IOWA STATE UNIVERSITY

Department of Computer Science COMS 641: Advanced Topics in Programming Languages

Group: Certainty

Quantifying Uncertainty of DNN Hyperparameter Optimization using a First Order Type

Sumon Biswas, Sayem Mohammad Imtiaz, Yuepei Li

December 17, 2019

Motivation

How heavy the brakes should be applied?

We build models for predictions. Are they certain?

Motivation

 "If I had to guess at what our biggest existential threat is, it's probably AI. So we need to be very careful" - made the comments in an interview in MIT

"Right" answer is usually ambiguous

DNN hyperparameter optimization is difficult

Q

Random search strategy has been proven efficient

Overview

However, in random search, programmers can not overtly represent uncertainty

₿

We utilize a first order type Uncertain<*T*> to approximate the distributions of the hyperparameters

Contribution

No attempt has been made to leverage probabilistic programming in DNN hyperparameter optimization.

- 1. Implemented first order type Uncertain<*T*> to hold the distribution of loss values over randomly chosen hyperparameters. The main goal is to help programmers overtly represent uncertainty and write conditional statements.
- 2. Our method performs significantly better than the random search method
 - a. less training data needed
 - b. converges quickly
 - c. allows programmers to impose confidence over the accuracy

Background

- DNN hypermeter optimization
 - Aims to find best value of the hyperparameters which helps
 - Converge faster
 - Minimize loss function
 - E.g., find the optimal number of hidden units, learning rate etc. in a DNN

Random search strategy

- Grid search evaluates exhaustively, which is time-consuming
- Random search evaluates manageable number of trials picked uniformly

Problem Statement

• If λ is a hyperparameter, then random search draws uniformly from possible trials of $\lambda = \{\lambda_1, \lambda_2, \lambda_3, ...\}$ and minimizes loss function:

$$\lambda^* = \operatorname*{argmin}_{\lambda} Loss_{\lambda}(x)$$

- A particular choice of hyperparameter might not work optimally on distribution of X
- What is the uncertainty in choosing optimizing hyperparameters with a certain confidence level?

Motivating Example

- Gradient descent algorithm is widely used as an optimizer in DNN
- A gradient descent works by moving downhill of the loss function curve
- Uncertainty in random initialization of parameters have varying impacts on the cost function

Solution Idea

Random search finds best hyperparameter value

A particular value might not produce best result on unseen wider population (uncertainty)

We want to capture this uncertainty into account

10

Solution Idea

Accuracy distributions across randomly sampled population

is obtained

 Able to choose a value which is in good terms with overall population

Expected accuracy in 95% CI is computed

Usability

- Other randomly initialized parameters in the mode. E.g., weight vectors when tuning learning rate or hidden unit size.
- Unseen model inputs. Unseen data can be generated with synthetic data generation.
- Large dataset where training on whole dataset takes long time.

Experiment Design (DNN Model)

Handwritten digit classification 784 inputs 28x28 = 784 pixels 1 output (0, 1, 2 ..., 9) Train (60K)

Test (10K)

- 2 convolutional layers
- 1 pooling layer
- 1 hidden layer (goal is to optimize number of hidden units)

Files (70K)

Experiment Design (Random Search)

- Goal: optimize number of hidden units in given model
- Hidden unit: [1, 1000]
- Number of experiments: 13
- 10 trials in each experiment

Uncertain<T> Data Type

Implemented in Python

All comparison operators have been overloaded

Hypothesis test for sample and test distributions

Function *E* approximated population mean

MOE is calculated

```
uncertain.py
class Uncertain:
    def init (self,sampler, *args):
        self.id=''
        self.plotDensity=False
        self.sampleSize=40
        self.samplingFunction = sampler
        self.args = list(args)
   def __lt__(self, other):
        return self.hypothesis_test(other, op.lt)
   def sample(self):
        return self.samplingFunction(*self.args)
   def hypothesis_test(self, other, H0):
        t1 = self.sample()
        t2 = other.sample()
        return H0(t1,t2)
    def E(self):
        data=[]
        for i in range(self.sampleSize):
            data.append(self.sample())
        std=stat.stdev(data)
        moe= (2*std)/math.sqrt(self.sampleSize)
        return [stat.mean(data), moe]
```

Uncertain Search


```
client.py
  def getRandomHiddenSizeSample():
      return random.randint(1,1000)
   hiddenUnitSampler=Uncertain(getRandomHiddenSizeSample)
A reference to accuracy sampler is being passed
A hidden unit is being dr\epsilon vn from the distribution
  x_trair Expected accuracy of the distribution (30,100)
  for j in range(no_of xp):
      result = []
      for i in range(no_of_trials)
Finally accuracy is computed on whole dataset
          _accuracySamfor evaluation_and_evaluate,
          training_data_size_in_petrcent=10, epoch=1, hiddenUnitSize)
          e=_accuracySampler.E()
          result.append((hiddenUnitSize, e[0]-e[1]))
      result=sorted(result.
                          key=lambda x: x[1])
      model = create_model(result[len(result)-1][0])
      model = train(model, x_train, y_train, x_test, y_test, 1)
      accuracy = evaluate(model, x_test, y_test)
```

Expected Accuracy

 Population mean is approximated in 95% Cl using central limit theorem


```
uncertain.py
class Uncertain:
   def __init__(self,sampler, *args):
        self.id=''
       self.plotDensity=False
       self.sampleSize=40
       40 samples are being drawn
   def __lt__(self, other):
        return self.hypothesis_test(other, op.lt)
   ... Population mean in 95% CI
   def sample(self):
        return self.sa plingFunction(*self.args)
   def hypothesis_tesi(self, other, H0):
        t1 = self.sample()
       t2 = other.samule()
        return H0(t1,t2)
   #returns sample mean and margin of error in 95% CI
   def E(self):
       data=[]
        for i in range(self.sampleSize):
           data.append(self.sample())
        std=stat.stdev(data)
        moe= (2*std)/math.sqrt(self.sampleSize)
        return [stat.mean(data), moe]
```

Experiment Setup (Uncertain Random Search)

10 trials in 13 each experiments experiment A random subset of 40 samples 10% training drawn in data is each trial chosen in each trial

Evaluation

- RQ1: How much uncertainty remains in hyperparameter optimization?
- RQ2: What is the **performance** improvement when we optimize hyperparameter with our method over the random search?

RQ1: How much *uncertainty* remains in hyperparameter optimization?

- Accuracy ranges from 96% to
 97% in case of uncertain search
- However, random search is more uncertain as the accuracy fluctuates largely
- Uncertain random search provides consistent performance as the best trial generalizes over the population

RQ2: How much is the performance improvement of *Uncertain Random Search*?

- 62% chance that accuracy will be in lower ranges if random search applied compared to 23% in uncertain version
- 77% likely that a randomly initialized model's accuracy will be in the high range

Findings

- In general, uncertain random search produces more consistent accuracies as it evaluates model accuracy on as many diverse population as possible
- Requires less training data for tuning compared to whole dataset needed by random search or grid search

Future Work

- Evaluate our methodology on very large dataset
- Evaluate our methodology on synthetic data

References

- 1. Swersky, Kevin, Jasper Snoek, and Ryan P. Adams. "Multi-task bayesian optimization." Advances in neural information processing systems. 2013.
- 2. Bornholt, James, Todd Mytkowicz, and Kathryn S. McKinley. "Uncertain< T>: A first-order type for uncertain data." ACM SIGPLAN Notices. Vol. 49. No. 4. ACM, 2014.
- 3. Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research 13.Feb (2012): 281-305.

Thank You

Questions?