Nuclear Physics

Michael Brodskiy

Professor: Q. Yan

 $April\ 13,\ 2023$

Contents

1	Nuclear Structure	3
2	Nuclear Size and Shape	3

1 Nuclear Structure

- The size of an atom is 1[Å]
- $\bullet\,$ The size of the nucleus is .001 [Å], or 1[fm]
- The repulsive positive charges in the nucleus are held together by the strong nuclear force
 - Has a very short range
- Protons have a charge of e^+ and a spin of $\frac{1}{2}$, neutrons have no charge, but the same spin value
- Neutrons were discovered in 1932
- The atomic number is the sum of protons and neutrons
 - Thus, a nucleus with a mass number A contains Z protons and N=A-Z neutrons
 - Neutrons and protons are referred to as nucleons
 - Nuclei with similar Z may have different N
 - For example, fully specifying a hydrogen atom, we may get:
 - $* {}^{1}H_{0}$
 - $* {}_{1}^{2}H_{1}$
 - $* {}_{1}^{3}H_{2}$
 - These are known as isotopes

2 Nuclear Size and Shape

ullet It is observed that the density of a nucleus does not depend on its atomic number A

$$\frac{N+Z}{\frac{4}{3}\pi R^2} \Rightarrow \frac{A}{R^2}$$
 is constant

- The Nucleus Radius
 - We know $R = R_o A^{\frac{1}{3}}$
 - We also know $\rho = \frac{m}{V}$
 - Combining these, we get
- Nuclear Binding Energy

$$- E_b = \left[Nm_n + Zm_p - m \left({}_Z^A Z_N \right) \right]$$

- $-\frac{E_b}{A} = \frac{\text{Binding energy}}{\# \text{ of molecules}}$
- The binding energy to remove the least bound nucleon from the nucleus is on the order of [MeV], while the ionization energy of an electron is on the order of [eV]

• Stable and Unstable Nuclei

- Most nuclei are not stable
- They decay to lighter, more stable ones
- Decay Processes:
 - * α -decay Emission of a helium nucleus, ${}_{2}^{4}He_{2}$
 - * β -decay Involves the ejection of a beta particle $\rightarrow {}^A_Z X \rightarrow^A_{Z+1} X' + e^- + \beta$ or ${}^A_Z X \rightarrow^A_{Z-1} X' + e^+ + \beta$
- Activity and Decay Probabilities
 - * This is the rate at which N unstable nuclei decay
 - * Number of decays per second
 - * Units of Curies are used $(1[Ci] = 3.7 \cdot 10^{10} [decays/s])$
 - * P(t) is the probability of decay after a given time t
 - * Decay probability per nucleus per second is called the decay constant, λ
 - * λ is decay process/element dependent
 - * The activity, a, would be $a = \lambda N$
- Exponential Law of Radioactive Decay:
 - * $a = -\frac{dN}{dt} \Rightarrow \lambda N = -\frac{dN}{dt}$
 - * Solving this yields $N = N_o e^{-\lambda t}$
 - * This means $a = a_o e^{-\lambda t}$

• Particles

- Spin 1/2, tiny mass, no charge: neutrinos
- An anti-neutrino is indicated by $n \to p$