Demonstration of Charge-Trap Transistor for Compute-in-Memory

Siyun Qiao, Steven Moran, Dhruv Srinivas, Sudhakar Pamarti, and Subramanian S. Iyer UCLA CHIPS

Introduction to Analog CTT for CiM

(a) Write (Bit=1) SL=1.5V WL=2.0V BL=floating (b) Write (Bit=1) SL=1.5V Frase (Bit=0) SL=1.5V V_D = 50 mV V_D = 50 mV V_D = 50 mV V_D = 50 mV V_D = 50 mV

- Oxygen vacancies in HfO, can be used to trap charges in a controllable manner
- The mechanism has been successfully used for commercial digital memory
- This mechanism has also been successfully demonstrated for analog memory

- Twin-cell configuration to encode both positive and negative weight values
- We demonstrate matrix-vector multiplication (MVM) operation using CTT, fabricated in a standard logic process, as analog non-volatile memory

Characteristics of CTT as Analog Nonvolatile Memory

- Closed-loop write-verify calibration process
- Various pulse amplitude with set Pulse width for write
- Constant bias for read/verify
- Calibration ends when boundary conditions are met

- Write-verify within 3% accuracy with 200 µs prgm and 1.6 ms erase pulses
- As-fabricated CTT current readouts vs. after applying 12 programming pulses
- Programming exhibits ~1000x reduction in channel conductance

- Less than 1 pA leakage current with -300 mV V_{GS}
- CTT doubles as selector thanks to its three-terminal nature
- Excellent state retention at room temperature

CTT Array Characterization and Study

Programmed array cell distribution after 0, 20, and 50 hours of storage at 125 °C

Drain Current (nA)

• Minimal retention loss after experiments, indicating good temperature resilience

 Measured mean drift and standard deviation after 0, 20, and 50 hours of storage at 125 °C

Baking Time (hr)

Curves fitted to data points for device modeling

Drain Current (nA)

- Measured and Ideal Output vs. number of inputs
- <2% error due to on-chip mux resistance and IR drop
- Setup for testing and experiments

Summary and Acknowledgement

- We demonstrated CTT for analog CIM using commercial technology
- CTT can be embedded with standard logic devices with no additional process
- CTT offers excellent properties as nonvolatile analog memory for edge CiM
 - Negligible retention loss (up to 125 °C)
 - High off-state resistance (>10¹¹ Ω)
 - Accurate vector-matrix multiplication (<2% error)
- We would like to thank the UCLA CHIPS consortium for supporting this work!

