BGuide - Cálculo 1

Bruno Geronymo 2018-03-24

Sumário

Prefácio		5
1	Números reais	7
	1.1 Os Números Racionais	,
	.2 Os Números Reais	-

4 SUMÁRIO

Prefácio

Este material trata-se de um manual de resoluções dos exercícios propostos no livro Um Curso de Cálculo, Volume 1, 5^a Edição desenvolvido por Guidorizzi (2013). Ao decorrer das resoluções o material busca apresentar, adicionalmente, resoluções computacionais através do software R Core Team (2017) de computação estatística para facilitar a visualização do problema e também o aprendizado da linguagem R.

O material procura abordar todos os assuntos tratados no livro do *Guidorizzi*, seguindo também a mesma ordem dos capítulos, para facilitar a dinâmica de pesquisa por assuntos específicos.

Para o desenvolvimento do material foi utilizado o pacote knitr desenvolvido por Xie (2018b), o rmarkdown desenvolvido por Allaire et al. (2018) para geração de documentos dinâmicos no R e o bookdown desenvolvido por Xie (2018a) para criar livros e documentos técnicos em R Markdown.

6 SUMÁRIO

Capítulo 1

Números reais

1.1 Os Números Racionais

Por uma questão de notação admitiremos aqui que, sendo r um número racional, se $r \leq 0$, dizemos que r é não positivo. Da mesma forma, se $r \geq 0$, dizemos que r é não negativo.

Vale acrescentar aqui algumas definições que poderão auxiliar na leitura do livro.

- Abscissa: Trata-se da coordenada de um ponto sobre uma reta.
- Irredutível: Algo que não se pode reduzir. Uma fração é dita irredutível quando está em sua forma mais reduzida possível.

1.2 Os Números Reais

EXEMPLO 4. (Página 6) Suponha $x \ge 0$ e $y \ge 0$. Prove:

b)
$$x \leqslant y \Rightarrow x^2 \leqslant y^2$$
.

Resolução:

EXEMPLO 9. (Página 9) Resolva a inequação $\frac{3x-1}{x+2} \geqslant 5$.

Sendo x < 2:

$$\frac{3x-1}{x+2} \geqslant 5 \Leftrightarrow 3x-1 \leqslant 5(x+2).$$

Então o autor pergunta: Por quê?

Sabemos que 1 < 2, se multiplicássemos esta expressão por -1 sem alterarmos o sentido da desigualdade teríamos -1 < -2 e sabemos que esta afirmação não é verdadeira. Considerando a < 0, se multiplicarmos uma desigualdade por a altera-se o sentido da desigualdade pois refletimos estes valores para o outro lado de um eixo com relação a origem a uma taxa de progressão |a|. Porém, ao realizar este processo a direção de crescimento das unidades permanece a mesma (não é refletida).

```
# Exemplo gráfico
## O gráfico a seguir tem como objetivo a visualização do que foi dito
## anteriormente. Nele pode-se observar a propriedade 'x <= y ==> ky <= kx'
## quando 'k < 0'. No exemplo utilizaremos 'x = 2', 'y = 3' e 'k = -2'.
## Cria um vetor dos valores a serem plotados:
xy < -c(2, 3)
k <- -2
pontos <- c(k*xy, xy)</pre>
## Atribui O aos valores de y
pontos <- cbind(pontos, 0)</pre>
## Atribui nome às coordenadas
rownames(pontos) <- c("kx", "ky", "x", "y")
## Cria gráfico unidimensional:
plot(pontos, bty = 'n', xaxt = 'n', yaxt = 'n', ylab = '', xlab = '',
    ylim = c(-1, 1),
     xlim = c(pontos[2, 1] - 2, pontos[4, 1] + 2), pch = 20, cex = 2)
## Eixo do sistema:
arrows(x0 = pontos[2, 1] - 2, x1 = pontos[4, 1] + 2,
       y0 = 0, y1 = 0, 1wd = 2)
## Retas de distância:
arrows(x0 = pontos[1, 1], x1 = c(0, pontos[3, 1]),
       y0 = 0.4, y1 = 0.4,
       angle = 90, code = 3, col = "red", lwd = 2, length = 0.1)
arrows(x0 = pontos[2, 1], x1 = c(0, pontos[4, 1]),
       y0 = 0.7, y1 = 0.7,
       angle = 90, code = 3, col = "red", lwd = 2, length = 0.1)
## Enumeração do eixo:
axis(side = 1, seq(-7, 4, 1), pos = 0)
## Legenda:
text(pontos, labels = rownames(pontos), pos = 3, offset = 1, font = 2)
text(x = pontos[1, 1]/2, labels = rownames(pontos)[1], y = 0.4,
    pos = 3, font = 2)
text(x = pontos[2, 1]/2, labels = rownames(pontos)[2], y = 0.7,
    pos = 3, font = 2)
text(x = pontos[3, 1]/2, labels = rownames(pontos)[3], y = 0.4,
    pos = 3, font = 2)
text(x = pontos[4, 1]/2, labels = rownames(pontos)[4], y = 0.7,
    pos = 3, font = 2)
text(y = 0, x = (pontos[2, 1] + pontos[4, 1])/2,
    labels = "Gráfico Unidimensional para Avaliação das Desigualdades",
    pos = 1, offset = 3, font = 2)
```


Gráfico Unidimensional para Avaliação das Desigualdades

1.2.1 Exercícios Resolvidos

1. (Página 10) Resolva a inequação.

a)
$$3x + 3 < x + 6$$

$$3x + 3 (-x) < x + 6 (-x)$$

$$2x + 3 < 6$$

$$2x + 3 (-3) < 6 (-3)$$

$$2x < 3$$

$$\frac{2x}{2} < \frac{3}{2}$$

$$x < \frac{3}{2}$$

```
# Resolução no R
## Para resolver a inequação pelo R consideraremos as seguintes expressões:
## 'f1(x) = 3x + 3' e 'f2(x) = x + 6'.
f1 <- function(x){</pre>
 3*x + 3
f2 <- function(x){</pre>
 x + 6
}
## A designaldade é 'f1(x) < f2(x)' logo 'f1(x) - f2(x) < 0'. Portanto
## queremos os valores de x para os quais f1(x) - f2(x) seja menor que zero.
## Começaremos achando a raiz da expressão 'f1(x) - f2(x)'.
## A função abaixo utiliza iterações para achar a raiz em um intervalo
## pré-determinado, utiliza-se aqui o intervalo (-10, 10) mas é possível inserir
## grandes intervalos a um certo custo de tempo computacional (neste caso
## razoável).
r \leftarrow uniroot(function(x){f1(x) - f2(x)}, c(-10, 10))root
```

```
## [1] 1.5
## O resultado revela somente a raiz da função. No entanto queremos saber onde
## se localizam os valores positivos e negativos da função.
## Chamaremos nessa etapa a expressão 'f1(x) - f2(x)' de 'g(x)'.
g <- function(x){</pre>
 f1(x) - f2(x)
## Sabemos que a raiz da função 'g(x)' é 1.5, logo basta verificarmos os
## valores ao redor da raiz.
x \leftarrow seq(from = r - 0.5, to = r + 0.5, by = 0.25)
data.frame(x, g(x))
##
        x g.x.
## 1 1.00 -1.0
## 2 1.25 -0.5
## 3 1.50 0.0
## 4 1.75 0.5
## 5 2.00 1.0
## Pode-se observar que para valores menores que 1.5, g(x) assume valores
## negativos. Logo os valores de x que satisfazem a inequação são dados por
## 'x < 1.5'
# Exemplo Gráfico
## 0 gráfico a seguir representa f1(x), f2(x) e g(x). Observe que para valores
## menores que 1.5 temos f1(x) < f2(x) e g(x) < 0, para x = 1.5 temos
## f1(x) = f2(x) = g(x) = 0 e para valores maiores que 1.5 temos f1(x) > f2(x) e
## g(x) > 0.
## Vetor para determinar a amplitude do eixo das abscissas:
v \leftarrow c(r - 2, r + 2)
## Determina a amplitude do eixo das ordenadas:
mini \leftarrow min(f1(v), f2(v), g(v))
\max i \leftarrow \max(f1(v), f2(v), g(v))
## Curvas:
curve(f1, from = v[1], to = v[2], xlim = v, ylim = c(mini, maxi), lwd = 2,
bty = 'n', xaxt = 'n', yaxt = 'n', ylab = '', xlab = '',
main = 'Componentes da Inequação (Seção 1.2.1 Ex.1a)')
curve(f2, from = v[1], to = v[2], add = TRUE, col = 2, lwd = 2)
curve(g, from = v[1], to = v[2], add = TRUE, col = 3, lwd = 2)
## Eixos:
arrows(x0 = v[1], x1 = v[2],
   y0 = 0, y1 = 0, 1wd = 2, length = 0.1)
arrows(x0 = 0, x1 = 0,
   y0 = mini, y1 = maxi, lwd = 2, length = 0.1)
## Comprimento da reta vertical que passa pelo ponto de intersecção:
const <- 1.5
minim \leftarrow min(f1(r), f2(r), g(r)) - const
```

Componentes da Inequação (Seção 1.2.1 Ex.1a)

- 2. (Página 10) Estude o sinal da expressão.
 - a) 3x 1

i)
$$f(x) = 0$$
 (raiz):

$$3x - 1 = 0$$

$$3x - 1 (+1) = 0 (+1)$$

$$3x = 1$$

$$\frac{3x}{3} = \frac{1}{3}$$

$$x = \frac{1}{3}$$

ii) f(x) < 0:

$$3x - 1 < 0$$

$$3x - 1 (+1) < 0 (+1)$$

$$3x < 1$$

$$\frac{3x}{3} < \frac{1}{3}$$

$$x < \frac{1}{3}$$

iii) f(x) > 0:

5 0.83333333 1.500000e+00

$$3x - 1 > 0$$

$$3x - 1 (+1) > 0 (+1)$$

$$3x > 1$$

$$\frac{3x}{3} > \frac{1}{3}$$

$$x > \frac{1}{3}$$

```
# Resolução no R
## Para estudar o sinal da expressão pelo R começaremos construindo a função:
f <- function(x){</pre>
  3*x - 1
}
## Começaremos achando a raiz da expressão f(x) ou seja, os valores de x para
## os quais f(x) = 0.
## A função abaixo utiliza iterações para achar a raiz em um intervalo
## pré-determinado, utiliza-se aqui o intervalo (-10, 10) mas é possível inserir
## grandes intervalos a um certo custo de tempo computacional (neste caso
## razoável).
r \leftarrow uniroot(f, c(-10, 10))root
## [1] 0.3333333
## Logo para x = 1/3 temos f(x) = 0.
## Queremos saber também onde se localizam os valores positivos e negativos da
## função. Para isso basta verificarmos os valores ao redor da raiz.
x \leftarrow seq(from = r - 0.5, to = r + 0.5, by = 0.25)
data.frame(x, f(x))
##
                          f.x.
## 1 -0.16666667 -1.500000e+00
## 2 0.08333333 -7.500000e-01
## 3 0.33333333 7.105427e-15
## 4 0.58333333 7.500000e-01
```

Pode-se observar que para valores menores que 1/3, f(x) assume valores ## negativos e para valores maiores que 1/3, f(x) assume valores positivos.

e)
$$\frac{x-1}{x-2}$$

i)
$$f(x) = x - 1$$

I)
$$f(x) = 0$$
 (raiz):

$$x-1 = 0$$

 $x-1$ (+1) = 0 (+1)
 $x = 1$

II)
$$f(x) < 0$$
:

$$\begin{array}{rcl} x-1 & < & 0 \\ x-1 & (+1) & < & 0 & (+1) \\ x & < & 1 \end{array}$$

III)
$$f(x) > 0$$
:

$$\begin{array}{rrrrr} x-1 & > & 0 \\ x-1 & (+1) & > & 0 & (+1) \\ x & > & 1 \end{array}$$

ii)
$$g(x) = x - 2$$

I)
$$g(x) = 0$$
 (raiz):

$$\begin{array}{rcl} x-2 & = & 0 \\ x-2 & (+2) & = & 0 & (+2) \\ x & = & 2 \end{array}$$

II)
$$g(x) < 0$$
:

$$\begin{array}{rcl} x-2 & < & 0 \\ x-2 & (+2) & < & 0 & (+2) \\ x & < & 2 \end{array}$$

III)
$$g(x) > 0$$
:

$$\begin{array}{cccc} x-2 & > & 0 \\ x-2 & (+2) & > & 0 & (+2) \\ x & > & 2 & \end{array}$$

iii)
$$h(x) = \frac{f(x)}{g(x)}$$

Nosso interesse aqui é em h(x), podemos concluir com os resultados de i, ii e iii que temos h(x) < 0 para 1 < x < 2, h(x) = 0 para x = 1, h(x) > 0 para x < 1 e x > 2. Temos ainda que para x = 2 a função h(x) não é definida pois o denominador da função iguala-se a zero.

```
# Resolução no R
## Para resolver a inequação pelo R consideraremos as seguintes expressões:
## 'f(x) = x - 1' e 'g(x) = x - 2'.
f <- function(x){</pre>
 x - 1
g <- function(x){
 x - 2
## Começaremos achando a raiz das expressões f(x) e g(x) ou seja, os valores de
## x para os quais f(x) = 0.
## A função abaixo utiliza iterações para achar a raiz em um intervalo
## pré-determinado, utiliza-se aqui o intervalo (-10, 10) mas é possível inserir
## grandes intervalos a um certo custo de tempo computacional (neste caso
## razoável).
rf <- uniroot(f, c(-10, 10))$root
## [1] 1
rg <- uniroot(g, c(-10, 10))$root
rg
## [1] 2
## O resultado revela somente a raiz das funções f(x) e g(x). No entanto
## queremos saber onde se localizam os valores positivos e negativos das
## funções.
## Sabemos que as raízes das funções f(x) e g(x) são, respectivamente, 1 e 2.
## Agora verificaremos os valores ao redor das raízes.
x \leftarrow seq(from = min(rf, rg) - 0.5, to = max(rf, rg) + 0.5, by = 0.5)
data.frame(x, f(x), g(x), f(x)/g(x))
##
                  f.x.
                                g.x.
                                         f.x..g.x.
## 1 0.5 -5.000000e-01 -1.500000e+00 3.333333e-01
## 2 1.0 1.776357e-15 -1.000000e+00 -1.776357e-15
## 3 1.5 5.000000e-01 -5.000000e-01 -1.000000e+00
## 4 2.0 1.000000e+00 1.776357e-15 5.629500e+14
## 5 2.5 1.500000e+00 5.000000e-01 3.000000e+00
```

```
## Nosso interesse aqui é em f(x)/g(x), podemos concluir com o resultado acima
## que valores menores que 1 e maiores que 2 temos f(x)/g(x) > 0, e para valores
## maiores que 1 e menores que 2 temos f(x)/g(x) < 0 e para x = 1 temos
## f(x)/g(x) = 0. Por definição, quando g(x) = 0 (x = 2) a expressão não é
## definida.
# Exemplo Gráfico
## O gráfico a seguir representa f(x), g(x) e h(x). Observe que para valores
## menores que 1 temos f1(x) > f2(x) e g(x) > 0, para x = 1 temos f1(x) = f2(x)
## e g(x) = 0 e para valores maiores que 1 temos f1(x) < f2(x) e g(x) < 0.
## Vetor para determinar a amplitude do eixo das abscissas:
v \leftarrow c(min(rf, rg) - 2, max(rf, rg) + 2)
## Define função h(x):
h <- function(x){</pre>
 f(x)/g(x)
## Determina a amplitude do eixo das ordenadas:
mini \leftarrow min(f(v), g(v), h(v))
\max i \leftarrow \max(f(v), g(v), h(v))
## Curvas:
curve(f, from = v[1], to = v[2], xlim = v, ylim = c(mini, maxi), lwd = 2,
 bty = 'n', xaxt = 'n', yaxt = 'n', ylab = '', xlab = '',
 main = 'Componentes da Inequação (Seção 1.2.1 Ex.2e)')
curve(g, from = v[1], to = v[2], add = TRUE, col = 2, lwd = 2)
curve(h, from = v[1], to = v[2], add = TRUE, col = 3, lwd = 2)
## Eixos:
arrows(x0 = v[1], x1 = v[2],
  y0 = 0, y1 = 0, 1wd = 2, length = 0.1)
arrows(x0 = 0, x1 = 0,
   y0 = mini, y1 = maxi, lwd = 2, length = 0.1)
## Reta vertical que passa pelo ponto de intersecção:
segments(x0 = c(rf, rg), x1 = c(rf, rg),
    y0 = -2, y1 = 2, 1wd = 1)
## Enumeração dos eixos:
axis(side = 1, c(seq(round(v[1]), round(v[2]) - 0.5, 1)),
hadj = -0.25, padj = -1.5, pos = 0, cex.axis = 0.7)
axis(side = 2, c(seq(round(mini) + 1, round(maxi) - 1, 3)),
padj = 1, pos = 0, cex.axis = 0.7)
## Legenda:
legend(2.25, -1, col = c(1, 2, 3), c('f(x)', 'g(x)', 'h(x)'),
  lwd = 2, text.font = 2)
text(x = c(v[2], 0.125, rf, rg), y = c(-1, maxi, 2.25, 2.25),
labels = c("x", "y", "1", "2"), font = 2)
```

Componentes da Inequação (Seção 1.2.1 Ex.2e)


```
## Repare no grafico acima que para valores de x menores que 1 temos f(x) < 0 ## e g(x) < 0 consequentemente h(x) > 0. Para x = 1 temos f(x) = 0 e g(x) < 0 ## consequentemente h(x) = 0. Para valores de x maiores que 1 e menores que 2 ## temos f(x) > 0 e g(x) < 0 consequentemente h(x) < 0. Para x = 2 temos ## f(x) > 0 e g(x) = 0 consequentemente h(x) não é definida no ponto. Para ## valores de x maiores que 2 temos f(x) > 0 e g(x) > 0 consequentemente ## h(x) > 0.
```

Referências Bibliográficas

- Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., and Chang, W. (2018). *rmarkdown: Dynamic Documents for R.* https://rmarkdown.rstudio.com, https://github.com/rstudio/rmarkdown.
- Guidorizzi, H. (2013). Um curso de cálculo. Number v. 1. LTC.
- R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Xie, Y. (2018a). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.7.1.
- Xie, Y. (2018b). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.20.