

Aula 1 - O AMPOP como amplificador

Universidade Federal do Pará

Campus de Tucuruí

Faculdade de Engenharia Elétrica

Professor: Me. André Cruz

E-mail: andcruz@ufpa.br

Resumo Teórico

- Um Amplificador é um circuito projetada para prover algum tipo de amplificação de energia a um sinal elétrico;
- Neste processo, um sinal qualquer é aplicado a entrada de um amplificador, sendo gerada uma versão amplificada deste sinal na saída do amplificador, de forma geral:

$$G = x_o/x_i$$

Esta amplificação surge como um ganho de tensão, corrente ou potência;

$$G_v = V_o/V_i$$
, $G_i = I_o/I_i$, $G_p = P_o/P_i$

- O ganho G pode ser complexo, real, positivo
 ou negativo.
- Outra medida importante é o ganho em decibéis:

$$G_v$$
, $dB = 20 \log_{10} |V_o/V_i|$
 G_i , $dB = 20 \log_{10} |I_o/I_i|$

- O Amplificador Operacional (AMPOP) é um componente eletrônico capaz de amplificar sinais, e realizar operação matemáticas;
- O AMPOP ideal possui:
- 1. Entrada inversora;
- 2. Entrada Não-inversora;
- 3. Saída;
- O AMPOP é um elemento ativo da teoria de circuitos, e na prática precisa ser energizado para prover a devida amplificação. A alimentação é realizado pelos terminais:
- 4. Alimentação +VCC simétrica;
- 5. Alimentação $-V_{EE}$ simétrica;

• Um CI AMPOP é feito com um grande número de transistores e componentes:

 Devida a importância deste CI, iniciaremos o estudo considerando-o como um bloco fundamental;

• O CI AMPOP 741:

- O AMPOP Ideal em malha aberta:
 - Em malha aberta, o AMPOP ideal amplifica a diferença entre as entradas v_2 e v_1 :

$$v_o = A(v_2 - v_1)$$

- $A \notin O$ ganho de malha aberta (~ 10000);
- O ampop ideal pode gerar qualquer sinal de saída, na prática um ampop real é limitado pela faixa de saturação:

$$-V_{EE} < v_o < +V_{CC}$$

- Um AMPOP ideal pode estar em malha fechada em duas situações:
 - Realimentação positiva;
 - Realimentação negativa;
- A realimentação é o ato de aplicar o sinal de saída de volta à entrada;

- O amplificadores estáveis são projetados a partir de realimentação negativa;
- Considere que a tensão de saída é não nula $(v_o \neq 0)$;
- Idealmente A → ∞, portanto:

$$v_2 - v_1 = v_o/A \approx 0$$

Em um AMPOP ideal as impedâncias de entrada e saída:

$$Z_i \approx \infty \, \mathrm{e} \, Z_o \approx 0$$

 Temos as duas relações fundamentais de um AMPOP ideal:

$$v_2 = v_1$$

 $i_2 = 0, i_1 = 0$

Utilizando as duas relações fundamentais, podemos determinar os Ganhos de malha fechadas das duas configurações mais básicas que utilizam AMPOP:

$$G = -\frac{R_2}{R_1}$$

$$G = 1 + \frac{R_2}{R_1}$$

Exp. 1 - Amplificador na configuração inversora

Procedimento de Análise:

- Para $V_i = 1V$, determinar V_o ;
- Determinar o Ganho de malha fechada do circuito:

$$G = V_o/V_i$$

Determine o Ganho dB:

$$G, dB = 20 \log_{10} |G|$$

• Determinar as correntes nos ramos dos resistores R_1 e R_2

Procedimento Experimentais:

Siga o Roteiro 1: Experimento: Amplificador Operacional Configuração Inversora

Exp. 2 - Amplificador na configuração não-inversora

Procedimento de Análise:

- Para $V_i = 1V$, determinar V_o ;
- Determinar o Ganho de malha fechada do circuito:

$$G = V_o/V_i$$

Determine o Ganho dB:

$$G, dB = 20 \log_{10} |G|$$

• Determinar as correntes nos ramos dos resistores R_1 e R_2 ;

Procedimento Experimentais:

Siga o Roteiro 2: Experimento: Amplificador Operacional Configuração Não Inversora

Professor: Me. André Cruz

E-mail: andcruz@ufpa. br

