GOVERNMENT COLLEGE OF ENGINEERING, AMRAVATI (An Autonomous Institute of Government of Maharashtra)

CT-I Engineering Mathematics-IV SHU401 [EXTC/ELPO]	
Date: 23/01/2017 Time: 1hr	Max. Marks 15
Q.1 Show that when $ z+1 < 1$, $z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$.	(03)
Q.2 Attempt any three:- e) State Cauchy integral formula and hence evaluate $\oint_{c} \frac{3z^{2} + z}{z^{2} - 1} dz$, w	there c is the circle
z-1 =1	
Evaluate: $\int_{0}^{1+i} (x-y+ix^{2}) dz$ along	The state of the s
i) the straight line from $z = 0$ to $z = 1 + i$	
iii) the real axis from $z = 0$ to $z = 1$ and then along a line parallel to	o imaginary axis from
z = 1 to $z = 1 + ig) State Cauchy residue theorem and hence evaluate \int_{0}^{1} \frac{ z-3 }{z^2+2z+5} dz$, where c is the circle
$ ii) _{ z =1} ii) _{z+1-i} = 2^{-c \cdot c \cdot c \cdot c} $	WI CH
	The state of the s
h) Evaluate the following integrals by contour integration $\int_{0}^{2\pi} \frac{d\theta}{5 - 3 \cos \theta}$	

GOVERNMENT COLLEGE OF ENGINEERING, AMRAVATA

CT- I Summer -2019

(An Autonomous Institute of Govt. of Maharashtra) SHU401 ENGG. MATHS-IV (EE/ET/IN)

Marks

Time- 1 hour

Date: 17/0 ..

Q.1) Let $V=R^+$ be the set of all positive reals. Define addition of any two numbers \bar{x} and j usual multiplication of numbers, that is $\bar{x} + \bar{y} = x.y$. Define scalar multiplication by a seal any $\bar{x} \in R^+$ to be x^k , that is, $k\bar{x} = x^k$. Then show that V is a vector space. (03)

Q.2) Attempt any four:

(12)

a) Evaluate: $\oint \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where C is the circle |z| = 3.

b) Expand
$$\frac{1}{z^2 - 4z + 3}$$
 in the region i) $|z| < 1$ ii) $1 < |z| < 3$ iii) $0 < |z - 1| < 2$.

Evaluate
$$\int_{0}^{1+y} (x^2 - iy) dz$$
 along the paths (a) $y = x$ (b) $y = x^2$,

d) Evaluate
$$\int_{0}^{\pi} \frac{d\theta}{3 + 2\cos\theta}$$
 using contour integral in complex plane.

e) Using residue theorem evaluate
$$\oint_{c} \frac{(2z-1)}{z(z+1)(z-3)} dz$$
 where C: $|z|=2$.