Матанализ. Конспект 2 сем.

Кабашный Иван (@keba4ok)

(по материалам лекций Белова Ю. С., а также других источников)

16 февраля 2021 г.

Некоторые записи по матанализу.

Содержание

1	Лекция 1.	3
2	Пекция 2.	4
3	Пекция 3.	6
4	Пекция 4.	8
5	Лекция 5.	9
6	Пекция 6.	11
7	Пекция 7.	13
8	Пекция 8.	14
9	Пекция 9.	15
10	Пекция 10.	17
11	Лекция 11.	19

1 Лекция 1.

В этом чеместре мы будем занимать анализом функций от многих переменных, то есть, $f: \mathbb{R}^n \to \mathbb{R}^m$, и если m=1, то такая функция называется функцией многих переменных.

Определение 1. Кривые в \mathbb{R}^n - непрерывное отображение $f:[a,b]\to\mathbb{R}^n$.

Основная проблема состоит в том, что образ может выглядеть очень и очень сложно, потому нам хотелось бы более точно понять, как всё это устроено. Потому начнём рассматривать *спрямляемые кривые*, то есть, кривые с конечной длиной. Введём следующее определение:

Определение 2. Вариация функции - $V_f([a,b]) = \sup_{a=x_0 < x_2 < ... < x_n = b} \sum_{k=0}^{\infty} |f(x_{k+1}) - f(x_k)|.$

(x-y) - евклидово расстояние.

Утверждение 1. Если $f:\mathbb{R}\to\mathbb{R}$ монотонна, то $V_f([a,b])=|f(a)-f(b)|.$

Утверждение 2. $V_f([a,b]) = 0 \Leftrightarrow f = \text{const.}$

Утверждение 3. $V_{f+g} \leq V_f + V_g$.

Утверждение 4. V_f аддитивна на промежутке: $a \leq b \leq c$, тогда $V_f([a,c]) = V_f([a,b]) + V_f([b,c])$.

Определение 3. Вариация ограничена, если $V_f < \infty$ на [a, b].

Лемма 1.

- ullet $\mathbb{R} o \mathbb{R}, \ f_1 \ u \ f_2$ монотонны, тогда $f_1 f_2$ имеют ограниченную вариацию.
- f имеет ограниченную вариацию тогда и только тогда, когда $f = f_1 f_2$ на отрезке [a,b], причём эти две функции монотонно возрастают.

Доказательство. Пусть у нас есть f, а также $V_f([a,b]) < \infty$. Рассмотрим $\varphi(x) = V_f([a,x])$. φ определа корректно, причём возрастает. $f = \varphi - (\varphi - f)$, скажем, что $(\varphi - f) = h$, тогда $h(x) \le h(y)$ при $x \le y$. Но это нетрудно показать, $\varphi(x) - f(x) \le \varphi(y) - f(y)$ равносильно $f(y) - f(x) \le \varphi(y - \varphi(x)) = V_f([x,y])$.

По сути, если понимать определение вариации геометрически, то это просто длина кривой на отрезке. Перейдём теперь к способам обхода кривой.

Лемма 2. Пусть $g:[a,b] \to [c,d]$ - непрерывная биекция (тогда и монотонная). Тогда $V_f[c,d] = V_{f \circ g}([a,b])$.

Доказательство. Левая и правая части равны соответственно $\sup \sum_{k=0}^{n-1} |f(x_{k+1}) - f(x_k)|$ и $\sup \sum_{k=0}^{n-1} |f(g(y_{k+1})) - f(g(y_k))|$. Это, очевидно, одно и то же.

Теперь стоит задаться вопросом: а когда же это V_f (или же, длину кривой) можно посчитать. Если f - гладкая функция (гладкая покоординатно f_k). $f:=[a,b]\to\mathbb{R}^n,\ f=(f_1,\ldots,f_n),\ f_k:[a,b]\to\mathbb{R}$. Тогда

$$V_f([a,b]) = \int_a^b \sqrt{(f_1')^2(x) + \ldots + (f_n')^2(x)} dx.$$

Рассмотрим

$$\sup_{a=x_0,\dots,x_n=b} \sum_{k=0}^{n-1} \sqrt{(f_1(x_{k+1}) - f_1(x_k))^2 + \dots + f_n(x_{k+1}) - f_n(x_k))^2} =$$

$$= \sum_{k=0}^{n-1} (x_k + 1 - x_k) \sqrt{f_1'^2(\xi_{1,k}) + \dots + f_n'^2(\xi_{n,k})}$$

Если f_i непрерывна, то f_i^2 равномерно непрерывна. $f_i'^2(\xi_{i,k}) \leq \min_{[x_k,x_{k+1}]} f_i'^2 + \varepsilon^2$ (для достаточно мелких разбиений и любого эпсилон, большего нуля). Тогда можно получить верхнюю оценку: $\leq \sum_{k=0}^{n-1} (x_{k+1} - x_k) \sqrt{\sum_{l=1}^n \min_{[x_k]} (f_l'^2)} + \varepsilon \sqrt{n} (b-a) \leq \int_a^b \sqrt{\ldots} + \varepsilon \sqrt{n} (b-a)$ (устремляем разбиение к бесконечно малому). А затем делаем аналогично снизу и получаем требуемое равенство.

2 Лекция 2.

Пусть φ - функция, которая определялась на прошлой лекции, а ψ - обратная ей. ψ - биекция, рассматриваем $f \circ \psi$. Посмотрим на $\psi([0,\beta]) = [a,b]$, тогда для любых $c,d \in [0,b]$ $V_{f \circ \psi}([c,d]) = d-c$.

Естественная параметризация гладкого пути практически не отличается от того, что мы уже рассматривали за одним небольшим исключением.

$$\varphi(x) = V_f([a, x]) = \int_a^x |f'(s)| ds = \int_a^x \sqrt{f_1'^2 + \dots + f_n'^2} ds,$$

причём предпоследнее вырежение равно $|(f_1',\ldots,f_n')|$, а под корнем все функции от s. Рассмотрим опять ψ , и как выглядит вектор $f(\psi(x))=(f_1(\psi(x)),\ldots,f_n(\psi(x)))$, рассмотрим его производную, берём покоординатно: $f'(\psi(x))=(f_1'(\psi(x)),\ldots,f_n'(\psi(x)))$. Но $\psi'(x)=\frac{1}{\varphi(\psi(x))}$, тогда $\varphi(s)=|f'(s)|$, а также $|f'(\psi(x))|=1$.

Примечание 1. Если f - гладкая на [a,b) и существует $\int_a^b |f'(s)| ds$, тогда выполнено то же самое, просто $\varphi(x) = \int_a^x |f'(s)| ds$.

Перейдём теперь к тригонометрии. Рассмотрим окружность $x^2+y^2=1$, мы планируем её обходить (то есть, через каждую точку по разу, с одинаковой скоростью, и так далее). Введём попутно также комплексное обозначение (мы не будем заниматься комплексным анализом, просто это удобно). Отождествим \mathbb{R}^2 с \mathbb{C} понятно каким образом. Тогда какое вращение мы хотим? Мы хотим найти функцию $\Gamma: \mathbb{R} \to \mathbb{T} = \{z: |z| = 1$ или $x^2 + y^2 = 1, z = x + iy\}$, а хотим потребовать также следующее:

- $\Gamma \in C^1$ (гладкая),
- $\Gamma(0) = 1$, $\Gamma'(0) = i$ (место старта и начальная скорость, с которой мы идём),
- $|\Gamma'(t)| = 1$ для любого t (постоянная скорость 1).

Сформулируем теорему:

Теорема 1. Функция с данными свойствами существует и единственна.

Доказательство. $\Gamma(t)\in\mathbb{T}$ тогда и только тогда, когда $\Gamma(t)\overline{\Gamma(t)}=1$. Продифференцируем последнее, получим

$$\Gamma'(t)\overline{\Gamma(t)} + \Gamma(t)\overline{\Gamma'(t)} = 0,$$

что также равно

$$2\operatorname{Re}(\overline{\Gamma'(t)}\Gamma(t)) = 0.$$

То есть, мы получили, что $\Gamma(t)\overline{\Gamma'(t)}=ih(t),\ h(t)\in\mathbb{R}$. Применим теперь оставшееся неиспользованное условие: $|\Gamma(t)|=1$, а чтобы параметризация была естественна, $|\Gamma(t)|$ должно быть равно 1. То есть, $h(t)=\pm 1$. Подставим теперь нуль и получим, что функция в этой точке должна быть равна единице, а производная - i. Тогда остаётся один вариант: $h(t)\equiv 1$.

Посмотрим теперь ещё раз на начальные уравнение: $\Gamma'(t)\overline{\Gamma(t)} \equiv i$, то есть,

$$\Gamma'(t) = i\Gamma(t). \tag{1}$$

Таким образом, мы уже пришли к тому, что если вращение существует, то оно должно удовлетворять последнему уравнению, а также $\Gamma(0) = 1$. Это означает, что вращение, которое мы получаем, будет дифференцируемо бесконечно много раз.

Пока что, казалось бы, ни единственности, ни существования, однако из последних утверждений легко получается единственность. Пусть у нас есть $\Gamma_{1,2}$ - два простых вращения. Дначит, они оба удовлетворяют (1). Тогда завайте запишем их частное через со-

пряжённые и возьмём производную:
$$\left(\Gamma_1(t)\overline{\Gamma_2(t)}\right)' = \Gamma_1'(t)\overline{\Gamma_2(t)} + \Gamma_1(1)\overline{\Gamma_2'(t)}$$
, что равно $i\Gamma_1\overline{\Gamma_2} + \Gamma_1\overline{i\Gamma_2} = 0$.

Таким образом, мы получили, что $\Gamma_1\Gamma_2={\rm const}$, но поскольку $\Gamma(0)=1$, то эта константа и равна единице. То есть, $\Gamma_1\overline{\Gamma_2}=1$, следовательно, эти функции равны, единственность доказана.

Докажем теперь существование. Предъявим сначала произвольную параметрицацию окружности, а затем постараемся сделать в ней замену переменной, чтобы получить хорошую функцию (которая должна быть, конечно, гладкой). Давайте параметризуем верхнюю половину $\mathbb T$ самым естественным образом: примем $x=t,\ y=\sqrt{1-t^2},\ -1\leq t\leq 1$ (двигаемся по часовой стрелке). Теперь нам нужно отпараметризовать нижнюю половину, возьмём для этого $x=-t,\ y=-\sqrt{1-t^2},\ -1\leq t\leq 1$, двигаться мы теперь будем по нижней половине, но в другом направлении, то есть, одну из половин нужно перевернутьт и "склеить" в один целостный проход. Тогда в нижней половине "сдвинем" рассмотрение на $1\leq t\leq 3$, и преобразуем: $y=-\sqrt{1-(2-t)^2}$.

Осталось проверить, что полученная функция гладкая. Вообще, это почти везде очевидно, кроме ± 1 , это и проверим. $f(t)=(t,\sqrt{1-t^2})$, а вектор $f'(t)=(1,\frac{-t}{\sqrt{1-t^2}})$. Функция $\varphi(x)$ на (-1,1) выглядит как

$$\int_{-1}^{x} |f'(s)| ds = \int_{-1}^{x} \sqrt{1 + \frac{t^2}{1 - t^2}} dt = \int_{-1}^{x} \frac{dt}{\sqrt{1 - t^2}}.$$

Функция $\varphi(x)$ - возрастающая биекция, значит, мы можем посмотреть на обратную функцию $\psi(x) = \varphi^{-1}(x)$. Рассмотрим теперь для $x \in (-1,1)$,

$$(f^{-1}(\psi(x)))' = (f_1'(\psi(x))\psi'(x), f_2'(\psi(x))\psi'(x)).$$

Тогда, так как $\psi'(x) = \frac{1}{\varphi'(\varphi(x))}$, это также и равно $\sqrt{1-\psi^2(x)}$, что также равно

$$(\psi'(x), \frac{-\psi(x)}{\sqrt{1-\psi(x)}}\sqrt{1-\psi^2(x)}).$$

В последнем также можно сократить числитель и знаменатель. Итого, $f(\psi(x))$ - гладкая на (-1,1), и более того, если $x\to\pm 1$, производная имеет конечный предел. Получается, дифференцируема на интервале, и производная имеет предел в крайних точках, тогда она в них также дифференцируема. Таким образом, для верхней половины мы всё показали, для нижней - аналогично, всего лишь с линейной заменой.

После доказательства теоремы, можно, наконец, ввести определения:

Определение 4.

$$\cos(x) = \operatorname{Re}(\Gamma(x)),$$

$$\sin(x) = \operatorname{Im}(\Gamma(x)).$$

Далее уже можно поговорить о бесконечной дифференцируемомти и формуле Муавра, этим, вместе с доказательством, что мы нашли привычные функции, мы, кажется, и планируем заниматься далее.

3 Лекция 3.

Для начала, закончим с тригонометрией. Мы научились строить синус и косинус через вращение окружности. Немного не помню, обговаривали ли мы это на прошлой лекции, но Юрий Сергеевич кратуо цпомянул, что мы можем разложить $\Gamma(x)$ в ряд Тэйлора в $\sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$ в силу свойства $\Gamma'(x) = i\Gamma(x)$ и того, что остаточный член в форме Лагранжа будет стремиться к нулю при стремлении n к бесконечности.

Тогда

$$\cos x = \operatorname{Re} \Gamma(x) \Rightarrow \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} (-1)^n$$

и аналогично синус по нечётным степеням.

Мнимая экспонента обладает свойствами, аналогичным обыкновенной экспоненте, поэтому покажем, что $\Gamma(x+y)=\Gamma(x)\Gamma(y)$. Рассмотрим $\Gamma(x+y)\overline{\Gamma(y)}$ - функцию от x, а y - параметр. Это - некоторый обход окружности, который также удовлетворяет всем нормировочным условиям. $\varphi(0)=1,\ |\varphi'(x|=1,\$ и, наконец, $\varphi'(0)=\Gamma'(0)=i.$

Теперь все прекрасные формулы косинуса и синуса суммы и разностей легко выводятся из доказанной формулы. Через мнимую экспоненту запишем: $e^{i(x+y)=e^{ix}\cdot e^{iy}}$, а там уже просто надо посмотреть на мнимые и действительные части.

Из полученных свойств получим, что $\Gamma(x)\Gamma(-x)=\Gamma(0=1)$, тогда $\Gamma(-x)=\overline{\Gamma(x)}$, откуда мы получаем чётность косинуса и нечётность синуса.

Можно упомянуть и формулу муавра. Распишем

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \ \sin(x) = \frac{e^{ix} - e^{-ix}}{2i},$$

это формулы Муавра. Также можно получить и периодичность, это, вообщем-то очевидно и завершает наш разговор об элементарных функциях.

Перейдём теперь к многочерному анализу. Мы бы хотели точно также уметь анализировать функции и делать всё то, что мы уже умеем делать для одномерных функций, в том числе, решать экстремальные задачи. Нас интересуют функции $f:\mathbb{R}^m \to \mathbb{R}^n$.

Начнём с того, что в евклидовом пространстве \mathbb{R}^m расстояние задаётся как

$$d(x,y) = \sqrt{\sum_{k=1}^{m} (x_k - y_k)^2} = ||x - y||.$$

И если у нас имеется точка $x=(x_1,\ldots,x_m)$, то её норма есть $||x||=\sqrt{\sum_{k=1}^m x_k^2}$. Вообще, норму можно задать как угодно, если она удовлетворяет таким свойствам:

- норма функция $\mathbb{R}^m \to \mathbb{R}_{+,0}$,
- $||x|| = 0 \Leftrightarrow x \equiv (0, \dots, 0),$
- $||\alpha x|| = |\alpha| \cdot ||x||, \ \alpha \in \mathbb{R},$
- $||x+y|| \le ||x|| + ||y||$.

Разберёмся с понятием гладкости. Для начала, алгебраически. Пусть у нас есть функция нескольких переменных $f: \mathbb{R}^m \to \mathbb{R}, f(x_1, \dots, x_m)$.

Определение 5. f дифференцируема в точке (x_1, \ldots, x_m) , если f(y) = f(x) + L(y - x) + o(||x - y||), где L - линейное отображение $\mathbb{R}^m \to \mathbb{R}$, причём однородное, то есть, L(0) = 0.

Определение 6. Это линейное отображение L называется $\partial u \phi \phi$ ренциалом в точке x.

На топологии мы доказывали, что в конечномерном пространстве различные норма липшицево-эквивалентны, потому мы просто во всех рассуждениях будем испоьзовать именно евклидовы нормы, потому что они удобные. А теперь перейдём к базовым свойствам.

Примечание 2. L - единственно.

Примечание 3. Если у нас есть две функции: f и g, то дифференциал $\alpha f + \beta g$, α , $\beta \in \mathbb{R}$ есть $\alpha L_1 + \beta L_2$, где L_1 и L_2 - дифференциалы f и g.

Рассмотрим теперь отображение общего вида: $f: \mathbb{R}^m \to \mathbb{R}^n$. Тогда

Определение 7. (Гладкость). f(y) = f(x) + L(y-x) + o(||x-y||), где L - линейное отображение $\mathbb{R}^m \to \mathbb{R}^n$, L(x+y) = L(x) + L(y). о-малое в данном случае можно понять как

$$\frac{f(y) - f(x) - L(y - x)}{||y - x||} \to 0,$$

то есть, элемент \mathbb{R}^n стремится у нулю, но для удобства можно взять евклидову норму этого выражения.

Какой вид имеет общее линейное отображение из $\mathbb{R}^m \to \mathbb{R}^n$? Естественно, это - матрица, это мы знаем из алгебры и умеем расписывать переход в тривиальном базисе.

Перейдём к свойствам линейных отображений. Мы умеем их складывать, умножать, а также, совершать композиции в случае согласованности размерностей, которая соответствует перемножению матриц.

Пусть теперь, опять же, у нас есть отображение $L: \mathbb{R}^m \to \mathbb{R}^n$, то $L(\mathbb{R}^m) \subset \mathbb{R}^n$ - подпространство, которое имеет размерность от 0 до n, эту размерность мы понимаем как ранг линейного отображения. Если же мы берём композицию линейных отображений, то ранг не может вырасти (куда растягивать-то). Также, легоко видеть, что если m < n, то $\dim(L(\mathbb{R}^m)) \leq m < n$.

Зададимся теперь вопросом, какая существует естественная метрика на линейных отображениях $\mathbb{R}^m \to \mathbb{R}^n$. По сути, эти линейные отображения представляют собой евклидово пространство размерности $m \cdot n$. Задать на нём мы можем евклидову метрику: под корнем будут квадраты всех матричных элементов. Эта норма вычисляется проще, но зато гораздо менее естественна, чем следующая (например, относительно вопроса о композиции). $||L|| = \sup_{||x|| < 1} ||Lx||, \ x \in \mathbb{R}^m, \ LX \in \mathbb{R}^n$. Эта вещь конечна, так как она не превосходит $\sum_{k=1}^m ||Le_k||$, а также выполняются все свойства нормы.

Геометрический смысл у данной нормы очень простой: мы смотрим, насколько сильно она растягивает расстояние в зависимости от направления.

Завершаем лекцию несколькими переопределениями нормы:

- $\sup_{||x||<1} ||Lx||$,
- $\sup_{||x|| \le 1} ||Lx||$,
- $\sup_{||x|| \neq 0} \frac{||Lx||}{||x||}$,
- $\bullet \sup_{||x|| < =} ||Lx||.$

4 Лекция 4.

Продолжаем с операторами, пусть $A:\mathbb{R}^n\to\mathbb{R}^n$ - линейный, $||A||=\sup_{||x||\leq 1}||Ax||$ - норма, где ||x|| - Евклидово. $A\cong\mathbb{R}^{nm}$, так как можно выносить константу, не меньше нуля (притом равна тогда и только тогда, когда сам оператор - нуль), а также, норма суммы не превосходит сумму норм.

Определение 8. ||A|| - *операторная норма*, притом супремум всегда достигается.

Операторная норма есть самое большое по модулю собственное число. Предположим, что у A есть n различных λ_i собственных чисел, у которых есть соответственные x^i собственные векторы. Запишем тогда $x = \sum_{k=1}^n a_k x^k$, $Ax = \sum_{k=1}^n \lambda_k a_k x^k$, тогда $||Ax|| \le \max_k |\lambda_k| \cdot ||x||$, но это мы объяснить не смогли.

Однако разговор сейчас шёл о различных собственных числах, бывают же *кратные* собственные числа. Что происходит?

Важный момент, почему важна операторная норма. Пусть $A:\mathbb{R}^n \to \mathbb{R}^m, \ B:\mathbb{R}^m \to \mathbb{R}^k$, тогда $||BA|| \leq ||B|| \cdot ||A||$, так как левая часть по определению равна $\sup_{||x|| \leq 1(\mathbb{B}\mathbb{R}^n)} \leq \sup_{||y|| \leq ||A||} ||By|| \leq ||B|| \cdot ||A||$. Заметим также две следующие вещи для линейного $A:\mathbb{R}^n \to \mathbb{R}^m$ равносильны:

- $\ker A = \{0\}$
- $||Ax|| \ge \varepsilon ||x||, \exists \varepsilon > 0.$

Доказательство. $\{x: ||x||=1\}$ - единичная сфера в \mathbb{R}^n . Пусть $f(x): x \to ||Ax||, f$ - непрерывная $(?), f \neq 0$ на единичной сфере, тогда $f \geq \varepsilon > 0, ||Ax|| \geq \varepsilon ||x||, ||x|| = 1$.

Вообще, нам все эти операторы нужны для рассуждений о гладкости, сформулируем теорему:

Теорема 2. $f:G\to \mathbb{R}^m,\ G\subset \mathbb{R}^n$ - открытое, f - гладкая в окрестности x^0 (верхние индексы), $y^0=f(x^0),\ g:V_{f(x^0)}\to \mathbb{R}^k$, гладкая в $f(x^0)$, для f и g существуют линейные операторы A (x_0) и B $(f(x_0))$. Тогда g(f(x)) - гладкое отображение в x_0 с линейным оператором $BA:\mathbb{R}^n\to \mathbb{R}^k$.

Доказательство. Мы знаем, что существует представление $f(x) = f(x^0) + A(x-x^0) + o(||x-x^0||)$. Применим g, получим

$$g(f(x)) = g(y^0 + A(x - x^0) + o(||x - x^0||)).$$
(2)

Также мы знаем, что g гладкая, то есть, также представима в виде $g(y) = g(y^0) + B(y - y^0) + o(||y - y^0||)$, тогда приняв аргумент правой части (1) за y, получим продолжение тождества:

$$g(y^{0}) + B(A(x - x^{0}) + o(||x - x^{0}||)) + o(A(x - x^{0}) + o(||x - x^{0}||)) = g(y^{0}) + BA(x - x^{0}) + o(||x - x^{0}||).$$
(3)

Нам много чего хочется от анализа многих переменных, но тут всё, конечно, гораздо сложнее. Перейдём к *частным производным*.

Примечание 4. $f: \mathbb{R}^n \to \mathbb{R}^m$ - гладкая в x^0 тогда и только тогда, когда при записи $(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))$ f_k - гладкая $\mathbb{R}^n \to \mathbb{R}$ для всех k (можно написать доказательство).

Определение 9. Частная производная. Пусть имеется $f: \mathbb{R} \to \mathbb{R}$, $f(x_1, \dots, x_n)$, $x^0 = (x_1^0, \dots, x_n^0)$. Тогда частная производная по x_k , $f(x_1^0, \dots, x_{k-1}^0, x, x_{k+1}^0, \dots, x_m^0) = g(x)$, $g'(x_k^0)$. $\frac{\partial f}{\partial x_k}\Big|_{x^0} := g'(x_k^0) = \lim_{\varepsilon \to 0} \frac{f(\dots, x_k^0 + \varepsilon, \dots) - f(\dots)}{\varepsilon}$.

Рассмотрим теперь *производную по направлению*. Пусть направление задаётся $e \in \mathbb{R}^n$, ||e||=1, f - дифференцируема по направлению e, если $g(t)=f(x^0+te), t \in \mathbb{R}$ и существует g'(0), то производная по направлению e - $g'(0)=\lim_{t\to 0}\frac{f(x^0+te)-f(x^0)}{t}$.

5 Лекция 5.

Введём несколько дополнительных терминологий. Пусть у нас есть отображение $f: \mathbb{R}^n \to \mathbb{R}^m$, $f = (f_1, \dots, f_m)$, $\frac{\partial f_k}{\partial x_l}$, $1 \le k \le m$, $1 \le l \le n$, тогда матрица Якоби выглядит как

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_m} & \cdots & \frac{\partial f_m}{\partial x_m} \end{pmatrix}$$

Теорема 3. Пусть у нас есть отображение $f: \mathbb{R}^n \to \mathbb{R}^m$, $V_{x_0} \to \mathbb{R}^m$, причём существуют все частные производные в V_{x^0} и они непрерывные в x^0 . Тогда f дифференцируема в точке x^0 .

Доказательство. Для начала, мы можем полагать, что m=1, так как можно доказывать, по сути, покомпонентно. Пусть $x^0=(x_1^0,x_2^0,x_3^0)$ (докажем для 3, потом обсудим общий случай), ну а $x=(x_1,x_2,x_3)$. Нас интересует $f(x_1,x_2,x_3)-f(x_1^0,x_2^0,x_3^0)$. Действуем стандартным

образом, будем двигать координаты по одной (так как все сразу двигать не можем). Меняя по одной координате, представим разности из частных производных. Разность равна

$$f(x_1, x_2, x_3) - f(x_1^0, x_2, x_3) + f(x_1^0, x_2, x_3) - f(x_1^0, x_2^0, x_3^0)$$

Разбивается в две подряд идещие разности, достаточно удобные, но последняя всё равно "не айс":

$$f(x_1, x_2, x_3) - f(x_1^0, x_2, x_3) + f(x_1^0, x_2, x_3) - f(x_1^0, x_2^0, x_3) + f(x_1^0, x_2^0, x_3) - f(x_1^0, x_2^0, x_3) - f(x_1^0, x_2^0, x_3) + f(x_1^0, x_2^0, x_3^0, x_3^0, x_3^0, x_3^0) + f(x_1^0, x_2^0, x_3^0, x_3^0, x_3^0, x_3^0) + f(x_1^0, x_2^0, x_3^0, x$$

Теперь уже три удобные разности, так и запишем равенство далее:

$$= \frac{\partial f}{\partial x_{1}} \Big|_{(\xi_{1}, x_{2}, x_{3})_{\xi \in [x_{1}^{0}, x_{1}]}} (x_{1} - x_{1}^{0}) + \frac{\partial f}{\partial x_{2}} \Big|_{(x_{1}, \xi_{2}, x_{3})} (x_{2} - x_{2}^{0}) + \frac{\partial f}{\partial x_{3}} \Big|_{(x_{1}, x_{2}, \xi_{3})} (x_{3} - x_{3}^{0}) =$$

$$= \frac{\partial f}{\partial x_{1}} \Big|_{(x_{1}^{0}, x_{2}^{0}, x_{3}^{0})} (x_{1} - x_{1}^{0}) + \frac{\partial f}{\partial x_{2}} \Big|_{(x_{1}^{0}, x_{2}^{0}, x_{3}^{0})} (x_{2} - x_{2}^{0}) + \frac{\partial f}{\partial x_{3}} \Big|_{(x_{1}^{0}, x_{2}^{0}, x_{3}^{0})} (x_{3} - x_{3}^{0}) +$$

$$+ \left(\frac{\partial f}{\partial x_{1}} \Big|_{-\frac{\partial f}{\partial x_{1}}} \right) (x_{1} - x_{1}^{0}) + \left(\frac{\partial f}{\partial x_{2}} \Big|_{-\frac{\partial f}{\partial x_{2}}} \right) (x_{2} - x_{2}^{0}) + \left(\frac{\partial f}{\partial x_{3}} \Big|_{-\frac{\partial f}{\partial x_{3}}} \right) (x_{3} - x_{3}^{0})$$

Последние три слагаемых - остаток, R(x), тогда $\forall \varepsilon>0,\ \exists \delta\ ||x-x^0||<\delta,\ |R(x)|<\varepsilon||x-x^0||.$

Теорема 4. Пусть $f: \mathbb{R}^n \to \mathbb{R}$, f - гладкая на G - открытое множестве, причём частные производные сущуствуют и непрерывны в каждой точке (условно говоря, f гладкая). Предположим, что точка x^0 - локальный максимум или минимум. Тогда $\operatorname{grad} f|_{x^0} \equiv 0$.

Доказательство. grad $f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}), f$ - локальный максимум $f, x^0, \frac{\partial f}{\partial x_k} \Big|_{x_0} \neq 0$.

$$(x_1^0, \dots, x_{k-1}^0, x, x_{k+1}^0, \dots, x_n^0) - (x_1^0, \dots, x_m^0) = \frac{\partial f}{\partial x_k} \Big|_{x^0} (x_k - x_k^0) + o(|x_k - x_k^0|),$$

причём первое слагаемое не нуль.

Нам бы ещё хотелось иметь теорему об обратном отображении.

Теорема 5. (Об обратном отображении). Пусть $f: G \to \mathbb{R}^n$, G - открыто в \mathbb{R}^n , y f есть непрерывные частные производные, f - в точке x^0 имеет дифференциал A, A - невырожденная. Тогда в некоторой V_{x^0} существует обратная функция g - гладкая, задана в как минимум какой-то окрестности $f(x^0)$, g(f(x)) = x, g - дифференцируема в $f(x^0) \Rightarrow A^{-1}$.

Доказательство. $(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$ - вспомнили, а теперь - к доказательству.

Утв. 1. f - гладкая в окрестности точки x^0 с непрерывными частными производными, тогда f липшицева, то есть, $|f(x) - f(y)| \le C||x - y||$. Если мы зафиксируем точку x, то $|f(x) - f(y)| \le (||A|| + \varepsilon)||x - y|| \; \forall \varepsilon > 0, \; A = A_x. \; ||A_x|| \le \sum_{k=1}^n \left|\frac{\partial f}{\partial x_k}\right| \; .$

Утв. 2. Если к тому же $\operatorname{Ker}(A) = \{0\}$, то f - билипшицево (в окрестности x^0), $C_2||x-y|| \le |f(x)-f(y)| \le C_1||x-y||$. Докажем и его. $f(y)=f(x)+A_x(y-x)+o(||x-y||)$, тогда

 $||A_{x^0}z|| \ge \varepsilon ||z||, \ \forall z \in \mathbb{R}^n, \ ||A_xz|| - A_xz = A_{x^0}z + (A_x - A_{x^0})z.$ Первый элемент не меньше $\varepsilon ||z||, \ a \ ||A_x - A_{x^0}||$ стремится к 0 в окрестности этой точки, тогда

$$|f(y) - f(x)| = |A_x(y - x) + o(||x - y||),$$

но каждый из них можно ограничить снизу $\frac{\varepsilon}{2}||x-y||.$

Тогда $f: \mathbb{R}^n \to \mathbb{R}^m$, Ker $A = \{0\}$, тогда $n \leq m$.

Итого, у нас есть отображение $f: f(x) = f(x^0) + A(x-x^0) + o(||x-x^0||)$. Рассмотрим шарик $B_r(x^0) = \{x: ||x-x^0|| < r\}, f(B_r(x^0)), f$ - биективна. Проверим, что он содержится в каком-то $B_{r'}(f(x^0))$.

Утв. 3. В условиях теоремы для любого r существует r', $f(\overline{B_r(x^0)}) \supset \overline{B_{r'}(f(x^0))}$. Для любого $y \in B_{r'}(f(x^0))$ f(x) = y, хотим найти x. $F(x) = ||f(x) - y||^2$, гладкая в окрестности x^0 . Минимум этой функции где-то достигается (непрерывная на компакте). $F(x^0) = ||f(x^0) - y||^2 \le r'^2$, тогда минимум не может достигаться на границе, так как иначе $||x - x^0|| = r$. Тогда с одной стороны $||f(x) - y||^2 = ||f(x) - f(x^0) + f(x^0) - y||^2$. f билиппицева, поэтому разность первых двух можно оценить чнизу $\varepsilon||x - x^0||$, а разность последних двух можно ограничить сверху r'^2 , то есть, вся эта вещь как минимум r'^2 .

Пусть w - минимум F(x) на $B_r(x^0)$, тогда grad $F(w)=0,=||f(x)-y||^2=\sum_{k=1}^n(f_k(x)-y_k)^2,$

$$\left. \frac{\partial F}{\partial x_l} \right|_w = \sum_{k=1}^n \frac{\partial f_k}{\partial x_l} \right|_w 2(f_k(x) - y_k),$$

И теперь, если подставить в обе стороны w, то получатся нули. Посмотрим на правую часть как на СЛУ. Дроби фиксированы - числа из матрицы Якоби (изнач. - A_w), $f_k(x)$ - какие-то неизвестные. Матрица невырождена, так как нвырожденность не меняется от приведённого шевеления. Значит, решение этой системы единственно, но одно из решений мы уже знаем: $f_k(w) = y_k$. Поэтому, если мы подставим точку минимума функции F, то окажется, что эта точка переводится как раз в точку y, и тогда F = 0, а мы в точности нашли прообраз. \square

6 Лекция 6.

Заканчиваем доказательство теоремы об обратном отображении. Мы уже установили, что f - билипшицева, что f в какой-то окрестность $f(V_{x_0})$ содержит V_{g_0} , а также, что обратное отображение g по крайней мере существует в какой-то окрестности.

Осталось лишь доказать один небольшой оставшийся момент. Пусть f - гладкая в x^0 , тогда мы можем расписать $f(x) = f(x^0) + A(x-x^0) + R(x)$, где $|R(x)| = o(|x-x^0|)$ (модули над векторами с данного момента - естественно, нормы). Воспользуемся тем, что любая точка y, достаточно близкая к y^0 , то, по доказанному ране, у неё есть прообраз. Напишем тогда ввиду прообразов: $y = y^0 + A(g(y) - g(y^0)) + R(g(y))$. Она выполнена для любого y в некоторой окрестности y^0 .

Нам хотелось бы выразить $g(y^0)$. Рассмотрим $A(g(y)-g(y^0))=y-y^0-R(g(y))$. Это равенство двух векторов \mathbb{R}^n , матрица A невырожденная, потому у неё есть обратная, применим это знание: $g(y)-g(y^0)=A^{-1}(y-y^0)-A^{-1}(R(g(y)))$. Надо оценить остаток, так как всё остальное уже хорошее. Из того, что мы уже знаем, $\forall \varepsilon>0$, $V_{x^0}^\varepsilon|R(x)|\leq \varepsilon|x-x^0|$ (кажется, в некоторой окрестности, поэтому размер окрестности должен быть другой переменной). Тогда $|R(g(y)|\leq \varepsilon|g(y)-g(y^0)|$. Мы знаем, что f билипшицева, как и обратная, поэтому продолжаем неравенство $\leq \varepsilon C|y-y^0|$. Но у нас изначально есть $|A^{-1}(R(g(y)))|\leq ||A^{-1}||\varepsilon C|y-y^0|$. И теперь, собирая всё назад, получаем, что $g(y)=g(y^0)+A^{-1}(y-y^0)+o(|y-y^0|)$, это нам и нужно было: дифференцируемость в y^0 и явный дифференциал.

Попытаемся обобщить Формулу Тейлора для многих переменных. Для начала, разберёмся с тем, как дифференцировать композицию функций многих переменных. Пусть $f: \mathbb{R}^n \to \mathbb{R}^m, g: \mathbb{R}^m \to \mathbb{R}^k, f$ - гладкая в x^0, g - гладкая в $f(x^0)$, тогда $g(f(x^0))$ - гладкая в x^0, g - дифференциал - BA.

Пример(ы) 1. $f: \mathbb{R}^n \to \mathbb{R}$, $f(x_1, \dots, x_n)$, $g_k = g_k(x_1, \dots, x_n)$ $(1 \le k \le n)$, $g = (g_1, \dots, g_n)$. Тогда $f(g_1(x_1, \dots, x_n), \dots, g_n(x_1, \dots, x_n)) = F(x_1, \dots, x_n)$, $\tilde{x} = (x_1, \dots, x_n)$ и

$$\frac{\partial F}{\partial x_1}\Big|_{\tilde{x}} = \lim_{\varepsilon \to 0} \frac{f(g_1(x_1 + \varepsilon, \dots), \dots, g_n(x_1 + \varepsilon, \dots)) - f(\dots)}{\varepsilon} = \\
= \lim_{\varepsilon \to 0} \frac{f(g_1(x_1, \dots, m_n) + \varepsilon \frac{\partial g}{\partial x_1} + o(\varepsilon), \dots) - f(g(\dots), \dots)}{\varepsilon} = \\
= \lim_{\varepsilon \to 0} \frac{\varepsilon \frac{\partial f}{\partial x_1}\Big|_{g_1(x_1, \dots, x_n)} \cdot \frac{\partial g}{\partial x_1} + \varepsilon \frac{\partial f}{\partial x_2} \frac{\partial g_2}{\partial x_1} + \dots + \varepsilon \frac{\partial f}{\partial x_n} \frac{\partial g_n}{\partial x_1} + o(\varepsilon)}{\varepsilon} = \\
= \sum_{i} \frac{\partial f}{\partial x_i} \frac{\partial g_i}{\partial x_1} = \sum_{i} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial x_1} = \sum_{i} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_i} = \sum_{i} \frac{\partial f}{\partial x_i} = \sum_{i} \frac{\partial f}{\partial x_i} = \sum_{i} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_i} = \sum_{i} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_i} = \sum_{i} \frac{\partial f}{\partial x_i}$$

Последнее равенство - просто вопрос обозначений. А в итоге у нас просто получается предпоследнее. $f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}), \ BA = \left(\sum_{k=1^n}^n \frac{\partial f}{\partial x_k} \cdot \frac{\partial g_k}{\partial x_1}, \dots, \sum_{k=1}^n \frac{\partial f}{\partial x_k} \cdot \frac{\partial g_k}{\partial x_l}, \dots\right)$

Пример(ы) 2. $f(e^{x_1+x_2+x_3}, x_1-x_2+x_3, x_1x_3) = F(x_1, x_2, x_3)$. Тогда

$$\frac{\partial F}{\partial x_2} = \frac{\partial f}{\partial x_1} \cdot e^{x_1 + x_2 + x_3} + \frac{\partial f}{\partial x_2}(-1).$$

Формула Лагранжа. Пусть $f: \mathbb{R}^n \to \mathbb{R}, (x_1, \dots, x_n), (y_1, \dots, y_n)$, мы хотим научиться както выражать $f(y_1, \dots, y_n) - f(x_1, \dots, x_n)$ через производную в какой-то точке посередине. Путь $x(t) = x + th, \ 0 \le t \le 1, \ h = y - x$ (покоординатно). Тогда $\varphi(t) := f(x + th) = f(x_1 + t(y_1 - x_1), \dots, x_n + t(y_n - x_n)) = f(x_1 + th_1, \dots, x_n + th_n), f(y) - f(x) = \varphi(1) - \varphi(0) = \varphi'(\xi), \xi \in [0, 1]$ (по формуле одной переменной),

$$\varphi'(t) = \frac{\partial f}{\partial x_1} \bigg|_{x(t)} (y_1 - x_1) + \ldots + \frac{\partial f}{\partial x_n} \bigg|_{x(t)} (y_n - x_n) = (\operatorname{grad} f, y - x).$$

Таким образом, формула Лагранжа: $f(y) - f(x) = (\operatorname{grad} f|_{\xi}, y - x), \ \xi \in [x, y].$ Получим ещё одно крутое обобщение:

$$\varphi'(0) = \frac{\partial f}{\partial x_1} \left| (y_1 - x_1) + \ldots + \frac{\partial f}{\partial x_n} \right| (y_n - x_n),$$

А теперь возьмём производную ещё раз.

$$\varphi''(t) = (\varphi'(t))' = \sum_{k=1}^{n} \frac{\partial f}{\partial x_1 \partial x_k} (y_k - x_k) (y_1 - x_1) + \dots = \sum_{q \le k, l \le n} \frac{\partial f}{\partial x_l \partial x_k} \cdot (y_k - x_k) (y_l - x_l) = \sum_{1 \le k, l \le n} \frac{\partial f}{\partial x_l \partial x_k} \cdot h_k h_l,$$

такая вещь называется κ вадратичной формой. Теперь для получения формулы Тейлора n-го порядка, нам нужно кучу раз дифференцировать, и будет всё это состоять из всевозможных переборов приращений по различным переменным. Закончилась лекция вспоминаниями о том, что такое квадратичная форма, но за этим лучше перейти в лекции по алгебре.

к содержанию к списку объектов 13

7 Лекция 7.

Утверждение 5. Пусть $f: G \subset \mathbb{R}^2 \to \mathbb{R}, f = f(x,y).$ $(x_0,y_0) \in G, \frac{\partial f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ - существуют в окрестности точки. Тогда $\frac{\partial f}{\partial x \partial y}(x_0,y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0,y_0)$.

Доказательство. Составим на плоскости прямоугольник со стороной ε в положительные стороны от изначальной точки, расставим в шахматном порядке в углах плюсы и минусы, в изначальной точке - плюс.

Рассмотрим теперь разностную сумма: $f(x_0,y_0)+f(x_0+\varepsilon_1,y_0+\varepsilon_2)-f(x_0+\varepsilon_1,y_0)-f(x_0,y_0+\varepsilon_2)=\Phi$. Введём некоторые вспомогательные функции: $F_1(y)=f(x_0+\varepsilon_1,y)-f(x_0,y)$, тогда $\Phi=-F_1(y_0+)+F_1(y_0+\varepsilon_2)=\varepsilon_2F_1'(\xi_1),\,\xi\in[y_0,y_0+\xi_1].$ $F_1'=\frac{\partial f}{\partial y}(x_0+\varepsilon_1,y)-\frac{\partial f}{\partial y}(x_0,y)=\varepsilon_1\frac{\partial}{\partial x}\bigg(\frac{\partial f}{\partial y}(\xi_2)\bigg)$, а это равно $\varepsilon_1\varepsilon_2\cdot\frac{\partial f}{\partial x\partial y}(\xi_1,\xi_2),\,\xi_1,\xi_2$ лежат в прямоугольничке.

Теперь рассмотрим то же самое, только введём $F_2(x) = f(x,y_0 + \varepsilon_2) - f(x,y_0)$, опять поприменяем теорему Лагранжа, и получим $\varepsilon_1 \varepsilon_2 \frac{\partial^2 f}{\partial x \partial y}(\xi_1,\xi_2) = \varepsilon_1 \varepsilon_2 \frac{\partial^2 f}{\partial y \partial y}(\eta_1,\eta_2)$, а теперь воспользуемся непрерывностью производной, устремим к изначальной точке и получим требуемое.

Примечание 5. Менять можно любые частные производные в функциях от многих переменных (фиксируем остальные и меняем по лемме).

Перейдём, наконец, к формуле Тейлора для многих переменных. Выглядит она сложно, но идея простая: у нас есть некоторый центр - точка $x \in \mathbb{R}^n$ и ещё она точка $y \in \mathbb{R}^n$, мы тогда пойдём по прямой от второй точки к центра, напишем естественную параметрицазия $x(t) = x + t(y - x), 0 \le t \le 1, h = (y - x)$. Введём тогда функцию $\varphi(t) = f(x + th)$, попробуем написать для φ обычную формулу Тейлора и подставим h.

написать для φ обычную формулу Тейлора и подставим h. $\varphi'(t) = (\operatorname{grad} f, h) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(x+th) \cdot h_k.$ Запишем теперь вторую производную: $\varphi''(t) = \sum_{1 \leq k, l \leq n} \frac{\partial^2 f}{\partial x_k \partial x_l}(x+th) h_k h_l$, и, в итоге,

$$\varphi^{(s)}(t) = \sum_{1 \le k_1, \dots, k_s \le n} \frac{\partial^s f}{\partial x_{k_1} \dots \partial x_{k_s}} h_{k_1} \dots h_{k_s} = \left(\frac{\partial}{\partial x_1} h_1 + \dots + \frac{\partial}{\partial x_n} h_n\right)^s f(x + th).$$

В общем и целом, для написания формулы Тейлора уже всё готово. Остслось вспомнить, как она устроена от одной переменной. $\varphi(\tau) = \varphi(0) + \frac{\varphi'(0)}{1!} \tau + \ldots + \frac{\varphi^m(0)}{m!} \tau^m + R_m(\tau, f)$, тогда если $\tau \equiv 1$, то

$$\varphi(1) = \sum_{k=0}^{m} \frac{\varphi^{(k)}(0)}{k!} + R_m(1, f).$$

Рассмотрим теперь остаток: $R_m(\tau, \varphi) = ?$ (остаток надо дописать).

Теорема 6. Пусть f имеет частные производные до (m+1)-ой в некоторой окрестности точки $x,\ h=y-x,\ mor \partial a\ f(y)=f(x)+\sum_{k=1}^n \frac{\partial f}{\partial x_k}(x)h_k+\frac{1}{2!}\sum_{1\leq k_1,k_2\leq n} \frac{\partial^2 f}{\partial x_{k_1}\partial x_{k_2}}(x)h_{k_1}h_{k_2}+\ldots+\int_0^1 \frac{(\ldots)(x+th)}{m!}(1-t)^m dt,\ maкже можно написать в форме Лагранжа или Пеано.$

Определение 10. $f: G \subset \mathbb{R}^n \to \mathbb{R}$, имеет локальный минимум в точке x^0 , если $f(y) \ge f(x^0)$, $\forall y \in V_{x^0}$. Аналогично и максимум.

Определение 11. Экстремум: $f: \mathbb{R}^n \to \mathbb{R}$ (дописать надо).

Теорема 7. Если квадратичная форма $\sum_{1 \le k,l \le n} \frac{\partial^2 f}{\partial x_k \partial x_l}(x^0) h_k h_l$, $\operatorname{grad}(x^0) = 0$ определена положительно, то локальный минимум, если определена отрицательно, то локальный максимум.

Рассмотрим квадратную матрицу

$$A = \{a_{k,l}\}_{1 < k,l < n},$$

$$Q(x) = \sum_{1 \le k, l \le n} a_{kl} x_k x_l, \ x = (x_1, \dots, x_n). \ Q(x) = (x_1, \dots, x_n) A(x_1 \dots x_n)^T.$$

Теорема 8. (Критерий Сильвестра). Пусть у нас имеется матрица Q, $n \times n$, тогда Q положительно определена тогда и только тогда, когда все угловые определители (два на главной диагонали и квадрат с ними, 4 элемента) не меньше нуля.

8 Лекция 8.

В прошлый раз мы остановились на расссотрении поля экстремумов $f: G \to \mathbb{R}, G \subset \mathbb{R}^n$. Мы нашли два условия:

- grad f = 0 (необходимое);
- если (квадратичная?) форма $\sum_{q \le k, l \le n} \frac{\partial^2 f}{\partial x_k \partial x_l}$ положительно определа, то локальный минимум, если отрицательно, то локальный максимум.

Докажем второй пункт. Пусть $x^0=(x_1^0,\dots,x_n^0)$, распишем формулу Тейлора $f(x)=f(x^0)+\sum_{k=1}^n\frac{\partial f}{\partial x_k}(x_k-x_k^0)+\frac{1}{2}\sum_{1\leq k,l\leq n}\frac{\partial^2 f}{\partial x_k\partial x_l}(x_k-x_k^0)(x_l-x_l^0)+o((x-x^0)^2)$. Предпоследнее слагаемое - квадратичная форма, пусть A. Тогда запишем

$$(A(x-x^0),(x-x^0)) \ge \varepsilon ||x-x^0||^2,$$

что следует из положительности функции. (Ax,x)>0, $x\neq 0,$ тогда $(Ax,x)>\varepsilon$ при ||x||=1, тогда $(Ax,x)\geq \varepsilon ||x||^2.$

Квадратичные формы, сопряжённые операторы. Каждая линейная операция $A: \mathbb{R}^n \to \mathbb{R}^n$ задаётся матрицей $n \times n$. Самосопряжённая матрица - матрица, которая удовлетворяет (Ax,y)=(x,Ay), рассмотрим её свойства. Она диагонализируема, потому её собственные вектора это просто столбцы из нулей и единички на одном из мест. Собственные же числа - как раз числа на диагонали после диагонализации.

Пример(ы) 3. $f(x,y) = x^4 + y^4 - 2x^2$, $\mathbb{R}^2 \to \mathbb{R}$. $\frac{\partial f}{\partial x} = 4x^3 - 4x = 0$, $\frac{\partial f}{\partial y} = 4y^3$. Под подозрением к экстремуму имеются точки (0,1), (1,0), (-1,0). Рассмотрим $\frac{\partial^2 f}{\partial x^2} = 12x^2 - 4$, $\frac{\partial^2 f}{\partial y^2} = 12y^2$, $\frac{\partial^2 f}{\partial x \partial y} = 0$. Тогда для соответствующих точек мы получаем матрицы 2×2 , состоящие из нулей, кроме левого верхнего нуля - (-4), 8 и 8 соответственно. Так как глоюальный минимум должен существовать, то он минимальный по значению в этих трёх точках, а это - две последние пары (-1).

Пример(ы) 4. Рассмотрим $f(x,y)=xy\log(x^2+y^2)$. Зададим f(0,0)=0, там с непрерывностью всё хорошо, а с гладкостью, конечно, нет. $\frac{\partial f}{\partial y}=y\log(x^2+y^2)+\frac{2x^2y}{x^2+y^2}$, по иксу симметрично. Приравняем оба выражения к нелю и бедем решать систему. Пусть $x,y\neq 0$.

Поделим и получим систему поприятнее, вычтем из одного другое и получим, что $x=\pm y$. Тогда на одну переменную получем $\log(2x^2)+1=0,$ тогда $x=\pm\frac{1}{\sqrt{2e}},$ отсюда 4 точки, а также с нулями ещё точки $(0,\pm 1)$, и симметрично.

Как устроена $\frac{\partial^2 f}{\partial x^2} = \frac{2xy}{(x^2+y^2)} + \frac{4xy(x^2+y^2)-4x^3y}{(x^2+y^2)^2}$. Вторая производная по y симметрична. $\frac{\partial^2 f}{\partial x \partial y} = \log(x^2+y^2) + \frac{2y^2}{(x^2+y^2)} + \frac{2x^2}{(x^2+y^2)} - \frac{4x^2y^2}{(x^2+y^2)^2}$. Попытаемся теперь разобраться, что происходит с "подозрительными" точками. С точкой (0,0) ничего не понятно, посмотрим на остальные. (1,0) имеет квадратичную форму

$$\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

Про точку (-1,0) и так всё понятно в силу нечётночти функции, она не подходит. Для точки (0,2) получаем аналогичную матрицу. Посмотрим теперь на $(\frac{1}{\sqrt{2e}},\frac{1}{\sqrt{2e}})$, получаем матрицу

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Если у одной из координат поменяем знак, то получим

$$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$

Осталась только точка (0,0), в которой ничего не понятно. Однако посмотрим на изменение знаков при фиксированных значениях и поймём, что она не обладает какими-то интересными свойствами.

Есть у нас в анализе одной переменной касательная к графику функции. Аналогичные вещи могут быть и в срарших размерностях, посмотрим на \mathbb{R}^3 . Напишем касательную $f(x_0,y_0)+\frac{\partial f}{\partial x}(x-x_0)+\frac{\partial f}{\partial y}(y-y_0).$ По аналогичным аппромаксимацонным моображениям, получим, что эта вещь, как и на плоскости, прекрасно аппроксимирует график функции. Вектор нормали: $(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},-1).$

Пример(ы) 5. Параметризуем сферу широтой и долготой. Сфера в \mathbb{R}^3 - точки, сумма квадратов координат которых равна единице. Ну там по углам параметризуем, в общем, география 0 класс.

9 Лекция 9.

(три минуты начала лекции проспаны)

Теорема 9. Пусть $F: G \to \mathbb{R}, \ G \subset \mathbb{R}^2$ - открытое. Также выполнено:

- $F(x_0, y_0) = 0$;
- $F \in C^1(G)$;
- $F'_{n}(x_{0}, y_{0}) \neq 0$.

Тогда $x_0 \in I_x$, $y_0 \in I_y$, $I_x \times I_y \subset \mathbb{R}^2$, $\exists ! \ y = f(x)$ такая. что F(x,y) = 0 тогда и только тогда, когда y = f(x).

$$f \in C^1$$
, $f'(x) = -\frac{F'_x(x, f(x))}{F'_y(x, f(x))}$.

Доказательство. Рассмотрим F(x,f(x))=0, $F'_x(x,f(x))+F'_y(x,f(x))'f(x)=0$, это - неформальная мысль о том, почему производная именно такая, какая она и должна быть, а теперь перейдём к доказательству.

Для определённости будем считать, что $F'_y(x_0, y_0) > 0$. Поскольку мы предположили непрерывность произодных, то $F'_y > 0$ в некоторой окрестности этой точки. Зафисксируем одну из координат и посмотрим на функцию $G(y) = F(x_0, y)$, мы знаем, что $G(y_0) = 0$, G' > 0, потому G возрастает, а $G(y_1) < 0 < G(y_2)$ при $y_1 < y_0 < y_2$.

Сама функция F является непрерывной функцией двух переменных, потому если мы посмотрим $G_x(y)=F(x,y)$, то G - возрастающая. Давайте обозначим, что G задана (?) на $[y_0-\beta,y_0+\beta]$, тогда фиксируя $x,\,G_x(y_0-\beta),\,G_x(y_0+\beta)>0$ для $x\in[x_0-\alpha,x_0+\alpha]$. В силу того, что функция возрастает, $\forall x\in[x_0-\alpha,x_0+\alpha],\,\exists !y,\,G_x(y)=F(x,y)=0$.

Рассмотрим y = f(x) и попробуем установить непрерывность f в окрестности точки x_0 . Мы знаем, что $y_0 = f(x_0)$, и нам нужно понять, почему при довольно малом сдвиге по x, f также изменится минимально. $y_0 = f(x_0)$. Рассмотрим множество решений уравнения F(x,y) = 0 (внутри рассматриваемо прямоугольника). Мы уже доказали, что на каждом вертикальном отрезке (или горизонтальном, смотря как повернуть) есть ровно одна точка, которая удовлетворяет условию, тогда получим противоречие (не услышал в чём).

f непрерывна в любой точке x из $(x_0-\alpha,x_0+\alpha)$. Рассмотрим теперь $h\in\mathbb{R}$, а также $F(x,f(x))=0,\ x$ - фиксированный. $F(x+h,f(x+h))=0,\ h\to 0$. Тогда $F(x+h,f(x+h))-F(x,f(x))=F(x_h,f(x)+(f(x+h)-f(x))-F(x,f(x)))=h(F'_x(x,f(x)))+h\cdot \frac{f(x+h)-f(x)}{h}F'_y(x,f(x))+o(h)=0$ - по формуле тейлора при $h\to 0$ (o можно расписать получине). Тогда $\exists \lim_{h\to 0} \frac{f(x+h)-f(x)}{x}=-\frac{F'_x}{F'_y}(x,f(x))$.

Примечание 6. Если $F \in C^k(G)$, то $f \in C^k$, так как дробь первой производной можно как угодно кучу раз дифференцировать.

Начнём повышать размерности.

Теорема 10. Пусть $F: G \in \mathbb{R}$, G - открыто в \mathbb{R}^{m+1} , а также выполнено:

- $F \in C'(G)$;
- $F(x_1,\ldots,x_m,y_0)=0;$
- $F'_n(x_1^0,\ldots,x_m^0,y_0)\neq 0.$

Тогда $I_x^m \times I_y$, $F(x_1, \dots, x_m, y) = 0$ тогда и только тогда, когда $y = f(x) = f(x_1, \dots, x_m)$. Опять-таки, записать можно ткаую же штуку для производной.

Доказательство. Да и доказательство не сильно поменяется, в общем-то.

Посмотрим теперь, что это нам даёт. Это нам даёт, что поверхность может быть задана неявным образом. Пусть $z = f(x,y), \ F(x,y,z) = 0$, тогда если мы нашли какую-то точку $F(x_0,y_0,z_0) = 0, \ F_z'(x_0,y_0,z_0) \neq 0$. Тогда F(x,y,z) = 0 тогда и только тогда, когда z = f(x,y).

Вектор нормали должен был выглядеть как $(f'_x, f'_y, -1)$, но тут много чего непонятного, запишем как $\left(-\frac{F'_x}{F'_z}, -\frac{F'_y}{F'_z}, -1\right)$, при $F'_z \neq 0$. Тогда домножим и получим $(F'_x, F'_y, F'_z) = \operatorname{grad} F$.

Попробуем начать формулировать теорему о неявной функции. Пусть $x=(x_1,\ldots,x_n),$ $y=(y_1,\ldots,y_n),$ и F_i (всех переменных) при $1\leq n$. Тогда если $x^0=(x_1^0,\ldots,x_m^0),\ y^0=(y_1^0,\ldots,y_n^0)$ так что $F_k(x^0,y^0)=0$ для любого $1\leq k\leq n$. $F_k(x,y)=0$ тогда и только тогда, когда $y=f(x),\ y^0=f(x^0).$

Зафиксируем (x_1,\ldots,x_m) , Рассмотрим для $F_k,\,F:\mathbb{R}^n\to\mathbb{R}^n$, тогда дифференциал F -матрица A обратима.

Теорема 11. $F: G \to \mathbb{R}^n$, где G - открытое в \mathbb{R}^{m+n} и выоплнено следующее:

- $F \in C^1(G)$;
- $F(x^0, y^0) = 0, x^0 \in \mathbb{R}^m, y^0 \in \mathbb{R}^n;$
- $F'_y(x^0, y^0)$ обратимая матрица.

Тогда окрестность (x^0, y^0) , $\exists ! f : \mathbb{R}^m \to \mathbb{R}^n$, F(x, y) = 0 тогда и только тогда, когда y = f(x). $f'(x) = -[f'_v(x, f(x))]^{-1} \cdot F'_x(x, f(x)).$

10 Лекция 10.

Продолжаем изучение теоремы о неявной функции.

Теорема 12. Пусть $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, $F : G \to \mathbb{R}^n$, $G \subset \mathbb{R}^{m_1}$. Тогда если

- $F \in C^1(G)$;
- $F(x^0, y^0) = 0$;
- $F'(x^0, y^0)$ обратимо $(n \times n \text{матрииа})$.

Тогда в некоторой окрестности (x^0, y^0) , F(x, y) = 0 тогда и только тогда, когда y = f(x), $f: \mathbb{R}^m \to \mathbb{R}^n$.

Доказательство. $f'(x) = -(F_y'(x,f(x)))^{-1}F_x'(x,f(x))$. В правой части как раз матрицы $n \times n$ и $n \times m$.

Мы сейчас находимся в положении, что если n=1, то теорема доказана (на прошлой лекции). Докажем теперь всё остальное индукцией по n. Попробуем уменьшить на 1 число переменных. Мы знаем, что $F=(F_1,\ldots,F_n), F_k:\mathbb{R}^{m+1}\to\mathbb{R}.$ $F_k=F_k(x^1,\ldots,x^m,y^1,\ldots,y^n),$ и эта вещь равна нулю из кучи соотношений. Нам хочется выделить одну переменную и посмотреть на это как на неявное соотношение между игреками и иксами. Попытаемся зафиксировать всю совокупность переменных, кроме одной, и, как раз, получится то, что надо.

Обозначим цель: выразить игреки через иксы, то есть найти $y^i=f_i(x_1,\dots,x_m)$. Начинаем с малого, и выразим одну через все остальные. Выбирать мы будет не абы какую переменную. F'_y можно записать как матрицу Якоби. Поскольку мы знаем, что эта матрица невырожденная, то у неё есть хотя бы одна ненулевая строка, у которой есть ненулевой элемент. Не умаляя общности, это - последняя строка и последний в ней элемент. $\frac{\partial F_n}{\partial u_n}(x^0,y^0)\neq 0$ (даже в некоторой окрестности). y_n мы выражать и будем.

Применим теперь теорему о неявной функции в случае с одной переменной, и тогда $F_k(x_1,\ldots,x_m,y_1,\ldots,y_{n-1})=0,\ 1\leq k\leq n,$ у нас есть столько соотношений, и нам бы хотелось их записать в виде того, что y_n является функцией от остальных переменных. Чтобы это сделать, нам достаточно только одного. Количество соотношений должно быть равно количеству переменных, поэтому нас из всех этих соотношений нужно только последнее -n-ое. У нас есть от него начальный вектор длины M+n-1. Подставим

$$F_n(x_1^0, \dots, x_m^0, y_1^0, \dots, y_{n-1}^0, y_n^0) = 0,$$

это нам дано.

Тогда согласно теореме, у нас существует f^* такая, что $y_n = f^*(x_1, \ldots, x_m, y_1, \ldots, y_{n-1})$. У этой формулы есть, конечно, одна беда, было бы совсем круто, если бы мы выразили это всё только через иксы, а тут ещё куча игреков. Но тогда спустимся индукцией вниз, и дойдём до того, что как раз останутся только иксы. Однако, тут нужно следить за многими важными моментами, например, за невырожденностью матриц. Заведём следующую функцию: $\varphi_1 = F_1(x_1, \ldots, x_m, y_1, \ldots, y_{n-1}, f^*(x_1, \ldots, x_m, y_1, \ldots, y_{n-1}))$. Точно также мы можем сделать для $1 \le k \le n-1$. Тогда $\varphi_n \equiv 0$.

 $\varphi_k(x_1,\dots,x_m,y_1,\dots,y_{n-1})=0,\ 1\leq k\leq n-1.$ Нам нужно проверить, что матрица отображения $\varphi=(\varphi_1,\dots,\varphi_{n-1})$ невырожденна в точке. Тогда нам ещё нужно научиться считать производные φ_k по игреку. Попытаемся продифференцировать $\frac{\partial \varphi_k}{\partial y_l}$, где и k и l от 1 до n-1. Эта производная равна $\frac{\partial F_k}{\partial y_l}+\frac{\partial F_k}{\partial y_n}\cdot\frac{\partial f^*}{\partial y_l}$, в f^* мы подставляем всё, кроме последней координаты, а в F подставляем всё, да на месте последней координаты - f^* от всего остального

Рассмотрим, что у нас получается с матрицей $\frac{\partial \varphi_k}{\partial y_l}$, $(n-1) \times (n-1)$ (точнее, рассматриваем $\frac{\partial F_k}{\partial y_l}$ и размера $n \times n$). Рассматриваем теперь верхнюю левую подматрицу $(n-1) \times (n-1)$, а из большой получим при помощи элементарных преобразований получим красивую большую матрицу, которая состоит из элементов, идентичных $\frac{\partial F_k}{\partial y_l} + \frac{\partial F_k}{\partial y_n} \cdot \frac{\partial f^*}{\partial y_l}$. Внутри того куска $(n-1) \times (n-1)$ получим красоту (φ'_y) , однако в последнем столбце у нас получается чтото не хорошее $(\frac{\partial F_n}{\partial y_1} + \frac{\partial F_n}{\partial y_n} \cdot \frac{\partial f^*}{\partial y_1})$, однако, так как это производные, то тождественные нули). Аналогично не очень хорошо получается в последней строке, а в правом нижнем углу стоит $\frac{\partial F_n}{\partial y_n}$.

Тогда определитель матрицы $F_y' = \det \varphi_y' \cdot \frac{\partial F_n}{\partial y_n}$. Но ни первый, ни второй множитель не равняются нулю, поэтому и искомое не нуль. $\varphi_i(\text{everything}) = 0$, тогда существуют f_k , $1 \le k \le n-1$, тогда $y_n = f^*(x_1, \dots, x_m, y_1, \dots, y_{n-1}) = f^*(x_1, \dots, x_m, f_1(\mathbf{x}'\mathbf{s}), \dots, f_{n-1}(\mathbf{x}'\mathbf{s})))$. Осталось лишь доказать формулы f'(x), $f: \mathbb{R}^m \to \mathbb{R}^n$. У нас есть соотношение

$$F_k(x_1,\ldots,x_m,f_1,\ldots,f_n)=0,$$

 $1 \leq k \leq n$. Давайте продифференцируем это дело. Мы имеем право дифференуировать по m переменным. $\frac{\partial F_k}{\partial x_1} = \frac{\partial F_k}{\partial x_1} + \sum_{l=1}^n \frac{\partial F_k}{\partial y_l} \cdot \frac{\partial f_l}{\partial x_1} = 0$. Индексы при F и x могут быть любыми, тогда мы можем 1 заменить на s, и у нас выполнено $m \times n$ соотношений $(1 \leq k \leq n, 1 \leq s \leq m)$. $F'_x + F'_y f' = 0$, тогда посмотрим на рэмеры матриц, и пристальным вглядыванием получим из обратимости $f' = -(F'_y)^{-1} \cdot F'_x$. (немного перестал понимать, что происходит - надо вникнуть и записать).

Перейдём теперь к теме условные экстремумы. Пусть $f = f(x_2, \ldots, x_n), G \subset \mathbb{R}^n, F \to \mathbb{R}$. Если у нас есть набор $f_i(x_1, \ldots, x_n) = 0$ при $1 \le i \le m$, то хотелось бы, чтобы $m \le n$. Тогда мы можем сократить количество переменных. Ну, Юрий Сергеевич начал рисовать картиночки, я так не умею. Пусть у нас есть поверхность S и f(x,y,z), и мы хотим найти

экстремум по S - $f|_S$. Пусть у нас есть точка $(x_0, y_0, z_0) \in S$, тогда мы хотим, чтобы в точке было касание. Если в общем и целом, то нас инетересует касание, мы рассматриваем параметризацию от одной переменной t по кривой на поверхности, и дальше с ней чего-то там делаем.

11 Лекция 11.

Продолжаем с условными экстремумами. Немного не формальные рассуждения: у нас есть функция f(x, y, z), поверхность S, заданная уравнением $f_1(x, y, z)$, и вот

Пусть есть кривая $(x(t),y(t),z(t)) \in S$ такая, что при t=0 получается x_0,y_0,z_0 . Введём $\psi(t)=f(x(t),y(t),z(t))$, тогда $\psi'(0)=0,$ $\psi'(t)=\frac{\partial f}{\partial x}x'(t)+\frac{\partial f}{\partial y}y'(t)+\frac{\partial f}{\partial z}z'(t)$, что опять равно нулю в нуле. Эта вещь равносильна утверждению о том, что grad f перпендикулярен касательной плоскости $T_s(x_0,y_0,z_0)t=0$. Мы знаем, что grad \bot поверхности уровня $(f(x,y,z)=f(x_0,y_0,z_0))$, потому и получаем.

Давайте теперь рассмотрим общий случай размерностей. У нас есть функция n переменных и поверхность, заданная m соотношениями: $f = f(x_1, \ldots, x_n), S \to f_k(x_1, \ldots, x_n) = 0$ - система из m уравнений $(1 \le k \le m)$. (?)

Пусть мы ищем $f|_s$ - имеет экстремум в x^0 , тогда при $x(t) \in S$, $x(0) = x^0$, рассматриваем опять $\psi(t) = f(x(t))$, о которой мы уже знаем, что значение производной в нуле равно нулю, и равно (grad $|_{t=0}, x'(0)$). Тогда для любой $x(t) \in S$, (постоянные сбои в связи, придётся пересматривать)