

1 Obtendo a solução dual pelo quadro ótimo primal

Agora possuímos todas as ferramentas para mostrar que ao encontrarmos a solução ótima do primal, automaticamente encontramos a solução ótima do dual. Considere o par primal dual, com o primal escrito na forma padrão:

$$\begin{aligned} \mathbf{Primal} \\ \min \ \mathbf{z} &= \mathbf{c}^T \mathbf{x} \\ \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq 0 \end{aligned}$$

$$egin{aligned} \mathbf{Dual} \ \mathbf{max} \ \mathbf{z} &= \pi^T \mathbf{b} \ \mathbf{A}^T \pi \leq \mathbf{c} \ \pi \ \mathrm{irrestrito} \end{aligned}$$

Da mesma forma que fizemos antes, podemos particionar os problemas em relação às variáveis básicas e não básicas do problema original:

Primal

$$\min \mathbf{z} = \mathbf{c}_B^T \mathbf{x}_B + \mathbf{c}_N^T \mathbf{x}_N$$
$$\mathbf{B} \mathbf{x}_B + \mathbf{N} \mathbf{x}_N = \mathbf{b}$$
$$\mathbf{x} \ge 0$$

Dual

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$

$$\mathbf{B}^T \pi \le \mathbf{c}_B$$

$$\mathbf{N}^T \pi \le \mathbf{c}_N$$

$$\pi \ \text{irrestrito}$$

Pelo **teorema das folgas complementares**, na otimalidade, as variáveis com valores > 0 no primal (x_B) implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade:

$$\begin{aligned} \max \, \mathbf{v} &= \boldsymbol{\pi}^T \mathbf{b} \\ \mathbf{B}^T \boldsymbol{\pi} &\leq \mathbf{c}_B \\ \mathbf{N}^T \boldsymbol{\pi} &\leq \mathbf{c}_N \end{aligned}$$

De forma que:

$$\mathbf{max} \ \mathbf{v} = \boldsymbol{\pi}^T \mathbf{b}$$

$$\mathbf{B}^T \boldsymbol{\pi} = \mathbf{c}_B$$

$$\mathbf{N}^T \boldsymbol{\pi} < \mathbf{c}_N$$

Aplicando a transposta em ambos os lados (lembre-se que $(AB)^T = B^T A^T$):

$$\begin{aligned} \max \, \mathbf{v} &= \boldsymbol{\pi}^T \mathbf{b} \\ \boldsymbol{\pi}^T \mathbf{B} &= \mathbf{c}_B^T \\ \mathbf{N}^T \boldsymbol{\pi} &\leq \mathbf{c}_N \end{aligned}$$

Como podemos derivar uma solução genérica para π ? (como isolar π). Multiplicando ambos os lados da igualdade por B^{-1} :

$$\begin{aligned} \max \, \mathbf{v} &= \boldsymbol{\pi}^T \mathbf{b} \\ \boldsymbol{\pi}^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ \mathbf{N}^T \boldsymbol{\pi} &\leq \mathbf{c}_N \end{aligned}$$

Chegamos então ao modelo equivalente:

$$\max \mathbf{v} = \pi^T \mathbf{b}$$
$$\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$
$$\mathbf{N}^T \pi \le \mathbf{c}_N$$

Que nos fornece uma forma também genérica de calcular os valores duais, em função da inversa da base primal:

$$\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

Se olharmos a tabela genérica do Simplex, percebemos que esse mesmo termo aparece na linha da função objetivo, abaixo das variáveis não básicas. Analisando o termo da tabela com mais cuidado, distinguimos um caso em que o cálculo fica simplificado.

$$\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

$$\begin{array}{c|cccc} \mathbf{x}_B & \mathbf{x}_N & -z \\ \hline 0 & (\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}) & -\mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{I} & \mathbf{B}^{-1} \mathbf{N} & \mathbf{B}^{-1} \mathbf{b} \end{array}$$

Embora o termo esteja em função dos coeficientes não básicos, podemos usá-lo para analisar quaisquer termos da função objetivo, básicos e não básicos, de forma que \mathbf{c}_N^T são os coeficientes que queremos atualizar na fo (c_i^T) , e N a submatriz composta pelas colunas referentes a esses coeficientes (A_i) .

DADOS NÃO BÁSICOS

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

QUAISQUER VALORES

$$\mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} A_i$$

Lembrando que \mathbf{c}_N^T e \mathbf{N} são coletadas da matriz original. O que acontece se usarmos os dados das variáveis de folga para esse cálculo?

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

	x_1	x_2	x_3	x_4	x_5	-Z
VB	-1	-2	0	0	0	0
	1	1	1	0	0	6
	1	-1	0	1	0	4
	-1	1	0	0	1	4

Sempre os coeficientes das variáveis de folga (no inicio do quadro) são nulas.

		$oldsymbol{\mathbf{c}}_N^T$ –	$-\mathbf{c}_B^T\mathbf{B}$	-1N		
	x_1	x_2	x_3	x_4	x_5	-Z
VB	-1	-2	0	0	0	0
	1	1	1	0	0	6
	1	-1	0	1	0	4
	-1	1	0	0	1	4
VB	-1 1 1	-2	$ \begin{array}{c c} x_3 \\ \hline 0 \\ 1 \\ 0 \\ 0 \end{array} $	0	0 0	

De forma que $c_N^T = 0$.

Ainda, a submatriz composta pelas colunas das variáveis de folga no inicio do Simplex também sempre será a identidade (I) (no Simplex Fase I será a matriz das var. artificiais).

Ou seja, no caso das variáveis de folga:

$$1. \ \mathbf{c}_N^T = 0$$

2. N=I

O que faz o termo ficar:

$$\underbrace{\mathbf{c}_N^T}_0 - \mathbf{c}_B^T \mathbf{B}^{-1} \underbrace{\mathbf{N}}_I = -\mathbf{c}_B^T \mathbf{B}^{-1} = -\pi^T$$

Que é exatamente o negativo da expressão que encontramos para o problema dual:

$$\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$

(lembre do negativo)!

Partimos da definição do problema dual, considerando os termos separados em básicos e não básicos.

Com isso chegamos a uma expressão para a solução dual na otimalidade primal.

Percebemos que a expressão da solução dual está contida na própria tabela genérica do Simplex.

E que ao considerarmos somente os termos acima da matriz identidade inicial, os custos atualizados na função objetivo são **exatamente iguais ao negativo da solução dual**.

Conclusão

Os termos da função objetivo referentes a matriz identidade inicial (ou variáveis de folga ou artificiais), representam o negativo da solução do problema dual, de forma que **ao resolvermos o primal pela tabela Simplex, automáticamente encontramos também a solução do dual (o seu negativo!)**.

Atenção

- 1. Não remover as colunas artificiais ao final da fase I.
- 2. Ao resubstituir a função objetivo original, inicializar os coef. das variáveis artificiais = 0 (não usar esse valores como variáveis para entrar na base).
- 3. No final da otimização, os valores duais são os coef. das variáveis artificiais.

2 Exemplo

Considere o seguinte par primal-dual de PLs:

$$\max z = x_1 + 2x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 4$$

$$-x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

$$\min v = 6\pi_1 + 4\pi_2 + 4\pi_3$$

$$\pi_1 + \pi_2 - \pi_3 \ge 1$$

$$\pi_1 - \pi_2 + \pi_3 \ge 2$$

$$\pi_1, \pi_2 \ge 0$$

	x_1	x_2	x_3	x_4	x_5	-Z		x_1	x_2	x_3	x_4	x_5	-z
$\overline{\mathrm{VB}}$	-1	-2	0	0	0	0	$\overline{\mathrm{VB}}$	0	0	3/2	0	1/2	11
												-1/2	
	1	-1	0	1	0	4	x_4	0	0	0	1	1	8
	-1	1	0	0	1	4	x_2	0	1	1/2	0	1/2	5

O quadro inicial e o quadro ótimo para o problema primal são mostrados acima.

	x_1	x_2	x_3	x_4	x_5	-z		x_1	x_2	x_3	x_4	x_5	-z
$\overline{\mathrm{VB}}$	-1	-2	0	0	0	0	$\overline{\mathrm{VB}}$	0	0	3/2	0	1/2	11
		1		0	0	6	x_1	1	0	1/2	0	-1/2	1
	1	-1	0	1								1	
	-1	1	0	0	1	4	x_2	0	1	1/2	0	1/2	5

Verificando os elementos acima da identidade no quadro inicial.

										$-\pi_1$	$-\pi_2$	$-\pi_3$	
	x_1	x_2	x_3	x_4	x_5	-z		x_1	x_2	x_3	x_4	x_5	-z
$\overline{\mathrm{VB}}$	-1	-2	0	0	0	0	$\overline{\mathrm{VB}}$	0	0	3/2	0	1/2	11
	1	1	1	0	0	6	x_1	1	0	1/2	0	-1/2	1
	1	-1	0	1	0	4	x_4	0	0	0	1	1	8
	-1	1	0	0	1	4	x_2	0	1	1/2	0	1/2	5

Sabemos que na otimalidade eles são o negativo da solução dual, ou seja, $-\pi$.

Lembrando que para deixar o problema na forma padrão fizemos

$$\max\,z=-min\,z$$

Assim, temos que, para voltar à função original, multiplicamos os termos novamente por -1, o que gera:

- 1. $-\pi_1 = -3/2 \rightarrow \pi_1 = 3/2$
- 2. $-\pi_2 = -0 \rightarrow \pi_2 = 0$ 3. $-\pi_3 = -1/2 \rightarrow \pi_3 = 1/2$

Substituindo as soluções primal-dual $x^T = (x_1, x_2) = (1, 5)$ e $\pi^T = (\pi_1, \pi_2, \pi_3) = (1.5, 0, 0.5)$ nos modelos, temos:

$$\max z = x_1 + 2x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 4$$

$$-x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

$$\min v = 6\pi_1 + 4\pi_2 + 4\pi_3$$
$$\pi_1 + \pi_2 - \pi_3 \ge 1$$
$$\pi_1 - \pi_2 + \pi_3 \ge 2$$
$$\pi_1, \pi_2 \ge 0$$

Substituindo as soluções primal-dual $x^{T} = (x_1, x_2) = (1, 5)$ e $\pi^{T} = (\pi_1, \pi_2, \pi_3) = (1.5, 0, 0.5)$ nos modelos, temos:

$$\max z = 1 + 2 \cdot 5 \Rightarrow 11$$
$$1 + 5 \le 6 \Rightarrow 6 \le 6$$
$$1 - 5 \le 4 \Rightarrow -4 \le 4$$
$$-1 + 5 \le 4 \Rightarrow 4 \le 4$$
$$x_1, x_2 \ge 0$$

```
\min v = 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11
1.5 + 0 - 0.5 \ge 1 \Rightarrow 1 \ge 1
1.5 - 0 + 0.5 \ge 2 \Rightarrow 2 \ge 2
\pi_1, \pi_2 \ge 0
```

Vemos que todas as restrições são satisfeitas, e z=v, o que, pelo teorema fraco da dualidade garante que as soluções x e π são ótimas para seus respectivos problemas.

```
\max z = 1 + 2 \cdot 5 \Rightarrow 11 \checkmark
1 + 5 \le 6 \Rightarrow 6 \le 6 \checkmark
1 - 5 \le 4 \Rightarrow -4 \le 4 \checkmark
-1 + 5 \le 4 \Rightarrow 4 \le 4 \checkmark
x_1, x_2 \ge 0
```

$$\begin{aligned} \min \, v &= 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11 \checkmark \\ &1.5 + 0 - 0.5 \geq 1 \Rightarrow 1 \geq 1 \checkmark \\ &1.5 - 0 + 0.5 \geq 2 \Rightarrow 2 \geq 2 \checkmark \\ &\pi_1, \pi_2 \geq 0 \end{aligned}$$

As soluções são factíveis, mas como podemos garantir que são ótimas?

Pelo teorema fraco da dualidade parte 2, se Z=V para o par primal dual, então as soluções para ambos os problemas são ótimas.

3 Primal factivel - dual infactivel

Agora que sabemos que ao final do quadro Simplex, além de obtermos a solução ótima do primal, obtemos também a solução ótima do dual, podemos investigar o que ocorre com essa solução iteração a iteração. O que mostramos é que, **no quadro final primal (ótimo)** a solução dual é factível e ótima, **mas não sabemos nas iterações intermediárias**. Seja novamente o par primal-dual:

$$\max z = x_1 + 2x_2$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 4$$

$$-x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

$$\begin{aligned} \min \, v &= 6\pi_1 + 4\pi_2 + 4\pi_3 \\ \pi_1 + \pi_2 - \pi_3 &\geq 1 \\ \pi_1 - \pi_2 + \pi_3 &\geq 2 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Podemos analisar a cada iteração do Simplex, o que ocorre com a solução dual.

	x_1	x_2	x_3	x_4	x_5	-Z
$\overline{\mathrm{VB}}$	-1	-2	0	0	0	0
x_3	1	1	1	0	0	6
x_4	1	-1	0	1	0	4
x_5	-1	1	0	0	1	4

$$\min \, v = 6\pi_1 + 4\pi_2 + 4\pi_3$$

$$\pi_1 + \pi_2 - \pi_3 \ge 1$$

$$\pi_1 - \pi_2 + \pi_3 \ge 2$$

$$\pi_1, \pi_2 \ge 0$$

Na primeira iteração, a solução dual é factível? Solução atual $\pi=(0,0,0)$

	x_1	x_2	x_3	x_4	x_5	-z
VB	-1	-2	0	0	0	0
x_3	1	1	1	0	0	6
x_4	1	-1	0	1	0	4
x_5	-1	1	0	0	1	4

$$\begin{aligned} \min \, v &= 6 \cdot 0 + 4 \cdot 0 + 4 \cdot 0 \Rightarrow 0 \\ 0 + 0 - 0 &\geq 1 \Rightarrow 0 \geq 1 \ 55 \\ 0 - 0 + 0 &\geq 2 \Rightarrow 0 \geq 2 \ 55 \\ \pi_1, \pi_2 &\geq 0 \end{aligned}$$

Não, nenhuma restrição dual é satisfeita. Solução atual $\pi=(0,0,2)$

	x_1	x_2	x_3	x_4	x_5	-Z
VB	-3	0	0	0	2	8
x_3	2	0	1	0	-1	2
x_4	0	0	0	1	1	8
x_2	-1	1	0	0	1	4

$$\min v = 6 \cdot 0 + 4 \cdot 0 + 4 \cdot 2 \Rightarrow 8$$
$$0 + 0 - 2 \ge 1 \Rightarrow -2 \ge 1 \quad 55$$
$$0 - 0 + 2 \ge 2 \Rightarrow 2 \ge 2 \checkmark$$
$$\pi_1, \pi_2 \ge 0$$

Na segunda iteração a solução ainda é dual infactível, porém uma restrição é satisfeita. Solução atual $\pi=(1.5,0,0.5)$

	x_1	x_2	x_3	x_4	x_5	-Z
$\overline{\mathrm{VB}}$	0	0	3/2	0	1/2	11
x_1	1		1/2		-1/2	1
x_4	0	0	0	1	1	8
x_2	0	1	1/2	0	1/2	5

$$\begin{split} \min \, v &= 6 \cdot 1.5 + 4 \cdot 0 + 4 \cdot 0.5 \Rightarrow 11 \checkmark \\ 1.5 + 0 - 0.5 &\geq 1 \Rightarrow 1 \geq 1 \checkmark \\ 1.5 - 0 + 0.5 &\geq 2 \Rightarrow 2 \geq 2 \checkmark \\ \pi_1, \pi_2 &\geq 0 \end{split}$$

Somente na última iteração (ou seja, na otimalidade primal) a solução dual é factível.

Percebemos que para cada solução básica factível do primal, a solução correspondente do dual é infactível (exceto na otimalidade primal). Mas **por quê isso ocorre**? Para entender temos que recorrer novamente à tabela genérica Simplex.

Considere a tabela genérica, bem como o modelo dual com separação de variáveis básicas e não básicas.

\mathbf{x}_B	\mathbf{x}_N	-z
0	$(\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N})$	$-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$
I	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{b}$

$$\mathbf{max} \ \mathbf{v} = \pi^T \mathbf{b}$$

$$\mathbf{B}^T \pi \le \mathbf{c}_B$$

$$\mathbf{N}^T \pi \le \mathbf{c}_N$$

$$\pi \text{ irrestrito}$$

Novamente, pelo **teorema das folgas complementares**, as variáveis com valores > 0 no primal implicam variáveis de folga nulas no dual. Ou seja, após a inserção das folgas, sabemos que as restrições referentes a essas variáveis no dual são de igualdade. Multiplicando a primeira inequação pela inversa da base (B^{-1}) e aplicando a transposta:

$$\begin{array}{c|cccc} \mathbf{x}_B & \mathbf{x}_N & -z \\ \hline 0 & (\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}) & -\mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{I} & \mathbf{B}^{-1} \mathbf{N} & \mathbf{B}^{-1} \mathbf{b} \end{array}$$

$$\max \mathbf{v} = \pi^T \mathbf{b}$$
$$\pi^T = \mathbf{c}_B^T \mathbf{B}^{-1}$$
$$\mathbf{N}^T \pi \le \mathbf{c}_N$$
$$\pi \text{ irrestrito}$$

Aplicando a transposta em ambos os lados da inequação, e movendo o termo para a direita.

$$\begin{aligned} \max \mathbf{v} &= \boldsymbol{\pi}^T \mathbf{b} \\ \boldsymbol{\pi}^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ 0 &\leq \mathbf{c}_N^T - \boldsymbol{\pi}^T \mathbf{N} \\ \boldsymbol{\pi} \text{ irrestrito} \end{aligned}$$

Substituindo a solução π^T da primeira equação na inequação, ficamos com:

$$\begin{aligned} \max \mathbf{v} &= \boldsymbol{\pi}^T \mathbf{b} \\ \boldsymbol{\pi}^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ 0 &\leq \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ \boldsymbol{\pi} \text{ irrestrito} \end{aligned}$$

Note que o termo que define a restrição de factibilidade do dual, é exatamente o mesmo que define os custos na função objetivo da tabela Simplex referentes às variáveis não básicas.

$$\begin{aligned} \max \, \mathbf{v} &= \boldsymbol{\pi}^T \mathbf{b} \\ \boldsymbol{\pi}^T &= \mathbf{c}_B^T \mathbf{B}^{-1} \\ 0 &\leq \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \\ \boldsymbol{\pi} \, &\text{irrestrito} \end{aligned}$$

Assim, sabemos que quando a inequação

$$0 \le \mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$$

for satisfeita no quadro Simplex, a solução do dual será factível. Acontece que esse termo define o custo das variáveis não básicas na função objetivo. Sabemos que o critério de parada do método Simplex é justamente quando não existirem mais custos negativos das variáveis não básicas. Ou seja, enquanto:

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} < 0$$

O método continua, quando

$$\mathbf{c}_N^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N} \ge 0$$

Estamos na solução ótima.

4 Conclusão

Conclusão

O custo das variáveis não básicas na função objetivo é justamente o critério de factibilidade do problema dual. O critério só é atingido quando o a solução ótima do primal é encontrada. Ou seja, no método Simplex, a cada iteração temos uma solução primal factível e dual infactível, somente quando chegamos na otimalidade primal a solução dual é factível (e ótima).