# PEMBANGKITAN KUNCI PRIVAT PADA ENKRIPSI RSA MENGGUNAKAN INFORMASI PERANTI

#### PROPOSAL TUGAS AKHIR



Oleh:

**YOGI ARIF WIDODO** 

NIM. 17 615 006

# KEMENTERIAN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI SAMARINDA JURUSAN TEKNOLOGI INFORMASI PROGRAM STUDI TEKNIK INFORMATIKA

2019

#### HALAMAN PERSETUJUAN

# PEMBANGKITAN KUNCI PRIVAT PADA ENKRIPSI RSA MENGGUNAKAN INFORMASI PERANTI



Nama Mahasiswa : Yogi Arif Widodo

NIM : 17 615 006

Jurusan : Teknologi Informasi

Program Studi : Teknik Informatika

Jenjang Studi : Diploma III

Dipromosikan oleh:

Mulyanto, S.Kom., M.Cs

NIP. 19750213 200801 1 007

#### **Kata Pengantar**

Puji syukur Alhamdulillah panjat-kan kehadirat Allah SWT yang telah melimpahkan rahmat-Nya serta hidayah-Nya sehingga mampu menyelesaikan Proposal Tugas Akhir dengan judul Pembangkitan Kunci Privat Pada Enkripsi RSA Menggunakan Infromasi Peranti.

Selawat Salam semoga selalu tercurahkan kepada Nabi Muhammad SAW Beserta keluarga dan para sahabatnya hingga pada umatnya sampai akhir zaman.

Proposal Tugas Akhir ini disusun untuk memenuhi salah satu syarat dalam menyelesaikan jenjang pendidikan program Diploma III di Jurusan Teknologi Informasi, Politeknik Negeri Samarinda.

Dalam proses penyusunan Proposal Tugas Akhir ini, mendapatkan banyak sekali bantuan, bimbingan serta dukungan dari berbagai pihak, sehingga dalam kesempatan ini, bermaksud menyampaikan rasa terima kasih kepada:

- Kedua orang tua dan keluarga yang selalu memberi dukungan moral dan materi.
- Ansar Rizal, ST., M.Kom. selaku Ketua Jurusan Teknologi Informasi Politeknik Negeri Samarinda
- **3.** Mulyanto, S.Kom., M.Cs selaku promotor yang telah membimbing hingga terselesaikannya proposal tugas akhir ini.
- **4.** Staf dosen, staf teknisi, dan staf administrasi jurusan yang telah membantu dalam segala hal yang berkaitan dengan perkuliahan.

5. Semua sahabat dan rekan-rekan mahasiswa jurusan Teknologi Informasi

yang ikut memberi saran dan masukan.

6. Serta semua pihak lain yang ikut terlibat dalam penyelsaian Proposal Tugas

Akhir ini

Semoga Allah SWT memberi balasan yang setimpal kepada semuanya.

Harapan-nya tugas akhir yang telah disusun ini bisa memberikan sumbangsih

untuk menambah pengetahuan, dan perbaikan selanjutnya, selalu terbuka terhadap

saran dan masukan, karena menyadari tugas akhir yang telah disusun ini memiliki

banyak sekali kekurangan.

Samarinda, 21 Desember 2019

Yogi Arif Widodo

ii

# **DAFTAR ISI**

| HALAMAN PERSETUJUAN                       |    |
|-------------------------------------------|----|
| Kata Pengantar                            |    |
| DAFTAR ISI                                | ii |
| DAFTAR GAMBAR                             | iv |
| BAB I PENDAHULUAN                         | 1  |
| 1.1 Latar Belakang                        | 1  |
| 1.2 Rumusan Masalah                       |    |
| 1.3 Tujuan Penelitian                     | 2  |
| 1.4 Batasan Masalah                       |    |
| 1.5 Manfaat Penelitian                    |    |
| BAB II TINJAUAN PUSTAKA                   |    |
| 2.1 Kajian Ilmiah                         |    |
| 2.2 Dasar Teori                           | 6  |
| 2.2.1 Kriptografi                         | 6  |
| 2.2.2 Informasi Peranti                   | 10 |
| 2.3.1 Teori Bilangan (Relatif Prima)      | 11 |
| 2.3.2 Entropy                             | 11 |
| BAB III METODE PENELITIAN                 | 12 |
| 3.1 Kerangka Konsep Penelitian            | 12 |
| 3.1.1 Kriptografi                         | 13 |
| 3.2 Metodologi Penelitian                 | 14 |
| 3.2.1 Riset Awal                          | 15 |
| 3.2.2 Tahapan Menentukan Bilangan Prima . | 15 |
| 3.2.3 Tahapan Pembangkitan Kunci          | 17 |
| 3.2.4 Pengujian                           | 17 |
| 3.2.5 Analisa Hasil                       | 18 |
| 3.2.6 Variabel Penelitian                 | 18 |
| 3.2.7 Waktu dan Tempat Penelitian         | 18 |
| RENCANA JADWAL PENGERJAAN                 | 19 |
| DATAR PUSTAKA                             | 20 |

## DAFTAR GAMBAR

| Gambar 2.1 Teknik Blocking                                         | 7  |
|--------------------------------------------------------------------|----|
| Gambar 2.2 Teknik Pemampatan                                       | 8  |
| Gambar 2.3 Teknik Permutasi.                                       | 9  |
| Gambar 2.4 FlowChart Pembangkitan Kunci Algoritma RSA              | 10 |
| Gambar 3.1. Diagram Alir Kerangka Konsep Penelitian                | 12 |
| Gambar 3.2. Diagram Alir Metodologi Penelitian                     | 14 |
| Gambar 3.2.1 FlowChart Daur Ulang Pembangkitan Kunci               | 16 |
| Gambar 3.2.2 FlowChart Pembangkit Batas Atas Angka Prima           | 17 |
| Gambar 3.2.3 FlowChart Hasil Pembangkit Semua Angka Prima          | 17 |
| Gambar 3.2.4 FlowChart Terpilih-nya konstanta atau orde P dan Q    | 16 |
| Gambar 3.2.5 FlowChart Pembangkitan Kunci dengan Informasi Peranti | 17 |

#### **BABI**

#### **PENDAHULUAN**

#### 1.1 Latar Belakang

Keamanan informasi disebut penting tergantung pada aspek data, terutama ketika menyangkut privasi seseorang atau otorisasi oleh pihak berwenang.

Selain menjadi ilmu mengamankan data, kriptografi adalah seni menjaga kerahasiaan data dengan mengubah-nya menjadi berbeda atau bermakna aneh dan dengan algoritma matematika, maka hanya dapat diselesaikan oleh orang yang memiliki kunci.

Ketika hak otorisasi di jatuhkan dalam informasi tertentu, memberikan pola yang merangkai konsep, Seperti hal nya waktu terus berjalan mengikuti masa sekarang, tentu memiliki aspek krusial terhadap kombinasi angka atau bilangan yang penerapan-nya simple acak informasi.

RSA (Rivest Shamir Adleman) merupakan teknik kriptografi moderen yang melewati batas paten selama 20 tahun, membuat-nya mudah di baca secara bebas. Sulit-nya memfaktorkan bilangan besar menjadi faktor – faktor prima (utama), serta perbedaan kunci dalam penyandian dan terjemahan, membuat RSA menjadi salah satu teknik yang sulit dipecahkan dan tentu menimbulkan pertanyaan "keamanan sudah kuat, kenapa di oprek lagi?", seperti era saat ini (tahun 2020) begitu cepat peranti berkembang, sebulan saja suatu developer sudah merilis sebuah peranti terbaru yang lebih optimal sesuai kebutuhan pengguna.

Opreker bertujuan memaksimalkan performa peranti low menjadi high, inilah yang membuat era developer mulai bias, banyak grup pengguna berhenti melakukan riset, karena memang sudah canggih. Pengguna yang harus-nya bisa terlibat atau penerus developer atau kontribusi, perlahan berkurang minat, tentu developer mengingkan sebuah penerus secara sudut pandang pengguna menjadi developer.

Dengan pesatnya perkembangan teknologi atau se-iring waktu, perlu dilakukan sebuah trik atau modifikasi untuk tetap menjadikan RSA tetap terjaga terutama hal yang lebih spesifik yaitu bilangan yang dibangkitkan.

Berdasarkan Aspek tersebut, maka pada penilitian ini melaksanakan "Pembangkitan Kunci Privat Pada Enkripsi RSA Menggunakan Informasi Peranti".

#### 1.2 Rumusan Masalah

Dalam melaksanakan penelitian, ada sejumlah masalah yang menjadi poin utama diskusi atau pembahasan, termasuk "Bagaimana Melakukan Pembangkitan Kunci Privat Pada Enkripsi RSA Sesuai Informasi Peranti".

#### 1.3 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- 1. Memanfaatkan informasi peranti dalam pembangkitan kunci privat
- 2. Memodifikasi Teknik pembangkitan kunci privat.

#### 1.4 Batasan Masalah

Agar persepsi penilitian tepat dan sesuai rumusan masalah, memerlukan batasan masalah sebagai berikut:

- 1. Informasi peranti menggunakan waktu dan persen baterai.
  - a. Waktu yang dipakai adalah sekarang
  - b. Zona waktu adalah GMT -11:00 sampai GMT +13:00.
- 2. *PlainText* (m) dan *CipherText* (c) menggunakan ASCII (bukan tunggal karakter atau *null*) dengan *encoding* (UTF-8).
- 3. Panjang kunci adalah 7 bit (2 digit) sampai 14 bit (4 digit).

#### 1.5 Manfaat Penelitian

Harapan penelitian yang dilaksanakan, dapat memberikan manfaat:

- 1. Kunci algoritma lebih ber-pola dalam pembangkitan-nya.
- 2. Melihat celah konsep mustahil, menjadi bisa atau telah stabil.
- 3. Lebih memperhatikan data, yang orang ber-angapan sepele.

#### **BAB II**

#### TINJAUAN PUSTAKA

#### 2.1 Kajian Ilmiah

Hasil penelitian yang telah dilakukan para peneliti dapat dijadikan dasar atau kajian untuk mempermudah dalam melakukan penelitian. Termasuk juga penelitian ini. Beberapa di antara-nya adalah penelitian dengan judul Teknik Pemecahan Kunci Algoritma Rivest Shamir Adleman (RSA) dengan Metode Kraitchik. Peneliti mencari kunci privat algoritma RSA dengan memfaktor-kan kunci publik n dengan Metode *Kraitchik*, kemudian dilihat efisiensi waktu pemfaktorannya. Hasil penelitian memperlihatkan, bahwa semakin besar selisih antara faktor kunci p dan q, maka semakin besar pula waktu pemfaktorannya. Pemfaktoran kunci publik (n) sebesar 19 digit (152 *bit*) dengan selisih faktor kunci (p-q) = 22641980 membutuhkan waktu 93,6002 ms lebih cepat dibandingkan dengan panjang kunci 15 digit (120 bit) dengan selisih faktor kunci (p-q) = 23396206 yang membutuhkan waktu selama 5850,0103 ms. Faktor lain yang juga memengaruhi adalah Gcd(p-1, q-1), panjang kunci dan faktor prima (p-1), (q-1). (Muchlis, Budiman, & Rachmawati, 2017)

Penelitian dengan judul Teknik Penyembunyian dan Enkripsi Pesan pada Citra Digital dengan Kombinasi Metode LSB dan RSA. Penelitian ini mengusulkan kombinasi teknik steganografi dan kriptografi menggunakan metode LSB – RSA. RSA merupakan teknik kriptografi yang populer dapat diterapkan pada citra digital. Nilai piksel citra digital hanya berkisar 0 sampai 255. Hal ini membuat kunci yang digunakan dalam RSA cukup terbatas sehingga kurang aman. Dalam penelitian ini

diusulkan untuk mngonversikan nilai piksel citra menjadi 16 bit sehingga kunci yang digunakan dapat lebih bervariasi. Hasil eksperimen membuktikan ada-nya peningkatan keamanan serta nilai *imperceptibility* yang tetap terjaga. Hal ini dibuktikan dengan hasil PSNR 57.2258dB, MSE 0.1232dB. Metode ini juga tahan terhadap serangan *salt* dan *pepper*. (Handoyo, Setiadi, Rachmawanto, Sari, & Susanto, 2018)

Dan penelitian dengan judul Mengukur Kecepatan Enkripsi dan Dekripsi Algoritma RSA pada Pengembangan Sistem Informasi *Text Security*. Objek penelitian ini adalah proses implementasi algoritma kriptografi RSA pada nilai parameter n dengan ukuran 1024 *bit* dan 2048 *bit*. Proses yang diamati adalah kompleksitas waktu yang dihasilkan oleh instruksi enkripsi dan dekripsi. Tahapan yang dilakukan adalah studi pendahuluan, mengumpulkan data, menganalisis kebutuhan, pengembangan dan pengujian sistem informasi serta penarikan kesimpulan. Hasil pengujian menyatakan algoritma RSA 1024 bit memiliki ratarata kecepatan enkripsi sebesar 352.488 nano second dan rata-rata kecepatan dekripsi sebesar 109.347.917 *nano second*, sedangkan pada algoritma RSA 2048 *bit* memiliki rata-rata kecepatan enkripsi sebesar 1.772.900 *nano second* dan ratarata kecepatan dekripsi sebesar 775.282.334 *nano second*. (Wulansari, Alamsyah, Setyawan, & Susanto, 2016)

#### 2.2 Dasar Teori

#### 2.2.1 Kriptografi

Kriptografi berasal dari bahasa Yunani yaitu "cryptos" yang berarti rahasia dan "graphein" yang berarti tulisan. Dapat dikatakan kriptografi berarti suatu ilmu yang mempelajari data secara rahasia dengan teknik matematika tertentu.

Kriptografi adalah ilmu mengenai teknik enkripsi teks asli (*plaintext*) diubah menggunakan suatu kunci enkripsi menjadi teks acak yang sulit dibaca (*ciphertext*) dan hanya seseorang yang memiliki kunci dekripsi mudah membaca.

Kriptografi berdasarkan kunci yang digunakan, dapat dibagi menjadi simetris dan asimetris. Kriptografi dikatakan simetris jika kunci yang digunakan untuk menyandikan *plaintext* adalah ekuivalen dengan kunci yang digunakan untuk memecahkan *ciphertext* (ini menjadikan kelebihan-nya). Sementara kriptografi dikatakan asimetris jika kunci yang digunakan untuk menyandikan *plaintext* berbeda dengan kunci yang digunakan untuk memecahkan *ciphertext*.

Contoh kriptografi simetris adalah *Caesar Cipher*. Sementara keunggulan kriptografi asimetris lebih sulit untuk di pecahkan tanpa kunci privat, sehingga keamanannya lebih terjaga. Contoh Kriptografi asimetris adalah RSA, DSA, dan EIGamal.

Selain berdasarkan kunci yang digunakan, kriptografi dibagi menjadi 5 berdasarkan tekniknya. Kelima teknik itu adalah:

#### 1. Teknik Substitusi (Algoritma Substitusi)

Teknik substitusi adalah teknik penyandian teks dengan cara mengganti huruf yang ada dengan yang lain secara langsung dengan aturan tertentu. Contoh penerapan teknik ini adalah *Caesar Cipher*.

#### 2. Teknik *Blocking* (Algoritma Blocking)

Teknik *blocking* adalah teknik penyandian dengan cara membagi huruf teks menjadi beberapa kolom, lalu membacanya dalam satu blok sesuai dengan ketentuan yang di tetapkan. Contoh-nya ditunjukan oleh Gambar 3.2 berikut.

| T  | L                   |   | M | BLOK 1 |  |  |  |  |  |
|----|---------------------|---|---|--------|--|--|--|--|--|
| E  | 0                   | N | A | BLOK 2 |  |  |  |  |  |
| K  | G                   | F | s | BLOK 3 |  |  |  |  |  |
| N  |                     | 0 |   | BLOK 4 |  |  |  |  |  |
| 0  |                     | R |   | BLOK 5 |  |  |  |  |  |
|    |                     |   |   |        |  |  |  |  |  |
| P= | TEKNOLOGI INFOMASI  |   |   |        |  |  |  |  |  |
| E= | TLIMEONAKGFSNIOIO R |   |   |        |  |  |  |  |  |

Gambar 2.1 Teknik *Blocking* 

#### 3. Teknik Ekspansi (Algoritma Ekspansi)

Teknik ekspansi adalah teknik penyandian dengan memanjangkan *plaintext* (m), dengan menambah huruf sesuai aturan tertentu adalah cara-nya. Salah satu contohnya adalah dengan meletakkan huruf pertama kata di akhir kata dan jika huruf pertama dari kata dalam m termasuk huruf konsonan, ditambahkan "i" dibelakang kata hasil enkripsi. Tetapi jika huruf dari kata dalam m termasuk huruf vokal, ditambahkan "an" dibelakang kata hasil enkripsi. Contoh-nya jika

diberi *m*, "teknologi informasi". Maka hasil enkripsi-nya adalah "eknologiti nformasiian".

#### 4. Teknik Pemampatan (Algoritma Pemampatan)

Teknik pemampatan adalah teknik penyandian dengan memampatkan isi teks. Hal ini dapat dilakukan dengan menghilangkan huruf tertentu pada susunan sesuai ketentuan, dan menyusunnya kembali di akhir hasil teks yang dimampatkan. Berikut adalah contoh teknik pemampatan.



Gambar 2.2 Teknik Pemampatan

#### 5. Teknik Permutasi (Algoritma Permutasi)

Teknik permutasi atau transposisi adalah teknik penyandian teks dengan cara mengacak posisi susunan karakter dari teks tanpa mengubah identitas dari karakter dalam teks. Contohnya seperti gambar berikut.

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |
|----|---|---|---|---|---|---|---|---|---|--|
| P= | T | E | K | N | 0 | _ | 0 | G | _ |  |
|    |   |   |   |   |   |   |   |   |   |  |
|    | 9 | 8 | 7 | 4 | 5 | 6 | 3 | 2 | 1 |  |
| E= | 1 | G | 0 | N | 0 | L | K | Е | Т |  |
|    |   |   |   |   |   |   |   |   |   |  |

Gambar 2.3 Teknik Permutasi

Telah dibahas di atas, salah satu implementasi kriptografi asimetris adalah Rivest Shamir Adleman (RSA). Langkah-langkah untuk untuk membangkitkan kunci RSA adalah:

- Menentukan nilai prima sebagai p dan q. Nilai kedua bilangan prima tersebut di anjurkan (p ≠ q). Sebaiknya bilangan yang besar agar tingkat keamanannya juga meningkat.
- 2. Mencari nilai n dengan memanfaatkan persamaan 2.1. n = p \* q (2.1)
- 3. Mencari nilai ekuivalen dengan persamaan 2.2.

$$\phi(n) = (p-1) * (q-1)$$
 .....(2.2)

- 4. Memilih bilangan prima secara random antara 1 sampai  $CC = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} [W(i,j)*W'(i,j)}{\sum_{i=1}^{m} \sum_{j=1}^{n} (W(i,j))^{2}}$  untuk mendapatkan kunci publik e.
- 5. Menghitung kunci privat d dengan persamaan 2.3.

$$(e*d)mod\phi(n) = 1 \dots (2.3)$$

6. Pasangan kunci yaitu kunci publik (e, n) dan kunci privat (d, n) telah dihasilkan.



Gambar 2.4 FlowChart Pembangkitan Kunci Algoritma RSA Untuk enkripsi  $C \equiv P^e \pmod{n}$  dan Dekripsi  $P \equiv C^e \pmod{n}$ 

#### 3.2.2 Informasi Peranti

Informasi peranti adalah komponen perangkat lunak yang mengizinkan sebuah sistem komputer untuk berkomunikasi dengan sebuah perangkat keras. Data peranti memiliki cakupan luas, salah satu diantara-nya adalah:

- 1. Waktu (meliputi: 12 atau 24 jam format dan zona waktu).
- 2. Sinyal (terdiri dari jangkauan area, tegangan, arus dan lain-nya).
- 3. Suhu (skala: Celsius, Kelvin, Fahrenheit, dan Reamur).
- 4. Baterai (voltase, daya atau persen dan lain-nya).

#### 2.3.1 Teori Bilangan (Relatif Prima)

Secara ringkas, relatif prima merupakan dua buah bilangan bulat a dan b dikatakan relatif prima jika GCD atau FPB (a, b) = 1, maka terdapat bilangan bulat m dan n sedemikian hingga ma + nb = 1. Disebut bilangan prima, jika pembaginya hanya 1 dan bilangan itu sendiri. Contoh angka 13 habis dibagi oleh 1 dan 13.

#### 2.3.2 Entropy

Entropy adalah suatu parameter untuk mengukur tingkat keberagaman dari kumpulan data. Jika nilai dari entropy semakin besar, maka tingkat keberagaman suatu kumpulan data semakin besar. Rumus untuk menghitung entropy sebagai berikut:

$$Entropy(S) = \sum_{i=1}^{n} \rho_i \log_2(\rho_i) \qquad (2.4)$$

M = jumlah kelas klasifikasi

 $\rho_i$  = jumlah proporsi sampel (peluang) untuk kelas i

Sedangkan rumus untuk entropy masing-masing variabel adalah:

$$Entropy_A(S) = \sum_{v} \frac{|Sv|}{|S|} Entropy(Sv)$$
 .....(2.4)

A = Variabel.

v = nilai yang mungkin untuk variable A.

|Sv| = Jumlah sampel untuk nilai v.

|S| = Jumlah sampel untuk seluruh sampel data.

Entropy(Sv) = Entropy untuk sampel yang memiliki nilai.

#### **BAB III**

#### **METODE PENELITIAN**

## 3.1 Kerangka Konsep Penelitian

Kerangka konseptual penelitian (teori atau konsep ilmiah yang digunakan sebagai dasar penelitian) menjelaskan hubungan antara ruang lingkup penelitian dan ruang lingkup ilmu pengetahuan.



Gambar 3.1 Diagram Alir Kerangka Konsep Penelitian

## 3.1.1 Kriptografi

Didalam kriptografi terdapat dua jenis algoritma berdasarkan kuncinya yaitu:

- 1. Algoritma Simetri
- 2. Algoritma Asimetri

Macam-macam Algoritma asimetri (Kriptografi Modern) di antaranya adalah:

- 1. Diffle-Hellman (DH)
- 2. Elliptic Curve Cryptography (ECC)
- 3. Digital Signature Algorithm (DSA)
- 4. Rivest Shamir Adleman (RSA)

Dari beberapa macam algoritma asimetri di atas yang digunakan adalah RSA dan jenis algoritma cipher adalah block. Proses pembangkitan kunci privat menggabungkan informasi peranti yaitu waktu dan baterai. Proses enkripsi dan dekripsi adalah jenis data teks.

# 3.2 Metodologi Penelitian



Gambar 3.2 Diagram Alir Metodologi Penelitian

#### 3.2.1 Riset Awal

Sebelum melakukan penelitian terlebih dahulu mempelajari segala hal yang terkait dengan topik penelitian. Bagian utama yang perlu dipelajari adalah:

- 1. Konsep dasar Kriptografi
- 2. Mengetahui penggunaan informasi peranti
- 3. Algoritma Rivest Shamir Adleman (RSA)

## 3.2.2 Tahapan Menentukan Bilangan Prima

Tahapan menentukan bilangan prima adalah langkah lanjutan dalam poin utama tujuan penelitian berdasarkan informasi peranti yaitu waktu sekarang dan semua zona waktu yang ketentuanya posisinya berdasarkan pseudorandom.



Gambar 3.2.2 FlowChart Pembangkit Batas Atas Angka Prima



Gambar 3.2.3 FlowChart Hasil Pembangkit Semua Angka Prima



Gambar 3.2.4 FlowChart Terpilih-nya konstanta atau orde P dan Q

#### 3.2.3 Tahapan Pembangkitan Kunci

Tahapan pembangkitan kunci mengikuti pola pemilihan yang ditentukan dengan posisi secara *pseudorandom* berdasarkan informasi peranti. Pada proses pembangkitan kunci privat yaitu  $e*d \mod \phi(n)$  dan gcd  $(\phi(n), e) = 1$  merupakan nilai e yang pemilihan-nya adalah orde q.



Gambar 3.2.5 FlowChart Pembangkitan Kunci dengan Informasi
Peranti

## 3.2.4 Pengujian

Hasil kombinasi konstanta p dan q (orde), dalam pembangkitan kunci privat, di bandingkan dengan catatan nilai entropy semakin besar atau pola acak matrix.

#### 3.2.5 Analisa Hasil

Hasil yang diperoleh dari pengujian kemudian dianalisa terutama pada proses terpilih-nya p dan q untuk pembangkitan kunci privat.

## 3.2.6 Variabel Penelitian

Fokus penelitian tugas akhir ini di tuangkan dalam variabel yaitu Modifikasi konstanta atau orde p dan q berdasarkan informasi peranti.

# 3.2.7 Waktu dan Tempat Penelitian

Penelitian dilaksanakan bulan Desember 2019 sampai bulan Februari 2020 di Politeknik Negeri Samarinda.

# RENCANA JADWAL PENGERJAAN

|           | KEGIAT                               |        | WAKTU |   |   |        |   |   |   |        |   |   |  |
|-----------|--------------------------------------|--------|-------|---|---|--------|---|---|---|--------|---|---|--|
| NO REGIAT |                                      | Dec-19 |       |   |   | Jan-20 |   |   |   | Feb-20 |   |   |  |
|           | 1                                    | 2      | 3     | 4 | 1 | 2      | 3 | 4 | 1 | 2      | 3 | 4 |  |
| 1         | Pembuat<br>an<br>Proposal            |        |       |   |   |        |   |   |   |        |   |   |  |
| 2         | Persetuju<br>an<br>Proposal          |        |       |   |   |        |   |   |   |        |   |   |  |
| 3         | Studi<br>Literatul                   |        |       |   |   |        |   |   |   |        |   |   |  |
| 4         | Perancan<br>gan                      |        |       |   |   |        |   |   |   |        |   |   |  |
| 5         | Pembang<br>kitan<br>Kunci<br>Private |        |       |   |   |        |   |   |   |        |   |   |  |
| 6         | Enkripisi<br>dan<br>Dekripsi         |        |       |   |   |        |   |   |   |        |   |   |  |
| 7         | Pengujian                            |        |       |   |   |        |   |   |   |        |   |   |  |
| 8         | Seminar<br>Hasil                     |        |       |   |   |        |   |   |   |        |   |   |  |
| 9         | Pembuat<br>an<br>Laporan             |        |       |   |   |        |   |   |   |        |   |   |  |
| 10        | Sidang<br>Akhir                      |        |       |   |   |        |   |   |   |        |   |   |  |

#### **DATAR PUSTAKA**

- Handoyo, A. E., Setiadi, D. R. I. M., Rachmawanto, E. H., Sari, C. A., & Susanto, A. (2018). Teknik Penyembunyian dan Enkripsi Pesan pada Citra Digital dengan Kombinasi Metode LSB dan RSA. *Jurnal Teknologi Dan Sistem Komputer*, 6(1), 37. https://doi.org/10.14710/jtsiskom.6.1.2018.37-43
- Muchlis, B. S., Budiman, M. A., & Rachmawati, D. (2017). Teknik Pemecahan Kunci Algoritma Rivest Shamir Adleman (RSA) dengan Metode Kraitchik. 

  SinkrOn, 2(2), 49–64. Retrieved from 

  http://jurnal.polgan.ac.id/index.php/sinkron/article/view/75
- Wulansari, D., Alamsyah, Setyawan, F. A., & Susanto, H. (2016). Mengukur Kecepatan Enkripsi dan Dekripsi Algoritma RSA pada Pengembangan Sistem Informasi Text Security. *Seminar Nasional Ilmu Komputer (SNIK 2016)*, (Snik), 85–91.