Theorem on Constants

kankanray

Before the proof of *Theorem on Constants*, we prove two useful lemmas.

Lemma 1. Change Quantifiers

Given $\varphi \in \mathcal{L}$, x_i can substitute x_j in φ , and x_i has no free occurrence in $(\forall x_i \varphi)$, then $\vdash ((\forall x_i \varphi) \to (\forall x_i \varphi(x_i; x_i)))$.

Proof. Since x_i can substitute x_j in φ , so we have,

- $\vdash ((\forall x_i \varphi) \rightarrow \varphi(x_i; x_i))$, then by generalization theorem:
- $\vdash (\forall x_i((\forall x_i\varphi) \rightarrow \varphi(x_j; x_i))), \text{ then by distribution law:}$
- $\vdash ((\forall x_i((\forall x_i\varphi) \rightarrow \varphi(x_j;x_i))) \rightarrow ((\forall x_i(\forall x_j\varphi)) \rightarrow (\forall x_i\varphi(x_j;x_i)))), \text{ we get}$
- $\vdash ((\forall x_i(\forall x_j\varphi)) \to (\forall x_i\varphi(x_j;x_i))).$

Finally, since x_i is not a free variable of $(\forall x_j \varphi)$, we have $\vdash ((\forall x_j \varphi) \rightarrow (\forall x_i(\forall x_j \varphi)))$. By Deduction Theorem, we have $(\forall x_j \varphi) \vdash (\forall x_i(\forall x_j \varphi))$, combined with results above, we get $(\forall x_j \varphi) \vdash (\forall x_i \varphi(x_j; x_i))$, again by Deduction Theorem, we have

$$\vdash ((\forall x_i \varphi) \to (\forall x_i \varphi(x_i; x_i))).$$

With Generalization Theorem, we have an even shorter (and perfect) proof.

Proof. Since x_i can substitute x_j in φ , so we have,

 \vdash $((\forall x_j \varphi) \to \varphi(x_j; x_i))$, then by Deduction Theorem, we have $\{(\forall x_j \varphi)\} \vdash \varphi(x_j; x_i)$.

Since x_i is not a free variable of $(\forall x_j \varphi)$, by Generalization Theorem, we have $\{(\forall x_i \varphi)\} \vdash (\forall x_i \varphi(x_i; x_i))$.

Again, by Deduction Theorem, we have
$$\vdash ((\forall x_j \varphi) \to (\forall x_i \varphi(x_j; x_i)))$$
.

Lemma 2. Lemma on Constants

Given $\Gamma \subseteq \mathcal{L}$, and c_i occurs nowhere in Γ . If $\langle B_1, ..., B_n \rangle$ is a Γ -proof, and x_j appears nowhere in Γ . Then $\langle B_1(c_i; x_j), ..., B_n(c_i; x_j) \rangle$ is still a Γ -proof.

- *Proof.* (1) Note that $(A \to B)(c_i; x_j)$ is just $(A(c_i; x_j) \to B(c_i; x_j)), (\neg A)(c_i; x_j)$ is just $(\neg A(c_i; x_j))$; If $x_j \neq x_k$, then $(\forall x_k A)(c_i; x_j)$ is just $(\forall x_k A(c_i; x_j))$.
- (2) If $\varphi \in \Gamma$, and c_j occurs nowhere in it, then $\varphi(c_i; x_j)$ is just φ , so $\varphi(c_i; x_j) \in \Gamma$.
- (3) If $\psi \in \mathbb{L}$, and x_j occurs nowhere in it, then we have to show that $\psi(c_i; x_j)$ is still in \mathbb{L} .

To show this assumption, we have to use the minimal closure property of \mathbb{L} :
-If ψ is one of the tautologies, then by (1), $\psi(c_i; x_j)$ is also one of the tautologies, thus $\psi(c_i; x_j) \in \mathbb{L}$.

-If there is a formula φ , variable x_k , term τ , and τ can substitute x_k in φ , and ψ is just $((\forall x_k \varphi) \to \varphi(x_k; \tau))$. Then we know that $x_k \neq x_j$, x_j occurs nowhere in φ , thus for formula $\varphi(c_i; x_j)$, τ can still substitute x_k in it, then by $(1), \psi(c_i; x_j)$ is just $((\forall x_k \varphi(c_i; x_j)) \to \varphi(c_i; x_j)(x_k; \tau))$, so it's in \mathbb{L} .

-If A, B are two formulas, x_k is a variable, and ψ is $((\forall x_k(A \to B)) \to ((\forall x_k A) \to (\forall x_k B)))$, so $x_k \neq x_j$ and x_j occurs nowhere in A or B. Then by (1), $\psi(c_i; x_j)$ is just $((\forall x_k(A(c_i; x_j) \to B(c_i; x_j))) \to ((\forall x_k A(c_i; x_j)) \to (\forall x_k B(c_i; x_j)))$, so it's in \mathbb{L} .

-If there is formula φ , a variable x_k which is not a free variable of φ , and ψ is $(\varphi \to (\forall x_k \varphi))$. We know $x_k \neq x_j$, x_j appears nowhere in φ , then by (1), we know that $\psi(c_i; x_j)$ is just $(\varphi(c_i; x_j) \to (\forall x_k \varphi(c_i; x_j)))$, thus it's in \mathbb{L} .

-If ψ is $x_k = x_k$, then $\psi(c_i; x_j)$ is still $x_k = x_k$, thus in \mathbb{L} .

-If there are two formulas A and B, two variables x_k and x_l , and x_l can substitute x_k in both A and B, and after substitution, two formulas are identical, and our ψ is $((x_l = x_k) \to (A \to B))$. Then we know $x_j \neq x_k$, $x_j \neq x_l$, x_j occurs nowhere in A or B, and x_l can substitute x_k in $A(c_i; x_j)$ and $B(c_i; x_j)$, and after substitution, two formulas are identical, then by (1) we know $\psi(c_i; x_j)$ is just $((x_l = x_k) \to (A(c_i; x_j) \to B(c_i; x_j)))$, thus it's in \mathbb{L} .

We can see from above that all those 6 properties in the definition of \mathbb{L} are constructive, telling us at least what formulas are in \mathbb{L} . With the results above, we can prove by induction on the length of formulas: If $\psi \in \mathbb{L}$ and x_j occurs nowhere in ψ , then $\psi(c_i; x_j) \in \mathbb{L}$:

Base step: The shortest formula satisfying all conditions is $(x_k = x_k)$, and we've already verified this case.

Induction step: Assume all formulas with length less or equal than $n(n \ge 5)$ satisfies the proposition we want to prove, then for every formula ψ with length (n+1), we need to verify all 7 cases in the definition of \mathbb{L} , and 6 of them are already verified above, so we only need to check the case of the generalization law:

Assume there is a formula $\varphi \in \mathbb{L}$ and ψ is just $(\forall x_k \varphi)$. Then the length of φ is less than n, thus by induction hypothesis, $\varphi(c_i; x_j) \in \mathbb{L}$, then $(\forall x_j \varphi(c_i; x_j)) \in \mathbb{L}$ also. Since $x_k \neq x_j$, $\psi(c_i; x_j)$ is just $(\forall x_j \varphi(c_i; x_j))$, thus it's in \mathbb{L} .

By induction, we finally proved that if $\psi \in \mathbb{L}$ and x_j occurs nowhere in ψ , then $\psi(c_i; x_j) \in \mathbb{L}$.

Now we go back to the proof of this lemma. For $1 \le k \le n$,

If $B_k \in \Gamma \cup \mathbb{L}$, then by (2) and (3), we know $B_k(c_i; x_i) \in \Gamma \cup \mathbb{L}$ also.

If there are $1 \leq s, t < k$ and B_t is just $(B_s \to B_k)$, then by (1), we know $B_t(c_i; x_j)$ is just $(B_s(c_i; x_j) \to B_k(c_i; x_j))$.

So
$$\langle B_1(c_i; x_j), ..., B_n(c_i; x_j) \rangle$$
 is still a Γ -proof.

So we can finally prove Theorem on Constants:

Theorem 1. Theorem on Constants

Assume (1) $\Gamma \vdash \varphi$, (2) c_i occurs nowhere in any Γ and (3) x_j has no free occurrence in φ and x_j can substitute c_i in φ .

Then $\Gamma \vdash (\forall x_j \varphi(c_i; x_j))$, and $(\forall x_j \varphi(c_i; x_j))$ is proved by a sequence $\langle B_1, ..., B_n \rangle$ satisfying

- 1. For $1 \le m \le n$, c_i doesn't occur in B_m .
- 2. For $1 \leq m < n$, if c_k appears in B_m , then
- (a) either c_k occurs in $(\forall x_j \varphi(c_i; x_j))$,
- (b) or c_k occurs in some formula of Γ .

Proof. We first show $\Gamma \vdash (\forall x_j \varphi(c_i; x_j))$.

 $\Gamma \vdash \varphi$ implies that there is a Γ -proof $\langle B_1, ..., B_n \rangle$. Since proof is finite, we take k large enough such that x_k occurs nowhere in the proof $\langle B_1, ..., B_n \rangle$.

Define $\Gamma_0 := \{B_1, ..., B_n\} \cap \Gamma$, then we know x_k appears nowhere in Γ_0 . Also, $\langle B_1, ..., B_n \rangle$ is a Γ_0 -proof, c_i occurs nowhere in Γ_0 , then $\langle B_1(c_i; x_k), ..., B_n(c_i; x_k) \rangle$ is still a Γ_0 -proof, thus $\Gamma_0 \vdash \varphi(c_i; x_k)$.

Since x_k occurs nowhere in Γ_0 , by Generalization Theorem, we know $\Gamma_0 \vdash (\forall x_k \varphi(c_i; x_k))$.

Since every occurrence of x_k in $\varphi(c_i; x_k)$ happens at the same place of c_i 's occurrence in φ , and x_j can substitute c_i means that every occurrence of c_i is not in range of any $\forall x_j$, so now x_j can substitute x_k in $\varphi(c_i; x_k)$. Also, since x_j has no free occurrence in φ , it also has no free occurrence in $(\forall x_k \varphi(c_i; x_k))$, so by Change Quantifiers Lemma, we know $\Gamma_0 \vdash ((\forall x_k \varphi(c_i; x_k)) \rightarrow (\forall x_j \varphi(c_i; x_k)(x_k; x_j)))$, and it's not hard to find out that $\varphi(c_i; x_k)(x_k; x_j)$ is just $\varphi(c_i; x_j)$, so combined with results above, we have $\Gamma_0 \vdash (\forall x_j \varphi(c_i; x_j))$. Therefore, $\Gamma \vdash (\forall x_j \varphi(c_i; x_j))$.

Now we prove the second result. $\Gamma \vdash (\forall x_j \varphi(c_i; x_j))$ implies that there is a Γ -proof $\langle C_1, ..., C_n \rangle$, with $C_n = \forall x_j \varphi(c_i; x_j)$.

First, we take k_0 large enough such that x_{k_0} occurs nowhere in the proof $\langle C_1,...,C_n\rangle$. We know c_i occurs nowhere in Γ , x_{k_0} occurs nowhere in the proof, so by Lemma on Constants, $\langle C_1(c_i;x_k),...,C_n(c_i;x_{k_0})\rangle$ is also Γ -proof, it proves $(\forall x_j \varphi(c_i;x_j))(c_i;x_{k_0})$, which is just $(\forall x_j \varphi(c_i;x_j))$, since there is no c_i for substitution. So we find a proof of $(\forall x_j \varphi(c_i;x_j))$ with no c_i in it. We still call the proof $\langle C_1,...,C_n\rangle$

Second, for every m, $1 \le m \le n$, if c_l occurs in C_m , and it occurs nowhere in $(\forall x_j \varphi(c_i; x_j))$ or some formula in Γ , then we do the 'large-enough- k_m ' trick again, get a new proof of $(\forall x_j \varphi(c_i; x_j))(c_l; x_{k_m})$ (we can do this since c_l occurs nowhere in Γ), since c_l occurs nowhere in $(\forall x_j \varphi(c_i; x_j))$, $(\forall x_j \varphi(c_i; x_j))(c_l; x_{k_m})$ is just $(\forall x_j \varphi(c_i; x_j))$. By recursive construction, we finally get the proof we want.