Direct Integration: The Foundation of ODE Solutions

ODE 1 - Prof. Adi Ditkowski

Lesson 11

1 Introduction

Definition 1 (Directly Integrable ODE). An ODE is **directly integrable** if it can be written in the form:

$$\frac{d^n y}{dx^n} = f(x)$$

where f(x) is a function of x only (not involving y or its derivatives).

Direct integration is the simplest solution method, requiring only antiderivatives. Yet it forms the foundation for all other ODE techniques!

2 First-Order Direct Integration

2.1 General Method

Method 1 (Solving y' = f(x)). 1. Recognize the form: $\frac{dy}{dx} = f(x)$

- 2. Integrate both sides: $y = \int f(x) dx + C$
- 3. If initial condition $y(x_0) = y_0$ is given, determine C
- 4. Verify the solution by differentiation

Example 1 (Basic Direct Integration). Solve: $\frac{dy}{dx} = 3x^2 - 2x + 1$ with y(0) = 5 Solution:

$$y = \int (3x^2 - 2x + 1) \, dx \tag{1}$$

$$= x^3 - x^2 + x + C (2)$$

Using y(0) = 5:

$$5 = 0^3 - 0^2 + 0 + C \implies C = 5$$

Therefore: $y = x^3 - x^2 + x + 5$

2.2 Definite Integral Form

Theorem 1 (IVP Solution via Definite Integral). The solution to $\frac{dy}{dx} = f(x)$ with $y(x_0) = y_0$ is:

 $y(x) = y_0 + \int_{x_0}^x f(t) dt$

The definite integral form automatically incorporates the initial condition - no need to find C separately!

3 Higher-Order Direct Integration

3.1 General Pattern

Theorem 2 (n-th Order Direct Integration). For $\frac{d^n y}{dx^n} = f(x)$, the general solution contains n arbitrary constants:

$$y(x) = \int_{-\infty}^{\infty} f(x) dx + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_{n-1} x + C_n$$

where $\int^{(n)}$ denotes n-fold integration.

Example 2 (Second-Order). Solve: $y'' = \cos(x)$ with y(0) = 1, y'(0) = 0 First integration:

$$y' = \int \cos(x) \, dx = \sin(x) + C_1$$

Using y'(0) = 0: $0 = \sin(0) + C_1 \implies C_1 = 0$

Second integration:

$$y = \int \sin(x) dx = -\cos(x) + C_2$$

Using
$$y(0) = 1$$
: $1 = -\cos(0) + C_2 = -1 + C_2 \implies C_2 = 2$
Solution: $y = -\cos(x) + 2$

4 Special Cases and Common Integrals

4.1 Important Antiderivatives for ODEs

f(x)	$\int f(x) dx$	Domain Note
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1} + C$	All x
$\frac{1}{x}$	$\ln x + C$	$x \neq 0$
e^{ax}	$\frac{1}{a}e^{ax} + C$	All x
$\sin(ax)$	$-\frac{1}{a}\cos(ax) + C$	All x
$\cos(ax)$	$\frac{1}{a}\sin(ax) + C$	All x
$\frac{1}{x^2+a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right) + C$	All x
$\frac{1}{\sqrt{a^2 - x^2}}$	$\arcsin\left(\frac{x}{a}\right) + C$	x < a

Always include absolute values in $\ln |x|$ and check domain restrictions!

4.2 The Zero Derivative Case

Theorem 3 (Polynomial Solutions). If $\frac{d^n y}{dx^n} = 0$, then y is a polynomial of degree at most n-1:

$$y(x) = C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_{n-1} x + C_n$$

5 Solution Verification

Method 2 (Verification Checklist). 1. Differentiate your solution n times

- 2. Substitute into the original ODE
- 3. Verify the equation holds identically
- 4. Check initial conditions (if given)
- 5. Verify domain of validity

Prof. Ditkowski awards partial credit for solution verification even if your answer is incorrect. Always show this step!

6 Common Errors to Avoid

Critical mistakes that lose points:

- ullet Forgetting +C in indefinite integrals
- Missing absolute values: $\int \frac{1}{x} dx = \ln|x| + C$
- Wrong number of constants for higher-order equations
- Not checking domain restrictions
- Arithmetic errors in determining constants

7 Physical Applications

Example 3 (Free Fall Motion). For an object in free fall: $\frac{d^2y}{dt^2} = -g$ where y is height, t is time, g is gravitational acceleration.

Solution:

$$v = \frac{dy}{dt} = -gt + v_0 \quad (velocity) \tag{3}$$

$$y = -\frac{1}{2}gt^2 + v_0t + y_0 \quad (position) \tag{4}$$

The constants v_0 and y_0 represent initial velocity and position.