ASYMPTOTICALLY FASTER CIRCUIT TOPOLOGIES

Michael You*

youmichaelc@gmail.com

November 14, 2020

ABSTRACT

We are familiar with using the Turing paradigm to create computers, representing information in binary bits. However, there are more natural ways to solve problems without using bits. For example, if you have a graph, why not just find a natural way to represent it so the computation can be done better? That's the motivation of the paper. We will explore designing more natural circuit topologies to solve problems, and analyze their computational complexity. We will find that for sorting, we can come up with an algorithm that is faster than existing algorithms, and shortest paths in graphs that we can perform asymptotically better than existing algorithms. We will then explore the possibility of extending more natural circuit topologies to solve other problems faster, and applications of using this circuit topology technique to solve algorithmic problems in general.

Keywords Computational Complexity · Circuits · Diodes · Graphs

1 Introduction

Turing machines

efficient for information storage, but is it the best way to compute things? Best way to represent everything? There can be more natural ways to represent problems.

2 Definitions

Definition 1. An **ideal diode** is a circuit element that has infinite current when on, and 0 current when off. The threshold voltage² for when it is on and off is called V_D and is measured from the + to the - terminal.

Figure 1: A diode, with the positive and negative terminals marked.

Property 1. For a chain of diodes D_1, D_2, \dots, D_n in series, the turn on voltage for the chain is

$$V_D = \sum_{i=1}^n V_{D_i} \tag{1}$$

^{*}Github: mikinty

²we sometimes call this the "turn-on voltage"

Figure 2: Diode chain

Definition 2. A **voltage source** is a circuit element that maintains a voltage of V between 2 nodes.

In this paper, we will be using the following element to represent a voltage source.

Figure 3: A voltage source

Definition 3. An **ammeter** is a device used to measure the current at some node of a circuit. We will use the notation

$$I(A_i) (2)$$

to describe the current measured by ammeter A_i .

Figure 4: An ammeter

Definition 4. A **switch** is a device that can be set to 2 configurations, either closed, which behaves as a wire in a circuit, or open, which will behave as an open circuit, so no current can flow through.

3 Circuit Topologies

Here, we will explore two circuit topologies, their computational complexity in the problem they solve, and their costs.

- Sorting numbers
- Shortest path in a graph

3.1 Sorting

We define the sorting problem to be

Given a list of n numbers,

The fastest algorithms for sorting numbers are

- QuickSort: $O(n \log n)$
- Radix Sort: O(b(n+k))

3.1.1 Circuit

Figure 6: Circuit for sorting numbers

3.1.2 Algorithm

```
SORT: 

// Build circuit 

Get a voltage source V, with nodes A at the positive, B at the negative for i=1:n: 

Build a series circuit of a switch S_i, ammeter A_i, and diode D_i and put it between A,B 

// Sort 

queue Q = [] 

set V=V_{\max} while \exists S_i that is on: 

for i such that I(A_i)>0: 

turn off S_i 

Q.push(V_i) 

return Q
```

We will now prove this algorithm is correct and runs in O(n) time.

First, we will prove the following lemma,

Lemma 1. If there are diodes D_1, D_2, \ldots, D_n in parallel, and a voltage of $V \ge \max(V_{D_1}, V_{D_2}, \ldots, V_{D_n})$ is applied across these diodes, the voltage across the diodes is $V_{\min} = \min(V_{D_1}, V_{D_2}, \ldots, V_{D_n})$, and only diodes D_i such that $V_{D_i} = V_{\min}$ are on.

Proof. We will prove this statement by contradiction.

Suppose some other D_k where $V_{D_k} > V_{\min}$ is on. Then the voltage across the diodes is V_{D_k} . But since we know that $V_{D_k} > V_{\min}$, it must be the case that some D_i with $V_{D_i} = V_{\min}$ is also on. However, if D_i is on, then the voltage across the diodes is $V_{D_i} < V_{D_k}$, and therefore D_k cannot be on. We have reached a contradiction, and therefore only diodes D_I with $V_{D_i} = V_{\min}$ can be on.

Now, the proof for the sorting algorithm is simple,

Theorem 1. Algorithm 3.1.2 correctly sorts diodes D_1, D_2, \ldots, D_n from smallest to greatest threshold voltage V_{D_i} .

Proof. Once we have built our circuit, since $V = V_{\text{max}}$, we know at least one diode is turned on, as long as $\exists S_i$ that is on. For the diodes that are on, or have $I(A_i) > 0$, they will only be the diodes that are on, and these diodes, by Lemma 3.1.2, are the ones with the smallest threshold voltage in the set of diodes.

Now, we can show this sorting algorithm works.

- Initially, the queue Q is empty, so it is trivially sorted
- On an arbitrary iteration with Q sorted, we only add diodes with V_{D_i} the smallest in the set of remaining diodes with their switch on. When we add these diodes to the queue, V_{D_i} must be larger than the previous diode V_{D_i} added, since when D_i was added, D_i was not on. Therefore, Q remains sorted in each iteration.
- On the last iteration, we are left with diodes that have a larger threshold voltage than all diodes currently in Q, so adding these last diodes to Q still keeps Q sorted.

3.1.3 Complexity

Theorem 2. Algorithm 3.1.2 runs in O(n) time.

Proof. Building the circuit takes 1 operation for putting the voltage source, and 3n operations for attaching the switch, ammeter, and diode in parallel.

Then, to run the algorithm, we are just turning off S_i one by one, n times, and each time adding V_{D_i} to our queue, which is a total of 2 operations.

Therefore, the total number of operations is

$$1 + 3n + 2n = 5n + 1 \in O(n).$$

Notice that although the complexity is O(n), which matches radix sort, the constant $kn \in O(n)$ is for a $k \approx 2$, which outperforms radix sort.

3.2 Shortest Path

A natural extension to the sorting circuit is to create graphs out of diodes, and then look for shortest paths.

3.2.1 Circuit

3.2.2 Algorithm

Before we prove the correctness of our algorithm, we will show the following to make the proof easier to understand. **Lemma 2.**

Proof.

4 Real-Life Implementations of Circuits

To demonstrate that these ideas can work in practice, I built these circuits in real life and tested them out.

5 Discussion

How do we get diodes of arbitrary threshold voltage? This is unlikely, and can vastly limit the scopes of the problems we'd like to solve.

Physical limitations with electrons traveling through a wire.

What other problems can we solve with this idea?

References