#### ${\bf Abstract}$

**Motivation:** Glycosylation is one of the most heterogenous and complex post-translational modifications, but. **Results:** These are the results for this article.

# Application of Network Smoothing to Glycan LC-MS Profiling

Joshua Klein

October 1, 2017

### 1 Introduction

Glycosylation is one of the most pervasive forms of post-translational modification (Varki (2017)).

Table 1: Fitted  $\lambda$ ,  $\gamma$ , and  $\tau$  for 20141101-04-Phil-BS

| Neighborhood Name      | $	au_i$   |
|------------------------|-----------|
| high-mannose           | 17.615084 |
| hybrid                 | 13.599120 |
| bi-antennary           | 0.0       |
| asialo-bi-antennary    | 13.919251 |
| tri-antennary          | 0.0       |
| asialo-tri-antennary   | 12.906467 |
| tetra-antennary        | 0.0       |
| asialo-tetra-antennary | 14.723146 |
| penta-antennary        | 0.0       |
| asialo-penta-antennary | 11.226188 |
| hexa-antennary         | 0.0       |
| asialo-hexa-antennary  | 10.696785 |
| hepta-antennary        | 0.0       |
| asialo-hepta-antennary | 3.071313  |

Fitted  $\lambda = 0.99$  and  $\gamma = 11.12$ .

#### 2 Results

The performance of our algorithm is demonstrated on 20141101-04-Phil-BS and Perm-BS-070111-04-Human-Serum . Please refer to section S4 for all other datasets. For each comparison, the unregularized case is not smoothed, effectively  $\lambda=0$ , the partially regularized case uses the grid search fitted values of  $\tau$  but uses a fixed  $\lambda=0.2$ , and the fully regularized case uses the grid search fitted values of both  $\tau$  and  $\lambda$ .

#### 2.1 Chromatogram Assignment Performance for 20141101-04-Phil-BS

The fitted parameters for the network constructed for 20141101-04-Phil-BS are shown in Table 1. The assigned chromatograms and their qunatification are shown in Figure 1. The comparison of assignment performance with differing degrees of smoothing is shown n Figure 2. The ROC AUC for the unreularized case is 0.838, for the partially regularized case is 0.987, and for the fully regularized case is 0.921.

Figure 1: Chromatogram Assignments and Quantification for 20141101-04-Phil-BS



Figure 2: Performance Comparison with and without Network Smoothing for 20141101-04-Phil-BS



## References

Varki, A. (2017). Biological roles of glycans. Glycobiology,  $\mathbf{27}(1)$ , 3–49.