

The

30

1. An emitter, comprising:

an electron supply;

- a silicon-based dielectric layer disposed on the electron supply; and
- a cathode layer disposed on the silicon-based dielectric layer;
- wherein the electron supply, silicon-based dielectric layer, and cathode layer have been subjected to an annealing process.
- 2. The emitter of claim 1 wherein the silicon-based dielectric layer is selected from the group consisting of SiC, SiN_x, Si₃N₄, Si_xN_y, F_y-SiO_x, and C_y-SiO_x.
 - 3. The emitter of claim 1 wherein the cathode layer is selected from the group consisting of platinum, gold, molybdenum, ruthenium, tantalum, iridium, other refractory metals and alloys thereof.
 - 4. The emitter of claim 1 operable to provide an emitted energy with an emission current of greater than 1×10^{-2} Amps per square centimeter.
 - 5. The emitter of claim 1 operable to provide an emitted energy with an emission current of greater than 1×10^{-1} Amps per square centimeter.
 - 6. The emitter of claim 1 operable to provide an emitted energy with an emission current of greater than 1×10 Amps per square ceptimeter.
- 7. The emitter of claim 1 wherein the silicon-based dielectric layer has a thickness about 250 Angstroms.
 - 8. The emitter of claim 1 wherein the silicon-based dielectric layer has a thickness less than about 500 Angstroms.
 - 9. The emitter of claim 1 wherein the silicon-based dielectric layer has a thickness within the range of about 250 to about 5000 Angstroms.

10

10. An integrated circuit, comprising:

a substrate;

the emitter of claim 1 disposed on the substrate; and

circuitry for operating the emitter formed on the substrate with the emitter.

11. An electronic device, comprising:

the emitter of claim 1 capable of emitting energy; and

an anode structure capable of receiving the emitted energy and generating at least a first effect in response to receiving the emitted energy and a second effect in response to not receiving the emitted energy.

- 12. The electronic device of claim 11 wherein the electronic device is a mass storage device and the anode structure is a storage medium, the electronic device further comprising a reading circuit for detecting the effect generated on the anode structure.
- 13. The electronic device of claim 11 wherein the electronic device is a display device and the anode structure is a display screen that creates a visible effect in response to receiving the emitted energy.
- 14. The electronic device of claim 13 wherein the display screen includes one or more phosphors operable for emitting photons in response to receiving the emitted energy.

15. A storage device, comprising:

at least one emitter to generate an electron beam, the emitter having a silicon-based dielectric layer having a thickness between about 250 to 5000 Angstroms, the at least one emitter subjected to an annealing process;

a lens for focusing the electron beam to create a focused beam; and

a storage medium in close proximity to the at least one emitter, the storage medium having a storage area being in one of a plurality of states to represent the information stored in that storage area;

such that:

10

an effect is generated when the focused beam bombards the storage area; the magnitude of the effect depends on the state of the storage area; and the information stored in the storage area is read by measuring the magnitude of the effect.

(1) ,‡i (1) (2)15

16. The storage device of claim 15 wherein the effect is a signal current.

20

25

17. An emitter, comprising:

an electron supply layer;

an insulator layer formed on the electron supply layer and having an opening defined within;

a based-based dielectric layer formed on the electron supply layer in the opening and further disposed over the insulator layer; and

a cathode layer formed on the silicon-based dielectric layer;

wherein the emitter has been subjected to an annealing process to increase the supply of electrons tunneled from the electron supply layer to the cathode layer for energy emission.

- 18. The emitter of claim 17 capable of emitting photons in addition to the electron emission.
- 19. The emitter of claim 17 wherein the cathode layer has an emission rate greater than about30 0.01 Amps per square centimeter.

- 20. The emitter of claim 17 wherein the silicon-based dielectric layer is selected from the group consisting of SiC, SiNx, SixNy, Si3N4, Fy-SiOx, and Cy-SiOx.
- 21. The emitter of claim 17 wherein the silicon-based dielectric layer has a thickness less than 500 Angstroms. 5
 - 22. The emitter of claim 17 wherein the silicon-based dielectric layer has a thickness between about 250 Angstroms and about 5000 Angstroms.

23. A display device, comprising: 10

[]

25

an integrated circuit including the emitter of claim 17, wherein the emitter creates a visible light source; and

a lens for focusing the visible light source, wherein the lens is coated with a transparent conducting surface to capture electrons emitted from the emitter.

24. A storage device, comprising:

an integrated circuit including the emitter of claim 17 wherein the emitter creates an electron beam current; and

a storage medium in close proximity to the emitter, the storage medium having a storage area being in one of a plurality of states to represent the information stored in that storage area;

an effect is generated when the electron beam current bombards the storage such that: area;

the magnitude of the effect depends on the state of the storage area; and the information stored in the storage area is read by measuring the magnitude of the effect.

25. An electronic device, comprising:

an integrated circuit including the emitter of claim 17; and a focusing device for converging the emissions from the emitter.

5 26. A computer system, comprising:

a microprocessor;

the electronic device of claim 25 coupled to the microprocessor; and memory coupled to the microprocessor, the microprocessor operable of executing instructions from the memory to transfer data between the memory and the electronic device.

10

- 27. The computer system of claim 26 wherein the electronic device is a storage device.
- 28. The computer system of claim 26 wherein the electronic device is a display device.

29. An emitter, comprising:

an electron supply surface;

an insulator layer formed on the electron supply surface and having a first opening defined within;

a silicon-based dielectric layer formed on the electron supply layer within the first, opening and further disposed on the insulator layer;

an adhesion layer disposed on the silicon-based dielectric layer, the adhesion layer defining a second opening aligned with the first opening;

a conductive layer disposed on adhesion layer and defining a third opening aligned with the first and second openings; and

25

30

a cathode layer disposed on the silicon-based dielectric layer and portions of the conductive layer, wherein the portion of the cathode layer on the silicon-based dielectric layer is an electron-emitting surface.

30. The emitter of claim 29 wherein the electron emitting surface has an emission rate of about 0.1 to about 1.0 Amps per square centimeter.

- 31. The emitter of claim 29, wherein the silicon-based dielectric layer is selected from the group consisting of SiC, SiN_x, Si_xN_y, Si₃N₄, F_y-SiO_x, and C_y-SiO_x.
- 32. The emitter of claim 29, wherein the silicon-based dielectric layer has a thickness between about 250 Angstroms to about 5000 Angstroms.
 - 33. The emitter of claim 29, wherein the silicon-based dielectric layer has a thickness less than about 500 Angstroms.
- 34. The emitter of claim 29 wherein the electron supply layer is a silicon electron supply having a sheet resistance of about 100 to about 0.001 Ohms centimeter.
 - 35. The emitter of claim 29 wherein the electron-emitting surface also emits photon energy.
 - 36. An emitter, comprising:

10

20

25

- an emitting surface having a first area;
- a first chamber having substantially parallel sidewalls interfacing to the emitting surface; and
- a second chamber interfacing to the first chamber and having sidewalls diverging to an opening having a second area larger than the first area.
- 37. The emitter of claim 36, further comprising a cathode layer disposed on the emitting surface, and sidewalls of the first and second chambers and wherein the emitter has been subjected to an annealing process thereby increasing the emission capability of the emitter.
- 38. The emitter of claim 36 wherein the first chamber is formed within an adhesion layer.
- 39. The emitter of claim 36 wherein the second chamber is formed within a conductive layer.
- 30 40. An integrated circuit comprising at least one emitter of claim 36.
 - 41. A display device comprising at least one emitter of claim 36.

42. A storage device comprising at least one emitter of claim 36.

10

hall after beit if

115

1

43. An integrated circuit, comprising:

a conductive surface to provide an electron/supply;

at least one emitter formed on the electron supply including,

an insulator layer having at least one opening to define the location and shape of the at least one flat emitter device,

a silicon-based dielectric layer disposed within the at least one opening of the insulator layer and further disposed over the insulator layer;

a conductive layer disposed over the silicon-based dielectric layer, the conductive layer having at least one opening in alignment with the at least one opening; and

a cathode layer disposed over the silicon-based dielectric layer and partially over the conductive layer.

44. The integrated circuit of claim 43 wherein the silicon-based dielectric layer has a thickness less than about 500 Angstroms.

45. The integrated circuit of claim 43 wherein the silicon-based dielectric layer has a thickness between about 250 Angstroms and about 5000 Angstroms.

46. The integrated circuit of claim 43 wherein the silicon-based dielectric layer is selected from the group consisting of SiC, SiNx, SixNy, SixNy, SixNy, SixNy, and Cy-SiOx.

47. The integrated circuit of claim 43 wherein the integrated circuit has been subjected to an annealing process.

48. A method for creating an emitter on an electron supply, comprising the steps of:

forming a silicon-based dielectric emitter/using semiconductor thin-film layers on the electron supply, at least one of the thin-film layers being a film characterized as a siliconbased dielectric layer with a thickness of less than 500 Angstroms.

25

30

30

5

10

- 49. An emitter created by the process of claim 48.
- 50. The method of claim 48 further comprising the step of annealing the processed emitter to increase the tunneling current of the tunneling emitter.
- 51. The method of claim 48 wherein the step of applying the silicon-based dielectric layer further comprises the step of applying a silicon-based dielectric from the group consisting of SiC, SiN_x, Si_xN_y, Si₃N₄, F_y-SiO_x, and C_y-SiO_x.
- 52. The method of claim 48 wherein the formed silicon-based dielectric layer has a thickness between about 250 Angstroms and about 5000 Angstroms.
- 53. The method of claim 48 further comprising the step of applying a cathode layer on the silicon-based dielectric layer, the cathode layer selected from the group consisting of platinum, gold, molybdenum, ruthenium, tantalum, iridium, other refractory metals and alloys thereof.
- 54. A method for creating an emitter on an electron supply, comprising the steps of: applying a silicon-based dielectric layer over an insulating layer disposed on the electron supply, the insulator layer defining an opening to the electron supply; applying a conductive layer to adhere to the silicon-based dielectric layer; applying a patterning layer on the conductive layer; creating an opening in the patterning and conductive layer to the electron supply; etching the patterning layer to remove it by lift-off from the conductive layer.
- 55. An emitter created by the process of claim 54.
- 56. The method of claim 54 further comprising the step of annealing the processed emitter to increase the tunneling current.

- 58. The method of claim 54 further comprising the step of applying a cathode layer on the silicon-based dielectric layer.
- 59. A method for creating an emitter on an electron supply surface, the method comprising the steps of:

creating an insulator layer on the electron supply surface;

defining an emission area within the insulator layer;

applying a silicon-based dielectric layer over the assulator layer and the opening;

applying an adhesion layer on the silicon-based dielectric layer;

applying a conduction layer on the adhesion layer;

applying a patterning layer on the conduction layer;

creating an opening to the conduction layer, in the patterning layer;

etching the conduction layer in the opening to the adhesion layer;

etching the adhesion layer to the silicon-based dielectric layer;

etching the patterning layer by lift off;

applying a cathode layer over the portion of the silicon-based dielectric layer and a

portion of the conduction layer; and

5

10

IJ

[] []15

etching the cathode layer.

- 60. An emitter created by the process of claim 59.
- 25 61. The method of claim 59 further comprising the step of annealing the processed emitter.
 - 62. The method of claim 59 wherein the applied silicon-based dielectric layer has a thickness less than 500 Angstroms.
- 30 63. The method of claim 59 wherein the applied silicon-based dielectric layer has a thickness in the range of about 250 to 5000 Angstroms.