Pengaruh Konsentrasi dan Jenis Larutan Perendaman terhadap Kecepatan Ekstraksi dan Sifat Gel Agar-agar dari Rumput Laut *Gracilaria verrucosa*

Sperisa Distantina*, Devinta Rachmawati Anggraeni dan Lidya Eka Fitri Jurusan Teknik Kimia Fakultas Teknik Universitas Sebelas Maret Jl. Ir. Sutami 36 A Surakarta

Abstract

Seaweeds of Gracilaria species are abundantly cultivated in Indonesia. However, studies related to its extraction process are still rare. In the present work, the mass transfer process on a batch extraction of agar was studied by extracting seaweeds in hot water solvent. The effect of alkali (NaOH) and acetic acid (CH₃COOH) in the soaking process on the volumetric mass transfer coefficient (kca) and the quality of gel agar were investigated. Seaweeds (*Gracilaria verrucosa*) from Pekalongan coast were soaked in aqueous NaOH (1.5 N and 3.75 N) or in aqueous acetic acid solution (0.2 N, 0.6 N, and 0.8 N). After being washed, the seaweeds were extracted in hot water of 98°C and neutral pH. Some of the extract samples at various times were freezed, thawed, dried and weighed. The evaluation of experimental data showed that the mass transfer coefficient k_ca decreased and the gel strength of agar increased with the increase of alkali concentration. Meanwhile, the value of k_ca increased and the gel strength of agar decreased with the increase of acetic acid concentration.

Key words: Alkali, Acetic Acid, Soaking, Extraction, Volumetric Mass Transfer Coefficient (kga), Gel strength.

Abstrak

Rumput laut jenis Gracilaria penghasil agar-agar banyak tumbuh di Indonesia, tetapi studi pengolahannya belum banyak. Penelitian ini bertujuan mempelajari proses transfer massa pada ekstraksi agar-agar dari rumput laut Gracilaria verucosa (pantai Pekalongan) secara bacth menggunakan pelarut air. Pengaruh penggunaan alkali NaOH (1,5 N dan 3,75 N) dan asam asetat (0,2 N, 0,6 N, dan 0,8 N) pada tahap perendaman terhadap koefisien transfer massa (kca) dan sifat gel agar-agar (*gel strength, melting* dan *setting temperature*) juga dipelajari. Rumput laut direndam menggunakan larutan alkali atau asam selama 15 menit. Setelah dicuci menggunakan air sampai pH netral, rumput laut diekstraksi menggunakan pelarut air. Ekstraksi dijalankan di dalam gelas beker yang dilengkapi motor pengaduk. Cuplikan sampel diambil setiap interval waktu tertentu. Cuplikan dibekukan semalam dalam *freezer*, kemudian diangin-anginkan sehingga air mencair dan terpisah dari agar-agar. Agar-agar yang dihasilkan dikeringkan mengunakan oven (70°C) sampai berat konstan. Hasil penelitian menunjukkan bahwa perendaman dengan alkali menghasilkan kecepatan ekstraksi yang lebih lambat, rendemen lebih rendah tetapi sifat gel agar-agar yang lebih baik dibandingkan perendaman menggunakan larutan asam.

Kata kunci: Alkali, Asam Asetat, Perendaman, Ekstraksi, kca.

Pendahuluan

Agar-agar merupakan senyawa ester asam sulfat dari senyawa galaktan, tidak larut dalam air dingin, tetapi larut dalam air panas dengan membentuk gel. Agar-agar diekstraksi dari ganggang laut yang berasal dari kelompok *Rhodophyceae*, seperti *Gracilaria* dan *Gelidium* (Chapman and Chapman, 1980). Beberapa jenis *Gracilaria* yang bernilai ekonomi tinggi yang tumbuh di perairan Indonesia antara lain *Gracilaria gigas*, *Gracilaria verrucosa*, dan *Gracilaria lichenoides*.

Fungsi utama agar-agar adalah sebagai bahan pemantap, penstabil, pengemulsi, pengisi,

* Alamat korespondensi: email: distantina@uns.ac.id, telp. /fax. (0271) 632112

penjernih, pembuat gel, dan lain-lain. Beberapa industri yang memanfaatkan sifat kemampuan membentuk gel dari agar-agar adalah industri makanan, farmasi, kosmetik, kulit, fotografi, dan sebagai media penumbuh mikroba.

Industri produksi agar-agar di Indonesia menggunakan metode yang melibatkan ekstraksi rumput laut dengan pelarut asam pada suhu tinggi (Anggadiredja dkk., 2002). Agar-agar merupakan polisakarisa. Polisakarida sangat mudah terhidrolisis menjadi monosakarida dalam suasana asam, karena larutan asam bersifat katalisator.

Menurut Matsuhasi (1977), ada kecenderungan umum pada proses ekstraksi yaitu sifat gel agar-agar menurun dengan meningkatnya

rendemen agar-agar. Untuk menghindari hal itu, Matsuhasi mengembangkan metode yaitu merendam rumput laut dengan asam dan setelah dinetralkan, rumput laut diekstraksi pada kondisi netral.

Hasil penelitian Matsuhashi (1977)menunjukkan bahwa peningkatan rendemen dan kekuatan agar-agar Gelidium amansii dapat dengan metode itu. dilakukan Menurut Matsuhashi, dengan metode ini kemungkinan hidrolisis adalah kecil teriadinya sehingga rendemen dan kekuatan gel agar-agar dapat dibandingkan meningkat dengan metode ekstraksi menggunakan pelarut asam.

Beberapa artikel (Rao dkk., 1976; Robello dkk., 1997; Montano dkk., 1999 dan Chapman & Chapman, 1980) mengatakan bahwa merendam rumput laut dengan larutan basa dapat meningkatkan kekuatan gel agar-agar yang dihasilkan. Struktur kimia agar-agar dalam prekursor (rumput laut) dan agar-agar ideal setelah perlakuan alkali ditunjukkan dalam gambar 1 berikut ini.

Gambar 1. Struktur kimia agar-agar, agar-agar yang ideal (A), prekursor agar-agar (B) (Falshaw dkk., 1998).

Menurut Marinho-Soriano (2001) dan Buriyo dkk. (2003) kualitas gel agar-agar dipengaruhi kondisi proses produksinya, serta jenis, musim panen dan lokasi rumput laut.

Pengaruh kadar asam cuka pada proses perendaman dan rasio berat rumput laut (*Gracilaria* yang berasal dari Bali) dengan volum pelarut air terhadap koefisien transfer massa volumetrik dan rendemen. Didapatkan bahwa kadar asam cuka pada proses perendaman dan rasio berat rumput laut dengan volume pelarut berpengaruh terhadap koefisien transfer massa

volumetrik dan rendemen (Distantina dkk, 2006; Distantina dkk., 2007).

Studi pengaruh kondisi proses pemungutan agar-agar dari rumput laut yang tumbuh di Indonesia terhadap kuantitas dan kualitas belum banyak dilakukan. Perancangan suatu alat proses dapat dilakukan dengan baik dan operasi dapat dilakukan secara optimum bila nilai parameter dalam dinamika proses itu diketahui dengan tepat. Penelitian ini bertujuan mempelajari pengaruh konsentrasi larutan alkali (NaOH) dan larutan asam cuka (CH₃COOH) pada tahap perendaman terhadap kecepatan ekstraksi dan agar-agar (gel strength, kualitas temperature, setting temperature) dari rumput laut Gracilaria verrucosa yang dipungut dari pantai Pekalongan.

Proses ekstraksi rumput laut merupakan proses perpindahan massa dari fase padat ke fase cair. Dalam menentukan kecepatan ekstraksi perlu diketahui data mengenai koefisien transfer massa antar fase dan kesetimbangan. Dalam peristiwa ekstraksi padat cair, perpindahan massa solut dari dalam padatan ke cairan melalui dua tahapan pokok, yaitu difusi dari dalam padatan ke permukaan padatan dan perpindahan massa dari permukaan padatan ke cairan (Treybal, 1981).

Pada penelitian ini, hubungan keseimbangan antara konsentrasi agar – agar dalam padatan dan larutan dianggap mengikuti Hukum Henry, yaitu:

$$Cl^* = H Cs$$
 (1)

Dalam hal ini, Cl* adalah konsentrasi agaragar dalam larutan yang setimbang dengan konsentrasi agar-agar dalam padatan (Cs).

Pada penelitian ini ekstraksi dilakukan secara batch dan volume pelarut dijaga konstan. Kadar agar-agar dalam padatan ditentukan menggunakan neraca massa agar-agar dalam tangki setiap waktunya:

Co.
$$M + 0 = Cs. M + Cl. V$$
 (2)

Atau

$$Cs = \frac{Co \cdot M - Cl \cdot V}{M}$$
 (3)

Dengan menggunakan rumput laut kering dengan ukuran kecil, dapat diambil asumsi bahwa difusi agar-agar dalam padatan (rumput laut) ke permukaan berlangsung sangat cepat, sehingga kecepatan ekstraksi ditentukan oleh kecepatan perpindahan solut dari permukaan padatan ke pelarut. Berdasarkan neraca massa agar-agar

dalam larutan di dalam tangki setiap waktunya diperoleh persamaan model peristiwa ekstraksi sebagai berikut:

$$CI = \frac{b}{a} - \frac{b}{a} \cdot \exp(-a.t)$$
 (4)

dalam hal ini,

$$a = \left(\text{kca .H .} \frac{V}{M} + \text{kca} \right)$$
 (5)

$$\frac{a}{b} = \frac{H \cdot Co}{H \cdot \frac{V}{M} + 1} \tag{6}$$

Metode Penelitian

Bahan yang digunakan adalah rumput laut jenis *Gracilaria verrucosa* (dari pantai Pekalongan) yang akan direndam dalam larutan NaOH dan asam cuka (CH₃COOH) dan diekstraksi dengan pelarut air. *Potato Dextrose Agar* (PDA) digunakan untuk membandingkan kualitas gel agar-agar yang dihasilkan dari penelitian ini.

Untuk mendapatkan bahan baku rumput laut yang seragam, semua rumput laut segar dibersihkan dari pengotornya dengan mencucinya menggunakan air. Setelah dipotong-potong menjadi panjangnya ±1 cm, rumput laut dikeringkan menggunakan oven bersuhu 50°C sampai berat konstan.

Pemungutan agar-agar

Pada penelitian ini, 40 gr rumput laut kering direndam akuades selama 15 menit, lalu mencuci rumput laut dengan air sampai pH sisa larutan pencuci netral. Pelarut air 800 ml dimasukkan ke dalam gelas beker sebagai ekstraktor dan dipanaskan dalam waterbath. Setelah suhu larutan dalam ekstraktor mencapai 98°C, rumput laut dimasukkan dan motor pengaduk dinyalakan dengan kecepatan pengadukan tetap 485 rpm. Volum pelarut dijaga konstan dengan menambah air panas setiap saat. Mengambil 50 ml sampel setiap 2 menit sampai terjadi kesetimbangan. Sampel (filtrat) dimasukkan freezer semalaman, kemudian sampel beku ini diangin-anginkan sehingga pelarut mencair, dan agar-agar disaring. Agar-agar yang dihasilkan dikeringkan dalam oven suhu 70°C sampai diperoleh berat konstan. Dari percobaan di atas akan diperoleh data Cl pada berbagai waktu ekstraksi.

$$Cl = \frac{\text{Berat gel agar } - \text{agar kering}}{\text{Volume larutan sampel (filtrat)}}$$
(7)

Percobaan di atas diulangi dengan mengganti jenis larutan perendaman, yaitu larutan NaOH dengan divariasi konsentrasi 1,5 N dan 3,75 N dan larutan asam cuka dengan variasi konsentrasi 0,2 N, 0,6 N dan 0,8 N

Pada penentuan Co, agar-agar diisolasi seperti penentuan Cl di atas, tetapi ampas hasil ekstraksi diekstraksi lagi. Ekstraksi dilakukan berkali-kali sampai diperoleh filtrat tidak mengandung agaragar.

$$C_{0} = \frac{\text{Berat agar } - \text{agar kering dari total filtrat}}{\text{Berat rumput laut kering}}$$
(8)

Penentuan konstanta Henry (H) dan koefisien transfer massa (k_ca)

Penentuan konstanta Henry (H) berdasarkan pada saat kadar gel agar-agar dalam larutan mencapai kesetimbangan (Cl*). Jadi kadar gel agar-agar dalam pelarut bukan sebagai fungsi waktu lagi. Nilai Cl yang mendekati konstan diambil sebagai nilai Cl*. Nilai Cs dapat ditentukan dengan persamaan (2) dan nilai H ditentukan dengan persamaan (1).

Nilai kca tidak dapat diukur langsung dari hubungan Cl dan t. Nilai kca pada persamaan (4) dapat dicari dengan mencoba-coba nilai kca yang memberikan nilai *sum of square of errors* (SSE) minimum. Minimasi ini dilakukan dengan menggunakan fungsi fminsearch dalam bahasa program MATLAB.

$$SSE = \sum (Cl_{data(i)} - Cl_{hit(i)})^2$$
(9)

Cl_{data} adalah nilai Cl data pada percobaan dan Cl_{hit} dievaluasi berdasarkan persamaan (4).

Penentuan kualitas agar-agar

Agar-agar kering yang diperoleh pada keadaan seimbang dianalisis kualitas gel. Kualitas gel agar-agar 1% (dalam air) yang diukur meliputi gel strength, melting temperature, serta gelling temperature dan mengacu pada metode Falshaw, dkk., (1998).

Gel strength ditentukan dengan membuat larutan agar-agar 1% (1 gram dalam 100 mL akuades). Larutan ini dibiarkan membeku (membentuk gel) semalam pada suhu kamar dalam gelas beker. Kemudian meletakkan gelas beaker di atas timbangan. Batang stainless steel (luas penampang = 0,95 cm²) ditekan dengan tangan di atas permukaan gel sampai pecah, dan berat maksimum dicatat. Selisih berat awal dan berat maksimum merupakan kekuatan gel untuk pecah. Gel strength merupakan perbandingan kekuatan gel dengan luas penampang batang itu.

Gelling dan melting temperature ditentukan dengan membuat larutan agar-agar 1% berat. Larutan dimasukkan dalam tabung reaksi dan didinginkan semalam dengan posisi tabung vertical pada suhu kamar. Pada penentuan gelling dan melting temperature, kelereng (diameter 5 mm) diletakkan di atas permukaan gel beku. Selanjutnya tabung reaksi dipanaskan dalam aquades (atau waterbath yang dilengkapi termometer) di atas hot plate dengan kecepatan pemanasan 2°C/menit. Melting temperature adalah suhu dimana kelereng tenggelam sampai mencapai bagian dasar tabung. Untuk menentukan setting temperature, pemanasan tabung dihentikan dan dibiarkan mendingin. Setiap menit tabung diambil dengan cepat dari waterbath dan diposisikan horizontal. Gel setting temperature adalah kisaran dimana larutan membentuk gel atau larutan tidak mengalir lagi.

Hasil dan Pembahasan

Dari hasil percobaan diperoleh nilai Co sebesar 0,3092 gram agar-agar/gram rumput laut kering.

Pengaruh jenis dan konsentrasi larutan perendaman terhadap konstanta Henry (H)

Hasil percobaan untuk pelbagai jenis perendaman tersaji pada Gambar 2 yang menunjukkan bahwa waktu ekstraksi untuk mencapai keadaan seimbang berkisar 30 menit sampai 45 menit. Oleh karena itu, penentuan nilai konstanta Henry menggunakan data percobaan pada waktu ekstraksi ini.

Gambar 2. Grafik perbandingan Cl terhadap waktu

Data dan hasil perhitungan menentukan konstanta Henry dan rendemen disajikan dalam Tabel 1 berikut ini.

Tabel 1 menunjukkan bahwa NaOH semakin besar, maka konstanta Henry semakin kecil. Karena kadar NaOH semakin besar, maka konsentrasi gel agar-agar pada kesetimbangan (Cl*) semakin kecil sehingga konstanta Henry semakin kecil pula, maka rendemen yang diperoleh juga semakin kecil.

Tabel 1. Hubungan kadar NaOH dan ${
m CH_3COOH}$ dengan H dan rendemen

Larutan perendaman	Cl* (gr/ml)	Cs (g/g)	H (gr/ml)	Rendemen, g agar/g rumput laut
Akuades	0,0061	0,1872	0,0326	0,1220
NaOH 1,5 N	0,0348	0,2395	0,0145	0,0696
NaOH 3,75 N	0,0328	0,2435	0,0135	0,0656
CH ₃ COOH 0,2 N	0,0063	0,1831	0,0344	0,1260
CH₃COOH 0,6 N	0,0067	0,1736	0,0391	0,1356
CH₃COOH 0,8 N	0,0068	0,1724	0,0397	0,1368

Didapatkan pula bahwa kadar CH₃COOH semakin besar maka konstanta Henry juga semakin besar. Karena kadar CH₃COOH semakin besar, maka konsentrasi gel agar-agar pada kesetimbangan (Cl*) semakin besar sehingga konstanta Henry semakin besar pula, maka rendemen yang diperoleh juga semakin besar. Kecenderungan hal ini juga terjadi pada rumput laut *gracilaria sp.* dari Bali (Distantina dkk., 2006).

Tabel 1 juga menunjukkan bahwa akuades memberikan nilai rendemen di antara larutan perendam alkali dan asam. Dengan demikian ienis larutan perendaman mempengaruhi rendemen. Di dalam percobaan, kenampakan rumput laut semakin lunak dengan semakin tingginya konsentrasi asam asetat. menuniukkan bahwa fungsi asam pada perendaman adalah melunakkan dinding sel rumput laut. Dengan demikian, komponen agaragar dalam rumput laut lebih banyak yang terekstrak pada konsentrasi asam asetat yang lebih tinggi.

Pengaruh jenis dan konsentrasi larutan perendaman terhadap koefisien transfer massa volumetrik $(k_c a)$

Nilai Cl vs t data percobaan dan Cl hasil perhitungan (model) disajikan pada Gambar 2 dan nilai $k_c a$ disajikan dalam Tabel 2.

Tabel 2. Pengaruh jenis larutan perendaman terhadap nilai k.a.

Larutan perendaman	k _c a (menit ⁻¹)	SSE	Ralat (%)
NaOH 0 N	0,1292	6,9549e-07	6,1073
NaOH 1,5 N	0,0945	7,2479e-07	13,9394
NaOH 3,75 N	0,0935	3,0190e-07	5,5776
CH ₃ COOH 0,2 N	0,1399	2,1726e-06	1,1502
CH ₃ COOH 0,6 N	0,1413	2,8161e-06	3,5391
CH ₃ COOH 0,8 N	0,1535	2,7569e-06	2,1046

Berdasarkan Gambar 2 dan Tabel 2, dapat disimpulkan bahwa semakin besar kadar NaOH, maka harga koefisien transfer massa volumetrik (k_ca) semakin besar.

Tampak pula bahwa semakin besar kadar CH₃COOH, maka harga koefisien transfer massa volumetrik (k_ca) semakin besar. Kecenderungan hal ini juga terjadi pada ektraksi rumput laut *gracilaria sp* dari Bali (Distantina dkk., 2006).

Pengaruh jenis dan konsentrasi larutan perendaman terhadap kualitas agar-agar

Tersaji di Tabel 3 bahwa menambahkan basa (NaOH) akan meningkatkan *gel strength*. Sedangkan bila menambah asam (CH₃COOH) akan menurunkan *gel strength*.

Tabel 3. Data hasil kualitas agar-agar hasil penelitian dan PDA

	Sifat gel				
Larutan	Gel strength	Melting	Setting		
perendaman	(gr agar-	Temperature	Temperature		
	agar/cm ²)	(°C)	(°C)		
Akuades	64,3209	80	33		
NaOH 1,5 N	65,7706	78	33		
NaOH 3,75 N	67,8469	81	33		
CH ₃ COOH 0,2 N	59,2627	87	33		
CH ₃ COOH 0,6 N	56,8980	88	32		
CH ₃ COOH 0,8 N	46,7727	86	32		
PDA	66,5281	89	32		

Penggunaan NaOH dan CH₃COOH pada proses perendaman tidak mempengaruhi *melting temperature* dan *setting temperature*. Sifat agaragar yang diperoleh dari penelitian ini tidak jauh berbeda dengan PDA, agar-agar yang sudah disinergiskan dengan pati (kentang) lainnya sehingga dapat dimanfaatkan sebagai media tumbuh mikroba. Namun begitu sifat yang lain seperti kemampuan sebagai media tumbuh mikroba belum dipelajari pada penelitian ini.

Kadar sulfat di dalam agar-agar sangat mempengaruhi gel strength, karena sifat sulfat sangat hidrofilik sehingga dengan banyaknya kadar sulfat dalam agar-agar akan menurunkan kekuatan gel agar-agar. Seperti tampak pada Gambar 1, dengan alkali maka gugus hidroksil pada prekursor akan menjadi terionisasi dan mengakibatkan sulfat gugus lepas dan membentuk ikatan jaringan seperti strukur A Gambar 1. Pada penelitian ini, alkali ditambahkan saat tahap perendaman. Alkali mendifusi ke dalam jaringan sel selulosa rumput laut, dan terjadi reaksi perubahan struktur kimia prekursor (rumput laut) menjadi struktur agar-agar ideal. Struktur ikatan A menjadikan sifat gel agar-agar menjadi lebih kuat dibandingkan struktur B.

Secara umum, perendaman dengan alkali dapat meningkatkan kekuatan gel agar-agar meskipun rendemennya lebih rendah dibandingkan dengan asam. Sedangkan perendaman dengan asam menghasilkan rendemen yang tinggi namum kekuatan gel agar-agarnya rendah.

Kesimpulan

Pemodelan matematika yang diajukan dapat mewakili peristiwa transfer massa yang terjadi pada ekstraksi rumput laut *Gracilaria verrucosa*. Semakin besar nilai kadar NaOH pada proses perendaman rumput laut, koefisien transfer massa volumetric (k_ca) semakin kecil, sedangkan kadar CH₃COOH semakin besar maka harga koefisien transfer massa volumetric (k_ca) semakin besar. Perendaman menggunakan basa akan meningkatkan *gel strength*, sedangkan menggunakan asam akan menurunkan *gel strength*. Penggunaan NaOH dan CH₃COOH pada proses perendaman tidak mempengaruhi *melting temperature* dan *setting temperature*.

Daftar Notasi

H = konstanta Henry, g agar-agar / mL larutan sampel

 $k_c a = koefisien$ transfer massa antar fase volumetrik, 1 / menit

V = volume pelarut, mL

Cl = konsentrasi agar-agar dalam larutan, g agaragar / mL larutan sampel

Cl* = konsentrasi agar-agar dalam larutan yang seimbang dengan konsentrasi agar-agar dalam padatan (Cs), g agar-agar/mL larutan,.

M = berat rumput laut, g

Cs = konsentrasi agar-agar dalam padatan, g agar-agar / g rumput laut

Co = kadar agar-agar dalam rumput laut sebelum akstraksi, g agar-agar/g rumput laut

t = waktu ekstraksi, menit

a, b = konstanta.

Daftar Pustaka

Anggadiredja, J.T., Zatnika, A., Purwoto, H., dan Istini, S., 2002. Rumput Laut, Penebar Swadaya, Jakarta

Buriyo, A.S., and Kivaisi, A.K., 2003. Standing Stock, Agar Yield and Properties of Glacilaria salicornia Harvested along the Tanzanian Coast, *Western Indian Ocean J. Mar. Sci.* 2, 171 – 178

Chapman, V.J., and Chapman, C.J., 1980. Seaweed and Their Uses , 3^{rd} ed., pp. 148 – 193, Chapman and Hall Ltd., London

Distantina, S., Rusman, O., dan Hartati, S., 2006, Pengaruh Konsentrasi Asam Asetat pada Perendaman Terhadap kecepatan Ekstraksi Agar – Agar, *Ekuilibrium* 5, 34-39.

Distantina, S., Fadilah, Dyartanti, E.R., dan Artati, E.K., 2007. "Pengaruh Rasio Berat rumput Laut Terhadap Ekstraksi Agar – Agar", Ekuilibrium 6 (2), 43 – 80.

Falshaw, R., Furneaux, R.H., and Stevenson, D.E., 1998. Agar from Nine Species of Red Seaweed in

- the Genus Curdie (*Glacilariaceae, Rhodophyta*), *Carbohydrate Research* 308, 107-115.
- Matsuhasi, T., 1977. Acid Pretreatment of Agarophytes Provides Improvement in Agar Extraction, *J. Food Sci.*, 42, 1396 1400.
- Mantano, N.E., 1999. Villanueva, R.D., and Romero, J.B., 1999, Chemical Characteristic and Gelling Properties of Agar from Two Philippine Glacilaria spp. (Glacilariales, Rhodophyta), *J. App. Phycol.* 11, 27-34.
- Rao, A.V., and Bekheet, I.A., 1976. Preparation of Agar agar from the Red Seaweed *Pterocladia*

- *capillacea* of the Coast of Alexandria, Egypt, *Appl. Environ. Microbiol.* 32 (4), 479 482.
- Robello, J., Ohno, M., Ukeda, H., and Sawamura, M., 1997. Agar Quality of Commercial Agarophytes from Defferent Geographical Origins: 1. Physical and Rheological Properties, *J. App. Phycol.* 8, 517 521.
- Marinho-Soriano, E., 2001. "Agar Polysaccharides from *Gracilaria* species (Rhodophyta, Gracilariaceae)", *J.Biotec.* 89, 81-84.
- Treybal, R.E., 1981. Mass Transfer Operation, 3th ed., p.p. 34-37, 88, Mc Graw Hill International Editions, Singapore.