Searchable Symmetric Encryption (SSE)

Pseudo random function:

Encryption:

 F_6

 F_1 F_2 F_3 F_4 F_5

Search: O(|F(k)|)

Server storage: O(|F|)

deterministic! token server client 111111 \mathbf{F}_{1} F_2 F_4

file access patterns!

Dynamic SSE

File insertion and deletion

Challenges:

- 1. Free slot
- 2. Update previous pointer
- 3. Removal of (keyword, fileID) pairs

List of free slots

Linearly Homomorphic Pointer

 \mathbf{F}_7

Dual Index for Deletion

Search index:

Deletion index:

Dynamic SSE algorithms

- $K \leftarrow Gen(1^k)$
- $(\gamma, \mathbf{c}) \leftarrow \text{Enc}(K, \mathbf{f})$
- $\tau_s \leftarrow \text{SrchToken}(K, w)$
- $I_w \leftarrow \text{Search}(\mathbf{c}, \gamma, \tau_s)$
- $f_i \leftarrow \text{Dec}(K, c_i)$
- τ_a ,c \leftarrow AddToken (K, f)
- γ' , $\mathbf{c}' \leftarrow \mathrm{Add}(\mathbf{c}, \gamma, \tau_a, \mathbf{c})$
- $\tau_d \leftarrow \text{DelToken } (K, f)$
- $\gamma' \leftarrow \text{Del}(\mathbf{c}, \gamma, \tau_d)$

Let SKE = (Gen, Enc, Dec) be a private-key encryption scheme and $F: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^k$, $G: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^*$, and $P: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^k$ be pseudo-random functions. Let $H_1: \{0,1\}^* \to \{0,1\}^*$ and $H_2: \{0,1\}^* \to \{0,1\}^*$ be random oracles. Let $z \in \mathbb{N}$ be the initial size of the free list.

- Gen(1^k): sample three k-bit strings K_1, K_2, K_3 uniformly at random and generate $K_4 \leftarrow \mathsf{SSE}.\mathsf{Gen}(1^k)$. Output $K = (K_1, K_2, K_3, K_4)$.
- $\operatorname{Enc}(K, \mathbf{f})$:
 - 1. let \mathbf{A}_s and \mathbf{A}_d be arrays of size $|\mathbf{c}|/8 + z$ and let \mathbf{T}_s and \mathbf{T}_d be dictionary of size #W and $\#\mathbf{f}$, respectively. We assume $\mathbf{0}$ is a $(\log \#\mathbf{A}_s)$ -length string of 0's and that free is a word not in W.
 - 2. for each word $w \in W$,
 - (a) create a list L_w of $\#\mathbf{f}_w$ nodes $(N_1, \ldots, N_{\#\mathbf{f}_w})$ stored at random locations in the search array A_s and defined as:

$$\mathtt{N}_i := (\langle \mathsf{id}_i, \mathsf{addr}_s(\mathtt{N}_{i+1}) \rangle \oplus H_1(K_w, r_i), r_i)$$

where id_i is the ID of the *i*th file in \mathbf{f}_w , r_i is a *k*-bit string generated uniformly at random, $K_w := P_{K_3}(w)$ and $\mathsf{addr}_s(\mathbb{N}_{\#\mathbf{f}_w+1}) = \mathbf{0}$

(b) store a pointer to the first node of L_w in the search table by setting

$$\mathsf{T}_s[F_{K_1}(w)] := \langle \mathsf{addr}_s(\mathsf{N}_1), \mathsf{addr}_d(\mathsf{N}_1^\star) \rangle \oplus G_{K_2}(w),$$

where N^* is the dual of N, i.e., the node in A_d whose fourth entry points to N_1 in A_s .

- 3. for each file f in \mathbf{f} ,
 - (a) create a list L_f of $\#\bar{f}$ dual nodes $(D_1, \ldots, D_{\#\bar{f}})$ stored at random locations in the deletion array A_d and defined as follows: each entry D_i is associated with a word w, and hence a node N in L_w . Let N_{+1} be the node following N in L_w , and N_{-1} the node previous to N in L_w . Then, define D_i as follows:
- $$\begin{split} \mathbf{D}_i := \left(\left\langle \mathsf{addr}_d(\mathbf{D}_{i+1}), \mathsf{addr}_d(\mathbf{N}_{-1}^\star), \mathsf{addr}_d(\mathbf{N}_{+1}^\star), \mathsf{addr}_s(\mathbf{N}), \mathsf{addr}_s(\mathbf{N}_{-1}), \mathsf{addr}_s(\mathbf{N}_{+1}), F_{K_1}(w) \right\rangle \oplus H_2(K_f, r_i'), r_i' \right) \\ & \text{where } r_i' \text{ is a k-bit string generated uniformly at random, } K_f := P_{K_3}(f), \text{ and } \\ & \mathsf{addr}_d(\mathbf{D}_{\#\bar{f}+1}) = \mathbf{0}. \end{split}$$
 - (b) store a pointer to the first node of L_f in the deletion table by setting:

$$T_d[F_{K_1}(f)] := \mathsf{addr}_d(\mathsf{D}_1) \oplus G_{K_2}(f)$$

Dual Index for Deletion

Search index:

Deletion index:

4. create an unencrypted free list L_{free} by choosing z unused cells at random in A_s and in A_d . Let (F_1, \ldots, F_z) and (F'_1, \ldots, F'_z) be the free nodes in A_s and A_d , respectively. Set

$$T_s[\mathsf{free}] := \langle \mathsf{addr}_s(\mathsf{F}_z), \mathbf{0}^{\log \# \mathtt{A}} \rangle$$

and for $z \geq i \geq 1$, set

$$A_s[\mathsf{addr}_s(\mathsf{F}_i)] := \mathbf{0}^{\log \#\mathbf{f}}, \mathsf{addr}_s(\mathsf{F}_{i-1}), \mathsf{addr}_d(\mathsf{F}_i')$$

where $\mathsf{addr}_s(\mathsf{F}_0) = \mathbf{0}^{\log \# \mathsf{A}}$.

- 5. fill the remaining entries of A_s and A_d with random strings
- 6. for $1 \leq i \leq \#\mathbf{f}$, let $c_i \leftarrow \mathsf{SKE}.\mathsf{Enc}_{K_4}(f_i)$
- 7. output (γ, \mathbf{c}) , where $\gamma := (A_s, T_s, A_d, T_d)$ and $\mathbf{c} = (c_1, \dots, c_{\#\mathbf{f}})$.

Search

- SrchToken(K, w): compute and output $\tau_s := (F_{K_1}(w), G_{K_2}(w), P_{K_3}(w))$
- Search $(\gamma, \mathbf{c}, \tau_s)$:
 - 1. parse τ_s as (τ_1, τ_2, τ_3) and return an empty list if τ_1 is not present in T_s .
 - 2. recover a pointer to the first node of the list by computing $(\alpha_1, \alpha_1') := T_s[\tau_1] \oplus \tau_2$
 - 3. look up $\mathbb{N}_1 := \mathbb{A}[\alpha_1]$ and decrypt with τ_3 , i.e., parse \mathbb{N}_1 as (ν_1, r_1) and compute $(\mathsf{id}_1, \mathsf{addr}_s(\mathbb{N}_2)) := \nu_1 \oplus H_1(\tau_3, r_1)$
 - 4. for $i \geq 2$, decrypt node N_i as above until $\alpha_{i+1} = \mathbf{0}$
 - 5. let $I = \{id_1, ..., id_m\}$ be the file identifiers revealed in the previous steps and output $\{c_i\}_{i \in I}$, i.e., the encryptions of the files whose identifiers were revealed.

- $\operatorname{Enc}(K, \mathbf{f})$:
 - 1. let \mathbf{A}_s and \mathbf{A}_d be arrays of size $|\mathbf{c}|/8 + z$ and let \mathbf{T}_s and \mathbf{T}_d be dictionary of size #W and $\#\mathbf{f}$, respectively. We assume $\mathbf{0}$ is a $(\log \#\mathbf{A}_s)$ -length string of 0's and that free is a word not in W.
 - 2. for each word $w \in W$,
 - (a) create a list L_w of $\#\mathbf{f}_w$ nodes $(N_1, \ldots, N_{\#\mathbf{f}_w})$ stored at random locations in the search array A_s and defined as:

$$\mathtt{N}_i := (\langle \mathsf{id}_i, \mathsf{addr}_s(\mathtt{N}_{i+1}) \rangle \oplus H_1(K_w, r_i), r_i)$$

where id_i is the ID of the *i*th file in \mathbf{f}_w , r_i is a *k*-bit string generated uniformly at random, $K_w := P_{K_3}(w)$ and $\mathsf{addr}_s(\mathbb{N}_{\#\mathbf{f}_w+1}) = \mathbf{0}$

(b) store a pointer to the first node of L_w in the search table by setting

$$\mathsf{T}_s[F_{K_1}(w)] := \langle \mathsf{addr}_s(\mathsf{N}_1), \mathsf{addr}_d(\mathsf{N}_1^\star) \rangle \oplus G_{K_2}(w),$$

where N^* is the dual of N, i.e., the node in A_d whose fourth entry points to N_1 in A_s .

Delete

- DelToken(K, f): output: $\tau_d := (F_{K_1}(f), G_{K_2}(f), P_{K_3}(f), id(f))$.
- $Del(\gamma, \mathbf{c}, \tau_d)$:
 - 1. parse τ_d as $(\tau_1, \tau_2, \tau_3, id)$ and return \perp if τ_1 is not in T_d
 - 2. find the first node of L_f by computing $\alpha_1' := T_d[\tau_1] \oplus \tau_2$
 - 3. for $1 \le i \le \#\bar{f}$,
 - (a) decrypt D_i by computing $(\alpha_1, \ldots, \alpha_6, \mu) := D_i \oplus H_2(\tau_3, r)$, where $(D_i, r) := A_d[\alpha_i']$
 - (b) delete D_i by setting $A_d[\alpha'_i]$ to a random $(6 \log \# A + k)$ -bit string
 - (c) find address of last free node by computing $(\varphi, \mathbf{0}^{\log \# \mathtt{A}}) := \mathtt{T}_s[\mathsf{free}]$
 - (d) make the free entry in the search table point to D_i 's dual by setting $T_s[free] := \langle \alpha_4, \mathbf{0}^{\log \# A} \rangle$
 - (e) free location of D_i 's dual by setting $A_s[\alpha_4] := (\varphi, \alpha_i')$
 - (f) let \mathbb{N}_{-1} be the node that precedes \mathbb{D}_i 's dual. Update \mathbb{N}_{-1} 's "next pointer" by setting: $\mathbb{A}_s[\alpha_5] := (\beta_1, \beta_2 \oplus \alpha_4 \oplus \alpha_6, r_{-1})$, where $(\beta_1, \beta_2, r_{-1}) := \mathbb{A}_s[\alpha_5]$. Also, update the pointers of \mathbb{N}_{-1} 's dual by setting

$$\mathbf{A}_d[\alpha_2] := (\beta_1, \beta_2, \beta_3 \oplus \alpha_i' \oplus \alpha_3, \beta_4, \beta_5, \beta_6 \oplus \alpha_4 \oplus \alpha_6, \mu*, r^*_{-1}),$$

where
$$(\beta_1, \dots, \beta_6, \mu^*, r_{-1}^*) := A_d[\alpha_2]$$

(g) let N_{+1} be the node that follows D_i 's dual. Update N_{+1} 's dual pointers by setting:

$$\mathbf{A}_d[\alpha_3] := (\beta_1, \beta_2 \oplus \alpha_i' \oplus \alpha_2, \beta_3, \beta_4, \beta_5 \oplus \alpha_4 \oplus \alpha_5, \beta_6, \mu^*, r_{+1}^*),$$

where
$$(\beta_1, \ldots, \beta_6, \mu^*, r_{+1}^*) := A_d[\alpha_3]$$

- (h) set $\alpha'_{i+1} := \alpha_1$
- 4. remove the ciphertext that corresponds to id from c
- 5. remove τ_1 from T_d

- $\operatorname{Enc}(K, \mathbf{f})$:
 - 1. let A_s and A_d be arrays of size $|\mathbf{c}|/8 + z$ and let T_s and T_d be dictionary of size #W and $\#\mathbf{f}$, respectively. We assume $\mathbf{0}$ is a $(\log \#A_s)$ -length string of 0's and that free is a word not in W.
 - 2. for each word $w \in W$,
 - (a) create a list L_w of $\#\mathbf{f}_w$ nodes $(N_1, \ldots, N_{\#\mathbf{f}_w})$ stored at random locations in the search array A_s and defined as:

$$\mathtt{N}_i := (\langle \mathsf{id}_i, \mathsf{addr}_s(\mathtt{N}_{i+1}) \rangle \oplus H_1(K_w, r_i), r_i)$$

where id_i is the ID of the *i*th file in \mathbf{f}_w , r_i is a *k*-bit string generated uniformly at random, $K_w := P_{K_3}(w)$ and $\mathsf{addr}_s(\mathbb{N}_{\#\mathbf{f}_w+1}) = \mathbf{0}$

(b) store a pointer to the first node of L_w in the search table by setting

$$\mathtt{T}_s[F_{K_1}(w)] := \langle \mathsf{addr}_s(\mathtt{N}_1), \mathsf{addr}_d(\mathtt{N}_1^\star) \rangle \oplus G_{K_2}(w),$$

where N^* is the dual of N, i.e., the node in A_d whose fourth entry points to N_1 in A_s .

- 3. for each file f in \mathbf{f} ,
 - (a) create a list L_f of $\#\bar{f}$ dual nodes $(D_1, \ldots, D_{\#\bar{f}})$ stored at random locations in the deletion array A_d and defined as follows: each entry D_i is associated with a word w, and hence a node N in L_w . Let N_{+1} be the node following N in L_w , and N_{-1} the node previous to N in L_w . Then, define D_i as follows:

$$\mathbf{D}_i := \left(\left\langle \mathsf{addr}_d(\mathbf{D}_{i+1}), \mathsf{addr}_d(\mathbf{N}_{-1}^\star), \mathsf{addr}_d(\mathbf{N}_{+1}^\star), \mathsf{addr}_s(\mathbf{N}), \mathsf{addr}_s(\mathbf{N}_{-1}), \mathsf{addr}_s(\mathbf{N}_{+1}), F_{K_1}(w) \right\rangle \oplus H_2(K_f, r_i'), r_i' \right)$$

where r'_i is a k-bit string generated uniformly at random, $K_f := P_{K_3}(f)$, and $\mathsf{addr}_d(\mathsf{D}_{\#\bar{f}+1}) = \mathbf{0}$.

(b) store a pointer to the first node of L_f in the deletion table by setting:

$$\mathtt{T}_d[F_{K_1}(f)] := \mathsf{addr}_d(\mathtt{D}_1) \oplus G_{K_2}(f)$$

Add

• AddToken(K, f): let $(w_1, \ldots, w_{\#\bar{f}})$ be the *unique* words in f in their order of appearance in f. Compute

$$\tau_a := (F_{K_1}(f), G_{K_2}(f), \lambda_1, \dots, \lambda_{\#\bar{f}}),$$

where for all $1 \le i \le \#\bar{f}$:

$$\lambda_i := \big(F_{K_1}(w_i), G_{K_2}(w_i), \langle \mathsf{id}(f), \mathbf{0} \rangle \oplus H_1(P_{K_3}(w_i), r_i), r_i, \langle \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, F_{K_1}(w_i) \rangle \oplus H_2(P_{K_3}(f), r_i'), r_i' \big),$$

and r_i and r'_i are random k-bit strings. Let $c_f \leftarrow \mathsf{SKE}.\mathsf{Enc}_{K_4}(f)$ and output (τ_a, c_f) .

- Add $(\gamma, \mathbf{c}, \tau_a)$:
 - 1. parse τ_a as $(\tau_1, \tau_2, \lambda_1, \dots, \lambda_{\#\bar{f}}, c)$ and return \bot if τ_1 is not in T_d .
 - 2. for $1 \le i \le \#\bar{f}$,
 - (a) find the last free location φ in the search array and its corresponding entry φ^* in the deletion array by computing $(\varphi, \mathbf{0}) := T_s[\text{free}]$, and $(\varphi_{-1}, \varphi^*) := A_s[\varphi]$.
 - (b) update the search table to point to the second to last free entry by setting $T_s[free] := (\varphi_{-1}, \mathbf{0})$
 - (c) recover a pointer to the first node N_1 of the list by computing $(\alpha_1, \alpha_1^*) := T_s[\lambda_i[1]] \oplus \lambda_i[2]$
 - (d) store the new node at location φ and modify its forward pointer to \mathbb{N}_1 by setting $\mathbb{A}_s[\varphi] := (\lambda_i[3] \oplus \langle \mathbf{0}, \alpha_1 \rangle, \lambda_i[4])$
 - (e) update the search table by setting $T_s[\lambda_i[1]] := (\varphi, \varphi^*) \oplus \lambda_i[2]$
 - (f) update the dual of \mathbb{N}_1 by setting $\mathbb{A}_d[\alpha_1^{\star}] := (\mathbb{D}_1 \oplus \langle \mathbf{0}, \varphi^{\star}, \mathbf{0}, \mathbf{0}, \varphi, \mathbf{0}, \mathbf{0} \rangle, r)$, where $(\mathbb{D}_1, r) := \mathbb{A}_d[\alpha_1^{\star}]$
 - (g) update the dual of $\mathbf{A}_s[\varphi]$ by setting $\mathbf{A}_d[\varphi^*] := (\lambda_i[5] \oplus \langle \varphi_{-1}^*, \mathbf{0}, \alpha_1^*, \varphi, \mathbf{0}, \alpha_1, \lambda_i[1] \rangle, \lambda_i[6])$,
 - (h) if i = 1, update the deletion table by setting $T_d[\tau_1] := \langle \varphi^*, \mathbf{0} \rangle \oplus \tau_2$.
 - 3. update the ciphertexts by adding c to c

Leakage

- Access pattern
- Search pattern
- Add: if keyword w appears in any other file
- Delete: pointer of previous and next element