2021 Fast.ai Community Course

Lesson 3 - Production and Deployment

Mentor intro

Olga Moskvyak

- Find me at
 - @olgamoskvyak (Discord)
 - https://olgamoskvyak.github.io
- I'm most excited about:
 - DL with limited annotated data (semi-supervised learning)
 - Use of Al for wildlife conservation
- I'll be most useful to help you with:
 - DL for Computer Vision
 - Coding with FastAl, PyTorch
 - Advice on reading papers

Key concepts

- DataBlock
- GUI with IPython widgets and Voilà
- Deploying
- Blogging
- Data manipulations with tensors
- Baseline for MNIST recognition

Fastbook notebooks for this week:

- Production 02_production.ipynb (Chapter 2)
- 04_mnist_basics.ipynb

Code along session

- Learn/revise the following concepts:
 - Path objects (Patlib python library)
 - Fastai class called L extension of list
 - Numpy array and tensors
 - Object types
 - List comprehensions
 - Shape, size, rank, dimension
- Practice fixing errors
- Get practice notebook from github
- Use Google Colab

DataBlock

To turn our downloaded data into a DataLoaders object we need to consider:

- What kinds of data we are working with (blocks)
- How to get the list of items (get_items)
- How to label these items (get_y)
- How to create the validation set (splitter)
- How to resize data to a unified size (item_tfms)
- How to augment data (batch_tfms)

DataBlock tutorial in docs - https://docs.fast.ai/tutorial.datablock.html

Data cleaning and GUI

- GUI for data cleaning
 - o Good tip clean data after creating a model
 - ImageClassifierCleaner() handy GUI to clean data
- GUI with IPython widgets and Voilà
 - An easy way to create an app from Jupyter Notebook

Deployment

- Serving with Binder
- Deploying on CPU vs GPU
 - Most of the time CPU is enough one image at a time, lots of cheap options
 - GPU video processing, batches of images for popular websites
- Deploying on mobile (e.g., ONNX)
 - keep things simple at the start and use PyTorch