

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2018 -الموضوع- 930414 1 45 ANK 6+
08366 3 1 40 646 30
1688886 87 4+8308 A

RS 44

المركز الوطني للتقويم والإمتحانات والتوجيه

3	مدة الإنجاز	علوم المهندس	المادة	
3	المعامل	شعبة العلوم الرياضية: مسلك العلوم الرياضية "ب") الشعبة أو المسلك)	

Volet 1 : Constitution de l'épreuve

Volet 1 :Présentation de l'épreuvepage 1.Volet 2 :Présentation du systèmepages 2.Volet 3 :Substrat du sujetpages 3, 4.

Documents réponses **D.Rep** pages **5**, **6**, **7**, **8**, **9**, **10**.

Documents ressources **D.Res** pages **11, 12, 13, 14, 15, 16, 17**.

Volet 2 : Présentation de l'épreuve

Système à étudier : Fraiseuse à commande numérique.

Durée de l'épreuve : **3 h**. Coefficient : **3**.

Moyens de calcul autorisés : Calculatrices scientifiques non programmables.

Documents autorisés : Aucun.

- ➤ Vérifier que vous disposez bien de tous les documents de 1/17 à 17/17.
- > Faire une lecture attentive afin de vous imprégner du sujet.
- Rédiger les réponses aux questions posées sur les documents réponses D.Rep.

NB : Tous les documents réponses **D.Rep** sont à rendre obligatoirement.

Sauf indications contraires, prendre deux chiffres après la virgule pour tous les résultats des calculs.

الامتمان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 — الموضوع – ماحة: علوم المهندس —العلوم الرياضية — مسلك العلوم الرياضية "بب"

Volet 2 : Présentation du système

Mise en situation

La machine outils à commande numérique est de plus en plus utilisée dans la fabrication des pièces mécaniques. Elle permet à l'opérateur d'usiner une pièce d'une manière automatisée, par enlèvement de la matière. L'usinage est réalisé conformément à un programme établi à partir du dessin de la pièce fait sur ordinateur à l'aide d'un logiciel spécifique.

Le principe de l'usinage est d'enlever de la matière, à l'aide d'un outil, pour donner à la pièce usinée une forme particulière.

La pièce sur laquelle on réalise l'usinage pour obtenir la pièce finale s'appelle : Pièce brute (voir D. Res1).

Le système abordé dans ce sujet est une machine à commande numérique trois axes appelée **Fraiseuse à commande numérique**, comportant les mécanismes assurant les mouvements suivants : (voir image ci-dessous et schéma descriptif sur **D. Res2).**

- Tx: Translation de la table suivant l'axe X, (limitée par deux capteurs de position F_{cxd}, F_{cxg});
- T_Y: Translation de la table suivant l'axe Y, (limitée par deux capteurs de position F_{cyd}, F_{cyg});
- Tz: Translation du chariot suivant l'axe Z. (limitée par deux capteurs de position Fczh, Fczb);
- Mouvement de coupe : rotation de la broche porte outil suivant l'axe Z;
- Mouvement de rotation et de translation du mécanisme tourelle porte-outils.

Remarque:

Le mouvement d'avance peut-être dû à :

- ✓ **T**x seule ;
- ✓ **T**y seule ;
- ✓ T_X et T_Y combinées.

La machine est alimentée sous une tension de 230/400 V, 50 Hz.

Pour des raisons de sécurité, la machine est munie de :

- > Un bouton poussoir de mise en marche lumineux : Il indique, lorsqu'il est allumé, que la machine est en service ;
- > un bouton poussoir d'arrêt d'urgence : Si un incident survient, on arrête la machine par l'action sur ce bouton ;
- > un capteur détecteur de la fermeture du capot de protection : Le capot doit être obligatoirement fermé pour effectuer tout mouvement d'axe et mettre la broche en service ;
- un électro-aimant de verrouillage temporisé du capot : Il faut attendre six secondes après l'arrêt de la machine avant d'ouvrir le capot ;
- un mécanisme qui coupe l'alimentation des moteurs, en cas d'ouverture forcée du capot, pour stopper tous les mouvements d'axes et de la broche.

الامتدان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: عُلُوهِ المهندس – العلوم الرياضية – مسلك العلوم الرياضية "بم"

Volet 3: Substrat du sujet

La connaissance de l'environnement et de l'organisation structurelle et fonctionnelle d'une machine facilite sa mise en œuvre et rend possible la vérification de ses caractéristiques techniques.

Les situations d'évaluation suivantes, à travers la réalisation des tâches qui en découlent, vous permettent d'explorer l'environnement de la **Fraiseuse à commande numérique** trois axes, d'étudier certains de ses mécanismes et de vérifier quelques données constructeur.

Situation d'évaluation n°1

5.25 Pts

Pour vous aider à appréhender la constitution de la **Fraiseuse à commande numérique**, vous êtes invités à faire les approches fonctionnelles externe et interne par la réalisation des tâches suivantes :

Tâche n°1: Expression du besoin et identification des interactions du système étudié avec son environnement extérieur.

A partir du volet n°2 et des D.Res 1 et D.Res 2, sur D.Rep 1 :

Q.01. Exprimer le besoin en complétant la « bête à cornes » de la Fraiseuse à commande numérique.

0,75 pt

Q.02 Compléter le diagramme des interactions et la liste des fonctions de service.

1,5 pt

Q.03. Compléter l'Actigramme A-0 du système.

1,25 pt

Tâche n°2: Identification des solutions constructives utilisées pour réaliser la fonction principale « FP » : A partir du **volet n°2** et des **D.Res 1**, **D.Res 2** et **D.Res 3**, sur **D.Rep 2**:

Q.04. Compléter le FAST relatif à la fonction principale « FP ».

1,75 pt

Situation d'évaluation n°2

9.75 Pts

Un professeur a construit, à partir d'un matériel modulaire, un système didactisé permettant d'expliquer aux élèves, avec aisance, le fonctionnement du mécanisme de création du mouvement de la table et le contrôle de ce mouvement.

Le système didactisé est représenté par le schéma cinématique **3D** donné sur le **D.Res 3**. On vous demande de réaliser les tâches suivantes :

Tâche n°1: Analyse du fonctionnement du système didactisé.

A partir des D.Res 3, D.Res 4, sur D.Rep 2 et D.Rep 3:

Q.05. Compléter le graphe des liaisons par les noms des liaisons qui manquent.

1,5 pt

Q.06. Compléter le tableau par les mouvements possibles entre les différentes classes d'équivalence et symboles des liaisons.

1,5 pt

Q.07. Relier chacune des liaisons 1, 2 et 3 à la description convenable.

0,75 pt

Tâche n°2: Analyse du fonctionnement du circuit de commande du moteur **M1** d'entrainement de la table. Pour commander le moteur **M1** de déplacement de la table suivant l'axe **X**, le professeur utilise le montage électrique représenté sur **D.Res 4** fonctionnant comme suit :

- ✓ Déplacement vers la droite : V_{AB} = E, le moteur tourne dans le sens positif (M1+ = 1) et la table se déplace vers la droite. Ce mouvement est limité par un capteur fcxd.
- ✓ Déplacement vers la gauche : V_{AB} = E, le moteur tourne dans le sens négatif (M1- = 1) et la table se déplace vers la gauche. Ce mouvement est limité par un capteur fcxg.

Sur D.Rep 3 et D.Rep 4:

Q.08. Compléter la table de vérité permettant d'analyser le fonctionnement de ce montage.

1.5 pt

Q.09. Compléter alors les tableaux de Karnaugh proposés et en déduire les équations simplifiées des sorties R,

1,5 pt

M1+ et M1-.

Tâche n°3: Représentation graphique.

A partir du D.Res 5, sur D.Rep 4:

Q.10. Compléter les vues de face, de dessous et de droite du coulisseau 13 sans représenter les arêtes cachées

3 pts

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: عُلُوهِ المهندس – العلوم الرياضية "بح"

and the state of t

5 Pts

La machine, objet de notre étude, est conçue pour usiner principalement de l'aluminium avec des outils en acier rapide. Le constructeur précise qu'avec une fraise de **20 mm** de diamètre, on peut réaliser une rainure dans une pièce en aluminium avec une profondeur de passe de **5 mm**.

Situation d'évaluation n°3

Dans le but de comprendre les solutions constructives pour répondre à cette donnée, on vous demande de réaliser les tâches suivantes :

Tâche 1 : Analyse du système d'entrainement de la broche.

A partir des D.Res 6 sur D.Rep 4, D.Rep 5 :

Q.11. Identifier les éléments 1 et 3 du variateur de vitesse.

0,50 pt

Q.12. En tenant compte des conditions d'usinage relatives à la broche, exprimer et calculer :

0,75 pt

- a. la puissance P_{mb} en watts que doit fournir le moteur de la broche ;
- b. la vitesse de rotation N_{mb} en tr/min à laquelle doit tourner le moteur de la broche ;
- c. le couple C_{mb} en Nm que doit fournir ce moteur.

Q.13. On donne N_{mb} = 5750 tr/min, la vitesse de synchronisme étant N_{smb} = 6000 tr/min. Exprimer et calculer :

0,50 pt

- 1) le glissement gmb;
- 2) la fréquence f_{mb} en Hz de la tension d'alimentation du moteur de la broche, sachant que le nombre de paires de pôles est p = 1.

Tâche 2: Vérification de la capacité du moteur **M1** à fournir, à la table, l'effort d'avance **Fa = 690 N** imposé par les conditions d'usinage.

A partir du D.Res 7, sur D.Rep 5 et D.Rep 6:

 $\mathbf{Q.14}$. Calculer la puissance $\mathbf{P_t}$ en \mathbf{w} fournie à la table.

0,25 pt

Q.15. Calculer le rendement global η_g du système d'entrainement de la table.

0,25 pt

 $\mathbf{Q.16}$. Calculer la puissance $\mathbf{P_{m1}}$ en \mathbf{w} que doit fournir le moteur $\mathbf{M1}$.

0,25 pt

Q .17. Calculer la vitesse N_{m1} en tr/min à laquelle doit tourner le moteur M1 et en déduire la valeur du couple C_{m1} en Nm qu'il doit fournir.

0,50 pt

Tâche 3. Détermination de la tension d'alimentation du moteur pour ce fonctionnement.

A partir du D.Res 7, sur D.Rep 6:

Q .18. Calculer l'intensité du courant I_{m1} en **A** absorbé par le moteur **M1**.

0,25 pt

Q .19. Le schéma équivalent du moteur **M1** est donné sur le **D.Rep 6** .Calculer la F.e.m **E** en **V** lorsque la vitesse de rotation est N_{m1} = **250** tr/min puis calculer la tension d'alimentation du moteur en **V**.

0,50 pt

Tâche 4: Identification de la solution constructive retenue pour mesurer la position de la table avec une précision de 0,01 mm.

Pour mesurer la position de la table, le constructeur utilise un codeur incrémental de référence GI355 0 70 C2 15 monté en bout de chaque vis à billes.

A partir du **D.Res 7** sur **D.Rep 6**:

Q.20. Déterminer la résolution de ce codeur en **impulsions/tour** à partir de sa référence. Justifier votre réponse.

0,25 pt

Q.21. La roue de ce codeur incrémental ressemble à l'une des roues représentées sur le **D.Rep 6**. Laquelle ? Cocher la bonne réponse.

0,25 pt

Q.22. Un codeur incrémental de résolution R = 500 impulsions/tour monté au bout de l'axe X permettra –t-il de mesurer la position de la table sur cet axe avec la précision de 0,01 mm ? Justifier votre réponse.

0,25 pt

Q.23. Quelle sera alors la fréquence fa en Hz du signal A délivré par ce codeur quand le moteur M1 tourne à la vitesse de 5750 tr/min.

0,5 pt

الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 — الموضوع – مادة: علوم المهندس – العلوم الرياضية "بج"

D.Rep **3** (3,75 Pts)

Q.06. Tableau des mouvements entre les différentes classes d'équivalence et symboles des liaisons (1 lorsqu'il y a un mouvement, 0 pas de mouvement) :

1,5 pt

Classes d'équivalence	Tx	Ty	Tz	Rx	Ry	Rz	Symbole de la liaison dans le plan X, Z
Coulisseau – Vis 1							
Bâti – Coulisseau							
Table– Vis 2							
Table – Coulisseau							

Q.07. Liaison liée à sa description :

Liaison 1

Description a

Liaison 2

Description b

Liaison 3

Description c

Q.08. La table de vérité :

i	m	f _{cxd}	f _{cxg}	R	M ₁ +	M ₁ -
0	0	0	0			
0	0	0	1			
0	0	1	0			
0	0	1	1	0	0	0
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1	0	0	0
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1	1	0	0
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1	1	0	0

1,5 pt

0,75 pt

الصفحة 8

RS 44

الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 — الموضوع – ماحة: عُلُومِ المُصنِدسِ —العلومِ الرياضية— مسلك العلومِ الرياضية "بم"

D.Rep 4 (5 Pts)

Q.09. Les tableaux de Karnaugh et les équations simplifiées des sorties R, M₁+ et M₁-:

1,5pt

Q.10. Les vues de face, de dessous et de droite du coulisseau 13 sans la représentation des arêtes cachées :

Q.11. Identification des éléments 1 et 3.

0,5 pt

1	
2	Filtre
3	

ͺ I	RS	44																					الامتحان الوطني ال مادة: علوم المه	
														5										
Fxr	ressio	n et	calc	ul c	de :																			
	La pui					atts	;							1										
																					-			
																					_	_		
																					F	nb [—]		
)	La vite	esse	de r	ota	tion	: N r	_{nb} er	tr/ı	min	;			,	1							,			
						-															-			
																					N		·	
																					17	mb -		
)	Le cou	ıple (C _{mb} (en I	Nm.				1					1										
																							6	
																							C _{mb} =	
						-	-	+																
	ressior																							
	Ou glis	seme	ent g	3mb	: 																			
		seme	ent g	3 mb																				
		seme	ent g	S mb																	gr	_{nb} =		
		seme	ent g	S mb																	gr	_{nb} =		
		seme	ent g	S mb																	gr	_{nb} =		
						ı Hz	de la	ten	sion	n d'a	lim	ent	atic	on d	u m	ote	urc	de la	a br	roch		_{nb} =		
	Ou gliss					n Hz	de la	ı ten	sior	n d'a	lim	ent	atic	on d	u m	ote	ur c	de la	a br	och		nb =		
	Ou gliss					n Hz	de la	ı ten	sior	n d'a	lim	ent	atic	on d	u m	ote	ur c	de la	a br	och		nb =		
	Ou gliss					n Hz	de la	ı ten	sior	n d'a	lim	ent	atic	on d	u m	ote	urc	de la	a br	och		nb =	f _{mb} =	
	Ou gliss					ı Hz	de la	ıten	sior	n d'a	lim	ent	atic	on d	u m	ote	urc	de la	a bro	och		nb =		
	Ou gliss					ı Hz	de la	ı ten	sior	n d'a	lim	ent	atic	on d	u m	ote	urc	de la	a br	roch		nb =		
	De la f	réqu	enc	e f _n	nb en								atic	on d	u m	ote	urc	de la	a br	och		nb =		
	Ou gliss	réqu	enc	e f _n	nb en								atic	on d	u m	ote	urc	de la	a br	och		nb =		
	De la f	réqu	enc	e f _n	nb en								atic	on d	u m	ote	urc	de la	a bro	roch		nb =	f _{mb} =	
	De la f	réqu	enc	e f _n	nb en								atic	on d	u m	ote	urc	de la	a br	och		nb =		
	De la f	réqu	enc	e f _n	nb en								atic	on d	u m	ote	urc	de la	a bro	och		nb =	f _{mb} =	
. Ca	De la f	iréqu	enc	e f _n	nb en	e en v	w for	urnie	e à l	a tal	ole.								a bro	roch		nb =	f _{mb} =	
. Ca	De la f	iréqu	enc	e f _n	nb en	e en v	w for	urnie	e à l	a tal	ole.								a br	och		nb =	f _{mb} =	

											[D.F	Re	o 6	5 (2	,75	Pts)										
(.16	. Cald	cul de	la pu	uissar	nce F	P _{m1} e	n w	que	doi	it fo	urni	r le	mo	teu	r M 1	l.	1 1											0,25
																							F	o _{m1}	=			
(.17	. Cal	cul de	la vi	tesse	N _{m1}	en t	tr/n	ın dı	ı mo	oteu	r M	1 et	de	sor	cou	ıple	C _{M1}	en f	۷m.									0,5
																					_ \	\ _{m1} :	=	• •	• •			
																					ے ا	_m1 =	_					
+																					- (-m1 -		• •	i			
.18	B. Calo	cul de	l'inte	ensite	é du	coui	rant	l _{m1}	en A	abs	orb	é pa	ar le	m	oteu	ır M	11.			,								0,2
+																_												
+														+		+			+			I _{m1}	ι = .		• • •			
.19). Calc	ul de	la F.e.	m E e	n V l	orsqu	ue la	vite	sse o	de ro	tatio	on e	st N	m1=2	250 t	r/m	in et	calcı	ul de	la te	nsio	n d'a	lime	enta	tion 6	en V.		0, !
																							-					
																_							1	•		\perp	<u> </u>	
																						ι	J			Т		
																										ſ	R = 2 £	2
														c _									١	_		╝	,	
2	n Dá	term	natio	n de	la rá	solu	tion	do	CO. C	odei	ır o	+ 1111				• •			U –	•••	• •							0,2
.2	0. De	term	liatio	ii de	la i e	Solu	tioi	lue		Jue	11 6	i ju	50111	Lati	011.													٥,-
																							R	= .	• • • •	• •		
.21	. Indi	icatio	n de	la rou	ıe dı	ı coc	deui	r.																				0,2
							W.				A								ß.		4							
																		6	G			111						
									9	1		1						11.			4	11						
						W		###	H	No.								1					9					
																					Marie Const							
22			ation										leur	de	réso	olut	ion l	R = 5	00 i	mpu	lsio	ns/to	our	à n	nesui	er la		
_	pos	ition	de la	table	ave	c la p	préd	cisior	n de	0,0	1 m	m.																0,2
+																												0,2
	0.001	المارية	la f	Ów:	nes i	fo ar		d	ion		441:	ve ź	ns		sed.	21::-) NI		756	N+ 1 /								
22		Jui ae	la fr	eque	rice 1	ıa er	ı HZ	uu s	igna	al A	uell	vre	μar	ce	roae	eur	d INn	11 = 5	750	ur/m	IIN.							
.23	Calc																											0,5

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: علوم الممندس – العلوم الرياضية – مسلك العلوم الرياضية "بح"

D.Res **1**

Principe de l'usinage par enlèvement de la matière :

Toute opération d'usinage par enlèvement de la matière s'accompagne de la formation de **copeaux et d'un dégagement de chaleur.**

Le dégagement de chaleur nécessite l'utilisation d'un jet de liquide de refroidissement.

Mouvement d'avance ; mouvement de coupe :

L'enlèvement de la matière est obtenue grâce à un outil ayant au moins une arrête coupante. La pièce se déplace par rapport à l'outil. **C'est le mouvement d'avance.**

L'outil doit en plus tourner sur lui-même par rapport au bâti de la machine-outil pour pouvoir couper la matière. **C'est le mouvement de coupe.**

Exemple de pièce obtenue par usinage :

Pièce usinée

Lorsque l'on fait de l'usinage, on maintient souvent la pièce dans un étau :

الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – الموضوع – ماحة: عُلُومُ المهندس – العلومُ الرياضية – مسلك العلومُ الرياضية "بم"

D.Res **2**

Repère	Désignation	Observations					
1	Bâti	Assure l'agencement de tous les organes de la machine					
2	Table	Peut faire TX ; TY ou TX et TY combinées.					
3	Moteur de broche	Moteur asynchrone triphasé muni d'une poulie pour courroie crantée.					
4	Courroie crantée	Transmet le mouvement de rotation					
5	Broche	Entrainée en rotation RZ.					
6	Porte-outil	Assure la liaison entre l'outil et la machine					
7	Outil	Doit être choisi en fonction de l'opération à faire.					
0	Tourelle porte-outils	un mouvement de translation.					
8	Tourelle porte-outils	Permet le changement d'outil : Il peut faire un mouvement de rotation et					
9	Pupitre de commande	Permet d'envoyer des consignes de réglage à la machine.					
10	Bouton de mise en marche	Permet de mettre la machine en marche.					
11	Bouton d'arrêt d'urgence	Permet d'arrêter la machine en cas d'incident.					
12	Clavier	Permet d'appeler le programme pièce.					
13	Ecran	Permet d'afficher les informations pour le suivi de l'usinage.					

الامتدان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع **RS 44** – عادة: علوم الممندس —العلوم الرياضية— مسلك العلوم الرياضية "بب" D.Res 3 Schéma cinématique 3D du mécanisme de déplacement de la table : Table Poulies-courroie Liaison 6 Moteur M2 Moteur M1 Poulies-courroie Vis 2

D.Res 4

Extrait du document constructeur :

Les descriptions ci-dessous sont extraites du document constructeur .Elles décrivent les solutions constructives retenues pour réaliser les différentes liaisons afin de mieux répondre aux conditions de fonctionnement.

Description a : Cette liaison est assurée par des paliers linéaires à billes qui permettent un déplacement :

- Avec des faibles frottements ;
- avec une très bonne précision ;
- à des vitesses importantes.

Description c: Pour réaliser cette liaison, on a utilisé **un palier à billes auto-aligneur** qui permet une adaptation aux défauts d'alignement et une réduction des frottements.

Description b : Les vis écrous à billes sont des composants qui transforment un mouvement de rotation en mouvement de translation avec les avantages suivants :

- Précision et grande résistance à l'usure;
- un frottement minimal;
- un rendement supérieur à 90%

الصفحة 15

RS 44

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 — الموضوع – مادة: عُلُومِ المهندس – العلومِ الرياضية "بج"

D.Res **5**

Le dessin en vue éclatée du système d'entrainement de la table suivant l'axe Y :

D.Res 6

Schéma synoptique du système d'entrainement de la broche :

<u>Conditions pour réaliser une rainure, fraisage centré, dans l'aluminium avec une fraise en acier rapide de diamètre 20 mm :</u>

Grandeurs à i	especter
Vitesse de rotation de la broche	Nb = 3821 tr/min
Puissance à la broche	Pb = 1025 W
Effort d'avance	Fa = 690 N
Vitesse d'avance	Va = 500 mm/min

الامتدان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 — الموضوع – ماحة: عُلُوهِ المهندس – العلوم الرياضية — ممالك العلوم الرياضية "بح"

D.Res **7**

Représentation schématique du système d'entrainement de la table suivant l'axe X :

<u>Caractéristiques du système d'entrainement de la table suivant l'axe X :</u>

Caractéristiques du	moteur M1
Tension d'alimentation maximale	60 V
Courant nominal	3,30 A
Couple nominal	0,4 Nm
Vitesse maximale	4700 tr/min
Constante de vitesse	Ke = 0,0127 V/tr.min ⁻¹
Constante de couple	Kc = 0,12 Nm/A

Caractéristiques du réducteur								
Diamètre poulie 1	Dp1 = 20 mm							
Diamètre poulie 2	Dp2 = 50 mm							
Rendement	ηκ = 0,94							

Caractéristiques du système vis-écrou								
Pas	pv = 5 mm							
Diamètre	φv = 16 mm							
Rendement	ην = 0,90							
Vitesse de rotation	N _V							

Codeur incrémental : Extrait du catalogue :

