Features

- High Performance, Low Power Atmel[®] AVR[®] 8-Bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20 MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 4/8/16KBytes of In-System Self-Programmable Flash progam memory
 - 256/512/512Bytes EEPROM
 - 512/1K/1KBytes Internal SRAM
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Programming Lock for Software Security
- QTouch[®] library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix acquisition
 - Up to 64 sense channels
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Six PWM Channels
 - 8-channel 10-bit ADC in TQFP and QFN/MLF package

Temperature Measurement

- 6-channel 10-bit ADC in PDIP Package
 - **Temperature Measurement**
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
 - 1.8 5.5V for ATmega48P/88P/168PV
 - 2.7 5.5V for ATmega48P/88P/168P
- Temperature Range:
 - -40°C to 85°C
- Speed Grade:
 - ATmega48P/88P/168PV: 0 4MHz @ 1.8 5.5V, 0 10MHz @ 2.7 5.5V
 - ATmega48P/88P/168P: 0 10MHz @ 2.7 5.5V, 0 20MHz @ 4.5 5.5V
- Low Power Consumption at 1MHz, 1.8V, 25°C:
 - Active Mode: 0.3mA
 - Power-down Mode: 0.1μA
 - Power-save Mode: 0.8µA (Including 32kHz RTC)

Note: 1. See "Data Retention" on page 8 for details.

8-bit Atmel
Microcontroller
with 4/8/16K
Bytes In-System
Programmable
Flash

ATmega48P/V ATmega88P/V ATmega168P/V

Summary

Rev. 8025MS-AVR-6/11

1. Pin Configurations

Figure 1-1. Pinout ATmega48P/88P/168P

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7:6 is used as TOSC2:1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 80 and "System Clock and Clock Options" on page 27.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5:0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 29-3 on page 314. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 83.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 86.

1.1.7 AV_{CC}

 AV_{CC} is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6:4 use digital supply voltage, V_{CC} .

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.

2. Overview

The ATmega48P/88P/168P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48P/88P/168P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

ATmega48P/88P/168P

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48P/88P/168P provides the following features: 4K/8K/16Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512bytes EEPROM, 512/1K/1Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented, 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

Atmel offers the QTouch[®] library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression[®] (AKS™) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48P/88P/168P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48P/88P/168P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison Between ATmega48P, ATmega88P and ATmega168P

The ATmega48P, ATmega88P and ATmega168P differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices.

Table 2-1. Memory Size Summary

Device	Flash	EEPROM	RAM	Interrupt Vector Size
ATmega48P	4KBytes	256Bytes	512Bytes	1 instruction word/vector
ATmega88P	8KBytes	512Bytes	1KBytes	1 instruction word/vector
ATmega168P	16KBytes	512Bytes	1KBytes	2 instruction words/vector

ATmega88P and ATmega168P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48P, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

6. Capacitive touch sensing

The Atmel[®] QTouch[®] Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR[®] microcontrollers. The QTouch Library includes support for the QTouch and QMatrix[®] acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API's to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location: www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also available for download from the Atmel website.

7. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	_		_	_	_	_	-	_	
(0xFE)	Reserved		_	_						
(0xFD)	Reserved	_	_	_	_	_	_	_	_	
(0xFC)	Reserved	_	_	_	_	_	_	_	_	
(0xFB)	Reserved	_	_	_	_	_	_	_	_	
(0xFA)	Reserved	_	_	_	_	_	_	_	_	
(0xF9)	Reserved	_	-	-	_	_	_	_	_	
(0xF8)	Reserved	_	-	_	_	_	_	_	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	_	_	_	_	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	_	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(0xF0)	Reserved	_	-	-	_	_	-	_	_	
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	_	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	_	-	-	_	_	_	_	-	
(0xEA)	Reserved	-	-	_	_	_	-	_	-	
(0xE9) (0xE8)	Reserved Reserved	-	_		_	_	_	_	_	
(0xE7)	Reserved	_					_			
(0xE6)	Reserved	_	_	_						
(0xE5)	Reserved	_	_	_	_	_	_	_	_	
(0xE4)	Reserved	_	_	_	_	_	_	_	_	
(0xE3)	Reserved	_	_	_	_	_	_	_	_	
(0xE2)	Reserved	_	_	_	_	_	_	_	_	
(0xE1)	Reserved	_	-	-	_	_	_	_	_	
(0xE0)	Reserved	_	-	_	-	_	_	-	-	
(0xDF)	Reserved	_	-	_	_	_	_	_	_	
(0xDE)	Reserved	-	-	_	_	_	_	-	-	
(0xDD)	Reserved	_	-	_	_	_	_	-	-	
(0xDC)	Reserved	-	-	_	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	_	-	-	_	_	-	_	_	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	_	-	-	_	_	_	_	_	
(0xD7)	Reserved	_	-	-	-	-	_	-	-	
(0xD6)	Reserved	_	-	-	_	_	_	_	_	
(0xD5)	Reserved	_	_	_	_	_	_	_	_	
(0xD4) (0xD3)	Reserved Reserved	_	_		_	_	_	_	_	
(0xD3) (0xD2)	Reserved	_					_			
(0xD2) (0xD1)	Reserved	_				_	_			
(0xD1)	Reserved	_	_	_	_	_	_	_	_	
(0xCF)	Reserved	_	_	_	_	_	_	_	_	
(0xCE)	Reserved	_	_	_	_	_	_	_	_	
(0xCD)	Reserved	-	-	_	-	-	_	-	-	
(0xCC)	Reserved	-	-	_	-	-	_	-	-	
(0xCB)	Reserved	-	_	_	-	_	_	_	-	
(0xCA)	Reserved	_	_	_	_	_	_	_	-	
(0xC9)	Reserved	-	-	_	-	_	_	_	-	
(0xC8)	Reserved	-	-		-	_	_	-	-	
(0xC7)	Reserved	_	-	_	-	_	_	_	_	
(0xC6)	UDR0				USART I/O	Data Register				193
(0xC5)	UBRR0H							Rate Register High	1	197
(0xC4)	UBRR0L					ate Register Low		1	I	197
(0xC3)	Reserved	-	-	_	-	-	_	-	-	
(0xC2)	UCSR0C	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01 /UDORD0	UCSZ00 / UCPHA0	UCPOL0	195/210

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xC1)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	194
(0xC1)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	193
(0xBF)	Reserved	-	-	- OBITEO	-	-	-	- -	-	130
(0xBE)	Reserved	_	_	_	_	_	_	_	_	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	_	242
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	_	TWIE	239
(0xBB)	TWDR				2-wire Serial Inter					241
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	242
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	241
(0xB8)	TWBR				2-wire Serial Interfa					239
(0xB7)	Reserved	_		_	_	_	_	_	_	
(0xB6)	ASSR	_	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	162
(0xB5)	Reserved	_	-	-	_	-	-	_	_	
(0xB4)	OCR2B		•	Tir	ner/Counter2 Outp	ut Compare Regis	ster B	•	•	160
(0xB3)	OCR2A			Tir	mer/Counter2 Outp	ut Compare Regi	ster A			160
(0xB2)	TCNT2				Timer/Cou	nter2 (8-bit)				160
(0xB1)	TCCR2B	FOC2A	FOC2B	_	_	WGM22	CS22	CS21	CS20	159
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	_	-	WGM21	WGM20	156
(0xAF)	Reserved	-	-	_	_	_	_	-	_	
(0xAE)	Reserved	-	-	-	_	_	_	_	_	
(0xAD)	Reserved	-	-	_	_	_	_	-	_	
(0xAC)	Reserved	=	-	-	=	-	-	-	-	
(0xAB)	Reserved	-	-	-	=	-	-	-	_	
(0xAA)	Reserved	-	-	-	=	-	-	-	_	
(0xA9)	Reserved	-	-	-	-	-	-	-	_	
(8Ax0)	Reserved	-	-	-	_	-	-	-	_	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	_	
(0xA2)	Reserved	-	-	-	-	-	-	_	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-		-	_	-	-	-	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	_	-	-	_	_	_	_	-	
(0x9D)	Reserved	-	-	-	_	_	_	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	_	-	-	=	_	-	-	-	
(0x9A)	Reserved	_	-	-	_	-	-	_	_	
(0x99)	Reserved	_	-	-	_	_	_	_	-	
(0x98)	Reserved Reserved	_	-	_		_	_	_	_	
(0x97)										
(0x96) (0x95)	Reserved Reserved	-	-	_	_	-	-	=	-	
(0x95) (0x94)	Reserved	_	-	_		_	_	_	_	
(0x94) (0x93)	Reserved	_	_	_	_	_	_	_	_	
(0x93) (0x92)	Reserved	_	_	_	_	_	_	_	_	
(0x92) (0x91)	Reserved	_	_	_		_	_	_	_	
(0x91) (0x90)	Reserved	_			_		_		_	
(0x90) (0x8F)	Reserved	_	-	-	_	-	-	_	_	
(0x8F)	Reserved	_	_	_	_	_	_	_	_	
(0x8D)	Reserved	-	_	_	_	_	_	_	_	
(0x8C)	Reserved	_	_	_	_	_	_	_	_	
(0x8B)	OCR1BH				ounter1 - Output Co					136
(0x8A)	OCR1BL				ounter1 - Output Co					136
(0x89)	OCR1AH				ounter1 - Output Co					136
(0x88)	OCR1AL				ounter1 - Output Co					136
(0x87)	ICR1H				Counter1 - Input C					137
(0x86)	ICR1L				/Counter1 - Input C					137
(0x85)	TCNT1H				ner/Counter1 - Cou					136
(0x84)	TCNT1L				ner/Counter1 - Cou		•			136
(0x83)	Reserved	-	-	-	-		-	_	_	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	135
	1		1			MONAG		0011	0040	
(0x81)	TCCR1B	ICNC1	ICES1	_	WGM13	WGM12	CS12	CS11	CS10	134

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
				_	=	_				
(0x7F) (0x7E)	DIDR1 DIDR0	_	_	ADC5D	ADC4D	ADC3D	ADC2D	AIN1D ADC1D	AIN0D ADC0D	247 264
(0x7L)	Reserved	_	_	ADC3D	ADC4D	ADC3D	- ADO2D	ADCTD -	ADCOD -	204
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	_	MUX3	MUX2	MUX1	MUX0	260
(0x7B)	ADCSRB	-	ACME	-	_	-	ADTS2	ADTS1	ADTS0	263
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	261
(0x79)	ADCH			I.	1	ister High byte			,	263
(0x78)	ADCL					gister Low byte				263
(0x77)	Reserved	_	_	_	_	_	-	_	_	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-		_	
(0x74)	Reserved	-	_	-	-	-	-	-	_	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	_	-	_	-	-	-	-	
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	161
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	137
(0x6E)	TIMSK0	-	_	_	_	-	OCIE0B	OCIE0A	TOIE0	109
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	72
(0x6C)	PCMSK1	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	72
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	72
(0x6A)	Reserved	-	-	_	_	-	-	-	-	
(0x69)	EICRA	_	-	-	-	ISC11	ISC10	ISC01	ISC00	69
(0x68)	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIE0	
(0x67)	Reserved	-	-	-	-		-	-	-	
(0x66)	OSCCAL	_	_	_	Oscillator Calif	oration Register	_	_	_	38
(0x65) (0x64)	Reserved PRR	PRTWI	PRTIM2	PRTIM0	_	PRTIM1	PRSPI	PRUSART0	PRADC	43
(0x63)	Reserved	-	-	- TATINO	_		-		-	45
(0x62)	Reserved	_		_	_	_	_	_	_	
(0x61)	CLKPR	CLKPCE	_	_	_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	38
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	55
0x3F (0x5F)	SREG	1	Т	Н	S	V	N	Z	С	10
0x3E (0x5E)	SPH	-	-	_	-	_	(SP10) ^{5.}	SP9	SP8	13
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	13
0x3C (0x5C)	Reserved	-	-	_	_	-	_	_	_	
0x3B (0x5B)	Reserved	-	-	_	-	-	-	_	_	
0x3A (0x5A)	Reserved	-	_	-	-	-	-	_	_	
0x39 (0x59)	Reserved	-	-	-	_	-	-	_	_	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ^{5.}	-	(RWWSRE) ^{5.}	BLBSET	PGWRT	PGERS	SELFPRGEN	289
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0x35 (0x55)	MCUCR	_	BODS	BODSE	PUD	_	-	IVSEL	IVCE	45/66/90
0x34 (0x54)	MCUSR	_	_	_	_	WDRF	BORF	EXTRF	PORF	55
0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	41
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0x31 (0x51)	Reserved	-	-	-	-	-	-	-	-	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	245
0x2F (0x4F)	Reserved	_	-	_	- CDI Date	- Desistes	-	-	-	170
0x2E (0x4E) 0x2D (0x4D)	SPDR	SPIF	MCCI		1	Register			SPI2X	173
0x2D (0x4D) 0x2C (0x4C)	SPSR SPCR	SPIF	WCOL SPE	DORD	– MSTR	CPOL	- CPHA	SPR1	SPR0	172 171
0x2C (0x4C) 0x2B (0x4B)	GPIOR2	SIFIE	J JFE	DOND	1	e I/O Register 2	OFTIA	OF N I	J⊦ NU	26
0x2B (0x4B) 0x2A (0x4A)	GPIOR2 GPIOR1					se I/O Register 2				26
0x2A (0x4A) 0x29 (0x49)	Reserved	_	_	_	General Purpos	= I/O Register I	_	_	_	
0x29 (0x49) 0x28 (0x48)	OCR0B				mer/Counter0 Outp	_				
0x20 (0x40) 0x27 (0x47)	OCR0A				mer/Counter0 Outp					
0x26 (0x46)	TCNT0					nter0 (8-bit)				
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	_	-	WGM02	CS02	CS01	CS00	-
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	-	-	-	_	_	PSRASY	PSRSYNC	141/163
0x22 (0x42)	EEARH				EEPROM Address					22
0x21 (0x41)	EEARL				EEPROM Address					22
. ,	EEDR					ata Register				22
0x20 (0x40)					1					
0x20 (0x40) 0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	22

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1D (0x3D)	EIMSK	_	_	_	_	_	_	INT1	INT0	70
0x1C (0x3C)	EIFR	-	-	-	-	-	-	INTF1	INTF0	70
0x1B (0x3B)	PCIFR	-	-	_	_	-	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	_	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	_	_	-	-	_	-	
0x18 (0x38)	Reserved	-	-	_	_	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	_	-	-	OCF2B	OCF2A	TOV2	161
0x16 (0x36)	TIFR1	-	-	ICF1	_	-	OCF1B	OCF1A	TOV1	138
0x15 (0x35)	TIFR0	-	-	_	_	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	_	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	_	_	-	-	_	-	
0x12 (0x32)	Reserved	-	-	_	_	-	-	-	-	
0x11 (0x31)	Reserved	-	-	_	_	-	_	_	-	
0x10 (0x30)	Reserved	-	-	_	-	-	-	-	-	
0x0F (0x2F)	Reserved	_	-	_	_	_	_	_	_	
0x0E (0x2E)	Reserved	-	-	_	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	_	_	-	_	_	-	
0x0C (0x2C)	Reserved	-	-	_	=	-	-	-	-	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	91
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	91
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	91
0x08 (0x28)	PORTC	_	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	90
0x07 (0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	90
0x06 (0x26)	PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	90
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	90
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	90
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	90
0x02 (0x22)	Reserved	-	-	_	_	-	-	-	-	
0x01 (0x21)	Reserved	-	-	-	-	=	-	-	-	
0x0 (0x20)	Reserved	-	-	-	-	П	-	-	-	

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
 instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
 CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48P/88P/168P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- 5. Only valid for ATmega88P/168P.

8. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks	
ARITHMETIC AND L	LOGIC INSTRUCTIONS	·	·			
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1	
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1	
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2	
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1	
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1	
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1	
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1	
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2	
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1	
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1	
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1	
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1	
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1	
COM	Rd	One's Complement	Rd ← 0xFF – Rd	Z,C,N,V	1	
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1	
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1	
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1	
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1	
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1	
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1	
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V	1	
SER	Rd	Set Register	Rd ← 0xFF	None	1	
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2	
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2	
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2	
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2	
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2	
FMULSU	Rd, Rr		,	Z,C	2	
BRANCH INSTRUC		Fractional Multiply Signed with Unsigned	R1:R0 ← (Rd x Rr) << 1	2,0		
RJMP	1	Deletive lump	DC - DC - k - 1	Nama		
	k	Relative Jump	PC ← PC + k + 1	None	2	
JMP ⁽¹⁾	1.	Indirect Jump to (Z)	PC ← Z PC ← k	None	2	
	k	Direct Jump		None	3	
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3	
ICALL (1)	1.	Indirect Call to (Z)	PC ← Z	None	3	
CALL ⁽¹⁾	k	Direct Subroutine Call	PC ← k	None	+	
RET		Subroutine Return	PC ← STACK	None .	4	
RETI		Interrupt Return	PC ← STACK	1	4	
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3	
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1	
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1	
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1	
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3	
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3	
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3	
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3	
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2	
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2	
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2	
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2	
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2	
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2	
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2	
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2	
	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2	
BRHS	IX.		· · · · · ·			
BRHS BRHC	k	Branch if Half Carry Flag Cleared	if $(H = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2	
BRHC		, ,	if (H = 0) then PC \leftarrow PC + k + 1 if (T = 1) then PC \leftarrow PC + k + 1			
BRHC BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2 1/2 1/2	
BRHC	k k	, ,			1/2	

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC ← PC + k + 1	None	1/2
BIT AND BIT-TEST	INSTRUCTIONS				
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP BSET	s	Swap Nibbles Flag Set	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$ $SREG(s) \leftarrow 1$	None SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	T ← Rr(b)	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C←1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ	-	Clear Zero Flag	Z ← 0	Z .	1
SEI		Global Interrupt Enable	1 ← 1	1	1
CLI		Global Interrupt Disable	1←0	1	1
SES CLS		Set Signed Test Flag Clear Signed Test Flag	S ← 1 S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER II	NSTRUCTIONS	_			
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Pro Doc	$Rd \leftarrow (X), X \leftarrow X + 1$ $X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, - X Rd, Y	Load Indirect and Pre-Dec. Load Indirect	$A \leftarrow X - 1, \text{ Hd} \leftarrow (X)$ $\text{Rd} \leftarrow (Y)$	None None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	Rd ← (Z)	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST ST	Y, Rr Y+, Rr	Store Indirect Store Indirect and Post-Inc.	(Y) ← Rr V ← V + 1	None	2
ST	++, Rr - Y, Rr	Store Indirect and Post-Inc. Store Indirect and Pre-Dec.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$ $Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y+q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	1	Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2

■ ATmega48P/88P/168P

Mnemonics	Operands	Description	Operation	Flags	#Clocks
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	TRUCTIONS		•	•	•
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note: 1. These instructions are only available in ATmega168P.

9. Ordering Information

9.1 ATmega48P

Speed (MHz)	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
10 ⁽³⁾	1.8 - 5.5	ATmega48PV-10AU ATmega48PV-10AUR ⁽⁴⁾ ATmega48PV-10MMU ATmega48PV-10MMUR ⁽⁴⁾ ATmega48PV-10MU ATmega48PV-10MUR ⁽⁴⁾ ATmega48PV-10PU	32A 32A 28M1 28M1 32M1-A 32M1-A 28P3	Industrial
20 ⁽³⁾	2.7 - 5.5	ATmega48P-20AU ATmega48P-20AUR ⁽⁴⁾ ATmega48P-20MMU ATmega48P-20MMUR ⁽⁴⁾ ATmega48P-20MU ATmega48P-20MUR ⁽⁴⁾ ATmega48P-20PU	32A 32A 28M1 28M1 32M1-A 32M1-A 28P3	(-40°C to 85°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.
- 4. Tape & Reel

	Package Type					
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)					
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)					
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)					
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)					

9.2 ATmega88P

Speed (MHz)	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
10 ⁽³⁾	1.8 - 5.5	ATmega88PV-10AU ATmega88PV-10AUR ⁽⁴⁾ ATmega88PV-10MU ATmega88PV-10MUR ⁽⁴⁾ ATmega88PV-10PU	32A 32A 32M1-A 32M1-A 28P3	Industrial
20 ⁽³⁾	2.7 - 5.5	ATmega88P-20AU ATmega88P-20AUR ⁽⁴⁾ ATmega88P-20MU ATmega88P-20MUR ⁽⁴⁾ ATmega88P-20PU	32A 32A 32M1-A 32M1-A 28P3	(-40°C to 85°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.
- 4. Taper & Reel.

	Package Type
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

9.3 ATmega168P

Speed (MHz) ⁽³⁾	Power Supply (V)	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
10	1.8 - 5.5	ATmega168PV-10AU ATmega168PV-10AUR ⁽⁴⁾ ATmega168PV-10MU ATmega168PV-10MUR ⁽⁴⁾ ATmega168PV-10PU	32A 32A 32M1-A 32M1-A 28P3	Industrial
20	2.7 - 5.5	ATmega168P-20AU ATmega168P-20AUR ⁽⁴⁾ ATmega168P-20MU ATmega168P-20MUR ⁽⁴⁾ ATmega168P-20PU	32A 32A 32M1-A 32M1-A 28P3	(-40°C to 85°C)

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See Figure 29-1 on page 312 and Figure 29-2 on page 312.
- 4. Taper & Reel.

Package Type				
32A	32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)			
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)			

10. Packaging Information

10.1 32A

COMMON DIMENSIONS

(Unit of Measure = mm)

	`		,	
SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
E	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е	0.80 TYP			

2010-10-20

Notes

- 1. This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

TITLE

3. Lead coplanarity is 0.10 mm maximum.

4mei	2325 Orchard San Jose, CA	Parkway
AIIIIEL	San Jose, CA	95131

32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
32A	С

10.2 28M1

Note: The terminal #1 ID is a Laser-marked Feature.

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.17	0.22	0.27	
С		0.20 REF		
D	3.95	4.00	4.05	
D2	2.35	2.40	2.45	
E	3.95	4.00	4.05	
E2	2.35	2.40	2.45	
е	0.45			
L	0.35	0.40	0.45	
у	0.00	-	0.08	
K	0.20	_	_	

10/24/08

TITLE 28M1, 28-pad,4 x 4 x 1.0 mm Body, Lead Pitch 0.45 mm, 2.4 x 2.4 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN)

GPC	DRAWING NO.	REV.	
ZBV	28M1	В	

10.3 32M1-A

10.4 28P3

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.5724	
A1	0.508	_	_	
D	34.544	_	34.798	Note 1
Е	7.620	_	8.255	
E1	7.112	_	7.493	Note 1
В	0.381	_	0.533	
B1	1.143	_	1.397	
B2	0.762	_	1.143	
L	3.175	_	3.429	
С	0.203	_	0.356	
eB	_	_	10.160	
е	2.540 TYP			

09/28/01

В

2325 Orchard Parkway San Jose, CA 95131

TITLE $\bf 28P3, \, 28\text{-lead} \, (0.300\mbox{"}/7.62 \; mm \, Wide) \; Plastic \, Dual \, Inline \, Package \, (PDIP)$ DRAWING NO. REV. 28P3

11. Errata

11.1 Errata ATmega48P

The revision letter in this section refers to the revision of the ATmega48P device.

11.1.1 Rev. C

No known errata.

11.1.2 Rev. B

No known errata.

11.1.3 Rev. A

Not Sampled.

11.2 Errata ATmega88P

The revision letter in this section refers to the revision of the ATmega88P device.

11.2.1 Rev. C

Not sampled.

11.2.2 Rev. B

No known errata.

11.2.3 Rev. A

No known errata.

11.3 Errata ATmega168P

The revision letter in this section refers to the revision of the ATmega168P device.

11.3.1 Rev B

No known errata.

11.3.2 Rev A

No known errata.

12. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. 8025M-06/11

- 1. Added Atmel QTouch Library Support and QTouch Sensing Capability Features.
- 2. Updated "Ordering Information" to include Tape and Reel devices.
- 3. Updated the datasheet with Atmel new style guide.

12.2 Rev. 8025L-07/10

- 1. Removed from the front page, the note "Not recommended for new design".
- 2. Editorial updates.

12.3 Rev. 8025K-10/09

- 1. Updated "Low Frequency Crystal Oscillator" with the Table 9-8 on page 33.
- 2. Editorial updates.

12.4 Rev. 8025J-05/09

- 1. Removed the "About" section.
- 2. Removed ATmega328P device and its reference from the data sheet.
- 3. Editorial updates.

12.5 Rev. 8025I-02/09

1. Removed "preliminary" from ATmega48P/88P/168P.

12.6 Rev. 8025H-02/09

- 1. Added Power-save Maximum values and footnote to "ATmega48P DC Characteristics" on page 310.
- 2. Added Power-save Maximum values and footnote to "ATmega88P DC Characteristics" on page 311.
- 3. Added Power-save Maximum values and footnote to "ATmega168P DC Characteristics" on page 311.
- 4. Added Power-save Maximum values and footnote to "" on page 312.
- 5. Added errata for revision A, "" on page 23.

12.7 Rev. 8025G-01/09

- 1 ATmega48P/88P not recommended for new designs.
- 2. Updated the footnote Note1 of the Table 9-3 on page 30.
- 3. Updated the Table 9-5 on page 31 by removing a footnote Note1.
- 4. Updated the Table 9-11 on page 34 by removing a footnote Note1.
- 5. Updated the footnote Note1 of the Table 9-13 on page 35.
- 6. Updated the footnote Note2 of the "ATmega48P DC Characteristics" on page 310 and removed TBD from the table.
- 7. Updated the footnote Note2 of the "ATmega88P DC Characteristics" on page 311 and removed TBD from the table.
- 8. Updated the footnote Note2 of the "ATmega168P DC Characteristics" on page 311 and removed TBD from the table.
- 9. Updated the footnote Note2 of the "" on page 312 and removed TBD from the table.
- 10. Updated the footnote Note1 of the Table 29-4 on page 314.
- 11. Replaced the Figure 30-69 on page 358 by a correct one.
- 12. Replaced the Figure 29-173 on page 419 by a correct one.
- 13. Updated "Errata" on page 23.
- 14. Updated "MCUCR MCU Control Register" on page 44.
- 15. Updated "TCCR2B Timer/Counter Control Register B" on page 159.

12.8 Rev. 8025F-08/08

- 1. Updated "Register Summary" on page 9 with Power-save numbers.
- 2. Added ATmega328P "Standby Supply Current" on page 408.

12.9 Rev. 8025E-08/08

- 1. Updated description of "Stack Pointer" on page 13.
- 2. Updated description of use of external capacitors in "Low Frequency Crystal Oscillator" on page 33.
- 3. Updated Table 9-10 in "Low Frequency Crystal Oscillator" on page 33.
- 4. Added note to "Address Match Unit" on page 220.
- 5. Added section "Reading the Signature Row from Software" on page 283.
- 6. Updated "Program And Data Memory Lock Bits" on page 291 to include ATmega328P in the description.
- 7. Added "" on page 312.
- 8. Updated "Speed Grades" on page 312 for ATmega328P.
- 9. Removed note 6 and 7 from the table "2-wire Serial Interface Characteristics" on page 317.
- 10. Added figure "Minimum Reset Pulse width vs. V_{CC}." on page 346 for ATmega48P.
- 11. Added figure "Minimum Reset Pulse width vs. V_{CC}." on page 370 for ATmega88P.
- 12. Added figure "Minimum Reset Pulse width vs. V_{CC}." on page 394 for ATmega168P.
- 13. Added "Register Summary" on page 9.
- 14. Updated Ordering Information for "Packaging Information" on page 19.

12.10 Rev. 8025D-03/08

- 1. Updated figures in "Speed Grades" on page 312.
- 2. Updated note in Table 29-4 in "System and Reset Characteristics" on page 314.
- 3. Ordering codes for "Packaging Information" on page 19 updated.
 - ATmega328P is offered in 20 MHz option only.
- Added Errata for ATmega328P rev. B, "" on page 23.

12.11 Rev. 8025C-01/08

1. Power-save Maximum values removed form "ATmega48P DC Characteristics" on page 310, "ATmega88P DC Characteristics" on page 311, and "ATmega168P DC Characteristics" on page 311.

12.12 Rev. 8025B-01/08

- Updated "Features" on page 1.
- Added "Data Retention" on page 8.
- 3. Updated Table 9-2 on page 29.
- 4. Removed "Low-frequency Crystal Oscillator Internal Load Capacitance" table from"Low Frequency Crystal Oscillator" on page 33.
- 5. Removed JTD bit from "MCUCR MCU Control Register" on page 45.
 - Updated typical and general program setup for Reset and Interrupt Vector Addresses
- 6. in "Interrupt Vectors in ATmega168P" on page 63 and "Interrupt Vectors in ATmega328P" on page 65.
- 7. Updated Interrupt Vectors Start Address in Table 12-5 on page 64 and Table 11-7 on page 66.
- 8. Updated "Temperature Measurement" on page 259.
- 9. Updated ATmega328P "Fuse Bits" on page 292.
- 10. Removed V_{OL3}/V_{OH3} rows from "DC Characteristics" on page 309.
- Updated condition for V_{OL} in "DC Characteristics" on page 309. Updated max value for V_{IL2} in "DC Characteristics" on page 309.
- Added "ATmega48P DC Characteristics" on page 310, "ATmega88P DC Characteristics" on page 311, and "ATmega168P DC Characteristics" on page 311.
- 13. Updated "System and Reset Characteristics" on page 314.
 - Added "ATmega48P Typical Characteristics" on page 322, "ATmega88P Typical
- 14. Characteristics" on page 346, and "ATmega168P Typical Characteristics" on page 370.
- 15. Updated note in "Instruction Set Summary" on page 13.

12.13 Rev. 8025A-07/07

Initial revision.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: (+1)(408) 441-0311 **Fax**: (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY

Tel: (+49) 89-31970-0 **Fax**: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

JAPAN

Tel: (+81)(3) 3523-3551 **Fax**: (+81)(3) 3523-7581

© 2011 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof, AVR[®], QTouch[®], QMatrix[®], AVR Studio[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows[®] and others are registered trademarks of Microsoft Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Atmel:

ATMEGA168PA-AU ATMEGA168PA-MU