

IRF8327SPbF

- RoHS Compliant and Halogen Free ①
- Low Profile (<0.7 mm)
- Dual Sided Cooling Compatible ①
- Ultra Low Package Inductance
- Optimized for High Frequency Switching ①
- Ideal for CPU Core DC-DC Converters
- Optimized for Control FET application ①
- Low Conduction and Switching Losses
- Compatible with existing Surface Mount Techniques ①
- 100% Rg tested

DirectFET® Power MOSFET ②

Typical values (unless otherwise specified)

V _{DSS}		V _G	s		R _{DS(on)}		Rı	OS(on)
30V ma	Х	±20V	max		mΩ@ 10'			2@ 4.5V
Q _{g tot}		\mathbf{Q}_{gd}	Q	gs2	\mathbf{Q}_{rr}		Q _{oss}	$V_{gs(th)}$
9.2nC	1	3.0nC	1.2	nC	19nC	7	7.9nC	1.9V

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

1			_						
SQ	SX	ST		MQ	MX	MT	MP		

Description

The IRF8327SPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF8327SPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF8327SPbF has been optimized for parameters that are critical in synchronous buck operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.

Ordereble next number	Doolsone Type	Standard Pack		Nete
Orderable part number	Package Type	Form	Quantity	Note
IRF8327STRPbF	DirectFET SQ	Tape and Reel	4800	"TR" suffix
IRF8327STR1PbF	DirectFFT SQ	Tane and Reel	1000	"TR1" suffix FOL notice # 264

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	14	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	11	Α
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V ④	60	
I _{DM}	Pulsed Drain Current ③	110	
E _{AS}	Single Pulse Avalanche Energy ®	62	mJ
IAB	Avalanche Current ⑤	11	Α

V_{GS}, Gate -to -Source Voltage (V)

Fig 1. Typical On-Resistance vs. Gate Voltage Notes:

- ① Click on this section to link to the appropriate technical paper.
- ② Click on this section to link to the DirectFET Website.
- 3 Surface mounted on 1 in. square Cu board, steady state.

Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage

- $\ensuremath{\mathfrak{G}}$ $T_{\ensuremath{\mathbb{C}}}$ measured with thermocouple mounted to top (Drain) of part.
- S Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25$ °C, L = 1.1mH, $R_G = 25Ω$, $I_{AS} = 11$ A.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		22		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.1	7.3	mΩ	V _{GS} = 10V, I _D = 14A ⑦
			8.5	10.9		V _{GS} = 4.5V, I _D = 11A ⑦
$V_{GS(th)}$	Gate Threshold Voltage	1.4	1.9	2.4	V	$V_{DS} = V_{GS}$, $I_D = 25\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-6.3		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 24V, V_{GS} = 0V$
				150		$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	25			S	$V_{DS} = 15V, I_{D} = 11A$
Q_g	Total Gate Charge		9.2	14		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		2.7			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.2		nC	$V_{GS} = 4.5V$
Q_gd	Gate-to-Drain Charge		3.0			I _D = 11A
Q_{godr}	Gate Charge Overdrive		2.3			See Fig. 15
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		4.2			
Q _{oss}	Output Charge		7.9		nC	$V_{DS} = 16V, V_{GS} = 0V$
R _G	Gate Resistance		2.1	3.7	Ω	
t _{d(on)}	Turn-On Delay Time		7.8			$V_{DD} = 15V, V_{GS} = 4.5V$ ⑦
t _r	Rise Time		8.9		ns	I _D = 11A
t _{d(off)}	Turn-Off Delay Time		9.3			$R_G = 1.8\Omega$
t _f	Fall Time		5.3			See Fig. 17
C _{iss}	Input Capacitance		1430			$V_{GS} = 0V$
C _{oss}	Output Capacitance		370		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		140]	f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			52		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ⑤			110		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage		0.80	1.0	V	$T_J = 25^{\circ}C, I_S = 11A, V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		17	26	ns	$T_J = 25^{\circ}C, I_F = 11A$
Q _{rr}	Reverse Recovery Charge		19	29	nC	di/dt = 230A/µs ⑦

Notes:

 $\ensuremath{ \bigcirc }$ Pulse width $\le 400 \mu s;$ duty cycle $\le 2\%.$

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ③	2.2	W
P _D @T _A = 70°C	Power Dissipation ③	1.4	
$P_D @ T_C = 25^{\circ}C$	Power Dissipation	42	
T _P	Peak Soldering Temperature	270	°C
TJ	Operating Junction and	-40 to + 150	
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 3®		58	
$R_{\theta JA}$	Junction-to-Ambient ®®	12.5		
$R_{\theta JA}$	Junction-to-Ambient 9®	20		°C/W
$R_{\theta JC}$	Junction-to-Case @ @		3.0	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor ③	0.0	017	W/°C

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 3

Notes:

- ® Used double sided cooling , mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- ${}^{\circledR}$ R $_{\theta}$ is measured at T $_{J}$ of approximately 90°C.

③ Surface mounted on 1 in. square Cu (still air).

Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

Fig11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 16a. Unclamped Inductive Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

DirectFET® Board Footprint, SQ Outline (Small Size Can, Q-Designation).

 $\label{lem:please} \textit{Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.}$

This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

DirectFET® Outline Dimension, SQ Outline (Small Size Can, Q-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

	DII	MENSI	ONS	
	MET	RIC	IMPE	RIAL
CODE	MIN	MAX	MIN	MAX
Α	4.75	4.85	0.187	0.191
В	3.70	3.95	0.146	0.156
С	2.75	2.85	0.108	0.112
D	0.35	0.45	0.014	0.018
Е	0.48	0.52	0.019	0.020
F	0.78	0.82	0.031	0.032
G	0.88	0.92	0.035	0.036
Н	0.78	0.82	0.031	0.032
J	N/A	N/A	N/A	N/A
K	0.93	0.97	0.037	0.038
L	2.00	2.10	0.079	0.083
М	0.59	0.70	0.023	0.028
Р	0.08	0.17	0.003	0.007
R	0.020	0.080	0.0008	0.0031

Dimensions are shown in millimeters (inches)

DirectFET® Part Marking

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

DirectFET® Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF8327SPBF).

	REE	L DIMEN	SIONS	
	STANDA	RD OPTK	ON (QTY 4	1800)
	М	ETRIC	IMI	PERIAL
CODE	MIN	MAX	MIN	MAX
Α	330.0	N.C	12.992	N.C
В	20.2	N.C	0.795	N.C
С	12.8	13.2	0.504	0.520
D	1.5	N.C	0.059	N.C
E	100.0	N.C	3.937	N.C
F	N.C	18.4	N.C	0.724
G	12.4	14.4	0.488	0.567
Н	11.9	15.4	0.469	0.606

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

	DI	MENSION	NS .	
	MET	RIC	IMPE	RIAL
CODE	MIN	MAX	MIN	MAX
Α	7.90	8.10	0.311	0.319
В	3.90	4.10	0.154	0.161
С	11.90	12.30	0.469	0.484
D	5.45	5.55	0.215	0.219
Е	4.00	4.20	0.158	0.165
F	5.00	5.20	0.197	0.205
G	1.50	N.C	0.059	N.C
Н	1.50	1.60	0.059	0.063

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

|--|

Qualification information		
Qualification level	Consumer ^{††}	
	(per JEDEC JESD47F ^{†††} guidelines)	
	Comments: This family of products has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.	
Moisture Sensitivity Level	DFET	MSL1
		(per JEDEC J-STD-020D ^{†††})
RoHS Compliant	Yes	

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments	
5/6/2014	• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #264).	
	Updated data sheet based on corporate template.	

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/