Aufgabe	0.1	0.2	0.3	0.4	\sum
Punkte					

Höhere Analysis – Übungsblatt 0

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 0.1 Sei X eine Menge, J eine Indexmenge, und sei $A_j \subset X$ für alle $j \in J$. Zeigen Sie, dass

$$\left(\bigcup_{j\in J} A_j\right)^c = \bigcap_{j\in J} A_j^c, \qquad \left(\bigcap_{j\in J} A_j\right)^c = \bigcup_{j\in J} A_j^c. \tag{1.1}$$

Aufgabe 0.2 Seien X, Y nicht-leere Mengen und $f: X \longrightarrow Y$. Wir definieren die Urbild-Abbildung $f^{-1}: \mathscr{P}(Y) \longrightarrow \mathscr{P}(X)$ durch

$$f^{-1}(A) := \{ x \in X : f(x) \in A \}$$
 für alle $A \subset Y$. (2.1)

- a) Seien $A, B \subset Y$. Zeigen Sie, dass $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.
- b) Sei J eine Indexmenge und seien $A_j \subset Y$ für alle $j \in J$. Zeigen Sie, dass

$$f^{-1}\Big(\bigcup_{j\in J} A_j\Big) = \bigcup_{j\in J} f^{-1}(A_j), \qquad f^{-1}\Big(\bigcap_{j\in J} A_j\Big) = \bigcap_{j\in J} f^{-1}(A_j).$$
 (2.2)

Aufgabe 0.3 Sei $\rho \colon \mathbb{R} \longrightarrow \mathbb{R}$ gegeben durch $\rho(z) \coloneqq \frac{z}{1+|z|}$. Wir definieren $d, d^* \colon \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ durch

$$d(x,y) := |x - y|,$$
 $d^*(x,y) := |\rho(x) - \rho(y)|$ für alle $x, y \in \mathbb{R}$. (3.1)

- a) Zeigen Sie, dass d^* eine Metrik ist.
- b) Sei $x_n \in \mathbb{R}$ eine Folge. Zeigen Sie, dass x_n genau dann konvergent bezüglich d ist, wenn x_n konvergent bezüglich d^* ist.
- c) Zeigen Sie, dass der metrische Raum (\mathbb{R}, d^*) nicht vollständig ist.

Sei $\bar{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$. Mit der Konvention $\rho(\pm \infty) := \pm 1$ lässt sich d^* fortsetzen auf $\bar{\mathbb{R}} \times \bar{\mathbb{R}}$.

- d) Zeigen Sie, dass d^* eine Metrik auf $\bar{\mathbb{R}}$ ist.
- e) Sei $x_n \in \mathbb{R}$ eine monoton steigende Folge. Zeigen Sie, dass x_n bezüglich (der fortgesetzten Metrik) d^* konvergiert.
- f) Ist $(\bar{\mathbb{R}}, d^*)$ nun ein vollständiger metrischer Raum? Begründen Sie Ihre Antwort.

Hinweis: Die Menge $\bar{\mathbb{R}}$ ist mit der Ordnung $-\infty < x < \infty$ für alle $x \in \mathbb{R}$ eine totalgeordnete Menge.

Aufgabe 0.4 Sei A eine Menge. Wir definieren die charakteristische Funktion (oder Indikatorfunktion)

$$\chi_A(x) := \begin{cases} 1 & \text{für } x \in A, \\ 0 & \text{sonst.} \end{cases}$$
 (4.1)

- a) Zeigen Sie, dass kein Intervall $I \subset \mathbb{R}$ existiert, so dass $\chi_{\mathbb{Q}}$ eingeschränkt auf I Riemannintegrierbar ist.
- b) Sei $q_k \in \mathbb{Q} \cap [0,1]$ eine Abzählung der rationalen Zahlen in [0,1]. Wir definieren die Folge von Funktionen $f_k := \chi_{\{q_1,\dots,q_k\}}$. Zeigen Sie, dass $f_k \to \chi_{\mathbb{Q} \cap [0,1]}$ punktweise für $k \to \infty$, dass f_k Riemann-integrierbar ist für alle $k \in \mathbb{N}$ und

$$\int_0^1 f_k(x) \, \mathrm{d}x = 0 \qquad \qquad \text{für alle } k \in \mathbb{N}. \tag{4.2}$$