Name: No:

Instructor: Shyan-Lung Lin, Prof.

FCU ISTM -PU 2+2 Program

13:10~15:00 pm, Nov. 9, 202

Note: Open text book. Please show organized math works, and make the calculation to its final form and with an accuracy of at least 4th digit behind decimal point.

1. 15% Find R_{eq} (including 2.5 Ω), i_0 , and i_{80} in the circuit of Figure 1.

- 2. 30% Given the circuit in Figure 2,
 - (A) (15%) apply the **Thevenin** theorem to obtain the **Thevenin** equivalent V_{Th} and R_{Th}, and find the maximal power that can be transferred to the load as viewed from terminal *a-b*;
 - (B) (15%) apply the **Norton** theorem to obtain the **Norton** equivalent I_N and R_N , and find the 120 \vee maximal power that can be transferred to the load as viewed from terminal c-d.

- 3. 30% For the circuit in Figure 3, at terminals *a-b*,
 - (A) (15%) use the **Thevenin** theorem to obtain the **Thevenin** equivalent
 - (B) (15%) use the **Norton** theorem to obtain the **Norton** equivalent

4. 20% For the circuit shown in Figure 4, if the current passing through the unknown resistor **R** is 0.5 mA, find the value of **R**.

5. 20% Use superposition to solve for $\textit{\textbf{v}}_x$ in the circuit of Figure 5.

6. 20% Use *mesh* analysis and apply *Cramer's* rule to obtain i_0 in the circuit of Figure 6.

