[I2A] - Compare Function for Vector Sorting

Time: 1 sec / Memory: 256 MB

Background

This problem simulates a basic building block for the Graham-Scan algorithm used in the [Convex Hull] (/fQL6Z7YpT-SQfkZMr01VQQ) problem.

Use the *Inner-product* and *Cross-product* of the vectors to answer this problem. Note that, for any \vec{u}, \vec{v} in the x-y plane, the third coordinate of $\vec{u} \times \vec{v}$ determines the relative orientation of \vec{u} and \vec{v}

Hint: Use long long data-type to prevent integer overflow.

Problem Statement

Let $ec{u}, ec{v} \in \mathbb{R}^2$ be two distinct vectors.

Consider the following ordering rule for \vec{u} and \vec{v} .

- If \vec{u} to \vec{v} is a counter-clockwise rotation, then \vec{u} is ordered before \vec{v} .
- If \vec{u} to \vec{v} is a clockwise rotation, then \vec{u} is ordered after \vec{v} .
- If \vec{u} is parallel to \vec{v} , then the one with a shorter length is ordered before the other.

Given two distinct vectors \vec{u} and \vec{v} , determine the relative ordering between them.

In the first figure, \vec{v} is ordered before \vec{u} .

In the second figure, \vec{u} is ordered before \vec{v} .

In the third figure, \vec{v} has a shorter length and is ordered before \vec{u} .

Input

The first line contains two integers x_1,y_1 , representing the first vector $\vec{u}=(x_1,y_1)$.

The second line contains two integers x_2,y_2 , representing the second vector $ec{v}=(x_1,y_1).$

You may aassume that

- $|x_1|, |x_2|, |y_1|, |y_2| \leq 10^9$.
- $|ec{u}|
 eq |ec{v}|$ when $ec{u}$ is parallel to $ec{v}$.

Output

Output true if \vec{u} is ordered before $\vec{v}.$

Otherwise, output false.

Example

Input1:

1 0 0 -1

Output1:

false

Input2:

2639

Output2:

true