Universidad Nacional del Altiplano

Facultad de Ingeniería Estadística e Informática

Docente: Fred Torres Cruz

Alumno: Clyde Neil Paricahua Pari

Trabajo Encargado - Nº 004

Método de Newton-Raphson para encontrar raíces

Genera un programa en Python orientado a objetos para hallar la raíz de una función de una variable utilizando el método de Newton-Raphson. El programa calcula automáticamente la derivada, realiza iteraciones hasta que la raíz se aproxima a un valor aceptable según una tolerancia fija y presenta una tabla con todas las iteraciones.

Código en Python

```
import sympy as sp
  class NewtonRaphson:
      def __init__(self, fx_str, iter_max=100, tol=1e-6):
           self.x = sp.Symbol('x')
           self.f_expr = sp.sympify(fx_str)
           self.df_expr = sp.diff(self.f_expr, self.x)
           self.f = sp.lambdify(self.x, self.f_expr, 'math')
           self.df = sp.lambdify(self.x, self.df_expr, 'math')
           self.iter_max = iter_max
10
           self.tol = tol
11
           self.iteraciones = []
12
      def newton(self, x0):
           delta = 0.1
15
           while self.df(x0) == 0:
16
               x0 += delta
17
18
           self.iteraciones = []
19
           for i in range(1, self.iter_max + 1):
20
               f_val = self.f(x0)
21
               df_val = self.df(x0)
22
               if df_val == 0:
23
                   print(f"Derivada cero en x = {x0}. Interrumpiendo.")
24
                   break
25
               x1 = x0 - f_val / df_val
26
               error = abs(x1 - x0)
27
               self.iteraciones.append((i, x0, f_val, df_val, x1, error))
28
               if error < self.tol:</pre>
29
                   break
30
               x0 = x1
31
           return x0
32
33
      def mostrar_tabla(self):
34
           print("\nIteraci n |
                                                 f(x_n)
                                                            | f'(x_n)
                                     x_n
35
              Error")
           print("--
36
              ")
           for it in self.iteraciones:
37
               print(f"{it[0]:9d} | {it[1]:10.6f} | {it[2]:11.6f} | {it[3]:11.6f} | {it
                   [4]:11.6f} | {it[5]:10.6e}")
```

```
if self.iteraciones:
    print(f"\nRa z aproximada: {self.iteraciones[-1][4]:.10f}")
    print(f"N mero de iteraciones: {len(self.iteraciones)}")

# --- Entrada de usuario ---
fx_str = input("Ingrese f(x): ")
x0_input = input("Ingrese el valor inicial x0 (Enter para usar x0=0): ")
x0 = float(x0_input) if x0_input.strip() != "" else 0

nr = NewtonRaphson(fx_str)
raiz = nr.newton(x0)
nr.mostrar_tabla()
```

Ejemplo de ejecución

Para la función:

$$f(x) = x^3 - 2x^2 + 2$$

y valor inicial $x_0 = 0$, se obtiene la siguiente tabla de iteraciones:

Comprobación en Exel

		F(x)=x^3 -			
Iteracion	х	2x^2 + 2	f'(x)	x_(n+1)	
x_0	0,1	1,981	-0,37	5,4540541	
x_1	5,4540541	104,7467292	67,423901	3,9004992	
x_2	3,9004992	30,91399294	30,039685	2,8713941	
x_3	2,8713941	9,184560582	13,249136	2,1781745	
x_4	2,1781745	2,845338858	5,5206343	1,6627738	

Figura 1: Enter Caption

x 39	1,3925977	0,8220475	0,2475941	-1,9275434
x_40	-1,9275434	-12,592487	18,856444	
x_41	-1,2597352	,	9,7997396	-0,9359531
x 42	-0,9359531	-0,5719188	6,3718367	-0,8461958
x_43	-0,8461958	-0,0380108	5,532925	
x_44	-0,8393259	-0,0002139	5,4707071	-0,8392868
x_45	-0,8392868	-6,905E-09	5,4703538	-0,8392868
<u></u>	0,0002000	0,0001	5,47 00000	0,0002000

Figura 2: Enter Caption

La raíz aproximada obtenida es:

 $x\approx -0,\!8392868$

Ejecución de código

41 -1.927566	-12.592918	18.856800	-1.259748	6.678184e-01
42 -1.259748	-3.173105	9.799885	-0.935958	3.237900e-01
43 -0.935958	-0.571949	6.371883	-0.846196	8.976145e-02
44 -0.846196	-0.038014	5.532931	-0.839326	6.870569e-03
45 -0.839326	-0.000214	5.470707	-0.839287	3.910253e-05
46 -0.839287 Raíz aproximada: -0.839	-0.000000	5.470354	-0.839287	1.262800e-09

Figura 3: Enter Caption

Se realizaron aproximadamente 12 iteraciones hasta cumplir con la tolerancia 1×10^{-6} .