Exercices MPSI - MP

Olivier ROQUES

2014-2016

Sommaire

1	$\mathbf{E}\mathbf{x}\mathbf{e}$	ercices MPSI	2
	1	Théorie des ensembles	2
	2	Calculs algébriques et nombres complexes	2
	3	Corps des réels et fonctions usuelles	3
	4	Arithmétique	3
	5	Suites numériques	4
	6	Limite et continuité	5
	7	Dérivation	5
	8	Analyse asymptotique	7
	9	Polynômes	7
	10	Fractions rationnelles	8
	11	Espaces vectoriels	8
	12	Espaces vectoriels de dimension finie	9
	13	Matrices	9
	14	Déterminant	10
	15	Intégration sur segment	12
	16	Combinatoire et espaces probabilisés	13
	17	Variables aléatoires	14
	18	Espaces préhilbertiens	15
2	Exe	ercices MP	17
	1	Convexité	17
	2	Séries numériques	18
	3	Structures algébriques	19
	4	Intégrales généralisées	21
	5	Suites et séries de fonctions	22
	6	Réduction des endomorphismes	23
	7		26
	8		29
	9		33
	10	Probabilités	36
	11	Équations différentielles linéaires	39
	12	Calcul différentiel	41
3	Eve	project d'orany	45

Partie 1

Exercices MPSI

Sans précisions supplémentaires, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , n est un entier naturel et I est un intervalle de \mathbb{R} d'intérieur non vide.

1 Théorie des ensembles

Exercice 1.1. Soient E, F, G, H des ensembles non vides, $f \in \mathcal{F}(E, F), g \in \mathcal{F}(G, H)$. Soit

$$\varphi: \mathcal{F}(F,G) \longrightarrow \mathcal{F}(E,H)$$

$$u \longmapsto g \circ u \circ f$$

Montrer que si f est injective et g surjective, alors φ est surjective.

Exercice 1.2. Soit E un ensemble fini et A, B deux parties de E. On considère l'application

$$\begin{array}{ccc} f: & \mathcal{P}(E) & \longrightarrow & \mathcal{P}(A) \times \mathcal{P}(B) \\ & X & \longmapsto & (A \cap X, B \cap X) \end{array}$$

Déterminer des conditions nécessaires et suffisantes sur A et B pour que f soit surjective, puis injective. Lorsque f est bijective, déterminer f^{-1} .

2 Calculs algébriques et nombres complexes

Exercice 2.1. Sommation d'Abel

Soit (a_n) , (b_n) deux suites à valeurs complexes. On définit la suite (A_n) par $A_n = \sum_{k=0}^n a_k$.

- (a) Montrer que $\sum_{k=0}^{n} a_k b_k = b_n A_n \sum_{k=0}^{n-1} A_k (b_{k+1} b_k)$.
- (b) En déduire la valeur de $\sum_{k=0}^{n} k2^{k}$.

Exercice 2.2. Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Déterminer la valeur de $T_n(x) = \sum_{k=1}^n k^2 x^k$.

Exercice 2.3. Calculer
$$\sum_{z \in \mathbb{U}_n} |z - 1|$$
.

Exercice 2.4. Soit $n \in \mathbb{N}^*$. Montrer que $\prod_{k=1}^{n-1} \sin(\frac{k\pi}{n}) = \frac{n}{2^{n-1}}$.

3 Corps des réels et fonctions usuelles

Exercice 3.1. Montrer que \mathbb{Q} est dense dans \mathbb{R} .

Exercice 3.2. Pour $x \in \mathbb{R}$, résoudre $\arcsin x - \arccos x = \frac{\pi}{6}$.

Exercice 3.3. Calculer $\arctan 2 + \arctan 5 + \arctan 8$.

4 Arithmétique

Exercice 4.1. Trouver le dernier chiffre décimal de $7^{77^{77}}$.

Exercice 4.2. Équation diophantienne

Soit $(x,y) \in \mathbb{Z}^2$. Résoudre 26x + 15y = 4.

Exercice 4.3. Petit théorème de FERMAT

Soit $p \in \mathbb{P}$. Montrer que pour tout $k \in [1, p-1]$, $p \mid {k \choose p}$. En déduire alors que $n^p \equiv n \pmod p$ pour tout entier n.

Exercice 4.4. Déterminer $(a + b) \wedge (a \vee b)$, pour $a, b \in \mathbb{N}^*$.

Exercice 4.5. Nombres de MERSENNE

Soient $a, n \in \mathbb{N}, a, n \geq 2$. Montrer que

- (a) $a^n + 1$ est premier $\implies a$ est pair et n est une puissance de 2.
- (b) $a^n 1$ est premier $\implies a = 2$ et n est premier.

Exercice 4.6. Théorème de Kurschak

Soit $n \geq 2$. On pose $S_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que S_n n'est jamais un entier.

Exercice 4.7. Théorème des restes chinois

- (a) Soient n, m et c trois entiers tels que $n \wedge m = 1$. Montrer que l'équation $nx \equiv c \pmod{m}$ admet une unique solution modulo m.
- (b) Soient n, m, a et b quatre entiers tels que $n \wedge m = 1$. Montrer que le système

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$$

admet une unique solution modulo nm.

(c) Un phare émet un signal jaune toutes les 15 secondes et un signal rouge toutes les 28 secondes. On aperçoit le signal jaune 2 secondes après minuit et le rouge 8 secondes après minuit. Déterminer l'heure à laquelle les deux signaux seront émis en même temps pour la première fois.

3

5 Suites numériques

Exercice 5.1. Montrer que

$$(u_n) \in \mathbb{R}^{\mathbb{N}}$$
 non majorée $\iff \exists \varphi \text{ extractrice telle que } u_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} +\infty$

Exercice 5.2. Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ bornée telle que $u_{2n} - 2u_n \xrightarrow[n \to +\infty]{} 0$. Montrer que $u_n \xrightarrow[n \to +\infty]{} 0$.

Exercice 5.3. Théorème de Cesàro

Soit
$$(u_n) \in \mathbb{K}^{\mathbb{N}}$$
 telle que $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{K}$. Montrer que $v_n = \frac{1}{n+1} \sum_{k=0}^n u_k \xrightarrow[n \to +\infty]{} \ell$.

Exercice 5.4. Suites de CAUCHY

Soit $(u_n) \in \mathbb{K}^{\mathbb{N}}$. La suite (u_n) est dite de Cauchy lorsque

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ \forall p, q \ge N, \ |u_p - u_q| \le \varepsilon$$

Montrer que

- (a) (u_n) converge $\implies (u_n)$ est de Cauchy.
- (b) (u_n) est de Cauchy $\implies (u_n)$ est bornée.
- (c) (u_n) est de Cauchy $\implies (u_n)$ converge.

Exercice 5.5. Soit (u_n) la suite définie par $u_n = \sin[(3+\sqrt{5})^n\pi]$. Déterminer $\lim_{n\to\infty} u_n$.

Exercice 5.6. Suite récurrente de la forme $u_{n+1} = f(u_n)$

Étudier et trouver un équivalent de la suite (u_n) définie par récurrence pour $n \in \mathbb{N}$ par

$$(u_n): \left\{ \begin{array}{l} u_0 \in \mathbb{R} \\ u_{n+1} = u_n - (u_n)^2 \end{array} \right.$$

Exercice 5.7. Soient a, b, c, d des complexes tels que $ad - bc \neq 0$ et $c \neq 0$. Soit (z_n) la suite définie récursivement par

$$(z_n): \left\{ \begin{array}{l} z_0 \in \mathbb{C} \\ z_{n+1} = \frac{az_n + b}{cz_n + d} \end{array} \right.$$

On suppose dans toute la suite suite que z_0 est choisi de sorte que (z_n) soit bien définie.

- (a) Montrer que la fonction $f(z) = \frac{az+b}{cz+d}$ admet un ou deux points fixes dans \mathbb{C} .
- (b) On suppose d'abord que f admet deux points fixes α et β . On pose $w_n = \frac{z_n \alpha}{z_n \beta}$. Montrer que la suite (w_n) est géométrique et en déduire la nature de la suite définie par $z_0 = i$ et $z_{n+1} = \frac{1}{1-z_n}$.
- (c) On suppose maintenant que f admet un unique point fixe α . On pose $w_n = \frac{1}{z_n \alpha}$. Calculer la valeur de α et montrer que $f(z) = z \frac{c(z-\alpha)^2}{cz+d}$.
- (d) Montrer ensuite que la suite (w_n) est arithmétique. En déduire la nature de la suite définie par $z_0 = i$ et $z_{n+1} = \frac{3z_n 1}{z_n + 1}$.

Exercice 5.8. Irrationalité de e

Soit $n \in \mathbb{N}^*$. On considère les suites $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{nn!}$. Montrer que $((u_n), (v_n))$ forme un couple de suites adjacentes et montrer que leur limite est irrationnelle.

4

Exercice 5.9. Soit (u_n) une suite réelle telle que $(u_{n+1} - u_n) \underset{n \to +\infty}{\longrightarrow} 0$. Montrer que l'ensemble des valeurs d'adhérence de (u_n) est un intervalle.

Application : Soit a et b des réels tels que a < b, $f : [a, b] \longrightarrow [a, b]$ continue et (u_n) la suite définie récursivement par

$$(u_n): \left\{ \begin{array}{l} u_0 \in [a,b] \\ u_{n+1} = f(u_n) \end{array} \right.$$

Montrer que (u_n) converge si et seulement si $(u_{n+1} - u_n) \xrightarrow[n \to +\infty]{} 0$.

6 Limite et continuité

Exercice 6.1. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction T-périodique continue. Montrer que f est uniformément continue.

Exercice 6.2. Caractérisation des morphismes continus de $(\mathbb{R}, +)$ dans $(\mathbb{R}, +)$

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ un morphisme continu de $(\mathbb{R}, +)$ dans $(\mathbb{R}, +)$. Montrer qu'il existe un réel α tel que pour tout réel $x, f(x) = \alpha x$.

Exercice 6.3. Soit $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ croissante telle que $x \longmapsto \frac{f(x)}{x}$ soit décroissante sur \mathbb{R}_+^* . Montrer que f est continue sur \mathbb{R}_+^* .

Exercice 6.4. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction uniformément continue sur \mathbb{R}_+ . Montrer que

$$\exists \alpha, \beta > 0, \forall x \in \mathbb{R}_+, |f(x)| \le \alpha x + \beta$$

Exercice 6.5. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ uniformément continue telle que $f(nt) \underset{n \to +\infty}{\longrightarrow} 0$ pour tout réel t > 0. Montrer que $f(x) \underset{r \to +\infty}{\longrightarrow} 0$.

Exercice 6.6. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction croissante. Montrer que l'ensemble des points de discontinuité de f est au plus dénombrable.

7 Dérivation

Exercice 7.1. On considère $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0\\ 0 & \text{si } x \le 0 \end{cases}$$

- (a) Montrer que f est \mathcal{C}^{∞} sur \mathbb{R}_+^* et que pour tout n, pour tout x > 0 on a $f^{(n)}(x) = e^{-\frac{1}{x}} P_n\left(\frac{1}{x}\right)$ où $P_n \in \mathbb{R}[X]$.
- (b) Montrer alors que f est \mathcal{C}^{∞} sur \mathbb{R} .

Exercice 7.2. Soit $f: I \to \mathbb{R}$. On suppose que f est α -hölderienne avec $\alpha > 1$, *i.e.* qu'il existe $C \in \mathbb{R}_+$ tel que pour tout $(x,y) \in I^2$, $|f(x) - f(y)| \le C|x - y|^{\alpha}$. Montrer que f est constante.

Exercice 7.3. Soit P une fonction polynomiale de degré impair et $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ telle que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ |f^{(n)}(x)| \le |P(x)|$$

Montrer que f est nulle.

Exercice 7.4. Règle de L'HÔPITAL

Soient deux réels a < b et $f, g : [a, b] \longrightarrow \mathbb{R}$ deux fonctions continues et dérivables sur [a, b].

- (a) Montrer qu'il existe $c \in [a, b]$ tel que g'(c)(f(b) f(a)) = f'(c)(g(b) g(a)).
- (b) Montrer alors que si $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = \ell$, alors $\lim_{x\to a^+} \frac{f(x)-f(a)}{g(x)-g(a)} = \ell$.

Exercice 7.5. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^{∞} et bornée.

- (a) Montrer que s'il existe un entier n tel que $f^{(n)}$ admet un nombre fini de zéros, alors $f^{(k)}$ tend vers 0 en $\pm \infty$ pour tout $k \in [1, n]$.
- (b) En déduire que pour $n \ge 2$, $f^{(n)}$ s'annule au moins n-1 fois.

Exercice 7.6. Théorème de DARBOUX

On suppose I ouvert. Soit $f: I \longrightarrow \mathbb{R}$ une fonction dérivable. On veut montrer que f', a priori non continue, vérifie toujours le théorème des valeurs intermédiaires.

(a) Soit $(a,b) \in I^2$ tel que f'(a) < f'(b) et soit $z \in]f'(a), f'(b)[$. Montrer qu'il existe $\alpha \in \mathbb{R}_+^*$ tel que pour tout $h \in [0,\alpha]$ on ait

$$\frac{1}{h}(f(a+h) - f(a)) < z < \frac{1}{h}(f(b+h) - f(b))$$

- (b) Montrer alors l'existence d'un réel h > 0 et de $y \in I$ tels que $y + h \in I$ et $\frac{1}{h}(f(y+h) f(y)) = z$.
- (c) En déduire l'existence de $x \in I$ tel que z = f'(x).

Exercice 7.7. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ une fonction deux fois dérivable et α un réel strictement positif. On suppose que f est majorée et que pour tout $t \in \mathbb{R}_+$, $f''(t) \ge \alpha^2 f(t)$.

- (a) Montrer que f est convexe et décroissante.
- (b) Montrer que f admet une limite finie ℓ en $+\infty$ et que $\ell=0$.
- (c) Montrer que f' admet une limite finie ℓ en $+\infty$ et que $\ell=0$.
- (d) Montrer que $\alpha^2 f^2 f'^2$ est croissante et en déduire le signe de $\alpha f + f'$.
- (e) En déduire que pour tout $t \in \mathbb{R}_+$, $f(t) \leq f(0) e^{-\alpha t}$.

Exercice 7.8. Inégalité de KOLMOGROV

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 . On suppose que f et f' sont bornées sur \mathbb{R} . On définit alors

$$M_0 = \sup_{t \in \mathbb{R}} |f(t)| \qquad M_2 = \sup_{t \in \mathbb{R}} |f''(t)|$$

(a) Montrer que

$$\forall h > 0, \ \forall x \in \mathbb{R}, \ |f'(x)| \le \frac{M_0}{2} + h \frac{M_2}{2}$$

(b) En déduire que f' est bornée sur \mathbb{R} et que pour tout réel t, $|f'(t)| \leq \sqrt{2M_o M_2}$.

Exercice 7.9. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que f(0) = 0 et f dérivable en 0. Déterminer $\lim_{n \to +\infty} \sum_{k=1}^{n} f(\frac{k}{n^2})$.

6

8 Analyse asymptotique

Exercice 8.1. Déterminer le développement asymptotique à 2 termes en $+\infty$ de

$$u_n = \sin[\pi n^3 (\ln(\frac{n}{n-1}))^2]$$

Exercice 8.2. Soit $n \ge 1$ et f la fonction définie par

$$f(x) = \begin{cases} \frac{e^{(n+1)x} - 1}{e^x - 1} & \text{si } x \neq 0\\ n + 1 & \text{sinon} \end{cases}$$

- (a) Calculer le développement limité de f en 0 à l'ordre 3.
- (b) En déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k^3}$.

Exercice 8.3. On considère l'équation $(\mathcal{E}): x + \ln(x) = n$.

- (a) Montrer que (\mathcal{E}) admet une unique solution $x_n \in \mathbb{R}_+^*$, puis montrer que la suite (x_n) est strictement croissante, de limite $+\infty$.
- (b) Par développements limités successifs, montrer que $x_n = n \ln n + \frac{\ln n}{n} + o(\frac{\ln n}{n})$.

Exercice 8.4. Soit $n \geq 2$ et $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ telle que $f_n(x) = x^{2n} - 2nx + 1$ pour tout réel x.

- (a) Déterminer le nombre de solutions de $f_n(x) = 0$. On note désormais a_n la plus grande de ces solutions.
- (b) Montrer que pour tout $n, a_n \in]1, 2[$ puis que la suite (a_n) converge vers 1.
- (c) Déterminer un développement asymptotique à 2 termes de (a_n) .

9 Polynômes

Exercice 9.1. Soient $A, B \in \mathbb{K}[X]$ non constants et premiers entre eux. Montrer qu'il existe un unique couple $(U, V) \in \mathbb{K}[X]^2$ tel que

$$AU + BV = 1$$
 et $\left\{ \begin{array}{l} \deg U < \deg B \\ \deg V < \deg A \end{array} \right.$

Exercice 9.2. Soit $n \ge 2$. Montrer que $P_n = \sum_{k=0}^n \frac{X^k}{k!}$ n'admet pas de racines multiples dans \mathbb{C} .

Exercice 9.3. Soit $P \in \mathbb{R}[X]$. Montrer l'équivalence entre :

- (i) Pour tout $x \in \mathbb{R}$, $P(x) \ge 0$.
- (ii) Il existe $A, B \in \mathbb{R}[X]$ tels que $P = A^2 + B^2$.

Exercice 9.4. Déterminer les polynômes P de degré supérieur ou égal à 1 tels que $P' \mid P$.

Exercice 9.5. Soit $P \in \mathbb{R}[X]$ scindé.

- (a) Montrer que P' est scindé.
- (b) Montrer que pour tout $\alpha \in \mathbb{R}$, $\alpha P + P'$ est scindé sur \mathbb{R} .

Exercice 9.6. Équations polynomiales

- (a) Déterminer les polynômes réels solutions de $P(X^2) = P(X-1)P(X+1)$.
- (b) Déterminer les polynômes réels non nuls solutions de $P(X^2) = P(X-1)P(X)$.

Exercice 9.7. Les polynômes de TCHEBYCHEV

On appelle polynômes de TCHEBYCHEV de première espèce la suite de polynômes $(T_n) \in (\mathbb{R}[X])^{\mathbb{N}}$ qui vérifient pour tout réel θ et tout entier n la relation $T_n(\cos \theta) = \cos(n\theta)$.

- (a) Montrer l'existence et l'unicité de T_n .
- (b) Montrer que (T_n) vérifie la relation de récurrence $T_{n+2} = 2XT_{n+1} T_n$.
- (c) Déterminer le degré et le coefficient dominant de T_n .
- (d) Application: Montrer que pour tout $P \in \mathbb{R}[X]$ unitaire de degré $n \in \mathbb{N}^*$, on a

$$||P||_{\infty} = \sup_{t \in [-1,1]} |P(t)| \ge \frac{1}{2^{n-1}}$$

Exercice 9.8. Montrer qu'il n'y a qu'un nombre fini de polynômes unitaires de degré $n \in \mathbb{N}^*$ à coefficients entier dont toutes les racines complexes sont de module inférieur ou égal à 1.

10 Fractions rationnelles

Exercice 10.1. Pour $n \in \mathbb{N}^*$, déterminer la décomposition en éléments simples de $F_n = \frac{1}{X^{n-1}}$ dans $\mathbb{C}[X]$.

Exercice 10.2. Soit $P \in \mathbb{R}[X]$ de degré $n \geq 1$ scindé à racines simples x_1, \ldots, x_n . Montrer que $\sum_{k=1}^n \frac{P''(x_k)}{P'(x_k)} = 0.$

11 Espaces vectoriels

Exercice 11.1. Montrer que les familles suivantes sont libres :

- (a) $(f_{\alpha})_{\alpha \in \mathbb{R}} \in \mathcal{F}(\mathbb{R}, \mathbb{R})^{\mathbb{R}} \text{ avec } f_{\alpha} : x \in \mathbb{R} \longmapsto e^{\alpha x}.$
- (b) $(f_k)_{k \in \mathbb{N}^*} \in \mathcal{F}(\mathbb{R}, \mathbb{R})^{\mathbb{N}^*}$ avec $f_k : x \in \mathbb{R} \longmapsto \sin(kx)$.
- (c) $(f_{\alpha})_{\alpha \in \mathbb{R}} \in \mathcal{F}(\mathbb{R}, \mathbb{R})^{\mathbb{R}}$ avec $f_{\alpha} : x \in \mathbb{R} \longmapsto |x \alpha|$.
- (d) $((X-c_i)^n)_{1 \le i \le n+1} \in \mathbb{K}[X]^{n+1}$ avec $n \in \mathbb{N}^*$ et $c_1, \ldots, c_{n+1} \in \mathbb{K}$ deux à deux disjoints.

Exercice 11.2. Soit E un \mathbb{K} -ev et $u \in \mathcal{L}(E)$. Montrer que

$$u$$
 est une homothétie $\iff \forall x \in E, (x, u(x))$ est liée

Exercice 11.3. Soit E un K-ev et $u \in \mathcal{L}(E)$ nilpotent d'indice $p \geq 1$. Montrer que

- (a) $(\mathrm{Id}_E, u, \ldots, u^{p-1})$ est libre dans $\mathcal{L}(E)$.
- (b) $(\mathrm{Id}_E u)$ est inversible.

12 Espaces vectoriels de dimension finie

Dans cette section, E désigne un \mathbb{K} -ev de dimension n.

Exercice 12.1. Soient F, G deux sev de E. Déterminer une condition nécessaire et suffisante sur F et G pour qu'il existe $f \in \mathcal{L}(E)$ tel que f(F) = G.

Exercice 12.2. Soient $u, v \in \mathcal{L}(E)$.

- (a) Montrer que $|\operatorname{rg}(u) \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v)$.
- (b) On suppose que $u \circ v = 0$ et que u + v est inversible. Montrer que rg(u) + rg(v) = n.

Exercice 12.3. On suppose E de dimension $n \geq 1$. Soient F et G deux sev de E tels que $\dim F = \dim G = p$ où $0 \leq p \leq n$. Montrer que F et G admettent un supplémentaire commun.

Exercice 12.4. Soient E_1, E_2, E_3 trois \mathbb{K} -ev de dimension finie.

- (a) Soient $u \in \mathcal{L}(E_1, E_2)$ et $w \in \mathcal{L}(E_1, E_3)$. Montrer qu'il existe $v \in \mathcal{L}(E_2, E_3)$ tel que $w = v \circ u$ si et seulement si Ker $u \subset \text{Ker } w$.
- (b) Soient $w \in \mathcal{L}(E_1, E_3)$ et $v \in \mathcal{L}(E_2, E_3)$. Montrer qu'il existe $u \in \mathcal{L}(E_1, E_2)$ tel que $w = v \circ u$ si et seulement si $\operatorname{Im} w \subset \operatorname{Im} v$.

Exercice 12.5. Caractérisation du centre de GL(E)

On suppose E de dimension $n \geq 1$. Déterminer le centre de GL(E) i.e. l'ensemble

$$\mathcal{C} = \{ f \in \operatorname{GL}(E) \mid \forall g \in \operatorname{GL}(E), fg = gf \}$$

Exercice 12.6. Lemme des noyaux itérés

Soit $u \in \mathcal{L}(E)$. Pour tout entier p, on note $K_p = \operatorname{Ker} u^p$ et $I_p = \operatorname{Im} u^p$.

- (a) Montrer que pour tout $p \in \mathbb{N}$, $K_p \subset K_{p+1}$ et $I_{p+1} \subset I_p$.
- (b) Montrer qu'il existe un entier $r \leq n$ minimal tel que $K_r = K_{r+1}$. Montrer que les suites (I_p) et (K_p) sont stationnaires à partir du rang r (pour l'inclusion).
- (c) Montrer que $E = K_r \bigoplus I_r$ et en déduire l'existence de deux sev supplémentaires I et K de E tels que $u|_K$ soit nilpotent et $u|_I$ soit inversible.
- (d) On suppose que u est nilpotent d'indice de nilpotence n. Montrer que les seuls sev de E stables par u sont les K_p avec $p \in [0, n]$.
- (e) Montrer que la suite $(\dim K_{p+1} \dim K_p)$ est décroissante.

13 Matrices

Exercice 13.1. Calcul des puissances d'une matrice

- (a) Soit $n \geq 2$. Déterminer le reste de la division euclidienne de X^n par $X^2 3X + 2$.
- (b) Soit $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Calculer A^n .

Exercice 13.2. Soit $M \in \mathcal{M}_n(\mathbb{K})$.

(a) Montrer que

$$\operatorname{rg} M = 1 \iff \exists U, V \in \mathbb{K}^n \setminus \{0\} \text{ tels que } M = U^t V$$

(b) Si $\operatorname{rg} M = \operatorname{tr} M = 1$, en déduire que $M^2 = M$.

Exercice 13.3. Matrices stochastiques

Pour $n \geq 1$, on note \mathcal{D} l'ensemble des matrices $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ telles que $a_{i,j} > 0$ pour tout $(i,j) \in [1,n]^2$ et $\sum_{j=1}^n a_{i,j} = 1$ pour tout $i \in [1,n]$.

- (a) Montrer que \mathcal{D} est stable par produit.
- (b) Déterminer l'ensemble des matrices $A \in \mathcal{D}$ inversibles telles que $A^{-1} \in \mathcal{D}$.

Exercice 13.4. Soit $N \in \mathcal{M}_n(\mathbb{K})$. Montrer l'équivalence entre :

- (i) N est nilpotente.
- (ii) N est semblable à une matrice triangulaire supérieure stricte.

Exercice 13.5. Lemme d'Hadamard

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{C})$ telle que

$$\forall j \in [1, n], \sum_{1 \le j \ne i \le n} |a_{i,j}| < |a_{i,i}|$$

Montrer que A est inversible.

Exercice 13.6. Déterminer les matrices $A \in \mathcal{M}_n(\mathbb{K})$ telles que $A^2 = 0$.

Exercice 13.7. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On pose

$$\varphi_A: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$$

$$M \longmapsto \operatorname{tr}(AM)$$

- (a) Montrer que φ_A est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.
- (b) Montrer que pour tout $\Phi \in (\mathcal{M}_n(\mathbb{K}))^*$, il existe $A \in \mathcal{M}_n(\mathbb{K})$ tel que $\Phi = \varphi_A$.
- (c) Montrer alors que tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $\mathrm{GL}_n(\mathbb{K})$.

14 Déterminant

Exercice 14.1. Soient $p \in \mathbb{N}$, $n \geq 1$. Calculer le déterminant suivant :

Exercice 14.2. Soit $n \geq 3$, $a, b \in \mathbb{K}$ et $a \neq b$. Calculer det A_n avec

$$A_n = \begin{pmatrix} a+b & ab & 0 & \dots & 0 \\ 1 & a+b & ab & \ddots & \vdots \\ 0 & 1 & a+b & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & ab \\ 0 & \dots & 0 & 1 & a+b \end{pmatrix}$$

Exercice 14.3. Soient a_1, \ldots, a_n et b_1, \ldots, b_n des réels.

Soit
$$M = \begin{pmatrix} (a_1 + b_1)^{n-1} & (a_1 + b_2)^{n-1} & \dots & (a_1 + b_n)^{n-1} \\ (a_2 + b_1)^{n-1} & (a_2 + b_2)^{n-1} & \dots & (a_2 + b_n)^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ (a_n + b_1)^{n-1} & (a_n + b_2)^{n-1} & \dots & (a_n + b_n)^{n-1} \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

- (a) Calculer le déterminant de M.
- (b) Pour $p \in \mathbb{N}$ et n un entier tel que $n \geq p+1$, en déduire le déterminant de

$$A = \begin{pmatrix} 1 & 2^p & \dots & n^p \\ 2^p & 3^p & \dots & (n+1)^p \\ \vdots & \vdots & \ddots & \vdots \\ n^p & (n+1)^p & \dots & (2n-1)^p \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

Exercice 14.4. Déterminant de CAUCHY

Soient a_1, \ldots, a_n et b_1, \ldots, b_n des éléments de \mathbb{K} tels que pour tout $(i, j) \in [1, n]^2$, $a_i + b_j \neq 0$. Calculer

$$\Delta_n = \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \cdots & \frac{1}{a_1 + b_n} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} & \cdots & \frac{1}{a_2 + b_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n + b_n} & \frac{1}{a_n + b_2} & \cdots & \frac{1}{a_n + b_n} \end{vmatrix}$$

Exercice 14.5. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ et $M = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$

- (a) Monter que $\det M \geq 0$.
- (b) On suppose que AB = BA. Montrer que $\det(A^2 + B^2) \ge 0$.

Exercice 14.6. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On suppose que A et B sont semblables dans $\mathcal{M}_n(\mathbb{C})$. Montrer que A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 14.7. Soit $n \geq 2$.

- (a) Soient $A, B \in GL_n(\mathbb{K})$. Montrer que Com(AB) = Com(A) Com(B).
- (b) Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. En considérant $(A \lambda I_n)$ et $(B \lambda I_n)$ avec $\lambda \in \mathbb{K}$, montrer que $\operatorname{Com}(AB) = \operatorname{Com}(A)\operatorname{Com}(B)$.
- (c) En déduire que si A et B sont semblables, Com(A) et Com(B) le sont aussi.
- (d) Pour $A \in \mathcal{M}_n(\mathbb{K})$, calculer le rang de Com(A) en fonction du rang de A.

15 Intégration sur segment

I désigne ici un segment de \mathbb{R} et on note I = [a, b] avec a, b des réels tels que a < b.

Exercice 15.1. Intégrale de Wallis

On définit la suite $(W_n) \in \mathbb{R}^{\mathbb{N}}$ par $W_n = \int_0^{\frac{\pi}{2}} (\sin t)^n dt$.

- (a) Définir une relation de récurrence pour W_n .
- (b) Calculer W_n en distinguant le cas pair et impair.
- (c) Montrer que $((n+1)W_nW_{n+1})$ est une suite constante.
- (d) En déduire un équivalent de W_n en $+\infty$.

Exercice 15.2. Somme de RIEMANN

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite définie par $u_n = \sum_{k=1}^n \frac{n}{n^2+k^2}$.

- (a) Montrer que (u_n) converge et déterminer sa limite ℓ .
- (b) Donner un équivalent de (ℓu_n) en $+\infty$.

Exercice 15.3. Approximation uniforme

Soit $f: I \longrightarrow \mathbb{R}$ une fonction continue. On suppose que pour tout $k \in [0, n]$

$$\int_a^b t^k f(t) \, \mathrm{d}t = 0$$

- (a) Montrer que f s'annule en au moins n+1 points distincts dans a, b.
- (b) Si l'égalité est vraie pour tout entier k, montrer que f = 0.

Exercice 15.4. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ de classe \mathcal{C}^1 et bijective.

- (a) Justifier que f est strictement croissante.
- (b) Montrer que pour tout $x \in \mathbb{R}_+$ on a

$$xf(x) = \int_0^x f(t) dt + \int_0^{f(x)} f^{-1}(t) dt$$

(c) Montrer alors que pour tout $(x,y) \in (\mathbb{R}_+)^2$ on a

$$xy \le \int_0^x f(t) dt + \int_0^y f^{-1}(t) dt$$

Exercice 15.5. Pour a, b des réels tels que 0 < a < b, déterminer

$$\lim_{x \to 0} \left(\int_{ax}^{bx} \frac{\sin t}{t^2} \, \mathrm{d}t \right)$$

Exercice 15.6. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction continue. Pour tout réel x > 0, on définit

$$F(x) = \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t$$

On suppose de plus que f converge en $+\infty$ vers un réel ℓ . Montrer que $\lim_{x\to +\infty} F(x)=\ell$.

Exercice 15.7. Problème de Bâle

On cherche à calculer $\sum_{n=1}^{+\infty} \frac{1}{n^2}$. On admet ici l'existence de cette somme. On pose $S_n = \sum_{k=1}^n \frac{1}{k^2}$.

(a) Soit f une fonction de classe C^1 sur $[0, \pi]$. Montrer que

$$\int_0^{\pi} f(t) \sin\left(\frac{(2n+1)t}{2}\right) dt \underset{n \to +\infty}{\longrightarrow} 0$$

- (b) Calculer $A_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos(kt)$ pour $t \in]0, \pi]$.
- (c) Déterminer deux réels a et b tels que pour tout $n \ge 1$,

$$\int_0^{\pi} (at^2 + bt) \cos(nt) dt = \frac{1}{n^2}$$

(d) Montrer alors que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 15.8. Soit $f: I \longrightarrow \mathbb{R}$ continue positive sur I et $g: I \longrightarrow \mathbb{R}$ continue et strictement positive sur I. On pose $M = \sup_{t \in I} |f(t)|$. Montrer que

$$\lim_{n \to +\infty} \left(\int_I f^n g \right)^{\frac{1}{n}} = M$$

Exercice 15.9. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{C}$ une fonction de classe \mathcal{C}^1 et $\alpha \in \mathbb{C}$ tels que

$$\lim_{t \to +\infty} (f'(t) + \alpha f(t)) = 0$$

Montrer que $\lim_{t \to +\infty} f(t) = 0$.

16 Combinatoire et espaces probabilisés

Exercice 16.1. Soit E un ensemble fini tel que |E| = n. Calculer $\sum_{X \in \mathcal{P}(E)} |X|$.

Exercice 16.2. Soit S(p,n) le nombre de surjections de [1,p] dans [1,n] avec $p,n\in\mathbb{N}^*$.

- (a) Déterminer la valeur de S(p, n) lorsque n > p puis celle de S(n, n).
- (b) Déterminer la valeur de S(n+1, n).

Exercice 16.3. Indicatrice d'EULER

Soit $n \in \mathbb{N}^*$ et $\Omega = [1, n]$ muni de la probabilité uniforme. Pour tout diviseur d de n, on note A_d l'événement "être divisible par d".

- (a) Calculer $P(A_d)$.
- (b) Montrer que si p_1, \ldots, p_n sont des diviseurs de n deux à deux premiers entre eux, alors les événements A_{p_1}, \ldots, A_{p_n} sont indépendants.
- (c) En déduire le cardinal $\varphi(n)$ de l'ensemble des entiers de Ω premiers à n.

Exercice 16.4. On effectue des tirages indépendants avec remise dans une urne contenant une boule rouge et une boule blanche. Soit A l'évènement "on tire indéfiniment une boule rouge". Déterminer la probabilité de A dans les 3 cas suivants :

- (i) Après chaque tirage, on introduit dans l'urne (en plus de la boule tirée) deux autres boules de la couleur de la boule tirée.
- (ii) Après chaque tirage, on introduit cette fois dans l'urne trois autres boules de la couleur de la boule tirée.
- (iii) Après le k-ème tirage, on rajoute k^2 boules de la couleur de la boule tirée.

17 Variables aléatoires

Exercice 17.1. Soit $N \in \mathbb{N}^*$ et X, Y deux variables aléatoires discrètes indépendantes à valeurs dans [0, N] telles que pour tout $r \in [0, N]$, $E[X^r] = E[Y^r]$. Montrer que X et Y suivent la même loi.

Exercice 17.2. Une urne contient 2 boules blanches et (n-2) boules rouges, avec $n \ge 2$. On effectue des tirages sans remise dans cette urne. On appelle X le rang de sortie de la première boule blanche et Y le nombre de boules rouges restant à ce moment dans l'urne.

- (a) Déterminer la loi de X et calculer E[X].
- (b) Exprimer Y en fonction de X et calculer E[Y].

Exercice 17.3. Une piste rectiligne est divisée en cases numérotées $0, 1, 2, \ldots$ de gauche à droite. Une puce se trouvant au départ sur la case 0 se déplace vers la droite de 1 ou 2 cases au hasard à chaque saut. On définit X_n la variable aléatoire donnant le numéro de la case occupée par la puce après n sauts et Y_n la variable aléatoire donnant le nombre de fois où la puce a sauté d'une case au cours des n premiers sauts.

- (a) Déterminer la loi de Y_n puis calculer $E[Y_n]$ et $V(Y_n)$.
- (b) Exprimer X_n en fonction de Y_n , en déduire la loi de X_n puis calculer $E[X_n]$ et $V(X_n)$.

Exercice 17.4. On joue à pile ou face avec une pièce dont la probabilité d'obtenir face est $\frac{1}{3}$. Les lancers sont indépendants. Soit X la variable aléatoire donnant le nombre de lancers nécessaires pour obtenir deux piles consécutifs pour la première fois. Soit $n \in \mathbb{N}^*$, on note p_n la probabilité de l'événement (X = n). On note de plus F_i l'événement "obtenir face au $i^{ème}$ lancer".

- (a) Montrer que pour tout $n \ge 3$, $p_n = \frac{1}{3} p_{n-1} + \frac{2}{9} p_{n-2}$.
- (b) En déduire l'expression de p_n pour $n \ge 1$.

Exercice 17.5. Points fixes et dérangements

On munit le groupe symétrique S_n de l'équiprobabilité.

- 1. Dérangements
 - (a) Déterminer p_n , la probabilité qu'une permutation soit un dérangement (i.e. sans point fixe).
 - (b) Déterminer $\lim_{n\to+\infty} p_n$.
- 2. Points fixes

On note X_n la variable aléatoire donnant le nombre de points fixes d'une permutation.

- (a) Déterminer la loi de X_n .
- (b) Montrer que pour tout entier $n, P(X_n = k) \xrightarrow[n \to +\infty]{} \frac{e^{-1}}{k!}$.
- (c) Déterminer $E[X_n]$ puis $V(X_n)$.

Exercice 17.6. Soit $n \geq 2$ et $(X_{i,j})_{1 \leq i,j \leq n}$ une famille de variables réelles mutuellement indépendantes, centrées et réduites. On pose $M = (X_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R})$ et $D = \det M$.

- (a) Montrer que D est centrée.
- (b) Déterminer $E[D^2]$.

18 Espaces préhilbertiens

 $(E, \langle \cdot, \cdot \rangle)$ désigne dans cette section un \mathbb{R} -espace préhilbertien.

Exercice 18.1. Produit scalaire sur $\mathcal{M}_n(\mathbb{R})$

On considère l'application de $\mathcal{M}_n(\mathbb{R})^2$ dans \mathbb{R} donnée par $(A, B) \longmapsto \operatorname{tr}({}^t\!AB)$.

- (a) Montrer que cette application est un produit scalaire pour lequel la base canonique de $\mathcal{M}_n(\mathbb{R})$ est orthonormée.
- (b) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer l'inégalité $||AB|| \leq ||A|| \cdot ||B||$.
- (c) Soit $U \in \mathcal{O}_n(\mathbb{R})$. Montrer que ||AU|| = ||UA|| = ||A||.
- (d) Montrer que $|\operatorname{tr}(A)| \leq \sqrt{n} \|A\|$.
- (e) Soit $U = (u_{i,j})_{1 \le i,j \le n}$ une matrice orthogonale. Montrer que $\left| \sum_{1 \le i,j \le n} u_{i,j} \right| \le n$.

Exercice 18.2. Projections orthogonales

On suppose E euclidien.

- (a) Soient F et G deux sev de E. Montrer que $(F+G)^{\perp}=F^{\perp}\cap G^{\perp}$ et que $(F\cap G)^{\perp}=F^{\perp}+G^{\perp}$.
- (b) Soit $p \in \mathcal{L}(E)$ un projecteur. Montrer que p est une projection orthogonale si et seulement si pour tout $x \in E$, $||p(x)|| \le ||x||$.
- (c) Soient F et G deux sev de E tels que $F^{\perp} \perp G^{\perp}$. On note p_F , p_G et $p_{F \cap G}$ les projections orthogonales respectivement sur F, G et $F \cap G$. Montrer que $p_F + p_G - p_{F \cap G} = \operatorname{Id}_E$ et que $p_F \circ p_G = p_G \circ p_F = p_{F \cap G}$.

Exercice 18.3. Calculer $m = \min_{(a,b) \in \mathbb{R}^2} \int_0^1 (t \ln t - at - b)^2 dt$ et trouver pour quel couple $(a,b) \in \mathbb{R}^2$ ce minimum est atteint.

15

Exercice 18.4. Soit $u \in \mathcal{L}(E)$. Montrer l'équivalence entre

- (i) $\langle x, y \rangle = 0 \implies \langle u(x), u(y) \rangle = 0$
- (ii) Il existe un scalaire $k \geq 0$ tel que pour tout $x \in E, \ \|u(x)\| = k \, \|x\|$
- (iii) u est la composée d'une homothétie et d'une isométrie.

Exercice 18.5. Polynômes orthogonaux

On considère le produit scalaire sur $\mathbb{R}[X]$ donné par $\langle P,Q\rangle=\int_0^1P(t)Q(t)\,\mathrm{d}t.$ Pour tout n, on définit

$$P_n = X^n (X - 1)^n \qquad \text{et} \qquad L_n = P_n^{(n)}$$

- (a) Déterminer le degré et le coefficient dominant de L_n .
- (b) Soit $n \in \mathbb{N}^*$. Montrer que pour tout $Q \in \mathbb{R}_{n-1}[X]$, $\langle L_n, Q \rangle = 0$. En déduire que la famille de polynômes (L_n) est une famille orthogonale de $\mathbb{R}[X]$.
- (c) Calculer $||L_n||$.
- (d) Déterminer une famille de polynômes (K_n) vérifiant les deux conditions suivantes :
 - (i) pour tout n, K_n est de degré n et son coefficient dominant est strictement positif;
 - (ii) pour tout $N \in \mathbb{N}$, $(K_n)_{0 \le n \le N}$ est une base orthonormale de $\mathbb{R}_N[X]$.

Puis justifier l'unicité d'une telle famille.

Exercice 18.6. Soient $(e_1, \ldots, e_n) \in E^n$ tels que pour tout $x \in E$, $||x||^2 = \sum_{k=1}^n \langle e_k, x \rangle^2$.

- (a) Si les vecteurs e_1, \ldots, e_n sont unitaires, montrer que (e_1, \ldots, e_n) est une base orthonormée de E.
- (b) On suppose que dim E = n mais les vecteurs e_1, \ldots, e_n sont maintenant quelconques. Montrer que (e_1, \ldots, e_n) reste une base orthonormée de E.

Exercice 18.7. Déterminant de Gram

On appelle matrice de GRAM de $(x_1, \ldots, x_n) \in E^n$ la matrice

$$Gram(x_1...,x_n) = (\langle x_i, x_j \rangle)_{1 \le i,j \le n}$$

et on note son déterminant $G(x_1, \ldots, x_n)$.

(a) Montrer que $\operatorname{rg}(\operatorname{Gram}(x_1,\ldots,x_n)) = \operatorname{rg}(x_1,\ldots,x_n)$. En déduire que

$$(x_1,\ldots,x_n)$$
 est libre \iff $G(x_1,\ldots,x_n)\neq 0$

(b) On suppose E euclidien orienté de dimension $n \geq 1$. Montrer que

$$G(x_1,\ldots,x_n)=[x_1,\ldots,x_n]^2$$

(c) Dans le cas général, soit F un sev de E de dimension finie $n \geq 1$ et (e_1, \ldots, e_n) une base quelconque de F. Montrer que pour tout $x \in E$ on a

$$d(x,F)^2 = \frac{G(e_1,\ldots,e_n,x)}{G(e_1,\ldots,e_n)}$$

Exercice 18.8. On suppose E euclidien de dimension n. Montrer qu'on peut trouver x_1, \ldots, x_n unitaires et distincts tels que pour tout $(i,j) \in [1,n]$, $i \neq j$, $\langle x_i, x_j \rangle = -\frac{1}{n}$.

Exercice 18.9. Inégalité d'HADAMARD

On suppose E euclidien orienté de dimension $n \geq 1$. Soient $x_1, \ldots, x_n \in E$. Montrer que

$$|[x_1,\ldots,x_n]| \le \prod_{i=1}^n ||x_i||$$

Partie 2

Exercices MP

Sans précisions supplémentaires, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$, n est un entier naturel et I est un intervalle de $\mathbb R$ d'intérieur non vide.

1 Convexité

Exercice 1.1. Inégalité harmonico-arithmético-géométrique Soient x_1, \ldots, x_n des réels strictement positifs. Montrer que

$$\frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}} \le \frac{x_1 + \dots + x_n}{n}$$

Exercice 1.2. Soit $f: I \longrightarrow \mathbb{R}$ une fonction convexe qui présente en $a \in I$ un minimum local. Montrer que a est un minimum global de f.

Exercice 1.3. Soit I un intervalle ouvert de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$ une fonction convexe. Montrer que f est lipschitzienne sur tout segment [a, b] inclus dans I avec a < b des réels.

Exercice 1.4. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$. Montrer que $\ln f$ est convexe si et seulement si f^{α} est convexe tout $\alpha > 0$.

Exercice 1.5. Soit $f:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction continue telle que pour tout $(x,y)\in\mathbb{R}^2$ on ait

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x) + f(y)}{2}$$

Montrer que f est convexe.

Exercice 1.6. Inégalités de HÖLDER et MINKOWSKI

Soient $n \in \mathbb{N}^*$, a_k , b_k des réels positifs pour tout $k \in [1, n]$ et $p, q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1$.

(a) Montrer que pour tous a, b > 0 on a

$$\frac{a^p}{p} + \frac{b^p}{q} \ge ab$$

(b) Montrer que $t \mapsto t^p$ est convexe. En déduire *l'inégalité de* HÖLDER :

$$\sum_{k=1}^{n} a_k b_k \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}$$

(c) Montrer que $t \longmapsto (1-t^{\frac{1}{p}})^p$ est convexe sur [0,1]. En déduire *l'inégalité de* MINKOWSKI :

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} b_k^p\right)^{\frac{1}{p}}$$

(d) Monter que pour toutes fonctions réelles continues f, g sur [a,b] avec a < b, on a les inégalités :

$$\begin{split} \int_a^b |fg| & \leq \left(\int_a^b |f|^p \right)^{\frac{1}{p}} \left(\int_a^b |g|^q \right)^{\frac{1}{q}} \\ \left(\int_a^b |f+g|^p \right)^{\frac{1}{p}} & \leq \left(\int_a^b |f|^p \right)^{\frac{1}{p}} + \left(\int_a^b |g|^p \right)^{\frac{1}{p}} \end{split}$$

2 Séries numériques

Exercice 2.1. Soit (a_n) une suite de réels positifs telle que $\sum_{n\in\mathbb{N}} a_n$ converge. Étudier la nature des séries suivantes :

(i)
$$\sum_{n\in\mathbb{N}} a_n^2$$
 (ii) $\sum_{n\in\mathbb{N}} \frac{a_n}{1+a_n}$ (iii) $\sum_{n\in\mathbb{N}} a_n a_{2n}$ (iv) $\sum_{n\in\mathbb{N}} \frac{\sqrt{a_n}}{n}$

Exercice 2.2. Règle de RAABE-DUHAMEL

Soit $a \in \mathbb{R}$ et (u_n) une suite à termes positifs vérifiant

$$\frac{u_{n+1}}{u_n} = 1 - \frac{a}{n} + o\left(\frac{1}{n}\right)$$

- (a) On suppose a > 1 et on pose $v_n = \frac{1}{n^b}$ avec $b \in]1, a[$. En comparant u_n et v_n , montrer que $\sum u_n$ converge. De même, montrer que $\sum u_n$ diverge si a < 1.
- (b) On suppose que $\frac{u_{n+1}}{u_n} = 1 \frac{1}{n} + O\left(\frac{1}{n^2}\right)$. On pose $v_n = \ln(nu_n)$ et $w_n = v_{n+1} v_n$. Montrer que $w_n = O\left(\frac{1}{n^2}\right)$ puis en déduire que $\sum u_n$ diverge.

Exercice 2.3. Séries de BERTRAND

Montrer que

$$\sum \frac{1}{n^{\alpha}(\ln n)^{\beta}} \text{ converge } \iff \begin{cases} \alpha > 1 \\ \text{ ou } \alpha = 1 \text{ et } \beta > 1 \end{cases}$$

Exercice 2.4. Comparaison série-intégrale

(a) Donner un équivalent de $S_n = \sum_{k=1}^n \sqrt{k}$ en $+\infty$. En déduire la nature de la série $\sum \frac{1}{S_n}$.

(b) Donner un équivalent de $S_n = \sum_{k=1}^n (\ln k)^2$ en $+\infty$. En déduire la nature de la série $\sum \frac{1}{S_n}$.

Exercice 2.5. Formule de STIRLING Soit $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \frac{e^n n!}{n^n \sqrt{n}}$

- (a) Étudier la nature de la série $\sum \ln \left(\frac{u_{n+1}}{u_n}\right)$.
- (b) A l'aide des intégrales de Wallis, trouver un équivalent de n! en $+\infty$.

Exercice 2.6. Nature d'une série suivant un paramètre

En fonction des paramètres indiqués, discuter la nature des séries de terme général :

(a)
$$u_n = \frac{a^n 2^{\sqrt{n}}}{2^{\sqrt{n}} + b^n}$$
 avec $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$.

(b)
$$u_n = \frac{(-1)^{\lfloor \sqrt{n} \rfloor}}{n^{\alpha}}$$
 pour $n \geq 1$, avec $\alpha \in \mathbb{R}$.

Exercice 2.7. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ une fonction de classe C^1 telle que $\frac{f'}{f}$ tende vers $-\infty$ en $+\infty$. Montrer que la série $\sum f(n)$ converge et donner un équivalent de $R_n = \sum_{k=n}^{+\infty} f(k)$ lorsque $n \to +\infty$.

Exercice 2.8. Étudier la nature des séries de terme général :

- (a) $u_n = \sin(\pi e n!)$.
- (b) $u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k} \text{ pour } n \ge 1.$
- (c) $u_n = \frac{\sin(\sqrt{n})}{n}$ pour $n \ge 1$.

Exercice 2.9. Soit $\alpha > 0$ un nombre irrationnel. Pour tout $N \in \mathbb{N}^*$, montrer

$$\exists (p,q) \in \mathbb{N}^2, \ 1 \le q \le N, \ \left| \alpha - \frac{p}{q} \right| < \frac{1}{qN}$$

Donner alors la nature de la série $\sum_{n\geq 1} \frac{1}{n^2 \sin^2 n}$.

Exercice 2.10. Soit (u_n) une suite à termes positifs et décroissante telle que $\sum u_n$ converge. Montrer que $u_n = o(\frac{1}{n})$.

Exercice 2.11. Soit $\sum u_n$ une série à termes positifs avec $u_n \underset{n \to +\infty}{\longrightarrow} 0$. Soit $S_n = \sum_{k=0}^n u_k$. Montrer que si la suite $(S_n - nu_n)$ est bornée, alors $\sum u_n$ converge.

3 Structures algébriques

Dans cette section, K désigne un corps quelconque.

Exercice 3.1. Soit A un anneau tel que pour tout $x \in A$, $x^2 = x$.

- (a) Montrer que car(A) = 2 et que A est commutatif.
- (b) Montrer que si A est intègre, $A = \{0, 1\}$.

Exercice 3.2. Caractérisation du centre de S_n

Pour $n \geq 3$, montrer que le centre de S_n est réduit à l'identité i.e que

$$\{\sigma \in S_n \mid \forall \tau \in S_n, \ \tau \circ \sigma = \sigma \circ \tau\} = \{\mathrm{Id}\}\$$

Exercice 3.3. Soit A un anneau commutatif intègre non nul.

- (a) Montrer que si A est fini, A est un corps.
- (b) Montrer que si A n'a qu'un nombre fini d'idéaux, A est un corps.

Exercice 3.4. Théorème de Wilson

Montrer qu'un entier $p \ge 2$ est premier si et seulement si $(p-1)! + 1 \equiv 0 \pmod{p}$.

Exercice 3.5. Montrer que les sous-groupes de $(\mathbb{R}, +)$ sont soit dense dans \mathbb{R} , soit de la forme $m\mathbb{Z}$ avec $m \in \mathbb{R}_+^*$.

Exercice 3.6. Soit f un morphisme d'un groupe fini (G,\cdot) dans (\mathbb{C}^*,\cdot) . Calculer $\sum_{x\in G} f(x)$.

Exercice 3.7. Sous-groupes de $\mathbb{Z}/n\mathbb{Z}$

Soit n un entier non nul.

- (a) Montrer qu'un entier k engendre $\mathbb{Z}/n\mathbb{Z}$ si et seulement si $k \wedge n = 1$.
- (b) Montrer que l'ordre de \overline{k} dans $\mathbb{Z}/n\mathbb{Z}$ est $\frac{n}{n\wedge k}$.
- (c) Montrer que les sous-groupes de $\mathbb{Z}/n\mathbb{Z}$ sont cycliques.
- (d) Montrer que pour entier d tel que $d \mid n$, il existe un unique sous-groupe de $\mathbb{Z}/n\mathbb{Z}$ de cardinal d.

Exercice 3.8. Degré d'une extension de corps

Soient K, L, M trois corps tels que K est un sous-corps de L qui lui-même est un sous-corps de M.

- (a) Montrer que L peut être muni d'une structure de K-espace vectoriel, puis que M peut être muni d'une structure de L-espace vectoriel et d'une structure de K-espace vectoriel.
- (b) On suppose que L est un K-espace vectoriel de dimension finie n et que M est un L-espace vectoriel de dimension finie p. Démontrer que M est un K-espace vectoriel de dimension finie dont on précisera la dimension.

Exercice 3.9. Soit G un groupe et H, K des sous-groupes de G d'ordre des entiers premiers. Montrer que H = K ou que $H \cap K = e$. Montrer alors que dans un groupe d'ordre 35, il existe un élément d'ordre 5 et un élément d'ordre 7.

Exercice 3.10. Indicatrice d'EULER

Soit $n \in \mathbb{N}^*$. φ désigne l'indicatrice d'EULER.

- (a) Déterminer $|(\mathbb{Z}/n\mathbb{Z})^*|$.
- (b) Déterminer les deux derniers chiffres décimaux de 3²⁰¹⁵.
- (c) Déterminer $\sum_{k|n} \varphi(k)$.
- (d) Montrer que $\lim_{n \to +\infty} \varphi(n) = +\infty$.

Exercice 3.11. Carrés de $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$

Soit (G,.) un groupe fini, (H,.) un groupe et $f:G\longrightarrow H$ un morphisme de groupe.

- (a) Montrer que $|G| = |\operatorname{Im}(f)| \cdot |\operatorname{Ker}(f)|$.
- (b) Soit $p \geq 3$ premier. Déterminer le nombre de carrés dans \mathbb{F}_p .
- (c) Montrer que x est un carré dans \mathbb{F}_p^* si et seulement si $x^{\frac{p-1}{2}} = \overline{1}$.
- (d) Déterminer les nombres premiers pour les quels $\overline{-1}$ est un carré de $(\mathbb{F}_p)^*.$

4 Intégrales généralisées

Exercice 4.1. Déterminer un équivalent en $+\infty$ de la fonction définie sur \mathbb{R}_+ par

$$f: x \longmapsto \sum_{k=0}^{+\infty} \frac{1}{2^k + x}$$

Exercice 4.2. Soit $f: a \longmapsto \int_0^1 \frac{t-1}{\ln t} t^a dt$.

- (a) Déterminer le domaine de définition de f. Étudier sa continuité et sa dérivabilité.
- (b) Donner une expression simple de f.

Exercice 4.3. Soit $F: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ définie par $F(x) = \int_0^{+\infty} \frac{e^{-t}}{t+x} dt$. Déterminer la limite et un équivalent de F en 0^+ et en $+\infty$.

Exercice 4.4. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction continue par morceaux, décroissante et de limite nulle en $+\infty$. Montrer la convergence de l'intégrale $\int_0^{+\infty} f(t) \sin(t) dt$.

Exercice 4.5. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^2 , nulle en 0. On pose

$$I_0 = \int_0^{+\infty} f(x)^2 dx$$
 $I_1 = \int_0^{+\infty} f'(x)^2 dx$ et $I_2 = \int_0^{+\infty} f''(x)^2 dx$

Montrer que si f^2 et $(f'')^2$ sont intégrables sur \mathbb{R}_+ , alors $(f')^2$ également et $I_1^2 \leq I_0 I_2$.

Exercice 4.6. Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction continue par morceaux et décroissante telle que l'intégrale $\int_0^{+\infty} f(t) dt$ converge et soit non nulle. Montrer, pour tout t > 0, la convergence de la série $\sum_{n \geq 1} f(nt)$ et en donner un équivalent lorsque $t \longrightarrow 0^+$.

Exercice 4.7. Soit $g \in \mathcal{C}(\mathbb{R}_+, \mathbb{R})$. On suppose que l'intégrale impropre $\int_0^{+\infty} g$ converge et vaut ℓ . Montrer que $\int_0^{+\infty} e^{-xt} g(t) dt \xrightarrow[x \to 0^+]{} \ell$.

 $Application: \text{ \'Etudier la dérivabilit\'e de } F: x \longmapsto \int_0^{+\infty} \mathrm{e}^{-xt} \, \frac{\sin t}{t} \, \mathrm{d}t \, \sin \left]0\,, +\infty \right[\text{ et donner une expression simple de } F(x). \text{ En déduire la valeur de } \int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t.$

Exercice 4.8. Étude de la fonction Gamma

On définit la fonction Gamma par $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- (a) Déterminer le domaine de définition \mathcal{D} de Γ .
- (b) Montrer que Γ est de classe \mathcal{C}^{∞} et convexe sur \mathcal{D} .
- (c) Montrer que Γ est logarithmiquement convexe, i.e. que $\ln \Gamma$ est convexe.
- (d) Montrer, pour tout $x \in \mathcal{D}$, les relations

$$\Gamma(x+1) = x\Gamma(x)$$
 et $\Gamma(n+1) = n!$

En déduire alors un équivalent de Γ en 0.

(e) En introduisant
$$I_n(x) = \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt$$
, montrer que

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)}$$

5 Suites et séries de fonctions

Exercice 5.1. Soit $S: x \longmapsto \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}$.

- (a) Déterminer le domaine de définition de S.
- (b) Montrer que S est de classe \mathcal{C}^{∞} .
- (c) Montrer que S est strictement monotone et convexe.
- (d) Déterminer la limite et un équivalent de S en chacune des bornes de son domaine de définition.

Exercice 5.2. Montrer que
$$\int_0^1 \frac{1}{t^t} dt = \sum_{n=1}^{+\infty} \frac{1}{n^n}$$
.

Exercice 5.3. On définit $S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{n+x}}$ pour $x \in \mathbb{R}_+^*$.

- (a) Montrer que S est bien définie, de classe \mathcal{C}^1 et déterminer ses variations.
- (b) Déterminer les limites de S en 0 et $+\infty$.
- (c) Simplifier S(x+1) + S(x) et en déduire un équivalent simple de S en $+\infty$.

Exercice 5.4. Soit $S: x \longmapsto \sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{x}{n}\right)$.

- (a) Déterminer le domaine de définition de S.
- (b) Étudier le caractère \mathcal{C}^1 de S.
- (c) Déterminer un équivalent de S en la borne inférieure de son domaine de définition.
- (d) Montrer que $S'(x) = -\int_0^1 \frac{t^x}{1+t} dt$.
- (e) En déduire un équivalent de S' en $+\infty$.

Exercice 5.5. Montrer que la suite de fonctions (f_n) définie par

$$f_n : \mathbb{R}_+ \longrightarrow \mathbb{R}, \qquad f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0, n] \\ 0 & \text{si } x > n \end{cases}$$

converge uniformément sur \mathbb{R}_+ vers la fonction $f: x \longmapsto e^{-x}$.

Exercice 5.6. I = [a, b] est ici un segment de \mathbb{R} . Soit $f_0 : I \longrightarrow \mathbb{R}$ continue. On définit par récurrence $f_{n+1}(x) = \int_{\mathbb{R}}^{x} f_n(t) dt$.

Montrer que $\sum f_n$ converge et déterminer sa somme.

Exercice 5.7. Soit (P_n) une suite de fonctions polynomiales qui converge uniformément sur \mathbb{R} vers une fonction f. Montrer que f est une fonction polynomiale.

Exercice 5.8. Soit (a_n) une suite de réels strictement positifs et strictement croissante de limite $+\infty$. Montrer que

$$\int_0^{+\infty} \left(\sum_{n=0}^{+\infty} (-1)^n e^{-a_n t} \right) dt = \sum_{n=0}^{+\infty} (-1)^n \frac{1}{a_n}$$

Exercice 5.9. Théorèmes de DINI

I est ici un segment de \mathbb{R} . Soit la suite (f_n) de fonctions de I dans \mathbb{R} continues telle que (f_n) converge simplement vers une fonction continue f. Montrer que la convergence vers f est uniforme lorsque :

- (i) La suite (f_n) est croissante.
- (ii) Chaque fonction f_n est croissante.
- (iii) Il existe $K \in \mathbb{R}_+^*$ tel que toutes les fonctions f_n soient K-lipschitziennes.

6 Réduction des endomorphismes

Exercice 6.1. Donner une condition nécessaire et suffisante sur $A \in \mathcal{M}_n(\mathbb{K})$ pour que la matrice par blocs $M = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$ soit diagonalisable.

Exercice 6.2. Matrice compagnon

Soit $P \in \mathbb{K}[X]$ unitaire de degré $n \geq 1$.

- (a) Montrer qu'il existe $M_P \in \mathcal{M}_n(\mathbb{K})$, appelée matrice compagnon de P, telle que $\chi_{M_P} = P$.
- (b) Montrer que $\mu_{M_P} = \chi_{M_P} = P$.

Exercice 6.3. Résultats divers

Soit E un \mathbb{R} -ev de dimension n et $u \in \mathcal{L}(E)$.

- (a) On suppose dans cette question que u est diagonalisable de valeurs propres distinctes $\lambda_1, \ldots, \lambda_p$ avec $p \in [1, n]$. Montrer que $\mu_u = \prod_{k=1}^p (X \lambda_k)$.
- (b) Montrer que u stabilise une droite ou un plan.

(c) On décompose χ_u en produit de facteurs irréductibles : $\chi_u = \prod_{k=1}^r P_k^{\alpha_k}$ où $r, \alpha_1, \ldots, \alpha_r$ sont des entiers naturels non nuls et P_1, \ldots, P_r sont des polynômes irréductibles. Montrer que pour tout $k \in [1, r]$, dim Ker $P_k^{\alpha_k} = \alpha_k \deg P_k$.

Exercice 6.4. Soient $A, B \in \mathcal{M}_n(\mathbb{C})$.

- (a) Si A est inversible, montrer que $\chi_{AB} = \chi_{BA}$.
- (b) En considérant la matrice $(A \lambda I_n)$ avec $\lambda \in \mathbb{C}$, montrer que c'est encore le cas si A n'est pas inversible.
- (c) Idem en utilisant cette fois la matrice J_r .
- (d) Idem en considérant les matrices $A' = \begin{pmatrix} X \mathbf{I}_n & -A \\ B & -\mathbf{I}_n \end{pmatrix}$ et $B' = \begin{pmatrix} \mathbf{I}_n & 0 \\ B & -X \mathbf{I}_n \end{pmatrix}$.

Exercice 6.5. Soit \mathbb{K} un corps fini et commutatif à $q \geq 1$ éléments. Soit E un \mathbb{K} -ev de dimension finie et $f \in \mathcal{L}(E)$. Montrer que f est diagonalisable si et seulement si $f^q = f$.

Exercice 6.6. Soit E un \mathbb{C} -ev de dimension finie $n \geq 1$ et $f \in \mathcal{L}(E)$ diagonalisable. Montrer l'équivalence entre

- (i) Tous les espaces propres de f sont des droites.
- (ii) Il n'existe qu'un nombre fini de sev stables par f.

Exercice 6.7. Soit $n \geq 2$ et

$$M = \begin{pmatrix} a & b & \cdots & b \\ b & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}), \text{ avec } b \neq 0.$$

- (a) Déterminer les valeurs propres de M et montrer que M est diagonalisable.
- (b) Lorsque M est inversible, calculer l'inverse de M.
- (c) Pour $p \in \mathbb{N}$, calculer M^p .

Exercice 6.8. Soit $n \in \mathbb{N}^*$. Déterminer $\Gamma = \{M \in \mathcal{M}_n(\mathbb{R}) \mid M^5 = M^2 \text{ et } \operatorname{tr} M = n\}$.

Exercice 6.9. Soit $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$. On suppose que AB = 0. Montrer que A et B sont cotrigonalisables.

Exercice 6.10. Soit E un \mathbb{C} -ev de dimension finie $n \geq 1$ et $f \in \mathcal{L}(E)$ tel que pour tout entier p, $1 \leq p \leq n$, $\operatorname{tr}(f^p) = 0$. Montrer que f est nilpotente.

Exercice 6.11. Soient a_1, \ldots, a_{n-1} et b_1, \ldots, b_{n-1} des réels avec $n \geq 3$. Donner une condition nécessaire et suffisante pour que la matrice

$$A = \begin{pmatrix} 0 & \cdots & 0 & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & b_{n-1} \\ a_1 & \cdots & a_{n-1} & 0 \end{pmatrix}$$

soit diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 6.12. Diagonalisation d'une matrice circulante

On considère la matrice circulante A suivante :

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_n & a_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ a_2 & \cdots & a_n & a_1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C}) \text{ et on pose } J = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ 0 & & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & \cdots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$$

En exprimant alors A comme un polynôme en la matrice J, diagonaliser A

Exercice 6.13. Pour $n \in \mathbb{N}^*$, on pose

$$A_{n} = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R})$$

On définit le polynôme P_n par $P_n(x) = \det(x I_n - A_n)$ avec $x \in \mathbb{R}$.

- (a) Pour $x \in \mathbb{R}$ fixé, déterminer une relation linéaire d'ordre 2 vérifiée par la suite $(P_n(x))$.
- (b) Soit $x \in \mathbb{R}$ tel que |2-x| < 2. Après avoir justifié l'existence d'un unique $\theta \in]0, \pi[$ tel que $2\cos\theta = 2-x$, déterminer $P_n(x)$ en fonction de $\sin((n+1)\theta)$ et $\sin(\theta)$.
- (c) Déterminer les valeurs propres de A_n .
- (d) Montrer alors que A_n est diagonalisable, puis déterminer une base de vecteurs propres de A_n en précisant pour chacun la valeur propre associée.

Exercice 6.14. Équation de Sylvester

Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Montrer l'équivalence entre :

- (i) Pour tout $C \in \mathcal{M}_n(\mathbb{C})$, il existe un unique $X \in \mathcal{M}_n(\mathbb{C})$ tel que AX XB = C.
- (ii) Pour tout $X \in \mathcal{M}_n(\mathbb{C})$, $AX = XB \implies X = 0$.
- (iii) $\chi_A(B) \in \mathrm{GL}_n(\mathbb{C}).$
- (iv) A et B n'ont pas de valeurs propres communes.

Exercice 6.15. Réduction simultanée

Soit E un \mathbb{K} -ev de dimension finie $n \geq 1$. On considère une famille $(f_i)_{i \in I}$ d'endomorphismes de E commutant deux à deux.

- (a) Si les f_i sont diagonalisables, montrer qu'on peut les diagonaliser tous dans une même base.
- (b) Si les f_i sont trigonalisables, montrer qu'on peut les trigonaliser tous dans une même base.

Exercice 6.16. Décomposition de Dunford

Soit $u \in \mathcal{L}(E)$ tel que son polynôme caractéristique χ_u soit scindé sur \mathbb{K} . Montrer qu'il existe un unique couple $(d, n) \in (\mathcal{L}(E))^2$ avec d diagonalisable et n nilpotente tel que u = d + n et $d \circ n = n \circ d$. Application : Soit $M \in \mathcal{M}_n(\mathbb{C})$. Donner une condition nécessaire et suffisante sur M pour que $e^{tM} \longrightarrow 0$.

Exercice 6.17. Matrices entières d'ordre fini

Soit $n \geq 2$. Une matrice $M \in \mathcal{M}_n(\mathbb{C})$ est d'ordre fini s'il existe un entier $d \geq 1$ tel que $M^d = I_n$. Dans ce cas, le plus petit entier $\omega \geq 1$ vérifiant $M^\omega = I_n$ s'appelle l'ordre de M, qu'on note aussi $\omega(M)$. On note OF_n le sous-ensemble de $\mathcal{M}_n(\mathbb{Z})$ constitué des matrices d'ordre fini.

On cherche à montrer qu'à n fixé, l'ensemble $\{\omega(M) \mid M \in OF_n\}$ est borné et que les groupes multiplicatifs inclus dans OF_n sont finis. Soit donc $M \in OF_n$.

- (a) Montrer que M est diagonalisable et exprimer ses valeurs propres.
- (b) Montrer que les coefficients de χ_M sont des entiers relatifs et que ses racines sont toutes de module 1.
- (c) On écrit $\chi_M(z) = \sum_{k=0}^n a_k z^k$. Montrer que $|a_k| \leq \binom{n}{k}$ pour tout $k \in [0, n]$.
- (d) Montrer alors l'existence d'un entier K_n ne dépendant que de n tel que si $M \in OF_n$, alors $\omega(M) \leq K_n$.
- (e) Soit désormais G un sous-groupe de $\mathrm{GL}_n(\mathbb{Q})$ inclus dans OF_n et $M \in G$. Montrer que $M = \mathrm{I}_n$ si et seulement si $\mathrm{tr} M = n$.
- (f) Soit V = Vect(G) le sev de $\mathcal{M}_n(\mathbb{C})$ engendré par G. Montrer que V est de dimension finie et justifier l'existence d'une base (M_1, \ldots, M_d) de V formée d'éléments de G.
- (g) Soit $T: G \longrightarrow \mathbb{C}^d$ définie par $T(A) = (\operatorname{tr}(AM_1), \dots, \operatorname{tr}(AM_d))$. Montrer que T est injective. En déduire que G est fini.

7 Espaces vectoriels normés et topologie

Exercice 7.1. Soit I un segment non réduit à un point de \mathbb{R} et $E = \mathcal{C}_{pm}(I, \mathbb{R})$.

- (a) Déterminer une suite de fonctions (f_n) de E telle que $||f_n||_1 \longrightarrow_{n \to +\infty} 0$ et $||f_n||_{\infty} \longrightarrow_{n \to +\infty} +\infty$.
- (b) Déterminer une suite de fonctions (f_n) de E telle que $||f_n||_2 \underset{n \to +\infty}{\longrightarrow} 0$ et $||f_n||_{\infty} \underset{n \to +\infty}{\longrightarrow} +\infty$.
- (c) Déterminer une suite de fonctions (f_n) de E telle que $||f_n||_1 \underset{n \to +\infty}{\longrightarrow} 0$ et $||f_n||_2 \underset{n \to +\infty}{\longrightarrow} +\infty$.

Exercice 7.2. Soit E un \mathbb{R} -ev normé et A, B deux parties de E. On note

$$A + B = \{a + b \mid (a, b) \in A \times B\}$$

- (a) Si A est ouvert et B quelconque, montrer que A + B est ouvert.
- (b) Si A est compact et B fermé, montrer que A + B est fermé.

Exercice 7.3. Soit E un \mathbb{K} -ev normé.

- (a) Soient A et B deux parties disjointes de E avec A ouvert. Montrer que $A \cap \overline{B} = \emptyset$.
- (b) Soit U un ouvert non vide de E. Montrer que Vect U = E.
- (c) Soient U un ouvert dense de E et D une partie dense de E. Montrer que $U \cap D$ est dense dans E.
- (d) Soit A une partie convexe de E. Montrer que l'adhérence et l'intérieur de A sont convexes.

Exercice 7.4. Soit E un \mathbb{K} -ev normé de dimension finie et K un compact de E. On pose

$$\mathcal{A} = \{ u \in \mathcal{L}(E) \mid u(K) \subset K \}$$

- (a) Montrer que A est compact si et seulement si Vect K = E.
- (b) On suppose dans cette question que 0 est intérieur à K. Montrer que \mathcal{A} est un compact de $\mathcal{L}(E)$ et que pour tout $u \in \mathcal{A}$, $|\det u| \leq 1$.

Exercice 7.5. Soient E, F, K trois \mathbb{K} -ev normés avec K compact. Soit

$$\begin{array}{cccc} f: & E \times K & \longrightarrow & F \\ & (\lambda, x) & \longmapsto & f(\lambda, x) \end{array}$$

une application continue. Pour tout $y \in F$, on note $E_y = \{\lambda \in E \mid \exists x \in K, \ f(\lambda, x) = y\}.$

- (a) Montrer que E_y est un fermé de E.
- (b) On fixe $y \in E$. On suppose que pour tout $\lambda \in E_y$, il existe un unique $x \in K$ tel que $f(\lambda, x) = y$ et on note $x = \varphi(\lambda)$. Montrer que l'application $\varphi : E_y \longrightarrow K$ ainsi définie est continue.

Exercice 7.6. Soit un entier n > 2.

- (a) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que A et 2A soient semblables. Montrer que A est nilpotente.
- (b) Montrer qu'il n'existe pas de norme N sur $\mathcal{M}_n(\mathbb{C})$ telle que pour tout $A \in \mathcal{M}_n(\mathbb{C})$ et tout $P \in GL_n(\mathbb{C})$, $N(PAP^{-1}) = N(A)$.

Exercice 7.7. Théorème du relèvement

Soit $f \in \mathcal{C}^k(I,\mathbb{C})$ telle que |f(t)| = 1 pour tout $t \in I$. On souhaite prouver l'existence de $\alpha \in \mathcal{C}^k(I,\mathbb{R})$ telle que pour tout $t \in I$ on ait $f(t) = e^{i\alpha(t)}$.

- (a) Montrer que si α_1 et α_2 sont deux solutions du problème, alors il existe $k \in \mathbb{Z}$ tel que pour tout $t \in I$, $\alpha_2(t) = \alpha_1(t) + 2k\pi$.
- (b) Soit $t_0 \in I$ et α_0 un argument de $f(t_0)$. En considérant $\alpha(t) = \alpha_0 + \frac{1}{i} \int_{t_0}^t \frac{f'(x)}{f(x)} dx$, montrer que le problème admet bien une solution.

Exercice 7.8. Théorème des compacts emboîtés

Soit E un \mathbb{K} -ev normé et $(K_i)_{i\in\mathbb{N}}$ une famille de compact non vides de E décroissante pour l'inclusion.

- (a) Montrer que $\bigcap_{i \in \mathbb{N}} K_i \neq \emptyset$.
- (b) On note diam $(A) = \sup_{(x,y) \in A^2} d(x,y) \in \mathbb{R} \cup \{+\infty\}$. Montrer que si diam $(K_i) \xrightarrow[i \to +\infty]{} 0$, alors $\bigcap_{i \in \mathbb{N}} K_i$ est réduit à un unique élément de E.
- (c) Théorème de DINI: Soit K un compact de E, (f_n) une suite de fonctions dans $C(K, \mathbb{R})$ tel que (f_n) converge simplement vers $f \in C(K, \mathbb{R})$. On suppose de plus que (f_n) est croissante, i.e. pour tout $n \in \mathbb{N}$, pour tout $x \in K$, $f_{n+1}(x) \geq f_n(x)$. Montrer alors que la convergence est uniforme.

Exercice 7.9. Théorèmes de points fixes

Soit E un \mathbb{K} -ev normé de dimension finie et K une partie non vide de E.

- (a) Théorème de BANACH : Soit $f: K \longrightarrow K$ contractante, i.e. il existe $\lambda \in [0, 1[$ tel que pour tout $(x,y) \in K^2$, $||f(x) f(y)|| \le \lambda ||x y||$. Montrer que f admet un unique point fixe dans K.
- (b) On suppose K compact et convexe. Soit $f:K\longrightarrow K$ 1-lipschitzienne. Montrer que f admet un point fixe.

(c) On suppose K compact. Soit $f: K \longrightarrow K$ vérifiant

$$\forall (x,y) \in K^2, \ x \neq y \implies d(f(x), f(y)) < d(x,y)$$

À l'aide du théorème des compacts emboîtes, montrer que f admet un unique point fixe.

Exercice 7.10. Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{C})$.

- (a) Montrer que $\det(e^A) = e^{\operatorname{tr} A}$.
- (b) En déduire que si $M \in \mathcal{M}_n(\mathbb{R})$ est l'exponentielle d'une matrice réelle, alors det M > 0.
- (c) Si $A \in \mathcal{M}_n(\mathbb{R})$ est antisymétrique, montrer que e^A est une matrice de rotation, i.e. $e^A \in \mathcal{SO}_n(\mathbb{R})$.

Exercice 7.11. Lemme de RIEMANN-LEBESGUE Soit $f \in \mathcal{C}_{pm}([a,b],\mathbb{K})$.

- (a) Montrer que $\lim_{\lambda \to +\infty} \int_a^b f(t) e^{i\lambda t} dt = 0.$
- (b) Montrer, en justifiant la densité de $C^1([a,b],\mathbb{K})$ dans $C^0([a,b],\mathbb{K})$, que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(t) \sin(\lambda t) dt = 0$$

Exercice 7.12. Isométries d'un compact

Soit E un \mathbb{K} -ev normé compact et $f: E \longrightarrow E$ une application continue vérifiant pour tout $(x,y) \in E^2$, $d(f(x),f(y)) \geq d(x,y)$.

- (a) Montrer que f est une isométrie, i.e. pour tout $(x,y) \in E^2$, d(f(x),f(y)) = d(x,y).
- (b) Montrer que f est bijective.

Exercice 7.13. Soit E un \mathbb{K} -ev muni d'une norme sous-multiplicative $\|\cdot\|$. On note $\mathcal{L}_c(E)$ l'algèbre des endomorphismes continus de E. Soit $f \in \mathcal{L}_c(E)$.

(a) Pour tout n et pour tout $g \in \mathcal{L}_c(E)$, montrer que

$$\left\| e^g - \left(\operatorname{Id}_E + \frac{g}{n} \right)^n \right\| \le e^{\|g\|} - \left(1 + \frac{\|g\|}{n} \right)^n$$

(b) En déduire que

$$\lim_{n \to +\infty} \left(\mathrm{Id}_E + \frac{f}{n} \right)^n = \mathrm{e}^f$$

(c) Plus généralement, si (f_n) est une suite de $\mathcal{L}_c(E)$ qui converge vers f, montrer que

$$\lim_{n \to +\infty} \left(\operatorname{Id}_E + \frac{f_n}{n} \right)^n = e^f$$

(d) Soient $u, v \in \mathcal{L}_c(E)$. Montrer que

$$\lim_{n \to +\infty} \left(\exp\left(\frac{u}{n}\right) \exp\left(\frac{v}{n}\right) \right)^n = e^{u+v}$$

Exercice 7.14. Une preuve du théorème de CAYLEY-HAMILTON

Soient $A \in \mathcal{M}_n(\mathbb{R})$, $\theta \in \mathbb{R}$ et $r > \max(\|A\|, \max_{\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)} |\lambda|)$ où $\|\cdot\|$ est une norme sous-multiplicative de \mathbb{R}^n .

- (a) Montrer que la matrice $(re^{i\theta}I_n A)$ est inversible dans $\mathcal{M}_n(\mathbb{C})$ et expliciter son inverse.
- (b) Pour $k \in \mathbb{N}$, calculer

$$\frac{1}{2\pi} \int_{0}^{2\pi} r^{k+1} e^{i(k+1)\theta} (re^{i\theta} I_n - A)^{-1} d\theta$$

(c) Montrer alors que

$$\chi_A(A) = \frac{1}{2\pi} \int_0^{2\pi} r e^{i\theta t} \operatorname{Com}(r e^{i\theta} \mathbf{I}_n - A) d\theta$$

(d) En déduire que $\chi_A(A)$ est la matrice nulle.

Exercice 7.15. Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que A est diagonalisable si et seulement si l'ensemble $\mathcal{S}(A) = \{PAP^{-1} \mid P \in \mathrm{GL}_n(\mathbb{C})\}$ est fermé.

Exercice 7.16. Soit $p \in \mathbb{N}^*$, $n \geq 2$ et k un entier tel que $1 \leq k \leq n-1$.

- (a) Soit $M \in \mathcal{M}_{n,p}(\mathbb{R})$. Soit r le plus grand entier tel qu'il existe une sous-matrice carrée de M de côté r inversible. Montrer que $r = \operatorname{rg} M$.
- (b) Montrer que $\Gamma_k = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{rg} A \leq k\}$ est fermé dans $\mathcal{M}_n(\mathbb{R})$.
- (c) Déterminer l'adhérence de l'ensemble $\Delta_k = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{rg} A = k\}.$

Exercice 7.17. Adhérence et intérieur des matrices diagonalisables

On note $D_{\mathbb{K}}$ l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ et n, p, q désignent des entiers naturels non nuls.

(a) Soit $A, B \in \mathbb{K}[X]$, $p = \deg A$ et $q = \deg B$. Montrer que l'application

$$\Phi: \quad (\mathbb{K}_{q-1}[X], \mathbb{K}_{p-1}[X]) \longrightarrow \mathbb{K}_{q+p-1}[X]$$

$$(U, V) \longmapsto AU + BV$$

est un isomorphisme si et seulement si A et B sont premiers entre eux.

- (b) Montrer alors que l'ensemble $\mathcal{V} = \{P \in \mathbb{K}[X] \mid \deg P = n \text{ et } P \text{ à racines simples}\}$ est un ouvert de $\mathcal{U} = \{P \in \mathbb{K}[X] \mid \deg P = n\}$.
- (c) En déduire que l'ensemble $\mathcal{E}_{\mathbb{K}}$ des matrices de $\mathcal{M}_n(\mathbb{K})$ admettant n valeurs propres distinctes est un ouvert puis déterminer l'intérieur de $D_{\mathbb{K}}$.
- (d) Densité des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$: Montrer que $\overline{D_{\mathbb{C}}} = \mathcal{M}_n(\mathbb{C})$.
- (e) Montrer que si $f \in \mathcal{L}(\mathbb{R}^n)$ est trigonalisable, elle l'est dans une base orthonormée. Montrer alors que $\overline{D_{\mathbb{R}}} = \mathcal{T}_{\mathbb{R}}$ avec $\mathcal{T}_{\mathbb{R}}$ l'ensemble des matrices trigonalisables de $\mathcal{M}_n(\mathbb{R})$.

8 Séries entières

Exercice 8.1. Produit d'HADAMARD

(a) Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayon de convergence respectifs R_a et R_b . Montrer que si R est le rayon de convergence de la série entière $\sum a_n b_n z^n$, on a $R \ge R_a R_b$. (b) Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0 telle que $a_n > 0$ pour tout n. Discuter, en fonction du paramètre $\alpha \in \mathbb{R}$, du rayon de convergence R' de la série entière $\sum a_n^{\alpha} z^n$.

Exercice 8.2. Calcul de séries entières

- (a) Calculer $\sum_{n=1}^{+\infty} \frac{1}{n(2n+1)}$.
- (b) Calculer $\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$.
- (c) Déterminer le rayon de convergence et la somme de la série entière $\sum_{n\geq 1} H_n z^n$.

Exercice 8.3. Méthode de l'équation différentielle

- (a) Soit $f(x) = \exp\left(\sum_{n=1}^{+\infty} \frac{x^n}{n^2}\right)$. Montrer que f est développable en série entière sur]-1,1[.
- (b) Soit $g(x) = (\arcsin x)^2$. Montrer que g est développable en série entière sur]-1,1[.

Exercice 8.4. Critère d'Hadamard

Si (u_n) est une suite positive bornée, on note $\overline{\lim} u_n$ la limite de la suite $(\sup_{n>n} u_p)_{n\in\mathbb{N}}$.

Justifier l'existence de cette limite pour (u_n) . Montrer ensuite que le rayon de convergence de la série entière $\sum_{n\geq 0} a_n z^n$ est $\frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}$.

Exercice 8.5. Inverse d'une fonction développable en série entière

Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ une série entière de rayon de convergence strictement positif telle que $a_0 \neq 0$. On cherche à prouver que la fonction $\frac{1}{f}$ est développable en série entière au voisinage de zéro.

- (a) On suppose que $\frac{1}{f} = \sum_{n=0}^{+\infty} b_n z^n$ de rayon de convergence R > 0. Déterminer une relation de récurrence vérifiée par la suite (b_n) .
- (b) Soit alors (b_n) la suite définie par la relation de récurrence précédente. Montrer qu'il existe une constante réelle C > 0 telle que pour tout n, on ait $|b_n| \leq \frac{C^n}{|a_0|}$. En déduire que $\frac{1}{f}$ est développable en série entière.

Exercice 8.6. Soit (u_n) la suite réelle définie par $u_0 = 1$ et pour tout n, $u_{n+1} = \sum_{k=0}^{n} u_k u_{n-k}$.

- (a) On suppose que la série entière $f(x) = \sum_{n=0}^{+\infty} u_n x^n$ a un rayon de convergence R > 0. Montrer que pour tout $x \in]-R, R[$, on a $xf(x)^2 f(x) + 1 = 0$.
- (b) En déduire qu'il existe un réel $\rho > 0$ tel que $f(x) = \frac{1 \sqrt{1 4x}}{2x}$ pour tout $x \in]-\rho, \rho[\setminus \{0\}]$.
- (c) Déterminer alors une expression de u_n en fonction de n.

Exercice 8.7. Pour $x \in \mathbb{R}$, x > -1, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{x+n}$. Montrer que f est développable en série entière au voisinage de 0.

Exercice 8.8. Séries génératrices

- 1. Soit B_n le nombre de partitions d'un ensemble à n éléments. On convient que $B_0=1$.
 - (a) Montrer que pour tout entier n, $B_{n+1} = \sum_{k=0}^{n} {n \choose k} B_k$.
 - (b) On pose $f(z) = \sum_{n=0}^{+\infty} \frac{B_n}{n!} z^n$. Montrer que le rayon de convergence R de cette série entière n'est pas nul puis exprimer f(z) par des fonctions usuelles pour |z| < R.
 - (c) Montrer que $B_n = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{k^n}{k!}$.
- 2. Soit d_n le nombre de dérangements (i.e. de permutations sans point fixe) d'un ensemble à n éléments. On convient que $d_0=1$.
 - (a) Calculer $\sum_{k=0}^{n} \binom{n}{k} d_k$.
 - (b) On pose $D(z) = \sum_{n=0}^{+\infty} \frac{d_n}{n!} z^n$. Montrer que le rayon de convergence R de cette série entière n'est pas nul puis calculer D(z) pour |z| < R.
 - (c) Déterminer alors d_n et montrer que pour tout entier $k \geq 1$, $d_k = \lfloor \frac{k!}{e} + \frac{1}{2} \rfloor$. En déduire $\lim_{k \to +\infty} d_k$.

Exercice 8.9. Soient $\sum a_n x^n$ et $\sum b_n x^n$ deux séries entières de rayon de convergence $R \ge 1$. On suppose que $b_n > 0$ pour tout n et que la série numérique $\sum b_n$ diverge. On pose $A_n = \sum_{k=0}^n a_k$ et $B_n = \sum_{k=0}^n b_k$.

(a) S'il existe $\ell \in \mathbb{C}$ tel que $\lim_{n \to +\infty} \frac{a_n}{b_n} = \ell$ ou $\lim_{n \to +\infty} \frac{A_n}{B_n} = \ell$, montrer que

$$\lim_{x \to 1^{-}} \frac{\sum_{n=0}^{+\infty} a_n x^n}{\sum_{n=0}^{+\infty} b_n x^n} = \ell$$

(b) Si on suppose simplement $\lim_{n\to +\infty}\sum_{k=0}^{n-1}A_k=\ell$ avec $\ell\in\mathbb{C},$ montrer alors que $\lim_{x\to 1^-}\sum_{n=0}^\infty a_nx^n=\ell.$

Exercice 8.10. Théorème d'Abel

Soit (a_n) une suite de réels telle que la série $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ soit de rayon de convergence 1. On suppose de plus que la série $\sum_n a_n$ converge et on note $R_n = \sum_{k=n+1}^{+\infty} a_k$.

(a) Montrer que pour tout $x \in [0, 1[$ et tout $n \ge 1,$ on a

$$f(x) - \sum_{k=0}^{+\infty} a_k = \left(\sum_{k=0}^n a_k(x^k - 1)\right) + \left((x - 1)\sum_{k=n+1}^{+\infty} R_k x^k + R_n(x^{n+1} - 1)\right)$$

(b) Montrer alors que $\lim_{x\to 1^-} f(x) = \sum_{k=0}^{+\infty} a_k$.

Exercice 8.11. Théorème taubérien faible

Soit $f(x) = \sum_{n=0}^{+\infty} a_n z^n$ une série entière de rayon de convergence 1. On suppose de plus qu'il existe

 $S \in \mathbb{C}$ tel que $\lim_{x \to 1^-} f(x) = S$ et que $a_n = o(\frac{1}{n})$. Montrer que $\sum a_n$ converge et que $\sum_{n=0}^{+\infty} a_n = S$.

Exercice 8.12. Principe des zéros isolés

Soit $f(t) = \sum_{n=0}^{+\infty} a_n t^n$ de rayon de convergence R > 0.

- (a) On suppose qu'il existe une suite (u_n) dans]-R, R[non stationnaire et de limite nulle telle que $f(u_n) = 0$ pour tout n. Montrer que f est nulle.
- (b) Montrer que f est développable en série entière au voisinage de tout point de]-R,R[.
- (c) Montrer alors que si f admet une infinité de zéros dans un compact de]-R, R[, alors f est nulle.

Exercice 8.13. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $\rho(A) = \max_{\lambda \in \operatorname{Sp}_{\mathbb{C}} A} |\lambda|$ le rayon spectral de A. On suppose que $\rho(A) < 1$.

- (a) Montrer que la série $\sum_{k>1} \frac{\operatorname{tr}(A^k)}{k}$ converge. On note s sa somme.
- (b) Soit $P_A(t) = t^n \chi_A(\frac{1}{t})$ avec $t \in [0, 1]$. Après avoir justifier l'existence de l'intégrale, montrer que

$$\sum_{k=1}^{+\infty} \frac{\operatorname{tr}(A^k)}{k} = -\int_0^1 \frac{P_A'(t)}{P_A(t)} \, \mathrm{d}t$$

- (c) Soit $\gamma : \mathbb{R} \longrightarrow \mathbb{C}^*$ de classe \mathcal{C}^1 . Pour tout réel t, montrer que $\exp\left(\int_0^t \frac{\gamma'(u)}{\gamma(u)} du\right) = \frac{\gamma(t)}{\gamma(0)}$.
- (d) Montrer alors que $e^{-s} = \det(I_n A)$.

Exercice 8.14. Théorème de LIOUVILLE

- 1. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ une série entière complexe de rayon de convergence $R \in \mathbb{R}_+^* \cup \{+\infty\}$. Pour $r \in [0, R[$, soit $g_r : \theta \in \mathbb{R} \longmapsto f(re^{i\theta}) \in \mathbb{C}$ et $m_r = \sup_{\theta \in [0, 2\pi]} |g_r(\theta)|$.
 - (a) Soit $r \in [0, R[$. Montrer la formule de CAUCHY :

$$a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) e^{-in\theta} d\theta$$

- (b) Montrer que pour tout $n \in \mathbb{N}^*$ et $r \in [0, R[, |a_n r^n| \le m_r]$
- 2. On suppose ici $R = +\infty$
 - (a) Si f est bornée sur \mathbb{C} , montrer que f est constante.
 - (b) Soit $P \in \mathbb{R}[X]$ à coefficients positifs tel que $|f(z)| \leq P(|z|)$ pour tout $z \in \mathbb{C}$. Montrer que f est un polynôme.
- 3. Soit D le disque ouvert unité et $f:\overline{D}\longrightarrow\mathbb{C}$ continue et développable en série entière sur D.
 - (a) On suppose que f est nulle sur le cercle unité $\mathbb U$. Montrer que f est nulle.
 - (b) On suppose que f est nulle sur un arc de cercle unité de longueur $\alpha > 0$. Montrer que f est nulle.

9 Endomorphismes symétriques des espaces euclidiens

Dans cette section, E désigne un \mathbb{R} -ev muni du produit scalaire $\langle \cdot, \cdot \rangle$.

Exercice 9.1. On suppose E euclidien. Soit $u \in \mathcal{O}(E)$ et $v = u - \mathrm{Id}_E$.

- (a) Montrer que $\operatorname{Ker} v = (\operatorname{Im} v)^{\perp}$.
- (b) Soit $x \in E$. On pose $u_n = \frac{1}{n} \sum_{k=0}^{n-1} u^k(x)$. Montrer que la suite $(u_n(x))$ converge vers le projeté orthogonal de x sur Ker v.

Exercice 9.2. Théorème de MASCHKE

On suppose E euclidien. Soit G un sous-groupe fini de GL(E) de cardinal n.

(a) Soit $\langle \cdot, \cdot \rangle$ un produit scalaire sur E. On pose pour tout $x, y \in E$,

$$(x|y) = \frac{1}{n} \sum_{g \in G} \langle g(x), g(y) \rangle$$

Montrer que $(\cdot|\cdot)$ est un produit scalaire sur E.

- (b) Montrer que les éléments de G sont orthogonaux pour $(\cdot|\cdot)$.
- (c) Soit F un sev de E stable par tous les éléments de G. Montrer qu'il existe un supplémentaire de F dans E stable par tous les éléments de G.
- (d) Soit $p = \frac{1}{n} \sum_{q \in G} g$. Montrer que p est un projecteur orthogonal pour $(\cdot|\cdot)$.
- (e) Montrer que pour tout $g \in G$, on a $p \circ g = g \circ p = p$. En déduire que $\operatorname{Im} p = \bigcap_{g \in G} \operatorname{Ker}(g \operatorname{Id}_E)$.

Exercice 9.3. Générateurs de $\mathcal{O}(E)$

On suppose E euclidien de dimension n.

- (a) Soient $x, y \in E$ distincts, non nuls et de même norme. Montrer qu'il existe une unique réflexion qui envoie x sur y.
- (b) Soit $u \in \mathcal{O}(E)$. Montrer par récurrence sur $r = n \dim \operatorname{Ker}(u \lambda \operatorname{Id}_E)$ que u est la composition d'au plus r réflexions.

Exercice 9.4. Soit λ une valeur propre réelle de $M \in \mathcal{M}_n(\mathbb{R})$ antisymétrique. Montrer que λ est nul. En déduire la dimension maximale d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué de matrices toutes diagonalisables.

Exercice 9.5. Soient $A, B \in \mathcal{S}_n(\mathbb{R})$. On suppose que la fonction $f: t \longmapsto e^{tA} - e^{tB}$ est bornée sur \mathbb{R} . Montrer que A = B.

Exercice 9.6. Théorème min-max de Courant-Fischer

Soit $A \in \mathcal{S}_n(\mathbb{R})$ et $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ ses valeurs propres réelles. Soit également (e_1, \ldots, e_n) une base orthonormale de vecteurs propres associés. Pour $k \in [\![1\,,n]\!]$, on désigne par V_k le sev $\mathrm{Vect}(e_1,\ldots,e_k)$, par W_k le sev $\mathrm{Vect}(e_k,\ldots,e_n)$ et par \mathcal{F}_k l'ensemble des sev de \mathbb{R}^n de dimension k. On pose de plus pour tout $x \in \mathbb{R}^n \setminus \{0\}$, $R_A(x) = \frac{\langle Ax, x \rangle}{\|x\|^2}$.

(a) Montrer que
$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{0\}} R_A(x)$$
 et que $\lambda_n = \max_{x \in \mathbb{R}^n \setminus \{0\}} R_A(x)$.

- (b) Montrer que $\max_{x \in V_k \setminus \{0\}} R_A(x) = \lambda_k$.
- (c) Soit V un sev de \mathbb{R}^n de dimension k. Vérifier que $V \cap W_k \neq \{0\}$. En déduire que $\max_{x \in V \setminus \{0\}} R_A(x) \geq \lambda_k$.
- (d) Déduire des questions précédentes le théorème du min-max : $\lambda_k = \min_{V \in \mathcal{F}_k \setminus \{0\}} \max_{x \in V \setminus \{0\}} R_A(x)$.

Exercice 9.7. Endomorphismes symétriques positifs et décomposition polaire

On suppose E euclidien. Soit $f \in \mathcal{S}(E)$. On dit que f est positif lorsque ses valeurs propres sont positives et on note $\mathcal{S}^+(E)$ l'ensemble des endomorphismes positifs. De même, on dit que f est défini positif lorsque ses valeurs propres sont strictement positives et on note $\mathcal{S}^{++}(E)$ l'ensemble des endomorphismes définis positifs.

- (a) Soit $f \in \mathcal{S}^+(E)$. Montrer qu'il existe un unique $g \in \mathcal{S}^+(E)$ (noté \sqrt{f}) tel que $g^2 = f$.
- (b) Théorème de RIESZ : Soit φ une forme linéaire sur E. Montrer qu'il existe un unique $x_0 \in E$ tel que pour tout $x \in E$, $\varphi(x) = \langle x, x_0 \rangle$.
- (c) Soit $f \in \mathcal{L}(E)$. Montrer qu'il existe un unique endomorphisme de E, noté f^* et appelé adjoint de f tel que pour tout $(x,y) \in E^2$, $\langle f(x), y \rangle = \langle x, f^*(y) \rangle$.
- (d) Montrer que $f \in \mathcal{S}^+(E)$ (resp. $f \in \mathcal{S}^{++}(E)$) si et seulement si pour tout $x \in E$, $\langle f(x), x \rangle \geq 0$ (resp. $\forall x \in E \setminus \{0\}, \langle f(x), x \rangle > 0$).
- (e) Montrer que $S^+(E)$ est un fermé de $\mathcal{L}(E)$.
- (f) Soit $M \in \mathcal{S}_n^+(\mathbb{R})$. Montrer que $\operatorname{Com} M \in \mathcal{S}_n^+(\mathbb{R})$.
- (g) Décomposition polaire : Soit $f \in GL(E)$. Montrer qu'il existe un unique couple $(u, s) \in \mathcal{O}(E) \times \mathcal{S}^{++}(E)$ tel que $f = u \circ s$.

Exercice 9.8. Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- (a) On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $A^p \in \mathcal{S}_n^{++}(\mathbb{R})$. Montrer que A est diagonalisable.
- (b) On suppose que dim Ker $A^2 = 1$ et qu'il existe $p \in \mathbb{N}^*$ tel que $A^p \in \mathcal{S}_n^+(\mathbb{R})$. Montrer que A est diagonalisable.
- (c) Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable telle que $A^5 + A^3 + A = 3 \operatorname{I}_n$. Déterminer A.

Exercice 9.9. Soient A et B dans $\mathcal{M}_n(\mathbb{R})$ telles que ${}^tAA = {}^tBB$.

- (a) On suppose A inversible. Montrer qu'il existe $P \in \mathcal{O}_n(\mathbb{R})$ tel que B = PA.
- (b) Montrer le résultat précédent pour $A \in \mathcal{M}_n(\mathbb{R})$ quelconque.

Exercice 9.10. On suppose E euclidien. Soient $f \in \mathcal{S}(E)$ et $g \in \mathcal{S}^{++}(E)$ tels que pour tout $x \in E$, $|\langle f(x), x \rangle| \leq \langle g(x), x \rangle$.

- (a) On pose pour tout $x, y \in E$, $(x|y) = \langle g(x), y \rangle$. Montrer que $(\cdot|\cdot)$ est un produit scalaire sur E.
- (b) Montrer que $|\det f| \le \det g$.
- (c) On suppose maintenant $g \in \mathcal{S}(E)$. Montrer que le résultat précédent reste vrai.

Exercice 9.11. Soit $E = \mathcal{C}^2([0,1],\mathbb{R})$.

(a) Montrer que $\langle f, g \rangle = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt$ est un produit scalaire sur E.

- (b) Montrer que les sev $V = \{f \in E \mid f = f''\}$ et $W = \{f \in E \mid f(0) = f(1) = 0\}$ sont orthogonaux et supplémentaires, puis expliciter la projection orthogonale sur V.
- (c) Pour $\alpha, \beta \in \mathbb{R}$, on pose $W_{\alpha,\beta} = \{ f \in E \mid f(0) = \alpha \text{ et } f(1) = \beta \}$. Déterminer alors

$$\inf_{f \in W_{\alpha,\beta}} \int_0^1 \left(f(t)^2 + f'(t)^2 \right) dt$$

.

Exercice 9.12. Propriétés de $SO_n(\mathbb{R})$

(a) Soit $\theta \in \mathbb{R}$. Montrer l'égalité

$$\exp\begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

- (b) Soit $n \in \mathbb{N}^*$. Montrer que l'application $\exp : \mathcal{A}_n(\mathbb{R}) \longrightarrow \mathcal{SO}_n(\mathbb{R})$ est bien définie et est surjective. En déduire que $\mathcal{SO}_n(\mathbb{R})$ est connexe par arcs.
- (c) Soit $M \in \mathcal{SO}_n(\mathbb{R})$. Déterminer la limite de la suite $\left(\frac{1}{k}\sum_{p=0}^{k-1}M^p\right)_{k\in\mathbb{N}^*}$.

Exercice 9.13. Projection sur un convexe fermé

On suppose E euclidien. Soit $C \subset E$ un convexe fermé non vide.

(a) Établir l'égalité de la médiane : si $u, v, w \in E$ et $m = \frac{v+w}{2}$, alors

$$||v - u||^2 + ||w - u||^2 = 2||u - m||^2 + \frac{1}{2}||v - w||^2$$

- (b) Soit $x \in E$. Montrer qu'il existe un unique $h \in C$ tel que ||x h|| = d(x, C). Le vecteur h est le projeté orthogonal de x sur C. On le note $p_C(x)$.
- (c) Soit $x \in E$ et $c \in C$. Montrer que $\langle p_C(x) x, p_C(x) c \rangle \leq 0$.
- (d) Soit $a \in E \setminus C$. Montrer l'existence d'un demi-espace affine fermé, i.e. d'une partie de E de la forme $\{x \in E \mid \varphi(x) \geq 0\}$ où $\varphi \in E^*$, qui contient C mais pas a.

Exercice 9.14. Polynômes orthogonaux

Soit $E = \mathbb{R}[X]$. Pour tout n, E_n désigne $\mathbb{R}_n[X]$. Soient $a, b \in \mathbb{R}$ avec a < b et $w : [a, b] \longrightarrow \mathbb{R}$ une fonction continue strictement positive.

- 1. Généralités
 - (a) Montrer que l'application de $E \times E$ dans \mathbb{R} définie par

$$(P,Q) \longmapsto \langle P,Q \rangle = \int_a^b P(t)Q(t)w(t) dt$$

est un produit scalaire sur E.

On appelle système orthogonal pour $\langle \cdot, \cdot \rangle$ toute famille de polynômes $(P_k)_{k \in \mathbb{N}}$ telle que pour tout k, deg $P_k = k$ et pour tout entiers $k \neq l$, $\langle P_k, P_l \rangle = 0$.

- (b) Montrer que si (P_k) et (Q_k) sont deux systèmes orthogonaux de E, alors il existe une suite de réels (λ_k) telle que pour tout entier k, $P_k = \lambda_k Q_k$. En déduire l'existence et l'unicité d'une famille de polynômes orthogonale dont tous les éléments sont unitaires.
- 2. Étude des zéros

Soit désormais (P_n) un système orthogonal et k un entier naturel.

(a) Justifier l'existence de deux entiers p, q, de deux suites $(r_i)_{1 \le i \le p}$ et $(s_j)_{1 \le j \le q}$ de réels de]a, b[, de deux suites $(u_i)_{1 \le i \le p}$ et $(v_j)_{1 \le j \le q}$ d'entiers respectivement impairs et pairs strictement positifs et de $Q \in E$ sans racines dans]a, b[tels que

$$P_k = \prod_{i=1}^{p} (X - r_i)^{u_i} \cdot \prod_{j=1}^{q} (X - s_j)^{v_j} \cdot Q$$

- (b) En déduire que si p < k, alors $\left\langle P_k, \prod_{i=1}^p (X r_i) \right\rangle = 0$.
- (c) Montrer alors que toutes les racines complexes de P_k sont réelles, simples et dans l'intervalle a, b.

On désigne désormais par $r_{k,1} < r_{k,2} < \cdots < r_{k,k}$ les racines de P_k . On les appelle les points de GAUSS du polynôme P_k .

- 3. Relation de récurrence
 - (a) On rappelle que (P_n) est un système orthogonal. Montrer qu'il existe trois réels $\alpha_n, \beta_n, \gamma_n$ tels que $XP_n = \alpha_n P_{n-1} + \beta_n P_n + \gamma P_{n+1}$.
 - (b) On suppose que pour tout n, P_n est unitaire. Montrer l'existence de deux suites réelles $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ telles que pour tout $n\geq 1$, $P_{n+1}=(X+a_n)P_n+b_nP_{n-1}$.

10 Probabilités

Dans cette section, (Ω, \mathcal{A}, P) est un espace probabilisé.

Exercice 10.1. Inégalité de CANTELLI

Soit X une variable aléatoire discrète d'espérance m et de variance V. On veut montrer pour tout t>0 l'inégalité de CANTELLI :

$$P(X - m \ge t) \le \frac{V}{V + t^2}$$

- (a) Montrer qu'on peut supposer m=0.
- (b) Soit t > 0. Montrer que pour tout $y \in \mathbb{R}_+$,

$$P(X \ge t) \le P((X+y)^2 \ge (t+y)^2) \le \frac{V+y^2}{(t+y)^2}$$

(c) En déduire le résultat.

Exercice 10.2. Soit X une variable aléatoire à valeurs dans \mathbb{N} .

(a) Montrer que X est d'espérance finie si et seulement si la série $\sum_{n>1} P(X \ge n)$ converge et qu'alors

$$E[X] = \sum_{n=1}^{+\infty} P(X \ge n).$$

- (b) Montrer que X admet un moment d'ordre 2 si et seulement si la série $\sum_{n\geq 1} nP(X\geq n)$ converge.
- (c) Montrer alors que

$$V(X) = \sum_{n=1}^{+\infty} (2n - 1)P(X \ge n) - \left(\sum_{n=1}^{+\infty} P(X \ge n)\right)^2$$

Exercice 10.3. Pour passer dans la classe supérieure, un étudiant doit réussir dans n matières indépendantes. Sa probabilité de réussite dans chacune de ces matières est de $p \in]0,1[$. En cas d'échec dans une matière, il redouble mais garde le bénéfice des matières validées. On note X le nombre d'années passées par l'élève dans sa classe actuelle.

- (a) Déterminer la loi de X et son espérance.
- (b) Donner un équivalent de cette espérance quand $n \longrightarrow +\infty$.

Exercice 10.4. Lemme de Borel-Cantelli

Soit (A_n) une suite d'événements.

- (a) On suppose que $\sum P(A_n)$ converge. Montrer que $P(\bigcap_{m\geq 0}\bigcup_{n\geq m}A_n)=0$.
- (b) On suppose que les A_n sont indépendants deux à deux et que $\sum P(A_n)$ diverge. Montrer que $P(\bigcap_{m\geq 0}\bigcup_{n\geq m}A_n)=1$.

Exercice 10.5. Soit $p \in]0,1[,(X_i)_{i\in\mathbb{N}^*}$ une famille de variables aléatoires indépendantes à valeurs dans $\{0,1\}$ suivant la loi $\mathcal{B}(p)$ et Y la variable aléatoire donnant le temps d'attente de la séquence (1,1), i.e. $Y = \min\{n \geq 2 \mid (X_{n-1}, X_n) = (1,1)\}$.

- (a) Montrer que Y est bien une variable aléatoire discrète à valeurs dans $\mathbb{N}^* \cup \{+\infty\}$ et que $P(Y=+\infty)=0$.
- (b) Déterminer la fonction génératrice de Y.
- (c) En déduire l'espérance et la variance de Y.

Exercice 10.6. Méthode probabiliste d'Erdös

Soient v_1, \ldots, v_n des vecteurs unitaires d'un espace euclidien E. On dit qu'une variable aléatoire X est de Rademacher si elle est à valeur dans $\{\pm 1\}$ avec $P(X=1)=P(X=-1)=\frac{1}{2}$.

- (a) Déterminer l'espérance et la variance d'une variable aléatoire de Rademacher.
- (b) Soit X_1, \ldots, X_n des variables de Rademacher indépendantes. Soit $R = \left\| \sum_{i=1}^n X_i v_i \right\|^2$. Montrer que R est bien une variable aléatoire discrète puis déterminer l'espérance de R.
- (c) Montrer alors l'existence d'une famille $(\varepsilon_i)_{1 \geq i \geq n} \in \{\pm 1\}^n$ telle que $\left\| \sum_{i=1}^n \varepsilon_i v_i \right\| \leq \sqrt{n}$.

Exercice 10.7. On considère une urne contenant $n \in \mathbb{N}^*$ boules numérotées de 1 à n. On y effectue une série de tirage avec remise. On note T_n la variable aléatoire donnant le numéro du tirage où, pour la première fois, chacune des n boules a été tirée au moins une fois. On admet que $P(T_n = +\infty) = 0$.

(a) Pour tout $i \in [1, n]$ et $p \in \mathbb{N}^*$, on note $B_{i,p}$ l'événement "la boule numérotée i n'est pas apparue lors des p premiers tirages". Calculer $P(B_{1,p} \cup \cdots \cup B_{n,p})$.

- (b) En déduire la loi de T_n .
- (c) Montrer que $E[T_n] = nH_n$.

Exercice 10.8. On suppose que (Ω, \mathcal{A}, P) contient au moins un événement ni négligeable ni presque sûr.

- (a) Déterminer toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ qui préserve l'espérance, i.e. telles que pour toute variable aléatoire discrète réelle X admettant une espérance finie, E[f(X)] = E[X].
- (b) Déterminer toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ qui préserve la variance, i.e. telles que pour toute variable aléatoire discrète réelle X admettant un moment d'ordre 2, V(f(X)) = V(X).

Exercice 10.9. Produit eulérien de la fonction ζ .

Soit $s \in]1, +\infty[$ et $\lambda \in \mathbb{R}$. On note \mathbb{P} l'ensemble des nombres premiers et on pose $g(n) = \frac{\lambda}{n^s}$ pour tout $n \in \mathbb{N}^*$.

- (a) Déterminer une condition nécessaire et suffisante pour que g soit un germe de probabilité sur $(\mathbb{N}^*, \mathcal{P}(\mathbb{N}^*))$. On suppose désormais cette condition vérifiée.
- (b) On pose $A_k = \{n \in \mathbb{N}^* \mid k | n\} = k \mathbb{N}^*$. Calculer $P(A_k)$ et déterminer une condition nécessaire et suffisante sur $I \subset \mathbb{N}^*$ pour que les événements $(A_i)_{i \in I}$ soient mutuellement indépendants.
- (c) Montrer que

$$\prod_{p\in\mathbb{P}} \left(1 - \frac{1}{p^s}\right)^{-1} = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$

(d) Soit $(p_k)_{k\geq 1}$ la suite des nombres premiers. Montrer que les séries de termes généraux $\ln\left(1-\frac{1}{p_k}\right)$ et $\frac{1}{p_k}$ divergent.

Exercice 10.10. Inégalité de HOEFFDING

Soit Y une variable aléatoire discrètes à valeurs dans [0,1] et (Y_1,\ldots,Y_n) une famille de $n\in\mathbb{N}^*$ variables aléatoires discrètes et indépendantes de même loi que Y. On note $\overline{Y_n}=\frac{1}{n}\sum_{i=1}^n Y_i$ et μ l'espérance de Y.

(a) Montrer que pour tout $\varepsilon > 0$ et tout $\theta > 0$ on a

$$P\left(\overline{Y_n} - \mu \ge \varepsilon\right) = P\left(e^{n\theta\overline{Y_n}} \ge e^{n(\mu + \varepsilon)\theta}\right)$$

(b) On note $\lambda(\theta) = \ln E[e^{\theta Y}]$. Montrer alors que pour tout $\varepsilon > 0$ et $\theta > 0$

$$P(\overline{Y_n} - \mu \ge \varepsilon) \le e^{n(\lambda(\theta) - (\mu + \varepsilon)\theta)}$$

- (c) Montrer que la fonction $g: \theta \longmapsto E[e^{\theta Y}]$ est une fonction de classe \mathcal{C}^2 sur \mathbb{R}_+^* .
- (d) Déterminer $g'(\theta)$ et $g''(\theta)$ puis montrer que $g''(\theta) \leq g'(\theta)$
- (e) En justifiant que $x x^2 \le \frac{1}{4}$ pour tout réel x, montrer que pour tout $\theta > 0$, $\lambda(\theta) \le \frac{\theta^2}{8} + \mu\theta$.
- (f) En déduire que pour tout $\varepsilon > 0$, $P(\overline{Y_n} \mu \ge \varepsilon) \le e^{-2n\varepsilon^2}$.
- (g) Montrer alors que pour tout $\varepsilon > 0$, $P(|\overline{Y_n} \mu| \ge \varepsilon) \le 2 e^{-2n\varepsilon^2}$.

(h) Montrer l'inégalité de Hoeffding :

Soient a < b deux réels et X une variable aléatoires à valeurs dans [a, b]. Soient X_1, \ldots, X_n des variables aléatoires discrètes indépendantes de même loi que X. Alors pour tout $\varepsilon > 0$, on a

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-E[X]\right|\geq\varepsilon\right)\leq2\exp\left(-2\frac{n\varepsilon^{2}}{(b-a)^{2}}\right)$$

Exercice 10.11. "Le Blue Pinko d'Australie"

Soit N une variable aléatoire discrète à valeurs dans $\mathbb N$ non presque sûrement nulle. Lorsque l'événement (N=n) est réalisé, on lance n fois une pièce équilibrée donnant pile avec une probabilité $p\in]0\,,1[$. Soient S et E les variables aléatoires discrètes comptant respectivement le nombre de pile et de face obtenu.

(a) On suppose que $N \sim \mathcal{P}(\lambda)$ avec $\lambda \in \mathbb{R}$. Déterminer les lois de S et E et montrer que S et E sont indépendantes

On suppose désormais que S et E sont indépendantes. Pour tout $(a,b) \in [-1,1]^2$, on considère la série génératrice double

$$G(a,b) = \sum_{k,l=0}^{+\infty} P(S=k)P(E=l)a^kb^l$$

- (b) Montrer que G(a,b) est bien définie.
- (c) Montrer que pour tout $(a,b) \in]-1,1[^2 \text{ on a}]$

$$G(a,b) = G_S(a)G_E(b) = G_N(pa + qb) = G_N(pa + q)G_N(p + qb)$$

(d) Montrer que G_N est solution d'une équation différentielle de la forme $y' = \alpha y$ où α est une constante réelle. En déduire que N suit une loi de Poisson.

11 Équations différentielles linéaires

Exercice 11.1. Déterminer les solutions réelles définies sur $\mathbb R$ des équations différentielles suivantes :

(a) Équations linéaire du premier ordre :

$$(\mathcal{E}_1): y' + y = \sin t$$
 $(\mathcal{E}_2): (1+t^2)y' = ty + (1+t^2)$ $(\mathcal{E}_3): (1-t^2)y' + ty = 0$

(b) Équations linéaires du second ordre :

$$(\mathcal{E}_1): y'' - 5y + 4y = 2x \cosh(x)$$
 $(\mathcal{E}_2): y'' + y = \tan t \left(\sup \left[\frac{\pi}{2}, \frac{\pi}{2} \right] \right)$ $(\mathcal{E}_3): t^2 y'' = 2y + 3t^2$

Exercice 11.2. Déterminer les solutions réelles définies sur \mathbb{R} des systèmes différentiels suivants :

$$(\mathcal{E}_1): \left\{ \begin{array}{lll} x' & = & -x + 2y + \mathrm{e}^{3t} \arctan(3t) \\ y' & = & 2x + 2y + 2 \, \mathrm{e}^{3t} \arctan(3t) \end{array} \right. \qquad (\mathcal{E}_2): \left\{ \begin{array}{lll} x' & = & x + z \\ y' & = & -y - z \\ z' & = & 2y + z \end{array} \right.$$

Exercice 11.3. Soit $\alpha \in \mathbb{R}$. Résoudre sur \mathbb{R} l'équation différentielle $y'' + \alpha y = \sin(\alpha t)$ en distinguant les cas suivant la valeur de α .

Exercice 11.4. Déterminer l'ensemble des fonctions f deux fois dérivables sur \mathbb{R} vérifiant pour tout $(x,y) \in \mathbb{R}^2$, f(x+y) + f(x-y) = 2f(x)f(y).

Exercice 11.5. "Le facteur fantôme"

- (a) Soit $k \in \mathbb{R}_+^*$ et $f : \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction \mathcal{C}^1 telle que f' + kf soit bornée. Montrer que f est bornée.
- (b) Soient a, b deux fonctions continues de \mathbb{R} dans \mathbb{R} telles que $a(t) \geq 1$ pour tout $t \in \mathbb{R}$ et $\lim_{t \to +\infty} b(t) = 0$. Montrer que toute solution de l'équation différentielle y' + ay = b tend vers 0 en $+\infty$

Exercice 11.6. Utilisation d'un développement en série entière

En cherchant une solution développable en série entière, résoudre $(\mathcal{E}):4ty''+2y'-y=0$ sur \mathbb{R} .

Exercice 11.7. Déterminer l'ensemble des fonctions $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ dérivables et vérifiant $(\mathcal{E}): f'(t) = f(\frac{1}{t})$ pour tout t > 0.

Exercice 11.8. Soit $f(x) = \int_0^{+\infty} \frac{e^{-tx}}{1+t^2} dt$ définie sur \mathbb{R}_+ .

- (a) Montrer que f est continue sur \mathbb{R}_+ et \mathbb{C}^2 sur \mathbb{R}_+^* puis déterminer sa limite en 0 et en $+\infty$.
- (b) Montrer que f est solution d'une équation différentielle.
- (c) Déterminer alors la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

Exercice 11.9. Lemme de Gronwall

- (a) Soit $C \in \mathbb{R}_+^*$ et u, v deux fonctions continues sur un segment [a, b] à valeurs positives vérifiant pour tout $t \in [a, b], \ u(t) \leq C + \int_a^t u(s)v(s) \, \mathrm{d}s$. Montrer le lemme de Gronwall : pour tout $t \in [a, b], \ u(t) \leq C \exp \int_a^t v(s) \, \mathrm{d}s$.
- (b) Soit $A: \mathbb{R}_+ \longrightarrow \mathcal{M}_n(\mathbb{R})$ continue et intégrable. Montrer alors que toute solution de X' = A(t)X est bornée sur \mathbb{R}_+ et admet une limite en $+\infty$.

Exercice 11.10. Principe d'entrelacement des zéros de Sturm

Soit $q: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction continue et (\mathcal{E}) l'équation différentielle y'' + qy = 0.

- (a) Soient $a, b : \mathbb{R}_+ \longrightarrow \mathbb{R}$ deux fonctions continues avec $a \in \mathcal{C}^1$. Montrer que l'équation y'' + ay' + by = 0 se ramène à une équation de la forme de (\mathcal{E}) via le changement de fonction inconnue $x(t) = y(t) e^{\frac{A(t)}{2}}$ où A est une primitive de a.
- (b) Montrer que le wronksien d'un couple de solutions de (\mathcal{E}) est constant.
- (c) On suppose que q est intégrable. Soit f une solution bornée de (\mathcal{E}) . Montrer que f' tend vers 0 en $+\infty$. En déduire que f admet des solutions non bornées.
- (d) On suppose $q \leq 0$. Soit y une solution non nulle de (\mathcal{E}) . Montrer que y s'annule au plus une fois.
- (e) Soient $q_1, q_2 : \mathbb{R}_+ \longrightarrow \mathbb{R}$ deux fonctions continues telles que $0 < q_1 \le q_2$. Soit y_1 une solution non nulle de $y'' + q_1y = 0$ et α , β deux zéros consécutifs de y_1 . Soit y_2 une solution de $y'' + q_2y = 0$. Montrer que y_2 s'annule sur $[\alpha, \beta]$.

- (f) On suppose qu'il existe deux réels strictement positifs $m \leq M$ tels que $0 < m \leq q \leq M$. Soit y une solution non nulle de (\mathcal{E}) et α , β deux zéros consécutifs de y. Montrer que $\frac{\pi}{\sqrt{M}} \leq \beta \alpha \leq \frac{\pi}{\sqrt{m}}$
- (g) On suppose que $\lim_{t\to +\infty} q(t) = 1$. Montrer qu'on peut ranger les zéros de y solution non nulle de (\mathcal{E}) en une suite (t_n) strictement croissante et que $t_{n+1} t_n \xrightarrow[n \to +\infty]{} \pi$.

Exercice 11.11. Autour de y'' + y = f

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue et (\mathcal{E}) l'équation différentielle y'' + y = f.

- (a) Trouver la forme générale des solutions de (\mathcal{E}) .
- (b) Montrer qu'il existe une unique solution φ_0 de (\mathcal{E}) qui vérifie $\varphi_0(0) = \varphi'_0(0) = 0$ et la déterminer.
- (c) Déterminer les solutions paires de (\mathcal{E}) lorsque f est paire.
- (d) On suppose f 2π -périodique. Déterminer une condition nécessaire et suffisante pour que φ_0 soit aussi 2π -périodique.
- (e) On suppose f intégrable sur \mathbb{R} . Montrer que les solutions de (\mathcal{E}) sont bornées et qu'une seule de ces solutions admet une limite en $+\infty$.
- (f) On suppose f dérivable et monotone sur \mathbb{R} , de limite finie en $+\infty$. Montrer que les solutions de (\mathcal{E}) sont bornées.

12 Calcul différentiel

Exercice 12.1. Étude de continuité

Étudier la continuité des fonctions suivantes :

(i)
$$(x,y) \mapsto \begin{cases} y^x & \text{si } y > 0 \\ 0 & \text{si } y = 0 \text{ et } x > 0 & \text{sur } (\mathbb{R}_+)^2. \\ 1 & \text{si } x = 0 \end{cases}$$

(ii)
$$(x,y) \longmapsto \begin{cases} \frac{y^2}{x} & \text{si } |x| > |y| \\ x & \text{si } |x| \le |y| \end{cases} \text{ sur } \mathbb{R}^2.$$

(iii)
$$(x,y) \longmapsto \begin{cases} \frac{x^2 \sin y}{e^{xy} - 1} & \text{si } xy \neq 0 \\ x & \text{si } y = 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Exercice 12.2. Étude d'extrema

Étudier les extrema locaux et globaux des fonctions suivantes :

(i)
$$(x,y) \longmapsto y^2 - x^2 + \frac{x^4}{2} \operatorname{sur} \mathbb{R}^2$$
.

(ii)
$$(x,y) \longmapsto x^4 + y^4 - (x-y)^2 \text{ sur } \mathbb{R}^2$$
.

(iii)
$$(x,y) \longmapsto x + y + \frac{1}{xy} \operatorname{sur} (\mathbb{R}_+^*)^2$$
.

(iv)
$$(x, y, z) \longrightarrow xyz \ln x \ln y \ln z \operatorname{sur} (\mathbb{R}_+^*)^3$$
.

(v)
$$(x,y) \mapsto x^2y - y^2x \text{ sur } [-1,1]^2$$
.

(vi)
$$(x, y) \mapsto \sin x \sin y \sin(x + y) \sin [0, 2\pi]^2$$
.

(vii)
$$(x,y) \longmapsto x^3 - 3xy \text{ sur } \mathcal{B}_f(0,1).$$

Exercice 12.3. Équations aux dérivées partielles

(a) Déterminer toutes les solutions de classe C^1 sur \mathbb{R}^2 de

$$5\frac{\partial f}{\partial x} + 4\frac{\partial f}{\partial y} = 0$$

(b) Déterminer toutes les solutions de classe C^2 sur \mathbb{R}^2 de

$$\frac{\partial^2 f}{\partial x^2} - 2\frac{\partial^2 f}{\partial x \partial y} - 3\frac{\partial^2 f}{\partial y^2} = 0$$

(c) Déterminer toutes les solutions de classe \mathcal{C}^1 sur \mathbb{R}^2 de

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = x^2 + y^2$$

Exercice 12.4. Soient E, F et G des \mathbb{R} -ev normés et $\varphi: E \times F \longrightarrow G$ une application bilinéaire. On suppose que φ est continue et de sorte qu'il existe un réel C > 0 tel que $\|\varphi(x,y)\| \leq C \|x\| \cdot \|y\|$ pour tout $(x,y) \in E \times F$. Montrer que φ est différentiable sur $E \times F$ et calculer sa différentielle $d\varphi$. Application : Soit $n, p \in \mathbb{N}^*$. Montrer que l'application $\varphi_p: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$ définie par $\varphi_p(M) = M^p$ est différentiable et calculer sa différentielle $d\varphi_p$.

Exercice 12.5. Soit $n \in \mathbb{N}^*$. Montrer que l'application $\det : M \in \mathcal{M}_n(\mathbb{R}) \longrightarrow \det(M)$ est de classe \mathcal{C}^{∞} et calculer sa différentielle D_{\det} .

Exercice 12.6. Lemme d'Hadamard

Soit \mathcal{U} un ouvert convexe de \mathbb{R}^n et $f: \mathcal{U} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^{∞} telle que f(0) = 0. Montrer qu'il existe des fonctions f_1, \ldots, f_n de classe \mathcal{C}^{∞} sur \mathcal{U} telles que pour tout $x = (x_1, \ldots, x_n) \in \mathcal{U}$, $f(x) = \sum_{k=1}^n x_k f_k(x)$.

Exercice 12.7. Soient $f, g : \mathbb{R}^n \longrightarrow R$ deux fonctions différentiables en $x_0 \in \mathbb{R}^n$. Déterminer une condition nécessaire et suffisante pour que $\max(f, g)$ soit différentiable en x_0 .

Exercice 12.8. Soit $\Omega =]0, +\infty[\times]0, +\infty[$. On cherche les fonctions de classe \mathcal{C}^2 sur Ω solutions de l'équation aux dérivées partielles

$$(\mathcal{E}): x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

On considère les sous-ensembles de $\mathcal{C}^2(\Omega,\mathbb{R})$ suivants :

$$\mathcal{S} = \left\{ f \in \mathcal{C}^2(\Omega, \mathbb{R}) \mid f \text{ est solution de } (\mathcal{E}) \right\}$$

$$\Sigma_1 = \left\{ f \in \mathcal{C}^2(\Omega, \mathbb{R}) \mid \text{ il existe } \alpha \in \mathcal{C}^2(]0, +\infty[, \mathbb{R}) \text{ telle que } f(x, y) = \alpha(xy) \right\}$$

$$\Sigma_2 = \left\{ f \in \mathcal{C}^2(\Omega, \mathbb{R}) \mid \text{ il existe } \beta \in \mathcal{C}^2(]0, +\infty[, \mathbb{R}) \text{ telle que } f(x, y) = x\beta\left(\frac{y}{x}\right) \right\}$$

- (a) Montrer que S, Σ_1 et Σ_2 sont des espaces vectoriels et que $\Sigma_1 + \Sigma_2 \subset S$.
- (b) On considère l'application $\Phi: \Omega \longrightarrow \Omega \atop (x,y) \longmapsto (xy,\frac{y}{x})$. Montrer que Φ est un difféomorphisme de classe \mathcal{C}^{∞} de Ω . On notera dans la suite u=xy et $v=\frac{y}{x}$.

- (c) Soit $f \in \mathcal{S}$ et $g = f \circ \Phi^{-1}$. Montrer que g vérifie $\frac{\partial^2 g}{\partial x \partial y}(u, v) = \frac{1}{2u} \frac{\partial g}{\partial y}(u, v)$.
- (d) On pose $h = \frac{\partial g}{\partial y}$ et pour tout $v \in]0, +\infty[, \varphi_v :]0, +\infty[\longrightarrow \mathbb{R}$ définie par $\varphi_v(u) = h(u, v)$. Montrer que $\varphi_v(u) = C(v)\sqrt{u}$ où C est une fonction de classe $\mathcal{C}^1(\mathbb{R}_+^*, \mathbb{R})$.
- (e) Montrer enfin que $S = \Sigma_1 + \Sigma_2$.

Exercice 12.9. Déterminer les valeurs des réels $\alpha, \beta > 0$ tels que les fonctions suivantes soient de classe \mathcal{C}^1 sur \mathbb{R}^2 :

$$f(x,y) = |x|^{\alpha}|y|^{\beta}$$

$$g(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Exercice 12.10. Soit $n \ge 1$, $k \in \mathbb{R}$ et $f : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}$ de classe \mathcal{C}^1 . On dit que f est k-homogène si pour tout $t \in \mathbb{R}^*_+$ et $x \in \mathbb{R}^n \setminus \{0\}$, $f(tx) = t^k f(x)$.

- (a) Si f est 1-homogène, montrer que f est linéaire.
- (b) Montrer que f est k-homogène si et seulement si pour tout $x \in \mathbb{R}^n \setminus \{0\}$, $\sum_{i=1}^n x_i \frac{\partial f}{\partial x_i} = kf(x)$.
- (c) Déterminer une condition nécessaire et suffisante sur k pour qu'une fonction k-homogène soit prolongeable par continuité en 0. Montrer que ce prolongement est de classe \mathcal{C}^1 si k > 1.

Exercice 12.11. Soit $f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. On pose, pour tout $(x, y) \in \mathbb{R}^2$,

$$g(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } x \neq y \\ f'(x) & \text{sinon} \end{cases}$$

- (a) Montrer que g est continue.
- (b) On suppose que f est de classe \mathcal{C}^2 . Montrer que g est de classe \mathcal{C}^1 .
- (c) Application: On pose pour $(x,y) \in \mathbb{R}^2$, $x \neq y$, $h(x,y) = \frac{\sin x \sin y}{\sinh x \sinh y}$. Montrer que h se prolonge sur \mathbb{R}^2 en une fonction de classe C^{∞} .

Exercice 12.12. Soit $n \geq 2$.

- (a) Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ une fonction de classe C^2 . Montrer que la matrice jacobienne $J_f(x)$ est antisymétrique pour tout $x \in \mathbb{R}^n$ si et seulement s'il existe une matrice antisymétrique $A \in \mathcal{M}_n(\mathbb{R})$ et $b \in \mathbb{R}^n$ tels que f(x) = Ax + b pour tout $x \in \mathbb{R}^n$.
- (b) Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ une fonction de classe \mathcal{C}^1 . Montrer que $J_f(x)$ est symétrique pour tout $x \in \mathbb{R}^n$ si et seulement s'il existe une fonction $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 telle que pour tout $x \in \mathbb{R}^n$ et $i \in [1, n]$, $f_i(x) = \frac{\partial g}{\partial x_i}(x)$, où les $(f_i)_{1 \le i \le n}$ sont les fonctions coordonnées de f.

Exercice 12.13. On considère l'application $f: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}^n$ $M \longmapsto (\operatorname{tr} M, \operatorname{tr} M^2, \dots, \operatorname{tr} M^n)$

- (a) Soient $n, p \in \mathbb{N}$ et $k \leq \min(n, p)$. En utilisant les matrices de Graam, montrer que le sous-ensemble formé des matrices de rang $r \in [\![k, \min(n, p)]\!]$ est un ouvert de $\mathcal{M}_{n,p}(\mathbb{R})$.
- (b) Montrer que f est différentiable et calculer sa différentielle.
- (c) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\operatorname{rg} df(M) = \dim \operatorname{Vect}((df_k(M))_{0 \le k \le n-1})$ où $df_k(M)$ sont les fonctions coordonnées de df(M).

- (d) Montrer alors que $\operatorname{rg} df(M) = d$ où d est le degré du polynôme minimal de M.
- (e) En déduire que l'ensemble des matrices dont le polynôme minimal est égal au polynôme caractéristique est un ouvert de $\mathcal{M}_n(\mathbb{R})$.

Exercice 12.14. Lemme de Poincaré

Soit \mathcal{U} un ouvert convexe de \mathbb{R}^n contenant 0 et $X:\mathcal{U} \longrightarrow \mathbb{R}^n$ un champ de vecteurs de classe \mathcal{C}^1 . On note (X_1,\ldots,X_n) les fonctions coordonnées de X.

(a) Déterminer le gradient de la fonction $V:\mathcal{U}\longrightarrow\mathbb{R}$ définie par

$$V(x_1,\ldots,x_n) = \sum_{i=1}^n x_i \int_0^1 X_i(tx) dt$$

- (b) Montrer que le champ X dérive d'un potentiel si et seulement si pour tout $(i,j) \in [1,n]^2$, $\frac{\partial X_j}{\partial x_i} = \frac{\partial X_i}{\partial x_j}$.
- (c) Soit $F: \mathbb{R}^2 \longrightarrow \mathbb{U}$ de classe \mathcal{C}^2 . Montrer qu'il existe une fonction $\alpha: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe \mathcal{C}^2 telle que pour tout $(x,y) \in \mathbb{R}^2$, $F(x,y) = e^{i\alpha(x,y)}$.

Partie 3

Exercices d'oraux

Sans précisions supplémentaires, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , n est un entier naturel, I est un intervalle de \mathbb{R} d'intérieur non vide et (Ω, \mathcal{A}, P) est un espace probabilisé.

Préparation aux oraux

Exercice 1. (a) Soit $\sigma: \mathbb{R} \longrightarrow \mathbb{R}$ un morphisme de corps. Montrer que $\sigma = \mathrm{Id}$.

- (b) Soient $A, B, C \in \mathcal{M}_2(\mathbb{K})$. Montrer qu'il existe $\alpha, \beta, \gamma \in \mathbb{K}$ non tous nuls tels que $\alpha A + \beta B + \gamma C$ admette une valeur propre double.
- (c) Déterminer $m = \min \{ k \in \mathbb{N}^* \mid \text{Il existe un groupe non commutatif d'ordre } k \}$.

Exercice 2. Centrale

Soit $p \in \mathbb{N}^*$, $A = \{a_1, \dots, a_p\}$ où les $(a_k)_{1 \le k \le p} \in (\mathbb{N}^*)^p$ sont premiers entre eux dans leur ensemble. Soit (X_n) une suite de vad indépendantes de même loi à valeurs dans A, telles que $P(X_n = a_k) \ne 0$ pour tout $(n,k) \in (\mathbb{N}^*)^2$. Soit G la fonction génératrice des (X_n) .

- (a) Montrer que $z \mapsto 1 G(z)$ est une fonction polynomiale sur $\mathbb C$ dont la seule racine de module < 1 est 1.
- (b) Soit A_n l'événement "Il existe $N \in \mathbb{N}^*$ tel que $X_1 + \dots + X_N = n$ ". Montrer que pour tout complexe |z| < 1, $\sum_{n \ge 1} P(A_n) z^n$ converge. Exprimer alors cette somme en fonction de G.
- (c) Montrer que $\lim_{n \to +\infty} P(A_n) = \frac{1}{E[X_1]}$.

Exercice 3. Centrale

Soit E un espace euclidien et $\Gamma = \{u \in \mathcal{L}(E) \mid \forall x \in E, ||u(x)|| \le ||x||\}.$

- (a) Montrer que Γ est convexe et contient $\mathcal{O}(E)$.
- (b) Soit $u \in \Gamma$. Montrer que s'il existe deux éléments distincts f et g de Γ tels que $u = \frac{f+g}{2}$ alors $u \notin \mathcal{O}(E)$.
- (c) Soit $v \in \mathcal{L}(E)$. Montrer qu'il existe $\rho \in \mathcal{O}(E)$ et $s \in \mathcal{S}^+(E)$ tels que $v = \rho \circ s$.
- (d) Montrer alors la réciproque de la question (b).

Exercice 4. Soit
$$S: x \longmapsto \sum_{n=2}^{+\infty} \frac{x e^{-nx}}{\ln n}$$
.

- (a) Déterminer le domaine de définition de S.
- (b) Montrer que S est C^1 sur $]0, +\infty[$.
- (c) S est-elle dérivable en 0?
- (d) S est-elle continue en 0?

Oraux Mines

Exercice 1. 2015

Montrer qu'il est impossible de piper deux dés indépendants à 6 faces de telle sorte que la somme des dés suive une loi uniforme sur [2, 12].

Exercice 2. 2015

Soient a, b, c trois complexes tels que la suite $(a^n + b^n + c^n)$ converge vers 0. Montrer que a, b et c sont de module strictement inférieur à 1.

Exercice 3. 2015 - Théorème de MASCHKE

Soit G un sous-groupe fini de $GL_n(\mathbb{R})$.

- (a) Soit $f = \sum_{g \in G} g$. Que dire de f? Déterminer alors ses valeurs propres.
- (b) Caractériser l'espace propre lié à la valeur propre non nulle de f en fonction des éléments de G.

Exercice 4. 2015 Soit un réel $\lambda > 0$.

(a) Résoudre sur $]0, +\infty[$ l'équation

$$(\mathcal{E}): ty' + \lambda y = \frac{1}{1+t}$$

- (b) (\mathcal{E}) admet-elle des solutions continues en 0?
- (c) (\mathcal{E}) admet-elle des solutions développables en série entière au voisinage de 0?
- (d) Calculer $S = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{3n}(1+3n)}$.

Exercice 5. 2015 - Intégrale de DIRICHLET

(a) Montrer que pour tout $x \in \mathbb{R}$,

$$\int_0^{\frac{\pi}{2}} e^{-x\cos t} \cos(x\sin t) dt = \frac{\pi}{2} - \int_0^x \frac{\sin t}{t} dt$$

(b) En déduire la valeur de $\int_0^{+\infty} \frac{\sin t}{t} dt$.

Exercice 6. 2015

Soit p, q, r des réels deux à deux distincts et $M = \begin{pmatrix} p & q & r \\ r & p & q \\ q & r & p \end{pmatrix}$. Montrer que M est une matrice de rotation si et seulement si $p^3 - p^2 = q^3 - q^2 = r^3 - r^2$.

Exercice 7. 2015

Soit f et g deux endomorphismes de $\mathbb{R}[X]$ tels que $f: P \longmapsto P'$ et $g: P \longmapsto XP$.

- (a) Déterminer une norme telle que f soit continue.
- (b) Déterminer une norme telle que g soit continue.
- (c) Montrer qu'il n'existe pas de norme telle que f et g soient continues.

Exercice 8. 2015

Soit $(E, \|\cdot\|)$ un espace vectoriel normé.

- (a) Soit F un fermé non vide de E et $x \in E \setminus F$. Montrer que d(x, F) > 0.
- (b) Montrer que tout ouvert de E est une réunion dénombrable de fermés.
- (c) Déterminer les fermés de E qui sont une réunion dénombrable d'ouverts.

Exercice 9. 2015

- (a) Soient E_1, E_2, E_3 trois \mathbb{K} -ev de dimension finie. Soient $u \in \mathcal{L}(E_1, E_2)$ et $w \in \mathcal{L}(E_1, E_3)$ tels que $\ker u \subset \ker w$. Montrer qu'il existe $v \in \mathcal{L}(E_2, E_3)$ tel que $w = v \circ u$.
- (b) Soit φ une forme linéaire sur $E = \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $C \in E$ telle que $\varphi(M) = \operatorname{tr}(CM)$ pour tout $M \in E$.

On fixe dorénavant $A \in E$ une matrice nilpotente.

- (c) Soit $M \in E$ qui commute à A. Montrer que tr(AM) = 0.
- (d) Montrer qu'il existe $C \in E$ telle que pour tout $M \in E$, $\operatorname{tr}(AM) = \operatorname{tr}(C(AM MA))$.
- (e) Montrer que A = CA AC.

Exercice 10. 2015

On considère la fonction

$$f: [1, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \frac{\sin(\ln x)}{x}$$

- (a) Montrer que f' est intégrable sur $[1, +\infty[$.
- (b) Donner la nature des séries de terme général $u_n = \int_n^{n+1} f(t) dt$ et $v_n = f(n)$.

Exercice 11. 2015

On pose $\alpha = 2^{\frac{2}{3}}$ et $F = \text{Vect}_{\mathbb{Q}} \{ \alpha^k \mid k \in \mathbb{N} \}$.

- (a) Montrer que F est un $\mathbb{Q} ev$ de dimension 3.
- (b) F est-il un sous-corps de \mathbb{R} ?

Exercice 12. 2015

Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{U}) \subset \mathbb{U}$.

Exercice 13. 2015

Soit $(a,b) \in (\mathbb{R}^*)^2$. Soit $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{R}))$ définie par $\varphi(M) = aM + b^tM$. Donner une condition nécessaire et suffisante sur (a,b) pour que φ soit un isomorphisme. Calculer det φ et tr φ .

Exercice 14. 2015

On considère la fonction

$$\Phi: \mathbb{C}_5[X] \longrightarrow \mathbb{C}^6$$

$$P \longmapsto (P(1), P(j), P(j^2), P'(1), P'(j), P'(j^2))$$

- (a) Montrer que Φ est un isomorphisme.
- (b) Montrer qu'il existe une unique base $(H_i)_{0 \le i \le 5}$ de $\mathbb{C}_5[X]$ telle que pour tout $P \in \mathbb{C}_5[X]$,

$$P = P(1)H_0 + P(j)H_1 + P(j^2)H_2 + P'(1)H_3 + P'(j)H_4 + P'(j^2)H_5$$

- (c) Calculer H_0 et H_3 .
- (d) Montrer que $P(X) \mapsto P(jX)$ est un isomorphisme de $\mathbb{C}_5[X]$ et en déduire la valeur des $(H_i)_{0 \le i \le 5}$.

Exercice 15. 2015

Soient $(a, b, c, d) \in \mathbb{R}^4$. Calculer le déterminant suivant :

$$\Delta = \begin{vmatrix} 1 & a & a^2 & a^4 \\ 1 & b & b^2 & b^4 \\ 1 & c & c^2 & c^4 \\ 1 & d & d^2 & d^4 \end{vmatrix}$$

Exercice 16. 2015

Existe-t-il une matrice $A \in \mathcal{M}_2(\mathbb{C})$ telle que l'espace vectoriel des matrices qui commutent avec A soit de dimension impaire?

Exercice 17. 2015

Soit $u \in \mathcal{L}(\mathbb{K}^n)$. Que dire de u si sa matrice dans toute base est diagonale? Que dire de u s'il a même matrice dans toute base?

Exercice 18. 2015

Trouver tous les $A \in \mathcal{M}_n(\mathbb{Z})$ telles que $4A^3 + 2A^2 + A = 0$.

Exercice 19. 2015

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $\Phi_A : M \in \mathcal{M}_n(\mathbb{R}) \longmapsto AM^t A$.

- (a) Donner une condition nécessaire et suffisante sur A pour que Φ_A soit inversible.
- (b) Calculer $\det \Phi_A$ lorsque A est une matrice scalaire.
- (c) Calculer $\det \Phi_A$ lorsque A est diagonale.
- (d) Donner une condition nécessaire et suffisante sur A pour que Φ_A soit un isomorphisme orthogonal de $\mathcal{M}_n(\mathbb{R})$ muni de sa structure euclidienne canonique.
- (e) Calculer $\det \Phi_A$ lorsque $A \in \mathcal{O}_n(\mathbb{R})$.

Exercice 20. 2015

- (a) Caractériser les matrices $A \in \mathcal{M}_2(\mathbb{R})$ telles que $A^tA = {}^tAA$.
- (b) Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que $A^t A = {}^t A A$. Montrer que ${}^t A \in \text{Vect}(A)$.
- (c) Résoudre dans $\mathcal{M}_2(\mathbb{R})$ l'équation $A^2 A + I_2 = 0$ et ${}^t A A = A^t A$.

Exercice 21. 2015

(a) Soit $A \in \mathcal{M}_3(\mathbb{R})$ antisymétrique. Montrer que A est orthogonalement semblable à une matrice

de la forme
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & -a & 0 \end{pmatrix}$$
 où $a \in \mathbb{R}$.

(b) Montrer que la suite $\left(\left(\mathrm{I}_n+\frac{A}{n}\right)^n\right)$ converge vers une matrice de $\mathrm{SO}_3(\mathbb{R})$ que l'on précisera.

Exercice 22. 2015

Soit $(A_p)_{p\in\mathbb{N}}\in\mathcal{S}_n(\mathbb{R})^{\mathbb{N}}$ une suite croissante et majorée, i.e. telle qu'il existe $B\in\mathcal{S}_n(\mathbb{R})$ telle que pour tout $p\in\mathbb{N}$, $B-A_p\in\mathcal{S}_n^+(\mathbb{R})$ et $A_{p+1}-A_p\in\mathcal{S}_n^+(\mathbb{R})$. Montrer que (A_p) converge.

Exercice 23. 2015

Soient $(E, \|\cdot\|)$ un \mathbb{R} -evn et $f \in \mathcal{L}(E)$.

- (a) Montrer que si f envoie chaque partie bornée sur une partie bornée, alors f est continue.
- (b) Montrer que si f envoie toute suite de limite nulle sur une suite bornée, alors f est continue.

Exercice 24. 2015

Soit $(E, \|\cdot\|)$ un \mathbb{R} -evn non réduit à $\{0\}$ et $f \in \mathcal{L}(E, \mathbb{R})$ continue non nulle. On pose

$$|||f||| = \sup_{y \in E \setminus \{0\}} \frac{f(y)}{\|y\|}$$

Soit $x \in E \setminus \text{Ker } f$. Montrer que $d(x, \text{Ker } f) = \frac{|f(x)|}{||f|||}$ puis que d(x, Ker f) est atteinte si et seulement si |||f||| est atteinte.

Exercice 25. 2015

Soit $(x,\alpha) \in (\mathbb{R}_+^*)^2$. Discuter de la nature de la série de terme général $u_n = x^{\left(\sum\limits_{k=1}^n \frac{1}{k^\alpha}\right)}$, où $n \in \mathbb{N}^*$, en fonction de x et de α .

Exercice 26. 2015

En fonction du paramètre $\alpha \in \mathbb{R}$, discuter de la sommabilité des familles

$$\left(\frac{1}{(p+q)^{\alpha}}\right)_{(p,q)\in(\mathbb{N}^*)^2} \quad \text{et} \quad \left(\frac{1}{(p^2+q^2)^{\alpha}}\right)_{(p,q)\in(\mathbb{N}^*)^2}$$

Exercice 27. 2015

Déterminer les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivables sur \mathbb{R}^* telles que pour tout $x \in \mathbb{R}^*$, $f'(x) = f\left(\frac{3}{16x}\right)$.

Exercice 28. 2015

Soit $n \in \mathbb{N}^*$. Soit l'application $T : \mathcal{C}^0(\mathbb{R}, \mathbb{R}) \longrightarrow \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ telle que pour tout $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ et $x \in \mathbb{R}^*$,

$$T(f)(x) = \frac{1}{x^{n+1}} \int_0^x t^n f(t) dt$$

- (a) Déterminer la valeur de T(f)(0) pour que T(f) soit continue.
- (b) Déterminer les vecteurs propres et les valeurs propres de T.

Exercice 29. 2015

Soit $a \in \mathbb{R} \setminus \{-1, 1\}$.

(a) Montrer que pour $n \in \mathbb{N}$, $n \geq 2$, on a

$$a^{2n} - 1 = (a^2 - 1) \prod_{k=1}^{n-1} \left(a^2 - 2a \cos\left(\frac{k\pi}{n}\right) + 1 \right)$$

(b) On pose $I(a) = \int_0^{\pi} \ln(a^2 - 2a\cos(t) + 1) dt$. Calculer I(a) en distinguant les cas |a| < 1 et

Exercice 30. 2015
Calculer
$$\int_0^{+\infty} e^{-x} \left(\frac{1}{1 - e^{-x}} - \frac{1}{x} \right) dx$$
.

Exercice 31. 2015

Soit $u \in \mathcal{L}(\mathbb{R}^n)$. On suppose que la suite $(u^p)_{p \in \mathbb{N}}$ est bornée. Montrer que la suite de terme général $\frac{1}{p+1}\sum_{k=0}^{p}u^{k}$ converge et préciser sa limite.

Exercice 32. 2015

Pour $x \in \mathbb{R} \setminus \mathbb{Z}$, on pose $F(x) = \pi \frac{\cos \pi x}{\sin \pi x}$ et $G(x) = \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\frac{1}{x+n} + \frac{1}{x-n} \right)$. On pose finalement H = F - G.

- (a) Montrer que G est bien définie.
- (b) Montrer que H est 1-périodique, impaire et continue sur $\mathbb{R} \setminus \mathbb{Z}$.
- (c) Montrer que $F\left(\frac{x}{2}\right) + F\left(\frac{x+1}{2}\right) = 2F(x)$ et que $G\left(\frac{x}{2}\right) + G\left(\frac{x+1}{2}\right) = 2G(x)$.
- (d) Montrer que H est prolongeable en une fonction continue sur \mathbb{R} , puis que F = G.

Exercice 33. 2015

Soit la série entière $f: x \longmapsto \sum_{n=1}^{+\infty} \ln nx^n$.

- (a) Déterminer le domaine de définition de f.
- (b) En considérant la fonction $x \mapsto (1-x)f(x)$, donner un équivalent de f en 1 et en -1.

Exercice 34. Soit (a_n) une suite de réels positifs. Montrer que $a_n = o(\sqrt{n})$ si et seulement si $e^{a_n} \sim (1 + \frac{a_n}{n})^n$. Le résultat subsiste-t-il si les a_n ne sont pas tous positifs?.

Oraux Centrale

Exercice 1. 2015

Soit (Ω, \mathcal{A}, P) un espace probabilisé et $(E_n) \in \mathcal{A}^{\mathbb{N}}$ une suite d'événements quelconques. On suppose que $\sum_{n=0}^{+\infty} P(E_n) \in \mathbb{R}$.

- (a) Soit $Z = \sum_{n=0}^{+\infty} \mathbb{1}_{E_n}$ (on convient que $Z = +\infty$ si la série diverge). Montrer que Z est une variable
- (b) Soit $F = \{ \omega \in \Omega \mid \omega \text{ appartient à un nombre fini de } (E_n) \}$. Montrer que F est un événement et que P(F) = 1.
- (c) Montrer que Z admet une espérance.

Exercice 2. 2015

Pour $n \in \mathbb{N}^*$, on définit la fonction u_n sur \mathbb{R}_+^* par :

$$u_n(x) = x \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x}{n}\right)$$

- (a) Montrer que $\sum_{n>1} u_n(x)$ converge si $x \in \mathbb{R}_+^*$.
- (b) Montrer que $f: x \longmapsto -\ln(x) + \sum_{n=1}^{+\infty} u_n(x)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- (c) Montrer que f est l'unique fonction de classe \mathcal{C}^1 sur \mathbb{R}_+^* telle que :

$$\begin{cases} f(x+1) - f(x) = \ln(x) \text{ pour tout } x \in \mathbb{R}_+^* \\ f \text{ est convexe sur } \mathbb{R}_+^* \\ f(1) = 0 \end{cases}$$

(d) Montrer que pour tout $x \in \mathbb{R}_+^*$, on a

$$\int_0^{+\infty} t^{x-1} e^{-t} dt = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1) \dots (x+n)}$$

Exercice 3. 2015

Soit E un espace euclidien de dimension $n \in \mathbb{N}^*$. Soient $p \in \mathbb{N}^*$, $x_1, \ldots x_p \in E$ et $Gram(x_1, \ldots, x_p) = (\langle x_i, x_j \rangle)_{i,j} \in \mathcal{M}_p(\mathbb{R})$.

- (a) Soient $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E et $M = \operatorname{Mat}_{\mathcal{B}}(x_1, \dots, x_p) \in \mathcal{M}_{n,p}(\mathbb{R})$ Montrer que $\operatorname{Gram}(x_1, \dots, x_p) = {}^t MM$.
- (b) Montrer que $A = (a_{i,j})_{i,j} \in \mathcal{M}_p(\mathbb{R})$ est une matrice de Gram si et seulement si A est symétrique à valeurs propres positives et de rang inférieur à n.
- (c) Soient $u_1, \ldots, u_n \in E$. Montrer que $\operatorname{Sp} \operatorname{Gram}(u_1, \ldots, u_n) \subset \{0, 1\}$ si et seulement s'il existe une base orthonormée $\mathcal{B} = (e_1, \ldots, e_n)$ de E et π un projecteur symétrique tel que $\pi(e_i) = u_i$ pour tout $i \in [1, n]$.

Exercice 4. 2015

Soient $n \in \mathbb{N}^*$ et $P \in \mathbb{R}[X]$. On note $E_P = \{M \in \mathcal{M}_n(\mathbb{R}) \mid P(M) = 0\}$. On dit que $M \in E_P$ est un point isolé de E_P s'il existe un voisinage \mathcal{V} de M tel que $E_P \cap \mathcal{V} = \{M\}$.

- (a) Déterminer E_p et ses points isolés lorsque n=1. On suppose désormais $n\geq 2$.
- (b) Montrer qu'il existe un voisinage \mathcal{V}_0 de 0_n tel que pour tout $H \in \mathcal{V}_0$, $(I_n + H) \in GL_n(\mathbb{R})$.
- (c) Soit M un point isolé de E_P . Montrer qu'il existe un voisinage \mathcal{U} de 0_n tel que pour tout $H \in \mathcal{U}$, $(I_n + H)^{-1}M(I_n + H) = M$.
- (d) Montrer alors que M commute avec toutes les matrices de $\mathcal{M}_n(\mathbb{R})$. En déduire la forme des points isolés de E_P .
- (e) Soit $\lambda \in \mathbb{R}$. Trouver une suite $(M_k)_{k \in \mathbb{N}}$ d'éléments de $\mathcal{M}_n(\mathbb{R})$ distincts deux à deux telle que

$$M_k \xrightarrow[k \to +\infty]{} \lambda I_n$$
 et $\forall k \in \mathbb{N}, (M_k - \lambda I_n)^2 = 0$

(f) Soit $\lambda \in \mathbb{R}$. Montrer que λI_n est un point isolé de E_P si et seulement si λ est une racine simple de P.

Exercice 5. 2015

Soit I = [a, b] un segment de \mathbb{R} où a et b sont des réels tels que a < b.

- (a) Déterminer une condition nécessaire et suffisante pour qu'une fonction réelle dérivable sur un intervalle soit strictement croissante.
- (b) Soient $n \in \mathbb{N}^*$ et $f \in \mathcal{C}(I, \mathbb{R}_+)$ dont l'ensemble des zéros est d'intérieur non vide. Montrer qu'il existe une unique subdivision $(x_0, \dots, x_n) \in \mathbb{R}^n$ de I vérifiant :

$$\forall i \in [1, n], \ \int_{x_{i-1}}^{x_i} f(x) \, dx = \frac{1}{n} \int_a^b f(x) \, dx$$

(c) Soit $g \in \mathcal{C}(I, \mathbb{R}_+)$. Calculer $\lim_{n \to +\infty} \sum_{i=0}^n g(x_i)$.

Exercice 6. 2011

(a) Soit
$$z \in \mathbb{C} \setminus \mathbb{R}$$
. Déterminer $\lim_{A \to +\infty} \int_{-A}^{A} \frac{1}{z-t} dt$.

Soient $P, Q \in \mathbb{R}[X]$ tels que $F = \frac{P}{Q}$ soit bien définie et intégrable sur \mathbb{R} . On définit $\mathcal{P}_F = \{a \in \mathbb{C} \mid a \text{ est un pôle de } F\}$. Pour $a \in \mathcal{P}_F$, on note R_a le coefficient de $\frac{1}{X-a}$ dans la décomposition de F en éléments simples.

- (b) Calculer $\sum_{a \in \mathcal{P}_F} R_a$.
- (c) Montrer alors que $\int_{-\infty}^{+\infty} F(t) dt = 2i\pi \sum_{a \in \mathcal{P}_F^+} R_a$ où \mathcal{P}_F^+ est l'ensemble des pôles de F de partie imaginaire strictement positive.
- (d) Soient $m, n \in \mathbb{N}$ avec m < n. Calculer $\int_{-\infty}^{+\infty} \frac{x^{2m}}{x^{2n} + 1} dx$.

Exercice 7. Soit $(u_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $\sum u_n$ converge absolument.

(a) Montrer que pour tout $k \in \mathbb{N}^*$, la série de terme général (u_n^k) converge absolument.

On suppose désormais que pour tout $k \in \mathbb{N}^*$, $\sum_{n=0}^{+\infty} u_n^k = 0$. Soit $n_0 \in \mathbb{N}^*$ tel que pour tout entier

$$n \ge n_0, |u_n| < 1$$
. On pose $U(k) = \sum_{n=0}^{n_0} u_n^k$ et $R(k) = \sum_{n=n_0+1}^{+\infty} u_n^k$.

- (b) Montrer que $\lim_{k \to +\infty} U(k) = \lim_{k \to +\infty} R(k) = 0$.
- (c) Soit $P \in \mathbb{C}[X]$. Étudier la convergence de $\sum_{n=0}^{n_0} P(u_n) u_n^k$. En déduire que $|u_n| < 1$ pour tout $n \in [0, n_0]$.
- (d) Montrer que la suite (u_n) est nulle.

Exercice 8. Soit $E = \{f : \mathbb{R} \longrightarrow \mathbb{C} \mid f \text{ est continue et } 2\pi\text{-périodique}\}$. Pour un réel a > 0 et $f \in E$, on définit T_a l'application telle que $T_a(f) : x \in \mathbb{R} \longmapsto \frac{1}{a} \int_x^{x+a} f(t) \, dt$.

- (a) Montrer que $f \longmapsto \sup_{t \in [0,2\pi]} |f(t)|$ est une norme sur E.
- (b) Pour tout $a \in \mathbb{R}_+^*$, montrer que T_a est un endomorphisme continu de E.
- (c) Soit $k \in \mathbb{N}$, $h \in E$ de classe C^k . Montrer que $T_a(h)$ est de classe C^{k+1} puis que $(T_a(h))^{(k)} = T_a(h^{(k)})$.

Soit $(a_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ une suite telle que $\sum a_n$ converge. On fixe $f \in E$ et on considère la suite (f_n) d'éléments de E définie par $f_0 = f$ et $f_n = T_{a_n}(f_{n-1})$ pour tout $n \geq 1$.

- (d) Montrer que (f_n) converge uniformément vers une fonction ψ .
- (e) Montrer que ψ est de classe \mathcal{C}^{∞} .

Exercice 9. Pour tout réel $\alpha > 0$, on définit

$$\operatorname{Spec}(\alpha) = \{ |k\alpha| \mid k \in \mathbb{N}^* \} \quad \text{et} \quad N(\alpha, n) = |\{ k \in \mathbb{N}^* \mid |k\alpha| \le n \} |$$

- (a) Montrer que $N(\alpha, n) = \lceil \frac{n+1}{\alpha} \rceil 1$.
- (b) Soient $\alpha, \beta \in \mathbb{R}_+^*$. Montrer que les ensembles $\operatorname{Spec}(\alpha)$ et $\operatorname{Spec}(\beta)$ forment une partition de \mathbb{N}^* si et seulement si α et β sont irrationnels et que $\frac{1}{\alpha} + \frac{1}{\beta} = 1$.

Exercice 10. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme euclidienne associé au produit scalaire canonique $\|\cdot\|: M \longmapsto \sqrt{\operatorname{tr}({}^t\!MM)}$. Pour tout $M \in \mathcal{M}_n(\mathbb{R})$ telle que $\|M\| < 1$, on pose

$$\ln(I_n + M) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} M^k$$

- (a) Pour $A, B \in \mathcal{M}_n(\mathbb{R})$, montrer que $||AB|| \le ||A|| \cdot ||B||$.
- (b) Montrer que $M \longmapsto \ln(I_n + M)$ est bien définie pour $M \in \mathcal{M}_n(\mathbb{R})$ telle que ||M|| < 1.
- (c) Montrer que pour $t \in [-1, 1]$, on a

$$\frac{\mathrm{d}}{\mathrm{d}t}\ln(\mathrm{I}_n + tM) = M(\mathrm{I}_n + tM)^{-1}$$

(d) Montrer que $e^{\ln(I_n + M)} = I_n + M$.

Exercice 11. Soit $f: x \longmapsto \sum_{n=1}^{+\infty} \frac{1}{1+n^2x^2}$.

- (a) Déterminer le domaine de définition de f.
- (b) Montrer que f est de classe C^1 .
- (c) Donner la limite et un équivalent de f en 0 puis en $+\infty$.
- (d) Montrer que $f(x) = \int_0^{+\infty} \frac{\sin u}{e^{xt} 1} dt$.

Exercice 12. On considère la suite réelle (x_n) définie par récurrence par $x_0 \in \mathbb{R}_+^*$ et $x_{n+1} = \sqrt{n+x_n}$. Donner un développement asymptotique à trois termes de (x_n) .

Oraux X-ENS

Exercice 1. ENS Paris 2015

- (a) Soit $(\lambda_1, \ldots, \lambda_n)$ et $(a_1, \ldots, a_n) \in \mathbb{R}^n$ tels que $a_1 < \cdots < a_n$. On pose $f : x \in \mathbb{R} \longmapsto \sum_{k=1}^n \lambda_k e^{a_k x}$ et on suppose que f s'annule n fois. Montrer que les $(\lambda_i)_{1 \le i \le n}$ sont nuls.
- (b) Soit $(b_1, \ldots, b_n) \in \mathbb{R}^n$ tels que $b_1 < \cdots < b_n$ et $A = (e^{a_i b_j})_{1 \le i,j \le n}$. Montrer que A est inversible.
- (c) Montrer que $\det A > 0$.

Exercice 2. *X 2015*

Un réel x est dit algébrique lorsqu'il annule un polynôme non nul à coefficients rationnels.

- (a) Montrer que l'ensemble des réels algébriques est dénombrable.
- (b) Soit x un réel algébrique. Montrer qu'il existe $(a,b) \in (\mathbb{R}_+^*)^2$ tel que, pour tout rationnel $r = \frac{p}{q}$ où $(p,q) \in \mathbb{N} \times \mathbb{N}^*$, on ait $|x-r| \geq \frac{a}{a^b}$.
- (c) Montrer que $\sum_{n=1}^{+\infty} 10^{-n!}$ n'est pas algébrique.

Exercice 3. *X 2015*

Soit G un sous-groupe de $GL_2(\mathbb{R})$. On suppose qu'il existe un entier naturel $N \geq 2$ tel que pour tout $g \in G$, $g^N = \mathrm{Id}$. Montrer que G est fini.

Oraux CCP

Exercice 1. 2016

On pose
$$f:(x,y) \in \mathbb{R}^2 \longmapsto \begin{cases} \frac{xy}{\sqrt{x^2+y^2}} & \text{si } (x,y) \in (\mathbb{R}^*)^2 \\ 0 & \text{si } x=y=0 \end{cases}$$
.

- (a) Montrer que f est continue sur \mathbb{R}^2 .
- (b) Montrer que f admet des dérivées partielles en tout point de \mathbb{R}^2 .
- (c) f est-elle de classe C^1 sur \mathbb{R}^2 ?