Représentation graphique d'une fonction

I. Branches infinies:

Dans tout le chapitre le plan est muni d'un repère orthogonal $(0; \vec{i}; \vec{j})$.

Définition :

Soient f une fonction numérique et (C_f) sa courbe représentative.

On dit que (C_f) admet une *branche infinie* si l'un des coordonnées d'un point de (C_f) tend vers l'infini.

1. Asymptote verticale – Asymptote horizontale :

Activité 0:

Soit f la fonction définie sur $IR \setminus \{2\}$ par $f(x) = \frac{x}{x-2}$.

- **1.** a. Calculer limites de f au voisinage de $-\infty$ et $+\infty$. b. Que peut-on dire sur (C_f) au voisinage de $-\infty$ et $+\infty$?
- **2.** Calculer $\lim_{x\to 2^+} f(x)$ et $\lim_{x\to 2^+} f(x)$.
- b. Que peut-on dire sur (C_f) au voisinage de 2?

Définition :

Soient f une fonction numérique et a et b deux nombres réels.

- Si $\lim_{x \to a^+} f(x) = \infty$ ou $\lim_{x \to a^-} f(x) = \infty$, alors on dit que la droite d'équation x = a est une asymptote verticale à la courbe (C_f) .
- Si lim_{x→∞} f(x) = b, alors on dit que la droite d'équation y = b est une asymptote horizontale à la courbe (C_f) au voisinage de ∞.

O_Exemple:

On considère f la fonction définie par $f(x) = \frac{3x^2 + x - 2}{x^2 - 4}$.

- On a $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} \frac{3x^2+x-2}{x^2-4} = +\infty$ alors (C_f) admet une asymptote verticale d'équation x=2.
- Et on a $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{3x^2 + x 2}{x^2 + 1} = \lim_{x \to +\infty} \frac{3x^2}{x^2} = 3$. Donc (C_f) admet une asymptote horizontale d'équation y = 3 au voisinage de $+\infty$.

Application 0:

On considère f et g deux fonctions définies respectivement par $f(x) = 5 + \frac{x}{x^2 + 3}$ et $g(x) = \frac{x+1}{(x-4)^2}$.

- **3.** Calculer limites de f au voisinage de $-\infty$ et $+\infty$. Interpréter graphiquement les résultats.
- **4.** Montrer que la droite d'équation x = 4 est une asymptote verticale à la courbe de g. **Application** ②:

On considère f la fonction définie par son tableau de variations suivant :

Déterminer les éventuelles asymptotes à la courbe de f.

Asymptote oblique:

Dans ce paragraphe, f étant une fonction qui admet une limite infinie au voisinage de ∞ .

🛭 Activité 2:

Soit f la fonction définie sur $IR \setminus \{-\frac{3}{2}\}$ par $f(x) = \frac{x^2}{2x+3}$ et (D) est la droite d'équation $y = \frac{1}{2}x - \frac{3}{4}$

- **1.** Calculer limites de f au voisinage de $-\infty$
- **2.** Calculer $\lim_{x \to +\infty} f(x) \left(\frac{1}{2}x \frac{3}{4}\right)$.

Que peut-on dire sur (C_f) et la droite (D)?

Définition :

Soient a et b deux réels tels que $(a \neq 0)$.

Si $\lim_{x \to a} f(x) - (ax + b) = 0$ (respectivement $\lim_{x \to a} f(x) - (ax + b) = 0$), alors on dit que la droite d'équation y = ax + b est une asymptote oblique à la courbe de f au voisinage de $+\infty$ (respectivement $-\infty$).

Propriété :

La droite d'équation y = ax + b est une asymptote oblique à la courbe (C_f) au voisinage de $+\infty$ (respectivement au voisinage de $-\infty$) si et seulement s'il existe une fonction h telle que f(x) = ax + b + h(x) et $\lim_{x \to a} h(x) = 0$ (respectivement $\lim_{x \to a} h(x) = 0$).

O Exemple:

On considère f la fonction définie par $f(x) = 2x - 3 + \frac{x}{2x^2 + 1}$.

On a $\lim_{x \to +\infty} f(x) - (2x - 3) = \lim_{x \to +\infty} \frac{x}{2x^2 + 1} = \lim_{x \to +\infty} \frac{1}{2x} = \lim_{x \to +\infty} \frac{1}{2x} = 0.$

Donc la droite d'équation y = 2x - 3 est une asymptote oblique à la courbe de f au voisinage de +∞.

Application 3:

Soit f une fonction définie sur $\mathbb{R}\setminus\{3\}$ par : $f(x) = \frac{2x^2 - 7x + 8}{x - 3}$

Montrer que la droite d'équation y = 2x - 1 est une asymptote oblique à (C_f) au voisinage de $+\infty$ et de $-\infty$.

Propriété:

Soient a et b deux réels tels que $(a \neq 0)$.

La droite d'équation y = ax + b est une asymptote oblique à la courbe (C_f) au voisinage

de $+\infty$ (respectivement au voisinage de $-\infty$) si et seulement si $\lim_{x \to +\infty} \frac{f(x)}{x} = a$ et $\lim_{x \to +\infty} f(x) - ax = b$ (respectivement $\lim_{x \to -\infty} \frac{f(x)}{x} = a$ et $\lim_{x \to -\infty} f(x) - ax = b$).

Application @:

Déterminer l'équation de l'asymptote oblique au voisinage de $+\infty$ à la courbe (C_f) dans chacun des cas suivants :

$$f(x) = \frac{3x^3 + x^2 - 1}{x^2}$$

$$f(x) = \frac{\sin(x)}{x} + 2x$$

$$F(x) = \frac{\sin(x)}{x} + 2x$$

$$F(x) = \frac{\sin(x)}{x} + 2x$$

PP Définition :

Soit f une fonction tel que $\lim_{t \to \infty} f(x) = \pm \infty$ et (C_f) sa courbe représentative dans repère orthonormé $(0; \vec{i}; \vec{j})$.

Si $\lim_{x\to\infty}\frac{f(x)}{x}=0$, alors on dit que (C_f) admet une **branche parabolique de direction l'axe des abscisses** au voisinage de ∞ .

 (C_f) admet une branche parabolique de direction l'axe des ordonnées.

 (C_f) admet une branche parabolique de direction l'axe des abscisses.

 (C_f) admet une branche parabolique de direction la droit (D).

O_Exemples:

On considère f, g et h les fonctions définies respectivement par $f(x) = 3x^2 - 2x + 1$, $g(x) = \sqrt{3x - 2}$ et $h(x) = 2x^2 + \sqrt{x}$.

• On a $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 3x^2 - 2x + 1 = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{3x^2 - 2x + 1}{x} = +\infty$. Donc (C_f) admet une branche parabolique de direction l'axe des ordonnées au voisinage de

 $+\infty$.

• On a $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \sqrt{3x - 2} = +\infty$ et $\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{3x - 2}}{x} = \lim_{x \to +\infty} \sqrt{\frac{3x - 2}{x^2}} = 0$.

Donc (C_f) admet une branche parabolique de direction l'axe des abscisses au voisinage de $+\infty$.

• On a $\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} 2x + \sqrt{x} = +\infty$ et $\lim_{x \to +\infty} \frac{h(x)}{x} = \lim_{x \to +\infty} \frac{2x + \sqrt{x}}{x} = \lim_{x \to +\infty} 2 + \frac{1}{\sqrt{x}} = 2$ et $\lim_{x \to +\infty} h(x) - 2x = \lim_{x \to +\infty} \sqrt{x} = +\infty$. Donc (C_f) admet une branche parabolique de direction droite d'équation y = 2x au voisinage de $+\infty$.

Application 5:

Déterminer la branche parabolique de (C_f) au voisinage $+\infty$ de dans chacun des cas suivants

$$f(x) = x^3 - 4x^2 - 1$$

1
$$f(x) = x^3 - 4x^2 - 1$$
 2 $f(x) = \sqrt{x+1} - 2x$

$$f(x) = \frac{2x-5}{\sqrt{x}+3}$$

 (C_f) admet une asymptote verticale d'équation x = a

 $\lim_{x\to\infty}f(x)=l$

 (C_f) admet une asymptote horizontale d'équation x = l au voisinage de ∞

 $\lim_{x\to\infty}f(x)=\infty$

 $\lim_{x\to\infty}\frac{f(x)}{x}$ 0 | (C_f) admet une branche parabolique de direction l'axe des abscisses au voisinage de ∞ (C_f) admet une branche parabolique de

 (C_f) admet une branche parabolique de direction l'axe des ordonnées au voisinage de ∞

 (C_f) admet une branche

 $\lim_{x \to \infty} (f(x) - ax)$

а

parabolique de direction la droite d'équation y = ax au voisinage de ∞ (C_f) admet une asymptote oblique

 (C_f) admet une asymptote oblique d'équation y = ax + b au voisinage de ∞

II. Concavité d'une courbe - Points d'inflexion :

PP Définition :

Soit f une fonction dérivable sur un intervalle Iet (C_f) sa courbe dans un repère orthonormé $(O; \vec{\imath}; \vec{\jmath})$. On dit que (C_f) est :

- On dit que (C_f) est **convexe** (ou admet **une concavité dirigée vers les ordonnées positives**), si (C_f) est entièrement située au-dessus de chacune de ses tangentes.
- On dit que (C_f) est **concave** (ou admet **une concavité dirigée vers les ordonnées négatives**), si (C_f) est entièrement située au-dessous de chacune de ses tangentes.
- A(a; f(a)) est un point d'inflexion de (C_f) si la courbe traverse sa tangente en ce point.

O Exemple:

La figure ci-dessous représente la courbe de la fonction *cosinus* sur $\left[-\frac{\pi}{2}; \frac{3\pi}{2}\right]$.

La fonction cosinus est concave sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ et convexe sur $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$ et $A\left(\frac{\pi}{2}; 0\right)$ est un point d'inflexion de (C_{cos}) .

O_Remarque :

Un point d'inflexion est un point de (C_f) où la courbe (C_f) change de concavité.

Propriété :

Soient f une fonction deux fois dérivable sur un intervalle I et (C_f) sa courbe représentative et $a \in I$.

- Si f'' est positive suor l'intervalle I, alors (C_f) est convexe
- Si f'' est négative sur l'intervalle I, alors (C_f) est concave.
- Si f'' s'annule en a en changeant de signe, alors le point A(a; f(a)) est u point d'inflexion de (C_f) .

O Exemple :

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - 2x^2 + x - 1$.

Etudions la concavité de (C_f) en précisant les points d'inflexion.

Application 6:

Etudier la concavité de courbe de la fonction f en précisant les points d'inflexion s'ils existent dans chacun des cas suivants :

$$f(x) = \frac{1}{12}x^4 - 2x^2 + 3x + 5$$

2
$$f(x) = x + \frac{1}{x-1}$$

Application 2:

La figure ci-contre représente la courbe représentative d'une fonction f définie sur [-4; 4].

Etudier la concavité de courbe de la fonction f en précisant les points d'inflexion s'ils existent.

III.Eléments de symétrie d'une courbe :

Axe de symétrie :

Propriété :

Soit f une fonction définie sur un ensemble D et (C_f) sa courbe représentative dans un repère orthonormé.

La droite (Δ) d'équation $x = a \ (a \in \mathbb{R})$ est un *axe de symétrie* de la courbe (C_f) si et

seulement si :
$$\begin{cases} (\forall x \in D); & (2a - x) \in D \\ (\forall x \in D); & f(2a - x) = f(x) \end{cases}$$

O Exemple:

Montrons que la droite d'équation (Δ): $x = -\frac{1}{2}$ est un axe de symétrie de la courbe de la fonction f définie par $f(x) = x^2 + x + 1$.

Application 8:

Montrer que la droite (D) est un axe de symétrie de (C_f) dans chacun des cas suivants :

•
$$f(x) = \frac{-3}{x^2 - 4x + 7}$$
 et (D): $x = 2$.

•
$$f(x) = \frac{-3}{x^2 - 4x + 7}$$
 et (D) : $x = 2$.
• $f(x) = \sqrt{x^2 - 4x + 5}$ et (D) : $x = \frac{5}{2}$.

2. Centre de symétrie :

Propriété:

Soit f une fonction définie sur un ensemble D et (C_f) sa courbe représentative dans un repère orthonormé.

Le point $\Omega(a;b)$ tel que $(a;b) \in \mathbb{R}^2$ est un *centre de symétrie* de la courbe (C_f) si et

seulement si :
$$\{ (\forall x \in D); (2a - x) \in D \\ (\forall x \in D); f(2a - x) + f(x) = 2b \}$$

O_Exemple:

Montrons que le point $\Omega(1;1)$ est un centre de symétrie de la courbe de la fonction f définie par $f(x) = \frac{x}{x-1}$.

Application @:

Montrer que le point Ω est un centre de symétrie de (C_f) dans chacun des cas suivants :

•
$$f(x) = \frac{-2x^2 + 7x - 5}{2x - 1}$$
 et $\Omega\left(\frac{1}{2}; \frac{5}{2}\right)$. • $f(x) = 2x^3 + 6x^2 + 3x + 3$ et $\Omega(-1; 4)$.