Multimodal semi-supervised learning for image classification M Guillaumin, J Verbeek, C Schmid-CVPR2010

Yunfei Wang

Department of Computer Science & Technology Huazhong University of Science & Technology

April 16, 2013

Table of contents

1 Introduction

2 Multimodal Semi-supervised Learning Supervised Learning Semi-supervised Learning Alternative approachs

Motivation

- Increasing quantity and diversity of hand-labelled images improves the performance of classifier.
- Labelling images is time consuming and unrealistic in some scenario.
- Motivation:Using other information sources to aid learning process on limited amount of labelled images.

Supervised Learning

Supervised Learning I

Train a SVM on labelled images:

$$f(x) = \sum_{i} \alpha_{i} k(x, x_{i}) + b \tag{1}$$

where $k(\cdot, \cdot)$ is kernel function.

Class label:

$$y \in \{-1, +1\} = sign(f(x))$$

Combine visual and textual representations

Combined kernel:

$$k_c(\cdot, \cdot) = d_v k_v(\cdot, \cdot) + d_t k_t(\cdot, \cdot) \tag{2}$$

where $k_v(\cdot,\cdot)$ is visual kernel, $k_t(\cdot,\cdot)$ is textual kernel, $d_v,d_t>0$ and $d_v+d_t=1$.

Multiple kernel learning(MKL) framework allows joint learning of kernel combination weights d_v, d_t and the parameters $\{\alpha_i\}$ and b. The SVM based on combined kernels:

$$f_c(x) = \sum_{i} \alpha_i k_c(x, x_i) + b \tag{3}$$

Multimodal Semi-supervised Learning

Semi-supervised Learning

Semi-supervised Learning I

Notation: \mathcal{L} is set of labelled images; \mathcal{U} is set of unlabelled images.

Processing tactics

- **1** Learn a joint visual-textual classifier f_c form \mathcal{L} using MKL;
- **2** Predict class labels for images in \mathcal{U} with f_c ;
- **3** Train a visual-only SVM classifier f_v from \mathcal{L} and \mathcal{U} ;
- **4** Complete image classification task with f_v .

- Multimodal Semi-supervised Learning
 - LAlternative approachs

First Alternative

Intention:Only add the confidently classified examples in \mathcal{U} ,those fall outside the margin with $|f_c(x)| \geq 1$.

They have the less possibility of changing the MKL classifier.

Second Alternative

Intention:Approximate the joint classification function f_c . Perform a least square regression(LSR) on MKL scores $f_c(x)$ for all examples in $x \in \mathcal{L} \cup \mathcal{U}$ to find the function

$$f_v(x) = \sum_i \alpha_i k_v(x, x_i) + b$$

- Multimodal Semi-supervised Learning
 - ☐ Alternative approachs

Pseudo-code of the algorithm

```
Algorithm 1: Procedure for learning a semi-supervised
MKL+LSR visual classifier.
```

Input: Labeled data \mathcal{L} and unlabeled data \mathcal{U} , visual kernel k_v and textual kernel k_t .

Output: Visual classifier α using kernel k_v .

1
$$f_c \leftarrow \text{MKL}(\mathcal{L}, \{k_v, k_t\})$$
 /* Learn MKL classifier */

2 foreach
$$x \in \mathcal{L} \cup \mathcal{U}$$
 do /* Center scores */

3
$$| s(x) \leftarrow f_c(x) - \langle f_c(x') \rangle_{x' \in \mathcal{L} \cup \mathcal{U}}$$

4 end

5 foreach
$$x, x' \in \mathcal{L} \cup \mathcal{U}$$
 do /* Center kernel columns */

6 |
$$K_v(x,x') \leftarrow k_v(x,x') - \langle k_v(x,x'') \rangle_{x'' \in \mathcal{L} \cup \mathcal{U}}$$

7 end

8
$$U\Lambda V^{\top} = K_v$$
 /* SVD of K_v *

$$\begin{array}{ll} \mathbf{8} \;\; U\Lambda V^\top = K_v & \text{ $/^*$ SVD of K_v */} \\ \mathbf{9} \;\; \mathbf{for} \; i = 1 \; \mathbf{to} \; |\mathcal{L} \cup \mathcal{U}| \; \mathbf{do} & \text{ $/^*$ Pseudo-invert K_v */} \end{array}$$

10
$$\overline{\Lambda}_{ii} \leftarrow \begin{cases} 0 & \text{if } \Lambda_{ii} < \epsilon \\ \Lambda_{ii}^{-1} & \text{otherwise} \end{cases}$$

11 end

12
$$\alpha \leftarrow V \overline{\Lambda} U^{\top} s$$
 /* Least-squares regression of s */

