Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

Электротехнический факультет

Кафедра: Информационные технологии и автоматизированные системы

Дисциплина: «Научно-исследовательский семинар»
Лабораторная работа №4
на тему: «Линейная Регрессия»

Выполнил: студент группы АСУ8-23-1м

Шеретов Марк Алексеевич

Проверил: к.т.н., доцент кафедры ИТАС

Суворов Александр Олегович

Постановка задачи

Цель работы: изучить применение линейной регрессии в АП Loginom **Задачи проекта:**

Используя материал учебного пособия «Анализ данных в АП Loginom» (автор A.Б.

Яковлев), выполнить задания для самостоятельной работы п. 5.3 (стр. 88).

Выполнение работы

Создадим пакет для выполнения работы в Loginom. На рисунке 1 представлен «пустой» редактор после создания пакета.

Рисунок 1 — пустой редактор

Задание 1.

Для импорта исходных данных добавим на схему компонент «Excel-файл» и настроим его.

Рисунок 2 — Компонент «Excel-файл» на схеме сценария

Настроим компонент для импорта файла «Денежные доходы» как ранее для остальных excel-файлов. Результат импорта представлен на рисунке 3

Рисунок 3 — результат импорта файла «Денежные доходы».

Добавим в сценарий компонент «Линейная регрессия» для проведения регрессионного анализа и подключим к компоненту импорта, как показано на рисунке 4.

Рисунок 4 — компонент «Линейная регрессия» на схеме сценария

Настроим компонент линейная регрессия:

- произведём настройку входных столбцов как показано на рисунке 5.

Рисунок 5 — настройка входных столбцов компонента «Линейная регрессия»

Настройки нормализации оставим без изменения, как показано на рисунке 6.

Рисунок 6 — настройки нормализации

- произведём настройку линейной регрессии, как на рисунке 7:
 - Отключим «Автоматическую настройку»;
- В качестве метода отбора факторов и защиты от переобучения выберем пошаговое исключение;
 - Отметить флажок «Использовать детальные настройки».

Рисунок 7 — настройка линейной регрессии

На вкладке «Детальная настройка линейной регрессии» произведём следующие настройки (как показано на рисунке 8):

- В качестве критерия отбора факторов выберем «Критерий Фишера (F-тест)
- Уровень доверия установим равный 95%
- Порог значимости при исключении фактора выберем 0.1

Рисунок 8 — детальная настройка линейной регрессии

Сохраним настройки узла и в контекстном меню узла на схеме сценария вызовем команду «переобучить узел», как показано на рисунке 9.

Рисунок 9 — переобучение узла «Линейная регрессия»

Добавим визуализаторы к каждому из выходов компонента «Линейная регрессия» (рисунок 10):

- Таблицу выхода регрессии;
- Таблицу коэффициентов регрессионной модели;
- Отчёт по регрессии.

Рисунок 10 — визуализаторы линейной регрессии

Вывод визуализаторов представлен на рисунках 11 — 13 ниже.

Рисунок 11 — таблица «Выход регрессии»

Рисунок 12 — таблица «Коэффициенты регрессионной модели»

Рисунок 13 — вывод «Отчёта о регрессии»

Полученная модель приняла вид:

$$y=1.138 x_1-488.9 x_2+1321.89$$
, где:

x1 - Среднемесячная номинальная начисленная заработная плата работников организации, руб.

x2 — Численность населения с денежными доходами ниже величины прожиточного минимума, % от общей численности населения

у — среднедушевые доходы.

Коэффициент детерминации = 93.9% - достаточно высокая точность модели. Получившуюся модель можно проинтерпретировать так:

- При росте среднемесячной заработной платы на 1000 рублей, средний доход на душу населения вырастет на 1138 рублей.
- При росте численности населения с доходами ниже прожиточного минимума на 1%, средний доход на душу населения уменьшится на 488.9 рублей.

Задание 2

Для выполнения задания 2 был создан отдельный сценарий «5.2», добавим на схему сценария компонент «Excel-файл» для импорта исходных данных, как показано на рисунке 14.

Рисунок 14 — Excel-файл на схеме сценария

Для просмотра исходных данных к компоненту «Excel-файл» был добавлены визуализаторы «Таблица» и «Диаграмма», вывод которых представлен на рисунках 15 и 16.

^	< >	點 ∨ 😌 Пакеты ∨ 😂 SheretovLab4 ∨ :// 5.2 ∨ 🚜 Сценарий	i v
	10 10 10	У Формат АД Сортировка ▼ Фильтр Найти	Q
#	12 № периода	9.0 Число амбулаторно-поликлинических организаций, тыс	<u>9.0</u> Год
1	1	21.3	2000
2	2	21.3	2001
3	3	21.4	2002
4	4	21.5	2003
5	5	22.1	2004
6	6	21.8	2005
7	7	18.8	2006
8	8	18.3	2007
9	9	15.5 15.3	2008
11	11	15.7	2010
12	12	16.3	2011
13	13	16.5	2012
14	14	16.5	2013
15	15	17.1	2014
16	16	18.6	2015
17	17	19.1	2016
18	18	20.2	2017
19	19	20.2	2018

Рисунок 15 — таблица исходных данных

Рисунок 16 — диаграмма исходных данных

Попробуем представить зависимость в виде модели кубической регрессии: Модель:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

И приведём модель к линейному виду, используя дополнительные переменные:

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3$$
, где:

у — число амбулаторных клинических организаций,

*х*₁ — год,

 x_2 — год в квадрате,

 x_3 — год в кубе.

Добавим компонент «Калькулятор» и с его помощью рассчитаем x_2 и x_3 . Настройки калькулятора показаны на рисунке 17 и 18 для x_2 и x_3 соответственно.

Рисунок 17 — расчёт x_2

Рисунок 18 — расчёт x_3

Добавим компонент «Линейная регрессия в наш сценарий» и передадим ему на вход результат работы компонента «Калькулятор», как показано на рисунке 19.

Рисунок 19 — сценарий после добавления компонента «Линейная регрессия»

Настроим входные столбца компонента «Линейная регрессия». В качестве выходного столбца выберем столбец «Число амбулаторных клинических организаций», а различные вариации столбца «Год» выберем входным параметром, как показано на рисунке 20.

Рисунок 20 — настройка входных столбцов

Все остальные настройки оставим без изменений и переобучим модель.

Добавим визуализаторы для каждого выходного порта компонента «Линейная регрессия» - две таблицы и отчёт о регрессии. Вывод визуализаторов представлен на рисунках 21 - 23.

Рисунок 21 — таблица «Выход регрессии»

Рисунок 22 — таблица «Коэффициенты регрессионной модели»

Рисунок 23 — отчёт о регрессии

В результате работы «Линейной регрессии» на автоматических настройках, получилась следующая модель:

$$y = -9254214 + 13938 x + 0.001 x^2 - 6.997 x^3$$
,

где у — Число амбулаторных клинических организаций, х — год.

Коэффициент детерминации для этой модели: 70.26%, что можно считать довольно хорошим результатом, показывающим довольно хорошую точность модели. Большое значение параметра «F-статистики», в купе с «P-значением модели» превосходящим 0, можно интерпретировать, как успех регрессионной модели.

Построим диаграмму по результатам регрессии для сравнения с исходными данными (рисунок 24).

Рисунок 24 — графики исходных данных и регрессионной модели