cs4004/cs4504: FORMAL VERIFICATION Lecture 5: Propositional Logic

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

Last lecture:

→ Syntactic entailment: $A_1 ... A_n \vdash B$

Meaning: from $A_1 ... A_n$ we can derive B using the inference rules of propositional logic

Different than semantic entailment $A_1 ... A_n \models B$ and syntactic entailment $A \rightarrow B$. (there is a connection between these entailments)

→ Inference rules are defined using the system of natural deduction Conjuction introduction and elimination rules:

$$\frac{A_1}{B}$$
 RULE NAME

These are simple natural deduction rules

NATURAL DEDUCTION

Simple inference rules: "given formulas derive a formula," e.g.:

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

Proof of $(p \land q) \land r$, $s \land t \vdash q \land s$.

1	$(p \land q) \land r$	premise
2	$s \wedge t$	premise
3	$p \wedge q$	∧e ₁ 1
4	q	$\wedge e_2$ 3
5	S	∧ <i>e</i> ₁ 2
6	$q \wedge s$	∧i 4,5

NATURAL DEDUCTION

Simple inference rules: "given formulas derive a formula," e.g.:

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

Proof of $(p \land q) \land r$, $s \land t \vdash q \land s$.

1	$(p \wedge q) \wedge r$	premise
2	$s \wedge t$	premise
3	$b \lor d$	$\wedge e_1$ ¹
4	q	$\wedge e_2$ 3
5	S	∧e ₁ 2
6	$q \wedge s$	$\wedge i$ 4, 5

_

Simple inference rules: "given formulas derive a formula," e.g.:

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

Proof of $(p \land q) \land r$, $s \land t \vdash q \land s$.

1	$(p \land q) \land r$	premise
2	$s \wedge t$	premise
3	$b \lor d$	$\lambda e_1 1$
4	q	$\wedge e_2$ 3
5	S	∧e ₁ 2
6	$q \wedge s$	∧ <i>i</i> 4,5

NATURAL DEDUCTION

Simple inference rules: "given formulas derive a formula," e.g.:

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

Proof of $(p \land q) \land r$, $s \land t \vdash q \land s$.

1
$$(p \land q) \land r$$
 premise
2 $s \land t$ premise
3 $p \land q$ $e_1 1$
4 q $he_2 3$
5 s $he_1 2$
6 $q \land s$ $hi \ 4, 5$

Simple inference rules: "given formulas derive a formula," e.g.:

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

Proof of $(p \land q) \land r$, $s \land t \vdash q \land s$.

NATURAL DEDUCTION

Complex inference rules: "given proofs and formulas derive a formula"

NATURAL DEDUCTION

Complex inference rules: "given proofs and formulas derive a formula"

Meaning of C_i : "assume A_i has been established in your proof and prove C_i ."

Example: disjunction rules.

The introduction rules of \lor are simple rules.

- → given a number of formulas as premises...(?)
- \rightarrow produce a formula $A_1 \lor A_2$.

The introduction rules of \lor are simple rules.

- → given a number of formulas as premises...(?)
- → produce a formula $A_1 \lor A_2$.

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2$$

The introduction rules of \lor are simple rules.

- → given a number of formulas as premises...(?)
- \rightarrow produce a formula $A_1 \lor A_2$.

The elimination rules of \lor are complex rules.

- → given a formula $A_1 \lor A_2$
- → and given some proofs... (?)
- → produce a formula B

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2$$

The introduction rules of \lor are simple rules.

- → given a number of formulas as premises...(?)
- \rightarrow produce a formula $A_1 \lor A_2$.

The elimination rules of \lor are complex rules.

- \rightarrow given a formula $A_1 \lor A_2$
- → and given some proofs... (?)
- \rightarrow produce a formula B

Prove $p \lor q \vdash q \lor p$

Proof.

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \wedge \epsilon$$

Prove $p \lor q \vdash q \lor p$

Proof.

1
$$p \lor q$$
 premise

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad \frac{\vdots}{B} \qquad Ae$$

Prove
$$p \lor q \vdash q \lor p$$

Proof.

$$\begin{array}{cccc} 1 & p \lor q & premise \\ 2 & p & assumption \\ 3 & q \lor p & \lor i_2 2 \end{array}$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad \frac{A_1}{B} \wedge e$$

Prove $p \lor q \vdash q \lor p$

Proof.

1	$p \vee q$	premise
2	р	assumption
3	$q \lor p$	$\vee i_2$ 2
4	9	assumption
5	$q \lor p$	∨i₁ 4

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad \frac{A_2}{B} \wedge e$$

Prove $p \lor q \vdash q \lor p$

Proof.

1
$$p \lor q$$
 premise
2 p assumption
3 $q \lor p$ $\lor i_2$ 2
4 q assumption
5 $q \lor p$ $\lor i_1$ 4
6 $q \lor p$ $\lor e$ 1, 2-3, 4-5

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad \frac{A_2}{B} \wedge e$$

Prove $p \lor q \vdash q \lor p$

Proof.

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad \frac{A_2}{B} \wedge e$$

Prove $p \lor q \vdash q \lor p$

Proof.

Boxes are subproofs, from (A) given assumptions and (B) the formulas we know before the subproof we derive an intermediate conclusion. (Here we did not have to use (B))

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad \frac{A_1}{B} \wedge \epsilon$$

Prove $(p \lor q) \lor r \vdash p \lor (q \lor r)$. (Hint: nested boxes)

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \vee i_2$$

Prove $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$ and $(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$.

$$\frac{A_1}{A_1 \wedge A_2} \wedge i \qquad \frac{A_1 \wedge A_2}{A_1} \wedge e_1 \qquad \frac{A_1 \wedge A_2}{A_2} \wedge e_2$$

$$\frac{A_1}{A_1 \vee A_2} \vee i_1 \qquad \frac{A_2}{A_1 \vee A_2} \vee i_2 \qquad \frac{A_1 \vee A_2}{B} \qquad B$$

IMPLICATION ELIMINATION

First: elimination of \rightarrow (aka modus ponens)

$$\frac{A \qquad A \to B}{B} \to e$$

IMPLICATION ELIMINATION

First: elimination of \rightarrow (aka modus ponens)

$$\frac{A \qquad A \to B}{B} \to e$$

From:

p: it rained

 $p \rightarrow q$: if it rained then the street is wet

we derive:

q: the street is wet

IMPLICATION ELIMINATION

First: elimination of \rightarrow (aka modus ponens)

$$\frac{A \qquad A \to B}{B} \to e$$

From:

p: it rained

 $p \rightarrow q$: if it rained then the street is wet

we derive:

q: the street is wet

From:

p: the program input is an array

 $p \rightarrow q$: if the program input is an array then the program output is a sorted array

we derive:

q: the program output is a sorted array

PROOF WITH IMPLICATION

Show
$$p \rightarrow q \rightarrow r$$
, p , $q \vdash r$

Show
$$p \rightarrow q \rightarrow r$$
, p , $p \rightarrow q \vdash r$

$$\frac{A \qquad A \to B}{B} \to e$$

IMPLICATION: MODUS TOLLENS

If we prove $A_1, ... A_n \vdash B$ then we can use in our proofs a derivable rule (aka a theorem)

$$\frac{A_1}{B}$$
 ... $\frac{A_n}{B}$

If we prove $A_1, ... A_n \vdash B$ then we can use in our proofs a derivable rule (aka a theorem)

$$\frac{A_1}{B}$$
 ... $\frac{A_n}{B}$

The following is a derivable rule:

this is called modus tollens.

IMPLICATION INTRODUCTION

Introduction of \rightarrow :

$$\frac{\begin{vmatrix} A \\ \vdots \\ B \end{vmatrix}}{A \to B} \to i$$

"If we can prove B by assuming A, then A implies B."

IMPLICATION PROOFS

Prove: $p \rightarrow q \vdash \neg q \rightarrow \neg p$

Example statement: If it rained then the road is wet. Therefore, if the road is not wet then it did not rain.

$$\frac{A \qquad A \to B}{B} \to e \qquad \frac{\stackrel{\stackrel{\longrightarrow}{i}}{\stackrel{:}{B}}}{A \to B} \to i \qquad \frac{A_1 \to A_2 \qquad \neg A_2}{\neg A_1} \text{ MT}$$