

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours PART-I Examinations, 2017

COMPUTER SCIENCE-HONOURS

PAPER-CMSA-I

Time Allotted: 4 Hours Full Marks: 100

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

Answer Question No. 1 and any *five* from the rest taking at least *one* from each group.

1. Answer any *ten* questions from the following:

 $2 \times 10 = 20$

- (a) What is the purpose of a decision table?
- (b) What is self-complementary code?
- (c) What are the disadvantages of K-Map method?
- (d) Using Boolean identities prove that

$$A\overline{B}C + B + B\overline{D} + AB\overline{D} + \overline{A}C = B + C$$

- (e) Distinguish between level-triggered and edge-triggered flip flop.
- (f) What are the demerits of parity-error detection method?
- (g) What do you mean by special purpose registers? Give two examples.
- (h) What do you mean by tolerance of a Zeeman diode?
- (i) What is the significance of using the term 'Field Effect' in 'Field Effect Transistors (FET)'?

B.Sc./Part-I/Hons./CMSA-I/2017

- (j) Give an outline of the design of a transistor based inverter.
- (k) What is flash memory?
- (1) What is a Hybrid counter?
- (m) What are the advantages of Register–Direct Addressing Mode?
- (n) What is duty cycle?
- (o) What are the differences between primary and secondary storage?

Group-A

(Computer Fundamentals)

- 2. (a) Draw a flowchart to find the second smallest of four numbers.
 - (b) What are the differences between weighted codes and non-weighted codes?
 - (c) 'The dual of exclusive-or is equal to its complement.' Justify.
 - (d) Find the complement of the following Boolean function.

6

4

$$AB + AC'D + ABC + AB'C$$

3. (a) Minimize the following expression using K-map and implement the simplified expression using NAND gates only.

$$F(w, x, y, z) = \prod (0, 2, 3, 4, 8, 9, 10, 14)$$

- (b) Write an algorithm to convert a decimal number into base 16.
- (c) What do you mean by parity code? Comment on the error detection 1+2 capability of parity code.
- (d) Design a circuit that takes a 3-bit message and generates the even parity code of the message.

B.Sc./Part-I/Hons./CMSA-I/2017

Group-B

(Basic Electronics)

4.	(a)	State Thevenin's theorem.	3
	(b)	Explain the I/O characteristics of a transistor in CE mode.	5
	(c)	Design an integrator circuit using Op-amp.	4
	(d)	Write a short note on Schmitt trigger.	4
5.	(a)	Compare between a Half-Wave and a Full-Wave rectifier.	4
	(b)	What are the advantages and disadvantages of a Bridge rectifier?	4
	(c)	Define Ripple Factor (γ) and Rectification Efficiency (η) . Find the values of γ and η for a Full-Wave rectifier.	6
	(d)	What is Transformer Utilisation Factor (TUF) in connection of rectifiers?	2
		Group-C	
		(Digital System Design)	
6.	(a)	Design a code converter circuit to convert a 2, 4, 2, 1 code to its corresponding binary code.	ϵ
	(b)	Design a 4-bit Parallel Adder using Full-Adders.	3
	(c)	If propagation delay of a Full-Adder is d , calculate the total time required to add two n -bit binary numbers using n -bit Parallel Adder. Is it possible to perform the same task with reduced time for large n ? If so, how can it be possible?	1+1+5
7.	(a)	Define Setup time, Hold time and Propagation delay, in context of Flip-Flops.	5

B.Sc./Part-I/Hons./CMSA-I/2017

	(b)	Mentioning its characteristic equation, realise a J-K Flip-Flop using D Flip-Flop and 2×1 MUX.	5
	(c)	Design a 4-bit synchronous counter with J-K Flip-Flop.	3
	(d)	Perform the conversion from D-Flip Flop to J-K Flip Flop.	3
		Group-D	
		(Computer Organisation-I)	
8.	(a)	Compare between RISC and CISC architecture.	4
	(b)	Explain the concept of virtual memory.	3
	(c)	How many address lines and data lines will be required for a memory of capacity $16K\times8$? If the starting address of the memory is $(10 \text{ AB})_{16}$, what will be the ending address in Hex?	2+2
	(d)	What do you mean by instruction set completeness?	2
	(e)	Write a short note on USB.	3
9.	(a)	Describe the features of Von Neumann Computer with suitable diagram.	5
	(b)	What are the differences between Register stack and memory stack?	3
	(c)	What are the differences between SCSI and PCI?	2
	(d)	Explain the following addressing modes:	6
		(i) Register indirect mode.	
		(ii) Indexed addressing mode.	
		(iii) Immediate mode.	