§3.1-3.3: Determinants

Conceptually, the determinant $\det A$ of a square $n \times n$ matrix A is the signed area/volume scaling factor of the linear transformation $T(\mathbf{x}) = A\mathbf{x}$, i.e.:

- For any region S in \mathbb{R}^n , the volume of its image T(S) is $|\det A|$ multiplied by the original volume of S,
- If $\det A>0$, then T does not change "orientation". If $\det A<0$, then T changes "orientation".

Example: Area of ellipse $= \det \begin{vmatrix} a & 0 \\ 0 & b \end{vmatrix} \times \text{ area of unit circle} = ab\pi.$

This idea is useful in multivariate calculus.

Formula for
$$2 \times 2$$
 matrix: $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$.

Example: The standard matrix for reflection through the x_2 -axis is $\begin{bmatrix} -1 & 0 \ 0 & 1 \end{bmatrix}$. Its determinant is $-1 \cdot 1 - 0 \cdot 0 = -1$: reflection does not change area, but

Its determinant is $-1 \cdot 1 - 0 \cdot 0 = -1$: reflection does not change area, but changes orientation.

Exercise: Guess what the determinant of a rotation matrix is, and check your answer.

Formula for
$$2 \times 2$$
 matrix: $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$.

Example: The standard matrix of projection onto the x_1 -axis is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Its determinant is $1 \cdot 0 - 0 \cdot 0 = 0$. Projection sends the unit square to a line, which has zero area.

Theorem: A is invertible if and only if $\det A \neq 0$.

How the determinant changes under row operations:

- 1. Replacement: add a multiple of one row to another row. determinant does not change.
- $R_i \to R_i + cR_j$

2. Interchange: interchange two rows. determinant changes sign.

- $R_i o R_j$, $R_j o R_i$
- 3. Scaling: multiply all entries in a row by a nonzero constant. $R_i \to cR_i, c \neq 0$ determinant scales by a factor of c.

To help you remember:

	after	after	
original	replacement	interchange	after scaling
$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1,$	$\begin{vmatrix} 1 & c \\ 0 & 1 \end{vmatrix} = 1,$	$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1,$	$\begin{vmatrix} c & 0 \\ 0 & 1 \end{vmatrix} = c.$

Because we can compute the determinant by expanding down columns instead of across rows, the same changes hold for "column operations".

- 1. Replacement: $R_i \rightarrow R_i + cR_i$ determinant does not change.
- 2. Interchange: $R_i \to R_j$, $R_i \to R_i$ determinant changes sign.
- 3. Scaling: $R_i \to cR_i$, $c \neq 0$ determinant scales by a factor of c.

Usually we compute determinants using a mixture of "expanding across a row or down a column with many zeroes" and "row reducing to a triangular matrix".

Example:

Example:
$$\begin{vmatrix} 2 & 3 & 4 & 6 \\ 0 & 5 & 0 & 0 \\ 5 & 5 & 6 & 7 \\ 7 & 9 & 6 & 10 \end{vmatrix} = 5 \begin{vmatrix} 2 & 4 & 6 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 5 \cdot 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 5 \cdot 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 5 \cdot 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 5 \cdot 2 \begin{vmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 7 & 6 & 10 \end{vmatrix} = 5 \cdot 2 \begin{vmatrix} 1 & 2 & 3 \\ 0 & -4 & -8 \\ 0 & -8 & -11 \end{vmatrix}$$

factor out -4 from
$$R_2$$
 $R_3 \rightarrow R_3 + 8R_2$ $= 5 \cdot 2 \cdot -4 \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -8 & -11 \end{vmatrix} = 5 \cdot 2 \cdot -4 \begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 5 \end{vmatrix} = 5 \cdot 2 \cdot -4 \cdot 1 \cdot 1 \cdot 5 = -200.$

- 1. Replacement: $R_i \to R_i + cR_j$ determinant does not change.
- 2. Interchange: $R_i \to R_j$, $R_j \to R_i$ determinant changes sign.
- 3. Scaling: $R_i \to cR_i$, $c \neq 0$ determinant scales by a factor of c.

Useful fact: If two rows of A are multiples of each other, then $\det A = 0$.

Proof: Use a replacement row operation to make one of the rows into a row of zeroes, then expand along that row.

Example:

$$\begin{vmatrix} R_3 \to R_3 - 2R_1 \\ \begin{vmatrix} 1 & 3 & 4 \\ 5 & 9 & 3 \\ 2 & 6 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 4 \\ 5 & 9 & 3 \\ 0 & 0 & 0 \end{vmatrix} = 0 \begin{vmatrix} 3 & 4 \\ 9 & 3 \end{vmatrix} - 0 \begin{vmatrix} 1 & 4 \\ 5 & 3 \end{vmatrix} + 0 \begin{vmatrix} 1 & 3 \\ 5 & 9 \end{vmatrix} = 0.$$

Why does the determinant change like this under row and column operations? Two views:

Either: It is a consequence of the expansion formula in Theorem 1;

Or: By thinking about the signed volume of the image of the unit cube under the associated linear transformation:

- 2. Interchanging columns changes the orientation of the image of the unit cube.
- 3. Scaling a column applies an expansion to one side of the image of the unit cube.

1. Column replacement rearranges the image of the unit cube without changing its

$$\det(A^T) = \det A.$$

Theorem 6: Determinants are multiplicative: For square matrices A and B:

$$\det(AB) = \det A \det B$$
.

In particular:

$$(let B = A^{-1})$$

$$\det(A^{-1}) = \frac{\det I_n}{\det A}$$

$$\det(cA) =$$

$$\det(A^T) = \det A$$
.

Theorem 6: Determinants are multiplicative: For square matrices A and B:

$$\det(AB) = \det A \det B$$
.

In particular:

$$(let B = A^{-1})$$

$$\det(A^{-1}) = \frac{\det I_n}{\det A} = \frac{1}{\det A}, \quad \det(cA) = \det\begin{bmatrix} c & 0 \\ & \ddots & \\ 0 & c \end{bmatrix} \det A =$$

$$\det(A^T) = \det A$$
.

Theorem 6: Determinants are multiplicative: For square matrices A and B:

$$\det(AB) = \det A \det B$$
.

In particular:

$$(\text{let } B = A^{-1})$$

$$\det(A^{-1}) = \frac{\det I_n}{\det A} = \frac{1}{\det A}, \quad \det(cA) = \det\begin{bmatrix} c & 0 \\ & \ddots & \\ 0 & c \end{bmatrix} \det A = c^n \det A.$$
 (where A is $n \times n$)

Theorem 4: Invertibility and determinants: A square matrix A is invertible if and only if $\det A \neq 0$.

Proof 1: By the Invertible Matrix Theorem, A is invertible if and only if $\operatorname{rref}(A)$ has n pivots. Row operations multiply the determinant by nonzero numbers. So $\det A=0$ if and only if $\det(\operatorname{rref}(A))=0$, which happens precisely when $\operatorname{rref}(A)$ has fewer than n pivots.

Proof 2: By the Invertible Matrix Theorem, A is invertible if and only if its columns span \mathbb{R}^n . Since the image of the unit cube is a subset of the span of the columns, this image has zero volume if the columns do not span \mathbb{R}^n .

So we can use determinants to test whether $\{\mathbf v_1,\dots,\mathbf v_n\}$ in $\mathbb R^n$ is linearly independent, or if it spans $\mathbb R^n$: it does when $\det\begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 \\ \mathbf v_1 & \dots & \mathbf v_n \\ 1 & 1 & 1 \end{pmatrix} \neq 0$.

Application in MultiCal (MATH2205): determinants and volumes

Example: Find the area of the parallelogram with vertices $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Answer: This parallelogram is the image of the unit square under a linear transformation T with

$$T(\mathbf{e}_1) = \begin{bmatrix} -2\\3 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} 4\\-3 \end{bmatrix}$.

So area of parallelogram
$$= \left| \det \begin{bmatrix} -2 & 4 \\ 3 & -3 \end{bmatrix} \right| \times \text{ area of unit square } = |-6| \cdot 1 = 6.$$

This works for any parallelogram where the origin is one of the vertices (and also in \mathbb{R}^3 , for parallelopipeds).

Application in MultiCal (MATH2205): determinants and volumes

Example: Find the area of the parallelogram with vertices $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Answer: This parallelogram is the image of the unit square under a linear transformation T with

$$T(\mathbf{e}_1) = \begin{bmatrix} -2\\3 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} 4\\-3 \end{bmatrix}$.

$$T(\mathbf{e}_2)$$
 So area of parallelogram $= \left| \det \begin{bmatrix} -2 & 4 \\ 3 & -3 \end{bmatrix} \right| \times \text{ area of unit square} = |-6| \cdot 1 = 6.$

This works for any parallelogram where the origin is one of the vertices (and also in \mathbb{R}^3 , for parallelopipeds).

Application in MultiCal (MATH2205): determinants and volumes

Example: Find the area of the parallelogram with vertices $\begin{vmatrix} -2 \\ -1 \end{vmatrix}, \begin{vmatrix} -4 \\ 2 \end{vmatrix}, \begin{vmatrix} 2 \\ -4 \end{vmatrix}, \begin{vmatrix} 0 \\ -1 \end{vmatrix}$.

Answer: Use a translation to move one of the vertices of the parallelogram to the origin - this does not change the area.

The formula for this translation function is $x \mapsto x - v$, where v is one of the vertices of the parallelogram.

Here, the vertices of the translated parallelogram are
$$\begin{bmatrix} -2 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $\begin{bmatrix} -4 \\ 2 \end{bmatrix} - \begin{bmatrix} -2 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -4 \end{bmatrix} - \begin{bmatrix} -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

So, by the previous example, the area of the parallelogram is 6.

Application in ODE (MATH3405): determinants and linear systems

Cramer's rule: Let A be an invertible $n \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. For any \mathbf{b} in \mathbb{R}^n , the unique solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$ is given by

Application in ODE (MATH3405): determinants and linear systems

Cramer's rule: Let A be an invertible $n \times n$ matrix with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$. For any b in \mathbb{R}^n , the unique solution x of $A\mathbf{x} = \mathbf{b}$ is given by

Proof:

So

Applying Cramer's rule to $\mathbf{b} = \mathbf{e}_i$ gives a formula for each entry of A^{-1} (see Theorem 8 in textbook; this formula is called the adjugate or classical adjoint).

The
$$2 \times 2$$
 case of this formula is $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Cramer's rule is much slower than row-reduction for linear systems with actual numbers, but is useful for obtaining theoretical results.

Example: If every entry of A is an integer and $\det A = 1$ or -1, then every entry of A^{-1} is an integer.

Proof: Cramer's rule tells us that every entry of A^{-1} is the determinant of an integer matrix divided by $\det A$. And the determinant of an integer matrix is an integer.

Exercise: using the fact $\det AB = \det A \det B$, prove the converse (if every entry of A and of A^{-1} is an integer, then $\det A = 1$ or -1).