LC 2: Liaison métal-ligand

Niveau: L3

Biblio: - Cours Martin Verot

- Inorganic chemistry, Schriver & Atkins (chap 20)
- Tout-en-un Chimie PC-PC*, Ribeyre (chap 12)
- Inorganic chemistry, Huheey (chap 11)
- (Chimie³, Burrows)
- Wikipédia

Pré-requis: - Chimie orbitalaire (OA, OM, méthode des fragments) (L2)

- Théorie des groupes (L3)
- Spectro UV-Vis (L1)
- Notion de magnétisme (para/diamagnétique) (L2)
- Géométrie des complexes (L2)

Intro péda:

Choix péda : on ne va s'intéresser qu'à la géométrie Oh

Intro

Rappeler définition complexe = atome ou ion métallique central entouré d'un ensemble de ligands. Combinaison d'un acide de Lewis (l'atome métallique central) avec un certain nombre de bases de Lewis (ligand)

I) Théorie du champ cristallin

- → introduite dans les années 30 par Hans Bethe et J.H. Van Vleck
 - A) Fondement de la théorie
- → Hypothèses
- → Construction de la théorie pour les syst Oh
 - B) Champ cristallin et énergie d'appariement
- → Déf des 2 termes
- → Champ fort/champ faible
- → Facteurs qui influencent les 2 termes
 - C) Apports et limites de cette théorie
- → Explique les propriétés essentiellement dûes aux métaux (magnétisme, couleur des cplxes...)
- → N'explique pas série spectrochimique + couleur de certains complexes comme KMnO₄ (d⁵)
- → N'explique pas pourquoi les complexes se forment et sont stables

II) Théorie du champ de ligand

- → introduite à la fin des années 50 par Griffith et Orgel
 - A) Orbitales et symétrie
- → orbitales du métal et des ligands
- → étude de la symétrie des orbitales (theorie des groupes)
- → construction du diagramme d'OM
 - B) Influence des ligands sur le champ cristallin
- \rightarrow différents types de ligands (σ -donneur; π -donneur/accepteur) (Ribeyre p. 513-524)
- → influence sur le champ cristallin
- → explication série spectrochimique
 - C) Explication des propriétés des complexes (en fonction de l'élément imposé)
- → propriétés optiques (ex : KMnO4 : donation/rétrodonation)
- → propriétés catalytiques (modèle de Chatt-Dewar Duncanson) (Ribeyre p.525)

Autres plans:

L2: I) Théorie du cristallin

- A) Hypothèses
- B) Environnements Oh et Td
- C) Champ cristallin et énergie d'appariemment

II) Explication de quelques propriétés des complexes

- A) Magnétisme
- B) Couleur des complexes

III) Vers une prise en compte des ligands

- A) Mise en évidence de l'influence des ligands (série spectrochimique)
- B) Réactivité des complexes : échange de ligands (effet trans, labilité...)

L3: I) Théorie du champ de ligands

- A) Les orbitales de fragments (orbitales du métal et des ligands, th. des groupes)
- B) Construction du diagramme d'OM

II) Influence des ligands sur les propriétés des complexes

- A) Propriétés optiques (variation champ cristallin en fonction du type de ligand)
- B) Propriétés catalytique (modèle de Chatt-Dewar Duncanson)