Линейная алгебра

Дима Трушин

Линейные отображения

Пусть V и U — векторные пространства, например, можно считать, что $V = \mathbb{R}^n$, а $U = \mathbb{R}^m$. Линейным отображение $\phi \colon V \to U$ — это отображение, удовлетворяющее двум условиям: (1) $\phi(v+u) = \phi(v) + \phi(u)$ для всех $v,u \in V$ и (2) $\phi(\lambda v) = \lambda \phi(v)$ для всех $v \in V$ и $\lambda \in \mathbb{R}$. Если при этом ϕ бьет из одного пространства, в то же самое, т.е. $\phi \colon V \to V$, то ϕ называется линейным оператором. Напомню, что множество всех линейных отображений из V в U обозначается Hom(V,U).

Правильно думать про линейные операторы как про «линейные деформации пространства V». Например, в \mathbb{R}^n мы можем делать растяжения вдоль координатных осей (на самом деле растяжения вдоль любых прямых годятся). Или можем делать повороты вокруг каких-то прямых. Можно «наклонить» одну координатную ось, зеркальная симметрия, симметрия относительно прямой, плоскости, проекция вектора на прямую, плоскость и еще куча других преобразований описывается линейными операторами.

Линейные отображения между \mathbb{R}^n и \mathbb{R}^m

В случае $V=\mathbb{R}^n$ и $U=\mathbb{R}^m$ мы можем полностью описать линейные отображения в терминах матриц. Оказывается, что любое линейное отображение $\phi\colon \mathbb{R}^n \to \mathbb{R}^m$ имеет вид $x\mapsto Ax$, где $A\in \mathrm{M}_{m\,n}(\mathbb{R})$. Матрицы A называется матрицей линейного отображения ϕ .

Примеры

- 1. Вычисление координаты вектора: $\xi_i \colon \mathbb{R}^n \to \mathbb{R}$ по правилу $\xi_i(x) = x_i$. Тогда оно задается в виде $\xi_i(x) = e_i^t x$, где $e_i^t = (0, \dots, 0, 1, 0, \dots, 0)$ и 1 стоит на i-ом месте.
- 2. Отрезание части вектора: $\pi_{1,k} \colon \mathbb{R}^n \to \mathbb{R}^k$ по правилу $x = (x_1, \dots, x_n)^t$ идет в $y = (x_1, \dots, x_k)$. Такое отображение в матричном виде задается следующим образом

$$\pi_{1,k} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix}$$

3. Растяжения вдоль осей: $D: \mathbb{R}^n \to \mathbb{R}^n$, заданный по правилу $x \mapsto Dx$, где

$$D = \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{pmatrix}$$

Тогда отображение D растягивает i-ю координату в d_i раз. Если $d_i > 1$, то это растяжение, если $0 < d_i < 1$, то это сжатие, если $-1 < d_i < 0$, то это сжатие и отражение вдоль оси, если $d_i < -1$, то это растяжение и отражение вдоль оси.

4. Поворот на плоскости: $\rho_{\alpha} \colon \mathbb{R}^2 \to \mathbb{R}^2$, где вектор x поворачивается на угол α против часовой стрелки. Такое отображение в матричном виде задается так¹

$$\rho_{\alpha} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

¹Строго говоря я еще не рассказывал про то, что такое движение, но этот и следующий пример можно понять и без общей науки, которая будет чуть позже.

5. Поворот в пространстве вокруг оси ОХ: $\rho_{1,\alpha} \colon \mathbb{R}^3 \to \mathbb{R}^3$, где вектор x поворачивается вокруг оси ОХ на угол α против часовой стрелки, если смотреть со стороны вектора $e_1 = (1,0,0)^t$ на начало координат. В матричном виде эта штука имеет вид

$$\rho_{1,\alpha} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- 6. Пусть $V = C^{\infty}[0,1]$ множество бесконечно дифференцируемых функций на отрезке [0,1]. Тогда на нем есть оператор дифференцирования $\frac{d}{dx}\colon V \to V$ по правилу $f \mapsto \frac{df}{dx} = f'$ производная функции f.
- 7. Пусть V=C[0,1] множество непрерывных функций на отрезке [0,1], тогда у нас есть оператор интегрирования $I\colon V\to V$ по правил $f(x)\mapsto \int_0^x g(t)\,dt$.

Критерий существования линейного отображения

Важный вопрос: а как задавать линейные отображения и операторы? Оказывается для этого достаточно знать куда отправляется базис.

Утверждение. Пусть e_1, \ldots, e_n – некоторый базис векторного пространства V и u_1, \ldots, u_n – произвольный набор векторов другого пространства U. Тогда существует единственное линейное отображение $\phi: V \to U$ такое, что $\phi(e_i) = u_i$.

Доказательство. Действительно, пусть $v=x_1e_1+\ldots+x_ne_n$ – произвольный вектор из V. Тогда, если ϕ существует, то он должен действовать по правилу

$$\phi(v) = \phi(x_1e_1 + \ldots + x_ne_n) = x_1\phi(e_1) + \ldots + x_n\phi(e_n) = x_1u_1 + \ldots + x_nu_n$$

С другой стороны, легко видеть, что данное равенство однозначно задает линейное отображение.

В частности этот критерий позволяет отвечать на вопросы следующего вида: существует ли отображение $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$, со следующим свойством

$$\phi\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix}, \quad \phi\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}, \quad \phi\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\1\end{pmatrix}$$

В данном случае векторы

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

являются базисом, а

$$v_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{2}(v_1 + v_2)$$

По утверждению, векторы v_1 и v_2 можно отправить куда угодно и тогда найдется единственное $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ со свойствами

$$\phi\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix}, \quad \phi\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$$

Теперь осталось лишь проверить, удовлетворяет ли наше ϕ последнему свойству. С одной стороны мы хотим, чтобы

$$\phi \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

С другой стороны, как мы выяснили $v_3 = \frac{1}{2}(v_1 + v_2)$. Значит

$$\phi(v_3) = \frac{1}{2}(\phi(v_1) + \phi(v_2)) = \frac{1}{2}\left(\begin{pmatrix} -1\\1 \end{pmatrix} + \begin{pmatrix} 2\\0 \end{pmatrix}\right) = \frac{1}{2}\begin{pmatrix} 1\\1 \end{pmatrix}$$

Не сходится. Значит, не существует. Если бы сошлось, то существовал бы. Отметим, что наивный подход заключается в том, чтобы задать отображение ϕ в виде $x\mapsto Ax$, где $A=\begin{pmatrix} a&b\\c&d\end{pmatrix}$. Тогда условия на ϕ можно переписать как систему линейных уравнений на a,b,c,d. Три вектора, по две координаты, будет всего 6 условий и 4 неизвестные. Это намного неприятнее, чем предложенный выше метод.

Удобный формализм

Матрица линейного отображения Пусть у нас есть линейное отображение $\phi: V \to U$ и пусть e_1, \ldots, e_n – некоторый базис V и f_1, \ldots, f_m – некоторый базис U. Тогда каждый вектор $\phi(e_i)$ является линейной комбинацией векторов f_i , т.е. $\phi(e_i) = a_{1i}f_1 + \ldots + a_{mi}f_m$. Это можно записать в матричном виде так

$$(\phi(e_1) \dots \phi(e_n)) = (f_1 \dots f_m) \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} \dots & a_{mn} \end{pmatrix}$$

или еще короче

$$\phi(e_1 \dots e_n) = (f_1 \dots f_m) A$$

Здесь $\phi(e_1, \ldots, e_n)$ имеется в виду покомпонентное умножение вектора из e_i на ϕ слева. Это одна из форм блочного умножения матриц. Матрица A в этом случае называется матрицей линейного отображения ϕ в базисах e_i и f_i .

Действие линейного отображения в координатах Пусть теперь $v \in V$ – некоторый вектор, который раскладывается по базису $v = x_1 e_1 + \ldots + x_n e_n = (e_1, \ldots, e_n)x$, где $x \in \mathbb{R}^n$. Тогда

$$\phi(v) = \phi(e_1, \dots, e_n)x = (f_1, \dots, f_m)Ax$$

То есть вектор $\phi(v)$ раскладывается по базису f_i с координатами Ax. Значит в координатах, наше линейное отображение задается по правилу $x\mapsto Ax$. На этот факт можно смотреть так. Если есть отображение $\phi\colon V\to U$, то после выбора базиса в V оно превращается в \mathbb{R}^n , после выбора базиса в U оно превращается в \mathbb{R}^m , а ϕ должен превратиться в отображение умножения на некоторую матрицу слева. Так вот матрица линейного оператора для ϕ – это в точности та самая матрица, в которую превратился ϕ после выбора базиса.

Смена базиса и линейные отображения

Линейные отображения – это отображения прежде всего и потому они ничего не знают про выбор базиса. С другой стороны, такие отображения задаются разными матрицами в разных базисах. Тут есть пара вещей которые надо понимать: (1) как меняется матрица линейного отображения и (2) смена базиса позволяет упростить вид матрицы.

Начнем с первого вопроса. Тут есть две ситуации: $\phi\colon V\to U$ и $\phi\colon V\to V$, т.е. случай общего линейного отображения и случай линейного оператора. Главная разница в том, что в первом случае мы можем менять одновременно два базиса и в области определения ϕ и в области куда ϕ бьет. Во втором случае, базисы меняются одновременно.

Утверждение. Пусть e_1, \ldots, e_n и e'_1, \ldots, e'_n – два базиса V, также f_1, \ldots, f_m и f'_1, \ldots, f'_m – два базиса U. Пусть

$$(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C\ u\ (f'_1,\ldots,f_m)=(f_1,\ldots,f_m)D$$

где $C \in \mathrm{M}_n(\mathbb{R})$ и $D \in \mathrm{M}_m(\mathbb{R})$ – матрицы перехода. Если ϕ задается матрицей A в базисах e_i и f_i , то в базисах e_i' и f_i' он задается матрицей $D^{-1}AC$.

Доказательство. Для доказательства воспользуемся замечанием из предыдущего раздела. Нам известно, что $\phi(e_1,\ldots,e_n)=(f_1,\ldots,f_m)A$, а надо найти матрицу A' такую, что $\phi(e'_1,\ldots,e'_n)=(f'_1,\ldots,f'_m)A'$. Давайте посчитаем:

$$\phi\left(e_{1}^{\prime}\quad\ldots\quad e_{n}^{\prime}\right)=\phi\left(e_{1}\quad\ldots\quad e_{n}\right)C=\left(f_{1}\quad\ldots\quad f_{m}\right)AC=\left(f_{1}^{\prime}\quad\ldots\quad f_{m}^{\prime}\right)D^{-1}AC$$

Значит $A' = D^{-1}AC$, что и требовалось.

Следствие. Если $\phi: V \to V$ в базисе e_1, \ldots, e_n записывается матрицей A, то в базисе e'_1, \ldots, e'_n заданном $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$, ϕ записывается матрицей $C^{-1}AC$.

Смена базиса в координатах

Пусть теперь $V = \mathbb{R}^n$ и $U = \mathbb{R}^m$, также e_1, \ldots, e_n обозначает стандартный базис в \mathbb{R}^n и f_1, \ldots, f_m – стандартный базис в \mathbb{R}^m . Пусть e'_1, \ldots, e'_n – другой базис \mathbb{R}^n . Это вектор столбцы, из которых я могу соорудить матрицу $C \in \mathcal{M}_n(\mathbb{R})$, поставив e'_i подряд в качестве столбцов. Аналогично, если f'_1, \ldots, f'_m – другой базис из \mathbb{R}^m я могу составить из них матрицу $D \in \mathcal{M}_m(\mathbb{R})$. Обе матрицы C и D невырождены.

Любой вектор $v \in \mathbb{R}^n$ можно записать как

$$v=x_1e_1+\ldots+x_ne_n=egin{pmatrix} x_1\\ dots\\ x_n \end{pmatrix}$$
 в этом случае мы говорим, что задали его в координатах x_i

 ${\bf C}$ другой стороны, мы можем записать v так

$$v=y_1e_1'+\ldots+y_ne_n'=Cegin{pmatrix}y_1\ dots\ y_n\end{pmatrix}$$
 в этом случае мы говорим, что задали его в координатах y_i

Аналогично в пространстве \mathbb{R}^m любой вектор u может быть записан в двух системах координат:

$$u=w_1f_1+\ldots+w_mf_m=egin{pmatrix}w_1\ dots\ w_m\end{pmatrix}$$
 или $u=z_1f_1'+\ldots+z_mf_m'=Degin{pmatrix}z_1\ dots\ z_m\end{pmatrix}$

Пусть теперь наше отображение $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ задано матрицей A, то есть вектор в координатах x_i переходит в вектор в координатах w_i по правилу

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
или кратко $x \mapsto w = Ax$

Мы хотим переписать ϕ в координатах y_i и z_i , то есть записать отображение ϕ в виде $y\mapsto z=A'y$. Для этого надо пройти по следующей диаграмме

$$x = Cy \longmapsto w = Ax = ACy$$

$$\downarrow \qquad \qquad \downarrow$$

$$y \longmapsto z = D^{-1}w = D^{-1}ACy$$

Стартуем с координат y (левый нижний угол). По ним сначала рассчитываем координаты x (вверх по диаграмме). Потом действуем отображением ϕ с помощью матрицы A и получаем вектор $\phi(v)$ в координатах w (вправо по стрелке). Потом пересчитываем координаты w в координаты z (вниз по диаграмме). В результате получаем, что $y\mapsto z=D^{-1}ACy$, т.е. $A'=D^{-1}AC$.

Образ и ядро отображения

Если $\phi: V \to U$ – линейное отображение (как и выше $V = \mathbb{R}^n$ и $U = \mathbb{R}^m$), то с ним можно связать два подпространства. Первое из них – $\mathfrak{sdpo}\ \phi$, а именно: $\ker \phi = \{v \in V \mid \phi(v) = 0\}$. Второе – $\mathfrak{o6pas}\ \phi$: $\operatorname{Im}\ \phi = \phi(V) \subseteq U$, то есть все, что можно получить из V, применив к нему ϕ .

Связь со СЛУ Пусть ϕ задается матрицей $A \in M_{mn}(\mathbb{R})$, то есть наше отображение имеет вид $\phi \colon \mathbb{R}^n \to \mathbb{R}^m$ по правилу $x \mapsto y = Ax$, здесь $x \in \mathbb{R}^n$ и $y \in \mathbb{R}^m$.

• Ядро – это пространство решений однородной системы линейных уравнений $\{y \in \mathbb{R}^n \mid Ay = 0\}$.

 $^{^2}$ В этом случае мы также имеем $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$. Это лишь другой способ описать ту же конструкцию, что и в предыдущем пункте. В столбцах матрицы C стоят координаты векторов e'_i относительно стандартного базиса e_i .

 $^{^{3}{}m B}$ англоязычной технической литературе ядро еще называют nullspace, что можно перевести как нулевой пространство.

• Образ. Введем следующие обозначения для столбцов матрицы A: $A = (A_1 | \dots | A_n)$. Тогда по определению в образе ϕ лежат все возможные векторы вида Ax. Давайте распишем это так:

$$\operatorname{Im} \phi = \{Ax \mid x \in \mathbb{R}^n\} = \{x_1 A_1 + \ldots + x_n A_n \mid x_i \in \mathbb{R}\} = \langle A_1, \ldots, A_n \rangle$$

То есть образ – это линейная оболочка столбцов матрицы A. Если e_1, \ldots, e_n – это стандартный базис \mathbb{R}^n , то есть все координаты e_i кроме i-ой равны нулю, а i-я равна единице, тогда i-ый столбец матрицы A – это образ вектора e_i .

- Прообраз вектор. Пусть мы зафиксировали вектор $b \in \mathbb{R}^m$ и хотим найти все векторы $x \in \mathbb{R}^n$ такие, что они переходят в b под действием ϕ . Тогда это означает, что нам надо решить уравнение Ax = b, то есть решение неоднородной системы означает, что мы ищем прообраз к некоторому вектору.
- Связь между ОСЛУ и СЛУ. Пусть x_0 произвольное решение для Ax = b и $\ker \phi = \{y \in \mathbb{R}^n \mid Ax = 0\}$ решения однородной системы. Тогда все решения системы Ax = b имеют вид $x_0 + z$, где $z \in \ker \phi$. То есть прообраз любого вектора b является сдвигом ядра отображения ϕ . Однако, обратите внимание, прообраз вектора b может быть пуст, а ядро всегда не пусто, в нем как минимум всегда найдется нулевой вектор. Таким образом ядро отвечает за единственность решения, если оно есть.

Полезно понимать, что для любого b найдется прообраз относительно ϕ , если в системе Ax=0 (или Ax=b) количество главных переменных равно количеству строк матрицы A, то есть m. В терминах ранга это означает, что $\operatorname{rk} A=m$.

Фундаментальная система решений (ФСР)

Пусть $A \in \mathrm{M}_{m\,n}(\mathbb{R})$, тогда пространство $\{y \in \mathbb{R}^n \mid Ay = 0\}$ обладает конечным базисом, причем количество базисных элементов не превосходит n. На самом деле, количество базисных элементов равно количеству свободных неизвестных СЛУ Ay = 0. Любой базис такого пространства называется $\phi y n \partial a$ ментальной системой решений. Наша задача научиться находить его.

Дано Матрица $A \in M_{m,n}(\mathbb{R})$.

Задача Найти базис пространства $U = \{y \in \mathbb{R}^n \mid Ay = 0\}.$

Алгоритм

1. Приведем матрицу A к улучшенному ступенчатому виду. Пусть например она имеет вид

$$\begin{pmatrix}
1 & a_{12} & 0 & a_{14} & 0 & a_{16} \\
0 & 0 & 1 & a_{24} & 0 & a_{26} \\
0 & 0 & 0 & 0 & 1 & a_{36}
\end{pmatrix}$$

2. Теперь $\dim U$ равна количеству свободных переменных. Φ CP строится так: для каждой свободной переменной будет свой базисный вектор. Такую свободную переменную полагаем 1, а остальные свободные переменные 0. После чего рассчитываем значения главных переменных. В примере выше, свободные переменные x_2 , x_4 и x_6 . Тогда Φ CP

$$v_{2} = \begin{pmatrix} -a_{12} \\ \frac{1}{0} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad v_{4} = \begin{pmatrix} -a_{14} \\ \frac{0}{0} \\ -a_{24} \\ \frac{1}{0} \\ 0 \end{pmatrix}, \quad v_{6} = \begin{pmatrix} -a_{16} \\ \frac{0}{0} \\ -a_{26} \\ \frac{0}{0} \\ -a_{36} \\ \frac{1}{1} \end{pmatrix},$$

В векторах выше подчеркнуты позиции свободных переменных, которые мы задаем сами.

Свойсва ядра и образа

Утверждение. Пусть V и U – векторные пространства и $\varphi \colon V \to U$ – линейное отображение. Тогда

- 1. φ сюръективно тогда и только тогда, когда ${\rm Im}\, \varphi = U.$
- 2. φ инъективно тогда и только тогда, когда $\ker \varphi = 0$.
- 3. $\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim V$.

Доказательство. (1) Это просто переформулировка сюръективности на другом языке.

- (2) Так как $\ker \varphi = \varphi^{-1}(0)$ и прообраз всегда содержит 0, то из инъективности вытекает, что $\ker \varphi = 0$. Наоборот, пусть $\varphi(v) = \varphi(v')$, тогда $\varphi(v) \varphi(v') = 0$. А значит, $\varphi(v v') = 0$. То есть v v' лежит в ядре, а значит равен 0, что и требовалось.
 - (3) Этот пункт я пояснять не буду.

Еще полезно понимать, что если в пространствах V и U задать пару подпространств $V' \subseteq V$ и $U' \subseteq U$ такую, что $\dim V' + \dim U' = \dim V$, то найдется (и не одно) линейное отображение $\phi \colon V \to U$ такое, что $\ker \phi = V'$, а $\operatorname{Im} \phi = U'$.

Утверждение. Пусть V – векторное пространство и $\varphi\colon V\to V$ – линейный оператор. Тогда

1. Найдется такое число $0 \leqslant k \leqslant \dim V$, что

$$0 \subsetneq \ker \varphi \subsetneq \ker \varphi^2 \subsetneq \ldots \subsetneq \ker \varphi^k = \ker \varphi^{k+1} = \ldots$$

2. Найдется такое число $0 \leqslant k \leqslant \dim V$, что

$$V \supseteq \operatorname{Im} \varphi \supseteq \operatorname{Im} \varphi^2 \supseteq \ldots \supseteq \operatorname{Im} \varphi^k = \operatorname{Im} \varphi^{k+1} = \ldots$$

По простому эта лемма переформулируется так:

Утверждение. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – произвольная матрица. Тогда

1. Найдется такое число $0 \leqslant k \leqslant n$, что

$$0 \subseteq \{y \in \mathbb{R}^n \mid Ay = 0\} \subseteq \{y \in \mathbb{R}^n \mid A^2y = 0\} \subseteq \dots \subseteq \{y \in \mathbb{R}^n \mid A^ky = 0\} = \{y \in \mathbb{R}^n \mid A^{k+1}y = 0\} = \dots$$

2. Найдется такое число $0 \leqslant k \leqslant \dim V$, что

$$V \supseteq \langle A \rangle \supseteq \langle A^2 \rangle \supseteq \dots \supseteq \langle A^k \rangle = \langle A^{k+1} \rangle = \dots$$

В частности это означает, что у матриц A^k начиная с k=n точно одинаковый ранг и одинаковое множество решений систем $A^ky=0$. Это позволяет быстро отвечать на задачи вида: пусть дана $A\in \mathrm{M}_4(\mathbb{R})$ (которая задана явно), найдите $\mathrm{rk}\,A^{2019}$. Для этого достаточно найти A^4 и из леммы о стабилизации следует, что $\mathrm{rk}\,A^4=\mathrm{rk}\,A^{2019}$. А A^4 находим за два умножения $(A^2)^2$. Этим же методом доказывается, что если $A^N=0$ для некоторого большого N, то уже $A^n=0$.

Проекторы Пусть $P\colon V\to V$ — линейное отображение со свойством $P^2=P.$ Обозначим $U={\rm Im}\, P$ и $W=\ker P.$ Тогда

- 1. Для любого $u \in U$ верно Pu = u.
- 2. $U \cap W = 0$.
- 3. Любой вектор $v \in V$ есть сумма v = u + w для некоторых $u \in U$ и $w \in W$.

Действительно, если $u \in U$, это значит, что u = Pv. Тогда $Pu = P^2v = Pv = u$. Если вектор $v \in U \cap W$, то с одной стороны v = Pv из предыдущего, с другой стороны Pv = 0 по определению W. Для любого вектора $v \in V$ верно v = Pv + (E-P)v. Тогда вектор $Pv \in U$, а вектор $(E-P)v \in W$, так как $P(E-P)v = (P-P^2)v = 0$.

Линейный оператор $P\colon V\to V$ со свойством $P^2=P$ называется проектором. Он проектирует любой вектор $v\in V$ на ${\rm Im}\, P$ и на образе действует тождественно. Геометрически все пространство распадается в «сумму» непересекающихся подпространств U и W, так что на W оператор P действует нулем, а на U тождественно.

 $^{^4}$ Я не стал определять формально сумму пространств, но это значит, что любой вектор из V представляется в виде суммы векторов из U и W, то что сказано во втором пункте.

Характеристики операторов

След Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – квадратная матрица. Тогда *след матрицы* A – это сумма ее диагональных элементов, т.е. $\operatorname{tr} A = a_{11} + \ldots + a_{nn} = \sum_{i=1}^n a_{ii}$. Заметим важное свойство следа: $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ (это непосредственная проверка влоб). В частности $\operatorname{tr}(C^{-1}AC) = \operatorname{tr}(A)$ для любых $A, C \in \mathrm{M}_n(\mathbb{R})$ с условием, что C обратима.

Пусть теперь $\phi: V \to V$ — некоторый линейный оператор. Тогда в некотором базисе e_1, \dots, e_n он задается матрицей A. Определим *след линейного оператора* ϕ как след этой матрицы A. Это определение не зависит от базиса. Действительно, в другом базисе оператор ϕ задается матрицей $A' = C^{-1}AC$, тогда $\operatorname{tr}(A') = \operatorname{tr}(C^{-1}AC) = \operatorname{tr}(A)$. След оператора ϕ также обозначается через $\operatorname{tr} \phi$. Важно понимать, что след — это характеристика линейного оператора, а не его матрицы, т.е. эта штука не зависит от матрицы, которой задается оператор. Однако, мы не можем определить эту характеристику не пользуясь базисом. Более того, в принципе невозможно определить след без базиса!

Определитель Пусть ϕ : $V \to V$ — линейный оператор. Тогда в некотором базисе он задается матрицей A. Положим $\det \phi = \det A$. Надо лишь проверить, что это определение не зависит от выбора базиса. Действительно, в другом базисе ϕ задается $C^{-1}AC$, а значит $\det(C^{-1}AC) = \det A$. Величина $\det \phi$ называется определителем линейного оператора. Как и в случае следа, определитель линейного оператора не зависит от базиса, но его нельзя определить не пользуясь базисом.

Характеристический многочлен Пусть $\phi \colon V \to V$ – некоторый линейный оператор. Опять же для удобства, можно считать, что после выбора базиса $V = \mathbb{R}^n$ и ϕ соответствует некоторой матрице $A \in \mathrm{M}_n(\mathbb{R})$. Тогда выражение $\det(\lambda \operatorname{Id} - \phi) = \det(\lambda E - A)$ является многочленом от λ степени n. Действительно,

$$\det(A - \lambda E) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{an} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

С усилием вспоминая явную формулу для определителя через перестановки, понимаем, что получается многочлен от λ . Еще чуть внимательнее присмотревшись к нему, можно заметить, что

$$\det(A - \lambda E) = \det(A) + \ldots + (-1)^{n-1} \operatorname{tr} A \lambda^{n-1} + (-1)^n \lambda^n$$

Данный многочлен обозначим через $\chi_{\phi}(\lambda)$ или $\chi_{A}(\lambda)$ и будем называть *характеристическим многочленом* оператора ϕ или соответствующей матрицы A (в зависимости от того, о чем идет речь). Еще полезно видеть перед глазами следующее равенство

$$\chi_A(\lambda) = \lambda^n - \operatorname{tr}(A)\lambda^{n-1} + \ldots + (-1)^n \det(A)$$

Собственные значения и вектора оператора

Пусть $\phi\colon V\to V$ — линейный оператор на пространстве V. Будем говорить, что вектор $v\in V$ является собственным, если $\phi v=\lambda v$. ⁶ То есть на собственный вектор оператор ϕ действует растяжением. Если $\phi v=\lambda v$ для $v\neq 0$, число λ называется собственным значением оператора ϕ . При фиксированном $\lambda\in\mathbb{R}$ множество всех собственных векторов с собственным значением λ , т.е. $\{v\in V\mid \phi v=\lambda v\}$, будем обозначать через V_λ . Все V_λ обязательно будут подпространствами.

Если мы выберем базис в пространстве V, то оно превратится в \mathbb{R}^n . Наш оператор ϕ будет задаваться матрицей $A \in \mathrm{M}_n(\mathbb{R})$. В этом случае, собственный вектор задается уравнением $Ax = \lambda x$, где $x \in \mathbb{R}^n$. Беда в том, что мы пока заранее не знаем, какие λ нам подходят. Чтобы это выяснить нужно переписать уравнение так: $(A - \lambda E)x = 0$. Оно имеет решение тогда и только тогда, когда $A - \lambda E$ — вырожденная матрица. Это, в свою очередь, происходит тогда и только тогда, когда $\det(A - \lambda E) = 0$. Напомним, что характеристический многочлен ϕ (он же характеристический для A) это $\chi(\lambda) = \det(A - \lambda E)$, т.е. получаем следующее.

 $^{^5}$ Надо отметить, что часто характеристическим многочленом называют $\det(\lambda E - A)$, так как в этом случае старший коэффициент по λ становится 1. Наш многочлен от этого отличается на $(-1)^n$. Для многих вопросов это не принципиально.

 $^{^6}$ Нулевой вектор является собственным для любого $\lambda \in \mathbb{R}$. Обратите внимание, что в некоторых учебниках собственные вектора обязательно считаются ненулевыми, но это идейно не правильно.

⁷Заметим, что $V_{\lambda} = \ker(\phi - \lambda \operatorname{Id})$.

Утверждение. Пусть $\phi\colon V\to V$ – некоторый линейный оператор с матрицей $A\in\mathrm{M}_n(\mathbb{R})$ в некотором базисе. Тогда

- 1. Все собственные значения оператора ϕ это в точности корни характеристического многочлена $\chi(\lambda) = \det(A \lambda E)$.
- 2. Если λ НЕ корень характеристического многочлена, то $V_{\lambda}=0$.
- 3. Если λ корень характеристического многочлена, то V_{λ} ненулевое подпространство V. Кроме того, $\dim V_{\lambda}$ не превосходит кратности корня λ у характеристического многочлена.

Привет от комплексных чисел

Заметим, что собственные значения являются корнями многочлена. С действительными числами есть беда: многочлены могут вообще не иметь корней. Например: пусть $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, тогда $\chi_A(\lambda) = \lambda^2 + 1$. У этого многочлена нет вещественных корней. Потому нет собственных значений, а значит и ненулевых собственных векторов. На самом деле, для любого многочлена можно подобрать матрицу так, что он будет ее характеристическим многочленом. Так что это не случайное явление.

Так как собственные значения и вектора хотелось бы иметь, то нам придется в этом вопросе переходить к комплексным числам. и вместо пространства \mathbb{R}^n рассматривать \mathbb{C}^n . Тогда над комплексными числами каждый многочлен имеет ровно столько корней (с учетом кратности), какова его степень. Это первое место в линейной алгебре, где появляется разница в том, какие коэффициенты использовать.

Кто такие комплексные числа

По простому, мы хотим построить множество «чисел», которые бы содержали вещественные числа и на них были определены все нужные операции: сложения, вычитания, умножения и деления на любое ненулевое число. Есть несколько конструкций, я рассмотрю две.

Классическая конструкция Рассмотрим множество картинок вида a+bi, где $a,b \in \mathbb{R}$, а i – просто символ. Как множество $\mathbb{C} = \{a+bi \mid a,b \in \mathbb{R}\}$. Теперь на \mathbb{C} определим следующие операции:

- 1. Сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
- 2. Вычитание: (a + bi) (c + di) = (a c) + (b d)i
- 3. Умножение: (a + bi)(c + di) = (ac bd) + (ad + bc)i.
- 4. Сопряжение: $\overline{a+bi}=a-bi$.

В этом случае нулем будет число вида 0+0i, единицей 1+0i. Если z=a+bi, то число $z\bar{z}=a^2+b^2$ является неотрицательным вещественным числом. Модуль комплексного числа z – это $|z|=\sqrt{z\bar{z}}$. Обратный к числу z имеет вид $\frac{\bar{z}}{|z|^2}$.

Числа вида a+0i можно отождествить с вещественными числами $a\in\mathbb{R}$. Таким образом $\mathbb{R}\subseteq\mathbb{C}$. Более того, операции определены так, что это вложение с ними согласовано. Обратим внимание на новое число i=0+1i. По определению $i^2=-1$. На самом деле верно следующее.

Утверждение. Для любого многочлена $p(t) = a_0 + a_1 t + \ldots + a_{n-1} t^{n-1} + t^n$, где $a_i \in \mathbb{C}$ существует ровно п комплексных корней с учетом кратности.

Матричная конструкция Рассмотрим матрицы вида

$$T = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \right\}$$

Заметим, что если сложить или перемножить любые две матрицы из T, то получим матрицу из T. Более того, все матрицы из T кроме нулевой обратимы. Множество T можно отождествить с \mathbb{C} , построенным выше,

 $^{^8}$ Для многочлена p(t) число λ является корнем тогда и только тогда, когда $p(t) = (t - \lambda)q(t)$. Если λ корень для q(t), мы можем еще раз вынести множитель $t - \lambda$ и так далее. В итоге, можно записать $p(t) = (t - \lambda)^k h(t)$, где $h(\lambda) \neq 0$. Такое число k называется кратностью корня λ .

следующим образом: $a+bi\mapsto \binom{a-b}{b-a}$). То есть T и \mathbb{C} – это одно и тоже. Обратим внимание, что на этом языке сопряжение – это транспонирование, а определитель равен квадрату модуля комплексного числа. 9

Собственный базис

Утверждение. Пусть $\phi: V \to V$ – линейный оператор и пусть $\lambda_1, \ldots, \lambda_k$ – его разные собственные значения (тут не важно из \mathbb{R} или \mathbb{C}) и $v_1, \ldots, v_k \in V$ – соответствующие им ненулевые собственные вектора. Тогда v_1, \ldots, v_k линейно независимы.

Доказательство. Предположим противное, что $a_1v_1 + \dots a_kv_k = 0$. Мы можем считать, что все a_i не равны нулю. Это можно записать так

$$a_1v_1 + \dots + a_kv_k = \begin{pmatrix} a_1v_1 & \dots & a_kv_k \end{pmatrix} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = 0$$

Применим к этой линейной комбинации ϕ , получим новую линейную комбинацию

$$a_1\lambda_1v_1 + \dots + a_k\lambda_kv_k = \begin{pmatrix} a_1v_1 & \dots & a_kv_k \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} = 0$$

Продолжим применять ϕ суммарно k-1 раз. В результате имеем

$$(a_1v_1 \dots a_kv_k) \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^{k-1} \\ 1 & \lambda_2 & \dots & \lambda_2^{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_k & \dots & \lambda_k^{k-1} \end{pmatrix} = (0 \dots 0)$$

Но определитель матрицы выше есть определитель вандермонда. Значит, матрица обратима и на нее можно поделить. Значит, все вектора $a_iv_i=0$. Так как по предположению $v_i\neq 0$ это означает, что $a_i=0$, противоречие.

Утверждение. Пусть ϕ : $V \to V$ – оператор на n-мерном пространстве (не важно комплексном или вещественном), при этом его характеристический многочлен имеет n различных корней $\lambda_1, \ldots, \lambda_n$. Тогда соответствующие ненулевые собственные вектора v_1, \ldots, v_n образуют базис V и в этом базисе матрица ϕ диагональная c числами λ_i на диагонали.

Доказательство. Действительно, для каждого такого λ_i обязательно найдется ненулевой собственный вектор. Из предыдущего утверждения все такие собственные вектора линейно независимы, а значит образуют

базис. По определению в этом базисе
$$\phi v_i = \lambda v_i$$
, т.е. $\phi(v_1, \dots, v_n) = (v_1, \dots, v_n) \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$.

На это утверждение можно смотреть так: если есть квадратная матрица $A \in \mathrm{M}_n(\mathbb{R})$ (или $A \in \mathrm{M}_n(\mathbb{C})$) такая, что $\det(A - \lambda E)$ имеет n различных корней, то существует такая невырожденная матрица $C \in \mathrm{M}_n(\mathbb{R})$ (соответственно из $\mathrm{M}_n(\mathbb{C})$), что $C^{-1}AC$ является диагональной и на диагонали стоят корни многочлена $\det(A - \lambda E)$. Комплексный случай хорош лишь тем, что корни обязательно существуют у многочлена, надо лишь чтобы они были различными. В вещественном случае существование корней не гарантировано. Давайте проговорим это явно

Утверждение. Пусть $A \in \mathrm{M}_n(\mathbb{R})$ – квадратная матрица. Предположим, что $\chi_A(t)$ имеет ровно n различных корней $\lambda_1, \ldots, \lambda_n$. Тогда

1. Для каждого λ_i найдется единственный с точностью до пропорциональности ненулевой собственный вектор v_i .

⁹Первая конструкция обычно рассказывается в школе и потому более привычная. Вторая хороша тем, что нам не надо проверять, что операции ведут себя хорошо, все следует из знаний о матрицах. Плюс это дает некий мостик в правильную линейную алгебру над вещественными числами.

2. Матрица A представляется в следующем виде $A = CDC^{-1}$, где

$$C = (v_1 | \dots | v_n) \ u \ D = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Сделаем пару замечаний.

- В пункте (1) нам не важно какой именно ненулевой собственный вектор v_i выбрать, для выполнения разложения из пункта (2) годится любой.
- Если матриц взялась «из жизни» или из «непрерывных случайных данных», то с вероятностью один, характеристический многочлен такой матрицы будет иметь n различных комплексных корней. То есть над комплексными числами любая случайная матрица с вероятностью один превращается в диагональную с помощью замены координат.

Поиск собственных значений и векторов

Следующий алгоритм годится как для комплексных так и для вещественных матриц. Разница лишь в том, что в вещественном случае у нас вообще говоря будет меньше собственных значений. Для определенности алгоритм рассказывается для комплексных матриц.

Дано Матрица $A \in M_n(\mathbb{C})$.

Задача Найти все собственные значения λ_i для A и для каждого λ_i найти базис пространства V_{λ_i} .

Алгоритм

- 1. Посчитать характеристический многочлен $\chi_A(\lambda) = \det(A \lambda E)$.
- 2. Найти корни многочлена $\chi(\lambda)$. Корни $\{\lambda_1, \dots, \lambda_k\}$ будут собственным значениями A.
- 3. Для каждого λ_i найти ФСР системы $(A \lambda_i E)x = 0$. Тогда ФСР будет базисом V_{λ_i} .

Отметим, что общее количество собственных векторов для всех собственных значений λ_i не превосходит n – размерности матрицы, так как dim V_{λ_i} не превосходит кратности корня λ_i , а сумма кратностей всех корней в точности равна степени многочлена $\chi(\lambda)$, которая есть n – размер матрицы A.

Если количество собственных векторов оказалось равно n, то матрица A приводится в диагональный вид. Пусть v_{i1}, \ldots, v_{in_i} – собственные вектора с собственным значением λ_i , при этом n_i будет кратность собственного значения λ_i . Пусть C – матрица составленная из векторов v_{ij} . Пусть D – диагональная матрица с диагональю ($\lambda_1, \ldots, \lambda_1, \lambda_2, \ldots, \lambda_2, \ldots, \lambda_k, \ldots, \lambda_k$), где каждое λ_i повторяется n_i раз. Тогда $C^{-1}AC = D$.

Проверка на диагонализуемость

Дано Матрица $A \in \mathrm{M}_n(\mathbb{R})$, задающая линейный оператор $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$.

Задача Выяснить существует ли базис, в котором φ задается диагональной матрицей и если задается, то какой именно. На матричном языке: существует ли невырожденная матрица $C \in \mathcal{M}_n(\mathbb{R})$ такая, что $C^{-1}AC$ является диагональной и найти эту диагональную матрицу.

Алгоритм

- 1. Найдем характеристический многочлен $\chi(t)$ для φ , он же для A по формуле $\chi(t) = \det(A tE)$.
- 2. Проверим, раскладывается ли $\chi(t)$ на линейные множители, то есть представляется ли он в виде $\chi(t) = (t \lambda_1)^{d_1} \dots (t \lambda_k)^{d_k}$. Если не представляется, то φ (или что то же самое A) не диагонализируется
- 3. Если $\chi(t)=(t-\lambda_1)^{d_1}\dots(t-\lambda_k)^{d_k}$. Найдем для каждого λ_i базис V_{λ_i} как ФСР системы $(A-\lambda_i E)x=0$. Если для хотя бы одного i количество элементов в ФСР меньше соответствующей кратности корня d_i , то φ не диагонализируется.

4. Если для каждого i мы получили, что размер ФСР совпадает с кратностью корня, то есть dim $V_{\lambda_i} = d_i$. То φ диагонализируется и диагональная матрица $C^{-1}AC$ на диагонали содержит числа λ_i в количестве d_i штук.

Заметим, что если задача изначально дана для комплексной матрицы $A \in \mathrm{M}_n(\mathbb{C})$, которая задает в этом случае оператор $\varphi \colon \mathbb{C}^n \to \mathbb{C}^n$, то первый шаг алгоритма выполнен автоматически, а именно, над комплексными числами любой многочлен разлагается на линейные множители. Потому над комплексными числами вопрос о диагонализируемости – это лишь проверка всех равенств $\dim V_{\lambda_i} = d_i$.

Жорданова нормальная форма (ЖНФ)

Самый главный вопрос о линейных операторах: на сколько хорошим можно выбрать базис, чтобы максимально упростить матрицу оператора в этом базисе? В случае «общего положения» как в предыдущем параграфе мы можем диагонализировать матрицу. И это самый популярны в приложениях случай. Но есть и плохие матрицы, которые нельзя диагонализировать. В общем случае ответ будет чуть-чуть сложнее.

Для начала несколько определений. Жорданова клетка $J_n(\lambda)$ размера n с числом $\lambda \in \mathbb{C}$ – это матрица вида 10

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ 0 & \lambda & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & \dots & \lambda \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

Будем говорить, что матрица $A \in \mathrm{M}_n(\mathbb{C})$ имеет Жорданову нормальную форму, если она имеет следующий блочный вид

$$A = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_k \end{pmatrix} \text{ где } A_i \in \mathcal{M}_{n_i}(\mathbb{R}) \text{ имеет вид } \begin{pmatrix} J_{r_1}(\lambda_i) & 0 & \dots & 0 \\ 0 & J_{r_2}(\lambda_i) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{r_s}(\lambda_i) \end{pmatrix}$$

Следующая теорема – это полная классификация линейных операторов на векторном пространстве.

Утверждение (Теорема о Жордановой нормальной форме). Пусть V – комплексное векторное пространство $u \phi: V \to V$ – произвольный линейный оператор. Пусть $\lambda_1, \ldots, \lambda_k$ – корни его характеристического многочлена с кратностями n_1, \ldots, n_k . Тогда, существует базис V такой, что матрица ϕ имеет следующий вид:

$$A = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_k \end{pmatrix}$$

где $A_i \in \mathrm{M}_{n_i}(\mathbb{C})$ (размер равен кратности собственного значения). А каждая A_i имеет вид

$$\begin{pmatrix} J_{r_{i1}}(\lambda_i) & 0 & \dots & 0 \\ 0 & J_{r_{i2}}(\lambda_i) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{r_{i-1}}(\lambda_i) \end{pmatrix}$$

где λ_i — соответствующее собственное значение. При этом числа r_{i1},\ldots,r_{is_i} определены однозначно и могут отличаться только порядком. 11

 $^{^{10}}$ Можно определить Жорданову клетку и для действительных чисел и для рациональных и вообще каких угодно, но я буду тут обсуждать только комплексный случай.

 $^{^{11}}$ Существуют алгоритмы нахождения базиса, в котором матрица имеет Жорданову нормальную форму, но мы их изучать не будем.

Замечания Пусть $A \in M_n(\mathbb{C})$, тогда она обязательно приводится в ЖНФ. Если λ – это собственное значение для A, тогда оно является корнем характеристического многочлена и пусть его кратность будет d. d.

- 1. Число d это суммарный размер жордановых клеток в ЖНФ для A с числом λ на диагонали.
- 2. Число $\dim V_{\lambda}$ это количество жордановых клеток в ЖНФ для A с числом λ на диагонали.

 $^{^{-12}}$ На самом деле можно дать полный список числовых инвариантов, которые характеризуют ЖНФ для A, но это выходит за рамки нашего обсуждения.