6. Ruang Hasil Kali Dalam (Bagian 2)

FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Kasiyah Junus

Cakupan

Bagian 1:

Review

6.1. Fungsi hasil kali dalam

- Bagian 2:
 - 6.2. Panjang dan jarak dua vektor
 - 6.3. Sudut antara dua vektor dan ortogonalitas
- Bagian 3:
 - 6.4. Proses Gram-Schmidt (opsional)
 - 6.5. Dekomposisi QR (opsional)
 - 6.6. Matriks ortogonal
- Bagian 4
 - 6.7. Penyelesaian kuadrat terkecil

6.2 Panjang vektor dan jarak dua vektor

MODUL E-LEARNING ALJABAR LINIER FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

Norm (panjang) dan jarak di ruang Eucli

 ${ ilde{\mathcal D}}$ efinisi 6.3: Panjang dan jarak pada ruang Euclid

Diberikan ruang hasil kali dalam V, norm (panjang) dari vektor \mathbf{v} , didefinisikan sebagai $\|\mathbf{v}\| = \sqrt{\mathbf{v}.\mathbf{v}}$

Jarak antara dua vektor u dan v adalah $\frac{d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$

Contoh 1:

(a) $\mathbf{u} = (2, 3, 1)$ di ruang Euclid R^3 $\|\mathbf{u}\| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}$

(b) $\mathbf{u} = (2, 3, 1)$ di \mathbb{R}^3 dengan hasil kali dalam berbobot, bobot 2, 1, 1 berturut-turut.

$$\|\mathbf{u}\| = \sqrt{2.2^2 + 1.3^2 + 1.1^2} = \sqrt{18}$$

Jarak antara dua vektor di Ruang Euclid

Jarak antara dua vektor adalah panjang dari vektor selisih

Jarak a ke b adalah

$$\|\mathbf{a} - \mathbf{b}\| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$

Panjang dan jarak di ruang vektor umum

 \mathcal{D} efinisi 6.3: Panjang dan jarak pada ruang vektor umum V Diberikan ruang hasil kali dalam V, didefinisikan

- norm (panjang) vektor \mathbf{v} : $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$
- jarak antara dua vektor **u** dan **v** adalah $d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$

Catatan:

Sebelum menghitung panjang dan jarak, perlu mengetahui rumus hasil kali dalam

Contoh 2.1: panjang matriks

 $M^{n\times n}$ ruang vektor terdiri atas matris $n\times n$. Jika $\mathbf{u}=A$, $\mathbf{v}=B$ matriks-matriks di $M^{n\times n}$, didefinisikan $\langle \mathbf{u}, \mathbf{v} \rangle = \operatorname{trace}(A^TB)$

Diberikan matriks:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

Panjang matriks A diperoleh sebagai berikut.

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} = \mathbf{u}$$

$$\langle \mathbf{u}, \mathbf{u} \rangle = a_{11}a_{11} + a_{12}a_{12} + a_{21}a_{21} + a_{22}a_{22}$$

 $\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{\frac{1}{2}} = \sqrt{a_{11}^2 + a_{12}^2 + a_{21}^2 + a_{22}^2}$
 $= \sqrt{1^2 + 2^2 + 2^2 + 0^2} = \mathbf{3}$

Panjang matriks A adalah 3.

Contoh 2.2: panjang suku banyak

$$\mathbf{a} = p(x) = x^2 + 1$$
 di ruang hasil kali dalam P^3

dengan hasil kali dalam:
$$\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + 2a_1 b_1 + 7a_2 b_2 + 3a_3 b_3$$

Panjang **p** adalah
$$\|\vec{a}\| = \sqrt{1.1.1 + 2.0.0 + 7.1.1 + 3.0.0} = \sqrt{8} = 2\sqrt{2}$$

Catatan:

Panjang $\mathbf{a} = p(x) = x^2 + 1$ adalah $2\sqrt{2}$. Panjang polonomial sebagai vektor berbeda dengan panjang kurva y = p(x) pada suatu interval (yang dipelajari di Kalkulus).

Contoh 2.3: panjang suku banyak

$$\mathbf{a} = p(x) = x^2 + 1$$
 di P^3 dengan hasil kali dalam:

$$\langle \mathbf{p}, \mathbf{q} \rangle = 2a_0b_0 + 2a_1b_1 + a_2b_2 + a_3b_3$$
 untuk setiap **p**, **q** vektor di P^3

Panjang **a** adalah
$$\|\vec{a}\| = \sqrt{2.1.1 + 2.0.0 + 1.1.1 + 1.0.0} = \sqrt{3}$$

Contoh 2.4: panjang suku banyak

 $\mathbf{a} = p(x) = x^2 + 1$ di P^3 dengan hasil kali dalam integral tertentu di [-1, 1]. Panjang \mathbf{p} adalah

$$\left\| \overrightarrow{a} \right\| = \sqrt{\int_{-1}^{1} (x^2 + 1)^2 dx} = \sqrt{\left[\frac{1}{5} x^5 + \frac{2}{3} x^3 + x \right]_{-1}^{1}} = \dots$$

Catatan:

Periksa Contoh 2.1., 2.2., 2.3.

Vektor yang sama mempunyai panjang berbeda-beda tergantung fungsi hasil kali dalam yang didefinisikan.

Latihan 2.1

Berapakah panjang $\mathbf{a} = (1, 1)$?

- Apakah panjangnya $\sqrt{2}$?
- Jika hasil kali dalamnya didefinisikan $\langle \mathbf{a}, \mathbf{b} \rangle = 2a_1b_1 + a_2b_2$ berapa panjang **a**?
- Jika hasil kali dalamnya didefinisikan $\langle \mathbf{a}, \mathbf{b} \rangle = 20a_1b_1 + 10 a_2b_2$ berapa panjang **a**?

Penjelasan soal latihan 2.1

Panjang vektor $\mathbf{x} = (1, 1)$

 $\sqrt{2}$ adalah panjang **x** di ruang Euclid.

Jika hasil kali dalamnya didefinisikan <**a**, **b**> = $2a_1b_1 + a_2b_2$ panjang **x** adalah $\sqrt{3}$

Jika hasil kali dalamnya didefinisikan <a, b> = $20a_1b_1 + 10 a_2b_2$ panjang **x** adalah $\sqrt{30}$

Contoh 2.5: jarak dua suku banyak

Berdasarakan definisi hasil kali dalam di P^3 : $\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$

$$\mathbf{p} = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$\mathbf{q} = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

Berapa jarak dari **p** ke **q** dengan $\mathbf{p} = 2 + x + x^3$

$$\mathbf{q} = 1 + 3x + x^2$$

Jawab:
$$\mathbf{p} - \mathbf{q} = 1 - 2x - 1x^2 + x^3$$

$$\|\mathbf{p} - \mathbf{q}\| = \sqrt{\langle \mathbf{p} - \mathbf{q}, \mathbf{p} - \mathbf{q} \rangle}$$
$$= \sqrt{1 + 4 + 1 + 1} = \sqrt{7}$$

Contoh 2.6: jarak dua suku banyak

Berdasarakan definisi hasil kali dalam di P^3 : $\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + 2a_1 b_1 + 3a_2 b_2 + a_3 b_3$

$$\mathbf{p} = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

$$\mathbf{q} = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

Jarak dari **p** ke **q** dengan $\mathbf{p} = 2 + x + x^3$

$$q = 1 + 3x + x^2$$

dihitung sebagai berikut

$$\mathbf{p} - \mathbf{q} = 1 - 2x - 1x^2 + x^3$$

$$d(\mathbf{p},\mathbf{q}) = \|\mathbf{p} - \mathbf{q}\| = \sqrt{\langle \mathbf{p} - \mathbf{q}, \mathbf{p} - \mathbf{q}\rangle}$$

$$=\sqrt{1.1.1+2.(-2)(-2)+3(-1)(-1)+1.1.1} = \sqrt{13}$$

Latihan 2.2

- 1. B/S Panjang vektor bisa nol, negative atau positif
- 2. B/S vektor nol adalah satu-satunya vektor dengan panjang nol.
- 3. B/S panang vektor $k\mathbf{a} = k \times |\mathbf{a}|$ (k skalar)
- Kapan panjang a + b = panjang a ditambah panjang b?

Kunci jawaban:

- 1. S
- 2. B
- 3. S (bagaimana jika *k* negatif?)
- 4. Periksa ketika **a** dan **b** searah, berlawanan arah, tidak searah maupun berlawanan arah.

Latihan 2.3: sifat jarak antara dua vektor

Sebutkan semua sifat-sifat jarak antara dua vektor. Jawab:

Catatan

- Apakah jarak vektor bisa bernilai negatif?
- Apakah jarak dari a ke b sama dengan jarak b ke a?
- Apakah jarak a ke c sama dengan jarak dari a ke b ditambah jarak dari c ke b?
- Jarak a ke b sama dengan 0, apa kesimpulannya?

Refleksi

- Sebutkan 5 hal baru yang pealing penting yang kamu pelajari dari modul ini.
- 2. Urutkan dari yang paling penting.
- 3. Sebutkan 2 pertanyaan yang muncul setelah mempelajari modul ini. Tanyakan di forum diskusi, atau kamu dapat mencari sendiri jawabannya pada sumber belajar yang ada kemudian berbagi pengetahuan di forum diskusi.

6.3 Sudut antara dua vektor dan ortogonalitas

Capaian pembelajaran

Sesudah mempelajari modul ini, Anda mampu

- menentukan cosinus sudut antara dua vektor ada ruang hasil kali dalam
- 2. menjelaskan konsep ortogonalitas
 - antara dua vektor,
 - himpunan,
 - vektor dan subruang, dan
 - ortogonal komplemen antara dua subruang.

Pre-test

Jawablah pertanyaan-pertanyaan berikut ini:

- 1. Apa beda definisi ruang vektor dan ruang hasil kali dalam?
- 2. Berikan 10 contoh fungsi hasil kali dalam di R^2 .
- 3. Berapa panjang vektor (1, 2)?
- 4. Berapakah jarak vektor (1, 0) ke (1, 1)?

Bagaimana hasil pre-test Anda?

- 1. Apakah sudah dapat mendefinisikan ruang hasil kali dalam dengan tepat, sehingga memahamihubungan ruang vektor dan ruang hasil kali dalam?
- 2. Apakah sudah memahami hasil kali dalam berbobot dan dapat menjelaskan hubungan hasil kali titik dan hasil kali dalam berbobot?
- 3. Apakah ada perubahan pemahaman tentang konsep panjang vektor?
- 4. Apakah dalam ruang hasil kali dalam yang berbeda dua vektor mempunyai jarak yang berbeda?

Sudut antara dua vektor di Ruang Euclid

Jika **u** dan **v** adalah dua vektor tak nol di R^2 , maka:

$$\mathbf{u}.\mathbf{v} = u_1 v_1 + u_2 v_2 = \|\mathbf{u}\| \|\mathbf{v}\| \cos \alpha$$

dengan α sudut antara \mathbf{u} dan \mathbf{v}

$$\cos \alpha = \frac{\mathbf{u}.\mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Sudut antara dua vektor di ruang vektor umum

 ${ ilde{\mathcal D}}$ efinisi 6.4.: Sudut dua vektor di ruang hasil kali dalam V

Jika **u** dan **v** adalah vektor-vektor tak nol di ruang hasil kali dalam, maka:

$$\cos \alpha = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Seperti halnya pada ruang vektor Euclid, $-1 \le \cos \alpha \le 1$.

Hal di atas dijamin oleh teorema berikut:

Teorema 6.2.: Pertaksamaan Cauchy- Schwartz

Jika **u** dan **v** dua vektor di ruang hasil kali dalam nyata, maka

$$\left|\left\langle u,v\right\rangle \right|\leq\left\| u\right\| \left\| v\right\|$$

Latihan 3.1: cosinus sudut dua vektor

Diberikan
$$\mathbf{u} = (0, 1, 0), \mathbf{v} = (2, 1, 2)$$
 di ruang Euclid:
 $\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$

Tentukan cosinus sudut antara **u** dan **v**.

<u>Jawab</u>:

$$\cos \alpha = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{0.2 + 1.1 + 2.0}{1.3} = \frac{1}{3}$$

Latihan 3.2: cosinus sudut dua vektor

Diberikan $\mathbf{u} = (0, 1, 0), \mathbf{v} = (2, 1, 2)$ dengan hasil kali dalam berbobot di R^n didefinisikan sebagai berikut:

$$\langle \mathbf{u}, \mathbf{v} \rangle = 1u_1v_1 + 2u_2v_2 + 3u_3v_3$$

Tentukan cosinus sudut di ruang hasil kali dalam R^3 dengan fungsi hasil kali dalam didefinisikan di atas.

Jawab:

$$\cos \alpha = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{1.0.2 + 2.1.1 + 3.2.0}{1.3} = \frac{2}{3}$$

Contoh 3.1: Cosinus sudut antara dua matriks

Didefinisikan hasil kali dalam di $M^{n\times n}$: $\langle \mathbf{u}, \mathbf{v} \rangle = \text{trace}(A^TB)$

Diberikan dua vektor:
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$

Cosinus sudut dua matriks tersebut adalah

$$\cos \alpha = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{2.2 + 3.1 + 1.1 + 1.3}{\left(\sqrt{15}\right)^2} = \frac{11}{15}$$

Catatan:

$$\|\mathbf{u}\| = \sqrt{2.2 + 3.3 + 1.1 + 1.1} = \sqrt{15}$$

$$\|\mathbf{v}\| = \sqrt{2.2 + 1.1 + 1.1 + 3.3} = \sqrt{15}$$

Dua vektor ortogonal

 ${ ilde{\cal D}}$ efinisi 6.5.: Dua vektor ortogonal

Dua vektor **a**, **b** pada ruang hasil kali dalam V dikatakan saling ortogonal jika $\langle \mathbf{a}, \mathbf{b} \rangle = 0$

Contoh 3.2:

Diberikan $\mathbf{p} = p(\mathbf{x}) = x \operatorname{dan} \mathbf{q} = q(\mathbf{x}) = x^2 \operatorname{di} P^3 \operatorname{dengan} \langle \mathbf{p}, \mathbf{q} \rangle \operatorname{didefinisikan}$:

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} p(x)q(x)dx$$

sehingga,
$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} xx^2 dx = \frac{1}{4} x^4 \bigg]_{-1}^{1} = 0$$
 p dan q saling ortogonal

Teorema Pythagoras umum

Teorema Phytagoras berlaku juga ruang hasil kali dalam umum.

Diberikan dua vektor **u** dan **v** yang saling ortogonal, <**u**, **v**> = 0

$$\|\mathbf{u} + \mathbf{v}\|^{2} = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle$$
 (definisi *norm*)

$$= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u} + \mathbf{v}, \mathbf{v} \rangle$$
 (sifat hasil kali dalam)

$$= \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$$
 (sifat hasil kali dalam)

$$= \|\mathbf{u}\|^{2} + 2\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^{2}$$
 (<\mathbf{u}, \mathbf{v} > = 0 karena saling ortogonal)

$$= \|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2}$$

Jeorema 6.3: Pythagoras umum

Jika u dan v adalah vektor-vektor yang ortogonal di ruang hasil kali dalam, maka:

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

Contoh 3.3: penerapan hukum Phytagoras

Diberikan dua vektor di R^4 yang saling ortogonal:

$$\mathbf{u} = (0,1,0,0)$$

$$\mathbf{v} = (1,0,1,2)$$

maka,

$$\|\mathbf{u} + \mathbf{v}\|^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle = \langle (1,1,1,2), (1,1,1,2) \rangle = 7$$

$$\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle = 0 + 1 + 0 + 0 = 1$$

$$\|\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} \rangle = 1 + 0 + 1 + 4 = 6$$

Terlihat bahwa: $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = 7$

Basis ortogonal dan ortonormal

 ${ ilde{\mathcal D}}$ efinisi 6.6.a.: Himpunan ortogonal

Himpunan S pada ruang hasil kali dalam V disebut ortogonal jika dan hanya jika setiap pasangan vektor berbeda saling ortogonal.

 ${ ilde{\mathcal D}}$ efinisi 6.6.b: Basis ortogonal dan ortonormal

V adalah ruang vektor, B adalah basis dari V. B adalah ortogonal jika B ortogonal. Jika B ortogonal dan *norm* dari setiap vektor di B adalah 1, maka B disebut basis ortonormal.

Contoh 3.4:

- 1. { i, j, k } basis ortonormal di ruang Euclid R³
- 2. Definisikan ruang hasil kali dalam sehingga himpunan berikut ortonormal

$$\{1, x, x^2, x^3\}$$

Contoh 3.5: Himpunan orthogonal di R^3

- Di ruang Euclid R^3 , $B = \{i, j, k\}$ orthogonal. Masing-masing vektor di B mempunyai panjang 1, maka B ortonormal.
- Di ruang Euclid R^3 , $S = \{(1, 1, 1), (-1, 1, 1)\}$ TIDAK ortogonal

Di ruang hasil kali dalam R³ dengan hasil kali dalam

$$\langle \mathbf{a}, \mathbf{b} \rangle = 2a_1b_1 + a_2b_2 + a_3b_3$$

maka $S = \{(1, 1, 1), (-1, 1, 1)\}$ ortogonal

Contoh 3.6. himpunan orthogonal di M^{2x2}

Hasil kali dalam di M^{2x2} adalah $\langle A, B \rangle$ = trace(A^TB) untuk setiap A, B matriks 2x2.

$$S = \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\} \text{ orthogonal}$$

$$T = \left\{ \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\} \text{ orthogonal}$$

$$S = \left\{ \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\} \text{ tidak ortogonal}$$

Ortogonal vektor dan subruang

Definisi 6.7.:

W adalah subruang dari ruang hasil kali dalam V. Vektor ${\bf v}$ ortogonal dengan W jika ${\bf v}$ ortogonal dengan setiap vektor di W.

v orthogonal dengan W

Contoh 3.7: vektor orthogonal subruang

- $W = \{(a, b, c, 0) | a, b, c \in R\}$ adalah subruang dari ruang Euclid R^4 . Vektor $\mathbf{a} = (0, 0, 0, 2)$ orthogonal dengan W karena \mathbf{a} orthogonal dengan setiap vektor di W.
- p(x) = 2 adalah vektor yang tegak lurus dengan subruang yang dibangkitkan oleh $\{x, x^2\}$ di R^2 .
- Apakah (1, 1) tegak lurus dengan subruang {(0, 0)}?
- Apakah vektor nol di ruang hasil kali dalam V orthogonal dengan setiap subruang dari V?

Ortogonal komplemen

\mathcal{D} efinisi 6.8.:

W adalah subruang dari ruang hasil kali dalam V. Himpunan semua vektor yang ortogonal dengan W disebut himpunan orthogonal komplemen dari W, ditulis W^{\perp} (baca: W perp).

 W^{\perp} adalah subruang.

Ortogonal komplemen (lanjutan)

Garis L dan bidang W adalah subruang-subruang dari R^3 . Setiap vektor pada L ortogonal dengan setiap vektor pada bidang-xy. Maka L dan W saling orthogonal komplemen $L = W^{\perp}$

Dalam geometri simbol \perp menyatakan ortogonal (tegak lurus). W^{\perp} dibaca "W perp", dari kata "perpendicular" artinya tegak lurus.

Sifat dasar ortogonal komplemen

Jika W adalah subruang dari ruang vektor berdimensi hingga V, maka:

- 1. W^{\perp} adalah subruang dari V
- 2. Satu-satunya vektor yang berada di W dan W^{\perp} adalah vektor 0.
- 3. Komplemen ortogonal dari W^{\perp} adalah W

Untuk menunjukkan W^{\perp} subruang, cukup diperlihatkan bahwa W^{\perp} tidak kosong, tertutup terhadap jumlahan vektor, dan tertutup terhadap perkalian dengan skalar.

Jika **a** adalah vektor yang verada di W dan W^{\perp} , maka $\langle a, a \rangle = 0$, dipenuhi jika dan hanya jika **a** = **0** (aksioma positif ruang hasil kali dalam)

Latihan 3.3

1. Jika V adalah ruang hasil kali dalam. Tentukan komplemen ortogonal dari {0}.

<u>Jawaban</u>: V.

- 2. Jika V ruang hasil kali dalam, dan W adalah subruang dari V. Jika $W = W^{\perp}$. Apa kesimpulan Anda? <u>Jawaban</u> $V = \{0\}$
- 3. W adalah garis y = -x pada sistem koordinat bidang R^2 . Tentukan W^{\perp} . <u>Jawaban:</u> garis y = x.
- 4. Jika W adalah bidang-yz pada sistem koordinat ruang R^3 . Tentukan W^{\perp} . <u>Jawaban</u>: sumbu-x

Null(A) dan Row (A) saling orthogonal komplemen

Langkah pembuktian:

- 1. Ambil sembarang vektor \mathbf{v} yang ortogonal dengan setiap vektor di ruang baris A, buktikan bahwa $A\mathbf{v} = \mathbf{0}$, \mathbf{v} elemen Null(A)
- 2. Jika $A\mathbf{v} = \mathbf{0}$, buktikan \mathbf{v} ortogonal terhadap setiap vektor di ruang baris A.

 ${\bf v}$ ortogonal dengan setiap vektor di ruang baris A, maka ${\bf v}$ ortogonal dengan vektor ruang baris ${\bf r}_1, {\bf r}_2, ..., {\bf r}_m$

$$\mathbf{r}_1.\mathbf{v} = \mathbf{r}_2.\mathbf{v} = \dots = \mathbf{r}_m\mathbf{v} = 0$$

$$\begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{v} \\ \mathbf{r}_2 \cdot \mathbf{v} \\ \cdots \\ \mathbf{r}_m \cdot \mathbf{v} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 v elemen Null(A)

Null(A) dan Row (A) saling komplemen ortogonal

Langkah pembuktian:

- 1. Ambil sembarang vektor \mathbf{v} yang ortogonal dengan setiap vektor di ruang baris A, buktikan bahwa $A\mathbf{v} = \mathbf{0}$, \mathbf{v} elemen Null(A)
- 2. Jika Av = 0, buktikan v ortogonal terhadap setiap vektor di ruang baris A.

$$Av = 0$$
, maka $r_1.v = r_2.v = ... = r_mv = 0$

Jika k sembarang vektor di Row(A), maka k dapat dinyatakan sebagai

kombinasi linier dari vektor-vektor di Row(A): $\mathbf{k} = c_1 \mathbf{r}_1 + c_2 \mathbf{r}_2 + \cdots + c_m \mathbf{r}_m$

Maka

$$k.v = (c_1 r_1 + c_2 r_2 + \dots + c_m r_m).v$$

$$= c_1 (r_1.v) + c_2 (r_2.v) + \dots + c_m (r_m.v)$$

$$= c_1.0 + c_2.0 + \dots + c_m.0 = 0$$

v ortogonal terhadap setiap vektor di ruang baris A

Null(A) dan Coll(A^T) saling komplemen ortogonal

Diketahui bahwa

- 1. $Coll(A^T) = Row(A)$
- 2. $(Row(A))^{\perp} = (Null(A))$ [Row(A) dan Null(A) saling ortogonal komplemen]

Berdasarkan dua fakta di atas, dengan mengganti A dengan A^{T} , diperoleh:

Coll(A) dan $(Null(A^T))$ saling ortogonal komplemen,

Ditulis: $(Coll(A))^{\perp} = (Null(A^T))$

Ruang baris, kolom dan null: Row(A), Coll(A), Null(A)

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1...n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2...n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3...n} \\ \dots & \dots & \dots & \dots & a_{4...n} \\ a_{n..1} & a_{n..2} & a_{n..3} & \dots & a_{m...n} \end{pmatrix}$$

Dari satu matriks dapat dikonstruksi empat subruang.

Hubungan ruang baris, kolom, dan null

Ruang Null(A) dan Row(A) adalah saling komplemen ortogonal di R^n

$$[NuII(A) = Row(A)]^{\perp}$$

Ruang Null(A^T) dan Coll(A) saling komplemen ortogonal di R^m

$$NuII(A^T) = [CoII(A)]^{\perp}$$

Materi berikutnya: **Proses Gram Schmidt dan** Dekomposisi QR

FAKULTAS ILMU KOMPUTER, UNIVERSITAS INDONESIA

