CS & IT ENGING

Operating System

Process Management

Lecture - 2

Recap of Previous Lecture

Topic Operating System Definition

Topic Types of Operating System

Topics to be Covered

Topic

Dual Mode of Operation

Topic

Process

Topic

Process Representation

Topic

Process Control Block

Topic: System Call

A system call is a way for programs to interact with the operating system

Topic: Dual Mode of Operation

2 modes:

User Mode (mode bit = 1)

Kernel/System/Supervisor/Privileged Mode (mode bit = 0)

Topic: Dual Mode of Operation

2 Modes:

User Mode (mode bit = 1)

Kernel/System/Supervisor/Privileged Mode (mode bit = 0)

Topic: Process

Program in execution is called as a process.

Topic: Process

□ Process:

- Program under execution
- An instance of a program
- Schedulable/Dispatchable unit (CPU)
- Unit of execution (CPU)
- Locus of control (OS)

Topic: Process

Topic: Representation of a Process

Topic: Operations on a Process

- Create (Resource Allocation)
- Schedule, Run
- Wait/Block
- Suspend, Resume
- Terminate (Resource Deallocation)

Topic: Attributes of a Process

Pw

- · PID (Process id)
- PC
- · GPR (General Purpose Registers)
- List of Devices
- Type
- Size
- Memory Limits
- Priority
- State
- List of Files

PCB of PI PCB of P3
91
P2
P3

Memory

Topic: PCB Process Control Block

Also known as processor descriptor

Topic: Context

The content of PCB of a process are collectively know as 'Context' of that process

Process PCB

Assuming P1 is running in CPU.

OS PCB of PI PCB of PZ PCB of P3
PI
P2
P3

memory

Context switch: 1. Context (CPU régister values) of current running Process is stored in it's PCB.

2. Context of next process is loaded into CPU registers from PCB.

[NAT]

#Q. While running a process can access its PCB from main memory?

NO

[MCQ]

- #Q. A process in the context of computing is:
- A set of instructions to be executed on a computer Shoquen
- B /A program in execution
- A piece of hardware that executes a set of instructions

2 mins Summary

Topic Dual Mode of Operation

Topic Process

Topic Process Representation

Topic Process Control Block

Vishvadeep sir PW

Happy Learning THANK - YOU