Math Notation

see conventional math notation

this note describes my custom <u>math notation</u>, meant to solve inconsistencies in <u>conventional math notation</u>. it is not meant to be a fully formal system of <u>mathematics</u>; rather, it is built to be easy to understand and intuitive to use by mere humans.

principles

- all equality <u>operators</u> check for equality and return a <u>boolean</u>, and it is implied that an <u>expression</u> on its own must evaluate to ⊤. this allows for <u>boolean logic</u> <u>operators</u> to be applied on equalities explicitly as opposed informally
- sets are <u>functions</u> that return a <u>boolean</u> (<u>sets</u> are <u>predicates</u>). this way, <u>boolean</u> <u>logic operators</u> and <u>set operators</u> are one and the same. other <u>data structures</u> that work similarly include <u>vectors</u>, <u>matrixes</u>, <u>sequences</u>, <u>multisets</u>, <u>ordered pairs...</u>
- some <u>operator</u>s are identical but have different precedence as "more brackets means more explicit, but less brackets means less complex and less confusing"
- $\lfloor a \rfloor$ returns both positive and negative square roots ($\lfloor q2 \rfloor \equiv \because q$). the same is true for other reciprocals
- superscripts are modifiers (subscripts with special meanings). this distinction is extremely useful when working with <u>forward propagation</u> and <u>backpropagation</u> in <u>neural networks</u>, for example
- <u>derivative</u>s are not to be written as y', but rather as their complete form $\delta y \delta x$. this makes <u>calculus notation</u> way more intuitive
- all indices start at 0, as they always should have
- rank polymorphism is supported over all operators

notation

also see trigonometric functions and calculus notation

let:

- *M* be a matrix
- V be a <u>vector</u>
- P be an ordered pair
- M' be a multiset
- G be a graph
- E be an expression

- x be a variable
- f be a function
- A be a <u>sequence</u>
- B be a series
- ullet a,b be any mathematical objects
- A, B be any mathematical objects with rank greater than 1
- n, i be <u>natural</u> numbers
- b be a boolean
- ω be any <u>number</u>
- o be any operator

operator descriptions

notation	description	notes
a:b	addition or disjoint union	
$a \cdot b$	subtraction	
∵ and ∴	\pm and \mp	
a ı b and $a\mid b$	multiplication	
$a ext{-}b$ and $a-b$	division	
ab	exponentiation	represents a power by convention
a[b]	exponentiation	represents an exponential by convention
$oxed{\lfloor a \rfloor b}$	b th root of a	b=2 if b is omitted
$\lceil a \rceil b$	base- b <u>logarithm</u> of a	b=e if b is omitted
x o E	<u>function</u> literal	$igg f = x ightarrow E \equiv f \leftarrow\! x = E$
$\boxed{f {\leftarrow} E}$	function application	uncommon, shorthand preferred
a = b	equality	numerical equality by convention
$egin{aligned} a < b ext{ and } \ a > b \end{aligned}$	strict inequality	
$a \leq b$ and $a \geq b$	non-strict inequality	
$a \wedge b$	logical AND or min function	
$a \lor b$	logical OR or max function	
a / b	logical difference	$a \wedge b = ot$
$a\equiv b$	equality	logical equality by convention

notation	description	notes	
$a \times b$	nonequality	also serves as logical XOR	
$a \vdash b$	implication, subset	a implies b , b for all a	
$\boxed{a\dashv b}$	reverse implication, superset	a for all b , b implies a	
$a_0 \circ a_1 \circ \ldots a_n$	with $n=3$, $a_0\circ a_1\circ a_2\circ a_3$	step size is \because 1 if $a_1\circ$ is omitted	
$a_0 \dots a_n$	with $n=3$, a_0,a_1,a_2,a_3	step size is \because 1 if a_1 is omitted	
$a \circ \dots$	the <u>reduce function</u> of \circ on a		
$oxed{f \; dots \; a \circ \ldots b}$	$\int f\left(a\ldots b ight)\circ\ldots$		
$oxed{f \; dots \; x o a}$	the \underline{limit} of f as x approaches a		
$oxed{x_{sub}}$	the $\underline{ ext{variable}}\ x$ with a subscript		
~ suo	sub		
$oxedsymbol{V}^n$	the n th component of V		
$oxedsymbol{A^i}$	the i th element of A		
$oxed{B^i}$	the i th element of B		
$M^{\langle i,j angle}$	the i,j th element of M	uncommon, shorthand preferred	
M^\intercal	the transpose \underline{matrix} of M		
-M	the multiplicative inverse of M		
P^b	the b th element of P		
S a	whether a is element of S		
M' a	the number of elements a in M^\prime		
G a	whether vertex a is in G		
$G^{\langle a,b angle}$	the number of edges from a to b in G	uncommon, shorthand preferred	

shorthands

shorthand	definition	notes
a ot b, $a eq b$, $a eq b$, $a eq b$	$/(a dash b)$, $/a = b$, $/a \le b$, $/a < b$	
$x\omega$	$[x]\omega$	
ax	$a \mid x$	
$\int f x$	$f \leftarrow x$	common, longhand discouraged

shorthand	definition	notes
$x \ y o E$	x o y o E	
⟨⟩	$\langle\langle \rangle \rangle$	see <u>empty</u> <u>set</u>
()	(())	see <u>multiset</u>
V^x,V^y,V^z	V^0,V^1,V^2	
$M^{i,j}$	$M^{\langle i,j angle}$	common, longhand discouraged
$M^{i,}$	the i th row of M	
$M^{,j}$	the j th column of M	
$S = \langle \langle a \dots b angle angle$	$oxed{Sx\equiv x=aee\ldots x=b}$	see <u>set</u>
$P=\langle f,t angle$	$P^\perp = f \wedge P^ op = t$	see <u>ordered pair</u>
$M=egin{bmatrix} a & b \ c & d \end{bmatrix}$	matrix literal	see <u>matrix</u>
M'=((1,2,2,2,3,3))	multiset literal	see <u>multiset</u>
x o (a < x < b)	the interval from a to b	
$A\circ B$	$oxed{x ightarrow A \ x \circ B \ x}$	see rank polymorphism
$A\circ B$	$A \ x \circ B \ x$ for all x	$(\top\ldots)$ is treated as \top
$\delta y - \delta x$	the $\underline{\text{derivative}}$ of y with respect to x	δ should be used instead of d
$\int y \mid \delta x$	the $\underline{\text{antiderivative}}$ of y with respect to x	δ should be used instead of d

constants

constant	definition	notes
Ø	undefined	see improved expression evaluation
Т	logical true	
上	logical false	
au	the ratio of the circumference of a <u>circle</u> to its radius	using π is discouraged
e	Euler's constant	see <u>eulers constant</u>
ι	[.1]	see $\underline{imaginary}$, using i is discouraged
П	the <u>pi function</u>	using fact is discouraged

operator properties

in order of high to low precedence

#todo fix asymmetry between $= \neq > \geq < \leq$ and $\land \lor \dashv \vdash \equiv \times$

operator	associativity	unary identity	unary description
$oxed{()\langle\rangleigg[xx_a^i$			
1 -	left	1	inverse
$\delta \sin \# \leftarrow$	right-ish		
: • ∵ ∴	left	0	negation
-	left	1	inverse
$\int \vdots \ldots \rightarrow \mod$	right-ish		
=≠>≥<≤	AND	0	is (not) 0
/	left	Т	boolean logic NOT
\wedge \vee	left		
	left		
\equiv ×	AND	Т	boolean logic NOT
,			

note: above,

- x represents variables
- x_a^i represents subscripts and superscripts
- ← represents <u>function</u> application
- ullet \rightarrow represents <u>function</u> literals
- represents matrix literals

note: unary <u>operator</u>s have identical precedence to their binary counterparts, but are right associative

definition let \circ be an <u>operator</u> with *AND* associativity. then, $a \circ b \circ c \circ \ldots \equiv a \circ b \wedge b \circ c \wedge c \circ \ldots$

variable scope

<u>variable</u> scope is currently entirely context-dependent. this is know to cause occasional issues, such as with <u>derivatives</u>: $\delta f x - \delta x$ could represent both the

 $\underline{\text{derivative}}$ of f with respect to x in the general sense, or the $\underline{\text{derivative}}$ of f with respect to x at the point x

examples

 $\underline{\mathsf{quadratic}}\ \mathsf{formula}\ \cdot b: \lfloor b2\cdot 4ac \rfloor - 2a$

definition of the <u>set</u> of <u>complex</u> numbers: $\mathbb{C}x \equiv x = a : b\iota \wedge \mathbb{R}a \wedge \mathbb{R}b$

definition of the implication / sub \underline{set} / super \underline{set} / "for all" symbol: $a\vdash b\equiv/a\lor b$ and $a\dashv b\equiv a\lor/b$

in <u>set theory</u>, if U is a sub<u>set</u> of V and V is a sub<u>set</u> of U, then V is U. in this math notation: $(U \ x \vdash V \ x) \land (U \ x \dashv V \ x) \equiv U = V$

the probability density of the normal distribution in conventional math notation: $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$

compared to in my math notation: $-\lfloor \tau \sigma 2 \rfloor - e [\ [x \cdot \mu - \sigma] 2 - 2\]$

definition of factorials: fact $n=1\mid \dots n$

the negation of an implication in my <u>math notation</u>: $B \vdash C \times B / C$ (B implying C equals not (B without C) or implication is the negation of set difference or the negation of "for all B, C" is "there exists a B such that not C")

compared to <u>conventional math notation</u>: $\neg(B \to C) = B \land \neg C$ or $(a \in B \to a \in C) \iff a \notin B \backslash C$ or $B \subset C \iff \forall a \in C, a \notin B$

the resonant frequency of an LC circuit in conventional math notation: $f=rac{1}{2\pi\sqrt{LC}}$

compared to in my math notation: $f = -\tau \lfloor LC \rfloor$

see random math notation formulas for more examples