

RUS0300-Algoritmos em Grafos Aula 01: Conceitos Básicos

Professor Pablo Soares

"Quem não luta pelo futuro que quer, tem que aceitar o futuro que vier"

Introdução: Notação Básica

- Grafo (Composição)
 - Elementos
 - Nós ou vértices
 - Relações
 - Arestas ou arcos

- Representação Matemática
 - -G = (V, E)
 - $-V = \{1,2, ..., n\}$ conjunto de vértices
 - v_i , i = 1, 2, ..., n
 - $-E = \{1, 2, ..., m\}$ conjunto de arestas
 - e_{ij} , (v_i, v_i)

Grafo Simples

- Não possui laços e arestas paralelas
- Para qualquer conjunto V, denotamos por V_p, o conjunto de todos os pares ordenados de elementos de V
- $-V = \{a,b,c,d\}$
- $-V_p = \{(a,b), (a,c), (a,d), (b,c), (b,d), (c,d)\}$
- Portanto, em um grafo simples $E \subseteq V_p$

Grafo Simples

- Outro Exemplo, o grafo simples G_0 é denotado por
- $-G_0 = (V, E)$, onde
- $-V = \{a,b,c,d\}$
- $-E = \{(a,b), (a,c), (b,d), (c,d)\}$
- Repare que E é um subconjunto de V_p
- $-V_p = \{(a,b), (a,c), (a,d), (b,c), (b,d), (c,d)\}$

Grafo Simples

- Se |V| = n, qual é a cardinalidade do conjunto $|V_p|$?
 - Lembrando que V_p são os pares não ordenados de V

$$|V_p| = \sum_{i=1}^{n-1} i = \left(\sum_{i=1}^{n} i\right) - n$$

$$\left[\frac{n(n+1)}{2}\right] - n = \left[\frac{(n^2 + n)}{2}\right] - n = \left[\frac{(n^2 + n - 2n)}{2}\right] = \frac{(n^2 - n)}{2} = \frac{n(n-1)}{2}$$

- Por que isso é importante?
 - Memória pode ser um fator limitador
 - Pode ser crítico em aplicações que utilizam grandes mapas
- Seja |V| = n, quantos grafos simples podem ser formados com exatamente n vértices?

- Dizemos que ab incide em a e em b
- Dizemos que a e b são pontas da aresta
- Se ab é uma aresta, vamos dizer que a e b são vértices <u>vizinhos</u> ou <u>adjacentes</u>

Grafo Complementar

- Seja G = (V, E)
- Seu complementar é denotado por $G = (V, V_p \setminus E)$
- Fazer exemplo

Grafo Simples Completo

• Um grafo

$$G = (V, E)$$

• É completo se e somente se

$$|E| = |V_p|$$

Grafo Simples Vazio

• Um grafo

$$G = (V, E)$$

• É vazio se e somente se

$$|E| = 0, E = \{ \}$$

Z

$$\left(c\right)$$

A expressão

$$G=K_n$$

• é uma abreviação para dizer que G é simples e completo com *n* vértices

Já a expressão

$$G = K_n$$

 é uma abreviação para dizer que G é vazio com n vértices

Grafo não orientados

• Grafo com laços e arestas paralelas

- Aplicações
 - Fluxo em redes
 - Dois canais de envios de informação

Grafo Orientados

Grafo Orientado

- Para qualquer conjunto V, denotamos por V_p o conjunto de todos os pares ordenados de V;
- $-V = \{a,b,c,d\}$
- $-V_p = \{(a,b), (b,a), (a,c), (c,a), (a,d), (d,a), (b,c), (c,b), (b,d), (d,b), (c,d), (d,c)\}$

$$E \subseteq V_p$$

Grafo Orientados

Grafo Orientado

- Em um grafo orientado, se |V| = n, $|V_p| = ?$
 - Lembrando que V_p são os pares ordenados de V

$$|V_p| = \sum_{i=1}^n n - 1 = n(n-1) = n^2 - n$$

Grafo Orientados

• Grafo Orientado com aresta "laço"

$$|V_p| = \sum_{i=1}^n n = n(n) = n^2$$

Grafo Valorados

- São utilizados rótulos também nas arestas
 - Representam algum custo
 - Distância entre cidades
 - Tempo necessário
 - Em Redes, tempo de ida e volta (RTT *round-trip time*)
- Podem ser orientados e não orientados

Isomorfismos de Grafos

- Dadas duas representação geométricas, correspondem elas a um mesmo grafo?
- Dados $G_1 = (V_1, E_1) e G_2 = (V_2, E_2)$,
 - $|V_1| = |V_2| = n$
 - Existe $f: V_1 \rightarrow V_2$

$$(i, j) \in E_1 \Leftrightarrow (f(i), f(j)) \in E_2 \forall i, j \in V_1$$

Grau de um Vértice

- $G_1 = (V_1, E_1)$, o conjunto de vizinhos de um vértice v de G é denotado por N(v)
- O grau de um vértice d(v) = /N(v) /
 - Um vértice de grau zero é isolado

$$\delta(G) := \min\{d(v) \mid v \in V\}$$

$$\Delta(G) := \max\{d(v) \mid v \in V\}$$

Grafo *k*-regular

- Todos os vértices com grau k
- Desenhar um grafo 3-Regular....

Grau de um Vértice

• O número d(G) representa • a média do grau de G

$$d(G) := \frac{1}{|V|} \sum_{v \in V} d(v)$$

$$\delta(G) \le d(G) \le \Delta(G)$$

$$\varepsilon(G) := \frac{|E|}{|V|}$$

Desafio:

- Construir um grafo com n vértices, tal que, se o grafo possuir vértices de grau impar, a quantidade de vértices de grau ímpar tem que ser ímpar.

• Proposição:

 O número de vértices de grau impar de um grafo é sempre par

• Prova
- É inteiro
$$|E| = \frac{1}{2} \sum_{v \in V} d(v)$$

$$|E| = \frac{1}{2} \sum_{v \in V} d(v) = \frac{1}{2} d(G) \times |V|$$

$$\sum_{v \in V} d(v)$$

Fim/ Dúvidas?

RUS0300-Algoritmos em Grafos Aula 01: Conceitos Básicos

Professor Pablo Soares
2019.1

"Quem não luta pelo futuro que quer, tem que aceitar o futuro que vier"