M 45

Question Booklet No.:

ENTRANCE EXAMINATION - 2020

SET-A

Time: 1 HOUR 30 MINUTES

Signature of Invigilator

Total Marks: 100

Instructions to Candidates

- Do not write your name or put any other mark of identification anywhere in the OMR Response Sheet. IF ANY MARK OF IDENTIFICATIONS IS DISCOVERED ANYWHERE IN OMR RESPONSE SHEET, the OMR sheet will be cancelled, and will not be evaluated.
- 2. This Question Booklet contains the cover page and a total of 100 Multiple Choice Questions of 1 mark each
- Space for rough work has been provided at the beginning and end. Available space on each page may also be used for rough work.
- 4. There is negative marking in Multiple Choice Questions. For each wrong answer, 0.25 marks will be deducted.
- USE/POSSESSION OF ELECTRONIC GADGETS LIKE MOBILE PHONE, iPhone, iPad, page ETC. is strictly PROHIBITED.
- Candidate should check the serial order of questions at the beginning of the test. If any question is found missing
 in the serial order, it should be immediately brought to the notice of the Invigilator. No pages should be tom out
 from this question booklet.
- Answers must be marked in the OMR response sheet which is provided separately. OMR Response sheet must be handed over to the invigilator before you leave the seat.
- The OMR response sheet should not be folded or wrinkled. The folded or wrinkled OMR/Response Sheet will not be evaluated.
- Write your Roll Number in the appropriate space (above) and on the OMR Response Sheet. Any other details, if asked for, should be written only in the space provided.
- 10. There are four options to each question marked A, B, C and D. Select one of the most appropriate options and fill up the corresponding oval/circle in the OMR Response Sheet provided to you. The correct procedure for filling up the OMR Response Sheet is mentioned below.

WRONG METHOD

ABOD BCD ACO ACO BC

ENTRANCE EXAMINATION - 2020

Paper Code No.: M 45

SET - A

		OLI A		
1/	A se	eries of number follows some rule and the series is	es is	1, 5, 10,16, 23, 31,? The missing
	A.	38	B.	39
	e.	40	D.	42
2.	Iden	tify the wrong number in the series: 5, 8, 20, 4	2, 12	4, 244, 736
	A.	42	B.	20
	C.	8	D.	124
3./	In th	ne series of DKM, FJP, HIS, JHV?. The	miss	ing segment will be
1	A.	HGY	B.	IGY
	C.	IGZ -	D.	LGY
4/	In th	ne series of JKL, LKJ, JKLM, MLKJ, JKLMN,		?. The missing segment will be
	A.	NMLKJ		LMJKN
	C.	LMNKJ	D.	KLMNJ
5.	If th	be in the middle in order after rearrangement?	rrang	ged in alphabetical order, which one
	A.		B.	I
· .	Ç	K	D.	N
6.	THE STREET	tify the next alphabet in the series: DMP, FLN,	HKI	, JJJ,?
		LIH		MII
	C.	·III_	D.	MIF
7.		tor is related to patient in the same way as const	ultan	t is related to
	A.	customer		accused
	C.	magistrate	D.	client

	To the	e following question, select the related word from the given options:			
8.	In the	re : Cube :: Circle :?			
		B. Parabola			
	Α.	Ellipse D. Cone			
	8.	Sphere sting to a photograph Raveena says, 'He is the son of the only son of my grandfathe			
9.	How	v is the man in the photograph related to Raveena?			
	Α.	brother B. uncle & L			
	C.	cousin D. none of these			
10.	The	relationship between premises and conclusion in a deductive argument is basically of			
	A.	cause effect B. analytic synthetic			
	C.	implication entailment D. none of these			
11.	State	ement: "Necessity is the mother of all inventions".			
	Conclusions				
	(i)	There can be no invention without there being mother.			
	(ii)	Mother is a necessity.			
	A.	Only conclusion (i) is implied			
	В.	Only conclusion (ii) is implied			
	C.	Both (i) and (ii) are implied			
	D.	Either (i) or (ii) is implied			
12.		tements: The new education policy envisages major modification in the education tem.			
	Ass	The present education system needs improvement The present education system is inconsistent with the national peads			
	(i)	The present education system needs improvement			
	(ii)	The present education system is inconsistent with the national needs.			
	A.	Only assumption (i) is implicit			
	В.	Only assumption (ii) is implicit			
	Ø.	Only assumption (ii) is implicit Both (i) and (ii) are implicit 36 36 36 36			
	D.	Either (i) or (ii) is implicit			
		1, 1,00			
Paper	Code	: M 45 / Set-A [2] W86 Entrance Examination - 20			
		(2A)			

13.	Statement: Should the education be given by the Arguments	
	(i) Yes, it will help in universalization of educa	
	(ii) No, there will be budgetary pressure creating	ng some new problems.
	A. Only (i) is strong	B. Only (ii) is strong
	a Doth are strong	D. neither (i) nor (ii) is strong
14.	If a rectangle is called a circle, a circle a point, shape of a wheel is A. rectangle	B. circle D. triangle
	A. rectangle	B. circle 29th 198
	C. point	D. triangle
15	The sum of three numbers is 102. If the ratio	between first and second be 2:3 and that
1.0	between second and third be 5:3, then the secon	B 27 442 4/10+15+9
	A. 30	B. 45 2 M3 15
	6. A 4 cm cube is cut into 1 cm cubes. What is the	nercentage increase in the surface area after
	6. A 4 cm cube is cut into 1 cm cubes. What is the such cutting? A. 300% C. 75% S=399 17. A car takes 6 hours to cover a journey at a spectorder to complete the journey in 5 hours?	B. 25% 30 22 2 34 18 25
nal	A. 55 km/h	B. 54 km/h not 102 x 18
	C. 52 km/h	D. 51 km/h
70		US. How could CREATION be Written in that B. INOTAERL D. ERCITANO
	19. A train passes through a telegraph post in 9	seconds moving with a speed of 54 km/h, the
	length of the train is	39 B2 1 P
	A. 125 D= SXT 9+ 05 062	186 D. none of these array Dolorso
-2020 -1°4	Paper Code: M 45/Set-A Paper	154 to Entrance Examination - 2020 Grant Sux 9/2 Subsect 9/4 Grant Sux 9/

		[4] Entrance Examination.
Par	per Code : M 45 / Set-A	D. none of these
	C. chemical transfer cycle	B biogeochemical cycle
	A. biological cycles	1 sugle
26.	environment are called	l elements of the biosphere between organisms
. 26	e. 10%	D. none of these
	A. 20%	B. 15%
	organic matter stored is about	a from one trapine level to the next, the peres
25.		od from one traphic level to the next, the percentage
	C. thermocline	D. none of these
	A epilimnion	B. hypolimnion
24.		upper warm circulating surface water layer is termed
	C. denitrification	D. none of these
-X	A. Nitrogen fixation	B. nitrification
14		into molecular nitrogen (N ₂) is called
	A. detrivores C. carnivores	D. none of these
22.		B. omnivores
	C. KJ/m²/day The organisms which can eat both p	plants and animals are called
	A. KJ/m²/year	D. none of these
	given time and it is expressed in	B. KJ/m ² /month
21.	The pyramid of energy indicates the	amount of energy that flows into each trophic level in
	. w but R is	a correct explanation
	un an eme but R is I	not a correct explanation of A.
		at avalanation of A.
	A. A is true but R is false	
10.	Assertion (A): Carbon monoxide comb Reason (R): Carbon monoxide comb	oines with haemogroom.
	Assertion (A): Carbon monoxide wh	en inhaled causes death.

Paper	Code	e: M 45/Set-A [5]		Entrance Examination - 2020
	C.	15 years	D.	none of these
	A.	20 years	В.	30 years
34.	The	e design period for water supply projects un	der norma	al circumstances is
	C.	metering system	D.	none of these
4	A.	good water quality	В.	hotter climate
33.	Wh	ich one of the following practices causes re	duction in	the per capita demand
	D.	none of these		
	S.	1.0 mg/l platinum cobalt solution		
	B.	1.0 mg/l orthotolidin solution		
	A.	1.0 mg/1 potassium iodate solution		asher on her house will
32.	The	color of water is measured in terms of Col	or Unit (C	CU) which is equivalent to
	C.	reflection of light	D.	none of these
	Ą.	scattering of light	В.	adsorption of light
31.	The	turbidity meter works on the principle of		
	C./	UV—C	D.	none of these
A	A.	UV—A	В.	UV—B
30.,	Whi	ch category of UV radiations reaching the	earth surf	ace due to depletion of ozone layer?
	g.	5.60	D.	none of these
	A.	7.00	В.	6.00
29.	The	rain is termed as acid rain when the pH of	rain water	r equals to or less than
	C.	1.00 mm	D.	none of these
20.	A.	0.01 mm	В.	0.10 mm
28.	The	stratospheric ozone is measured in Dobson	Unit (DU	J) and DU is equal to
	C	278 ppm	D.	none of these
27.	Α.	320 ppm		200 ppm
. 7	The	atmospheric concentration of carbon dioxid	de in pre-i	industrial revolution era was

35.	water and expressed in	for TDS is often madeby terms of millisiemens	deter	mining the electrical conductivity of meter. The factor used to conver
	millisiemens to mg/l is			0.055 to 0.09
	A. 0.55 to 0.90		D.	None of these
	C. 0.55 to 09	have when fluorid	le con	centration in drinking water exceed
36.	The discoloration of teeth	takes place when	В.	1.0 mg/l
7	A. 2.0 mg/l	(&	D.	none of these
	C. 0.5 mg/1	11		
37.		of the organics the num		l values of reaction rate constant,
	A. 0.2 to 0.4 d ⁻¹		В.	0.1 to 1.0d ⁻¹
			D.	none of these
38.	C. 0.1 to 0.5 d ⁻¹ The gastrointestinal disordamage is caused by	rders, high fever, ulcerat	tion o	of the intestines and possible new
	A. vibrio comma		В.	salmonella typhosa
	C. giardia lamblia		D.	none of these
39.	The liquid and gas conta equilibrium as quickly as		to di	rive the water gas mixture toward
	A. oxidation		B.	reduction
	C. degasification		D.	none of these
40.	The suspensions in which displacement of water as t	the concentration of part hey settle are called	ticles	is not sufficient to cause significan
	A. concentrated suspens	ions	B.	dilute suspensions
	C./ floc suspensions		D.	none of these
41.	The velocity gradient in te	rms of power dissipation	per v	olume is given by
	A. $G = (P/V \mu)^2$ C. $G = (P/V \mu)^{1/3}$			
	c. $G = (P/V_{\mu})^{1/3}$		D	$G = (P / V \mu)^{1/2}$ $G = (P V / \mu)^{1/2}$
Paper	Code: M 45 / Set-A	[6]		Patronce Examination . 16

42 H	In re	carbonation process, the insoluble carb	onates combi	ne with the carbon dioxida to form
7	A	white precipitates		insoluble bicarbonate
	C.	soluble bicarbonates		none of these
43.	In sl	ow sand filter, the gelatinous slimes of er sand layer, which is called	bacterial grov	wth is formed on the surface and the
	A.	biological slime layer	В.	filtered slime layer
	Sé.	schmutzdecke		none of these
44.	In ch	alorination process, the amount of amn	nonia used ger	nerally varies from
	A.	1/3 to 1/4 of the amount of chlorine		
	B.	1/3 to 3/4 of the amount of chlorine		
	C.	1/2 to 1 of the amount of chlorine		
	D.	none of these		
45.	The	point at which chlorine that is added to	o water appear	rs as a residual chlorine, is known as
	A.	end chlorination point	В.	desired chlorination point
	K.	break point chlorination	D.	none of these
46.	The	coefficient of uniformity of sand to be	used in filter	is defined as
	X.	D ₆₀ / D ₁₀	В.	D ₁₀ / D ₆₀
	C.	D ₆₀ * D ₁₀	D.	none of these
47.	Wat	er with high magnesium hardness is s	oftened by the	process, called
	A.	recarbonation	В.	split treatment
	Ç.	zeolite process	D.	none of these
48.	1021111	pump suitable for lifting water from p, is	very deep tub	pewells of the order of 100 - 150 m
	Α.	jet pump	В.	submersible pump
		air lift pump	D.	none of these
Paper	Code	: M 45 / Set-A	7]	Entrance Examination - 2020

	la use	d for the design of pressure pipes?
402	Which one is the most appropriate formula use	B. Darcy Weisbach formula
498	A. Mannings formula	D. none of these
	2 12	using
50.	C. Chezy's formula The water hammer pressure can be reduced by	B. slow closing valves
	A. fast closing valves	D. none of these
	C. critically closing time, valves A sewer pipe carrying sewage from a building	to the point of its immediate disposal is
51.		
	to be	B house sewer
	A. lateral sewer	D. none of these
	C. intercepting sewer	age flow for branch sewer up to diameter s
52. ★	The ratio of maximum sewage flow to the avera	ige now for outside the
	A. 2.25	B. 2.50
	C. 3.00/	D. none of these
53.	The sewer piper of diameter less than 400 mm running at	are designed at maximum discharge to b
	A. 1/2 full depth	B. 2/3 full depth
	C. 3/4 full depth	D. None of these
54. }	A half proportional flow weir cut symmetrical called	ly and centrally along the vertical axis is
	A. Proportional flow weir	P. Sutro weir
	C. Parshall flume	D. none of these
55.	The recommended minimum size of grit to be ren	
×	A. 0.50 mm	
	C. 0.15 mm	B. 0.25 mm
		D. none of these
Paper (Code: M 45 / Set-A [8]	Entrance Examination - 2011

	If th	e depth of circular manhole is 2.0 m,	the correspondi	ing diameter of manhole should be
56.	A.	900 mm		1200 mm
	C.	1500 mm		1800 mm
57.	Whi	ich type of pump is required to break t		
31.	A.	air pressure pump		centrifugal pump
	C.	reciprocating pump		none of these
58.	The	gradient required to generate self oneter is	leansing veloc	ity in a circular sewer of 150 mm
	A.	1 in100	В.	1 in 150
	C.	1 in 200	D.	none of these
59.	The	appropriate percentage of water cont	ent in sewage i	s and
	A.	92.0%	B.	99.9%
	C.	90.0%	D.	none of these
60.		minimum dissolved oxygen content atic life should be atleast	prescribed in r	iver stream to survive fish or other
	A.	2.0 ppm	B.	3.0 ppm
	Ø.	4.0 ppm	D.	none of these
61.	Wh	ich form of nitrogen is expected in fu	lly oxidized sev	wage?
	A.	nitrite	B.	nitrate
	C.	molecular nitrogen	D.	none of these
62.	The	detention time adopted for the design	n of grit chamb	er is in the order of
X	A.	1.0 minute	B.	5.0 minute
		10.0 minute		none of these
63.	Wh	ich type of reactor follows a longitud		
	A.	sequencing batch reactor	B.	plug flow reactor
	C.	arbitrary flow reactor	D.	none of these
Paper		e: M 45 / Set-A	9]	Entrance Examination - 2020

64.	The bulking of sludge in the activated sludge	e clarifier may be caused by
	A. filamentous organisms	B. excessive growth of algae
	C. nitrifying bacteria	D. none of these
65.	The following steps are involved in sequence	eing batch reactor systems
3	1. Idle	2. Fill
	3. Settle (sedimentation/clarification)	4. React (aeration)
	5. Draw (decant)	×
	The correct sequence of these steps are	
	A. 1, 2, 3, 4, 5	/B. 2, 4, 3, 5, 1
	C. 2, 3, 4, 5, 1	D. 2, 5, 3, 4, 1
66.	The anaerobic conversion of the organic numbers three steps which are	matter into gaseous form is thought to oc
	l. Methanogenesis	2. Hydrolysis
	3. Acidogenesis	
	The correct sequence of these steps is	
	A. 1, 2, 3	B. 2, 1, 3
	9. 2, 3, 1	D. 3, 2, 1
67.	Trickling filter designs may be classified on	the basis of
7.	A. hydraulic loading rates only	
	B. organic loading rates only	
	C. hydraulic or organic loading rates	
	D. hydraulic retention time	
68.	In an anaerobic digestion process, a well esta	ahlished diameter and the second
	A. 2000 to 5000 mg/l	
	C. 500 to 1000 mg/l	B. 1000 to 3000 mg/1
		D. none of these
Paper	Code: M 45 / Set-A	•
	The state of the s	

	In th	he upflow anaerobic sludge blanket process, the	was	te to be treated is introduced from
69.	Α.	the middle of the reactor		the bottom of the reactor
	C.	the top of the reactor		anywhere in the reactor
		embiotic relationship between bacteria and alga-	e occ	urs in
70.	A.	anaerobic zone		
	В.	intermediate zone		
	C	aerobic zone		
	7 0.	aerobic and intermediate zone		
L	Who	en the temperature of ambient air increases, rati	her th	nan decreases, with altitude the lapse
	A.	adiabatic lapse rate	B:	negative lapse rate
	C.	environmental lapse rate	D.	none of these
1		en stable atmosphere occurs at a short distance ditions prevails below the stack, then the behavi		
	A.	fanning plume	B.	lofting plume
	C,	fumigating plume	D.	none of these
	The	values of horizontal and vertical dispersion coe	efficie	ents (σ_1 and σ_2) depend on
	A.	atmospheric stability and downwind distance		
	B.	altitude and downwind distance		
	C.	cross wind as well as downwind distance		
	D.			
	The	Holland's Equation is often used for computati	on of	plume rise under
	A.	unstable atmospheric conditions		
	B.	stable atmospheric conditions		
	C.	neutral atmospheric conditions		
	D.	none of these		
aper	Code	: M 45 / Set-A [11]		Entrance Examination - 2020

	and	tively active gases that	absorb wave length longer than
7:	5. The green house gases are racha-	В.	2 μm
	Α. 1 μm	D.	none of these
	C. 4 µm	t on the	under surface of the leave is con-
76	· · · · · · · · · · · · · · · · · · ·	g and silvering on the	under surface of the leave is cau
	A. SO ₂		PAN
	C. NO ₂		none of these
77.	The immediate odor threshold of	nitrogen dioxide expos	ure is
	A. 0.12 ppm concentration	В.	0.05 ppm concentration
	C. 0.07 ppm concentration	D.	none of these
78.	The primary pollutant sulphure d	ioxide remains airborne	an average time period of
	A. 12 - 24 hours	В.	1- 2 days
	C. 2 - 4 days	D.	none of these
79.	How many times carbon monoxid	le has more affinity to jo	in with hemoglobin than oxyger
	A. 100 times	B. :	200 times
	C. 300 times	D. 1	none of these
80/	As per National Ambient Air Qual for industrial, residential, rural and	ity Standards (2009), th l other areas is	e 24 hourly average value of PM
	A. 60 pg/m ³	В. 8	30 pg/m ³
	C. 40 pg/m ³	D. n	one of these
81.	Three different sources are produces respectively. The cumulative noise	ucing the noise levels level is equal to	of 70 dB, 70 dB, and 73 dF
	A. 76 dBA	B. 1	33 dBA
	C. 73 dBA		one of these
aper C	ode: M 45 / Set-A	1 12 1	Entrance Examination - 2020

Scanned with CamScanner

82.	WI eqi	nat would be the loudness level, if all to 40 dBA?	the magnitude of	f 1	sound pressure level at I	000 Hz ls		
	Α.	140 phons	n.		40 phons			
	C.	10 phons	D.		none of these			
83.	As	per Noise Pollution (Regulation amercial area at day time is	and Control) R	ul	es, the prescribed noise	level for		
	A.	50 dBA	В.		60 dBA	fin +		
	C.	65 dBA	D.		55 dBA	10		
4.		The noise level is measured at a distance of 10 m from the source and observed to be 110 dBA. What would be the noise level a distance of 80 m from the source?						
	A.	92 dBA	В.		98 dBA	10		
	c.	104 dBA	D		none of these	9%0		
· +	The	The maximum sound pressure level which can be tolerated by human is about						
	A.	120 dBA	В	,	140 dBA	10 8g +110		
	C.	180 dBA	D		none of these	og t'		
6.	The per (municipal solid waste, per capita CPHEEO manual and National Bu	generation rates ilding Code is	in	n commercial area of sm	all towns as		
	A.	0.05 - 0.20 kg/capita/day	В		0.30 - 0.60 kg/capita/da	ay		
	C.	0.10 - 0.20 kg/capita/day			none of these			
7.	In all healthcare establishments including hospitals, research facilities and laboratories generates biomedical waste as well as non-risk healthcare waste comparable to domestic waste. The percentage of biomedical waste ranges from							
	A.	75 - 90% of total waste generated	1					
	B.	50 - 60% of total waste generated	ı					
	C.	10 - 25% of total waste generated	l					
	D.	none of these				Ination 2020		
aper	Code:	M 45 / Set-A	[13]		Entrance Exam	mation - 2020		
	-							

Scanned with CamScanner

£88	The procedure for handling and treatment etc. of sol building occupancy is governed with	id waste as applicable to the concerned		
	A. The solid waste management rules, 2016			
	B. The e-waste management rules, 2016			
	C. The plastic waste management rules, 2016			
	D. all the above			
89.	The calorific value of municipal solid waste ranges b	etween		
	A. 500 and 700 kcal/kg	B. 800 and 1000 kcal/kg		
	C. 1000 and 1500 kcal/kg	D. none of these		
90.	Which one of the following is dry process of solid waste anaerobic digestion			
	A. Low solids anaerobic digestion			
	B. medium solids anaerobic digestion			
	C. high solids anaerobic digestion			
	D. all the above			
91.	The time period required to decompose and stabilize composting is	ed the solid waste to compost in manu		
	A. 4 - 6 months	B. 1-3 months		
	2. 2 - 3 months	D. none of these		
92.	The maximum distance from the place of work exceeded from	of sweepers to depots should not b		
	A. 150m	B. 250 m		
	C. 200 m	D. none of these		
Pap	er Code : M 45 / Set-A [14]	Entrance Examination - 202		

*	the modern incineration can reduce	the original volum	ne of combustible municipal solid				
	A. 97%		70%				
	C 60%	D.	none of these				
献	The pyrolysis is a process in which thermal degradation of solid waste is carried out in the						
	A. presence of oxygen		partial presence of oxygen				
	C absence of oxygen	D.	none of these				
95.	Gasification is a process in which partial combustion of municipal solid waste is carried in the presence of oxygen. The energy content of the fuel gas, if oxygen is used instead air is						
	A. about 26000 KJ/m ³	В.	about 18000 KJ/m ³				
	C. about 10000 KJ/m ³	D.	none of these				
96.	The pellets also known as Refuse Derived Fuel (RDF) have the calorific value around						
	A. 2000 Kcal/kg	В.	2500 Kcal/kg				
	C. 4000 Kcal/kg	D.	none of these				
97.	The hand carts, used for collectic containers. The capacity of each containers.	on of municipal so stainer ranges from	olid waste have 4 - 6 detachable				
	A. 30 - 40 litres	В.	25 - 50 litres				
	C. 15 - 20 litres	D.	none of these				
98,	In municipal solid waste, the cons large construction projects) is	tituent of construction	on and demolition waste (excluding				
	A. about 40 - 50%	В.	about 30 - 60%				
	C. about 10 - 20%	D.	none of these				
Pan	er Code : M 45 / Set-A	[15]	Entrance Examination - 202				

Scanned with CamScanner

- 99. The different categories of radioactive waste are
 - A. high level waste, intermediate level waste, low level waste
 - B. very high level waste, high level waste, moderate level waste, low level waste
 - C. high level waste, moderate level waste, low level waste, very low level waste
 - D. none of these
- 100. The Plasma Arch Technology works at extremely high temperature environment. A CPHEEO Manual on Municipal Solid Waste Management, the temperature rang between
 - A. 3000 to 4000 °C

B. 4000 to 6000 °C

C. 5000 to 14000 °C

D. none of these