PLP - 5

TOPIC 5 — MODUS PONENS AND PROOFS

Demirbaş & Rechnitzer

MODUS PONENS — TOWARDS PROOFS

MODUS PONENS

Once we know an implication $P \implies Q$ is true, we want to use it.

- ullet If we also know that P is true
- ullet Then (by our truth table) we must have that Q is true

This deduction very useful and is precisely why we want to prove implications.

DEFINITION: (MODUS PONENS).

The deduction:

 $(P \implies Q)$ and P are true so Q must be true

is called modus ponens.

MODUS PONENS AND PROOFS

Say we need to prove $P \implies Q$ but cannot directly. Instead show that

- $P \implies P_1$ is true
- ullet $P_1 \implies P_2$ is true
- $ullet P_2 \implies P_3$ is true
- ...
- $ullet P_n \implies Q$ is true

Consider what happens when P is true (we can ignore P is false).

- When P is true, we can use modus ponens:
 - \circ Since P is true and $P \implies P_1$ is true, we know P_1 is true
 - $\circ~$ Since P_1 is true, we know that P_2 is true
 - 0
 - \circ Since P_n is true, we know that Q is true
- Hence Q cannot be false, so the implication is true!

TYPICAL PROOF STRUCTURE

PROPOSITION:

If P then Q

PROOF.

- ullet Assume that the hypothesis P is true
- We see that P implies P_1
- ullet From this we know that P_1 implies P_2
- •
- From P_n we know that Q as required.