Useful Stuff

Completing the square

$$ax^{2} + bx + c = 0$$

$$a(x+d)^{2} + e = 0$$

$$d = \frac{b}{2a}$$

$$e = c - \frac{b^{2}}{4a}$$

Trig Functions

$$\begin{split} \sin^2(x) &= \frac{1-\cos(2x)}{2} \\ \cos^2(x) &= \frac{1+\cos(2x)}{2} \\ \frac{d}{dx}\tan(x) &= \sec^2(x) \\ \frac{d}{dx}\sec(x) &= \sec(x)\tan(x) \\ \frac{d}{dx}\tan^{-1}(x) &= \frac{1}{1+x^2} \\ \int \sec(x) &= \ln|\sec(x) + \tan(x)| \end{split}$$

Area & Volume

Volume by slicing A(x) = area of crosssection at x,

$$V(S) = \int_{a}^{b} A(x)dx$$

Volume by disk If f(x) rotated around

$$V(S) = \int_a^b \pi[f(x)]^2 dx$$

Volume by cylindrical shells If f(x) rotated around y-axis,

$$V(S) = \int_{a}^{b} (2\pi x f(x)) dx$$

Applications

Arc Length $\int_a^b \sqrt{1+[f'(x)]^2} dx$ Note use of derivative!

Surface Area of Revolution

Revolve f(x) around x axis,

$$SA(x) = \int_{a}^{b} (2\pi f(x)\sqrt{1 + [f'(x)]^2}) dx$$

Mass-density for 1-d object If p(x)linear density for given x, $m = \int_{-a}^{b} p(x) dx$

Mass-density for circular object If p(x) radial density for given x, and radius = r, $m = \int_0^r 2\pi x p(x) dx$

Work done If F(X) = force at point x, $W = \int_a^b F(x) dx$ *Recall constant force yields F * d

Hyperbolic Functions

f(x)	$\frac{d}{dx}f(x)$
sinh(x)	cosh(x)
cosh(x)	sinh(x)
tanh(x)	$sec^2(x)$
coth(x)	$-csch^2(x)$
sech(x)	-sech(x)tanh(x)
csch(x)	-csch(x)coth(x)

Integration Techniques

Int by parts $\int u dv = uv - \int v du$ Pick u using LIATE (log, inv trig, alg, trig, exp)

$$\int cos^{j}(x)sin^{k}(x)dx$$

If k odd keep 1 sin(x), convert rest using $\sin^2 x = 1 - \cos^2 x$. u-sub with $u = \cos(x)$.

If \mathbf{j} **odd** keep 1 cos(x), convert rest using $\cos^2 x = 1 - \sin^2 x$. u-sub with $u = \sin(x)$.

If both even use $sin^2x = \frac{1-cos(2x)}{2}$.

$$\int tan^k(x)sec^j(x)dx$$

If j even and ≥ 2 keep $sec^2(x)$, convert rest using $sec^2x = tan^2x + 1$. u-sub with

If k odd, $j \ge 1$ keep sec(x)tan(x), convert rest using $tan^2x = sec^2x$. u-sub with u = secx.

If k odd, $k \ge 3$ and j = 0 turn one tan^2x into sec^2x-1 . Repeat process. If k even, j odd, use $tan^2x = sec^2x - 1$ to turn $tan^k x$ to secx.

Reductions

$$\begin{split} &\int sec^nxdx = \\ &\frac{1}{n-1}sec^{n-2}xtanx + \frac{n-2}{n-1}\int sec^{n-2}xdx \\ &\int tan^nxdx = \frac{1}{n-1}tan^{n-1}x - \int tan^{n-2}xdx \end{split}$$

Trig subs Don't forget to change dx to
$$d\theta$$
 $a^2 - x^2$ Use $x = asin\theta$

$$a^2 + x^2$$
 Use $x = atan\theta$
 $x^2 - a^2$ Use $x = asec\theta$

Arclength ax^2

$$\frac{x\sqrt{1+4a^2x^2}}{2} + \frac{\ln(|\sqrt{1+4a^2x^2}+2ax|)}{4a}$$
 Note: if evaluating over interval [a,b], if a=0, just plug in b

Reduction
$$\int \frac{1}{(ax^2+b)^n}$$

 $\frac{2n-3}{2b(n-1)} \int \frac{1}{(ax^2+b)^{n-1}} dx + \frac{x}{2b(n-1)(ax^2+b)^{n-1}}$

Trapezoid rule $\frac{1}{2}\Delta x(f(x_0) + 2f(x_1) +$ $2f(x_2) + \ell + 2f(x_{n-1}) + f(x_n)$

Simpson's rule

$$\int_{b}^{a} f(x) = \frac{b-a}{3n} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n)]$$

Simpson's error bound Let M = maxvalue of $|f^4(x)|$ over [a,b]. Error is: $E \leq \frac{M(b-a)^5}{180n^4}$

Sequences/Series

Geometric Convergence For $\sum_{n=1}^{\infty} ar^{n-1}, \text{ if } |r| < 1, \text{ it converges to } \frac{a}{1-r}$

Divergence Test For $\sum_{n=1}^{\infty} a_n$ to converge, nth term a_n must satisfy $a_n \to 0$ as $n \to \infty$. Converse is not true (if limit = 0, does not mean it converges)

Integral test For $\sum_{n=1}^{\infty} a_n$, if a_n is all positive terms, and there exists a function f such that:

- · f is continuous
- f is decreasing
- $f(n) = a_n$ for all integers $n \ge N$

Then $\sum_{n=1}^{\infty} a_n$ and $\int_N^{\infty} f(x) dx$ both converge or both diverge.

P-Series For $\sum_{n=1}^{\infty} \frac{1}{n^p}$, converges if p > 1, diverges if $p \leq 1$

Remainder estimate Same rules as integral test for f(n). $\int_{N+1}^{\infty} f(x)dx < R_N < \int_{N}^{\infty} f(x)dx$