ADLTM: A Topic Model for Discovery of Activities of Daily Living in a Smart Home

Yu Chen, Tom Diethe, Peter Flach Department of Computer Science, University of Bristol, United Kingdom

<u>Conference - Proceedings of the Twenty-Fifth International Joint Conference on Artificial</u>
<u>Intelligence (IJCAI-16)</u>

<u>Presented By – Ankush Israney</u> Date of Presentation – 03/16/2017

Goals and Motivation

- To be able to automatically recognize activities of Daily Living
- Varied Applications in Improved daily living:
 - Assistive Applications for elderly people.
 - Monitor Actions for lifestyle change.
- Three Main Sources of Information:
 - Video Streams Vision Community / Demonstration by Learning
 - Wearable Sensors Vision Community (Deep Learning gaining popularity)
 - Environmental Sensors (Temperature sensors, pressure sensors, light switches etc.)
 Cheap and Easy to Set up
 Lesser Privacy Concerns.

Activity Recognition is a Hard Problem

- Multiple Activities & Instances of the Same Activity Class
- Interleaved Activities
- Multiple Ways/Actions to Achieve Goals (Uncertainty)
- Difficult to Define Goals for Intentions (example : Cleaning)

Different Communities to Solve this Problem:

- Plan Recognition
 - Libraries of Plans
- Logic Programming (Hybrid, Ontologies etc)
 - Careful Domain Knowledge & Engineering
- Supervised Learning
 - Time Consuming & Error Prone Labelling
 - Unable to Recognize Unseen Activities.
- Unsupervised Learning
 - Lesser Accuracy on Datasets compared to Supervised Learning
 - Flexibility to Capture Exceptions in realistic scenarios

Topic Modelling, The Generative Model: David M. Blei, MLSS, September 2009,

- Each document is a random mixture of corpus-wide topics
- Each word is drawn from one of those topics

Sample Dataset and Definition of Words

- CASAS Project Datasets: <u>Popular Datasets for Activity Recognition</u>
- Unigrams and Bigram Words
- Documents are collection of <u>Spatially Correlated</u> words

Timestamp	Sensor	Reading	Activity
2013-04-01 00:04:09.340911	M007	ON	Sleep Begin
2013-04-01 00:04:10.485392	M007	OFF	
2013-04-01 00:56:31.879063	T106	24	
2013-04-01 01:13:53.616434	BATV104	3070	
2013-04-01 02:45:47.215554	M006	OFF	Sleep End

Document Segmentation Algorithm: Contribution 1

- Change of Location is Strong Indication for Segmentation
- Threshold has a role to play in Segmentation Error
- Online Version is suggested to include second Threshold for Maximum duration of Document

```
Algorithm 1: Document Segmentation Algorithm
   Input: L_s - the sequence of sensor locations,
              terminated with an extra 0, and all location IDs
              are non zero.
   Input: t_{th} - time threshold
   Output: Docs - the list of start and stop indices of each
              document
1 Docs = \emptyset;
2 idx_{start} = 0;
3 idx_{stop} = idx_{start};
4 while idx_{stop} < len(L_s) - 1 do
       id_l = L_s[idx_{stop}];
       idx_{stop} = idx_{next} - 1, where idx_{next} is the next index
         that satisfies L_s[idx_{next}] \neq id_l;
       t_{stop} = \text{timestamp of } L_s[idx_{stop}];
7
       t_{start} = \text{timestamp of } L_s[idx_{start}];
       if t_{stop} - t_{start} > t_{th} then
            append (idx_{start}, idx_{stop}) into Docs;
10
            idx_{start} = idx_{next};
11
       end
12
       idx_{stop} = idx_{next};
14 end
15 return Docs;
```

Generative Process and Plate Notation:

Algorithm 2: Generative Processes of ADLTM

```
1 Draw a \theta \sim Dir(\alpha);

2 for d = 1 to D do

3 Draw a topic \mathbf{z}_d \sim Multi(\theta);

4 Draw a \phi_{z_d} \sim Dir(\beta);

5 Draw a \mathbf{v}_{z_d} \sim Dir(\gamma);

6 for n = 1 to N do

7 Draw a unigram t_{d,n}|z_d \sim Mult(\mathbf{v}_{z_d});

8 if n > 1 then

9 Draw a bigram w_{d,n}|w_{d,n-1}, z_d \sim Mult(\phi_{z_d});

10 end

11 end
```


Difference between LDA and ADL

• Contribution 2:

- Topics drawn for documents rather than words
- Different
 Vocabularies for
 Unigram and
 Bigram
 Sequences
- Markov Chain for Bigrams
 - (affects size of vocabulary for phi)

Gibbs Sampling of ADL

$$P(z_d|\mathbf{z}_{-d},\mathbf{w},\mathbf{t}) \propto P(z_d|\mathbf{z}_{-d})P(w_d|z_d,\mathbf{z}_{-d},\mathbf{w}_{-d})$$
$$\times P(t_d|z_d,\mathbf{z}_{-d},\mathbf{t}_{-d})$$

$$P(z_d = k | \mathbf{z}_{-d}) \propto C_k^- + \alpha$$

$$\begin{split} &P(w_{d}|z_{d}=k,\mathbf{z}_{-d},\mathbf{w}_{-d})\\ &=\prod_{n=2}^{N}P(w_{d,n}|w_{d,n-1},z_{d}=k,\mathbf{z}_{-d},\mathbf{w}_{-d})\\ &\propto\prod_{n=2}^{N}\left(\sum_{j=1}^{V}\frac{\sum_{i=1}^{V}(C_{w_{ijk}}^{-}+\beta)I(w_{d,n}=i)}{C_{w_{*ju}}^{-}+V\beta}I(w_{d,n-1}=j)\right) \end{split}$$

$$P(t_{d}|z_{d}, \mathbf{z}_{-d}, \mathbf{t}_{-d}) = \prod_{n=1}^{M} P(t_{d,n}|z_{d} = k, \mathbf{z}_{-d}, \mathbf{t}_{-d})$$

$$\propto \prod_{n=1}^{M} \left(\sum_{h=1}^{H} \frac{(C_{t_{hk}}^{-} + \gamma)}{(C_{t_{*k}}^{-} + H\gamma)} I(t_{d,n} = h) \right)$$

Hyperparameters and Interpreting Counts

- Topic prior: alpha = 50/K
- Bigram and unigram priors: beta = 5/V, gamma = 5/H.
- Contribution 3: Interpretation of Counts
- Unigram counts are counted by term frequency
- Bigram counts are counted by document frequency (Avoid Self Transitions)

Evaluation

	hh122	hh120	milan
Random topics	0.0798	0.0969	0.1193
BTM	0.1515	0.1988	0.3225
LDA	0.3268	0.3486	0.5634
ADL^{TM}	0.3362	0.4072	0.6190

Table 3: FM Index of topics by different methods

Dataset	# Activities	# Binary Sensors	Duration (days)	# Residents
hh122	32	24	30	1
hh120	32	24	64	1
milan	15	31	31	1+pet

Table 2: Properties of Datasets

Segmentation and it's Metrics

<u>Segmentation Error</u>: Average Error over all Segments

$$Err_s = \frac{\sum_{i}^{D_s} E_i}{N_{dp}}$$
 $E_i = N_i - \sum_{j=1}^{N_i} I(a_{ij} = m), \quad m = \underset{k}{\operatorname{argmax}} (\sum_{j=1}^{N_i} I(a_{ij} = k))$

<u>Fragment Ratio</u>: Average number of segments in one occurrence of an activity

$$R_{fr} = \frac{D_s}{D_a}$$

(a) Segmentation by topics and activities

(b) Segmentation by documents and activities

Segmentation Results

Effects of Threshold th:

- Smaller = higher fragment ratio + low segmentation error
- Larger = higher segmentation ratio + lower fragment error

	hh122		hh120		milan	
	Err_s	R_{fr}	Err_s	R_{fr}	Err_s	R_{fr}
Documents	0.0197	1.596	0.0404	2.084	0.0342	1.563
LDA	0.0541	1.178	0.0531	1.554	0.0409	1.157
BTM	0.0619	1.174	0.0568	1.853	0.0428	1.394
ADL TM	0.0512	1.102	0.0516	1.364	0.0406	1.149

Applications

- dataset hh122 compression
 - 129936 to 2792 data points.
- Detection of Sleep Patterns
 - Average duration: 7.02 hours)

(a) Distribution of Topic 8

(b) Distribution of "Sleep"

Applications : Continued

- Combination with Other Distributions
 - (Use of Sleep + Restroom)
- Subtopic Clustering
 - K-means with K explicitly = 3
 - Columns don't sum to 1
- Detection of Outliers
 - Deploy z-scores on duration of data-points

Timestamp	Sensor	Reading	Location
2013-04-27 18:29:28.187573	MA011	ON	Kitchen
2013-04-27 18:29:29.339714	MA011	OFF	Kitchen
2013-04-27 20:47:55.930002	M010	ON	Kitchen
2013-04-27 20:47:57.065529	M010	OFF	Kitchen

Sub- Topic	Cook Breakfast	Wash Breakfast Dishes	Cook Lunch	Wash Lunch Dishes	Cook Dinner	Wash Dinner Dishes
0	0.985	0.904	0	0	0	0
1	0	0	0	0	0.969	0.979
2	0	0.041	0.960	0.983	0	0

Answers to Questions

- 1) What do the authors claim is the contribution of the paper?
 - Segmentation Algorithms (<u>Document Generation + Topic Segmentation</u>)
 - ADL outperforms LDA and BTM (Novel Unsupervised Approach, powerful topic model)
- 2) What is the actual contribution of the paper?
 - Segmentation Algorithms:
 - Document Generation due to spatial correlation
 - Don't give many details on criterion to segment/integrate topics from documents
 - ADL outperforms LDA and BTM
 - Not Novel with respect to LDA (Use Case of LDA/hierarchical Bayesian inference)
 - ◆ <u>Topic Distribution for Documents</u> insight into the domain
 - Interpretation of Counts in Unigram and Bigrams insight into approximation for domain
 - Markov Chain for Bigrams
 - Detailed Evaluation in terms of Applicability (example, Detect outliers for instance)

Answers to Questions: Continued

- 3) Are the results of the paper replicable?
- May be not (No source code probably proprietary work):
 - Document Segmentation Algorithm given (threshold calculation is not)
- 4) Are there significant technical faults in the paper or open cases that are not addressed?

Not Any Significant faults but some Strong Assumptions and minor issues

Assumption 1: Environmental Sensors reflect actions of humans and their Activities.

Assumption 2: Evaluation for 1 resident

Minor issue: 50 iterations for gibbs Sampling

Answers to Questions: Continued

- 5) What is the next incremental step in this research?
- Simultaneously Categorizing by Spatial and Temporal Dimensions
- Online Variational Inference Algorithm (Standard LDA)
- Prior knowledge for hyperparameters: alpha, beta and gamma
- Semi-Supervised Learning
- Correlations in topics introduced in the model

Answers to Questions: Continued

6) What is the next long term step in this research program?

Future Systems are to follow Complex, hybrid Architectures

- Evaluate formally (Quantitively and qualitatively) the true advantage of this against other methods (Deep Learning? Extend in Bayesian Nonparametrics?)
- Reason about motions of Humans, properties of objects (Fall Back to Video Streams)
 - <u>Privacy-Preserving Human Activity Recognition from Extreme Low Resolution:</u>

 Michael S. Ryoo 1;2, Brandon Rothrock, Charles Fleming, Hyeon Jong Yang (AAAI 2017)

Questions and Discussion