Epreuve écrite

Examen de fin d'études secondaires 2013 Numéro d'ordre du candidat Section: B et C Branche: CHIMIE (QC = questions de cours : 19 points; ANN = applications non numériques : 19 points; AN = applications numériques : 22 points) I. Aromaticité et chloration de cycles aromatiques - 14 points 1.1. Décrire la formation du cycle benzénique. (QC2) 1.2. Présenter la conception classique, basée sur la mésomérie. (QC3) 1.3. Exposer la formation d'un seul nuage moléculaire π dans le noyau benzénique et les arguments expérimentaux en

2.1. Expliquer le rôle du chlorure d'aluminium et dresser l'équation de la préparation du réactif électrophile. (QC2)

2. En soumettant le benzène à l'action du dichlore en présence de chlorure d'aluminium, on obtient un mélange formé

(QC4)

2.2. Détailler le mécanisme de la réaction qui conduit au chlorobenzène. (QC2)

2.3. Justifier la position du deuxième substituant sur base de l'effet mésomère. (QC1)

II. Composés organiques oxygénés – 13 points

faveur de cette structure électronique.

La formule brute C₄H₁₀O décrit une série de composés isomères.

essentiellement de chlorobenzène et de dichlorobenzène.

- 1.1. Dresser les formules de structure semi-développées des composés répondant à cette formule brute et susceptibles de réagir avec le sodium. Indiquer également pour chaque isomère son nom et sa classe.
- 1.2. Parmi les isomères recherchés il y en a un qui réagit avec l'oxydant permanganate en milieu acide pour être transformé en cétone. On demande de l'identifier et de dresser les équations du système rédox en question. Nommer la cétone formée. (ANN3)
- 2.1. 5,0 g d'un aldéhyde à chaîne carbonée ramifiée réagissent avec un excès d'hydrogénosulfite de sodium pour former 16,83 g d'un précipité blanc. Retrouver la formule développée et le nom de l'aldéhyde en question.(AN3)
- 2.2. Dresser le système rédox qui traduit l'oxydation de cet aldéhyde par le réactif de Tollens. (QC3)

III. Etude de l'acide lactique CH₃-CHOH-COOH - 12 points

- 1. Représenter un isomère de fonction et un isomère de position de l'acide la ctique. (ANN2)
- 2. Expliquer pourquoi l'acide lactique est une molécule chirale. (ANN1)
- 3. Représenter un énantiomère de votre choix (mais toujours le même!)
- 3.1. en formule de structure spatiale et appliquer la nomenclature CIP. (ANN1)
- (ANN1) 3.2. en projection de Fischer et préciser la désignation D ou L.
- 3.3. en projection de Newman suivant l'axe $C_2 \rightarrow C_3$ dans la conformation la plus stable. (ANN1)
- 4.1. Expliquer, en vous basant sur des considérations électroniques, pourquoi la force acide de l'acide lactique est supérieure à celle de l'acide propanoïque. Illustrer à l'aide de schémas. (ANN3)
- 4.2. Vérifier en calculant le degré de dissociation précis des deux solutions acides à 0,05 mol·L⁻¹. (AN2)
- 5. L'acide lactique peut servir à la préparation de l'acide propénoïque. Dresser l'équation traduisant cette réaction (utiliser les formules semi-développées) et indiquer le type de réaction. (ANNI)

IV. Calcul du pH de solutions - Solutions tampons - 10 points

- 1. À 500 cm³ d'une solution d'ammoniac à 1 mol·L⁻¹ on ajoute 15 cm³ d'une solution d'acide nitrique à 65%, de masse volumique 1,40 g·cm⁻³. Calculer le pH de la solution finale.

 (AN3)
- 2. On se propose de préparer une solution tampon de pH = 10,0 basé sur le couple HCO₃⁻/CO₃²⁻;

2.1. Calculer le rapport
$$\frac{n_0(CO_3^2)}{n_0(HCO_3)}$$
 dans cette solution tampon. (AN2)

- 2.2. Quelle masse de carbonate de sodium faut-il ajouter à 1 litre d'une solution à 0,1 mol·L-1 d'hydrogénocarbonate de sodium pour obtenir le pH de 10,0 ? (AN2)
- 2.3. Quelle masse d'hydroxyde de sodium doit-on ajouter à 1 litre d'une solution à 0,1 mol·L⁻¹ d'hydrogénocarbonate de sodium pour obtenir le pH de 10,0 ? (AN3)

V. Titrage de l'acide n-butanoïque – 11 points

Une prise de 10 cm³ d'une solution d'acide n-butanoïque est soumise au titrage par NaOH à 0,5 mol·L¹. La courbe de titrage est reproduite ci-dessous.

1. Indiquer deux arguments qui prouvent que le diagramme représente le titrage d'un acide faible par une base forte.

(ANNI)

2. Dresser l'équation de la réaction sur laquelle se base le titrage.

(ANN1)

3. Calculer la concentration molaire de la solution aqueuse d'acide butanoïque.

(AN2)

4. Dégager (sur le diagramme) le pKa du couple acide n-butanoïque/anion n-butanoate et motiver le raisonnement.

(ANN1)

5. Vérifier par calcul le pH de la solution initiale de cet acide.

(AN2)

6. Vérifier par calcul le pH au point d'équivalence.

(AN3)

7. Si le dosage était réalisé sans pH-mètre, quel(s) indicateur(s) coloré(s) de la liste ci-contre faudrait-il choisir? Motiver le choix. (ANN1)

Indicateur coloré	Domaine de virage	pKa
Vert de bromocrésol	pH 3,8 à 5,4	4,7
Rouge de phénol	pH 6,4 à 8,2	7,9
Bleu de thymol	pH 8,0 à 9,6	8,9
Phénolphtaléine	pH 8,2 à 9,8	9,4
Jaune d'alizarine	pH 10,0 à 12,1	11,2

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H₃O⁺	H₂O	eau	-1,74
ac. chlorique	HClO₃	ClO³.	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl³COO.	an, trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃ .	an. iodate	0,80
cat. hexaqua thallium III	TI(H ₂ O) ₆ ³⁺	TI(OH)(H ₂ O) ₅ 2+	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO.	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	СНСІ₂СООН	CHCl2COO.	an. dichloroéthanoate	1,26
ac. sulfureux	H₂SO₃	HSO ₃ ⁻	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO₄ ⁻	SO ₄ 2-	an. sulfate	1,92
ac. chloreux	HCIO₂	ClO₂.	an. chlorite	2,00
ac. phosphorique	H₃PO₄	H₂PO₄⁻	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO ⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	Ga(H₂O) ₆ ³+	Ga(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	Fe(H ₂ O) ₆ ³⁺	Fe(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH²CICOO.	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	V(H₂O) ₆ ³+	V(OH)(H ₂ O) ₅ ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO₂	NO ₂ ~	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH2ICOO-	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F	an. fluorure	3,17
ac. acétylsalicylique	C₀H ₇ O₂COOH	C ₈ H ₇ O ₂ COO ⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN"	an. cyanate	3,66
ac. méthanoïque	нсоон	HCOO.	an. méthanoate	3,75
ac. lactique	СН₃СНОНСООН	CH³CHOHCOO.	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ -	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C₀H₅COO	an. benzoate	4,19
cat. anilinium	C₀H₅NH₃⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH³COO.	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH³CH⁵COO.	an. propanoate	4,87
cat. hexaqua aluminium	Al(H₂O) ₆ ³+	Al(OH)(H₂O) ₅ ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C₅H₅NH⁺	C₅H₅N	pyridine	5,25
cat. hydroxylammonium	NH₃OH⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO₂ + H₂O	HCO ₃ ·	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H₂S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO ₃ .	SO ₃ ² ·	an. sulfite	7,20
an. dihydrogénophosphate	H₂PO₄⁻	HPO ₄ 2-	an. hydrogénophosphate	7,21
ac. hypochloreux	нао	CIO-	an. hypochlorite	7,55
cat. hexaqua cadmium	Cd(H ₂ O) ₆ ²⁺	Cd(OH)(H₂O)₅ ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	Zn(H₂O) ₆ ²⁺	Zn(OH)(H₂O)₅⁺	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H₃BO₃	H₂BO₃¹	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH₃)₃N	triméthylamine	9,87
phénol	C₅H₅OH	C ₆ H ₅ O ⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	ніо	IO.	an. hypoiodite	10,64
cat. méthylammonium	CH₃NH₃ ⁺	CH₃NH₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH₃CH₂NH₂	éthylamine	10,75
cat. triéthylammonium	(C₂H₅)₃NH⁺	(C₂H₅)₃N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃)₂NH₂ ⁺	(CH ₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	(C₂H₅)₂NH₂ ⁺	(C₂H₅)₂NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ 2-	PO ₄ 3-	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H₂O	OH.	anion hydroxyde	15,74

bases fortes (plus fortes que OH') O²-, NH₂-, anion alcoolate RO') acides de force négligeable

TABLEAU PERIODIQUE DES ELEMENTS

groupes principaux

groupes principaux

9 F	- P												•		•		
	1 11	7										111	IV	V	VI	VII	VIII
1,0		-															4,0
Н	l																He
1	1																2
6,9	9,0	7										10,8	12,0	14,0	16,0	19,0	20,2
Li	Be											В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
23,0	24,3					groupe	s second	laires				27,0	28,1	31,0	32,1	35,5	39,9
Na	Mg											Al	Si	P	S	CI	Ar
11	12	111	IV	T V	VI	VII		VIII		1	ll ll	13	14	15	16	17	18
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
85,5	87,6	88,9	91,2	92,9	95,9	(97)	101,1	102,9	106,4	107,9	112,4	114,8	118,7	121,8	127,6	126,9	131,3
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
132,9	137,3	175,0	178,5	180,9	183,9	186,2	190,2	192,2	1 9 5,1	197,0	200,6	204,4	207,2	209,0	(209)	(210)	(222)
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
(223)	226,0	(260)	(261)	(262)	(266)	(264)	(269)	(268)									
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt			1					1	
87	88	103	104	105	106	107	108	109							1	1	

lanthanides

actinides

138,9	140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	168,9	173,0
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
57	58	59	60	61	62	63	64	65	66	67	68	69	70
227,0	232,0	231,0	238,0	237,0	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
89	90	91	92	93	94	95	96	97	98	99	100	101	102