#### **DSAI Hw4**

F74036409 林京樺

### **Questions:**

# 1. What kind of RL algorithms did you use? value-based, policy-based, model-based? Why?

Mountain-car is a problem that needs to reference experience. To catch the flag, mountain-car needs to decide which action should take (to left, right, stay), and it depends on the previous observations(position and state) also the experiences of wallking. Thus I choose **Deep Q Learning** which is a **value-based** algorithm.

I've tried Q Learning at first, but there's too much possibilities in Mountain-car problem. This will make Q table become really large that will bring a massive overhead to memory. So, DQN is a solution to deal with big table size of Q learning, and the key point is to use Neural Network.

### 2. This algorithms is off-policy or on-policy? Why?

Deep Q Learning is an **off-policy** algorithms since it learn from previous experiences and keep update the decision with reward to meet the best solution.

#### 3. How does your algorithm solve the correlation problem in the same MDP?

The design of two neural network in DQN could lower down the correlation problem.

## **Deep Q Learning:**

Deep Q Learning is a great solution to Q learning. Q learning is an off-policy algorithm which depends on a Q table to record all history states. One of the most significant disadvantage is what if we got millions of states in the be-solved problem. Due to the limitation of hardware, we couldn't store such large table in any situation.

Deep Q Learning then solve this disadvantage with neural network.

#### **Main component:**

- memory: for training NN
- NN-predict: to learn and get next action
- NN-target: to learn and get more precise action

#### **Define reward:**

In reinforcement learning, reward is a key element to lead NN toward a better choice in situations. Thus, I spent a lot of time to figure out how to define a better reward that could encourage NN make a good decision in mountain-car problem.

# update reward

# if move forward and the velocity is the same direction will get higher reward reward = (observation\_[0]-observation[0]) \* observation\_[1]

```
# higher reward if the car is on the right of the hill => closer to the flag
if observation_[0] > -0.5:
    reward += 3 * abs(observation_[0] - (-0.5))
# higher reward if the car is on the left of the hill => got more energy
else:
    reward += abs(observation_[0] - (-0.5))
```

## **Experiment Result:**

### First try:

5000 episodes, the steps decreases in the iteration. After 2000 episodes rounds, the results is about to convergence:

#### parameters:

learning\_rate: 0.1epsilon=0.9batch size: 128



**Batch size analysis**Below is a graph showing batch size=8, 16, 32, 64 for each batch size, retrain model for 500 times.

The result shows that batch size = 16 got the best performance



| Batch size | Mean  | Min steps |
|------------|-------|-----------|
| 8          | 887.6 | 173       |
| 16         | 320.4 | 84        |
| 32         | 351.8 | 87        |
| 64         | 588.1 | 86        |

**Learning rate analysis** for batch size = 16, I've tried different learning rate. We can see when learning rate is 0.001, we got the best performance.

