

Mathematik für Infotronik (20)

Gerald Kupris 24.11.2010

Wiederholung: Grenzwert einer Zahlenfolge

Eine Zahlenfolge (a_k) besitzt den Grenzwert a, wenn es zu jedem $\varepsilon > 0$ einen Index n gibt, sodass $|a_k - a| < \varepsilon$ für alle natürlichen Zahlen k > n. Eine Zahlenfolge, die einen Grenzwert besitzt, nennt man konvergent und verwendet die Schreibweisen

$$(a_k) \to a \text{ für } k \to \infty \text{ oder } \lim_{k \to \infty} a_k = a.$$

Eine Zahlenfolge, die keinen Grenzwert besitzt, nennt man divergent.

Beispiel

Spezielle Grenzwerte

$$\lim_{n\to\infty}\alpha=\alpha$$

$$\lim_{n \to \infty} x^{n} = \begin{cases} 0 & falls: |x| < 1 \\ \infty & falls: x > 1 \\ unb. falls: x \le -1 \end{cases}$$

$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$\lim_{n\to\infty}\frac{1}{n^k}=0$$

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e = 2,718281...$$

$$\lim_{n\to\infty} 1 + a_n \frac{1}{a_n} = e$$

$$\lim_{n\to\infty} \left(1 + \frac{\alpha}{n}\right)^n = e^{\alpha} = \exp \alpha$$

Rechnen mit konvergenten Folgen

Wenn (a_k) und (b_k) konvergente Folgen sind mit $\lim_{k\to\infty} a_k = a$ und $\lim_{k\to\infty} b_k = b$, dann gilt:

- Die Folge $(c_k) = (a_k \pm b_k)$ konvergiert auch mit $\lim_{k \to \infty} (a_k \pm b_k) = a \pm b$.
- Die Folge $(c_k) = (a_k \cdot b_k)$ konvergiert auch mit $\lim_{k \to \infty} (a_k \cdot b_k) = a \cdot b$.
- ▶ Die Folge $(c_k) = \left(\frac{a_k}{b_k}\right)$ konvergiert auch mit $\lim_{k\to\infty} \left(\frac{a_k}{b_k}\right) = \frac{a}{b}$. Das gilt nur, wenn alle Folgenglieder b_k und der Grenzwert b nicht null sind.

24.11.2010 4

Einschließungsprinzip

Wenn (a_k) und (b_k) konvergente Folgen sind mit $\lim_{k\to\infty} a_k = a$ und $\lim_{k\to\infty} b_k = b$, und (c_k) eine zwischen (a_k) und (b_k) eingeschlossene Folge ist mit $a_k \le c_k \le b_k$, dann gilt:

- Wenn die Folge (ck) konvergiert, so liegt ihr Grenzwert zwischen den beiden Grenzwerten a ≤ lim ck ≤ b.
- Wenn (a_k) und (b_k) denselben Grenzwert a = b haben, dann konvergiert auch die Folge (c_k) gegen diesen gemeinsamen Grenzwert a = lim_{k→∞} c_k = b.

24.11.2010 5

Umformung zur Vermeidung unbestimmter Ausdrücke

Unbestimmte Ausdrücke

 $\infty - \infty$

 $0 \cdot \infty$

0

0

 $\frac{}{\infty}$

 ∞

 0^{0}

 ∞_0

Bestimmte Ausdrücke

$$\frac{1}{\infty} = 0$$

$$\infty + \infty = \infty$$

$$a + \infty = \infty$$

$$\infty\cdot\infty=\infty$$

$$a \cdot \infty = \infty$$

Berechnung von Grenzwerten für zusammengesetzte Folgen

Die zusammengesetzten Folgen müssen so umgeformt werden, dass unbestimmte Ausdrücke vermieden werden.

Dabei werden die Rechenregeln für Grenzwerte angewendet:

Wenn gilt:
$$\lim_{n\to\infty} a_n = a$$
 und: $\lim_{n\to\infty} b_n = b$ dann:

$$\lim_{n \to \infty} \mathbf{a}_n \pm b_n = a \pm b$$

$$\lim_{n \to \infty} \mathbf{a}_n \cdot b_n = a \cdot b$$

$$\lim_{n \to \infty} \mathbf{a}_n / b_n = a / b$$

$$\lim_{n \to \infty} |\mathbf{a}_n| = |a|$$

$$\lim_{n \to \infty} \mathbf{a}_n^{b_n} = a^b$$

$$\lim_{n \to \infty} \mathbf{a}_n = \log a$$

Divergenz

Wenn die Glieder einer Folge jede noch so große Schranke ab einem bestimmten Index überschreiten und dann immer oberhalb dieser Schranke liegen, dann hat die Folge den uneigentlichen Grenzwert ∞ . Entsprechend definiert man den uneigentlichen Grenzwert $-\infty$. Folgen mit einem uneigentlichen Grenzwert bezeichnet man als bestimmt divergent und ansonsten als unbestimmt divergent.

Beispiele

24.11.2010 8

wird die obere Grenze
(Supremum) durch ein
Glied der Folge a_n erreicht,
heißt dieses Supremum
"Maximum"

Folgenglied a _n	1 2 ⁿ
Beschränktheit	nach oben beschränkt, nach unten beschränkt, d.h. insges. beschränkt
Supremum	0,5
Infimum	0
Maximum	0,5
Minimum	-
Monotonie	streng monoton fallend
Konvergenz / Divergenz	Konvergenz
Grenzwert	0

Folgenglied a _n	$\frac{1}{2^n}$	n
Beschränktheit	nach oben beschränkt, nach unten beschränkt, d.h. insges. beschränkt	nach oben unbeschränkt, nach unten beschränkt, d.h. insges. unbeschränkt
Supremum	0,5	
Infimum	0	1
Maximum	0,5	-
Minimum	-	1
Monotonie	streng monoton fallend	streng monoton steigend
Konvergenz / Divergenz	Konvergenz	bestimmte Divergenz
Grenzwert	0	

Folgenglied a _n	2n+3	(-1)"
Beschränktheit	nach oben unbeschränkt, nach unten beschränkt, d.h. insges. unbeschränkt	nach oben beschränkt, nach unten beschränkt, d.h. insges. beschränkt
Supremum	-	1
Infimum	5	-1
Maximum	-	1
Minimum	5	-1
Monotonie	streng monoton steigend	alternierend
Konvergenz / Divergenz	bestimmte Divergenz	unbestimmte Divergenz
Grenzwert	€	(2 Häufungspunkte)

Folgenglied a _n	$\sum_{n\geq 1}\frac{1}{2^n}$	$\frac{n}{n+1}$
Beschränktheit	nach oben beschränkt, nach unten beschränkt, d.h. insges. beschränkt	nach oben beschränkt, nach unten beschränkt, d.h. insges. beschränkt
Supremum	1	1
Infimum	0,5	0,5
Maximum		
Minimum	0,5	0,5
Monotonie	streng monoton steigend	streng monoton fallend
Konvergenz / Divergenz	Konvergenz	Konvergenz
Grenzwert	1	1

Folgenglied a _n	$\frac{1}{n}$, $(a_n)=(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$	$\frac{(-1)^{n-1}}{n}, \text{ auch } \frac{(-1)^{n+1}}{n}$ $(a_n) = (1, -1/2, 1/3, -1/4,)$
Beschränktheit	nach oben beschränkt, nach unten beschränkt, d.h. insges. beschränkt	nach oben beschränkt, nach unten beschränkt, d.h. insges. beschränkt
Supremum	1	1
Infimum	0	-1/2
Maximum	1	1
Minimum	-	-1/2
Monotonie	streng monoton fallend	alternierend
Konvergenz / Divergenz	Konvergenz	Konvergenz
Grenzwert	1	0

Grenzwerte einer Funktion

An Stellen, an denen eine Funktion eine Definitionslücke besitzt, kann man keinen Funktionswert berechnen. Mit Hilfe von Folgen können wir uns jedoch beliebig nahe an Definitionslücken herantasten. Bei diesem Herantasten an eine Definitionslücke können unterschiedliche Effekte entstehen.

Die Funktion f hat an der Stelle x_0 den **Grenzwert** G, wenn für jede gegen x_0 konvergente Zahlenfolge (x_n) die Folge der Funktionswerte $(f(x_n))$ gegen G konvergiert. Man verwendet die Schreibweise $f(x) \to G$ für $x \to x_0$ oder $\lim_{x \to x_0} f(x) = G$.

Beispiel

Rechnen mit Funktionsgrenzwerten

Wenn f und g Funktionen sind mit $\lim_{x\to x_0} f(x) = F$ und $\lim_{x\to x_0} g(x) = G$, dann gilt:

- Es existiert auch der Funktionsgrenzwert von f(x) ± g(x) an der Stelle x₀, nämlich lim_{x→x₀} (f(x) ± g(x)) = F ± G.
- Es existiert auch der Funktionsgrenzwert von f(x) · g(x) an der Stelle x₀, nämlich lim (f(x) · g(x)) = F · G.
- Es existiert auch der Funktionsgrenzwert von $\frac{f(x)}{g(x)}$ an der Stelle x_0 , nämlich

 $\lim_{x\to x_0} \left(\frac{f(x)}{g(x)}\right) = \frac{F}{G}$. Das gilt nur, wenn die Funktion g(x) in einer Umgebung von x_0 und der Grenzwert G nicht null sind.

Linksseitiger und rechtsseitiger Grenzwert

Wenn man bei der Grenzwertberechnung einer Funktion f an der Stelle x_0 nur Zahlenfolgen (x_n) betrachtet, die kleinere Werte als x_0 enthalten, dann bezeichnet man den Grenzwert als linksseitigen Grenzwert G_L , Zahlenfolgen mit größeren Werten als x_0 erzeugen den rechtsseitigen Grenzwert G_R . Man verwendet die Schreibweisen

$$\lim_{x \to x_0-} f(x) = G_L$$
, $\lim_{x \to x_0+} f(x) = G_R$.

Beispiel: linksseitiger und rechtsseitiger Grenzwert

$$G_{\rm L} = \lim_{x \to 0-} f(x) = \lim_{x \to 0-} \frac{x}{-x} = -1$$

$$G_{\rm R} = \lim_{x \to 0+} f(x) = \lim_{x \to 0+} \frac{x}{x} = 1$$

Stetigkeit

Eine Funktion f heißt stetig an der Stelle x_0 , wenn der Grenzwert der Funktion für x gegen x_0 existiert und gleich dem Funktionswert an der Stelle x_0 ist, falls also gilt:

$$\lim_{x\to x_0} f(x) = f(x_0).$$

Man nennt eine Funktion stetig auf einem Intervall, wenn sie an allen Stellen des Intervalls stetig ist.

Eine Funktion ist genau dann stetig an der Stelle x_0 , wenn alle folgenden Bedingungen erfüllt sind:

- (1) Die Funktion ist an der Stelle x₀ selbst und in einer Umgebung der Stelle x₀ definiert.
- (2) Der Grenzwert der Funktion an der Stelle x_0 existiert. Insbesondere müssen der linksseitige Grenzwert $G_{\rm L}$ und der rechtsseitige Grenzwert $G_{\rm R}$ an der Stelle x_0 existieren und gleich sein.
- (3) Grenzwert und Funktionswert stimmen an der Stelle x_0 überein.

Stetigkeit elementarer Funktionen

Stetigkeit elementarer Funktionen

Alle elementaren Funktionen sind auf ihrem Definitionsbereich überall stetig.

Wenn f und g stetige Funktionen an der Stelle x_0 sind, dann gilt:

- Die Funktion f ± g ist auch stetig in x₀.
- ▶ Die Funktion $f \cdot g$ ist auch stetig in x_0 .
- Die Funktion $\frac{f}{g}$ ist auch stetig in x_0 , falls $g(x_0) \neq 0$.

Wenn g eine stetige Funktion an der Stelle x_0 ist und f eine stetige Funktionen an der Stelle $f(x_0)$ ist, dann gilt: Die Funktion $f \circ g$ ist auch stetig an der Stelle x_0 .

Unstetigkeitsstellen

Unstetigkeitsstellen

Man unterscheidet folgende Arten von Unstetigkeitsstellen:

- Hebbare Unstetigkeitsstelle,
- Unstetigkeitsstelle 1. Art oder Sprungstelle,
- Unstetigkeitsstelle 2. Art, etwa eine Polstelle oder eine Oszillationsstelle.

Hebbare Unsetigkeitsstelle

Wenn bei einer Funktion f der linksseitige Grenzwert $G_{\rm L} = \lim_{x \to x_0-} f(x)$ und der rechtsseitige Grenzwert $G_{\rm R} = \lim_{x \to x_0+} f(x)$ an der Stelle x_0 existieren und gleich sind, also $G_{\rm L} = G = G_{\rm R}$, aber nicht mit Funktionswert $f(x_0)$ übereinstimmen oder die Funktion f an der Stelle x_0 nicht definiert ist, dann kann man durch

$$\tilde{f}(x) = \begin{cases}
f(x) & \text{für } x \neq x_0, \\
G & \text{für } x = x_0,
\end{cases}$$

eine neue Funktion definieren, die an der Stelle x_0 stetig ist. Die Stelle x_0 heißt hebbare Unstetigkeitsstelle.

Beispiel

24.11.2010 21

Unstetigkeitsstelle 1. Art

Wenn bei einer Funktion f der linksseitige Grenzwert $G_L = \lim_{x \to x_0-} f(x)$ und der rechtsseitige Grenzwert $G_R = \lim_{x \to x_0+} f(x)$ an der Stelle x_0 existieren, aber nicht gleich sind, also $G_L \neq G_R$, dann bezeichnet man diese Unstetigkeitsstelle als Sprungstelle oder Unstetigkeitsstelle 1. Art.

 $f(x) = x \text{ für } x \in [-1, 1], \quad f(x+2) = f(x)$

Unstetigkeitsstelle 2. Art

Man nennt die Stelle x_0 eine Polstelle oder kurz Pol einer Funktion f, wenn der linksseitige und der rechtsseitige Grenzwert an der Stelle x_0 uneigentliche Grenzwerte $\pm \infty$ sind. Eine Polstelle ist eine Unstetigkeitsstelle 2. Art. Das Schaubild der Funktion besitzt an einer Polstelle eine senkrechte Asymptote. Bei Polstellen mit Vorzeichenwechsel findet ein Übergang der Funktionswerte von $-\infty$ nach ∞ oder von ∞ nach $-\infty$ statt. Bei Polstellen ohne Vorzeichenwechsel sind entweder beide uneigentliche Grenzwerte ∞ oder beide $-\infty$.

Eigenschaften stetiger Funktionen

Kennt man zwei Funktionswerte f(a) und f(b) einer stetigen Funktion f, dann nimmt f auf dem Intervall [a, b] auch jeden Wert zwischen f(a) und f(b) mindestens einmal an.

Hat eine stetige Funktion f zwei Funktionswerte f(a) und f(b) mit unterschiedlichem Vorzeichen, dann hat die Funktion zwischen a und b mindestens eine Nullstelle.

Elementare Funktionen

Die elementaren Funktionen sind in der Mathematik immer wieder auftauchende, grundlegende Funktionen, aus denen sich viele andere Funktionen mittels der Grundrechenarten, Verkettung, Differentiation oder Integration bilden lassen. Dabei gibt es keine allgemeingültige Definition, wann eine Funktion elementar genannt wird und wann nicht.

Die elementaren Funktionen ergeben sich oftmals als Lösungen einer einfachen Differential- oder Funktionalgleichung, und sind deshalb auch für viele Naturwissenschaften wie Physik oder Chemie grundlegend, weil sie immer wieder in den unterschiedlichsten Zusammenhängen auftreten.

- die Potenzfunktionen
- die Radizierung bzw. das Wurzelziehen als Umkehrung der Potenzfunktionen
- die Exponentialfunktion
- der natürliche Logarithmus als Umkehrfunktion der Exponentialfunktion
- die trigonometrischen Funktionen
- die Arkusfunktionen als Umkehrfunktionen der trigonometrischen Funktionen
- die hyperbolischen Funktionen

• weitere ...

24.11.2010 25

Quellen

Thomas Rießinger: Mathematik für Ingenieure, Springer Verlag, Berlin 2009

Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg+Teubner Verlag, 2009

http://de.wikipedia.org

http://www.komplexe-zahlen.de

http://www.tf.uni-kiel.de/matwis/amat/mw1_ge/kap_2/basics/b2_1_5.html

http://members.chello.at/gut.jutta.gerhard/imaginaer1.htm