Double-click (or enter) to edit

written material

going to grab this data from gh:

https://raw.githubusercontent.com/stefanbund/py3100/main/ProductList_118.csv

▼ The Ulta Beauty Problem

our work entails designing and delivering a business intelligence application that serves a major retail enterprise. The system

first, install the plotly visualization library.

!pip install plotly-geo

```
•
```

Double-click (or enter) to edit

our system depends on the use of the pandas and numpy libraries.

```
import pandas as pd
import numpy as np

url ='https://raw.githubusercontent.com/stefanbund/py3100/main/ProductList_118.csv'
url_m = 'https://raw.githubusercontent.com/stefanbund/py3100/main/matrix.csv'

df_m = pd.read_csv(url_m) #make a pandas dataframe

df_m
```

	City	1	2	3	4	5	6	7	8	9	• • •	32	33	
0	Birmingham	8285	5343	6738	6635	5658	8118	4311	8535	3436		1340	6923	3(
1	Montgomery	1287	6585	8300	8874	8208	5363	3552	3387	2765		4424	8813	66
2	Mobile	8035	5569	9492	5905	5024	1107	6937	5580	8044		5430	1601	9,
3	Huntsville	6280	2841	3399	5448	6173	5451	7488	9981	5236		9169	7829	68
4	Tuscaloosa	4079	1066	3923	4177	4277	4219	9436	8160	4302		1556	5533	18
5	Hoover	9741	7377	9410	9790	8864	2522	5347	9145	8402		6031	7673	84
6	Dothan	7646	2060	4911	4976	7851	4277	7423	6183	6641		8253	1565	6(
7	Auburn	4326	2659	6928	4656	1828	5199	5331	6294	3076		6128	3737	77
8	Decatur	3786	2891	8124	2469	3704	3623	2409	8287	2032		6622	9742	90
9	Madison	1934	3628	9190	3275	9344	5778	1256	3523	1781		6619	6128	53
10	Florence	8017	3187	1128	4706	9962	7547	4440	4530	9569		8306	1392	13
11	Gadsden	2290	6402	8598	7547	5158	9731	8038	4435	7357		4488	3591	16
12	Vestavia Hills	9471	9142	4419	3846	2016	5069	4853	6336	9062		4613	2942	74
13	Prattville	6039	8003	6180	4610	3548	7115	6720	8512	9954		8225	7278	73
14	Phenix City	8788	8269	6838	2863	6753	6608	4048	8774	4513		5704	8720	30
15	Alabaster	1733	9767	3274	7125	7437	5748	5399	6513	3038		7351	9503	1(
16	Bessemer	6559	2453	1578	5158	3058	8075	7066	8530	8346		8921	3517	4
17	Enterprise	8436	7800	7234	5063	4274	1948	7887	6647	1320		4840	6309	73
18	Opelika	9998	8953	7923	6176	4369	9503	2126	1816	9224		3217	1170	90
19	Homewood	2373	7188	9880	9236	5969	9998	8703	8440	4643		8144	8091	38
20	Northport	3536	9231	8651	6374	4842	5704	8484	6322	2012		2154	8484	17
21	Pelham	6830	3736	2734	6443	8494	6206	7290	8518	6176		9219	4891	42
22	Trussville	2794	8273	9174	2850	8351	3978	5995	4632	7693		2582	9365	80
23	Mountain Brook	8433	9368	2141	2357	6566	1482	4787	3900	6615		4666	9227	2{

df_m.columns #dimensionality of the matrix

list all cities in the matrix dataframe

df_m['City'] #explore a Series inside the dataframe

0	Birmingham
1	Montgomery
2	Mobile
3	Huntsville
4	Tuscaloosa
5	Hoover
6	Dothan
7	Auburn
8	Decatur
9	Madison
10	Florence
11	Gadsden
12	Vestavia Hills
13	Prattville
14	Phenix City
15	Alabaster
16	Bessemer
17	Enterprise
18	Opelika
19	Homewood
20	Northport
21	Pelham
22	Trussville
23	Mountain Brook
24	Fairhope
Name:	City, dtype: object

investigate quartile as an analytic tool

df_m.dtypes
df_m.columns

City	object
1	int64
2	int64
3	int64
4	int64
5	int64
6	int64
7	int64
8	int64
9	int64
10	int64
11	int64
12	int64
13	int64
14	int64

37 AM	
15	int64
16	int64
17	int64
18	int64
19	int64
20	int64
21	int64
22	int64
23	int64
24	int64
25	int64
26	int64
27	int64
28	int64
29	int64
30	int64
31	int64
32	int64
33	int64
34	int64
35	int64
36	int64
37	int64
38	int64
39	int64
40	int64
41	int64
dtype:	object

Quantiles for each display, all stores

Double-click (or enter) to edit

$$df_3 = df_m.quantile([0.25, 0.5, 0.75], numeric_only=True, axis=1) df_3$$

	0	1	2	3	4	5	6	7	8	9	• • •	
0.25	3082.0	3633.0	2236.0	3473.0	3657.0	4628.0	4254.0	3588.0	3704.0	3451.0		344
0.50	5343.0	5431.0	5311.0	5771.0	5131.0	7588.0	5156.0	5331.0	6589.0	5875.0		647
0.75	7242.0	8074.0	7508.0	7935.0	7490.0	9145.0	6840.0	7606.0	8221.0	7783.0		743
3 rows × 25 columns												

per store, the quartile values

```
1 = df_3.T.columns #transpose, T
1

Float64Index([0.25, 0.5, 0.75], dtype='float64')

df_3.T.mean()

0.25     3535.24
     0.50     5826.36
     0.75     7953.00
     dtype: float64
```

define the global quartile boundary, per q

```
df_3.T[0.25].mean()
3535.24
```

Double-click (or enter) to edit

```
df_3.T[0.5].mean()
5826.36
```

Double-click (or enter) to edit

```
df_3.T[0.75].mean()
7953.0
```

Double-click (or enter) to edit

```
kk = df_3.T.mean()
kk #series

0.25     3535.24
    0.50     5826.36
    0.75     7953.00
    dtype: float64
```

what percentage of displays are at or below the 25th quartile, per store? exercise

```
# n =
((df_m.iloc[:, 1:] <= kk[0.25]).sum(axis=1) / df_m.shape[1]) * 100
# print(round(n))</pre>
```

```
0
      28.571429
1
      21.428571
2
      38.095238
3
      26.190476
4
      21.428571
5
      16.666667
6
      19.047619
7
      23.809524
      21.428571
8
9
      28.571429
10
      26.190476
11
      19.047619
12
      26.190476
13
      23.809524
14
      28.571429
15
      28.571429
      14.285714
16
17
      19.047619
18
      28.571429
19
      19.047619
20
      28.571429
21
      23.809524
22
      33.333333
23
      19.047619
24
      33.333333
```

```
la = df_m['25qt'] = round(((df_m.iloc[:, 1:] <= kk[0.25]).sum(axis=1) / df_m.shape[1]) * 100
ll = df_m['50qt'] = round(((df_m.iloc[:, 1:] <= kk[0.50]).sum(axis=1) / df_m.shape[1]) * 100
lll = df_m['75qt'] = round(((df_m.iloc[:, 1:] <= kk[0.75]).sum(axis=1) / df_m.shape[1]) * 100
print(la, ll, lll)</pre>
```

```
0
      28.6
1
      21.4
2
      38.1
3
      26.2
4
      21.4
5
      16.7
6
      19.0
7
      23.8
8
      21.4
      28.6
9
10
      26.2
      19.0
11
12
      26.2
      23.8
13
14
      28.6
15
      28.6
```

dtype: float64

```
16
            14.3
            19.0
     17
     18
            28.6
     19
            19.0
     20
           28.6
     21
            23.8
     22
            33.3
     23
            19.0
     24
            33.3
     dtype: float64 0
                            55.8
     1
            55.8
     2
            60.5
     3
            51.2
     4
            60.5
     5
            34.9
     6
           55.8
     7
            51.2
     8
           46.5
     9
           48.8
     10
           48.8
           41.9
     11
     12
           53.5
     13
           44.2
     14
           48.8
     15
           41.9
     16
           46.5
     17
           41.9
           55.8
     18
     19
           41.9
     20
           53.5
     21
           51.2
     22
           48.8
     23
            53.5
     24
            67.4
     dtype: float64 0
                            77.3
     1
           70.5
     2
           79.5
     3
           77.3
     4
           79.5
     5
           59.1
           90.9
     6
            70 г
# df_m
end_set = ['City','25qt','50qt','75qt']
df_m[end_set]
```

	City	25qt	50qt	75qt
0	Birmingham	28.6	55.8	77.3
1	Montgomery	21.4	55.8	70.5
2	Mobile	38.1	60.5	79.5
3	Huntsville	26.2	51.2	77.3
4	Tuscaloosa	21.4	60.5	79.5
5	Hoover	16.7	34.9	59.1
6	Dothan	19.0	55.8	90.9
7	Auburn	23.8	51.2	79.5
8	Decatur	21.4	46.5	70.5
9	Madison	28.6	48.8	75.0
10	Florence	26.2	48.8	63.6
11	Gadsden	19.0	41.9	68.2
12	Vestavia Hills	26.2	53.5	70.5
13	Prattville	23.8	44.2	75.0
14	Phenix City	28.6	48.8	75.0
15	Alabaster	28.6	41.9	84.1
16	Bessemer	14.3	46.5	70.5
17	Enterprise	19.0	41.9	72.7
18	Opelika	28.6	55.8	72.7
19	Homewood	19.0	41.9	68.2
20	Northport	28.6	53.5	75.0

create a choropleth for each store

```
#choropleth:
import pandas as pd
# Create a sample dataframe
data = {'City': ['Birmingham', 'Montgomery', 'Mobile', 'Huntsville', 'Tuscaloosa', 'Hoover',
        'Zip Code': ['35201','36101','36601','35801','35401','35216','36301','36830','35601'
df = pd.DataFrame(data)
# Create a list of zip codes
zip_codes = ['35201', '36101', '36601', '35801', '35401', '35216',
             '36301', '36830', '35601', '35756', '35630', '35901',
             '35216', '36066', '36867', '35007', '35020',
             '36330', 36801, 35209, 35473, 35124, 35173, 35213, 36532]
# Add the list of zip codes as a new column to the dataframe
# df = df.assign(Zip_Codes=zip_codes)
df m = df m.assign(zip=zip codes)
print(df_m)
```

City \ . . . Birmingham Montgomery . . .

Mobile Huntsville

Tuscaloosa Hoover Dothan

Auburn Decatur . . .

Madison . . . Florence . . . Gadsden . . .

Vestavia Hills . . . Prattville . . .

Phenix City . . . Alabaster

Bessemer . . . Enterprise

Opelika Homewood Northport

Pelham Trussville . . .

Mountain Brook Fairhope

25qt 50qt 75qt zip 28.6 55.8 77.3 21.4 55.8 70.5 38.1 60.5 79.5

```
3
    7935
           2605
                 9982
                        3338
                               9116
                                     3875
                                            26.2
                                                   51.2
                                                         77.3
                        2513
           2158
                 4469
                               8135
                                     6963
                                            21.4
                                                         79.5
4
    3657
                                                   60.5
                                                                35401
5
                 4628
    9748
           7224
                        8107
                               6143
                                     1671
                                            16.7
                                                   34.9
                                                         59.1
                                                                35216
                 7842
    5650
           4400
                        4006
                               9335
                                     3571
                                            19.0
                                                   55.8
                                                         90.9
                                                                36301
6
7
    4387
           6890
                 2833
                        5083
                              9707
                                     2116
                                            23.8
                                                   51.2
                                                         79.5
                                                                36830
8
                        5408
                               3707
                                     8744
                                            21.4
                                                   46.5
                                                         70.5
    9305
           6509
                 6848
                                                                35601
9
    1746
           4470
                 7054
                        6573
                               3556
                                     1374
                                            28.6
                                                  48.8
                                                         75.0
                                                                35756
    5929
                 7306
                        8746
                              4000
                                     6943
                                            26.2
10
           1123
                                                   48.8
                                                         63.6
                                                                35630
11
    2549
           5175
                 5997
                        9608
                               7230
                                     9731
                                            19.0
                                                  41.9
                                                         68.2
                                                                35901
12
    5142
           9619
                 9601
                        8099
                               1391
                                     6276
                                            26.2
                                                   53.5
                                                         70.5
                                                                35216
13
    1591
           4401
                 3457
                        4245
                              4341
                                     2573
                                            23.8
                                                  44.2
                                                         75.0
                                                                36066
                        7738
                               3828
                                     1202
14
    3520
           7654
                 6845
                                            28.6
                                                  48.8
                                                         75.0
                                                                36867
15
    2479
           9673
                 7478
                        7207
                               7006
                                     3523
                                            28.6
                                                  41.9
                                                         84.1
                                                                35007
           7641
                                            14.3
    4810
                 5365
                        3545
                               6812
                                     9483
                                                   46.5
                                                         70.5
16
                                                                35020
17
    3461
           2640
                 4375
                        8634
                              4917
                                     2830
                                            19.0
                                                  41.9
                                                         72.7
                                                                36330
18
    5191
           9304
                 2720
                        3100
                              3912
                                     1548
                                            28.6
                                                   55.8
                                                         72.7
                                                                36801
19
    8787
           5459
                 8389
                        5242
                               2224
                                     6025
                                            19.0
                                                  41.9
                                                         68.2
                                                                35209
20
    6947
           5401
                 6681
                        9018
                              1668
                                     8307
                                            28.6
                                                   53.5
                                                         75.0
                                                                35473
21
    2777
           4045
                 7309
                        4745
                              4284
                                     2640
                                            23.8
                                                  51.2
                                                         72.7
                                                                35124
                               3344
22
    1650
           9470
                 6356
                        4700
                                     8743
                                            33.3
                                                  48.8
                                                         75.0
                                                                35173
23
                 5198
                        9266
                              4945
                                     3935
                                            19.0
    5765
           3653
                                                   53.5
                                                         70.5
                                                                35213
    3457
           4808
                 7227
                        5482
                              6355
                                     4553
24
                                            33.3
                                                  67.4
                                                         86.4
                                                                36532
```

[25 rows x 46 columns]

experiment with chloropleths

```
df_m.columns
     Index(['City', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12',
                  '14', '15', '16', '17', '18', '19', '20', '21', '22', '23',
                              '28', '29', '30', '31', '32', '33',
                                                                   '34', '35', '36',
                 '26', '27',
            '37', '38', '39', '40', '41', '25qt', '50qt', '75qt', 'zip'],
           dtype='object')
import plotly.express as px
import pandas as pd
# Load data
df_demo = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_us_ag_6
# Create choropleth map
fig = px.choropleth(df demo, locations='code', locationmode='USA-states', color='total expor
# Show map
fig.show()
```


df_demo

	code	state	category	total exports	beef	pork	poultry	dairy	fruits fresh	fru:
0	AL	Alabama	state	1390.63	34.4	10.6	481.0	4.06	8.0	1
1	AK	Alaska	state	13.31	0.2	0.1	0.0	0.19	0.0	
2	AZ	Arizona	state	1463.17	71.3	17.9	0.0	105.48	19.3	4
3	AR	Arkansas	state	3586.02	53.2	29.4	562.9	3.53	2.2	
4	CA	California	state	16472.88	228.7	11.1	225.4	929.95	2791.8	594
5	CO	Colorado	state	1851.33	261.4	66.0	14.0	71.94	5.7	1
6	CT	Connecticut	state	259.62	1.1	0.1	6.9	9.49	4.2	
7	DE	Delaware	state	282.19	0.4	0.6	114.7	2.30	0.5	
8	FL	Florida	state	3764.09	42.6	0.9	56.9	66.31	438.2	93
9	GA	Georgia	state	2860.84	31.0	18.9	630.4	38.38	74.6	15
10	HI	Hawaii	state	401.84	4.0	0.7	1.3	1.16	17.7	3
11	ID	Idaho	state	2078.89	119.8	0.0	2.4	294.60	6.9	1
12	IL	Illinois	state	8709.48	53.7	394.0	14.0	45.82	4.0	
13	IN	Indiana	state	5050.23	21.9	341.9	165.6	89.70	4.1	
14	IA	lowa	state	11273.76	289.8	1895.6	155.6	107.00	1.0	

df_demo.columns

map demo #2: state of AL

df_us.columns

Index(['fips', 'unemp'], dtype='object')

df_us

	fips	unemp
0	01001	5.3
1	01003	5.4
2	01005	8.6
3	01007	6.6
4	01009	5.5
3214	72145	13.9
3215	72147	10.6
3216	72149	20.2
3217	72151	16.9
3218	72153	18.8
3210 rc	we x 2 c	olumne

3219 rows × 2 columns

documentation <u>here</u>, with more discusssion <u>here</u>, and specifially to do <u>counties</u>, <u>here</u>
county **list** for ulta stores in Alabama, by FIPS code

```
al fips =[
    {'County': 'Autauga', 'FIPS Code': '01001'},
    {'County': 'Baldwin', 'FIPS Code': '01003'},
    {'County': 'Barbour', 'FIPS Code': '01005'},
    {'County': 'Bibb', 'FIPS Code': '01007'},
    {'County': 'Blount', 'FIPS Code': '01009'},
    {'County': 'Bullock', 'FIPS Code': '01011'},
    {'County': 'Butler', 'FIPS Code': '01013'},
    {'County': 'Calhoun', 'FIPS Code': '01015'},
    {'County': 'Chambers', 'FIPS Code': '01017'},
    {'County': 'Cherokee', 'FIPS Code': '01019'},
    {'County': 'Chilton', 'FIPS Code': '01021'},
   {'County': 'Choctaw', 'FIPS Code': '01023'},
    {'County': 'Clarke', 'FIPS Code': '01025'},
    {'County': 'Clay', 'FIPS Code': '01027'},
    {'County': 'Cleburne', 'FIPS Code': '01029'},
    {'County': 'Coffee', 'FIPS Code': '01031'},
    {'County': 'Colbert', 'FIPS Code': '01033'},
    {'County': 'Conecuh', 'FIPS Code': '01035'},
    {'County':'Greene', 'FIPS Code': '28073'},
    {'County': 'Hale', 'FIPS Code' : '28065'},
    {'County': 'Henry', 'FIPS Code': '28067'},
    {'County':'Houston', 'FIPS Code' : '28069'},
    {'County':'Jackson', 'FIPS Code' : '28071'},
    {'County':'Jefferson', 'FIPS Code': '28073'},
   {'County':'Lamar', 'FIPS Code' : '28073'}]
len(al_fips)
     25
df m.columns
     Index(['City', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12',
            '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24',
                , '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36',
            '37', '38', '39', '40', '41', '25qt', '50qt', '75qt', 'zip'],
           dtype='object')
df_m
```

	City	1	2	3	4	5	6	7	8	9	• • •	36	37	
0	Birmingham	8285	5343	6738	6635	5658	8118	4311	8535	3436		3555	1341	17
1	Montgomery	1287	6585	8300	8874	8208	5363	3552	3387	2765		2805	4601	44
2	Mobile	8035	5569	9492	5905	5024	1107	6937	5580	8044		9807	2652	92
3	Huntsville	6280	2841	3399	5448	6173	5451	7488	9981	5236		7935	2605	9(
4	Tuscaloosa	4079	1066	3923	4177	4277	4219	9436	8160	4302		3657	2158	44
5	Hoover	9741	7377	9410	9790	8864	2522	5347	9145	8402		9748	7224	46
6	Dothan	7646	2060	4911	4976	7851	4277	7423	6183	6641		5650	4400	78
7	Auburn	4326	2659	6928	4656	1828	5199	5331	6294	3076		4387	6890	28
8	Decatur	3786	2891	8124	2469	3704	3623	2409	8287	2032		9305	6509	68
9	Madison	1934	3628	9190	3275	9344	5778	1256	3523	1781		1746	4470	7(
10	Florence	8017	3187	1128	4706	9962	7547	4440	4530	9569		5929	1123	73
11	Gadsden	2290	6402	8598	7547	5158	9731	8038	4435	7357		2549	5175	59
12	Vestavia Hills	9471	9142	4419	3846	2016	5069	4853	6336	9062		5142	9619	96
13	Prattville	6039	8003	6180	4610	3548	7115	6720	8512	9954		1591	4401	34
14	Phenix City	8788	8269	6838	2863	6753	6608	4048	8774	4513		3520	7654	68
15	Alabaster	1733	9767	3274	7125	7437	5748	5399	6513	3038		2479	9673	74
16	Bessemer	6559	2453	1578	5158	3058	8075	7066	8530	8346		4810	7641	53
17	Enterprise	8436	7800	7234	5063	4274	1948	7887	6647	1320		3461	2640	43
18	Opelika	9998	8953	7923	6176	4369	9503	2126	1816	9224		5191	9304	27
19	Homewood	2373	7188	9880	9236	5969	9998	8703	8440	4643		8787	5459	80
20	Northport	3536	9231	8651	6374	4842	5704	8484	6322	2012		6947	5401	66
shap	e[0]													

df_m.shape[0]

25

Mountain Mountain Man Ones Oddd Ones General Ann Area 2000 6645 Free 2653 Free 1480 Area 2000 6645 Free 2653 Free 26

ετ Γαπτορο στιτ ίτοτ 20τι σουν τουν έσου έσευ τουτ έσος ... στοέ τους έ

```
print(len(al_fips))
df_counties = pd.DataFrame(al_fips)
df_counties.size
```

25

50

```
print(df_counties.columns)
     Index(['County', 'FIPS Code'], dtype='object')
df_m: all display data, per store
df_m.shape[0]
     25
fips codes per county
df_counties.shape[0]
     25
df_counties.columns
     Index(['County', 'FIPS Code'], dtype='object')
merge the county fips codes with the stores sales results (df_m)
merged_df = pd.concat([df_m, df_counties], axis=1)
merged_df.head()
```

	City	1	2	3	4	5	6	7	8	9	• • •	38	39	4
0	Birmingham	8285	5343	6738	6635	5658	8118	4311	8535	3436		1756	7598	15(
1	Montgomery	1287	6585	8300	8874	8208	5363	3552	3387	2765		4449	5727	23′
2	Mobile	8035	5569	9492	5905	5024	1107	6937	5580	8044		9296	2815	488
3	Huntsville	6280	2841	3399	5448	6173	5451	7488	9981	5236		9982	3338	91 ⁻
4	Tuscaloosa	4079	1066	3923	4177	4277	4219	9436	8160	4302		4469	2513	810
5 rc	5 rows × 48 columns													

use the merged_df as data source for the choropleth

merged_df.columns

Double-click (or enter) to edit

use the plotly api, feed it the merged_df information to do a map, with encoded quantile values

percentage displays under 25th qt


```
import plotly.express as px
import requests
import json
import pandas as pd
# Load the geojson data for Alabama's counties
r = requests.get('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-
counties = json.loads(r.text)
# Filter the geojson data to only include Alabama's counties
target states = ['01']
counties['features'] = [f for f in counties['features'] if f['properties']['STATE'] in targe
# Load the sample data for Alabama's counties
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv
# Create the choropleth map
fig = px.choropleth(df, geojson=counties, locations='fips', color='unemp',
                    color_continuous_scale='Viridis', range_color=(0, 12),
                    scope='usa', labels={'unemp': 'unemployment rate'})
fig.update_layout(margin={'r': 0, 't': 0, 'l': 0, 'b': 0})
fig.show()
```

unemployment rate
12