学号: 姓名: 日期: 2021-11-08

● 实验正式报告请交纸质版。截止日期: 2021年11月15日

- 请注意报告版面整洁,截图清晰,内容组织逻辑清晰,易于阅读
- 代码请附在报告中,并打包发邮件。代码要能复现报告中的结果。

# 目的和要求:

- (1) 掌握基于 Numpy 数值分析的基本用法
- (2) 运用 Numpy 数值分析,解决实际问题

# 一、基本题

使用 Python Numpy 回答下面的问题:

1. 矩阵 
$$a = \begin{bmatrix} 4 & 2 & -6 \\ 7 & 5 & 4 \\ 3 & 4 & 9 \end{bmatrix}$$
, 计算 a 的行列式和逆矩阵。

2. a = [1 2 3; 4 5 6; 7 8 9], b = a; 用 np. rot90 去旋转矩阵 a, 要旋转几次, 才能和 np. flipud(np. fliplr(b)) 相等

3. 使用 np. random. rand 函数,建立一个 5x5 的随机数矩阵,求矩阵的行列式的值,秩和范数。

4. 方程组
$$\begin{bmatrix} 2 & 9 & 0 \\ 3 & 4 & 11 \\ 2 & 2 & 6 \end{bmatrix} x = \begin{bmatrix} 13 \\ 6 \\ 6 \end{bmatrix},$$

- 1) 依线性代数,写成 Ax = b 的形式,那么 $x = A \setminus b$ ,求得 x
- 2) 使用 np. linalg. solve 求得 x
- 3) 两者是否相等?

5. 写出代码,给出例子,验证两个方阵 A, B 满足 | AB | = | A | | B |

## 二、应用题

1948年起奥林匹克运动会女子铅球记录如下:

| 年份    | 1948  | 1952   | 1956   | 1960   | 1964   | 1968  | 1972  | 1976   | 1980  | 1984   |
|-------|-------|--------|--------|--------|--------|-------|-------|--------|-------|--------|
| 距离(米) | 13.75 | 15. 28 | 16. 59 | 17. 32 | 18. 14 | 19.61 | 21.03 | 21. 16 | 22.41 | 23. 57 |
| 平均年龄  | 28    | 28     | 27.5   | 29     | 30     | 26    | 26.5  | 28     | 27    | 31     |

- a) 使用数据插值函数,从这些数据中预测 1970 年的奥运会女子铅球的最佳成绩?
- b) 表中的距离逐年呈现单调递增的趋势,请用一个一次函数 y = kx + b 拟合这些数据。并回答依照拟合的函数,在 2000 年奥运会女子铅球的最佳成绩会是多少?

## 三、综合题

## 编写函数实现 Kmeans 算法聚类算法。

使用 Numpy 编写代码,不要使用其他工具包,勿直接抄袭网上代码!

聚类就是根据数据之间的相似度将数据集划分为多个类别或组,使类别内的数据相似度较大而类别间的数据相似度较小。如下图所示,左边是原始数据,右边是聚类之后的效果,不同的颜色代表不同的类别。





实验数据: 文件 Lab4.dat 中含有 2400 个二维空间的点坐标 XY。

#### Kmeans 算法简要

请参考相关书籍或网络,了解 kmeans 算法。大致的步骤如下:

- 1. 设置初始类别中心和类别数
- 2. 根据类别中心对全部数据进行类别划分:每个点分到离自己距离最小的那个类
- 3. 重新计算当前类别划分下每个类的中心:例如可以取每个类别里所有的点的平均值作为新的中心。如何求多个点的平均值? 分别计算 X 坐标的平均值, y 坐标的平均值, 从而得到新的点。**注意:** 类的中心可以不是真实的点,虚拟的点也不影响。
- 4. 在新的类别中心下继续进行类别划分;
- 5. 如果连续两次的类别划分结果不变则停止算法;否则循环2~5。例如当类的中心不再变化时,跳出循环。

### 影响 Kmeans 算法的可能因素:

- **如何选择距离的定义:** 对数据点进行类别划分时,需要计算点到点之间的距离。距离有很多种。 例如 欧式距离, $d_2(X,Y) = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2}$ ,其中 $X = (x_1,x_2)$ 和 $Y = (y_1,y_2)$ 是两个不同的点; L1 范数距离 $d_1(X,Y) = |x_1-y_1| + |x_2-y_2|$ 。
- 如何确定合理的 K 值?
- 如何选择 K 个初始类簇的中心点?

# 要求:

- 1. 实现函数 cidx, ctrs = kmeans(X, K), 其中
- 输入 $X \in N \times 2$ 的矩阵,每行一个点, $K \in \mathcal{L}$ 别的个数,
- 输出 ctrs 是类的中心坐标,对应的 size 应该为:  $K \times 2$ 。cidx 是各个点的类别信息,表示每个点属于哪一类,其 size 为 $N \times 1$ ,例如 cidx(0) = 2,表示第一个点属于第二个类。
- 函数写好后,测试当 K = 2, 3, 4 的效果,并用散点图画出分类的效果。例如,下图显示了当 K=4 的效果。



请查阅 matplotlib.pyplot.scatter 散点图的画法。

## 2. 确定最优的参数 K: 手肘法

参考: https://blog.csdn.net/qq 15738501/article/details/79036255

对每一个 K 值,计算分类的 SSE(sum of the squared errors,误差平方和)。

$$SSE = \frac{1}{N} \sum_{i=1}^{N} dist(X_i - c_i)^2$$

其中 N 是点的个数, $X_i$ 是第i个点, $c_i$ 是 $X_i$ 对应的中心。

编写函数函数 y = calSSE(X, cidx) 计算聚类效果的 SSE,其中 X 是待聚类的数据,cidx 是 kmeans 函数返回的聚类结果, 画出当类别数 K 分别为 2,3,4,5,6 等值时的 SSE, 肉眼能否看出最佳的 K 值?类似下图的效果?

