

Projekt "Uruchomienie unikatowego kierunku studiów Informatyka Stosowana odpowiedzią na zapotrzebowanie rynku pracy" jest współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Metody numeryczne

materiały do ćwiczeń dla studentów

7. Całkowanie numeryczne

- 7.1. Metoda trapezów
- 7.2. Metoda parabol
- 7.3. Metoda 3/8 Newtona

I. Wiadomości wstępne

Wymagana jest znajomość następujących pojęć:

- całka nieoznaczona;
- całka oznaczona;
 oraz umiejętności:
- obliczanie podstawowych całek oznaczonych i nieoznaczonych;
- obliczanie pochodnych funkcji;
- wyznaczanie ekstremów funkcji na przedziałach.

II. Zadania

zad. 1) Oblicz daną całkę analitycznie, a następnie przy pomocy poznanych wzorów kwadratur wyznacz jej przybliżoną wartość (przyjmij n = 1):

a)
$$\int_{-1}^{5} (x+1) dx$$

b)
$$\int_{-2}^{4} (x^3 - 3) dx$$

c)
$$\int_{-3}^{3} (2x - x^4) dx$$

zad. 2) Oblicz poniższą całkę analitycznie oraz jej przybliżone wartości wykorzystując wzory kwadratur dla n=1 oraz n=2. Porównaj uzyskane wyniki i rzeczywiste błędy przybliżenia z teoretycznymi oszacowaniami błędów:

a)
$$\int_0^{\pi} \sin^2 x \ dx$$

b)
$$\int_{-2}^{4} \frac{x^2-2}{x+3} dx$$

zad. 3) Wykorzystując metodę 3/8 Newtona lub metodę parabol wyznacz trzy pierwsze przybliżenia wartości:

- a) ln 2
- b) arctg 3

zad. 4) Na ile podprzedziałów należy podzielić przedział całkowania, by błąd oszacowania wartości całki z zadania 2. był nie większy niż 0,001?

III. Zadania do samodzielnego rozwiązania

Dla podanych całek oznaczonych wykorzystaj wzory kwadratur dla uzyskania ich wartości przybliżonych. Przyjmij najpierw n = 1, a następnie n = 2.

a)
$$\int_{1}^{4} \left(x^{2} - x - \frac{1}{x}\right) dx$$
 b) $\int_{0}^{\pi} x^{2} \cos^{2} x \ dx$ c) $\int_{-5}^{1} \frac{x}{x-2} dx$

b)
$$\int_0^{\pi} x^2 \cos^2 x \ dx$$

c)
$$\int_{-5}^{1} \frac{x}{x-2} dx$$

Oblicz na ile podprzedziałów należy podzielić przedział [1, 2], aby błąd przybliżenia wartości poniższej całki wybraną metodą był nie większy niż:

a)
$$10^{-5}$$

b)
$$10^{-7}$$

c)
$$10^{-9}$$

$$\int_{1}^{2} \frac{1}{x} dx$$

zad. 3) Ryzyko urazu głowy w wypadku samochodowym może być opisane wskaźnikiem HIC (Head Injury Criterion). Jego postać opisana jest formułą:

$$HIC = \max_{0 \le t_1 \le t_2 \le T} (t_2 - t_1) \left(\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t) dt \right)^{2,5}$$

gdzie a(t) jest funkcją opisującą siły bezwładności na skutek których dochodzi do urazu (proporcjonalną do przyspieszenia), a T jest czasem hamowania samochodu poruszającego się początkowo z prędkością ok. 50 km/h. Oszacuj wartość wskaźnika HIC wykonując kolejne kroki:

wyznacz średnią wartość funkcji a(t) na przedziale [50, 110]

$$a(t) = \frac{16400}{(t - 68)^2 + 400} + \frac{1480}{(t - 93)^2 + 18}$$

obliczając metodą parabol lub 3/8 Newtona dla n = 2 całkę z tej funkcji i dzieląc ją przez długość przedziału całkowania, tj.

$$\bar{a} = \frac{1}{60} \int_{50}^{110} a(t) dt$$

(argument t funkcji a(t) podany jest w milisekundach);

następnie wyznacz przybliżoną wartość wskaźnika HIC obliczając wyrażenie:

$$HIC \approx (\bar{a})^{2,5} \cdot 0.06$$

gdzie 0,06 jest długością okna całkowania wyrażoną w sekundach;

wartości wskaźnika HIC powyżej 1 000 oznaczają zagrożenie ludzkiego życia. Porównaj powyższy wynik z podobnie oszacowaną wartością wskaźnika HIC dla funkcji $a_A(t)$, opisującą przypadek z poduszką powietrzną w samochodzie: $a_A(t) = \frac{22\ 000}{(t-74)^2+500}$

$$a_A(t) = \frac{22\,000}{(t - 74)^2 + 500}$$

Odpowiedzi

zad. 1)
a)
$$\int_{1}^{4} \left(x^{2} - x - \frac{1}{x} \right) dx = \frac{27}{2} - 2 \ln 2 \approx 12,1137$$

Metoda	Trapezów	Parabol	3/8 Newtona
n = 1	$\frac{129}{8} = 16,125$	$\frac{483}{40} = 12,075$	$\frac{387}{32} = 12,094$
n=2	$\frac{1\ 047}{80} = 13,088$	$\frac{88149}{7280} = 12,108$	$\frac{27\ 129}{2\ 240} = 12,111$

b)
$$\int_0^{\pi} x^2 \cos^2 x \ dx = \frac{\pi^3}{6} + \frac{\pi}{4} \approx 5,9531$$

Metoda	Trapezów	Parabol	3/8 Newtona
n = 1	$\frac{\pi^3}{2} \approx 15,503$	$\frac{\pi^3}{6} \approx 5,168$	$\frac{17\pi^3}{96} \approx 5,490$
n = 2	$\frac{\pi^3}{4} \approx 7,752$	$\frac{3\pi^3}{16} \approx 5,814$	$\frac{73\pi^3}{384} \approx 5,894$

c)
$$\int_{-5}^{1} \frac{x}{x-2} dx = 6 - 2 \ln 7 \approx 2,1082$$

Metoda	Trapezów	Parabol	3/8 Newtona
n = 1	$-\frac{6}{7} \approx -0.857$	$\frac{12}{7} \approx 1,714$	$\frac{66}{35} \approx 1,886$
n = 2	$\frac{15}{14} \approx 1,071$	$\frac{1563}{770} \approx 2,03$	$\frac{579}{280} \approx 2,068$

zad. 2)

Błąd maksymalny	Met. trapezów	Met. parabol	Met. 3/8 Newtona
10 ⁻⁵	n = 130	n = 6	n = 5
10 ⁻⁷	$n = 1 \ 291$	n = 17	n = 14
10 ⁻⁹	$n = 12\ 910$	n = 54	n = 44

zad. 3)

Metoda	Parabol	3/8 Newtona
Bez poduszki pow.	571	688
Z poduszką powietrzną	297	297