UNIVERSITY OF SOUTH CAROLINA

MATH-546 Algebraic Structures I

Homework 2

Problem 1:

Let G be the set of all 2×2 matrices of the form $\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}$ with $b \neq 0$. Prove that G is a group with matrix multiplication as the operation. (Reminder: you may take it for granted that matrix multiplication is associative.)

Answer 1:

Associativity: Given

Identity:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in G$$

Closure:

$$\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a + bc & bd \end{bmatrix} \in G$$

 $(bd \neq 0 \text{ since } b \neq 0 \text{ and } d \neq 0)$

Inverses: If $\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}$ has an inverse it is of the form $\begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix}$ with $d \neq 0$ and $\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}$. $\begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ c & d \end{bmatrix}$. $\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and so

$$0 = a + bc$$

$$0 = c + ad$$

$$d = 1/b$$

Solving, we get
$$\begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -a/b & 1/b \end{bmatrix} \in G$$
 with $1/b \neq 0$.

Problem 2:

Let G be the set of all the functions of the form $f_{m,b}: \mathbb{R} \to \mathbb{R}$, where $f_{m,b}(x) = mx + b$ and m, b are real numbers with $m \neq 0$. Prove that G is a group with composition of functions as the operation.

Answer 2:

- Associativity: given (composition of functions)
- Closure: Let $f_{j,k}$ and $f_{p,q}$ be arbitrary elements of G:

$$(f_{j,k} \circ f_{p,q})(x) = f_{j,k}(f_{p,q}(x))$$

$$= f_{j,k}(px+q)$$

$$= j(px+q)+k$$

$$= (jp)x+(jq+k)$$

$$= f_{jp,jq+k}(x)$$

$$f_{jp,jq+k} \in G \quad \text{since } jp \neq 0$$

- Identity: $f_{1,0}(x) = 1x + 0 = x$ so $f_{1,0}$ is the identity and $f_{1,0} \in G$
- Inverses: Let $f_{j,k} = (f_{p,q})^{-1}$ where $f_{p,q} \in G$ then

$$(f_{j,k} \circ f_{p,q})(x) = (jp)x + (jq + k)$$
$$= 1x + 0$$
$$j = 1/p$$
$$k = -q/p$$

and $f_{1/p,-q/p} \circ f_{p,q} = f_{1,0}$ by construction with $f_{1/p,-q/p} \in G$ since $1/p \neq 0$. And

$$(f_{p,q} \circ f_{1/p,-q/p})(x) = f_{p,q}(x/p - q/p)$$

= $p(x/p - q/p) + q$
= $x - q + q$
= x
 $f_{p,q} \circ f_{1/p,-q/p} = f_{1,0}$

Problem 3:

Let (G, *) be a group and let $a, b \in G$ be arbitrary elements. Prove that

$$a * b = b * a \iff (a * b)^{-1} = (a^{-1} * b^{-1}).$$

Answer 3:

 \Rightarrow Let e be the identity

$$(a * b) = (b * a)$$

 $(a * b)^{-1} = (b * a)^{-1}$
 $= (a^{-1} * b^{-1})$

 \Leftarrow using $(a^{-1})^{-1} = a$

$$(a * b)^{-1} = (a^{-1} * b^{-1})$$

$$((a * b)^{-1})^{-1} = (a^{-1} * b^{-1})^{-1}$$

$$(a * b) = ((b^{-1})^{-1} * (a^{-1})^{-1})$$

$$= b * a$$

 \Leftarrow without using $(a^{-1})^{-1} = a$

$$(a * b)^{-1} = (a^{-1} * b^{-1})$$

$$(a * b) * (a * b)^{-1} = (a * b) * (a^{-1} * b^{-1})$$

$$e = (a * b) * (a^{-1} * b^{-1})$$

$$(b * a) = (a * b) * (a^{-1} * b^{-1}) * (b * a)$$

$$= (a * b) * a^{-1} * (b^{-1} * b) * a$$

$$= (a * b) * (a^{-1} * a)$$

$$= (a * b)$$

$$a * b = b * a$$

Problem 4:

Let (G, *) be a group. Assume that a * a = e for all $a \in G$. Prove that G must be an abelian group.

Answer 4:

 $\forall a,b \in G:$

$$a * b = (a * b)^{-1}$$

= $(b^{-1} * a^{-1})$
= $b * a$

Problem 5:

Let $G = GL_2(\mathbb{R})$ be the group of 2×2 invertible matrices, with matrix multiplication as the operation.

- a. Give an example of two elements $A, B \in G$ such that $AB \neq BA$.
- b. For the A, B in your example for part (a), calculate ABA^{-1} . Is ABA^{-1} equal to B or not?

Answer 5:

a.

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad B^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$
$$AB = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad BA = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

b.

$$ABA^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \neq B$$

Alternatively if $ABA^{-1} = B$ then $ABA^{-1}A = BA$ and AB = BA so A and B commute which is not the case here.

Theoretical Question 1:

Assume that (G, *) is a group. Prove that the identity element is unique.

Answer:

That there exists an identity is in the definition of a group. So all we need show is that any two identities are the same element of G. If e and e' are identities then e = e' * e = e' so e' and e must be the same element of G.

Theoretical Question 2:

Assume that (G, *) is a group, and let $a \in G$ be a fixed element. Prove that the inverse of a is unique.

Answer:

That there exists an inverse is in the definition of a group. So all we need show is that any two inverses are the same element of G.

Let b and c be inverses of a with e the identity of G, then

$$a * b = e$$

$$c * a * b = c$$

$$e * b = c$$

$$b = c$$

Theoretical Question 3:

Let (G, *) be a group, and let $a, b \in G$ be fixed arbitrary elements. Prove that there is a unique $x \in G$ such that a * x = b.

Answer:

Consider $x = a^{-1} * b$. $x \in G$ by closure.

$$a * x = a * a^{-1} * b$$
$$= e * b$$
$$= b$$

If $y \in G$ such that a * y = b then by transitivity a * x = a * y and by multiplying on the left by a^{-1} we get x = y and so they must be the same element of G.