CSE 250A. Assignment 3

Hao-en Sung (A53204772) wrangle1005@gmail.com

October 17, 2016

3.1 Inference in a chain

(a) Prove that $P(X_{t+1} = j | X_1 = i) = [A^t]_{ij}$, where A^t is the t^{th} power of the matrix A. Hint: use induction.

Sol. When t = 1, according to A_{ij} definition, I have

$$A_{ij} = P(X_2 = j | X_1 = i).$$

Assume that when t = t', $P(X_{t'+1}|X_1 = i) = [A^{t'}]_{i,j}$.

For t = t' + 1, I have

$$P(X'_t + 2 = j | X_1 = i) = \frac{\sum_k P(X_{t'+2} = j, X_{t'+1} = k, X_1 = i)}{P(X_1 = i)}$$

$$= \sum_k P(X_{t'+2} = j | X_{t'+1} = k) \cdot P(X_{t'+1} = k | X_1 = i)$$

$$= \sum_k A_{kj} \cdot [A^{t'}]_{ik} = [A^{t'+1}]_{ij}.$$

(b) Consider the computational complexity of this inference. Devise a simple algorithm, based on matrix-vector multiplication, that scales as $O(n^2t)$

Sol. It is known that the multiplication between one vector of size n and one matrix of size $n \times n$ cost $O(n^2)$ time complexity. Thus, overall inference complexity for t matrices multiplication is $O(n^2t)$.

(c) Show alternatively that the inference can also be done in $O(n^3 \log_2 t)$.

Sol. It is known that the multiplication between two matrices both of size $n \times n$ cost $O(n^3)$ time-complexity. According to Fast Exponentiation Algorithm, one can express t in binary format and perform matrix multiplications for $O(\log t)$ times. After that, one can run vector-matrix multiplication to get the inference result. Thus, overall inference complexity is $O(n^3 \log t + n^2) = O(n^3 \log t)$.

(d) Suppose that the transition matrix A_{ij} is sparse, with at most $m \ll n$ non-zero elements per row. Show that in this case the inference can be done in O(mnt).

Sol. One can first transform the original A matrix into sparse matrix format $A^{(s)}$. Since there are at most m non-zero elements per row in $A^{(s)}$, in vector-matrix multiplication, there are at most m multiplications for each element in vector. Thus, the time complexity can be reduced to O(mnt).

(e) Show how to compute the posterior probability $P(X_1 = i | X_T = j)$ in terms of the matrix A and the prior probability $P(X_1 = i)$. Hint: use Bayes rule and your answer from part (a).

Sol. Based on the conclusion in (a), I have $P(X_T = j | X_1 = i)$. Thus, I can derive

$$P(X_1 = i | X_T = j) = \frac{P(X_T = j, X_1 = i)}{\sum_k P(X_T = j, X_1 = k)}$$
$$= \frac{P(X_T = j | X_1 = i) \cdot P(X_1 = i)}{\sum_k P(X_T = j | X_1 = k) \cdot P(X_1 = k)}.$$

3.2 More inference in a chain

(a) Show how to compute the conditional probability $P(Y_1|X_1)$ that appears in the numerator of Bayes rule from the CPTs of the belief network.

Sol.

$$P(Y_1|X_1) = \frac{P(Y_1, X_1)}{P(X_1)}$$

$$= \frac{\sum_{X_0} P(X_0) \cdot P(X_1) \cdot P(Y_1|X_0, X_1)}{P(X_1)}$$

$$= \sum_{X_0} P(X_0) \cdot P(Y_1|X_0, X_1)$$

(b) Show how to compute the marginal probability $P(Y_1)$ that appears in the denominator of Bayes rule from the CPTs of the belief network.

Sol.

$$P(Y_1) = \sum_{X_0, X_1} P(X_0) \cdot P(X_1) \cdot P(Y_1 | X_0, X_1)$$

(c) Simplify the term $P(X_n|Y_1,...,Y_{n-1})$ that appears in the numerator of Bayes rule.

Sol. Since Y_n is not given, X_n is independent to $Y_1,...,Y_{n-1}$. Thus, $P(X_n|Y_1,...,Y_{n-1})=P(X_n)$.

(d) Show how to compute the conditional probability $P(Y_n|X_n,Y_1,...,Y_{n-1})$ that appears in the numerator of Bayes rule. Express your answer in terms of the CPTs of the belief network and the probabilities $P(X_{n-1}=x|Y_1,...,Y_{n-1})$, which you may assume have already been computed.

Sol. Similar to the procedure in (a), I have

$$P(Y_n|X_n, Y_1, ..., Y_{n-1}) = \sum_{X_{n-1}} P(X_{n-1}|Y_1, ..., Y_{n-1}) \cdot P(Y_n|X_{n-1}, X_n, Y_1, ..., Y_{n-1})$$
$$= \sum_{X_{n-1}} P(X_{n-1}|Y_1, ..., Y_{n-1}) \cdot P(Y_n|X_{n-1}, X_n).$$

(e) Show how to compute the conditional probability $P(Y_n|Y_1,...,Y_{n-1})$ that appears in the denominator of Bayes rule. Express your answer in terms of the CPTs of the belief network and the probabilities $P(X_{n-1} = x|Y_1,...,Y_{n-1})$, which you may assume have already been computed.

Sol. Similar to procedure in (b), I have

$$P(Y_n|Y_1,...,Y_{n-1}) = \sum_{X_{n-1},X_n} P(X_{n-1}|Y_1,...,Y_{n-1}) \cdot P(X_n|Y_1,...,Y_{n-1}) \cdot P(Y_n|X_{n-1},X_n,Y_n,...,Y_{n-1})$$

$$= \sum_{X_{n-1},X_n} P(X_{n-1}|Y_1,...,Y_{n-1}) \cdot P(X_n) \cdot P(Y_n|X_{n-1},X_n)$$

3.3 Node clustering and polytrees

Sol. Since the definition of polytree is same as normal tree — without loop in undirected graph, only three figures meet that requirement. For the rest two figures, one possible solution is to merge two marked nodes as shown in Fig. 1.

3.4 Cutsets and polytrees

Sol. Based on d-separate definition, I can correctly add the bounding boxes as shown in Fig. 2. Only two marked points in the bottom-figure need to be merged for polytree algorithm.

Figure 1: Node Clustering and Polytrees

Figure 2: Cutsets and Polytrees

3.5 Node clustering

Sol. For P(Y|X=0) and P(Y|X=1), it is clear that they can fulfill the d-separate property since X is given, as shown in Table 1.

For P(Y|X=1) and $P(Z_1=1|Y)$, they are the same as in CPT.

Y_1	Y_2	Y_3	Y	P(Y X=0)	P(Y X=1)	$P(Z_1 = 1 Y)$	$P(Z_2 = 1 Y)$
0	0	0	1	0.504	0.048	0.2	0.9
1	0	0	2	0.056	0.192	0.3	0.8
0	1	0	3	0.126	0.072	0.4	0.7
0	0	1	4	0.014	0.288	0.5	0.6
1	1	0	5	0.216	0.032	0.6	0.5
1	0	1	6	0.024	0.128	0.7	0.4
0	1	1	7	0.054	0.048	0.8	0.3
1	1	1	8	0.006	0.192	0.9	0.2

Table 1: Node Clustering

3.6 Stochastic simulation

(a) Show that the conditional distribution for binary to decimal conversion is normalized; namely, that $\sum_{z} P(Z=z|B_1,B_2,...,B_n) = 1$, where the sum is over all integers $z \in [-\infty,+\infty]$.

Sol. For simplicity, I regard $-\infty$ and ∞ as regular numbers in following derivation.

$$\sum_{z} P(Z = z | B_1, B_2, ..., B_n) = \frac{1 - \alpha}{1 + \alpha} \cdot \left(\sum_{z = -\infty}^{f(B)} \alpha^{f(B) - z} + \sum_{z = f(B) + 1}^{\infty} \alpha^{z - f(B)} \right)$$

$$= \frac{1 - \alpha}{1 + \alpha} \cdot \left(\alpha^{f(B)} \cdot \sum_{z = -\infty}^{f(B)} \alpha^{-z} + \alpha^{-f(B)} \cdot \sum_{z = f(B) + 1}^{\infty} \alpha^{z} \right)$$

$$= \frac{1 - \alpha}{1 + \alpha} \cdot \left(\alpha^{f(B)} \cdot \frac{\alpha^{-f(B)} - \alpha^{\infty + 1}}{1 - \alpha} + \alpha^{-f(B)} \cdot \frac{\alpha^{f(B) + 1} - \alpha^{\infty + 1}}{1 - \alpha} \right)$$

$$= \frac{1 - \alpha}{1 + \alpha} \cdot \frac{1 + \alpha}{1 - \alpha} = 1$$

- (b) Consider a network with n = 10 bits and noise level $\alpha = 0.2$. Use the method of likelihood weighting to estimate the probability $P(B_i = 1|Z = 128)$ for $i \in \{2, 4, 6, 8, 10\}$.
- Sol. I implement *likelihood weighting* within MATLAB as shown in 3. I run 1,000,000 times random sampling to get averaged results. For easily reference, I also include real probability in brackets.

$$P(B_2 = 1|Z = 128) \approx 0.1895 \ (0.1923)$$

 $P(B_4 = 1|Z = 128) \approx 0.1668 \ (0.1667)$
 $P(B_6 = 1|Z = 128) \approx 0.1584 \ (0.1667)$
 $P(B_8 = 1|Z = 128) \approx 0.8326 \ (0.8333)$
 $P(B_{10} = 1|Z = 128) \approx 3.2410 \times 10^{-269} \ (3.2835 \times 10^{-269})$

- (c) Plot your estimates in part (b) as a function of the number of samples. You should be confident from the plots that your estimates have converged to a good degree of precision (say, at least two significant digits).
- Sol. Same as (b), I run 1,000,000 times random sampling to get averaged results, as shown in 3.
- (d) Submit a hard-copy printout of your source code. You may program in the language of your choice, and you may use any program at your disposal to plot the results.
- Sol. I also attach my simulated code 1 and ground truth code 1 for reference in Appendix. \Box

3.7 Even more inference

(a) Markov blanket

Sol.

$$\begin{split} P(B|A,C,D) &= \frac{P(A,B,C,D)}{\sum_B P(A,B,C,D)} \\ &= \frac{P(B|A) \cdot P(D|B,C)}{\sum_B P(B|A) \cdot P(D|B,C)} \end{split}$$

(b) Conditional independence

Sol.

$$\begin{split} P(B|A,C,D,E,F) &= \frac{P(A,B,C,D,E,F)}{\sum_{B}P(A,B,C,D,E,F)} \\ &= \frac{P(B|A) \cdot P(D|B,C)}{\sum_{B}P(B|A) \cdot P(D|B,C)} \end{split}$$

П

 $Figure \ 3: \ Stochastic \ Simulation$

(c) More conditional independence

Sol.

$$\begin{split} P(B, E, F | A, C, D) &= \frac{P(A, B, C, D, E, F)}{\sum_{B, E, F} P(A, B, C, D, E, F)} \\ &= \frac{P(F | A) \cdot P(B | A) \cdot P(D | B, C) \cdot P(E | C)}{\sum_{B, E, F} P(F | A) \cdot P(B | A) \cdot P(D | B, C) \cdot P(E | C)} \end{split}$$

Appendix

```
% Number of bits
     NB = 10;
 % Given B.2, B.4, B.6, B.8, B.10
tar = [2, 4, 6, 8, 10];
    % Given evidence
     z = 128;
10 % Alpha setting
11 a = 0.2;
12
     % Number of samples
13
     N = 1000000;
     \begin{array}{ll} \text{for } k \, = \, 1 \colon size \, (\, tar \, , \, \, 2 \, ) \\ \% \  \, \text{Initialize numerator and denominator} \end{array}
16
17
            nm = 0;
18
19
            dn = 0;
            % Record
21
            rcd = zeros(1, N);
22
23
            ^{24}
                  % Random joint distribution of B<sub>-1</sub>, ..., B<sub>-10</sub> t = randi(2^NB) -1;
26
27
                  % Check I(q, q')

suc = bitand(t, 2^(tar(k)-1)) = 0;
28
29
31
                   \begin{array}{l} val = (1-a) \; / \; (1+a) \; * \; a \hat{\;} abs(z-t) \, ; \\ nm = nm + suc \; * \; val \, ; \\ dn = dn \; + \; val \, ; \end{array}
32
33
34
35
                   \  \, {\rm rcd}\,(\,i\,) \; = \; nm \;\; / \;\; dn\,;
37
38
            % Save image and ouput result res = figure('visible','off');
39
40
             rcd (end)
             saveas(res, strcat('B', int2str(2*k), '.png'));
43
      end
44
```

Listing 1: Simulated Code for Stochastic Simulation

```
for k in range(5):
nm = 0
dn = 0

for i in range(1024):
suc = ((i & (1 << (2*k+1))) != 0)

val = (1-0.2) / (1+0.2) * (0.2 ** abs(128-i))
if suc = True:
nm = nm + val
dn = dn + val

print nm / dn
```

Listing 2: Ground Truth Code for Stochastic Simulation