Геометрические тела Многогранники Призма

Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников.

Элементы Многогранника:

- Грани (многоугольники)

Многогранник называется выпуклым, если он расположен по одно сторону от плоскости каждой своей грани.

Все грани выпуклого многогранника – выпуклые многоугольники. Свойство выпуклого многогранника:

Сумма всех плоских углов в его вершине меньше 360 градусов.

Многогранник называется правильным, если он:

1. Выпуклый

2. Все его грани – равные правильные многоугольники

3. В каждой вершине многогранника сходиться одно и то же число рёбер

Тетраэдр

Составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180º.

Куб или Гексаэдр

Составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна **270**² ₀

ОКТАЭДР

Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине 240⁰.

IIIKO CABAID

Составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300°.

Додекаэдр

Составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна *324*^{*o*}.

3anoIIIporeprenéhuuy:

		количество		
название	форма грани	Граней (f)	Вершин (е)	Рёбер (k)
Тетраэдр	Правильный треугольник	4	4	6
Куб	Квадрат	6	8	12
Октаэдр	Правильный треугольник	8	6	12
Додекаэдр	Правильный пятиугольник	12	20	30
Икосаэдр	Правильный треугольник	20	12	30

Убедитесь!

$$e + f - k = 2$$

Теорема Эйлера

Эйлерова характеристика всякого многогранника нулевого рода равна 2. Иначе говоря, между e, f и k любого многогранника нулевого рода имеет место зависимость .

$$e + f - k = 2$$

Где e – число вершин, f – число граней, k – число ребер

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников.

Прямой призмой называется призма, боковое ребро которой перпендикулярно плоскости основания.

Высота прямой призмы равна боковому ребру, а все боковые грани - прямоугольники

Высотой (h) призмы называется перпендикуляр, опущенный из любой точки одного основания на плоскость другого основания призмы.

Отрезок, концы которого - две вершины, не принадлежащие одной грани призмы, называют ее *диагональю*. (Отрезок *A1D* - диагональ призмы)

Правильной призмой называется прямая призма, основание которой – правильный многоугольник.

Правильная призма

Площадь полной поверхности призмы (Sп.п) равна сумме площадей ее боковых граней (площади боковой поверхности Sбок) и площадей двух оснований (2Sосн) - равных многоугольников: Sп.п. =Sбок+2Sосн

Площадь боковой поверхности — сумма площадей боковых граней

Площадь боковой поверхности прямой призмы Sбок=Росн*h

Если призма наклонная: **Sбок=Рперп.сечения*а**

Р – периметр перпендикулярного сечения а –длина ребра

Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

$$V_{\text{прямой призмы}} = S_{\text{осн.}}^{*} h$$

$$V_{\text{накл призмы}} = S_{\text{перп}}^* h$$

Параллелепипедом называется призма, основание которой – параллелограмм.

Прямоугольным

параллелепипедом

называется полительнител, редрвание

которого – прямоўгольник.

- Противоположные грани параллелепипеда равны параллельны
- Все четыре диагонали параллелепиледа пересекаются в одной точке и делятся этой точкой пополам.
- Сумма квадратов диагоналей параллелепипеда равна сумме квадратов всех его ребер.
- Боковые грани прямого
 параллелепипеда прямоугольники.
- Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Задача 1:

Через одну из сторон основания правильной треугольной призмы проведена плоскость под углом α к основанию, отсекающая от призмы пирамиду объёма V. Определить площадь сечения.

Решение Задачи Меню Призма

Задача 1:

Задачи Меню Призма

Задача 2:

В основании прямой призмы — А равнобедренная трапеция, диагонали которой перпендикулярны соответствующим боковым сторонам. Угол между диагоналями трапеции, противолежащий боковым сторонам, равен α, отрезок, соединяющий вершину верхнего основания с центром окружности, описанной около нижнего основания равен I и образует с плоскостью основания угол β. Найти объём призмы.

Решение Задачи Меню Призма

Задача 2:

Задачи Меню Призма

Задача 3:

Через середину диагонали куба, перпендикулярно к ней проведена плоскость. Определить площадь фигуры, получившейся в сечении куба этой плоскостью, если ребро куба равно а. EC=CO.

Решение
Задачи
Меню
Призма

3a4a3:

Задачи Меню Призма

Задача 4:

Дана прямая призма, у которой основанием служит правильный треугольник. Через одну из сторон нижнего основания и противоположную вершину верхнего основания проведена плоскость. Угол $^{\it C}$ между этой плоскостью и основанием равен α , а площадь сечения S. Определить V призмы.

Задача 4:

Задачи Меню Призма