Μεταθετική Άλγεβρα και εφαρμογές

Ασκήσεις

ΚΩΝΣΤΑΝΤΙΝΟΣ ΜΠΙΖΑΝΟΣ

Αθήνα, 8 Αυγούστου 2022

ΠΕΡΙΕΧΟΜΕΝΑ

1	Μεταθετικοί Δακτύλιοι	5
	1.1 Ασχήσεις	5
	1.2 Ενδειχτικές Λύσεις Ασκήσεων	
2	Πρώτα και Μέγιστα ιδεώδη	15
	2.1 Ασχήσεις	15
	2.2 Ενδεικτικές Λύσεις Ασκήσεων	
3	Δακτύλιοι της Noether	27
	3.1 Ασχήσεις	27
	3.2 Ενδεικτικές Λύσεις Ασκήσεων	
4	Τοπικοποίηση	41
	4.1 Ασχήσεις	41
	4.2 Ενδεικτικές Λύσεις Ασκήσεων	
5	Πρότυπα	47
	5.1 Ασχήσεις	47
	5.2 Ενδεικτικές Λύσεις Ασκήσεων	
6	Συνθήχες Αλυσίδων	5 9
	6.1 Ασχήσεις	59
	6.2 Ενδεικτικές Λύσεις Ασκήσεων	
7	Δακτύλιοι του Artin	69
	7.1 Ασχήσεις	69

4		ПЕРІЕХОМЕНА

	7.2 Ενδεικτικές Λύσεις Ασκήσεων	71
8	Αχέραια Εξάρτηση 8.1 Ασχήσεις	
9	8.2 Ενδειχτιχές Λύσεις Ασχήσεων	75 77
	9.1 Ασχήσεις	
10	0 Παράρτημα	81

ΚΕΦΑΛΑΙΟ 1

ΜΕΤΑΘΕΤΙΚΟΙ ΔΑΚΤΥΛΙΟΙ

Όταν αναφέρουμε την ορολογία δακτύλιος, θα εννούμε ότι ο δακτύλιος είναι μεταθετικός με μονάδα.

1.1 Ασχήσεις

- 1.1. Θεωρούμε τα ιδεώδη I=(m) και J=(n) του \mathbb{Z} . Δείξτε τις εξής ισότητες.
 - (i) $I + J = (d), d = \mu \times \delta(m, n).$
 - (ii) $I \cap J = (e), e = \exp(m, n).$
- (iii) IJ = (mn).
- (iv) (I:J) = (c), c = m/d.
- **1.2.** Έστω I, J, K ιδεώδη του δαχτυλίου R. Δείξτε τις εξής σχέσεις.
 - (i) $I \subseteq (I:J)$.
 - (ii) $(I:J)J\subseteq I$.
- (iii) ((I:J):K) = (I:JK) = ((I:K):J).
- (iv) Για κάθε οικογένεια $(I_\lambda)_{\lambda\in\Lambda}$ ιδεωδών του $R,\,(\bigcap_{\lambda\in\Lambda}I_\lambda:J)=\bigcap_{\lambda\in\Lambda}(I_\lambda:J)$.
- (v) Για κάθε οικογένεια $(J_\lambda)_{\lambda\in\Lambda}$ ιδεωδών του $R,\,(I:\sum_{\lambda\in\Lambda}J_\lambda)=\bigcap_{\lambda\in\Lambda}(I:J_\lambda)$

- 6
- **1.3.** Έστω μηδενοδύναμο στοιχείο $r \in R$. Δείξτε ότι $1 + r \in U(R)$. Συμπεράνατε ότι $u + r \in U(R)$ για κάθε $u \in U(R)$.
- 1.4. Έστω R,S δακτύλιοι. Δείξτε ότι κάθε ιδεώδες του $R\times S$ είναι της μορφής $I\times J$, όπου I (αντίστοιχα J) είναι ιδεώδες του R (αντίστοιχα S). Στη συνέχεια δείξτε ότι

$$\frac{R \times S}{I \times S} \simeq \frac{R}{J} \times \frac{S}{J}.$$

- **1.5.** Είναι δυνατό ένα μονικό πολυώνυμο του R[x] να είναι μηδενοδιαιρέτης του R[x];
- **1.6.** Έστω k σώμα ή ο δακτύλιος \mathbb{Z} . Θεωρούμε σημείο $P=(a_1,\ldots,a_n)\in k^n=k\times\cdots\times k$ και τον ομομορφισμό εκτίμησης

$$\varphi_P \colon k[x_1, \dots, x_n] \to k, f(x_1, \dots, x_n) \mapsto f(a_1, \dots, a_n).$$

Δείξτε ότι $\ker \varphi_P = (x_1 - a_1, \dots, x_n - a_n)$ και $k[x_1, \dots, x_n] / \ker \varphi_P \simeq k$.

- 1.7. Έστω I,J ιδεώδη του δακτυλίου με I+J=R. Δείξτε ότι $I^m+J^n=R$ για κάθε m,n>0.
- 1.8. Δείξτε τους παρακάτω ισομορφισμούς δακτυλίων.

(i)
$$\frac{\mathbb{Z}[x]}{(5, x^2 + x)} \simeq \mathbb{Z}_5 \times \mathbb{Z}_5.$$

(ii)
$$\frac{\mathbb{R}[x,y]}{(x^2-y,x-x^3+xy)} \simeq \mathbb{R}.$$

- **1.9.** Ένα στοιχείο $e \in R$ λέγεται ταυτοδύναμο αν $e^2 = e$. Βρείτε τα ταυτοδύναμα στοιχεία στο \mathbb{Z}_{p^k} , όπου p πρώτος και k > 0. Στη συνέχεια βρείτε τα ταυτοδύναμα στοιχεία του \mathbb{Z}_{12} . Τέλος, υπολογίστε το πλήθος των ταυτοδύναμων στοιχείων του \mathbb{Z}_n , όπου $n = p_1^{k_1}...p_s^{k_s}$.
- 1.10. Δείξτε ότι αν $e \in R$ είναι ταυτοδύναμο, τότε η απεικόνιση

$$R \to (e) \times (1-e), r \mapsto (er, (1-e)r)$$

είναι ισομορφισμός δακτυλίων.

1.1. $A\Sigma KH\Sigma EI\Sigma$

1.11. Έστω k σώμα και I ιδεώδες του πολυωνυμικού δακτυλίου $k[x_1, \dots, x_n]$. Ορίζουμε

$$V(I) = \{ P = (a_1, \dots, a_n) \in k^n : f(P) = 0 \ \forall f(x_1, \dots, x_n) \in I \} \}.$$

Το V(I) είναι το σύνολο των κοινών ριζών όλων των πολυωνύμων του I.

Για $k=\mathbb{R}$ και n=2 σχεδιάστε το V(I) στις εξής περιπτώσεις.

- $I = (x^2 + y^2 1)$.
- $I = (x 1, x^2 y)$.
- $I = ((x-1)(x^2-y)).$

Έστω I, J ιδεώδη του $k[x_1, \ldots, x_n]$. Δείξτε τα εξής.

- (i) $V(I + J) = V(I) \cap V(J)$.
- (ii) $V(IJ) = V(I) \cup V(J)$.

Στη συνέχεια δώστε μια διαισθητική γεωμετρική ερμηνεία του αποτελέσματος της Άσκησης 1.1.8 (ii).

- **1.12.** Έστω $\varphi: R \to S$ ένας ομομορφισμός δακτυλίων.
 - (i) Δείξτε ότι αν I είναι ιδεώδες του R και ο φ είναι επί, τότε το σύνολο $\varphi(I)$ είναι ιδεώδες του S.
 - (ii) Δείξτε με παράδειγμα ότι ο προηγούμενος ισχυρισμός δεν αληθεύει γενικά χωρίς την υπόθεση περί επί.
- (iii) Δείξτε ότι αν K είναι ιδεώδες του S, τότε το σύνολο $\varphi^{-1}(K)$ είναι ιδεώδες του R.
- **1.13.** Έστω I ιδεώδες του R. Με IR[x] συμβολίζουμε το ιδεώδες του R[x] που παράγεται από το σύνολο I. Δείξτε ότι

$$\frac{R[x]}{IR[x]} \simeq \frac{R}{I}[x].$$

1.14 (Δεύτερο θεώρημα ισομορφισμών δακτυλίων). Έστω S υποδακτύλιος του R και I ιδεώδες του R. Δείξτε ότι το I είναι ιδεώδες του S+I, το $S\cap I$ είναι ιδεώδες του S και

$$\frac{S+I}{I} \simeq \frac{S}{S \cap I}.$$

1.2 Ενδεικτικές Λύσεις Ασκήσεων

- 1.1. (i) Αφού, d|n και d|m είναι σαφές ότι $I+J\subseteq (d)$. Τώρα, αφού $d=\mu$ κδ(m,n), γνωρίζουμε ότι υπάρχουν $x,y\in\mathbb{Z}$ ώστε d=xm+yn, συνεπώς έχουμε ότι $d\in I+J$, δηλαδή ισχύει $(d)\subseteq I+J$.
 - (ii) Αφού, ισχύει ότι m|e και n|e είναι σαφές ότι $(e)\subseteq (m), (n)$, δηλαδή προκύπτει ότι $(e)\subseteq (m)\cap (n)$. Τώρα, αν $x\in (m)\cap (n)$, έχουμε ότι m|x και n|x, συνεπώς ισχύει ότι e|x, άρα έχουμε ότι $x\in (e)$, δηλαδή $(m)\cap (n)\subseteq (e)$.
- (iii) Είναι σαφές ότι $mn \in IJ$, συνεπώς έχουμε ότι $(mn) \subseteq IJ$. Αντίστροφα, έστω $x \in IJ$, δηλαδή $x = \sum_{i=1}^k a_i b_i$ με $a_i \in I$ και $b_i \in J$, για κάθε $i=1,\cdots,k$. Όμως, έχουμε ότι $a_i = x_i m$ και $b_i = y_i n$, με $x_i, y_i \in \mathbb{Z}$, για κάθε $i=1,\cdots,k$. Έτσι, έχουμε ότι

$$x = \sum_{i=1}^{k} a_i b_i = \sum_{i=1}^{k} (x_i m)(y_i n) = \left(\sum_{i=1}^{k} x_i y_i\right) mn \in (mn).$$

Επομένως, έχουμε ότι $IJ \subseteq (mn)$.

(iv) Έχουμε ότι m=cd και n=c'd. Θεωρούμε $rc\in(c)$ και $j=kn\in J$. Τότε, έχουμε ότι

$$(rc)j = (rc)(kn) = rkc'(cd) = rkc'm \in (m) \Rightarrow (rc)j \in I.$$

Έτσι, συμπεραίνουμε ότι $rc \in (I:J)$, άρα προχύπτει ότι $(c) \subseteq (I:J)$.

Αντίστροφα, έστω $r\in (I:J)$, δηλαδή $rJ\subseteq I\Leftrightarrow (rn)\subseteq (m)$. Άρα, έχουμε ότι m|rn, συνεπώς c|rn. Αφού (c,n)=1, έχουμε ότι c|r, επομένως έχουμε ότι $r\in (c)$ και συμπεραίνουμε ότι $(I:J)\subseteq (c)$.

- 1.2. (i) Έστω $r \in I$. Γνωρίζουμε ότι $rj \in I$, αφού $I \triangleleft R$, για κάθε $j \in J$. Έτσι, είναι σαφές ότι $rJ \subseteq I$, δηλαδή $r \in (I:J)$.
 - (ii) Θεωρούμε $\sum_{i=1}^k a_i b_i \in (I:J)J$ με $a_i \in (I:J)$ και $b_i \in J$, για κάθε i. Αφού, $a_i \in (I:J)$ έχουμε ότι $a_i J \subseteq I$, δηλαδή $a_i b_i \in I$, για κάθε $i=1,\cdots,k$. Αφού ισχύει $I \triangleleft R$, έχουμε ότι $\sum_{i=1}^k a_i b_i \in I$.
- (iii) Έχουμε ότι

$$r \in ((I:J):K) \qquad \text{and} \qquad rK \subseteq (I:J) \qquad \text{and} \qquad rKJ \subseteq I \qquad \qquad (1)$$

και

$$r \in (I:JK)$$
 $\alpha \vee \gamma$ $rJK \subseteq I$ (2)

Αφού ισχύει ότι JK = KJ, από (1) και (2) έχουμε τη ζητούμενη ισότητα. Η δεύτερη ισότητα προκύπτει άμεσα από τη πρώτη.

(iv) Έχουμε ότι

$$r \in \left(\bigcap_{\lambda \in \Lambda} I_{\lambda} : J\right)$$
 ανν
$$rJ \subseteq \bigcap_{\lambda \in \Lambda} I_{\lambda}$$
 ανν
$$rJ \subseteq I_{\lambda}, \text{ για κάθε } \lambda \in \Lambda$$
 ανν
$$r \in \bigcap_{\lambda \in \Lambda} (I_{\lambda} : J)$$

- (v) Έχουμε ότι $r\in \left(I:\sum_{\lambda\in\Lambda}J_{\lambda}\right)$ αν και μόνο αν $r\left(\sum_{\lambda\in\Lambda}J_{\lambda}\right)\subseteq I$ αν και μόνο αν $\sum_{\lambda\in\Lambda}rJ_{\lambda}\subseteq I.^{1}$. Τώρα, αφού γνωρίζουμε ότι $\sum_{\lambda\in\Lambda}rJ_{\lambda}=\left(\bigcup_{\lambda\in\Lambda}rJ_{\lambda}\right)$, έχουμε ότι οι προηγούμενες σχέσεις είναι ισοδυναμούν με $rJ_{\lambda}\subseteq I$, για κάθε $\lambda\in\Lambda$ αν και μόνο αν $r\in (I:J_{\lambda})$), για κάθε $\lambda\in\Lambda$ αν και μόνο αν $r\in \bigcap_{\lambda\in\Lambda}(I:J_{\lambda})$.
- 1.3. Θα δείξουμε απευθείας το γενικότερο αποτέλεσμα. Αφού, το $r \in R$ είναι μηδενοδύναμο, υπάρχει $n \in \mathbb{N}$ ώστε $r^n = 0_R$. Τώρα, αν $u \in U(R)$ έχουμε την εξής σχέση

$$(u+r)\left(u^{n-1} - u^{n-2}r + \dots + (-1)^{n-1}r^{n-1}\right) = u^n - (-r)^n = u^n$$
(1.1)

όπου το ζητούμενο προχύπτει άμεσα, αφού αν $u \in U(R)$, τότε $u^n \in U(R)$.

- 1.4. Είναι άμεσο με χρήση των ορισμών να δείξουμε ότι $I\times J \triangleleft R\times S$ αν και μόνο αν $I\triangleleft R$ και $J\triangleleft S$. Τώρα, μέσω της απεικόνιση $\varphi\colon R\times S\to \frac{R}{I}\times \frac{S}{J},\ (r,s)\mapsto (\frac{r}{R},\frac{s}{S})$ και από 1ο Θεώρημα Ισομορφισμών έχουμε το ζητούμενο.
- **1.5.** Αν $f(x) = x^n + f_{n-1}x^{n-1} + \cdots + f_0, g(x) = g_m x^m + \cdots + g_0 \in R[x]$ με $g_m \neq 0_R$, γνωρίζουμε ότι $\deg(f \cdot g) = \deg f + \deg g$, συνεπώς δεν είναι δυνατό ένα μονικό πολυώνυμο του R[x] να είναι μηδενοδιαιρέτης του R[x].

 $^{^1}$ Δείξτε ότι αν $J_\lambda \triangleleft R$, τότε έχουμε ότι $rJ_\lambda \triangleleft R$, για $r \in R$.

1.6. Είναι άμεσο ότι η απειχόνιση φ_P είναι επιμορφισμός δαχτυλίων. Αρχεί να δείξουμε ότι $\ker \varphi_P = (x_1 - a_1, \dots, x_n - a_n)$ και έπειτα το δεύτερο ζητούμενο θα είναι άμεσο από 1ο Θεώρημα Ισομορφισμών. Παρατηρούμε ότι αν $f \in (x_1 - a_1, \dots, x_n - a_n)$, τότε $f \in \ker \varphi_P$, συνεπώς $(x_1 - a_1, \dots, x_n - a_n) \subseteq \ker \varphi_P$.

Ο αντίστροφος ισχυρισμός θα αποδειχθεί με επαγωγή στο n.

- Βάση. Αν n=1, τότε για $f(x) \in k[x]$ είναι σαφές ότι $f(x) \in \ker \varphi_P$ αν και μόνο αν $f(a_1)=0$ αν και μόνο αν $x-a_1|f(x)$.
- Επαγωγικό βήμα. Έστω $f(x_1,\ldots,x_n)\in\ker \varphi_P$, δηλαδή $f(a_1,\ldots,a_n)=0$. Αφού, k είναι περιοχή γνωρίζουμε ότι και $k[x_1,\ldots,x_n]$ είναι περιοχή. 2 . Τώρα, αφού $x_n-a_n\in R[x_n]$ είναι μονικό γνωρίζουμε ότι υπάρχει $q(x_n),r(x_n)\in R[x_n]$, όπου $R=k[x_1,\ldots,x_{n-1}]$, τέτοια ώστε

$$f(x_1, \dots, x_{n-1})(x_n) = q(x_n)(x_n - a_n) + r(x_n)$$
(1.2)

με $r(x_n) = 0$ ή $deg(x_n - a_n) = 1 > deg r \Leftrightarrow r(x_n) \in R$.

Στην πρώτη περίπτωση το ζητούμενο είναι άμεσο. Αν τώρα, $r=r(x_n)\in R$, τότε έχουμε ότι

$$f(a_1, \dots, a_n) = q(a_n) \cdot 0 + r \Leftrightarrow r = 0.$$

Όμως $r\in R$, συνεπώς εξαρτάται μόνο από τα x_1,\ldots,x_{n-1} και μηδενίζεται στο σημείο P, συνεπώς από επαγωγική υπόθεση $r\in (x_1-a_1,\ldots,x_{n-1}-a_{n-1})$ και έχουμε το ζητούμενο.

1.7. Έστω $n, m \in \mathbb{Z}_{>0}$. Αφού έχουμε ότι I + J = R, υπάρχουν $x \in I$, $y \in J$ ώστε $x + y = 1_R$. Αν θέσουμε k = m + n - 1, τότε παρατηρούμε ότι

$$1_R = (x+y)^k = \sum_{j=0}^k \binom{k}{j} x^{j-k} y^j = \sum_{j=0}^{n-1} \binom{k}{j} x^{j-k} y^j + \sum_{j=n}^k \binom{k}{j} x^{j-k} y^j$$
(1.3)

Για κάθε $j \leq n-1$ έχουμε ότι $k-j \geq m$, άρα $x^{j-k} \in I^m$ και αφού $I^m \triangleleft R$ έχουμε ότι $\sum_{j=0}^{n-1} \binom{k}{j} x^{j-k} y^k \in I^m.$ Ομοίως, για κάθε $j \geq n$ ισχύει ότι $y^j \in J^m$ και αφού $J^n \triangleleft R$ έχουμε ότι $\sum_{j=n}^k \binom{k}{j} x^{j-k} y^j \in J^n.$ Συνεπώς, έχουμε ότι $1_R \in I^m + J^n$, άρα $R = I^m + J^n$.

 $^{^2}$ Το ζητούμενο αποδειχνύεται με επαγωγή στο n και η απόδειξή του για n=1 υπάρχει στο Παράρτημα 1

1.8. (i) Μέσω της απεικόνισης $\varphi \colon \mathbb{Z}[x] \to \mathbb{Z}_5[x]$, $f_n x^n + \dots + f_0 \mapsto [f_n] x^n + \dots + [f_0]$, όπου $[f_i] \in \mathbb{Z}_5[x]$, από 1ο Θεώρημα ισομορφισμών έχουμε ότι $\frac{\mathbb{Z}[x]}{(5)} \simeq \mathbb{Z}_5[x]$ και από τον περιορισμό της φ στο σύνολο $(5, x^2 + x)$, ομοίως από 1ο Θεώρημα Ισομορφισμών έχουμε ότι $\frac{(5, x^2 + x)}{(5)} \simeq (x^2 + x) \triangleleft \mathbb{Z}_5[x]$. Τώρα, από 3ο Θεώρημα Ισομορφισμών έχουμε ότι

$$\frac{\mathbb{Z}[x]}{(5, x^2 + x)} \simeq \frac{\mathbb{Z}[x]/(5)}{(5, x^2 + x)/(5)} \simeq \frac{\mathbb{Z}_5[x]}{(x(x+1))} \simeq \frac{\mathbb{Z}_5[x]}{(x)} \times \frac{\mathbb{Z}_5[x]}{(x+1)}$$
(1.4)

Τώρα, αφού \mathbb{Z}_5 είναι σώμα από την Άσκηση 1.6 έχουμε ότι $\frac{\mathbb{Z}_5[x]}{(x)} \simeq \mathbb{Z}_5$ και $\frac{\mathbb{Z}_5[x]}{(x+1)} \simeq \mathbb{Z}_5$. Από τη σχέση 1.4 έχουμε το ζητούμενο.

(ii) Παρατηρούμε ότι $(x^2 - y, x - x^3 + xy) = (x, y)$, αφού

$$x = (x - x(x^2 - y)) + x(x^2 - y) \in (x^2 - y, x - x^3 + xy)$$

και

$$y = -((x^2 - y) + x^2) \in (x^2 - y, x - x^3 + xy).$$

Τώρα, από την Άσκηση 1.6 είναι άμεσο ότι

$$\frac{\mathbb{R}[x,y]}{(x^2-y,x-x^3+xy)} = \frac{\mathbb{R}[x,y]}{(x,y)} \simeq \frac{\mathbb{R}[x]}{(x)} \simeq \mathbb{R}$$
 (1.5)

- **1.9.** Έστω $R = \mathbb{Z}_{p^k}$ και $[e] \in R$ μηδενοδύναμο, δηλαδή $[e]^2 = [e]$, δηλαδή $p^k | e(e-1)$. Αφού (e, e-1) = 1, τότε έχουμε ότι $p^k | e$ ή $p^k | e-1$, δηλαδή [e] = 0 ή [e] = 1.
 - Αν $R = \mathbb{Z}_{12}$, τότε $[e] \in R$ είναι ταυτοδύναμο αν και μόνο αν 12|e(e-1). Τώρα, αφού (e,e-1)=1 έχουμε ότι 4|e και 3|e-1 ή 3|e και 4|e-1. Από τις σχέσεις αυτές, προκύπτει ότι [e]=0 ή [1] ή [4]ή [9].
 - Αφού $n=p_1^{k_1}\cdots p_s^{k_s}$ και $(p_i,p_j)=1$, για κάθε $i\neq j$, έχουμε ότι n|e(e-1) αν και μόνο αν $p_i^{k_i}|e(e-1)$, για κάθε $i=1,\cdots,s$. Συνεπώς, $[e]_n\in\mathbb{Z}_n$ είναι ταυτοδύναμο αν και μόνο αν $[e]_i\in\mathbb{Z}_{p_i^{k_i}}$ είναι ταυτοδύναμο, για κάθε i. Συνεπώς, από το πρώτο ερώτημα, έχουμε ότι $[e]_i=[0]$ ή [1], για κάθε i. Επομένως, υπάρχουν 2^s , ταυτοδύναμα στοιχεία στο \mathbb{Z}_n .
- **1.10.** Έστω $r, \lambda \in R$.Είναι άμεσο ότι ισχύει $\varphi(r + \lambda) = \varphi(r) + \varphi(\lambda)$. Τώρα, έχουμε ότι

$$\varphi(r\lambda) = (er\lambda, (1-e)r\lambda) = (er \cdot e\lambda, (1-e)r \cdot (1-r)\lambda) = \varphi(r)\varphi(\lambda) \tag{1.6}$$

αφού το e είναι ταυτοδύναμο, άρα έχουμε ότι φ είναι ομομορφισμός δαχτυλίων. Τώρα, $r \in \ker \varphi$ αν και μόνο αν er=0 και (1-e)r=0. Προσθέτοντας τις δύο σχέσεις, προκύπτει ότι $r=0 \Leftrightarrow \ker \varphi = \{0_R\}.$

Τέλος αρχεί να δείξουμε ότι φ είναι επί. Θεωρούμε $(xe,(1-e)y)\in (e)\times (1-e)$. Αν r=ex+(1-e)y παρατηρούμε ότι $\varphi(r)=(xe,(1-e)y)$, συνεπώς φ είναι επί.

- 1.11. Θεωρούμε το σύνολο $A_1=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2=1\}=C(0,1)$. Παρατηρούμε, ότι $A_1\subseteq V(I)$, αφού $h(x,y)\in I$ αν και μόνο αν $h(x,y)=f(x,y)(x^2-y^2-1)$ με $f(x,y)\in\mathbb{R}[x,y]$. Τώρα, έχουμε ότι $(a_1,a_2)\in V(I)$ αν και μόνο αν f(x,y)=0, για κάθε $f(x,y)\in I$. Όμως, $x^2-y^2-1\in I$, συνεπώς έχουμε ότι $(a_1,a_2)\in A_1$. Άρα, έχουμε ότι V(I)=C(0,1), δηλαδή το V(I), παριστάνει κύκλο με κέντρο το (0,0) και ακτίνα 1.
 - Με όμοια επιχειρηματολογία με το πρώτο ερώτημα έχουμε ότι $V(I) = \{(x,y) \in \mathbb{R}^2 \mid x=1 \text{ και } y=x^2\} = \{(1,1)\}$. Επομένως, έχουμε ότι το V(I) παριστάνει γεωμετρικά το σημείο (1,1) του επιπέδου.
 - Ομοίως με παραπάνω έχουμε ότι

$$V(I) = \{(x, y) \in \mathbb{R}^2 \mid x = 1 \text{ } \acute{\eta} \text{ } y = x^2\} = \{(1, y) \mid y \in \mathbb{R}^2\} \cup \{(x, x^2) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$$

Συνεπώς, το V(I) περιγράφεται γεωμετρικά ως εξής :

Για λόγους πρακτικότητας, θα συμβολίζουμε με $X=(x_1,\cdots,x_n)$ και $P=(a_1,\cdots,a_n)$. Τέλος, πρίν προχωρήσουμε στην απόδειξη των ζητούμενων θα χρησιμοποιήσουμε το γεγονός ότι αν $I\subseteq J$ ιδεώδη του k[X], τότε $V(J)\subseteq V(I)$, όπου η απόδειξή του περιέχεται στο Παράρτημα 2.

- (i) Αφού, $I,J\subseteq I+J$, τότε έχουμε ότι $V(I+J)\subseteq V(I)$ και $V(I+J)\subseteq V(J)$, επομένως προκύπτει ότι $V(I+J)\subseteq V(I)\cap V(J)$.
 - Αντίστροφα, έστω $P\in V(I)\cap V(J)$, δηλαδή f(P)=0 και g(P)=0, για κάθε $f(X)\in I$ και $g(X)\in J$. Τώρα, αν $h(X)\in I+J$ γνωρίζουμε ότι υπάρχουν $f(X)\in I$ και $g(X)\in J$, ώστε h(X)=f(X)+g(X). Συνεπώς, έχουμε ότι h(P)=f(P)+g(P)=0. Αφού το h ήταν τυχόν έχουμε ότι $P\in V(I+J)$ και έχουμε δείξει το ζητούμενο.
- (ii) Αφού γνωρίζουμε ότι $IJ\subseteq I,J,$ τότε έχουμε ότι $V(I)\subseteq V(IJ)$ και $V(J)\subseteq V(IJ),$ άρα έχουμε ότι $V(I)\cup V(J)\subseteq V(IJ).$

Αντίστροφα υποθέτουμε, προς άτοπο, ότι υπάρχει $P \in V(IJ)$, ώστε $P \notin V(I)$ και $P \notin V(J)$. Επομένως, υπάρχουν $f \in I$ και $g \in J$ ώστε $f(P), g(P) \neq 0$. Όμως, έχουμε ότι $f, g \in IJ \Rightarrow f(P) \cdot g(P) = 0$ και αφού k είναι σώμα καταλήγουμε σε άτοπο.

- **1.12.** (i) Αρχικά, $\varphi(I) \neq \emptyset$, αφού $0_S \in \varphi(I)$. Έστω $\varphi(a), \varphi(b) \in \varphi(I)$ και $s \in S$.
 - Έχουμε ότι $\varphi(a) \varphi(b) = \varphi(a-b) \in \varphi(I)$, αφού $I \triangleleft R$.
 - Αφού φ είναι επί, υπάρχει $r \in R$, ώστε $\varphi(r) = s$. Συνεπώς, ισχύει ότι $s\varphi(a) = \varphi(r)\varphi(a) = \varphi(ra) \in \varphi(I)$, αφού $I \triangleleft R$.

Επομένως, έχουμε ότι $\varphi(I) \triangleleft S$.

- (ii) Θεωρούμε την απεικόνιση $\varphi \colon \mathbb{Z} \to \mathbb{Q}$, $m \mapsto m$, η οποία είναι ομομορφισμός δακτυλίων. Έχουμε άμεσα ότι $\varphi(\mathbb{Z}) = \mathbb{Z}$, όπου $\mathbb{Z} \triangleleft \mathbb{Z}$, αλλά το $\varphi(\mathbb{Z})$, δεν είναι ιδεώδες του \mathbb{Q} , αφού \mathbb{Q} είναι σώμα, άρα τα μόνο ιδεώδη του είναι τα $\{0\}$ και \mathbb{Q} .
- (iii) Αρχικά $\varphi^{-1}(K) \neq \emptyset$, αφού $0_R \in \varphi^{-1}(K)$. Έστω $a,b \in \varphi^{-1}(K)$ και $r \in R$, άρα υπάρχουν $x,y \in K$, ώστε $\varphi(a) = x$ και $\varphi(b) = y$.
 - Έχουμε ότι $\varphi(a-b)=\varphi(a)-\varphi(b)=x-y\in K$, αφού $K\triangleleft S$ και $x,y\in K$. Συνεπώς, έχουμε ότι $a-b\in\varphi^{-1}(K)$.
 - Έχουμε ότι $\varphi(ra)=\varphi(r)\varphi(a)=\varphi(r)x\in K$, αφού $x\in K$ και $\varphi(r)\in S$. Επομένως έχουμε ότι $ra\in \varphi^{-1}(K)$.

Έτσι έχουμε δείξει ότι $\varphi^{-1}(K) \triangleleft S$.

1.13. Μέσω της απεικόνισης

$$\varphi \colon R[x] \to \frac{R}{I}[x], \ f(x) = f_n x^n + \dots + f_0 \mapsto (f_n + I) x^n + \dots + (f_0 + I)$$

και από το 1ο Θεώρημα Ισομορφισμών έχουμε το ζητούμενο.

1.14. Αφήνεται στον αναγνώστη να δείξει ότι $I \triangleleft S + I$ και $S \cap I \triangleleft S$. Τώρα, θεωρούμε την απεικονίσεις

$$\psi \colon S + I \to I, \ s + i \mapsto s$$

χαι

$$\varphi \colon S \to \frac{S}{S \cap I}, \ s \mapsto s + (S \cap I)$$

οι οποίες είναι ομομορφισμοί δαχτυλίων. Τότε, έχουμε ότι η απειχόνιση $\varphi \circ \psi$ είναι επιμορφισμός δαχτυλίων. Τώρα, $s+i\in\ker(\varphi\circ\psi)$ με $s\in S$ και $i\in I$ αν και μόνο αν $s+(S\cap J)=S\cap J$, δηλαδή $s\in I$. Αφού το $I\lhd R$, έχουμε ότι $s+i\in I$. Συνεπώς, έχουμε ότι $\ker(\varphi\circ\psi)\subseteq I$ και ο αντίστροφος εγχλεισμός είναι άμεσος. Από 10 Θεώρημα Ισομορφισμών έχουμε το ζητούμενο.

ΚΕΦΑΛΑΙΟ 2

ΠΡΩΤΑ ΚΑΙ ΜΕΓΙΣΤΑ ΙΔΕΩΔΗ

Σχόλιο. Σε αρχετές λύσεις ασχήσεων χρησιμοποιείται ότι αν R περιοχή χύριων ιδεωδών, τότε χάθε με τετριμμένο πρώτο ιδεώδες είναι χαι μέγιστο, όπου η απόδειξή του βρίσχεται στο Παράρτημα.

2.1 Ασκήσεις

- **2.1.** Βρείτε τα πρώτα και μέγιστα ιδεώδη του R καθώς το $\mathrm{nil}(R)$ και $\mathrm{Jac}(R)$ στις ακόλουθες περιπτώσεις.
 - (i) $R = \mathbb{Z}$
 - (ii) $R=\mathbb{Z}_n,\ n=p^2q^3,\ p,q$ διαχεχριμένοι πρώτοι.
- (iii) $R = \mathbb{R}[x]$.
- (iv) $R = \mathbb{C}[x]$.
- (v) $R = \mathbb{Q}[x] / (x^2(x-1))$.
- **2.2.** Υπολογίστε το \sqrt{I} στις αχόλουθες περιπτώσεις.
 - (i) R = k[x, y], $I = ((x 1)^3, y^4)$, όπου k σώμα.
 - (ii) R = k[x, y], $I = (x 1, y^2 4y xy + y + 4)$, όπου k σώμα.
- (iii) $R = \mathbb{Z}[x], I = (5, x^2 + 2).$

- **2.3.** Έστω I, J ιδεώδη του δαχτυλίου R. Δείξτε τις εξής σχέσεις.
 - (i) $\sqrt{\sqrt{I}} = \sqrt{I}$.
- (ii) $\sqrt{I} = R \Leftrightarrow I = R$.
- (iii) $\sqrt{\sqrt{I} + \sqrt{J}} = \sqrt{I + J}$.
- **2.4.** Έστω I γνήσιο ιδεώδες του R. Δείξτε ότι $\sqrt{I}=I$ αν και μόνο αν το I είναι τομή κάποιων πρώτων ιδεωδών του R.
- 2.5. Δείξτε ότι οι αχόλουθοι δαχτύλιοι είναι τοπιχοί.
 - (i) $\mathbb{Z}_{(p)}$ όπου p πρώτος αριθμός. Δείξτε ότι το μέγιστο ιδεώδες του $\mathbb{Z}_{(p)}$ είναι το χύριο ιδεώδες που παράγεται από το p και ότι

$$\mathbb{Z}_{(p)} \setminus p\mathbb{Z}_{(p)} \simeq \mathbb{Z}_p.$$

- (ii) $R \setminus \mathfrak{m}^n$ για κάθε n > 0, όπου \mathfrak{m} μέγιστο ιδεώδες του R.
- **2.6.** Βρείτε παράδειγμα δακτυλίου R με $nil(R) \neq Jac(R)$.
- **2.7.** Έστω R, S δακτύλιοι. Δείξτε ότι κάθε πρώτο ιδεώδες του $R \times S$ είναι της μορφής $\mathfrak{p} \times S$ ή $R \times \mathfrak{q}$, όπου \mathfrak{p} (αντίστοιχα \mathfrak{q}) είναι πρώτο ιδεώδες του R (αντίστοιχα S).
 - Αληθεύει ότι $nil(R \times S) = nil(R) \times nil(S)$;
 - Αληθεύει ότι $\operatorname{Jac}(R \times S) = \operatorname{Jac}(R) \times \operatorname{Jac}(S)$;
- **2.8.** Έστω R δακτύλιος ώστε κάθε ιδεώδες που δεν περιέχεται στο $\mathrm{nil}(R)$ περιέχει ταυτοδύναμο στοιχείο διάφορο των 0,1. Δείξτε ότι $\mathrm{nil}(R)=\mathrm{Jac}(R)$. [Θυμίζουμε ότι ένα στοιχείο e λέγεται ταυτοδύναμο αν $e^2=e$.]
- **2.9.** Αν R δακτύλιος τέτοιος ώστε για κάθε $r \in R$ υπάρχει n > 1 (που εξαρτάται από το r) με $r^n = r$, τότε κάθε πρώτο ιδεώδες του R είναι μέγιστο.
- **2.10.** Δείξτε ότι τα μόνα ταυτοδύναμα στοιχεία τοπικού δακτυλίου είναι τα 0,1.

2.1. $A\Sigma KH\Sigma EI\Sigma$

2.11. Έστω I, J, \mathfrak{p} ιδεώδη του R με \mathfrak{p} πρώτο. Δείξτε ότι οι αχόλουθες ιδιότητες είναι ισοδύναμες.

- (i) $I \subseteq \mathfrak{p} \ \acute{\eta} \ J \subseteq \mathfrak{p}$.
- (ii) $I \cap J \subseteq \mathfrak{p}$.
- (iii) $IJ \subseteq \mathfrak{p}$.
- **2.12.** Έστω k σώμα και I ιδεώδες του πολυωνυμικού δακτυλίου $k[x_1,\cdots,x_n]$. Ορίζουμε

$$V(I) = \{ P = (a_1, \dots, a_n) \in k^n \mid f(P) = 0, \ \forall f(x_1, \dots, x_n) \in I \},$$

το σύνολο των κοινών ριζών όλων των πολυωνύμων του J. Κάθε τέτοιο σύνολο V(J) καλείται αλγεβρικό σύνολο ή αφφινική πολλαπλότητα (affine variety).

Αν $V \subseteq k^n$ είναι αλγεβρικό σύνολο , θέτουμε

$$I(V) = \{ f \in k[x_1, \dots, x_n] \mid f(P) = 0, \forall P \in V \},$$

το σύνολο των πολυωνύμων που μηδενίζονται στο V.

Αν $V\subseteq k^n$ είναι αλγεβρικό σύνολο και $f\in k[x_1,\cdots,x_n]$, με f_V συμβολίζουμε τη συνάρτηση

$$f_V \colon V \to k, \ P \mapsto f(P).$$

Πρόχειται περί του περιορισμού της πολυωνυμικής συνάρτησης που ορίζεται από το f στο υποσύνολο V του k^n . Ο δαχτύλιος συντενταγμένων k[V] του V είναι

$$k[V] = \{ f_V : f \in k[x_1, \cdots, x_n] \},$$

το σύνολο των περιορισμών στο V όλων των πολυωνυμικών συναρτήσεων $k^n \to k$. Είναι δακτύλιος που ορίζονται κατά σημείο, δηλαδή

$$(f_V + g_V)(P) = f_V(P) + g_V(P),$$

 $(f_V g_V)(P) = f_V(P)g_V(P).$

Οι αλγεβρογεωμέτρες διαχινούν τις πληροφορίες τους πέρα-δώθε πάνω στη γέφυρα

Γεωμετρία
$$V \iff {}^{'}$$
Αλγεβρα $k[V]$.

Στα παρακάτω έστω $V\subseteq k^n$ με κενό αλγεβρικό σύνολο.

(i) Δείξτε ότι το I(V) είναι ιδεώδες του $k[x_1,\cdots,x_n]$ και

$$k[x_1, \cdots, x_n]/I(V) \simeq k[V].$$

- (ii) Δείξτε ότι $\operatorname{nil}(k(V)) = 0$
- (iii) Για κάθε $P \in V$, έστω $\mathfrak{m}_P \in k[V]$ το σύνολο των πολυωνυμικών συναρτήσεων του k[V] που μηδενίζονται στο P. Δείξτε ότι το \mathfrak{m}_P είναι μέγιστο ιδεώδες του k[V].
- (iv) Σύμφωνα με το (iii) έχουμε μια απεικόνιση

$$P \mapsto m_P$$

από το V στα μέγιστα ιδεώδη του k[V]. Δείξτε ότι αυτή η απεικόνιση είναι 1-1.

Θα δούμε παραχάτω στο μάθημα ότι αυτή είναι και επί όταν το k είναι αλγεβρικά κλειστό, το φημισμένο Nullstellensatz.

Εδώ $J=(x^2+y^2-1)$ και V(J) είναι ο κύκλος του σχήματος. Το σημείο P=(a,b) αντιστοιχεί στο μέγιστο ιδεώδες

$$\mathfrak{m}_P = (X - a, Y - b)$$

του $k[V]=k[x,y]/(x^2+y^2-1)$, όπου X,Y είναι οι εικόνες των x,y στο k[V].

- **2.13.** Έστω R δακτύλιος, S = R[x,y] και I = (x) το κύριος ιδεώδες του S που παράγεται από το x. Δείξτε ότι το ιδεώδες I είναι πρώτο αν και μόνο αν ο R είναι περιοχή.
- **2.14.** Έστω $\varphi \colon R \to S$ ένας ομομορφισμός δαχτυλίων.
 - (i) Δείξτε ότι αν \mathfrak{q} είναι πρώτο ιδεώδες του S, τότε το σύνολο $\varphi^{-1}(\mathfrak{q})$ είναι πρώτο ιδεώδες του R.
 - (ii) Αληθεύει ότι αν \mathfrak{m} είναι μέγιστο ιδεώδες του S, τότε το σύνολο $\varphi^{-1}(\mathfrak{m})$ είναι μέγιστο ιδεώδες του R;
- **2.15.** Έστω ότι R δεν έχει μη μηδενικά μηδενοδύναμα στοιχεία. Δείξτε ότι αν το πλήθος των πρώτων ιδεωδών του R είναι πεπερασμένο, τότε ο R είναι ισόμορφος με υποδακτύλιο δακτυλίου της μορφής $R_1 \times \cdots \times R_n$, όπου κάθε R_i είναι περιοχή.

2.1. $A\Sigma KH\Sigma EI\Sigma$

2.16. Δείξτε ότι ο δακτύλιος

$$\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \in \mathbb{C} \mid a, b \in \mathbb{Z}\}\$$

δεν είναι περιοχή μοναδική παραγοντοποίησης.

- **2.17.** Έστω R περιοχή μοναδικής παραγοντοποίησης. Δείξτε ότι αν $p \in R$ είναι ανάγωγο, τότε το ιδεώδες (p) είναι πρώτο αλλά όχι αναγκαστικά μέγιστο.
- **2.18.** Έστω k σώμα. Δείξτε ότι κάθε μη μηδενικό πρώτο ιδεώδες του k[x] είναι μέγιστο.

Ενδεικτικές Λύσεις Ασκήσεων 2.2

2.1. (i) Αφού το \mathbb{Z} είναι περιοχή, τότε (0) είναι πρώτο ιδεώδες του. Το R είναι περιοχή χύριων ιδεωδών, άρα χάθε με τετριμμένο πρώτο ιδεώδες του R είναι χαι μέγιστο. Τώρα, γνωρίζουμε ότι (p) \triangleleft R πρώτο αν και μόνο p πρώτος στο R, άρα έχουμε ότι (p), με pπρώτο, είναι τα μοναδικά πρώτα ιδεώδη του R. Τέλος, είναι σαφές ότι

$$\operatorname{nil}(R) = (0) = \bigcap_{p \text{ πρώτος}} (p) = \operatorname{Jac}(R),$$

αφού για κάθε $n \in R$ υπάρχει p πρώτος όπου $p \nmid n$.

(ii) Για τον δακτύλιο R έχουμε το παρακάτω διάγραμμα ιδεωδών

Κάθε πρώτο ιδεώδες του R είναι και μέγιστο, αφού ισχύει ότι

$$I=(m) \triangleleft R \text{ πρώτο}$$
 αν και μόνο αν
$$\frac{Z_n}{(m)} \simeq \frac{\mathbb{Z}/n\mathbb{Z}}{m\mathbb{Z}/n\mathbb{Z}} \simeq \frac{\mathbb{Z}}{m\mathbb{Z}} \text{ περιοχή}$$
 αν και μόνο αν m πρώτος και $m|n$

Άρα, (p),(q) είναι τα μέγιστα (και πρώτα) ιδεώδη του R. Συνεπώς, έχουμε ότι

$$\operatorname{nil}(R) = \operatorname{Jac}(R) = (p) \cap (q) = (pq).$$

(iii) Αρχικά, έχουμε ότι (0) είναι πρώτο ιδεώδες του R. Αφού $\mathbb R$ σώμα έχουμε ότι R είναι περιοχή χύριων ιδεωδών, συνεπώς χάθε μη τετριμμένο πρώτο ιδεώδες του R είναι χαι μέγιστο. Αφού, $p(x) \in \mathbb{R}[x]$ είναι ανάγωγο στο $\mathbb{R}[x]$ αν και μόνο αν p(x) = x - a ή $p_2x^2 + p_1x + p_0$ με αρνητική διακρίνουσα, τότε τα μόνα μέγιστα ιδεώδη είναι τα (p(x)), όπου p(x) είναι ανάγωγο.

Τώρα, έχουμε ότι για κάθε $a \in \mathbb{R}$ το ιδεώδες (x-a) είναι μέγιστο, αφού $\mathbb{R}[x]/(x-a) \simeq \mathbb{R}$, άρα $\operatorname{Jac}(R) \subseteq \bigcap_{a \in \mathbb{R}} (x-a) = (0)$. Έτσι, έχουμε ότι $\operatorname{Jac}(R) = \operatorname{nil}(R) = (0)$.

- (iv) Αρχικά, έχουμε ότι (0) είναι πρώτο ιδεώδες του R. Αφού $\mathbb C$ σώμα έχουμε ότι R είναι περιοχή κύριων ιδεωδών, συνεπώς κάθε μη τετριμμένο πρώτο ιδεώδες του R είναι και μέγιστο. Τώρα, τα μόνα ανάγωγα πολυώνυμα στο $\mathbb C[x]$ είναι τα x-a, με $a\in\mathbb C$, άρα τα μόνα πρώτα (και μέγιστα) ιδεώδη είναι τα (x-a), με $a\in\mathbb C$. Ομοίως με (iii) έχουμε ότι $\mathrm{Jac}(R)=\mathrm{nil}(R)=(0)$.
- (v) Για τον δακτύλιο R έχουμε το παρακάτω διάγραμμα ιδεωδών.

$$\mathbb{Q}[x] / (x^{2}(x-1))$$

$$x \mathbb{Q}[x] / (x^{2}(x-1))$$

$$x(x-1)\mathbb{Q}[x] / (x^{2}(x-1))$$

$$x^{2}\mathbb{Q}[x] / (x^{2}(x-1))$$

$$x^{2}\mathbb{Q}[x] / (x^{2}(x-1))$$

$$x^{2}\mathbb{Q}[x] / (x^{2}(x-1))$$

Τώρα, από το διάγραμμα παρατηρούμε ότι τα μόνα μέγιστα και πρώτα ιδεώδη του R είναι τα $(x-1)\mathbb{Q}(x)/\left(x^2(x-1)\right)$ και $x\mathbb{Q}(x)/\left(x^2(x-1)\right)$.

Πράγματι, ότι τα παραπάνω είναι τα μέγιστα του R είναι άμεσο. Τώρα, θα δείξουμε ότι το $x(x-1)\mathbb{Q}[x]\left/\left(x^2(x-1)\right)\right.$ δεν είναι πρώτο και ομοίως ισχύει για τα υπόλοιπα εκτός των παραπάνω δύο. Έχουμε ότι

$$x(x-1) + (x^2(x-1)) \in x(x-1)\mathbb{Q}[x] / (x^2(x-1))$$
,

αλλά
$$x+\left(x^2(x-1)\right), x-1+\left(x^2(x-1)\right)\notin x(x-1)\mathbb{Q}[x]\left/\left(x^2(x-1)\right)\right.$$

 Σ υνεπώς, έχουμε ότι

$$\operatorname{nil}(R) = \operatorname{Jac}(R) = (x-1)R \cap xR = x(x-1)R.$$

2.2. (i) Θα δείξουμε ότι $\sqrt{I}=(x-1,y)$. Έχουμε άμεσα ότι $(x-1,y)\subseteq \sqrt{I}$, αφού $(x-1)^3, y^4\in I$. Τώρα, το (x-1,y) είναι μέγιστο στο R και αφού $\sqrt{I}\subsetneq R$, τότε έχουμε ότι $\sqrt{I}=(x-1,y)$. (Αν $\sqrt{I}=R$, τότε $1\in \sqrt{I}$, δηλαδή $1\in I$, συνεπώς I=R, το οποίο είναι άτοπο.)

- (ii) Παρατηρούμε ότι $I=\left(x-1,y^2-4y-xy+y+4\right)=\left(x-1,(y-4)^2\right)$, αφού είναι σαφές ότι $\left(x-1,y^2-4y-xy+y+4\right)\subseteq \left(x-1,(y-2)^2\right)$ και επίσης $(y-2)^2=y^2-4y-xy+y+4+y(x-1)\in I$. Τώρα, με όμοια με το (i) Έχουμε ότι $\sqrt{I}=(x-1,y-2)$.
- (iii) Από το 3ο Θεώρημα Ισομορφισμών και όμοια με την Άσκηση 1.8 έχουμε το εξής :

$$\frac{\mathbb{Z}[x]}{(5, x^2 + 2)} \simeq \frac{\mathbb{Z}[x]/(5)}{(5, x^2 + 2)/(5)} \simeq \frac{\mathbb{Z}_5[x]}{(x^2 + 2)}.$$

Παρατηρούμε ότι το x^2+5 δεν έχει ρίζα στο \mathbb{Z}_5 , άρα είναι ανάγωγο στο $\mathbb{Z}_5[x]$, άρα $\frac{\mathbb{Z}_5[x]}{(x^2+2)}$ είναι σώμα. Επομένως, το R/I είναι σώμα, άρα το I είναι μέγιστο στο R. Έτσι προχύπτει ότι $\sqrt{I}=I$.

- **2.3.** (i) Γνωρίζουμε ότι $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. Έστω $x \in \sqrt{\sqrt{I}}$, δηλαδή υπάρχει $n \in \mathbb{Z}_{>0}$, ώστε $x^n \in \sqrt{I}$. Συνεπώς, υπάρχει $m \in \mathbb{Z}_{>0}$, ώστε $x^{mn} = (x^n)^m \in I$ και έχουμε το ζητούμενο.
- (ii) Αν I=R, τότε έχουμε ότι $\sqrt{I}=\sqrt{R}=R$. Αντίστροφα, έστω $R=\sqrt{I}$, δηλαδή $1_R\in\sqrt{I}$. Έτσι, έχουμε ότι $1_R=1_R^n\in I$, για κάποιο $n\in\mathbb{Z}_{>0}$ και έχουμε το ζητούμενο.
- (iii) Έχουμε ότι $I\subseteq \sqrt{I}$ και $J\subseteq \sqrt{J}$, άρα έχουμε ότι $I+J\subseteq \sqrt{I}+\sqrt{J}$, συνεπώς ισχύει ότι $\sqrt{I+J}\subseteq \sqrt{\sqrt{I}+\sqrt{J}}$.

Αντίστροφα, έστω $x\in \sqrt{\sqrt{I}+\sqrt{J}}$, δηλαδή υπάρχει $n\in\mathbb{Z}_{>0}$, ώστε $x^n\in \sqrt{I}+\sqrt{J}$. Έτσι, έχουμε ότι $x^n=y+z$ με $y\in \sqrt{I}$ και $y\in \sqrt{J}$, άρα υπάρχουν $n_1,n_2\in\mathbb{Z}_{>0}$, ώστε $y^{n_1}\in I$ και $z^{n_2}\in J$. Τότε, έχουμε ότι

$$(x^n)^{n_1+n_2} = \sum_{j=0}^{n_2} \binom{n_1+n_2}{j} y^{n_1+n_2-j} z^j + \sum_{j=n_2+1}^{n_1+n_2} \binom{n_1+n_2}{j} y^{n_1+n_2-j} z^j = a+b ,$$

όπου $a\in I$ και $b\in J$. Άρα, έχουμε ότι $x^{n(n_1+n_2)}\in I+J$, δηλαδή $x\in \sqrt{I+J}$.

2.4. Αν $\sqrt{I} = I$ το ζητούμενο είναι άμεσο, αφού \sqrt{I} είναι η τομή όλων των πρώτων ιδεωδών, που περιέχουν το I. Αντίστροφα, αν I είναι τομή κάποιας οικογένειας ιδεωδών $\{\mathfrak{p}_i\}_{i\in I}$ του R, τότε έχουμε ότι $I\subseteq\mathfrak{p}_i$, για κάθε $i\in I$. Συνεπώς, είναι σαφές ότι

$$\sqrt{I} = \bigcap_{\mathfrak{p} \ \text{prodes acl}} \mathfrak{p} \subseteq \bigcap_{i \in I} \mathfrak{p}_i = I.$$

Η αντίστροφη σχέση ''περιέχεσθαι'' ισχύει πάντα, άρα έχουμε το ζητούμενο.

2.5. (i) Αφού, $\mathbb{Z}_{(p)} \setminus U\left(\mathbb{Z}_{(p)}\right) = p\mathbb{Z}_{(p)}$ είναι ιδεώδες του $\mathbb{Z}_{(p)}$, τότε έχουμε ότι ο $\mathbb{Z}_{(p)}$ είναι τοπικός και μάλιστα $\mathbf{m} = p\mathbb{Z}_{(p)}$, το μοναδικό μέγιστο ιδεώδες του $\mathbb{Z}_{(p)}$. Τώρα, θεωρούμε την απεικόνιση

$$\varphi \colon \mathbb{Z} \to \mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}, \ n \mapsto n + (p\mathbb{Z}_{(p)})$$

Είναι σαφές ότι φ είναι ομομορφισμός δαχτυλίων και μάλιστα $\ker \varphi = p\mathbb{Z}$. Παρατηρούμε ότι $|\mathbb{Z}/p\mathbb{Z}| = p = |\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}|$, συνεπώς από την αρχή του περιστερώνα και το 1ο Θεώρημα Ισομορφισμών είναι σαφές ότι $\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \simeq \mathbb{Z}_p$

2.6. Με τους συμβολισμούς της παραπάνω άσκησης έχουμε ότι $R=\mathbb{Z}_{(p)}$ είναι τοπικός και περιοχή, άρα ισχύει ότι

$$\operatorname{nil}(R) = (0) \neq p\mathbb{Z}_{(p)} = \operatorname{Jac}(R).$$

2.7. (i) Έστω $I \times J \triangleleft R \times S$ πρώτο, όπου από την Άσχηση 1.4 έχουμε ότι $I \triangleleft R$ και $J \triangleleft S$. Αρχικά, θα δείξουμε ότι I,J πρώτα. Έστω $a,b \in R$, ώστε $ab \in I$. Τότε, έχουμε ότι $(ab,0) \in I \times J$, άρα $(a,0) \cdot (b,0) \in I \times J$. Αφού, το $I \times J$ είναι πρώτο έχουμε ότι $(a,0) \in I \times J$ ή $(b,0) \in I \times J$, δηλαδή $a \in I$ ή $b \in I$. Ομοίως δείχνουμε ότι J είναι πρώτο στο S.

Τώρα, αφού $I \times J \neq \emptyset$ ισχύει ότι υπάρχει $(x,y) = (x,1_S) \cdot (1_R,y) \in I \times J$ και αφού $I \times J$ πρώτο συμπεραίνουμε ότι $1_R \in I$ ή $1_S \in J$. Το $I \times J$ είναι πρώτο, άρα γνήσιο, έτσι συμπεραίνουμε ότι $I \times J$ είναι της μορφής $R \times \mathfrak{q}$ ή $\mathfrak{p} \times S$, όπου \mathfrak{p} (αντίστοιχα \mathfrak{q}) είναι πρώτο ιδεώδες του R (αντίστοιχα S).

- (ii) Έστω $(x,y) \in \text{nil}(R \times S)$, δηλαδή υπάρχει $n \in \mathbb{Z}_{>0}$ ώστε $(x^n,y^n) = (x,y)^n = (0,0) \Leftrightarrow x^n = 0_R$ και $y^n = 0_S$. Άρα, έχουμε ότι $(x,y) \in \text{nil}(R) \times \text{nil}(S)$.
 - Αντίστροφα, αν $(x,y) \in \text{nil}(R) \times \text{nil}(S)$ έχουμε ότι υπάρχουν $n,m \in \mathbb{Z}_{>0}$ ώστε $x^n = 0_R$ και $y^m = 0_S$. Τότε, έχουμε ότι $(x,y)^{mn} = (0_R,0_S)$, άρα ισχύει ότι $(x,y) \in \text{nil}(R \times S)$.
- (iii) Θα δείξουμε ότι το ζητούμενο αληθεύει μέσω του εξής ισχυρισμού :

Ισχυρισμός 1. Ένα ιδεώδες του $R \times S$ είναι μέγιστο αν και μόνο είναι της μορφής $R \times \mathfrak{q}$ ή $\mathfrak{p} \times S$, όπου $\mathfrak{p}, \mathfrak{q}$ μέγιστα ιδεώδη των R, S αντίστοιχα.

Aπόδειξη. Είναι σαφές ότι ο αντίστροφος ισχύρισμός ισχύει πάντα. Τώρα, αν $I\times J$ μέγιστο ιδεώδες του $R\times S$, προφανώς κάποιο εκ των I,J είναι γνήσιο. Χωρίς βλάβη της γενικότητας θεωρούμε ότι I είναι γνήσιο ιδεώδες του R.

Αν I δεν είναι μέγιστο ιδεώδες του $R\times S$, τότε, υπάρχει $\mathfrak m$ μέγιστο του R, ώστε $I\subseteq\mathfrak m$. Συνεπώς, έχουμε ότι

$$I\times J\subsetneqq \mathfrak{m}\times J\subsetneqq R\times J$$
 ,

το οποίο είναι άτοπο, αφού $I\times J$ μέγιστο. Τότε, έχουμε ότι I είναι μέγιστο ιδεώδες του R. Τώρα, είναι σαφές ότι J=S, καθώς αν $J\subsetneqq S$, τότε $I\times J\subsetneqq R\times J\subsetneqq R\times S$, το οποίο είναι άτοπο. Ομοίως και στην περίπτωση, οπου J γνήσιο ιδεώδες του S.

Τώρα, έχουμε ότι $(r,s) \in \operatorname{Jac}(R \times S)$ αν και μόνο αν $(r,s) \in \mathfrak{m} \times S$ και $R \times \mathfrak{q}$, για κάθε \mathfrak{m} , \mathfrak{q} μέγιστα των R,S αντίστοιχα αν και μόνο αν $r \in \mathfrak{m}$ και $s \in \mathfrak{q}$, για κάθε \mathfrak{m} , \mathfrak{q} μέγιστα των R,S αντίστοιχα αν και μόνο αν $(r,s) \in \operatorname{Jac}(R) \times \operatorname{Jac}(S)$.

- **2.8.** Έστω ότι $\mathrm{nil}(R) \subsetneq \mathrm{Jac}(R)$, δηλαδή από την αρχική υπόθεση υπάρχει $e \in \mathrm{Jac}(R)$ με $e \neq 0,1$ ταυτοδύναμο. Συνεπώς, έχουμε ότι $1-e \in U(R)$ ή $e \in U(R)$, και από τη σχέση e(1-e)=0 έχουμε ότι e=0 ή e=1, το οποίο είναι άτοπο.
- **2.9.** Έστω $\mathfrak p$ πρώτο ιδεώδες του R. Γνωρίζουμε ότι υπάρχει $\mathfrak m$ μέγιστο ώστε $\mathfrak p\subseteq \mathfrak m$. Υποθέτουμε ότι υπάρχει $r\in \mathfrak m$ και $r\notin \mathfrak p$.

Αφού $r\in R$, υπάρχει n>1, ώστε $r^n=r\Leftrightarrow r(1-r^{n-1})=0\in \mathfrak{p}$. Αφού \mathfrak{p} πρώτο και $r\notin \mathfrak{p}$ έχουμε ότι $1-r^{n-1}\in \mathfrak{p}\subseteq \mathfrak{m}$. Τότε, έχουμε ότι $1=(1-r^{n-1})+r^{n-1}\in \mathfrak{m}$, το οποίο είναι άτοπο.

- **2.10.** Έστω R τοπιχός δαχτύλιος και $e \in R$ ταυτοδύναμο στοιχείο. Τότε, έχουμε ότι $0 = e(1-e) \in \mathfrak{m} = Jac(R)$, όπου \mathfrak{m} το μοναδιχό μέγιστο ιδεώδες του R. Άρα, έχουμε ότι $e \in Jac(R)$ ή $1-e \in Jac(R)$, δηλαδή $1-e \in U(R)$ ή $e=1-(1-e) \in U(R)$. Συνεπώς, από τη σχέση e(1-e)=0 έχουμε ότι e=0 ή e=1. Ότι τα στοιχεία 0,1 είναι μηδενοδύναμα είναι άμεσο.
- **2.11.** Ενδεικτικά θα δείξουμε τη συνεπαγωγή (iii) \rightarrow (i). Έστω ότι $I \nsubseteq \mathfrak{p}$, δηλαδή υπάρχει $x \in I$, όπου $x \notin \mathfrak{p}$. Αν $y \in J$, τότε έχουμε ότι $xy \in IJ$, δηλαδή $xy \in \mathfrak{p}$. Αφού \mathfrak{p} είναι πρώτο και $x \notin \mathfrak{p}$, τότε έχουμε ότι $y \in \mathfrak{p}$, δηλαδή $J \subseteq \mathfrak{p}$.
- **2.12.** (i) Είναι άμεσο ότι $I(V) \triangleleft k[x_1, \cdots, x_n]$. Ορίζουμε την απεικόνιση

$$\varphi \colon k[x_1, \cdots, x_n] \to k[V], \ f \mapsto f_V.$$

Είναι σαφές ότι φ είναι επιμορφισμός. Τώρα, αν $f \in \ker \varphi$ έχουμε ότι $\varphi(f) = f_V = 0$, δηλαδή f(P) = 0, για κάθε $P \in V$. Συνεπώς, έχουμε ότι $f \in I(V)$. Η αντίστροφη σχέση "περιέχεσθαι" είναι άμεση και το ζητούμενο έπεται από το 10 Θεώρημα Ισομορφισμών.

- (ii) Έστω $f_V \in \operatorname{nil}(k(V))$, δηλαδή υπάρχει $n \in \mathbb{Z}_{>0}$ ώστε $f_V^n = 0$. Άρα, έχουμε ότι $(f(P))^n = 0$, για κάθε $P \in V$. Όμως, $f(P) \in k$, συνεπώς έχουμε ότι f(P) = 0, για κάθε $P \in V$. Έτσι, συμπεραίνουμε ότι $f_V = 0$.
- (iii) Έστω $P \in V$. Θεωρούμε την απεικόνιση

$$\psi_P \colon k[V] \to k, \ f_V \mapsto f_V(P).$$

Έχουμε ότι ψ_P είναι επιμορφισμός με $\ker \psi_P = \mathfrak{m}_P$ και από 1ο Θεώρημα Ισομορφισμών έχουμε ότι $k[V]/\mathfrak{m}_P \simeq k$ σώμα, άρα έχουμε ότι \mathfrak{m}_P είναι μέγιστο.

- (iv) Αρχικά, η απεικόνιση είναι καλά ορισμένη, λόγω της μεγιστικότητας των \mathfrak{m}_P . Έστω $P=(p_1,\cdots,p_n)\neq (q_1,\cdots,q_n)=Q$, συνεπώς υπάρχει j, ώστε $p_j\neq q_j$. Άρα, αν $f(x_1,\cdots,x_n)=x_j-p_j$, έχουμε ότι $f_V\in\mathfrak{m}_P$, αλλά $f_V\notin\mathfrak{m}_Q$. Επομένως, έχουμε ότι $\mathfrak{m}_P\neq\mathfrak{m}_Q$.
- **2.13.** Έχουμε ότι $S/I \simeq R[y]$ μέσω της απεικόνισης $\varphi \colon R[y][x] \to R[y], \ f \mapsto f(0)$. Έχουμε λοιπόν ότι, I είναι πρώτο αν και μόνο αν S/I είναι περιοχή αν και μόνο αν R[y].
- **2.14.** (i) Έχουμε δείξει ότι $\varphi^{-1}(\mathfrak{q}) \triangleleft R$. Είναι σαφές ότι $\varphi^{-1}(\mathfrak{q})$ είναι γνήσιο ιδεώδες του R, αφού φ ομομορφισμός, άρα $\varphi(1_R) = 1_S \notin \mathfrak{p}$. Τώρα, έστω $ab \in \varphi^{-1}(\mathfrak{q})$, δηλαδή $\varphi(a)\varphi(b) = \varphi(ab) = s \in \mathfrak{q}$. Αφού το \mathfrak{q} είναι πρώτο έχουμε ότι $\varphi(a) \in \mathfrak{q}$ ή $\varphi(b) \in \mathfrak{q}$, συνεπώς $a \in \varphi^{-1}(\mathfrak{q})$ ή $b \in \varphi^{-1}(\mathfrak{q})$.
 - (ii) An $\varphi \colon \mathbb{Z} \to \mathbb{Q}$, $n \mapsto n$, écoume óti (0) eínai mégisto ideúdes tou \mathbb{Q} , agoú \mathbb{Q} eínai súma, allá écoume óti $\varphi^{-1}((0)) = (0)$, to opoío den eínai mégisto ideúdes tou \mathbb{Z} , agoú $(0) \subsetneq 2\mathbb{Z}$.
- **2.15.** Έστω p_1, \dots, p_n τα πρώτα ιδεώδη του R. Θεωρούμε την απεικόνιση

$$\varphi \colon R \to \frac{R}{p_1} \times \cdots \times \frac{R}{p_n}, \ r \mapsto (r + (p_1), \cdots, r + (p_n)).$$

Η φ είναι άμεσα ομομορφισμός δακτυλίων. Έστω $r\in\ker\varphi$, δηλαδή $r\in\mathrm{nil}(R)=\bigcap_j p_j$, άρα έχουμε ότι r=0. Συνεπώς έχουμε ότι $R\hookrightarrow R_1\times\cdots\times R_n$, όπου $R_i=\frac{R}{p_i}$ περιοχή, αφού p_i πρώτο, για κάθε i.

- **2.16.** Θεωρούμε την απεικόνιση $N(a+3ib)=(a+\sqrt{3}ib)\left(\overline{a+\sqrt{3}ib}\right)=a^2+3b^2$. Είναι σαφές, από τον ορισμό του πολλαπλασιασμού μιγαδικών αριθμών, ότι η N είναι πολλαπλασιαστική.
 - Αρχικά θα δείξουμε ότι $U(\mathbb{Z}[\sqrt{-3}]) = \{\pm 1\}$. Έστω $x = a + \sqrt{3}ib \in U(\mathbb{Z}[\sqrt{-3}])$, δηλαδή υπάρχει $y \in \mathbb{Z}[\sqrt{-3}]$, ώστε xy = 1. Έτσι, έχουμε ότι N(x)N(y) = N(xy) = N(1) = 1. Αφού $N(x) \in \mathbb{N}$, έχουμε ότι N(x) = 1. Από αυτή τη σχέση προκύπτει ότι a = 1 ή -1 και b = 0. Άρα, έχουμε ότι $U(\mathbb{Z}[\sqrt{-3}]) = \{\pm 1\}$.
 - Τα $2,1+\sqrt{3}i,1-\sqrt{3}i$ είναι ανάγωγα στοιχεία στο $\mathbb{Z}[\sqrt{-3}]$. Έστω $a,b\in\mathbb{Z}[\sqrt{-3}]$, ώστε $2=ab\Rightarrow N(2)=N(a)N(b)=4$. Αν a δεν είναι αντιστρέψιμο έχουμε ότι N(a)=2 ή N(a)=4. Αν N(a)=4 είναι άμεσο ότι b είναι αντιστρέψιμο. Αν $N(a)=N(x+\sqrt{3}iy)=x^2+3y^2=2$. Αν $y\neq 0$, τότε $N(a)\geq 3$, το οποίο είναι άτοπο. Άρα, για y=0 έχουμε ότι $x^2=2$, το οποίο είναι άτοπο, αφού $x\in\mathbb{Z}$. Άρα, σε κάθε περίπτωση καταλήγουμε σε άτοπο.

Ομοίως, αποδειχνύουμε και τα υπόλοιπα.

- Έχουμε τώρα, ότι $2 \cdot 2 = 4 = (1 + \sqrt{3}i)(1 \sqrt{3}i)$ με $2 \neq 1 + \sqrt{3}i$ και $1 \sqrt{3}i$, άρα συμπεραίνουμε ότι $\mathbb{Z}[\sqrt{-3}]$ δεν είναι περιοχή μοναδική παραγοντοποίησης.
- **2.17.** Έστω $a=u_ap_{a_1}\cdots p_{a_s}$ και $b=u_bp_{b_1}\cdots p_{b_k}$, με $u_a,u_b\in U(R)$ και p_{a_i},p_{b_j} ανάγωγα στο R, ώστε p|ab. Τώρα, αφού R είναι Π.Μ.Π. έχουμε ότι $p=p_{a_i}$ ή p_{b_j} , για κάποια i και j. Έτσι, είναι σαφές ότι p|a ή p|b.

Έχουμε ότι 5 είναι πρώτο στο $\mathbb{Z}[x]$, άρα (5) είναι πρώτο στο $\mathbb{Z}[x]$, όμως δεν είναι μέγιστο, αφού (5) \subsetneq (5, $x^2 + 2$) \subsetneq $\mathbb{Z}[x]$ (βλέπε Άσκηση 2.2 (iii)).

2.18. Έστω $(0) \neq I = (p(x)) \triangleleft k[x]$ πρώτο. Αρχεί να δείξουμε ότι p(x) είναι ανάγωγο στο k[x]. Έστω $p(x) = a(x)b(x) \in (p(x))$ και αφού p(x) πρώτο, τότε $a(x) \in (p(x))$ ή $b(x) \in (p(x))$. Χωρίς βλάβη της γενικότητας έχουμε ότι $a(x) \in (p(x))$, δηλαδή a(x) = p(x)q(x). Συνεπώς, έχουμε ότι p(x)(1-q(x)b(x)) = 0 και αφού k[x] περιοχή και $p(x) \neq 0$ έχουμε ότι $b(x) \in U(k[x])$ και έχουμε δείξει το ζητούμενο.

ΚΕΦΑΛΑΙΟ 3

Δ AKTYAIOI TH Σ NOETHER

Για λόγους πρακτικότητας στις λύσεις των ασκήσεων με τον συμβολισμό k[X] θα εννοούμε το δακτύλιο πολυωνύμων $k[x_1,\ldots,x_n]$.

3.1 Ασκήσεις

- **3.1.** Έστω k σώμα και $S\subseteq k[x_1,\ldots,x_n]$. Δείξτε ότι υπάρχει πεπερασμένο σύνολο $S_0\subset S$ τέτοιο ώστε $V(S_0)=V(S)$.
- **3.2.** Αληθεύει το αντίστροφο του Θεωρήματος Βάσης του Hilbert;
- **3.3.** Στις αχόλουθες περιπτώσεις εξετάστε αν ο δαχτύλιος R είναι της Noether.
 - (i) R = S[x,y]/I, όπου S δακτύλιος της Noether και I ιδεώδες του S[x,y].
 - (ii) $R = \mathbb{Z}[\sqrt{-3}]/(4)$.
- (iii) R ο δακτύλιος των απεικονίσεων $\mathbb{R} \to \mathbb{R}$.
- (iv) R ο δακτύλιος των απεικονίσεων $\mathbb{Z}_n \to \mathbb{Z}_n, n > 1$.
- (v) $R = \{a_{2n}x^{2n} + ... + a_2x^2 + a_0 | n \ge 0\}$ υποδαχτύλιος του $\mathbb{Z}[x]$.
- **3.4.** Έστω k σώμα, n θετικός ακέραιος και $f_1, f_2, \dots \in k[x_1, \dots, x_n]$. Για κάθε ακέραιο $m \geq 2$ θέτουμε $X_m = \{P \in k^n | f_1(P) = \dots = f_{m-1}(P) = 0 \text{ και } f_m(P) = 1\}$. Δείξτε ότι υπάρχει N τέτοιο ώστε $X_m = \varnothing$ για κάθε $m \geq N$.

- **3.5.** Ποια από τα ακόλουθα ιδεώδη του k[x,y], όπου k σώμα, είναι πρωταρχικά;
 - (i) (xy).
 - (ii) (x y).
- (iii) $(x^2, x y)$.
- **3.6.** (i) Βρείτε όλα τα πρωταρχικά ιδεώδη του \mathbb{Z} .
 - (ii) Δείξτε ότι το θεμελιώδες θεώρημα της αριθμητικής έπεται από το 1ο θεώρημα μοναδικότητας στην πρωταρχική ανάλυση ιδεωδών χωρίς τη χρήση του 2ου θεωρήματος μοναδικότητας.
- **3.7.** Έστω $\varphi: R \to S$ ομομορφισμός δακτυλίων και J ιδεώδες του S. Θυμίζουμε ότι με J^c συμβολίζουμε το ιδεώδες $\varphi^{-1}(J)$ του R.
 - (i) Αν το J είναι p πρωταρχικό, τότε το J^c είναι p^c πρωταρχικό ιδεώδες του R.
 - (ii) Av

$$J = Q_1 \cap \dots \cap Q_n, \ \sqrt{Q_i} = p_i \ (1)$$

είναι πρωταρχική ανάλυση του J, τότε

$$J^{c} = Q_{1}{}^{c} \cap ... \cap Q_{n}{}^{c}, \ \sqrt{Q_{i}{}^{c}} = p_{i}{}^{c} \ (2)$$

είναι πρωταρχική ανάλυση του J^c .

- (iii) Υποθέτουμε ότι ο φ είναι επί. Δείξτε ότι αν η (1) είναι ελάχιστη πρωταρχική ανάλυση, τότε και η (2) είναι ελάχιστη πρωταρχική ανάλυση.
- **3.8.** Έστω I ιδεώδες του R. Δείξτε τα εξής.
 - (i) Αν \sqrt{I} μέγιστο, τότε το I είναι πρωταρχικό.
 - (ii) Αν $\mathfrak{m}^t \subseteq I \subseteq \mathfrak{m}$ για κάποιο μέγιστο ιδεώδες \mathfrak{m} και $t \ge 1$, τότε το I είναι \mathfrak{m} -πρωταρχικό.
- (iii) Δείξτε ότι αν k είναι σώμα, τότε το ιδεώδες $((x-a)^m,(y-b)^n)$ του k[x,y] είναι πρωταρχικό για κάθε m,n>0 και $a,b\in k$.
 - 1. Έστω k σώμα. Θεωρούμε τα ιδεώδη $I=(x,y)^2=(x^2,xy,y^2)$ και $J=(x^2,xy)$ του k[x,y].

3.1. $A\Sigma KH\Sigma EI\Sigma$

3.9. Έστω k σώμα. Θεωρούμε τα ιδεώδη $I=(x,y)^2=(x^2,xy,y^2)$ και $J=(x^2,xy)$ του k[x,y].

- (i) Δείξτε ότι το I είναι πρωταρχικό και όχι ανάγωγο παρατηρώντας ότι $I=(x,y^2)\cap(x^2,y)$.
- (ii) Δ είξτε ότι το \sqrt{J} είναι πρώτο αλλά το J δεν είναι πρωταρχικό.
- **3.10.** Έστω R δακτύλιος της Noether και I, J, Q ιδεώδη του R με Q πρωταρχικό και $IJ \subseteq Q$. Δείξτε ότι $I \subseteq Q$ ή υπάρχει ακέραιος n με $J^n \subseteq Q$.
- **3.11.** Ποιο είναι το AssI, όπου I το μηδενικό ιδεώδες στο \mathbb{Z} , \mathbb{Z}_{24} ή $\mathbb{C}[x,y]/(xy)$;
- **3.12.** Στο δακτύλιο $\mathbb{Z}[x]$, το ιδεώδες (2,x) είναι μέγιστο, το (4,x) είναι (2,x) πρωταρχικό χωρίς να είναι δύναμη του (2,x).
- **3.13.** Για k σώμα θεωρούμε τα ιδεώδη $p_1=(x,y),\ p_2=(x,z),\ m=(x,y,z)$ και $I=p_1p_2$ του k[x,y,z]. Δείξτε ότι τα p_1,p_2 είναι πρώτα και το m μέγιστο. Στη συνέχεια δείξτε ότι μια ελάχιστη πρωταρχική ανάλυση του I είναι $I=p_1\cap p_2\cap m^2$. Ποιες συνιστώσες είναι μεμονωμένες και ποιες εμφυτευμένες;
- **3.14.** Βρείτε μια ελάχιστη πρωταρχική ανάλυση του ιδεώδους I=(xy,xz) του $\mathbb{Z}[x,y,z]$. Ποιες συνιστώσες είναι μεμονωμένες και ποιες εμφυτευμένες;
- **3.15.** Βρείτε μια ελάχιστη πρωταρχική ανάλυση του ιδεώδους I=(xy,xz,yz) του $\mathbb{Z}[x,y,z]$. Ποιες συνιστώσες είναι μεμονωμένες και ποιες εμφυτευμένες;
- **3.16.** Έστω R δακτύλιος της Noether και I γνήσιο ιδεώδες του R. Δείξτε ότι αν $I=\sqrt{I},$ τότε το I δεν έχει εμφυτευμένη συνιστώσα.
- **3.17.** Έστω R δακτύλιος και I γνήσιο ιδεώδες του R.
 - (i) Δ είξτε ότι το σύνολο των πρώτων ιδεωδών του R που περιέχουν το I έχει ελάχιστο στοιχείο. Κάθε τέτοιο ιδεώδες λέγεται ελάχιστο πρώτο ιδεώδες του I.
 - (ii) Στο \mathbb{Z} ποια είναι τα ελάχιστα πρώτα ιδεώδη του (24);
- (iii) Δείξτε ότι αν ο R είναι της Noether, τότε το πλήθος των ελαχίστων πρώτων ιδεωδών του I είναι πεπερασμένο.

- **3.18.** Έστω R δαχτύλιος της Noether και I γνήσιο ιδεώδες του R. Δείξτε ότι αν $I=\sqrt{I},$ τότε
 - (i) το Ι δεν έχει εμφυτευμένη συνιστώσα, και
 - (ii) το I είναι τομή πεπερασμένου πλήθους πρώτων.
- **3.19.** Δείξτε ότι κάθε δακτύλιος της Noether που δεν έχει μη μηδενικά μηδενοδύναμα στοιχεία, είναι ισόμορφος με υποδακτύλιο ευθέος γινομένου πεπερασμένου πλήθους περιοχών.
- **3.20.** Δείξτε ότι κάθε επιμορφισμός δακτυλίων $R \to R$, όπου R της Noether, είναι ισομορφισμός.
- **3.21.** Έστω R δακτύλιος της Noether που είναι περιοχή. Δείξτε ότι για κάθε μη αντιστρέψιμο $t \in R$, ισχύει

$$\bigcap_{n}(t^n)=(0).$$

- 3.22. Εξετάστε ποιες από τις ακόλουθες προτάσεις αληθεύουν.
 - (i) Κάθε δαχτύλιος της Noether που είναι και περιοχή, είναι περιοχή μοναδικής παραγοντοποίησης.
 - (ii) Κάθε υποδακτύλιος σώματος είναι δακτύλιος της Noether.
- (iii) Αν R, S είναι δακτύλιοι της Noether, τότε και ο $R \times S$ είναι δακτύλιος της Noether.
- **3.23** (Τοπολογία Zariski στο k^n). Θεωρούμε αλγεβρικά κλειστό σώμα k και την τοπολογία Zariski στο k^n .
 - (i) Ποια είναι τα κλειστά σύνολα του k;
 - (ii) Δ είξτε ότι κάθε δύο μη κενά ανοιχτά σύνολα του k^n έχουν μη κενή τομή. Αληθεύει ότι η τοπολογία Zariski είναι Hausdorff;
- (iii) Αληθεύει ότι η τοπολογία Zariski του k^2 είναι το γινόμενο των τοπολογιών Zariski του k;
- (iv) Κάθε πολυώνυμο $f \in k[x_1,...,x_n]$ ορίζει την αντίστοιχη πολυωνυμική συνάρτηση $k^n \to k, P \mapsto f(P)$ που συμβολίζουμε πάλι με f. Δείξτε ότι η f είναι συνεχής.

3.2 Ενδεικτικές Λύσεις Ασκήσεων

3.1. Γνωρίζουμε από το Θεώρημα Βάσης του Hilbert ότι $R=k[x_1,\cdots,x_n]$ είναι της Noether, συνεπώς έχουμε ότι $(S)=(f_1,\cdots,f_n)$. Τότε, για κάθε $i=1,\cdots,n$ υπάρχουν $f_{i,1},\cdots,f_{i,m_i}$, ώστε

$$f_i = \sum_{j=1}^{m_i} g_j f_{i,j}.$$

Άρα, έχουμε ότι

$$(S) = (\{f_{i,j} \in S \mid j = 1, \dots, m_i, i = 1, \dots, n\}).$$

Θέτοντας $S_0=\{f_{i,j}\in S\mid i=1,\cdots,n,\ j=1,\cdots m_i\}$ έχουμε ότι S_0 είναι πεπερασμένο υποσύνολο του S και μάλιστα θα δείξουμε ότι $V(S)=V(S_0)$.

Αφού, $S_0 \subseteq S$ είναι σαφές ότι $V(S) \subseteq V(S_0)$. Αντίστροφα, αν $P \in V(S_0)$, τότε $f_{i,j}(P) = 0$, για κάθε $i = 1, \cdots, n$ και $j = 1, \cdots, m_i$, δηλαδή $f_i(P) = 0$, για κάθε $i = 1, \cdots, n$. Έτσι, από την αρχική σχέση έχουμε f(P) = 0, για κάθε $f \in S$.

3.2. Αν $R[x_1, \cdots, x_n]$ της Noether, τότε και κάθε πηλίκο του είναι της Noether. Μέσω του επιμορφισμού

$$\varphi \colon R[x_1, \cdots, x_n] \to R, \ f(x_1, \cdots, x_n) \mapsto f(0, \cdots, 0).$$

έχουμε ότι ο R είναι ισόμορφος με πηλίχο του $R[x_1, \cdots, x_n]$, άρα είναι της Noether.

- **3.3.** (i) Αφού S είναι της Noether, από το Θεώρημα Βάσης τους Hilbert, έχουμε ότι S[x,y] είναι της Noether. Επομένως, αφού S[x,y] είναι της Noether και κάθε πηλίκο του είναι της Noether, άρα έχουμε ότι R είναι της Noether.
 - (ii) Μέσω του επιμορφισμού $\varphi\colon \mathbb{Z}[x]\to \mathbb{Z}[\sqrt{-3}],\ f(x)\mapsto f(\sqrt{-3})$ έχουμε ότι $Z[x]/\ker \varphi\simeq \mathbb{Z}[\sqrt{-3}]$ και αφού $Z[x]/\ker \varphi$ είναι της Noether, ως πηλικό δακτυλίου της Noether, έχουμε ότι $\mathbb{Z}[\sqrt{-3}]$ είναι της Noether. Άρα, έχουμε ότι R είναι της Noether ως πηλίκο δακτυλίου της Noether.
- (iii) Θεωρούμε τα σύνολα $I_n = \left\{ f \in R \mid f(x) = 0, \ \forall x \in [-\frac{1}{n}, \frac{1}{n}] \right\}$, για $n \in \mathbb{Z}_{>0}$. Τώρα, θα δείξουμε ότι I_n ιδεώδη του R, για κάθε n. Έστω $n \in \mathbb{Z}_{>0}$.
 - Έχουμε ότι $I_n \neq \emptyset$, αφού $f \equiv 0 \in I_n$.
 - Αν $f,g\in I_n$ και $h\in R$ είναι σαφές ότι f(x)+g(x)=h(x)f(x)=0, για κάθε $x\in [-\frac{1}{n},\frac{1}{n}]$, άρα έχουμε ότι $f+g,hf\in I_n$.

Τώρα, παρατηρούμε ότι $I_j \subsetneq I_{j+1}$, για κάθε $j \in \mathbb{Z}_{>0}$, αφού για παράδειγμα $f_{j+1} \in I_{j+1}$ και $f_{j+1} \notin I_j$, όπου

$$f_{j+1}(x) = \begin{cases} 0, & x \in \left[-\frac{1}{j+1}, \frac{1}{j+1} \right] \\ 1, & \text{αλλιώς} \end{cases}.$$

Άρα, συμπεραίνουμε ότι R δεν είναι της Noether.

- (iv) Έχουμε ότι ο δακτύλιος R είναι πεπερασμένου πλήθους n^n , άρα είναι σαφές ότι R είναι της Noether.
- (ν) Μέσω της απεικόνισης

$$\varphi \colon \mathbb{Z}[x] \to R, \ f(x) \mapsto f(x^2)$$

έχουμε ότι φ είναι επιμορφισμός, συνεπώς R είναι ισόμορφος με πηλίκο δακτυλίου της Noether, άρα είναι της Noether.

3.4. Αφού $k[x_1, \dots, x_n]$ είναι της Noether έχουμε ότι $(\{f_n \mid n \in \mathbb{Z}_{>0}\}) = (g_1, \dots, g_m)$. Έτσι, έχουμε ότι για κάθε $i = 1, \dots, m$ ισχύει ότι

$$g_i(X) = \sum_{j=1}^{n_i} h_j(X) f_{\lambda_{ij}}(X).$$

Έτσι, είναι σαφές ότι $(\{f_n \mid n \in \mathbb{Z}_{>0}\}) = (\{f_{\lambda_{ij}} \mid j=1,\cdots,n_i,\ i=1,\cdots,m\})$. Έστω $N=\max\{\lambda_{ij} \mid j=1,\cdots,n_i,\ i=1,\cdots,m,\}+1$ και $m\geq N$. Αν $P\in X_m$, τότε σύμφωνα με τα προηγούμενα $f_{\lambda_{ij}}(P)=0$, για κάθε i,j, άρα προκύπτει ότι $f_m(P)=0$, το οποίο είναι άτοπο.

- **3.5.** (i) Έχουμε ότι $xy \in (xy)$, όμως $x^n, y^m \notin (xy)$, για κάθε $n, m \in \mathbb{N}$, άρα έχουμε ότι (xy) δεν είναι πρωταρχικό.
 - (ii) Θεωρούμε την απεικόνιση

$$\varphi \colon k[x,y] \to k[x], \ f(x,y) \mapsto f(x,x)$$
,

όπου είναι σαφές ότι είναι επιμορφισμός δακτυλίων. Τώρα, $(x-y)\subseteq\ker\varphi$ και θεωρούμε $g(y)=f(x,y)\in\ker\varphi$ με $g(y)\in k[x][y]$, θετικού βαθμού. Αφού R=k[x] είναι περιοχή και $y-x\in R[y]$ είναι μονικό έχουμε ότι υπάρχουν $h\in R[y]$ και $r\in R$, ώστε

$$f(x,y) = g(y) = (y-x)h(y) + r \Rightarrow f(x,x) = r = 0.$$

Άρα, συμπεραίνουμε ότι $f\in (x-y)$, δηλαδή από το 1ο Θεώρημα Ισομορφισμών έχουμε ότι $k[x,y]/(x-y)\simeq k[x]$, δηλαδή έχουμε ότι (x-y) πρώτο, άρα και πρωταρχικό ιδεώδες του k[x,y].

- (iii) Αν $I=\left(x^2,x-y\right)$, παρατηρούμε ότι $(x,y)=(x,x-y)\subseteq \sqrt{I}$, όπου γνωρίζουμε ότι (x,y) είναι μέγιστο και μάλιστα $\sqrt{I}\subsetneq k[x,y]$ (δείξτε ότι $1\notin \sqrt{I}$), άρα έχουμε ότι $\sqrt{I}=(x,y)$. Αφού \sqrt{I} είναι μέγιστο ιδεώδες του k[x,y], από την Άσκηση 3.8, έχουμε ότι I είναι πρωταρχικό ιδεώδες του k[x,y].
- **3.6.** (i) Είναι σαφές ότι (0), (p^n) για $n \ge 1$ είναι πρωταρχικά ιδεώδη του \mathbb{Z} . Αντίστροφα, έστω $(m) \triangleleft \mathbb{Z}$ πρωταρχικό για κάποιο $m \in \mathbb{Z}_{>0}$. Έστω ότι m δεν είναι δύναμη πρώτου, συνεπώς $m = p^n q$, όπου p πρώτος και (p,q) = 1. Επομένως, έχουμε ότι $p + (m) \in \operatorname{div}(\mathbb{Z}/(m))$, αλλά $p + (m) \notin \operatorname{nil}(\mathbb{Z}/(m))$, το οποίο είναι άτοπο.
 - (ii) Έστω $n \in \mathbb{Z}_{>0}$. Αφού ο δακτύλιος \mathbb{Z} είναι της Noether, έχουμε έχουμε ότι το ιδεώδες (n) επιδέχεται ελάχιστη πρωταρχική ανάλυση και από (i) έχουμε

$$(n) = \bigcap_{i=1}^{s} (p_i^{a_i}) = (p_1^{a_1} \cdots p_s^{a_s}), \quad \sqrt{(p_i^{a_i})} = (p_i), \ i = 1, \cdots, s.$$

Συνεπώς, έχουμε ότι $n=p_1^{a_1}\cdots p_s^{a_s}$, όπου p_1,\cdots,p_s διαχεχριμένοι πρώτοι και $a_i\geq 1$. Από το 1ο Θεώρημα Μοναδικότητας και τη παραπάνω σχέση έπεται ότι αν $n=q_1^{b_1}\cdots q_m^{b_m}$, με q_i πρώτο, τότε m=s και χωρίς βλάβη της γενικότητας ότι $p_i=q_i$, για κάθε $i=1,\cdots,s$. Από τα παραπάνω είναι σαφές ότι $a_i=b_i$, για κάθε $i=1,\cdots,s$.

3.7. (i) Αρχικά θα δείξουμε ότι $\sqrt{J^c} = p^c$. Έχουμε διαδοχικά ότι

$$r \in \sqrt{J^c} \qquad \Leftrightarrow \\ r^m \in J^c, \ m \in \mathbb{Z}_{>0} \qquad \Leftrightarrow \\ \varphi(r^m) \in J, \ m \in \mathbb{Z}_{>0} \qquad \Leftrightarrow \\ (\varphi(r))^m \in J, \ m \in \mathbb{Z}_{>0} \qquad \Leftrightarrow \\ \varphi(r) \in p \qquad \Leftrightarrow \\ r \in p^c$$

Τώρα, είναι σαφές ότι J^c είναι γνήσιο ιδεώδες του R, αλλιώς $1_R \in J^c \Rightarrow 1_S = \varphi(1_R) \in J$, το οποίο είναι άτοπο, αφού J είναι πρωταρχικό. Θεωρούμε $ab \in J^c$, δηλαδή $\varphi(a) \cdot \varphi(b) = \varphi(ab) \in J$. Υποθέτουμε ότι $a \notin J^c$ και αφού J είναι πρωταρχικό έχουμε ότι $\varphi(b) \in p \Leftrightarrow b \in p^c$. Άρα, έχουμε ότι J^c είναι p^c - πρωταρχικό ιδεώδες του R.

(ii) Από (i) έχουμε ότι Q_i^c είναι p_i^c πρωταρχικό για κάθε $i=1,\cdots,n$. Τώρα, αρκεί να δείξουμε ότι

$$J^c = {Q_1}^c \cap \dots \cap {Q_n}^c, \ \sqrt{{Q_i}^c} = {p_i}^c$$

Έστω $r \in \bigcap_{i=1}^n Q_i^c$, δηλαδή $\varphi(r) = q_i \in Q_i$, για κάθε $i=1,\cdots,n$, άρα έχουμε ότι $\varphi(r) \in \bigcap_{i=1}^n Q_i = J \Rightarrow r \in J^c$. Αντίστροφα, έστω $r \in J^c$, δηλαδή $\varphi(r) \in J = \bigcap_{i=1}^n Q_i$.

Άρα, έχουμε ότι $\varphi(r) \in Q_i$, για κάθε $i=1,\cdots,n$, άρα $r\in Q_i^c$, για κάθε i. Έτσι, είναι σαφές ότι $r\in \bigcap_{i=1}^n Q_i^c$.

(iii) Αρχικά αν

$$J = Q_1 \cap \dots \cap Q_n, \ \sqrt{Q_i} = p_i$$

είναι μια ελάχιστη πρωταρχική ανάλυση του J έχουμε από (ii) ότι

$$J^{c} = Q_{1}{}^{c} \cap \dots \cap Q_{n}{}^{c}, \ \sqrt{Q_{i}{}^{c}} = p_{i}{}^{c}$$

είναι πρωταρχική ανάλυση του J^c και αρκεί να δείξουμε ότι είναι ελάχιστη.

- Αρχικά για $i \neq j$ πρέπει να δείξουμε ότι $p_i^c \neq p_j^c$. Έστω $i,j \in \{1,\cdots,n\}$ με $i \neq j$. Τότε, γνωρίζουμε ότι $p_i \neq p_j$, αφού η παραπάνω πρωταρχική ανάλυση του J είναι ελάχιστη. Έτσι μπορούμε να υποθέσουμε, χωρίς βλάβη της γενικότητας, ότι υπάρχει $s \in p_i$ και $s \notin p_j$ και αφού φ είναι επί υπάρχει $r \in R$, ώστε $\varphi(r) = s$. Συνεπώς, έχουμε ότι $r \in p_i^c$ και $r \notin p_j^c$, άρα $p_i \neq p_j$.
- Τέλος πρέπει να δείξουμε ότι, για $i\in\{1,\cdots,n\}$, τότε $J^c\neq\bigcap_{j\neq i}Q^c_j$. Πράγματι, λόγω της παραπάνω ελάχιστης ανάλυσης του J, έχουμε ότι $J\neq\bigcap_{j\neq i}Q_j$, δηλαδή υπάρχει $s\in\bigcap_{j\neq i}Q_j$ και $s\notin J$. Αφού φ είναι επί έχουμε ότι υπάρχει $r\in R$, ώστε $\varphi(r)=s$, άρα $r\notin J^c$ και $r\in\bigcap_{j\neq i}Q^c_j$ και έχουμε το ζητούμενο.
- **3.8.** (i) Έστω $ab \in I$ με $a \notin I$. Υποθέτουμε, προς άτοπο, ότι $b \notin \sqrt{I}$ και αφού \sqrt{I} είναι μέγιστο έχουμε ότι $(b) + \sqrt{I} = R$. Άρα, υπάρχει $i \in \sqrt{I}$ και $r \in R$ ώστε $1_R = i + rb$. Τώρα, αφού $i \in \sqrt{I}$ υπάρχει $n \in \mathbb{Z}_{>0}$ ώστε $i^n \in I$. Συνεπώς έχουμε ότι

$$1_R = 1_R^n = (i + rb)^n = i^n + sb, \quad s \in R.$$

Έτσι, προχύπτει ότι $a=ai^n+sab\in I$, το οποίο είναι άτοπο.

- (ii) Παίρνοντας ριζικά στην ανισότητα προκύπτει ότι $\sqrt{I}=\mathfrak{m}$ και από (i) έχουμε το ζητούμενο.
- (iii) Για κάθε $m,n\in\mathbb{Z}_{>0}$ έχουμε ότι

$$\sqrt{((x-a)^m, (y-b)^n)} = (x-a, y-b)$$
,

το οποίο είναι μέγιστο στο k[x,y], συνεπώς από (i) έχουμε το ζητούμενο.

3.9. (i) Παρατηρούμε ότι $\sqrt{(x,y)^2}=(x,y)$ το οποίο είναι μέγιστο στο k[x,y], άρα από Άσκηση 3.8 έχουμε ότι I είναι πρωταρχικό.

Παρατηρούμε ότι $I=(x,y^2)\cap (x^2,y)$ και μάλιστα $x,y\notin I$, άρα έχουμε ότι $I\nsubseteq (x^2,y),(x,y^2),$ συνεπώς το I δεν είναι ανάγωγο. Θα δείξουμε ενδεικτικά ότι $y\notin I$. Αν $y\in I$, τότε υπάρχουν $f,g,h\in k[x,y],$ ώστε

$$y = f(x, y)x^{2} + g(x, y)xy + h(x, y)y^{2}$$

και για x=0, έχουμε ότι 1=h(x,y)y, όπου θέτοντας y=0 καταλήγουμε σε άτοπο.

(ii) Έχουμε ότι

$$(x^2) \subseteq J \subseteq (x) \Rightarrow (x) \subseteq \sqrt{J} \subseteq (x) \Rightarrow \sqrt{J} = (x)$$
,

συνεπώς το $\sqrt{J}=(x)$ είναι πρώτο.

Το J δεν ειναι πρώταρχικό, αφού $xy\in J$, αλλά $x^n,y^n\notin J$ για $n\geq 1$. Ενδεικτικά θα δείξουμε ότι για $n\geq 1$ ισχύει $y^n\notin J$. Υποθέτουμε, προς άτοπο, ότι υπάρχουν $f,g\in k[x,y]$, ώστε

$$y^n = f(x, y)x^2 + g(x, y)xy$$

όπου για x = 0 καταλήγουμε σε άτοπο.

3.10. Αφού R είναι της Noether έχουμε ότι $J=(b_1,\cdots,b_n)$ και υποθέτουμε ότι υπάρχει $i\in I$ ώστε $i\notin Q$. Αφού $IJ\subseteq Q$, έχουμε ότι $ib_j\in Q$, για κάθε $j=1,\cdots,n$ και αφού Q είναι πρωταρχικό έχουμε ότι $b_j\in \sqrt{Q}$, για κάθε j. Συνεπώς υπάρχουν $m_j\geq 1$, ώστε $b_j^{m_j}\in Q$, για κάθε $j=1,\cdots,n$.

Έστω $m=\sum_{j=1}^n m_j$. Θα δείξουμε ότι $J^m\subseteq Q$. Έστω $\sum_{i=1}^\lambda j_{i_1}\cdots j_{i_m}\in J^m$ με $j_{i_k}\in J$, για κάθε $k=1,\cdots,m$, δηλαδή είναι γραμμικός συνδυασμός κάποιων από τα b_1,\cdots,b_n . Έτσι συμπεραίνουμε ότι

$$\sum_{i=1}^{\lambda} \prod_{j=1}^{m} j_{i_j} = \sum_{i=1}^{\lambda} \sum_{k_{i,1} + \dots + k_{i,n} = m} x(k_{i,1}, \dots, k_{i,n}) b_1^{k_{i,1}} \dots b_n^{k_{i,n}}.$$

Αν υποθέσουμε ότι υπάρχει n-αδα $(k_{i,1},\cdots,k_{i,n})$, ώστε $\sum_j k_{i,j}=m$ και $k_{i,j}< m_j$ για κάθε j, καταλήγουμε σε άτοπο από τον ορισμό του m. Συνεπώς, για κάθε τέτοια n-άδα υπάρχει $k_{i,j}$, ώστε $m_j \leq k_{i,j} \Rightarrow b_j^{k_{i,j}} \in Q$ και συμπεραίνουμε ότι $J^m \subseteq Q$.

3.11.

3.12. Έχουμε διαδοχικά ότι

$$\frac{\mathbb{Z}[x]}{(2,x)} \simeq \frac{\mathbb{Z}[x]/(2)}{(2,x)/(2)} \simeq \frac{\mathbb{Z}_2[x]}{(x)} \simeq \mathbb{Z}_2$$

Αφού το \mathbb{Z}_2 είναι σώμα έχουμε ότι (2,x) είναι μέγιστο ιδεώδες του \mathbb{Z}_2 .

Τώρα, θα δείξουμε ότι $\sqrt{(4,x)}=(2,x)$. Είναι άμεσο ότι $(2,x)\subseteq\sqrt{(4,x)}$. Έστω $f\in\sqrt{(4,x)}$, δηλαδή υπάρχει $n\in\mathbb{Z}_{>0}$ ώστε $f^n\in(4,x)$. Άρα, υπάρχουν $g,h\in\mathbb{Z}[x]$ ώστε

$$f^{n}(x) = 4h(x) + xq(x) \Rightarrow f^{n}(0) = 4h(0).$$

- Αν h(0) = 0, τότε $x|f^n \Rightarrow x|f$, άρα $f \in (2, x)$.
- Αν $h(0) \neq 0$, τότε $f^n(0)|4 \Rightarrow f(0)|2 \Rightarrow f \in (2, x)$.

Σε κάθε περίπτωση λοιπόν έχουμε ότι $f \in (2,x)$ και έχουμε ότι $\sqrt{(4,x)} = (2,x)$. Από την Άσκηση 3.8 έχουμε ότι (4,x) είναι πρωταρχικό.

Αρχικά είναι σαφές ότι $(4,x) \subsetneq (2,x)$. Τώρα, έχουμε ότι $x \notin (2,x)^2 = (x^2,2x,4)$, καθώς αν $x \in (2,x)^2$, τότε υπάρχουν $f,g,h \in \mathbb{Z}[x]$, ώστε

$$x = f(x)x^{2} + 2g(x)x + 4h(x) \Rightarrow 4h(0) = 0.$$

Συνεπώς θα ισχύει ότι $x|h(x) \Rightarrow h(x) = x^k h'(x)$ με (x,h'(x)) = 1, άρα έχουμε ότι

$$1 = xf(x) + 2g(x) + 4x^k h'(x)$$

όπου για x=0 καταλήγουμε σε άτοπο. Τώρα, αφού $(2,x)^n\subseteq (2,x)^2$, για κάθε $n\geq 2$, έχουμε το ζητούμενο.

3.13. Με χρήση των ομομορφισμών $f(x,y,z)\mapsto f(0,0,z)$ και $f(x,y,z)\mapsto f(0,y,0)$ έχουμε ότι

$$rac{k[x,y,z]}{(x,y)} \simeq k[z]$$
 and $rac{k[x,y,z]}{(x,z)} \simeq k[y]$

με k[z], k[y] αχέραιες περιοχές, άρα έχουμε ότι (x,y), (x,z) είναι πρώτα ιδεώδη του k[x,y,z]. Επίσης έχουμε ότι $k[x,y,z]/\mathfrak{m} \simeq k$ με k σώμα, άρα \mathfrak{m} είναι μέγιστο.

Είναι σαφές ότι p_1 και p_2 είναι πρωταρχικά ως πρώτα και \mathfrak{m}^2 είναι πρωταρχικό, αφού $\sqrt{\mathfrak{m}^2}=\mathfrak{m}$ μέγιστο, από Άσκηση 3.8. Επίσης έχουμε ότι

$$p_1 \cap p_2 \cap \mathfrak{m}^2 = (x, y) \cap (x, z) \cap (x^2, xy, yz, xz, y^2, z^2) = (x^2, xy, xz, yz) = p_1 p_2 = I$$

Η ανάλυση σαφές ότι είναι ελάχιστη, αφού τα παραπάνω ριζικά είναι διακεκριμένα και

$$p_1 \cap p_1 = (x, yz), p_1 \cap m^2 = (x^2, xy, yz, xz, y^2), p_2 \cap m^2 = (x^2, xz, xy, yz, z^2) \neq I.$$

Τώρα, έχουμε ότι $\mathrm{Ass}I=\{p_1,p_2,\mathfrak{m}\}$ με τα p_1 και p_2 να είναι μη-συγκρίσιμα άρα και ελάχιστα στο $\mathrm{Ass}I$ και $p_1,p_2 \subsetneq \mathfrak{m}$, άρα οι συνιστώσες p_1,p_2 είναι μεμονωμένες και η \mathfrak{m}^2 είναι εμφυτευμένη.

3.14. Παρατηρούμε ότι $I=(xy,xz)=(x)\cap (y,z)$ είναι μια ελάχιστη πρωταρχική ανάλυση με (x),(y,z) πρώτα στο $\mathbb{Z}[x,y,z]$. Μάλιστα στο σύνολο $\mathrm{Ass}I=\{(x),(y,z)\}$ τα στοιχεία είναι ελάχιστα, άρα και οι δύο συνιστώσες είναι μεμονωμένες.

3.15. Με χρήση αλγεβρικών συνόλων (V(I)) οδηγούμαστε στον ακόλουθο ισχυρισμό.

Ισχυρισμός 2. Μια πρωταρχική ανάλυση του I=(xy,xz,yz) είναι η $I=(x,y)\cap(x,z)\cap(z,y)$.

Αφού $xy, xz, yz \in (x,y) \cap (x,z) \cap (z,y)$ έχουμε ότι $I \subseteq (x,y) \cap (x,z) \cap (z,y)$. Αντίστροφα, αν $f \in (x,y) \cap (x,z) \cap (z,y)$, τότε έχουμε ότι

$$f(x, y, z) = g_1(x, y, z)x + g_2(x, y, z)y \in (x, z) \cap (z, y).$$

Τώρα, αφού $f, g_2(x,y,z)y \in (z,y) \Rightarrow g_1(x,y,z)x \in (z,y) \cap (x) \Rightarrow g_1(x,y,z)x \in (xz,xy)$. Ομοίως δείχνουμε ότι $g_2(x,y,z)y \in (xy,yz)$. Συνεπώς, έχουμε ότι $g_1(x,y,z)x, g_2(x,y,z)y \in I \Rightarrow f \in I$ και έχουμε αποδείξει τον ισχυρισμό.

Τέλος, είναι σαφές ότι η ανάλυση του ισχυρισμού είναι πρωταρχική, αφού τα ιδεώδη (x,y),(x,z),(z,y) είναι πρώτα, (τα αντίστοιχα πηλίκα είναι ακέραιες περιοχές) και μάλιστα είναι ελάχιστη.

Πράγματι, $AssI = \{(x,y),(x,z),(z,y)\}$ με τα στοιχεία να είναι μη συγκρίσιμα (ως προς τη σχέση περιέχεσθαι), άρα και ελάχιστα στο AssI και ισχύει ότι

$$I \neq (x, y) \cap (x, z) = (x, yz), (x, y) \cap (y, z) = (xz, y), (x, z) \cap (y, z) = (xy, z)$$

αφού $x,y,z \notin I$. Από την παραπάνω πατηρήρηση έχουμε επίσης ότι όλες οι συνιστώσες είναι μεμονωμένες.

3.16. Αφού R της Noether το ιδεώδες I επιδέχεται πρωταρχική ανάλυση

$$I = Q_1 \cap Q_2 \cap \cdots \cap Q_n, \quad \sqrt{Q_i} = \mathfrak{p}_i.$$

Χωρίς βλάβη της γενικότητας, έστω $\mathfrak{p}_1, \cdots, \mathfrak{p}_m$ τα ελάχιστα στοιχεία του AssI. Τότε, έχουμε ότι

$$I = \sqrt{I} = \sqrt{Q_1 \cap Q_2 \cap \dots \cap Q_n} = \sqrt{Q_1} \cap \dots \cap \sqrt{Q_n} = \mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_m.$$

Τα $\mathfrak{p}_1, \dots, \mathfrak{p}_m$ είναι πρώτα και μάλιστα συμπεράναμε ότι $\mathrm{Ass}I = \{\mathfrak{p}_1, \dots, \mathfrak{p}_m\}$, όπου όλα τα στοιχεία είναι ελάχιστα, άρα κάθε συνιστώσα είναι μεμονωμένη.

3.17. (i) Θεωρούμε το σύνολο

$$\mathfrak{A} = \{ \mathfrak{p} \triangleleft R \mid I \subseteq \mathfrak{p} \text{ και } \mathfrak{p} \text{ πρώτο} \}.$$

Είναι σαφές ότι $\mathfrak{A} \neq \emptyset$, αφού γνωρίζουμε ότι κάθε ιδεώδες περιέχεται σε μέγιστο ιδεώδες. Ορίζουμε διάταξη \prec στο \mathfrak{A} , ως εξής

$$\mathfrak{p}_1 \prec \mathfrak{p}_2 \Leftrightarrow \mathfrak{p}_2 \subseteq \mathfrak{p}_1.$$

Είναι άμεσο ότι το ζεύγος (\mathfrak{A}, \prec) είναι μερικά διατεταγμένος χώρος. Θεωρούμε $\{\mathfrak{p}_i\}_{i\in I}$ αλυσίδα στον \mathfrak{A} . Θέτουμε $\mathfrak{p}=\bigcap_{i\in I}\mathfrak{p}_i$ το οποίο είναι είναι άνω φράγμα της παραπάνω αλυσίδας.

Από το Λήμμα του Zorn, έχουμε ότι το $\mathfrak A$ έχει μεγιστικό στοιχείο με τη διάταση \prec , δηλαδή ελάχιστο στοιχείο (ως προς τη σχέση "περιέχεσθαι").

- (ii) Αρχικά έχουμε ότι $(24) \subseteq (n)$ αν και μόνο αν n=1,2,3,4,6,8,12,24 και από την Άσκηση 2.1 έχουμε ότι τα μόνα πρώτα είναι τα (2),(3) και οποία είναι και ελάχιστα, αφού $(2) \not\subseteq (3)$ και $(3) \not\subseteq (2)$.
- (iii) Αφού R είναι της Noether υπάρχουν Q_1, \cdots, Q_n πρωταρχικά ιδεώδη ώστε

$$I = Q_1 \cap Q_2 \cap \cdots \cap Q_n, \quad \sqrt{Q_i} = \mathfrak{p}_i.$$

Έστω \mathfrak{p} ελάχιστο πρώτο ιδεώδες του I, άρα έχουμε ότι

$$I \subseteq \mathfrak{p} \Rightarrow \sqrt{I} \subseteq \mathfrak{p} \Rightarrow \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n \subseteq \mathfrak{p}.$$

Αφού το \mathfrak{p} είναι πρώτο, τότε υπάρχει $i \in \{1, \cdots, n\}$, ώστε $\mathfrak{p}_i \subseteq \mathfrak{p}$ με $I \subseteq \mathfrak{p}_i$ και λόγω της ελαχιστικότητας του \mathfrak{p} έχουμε ότι $\mathfrak{p} = \mathfrak{p}_i$. Έτσι, έχουμε το ζητούμενο.

3.18. Η λύση δίνεται από την Άσκηση 3.16.

3.19. Έστω R της Noether ώστε $\mathrm{nil}(R)=(0) \triangleleft R$, συνεπώς υπάρχουν Q_1, \cdots, Q_n πρωταρχικά ώστε

$$(0) = \operatorname{nil}(R) = Q_1 \cap \cdots \cap Q_n, \quad \sqrt{Q_i} = \mathfrak{p}_i \Rightarrow \operatorname{nil}(R) = \sqrt{(0)} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n.$$

Συνεπώς, έχουμε ότι $\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n = (0)$. Θεωρούμε την απεικόνιση

$$\varphi \colon R \to R/\mathfrak{p}_1 \times \cdots \times R/\mathfrak{p}_n, \ r \mapsto (r + (\mathfrak{p}_1), \cdots, r + (\mathfrak{p}_n))$$

η οποία με βάση την παραπάνω παρατήρηση είναι μονομορφισμός, άρα R είναι ισόμορφος με υποδαχτύλιο ευθέος γινομένου πεπερασμένου πλήθους περιοχών.

3.20. Έστω f:R o R επιμορφισμός δαχτυλίων. Τότε, έχουμε την εξής αχολουθία ιδεωδών

$$\ker f \subseteq \ker f^2 \subseteq \ker f^3 \subseteq \cdots$$

και αφού R είναι της Noether υπάρχει $n \in \mathbb{Z}_{>0}$, ώστε $\ker f^n = \ker f^{n+1}$. Επαγωγικά είναι σαφές ότι για κάθε n η απεικόνιση f^n είναι επιμορφισμός δακτυλίων.

Αρχεί να δείξουμε ότι $\ker f = \{0\}$. Έστω $r \in \ker f$ και από τη προηγούμενη παρατήρηση υπάρχει $r_n \in R$, ώστε $f^n(r_n) = r \Rightarrow f^{n+1}(r_n) = 0 \Rightarrow r_n \in \ker f^{n+1} = \ker f^n$. Άρα, έχουμε ότι $f^n(r_n) = r = 0$ και έχουμε δείξει το ζητούμενο.

3.21. Υποθέτουμε ότι υπάρχει $r \neq 0$ ώστε $r \in \bigcap_n (t^n)$, συνεπώς υπάρχουν $r_i \in R \setminus \{0\}$, ώστε

$$r = r_1 t = r_2 t^2 = \cdots \Rightarrow (r) \subseteq (r_1) \subseteq (r_2) \subseteq \cdots$$

Αφού R είναι της Noether έχουμε ότι υπάρχει $n \in \mathbb{N}$, ώστε $(r_n) = (r_{n+1})$, δηλαδή υπάρχει $u \in U(R)$, ώστε $r_{n+1} = ur_n$. Έτσι, έχουμε ότι

$$r = r_n t^n = r_{n+1} t^{n+1} = u r_n t^{n+1} \Rightarrow u t = 1 \Rightarrow t \in U(R),$$

όπου η τελευταία σχέση προχύπτει αφού R περιοχή, και έτσι καταλήγουμε σε άτοπο.

- 3.22. (i) Στην Άσκηση 3.3 (ii) έχει αποδειχθεί ότι $\mathbb{Z}[\sqrt{-3}]$ είναι δακτύλιος της Noether, αλλά από την Άσκηση 2.16 έχουμε ότι $\mathbb{Z}[\sqrt{-3}]$ δεν είναι περιοχή μοναδικής παραγοντοποίησης ενώ είναι περιοχή. Συνεπώς ο ισχυρισμός είναι λανθασμένος.
 - (ii) Έχει αποδειχθεί ότι η αχέραια περιοχή $R = \mathbb{Z}[x_1, \cdots, x_n, \cdots]$ δεν είναι της Noether και ότι R μπορεί να εμφυτευτεί στο σώμα $\operatorname{Frac}(R)$, δηλαδή να θεωρηθεί ως υποδακτύλιος του σώματος των κλασμάτων του. Συνεπώς ο ισχυρισμός είναι λανθασμένος.
- (iii) Θεωρούμε

$$I_1 \times J_1 \subseteq I_2 \times J_2 \subseteq \cdots$$

αύξουσα αχολουθία ιδεωδών στον $R\times S$. Συνεπώς, έχουμε ότι $I_i\subseteq I_{i+1}$ και $J_i\subseteq J_{i+1}$, για κάθε $i=1,2,\cdots$. Όμως, R και S είναι της Noether, συνεπώς υπάρχουν $n,m\in\mathbb{Z}_{>0}$, ώστε $I_n=I_{n+1}=\cdots$ και $J_m=J_{m+1}=\cdots$, όπου θεωρώντας $k=\max\{n,m\}$ παίρνουμε ότι $I_k\times J_k=I_{k+1}\times J_{k+1}=\cdots$, συνεπώς ο $R\times S$ είναι της Noether. Συνεπώς ο ισχυρισμός είναι σωστός.

ΚΕΦΑΛΑΙΟ 4

ΤΟΠΙΚΟΠΟΙΗΣΗ

4.1 Ασχήσεις

- **4.1.** Έστω S πολλαπλασιαστικό υποσύνολο του R. Τότε $S^{-1}R=0$ αν και μόνο αν το S περιέχει μηδενοδύναμο στοιχείο.
- **4.2.** Έστω R δακτύλιος, S πολλαπλασιαστικό υποσύνολο του R και I,J ιδεώδη του R. Δείξτε τις εξής ισότητες.
 - (i) $S^{-1}(I+J) = S^{-1}I + S^{-1}J$.
 - (ii) $S^{-1}(I \cdot J) = S^{-1}I \cdot S^{-1}J$.
- (iii) $S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J.$
- (iv) $S^{-1}\sqrt{I} = \sqrt{S^{-1}I}$.
- (v) $S^{-1}(\text{nil}(R)) = \text{nil}(S^{-1}R)$.
- 4.3. Υπολογίστε τους τοπιχούς δαχτύλιους $R_{\mathfrak{p}}$ για χάθε πρώτο ιδεώδες \mathfrak{p} του $R=\mathbb{Z}_6.$
- **4.4.** Αληθεύει ότι αν ο δακτύλιος $R_{\mathfrak{p}}$ είναι περιοχή για κάθε $\mathfrak{p} \in \operatorname{Spec} R$, τότε ο R είναι περιοχή;

- **4.5.** Έστω R μη μηδενικός δακτύλιος τέτοιος ώστε κάθε τοπικοποίηση $R_{\mathfrak{p}}$, όπου $\mathfrak{p} \in \operatorname{Spec} R$, δεν έχει μη μηδενικό μηδενοδύναμο στοιχείο. Δείξτε ότι και ο R δεν έχει μη μηδενικό μηδενοδύναμο στοιχείο.
- **4.6.** Έστω k σώμα. Θεωρούμε το δακτύλιο $k[x,x^{-1}]$ των πολυωνύμων Laurent. Είδαμε στο μάθημα ότι

$$k[x, x^{-1}] = S^{-1}(k[x]),$$

όπου $S=\{1,x,x^2,\cdots\}$. Δείξτε ότι ο $k[x,x^{-1}]$ είναι περιοχή χυρίων ιδεωδών χρησιμοποιώντας το προηγούμενο γεγονός.

- **4.7.** Έστω $\mathfrak{p} \in \operatorname{Spec} R$ και $\mathfrak{m} = \mathfrak{p} R_{\mathfrak{p}}$ το μέγιστο ιδεώδες του $R_{\mathfrak{p}}$. Δείξτε ότι ο δακτύλιος πηλίκο $R_{\mathfrak{p}}/\mathfrak{m}$ είναι ισόμορφος με το σώμα πηλίκων της περιοχής R/\mathfrak{p} .
- **4.8.** Θεωρούμε το δακτύλιο $R=\mathbb{Z}[x]$ και το πολλαπλασιαστικό υποσύνολο $S=\{1,2,2^2,...\}$. Αληθεύει ότι ο δακτύλιος $S^{-1}R$ είναι της Noether; Περιοχή κυρίων ιδεωδών;
- 4.9. Υπάρχει υποδακτύλιος του $\mathbb Q$ που δεν είναι της Noether;

4.2 Ενδεικτικές Λύσεις Ασκήσεων

- **4.1.** Έχουμε ότι $S^{-1}R=0$ αν και μόνο αν $\frac{1}{1}=\frac{0}{1}$ αν και μόνο αν υπάρχει $u\in S$ τέτοιο ώστε u=0 αν και μόνο αν $0\in S$. Τώρα, αφού το S είναι πολλαπλασιαστικό, έχουμε ότι τα προηγούμενα είναι ισοδύναμα με ότι το S περιέχει μηδενοδύναμο στοιχείο.
- **4.2.** (i) Αν $r \in S^{-1}(I+J)$, τότε έχουμε ότι $r = \frac{i+j}{s}$ με $i \in I, j \in J$ και $s \in S$. Συνεπώς, έχουμε ότι $a = \frac{i+j}{s} = \frac{i}{s} + \frac{j}{s'} \in S^{-1}I + S^{-1}J$.

Αντίστροφα, αν $r \in S^{-1}I + S^{-1}J$, τότε είναι της μορφής $r = \frac{i}{s} + \frac{j}{s} = \frac{s'i + sj}{ss'}$ με $s'i \in I, sj \in J$ και $ss' \in S$, άρα έχουμε ότι $r \in S^{-1}$ (I+J).

(ii) Θεωρούμε $r\in S^{-1}(I\cdot J)$, συνεπώς είναι της μορφής $r=\frac{\sum_{k=1}^n i_k j_k}{s}$ με $i_k\in I, j_k\in J,$ για κάθε $k=1,\cdots,n$ και $s\in S.$ Συνεπώς, έχουμε ότι

$$r = \frac{\sum_{k=1}^{n} i_k j_k}{s} = \sum_{k=0}^{n} \frac{i_k}{s} \cdot \frac{j_k}{1} \in S^{-1} I \cdot S^{-1} J.$$

Αντίστροφα, έστω $r \in S^{-1}I \cdot S^{-1}J$, δηλαδή έχουμε ότι

$$r = \sum_{k=1}^{n} \frac{i_k}{s_k} \cdot \frac{j_k}{s_k'} = \sum_{k=1}^{n} \frac{i_k j_k}{s_k s_k'} = \frac{\sum_{k=1}^{n} (a_k i_k) (b_k j_k)}{s} \in S^{-1}(I \cdot J) ,$$

όπου $s=\prod_{k=1}^n s_k s_k'$, $a_k,b_k\in R$ και $i_k\in I,j_k\in J$, για κάθε $k=1,\cdots,n$.

(iii) Έστω $a\in S^{-1}(I\cap J)$, άρα το a είναι της μορφής $r=\frac{r}{s}$ με $r\in I\cap J$ και $s\in S$. Συνεπώς, είναι σαφές ότι $a\in S^{-1}I\cap S^{-1}J$.

Αντίστροφα, έστω $r\in S^{-1}I\cap S^{-1}J\Rightarrow r=\frac{i}{s}=\frac{j}{s'}$ με $i\in I, j\in J$ και $s,s'\in S$. Συνεπώς, υπάρχει $u\in S$, ώστε $us'i=usj\in I\cap J$. Επομένως, έχουμε ότι $r=\frac{us'i}{s'us}\in S^{-1}(I\cap J)$.

(iv) Έστω $a \in S^{-1}\sqrt{I} \Rightarrow a = \frac{r}{s}$ με $r \in \sqrt{I}$ και $s \in S$. Άρα, υπάρχει $n \in \mathbb{N}$, ώστε $r^n \in I$, δηλαδή $\left(\frac{r}{s}\right)^n = \frac{r^n}{s^n} \in S^{-1}I \Rightarrow \frac{r}{s} \in \sqrt{S^{-1}I}$.

Αντίστροφα, Έστω $\frac{r}{s}\in\sqrt{S^{-1}I}\Rightarrow\left(\frac{r}{s}\right)^n=\frac{r^n}{s^n}\in S^{-1}I,$ για κάποιο $n\in\mathbb{N}$. Άρα, έχουμε ότι $\frac{r^n}{s^n}=\frac{i}{s'}$ για $i\in I$ και $s'\in S$. Επομένως, υπάρχει $u\in S$, ώστε $s'ur^n=s^nui\in I$. Έτσι, έχουμε ότι

$$\left(\frac{r}{s}\right)^n = \left(\frac{rus'}{sus'}\right)^n = \frac{r^n u^n s'^n}{s^n s'^n u^n} \in S^{-1}I,$$

αφού $r^n u^n s'^n \in I$. Άρα, έχουμε ότι $\frac{r}{s} \in S^{-1} \sqrt{I}$.

(v) Έστω $\frac{r}{s} \in S^{-1}\left(\operatorname{nil}(R)\right) \Rightarrow \frac{r}{s} = \frac{r'}{s'}$ με $r' \in \operatorname{nil}(R)$ και $s' \in S$, άρα $r'^n = 0$ για κάποιο $n \in \mathbb{N}$. Άρα, έχουμε ότι $\left(\frac{r}{s}\right)^n = \left(\frac{r'}{s'}\right)^n = 0 \Rightarrow \frac{r}{s} \in \operatorname{nil}(S^{-1}R)$.

Αντίστροφα, έστω $\frac{r}{s} \in \mathrm{nil}(S^{-1}R) \Rightarrow \left(\frac{r}{s}\right)^n = \frac{0}{1}$, για κάποιο $n \in \mathbb{N}$. Δηλαδή υπάρχει $u \in S$, ώστε $ur^n = 0$. Συνεπώς, έχουμε ότι $(ru)^n = 0$, άρα προκύπτει ότι $\frac{r}{s} = \frac{ru}{su} \in S^{-1}(\mathrm{nil}(R))$.

- **4.3.** Από την Άσκηση 2.1 έχουμε ότι τα μοναδικά πρώτα ιδεώδη του $R=\mathbb{Z}_6$ είναι τα $\mathfrak{p}_1=3\mathbb{Z}_6$ και $\mathfrak{p}_2=2\mathbb{Z}_6$.
 - $R_{\mathfrak{p}_1} = \left\{ \frac{[n]}{[m]} \mid n = 0, \dots, 5, \ m = 1, 2, 4, 5 \right\}$
 - $R_{\mathfrak{p}_2} = \left\{ \frac{[n]}{[m]} \mid n = 0, \dots, 5, \ m = 1, 3, 5 \right\}$
- **4.4.** Με τους συμβολισμούς της Άσκησης 4.3 θα δείξουμε ότι $\mathfrak{m}_i=(0)$, όπου \mathfrak{m}_i το αντίστοιχο μέγιστο ιδεώδες του $R_{\mathfrak{p}_i}$. Θα το δείξουμε για i=1 και η περίπτωση του i=2 αποδεικνύεται όμοια. Έχουμε ότι $\mathfrak{m}_1=\left\{\frac{[n]}{[m]}\mid n=0,3,\ m=1,2,4,5\right\}$, άρα για κάθε [n]=[0],[3] υπάρχει $[m]\in R\setminus \mathfrak{p}_1$, ώστε [m][n]=[0]. Συνεπώς, έχουμε ότι $\mathfrak{m}_1=(0)$, δηλαδή $R_{\mathfrak{p}_1}/\mathfrak{m}_1\simeq R_{\mathfrak{p}_1}$.

Έτσι, έχουμε ότι $R_{\mathfrak{p}_1}, R_{\mathfrak{p}_2}$ είναι περιοχές και ότι $R=\mathbb{Z}_6$ δεν είναι περιοχή, συνεπώς ο ισχυρισμός δεν αληθεύει.

4.5. Έστω ότι υπάρχει $r\in \mathrm{nil}(R)\setminus\{0\}$, δηλαδή υπάρχει $n\mathbb{N}$, ώστε $r^n=0$. Θεωρούμε $\mathrm{Ann}(r)=\{x\in R\mid rx=0\}$ και γνωρίζουμε ότι υπάρχει \mathfrak{m} , μέγιστο ιδεώδες του R, ώστε $\mathrm{Ann}(r)\subseteq\mathfrak{m}$.

Θεωρούμε την τοπιχοποίηση $R_{\mathfrak{m}}$, όπου έχουμε ότι $\left(\frac{r}{1}\right)^n=0\Rightarrow \frac{r}{1}\in \mathrm{nil}(R_{\mathfrak{m}})=(0)$. Έτσι, έχουμε ότι υπάρχει $u\in R\setminus \mathfrak{m}$, ώστε $ur=0\Rightarrow u\in \mathrm{Ann}(r)\subseteq \mathfrak{m}$, το οποίο είναι άτοπο.

- **4.6.** Έστω $J \triangleleft k[x,x^{-1}] \Rightarrow J^c \triangleleft k[x]$. Όμως, k[x] είναι περιοχή κύριων ιδεωδών, άρα υπάρχει $f(x) \in k[x]$, ώστε $J^c = (f(x)) \Rightarrow J^{ce} = S^{-1}\left((f(x))\right) = \left(\frac{f(x)}{1}\right)$. Όμως γνωρίζουμε ότι $J^{ce} = J \Rightarrow J = \left(\frac{f(x)}{1}\right)$, συνεπώς έχουμε ότι $k[x,x^{-1}]$ είναι περιοχή κύριων ιδεωδών.
- 4.7. Θεωρούμε την απεικόνιση

$$\varphi \colon R_{\mathfrak{p}} \to \operatorname{Frac}(R/\mathfrak{p}), \ \frac{a}{b} \mapsto \frac{a + (\mathfrak{p})}{b + (\mathfrak{p})}.$$

- Αρχικά θα δείξουμε ότι φ είναι καλά ορισμένη. Για $\frac{a}{b} \in R_{\mathfrak{p}} \Rightarrow b \notin \mathfrak{p} \Rightarrow b + (\mathfrak{p}) \neq (\mathfrak{p})$. Επίσης, έχουμε ότι αν $\frac{a}{b}$, $\frac{c}{d}$ ώστε $\frac{a}{b} = \frac{c}{d}$, δηλαδή υπάρχει $u \notin \mathfrak{p}$, ώστε $u(ad bc) \in \mathfrak{p}$. Αφού \mathfrak{p} είναι πρώτο έχουμε ότι $ad bc \in \mathfrak{p} \Rightarrow \frac{a + (\mathfrak{p})}{b + (\mathfrak{p})} = \frac{c + (\mathfrak{p})}{d + (\mathfrak{p})}$.
- Η φ είναι επί. Έστω $\frac{a+(\mathfrak{p})}{b+(\mathfrak{p})} \in \operatorname{Frac}(R/\mathfrak{p}),$ με $b+(\mathfrak{p}) \neq (\mathfrak{p}) \Rightarrow b \notin \mathfrak{p} \Rightarrow \varphi\left(\frac{a}{b}\right) = \frac{a+(\mathfrak{p})}{b+(\mathfrak{p})}.$
- Είναι άμεσο ότι φ είναι ομομορφισμός και μάλιστα $\ker \varphi = \mathfrak{m}$.

Άρα, από το 1ο Θεώρημα Ισομορφισμών έχουμε ότι $R_{\mathfrak{p}}/\mathfrak{m} \simeq \operatorname{Frac}(R/\mathfrak{p}).$

4.8. Έχουμε ότι $\mathbb Z$ είναι της Noether, άρα και $S^{-1}R$ της Noether. Αν $R'=S^{-1}\mathbb Z$, τότε θεωρούμε την απεικόνιση

$$\varphi \colon S^{-1}R \to R'\mathbb{Z}[x], \ \frac{\sum_{i=0}^n a_i x^i}{2^n} \mapsto \sum_{i=0}^\infty \frac{a_i}{2^n} x^i.$$

Είναι σαφές ότι φ είναι ισομορφισμός, άρα αρχεί να εξετάσουμε αν $R'\mathbb{Z}[x]$ είναι περιοχή χύριων ιδεωδών.

Θεωρούμε $(3,x) \triangleleft R'\mathbb{Z}[x]$ και υποθέτουμε ότι $(3,x) = (f(x)) \Rightarrow 3 = f(x)g(x) \Rightarrow 3 = \frac{a}{2^n} \cdot \frac{b}{2^n}$, αφού R' είναι περιοχή, με $f(x) = \frac{a}{2^n}$ και $(a,2^n) = 1$. Έτσι, συμπεραίνουμε ότι f(x) = 1 ή f(x) = 3.

Προφανώς $(3,x) \neq R'\mathbb{Z}[x]$, και αν f(x)=3 έχουμε ότι $x\in (3,x)\Rightarrow x=3g(x)$. Έτσι, έχουμε ότι $g(x)=\gamma x$ με $\gamma\in R'$, άρα $\gamma=\frac{1}{3}\notin R'$, το οποίο είναι άτοπο. Συνεπώς έχουμε ότι $R'\mathbb{Z}[x]$ δεν είναι περιοχή κύριων ιδεωδών, άρα και $S^{-1}R$ δεν είναι περιοχή κύριων ιδεωδών.

4.9. Έστω F υποδακτύλιος του $\mathbb Q$. Αν $a\in F$ έχουμε ότι $a=\frac{a}{p_1^{a_1}p_2^{a_2}\cdots p_m^{a_m}}$, όπου p_1,\cdots,p_m διακεκριμένοι πρώτοι, $a_1,\cdots,a_m\geq 0$ με $(n,p_i)=1$, για κάθε i. Συνεπώς, θεωρούμε το εξής σύνολο :

$$S = \left\{ p_{i_1}^{a_1} \cdots p_{i_m}^{a_m} \mid m \in \mathbb{N}, \ a_i \geq 0, \ p_{i_j} \text{ projection date } \frac{1}{p_{i_1}^{a_1} \cdots p_{i_m}^{a_m}} \in F \right\}.$$

Έτσι έχουμε ότι S είναι πολλαπλασιαστικό και μάλιστα $F=S^{-1}\mathbb{Z}$, άρα συμπεραίνουμε ότι F είναι της Noether.

ΚΕΦΑΛΑΙΟ 5

ΠΡΟΤΥΠΑ

5.1 Ασκήσεις

5.1. Δείξτε ότι το $\mathbb Q$ δεν είναι πεπερασμένα παραγόμενο $\mathbb Z$ -πρότυπο. Στη συνέχεια δείξτε ότι για κάθε σώμα k το σώμα των ρητών συναρτήσεων k(x) δεν είναι πεπερασμένα παραγόμενο k[x]- πρότυπο.

5.2. Έστω

$$0 \to L \to M \to N \to 0$$

ακριβής ακολουθία R - προτύπων. Δείξτε ότι αν τα L,N είναι πεπερασμένα παραγόμενα, τότε το M είναι πεπερασμένα παραγόμενο.

- **5.3.** Έστω L,N υποπρότυπα του R- προτύπου M. Δείξτε ότι αν τα $L+N,\ L\cap N$ είναι πεπερασμένα παραγόμενα, τότε και τα L,N είναι πεπερασμένα παραγόμενα.
- **5.4.** (i) Αν M,N είναι υποπρότυπα ενός τρίτου προτύπου, τότε $\text{Ann}(M+N) = \text{Ann}(M) \cap \text{Ann}(N)$.
 - (ii) Αν I, J είναι ιδεώδη του R, τότε (I:J) = Ann((I+J)/I).
- **5.5.** Έστω R δακτύλιος της Noether, I ιδεώδες του R και S πολλαπλασιαστικό υποσύνολο του R. Δείξτε ότι

$$S^{-1}(\operatorname{Ann}(I)) = \operatorname{Ann}(S^{-1}I).$$

- **5.6.** Αν φ : $R \to R'$ είναι ομομορφισμός δακτυλίων και M είναι R'-πρότυπο, τότε το M γίνεται R-πρότυπο ορίζοντας $rm = \varphi(r)m$, όπου $r \in R, m \in M$. Αληθεύει ότι αν το M' είναι πεπερασμένα παραγόμενο ως R' πρότυπο, τότε είναι πεπερασμένα παραγόμενο ως R-πρότυπο;
- **5.7.** Έστω L,N υποπρότυπα του R- προτύπου M. Ορίζοντας κατάλληλους ομομορφισμούς, δείξτε ότι υπάρχει ακριβής ακολουθία της μορφής

$$0 \to \frac{M}{L \cap N} \to \frac{M}{L} \times \frac{M}{N} \to \frac{M}{L+N} \to 0.$$

- **5.8.** Έστω $R \neq \{0\}$. Δείξτε ότι αν υπάρχει επιμορφισμός R- προτύπων $R^m \to R^n$, τότε m > n.
- **5.9.** Έστω k σώμα. Υποθέτουμε ότι όλοι οι επόμενοι διανυσματικοί χώροι έχουν πεπερασμένες διαστάσεις.
 - (i) Δείξτε ότι αν

$$0 \rightarrow V_2 \rightarrow V_1 \rightarrow V_0 \rightarrow 0$$

είναι αχριβής αχολουθία k-διανυσματιχών χώρων, τότε $\dim V_1 = \dim V_0 + \dim V_2$.

(ii) Έστω

$$0 \to V_n \to V_{n-1} \to \dots \to V_0 \to 0$$

αχριβής αχολουθία k-διανυσματιχών χώρων, όπου $n \geq 2$. Δείξτε ότι

$$\sum_{i=0}^{n} (-1)^{i} \dim V_{i} = 0.$$

5.10. Έστω I,J ιδεώδη του R. Ορίζοντας κατάλληλους ομομορφισμούς, δείξτε ότι υπάρχει ακριβής ακολουθία R-προτύπων της μορφής

$$0 \to I \cap J \to R \to (R/I) \times (R/J) \to R/(I+J) \to 0.$$

Στη συνέχεια δείξτε ότι από το προηγούμενο αποτέλεσμα έπεται το κινέζικο θεώρημα υπολοίπων.

Οι ασκήσεις 11-13 αναφέρονται στο Λήμμα του Nakayama.

5.11. (i) Αν R είναι τοπικός δακτύλιος της Noether με μέγιστο ιδεώδες \mathfrak{m} και ισχύει $\mathfrak{m}^{n+1}=\mathfrak{m}^n$ για κάποιο n, τότε $\mathfrak{m}^n=0$.

5.1. $A\Sigma KH\Sigma EI\Sigma$ 49

(ii) Έστω M ένα πεπερασμένα παραγόμενο R- πρότυπο. Δείξτε ότι αν $N \leq M$ και $I \subseteq \operatorname{Jac}(R)$ ιδεώδες του R τέτοια ώστε N + IM = M, τότε N = M.

- **5.12.** Χρησιμοποιώντας το (ii) της προηγούμενης άσκησης, δείξτε τα εξής.
 - (i) Έστω ότι ο R είναι τοπικός δακτύλιος με μέγιστο ιδεώδες \mathfrak{m} . Αν τα $m_1+\mathfrak{m}M,...,m_t+\mathfrak{m}M$ παράγουν το R/\mathfrak{m} διανυσματικό χώρο $M/\mathfrak{m}M$, τότε τα m_1,\cdots,m_t παράγουν το R-πρότυπο M.
 - (ii) Έστω $I\subseteq \operatorname{Jac}(R)$ ιδεώδες του R και $\varphi\colon M\to N$ ομομορφισμός R -προτύπων με N πεπερασμένα παραγόμενο. Δείξτε ότι αν ο επαγόμενος ομομορφισμός $M/IM\to N/IN$ είναι επί, τότε και ο φ είναι επί.
- **5.13.** Έστω R τοπικός δακτύλιος της Noether με μέγιστο ιδεώδες \mathfrak{m} .
 - (i) Δείξτε ότι αν $\operatorname{Spec} R \neq \{\mathfrak{m}\}$, τότε για κάθε θετικό ακέραιο n, έχουμε $\mathfrak{m}^{n+1} \neq \mathfrak{m}^n$.
 - (ii) Τί συμβαίνει με τις δυνάμεις του \mathfrak{m} αν $\operatorname{Spec} R = {\mathfrak{m}}$;
- **5.14.** Από το θεώρημα βάσης του Hilbert ξέρουμε ότι κάθε ιδεώδες του $\mathbb{C}[x,y]$ είναι πεπερασμένα παραγόμενο. Ο σκοπός της άσκησης αυτής είναι να αποδειχθεί ότι δεν υπάρχει άνω φράγμα στο ελάχιστο πλήθος γεννητόρων των ιδεωδών του $\mathbb{C}[x,y]$ (βλ. ερώτημα (iv) παρακάτω). Θεωρούμε το ιδεώδες I=(x,y) του $\mathbb{C}[x,y]$.
 - (i) Δ είξτε ότι το I είναι μέγιστο ιδεώδες και ότι για κάθε θετικό ακέραιο n,

$$I^{n} = (x^{n}, x^{n-1}y, ..., xy^{n-1}, y^{n}).$$

(ii) Βρείτε μια (άπειρη) βάση του I^n ως \mathbb{C} -διανυσματικό χώρο αποτελούμενη από μονώνυμα. Από αυτό συμπεράνατε ότι για κάθε θετικό ακέραιο n,

$$\dim_{\mathbb{C}} I^n/I^{n+1} = n+1.$$

(iii) Δείξτε το εξής γενικό λήμμα. Έστω M ένα R-πρότυπο και $\mathfrak m$ μέγιστο ιδεώδες του R. Τότε το $M/\mathfrak m M$ είναι $R/\mathfrak m$ -διανυσματικός χώρος και αν επιπλέον το M παράγεται από πεπερασμένο σύνολο t στοιχείων, τότε

$$\dim_{R/\mathfrak{m}} M/\mathfrak{m}M \leq t.$$

(iv) Εφαρμόζοντας τα προηγούμενα, δείξτε ότι για κάθε θετικό ακέραιο n, το ιδεώδες I^n δεν δύναται να παραχθεί από σύνολο που έχει λιγότερα από n+1 στοιχεία.

- **5.15.** Θεωρούμε το δαχτύλιο $R = \mathbb{Z}[\sqrt{2}]$.
 - (i) Δ είξτε ότι κάθε ιδεώδες του R μπορεί να παραχθεί από δύο στοιχεία.
 - (ii) Δείξτε ότι αν M είναι ελεύθερο R-πρότυπο με $\mathrm{rank}_R M = r$, τότε το M είναι ελεύθερο \mathbb{Z} -πρότυπο με $\mathrm{rank}_\mathbb{Z} M = 2r$.
- **5.16.** Έστω R μη μηδενιχός δαχτύλιος. Δείξτε ότι τα αχόλουθα είναι ισοδύναμα.
 - (i) R είναι σώμα.
 - (ii) Κάθε R-πρότυπο είναι ελεύθερο.
- (iii) Κάθε κυκλικό R-πρότυπο είναι ελεύθερο.
- **5.17.** Έστω R μη μηδενικός δακτύλιος. Δείξτε ότι κάθε ιδεώδες του R είναι ελεύθερο R-πρότυπο αν και μόνο αν ο R είναι περιοχή κυρίων ιδεωδών.
- **5.18.** Έστω k σώμα. Βρείτε ιδεώδες του k[x,y] που δεν είναι ελεύθερο k[x,y]-πρότυπο.
- **5.19.** Έστω R περιοχή μοναδικής παραγοντοποίησης και $x,y\in R$ με μκδ(x,y)=1. Θεωρούμε το ιδεώδες I=(x,y). Αποδείξτε ότι υπάρχει ακριβής ακολουθία R-προτύπων της μορφής

$$0 \to R \xrightarrow{\alpha} R \oplus R \xrightarrow{\beta} I \to 0$$
,

όπου $\alpha(r)=(ry,rx)$, και $\beta(r,s)=rx-sy$. Αυτή ονομάζεται σύμπλοκο του Koszul για το ζεύγος (x,y).

5.2 Ενδεικτικές Λύσεις Ασκήσεων

- **5.1.** Υποθέτουμε ότι $\mathbb Q$ είναι πεπερασμένα παραγόμενο $\mathbb Z$ πρότυπο, δηλαδή $\mathbb Q=\left(\frac{a_1}{b_1},\cdots,\frac{a_n}{b_n}\right)$. Αν $\ell=\epsilon.$ χ.π. (b_1,\cdots,b_n) , τότε υπάρχουν $c_i\in\mathbb Z$, ώστε $\ell=c_ib_i$, για χάθε $i=1,\cdots,n$. Άρα, έχουμε ότι $\mathbb Q=\left(\frac{c_1a_1}{\ell},\cdots,\frac{c_na_n}{\ell}\right)$. Θεωρούμε p πρώτο ώστε p / ℓ . Όμως, $\frac{1}{p}\in\mathbb Q$, άρα υπάρχουν d_1,\cdots,d_n , ώστε $\frac{1}{p}=\sum_{i=1}^n\frac{d_ic_ia_i}{\ell}$, το οποίο είναι άτοπο από τα παραπάνω.
 - Υποθέτουμε ότι k(x) είναι πεπερασμένα παραγόμενο, $k(x) = \left(\frac{f_1(x)}{g_1(x)}, \cdots, \frac{f_n(x)}{g_n(x)}\right)$. Αν $h(x) = \text{ε.μ.π.} \left(g_1(x), \cdots, g_n(x)\right)$, τότε έχουμε ότι υπάρχουν $m_i(x) \in k[x]$, ώστε $h(x) = m_i(x)g_i(x)$. Επομένως, έχουμε ότι $k(x) = \left(\frac{m_1(x)f_1(x)}{h(x)}, \cdots, \frac{m_n(x)f_n(x)}{h(x)}\right)$. Αν $p(x) \in k[x]$ ανάγωγό ώστε p(x) //h(x), τότε όμοια με το πρώτο σχέλος της άσχησης, χαταλήγουμε σε άτοπο.
- **5.2.** Αφού τα L,M είναι πεπερασμένα παραγόμενα έχουμε ότι $L=(\lambda_1,\cdots,\lambda_k)$ και $N=(\nu_1,\cdots,\nu_t)$. Αφού η ακολουθία

$$0 \to L \xrightarrow{\varphi} M \xrightarrow{\psi} N \to 0$$

είναι αχριβής, έχουμε ότι φ είναι μονομορφισμός και ψ επιμορφισμός R-προτύπων. Αν $m\in M$ έχουμε ότι υπάρχουν $d_1,\cdots,d_t\in R$, ώστε $\psi(m)=\sum_{i=1}^t d_i\nu_i$. Αφού ψ είναι επί έχουμε ότι υπάρχουν $m_1,\cdots,m_t\in M$, ώστε

$$\psi(m) = \sum_{i=1}^{t} d_i \nu_i = \sum_{i=1}^{t} d_i \psi(m_i) = \psi\left(\sum_{i=1}^{t} d_i m_i\right) \Rightarrow m - \sum_{i=1}^{t} d_i m_i \in \ker \psi = \operatorname{Im}\varphi.$$

Συνεπώς, έχουμε ότι υπάρχουν $c_1, \cdots, c_k \in R$, ώστε να ισχύει

$$\varphi\left(\sum_{i=1}^k c_i \lambda_i\right) = m - \sum_{i=1}^t d_i m_i \Rightarrow m = \sum_{i=1}^t d_i m_i + \sum_{i=1}^k c_i \varphi(\lambda_i).$$

Επομένως, έχουμε ότι $M=(m_1,\cdots,m_t,\varphi(\lambda_1),\cdots,\varphi(\lambda_k)).$

5.3. Αρχικά αν L+N πεπερασμένα παραγόμενο, τότε L+N/N είναι πεπερασμένα παραγόμενο. Θεωρούμε την εξής ακολουθία προτύπων

$$0 \to L \cap N \xrightarrow{\mathrm{id}} L \xrightarrow{\pi} L + N/N \to 0$$

όπου id η εμφύτευση του $L\cap N$ στο L και $\pi\colon L\to L+N/N,\ \ell\mapsto \ell+N.$ Είναι σαφές ότι id μονομορφισμός, π επιμορφισμός και ${\rm Im\ id}=\ker\pi=L\cap N,$ άρα η ακολουθία είναι ακριβής. Έτσι, από την Άσκηση 5.2 έχουμε το ζητούμενο.

- 5.4. (i) Έχουμε ότι $r \in \text{Ann}(M+N)$ αν και μόνο r(n+m)=0 για κάθε $n \in N$ και $m \in M$ αν και μόνο αν rn=rm=0, για κάθε $n \in N$ και $m \in M$ αν και μόνο αν $r \in \text{Ann}(M) \cap \text{Ann}(N)$.
- (ii) Έχουμε ότι $r \in (I:J)$ αν και μόνο αν $rJ \subseteq I$ αν και μόνο αν $rj \in I$ για κάθε $j \in J$. Τα προηγούμενα είναι ισοδύναμα με το εξής : r((i+j)+I)=I, για κάθε $i \in I$ και $j \in J$ αν και μόνο αν $r \in \text{Ann}((I+J)/I)$.
- **5.5.** Αρχικά θα δείξουμε ότι $S^{-1}(\mathrm{Ann}(I)) = \mathrm{Ann}(S^{-1}I)$ στη περίπτωση όπου I είναι κύριο ιδεώδες του R. Έστω $I=(x) \triangleleft R$ και έστω $a \in S^{-1}(\mathrm{Ann}(I))$. Τότε ισχύει ότι $a=\frac{r}{s}$ με $r \in \mathrm{Ann}(I)$, συνεπώς αφού κάθε στοιχείο του $S^{-1}I$ μπορεί να γραφτεί στη μορφή $\frac{i}{s'}$ με $i \in I$ και $s' \in S$, είναι σαφές ότι $\frac{r}{s} \in \mathrm{Ann}(S^{-1}I)$.

Αντίστροφα, έστω $\frac{r}{s}\in \mathrm{Ann}(S^{-1}I)$, δηλαδή $\frac{r}{s}\cdot\frac{x}{1}=\frac{0}{1}$. Έτσι έχουμε ότι υπάρχει $u\in S$, ώστε $urx=0\Rightarrow ru\in \mathrm{Ann}(I)$. Επομένως, έχουμε ότι $\frac{r}{s}=\frac{ur}{us}\in S^1\left(\mathrm{Ann}(I)\right)$. Συνεπώς, έχουμε ότι $S^{-1}(\mathrm{Ann}(I))=\mathrm{Ann}(S^{-1}I)$.

Έστω τώρα $I \triangleleft R$ και αφού R της Noether υπάρχουν m_1, \cdots, m_n , ώστε να ισχύει

$$I = (m_1) + \cdots + (m_n).$$

Από τις Ασκήσεις 4.2 και 5.4 (i) έχουμε διαδοχικά ότι

$$\operatorname{Ann}(S^{-1}I) = \operatorname{Ann}\left(S^{-1}\left(\sum_{i=1}^{n}(m_{i})\right)\right) =$$

$$= \operatorname{Ann}\left(\sum_{i=1}^{n}S^{-1}((m_{i}))\right) = \bigcap_{i=1}^{n}\operatorname{Ann}\left(S^{-1}(m_{i})\right)$$

$$= \bigcap_{i=1}^{n}S^{-1}\left(\operatorname{Ann}(m_{i})\right) = S^{-1}\left(\bigcap_{i=1}^{n}\operatorname{Ann}(m_{i})\right)$$

$$= S^{-1}\left(\operatorname{Ann}\left(\sum_{i=1}^{n}(m_{1})\right)\right) = S^{-1}\left(\operatorname{Ann}(I)\right)$$

- **5.6.** Έχουμε ότι $\varphi \colon \mathbb{Z} \to \mathbb{Q}$, $n \mapsto n$ είναι ομομορφισμός δαχτυλίων και ότι $\mathbb{Q} = (1)$, δηλαδή \mathbb{Q} είναι πεπερασμένα παραγόμενο \mathbb{Q} -πρότυπο. Όμως, στην Άσκηση 5.1 δείξαμε ότι \mathbb{Q} δεν είναι πεπερασμένα παραγόμενο \mathbb{Z} -πρότυπο. Έτσι, δείξαμε ότι ο ισχυρισμός δεν αληθεύει γενικά.
- Για να βρούμε αχριβή αχολουθία της μορφής

$$0 \to \frac{M}{L \cap N} \xrightarrow{f} \frac{M}{L} \times \frac{M}{N} \xrightarrow{g} \frac{M}{L + N} \to 0$$

αναζητούμε μονομορφισμό f και επιμορφισμό g ώστε $\mathrm{Im} f = \ker g$. Θεωρούμε τις εξής απεικονίσεις

$$f : \frac{M}{L \cap N} \to \frac{M}{L} \times \frac{M}{N}, \ m + L \cap N \mapsto (m + L, m + N)$$

και

$$g: \frac{M}{L} \times \frac{M}{N} \to \frac{M}{L+N}, \ (m_1 + L, m_2 + N) \mapsto (m_1 - m_2) + L + N.$$

Προφανώς, f είναι μονομορφισμός και g επιμορφισμός, αφού για κάθε $m+(L+N)\in \frac{M}{L+N}$ έχουμε ότι g(m+L,0+N)=m+(L+N). Επίσης έχουμε ότι

$$\operatorname{Im} f = \{(m+L, m+N) \mid m \in M\} \subseteq \ker g.$$

Θεωρούμε τώρα $(m_1+L,m_2+N) \in \ker g \Leftrightarrow m_1-m_2 \in L+N$. Συνεπώς, υπάρχουν $\lambda \in L$ και $n \in N$, ώστε $m=m_1-\lambda=m_2+n$. Συνεπώς, έχουμε ότι $(m_1+L,m_2+N)=(m+L,m+N) \in \operatorname{Im} f$ και συμπεραίνουμε το ζητούμενο.

5.8. Αν \mathfrak{m} μέγιστο ιδεώδες του R, έχουμε ότι $(R/\mathfrak{m})^n$, $(R/\mathfrak{m})^m$ είναι R/\mathfrak{m} -διανυσματιχοί χώροι. Αφού υπάρχει επιμορφισμός R- προτύπων

$$\varphi \colon \mathbb{R}^m \to \mathbb{R}^n, \ (r_1, \cdots, r_m) \mapsto (s_1, \cdots, s_n),$$

τότε η απεικόνιση

$$\tilde{\varphi} \colon (R/\mathfrak{m})^m \to (R/\mathfrak{m})^n, \ (r_1 + \mathfrak{m}, \cdots, r_m + \mathfrak{m}) \mapsto (s_1 + \mathfrak{m}, \cdots, s_n + \mathfrak{m})$$

είναι επιμορφισμός R/\mathfrak{m} -διανυσματιχών χώρων, όπου συμπεραίνουμε ότι $m \geq n$.

5.9. (i) Αν $\{v_1, \cdots, v_n\}$ μια βάση του V_0 και $\{u_1, \cdots, u_m\}$ μια βάση του V_2 με $0 \to L \xrightarrow{\varphi} M \xrightarrow{\psi} N \to 0$ ακριβής ακολουθία. Όμοια με την Άσκηση 5.2 έχουμε ότι $V_1 = (w_1, \cdots, w_n, \varphi(u_1), \cdots, \varphi(u_m))$, όπου $\psi(w_i) = v_i$, για κάθε $i = 1, \cdots, n$. Θα δείξουμε ότι το σύνολο $\{w_1, \cdots, w_n, \varphi(u_1), \cdots, \varphi(u_m)\}$ είναι βάση του V_1 , δηλαδή με βάση τα παραπάνω ότι είναι γραμμικά ανεξάρτητο.

Θεωρούμε $\lambda_1,\cdots,\lambda_{m+n}\in k$, ώστε να ισχύει ότι

$$\sum_{i=1}^{n} \lambda_i w_i + \sum_{i=1}^{m} \lambda_{n+i} \varphi(u_i) = 0.$$

Αφού η παραπάνω ακολουθία είναι ακριβής έχουμε ότι ${\rm Im}\varphi=\ker\psi$, συνεπώς $\psi(\varphi(u_i)=0)$, για κάθε i, και $\psi(\sum_{i=1}^n\lambda_iw_i)=\sum_{i=1}^n\lambda_iv_i=0\Rightarrow\lambda_i=0$, για $i=1,\cdots,n$. Έτσι, αν αναχθούμε στην αρχική σχέση, αφού φ είναι μονομορφισμός έχουμε ότι $\lambda_{n+i}=0$, για κάθε $i=1,\cdots,m$ και έτσι έχουμε δείξει ότι $\dim V_1=n+m=\dim V_0+\dim V_2$.

- (ii) Το ζητούμενο θα αποδειχθεί με επαγωγή στο n.
 - Βάση. Για n=2 αναγόμαστε στο (i) και έχουμε το ζητούμενο.
 - Επαγωγικό Βήμα. Αν n>2 μπορούμε να διασπάσουμε την ακολουθία

$$0 \to V_n \to V_{n-1} \to \cdots \to V_3 \to V_2 \xrightarrow{\varphi} V_1 V_0 \to 0$$

ως εξής

$$0 \to V_n \to V_{n-1} \to \cdots \to V_2 \to \operatorname{Im} f \to 0$$

και

$$0 \to \operatorname{Im} f \to V_1 \to V_0 \to 0.$$

Έτσι από τα παραπάνω και την επαγωγική υπόθεση και τα παραπάνω έχουμε ότι

$$\sum_{i=2}^{n} (-1)^{i} \dim V_{i} - \dim \operatorname{Im} f = 0 \quad \text{παι} \quad \dim \operatorname{Im} f + \dim V_{0} = \dim V_{1}$$

επομένως έχουμε το ζητούμενο και το επαγωγικό βήμα έχει ολοκληρωθεί.

5.10. Θεωρούμε την εξής ακολουθία R-προτύπων :

$$0 \to I \cap J \xrightarrow{\mathrm{id}} R \xrightarrow{f} (R/I) \times (R/J) \xrightarrow{g} R/(I+J) \to 0$$

με id την εμφύτευση του $I\cap J$ στο $R,\ f(r)=(r+I,r+J)$ και $g\left(m_1+I,m_2+J\right)=(m_1-m_2)+(I+J),$ όπου είναι σαφές ότι είναι ομομορφισμοί δακτυλίων, άρα και ομομορφισμοί R-προτύπων. Ομοία με την Άσκηση 5.7 έχουμε ότι id μονομορφισμός, $\operatorname{Im}(\operatorname{id})=I\cap J=\ker f,$ g επιμορφισμός και $\operatorname{Im} f=\ker g,$ συνεπώς η παραπάνω ακολουθία είναι ακριβής. Θα δείξουμε, μέσω της παραπάνω ακριβούς ακολουθίας, ότι επεται το Κινέζικο Θεώρημα Υπολοίπων.

Έστω I και J σχετικά πρώτα ιδεώδη του R, δηλαδή ισχύει ότι R=I+J. Όπως, παραπάνω έχουμε ότι $R/(I+J)=0\Rightarrow \ker g=(R/I)\times (R/J)={\rm Im} f$. Επίσης, έχουμε ότι $\ker f=I\cap J={\rm Im}({\rm id})$, συνεπώς από το 1ο Θεώρημα Ισομορφισμών έχουμε ότι

$$R/(I \cap J) \simeq (R/I) \times (R/J)$$

και έτσι έχουμε δείξει το ζητούμενο.

- **5.11.** (i) Αφού R της Noether, τότε \mathbf{m}^n είναι πεπερασμένα παραγόμενο R-πρότυπο με $\operatorname{Jac}(R) = \mathfrak{m}$ και $\mathfrak{m} \cdot \mathfrak{m}^n = \mathfrak{m}^n$. Έτσι, από το Λήμμα του Nakayama έγουμε ότι $\mathfrak{m}^n = 0$.
- (ii) Αν M είναι πεπερασμένα παραγόμενο R-πρότυπο, τότε έχουμε ότι M/N είναι πεπερασμένα παραγόμενο R-πρότυπο. Επίσης, έχουμε ότι $(N+IM)/N=M/N \Rightarrow I\cdot (M/N)=M/N$. Από το Λήμμα του Nakayama έχουμε ότι M/N=0, δηλαδή ισχύει ότι M=N.

5.12. (i) Έστω $N=(m_1,\cdots,m_t)\leq M$ και $m\in M$. Τότε, υπάρχουν $r_1,\cdots,r_t\in R$ ώστε να ισχύει

$$m + \mathfrak{m}M = \sum_{n=1}^{t} (r_i + \mathfrak{m}) (m_i + \mathfrak{m}M) = \sum_{i=1}^{t} (r_i m_i + \mathfrak{m}M) \Leftrightarrow m - \sum_{i=1}^{t} r_i m_i \in \mathfrak{m}M.$$

Έτσι είναι σαφές ότι $N+\mathfrak{m}M=M$ και αφού $\mathrm{Jac}(R)=\mathfrak{m}$ από την Άσκηση 5.11 (ii) έγουμε ότι M=N.

- (ii) Αν $n\in N$ έχουμε ότι υπάρχει $m\in M$, ώστε $\varphi(m)+IN=n+IN$. Συνεπώς είναι σαφές ότι ${\rm Im}\varphi+IN=N$, άρα από την Άσκηση 5.11 (ii) έχουμε ότι $N={\rm Im}\varphi$.
- **5.13.** (i) Έστω ότι υπάρχει $n \in \mathbb{Z}_{>0}$ ώστε $\mathfrak{m}^{n+1} = \mathfrak{m}^n$, συνεπώς από την Άσκηση 5.11 (i) έχουμε ότι $\mathfrak{m}^n = (0)$. Έστω τώρα $m \in \mathfrak{m}$ και $\mathfrak{p} \in \operatorname{Spec} R$ όπου ισχύει ότι

$$m \in \mathfrak{m} \Rightarrow m^n \in \mathfrak{m}^n = (0) \Rightarrow m^n = 0 \in \mathfrak{p} \Rightarrow m \in \mathfrak{p}.$$

Άρα, προκύπτει ότι $\mathfrak{m} \subseteq \mathfrak{p}$, για κάθε $\mathfrak{p} \in \operatorname{Spec} R$. Τώρα, αφού R είναι τοπικός η αντίστροφη σχέση υποσυνόλων ισχύει άμεσα, άρα έχουμε ότι $\operatorname{Spec} R = \{\mathfrak{m}\}$, όπου καταλήγουμε σε άτοπο.

(ii) Τώρα, αν υποθέσουμε ότι $\operatorname{Spec} R=\{\mathfrak{m}\}$ έχουμε ότι $\sqrt{(0)}=\mathfrak{m},$ αφού $\sqrt{(0)}=\bigcap_{\mathfrak{p}}$ πρώτο $\mathfrak{p}.$ Αφού R είναι της Noether, υπάρχουν $a_1,\cdots,a_t\in R$ ώστε $\mathfrak{m}=(a_1,\cdots,a_t).$ Από τις παραπάνω σχέσεις προχύπτει ότι υπάρχουν n_1,\cdots,n_t ώστε $a_i^{n_i}=0,$ για χάθε $i=1,\cdots,t.$ Αν θέσουμε $n=\sum_{i=1}^t n_i$ θα δείξουμε ότι $\mathfrak{m}^n=0.$

Έχουμε ότι $\mathfrak{m}^n=\left(\left\{\prod_{i=1}^t a_i^{k_i}\mid k_1+\cdots+k_n=n\right\}\right)$ και για κάθε $k_1,\cdots,k_t\in\mathbb{Z}_{>0}$ με $k_1+\cdots+k_t=n$, ισχύει ότι υπάρχει $i\in\{1,\cdots,t\}$ ώστε $n_i\leq k_i$ και έτσι είναι σαφές ότι $\mathfrak{m}^n=(0)$.

- **5.14.** (i) Έχουμε ότι $\mathbb{C},y]/(x,y)\simeq\mathbb{C},$ άρα έχουμε ότι (x,y) μέγιστο ιδεώδες του $\mathbb{C},y].$ Επίσης, με επαγωγή στο n αποδειχνύεται ότι $I^n=(x^n,x^{n-1}y,...,xy^{n-1},y^n).$
 - (ii) Θεωρώντας το I^n σαν \mathbb{C} -διανυσματικό χώρο έχουμε ότι σύνολο $\mathcal{B}=\{x^iy^j\mid i+j\geq n\}$ είναι μια βάση του I^n , η οποία είναι άπειρη.

Από τα παραπάνω συμπεραίνουμε ότι το σύνολο

$$\{x^n + I^{n+1}, x^{n-1}y + I^{n+1}, \cdots, xy^{n-1} + I^{n+1}, y^n + I^{n+1}\}$$

είναι βάση του \mathbb{C} -διανυσματικού χώρου I^n/I^{n+1} , δηλαδή $\dim_{\mathbb{C}} I^n/I^{n+1}=n+1$.

(iii) Είναι σαφές ότι $\mathfrak{m} M \leq M$ και αφού R/\mathfrak{m} είναι σώμα το $M/\mathfrak{m} M$ αποκτά δομή διανυσματικού χώρου με πράξεις

- (+): $M/\mathfrak{m}M \times M/\mathfrak{m}M$, $(m_1 + \mathfrak{m}M, m_2 + \mathfrak{m}M) \mapsto (m_1 + m_2) + \mathfrak{m}M$
- (·): $M/\mathfrak{m}M \times R/\mathfrak{m}$, $(m+\mathfrak{m}M,r+\mathfrak{m}) \mapsto rm+\mathfrak{m}M$

Αν $M=(m_1,\cdots,m_t)$ έχουμε ότι $M/\mathfrak{m}M=(m_1+\mathfrak{m}M,\cdots,m_t+\mathfrak{m}M)$ και αφού $M/\mathfrak{m}M$ είναι R/\mathfrak{m} -διανυσματικός χώρος προκύπτει ότι $\dim_{R/\mathfrak{m}}M/\mathfrak{m}M\leq t$.

- (iv) Έστω ότι I^n παράγεται από m < n+1 στοιχεία, άρα από (iii) έχουμε ότι $\dim_{\mathbb{C}} M/\mathfrak{m}M \le m < n+1$, αφού $\mathbb{C}[x,y]/I \simeq \mathbb{C}$, και καταλήγουμε σε άτοπο από (ii).
- **5.15.** (i) Αφού $R=\mathbb{Z}[\sqrt{2}]$ είναι ευκλείδια περιοχή, τότε είναι περιοχή κύριων ιδεωδών. Έτσι, αν I μη μηδενικό ιδεώδες του R είναι της μορφής $I=\left(a+b\sqrt{2}\right)$. Αν $c+d\sqrt{2}\in\mathbb{Z}[\sqrt{2}]$ παρατηρούμε ότι

$$m = (a + b\sqrt{2})(c + \sqrt{2}) = c(a + b\sqrt{2}) + d(2b + a\sqrt{2}).$$

Συνεπώς, έχουμε ότι το ιδεώδες I μπορεί να παραχθεί από δύο στοιχεία ως R πρότυπο.

(ii) Αφού M ένα R- ελεύθερο πρότυπο υπάρχει $\{m_1, \cdots, m_r\}$ μια βάση του M. Συνεπώς, αν $m \in M$ ισχύει ότι υπάρχουν $a_i, b_i \in \mathbb{Z}$ για κάθε $i=1,\cdots,r$ ώστε

$$m = \sum_{i=1}^{r} (a_i + b_i \sqrt{2}) m_i = \sum_{i=1}^{r} a_i m_i + \sum_{i=1}^{r} b_i \sqrt{2} m_i.$$

Έτσι έχουμε ότι το σύνολο $\mathcal{B}=\left\{m_1,\cdots,m_n,m_1\sqrt{2},\cdots,m_n\sqrt{2}\right\}$ παράγει το M σαν \mathbb{Z} - πρότυπο και αφού $\{m_1,\cdots,m_r\}$ είναι βάση του R-προτύπου M έπεται άμεσα ότι το σύνολο είναι \mathcal{B} είναι γραμμικά ανεξάρτητο και έχουμε το ζητούμενο.

- **5.16.** (i) \rightarrow (ii) Αφού τα μόνο ιδεώδη του R είναι τα (0), R έχουμε άμεσα το ζητούμενο.
 - (ii) \rightarrow (iii) Άμεσο.
 - (iii) \to (i) Έστω μη μηδενικό ιδεώδες I του R με $I \neq R$. Άρα, αφού το R-πρότυπο $R/I = (1_R+I) \neq (0)$ είναι κυκλικό, τότε είναι ελεύθερο. Συνεπώς, υπάρχει $\{r_j+I\}_{j\in J}$ βάση του R/I. Αν $r\in I\setminus\{0\}$, τότε έχουμε ότι $r(r_j+I)=I$, για κάθε $j\in J$, το οποίο είναι άτοπο αφού $\{r_j\}_{j\in J}$ είναι γραμμικά ανεξάρτητο. Συνεπώς έχουμε ότι I=(0) ή R=I, δηλαδή ισχύει ότι R είναι σώμα.
- **5.17.** Υποθέτουμε ότι κάθε ιδεώδες του R είναι R-ελεύθερο. Έστω I μη μηδενικό ιδεώδες του R, συνεπώς είναι ελεύθερο.

Αν X μια βάση του I, έχει τουλάχιστον δύο στοιχεία, για $x,y\in X$, έχουμε ότι xy-yx=0, αφού R είναι μεταθέτικος. Συνεπώς, καταλήγουμε σε άτοπο, αφού τα x,y δεν είναι γραμμικά εξαρτημένα . Άρα, $X=\{a\}$ και I=(a).

Τέλος, θα δείξουμε ότι R είναι περιοχή, δηλαδή αρχεί να δείξουμε ότι για χάθε $r \neq 0 \Rightarrow \mathrm{Ann}(r) = (0)$. Δείξαμε ότι (r) είναι R- ελεύθερο τάξης 1, άρα έχουμε ότι $(r) \simeq R = (1_R)$, συνεπώς έχουμε ότι $\mathrm{Ann}(r) = \mathrm{Ann}(1_R) = (0)$ χαι έχουμε το ζητούμενο.

Αντίστροφα, γνωρίζουμε ότι I υποπρότυπο του $_RR$ αν και μόνο αν $I \triangleleft R$. Αφού R είναι $\Pi.Κ.I.$ και $R=(1_R)$ με $\mathrm{Ann}(1_R)=(0)$ έχουμε ότι R είναι ελεύθερο, άρα και κάθε κάθε ιδεώδες του R είναι ελεύθερο R-πρότυπο. 1

- **5.18.** Έστω ότι υπάρχει \mathcal{B} βάση του k[x,y]-προτύπου (x,y). Αφού για κάθε $f,g\in\mathcal{B}$ ισχύει ότι fg-gf=0 συμπεραίνουμε ότι $\mathcal{B}=\{f\}$. Έτσι, αφού f|x,f|y συμπεραίνουμε ότι $f\in k\setminus\{0\}$, το οποίο είναι άτοπο αφού (x,y) είναι μέγιστο ιδεώδες του k[x,y].
- **5.19.** Είναι άμεσο ότι η απειχονίσεις α και β είναι μονομορφισμός και επιμορφισμός αντίστοιχα. Αρχεί να δείξουμε ότι $\ker \beta = \operatorname{im} \alpha$. Είναι σαφές ότι $\operatorname{im} \alpha \subseteq \ker \beta$. Τώρα, έστω $(r,s) \in \ker \beta$, δηλαδή rx = sy. Αν $\lambda = \mu.$ χ.δ.(x,y), αφού R είναι περιοχή μοναδιχή παραγοντοποίησης, τότε $r = \lambda y$ και $s = \lambda x$ δηλαδή $\alpha(\lambda) = (r,s)$ και έχουμε το ζητούμενο.

¹Βλέπε βιβλίο "Rings, Modules and Linear Algebra" (Hartley-Hawkes) Θεώρημα 7.8.

ΚΕΦΑΛΑΙΟ 6

ΣΥΝΘΗΚΕΣ ΑΛΥΣΙΔΩΝ

6.1 Ασχήσεις

- **6.1.** Δείξτε ότι το $\mathbb Q$ δεν είναι $\mathbb Z$ -πρότυπο της Noether και δεν είναι $\mathbb Z$ -πρότυπο του Artin. Στη συνέχεια δείξτε ότι για κάθε σώμα k το σώμα των ρητών συναρτήσεων κ(x) δεν είναι k[x]- πρότυπο της Noether και δεν είναι k[x]- πρότυπο του Artin.
- **6.2.** Έστω M ένα R- πρότυπο και $\varphi\colon M\to M$ ομομορφισμός R- προτύπων. Δείξτε τα εξής.
 - (i) Αν M της Noether και φ επιμορφισμός, τότε φ ισομορφισμός.
 - (ii) Αν M του Artin και φ μονομορφισμός, τότε φ ισομορφισμός.
- **6.3.** Έστω M ένα R- πρότυπο. Δείξτε ότι αν κάθε μη κενό σύνολο πεπερασμένα παραγόμενων υποπροτύπων του M έχει μεγιστικό στοιχείο, τότε το M είναι πρότυπο της Noether.
- **6.4.** Έστω L,N υποπρότυπα του R- προτύπου M. Δείξτε ότι αν τα M/L,M/N είναι της Noether (αντίστοιχα του Artin), τότε και τα $M/L\cap N, M/L+N$ είναι της Noether (αντίστοιχα του Artin).
- **6.5.** Έστω M ένα R- πρότυπο της Noether. Δείξτε ότι ο δακτύλιος $R/\mathrm{Ann}(M)$ είναι της Noether.

- **6.6.** Έστω M ένα πεπερασμένα παραγόμενο R- πρότυπο του Artin. Δείξτε ότι ο δακτύλιος R/Ann(M) είναι του Artin.
- **6.7.** Έστω R μη μηδενικός δακτύλιος της Noether. Δείξτε ότι υπάρχει πρώτο ιδεώδες $\mathfrak p$ του R τέτοιο ώστε υπάρχει μονομορφισμός R- προτύπων της μορφής και $f\colon R/\mathfrak p\to R$.
- **6.8.** Δείξτε ότι τα απλά \mathbb{Z} -πρότυπα είναι ακριβώς τα \mathbb{Z}_p , όπου p πρώτος αριθμός. Ποια είναι τα απλά k[x]-πρότυπα, όπου k σώμα ;
- **6.9.** Έστω $p \neq q$ πρώτοι αριθμοί και $n = p^2 q^3$.
 - (i) Δείξτε ότι $\ell_{\mathbb{Z}}(\mathbb{Z}_n)=5$. Βρείτε 3 διαφορετικές συνθετικές σειρές του \mathbb{Z}_n .
 - (ii) Ποιο είναι το μήχος $\ell_{\mathbb{Z}_n}(\mathbb{Z}_n)$ του \mathbb{Z}_n -προτύπου \mathbb{Z}_n ;
- 6.10. Δείξτε ότι το μήκος
 - (i) του $\mathbb{R}[x]$ -προτύπου $\mathbb{R}[x]/(x^4 + 2x^2 + 1)$ είναι 2,
- (ii) του $\mathbb{C}[x]$ -προτύπου $\mathbb{C}[x]/(x^4+2x^2+1)$ είναι 4, και
- (iii) του $\mathbb{Z}[x]$ -προτύπου $\mathbb{Z}[x]/(x^4+2x^2+1)$ είναι ∞ .
- **6.11.** Έστω $0 \to L \to M \to N \to 0$ ακριβής ακολουθία R-προτύπων. Δείξτε τις εξής σχέσεις.
 - 1. $\ell(M) < \infty \Leftrightarrow \ell(L) < \infty$ and $\ell(N) < \infty$.
 - 2. Αν όλα τα μήχη είναι πεπερασμένα, τότε $\ell(M) = \ell(L) + \ell(N)$.
- **6.12.** Έστω $0\to M_k\to M_{k-1}\to\cdots\to M_0\to 0$ αχριβής αχολουθία R-προτύπων με $\ell(M_i)<\infty$ για χάθε i. Δείξτε ότι $\sum\limits_{i=0}^k (-1)^i\ell(M_i)=0.$

Σημείωση. Η Άσκηση 5.9 (ii) αποτελεί ειδική περίπτωση της παρούσας καθώς για κάθε k-διανυσματικό χώρο V έχουμε $\ell_k(V)=\dim_k V$.

6.13. Έστω $N \leq M, \ M_1, \ M_2$ R-πρότυπα με πεπερασμένα μήκη. Εξετάστε ποιες από τις ακόλουθες προτάσεις αληθεύουν.

6.1. $A\Sigma KH\Sigma EI\Sigma$

- (i) $\ell(M/N) = \ell(M) \ell(N)$.
- (ii) $\ell(M_1 \oplus M_2) = \ell(M_1) + \ell(M_2)$.
- (iii) $\ell(N) = \ell(M) \Leftrightarrow N = M$.
- **6.14.** Έστω M ένα R-πρότυπο πεπερασμένου μήκους και M_1, M_2 υποπρότυπα του M. Δείξτε ότι

$$\ell(M_1 + M_2) = \ell(M_1) + \ell(M_2) - \ell(M_1 \cap M_2).$$

Πού έχετε ξαναδεί παρόμοιο τύπο;

- **6.15.** Έστω R τοπικός δακτύλιος με μέγιστο ιδεώδες $\mathfrak m$ και σώμα πηλίκο $k=R/\mathfrak m$. Έστω M ένα R- πρότυπο.
 - (i) Δείξτε ότι αν $\mathfrak{m}M=0$,τότε το M είναι k- διανυσματικός χώρος και $\ell_R(M)=\ell_k(M)=\dim_k M$.
 - (ii) Υποθέτουμε επιπλέον ότι ο R είναι της Noether. Δείξτε ότι $\ell_R(M) < \infty$ αν και μόνο αν το M είναι πεπερασμένα παραγόμενο και υπάρχει n με $\mathfrak{m}^n M = 0$.

6.2 Ενδεικτικές Λύσεις Ασκήσεων

6.1. Από τις αλυσίδες υποπροτύπων

$$\left(\frac{1}{2}\right) \subsetneq \left(\frac{1}{2^2}\right) \subsetneq \left(\frac{1}{2^3}\right) \subsetneq \cdots$$

και

$$(2) \supseteq (2^2) \supseteq (2^3) \supseteq \cdots$$

συμπεραίνουμε ότι $\mathbb Q$ δεν είναι $\mathbb Z$ -πρότυπο της Noether και του Artin.

Από τις αλυσίδες υποπροτύπων

$$\left(\frac{1}{x}\right) \subsetneq \left(\frac{1}{x^2}\right) \subsetneq \left(\frac{1}{x^3}\right) \subsetneq \cdots$$

και

$$(x) \supseteq (x^2) \supseteq (x^3) \supseteq \cdots$$

συμπεραίνουμε ότι $\kappa(x)$ δεν είναι k[x]-πρότυπο της Noether και του Artin.

6.2. (i) Αφού ισχύει ότι

$$\ker \varphi \subseteq \ker \varphi^2 \subseteq \ker \varphi^3 \subseteq \cdots$$

και M της Noether, υπάρχει $n \geq 1$, ώστε $\ker \varphi^n = \ker \varphi^{n+1}$. Αφού φ είναι επιμορφισμός με επαγωγή στο n αποδεικνύεται ότι φ^n είναι επιμορφισμός. Άρα, αν $x \in \ker \varphi$ υπάρχει $y \in M$ ώστε $\varphi^n(y) = x \Rightarrow \varphi^{n+1}(y) = \varphi(x) = 0$. Έτσι έχουμε ότι $y \in \ker \varphi^{n+1} \Rightarrow y \in \ker \varphi^n \Rightarrow x = \varphi^n(y) = 0$, δηλαδή δείξαμε ότι $\ker \varphi = \{0\}$.

(ii) Αφού ισχύει ότι

$$\operatorname{Im}\varphi\supseteq\operatorname{Im}\varphi^2\supseteq\operatorname{Im}\varphi^3\supseteq\cdots$$

και M του Artin, υπάρχει $n \ge 1$, ώστε $\mathrm{Im} \varphi^n = \mathrm{Im} \varphi^{n+1}$. Αν $m \in M$, τότε έχουμε ότι $\varphi^n(m) \in \mathrm{Im} \varphi^n = \mathrm{Im} \varphi^{n+1}$, δηλαδή υπάρχει $x \in M$, ώστε $\varphi^n(m) = \varphi^{n+1}(x)$. Αφού φ είναι μονομορφισμός, τότε φ^n είναι επίσης 1-1 και έτσι έχουμε ότι $\varphi(x) = m$, δηλαδή φ είναι επί.

6.3. Έστω $N \leq M$ με $N \neq 0$. Θεωρούμε το σύνολο

$$\mathcal{I} = \{K \leq M \mid K \subseteq N \text{ και } K \text{ πεπερασμένα παραγόμενο} \}$$

όπου έχουμε $I\neq\emptyset$ αφού $(0)\in\mathcal{I}$. Έτσι υπάρχει $K\in\mathcal{I}$ μεγιστικό στοιχείο με $K=(a_1,\cdots,a_n)\subseteq N$. Αν υπάρχει $a_{n+1}\in N\setminus K$, τότε έχουμε ότι $K'=(a_1,\cdots,a_n,a_{n+1})\subseteq N$ και υποπρότυπο του M με $K\subsetneq K'$, το οποίο είναι άτοπο. Έτσι, έχουμε ότι $N=(a_1,\cdots,a_n)$.

6.4. Θεωρούμε ότι M/N, M/L είναι R- πρότυπα της Noether. Από Δεύτερο Θεώρημα Ισομορφισμών έχουμε ότι $L+N/N\simeq L/L\cap N$ όπου L+N/N της Noether ως υποπρότυπο του M/N, άρα ισχύει ότι $L/L\cap N$ είναι της Noether.

Θεωρούμε την εξής ακριβή ακολουθία R- προτύπων

$$0 \to L/L \cap N \xrightarrow{\mathrm{id}} M/L \cap N \xrightarrow{\varphi} M/L \to 0$$

με id την ταυτοτική απεικόνιση και $\varphi(m+L\cap N)=m+L$. Αφού $L/L\cap N$ και M/N είναι της Noether έχουμε ότι $M/L\cap N$ είναι της Noether.

Τώρα, από Τρίτο Θεώρημα Ισομορφισμών έχουμε ότι

$$M/L + N \simeq \frac{M/N}{L + N/N}$$
,

όπου $\frac{M/N}{L+N/N}$ είναι της Noether ως πηλίχο του M/N, άρα έχουμε ότι M/L+N είναι της Noether. Με αχριβώς όμοιο τρόπο αν υποθέσουμε ότι M/N, M/L είναι του Artin έχουμε ότι $M/L\cap N, M/L+N$ είναι του Artin.

6.5. Αφού M της Noether υπάρχουν $m_1, \cdots, m_n \in M$ ώστε $M = (m_1) + \cdots + (m_n)$. Γνωρίζουμε ότι για κάθε $i = 1, \cdots, n$ ισχύει ότι $R/\mathrm{Ann}(m_i) \simeq (m_i)$, άρα αφού (m_i) της Noether ως υποπρότυπο του M, τότε $R/\mathrm{Ann}(m_i)$ είναι R- πρότυπο της Noether. Με χρήση επαγωγής από την Άσκηση 7.3 έχουμε ότι $R/\bigcap_{i=1}^n \mathrm{Ann}(m_i)$ είναι της Noether. Αφού ισχύει ότι

$$R/\bigcap_{i=1}^{n}\operatorname{Ann}(m_{i})=R/\operatorname{Ann}\left((m_{1})+\cdots+(m_{n})\right)=R/\operatorname{Ann}(M),$$

είναι της Noether σαν R- πρότυπο. Όμως έχουμε ότι $\mathrm{Ann}(M)\subseteq\mathrm{Ann}\left(R/\mathrm{Ann}(M)\right)$, συνεπώς έχουμε ότι $R/\mathrm{Ann}(M)$ είναι της Noether σαν $R/\mathrm{Ann}(M)-$ πρότυπο, δηλαδή $R/\mathrm{Ann}(M)$ είναι δακτύλιος της Noether.

6.6. Υπάρχουν $m_1, \cdots, m_n \in M$ ώστε $M = (m_1) + \cdots + (m_n)$. Γνωρίζουμε ότι για κάθε $i = 1, \cdots, n$ ισχύει ότι $R/\mathrm{Ann}(m_i) \simeq (m_i)$, άρα αφού (m_i) του Artin ως υποπρότυπο του M, τότε $R/\mathrm{Ann}(m_i)$ είναι R- πρότυπο του Artin. Με χρήση επαγωγής από την Άσκηση 7.3 έχουμε ότι $R/\bigcap_{i=1}^n \mathrm{Ann}(m_i)$ είναι του Artin. Αφού ισχύει ότι

$$R/\bigcap_{i=1}^n \operatorname{Ann}(m_i) = R/\operatorname{Ann}((m_1) + \dots + (m_n)) = R/\operatorname{Ann}(M)$$
,

είναι του Artin σαν R- πρότυπο. Όμως έχουμε ότι $\mathrm{Ann}(M)\subseteq\mathrm{Ann}\left(R/\mathrm{Ann}(M)\right)$, συνεπώς έχουμε ότι $R/\mathrm{Ann}(M)$ είναι του Artin σαν $R/\mathrm{Ann}(M)-$ πρότυπο, δηλαδή $R/\mathrm{Ann}(M)$ είναι δακτύλιος του Artin.

6.7. Θεωρούμε το σύνολο

$$\mathcal{I} = \{J \lneq R \mid υπάρχει f: R/J \to R$$
 μονομορφισμός $\}$

όπου $\mathcal{I} \neq \emptyset$, αφού ισχύει ότι $(0) \in \mathcal{I}$. Αφού R της Noether έχουμε ότι \mathcal{I} έχει μεγιστικό στοιχείο \mathfrak{p} και $f: R/\mathfrak{p} \to R$ μονομορφισμός.

Θα δείξουμε ότι $\mathfrak p$ είναι πρώτο. Έστω $ab \in \mathfrak p$ με $a \notin \mathfrak p$. Έστω $J = \mathfrak p + (b)$ και θεωρούμε την απεικόνιση

$$\tilde{f}: R \to R, \ r \mapsto f(ar + \mathfrak{p}).$$

Αφού η f είναι ομομορφισμός R- προτύπων έχουμε άμεσα ότι \tilde{f} είναι ομομορφισμός R- προτύπων, άρα η απεικόνιση

$$g: R/\ker \tilde{f} \to \mathbb{R}, r+\ker \tilde{f} \mapsto f(ar+\mathfrak{p}).$$

είναι μονομορφισμός R-προτύπων. Αφού τα R- υποπρότυπα του R είναι τα ιδεώδη του, έχουμε ότι $\ker \tilde{f} \not \subseteq R$ (αν $1_R \in \ker \tilde{f} \Rightarrow f(a+\mathfrak{p})=0$, το οποίο είναι άτοπο αφού $a \notin \mathfrak{p}$ και f μονομορφισμός.) Έτσι, δείξαμε ότι $\ker \tilde{f} \in \mathcal{I}$ και επίσης είναι σαφές ότι $\mathfrak{p} \subseteq J \subseteq \ker \tilde{f}$. Συνεπώς, από τη μεγιστικότητα του \mathfrak{p} έχουμε ότι

$$\mathfrak{p} = \ker \tilde{f} = \mathfrak{p} + (b) \Rightarrow b \in \mathfrak{p},$$

άρα συμπεραίνουμε ότι β είναι πρώτο.

6.8. Έστω M απλό \mathbb{Z} πρότυπο. Ισοδύναμα έχουμε ότι $M \simeq \mathbb{Z}/p\mathbb{Z}$, όπου $p\mathbb{Z}$ μέγιστο ιδεώδες του \mathbb{Z} . Συνεπώς M είναι απλό \mathbb{Z} πρότυπο αν και μόνο αν $M \simeq \mathbb{Z}_p$, όπου p πρώτος.

Έστω M απλό k[x]- πρότυπο. Ισοδύναμα έχουμε ότι $M\simeq k[x]/(p(x))$, όπου (p(x)) μέγιστο ιδεώδες του k[x]. Συνεπώς M είναι απλό k[x]- πρότυπο αν και μόνο αν $M\simeq k[x]/(p(x))$, όπου p(x) ανάγωγο στο k[x].

6.9. (i) Έχουμε την εξής αχολουθία \mathbb{Z} - υποπροτύπων του \mathbb{Z}_n :

$$0 \to pq^3 \mathbb{Z}_n \to pq^2 \mathbb{Z}_n \to pq \mathbb{Z}_n \to p\mathbb{Z}_n \to \mathbb{Z}_n$$

η οποία είναι συνθετική. Έτσι έχουμε ότι $\ell_{\mathbb{Z}}\mathbb{Z}_n=5$. Επίσης δύο ακόμα διαφορικές συνθετικές σειρές του \mathbb{Z}_n είναι οι εξής :

$$0 \to p^2 q^2 \mathbb{Z}_n \to p^2 q \mathbb{Z}_n \to p^2 \mathbb{Z}_n \to p \mathbb{Z}_n \to \mathbb{Z}_n$$

και

$$0 \to pq^3 \mathbb{Z}_n \to q^3 \mathbb{Z}_n \to q^2 \mathbb{Z}_n \to q \mathbb{Z}_n \to \mathbb{Z}_n.$$

(ii) Αφού $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ με $n\mathbb{Z} \subseteq \mathrm{Ann}(\mathbb{Z}_n)$, τότε τα \mathbb{Z} - υποπρότυπα του \mathbb{Z}_n ταυτίζονται με τα \mathbb{Z}_n - υποπρότυπα του \mathbb{Z}_n . Επίσης, αφού $p\mathbb{Z}_n$ και $q\mathbb{Z}_n$ μέγιστα ιδεώδη του δακτυλίου \mathbb{Z}_n και από (i) έχουμε ότι

$$0 \to pq^3 \mathbb{Z}_n \to pq^2 \mathbb{Z}_n \to pq \mathbb{Z}_n \to p\mathbb{Z}_n \to \mathbb{Z}_n$$

είναι συνθετιχή σειρά για το \mathbb{Z}_n -πρότυπο \mathbb{Z}_n , συνεπώς έχουμε ότι $\ell_{\mathbb{Z}_n}(\mathbb{Z}_n)=5$.

- **6.10.** Γνωρίζουμε ότι κάθε δύο συνθετικές σειρές (αν υπάρχουν) ενός R- προτύπου έχουν το ίδιο μήκος, συνεπώς αν βρούμε συνθετική σειρά για τα επόμενα πρότυπα γνωρίζουμε ότι το μήκος της σειράς είναι και το μήκος του προτύπου.
 - (i) Αν $M=\mathbb{R}[x]/(x^4+2x^2+1)$ έχουμε ότι $\left((x^2+1)^2\right)\subseteq \mathrm{Ann}(M)$, συνεπώς θα δείξουμε ότι μια συνθετική σειρά του M είναι

$$0 \to (x^2 + 1) M \to M.$$

Έχουμε ότι $(x^2+1)\,M/0\simeq\mathbb{R}[x]/(x^2+1)$ σαν $\mathbb{R}[x]-$ πρότυπα μέσω της απεικόνισης

$$(x^2+1)f(x) + ((x^2+1)^2) \mapsto f(x) + (x^2+1)$$
,

με x^2+1 να είναι ανάγωγο στο $\mathbb{R}[x]$, συνεπώς το ιδεώδες (x^2+1) είναι μέγιστο. Επομένως έχουμε ότι το πηλίχο (x^2+1) M/0 είναι απλό.

Επίσης μέσω της απεικόνισης $f(x) + \left(\left(x^2+1\right)^2\right) \mapsto f(x) + \left(x^2+1\right)$ έχουμε ότι

$$M/(x^2+1)M \simeq \mathbb{R}[x]/(x^2+1)$$
,

και όπως παραπάνω, συμπεραίνουμε ότι $M/(x^2+1)M$ είναι απλό πηλίκο. Έτσι, έχουμε ότι η παραπάνω πεπερασμένη ακολουθία είναι συνθετική σειρά του M, συνεπώς έχουμε ότι $\ell_{\mathbb{R}[x]}M=2$.

(ii) Αν $M=\mathbb{C}[x]/(x^4+2x^2+1)$ έχουμε ότι $\left((x^2+1)^2\right)\subseteq \mathrm{Ann}(M)$, συνεπώς θα δείξουμε ότι μια συνθετική σειρά του M είναι

$$0 \to (x+i)(x^2+1)M \to (x^2+1)M \to (x+i)M \to M.$$

Έχουμε διαδοχικά ότι

• Έχουμε ότι $(x+i)(x^2+1)M/(0)\simeq \mathbb{C}[x]/(x-i)$, μέσω της απεικόνισης

$$(x+i)(x^2+1)f(x) + ((x^2+1)^2) \mapsto f(x) + (x-i).$$

Αφού το x-i είναι ανάγωγο στο $\mathbb{C}[x]$ έχουμε ότι (x-i) είναι μέγιστο ιδεώδες του $\mathbb{C}[x]$, δηλαδή το $(x+i)(x^2+1)M/(0)$ είναι απλό.

• Έχουμε ότι $(x^2+1)M/(x+i)(x^2+1)M\simeq \mathbb{C}[x]/(x+i)$, μέσω της απεικόνισης $(x^2+1)f(x)+\left((x^2+1)^2\right)\mapsto f(x)+(x+i).$

και από 1ο Θεώρημα Ισομορφισμών. Αφού το x+i είναι ανάγωγο στο $\mathbb{C}[x]$ έχουμε ότι (x+i) είναι μέγιστο ιδεώδες του $\mathbb{C}[x]$, δηλαδή το $(x^2+1)M/(x+i)(x^2+1)M$ είναι απλό.

• Έγουμε ότι $(x+i)M/(x^2+1)M \simeq \mathbb{C}[x]/(x-i)$, μέσω της απεικόνισης

$$(x+i)f(x) + ((x^2+1)^2) \mapsto f(x) + (x-i).$$

και από 1ο Θεώρημα Ισομορφισμών. Αφού το x-i είναι ανάγωγο στο $\mathbb{C}[x]$ έχουμε ότι (x-i) είναι μέγιστο ιδεώδες του $\mathbb{C}[x]$, δηλαδή το $(x+i)M/(x^2+1)M$ είναι απλό.

• Έχουμε ότι $M/(x+i)M \simeq \mathbb{C}[x]/(x+i)$, μέσω της απεικόνισης

$$f(x) + ((x^2 + 1)^2) \mapsto f(x) + (x + i).$$

και από 1ο Θεώρημα Ισομορφισμών. Αφού το x+i είναι ανάγωγο στο $\mathbb{C}[x]$ έχουμε ότι (x+i) είναι μέγιστο ιδεώδες του $\mathbb{C}[x]$, δηλαδή το M/(x+i)M είναι απλό.

Έτσι δείξαμε ότι κάθε πηλίκο της παραπάνω πεπερασμένης ακολουθίας είναι απλό, συνεπώς έχουμε ότι είναι συνθετική σειρά με $\ell_{\mathbb{C}[x]}M=4$.

(iii) Αν $M=\mathbb{Z}[x]/(x^4+2x^2+1)$ έχουμε ότι $\left((x^2+1)^2\right)\subseteq \mathrm{Ann}(M)$, συνεπώς τα $\mathbb{Z}[x]$ - υποπρότυπα του M ταυτίζονται με τα M- υποπρότυπα του M. Έτσι, για να δείξουμε ότι M δεν έχει συνθετική σειρά, ισοδύναμα, αρκεί να δείξουμε ότι δεν είναι του Artin σαν $\mathbb{Z}[x]$ - πρότυπο. (Με βάση την παραπάνω παρατήρηση αφού M είναι της Noether σαν δακτύλιος θα είναι και σαν $\mathbb{Z}[x]$ - πρότυπο)

Θεωρούμε φθίνουσα ακολουθία υποπροτύπων του Μ

$$(x^2+1,2) M \supseteq (x^2+1,2^2) M \supseteq \cdots \supseteq (x^2+1,2^n) M \supseteq \cdots$$

Υποθέτουμε ότι υπάρχει $n\geq 1$, ώστε $\left(x^2+1,2^n\right)M=\left(x^2+1,2^{n+1}\right)M$, δηλαδή υπάρχουν $f(x),g(x)\in\mathbb{Z}[x]$, ώστε

$$2^{n} = (x^{2} + 1)f(x) + 2^{n+1}g(x) \Rightarrow 2^{n}(1 - 2g(x)) = (x^{2} + 1)f(x)$$

 1 δηλαδή αφού $(x^2+1,2)=1\Rightarrow f(x)=2^n\mu(x),$ άρα έχουμε ότι

$$1 - 2g(x) = \mu(x)(x^2 + 1) \xrightarrow{x=1} 1 = 2g(1) + 2\mu(1)$$

το οποίο είναι άτοπο. Έτσι συμπεραίνουμε ότι M δεν είναι του Artin σαν $\mathbb{Z}[x]$ - πρότυπο συνεπώς δεν έχει συνθετική σειρα, όπου προκύπτει πως $\ell_{\mathbb{Z}[x]}M=\infty$.

 $^{^{1}}$ Εξισώνοντας τις κλάσεις θα έχουμε ότι $2^{n}=(x^{2}+1)d(x)+2^{n+1}g(x)+h(x)(x^{2}+1)^{2}$, έτσι αν θέσουμε $f(x)=d(x)+h(x)(x^{2}+1)$ έχουμε την παραπάνω σχέση.

6.11. (i) Έχουμε διαδοχικά ότι

 $\ell(M) < \infty$ αν και μόνο αν M είναι της Noether και του Artin σαν R- πρότυπο αν και μόνο αν L και N είναι της Noether και του Artin σαν R- πρότυπα αν και μόνο αν $\ell(L)$ και $\ell(N)$ είναι πεπερασμένα.

(ii) Γνωρίζουμε ότι $L\simeq {\rm Im}\varphi$ και $M/{\rm Im}\varphi\simeq N$, συνεπώς αν $\ell(L)=n$ και $\ell(N)=t$ υπάρχουν συνθετικές σειρές

$$(0) = \varphi(L_n) \subseteq \varphi(L_{n-1}) \subseteq \cdots \subseteq \varphi(L_1) \subseteq \varphi(L_0) = \operatorname{Im} \varphi$$

και

$$(0) = \frac{M_t}{\operatorname{Im}\varphi} \subseteq \frac{M_{t-1}}{\operatorname{Im}\varphi} \subseteq \dots \subseteq \frac{M_1}{\operatorname{Im}\varphi} \subseteq \frac{M_0}{\operatorname{Im}\varphi} = \frac{M}{\operatorname{Im}\varphi}.$$

Τώρα, αφού $\frac{M_i}{{\rm Im}\varphi}/\frac{M_{i+1}}{{\rm Im}\varphi}\simeq M_i/M_{i+1}$ έχουμε ότι τα πηλίχα M_i/M_{i+1} είναι απλά για κάθε $i=0,\cdots,t-1$, άρα ισχύει ότι

$$(0) = \varphi(L_n) \subseteq \cdots \subseteq \varphi(L_0) = \operatorname{Im} \varphi = M_t \subseteq \cdots \subseteq M_0 = M$$

είναι συνθετιχή σειρά του M, άρα έχουμε ότι $\ell(M)=\ell(L)+\ell(N)$.

6.12. Θα αποδείξουμε το ζητούμενο με επαγωγή στο k.

- Βάση. Για k = 1, 2 το ζητούμενο έπεται άμεσα από την Άσκηση 6.11.
- Επαγωγικό Βήμα. Έστω $k \geq 3$. Αν

$$0 \to M_{k+1} \to M_k \to \cdots \to M_2 \xrightarrow{\varphi} M_1 \to M_0 \to 0$$

ακριβής ακολουθία R-προτύπων με $\ell(M_i)<\infty$ για κάθε i, έχουμε την εξής διάσπαση της παραπάνω ακριβούς ακολουθίας :

$$0 \to M_k \to M_{k-1} \to \cdots \to M_2 \to \operatorname{Im}\varphi \to 0$$

και

$$0 \to \operatorname{Im}\varphi \to M_1 \to M_0 \to 0.$$

Από την επαγωγική υπόθεση και την Άσκηση 6.11 έχουμε ότι

$$\sum_{i=2}^{k+1} (-1)^i \ell(M_i) - \ell(\text{Im}\varphi) = 0 \quad \text{for} \quad \ell(\text{Im}\varphi) + \ell(M_0) = \ell(M_1)$$
 (6.1)

Συνδυάζοντας τις δύο παραπάνω σχέσεις έχουμε το ζητούμενο.

6.13. (i) Το ζητούμενο έπεται από την Άσκηση 6.11 μέσω της ακριβούς ακολουθίας

$$0 \to N \to M \to M/N \to 0.$$

(ii) Το ζητούμενο έπεται από την Άσκηση 6.11 μέσω της ακριβούς ακολουθίας

$$0 \to M_1 \xrightarrow{i_1} M_1 \oplus M_2 \xrightarrow{\pi_2} M_2 \to 0$$
,

όπου $i_1(a) = (a, 0)$ και $\pi_2(a, b) = b$.

- (iii) Το ζητούμενο έπεται άμεσα από το (i).
- **6.14.** Μέσω του ισομορφισμού $(M_1+M_2)/M_1\simeq M_2/M_1\cap M_2$, από την Άσκηση 6.11 (i) (εξασφαλίζεται ότι όλα τα μήκη είναι πεπερασμένα) καθώς και από την Άσκηση 6.13 (ii) έχουμε ότι

$$\ell(M_1 + M_2/M_1) = \ell(M_2/M_1 \cap M_2) \Rightarrow \ell(M_1 + M_2) = \ell(M_1) + \ell(M_2) - \ell(M_1 \cap M_2).$$

Σημείωση. Το παραπάνω αποτέλεσμα είναι γενίκευση του αντίστοιχου αποτελέσματος που υπάρχει στη Γραμμική Άλγεβρα, καθώς αν k σώμα και M ένα k- πρότυπο, τότε έχουμε ότι $\ell_k(M)=\dim_k(M)$.

- **6.15.** (i) Το ζητούμενο έπεται άμεσα, αφού $\mathfrak{m}M=0$, δηλαδή ισχύει ότι M της Noether (και αντίστοιχα του Artin) σαν R-πρότυπο αν και μόνο αν M της Noether (και αντίστοιχα του Artin) σαν k-πρότυπο.
- (ii) Αν υποθέσουμε ότι $\ell_R(M) < \infty$ έχουμε ότι M της Noether και του Artin σαν R- πρότυπα. Έτσι αφού M είναι της Noether είναι πεπερασμένα παραγόμενο και αν θεωρήσουμε την φθίνουσα ακολουθία προτύπων

$$\mathfrak{m}M\supset\mathfrak{m}^2M\supset\cdots\supset\mathfrak{m}^nM\supset\cdots$$

αφού M είναι του Artin υπάρχει $n \geq 1$, ώστε $\mathfrak{m}^{n+1}M = \mathfrak{m}^n M$. Αφού \mathfrak{m}^n πεπερασμένα παραγόμενο (αφού R της Noether) και M είναι πεπερασμένα παραγόμενο, από το Λήμμα του Nakayama, έχουμε ότι $\mathfrak{m}^n M = 0$.

Αντίστροφα, αφού R της Noether και M πεπερασμένα παραγόμενο έχουμε ότι M της Noether σαν R- πρότυπο. Από Παράρτημα 3 έχουμε ότι R/\mathfrak{m} είναι του Artin και αφού M πεπερασμένα παραγόμενο έχουμε ότι M είναι του Artin σαν R/\mathfrak{m} - πρότυπο. Αφού $\mathfrak{m} \subseteq \mathrm{Ann}(R/\mathfrak{m})$ έχουμε ότι M είναι του Artin σαν R πρότυπο, συνεπώς έχουμε ότι $\ell_R(M) < \infty$.

ΚΕΦΑΛΑΙΟ 7

ΔΑΚΤΥΛΙΟΙ ΤΟΥ ARTIN

7.1 Ασκήσεις

- **7.1.** Ποιοι από τους παρακάτω δακτύλίους είναι του Artin ; Ποιες είναι οι διαστάσεις Krull αυτών ;
 - (i) $\mathbb{C}[x,y]/(x^2,y^3)$
 - (ii) $\mathbb{Z}_{(2)}$ (τοπικοποίηση).
- (iii) $R/\mathfrak{m}^{\mathfrak{t}}$, όπου \mathfrak{m} μέγιστο ιδεώδες δαχτυλίου R της Noether.
- 7.2. Δείξτε ότι κάθε γνήσιο ιδεώδες τοπικού δακτυλίου του Artin είναι πρωταρχικό.
- 7.3. Δείξτε ότι κάθε δακτύλιος του Artin που είναι περιοχή είναι σώμα.
- **7.4.** Ποια είναι η διάσταση Krull του δακτυλίου $R=\mathbb{C}[x,y,z]/(xyz)$; Ασαφές ερώτημα: Ποια θα ορίζατε ως τη διάσταση του παρακάτω αλγεβρικού συνόλου, που είναι η ένωση των τριών επιπέδων των αξόνων ;

Ποιος ο δακτύλιος συντεταγμένων του ;

- **7.5.** Έστω M πεπερασμένα παραγόμενο R -πρότυπο, όπου R δακτύλιος της Noether. Δείξτε ότι τα ακόλουθα είναι ισοδύναμα.
 - (i) Το μήχος του M είναι πεπερασμένο.
 - (ii) Υπάρχουν μέγιστα ιδεώδη $\mathfrak{m}_1, \cdots, \mathfrak{m}_t$ του R με $\mathfrak{m}_1 \cdots \mathfrak{m}_t M = 0$
 - 1. Κάθε πρώτο ιδεώδες του R που περιέχει το $\mathrm{Ann}M$ είναι μέγιστο.
 - 2. Ο δακτύλιος $R/\mathrm{Ann}M$ είναι του Artin.
- **7.6.** Έστω R δακτύλιος του Artin. Δείξτε ότι ως R-πρότυπο, το R έχει πεπερασμένο μήκος. Στη συνέχεια δείξτε ότι κάθε πεπερασμένα παραγόμενο R-πρότυπο έχει πεπερασμένο μήκος.
- **7.7.** Έστω R δακτύλιος της Noether και I γνήσιο ιδεώδες του R. Δείξτε ότι το R- πρότυπο R/I έχει πεπερασμένο μήκος αν και μόνο αν το σύνολο $\mathrm{Ass}I$ αποτελείται από μέγιστα ιδεώδη.

7.2 Ενδεικτικές Λύσεις Ασκήσεων

7.1. (i) Αν $R = \mathbb{C}[x,y]/(x^2,y^3)$ θεωρούμε $\tilde{\mathfrak{m}} = (x,y)R$ και έχουμε ότι

$$R/\tilde{\mathfrak{m}} \simeq \mathbb{C}[x,y]/(x,y) \simeq \mathbb{C}$$
,

συνεπώς έχουμε ότι $\tilde{\mathbf{m}}$ είναι μέγιστο ιδεώδες του R και μάλιστα $(\tilde{\mathbf{m}})^5=0$, αφού $(\tilde{\mathbf{m}})^5$ είναι το ιδεώδες του R που παράγεται από τις κλάσεις $x^iy^j+\left(x^2,y^3\right)$ με i+j=5. Αφού $\mathbb{C}[x,y]$ είναι της Noether, τότε R είναι της Noether από τα προηγούμενα έχουμε ότι R είναι του Artin, δηλαδή $\dim(R)=0$.

- (ii) Γνωρίζουμε ότι τα πρώτα ιδεώδη του $\mathbb{Z}_{(2)}$ είναι σε 1-1 και επί αντιστοιχία με τα πρώτα ιδεώδη του \mathbb{Z} που περιέχουν του (2). Έτσι έχουμε ότι $\mathfrak{p}_0=(0)$ και $\mathfrak{p}_1=2\mathbb{Z}_{(2)}$ είναι τα μοναδικά πρώτα ιδεώδη του $\mathbb{Z}_{(2)}$. Αφού ισχύει ότι $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1$, δηλαδή \mathfrak{p}_0 δεν είναι μέγιστο, άρα $\mathbb{Z}_{(2)}$ δεν είναι του Artin και $\dim \mathbb{Z}_{(2)}=1$.
- (iii) Στο Παράρτημα 3. δείξαμε ότι R/m^t είναι του Artin, άρα έχουμε ότι $\dim(R/\mathfrak{m}^t)=0$.
- **7.2.** Έστω R τοπικός δακτύλιος του Artin. Έστω $I \not \subseteq R$, και αφού R του Artin ισχύει ότι είναι και της Noether, δηλαδή το I επιδέχεται πρωταρχική ανάλυση της μορφής $I = Q_1 \cap \cdots \cap Q_n$. Έτσι, έχουμε ότι

$$\sqrt{I} = \sqrt{Q_1 \cap \cdots \cap Q_n} = \sqrt{Q_1} \cap \cdots \cap \sqrt{Q_n} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_n.$$

Αφού R είναι του Artin και $\mathfrak{p}_1, \cdots, \mathfrak{p}_n$ πρώτα έχουμε ότι είναι και μέγιστα και μάλιστα αφού R τοπικός ισχύει ότι $\mathfrak{p}_1 = \cdots = \mathfrak{p}_n = \mathfrak{m}$, όπου \mathfrak{m} το μέγιστο ιδεώδες του R. Αφού $\sqrt{I} = \mathfrak{m}$ είναι μέγιστο ιδεώδες του R από την Άσκηση 3.8. έχουμε ότι I είναι πρωταρχικό.

7.3. Αν R περιοχή και του Artin έχουμε ότι (0) είναι πρώτο ιδεώδες του R, άρα και μέγιστο ιδεώδες του R. Έτσι έχουμε ότι $R \simeq R/(0)$ σώμα, δηλαδή R είναι σώμα.

7.4.

7.5.

7.6. Αφού R είναι δακτύλιος του Artin έχουμε ότι είναι δακτύλιος της Noether. Άρα, R σαν R- πρότυπο είναι της Noether και του Artin, άρα έχει συνθετική σειρά, δηλαδή πεπερασμένο μήκος.

Αν M πεπερασμένα παραγόμενο R- πρότυπο με R δαχτύλιο της Noether και του Artin, τότε έχουμε ότι M είναι της Noether και του Artin σαν R- πρότυπο. Έτσι, έχουμε ότι M έχει συνθετική σειρά, δηλαδή M έχει πεπερασμένο μήκος.

7.7. Ύποθέτουμε ότι R/I έχει πεπερασμένο μήχος σαν R — πρότυπο, δηλαδή είναι της Noether και του Artin σαν R — πρότυπο. Αφού $I\subseteq {\rm Ann}\,(R/I)$, τότε έχουμε ότι R/I είναι είναι της Noether και του Artin σαν R/I πρότυπο, δηλαδή είναι δακτύλιος της Noether και του Artin. Αν $\mathfrak{p}\in {\rm Ass}(I)\Rightarrow \mathfrak{p}\in {\rm Spec}(R)$ με $I\subseteq \mathfrak{p}$. Έτσι έχουμε ότι $\mathfrak{p}/I\in {\rm Spec}\,(R/I)\Rightarrow \mathfrak{p}/I\in {\rm maxSpec}(R/I)$, αφού R/I είναι του Artin. Έτσι έχουμε ότι $\mathfrak{p}\in {\rm maxSpec}(R)$.

Αντίστροφα, υποθέτουμε ότι το σύνολο $\mathrm{Ass}I$ αποτελείται από μέγιστα ιδεώδη. Αφού R της Noether έχουμε ότι R/I είναι της Noether, έτσι ομοίως με παραπάνω έχουμε ότι R/I της Noether σαν R- πρότυπο.

Από το Θεώρημα Αντιστοιχίας Ιδεωδών, θεωρούμε $\mathfrak{p}/I \in \operatorname{Spec}(R/I) \Rightarrow \mathfrak{p} \in \operatorname{Spec}(R)$ και $I \subseteq \mathfrak{p}$. Αφού R της Noether έχουμε ότι I επιδέχεται πρωταρχική ανάλυση, δηλαδή από την αρχική υπόθεση υπάρχουν $\mathfrak{m}_1, \cdots, \mathfrak{m}_n \in \operatorname{maxSpec}(R)$, ώστε

$$\sqrt{I} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n \subset \sqrt{\mathfrak{p}} = \mathfrak{p}.$$

Αφού $\mathfrak p$ πρώτο, από το Λήμμα Αποφυγής, έχουμε ότι υπάρχει $i\in\{1,\cdots,n\}$ ώστε $\mathfrak m_i\subseteq\mathfrak p\Rightarrow\mathfrak p=\mathfrak m_i$. Έτσι έχουμε ότι $\mathfrak p/I$ είναι μέγιστο ιδεώδες του R/I. Αφού R/I της Noether και κάθε πρώτο ιδεώδες είναι μέγιστο έχουμε ότι R/I είναι δακτύλιος του Artin, άρα R/I είναι R/I πρότυπο του Artin. Ομοίως με παραπάνω συμπεραίνουμε ότι R/I είναι R- πρότυπο του Artin και αφού είναι και της Noether ισχύει ότι R/I έχει συνθετική σειρά σαν R- πρότυπο, δηλαδή έχει πεπερασμένο μήκος.

ΚΕΦΑΛΑΙΟ 8

AKEPAIA E Ξ APTH Σ H

8.1 Ασκήσεις

- **8.1.** Δείξτε ότι κάθε περιοχή μοναδικής παραγοντοποίησης είναι ακέραια κλειστή στο σώμα πηλίκων της.
- 8.2. Έστω n θετικός ακέραιος που δεν διαιρείται με το τετράγωνο ακεραίου μεγαλύτερου του 1. Θεωρούμε το σώμα $k=\mathbb{Q}[\sqrt{n}]$. Δείξτε ότι το $a+b\sqrt{n}$, όπου $a,b\in\mathbb{Q}$, είναι ακέραιο πάνω από το k αν και μόνο αν (1) $a,b\in\mathbb{Z}$ ή (2) $n\equiv 1\mod 4$ και $a-1/2,b-1/2\in\mathbb{Z}$.
- **8.3.** Θεωρούμε τη δράση της ομάδας $G = \{1, g\}$ στο δαχτύλιο $R = \mathbb{C}[x, y]$ που δίνεται από 1 * f(x, y) = f(x, y) και g * f(x, y) = f(-x, -y). Δείξτε ότι $R^G = \mathbb{C}[x^2, xy, y^2]$.
- **8.4.** Ποιες από τις αχόλουθες επεχτάσεις δαχτυλίων του $\mathbb Z$ είναι αχέραιες ;
 - (i) $\mathbb{Z}[\sqrt{2} + \sqrt[3]{3} + \sqrt[5]{5}].$
 - (ii) $\mathbb{Z}[1/\sqrt{2}]$.
- (iii) $\mathbb{Z}[x]/(x^3)$.
- 8.5. Αν $R\subseteq S$ είναι δακτύλιοι με S ακέραιο πάνω από το R, τότε ο S[x] είναι ακέραιος πάνω από τον R[x].

- **8.6.** Έστω k σώμα, $R = k[x^2]$ και S = k[x].
 - (i) Αληθεύει ότι το S είναι αχέραιο πάνω από το R ;
 - (ii) Αληθεύει ότι το S είναι πεπερασμένα παραγόμενο R-πρότυπο; Ελεύθερο R-πρότυπο ;
- (iii) Δείξτε ότι κάθε $f \in S$ είναι ρίζα πολυωνύμου βαθμού 2 με συντελεστές στο R.
- **8.7.** Αν $R\subseteq S$ είναι δακτύλιοι έτσι ώστε το σύνολο $S\setminus R$ είναι κλειστό ως προς τον πολλαπλασιασμό, τότε ο R είναι ακέραια κλειστός στο S.

8.2 Ενδεικτικές Λύσεις Ασκήσεων

8.1. Έστω R περιοχή μοναδική παραγοντοποίησης και $\frac{m}{n} \in \text{Frac}(R)$ ακέραιο πάνω από το R με (m,n)=1. Έτσι υπάρχει $f(x) \in R[x]$ ώστε

$$f\left(\frac{m}{n}\right) = 0 \Leftrightarrow \left(\frac{m}{n}\right)^k + f_{k-1}\left(\frac{m}{n}\right)^{k-1} + \dots + f_0 = 0 \Rightarrow m^k + f_n m^{k-1} n + \dots + f_0 n^k = 0.$$

Αν $n \notin U(R)$, τότε υπάρχει $p \in R$ ανάγωγο, ώστε p|n. Αφού R είναι περιοχή μοναδική παραγοντοποίησης από την παραπάνω σχέση έχουμε ότι p|m, άρα καταλήγουμε σε άτοπο.

8.2.

8.3. Αρχικά είναι άμεσο ότι $\mathbb{C}[x^2, xy, y^2] \subseteq R^G$. Θεωρούμε $f \in R^G$ με

$$f(x,y) = \sum_{i=0}^{n} f_i x^{j_i} y^{k_i}$$
,

για κάποια $j_i, k_i \in \mathbb{N}$ και $f_i \in \mathbb{C}$, όπου έχουμε ότι πρέπει $j_i + k_i \in 2\mathbb{Z}$, για κάθε $i = 1, \dots, n$. Διακρίνοντας περιπτώσεις για τα j_i, k_i έχουμε το ζητούμενο.

- 8.4. Υπενθυμίζουμε ότι αν $R \subseteq R[s] \subseteq S$ με $s \in S$ αχέραιο πάνω από το R, τότε R[s] είναι αχέραια επέχταση πάνω από το R. Αν $s' \in R[s]$, τότε έχουμε ότι $R \subseteq R[s'] \subseteq R[s]$, όπου R[s] είναι πεπερασμένα παραγόμενο R-πρότυπο, άρα s' είναι αχέραιο πάνω από το R.
 - (i) Θα δείξουμε ότι S είναι αχέραια πάνω από το \mathbb{Z} , δηλαδή αρχεί να δείξουμε ότι $\sqrt{2}+\sqrt[3]{3}+\sqrt[5]{5}$ είναι αχέραιο πάνω από \mathbb{Z} . Όμως $\sqrt{2}$, $\sqrt[3]{3}$ χαι $\sqrt[5]{5}$ είναι ρίζες των x^2-2 , x^3-3 χαι x^5-5 αντίστοιχα, συνεπώς είναι αχέραια πάνω από το \mathbb{Z} . Αφού η αχέραια θήχη του \mathbb{Z} στο S είναι υποδαχτύλιος του S έχουμε ότι $\sqrt{2}+\sqrt[3]{3}+\sqrt[5]{5}$ είναι αχέραιο πάνω από το \mathbb{Z} .
 - (ii) Έστω, προς άτοπο, ότι υπάρχει $f(x) \in \mathbb{Z}[x]$ μονικό, ώστε $f\left(\frac{1}{\sqrt{2}}\right) = 0$. Έτσι έχουμε

$$\left(\frac{1}{\sqrt{2}}\right)^n + f_{n-1}\left(\frac{1}{\sqrt{2}}\right)^{n-1} + \dots + f_0 = 0 \Rightarrow 1 + f_{n-1}\sqrt{2} + \dots + f_0\left(\sqrt{2}\right)^n = 0.$$

Από την παραπάνω σχέση, συλλέγοντας τις άρτιες και περιττές δυνάμεις του $\sqrt{2}$ αντίστοιχα, ισχύει ότι $(1+a)+b\sqrt{2}=0$ με $a\in 2\mathbb{Z}$ και $b\in \mathbb{Z}$. Από το Παράρτημα 4 έχουμε ότι 1+a=0, το οποίο είναι άτοπο αφού $2\not|1$.

(iii) Είναι σαφές ότι $Z[x]/(x^3)=\mathbb{Z}\left[x+(x^3)\right]$, άρα αρχεί να δείξουμε ότι $x+(x^3)$ είναι αχέραιο πάνω από το \mathbb{Z} το οποίο ισχύει αφού είναι ρίζα του $t^3\in\mathbb{Z}[t]$.

8.5. Έστω $f(x) = s_n x^n + \dots + s_0 \in S[x]$. Αρκεί να δείξουμε ότι $s_i x^i$ είναι ακέραια πάνω από το R[x].

Αν υπάρχει $i \in \{0,1,\cdots,n\}$ με $s_i \in S \setminus R$, τότε έχουμε ότι $s_i \in S$ αχέραιο πάνω από το R συνεπώς υπάρχει $g(t) \in R[t]$ ώστε $g(s_i) = s_i^m + g_{m-1}s_i^{m-1} + \cdots + g_0 = 0$ με $m \ge 1$. Ορίζουμε $h(t) \in R[x][t]$ με

$$h(t) = t^m + g_{m-1}x^i t^{m-1} + g_{m-2}x^{2i}t^{m-2} + \dots + x^{mi}g_0.$$

όπου έχουμε ότι $h\left(s_ix^i\right)=x^{mi}g(s_i)=0$. Αν $s_j\in R$ είναι σαφές ότι s_jx^j είναι ακέραιο πάνω από το R[x], άρα έχουμε ότι s_ix^i είναι ακέραια πάνω από το R[x] και αφού η ακέραια θήκη του R[x] στο S[x] είναι υποδακτύλιος του S[x] έχουμε ότι f(x) είναι ακέραιο πάνω από το R[x] και έχουμε το ζητούμενο.

- **8.6.** (i) Αφού x είναι ρίζα του πολυωνύμου $t^2 x^2 \in k[x^2][t]$, έχουμε ότι x είναι ακέραιο, άρα S είναι ακέραια πάνω από το R.
 - (ii) Αν $f(x) \in S$, τότε έχουμε ότι $f(x) = g(x) \cdot 1 + x \cdot h(x)$ με $g, h \in k[x^2]$. Άρα, ισχύει ότι S είναι πεπερασμένα παραγόμενο R πρότυπο, που παράγεται από τα στοιχεία 1, x. Είναι σαφές ότι 1, x είναι γραμμικά ανεξάρτητα, συνεπώς S είναι ελεύθερο R- πρότυπο με $\mathrm{rank}_R(S) = 2$.
- (iii) Θεωρούμε $f \in S$. Τότε, υπάρχουν $g, h \in R$, ώστε f = g + xh. Θεωρούμε πολυώνυμο στο R[t] που ορίζεται ως εξής :

$$P(t) = t^2 - 2gt + g^2 - x^2h^2.$$

όπου είναι σαφές ότι P(f) = 0.

8.7. Έστω $s \in S$ ακέραιο πάνω από το R, δηλαδή ισχύει ότι

$$s^{n} + r_{n-1}s^{n-1} + \dots + r_{1}s + r_{0} = 0, \quad s_{i} \in \mathbb{R}, \ i = 1, \dots, n.$$

Άρα, είναι σαφές ότι $s\left(s^{n-1}+r_{n-1}s^{n-2}+\cdots+r_1\right)\in R$. Αν υποθέσουμε ότι $s\in S\setminus R$, αφού $S\setminus R$ είναι χλειστό ως προς τον πολλαπλασιασμό, προχύπτει ότι

$$s^{n-1} + r_{n-1}s^{n-2} + \dots + r_1 \in R ,$$

δηλαδή έχουμε ότι

$$s(s^{n-2} + r_{n-1}s^{n-3} + \dots + r_2) \in R \Rightarrow s^{n-2} + r_{n-1}s^{n-3} + \dots + r_2 \in R.$$

Συνεχίζοντας με όμοιο τρόπο προχύπτει ότι $a+r_1 \in R \Rightarrow a \in R$, το οποίο είναι άτοπο.

ΚΕΦΑΛΑΙΟ 9

NULLSTELLENSATZ

9.1 Ασχήσεις

 Σ τα παρακάτω k είναι αλγεβρικά κλειστό σώμα.

- **9.1.** Ποια είναι τα ακόλουθα αλγεβρικά σύνολα στο k^3 (δηλ. ποιες οι ανάγωγες συνιστώσες τους) ;
 - (i) V(xy + yz + zx, xyz).
 - (ii) $(x-y^2, x^2-z^2)$.
- **9.2.** Έστω $f,g\in k[x_1,\cdots,x_n]$ με f ανάγωγο. Δείξτε ότι αν το f δεν διαιρεί το g, τότε το V(f) δεν περιέχεται στο V(g).
- **9.3.** Έστω $f \in k[x_1, \cdots, x_n]$ που δεν διαιρείται με το τετράγωνο αναγώγου πολυωνύμου. Αληθεύει ότι I(V(f)) = (f) ;
- **9.4.** Παραστήσετε το V(J) ως ένωση πεπερασμένου πλήθους αναγώγων αλγεβρικών συνόλων στο \mathbb{C}^2 , όπου J=(f,g) και $f=x^2-y^2, g=x^3+xy^2-y^3-x^2y-x+y$. Στη συνέχεια παραστήστε το \sqrt{J} ως τομή πεπερασμένου πλήθους πρώτων ιδεωδών του $\mathbb{C}[x,y]$.
- 9.5. Υποθέτοντας το ισχυρό Nullstellensatz, δείξτε το ασθενές Nullstellensatz.

9.2 Ενδεικτικές Λύσεις Ασκήσεων

9.1. (i) Έχουμε ότι $V(xy+yz+zx,xyz)=V(x)\cup V(y)\cup V(z)$, όπου τα αλγεβρικά σύνολα V(x),V(y),V(z) είναι ανάγωγα. Για παράδειγμα, από ισχυρό Nullstellsantz έχουμε ότι $I(V(x))=\sqrt{(x)}=(x)$, όπου (x) πρώτο ιδεώδες. Άρα, το V(x) είναι ανάγωγο. Ομοίως έχουμε ότι V(y) και V(z) είναι ανάγωγα.

ii)

9.2. Υποθέτουμε, προς άτοπο, ότι $V(f) \subseteq V(g)$, δηλαδή έχουμε ότι

$$I(V(g)) \subseteq I(V(f)) \Leftrightarrow \sqrt{(g)} \subseteq \sqrt{(f)} = (f)$$
,

αφού f είναι ανάγωγο και $k[x_1,\cdots,x_n]$ είναι περιοχή μοναδικής παραγοντοποίησης, άρα (f) είναι πρώτο. Έτσι έχουμε ότι $g\in\sqrt{(g)}\subseteq(f)$, άρα ισχύει ότι f|g το οποίο είναι άτοπο.

9.3. Αφού $k[x_1, \cdots, x_n]$ είναι περιοχή μοναδικής παραγοντοποίσης, έχουμε ότι $f = f_1 \cdots f_n$, όπου $f_1, \cdots, f_n \in k[x_1, \cdots, x_n]$ ανάγωγα και διακεκριμένα, αφού f δεν διαιρείται με το τετράγωνο αναγώγου πολυωνύμου.

Ισχυρισμός 3. Ισχύει ότι

$$(f)=(f_1)\cap\cdots\cap(f_n).$$

Aπόδειξη. Ισχύει ότι $(f) \subseteq (f_i)$, για κάθε $i = 1, \dots, n$ έχουμε ότι $(f) \subseteq \bigcap_{i=1}^n (f_i)$.

Αντίστροφα, αν $g\in \bigcap_{i=1}^n(f_i)$, αφού f_1,\cdots,f_n είναι διαχεχριμένα ανάγωγα πολυώνυμα στον $k[x_1,\cdots,x_n]$ έχουμε ότι $g=hf_1\cdots f_n=hf\in (f)$, συνεπώς έχουμε ότι $\bigcap_{i=1}^n(f_i)\subseteq (f)$.

Αφού $k[x_1,\cdots,x_n]$ περιοχή μοναδικής παραγοντοποίησης, έχουμε ότι αν $g\in k[x_1,\cdots,x_n]$ ανάγωγό, τότε (g) είναι πρώτο ιδεώδες του $k[x_1,\cdots,x_n]$. Έτσι έχουμε ότι από το ισχυρό Nullstellensatz έχουμε ότι

$$I(V(f)) = \sqrt{(f)} = \sqrt{\bigcap_{i=1}^{n} (f_i)} = \bigcap_{i=1}^{n} \sqrt{(f_i)} = \bigcap_{i=1}^{n} (f_i) = (f).$$

9.4. Έχουμε ότι

$$V(f,g) = V\left[(x-y)(x+y), (x-y)(x^2+y^2-1) \right]$$

$$= V(x-y) \cup V(x+y, x^2+y^2-1)$$

$$= V(x-y) \cup V\left(x - \frac{\sqrt{2}}{2}, y + \frac{\sqrt{2}}{2}\right) \cup V\left(x + \frac{\sqrt{2}}{2}, y - \frac{\sqrt{2}}{2}\right)$$

όπου η τελευταία ανάλυση είναι ανάλυση σε ανάγωγα αλγεβρικά σύνολα. Από το ισχυρό Nullstellensatz ισχύει ότι

$$\sqrt{J} = I(V(f,g)) = (x-y) \cap \left(x - \frac{\sqrt{2}}{2}, y + \frac{\sqrt{2}}{2}\right) \cap \left(x + \frac{\sqrt{2}}{2}, y - \frac{\sqrt{2}}{2}\right)$$

και έχουμε το ζητούμενο.

9.5. Έστω I ένα γνήσιο ιδεώδες του $k[X_1,\ldots,X_n]$. Αφού $I\neq k[X_1,\ldots,X_n]$, τότε $\sqrt{I}\neq k[X_1,\ldots,X_n]$, αλλίως θα υπήρχε $k\in\mathbb{Z}_{>0}$ ώστε $1=1^k\in I$. Έστω, προς άτοπο, ότι $V(I)=\emptyset$. Τότε, προχύπτει ότι

$$V(I) = \emptyset \Rightarrow I(V(I)) = I(\emptyset) = k[X_1, \dots, X_n].$$

Από το ισχυρό Nullstellensatz έχουμε ότι $\sqrt{I}=I(V(I))=k[X_1,\dots,X_n]$, άρα καταλήγουμε σε άτοπο.

ΚΕΦΑΛΑΙΟ 10

ПАРАРТНМА

Στο κεφάλαιο αυτό υπάρχουν αποδείξεις ισχυρισμών, όπου για λόγους πρακτικότητα δεν προστέθηκαν απευθείας στις ασκήσεις.

Παράρτημα 1. Αν R είναι περιοχή, τότε ο δαχτύλιος R[x] είναι περιοχή.

Aπόδειξη. Έστω R περιοχή και R[x] ο αντίστοιχος πολυωνυμικός δακτύλιος, ο οποίος είναι μεταθετικός με μονάδα. Θεωρούμε πολυώνυμα $f(x), g(x) \in R[x]$ με $f(x) = \sum_{i=0}^n a_i x^i$ και $g(x) = \sum_{i=0}^m b_i x^i$ με $a_n, b_m \neq 0$, ώστε

$$f(x)g(x) = \sum_{i=0}^{m+n} c_i x^i = 0.$$

Υποθέτουμε ότι f και g δεν είναι μηδέν, με $a_n,b_m\neq 0$. Γνωρίζουμε ότι

$$c_{n+m} = \sum_{i+j=n+m} a_i b_j = a_n b_m = 0,$$

το οποίο είναι άτοπο αφού ο R είναι περιοχή. Έτσι συμπεραίνουμε ότι f ή g ισούται με το 0, δηλαδή ο δαχτύλιος R[x] είναι περιοχή.

Παράρτημα 2. Έστω k σώμα και I,J ιδεώδη του k[X], όπου $X=(x_1,\cdots,x_n)$ με $I\subseteq J$. Τότε, ισχύει ότι $V(J)\subseteq V(I)$.

Aπόδειξη. Έστω $P\in V(J)$, δηλαδή f(P)=0, για κάθε $f(x)\in J$. Έτσι, είναι σαφές ότι f(P)=0, για κάθε $f(x)\in I$, δηλαδή $P\in V(I)$ και έχουμε το ζητούμενο. \square

Παράρτημα 3. Αν R δακτύλιος της Noether και $\mathfrak{m} \in \max \operatorname{Spec}(R)$, τότε R/\mathfrak{m}^t είναι του Artin, για κάθε $t \geq 1$.

Aπόδειξη. Έστω $t \ge 1$. Έχουμε ότι R/\mathfrak{m}^t είναι της Noether και $\tilde{\mathfrak{m}} = \mathfrak{m}/\mathfrak{m}^t$ μέγιστο ιδεώδες του R/\mathfrak{m}^t . Αφού ισχύει ότι $(\tilde{\mathfrak{m}})^t = 0$ έχουμε ότι R/\mathfrak{m}^t είναι του Artin.

Παράρτημα 4. Κάθε στοιχείο του δαχτυλίου $\mathbb{Z}[\sqrt{2}]$ γράφεται με μονοσήμαντο τρόπο.

Aπόδειξη. Έστω $a,b,c,d\in\mathbb{Z}$, ώστε $a+b\sqrt{2}=c+d\sqrt{2}\Rightarrow a-c=\sqrt{2}(d-b)$. Αν $d\neq b\Rightarrow \sqrt{2}=\frac{a-c}{d-b}\in\mathbb{Q}$, το οποίο είναι άτοπο. Άρα, συμπεραίνουμε ότι a=c και b=d. \square