Calculus I

Derivative of $(a(x))^{b(x)}$

Todor Milev

2019

Example

Differentiate $x^{\tan x}$, where x > 0.

Differentiate
$$x^{\tan x}$$
, where $x > 0$.

$$\frac{d}{dx}(x^{\tan x}) = \frac{d}{dx}\left(\left(e^{\ln x}\right)^{\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{(\ln x)\tan x}\right)$$

$$= \frac{d}{dx}\left(e^{u}\right)$$

$$= \frac{d}{du}\left(e^{u}\right)\frac{du}{dx}$$

$$= e^{u}\frac{d}{dx}\left((\ln x)\tan x\right)$$

$$= e^{(\ln x)\tan x}\left((\ln x)'\tan x + (\ln x)(\tan x)'\right)$$
Prod. rule
$$= x^{\tan x}\left(\frac{1}{x}\tan x + (\ln x)\sec^{2}x\right)$$

Example

Differentiate
$$(3x + 1)^{\ln x}$$
, where $3x + 1 > 0$.

$$\frac{d}{dx} \left((3x + 1)^{\ln x} \right) = \frac{d}{dx} \left(\left(e^{\ln(3x+1)} \right)^{\ln x} \right) \quad | \text{Convert base to } e^?$$

$$= \frac{d}{dx} \left(e^{\ln(3x+1) \ln x} \right)$$

$$= \frac{d}{dx} \left(e^u \right) = \frac{d}{du} \left(e^u \right) \frac{du}{dx} \quad | \text{Set } \ln(3x+1) \ln x = u$$

$$= e^u \frac{d}{dx} \left(\ln(3x+1) \ln x \right)$$

$$= e^{\ln(3x+1) \ln x} \left((\ln(3x+1))' \ln x + \ln(3x+1) (\ln x)' \right)$$

$$= (3x+1)^{\ln x} \left(\frac{(3x+1)'}{3x+1} \ln x + \ln(3x+1) \frac{1}{x} \right)$$

$$= (3x+1)^{\ln x} \left(\frac{3 \ln x}{3x+1} + \ln(3x+1) \frac{1}{x} \right)$$

Example

Differentiate $(3x + 1)^{\ln x}$, where 3x + 1 > 0.

$$\frac{d}{dx}\left((3x+1)^{\ln x}\right) = (3x+1)^{\ln x}\left(\frac{3\ln x}{3x+1} + \ln(3x+1)\frac{1}{x}\right)$$

Theorem

$$\frac{\mathsf{d}}{\mathsf{d}x}\left((a(x))^{b(x)}\right)=(a(x))^{b(x)}\left(\frac{a'(x)}{a(x)}b(x)+\ln(a(x))b'(x)\right),\quad a(x)>0$$