Actividad 2: PCA

Elías Garza A01284041

29/9/2023

M <- read.csv('paises_mundo.csv')
M</pre>

##		CrocPobl	Mort Inf	PorcMujeres	DNIBOE	ProdFloc	I inTolf	ConsAgua	PropRosa
##	1	1.0	30	41	2199	3903	12	94	53
	2	3.0	124	46	4422	955	6	57	19
	3	4.3	21	13	133540	91019	96	497	1
## 4		2.5	34	24	44609	19883	42	180	2
	5	1.3	22	31	278431	65962	160	1043	22
## (6	1.4	6	43	337909	167155	510	933	19
## '	7	0.6	6	41	216547	53259	465	304	47
## 8	8	2.0	79	42	28599	9891	2	220	6
## 9	9	0.3	8	40	250710	72236	457	917	20
##	10	3.0	95	48	2034	6	5	26	45
##	11	0.4	13	49	21356	31397	190	295	31
##	12	2.3	69	37	5905	2824	35	201	45
##	13	1.6	44	35	579787	260682	75	246	66
##	14	-0.6	15	48	11225	381333	335	1544	33
##	15	2.9	56	38	8615	2740	4	38	44
##	16	1.3	6	45	573695	554227	590	1602	49
	17	1.8	26	37	70263	43354	100	174	52
	18	3.1	90	43	1784	435	8	20	58
	19	1.8	26	45	12870	38000	47	687	74
	20	0.9	10	40	435137	164993	415	632	66
	21	3.4	86	33	9248	2305	8	66	34
	22	2.5	13	30	8884	4772	164	780	28
	23	0.9	9	38	7150	10982	32	870	16
	24	1.6	12	32	59151	25276	132	1626	12
	25	1.3	34	45	744890	928083	34	461	13
	26	0.2	6	46	156027	40097	613	233	12
	27	2.0	37	29	11390	6182	79	446	22
	28	2.3	36	26	15997	8256	61	581	43
	29	2.2	56	29	45507	51947	46	956	0
	30	1.8	36	34 13	9057	3211	53 283	245	6
	31	5.8	16	48	42806	18870 24740	208	884	0
	32 33	0.3 0.2	11 7	36	15848 532347	161654	385	337 781	38 51
	34	2.6	112	41	5722	1293	2	51	13
	35	2.0	39	37	71865	27062	21	686	26
	36	0.4	5	48	105174	65546	550	440	77
	37	0.4	6		1451051	476200	558	665	25
ππ ,	01	0.5	O	44	1-101001	410200	550	000	20

## 3	8 2.9	89	44	3759	933	30	57	71
## 3		73	51	6719	6115	4	35	42
## 4		8	36	85885	40623	493	523	47
## 4	1 2.9	44	26	14255	3161	27	139	39
## 4	2 2.0	72	43	1777	362	8	7	1
## 4		6	40	371039	79647	525	518	10
## 4		45	30	3566	2672	29	294	41
## 4		11	44	42129	33486	185	661	18
## 4	6 1.9	68	32	319660	386500	13	612	17
## 4		51	40	190105	53414	17	96	60
## 4	8 2.7	108	18	24600	27060	33	4575	4
## 4	9 3.2	45	24	113400	79128	79	1362	11
## 5	0 0.1	6	33	52765	17105	365	233	6
## 5	1 1.1	4	44	6686	4780	555	636	1
## 5	2 2.7	8	40	87875	32781	418	408	6
## 5	3 4.7	31	21	6354	5076	73	173	1
## 5	4 2.9	58	46	7583	3539	9	87	2
## 5	5 -0.3	11	28	28941	22798	230	525	0
## 5	6 2.3	32	28	10673	5184	82	271	8
## 5	7 3.6	61	21	23400	17800	59	880	0
## 5	8 2.5	12	37	78321	39093	166	768	54
## 5	9 2.0	55	35	29545	11100	43	427	20
## 6	0 2.1	33	31	304596	147926	96	899	25
## 6	1 1.8	113	48	1353	490	3	55	22
## 6	2 1.8	83	43	35840	3500	3	101	44
## 6		91	40	4391	927	4	150	37
## 6		46	36	1659	1688	23	367	50
## 6		80	36	28411	15530	4	41	17
## 6		5	46	136077	113488	556	488	31
## 6		7	44	51655	35135	479	589	28
## 6		18	15	10578	6187	77	564	19
## 6		90	26	59991	58529	16	2053	2
## 7		23	34	7253	3380	114	754	42
## 7		41	29	8158	36415	31	109	32
## 7		47	29	55019	15563	47	300	53
## 7		14	46	107829	135347	148	321	28
## 7		7	43	96829	31380	361	739	34
## 7		6		1094734	325383	502	205	10
## 7		8	47	39990	58705	236	266	34
## 7 ## 7		23 62	44	33488	55136	131	1134 202	27
## <i>1</i> ## 7		4	42 38	5070 79831	1002 20046	10 478	84	39 7
## 8		32	26	15780	15186	63	435	4
## 8		16	35	12616	4387	11	503	27
## 8		77	28	7510	1333	3	633	18
## 8		4	48	209720	142895	681	341	68
## 8		6	40	286014	65724	613	173	30
## 8		50	37	130918	189316	95	359	4
## 8		35	46	159630	71177	59	602	25
## 8		82	49	3703	1913	3	40	38
## 8		39	30	16369	6714	58	381	4
## 8		48	35	169452	78322	212	585	26
## 9		15	49	84084	202995	157	673	16
## 9		18	40	16458	7617	196	241	4

	92	2.4	23	33	65382	73116	111	382	52
	93	2.2	41	49	17634	12270	11	414	26
	94	4.2	100	29	4044	2159	12	335	8
	95	2.6	109	45	3605	7785	8	186	43
##	96	2.8	55	44	5933	7334	14	136	23
##		${\tt PropDefor}$	ConsEner	EmisCO2					
##	1	0.0	341	1.2					
##		0.7	89	0.5					
##	3	0.0	4566	13.1					
##	4	0.8	906	3.0					
##	5	0.1	1504	3.5					
##	6	0.0	5341	15.3					
##	7	-0.4	3301	7.2					
##	8	4.1	64	0.2					
##	9	-0.3	5120	10.1					
##	10	1.3	20	0.1					
##	11	-0.4	2392	9.9					
##	12	1.2	373	1.0					
##	13	0.6	718	1.4					
##	14	-0.2	2438	6.4					
##	15	0.6	103	0.2					
##	16	-1.1	7854	14.4					
##	17	0.7	622	1.8					
##	18	0.2	331	1.6					
##	19	0.0	1129	11.2					
##	20	0.1	2982	6.6					
##	21	1.0	103	0.5					
##	22	3.0	558	1.2					
##	23	1.0	923	2.6					
##	24	-0.1	1012	2.6					
##	25	0.7	664	2.3					
##	26	0.0	3977	10.4					
##	27	2.9	337	1.4					
##	28	1.8	565	1.8					
##	29	0.0	600	1.5					
##	30	2.3	370	0.7					
##	31	0.0	10531	33.9					
##	32	0.1	3243	7.0					
##	33	0.0	2458	5.7					
##	34	0.3	22	0.1					
	35	3.4	316	0.8					
	36	0.0	5997	8.2					
	37	-0.1	4042	6.3					
	38	0.6	652	5.5					
	39	1.4	93	0.2					
	40	0.0	2260	7.2					
##	41	1.8	210	0.6					
##	42	5.1	29	0.1					
	43	-0.3	4580	9.2					
	44	2.2	204	0.6					
	45	-0.5	2383	5.8					
	46	0.6	248	0.9					
	47	1.1	366	1.0					
##	48	0.1	1213	3.4					

##	49	0.0	1505	4.0
##	50	-1.2	3137	8.7
##	51	0.0	7932	6.8
##	52	-0.3	2717	8.1
##	53	-1.0	1067	3.0
##	54	0.6	110	0.2
##	55	0.0	8622	11.2
##	56	0.6	964	2.9
##	57	-1.4	2499	8.1
##	58	2.1	1699	3.8
##	59	-1.4	327	1.1
##	60	1.3	1561	3.8
##	61	0.8	40	0.1
##	62	1.3	49	0.1
##	63	1.0	28	0.1
	64	1.9		0.1
##		0.7	300	0.8
##	65		162	
##	66	-1.4	5318	14.1 7.6
##	67	0.0	4245	
##	68	0.0	2392	5.3
##	69	3.5	254	0.6
##	70	1.9	618	1.7
##	71	2.8	299	0.6
##	72	0.4	367	1.0
##	73	-0.1	2401	8.9
##	74	-0.5	1827	4.8
##	75	-1.1	3732	9.8
##	76	0.0	3868	13.1
##	77	0.0	1733	5.4
##	78	0.7	97	0.4
##	79	2.3	8103	17.7
##	80	-4.3	997	3.3
##	81	1.4	97	0.3
##	82	1.1	66	0.1
##	83	0.0	5723	6.6
##	84	-0.6	3629	6.4
##	85	-0.8	2146	7.5
##	86	3.5	769	2.0
##	87	1.2	34	0.1
##	88	-1.9	595	1.6
##	89	0.0	957	2.5
##	90	-0.3	3180	11.7
##	91	-0.6	629	1.6
##	92	1.2	2186	5.7
##	93	1.5	101	0.3
##	94	0.0	206	0.7
##	95	1.1	149	0.3
##	96	0.7	438	1.8
##	30	0.7	430	1.0

Parte 1

Generando las matrices de covarianza y de correlación

```
MC <- cov(M)
MCR <- cor(M)
```

Calculando descomposición espectral de las matrices

```
EMC <- eigen(MC)</pre>
EMC
## eigen() decomposition
## $values
    [1] 6.163576e+10 6.581612e+09 4.636256e+06 3.107232e+05 1.216015e+04
    [6] 5.137767e+02 3.627885e+02 4.542082e+01 5.800868e+00 1.438020e+00
##
   [11] 4.768083e-01
##
##
  $vectors
                                [,2]
                                                            [,4]
##
                  [,1]
                                              [,3]
                                                                          [,5]
##
    [1,] -1.658168e-06 4.706785e-07
                                     0.0001263736 -1.928408e-05 -0.0055373971
##
   [2,] -4.048139e-05 -1.774254e-05
                                     0.0082253821 -2.493257e-03 -0.0944030203
    [3,] 5.739096e-06 -1.084543e-05
                                     0.0001318149 5.538307e-03 0.0314036410
##
##
   [4,] 8.880376e-01 4.597632e-01 0.0026022071 -3.893588e-04 -0.0003327409
##
   [5,]
         4.597636e-01 -8.880405e-01 0.0005694896 1.096305e-03 0.0002207819
##
   [6,] 3.504341e-04 4.016179e-04 -0.0619424889
                                                   7.641174e-03 0.9921404486
##
    [7,] 2.625508e-04 -1.122118e-03 -0.0401453227 -9.991411e-01
                                                                 0.0057795144
##
    [8,] 4.089564e-06 7.790843e-06 0.0012719918 6.435797e-03 0.0419331615
    [9,] -1.073825e-06 2.350808e-07 0.0001916177 4.043796e-05 -0.0018090751
## [10,] 2.547156e-03 7.126782e-04 -0.9972315499 3.973568e-02 -0.0625729475
   [11,]
         4.643724e-06 -1.315731e-06 -0.0020679047 -5.626049e-05 -0.0042367120
##
##
                  [,6]
                                [,7]
                                              [,8]
                                                            [,9]
                                                                         [,10]
##
   [1,]
         1.243456e-02
                       5.359089e-03 -8.390810e-02 -6.778358e-02 -1.158091e-01
##
   [2,] 9.917515e-01 2.258020e-02 -7.891128e-02 -1.637836e-02 4.264872e-04
    [3,] 8.552992e-02 -1.136481e-01 9.856498e-01 -1.468464e-02 8.241465e-03
##
##
   [4,] -8.621005e-06 -7.566477e-06 1.217248e-05 -3.971469e-07 4.274451e-07
   [5,] 1.955408e-05 1.544658e-05 -2.558998e-05 1.059471e-06 -1.353881e-06
##
    [6,] 9.109622e-02 4.748682e-02 -3.416812e-02 -5.379549e-03 -3.409423e-03
##
    [7,] -1.087229e-03 -6.863294e-03 4.698731e-03 7.965261e-05 3.621425e-05
##
    [8,] 1.721948e-02 -9.920538e-01 -1.169638e-01
                                                   1.416566e-03 5.891758e-03
    [9,]
         1.758667e-03 -7.455427e-03 1.811443e-02 1.283039e-01 -9.859317e-01
##
   [10,]
         2.639673e-03 -3.764707e-03 1.267052e-03 2.262931e-03 2.672618e-04
##
   [11,] -1.877994e-02 -1.709137e-03 -5.204823e-03 -9.891529e-01 -1.200519e-01
##
##
    [1,] 9.872887e-01
##
    [2,] -2.092491e-02
##
   [3,] 8.344324e-02
   [4,] 2.723996e-07
##
   [5,] -2.086857e-07
##
   [6,] 4.944397e-04
##
   [7,] 4.780416e-04
   [8,] -3.748976e-03
##
   [9,] -1.052934e-01
## [10,] 5.906241e-05
## [11,] -8.221371e-02
```

```
EMCR <- eigen(MCR)</pre>
EMCR
## eigen() decomposition
## $values
   [1] 4.02987902 1.92999195 1.37041115 0.86451597 0.79414057 0.72919997
   [7] 0.57130511 0.32680096 0.16806846 0.14632819 0.06935866
##
## $vectors
##
                [,1]
                            [,2]
                                       [,3]
                                                   [,4]
                                                               [,5]
                                                                          [,6]
##
   [1,] -0.314119414  0.34835747 -0.07352541  0.44028717  0.32972147 -0.18392437
   [2,] -0.392395442 -0.04136238 -0.17759254 0.13398483 -0.08340489 -0.08656390
  [3,] 0.116546319 -0.58283641 0.16686305 -0.05865031 -0.18654100 0.16835650
##
## [4,] 0.295393771 -0.17690839 -0.53343025 0.26248209 0.14110658 0.04653378
## [5,] 0.258964724 -0.17356372 -0.61438847 0.17389644 0.07521971 0.02821905
   [6,] 0.446082934 -0.02719077 0.15177250 -0.04959796 0.05416498 0.02442175
## [7,] 0.092410503 0.32060987 -0.37024258 -0.73603097 -0.02671021 -0.30940890
  [8,] 0.005692925 -0.45742697 0.16480339 -0.04024882 0.41531702 -0.75356463
   [9,] -0.243652293 -0.15408201 -0.02961449 -0.33650345 0.73261463 0.50894232
## [10,] 0.415029554 0.23286257 0.20608749 0.06730166 0.23100421 0.05806466
## [11,] 0.374531032 0.29168698 0.20631751 0.14843513 0.24028756 -0.02809233
##
                 [,7]
                             [,8]
                                        [,9]
                                                   [,10]
                                                               [,11]
  [1,] 0.1628974320 -0.09481963 0.52181220 0.34674573 -0.10062784
##
   [2,] 0.6398040762 -0.32307802 -0.29031618 -0.38959240 0.17487096
## [3,] 0.5310867107 0.05209889 0.23599758 0.42854658 -0.16786800
## [4,] -0.1490207046 -0.44913216 -0.36995675 0.34911534 -0.15247432
##
   [5,] 0.1082745817 0.50343911 0.30681318 -0.33770404 0.12366382
## [6,] -0.0008501608 -0.56975094 0.44733110 -0.20997673 0.44992596
## [7,] 0.2357666690 -0.05962470 0.08358225 0.20561803 -0.07067780
## [9,] 0.0112333588 -0.01607505 -0.01868615 -0.03209758 0.07259619
## [10,] 0.2711228006 -0.05023582 -0.04339752 -0.36147417 -0.67912543
## [11,] 0.3352822144 0.30978009 -0.37666244 0.28779437 0.46737561
Ahora la proporción de varianza explicada por cada vector:
PC <- c()
for(i in 1:11){
PC <- append(PC,EMC[[1]][i] / sum(diag(MC)))</pre>
}
PC
## [1] 9.034543e-01 9.647298e-02 6.795804e-05 4.554567e-06 1.782429e-07
## [6] 7.530917e-09 5.317738e-09 6.657763e-10 8.502887e-11 2.107843e-11
## [11] 6.989035e-12
PCR \leftarrow c()
for(i in 1:11){
PCR <- append(PC,EMCR[[1]][i] / sum(diag(MCR)))</pre>
}
```

PCR

```
## [1] 9.034543e-01 9.647298e-02 6.795804e-05 4.554567e-06 1.782429e-07 ## [6] 7.530917e-09 5.317738e-09 6.657763e-10 8.502887e-11 2.107843e-11 ## [11] 6.989035e-12 6.305332e-03
```

Y los resultados acumulados:

```
PC <- cumsum(PC)
PC

## [1] 0.9034543 0.9999273 0.9999953 0.9999998 1.0000000 1.0000000 1.0000000

## [8] 1.0000000 1.0000000 1.0000000

pca <- prcomp(M, scale = TRUE)
pca$rotation
```

```
##
                  PC1
                           PC2
                                    PC3
                                             PC4
                                                       PC5
## CrecPobl
            0.314119414 - 0.34835747 \ 0.07352541 - 0.44028717
                                                 0.32972147
## MortInf
            ## PorcMujeres -0.116546319 0.58283641 -0.16686305
                                       0.05865031 -0.18654100
## PNB95
           0.14110658
## ProdElec
           0.07521971
## LinTelf
           0.05416498
## ConsAgua
           -0.092410503 -0.32060987 0.37024258
                                        0.73603097 -0.02671021
## PropBosq
           0.41531702
## PropDefor
            0.73261463
## ConsEner
           -0.415029554 -0.23286257 -0.20608749 -0.06730166
                                                 0.23100421
## EmisCO2
           -0.374531032 -0.29168698 -0.20631751 -0.14843513
                                                 0.24028756
##
                 PC6
                            PC7
                                     PC8
                                              PC9
                                                       PC10
## CrecPobl
           -0.18392437
                    0.1628974320 -0.09481963 0.52181220 -0.34674573
           ## MortInf
                                                 0.38959240
## PorcMujeres 0.16835650 0.5310867107 0.05209889
                                         0.23599758 -0.42854658
## PNB95
            0.04653378 - 0.1490207046 - 0.44913216 - 0.36995675 - 0.34911534
## ProdElec
            0.02821905 0.1082745817
                               0.50343911 0.30681318
                                                 0.33770404
## LinTelf
            0.02442175 -0.0008501608 -0.56975094
                                        0.44733110
                                                 0.20997673
## ConsAgua
           -0.30940890 0.2357666690 -0.05962470 0.08358225 -0.20561803
## PropBosq
           -0.75356463 -0.0806036686 0.04275404 -0.07438520 0.08671232
## PropDefor
            ## ConsEner
            0.05806466
                     0.2711228006 -0.05023582 -0.04339752 0.36147417
## EmisCO2
           -0.02809233
                     ##
                PC11
           -0.10062784
## CrecPobl
## MortInf
            0.17487096
## PorcMujeres -0.16786800
## PNB95
           -0.15247432
## ProdElec
            0.12366382
## LinTelf
            0.44992596
## ConsAgua
           -0.07067780
## PropBosq
           -0.01493710
## PropDefor
            0.07259619
## ConsEner
           -0.67912543
## EmisCO2
            0.46737561
```

Podemos ver que con tan solo el primer componente ya tenemos el 90% de la varianza explicada lo cual ya es muchisimo. En particular notemos que si tomamos los primeros 2 ya tenemos el 99% lo cual es más que suficiente. Asimismo, sucede lo mismo con los vectores que vienen de la matriz de correlación por lo que es un resultado en el cual podemos confiar.

Parte 2

```
library(stats)
library(factoextra)

## Warning: package 'factoextra' was built under R version 4.1.3

## Loading required package: ggplot2

## Warning: package 'ggplot2' was built under R version 4.1.3

## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

library(ggplot2)
X=read.csv("paises_mundo.csv")
resS=princomp(X)
compS=as.matrix(X)%*%resS$loadings
plot(compS[,1:2],type="p", main = "A.C.P a partir de S")
text(compS[,1],compS[,2],1:nrow(compS))
```

A.C.P a partir de S

biplot(resS)

```
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
## Warning in arrows(0, 0, y[, 1L] * 0.8, y[, 2L] * 0.8, col = col[2L], length =
## arrow.len): zero-length arrow is of indeterminate angle and so skipped
```


las variables de Prod Elec y PNB95 son las que muestran mayor influencie en la tabla de varianzas y covarianzas. Esto debido a que como se observa en l abase de datos, estas 2 variables tienen valores de hasta 100,000, que comparado con el resto, son valores muy grandes.

Parte 3

```
library(FactoMineR) # Instalar FactoMineR si se usa por primera vez

## Warning: package 'FactoMineR' was built under R version 4.1.3

## Warning: package 'FactoMineR' was built under R version 4.1.3

## [1] 10

## [1] 10

library(factoextra) # Instalar factoextra si se usa por primera vez
library(ggplot2) # Instalar ggplot2 si se usa por primera vez
X=read.csv("paises_mundo.csv")

cp3 = PCA(X)
```


fviz_pca_ind(cp3, col.ind = "blue", addEllipses = TRUE, repel = TRUE)

Warning: ggrepel: 27 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

fviz_screeplot(cp3)

fviz_contrib(cp3, choice = c("var"))

Contribution of variables to Dim-1

- 1. En el primer gráfico, podemos observar el resultado de proyectar los puntos reales sobre el plano definido por los dos componentes principales más relevantes. Se nota una agrupación alrededor de las coordenadas (-1, 1).
- 2. Al haber seleccionado dos componentes principales, la siguiente gráfica representa los coeficientes de cada variable en estas dos combinaciones lineales. A partir de esto, podemos inferir que cuanto mayor sea la magnitud de estos vectores, mayor será la importancia de esa variable en el comportamiento general del fenómeno.
- 3. La siguiente gráfica es bastante similar a la primera, pero la escala está ajustada de acuerdo con el valor correspondiente del eigenvalor en cada eje.
- 4. La cuarta gráfica es conocida como la "gráfica de codo", donde se muestra el avance acumulativo de cada componente. A partir de aquí, podemos comprender por qué es razonable elegir dos vectores como componentes principales.
- 5. Finalmente, se presenta cómo cada variable afecta al primer componente principal.