gis

adam okulicz-kozaryn
adam.okulicz.kozaryn@gmail.com

this version: Tuesday 17th April, 2012 18:52

<u>outline</u>

misc

some examples

intuition

setup

next steps

software

if we have time, let's revisit ado

outline

misc

some examples

intuition

setup

software

next steps

if we have time, let's revisit ado

misc 3/42

integrity/homesty

- data integrity/honesty, or more broadly:
 intelectual integrity honesty
- be explicit about problems in your data
 e.g. nonmerges, missing data, miscodings
- be explicit about problems in your models:
 - · e.g. don't throw away variables from models just because
 - they contradict your story
- o instead of forcing data to tell your story,

· discuss it: how, why; ask readers to email you ideas

miscask you to find something; use a disclaimer saying that

scatter plots

- use graphs! e.g. scatterplots
- but stata defaults are not great...; try:
- · display different groups, mark data points
- · empty hollow circle; jitter
- · lowess
- http://www.stata.com/support/faqs/graphics/gph/
 graphdocs/scatter3.html
- http://www.indiana.edu/~jslsoc/ftp/stat503/Lab%20guide/ iucdaF09_lab_pt2-5_graphs.pdf
- · http:

misc

//www.stata-journal.com/sjpdf.html?articlenum=gr0021

5/42

<u>outline</u>

misc

some examples

intuition

setup

coftware

next steps

if we have time, let's revisit ado

maps

- before we begin let's look at some interesting maps
- you'll see that mapping can be useful
- · see patterns that cannot see otherwise
- · absorb easily lots of information
- · compare easily
- examples are supposed to inspire you to produce your own maps

some examples 7/4

acs

American Community Survey (acs) is a great source of regular and gis data http://www.census.gov/acs/www/data_documentation/2009_ acs_maps/ let's see the following by county

- · % foreign born
- · mean travel to work
- · completed hs; have bs/ba
- · below poverty level
- housing value

some examples 8/42

the big sort

- "The big sort
 why clustering of like-minded America is tearing us apart"
- America polarizes by county
 (counties are becoming either R or D)
- http://www.thebigsort.com/maps.php

some examples 9/4

who is your city

- http://utd.edu/~ajo021000/myweb/other.html
- http://www.gallup.com/poll/145913/
 City-Wellbeing-Tracking.aspx

some examples 10/42

<u>outline</u>

misc

some examples

intuition

setup

software

next steps

if we have time, let's revisit ado

intuition 11/42

gis

- gis is a rather broad topic, good for many classes or a separate degree
- we will just talk about making maps and producing simple spatial statistics
- this will be very applied, i will skip gis theory
- there will be links for those of you who are really into gis

intuition 12/4

useful!

- gis is really useful for everybody
- no matter what you study it takes place somewhere, and the place matters
 you always have U/A, e.g. persons, schools, hospitals,

all of them are located somewhereand usually you can map them

states, countries

- no need for exact U/A location, (e.g. address of person, school)
- · just use a larger geographical location, e.g. county, state, country

intuition 13/42

relatedness

- the first law of geography:
 - "Everything is related to everything else, but near things are more related than distant things
 (Tobler)
- in practice it means that things cluster together (have positive spatial autocorrelation)
- poor people live close to poor people
- high-crime neighborhoods are close to high-crime neighborhoods
- · hi-tech firms are located close to other hi-tech firms (Silicon Valley, Boston)

mapping

- mapping is fun it gives a different representation of numbers
- mapping is revealing
 - there are things that you would never notice untill you map them
 - · e.g. deVeaux devices in Arizona
 - http://web.williams.edu/Mathematics/rdeveaux/

intuition 15/42

outline

nisc

some examples

intuition

setup

software

next steps

if we have time, let's revisit ado

setup 16/42

setup

- to produce maps/generate spatial statistics we need:
 - · gis data, i.e. mappable data (more in a second): .shp, .kml. etc
 - · regular data

17/42

howto map it

- ok you have some data, and it would very likely have some geo id:
- county name/idISD name. etc
- then get a shapefile that you can merge with your data (see links at the end or google e.g. "us county shapefile")
- you may also have <u>addresses</u>
- school addresshospital address
- o you need to geocode them the easiest to use
 http://batchgeo.com

howto map it

- think of geography in your data; usually you have it
- google "geo in you data, shapefile" or visit links from this class
- ♦ and merge ...
- beware of representativeness of your data of geo...
- i spent months coding provinces from WVS; then emailed Inglehart and found out that they are not representative....

setup 19/4

spatial merge

- even if things do not fit geographically...
- · say you have zip codes in one data, and counties in another data
- you can map both and merge based on spatial location
- so called "spatial join"
- · pick sum, avg or total...
- · qgis vector data mgmt tools join by spatial location
- as any data question, ask gis questions on listserv...

setup 20/42

some theory: projection

- we will mostly skip it but just to give you an idea...
- the earth is roughly a sphere (3d)
- map is a rectangular (2d)
- to represent 3d earth in 2d map you need to project sphere onto rectangle
- · there are all sorts of projections: conic, cylinder etc...
- · software will usually figure it out
- but when your data looks weird (e.g. Dallas in England)
 you have a projection problem

setup 21/42

some theory: data, layers

- gis data is a regular data + location info (lat/long)
- there is always a data table (regular data + location info) that underlies a map
- most of the time you want to superimpose different layers of gis data
 e.g. roads, cities, state boundaries, schools
- often you want to produce thematic (choropleth) maps thematic maps use different symbols/colors to show variation in data

22/42 22/42

some theory: gis files

- gis data may be in many formats
- gis data have location info that allows mapping
- gis data can be points, lines, polygons
- usually, you want to overlay several layers...
- the most popular format is called "shapefile" .shp (comes with .dbf and others...)
- ♦ another popular format: google .kml (basically xml)

setup 23/4

combining shapefile with data

- ⋄ you can merge in arcgis, r, qgis, geoda
- ti is easy in qgis: vector-data management tools-join attributes

setup 24/42

<u>outline</u>

misc

some examples

intuition

setup

software

next steps

if we have time, let's revisit ado

software 25/42

software

- there is lots of gis software...
 - stata poor (about 5 people developing code)
 - R pretty good, but cannot point-and-click (actually good with maps); need to write code

 https://stat.ethz.ch/mailman/listinfo/r-sig-geo
 - · arc map probably most popular, many tools, expensive
 - · geoda great for spatial statistics
 - · qgis great general software
 - · geocommons online mapping tool

· etc...

software 26/42

maps in stata

- you are already familiar with it
- ti produces maps, but they are rather poor and the process is very clunky
- ♦ http://www.stata.com/support/faqs/graphics/tmap.html
- http://huebler.blogspot.com/2005/11/
 creating-maps-with-stata.html
- ⋄ i will not talk more about maps in stata (unless you insist)

software 27/42

R for mapping

- we already talked about R pros/cons in general
- much better than stata for maps, but still clunky
- problem with GIS and R is that much of GIS is point and click...
- · you want to zoom in/out maps
- · you want to click maps to change layers
- · you want to click maps to see features, etc
- solution: R and google maps (advanced)(CLICK links)
 - http://www.omegahat.org/GoogleEarth/CityTemperatures/
 - http:
 - //cran.r-project.org/web/packages/RgoogleMaps/vignettes/RgoogleMaps-intro.pdf
 - http://cran.r-project.org/web/packages/RgoogleMaps/

rscript

software 28/42

arc map

- arc map is probably the most popular (we have it at lab)
 it is like ms word for writers
- there are lots of features you can do most of usual gis with it
- \cdot it is quite visual / point-and-click
- it often crashes, become slow, uses lots of memory, and it is expensive
 still it is ok software and industry standard

29/42

great for specific tasks: e.g. sewer system, political

software

geoda

- easy to use, point and click, free, spatial statistics
- ♦ LAB: on desktop; HOME: sign up and download from here http://geodacenter.asu.edu/software/downloads
- ♦ LAB: just open sample data.. HOME: columbus data from http://geodacenter.asu.edu/sdata
- you can open it in geoda

decimal places

may work too) and you can add a new var say "NEW_VAR,N,11,6" i guess, N is number and 11 is # of digits and 6 is # of

then you can open columbus.dbf with say oo calc (excel

software 30/42

geoda - thematic maps

- ♦ table merge table data
- map percentile/quantile/std/cartogram/new map window
- explore histogram/scatter plot
- note: you can click on polygons/bars/points AND select a bunch of them with rectangular-select

software 31/42

geoda - spatial statistics

- tools weights create
- · id var is a unique id like state
- queen contiguity [draw a picture] (can also have distance or k-neighbors)
- open contiguity matrix in npp poly with id 1 has 2 neigh: 2, 3 poly with id 2 has 3 neigh: 4, 3, 1 and so on...
- having spatial matrix we can calculate some spatial statistics

software 32/42

geoda - spatial statistics

- ⋄ space univariate moran (like corr of i and Wi)
- univariate lisa significance/values

software 33/4

qgis

- easy to use, point and click, free, good mapping with layers, lots of good plugins http://www.qgis.org/
- check out plugins!
- check it at home...
- you can use many useful tools: vector-data management tools

software 34/4

online software

- o for a list see http://aok.us.to/class/data_mgmt#gis
- we will use geocommons
- there are lots of maps uploaded by other users
- you can pick base map (google, mapquest, etc)

software 35/42

geocommons: happiness

- ♦ let's reproduce this: http://utdallas.edu/~ajo021000/tmp2/ (you can embed geocommons maps on your website)
- ♦ sign up http://geocommons.com/
- ♦ get my shapefiles aok2... at http://aok.us.to/papers/gesis/
- on geocommons
- upload data (you may need to click several times)
- map it visual theme inc ppp colors quantile chose style
- · and we will add another layer...
- · add data and do the same for other vars

software 36/42

geocommons: campaign contributions

- ♦ let's reproduce this: http://geocommons.com/maps/62603
- let's look at data http://aok.us.to/tmp
- · open contr.csv; we cannot use it as it is: run gis.do

• geocode csv data; change columns and select US

- · open districts.kml
- upload both to geocommons
- ↑ and you are ready to man
- and you are ready to map
- search for other user's data on geocommons and add to your map...
- ♦ and there is more data http://www.dalcoelections.org/

vou may do it over time, do animations, etc

software

<u>outline</u>

misc

some examples

intuition

setup

software

next steps

if we have time, let's revisit ado

next steps 38/42

utdallas

- o program http://www.utdallas.edu/epps/gis/contact.html
- o intro http://www.utdallas.edu/~briggs/
- o applied http://www.utdallas.edu/~briggs/poec6381.html
- data/resources

http://www.utdallas.edu/~briggs/other_gis.html

next steps 39/42

harvard/mit

- ♦ main http://gis.harvard.edu
- newsletter

```
http://gis.harvard.edu/icb/icb.do?keyword=k235&pageid=icb.page189865
email to majordomo@mail.hmdc.harvard.edu
this subscribenewsletter_at_lists_cga_harvard_edu
```

- data http://gis.harvard.edu/icb/icb.do?keyword= k235&tabgroupid=icb.tabgroup53814
- data http://libraries.mit.edu/gis

next steps 40/42

harvard free resources

- conferences (slides, video, etc)
 http://gis.harvard.edu/icb/icb.do?keyword=
 k235&tabgroupid=icb.tabgroup110805
- take some classes
 http://gis.harvard.edu/icb/icb.do?keyword=k235&pageid=
 icb.page189848
- blog, interesting things
 http://gis.harvard.edu/icb/icb.do?keyword=k235&pageid=
 icb.page189849

next steps 41/42

outline

misc

some examples

intuition

setup

software

next steps

if we have time, let's revisit ado