B.M.S. COLLEGE OF ENGINEERING BENGALURU

Autonomous Institute, Affiliated to VTU

Lab Record

Machine Learning

Submitted in partial fulfillment for the 6th Semester Laboratory

Bachelor of Technology

in

Computer Science and Engineering

Submitted by:

Abhijnya K.G 1BM18CS002

Department of Computer Science and Engineering

B.M.S. College of Engineering

Bull Temple Road, Basavanagudi, Bangalore 560 019

Mar-June 2021

B.M.S. COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the **Machine Learning (20CS6PCMAL)** laboratory has been carried out by **Abhijnya(1BM18CS002)**during the 6th Semester Mar-June-2021.

Signature of the Faculty In charge:

NAME OF THE FACULTY:

Dr. ASHA G R

Assistant Professor

Department of Computer Science and Engineering

B.M.S. College of Engineering, Bangalore

Table of Contents

Serial No	Contents	Page no.
1	FIND-S algorithm	4-5
2	Candidate-Elimination algorithm	6-7
3	ID3 algorithm	8-10
4	Naive Bayesian classifier	11-13
5	Bayesian network	14-16
6	K-Means algorithm	17-19
7	EM algorithm	20-22
8	K-Nearest Neighbor algorithm	23-24
9	Linear Regression algorithm	25-27
10	Weighted Regression algorithm	28-30

1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

```
import random
import csv
attributes = [['Sunny', 'Rainy'],
              ['Warm', 'Cold'],
              ['Normal','High'],
              ['Strong','Weak'],
              ['Same','Change']]
n = len(attributes)
a = []
print("\nGiven Data Set \n")
with open('.../input/findsalgorithm/data set.csv', 'r') as csvFile:
    reader = csv.reader(csvFile)
    for row in reader:
        a.append (row)
        print(row)
print("\n The initial hypothesis: ")
hypothesis = ['0'] * n
print(hypothesis)
for i in range(0,n):
        hypothesis[i] = a[0][i];
# Comparing with Remaining Training Examples of Given Data Set
print("\n Find S: Finding a Maximally Specific Hypothesis\n")
for i in range(0,len(a)):
    if a[i][n]=='Yes':
            for j in range (0, n):
                #If attributes is not same replace it with ?
                if a[i][j]!=hypothesis[j]:
                    hypothesis[j]='?'
                else :
```

```
hypothesis[j]= a[i][j]
print(" For Training Example No :",i , " the hypothesis is ",hypothesis)

print("\n The Maximally Specific Hypothesis for a given Training Examples :\n")
print(hypothesis)
```

```
Weather Temperature Humidity Wind Goes
                        Mild Strong Yes
   Sunny
               Warm
                       Mild Normal
               Cold
1
  Rainy
                                     No
          Moderate Nomal Normal Yes
2
   Sunny
               Cold
                       High Strong Yes
3 Sunny
The attributes are: [['Sunny' 'Warm' 'Mild' 'Strong']
 ['Rainy' 'Cold' 'Mild' 'Normal']
 ['Sunny' 'Moderate' 'Nomal' 'Normal']
 ['Sunny' 'Cold' 'High' 'Strong']]
The target is: ['Yes' 'No' 'Yes' 'Yes']
The final hypothesis is: ['Sunny' '?' '?']
```

Fig 1.1

1	Weather	Temperature	Humidity	Wind	Goes
2	Sunny	Warm	Mild	Strong	Yes
3	Rainy	Cold	Mild	Normal	No
4	Sunny	Moderate	Nomal	Normal	Yes
5	Sunny	Cold	High	Strong	Yes

Fig 1.2

2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
import numpy as np
import pandas as pd
data = pd.read csv('../input/dataset/candidate algo.csv')
concepts = np.array(data.iloc[:,0:-1])
print("\nInstances are:\n", concepts)
target = np.array(data.iloc[:,-1])
print("\nTarget Values are: ",target)
def learn(concepts, target):
    specific h = concepts[0].copy()
    print("\nInitialization of specific h and genearal h")
    print("\nSpecific Boundary: ", specific h)
    general h = [["?" for i in range(len(specific h))] for i in range(len(
specific h))]
    print("\nGeneric Boundary: ", general h)
    for i, h in enumerate (concepts):
        print("\nInstance", i+1 , "is ", h)
        if target[i] == "yes":
            print("Instance is Positive ")
            for x in range(len(specific h)):
                if h[x]!= specific h[x]:
                    specific h[x] ='?'
                    general h[x][x] = '?'
        if target[i] == "no":
            print("Instance is Negative ")
            for x in range(len(specific h)):
                if h[x]!= specific h[x]:
                    general h[x][x] = specific h[x]
                else:
                    general h[x][x] = '?'
        print("Specific Bundary after ", i+1, "Instance is ", specific h)
        print("Generic Boundary after ", i+1, "Instance is ", general h)
    indices = [i for i, val in enumerate(general h) if val == ['?', '?', '
?', '?', '?', '?']]
    for i in indices:
        general h.remove(['?', '?', '?', '?', '?'])
```

```
return specific_h, general_h

s_final, g_final = learn(concepts, target)
print("Final Specific_h: ", s_final, sep="\n")
print("Final General_h: ", g_final, sep="\n")
```

Fig 2.1

1	Sunny	Warm	Normal	Strong	Warm	Same	γ
2	Sunny	Warm	High	Strong	Warm	Same	Υ
3	Rainy	Cold	High	Strong	Warm	Change	N
4	Sunny	Warm	High	Strong	Cool	Change	Υ

Fig 2.2

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
import pandas as pd
import math
import numpy as np
import pprint
data=pd.read csv("id3 dataset.csv")
print("\n Input Data Set is:\n", data)
features = [f for f in data]
features.remove("answer")
class Node:
    def init (self):
       self.children = []
        self.value = ""
        self.isLeaf = False
        self.pred = ""
def find entropy(examples):
   pos = 0.0
    neg = 0.0
    for , row in examples.iterrows():
        if row["answer"] == "yes":
           pos += 1
        else:
            neg += 1
    if pos == 0.0 or neg == 0.0:
       return 0.0
    else:
        p = pos / (pos + neg)
        n = neg / (pos + neg)
       return - (p * math.log(p, 2) + n * math.log(n, 2))
def info gain(examples, attr):
    uniq = np.unique(examples[attr])
    gain = find entropy(examples)
    for u in uniq:
        subdata = examples[examples[attr] == u]
        sub e = find entropy(subdata)
        gain -= (float(len(subdata)) / float(len(examples))) * sub e
```

```
return gain
def id3(examples, attrs):
  root = Node()
  \max gain = 0
  max feat = ""
  for feature in attrs:
      gain = info gain(examples, feature)
      if gain > max gain:
          max_gain = gain
          max feat = feature
  root.value = max feat
  uniq = np.unique(examples[max feat])
  for u in uniq:
      subdata = examples[examples[max_feat] == u]
      if find entropy(subdata) == 0.0:
          newNode = Node()
          newNode.isLeaf = True
          newNode.value = u
          newNode.pred = np.unique(subdata["answer"])
          root.children.append(newNode)
      else:
          tempNode = Node()
          tempNode.value = u
          new attrs = attrs.copy()
          new_attrs.remove(max feat)
          child = id3(subdata, new attrs)
          tempNode.children.append(child)
          root.children.append(tempNode)
  return root
def printTree(root: Node, depth=0):
    for i in range (depth):
        print("\t", end="")
    print(root.value, end="")
    if root.isLeaf:
        print(" : ", root.pred)
    print()
    for child in root.children:
        printTree(child, depth + 1)
root = id3(data, features)
print("Final decision tree:\n")
printTree(root)
```

```
Final decision tree:

outlook

overcast : ['yes']

rain

wind

strong : ['no']

weak : ['yes']

sunny

humidity

high : ['no']

normal : ['yes']
```

Fig 3.1

1	outlook	temperature	humidity	wind	answer
2	sunny	hot	high	weak	no
3	sunny	hot	high	strong	no
4	overcast	hot	high	weak	yes
5	rain	mild	high	weak	yes
6	rain	cool	normal	weak	yes
7	rain	cool	normal	strong	no
8	overcast	cool	normal	strong	yes
9	sunny	mild	high	weak	no
10	sunny	cool	normal	weak	yes
11	rain	mild	normal	weak	yes
12	sunny	mild	normal	strong	yes
13	overcast	mild	high	strong	yes
14	overcast	hot	normal	weak	yes
15	rain	mild	high	strong	no ,

Fig 3.2

4. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

```
import pandas as pd
import csv
import random
import math
def read csv(filename):
    lines = csv.reader(open(filename, "r"));
    dataset = list(lines)
    for i in range(len(dataset)):
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset
#splitting the dataset into train and test data
def split dataset(dataset, splitratio):
    trainsize = int(len(dataset) * splitratio);
    trainset = []
    copy = list(dataset);
    while len(trainset) < trainsize:</pre>
        index = random.randrange(len(copy));
        trainset.append(copy.pop(index))
    return [trainset, copy]
def separate by class(dataset):
    separated = {}
    for i in range(len(dataset)):
        vector = dataset[i]
        if (vector[-1] not in separated):
            separated[vector[-1]] = []
        separated[vector[-1]].append(vector)
    return separated
def mean(numbers):
    return sum(numbers)/float(len(numbers))
def std dev(numbers):
    avg = mean(numbers)
    variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
    return math.sqrt(variance)
def summarize(dataset):
```

```
summaries = [(mean(attribute), std dev(attribute)) for attribute in zi
p(*dataset)];
   del summaries[-1] #excluding labels +ve or -ve
    return summaries
def summarize by class(dataset):
    separated = separate by class(dataset);
    summaries = {}
    for classvalue, instances in separated.items():
        summaries[classvalue] = summarize(instances)
   return summaries
def calculate probability(x, mean, stdev):
   exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
    return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
# probabilities contains the all prob of all class of test data
def calculate class probabilities (summaries, inputvector):
   probabilities = {}
   for classvalue, classsummaries in summaries.items():
        probabilities[classvalue] = 1
   for i in range(len(classsummaries)):
       mean, stdev = classsummaries[i]
        x = inputvector[i]
        probabilities[classvalue] *= calculate probability(x, mean, stdev)
   return probabilities
def predict(summaries, inputvector): #training and test data is passed
   probabilities = calculate class probabilities(summaries, inputvector)
   bestLabel, bestProb = None, -1
    for classvalue, probability in probabilities.items():
        if bestLabel is None or probability > bestProb:
            bestProb = probability
            bestLabel = classvalue
    return bestLabel
def get predictions(summaries, testset):
   predictions = []
    for i in range(len(testset)):
        result = predict(summaries, testset[i])
        predictions.append(result)
   return predictions
def get accuracy(testset, predictions):
   correct = 0
   for i in range(len(testset)):
```

```
Split 768 rows into train=514 and test=254 rows
The Accuracy of the classifier is :32.677165354330704 %
```

Fig 4.1

1	num_preg	glucose_conc	diastolic_bp	thickness	insulin	bmi	diab_pred	age	diabetes
2	6	148	72	35	0	33.6	0.627	50	1
3		85	66	29	0	26.6	0.351	31	0
4	8	183	64	0	0	23.3	0.672	32	1
5		89	66	23	94	28.1	0.167	21	0
6		137	40	35	168	43.1	2.288	33	1
7	5	116	74	0	0	25.6	0.201	30	0
8		78	50	32	88	31	0.248	26	1
9	10	115	0	0	0	35.3	0.134	29	0
10		197	70	45	543	30.5	0.158	53	1
11	8	125	96	0	0	0	0.232	54	1
12	4	110	92	0	0	37.6	0.191	30	0
13	10	168	74	0	0	38	0.537	34	1
14	10	139	80	0	0	27.1	1.441	57	0
15		189	60	23	846	30.1	0.398	59	1

Fig 4.2

5. Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

```
import numpy as np
import pandas as pd
import csv
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
#read Cleveland Heart Disease data
heartDisease = pd.read csv('heart.csv')
heartDisease = heartDisease.replace('?', np.nan)
#display the data
print('Sample instances from the dataset are given below')
print(heartDisease.head())
#display the Attributes names and datatyes
print('\n Attributes and datatypes')
print(heartDisease.dtypes)
#Creat Model- Bayesian Network
model = BayesianModel([('age', 'heartdisease'), ('sex', 'heartdisease'), ('exa
ng', 'heartdisease'), ('cp', 'heartdisease'), ('heartdisease', 'restecg'), ('hea
rtdisease','chol')])
#Learning CPDs using Maximum Likelihood Estimators
print('\n Learning CPD using Maximum likelihood estimators')
model.fit(heartDisease, estimator=MaximumLikelihoodEstimator)
# Inferencing with Bayesian Network
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest infer = VariableElimination(model)
#computing the Probability of HeartDisease given restecg
print('\n 1.Probability of HeartDisease given evidence= restecg :1')
q1=HeartDiseasetest infer.query(variables=['heartdisease'],evidence={'rest
ecg':1})
print(q1)
#computing the Probability of HeartDisease given cp
print('\n 2.Probability of HeartDisease given evidence= cp:2 ')
q2=HeartDiseasetest infer.query(variables=['heartdisease'],evidence={'cp':
2 } )
print(q2)
```

heartdisease(4)

```
Sample instances from the dataset are given below
  age sex cp trestbps chol ... oldpeak slope ca thal heartdisease
0 63 1 1 145 233 ...
1 67 1 4 160 286 ...
2 67 1 4 120 229 ...
3 37 1 3 130 250 ...
4 41 0 2 130 204 ...
                               2.3 3 0 6
1.5 2 3 3
                                 2.6 2 2 7
3.5 3 0 3
1.4 1 0 3
                                                            - 1
                                                             0
                                                             0
[5 rows x 14 columns]
Attributes and datatypes
age
              int64
sex
             int64
CD
             int64
trestbps
chol
             int64
fbs
             int64
restecg
             int64
thalach
exang
          float64
oldpeak
             int64
slope
             obiect
ca
            object
thal
heartdisease
              int64
dtype: object
 Learning CPD using Maximum likelihood estimators
Finding Elimination Order: : 100% | 5/5 [00:00<00:00, 834.39it/s]
Eliminating: sex: 100% 5/4 5/5 [00:00<00:00, 70.42it/s]
 Inferencing with Bayesian Network:
 {\bf 1. Probability \ of \ Heart Disease \ given \ evidence= \ restecg \ :1}
 | heartdisease | phi(heartdisease) |
 | heartdisease(0) |
                           0.1012 |
 +----
heartdisease(1)
                           0.0000 |
 | heartdisease(2) |
                           0.2392
+-----
| heartdisease(3) | 0.2015 |
heartdisease(4)
                           0.4581 |
 2.Probability of HeartDisease given evidence= cp:2
Eliminating: sex: 100% | 5/5 [00:00<00:00, 138.98it/s]
 | heartdisease | phi(heartdisease) |
 +----
 | heartdisease(0) |
+-------
 | heartdisease(1) |
                           0.2159
 | heartdisease(2) |
                           0.1373
                   0.1537 L
heartdisease(3)
```

Fig 5.1

0.1321

1	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	heartdisease
2	63	1	1	145	233	1	2	150	0	2.3	3	0	6	0
3	67	1	4	160	286	0	2	108	1	1.5	2	3	3	2
4	67	1	4	120	229	0	2	129	1	2.6	2	2	7	1
5	37	1	3	130	250	0	0	187	0	3.5	3	0	3	0
6	41	0	2	130	204	0	2	172	0	1.4	1	0	3	0
7	56	1	2	120	236	0	0	178	0	0.8	1	0	3	0
8	62	0	4	140	268	0	2	160	0	3.6	3	2	3	3
9	57	0	4	120	354	0	0	163	1	0.6	1	0	3	0
10	63	1	4	130	254	0	2	147	0	1.4	2	1	7	2
11	53	1	4	140	203	1	2	155	1	3.1	3	0	7	1
12	57	1	4	140	192	0	0	148	0	0.4	2	0	6	0
13	56	0	2	140	294	0	2	153	0	1.3	2	0	3	0
14	56	1	3	130	256	1	2	142	1	0.6	2	1	6	2
15	44	1	2	120	263	0	0	173	0	0	1	0	7	0

Fig 5.2

6. Apply k-Means algorithm to cluster a set of data stored in a .CSV file.

```
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import pandas as pd
import numpy as np
dataset = pd.read csv('mall customers.csv')
dataset.head()
colormap = np.array(['red', 'lime', 'cyan', 'magenta', 'blue', 'purple'])
def kmeans(k,flag):
 if flag:
    x = dataset.iloc[:, [3, 4]].values
    plt.xlabel('Annual Income (k$)')
    plt.ylabel('Spending Score (1-100)')
 else:
    x = dataset.iloc[:, [2, 4]].values
    plt.xlabel('Age')
    plt.ylabel('Spending Score (1-100)')
 model = KMeans(n clusters=k)
 y_predict= model.fit predict(x)
 plt.title('K Mean Classification of customers')
 for i in range (0, k):
   plt.scatter(x[y predict == i, 0], x[y predict == i, 1], s = 40, c = co
lormap[i])
 plt.scatter(model.cluster centers [:, 0], model.cluster centers [:, 1],
s = 100, c = 'black')
 plt.show()
#k=4 clusters based on age and spending score
kmeans(4,False)
#k=5 clusters based on income and spending score
kmeans (5, True)
```

In [9]: #k=4 clusters based on age and spending score
kmeans(4,False)

In [10]: #k=5 clusters based on income and spending score
kmeans(5,True)

Fig 6.1

1	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
2	1	Male	19	15	39
3	2	Male	21	15	81
4	3	Female	20	16	6
5	4	Female	23	16	77
6	5	Female	31	17	40
7	6	Female	22	17	76
8	7	Female	35	18	6
9	8	Female	23	18	94
10	9	Male	64	19	3
11	10	Female	30	19	72
12	11	Male	67	19	14
13	12	Female	35	19	99
14	13	Female	58	20	15
15	14	Female	24	20	77
16	15	Male	37	20	13

Fig 5.2

7. Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

```
from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture
import sklearn.metrics as metrics
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
names = ['Sepal Length','Sepal Width','Petal Length','Petal Width', 'Class
']
dataset = pd.read csv("dataset.csv", names=names)
X = dataset.iloc[:, :-1]
label = {'Iris-setosa': 0,'Iris-versicolor': 1, 'Iris-virginica': 2}
y = [label[c] for c in dataset.iloc[:, -1]]
plt.figure(figsize=(14,7))
colormap=np.array(['purple','lime','black'])
plt.subplot(1,3,1)
plt.title('Real')
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y])
model=KMeans(n clusters=3, random state=0).fit(X)
plt.subplot(1,3,2)
plt.title('KMeans')
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[model.labels ])
print('The accuracy score of K-
Mean: ', metrics.accuracy score(y, model.labels ))
print('The Confusion matrixof K-
Mean:\n',metrics.confusion matrix(y, model.labels ))
gmm=GaussianMixture(n components=3, random state=0).fit(X)
y cluster gmm=gmm.predict(X)
plt.subplot(1,3,3)
plt.title('GMM Classification')
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y cluster gmm])
```

```
print('The accuracy score of EM: ',metrics.accuracy_score(y, y_cluster_gmm
))
print('The Confusion matrix of EM:\n ',metrics.confusion_matrix(y, y_clust
er_gmm))
```


Fig 7.1

Data set:

1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa
12	4.8	3.4	1.6	0.2	Iris-setosa
13	4.8	3	1.4	0.1	Iris-setosa
14	4.3	3	1.1	0.1	Iris-setosa
15	5.8	4	1.2	0.2	Iris-setosa
16	5.7	4.4	1.5	0.4	Iris-setosa
17	5.4	3.9	1.3	0.4	Iris-setosa
18	5.1	3.5	1.4	0.3	Iris-setosa
19	5.7	3.8	1.7	0.3	Iris-setosa
20	5.1	3.8	1.5	0.3	Iris-setosa

Fig 7.2

8. Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions.

```
import sklearn
import pandas as pd
from sklearn.datasets import load iris
from sklearn.neighbors import KNeighborsClassifier
iris=load iris()
iris.keys()
df=pd.DataFrame(iris['data'])
print("The data looks like this:\n")
print(df)
print("\nThe Traget Features are:\n")
print(iris['target names'])
iris['feature names']
y=iris['target']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
random state=42)
#Training the model with Nearest nighbors K=3
knn=KNeighborsClassifier(n neighbors=3)
knn.fit(X train, y train)
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
y pred=knn.predict(X test)
cm=confusion matrix(y test, y pred)
print("1. Confusion matrix:\n",cm)
print("2. Correct predicition", accuracy score(y test, y pred))
print("3. Wrong predicition", (1-accuracy score(y test, y pred)))
print('4. Accuracy Metrics')
print(classification_report(y_test,y_pred))
```

```
The data looks like this:
        0
            1 2
                   3
 0
      5.1 3.5 1.4 0.2
 1
      4.9 3.0 1.4 0.2
      4.7 3.2 1.3 0.2
 3
      4.6 3.1 1.5 0.2
 4
      5.0 3.6 1.4 0.2
      ... ... ... ...
 145 6.7 3.0 5.2 2.3
 146 6.3 2.5 5.0 1.9
 147 6.5 3.0 5.2 2.0
 148 6.2 3.4 5.4 2.3
 149 5.9 3.0 5.1 1.8
 [150 rows x 4 columns]
 The Traget Features are:
 ['setosa' 'versicolor' 'virginica']
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                   metric params=None, n jobs=None, n neighbors=3, p=2,
                   weights='uniform')
```

```
1. Confusion matrix:
[[19 0 0]
[ 0 15 0]
```

[0 1 15]

- 2. Correct predicition 0.98
- 3. Wrong predicition 0.020000000000000018
- 4. Accuracy Metrics

	precision	recall	f1-score	support
0	1.00	1.00	1.00	19
1	0.94	1.00	0.97	15
2	1.00	0.94	0.97	16
accuracy			0.98	50
	0.00	0.00		
macro avg	0.98	0.98	0.98	50
weighted avg	0.98	0.98	0.98	50

Fig 8.1

9. Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('salary_dataset.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
```

```
# Fitting Simple Linear Regression to the Training set
from sklearn.linear model import LinearRegression
regressor = LinearRegression()
regressor.fit(X train, y train)
# Predicting the Test set results
y pred = regressor.predict(X test)
# Visualizing the Training set results viz train = plt
viz train.scatter(X train, y train, color='red') viz train.plot(X train,
regressor.predict(X_train), color='green') viz train.title('Salary VS
Experience (Training set)') viz train.xlabel('Year of Experience')
viz train.ylabel('Salary') viz train.show()
# Visualizing the Test set results
viz test = plt
viz test.scatter(X test, y test, color='blue')
viz_test.plot(X_train, regressor.predict(X train), color='green')
viz_test.title('Salary VS Experience (Test set)')
viz test.xlabel('Year of Experience')
viz test.ylabel('Salary')
viz test.show()
```


Fig 9.1

Data set:

Fig 9.2

10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
from numpy import *
from os import listdir
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np1
import numpy.linalg as np
from scipy.stats.stats import pearsonr
def kernel(point,xmat, k):
m, n = np1.shape(xmat)
weights = np1.mat(np1.eye((m)))
 for j in range(m):
   diff = point - X[j]
    weights[j,j] = npl.exp(diff*diff.T/(-2.0*k**2))
return weights
def localWeight(point, xmat, ymat, k):
wei = kernel(point,xmat,k)
W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
return W
def localWeightRegression(xmat, ymat, k):
m, n = np1.shape(xmat)
ypred = np1.zeros(m)
for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
return ypred
# load data points
data = pd.read csv('tips.csv')
bill = np1.array(data.total bill)
tip = np1.array(data.tip)
```

```
#preparing and add 1 in bill
mbill = np1.mat(bill)
mtip = np1.mat(tip) # mat is used to convert to n dimesiona to 2 dimension
al array form
m= np1.shape(mbill)[1]
# print(m) 244 data is stored in m
one = np1.mat(np1.ones(m))
X= np1.hstack((one.T,mbill.T)) # create a stack of bill from ONE
#print(X)
#set k here
ypred = localWeightRegression(X,mtip,2)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(bill, tip, color='purple')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show()
```


Fig 10.1

Data set:

1	total_bill	tip	sex	smoker	day	time	size
2	16.99	1.01	Female	No	Sun	Dinner	2
3	10.34	1.66	Male	No	Sun	Dinner	3
4	21.01	3.5	Male	No	Sun	Dinner	3
5	23.68	3.31	Male	No	Sun	Dinner	2
6	24.59	3.61	Female	No	Sun	Dinner	4
7	25.29	4.71	Male	No	Sun	Dinner	4
8	8.77	2.0	Male	No	Sun	Dinner	2
9	26.88	3.12	Male	No	Sun	Dinner	4
10	15.04	1.96	Male	No	Sun	Dinner	2
11	14.78	3.23	Male	No	Sun	Dinner	
12	10.27	1.71	Male	No	Sun	Dinner	2
13	35.26	5.0	Female	No	Sun	Dinner	4
14	15.42	1.57	Male	No	Sun	Dinner	2
15	18.43	3.0	Male	No	Sun	Dinner	4
16	14.83	3.02	Female	No	Sun	Dinner	2
17	21.58	3.92	Male	No	Sun	Dinner	2
18	10.33	1.67	Female	No	Sun	Dinner	3
19	16.29	3.71	Male	No	Sun	Dinner	3
20	16.97	3.5	Female	No	Sun	Dinner	3

Fig 10.2