### ■ 반복이 없는 이원배치법

일원배시법은 한 요인의 서기효과를 알아내기위한 실험방법

- 두 요인의 처리 효과를 알아보기 위한 실험 방법
- 교차설계(cross-over design) & 지분설계(nested design)

|   | 교차설계 |   |   |   | 지분설계 |   |   |   |         |   |   |   |   |   |   |
|---|------|---|---|---|------|---|---|---|---------|---|---|---|---|---|---|
|   | Α    |   |   |   |      |   |   |   | <i></i> | λ |   |   |   |   |   |
|   |      | 1 | 2 | 3 | 4    | 5 | 6 |   |         | 1 | 2 | 3 | 4 | 5 | 6 |
|   | 1    | 0 | 0 | 0 | 0    | Ο | 0 |   | 1       | 0 | 0 |   |   |   |   |
| В | 2    | 0 | 0 | 0 | 0    | O | Ο | В | 2       |   |   | 0 | Ο |   |   |
|   | 3    | 0 | 0 | 0 | 0    | 0 | Ο |   | 3       |   |   |   |   | 0 | Ο |

个 是是经的时间 经智治

소 각각의 명유에서만실험가능 (한요인이 다른요인 누는에서만)

९४7 A91,201 पिसिसिए B91101 पिस्पिर् 79

ex) 긴사(+Hain)을 녹성하는 장비가 5%규고 각 장비는 4개의 테드가 있을때 숙경장비용뉴(요인), 테드위시(요인) 에 따른 숙정에 차이가 있는지 알아보다면? → 장비 수 등과 테드수 등의 모든 결합 2건에 따른 실험 결가능! 테드는 장비에 또함 (Nested) 되지있다

# □ 교차설계

- 실험 설계
  - $\circ$  수준 수가 a인 요인 A, 수준 수가 b인 요인 B
  - $\circ$   $a \times b$  실험 전체를 완전 확률화

#### ○ 자료구조

| 요인 A<br>요인 B | $A_1$    | $A_2$    | •••   | $A_a$    |
|--------------|----------|----------|-------|----------|
| $B_{1}$      | $Y_{11}$ | $Y_{21}$ | • • • | $Y_{a1}$ |
| $B_{\!2}$    | $Y_{12}$ | $Y_{22}$ | • • • | $Y_{a2}$ |
| •<br>•       | •        | :        | ٠.    | :        |
| $B_b$        | $Y_{1b}$ | $Y_{2b}$ | • • • | $Y_{ab}$ |

#### ○ 구조식

○ 1-요인설계의 구조식(❤️베시)

$$Y_{ij} = \mu_i + \varepsilon_{ij} = \mu + (\mu_i - \mu) + \varepsilon_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

- $\tau_i$ : 요인의 처리효과
- 2-요인설계의 구조식

$$\Rightarrow$$
  $Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$ ,  $i = 1, ..., a, j = 1, ..., b$ 

- *µ*: 전체 평균
- $\alpha_i$ : 요인 A의 처리효과,  $\sum_{i=1}^a \alpha_i = 0$  여기도  $\gamma_i = 0$  인것과육사  $\beta_j$ : 요인 B의 처리효과,  $\sum_{j=1}^b \beta_j = 0$

$$eta_j$$
: 요인 B의 처리효과,  $\sum_{j=1}^b eta_j = 0$ 

 $\circ$   $arepsilon_{ij}\sim$ iid  $N(0,\sigma^2)$ : 오차항

#### ○ 변동의 분해

$$\begin{split} Y_{ij} - \overline{Y}_{..} &= (\overline{Y}_{i.} - \overline{Y}_{..}) + (\overline{Y}_{.j} - \overline{Y}_{..}) + (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..}) \\ TSS &= SSA + SSB + SSE \end{split}$$

$$\qquad \qquad \circ \quad TSS = \sum_{i=1}^a \sum_{j=1}^b (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i=1}^a \sum_{j=1}^b Y_{ij}^2 - \frac{Y_{..}^2}{N} \; : \; 자유도 \; N-1 \; : \; III(Y_{ij} - \overline{Y}_{..}) = 0$$
 원생는 부분 ( $\overline{Y}_i - \overline{Y}_{..}$ ) = 0

$$(\text{solitional}) = \sum_{i=1}^{a} (\overline{Y}_{i.} - \overline{Y}_{..})^{2} = \sum_{i=1}^{a} \frac{Y_{i.}^{2}}{b} - \frac{Y_{..}^{2}}{N} : \text{ The } a-1 \quad \because \text{ In } (\overline{Y}_{i.} - \overline{Y}_{..}) = 0$$

$$\circ \quad SSB = a \sum_{j=1}^{b} (\overline{Y}_{.j} - \overline{Y}_{..})^2 = \sum_{j=1}^{b} \frac{Y_{.j}^2}{a} - \frac{Y_{..}^2}{N} : \text{ The } b - 1 : \text{ In } (\overline{Y}_{.j} - \overline{Y}_{..}) = 0$$

1%-५५A-५၄B 
$$\circ$$
  $SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2$  : 자유도  $(a-1)(b-1)$ 

- SSE 자유도: 
$$N-1-(a-1)-(b-1)=(a-1)(b-1)$$

#### ○ 가설 검정

○ 요인 A의 처리 효과의 동일성 검정

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$$

○ 요인 B의 처리 효과의 동일성 검정

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_b = 0 \quad \mathbf{0}$$

#### ♥ 분산분석표

강정통계량: 너무크면 기각

| 변인      | 자유도        | 제곱합 | 평균제곱                   | F       |   |
|---------|------------|-----|------------------------|---------|---|
| 모형(처리A) | a-1        | SSA | MSA = SSA/(a-1)        | MSA/MSE | 0 |
| 모형(처리B) | b-1        | SSB | MSB = SSB/(b-1)        | MSB/MSE | Θ |
| 오차      | (a-1)(b-1) | SSE | MSE = SSE/((a-1)(b-1)) |         |   |
| 전체      | N-1        | TSS |                        |         |   |

● 어느 화학공장에서 제품의 생산량에 영향을 미치는 것으로 예상되는 반응온도와 원료를 요인으로 생각하여 반복이 없는 이원배치의 실험 실시

↑ 반응온도(A) = 180, 190, 200, 210 원료(B) = 미국 M사, 일본 Q사, 국내 P사

12개의 실험구를 완전 확률화하여 실험한 결과

| 온도<br>원료 | 180   | 190   | 200   | 210   | 합계     |
|----------|-------|-------|-------|-------|--------|
| М        | 97.6  | 98.6  | 99.0  | 98.0  | 393.2  |
| Q        | 97.3  | 98.2  | 98.0  | 97.7  | 391.2  |
| Р        | 96.7  | 96.9  | 97.9  | 96.5  | 388.0  |
| 합계       | 291.6 | 293.7 | 294.9 | 292.2 | 1172.4 |

Ho: 
$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$$
, Hi: not Ho  
Ho:  $\beta_1 = \beta_2 = \beta_3 = 0$ 

$$TSS = \sum_{i=1}^{4} \sum_{j=1}^{3} y_{ij}^2 - \frac{y_{..}^2}{12} = 97.6^2 + \dots + 96.5^2 - \frac{1172.4^2}{12} = 6.22$$

$$\circ SSA = \frac{291.6^2 + 293.7^2 + 294.9^2 + 292.2^2}{3} - \frac{1172.4^2}{12} = 2.22$$

$$\circ SSB = \frac{393.2^2 + 391.2^2 + 388^2}{4} - \frac{1172.4^2}{12} = 3.44$$

$$\circ$$
  $SSE = TSS - SSA - SSB = 6.22 - 2.22 - 3.44 = 0.56$ 

| 변인      | 자유도       | 제곱합  | 평균제곱  | F         |          |
|---------|-----------|------|-------|-----------|----------|
| 모형(처리A) | 3         | 2.22 | 0.74  | 7.96 = 0. | 74/0.093 |
| 모형(처리B) | 2         | 3.44 | 1.72  | 18.49 = 1 | 12/0.093 |
| 오차      | 1-4-2 = 6 | 0.56 | 0.093 |           |          |
| 전체      | 11        | 6.22 |       |           |          |



- $\circ$   $F_{0.05}(3,6)=4.76$ ,  $F_{0.05}(2,6)=5.14$   $\Rightarrow$  유의수준 5%에서 두 요인 모두 유의함 (변화기가)
  - ⇒ 반응온도와 원료의 종류에 따라 생산량의 차이가 있다고 할 수 있음

유의한사이가 있다고 나오는 명우! ⇒ 처리를 바꿔도 같다는 뜻! 일천 배시 병으로 제 가성가능

```
chemistry <- scan(what=list("","",1))</pre>

      1
      1
      97.6
      2
      1
      98.6
      3
      1
      99.0
      4
      1
      98.0

      1
      2
      97.3
      2
      2
      98.2
      3
      2
      98.0
      4
      2
      97.7

      1
      3
      96.7
      2
      3
      96.9
      3
      3
      97.9
      4
      3
      96.5

names(chemistry) <- c("temp","material","amount")</pre>
chemistry <- data.frame(chemistry) ৸৽৽৸৸৸৽৽৽
                  linear model
result <- (manount~temp+material, data=chemistry)
anova(result)
    G p-value zizzzzzz
        २६३६१३११३८६ ४६६ Honis, 410119442 55 4 96
```

$$Var(\overline{Y_{i\cdot}}) = Var\left(\frac{\frac{b}{5}Y_{i\bar{j}}}{b}\right) = \frac{b\sigma^2}{b^2} = \frac{\sigma^2}{b} \rightarrow MSE2\frac{1}{7}N / Var(\overline{Y_{\cdot\bar{j}}}) = Var\left(\frac{\frac{a}{7}Y_{i\bar{j}}}{a}\right) = \frac{a\sigma^2}{a^2} = \frac{\sigma^2}{a} \rightarrow MSE2\frac{1}{7}N$$

$$\bigcirc$$
  $\mu(A_i)$ 와  $\mu(B_j)$ 의 추정 가장했으니까 군가야 내각 +  $\circ$   $\mu(A_i)$ 의 구간추정:  $\overline{Y}_{i.} \pm t_{lpha/2,(a-1)(b-1)} \sqrt{MSE/b}$ 

$$\circ$$
  $\mu(B_j)$ 의 구간추정:  $\overline{Y}_{.j} \pm t_{lpha/2,(a-1)(b-1)} \sqrt{\mathit{MSE/a}}$ 

● 95% 신뢰구간

$$\circ \quad t_{\alpha/2,(\mathbf{n}-1)(\mathbf{b}-1)} \sqrt{MSE/\mathbf{b}} = 2.447 \sqrt{0.093/3} = 0.43$$

$$0 t_{\alpha/2,(n-1)(b-1)} \sqrt{MSE/p} = 2.447 \sqrt{0.093/4} = 0.37$$

$$\circ$$
  $\mu(A_1)$ 의 95% 신뢰구간 = 97.2 ± 0.43 = [96.77, 97.63]  $\circ$   $\mu(B_1)$ 의 95% 신뢰구간 = 98.3 ± 0.37 = [97.93, 98.67]

$$\mu(B_1)$$
의 95% 신뢰구간 = 98.3 ± 0.37 = [97.93, 98.67]

$$\frac{\overline{Y_1} \pm t_{\alpha/2, h_{\chi_2}} \cdot \int M_1 \in I_b}{\overline{Y_1} \pm t_{\alpha/2, h}} \cdot \frac{\overline{Y_1} \pm t_{\alpha/2, h}}{\overline{Y_1} \pm t_{\alpha/2, h}} \cdot \frac{\overline{Y_1} + t_{\alpha/2, h}}{\overline{Y_1} \pm t_{\alpha/2, h}}} \cdot \frac{\overline{Y_1} + t_{\alpha/2, h}}{\overline{Y_1} \pm t_{\alpha/2, h}} \cdot \frac{\overline{Y_1} + t_{\alpha/2, h}}{\overline{Y_1} \pm t_{\alpha/2, h}} \cdot \frac{\overline{Y_1} + t_{\alpha/2, h}}{\overline{Y_1} \pm t_{\alpha/2, h}} \cdot \frac{\overline{Y_1} + t_{\alpha/2, h}}{\overline{Y_1} \pm t_{\alpha/2, h}}} \cdot \frac{\overline{Y_1} + t_{\alpha/2, h}}{\overline{Y_1} \pm t_{\alpha/2, h$$

$$\overline{Y_1}$$
 = 291.6/3 = 97.2  
 $\overline{Y_1}$  = 494.2/4 = 98.3  
 $\overline{Y_2}$  = 447  
 $\overline{Y_3}$  = 494.2/4 = 98.3  
 $\overline{Y_3}$  = 2.447

- (Y) 0 23(야/1/22/야) → 세월무니
  - अभिक्षि (क्ष्रिंगार्थ/क्) → आस्थ्राः

# ■ <mark>확률화 블록설계법</mark> (randomized complete block design)

- 확률화 완비(complete) 블록설계법:발배하면 배팅이 완전다음...

#### M4414474274!

- 생을 이룬 비교의 일반화
- 블록(block) : 요인의 처리효과 비교의 정확도를 높이기 위해 예비지식을 활용하여 나눈 동질적인 실험단위
  - (예제) 처리: 운동화의 두 상표 block: 운동화를 신은 사람
  - (예제) 처리: 옥수수 품종 block: 지역

#### ○ 실험 설계

- $\circ$  a 개의 수준(처리)과 b개의 블록가 있다고 가정
- 각 블록 안에 처리에 대해 관측값은 하나
- 각 블록 안에 처리의 배열은 확률적으로 결정

- Weight of Chickens Snee (1985)
  - 사료에 성장촉진제 추가
    - Control (추가하지 않음), Low dose, High dose
  - 크기가 유사한 것으로 블록
  - 성숙기의 평균 무게(단위: pound)

| Block | Control | Low<br>dose | High<br>dose | 합계    |
|-------|---------|-------------|--------------|-------|
| 1     | 3.93    | 3.99        | 3.96         | 11.88 |
| 2     | 3.78    | 3.96        | 3.94         | 11.68 |
| 3     | 3.88    | 3.96        | 4.02         | 11.86 |
| 4     | 3.93    | 4.03        | 4.06         | 12.02 |
| 5     | 3.84    | 4.10        | 3.94         | 11.88 |
| 6     | 3.75    | 4.02        | 4.09         | 11.86 |
| 7     | 3.98    | 4.06        | 4.17         | 12.21 |
| 8     | 3.84    | 3.92        | 4.12         | 11.88 |
| 합계    | 30.93   | 32.04       | 32.30        | 95.27 |

#### ○ 실험설계

#### ○ 통계적 모형

$$Y_{ij}=\mu+\alpha_i+\beta_j+\varepsilon_{ij\prime} \qquad i=1,...,a, \ j=1,...,b.$$

- $\circ$   $Y_{ij}$ : 블록 j에서 처리 i를 한 반응변수
- *µ*: 전체 평균
- $\alpha_i$ : 처리효과,  $\sum_{i=1}^{a} \alpha_i = 0$
- $\circ$   $\beta_j$ : 블록 효과,  $\sum_{j=1}^b \beta_j = 0$
- $\circ$   $\varepsilon_{ij} \sim \mathsf{iid} \ N(0,\sigma^2)$

# ○ 가설 검정 이원(VIK)나는 <u>무하다 지으고 는</u> 같음하는

- 처리효과의 동일성 검정
  - $H_0: \alpha_1 = \cdots = \alpha_a = 0$  vs  $H_1:$  최소한 하나 이상의  $\alpha_i$ 는 0이 아님
- 변동분해: TSS = SSA + SSBL + SSE

- 
$$TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij}^2 - \frac{Y_{..}^2}{N} : 자유도=N-1$$

- 
$$SSA = b\sum_{i=1}^{a} (\overline{Y}_{i.} - \overline{Y}_{..})^2 = \sum_{i=1}^{a} \frac{Y_{i.}^2}{b} - \frac{Y_{..}^2}{N}$$
 : 자유도= $a-1$ 

- 
$$SSBL = a \sum_{j=1}^{b} (\overline{Y}_{.j} - \overline{Y}_{..})^2 = \sum_{j=1}^{b} \frac{Y_{.j}^2}{a} - \frac{Y_{..}^2}{N} : 자유도=b-1$$

- 
$$SSE = \sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..})^2$$
 :   
자유도= $N - (a-1) - (b-1) - 1 = (a-1)(b-1)$ 

#### ○ 분산분석표

| 변인      | 자유도        | 제곱합  | 평균제곱                   | F        |
|---------|------------|------|------------------------|----------|
| 모형(처리A) | a-1        | SSA  | MSA = SSA/(a-1)        | MSA/MSE  |
| 블록      | b-1        | SSBL | MSBL = SSBL/(b-1)      | MSBL/MSE |
| 오차      | (a-1)(b-1) | SSE  | MSE = SSE/((a-1)(b-1)) |          |
| 전체      | N-1        | TSS  |                        |          |

# Polha.

- 블록효과의 동일성 검정 → Ho: b= ··· = (b=0
  - $\circ$  설계에 있어 ab개의 처리 조합은 실험 단위의 집합에 대해 확률적으로 배치된 것이 아님
  - 블<u>록은 실험단위</u>이고 <u>확률화는</u> 각 단위안에서 제한되어짐
  - 만약 두 개의 요인에 대해 관심이 있는 경우에는 다른 설계법을 설계
  - 이원설계의 상대적 효율성을 평가하는데 사용

 $f(F_b)$ 가 1보다 크면 클수록 블록화의 효과가 좋음 빛생생생생 일원일계안대

- ⇒ 이원설계가 일원설계에 비해 효율적임
- $-F_b$ 가 1보다 작으면 실험을 다시 수행하는 경우 블록화에 주의 또는 블록화 포기  $\Rightarrow$  완전확률화 설계 실시

MGE <1 ⇒ 岩型 性気の MGE 生中では、記されたのからして

# Weight of Chickens

|       |         | A 643.5     | 24 → (ov=0   |         | 7 4.1 |
|-------|---------|-------------|--------------|---------|-------|
|       |         | Δ           |              |         |       |
| Block | Control | Low<br>dose | High<br>dose | 합계      | 평균    |
| 1     | 3.93    | 3.99        | 3.96         | (11.88) | 3.960 |
| 2     | 3.78    | 3.96        | 3.94         | 11.68   | 3.893 |
| 3     | 3.88    | 3.96        | 4.02         | 11.86   | 3.953 |
| 4     | 3.93    | 4.03        | 4.06         | 12.02   | 4.007 |
| 5     | 3.84    | 4.10        | 3.94         | 11.88   | 3.960 |
| 6     | 3.75    | 4.02        | 4.09         | 11.86   | 3.953 |
| 7     | 3.98    | 4.06        | 4.17         | 12.21   | 4.070 |
| 8     | 3.84    | 3.92        | 4.12         | 11.88   | 3.960 |
| 합계    | 30.93   | 32.04       | 32.3         | 95.27   |       |
| 평균    | 3.866   | 4.005       | 4.038        |         | 3.970 |
|       |         |             | T            |         |       |
|       | 41.     | Y2.         | Yn.          |         |       |

$$TSS = \sum_{i=1}^{3} \sum_{j=1}^{8} y_{ij}^2 - \frac{y_{..}^2}{24} = 3.93^2 + \dots + 4.12^2 - \frac{95.27^2}{24} = 0.2533$$

$$\circ SSA = \frac{30.93^2 + 32.04^2 + 32.3^2}{8} - \frac{95.27^2}{24} = 0.1324$$

$$\circ SSBL = \frac{11.88^2 + \dots + 11.88^2}{3} - \frac{95.27^2}{24} = 0.0542$$

$$\circ$$
  $SSE = TSS - SSA - SSBL = 0.2533 - 0.1324 - 0.0542 = 0.0667$ 

#### ○ 분산분석표

112

| 변인      | 자유도       | 제곱합                        | 평균제곱            | F       | p-값             |
|---------|-----------|----------------------------|-----------------|---------|-----------------|
| 촉진제 🚜   | -1 2 44   | № 0.1324 <b>м</b>          | <b>₩</b> 0.0662 | 13.889  | 0.0005          |
| 블록      | -1 7 4    | <b>%</b> L 0.0542 <b>№</b> | 15840.0077      | 1.626 🚱 | <b>6</b> 0.2077 |
| 오차 (시1) | 0-1) 14 4 | E 0.0667 N                 | ₩ 0.0048        |         |                 |
| 전체 N-   | · 23 1    | <mark>%</mark> 0.2533      |                 |         |                 |

- 5% 유의수준에서  $F_{0.05}(2.14) = 3.739 < 13.889$ 



⇒ 성장촉진제 양에 따라 병아리 성장에 차이가 있음 mu

1 + a > F (d, a-1, ca-11(b-11))

Horing

th #24 12 150 1673 M

「Fo = MGBL 71 27日: 共活しみ右、外はなけらしなる。 Fo < 127号: 共活しいし > それがっていれるこれに

● 4가지 옥수수 품종(A, B, C, D)의 생산량을 비교하기 위해 4곳의 지역에서 파종하여 옥수수 생산량을 조사

학자 학생 (1.2.3.4)

| 지역 1 | 지역 2 | 지역 3 | 지역 4 |
|------|------|------|------|
| D    | В    | С    | Α    |
| C    | Α    | В    | В    |
| Α    | D    | Α    | D    |
| В    | C    | D    | С    |

#### ○ 실험결과

| 품종 | 지역 1 | 지역 2 | 지역 3 | 지역 4 |
|----|------|------|------|------|
| Α  | 9.3  | 9.4  | 9.6  | 10.0 |
| В  | 9.4  | 9.3  | 9.8  | 9.9  |
| C  | 9.2  | 9.4  | 9.5  | 9.7  |
| D  | 9.7  | 9.6  | 10.0 | 10.2 |

#### ○ 분산분석표 ∿거, ७=4

| 변인    | 자유도         | 제곱합            | 평균제곱   | F                        |
|-------|-------------|----------------|--------|--------------------------|
| 품종    | a-1 3 4-1   | 0.385          | 0.1283 | 14.42) -> F <sub>d</sub> |
| 블록    | b-1 3 41    | 0.825          | 0.2750 |                          |
| 오차 (사 | 16-19 16-3- | <b>,</b> 0.080 | 0.0089 |                          |
| 전체    | N-1 15 (6-1 | 1.290          |        |                          |

- 5% 유의수준에서  $F_{0.05}(3,9) = 3.86 < 14.42$ 

⇒ 옥수수 품종에 따라 옥수수 생산량에 차이가 있음

े इंद्रेश्य X

○ 만약 이 실험을 완전 확률화 설계법으로 생각하고 분석을 했다면

| 변인 | 자유도  | 제곱합   | 평균제곱   | F    |
|----|------|-------|--------|------|
| 품종 | 3    | 0.385 | 0.1283 | 1.70 |
| 오차 | (12) | 0.905 | 0.0754 |      |
| 전체 | /15  | 1.290 |        |      |

- 5% 유의수준에서 품종에 따라 옥수수 생산량에 차이가 있다고 할 수 없음 ⇒ 앞에서 블록에 의해 설명되는 변동이 모두 오차의



# **처리효과에 대한 다중비교**

- $H_0: \mu_{i.} = \mu_{k.}$  vs  $H_1: \mu_{i.} \neq \mu_{k.}$  또는  $\mu_{i.} \mu_{k.}$ 의 신뢰구간
- $\bullet \quad \overline{Y}_{i.} \overline{Y}_{k.} \pm c \sqrt{MSE} \, \sqrt{2/b} \qquad \text{(hard 24 N-P)}$ 
  - $\circ$  최소유의차:  $c = t_{\alpha/2,(a-1)(b-1)}$
  - $\circ$  Bonferroni:  $c=t_{lpha/(2k),(a-1)(b-1)}$ , k= 비교검정의 경우의 수
  - $\circ$  Scheffe:  $c = \sqrt{(a-1)F_{\alpha,a-1,(a-1)(b-1)}}$
  - $\circ \quad \text{Tukey: } \frac{1}{\sqrt{2}}q_{\alpha,a,(a-1)(b-1)} \bigvee \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)$

$$= Vor\left(\frac{Y_{11} + \dots + Y_{1b}}{b} - \frac{Y_{k1} + \dots + Y_{kb}}{b}\right)$$

$$= \frac{b\sigma^{2}}{b^{2}} + \frac{b\sigma^{2}}{b^{2}} - 2\left(ov\left(\frac{Y_{11} + \dots + Y_{1b}}{b}\right) + \frac{Y_{k1} + \dots + Y_{kb}}{b}\right) = \frac{2\sigma^{2}}{b}$$



review) chapoa stytytytytytytytyty

1. 4732/14 20/1/2012

a Fisher (LSD)

@ Bonferroni

1 Scheffe

ર જિલ્લામાનમાં મુખામામાં દ

0 Tukey (440) [41.-41.1> - 8(d.p.147)

& promon

3. 1/2/2012 | Summer | Yc-Y1/7+1(d, H.NP)