Smart Pointers

Victor Eijkhout, Susan Lindsey

Fall 2022

last formatted: October 9, 2022

1. Motivating application: linked list

- Used inside operating systems
- Model for complicated structures: trees, DAGs.

2. Recursive data structures

Naive code:

```
class Node {
private:
   int value;
   Node tail;
   /* ... */
};
```

This does not work: would take infinite memory.

Indirect inclusion: only 'point' to the tail:

```
class Node {
private:
  int value;
  PointToNode tail;
  /* ... */
};
```


3. Pointer types

- Smart pointers. You will see 'shared pointers'.
- There are 'unique pointers'. Those are tricky.
- Please don't use old-style C pointers, unless you become very advanced.

4. Example: step 1, we need a class

Simple class that stores one number:

```
class HasX {
private:
    double x;
public:
    HasX( double x) : x(x) {};
    auto get() { return x; };
    void set(double xx) { x = xx; };
};
```


5. Example: step 2, creating the pointer

Allocation of object and pointer to it in one:

```
auto X = make_shared<HasX>( /* args */ );
// or explicitly:
shared_ptr<HasX> X =
    make_shared<HasX>( /* constructor args */ );
```


6. Example: step 3: headers to include

Using smart pointers requires at the top of your file:

```
#include <memory>
using std::shared_ptr;
using std::make_shared;
using std::unique_ptr;
using std::make_unique;
```

(unique pointers will not be discussed further here)

7. Example: step 4: in use

Why do we use pointers?

Pointers make it possible for two variables to own the same object.

```
Code:
auto xptr = make_shared<HasX>(5);
auto yptr = xptr;
cout << xptr->get() << '\n';
yptr->set(6);
cout << xptr->get() << '\n';</pre>
```

```
Output
[pointer] twopoint:
5
```

What is the difference with

```
HasX five(5);
HasX v1 = five;
HasX v2 = five;
```

7

Exercise 1

Make a DynRectangle class, which is constructed from two shared-pointers-to-Point objects:

```
auto
  origin = make_shared<Point>(0,0),
  fivetwo = make_shared<Point>(5,2);
DynRectangle lielow( origin,fivetwo );
```

Calculate the area, scale the top-right point, and recalculate the area:

```
Output
[pointer] dynrect:

Area: 10
Area: 40
```


Automatic memory management

8. Memory leaks

C has a 'memory leak' problem

```
// the variable 'array' doesn't exist
{
    // attach memory to 'array':
    double *array = new double[N];
    // do something with array
}
// the variable 'array' does not exist anymore
// but the memory is still reserved.
```

The application 'is leaking memory'.

(even worse if you do this in a loop!)

Java/Python have 'garbage collection': runtime impact

C++ has the best solution: smart pointers with reference counting.

9. Illustration

We need a class with constructor and destructor tracing:

10. Show constructor / destructor in action

```
Code:
cout << "Outside\n";
{
  thing x;
  cout << "create done\n";
}
cout << "back outputside\n";</pre>
```

```
Output
[pointer] ptr0:

Outside
.. calling
    constructor
create done
.. calling destructor
back outputside
```


11. Illustration 1: pointer overwrite

Let's create a pointer and overwrite it:

```
Output
[pointer] ptr1:
set pointer1
.. calling
    constructor
overwrite pointer
.. calling destructor
```


12. Illustration 2: pointer copy

```
Code:
cout << "set pointer2" << '\n';</pre>
auto thing_ptr2 =
  make shared<thing>():
cout << "set pointer3 by copy"</pre>
     << '\n':
auto thing_ptr3 = thing_ptr2;
cout << "overwrite pointer2"</pre>
     << '\n':
thing_ptr2 = nullptr;
cout << "overwrite pointer3"</pre>
     << '\n':
thing_ptr3 = nullptr;
```

```
Output
[pointer] ptr2:
set pointer2
.. calling
    constructor
set pointer3 by copy
overwrite pointer2
overwrite pointer3
.. calling destructor
```

- The object counts how many pointers there are:
- 'reference counting'
- A pointed-to object is deallocated if no one points to it.

Example: linked lists

13. Linked list

14. Linked lists

The prototypical example use of pointers is in linked lists. Consider a class Node with

- a data value to store, and
- a pointer to another Node, or nullptr if none.

Constructor sets the data value: Set next / test if there is a next:

```
class Node {
    private:
        int datavalue{0};
        shared_ptr<Node>
            tail_ptr{nullptr};
public:
        Node() {}
        Node(int value)
            : datavalue(value) {};
        int value() { return
            datavalue; };
```


15. List usage

Example use:

```
Output
[tree] simple:

List <<23,45>> has
    length 2
```


16. Linked lists and recursion

Many operations on linked lists can be done recursively:

```
int Node::list_length() {
  if (!has_next()) return 1;
  else return 1+tail_ptr->list_length();
};
```


Exercise 2

Write a method set_tail that sets the tail of a node.

```
Node one;
one.set_tail( two ); // what is the type of 'two'?
cout << one.list_length() << endl; // prints 2</pre>
```


Exercise 3

Write a recursive append method that appends a node to the end of a list:

```
Code:
auto
   first = make_shared<Node>(23),
   second = make_shared<Node>(45),
   third = make_shared<Node>(32);
first->append(second);
first->append(third);
first->print();
```


17. Insertion

Exercise 4

Write a recursive *insert* method that inserts a node in a list, such that the list stays sorted:

```
code:
auto
   first = make_shared<Node>(23),
   second = make_shared<Node>(45),
   third = make_shared<Node>(32);
first->insert(second);
first->insert(third);
first->print();
```

```
Output
[tree] insert:

Insert 45 on 23
gives <<23,45>>

Insert 32 gives
<<23,32,45>>
```

Assume that the new node always comes somewhere after the head node.

