The p is an odd prime and a, b are coprime than show that
$$\frac{1}{2}$$
 and $\frac{1}{2}$ and

D> Let v, P>1 be positive integers and p be a prime. Given that v/(P-1) and P/(n3-1) prove that 4p-3 is a perfort square

$$\Rightarrow (N+1) \mid (kn^2 + kn + k - n (Nk+1))$$

$$\Rightarrow (N+1) \mid (Nk+k-n)$$

$$\Rightarrow$$
 nk+1 \leq nk+k-n \Rightarrow n+1 \leq k \Rightarrow n(nH)+1 \leq nk+1=P \Rightarrow n²+n+1 \leq P $-$ (2)

From (1) & (1): -
$$P = N^2 + N + 1$$

 $\Rightarrow 4P - 3 = 4N^2 + 4N + 4 - 3 = 4N^2 + 4N + 1 = (2N + 1)^2 = Perfect square$

(IMO 1959) Prove that for any natural number
$$n$$
, the frochen $\frac{21 n + 4}{14 n + 3}$ is inclusable.

(2m+4-14n-3)

Ano. - $\gcd(21n+4, 14n+3) = \gcd(7n+1, 14n+3) = \gcd(7n+1, 14n+3-2(7n+1)) = \gcd(7n+1, 14n+3) = \gcd(7n+1, 14n+3)$

8) Homework: - Show that for all primes P, Q(P) is an integer where,
$$Q(P) = \prod_{k=1}^{p-1} \binom{2k-p-1}{k}$$