ASTRONOMÍA Y CIENCIA DE DATOS: DE LAS ESTRELLAS A LOS NÚMEROS

Clase 7: Introducción al Aprendizaje Supervisado I: Redes neuronales simples

ML en astronomía!

Letter | Published: 15 November 1990

Adaptive optics for array telescopes using neuralnetwork techniques

J. R. P. Angel, P. Wizinowich, M. Lloyd-Hart & D. Sandler

Nature 348, 221–224 (1990) | Cite this article

942 Accesses 99 Citations Metrics

ML en astronomía!

Morphological classification of galaxies by Artificial Neural Networks

M. C. Storrie-Lombardi, O. Lahav, L. Sodré, Jr2, and L. J. Storrie-Lombardi

Accepted 1992 September 2. Received 1992 August 24

¹ Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

²Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ

³ Instituto Astronômico e Geofísico da Universidade de São Paulo, CP9638, 01065, São Paulo, Brazil

ML en astronomía!

Así era la red! Tenía 18 neuronas. Un total de 252 parámetros ajustables...

Figure 1. The ANN configuration (13; 13, 5) used in our study, with an input (galaxy parameters) layer of 13 nodes, a hidden layer of 13 nodes, and an output (classification) layer of 5 nodes. All nodes in a given layer are fully connected to all nodes in the next layer. The input parameters are explained in Table 1.

Relativo a chat gpt-4...

Como 80 billones de neuronas, con 1.76 $\times 10^{12}$ parámetros

Más parámetros que estrellas en la Vía Láctea!

ML en astronomía

Número de artículos científicos que fueron publicados, utilizando alguna técnica de machine learning.

Algo así como el 10% de todos los artículos que se producen hoy!

¿Qué es el machine learning?

- IA: imitar funciones cognitivas de los seres humanos.
- Machine learning: hacer que una máquina aprenda en base a la "experiencia".
- Data science: extraer información sobre los datos.

Tipos de aprendizaje

Supervisado

No supervisado

Se busca resolver un problema en específico.

Se busca explorar un dataset.

Tipos de aprendizaje

Supervisado

- Se conoce de antemano el resultado esperado en los datos de entrenamiento.
- La máquina "aprende" un patrón en función de los dichos resultados esperados.

Tipos de aprendizaje

No supervisado

- La máquina solo ve los datos, no tiene un "resultado esperado".
- Busca correlaciones, grupos o categorías para los datos.
- Trata problemas de "Dimensionality Curse".

Aprendizaje supervisado Datos

$$inputs = \vec{x} \quad resultado = \hat{y}$$

Clasificación

Regresión

Representa una clase. Ej.: 0 = perro, 1 = gato \hat{y}

Es un número real! Ej.: redshift de una galaxia.

Aprendizaje supervisado

Clasificación múltiple

Cada entero es una clase distinta.

Ej.: 0 = perro, 1 = gato, león = 2, lagarto = 3,...

Es un vector de Os y 1s, cada vector representa una clase!

"One-hot encoding"

Human-Readable		Machine-Readable					
P	et		Cat	Dog	Turtle	Fish	
C	at		1	0	0	0	
D	og		0	1	0	0	
Tu	urtle		0	0	1	0	
Fi	ish		0	0	0	1	
С	at		1	0	0	0	

De vuelta al colegio...

¿Qué es una neurona?

qué es una neurona (un par de oraciones)

Una neurona es una célula nerviosa especializada en transmitir información a través de impulsos eléctricos y químicos. Forma parte del sistema nervioso y está involucrada en funciones como la percepción, el pensamiento y el control del movimiento.

a

No olviden ser amables..

De vuelta al colegio...

Ahora sí, ¿qué es una neurona?

La definiremos en función de lo que hace matemáticamente.

Tiene 2 partes fundamentales:

- Un combinador lineal.
- Una función no-lineal de activación.

$$y = f(\vec{w} \cdot \vec{x} + b)$$

Ahora sí, ¿qué es una neurona?

$$y = f(\vec{w} \cdot \vec{x} + b)$$

¿Qué es f?

Función logística

$$f(x) = \frac{1}{1 + e^{-x}}$$

Ahora sí, ¿qué es una neurona?

$$y = f(\vec{w} \cdot \vec{x} + b)$$

¿Qué es f?

Función RELU

$$f(x) = max(0, x)$$

Cómo entrenar a tu neurona

• Si una neurona recibe N entradas, entonces tiene N+1 pesos.

• Es un problema de ajuste de parámetros no lineal!

¿Qué falta?

Funciones de costo

Suelen depender de del problema a resolver.

Ejemplos típicos

- 1 Error cuadrático (regresión!) $E(y) = (y \hat{y})^2$
- Entropía cruzada (clasificación binaria)

$$E(y) = \hat{y}\ln(y) + (1 - \hat{y})\ln(1 - y)$$

¿Cómo actualizar los pesos?

Descenso gradiente!

Supongamos que tenemos N datos de entrenamiento.

$$E(y) = (y - \hat{y})^2$$
 $E_{tot} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

$$w_{j,1} = w_{j,0} - \mu \frac{\partial E_{tot}}{\partial w_j} (\vec{w}_0)$$

¿Cómo actualizar los pesos?

Descenso gradiente!

Repetimos m iteraciones...

$$w_{j,1} = w_{j,0} - \mu \frac{\partial E_{tot}}{\partial w_j} (\vec{w}_0)$$

$$w_{j,2} = w_{j,1} - \mu \frac{\partial E_{tot}}{\partial w_j} (\vec{w}_1)$$

Más genérico:

$$w_{j,m} = w_{j,m-1} - \mu \frac{\partial E_{tot}}{\partial w_j} (\vec{w}_{m-1})$$

¿Cómo actualizar los pesos?

PROBLEMA!

Evaluar el error total puede ser muy costoso computacionalmente!

$$E_{tot} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Solución!

Evaluar partes pequeñas del dataset en cada iteración :)

El entrenar de a "pedazos"

Cada sub-sample se le conoce como "mini-batch".

El entrenar de a "pedazos"

Cada sub-sample se le conoce como "mini-batch".

- Para cada iteración se obtiene un gradiente y por ende nuevos pesos.
- Una vez se pasa por todas las iteraciones, se actualizan los pesos tomando el promedio de las variaciones.

Iteración

VS

Époco

Cuando pasamos por un mini-batch.

Pasamos por todos los batches y actualizamos los pesos.

Ahora creemos una red!

Ahora creemos una red!

¿Cuántos parámetros tiene esta red?

R: 26 parámetros entrenables :)

Un poco de historia...

1943

Nace el concepto

1995

Caen las RNs, víctimas de los SVM!

1970

IA winter ;(

2009

Deep learning!

1986

Backpropagation :)!

Evolucionar los pesos intermedios es difícil...

...a menos que usemos CVV:)

Ya tengo mi red, ¿puedo entrenarla?

Separación de los datos

Entrenamiento

Aquí la red aprende. Con estos datos se actualizan los pesos.

Validación

Se evalúa el desempeño de la red en cada época. Sirve para escoger modelo óptimo.

Testeo

Ejemplos nunca vistos por la red! Evalúa el desempeño final del modelo.

Evitar el overfitting

Early stopping!:)

Evitar el overfitting

Dropout!

En cada iteración se apagan algunas neuronas.

Evita que las neuronas "arreglen" errores inducidos por sus "pares".

Entonces, ¿ahora si puedo entrenarla?

Sonic dice...

