```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sea
```

In [2]: from sklearn.linear_model import LogisticRegression

In [4]: df = pd.read_csv(r"C:\Users\user\Downloads\C3_bot_detection_data.csv")
df

Out[4]:

	User ID	Username	Tweet	Retweet Count	Mention Count	Follower Count	Verified	Bot Label	Loc
0	132131	flong	Station activity person against natural majori	85	1	2353	False	1	Adki
1	289683	hinesstephanie	Authority research natural life material staff	55	5	9617	True	0	Sande
2	779715	roberttran	Manage whose quickly especially foot none to g	6	2	4363	True	0	Harris
3	696168	pmason	Just cover eight opportunity strong policy which.	54	5	2242	True	1	Martine
4	704441	noah87	Animal sign six data good or.	26	3	8438	False	1	Camach
49995	491196	uberg	Want but put card direction know miss former h	64	0	9911	True	1	Kimberly
49996	739297	jessicamunoz	Provide whole maybe agree church respond most	18	5	9900	False	1	Gree
49997	674475	lynncunningham	Bring different everyone international capital	43	3	6313	True	1	Debor
49998	167081	richardthompson	Than about single generation itself seek sell	45	1	6343	False	0	Stephe
49999	311204	danie l 29	Here morning class various room human true bec	91	4	4006	False	0	Nova

50000 rows × 11 columns

```
In [5]: | df.columns
 Out[5]: Index(['User ID', 'Username', 'Tweet', 'Retweet Count', 'Mention Count',
                 'Follower Count', 'Verified', 'Bot Label', 'Location', 'Created At',
                'Hashtags'],
               dtype='object')
In [23]: feature_matrix = df[['User ID', 'Retweet Count', 'Mention Count',
                'Follower Count', 'Bot Label']]
         target_vector = df['Verified']
In [24]: feature_matrix.shape
Out[24]: (50000, 5)
In [25]: from sklearn.preprocessing import StandardScaler
In [26]: | fs = StandardScaler().fit transform(feature matrix)
In [27]: logs = LogisticRegression()
         logs.fit(fs,target vector)
Out[27]: LogisticRegression()
In [28]: observation = [[1.4,1.5,1.6,2,2.1]]
         prediction = logs.predict(observation)
In [29]: |print(prediction)
         [ True]
In [30]: logs.classes
Out[30]: array([False, True])
In [31]: logs.predict_proba(observation)[0][0]
Out[31]: 0.48896843942135226
 In [ ]:
```