OPAKOVANIE - VÝROKY A MNOŽINY

VÝROKY

Výrok je každá oznamovacia veta, o ktorej má zmysel hovoriť, či je pravdivá alebo nie je.

Výroky označujeme veľkými písmenami → A, B, ..., Z.

Opytovacie alebo rozkazovacie vety nemôžu byť výrokmi, nakoľko nevieme určiť ich pravdivostnú hodnotu.

Úsudok je logická operácia, myšlienkový postup, pri ktorom sa z jedného alebo niekoľkých súdov, nazvaných premisami úsudku, vyvodzuje nový súd (záver alebo dôsledok), logicky vyplývajúci z premís. Prechod od premís k záveru sa uskutočňuje podľa nejakého logického pravidla (odvodenie)

Hypotéza: Na základe úsudku vieme vyvodiť nejakú hypotézu. Hypotéza je nejaké tvrdenie, o ktorom nevieme v súčasnosti rozhodnúť, či je pravdivé. Hypotéza sa stane výrokom, keď ju dokážeme.

Zápisy obsahujúce aspoň 1 premennú nazývame **výrokové formy (napr. X > 39).** Výrokové formy nie sú výroky, ale sa nimi stanú, keď za premennú dosadíme číslo:

Výroky delíme na základe:

Pravdivostnej hodnoty na:

Pravdivý výrok – pravdivostná hodnota výroku je pravda a označujeme ju "1" **Nepravdivý výrok** – pravdivostná hodnota výroku je nepravda a označujeme ju "0"

Zložitosti na:

Jednoduchý výrok – sú vety, ktoré vyjadrujú jednu myšlienku, tvoria jednu vec.

Napr.: Každá rovnica má riešenie.

Zložený výrok – sú spojenia jednoduchých výrokov pomocou spojok.

Napr.: Každá rovnica má riešenie alebo nemá riešenie.

Logické spojky sú spojky a ustálené slovné spojenia, ktoré slúžia na spájanie výrokov a vytvárajú sa pomocou nich zložené výroky, t.j. konjunkcia, disjunkcia (alternatíva), implikácia, ekvivalencia, tautológia, kontraindikácia

Zložené výroky a operácie s nimi:

Konjunkcia (**A** Λ **B**) je spojenie dvoch výrokov pomocou spojok **a, aj, i, len, a súčasne**. Má hodnotu pravda, ak oba výroky majú hodnotu pravda, resp. ak aspoň jeden z výrokov má hodnotu nepravda, tak aj konjunkcia má hodnotu nepravda. Napr.: *Naučím sa všetky otázky a spravím skúšku*.

Disjunkcia (A V B) je spojenie dvoch alebo viacerých výrokov pomocou spojky **alebo.** Má hodnotu pravda, ak aspoň jeden z výrokov je pravdivý a nepravdivú hodnotu práve vtedy ak sú všetky výroky nepravdivé. Napr.: *Naučím sa otázky alebo nepôjdem na skúšku*.

• **Špeciálny prípad: Ostrá disjunkcia** A <u>v</u> B - zloženie dvoch výrokov slovným spojením buď, alebo. Je pravdivá ak je pravdivý práve jeden z výrokov (nazývame aj vylučujúce sa podmienky)

Implikácia (A⇒B) je spojenie dvoch alebo viacerých výrokov pomocou výrazov **ak – tak, ak – potom**. Má hodnotu pravda za podmienky, že aspoň jeden z výrokov A' (A negované), B je pravdivý. Napr.: *Ak sa naučím všetky otázky, tak pôjdem na skúšku*.

- **Obmenená implikácia**: B´ ⇒ A´ Implikácia a jej obmena majú vždy rovnakú pravdivostnú hodnotu.
- **Obrátená implikácia :** B ⇒ A Implikácia a obrátená implikácia nemusia mať rovnakú pravdivostnú hodnotu.

Ekvivalencia (A⇔B) je spojenie dvoch alebo viacerých výrokov pomocou výrazov práve vtedy keď, vtedy a len vtedy, je ekvivalentné. Ekvivalencia je pravdivá vtedy, ak majú výroky rovnakú pravdivostnú hodnotu. Napr: Na skúšku pôjdem vtedy a len vtedy, keď sa naučím všetky otázky.

Tautológia je zložený výrok, ktorý má pravdivostnú hodnotu 1 bez ohľadu na východiskové výroky.

Kontraindikácia je zložený výrok, ktorý má pravdivostnú hodnotu 0 bez ohľadu na východiskové výroky.

Negácia výroku

Je popretie výroku, negáciou výroku A je výrok A', ktorý popiera to, čo tvrdí výrok A, čiže má opačnú pravdivostnú hodnotu (ak má výrok A pravdivostnú hodnotu 1, výrok A' má pravdivostnú hodnotu 0, ak má výrok A pravdivostnú hodnotu 0, výrok A' má pravdivostnú hodnotu pravda 1)

Negácia výroku sa tvorí najmä pomocou spojenia: **ne-, nie je...., nie je pravda, že...**

Tabuľka negácií:

Výrok V	Negácia V´	
každý je	aspoň jeden nie je	
žiadny (nijaký) nie je	aspoň jeden je	
aspoň <i>k</i> ľudí je	najviac (k – 1) ľudí je	
najviac k ľudíje	aspoň (k+1) ľudí je	
práve k ľudíje	Najviac (k – 1) alebo aspoň (k+1) ľudíje	

Tabuľka pravdivostných hodnôt

the grant of the state of the s						
A	В	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	A⇔B	
1	1	1	1	1	1	
1	0	0	1	0	0	
0	1	0	1	1	0	
0	0	0	0	1	1	

Pravidlá negácie zložených výrokov (de MORGANOVE pravidlá)

1. $(A \wedge B)' \Leftrightarrow A' \vee B'$

2. $(A \lor B)' \Leftrightarrow A' \land B'$

3. $(A \Rightarrow B)' \Leftrightarrow A \land B'$

4. $(A \Leftrightarrow B)' \Leftrightarrow (A \land B') \lor (A' \land B)$

Kvantifikátory

sú slovné väzby, ktoré obsahujú premenné a udávajú počet alebo odhad počtu hodnôt premennej, pre ktoré niečo platí alebo neplatí. Ide o prvky **každý, existuje aspoň jeden, práve jeden, najviac dva, žiaden...** Delíme ich na:

- existenčný kvantifikátor s označením 3. Zaraďujeme sem spojenia existuje práve, aspoň, najviac, práve
- všeobecný kvantifikátor s označením ∀. Zaraďujeme sem spojenia **každý, pre všetky, pre každý, žiaden, nikto, všetci.**

MNOŽINY

Množina je súhrn prvkov, ktoré môžu, ale nemusia mať spoločnú vlastnosť.

Množina môže byť konečná alebo nekonečná.

 $A=\{a,c,d\}$

|A| = 3

 $N = \{1, 2, 3, 4 \dots\}$

Prázdna množina Ø - neobsahuje žiadny prvok.

Určenie množín

Množiny určujeme:

- 1. Vymenovaním prvkov: $N = \{1, 2, 3, 4 \dots\}$
- 2. Charakteristickou vlastnosťou: A = $\{2k; k \in N\}$
- 3. Operáciou s inými množinami: A = B ∩ C

Vzťahy medzi množinami

Rovnosť množín A = B

Množina A = B práve vtedy, ak množina A obsahuje práve tie isté prvky ako množina B.

Podmnožina A ⊂ B

Množina A je podmnožinou množiny B práve vtedy, ak každý prvok z množiny A patrí zároveň aj do množiny B.

Množinové operácie

Zjednotenie množín A ∪ B je množina	Prienik množín A ∩ B je množina všetkých
všetkých prvkov, ktoré patria aspoň do jednej z	prvkov, ktoré patria do množiny A a zároveň
množín A alebo B.	do množiny B

