Machine Learning Models in R

	Algorithm	R-package	Function	Prediction		
	Unsupervised Learning					
	k-means	base	kmean(data)	model\$cluster		
	Hierarchical Clustering	base	hclust(d=dist(as.matrix(data)))	cutree(model, k)		
	Gaussian mixture models	mclust	Mclust(data, k)	model\$classification		
<u>S</u>	DBSCAN	dbscan	dbscan(data,eps=0.5, MinPts = 10)	model\$cluster		
lys	Principal Component Analysis (PCA)	base	prcomp(as.matrix(data))	model\$x		
na	Calculating the optimal number of clusters					
ed A	NbClust	NbClust	NbClust(iris[,1:4], distance = "euclidean", min.nc=2, max.nc=8, method = "complete")	Voting		
vis						
upervis	Jaccard	clusteval	cluster_similarity(class, model\$cluster, similarity="jaccard", method="independence") cluster_similarity(class, model\$cluster,	None		
Unsi	Rand	clusteval	similarity="rand", method="independence")	None		
	Internal evaluation of clusters					
	Dunn	clValid	dunn(distance = dist(as.matrix(data, method = "euclidean"), clusters = model\$cluster)	None		
	Silhouette	clues	get_Silhouette(as.matrix(data, model\$cluster, disMethod = "Euclidean")	None		

Algorithm	R-package	Function	Prediction		
Regression & Classification	Regression & Classification Learners				
Linear regression	base	Im(y ~ x1+x2++xn, data)	predict(model, newdata)		
Logistic regression	base	glm(y ~ x1+x2++xn, data,family="binomial")	<pre>predict(model, newdata, type="response")</pre>		
Poison regression	base	glm(y ~ x1+x2++xn, data,family="poisson")	<pre>predict(model, newdata, type="response")</pre>		
Naive Bayes	e1071	naiveBayes(y ~ x1+x2++xn, data)	predict(model, newdata, type="raw")		
Support Vector Machine (SVM)	e1071	svm(y ~ x1+x2++xn, data)	predict(model, newdata)		
Support Vector Machine (SVM) Classification Trees	Classification Trees				
CART	tree	tree(y ~ x1+x2++xn, data)	predict(model, newdata, type="class")		
	rpart	rpart(y \sim x1+x2++xn, data)	predict(model, newdata, type="class")		
C4.5	RWeka	J48(y ~ x1+x2++xn, data)	predict(model, newdata, type="class")		
C5.0	C50	$C5.0(y \sim x1+x2++xn, data)$	predict(model, newdata, type="class")		
Conditional Trees	party; partykit	ctree(y ~ x1+x2++xn, data)	predict(model, newdata)		
Ensemble Learners - Bagging					
Random Forest	randomForest	randomForest(y ~ x1+x2++xn, data)	predict(model, newdata)		
Ensemble Learners - Boosti	Ensemble Learners - Boosting				
Ada Boost	fastAdaboost	adaboost(y ~ x1+x2++xn, data, iter_num)	predict(model, newdata)		
eXtreme Gradient Boosting	xgboost	xgboost(data = data, label = y, max_depth = 2, eta=1,nrounds=2, objective="binary:logistic")	predict(model, newdata)		

Machine Learning Models in Python

	Algorithm	Library	Function	Prediction		
	Unsupervised Learning					
(0	k-means	sklearn.cluster	mod = KMeans(n_cluster=k, random_state=0) .fit(X)	mod.labels_ mod.predict(X)		
lysis	Hierarchical Clustering	sklearn.cluster	mod = AgglomerativeClustering(n_clusters=k, affinity='euclidian', linkage='ward').fit_predict(X)	mod.labels_		
$\boldsymbol{\sigma}$	Gaussian mixture models	sklearn.mixture	$mod = GMM(n_components=k).fit(X)$	mod.predict(X)		
Δn	DBSCAN	sklearn.cluster	mod = DBSCAN(eps=3, min_samples = 10).fit(X)	mod.labels_		
/ pas	Principal Component Analysis (PCA)	sklearn.decomposition	$mod = PCA(n_components=k).fit(X)$	mod.explained_variance_ratio_ mod.singular_values_		
Ž	External Evaluation of the clusters					
e E	Jaccard	sklearn.metrics	jaccard_similarity_score(y_true, y_pred)	None		
dns	Rand	sklearn.metrics	adjusted_rand_score(y_true, y_pred)	None		
Un	Internal evaluation of cluster	rnal evaluation of clusters				
	Davies-Bouldin	sklearn.metrics	davies_bouldin_score(X, labels)	None		
	Silhouette	sklearn.metrics	silhouette_score(X, labels, sample_size, random_state=0, metric="euclidean")	None		

	Algorithm	Libraries	Function	Prediction		
	Regression & Classification Learners					
	Linear regression	sklearn.linear_model	mod = LinearRegression ().fit(X,y)	mod.predict(X)		
	Logistic regression	sklearn.linear_model	mod = LogisticRegression ().fit(X,y)	mod.predict(X)		
	Poison regression					
	Naive Bayes	sklearn.naive_bayes	mod = GaussianNB().fit(X,y) mod = MultinomialNB().fit(X,y)	mod.predict(X)		
	Support Vector Machine (SVM)	sklearn.svm	mod = svm.SVC(C=1, gamma=0.1) mod = svm.SVR(C=1, gamma=0.1) mod.fit(X,y)	mod.predict(X)		
sis	Classification Trees					
Analy	CART	sklearn.tree	<pre>mod = DecisionTreeClassifier(random_state=2) mod = DecisionTreeRegressor(random_state=2) mod.fit(X,y)</pre>	mod.predict(X)		
eq	Ensemble Learners - Bagging					
Superviso	Random Forest	sklearn.ensemble	mod = RandomForestClassifier(n_estimator=10, max_depth=2, random_state=2) mod = RandomForestRegressor(n_estimator=10, max_depth=2, random_state=2) mod.fit(X,y)	mod.predict(X)		
	Ensemble Learners - Boosting					
	Ada Boost	sklearn.ensemble	mod = AdaBoostClassifier(random_state=1) mod = AdaBoostRegressor(random_state=1) mod.fit(X,y)	mod.predict(X)		
	eXtreme Gradient Boosting	xgboost	dtrain = xgboost.DMatrix(np.array(X), label=y) param = { 'max_depth':2, 'eta':1, 'objective':"binary:logistic"} mod = xgboost(param, dtrain, num_rounds)	<pre>dtest = xgboost.DMatrix(np.array(X)) mod.predict(dtest)</pre>		