Методы предобработки текстовых данных для ускорения обучения языковых моделей

Сурков Максим Константинович

Научный руководитель: Ямщиков Иван Павлович

Санкт-Петербургская школа физико-математических и компьютерных наук НИУ ВШЭ СПБ

17 марта 2021 г.

Обработка естественного языка в реальной жизни

- социальные сети
- электронная почта
- службы доставки
- голосовые помощники
- переводчики
- чат боты

Задачи обработки естественного языка

- классификация последовательностей
 - спам
 - грубая речь¹
- Генерация выходной последовательности из исходной
 - машинный перевод
 - ответы на вопросы
- выделение информации из последовательностей
 - выделение именованных сущностей²

¹G. H. Paetzold et al., SemEval'19 Task 5: Hate Speech Identification with RNN.

²Vikas Yadav et al., SemEval'19 Task 12: Deep-Affix Named Entity Recognition of Geolocation Entities. ACL'19

Современные методы решения задач обработки естественного языка

- Механизм внимания¹
- BERT (Google)²
- GPT-3 (OpenAI)³

¹Ashish Vaswani et al., Attention Is All You Need, 2017

²Jacob Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019

³Tom B. Brown et al., Language Models are Few-Shot Learners, 2020

BERT. Использование

BERT. Обучение

BERT. Требуемые ресурсы

- количество параметров: 110M 340M
- время на предобучение: от 2-4 дней до 1-2 недель¹
 - мировой рекорд: 47 минут на **1472** V100 GPU²
- время на дообучение: 1-2 дня
- размеры данных:

Датасет	Размер
Wikipedia	3-600M
HND	600k-2M
s140	1.6M
IWSLT	200-230k
QQP	364k
MNLI	393k

¹При использовании 1x-4x GPU Nvidia Tesla V100 32Gb

²https://developer.nvidia.com/blog/training-bert-with-gpus

BERT. Существующие методы оптимизации

- квантизация¹
- дистилляция²
- прунинг³

¹Sheng Shen et al., Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. 2019

²Victor Sanh et al., DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, 2020

³Hassan Sajjad et al., Poor Man's BERT: Smaller and Faster Transformer Models, 2020

Обучение с расписанием. Начало

Обучение с расписанием. Применение

ullet компьютерное зрение 1

- обучение с подкреплением²
- глубокое обучение³

¹Guy Hacohen, Daphna Weinshall, On The Power of Curriculum Learning in Training Deep Networks, 2019

²Sanmit Narvekar et al., Curriculum Learning for Reinforcement Learning Domains:

A Framework and Survey, 2020

³Mermer et al., Scalable Curriculum Learning for Artificial Neural Networks, 2017 990

- Задача: машинный первод
- Модель: BERT, LSTM
- Датасеты: IWSLT'15, IWSLT'16, WMT'16
- Алгоритм:
- сортируем тексты по сложности (длина, логарифм веротности правдоподобия)
- $oldsymbol{2}$ в течение T шагов (рассмотрим шаг t)
 - ullet считаем $c(t) \in [0,1]$
 - строим батч из c(t) первых текстов корпуса
 - шаг обучения

Difficulty

E. A. Platanios et al., Competence-based Curriculum Learning for Neural Machine Translation. ACL'19

• Задача: классификация

BERT

• Датасеты: SQuAD 2.0, NewsQA, GLUE

• Алгоритм: в течение Т шагов

Benfeng Xu et al., Curriculum Learning for Natural Language Understanding,

	MNLI-m	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	Avg
results on dev									
BERT Large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	84.1
BERT Large*	86.6	92.5	91.5	74.4	93.8	91.7	63.5	90.2	85.5
BERT Large+CL	86.6	92.8	91.8	76.2	94.2	91.9	66.8	90.6	86.4
results on test									
BERT Large	86.7	91.1	89.3	70.1	94.9	89.3	60.5	87.6	83.7
BERT Large*	86.3	92.2	89.5	70.2	94.4	89.3	60.5	87.3	83.7
BERT Large+CL	86.7	92.5	89.5	70.7	94.6	89.6	61.5	87.8	84.1

Обучение с расписанием в обработке языка. Направления для исследований

- Много важных задач обработки естественного языка с большими корпусами тренировочных данных
- Решаются с помощью тяжелых моделей, которые долго учатся
- Не исследованы метрики оценки сложности текста (длина текущий предел)
- Эксперименты проведены только на определенных задачах
 - ACL'19 только задача машинного перевода
 - ACL'20 только задача классификации¹
- Не исследовано влияние обучения с расписанием на этапе предобучения

¹Не совсем честное обучение с расписанием; Не ускоряет; Требует еще больших ресурсов

Цели и задачи

Цель: ускорить обучение языковой модели BERT с помощью обучения с расписанием за счет метрики оценки сложности текстовых данных на задачах предобучения, классификации и машинного перевода Задачи:

- Найти эффективные¹ метрики оценки сложности текста
- Реализовать механизм подсчета найденных метрик на больших датасетах
- Сравнить найденные метрики с существующими метриками оценки сложности текста
- Исследовать влияние найденных метрик на скорость обучения языковой модели BERT

¹с точки зрения сокрости обучения модели

Поиск метрик

- длина, вероятность правдоподобия¹
- информационный поиск
 - tf-idf
 - энтропия, семантическая сложность²
- средняя частота слова, самое редкое слово в предложении³
- число определенных частей речи⁴
- теория информации

¹E. A. Platanios et al., Competence-based Curriculum Learning for Neural Machine Translation, ACL'19

²Frans van der Sluis et al., Using Complexity Measures in Information Retrieval, 2010

³Xuan Zhang et al., An Empirical Exploration of Curriculum Learning for Neural Machine Translation, 2018

⁴Tom Kocmi, Ondrej Bojar, Curriculum Learning and Minibatch Bucketing in Neural Machine Translation, 2017

Поиск метрик

метрика	формула		
Multi-information	$\sum_{v \in V} H_p(X_v) - H_p(X_V)$		
Excess Entropy (EE)	$\left[\sum_{v\in V} H(X_{V\setminus\{v\}}) ight] - (N-1)H(X_V)$		
TSE	$\sum\limits_{k=1}^{N-1}rac{k}{N}C^{(k)}(X_V)$, где		
	$C^{(k)}(X_V) = rac{N}{k\binom{N}{k}} \sum_{A \subseteq V, A =k} H(X_A) - H(X_V)$		
Transient information	:(

$$V = \{1, \dots, N\}$$
$$X_V = (X_1, \dots, X_N)$$

Nihat Ay et al., A **Unifying** Framework for Complexity Measures of Finite Systems, 2006

Адаптация EE и TSE под задачи обработки языка

• Образование совместной случайной величины

$$T=(t_1,t_2,\ldots,t_{i-1},t_i,\ldots,t_n)$$
 $t_i o \xi_{t_i}^i=:\mu_i$ — бинарная случайная величина $iggle$ $\xi=(\xi_{t_1}^1,\xi_{t_2}^2,\ldots,\xi_{t_{i-1}}^{i-1},\xi_{t_i}^i,\ldots,\xi_{t_n}^n)$

Вычисление энтропии

$$H(\mu) = \sum_{i=1}^{n} H(\mu_i | \mu_1, \mu_2, \dots, \mu_{i-1}) = \sum_{i=1}^{n} H(\mu_i | \mu_{i-k}, \dots, \mu_{i-1})$$

3 k = 1

$$H(\mu) = H(\mu_1) + H(\mu_2|\mu_1) + \ldots + H(\mu_i|\mu_{i-1}) + \ldots + H(\mu_n|\mu_{n-1})$$

Вычисление метрик

- длина
- tf-idf

$$\sum_{i=1}^{n} f(X_i) \log \frac{|D|}{\{j : X_i \in X^{(j)}\}}$$

- ullet $x_i
 ightarrow$ число текстов, в которых есть x_i
- энтропия для вычисления EE, TSE
 - ullet длина o число текстов с такой длиной
 - $(i,x_i) o$ число текстов, где $t_i = x_i$
 - $(x_i) o$ число текстов, где x_i является последним токеном
 - ullet $(i,x_{i-1},x_i) o$ число текстов, где на (i-1)-й позиции стоит x_{i-1} , а на i-й позиции стоит x_i
- EE,TSE ?

Вычисление ЕЕ

$$EE(X) = \left[\sum_{v \in V} H(X_{V \setminus \{v\}})\right] - (N-1)H(X_V) =$$
$$\left[\sum_{i=1}^n H(\mu_1, \dots, \mu_{i-1}, \mu_{i+1}, \dots, \mu_n)\right] - (n-1)H(\mu)$$

- $\mathcal{O}(n^2)$
- O(n)

$$\sum_{i=1}^{n} H(\mu_{1}, \dots, \mu_{i-1}, \mu_{i+1}, \dots, \mu_{n}) =$$

$$= \sum_{i=1}^{n} H(\mu) - H(\mu_{i}|\mu_{i-1}) - H(\mu_{i+1}|\mu_{i}) + H(\mu_{i+1})$$

$$EE(X) = \sum_{i=2}^{n} H(\mu_{i}) - H(\mu_{i}|\mu_{i-1}) = \sum_{i=2}^{n} I(\mu_{i-1}; \mu_{i})$$

Вычисление TSE

$$\sum_{k=1}^{N-1} \frac{k}{N} C^{(k)}(X_V)$$

$$C^{(k)}(X_V) = \frac{N}{k \binom{N}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) - H(X_V) =$$

$$= \frac{N}{k} \left[\frac{1}{\binom{N}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) \right] - \frac{N}{k} H(X_V)$$

Вычисление TSE

$$C^{(k)}(X_V) = \frac{1}{\binom{n}{k}} \sum_{A \subset V, |A| = k} H(X_A) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} H(\mu_{i_1}, \mu_{i_2}, \dots, \mu_{i_k})$$

- $0 \mathcal{O}^*(2^n)$
- $\mathcal{O}(n^2)$ динамическое программирование
- \circ $\mathcal{O}(n)$

$$C^{(k)}(X_V) = \sum_{i=1}^n A_i H(\mu_i) + \sum_{i=2}^n B_i H(\mu_i | \mu_{i-1})$$
$$A_i = \frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{k}{n}$$
$$B_i = \frac{\binom{n-2}{k-2}}{\binom{n}{k}} = \frac{k(k-1)}{n(n-1)}$$

