INTRODUCTION TO 3D

OCTANTS

In 3D there are three axes which divide space into 8 equal regions they are called octants.

I	II	III	IV
XOYZ	X'OYZ	X'OY'Z	XOY'Z
V	VI LT 20	VII	VIII
XOYZ'	X'OYZ'	X'OY'Z'	XOY'Z'

Point in space

Point and X axis

Point and Y axis

Point and Z axis

Point and XY plane

Point and YZ plane

Point and XZ plane

Distance Formula

$$\sqrt{\left(X_2 - X_1\right)^2 + \left(y_2 - y_1\right)^2 + \left(Z_2 - Z_1\right)^2}$$

Section Formula

$$\text{Internal division } \ x = \frac{mx_2 + nx_1}{m+n} \,, \qquad \ \ y = \frac{my_2 + ny_1}{m+n} \,, \qquad z = \frac{mz_2 + nz_1}{m+n}$$

External division
$$x = \frac{mx_2 - nx_1}{m - n}$$
, $y = \frac{my_2 - ny_1}{m - n}$, $z = \frac{mz_2 - nz_1}{m - n}$

Midpoint Formula

$$x_2 = \frac{x_1 + x_2}{2}$$
, $y = \frac{y_1 + y_2}{2}$, $z = \frac{z_1 + z_2}{2}$

Centroid of a Triangle

$$x = \frac{x_1 + x_2 + x_3}{3}$$
, $y = \frac{y_1 + y_2 + y_3}{3}$, $z = \frac{z_1 + z_2 + z_3}{3}$

Eq. of X axis in 3D is

$$y = 0$$
, $z = 0$ or $y^2 + z^2 = 0$

Eq. of Y axis in 3D is

$$x = 0$$
, $z = 0$ or $x^2 + z^2 = 0$

Eq. of Z axis in 3D is

$$x = 0$$
, $y = 0$ or $x^2 + y^2 = 0$

Eq. of XY plane is z = 0

Eq. of XZ plane is y = 0

Eq. of YZ plane is x = 0

In a parallelogram

D = A + C - B

C = B + D - A

B = A + C - D

A = B + D - C

In a $\triangle ABC$

A = E + F - D

B = D + F - E

C = D + E - F