Práctica 3 Métodos Numéricos

Eric Jiménez y Arnau Perich

Mayo 2022

1 Problema 2

Se considera la siguiente tabla de valores correspondientes a la función de Bessel de primera especie de orden cero, $J_0(x)$,

x	1.9	2.0	2.1	2.2
$J_0(x)$	0.281818559374385	0.223890779141236	0.166606980331990	0.110362266922174
x	2.3	2.4	2.5	2.6
$J_0(x)$	0.055539784445602	0.002507683297244	-0.048383776468198	-0.096804954397038
x	2.7	2.8	2.9	3.0
$J_0(x)$	-0.142449370046012	-0.185036033364387	-0.224311545791968	-0.260051954901934

Nuestro objetivo es estimar el valor de la abcisa x* tal que $J_0(x) = 0$ mediante interpolación inversa, utilizando polinomos interpoladores de la forma de Newton.

Distinguiremos tres casos.

- (a) Interpolando valores positivos de $J_0(x)$ más próximos al cambio de signo de la función.
- (b) Interpolando valores negativos de $J_0(x)$ más próximos al cambio de signo de la función.
- (c) Interpolando valores de $J_0(x)$ simétricos alrededor del cambio de signo de la función.

En la siguiente tabla podemos observar los resultados de dicha interpolación en los tres casos, evaluando estos polinomios obtenidos en x = 0 (y que por tanto nos dan la aproximación de x*).

Grado de interpolación	(a)	(b)	(c)
1	2.404728613882805	2.400077241947102	2.404927513002775
3	2.404822718113948	2.404149375353531	2.404824021911156
5	2.404825294785461	2.404216734868251	2.404825653043717

Ahora, como bien dice el enunciado, la función es estríctamente monótona, continua y derivable. Por Bolzano sabemos que el zero se encuentra entre los nodos 2.4 y 2.5. Así que es razonable pensar que tendremos una mayor aproximación de x^* si se usan estos dos nodos a la hora de hacer el polinomio interpolador, ya que en los otros dos casos, nada nos asegura que la función inversa pase por x^* , ya que para (a), $x^* > x_5 = 2.4$ y para (b) $x^* < x_6 = 2.5$. Así que con la opción c) obtenemos un resultado más próximo a la raiz buscada.

2 Problema 1

En este primer problema estudiaremos la interpolación polinómica en la base de Newton con diferencias divididas para la función

$$f(x) = \frac{1}{1 + 25x^2} \qquad x \in [-1, 1] \tag{1}$$

usando dos tipos de puntos de soporte (o nodos): los nodos equidistantes y los nodos de Chebishev.

En la siguente figura observamos en primer lugar las gráficas de f(x), $P_4(x)$ y $P_8(x)$, seguidamente estas tres junto a $P_{16}(x)$ y por último estas 4 junto a $P_{32}(x)$, todos los polinomios de nodos equidistantes. Hemos decidido separarlas ya que el error máximo que se comete augmenta rápidamente y no pueden apreciarse bien todas las gráficas.

Figura 1: Gráficas de f(x) y $P_n(x)$ para nodos equidistantes

En la siguiente figura se puede observar las gráficas para n = 4, 8, 16 y 32 nodos de Chebishev.

Figura 2: Gráficas de f(x) y $P_n(x)$ para nodos de Chebishev

Ahora compararemos como se comporta el error máximo que se comete a medida que se aumenta el número de nodos de interpolación con los nodos equidistantes y los de Chebishev.

	ERROR		COMPARACIÓN DE ERRORES
NODOS	EQUIDISTANTES	CHEBISHEV	$ f(x_k)-p(x_k) $
NODOS	$ f(x_k) - p(x_k) $	$ f(y_k) - p(y_k) $	$\overline{ f(y_k)-p(y_k) }$
4	0.4383325637382423	0.4018910383430822	1.090675138080713
8	1.044314386265563	0.1707166541760645	6.117237895188212
16	14.39385128500339	0.03253822115800359	442.3674919138247
32	4905.44713663365	0.001393541945741261	3520128.799585085
64	982148169.3852662	18.17499441983742	54038430.31243427

Notemos en primer lugar que para n=64 los resultados no son del todo consistentes por tanto los omitiremos. Cabe notar que con los nodos equidistantes, a medida que se aumentan los nodos, el error aumenta, esto podría resultar un fenómeno poco intuitivo, pero se produce con la interpolación de Lagrange (es conocido como el **Fenómeno de Runge**). En cambio, podemos observar como (salvo para n=64), el error entre el polinomio y la función tomando los nodos de Chebishev va disminuyendo.

¿Qué ocurre para n=64? Básicamente, alguno de los errores númericos estudiados en prácticas anteriores. Cabe destacar dos de ellos: el primero es debido al hacer las diferencias divididas; para n=64 la diferencia entre dos consecutivos es muy pequeña por lo que al ponerla al denominador el valor es demasiado grande y se produce un error de aproximación (debido a la finitud de precisión). Este error se presenta en los dos polinomios interpoladores. En cambio, el segundo error a destacar ocurre al intentar calcular los nodos de Chebishev; tal y como vimos en la primera práctica, el $\cos(x)$ para $x \approx \frac{\pi}{2}$ tenia una mala aproximación. Esto ocurre con los nodos con j cerca de $\frac{n}{2}$.