"Design Procedure:" Example

 Goal: Design an amplifier to drive a 5 pF load that provides gain > 10, bandwidth > 1 MHz, with an output swing within 500 mV of +5 V / 0 V supply rails

Characterize the small-signal parameters of devices in the technology you are using.

Short-channel devices (example):

Use simulator to characterize small-signal parameters vs. bias point

Characterize the small-signal parameters of devices in the technology you are using.

Short-channel devices (example):

Use simulator to characterize small-signal parameters vs. bias point

Long-channel devices (square-law model holds):

Hand calculations suffice for most parameters:

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$g_m \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \approx \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

$$r_o = \frac{1}{\lambda I_D}$$

Characterize the small-signal parameters of devices in the technology you are using.

Short-channel devices (example):

Use simulator to characterize small-signal parameters vs. bias point

Long-channel devices (square-law model holds):

Hand calculations suffice for most parameters:

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$$

$$g_m \approx \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) \approx \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D}$$

$$r_o = \frac{1}{2L}$$

This process technology:

Parameter	NMOS	PMOS
VTO	0.8 V	-0.8 V
KP	$90 \mu\text{A/V}^2$	$30 \mu A/V^2$
LAMBDA	0.01 V ⁻¹	0.02 V ⁻¹

Characterize the small-signal parameters of devices in the technology you are using.

Full process parameter list

Parameter	NMOS	PMOS
Model Level	3 (in HSPICE)	3 (in HSPICE)
VTO	0.8 V	-0.8 V
KP	90 μA/V ²	30 μA/V ²
GAMMA	0.8 √ <i>V</i>	$0.4 \sqrt{V}$
LAMBDA	0.01 V ⁻¹	0.02 V ⁻¹
TOX	200 Å	200 Å
XJ	0.5 µm	0.5 µm
LD	0.3 µm	0.3 µm
PHI	0.7 V	0.6 V
NSUB	3.33 x 10 ¹⁶ cm ⁻³	3.33 x 10 ¹⁵ cm ⁻³
RSH	0 Ω	0 Ω
CGSO	500 pF/m	500 pF/m
CGDO	500 pF/m	500 pF/m
CGBO	0 F/m	0 F/m
CJ	300 μF/m ²	300 μF/m ²
MJ	0.5	0.5
CJSW	0 F/m	0 F/m
MJSW	0.33	0.33

Threshold voltage **Transconductance** Bulk threshold parameter Channel length modulation Gate oxide thickness Junction depth Lateral diffusion length Surface potential Substrate doping density Drain/source siddution sheet resistance Gate-source overlap capacitance Gate-drain overlap capacitance Gate-bulk overlap capacitance Bulk junction cap, 0V, bottom Bulk junction grading coeff., bottom Bulk junction cap, 0V, sidewall Bulk junction grading coeff., sidewall

Process / SPICE parameters for NMOS / PMOS transistors.

Find out how target specs impact specific parameters, and choose topology accordingly.

• Topology choice sets achievable G_m and R_{out}

Find out how target specs impact specific parameters, and choose topology accordingly.

■ Topology choice sets achievable G_m and R_{out}

• What do G_m and R_{out} need to be relative to a single device?

Find out how target specs impact specific parameters, and choose topology accordingly.

■ Topology choice sets achievable G_m and R_{out}

• What do G_m and R_{out} need to be relative to a single device? Single device performance

Swing constraint: $V_{DS} > V_{GS} - V_{T}$

V _{GS} =1V, W/L=5		V _{GS} =1.3 V	, W/L=20
NMOS	PMOS	NMOS	PMOS
9 μΑ	3 μΑ	0.2 mA	75 μΑ
90 μS	30 μS	0.9 mS	0.3 mS
11 MΩ	17 ΜΩ	0.4 ΜΩ	0.7 MΩ

 g_m in the 100s of μ S, r_o in the 100s of $k\Omega$

Find out how target specs impact specific parameters, and choose topology accordingly.

■ Topology choice sets achievable G_m and R_{out}

• What do G_m and R_{out} need to be relative to a single device?

Single device performance

Swing constraint: $V_{DS} > V_{GS} - V_{T}$

V _{GS} =1V, W/L=5		V _{GS} =1.3 V, W/L=20	
NMOS	PMOS	NMOS	PMOS
9 μΑ	3 μΑ	0.2 mA	75 μΑ
90 µS	30 μS	0.9 mS	0.3 mS
11 MΩ	17 ΜΩ	0.4 ΜΩ	0.7 ΜΩ

g_m in the 100s of μ S, r_o in the 100s of $k\Omega$

Requirements

Bandwidth constraint:

$$f_{BW} \approx \frac{1}{2\pi R_{out}C_L} \ge 1 MHz$$

 $R_{out} \le \frac{1}{2\pi \cdot 1MHz \cdot 5 pF} = 32 k\Omega$

Gain constraint:

$$A_V = G_m R_{out} \ge 10 \to G_m \ge \frac{10}{R_{out}} = 0.31 \, mS$$

Find out how target specs impact specific parameters, and choose topology accordingly.

■ Topology choice sets achievable G_m and R_{out}

• What do G_m and R_{out} need to be relative to a single device?

Single device performance

Swing constraint: $V_{DS} > V_{GS} - V_{T}$

V _{GS} =1V, W/L=5		V _{GS} =1.3 V, W/L=2	
NMOS	PMOS	NMOS	PMOS
9 μΑ	3 μΑ	0.2 mA	75 μΑ
90 µS	30 µS	0.9 mS	0.3 mS
11 MΩ	17 ΜΩ	0.4 ΜΩ	0.7 ΜΩ

 g_m in the 100s of μ S, r_o in the 100s of $k\Omega$

Requirements

Bandwidth constraint:

$$f_{BW} \approx \frac{1}{2\pi R_{out}C_L} \ge 1 MHz$$

 $R_{out} \le \frac{1}{2\pi \cdot 1MHz \cdot 5 pF} = 32 k\Omega$

Gain constraint:

$$A_V = G_m R_{out} \ge 10 \to G_m \ge \frac{10}{R_{out}} = 0.31 \, mS$$

 g_m about right, r_o needs to be smaller

Find out how target specs impact specific parameters, and choose topology accordingly.

Common Source Amplifier Common Source Amplifier w/ Degeneration

Source Follower

Find out how target specs impact specific parameters, and choose topology accordingly.

Common Source Amplifier Common Source Amplifier w/ Degeneration

Source Follower

	Equation	Effect
G_m	g_m	Same
R _{out}	$r_o//R_L$	Į.

Find out how target specs impact specific parameters, and choose topology accordingly.

	Equation	Effect	Equation	Effect
G_m	g_m	Same	$g_m/(1+g_mR_D)$	₽
R _{out}	$r_o^{\prime}/R_L^{\prime}$	↓	$(r_o(1+g_m^{}R_D^{}))//R_L^{}$	Varies

Find out how target specs impact specific parameters, and choose topology accordingly.

	Equation	Effect	Equation	Effect	Equation	Effect
G_m	$g_{_m}$	Same	$g_m/(1+g_mR_D)$	↓	g_{m}	Same
R _{out}	$r_o^{}/ R_L^{}$	<u>+</u>	$(r_o(1+g_mR_D))/R_L$	Varies	$R_s / / (1/g_m)$	TT.

Find out how target specs impact specific parameters, and choose topology accordingly.

Common Source Amplifier

R_L V_{OUT}

Common Source Amplifier w/ Degeneration

Source Follower

	Equation	Effect	Equation	Effect	Equation	Effect
G _m	g_{m}	Same	$g_m/(1+g_mR_D)$	+	\boldsymbol{g}_m	Same
R _{out}	r _o R _L	T.	$(r_o(1+g_mR_D))/R_L$	Varies	$R_s / / (1/g_m)$	II

Make a list of relevant equations and sort out how many "free" variables you really have.

Common Source Amplifier

Design constraints	Relevant equations
Gain > 10	$A_{V} = G_{m}R_{out} = g_{m}(r_{o}//R_{L})$
BW > 1 MHz	$f_{_{BW}} \approx 1/(2\pi(r_{_{O}} R_{_{L}})C_{_{L}})$
Output swing within 500 mV of supply rails	$V_{OUT} > V_{GS} - V_{T}$ $V_{min} = V_{GS} - V_{T}$

Make a list of relevant equations and sort out how many "free" variables you really have.

Design constraints	Relevant equations
Gain > 10	$A_{V} = G_{m}R_{out} = g_{m}(r_{o}/ R_{L})$
BW > 1 MHz	$f_{_{BW}} \approx 1/(2\pi(r_{_{o}} R_{_{L}})C_{_{L}})$
Output swing within 500 mV of supply rails	$V_{OUT} > V_{GS} - V_{T}$ $V_{min} = V_{GS} - V_{T}$

"Free" variables: V_{GS} , W/L, V_{OUT} , I_{DS} , R_{L} , ???

Make a list of relevant equations and sort out how many "free" variables you really have.

Design constraints	Relevant equations
Gain > 10	$A_{V} = G_{m}R_{out} = g_{m}(r_{o}/ R_{L})$
BW > 1 MHz	$f_{_{BW}} \approx 1/(2\pi (\frac{r_{_{o}}}{ R_{_{L}}})C_{_{L}})$
Output swing within 500 mV of supply rails	$V_{OUT} > V_{GS} - V_{T}$ $V_{min} = V_{GS} - V_{T}$

"Free" variables: V_{GS}, W/L, V_{OUT}, I_{DS}, R_L, ???

$$R_L = \frac{V_{DD} - V_{OUT}}{I_{DS}}$$

Full equations for R_{out} and G_m :

$$R_{out} = r_o || R_L = \frac{1}{I_{DS}} \frac{V_{DD} - V_{OUT}}{\left(1 + \lambda (V_{DD} - V_{OUT})\right)} \approx \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

Make a list of relevant equations and sort out how many "free" variables you really have.

Design constraints	Relevant equations
Gain > 10	$A_{V} = G_{m}R_{out} = g_{m}(r_{o}/ R_{L})$
BW > 1 MHz	$f_{BW} \approx 1/(2\pi (r_o R_L)C_L)$
Output swing within 500 mV of supply rails	$V_{OUT} > V_{GS} - V_{T}$ $V_{min} = V_{GS} - V_{T}$

Free variables:
$$V_{GS'}$$
, W/L, $V_{OUT'}$, $N_{DS'}$, R_{L}

$$R_{L} = \frac{V_{DD} - V_{OUT}}{I_{DS}}$$

Full equations for R_{out} and G_m :

$$R_{out} = r_o || R_L = \frac{1}{I_{DS}} \frac{V_{DD} - V_{OUT}}{\left(1 + \lambda (V_{DD} - V_{OUT})\right)} \approx \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

Step 3: How do constraints impact parameters?

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

Step 3: How do constraints impact parameters?

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T$$
 \longrightarrow $V_{GS} - V_T \le 500 \text{ mV}$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH}) \qquad \qquad R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain: $G_m R_{out} \ge 10$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain: $G_m R_{out} \ge 10$

$$G_{m}R_{out} = k'\frac{W}{L}(V_{GS} - V_{TH})\frac{2}{k'\frac{W}{L}(V_{GS} - V_{TH})^{2}}\frac{V_{DD} - V_{OUT}}{(1 + \lambda(V_{DD} - V_{OUT}))}$$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain: $G_m R_{out} \ge 10$

$$\begin{split} G_{m}R_{out} &= k' \frac{W}{L} (V_{GS} - V_{TH}) \frac{2}{k' \frac{W}{L} (V_{GS} - V_{TH})^{2}} \frac{V_{DD} - V_{OUT}}{(1 + \lambda(V_{DD} - V_{OUT}))} \\ &= \frac{2}{(V_{GS} - V_{TH})} \frac{V_{DD} - V_{OUT}}{(1 + \lambda(V_{DD} - V_{OUT}))} \end{split}$$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain: $G_m R_{out} \ge 10$

$$G_{m}R_{out} = k'\frac{W}{L}(V_{GS} - V_{TH})\frac{2}{k'\frac{W}{L}(V_{GS} - V_{TH})^{2}}\frac{V_{DD} - V_{OUT}}{(1 + \lambda(V_{DD} - V_{OUT}))}$$

$$10 \le \frac{2}{(V_{GS} - V_{TH})}\frac{V_{DD} - V_{OUT}}{(1 + \lambda(V_{DD} - V_{OUT}))}$$

$$V_{GS} - V_{TH} \le \frac{2}{10}\frac{5V - 2.5V}{(1 + 0.01 V^{-1}(5V - 2.5V))} \approx 500 \, mV$$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain:
$$G_m R_{out} \ge 10$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain:
$$G_m R_{out} \ge 10$$

$$32 k\Omega \ge \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{I} (V_{GS} - V_{TH})^2}$$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain:
$$G_m R_{out} \ge 10$$

$$32 k\Omega \ge \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$
$$32 k\Omega \ge \frac{2(2.5V)}{(90 \mu A/V^2) \frac{W}{L} (0.5V)^2}$$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T$$
 \longrightarrow $V_{GS} - V_T \le 500 \text{ mV}$

2) Bandwidth & gain constraints:

Gain:
$$G_m R_{out} \ge 10$$

$$32 k\Omega \ge \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$
$$32 k\Omega \ge \frac{2(2.5V)}{(90 \mu A/V^2) \frac{W}{L} (0.5V)^2}$$

$$\frac{W}{L} \ge \frac{2(2.5V)}{32 \, k\Omega \left(90 \, \mu \frac{A}{V^2}\right) (0.5V)^2} = 6.9$$

Solve equations to find acceptable design parameter ranges.

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$G_m = g_m = k' \frac{W}{L} (V_{GS} - V_{TH})$$

$$R_{out} = \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

1) Swing constraint: V_{min} ≤ 500 mV

$$V_{min} = V_{GS} - V_T \qquad \longrightarrow \qquad V_{GS} - V_T \le 500 \ mV$$

2) Bandwidth & gain constraints:

Gain: $G_m R_{out} \geq 10$

$$32 k\Omega \ge \frac{2(V_{DD} - V_{OUT})}{k' \frac{W}{L} (V_{GS} - V_{TH})^2}$$

$$32 k\Omega \ge \frac{2(2.5V)}{(90 \mu A/V^2) \frac{W}{L} (0.5V)^2}$$

$$\frac{W}{L} \ge \frac{2(2.5V)}{32 k\Omega \left(90 \mu \frac{A}{V^2}\right) (0.5V)^2} = 6.9$$

Parameter	Value
W/L	7
V_{GS}	$0.5 \text{ V} + \text{V}_{\text{TH}} = 1.3 \text{ V}$
l _{DS}	78 μΑ
R_L	$(V_{DD}-V_{OUT})/I_{DS} = 32 \text{ k}\Omega$

Step 4: Does this actually work?

Verify your design performance in a circuit simulator.

Pretty close! Gain is a little short, so let's increase W/L to boost g_m since R_L dominates R_{OUT}.

Transient Response:

Step 4: Does this actually work?

Verify your design performance in a circuit simulator.

Looks like this will do the job!

Transient Response:

Final Note

- Design goals usually involve some sort of optimization:
 - Smallest area
 - Lowest power
 - Highest bandwidth
 - Highest gain
 - Lowest noise
 - "Best" figure of merit (combination of parameters)
- Mathematical solution:
 - Find where derivative of performance metric with respect to design parameters is 0
- Practically:
 - Choose topology carefully for target specifications
 - Identify key design parameters