Vector Calculus Week 3 - Differentiating

James Arthur

October 13, 2020

Contents

1	Differentiating Scalar Fields	2
	1.1 Equations of Tangent planes	2
	1.2 Gradient of a scalar field	2
2	Directional Derivative	3
	2.1 Properties of Gradient	4
3	Parameterised Curves	4
	3.1 Deriving Frenet-Serret Equations	5
4	Differentiation and Vector Fields	6
	4.1 Divergence of a vector field	6
5	Curl of a Vector Field	6

1 Differentiating Scalar Fields

Definition 1.1: Partial Differentiation

Let $U \subset \mathbb{R}^n$ be an open set. The $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial^n f}{\partial x_n}$ partial derivatives of $f(x_1, \dots, x_n)$ which at point \underline{x} are defined by:

$$\frac{\partial f}{\partial x_j} =$$

$$\lim_{h\to 0} \frac{f(x_1,\ldots,x_j+h,\ldots,x_n)-f(x_1,\ldots,x_n)}{h}$$

where the limit exists for j from 1 to n.

Example 1. If
$$f(x,y) = x^2y + y^3$$
, then find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

Solution 1. We can simply work out that:

$$\frac{\partial f}{\partial x} = 2xy$$

$$\frac{\partial f}{\partial y} = x^2 + 3y^2$$

To say that a partial derivative shall be evaluated at a point (x_0, y_0) , we write; $\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)}$

1.1 Equations of Tangent planes

Definition 1.2: Tangent Plane

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable at (x_0, y_0) , the plane described by:

$$z_p = f(x_0, y_0) + \frac{\partial f}{\partial x_0} \Big| (x - x_0) + \frac{\partial f}{\partial y} \Big| (y - y_0)$$

is called the tangent plane of f at (x_0, y_0) .

Definition 1.3

Let f be a function $f: \mathbb{R}^2 \to \mathbb{R}$ we say that f is differentiable at (x_0, y_0) , if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists at (x_0, y_0) and if

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - z_p}{\|(x,y) - (x_0,y_0)\|}$$

then z_p is a good approximation of f.

1.2 Gradient of a scalar field

Definition 1.4

The gradient of a scalar field is a vector field with a direction that is perpendicular to the level surface and pointing in the direction of increasing f, with a magnitude equal to the rate of change of f in this direction.

$$\underline{\nabla} f = \frac{\partial f}{\partial x} \hat{\boldsymbol{\imath}} + \frac{\partial f}{\partial y} \hat{\boldsymbol{\jmath}} + \frac{\partial f}{\partial z} \hat{\boldsymbol{k}}$$

Consider an infitesimal change in the position in space from $\underline{\mathbf{r}}$ to $d\underline{\mathbf{r}}$. This results in a small change in the value of f, from f to f + df.

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$$
$$= \nabla f \cdot d\mathbf{r}$$

Suppose that $d\underline{\mathbf{r}}$ lies in the level surface f = C, then $d\underline{\mathbf{f}} = \underline{\nabla} f \cdot d\underline{\mathbf{r}} = 0$ so $\underline{\nabla} f$ and $d\underline{\mathbf{r}}$ are perpendicular. To show that $\underline{\nabla} f$ has the required magnitude, let $d\underline{\mathbf{r}} = \underline{\hat{\mathbf{n}}} ds$, where $\underline{\hat{\mathbf{n}}}$ is normal to the surface and s is a distance measured along the normal.

$$df = \underline{\nabla} f \cdot d\mathbf{\underline{r}}$$
$$= \underline{\nabla} f \cdot \mathbf{\underline{\hat{n}}} ds$$
$$= |\underline{\nabla} f| ds$$

So we know that $\underline{\nabla} f \parallel ds \implies \frac{df}{ds} = |\underline{\nabla} f|$.

Example 2. Let $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, the euclidean norm.

The set of points of the form $\underline{\mathbf{x}} + t\underline{\mathbf{v}}$, $t \in \mathbb{R}$ is the line L through which the point $\underline{\mathbf{x}}$ is parallel to $\underline{\mathbf{v}}$. (†) is a function, f, restricted to L.

Definition 2.1: Directional Derivative

If $f: \mathbb{R}^3 \to \mathbb{R}$, the directional derivative of f at $\underline{\mathbf{x}}$ along a vector $\underline{\mathbf{v}}$ is given by:

$$\frac{d}{dt}\Big|_{t=0} f(\underline{\mathbf{x}} + t\underline{\mathbf{v}})$$

if it exists.

Note that we usually choose \mathbf{v} to be of length unity.

Theorem 2.1

If $f: \mathbb{R}^3 \to \mathbb{R}$ and differentiable, then all directional derivatives exist. The directional derivative at $\underline{\mathbf{x}}$ in direction $\underline{\mathbf{v}}$ is given by:

$$\frac{d}{dt}\Big|_{t=0} f(\underline{\mathbf{x}} + t\underline{\mathbf{v}}) = \underline{\nabla} f(\underline{\mathbf{x}}) \cdot \underline{\mathbf{v}}$$

Proof. Let $\underline{\mathbf{c}}(t) = \underline{\mathbf{x}} + t\underline{\mathbf{v}}, f(\underline{\mathbf{x}} + t\underline{\mathbf{v}}) = f(\underline{\mathbf{c}}(t))$ and

$$\frac{d}{dt}\Big|_{t=0} f(\underline{\mathbf{c}}(t)) = \underline{\nabla} f(\underline{\mathbf{c}}(t)) \cdot \underline{\mathbf{c}}'(t)$$
$$= \underline{\nabla} f\underline{\mathbf{c}}(0) \cdot \underline{\mathbf{c}}'(0)$$
$$= \underline{\nabla} f(\underline{\mathbf{x}}) \cdot \underline{\mathbf{v}}$$

2 Directional Derivative

Suppose $f: \mathbb{R}^3 \to \mathbb{R}$, let $\underline{\mathbf{v}}, \underline{\mathbf{x}} \subset \mathbb{R}^3$ be fixed vectors. Consider the function from $\mathbb{R} \to \mathbb{R}$ defined as:

$$t \mapsto f(\mathbf{x} + t\mathbf{v})$$
 (†)

Theorem 2.2

Assume that $\underline{\nabla} f \neq 0$. Then $\underline{\nabla} f(x)$ points in the direction along which f is increasing fastest

Proof. If $\hat{\mathbf{n}}$ is a unit vector, the rate of change of f in the direction $\hat{\mathbf{n}}$ is given by:

$$\nabla f \cdot \hat{\mathbf{n}} = |\nabla f| |\hat{\mathbf{n}}| \cos \theta = |\nabla f| \cos \theta$$

where ϑ is the angle between $\hat{\mathbf{n}}$ and ∇f . This maximum is when $\vartheta = 0$, so $\hat{\mathbf{n}}$ and ∇f are parallel. If we wish to move in the direction in which f decreases the fastest, we should proceed in the direction, $-\nabla f$. \square

Example 3. Find the unique normal to (†) $x^2 + y^2 - z = 0$ at (1, 1, 2)

Solution 3. We say that $f(x, y, z) = x^2 + y^2 - z = 0$, and that ∇f is normal as f is a level surface. So:

$$\sum f = 2x\hat{\imath} + 2y\hat{\jmath} - \hat{k}$$

and we can work out $\hat{\mathbf{n}}$ as:

$$\hat{\mathbf{n}} = \frac{(2x, 2y, -1)}{\sqrt{1 + 4(x^2 + y^2)}} \Big|_{(1,1,2)}$$

and so $\hat{\mathbf{n}} = \frac{1}{3}(2, 2, -1)$

2.1 Properties of Gradient

For any scalar functions of f(x, y, z) and g(x, y, z) and any $c \in \mathbb{R}$, we have:

$$\begin{split} \underline{\nabla}(f+g) &= \underline{\nabla} \, f + \underline{\nabla} g \\ \underline{\nabla}(cf) &= c\underline{\nabla} \, f \\ \underline{\nabla}(fg) &= f\underline{\nabla} g + g\underline{\nabla} \, f \\ \underline{\nabla}(f\circ g) &= f'(g(x))\underline{\nabla} g \end{split}$$

3 Parameterised Curves

We consider smooth curves in \mathbb{R}^3 specified in terms of rectangular cartesian coordinates (x, y, z). Such curves are generated by three smooth functions of a single parameter, t.

Example 4. A good example is a circular helix, $r(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$, where: $x(t) = a\cos t$, $y(t) = b\sin t$ and z(t) = ct

We can calculate the length of a path using an integral. Take a function that parameterised with three variables, x(t), y(t), z(t) and between two points, $t_0 \le t \le t_1$, we can find the length, L:

$$L(\underline{\mathbf{r}}) = \int_{t_0}^{t_1} \sqrt{\dot{x}^2(t) + \dot{y}^2(t) + \dot{z}^2(t)}$$

We could also parameterise a curve using an arc length parameter, s, where differential of arc-length satisfy the equation:

$$ds^2 = dr \cdot dr$$
$$= dx^2 + dy^2 + dz^2$$

We call ds the line element of the curve. We can also write this with respect to t:

$$\dot{s}^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2 = \dot{r} \cdot \dot{r}$$

Now we have a curve in a space $\underline{\mathbf{r}}(t)$. Then we can find a tangent, $\underline{\dot{\mathbf{r}}} = (\dot{x}, \dot{y}, \dot{z})$, which then we know that $|\underline{\dot{\mathbf{r}}}| = \dot{s}$ and $\underline{\hat{\mathbf{t}}} = \frac{\dot{\mathbf{r}}}{|\underline{\dot{\mathbf{r}}}|}$. We have now swapped the parameter from t to s.

$$\hat{\mathbf{t}} = \frac{dx}{ds}\hat{\mathbf{i}} + \frac{dy}{ds}\hat{\mathbf{j}} + \frac{dy}{ds}\hat{\mathbf{k}}$$

As we then know that $\hat{\underline{\mathbf{t}}}$ is a unit vector, $\hat{\underline{\mathbf{t}}} \cdot \hat{\underline{\mathbf{t}}} = 1$, now differentiate and $\hat{\underline{\mathbf{t}}} \cdot \frac{d\hat{\underline{\mathbf{t}}}}{ds} = 0$, hence $\frac{d\hat{\underline{\mathbf{t}}}}{ds} \perp \hat{\underline{\mathbf{t}}}$. The $\frac{d\hat{\underline{\mathbf{t}}}}{ds}$ is in the direction of the principle normal, $\underline{\mathbf{n}}$, of the curve. So $\frac{d\hat{\underline{\mathbf{t}}}}{ds} = \kappa(s)\hat{\underline{\mathbf{n}}}$

The plane spanned by $\underline{\hat{\mathbf{t}}}(s)$ and $\underline{\hat{\mathbf{n}}}(s)$ is the osculating plane.

So if we have a curve $\underline{\mathbf{r}}(t) \in \mathbb{R}^3$, then $\frac{d\underline{\mathbf{r}}}{dt}$, so we can now say that $\frac{\underline{\mathbf{r}}(t)}{|\underline{\mathbf{r}}(t)|} = \frac{d\underline{\mathbf{r}}}{ds} = \hat{\underline{\mathbf{t}}}$. Now we can take derivatives and hence:

$$\frac{d\hat{\mathbf{t}}}{ds} = \kappa \hat{\mathbf{n}}$$

Moving forward now, we can take $\hat{\underline{\mathbf{t}}} = \underline{\mathbf{r}}'(s)$ and then differentiating: $\hat{\underline{\mathbf{t}}} = \underline{\mathbf{r}}''(s)$, which then implies:

$$\kappa = |\underline{\mathbf{r}}''(s)|$$

and then we know that $\underline{\dot{\mathbf{r}}}(t) = \underline{\mathbf{r}}'(s)\dot{s}$ and then Now we can find the tangent to any point. $\underline{\ddot{\mathbf{r}}}(t) = r''\dot{s}^2 + \frac{\ddot{s}}{\dot{s}}\dot{\underline{\mathbf{r}}}$ and hence we can say that: $\underline{\mathbf{r}}''(s) = \frac{1}{\dot{s}^2} \underline{\ddot{\mathbf{r}}} - \frac{\ddot{s}}{\dot{s}^3} \underline{\dot{\mathbf{r}}}$. So now,

$$\kappa^2(s) = \frac{1}{(\dot{\boldsymbol{r}}\cdot\dot{\boldsymbol{r}})^3} \big((\underline{\ddot{\boldsymbol{r}}}\cdot\underline{\ddot{\boldsymbol{r}}}) (\underline{\dot{\boldsymbol{r}}}\cdot\underline{\dot{\boldsymbol{r}}}) - (\underline{\dot{\boldsymbol{r}}}\cdot\underline{\ddot{\boldsymbol{r}}})^2 \big)$$

Given a unit tangent vector, $\hat{\mathbf{t}}$ and a unit normal vector, $\hat{\mathbf{n}}$ at a point on a curve in \mathbb{R}^3 , we can define a third unit vector $\hat{\mathbf{b}}$ which is the unit binormal vector.

$$\hat{\mathbf{b}} = \hat{\mathbf{t}} \times \hat{\mathbf{n}}$$

They form a right handed system of unit vectors, this forms the moving trihedron as s varies.

$$\hat{\underline{\mathbf{b}}} = \hat{\underline{\mathbf{t}}} \times \hat{\underline{\mathbf{n}}}, \quad \hat{\underline{\mathbf{n}}} = \hat{\underline{\mathbf{b}}} \times \hat{\underline{\mathbf{t}}}, \quad \hat{\underline{\mathbf{t}}} = \hat{\underline{\mathbf{n}}} \times \hat{\underline{\mathbf{b}}}$$

Deriving Frenet-Serret Equations 3.1

We can now differentiate the other two equations, and

get;
$$\frac{d\mathbf{\underline{b}}}{ds} \perp \hat{\mathbf{\underline{b}}}$$
 and

$$\frac{d\hat{\underline{\mathbf{b}}}}{ds} = \frac{d\hat{\underline{\mathbf{t}}}}{ds} \times \hat{\underline{\mathbf{n}}} + \hat{\underline{\mathbf{t}}} \times \frac{d\hat{\underline{\mathbf{n}}}}{ds}$$
$$= \kappa \hat{\underline{\mathbf{n}}} \times \hat{\underline{\mathbf{n}}} + \hat{\underline{\mathbf{t}}} \times \frac{d\hat{\underline{\mathbf{n}}}}{ds}$$
$$= \hat{\underline{\mathbf{t}}} \times \frac{d\hat{\underline{\mathbf{n}}}}{ds}$$

which also tells us that:

$$\frac{d\hat{\mathbf{b}}}{ds} \perp \hat{\mathbf{t}}, \frac{d\hat{\mathbf{n}}}{ds}$$

and hence $\frac{d\hat{\mathbf{n}}}{ds} \parallel \hat{\mathbf{n}}$ and so,

$$\frac{d\hat{\mathbf{b}}}{ds} = -\tau \hat{\mathbf{n}}$$

we call, τ the torsion of the curve.

Example 5. We shall take the helix again,

$$d\underline{r} = -a\sin t dt \hat{\imath} + a\cos t dt \hat{\jmath} + c dt \hat{k}$$

$$ds^2 = (a^2(\sin^2 t + \cos^2 t) + c^2) dt^2$$

$$ds = (a^2 + c^2)^{\frac{1}{2}} dt$$

$$\implies t = (a^2 + c^2)^{-\frac{1}{2}} s$$

$$\underline{\boldsymbol{r}}'(s) = \frac{1}{\sqrt{a^2 + c^2}} \left(-a \sin \frac{s}{\sqrt{a^2 + c^2}} \hat{\boldsymbol{\imath}} + a \cos \frac{s}{\sqrt{a^2 + c^2}} \hat{\boldsymbol{\jmath}} + c \hat{\boldsymbol{k}} \right)$$

and now for $\hat{\boldsymbol{t}}'(s)$

$$\hat{\underline{t}}' = \underline{r}''(s) = \frac{a}{a^2 + c^2} \left(-\cos \frac{s}{\sqrt{a^2 + c^2}} \hat{\imath} - \sin \frac{s}{\sqrt{a^2 + c^2}} \hat{\jmath} \right)$$

comapring both sides, we can say that: $\kappa(s) = \frac{a}{a^2 + c^2}$. Finally, we find $\hat{\underline{\pmb{b}}}(s)$ as:

$$\hat{\underline{\boldsymbol{b}}} = \hat{\underline{\boldsymbol{t}}} \times \hat{\underline{\boldsymbol{n}}} = \frac{1}{\sqrt{a^2 + c^2}} \left(-c \sin \frac{s}{\sqrt{a^2 + c^2}} \hat{\boldsymbol{\imath}} - c \cos \frac{s}{\sqrt{a^2 + c^2}} \hat{\boldsymbol{\jmath}} + a \hat{\boldsymbol{k}} \right)$$

and to find torsion:

$$\hat{\underline{\boldsymbol{b}}}' = \frac{c}{a^2 + c^2} \left(\cos \frac{s}{\sqrt{a^2 + c^2}} \hat{\boldsymbol{\imath}} + \sin \frac{s}{\sqrt{a^2 + c^2}} \hat{\boldsymbol{\jmath}} + a \hat{\boldsymbol{k}} \right)$$

and so torsion:

$$\tau(s) = \frac{c}{a^2 + c^2}$$

Now for $\hat{\mathbf{n}}$, we can differentiate once and get:

$$\begin{aligned} \frac{d\hat{\mathbf{n}}}{ds} &= \frac{d\hat{\mathbf{b}}}{ds} \times \hat{\mathbf{t}} + \hat{\mathbf{b}} \times \frac{d\hat{\mathbf{t}}}{ds} \\ &= -\tau(s)\hat{\mathbf{n}} \times \hat{\mathbf{t}} + \hat{\mathbf{b}} \times \kappa \hat{\mathbf{n}} \\ &= \tau(s)\hat{\mathbf{b}} - \kappa(s)\hat{\mathbf{t}} \end{aligned}$$

Definition 3.1: Frenet-Serret Equations

$$\frac{d\hat{\underline{\mathbf{t}}}(s)}{ds} = \kappa(s)\hat{\underline{\mathbf{n}}}(s)$$
$$\frac{d\hat{\underline{\mathbf{b}}}(s)}{ds} = -\tau(s)\hat{\underline{\mathbf{n}}}(s)$$
$$\frac{d\hat{\underline{\mathbf{n}}}(s)}{ds} = \tau(s)\hat{\underline{\mathbf{b}}} - \kappa(s)\hat{\underline{\mathbf{t}}}$$

If you are given $\hat{\mathbf{t}}$, $\hat{\mathbf{n}}$, κ and τ , you can use the Frenet Serret equations to determine $\hat{\mathbf{t}}$, $\hat{\mathbf{n}}$ and \mathbf{b} and thus determine the curve in its entirity.

4 Differentiation and Vector Fields

If
$$\underline{\mathbf{A}}(t) = A(t)_1 \hat{\mathbf{i}} + A(t)_2 \hat{\mathbf{j}} + A(t)_3 \hat{\mathbf{k}}$$
, then:

$$\frac{d\underline{\mathbf{A}}(t)}{dt} = \frac{d\underline{\mathbf{A}}(t)}{dt}_{_{1}}\hat{\boldsymbol{\imath}} + \frac{d\underline{\mathbf{A}}(t)}{dt}_{_{2}}\hat{\boldsymbol{\jmath}} + \frac{d\underline{\mathbf{A}}(t)}{dt}_{_{3}}\hat{\boldsymbol{k}}$$

and let $\Phi = \Phi(x, y, z, t)$, $\underline{\mathbf{A}}(\underline{\mathbf{x}}, t)$, $B(\underline{\mathbf{x}}, t)$, then:

$$\frac{\partial}{\partial t}(\Phi \underline{\mathbf{A}}) = \frac{\partial \Phi}{\partial t} \underline{\mathbf{A}} + \Phi \frac{\partial \underline{\mathbf{A}}}{\partial t} \tag{*}$$

$$\frac{\partial}{\partial t}(\underline{\mathbf{A}} + \underline{\mathbf{B}}) = \frac{\partial \underline{\mathbf{A}}}{\partial t} + \frac{\partial \underline{\mathbf{B}}}{\partial t} \tag{*2}$$

$$\frac{\partial}{\partial t}(\underline{\mathbf{A}} \cdot \underline{\mathbf{B}}) = \frac{\partial \underline{\mathbf{A}}}{\partial t} \cdot \underline{\mathbf{B}} + \underline{\mathbf{A}} \cdot \frac{\partial \underline{\mathbf{B}}}{\partial t}$$
 (*3)

$$\frac{\partial}{\partial t}(\underline{\mathbf{A}}\times\underline{\mathbf{B}}) = \frac{\partial\underline{\mathbf{A}}}{\partial t}\times\underline{\mathbf{B}} + \underline{\mathbf{A}}\times\frac{\partial\underline{\mathbf{B}}}{\partial t} \qquad (*^4)$$

Now for the second derivatives

$$\begin{split} \frac{\partial^2 \underline{\mathbf{A}}}{\partial x \partial y} &= \frac{\partial^2 \underline{\mathbf{A}}}{\partial y \partial x} \\ &= \frac{\partial}{\partial x} \left(\frac{\partial \underline{\mathbf{A}}}{\partial y} \right) \\ &= \frac{\partial^2 \underline{\mathbf{A}}_1}{\partial x \partial y} \hat{\mathbf{i}} + \frac{\partial^2 \underline{\mathbf{A}}_2}{\partial x \partial y} \hat{\mathbf{j}} + \frac{\partial^2 \underline{\mathbf{A}}_3}{\partial x \partial y} \hat{\mathbf{k}} \end{split}$$

Then:

$$\begin{split} \oint \int_{S} \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds &= \iint_{S_{1}} \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds + \iint_{S_{2}} \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds + \iint_{S_{3}} \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds \\ &+ \iint_{S_{4}} \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds + \iint_{S_{5}} \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds + \iint_{S_{6}} \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds \\ &= u_{1}(x + \frac{\delta x}{2}, y, z) \delta y \delta z - u_{1}(x - \frac{\delta x}{2}, y, z) \delta y \delta z \\ &+ u_{2}(x, y + \frac{\delta y}{2}, z) \delta x \delta z - u_{2}(x, y - \frac{\delta y}{2}, z) \delta x \delta z \\ &+ u_{3}(x, y, z + \frac{\delta z}{2}) \delta x \delta y - u_{3}(x, y, z - \frac{\delta z}{2}) \delta x \delta y \\ &= \frac{\partial u_{1}}{\partial x} \delta \underline{\mathbf{V}} + \frac{\partial u_{2}}{\partial y} \delta \underline{\mathbf{V}} + \frac{\partial u_{3}}{\partial z} \delta \underline{\mathbf{V}} \end{split}$$

So we can conclude that:

$$\lim_{\delta \mathbf{V} \to 0} \iint \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds = \frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z} = \underline{\nabla} \cdot \underline{\mathbf{u}}$$

Example 6. Compute divergence of $F = x^2y\hat{\imath} + z\hat{\jmath} + xyz\hat{k}$

Solution 4.

$$\underline{\nabla} \cdot F = \frac{\partial}{\partial x} (x^2 y) + \frac{\partial}{\partial y} (z) + \frac{\partial}{\partial z} (xyz)$$
$$= 3xy$$

4.1 Divergence of a vector field

The divergence of a vector field $u(\underline{\mathbf{x}},t)$ is a scalar field. It's value at a point P is defined:

$$\underline{\nabla} \cdot u = \lim_{\delta \mathbf{V} \to 0} \oint \underline{\mathbf{u}} \cdot \underline{\mathbf{n}} ds$$

where $\underline{\mathbf{V}}$ is a small volume enclosing P. Physically this is the amount of flux in vector field, $\underline{\mathbf{U}}$ out of $\delta \underline{\mathbf{V}}$ divided by the volume.

$$\underline{\nabla} \cdot \underline{\mathbf{u}} = \frac{\partial \underline{\mathbf{u}}_1}{\partial x} + \frac{\partial \underline{\mathbf{u}}_2}{\partial y} + \frac{\partial \underline{\mathbf{u}}_3}{\partial z}$$

Assume P(x, y, z) is enclosed by a cube of side length, $\delta x, \delta y, \delta z$. Assume P is at the centre of the cube.

5 Curl of a Vector Field

The curl of a vector field $\underline{\mathbf{u}}(\underline{\mathbf{x}},t)$ is a vector field. The component in the direction of the $\hat{\underline{\mathbf{n}}}$,

$$\hat{\underline{\mathbf{n}}} \cdot \underline{\nabla} \times \underline{\mathbf{u}} = \lim_{\delta S \to 0} \frac{1}{\delta S} \oint_{\delta C} \underline{\mathbf{u}} \cdot d\underline{\mathbf{r}}$$

 $\underline{\nabla}\times\underline{\mathbf{u}}$ is related to the rotatio or tisting of the vector field.

$$\underline{\nabla} imes \underline{\mathbf{u}} = egin{array}{cccc} \hat{m{i}} & \hat{m{j}} & \hat{m{k}} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ u_1 & u_2 & u_3 \ \end{array} =$$

To prove this:

$$\begin{split} &\hat{\underline{\mathbf{n}}} \cdot \underline{\nabla} \times \underline{\mathbf{u}} = \lim_{\delta S \to 0} \frac{1}{\delta S} \oint_{\delta C} \underline{\mathbf{u}} \cdot d\underline{\mathbf{r}} \\ &= \oint_{C_1} \underline{\mathbf{u}} \cdot d\underline{\mathbf{r}} + \oint_{C_2} \underline{\mathbf{u}} \cdot d\underline{\mathbf{r}} \\ &+ \oint_{C_3} \underline{\mathbf{u}} \cdot d\underline{\mathbf{r}} + \oint_{C_4} \underline{\mathbf{u}} \cdot d\underline{\mathbf{r}} \\ &\approx u_1(x, y - \frac{\delta y}{2}, z) \delta x + -u_1(x, y + \frac{\delta y}{2}, z) \delta x \\ &+ u_2(x + \frac{\delta x}{2}, y, z) \delta y - u_2(x - \frac{\delta x}{2}, y, z) \delta y \\ &= -\frac{\partial u_1}{\partial y} \delta y \delta x + \frac{\partial u_2}{\partial x} \delta x \delta y \\ &= \frac{\partial u_2}{\partial x} - \frac{\partial u_1}{\partial y} \end{split}$$

The other components of $\underline{\nabla}\times\underline{\mathbf{u}}$ can be found with similar arguments.