

Cahier-réponses Contrôle périodique 1

PHS1101

Sigle du cours

	Identifica	ation de l'étudiant(e)		
Nom :		Prénom :		Réservé
Signature :		Matricule :	Groupe:	Q1 : / 5 /50
:				Q2 : 2 6 /50
	tre du cours	Groupe	Trimestre	Q3: <u>7</u> 7-/50
PHS1101 Mécanique pour ingénieurs		Tous	Automne 2021	Q4: ID /50
Coorde	onnateur	Courriel		
Jérémie '	Villeneuve	Jeremie.villeneuve@	@polymtl.ca	
Jour	Date	Durée	Heures	
Mardi	5 octobre 2021	1 heure 50 minutes	18h30 à 20h20	
	Direct	tives particulières		
 Détaillez les point. 	étapes de vos soluti	amen individuellement . ons. Une réponse sans justifica		Total : 78
_		compagnée des unités appropri		
 Si vous pens 	sez qu'il y a une erre	eur dans le questionnaire, répo	ndez du mieux aue 📗	200

Important

vous pouvez.

Cet examen contient x4 questions sur un total de 18 pages (Excluant cette page).

La pondération de cet examen est de 25 %

Aucune documentation n'est permise.

Inscrire votre matricule sur toutes les pages numérotées.

Un aide-mémoire pour les formules vues en cours se trouve à la fin de ce cahier.

Les calculatrices non programmables sont permises.

L'étudiant doit honorer l'engagement pris lors de la signature du code de conduite.

Question 1 (50 points) - Questions conceptuelles et à réponses courtes

Répondez aux sous-questions suivantes en expliquant votre raisonnement. Les sousquestions A à D sont indépendantes les unes des autres.

- A. [10 pts] Vrai ou faux. Dans un fluide statique qui est soumis à la gravité, la pression augmente avec la profondeur : par conséquent, on ne peut pas affirmer que la pression dans ce fluide est isotrope. Justifiez.
- B. [10 pts] Un bloc glisse sur une surface rugueuse horizontale. Pour chacune des forces ci-dessous, nommez la force qui complète la paire action-réaction :
 - i. Le poids du bloc;
 - ii. La force de frottement qui agit sur le bloc.
- C. [10 pts] Considérez les deux situations ci-dessous, où un même couple M de module 20 N m est appliqué à la pièce OAB que l'on suppose parfaitement rigide.

Vrai ou faux. Le couple produit les mêmes effets externes de translation et de rotation sur la pièce dans les deux situations. <u>Justifiez</u>.

D. [20 pts] Un billot de bois (masse volumique ρ_b) de forme cylindrique (rayon R et longueur L) flotte à la surface de l'eau (masse volumique ρ_e), tel qu'illustré sur la figure ci-contre. À partir de principes de la mécanique, obtenez l'équation qui permet de calculer l'angle θ . Présentez l'équation sous une forme simplifiée, mais ne tentez pas de la résoudre.

#1

A Het vivi que la pression augmente avec la profondem selon le principe de l'oscal. Selon le principe (3) de Pascal, la pression est la même à un enshait.

Isotrope signifique qu'elle est parollèle! On pent offinner qu'elle est inotrope (Fouse). " c'est un scalaire!

Les forces sont la force granitationnelle et la force normale qui completent l'action -reaction. -s

(i)

lour qu'in bloc glisse sur une surface rugueuse, il fant qu'il ait une certaine force qui la pourse dans le sens offrose à la fonce de hottement et avec une certaine vitesse.

M= 20 N.m

PHS1101 - Mécaniqu	e pour ingénieurs
--------------------	-------------------

Contrôle périodique 1 – Automne 2021

Question 2 (50 points)

On applique une force F = 200 N sur l'extrémité du manche d'une valve afin de la fermer.

La forme et les dimensions de la valve sont indiquées sur la figure ci-dessous. L'orientation de la force F est donnée par $\theta=30^\circ$ et $\phi=20^\circ$. On donne $d=0.8\,\mathrm{m}$.

Déterminer, en utilisant le système d'axes de la figure :

A. [15 pts] L'expression de la force \vec{F} .

- B. [20 pts] Le système force-couple équivalent de \vec{F} au point B.
- C. [15 pts] Le moment de \vec{F} par rapport à l'axe z.

2

A Coordonnées de F

0 = angle sens horaine osce y

Ø = angle sen antihoning

$$\emptyset = 90 + (90 - 20)$$

Notes de como X

$$F_z = 200 \cdot \sin 60 \cos 60 = -162,76 N(-3)$$

 $F_x = 200 \cdot \sin 60 \sin 160 = 5974 N(-3)$
 $F_y = -700 \cdot \cos 60 = -100 N$

$$M_{F/B} = \Gamma_{BF} \times F_{-4}$$
 $(-0,1)(+0,275) \rightarrow 0,82$

C
$$M_{F/Z} \Rightarrow M_{FZ} = (M_{F}) \cdot \hat{u}_{FZ} \cdot \hat{u}_{FZ}$$
o Fromer $\hat{u}_{FZ} \Rightarrow D(0,0,1)$ can vector unitaine griant

 $M_{FZ} = \left[(35,241-63,662-76,241) \cdot (0+0+1) \right] \cdot (0+0+1)$
 $= (0 \cdot 1+0 \cdot 1-26,241 \cdot 2) \cdot (0+0+1)$
 $= (0 \cdot 1+0 \cdot 1-26,241 \cdot 2) \cdot (0+0+1)$

Contrôle périodique 1 – Automne 2021

Question 3 (50 points)

Un cylindre de masse $m=30~{\rm kg}$ repose sur une structure composée de deux membrures accrochées au plafond tel que représenté sur la figure ci-dessous. Les dimensions des membrures et du disque sont représentées sur la figure.

- A. [20 pts] Faire le DCL:
 - i. Des deux membrures avec le disque ;
 - ii. Du disque ;
 - iii. De la membrure AC;
 - iv. De la membrure BC.
- B. [15 pts] Déterminer les modules des réactions de la structure sur le disque en D et en E.
- C. [15 pts] Déterminer le module de la réaction du pivot C.

$$\frac{0.3}{\sin 90} = \frac{0.18}{\sin 9}$$

$$\frac{0.3}{5in 90} = \frac{0.18}{5in 9}$$

$$2ME = 0 = M_0 + M_{eq}$$
 $= 0.05 \frac{1}{313}$
 $= 0.0$

$$\frac{x}{\sin 36,87} = \frac{0.05}{\sin 90}$$
 $x = 1.72 \text{ m}$

$$\vec{R_0} = (\vec{o_1} + \vec{o_2} - 4, 01 \text{ Moy } \vec{k}) N \cdot m + N \vec{f_g} = (\vec{o_1} + \vec{o_2} + 673, 947 \vec{k}) N \cdot m$$

$$0 = -4, 01 \text{ Noy} + 673, 947$$

$$N \vec{o_2} = 168, 07 \text{ Noy}$$

$$2M_{D} = 0 = M_{Fg} + M_{E}$$

$$(1,77i + 0.05j + 0.2)$$

$$(1,77i + 0.05j + 0.2)$$

$$(1,77i + 0.05j + 0.2)$$

C) On utilize (ii)

Page manquarte a'jortée

P

$$\Rightarrow 2f_{x} = 0 = 0_{x} - C_{x}$$

$$C_{x} = 0_{x}$$

Question 4 (50 points)

Un bloc homogène en béton (ρ_b = 1,44 g/cm³) ayant la forme d'un prisme triangulaire, tel qu'illustré dans le schéma ci-dessous, permet de retenir un certain volume d'eau (ρ_e = 1 g/cm³) le long de sa profondeur.

Le bloc a une hauteur de 9 m, une base de 3 m et une profondeur de 15 m. La distance entre le centre de masse G du bloc et chacun de ses côtés horizontal et vertical est égale au tiers de la longueur de ces mêmes côtés. Le bloc repose sur le sol horizontal sans y être fixé. Les coefficients de frottement entre le sol et le bloc sont $\mu_s = 0.9$ et $\mu_k = 0.5$.

On s'intéresse ici au mouvement du bloc lorsqu'on augmente progressivement le niveau d'eau. On souhaite déterminer ce qui survient en premier :

• Le bloc bascule autour du point A;

OU

- Le bloc se met à glisser sur le sol.
- A. [10 pts] Faites le DCL du bloc de béton en supposant qu'il est sur le point de basculer autour de A.
- B. [20 pts] Quelle est la hauteur maximale d'eau que le bloc peut supporter sans basculer autour de A ?
- C. [15 pts] Quelle est la hauteur maximale d'eau que le bloc peut supporter sans glisser sur le sol ?
- D. [5 pts] Est-ce que le bloc bascule ou glisse en premier ?

= 1.9,81.h.(A 2FX=0=FH-FF FU = FE = 0,9 - mg = 0,9 - Pb - V - g 7 =0,9.1,44.(9-3.15).9,81 F4 = 5149,07 N.

PHS1101 - Mécanique pour ingénieurs Aide-mémoire

Moment d'une force :	$\vec{M}_O = \vec{r} \times \vec{F}$		$\vec{v} = \vec{v}_0 + \vec{a}t$	
Moment d'une force par rapport à un axe:	$\vec{M}_{OO'} = (\vec{M}_O \cdot \hat{u}_{OO'}) \hat{u}_{OO'}$	Mouvement uniformément accéléré :	$\vec{r} = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a}t^2$	
Moment d'un couple :	M = Fd	decelere.	$v^2 = v_0^2 + 2\vec{a} \cdot (\vec{r} - \vec{r_0})$	
Système force-couple	$\vec{R} = \sum \vec{F}_i$	Accélération non	$\int_0^t dt = \int_{v_0}^v \frac{dv}{a(v)}$	
équivalent :	$\vec{M}_O^R = \sum \vec{M}_i + \sum \vec{r}_{Oi} \times \vec{F}_i$	uniforme :	$\int_{v_0}^v v dv = \int_{x_0}^x a(x) dx$	
Équilibre statique:	$\sum \vec{F} = \vec{0}, \qquad \sum \vec{M}_O = \vec{0}$		$\vec{r} = r\hat{u}_r$	
Loi de Hooke :	$\vec{F} = -k(\vec{L} - \vec{L}_0)$	Coordonnées polaires :	$\vec{v} = \dot{r}\hat{u}_r + r\dot{\theta}\hat{u}_t$	
Frottement sec :	$f_{s,\max} = \mu_s N,$ $f_k = \mu_k N$,	$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{u}_t$	
Pression :	$p = F_n/A$, $\widetilde{p} = p - p_0$		$ec{v} = v \hat{u}_t$	
Principe de Pascal:	$p_2 = p_1 + \rho g h$	Coordonnées normale et tangentielle :	$\vec{a} = (v^2/\rho)\hat{u}_n + (dv/dt)\hat{u}_t$	
Poussée d'Archimède :	$P_A = \rho g V$		$\rho(x) = \frac{[1 + (dy/dx)^2]^{3/2}}{ d^2y/dx^2 }$	
Force hydrostatique sur une paroi :	$F_{H} = \frac{\rho g h A}{2}$	Deuxième loi de Newton :	$\sum ec{F} = m ec{a}_{\mathit{CM}}$	
Variables du mouvement :	$\vec{v} = \frac{d\vec{r}}{dt}, \qquad \vec{a} = \frac{d\vec{v}}{dt}$	Mouvement contraint:	$\sum \Delta \ell_i = 0$	
	$\vec{r} = \vec{r}_0 + \int_0^t \vec{v} dt$	Travail d'une force :	$U = \int \vec{F} \cdot d\vec{r}$	
	$\vec{v} = \vec{v}_0 + \int_0^t \vec{a} dt$	Énergie cinétique (particule) :	$T = \frac{1}{2}mv^2$	
	$\omega = \frac{d\theta}{dt}, \qquad \alpha = \frac{d\omega}{dt}$	Énergie	$V_g = mgh$	
Variables du mouvement (angulaires) :	$\theta = \theta_0 + \int_0^t \omega dt$	potentielle :	$V_{res} = \frac{1}{2}k(L - L_0)^2$	
	$\omega = \omega_0 + \int_0^t \alpha dt$	Énergie mécanique :	E = T + V	
	$ec{r}_{\scriptscriptstyle B/A} = ec{r}_{\scriptscriptstyle B} - ec{r}_{\scriptscriptstyle A}$	Principe travail- énergie :	$\sum U = \Delta T, \qquad \sum U_{nc} = \Delta E$	
Mouvement relatif:	$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$	Puissance :	$\bar{P} = U/\Delta t$, $P = dU/dt = \vec{F} \cdot \vec{v}$	
	$\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A$	Rendement	$\eta = P_{ m sortie}/P_{ m entr\'ee}$	

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Quantité de mouvement (QM) :	$ec{L} = m ec{v} \ ec{L} = M ec{v}_{\mathit{CM}}$	Vitesse de rotation :	$\vec{v} =$	$\vec{\omega} \times \vec{r}$
Principe impulsion-	$\sum ec{F} = rac{dec{L}}{dt}$	Décomposition translation-rotation:	$ec{v}_{\scriptscriptstyle B} = ec{v}_{\scriptscriptstyle A}$ -	$+ ec{\omega} imes ec{r}_{\scriptscriptstyle B/A}$
QM:	$\Delta \vec{L} = \int \sum \vec{F} dt$	Centre instantané de rotation :	$\omega = \frac{v_A}{r_{A/C}}$	$r_R = \frac{v_B}{r_{B/CIR}}$
Force moyenne :	$ec{F}_{ m moy} \Delta t = \int ec{F} dt$		Δr =	= <i>R</i> Δ <i>θ</i>
Centre de masse :	$ec{r}_{\!\scriptscriptstyle CM} = rac{\sum m_i ec{r}_i}{\sum m_i}$	Roulement sans glissement :	17 =	: ωR
	$ec{v}_{\mathit{CM}} = rac{\sum m_i ec{v}_i}{\sum m_i}$		$a = \alpha R$	
	$ec{a}_{\mathit{CM}} = rac{\sum m_i ec{a}_i}{\sum m_i}$	Deuxième loi de	$\sum \vec{M}_O = \vec{r}_{CM/O}$	$\times M\vec{a}_{CM} + \mathbf{I}_{CM}\vec{a}$
Moment d'inertie d'une particule :	$I_0 = mR^2$	Newton en rotation :	$\sum \vec{M}_{c}$	$_{0}=\mathrm{I}_{0}\vec{\alpha}$
Rayon de giration :	$\kappa_O = \sqrt{I_O/m}$	Énergie cinétique	$T = \frac{1}{2}Mv_C^2$	$M + \frac{1}{2}I_{CM}\omega^2$
Théorème des axes parallèles :	$I_{O'} = I_{O,CM} + md_{OO'}^2$	d'un corps rigide :	$T = \frac{1}{2}I_O\omega^2$	
	$\vec{H}_O = \vec{r} \times m\vec{v}$	Travail d'un couple :	$U = \int \vec{M} \cdot d\vec{\theta}$	
Moment cinétique :	$\vec{H}_O = I_O \vec{\omega}$	Decembed to be union.	\vec{M}_{res} =	$=-\kappa\Deltaec{ heta}$
	$\vec{H}_O = \vec{r}_{CM} \times M\vec{v}_{CM} + \mathbf{I}_{CM}\vec{\omega}$	Ressort de torsion :	$V_{res} = \frac{1}{2}$	$\frac{1}{2}\kappa(\Delta\theta)^2$
Principe impulsion-	$\sum \vec{M}_O = \frac{d\vec{H}_O}{dt}$	Puissance d'un couple :	$P = \overrightarrow{M} \cdot \overrightarrow{\omega}$	
MC:	$\Delta \vec{H}_O = \int \sum \vec{M}_O \ dt$	Géométrie $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$		
Système à masse variable :	$\sum \vec{F} + \frac{dm}{dt} (\vec{v}_p - \vec{v}) = m\vec{a}$	$c^2 = a$	$\frac{1}{b} = \frac{1}{c}$ $a^2 + b^2 - 2ab\cos\gamma$	
Débit dans une	dV/dt = Sv,		Aire	Volume
conduite :	$ dm/dt = \rho Sv$	Cylindre	$2\pi rL$	2

Masse en fonction

Force exercée par un courant de

 $\vec{F}_e = |dm/dt|\vec{v}_e$

 $\vec{F}_{\!s} = -|dm/dt|\vec{v}_{\!s}$

du temps:

particules:

	Aire	Volume
Cylindre $(rayon r, longueur L)$	2πrL (sans la base)	$\pi r^2 L$
Sphère (rayon <i>r</i>)	4πr²	$\frac{4\pi r^3}{3}$
Cône ci rculaire $(rayonr,hauteurh)$	$\pi r \sqrt{r^2 + h^2}$ (sans la base)	$\frac{\pi r^2 h}{3}$