

Jacqueline W. Quinn, Ph.D.

NASA John F. Kennedy Space Center

2011 Environmental Roundtable Sustainable Thinking

November 3, 2011

Jacqueline.W.Quinn@nasa.gov

Commercialization-the Challenge

- As with all technologies, getting the product from the lab, to the field and eventually into the commercial market is the big......CHALLENGE!
 - Successful transition from lab to field is often termed "the valley of death"
 - So many good ideas prosper in the lab, but fail in their implementation full-scale
 - What are the options to ensure a greater chance of full scale success?

Steps to Consider

- Always start with the end in mind...
 - Every step should have a field-scale alternative envisioned
 - Can it be bought in large quantities?
 - Can it be made using the lab method on a commercial scale?
 - ols it safe to deploy?
 - Occas the remedy open up another concern?
 - Will there be a market offering enough sales?

Success is dependant on the three "Ss" in its name

Don't wait to the end to think about S³

Scalability

Would it help to engage another company under a nondisclosure agreement early?

Safety

Always verify the means to the end is not initiating another problem

_hSales

■ De a Ministration with potential end-users.

NTR Reported

Initial Assessment and Evaluator

Determination

(Technical Understanding, Ownership Determination, Internal Evaluation)

Ownership Determination

Government Entity (GE)

Small Business (SB)

Large Entity (LE)

College or University (CU)

Not-for-Profit (NP)

SB, CU, NP: 2 year election decision

LE: 8 month waiver decision

GE+: NASA can proceed with own rights NASA's
Technology
Transfer
Route

Technology Evaluation
(External Evaluation)

Commercialization Strategy (Commercialization, IP, Marketing)

Technology License/Commercialization

Deep Wall Emplacement for PRBs

Deep Wall Emplacement for PRBs

Benefits

- Emplacement at depths of 100 ft or meater;
- Lowers waste disposal
- locased permeability in
 locased permeability in
 locased permeability in
- Eliminates risks associated with open excavations;

Commercial uses

- Electronic Manufacturers;
- Dry Cleaners;
- Sanitary/Ind. Landfills;
- Auto/Aircraft Facilities;
- Semiconductor Manuf.;
- Solvent Recycling Facilities.

Ultrasound for Performance of PRBs

Ultrasound for Performance of PRBs

Benefits

- In situ via intra-wall monitorira wells;
- No removal of soil or reactive media;
- Can be semi-automated;
- Requires no chemicals;
- Generales no undesirable
 byproducts.

Commercial use

- Currently installed PRBs throughout the U.S.
- This technology has been licensed by EnviroMetal Technologies Inc. and is available for use.

Emulsified Zero-Valent Iron

Emulsified Zero-Valent Iron

Benefits

- Directly treats contaminant source;
- Does not mobilize contaminants;
- Requires less treatment
- Rectuces treatment costs;
- The toxic and more easily adable by-products;
- Evaluated by the U.S. EPA
 Euperfund Innovative
 Lechnology Evaluation

Commercial use:

- Dry cleaners;
- Chemical manufacturers;
- Metal cleaning and degreasing facilities;
- Pharmaceutical manuf.;
- Adhesive and aerosol manuf.;
- Government facilities;

Emulsion for Metals in Groundwater/Sediment Systems

Benefits:

- Has been shown in lab-scale tests to bind more than 99% of lead and degrade greater than 90% of PCBs in solution;
- Does not require the removal of soils/sediments for the imment;
- Is expected to be less expensive than "dig and haul" for remediating large areas;
- Produces benign by-products;

Activated Metal Treatment System for PCB Contaminated Structures

AMTS

Benefits:

- Has been shown in lab-scale tests to remove greater than 99% of PCBs from Painted Structures
- Does not require the removal of paints after application.
- 1s expected to be less expensive than demolition and 18CA disposal costs;
- Produces benign by-products;

Patenting and Commercial Activity

Technology	IP Status	Commercial Activity
Deep Wall Emplacement	US Patent No. 6,207,114	Marketing - Passive
Ultrasound	US Patent No. 6,013,232	Exclusive License • EnviroMetal Technologies
EZVI	US Patent No. 6,664,298 US Application Serial No. 10/701,412 US Application Serial No. 10/701,410	Non-exclusive License GeoSyntec Consultants ASAT LLC Weston Solutions
Emulsion for Metal Treatment	US Application Serial No. 10/449,907	Marketing - Partnership Opportunity
Removal of PCBs hero Ex Shu Shutishes	US Patent No. 7,271,199	Marketing
Attivated Metal Treatment System (AMTS)	Patent Pending	Actively licensed TEA Bio-Blend Danish Company

Doing Business: Lessons Learned

- If one company has control over a market, gain buy-in from this company early.
- Know (and accept) the limits of your technology.
- Know when to quit active marketing.
- In collaborative technology development effort,
 make sure there is an in-house expert to work
 with a licensee.

- If one company has control over a market, gain buy-in from this company early.
- A technology champion is essential for success.

Lessons Learned – EZVI

- Regulatory verification can be an important for gaining interest.
- A technology champion is essential for success.
- Fully understand your market, and competitive technologies.
- Careful identification and selection of licensing candidates.
- Promoting a technology too early can result in insecurity.
- A technology open house is a good method for generaling interest.
- A web portal can provide a passive and inexpensive
 marketing

Cross Case Lessons Learned

One Size Does Not Fit All

No one strategy or approach can work for all technology transfer projects.