Optymalizacja bez ograniczeń - Projekt nr 1, Zestaw nr 25

1 System "geograficzny"

Definicję spółrzędnych punktu w "geograficznym" systemie współrzędnych sferycznych można znaleźć pod adresem:

2 Dane

Proszę przyjąć, że poziom morza wynosi – 6378137m. Dane są informacje o położeniu 5 satelitów systemu pozycjonowania w określonym powyżej systemie współrzędnych i czasy nadejścia sygnału od nich:

Nr	System	szerokość	długość	wysokość n.p.m.
1	stopnie-min-sek	52°52'19.2"N	13°23'53.9"E	20000000m
	stopnie dziesiętne	52.885907	13.395837	
2	stopnie-min-sek	50°18'43.4"N	12°22'24.1"E	20000000m
	stopnie dziesiętne	50.312052	12.373351	
3	stopnie-min-sek	47°47'48.9"N	19°22'54.7"E	20000000m
	stopnie dziesiętne	47.796902	19.381854	
4	stopnie-min-sek	50°37'10.5"N	26°14'39.3"E	20000000m
	stopnie dziesiętne	50.619584	26.244260	
5	stopnie-min-sek	55°29'17.8"N	28°47'15.1"E	20000000m
	stopnie dziesiętne	55.488272	28.787526	

Czasy dotarcia sygnału od poszczególnych satelitów w sekundach wynoszą:

Nr satelity	Czas nadejścia sygnału
1	6.682429390839004e-02
2	6.685478411281451e-02
3	6.677408432931993e-02
4	6.675473676173512e-02
5	6.686718394900611e-02

3 Zadanie

Należy:

- 1. Sformułować układ równań określających nasze położenie w układzie współrzędnych kartezjańskich.
- $2. \ \ Sformułować zadanie optymalizacji bez ograniczeń stosując metodę najmniejszych kwadratów.$
- $3.\$ Wyznaczyć swoje położenie rozwiązując:
 - a) sformułowane powyżej zadanie optymalizacji za pomocą metody optymalizacji realizującej metodę Levenberga-Marquardta do rozwiązywania zadań regresji nieliniowej z: toolbox-u Optimization programu MATLAB (lsqnonlin) albo pakietu optim programu Octave (leasqr)
 - b) solvera MINOS we współpracy z AMPL.
- 4. Sprawdzić wpływ zmiany:
 - punktu startowego,
 - dokładności w teście STOP-u metody,
 - zaburzeń w danych

na uzyskiwane wyniki.

5. znaleźć w Google Maps wyznaczone położenie.