

Introduction to probability, statistics and data handling

Tomasz Szumlak, <u>Agnieszka Obłąkowska-Mucha</u> Faculty of Physics and Applied Computer Science

AGH UST Krakow

2 Statistical Inference

The statistical inference consists in arriving at (quantitative) conclusions concerning a population where it is impossible or impractical to examine the entire set of observations that make up the population. Instead, we depend on a subset of observations - a sample.

Statistical Sample and Population

- Sample posses a property X (our RV); $X \to f(x, \lambda)$ (probability density function), λ set of parameters of the population to be determined from the sample (e.g. μ, σ , etc.).
- Any function of the random variables constituting a random sample that is used for **estimation** of unknown distribution parameters λ is called a **statistic** S:

$$S = S(X_1, X_2, ..., X_n)$$
$$\lambda_i = E[S(X_1, X_2, ..., X_n)] \equiv \hat{S}$$

- We say: the estimated value of a statistic \hat{S} is said to be estimator of the parameter λ ; the estimation is carried out on the basis of an n-element sample.
- We start with two estimators:
 - estimator of a mean value
 - estimator of a variance

we want to estimate μ and σ^2 of a **population** with a use of **sample**

 Later we will develop methods for the estimation of unknown parameter of a model (linear, or any other) based on samples (method of momets, method of least squares, maximum likelihood estimation)

4 Point estimation

- Let's think about the following: we are looking at some phenomena (took a data sample), now what we like to do is to try describe the data using a model (have we already discussed any models?)
- Using the statistics lingo we would say: we want to estimate the parameters for the hypothesised population model
- ☐ As usual there are a lot of methods, we are going to have a look at a few of them
- Estimators should have specific features (we will discuss it today)

BUT

■ Let's start with some **examples** first!

Number of males in a queue

An experiment has been conducted in London Tube to check the number of males in each of 100 queues all of length 10. The results obtained were as follows

Counts	0	1	2	3	4	5	6	7	8	9	10	
Frequency	1	3	4	23	25	19	18	5	1	1	0	

And the plot

- Can you tell what is the <u>underlaying parent distribution</u>?
- Well, one could prove that the **binominal** one fits quite good $\mathcal{B}(n,p)$, n=10 being the length of the queue and \boldsymbol{p} the proportion of males (check this on your own)
- \square We could estimate the p using the collected sample

$$\frac{\#males}{\#all\ passangers} = \frac{1 \cdot 0 + 3 \cdot 1 + \dots + 1 \cdot 9 + 0 \cdot 10}{1000} = \frac{435}{1000} = \mathbf{0.435}$$

- What would be the weak point of this assumption?
- Can we actually come up with a generic strategy to say, the value of a parameter of interest is this and that?
- Yes! We can! We need to perform an experiment and run an analysis
- Another question would be how reliable this estimate is (but we leave it for the next lectures)

7

A big question

- So, we collected the data we are going to be interested in a procedure, which basing on the observed variation gives the best value (we could also ask about the range of values) for the corresponding underlaying model parameter(s)
- Again, using the stat lingo we want to get the best possible estimate of the value of the parameter(s)
- ☐ /That is what the **point estimation** is all about
 - BTW, it may also be useful to estimate the range of "good" parameter values that is yet another story called **estimation** with confidence we are going to look at this next time!

Estimation

The fine art of guessing

Not quite

Estimators

Consider the following: to check the water for contamination by a micro-organism a number of samples were taken, the results are summarised as follow

Counts	0	1	2	3	4	5	6	7	8	>9
Frequency	53	25	13	2	2	1	1	0	1	0

One can assume that the data follow the Poisson distribution with an unknown parameter μ (each water sample is an independent observation on the same random variable!)
 For these particular data, we can estimate the μ as:

$$\bar{x} = \frac{0 \cdot 53 + 1 \cdot 25 + \dots + 8 \cdot 1}{58 + 25 + \dots + 1} = \frac{84}{103} = 0.816$$

$$\{X_1, X_2, \dots, X_{103}\} \rightarrow X \equiv Poisson(\mu)$$

$$\bar{X}_{(1)} = \frac{X_1 + X_2 + \dots + X_{103}}{103} \rightarrow \bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

9 Estimators

- Let's set a generic procedure using this simple example
- First, we pick the parameter to be estimated
- Next, we need to collect data and compute a sampling statistics using a formula corresponding to the parameter we are interested in
- ☐ In our example that is a **sample mean**

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

- This, in turn, we call an **estimator** of true parameter, in our case this would be: $\mu \to \bar{X} = \hat{\mu}$ (we use the caret symbor "^")
- Remember the estimator is a random variable, for different sample we are going to get different value
- The estimator will follow its own distribution **sampling distribution of the estimator**

10

More than one way...

Lets inspect the following data regarding the number of divorces in different years in some country in Europe

Year	1975	1976	1977	1978	1979	1980
# divorces (10³)	120.5	126.7	129.1	143.7	138.7	148.3

Interesting..., very tempting to fit a model right away.

More than one way...

- From the plot we could conclude, that the **true underlaying distribution** describing the data can be represented by a **linear model**
- From the data we also conclude that **the slope** of the line is positive ok, the task is then to **estimate this slope**, α , and then we could predict the annual rate of increase of divorces
- But how do we do that? It is not so obvious like the water example (??)
- Consider this:

 - \square $\hat{\alpha}_3$ join the centroid of the first triplet and the second one
- Mind you, these are all sensible options!

we will continue the discussion how to obtain the best estimators in a few weeks!

Summary so far

- ☐ A generic "algorithm" for point estimation task would be:
 - Collect the data and understand it
- Come up with a model, this will specify a parameter or many parameters that we need to make an estimate
- For a given parameter(s) we need an **estimator(s)** (typically we will concentrate on the mean value or variance, however we also can tackle more ambitious cases e.g., divorces)
- Work out the estimate of the parameter this is a random variable and will be different for different data sets
- ☐ Finally, analyse the **sampling distribution of the estimator** to make a judgement of its usefulness
- We are looking for unbiased (expectation value) and efficient estimators (variance)

We are looking for the best estimator (but what does "best" mean?

- In the best of all possible worlds, we could find an estimator $\hat{\mu}$ for which $\hat{\mu} = \mu$ in all samples. But this does not exist, sometimes $\hat{\mu}$ will be too small, fort other samples too big.
- Let's write (in general): $\hat{\theta} = \theta + error$ of estmation. Therefore the best estimator $\hat{\theta}$:
 - has small estimator errors: the mean equared error RMS $E\left[\left(\hat{\theta}-\theta\right)^2\right]$ shoud be the smallest
 - should be **unbiased** $E[(\hat{\theta})] = \theta$
 - should have small variance $VAR[(\hat{\theta})]$

We are looking for **unbiased** (expectation value) and **efficient** estimators (variance).

14

Sampling distribution

- Any sample statistics is a function of R.Vs and is therefore itself a random variable that is absolutely critical to remember!
- The probability distribution of a sample statistics is called the sampling distribution of this statistics (sorry for complicated circular sentences...)
 - A recipe to get such distribution would be as follow: we should draw all possible samples of size n from a population, next we should compute the statistics at hand, thus, obtaining the distribution of this statistics. We call it the sampling distribution
- It is perfectly ok to compute the mean, variance, standard deviation and other moments for the sampling distribution!
- To make it a bit more comprehensible, let's consider the sample mean. Let X_1, X_2, \dots, X_n be independent, identically distributed RVs. The mean of the sample is another R.V. defined as follow:

$$\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n) = \frac{\sum_{i/1}^{i/n} X_i}{n}$$

Sampling dist. of means

■ **Theorem 1**. The mean of the sample means is a consistent etimator of μ :

$$E[\bar{X}] = \mu_{\bar{X}} = \mu$$

where μ is the mean of the population. So, we say, that the expected value of the sample mean is the population mean – **how interesting**!

■ **Theorem 2**. If a population is infinite and the sampling is random, or if a population is finite and sampling is with replacement, then the variance of the distributions of the sample means, denoted by $\sigma_{\bar{X}}$, is:

$$E[(\bar{X} - \mu)^2] = \sigma_{\bar{X}}^2 = \frac{1}{n}\sigma^2$$

Sampling dist. of means

■ **Theorem 3**. If the population is not infinite (of size N) or is the sampling is done without replacement, then the variance should be evaluated using:

$$\sigma'^{2}_{\bar{X}} = \frac{1}{n} \sigma^{2} \left(\frac{N-n}{N-1} \right), N \to \infty : \sigma'^{2}_{\bar{X}} \to \sigma^{2}_{\bar{X}}$$

- **Theorem 4.** If the population from which we draw samples is normally distributed with mean μ and variance σ^2 , then the sample mean is also normally distributed with mean μ and variance $\frac{\sigma^2}{n}$
- **Theorem 5**. Let's assume that the population from which samples are drawn has mean μ and variance σ^2 . The population **may or may not be normally distributed**. The standardised variable associated with \bar{X} can be written as:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Sample variance

If $\{X_1, X_2, \dots X_n\}$ denote R.Vs for a random sample of size n, the R.V. giving the variance of the sample (the sample variance) is defined as:

$$S^{2} = \frac{1}{n} [(X_{1} - \bar{X})^{2} + (X_{2} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2}]$$

- We already know, that $E[\bar{X}] = \mu$, is this the same for $E[S^2] = \sigma^2$?
 - □ A little digression whenever the expected value of a statistics is equal to the corresponding population parameter, we call this statistics an unbiased estimator. Its value is then an unbiased estimate of the respective parameter
- Unfortunately, it can be proved that for the sample variance, we have: n = 1

$$E[S^2] = \mu_{S^2} = \frac{n-1}{n}\sigma^2$$

☐ However, an unbiased variance estimator is easy to find:

$$\hat{S}^2 = \frac{n}{n-1}S^2 = \frac{1}{n-1}[(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2]$$

Sampling dist. of variances

With such unbiased estimator, we have:

$$E[\hat{S}^2] = \sigma^2$$

- In order to create the sampling distribution of variances, we take all the possible samples of size n, that can be drawn from a population and calculate their variances
 - One change is, that instead of looking directly at the distribution of the sample variance, we look at the R.V.:

$$\frac{nS^2}{\sigma^2} = \frac{(n-1)\hat{S}^2}{\sigma^2} = \frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2}{\sigma^2}$$

■ **Theorem 6**. If a random samples of size n are taken from a population having a normal distribution, than the sampling variable $\frac{nS^2}{\sigma^2}$ has a χ^2 distribution with n-1 degrees of freedom

χ^2 distribution

- This is another very popular distribution in Statistics!
- The mathematical formula describing it is quite complex, again we are going to use tabulated values when solving problems!

Point estimators - summary

 \square Sample mean \bar{X} is the point estimator of parameter μ :

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1\dots n} X_i$$

☐ The unbiased estimator for variance is:

$$\hat{S}^2 = \frac{1}{n-1} \left[(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2 \right] = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 \square The estimator of the correlation (X,Y) is:

$$r(X,Y) = \frac{S_{XY}}{\sqrt{S_{XX}}\sqrt{S_{yy}}}$$

$$S_{XX} = \sum (X_i - \bar{X})^2$$

$$S_{YY} = \sum (Y_i - \bar{Y})^2$$
 $S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y})$