

HW6 - Arooz Classification Natural Language Processing

University of Tehran
Shahrivar 1400

گزارش کار انجام شده

هدف اصلی در این تمرین پیاده سازی یک طبقه بند کننده (classifier) برای تشخیص وزن های ایسات اشتار دارید شامل فایسل ابیسات اشتار است. مجموعیه داده ای کیه در اختیار داریدم شامل فایسل ابیسات فارسی (DSCV)، تبدیل شده ابیات به کاراکترهای (DSCV) و یک فایسل که تبدیل شده به کاراکترهای -USCV) ست، کیه برای هر کیدام از آنها فایل های آموزش از تست جدا شده است.

بــرای پــیش پــردازش داده هــا بــه ایــن صــورت عمــل کــردیم کــه بــا اســتفاده از تــابع () pre_procces ابتــدا فایــل هــای مربـوط بـه کاراکترهــای ۷۰ و - ا را بـه همــراه برچســب هــای آنها را مـی خـوانیم و داده هـایی را کـه در فایـل بـه صـورت درسـتی قـرار ندارنـد یـا اطلاعـات ناقصـی را در بر دارنـد را حـذف مـی کنـیم، کـه نتیجـه در تصـویر زیـر بـه صـورت جـدولی نمـایش داده شـده است.

	cv1	cv2	m1	m2	label
0	cvccvvccvccvccvccvcvvcvvcvcvcvcvcvc	cvvcvcccvccvccvccvccvccvccvccvccvcc	UUUUUU	UUUUUU	1003
1	CVVCCVVCVCCVCVCVCVCCVCCVCCVCCVCCVCCVCCV	CVVVCVVCVVCVCCVCCVVCVVCVVCVVCCVCVC	UUUUUU-	UUUUUU-	1001
2	cvccvcvccvccvccvccvccvccvcvcvcvcvc	cvccvcvvccvcvvcvcvcvcvcvcvcvcvc	UUUUUU-	UUUUUU-	1001
3	CVCVCCCVCCVCCVCCVCCVCCVCCVCCVCCVCCVCC	cvvcvvccvvcvcvcvcvcvcvcvcvcvcvcvcvcvcvcv	-UUU-	-UUU-	1014
4	CVCVCVVCVCCVCCVCCVCCVCCVCCVCVCCVCCVCCVC	CVCVCCVCCVCCVCCVCVCVCVCVCVCVCVCVCVCVCVCV	UUUUUU-	UUUUUU-	1025
919	CVCCVCVVCVCCVCVCVCVCVCVCVCVCVCVCVCVCV	CVVCVCVCCVCVCCVCVCVCCVCVCCVCVCVCVCVCVCVC	UUUUUU-	UUUUUU-	1001
920	CVCCVCVCVCCVCCVCCVCCVCCVCCVCCVCCVCCVCCV	CVVCVCCVVCVCCVCVCVCVCCVCVCVCVCVCVCVCVCVC	-UUUUUU-	-UUUUUU-	1024
921	CVCCVCVCCCVCVCCVCCVCCVCCVCCVCCVCCVCC	cvcvcvcvcvcvcvcvvcvvcvcvcvcvcvcvcvcvc	-UUUUUU-	-UUUUUU-	1001
922	CVVCVVCVCVCCVCVVVCVVCVVCCVVCVCCVCCVCCVC	CVCCVVCVCVCCVCVCVCVCCCVCVCCVCCVCCVC	U-UU-U	U-UU-U	1007
923	CVCVCVCCVCVVCCVVVCVCVVCVVCVVCCVVCCVV	CVVCVVCVVCVVCVVCVVCVVCCVVCCVVCVVC	U-U-UUU-U-	U-U-UUU-U-	1003

910 rows × 5 columns

همانظور که از اندیس سطرها مشخص است تعدادی از سطرهایی که داده های مناسبی نداشتند حذف شده است. از آنجایی که داده های ما به صورت کاراکتری هستند می بایستی آنها را به صورت برداری به شبکه دهیم، برای تبدیل کاراکترها به بردار این رویکرد را در نظر گرفتیم که هر کدام از کاراکترها را به یک عدد منحصر به فرد نگاشت کنیم به این صورت که کاراکتر - را به +، کاراکتر + را به + کاراکتر + را به + نگاشت می کنیم.

بر اساس تجربه و کم بودن تعداد داده با این رویکرد داده ها را آماده آموزش کردیم که ستون cv1 را با سـتون m2 در نظر گرفتیم با این کار تعداد بردارهای آموزش مان دو برابر می شود. برچسب ها را هم به صورت one-hot به یک بردار با طول ۳۱ که تعداد کلاس هایمان تبدیل می کنیم. که تمام این تبدیلات در تابع ()mapping انجام می گیرد.

برای آموزش داده ها از یک شبکه fully connected استفاده کردیم که خلاصه ای از آن را مشاهده می کنیم.

Layer (type)	Output Shape	Param #
input_22 (InputLayer)	[(None, 65)]	0
dense_210 (Dense)	(None, 1024)	67584
dense_211 (Dense)	(None, 1024)	1049600
dense_212 (Dense)	(None, 512)	524800
dense_213 (Dense)	(None, 512)	262656
dense_214 (Dense)	(None, 512)	262656
dense_215 (Dense)	(None, 256)	131328
dense_216 (Dense)	(None, 256)	65792
dense_217 (Dense)	(None, 128)	32896
dense_218 (Dense)	(None, 128)	16512
dropout_21 (Dropout)	(None, 128)	0
dense_219 (Dense)	(None, 31)	3999

Total params: 2,417,823 Trainable params: 2,417,823 Non-trainable params: 0 از بین بهینه سازها بهترین نتیجه را با استفاده از Stochastic gradient descent (SGD) با و Stochastic gradient descent (SGD) گــرفتیم کــه پارامترهـــای learning_rate=0.001, momentum=0.98, decay=0.0001 گــرفتیم کــه بعد از ۲۰۰ epoch ۲۰۰ به دقت ۵۴٪ رسیدیم.

