INTRODUCTION TO MACHINE LEARNING

Problem set 3

Burkhardt Funk - Winter 2020/2021

due: December 11th 2020

Task 1

Given the feature transform $z = \Phi(x) = (1, x_1^2, x_2^2)$ and the hypothesis $\tilde{h} = sign(\widetilde{\mathbf{w}}^T \Phi(\mathbf{x}))$: By using R, visualize the boundary a hyperplane in Z creates in X for the following examples: $\widetilde{\mathbf{w}} = (1, -1, -1)$, $\widetilde{\mathbf{w}} = (-1, 1, 1)$, $\widetilde{\mathbf{w}} = (1, -1, -2)$, $\widetilde{\mathbf{w}} = (1, 1, -1)$.

Task 2

Design a Multilayer Perceptron that implements the Boolean functions

- a) $A \wedge \neg B$ and
- b) A X O R B

Task 3

Assume that N training examples are given and that the hypothesis set is $h(x) = \sum_{n=1}^{N} w_n \exp(-\gamma ||x - x_n||^2)$. The functions $\exp(-\gamma ||x - x_n||^2)$ are called radial basis functions. Let Φ denote the following matrix.

$$\begin{bmatrix} \exp(-\gamma \|x_1 - x_1\|^2) & \cdots & \exp(-\gamma \|x_1 - x_N\|^2) \\ \exp(-\gamma \|x_2 - x_1\|^2) & \dots & \exp(-\gamma \|x_2 - x_N\|^2) \\ \vdots & & \vdots \\ \exp(-\gamma \|x_N - x_1\|^2) & & \exp(-\gamma \|x_N - x_N\|^2) \end{bmatrix}$$

(i) Generate some training data $\{(x_i, y_i)\}$ (e.g. $y \sim x^2 + \epsilon$) and use $\mathbf{w} = \mathbf{\Phi}^{-1}\mathbf{y}$ to determine w. Understand the behavior when γ is changed. Argue about the expected generalization performance. (ii) Use $w_{ridge} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{y}$ instead, where I is the unit matrix of dimension N and λ is a constant.