A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EP

Bookmark

Show all steps: ON

Problem

Let G be an abelian group of order $p^k m$, where p^k and m are relatively prime (that is, p^k and m have no common factors except ± 1). (REMARK: If two integers j and k are relatively prime, then there are integers s and t such that sj + tk = 1. This is proved on page 220.)

Let $G_p k$ be the subgroup of G consisting of all elements whose order divides p^k . Let Gm be the subgroup of G consisting of all elements whose order divides ra. Prove:

$$G_{\mathcal{D}^k} \cap G_m = \{e\}.$$

Step-by-step solution

Step 1 of 3

Assume that G is an abelian group of order $p^k m$, where p^k and m are relatively prime. Suppose that G_{p^k} be the subgroup of G consisting of all elements whose order divides p^k . Let G_m be the subgroup of G consisting of all elements whose order divides m.

Objective is to prove that

$$G_{n^k}$$
 $G_m = \{e\}$

Prove this result by method of contradiction.

Comment

Step 2 of 3

Suppose, for the sake of contradiction, that G_{n^k} $G_m \neq \{e\}$. Let $b \in G_{n^k}$ G_m , where b is some non-identity element. Then $b \in G_{n^k}$ and $b \in G_m$.

Since order of each element in G_{p^k} divides p^k , so

 $|b| |p^k|$

	nilarly, order of b will divide m because $b \in G_m$ and order of each element in G_m divides m . at is,
b	$\mid m$
and	combining both the equations, one can conclude that order of b is the common factor of p^k d m (order of b is finite). This generates a huge contradiction because p^k and m are relatively me. Thus, assumed condition was wrong.
Со	mment
Step 3 of 3	
He	nce, G_{p^k} $G_m=\{e\}$.
Co	mment