$11a_{195} (K11a_{195})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{26} + u^{25} + \dots + u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 26 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{26} + u^{25} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} - 6u^{7} - 11u^{5} - 6u^{3} + u \\ u^{9} + 5u^{7} + 7u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{22} + 15u^{20} + \dots + 3u^{4} + 1 \\ -u^{22} - 14u^{20} + \dots - 6u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9} + 6u^{7} + 11u^{5} + 6u^{3} - u \\ u^{11} + 7u^{9} + 16u^{7} + 13u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9} + 6u^{7} + 11u^{5} + 6u^{3} - u \\ u^{11} + 7u^{9} + 16u^{7} + 13u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{9} + 6u^{7} + 11u^{5} + 6u^{3} - u \\ u^{11} + 7u^{9} + 16u^{7} + 13u^{5} + 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-4u^{24} - 4u^{23} - 72u^{22} - 68u^{21} - 556u^{20} - 492u^{19} - 2408u^{18} - 1976u^{17} - 6420u^{16} - 4820u^{15} - 10888u^{14} - 7348u^{13} - 11724u^{12} - 6960u^{11} - 7772u^{10} - 3996u^9 - 3012u^8 - 1416u^7 - 688u^6 - 388u^5 - 124u^4 - 84u^3 - 12u^2 - 4u - 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{26} + u^{25} + \dots + u + 1$
c_2	$u^{26} + 13u^{25} + \dots + u + 1$
c_3, c_4, c_5 c_8, c_9, c_{10}	$u^{26} + u^{25} + \dots + u + 1$
c ₇	$u^{26} - u^{25} + \dots - 15u + 13$
c_{11}	$u^{26} + 5u^{25} + \dots + 13u + 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{26} + 13y^{25} + \dots + y + 1$
c_2	$y^{26} + y^{25} + \dots + 13y + 1$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$y^{26} + 37y^{25} + \dots + y + 1$
<i>C</i> ₇	$y^{26} - 11y^{25} + \dots - 771y + 169$
c_{11}	$y^{26} - 7y^{25} + \dots + 209y + 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.077128 + 1.053710I	-3.09394 + 2.15610I	1.13399 - 4.05651I
u = 0.077128 - 1.053710I	-3.09394 - 2.15610I	1.13399 + 4.05651I
u = 0.161363 + 1.198920I	-5.09746 + 3.38991I	0.31521 - 3.08376I
u = 0.161363 - 1.198920I	-5.09746 - 3.38991I	0.31521 + 3.08376I
u = -0.197878 + 1.227700I	-7.64978 - 8.20022I	-2.78707 + 6.68979I
u = -0.197878 - 1.227700I	-7.64978 + 8.20022I	-2.78707 - 6.68979I
u = -0.110529 + 1.259790I	-9.26319 - 0.26212I	-5.31196 - 0.01260I
u = -0.110529 - 1.259790I	-9.26319 + 0.26212I	-5.31196 + 0.01260I
u = -0.244565 + 0.622723I	-3.16465 + 0.96048I	-3.09934 + 0.95175I
u = -0.244565 - 0.622723I	-3.16465 - 0.96048I	-3.09934 - 0.95175I
u = -0.408899 + 0.513910I	-2.03162 - 6.10006I	0.39307 + 8.69218I
u = -0.408899 - 0.513910I	-2.03162 + 6.10006I	0.39307 - 8.69218I
u = 0.348180 + 0.441188I	0.20618 + 1.65739I	4.39967 - 5.42760I
u = 0.348180 - 0.441188I	0.20618 - 1.65739I	4.39967 + 5.42760I
u = -0.456797 + 0.108055I	-0.84040 + 3.21915I	4.62809 - 2.59939I
u = -0.456797 - 0.108055I	-0.84040 - 3.21915I	4.62809 + 2.59939I
u = 0.358117 + 0.227225I	0.833642 + 0.761088I	8.16561 - 5.13707I
u = 0.358117 - 0.227225I	0.833642 - 0.761088I	8.16561 + 5.13707I
u = 0.01146 + 1.75714I	-13.35510 + 2.46006I	0 3.10858I
u = 0.01146 - 1.75714I	-13.35510 - 2.46006I	0. + 3.10858I
u = 0.04046 + 1.78541I	-16.0177 + 4.2821I	0 2.02711I
u = 0.04046 - 1.78541I	-16.0177 - 4.2821I	0. + 2.02711I
u = -0.05012 + 1.79182I	-18.6999 - 9.3134I	-3.16767 + 5.53584I
u = -0.05012 - 1.79182I	-18.6999 + 9.3134I	-3.16767 - 5.53584I
u = -0.02793 + 1.79884I	18.9562 - 0.8960I	-5.38672 + 0.I
u = -0.02793 - 1.79884I	18.9562 + 0.8960I	-5.38672 + 0.I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{26} + u^{25} + \dots + u + 1$
c_2	$u^{26} + 13u^{25} + \dots + u + 1$
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	$u^{26} + u^{25} + \dots + u + 1$
	$u^{26} - u^{25} + \dots - 15u + 13$
c_{11}	$u^{26} + 5u^{25} + \dots + 13u + 7$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{26} + 13y^{25} + \dots + y + 1$
c_2	$y^{26} + y^{25} + \dots + 13y + 1$
c_3, c_4, c_5 c_8, c_9, c_{10}	$y^{26} + 37y^{25} + \dots + y + 1$
c_7	$y^{26} - 11y^{25} + \dots - 771y + 169$
c_{11}	$y^{26} - 7y^{25} + \dots + 209y + 49$