Formulario di fisica 2 v0.1	•	Le cariche si distribuiscono sempre su		· Leggi di Kirchhoff	■ INDUZIONE	. Disco di Barlow	· Dens. SUPERFICIALE corrente	orrente
NOME:	$V(\mathbf{r}) = \frac{U(\mathbf{r})}{\widetilde{c}}$	(28) Description of the content of t	$W = \int_{o}^{\theta_f} M \mathrm{d}\theta \tag{74}$	подп	· Coefficienti mutua induzione		LIBERA	(001)
COGNOME: MATRICOLA:	ϵ_B			$\sum_{k=0} I_k = 0 \tag{99}$	$\Phi_{1,2} = MI_1 \qquad \Phi_{2,1} = MI_2 \tag{123}$	$\mathbf{E} = \frac{\mathbf{r}}{Q} = \mathbf{v} \times \mathbf{B} = \omega x B \mathbf{u}_x \tag{141}$	$\mathbf{J}_1 \neq \mu_0 \mathbf{J}_2$	(102)
	$V(B) - V(A) = -\int_A^{\top} \mathbf{E} \cdot d\mathbf{r}$	(29) $\mathbf{p} = \frac{a\mathbf{r}}{d\Sigma} = \frac{o}{2\varepsilon_0} \mathbf{u}_n = \frac{1}{2}\varepsilon_0 \mathbf{E}^2$	(54) $W = pE(\cos\theta_i - \cos(\theta_f) \tag{75}$	Legge delle maglie	Direct contracts do 1 officerous 9	F.e.m. indotta	$\mathbf{j_1} = \nabla \times \mathbf{H}$	(163)
FONDAMENTALI	$\mathbf{E} = -\nabla V$	(30) Capacità		$\sum_{i}^{N} \Lambda V_{i} = 0 \tag{100}$	ato da 1 attravers	$\varepsilon = \frac{1}{\bar{z}} \omega B r^2 \tag{142}$	$\oint \mathbf{H} \cdot d\mathbf{l} = I_{l,c}$	(164)
· Teorema (divergenza)	· Energia di E	0			$\Phi_{1,2} = N B_1 \Sigma_2 \tag{124}$	7	· Energia di B	
$\int_{\Sigma} \mathbf{F} \cdot \mathrm{d} \mathbf{\Sigma} = \int_{\tau} \nabla \cdot \mathbf{F} \mathrm{d} \tau$	(1) $U = \frac{1}{2} \int_{\mathbb{D}^3} \rho(\mathbf{r}) V(\mathbf{r}) d\tau$	(31) $C = \frac{\overset{\leftarrow}{\nabla}}{\Delta V}$	(55) $\nu = \frac{1}{2\pi} \sqrt{\frac{pE}{I}} \tag{76}$	■ MAGNETOSTATICA	· Induttanza	Corrence in an executor charge $\omega B r^2$	$U_B = \frac{1}{2\mu_0} \int_{\mathbb{R}^3} \mathbf{B}^2 \mathrm{d}\tau$	(165)
· Teorema (Stokes)		Il più delle volte c'è induzione com- pleta e C dipende dalla configurazione		orentz	$\Phi(\mathbf{R}) = II \tag{195}$	$I = \frac{1}{2R} \tag{143}$	$r_{I} = \frac{1}{I} \int : A_{I} = I$	(166)
S				$\mathbf{F} = q\mathbf{v} \times \mathbf{B} \tag{101}$	-	Se nnon ci sono forze esterne il moto è smorzato	$UB = \frac{1}{2} \int_{\mathbb{R}^3} \mathbf{J} \cdot \mathbf{A} d\tau$	(100)
		· Condensatori	nte sul dinolo	· Prima legge di Laplace	Solenoide ideale	Momento torcente frenante	con ly circuiti filiformi	
· Teorema (Gradiente)	$\nabla^2 V = -\frac{\rho}{\varepsilon_0}$	(33) $C = \frac{\varepsilon_0 \Sigma}{\varepsilon_0}$	$F = \nabla(\mathbf{p} \cdot \mathbf{E})$ (78)	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0 I}{4\pi} \oint \frac{d\mathbf{s} \times \mathbf{u}_r}{r^2} $ (102)	$L = \mu_0 \frac{N^2}{L} \Sigma = \mu_0 n^2 L \Sigma \tag{126}$	$\mathbf{M} = -\frac{\omega B r^4}{4R} \mathbf{u}_z \tag{144}$	$U_B = \frac{1}{2} \sum_{i=1}^{n} I_i \Phi_i$	(167)
$\phi_2 - \phi_1 = \int_{\gamma} abla \phi \cdot \mathrm{d}\mathbf{s}$	(3) E e V di particolari distribuzioni		· Energia pot. tra due dipoli	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J} \times \mathbf{u_r}}{\omega^2} d\tau $ (103)	Toroide	9.	■ CIRCUITI RLC	
· Flusso di un campo	Carica puntiforme			$\mathbf{B}(\mathbf{r}) = \nabla \cdot \left(\frac{\mu_0}{4\pi} \int_{-1}^{1} d\tau \right) \tag{10A}$	$L = \frac{\mu_0 N^2 \pi a}{\sigma} \ln \left(\frac{R+b}{\sigma} \right) \tag{127}$	$\tau = \frac{2mR}{(145)}$		
	$\mathbf{E} = \frac{\frac{q}{4\pi\varepsilon_0 r^2} \mathbf{u}_r}{\mathbf{n}_r}$	(34) $C = 4\pi\varepsilon_0 \frac{i U}{R - r}$	(57) $C = 4\pi\epsilon_0 r^2 [P1 P2 - 3(P1 Pr)(P2 Pr)]$ (79)		()	B^2r^2	La somma delle impedenze in serie e	serie e
$\Phi_{\Sigma}(\mathbf{E}) = \emptyset \mathbf{E} \cdot \mathrm{d}\Sigma$		(35) Cilindrico		. Laplace	· Fem autoindotta	■ DIPOLO MAGNETICO	parallelo segue le regole del resisto	rio
· Equazioni di Maxwell	uniformemente	$C = \frac{2\pi\varepsilon_0 h}{1-R}$	Forza tra dipoli Dipoli concordi = F repulsiva	$\mathbf{F} = \int I(\mathrm{d}\mathbf{s} \times \mathrm{d}\mathbf{B}) \tag{105}$	$\Phi = -L \frac{\mathrm{d}I}{\mathrm{d}t} \tag{128}$	· Momento di dipolo	$Z = R + i \left(\omega L + \frac{1}{\omega C} \right)$	(168)
$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \cdot \nabla \cdot $	se $r < R$		$\mathbf{F} = \frac{3p_1p_2}{4\pi\epsilon_2 \dots n^4} \mathbf{u}_r \tag{80}$	· B di corpi notevoli (ATTENZIONE:	. Fem indotta	$d\mathbf{m} = I d\Sigma \mathbf{u}_n \tag{146}$	$\int \int $	
ε ₀	$\mathbf{E}(r) = \begin{cases} \frac{1}{4\pi\varepsilon_0 R^2} & \varepsilon_0 \\ \frac{Q}{4\pi\varepsilon_0 R^2} & \text{se r } \ge \mathbf{R} \end{cases}$	(3b) In serie	4/10 01 -	viene indicata la direzione, il verso dipen- de dalla corrente I)		· Potenziale del dipolo	$ Z = \sqrt{R^2 + \left(\omega L + \frac{1}{\omega C}\right)}$	(169)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	se $r < R$	$C_{eq} = \left(\sum_{i=1}^{n} \frac{1}{C_i}\right)^{-1}$	(59) Come elettrici	Asse di una spira	$\varepsilon = -\frac{d}{dt} = -L\frac{d}{dt} \tag{129}$	$\mathbf{A} = \frac{\mu_0}{1 - \frac{\alpha}{2}} (\mathbf{m} \times \mathbf{u}_r) \tag{147}$	RLC serie in DC smorzato	
		(37) v=1 · · · In parallelo	slettrico in un dielettric	$\mathbf{B}(z) = \frac{\mu_0 I r^z}{2(z^2 + r^2)(3/2)} \mathbf{u}_z $ (106)	· Corrente indotta		Equazione differenziale	
$\nabla \times \mathbf{B} = u_0 \mathbf{J} + u_0 \varepsilon_0 \stackrel{\partial \mathbf{E}}{=}$		n presented	$\mathbf{E}_k = \frac{\mathbf{L}_0}{k} \tag{81}$	Filo indefinito	$r = \varepsilon_i = \mathrm{d}\Phi(\mathbf{B})$	· Campo magnetico B generato	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = 0$	(170)
æ,	$\mathbf{E}(r) = \begin{cases} 0 & \text{se r < R} \\ O & \text{se r } \end{cases}$	$C_{eq} = \sum_{i=1} C_i$ (38)	(60) . Vettore P polarizzazione	$\mathbf{B}(r) = \frac{\mu_0 I}{\sigma_0} \mathbf{u}_{\phi} \tag{107}$		$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi r^3} [3\mathbf{u}_r(\mathbf{m} \cdot \mathbf{u}_r) - \mathbf{m}] $ (148)	~	
	se $r \ge K$	Con dielettrico	$\mathbf{P} = \frac{dp}{d\tau} \tag{82}$	2a	· Energia dell'induttanza	· Momento torcente	$\omega = \sqrt{\omega_0^2 - \gamma^2} \qquad \tau = \frac{1}{\widetilde{\omega}}$	
$\oint_{\Gamma} \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi(\mathbf{B})}{dt} $	(10) $V(r) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R} & \text{se r } < R \\ \frac{Q}{4\pi\varepsilon_0 R} & \text{so r } > R \end{cases}$	$(39) C_{diel} = k_e C_0$	(61) Dielettrici lineari	$\mathbf{B}(r) = \frac{\mu_0 I a}{m} \mathbf{u}_{\dot{\alpha}} \tag{108}$	coppia)	$\mathbf{M} = \mathbf{m} \times \mathbf{B} \tag{149}$	174	
	CS	Energia interna del condensatore	$\mathbf{P} = \varepsilon_0 \chi_E \mathbf{E}_k = \varepsilon_0 (k - 1) \mathbf{E}_k \tag{83}$	$\frac{2+a^2}{1}$	$U_{1,2} = \frac{1}{2}MI_1I_2 + \frac{1}{2}MI_2I_1 \tag{131}$. Forza agente sul dinolo	$I(t) = I_0 e^{-\gamma t} \sin(\omega t + \varphi)$	(171)
$d\Phi_E$	γ , , , ,	$\frac{1}{1} = \frac{Q^2}{Q} = \frac{1}{1} \frac{QV}{QV} = \frac{1}{1} \frac{QV}{QV}$		leale	Interna		Smorz. FORTE $\gamma^2 > \omega_0^2$	
$\mu_0 I_{conc} + \mu_0 \varepsilon_0 \frac{\overline{d}}{dt}$	(12) $\mathbf{E}(r) = \frac{2\pi\varepsilon_0 r}{2\pi\varepsilon_0 r} \mathbf{u}_r$	(40) $V = \frac{1}{2C} = \frac{1}{2}CV = \frac{1}{2}CV$	$(02) \qquad \qquad k-1 \qquad \qquad (94)$	$\mathbf{B} = \mu_0 \frac{1}{L} \tag{109}$	$U_L = \frac{1}{z} L I^2 \tag{132}$	$\mathbf{f} = \mathbf{V}(\mathbf{m} \cdot \mathbf{b})$ (150)	$I(t) = e^{-\gamma t} (Ae^{\omega} + Be^{-\omega})$	(172)
	$V(r) = \frac{\lambda}{2} \ln \left(\frac{r_0}{r_0} \right)$	Differenziale circuito RC (41)	$\sigma_p = \mathbf{F} \cdot \mathbf{u}_n = {k} - \sigma_l \tag{84}$			· Energia del dipolo	Smorz. CRITICO $\gamma^2 = \omega_0^2$	
	/ on carica uniforme	$RQ'(t) + \frac{Q(t)}{C} = V$	ımetrica di q polarizza	$\mathbf{B}(r) = \frac{\mu_0 M}{2\pi r} \mathbf{u}_{\phi} \tag{110}$	In un circuito (conta una volta ogni induttanza ed una ogni coppia)	$U = -\mathbf{m} \cdot \mathbf{B} \tag{151}$	$I(t) = e^{-\gamma t} (A + Bt)$	(173)
$\nabla \times \mathbf{H} = \mathbf{J}_{C,lib} + \frac{\partial \mathbf{D}}{\partial \theta}$		(61)	$\rho_p = -\nabla \cdot \mathbf{P} \tag{85}$	Piano infinito su xy, con K \mathbf{u}_x densità	N N	· Energia pot. tra due dipoli	A. B e ω si ricavano imposta	ando le
		(42) $O(t) = O_0 (1 - e^{-\frac{t}{RC}})$			$U = \frac{1}{2} \sum_{i=1} (L_i I_i^2 + \sum_{j=1} M_{i,j} I_i I_j) i \neq j$	$U = -\mathbf{m_1} \cdot \mathbf{B_2} = -\mathbf{m_2} \cdot \mathbf{B_1} \tag{152}$	condizioni iniziali	
	$V(x) = \frac{\sigma}{2\varepsilon_0}(x - x_0)$	(43) Scarica	$\mathbf{D} = \varepsilon_0 \mathbf{E}_k + \mathbf{P} = \varepsilon_0 k \mathbf{E}_k = \varepsilon_0 \mathbf{E}_0 $ (86)	$\mathbf{B} = \frac{1}{2} \mathbf{u}_y \tag{111}$	(133)	generato d	· RLC serie in AC forzato	
	(16) Anello con carica uniforme (sull'asse)		■ CORRENTI	. Effetto Hall b spessore sonda, b // B, b $_{\perp}$ I, n car/vol	· Legge di Felici	tro dipolo	FOIZABLE $\varepsilon(t) = \varepsilon_0 \cos(Ot \pm \Phi)$	(174)
· Discontinuità dei campi Generali	$\mathbf{E}(x) = \frac{\lambda Rx}{2\varepsilon_0(\pi^2 + R^2)^{3/2}} \mathbf{u}_x$	(44) Condensatore riene	. Lavoro del generatore f^{t_2}	$V_H = \frac{IB}{\frac{1}{12}} \tag{112}$	$O(t) = \frac{\Phi(0) - \Phi(t)}{} \tag{134}$	Forza tra dipoli $\mathbf{F(r)} = \frac{3\mu_0}{\sqrt{-\delta}} [(\mathbf{m_1} \cdot \mathbf{u_r}) \mathbf{m_2} + (\mathbf{m_2} \cdot \mathbf{u_r}) \mathbf{m_1} + \mathbf{m_2} \cdot \mathbf{u_r}]$	$z(t) = z_0 \cos(3tt + \Psi)$ Equazione differenziale	(+11)
		Condensatore pieno Condensatore riempito di materiale di	le di $W_{gen} = \int_{t_1} V dq(t) = 2U_E$ (87)				0.50	
	$V(x) = \frac{\lambda x}{2\varepsilon_0 \sqrt{x^2 + R^2}}$	(45) resistività ρ		· Forza di Ampere Corr. equiversa = for. attrattiva	· Circuito RL in DC L si oppone alle variazioni di I smorzan-	$+(\mathbf{m_1} \cdot \mathbf{m_2})\mathbf{u_r} - 5(\mathbf{m_1} \cdot \mathbf{u_r})(\mathbf{m_2} \cdot \mathbf{u_r})\mathbf{u_r}] \qquad I$ (153)	$I''(t) + 2\gamma I'(t) + \omega_0 I(t) = -\frac{32C0}{L} \sin(\Omega t + \Phi)$	$\Omega t + \Phi$)
		$RC = \varepsilon_0 \rho$	(66) $\mathbf{J} = nq\mathbf{v} = \frac{Nq\mathbf{v}}{\tau} $ (88)	$F = \frac{\mu_0}{2} \frac{I_1 I_2 L}{J_2} \tag{113}$	dole Amena inizia a circolare corrente	MACNETISMO	Soluciono	(671)
$\Delta E_{\perp} = \frac{\sigma}{\varepsilon_0} $	(20) $\mathbf{E}(x) = \frac{O}{2\varepsilon_0} \left(1 - \frac{1}{\sqrt{1 + \frac{R^2}{x^2}}}\right) \mathbf{u}_x$	(46) · Forza fra le armature	· Intensità di corrente	Potenziale vettore A		· Campo magnetico nella materia	$I(t) \equiv I_0(O) \cos(Ot)$	(176)
$ \mathbf{n}_n $		$F = \frac{Q^2}{2} \partial_x \left(\frac{1}{C} \right)$	(67) $I = \frac{\mathrm{d}q(t)}{\mathrm{d}t} = \int_{\Sigma} \mathbf{J} \cdot \mathrm{d}\Sigma \tag{89}$	$\nabla \times \mathbf{A} = \mathbf{B} \tag{114}$	$I(t) = \frac{1}{R}(1 - e^{-t\tau}) \tag{155}$	$\mathbf{B} = \mu_0(\mathbf{M} + \mathbf{H}) \tag{154}$	$I(t) = I0(3t) \cos(3tt)$ Corrente massima	(011)
In ipotesi di linearità	Î	(41) Condensatore piano	· Leggi di Ohm	$\int rac{\mathrm{j}(\mathbf{r_2})}{\mathrm{d} au_2} \mathrm{d} au_2$		$\cdot \chi_m) {f B}_0$	$I_{o}(\Omega) \equiv \frac{\varepsilon_{0}}{1} \equiv \frac{\varepsilon_{0}}{1}$	(177)
$\frac{1}{1} = \frac{D_2, \parallel}{k_2}$	Disco carico uniformemente $(x >> K)$ (22) $\frac{n^2}{2}$		$V = RI \tag{90}$	$\int_{-72,1}^{-72}$ Gauge	$I(t) = I_0 e^{-\mathcal{I}_t} \tag{136}$	one M	$ Z \sqrt{R^2 + (\omega L + \frac{1}{\omega C})^2}$	
$Se \sigma_L = 0$	$\mathbf{E}(x) = \frac{\sigma}{2\varepsilon_0} \frac{n^2}{x^2} \mathbf{u}_x$	$(48) \qquad ^{1} - 2\epsilon_{0} - 2\epsilon_{0}\Sigma$	$dR = \int_{\Gamma} \frac{\rho}{\Sigma} dl $ (91)	$\mathbf{A}' = \mathbf{A} + \nabla \Psi \tag{116}$	 Circuiti con barra mobile (b lunghez- za barra) 	$\mathbf{M} = m\mathbf{m} = \frac{d\mathbf{m}}{d\mathbf{m}} \tag{156}$	Sfasamento	
$_2E_{2.1}$		■ DIPOLO ELETTRICO	$\mathbf{E} = \rho \mathbf{J} \tag{92}$	Gauge di Coulomb	F.e.m. indotta		$ \tan \Phi(\Omega) = \frac{L\Omega - \frac{1}{\Omega C}}{R} $	(178)
di B	$4\varepsilon_0 x$ Guscio cilindrico uniformemente cari	· Momento di dipolo	$\rho = \frac{1}{\sigma} \tag{93}$		$\varepsilon(t) = -Bbv(t) \tag{137}$	$\mathbf{M} = \frac{\chi_m \mathbf{D}}{(\chi_m + 1)\mu_0} \tag{157}$	NOTA: Lo sfasamento di I rispetto a ε è	to a $arepsilon$ è
$\frac{\tan(\theta_2)}{\tan(\theta_2)} = \frac{\mu_2}{\mu_2}$	0 se $r < R$	$\mathbf{p} = q\mathbf{a}$	(69) · Potenza conduttore ohmico	$\nabla^2 \mathbf{A} = -\mu_0 \mathbf{j} \tag{118}$	Corrente in un circuito chiuso	· Campo magnetizzante H	−Φ Risonanza	
	$\mathbf{E}(r) = \begin{cases} \frac{Q}{2\pi\varepsilon_0 h r} & \text{se } \mathbf{r} \ge \mathbf{R} \end{cases}$	(50) . Potenziale del dipolo	$P = VI = RI^2 = \frac{V^2}{R} \tag{94}$	· Moto ciclotrone Raggio	$I(t) = \frac{Bbv(t)}{R} \tag{138}$	$\mathbf{H} = \frac{\mathbf{B}}{m_s} - \mathbf{M} = \frac{\mathbf{B}}{m} = \frac{\mathbf{B}}{k_s} = \frac{\mathbf{M}}{k_s}$ (158)	$Im(Z) = 0 \rightarrow \omega_0 = \frac{1}{\sqrt{z_{\text{max}}}}$	(179)
■ ELETTROSTATICA	se $r < R$	(51) $V(r) = \frac{qa\cos\theta}{4\pi c^{-3}} = \frac{\mathbf{p} \cdot \mathbf{u}_r}{4\pi c^{-3}}$	(70) $dP = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) d\tau $ (95)	$R = \frac{mv}{aB} \tag{119}$	Lavoro fornito per muovere la barra	Power TINEADE A: comments coulls		
· Forza di Coulomb) se r≥R		. Resistori In serie	Periodo	$W = \frac{\left(Bbv(t)\right)^2}{} \tag{139}$	SUPERFICIE	\cdot Effetto Joule $_{V_{lpha}}$	
$\mathbf{F} = \frac{q_1 1_2}{4\pi\varepsilon_0 r^2} \mathbf{u}_{1,2} $	(25) CONDUTTORI	· Campo elettrico E generato	$R_{en} = \sum_{i} R_{i} \tag{96}$	$T = \frac{2\pi m}{\sigma B} \tag{120}$		$\mathbf{K_m} = \mathbf{M} \times \mathbf{u}_r \tag{159}$	$\langle P_R \rangle = \frac{v_0}{2R}$	(180)
· Definizione campo elettrico	· Conduttori in equilibrio All'interno	$\mathbf{E} = \frac{qd\left(2\cos\left(\theta\right)\mathbf{u}_r + \sin\left(\theta\right)\mathbf{u}_\theta\right)}{4\pi\varepsilon r^3}$		flessione elica (v 2 dimen	Forza magnetica sulla barra	$\mathbf{M} = M\mathbf{u}_z$ $\mathbf{K}_{\mathbf{m}} = K_m \mathbf{u}_{\phi}$	· Potenza media totale	
	(26) – il campo è nullo	· Momento torcente		$\sin(\theta) = \frac{qBR}{(121)}$	$F = m\frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{(B0)^-v(t)}{R} \tag{140}$	· Dens. SUPERFICIALE corrente	$\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$	(181)
	$\mathbf{E} = 0$	(52) $\mathbf{M} = \mathbf{a} \times q\mathbf{E}(x, y, z)$	$(72) R_{eq} = \sum_{i=1}^{\infty} \overline{R_i} $ (97)		ATTENZIONE: per tenere v costante è necessaria una F esterna: altrimenti	IZZATA	· V e I efficace	
due cariche	- il potenziale è costante	Se E uniforme	· Generatore reale	$d = \frac{2\pi R}{\tan(\theta)} \tag{122}$	essa è opposta a v e il moto è smorzato esponenzialmente		$V_{eff} = \frac{\sqrt{2}}{} V_0$ $I_{eff} = \frac{\sqrt{2}}{} I_0$	(182)
$U = \frac{1}{4\pi\varepsilon_0 r_{1,2}} + c $	$(27) \qquad \Delta V = 0$	$\mathbf{(53)} \qquad \mathbf{M} = \mathbf{p} \times \mathbf{E}$	$(73) \qquad \Delta V = V_0 - r_i I \tag{98}$		•	$ \oint \mathbf{M} \cdot d\mathbf{l} = I_{m,c} \tag{161} $,

(237)		(238)		(239)		(240)	(241)	angolare		(242)		(943)	(647)		(244)		(245)		(246)	(247)		(248)	(249)	interfe-	lei due	$\frac{1}{2}$	(250)		(251)		(252)		(253)		(254)	(271)	(272)	,	(273)	(274)		<u>r</u> (275)
$I_{MAX} = N^2 I_0$ Massimi secondari	$m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z}\}$	$\delta = \frac{2m+1}{2M} \pi \to \sin \theta = \frac{2m+1}{2M} \frac{\lambda}{\lambda}$	ZN ZN d I_0	$I_{SEC} = \frac{1}{\left(\sin\frac{\pi d \sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MTN} = 0$	e angolare (distanza	tra min. e max. adiacente)	$\Delta\theta \approx \frac{1}{2} \frac{\lambda}{2}$	$N d \cos \theta$ Potere risolutore	$\frac{\delta\lambda}{2} = \frac{1}{1}$	$\frac{\lambda}{\lambda} = \frac{Nn}{Nn}$	· Diffrazione Intensità	$I(\theta) = I_0 \left(\frac{\sin\left(\frac{\pi a \sin \theta}{\lambda}\right)}{\pi a \sin \theta} \right)^2$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0$	Massimi secondari $m \in \mathbb{Z} - \{-1, 0\}$ $2m + 1 \lambda$	$\sin \theta = \frac{\sin \theta}{2} = \frac{1}{a}$	$I_{SEC} = \frac{I_0}{\left(\frac{\pi(2m+1)}{2}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin \theta = \frac{m\lambda}{a}$	$I_{MIN} = 0$	· Reticolo di diffrazione Sovrapposizione di diffrazione e interfe-	renza, l'intensità è il prodotto deffetti	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\sin(\frac{N\pi d \sin \theta}{\lambda})} \right)^2$	$\frac{\pi a \sin \theta}{\lambda} \sin \left(\frac{\pi d \sin \theta}{\lambda} \right)$	Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$	$\int \frac{x}{-x} dx = \sqrt{r^2 + x^2}$	$\int \sqrt{x^2 + r^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$\int \frac{1}{\cos x} dx = \log \left(\frac{1 + \sin x}{\cos x} \right)$,	$\int \sin^3 ax dx = -\frac{3a\cos ax}{4a} + \frac{\cos 3ax}{12}$
ZIO-			(220)		(221)		(222)		(223)		(224)		(225)		(226)	(227)			(228)		(229)		$n \in \mathbb{Z}$	(230) tile		(231)	(666)	(565)	(233)		(234)		(235)		(236)		(267)		(268)		(269)	(270)
■ INTERFERENZA e DIFFRAZIO-	NE.	 Interferenza generica Onda risultante 	$f(\mathbf{r},t) = Ae^{i(kr_1-\omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = \left(\Phi_2 - \Phi_1 + k(r_2 - r_1)\right)$	Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_2 \cos \alpha_2 + A_2 \cos \alpha_2}$	$A_1 \cos \alpha_1 + A_2 \cos \alpha_2$ Massimi	$\delta = 2n\pi$	Minimi	$\delta = (2n+1)\pi$. Condizione di Fraunhofer $\theta = \frac{\Delta y}{2}$	L Example tale che tan $\theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{1} d\sin\theta$	Costruttiva	$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \Rightarrow \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$	· Interf. riflessione su lastra sott	(n indice rifr., t spessore lastra) Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} \frac{2nt}{\cos \theta_t}$	Massimi $m \in \mathbb{N}$ $\sum_{k=1}^{\infty} 2m + 1 \sum_{k \in \mathbb{N}} a_k$	$U = \frac{1}{4n} A \cos \theta_t$ $Minimi \ m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{\lambda} d\sin\theta$	Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^{-}$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{\tau} = K$	Soluzione	$v(t) = k\tau(1 - e^{-\frac{t}{\tau}})$	■ ANALISI MATEMATICA · Integrali ricorrenti	$\int \frac{1}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$	$\int \frac{1}{\sqrt{x^2 + r^2}} dx = \ln \sqrt{x^2 + r^2} + x$
1	(200)	,	(201)		(202)		(203)	,	(204)		(205)		(206)	(207)		(208)	= 1)	(209)		(210)	(211)	(616)	(212)	sso non	(213)	(214)	(215)		(216)		(217)		(218)		(219)	(961)	0	(262)	(263)	(264)	(265)	(266)
· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E} \qquad R = \frac{P_r}{D} = \frac{I_r}{I}$		$t = \frac{E_t}{E_s}$ $T = \frac{P_t}{P_s} = \frac{I_t}{I_s}$	24	$r_{\sigma} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t - \theta_i)}$	$\sin(\theta_t + \theta_i)$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{\sqrt{2}}$	$\tan(\theta_t + \theta_i)$	$R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato	$t_{\sigma} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_i \cos \theta_i}$	$n_i \cos \theta_i + n_t \cos \theta_t$	$t_p i = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	izza	$R = \frac{1}{2} (R_{\sigma} + R_{\pi}) \qquad T = \frac{1}{2} (T_{\sigma} + T_{\pi})$	Incidenza normale $(\cos \theta_i ? \cos \theta_t =$	$r = \frac{n_i - n_t}{2}$	$n_i + n_t$	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)^{\omega}$	$t = \frac{2n_i}{n_i + n_t}$	$\frac{1}{\pi}$ $4n_in_t$	$I = \frac{1}{(n_i + n_t)^2}$	Angolo di Brewster (il raggio riflesso non ha polar. parallela)	$\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{n_i}$	$R = \frac{1}{2}\cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione Superficie ASSORBENTE	$p = \frac{I_i}{r}$	Superficie RIFLETTENTE	$p = \frac{I_i + I_t + I_r}{v}$	· Rapporto di polarizzazione	$\beta_R = \frac{P_R^{\sigma} - P_R^{\pi}}{P_{\mathcal{G}}^{\sigma} + P_{\mathcal{H}}^{\pi}}$	$P_{\mu}^{\sigma} - P_{\pi}$	$\beta_T = \frac{T - T_T}{P_T^{\sigma} + P_T^{\pi}}$	· Lavoro	Moto circolare unif. accelerato	$v = \omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$. Moto armonico	Equazione differenziale $x'' + \omega^2 x = 0$	Soluzione $x(t) = A\sin(\omega t + \varphi)$
			(183)	(184)				(185)			(186)		(187)	di Σ		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)		(196)	(197)		(198)		(199)		(255)	(256)	(257)	(258)		(260)
■ CAMPO EM e OTTICA	· Campi in un'onda EM	(Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{n}\cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{m} \lambda = \frac{v}{m}$	Α	· Vettore di Poynting	$\mathbf{S} = \frac{1}{\mathbf{E} \times \mathbf{B}}$	μ_0	· Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensità varia in base alla scelta di	· Equazioni di continuità Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	· Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d} au$	· Densità di quantità di moto	20 S	$_{c}^{c}$. Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{oss}}$	Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$	· Velocità dell'onda	$v^2 = \frac{1}{k_e \varepsilon_0 k_m \mu_0}$	$c^2 = \frac{1}{c_{outo}}$	oreo · Indice di rifrazione	$n = \frac{c}{v} = \sqrt{k_e k_m}$	· Legge di Snell-Cartesio	$n_1\sin\theta_1 = n_2\sin\theta_2$	■ UNITÀ DI MISURA Wh c m²ka	$H = \frac{\pi}{A} = Tm^2 = \frac{m \cdot s_3}{A^2 s^2}$ $V V^2 m^2 b \cdot s_3$	$\Omega = \frac{V}{A} = \frac{V}{W} = \frac{m \log y}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m}{s^3 A}$ $F = \frac{C}{V} = \frac{C^2}{V} = \frac{A^2 s^4}{s^{3/2}}$	FISICA 1	. Momento torcente $M = \mathbf{r} \times \mathbf{F} = I \alpha$

\cdot Differenziale di primo ordine		inc 0		Identità vettoriali		· Identità geometriche	
Forma generale		0.0		$\nabla \cdot (\nabla \times \mathbf{A}) = 0$	(282)	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta (288)$	3 (288)
y(t) + a(t)y(t) = b(t)	(2/0) $y(t) =$	$y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$	(279)	$\nabla \times (\nabla f) = 0$	(283)		
Soluzione $a(t) = c^{-A(t)}(c+\int b(t)e^{A(t)}dt)$	Se $\Delta = 0$	0 =		$\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$		$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	β (289)
g(t) = c . Differentiale di secondo ordine omo-		$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$	(280)	$\nabla (\mathbf{A} \cdot \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\mathbf{A} \cdot (\nabla \times \mathbf{B})$	$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$	(290)
geneo	Se $\Delta < 0$	0 >			(285)		
Forma generale $y'' + ay' + by = 0$ $a, b \in \mathbb{R}$	(278) y(t) =	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$	$n(\beta t)$ (281)	$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	$\nabla^2 \mathbf{A}$ (286)	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	(291)
$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata		$con \ \alpha = Re(\lambda) \ e \ \beta = Im(\lambda)$		$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	(287)	$\tan\frac{\alpha}{2} = \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 + \cos\alpha}$	(292)
		Cartesiane	51	Sferiche	Cilindriche		
	Gradiente ($\nabla f =$)	$\frac{\partial f}{\partial x} \mathbf{x} + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\delta}{\delta}$	$\frac{\partial f}{\partial r}\mathbf{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\theta + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\phi$	$\frac{\partial f}{\partial r} \mathbf{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\mathbf{z}}{\mathbf{z}}$	
	Divergenza $(\nabla \cdot \mathbf{F} =)$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta}$	$\frac{1}{r^2}\frac{\partial r^2F_r}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial F_\theta \sin\theta}{\partial \theta} + \frac{1}{r\sin\theta}\frac{\partial F_\phi}{\partial \phi}$	$\frac{1}{r}\frac{\partial F_r}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$\frac{F_z}{\partial z}$	
		$\left(\begin{array}{c} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \end{array}\right)$	$\left(\frac{1}{r\sin\theta}\left(\frac{\partial}{\partial\theta}\right)\right)$	$\frac{1}{r\sin\theta} \left(\frac{\partial F_{\phi} \sin\theta}{\partial\theta} - \frac{\partial F_{\theta}}{\partial\phi} \right)$	$\left(\begin{array}{c} \left(\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z} \right) \end{array} \right)$		
	Rotore $(\nabla \times \mathbf{F} =)$	$\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \right)$	$\frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial F_r}{\partial \phi} - \frac{\partial (r F_\phi)}{\partial r} \right)$	$\left(\frac{\partial F_r}{\partial z} - \frac{\partial (rF_z)}{\partial r}\right)$		
		$\left(\begin{array}{c} \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{array}\right)$	$ \frac{1}{r} \left(\frac{\partial (z)}{\partial z} \right) $	$\frac{1}{r} \left(\frac{\partial (r F_{\theta})}{\partial r} - \frac{\partial F_r}{\partial \theta} \right)$	$\left(\frac{1}{r} \left(\frac{\partial (r F_{\phi})}{\partial r} - \frac{\partial F_r}{\partial \phi} \right) \right)$		
	I	l l laplaciano di un camp	po scalare Φ , in q	ll laplaciano di un campo scalare $\Phi,$ in qualunque coordinata, è $\nabla \cdot \nabla \Phi$	$\Phi \Delta$.		