

Automated Segmentation of Pelvic/Ovarian and Omental Lesions on CT Images of Ovarian Cancer Patients using Deep Learning

Thomas Buddenkotte 1,2 , Leonardo Rundo 2,3 , Ramona Woitek 2,3,4 , ... Evis Sala 2,3 , Carola-Bibiane Schönlieb 1

¹Department of Applied Mathematics and Theoretical Physics, University of Cambridge, ²Department of Radiology, University of Cambridge, ³Cancer Research UK Cambridge Centre, University of Cambridge, ⁴Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna

Abbreviations

High grade serous ovarian carcinoma (HGSOC), neoadjuvant chemotherapy (NACT), computed tomography (CT), Dice similarity coefficient (DSC), no-new-UNet (nnU-Net), state-of-the-art (SOTA).

Introduction

- ► HGSOC patients show no increase in overall survival since 20 years.
- Currently used RECIST measurements show limited correlation with patient outcome.
- ► Volumetric tumor assesment and radiomics show more promising performance.
- ► Goal: automated segmentation of the main lesion sites.
- Objectives:
 - ► How does the model performance change when the amount of training data is increased?
 - ▶ Despite large differences in tumor extent, can one deep learning model segment both pre- and post-NACT scans?
 - ► How does the model perform when compared to unrevised segmentations provided by trainee radiologists?

Materials and Methods

- ► Three distinct datasets of HGSOC patients provided with gold standard manual segmentations.
- ▶ 15 patients from Dataset # 2 with additional unrevised segmentations performed by a trainee radiologist.
- ► Use the two-stage cascade of nnU-Net as a deep learning model.
- ► Target only the two most common lesion sites: pelvic/ovarian and omental lesions.

Table: Composition of the three analyzed ovarian cancer CT datasets. The pixel spacing and slice thickness are displayed as median (minimum-maximum). For both lesion types, the scans are displayed as number of scans containing the lesion (average gold standard volume, average gold standard number of conntected components).

	Dataset #1	Dataset #2	Dataset #3
Pixel spacing	0.68 (0.53-0.93)	0.76 (0.61-0.96)	0.77 (0.57-0.98)
Slice thickness	5.0 (1.25-5.0)	5.0 (1.5-5.0)	5.0 (2.0-7.5)
Pre-treament scans	157	53	71
pelvis/ovaries	144 (346.4cm ³ , 2.6)	53 (322.2cm ³ , 3.2)	69 (380.7cm ³ , 2.4)
omentum	120 (141.3cm ³ , 8.6)	52 (202.3cm ³ , 6.7)	56 (146cm³, 5.7)
Post-treament scans	119	51	N/A
pelvis/ovaries	$102 (175.0 \text{cm}^3, 2.0)$	49 (154.1cm ³ , 1.9)	N/A
omentum	78 (84.47cm ³ , 3.9)	46 (56.6cm ³ , 3.7)	N/A

Experiments

- ► Use four different configurations of training and test sets to address the main questions.
- ► Evaluate the performance in terms of mean DSC.
- Repeat for both lesions sites independently.

Table: Training and test configurations used in the evaluation.

Experiment	Α	В	C	D
Training datasets	#1	#1	#1, #2	#1, #3
Scan types	Only pre-treatment	All	All	All
Test datasets	#2, #3	#2, #3	#3	#2

Figure: DSC on the unseen external data for the four experiments A, B, C, and D. The scores for the pelvic/ovarian and omental lesions are shown in dark and light green, respectively.

- ► Increasing the training set size improved the mean DSC except for two cases.
- ► Large standard deviation.
- ► Correlation of lesion volume with DSC (data not shown).

Table: Evaluation of trainee *versus* automated performance on Dataset #2. The p-values were computed using a Wilcoxon test to compare the DSC values.

		Pre-treatment		Post-NACT	
Metric	Segmentation	Pelvic/ovarian	Omentum	Pelvic/ovarian	Omentum
DSC	trainee	70.51	63.47	71.41	40.45
	automated	71.96	51.67	66.42	28.76
$oldsymbol{p}$ -values		0.421	0.064	0.358	0.173

Figure: Segmentation examples of automated, gold standard (GS) and trainee segmentations (TA) denoted with blue, magenta and cyan lines, respectively.

Conclusions

- Automated segmentation of HGSOC is feasible.
- ► The mean test DSC does not always increase with training set size.
- ► Automated methods can segment both pre- and post-NACT treatment scans with a single model.
- ➤ SOTA deep learning models perform not significantly different from trainee radiologists.