	INDEX PAGE
F	ages
	Lab 1
	FAQ
	Lab 2
	Lab 3
	Lab 7
	Lab 6
	Testing tips
	Lab 4
	Lab 10
	Lab 5
	Module overview
	Support
	Installing and finding Python
	Snippets
	Lecture slides
	Lab 8
	Lab 9
	First steps

Testing demo

Laboratory 6: Higher order functions

Prerequisits: +passing functions to functions, default parameters

Contents

- PEP8
- Exercises

Home | Lab 6

PEP8

To monitor the coding style we turn on the PEP8 style guide monitoring in Spyder by:

- 1. Going to preferences in Spyder menu
- 2. Clicking on Editor in the selection list on the left
- 3. Clicking on Code Introspection/Analysis (top right corner)
- 4. Ticking the box Real-time code style analysis
- 5. Clicking Apply and OK (bottom right corner)

Exercises

Create a file lab6.py and populate with the following functions:

1. A function positive_places(f, xs) that takes as arguments some function f and a list of numbers xs and returns a list of those-and-only-those elements x of xs for which f(x) is strictly greater than zero.

Example 1:

```
In []: def my_f(x):
          return x ** 3
   ...:
   . . . :
In [ ]: positive_places(my_f, [1, 2, -1, -2, 3, 42, -9])
Out[]: [1, 2, 3, 42]
In [ ]: positive_places(my_f, [1, 2, 3, 4, 5])
Out[]: [1, 2, 3, 4, 5]
In [ ]: positive_places(my_f, [])
Out[]:[]
In [ ]: positive_places(my_f, [-1, -2, -3, -4, -5])
Out[]: []
Example 2:
In [ ]: def f(x):
            return 2 * x + 4
   ...:
   . . . :
In [ ]: positive_places(f, [10, 1, -3, -1.5, 0, 0.5])
Out[]: [10, 1, -1.5, 0, 0.5]
```

2. Write a function $eval_f_0123(f)$ that evaluates the function f=f(x) at positions x=0, x=1, x=2 and x=3. The function should return the list [f(0), f(1), f(2), f(3)].

Example 1:

```
In [ ]: def square(x):
             return x * x
   . . . :
```

In []: eval_f_0123(stars)
Out[]: ['', '*', '**', '***']

3. A function eval_f(f, xs) which takes a function f = f(x) and a list xs of values that should be used as arguments for f. The function eval_f should apply the function f subsequently to every value x in xs, and return a list fs of function values. I.e. for an input argument xs=[x0, x1, x2,..., xn] the function eval_f(f, xs) should return [f(x0), f(x1), f(x2), ..., f(xn)].

Example 1:

Example 2:

```
In [ ]: import math
In [ ]: eval_f(math.sqrt, [1, 2, 4, 9])
Out[ ]: [1.0, 1.4142135623730951, 2.0, 3.0]
```

Example 3:

```
In []: def sign(x):
         if x > 0:
    . . . :
                return 1
    ...:
          elif x < 0:
    ...:
                return -1
    ...:
          else:
    ...:
               return 0
    ...:
    ...:
In [ ]: sign(-1.1)
Out[ ]: -1
In [ ]: sign(0.1)
Out[ ]: 1
In [ ]: sign(0.0)
In [ ]: eval_f(sign, [-0.2, -0.1, 0, 0.1, 0.2, 0.3])
Out[]: [-1, -1, 0, 1, 1, 1]
```

4. A function $sum_f(f, xs)$ that returns the sum of the function values of f evaluated at values x0, x1, x2, ..., xn where xs=[x0,x1,x2,...,xn].

Example 1:

5. A function box_volume_UPS(a,b,c) that returns the volume of a box with edge lengths a, b and c. Inputs should be provided in inch, and the output should be expressed in inch^3.

The standard dimensions of the <u>UPS express box (small)</u> are a=13 inch, b=11 inch and c=2 inch.

Your function should use these values for a, b and c unless others are provided.

Examples:

```
In [ ]: box_volume_UPS()
Out[ ]: 286

In [ ]: box_volume_UPS(a=10, b=10, c=10)
Out[ ]: 1000

In [ ]: box_volume_UPS(c=5)
Out[ ]: 715
```

Then submit lab6.py by email with the subject lab 6 for automatic testing of this laboratory session.

Last updated: 2019-01-06 at 17:34

Return to Top

Page last modified Thu Nov 15 16:16:20 2018. |