

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	/	Batch No:	D2
Faculty Name:		Roll No:	1601012232 3
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No. 2

Title: Binary Adders and Subtractors
Aim and Objective of the Experiment:
To implement half and full adder–subtractor using gates and IC 7483
COs to be achieved: CO2: Use different minimization technique and solve combinational circuits.
<u> </u>
Tools used: Trainer kits

Theory:

Adder: The addition of two binary digits is the most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is a combinational logic circuit with two inputs and two outputs. It is the basic building block for the addition of two single-bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi-bit addition is performed. for this purpose, a third input terminal is added and this circuit is to add A, B, and C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder. **Subtractor:** Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractors:

Semester: III

Half subtractor

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Full subtractor

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multi-bit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1's complement of that no.

e.g. 2's complement of $+(10)_{10} = 1010$ is

1C of 1010 0101
$$+$$
 1 -(10)10 0110

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

Semester: III

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Semester: III

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Truth Table for Half Adder

Inputs		Outputs		
A	В	A	В	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

From the truth table (with steps):

0+0=0 no carry

0+1=1 no carry

1+0=1 no carry

1+1=2=1 0=1 carry,sum=0

Sum=A xor B

Carry=A and B

Full Adder Block Diagram

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Full Adder Circuit

Truth Table for Full Adder

	Inputs		Out	tputs
A	В	C-IN	Sum	C-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Semester: III

Academic Year: 2023-24 Roll No:____

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

From the truth table (with steps):

0+0+0=0

0+0+1=1

0+1+1=2 1 carry+0 sum

0+1+0=1

1+1+0=2 1 carry+0 sum

1+1+1=3 1 carry+1 sum

1+0+0=1

1+0+1=2 1 carry+0 sum

Sum=A'B'C-IN+ A'B C-IN + AB'C-IN' + AB C-IN C-out=A'B C-IN+ AB'C-IN +AB C-IN'+ AB C-IN

Half Subtractor Block Diagram

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Semester: III

Half Subtractor Circuit

Truth Table for Half Subtractor

A	В	DIFFERENCE(D)	BORROW(Bo)
1	0	1	0
1	1	0	0
0	0	0	0
0	1	0	1

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

From the truth table (with steps):

1-0=1

1-1=0

0-0=0

0-1 not possible so borrow=1 and difference=1

Diff=A'B+AB'

Borrow=A'B

Digital Design Laboratory

Full Subtractor Block Diagram

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Full Subtractor Circuit

Truth Table for Full subtractor

A	В	BIN	D	BOROUT
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

From the truth table (with steps):

Bout=A'Bin + A'B +B Bin

Diff=Bin(A'B'+AB) + Bin'(AB'+A'B)

Digital Design Laboratory

Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Example:

1)
$$710-210 = 510$$

$$7 0111$$

$$2 0010$$

$$1'C of 2$$

$$1101$$

$$+ 1$$

$$2'C of 2$$

$$1110$$

$$0111 + 1110 1$$

$$0101$$

Pin Diagram IC7483

Adder

Subtractor

Digital Design Laboratory

Semester: III Academic Year: 2023-24

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Implementation Details

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- 2) Connect 1st input no. to A4-A1 input slot and 2nd (negative) no. to B4-B1 through 4-not gates (1C of 2nd no.)
- 3) Connect high input to Co so that it will get added with 1C of 2nd no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Semester: III

Post Lab Subjective/Objective type Questions:

1. Design a full adder using two half adders.

Academic Year: 2023-24

Roll No:_

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

2. Perform the following Binary subtraction with the help of appropriate ICs:

a. 6-4

b. 5-8

	c. 7-9
C - N	
(02)	
	(a) 6-4
	(i) 6= 0110 4= 0100
	(ii) Performing bringry sultraction
	(ii) Performing binary sultraction (iii) Ans: 0010
	(b) 5-8
	(i) 5:0101
	8=1000
	(i) Performing binary subtraction
	0101 (2)
	1000 (8)
	1101 (-3)
	1101 (9)
	(c) 7-9
	(c) 7-9 Step 1-
	(i) 7=0111 9= 1001
	(i) Performing brings solutraction
TO SERVICE	0111 (3)
	1110 (-2)
	1110 (3
	-

Semester: III

Digital Design Laboratory

Academic Year: 2023-24
Roll No:

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Conclusion:		

Thus we have made use of half adder, full adder ,half subtractor and full subtractor and understood the implementation and working.

Signature of faculty in-charge with Date:

Digital Design Laboratory Semester: III Academic Year: 2023-24