MA3227 Numerical Analysis II

Lab Session 9

Simon Etter, 2019/2020

1 Sampling theorems

Consider the distributions \mathcal{F} and \mathcal{G} on [0,1] whose probability density functions are given by, respectively,

$$f(x) = 6x(1-x)$$
 and $g(x) = \frac{\pi}{2}\sin(\pi x)$.

1. Verify that the cumulative distribution functions of \mathcal{F} and \mathcal{G} are given by, respectively,

$$\hat{F}(x) = 3x^2 - 2x^3, \qquad \hat{G}(x) = \frac{1}{2} (1 - \cos(\pi x)).$$

Observe that there is a simple formula for $\hat{G}^{-1}(u)$ but not for $\hat{F}^{-1}(u)$. We will therefore use transformation sampling for simulating $G \sim \mathcal{G}$, but rejection sampling with \mathcal{G} as proposal distribution for simulating $F \sim \mathcal{F}$.

- 2. Complete the function rand_sin() such that it simulates $G \sim \mathcal{G}$ using transformation sampling.
- 3. Complete the function rand_quad() such that it simulates $F \sim \mathcal{F}$ using rejection sampling with \mathcal{G} as proposal distribution.

Hint. You will need to compute $M = \sup_{x \in [0,1]} \frac{f(x)}{g(x)}$. A plot of $\frac{f(x)}{g(x)}$ reveals that $M = \lim_{x \to 0} \frac{f(x)}{g(x)}$, and this limit can be computed using L'Hôpital's rule.

- 4. Test your answers to Tasks 2 and 3 using the provided histogram().
- 5. Given $rand_sin()$ and $rand_quad()$, we can estimate $\mathbb{E}[F]$ either through direct Monte Carlo or through importance sampling Monte Carlo with \mathcal{G} as proposal distribution. Determine which of the two is more efficient based on the output of $importance_sampling()$. In particular, explain why the Var[F]*M line is needed to make a fair comparison.