Correction

d'après Mines de sup 2002

Partie I

- 1. Si A est semblable à B alors il existe $P \in GL_3(\mathbb{R})$ telle que $A = P^{-1}BP$. Pour $Q = P^{-1} \in GL_3(\mathbb{R})$, on a $B = Q^{-1}AQ$ donc B est semblable à A.
- 2. Si A est semblable à B et B semblable à C alors il existe $P,Q \in GL_3(\mathbb{R})$ telles que : $A = P^{-1}BP \text{ et } B = Q^{-1}CQ \text{ et donc } A = (PQ)^{-1}C(PQ) \text{ avec } PQ \in GL_3(\mathbb{R}) \text{ . Ainsi } A \text{ et } C \text{ sont semblables.}$
- 3. Si A est semblable à B alors il existe $P \in GL_3(\mathbb{R})$ telle que $A = P^{-1}BP$. Or P et P^{-1} sont inversibles et on sait que le rang reste inchangé lors d'un produit par une matrice inversible donc $\operatorname{rg} B = \operatorname{rg} P^{-1}BP = \operatorname{rg} A$.

De plus $\det B = \det P^{-1}AP = \det P^{-1} \times \det A \times \det P$ avec $\det P^{-1} = \frac{1}{\det P}$ et donc $\det B = \det A$.

Partie II

- 1.a $\forall y \in \operatorname{Im} w, \exists x \in \ker u^{p+q} \text{ tel que } y = w(x) = u^q(x)$. On a alors $u^p(y) = u^{p+q}(x) = 0$ car $x \in \ker u^{p+q}$. Ainsi $y \in \ker u^q$ et donc $\operatorname{Im} w \subset \ker u^p$.
- $\begin{aligned} \text{1.b} & \quad \text{Par le th\'eor\`eme du rang: } \dim \ker u^{p+q} = \operatorname{rg} w + \dim \ker w \;. \\ & \quad \text{Or } \operatorname{rg} w = \dim \operatorname{Im} w \leq \dim \ker u^p \; \text{ et } \ker w = \ker u^q \cap \ker u^{p+q} = \ker u^q \; \operatorname{car } \ker u^q \subset \ker u^{p+q} \\ & \quad \operatorname{donc } \dim \ker u^{p+q} \leq \dim \ker u^p + \dim \ker u^q \;. \end{aligned}$
- 2.a Par le théorème du rang, $\dim \ker u = 1$ et donc $\dim \ker u^2 \leq \dim \ker u + \dim \ker u = 2$. De plus $3 = \dim \ker u^3 \leq \dim \ker u^2 + \dim \ker u = \dim \ker u^2 + 1$. Par double inégalité : $\dim \ker u^2 = 2$.
- 2.b Puisque $u^2 \neq 0$, il existe $a \in E$ tel que $u^2(a) \neq 0$. Supposons $\alpha u^2(a) + \beta u(a) + \gamma a = 0$.

En composant cette relation avec u, on obtient : $\beta u^2(a) + \gamma u(a) = 0$ car $u^3 = 0$.

En composant à nouveau avec u, on obtient : $\gamma u^2(a) = 0$.

Sachant $u^2(a) \neq 0$, on conclut $\gamma = 0$ puis en remontant $\beta = \alpha = 0$.

La famille $(u^2(a), u(a), a)$ est libre et formée de $3 = \dim E$ vecteurs de E, c'est donc une base de E.

- 2.c $U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et $V = U^2 U = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$.
- 3.a $\operatorname{rg} u \neq 0$ donc $\operatorname{Im} u$ n'est par réduit à $\{0\}$. Un antécédent b d'un élément non nul de $\operatorname{Im} u$ résout notre problème.
- 3.b Par le théorème du rang $\dim \ker u = 2$. $u(b) \in \ker u$ car $u^2 = 0$ et $u(b) \neq 0$ donc, par le théorème de la base incomplète, on peut compléter la famille (u(b)) en une base de $\ker u$ de la forme (u(b),c). Supposons $\alpha u(b) + \beta c + \gamma b = 0$.

En appliquant u à cette relation on obtient $\gamma u(b) = 0$ donc $\gamma = 0$ car $u(b) \neq 0$.

La relation initiale devient $\alpha u(b) + \beta c = 0$ qui implique $\alpha = \beta = 0$ car la famille (u(b), c) est libre.

La famille (u(b),c,b) est libre et formée de $3 = \dim E$ vecteurs de E, c'est donc une base de E.

3.c
$$U' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 et $V' = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Partie III

1.a $N^3 = 0$. N n'est pas inversible donc $\operatorname{rg} N < 3$ d'où $\operatorname{rg} N \le 2$.

On peut alors conclure que A et A^{-1} sont semblables.

- 1.b $A(I_3+M)=(I+N)(I+N^2-N)=I+N+N^2+N^3-N-N^2=I$ Par le théorème d'inversibilité, A est inversible et B est son inverse.
- 2.a On a $N^3=0$ et $\operatorname{rg} N=2$ donc N est, moyennant l'introduction d'une base de E, la matrice d'un endomorphisme u de E tel que $u^3=0$ et $\operatorname{rg} u=2$. Par II.2.c, il existe une base de E dans laquelle la matrice de u soit U. Par suite N et U sont semblables.
- $\begin{array}{ll} \text{2.b} & \text{Soit } P \in GL_3(\mathbb{R}) \text{ telle que } N = P^{-1}UP \ . \\ & \text{On a } M = N^2 N = P^{-1}UPP^{-1}UP P^{-1}UP = P^{-1}(U^2 U)P = P^{-1}VP \ . \\ & \text{Ainsi } M \text{ est semblable à } V \ . \\ & \text{On a alors } \operatorname{rg} M = \operatorname{rg} V = 2 \text{ et } M^3 = P^{-1}VPP^{-1}VPP^{-1}VP = P^{-1}V^3P = P^{-1} \times 0 \times P = 0 \ . \end{array}$
- 2.c On a $M^3=0$ et $\operatorname{rg} M=2$ donc, comme ci-dessus, M est semblable à U et donc à N . Soit $Q\in GL_3(\mathbb{R})$ telle que $M=Q^{-1}NQ$. On peut écrire $A^{-1}=I_3+M=I_3+Q^{-1}NQ=Q^{-1}(I_3+N)Q=Q^{-1}AQ$ donc A^{-1} et A sont semblables.
- 3. Si $\operatorname{rg} N=0$ alors N=0, $A=I_3=A^{-1}$ et donc A et A^{-1} sont semblables via $P=I_3\in GL_3(\mathbb{R})$. Si $\operatorname{rg} N=1$ alors $\alpha=0$ ou $\gamma=0$ mais dans les deux cas $N^2=0$. Comme en III.2.a et en exploitant II.3.c, on peut alors affirmer que N est semblable à U'. Par suite M est semblable à V' et donc $M^2=0$ et $\operatorname{rg} M=1$. Ainsi M est aussi semblable à U' et donc à N.