	self-supervised contrastive video-speech representation learning for ultrasound Method
1.	Method
	positive pair (Vτ, Sτ)
	positive pair (Vτ, Sτ) negative pair (Vτ, Sτ') , T'= T + 8
	(1) binary classification loss
	(1) binary classification loss $V_{t} \xrightarrow{g_{V}} g_{V}(V_{t})$
	$q_{s} = \frac{1}{2} \int (V_{t}, S_{t}) = g_{v}(V_{t}) \oplus g_{s}(\eta(S_{t}))$
	$\eta (S_t) \xrightarrow{JS} g_s (\eta (S_t))$ binary classification
	, *
	Lels .
	$\mathcal{L}_{cls} = -\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{C} c_i^n log(f(v_t, s_t)_i^n),$
	(2) cross-modal contrastive learning projected embeddings:
	projected embeddings:
	frojected embeddings: $y_v = h(g_v(v_t)), y_s = h(g_s(\eta(s_t)))$ $cross - modal contrastive objective:$
	cross-modal contrastive objective:
	embedding of positive pair: similar negative: repel
	$sim(y_n, y_s)$ $sim(y_n, y_{s'})$
	$\mathcal{L}_{cont} = -log \frac{e^{sim(y_v, y_s)} - e^{sim(y_v, y_{s'})}}{\sum_{k=1}^{N} \mathbb{1}_{[k \neq v]} e^{sim(y_v, y_k)}},$
	$\sum_{k=1} \mathbb{1}_{[k\neq v]} e^{sim(y_v, y_k)}$

 $L = \alpha L_{cls} + \beta L_{cont}$

2. Experiments and implementation
gs, gv: Res Ne Xt - 50 with Squeeze-and Excitation module and dilated convolutions.
same architecture, optimized seperately
gradient clipping

η(St): preprocess of speech data

2D log-spectrogram representation of size 256 × 256

short-time Fourier transform (STFT) with 256 frequency bands,

10 ms window length and 5 ms hop length