Лекции по предмету **Линейная алгебра и геометрия**

Группа лектория ФКН ПМИ 2015-2016 Ася Иовлева Ксюша Закирова Руслан Хайдуров

2016 год

Содержание

1	Лек	кция 15 от 11.01.2016	1
	1.1	Скаляры. Поля	1
	1.2	Поле комплексных чисел	2
	1.3	Геометрическая модель поля $\mathbb C$	3
2	Лекция 16 от 18.01.2016		
	2.1	Комплексные числа (продолжение)	5
	2.2	Корни из комплексного числа	6
	2.3	Решение квадратных уравнений с комплексными коэффициентами	7
	2.4	Векторные пространства над произвольным полем	7
3	Лекция 17 от 25.01.2016		
	3.1	Овеществление и комплексификация	8
	3.2	Сумма подпространств	9
	3.3	Переход к новому базису	10

Лекция 15 от 11.01.2016

Скаляры. Поля

Для начала вспомним, что такое *векторное пространство* — это множество, на котором введены операции сложения, умножения на скаляр и в котором будут выполнятся восемь аксиом (см. 1 семестр). Но что такое скаляр?

Определение. Скаляры — это элементы некоторого фиксированного поля.

Определение. Полем называется множество F, на котором заданы две операции — «сложение» (+) и «умножение» (\cdot) ,

$$F \times F \to F \Rightarrow \begin{array}{c} +: (a,b) \mapsto a+b \\ \cdot: (a,b) \mapsto a \cdot b \end{array}$$

удовлетворяющие следующим свойствам («аксиомам поля»): $\forall a,b,c \in F$

- 1. a + b = b + a (коммутативность по сложению);
- 2. (a + b) + c = a + (b + c) (ассоциативность по сложению);
- 3. $\exists 0 \in F : 0 + a = a + 0 = a$ (существование нулевого элемента);
- 4. $\exists -a \in F: a + (-a) = (-a) + a = 0$ (существование противоположного элемента);
- 5. a(b+c) = ab + ac (дистрибутивность; связь между сложением и умножением);
- 6. ab = ba (коммутативность по умножению);
- 7. (ab)c = a(bc) (ассоциативность по умножению);
- 8. $\exists 1 \in F \setminus \{0\} : 1 \cdot a = a \cdot 1 = a$ (существование единицы);
- 9. $a \neq 0 \Rightarrow \exists a^{-1} \in F : a \cdot a^{-1} = a^{-1} \cdot a = 1$ (существование обратного элемента).

Пример.

- \mathbb{Q} рациональные числа;
- \mathbb{R} вещественные числа;
- \mathbb{C} комплексные числа;
- $F_2 = \{0,1\}$, при сложении и умножении по модулю 2.

Поле комплексных чисел

Поле вещественных чисел \mathbb{R} плохо тем, что в нем уравнение $x^2 + 1 = 0$ не имеет решения. Отсюда возникает идея определить поле, удовлетворяющее следующим требованиям:

- (T1) новое поле содержит \mathbb{R} ;
- (T2) уравнение $x^2 + 1 = 0$ имеет решение.

Давайте формально простроим такое поле.

Определение. Полем \mathbb{C} комплексных чисел называется множество $\{(a,b) \mid a,b \in \mathbb{R}\}$, на котором заданы операции сложения: $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$ и умножения: $(a_1,b_1)\cdot(a_2,b_2)=(a_1a_2-b_1b_2,a_1b_2+b_1a_2)$.

Предложение. \mathbb{C} *и впрямь является полем.*

Доказательство. Операции сложения и умножения введены, осталось только проверить выполнение всех аксиом.

- 1. очевидно, так как сложение идет поэлементно;
- 2. также очевидно;

- 3. 0 = (0,0);
- 4. -(a,b) = (-a,-b);
- 5. почти очевидно (т.е. прямая проверка);
- 6. ясно (тоже прямая проверка);
- 7. проверим:

$$((a_1, b_1)(a_2, b_2))(a_3, b_3) = (a_1a_2 - b_1b_2, a_1b_2 + b_1a_2)(a_3, b_3) =$$

$$= (a_1a_2a_3 - b_1b_2b_3 - a_1b_2b_3 - b_1a_2b_3, a_1a_2b_3 - b_1b_2b_3 + a_1b_2a_3 + b_1a_2a_3) =$$

$$= (a_1, b_1)(a_2a_3 - b_2b_3, a_2b_3 + b_2a_3) = (a_1, b_1)((a_2, b_2)(a_3, b_3));$$

8. 1 = (1,0);

9.
$$(a,b) \neq 0 \Leftrightarrow a^2 + b^2 \neq 0 \to (a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$
.

Осталось только проверить, правда ли введенное поле $\mathbb C$ удовлетворяет нашим требованиям:

(T1) Заметим, что в подмножестве \mathbb{C} , состоящим из элементов вида (a,0) операции сложения и умножения будут работать как в поле вещественных чисел.

$$(a,0) + (b,0) = (a+b,0)$$

 $(a,0) \cdot (b,0) = (ab,0)$

Следовательно, отображение $a \mapsto (a,0)$ отождествляет \mathbb{R} с этим подмножеством, то есть $\mathbb{R} \to \mathbb{C}$. Что нам и требуется.

(Т2) Примем i = (0,1). Тогда $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$. Итого, требование выполнено.

Однако запись комплексных чисел в виде упорядоченной пары (a,b) не очень удобна и громоздка. Поэтому преобразуем запись следующим образом:

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + bi.$$

Тем самым мы получили реализацию поля $\mathbb C$ комплексных чисел как множества $\{a+bi\mid a,b\in\mathbb R,\,i^2=-1\},$ с обычным сложением и умножением.

Определение. Запись z=a+bi называется алгебраической формой комплексного числа $z\in\mathbb{C}.$

 $a = \operatorname{Re} z - \partial e$ йствительная часть числа z.

 $b = \operatorname{Im} z -$ мнимая часть числа z.

Определение. Числа вида z = bi (m.e. $\operatorname{Re} z = 0$) называются чисто мнимыми.

Определение. Отображение $\mathbb{C} \to \mathbb{C}$: $a+bi \mapsto a-bi$ называется (комплексным) сопряжением. Само число $\overline{z}=a-bi$ называется (комплексно) сопряженным к числу z=a+bi.

Лемма. Для любых двух комплексных числе $z, w \in \mathbb{C}$ выполняется, что

- 1. $\overline{z+w}=\overline{z}+\overline{w}$:
- 2. $\overline{zw} = \overline{z} \cdot \overline{w}$.

Доказательство. Пусть z = a + bi, а w = c + di.

1.
$$\overline{z} + \overline{w} = a - bi + c - di = (a + c) - (b + d)i = \overline{z + w}$$

2.
$$\overline{z} \cdot \overline{w} = (a - bi)(c - di) = ac - adi - bci + bdi^2 = (ac - bd) - (ad + bc)i = \overline{zw}$$

Замечание. Равенство $z=\overline{z}$ равносильно равенству $\operatorname{Im} z=0$, то есть $z\in\mathbb{R}$.

Геометрическая модель поля $\mathbb C$

Заметим, что поле комплексных числе $\mathbb{C} = \{(a,b) \mid a,b \in \mathbb{R}\}$ равно \mathbb{R}^2 . Следовательно, комплексные числа можно представить как точки на действительной плоскости \mathbb{R}^2 , или сопоставить их векторам.

В таком представлении сложение комплексных чисел сопоставляется со сложением векторов, а сопряжение — с отражением относительно оси $Ox(\operatorname{Re} z)$.

Определение. Модулем комплексного числа z = a + bi называется длина соответствующего вектора. Обозначение: |z|; $|z| = \sqrt{a^2 + b^2}$.

Свойства модуля:

1. $|z| \ge 0$, причем |z| = 0 тогда и только тогда, когда z = 0;

2. $|z + w| \le |z| + |w|$ — неравенство треугольника;

3. $z \cdot \overline{z} = |z|^2$;

Доказательство. $(a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$.

4. $|zw| = |z| \cdot |w|$;

Доказательство. Возведем в квадрат.

$$|z|^2 \cdot |w|^2 = z\overline{z}w\overline{w} = (zw)\overline{z}\overline{w} = zw\overline{z}\overline{w} = |zw|^2$$

Замечание. Из свойства 3 следует, что при $z \neq 0$ выполняется:

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
$$(a+bi)^{-1} = \frac{1}{a+bi} = \frac{a-bi}{a^2+b^2}.$$

Определение. Аргументом комплексного числа $z \neq 0$ называется всякий угол φ такой что

$$\cos \varphi = \frac{a}{|z|} = \frac{a}{\sqrt{a^2 + b^2}}; \quad \sin \varphi = \frac{b}{|z|} = \frac{b}{\sqrt{a^2 + b^2}}.$$

Неформально говоря, аргумент z — это угол между осью Ox и соответствующим вектором.

Замечание.

- 1. Аргумент определен с точностью до 2π .
- 2. Аргумент z=0 не определен.

Для $z \neq 0$ введем множество Arg $z = \{$ множество всех аргументов $z \}$ — большой аргумент. Также введем малый аргумент arg z — это такой $\varphi \in \text{Arg } z$, который удовлетворяет условию $0 \leqslant \varphi < 2\pi$ и, следовательно, определен однозначно.

Используя аргумент, можно представить комплексное число следующим образом:

$$\begin{vmatrix} a = |z|\cos\varphi \\ b = |z|\sin\varphi \end{vmatrix} \Rightarrow z = a + bi = |z|\cos\varphi + i|z\sin\varphi = |z|(\cos\varphi + i\sin\varphi)$$

Определение. 3anucь $z=|z|(\cos\varphi+i\sin\varphi)$ называется тригонометрической формой комплексного числа z.

Замечание.

$$r_1(\cos\varphi_1 + i\sin\varphi_1) = r_2(\cos\varphi_2 + i\sin\varphi_2) \Leftrightarrow \begin{cases} r_1 = r_2\\ \varphi_1 = \varphi_2 + 2\pi n, & n \in \mathbb{Z} \end{cases}$$

Лекция 16 от 18.01.2016

Вспомним предыдущую лекцию и кое-что дополним

Замечание.

- 1. Элемент $0 e \partial u$ нственный.
- 2. И элемент -a единственный.
- 3. Даже элемент 1 единственный.
- 4. Как это ни удивительно, но a^{-1} тоже единственный.

Легко увидеть, что пункты 2 и 4 доказываются одинаково с точностью до замены операции, как и пункты 1 и 3.

Доказательство. Докажем пункт 3. Если существует 1' — еще одна единица, тогда по аксиомам $1' = 1' \cdot 1 = 1$.

Докажем теперь пункт 4. Пусть b и c таковы, что $b \neq c$ и ba = ab = ac = ca = 1. Тогда

$$bac = (ba) c = b (ac) = 1 \cdot c = c = 1 \cdot b = b$$

To есть b=c.

Комплексные числа (продолжение)

Предложение. Пусть $z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2).$ Тогда

$$z_1 z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

Иными словами, при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Доказательство. Просто раскроем скобки и приведём подобные.

$$z_1 z_2 = |z_1||z_2| \left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i \left(\cos \varphi_1 \sin \varphi_2 + \cos \varphi_2 \sin \varphi_1\right)\right) =$$
$$= |z_1||z_2| \left(\cos \left(\varphi_1 + \varphi_2\right) + i \sin \left(\varphi_1 + \varphi_2\right)\right)$$

Следствие. $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos{(\varphi_1 - \varphi_2)} + i\sin{(\varphi_1 - \varphi_2)})$

Следствие (Формула Муавра). Пусть $z = |z|(\cos \varphi + i \sin \varphi)$. Тогда:

$$z^n = |z|^n (\cos(n\varphi) + i\sin(n\varphi)) \quad \forall n \in \mathbb{Z}.$$

Замечание. В комплексном анализе функция $\exp x\colon \mathbb{R} \to \mathbb{R}$ доопределяется до $\exp z\colon \mathbb{C} \to \mathbb{C}$ следующим образом:

$$\exp z = \sum_{n=0}^{\infty} \frac{z^n}{n!} .$$

U тогда оказывается, что $\exp z$ обладает теми же свойствами, кроме того:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi \quad \forall \varphi \in \mathbb{C}.$$

Всякое $z \in \mathbb{C}$ можно представить в виде $z = |z|e^{i\varphi}$, где $\varphi \in \mathrm{Arg}\ (z)$. Тогда формула Муавра приобретает совсем очевидный вид:

$$|z_1|e^{i\varphi_2} \cdot |z_2|e^{i\varphi_2} = |z_1||z_2|e^{i(\varphi_1+\varphi_2)}.$$

Замечание. Отображение $R_{\varphi} \colon \mathbb{C} \to \mathbb{C}, z \to ze^{i\varphi}, \varphi \in \mathbb{R}$ определяет поворот на угол φ вокруг 0.

Корни из комплексного числа

Пусть $n \in \mathbb{N}$ и $n \geqslant 2$.

Определение. Корнем n-й степени из числа z называется всякое $w \in \mathbb{C}$: $w^n = z$. То есть

$$\sqrt[n]{z} = \{ w \in \mathbb{C} \mid w^n = z \}.$$

Если z=0, то |z|=0, а значит |w|=0, w=0. Получается, 0 — единственное комплексное число, у которого корень определён однозначно.

Далее рассмотрим случай $z \neq 0$.

$$z = |z| (\cos \varphi + i \sin \varphi)$$

$$w = |w| (\cos \psi + i \sin \psi)$$

$$z = w^n \Leftrightarrow \begin{cases} |z| = |w|^n \\ n\psi \in \operatorname{Arg}(z) \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ n\psi = \varphi + 2\pi k, \quad k \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n}, \quad k \in \mathbb{Z} \end{cases}$$

С точностью до кратного 2π различные значения в формуле $\psi = \frac{\varphi + 2\pi k}{n}$ получаются при $k = 0, 1, \dots, n-1$. Значит z имеет ровно n корней n-й степени.

$$\sqrt[n]{z} = \left\{ |z| \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) \mid k = 0, \dots, n - 1 \right\}$$

Замечание. Точки из множества $\sqrt[n]{z}$ при $z \neq 0$ лежат в вершинах правильного n-угольника, вписанного в окружность радиуса $\sqrt[n]{|z|}$.

Пример. $z=-1=\cos\pi+i\sin\pi$

$$\sqrt[3]{z} = \left\{ \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}; \cos\pi + i\sin\pi; \cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3} \right\}$$

Решение квадратных уравнений с комплексными коэффициентами

Пусть дано квадратное уравнение $az^2 + bz + c = 0$, где $a, b, c \in \mathbb{C}$ и $a \neq 0$. Тогда имеем:

$$z^{2} + \frac{b}{a} + \frac{c}{a} = 0$$

$$z^{2} + 2\frac{b}{2a} + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$

$$\left(z + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$z + \frac{b}{2a} \in \sqrt{\frac{b^{2} - 4ac}{4a^{2}}} = \frac{\sqrt{b^{2} - 4ac}}{2a}$$

То есть все решения — это $z_1=\frac{-b+d_1}{2a}, z_2=\frac{-b+d_2}{2a},$ где $\{d_1,d_2\}=\sqrt[2]{b^2-4ac}$. В частности, квадратное уравнение всегда имеет комплексный корень, а при $b^2-4ac\neq 0$ два корня.

Теорема (Основная теорема алгебры). Всякий многочлен $P\left(z\right)=a_{n}z^{n}+a_{n-1}z^{n-1}+\ldots+a_{1}z+a_{0}$ степени $n,\ \textit{где}\ n\geqslant 1,\ a_{n}\neq 0,\ u\ a_{0},\ldots,a_{n}\in\mathbb{C}$ имеет корень.

Векторные пространства над произвольным полем

И снова вспомним, что такое векторное пространство:

- некоторое множество V;
- есть операция сложения $V \times V \to V$;
- есть операция умножения на скаляр $F \times V \to V$;
- выполняются 8 аксиом.

Все основные понятия и результаты теории векторных пространств из прошлого полугодия можно перенести на случай пространства над произвольным полем F без изменений.

Пример. Пусть V- векторное пространство над полем из двух элементов, $\dim V=n$. Тогда $|V|=2^n$. Действительно, каждое конечномерное пространство обладает базисом (в данном случае e_1,\ldots,e_n). Тогда $V=\{k_1e_1+k_2e_2+\ldots+k_ne_n\mid k_i\in F\}$. Но очень легко заметить, что всего таких линейных комбинаций 2^n

Лекция 17 от 25.01.2016

Овеществление и комплексификация

Пусть V — векторное пространство над \mathbb{C} .

Определение. Овеществление пространства V — это то же пространство V, рассматриваемое как пространство над \mathbb{R} . Обозначение: $V_{\mathbb{R}}$.

Операция умножения на элементы \mathbb{R} в V уже есть, так как \mathbb{R} — подполе в \mathbb{C} .

Пример. $\mathbb{C}_{\mathbb{R}} = \mathbb{R}^2$.

Предложение. V — векторное пространство над \mathbb{C} , $\dim V < \infty$. Тогда $\dim V_{\mathbb{R}} = 2 \dim V$.

Доказательство. Пусть e_1, \ldots, e_n — базис в V. Тогда $V = \{z_1e_1 + \ldots + z_ne_n \mid z_k \in \mathbb{C}\}$, причём такая запись единственная в силу определения базиса. Пусть $z_k = a_k + ib_k$, причём такая запись тоже единственная. Тогда будем иметь

$$V = \{(a_1 + ib_1) e_1 + \ldots + (a_n + ib_n) e_n \mid a_k, b_k \in \mathbb{R}\} = \{a_1e_1 + \ldots + a_ne_n + b_1ie_1 + \ldots + b_nie_n \mid a_k, b_k \in \mathbb{R}\}$$

И причём такая запись тоже единственная. Выходит, что $e_1, e_2, \dots, e_n, ie_1, ie_2, \dots, ie_n$ — базис в $V_{\mathbb{R}}$, в котором $2n=2\dim V$ элементов.

Определение. Комплексификация пространства $W - \mathfrak{m}o$ множество $W \times W = W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\}$ с операциями $(u_1,v_1) + (u_2,v_2) = (u_1 + u_2,v_1 + v_2), (a+ib)(u,v) = (au - bv, av - bu).$

Пример. $\mathbb{R}^{\mathbb{C}} = \mathbb{R}$.

Утверждение. В нём выполняются все 8 аксиом векторного пространства над \mathbb{C} .

W отождествляется подмножеством $\{(u,0) \mid u \in W\}$. Действительно

$$w \in W \Leftrightarrow (w,0) \in W^{\mathbb{C}}; \ i(w,0) = (0,w) \in W^{\mathbb{C}}$$

В итоге $\forall (u,v) \in W^{\mathbb{C}}$ представим в виде

$$(u,v) = (u,0) + (0,v) = (u,0) + i(v,0) = u + iv$$

To есть $W^{\mathbb{C}} = \{u + iv \mid u,v \in W\}.$

Предложение. $\dim W^{\mathbb{C}} = \dim W$

Замечание. $3 dec_{\mathcal{V}} W^{\mathbb{C}} - npocmpancmeo \ nad \ \mathbb{C}, \ a \ W - nad \ \mathbb{R}.$

Доказательство. Пусть e_1, \ldots, e_n — базис в W. Тогда

$$W^{\mathbb{C}} = \{(u,v) \mid u,v \in W\} = \{(a_1e_1 + a_2e_2 + \ldots + a_ne_n, b_1e_1 + b_2e_2 + \ldots + b_ne_n) \mid a_k,b_k \in \mathbb{R}\} = \{(a_1e_1,b_1e_1) + \ldots + (a_ne_n,b_ne_n)\} = \{(a_1+ib_1)e_1 + \ldots + (a_n+ib_n)e_n\} = \{z_1e_1 + \ldots + z_ne_n \mid z_k \in \mathbb{C}\}$$

To есть выходит, что e_1, \ldots, e_n — базис в $W^{\mathbb{C}}$.

Сумма подпространств

Пусть V — конечномерное векторное пространство, а U и W — подпространства (в качестве упражнения лектор предлагает доказать, что их пересечение — тоже подпространство).

Определение. Сумма подпространств $U\ u\ W\ -\$ это множество.

$$U+W=\{u+w\mid u\in U, w\in W\}$$

Замечание. $\dim (U \cap W) \leqslant \dim U \leqslant \dim (U + W)$

Пример. Двумерные плоскости в пространстве \mathbb{R}^3 содержат общую прямую.

Теорема. dim $(U \cap W)$ = dim U + dim W - dim (U + W)

Доказательство. Положим $p = \dim(U \cap W)$, $k = \dim U$, $m = \dim W$. Выберем базис $a = \{a_1, \ldots, a_k\}$ в пересечении. Его можно дополнить до базиса W и до базиса U. Значит $\exists b = \{b_1, \ldots, b_{k-p}\}$ такой, что $a \cup b$ — базис в U и $\exists c = \{c_1, \ldots, c_{m-p}\}$ такой, что $a \cup c$ — базис в W. Докажем, что $a \cup b \cup c$ — базис в U + W.

Во-первых, докажем, что U+W порождается множеством $a\cup b\cup c$.

$$\begin{array}{l} v \in U + W \Rightarrow \exists u \in U, w \in W \colon \ v = u + w \\ u \in U = \langle a \cup b \rangle \subset \langle a \cup b \cup c \rangle \\ w \in W = \langle a \cup c \rangle \subset \langle a \cup b \cup c \rangle \end{array} \\ \Rightarrow v = u + w \in \langle a \cup b \cup c \rangle \Rightarrow U + W = \langle a \cup b \cup c \rangle$$

Во-вторых, докажем линейную независимость векторов из $a \cup b \cup c$.

Пусть скаляры $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_{k-p}, \gamma_1, \ldots, \gamma_{m-p}$ таковы, что:

$$\underbrace{\alpha_1 a_1 + \ldots + \alpha_p a_p}_{x} + \underbrace{\beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}}_{y} + \underbrace{\gamma_1 c_1 + \ldots + \gamma_{m-p} c_{m-p}}_{z} = 0$$

$$x + y + z = 0$$

$$z = -x - y$$

$$z \in W$$

$$-x - y \in U \cap W$$

$$\Rightarrow \exists \lambda_1, \ldots, \lambda_p \in F \colon z = \lambda_1 a_1 + \ldots + \lambda_p a_p$$

Тогда $\lambda_1 a_1 + \ldots + \lambda_p a_p - \gamma_1 c_1 - \ldots - \gamma_{m-p} c_{m-p} = 0$. Но $a \cup c$ — базис W. Следовательно, $\lambda_1 = \ldots = \lambda_p = \gamma_1 = \ldots = \gamma_{m-p} = 0$. Но тогда $0 = x + y = \alpha_1 a_1 + \ldots + \alpha_p a_p + \beta_1 b_1 + \ldots + \beta_{k-p} b_{k-p}$. Но $a \cup b$ — базис $U + W \Rightarrow \alpha_1 = \ldots = \alpha_p = \beta_1 = \ldots = \beta_{k-p} = 0$. Итого, все коэффициенты равны нулю и линейная независимость тем самым доказана. То есть $a \cup b \cup c$ — базис U + W.

$$\dim(U+W) = |a \cup b \cup c| = |a| + |b| + |c| = p + k - p + m - p = k + m - p =$$

$$= \dim U + \dim W - \dim(U \cap W)$$

Определение. Если $U \cap W = \{0\}$, то U + W называется прямой суммой.

Следствие. B таком случае $\dim (U+W) = \dim U + \dim W$.

Пример. U - nnockocmb, $W - npsmas \ B^3$.

Переход к новому базису

Пусть V — векторное пространство, $\dim V = n, e_1, \dots, e_n$ — базис. То есть

$$\forall v \in V \quad \exists! \ v = x_1 e_1 + \ldots + x_n e_n,$$

где $x_1, \ldots, x_n \in F$ — координаты вектора v в базисе (e_1, \ldots, e_n) . Пусть также есть базис e'_1, \ldots, e'_n :

$$e'_1 = c_{11}e_1 + c_{21}e_2 + \dots + c_{n1}e_n$$

 $e'_2 = c_{12}e_2 + c_{22}e_2 + \dots + c_{n2}e_n$
 \vdots
 $e'_n = c_{1n}e_1 + c_{2n}e_2 + \dots + c_{nn}e_n$

Обозначим матрицу $C = (c_{ij})$. Тогда можно переписать (e'_1, \ldots, e'_n) как $(e_1, \ldots, e_n) \cdot C$.

Предложение. e'_1, \ldots, e'_n образуют базис тогда и только тогда, когда $\det C \neq 0$.

Доказательство.

 $[\Rightarrow] e'_1, \ldots, e'_n$ — базис, а значит $\exists C' \in M_n$:

$$(e_1, \dots, e_n) = (e'_1, \dots, e'_n) C' = (e_1, \dots, e_n) C' C$$

$$E = CC'$$

$$C' = C^{-1} \Leftrightarrow \exists C^{-1} \Leftrightarrow \det C \neq 0$$

 $[\Leftarrow]$ $\det C \neq 0 \Rightarrow \exists C^{-1}$. Покажем, что e'_1, \ldots, e'_n в таком случае линейно независимы. Пусть $x_1e'_1+x_2e'_2+\ldots+x_ne'_n=0$. Тогда можно записать

$$(e'_1, e'_2, \dots, e'_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

$$(e_1, \dots, e_n) C \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = 0$$

Поскольку (e_1,\dots,e_n) — базис, то $C\begin{pmatrix} x_1\\x_2\\\vdots\\x_n\end{pmatrix}=0$. Умножая слева на обратную матрицу, получаем, что $x_1=x_2=\dots=x_n=0$

11