<u>Área personal</u> / Mis cursos / [1-2020] QMC100-YF / TEMA 5: EQUILIBRIO QUÍMICOS / <u>SEGUNDO EXAMEN PARCIAL</u>

	Thursday, 15 de October de 2020, 08:36
Estado	Finalizado
Finalizado en	Thursday, 15 de October de 2020, 09:46
	1 hora 10 minutos
empleado	F0.00 de 100.00
Calificacion	50,00 de 100,00
Pregunta 1	
ncorrecta	
Puntúa 0,00 sobre 10,00	
	or + H_2SO_4 ===== sulfato de potasio + dióxido de azufre + bromo molecular + agua. Los coeficientes de sés de igualar la ecuación respectivamente son:
a. 3 y 2	
O b. 2 y 3	
c. ninguno	×
O d. 2 y 6	
O e. 2 y 2	
Respuesta incorre	
Respuesta incorre La respuesta corre	
Respuesta incorre La respuesta corre Pregunta 2 Correcta Puntúa 10,00 sobre 10,00 En la reacción: m	ecta es: 2 y 2

1 de 6 1/10/2021 08:02

TOTOTO	DAZAR CONT	DADGIAI	D '''	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(H(TIINI)()	FXAMEN	PARCIAL	· Revision	del intento

ecta úa 10,00 sobre 10,00 egún la reacción: Zn + HC ==== cloruro de zinc + hidrógeno molecular e hace reaccionar 36 gramos de mineral que tiene una pureza de 65 % er			
egún la reacción: Zn + HC ==== cloruro de zinc + hidrógeno molecular			
hace reaccionar 34 gramos de mineral que tiene una nureza de 45 % en			
Flace reaccional 30 grantos de mineral que hene una poreza de 03 % en	ı Zn, obtenié	endose 3.6 litros de h	nidrógeno a una
emperatura de 19°C y 1.2 Atm de presión. El rendimiento de la reacción e	s: 50	~ %	
A: Zn = 65			
a respuesta correcta es: 50			
unta 4			
rrecta			
úa 0,00 sobre 10,00			
egún la reacción: Ca + HCl ===== cloruro de calcio + hidrógeno molecula	r		
e hace reaccionar 12 g de Ca, El volumen en ml de solución de HCl, que t ensidad de 1.19 g/ml, que se necesita la reacción es:	iene una pu	ıreza de 37 % en ác	ido y una
A: Ca = 40, H = 1, Cl = 35,5			
eleccione una:			
a. 59,19			
b. 21,9			
c. 12			
d. ninguno			×
e. 43,74			
espuesta incorrecta.			
A: Ca = 40, H = 1, Cl = 35,5 eleccione una: a. 59,19 b. 21,9 c. 12 d. ninguno			

regunta 5	
ncorrecta	
untúa 0,00 sobre 10,00	
Según la reacción: Al + H-SO. =====	Sulfato de aluminio + hidrógeno molecular
	n condiciones normales, el volumen en ml de solución de ácido sulfúrico 10 M, que se
PA: AI = 27, S = 32, O = 16, H = 1	
Seleccione una:	
O a. ninguno	
O b. 5	
◎ c. 0,5	×
O d. 10	
O e. 50	
Respuesta incorrecta.	
La respuesta correcta es: 50	
La respuesta conecta es. 30	
regunta 6	
ncorrecta untúa 0,00 sobre 10,00	
31110G 0,00 SODIE 10,00	

egunta 7		
correcta		
untúa 0,00 sobre 10,00		
Según la reacción: CuS + HNO $_3$ ===== nitrato cúprico + ácido sulfúrico + monóxido de nitrógeno + a $_3$	gua	
Se hace reaccionar 90 ml de solución al 4 % m/v en CuS, con 40 ml de solución de ácido nítrico 5 M,	si la reacciór	n tiene
rendimiento de la reacción es del 70 %. La cantidad de monóxido de nitrógeno que obtendrá es:	56	g NC
PA: Cu = 65, S = 32, O = 16, N = 14, H = 1.		
La respuesta correcta es: 2,1		
egunta $oldsymbol{8}$		

En la reacción: $N_2 + O_2 ==== monóxido de nitrógeno$

En un recipiente de 500 ml, se coloca inicialmente 2 moles de nitrógeno molecular y 2 moles de oxígeno molecular, se deja reaccionar hasta alcanzar el equilibrio, en el equilibrio se encontró 3 moles de NO. La constante de equilibrio para esta reacción es: 36

La respuesta correcta es: 36

Puntúa 10,00 sobre 10,00

1/10/2021 08:02 4 de 6

regunta 9 Correcta
runtúa 10,00 sobre 10,00
En las reacciones consecutivas: $H_2S + H_2O = === HS^- + H_3O^+ : Ka_1 = 5x10^{-6}$
HS ⁻ + H ₂ O ==== S ⁼ + H ₃ O ⁺ ; Ka ₂ = 2×10^{-12} .
La constante de equilibrio después de sumar las dos semi reacciones es:
Ed constante de equilibre despees de serriar les des serrir redectiones es.
Seleccione una:
○ a. 1x10 ⁻¹⁸
O b. 2x10 ⁻¹⁸
⊚ c. 1x10 ⁻¹⁷
O d. 5x10 ⁻¹⁷
O e. ninguno
Respuesta correcta
La respuesta correcta es: 1x10 ⁻¹⁷
Eurespoesia Correcta es. 1x10
En la reacción: H ₂ + I ₂ ==== yoduro de hidrógeno
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una:
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna b. [H ₂] = [I ₂] = 3,2 M; [HI] = 9,6 M
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna b. [H ₂] = [I ₂] = 3,2 M; [HI] = 9,6 M c. [H ₂] = [I ₂] = 1,4 M; [HI] = 4,2 M
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna b. [H ₂] = [I ₂] = 3,2 M; [HI] = 9,6 M c. [H ₂] = [I ₂] = 1,4 M; [HI] = 4,2 M d. [H ₂] = [I ₂] = 3 M; [HI] = 9 M e. [H ₂] = [I ₂] = 2,8 M; [HI] = 8,4 M
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna b. [H ₂] = [I ₂] = 3,2 M; [HI] = 9,6 M c. [H ₂] = [I ₂] = 1,4 M; [HI] = 4,2 M d. [H ₂] = [I ₂] = 3 M; [HI] = 9 M e. [H ₂] = [I ₂] = 2,8 M; [HI] = 8,4 M Respuesta correcta
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar a equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna b. [H ₂] = [I ₂] = 3,2 M; [HI] = 9,6 M c. [H ₂] = [I ₂] = 1,4 M; [HI] = 4,2 M d. [H ₂] = [I ₂] = 3 M; [HI] = 9 M e. [H ₂] = [I ₂] = 2,8 M; [HI] = 8,4 M
En un recipiente de 500 ml, se coloca inicialmente 7 moles de yoduro de hidrógeno, se deja reaccionar hasta alcanzar a equilibrio, la constante de equilibrio para esta reacción es 9. Las concentraciones en el equilibrio respectivamente son: Seleccione una: a. ninguna b. [H ₂] = [I ₂] = 3,2 M; [HI] = 9,6 M c. [H ₂] = [I ₂] = 1,4 M; [HI] = 4,2 M d. [H ₂] = [I ₂] = 3 M; [HI] = 9 M e. [H ₂] = [I ₂] = 2,8 M; [HI] = 8,4 M Respuesta correcta

ER