Algebra - Lista 10

Zadanie 1 Na podstawie poniższych tabel działań określ, który zbiór z działaniem jest grupą.

Zadanie 2 Pokaż, że jeśli każdy element w grupie jest odwrotny do siebie, to grupa jest przemienna.

Zadanie 3 Rozważamy trzy grupy:

- (1) grupą symetrii trójkąta równobocznego (trzy obroty i trzy symetrie osiowe),
- (2) grupą obrotów sześciokąta foremnego,
- (3) grupą $(\mathbb{Z}_6, +_6)$ (czyli z dodawaniem mod 6).

Przedstaw ich tabelki działań. Które z tych grup są izomorficzne?

Zadanie 4 Wyznacz wszystkie izomorfizmy pomiędzy grupą obrotów kwadratu, a grupą $(\mathbb{Z}_4, +_4)$.

Zadanie 5 Pokaż, że $(ab)^{-1} = b^{-1}a^{-1}$.

Pokaż, że równość

$$(ab)^r = a^r b^r$$

zachodzi dla dowolnego r (naturalnego) oraz dowolnych $a, b \in G$ wtedy i tylko wtedy, gdy grupa G jest przemienna.

Zadanie 6 Pokaż, że, z dokładnością do izomorfizmu istnieje tylko jedna grupa trzyelementowa (dokładniej: $(\mathbb{Z}_3,+)$) oraz dwie grupy czteroelementowe: $(\mathbb{Z}_4,+)$ oraz $\mathbb{Z}_2 \times \mathbb{Z}_2$ z dodawaniem po współrzędnych.

Wskazówka: W drugim punkcie pokaż najpierw, że z grupie czteroelementowej istnieje element różny od elementu neutralnego, który jest swoją własną odwrotnością.

Zadanie 7 Które z zbiorów z działaniem są grupami?

- (1) zbiór liczb naturalnych, z dodawaniem;
- (2) zbiór liczb całkowitych, z mnożeniem;
- (3) zbiór liczb postaci $\frac{1}{k}$, gdzie k jest całkowite i $k \neq 0$, z mnożeniem;
- (4) zbiór liczb wymiernych, z dodawaniem;
- (5) zbiór liczb wymiernych bez zera, z mnożeniem.

Zadanie 8 Niech H_1 i H_2 będą podgrupami grupy G.

- Pokaż, że $H_1 \cup H_2$ nie musi być podgrupą G.
- Pokaż, że jeśli $H_1 \cup H_2$ jest podgrupą G, to $H_1 \leq H_2$ lub $H_2 \leq H_1$.
- Pokaż, że jeśli G jest przemienna, to $\langle H_1 \cup H_2 \rangle = \{h_1 h_2 : h_1 \in H_1, h_2 \in H_2\}$. (Dla przypomnienia: $\langle A \rangle$ to najmniejsza grupa generowana przez A.)
- Jeśli $\{H_i\}_{i\in I}$ jest dowolną kolekcją podgrup G, to również $\bigcap_{i\in I} H_i$ jest podgrupą G.

Zadanie 9 Centralizatorem elementu a w grupie G nazywamy zbiór elementów przemiennych z a, czyli

$$G(a) = \{b \in G : ab = ba\}.$$

Centrum grupy G nazywamy zbiór

$$Z(G) = \{a : \forall b \in G : ab = ba\}$$

(czyli: przemiennych ze wszystkimi elementami w G). Udowodnij, że dla dowolnej grupy G i elementu a G(a) oraz Z(G) są podgrupami G. Pokaż też, że

$$Z(G) = \bigcap_{g \in G} G(g).$$

Zadanie 10 Pokaż, że zbiór symetrii trójkąta równobocznego jest izomorficzny z grupą wszystkich permutacji zbioru trzyelementowego S_3 .