Natural Language Processing

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliakbars@live.com

May 15, 2017

Overview

- Natural Language Processing
 - Pendahuluan
 - Representasi

- 2 NLTK
 - Pengenalan
 - Demo dan Alternatif

Bahan Bacaan

- Bird, S., Edward L. & Klein, E. (2009). Natural Language Processing with Python. OReilly Media Inc.
- 2 Jurafsky, D. & Martin, J. H. (2014). Speech and Language Processing (Vol. 3). Pearson.

Natural Language Processing

Apa Itu NLP?

Salah satu ilmu multidisiplin yang berfokus pada interaksi manusia dan komputer melalui bahasa alami manusia. Beberapa hal yang dibahas di dalamnya antara lain:

- Part-of-Speech (POS) tagging
- Parsing
- Stemming
- Machine translation
- Named entity recognition (NER)
- Question answering
- Sentiment analysis
- Automatic summarisation
- Speech recognition
- Text-to-speech

Kategori Tugas-tugas NLP

- Syntax
 - Part-of-Speech (POS) tagging
 - Parsing
 - Stemming
- Semantics
 - Machine translation
 - Named entity recognition (NER)
 - Question answering
 - Sentiment analysis
- Dicourse
 - Automatic summarisation
- Speech
 - Speech recognition
 - Text-to-speech

Sentiment Analysis

Gambar: Hasil analisis sentimen dengan deep learning [Socher, 2017]

 NLP juga dikenal dengan nama computational linguistics, karena mencoba merepresentasikan makna dari kata, frasa, kalimat, dan dokumen melalui distribusinya

- NLP juga dikenal dengan nama computational linguistics, karena mencoba merepresentasikan makna dari kata, frasa, kalimat, dan dokumen melalui distribusinya
- Distribusi tersebut direpresentasikan dalam vektor konteks

- NLP juga dikenal dengan nama computational linguistics, karena mencoba merepresentasikan makna dari kata, frasa, kalimat, dan dokumen melalui distribusinya
- Distribusi tersebut direpresentasikan dalam vektor konteks
- "Dalam suatu dokumen, kata apa saja yang muncul bersamaan?"

- NLP juga dikenal dengan nama computational linguistics, karena mencoba merepresentasikan makna dari kata, frasa, kalimat, dan dokumen melalui distribusinya
- Distribusi tersebut direpresentasikan dalam vektor konteks
- "Dalam suatu dokumen, kata apa saja yang muncul bersamaan?"
- ullet Begitu pula di level semantik o Bag-of-Words (BoW) model

- NLP juga dikenal dengan nama computational linguistics, karena mencoba merepresentasikan makna dari kata, frasa, kalimat, dan dokumen melalui distribusinya
- Distribusi tersebut direpresentasikan dalam vektor konteks
- "Dalam suatu dokumen, kata apa saja yang muncul bersamaan?"
- ullet Begitu pula di level semantik o Bag-of-Words (BoW) model
- Bahkan, bisa sampai ke level karakter!

Bag-of-Words

Dalam representasi ini, urutan atau letak dari kata tersebut tidak relevan

- D1 "send us your password"
- D2 "send us your review"
- D3 "review your password"
- D4 "review us"
- D5 "send your password"
- D6 "send us your account"

Binary Bag-of-Words

Dalam representasi ini, urutan atau letak dari kata tersebut tidak relevan

dokumen	account	password	review	send	us	your
D1	0	1	0	1	1	1
D2	0	0	1	1	1	1
D3	0	1	1	0	0	1
D4	0	0	1	0	1	0
D5	0	1	0	1	0	1
D6	1	0	0	1	1	1

TF-IDF

$$w_{t,d} = (1 + \log(tf_{t,d}))\log(\frac{N}{df_t})$$

- $tf_{t,d}$... frekuensi kata t dalam dokumen d, N ... jumlah dokumen, df_t ... jumlah dokumen yang mempunyai kata t
- Kata yang sering muncul mungkin tidak penting, e.g. kata hubung
- Kata yang langka akan bernilai lebih lihat posisi df_t !

Menemukan Dokumen yang Mirip

- Dalam contoh minggu lalu, kita menggunakan Euclidean distance
- Untuk dokumen, jumlah kemunculan kata mungkin tidak begitu penting
- ullet Yang penting adalah keberadaan katanya o cosine similarity

$$\cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$$

 Dengan ide yang serupa dan beberapa tambahan algoritma lainnya, e.g. Latent Semantic Analysis (LSA), kita bisa menggunakan kakas ini untuk tes seperti TOEFL

- Dengan ide yang serupa dan beberapa tambahan algoritma lainnya, e.g. Latent Semantic Analysis (LSA), kita bisa menggunakan kakas ini untuk tes seperti TOEFL
- LSA berhasil menjawab 64.4% soal

- Dengan ide yang serupa dan beberapa tambahan algoritma lainnya, e.g. Latent Semantic Analysis (LSA), kita bisa menggunakan kakas ini untuk tes seperti TOEFL
- LSA berhasil menjawab 64.4% soal
- Pengguna bahasa Inggris non-natif rata-rata berhasil menjawab 64.5% soal

- Dengan ide yang serupa dan beberapa tambahan algoritma lainnya, e.g. Latent Semantic Analysis (LSA), kita bisa menggunakan kakas ini untuk tes seperti TOEFL
- LSA berhasil menjawab 64.4% soal
- Pengguna bahasa Inggris non-natif rata-rata berhasil menjawab 64.5% soal
- Cukup untuk masuk banyak universitas di US!

NLTK

Natural Language Toolkit

"NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, **tokenization**, **stemming**, **tagging**, **parsing**, and **semantic reasoning**..."

NER Tagging

Gambar: Hasil NER tagging dengan NLTK [NLTK Project, 2017]

Corpora & Models

Beberapa korpus dan model yang terkenal dari NLTK:

- Project Gutenberg Selections
- Penn Treebank
- SentiWordNet
- Stopwords Corpus
- Porter Stemmer

Everything Data

Document Similarity using NLTK and Scikit-Learn

Alternatif untuk NLTK

Beberapa alternatif untuk tugas-tugas spesifik:

- spaCy: Industrial-Strength Natural Language Processing in Python
- gensim: topic modelling for humans

References

NLTK Project (2 January 2017)

Natural Language Toolkit

http://www.nltk.org/

Richard Socher (accessed on 15 May 2017)

CS224d: Deep Learning for Natural Language Processing

http://cs224d.stanford.edu/

Terima kasih