# Self-adaptative genetic algorithm for minimum thickness design of composite laminate

Huiyao Zhang

11-10-2020

Kyoto Institue of Technology

#### Content

- 1. Classic Lamination Theory
- 2. Self-adaptative Genetic Algorithm
- 3. Experiment and result

### 1. Inspiration

- Paper: "Optimum design of composite laminates for minimum thickness" (Computers and Structures)
- Design Variable: Fiber orientation angles: [-90, 90], and layer thickness
- Search Method: Simulated annealing algorithm
- ullet Constraint: safety factor >1

#### 1. Problem with this work

- the search process wasn't presented
- the convergence speed, and the search cost
- GA is a better alternative



# 2. Methdology

- modifying selection strategy: in order to handle the constraint search
- Self-adaptative mutation direction of fiber orientation and laminate thickness: random change the length, and the angle in the laminate.
- the self-adaptative parameters don't refer to parent's proportion, mutation probability.

# 2. Classic Lamination Theory

$$\begin{array}{c}
\theta \\
-\theta \\
\vdots \\
\theta \\
-\theta
\end{array}$$

**Figure 1:** Model for Angle ply laminate



$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{16} \\ A_{12} & A_{22} & A_{26} \\ A_{16} & A_{26} & A_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{0} \\ \varepsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{11} & B_{12} & B_{16} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} k_{x} \\ k_{y} \\ k_{xy} \end{bmatrix}$$

$$\begin{array}{c}
+ \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} k_y \\ k_{xy} \end{bmatrix} \\
\begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{16} \\ B_{12} & B_{22} & B_{26} \\ B_{16} & B_{26} & B_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x^0 \\ \varepsilon_y^0 \\ \gamma_{xy}^0 \end{bmatrix} \\
+ \begin{bmatrix} D_{11} & D_{12} & D_{16} \\ D_{11} & D_{12} & D_{16} \\ D_{16} & D_{26} & D_{66} \end{bmatrix} \begin{bmatrix} k_x \\ k_y \\ \frac{6}{11} \\ k_{xy} \end{bmatrix}$$

## 2. Self-adaptative GA: selection operator

- acitve group: individual is used to increase the diversity of the population
- potential group: individual doesn't fulfill constraint
- proper group: individual meet constraint

## 2. Self-adaptative GA: mutation operator

$$\mathsf{md} = [\mathit{CT}_1, \cdots, \mathit{CT}_{n-1}, \mathit{CT}_n] - [\mathit{ICV}_0, \cdots, \mathit{ICV}_{n-1}, \mathit{ICV}_n]$$

- md means mutation direction.
- CT<sub>i</sub> denotes the i-th constraint, such as weight, safety factor.
- ICV<sub>i</sub> denotes individual's i-th constraint value, such as, weight, safety factor of current individual.

# 2. Self-adaptative GA: mutation operator

• length mutation =

$$\begin{cases} LMC*[0,\sum_{i=1}^{N}md_i] & \text{if } \sum_{i=1}^{N}md_i>0\\ LMC*[\sum_{i=1}^{N}md_i,0] & \text{if } \sum_{i=1}^{N}md_i<0 \end{cases}$$

LMC stands for length mutation coefficient, it's a positive integer.

• angle mutation =

$$\begin{cases} AMC*[0,\sum_{i=1}^{N}md_i] & \text{if } \sum_{i=1}^{N}md_i>0\\ AMC*[\sum_{i=1}^{N}md_i,0] & \text{if } \sum_{i=1}^{N}md_i<0 \end{cases}$$

AMC stands for angle mutation coefficient, it's sign is unclear.

# Result: Loading $N_x = 10, N_y = 5$ MPa m





**Figure 3:** Two distinct angles in the laminate

**Result: Loading**  $N_x = 10, N_y = 5$  **MPa m** 

Table 1: Comparison with the results of DSA

| Loading                  | Akbulut and Sonmez's[?] Study                       |                       |        |        | Present Study                                           |                       |        |        |
|--------------------------|-----------------------------------------------------|-----------------------|--------|--------|---------------------------------------------------------|-----------------------|--------|--------|
| $N_x/N_y/N_{xy}$ (MPa m) | Optimum lay-up sequences                            | laminate<br>thickness | TW     | MS     | Optimum lay-up sequences                                | laminate<br>thickness | TW     | MS     |
| 10/5/0                   | [37 <sub>27</sub> /-37 <sub>27</sub> ] <sub>s</sub> | 108                   | 1.0068 | 1.0277 | [33 <sub>29</sub> /-39 <sub>25</sub> /-39] <sub>s</sub> | 109                   | 1.0074 | 1.0246 |
| 20/5/0                   | [31 <sub>23</sub> /-31 <sub>23</sub> ] <sub>s</sub> | 92                    | 1.0208 | 1.1985 | [33 <sub>22</sub> /-31 <sub>24</sub> ] <sub>s</sub>     | 92                    | 1.0055 | 1.2065 |
| 40/5/0                   | [26 <sub>20</sub> /-26 <sub>20</sub> ] <sub>s</sub> | 80                    | 1.0190 | 1.5381 | $[29_{18}/-21_{23}/-\bar{2}1]_s$                        | 83                    | 1.0034 | 1.7350 |
| 80/5/0                   | [21 <sub>25</sub> /-19 <sub>28</sub> ] <sub>s</sub> | 106                   | 1.0113 | 1.2213 | [-20 <sub>27</sub> /21 <sub>25</sub> /25] <sub>s</sub>  | 105                   | 1.0029 | 1.2063 |
| 120/5/0                  | [17 <sub>35</sub> /-17 <sub>35</sub> ] <sub>s</sub> | 140                   | 1.0030 | 1.0950 | [-18 <sub>34</sub> /17 <sub>36</sub> ] <sub>s</sub>     | 140                   | 1.0000 | 1.0898 |