华东师范大学期末试卷(A)参考答案

计量地理学

2008——2009 学年第一学期

1.填空题(20分)

- 1) 描述地理数据一般水平的指标有<u>平均值、中位数、众数</u>;描述地理数据分布的离散程度的指标有<u>极差、离差、离差平方和、方差与标准差、变异系数</u>;描述地理数据分布特征的参数有<u>偏度系数、峰度系数</u>;揭示地理数据分布均衡度的指数有<u>基尼系数、锡尔系数</u>。(每空 0.5 分)
- 2) 秩相关系数与简单相关系数的区别在于: <u>秩相关系数是以两要素样本值的大小排列位</u>次来代替实际数据而求得的一种统计量。(1分)
- 3) 多元线性回归模型中常数 b_0 及偏回归系数 b_i 的求解公式 b_i = $A^{-1}B^{-1}(X^{T}X)^{-1}X^{T}Y$ (请用矩阵形式表达),其中各矩阵的具体表达式为:

$$X = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ 1 & x_{13} & x_{23} & \cdots & x_{k3} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{bmatrix} \qquad Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad b = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

其显著性检验中,回归平方和U 的自由度为<u>自变量的个数k</u>,剩余平方和Q 的自由度为<u>n-k-l,n 为样本个数</u>。 (每空 0.5 分)

- 4) 主成分分析的主要计算步骤: <u>①计算相关系数矩阵</u>, <u>②计算特征值与特征向量</u>, <u>③计算主成分贡献率及累计贡献率</u>, <u>④计算主成分载荷</u>。 (每空 0.5 分)
- 5) 全局空间自相关的度量指标有 \underline{Moran} 指数、 \underline{Geary} 系数; 局部空间自相关分析方法包括: \underline{LISA} (空间联系的局部指标)、 \underline{G} 统计量、 \underline{Moran} 散点图。 (每空 0.5 分)
- 6) 请写出线形规划问题: Min Z=2X1+5X2+X3

满足
$$X_1+2X_2+X_3\geqslant 6$$
 $3X_1-X_2+2X_3\geqslant 6$ $X_1,X_2,X_3\geqslant 0$ 的对偶问题

$$\max Z=3Y_1+4Y_2 \qquad Y_1+2Y_2\leqslant 2 \\ 2Y_1-Y_2\leqslant 3 \\ Y_1+3Y_2\leqslant 4 \\ Y_1,Y_2\geqslant 0$$

(1.5分)

- 7) 在目标规划模型中,除了决策变量外,还需引入正、负偏差变量,其中,正偏差变量表示 决策值超过目标值的部分,负偏差变量表示 决策值未达到目标值的部分。(每空 0.5分)
- 8) 风险型决策方法主要包括<u>最大可能法、期望值法、树型决策法、灵敏度分析法、效用分析法</u>,非确定型决策方法主要包括<u>乐观法、悲观法、折衷法、等可能性法、后悔值法</u>。(2分)

- 9) 地理网络中,关联矩阵是对网络图中<u>顶点与边</u>的关联关系的一种描述;邻接矩阵是对图中各顶点之间的连通性程度的一种描述。(每空 0.5 分)
- 2.试列举地理数据标准化的常用方法,并简述其基本原理。(15分)
 - (1) 我们通常将多元的地理数据以矩阵的形式表达如下: (3分)

地理对象与要素数据

地理对象	要素				
	$x_1 x_2 \cdots, x_j \cdots, x_n$				
1	x_{11} x_{12} \cdots , x_{1j} \cdots , x_{1n}				
2	x_{21} x_{22} \cdots , x_{2j} \cdots , x_{2n}				
:					
i	x_{i1} x_{i2} \cdots , x_{ij} \cdots , x_{in}				
:					
m	x_{m1} x_{m2} \cdots , x_{mj} \cdots , x_{mn}				

- (2) 为了计算方便,经常将原始的地理数据标准化,的常用方法有如下几种: (12分)
- ①总和标准化。分别求出各地理要素所对应的数据的总和,以各要素的数据除以该要素的数据的总和。

$$x'_{ij} = \frac{x_{ij}}{\sum_{i=1}^{m} x_{ij}}$$
 $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$

这种标准化方法所得到的新数据 x_{ii}' 满足

$$\sum_{i=1}^{m} x'_{ij} = 1 \qquad (j = 1, 2, \dots, n)$$

②标准差标准化,原始数据减去平均值,然后再除标准差。

$$x'_{ij} = \frac{x_{ij} - \overline{x}_{j}}{s_{j}}$$
 $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$

式中:

$$\bar{x}_j = \frac{1}{m} \sum_{i=1}^m x_{ij}$$
 $s_j = \sqrt{\frac{1}{m} \sum_{i=1}^m (x_{ij} - \bar{x}_j)^2}$

由这种标准化方法所得到的新数据 x_{ij}' ,各要素的平均值为0,标准差为1,即有

$$\bar{x}'_j = \frac{1}{m} \sum_{i=1}^m x'_{ij} = 0$$
 $s'_j = \sqrt{\frac{1}{m} \sum_{i=1}^m (x'_{ij} - \bar{x}'_j)^2} = 1$

③极大值标准化,原始值除最大值。

$$x'_{ij} = \frac{x_{ij}}{\max_{i} \{x_{ij}\}}$$
 $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$

经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。

④极差的标准化,原始值减去最小值,然后再除极差。

$$x'_{ij} = \frac{x_{ij} - \min_{i} \{x_{ij}\}}{\max_{i} \{x_{ij}\} - \min_{i} \{x_{ij}\}} \qquad (i = 1, 2, \dots, m; j = 1, 2, \dots, n)$$

经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1 之间。

3.用单纯形方法求解线性规划问题(20分)

(1) 首先引入松弛变量 x_3, x_4 , 把原问题化为标准形式: (5分)

$$\begin{cases} x_1 + 3x_2 + x_3 &= 12 \\ 2x_1 + x_2 &+ x_4 = 9 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$\max Z = 2x_1 + 3x_2$$

则:

$$A = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}, \quad p_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad p_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad p_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$
$$p_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad b = \begin{bmatrix} 12 \\ 9 \end{bmatrix}, \quad C = \begin{bmatrix} 2, & 3, & 0, & 0 \end{bmatrix}$$

(2) 单纯形方法求解步骤如下:

第一步,因为 $B_1 = [p_3, p_4]$ 为单位矩阵,且 $B_1^{-1}b = b > 0$,故 B_1 是一个可行基。对应于 B_1 的初始单纯形表: (3 分)

表 3.1

							_
			X_1	X_2	X_3	X_4	
	-Z	0	2	3	0	0	•
	X_3	12	1	[3]	1	0	
	X_4	9	2	1	0	1	

第二步,判别。在初始单纯形表中, $b_{01}=2,b_{02}=3,B_1$ 非最优基,进行换基迭代运算。

第三步,选主元。按 θ 规则选出主元项为 $b_{12}=3$ 。 (3分)

第四步,
$$p_2$$
调入基, p_3 退出基,得一新的基 $B_2=[p_2,p_4]=\begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$ 。

第五步,对表 3.1 进行初等行变换,可得基 B_2 下的新单纯形表(表 3.2)。 (3 分)

表 3.2						
		X_1	X_2	X ₃	X_4	
-Z	-12	1	0	-1	0	
X_2	4	1/3	1	1/3	0	
X_4	5	[5/3]	0	-1/3	1	

第六步,转入第二步。选主元项为 b_{21} =5/3。 p_1 调入基, p_4 退出基,得一新的基

$$B_s = \begin{bmatrix} p_1, p_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} . \quad (3 \%)$$

表 3.3

W 616						
		X_1	X_2	X_3	X_4	
-Z	-15	0	0	-4/5	-3/5	
X_2	3	0	1	2/5	-1/5	
X_1	3	1	0	-1/5	3/5	

检验系数均非正,所以 B_3 是最优基,其对应的基本最优解为:

 $x_1 = 3, x_2 = 3, x_3 = 0, x_4 = 0$, 目标函数最大值为 Z = 15。 (3分)

4.系统聚类分析(20分)

①聚类过程

(1) 在 6×6 阶距离矩阵中, 非对角元素中最小者为 $d_{24}=1.23$, 故将 G_{2} 与 G_{4} 归并为一

类,记为 G_7 ,即 G_7 = { G_2 , G_4 } 。按照公式 $d_{nk} = \max\{d_{pk}, d_{qk}\}$ ($k \neq p, q$),计算 G_1 , G_3 , G_5 , G_6 与 G_7 之间的距离,得到一个新的 5×5 阶距离矩阵: (4分)

	G_1	G_3	G_5	G_6	G_7
G_1	0				
G_3	4.72	0			
G_5	5.86	1.78	0		
G_6	1.52	4.46	6.02	0	
G_7	3.10	3.06	4.84	2.70	0

(2) 在第一步所得的 5×5 阶距离矩阵中,非对角线元素中最小者为 $d_{16}=1.52$,故将 G_1 与 G_6 归并为一类,记为 G_8 ,即 $G_8=\{G_1,\ G_6\}$ 。分别计算 G_3 , G_5 , G_7 与 G_8 之间的距离,得 到一个新的 4×4 阶距离矩阵: (3 分)

$$G_3$$
 G_5 G_7 G_8
 G_3 0
 G_5 1.78 0
 G_7 3.06 4.84 0
 G_8 4.72 6.02 3.10 0

(3) 在第二步所得的 4×4 阶距离矩阵中,非对角线元素中最小者为 $d_{35}=1.78$,故将 G_3 与 G_5 归并为一类,记为 G_9 ,即 $G_9=\{G_3,\ G_5\}$ 。分别计算 G_7 , G_8 和 G_9 之间的距离,得到一个新的 3×3 阶距离矩阵: (3分)

$$G_7$$
 G_8 G_9
 G_7 0
 G_8 3.10 0
 G_9 4.84 6.02 0

(4) 在第三步中所得的 3×3 阶距离矩阵中,非对角线元素中最小者为 $d_{78}=3.10$,故将 G_7 与 G_8 归并为一类,记为 G_{10} ,即 $G_{10}=\{G_7,\ G_8\}=\{\ (G_2,\ G_4)\ ,\ (G_1,\ G_6)\ \}$ 。计算 G_9 与 G_{10} 之间的距离,可得一个新的 2×2 阶距离矩阵: (3分)

$$G_9$$
 G_{10} G_{1

(5) 将 G_9 与 G_{10} 归并为一类。此时,各个分类对象均已归并为一类。 综合上述聚类过程,可以作出最远距离聚类谱系图。 (5 分)

②结果分析(2分)

5.地统计方法(25分)

- (1) 结合自己的专业特点,简述该方法应用于地理学、生态学、环境科学等学科研究之中,解决具体的问题。 (7分)
- (2) 变异函数的四个基本参数分别是,基台值、变程(或空间依耐范围)、块金值(或区域不连续值)、分维数 $(4\,\%)$ 。

地统计学中变异函数的理论模型分为三大类: ①有基台值的模型,包括球状模型、指数模型、高斯模型、线性有基台值模型和纯块金效应模型;②无基台值模型,包括幂函数模型、线性无基台值模型、抛物线模型;③孔穴效应模型。该模型是球状模型的一般形式。(6分)

模型(1)为球状模型。球状模型的四个参数分别为:块金值是 c_0 ,一般为常数;基台值为 c_0+c ;变程为a;c为拱高。当 $c_0=0$,c=1时,称为标准球状模型。球状模型是地统计分析中应用最广泛的理论模型,许多区域化变量的理论模型都可以用该模型去拟合(4分)。

模型 (2) 为高斯模型。高斯模型的四个参数分别为: 块金值是 c_0 , 一般为常数; 基台值为 c_0+c ; c为拱高。当 $h=\sqrt{3}a$ 时, $1-e^{-\frac{h^2}{a^2}}=1-e^{-3}\approx 0.95\approx 1$,即 $\gamma(\sqrt{3}a)\approx c_0+c$,因此高斯模型的变程a 约为 $\sqrt{3}a$ 。当 $c_0=0$,c=1时,称标准高斯函数模型。 (4分)