第六章 化学反应速率

- § 6.1 化学反应速率的定义
- § 6.2 化学反应速率方程
 - § 6.3 温度对反应速率的影响——Arrhenius方程
 - § 6.4 反应速率理论和反应机理简介
 - § 6.5 催化剂与催化作用

§ 6.1 化学反应速率的定义

溶液中的化学反应:

$$aA(aq) + bB(aq) \rightarrow yY(aq) + zZ(aq)$$

$$r = -\frac{\mathrm{d}c_{\mathrm{A}}}{a\mathrm{d}t} = -\frac{\mathrm{d}c_{\mathrm{B}}}{b\mathrm{d}t} = \frac{\mathrm{d}c_{\mathrm{Y}}}{y\mathrm{d}t} = \frac{\mathrm{d}c_{\mathrm{Z}}}{z\mathrm{d}t}$$

对于定容的气相反应:

$$r = \frac{1}{v_{\rm B}} \frac{\mathrm{d}p_{\rm B}}{\mathrm{d}t}$$

6.2 化学反应速率方程

- 6.2.1 化学反应速率方程的基本形式
- 6.2.2 元反应的速率方程
- 6.2.3 复合反应的速率方程
- 6.2.4 初始速率法确定反应速率方程
- 6.2.5 浓度与时间的定量关系

6.2.1 化学反应速率方程的基本形式

40℃, CCl₄中N₂O₅分解反应的r:c(N₂O₅)

t/s	$r: c(N_2O_5)/s^{-1}$	t /s	$r: c(N_2O_5)/s^{-1}$
0	3.65×10^{-4}	1800	3.64×10^{-4}
300	3.59×10^{-4}	2400	3.62×10^{-4}
600	3.60×10^{-4}	3000	3.69×10^{-4}
900	3.62×10^{-4}	4200	3.61×10^{-4}
1200	3.61×10^{-4}	5400	3.68×10^{-4}

 N_2O_5 的分解速率与 N_2O_5 浓度的比值是恒定的,即反应速率r与 $c(N_2O_5)$ 成正比。

可见: $r = kc(N_2O_5)$

对于一般的化学反应: $aA + bB \rightarrow yY + zZ$ $r = kc_A^{\alpha}c_B^{\beta}$

 α,β —反应级数: $\beta=1$, A为一级反应; $\beta=2$, B为二级反应,则 $\alpha+\beta=3$,总反应级数为3

 α , β 必须通过实验确定其值。

 α 、 β 分别为反应物A和B的反应级数 $\alpha+\beta=n$ 称为反应的总级数

化 学 计 量 方 程	速 率 方 程	反 应级 数
$\begin{array}{c} \mathbf{NO}_{2}(\mathbf{g}) + \mathbf{CO}(\mathbf{g}) \xrightarrow{<500\mathrm{K}} \rightarrow \\ \mathbf{NO}(\mathbf{g}) + \mathbf{CO}_{2}(\mathbf{g}) \end{array}$	$r = k[c(NO_2)]^2$	2
$H_2(g)+I_2(g) \rightarrow 2HI(g)$	$r = kc(H_2)c(I_2)$	1+1
$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$	$r = k[c(NO)]^2 c(O_2)$	2+1
$2NO(g) + 2H_2(g) \rightarrow N_2(g) + H_2O(g)$	$r = k[c(NO)]^2 c(H_2)$	2+1
$S_2O_8^{2-}(aq) + 3I^-(aq) \rightarrow$ $2SO_4^{2-}(aq) + I_3^-(aq)$	$r = kc(S_2O_8^{2-})c(I^-)$	1+1
$5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow$ $3Br_{2}(aq) + 3H_{2}O(aq)$	$cr = kc(Br^{-})$ $c(BrO_{3}^{-}) \cdot [c(H^{+})]^{2}$	1+1+2

k—反应速率系数 (rate coefficient of reaction)

k 不随浓度而变,与温度有关, 通常温度升高, k 增大

k 的单位,与反应的总级数有关

$$k = \frac{r}{c_{\boxtimes m}^{n}} = \frac{\text{mol} \cdot L^{-1} \cdot \bar{s}^{1}}{(\text{mol} \cdot L^{-1})^{n}} = (\text{mol} \cdot L^{-1})^{1-n} \cdot \bar{s}^{1}$$

零级反应:

 $mol \cdot L^{-1} \cdot s^{-1}$

一级反应: s-1 二级反应:

L·mol⁻¹·s⁻¹

三级反应:

 $L^2 \cdot mol^{-2} \cdot s^{-1}$

6.2.2 元反应的速率方程

化学反应速率与路径有关。有些反应的历程很简单, 分子相互碰撞,一步就起反应变成生成物。

元反应: 由反应物一步生成生成物的反应, 无中间体

对于元反应,在一定温度条件下,其反应速率和反应物浓度(以该物质的化学计量数的绝对值为指数)的乘积成正比。

对元反应: aA+bB=yY+zZ 反应速率方程式为:

$$r = k c^{|v_A|}(\mathbf{A}) \cdot c^{|v_B|}(\mathbf{B}) = kc^a(\mathbf{A}) \cdot c^b(\mathbf{B})$$

这一规律称质量作用定律(law of mass action)

6.2.3 复合反应的速率方程

多数反应的历程较为复杂,反应物分子要经过几步, 才能转化为生成物

复合反应:由两个或两个以上的反应组合成的总反应。

在复合反应中,可用实验检测到中间产物的存在,但 它被后面的一步或几步反应消耗掉,因而不出现在总 反应方程式中

在复合反应中,每一步反应实际上都是元反应

根据质量作用定律可写出每一步反应的速率方程, 其中最慢的一步反应是整个化学反应的控制步骤, 该反应的速率方程就是复合反应的速率方程

如:
$$NO_2(g) + CO(g) \xrightarrow{T < 500 \text{ K}} NO(g) + CO_2(g)$$

为由下列两步组成的复合反应

$$①NO2 + NO2 \rightarrow NO3 + NO (慢)$$

②
$$NO_3 + CO \rightarrow NO_2 + CO_2$$
 (快)

中间产物NO₃可被光谱检测到,但是没有从混合物中分离出来。

控制步骤的速率方程式: $r = k[c(NO_2)]^2$

反应机理的研究十分复杂

意义: 若清楚反应是如何进行的,则可以有效控制反应的快慢,以获得期望产物。

方法:采用分子光谱等研究手段检测反应过程中的中间产物,据此推断反应历程,再以实验获得的速率方程验证

一个合理的反应机理应满足:

- 全部元反应的加和应为化学计量反应方程式
- 由反应机理得出的速率方程应与实验所得一致

例题:一氧化氮被还原为氮气和水:

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

根据光谱学研究提出的反应机理是:

①2NO
$$\frac{k_1}{k_{-1}}$$
N₂O₂ (快,平衡)

②
$$N_2O_2 + H_2 \xrightarrow{k_2} N_2O + H_2O$$
 (慢)

③
$$N_2O + H_2 \xrightarrow{k_1} 2N_2 + H_2O$$
 (快)

依据这一反应机理推断其速率方程式, 并确定相关物种的反应级数。 解:按照速率控制步骤(最慢的一步)

$$r = k_2 c(N_2 O_2)c(H_2)$$

N₂O₂是中间产物,根据第一步的快速平衡,

则
$$k_1[c(NO)]^2 = k_{-1}c(N_2O_2)$$

 $c(N_2O_2) = \frac{k_1}{k_{-1}}[c(NO)]^2$

代入
$$r = k_2 \frac{k_1}{k_{-1}} [c(NO)]^2 c(H_2)$$

= $k[c(NO)]^2 c(H_2)$

该反应对NO是二级反应,对H,是一级反应。

6.2.4 初始速率法确定反应速率方程

例题: 在800°C时,对反应 $2NO+2H_2\rightarrow N_2+2H_2O$ 进行反应速率的实验测定,有关数据如下:

实验	起始浓度/(mol·L-1)		起始反应速率/(mol·L-1·s-1)	
标号	c(NO)	$c(H_2)$	r	
1	6.00×10^{-3}	1.00×10^{-3}	3.19×10^{-3}	
2	6.00×10^{-3}	2.00×10^{-3}	6.36×10^{-3}	
3	1.00×10^{-3}	6.00×10^{-3}	0.48×10^{-3}	
4	2.00×10^{-3}	6.00×10^{-3}	1.92×10^{-3}	

- (1)写出该反应的速率方程式,指出反应的 总级数:
- (2)计算该反应在800°C时的反应速率系数;
- (3)当c(NO)=4.00 × 10⁻³ mol·L⁻¹, $c(H_2)$ =5.00 × 10⁻³ mol·L⁻¹时, 计算在 800°C时的反应速率。

实验	起始浓度/(mol·L-1)		起始反应速率/(mol·L-1·s-1)
标号	c(NO)	$c(H_2)$	r
1	6.00×10^{-3}	1.00×10^{-3}	3.19×10^{-3}
2	6.00×10^{-3}	2.00×10^{-3}	6.36×10^{-3}
3	1.00×10^{-3}	6.00×10^{-3}	0.48×10^{-3}
4	2.00×10^{-3}	6.00×10^{-3}	1.92×10^{-3}

解: (1)从实验标号1到2可以看出,当c(NO)保持不变时, $c(H_2)$ 增加一倍,r也增加一倍,所以 $r \propto c(H_2)$;

实验	起始浓度/(mol·L-1)		起始反应速率/(mol·L-1·s-1)
标号	c(NO)	<i>c</i> (H ₂)	r
1	6.00×10^{-3}	1.00×10^{-3}	3.19×10^{-3}
2	6.00×10^{-3}	2.00×10^{-3}	6.36×10^{-3}
3	1.00×10^{-3}	6.00×10^{-3}	0.48×10^{-3}
4	2.00×10^{-3}	6.00×10^{-3}	1.92×10^{-3}

从实验标号3到4可以看出,当 $c(H_2)$ 保持不变,c(NO)增加到原来的2倍时,r增大到4倍,即 r $\propto c^2(NO)$;

所以 $r \propto c^2(NO) \cdot c(H_2)$

写成等式: $r = k \cdot c^2(NO) \cdot c(H_2)$ 三级反应

(2) 将实验标号3的数据带入上式,得

$$k = \frac{0.48 \times 10^{-3} \text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}}{(1.00 \times 10^{-3} \text{mol} \cdot \text{L}^{-1})^{2} (6.00 \times 10^{-3} \text{mol} \cdot \text{L}^{-1})}$$
$$= 8.0 \times 10^{4} \text{ L}^{2} \cdot \text{mol}^{-2} \cdot \text{s}^{-1}$$

(3)
$$r = 8.0 \times 10^4 \,\mathrm{L}^2 \cdot \mathrm{mol}^{-2} \cdot \mathrm{s}^{-1}$$

 $\times (4.00 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1})^2$
 $\times (5.00 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1})$
 $= 6.4 \times 10^{-3} \,\mathrm{mol} \cdot \mathrm{L}^{-1} \cdot \mathrm{s}^{-1}$

6.2.5 浓度与时间的定量关系

 N_2O_5 在CCl₄中的分解速率方程为:

$$r(N_2O_5) = kc(N_2O_5)$$
 亦可写为:

$$-\frac{dc(N_2O_5)}{dt} = kc(N_2O_5), \quad -\frac{dc(N_2O_5)}{c(N_2O_5)} = kdt$$

$$-\int_{c_0}^{c_t} \frac{dc(N_2O_5)}{c(N_2O_5)} = \int_0^t kdt \quad \ln \frac{c_t(N_2O_5)}{c_0(N_2O_5)} = -kt$$

通式:
$$\ln \frac{c_t(A)}{c_0(A)} = -kt(一级反应)$$

$$\mathbb{Z}:\ln\{c_t(A)\} = -kt + \ln\{c_0(A)\}$$

lnc-t 关系应为直线

半衰期:

当反应物A的转化率为50%时所需的反应时间称为半衰期,用 $t_{1/2}$ 表示。

对于一级反应,其半衰期为:

$$\ln \frac{c_{t_{1/2}}}{c_{0}} = -kt_{1/2}, \quad \Xi c_{t_{1/2}} = \frac{1}{2}c_{0},$$

则
$$\ln \frac{1}{2} = -kt_{1/2}$$
 $t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$

零级、一级、二级反应的速率方程总结:

反应 级数	, , ,	积 分 速 率 方 程	对 t 的 图 是 直 线		<i>T</i>
0	r = k	$c_t(\mathbf{A}) = -kt + c_0(\mathbf{A})$	$c_t(A)$	- k	$\frac{c_0(\mathrm{A})}{2k}$
1	r = kc(A)	$\ln\{c_t(\mathbf{A})\} = -kt + \ln\{c_0(\mathbf{A})\}$	$\ln\{c_t(A)\}$	- k	$\frac{0.693}{k}$
2	$r = k[c(A)]^2$	$\frac{1}{c_t(A)} = kt + \frac{1}{c_0(A)}$	$\frac{1}{c_t(A)}$	k	$\frac{1}{kc_0(A)}$

*仅适用于只有一种反应物的二级反应。

(1)通过实验确定是元反应还是复合反应

(2)反应速率系数k:

- ① k在数值上等于给定温度下各反应物浓度为单位浓度时的反应速率。
- ② k的大小与浓度无关,与温度T、催化剂有关
- ③ k的单位随反应级数的不同而不同。
- (3)在速率方程式中不包括纯固体和纯液体。

§ 6.3 温度对反应速率的影响——Arrhenius方程

6.3.1 Arrhenius方程的基本形式

6.3.2 Arrhenius方程的应用

6.3.1 Arrhenius方程的基本形式

反应速率方程 $r = kc_A^{\alpha}c_B^{\beta}$

影响反应速率的因素有: k和c

k与温度有关,T增大,一般k也增大,但 $k\sim T$ 不是线性关系。

 $N_2O_5(CCl_4) \rightarrow 2NO_2(CCl_4) + \frac{1}{2}O_2(g)$ 不同温度下的k值

T/K	k/s^{-1}
293.15	0.235×10^{-4}
298.15	0.469×10^{-4}
303.15	0.933×10^{-4}
308 15	1.82×10^{-4}
313.15	3.62×10^{-4}
318.15	6.29×10^{-4}

lnk-1/T 图

Arrhenius方程:

$$k = k_0 e^{-E_a/RT}$$
(指数形式)

 k_0 —指前参量 E_a —实验活化能,单位: kJ·mol⁻¹

对数形式: $\ln\{k\} = \ln\{k_0\} - \frac{E_a}{RT}$

显然 $\ln\{k\}$ — $\{1/T\}$ 为直线关系

直线的斜率为
$$-\frac{E_a}{R}$$
,

直线的截距为 $\ln\{k_0\}$

阿伦尼乌斯 (1859~1927) 瑞 典物理化学家 1884年提出 了电离学说,于 1903年获诺贝尔 化学奖。这一学 说是现代化学的 基础理论之一。

6.3.2 Arrhenius方程的应用

1.已知 T_1 — k_1 , T_2 — k_2 ,求 E_a $T = T_1$ 时, $\ln k_1 = \ln k_0 - E_a / RT_1$ $T = T_2$ 时, $\ln k_2 = \ln k_0 - E_a / RT_2$ 两式相减,整理得到:

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$\ln \frac{K^{\Theta}(T_2)}{K^{\Theta}(T_1)} = \frac{\Delta_r H_{\rm m}^{\Theta}(298K)}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

2.由Ea计算反应速率系数

例题: $N_2O_5(g) \rightarrow 2NO_2(g) + 1/2O_2(g)$

己知: T_1 =298.15K, k_1 =0.469×10⁻⁴s⁻¹

$$T_2$$
=318.15K, k_2 =6.29×10⁻⁴s⁻¹

求: E_a 及338.15K时的 k_3 。

解: $E_{\rm a} = R \frac{T_1 T_2}{T_2 - T_1} \ln \frac{k_2}{k_1} = 102 \text{kJ} \cdot \text{mol}^{-1}$

$$\ln \frac{k_3}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_3} \right)$$

$$k_3 = 6.12 \times 10^{-3} \,\mathrm{s}^{-1}$$

6.3.3 对Arrhenius方程的进一步分析

1. 在 $k = k_0 e^{-E_a/RT}$, E_a 处于方程的指数项中,对k有显著影响,在室温下, E_a 每增加 4kJ·mol⁻¹,k值降低约80%;

- 2. 温度升高, k增大, 一般反应温度每升高10℃, k将增大2~10倍;
- 3 升高温度,不仅 $r_{\mathbb{E}}$ 增加, $r_{\mathbb{G}}$ 也增加。

4. 根据 $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \cdot \frac{T_2 - T_1}{T_1 T_2}$ 对同一反应,升高一定温度,在高温区值增加较少,因此对于原本反应温度不高的反应,可采用升温的方法提高反应速率;

5. 对不同反应,升高相同温度, E_a 大的反应 k 增大的倍数多,因此升高温度对反应 慢的反应有明显的加速作用。

§ 6.4 反应速率理论和反应机理简介

- 6.4.1 碰撞理论
- 6.4.2 活化络合物理论
- 6.4.3 活化能与反应速率

从理论上,从分子 水平了解影响化 学反应速率因素

6.4.1 碰撞理论

- (1) 反应物分子可看作简单的硬球,无内部结构和相互作用;
- (2) 反应物分子必须经过碰撞才能发生反应;
- (3) 并非所有碰撞都一定引起反应,只有少数分子间的碰撞才能发生反应。
- (4) 化学反应是反应物分子之间原子的重新组合、改变的过程,需要能量。

以气体分子运动论为基础, 主要用于气相双分子反应 1918年英国科学家 W.C.M.Lewis提出 有效碰撞(effective collision): 能够发生 化学反应的碰撞。

活化分子(activated molecule): 能进行有效碰撞的分子。

- * 反应速率与反应物分子间的碰撞频率有关
- * 具有较高能量的分子才能成为活化分子
- * 按一定方向碰撞才能发生反应

碰撞理论的模型过于简单且理想化,具有一定的局限性

对于简单反应解释较成功,对于复杂反应不理想

在反应速率的理论建立和发展中起了重要作用,时至今日仍然非常有用

6.4.2 活化配合物理论(过渡态理论)

过渡态理论是1935年由艾林(Eyring)和波兰尼(Polany)等人提出,过渡态理论建立在统计热力学和量子力学的基础上。

考虑了反应物分子的内部结构及运动状态, 从分子角度更为深刻的解释了化学反应速 率,比简单碰撞理论前进了一大步

缺点:许多反应的活化配合物的结构尚无法 从实验上确定,计算方法过于复杂

以量子力学对反应过程中的能量变化的研究为依据,认为从反应物到生成物之间形成了势能较高的(不稳定的)活化配合物,

活化配合物所处的状态叫过渡状态。

影响反应速 率的三要素 活化配合物的浓度

活化配合物的分解的几率

活化配合物的分解速率

决定步骤

活化配合物(activated coordination

compound):参加反应的分子间发生有效碰撞时, 先生成的一种不稳定的高能态的中间化合物。

如反应:

$$NO_2 + CO = NO + CO_2$$

反应物

活化配合物

生成物

活化能 E_a : 活化配合物的最低能量与反应物平均能量之差。

$$E_{\rm a}(1) - E_{\rm a}(2) = \Delta_{\rm r} H_{\rm m}$$

化学反应过程中能量变化曲线

$$\Delta_{\mathbf{r}} H_{\mathbf{m}} = E_{\mathbf{a}(\mathbb{E})} - E_{\mathbf{a}(\mathbb{E})}$$

$$E_{\mathrm{a}(\mathbb{E})} < E_{\mathrm{a}(\dot{\mathbb{E}})}$$
, $\Delta_{\mathrm{r}} H_{\mathrm{m}} < 0$, 为放热反应;

$$E_{\mathrm{a}(\mathbb{E})} > E_{\mathrm{a}(\mathring{\mathbb{E}})}$$
, $\Delta_{\mathrm{r}} H_{\mathrm{m}} > 0$,为吸热反应。

总结:

- (1)活化能的大小可由<u>实验测定</u>。活化能越小,化学反应速率就越大。
- (2)一般化学反应的活化能在 40~400 kJ·mol⁻¹ 范围,大多在60~250 kJ·mol⁻¹之间。
- (3)活化能<40 kJ·mol⁻¹反应速率很大,如中和反应;活化能>400 kJ·mol⁻¹的反应速率就非常小。

	化学反应	活化能E _a /kJ·mol ⁻¹
· 一种强争的。	$2HI = H_2 + I_2$	183
	$2N_2O = 2N_2 + O_2$	245
	$2\mathbf{NO}_2 = 2\mathbf{NO} + \mathbf{O}_2$	112
	$2\mathbf{H}_2\mathbf{O}_2 = 2\mathbf{H}_2\mathbf{O} + \mathbf{O}_2$	75.3
	$N_2 + 3H_2 = 2NH_3$	175.73
	$\mathbf{CH_4} + \mathbf{H_2O} = \mathbf{CO} + 3\mathbf{H_2}$	94.98
	$(H_4)_2S_2O_8 + 3KI = (NH_4)_2SO_4 + K_2SO_4 + KI_3$	52.72
	$HCl + NaOH = NaCl + H_2O$	12.55~25.10
	$2SO_2 + O_2 = 2SO_3$	251.04
ES S		1

活化能是决定化学反应速率的内在因素。不同的反应具有不同的反应速率,根本原因是活化能不同。

总之. 影响化学反应速率的主要因素:

浓度: 影响分子的总碰撞次数。

温度: 影响活化分子的数目。

催化剂:降低反应的活化能。

浓度影响: 当温度一定,某反应的活化能也一定时,浓度增大,分子总数增加,活化分子数随之增多,反应速率增大。

温度影响:

当浓度一定, 温度升高,活 化分子分数增 多,反应速率 增大。

§ 6.5 催他剂与催化作用

- 6.5.1 催化剂和催化作用的基本特征特征
 - 6.5.2 均相催化与多相催化
- 6.5.3 酶催化

6.5.1 催化剂和催化作用的基本特征

催化剂:存在

少量就能加快反应而本身最后并无损耗的物质。

催化作用的特点:

- ①只能对热力学上可能发生的反应起作用。
- ②通过改变反应途径以缩短达到平衡的时间。
- ③催化剂有选择性,选择不同的催化剂会有利于不同种产物的生成。

④只有在特定的条件下催化剂才能表现活性

6.5.2 均相催化与多相催化

1.均相催化:

催化剂与反应物种在同一相中的催化反应。

无催化剂时,过氧化氢的分解反应为:

$$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(1)$$

加入催化剂Br2,可加快H2O2分解,反应机理是:

第一步
$$H_2O_2(aq) + Br_2 \rightarrow 2H^+(aq) + O_2(g) + 2Br^-(aq)$$

第二步
$$H_2O_2(aq) + 2H^+(aq) + 2Br^-(aq) \rightarrow 2H_2O(1) + Br_2$$

总反应:
$$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(l)$$

催化剂对反应活化能的影响

活化能降低使活化分子分数增加

实验结果表明,催化剂参与的分解反应,改变了反应机理,降低了反应活化能,增大了活化分子分数,反应速率显著增大。

6.5.3 酶催化

酶催化: 以酶为催化剂的反应。

特点: ①高效

- ②高选择性
- ③条件温和

