MACHINE LEARNING PROJECT PHASE 1

Data Preprocessing:

• Importing Necessary Libraries and loading the dataset.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

```
In [3]: #Loading the dataset
       data=pd.read_csv('Heart_Disease_Prediction.csv')
       #Verifying the output by printing first5 rows of the dataset
Out[3]:
         Age Sex Chest pain type BP Cholesterol FBS over
                                                                  Exercise
                                                                                    Slope of Number of vessels ST fluro Thallium
                                                                           depression
        0 70 1 4 130 322
                                                           109
                                                                                                                   Presence
                                                           160
        2 57 1 2 124 261
                                                           141
        3 64 1
                         4 128
                                   263
                                                       0
                                                           105
                                                                                                                   Absence
        4 74 0
                        2 120 269
                                            0
                                                                                0.2
                                                           121
                                                                                                                   Absence
                                  177
                         4 120
                                              0
                                                       0 140
                                                                                                                   Absence
```

• Checking the size of the dataset

```
In [4]: data.shape
Out[4]: (270, 14)
```

Inference: This dataset contains 270 rows and 14 columns including the target variable.

• Checking the type of each feature in the dataset

data.dtypes			
Age	int64		
Sex	int64		
Chest pain type	int64		
BP	int64		
Cholesterol	int64		
FBS over 120	int64		
EKG results	int64		
Max HR	int64		
Exercise angina	int64		
ST depression	float64		
Slope of ST	int64		
Number of vessels fluro	int64		
Thallium	int64		
Heart Disease	object		
dtype: object			

Inference: Out of the 14 features 12 features are of int types, 1 feature (ST Depression) is of float type and the target variable is of type string

• Checking if the dataset contains any missing data

	Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of vessels fluro	Thallium	Heart Disease
0	False	False	False	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	0.00	322	922	111	560	1800		1924	920	100			100	565
265	False	False	False	False	False	False	False	False	False	False	False	False	False	False
266	False	False	False	False	False	False	False	False	False	False	False	False	False	False
267	False	False	False	False	False	False	False	False	False	False	False	False	False	False
268	False	False	False	False	False	False	False	False	False	False	False	False	False	False
269	False	False	False	False	False	False	False	False	False	False	False	False	False	False

Inference: The dataset does not contain any missing data.

• Converting target label to binary values using one hot encoding

```
from sklearn.preprocessing import OneHotEncoder

enc=OneHotEncoder()

enc_data=pd.DataFrame(enc.fit_transform(data[['Heart Disease Predicted']]).toarray())

new_data=data.join(enc_data)

new_data.drop('Heart Disease', inplace=True, axis=1)

new_data.drop('Heart Diease Predicted', inplace=True, axis=1)
```

Output:

new_data.head(5)

Heart Disease Predicted EKG Number of vessels fluro Chest Max Exercise ST Slope of ST BP Cholesterol Thallium 0 Age Sex over 120 pain type results angina depression 0 70 4 130 322 0 2 109 0 2.4 2 1 0.0 1.0 0 0 0 1.0 0.0 67 0 3 115 564 0 2 160 1.6 2 124 0 141 0 0.3 0 1 0.0 1.0 1 0.2 2 0 1.0 0.0 3 64 263 0 0 105 1 4 128

0 1.0 0.0

121

Type of each feature after one hot encoding:

269

2 120

Age	int64
Sex	int64
Chest pain type	int64
BP	int64
Cholesterol	int64
FBS over 120	int64
EKG results	int64
Max HR	int64
Exercise angina	int64
ST depression	float64
Slope of ST	int64
Number of vessels flur	o int64
Thallium	int64
Heart Disease Predicte	d int8
0	float64
1	float64
dtype: object	1120000

Data Summarization:

• Checking the correlation between various features of the dataset.

• Checking the correlation of the target variable

Inference: 1 feature ("Max Hr") is negatively correlated with the target feature and all other features are positively correlated with the target feature.

• Understanding the statistical details of the data

Data Visualization:

- > Analyzing Individual features of the dataset.
- "Age" Feature Analysis (Checking 10 ages with their counts)

```
plt.figure(figsize=(25,12))
sns.set_context('notebook',font_scale = 1.5)
sns.barplot(x=new_data['Age'].value_counts()[:10].index,y=new_data['Age'].value_counts()[:10].values)
plt.tight_layout()
```


Inference: 58 Age column has the highest frequency

• Checking the range of ages in the dataset

```
minAge=min(new_data['Age'])
maxAge=max(new_data['Age'])
meanAge=new_data['Age'].mean()
print('Minimum Age :',minAge)
print('Maximum Age :',maxAge)
print('Mean Age :',meanAge)

Minimum Age : 29
Maximum Age : 77
Mean Age : 54.4333333333333333
```

• Dividing Age feature into three different categories and plotting the graph

```
Young = new_data[(new_data['Age']>=29)&(new_data['Age']<40)]
Middle = new_data[(new_data['Age']>=40)&(new_data['Age']<55)]
Elder = new_data[(new_data['Age']>55)]

plt.figure(figsize=(23,10))
sns.set_context('notebook',font_scale = 1.5)
sns.barplot(x=['young ages','middle ages','elderly ages'],y=[len(Young),len(Middle),len(Elder)])
plt.tight_layout()
```


Inference: From the above graph we can infer that elder people are the most affected by the heart disease and the younger ones are the least affected,

• Plotting pie chart of people belonging to different age categories

```
colors = ['blue', 'green', 'yellow']
explode = [0,0,0.1]
plt.figure(figsize=(10,10))
sns.set_context('notebook', font_scale = 1.2)
plt.pie([len(Young),len(Middle),len(Elder)],labels=['young ages', 'middle ages', 'elderly ages'],explode=explode,colors=colors
plt.tight_layout()
```


• "Sex" Feature Analysis

Inference: Ratio of male to female is approximately 2:1

• Plotting the relation between "Sex" and "Slope"

```
plt.figure(figsize=(15,7))
sns.set_context('notebook',font_scale = 1.5)
sns.countplot(data['Sex'],hue=data["Slope of ST"])
plt.tight_layout()
```


Inference: Slope value is higher as in the case of Males(1)

• "Chest Pain Type" Feature Analysis

Inference: As seen above, there are 4 types of chest pain

- 1. Status at least
- 2. Condition slightly distressed
- 3. Condition medium problem
- 4. Condition too bad

• Analyzing "Chest Pain" vs Target Label

```
plt.figure(figsize=(14,7))
sns.set_context('notebook',font_scale = 1.5)
sns.countplot(data['Chest pain type'],hue=data["Heart Disease Predicted"])
plt.tight_layout()
```


Inference:

- ★ People having the least chest pain are not likely to have heart disease.
- ★ People having severe chest pain are likely to have heart disease.
- ★ Elderly people are most likely to have chest pain.

• Analyzing Target Variable

```
plt.figure(figsize=(14,7))
sns.set_context('notebook',font_scale = 1.5)
sns.countplot(new_data['Heart Disease Predicted'])
plt.tight_layout()
```


Inference: The ratio between 1 and 0 is much less than 1.5 which indicates that the target label is not imbalanced.

Links:

Original dataset: https://ldrv.ms/u/s!AkrIeHMjcOiBmFnCn5MRdjarUnID?e=7N6S5B

Cleaned dataset: https://ldrv.ms/u/s!AkrIeHMjcOiBmFoGANVkIWR8bTMe?e=feEznZ

Pynb file: https://ldrv.ms/u/s!AkrIeHMjcOiBmF4Ipxxh68KdtT15?e=CV2k7M

Submitted By: AFLAH SEDHIQUE Roll No: AM.EN.U4CSE20105

GOURINATH AM.EN.U4CSE20129

AKSHAY G SREE AM.EN.U4CSE20107

C P GHANSHYAM AM.EN.U4CSE20118

PRANAV B NAIR AM.EN.U4CSE20152