Lecture 17 – Sequential circuits 2

Chapter 5

SR Latch

• The (Set – Reset) *SR* latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, and two inputs labeled *S* and *R*

SR NOR Latch

SR NAND Latch (S'R' latch)

S	R	Q	Q'	_
1 1 0 1	0 1 1 1 0	0 0 1 1 1	1 1 0 0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
				S R Q Q' 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1

- The operation of the basic *SR* latch can be modified by providing an additional input signal that determines (controls) when the state of the latch can be changed by *S* and *R* (*S*' and *R*')
- It consists of the basic SR latch and two additional NAND gates
- The control input En acts as an enable signal for the other two inputs
- The outputs of the NAND gates stay at the logic-1 level as long as the enable signal remains at 0
- This is the quiescent condition for the *SR* latch

En	S	R	Next state of Q
0 1 1 1	X 0 0 1	X 0 1 0	No change No change Q = 0; reset state Q = 1; set state
1	1	1	Indeterminate

- When the enable input goes to 1, information from the S or R input is allowed to affect the latch
 - The set state is reached with S = 1, R = 0, and En = 1 (active-high enabled) and reset is reached with S = 0, R = 1, and En = 1
 - In either case, when En returns to 0, the circuit remains in its previous stable state
 - Further, when En = 1 and both the S and R inputs are equal to 0, the state of the circuit does not change

En S R	Next state of Q
0 X X	No change
1 0 0	No change
1 0 1	Q = 0; reset state
1 1 0	Q = 1; set state
1 1 1	Indeterminate

- An indeterminate condition occurs when all three inputs are equal to 1
 - This condition places 0's on both inputs of the basic SR latch, which puts it in the undefined state
 - When the enable input goes back to 0, one cannot conclusively determine the next state, because it depends on whether the S or R input goes to 0 first
 - This indeterminate condition makes this circuit difficult to manage, and it is seldom used in practice
- Nevertheless, the SR latch is an important circuit because flip-flops are constructed from it

En	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

Eg: Determine the Q output waveform if the inputs shown are applied to a gated S-R latch with enable. Assume the latch is initially RESET.

En	S	R	Next state of Q
0	X	X	No change
1	0	0	No change
1	0	1	Q = 0; reset state
1	1	0	Q = 1; set state
1	1	1	Indeterminate

- One way to eliminate the undesirable condition of the indeterminate state in the SR latch is to ensure that inputs S and R are never equal to 1 at the same time
- This is done in the D latch
 - The D input goes directly to the S input, and its complement is applied to the R input
 - As long as the enable input is at 0, the cross-coupled SR latch has both inputs at the 1 level and the circuit cannot change state regardless of the value of D
 - The *D* input is sampled when *En* = 1. If *D* = 1, the *Q* output goes to 1, placing the circuit in the set state
 - If D = 0, output Q goes to 0, placing the circuit in the reset state

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

- The D latch receives that designation from its ability to hold data in its internal storage
- It is suited for use as a temporary storage for binary information between a unit and its environment
- The binary information present at the data input of the D latch is transferred to the Q output when the enable input is asserted
- The output follows changes in the data input as long as the enable input is asserted
- This situation provides a path from input D
 to the output, and for this reason, the
 circuit is often called a transparent latch

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

- When the enable input signal is deasserted, the binary information that was present at the data input at the time the transition occurred is retained (i.e., stored) at the Q output until the enable input is asserted again
- Note that an inverter could be placed at the enable input
- Then, depending on the physical circuit, the external enabling signal will be a value of 0 (active low) or 1 (active high)

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

Eg: Determine the Q output waveform if the inputs shown in below are applied to a D latch, which is initially RESET.

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

Latches

Graphic symbols for latches

Problem with latches

- A sequential circuit has a feedback path from the outputs of the flip-flops to the input of the combinational circuit
- Consequently, the inputs of the latches are derived in part from the outputs of the same and other latches
- The state transitions of the latches start as soon as the enable/data pulse changes to the logic-1 level
- The new state of a latch appears at the output while the pulse is still active
- This output is connected to the inputs of the latches through the combinational circuit
- If the inputs applied to the latches change again while the enable pulse is still at the logic-1 level, the latches will respond to new values and a new output state may occur

Problem with latches

- If the inputs applied to the latches change again while the enable pulse is still at the logic-1 level, the latches will respond to new values and a new output state may occur
- The result is an unpredictable situation, since the state of the latches may keep changing for as long as the enable pulse stays at the active level
- Because of this unreliable operation, the output of a latch cannot be applied directly or through combinational logic to the input of the same or another latch when all the latches are triggered by a enable signal

- Flip-flops are constructed in such a way as to make them operate properly when they are part of a sequential circuit that employs a common clock
- The problem with the latch is that it responds to a change in the *level* of a clock pulse
- A positive level response in the enable input allows changes in the output when the D input changes while the clock pulse stays at logic 1
- The key to the proper operation of a flip-flop is to trigger it only during a signal transition
- A clock pulse goes through two transitions: positive transition (0 -> 1) and negative transition (1 -> 0)

- We can implement flip flops using two latches
- The first latch is called the master and the second the slave
- The circuit samples the D input and changes its output Q only at the negative edge of the synchronizing or controlling clock (designated as Clk)
 - When the Clk = 0, the slave latch is enabled, and its output Q is equal to the master output Y
 - When the input pulse changes to 1, the data from the external D input are transferred to the master

- The slave, however, is disabled as long as the clock remains at 1, because its enable input is equal to 0
- Any change in the input changes the master output at Y, but cannot affect the slave output
- When the clock pulse returns to 0, the master is disabled and is isolated from the D input
- At the same time, the slave is enabled and the value of Y is transferred to the output of the flip-flop at Q
- Thus, a change in the output of the flip-flop can be triggered only by and during the transition of the clock from 1 to 0 (-ve edge)

positive edge-triggered flip-flop

D = 1: flip-flop SETS on positive clock edge. (If already SET, it remains SET.)

D = 0: flip-flop RESETS on positive clock edge. (If already RESET, it remains RESET.)

negative edge-triggered flip-flop

The dynamic input indicator means the flip-flop changes state only on the edge of a clock pulse.

Determine the Q and Q output waveforms of the positive edge-triggered D flip-flop. Assume the flip-flop is initially RESET.

