Esercizio

Progettare una rete combinatoria con 3 ingressi (x_2, x_1, x_0) e un'unica uscita Y, tale che:

- Y = 1 se il numero binario rappresentato dagli ingressi è un numero primo (tra 0 e 7).
- Y = 0 altrimenti.

Richiesto: 1. Determinare la tabella di verità. 2. Scrivere la funzione nella forma canonica **SOP**. 3. Semplificare con mappa di **Karnaugh**. 4. Disegnare lo schema circuitale risultante.

Svolgimento

Soluzione Punto 1: Tabella di Verità

Gli ingressi sono x_2 , x_1 , x_0 , che rappresentano un numero binario da 0 a 7. L'uscita Y è 1 se il numero è primo (2, 3, 5, 7) e 0 altrimenti.

$\overline{x_2}$ x_1		x_0	Numero decimale	Primo?	Y
0	0	0	0	No	0
0	0	1	1	No	0
0	1	0	2	Sì	1
0	1	1	3	Sì	1
1	0	0	4	No	0
1	0	1	5	Sì	1
1	1	0	6	No	0
1	1	1	7	Sì	1

Soluzione Punto 2: Forma Canonica SOP

La forma canonica SOP (Sum of Products) si ottiene sommando i mintermini per cui l'uscita Y è uguale a 1.

Dalla tabella di verità, vediamo che Y=1 per i numeri decimali 2, 3, 5 e 7. Scriviamo i mintermini corrispondenti:

- Per il numero 2 ($x_2=0, x_1=1, x_0=0$): $\overline{x_2}x_1\overline{x_0}$
- Per il numero 3 ($x_2=0, x_1=1, x_0=1$): $\overline{x_2}x_1x_0$
- Per il numero 5 ($x_2=1,\,x_1=0,\,x_0=1$): $x_2\overline{x_1}x_0$
- Per il numero 7 ($x_2 = 1, x_1 = 1, x_0 = 1$): $x_2x_1x_0$

Sommiamo i mintermini per ottenere la funzione canonica SOP:

$$Y = \overline{x_2}x_1\overline{x_0} + \overline{x_2}x_1x_0 + x_2\overline{x_1}x_0 + x_2x_1x_0$$

Soluzione Punto 3: Semplificazione con Mappa di Karnaugh

Costruzione della K-map

Per 3 variabili (x_2, x_1, x_0) , usiamo una tabella 2×4 : - **Righe**: x_2 (0 o 1) - **Colonne**: x_1x_0 con ordine **Gray Code**: 00, 01, 11, 10

IMPORTANTE: L'ordine delle colonne non è 00, 01, 10, 11 ma 00, 01, 11, 10. Questo è fondamentale perché tra colonne adiacenti cambia solo una variabile, permettendo i raggruppamenti!

Riportiamo i valori di Y dalla tabella di verità:

$\overline{x_2 \backslash x_1 x_0}$	00	01	11	10
0	0	0	1	1
1	0	1	1	0

Regole di Raggruppamento

- 1. Dimensioni dei gruppi: solo 1, 2, 4, 8, 16... celle (potenze di 2)
- 2. Adiacenza: celle fisicamente vicine o ai bordi opposti (la mappa "si avvolge")
- 3. Forma: i gruppi devono essere rettangolari
- 4. Sovrapposizioni: i gruppi possono sovrapporsi
- 5. **Obiettivo**: coprire tutti gli '1' con il minor numero di gruppi più grandi possibili

Identificazione dei Gruppi

Analizziamo la nostra K-map:

[Gruppo A] (celle (0,11) e (0,10)): - Adiacenti orizzontalmente [OK] - Gruppo di dimensione 2 [OK] - Analisi delle variabili: - $x_2 = 0$ in entrambe le celle \rightarrow si mantiene come $\overline{x_2}$ - $x_1 = 1$ in entrambe le celle \rightarrow si mantiene come x_1 - $x_0 = 1$ nella prima cella, $x_0 = 0$ nella seconda \rightarrow si elimina perché cambia valore - Termine: $\overline{x_2}x_1$ (la variabile x_0 è eliminata perché assume valori diversi nel gruppo)

[Gruppo B] (celle (1,01) e (1,11)): - Adiacenti orizzontalmente [OK] - Gruppo di dimensione 2 [OK] - Analisi delle variabili: - $x_2=1$ in entrambe le celle \rightarrow si mantiene come x_2 - $x_1=0$ nella prima cella, $x_1=1$ nella seconda \rightarrow si

elimina perché cambia valore - $x_0=1$ in entrambe le celle \to si mantiene come x_0 - Termine: x_2x_0 (la variabile x_1 è eliminata perché assume valori diversi nel gruppo)

Funzione Semplificata

Combinando i due gruppi otteniamo:

$$Y = \overline{x_2}x_1 + x_2x_0$$

Soluzione Punto 4: Schema Circuitale

La funzione semplificata $Y = \overline{x_2}x_1 + x_2x_0$ richiede:

Componenti necessari:

- 1 porta NOT per $\overline{x_2}$
- 2 porte AND per i prodotti $\overline{x_2}x_1$ e x_2x_0
- 1 porta OR per la somma finale

Schema logico (rappresentazione testuale):

Descrizione del circuito:

- 1. **Ingresso x2** viene invertito tramite porta NOT per ottenere x2_barra
- 2. **Prima porta AND**: riceve x2_barra e x1 -> produce termine1 = x2_barra AND x1
- 3. Seconda porta AND: riceve x2 e x0 -> produce termine2 = x2 AND x0
- 4. **Porta OR finale**: riceve termine1 e termine2 -> produce Y = termine1 OR termine2

Verifica con truth table:

• Per (x2,x1,x0) = (0,1,1): Y = 11 + 01 = 1 [OK] (numero 3, primo)

- Per (x2,x1,x0) = (1,0,1): Y = 00 + 11 = 1 [OK] (numero 5, primo)
- Per (x2,x1,x0) = (1,1,1): Y = 01 + 11 = 1 [OK] (numero 7, primo) Per (x2,x1,x0) = (0,0,0): Y = 10 + 00 = 0 [OK] (numero 0, non primo)

Il circuito implementa correttamente la funzione di rilevamento dei numeri primi da 0 a 7.