対象的数次-
$$\int_0^x \sin t dt 当 x - 0 及 x - \frac{\pi}{4}$$
 財的号数 $y' = \sin x$ 代入 $X \ge 0$ 才な $X \ge \hat{4}$ 、 お割る 0 才の 全

2.求由参数表达式
$$x = \int_0^t \sin u du, y = \int_0^t \cos u du$$
 所确定的函数对 x 的导数 $\frac{dy}{dx}$.

$$\frac{dy}{dx}$$
, $\frac{dy/dt}{dx/dt}$; $\frac{\cos t}{\sin t}$; $\cot t$

3.求由
$$\int_0^y e^t dt + \int_0^x \cos t dt = 0$$
 所决定的隐函数对 x 的导数 $\frac{dy}{dx}$

5.证明
$$f(x) = \int_{1}^{x} \sqrt{1+t^3} dt$$
 在 $\left[-1,+\infty\right]$ 上是单调增加函数,并求 $\left(f^{-1}\right)'(0)$

$$f(x) = \sqrt{1+x^2}$$
 $(x > -1)$ $(x$

6.求下列极限:

$$\frac{1 \lim_{x \to 0} \frac{\int_{0}^{x} \cos t^{2} dt}{x};}{\left| \frac{2 \lim_{x \to 0} \frac{\left(\int_{0}^{x} e^{t^{2}} dt\right)^{2}}{\int_{0}^{x} t e^{2t^{2}} dt}}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{x} e^{t^{2}} dt}{\left| \frac{1}{x} \right|^{2}} = \lim_{x \to 0} \frac{\int_{0}^{$$

7.设
$$f(x) = \begin{cases} x^2, & x \in [0,1), \\ x, & x \in [1,2]. \end{cases}$$
 求 $\Phi(x) = \int_0^x f(t)dt$ 在 $[0,2]$ 上的表达式,并讨论 $\Phi(x)$ 在 $[0,2)$

8.设
$$f(x) = \begin{cases} \frac{1}{2} \sin x, 0 \le x \le \pi, \\ 0, x < 0$$
或 $x > \pi. \end{cases}$ 求 $\Phi(x) = \int_0^x f(t) dt$ 在 $(-\infty, +\infty)$ 内的表达式.

9.设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导且 $f'(x) \le 0$, $F(x) = \frac{1}{1-1} \int_{0}^{x} f(t) dt$.证明在

$$(a,b) \text{内有} F'(x) \leq 0. \quad F'(x) = \frac{1}{(x-a)^2} \int_{a}^{x} f(t) \cdot dt + \frac{1}{x-a} f(x)$$

$$= \frac{1}{x-a} \left(f(x) - f(3) \right) \cdot \frac{1}{3} \in (a,x)$$

$$\Rightarrow f(x) \leq 0 - f(x) \cdot \psi \cdot \text{then } f(x) - f(3) \leq 0$$

$$\text{in } f(x) = 0$$

$$10 \stackrel{\text{if } F(x) = \int_{0}^{x} \frac{\sin t}{t} dt}{\int_{0}^{x} \frac{\sin t}{t} dt} = \lim_{x \to 0} \frac{\int_{0}^{x} \frac{\sin t}{t} dt}{x} = \lim_{x \to 0} \frac{\sin t}{x}$$

11.设 f(x) 在 $[0,+\infty)$ 内连续,且 $\lim_{x\to +\infty} f(x) = 1$ 证明函数 $y = e^{-x} \int_0^x e^t f(t) dt$ 满足方程 $\frac{dy}{dx} + y = f(x)$,并求 $\lim_{x\to +\infty} y(x)$.

$$\frac{dy}{dx} = -e^{-x} \int_{0}^{x} e^{t} f(t) dt + e^{-x} \cdot e^{x} f(x)$$

$$\frac{dy}{dx} + y = e^{-x} \cdot e^{x} f(x) = f(x) \cdot \sqrt{12}$$

$$\lim_{x \to \infty} y(x) = \int_{0}^{x} e^{t} f(t) dt$$

$$= e^{x} \int_{0}^{x} e^{t} f(t) dt$$

$$= e^{x} \int_{0}^{x} e^{t} f(t) dt$$

$$= e^{x} \int_{0}^{x} e^{t} f(x) dt$$