*QUÍMICA GENERAL

2020

TEMA 1 FUNDAMENTOS DE QUIMICA GENERAL

- Átomo: estructura. Modelo atómico actual. Nuevas partículas subatómicas. Isótopos.
- Elementos y símbolos. Tabla Periódica. Propiedades.
- Uniones químicas. Regla del octeto. Enlaces iónicos, covalentes y metálicos. Uniones intermoleculares.
- Reacciones químicas: tipos. Ecuaciones químicas.
- Soluciones. Coloides. Ácidos y bases. pH. pOH. Soluciones amortiguadoras.
- Nociones de termodinámica. Reacciones exotérmicas y endotérmicas. Energía libre. Entalpía. Entropía.

*REACCIONES Químicas: Tipos.

TRANSFORMACIÓN FÍSICA

 Es aquella que ocurre sin producir cambios en la materia. Cuando se conserva la sustancia original.

TRANSFORMACIÓN QUÍMICA

 Es aquella que ocurre produciendo cambios en la materia. Cuando NO se conserva la sustancia original.

REACCIÓN QUÍMICA

- Fenómeno químico durante el cual, por una redistribución de los átomos de los elementos o compuestos iniciales, se producen otros diferentes.
- Se representa simbólicamente por medio de ecuaciones químicas que es la forma abreviada de indicar el número y naturaleza de cada uno de los reactivos y sus productos.

$$A + B \rightarrow C + D$$

ECUACIÓN QUÍMICA

 Todos los átomos presentes en los reactivos también deben estar en los productos, siempre en la misma cantidad.

o Reactantes

Ley de conservación de la masa

BALANCEO DE UNA ECUACIÓN QUÍMICA

Ley de conservación de la masa

TIPOS DE REACCIONES QUÍMICAS

 No hay una diferenciación neta entre categorías, algunas reacciones pueden pertenecer a más de una.

- Reacciones de combinación.
- ✓ Reacciones de descomposición.
- Reacciones de simple desplazamiento.
- Reacciones de doble desplazamiento.
- ✓ Reacciones de óxido reducción (REDOX).

Óxido-reducción

REACCIONES DE COMBINACIÓN

- Dos o más sustancias se combinan para formar otro compuesto.
- También llamadas reacciones de síntesis.

$$A + B \rightarrow AB$$

Ejemplos:

$$2 H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow 2 H_2 O_{(g)}$$

 $2 CO_{(g)} + O_{2(g)} \rightarrow 2 CO_{2(g)}$
 $N_2 O_{5(s)} + H_2 O_{(l)} \rightarrow 2 HNO_{3 (ac)}$

REACCIONES DE COMBINACIÓN

$$2 K_{(s)} + Cl_{2(g)} \rightarrow 2 KCl_{(s)}$$

REACCIONES DE DESCOMPOSICIÓN

 Un compuesto se descompone para producir dos o más elementos o compuestos.

$$AB \rightarrow A + B$$

Ejemplos:

$$2 \text{ NaCl}_{(s)} \stackrel{\text{electricidad}}{\rightarrow} 2 \text{ Na}_{(s)} + \text{Cl}_{2(g)}$$

$$2 \text{ KClO}_{3(s)} \stackrel{\textcircled{\varnothing}}{\rightarrow} 2 \text{ KCl}_{(s)} + 3 \text{ O}_{2(g)}$$

$$CaCO_{3(s)} \stackrel{\textcircled{\varnothing}}{\rightarrow} CaO_{(s)} + CO_{2(g)}$$

REACCIONES DE DESCOMPOSICIÓN

$$2 \text{ HgO}_{(s)} \stackrel{\emptyset}{\rightarrow} 2 \text{ Hg}_{(I)} + O_{2(g)}$$

REACCIONES DE DESPLAZAMIENTO

 Un elemento reemplaza a otro en un compuesto.

$$AB + C \rightarrow AC + B$$

Ejemplos:

$$2 \text{ HCl}_{(ac)} + Zn_{(s)} \rightarrow ZnCl_{2(ac)} + H_{2(g)}$$

$$H_2SO_{4(ac)} + 2 AI_{(s)} \rightarrow AI_2SO_{4(ac)} + H_{2(g)}$$

REACCIONES DE DESPLAZAMIENTO

 $2 H_2O_{(I)} + 2Li_{(s)} \rightarrow 2 LiOH_{(ac)} + H_{2(g)}$

REACCIONES DE DOBLE DESPLAZAMIENTO O METÁTESIS

 Dos compuestos reaccionan para dar dos nuevos compuestos sin que se produzcan cambios en los números de oxidación de los elementos que los forman.

$$AB + CD \rightarrow AC + BD$$

Ejemplos:

$$AgNO_{3(ac)} + NaCl_{(s)} \rightarrow AgCl_{(s)} + NaNO_{3(ac)}$$

$$K_2SO_{4(ac)} + Ba(NO_3)_{2(ac)} \rightarrow 2 KNO_{3(ac)} + BaSO_{4(s)}$$

REACCIONES DE DOBLE DESPLAZAMIENTO

 $2 \text{ AgNO}_{3(ac)} + \text{Na}_2\text{CrO}_{4(ac)} \rightarrow \text{Ag}_2\text{CrO}_{4(s)} + 2\text{NaNO}_{3(ac)}$

REACCIONES DE ÓXIDO REDUCCIÓN

 Son aquellas reacciones en las que se produce transferencia de e⁻ modificando así el estado de oxidación de algunas especies.

NÚMERO Ó ESTADO DE OXIDACIÓN

El **número o estado de oxidación** de un elemento, en un compuesto, es su capacidad de combinación con signo + o -.

Regla I: El número de oxidación de un **elemento al estado libre** (sin combinarse con otro elemento) o combinado con otro igual **es cero. Ejemplos:** Na, Ni, H₂, Cl₂, O₂.

Regla II: El número de oxidación del **oxígeno combinado** con otro elemento es **-2**.

Regla III: El número de oxidación del hidrógeno combinado con otro elemento es +1.

Regla IV: Los meta composition de combinados con otro production de la combinado de

Regla V: En una procession de los números de oxidación de los números de oxidación calculos es guar a o (cero).

Regla VI: En los iones monoatómicos el número de oxidación es igual a la carga del ión. Ejemplo: el ion Cu⁺ tiene estado de oxidación +1; el ion Fe 3⁺ (+3); el ion I⁻, (-1), etc.

Regla VII: En los iones poliatómicos (SO₄²⁻; NO³⁻) la suma de los números de oxidación de todos los átomos es igual a la carga del ión.

REACCIONES DE ÓXIDO REDUCCIÓN

$$2 \operatorname{Mg}_{(s)} + \operatorname{Cl}_{2(g)} \longrightarrow \operatorname{MgCl}_{2(s)}$$

Mg
$$\longrightarrow$$
 Mg²⁺ + 2e⁻ Oxidación (pierde e⁻)
Cl₂ + 2e⁻ \longrightarrow 2 Cl⁻ Reducción (gana e⁻)

$$2 \text{ Mg} + \text{Cl}_2 + 2 e^- \longrightarrow \text{Mg}^{2+} + 2 \text{ Cl}^- + 2 e^-$$

$$Mg + Cl_2 \longrightarrow MgCl_2$$

Oxidación (pérdida de e-)

Reducción (ganancia de e-)

$$Zn_{(s)} + CuSO_{4(ac)}$$
 —

 $ZnSO_{4(ac)} + Cu_{(s)}$

$$Zn^0 \rightarrow Zn^{2+} + 2e^-$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu^{0}$$

Copyright @ 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

 $Cu_{(s)} + 2 AgNO_{3(ac)} \longrightarrow Cu(NO_3)_{2(ac)}^{\circ} + 2 Ag_{(s)}^{\circ}$

Glucosa 2 NADH + 2H + 2 Acido Pirúvico 2 CO2 2 NADH + 2H * 2 Acetil CoA 6 NADH Ciclo de + 6H+ Krebbs 4 CO2 2 FADH₂ (Total + 10H+ 10 NADH 2 FADH₂ (Total) Electrones + 12H+ Transporte de electrones **38 ATP** (Total)

Respiración

Ejercicios:

1.- Clasifique las siguientes reacciones:

a)
$$Zn_{(s)} + CuSO_{4 (ac)} \rightarrow ZnSO_{4 (ac)} + Cu_{(s)}$$

b) $2 HgO_{(s)} \rightarrow 2 Hg_{(l)} + O_{2 (g)}$

c) $CaO_{(s)} + SO_{3 (g)} \rightarrow CaSO_{4 (s)}$

d) $NaOH_{(ac)} + HCI_{(ac)} \rightarrow NaCI_{(ac)} + H_2O_{(l)}$

e) $Li_2CO_{3 (s)} \rightarrow CO_{2 (g)} + Li_2O_{(s)}$

VELOCIDAD DE REACCIÓN

- Factores que controlan la velocidad de una reacción:
 - ✓ Contacto o Colisión (frecuencia de colisión: [] y temperatura).
 - ✓ Orientación apropiada (geometría de la partícula).
 - ✓ Energía de activación (cuando las partículas chocan deben poseer una cantidad específica de energía cinética para que la colisión sea eficaz).
 - ✓ Catalizadores: sustancias que aumentan la velocidad de una reacción sin consumirse en ella.

• La **Energía de Activación** es la energía necesaria para los reactivos puedan transformarse en productos.

VELOCIDAD DE REACCIÓN

Los catalizadores aumentan las velocidades de reacción disminuyendo la energía de activación

EQUILIBRIO QUÍMICO

Reacción química irreversible

$$aA + bB \rightarrow cC + dD$$

Reacción química reversible

$$aA + bB \rightleftharpoons cC + dD$$

EQUILIBRIO QUÍMICO

Reacción química reversible

$$aA + bB \rightleftharpoons cC + dD$$

$$K_{eq} = \frac{[P]}{[R]}$$

- En el **equilibrio** las velocidades en ambas direcciones (directa e inversa) son iguales (equilibrio dinámico).
- □ En el **equilibrio** no hay ningún cambio neto en la composición, es decir, las concentraciones de reactivos y productos permanecen constantes.

$$K_{eq} = \frac{[A]^a \cdot [B]^b}{[C]^c \cdot [D]^d}$$

Principio de Le Châtelier

"un sistema en equilibrio, sometido a una perturbación externa, reacciona en el sentido necesario para contrarrestar la perturbación y así poder alcanzar un nuevo estado de equilibrio".

EQUILIBRIO QUÍMICO

 Factores que afectan el equilibrio químico de una reacción:

- ✓ [Reactivos]
- ✓ [Productos]
- ✓ Presión
- ✓ Temperatura

modifica el valor de K_{eq}

La presencia de un catalizador no modifica la constante de equilibrio, y tampoco desplaza la posición de un sistema en equilibrio.

Variación	Comportamiento
Incremento en la cantidad de alguno de los reactivos.	El equilibrio se desplaza hacia la derecha.
Incremento en la cantidad de alguno de los productos.	El equilibrio se desplaza hacia la izquierda.
Decremento en la cantidad de alguno de los reactivos.	El equilibrio se desplaza hacia la izquierda.
Decremento en la cantidad de alguno de los productos.	El equilibrio se desplaza hacia la derecha.
Incremento de la presión del sistema.	El equilibrio se desplaza hacia donde la suma de los coeficientes estequiométricos sea menor.
Decremento de la presión del sistema.	El equilibrio se desplaza hacia donde la suma de los coeficientes estequiométricos sea mayor.
Incremento de la temperatura de una reacción exotérmica.	El equilibrio se desplaza hacia la izquierda.
Incremento de la temperatura de una reacción endotérmica.	El equilibrio se desplaza hacia la derecha.
Decremento de la temperatura de una reacción exotérmica.	El equilibrio se desplaza hacia la derecha.
Decremento de la temperatura de una reacción endotérmica	El equilibrio se desplaza hacia la izquierda.

Ejercicios:

2.- Teniendo en cuenta el siguiente sistema:

$$N_{2(g)} + 3 H_{2(g)} \Longrightarrow 2 NH_{3(g)}$$

$$K_{eq} = \frac{[NH_3]^2}{[N_2] \cdot [H_2]^3}$$

Prediga si el equilibrio se desplazará a la izquierda (reactivos) o a la derecha (productos) cuando se lo perturbe:

- a) Disminuyendo la presión.
- b) Extrayendo N₂.
- c) Aumentando la concentración de H₂.
- d) Añadiendo un catalizador.