Курс "Суперкомпьютерное моделирование и технологии" Отчёт по заданию №2 Вариант 5

Ахметов Артём Айдарович, студент 620 группы

Факультет вычислительной математики и кибернетики
МГУ им. М. В. Ломоносова
Москва, 2022 год

Численный метод решения задачи

Пусть область G ограниченна параллелепипедом: Π : $\begin{cases} a_1 \leq x \leq b_1 \\ a_2 \leq y \leq b_2 \\ a_3 \leq z \leq b_3 \end{cases}$

Рассмотрим функцию:
$$F(x,y,z) = \begin{cases} f(x,y,z), (x,y,z) \in G \\ 0, (x,y,z) \notin G \end{cases}$$

Преобразуем искомый интеграл:

$$I = \iiint_G f(x, y, z) dx dy dz = \iiint_{\Pi} F(x, y, z) dx dy dz$$

Пусть $p_1(x_1,y_1,z_1)$, $p_2(x_2,y_2,z_2)$, ... — случайные точки, равномерно распределённые в Π . Возьмём n таких случайных точек. В качестве приближённого значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i)$$

где $|\Pi|$ — объём параллелепипеда Π ($|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$), F — заданная вариантом функция $F(x,y,z)=x^3y^2z$.

Аналитический метод решения задачи

Заданный интеграл, который необходимо вычислить:

$$I = \iiint_G x^3 y^2 z \, dx dy dz$$

где область $G = \{(x, y, z): -1 \le x \le 0, -1 \le y \le 0, -1 \le z \le 0\}$

$$I = \iiint_G x^3 y^2 z \, dx dy dz = \int_{-1}^0 x^3 dx \int_{-1}^0 y^2 dy \int_{-1}^0 z dz = -\frac{1}{4} * \frac{1}{3} * (-\frac{1}{2}) = \frac{1}{24} = 0.041(6)$$

Краткое описание программной реализации

Объявляются следующие переменные: eps — для хранения текущего значения ошибки, given_eps — передается через аргументы командной строки; k, total_count — для хранения количества точек, в которых вычислялось значение функции; total_sum, reduced_total_sum — для хранения суммы значений функции в точках.

Указывается seed для рандомайзера: srand(myid + SEED + std::time(0)); myid – rank id процесса из функции MPI_Comm_rank(MPI_COMM_WORLD, &myid) уникален для каждого MPI-процесса, т.е. в разных процессах будут генерироваться разные точки.

В цикле с условием while (eps > given_eps):

- генерируются случайные точки x, y, z в полуинтервале $[0,1)^3$ (F(x, y, z) = F(-x, -y, -z) при 0 <= x, y, z <= 1);
- total_sum += F(x, y, z); total_count += COUNT;

- вычисляется eps с обновленным значениями total_count, reduced_total_sum, вызывается MPI_Allreduce для поиска минимального eps;
- фиксируется время в переменных start_time и end_time до цикла и после соответственно, вычисляется end_time-start_time.

Исследование масштабируемости программы на системе Polus

График ускорения программы на Polus в зависимости от количества используемых MPI-процессов:

Точность ошибки	Число MPI- процессов	Время работы	Ускорение	Ошибка	Количест во точек	Итог
	шроцосоо	программы				
$3.0 \cdot 10^{-5}$	1	0.00203433	1	$7.5492 \cdot 10^{-7}$	12544	0.0416674
$3.0 \cdot 10^{-5}$	4	0.00131273	1.5496941	1.60281 · 10 ⁻⁵	23552	0.0416827
$3.0 \cdot 10^{-5}$	16	0.00172569	1.1788502	2.25123 · 10 ⁻⁵	16128	0.0416442
$5.0 \cdot 10^{-6}$	1	0.00259247	1	3.34079 · 10 ⁻⁶	21760	0.0416633
$5.0 \cdot 10^{-6}$	4	0.00124139	2.0883606	$2.3581 \cdot 10^{-6}$	21504	0.0416643
$5.0 \cdot 10^{-6}$	16	0.0443738	0.0584234	4.67388 · 10 ⁻⁶	1755392	0.0416713
$1.5 \cdot 10^{-6}$	1	0.00740405	1	1.49877 · 10 ⁻⁶	46848	0.0416682
$1.5 \cdot 10^{-6}$	4	0.00372417	1.9881074	6.74868 · 10 ⁻⁷	80384	0.041666
$1.5 \cdot 10^{-6}$	16	0.000465064	15.9204970	9.10422 · 10 ⁻⁷	12544	0.0416676