Azure Hadoop

Eshant Garg

Advisor, Data Specialist

Eshant.garg@gmail.com

Module Overview

are failing?

Why Distributed Computing System?

Introducing Hadoop?

Hadoop Ecosystem?

Need of Distributed Computing?

How much data?

- 2.4 billion monthly active users
- Generate 4 petabytes of data every single day
- 100 million hours of video watch time per hour
- 4 million like every minute

- Stores 20 EB of data
- 4 million searches happening every minute
- 4 million apps on google play
- 300 hours of video upload every minute

Requirement to handle Big Data?

Monolithic system

- Single machine
- Single process
- Powerful single server
- Can not scale beyond limit

Distributed System

- Cluster of multiple machines
- Multiple processes
- Commodity hardware
- Can scale storage and computational capacity linearly

Software requirements to handle Distributed systems?

Software purpose is to coordinate and manage all the processes and machines which exist within the system.

Google Software Challenge?

Google software challenge?

 Can store millions of records across multiple machines

Google file system

• Can run and coordinate these processes across all these machines

MapReduce

Hadoop Architecture

HADOOP 1.0

MapReduce

(cluster resource management & data processing)

HDFS

(redundant, reliable storage)

HADOOP 2.0

MapReduce

(data processing)

Others

(data processing)

YARN

(cluster resource management)

HDFS

(redundant, reliable storage)

Hadoop Architecture

What happens when you submit a job Hadoop?

Hadoop vs RDBMS

Hadoop

- Unstructured
- CAP
- Higher data throughput
- Slower granular query performance
- Horizontally scaled
- OLAP

RDBMS

- Structured
- ACID
- Lower data throughput
- Faster granular query performance
- Vertically scaled
- OLTP

HIVE & DRILL (Analytical SQL-on-Hadoop)

MAHOUT & SPARK MLIib (Machine learning)

mahout

PIG

(Scripting)

HBASE (NoSQL Database)

OOZIE

(Scheduling)

ZOOKEEPER & AMBARI (Management & Coordination)

SPARK (In-Memory, Data Flow Engine)

KAFKA & STORM (Streaming)

Flucene

Resource Management

YARN

Storage

Unstructured/ Semi-structured Data

HDInsight high level architecture

Parallel Processing

Decoupled Storage

MapReduce operation

Data is chunked redundantly across nodes

Massive Parallelism

