Appendix A

PROBABILITY DISTRIBUTIONS

This appendix gives the form of the pmf/pdf and summary statistics for common distributions, which are frequently used within statistical problems.

A.1 Discrete distributions

Distribution	Parameters	Mass function	Mean and variance
Binomial $\theta \sim Bin(n,p)$	sample size $n \in \mathbb{N}$ $p \in [0,1]$	$f(\theta) = \binom{n}{\theta} p^{\theta} (1-p)^{n-\theta}$ $\theta = 0, 1, \dots, n$	$\mathbb{E}(\theta) = np$ $Var(\theta) = np(1-p)$
Poisson $\theta \sim Poisson(\lambda)$	rate $\lambda > 0$	$f(\theta) = \lambda^{\theta} \exp(-\lambda)(\theta!)^{-1}$ $\theta = 0, 1, 2, \dots$	$\mathbb{E}(\theta) = \lambda$ $Var(\theta) = \lambda$
Geometric $\theta \sim Geom(p)$	$p \in [0, 1]$	$f(\theta) = p(1-p)^{\theta-1}$ $\theta = 0, 1, \dots$	$\mathbb{E}(\theta) = 1/p$ $Var(\theta) = (1-p)/p^2$
Negative Binomial $\theta \sim Neg\text{-}Bin(\alpha, \beta)$	shape $\alpha > 0$ inverse scale $\beta > 0$	$f(\theta) = \begin{pmatrix} \theta + \alpha - 1 \\ \alpha - 1 \end{pmatrix} \left(\frac{\beta}{\beta + 1}\right)^{\alpha} \left(\frac{1}{\beta + 1}\right)^{\theta}$ $\theta = 0, 1, 2, \dots$	$\mathbb{E}(\theta) = \alpha/\beta$ $Var(\theta) = \frac{\alpha}{\beta^2}(\beta + 1)$
Multinomial $\boldsymbol{\theta} \sim MN(n, \boldsymbol{p})$	sample size $n \in \mathbb{N}$ $p_i \in [0, 1]; \sum_{i=1}^k p_i = 1$	$f(\boldsymbol{\theta}) = \frac{n!}{\prod_{i=1}^k \theta_i!} \prod_{i=1}^k p_i^{\theta_i}$ $\theta_i = 0, 1, \dots, n; \sum_{i=1}^k \theta_i = n$	$\mathbb{E}(\theta_j) = np_j$ $Var(\theta_i) = np_i(1 - p_i)$

A.2 Continuous distributions

Distribution	Parameters	Density function	Mean and variance
Uniform $\theta \sim U[a, b]$	b > a	$f(\theta) = 1/(b-a)$ $\theta \in [a, b]$	$\mathbb{E}(\theta) = (a+b)/2$ $Var(\theta) = (b-a)^2/12$
Normal $\theta \sim N(\mu, \sigma^2)$	location μ scale $\sigma > 0$	$f(\theta) = \frac{\exp(-(\theta - \mu)^2/(2\sigma^2))}{\sqrt{2\pi\sigma^2}}$ $\infty < \theta < \infty$	$\mathbb{E}(\theta) = \mu$ $Var(\theta) = \sigma^2$
$\log \text{ Normal}$ $\theta \sim \log N(\mu, \sigma^2)$	$\mu \\ \sigma > 0$	$f(\theta) = \frac{\exp(-(\log \theta - \mu)^2 / (2\sigma^2))}{\sqrt{2\pi\sigma^2}\theta}$ $0 \le \theta < \infty$	$\mathbb{E}(\theta) = \exp\left(\mu + \frac{\sigma^2}{2}\right)$ $Var(\theta) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$
Beta $\theta \sim Beta(\alpha, \beta)$	$\alpha > 0$ $\beta > 0$	$f(\theta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$ $\theta \in [0,1]$	$\mathbb{E}(\theta) = \frac{\alpha}{\alpha + \beta}$ $Var(\theta) = \frac{\alpha\beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$
Exponential $\theta \sim Exp(\lambda)$	$\lambda > 0$	$f(\theta) = \lambda \exp(-\lambda \theta)$ $\theta > 0$	$\mathbb{E}(\theta) = 1/\lambda$ $Var(\theta) = 1/\lambda^2$
Gamma $ heta \sim \Gamma(lpha,eta)$	shape $\alpha > 0$ scale $\beta > 0$	$f(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha - 1} \exp(-\beta \theta)$ $\theta > 0$	$\mathbb{E}(\theta) = \alpha/\beta$ $Var(\theta) = \alpha/\beta^2$
Inverse Gamma $\theta \sim \Gamma^{-1}(\alpha, \beta)$	shape $\alpha > 0$ scale $\beta > 0$	$f(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} \exp(-\beta/\theta)$ $\theta > 0$	$\mathbb{E}(\theta) = \beta/(\alpha - 1), \text{ for } \alpha > 1$ $Var(\theta) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}, \alpha > 2$
Chi-squared $\theta \sim \chi_{\nu}^2$	$df \nu > 0$ (deg. of freedom)	$f(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{\frac{\nu}{2} - 1} \exp(-\theta/2)$ $\theta > 0 \text{ (same as } \Gamma\left(\alpha = \frac{\nu}{2}, \beta = \frac{1}{2}\right))$	$\mathbb{E}(\theta) = \nu$ $Var(\theta) = 2\nu$
Inverse Chi-squared $\theta \sim \chi_{\nu}^{-2}$	$df \nu > 0$ (deg. of freedom)	$f(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{-\left(\frac{\nu}{2}+1\right)} \exp(-1/2\theta)$ $\theta > 0 \text{ (same as } \Gamma^{-1}\left(\alpha = \frac{\nu}{2}, \beta = \frac{1}{2}\right))$	
Dirichlet $\theta \sim Dir(\alpha_1, \dots, \alpha_k)$	$\alpha_i > 0;$ $\alpha_0 \equiv \sum_{i=1}^k \alpha_i$	$f(\theta) = \frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1}^{k} \Gamma(\alpha_i)} \prod_{i=1}^{k} \theta_i^{\alpha_i - 1}$ $\theta_i > 0; \sum_{i=1}^{k} \theta_i = 1$	$\mathbb{E}(\theta_i) = \frac{\alpha_i}{\alpha_0}$ $Var(\theta_i) = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}$