Understanding SQL, NoSQL, and MongoDB

What is SQL?

SQL stands for **Structured Query Language**. It's a standard language used to interact with relational databases. You use SQL to create, read, update, and delete data in a structured way, often in tables that have rows and columns.

Key Features of SQL Databases

1. Structured Data Format

- Data is stored in tables with rows and columns.
- Each table has a defined structure (schema).

2. Fixed Schema

- o Before inserting data, the table structure must be defined.
- o Data must follow this schema (e.g., data types, column names).

3. ACID Compliance

- Ensures data integrity through:
 - Atomicity All operations in a transaction are completed or none.
 - Consistency Data remains valid after a transaction.
 - Isolation Transactions do not affect each other.
 - Durability Changes are permanent after a transaction.

4. Powerful Query Language (SQL)

- o Use SQL to:
 - Create and manage tables (DDL).
 - Insert, update, delete data (DML).
 - Retrieve data using SELECT queries (DQL).
 - Control user access (DCL).

5. Relational Integrity

 Supports primary keys, foreign keys, and constraints to maintain relationships between tables.

What is NoSQL?

NoSQL means **Not Only SQL**. These databases don't use the traditional table format. Instead, they are designed to store all kinds of data — structured, semi-structured, or unstructured — and are good at handling large amounts of data quickly, especially across multiple computers.

Key Features of NoSQL Databases:

1. Flexible Schema

- o You don't need to define a fixed structure before storing data.
- o Different records can have different fields—great for handling evolving data.

2. Variety of Data Models

- NoSQL supports multiple types of databases:
 - Document-based (e.g., MongoDB)
 - Key-value (e.g., Redis)
 - Column-family (e.g., Cassandra)
 - Graph-based (e.g., Neo4j)

3. BASE Compliance

- Follows the BASE model instead of ACID:
 - Basically Available
 - Soft state
 - Eventually consistent

4. Distributed and Cloud Friendly

- Built for distributed environments and cloud-native apps.
- Data is replicated across multiple nodes for fault tolerance and high availability.

5. Support for Big Data

Efficiently handles large volumes of data from various sources.

6. Open-Source and Community Driven

 Many NoSQL databases are open-source, with active communities and strong enterprise support.

SQL	NoSQL
Rational Database	Non- rational, Distributed
	Database
Vertically Scalable	Horizontally Scalable
Table Based Database	Document Based, Graph
	Based or Key- value Pair
Pre-Define Schema	Dynamic schema
Uses SQL	Uses UnQL
	(Unstructured Query
	Language)
Not	Largely Preferred for large
Preferred for Large	Datasets
Datasets	

What is MongoDB?

MongoDB is a popular **NoSQL** database that stores data in a **document format** (similar to JSON). It is designed to be **flexible**, **scalable**, and **high-performing**, making it ideal for modern applications that handle large amounts of data, especially in real-time.

Instead of tables and rows (like in SQL), MongoDB stores data as **collections and documents**.

Key Features of MongoDB:

1. Document-Based

- Stores data in documents, not rows and columns.
- Easy to read and write.

2. Flexible Structure

- No need for a fixed format (schema).
- You can store different types of data in the same collection.

3. Fast Performance

- Works quickly for reading and writing data.
- Uses indexes to make searches faster.

4. Scalable

- Can spread data across many servers using sharding.
- o Good for handling big data and high traffic.

5. High Availability

- Uses replica sets to copy data on multiple servers.
- o If one server fails, others keep working.

6. ACID Transactions

o Can make safe and reliable changes to multiple pieces of data at once.

7. Cloud Support - MongoDB Atlas

- o MongoDB offers a cloud version that manages the database for you.
- o It takes care of scaling, backups, and security.

8. Real-Time Updates

- o Can track data changes in real time using Change Streams.
- Good for live dashboards and alerts.

