- 1、地址 x.x.x.0/24, 子网掩码 255.255.224.0, 2^8 个区间(不难但是会被阴)
- 2、解释电路交换与分组交换、无连接和有连接、可靠字节流和可靠信息流的区别。

电路交换 (circuit switching) ₽

直接利用可切换的物理通信线路,连接通信双方。↩

特点:在发送数据前,必须建立起点到点的物理通路;建立物理通路时间较长,数据传送延 迟较短;↩

分为: 空分电路交换, 时分电路交换→

报文交换(message switching)↓

信息以报文(逻辑上完整的信息段)为单位进行存储转发。↩

特点: 1 线路利用率高; 2 要求中间结点(网络通信设备)缓冲大; 3 延迟时间长。↩

分组交换(packet switching)↓

信息以分组为单位进行存储转发。源结点把报文分为分组,在中间结点存储转发,目的结点 30/030.com/ 肥分组合成报文。↩

分组:比报文还小的信息段,可定长,也可变长。↩

特点: 1 线路利用率高; 2 结点存储器利用率高; 3 延迟短; 4 额外信息增加。↩

分为:数据报(datagram)和虚电路(virtual circuit)₽

数据报:每个分组均带有全称网络地址(源、目的),可走不同的路径。↩

虚电路:分三个阶段₽

- 建立:发带有全称网络地址的呼叫分组,建立虚电路;↓

- 传输:沿建立好的虚电路传输数据;↓

- 拆除:拆除虚电路。₽

结论: ↵

- 电路交换适用于实时信息和模拟信号传送,在线路带宽比较低的情况下使用比较经济,↩
- 一 报文交换适用于线路带宽比较高的情况,可靠灵活,仅延迟大;↓↓
- 分组交换缩短了延迟,也能满足一般的实时信息付注。吉高带宽的通信中更为经济、合
- 理、可靠。是目前公认较(最)好的一种交换技术、4
- 3、回退 N 帧协议,序号 0~7, 参照往年题
- 4、网络 A -3—C, AB 间的数据包大小 P1, 链路 N1 个, 每个延迟 D1, 数据传输速率 B1。BC 间的数据包大小 P2 (P1>P2 且为 P2 的倍数),链路 N2 个,每个延迟 D2,数据传输 速率 B2。假设数据包需要重组,没有网络重构,处理时间不计。从 A 发送 L 大小的数据到 C (L>P1 且为 P1 的倍数), 分组交换。

问: B1>=B2 和 B1<B2 时,发送完毕所需的时间。

5、设以太网中的 A、B 主机通过 10Mbit/s 的链路连接到交换机,每条链路的传播延迟均为 20us, 交换机接受完一个分组为 35us 后转发该分组, 计算 A 向 B 发送一个长度为 10000bit 的分组时,从A开始发送至B接收到该分组所需的总时间。

解:

发送时延: 10000bit÷10000000bit/s=0.001s=1000µ s

传播时延: 20µ s

交换机接收分组时间: 35µ s

交换机发送时延: 1000µ s

传播时延是 20µ s

总时间=总时延

6、拥塞控制算法,初始阈值 4KB, MSS=1KB。第 8 章传输层

	拥塞窗口	阈值	发送序号
收到 3K 的 ack 后	4 KB	4KB	4、5、6、7
全部收到	5KB	4KB	8、9、10、11、12
全部收到	6KB	4KB	13、14、15、16、17、18
第一个数据包超时	1KB	ЗКВ	13

拥塞控制算法, 初始阈值 32KB, MSS=1KB。第8章传输层

	拥塞窗口	阈值
收到 10K 的 ack 后	11 KB	32KB
收到 32K 的 ack 后	32 KB	32 KB
第一个数据包超时前(已知)	40 KB	32 KB
第一个数据包超时后	1 KB	20 KB

TCP 使用慢启动算法, 初始阀值 3KB, MSS=1KB。假设发送方不断发送数据包, 从 n 开始编号。

	/		3/30/03/04/04/04/04/04/04/04/04/04/04/04/04/04/
事件	拥塞窗口大小	阀值	此时发送内(1)
收到编号为 2 的数据包的确认	ЗКВ	ЗКВ	(1)3 1 5
收到(1)中所有包的确认	4KB	3КГ	(<u>'</u> ')6、7、8
收到(2)中所有包的确认	5KB	3 (B	(3)9、10、11
(3)中的第一个包超时	1KB	2.5KB	9
c://shop52	96,		

ン、给了一个路由器的表项,画出拓扑结构,要求标明路由器的端口和 ip 地址、IP 端(含子 网掩码)。跟往年题差不多。

- 8、给一个 URL: http://info.tsinghua.edu.cn:80/index.jsp
- 1、说出这个 URL 各个组成部分
- 2、一般来说,在浏览器里输入 http://info.tsinghua.edu.cn:80/index.jsp 跟输入 http://166.111.4.98:80/index.jsp 看到的是一样的。
- (1) 如果输前者能打开,后者打不开,这可能是什么原因?
- (2) 如果输前者打不开,后者能打开,这可能是什么原因?
- 1、协议://主机名(服务器): 端口/路径?查询(询问)
- 2、(1)域名打的开说明域名没问题,域名对应地址打不开说明域名对应的主机空间有问题。
- (2)通过域名网址打不开某网页,而用 IP 地址可以,域名解析服务器有问题,需重新设置。

9、IPv6 地址如 8888:0000:0000:0000:0000:1111:0000。

略写后是8888::1111:0。(只能使用一次双冒号)

10、一个1300字节的IP包,包头长度为20字节,进入一个MTU为500的网络中。

1,分成三段,偏移量为0,460,920;

2,分成三段,偏移量为0,480,960;

3,分成三段,偏移量为0,500,1000;

4,都不对

是 1, 因为 20TCP header, 20IP header。。。

11、已知一个 B 类 IP 地址为 170.13.10.25, 子网掩码为 255.255.248.7 问该网络的可用 ip 有哪些,子网掩码有多少位。

ip 地址转换成二进制为 10101010.00001101.00001010.00111/01

与运算结果为 10101010.00001101.00001000.00(0200)

转换成十进制就是 170.13.8.0

所以该网络的可用 ip 地址范围为 1 7.13.8.1---170.13.15.254, 子网掩码有 21 位!

12、子网掩码 255 25 26 8.ú, 可用最大 IP 数是多少? 一共 11 位, 有 26 48 个地址, 要不要减去全 0 和全 1 呢?

第 5 章 的 28 题: 子网掩码 255.255.240.0, 问最多能容纳多少主机?

答案是: The mask is 20 bits long, so the network part is 20 bits. The remaining 12bits are for the host, so 4096 host addresses exist.

13、(1)以太网和无线局域网各提供什么服务(无确认的无连接,有确认的无连接,有确认的有连接)

都是无连接的,无线局域网 MACA 无确认, MACAW 有确认;以太网无确认。

面向连接服务的可以是电路交换,也可以是分组交换。

在数据链路层,HDLC 和 PPP 协议是面向连接的,而以太网使用的 CSMA/CD 则是无连接的。在网络层,X.25 协议是面向连接的,而 IP 协议则是无连接的。

在运输层,TCP 是面向连接的,而 UDP 则是无连接的。

(2)一个分组分成 10 帧发,每帧正确传输概率 p=80%,若不对帧进行确认,平均要发送几次报文,几次帧;若对每帧进行确认平均发几次帧。 答:

不对帧确认时,分组 1 次发送正确的概率为 p^{10} ,第 k 次才发送正确的概率为 $(1-p^{10})^{k-1}p^{10}$ 。 平均发送报文次数= $(1*(1-p^{10})^0+2*(1-p^{10})^1+3*(1-p^{10})^2+.....)p^{10}=(1/(p^{10})^2)*p^{10}=p^{-10}=9.3$ 。 平均发送帧次数=10* p⁻¹⁰ = 93 次。

对帧确认时, 每帧发送第 k 次才正确的概率为 $(1-p)^{k-1}p$,

每帧平均发送次数= $(1*(1-p)^0+2*(1-p)^1+3*(1-p)^2+.....)$ p = 1/p = 1.25

平均发送帧次数 = 10*1.25 = 12.5

发送报文次数1次。

(3) 若 p=99%,再计算(2),结合 end-to-end argument,讨论为什么以太网和无线局域网 提供不同的服务。平均发送报文次数 = p^{-10} = 1.1。平均发送帧次数= $10*p^{-10}$ = 11 次。 对帧确认时,平均发送帧次数 = 10* 1/p = 10.1。发送报文次数 1 次。

14、一个报文为: header a b c d e f g h i j k 第7章 分片

其中 header 为(23,0,1),23 为序号,0 为段偏移,1 为截止标记。该报文进入另一个网 taobao 络被分成三个报文发送, 分别为

header1 a b c d

header2 i j k

header3 e f g h

这三个报文按上述顺序到达,请写出三个 header 各是代公

(23, 0, 0) (23, 4, 0) (23, 7, 1)

15、路由器为:

166.111.68.0	255.255.257.u	Α
166.111.68.0	255.255 255.0	В
59.66.130.0	255155 255.252	С
59.66.131.0	255.255.255.128	D
0.0.0.0	0.0.0.0	Ε

求 166.111.68.X,166.111.69.y,59.66.130.192,59.66.131.78的出口

一 判断和选择

1 判断

- 1 面向连接服务可以保证 PDU 顺序到达目的地。T
- 2 OSI 下, PDU 由 ICI 和 SDU 组成。F
- 3 面向连接服务是可靠服务。F
- 4 IEEE802.3 是面向连接的协议。
- 5 Nyguist 定律只适用于铜导线。F
- 6 虚电路分组交换网中,交换机要维护经过它的所有连接状态信息。T
- 7 同轴电缆和双绞线都支持全双工。T
- 8 PPP 协议提供端到端的服务。F
- 9 p 坚持 CSMA 是,有数据要发送且信道空闲,则 p 概率发送, 1-p 概率等待,然后重复 该过程。T
- 10 距离向量法,路由器可以知道整个网络的拓扑,并计算自己到其他节点的最短距离 T
- 2 哪些事件发生在 20 世纪八十年代
- カロロ地 b OSI 成为主流 c Internet 高速发展 d SNA,DNA 等专用网的出现 e WEB 技术的出现 f ARPANET 的建式 哪个对 a TCP 面向连接,所以流中的呼声 ハケー
- 3 哪个对

 - b 电话网和互联网的骨干网都主要用路由器转发炎据
 - c 电话网面向连接, 所有的数据路径相同
 - d IP 电话所有的数据路径相同
- 4 OSI 七层的名字

物理层(The Physical Layer): 在均均设路上传输原始的二进制数据位(基本网络硬件)。

数据链路层(The Data Lirk Layer): 在有差错的物理线路上提供无差错的数据传输(Frame)。

网络层(The Network Laver): 控制通信子网提供源点到目的点的数据传送(Packet)。

传输层(The Transnort Layer): 为用户提供端到端的数据传输服务。

会话层(11.c Session Layer): 为用户提供会话控制服务(安全认证)。

表示层(The Presentation Layer): 为用户提供数据转换和表示服务。

应馬层 (The Application Layer)

- 5 UDP 是 协议
 - a 面向连接 b 无连接 c 虚电路 d 可靠传输
- 6 OSI 中各层的信息交换遵守的规则为
 - a 接口 b 协议 c 服务 d 关系 e 连接 f PAD
- 7 哪个不对
 - a 互联网传输层协议包括 TCP 和 UDP
 - b IP 是网络层协议
 - c UDP 是不可靠传输服务
 - d IP 是可靠传输服务
- 8 信道最大速率是 S/N 的函数,这是
 - a Shannon 定理 b 带宽 c Nyquist 定理 d 傅立叶函数
- 9 物理层的四个重要特性, 电气特性等
- 机械特性 (mechanical characteristics) 主要定义物理连接的边界点,即接插装置。规定物 理连接时所采用的规格、引脚的数量和排列情况。

- 电气特性 (electrical characteristics) 规定传输二进制位时,线路上信号的电压高低、阻抗匹配、传输速率和距离限制。
- 功能特性 (functional characteristics) 定义各条物理线路的功能 (数据、控制、定时、地)。
- 规程特性 (procedural characteristics) 定义各条物理线路的工作规程和时序关系。
- 10 1bit 纠错的 hamming 编码,要编码 32bits 数据,需要多少校验位 6
- 11 源与目的的距离越远,传输速率越大,发送的数据位数越少,停等协议效率越低。
- 12 在 NRZ 编码下,四种成帧方法中哪个不可取
- 13 IEEE802.3 采用 b 技术,检测冲突需要 b 倍电缆长度的传输时间。
 - a 非坚持 CSMACD b1 坚持 c ETHERNET d 分槽 ALOHA
 - a1 b2 c3 d1.5
- 14 选择性重传协议,序号取 0to7,确认的序号为希望的下一帧的序号。以下各小题相互独立。
- a 发送方为[1234], 收到一个 NAK, 则可能的重传是 1234
- b 接收方为[4567],收到包5,则下界变为多少4,返回捎带时,捎带的是多少4
- c 接收方为[4567], 收到4, 下界变为5——0
- d 发送方[4567], 收到 ACK6, 则窗口变为【7】
- e 发送方窗口大小为 2,接收方窗口当前状态为[4 5 6 7],则发送方窗口此时的下界可以是 2,3,4 (填所有可能的集合)
- - a 传输率不变,冲突域最大距离下降
 - b 冲突域不变, 传输速率上升
 - c 上层协议使用 TCP 的概率上升
 - d 冲突域不变,减少中继器的次量
- 16 非坚持和1坚持比,区负载于延迟_大_,重负载下信道利用率_高_。(大小高低)
- 17 无线网下,不对印说公
 - a 有隐藏站点问题 b 有暴露站点问题 c 冲突被发送站点发现
- 18 有关风慧不对的
- 。 在数据链路层工作 b 可以实现局域网和广域网的互联
- 。负责处理帧 d 用存储转发的形式
- 19 255.255.240.0 网段有多少可用 IP
- 20 一个 IP 分组使用严格源路由选项,现在被分成了 3 段,则这个选项将
 - a 被复制到所有分段 b 保留在第一个分段
 - c 不复制在分段中 d 保留在第一个和最后一个分段
- 21 IPv4 下回路地址的形式可以是
 - a 127.8.8.8 b 128.0.0.0 c 59.66.x.x d x.x.x.x
- (x 是忘了的, a 里面的 8 可能是别的)
- 22 给四个子网掩码,哪个是合法的。(就是注意掩码是 1+0+的形式)
- 23 用于自治系统的路由协议是
 - a OSPF b RIP c IS-IS d BGP
- 24 路由器、网桥、集线器、中继器这些设备中:
- 路由器 有路由选择功能,不同的 LAN 在数据链路层互联使用 网桥
- 25 给 4 个 IPv6 地址的形式,哪个是非法的写法。(就是注意只能出现一对双冒号)
- 26 距离向量算法由于存在无穷计算问题,会使得在有新的路由器加入时网络反应

- 。Datagram Socket d RPC
 (IP 端口组合)

 ,成法,对的

 ,成法,对的

 ,传输能力不足时使用

 。解决按股端本文处理新定地到达的分组的问题

 。悉控制提高整个网络的传输能力

 d 滑动窗口协议中,退后 n 帧的协议,是一种拥塞控制机制。
 31 POP3 用于___用途。(用于从服务器收信)

 32 网络管理的五个基本管理功能,安全管理、记账管理、配置管理、性能管理、故障管理。
 33 FTP 会话全过程,会建立 3 次控制连接,几次数据连接。(1 次/看需要而不确定)