# ECE750T-28: Computer-aided Reasoning for Software Engineering

Lecture 2: Normal Forms and DPLL

Vijay Ganesh (Original notes from Isil Dillig)

- Last lecture:
  - ► Two simple techniques for proving satisfiability and validity in propositional logic: truth tables and semantic argument

- Last lecture:
  - Two simple techniques for proving satisfiability and validity in propositional logic: truth tables and semantic argument
  - ▶ Neither very useful for practical automated reasoning

- Last lecture:
  - Two simple techniques for proving satisfiability and validity in propositional logic: truth tables and semantic argument
  - ▶ Neither very useful for practical automated reasoning
- ► This Lecture:
  - An algorithm called DPLL for determining satisfiability

#### Last lecture:

- Two simple techniques for proving satisfiability and validity in propositional logic: truth tables and semantic argument
- Neither very useful for practical automated reasoning

#### ► This Lecture:

- An algorithm called DPLL for determining satisfiability
- Many SAT solvers used today based on DPLL (more precisely, conflict-driven clause-learning)

#### Last lecture:

- Two simple techniques for proving satisfiability and validity in propositional logic: truth tables and semantic argument
- Neither very useful for practical automated reasoning

#### ► This Lecture:

- An algorithm called DPLL for determining satisfiability
- Many SAT solvers used today based on DPLL (more precisely, conflict-driven clause-learning)
- However, requires converting formulas to a respresentation called normal forms

#### Last lecture:

- Two simple techniques for proving satisfiability and validity in propositional logic: truth tables and semantic argument
- Neither very useful for practical automated reasoning

#### ► This Lecture:

- ▶ An algorithm called DPLL for determining satisfiability
- Many SAT solvers used today based on DPLL (more precisely, conflict-driven clause-learning)
- However, requires converting formulas to a respresentation called normal forms
- ▶ The plan: First talk about normal forms, then discuss DPLL

ightharpoonup A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.

- A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.
- There are three kinds of normal forms that are interesting in propositional logic:

- A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.
- There are three kinds of normal forms that are interesting in propositional logic:

- ightharpoonup A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.
- ► There are three kinds of normal forms that are interesting in propositional logic:
  - Negation Normal Form (NNF)

- ightharpoonup A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.
- ► There are three kinds of normal forms that are interesting in propositional logic:
  - ► Negation Normal Form (NNF)
  - Disjunctive Normal Form (DNF)

- ightharpoonup A normal form of a formula F is another formula F' such that F is equivalent to F', but F' obeys certain syntactic restrictions.
- ► There are three kinds of normal forms that are interesting in propositional logic:
  - ► Negation Normal Form (NNF)
  - Disjunctive Normal Form (DNF)
  - Conjunctive Normal Form (CNF)

Negation Normal Form requires two syntactic restrictions:

▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- Negations appear only in literals

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- ▶ Negations appear only in literals
- $\blacktriangleright$  i.e., negations not allowed inside  $\land, \, \lor,$  or any other  $\neg$

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- Negations appear only in literals
- $\blacktriangleright$  i.e., negations not allowed inside  $\land, \, \lor,$  or any other  $\neg$
- ▶ i.e., negations can only appear in front of variables

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- Negations appear only in literals
- ▶ i.e., negations not allowed inside  $\land$ ,  $\lor$ , or any other  $\neg$
- ▶ i.e., negations can only appear in front of variables
- ▶ Is formula  $p \lor (\neg q \land (r \lor \neg s))$  in NNF?

- $\blacktriangleright$  The only logical connectives are  $\neg, \land, \lor$  (i.e., no  $\rightarrow$  ,  $\leftrightarrow)$
- Negations appear only in literals
- ▶ i.e., negations not allowed inside  $\land$ ,  $\lor$ , or any other  $\neg$
- ▶ i.e., negations can only appear in front of variables
- ▶ Is formula  $p \lor (\neg q \land (r \lor \neg s))$  in NNF? Yes!

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- Negations appear only in literals
- $\blacktriangleright$  i.e., negations not allowed inside  $\land, \, \lor,$  or any other  $\neg$
- ▶ i.e., negations can only appear in front of variables
- ▶ Is formula  $p \lor (\neg q \land (r \lor \neg s))$  in NNF? Yes!
- ▶ What about  $p \lor (\neg q \land \neg (\neg r \land s))$ ?

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- Negations appear only in literals
- $\blacktriangleright$  i.e., negations not allowed inside  $\land, \, \lor,$  or any other  $\neg$
- ▶ i.e., negations can only appear in front of variables
- ▶ Is formula  $p \lor (\neg q \land (r \lor \neg s))$  in NNF? Yes!
- ▶ What about  $p \lor (\neg q \land \neg (\neg r \land s))$ ? No!

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- Negations appear only in literals
- ▶ i.e., negations not allowed inside ∧, ∨, or any other ¬
- ▶ i.e., negations can only appear in front of variables
- ▶ Is formula  $p \lor (\neg q \land (r \lor \neg s))$  in NNF? Yes!
- ▶ What about  $p \lor (\neg q \land \neg (\neg r \land s))$ ? No!
- ▶ What about  $p \lor (\neg q \land (\neg \neg r \lor \neg s))$ ?

- ▶ The only logical connectives are  $\neg$ ,  $\land$ ,  $\lor$  (i.e., no  $\rightarrow$ ,  $\leftrightarrow$ )
- Negations appear only in literals
- ▶ i.e., negations not allowed inside ∧, ∨, or any other ¬
- ▶ i.e., negations can only appear in front of variables
- ▶ Is formula  $p \lor (\neg q \land (r \lor \neg s))$  in NNF? Yes!
- ▶ What about  $p \lor (\neg q \land \neg (\neg r \land s))$ ? No!
- ▶ What about  $p \lor (\neg q \land (\neg \neg r \lor \neg s))$ ? No!

▶ To make sure the only logical connectives are  $\neg, \land, \lor$ , need to eliminate  $\rightarrow$  and  $\leftrightarrow$ 

- ▶ To make sure the only logical connectives are  $\neg, \land, \lor$ , need to eliminate  $\rightarrow$  and  $\leftrightarrow$
- ▶ How do we express  $F_1 \to F_2$  using  $\lor, \land, \lnot$ ?

- ▶ To make sure the only logical connectives are  $\neg, \land, \lor$ , need to eliminate  $\rightarrow$  and  $\leftrightarrow$
- ▶ How do we express  $F_1 \to F_2$  using  $\vee, \wedge, \neg$ ?

$$F_1 \to F_2 \Leftrightarrow \neg F_1 \lor F_2$$

- ▶ To make sure the only logical connectives are  $\neg, \land, \lor$ , need to eliminate  $\rightarrow$  and  $\leftrightarrow$
- ▶ How do we express  $F_1 \to F_2$  using  $\vee, \wedge, \neg$ ?

$$F_1 \to F_2 \Leftrightarrow \neg F_1 \lor F_2$$

▶ How do we express  $F_1 \leftrightarrow F_2$  using only  $\neg, \land . \lor ?$ 

- ▶ To make sure the only logical connectives are  $\neg, \land, \lor$ , need to eliminate  $\rightarrow$  and  $\leftrightarrow$
- ▶ How do we express  $F_1 \to F_2$  using  $\vee, \wedge, \neg$ ?

$$F_1 \to F_2 \Leftrightarrow \neg F_1 \lor F_2$$

▶ How do we express  $F_1 \leftrightarrow F_2$  using only  $\neg, \land . \lor ?$ 

$$F_1 \leftrightarrow F_2 \Leftrightarrow (\neg F_1 \lor F_2) \land (\neg F_2 \lor F_1)$$

▶ Also need to ensure negations appear only in literals: push negations in

- ▶ Also need to ensure negations appear only in literals: push negations in
- ► Use DeMorgan's laws to distribute ¬ over ∧ and ∨:

- ▶ Also need to ensure negations appear only in literals: push negations in
- ► Use DeMorgan's laws to distribute ¬ over ∧ and ∨:

$$\neg(F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2$$

- ▶ Also need to ensure negations appear only in literals: push negations in
- ► Use DeMorgan's laws to distribute ¬ over ∧ and ∨:

$$\neg(F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2$$

$$\neg(F_1 \vee F_2) \Leftrightarrow \neg F_1 \wedge \neg F_2$$

- ▶ Also need to ensure negations appear only in literals: push negations in
- ▶ Use DeMorgan's laws to distribute ¬ over ∧ and ∨:

$$\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2$$
$$\neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2$$

▶ We also disallow double negations:

- ▶ Also need to ensure negations appear only in literals: push negations in
- ▶ Use DeMorgan's laws to distribute ¬ over ∧ and ∨:

$$\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2$$

$$\neg(F_1 \vee F_2) \Leftrightarrow \neg F_1 \wedge \neg F_2$$

▶ We also disallow double negations:

$$\neg\neg F \Leftrightarrow F$$

# NNF Example

Convert  $F: \neg(p \rightarrow (p \land q))$  to NNF

# NNF Example

Convert 
$$F: \neg(p \rightarrow (p \land q))$$
 to NNF

$$F_1: \neg (\neg p \lor (p \land q))$$

Convert 
$$F: \neg(p \rightarrow (p \land q))$$
 to NNF

 $F_1: \neg (\neg p \lor (p \land q))$   $F_2: \neg \neg p \land \neg (p \land q)$ 

Convert 
$$F: \neg(p \rightarrow (p \land q))$$
 to NNF

 $F_1: \neg (\neg p \lor (p \land q))$   $F_2: \neg \neg p \land \neg (p \land q)$ 

 $F_3: \neg \neg p \wedge (\neg p \vee \neg q)$ 

Convert 
$$F: \neg(p \rightarrow (p \land q))$$
 to NNF

 $F_1: \neg (\neg p \lor (p \land q))$   $F_2: \neg \neg p \land \neg (p \land q)$ 

 $F_3: \neg p \wedge (\neg p \vee \neg q)$   $F_4: p \wedge (\neg p \vee \neg q)$ 

Convert 
$$F: \neg(p \rightarrow (p \land q))$$
 to NNF

 $F_1: \neg(\neg p \lor (p \land q))$   $F_2: \neg\neg p \land \neg(p \land q)$   $F_3: \neg\neg p \land (\neg p \lor \neg q)$   $F_4: p \land (\neg p \lor \neg q)$ 

 $F_4$  is equivalent to F and is in NNF



A formula in disjunctive normal form is a disjunction of conjunction of literals.

$$\bigvee_i \bigwedge_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

 $\blacktriangleright$  i.e.,  $\lor$  can never appear inside  $\land$  or  $\lnot$ 

$$\bigvee_i \bigwedge_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

- ▶ i.e., ∨ can never appear inside ∧ or ¬
- ► Called disjunctive normal form because disjuncts are at the outer level

$$\bigvee_i \bigwedge_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

- ▶ i.e., ∨ can never appear inside ∧ or ¬
- ► Called disjunctive normal form because disjuncts are at the outer level
- ▶ Each inner conjunction is called a clause

$$\bigvee_i \bigwedge_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

- ▶ i.e., ∨ can never appear inside ∧ or ¬
- ► Called disjunctive normal form because disjuncts are at the outer level
- ▶ Each inner conjunction is called a clause
- Question: If a formula is in DNF, is it also in NNF?

▶ To convert formula to DNF, first convert it to NNF.

- ▶ To convert formula to DNF, first convert it to NNF.
- ► Then, distribute ∧ over ∨:

- ▶ To convert formula to DNF, first convert it to NNF.
- ► Then, distribute ∧ over ∨:

$$(F_1 \lor F_2) \land F_3$$

- ▶ To convert formula to DNF, first convert it to NNF.
- ► Then, distribute ∧ over ∨:

$$(F_1 \lor F_2) \land F_3 \Leftrightarrow (F_1 \land F_3) \lor (F_2 \land F_3)$$

- ▶ To convert formula to DNF, first convert it to NNF.
- ► Then, distribute ∧ over ∨:

$$(F_1 \lor F_2) \land F_3 \Leftrightarrow (F_1 \land F_3) \lor (F_2 \land F_3)$$
  
 $F_1 \land (F_2 \lor F_3)$ 

- ▶ To convert formula to DNF, first convert it to NNF.
- ► Then, distribute ∧ over ∨:

$$(F_1 \lor F_2) \land F_3 \Leftrightarrow (F_1 \land F_3) \lor (F_2 \land F_3)$$
  
 $F_1 \land (F_2 \lor F_3) \Leftrightarrow (F_1 \land F_2) \lor (F_1 \land F_3)$ 

Convert  $F: \ (q_1 \ \lor \ \lnot\lnot q_2) \ \land \ (\lnot r_1 \ \to \ r_2)$  into DNF

Convert 
$$F: (q_1 \lor \neg \neg q_2) \land (\neg r_1 \to r_2)$$
 into DNF

$$F_1: (q_1 \lor \neg \neg q_2) \land (\neg \neg r_1 \lor r_2)$$

 $remove \rightarrow$ 

Convert 
$$F: (q_1 \lor \neg \neg q_2) \land (\neg r_1 \rightarrow r_2)$$
 into DNF

 $F_1: (q_1 \lor \neg \neg q_2) \land (\neg \neg r_1 \lor r_2)$  $F_2: (q_1 \lor q_2) \land (r_1 \lor r_2)$ 

 $\begin{array}{c} \text{remove} \rightarrow \\ \text{in NNF} \end{array}$ 

Convert 
$$F: (q_1 \lor \neg \neg q_2) \land (\neg r_1 \rightarrow r_2)$$
 into DNF

 $F_1: (q_1 \lor \neg \neg q_2) \land (\neg \neg r_1 \lor r_2)$ 

 $F_2: (q_1 \lor q_2) \land (r_1 \lor r_2)$ 

 $F_3: (q_1 \wedge (r_1 \vee r_2)) \vee (q_2 \wedge (r_1 \vee r_2))$ 

 $\begin{array}{c} \text{remove} \rightarrow \\ \text{in NNF} \end{array}$ 

dist

#### Convert $F: (q_1 \lor \neg \neg q_2) \land (\neg r_1 \rightarrow r_2)$ into DNF

```
\begin{array}{lll} F_1: & (q_1 \vee \neg \neg q_2) \wedge (\neg \neg r_1 \vee r_2) & \text{remove} \rightarrow \\ F_2: & (q_1 \vee q_2) \wedge (r_1 \vee r_2) & \text{in NNF} \\ F_3: & (q_1 \wedge (r_1 \vee r_2)) \vee (q_2 \wedge (r_1 \vee r_2)) & \text{dist} \\ F_4: & (q_1 \wedge r_1) \vee (q_1 \wedge r_2) \vee (q_2 \wedge r_1) \vee (q_2 \wedge r_2) & \text{dist} \end{array}
```

#### Convert $F: (q_1 \lor \neg \neg q_2) \land (\neg r_1 \rightarrow r_2)$ into DNF

```
\begin{array}{lll} F_1: & (q_1 \vee \neg \neg q_2) \wedge (\neg \neg r_1 \vee r_2) & \text{remove} \rightarrow \\ F_2: & (q_1 \vee q_2) \wedge (r_1 \vee r_2) & \text{in NNF} \\ F_3: & (q_1 \wedge (r_1 \vee r_2)) \vee (q_2 \wedge (r_1 \vee r_2)) & \text{dist} \\ F_4: & (q_1 \wedge r_1) \vee (q_1 \wedge r_2) \vee (q_2 \wedge r_1) \vee (q_2 \wedge r_2) & \text{dist} \end{array}
```

 $F_4$  equivalent to F and is in DNF

► Claim: If formula is in DNF, trivial to determine satisfiability. How?

- ► Claim: If formula is in DNF, trivial to determine satisfiability. How?
- ▶ Since disjunction of clauses, formula is satisfied if any clause is satisifed.

- ▶ Claim: If formula is in DNF, trivial to determine satisfiability. How?
- Since disjunction of clauses, formula is satisfied if any clause is satisifed.
- ▶ If there is any clause that neither contains ⊥ nor a literal and is and its negation, then the formula is satisfiable.

- ▶ Claim: If formula is in DNF, trivial to determine satisfiability. How?
- ▶ Since disjunction of clauses, formula is satisfied if any clause is satisifed.
- If there is any clause that neither contains ⊥ nor a literal and is and its negation, then the formula is satisfiable.
- Idea: To determine satisfiability, convert formula to DNF and just do a syntactic check.

► This idea is completely impractical. Why?

- ▶ This idea is completely impractical. Why?
- ▶ Consider formula:  $(F_1 \lor F_2) \land (F_3 \lor F_4)$

- ▶ This idea is completely impractical. Why?
- ▶ Consider formula:  $(F_1 \lor F_2) \land (F_3 \lor F_4)$
- ► In DNF:

$$(F_1 \wedge F_3) \vee (F_1 \wedge F_4) \vee (F_2 \wedge F_3) \vee (F_2 \wedge F_4)$$

- ▶ This idea is completely impractical. Why?
- ▶ Consider formula:  $(F_1 \lor F_2) \land (F_3 \lor F_4)$
- ► In DNF:

$$(F_1 \wedge F_3) \vee (F_1 \wedge F_4) \vee (F_2 \wedge F_3) \vee (F_2 \wedge F_4)$$

- ▶ This idea is completely impractical. Why?
- ▶ Consider formula:  $(F_1 \lor F_2) \land (F_3 \lor F_4)$
- ► In DNF:

$$(F_1 \wedge F_3) \vee (F_1 \wedge F_4) \vee (F_2 \wedge F_3) \vee (F_2 \wedge F_4)$$

Every time we distribute, formula size doubles!

- ▶ This idea is completely impractical. Why?
- ▶ Consider formula:  $(F_1 \lor F_2) \land (F_3 \lor F_4)$
- ► In DNF:

$$(F_1 \wedge F_3) \vee (F_1 \wedge F_4) \vee (F_2 \wedge F_3) \vee (F_2 \wedge F_4)$$

- Every time we distribute, formula size doubles!
- Moral: DNF conversion causes exponential blow-up in size!

- ▶ This idea is completely impractical. Why?
- ▶ Consider formula:  $(F_1 \lor F_2) \land (F_3 \lor F_4)$
- ► In DNF:

$$(F_1 \wedge F_3) \vee (F_1 \wedge F_4) \vee (F_2 \wedge F_3) \vee (F_2 \wedge F_4)$$

- Every time we distribute, formula size doubles!
- ▶ Moral: DNF conversion causes exponential blow-up in size!
- Checking satisfiability by converting to DNF is almost as bad as truth tables!

A formula in conjuctive normal form is a conjunction of disjunction of literals.

 $\bigwedge_i \bigvee_j \ell_{i,j}$  for literals  $\ell_{i,j}$ 

A formula in conjuctive normal form is a conjunction of disjunction of literals.

$$igwedge_i igvee_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

i.e., ∧ not allowed inside ∨, ¬.

A formula in conjuctive normal form is a conjunction of disjunction of literals.

$$igwedge_i igvee_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

- ▶ i.e.,  $\land$  not allowed inside  $\lor$ ,  $\lnot$ .
- ▶ Called conjunctive normal form because conjucts are at the outer level

A formula in conjuctive normal form is a conjunction of disjunction of literals.

$$\bigwedge_i \bigvee_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

- ▶ i.e.,  $\land$  not allowed inside  $\lor$ ,  $\lnot$ .
- ▶ Called conjunctive normal form because conjucts are at the outer level
- ► Each inner disjunction is called a clause

# Conjunctive Normal Form (CNF)

A formula in conjuctive normal form is a conjunction of disjunction of literals.

$$igwedge_i igvee_j \ell_{i,j}$$
 for literals  $\ell_{i,j}$ 

- ▶ i.e.,  $\land$  not allowed inside  $\lor$ ,  $\lnot$ .
- ▶ Called conjunctive normal form because conjucts are at the outer level
- ► Each inner disjunction is called a clause
- ▶ Is formula in CNF also in NNF?

▶ To convert formula to CNF, first convert it to NNF.

- ▶ To convert formula to CNF, first convert it to NNF.
- ► Then, distribute ∨ over ∧:

- ▶ To convert formula to CNF, first convert it to NNF.
- ► Then, distribute ∨ over ∧:

$$(F_1 \wedge F_2) \vee F_3$$

- ▶ To convert formula to CNF, first convert it to NNF.
- ► Then, distribute ∨ over ∧:

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$

- ▶ To convert formula to CNF, first convert it to NNF.
- ► Then, distribute ∨ over ∧:

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$
  
 $F_1 \vee (F_2 \wedge F_3)$ 

- ▶ To convert formula to CNF, first convert it to NNF.
- ► Then, distribute ∨ over ∧:

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$
  
 $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$ 

Convert  $F:\ (p \leftrightarrow (q \rightarrow r))$  into CNF

Convert 
$$F:\ (p \leftrightarrow (q \rightarrow r))$$
 into CNF

$$F_1:\ (p\to (q\to r))\land ((q\to r)\to p) \qquad \text{remove} \leftrightarrow$$

Convert  $F: (p \leftrightarrow (q \rightarrow r))$  into CNF

 $\begin{array}{ll} F_1: \ (p \to (q \to r)) \land ((q \to r) \to p) & \text{remove} \leftrightarrow \\ F_2: \ (\neg p \lor (q \to r)) \land (\neg (q \to r) \lor p) & \text{remove} \to \end{array}$ 

Convert  $F: (p \leftrightarrow (q \rightarrow r))$  into CNF

 $\begin{array}{ll} F_1: & (p \to (q \to r)) \land ((q \to r) \to p) & \text{remove} \leftrightarrow \\ F_2: & (\neg p \lor (q \to r)) \land (\neg (q \to r) \lor p) & \text{remove} \to \\ F_3: & (\neg p \lor (\neg q \lor r)) \land (\neg (\neg q \lor r) \lor p) & \text{remove} \to \end{array}$ 

## Convert $F: (p \leftrightarrow (q \rightarrow r))$ into CNF

```
\begin{array}{lll} F_1: & (p \to (q \to r)) \land ((q \to r) \to p) & \text{remove} \leftrightarrow \\ F_2: & (\neg p \lor (q \to r)) \land (\neg (q \to r) \lor p) & \text{remove} \to \\ F_3: & (\neg p \lor (\neg q \lor r)) \land (\neg (\neg q \lor r) \lor p) & \text{remove} \to \\ F_4: & (\neg p \lor \neg q \lor r) \land ((q \land \neg r) \lor p) & \text{De Morgan} \end{array}
```

## Convert $F: (p \leftrightarrow (q \rightarrow r))$ into CNF

```
\begin{array}{lll} F_1: & (p \rightarrow (q \rightarrow r)) \land ((q \rightarrow r) \rightarrow p) & \text{remove} \leftrightarrow \\ F_2: & (\neg p \lor (q \rightarrow r)) \land (\neg (q \rightarrow r) \lor p) & \text{remove} \rightarrow \\ F_3: & (\neg p \lor (\neg q \lor r)) \land (\neg (\neg q \lor r) \lor p) & \text{remove} \rightarrow \\ F_4: & (\neg p \lor \neg q \lor r) \land ((q \land \neg r) \lor p) & \text{De Morgan} \\ F_5: & (\neg p \lor \neg q \lor r) \land (q \lor p) \land (\neg r \lor p) & \text{Distribute} \lor \text{over} \land \\ \end{array}
```

Convert  $F: (p \leftrightarrow (q \rightarrow r))$  into CNF

```
\begin{array}{lll} F_1: & (p \to (q \to r)) \land ((q \to r) \to p) & \text{remove} \leftrightarrow \\ F_2: & (\neg p \lor (q \to r)) \land (\neg (q \to r) \lor p) & \text{remove} \to \\ F_3: & (\neg p \lor (\neg q \lor r)) \land (\neg (\neg q \lor r) \lor p) & \text{remove} \to \\ F_4: & (\neg p \lor \neg q \lor r) \land ((q \land \neg r) \lor p) & \text{De Morgan} \\ F_5: & (\neg p \lor \neg q \lor r) \land (q \lor p) \land (\neg r \lor p) & \text{Distribute} \lor \text{over} \land \\ \end{array}
```

 $F_5$  is equivalent to F and is in CNF

► Fact: Unlike DNF, it is not trivial to determine satisfiability of formula in CNF.

- Fact: Unlike DNF, it is not trivial to determine satisfiability of formula in CNF.
- ▶ Does CNF conversion cause exponential blow-up in size?

- Fact: Unlike DNF, it is not trivial to determine satisfiability of formula in CNF.
- ▶ Does CNF conversion cause exponential blow-up in size? Yes

- Fact: Unlike DNF, it is not trivial to determine satisfiability of formula in CNF.
- ▶ Does CNF conversion cause exponential blow-up in size? Yes
- News: But almost all SAT solvers first convert formula to CNF before solving!

► Interesting Question: If it is just as expensive to convert formula to CNF as to DNF, why do solvers convert to CNF although it is much easier to determine satisfiability in DNF?

- Interesting Question: If it is just as expensive to convert formula to CNF as to DNF, why do solvers convert to CNF although it is much easier to determine satisfiability in DNF?
- ► Two reasons:

► Interesting Question: If it is just as expensive to convert formula to CNF as to DNF, why do solvers convert to CNF although it is much easier to determine satisfiability in DNF?

#### ► Two reasons:

1. Possible to convert to equisatisfiable (not equivalent) CNF formula with only linear increase in size!

► Interesting Question: If it is just as expensive to convert formula to CNF as to DNF, why do solvers convert to CNF although it is much easier to determine satisfiability in DNF?

#### ► Two reasons:

- 1. Possible to convert to equisatisfiable (not equivalent) CNF formula with only linear increase in size!
- 2. CNF makes it possible to perform interesting deductions (resolution)

▶ Two formulas F and F' are equisatisfiable iff:

▶ Two formulas F and F' are equisatisfiable iff:

 ${\cal F}$  is satisfiable if and only if  ${\cal F}'$  is satisfiable

▶ If two formulas are equisatisfiable, are they equivalent?

▶ Two formulas F and F' are equisatisfiable iff:

- ▶ If two formulas are equisatisfiable, are they equivalent? No!
- Example:

▶ Two formulas F and F' are equisatisfiable iff:

- ▶ If two formulas are equisatisfiable, are they equivalent? No!
- **Example**: Any satisfiable formula (e.g., p) is equisat as  $\top$

▶ Two formulas F and F' are equisatisfiable iff:

- ▶ If two formulas are equisatisfiable, are they equivalent? No!
- **Example:** Any satisfiable formula (e.g., p) is equisat as  $\top$
- ▶ But clearly, p is not equivalent to  $\top$ ! Why?

▶ Two formulas F and F' are equisatisfiable iff:

- ▶ If two formulas are equisatisfiable, are they equivalent? No!
- **Example:** Any satisfiable formula (e.g., p) is equisat as  $\top$
- ▶ But clearly, p is not equivalent to  $\top$ ! Why?
- Equisatisfiability is a much weaker notion than equivalence.

▶ Two formulas F and F' are equisatisfiable iff:

- ▶ If two formulas are equisatisfiable, are they equivalent? No!
- **Example:** Any satisfiable formula (e.g., p) is equisat as  $\top$
- ▶ But clearly, p is not equivalent to  $\top$ ! Why?
- Equisatisfiability is a much weaker notion than equivalence.
- But useful if all we want to do is determine satisfiability.

ightharpoonup To determine satisfiability of F, convert formula to equisatisfiable formula F' in CNF

- $\blacktriangleright$  To determine satisfiability of F, convert formula to equisatisfiable formula F' in CNF
- lacksquare Use an algorithm (DPLL) to decide satisfiability of F'

- To determine satisfiability of F, convert formula to equisatisfiable formula F' in CNF
- lacktriangle Use an algorithm (DPLL) to decide satisfiability of F'
- $\blacktriangleright$  Since F' is equisatisfiable to  $F,\ F$  is satisfiable iff algorithm decides F' is satisfiable

- To determine satisfiability of F, convert formula to equisatisfiable formula F' in CNF
- lacktriangle Use an algorithm (DPLL) to decide satisfiability of F'
- lackbox Since F' is equisatisfiable to F, F is satisfiable iff algorithm decides F' is satisfiable
- ▶ Big question: How do we convert formula to equisatisfiable formula without causing exponential blow-up in size?

#### Tseitin's Transformation

Tseitin's transformation converts formula F to equisatisfiable formula  $F^\prime$  in CNF with only a linear increase in size.

## Tseitin's Transformation I

▶ Step 1: Introduce a new variable  $p_G$  for every subformula G of F (unless G is already an atom).

#### Tseitin's Transformation I

- ▶ Step 1: Introduce a new variable  $p_G$  for every subformula G of F (unless G is already an atom).
- ▶ For instance, if  $F = G_1 \wedge G_2$ , introduce two variables  $p_{G_1}$  and  $p_{G_2}$  representing  $G_1$  and  $G_2$  respectively.

- ▶ Step 1: Introduce a new variable  $p_G$  for every subformula G of F (unless G is already an atom).
- ▶ For instance, if  $F = G_1 \wedge G_2$ , introduce two variables  $p_{G_1}$  and  $p_{G_2}$  representing  $G_1$  and  $G_2$  respectively.
- ▶  $p_{G_1}$  is said to be representative of  $G_1$  and  $p_{G_2}$  is representative of  $G_2$ .

▶ Step 2: Consider each subformula

 $G:G_1\circ G_2$  ( $\circ$  arbitrary boolean connective)

▶ Step 2: Consider each subformula

 $G:G_1\circ G_2$  ( $\circ$  arbitrary boolean connective)

lacktriangle Stipulate representative of G is equivalent to representative of  $G_1\circ G_2$ 

$$p_G \leftrightarrow p_{G_1} \circ p_{G_2}$$

▶ Step 2: Consider each subformula

 $G:G_1\circ G_2$  ( $\circ$  arbitrary boolean connective)

lacktriangle Stipulate representative of G is equivalent to representative of  $G_1\circ G_2$ 

$$p_G \leftrightarrow p_{G_1} \circ p_{G_2}$$

Step 2: Consider each subformula

$$G:G_1\circ G_2$$
 ( $\circ$  arbitrary boolean connective)

lacktriangle Stipulate representative of G is equivalent to representative of  $G_1\circ G_2$ 

$$p_G \leftrightarrow p_{G_1} \circ p_{G_2}$$

▶ Step 3: Convert  $p_G \leftrightarrow p_{G_1} \circ p_{G_2}$  to equivalent CNF (by converting to NNF and distributing  $\lor$ 's over  $\land$ 's).

Step 2: Consider each subformula

$$G:G_1\circ G_2$$
 ( $\circ$  arbitrary boolean connective)

lacktriangle Stipulate representative of G is equivalent to representative of  $G_1\circ G_2$ 

$$p_G \leftrightarrow p_{G_1} \circ p_{G_2}$$

- ▶ Step 3: Convert  $p_G \leftrightarrow p_{G_1} \circ p_{G_2}$  to equivalent CNF (by converting to NNF and distributing  $\vee$ 's over  $\wedge$ 's).
- ▶ Observe: Since  $p_G \leftrightarrow p_{G_1} \circ p_{G_2}$  contains at most three propositional variables and exactly two connectives, size of this formula in CNF is bound by a constant.

▶ Given original formula F, let  $p_F$  be its representative and let  $S_F$  be the set of all subformulas of F (including F itself).

- ▶ Given original formula F, let  $p_F$  be its representative and let  $S_F$  be the set of all subformulas of F (including F itself).
- ▶ Then, introduce the formula

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

- ▶ Given original formula F, let  $p_F$  be its representative and let  $S_F$  be the set of all subformulas of F (including F itself).
- ▶ Then, introduce the formula

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

Claim: This formula is equisatisfiable to F.

- ▶ Given original formula F, let  $p_F$  be its representative and let  $S_F$  be the set of all subformulas of F (including F itself).
- ▶ Then, introduce the formula

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

- ightharpoonup Claim: This formula is equisatisfiable to F.
- ▶ The proof is by structural induction

- ▶ Given original formula F, let  $p_F$  be its representative and let  $S_F$  be the set of all subformulas of F (including F itself).
- ▶ Then, introduce the formula

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

- ightharpoonup Claim: This formula is equisatisfiable to F.
- ▶ The proof is by structural induction
- ▶ Formula is also in CNF because conjunction of CNF formulas is in CNF.

• Using this transformation, we converted F to an equisatisfiable CNF formula  $F^{\prime}.$ 

- Using this transformation, we converted F to an equisatisfiable CNF formula F'.
- ▶ What about the size of F'?

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

- Using this transformation, we converted F to an equisatisfiable CNF formula F'.
- $\blacktriangleright$  What about the size of F'?

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

▶  $|S_F|$  is bound by the number of connectives in F.

- Using this transformation, we converted F to an equisatisfiable CNF formula F'.
- ▶ What about the size of F'?

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

- ▶  $|S_F|$  is bound by the number of connectives in F.
- ▶ Each formula  $CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$  has constant size.

- Using this transformation, we converted F to an equisatisfiable CNF formula F'.
- ▶ What about the size of F'?

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

- ▶  $|S_F|$  is bound by the number of connectives in F.
- ▶ Each formula  $CNF(p_q \leftrightarrow p_{q_1} \circ p_{q_2})$  has constant size.
- ▶ Thus, trasformation causes only linear increase in formula size.

- Using this transformation, we converted F to an equisatisfiable CNF formula F'.
- ▶ What about the size of *F*′?

$$p_F \wedge \bigwedge_{G=(G_1 \circ G_2) \in S_F} CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$$

- ▶  $|S_F|$  is bound by the number of connectives in F.
- ▶ Each formula  $CNF(p_g \leftrightarrow p_{g_1} \circ p_{g_2})$  has constant size.
- ▶ Thus, trasformation causes only linear increase in formula size.
- ▶ More precisely, the size of resulting formula is bound by 30n + 2 where n is size of original formula

Convert  $F:(p \lor q) \to (p \land \neg r)$  to equisatisfiable CNF formula.

1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

$$p_1 \leftrightarrow (p_2 \rightarrow p_3)$$

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

$$p_1 \leftrightarrow (p_2 \rightarrow p_3) \implies F_1 : (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_2 \lor p_1) \land (\neg p_3 \lor p_1)$$

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

$$\begin{array}{ll} p_1 \leftrightarrow (p_2 \rightarrow p_3) & \Longrightarrow F_1 : (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (p_2 \vee p_1) \wedge (\neg p_3 \vee p_1) \\ p_2 \leftrightarrow (p \vee q) & \end{array}$$

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

$$\begin{array}{ll} p_1 \leftrightarrow (p_2 \rightarrow p_3) & \Rightarrow F_1 : (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_2 \lor p_1) \land (\neg p_3 \lor p_1) \\ p_2 \leftrightarrow (p \lor q) & \Rightarrow F_2 : (\neg p_2 \lor p \lor q) \land (\neg p \lor p_2) \land (\neg q \lor p_2) \end{array}$$

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

```
\begin{array}{ll} p_1 \leftrightarrow (p_2 \rightarrow p_3) & \Rightarrow F_1 : (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_2 \lor p_1) \land (\neg p_3 \lor p_1) \\ p_2 \leftrightarrow (p \lor q) & \Rightarrow F_2 : (\neg p_2 \lor p \lor q) \land (\neg p \lor p_2) \land (\neg q \lor p_2) \\ p_3 \leftrightarrow (p \land p_4) & \end{array}
```

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

```
\begin{array}{ll} p_1 \leftrightarrow (p_2 \rightarrow p_3) & \Rightarrow F_1 : (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_2 \lor p_1) \land (\neg p_3 \lor p_1) \\ p_2 \leftrightarrow (p \lor q) & \Rightarrow F_2 : (\neg p_2 \lor p \lor q) \land (\neg p \lor p_2) \land (\neg q \lor p_2) \\ p_3 \leftrightarrow (p \land p_4) & \Rightarrow F_3 : (\neg p_3 \lor p) \land (\neg p_3 \lor p_4) \land (\neg p \lor \neg p_4 \lor p_3) \end{array}
```

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

```
\begin{array}{ll} p_1 \leftrightarrow (p_2 \rightarrow p_3) & \Rightarrow F_1 : (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_2 \lor p_1) \land (\neg p_3 \lor p_1) \\ p_2 \leftrightarrow (p \lor q) & \Rightarrow F_2 : (\neg p_2 \lor p \lor q) \land (\neg p \lor p_2) \land (\neg q \lor p_2) \\ p_3 \leftrightarrow (p \land p_4) & \Rightarrow F_3 : (\neg p_3 \lor p) \land (\neg p_3 \lor p_4) \land (\neg p \lor \neg p_4 \lor p_3) \\ p_4 \leftrightarrow \neg r & \end{array}
```

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

```
\begin{array}{ll} p_1 \leftrightarrow (p_2 \rightarrow p_3) & \Rightarrow F_1 : (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_2 \lor p_1) \land (\neg p_3 \lor p_1) \\ p_2 \leftrightarrow (p \lor q) & \Rightarrow F_2 : (\neg p_2 \lor p \lor q) \land (\neg p \lor p_2) \land (\neg q \lor p_2) \\ p_3 \leftrightarrow (p \land p_4) & \Rightarrow F_3 : (\neg p_3 \lor p) \land (\neg p_3 \lor p_4) \land (\neg p \lor \neg p_4 \lor p_3) \\ p_4 \leftrightarrow \neg r & \Rightarrow F_4 : (\neg p_4 \lor \neg r) \land (p_4 \lor r) \end{array}
```

Convert  $F:(p\vee q)\to (p\wedge \neg r)$  to equisatisfiable CNF formula.

- 1. For each subformula, introduce new variables:  $p_1$  for F,  $p_2$  for  $p \lor q$ ,  $p_3$  for  $p \land \neg r$ , and  $p_4$  for  $\neg r$ .
- 2. Stipulate equivalences and convert them to CNF:

$$\begin{array}{ll} p_1 \leftrightarrow (p_2 \rightarrow p_3) & \Rightarrow F_1 : (\neg p_1 \vee \neg p_2 \vee p_3) \wedge (p_2 \vee p_1) \wedge (\neg p_3 \vee p_1) \\ p_2 \leftrightarrow (p \vee q) & \Rightarrow F_2 : (\neg p_2 \vee p \vee q) \wedge (\neg p \vee p_2) \wedge (\neg q \vee p_2) \\ p_3 \leftrightarrow (p \wedge p_4) & \Rightarrow F_3 : (\neg p_3 \vee p) \wedge (\neg p_3 \vee p_4) \wedge (\neg p \vee \neg p_4 \vee p_3) \\ p_4 \leftrightarrow \neg r & \Rightarrow F_4 : (\neg p_4 \vee \neg r) \wedge (p_4 \vee r) \end{array}$$

3. The formula

$$p_1 \wedge F_1 \wedge F_2 \wedge F_3 \wedge F_4$$

is equisatisfiable to F and is in CNF.

### **SAT Solvers**



### **SAT Solvers**



 Almost all SAT solvers today are based on an algorithm called DPLL (Davis-Putnam-Logemann-Loveland)

▶ 1962: the original algorithm known as DP (Davis-Putnam) ⇒ "simple" procedure for automated theorem proving

- ▶ 1962: the original algorithm known as DP (Davis-Putnam) ⇒ "simple" procedure for automated theorem proving
  - Davis and Putnam hired two programmers, George Logemann and David Loveland, to implement their ideas on the IBM 704.

▶ 1962: the original algorithm known as DP (Davis-Putnam) ⇒ "simple" procedure for automated theorem proving



Davis and Putnam hired two programmers, George Logemann and David Loveland, to implement their ideas on the IBM 704.

▶ 1962: the original algorithm known as DP (Davis-Putnam) ⇒ "simple" procedure for automated theorem proving



- Davis and Putnam hired two programmers, George Logemann and David Loveland, to implement their ideas on the IBM 704.
- Not all of their ideas worked out as planned ⇒ refined algorithm to what is known today as DPLL

# DPLL insight

▶ There are two distinct ways to approach the boolean satisfiability problem:

## DPLL insight

- ▶ There are two distinct ways to approach the boolean satisfiability problem:
- Search
  - ► Find satisfying assignment in by searching through all possible assignments ⇒ most basic incarnation: truth table!

## DPLL insight

▶ There are two distinct ways to approach the boolean satisfiability problem:

#### Search

► Find satisfying assignment in by searching through all possible assignments ⇒ most basic incarnation: truth table!

#### Deduction

▶ Deduce new facts from set of known facts ⇒ application of proof rules, semantic argument method

## DPLL insight

- ▶ There are two distinct ways to approach the boolean satisfiability problem:
- Search
  - ► Find satisfying assignment in by searching through all possible assignments ⇒ most basic incarnation: truth table!
- Deduction
  - ▶ Deduce new facts from set of known facts ⇒ application of proof rules, semantic argument method
- ▶ DPLL combines search and deduction in a very effective way!

### Deduction in DPLL

► Deductive principle underlying DPLL is propositional resolution

#### Deduction in DPLL

- ▶ Deductive principle underlying DPLL is propositional resolution
- Resolution can only be applied to formulas in CNF

#### Deduction in DPLL

- ▶ Deductive principle underlying DPLL is propositional resolution
- Resolution can only be applied to formulas in CNF
- ▶ SAT solvers convert formulas to CNF to be able to perform resolution

► Consider two clauses in CNF:

$$C_1: (l_1 \vee \ldots p \ldots \vee l_k)$$
  $C_2: (l'_1 \vee \ldots \neg p \ldots \vee l'_n)$ 

Consider two clauses in CNF:

$$C_1: (l_1 \vee \ldots p \ldots \vee l_k) \qquad C_2: (l'_1 \vee \ldots \neg p \ldots \vee l'_n)$$

$$C_3: (l_1 \vee \ldots \vee l_k \vee l'_1 \vee \ldots \vee l'_n)$$

Consider two clauses in CNF:

$$C_1: (l_1 \vee \ldots p \ldots \vee l_k) \qquad C_2: (l'_1 \vee \ldots \neg p \ldots \vee l'_n)$$

▶ From these, we can deduce a new clause  $C_3$ , called resolvent:

$$C_3: (l_1 \vee \ldots \vee l_k \vee l'_1 \vee \ldots \vee l'_n)$$

► Correctness:

Consider two clauses in CNF:

$$C_1: (l_1 \vee \ldots p \ldots \vee l_k) \qquad C_2: (l'_1 \vee \ldots \neg p \ldots \vee l'_n)$$

$$C_3: (l_1 \vee \ldots \vee l_k \vee l'_1 \vee \ldots \vee l'_n)$$

- ► Correctness:
  - ▶ Suppose p is assigned  $\top$ : Since  $C_2$  must be satisfied and since  $\neg p$  is  $\bot$ ,  $(l'_1 \lor \ldots \ldots \lor l'_n)$  must be true.

Consider two clauses in CNF:

$$C_1: (l_1 \vee \ldots p \ldots \vee l_k) \qquad C_2: (l'_1 \vee \ldots \neg p \ldots \vee l'_n)$$

$$C_3: (l_1 \vee \ldots \vee l_k \vee l'_1 \vee \ldots \vee l'_n)$$

- ► Correctness:
  - ▶ Suppose p is assigned  $\top$ : Since  $C_2$  must be satisfied and since  $\neg p$  is  $\bot$ ,  $(l'_1 \lor \ldots \ldots \lor l'_n)$  must be true.
  - ▶ Suppose p is assigned  $\bot$ : Since  $C_1$  must be satisfied and since p is  $\bot$ ,  $(l_1 \lor \ldots \ldots \lor l_k)$  must be true.

Consider two clauses in CNF:

$$C_1: (l_1 \vee \ldots p \ldots \vee l_k)$$
  $C_2: (l'_1 \vee \ldots \neg p \ldots \vee l'_n)$ 

$$C_3: (l_1 \vee \ldots \vee l_k \vee l'_1 \vee \ldots \vee l'_n)$$

- ► Correctness:
  - ▶ Suppose p is assigned  $\top$ : Since  $C_2$  must be satisfied and since  $\neg p$  is  $\bot$ ,  $(l'_1 \lor \ldots \ldots \lor l'_n)$  must be true.
  - ▶ Suppose p is assigned  $\bot$ : Since  $C_1$  must be satisfied and since p is  $\bot$ ,  $(l_1 \lor \ldots \ldots \lor l_k)$  must be true.
  - ▶ Thus, C<sub>3</sub> must be true.

▶ DPLL uses a restricted form of resolution, known as unit resolution.

- ▶ DPLL uses a restricted form of resolution, known as unit resolution.
- Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal)

- ▶ DPLL uses a restricted form of resolution, known as unit resolution.
- ► Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal)

- ▶ DPLL uses a restricted form of resolution, known as unit resolution.
- Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal)
- ▶ Resolvent:  $(l_1 \lor \ldots \lor l_n)$

- ▶ DPLL uses a restricted form of resolution, known as unit resolution.
- Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal)
- ▶ Resolvent:  $(l_1 \lor \ldots \lor l_n)$
- ▶ Performing unit resolution on  $C_1$  and  $C_2$  is same as replacing p with true in the original clauses.

- ▶ DPLL uses a restricted form of resolution, known as unit resolution.
- Unit resolution is propositional resolution, but one of the clauses must be a unit clause (i.e., contains only one literal)
- ▶ Resolvent:  $(l_1 \lor \ldots \lor l_n)$
- ▶ Performing unit resolution on  $C_1$  and  $C_2$  is same as replacing p with true in the original clauses.
- In DPLL, all possible applications of unit resolution called Boolean Constraint Propagation (BCP).

$$(p) \wedge (\neg p \vee q) \wedge (r \vee \neg q \vee s)$$

▶ Apply BCP to CNF formula:

$$(p) \wedge (\neg p \vee q) \wedge (r \vee \neg q \vee s)$$

Resolvent of first and second clause:

▶ Apply BCP to CNF formula:

$$(p) \wedge (\neg p \vee q) \wedge (r \vee \neg q \vee s)$$

Resolvent of first and second clause: q

$$(p) \land (\neg p \lor q) \land (r \lor \neg q \lor s)$$

- Resolvent of first and second clause: q
- ▶ New formula:

$$(p) \wedge (\neg p \vee q) \wedge (r \vee \neg q \vee s)$$

- Resolvent of first and second clause: q
- ▶ New formula:  $q \land (r \lor \neg q \lor s)$

$$(p) \wedge (\neg p \vee q) \wedge (r \vee \neg q \vee s)$$

- Resolvent of first and second clause: q
- ▶ New formula:  $q \land (r \lor \neg q \lor s)$
- Apply unit resolution again:

$$(p) \wedge (\neg p \vee q) \wedge (r \vee \neg q \vee s)$$

- ▶ Resolvent of first and second clause: *q*
- ▶ New formula:  $q \land (r \lor \neg q \lor s)$
- ▶ Apply unit resolution again:  $(r \lor s)$

$$(p) \wedge (\neg p \vee q) \wedge (r \vee \neg q \vee s)$$

- Resolvent of first and second clause: q
- ▶ New formula:  $q \land (r \lor \neg q \lor s)$
- ▶ Apply unit resolution again:  $(r \lor s)$
- No more unit resolution possible, so this is the result of BCP.

```
bool DPLL(\phi) {
```

▶ Recursive procedure; input is formula in CNF

```
bool DPLL(\phi) { 1. \ \phi' = \text{BCP}(\phi) }
```

▶ Recursive procedure; input is formula in CNF

- ▶ Recursive procedure; input is formula in CNF
- ▶ Formula is ⊤ if no more clauses left

- ▶ Recursive procedure; input is formula in CNF
- ▶ Formula is ⊤ if no more clauses left
- ightharpoonup Formula becomes  $\bot$  if we derive  $\bot$  due to unit resolution

- Recursive procedure; input is formula in CNF
- ▶ Formula is ⊤ if no more clauses left
- lacktriangle Formula becomes ot if we derive ot due to unit resolution

```
\label{eq:bool_DPLL} \begin{array}{l} \text{bool} \ \mathsf{DPLL}(\phi) \\ \{ \\ 1. \ \ \phi' = \mathsf{BCP}(\phi) \\ 2. \ \ \mathsf{if}(\phi' = \top) \ \mathsf{then} \ \mathsf{return} \ \mathsf{SAT}; \\ 3. \ \ \mathsf{else} \ \mathsf{if}(\phi' = \bot) \ \mathsf{then} \ \mathsf{return} \ \mathsf{UNSAT}; \\ 4. \ \ p = \mathsf{choose\_var}(\phi'); \\ 5. \ \ \mathsf{if}(\mathsf{DPLL}(\phi'[p \mapsto \top])) \ \mathsf{then} \ \mathsf{return} \ \mathsf{SAT}; \\ \} \end{array}
```

- Recursive procedure; input is formula in CNF
- ▶ Formula is ⊤ if no more clauses left
- lacktriangle Formula becomes ot if we derive ot due to unit resolution

```
\label{eq:bool_DPLL} \begin{array}{l} \operatorname{bool_DPLL}(\phi) \\ \{ \\ 1. \quad \phi' = \operatorname{BCP}(\phi) \\ 2. \quad \operatorname{if}(\phi' = \top) \text{ then return SAT;} \\ 3. \quad \operatorname{else\ if}(\phi' = \bot) \text{ then return UNSAT;} \\ 4. \quad p = \operatorname{choose\_var}(\phi'); \\ 5. \quad \operatorname{if}(\operatorname{DPLL}(\phi'[p \mapsto \top])) \text{ then return SAT;} \\ 6. \quad \operatorname{else\ return\ }(\operatorname{DPLL}(\phi'[p \mapsto \bot])); \\ \} \end{array}
```

- ▶ Recursive procedure; input is formula in CNF
- ▶ Formula is ⊤ if no more clauses left
- lacktriangle Formula becomes ot if we derive ot due to unit resolution

### An Optimization: Pure Literal Propagation

▶ If variable p occurs only positively in the formula (i.e., no  $\neg p$ ), p must be set to  $\top$ 

## An Optimization: Pure Literal Propagation

- ▶ If variable p occurs only positively in the formula (i.e., no  $\neg p$ ), p must be set to  $\top$
- $\blacktriangleright$  Similarly, if p occurs only negatively (i.e., only appears as  $\lnot p$  ), p must be set to  $\bot$

### An Optimization: Pure Literal Propagation

- ▶ If variable p occurs only positively in the formula (i.e., no  $\neg p$ ), p must be set to  $\top$
- $\blacktriangleright$  Similarly, if p occurs only negatively (i.e., only appears as  $\lnot p$  ), p must be set to  $\bot$
- ► This is known as Pure Literal Propagation (PLP).

# DPLL with Pure Literal Propagation

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

▶ No BCP possible because no unit clause

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

- ▶ No BCP possible because no unit clause
- ▶ No PLP possible because there are no pure literals

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

- ▶ No BCP possible because no unit clause
- No PLP possible because there are no pure literals
- ▶ Choose variable *q* to branch on:

$$F[q \mapsto \top]: \ (r) \ \land \ (\neg r) \ \land \ (p \ \lor \ \neg r)$$

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

- ▶ No BCP possible because no unit clause
- No PLP possible because there are no pure literals
- ▶ Choose variable *q* to branch on:

$$F[q \mapsto \top] : (r) \land (\neg r) \land (p \lor \neg r)$$

▶ Unit resolution using (r) and  $(\neg r)$  deduces  $\bot \Rightarrow$  backtrack

$$F: (\neg p \lor q \lor r) \land (\neg q \lor r) \land (\neg q \lor \neg r) \land (p \lor \neg q \lor \neg r)$$

$$\blacktriangleright \text{ Now, try } q = \bot$$

$$F[q \mapsto \bot]: (\neg p \lor r)$$

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

▶ Now, try  $q = \bot$ 

$$F[q \mapsto \bot] : (\neg p \lor r)$$

▶ By PLP, set p to  $\bot$  and r to  $\top$ 

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

▶ Now, try  $q = \bot$ 

$$F[q \mapsto \bot] : (\neg p \lor r)$$

- ▶ By PLP, set p to  $\bot$  and r to  $\top$
- $\blacktriangleright$   $F[q \mapsto \bot, p \mapsto \bot, r \mapsto \top] : \top$

$$F: \ (\neg p \ \lor \ q \ \lor \ r) \ \land \ (\neg q \ \lor \ r) \ \land \ (p \ \lor \ \neg q \ \lor \ \neg r)$$

▶ Now, try  $q = \bot$ 

$$F[q \mapsto \bot] : (\neg p \lor r)$$

- ▶ By PLP, set p to  $\bot$  and r to  $\top$
- $\blacktriangleright$   $F[q \mapsto \bot, p \mapsto \bot, r \mapsto \top] : \top$
- ▶ Thus, F is satisfiable and the assignment  $[q \mapsto \bot, p \mapsto \bot, r \mapsto \top]$  is a model (i.e., a satisfying interpretation) of F.

▶ Normals forms: NNF, DNF, CNF (will come up again)

- Normals forms: NNF, DNF, CNF (will come up again)
- ▶ For every formula, there exists an equivalent formula in normal form

- Normals forms: NNF, DNF, CNF (will come up again)
- ▶ For every formula, there exists an equivalent formula in normal form
- But equivalence-preserving transformation to DNF and CNF causes exponential blowup

- Normals forms: NNF, DNF, CNF (will come up again)
- ▶ For every formula, there exists an equivalent formula in normal form
- But equivalence-preserving transformation to DNF and CNF causes exponential blowup
- ► However, Tseitin's transformation gives an equisatisfiable formula in CNF with only linear increase in size

- Normals forms: NNF, DNF, CNF (will come up again)
- ▶ For every formula, there exists an equivalent formula in normal form
- But equivalence-preserving transformation to DNF and CNF causes exponential blowup
- However, Tseitin's transformation gives an equisatisfiable formula in CNF with only linear increase in size
- ▶ Almost all SAT solvers work on CNF formulas to perform BCP

- Normals forms: NNF, DNF, CNF (will come up again)
- ▶ For every formula, there exists an equivalent formula in normal form
- But equivalence-preserving transformation to DNF and CNF causes exponential blowup
- However, Tseitin's transformation gives an equisatisfiable formula in CNF with only linear increase in size
- ▶ Almost all SAT solvers work on CNF formulas to perform BCP
- ▶ DPLL basis of most state-of-the-art SAT solvers

#### Next Lecture

 Substantial improvements over basic DPLL used by modern SAT solvers: non-chronological backtracking and learning

#### Next Lecture

- Substantial improvements over basic DPLL used by modern SAT solvers: non-chronological backtracking and learning
- ▶ Implementation tricks used to perform BCP very efficiently

#### Next Lecture

- Substantial improvements over basic DPLL used by modern SAT solvers: non-chronological backtracking and learning
- ▶ Implementation tricks used to perform BCP very efficiently
- ▶ Useful heuristics for choosing variable to branch on