Data Structures and Algorithms

Spring 2009-2010

Outline

Algorithm Analysis

When the Inputs Get Bigger...

- Chief concern in algorithm analysis is determining the underlying running time and space requirements in the long term, when the input size grows larger
- Running-time is highly dependent on machine architecture, so analysis cannot be machine-specific
- To do this we introduce the order notation that describes the time and storage requirements only in terms of the algorithm and its parameters

Order of Functions

- Which function is bigger, $f(n) = 20 \cdot n$ or $g(n) = 0.002 \cdot n^2$?
- Although f(n) is larger initially, the n^2 of g(n) dominates eventually
- To help us quantify functions and to make the notion of comparison more precise we introduce four definitions

O(n) – Big-Oh

Definition

T(n) = O(f(n)) if there are *constants c* and n_0 so that $T(n) \le cf(n)$ when $n \ge n_0$

T(n) is "less than or equal to" f(n)

That is, once $n \ge n_0$, T(n) is always less than or equal to some constant, c, times f(n).

$\Omega(n)$ – Big-Omega

Definition

 $T(n) = \Omega(f(n))$ if there are *constants c* and n_0 so that $T(n) \ge cf(n)$ when $n \ge n_0$

T(n) is "greater than or equal to" g(n)Therefore, if f(n) = O(g(n)) then $g(n) = \Omega(f(n))$

$\Theta(n)$ – Big-Theta

Definition

$$T(n) = \Theta(h(n))$$
 if and only if $T(n) = O(h(n))$ and $T(n) = \Omega(h(n))$

T(n) is "behaves like" h(n); Alternative view of $\Theta(h(n))$:

$$\lim_{n\to\infty}\frac{T(n)}{h(n)}\to C$$

o(n) — Little-oh

Definition

$$T(n) = o(p(n))$$
 if $T(n) = O(p(n))$ and $T(n) \neq \Theta(p(n))$

T(n) is "is smaller than" p(n); Alternative view of o(p(n)):

$$\lim_{n\to\infty}\frac{T(n)}{p(n)}\to 0$$

Function Comparisons

Let

•
$$f(n) = n + 25$$

•
$$g(n) = n^2 + 5$$
, and

•
$$h(n) = n^2 + 15$$

Then, we can say:

•
$$f(n) = O(g(n))$$
 and $f(n) = O(h(n))$

•
$$g(n) = \Omega(f(n))$$
 and $h(n) = \Omega(f(n))$

•
$$g(n) = \Theta(h(n))$$
 and therefore, $h(n) = \Theta(g(n))$

•
$$f(n) = o(g(n))$$

More on $\Theta(n)$

With

•
$$g(n) = n^2 + 5$$

•
$$h(n) = n^2 + 15$$

- \bullet 2 · h(n)
- \bullet $\frac{1}{2} \cdot h(n)$
- so we can say thata(n) -

$$g(n) =$$

$$\Theta(h(n))$$

For
$$n > 0$$
, $g(n) \le 2 \cdot h(n)$, and so $g(n) = O(h(n))$ with $n_0 = 0$ and $c = 2$:

similarly, for
$$n \ge 3$$
, $g(n) \ge 0.5 \cdot h(n)$, and so $g(n) = \Omega(h(n))$

with $n_0 = 3$ and c = 0.5;

Even more on $\Theta(n)$

Likewise, from below we can argue that $g(n) = \Theta(n^2)$

•
$$g(n) = n^2 + 5$$

•
$$h(n) = n^2$$

- 2 · h(n)
- \bullet $\frac{1}{2} \cdot h(n)$
- so we can say that

$$g(n) = \Theta(n^2)$$

