2352.
$$I_n = \int_0^{+\infty} \frac{dx}{\cosh^{n+1} x}$$
.

2353. a)
$$\int_{0}^{\pi/2} \ln \sin x \, dx$$
; 6) $\int_{0}^{\pi/2} \ln \cos x \, dx$.

2354. Найтн
$$\int_{R} e^{-x/2} \frac{|\sin x - \cos x|}{\sqrt{\sin x}} dx$$
, где E — мно-

жество тех значений x интервала $(0, +\infty)$, для которых подынтегральное выражение нмеет смысл.

2355. Доказать равенство

$$\int_{0}^{+\infty} f\left(ax + \frac{b}{x}\right) dx = \frac{1}{a} \int_{0}^{+\infty} f\left(\sqrt{x^2 + 4ab}\right) dx,$$

где a > 0 и b > 0, предполагая, что интеграл в левой части равенства имеет смысл.

2356. Средним значением функции f (x) на интервале

$$(0, +\infty)$$
 называется число $M|f| = \lim_{x \to +\infty} \frac{1}{x} \int_0^x f(\xi) d\xi$.

Найти средние значения следующих функций:

a)
$$f(x) = \sin^2 x + \cos^2 (x \sqrt{2});$$

6)
$$f(x) = \arctan x$$
; B) $f(x) = \sqrt{x} \sin x$.

2357. Найти:

a)
$$\lim_{x\to 0} x \int_{x}^{1} \frac{\cos t}{t^2} dt$$
; 6) $\lim_{x\to \infty} \frac{\int_{x}^{x} \sqrt{1+t^4} dt}{x^3}$;

B)
$$\lim_{x\to 0} \frac{\int_{x}^{+\infty} t^{-1}e^{-t}dt}{\ln \frac{1}{x}}$$
; r) $\lim_{x\to 0} x^{\alpha} \int_{x}^{1} \frac{f(t)}{t^{\alpha+1}} dt$,

где $\alpha > 0$ и f(t) — непрерывная функция на сегменте $\{0, 1\}$.