Метод точек перегиба, анализ ошибок регуляризации, анализ данных гетеродинного спектрометра

Факультет Космических Исследований, МГУ

Москва

Пусть заданы множества $Z=Z[a,b],\ U=U[a,b],$ задано компактное подмножество $\mathcal{M}\subset Z$ ограниченных функций $|z(s)|< C^{max}.$ Также часто встреачются случаи, когда

- 1. ограниченных монотонно возрастаяющих (не убывающих),
- 2. выпуклых вверх вниз ограниченных функций
- 3. комбинированный множества монотонных, выпуклых функций

Рассмотрим задачу в операторном виде:

$$A[x,z(s)] = u(x), z(s) \in \mathcal{M}, u(x) \in U[c,d].$$

с приближенным данными

$$|u(x) - u_{\delta}(x)| \leq \delta(x)$$

$$|A[x,z(s)]-A_h[x,z(s)]|\leq C^{max}h(x),\,x\in[c,d],\,\forall z(s)\in\mathcal{M}.$$

Введем функцию $\triangle(x) = \delta(x) + h(x)C^{max}$, определим множество

$$\mathcal{Z}_{\triangle}(\mathcal{M}) = \{ z(s) \in \mathcal{M} : \\ -\triangle(x) \le A_h[x, z(s)] - u_{\delta}(x) \le \triangle(x), x \in [c, d] \},$$

для регуляризованного $z_{\eta}(s) \in \mathcal{Z}_{\triangle}(\mathcal{M})$ решения справедлива оценка:

$$|z_{\eta}(s)-\bar{z}(s)|\leq \sup\{|z_{\eta}(s)-z(s)|:z(s)\in\mathcal{Z}_{\triangle}(\mathcal{M})\}\equiv\mathcal{E}_{\triangle}(s),\ s\in[a,b].$$

Величина $\mathcal{E}_{\triangle}(s)$ может быть вычислена для ряда множеств в конечномерном случае.

Аналогично для оператора которого справедлива апроксимация $||A_hz-u_\delta||\leq \delta+h\Omega[z]=\triangle_n$

$$||z_h - \bar{z}|| \le \sup\{||z_\eta - z|| : z(s) \in \mathcal{D}, \ \Omega[z] \le C\Omega[z_\eta], \ ||A_h z - u_\delta|| \le \triangle_\eta\} \equiv \epsilon_\Omega(\eta).$$

Для оценочной функции $\epsilon_{\Omega}(\eta)$ доказано $\epsilon_{\Omega}(+0)=0$.

График среднеквадратичной ошибки

Апостериорная точность метода квазирешений.

График среднеквадратичной ошибки

Сравнение точного решения задачи с приближением по методу квазирешений и экстрималью апостериорной оценки погрешности.

Поточечная оценка ф-ий с ограниченной вариацией 1

Рассмотрим задачу на области значения и области определения Z=V[a,b] (V-простраство функций с ограниченной вариацией), $U=L_2[c,d]$,

$$A[x, z(s)] = u(x), z(s) \in \mathcal{D}.$$

Поточечная оценка ф-ий с ограниченной вариацией 2

Если $\lim_{h,\delta\to 0}||z_{h\delta}(s)||_V=||ar{z}(s)||_V$, где $ar{z}(s)$ - точное решение и определено множество

$$Z = \{z(s) : ||z||_{V} \le C||z_{hs}||_{V}, |A_{h}[z(s)] - u_{\delta}(x)| \le \triangle(x), \forall x \in [x_{0}, x_{1}]\}, \quad (1)$$

где $\triangle(x) = \delta(x) + Ch(x)||z_{h\delta}||_V$. Тогда справедлива поточечная апостерирорная оценка точности приближенного решения

$$|z_{\eta}(s) - \bar{z}(s)| \leq \sup\{|z_{h\delta}(s) - z(s)| : z(s) \in Z\} \equiv \mathcal{E}(s), s \in [a, b]$$

Поточечная оценка ф-ий с ограниченной вариацией 2

Конечномерный аналог множества Z_{η} :

$$\hat{Z}_{\eta} = \{\hat{z} \in \hat{K} : |z_{1}| + \sum_{k=1}^{N-1} |z_{k+1} - z_{k}| \le C \hat{R}_{\eta}, \\
- \triangle_{\eta}(x_{i}) \le (\hat{A}\hat{z})_{i} - u_{i} \le \triangle_{\eta}(x_{i}), i = 1..M\},$$

апостериорная оцена примет вид:

$$|\bar{z}(s_k)-(z_\eta)_k|\leq \sup\{|z_k-(z_\eta)_k|:\hat{z}\in\hat{Z}_\eta\}\equiv\hat{\mathcal{E}}(s),s\in[a,b].$$

Метод точек перегиба

Пусть вектор значений $\{\rho_i\}$, i=1,M описывает вектор концентрации $\rho_i=\rho(h*i)$, h=H/(M-1). И пусть известно, что точка k*h является точкой перегиба решения, тогда матрицу ограничений ${\mathcal F}$ можно записать в виде:

$$\begin{pmatrix} -2\rho_1 + \rho_2 \le 0, & i = 1, \\ \rho_{i-1} - 2\rho_i + \rho_{i+1} \le 0, & i = 2, k - 1, \\ -\rho_{i-1} + 2\rho_i - \rho_{i+1} \le 0, & i = k + 1, M - 1, \\ 2\rho_{M-1} - \rho_M \le 0, & i = M \end{pmatrix}$$

Оценка решения с использовнием метода точек перегиба

Рассмотрим задачу

$$\tau(\nu) = \int_0^H K(\nu, z) \rho(z) dz, \ \nu \in [\nu_0, \nu_1],$$

Аппроксимируем выпуклую функцию ho(z) так, что

$$\sum\limits_{j=1}^{M}arphi_j^l(z)
ho_j\leq
ho(z)\leq\sum\limits_{j=1}^{M}arphi_j^r(z)
ho_j,$$
 при этом будет справедливо

$$\sum_{j=1}^{M} \left(\int_{0}^{H} K(\nu, z) \varphi_{j}^{l}(z) dz \right) \rho_{j} \leq \tau(\nu) \leq \sum_{j=1}^{M} \left(\int_{0}^{H} K(\nu, z) \varphi_{j}^{r}(z) dz \right) \rho_{j},$$

для $\nu \in [\nu_0, \nu_1]$, тогда после дискретезации справедливы матричные неравенства $L\bar{\rho} \leq \bar{\tau}_{\delta} + \delta$, $\bar{\tau}_{\delta} - \delta \leq R\bar{\rho}$.

Аппроксимация выпуклой функции

Иллюстрация метода точке перегиба 1

Иллюстрация метода точке перегиба 2

Построение максимальной и минимальной границы

Итак, область содержащая решение при заданных шумах спектра, описывается неравествами $L\bar{\rho} \leq \bar{\tau}_{\delta} + \delta$, $-R\bar{\rho} \leq -\bar{\tau}_{\delta} + \delta$, $\mathcal{F}\bar{\rho} \leq 0$. Данные неравенства объеденим в одно $\hat{G}\bar{\rho} \leq \hat{g}$, которое описывает множество, представляющее собой выпуклый ограниченный многогранник. Используя симплекс метод, можно получить величины

$$\rho_j^{\min} = \inf\{\rho_j : \hat{G}\bar{\rho} \le \hat{g}\},$$

$$\rho_i^{\max} = \inf\{-\rho_i : \hat{G}\bar{\rho} \le \hat{g}\},$$

ограничивающие сверху и снизу искомое решение.

Системы мониторинга парниковых газов

Системы мониторинга парниковых газов

Внешний вид:

Основная идея:

Общепринятый подход:

- Постоянная частота гетеродина
- Широкая полоса ПЧ

Наш подход:

- Сканирование частоты гетеродина
- Узкая полоса ПЧ

Преимущества:

- Не требуется анализатора спектра промежуточных частот
- Широкий спектральный диапазон
- Детектирование на пределе дробового шума

Схема установки для измерения поглощения CH₄

- LO гетеродин, SMOF одномодовое оптическое волокно; FC волоконный разветвитель;
- ОА оптический аттенюатор; Т микротелесоп; RC реперная кювета;
- BD балансный детектор; AD- амплитудный детектор

Гетеродинный сигнал:

Перенос излучения атмосферы

Уравнение переноса излучения

$$\cos\theta \frac{I(z,\nu)}{dz} = -\alpha(z)I(z,\nu),$$

где $I(z,\nu)$ - интенсивность, $\alpha(z)$ - объемный коэффициент поглощения, θ - зенитный угол, решение уравнения находится по формуле

$$I(z, \nu) = I_{sun} \exp\{-\frac{1}{\cos\theta} \int_{z}^{\infty} \alpha(s) ds\},$$

где

$$\alpha(z) = (\sum_{i} k_{i}(\nu, z))\rho(z),$$

 $k_i(\nu, s)$ - сечение поглощения отдельной линии.

Постановка обратной задачи

Пусть известны спектр поглощения $Tr(\nu)$, зенитный угол θ , тогда определена оптическая толщина

$$\tau(\nu) = -\cos\theta \ln Tr(\nu),$$

и, таким образом, имеет место интегральное уравнение

$$\tau(\nu) = \int_{0}^{\infty} K(\nu, z) \rho(z) dz, \ \nu \in [\nu_0, \nu_1],$$

откуда требуется определить профиль газа ho(z), $z\in [0,H]$ (H=40 км), $K(\nu,s)=\sum\limits_i k_i(\nu,z)$ - общее сечение поглощения.

Представим данное уравнение в операторном виде A
ho = au.

Основные подходы к решению некорректных задач

Пусть заданы оператор $||A \rho - A_h \rho|| < h ||\rho||$ и правая часть $||\tau - \tau_\delta|| < \delta.$

Основное условие - минимум невязки

$$||A_h\rho-\tau_\delta||^2<\delta^2.$$

В некорректных задачах необходимо вводить априорную информацию о решении:

• Сглаживание в некоторой норме

$$\Omega[
ho] o min$$

• Условия монотонности или выпуклости

$$\mathcal{F}\rho \leq 0$$
.

Пространство решений

Определяется сглаживающим функционалом

$$\Omega[\rho] = ||\rho||_{W_{\rho}^{I}}^{p} = \int_{0}^{H} [|\rho(z)|^{p} + |\rho^{(I)}(z)|^{p}] dz.$$

Также интерес представляет норма (метод минимальной энтропиии)

$$\Omega[\rho] = \int_{0}^{H} |\rho(z)| ln[|\rho(z)|] dz + \int_{0}^{H} |\rho'(z)| ln[|\rho'(z)| + 1] dz.$$

Обобщенный Метод Невязки (ОМН)

В качестве приближенного решения задачи $A_h \rho = au_\delta$ принимается элемент $\rho_{h\delta}$, который получается из обобщенного метода невязки.

$$||\rho_{h\delta}|| = \inf\{\Omega[\rho] : ||A_h\rho - \tau_{\delta}|| \le \delta + h||\rho||\}.$$

Для сравнения "Метод сглаживающего функционала"

$$M_{\delta}^{\alpha}[\rho] = ||A_{h}\rho - \tau_{\delta}||^{2} + \alpha\Omega[\rho].$$

Метод сглаживающего функционала

Решение ищется как минимум функционала

$$M_{\delta}^{\alpha}[\rho] = ||A_{h}\rho - \tau_{\delta}||_{L_{2}[\nu_{0},\nu_{1}]}^{2} + \alpha||\rho - \rho_{0}||_{W_{2}^{1}[0,H]},$$

Особое значение имеет задача поиска коэффициента α . Пусть $\beta(\alpha)=||A_h\rho-\tau_\delta||^2$, $\gamma(\alpha)=||\rho-\rho_0||_{W_1^2[0,H]}$, тогда можно доказать, что $\varepsilon(\alpha)=\beta(\alpha)-(\delta+h\gamma(\alpha))$ - монотонная функция и возможно однозначно решить уравнение $\varepsilon(\alpha)=0$.

Сравнение спектров

Результирующий профиль

Измерение концентрации СО2

Оптическая толщина au(
u) пропорциональна концентрации углекислого газа

$$\tau(\nu) = \int_{0}^{H} K(\nu, \xi) \rho_{CO2}(\xi) d\xi,$$

формула для пропускания

$$Tr(
u) = exp\left\{-rac{1}{cos(heta)} au(
u)
ight\}.$$

Концентрацую CO2 можно считать постоянной $\rho_{CO2} = const.$

Базовая линия

Алгоритм определения концентрации

Коррекция базовой линии двумя параметрами t_0 и t_1

$$Tr(\nu) = \frac{Tr_0(\nu)}{bl(\nu; t_0, t_1)}.$$

Минимизация

$$\Phi[\rho_0, t_0, t_1] = ||\operatorname{Tr}_0(\nu; \rho_0)/\operatorname{bl}(\nu; t_0, t_1) - \overline{\operatorname{Tr}}(\nu)|| \to \delta,$$

где $\overline{Tr}(\nu)$ - измеренный спектр, δ - зашумленность спектра. Точность восстаноления концентрации ρ_0 оценивается на уровне 0.3%.

Измерение 1

Время 6.44, угол склонения 9.88 - 11.08

Измерение 2

Время 15.13, угол склонения 52.79 - 52.19

Измерение 3

Время 18.12, угол склонения 31.02 - 30.04

Таблица результатов

Измерения СО2 проведенные 7 июля 2014

N	time	inclination(deg)	CO2 dens(PPM)	residual(%)
1	6.44	10.8	375.02	0.863
3	8.09	22.35	399.95	0.5
6	9.37	34.68	387.2	0.59
7	10.00	37.82	400.67	0.5
11	15.13	52.79	403.11	0.35
12	16.05	47.62	416.44	0.37
13	17.24	37.66	409.66	0.41
14	18.12	31.02	412.16	0.56

График концентрации СО2

График концентрации СО2

Общий тренд

Опредиление профиля атмосферного ветра

Влияние ветра не спектр

Эффект смещение центра линии поглощения из-за эффекта Доплера можно выразить формулой

$$\tau(\nu) = \int_0^H K(\nu - \nu(\xi; \nu(\xi)), \xi) \rho_{CO2}(\xi) d\xi,$$

где $K(\nu,\xi)$ - сечение поглощения, смещение по частоте определяется по формуле

$$\nu(\xi; v(\xi)) = \frac{\nu_0 v(\xi)}{c} \sin(\alpha),$$

где ν_0 - частота центра линии, $v(\xi)$ - скорость ветра на высоте ξ , c - скорость света, α - зенитный угол.

Обратная задача

В основе решения обратной задачи лежит Обобщенный Метод Невязки (ОМН) [1]

$$||v_{h\delta}|| = \inf\{\Omega[v] : ||A_hv - \tau_{\delta}|| \le \delta + h||v||\}.$$

где

$$\Omega[v] = \int_{0}^{H} |v(\xi)| \ln[|v(\xi)|] d\xi + \int_{0}^{H} |v'(\xi)| \ln[|v'(\xi)| + 1] d\xi,$$

$$A_h v = \int_{\Omega}^{H} K(\nu - \nu(\xi; \nu(\xi)), \xi) \rho_{CO2}(\xi) d\xi.$$

Обратная задача

Особое значение при восстановлении профилей имели

- Повышение размерности решения за счет использования азимутальных и меридиональных состоявляющих скорости [u,v]
- Информация о скорости ветра на нулевой высоте $v_0 = v(0), \ u_0 = u(0)$

Без учета скорости ветра на нулевой высоте. Эксперимент 7 июля, время 6.44

Скорость ветра на нулевой высоте задана. Эксперимент 7 июля, время 6.44

Эксперимент 10 марта, время 9.50

Эксперимент 7 июля, время 9.37

Эксперимент 7 июля, время 10.00

Модели postprocessing 10 мая

Ветер над Москвой 10 марта 2014

Модели postprocessing 7 июля

Wind speed (m/s)

Wind speed (m/s)

Расчеты профилей воды в атмосфере Марса

Миссия ЭкзоМарс 2016-2020

Относительная погрешность правой части $\delta=0.001$, погрешность оператора $\delta_A=0.01$.

Погрешность правой части $\delta=0.0003$

Погрешность правой части $\delta=0.003$

Оценка решения 1

Погрешность правой части $\delta=0.001$

Оценка решения 2

Погрешность правой части $\delta = 0.001$, в обратной задаче

Пример 1 (атмосфера Земли)

Земля Охіа, сезон Ls 20, Зенитн угол 60,

