CHEM202

Stereochemistry Lecture 2

Cyclisation Reactions

Part 1

M. C. Escher Curl-up

Recap of yesterday...

- Newman projections
- Eclipsed through to staggered conformations
- Ring strain: Torsional, bond angle and van der Waals interactions

Favoured Ring Size Varies

The 6-membered ring is not always the most favoured Some influential factors:

- Atoms other than C may have different preferred bond angles
- Divalent ring atoms:
 - have no bonds to become involved in eclipsing
 - have no attached groupings less van der Waals interaction
 - planar conformations may be feasible
- Interactions between charged or partially charged centres
 Molecular modelling is again very helpful

Ring Formation

- Rings of various sizes and compositions are known
- Ring formation is a very important part of synthetic chemistry

- Look at formation of rings from acyclic compounds:
- Key factor is the ring formation reversible?

Recap on Substitution Reactions

- Types?
- Mechanistic differences?
- Kinetics
- Substrate scope

Irreversible Ring Formation

- Irreversible ring formations are controlled by the rate of product formation (kinetic control)
- The lower the activation energy, the faster the product will form

Reversible Ring Formation

- These reactions are under thermodynamic control
- Equilibrium composition reflects the stability of the ring system
- Cyclized products may only be isolated if the ring has little strain

Hemiacetal Formation

 Results when an alcohol and an aldehyde are treated with acid (CHEM 191)

Cyclic Hemiacetal Formation

- If both components are part of the same molecule ⇒ a ring
- Equilibrium only favours cyclized product if the ring is unstrained
 A product with a 5-membered ring may be isolated:

but one with a 3-membered ring cannot:

- Hemiacetal rings are very important in carbohydrate chemistry e.g. monosaccharides (CHEM 191):
 - The only significant cyclic species have 5 or 6-membered rings
 - Levels of 3, 4 or 7-membered ring species are negligible

D-Ribose

How many cyclic hemiacetals would you expect to form?

α-D-ribopyranose

β-D-ribopyranose

D-Ribose in Water at 25°C

HO - OH OH OH

Ribose exists only in *furanose* and *pyranose* forms

As expected from ΔH_r values calculated (ΔH_f (ring) - ΔH_f (acyclic), molecular mechanics) for cyclization to the various ring forms:

Ring	ΔH _r (kJ/mol)	
size	α	β
3	114.1	98.6
4	302.1	303.1
5	6.1	-8.4
6	-4.1	-1.3

Note:

- Formation of 3 and 4-membered rings is highly endothermic.
- For the 5β, 6α and 6β isomers, ring formation is predicted to be exothermic.
- Calculations are for the gas phase. There will be some differences in water solution.

Cyclic Ethers

- Alkoxide + alkyl halide ⇒ ether (S_N2 reaction CHEM 191)
- If both functions are part of the same molecule ⇒ cyclic ether
- Not reversible halide ion (nucleophile) cannot displace alkoxide ion (poor leaving group)
- Rate of reaction strongly dependent on ring size. Observations:

$$-3 \approx 5 > 6 > 4 \approx 7 > 8$$

- 8-membered ring:
 - High degree of polymerisation
 - Rate of internal reaction is very slow
 - Intermolecular reaction becomes competitive
- 9 to 11-membered rings do not form

Explanation - 1

 The difference in ΔH_f (ΔH_f (ring) - ΔH_f (acyclic)) calculated by molecular mechanics shows the strain present in each of the ring forms:

Ring Size	ΔΔH _f / kJ mol ⁻¹
3	82.8
4	248.5
5	33.9
6	17.2
7	41.4
8	66.6

i.e. ring strain preference 6 > 5 > 7 > 8 > 3 > 4
 (c.f. observed 3 ≈ 5 > 6 > 4 ≈ 7 > 8)

Explanation - 2

- Must be some additional factor:
 - Relates to the probability of the reacting centres coming together to attain the necessary transition state
 - If no. of intervening bonds is large, this will be low
- With the 3-membered ring, probability is very high the preferred conformation is that required for cyclization:

- As the ring size increases, the probability factor becomes less favourable
- Results overall represent a combination of ring strain and probability factors

3-Membered Rings in Natural Products

Despite the ring strain, compounds containing 3-membered rings are quite common in nature

Lecture Problem

Predict the major product of the following reaction:

