

IDP - StudySmarter Machine Learning Final Presentation

Technical University Munich
Supervisor Prof. Dr. Nicola Breugst
Munich, August 13, 2018

Meet the Team

DOCUMENT CLASSIFICATION

NITIN

VINDHYA

CONCEPT MAP

ROBERTO

ANUM

SAPTWARSHI

RECOMMENDER SYSTEMS

ANSHUL

ARVINDH

Main Agenda

Concept Map

1. Introduction

2. Development

3. Challenges & Learning

Introduction - Concept Map

- Concept Maps are nice tools for knowledge visualization.
- Represents the relationship among key words.
- Highly used among students of different study fields.

Introduction

Development

Introduction - Concept Map

Using IBM Watson

Pros

- Efficient
- Few parameters to use
- Good for fast development of product

Cons

- It's costly
- Rigid structure
- Built for general usage
- Not customizable
- Doubtful quality
- It's a black box

Introduction

Development

Introduction - Concept Map (Goal)

- Build our own customized pipelined.
 - Extracting more relevant lecture key words
 - Open the black box
- Use Machine Learning techniques/algorithms.

We want to help StudySmarter to make it better and free!

Introduction

Development

Introduction - Concept Map (Examples)

Lehrstuhl Elektrische Energiespeichertechnik Lehrstuhlleitung: Prof. Dr. Ing. Andreas Jossen Tel: +49 (0) 89 / 289 – 26966 andreas.jossen@tum.de

Holger Hesse Leitung Team stationäre Energiespeicher Stellvertretende LS-Leitung Tel: +49 (0) 89 / 289 – 26964 holger.hesse@tum.de

Holger Hesse, Franz Spingler | Ringvorlesung | 13.10.2017

Franz Spingler Li-Ion-Batterie Forschung Tel: +49 (0) 89 / 289 – 26962 franz.spingler@tum.de

franz.spingler@tum.de

2/50

Klausur

- Es findet eine Finalklausur statt, keine Midterm.
 - Die Klausur dauert 90 Minuten.
 - Umfasst den gesamten hier vorgestellten Stoff und den gesamten Stoff der Übungen.
 - Es gibt zwei Termine für die Klausur, bei beiden gilt (falls erreicht) der Bonus, egal ob sie die erste Klausur schreiben oder nicht.
- Insbesondere in der Zentralübung gegen "Mitte des Semester" (wann immer das sein wird … Während eines Vorlesungstermins … Wird nicht angekündigt) wird anlassbezogen diskutiert, wie so eine Klausur in etwa aufgebaut ist und wie man sich am besten vorbereiten kann.
- Es wird bei diesem Termin auch eine kurze Probeklausur ausgeteilt, die aber nicht bewertet (nicht einmal eingesammelt) wird

Development of a **Concept-Map** which contains important keywords from a lecture

The Idea

As a student I can

- Add subjects and lecture slides to study,
- Each lecture slide is automatically fed to the concept-map pipeline
- A graph containing keywords which represent the key concepts of a lecture.

Introduction

Development

Concept-map

Introduction

Development

PDF Structure (Page Content)

Saptwarshi Saha

11

Word Tokenize & Stop words removal

Stop Words

"Nice book! Though it has a lack of advanced topics it's still good for beginners"

Introduction

Development

Part of Speech Tagging

PRP → Personal Pronoun

 $VBZ \rightarrow Verb 3rd person$

NNS → Noun plural

IN → Preposition

DT → Pre Determiner

NN → Noun Singular

"accounting" → verb ×

"international accounting standard" → adjective + noun + noun •

Introduction

Development

Introduction

Development

Challenges - Concept Map

GENERAL

- How to work part time in a fast growing project.
- How to manage work and resources under time constraints.
- Knowledge transfer between team members.
- Code management using Git and Bitbucket.

TECHNICAL

- Metrics to measure accuracy of our results.
- Different PDFs have different structure.
- Finding open source libraries.

Learnings - Concept Map (NLP)

- Worked with state of the art algorithms and techniques in the field of Natural Language Processing.
- Literature Review.
- Familiarity with the working pipeline in NLP.
- Exposure to a large dataset of pdfs.

Learnings - Concept Map (Interdisciplinary Aspects)

- Familiarity with the working hierarchy of startups.
- Group discussions using Slack and trello
- Code management and integration using Bitbucket...
- Frequent meetings.

Points scored

Introduction

Development

C & L
Anum Afzal

Saptwarshi Saha

Introduction

Development

C & L
Saptwarshi Saha

Roberto Pereira

C&L Roberto Pereira

Document Classification

1. Introduction

2. Development

3. Challenges & Learning

Objective

Automatic Classification of documents into respective subjects and extract exam dates using Machine Learning and NLP

Introduction

Development

C & I

Introduction

- Automatic document classification to respective subjects offers users to
 - 1. Manage the uploaded documents
 - 2. Eases the need to sort out the documents topicwise
 - 3. Helps classify similar topics making learning easier
 - 4. Suggested exam dates can help schedule studies
- Helps the developers to improvise on future aspects of designing a learning platform

Introduction

Development

C & I

Action Plan

Introduction

Vin dhua Ci

Tasks Performed

- Research about machine learning and natural language processing, algorithms used, techniques implemented.
- Coding the solution → Training the model → Evaluating the model
- Algorithms Used : Stochastic Gradient Descent Classifier, Neural Network and Multinomial Binomial Classifier
- Python Libraries Used for Date Extraction : datetime
- Documentation and Presentation

Introduction

Development

Development Phase

General Flow of Development

Development

- Downloaded OCW (MIT) dataset with the list of 12,500 + documents
- Automating the conversion of PDFs to TXTs through pdfminer
- Preprocessing of text of each document and binding it with respective label
 - A. Converted all text to lowercase
 - B. Removed all text of length size upto 3
 - C. Removed all junk characters and numbers
 - D. **Word lemmatization** (This helps to cut short the word into the regular base words)
 - E. Binding the processed text and the label together.
- Split the processed dataset into 80:20
- Created stochastic gradient classifier model, input the values of Tfidf Vectorizer, hinge loss, learning rate as 0.001
- Trained the model and calculate the accuracy
- Tested it on the sample pdf and predict the label of sample pdf by using the trained model.

Introduction

Development

Result

S.No	Number of Labels Used	Prediction Accuracy
1	6	89.16%
2	60	73.86%
3	625	73.06 %

Introduction

Development

C & L

Nitin Vashisth

Result

python3.6 MIT_Department_Train.py

Done Extraction

Done splitting

Done training

Done prediction

0.8915831663326653

Done processing the unlabeled data

lec02.txt => Mathematics

CAA 108 Lecture.txt => Science

1408278839.txt => Business

2._principlesofdesign.txt => Business

pse2015_3_Design_Patterns_I.txt => Business

Result showcasing the documents being correctly classified to respective labels

Introduction

Development

General Challenges

- How to work part time in a fast growing project
- How to manage work and resources under time constraints
- Knowledge transfer between team members

Technical Challenges

- Variety of documents many languages stop word removal for all languages was different
- Stem words creation difficult due to inconsistencies in the original PDFs
- Some PDFs had animations: difficult to classify
- The uploads have Books. Problems- size, number of tags.
- The uploads for a subject have Exercises and their solutions. Most solutions to exercises contain Greek symbols that are considered garbage.
- Various date formats
- The problem with labels.
- Choosing which algorithm to use to train the model.

Introduction

Development

C&L

Vindhya Singh

Introduction

Development

Learning

Technical Aspect

- Implementing Machine Learning project from scratch
- Working on multiple Python Libraries
- Understanding of Neural networks, their learning and functioning
- Implementing algorithms introduced in Research papers
- Understanding of why, when and where to use certain ML Algorithms
- Working with a document corpus

Interdisciplinary Aspect

- Marketing, working of startups: their challenges, vision, mission, strategies
- Using various platforms to organise and communicate: Slack, Trello, Bitbucket
- Technology and Innovation Management
- Organisation, Communication, Project Development in real time
- Working in Pipelines and code management between the team members

Recommender System

1. Introduction

2. Development

3. Challenges & Learning

Introduction

- While studying it is helpful to have some relevant information collected.
 - It saves time, by presenting you relevant information right in front of you
 - It helps you keep focused on the study material
 - It improves comprehension and learning
- What is relevant information?
 - It can be be relevant definitions of important terms on the slide
 - It can be video lectures associated to the topic at hand.
 - It can be other similar courses

How do we do this?

Youtube Search

 To get relevant videos from Youtube is an enormous task, as the search space is very large and always growing

Disadvantages :

- It can have a non zero cost
- Or it can be restrictive with the amount of requests per day

Advantages :

- Returns the most accurate or relevant results for the search terms
- Easy access to analytics useful for the recommendation system
- Simplifies the problem of traversing a large search space
- Easy to embed information about the videos in the StudySmarter interface
- o It is also possible to integrate a complete playlist related to the course

- To get relevant and useful textual information
 - Wikipedia snippets for information
 - Links about other courses on MOOCs similar to the current course
 - Blog posts or Pdfs explaining the topics

Disadvantages :

- Accuracy or usefulness depends on the keywords generated
- Has a non-zero cost involved

Advantages :

- If the keywords are relevant, search results quality is high
- Easy to modify and cherry pick favourable sources

Recommendation System

- To give good search results, the app has to collect information about the user as allowed by EU laws.
- The following data of the user needs to be monitored:
 - Relevancy rating
 - In app click counts
 - View count
 - Likes/Dislikes
 - In app ratings
 - In app view length
- Using this data, different algorithms using Item Similarity, Matrix Decomposition or Singular Value Decomposition algorithm can be employed to rate video/website links.

Additional Tasks

Data Collection

Dataset generation for Document Classification

- A dataset with multiple classes of labels for a large collection of documents
- These labels can reflect the granularity we want with the classification
 - Engineering -> Computer Science -> Artificial Intelligence -> Machine Learning
- Dataset should be unbiased with representation for a variety of fields of study
- Sources for the dataset should be organised and structured
- So the solution was to write a crawler to collect all the data, and then store it such that feeding it to classification algorithms is easy

Sources for the Dataset

- MIT OCW
 - Very Structured
 - All courses are university courses
 - The courses are labeled with high granularity
 - Lacks in Medicine courses

- Johns Hopkins OCW
 - To cover the lack of medicine courses in MIT OCW
 - Courses aren't labeled with same granularity as MIT OCW

Sources for the Dataset

- Other sources that were considered were :
 - Open Yale Courseware
 - Open Michigan Courseware
 - NPTEL
 - Udacity
 - Coursera and Edx
 - Khan Academy
 - o Online Stanford

After combining the two sources we have a dataset with 15,000+ documents with around
 900 labels

Advanced Development: Document Classification

Advanced Development: Document Classification

- The current development in NLP is shifting towards machine learning.
- Using deep learning in NLP has shown to give state of the art results.
- Industries have started to adopt deep learning for NLP such as:
 - CERN: Classification of high energy physics abstracts
 - IBM: Watson NLP Platform
 - Microsoft: Azure NLP Platform
 - Google: Google Cloud NLP Platform
- Implementation required researching new models completely different from existing standards.

Advanced Development

- Convolutional Neural Networks for Sentence Classification [Yoon Kim et al. 2014]
 - Use case: Classify sentence sentiment into Good or Bad

Advanced Development

Flow of Data:

Result - Advanced Development

Number of Labels Used	Prediction Accuracy
625	80.956%

Learnings - Individual Learning Curve

Arvind Somasundaram

Learnings - Individual Learning Curve

Anshul Sharma

Points scored

Challenges

- Searching for APIs that are cost effective as well as productive.
- Building recommender systems that can rank any data.
- Building a dataset large enough to encompass a wide variety of study fields and not be biased to one study area
- Researching state of the art models for classification and its implementation

Learnings

- Researched about cost effective techniques to maximize profits.
- Researched about existing APIs for gathering video links.
- Researched different online resources for building a dataset
- Used multiple factors to decide the ones to scrape to build a dataset for document classification
- Explored different strategies for building recommender systems.
- Built state of the art architecture for document classification from research papers.
- Trained model and evaluated results.
- Building an easy integration into the app.

Organization & Management

Project Communication and Organization

- Individual and Team wise tasks assignment and tracking
- Weekly Task Monitoring

- Repositories for frontend and backend development
- Code reviews

- Communication in channels
- Weekly standup with current status
- Collection of ideas

Planning - Trello

That's all Folks!

Questions & Answers

IDP - StudySmarter

Thank you for your attention!

Technical University Munich
Supervisor Prof. Dr. Nicola Breugst
Munich, August 13, 2018

