Фазовый синхронизм (Phase matching)

Право на глупость – одна из гарантий свободного развития личности.

Марк Твен

Одноосные кристаллы $n_x = n_y < n_z$

Типы взаимодействия

$$\dot{\mathbf{D}}_{\mathbf{i}}(\omega_{3}) = E_{i}(\omega_{3}) + \sum_{j} \chi_{ij}^{(1)} E_{j}(\omega_{3}) + 1/2 \sum_{j} \sum_{k} \chi_{ijk}^{(2)} \, \acute{E}_{j}(\omega_{1}) \acute{E}_{k}(\omega_{2})$$

$$\dot{\mathbf{P}}_{\text{Heл,i}}(\omega_{3}) = 1/2 \sum_{j} \sum_{k} \chi_{ijk}^{(2)} \, \acute{E}_{j}(\omega_{1}) \acute{E}_{k}(\omega_{2})$$

$$i, j, k \to x, y, z$$

<u>Условие фазового синхронизма</u>: $\Delta \bar{k} = \bar{k}_3 - \bar{k}_2 - \bar{k}_1 = 0$

$$\Delta k = rac{2\pi}{\lambda_2} n_3(\lambda_3, heta) - rac{2\pi}{\lambda_2} n_2(\lambda_2, heta) - rac{2\pi}{\lambda_1} n_1(\lambda_1, heta) = 0$$
 Коллинеарное взаимодействие

$$\omega_3 n_3(\lambda_3, \theta) - \omega_2 n_2(\lambda_2, \theta) - \omega_1 n_1(\lambda_1, \theta) = 0$$

$$\omega_3 = \omega_2 + \omega_1$$
 $h\omega_3 = h\omega_2 + h\omega_1$ $Nh\omega_3 = Nh\omega_2 + Nh\omega_1$ $\theta_3 = \theta_2 + \theta_1$

Генерация второй гармоники: $\lambda_1 = \lambda_2$, $\lambda_3 = \lambda_1/2$

Генерация второй гармоники (ГВГ) - оое

$$\lambda_1 = \lambda_2 = \lambda$$
, $\lambda_3 = \lambda/2$

$$\Delta k = k_2 - 2k_1 = 0$$

$$\Delta k = \frac{2\pi}{\lambda/2} n_2(\lambda/2, \theta) - 2\frac{2\pi}{\lambda} n_1(\lambda, \theta) = 0$$

$$n_2(\lambda/2,\theta) = n_1(\lambda,\theta)$$

$$\upsilon_{ph,2}(\lambda/2,\theta) = \upsilon_{ph,1}(\lambda,\theta)$$

Отрицательные кристаллы $(n_z < n_x = n_y)$

Возможно появление для: о-волны с λ и е-волны с $\lambda/2$ при θ =90°.

$$n_{2,e}(\lambda/2) = n_{1,o}(\lambda)$$

оо-е (оое) тип взаимодействия:

$$E_1(\lambda) = E_{1,o}(\lambda) - o$$
, $E_2(\lambda) = E_{2,o}(\lambda) - o$, $E_3(\lambda/2) = E_{3,e}(\lambda/2) - e$

Правило индексов

<u>Индексы</u>: Нелинейные восприимчивости (χ_{ijk}) $i(\omega_3) \leftarrow j(\omega_1), k(\omega_2)$

<u>Индексы</u>: Показатели преломления (одноосные n_o , n_e , двухосные n_s , n_f)

Одноосные								
Отрицательные	Положительные							
ooe: $o(\omega_1) + o(\omega_2) \rightarrow e(\omega_3)$	eeo: $e(\omega_1) + e(\omega_2) \rightarrow o(\omega_3)$							
oee: $o(\omega_1) + e(\omega_2) \rightarrow e(\omega_3)$	oeo: $o(\omega_1) + e(\omega_2) \rightarrow o(\omega_3)$							
eoe: $e(\omega_1) + o(\omega_2) \rightarrow e(\omega_3)$	eoo: $e(\omega_1) + o(\omega_2) \rightarrow o(\omega_3)$							
Двухосные								
ssf: $s(\omega_1) + s(\omega_2) \rightarrow f(\omega_3)$								
fsf: $f(\omega_1) + s(\omega_2) \rightarrow f(\omega_3)$								
sff: $s(\omega_1)$ +	$f(\omega_2) \rightarrow f(\omega_3)$							

Ориентации векторов

Отрицательные кристаллы <u>оое</u> тип взаимодействия

Дисперсионные зависимости

Отрицательные одноосные кристаллы:

Генерация второй гармоники оое - тип взаимодействия

$$(n_{\rm e}(\lambda/2,\theta) = n_{\rm o}(\lambda) = n_{\rm x}(\lambda))$$

Характеристические поверхности - оое

Дисперсионные зависимости - оое

ОЕЕ тип взаимодействия

$$\Delta k = k_{2,e} - k_{1,o} - k_{1,e} = 0$$

$$\theta_{phm}$$
 (ooe) < θ_{phm} (ooe)

$$\Delta k = \frac{2\pi}{\lambda/2} n_{2,e}(\lambda/2,\theta) - \frac{2\pi}{\lambda} n_{1,o}(\lambda) - \frac{2\pi}{\lambda} n_{1,e}(\lambda,\theta) = 0$$

$$n_{2,e}(\lambda/2,\theta) = \frac{n_{1,o}(\lambda) + n_{1,e}(\lambda,\theta)}{2}$$

ое-е (оее) тип взаимодействия, или ео-е (еое)

ΦC: $\lambda_{\text{Makc, ooe}} > \lambda_{\text{Makc, oee}}$ $\lambda_{\text{Muh, ooe}} < \lambda_{\text{Muh, oee}}$

$$\lambda_{\text{мин, ooe}} < \lambda_{\text{мин, oee}}$$

Угол фазового синхронизма – генерация второй гармоники (ГВГ)

ooe:
$$n_{1,o}(\lambda) = n_{2,e}(\lambda/2)$$

$$n_{x}(\lambda) = \frac{n_{x}(\lambda/2)n_{z}(\lambda/2)}{\sqrt{n_{x}^{2}(\lambda/2) + \left[n_{z}^{2}(\lambda/2) - n_{x}^{2}(\lambda/2)\right]\cos^{2}\theta}}$$

oee:
$$[n_{1,o}(\lambda) + n_{1,e}(\lambda)] / 2 = n_{2,e}(\lambda/2)$$

$$[n_x(\lambda) + \frac{n_x(\lambda)n_z(\lambda)}{\sqrt{n_x^2(\lambda) + [n_z^2(\lambda) - n_x^2(\lambda)] cos^2 \theta}}]/2 = \frac{n_x(\lambda/2)n_z(\lambda/2)}{\sqrt{n_x^2(\lambda/2) + [n_z^2(\lambda/2) - n_x^2(\lambda/2)] cos^2 \theta}}$$

Ориентации векторов

Отрицательные кристаллы

oee = eoe

ooe

 $E_e(\lambda/2)$ $E_e(\lambda/2)$ k $E_e(\lambda)$ $E(\lambda)$ χ $\boldsymbol{\mathcal{X}}$ $E_o(\lambda)$ $E_o(\lambda)$

Дисперсионные зависимости - оее

Дисперсионные зависимости ФС

$$\theta_{phm}$$
 (ooe) < θ_{phm} (ooe)

Типы синхронизма

Запрещено дисперсией

Отрицательные и положительные кристаллы

Отрицательный

Положительный

2-й тип: oe - e (oee) \longleftrightarrow eo - o (eoo)

eo - e (oee) \leftrightarrow oe - o (oeo)

Типы синхронизма (взаимодействия)

$$\lambda_1 \geq \lambda_2 > \lambda_3$$

Тип		Кристаллы			
ooe	1-й тип				
oee	2-й тип	Отрицательные (n _x < n _z)			
eoe	Z-M 1M11				
eeo	1-й тип				
eoo	2-й тип	Положительные (n _x > n _z)			
oeo	Z-M 1M11				
000					
eee		Невозможны из-за дисперсии среды			

Для всех типов угол синхронизма: $\mathbf{0}^{\,o} < \theta_{\phi c} \leq \mathbf{90}^{\,o}$

Для всех типов $heta_{\phi c}$ не зависит от угла ϕ .

Одноосные кристаллы

Кристалл	Отр./Пол	$\lambda_{ ext{min}}$ nm	Тип	$\lambda_{\it phm}^{ m min}$, nm	$\lambda_{phm}^{ ext{max}}$, nm	$\lambda_{ ext{max'}}$ nm
β -BBO	Отриц.	396	ooe	409,1	2600	2600
			oee	527,3	2600	
CDA	Отриц.	500	ooe	1063,4	1430	1430
			oee	-	-	
KDP	Отриц.	352	ooe	542,7	1500	1500
			oee	739,1	1500	
DKDP	Отриц.	400	ooe	529,4	2000	2000
			oee	739,1	2000	
LiNbO ₃	Отриц.	660	ooe	1055,6	3754,1	5500
			oee	1688,2	2410,5	
Proustite	Отриц.	2400	ooe	θ=72°	13000	13000
(Прустит)			oee	1492,8	-	
Urea	Полож.	800	eeo	473	1400	1400
(Мочевина)			eoo	600	1400	
ZnGeP ₂	Полож.	1480	eeo	3169,2	10320	12000
			eoo	-	-	

Связь синхронизмов типа оее и еое

Отрицательный кристалл 2-й тип взаимодействия

$$\lambda_1 \geq \lambda_2 > \lambda_3$$

Ориентации векторов – генерация суммарных частот

Трехчастотное взаимодействие

Направления фазового синхронизма при генерации суммарной частоты в кристалле β -BBO при λ_1 =1064,2 нм и λ_2 =532,1 нм.

Дисперсионные зависимости генерации суммарной частоты в кристалле KDP. $\lambda_1 = 1064,2 \text{ нм}.$

Диапазон прозрачности: 0,198 – 2,6 мкм

Диапазон прозрачности: 0,176 – 1,5 мкм