TEORIA DEI SEGNALI B – PRIMO COMPITINO

SEGNALI NOTEVOLI

- Costante: x(t) = A
- Costante: x(t) = AGradino unitario: $u(t) = \begin{cases} 0 \ per \ t < 0 \\ 1 \ per \ t \ge 0 \end{cases}$ Impulso rettangolare: $\Pi(t) = \begin{cases} 0 \ per \ |t| > \frac{1}{2} \\ 1 \ per \ |t| \le \frac{1}{2} \end{cases}$ Impulso triangolare: $\Lambda(t) = \begin{cases} 0 \ per \ |t| > 1 \\ 1 |t| \ per \ |t| \le 1 \end{cases}$ Esponenziale negativo causale: $x(t) = Ae^{-BT}u(t) \ (A > 0, B > 0)$

- Fasore: $x(t) = Ae^{j(2\pi f_0 t + \phi)}$ - Sinc: $sinc(t) = \frac{\sin (\pi t)}{\pi t}$ Sinusoide: $x(t) = A\cos(2\pi f_0 t + \phi)$
- Segnali pari e/o dispari: ogni segnale x(t) si può scrivere come la somma della sua parte pari $x_P(t)$ = $\frac{1}{2} ig(x(t) + x(-t) ig)$ e la sua parte dispari $x_D(t) = \frac{1}{2} ig(x(t) - x(-t) ig)$
- Energia su un intervallo: $E = \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t) dt$ Potenza su un intervallo: $P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t) dt$

TRASFORMAZIONI ELEMENTARI

- Moltiplicazione per una costante: y(t) = Ax(t), grafico identico a x(t) con ampiezza scalata di A; si distinguono vari casi:
 - \circ A>1 \rightarrow estensione A<-1 → estensione + ribaltamento
 - o 0<A<1 → compressione -1<A<0 → compressione + ribaltamento
- Traslazione temporale: $y(t) = x(t t_0)$, versione di x(t) ritardata della quantità t_0 ; se $t_0>0$ ho una traslazione a destra (ritardo), se t₀<0 ho una traslazione a sinistra (anticipo)
- Inversione temporale: y(t) = x(-t), grafico di x(t) ribaltato attorno all'asse delle ordinate
- Cambiamento di scala: $y(t) = x\left(\frac{t}{T}\right)$, i valori assunti da x(t) nell'intervallo $[t_1, t_2]$ vengono assunti da y(t) nell'intervallo [t₁T,t₂T]; si distinguono vari casi:
 - \circ T>1 \rightarrow espansione
 - \circ 0<T<1 → compressione
 - o -1<T<0 → compressione + ribaltamento
 - o T<-1 → estensione + ribaltamento
- Ordine di trasformazione: Moltiplicazione per costante → Cambiamento di scala → Traslazione → Inversione temporale
- Segnali definiti a tratti: è necessario sostituire il nuovo argomento temporale anche negli intervalli stessi

IMPULSO DI DIRAC

- Proprietà di campionamento: $\int_{-\infty}^{+\infty} y(\tau) \delta(\tau-t_0) d\tau = y(t_0)$
- Area unitaria, quasi ovunque nullo, tende a ∞ nell'origine, simmetria pari, elemento neutro della convoluzione, derivata del gradino unitario $u'(x) = \delta(x)$

CLASSIFICAZIONE SISTEMI – Un sistema può essere:

- deterministici: l'uscita è univocamente determinata una volta assegnato il segnale d'ingresso.
- causale: la risposta del sistema ad un dato istante di tempo t non dipende da valori futuri del segnale di
- fisicamente realizzabile: oltre ad essere causale la risposta ad un qualsiasi segnale reale è anch'essa reale.
- senza memoria: l'uscita è una trasformazione istantanea del segnale d'ingresso, che non dipende né da valori futuri né da valori passati.
- stabile (B.I.B.O.): ad ingressi limitati in ampiezza fa corrispondere uscite limitate anch'esse in ampiezza.
- stazionario: ad un dato segnale d'ingresso produce la stessa uscita a prescindere dall'istante di applicazione dell'ingresso.
- lineare: gode del principio di sovrapposizione degli effetti.

RISPOSTA IMPULSIVA h(t)

La risposta impulsiva (funzione del tempo) specifica completamente il sistema L.T.I. a cui si riferisce nel dominio del **tempo**. Per calcolare un'uscita basta quindi fare la convoluzione tra l'ingresso e la risposta impulsiva y(t) = x(t) *h(t). Per calcolarla, $h(t) = y(\delta(t))$.

Per trovare l'uscita conoscendo ingresso e h(t) o faccio la convoluzione oppure sapendo che facendo entrare una $A\delta(t-T)$ in uscita avrò la h(t) traslata di T e con ampiezza moltiplicata per A, costruisco il segnale in uscita.

VERIFICA DELLE PROPRIETÀ DI UN SISTEMA

- Linearità: data y(t) = f(x(t)), scrivo tre generiche funzioni $y_1(t) = f(x_1)$, $y_2(t) = f(x_2)$, $y_3(t) = f(x_3)$, pongo $x_3(t) = ax_1 + bx_2$, calcolo $y(x_3)$ e controllo che $y(x_3) = y_3(t)$.
- Stazionarietà: data y(t) = f(x(t)), calcolo $y(t t_0)$, calcolo $y(x(\tau t_0))$ e controllo che $y(t t_0) =$ $y(x(\tau-t_0)).$
- Causalità: data y(t) = f(x(t)), trovo la h(t) sostituendo alle $x(t t_0)$ una $\delta(t t_0)$; se h(t) è causale, cioè è nulla $\forall t < 0$, il sistema è causale.
- Stabilità B.I.B.O.: data y(t) = f(x(t)) e la sua h(t), controllo che $\int_{-\infty}^{+\infty} |h(t)| dt$ abbia valore finito.
- Senza memoria: data y(t) = f(x(t)), controllo che l'uscita y(t) dipenda solamente da valori x(t) né ritardati né posticipati; solo i sistemi che hanno $h(t) = \delta(t)$ sono senza memoria.

CONVOLUZIONE

- 4) Se la sovrapposizione e' nulla, $f_Z(z)=0$; altrimenti, $f_Z(z)=\int_a^b f_X(t-u)\cdot f_Y(y)du$
- 5) Il risultato sara una $f_Z(z)$ definita a tratti a seconda del valore di t.
- a e b estremi della sovrapposizione

2

PROPRIETÀ DELLA CONVOLUZIONE: SISTEMI IN CASCATA E IN PARALLELO

- Commutativa: x(t) * h(t) = h(t) * x(t)
- Associativa: (x(t) * g(t)) * h(t) = x(t) * g(t) * h(t)
- Distributiva: x(t) * (g(t) + h(t)) = x(t) * g(t) + x(t) * h(t)
- Elemento neutro: la delta di Dirac $\delta(t)$
- Traslazione: $x(t) * \delta(t t_0) = x(t t_0)$
- Cascata: la risposta impulsiva totale sarà $h(t) = h_1(t) * h_2(t)$ mentre quella in frequenza sarà H(f) = $H_1(f) \cdot H_2(f)$.
- Parallelo: la risposta impulsiva sarà $h(t) = h_1(t) + h_2(t)$ mentre quella in frequenza sarà $H(f) = H_1(f) + H_2(t)$ $H_2(f)$.

RELAZIONE DI PARSEVAL

La potenza media di un segnale periodico è pari a $P=\sum_{k=-\infty}^{+\infty}|X_k|^2$. Sinusoide $\to P=|X_1|^2+|X_{-1}|^2=\frac{A^2}{4}+\frac{A^2}{4}=\frac{A}{2}$

FUNZIONE DI TRASFERIMENTO H(f)

Funzione che caratterizza il comportamento di un sistema di risposta impulsiva h(t). È una funzione complessa di variabile reale che descrive il sistema nel **dominio della frequenza**. $H(f)=\int_{-\infty}^{+\infty}h(\tau)e^{-j2\pi f\tau}\,d\tau$. Essendo una funzione complessa, posso scriverla come $H(f) = A_H(f)e^{j\varphi_{H(f)}}$, cioè attraverso modulo e fase.

SERIE DI FOURIER

Qualsiasi segnale che soddisfi le condizioni di Dirichlet può essere scritto come $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k f_0 t}$. I coefficienti X_k , detti coefficienti di Fourier, sono calcolabili come $X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j 2\pi k f_0 t} dt$. Per k=0 si ha la componente continua, che altro non è se non il valor medio temporale del segnale.

$$x_k(t) = X_k \cdot e^{2\pi k f_0 t} \to y_k(t) = x_k(t) * h(t) = H(kf_0) \cdot X_k e^{2\pi k f_0 t} \qquad y(t) = \sum_{k=-\infty}^{+\infty} H(kf_0) \cdot X_k e^{2\pi k f_0 t}$$

$$y(t) = \sum_{k=-\infty}^{+\infty} H(kf_0) \cdot X_k e^{2\pi k f_0 t}$$

TRASFORMATA DI FOURIER

ma SE x(t) PERIODICO

ANTITRASFORMATA DI FOURIER

$$X(f) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi f t} dt$$

$$X(f) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi ft} dt$$
 $X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k f_0 t} dt$

$$x(t) = \int_{-\infty}^{+\infty} X(f) e^{j2\pi f t} df$$

PROPRIETÀ

$$Y(f) = X(f) \cdot H(f)$$

$$A_Y(f) = A_X(f) \cdot A_H(f)$$

$$Y(f) = X(f) \cdot H(f) \qquad A_Y(f) = A_X(f) \cdot A_H(f) \qquad \varphi_Y(f) = \varphi_X(f) + \varphi_H(f) \qquad y(t) = H(f_0) \cdot x(t)$$

$$y(t) = H(f_0) \cdot x(t)$$

Se H(f) Hermitiana (spettro ampiezza pari, spettro fase dispari; $X_k = X_k^* X(f) = X^*(f)$) $\to h(t)$ reale \to fase nulla.

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(f) \stackrel{(dualit \,\dot{\mathsf{a}})}{\longleftrightarrow} X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} x(-f)$$

$$Ax(t) \xrightarrow{(linearit \ a) \mathcal{F}} A \cdot X(f)$$

$$x(t) \overset{\mathcal{F}}{\longleftrightarrow} X(f) \overset{(dualit \ \grave{a})}{\longleftrightarrow} X(t) \overset{\mathcal{F}}{\longleftrightarrow} x(-f) \qquad Ax(t) \overset{(linearit \ \grave{a}) \ \mathcal{F}}{\longleftrightarrow} A \cdot X(f) \qquad x\left(\frac{t}{T}\right) \overset{(cambiamento \ di \ scala \) \ \mathcal{F}}{\longleftrightarrow} |T| \cdot X(Tf)$$

$$x(t-t_0) \stackrel{(traslazione\ temporale\)\mathcal{F}}{\longleftrightarrow} X(f)e^{-j2\pi ft_0}$$

$$x(t+t_0) \overset{(traslazione\ temporale\)\mathcal{F}}{\longleftrightarrow} X(f)e^{j2\pi ft_0}$$

$$x(t) pari \leftrightarrow X(-f) = X(f)$$

$$x(t) pari \leftrightarrow X(-f) = X(f)$$
 $x(t) dispari \leftrightarrow X(-f) = -X(f)$

$$x(t)$$
reale pari $\leftrightarrow X(f)$ reale pari

x(t) reale dispari $\leftrightarrow X(f)$ immaginario dispari

FORMULE UTILI SU TRASFORMATE E NON

DOMINIO DEL TEMPO	DOMINIO DELLA FREQUENZA	COMMENTO
$A \cdot rect\left(\frac{t}{T}\right)$	$A \cdot T \cdot sinc(f \cdot T)$	Rect di durata T
$A \cdot e^{-Bt} \cdot u(t)$	$\frac{A}{B+j2\pi f}$	Esponenziale unilatero
$A \cdot \Lambda\left(\frac{t}{T}\right)$	$A \cdot T \cdot sinc^2(f \cdot T)$	Triangolo di durata 2T
$A \cdot \delta(t)$	X(f) = A	Delta di Dirac
$\delta(t-t_0)$	$e^{-j2\pi ft_0}$	Delta centrata in t ₀
$e^{j2\pi f_0 t)}$	$\delta(f-f_0)$	Trasformata fasore
$x(t)\cdot\cos(2\pi f_0t)$	$\frac{1}{2}\big(X(f-f_0)+X(f+f_0)\big)$	Teorema della modulazione
$\cos(2\pi f_0 t) = \frac{1}{2} \left(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t} \right)$	$\frac{1}{2} \left(\delta(f - f_0) + \delta(f + f_0) \right)$	Trasformata coseno
$\cos(2\pi f_0 t) = \frac{1}{2} \left(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t} \right)$ $\sec(2\pi f_0 t) = \frac{1}{2j} \left(e^{j2\pi f_0 t} - e^{-j2\pi f_0 t} \right)$	$\frac{1}{2j} \left(\delta(f - f_0) - \delta(f + f_0) \right)$	Trasformata seno

$$e^{j\theta} = \cos\theta + j sen\theta$$
 $e^{-j\theta} = \cos\theta - j sen\theta$ $z = a + jb = \rho e^{j\theta}$

$$\sin(a+b) = \sin a \cdot \cos b + \sin b \cos a$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

$$\sin a + \sin b = 2\sin \frac{a+b}{2}\cos \frac{a-b}{2}$$

$$\cos a + \cos b = 2\cos \frac{a+b}{2}\cos \frac{a-b}{2}$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

$$\sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}$$

$$\cos a + \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$$

3