Quantum Computing Cheat Sheet

bra-ket notation: Quantum states are represented by column vectors, called kets

$$|\psi\rangle = \left(\begin{array}{c} \alpha \\ \beta \end{array}\right)$$

To get a bra from a given ket, we take the conjugate transpose of the ket. (this is known as dagger)

$$\langle \psi | = | \psi \rangle^{\dagger} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}^{\dagger} = \begin{pmatrix} \alpha^* & \beta^* \end{pmatrix}$$

Inner Product: Multiplying a bra and a ket is an inner product that yields the projection, or amplitude, of the states onto each other. The inner product yields a scalar output.

$$\langle \psi | \psi \rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}^{\dagger} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha^* & \beta^* \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
$$\langle \phi | \psi \rangle = \begin{pmatrix} \gamma \\ \delta \end{pmatrix}^{\dagger} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \gamma^* & \delta^* \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

- A state whose inner product with itself equals 1 is normalized.
- States with inner product equaling 0 are orthogonal.

Outer Product: Multiplying a ket and a bra is an outer product, which is a square matrix.

Quantum gates & Matrices:

- Quantum gates are unitary matrices, which satisfy: $UU^{\dagger} = U^{\dagger}U = I$
- Unitary matrices are always reversible with: $U^{-1} = U^{\dagger}$

The dagger operation on a matrix, is the conjugate transpose: $A^{\dagger} = (\overline{A})^T$ Transpose of a Matrix A:

$$A_{3\times 3} = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] \qquad A^T = \left[\begin{array}{ccc} a & d & g \\ b & e & h \\ c & f & i \end{array} \right]$$

An example of dagger operation:

$$A_{2\times 2} = \left[\begin{array}{cc} 1+i & 3i \\ 0 & 3-i \end{array} \right] \qquad A^{\dagger} = \left[\begin{array}{cc} 1-i & 0 \\ -3i & 3+i \end{array} \right]$$

• Trace of a matrix is the sum of all diagonal elements.

Global phase factor: A complex number z can be written as $z = re^{i\theta}$ in the case where r = 1 and θ is a real number, then z is known as a phase factor and it can be simply ignored, as in it will not affect the state.

Euler's formula:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Density Matrix: A general way of expressing a quantum state. When state vectors and wavefunctions can only describe pure states, a density matrix can describe mixed states as well.

A density matrix is defined as:

$$\rho = \sum_{j} P_{j} |\psi_{j}\rangle\langle\psi_{j}|$$

where P_j is the probability of obtaining the state $|\psi_j\rangle$.

Every density matrix can also be written as a linear combination of Pauli gates, as follows:

$$\rho = \frac{1}{2}I + c_1X + c_2Y + c_3Z$$

where

$$I = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \quad X = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \quad Y = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] \quad Z = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right]$$

and c_1, c_2, c_3 give us the bloch vector in cartisian coordinates:

$$\vec{r} = (x, y, z) = (2c_1, 2c_2, 2c_3)$$

State Purity: a scalar quantity to measure how pure a state is, defined as:

$$purity = \gamma = tr(\rho^2)$$

such that γ can be between $\frac{1}{d}$ and 1, where d is the dimension of the Hilbert space.

$$\begin{array}{c} \gamma = 1 \rightarrow \text{pure state} \\ \gamma \neq 1 \rightarrow \text{mixed state} \\ \gamma = \frac{1}{d} \rightarrow \text{completely mixed state} \end{array}$$

Note: Pure states lie on the surface of a Bloch sphere, whereas mixed states lie within it. so if the length of a Bloch vector $(\sqrt{x^2 + y^2 + z^2})$ equals 1, then the state is pure.

Fidelity: a scalar value that measure the closeness of the output state to the input state, after going through a quantum gate, defined as:

$$F(|\psi_i\rangle, |\psi_f\rangle) = |\langle \psi_i | \psi_f \rangle|^2$$

Fidelity holds the following properties:

- Symmetery: $F(|\psi_i\rangle, |\psi_f\rangle) = F(|\psi_f\rangle, |\psi_i\rangle)$
- Bounded values: $0 \le F(|\psi_i\rangle, |\psi_f\rangle) \le 1$ and $F(|\psi\rangle, |\psi\rangle) = 1$

Rotation matrices: