

Speaker

Robert Mederer Lead Technology Architect

Anni-Albers-Straße 11

80807 München

Mobil:

+49-175-57-68012

robert.mederer@accenture.com accenture

Technology Solutions

Markus Bukowski **Senior Software Engineer**

Kaistraße 20 40221 Düsseldorf

+49-175-57-64217

markus.bukowski@accenture.com

accenture

Technology Solutions

Experience

2000 - 2005: Technology Architect and Software Engineer in several projects

2006: Technical Architecture Lead, Integration and Execution Architecture for Location-Based Service Provider

2009: Technical Architecture Lead, Frontend and **Execution Architecture Government Agency**

2009/2010: Technical Architecture and front-office integration build lead, Integration and Execution Architecture Financial Services Agency

2011: Architect and Performance Engineer for **Location Based Services Platform** Copyright © 2010 Accenture. All rights reserved.

2006 - 2009: Software Engineer in several projects (during studies) for mainly telecommunication companies

2009 - 2011: Senior Software Engineer in several projects

2009/2010: Coach and Software Engineer for a Health Insurance Fund

2011: Technical Architecture Lead during the development of a Document Management Solution for a Government Agency

Accenture High performance achieved

Company Profile

- Global management consulting, technology services and outsourcing company
- 215.000 employees
- Rank 47 among the "Best Global Brands 2008"
- Top 100 Employer
- 28 of the DAX-30-Companies
- 96 of the Fortune-Global-100
- More than three-quarters of the Fortune-Global-500
- 87 of our Top 100-clients have been with us for 10 or more years

Worldwide Revenues \$21.6 billion (in US\$ billion, as of August 31, 2010)

Copyright © 2010 Accenture. All rights reserved.

3

Local Accenture ... ???

Geographic unit

- Austria
- Switzerland
- Germany

Employees

- · Ca. 6000
- · We are hiring!

Exciting Technology work

- Large scale projects (100+ people / multiple years)
- Most challenging requirements
 - Stock Exchange / Banking / Trading Systems
 - AEMS Mobility Platform
 - Large Scale Web Applications(> 1M page views / day)
 - Batch Architectures

- Introduction
 - -Scalability & CAP Theorem
 - -Traditional websites & Social media websites
 - -High Scalability in Numbers
- Accenture High Scalability by Example
- Architecture at Internet Scale
- Common concepts of Scalability
- Conclusion

Copyright © 2011 Accenture. All rights reserved.

5

Scalability

A system's capacity to uphold the same performance under heavier volumes.

(Patterns for Performance and Operability: Building and Testing Enterprise Software, Chris Ford et. al., 2008)

Vertical Scalability

- Is achieved by increasing the capacity of a single node
 - -CPU,
 - Memory,
 - Bandwidth, ...
- Simple Process
 - Application is generally not affected by those changes
- Classical Example are Super Computers like
 - HP Integrity Superdome
 - IBM Mainframe

Source: Hewlett-Packard

Copyright © 2011 Accenture. All rights reserved.

7

Horizontal Scalability

- Application is spread on a cluster with several nodes
- · Nodes can be added to scale out
- · Produces overhead
 - Keep cluster consistent
 - Node error detection and handling
 - Communication between nodes
- May be used to increase reliability and availability
- · Distributed Systems and Programs like
 - -SETI@Home
 - World Wide Web
 - Domain Name Service

Source: Space Sciences Laboratory, U.C. Berkeley

CAP Theorem (Brewer's Theorem)

- Consistency all clients see the same data at the same time
- Availability all clients can find all data even in presence of failure
- Partition Tolerance system works even when one node failed

Source: PODC-keynote, Towards Robust Distributed Systems, Dr. Eric A. Brewer, 2000 Copyright © 2011 Accenture. All rights reserved.

9

CAP Theorem

Normally, two of these properties for any shared-data system

Consistency + Availability

- High data integrity
- · Single site, cluster database, LDAP, etc.
- 2-phase commit, data replication, etc.

Consistency + Partition

- · Distributed database, distributed locking, etc.
- Pessimistic locking, etc.

Availability + Partition

- High scalability
- · Distributed cache, DNS, etc.
- · Optimistic locking, expiration/leases (timeout), etc.

- Introduction
 - -Scalability & CAP Theorem
 - -Traditional websites & Social media websites
 - -High Scalability in Numbers
- Accenture High Scalability by Example
- Architecture at Internet Scale
- Common concepts of Scalability
- Conclusion

Copyright © 2011 Accenture. All rights reserved.

11

Traditional Websites

(Scaling the Social Graph: Infrastructure at Facebook, Jason Sobel, QCon 2011)

Social Media Websites

(Scaling the Social Graph: Infrastructure at Facebook, Jason Sobel, QCon 2011)

Copyright © 2011 Accenture. All rights reserved.

13

Agenda

- Introduction
 - -Scalability & CAP Theorem
 - -Traditional websites & Social media websites

-High Scalability in Numbers

- Accenture High Scalability by Example
- Architecture at Internet Scale
- Common concepts of Scalability
- Conclusion

High Scalability in Numbers

Source: http://www.youtube.com/watch?v=xJXOavGwAW8

Copyright © 2011 Accenture. All rights reserved.

15

High Scalability in Numbers

16

High Scalability in Numbers

LinkedIn	
Members	>100.000.000
Connections between Members	1.300.000.000
Visitors per month	128.000.000
% of global internet users who visit LinkedIn daily	4%

Source: http://blog.linkedin.com, http://press.linkedin.com/about/, LinkedIn Demographics 20111

Copyright © 2011 Accenture. All rights reserved.

17

Agenda

- Introduction
- Accenture High Scalability by Example
 - -The Royal Wedding Website
 - -US Based Professional Sport League .com Website
- Accenture High Scalability by Example
- Architecture at Internet Scale
- Common concepts of Scalability
- Conclusion

- Introduction
- Accenture High Scalability by Example
- Architecture at Internet Scale
 - -Facebook
 - -Twitter
 - -LinkedIn
 - -Challenges
- Common concepts of Scalability
- Conclusion

Copyright © 2011 Accenture. All rights reserved.

19

Facebook - Key Facts

- Biggest Social Network
- People are linked together
- · People share and exchange information in real-time
- · Facebook provides a
 - A personalized **News Feed** containing news about friends
 - Picture Service including people tagging / linking
 - Messaging Service to stay in connect with friends
 - Platform to play Games with friends

Facebook - Architecture (1)

- Facebook "main" architecture is based on a LAMP stack
- The application logic resides in Web Server layer (PHP based)
- The application layer takes care of the data distribution
- Some services do not fit (C++, Java)
 - -Search
 - -Ads
 - People You May Know
 - Multifeed

Invalidation logic is implemented in the application!

Copyright © 2011 Accenture. All rights reserved.

21

Facebook - Architecture (2)

Multifeed / Newsfeed

- Distributed System
- Every user gets
 - -45 best rated updates
 - on every reload
- Every DB-Update results in a Scribe Notification
 - Leaf Nodes / Server are notified

- Introduction
- Accenture High Scalability by Example
- Architecture at Internet Scale
 - -Facebook
 - -Twitter
 - -LinkedIn
 - -Challenges
- · Common concepts of Scalability
- Conclusion

Copyright © 2011 Accenture. All rights reserved.

23

Twitter - Key Facts

- Twitter is a real-time information network
- Twitter's key characteristics
 - **Tweets** are used for sharing information
 - **Timeline** of tweets must be kept
 - A Social Graph is maintained to deliver information

Twitter - Architecture

Source: "Architecting Cloudy Applications", David Chou Copyright © 2011 Accenture. All rights reserved.

25

Agenda

- Introduction
- Accenture High Scalability by Example
- Architecture at Internet Scale
 - -Facebook
 - -Twitter
 - -LinkedIn
 - -Challenges
- Common concepts of Scalability
- Conclusion

LinkedIn - Key Facts

 A social media networking platform to find connections to recommended job candidates, industry experts and business partners

• 99% pure Java

LinkedIn – Applications

- Groups
- Job market
- Mailing
- Profiles (Friends and Companies)
- Mobile Applications (Android, iPhone, Blackberry, Palm)

Copyright © 2011 Accenture. All rights reserved.

27

LinkedIn - Architecture

- Introduction
- Accenture High Scalability by Example
- Architecture at Internet Scale
- Common concepts of Scalability
- Conclusion

Copyright © 2011 Accenture. All rights reserved.

29

Common concepts of Scalability

parallelization

asynchronous

7 Habits of operations

partitioned data

Good
Distributed
Systems

fault-tolerance

optimistic concurrency

shared nothing

Source: "Architecting Cloudy Applications", David Chou

Source: highscalability.com

Common concepts of Scalability Hybrid architectures

- Scale-out (horizontal)
 - -BASE
 - -focus on "commit"
 - -optimistic locking
 - -shared nothing
 - -maximize scalability

- Scale-up (vertical)
 - -ACID
 - -availability first
 - -pessimistic locking
 - -transactional
 - -favor accuracy/consistency

Most distributed systems realize both

Copyright © 2011 Accenture. All rights reserved.

31

Agenda

- Introduction
- Accenture High Scalability by Example
- Architecture at Internet Scale
- Common concepts of Scalability
- Conclusion
 - Questionnaire
 - Déjà vu Common concepts
 - Don't forget the Infrastructure

Conclusion

Questionnaire

- Is there a need to scale my application?
 - Vertical scaling is more easy to achieve
 - Use horizontal scaling only when required
- Is there a plan to proof your designed solution?
 - Plan to do a lot of realistic Proof-of-Concepts
- Is there a one size fits all solution?
 - NO!
- How important is ACID?
 - -Is BASE enough?
 - -Can a NoSQL solution be used?

Copyright © 2011 Accenture. All rights reserved.

33

Conclusion

Déjà vu - Common concepts

- Asynchronous Processing
 - -Keep Facebook, Twitter and LinkedIn in mind
 - Asynchronous writes and even UI
- Data Partioining
 - You must understand your data
 - Is a hybrid solution as used by LinkedIn applicable?
- Design To Failure
 - Lessons learned from Amazon's cloud solution outage

Conclusion

Don't forget the Infrastructure

• Disk IO compared to RAM is slow

- Avoid "slow" IO access whenever possible
- Caching, Caching, Caching
- Bulk Updates (Batch) over small updates

Network Latency

- Keep in mind that there is a network
- Where are the users located?
- How are your users connected? mobile application?
- Is there a need for a datacenter distribution?

Hardware configuration

- Is the CPU Power Saving working right?

Copyright © 2011 Accenture. All rights reserved.

35

Questions?