第7章 LR分析

第1题

已知文法 A→

aAd|aAb|ε

判断该文法是否是 SLR(1)文法, 若是构造相应分析表, 并对输入串 ab#给出分析过程。

答案:

文法:

A→aAd|aAb| ε 拓广文法为G',增加产生式S' →A 若产生式排序为:

- $0 S' \rightarrow A$
- 1 $A \rightarrow aAd$
- 2 $A \rightarrow aAb$
- 3 $A \rightarrow \varepsilon$

由产生式知:

First (S') = $\{\varepsilon, a\}$

First (A) = $\{\varepsilon, a\}$

 $Follow(S') = \{\#\}$

Follow(A) = $\{d,b,\#\}$

G'的LR(O)项目集族及识别活前缀的DFA如下图所示:

在I0中:

 $A \rightarrow aAd\pi A \rightarrow aAb为移进项目, A \rightarrow .为归约项目, 存在移进-归约冲突, 因此所给文法不是LR(0)文法。$

在I₀、I₂中:

Follow(A) $\cap \{a\} = \{d, b, \#\} \cap \{a\} = \emptyset$

所以在 I_0 、 I_2 中的移进-归约冲突可以由Follow集解决,所以G是SLR(1)文法。构造的SLR(1)分析表如下: 题目 1 的SLR(1)分析表

状态(State)	Action		Goto		
	a	d	b	#	A
0	S2	r3	r3	r3	1
1				acc	
2	S2	r3	r3	r3	3
3		S4	S5		
4		r1	r1	r1	
5		r2	r2	r2	

题目 1 对输入串 ab#的分析过程

状态栈(state stack)	文法符号栈	剩余输入串 (input left)	动作(action)
0	#	ab#	Shift
0 2	#a	b#	Reduce by :A $\rightarrow \varepsilon$
0 2 3	#aA	b#	Shift
0 2 3 5	#aAb	#	Reduce by :A →aAb
0 1	#A	#	

分析成功,说明输入串 ab 是文法的句子。

第2题

 $S \rightarrow L \cdot L \mid L$

若有定义二进制数的文法如下:

```
L \rightarrow LB|B
    B\rightarrow 0|1
    (1) 试为该文法构造 LR 分析表,并说明属哪类 LR 分析表。
    (2) 给出输入串 101.110 的分析过程。
答案:
文法:
    S\rightarrow L.L|L
    L\rightarrow LB|B
    B\rightarrow 0|1
    拓广文法为G' ,增加产生式S' →S
    若产生式排序为:
    0 S' \rightarrow S
    1
        S \rightarrow L.L
    2
        S \rightarrow L
    3
        \Gamma \rightarrow \Gamma B
    4
       \Gamma \rightarrow B
    5
       B \rightarrow 0
    6 B \rightarrow1 \boxplus
    产生式知:
    First (S') = \{0,1\}
    First (S) = \{0,1\}
    First (L) = \{0,1\}
    First (B) = \{0,1\}
    Follow(S') = \{\#\}
    Follow(S) = \{\#\}
    Follow(L ) = \{.,0,1,\#\}
    Follow(B) = \{.,0,1,\#\}
    G'的LR(O)项目集族及识别活前缀的DFA如下图所示:
```


在I2中:

B →.0 和 B →.1 为移进项目, S →L.为归约项目, 存在移进-归约冲突, 因此所给文法不是LR(0)文法。

在I₂、I₈中:

Follow(s) $\cap \{0, 1\} = \{ \# \} \cap \{0, 1\} = \emptyset$

所以在I₂、I₈中的移进-归约冲突可以由Follow集解决,所以G是SLR(1)文法。

构造的SLR(1)分析表如下:

题目 2 的SLR(1)分析表

状态(State)		Act	ion		Goto
		0	1	#	S L B
0		S4	S5		1 2 3
1				acc	-
2	S6	S4	S5	r2	7
3	r4	r4	r4	r4	
4	r5	r5	r5	r5	-
5	r6	r6	r6	r6	
6		S4	S5		8 3
7	r3	r3	r3	r3	
8		S4	S5	r1	7

题目2对输入串101.110#的分析过程

状态栈(state stack)	文法符号栈	剩余输入串 (input left)	动作(action)
0	#	101.110#	Shift
0 5	#1	01.110#	Reduce by :B \rightarrow 1
0 3	#B	01.110#	Reduce by :S →LB
0 2	#L	01.110#	Shift
0 2 4	#LO	1.110#	Reduce by :B →0

0 2 7	#LB	1.110#Reduce by :S →LB
0 2	#L	1.110# <mark>Shift</mark>
0 2 5	#L1	$.110\#$ Reduce by :B \rightarrow 1
0 2 7	#LB	.11O#Reduce by :S →LB
0 2	#L	.110# <mark>Shift</mark>
0 2 6	#L.	110# <mark>Shift</mark>
0 2 6 5	#L.1	1O#Reduce by :B →1
0 2 6 3	#L.B	1O#Reduce by :S →B
0 2 6 8	#L.L	10#Shift
0 2 6 8 5	#L.L1	O#Reduce by :B →1
0 2 6 8 7	#L.LB	O#Reduce by :S →LB
0 2 6 8	#L.L	O#Shift
0 2 6 8 4	#L.LO	#Reduce by :B →0
0 2 6 8 7	#L.LB	#Reduce by :S →L.L
0 1	#S	#

分析成功,说明输入串101.110是题目2文法的句子。

第3题

- 已知文法 G(E)
- \bullet E \rightarrow T | E + T
- $\bullet \quad T \rightarrow F \mid T * F$
- $F \rightarrow (E) | i$
- (1)给出句型(T *F + i)的最右推导;
- (2)给出句型(T*F+i)的短语、简单短语、句柄、素短语、最左素短语。

解:

(1) 最右推导:

 $E \rightarrow T \rightarrow F \rightarrow (E) \rightarrow (E + T) \rightarrow (E + F) \rightarrow (E + i) \rightarrow (T + i) \rightarrow (T + i)$

(2) 短语: (T*F+i), T*F+i, T*F, i

简单短语: T*F,i

句柄: T*F

素短语: T*F,i

最左素短语: T*F

- 第4题
- 设有文法
- S→rD
- D→D,i|i
- (1)证明该文法不是 LR(1)文法,是 SLR 文法
- (2)给出该文法的 SLR 分析表

答案:(1)构造活前缀的 DFA

因为在状态③出出现(移进,归约)冲突,所以不是 LR(0)文法。

因为 $follow(S)={\#}$, 可以解决冲突, 即若当前单词为 ',', 则移进, ④;若当前单词为 '#', 则归约 g(1)。所以是 g(1)。所以是 g(2)0。

(2)SLR 分析表

	r	,	i	#	S	D
0	r2				S1	
1				ok		
2			i6			D3
3		, 4		r (1)		
4			i 5			
5	r (2)	r (2)	r (2)	r (2)		
6	r (3)	r (3)	r (3)	r (3)	·	

• 第 6 题

- 设文法 G[A]:
- A→aBB|B
- B→b
- (1)列出这个文法的所有 LR (0) 项目。
- (2)构造这个文法的 LR (0) 项目集规范族。)
- (3)判定这个文法是否为 LR (0) 文法, 若是, 构造 LR (0) 分析表 ■

A-ABBB $B \rightarrow b$ (I)判出这个文法的所有 LR (0) 项目 (5分)。

(2)构造这个文法的 LR (0) 项目类规范数。(5 分)

(3)判定这个文法是否为LR (0) 文法, 若是。构造LR (0) 分析表。(10 分)

LR 分析表

状态		GOTO			
	a	15	#	A	B
0	52	54		1	3
1			act		2
2		5+			To
3	Vs	Tr	V-		-
4	Y/2	13	12		
5		54			8
6	Y,	T.	T.		
7					
8					
9					
10					
11					
12					
13					U

