අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) සහ්බ්ධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)

<mark>භෞතික විදනව II</mark> ධෝකුන්සඛ්යාහ් II Physics II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம்

- 10 நிமிடங்கள்

Additional Reading Time

- 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

_				
විභාග	අංකය :	 	 	

වැදගත් :

- 🛠 මෙම පුශ්න පතුය පිටු 16 කින් යුක්ත වේ.
- lpha මෙම පුශ්න පතුය f A සහ f B යන කොටස් **දෙකකින්** යුක්ත වේ. **කොටස් දෙකටම** නියමිත කාලය **පැය තුනකි**.
- 🛠 ගණක යන්නු භාවිතයට ඉඩ දෙනු නොලැබේ.

A කොටස - ව**පුහගත රචනා** (පිටු 2 - 8)

සියලුම පුශ්තවලට පිළිතුරු මෙම පතුයේම සපයන්න. ඔබේ පිළිතුරු, පුශ්න පතුයේ ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.

B කොටස - රචනා (පිටු 9 - 16)

මෙම කොටස පුශ්න **හයකින්** සමන්විත වන අතර පුශ්න **හතරකට** පමණක් පිළිතුරු සැපයිය යුතුය. මේ සඳහා සපයනු ලබන කඩදාසි පාවිච්චි කරන්න.

- ** සම්පූර්ණ ප්‍රශ්න පත්‍රයට නියමිත කාලය අවසන් වූ පස්‍ර A සහ B කොටස් එක් පිළිතුරු පත්‍රයක් වන සේ, A කොටස B කොටසට උඩ්න් තිබෙන පරිදි අමුණා, විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයේ **B කොටස පමණක්** විභාග ශාලාචෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි					
දෙවැනි පතුය සඳහා					
කොටස	පුශ්න අංක	ලැබූ ලකුණු			
	1				
\mathbf{A}	2				
A	3				
	4				
	5				
	6				
	7				
D	8				
В	9(A)				
	9(B)				
	10(A)	1			
	10(B)				
	ඉලක්කමෙන්				
එකතුව	අකුරෙන්				

උත්තර පතු පරීක්ෂක 1

උත්තර පතු පරීක්ෂක 2

ලකුණු පරීක්ෂා කළේ

අධීක්ෂණය කළේ

සංකේත අංක

f A කොටස - වනුගගත රචනා f c පුශ්න **ගතරටම** පිළිතුරු **මෙම පතුයේම** සපයන්න. $(g = 10~{ m m~s^{-2}})$

මෙම තීරයේ කිසිවක් නොලියන්න

1. රූපයේ දක්වා ඇති පාසැල් විදාහගාරයේ පවතින සැකසුම භාවිතයෙන් කුඩා වීදුරු මූඩියක බර (W) සහ එනයින් දුවයක සාපේක්ෂ ඝනත්වය නිර්ණය කිරීමට ඔබට නියමව ඇත.

		P Q
(a)	රූප	යේ ඇති X සහ Y මගින් නිරූපණය වන අයිතම නම් කරන්න.
		X:
		Y:
(b)	(i)	කප්පි ඝර්ෂණයෙන් තොරදැයි ඔබ පරීක්ෂා කරන්නේ කෙසේ ද?
	(ii)	ඝර්ෂණය පවතී නම්, එය අවම කරන්නේ කෙසේ ද?
(c)	(i)	දන්නා P සහ Q භාර සහ බර W වූ වීදුරු මූඩිය රූපයේ දැක්වෙන පරිදි සැහැල්ලු තන්තු භාවිතයෙන් එල්ලා ඇත. ඔබ අදාළ තන්තුවල පිහිටීම නිවැරදිව සලකුණු කරන්නේ කෙසේ ද?
		,
	(11)	සුදුසු පරිමාණයක් භාවිතයෙන් සමාන්තරාසුය නිර්මාණය කළ පසු, ඔබ බර W නිර්ණය කරන්නේ කෙසේ ද?
		•••••••••••••••••••••••••••••••••••••••
(d)	(i)	දුවයේ සාපේක්ෂ ඝනත්වූය නිර්ණය කිරීම සඳහා දැන් එම සැකසුම භාවිත කරයි. බීකර දෙකක්, ජලය සහ දුවය දී ඇත. ජලය හෝ දුවය තුළදී මූඩියේ දෘශා බර නිර්ණය කිරීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක පියවර ලියා දක්වන්න.

AL	/2022	(2023))/01/	S-II

73.		25)/U15-H	
	(ii)	ඉහත මිනම්වලින් හඳුනාගත යනු මඩියේ ආශා බර ඉදක කුමක් ද?	මෙම තීර කිසිම තො
		W_1 :	
		W_2 :	
	(iii)	වීදුරු මූඩියෙහි දෘශා බර අඩු වීම සඳහා පුකාශන දෙකක් W , W_1 සහ W_2 ඇසුරෙන් ලියා දක්වන්න.	
		ජලයේදී දෘශාා බර අඩු වීම =	
		දුවයේදී දෘශාා බර අඩු වීම =	
	(iv)	එනයින් ඉහත (d) (iii) හි ඔබ දී ඇති පිළිතුරු භාවිත කරමින් දුවයේ සාපේක්ෂ ඝනත්වය සඳහා පුකාශනයක් ලියා දක්වන්න. දුවයේ සාපේක්ෂ ඝනත්වය =	/
		දවයේ සාපේක්ෂ ඝනත්වයේ අගයට බලපාන, ඉහත $(d)(i)$ හි පරීක්ෂණාත්මක කි්ුයාපටිපාටියෙහි සිදුවිය හැකි දෝෂයක් (සමාන්තරාසුය තැනීමට අදාළ නොවන) ලියා දක්වන්න.	
2.	විශිෂ්ට ගුව ඇත. රූප සඳහා විදා B රබර් නා පරිවරණය	මය භාවිතයෙන් ජලයේ වාෂ්පීකරණයේ ජිත තාපය නිර්ණය කිරීමට ඔබට නියමව නියේ දැක්වෙන්නේ හුමාලය ජනනය කිරීම A භාගාරයේ භාවිත කරන තඹ බොයිලේරුවකි. ළය හුමාලය පිටතට ගැනීමට භාවිත කරයි. කරන ලද තඹ කැලරිමීටරයක් සහ තඹ ද සපයා ඇත.	
		ද සපයා ඇත. බොයිලේරුවේ ජල මට්ටම පුමාණවත් නොවේ නම්, A නළය භාවිතයෙන් ඔබ එය හඳුනා ගන්නේ කෙසේ ද?	
	(ii)	ඉහත $(a)(i)$ හි දෝෂය නිවැරදි කිරීමෙන් පසු බොයිලේරුව තුළ හුමාලය ජනනය කරයි. හුමාලය පිටතට ගන්නා රබර් නළය අවහිර වී ඇත්නම් එය හඳුනා ගන්නේ කෙසේ ද?	
		පරීක්ෂණයේදී B නළයෙන් පිටවන හුමාලය සෘජුවම ජලය සමග මිශු කිරීම නිවැරදි නොවේ. එයට හේතුව ලියා දක්වන්න.	Ì
	e e		
	(ii)	ඔබ එය නිවැරදි කරන්නේ කෙසේද?	
		,,	ĺ

(c) මෙම පරීක්ෂණය සඳහා ඔබට අවශා අනෙකුත් මිනුම් උපකරණ දෙක මොනවා ද?(d) ඉහත (b) $({
m ii})$ හි සඳහන් නිවැරදි කිරීම සිදු කිරීමෙන් පසු ඔබ කැලරිමීටරයේ ජලයට හුමාලය යවයි. හුමාලය යවන වීදූරු නළයේ කෙළවර නිවැරදිව පිහිටුවන්නේ කෙසේ ද? නිවැරදි කිුයා පටිපාටිය යටින් ඉරක් අඳින්න. ජල මට්ටමට ස්වල්පයක් ඉහළින් / ජල මට්ටම ස්පර්ශ කරමින් / ජල මට්ටමට පහළින් (e) මෙම පරීක්ෂණයේදී ඔබ ගැනීමට බලාපොරොත්තු වන උෂ්ණත්ව මිනුම් මොනවාද? එම මිනුම් අනුපිළිවෙළට දෙන්න. θ_1 :..... θ_{2} :..... $heta_{_{\! 2}}$: (f) (i) ඉහත උෂ්ණත්ව මිනුම්වලට අමතරව මෙම පරීක්ෂණයේදී ඔබ ගන්නා අනෙකුත් මිනුම් මොනවාද? එම මිනුම් අනුපිළිවෙළට දෙන්න. m_1 : m_2 : m_3 : $({
m ii})$ තඹ සහ ජලයෙහි විශිෂ්ට තාප ධාරිතා පිළිවෙළින් $c_{
m c}$ සහ $c_{
m w}$ වේ නම් ජලයේ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය (L) නිර්ණය කිරීම සඳහා පුකාශනයක් ඉහත (e) සහ (f) හි සඳහන් සංකේත ඇසුරෙන් ලියා දක්වන්න. පරිසරය සමග තාප හුවමාරුවක් සිදු නොවන බව උපකල්පනය කරන්න. (g) අවට පරිසරය සමග තාප හුවමාරුව නිසා ඇතිවන දෝෂය අවම කර ගැනීමට මෙම පරීක්ෂණයේදී ඔබ ගන්නා පූර්වෝපාය කුමක් ද?

3.	විදැ ඇරි වීදු කට් සඳ	තයේ ධ්වති වේගය (v) නිර්ණය කිරීම සඳහා පාසල් සාගාරය තුළදී භාවිත කරන සුපුරුදු පරීක්ෂණාත්මක වවුම රූපයේ පෙන්වා ඇත. ඇටවුමට දෙකෙළවර විවෘත රු නළයක්, ජලය පිරවූ උස වීදුරු සරාවක් සහ සරසුල් වීටලයක් අයත් වේ. වාතයේ ධ්වති වේගය නිර්ණය කිරීම සා අනුතාද කුමය යොදා ගනී. 1)මෙම පරීක්ෂණය සිදු කිරීම සඳහා අවශා අවශා අනෙක් මිනුම් උපකරණය කුමක් ද?	මෙම තීරතේ කිසිවක් නොලියන්
	(b)	පහත අසම්පූර්ණ පුකාශයේ හිස්තැන උචිත වචනයෙන් පුරවන්න.	
	,	වස්තුවක් අනෙක් වස්තුවේ සංඛාහතයෙන් කම්පනය වන විට පළමු වස්තුව දෙවන වස්තුව අනුනාද කරවයි.	
	(c)	(i) අනුනාදයේදී නළය තුළ හටගන්නේ කුමන වර්ගයේ තරංගයක් ද? නිවැරදි පිළිතුරු යටින් ඉරක් අඳින්න.	
		(1) අන්වායාම / තිර්යයක්	
		(2) පුගමන / ස්ථාවර	
		(ii) ඔබ (c) (i) හි තෝරාගත් තරංගය හටගත්තේ කෙසේද $?$	
		•••••	
			-
,	(<i>d</i>)	නළයේ පළමු කම්පන විධියට (මූලිකයට) අදාළ අනුනාද දිග නිවැරදිව ලබා ගැනීම සඳහා ඔබ අනුගමනය කරන පරීක්ෂණාත්මක කිුිිිියා පිළිවෙළ පියවර ආකාරයෙන් සඳහන් කරන්න.	
		,	
		4	
((e)	සංඛානතය f වන දී ඇති සරසුලක් සදහා නළයේ පළමු කම්පන විධියට සහ දෙවන කම්පන විධියට අනුරූප අනුනාද දිග ඔබට මැනීමට ඇත.	
		(i) පළමු කම්පන විධියට අනුරූප අනුනාද දිග l_1 නම්, l_1 සදහා පුකාශනයක් තරංගයේ තරංග ආයාමය λ සහ නළයේ ආන්ත ශෝධනය e ඇසුරෙන් ලියා දක්වන්න.	
		(ii) දෙවන කම්පන විධියට අනුරූප අනුනාද දිග l_2 නම්, l_2 සඳහා පුකාශනයක් තරංගයේ තරංග ආයාමය λ සහ නළයේ ආන්ත ශෝධනය e ඇසුරෙන් ලියා දක්වන්න.	
			4.
		(iii) එනයින් $(l_2 - l_1)$ සඳහා පුකාශනයක් λ ඇසුරෙන් ලියා දක්වන්න.	

මෙම
තීරයේ
කිසිවක්
තොලියන්න

 $({
m iv})$ $(l_2 - l_1)$ ලබාගැනීමේ වාසිය කුමක් ද?

(v) ඉහත (e) (iii) හි ලියන ලද පුකාශනයට v සහ f ආදේශ කොට සරල රේඛා පුස්තාරයක් ලබා ගැනීම සඳහා එය නැවත සකසන්න.

(f) පහත පෙන්වා ඇති ජාලයේ $\frac{1}{f}$ එදිරිව (l_2-l_1) පුස්තාරය පෙන්වයි. පුස්තාරය භාවිත කොට වාතයේ ධ්වති වේගය $v\ ({
m m}\,{
m s}^{-1}$ වලින්) ගණනය කරන්න.

(g) ඉහත (a) හි සඳහන් කරන ලද මිනුම් උපකරණය වෙනුවට අනුනාද දිග නිවැරදිව නිර්ණය කිරීම සඳහා විකල්ප කුමයක් යෝජනා කරන්න.

(h) වාතයේ ධ්වනි වේගය පුකාශ කරන විට දිය යුතු අතාවශා පරාමිතිය කුමක් ද?

.....

$oxed{4.}$ විභවමානයක් ආධාරයෙන් කෝෂ දෙකක විදාුුත්ගාමක බල E_1 සහ E_2 සංසන්දනය කිරීම සඳහා ශිෂායෙක් eta	මම බ්රයේ බිසිවක් නාලිය
E ₀ 	
A $3 \otimes c_1 \otimes B$ E_1 E_1 E_2 E_2 E_3 E_4 E_4 E_4 E_5 E_6 E_7 E_8 E_8 E_9	
(1) රූපය (a) පහත රූපවල පෙන්වා ඇති අයිතම නම් කරන්න.	
A C	
mv mA	
D F	
(b) රූපය (1) හි ඇති 1 හිදැස, 2 හිදැස, 3 හිදැස සහ 4 හිදැසට සම්බන්ධ කළ යුතු ඉහත (a) හි දී ඇති එක් එක් අයිතමයට අදාළ නිවැරදි අකුර ලියන්න.	
1 හිදැස: 2 හිදැස:	
3 හිදැස : 4 හිදැස :	
(c) විදාුුත්ගාමක බලය (වි.ගා.බ.) E_0 ලබා දෙන කෝෂයේ වර්ගය නම් කර එම E_0 හි අගය ලියා දක්වන්න.	
(d) විභවමාන කම්බියේ පුතිරෝධයට සාපේක්ෂව වි.ගා.බ. E_0 වන කෝෂයේ අභාාන්තර පුතිරෝධය ඉතාකුඩා විය යුත්තේ ඇයි?	
(e) මෙම පරීක්ෂණය සිදු කිරීම සඳහා E_1, E_2 සහ E_0 සම්බන්ධයෙන් යම් කොන්දේසි සපුරාලිය යුතුය. ඒවා මොනවා ද?	

		•	මෙම තීරයේ
(f.		දූර්ණ නොවන චෝල්ට්මීටරයක් හා සසඳන විට, වි.ගා.බ. අගයක් නිවැරදිව මැනීම සඳහා විභවමානයක් අ උපකරණයක් ලෙස සැලකේ. එයට හේතුව කුමක් ද?	කිසිවක් නොලියන්න
	••••		
	••••		
(g)) විභ	වමාන කම්බියේ හරස්කඩ වර්ගඵලය ඒකාකාර විය යුත්තේ ඇයි?	
	••••		
	• • • •		
(h)) (i)	E_1/E_2 අනුපාතය නිර්ණය කිරීම සඳහා අනුගමනය කළ යුතු පරීක්ෂණාත්මක කිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි	
	(ii)	E_1 සහ E_2 ට අනුරූප ඉහත (h) $({\rm i})$ හි ගන්නා ලද මිනුම් පිළිවෙළින් x_1 සහ x_2 නම්, E_1/E_2 අනුපාතය සඳහා පුකාශනයක් ලියන්න.	
(<i>i</i>)	(i)	වෙනත් ශිෂායෙක් පුස්තාරික කුමයක් භාවිත කර E_1/E_2 අනුපාතය නිර්ණය කිරීමට සැලසුම් කර ඇත්තේ (2) රුපයේ පෙන්වා ඇති $6~m$ දිග විභවමාන කම්බියේ සඵල දිග වෙනස් කිරීමෙනි. ශිෂායා අනුගමනය කළ යුතු පරීක්ෂණාත්මක කිුිියා පිළිවෙළ කුමක් ද?	
		A B_2 B_4 B_6 B_5	
		(2) රූපය	
	*	= { .4 /	
	(ii)	ඉහත $(i)(\mathbf{i})$ හි ඇඳිය හැකි පුස්තාරයේ අනුකුමණය m නම් සහ E_1 හි අගය දන්නේ නම්, E_2 සඳහා සම්බන්ධතාවක් m සහ E_1 ඇසුරෙන් ලියන්න.	
		**	

മ്മാളി മിളിക്ക് മൂടിറ് വി (முழுப் பதிப்புரிமையுடையது / All Rights Reserved)

ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ඉහස්කෙසට පාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව නිශාශාස්සයාව ඉහස්කෙසට පාර්තමේන්තුව Department of Examinations, Sri Lanka Department of Exami**ලුණාස්කාසට පාර්තමේන්තුවන් විභාගශාස්කාසට පාර්තමේන්තුව** ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්ත**ිව්වාන් සමාව දෙපාර්තමේන්තුව ලී ලංකා** විභාග දෙපාර්තමේන්තුව ඉහස්කෙසට පාර්තමේන්තුව ඉහස්කෙසට පාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ඉහස්කෙසට පාර්තමේන්තුව ඉහස්කෙසට පාර්තමේන්තුව ඉහස්කෙසට පාර්තමේන්තුව

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022(2023) සහ්බ්ට பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2022(2023) General Certificate of Education (Adv. Level) Examination, 2022(2023)

 ${f B}$ කොටස- රචනා

පුශ්න **හතරකට** පමණක් පිළිතුරු සපයන්න. $(g=10~{
m m~s^{-2}})$

- ullet සටහන: උදාහරණයක් වශයෙන් 65210 සංඛාහව දශම ස්ථාන දෙකකට වැටයූ පසු $6\cdot52\times10^4$ ලෙස විදාහත්මක අංකනයෙන් (scientific notation) ලිවිය හැක.
- 5. (a) දුස්සුාවී නොවන අසම්පීඩා කරලයක අනවරත පුවාහයක් සඳහා බ'නූලි සමීකරණය $P+rac{1}{2}
 ho v^2+h
 ho g=$ නියතයක් ලෙසින් ලිවිය හැක. මෙහි සියලුම සංකේතවලට සුපුරුදු තේරුම ඇත. සමීකරණයේ වම් පස ඇති පද හඳුන්වන්න.
 - (b) පහළ පෘෂ්ඨය වකු වූ පසුපස ස්පොයිලරයක් (rear spoiler) සහිත රේසිං මෝටර් රථයක් (racing car) (1) රූපයේ පෙන්වා ඇත. මෝටර් රථය අධික වේගයෙන් යන විට බ'නූලි මූලධර්මයට අනුව ස්පොයිලරය මත පහළ දිශාවට බලයක් ඇති වේ.

පොළොවට සාපේක්ෂව ν නියත පුවේගයකින් වාතය හරහා තිරස්ව වම් අතට ගමන් කරන රේසිං මෝටර් රථයක පසුපස ස්පොයිලරයේ සිරස් හරස්කඩක් (2) රූපයේ පෙන්වා ඇත.

(1) රූපය

- (iii) ස්පොයිලරයේ සඵල තිරස් හරස්කඩ වර්ගඵලය $0\cdot 2\,\mathrm{m}^2$ නම් ස්පොයිලරය මත පහළට කි්යාකරන බලය ගණනය කරන්න. $v=360\,\mathrm{km}\,\mathrm{h}^{-1}$ සහ වාතයේ ඝනත්වය $=1\cdot 2\,\mathrm{kg}\,\mathrm{m}^{-3}$.
- (iv) පොළොවට සාපේක්ෂව නියත පුවේගයකින් වමේ සිට දකුණට සුළඟක් ති්රස් ව හමයි නම් ඉහත (b) (iii) හි ගණනය කළ බලය වැඩිවේ ද? නැතහොත් අඩු වේ ද? ගණනය කිරීම්වලින් තොරව ඔබගේ පිළිතුරට හේතු දෙන්න.
- (c) වේගයෙන් ගමන් කරන මෝටර් රථයක් මත වාතය නිසා කිුිිිිිිිිිිිිිිිි කරන රෝධක බලය $(F_{
 m d})$, $F_{
 m d}=rac{1}{2}C
 ho Av^2$ මගින් දෙනු ලබයි. මෙහි C රෝධක සංගුණකය ලෙසින් හඳුන්වන අතර, ho වාතයේ ඝනත්වයද, A වාතයට අභිමුඛ රථයේ සඵල මුහුණත් වර්ගඵලය සහ v වාතයට සාපේක්ෂව රථයේ වේගය වේ. ස්පොයිලර මගින් රථ මතින් ගලන වායු පුවාභවල දිශා ද වෙනස් කොට රෝධක සංගුණකය අඩු කරයි.
 - (i) C මාන රහිත බව පෙන්වන්න.
 - (ii) C=0.3, $A=1.4\,\mathrm{m}^2$, $\rho=1.2\,\mathrm{kg}\,\mathrm{m}^{-3}$ සහ $v=360\,\mathrm{km}\,\mathrm{h}^{-1}$ ලෙස ගනිමින් ඉහත (b) හි සඳහන් රේසිං මෝටර් රථය මත කිුයා කරන රෝධක බලය F_d ගණනය කරන්න. පොළොවට සාපේක්ෂව වාතය නිසලව පවතී යැයි උපකල්පනය කරන්න.
 - (iii) මෝටර් රථය $360\,{
 m km}\,{
 m h}^{-1}$ නියත පුවේගයකින් ගමන් කරන විට රෝධක බලය මැඩපැවැත්වීමට අවශා ජවය (P) ගණනය කරන්න.

- (iv) මෝටර් රථය නිසලතාවයෙන් ගමන් අරඹා $360\,{
 m km}\,{
 m h}^{-1}$ වේගයක් අයන් කර ගනී. මෙම කිුිියාවලියේදී රෝධක බලය මැඩ පැවැත්වීම සඳහා අවශා මධානා ජවය ${P\over 2}$ වන බවට ශිෂායෙක් තර්ක කරයි. මෙහි P යනු ඉහත (c) (iii) හි ඔබ ගණනය කළ අගයයි. ශිෂායාගේ තර්කයට ඔබ එකඟ වන්නේ ද යන්න හේතු දක්වමින් සඳහන් කරන්න.
- (v) මෝටර් රථය මත කිුයා කරන අනෙකුත් ඝර්ෂණ බල මැඩපැවැත්වීමට අවශා ජවය $48\,\mathrm{kW}$ වේ. පෙටුල් එක් ලීටරයක් දහනය වීමෙන් නිදහස් වන ශක්තිය $4\cdot0\times10^7\,\mathrm{J}$ සහ මෙම ශක්තියෙන් 15% ක් පමණක් මෝටර් රථය ගමන් කරවීමට භාවිත වේ. මෝටර් රථය $360\,\mathrm{km}\,\mathrm{h}^{-1}$ නියත වේගයෙන් ගමන් කරන විට රථයේ ඉන්ධන කාර්යක්ෂමතාවය ලීටරයකට km වලින් නිර්ණය කරන්න.
- (vi) පොළොවට සාපේක්ෂව සුළඟ නියන $10~{
 m m~s^{-1}}$ පුවේගයකින් තිරස්ව වමේ සිට දකුණට හමයි නම් මෝටර් රථය $360~{
 m km~h^{-1}}$ නියන පුවේගයෙන් ගමන් කරන විට රෝධක බලය මැඩපැවැත්වීමට අවශා ජවය (P') ගණනය කරන්න. (ඔබගේ පිළිතුර kW වලින් ආසන්න පූර්ණ සංඛ්යාවට දෙන්න.)
- ${f 6.}\,(a)$ $({f i})$ නක්ෂතු (පුකාශ) දූරේක්ෂයක කෝණික විශාලනය (m) අර්ථ දක්වන්න.
 - (ii) රේඛීය විශාලනය හා සසඳන විට පුකාශ උපකරණයක් සඳහා කෝණික විශාලනය වඩා හොඳ මිනුමක් වන්නේ ඇයි?
 - (b) නාභීය දුර $f_{
 m o}$ වූ $L_{
 m o}$ අවනෙත් කාචයක් සහ නාභීය දුර $f_{
 m e}$ වූ $L_{
 m e}$ උපනෙත් කාචයක් යොදා ගනිමින් නක්ෂනු දුරේක්ෂයක් සාදා ඇත.
 - (i) දුරේක්ෂයක සාමානා සීරුමාරුව යන්නෙන් අදහස් කරන්නේ කුමක් ද?
 - (ii) දූරේක්ෂය සාමානාඃ සීරුමාරුවේ ඇති අවස්ථාවේදී පැහැදිලිව නම් කරන ලද කිරණ රූප සටහනක් අඳින්න.
 - (iii) කිරණ රූප සටහන භාවිතයෙන් දුරේක්ෂයේ කෝණික විශාලනය සඳහා පුකාශනයක් ලබා ගන්න. lpha (රේඩියන වලින්) හි ඉතා කුඩා අගයයන් සඳහා an(lpha) = lpha .
 - (c) (i) $f_{\rm o}=100~{
 m cm}$ සහ $f_{\rm e}=10~{
 m cm}$ වූ නක්ෂතු දුරේක්ෂයක් සීරු මාරු කර ඇත්තේ සඳෙහි අවසාන පුතිබිම්බය ඇසේ විශද දෘෂ්ටියේ අවම දුරෙහි ($D=25~{
 m cm}$) සැදෙන පරිදි ය. සඳ, පියවී ඇසෙහි 0.5° ක කෝණයක් ආපාතනය කරයි. මෙම සීරුමාරුවේදී දුරේක්ෂය තුළින් සඳේ පුතිබිම්බය ඇසෙහි ආපාතනය කරනු ලබන කෝණය (අංශකවලින්) සහ කෝණික විශාලනය ගණනය කරන්න. ඇස සහ උපනෙත් කාචය අතර දුර නොසැලකිය හැකි යැයි උපකල්පනය කරන්න. ඔබට $1^{\circ}=0.018$ රේඩියන ලෙස භාවිත කළ හැක.
 - (ii) සුදුසු වෙනස් කිරීමකින් පසු ඉහත දුරේක්ෂය චන්දුයාගේ තාත්වික පුතිබිම්බයක් තිරයක් මතට ලබා ගැනීමට භාවිත කරයි. නාභි ලක්ෂායන් සහ දුරවල් පැහැදිලිව සලකුණු කරමින් මෙම අවස්ථාව සඳහා කිරණ රූප සටහන අඳින්න.
 - (iii) ඉහත (c) (ii) හි සඳහන් වෙනස් කිරීමෙන් පසු උපනෙත් කාචයේ සිට $30~{
 m cm}$ දුරින් තබා ඇති තිරය මත තාත්වික පුතිබිම්බය සැදෙන්නේ නම් තිරයේ ඇතිවන චන්දුයාගේ පුතිබිම්බයේ විශාලත්වය (විෂ්කම්භය) ගණනය කරන්න.
 - (iv) ඇමෙරිකා එක්සත් ජනපදයේ විස්කොන්සින්හි යර්ක්ස් නිරීක්ෂණාගාරය (Yerkes Observatory) 1897 සිට මේ දක්වා කියාත්මක වන විශාලතම සහ පැරණිතම වර්තන නක්ෂතු දුරේක්ෂයයි. නිරීක්ෂණාගාරය නවීන තාරකා භෞතික විදහාවේ උපන් ස්ථානය වූ අතර නක්ෂතු වස්තූන්ගේ ඡායාරූප තහඩු 170000 කට වඩා ලබා ගෙන ඇත. යර්ක්ස් දුරේක්ෂයේ අවනෙත් කාචයේ නාභීය දුර 19·0 m කි. උපනෙතේ සිට 30 cm පිටුපසින් තුබා ඇති ඡායාරූප තහඩුවක් මත විෂ්කම්භය 17·1 cm වූ චන්දුයාගේ තාත්වික පුතිබීම්බයක් එය ලබා දෙයි. යර්ක්ස් දුරේක්ෂයේ උපනෙත් කාචයේ නාභීය දුර සහ මෙම අවස්ථාවේ කෝණික විශාලනය ගණනය කරන්න. (කෝණික විශාලනය ආසන්න පූර්ණ සංඛාාවට දෙන්න.)

- **7.** (a) සුපුරුදු සංකේත මගින් දුවාායක යං මාපාංකය, $rac{F}{A}/rac{e}{l}$ යන සමීකරණය මගින් දෙනු ලබයි. $rac{F}{A}$ සහ $rac{e}{l}$ යන පද නම් කරන්න.
 - (b) කරාවේ කීඩකයෙක් (1) රූපයේ පෙන්වා ඇති පරිදි විළුඹෙන් ගසන එක පා පහරකින් ලී පුවරුවක් කඩා දැමීමට උත්සාහ කරයි. කීඩකයා ලී පුවරුවට පහර දෙන විට, පුවරුව නොකැඩී කීඩකයාගේ විළුඹ $24\,\mathrm{m\,s^{-1}}$ ආරම්භක වේගයකින් පටන්ගෙන $4\cdot0\,\mathrm{ms}$ තුළදී නිශ්චලතාවයට පක්වේ. පාදයේ සඑල ස්කන්ධය $16\cdot0\,\mathrm{kg}$ වන අතර පාද අස්ථියේ කුඩාම කොටසේ සඵල හරස්කඩ වර්ගඵලය $3\cdot0\times10^{-4}\,\mathrm{m^2}$ වේ. පාදයේ අස්ථි දුවායට $1\cdot8\times10^7\,\mathrm{N}\,\mathrm{m^{-2}}$ උපරිම සම්පීඩන පුතාහබලයකට ඔරොත්තු දිය හැකිය. අස්ථිය දිගේ පුතාහබලය ඒකාකාරව බෙදී යන බව උපකල්පනය කරන්න.

(iii) අස්ථිය බිඳීමට හැකියාවක් ඇත් ද? ඔබගේ පිළිතුරට හේතු දෙන්න.

- (iii) කිහිලිකරුවක් මත ඇති සම්පීඩන පුතාහබලය සහ සම්පීඩන විකිුයාව ගණනය කරන්න. π =3 ලෙස ගන්න.
- (iv) කිහිලිකරුවක දිග 125 cm නම් කිහිලිකරුවක ඇතිවන දිගෙහි වෙනස කුමක් ද?
- (d) ඉහත (c) හි සඳහන් කිහිලිකරු වෙනුවට ඒකාක්ෂ කුහර බට දෙකකින් සමන්විත කිහිලිකරු කීඩකයා විසින් භාවිත කරන්නේ යැයි සිතන්න. එම සිලින්ඩරාකාර කිහිලිකරුවල අභාන්තර බටය යං මාපාංකය E_1 වන ඇලුම්නියම්වලින් සාදා ඇති අතර බාහිර බටය යං මාපාංකය E_2 වන මල නොබැඳෙන වානේවලින් සාදා ඇත. ඇලුම්නියම් සහ මල නොබැඳෙන වානේ බටවල හරස්කඩ වර්ගඵල පිළිවෙළින් A_1 සහ A_2 වේ. සංයුක්ත බටයේ හරස්කඩක් (3) රූපයේ පෙන්වයි.

$$E = rac{E_1 A_1 + E_2 A_2}{\left(A_1 + A_2
ight)}$$
 මගින් ලබා දෙන බව පෙන්වන්න.

(1) රූපය

- (ii) $E_1 = 8.0 \times 10^{10} \, \mathrm{Nm}^{-2}$, $A_1 = 10.0 \times 10^{-4} \, \mathrm{m}^2$, $E_2 = 2.0 \times 10^{11} \, \mathrm{Nm}^{-2}$, $A_2 = 6.0 \times 10^{-4} \, \mathrm{m}^2$. එක් එක් කිහිලිකරුවක දිග සෙන්ටීමීටර 125 කි. ඉහත (c) (ii) හි බලය කිහිලිකරුවකට යොදනවිට සංයුක්ත බටයේ දිග වෙනස්වීම ගුණනය කරන්න.
- (e) සාමානායෙන් ඇලුමිනියම් කිහිලිකරුවල පහළ කෙළවරට රබර් ආවරණ සවි කර ඇත. රබර් ආවරණ සහිත මෙම කිහිලිකරු භාවිතයෙන් පුද්ගලයෙක් ඇවිදින විට ඔහුට ඇතිවන වාසි භෞතික විදාහ මූලධර්ම යොදා ගනිමින් සඳහන් කරන්න.

 $oldsymbol{8}$. පහත ඡේදය කියවා පුශ්නවලට පිළිතුරු සපයන්න.

කළු කුහර (Black holes) යනු විශ්වයේ පවතින ඉතාම කුතුහලය දනවන වස්තුවලින් එකකි. අවම පරිමාවක් තුළ ඇහිරී ඇති අතිවිශාල පදාර්ථ පුමාණයකින් සමන්විත වීමේ පුතිඵලයක් ලෙස අති පුබල ගුරුත්වාකර්ෂණ ක්ෂේතුයක් ඒවාහි පවතී. කළු කුහරයකින් ආලෝකයට නිකුත් වීමට නොහැකි නිසා ඒවා අදෘශාමාන වේ.

ස්කන්ධය M හා අරය R වන ඒකාකාර ඝනත්වයක් සහිත ගෝලාකාර වස්තුවක මතුපිටින් වියෝග වීමේ පුවේගය $(v_{\rm p})$, $\sqrt{\frac{2GM}{R}}$ මගින් දෙනු ලබයි. මෙහි G යනු සාර්වතු ගුරුත්වාකර්ෂණ නියතයයි. ස්කන්ධය M වන වස්තුවක අරය R, යම් අවධි අගයකට සමාන හෝ ඊට වඩා අඩු වන්නේ නම් එම වස්තුව කළු කුහරයක් ලෙස කිුයා කරන බව වියෝග පුවේගය සඳහා වන මෙම පුකාශනය යෝජනා කරයි. මෙම අවධි අරය ශ්වාට්ස්වයිල්ඩ් අරය (Schwarzschild radius) $R_{\rm g}$, ලෙස හඳුන්වන අතර කළු කුහරය වටා ඇති මෙම අරය සහිත ගෝලයේ මතුපිට, සිදුවීම් ක්ෂිතිජය (event horizon) ලෙස හැඳින්වේ. මෙම ගෝලය තුළින් ආලෝකයට ඉවත්ව යා නොහැකි නිසා අපට එය තුළ සිදුවන සිදුවීම් අනාවරණය කරගත නොහැක.

කළු කුහරයකින් ආලෝකයට ඉවත්විය නොහැකි නම්, එවැනි වස්තු පවතින බව අප දැනගන්නේ කෙසේ ද? කළු කුහරයක් අසල ඇති ඕනෑම වායුවක් හෝ දූවිලි දිය සුළියක් සේ කරකැවෙමින් කළු කුහරය තුළට ඇදී යයි. පොම්පයක සම්පීඩිත වාතය උණුසුම් වන ආකාරයටම මෙම දූවිලි/වායු රත් වීමකට බඳුන් වේ. දූවිලි/වායු උෂ්ණත්ව $10^6\,\mathrm{K}$ ටත් වඩා වැඩි විය හැකි අතර එබැවින් ඒවා දෘශා ආලෝකය පමණක් නොව X-කිරණ ද නිකුත් කරයි. දූවිලි/වායු මගින් නිකුත් කරන මෙම X-කිරණ සිදුවීම් ක්ෂිතිජය හරහා යෑමට පෙර ඒවා සොයා ගැනීම මගින් කළු කුහරයක් පවතින බව තාරකා විදාහඥයින්ට අනාවරණය කරගත හැක.

අති දැවැන්ත සුපිරි ස්කන්ධ (supermassive) සහිත කළු කුහර පවතින බවට ද පුබල සාක්ෂි ඇත. පෘථිවියේ සිට ආලෝක වර්ෂ 26000 ක් දුරින් ධනු රාශියේ දිශාවට අපගේ ක්ෂී්රපථ මන්දාකිණියේ මධායේ එවැනි කළු කුහරයක් පවතින බව සොයා ගෙන ඇත. තාරකා භෞතික විදාහඥයින් විසින් S4716 ලෙසින් නම් කරන ලද තාරකාවක් මෙම කළු කුහරය වටා පරිභුමණය වන බවට අනාවරණය කරගෙන ඇත. මෙම තාරකාව වසර හතරක් වැනි කෙටි කාලයක් තුළ සුපිරි ස්කන්ධ කළු කුහරය වටා එක් පරිභුමණයක් සම්පූර්ණ කරයි. මෙයින් අදහස් කරන්නේ තරුව $8\cdot0\times10^6\,\mathrm{m\,s^{-1}}$ ඉතා ඉහළ වේගයකින් මෙම කළු කුහරය වටා ගමන් කරන බවයි. මෙම චලිතය විශ්ලේෂණය කිරීමෙන් නොපෙනෙන සුපිරි කළු කුහරයේ ස්කන්ධය ගණනය කළ හැක.

 $G=6.0 imes10^{-11}\,\mathrm{N\,m^2kg^{-2}}$ සහ ආලෝකයේ වේගය $c=3.0 imes10^8\,\mathrm{m\,s^{-1}}$ ලෙසට ඔබට ගත හැක.

- (a) කළු කුහරයක් යනු කුමක් ද?
- (b) (i) පුථම මූලධර්මවලින් පටන්ගෙන වියෝග පුවේගය $v_{
 m e} = \sqrt{rac{2GM}{R}}$ පුකාශනය වාුත්පන්න කරන්න.
 - (ii) ඒකාකාර ho ඝනත්වයක් ඇති ගෝලාකාර වස්තුවක් සඳහා, $v_{
 m e}$, වස්තුවේ අරය R ට අනුලෝමව සමානුපාතික වන බව පෙන්වන්න.
 - (iii) ඉහත (b) (i) හි වායුත්පන්න කළ පුකාශනයේ $v_{\rm e} = c$ ලෙසට ගෙන ස්කන්ධය M වූ ගෝලාකාර වස්තුවක් සඳහා ශ්වාට්ස්වයිල්ඩ් අරය $(R_{\rm s})$ සඳහා පුකාශනයක් G,M සහ c ඇසුරෙන් ලබා ගන්න.
- (c) සිදුවීම් ක්ෂිතිජයක් අර්ථ දැක්වීමේ හේතුව කුමක් ද?
- (d) කළු කුහරයකින් X-කිරණ නිකුත් කළ හැකි ද? ඔබගේ පිළිතුරට හේතු දෙන්න.
- (e) දිය සුළියක් සේ කරකැවෙමින් කළු කුහරය තුළට ඇදී යන $10^6\,\mathrm{K}$ උෂ්ණත්වයේ පවතින දූවිලි/වායු මගින් නිකුත් කෙරෙන විකිරණවල උච්ච තරංග ආයාමය (λ_m) නිර්ණය කරන්න. (වීන් ගේ විස්ථාපන නියතය = $2900~\mu\mathrm{m}~\mathrm{K}$).
 - ullet පහත (f) (i) සහ (f) (ii) සඳහා ඔබගේ පිළිතුරු විදාහත්මක අංකනයෙන් පිළිවෙළින් දශම ස්ථාන දෙකකට සහ ullet වටයන්න. පුශ්න අංක ullet ට පෙර දී ඇති සටහන බලන්න.
- (f) S4716 තාරකාව සුපිරි ස්කන්ධ කළු කුහරය වටා අරය r වන වෘත්තාකාර පථයක පරිභුමණය වන බව උපකල්පනය කරන්න. තාරකාව සහ සුපිරි ස්කන්ධ කළු කුහරය ඒකාකාර ඝනත්වයෙන් යුත් ගෝලාකාර හැඩයක් ගන්නා බව තව දුරටත් උපකල්පනය කරන්න.
 - (i) ඡේදයේ දී ඇති දත්ත භාවිත කොට r හි අගය නිර්ණය කරන්න. ($\pi=3$ ලෙස ගන්න)
 - (ii) එනයින් සුපිරි ස්කන්ධ කළු කුහරයේ ස්කන්ධය $M_{
 m B}$ ගණනය කරන්න.
 - (iii) සුපිරි ස්කන්ධ කළු කුහරයේ ශ්වාට්ස්වයිල්ඩ් අරය $R_{
 m S}$ ගණනය කරන්න.
- (g) සූර්යයා හදිසියේම අද පවතින ස්කන්ධයෙන් යුක්තව කළු කුහරයක් බවට පත්වේ යැයි උපකල්පිත ලෙස සිතන්න.
 - (i) පෘථිවිය සූර්යයා වටා දැන් ගමන් කරන කක්ෂයේම දිගටම පරිභුමණය චේ ද? ඔබගේ පිළිතුර සඳහා හේතු දක්වන්න.
 - (ii) මේ නිසා පෘථිවියේ ජීවයට බලපෑම් ඇති විය හැකි ද? ඔබගේ පිළිතුර සඳහා පුධාන හේතුව දෙන්න.
 - (iii) අරය $2\cdot 4~{
 m km}$ වන ගෝලයකට සූර්ය ස්කන්ධය හැකිළිය හැකිනම් සූර්යයා කළු කුහරයක් බවට පත්වන බව පෙන්වන්න. සූර්යයාගේ ස්කන්ධය $1\cdot 8\times 10^{30}{
 m kg}$ ලෙස ගන්න.

$oldsymbol{9.}$ (\mathbf{A}) කොටසට හෝ (\mathbf{B}) කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

- (a) පැය 1ක් තුළ කෝෂයකින් ලබාදිය හැකි උපරිම නියත ධාරාව කෝෂයේ ධාරිතාව (capacity) ලෙස අර්ථ දැක්වෙන අතර එහි ඒකකය ඇම්පියර්-පැය (Ah) මගින් දෙනු ලබයි. ධාරිතාව $6\,Ah$ සහ විදාහුත්ගාමක බලය $5\cdot 0\,V$ බැගින් වූ සර්වසම කෝෂ දෙකක් බැටරියක් සෑදීමට සම්බන්ධ කර ඇත.
 - (i) කෝෂ දෙක ශ්‍රේණිගතව සම්බන්ධ කර ඇත්නම්, සහ
 - (ii) කෝෂ දෙක සමාන්තරගතව සම්බන්ධ කර ඇත්නම්,
 - බැටරියේ ධාරිතාවය (Ah වලින්) සහ විදයුත්ගාමක බලය (V වලින්) ගණනය කරන්න.
- (b) විදාුත් මෝටර් රථ බැටරියක් සෑදීම සඳහා එක එකෙහි විදාුත්ගාමක බලය $4\cdot 0\,\mathrm{V}$ වන සර්වසම කෝෂ 192ක් යොදාගෙන ඇත. කෝෂ අටක් (1) රූපයේ පෙන්වා ඇති පරිදි බැටරි මොඩියුලයක් සාදා ගැනීමට සම්බන්ධ කර ඇත. එවැනි මොඩියුල 24ක් ශ්‍රේණිගතව සම්බන්ධ කර $24\,\mathrm{kWh}$ විදාුත් මෝටර් රථ බැටරිය සාදනු ලබයි.

- (i) එක් බැටරි මොඩියුලයක විදාුුත්ගාමක බලය (V වලින්), සහ ධාරිතාවය (Ah වලින්) ගණනය කරන්න. ($1\ kWh=10^3\ V\ Ah$ ලෙස ඔබට ගත හැක.)
- (ii) 24 kWh වූ විදයුත් මෝටර් රථ බැටරියේ ධාරිතාවය (Ah වලින්) සහ විදයුත්ගාමක බලය (V වලින්) ගණනය කරන්න.
- (c) තිරස් මාර්ගයක $36\,\mathrm{km}\,\mathrm{h}^{-1}$ තියත වේගයකින් ගමන් කරන ඉහත විදයුත් මෝටර් රථය එහි චලිතයට එරෙහිව $480\,\mathrm{N}$ සම්පූර්ණ පුතිරෝධක බලයක් අත්විඳියි. මෝටර් රථයේ වායු සමීකරණයේ $(\mathrm{A/C})$ ක්ෂමතා පරිභෝජනය $1\cdot2\,\mathrm{kW}$ වේ. පහත අවස්ථා සඳහා බැටරියේ ගබඩා වී ඇති සම්පූර්ණ ශක්තියෙන් $(\mathrm{kWh}\,\mathrm{D})$ 50% පමණක් පරිභෝජනය කරමින් මෝටර් රථයට ගමන් කළ හැකි උපරිම දුර ගණනය කරන්න.
 - (i) සම්පූර්ණ ගමන සඳහා වායුසමීකරණය (A/C) කිුයාත්මක කර ඇති විට. (සම්පූර්ණ ගමන සඳහා වායුසමීකරණයේ ක්ෂමතා පරිභෝජනය නියත යැයි උපකල්පනය කරන්න.)
 - (ii) සම්පූර්ණ ගමන සඳහා වායුසමීකරණය (A/C) කිුයාත්මක නොමැති විට.
- (d) ඉහත මෝටර් රථයේ අභාාන්තරය උණුසුම් කිරීම සඳහා භාවිත කරන විදාුත් පරිපථයක් (2) රූපයේ දැක්වේ. සීත කාලගුණයකදී වාහනයේ අභාාන්තරය උණුසුම් කිරීමට අවශා වූ විට, රියදුරුට ස්විච්චියක් යොදා ගනිමින් R_1 හෝ R_2 ($R_1 < R_2$) පුතිරෝධක හරහා ධාරාවක් ගමන් කිරීමට සැලැස්විය හැකිය. R_1 සහ R_2 පුතිරෝධක හරහා ගමන් කරන ධාරාව තාපය ආකාරයෙන් උත්සර්ජනය වී අභාාන්තරය උණුසුම් කරයි. එමනිසා පුතිරෝධක තාපක ලෙස කියා කරයි. කාලයත් සමග බැටරියේ අභාාන්තර පුතිරෝධයක් ගොඩනැගෙන්නේ යැයි සලකන්න. අභාාන්තර පුතිරෝධය $10~\Omega$ වන ඇමීටරයක් සහ පරිපූර්ණ වෝල්ට්මීටරයක් පරිපථය පරීක්ෂා කිරීම සඳහා සම්බන්ධ කොට ඇත.

- (i) OP හෝ OQ සම්බන්ධ කිරීමෙන් රියදුරුට පරිපථය සම්පූර්ණ කළ හැක. අඩු සහ ඉහළ ක්ෂමතා උත්සර්ජනයක් ලබා ගැනීම සඳහා සුදුසු සම්බන්ධතා හඳුනා ගෙන ඒවා ලියා දක්වන්න. උදාහරණයක් ලෙස, OX සම්බන්ධතාවය සෑදීම මගින් තාපක හරහා ධාරාව ගලා නොයන අතර පරිපථයෙන් R_1 සහ R_2 ඉවත් කරයි.
- (ii) තාපක කියාත්මක නොවී ඇති විට වෝල්ට්මීටර කියවීම $255\,\mathrm{V}$ වේ. පරිපථය R_1 ට සම්බන්ධ කළ විට වෝල්ට්මීටර කියවීම $250\,\mathrm{V}$ දක්වා පහත වැටෙන අතර ඇමීටරය $5\cdot0\,\mathrm{A}$ කියවයි. බැටරියේ විදුපුත්ගාමක බලය, බැටරියේ අභාාන්තර පුතිරෝධය සහ R_1 පුතිරෝධකයේ පුතිරෝධයෙහි අගය ගණනය කරන්න.
- (iii) ඉහත (d) (ii) හි සඳහන් ක්ෂමතා විධියේ කිුියාත්මක වන විට තාපකයේ ක්ෂමතා උත්සර්ජනය ගණනය කරන්න.

(B) කොටස

(a) පහත (1) රූපයේ දැක්වෙන පරිපථය සෙනර් දියෝඩයක් සහ ටුාන්සිස්ටර සැකැස්මක් භාවිත කරමින් විචලා $V_{\rm in}$ පුදාන වෝල්ටීයතාවයකින් සුදුසු $V_{\rm out}$ පුතිදාන වෝල්ටීයතාවයක් ලබා ගනී. අවම ධාරාව $10\,{\rm mA}$ වූ සෙනර් දියෝඩයක් සහ සිලිකන් ටුාන්සිස්ටරයක් පරිපථයේ භාවිත කර ඇත. පුතිරෝධය $R_{\rm g}=70\,\Omega$, භාර පුතිරෝධය $R_{\rm L}=90\,\Omega$ සහ සෙනර් වෝල්ටීයතාව $V_{\rm g}=8\cdot3\,{
m V}$ ලෙස සලකමු. $V_{\rm in}=23\,{
m V}$ ලෙස සලකන්න.

පහත දෑ ගණනය කරන්න.

- (i) V_{out} ($V_{\mathrm{BE}} = 0.7~\mathrm{V}$ ලෙස ගන්න.)
- $({
 m ii})$ I_L ධාරාව
- $({
 m iii})$ $I_{
 m S}$ ධාරාව සහ
- $({
 m iv})$ අවම සෙනර් ධාරාවට අනුරූප වන $I_{
 m C}$

- (b) ඉහත (1) රූපයේ පරිපථයට නියත $V_{
 m out}$ අගයක් පවත්වා ගැනීමට පුදාන චෝල්ටීයතා විචලනයක් යාමනය කළ හැක.
 - .(i) $V_{
 m in}$ $= 23~{
 m V}$ සහ $30~{
 m V}$ විට $R_{
 m S}$ පුතිරෝධය හරහා උත්සර්ජනය වන ක්ෂමතාවය ගණනය කරන්න.
 - (ii) ඉහත (b) (i) සඳහා ඔබේ ගණනයන් භාවිත කරමින්, පරිපථය පුදාන චෝල්ටීයතාවයේ චෙනසක් යාමනය කරන ආකාරය කෙටියෙන් පැහැදිලි කරන්න.
- (c) ඉහත (1) රූපයේ පරිපථයට පුතිදාන භාර-පුතිරෝධයේ වැඩිවීමක් නිසා සිදුවන පුතිදාන $V_{
 m out}$ වෝල්ටීයතා විචලනයක් යාමනය කළ හැක.
 - (i) භාර-පුතිරෝධය වැඩි වූවභොත්, සෙනර් ධාරාව $I_{
 m Z}$ සහ $I_{
 m C}$ වලට කුමක් සිදු වේ ද? ඔබේ පිළිතුර පැහැදිලි කරන්න.
 - (ii) භාර-පුතිරෝධය වැඩි වන විට සෙනර් දියෝඩය සහ ටුාන්සිස්ටර සංයෝජනය මගින් පුතිදාන වෝල්ටීයතාවය යාමනය කරන්නේ කෙසේදැයි කෙටියෙන් පැහැදිලි කරන්න.
- (d) පහත (2) රූපයෙහි පෙන්වා ඇති පරිපථය $15\,\mathrm{V}$ දක්වා ජනනය කළ හැකි අභාවන්තර පුතිරෝධයක් (r) සහිත සූර්ය පැනලයක් මගින් බැටරියක් ආරෝපණය කිරීමට භාවිත කරයි. පරිපථයේ පුතිදාන චෝල්ටීයතාවය $14\,\mathrm{V}$ නොඉක්මවිය යුතුය.

- (i) දී ඇති වරණ (අපවර්තන වර්ධකයක්, අපවර්තන නොවන වර්ධකයක්, සංසන්දකයක්) අතරින් ඉහත පරිපථයේ කාරකාත්මක වර්ධකයේ කිුිිියාත්මක විධිය ලියා දක්වන්න.
- (ii) දීප්තිමක් හිරු එළිය යටතේ, පුතිදාන චෝල්ටීයතාවය $14~{
 m V}$ නිපදවන පරිදි R_2 සකසනු ලැබේ. R_1 = $9~{
 m k}\Omega$ සහ R_2 = $5~{
 m k}\Omega$ වන විට කාරකාත්මක වර්ධකයේ පුතිදානය ධන ලෙස සංතෘප්ත වීම සඳහා Z_1 සෙනර් දියෝඩයට තිබිය යුතු වඩාත් සුදුසු උපරිම චෝල්ටීයතාවය V_{Z_1} ගණනය කරන්න.
- (iii) අපවර්තන නොවන පුදානයේ සහ අපවර්තන පුදානයේ වෝල්ටීයතා අතර $100~\mu V$ වෙනසකට කාරකාත්මක වර්ධකයේ පුතිදානය සංතෘප්ත වේ නම් පරිපථයේ පුතිදාන වෝල්ටීයතාවය 14~V විට කාරකාත්මක වර්ධකයේ විවෘත පුඩු වෝල්ටීයතා ලාභය ගණනය කරන්න. කාරකාත්මක වර්ධකයෙහි පුතිදාන සංතෘප්ත වෝල්ටීයතාවය සැපයුම් වෝල්ටීයතාවයට වඩා 2~V කින් අඩු බව උපකල්පනය කරන්න.
- (iv) මඳ හිරු එළිය යටතේ සූර්ය පැනලය 14 V ට වඩා අඩු වෝල්ටීයතාවක් ජනනය කරන විට මෙම පරිපථයේ කාරකාත්මක වර්ධකය සහ ටුාන්සිස්ටරයේ කිුිියාකාරිත්වය කෙටීයෙන් පැහැදිලි කරන්න.

${f 10.}$ ${f (A)}$ කොටසට හෝ ${f (B)}$ කොටසට හෝ පමණක් පිළිතුරු සපයන්න.

(A) කොටස

- (a) භාවිත කරන සංකේත පැහැදිලිව හඳුන්වමින් දුවයක පරිමා පුසාරණතාව (γ) සඳහා පුකාශනයක් ලියා දක්වන්න.
- (b) එක්තරා දිනක නුවරඑළියේ ඇති ඉන්ධන පිරවුම්හලක ටැංකියේ පවතින පෙටුල්වල උෂ්ණත්වය උදෑසනදී $7\,^{\circ}\mathrm{C}$ වන අතර පස්වරුවේදී උෂ්ණත්වය $27\,^{\circ}\mathrm{C}$ වේ. පෙටුල්වල මධානා පරිමා පුසාරණතාවය $9.6\times10^{-4}\,^{\circ}\mathrm{C}^{-1}$ වන අතර, $7\,^{\circ}\mathrm{C}$ දී පෙටුල්වල ඝනත්වය $730~\mathrm{kg}~\mathrm{m}^{-3}$ වේ. පිරවුම්හලෙන් පෙටුල් ලීටර $20~\mathrm{m}$ මෝටර් රථයකට පිරවීමට නියමිතය.
 - (i) $7\,^{\circ}{
 m C}$ දී පෙටුල් ලීටර් $20\,$ ක ස්කන්ධය කොපමණ ද? ($1\,\,{
 m m}^3=1000$ ලීටර)
 - (ii) $7\,^{\circ}\mathrm{C}$ දී පෙටුල් $1\,\mathrm{m}^3$ ක උෂ්ණත්වය $27\,^{\circ}\mathrm{C}$ දක්වා වැඩි වූයේ නම්, එහි නව පරිමාව ගණනය කරන්න. (ඔබගේ පිළිතුර m^3 වලින් දශම ස්ථාන තුනකට වටයන්න.)
 - (iii) $27\,^{\circ}\mathrm{C}$ දී පෙටුල්වල ඝනත්වය කොපමණ ද? $\left[\frac{7\cdot3}{1\cdot019} = 7\cdot164\,$ ලෙස ගන්න. ඔබගේ පිළිතුර $\mathrm{kg}\,\mathrm{m}^{-3}$ වලින් ආසන්න පූර්ණ සංඛාාවට දෙන්න. $\right]$
 - (iv) 27° C දී පෙටුල් ලීටර් 20 ක ස්කන්ධය ගණනය කරන්න.
 - (v) ඉන්ධන පිරවුම්හලෙන් $7\,^{\circ}\mathrm{C}$ දී පෙටුල් ලීටර් $20\,$ පිරවුවහොත් $27\,^{\circ}\mathrm{C}$ දී ට වඩා අමතර පෙටුල් කිලෝගුෑම් කොපමණ පුමාණයක් මෝටර් රථයට ලැබේද?
- (c) පෙටුල් බවුසරයක ටැංකිය ලෝහයකින් සාදා ඇති අතර ටැංකියේ අභාන්තර පරිමාව $7\,^{\circ}$ C දී ලීටර $25\,000\,$ වේ. උණුසුම් දිනකදී පෙටුල් සහ ටැංකියේ උෂ්ණත්වය $27\,^{\circ}$ C වූ අතර පුසාරණය නිසා ටැංකිය සම්පූර්ණයෙන්ම පෙටුල්වලින් පිරුණි. පෙටුල්වල මධානා පරිමා පුසාරණතාව $9.6\times10^{-4}\,^{\circ}$ C $^{-1}$ වන අතර ලෝහයෙහි රේඛීය පුසාරණතාව $2.4\times10^{-5}\,^{\circ}$ C $^{-1}$ වේ.
 - පහත (c) (i), (c) (iii) සහ (c) (iv) සඳහා ඔබගේ පිළිතුරු විදහාත්මක අංකනයෙන් දශම ස්ථාන දෙකකට වටයන්න. පුශ්න අංක $\mathbf{5}$ ට පෙර දී ඇති සටහන බලන්න.
 - (i) ටැංකිය තුළ ඇති පෙටුල්වල දෘශා පරිමා පුසාරණතාව ගණනය කරන්න.
 - (ii) එනයින් $7\,^{\circ}\mathrm{C}$ දී පෙටුල්වල පරිමාව (ලීටර් වලින්) ගණනය කරන්න. [$\frac{1}{1+1\cdot776\times10^{-2}}=0.98$ ලෙස ගන්න.]
 - (iii) උෂ්ණත්වය $7\,^{\circ}$ C සිට $27\,^{\circ}$ C දක්වා ඉහළ නැංවීම සඳහා පරිසරයෙන් කොපමණ තාපයක් ටැංකිය සහ පෙටුල් අවශෝෂණය කර ඇත් ද? ලෝහයේ සහ පෙටුල්වල විශිෂ්ට තාප ධාරිතා පිළිවෙළින් $5\cdot 0\times 10^2 \,\mathrm{Jkg^{-1}\,K^{-1}}$ සහ $2\cdot 2\times 10^3 \,\mathrm{Jkg^{-1}\,K^{-1}}$ වේ. හිස් ටැංකියේ ලෝහයේ ස්කන්ධය $2\cdot 0\times 10^3 \,\mathrm{kg}$ වේ.
 - (iv) $7\,^{\circ}\mathrm{C}$ දී ටැංකිය පෙටුල්වලින් හරි අඩක් පුරවා ඉතිරි කොටස $1\cdot0\times10^5\,\mathrm{Pa}$ වායුගෝලීය පීඩනයේ ඇති වාතය සමගින් මුදා තබා ඇතැයි සිතමු. $27\,^{\circ}\mathrm{C}$ දී ටැංකිය තුළ මුළු පීඩනය නිර්ණය කරන්න. $27\,^{\circ}\mathrm{C}$ දී පෙටුල්වල සංතෘප්ත වාෂ්ප පීඩනය $7\cdot47\times10^4\,\mathrm{Pa}$ වේ. මෙම ගණනය සඳහා ලෝහයේ සහ පෙටුල්වල පරිමා පුසාරණය නොසලකා හරින්න.
 - (v) ඉහත (c) (iv) අවස්ථාවේ $27\,^{\circ}\mathrm{C}$ දී බවුසරය තුළ පවතින පෙටුල් වාෂ්ප මවුල ගණන කොපමණ ද? සාර්වතු වායු නියතය $R=8\cdot3~\mathrm{J\,mol^{-1}\,K^{-1}}$. පෙටුල් වාෂ්ප පරිපූර්ණ වායුවක් සේ හැසිරෙන බව උපකල්පනය කරන්න.

(B) කොටස

මාතුාමානයක් (Dosimeter) යනු අයනීකරණ විකිරණ නිරාවරණය (exposure) මැතීමට භාවිත කරන උපකරණයකි. එය මිනිස් සිරුර නිරාවරණය වන විකිරණ පුමාණය මැතීමට භාවිත කළ හැකි අතර ආරක්ෂාව සඳහා එය අතාාවශා පියවරකි. සකි්ය (active) සහ අකර්මණා (passive) මාතුාමාන ලෙස මාතුාමාන වර්ග දෙකක් ඇත. සකි්ය මාතුාමානයක් මගින් එම අවස්ථාවේදීම නිරාවරණය ලබා ගත හැක. අකර්මණා මාතුාමානයක් මගින් යම් නිශ්චිත කාලයක් තුළ පුද්ගලයකු අවශෝෂණය කරන විකිරණ පුමාණය මනිනු ලැබේ. වඩාත් බහුලව භාවිත වන අකර්මණා මාතුාමානය වන්නේ තාපපුතිදීප්ත මාතුාමානයයි. (Thermoluminescent dosimeter, TLD)

තාපපුතිදීප්ත ස්ඵටිකයක් අයනීකරණ විකිරණවලට නිරාවරණය වූ විට, එම විකිරණ ශක්තිය අවශෝෂණය කර එහි ස්ඵටික දැලිසෙහි රඳවා ගනියි. ස්ඵටිකය රත් කළ විට, එහි රඳවාගත් ශක්තිය දෘශා ආලෝකය ලෙස මුදා හරියි. එම ආලෝකයේ තීවුතාවය ස්ඵටිකය නිරාවරණය වූ අයනීකරණ විකිරණවල තීවුතාවයට සමානුපාතික වේ. විමෝචනය වන ආලෝකය පුකාශ සංවේදී පෘෂ්ඨයක් මත පතනය වීමට ඉඩ දී එමගින් කුඩා ධාරාවක් නිපදවයි. අවසානයේ මෙම ධාරාව වර්ධනය කර මැන ගනු ලැබේ.

ගයිගර්-මලර් ගණකයක් (Geiger-Müller counter) භාවිත කොට අයනීකරණ විකිරණ අනාවරණය කර ගත හැක. විවිධ දුවාවලින් සාදන ලද වෙනස් ඝනකම් සහිත අවශෝෂක තහඩු (absorber plates) භාවිත කොට GM ගණකයක් මත පතිත වන විකිරණ වර්ගය නිර්ණය කළ හැක.

- (a) වාතය අයනීකරණය කිරීමට හැකි විකිරණ වර්ග තුනක් ලියන්න.
- (b) අකර්මණා මාතුාමානයකට වඩා සකී්ය මාතුාමානයක ඇති වාසියක් ලියන්න.
- (c) අර්ධ ආයු කාලය පැය 1 ක් වන විකිරණශීලි දුවායෙක සකීයතාවය ගයිගර්-මලර් ගණකයක් මගින් මනිනු ලබයි. ආරම්භක ගිණීම් ශීසුතාවය තත්පරයට ගිණීම් 64 නම් පැය තුනකට පසු ගිණීම් ශීසුතාවය ගණනය කරන්න.
- (d) විවිධ අවශෝෂක තහඩු භාවිතයෙන් ගයිගර්-මලර් ගණකයක් මත පතනය වන අයනීකරණ විකිරණ වර්ගය තීරණය කළ හැක්කේ කෙසේ ϵ ?
- (e) TLD මාතුාමානයක් මගින් $198\,\mathrm{nW}$ තීවුතාවයකින් යුත් තරංග ආයාමය $400\,\mathrm{nm}$ නිල් ආලෝකය නිකුත් කරයි. මෙම වීමෝචනය වන ආලෝකය $2\cdot0\,\mathrm{eV}$ කාර්ය ශුිතයක් සහිත සීසියම් වලින් සාදන ලද පුකාශ පෘෂ්ඨයකට ලම්බව පතිත වේ යැයි උපකල්පනය කරන්න. (ප්ලාන්ක් නියතය $=6\cdot6\times10^{-34}\,\mathrm{J}\,\mathrm{s}$, ආලෝකයේ වේගය $=3\cdot0\times10^8\,\mathrm{m}\,\mathrm{s}^{-1}$, ඉලෙක්ටුෝනයේ ආරෝපණය $=1\cdot6\times10^{-19}\,\mathrm{C}$, $1\,\mathrm{eV}=1\cdot6\times10^{-19}\,\mathrm{J}$)
 - (i) තත්පරයකට පුකාශ පෘෂ්ඨය මත පතිත වන නිල් ආලෝකයේ පෝටෝන සංඛෳාව නිර්ණය කරන්න.
 - (ii) පුකාශ සංවේදී පෘෂ්ඨය මත පතනය වන එක් එක් පෝටෝන 100 ක් මගින් ඉලෙක්ටුෝන 10 ක් පිට කළහොත් පුකාශ සංවේදී පෘෂ්ඨය මගින් නිපදවන ධාරාව නිර්ණය කරන්න.
 - (iii) පුකාශ සංවේදී පෘෂ්ඨයෙන් පිට කරන පුකාශ ඉලෙක්ටෝනවල උපරිම චාලක ශක්තිය $(J \, {
 m D} ar{c} \, {
 m d} \, {
 m$
- (f) CT පරිලෝකකයක් (CT scanner) මිනිස් සිරුර වටා විවිධ කෝණවලින් X-කිරණ පෙළක් ලබා ගනී. වෛදා පර්යේෂණාගාරයක ඇති CT පරිලෝකකයක් පර්යේෂණ කටයුත්තක් සඳහා පූර්ණකාලීනව කි්යාත්මක වේ. CT පරිලෝකකය අසල තබා ඇති TLD මාතුාමානයක් 250 mSv/year (mSv/වසරක්) විකිරණ මාතුාවක් වාර්තා කර ඇත.
 - (i) CT පරිලෝකකයේ කියාකරු කාමරයේ සිටින විකිරණ විදාහඥයෙකුට CT පරිලෝකකය කියාත්මක වනවිට ලැබෙන විකිරණවලින් 10%කට නිරාවරණය විය හැක. විදාහඥයා නිරාවරණය වීමට හැකි උපරිම මාතුාව mSv/year වලින් ගණනය කරන්න.
 - (ii) විකිරණ කටයුතුවල නියැලෙන පුද්ගලයකු සඳහා අවසර දිය හැකි උපරිම වාර්ෂික මාතුාව $20\,\mathrm{mSv/year}$ වේ. විදාහඥයා දිනකට පැය 6 බැගින් වසරකට දින $146\,\mathrm{m}$ වැඩ කරන්නේ නම්, අවසර දිය හැකි උපරිම වාර්ෂික මාතුාව ඉක්මවා ඔහුට නොලැබෙන බව ඔප්පු කරන්න.
 - (iii) විදාහඥයාගේ ස්කන්ධය $75~{
 m kg}$ ක් නම් ඔහු වසරකට කොපමණ විකිරණ ශක්ති පුමාණයකට (J වලින්) නිරාවරණය වේ ද?

[X-කිරණ සඳහා, මාතුාව Sv චලින් = මාතුාව Gy චලින්; $1 \ Gy = 1 \ Jkg^{-1}]$