Who should pay for frequency-containment services?

Imperial College London

Lower inertia on the road to lower emissions

Thermal generators

(nuclear, gas, coal...)

Decarbonization

Most renewables: no inertia

The risk of instability has increased!

Inertia stores kinetic energy:

this energy gave us time to contain a sudden generation-demand imbalance

Frequency stability

Key to keep frequency within safe limits to avoid demand disconnection!

Cost allocation for stability services

Some 'services' are needed to maintain grid stability, and they have a cost

1. Who should cover this cost?

- Generators?
- Consumers?
- Only a subset of the former?
- 2. How much should each market participant pay?

First, why worry about who pays?

- Currently costs are socialized in most countries (except Australia)
- Until recently, irrelevant who paid (costs were small due to high inertia)

Goal of moving towards a **'causer pays' framework**:

To create incentives to 'do less harm' to the grid

(in order to reduce the cost of frequency services for consumers)

Who causes the need for frequency services?

Large units do: a low-inertia system would do fine if all units were small (there would be no large, sudden power imbalances)

Impact of inertia

under a large contingency

Impact of contingency size

in a low-inertia system

Who causes the need for frequency services?

Large units do: a low-inertia system would do fine if all units were small (there would be no large, sudden power imbalances)

We rule out penalizing the lack of inertia

- Inertia is a service, it should be remunerated appropriately
- But lack of inertia is not a problem by itself

How to split the cost?

'Airport problem'

Sequential cost allocation (Shapley value)

Each unit pays for the additional cost that it creates

Reference: "A report describing the Wholesale Electricity Market in the South West Interconnected System", Australian Energy Market Operator, September 2023

Analysis for Great Britain

Benefits of the cost allocation

- To create investment signals
 - Large units would <u>internalize their system-integration cost</u> (e.g., nuclear, offshore wind, HVDC)
 - > Costs would still trickle down to consumers, but appropriate economic signals for generation would be in place

- To incentivize flexibility
 - Large units can reduce the cost they are allocated by <u>reducing</u> <u>power output/demand</u>

Thank you for your attention!

This work was funded by MICIU/AEI/10.13039/501100011033 and ERDF/EU under grant PID2023-1504010A-C22

