# Dynamic Programming & Reinforcement Learning

# Assignment 4

Qiuyang Fu (2721961)

#### Introduction

This report describes my solutions, including  $\varepsilon$ -greedy Q-learning with tabular and function approximator, for solving the chain environment. Solutions regarding the several questions mentioned in this assignment will be placed in the following sections.

#### 1. Problem

The chain environment made up of several discrete states and 2 discrete actions, where you get a reward on 0.2 on one end of the chain and 1 at the other end. Below shows a chain environment with 5 states.



If the number of states is just 5, we can solve the problem even by hand. It is obvious to choose action a at state 5, and since it is endless. According to the Bellman equation:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s, a_t = a, \pi\right]$$

Since we are in deterministic environment here, we have,

$$Q^{\pi}(5,a) = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k} = \sum_{k=0}^{\infty} \gamma^{k} = \frac{1}{1-\gamma}$$

Since we choose the discount factor  $\gamma$  to be 0.9, the final Q-value of state 5 and action a is 10. With the similar method, the final Q-value of state 1 and action b is 2. Then we can construct the whole Q-value table as below:

|   | a     | b |
|---|-------|---|
| 1 | 6.561 | 2 |

| 2 | 7.29 | 1.8    |
|---|------|--------|
| 3 | 8.1  | 1.62   |
| 4 | 9    | 1.458  |
| 5 | 10   | 1.3122 |

Thus, the resulting policy is to choose action a whatever at any state. And since Q(1,b) < Q(1,a), the optimal Q-value of Q(1,b) must be a discount of Q(1,a), i.e., if one selects action b at state 1, he must select action a in the next time. And the final Q-value table is

|   | a     | b      |
|---|-------|--------|
| 1 | 6.561 | 6.1049 |
| 2 | 7.29  | 5.9049 |
| 3 | 8.1   | 5.9049 |
| 4 | 9     | 5.9049 |
| 5 | 10    | 5.9049 |

However, as the chain becomes longer and longer, the states that is closer to state l will receive less and less reward from action a. In section 2 and 3, we will demonstrate this with tabular Q-learning and deep Q-learning.

### 2. tabular Q-learning with $\varepsilon$ -greedy

The algorithm's pseudocode is as below:

```
Initialize Q(x,a) arbitrarily for each episode do Initialize x for each step in episode do Choose a given x using policy derived from Q (e.g., \epsilon greedy) Take action a, observe r, x' Q(x,a) \leftarrow Q(x,a) + \alpha[r + \gamma \max_{a'} Q(x',a') - Q(x,a)] return Q(\cdot, \cdot)
```

My implementation of chain environment is in the file `Toy\_env.py`, and my implementation of tabular Q learning is in the file `run\_toy\_env\_simple.py` (from line 18 to line 35).

## 2.1 result of 5-state chain

(1) With discount factor  $\gamma=0.9$ , learning rate  $\alpha=0.9$ , and  $\varepsilon=0.05$  I run Q-learning with 10 episodes, in each episodes with 1000 steps. To ensure the result is fair, I try 10 times and all of them print nearly the same result as below (from now on, I use 0 to represent action a, 1 for b):

Qtable = [[ 
$$6.561$$
  $6.1049$ ],  
[  $7.29$   $5.9049$ ],  
[  $8.1$   $5.9049$ ],  
[  $9.$   $5.9049$ ],  
[  $10.$   $5.9049$ ]]

Policy =  $[0\ 0\ 0\ 0\ 0]$ 

which is consistent with the theoretical result.

#### (2) Enlarge $\varepsilon$

With discount factor  $\gamma=0.9$ , learning rate  $\alpha=0.9$ , and  $\varepsilon=0.2$  I run Q-learning with 10 episodes, in each episodes with 1000 steps. To ensure the result is fair, I try 10 times and all of them print nearly the same result with above. It suggests that allowing a more random exploration of action space will not affect the result of Q-learning.

### (3) Smaller $\alpha$

With discount factor  $\gamma=0.9$ , learning rate  $\alpha=0.1$ , and  $\varepsilon=0.05$  I run Q-learning with 10 episodes, in each episodes with 1000 steps. To ensure the result is fair, I try 10 times and all of them print nearly the same result with above. I think that it is because the length of episode is long enough for the Q-learning to convergence. Therefore, I re-run with 100 steps each episode. This time, Q-learning will give some results as below:

```
Qtable = [[0.17215154 \ 1.92059358] \\ [0.73712855 \ 0.09183433] \\ [2.56379402 \ 0. ] \\ [6.1841707 \ 0. ] \\ [9.9778079 \ 0.45037922]] Policy = [1 \ 0 \ 0 \ 0]
```

It suggests that a smaller learning rate will slow down the convergence rate of Q-learning.

### 3. Deep Q learning

Deep Q learning, instead of using Q table, uses a neural network to predict the Q value based on the state and action. Since the chain environment is simple, I use a network with a single hidden layers with 10 neurons and ReLU activator to predict the Q-value (see **`simpleNN.py`**). More detail, given a state as input, the network predicts two values for each action as the Q value.

(1) With discount factor  $\gamma = 0.9$ , learning rate  $\alpha = 0.1$ , and  $\varepsilon = 0.1$ , the result is:

```
state 0, Q value [0.53668344 0.07955375], best action 0 state 1, Q value [0.53668344 0.07955375], best action 0 state 2, Q value [0.57007617 0.07753744], best action 0 state 3, Q value [1.1075023 0.04508685], best action 0 state 4, Q value [1.6449286 0.01263627], best action 0
```

Though the Q values are far from what we expect, the policy is right.

(2) Smaller learning rate will give unexpected policy, larger  $\varepsilon$  also has little effect on the final policy.

### 4. Longer chain

In this part, we study the longer chain with 10 states. The theoretical Q value of state 1 and action a is 10\*0.99=3.8742>2, so the optimal policy remains to choose action a at any state.

With discount factor  $\gamma=0.9$ , learning rate  $\alpha=0.9$ , and  $\varepsilon=0.05$ , tabular Q learning gives the following result:

```
[ 9. 3.48678091]

[10. 3.4867844 ]]

Policy = [0 0 0 0 0 0 0 0 0 0]
```

With discount factor  $\gamma=0.9$ , learning rate  $\alpha=0.1$ , and  $\varepsilon=0.05$ , tabular Q learning gives the following result:

```
Qtable = [[5.10106451e-07 0.00000000e+00]

[1.17356446e-05 0.000000000e+00]

[1.93284319e-04 0.00000000e+00]

[2.34250134e-03 0.00000000e+00]

[2.11347821e-02 0.00000000e+00]

[1.41904950e-01 0.00000000e+00]

[7.01052087e-01 0.00000000e+00]

[2.48965810e+00 0.00000000e+00]

[6.12539095e+00 0.00000000e+00]

[9.99828930e+00 1.50437452e-08]]

Policy = [0 0 0 0 0 0 0 0 0 0]
```

With discount factor  $\gamma=0.9$ , learning rate  $\alpha=0.1$ , and  $\varepsilon=0.1$ , deep Q learning gives the following result:

```
state 0, Q value [0.74911046 0.03404114], best action 0 state 1, Q value [0.74911046 0.03404114], best action 0 state 2, Q value [0.83649844 0.0373226], best action 0 state 3, Q value [1.3559653 0.05682879], best action 0 state 4, Q value [1.8754319 0.07633498], best action 0 state 5, Q value [2.3948984 0.09584117], best action 0 state 6, Q value [2.9143655 0.11534737], best action 0 state 7, Q value [3.4338322 0.13485356], best action 0 state 8, Q value [3.9532986 0.15435974], best action 0
```

# 5. Conclusion

In this report, I study the chain environment from theory and experiments, including tabular Q-leaning and deep Q-learning.

## Remark:

The code requires Numpy and deer package for running.