Prof. M. Chiani, Prof. D. Maio Tutor: L. Valentini

Quantum Circuits

- 1. Estimate α and β using quantum tomography on a single qubit pure state.
 - (a) Generate a quantum state $|\psi\rangle=0.8\,|0\rangle+0.6e^{j\pi/3}\,|1\rangle.$
 - (b) Perform each of the following measurements N times, storing the number of times the measurement "0" has occurred.

(c) Using the measurement results estimate $|\psi\rangle_N$ for N=10,100,1000. Fill the following table and describe how the results are obtained.

N	$ \psi\rangle_N$
10	
100	
1000	

Hint 1: Rewrite the state as $|\psi\rangle = \cos(\theta/2) |0\rangle + \sin(\theta/2) e^{j\varphi} |1\rangle$ with $0 \le \theta \le \pi$ and $0 \le \varphi < 2\pi$. Then, θ and φ are the two real numbers to be estimated through quantum state tomography.

Hint 2: In the Z measurement setup, we have that $|\alpha|^2$ is the probability of the measurement outcome "0". Using the frequentist approach of probability we can approximate this probability with $n_{\rm z}^{(0)}/N$ where $n_{\rm z}^{(0)}$ are the number of times the measurement "0" has occurred using the measurement setup Z. In this way, we find that $\cos^2(\theta/2) = n_{\rm z}^{(0)}/N$. Finally, we obtain

$$\theta = 2\arccos\left(\sqrt{\frac{n_{\rm z}^{(0)}}{N}}\right) + 2k\pi = 2\arccos\left(\sqrt{\frac{n_{\rm z}^{(0)}}{N}}\right) \,.$$

with $k \in \mathbb{Z}$.

Hint 3: In the X measurement setup, the quantum state before the measuring gate is

$$\alpha |+\rangle + \beta |-\rangle = \frac{\alpha + \beta}{\sqrt{2}} |0\rangle + \frac{\alpha - \beta}{\sqrt{2}} |1\rangle$$
.

Then, we have that $\left|\frac{\alpha+\beta}{\sqrt{2}}\right|^2$ is the probability that the outcome of the measurement is "0".

2. Consider the following circuit executing the quantum teleportation algorithm

where
$$|\phi^{+}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
.

- (a) Generate a quantum state $|\psi\rangle=0.8\,|0\rangle+0.6\,e^{j\pi/3}\,|1\rangle$ and verify via tomography the output.
- (b) What happens if $|\psi^{+}\rangle$ is used instead of $|\phi^{+}\rangle$ as entangled pair?
- (c) In what ways can the teleportation circuit be adapted based on the specific entangled pair employed? Develop quantum circuits, one for each entangled pair

$$|\phi^{-}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}, \quad |\psi^{+}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}, \quad |\psi^{-}\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}.$$

where
$$|\varphi\rangle = |\phi^{-}\rangle$$
, $|\psi^{+}\rangle$, $|\psi^{-}\rangle$

3. Consider the following circuit of an quantum error detection scheme

- (a) Generate a quantum state $|\psi\rangle=0.8\,|0\rangle+0.6\,e^{j\pi/3}\,|1\rangle$ and verify via tomography the output when $G_1=G_2=I$.
- (b) Repeat the experiment for all the combinations of $G_1 \in \mathcal{P}$ and $G_2 \in \mathcal{P}$, where $\mathcal{P} = \{I, X, Y, Z\}$, and fill the following table. For which combinations the output is equal to $|\psi\rangle$? Considering that the output state is correct whenever the ancilla is "0", in which cases we have an undetected error?

G_1 G_2 Output Error Ancilla Meas. [Yes/No] [0/1] I			
I X I Z I Y X I X X X X X Z X Y Z I Z X Z Z Z Y Y I Y X Y Z	G_1	G_2	
I Z I Y X I X X X Z X Y Z I Z X Z Z Z Y Y I Y X Y Z	I	I	
I Y X I X X X Z X Y Z I Z X Z Z Z Y Y I Y X Y Z	I	X	
X	I	Z	
X X X X X X Y Y Z I Z X Z Z Z Y Y Y I Y X X Y Z	I	Y	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X	I	
X Y Z I Z X Z Z Z Y Y I Y X Y Z	X	X	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X	Z	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X	Y	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z	I	
$\begin{array}{ccc} Z & Y \\ \hline Y & I \\ Y & X \\ Y & Z \end{array}$	Z	X	
$egin{array}{cccc} Y & I & & & & & & & & & & & & & & & & &$	Z	Z	
$egin{array}{ccc} Y & X \ Y & Z \end{array}$	Z	Y	
Y - Z	\overline{Y}	I	
	Y	X	
Y - Y	Y	Z	
	Y	Y	