Experimental design: variability, replication and power

Jeff Leek

@jtleek

www.jtleek.com

Key ideas Sources of variation Power Replication

Central dogma of statistics

Three types of variablity

Var(Genomic Measurement)

- = Phenotypic variability
- + Measurement error
- + Natural biological variation

Replicates Biological Technological

http://bioinformatics.bc.edu/marthlab/scotty/help.html

New technology doesn't eliminate variability

Sample size

N = Number of Measurements

(\$ you have) (\$/measurement)

Sample size depends on measurement

Rare mendelian disease

$$N \approx 3-5$$

RNA-Sequencing study

$$N \approx 10 - 1,000$$

DNA methylation study

$$N \approx 10 - 1,000$$

Common disease genome-wide association

$$N \approx 10,000 - 1,000,000 +$$

New technology doesn't eliminate variability

NATURE BIOTECHNOLOGY | OPINION AND COMMENT | CORRESPONDENCE

Sequencing technology does not eliminate biological variability

Kasper D Hansen, Zhijin Wu, Rafael A Irizarry & Jeffrey T Leek

Affiliations | Corresponding authors

Nature Biotechnology 29, 572-573 (2011) | doi:10.1038/nbt.1910

Published online 11 July 2011

This is often ignored

http://www.nature.com/nbt/journal/v29/n7/full/nbt.1910.html

	(Year)	Biological Groups	Technical Replicates	Replicat
18451266 10	Science (2008)	1	2	2
1905694111	Science (2008)	1	1	2
185160456	Nature Methods (2008)	3	2	1
1859974112	Science (2008)	2	2	1
1851604613	Nature Methods (2008)	2	3	1
1897877214	Nature (2008)	15	1	1 (6 in 1 gro
1923411315	PNAS (2009)	2	1	2
1958187516	Nature Biotechnology (2009)	1	3	1
1934998017	Nature Methods (2009)	4	1	2
2043646418	Nature Biotechnology (2010)	4	1	1
2081066819	Genome Research (2010)	9	1	1
2098067920	Blood (2010)	2	1	2
2105749621	Nature Methods (2010)	2	1	1
2045296722	Genome Research (2010)	4	1	2
2036398023	Genome Research (2010)	1	1	1
202207581	Nature (2010)	1	2	69
202207562	Nature (2010)	1	1	60

Pubmed ID

Variability and power

Power =

Probability of discovering a real signal if it is there

- Power is typically set at 80%
- Calculations are based on made up assumptions
- Higher power is better
- Low powered studies don't replicate

Slide courtesy: Ingo Ruczinski

▶ n = 10 for each group; effect = Δ = 5; pop'n SD = σ = 10 power.t.test(n=10, delta=5, sd=10)

→ 18%

• power = 80%; effect =
$$\Delta$$
 = 5; pop'n SD = σ = 10

$$\longrightarrow$$
 n = 50.2 \longrightarrow 51 for each group

