1 Partial derivative

Definition 1. The partial derivative of function f(x,y) with respect to x is defined by

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

Similarly, the partial derivative of f with respect to y is defined by

$$\frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Note that there are many notations for partial derivative. For example, the following notations are all meaning the same thing

$$\frac{\partial f}{\partial x} \equiv \partial_x f \equiv f_x$$

Example 1. Let $f(x,y) = x \cos 2y$. Then

$$\partial_x f = \cos 2y \ \partial_y f = -2x \sin 2y$$

Proposition 1. The geometrical meaning of partial derivatives is the instantaneous rate of change of the multi-variable function f in each directions.

For example f_x means the instantaneous rate of change in x-direction; f_y is the instantaneous rate of change in y-direction.

Fig. 1

2 Higher order derivative

We can easily define higher order partial derivatives. They are just partial derivative of the previous partial derivatives. The notation should not be con-

fused

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \equiv \frac{\partial^2 f}{\partial y \partial x} \equiv \partial_y \partial_x f \equiv f_{xy}$$

And there is a nice result we have to remember.

Theorem 1. Clairaut's theorem.

Suppose a two variable function f(x,y) is defined on some open set U in \mathbb{R}^2 , and both second-order mixed partial derivatives $f_{xy}(x,y)$ and $f_{yx}(x,y)$ exist and continuous on U, then

$$f_{xy}(x,y) = f_{yx}(x,y)$$
 on U

Note: This theorem can be generalized to n-variable real-valued functions $f(x_1, x_2, \dots, x_n)$. any second-order mixed derivative has this property. In other words,

$$\partial_{x_i}\partial_{x_j}f = \partial_{x_j}\partial_{x_i}f$$