Príklad 1. TM₁, 0ⁿ1ⁿ

Zadanie:

 \blacksquare Definujte Turingov stroj TM_1 , ktorý rozpoznáva jazyk $L_1 = \{ 0^n 1^n \mid n \geq 1 \}$

Riešenie:

$$TM_1 = (K, \Sigma, \Gamma, \delta, q_0, F)$$

$$K = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, 1, B, X, Y\}$$

$$F = \{q_5\}$$

$$\delta(q_0, 0) = (q_1, X, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, Y) = (q_1, Y, R)$$

$$\delta(q_1, 1) = (q_2, Y, L)$$

$$\delta(q_2, Y) = (q_2, Y, L)$$

$$\delta(q_2, X) = (q_3, X, R)$$

$$\delta(q_2,0) = (q_4,0,L)$$

$$\delta(q_4,0) = (q_4,0,L)$$

$$\delta(q_4, X) = (q_0, X, R)$$

$$\delta(q_3, Y) = (q_3, Y, R)$$

$$\delta(q_3, B) = (q_5, B, R)$$

Zobrazenie prechodov stavmi pri vstupnom slove 000111.

	X	X	X	Y	Y	Y	В
q_0							
	q_1						
		q_1					
			q_1				
				q_2			
			q_4				
		q_4					
	q_0						
		q_1					
			q_1				
				q_1			
					q_2		
				q_4			
			q_4				
		q_0					
			q_1				
				q_1			
					q_1		
						q_2	
					q_2		
				q_2			
			q_2				
				q_3			
					q_3		
						q_3	
							q_5

Príklad výpočtu:

 $\blacktriangleright\,$ Výpočet T stroja na vstupnom slove 01

$$(q_0,\uparrow 01) \vdash (q_1, \mathbf{X} \uparrow 1) \vdash (q_2,\uparrow \mathbf{X} \mathbf{Y}) \vdash (q_3, \mathbf{X} \uparrow \mathbf{Y}) \vdash (q_3, \mathbf{X} \mathbf{Y} \uparrow) \vdash (q_5, \mathbf{X} \mathbf{Y} \uparrow)$$

Príklad 2. TM₂, aⁿbⁿcⁿ

 $TM_2 = (K, \Sigma, \Gamma, \delta, q_0, F)$

 $\delta(q_k, w) = (q_k, w, R)$

 $\delta(q_k, B) = (q_f, B, R)$

Zadanie:

■ Definujte Turingov stroj TM_2 , ktorý rozpoznáva jazyk $L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}^+\}$

Riešenie:

Nájdeme na páske symbol a, označíme ho ako \underline{a} , postupujeme vpravo, cez a, \underline{b} až nájdeme symbol b. Nájdené b na páske označíme ako \underline{b} , postupujeme vpravo, cez b, \underline{c} až nájdeme symbol c. Nájdené c na páske označíme ako \underline{c} , vraciame sa späť, vľavo cez \underline{c} , b, \underline{b} až pokým nenájdeme symbol a alebo symbol \underline{a} . Keď nájdeme na páske symbol a, prejdem cez \underline{a} ku prvému a. Následne opakujem celý postup - cyklím. Keď už nenájdem symbol a iba symbol \underline{a} , som na konci prezerania vstupného slova. V kontrolnom stave skontrolujem či sú vpravo na páske len symboly b, c a prejdem do finálneho stavu a akceptujem.

$$K = \{q_0, q_1, q_2, q_3, q_4, q_k, q_f\}$$

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{a, b, c, \underline{a}, \underline{b}, \underline{c}\}$$

$$F = \{q_f\}$$

$$\delta(q_0, a) = (q_1, \underline{a}, R)$$

$$\delta(q_1, X) = (q_1, X, R)$$

$$\delta(q_1, b) = (q_2, \underline{b}, R)$$

$$\delta(q_2, Y) = (q_2, Y, R)$$

$$\gamma \in \{b, \underline{c}\}$$

$$\delta(q_3, Z) = (q_3, Z, L)$$

$$\delta(q_3, a) = (q_4, a, L)$$

$$\delta(q_4, a) = (q_4, a, L)$$

$$\delta(q_3, \underline{a}) = (q_0, \underline{a}, R)$$

$$\delta(q_3, \underline{a}) = (q_k, \underline{a}, R)$$

 $w \in \{b, c\}$

Zobrazenie prechodov stavmi pri vstupnom slove aaabbbccc.

В	<u>a</u>	<u>a</u>	<u>a</u>	<u>b</u>	<u>b</u>	<u>b</u>	<u>c</u>	<u>c</u>	<u>c</u>	В
	q_0									
	40	q_1								
		71	q_1							
			11	q_1						
				11	q_2					
					12	q_2				
						12	q_2			
						q_3	12			
					q_3	10				
				q_3	10					
			q_3	10						
		q_4	10							
	q_4									
		q_0								
			q_1							
				q_1						
					q_1					
						q_2				
							q_2			
								q_2		
							q_3			
						q_3				
					q_3					
				q_3						
			q_3							
		q_4								
			q_0							
				q_1						
					q_1					
						q_1				
							q_2			
								q_2		
									q_2	
								q_3		
							q_3			
						q_3				
					q_3					
				q_3						
			q_3							
				q_k						
					q_k					
						q_k				
							q_k			
								q_k		
									q_k	
										q_f

$\underline{Priklad~3.}~TM_3,\,ww^R$

Zadanie:

 \blacksquare Definujte Turingov stroj TM_3 , ktorý rozpoznáva jazyk $L_3 = \{ww^R \mid w \in \{a,b\}^*\}$

Riešenie:

$$TM_3 = (K, \Sigma, \Gamma, \delta, q_0, F)$$
 $K = \{q_0, q_a, q_{a'}, q_b, q_{b'}, q_n, q_f\}$
 $\Sigma = \{a, b\}$
 $\Gamma = \{a, b, B\}$
 $F = \{q_f\}$

$$\delta(q_0, a) = (q_a, B, R)$$

$$\delta(q_a, X) = (q_a, X, R) \qquad X \in \{a, b\}$$

$$\delta(q_a, B) = (q_{a'}, B, L)$$

$$\delta(q_a, a) = (q_n, B, L)$$

$$\delta(q_0, b) = (q_b, B, R)$$

$$\delta(q_b, X) = (q_b, X, R)$$

$$\delta(q_b, B) = (q_b, B, L)$$

$$\delta(q_b, B) = (q_b, B, L)$$

$$\delta(q_b, B) = (q_a, B, L)$$

$$\delta(q_a, X) = (q_a, X, L)$$

$$\delta(q_a, B) = (q_a, X, L)$$

 $\delta(q_0, B) = (q_f, B, R)$

Príklad 4. TM_4 , $\#_a w = \#_b w$

Zadanie:

 \blacksquare Definujte Turingov stroj TM_4 , ktorý rozpoznáva jazyk $L_4 = \{\#_a w = \#_b w \mid w \in \{a,b\}^*\}$

Riešenie:

$$TM_4 = (K, \Sigma, \Gamma, \delta, q_0, F)$$

 $K = \{q_0, q_1, q_2, q_3, q_4, q_f\}$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{a, b, \underline{a}, \underline{b}, B\}$$

$$F = \{q_f\}$$

$$\delta(q_0, a) = (q_1, \underline{a}, L)$$

$$\delta(q_0, X) = (q_0, X, R)$$

$$X \in \{\underline{a}, b, \underline{b}\}$$

$$\delta(q_1, X) = (q_1, X, L)$$

$$\delta(q_1, B) = (q_2, B, R)$$

$$\delta(q_2, Y) = (q_2, Y, R)$$

$$Y \in \{\underline{a}, \underline{b}, a\}$$

$$\delta(q_2, b) = (q_3, \underline{b}, L)$$

$$\delta(q_3, Y) = (q_3, Y, L)$$

$$\delta(q_3, B) = (q_0, B, R)$$

$$\delta(q_0, B) = (q_4, B, L)$$

$$\delta(q_4, Z) = (q_4, Z, L)$$

$$Z \in \{\underline{a},\underline{b}\}$$

$$\delta(q_4, B) = (q_f, B, R)$$

Zobrazenie prechodov stavmi pri vstupnom slove abbbabaa.

В	<u>a</u>	<u>b</u>	<u>b</u>	<u>b</u>	<u>a</u>	<u>b</u>	<u>a</u>	<u>a</u>	В
q_0	q_1								
q_1	q_2	q_2							
q_3	q_3								
	q_0	q_0	q_0	q_0	q_0				
q_1	q_1	q_1	q_1	q_1					
	q_2	q_2	q_2						
q_3	q_3	q_3							
	q_0								
q_1	q_1	q_1	q_1	q_1	q_1	q_1			
	q_2	q_2	q_2	q_2	q_2	q_2			
q_3	q_3	q_3	q_3	q_3	q_3				
	q_0								
q_1	q_1	q_1	q_1	q_1	q_1	q_1	q_1		
	q_2	q_2	q_2	q_2					
q_3	q_3	q_3	q_3						
	q_0	q_0							
								q_4	

Príklad 5. TM_5 , $\#_a w = \#_b w = \#_c w$

Zadanie:

■ Definujte Turingov stroj TM_5 , ktorý rozpoznáva jazyk $L_5 = \{\#_a w = \#_b w = \#_c \mid w \in \{a,b,c\}^*\}$

Riešenie:

Čítacia hlava bude postupovať po vstupnom slove smerom vpravo, až kým nenájde prvý nepodčiarknutý symbol a, ktorý zmení na \underline{a} . Vráti sa smerom vľavo, až po symbol blank B. Potom zmení smer vpravo a hľadá prvý nepodčiarknutý symbol b, ktorý zmení na \underline{b} . Vráti sa smerom vľavo, až po symbol blank B. Následne znovu zmení smer vpravo a hľadá prvý nepodčiarknutý symbol c, ktorý zmení na \underline{c} . Vráti sa smerom vľavo, až po symbol blank B. Túto činnosť opakuje až kým pri hľadaní symbolu a narazí na symbol B vpravo. Nakoniec cestou vľavo skontroluje vstupné slovo, či naozaj obsahuje iba podčiarknuté symboly \underline{a} , \underline{b} , \underline{c} .

$$TM_5 = (K, \Sigma, \Gamma, \delta, q_0, F)$$

$$K = \{q_0, q_1, q_2, q_3, q_4, q_5, q_k, q_f\}$$

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{a, b, c, \underline{a}, \underline{b}, \underline{c}\}$$

$$F = \{q_f\}$$

hľadá symbol a, $stav q_0$

$$\delta(q_0, X) = (q_0, X, R) \qquad X \in \{\underline{a}, b, \underline{b}, c, \underline{c}\}$$

$$\delta(q_0, a) = (q_1, a, L)$$

$$\delta(q_0, a) = (q_1, \underline{a}, L)$$

$$\delta(q_1, X) = (q_1, X, L)$$

$$\delta(q_1, B) = (q_2, B, R)$$

hľadá symbol b, $stav q_2$

$$\delta(q_2, Y) = (q_2, Y, R)$$
 $Y \in \{a, \underline{a}, \underline{b}, c, \underline{c}\}$

$$\delta(q_2, b) = (q_3, \underline{b}, L)$$

$$\delta(q_3, Y) = (q_3, Y, L)$$

$$\delta(q_3, B) = (q_4, B, R)$$

hľadá symbol c, $stav q_4$

$$\delta(q_4, Z) = (q_4, Z, R) \qquad Z \in \{a, \underline{a}, b, \underline{b}, \underline{c}\}\$$

$$\delta(q_4, c) = (q_5, \underline{c}, L)$$

$$\delta(q_5, Z) = (q_5, Z, L)$$

$$\delta(q_5,B)=(q_0,B,R)$$

kontrola, $stav q_k$

$$\delta(q_0, B) = (q_k, B, L)$$

$$\delta(q_k, v) = (q_k, v, R)$$
 $v \in \{\underline{a}, \underline{b}, \underline{c}\}$

$$\delta(q_k,B) = (q_f,B,R)$$

Príklad 6. TM₆, ww

Zadanie:

 \blacksquare Definujte Turingov stroj TM_6 , ktorý rozpoznáva jazyk $L_6 = \{ww \mid w \in \{a, b, c\}^*\}$

Riešenie:

Hľadám stred vstupného slova na páske takým spôsobom, že označujem symboly zľava a sprava ako podčiarknuté symboly. Stred je na n/2+1 pozícii. Stred vstupného slova mi označuje koniec prvého a začiatok druhého alova. Následne môžem kontrolovať zhodnosť oboch slov. Keď som v strede vstupného slova, označím symbol druhého slova veľkým písmenom, zapamätám si daný symbol v stave a vrátim sa vľavo, kde označím ten istý symbol v prvom slove veľkým písmenom a traverzujem vpravo do druhého slova. Opakujem tento postup, až kým neoznačím posledné písmeno prvého slova, čo znamená, že pri traverzovaní nájdem veľký podčiarknutý symbol. Prejdem do kontrolného stavu, skontrolujem slovo, či niekde nezostal neoznačený symbol a pri narazení na blank B akceptujem.

$$TM_6 = (K, \Sigma, \Gamma, \delta, q_0, F)$$

$$K = \{q_0, q_1, q_2, q_3, q_4, q_5, q_a, q_{a'}, q_{a''}, q_t, q_{t'}, q_{t''}, q_k, q_f\}$$

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{a, b, c, \underline{a}, \underline{b}, \underline{c}\}$$

$$F = \{q_f\}$$

hľadá stred vstupného slova, $stav q_0$

$$\delta(q_0, x) = (q_1, \underline{x}, R) \qquad x \in \{a, b\}$$

$$\delta(q_1, x) = (q_1, x, R)$$

$$\delta(q_1, y) = (q_2, y, L) \qquad y \in \{B, \underline{a}, \underline{b}\}$$

$$\delta(q_2, x) = (q_3, \underline{x}, L)$$

$$\delta(q_3, \underline{x}) = (q_4, \underline{x}, R)$$

$$\delta(q_3, x) = (q_5, x, L)$$

$$\delta(q_5, x) = (q_5, x, L)$$

$$\delta(q_5, \underline{x}) = (q_0, \underline{x}, R)$$

našiel stred vstupného slova v stave q_4

kontroluje rovnosť slov w
, začína v strede v stave q_4

kontrola symbolu a, zapamätávanie symbolu v stave q_a

$$\delta(q_4, \underline{a}) = (q_a, \underline{A}, L)$$
$$\delta(q_a, X) = (q_a, X, L)$$

$$\delta(q_a, \underline{x}) = (q_{a'}, \underline{x}, L)$$

$$\delta(q_{a'}, \underline{x}) = (q_{a'}, \underline{x}, L)$$

$$\delta(q_{a'}, \underline{z}) = (q_{a''}, \underline{z}, R) \qquad z \in \{B, \underline{A}, \underline{B}\}$$

$$\delta(q_{a''},\underline{a}) = (q_t,\underline{A},R)$$

$$\delta(q_t, \underline{x}) = (q_{t'}, \underline{x}, R)$$

$$\delta(q_{t'},\underline{x}) = (q_{t'},\underline{x},R)$$

$$\delta(q_t, \underline{X}) = (q_k, \underline{X}, R)$$

$$\delta(q_k, \underline{X}) = (q_k, \underline{X}, R)$$

$$\delta(q_k, B) = (q_f, B, R)$$

$$\delta(q_{t'}, \underline{X}) = (q_{t''}, \underline{X}, R)$$

$$\delta(q_{t''},\underline{X}) = (q_{t'},\underline{X},R)$$

kontrola symbolu b, zapamätávanie symbolu v stave q_b

$$\delta(q_4, \underline{b}) = (q_b, \underline{B}, L)$$

$$\delta(q_b, \underline{X}) = (q_b, \underline{X}, L)$$

$$\delta(q_b, \underline{x}) = (q_{b'}, \underline{x}, L)$$

$$\delta(q_{b'},\underline{x}) = (q_{b'},\underline{x},L)$$

$$\delta(q_{b'}, \underline{z}) = (q_{b''}, \underline{z}, R) \qquad v \in \{A, \underline{A}, \underline{B}\}$$

$$\delta(q_{b''}, \underline{b}) = (q_t, \underline{B}, R)$$

$$\delta(q_t, \underline{x}) = (q_{t'}, \underline{x}, R)$$

$$\delta(q_{t'},\underline{x}) = (q_{t'},\underline{x},R)$$

$$\delta(q_t, \underline{X}) = (q_k, \underline{X}, R)$$

$$\delta(q_k, \underline{X}) = (q_k, \underline{X}, R)$$

$$\delta(q_k, B) = (q_f, B, R)$$

$$\delta(q_{t'}, \underline{X}) = (q_{t''}, \underline{X}, R)$$

$$\delta(q_{t''}, \underline{X}) = (q_{t'}, \underline{X}, R)$$