Computer Vision (SPRING 2019) Problem Set #2

Jijun HU jijun.hu.0930@gatech.edu

Coordinates and State: Coordinates - (135,120) State - green

Coordinates and State: Coordinates – (437, 249) State - green

ps2-1-a-2.png

Coordinates and State: Coordinates – (128, 379) State - yellow

ps2-1-a-3.png

Coordinates and State: Coordinates – (628, 479) State - red

Traffic Sign Detection - Do Not Enter

Coordinates: Coordinates – (245, 345)

Traffic Sign Detection - Stop

Coordinates: Coordinates – (549, 248)

Traffic Sign Detection - Construction

Coordinates: Coordinates – (250, 400)

ps2-2-a-3.png

Traffic Sign Detection - Warning

Coordinates: Coordinates – (748, 349)

Traffic Sign Detection - Yield

Coordinates: Coordinates – (306, 182)

Multiple sign detection

Coordinates and Names

no entry -(148, 448)

Stop – (549, 148)

construction -(850, 350)

Multiple sign detection

Coordinates and Names

Traffic light – (115, 340), 'red'

No entry -(235, 335)

Stop -(352, 347)

Yield -(506, 332)

Construction -(650, 350)

Warning -(800, 350)

Multiple sign detection with noise

Coordinates and Names

Traffic light – (872, 159), 'green'

No entry – (644, 244)

Yield – (156, 333)

Warning -(400, 449)

Multiple sign detection with noise

Coordinates and Names

Traffic light – (471, 359), 'yellow'

No entry -(344, 445)

Stop -(649, 198)

Yield -(155, 331)

Construction -(250, 200)

Warning - (799, 350)

Challenge problem - A

Do not Enter: (114, 108)

Challenge problem - A

Yield (116, 71)

Challenge problem - A

Challenge problem - B

Challenge problem - B

Challenge problem - B

Challenge problem - Text

Describe what you had to do to adapt your code for this task. How does the difference between simulated and real-world images affect your method? If you used other functions/methods, explain why that was better (or why your previous implementation did not work)

I feel the real image do contain much more noise in the image, and because when taking the photo, we always have different angles, that makes my conditions in my initial implementation too strong, I tried to loose to restriction a lot, but still cannot make it work for all the signs in different situation.