M4202C Recherche opérationnelle (II) Programmation linéaire

bruno.colombel@univ-amu.fr

IUT d'Aix-Marseille Site d'Arles DUT informatique

2019-2020

Programmation linéaire : Introduction

Résolution graphique

Analyse de sensibilité

Sommaire

Programmation linéaire : Introduction

Résolution graphique

Analyse de sensibilité

Problèmes de PL

Programmation linéaire (PL)

Modèle mathématique dans lequel la fonction objectif et les contraintes sont linéaires en les variables.

Problèmes de PL

Programmation linéaire (PL)

Modèle mathématique dans lequel la fonction objectif et les contraintes sont linéaires en les variables.

Applications

 Optimisation de l'usage de ressources limitées dans les domaines militaire, industriel, agricole, économique, etc.

Problèmes de PL

Programmation linéaire (PL)

Modèle mathématique dans lequel la fonction objectif et les contraintes sont linéaires en les variables.

Applications

- Optimisation de l'usage de ressources limitées dans les domaines militaire, industriel, agricole, économique, etc.
- Existence d'algorithmes très efficaces pour résoudre des problèmes de très grande taille (simplexe, points intérieurs)

Une société produit de la peinture d'intérieur et d'extérieur à partir de deux produits de base M1 et M2.

Données	Quantité utili	sée par tonne	Quantité disponible par jour
	Extérieure	Intérieure	
M1	6	4	24
M2	1	2	6
Profit par tonne	5	4	

Contraintes supplémentaires

- Demande maximum en peinture d'intérieur : 2 tonnes/jour
- La production en peinture d'intérieure ne peut dépasser que d'une tonne celle d'extérieure

Variables

 x_1 : tonnes de peinture d'extérieur produites par jour

 x_2 : tonnes de peinture d'intérieur produites par jour

Variables

 x_1 : tonnes de peinture d'extérieur produites par jour x_2 : tonnes de peinture d'intérieur produites par jour

Fonction objectif (à optimiser)

$$\max z = 5x_1 + 4x_2$$

$$\begin{array}{rcl} 6x_1 + 4x_2 & \leqslant & 24 \\ x_1 + 2x_2 & \leqslant & 6 \\ & x_2 & \leqslant & 2 \\ -x_1 + x_2 & \leqslant & 1 \\ & x_1, x_2 & \geqslant & 0 \end{array}$$

Écriture matricielle

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
: variables de décisions $c = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$: coût ou profit
$$A = \begin{pmatrix} 6 & 4 \\ 1 & 2 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 24 \\ 6 \\ 2 \\ 1 \end{pmatrix}$$
: second membre

Écriture matricielle

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
: variables de décisions $c = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$: coût ou profit $A = \begin{pmatrix} 6 & 4 \\ 1 & 2 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$ $b = \begin{pmatrix} 24 \\ 6 \\ 2 \\ 1 \end{pmatrix}$: second membre

$$\max z = {}^{t}cx$$
s.c. $Ax \le b$

$$x \ge 0$$

- On désire déterminer la composition, à coût minimal, d'un aliment pour bétail qui est obtenu en mélangeant au plus deux produits bruts : orge et arachide.
- La quantité nécessaire par portion est de 400g
- L'aliment ainsi fabriqué devra comporter au moins 30 % de protéines et au plus 5 % de fibres.

Données

Quantité	Coût		
Aliment	Protéines	Fibres	(€/kg)
Orge	0.09	0.02	1.5
Arachide	0.60	0.06	4.5

Variables

 x_1 : grammes d'orge par portion

 x_2 : grammes d'arachide par portion

Variables

 x_1 : grammes d'orge par portion

 x_2 : grammes d'arachide par portion

Objectif

$$\max z = 0,0015x_1 + 0,0045x_2$$

Contraintes

Quantité totale : $x_1 + x_2 \geqslant 400$

- **Quantité totale** : $x_1 + x_2 \ge 400$
- ▶ Protéines : $0,09x_1 + 0,06x_2 \ge 0,3(X_1 + x_2)$

- ▶ Quantité totale : $x_1 + x_2 \ge 400$
- ▶ Protéines : $0,09x_1 + 0,06x_2 \ge 0,3(X_1 + x_2)$
- Fibres: $0,02x_1+0,06x_2 \le 0,05(x_1+x_2)$

- **Quantité totale** : $x_1 + x_2 \geqslant 400$
- ▶ Protéines : $0,09x_1 + 0,06x_2 \ge 0,3(X_1 + x_2)$
- Fibres: $0,02x_1+0,06x_2 \le 0,05(x_1+x_2)$
- Non négativité : $x_1, x_2 \ge 0$

 \triangleright x_i variable de décision du problème

- ► *x_i* variable de décision du problème
- \times $x = (x_1, ..., x_n)$ solution réalisable (admissible) si elle satisfait toutes les contraintes

- x_i variable de décision du problème
- \times $x = (x_1, \dots, x_n)$ solution réalisable (admissible) si elle satisfait toutes les contraintes
- ensemble des solutions réalisables = domaine ou région admissible

- x_i variable de décision du problème
- \times $x = (x_1, ..., x_n)$ solution réalisable (admissible) si elle satisfait toutes les contraintes
- ensemble des solutions réalisables = domaine ou région admissible
- $x = (x_1, ..., x_n)$ solution **optimale** si elle est réalisable et optimise la fonction-objectif

Critiques de la PL

Intérets

- existence de méthodes de résolution générales et efficaces
- ces méthodes sont efficaces en théorie et en pratique (existence de nombreux logiciels de résolution)

Critiques de la PL

Intérets

- existence de méthodes de résolution générales et efficaces
- ces méthodes sont efficaces en théorie et en pratique (existence de nombreux logiciels de résolution)

Restrictions

- variables réelles
- contraintes linéaires
- objectif linéaire

Programmation linéaire

Feuille de TD

- ► Production de vins
- Problème de mélange
- Problème de fabrication

Sommaire

Programmation linéaire : Introduction

Résolution graphique

Analyse de sensibilité

Résolution graphique

Problème avec solution non bornée

$$\max z = -2x_1 + 3x_2$$
s.c.
$$\begin{cases} x_1 & \le 5 \\ 2x_1 - 3x_2 \le 6 \\ x_1 & \ge 0 \\ x_2 \ge 0 \end{cases}$$

Problème impossible

min
$$z = 3x_1 + 2x_2$$

s.c.
$$\begin{cases} x_1 + 2x_2 \le 2\\ 2x_1 + 4x_2 = > 8\\ x_1 \ge 0\\ x_2 \ge 0 \end{cases}$$

Problème à solutions multiples

$$\max z = x_1 + 3x_2$$
s.c.
$$\begin{cases}
2x_1 + 6x_2 \le 30 \\
x_1 & \le 10 \\
x_2 \le 4 \\
x_1 & \ge 0 \\
x_2 \ge 0
\end{cases}$$

Problème de dégénerescence

$$\max z = x_1 + x_2$$
s.c.
$$\begin{cases}
3x_1 + 2x_2 \le 40 \\
x_1 & \le 10 \\
x_2 \le 5 \\
x_1 & \ge 0 \\
x_2 \ge 0
\end{cases}$$

Programmation linéaire

Feuille de TD Résolution graphique

Sommaire

Programmation linéaire : Introduction

Résolution graphique

Analyse de sensibilité

Une analyse de sensibilité se résume à la recherche des intervalles de variations possibles des paramètres du programme linéaire sans que la solution optimale ne soit modifiée

Une analyse de sensibilité se résume à la recherche des intervalles de variations possibles des paramètres du programme linéaire sans que la solution optimale ne soit modifiée

De combien peut-on faire varier la quantité x_1 de peinture d'extérieur sans changer la solution optimale?

Une analyse de sensibilité se résume à la recherche des intervalles de variations possibles des paramètres du programme linéaire sans que la solution optimale ne soit modifiée

- De combien peut-on faire varier la quantité x_1 de peinture d'extérieur sans changer la solution optimale?
- De combien peut-on faire varier la quantité x_2 de peinture d'extérieur sans changer la solution optimale?

Une analyse de sensibilité se résume à la recherche des intervalles de variations possibles des paramètres du programme linéaire sans que la solution optimale ne soit modifiée

- De combien peut-on faire varier la quantité x_1 de peinture d'extérieur sans changer la solution optimale?
- De combien peut-on faire varier la quantité x_2 de peinture d'extérieur sans changer la solution optimale?
- ▶ De combien peut-on faire varier le profit par tonne de peinture extérieure (ou intérieure) sans changer la solution optimale?