Московский Физико-Технический Институт (государственный университет)

Работа 3.3.6 Влияние магнитного поля на проводимость полупроводников

Цель работы: Измерение зависомости сопротивления полупроводниковых образцов различной формы от индукции магнитного поля.

В работе используются: электромагнит, миллитесламетр (на основе датчика Холла), вольтметр, амперметр, миллиамперметр, реостат, образцы монокристаллического антимонида индия (InSb) n-типа.

1 Теоретические сведения

Во внешнем магнитном поле \vec{B} на заряды действует сила Лоренца:

$$\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}$$

Эта сила вызывает движение носителей, которое в общем случае не совпадает с \vec{E} . Действительно, траектории частиц будут либо искривляться, либо, если геометрия проводника этого не позволяет, возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещенном во внешнее магнитное поле, называют эффектом Холла.

Для исследования зависимости проводимости среды от магнитного поля используют две основные и принципиально разные по геометрии схемы: мостик Холла и диск Корбино.

В схеме с мостиком Холла ток вынуждают течь по оси х вдоль плоской пластинки. Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, "прибивает" носители заряда к краям образца, что создает холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно $U_{perp} = E_y a$, где

$$E_y = \rho_{yx} j_x = \frac{j_x B}{nq}$$

Таким образом, для холловского напряжения имеем

$$U_{perp} = \frac{B}{nqh}I = R_H \frac{B}{h}I$$
$$U_{par} = IR_0$$

В схеме **Корбино** электрическое поле направлено по радиусу системы. В перпендикулярном диску магнитном поле ток вынужден протекать под углом к электрическому полю, то есть линии тока представляют собой спирали. Дополнительное (холловское) электрическое поле при этом не возникает.

Ввиду симметрии системы вклад в полный ток даёт только радиальная компонента плотности тока $j_r = \sigma_r E_r$. Полный ток равен $I = 2j_r\pi\rho h$, где r - радиус диска, а h - его толщина. Если в системе присутствует один тип носителей, то проводимость в радиальном направлении σ_r соответствует компоненте σ_{xx} тензора:

$$\sigma_r = \frac{\sigma_0}{1 + (\mu B)^2}$$

Напряжение между центром и краем диска равно

$$U = \int E_r dr = \frac{\sigma_r}{\sigma_0} R_0 I$$

где $R_0=rac{1}{\sigma_0 2\pi rh} ln rac{r_2}{r_1}$ - сопротивление диска в отсутствие магнитного поля. Поэтому закон Ома в схеме Корбино можно записать как

$$U = IR_0(1 + (\mu B)^2)$$

Таким образом, в данной схеме появляется зависимость сопротивления образца от магнитного поля. Причина - в геометрии системы: магнитное поле искривляет линии тока, делая их длиннее. Такой эффект называют *геометрическим магнетосопротивлением*.

Магнетосопротивлением называют зависимость сопротивления образца от величины приложенного магнитного поля. Зависимость R(B) может проявляться только в силу геометрических эффектов, как в примере с диском Корбино. Однако в общем случае магнетосопротивление материалов может быть отлично от нуля и в схеме Холла. Это имеет место, если диагональные компоненты тензора сопротивления зависят от магнитного поля. Это может быть следствием следующих причин:

- → Система является анизотропной и токопроводящие свойства раздичны в разных направлениях.
- → Система является многокомпонентной.
- \rightarrow Существуют квантовые эффекты в проводимости, которые приводят к тому, что подвижность зависит от магнитного поля.

Экспериментальная установка: Схема установки для исследования магнетосопротивления полупроводников и геометрического резистивного эффекта представлена на рис. 1.

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью источника питания электромагнита. Ток электромагнита измеряется амперметром A1. Магнитная индукция в зазоре измеряется с помощью миллитесламетра на основе датчика Холла.

Образец в форме кольца (диска Корбино) или пластинки, смонтированный в специальном держателе, подключается к источнику постоянного напряжения 5 В. При замыкании ключа К2 сквозь образец течёт ток, величина которого измеряется миллиамперметром А2 и регулируется реостатом R2. Балластное сопротивление R0 ограничивает ток через образец. Измеряемое напряжение подается на вход

вольтметра V.

2 Подготовка

Диапазон измерения силы тока через образец от 0 до 22,5 mA.

Диапазон измерения силы тока через электромагнит от 0 до 0,59 ампер.

3 Калибровка магнита

С помощью прибора Ш1-10 исследуем зависимость индукции В магнитного поля в зазоре от тока I_m через обмотки магнита (для разных полярностей).

I_m , амперы, $\sigma_I = 0,005 \text{ A}$	$B, mT, \sigma_b = 0,005mT$
0,01	18,1
0,02	20,15
0,1	101,6
0,2	198
0,3	280
0,4	336
0,45	354
0,5	368

В отсутствии тока $< B > = 9,755 \ \mathrm{mT}$ - это значение будет нашим нулём, относительно которого нужно откалибровать все показания.

Аппроксимируем по МНК:

$$\begin{split} y &= kx + b \\ b &= < y > -k < x > \\ k &= \frac{< yx > -(y > < x > }{< x^2 > -(< x >)^2} \\ \sigma_k &= \sqrt{\frac{1}{n-1}(\frac{< y^2 > -(< y >)^2}{< x^2 > -(< x >)^2} - k^2)} \\ \sigma_b &= \sigma_k \sqrt{< x^2 > -(< x >)^2} \\ k &= \frac{74,09 - 49,43}{0,093 - 0,06} \approx 747,3 \\ \sigma_k &= \sqrt{\frac{1}{7}(\frac{58795,2 - 39890}{0,093 - 0,06} - 747,3^2)} \approx 45,4 \\ b &= 199,7 - 747,3 \times 0,24 \approx 12,9 \text{ mT} \\ \sigma_b &= 45,4\sqrt{0,093} - 0,06 \approx 8,2 \end{split}$$

Итоговая аппроксимирующая прямая имеет вид: y = 747, 3x + 12, 9

4 Снятие показаний

1) Подключим диск Корбино к электрической цепи. При помощи реостата R2 установим ток через образец $I_0=22,5$ mA. Падение напряжения на образце в отсутствие магнитного поля U=0,715 mV. Вставим держатель с диском в зазор электромагнита. Снимем зависимость напряжения U на образце от тока I_m через обмотки магнита при фиксированном токе через образец $I_0=22,5$ mA:

I_m , ампер, $\sigma_I=0,005$ ампер	$\mathrm{U,mV,}\sigma_{U}=0.0005\mathrm{mV}$	U_{down} , mV, $\sigma_U = 0.0005$ mV
0,01	0,716	0,710
0,03	0,730	0,727
0,07	0,831	0,832
0,1	0,972	0,976
0,14	1,148	1,176
0,17	1,351	1,388
0,2	1,568	1,585
0,25	1,916	2,008
0,28	2,240	2,286
0,3	2,358	2,445
0,33	2,558	2,694
0,37	2,805	2,866
0,4	2,960	3,020
0,44	3,105	3,137
0,47	3,220	3,230
0,51	3,310	3,333
0,55	3,413	3,400

То же самое проделаем для остальных измерений.

Пластина, ширина вдоль поля:

 $I_0 = 10 mA$, падение напряжения в отсутствии магнитного поля U = 0,727 mA

Работа 3.3.6 4 Снятие показаний

I_m , ампер, $\sigma_I=0,005$ ампер	$\mathrm{U,mV,}\sigma_{U}=0.0005\mathrm{mV}$	U_{down} , mV, $\sigma_U = 0.0005$ mV
0,01	0,726	0,724
0,05	0,734	0,733
0,08	0,751	0,748
0,12	0,774	0,776
0,15	0,800	0,802
0,18	0,830	0,829
0,22	0,858	0,861
0,25	0,887	0,887
0,29	0,915	0,920
0,33	0,948	0,950
0,37	0,973	0,972
0,41	0,988	0,987
0,45	1,002	0,998
0,48	1,011	1,004
0,51	1,020	1,011
0,55	1,030	1,018

Пластина, ширина поперек поля:

 $I_0 = 10 mA$, падение напряжения в отсутствии магнитного поля $U = 0,720 \; \mathrm{mA}$

I_m , ампер, $\sigma_I=0,005$ ампер	$\mathrm{U,mV,}\sigma_{U}=0.0005\mathrm{mV}$	U_{down} , mV, $\sigma_U = 0.0005$ mV
0,01	0,721	0,720
0,05	0,745	0,750
0,08	0,784	0,788
0,12	0,850	0,863
0,15	0,909	0,920
0,18	0,977	0,997
0,22	1,055	1,068
0,25	1,122	1,135
0,29	1,205	1,220
0,33	1,276	1,296
0,37	1,336	1,344
0,41	1,372	1,382
0,45	1,407	1,414
0,48	1,432	1,430
0,51	1,447	1,444
0,55	1,468	1,464

2) Используя формулу $U = IR_0(1 + (\mu B)^2)$ построим график зависимости $\frac{U-U_0}{U_0}(B^2)$, по наклону которого для прямолинейного участка измерений для диска Корбино можно будет рассчитать подвижность носителей.

Прямолинейный участок сделаем путём аппроксимирования первых значений (вблизи нуля, где всё еще почти линейно) МНК.

$$y = kx + b$$

$$b = \langle y \rangle - k \langle x \rangle$$

$$k = \frac{\langle yx \rangle - \langle y \rangle \langle x \rangle}{\langle x^2 \rangle - (\langle x \rangle)^2}$$

$$\sigma_k = \sqrt{\frac{1}{n-1} (\frac{\langle y^2 \rangle - (\langle y \rangle)^2}{\langle x^2 \rangle - (\langle x \rangle)^2} - k^2)}$$

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - (\langle x \rangle)^2}$$

$$k = \frac{16,29 - 8,85}{367,4 - 200,2} \approx 0,044$$

$$\sigma_k = \sqrt{\frac{1}{7} (\frac{0,72 - 0,39}{367,4 - 200,2} - 0,044^2)} \approx 0,002$$

$$\sigma_k = \sqrt{\frac{1}{7}} \left(\frac{6,12-0,39}{367,4-200,2} - 0,044^2 \right) \approx 0,002$$

$$b = 0,626 - 0,044 \times 14,15 \approx -0,005$$

$$\sigma_b = 0,002\sqrt{367,4-200,2} \approx 0,03$$

Итоговая аппроксимирующая прямая имеет вид: y = 0.044x - 0.005

3)
$$(\mu)^2 = \frac{U - U_0}{U_0 B^2}$$
.

Для графика в наших координатах $(\mu)^2 = \frac{dy}{dx}$, поэтому $\mu = \sqrt{\frac{dy}{dx}}$

 $rac{dy}{dx}=0,044 imes10^3,$ следовательно, $\mu\approx 6,6rac{m^2}{V*c}$

Табличное значение подвижности InSb: $\mu_{InSb} = 7.7 \frac{m^2}{V*c}$

Таким образом, подвижность была измерена с погрешностью 14%.

4) Определим сопротивление диска R_0 в отсутствие магнитного поля:

$$R_0 = \frac{U_0}{I_0} = \frac{0.715mV}{22.5mA} \approx 0.03 \text{ Om}$$

$$\left(\frac{\sigma_{R_0}}{R_0}\right)^2 = \left(\frac{\sigma_{U_0}}{U_0}\right)^2 + \left(\frac{\sigma_{I_0}}{I_0}\right)^2$$

4) Определим сопротивление диска
$$R_0 = \frac{U_0}{I_0} = \frac{0.715mV}{22.5mA} \approx 0.03 \text{ Ом.}$$
 $(\frac{\sigma_{R_0}}{R_0})^2 = (\frac{\sigma U_0}{U_0})^2 + (\frac{\sigma_{I_0}}{I_0})^2$ $(\frac{\sigma_{R_0}}{R_0})^2 = (\frac{1}{22.5})^2 + (\frac{0.0005}{0.715})^2 \approx (\frac{1}{22.5})^2$ $\sigma_{R_0} \approx 0.001 \text{ Ом.}$

5) Рассчитаем концентрацию носителей тока n, удельное сопротивление ho_0 и удельную проводимость $\sigma_0 = 1/\rho_0$ материала образца.

$$R_0 = \frac{1}{\sigma_0 2\pi rh} ln(\frac{r_2}{r_1})$$

$$\sigma_0 \approx 0.528 \pm 0.007 \frac{1}{Om*m}$$

$$\rho_0 = 1/\sigma_0 \approx 18,9 \pm 0,3 \frac{Om*(mm)^2}{m}$$

$\mathbf{5}$ Вывод

Мы измерили концентрацию носителей заряда и их подвижность для антимонида индия. Значения подвижности частиц для InSb получились с погрешностью 14% относительно табличных.