be sensitive to our parameters. This observation should not be a surprise since when we manipulate the phonon spectrum, the thermal scattering cross sections are changed, which results in the variation of the up-scattering and thus the thermal flux[5, 4]. We believe monitoring the thermal absorption rate with detectors could bring in another constraint besides the ones used in this paper.

Also, the temporal impact of varying phonon spectrum of ZrH_x in applications such as pulse experiments should be investigated and corresponding calibration work should be done for TRIGA reactors.

Acknowledgments

This project is funded by Department of Energy NEUP research grant from Battelle Energy Alliance, LLC- Idaho National Laboratory, Contract No. C12-00281.

References

405

420

- Safety Analysis Report, Tech. Rep. 05000128, Nuclear Science Center, Texas A&M University (2011).
- [2] S. S. Malik, D. C. Rorer, G. Brunhart, Optical-Phonon Structure and Precision Neutron Total Cross Section Measurements of Zirconium Hydride,
 J. Phys. F: Met. Phys 14 (1984) 73–81.
 - [3] A. C. Evans, D. N. Timms, J. Mayers, S. M. Bennington, Neutron-Scattering Study of the Impulse Approximation in ZrH₂, Phys. Rev. B 53 (1996) 3023–3031. doi:10.1103/PhysRevB.53.3023.
- URL http://link.aps.org/doi/10.1103/PhysRevB.53.3023
 - [4] W. Zheng, R. G. McClarren, Physics-Based Uncertainty Quantification for ZrHx Thermal Scattering Law, in: ANS Winter Meeting 2013, Vol. 109, ANS, 2013, pp. 743–745, washington, D.C., November 10 - 14.
 - [5] W. Zheng, Physics-based uncertainty quantification for ZrHx thermal scattering law, Master's thesis, Texas A&M University (December 2013).

[6] W. Zheng, R. G. McClarren, Effective Physics-Based Uncertainty Quantification for ZrHx Thermal Neutron Scattering in TRIGA Reactors, in: PHYSOR 2014-The Role of Reactor Physics Towards a Sustainable Future, no. 1104568, PHYSOR, 2014, the Westin Miyako, Kyoto, Japan, September 28 - October 3, on CD-ROM (2014).

425

440

- [7] G. I. Bell, S. Glasstone, Nuclear Reactor Theory, 3rd Edition, Krieger Pub Co, Princeton, NJ, 1985.
- [8] E. L. Slaggie, Central Force Lattice Dynamical Model for Zirconium Hydride, J. Phys. Chem. Solids 29 (1968) 923–934.
- [9] M. Mattes, J. Keinert, Thermal Netron Scattering Data for the Moderator Materials H₂O, D₂O and ZrH_x in ENDF-6 Format and as ACE Library for MCNP(X) Code, Tech. Rep. INDC(NDS)-0470, Institute for Nuclear Technology and Energy System (IKE)-University of Stuttgart (2005).
- [10] T. J. Santner, B. J. Williams, W. Notz, The Design and Analysis of Computer Experiments, Springer Series in Statistics, Springer, New York, NY, 2003.
 - [11] R. G. McClarren, D. Ryu, R. P. Drake, M. Grosskopf, D. Bingham, C.-C. Chou, B. Fryxell, B. van der Holst, J. P. Holloway, C. C. Kuranz, B. K. Mallick, E. Rutter, B. R. Torralva, A physics informed emulator for laser-driven radiating shock simulations., Rel. Eng. & Sys. Safety 96 (9) (2011) 1194–1207.
 - URL http://dblp.uni-trier.de/db/journals/ress/ress96.html#
 McClarrenRDGBCFHHKMRT11
- [12] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning,
 Adaptive Computation and Machine Learning, MIT Press, Cambridge,
 MA, USA, 2006.
 - URL http://mitpress.mit.edu/026218253X

- [13] H. Stripling, R. McClarren, C. Kuranz, M. Grosskopf, E. Rutter, B. Torralva, A calibration and data assimilation method using the bayesian {MARS} emulator, Annals of Nuclear Energy 52 (0) (2013) 103 - 112, nuclear Reactor Safety Simulation and Uncertainty Analysis. doi:http://dx.doi.org/10.1016/j.anucene.2012.08.025. URL http://www.sciencedirect.com/science/article/pii/ S0306454912003453
- [14] J. H. Friedman, Multivariate adaptive regression splines, Ann. Statist.
 19 (1) (1991) 1–67. doi:10.1214/aos/1176347963.
 URL http://dx.doi.org/10.1214/aos/1176347963
 - [15] D. G. T. Denison, C. C. Holmes, B. K. Mallick, A. F. M. Smith, Bayesian Methods for Nonlinear Classification and Regression, Wiley, 2002.
- URL http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471490369,descCd-tableOfContents.html
 - [16] R. E. MacFarlane, D. W. Muir, The NJOY Nuclear Data Processing System Version 91, Tech. Rep. LA-12740-M, Los Alamos National Laboratory (1994).