## <u> Udacity Project - Explore Weather Trends</u>

Project by Abhi Vasanth

Email: abhivasanth90@gmail.com Contact No. 1- 415 928 9707

### Summary of the project

In this project, local and global temperature data are analysed and the temperature trends are compared between San Francisco (the city I live in) to overall global temperature trends.

### Goal and process flow of the project

The goal of the project is to create a visualization and document the observations based on the temperature trends between San Francisco(SF) and the Overall global temperature trends.

#### Process flow - different stages

In order to accomplish this goal, we'll complete the following stages/steps in a sequence and illustrate the observations with the visualization.

Stage 1 : Extract data sets required for analysis (SQL)

Stage 2: Data transformation/manipulation process (Google Sheets)

Stage 3: Create a Data Visualization line chart. (Google Sheets)

Stage 4: Perform Data analysis and observation based on Stage 3. (SQL and google sheets)

#### Stage 1 : Extract data sets required for analysis (SQL)

The following SQL queries were used to extract the data required for my analysis.

Explore Weather trends - sql queries with comments

-- Exploring city\_list table to find my city San Francisco. Using the where clause. At first I used the LIKE operator to find cities starting with San and then took note of the exact name and format (case sensitivity scenario and then finally arrived to the below query)

SELECT city, country
FROM city\_list
WHERE city = 'San Francisco';

-- Extracting data for San Francisco from the city\_data table - The fields are year, city, country and avg\_temp. Utilization of AND operator.

SELECT year, city, country, avg\_temp FROM city\_data WHERE country = 'United States' AND city = 'San Francisco';

-- Extracting data for global temperature by year - extracting entire data set

SELECT year, avg\_temp FROM global\_data;

Note: After evaluating each of these queries. I hit the download csv link to my local PC with a name for the file. (Especially query 2 and query 3)

The following are the extracted files:

San Francisco temperature data

Global temperature data

#### Stage 2 : Data transformation/manipulation process

In order to visualize our data in the form of a line chart, one of the requirement is to use the moving average instead of the yearly average. In order to perform this manipulation process, we use Google Sheets to calculate the moving average for each of our data set i.e San Francisco temperature data and Global temperature data.

#### Basic steps:

- 1. Decide what time period to be used for the moving average. For this project and experimentation reasons, I've used 20 years.
- 2. Add a derived column to the spreadsheet and name it Moving average. Go to the 21st cell of this derived column and add a formula =AVERAGE(B2:B21) and hit enter; where B2 to B21 are the cells from where we are going to reference the average temperature.
- 3. Once the value is updated, drag down the cell all the way to last cell to update the rest of the Moving average values
- 4. Repeat above steps for the global temperature data.
- 5. To perform data analysis on both the datasets side by side, I've combined both the data set in a single spreadsheet. (Please refer below link with steps performed in a google sheet)

Explore Weather Trends Global Vs SF

#### Stage 3 : Create a Data Visualization line chart. (Google Sheets)

In order to create a Data Visualization line chart to analyze the trends for the local temperature and global temperature, I've used Google sheets.

We used google sheets as a spreadsheet to manipulate the data set and calculate its moving average.

#### Steps to create a Line Chart (Smooth)

1. Select all from the data set to be analysed. (PFB - Screenshot)

| /ear<br>Global) | Global Average<br>Temperature<br>(Celsius) | 20 Year Global<br>Moving<br>Average | Year (San Francisco) | City          | SF Average<br>Temperature<br>(Celsius) | 20 Year SF<br>Moving<br>Average |
|-----------------|--------------------------------------------|-------------------------------------|----------------------|---------------|----------------------------------------|---------------------------------|
| 1994            | 9.04                                       | 8.8815                              | 1994                 | San Francisco | 14.21                                  | 14.7385                         |
| 1995            | 9.35                                       | 8.912                               | 1995                 | San Francisco | 15.31                                  | 14.813                          |
| 1996            | 9.04                                       | 8.9465                              | 1996                 | San Francisco | 15.56                                  | 14.855                          |
| 1997            | 9.2                                        | 8.964                               | 1997                 | San Francisco | 15.75                                  | 14.911                          |
| 1998            | 9.52                                       | 9.0055                              | 1998                 | San Francisco | 14.38                                  | 14.882                          |
| 1999            | 9.29                                       | 9.0335                              | 1999                 | San Francisco | 14.41                                  | 14.853                          |
| 2000            | 9.2                                        | 9.0445                              | 2000                 | San Francisco | 15.02                                  | 14.867                          |
| 2001            | 9.41                                       | 9.0565                              | 2001                 | San Francisco | 15.25                                  | 14.8685                         |
| 2002            | 9.57                                       | 9.103                               | 2002                 | San Francisco | 15                                     | 14.9185                         |
| 2003            | 9.53                                       | 9.128                               | 2003                 | San Francisco | 15.43                                  | 14.9365                         |
| 2004            | 9.32                                       | 9.1595                              | 2004                 | San Francisco | 15.37                                  | 14.9565                         |
| 2005            | 9.7                                        | 9.2115                              | 2005                 | San Francisco | 15.17                                  | 15.0035                         |
| 2006            | 9.53                                       | 9.2465                              | 2006                 | San Francisco | 15.02                                  | 15.0045                         |
| 2007            | 9.73                                       | 9.2835                              | 2007                 | San Francisco | 14.94                                  | 15.004                          |
| 2008            | 9.43                                       | 9.295                               | 2008                 | San Francisco | 15.05                                  | 15.0025                         |
| 2009            | 9.51                                       | 9.3245                              | 2009                 | San Francisco | 15.02                                  | 15.031                          |
| 2010            | 9.7                                        | 9.348                               | 2010                 | San Francisco | 14.67                                  | 15.028                          |
| 2011            | 9.52                                       | 9.365                               | 2011                 | San Francisco | 14.5                                   | 15.028                          |
| 2012            | 9.51                                       | 9.3985                              | 2012                 | San Francisco | 15.05                                  | 15.004                          |
| 2013            | 9.61                                       | 9.4355                              | 2013                 | San Francisco | 16.23                                  | 15.067                          |
| 2014            | 9.57                                       | 9.462                               |                      |               |                                        |                                 |
| 2015            | 9.83                                       | 9.486                               |                      |               |                                        |                                 |

- 2. Choose tab option Insert and select chart and then from the options choose line chart
  - a) Use the options from Customize to edit/modify Line chart title, axis and legends
  - b) Use the option from data to choose the appropriate style chart, series and axis from the data set.

Please find below screenshots for reference.



#### Key consideration when deciding how to visualize the trends?

- Use the Line chart per the requirement. Ensure that the axis titles and legends are provided and displayed. Ensure that there is a unique color coding for the different temperature trends Global and SF temperature. Correct data set is used and series are provided with the moving average and not the yearly average. X axis and Y axis are given the appropriate names with units.
- Look for patterns in the line chart. Observe if the line is increasing by year. Compare the data against the two and see if we see a pattern in drop or rise. Observe factors that would influence the temperature.



# <u>The Data Visualization Report : Global Vs SF Temperature trends comparison - Line Chart.</u>

Fig a:



#### Perform Data analysis and observation based on Stage 3. (SQL and google sheets)

#### Observations:

- 1. San Francisco (SF) is hotter in terms of temperature average compared to the global average temperature. The difference between the two has been nearly consistent over time. Even though SF is a city which is located close to the ocean and it's usually windy and cold. The average temperature of SF is warmer compared to the average temperature globally. (Probably temperature from places like Russia and Mongolia have skewed the global temperature towards the colder side.)
- 2. There appears some correlation between the global average temperature to SF's average temperature. There's been an increase in temperature especially the last 30-40 years.
- 3. From the chart fig a, with the recent years rise in technology, the rise in temperature for both San Francisco and the Global temperature is high likely due to global Warming. Greenhouse gases are causing climate change and also the reason for the rise in Temperature. Hence, possible correlation in rise in temperature at city and global level during the recent years. The trend for both local and global temperature appears to be on the rise for the upcoming years based on the line chart trend fig a.
- 4. It appears there has not been a significant change in temperature for the last 200 years at a global level or at city level (SF). The temperature average has been been between 7 and 9.5 & 13 and 16 respectively. (I'd like to highlight that none of the temperature averages had a significant change like from 7 to 14 or 13 to 20 during the last 250 years)

Fig a (see previous page) illustrates the trend where San Francisco shows higher temperature average compared to the Global average temperature.

#### Additional observation using Dallas temperature data:

1. Observed in all 3 cases:

Global average temperature, SF average temperature and Dallas average temperature (moving average and yearly average). The highest recorded temperature has been the most latest year for their respective data sets. Please find below screenshot with the data set details. (See below screenshot with highlighted values - They represent the temperature in celsius)

Explore Weather Trends Global Vs SF Vs Dallas

| A<br>Year<br>(Global) | Global Average<br>Temperature<br>(Celsius) | 20 Year Global<br>Moving<br>Average | Year (San | E City        | Temperature | 20 Year SF<br>Moving<br>Average | н    | city   | J<br>avg_temp | K  20 Year Dallas Mo |
|-----------------------|--------------------------------------------|-------------------------------------|-----------|---------------|-------------|---------------------------------|------|--------|---------------|----------------------|
|                       |                                            |                                     |           |               |             |                                 | year |        |               |                      |
| 1999                  | 9.29                                       | 9.0335                              | 1999      | San Francisco | 14.41       | 14.853                          | 1999 | Dallas | 19.61         | 18.3985              |
| 2000                  | 9.2                                        | 9.0445                              | 2000      | San Francisco | 15.02       | 14.867                          | 2000 | Dallas | 18.9          | 18.405               |
| 2001                  | 9.41                                       | 9.0565                              | 2001      | San Francisco | 15.25       | 14.8685                         | 2001 | Dallas | 18.55         | 18.412               |
| 2002                  | 9.57                                       | 9.103                               | 2002      | San Francisco | 15          | 14.9185                         | 2002 | Dallas | 18.19         | 18.413               |
| 2003                  | 9.53                                       | 9.128                               | 2003      | San Francisco | 15.43       | 14.9365                         | 2003 | Dallas | 18.55         | 18.4805              |
| 2004                  | 9.32                                       | 9.1595                              | 2004      | San Francisco | 15.37       | 14.9565                         | 2004 | Dallas | 18.58         | 18.486               |
| 2005                  | 9.7                                        | 9.2115                              | 2005      | San Francisco | 15.17       | 15.0035                         | 2005 | Dallas | 19.13         | 18.5315              |
| 2006                  | 9.53                                       | 9.2465                              | 2006      | San Francisco | 15.02       | 15.0045                         | 2006 | Dallas | 19.85         | 18.5825              |
| 2007                  | 9.73                                       | 9.2835                              | 2007      | San Francisco | 14.94       | 15.004                          | 2007 | Dallas | 18.42         | 18.5895              |
| 2008                  | 9.43                                       | 9.295                               | 2008      | San Francisco | 15.05       | 15.0025                         | 2008 | Dallas | 18.52         | 18.606               |
| 2009                  | 9.51                                       | 9.3245                              | 2009      | San Francisco | 15.02       | 15.031                          | 2009 | Dallas | 18.42         | 18.653               |
| 2010                  | 9.7                                        | 9.348                               | 2010      | San Francisco | 14.67       | 15.028                          | 2010 | Dallas | 18.69         | 18.639               |
| 2011                  | 9.52                                       | 9.365                               | 2011      | San Francisco | 14.5        | 15.028                          | 2011 | Dallas | 19.69         | 18.7                 |
| 2012                  | 9.51                                       | 9.3985                              | 2012      | San Francisco | 15.05       | 15.004                          | 2012 | Dallas | 19.99         | 18.79                |
| 2013                  | 9.61                                       | 9.4355                              | 2013      | San Francisco | 16.23       | 15.067                          | 2013 | Dallas | 20.45         | 18.9215              |
| 2014                  | 9.57                                       | 9.462                               |           |               |             |                                 |      |        |               |                      |
| 2015                  | 9.83                                       | 9.486                               |           |               |             |                                 |      |        |               |                      |

The above image highlights the highest observed temperatures in celsius. 2015 has 9.486 celsius for global average temperature, 15.067 in 2013 for SF, and 18.9215 in 2013 for Dallas.

# <u>The Data Visualization Report : Global Vs SF Vs Dallas Temperature trends comparison - Line Chart.</u>

Fig b:

