ECOLES PRIVEES ELMAARIF- ERRAJA

مدارس الرجاء والمعارف الحرة

BAC BLANC
Classes :7D

EPREUVE DE MATHS
Durée : 4H

29/12/2017

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part/importante dans l'appréciation de la copie.

Exercice 1 (3 points)

Parmi les réponses proposées pour chaque question ci –après une seule réponse est exacte

NO	Questions	Réponse A	Réponse B	Réponse C
1	La suite de terme général	Décroissante	Croissante	Convergente
	$U_n = (\frac{5}{2})^n \text{ est}:$			
2	$Z = \sqrt{3} + i$ alors arg $(i\bar{Z}^3)$ est:	0	$\frac{\pi}{2}$	$\frac{5\pi}{6}$
3	$Z = \frac{6-4i}{5+i} \text{ alors } Z ^3 \text{ est :}$	4	$\sqrt{8}$	$4\sqrt{2}$
$ \begin{cases} U_0 = 2 \\ U_{n+1} = 3U_n - 2 \end{cases} $ et $ V_n = U_n - 1 $				
4	La suite (V _n) est une suite :	Arithmétique	Géométrique	Ni géométrique ni arithmétique
5	Le terme général de (Un) est :	$U_n = 1 + 3^n$	$U_n = 2X3^n$	$U_n = 2n + 1$
6	La suite (Wn) définie par	Croissante	Décroissante	Non monotone
	$W_n = U_{n+1} - U_n$ est une suite			

Exercice 2 (5 points)

Soit la suite (U_n) définie par : U₀ = 1 et \forall n ∈ N U_{n+1} = $\frac{U_n}{2+U_n}$

1)a) Calculer U₁, U₂ et U₃

b) Montrer que la suite (Un) n'est ni arithmétique ni géométrique

c) Montrer que : $\forall n \ge 0$ $U_n > 0$

d) Montrer que (Un) est décroissante

e) En déduire que (Un) est convergente

2) Soit la suite (V_n) définie par : $\forall n \in \mathbb{N}$ $V_n = \frac{U_n}{1 + U_n}$

a) Calculer Vo et montrer que (Vn) est une suite géométrique préciser sa raison q

b) Calculer Vn en fonction de n

c) Montrer que : $\forall n \in \mathbb{N}$ $U_n = \frac{1}{2^{n+1}-1}$

3) Soit la suite (W_n) définie par : $W_0 = 0$ et $W_{n+1} = W_n + V_n$

a) Montrer que $W_n = \sum_{k=0}^{k=n-1} V_k$

b) En déduire que : $W_n = \frac{1}{2^n} - 1$

Exercice 3 (8 points)

Le plan complexe est muni d'un repère orthonormé (O, \vec{u}, \vec{v})

- 1) Pour tout nombre complexe z on pose : $P(z) = z^3 (4-2i)z^2 + (4-6i)z 4 + 8i$
- a)calculer les racines carrées de : 8i
- b) Montrer que l'équation P(z) = O admet une solution imaginaire notée zo à déterminer
- c) Déterminer les nombres a et b tels que $P(z) = (z + 2i)(z^2 + az + b)$
- d) Résoudre : P(z) = 0
- 2) Soient les points A,B et C d'affixes respectives : $Z_A = 1 + i$, $Z_B = -2i$, $Z_C = 3 i$ et soit l'application : $f(z) = \frac{z-1-i}{z+2i}$
- a) Placer les points A,B et C
- b) Déterminer l'affixe du point D pour que ABCD soit un parallélogramme
- c) Calculer $Z_E = f(2-i)$ quelle est la nature du triangle ABE?
- 3) Déterminer et représenter les ensembles suivants :
- a) Ensemble Γ_1 des points M d'affixe z tel que : f(z) réel
- b) I'ensemble Γ_2 des points M tels que : $|f(z)-1| = \sqrt{10}$
- 4) Pour tout entier naturel n on appelle M_n le point d'affixe $(Z_A)^n$
- a) Déterminer n pour que $M_n \in (oy)$
- b) Vérifier que $M_{2018} \in (0y)$

Exercice 4 (4 points)

On définie dans C la suite (Z_n) par : $Z_0=8$ et \forall $n\in\mathbb{N}$ $Z_{n+1}=\frac{1}{4}(1+\sqrt{3})Z_n$, M_n désigne le point d'affixe Z_n dans un repère orthonormé (o, \vec{u} , \vec{v})

- 1) a) Calculer Z_1 , Z_2 et Z_3 puis placer les points M_1 , M_2 et M_3
- b) Donner la forme exponentielle de : $\alpha = \frac{1}{4}(1 + i\sqrt{3})$
- c) Montrer que $Z_n = \frac{1}{2^{n-3}} e^{\frac{in}{3}}$
- 2) Calculer $\frac{Z_{n+1}-Z_n}{Z_{n+1}}$ puis en en déduire que le triangle O $M_n M_{n+1}$ est un triangle rectangle
- 3) On pose $V_n = |Z_{n+1} Z_n|$
- a)donner une interprétation géométrique de V_n
- b) Montrer que (V_n) est une suite géométrique de raison $\frac{1}{2}$
- c) on pose :Sn = $M_0M_1 + M_1M_2 + + M_n M_{n+1}$ calculer S_n en fonction de n

Fin.