single pulse) (TDEMAG = 0.4 ms; Tjstart = 150°C)	30	mJ
Vesd	Electrostatic discharge (JEDEC 22A-114F) INPUT _{0,1,2,3} CS SEn, SEL _{0,1} , FaultRST OUTPUT _{0,1,2,3} Vcc	4000 2000 4000 4000 4000	> > > >
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	ုင
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4: Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)(2)	6.3	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽¹⁾⁽³⁾	57.3	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾⁽²⁾	23.5	

Notes:

2.3 Main electrical characteristics

7 V < V_{CC} < 28 V; -40°C < T_j < 150°C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5: Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcc	Operating supply voltage		4	13	28	
Vusd	Undervoltage shutdown				4	
VuspReset	Undervoltage shutdown reset				5	V
VusDhyst	Undervoltage shutdown hysteresis			0.3		
		$I_{OUT} = 2 \text{ A}; T_j = 25^{\circ}\text{C}$		50		
Ron	On-state resistance (1)	$I_{OUT} = 2 A; T_j = 150$ °C			100	mΩ
		$I_{OUT} = 2 \text{ A}; V_{CC} = 4 \text{ V}; T_j = 25^{\circ}\text{C}$			75	

⁽¹⁾One channel ON.

 $[\]ensuremath{^{(2)}}\mbox{Device}$ mounted on four-layers 2s2p PCB.

 $^{^{(3)}}$ Device mounted on two-layers 2s0p PCB with 2 cm 2 heatsink copper trace.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Clamp voltage	Is = 20 mA; $T_j = -40^{\circ}C$	38			V
V _{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; 25^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$	41	46	52	V
		$\begin{split} &V_{CC} = 13 \ V; \\ &V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \ V; \\ &V_{SEL0,1} = 0 \ V; \ T_j = 25^{\circ}C \end{split}$			0.5	μΑ
Іѕтву	Supply current in Standby at Vcc = 13 V (2)	$\begin{split} &V_{CC} = 13 \ V; \\ &V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \ V; \\ &V_{SEL0,1} = 0 \ V; \ T_j = 85^{\circ}C \ ^{(3)} \end{split}$			0.5	μΑ
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL0,1} = 0 \text{ V}; T_j = 125^{\circ}\text{C}$			3	μΑ
t _{D_STBY}	Standby mode blanking time	Vcc = 13 V V _{IN} = V _{OUT} = V _{FR} = V _{SEL0,1} = 0 V; V _{SEn} = 5 V to 0 V	60	300	550	μs
I _{S(ON)}	Supply current	$V_{CC} = 13 \text{ V}; V_{SEn} = V_{FR} = V_{SEL0,1} = 0 \text{ V};$ $V_{IN0,1,2,3} = 5 \text{ V}; I_{OUT0,1,2,3} = 0 \text{ A}$		10	16	mA
IGND(ON)	Control stage current consumption in ON state. All channels active.	$V_{CC} = 13 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{FR} = V_{SEL0,1} = 0 \text{ V}; V_{IN0,1,2,3} = 5 \text{ V};$ $I_{OUT0,1,2,3} = 1 \text{ A}$			20	mA
li (-m)	Off-state output current at	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V}; T_j = 25^{\circ}\text{C}$	0	0.01	0.5	
I _{L(off)}	$V_{CC} = 13 V^{(1)}$	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V}; T_j = 125^{\circ}\text{C}$	0		3	μA
VF	Output - Vcc diode voltage ⁽¹⁾	Ιουτ = -2 A; T _j = 150°C			0.7	V

Notes:

Table 6: Switching (VCC = 13 V; -40 $^{\circ}$ C < Tj < 150 $^{\circ}$ C, unless otherwise specified)

Parameter	Test conditions	Min.	Тур.	Max.	Unit
Turn-on delay time at $T_j = 25$ °C	D. 650	10	35	120	
Turn-off delay time at $T_j = 25$ °C	$RL = 0.5 \Omega$	10	45	100	μs
		0.1	0.28	0.7	1////
$(dV_{OUT}/dt)_{off}$ Turn-off voltage slope at $T_j = 25$ °C		0.1	0.31	0.7	V/µs
Switching energy losses at turn-on (twon)	$R_L = 6.5 \Omega$	_	0.26	0.35 (2)	mJ
Switching energy losses at turn-off (twoff)	$R_L = 6.5 \Omega$	_	0.23	0.31(2)	mJ
Differential Pulse skew	R _L = 6.5 Ω	-40	10	60	μs
	Turn-on delay time at $T_j = 25^{\circ}C$ Turn-off delay time at $T_j = 25^{\circ}C$ Turn-on voltage slope at $T_j = 25^{\circ}C$ Turn-off voltage slope at $T_j = 25^{\circ}C$ Switching energy losses at turn-on (t_{won}) Switching energy losses at turn-off (t_{woff})	Turn-on delay time at $T_j = 25^{\circ}C$ Turn-off delay time at $T_j = 25^{\circ}C$ Turn-on voltage slope at $T_j = 25^{\circ}C$ Turn-off voltage slope at $T_j = 25^{\circ}C$ R _L = 6.5 Ω R _L = 6.5 Ω Switching energy losses at turn-on (t _{won}) Switching energy losses at turn-off (t _{woff}) Differential Pulse skew R _L = 6.5 Ω	Turn-on delay time at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 10 Turn-off delay time at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 0.1 Turn-on voltage slope at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 0.1 Turn-off voltage slope at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ — Switching energy losses at turn-on (t_{won}) $R_L = 6.5 \Omega$ — Differential Pulse skew $R_L = 6.5 \Omega$ -40	Turn-on delay time at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 10 35 Turn-off delay time at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 0.1 0.28 Turn-on voltage slope at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 0.1 0.28 Turn-off voltage slope at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 0.1 0.31 Switching energy losses at turn-on (twon) $R_L = 6.5 \Omega$ - 0.23 Differential Pulse skew $R_L = 6.5 \Omega$ -40 10	Turn-on delay time at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 10 35 120 Turn-off delay time at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 10 45 100 Turn-on voltage slope at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 0.1 0.28 0.7 Turn-off voltage slope at $T_j = 25^{\circ}C$ $R_L = 6.5 \Omega$ 0.1 0.28 0.7 Switching energy losses at turn-on (twon) $R_L = 6.5 \Omega$ - 0.26 0.35 (2) Switching energy losses at turn-off (twoff) $R_L = 6.5 \Omega$ - 0.23 0.31(2) Differential Pulse skew $R_L = 6.5 \Omega$ -40 10 60

Notes:

⁽¹⁾For each channel.

⁽²⁾PowerMOS leakage included.

 $^{^{(3)}}$ Parameter specified by design; not subject to production test.

⁽¹⁾See Figure 4: "Switching times and Pulse skew".

 $^{^{(2)}}$ Parameter guaranteed by design and characterization, not subject to production test

Table 7: Logic Inputs (7 V < VCC < 28 V: -40°C < Ti < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
INPUT _{0,1,2,3}	characteristics					
V _{IL}	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μA
VIH	Input high level voltage		2.1			V
Іін	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.2			V
.,,		I _{IN} = 1 mA	5.3		7.2	.,
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
FaultRST	characteristics	·				
V _{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{FR(hyst)}	Input hysteresis voltage		0.2			V
	Lancet alanan coaltana	I _{IN} = 1 mA	5.3		7.5	.,
VFRCL	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
SEL _{0,1} cha	racteristics (7 V < Vcc < 18 V)				
V_{SELL}	Input low level voltage				0.9	V
ISELL	Low level input current	V _{IN} = 0.9 V	1			μA
Vselh	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V
\/	Innut alama valtaga	I _{IN} = 1 mA	5.3		7.2	V
Vselcl	Input clamp voltage	$I_{IN} = -1 \text{ mA}$		-0.7		V
SEn chara	cteristics (7 V < V _{CC} < 18 V)					
V _{SEnL}	Input low level voltage				0.9	V
ISEnL	Low level input current	V _{IN} = 0.9 V	1			μA
V _{SEnH}	Input high level voltage		2.1			V
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V
Mari	Innut alama valtara	I _{IN} = 1 mA	5.3		7.2	\/
VSEnCL	Input clamp voltage	$I_{IN} = -1 \text{ mA}$		-0.7		V

Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		V _{CC} = 13 V	21	27	38	
ILIMH	DC short circuit current	4 V < V _{CC} < 18 V ⁽¹⁾			38	A
ILIML	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		9		'`

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7		
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V;	135			°C
T _{HYST}	Thermal hysteresis (T_{TSD} - T_R) ⁽¹⁾			7		
ΔT_{J_SD}	Dynamic temperature	$T_j = -40^{\circ}C$; $V_{CC} = 13 \text{ V}$		60		K
t _{LATCH_RST}	Fault reset time for output unlatch ⁽¹⁾	V _{FR} = 5 V to 0 V; V _{SEn} = 5 V • E.g. Ch ₀ V _{IN0} = 5 V; V _{SEL0,1} = 0 V	3	10	20	μs
V	Turn off output voltage clamp	I _{OUT} = 2 A; L = 6 mH; $T_j = -40$ °C	Vcc - 38			V
VDEMAG	Turn-off output voltage clamp	I _{OUT} = 2 A; L = 6 mH; T _j = 25°C to 150°C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V
V_{ON}	Output voltage drop limitation	I _{OUT} = 0.2 A		20		mV

Notes:

Table 9: CurrentSense (7 V < VCC < 18 V; -40° C < Tj < 150° C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vsense cl	Current sense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V
V SENSE_CL	voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V
Current Sense	e characteristics					
KoL	Iout/Isense	IOUT = 0.01 A; VSENSE = 0.5 V; VSEn = 5 V	425			
$dK_{cal}/K_{cal}^{(1)(2)}$	Current sense ratio drift at calibration point	$I_{OUT} = 0.01 \text{ A to } 0.05 \text{ A};$ $I_{cal} = 30 \text{ A}; \text{ V}_{SENSE} = 0.5 \text{ V};$ $V_{SEn} = 5 \text{ V}$	-30		30	%
KLED	Iout/Isense	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	530	1390	2120	
dK _{LED} /K _{LED} ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-30		30	%
K ₀	Iout/Isense	IOUT = 0.2 A; VSENSE = 0.5 V; VSEn = 5 V	730	1280	1700	
dK ₀ /K ₀ ⁽¹⁾⁽²⁾	Current sense ratio drift	IOUT = 0.2 A; VSENSE = 0.5 V; VSEn = 5 V	-25		25	%
K ₁	Iout/Isense	IOUT = 0.4 A; VSENSE = 4 V; VSEn = 5 V	830	1180	1545	
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	IOUT = 0.4 A; VSENSE = 4 V; VSEn = 5 V	-20		20	%
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	885	1120	1335	

⁽¹⁾Parameter guaranteed by design and characterization; not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Current sense ratio drift	IOUT = 1.5 A; VSENSE = 4 V; VSEn = 5 V	-15		15	%
K ₃	lout/Isense	I _{OUT} = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	990	1110	1210	
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Current sense ratio drift	IOUT = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-10		10	%
		Current sense disabled: V _{SEn} = 0 V;	0		0.5	
		Current sense disabled: -1 V < Vsense < 5 V ⁽¹⁾	-0.5		0.5	
Isenseo	Current sense leakage current	Current sense enabled: Vsen = 5 V All channels ON; loutx = 0 A; Chx diagnostic selected: • E.g. Cho: Vino,1,2,3 = 5 V; Vselo = 0 V; Vsel1 = 0 V; louto = 0 A; lout1,2,3 = 2 A	0		2	μА
		Current sense enabled: Vsen = 5 V; Chx OFF; Chx diagnostic selected: • E.g. Ch ₀ : Vino = 0 V; Vin _{1,2,3} = 0 V; Vsel ₀ = 5V; Vsel ₁ = 0 V; Iout _{1,2,3} = 2 A	0		2	
Vout_msd ⁽¹⁾	Output Voltage for Current sense shutdown	V _{SEn} = 5 V; R _{SENSE} = 2.7 kΩ • E.g. Ch ₀ : V _{IN0} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; I _{OUT0} = 2 A		5		V
Vsense_sat	CS saturation voltage	$\begin{split} &V_{CC} = 7 \; V; \; R_{SENSE} = 2.7 \; k\Omega; \\ &V_{SEn} = 5 \; V; \; V_{IN0} = 5 \; V; \\ &V_{SEL0,1} = 0 \; V; \; I_{OUT0} = 4.5 \; A; \\ &T_{j} = 150 ^{\circ} C \end{split}$	5			V
ISENSE_SAT ⁽¹⁾	CS saturation current	$V_{CC} = 7 \text{ V}; V_{SENSE} = 4 \text{ V};$ $V_{IN0} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0,1} = 0 \text{ V}; T_j = 150^{\circ}\text{C}$	4			mA
lout_sat ⁽¹⁾	Output saturation current	Vcc = 7 V; Vsense = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL0,1} = 0 V; T _j = 150°C	4.8			Α
OFF-state dia	gnostic					
VoL	OFF-state open-load voltage detection threshold	V _{SEn} = 5 V; Chx OFF; Chx diagnostic selected • E.g: Ch ₀ V _{IN0} = 0 V; V _{SEL0,1} = 0 V	2	3	4	V
I _{L(off2)}	OFF-state output sink current	$V_{IN} = 0 \text{ V}; V_{OUT} = V_{OL};$ $T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-100		-15	μΑ

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
tdstкon	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 6: "TDSKON")	V _{SEn} = 5 V; Ch _X ON to OFF transition; Ch _X diagnostic selected: • E.g: Ch ₀ V _{IN0} = 5 V to 0 V; V _{SEL0,1} = 0 V; V _{OUT0} = 4 V; I _{OUT0} = 0 A	100	350	700	μs	
t _{D_OL_} v	Settling time for valid OFF- state open-load diagnostic indication from rising edge of SEn	V _{IN0,1,2,3} = 0 V; V _{FR} = 0 V; V _{SEL0,1} = 0 V; V _{OUT0} = 4 V; V _{SEn} = 0 V to 5 V			60	μs	
t _{D_} voL	OFF-state diagnostic delay time from rising edge of V _{OUT}	V _{SEn} = 5 V; Chx OFF; Ch _X diagnostic selected: • E.g: Ch ₀ V _{IN0} = 0 V; V _{SEL0,1} = 0 V; V _{OUT0} = 0 V to 4 V		5	30	μs	
Fault diagnos	tic feedback (see Table 10:	"Truth table")					
Vsenseh	Current sense output voltage in fault condition	Vcc = 13 V; Rsense = 1 kΩ • E.g: Ch ₀ in open load Vin0 = 0 V; Vsen = 5 V; Vsel _{0,1} = 0 V; lour ₀ = 0 A; Vour ₀ = 4 V	5		6.6	V	
Isenseh	Current sense output current in fault condition	Vcc = 13 V; Vsense = 5 V	7	20	30	mA	
Current sense sense mode)'		de - see Figure 5: "Current sen	se timi	ings (d	curren	nt	
tdsense1H	Current sense settling time from rising edge of SEn	$\begin{aligned} &V_{\text{IN}} = 5 \text{ V; } V_{\text{SEn}} = 0 \text{ V to 5 V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; \text{ R}_{\text{L}} = 6.5 \Omega \end{aligned}$			60	μs	
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to } 0 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 6.5 \Omega$		5	20	μs	
tdsense2H	Current sense settling time from rising edge of INPUT	$V_{IN} = 0$ V to 5 V; $V_{SEn} = 5$ V; $R_{SENSE} = 1$ k Ω ; $R_L = 6.5$ Ω		100	250	μs	
∆t _{DSENSE2} H	Current sense settling time from rising edge of lout (dynamic response to a step change of lout)	$\begin{aligned} &\text{V}_{\text{IN}} = 5 \text{ V}; \text{ V}_{\text{SEn}} = 5 \text{ V}; \\ &\text{R}_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &\text{Isense} = 90 \text{ \% of Isensemax}; \\ &\text{R}_{\text{L}} = 6.5 \Omega \end{aligned}$			100	μs	
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	$V_{IN} = 5$ V to 0 V; $V_{SEn} = 5$ V; $R_{SENSE} = 1$ k Ω ; $R_L = 6.5$ Ω		50	250	μs	

Notes

 $[\]ensuremath{^{(1)}}\mbox{Parameter}$ defined by design. Not subject to production test.

 $^{^{(2)}\}text{All}$ values refer to V_{CC} = 13 V; T_{j} = 25°C, unless otherwise specified.

Figure 4: Switching times and Pulse skew

VOUT

twon

Vcc

80% Vcc

ON

OFF

dVour/dt

20% Vcc

tid(off)

tpHL

GAPGCFT00797

Figure 6: TDSKON

VinPut

Vout

Vout

Tout

Tout

Vout

GAPG2609141140CFT

Table 10: Truth table

Mode	Conditions	INx	FR	SEn	SELx	OUTx	Current sense	Comments		
Standby	All logic inputs low		Ш	L	Ш	L	Hi-Z	Low quiescent current consumption		
		L	Χ			L	See (1)			
Normal	Nominal load connected;	H L		See ⁽¹⁾		Н	See (1)	Outputs configured for auto-restart		
	T _j < 150°C	Ι	Ι					Н	See ⁽¹⁾	Outputs configured for Latch-off
	Overload or short to	┙	Х			L	See (1)			
Overload	GND causing: T _j > T _{TSD} or	H L		H L See (1)		Н	See ⁽¹⁾	Output cycles with temperature hysteresis		
	$\Delta T_j > \Delta T_{j_SD}$	Ι	Ι	ı				L	See (1)	Output latches-off
Under-voltage	Vcc < Vusb (falling)	X	X	X	X	L L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)		
OFF-state	Short to V _{CC}	┙	Х	G	0 (1)		See (1)			
diagnostics	Open-load	L	Χ	See ("		See (1)		Н	See (1)	External pull-up
Negative output voltage	Inductive loads turn- off	L	X	Se	e ⁽¹⁾	< 0 V	See (1)			

Notes:

⁽¹⁾Refer to *Table 11: "Current sense multiplexer addressing"*

Current sense output MUX SEn SEL1 SEL0 OFF-state diag. **Negative** channel Nomal mode Overload (1)(2)(3) output Χ Χ Hi-Z L Channel 0 I_{SENSE} = V_{SENSE} = Н Hi-Z L L Vsense = Vsenseh diagnostic 1/K * I_{OUT0} V_{SENSEH} Channel 1 Isense = Vsense = Hi-Z Н Н V_{SENSE} = V_{SENSEH} diagnostic 1/K * I_{OUT1} VSENSEH Channel 2 I_{SENSE} = $V_{SENSE} =$ Н Н L Vsense = Vsenseh Hi-Z 1/K * I_{OUT2} diagnostic VSENSEH Channel 3 I_{SENSE} = V_{SENSE} = Н Η Н Vsense = Vsenseh Hi-Z diagnostic 1/K * IOUT3 VSENSEH

Table 11: Current sense multiplexer addressing

Notes:

2.4 Waveforms

Figure 7: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)

⁽¹⁾In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, CS pin delivers feedback according to OFF-State diagnostic.

⁽²⁾ Example 1: FR = 1; IN₀ = 0; OUT₀ = L (latched); MUX channel = channel 0 diagnostic; CS = 0

 $^{^{(3)}}$ Example 2: FR = 1; IN $_0$ = 0; OUT $_0$ = latched, V $_{OUT0}$ > V $_{OL}$; MUX channel = channel 0 diagnostic; CS = V $_{SENSEH}$

Logic High Sense Enable Logic High Input Logic High t > t latch RST Fault Reset I_{lim} H T_{TSD} T_R Thermal Shut Down cycling in AutoRestart mode T_{AMB} Internal Fault Detection Hard Short Circuit Vout<5V Vout<5V Multisense Voltage

Figure 8: Latch functionality - behavior in hard short circuit condition

Figure 9: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)

Figure 10: Standby mode activation

Figure 11: Standby state diagram

2.5 Electrical characteristics curves

VNQ7050AJ Protections

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

4 Application information

+5V оит Rprot ОИТ FaultRST INPUT Rprot Logic Dld Rprot SEn ουτ SEL OUTPUT Rprot ADC in Cext Rsense оит D_{GND} GND GND GND GAPGCFT00829

Figure 32: Application diagram

4.1 GND protection network against reverse battery

Figure 33: Simplified internal structure

5/

4.1.1 Diode (DGND) in the ground line

A resistor (typ. R_{GND} = 4.7 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 12: "ISO 7637-2 - electrical transient conduction along supply line"*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through Vcc and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	level with	e severity n Status II performance tus	Minimum number of pulses or test time	Burst cycle / pulse repetition time		Pulse duration and pulse generator internal impedance	
	Level	Us ⁽¹⁾	ume				
1	III	-112V	500 pulses	0,5 s		2ms, 10Ω	
2a	===	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω	
3a	IV	-220V	1h	90 ms	100 ms	0.1μs, 50Ω	
3b	IV	+150V	1h	90 ms	100 ms	0.1μs, 50Ω	
4 (2)	IV	-7V	1 pulse			100ms, 0.01Ω	
Load dump according to ISO 16750-2:2010							
Test B (3)		40V	5 pulse	1 min		400ms, 2Ω	

Table 12: ISO 7637-2 - electrical transient conduction along supply line

Notes:

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.

 $^{^{(1)}}$ US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

⁽²⁾Test pulse from ISO 7637-2:2004(E).

 $^{^{(3)}}$ With 40 V external suppressor referred to ground (-40°C < T_i < 150°C).

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH} - V_{GND}) / I_{IHmax}$

Calculation example:

For $V_{CCpeak} = -150 \text{ V}$; $I_{latchup} \ge 20 \text{ mA}$; $V_{OH\mu C} \ge 4.5 \text{ V}$

 $7.5 \text{ k}\Omega \leq R_{prot} \leq 140 \text{ k}\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the following signals:

• Current monitor: current mirror of channel output current

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *MultiSense multiplexer* addressing Table.

Figure 34: CurrectSense and diagnostic - block diagram

4.4.1 Principle of CurrentSense signal generation

Figure 35: CurrentSense block diagram

Current sense

This current mode is selected in the MultiSense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage Vsenseh

The current delivered by the current sense circuit, I_{SENSE}, can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by CS output: $I_{SENSE} = I_{OUT}/K$

Voltage on R_{SENSE}: $V_{SENSE} = R_{SENSE} \cdot I_{SENSE} = R_{SENSE} \cdot I_{OUT}/K$

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- Isense is current provided from CS pin in current output mode

- I_{OUT} is current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of the overall circuitry the specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the CS pin which is switched to a "current limited" voltage source, V_{SENSEH} .

In any case, the current sourced by the CS in this condition is limited to ISENSEH.

The typical behavior in case of overload or hard short circuit is shown in *Waveforms* section.

Figure 36: Analogue HSD - open-load detection in off-state

Figure 37: Open-load / short to VCC condition

Table 13: CurrentSense pin levels in off-state

Condition	Output	cs	SEn
	V> V	Hi-Z	L
Open lead	V _{OUT} > V _{OL}	Vsenseh	Н
Open-load	V 4 V	Hi-Z	L
	Vout < Vol	0	Н
Chart to V		Hi-Z	L
Short to Vcc	Vout > Vol	Vsenseh	Н
Nominal	V	Hi-Z	L
inominai	V _{OUT} < V _{OL}	0	Н

4.4.2 Short to VCC and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{\text{OUT}} > V_{\text{OLmax}}$ in accordance with the following equation:

Equation

$$R_{_{PU}} < \frac{V_{_{PU}} - 4}{I_{L(off2)min @ 4V}}$$

5 Maximum demagnetization energy (VCC = 16 V)

VNQ7050AJ - Maximum turn off current versus inductance

100

10

VNQ7050AJ - Maximum turn off current versus inductance

100

10

VNQ7050AJ - Single Pulse
Repetitive pulse Tjstart=125°C

Figure 38: Maximum turn off current versus inductance

Values are generated with $R_L = 0 \Omega$.

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

6 Package and PCB thermal data

6.1 PowerSSO-16 thermal data

Figure 39: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)

Figure 40: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)

Table 14: PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

RTHjamb 100 -RTHjamb 90 80 70 60 50 40 2 0 4 6 8 10 GAPG2307131254CFT

Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on)

Equation: pulse calculation formula

 $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$

where $\delta = t_P/T$

Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-16

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 15: Thermal parameters

Area/island (cm²)	Footprint	2	8	
R1 = R7 = R9 = R11 (°C/W)	0.8			
R2 = R8 = R10 = R12 (°C/W)	3.5			
R3 (°C/W)	7	7	7	7
R4 (°C/W)	16	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 = C7 = C9 = C11 (W.s/°C)	0.00035			
C2 = C8 = C10 = C12 (W.s/°C)	0.0023			
C3 (W.s/°C)	0.14			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

VNQ7050AJ Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 PowerSSO-16 package information

Figure 44: PowerSSO-16 package dimensions

Table 16: PowerSSO-16 mechanical data

Symbol	Millimeters						
Symbol	Min.	Тур.	Max.				
Θ	0°		8°				
Θ1	0°						
Θ2	5°		15°				
Θ3	5°		15°				
A			1.70				
A1	0.00		0.10				
A2	1.10		1.60				

Symbol	Millimeters			
	Min.	Тур.	Max.	
b	0.20		0.30	
b1	0.20	0.25	0.28	
С	0.19		0.25	
c1	0.19	0.20	0.23	
D		4.9 BSC		
D1	3.60		4.20	
е		0.50 BSC		
Е	6.00 BSC			
E1	3.90 BSC			
E2	1.90		2.50	
h	0.25		0.50	
L	0.40	0.60	0.85	
L1	1.00 REF			
N	16			
R	0.07			
R1	0.07			
S	0.20			
Tolerance of form and position				
aaa		0.10		
bbb	0.10			
ccc	0.08			
ddd	0.08			
eee	0.10			
fff	0.10			
999	0.15			

VNQ7050AJ Package information

7.2 PowerSSO-16 packing information

Figure 45: PowerSSO-16 reel 13"

Table 17: Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5
C (+0.5, -0.2)	13
D (min)	20.2
N	100
W1 (+2 /-0)	12.4
W2 (max)	18.4

Notes:

⁽¹⁾All dimensions are in mm.

Figure 46: PowerSSO-16 carrier tape

Table 18: PowerSSO-16 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	6.50 ± 0.1
B ₀	5.25 ± 0.1
K ₀	2.10 ± 0.1
K ₁	1.80 ± 0.1
F	5.50 ± 0.1
P ₁	8.00 ± 0.1
W	12.00 ± 0.3

Notes:

Figure 47: PowerSSO-16 schematic drawing of leader and trailer tape

⁽¹⁾All dimensions are in mm.

VNQ7050AJ Package information

7.3 PowerSSO-16 marking information

Figure 48: PowerSSO-16 marking information

Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions.

Order codes VNQ7050AJ

8 Order codes

Table 19: Device summary

Pookogo	Order codes	
Package	Tape and reel	
PowerSSO-16	VNQ7050AJTR	

VNQ7050AJ Revision history

9 Revision history

Table 20: Document revision history

Date	Revision	Changes
04-Jun-2015	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

