Wydział:	Imię i nazwisko: Rafał Grabiański		Rok: Grupa:		Zespół:
WIEiT	Zbigniew Królik		II	7	7
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Dyfrako	Nr ćwiczenia: 71			
Data wykonania:	Data oddania:	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	
					OCENA:
25.11.2014	2.12.2014	16.12.2014	13.01.2015	•	

1 Cel ćwiczenia

Celem ćwiczenia było wyznaczenie rozkładu natężenia światła laserowego dla obrazu dyfrakcyjnego powstałego dla pojedynczej i układu dwóch szczelin. Za pomocą wykonanych pomiarów mieliśmy wyznaczyć szerokość szczeliny.

2 Wyniki pomiarów

X [mm]	I [j.u.]								
-9.4	0.00	-5.4	1.90	-1.4	29.90	2.6	17.5	6.6	-0.1
-9.2	0.00	-5.2	2.00	-1.2	30.50	2.8	9.1	6.8	-0.2
-9	0.00	-5	2.10	-1	49.70	3	4.8	7	-0.1
-8.8	0.10	-4.8	1.70	-0.8	77.30	3.2	2.8	7.2	0
-8.6	0.20	-4.6	1.30	-0.6	130	3.4	1.4	7.4	0.2
-8.4	0.30	-4.4	1.50	-0.4	175	3.6	0.7	7.6	0.3
-8.2	0.30	-4.2	1.60	-0.2	210	3.8	0.3	7.8	0.6
-8	0.20	-4	1.90	0	223	4	0.1	8	0.8
-7.8	0.10	-3.8	2.50	0.2	219	4.2	0.2	8.2	0.8
-7.6	0.20	-3.6	3.50	0.4	189	4.4	0.6	8.4	0.7
-7.4	0.30	-3.4	4.10	0.6	148	4.6	1.4	8.6	0.4
-7.2	0.50	-3.2	4.70	0.8	105	4.8	0.3	8.8	0.3
-7	0.60	-3	6.70	1	70	5	3.9	9	0.2
-6.8	0.70	-2.8	8.90	1.2	55.3	5.2	4.4	9.2	0.1
-6.6	0.80	-2.6	14.20	1.4	43.3	5.4	3.9	9.4	0.1
-6.4	0.70	-2.4	18.30	1.6	41.5	5.6	2.8	9.6	0.1
-6.2	0.80	-2.2	20.70	1.8	40.8	5.8	1.6	9.8	0
-6	0.90	-2	24.90	2	38.8	6	0.9	10	0
-5.8	1.10	-1.8	25.80	2.2	36.6	6.2	0.3	10.2	0
-5.6	1.70	-1.6	27.80	2.4	26.8	6.4	0		

Tabela 1: Wyniki pomiarów natężenia światła dla dwóch szczelin

x [mm]	I [j.u.]								
-22.4	-3	-14.2	-2	-6	26	2.2	386	10.2	9
-22.2	-3	-14	-1	-5.8	37	2.4	352	10.4	7
-22	-3	-13.8	-1	-5.6	62	2.6	310	10.6	5
-21.8	-3	-13.6	-1	-5.4	77	2.8	269	10.8	4
-21.6	-3	-13.4	-1	-5.2	91	3	247	11	3
-21.4	-3	-13.2	0	-5	101	3.2	222	11.2	3
-21.2	-3	-13	0	-4.8	132	3.4	186	11.4	2
-21	-3	-12.8	0	-4.6	174	3.6	155	11.6	0
-20.8	-2	-12.6	0	-4.4	194	3.8	123	11.8	0
-20.6	-2	-12.4	0	-4.2	218	4	106	12	-1
-20.4	-2	-12.2	0	-4	228	4.2	88	12.2	-2
-20.2	-2	-12	0	-3.8	273	4.4	68	12.4	-2
-20	-2	-11.8	0	-3.6	328	4.6	48	12.6	-2
-19.8	-2	-11.6	1	-3.4	348	4.8	32	12.8	-2
-19.6	-2	-11.4	1	-3.2	356	5	24	13	-2
-19.4	-2	-11.2	3	-3	376	5.2	16	13.2	-2
-19.2	-2	-11	5	-2.8	381	5.4	9	13.4	-2
-19	-2	-10.8	5	-2.6	426	5.6	4	13.6	-2
-18.8	-2	-10.6	7	-2.4	477	5.8	1	13.8	-2
-18.6	-2	-10.4	8	-2.2	489	6	0	14	-2
-18.4	-2	-10.2	8	-2	498	6.2	-1	14.2	-2
-18.2	-2	-10	9	-1.8	499	6.4	-2	14.4	-1
-18	-2	-9.8	12	-1.6	523	6.6	-2	14.6	-1
-17.8	-2	-9.6	11	-1.4	523	6.8	-1	14.8	-1
-17.6	-2	-9.4	10	-1.2	552	7	0	15	-1
-17.4	-2	-9.2	9	-1	563	7.2	1	15.2	0
-17.2	-2	-9	7	-0.8	563	7.4	3	15.4	0
-17	-2	-8.8	5	-0.6	564	7.6	4	15.6	-1
-16.8	-1	-8.6	4	-0.4	582	7.8	5	15.8	-1
-16.6	-1	-8.4	3	-0.2	589	8	7	16	-1
-16.4	-1	-8.2	2	0	593	8.2	9	16.2	0
-16.2	-1	-8	1	0.2	588	8.4	10	16.4	-1
-16	-1	-7.8	0	0.4	573	8.6	11	16.6	-2
-15.8	-1	-7.6	-1	0.6	577	8.8	11	16.8	-2
-15.6	0	-7.4	-2	0.8	559	9	12	17	-2
-15.4	0	-7.2	-1	1	548	9.2	13	17.2	-2
-15.2	0	-7	0	1.2	531	9.4	12	17.4	-2
-15	-1	-6.8	2	1.4	506	9.6	11	17.6	-2
-14.8	-1	-6.6	5	1.6	473	9.8	9	17.8	-2
-14.6	-2	-6.4	9	1.8	433	10	9	18	-2
-14.4	-2	-6.2	13	2	414				

Tabela 2: Wyniki pomiarów natężenia światła dla jednej szczeliny

3 Opracowanie wyników

Numer maksimum	Położenie z lewej [mm]	Położenie z prawej [mm]	x_{sr}	Obliczona odległość d
1 minimum	-7.40	6.40	6.90	$(9.19 \pm 0.5) \cdot 10^{-5}$
1 maksimum boczne	-9.80	9.20	9.50	$(1.0 \pm 0.05) \cdot 10^{-4}$
2 minimum	-14.40	13.20	13.80	$(9.19 \pm 0.5) \cdot 10^{-5}$
2 maksimum boczne	-15.40	15.20	15.30	$(1.04 \pm 0.05) \cdot 10^{-4}$

Tabela 3: Położenia maksimów i minimów oraz obliczona szerokość d dla szczeliny pojedynczej

Element obrazu dyfrakcyjnego	$I_l[\mathbf{j.~u.}]$	$I_p[\mathbf{j.~u.}]$	I względne dośw.	I względne teor.	
1 maksimum boczne	12	13	0.021	0.045	
2 maksimum boczne	0	0	0.000	0.016	

Tabela 4: Natężenie światła dla maksimów w jednostkach umownych dla szczeliny pojedynczej

3.1 Pojedyncza szczelina

3.1.1 Wykres zależności natężenia światła I od położenia detektora x

Rysunek 1: Wykres zależności natężenia światła I [j.u.], a położeniem detektora x [mm] dla szczeliny pojedynczej (we współrzędnych zwykłych)

Rysunek 2: Wykres zależności natężenia światła I [j.u.], a położeniem detektora x [mm] dla szczeliny pojedynczej - wykres ze znormalizowaną i zlogarytmowaną osią pionową

3.1.2 Odczytanie położeń minimów i maksimów bocznych

Na podstawie uzyskanych danych uzupełniliśmy tabelę i wyliczyliśmy średnie współrzędne minimów i maksimów. Wyniki zamieściliśmy w tabeli 3.

3.1.3 Wyznaczenie szerokości szczeliny

Mając do dyspozycji wzory:

$$x_{min} = m \frac{\lambda L}{d} \tag{1}$$

$$x_{max} = (m + \frac{1}{2})\frac{\lambda L}{d} \tag{2}$$

Na tej podstawie dla m = 1 wyliczamy szerokość szczeliny d jako:

$$d = \frac{\lambda L}{x_{min}} \tag{3}$$

$$d = \frac{3}{2} \frac{\lambda L}{x_{max}} \tag{4}$$

I analogicznie dla minimów i maksimów drugiego rzędu (tam za m podstawiamy 2).

Podstawia iego uzyskane wyniki i przymujego za \ = 650mm otrzymujemy d = 9.47.

Podstawiając uzyskane wyniki i przyjmując za $\lambda=650nm$ otrzymujemy d $=9.47\cdot 10^{-5}m$ i odchylenie standardowe u(d) = $2.74\cdot 10^{-6}m$

3.1.4 Stosunek natężeń prążków bocznych do światła w maksimum

Tu korzystamy ze wzoru:

$$\frac{I(x_{max})}{I_0} = \frac{1}{\pi^2 (m + \frac{1}{2})^2} \tag{5}$$

Wyniki wstawiamy do tabeli 4.

3.2 Podwójna szczelina

3.2.1 Wykres zależności natężenia światła I od położenia detektora x

Rysunek 3: Wykres zależności natężenia światła I [j.u.], a położeniem detektora x [mm] dla szczeliny pojedynczej (we współrzędnych zwykłych)

Rysunek 4: Wykres zależności natężenia światła I [j.u.], a położeniem detektora x [mm] dla szczeliny pojedynczej (we współrzędnych zwykłych)

Numeracji dokonaliśmy odręcznie na sprawozdaniu.

3.2.2 Odczytanie położeń minimów i maksimów bocznych i wyznaczenie odległości między szczelinami

Postępując w podobny do pierwszego przypadku sposób, odczytujemy położenia maksimów i minimów. Obliczamy wartość średnią oraz odległość między szczelinami d. Wyniki umieszczone w tabeli. Oczywiście wartość

d liczymy teraz tak, że:

$$x_{max} = m\frac{\lambda L}{d} \tag{6}$$

$$x_{min} = (m + \frac{1}{2})\frac{\lambda L}{d} \tag{7}$$

Wyniki umieszciliśmy w tabeli:

Nr maksimum	$x_l[\mathbf{mm}]$	x_p [mm]	x [mm]	Odległość d [mm]
1	-1.6	2	1.80	$3.5 \cdot 10^{-4}$
2	-5.00	5.20	5.10	$2.5 \cdot 10^{-4}$
3	-8.40	8.40	8.40E+000	$2.3 \cdot 10^{-4}$

Tabela 5: Wyznaczone położenia maksimów dla obrazu interferencyjnego dwóch szczelin.

3.2.3 Wartość średnia d i niepewność u(d)

Otrzymaliśmy $d = (3.0 \pm 0.42) \cdot 10^{-4} m$

3.2.4 Wyznaczenie stosunku I_{min} do I_{max}

Nasze I_{max} to 223 j.u. a I_{min} 0.1. Czyli nasz współczynnik $\frac{I_{min}}{I_{max}}=4.5*10^{-4}$ co jest bliskie zeru.

4 Wnioski

Wyniki z doświadczenia korelowały z matematycznym opisem rozkładu natężenia światła na ekranie.

Otrzymana szerokość szczeliny w pierwszym doświadczeniu: $d = (9.5 \pm 0.27) \cdot 10^{-5}$ m co przy $u(d) = 2.7 \cdot 10^{-6}$ m i przyjęciu k = 2 sprawia, że mieści się w przedziale razem z prawidziwym d = 0.1 mm.

Otrzymana odległość pomiędzy szczelinami w drugim doświadczeniu wynosi: $d = (3.0 \pm 0.42) \cdot 10^{-4}$ przy niepewności $4.2 \cdot 10^{-5}$. Podczas gdy prawdziwa d = 0.25 mm, także nasz wynik niemal plasuje się w niepewności o k = 1.

W przypadku doświadczenia z dwoma szczelinami, zainstniały wątpliwości czy pierwszy prążek została prawidłowo zarejestrowany, i w rzeczywistości dane opisują 3 prążki boczne.

Kształt obrazu a konkretniej jego niesymetryczność względem maksimum może oznaczać nieznaczny błąd w przygotowaniu układu pomiarowego. Wiązka laserowa mogła zostać wycelowana nieco poniżej, lub powyżej środka szczeliny powodując nierówny rozkład natężeń. Pomimo tego dało się wyznaczyć maksima i minima boczne.

Rysunek 5: Ilustracja pokazująca problem, nie uwzględnia zjawiska dyfrakcji.