

Lecture 05

Social & Information Networks

김 민 경 AI소프트웨어학과

Outline - Last Lecture

- Measuring Networks
 - Degree Distribution
 - Average Path Length
 - Average Clustering Coefficient
 - Component Distribution
- **Examples: Measuring Real-world Networks**

Describing Networks – Revisited

Fundamental Step: describing network features

Quantifying Structural Properties:

What does local-level structure look like?

Microscopic View

What does large-scale structure look like?

Macroscopic View

How does **structure constrain** network **functionality**?

Holistic View

Outline

Network Characteristics – Node

- Structural Importance
 - Geometric
 - Connectedness

Which Vertices are Important in Networks?

- What do you mean by 'important'?
 - Define an importance function f:
 - A graph G(V, E) as an input
 - A vector \vec{v} , consisting of ranks/importance scores of vertices V

$$f:G\to \vec{v}$$

Unsupervised Learning Setting

Which Vertices are Important in Networks?

Structural Importance

Define a node's importance w.r.t. the network's structure

Dynamical Importance

- processes
- Define a node's importance based on dynamic processes over the network structure
- Behavioral change of the node u influences its neighbors

Which Vertices are Important in Networks?

Structural Importance

- Define a node's importance w.r.t. the network's structure
- Foundation of dynamical or functional importance
- Often called centrality measures (originally from sociology)
 - More central vertices are more structurally important
 - Need to consider the meaning of 'importance' that an application domain defines

Structural Importance

Measures of positional importance for each node in the network

Connectedness

Closeness Centrality

Harmonic Centrality

Betweenness Centrality

Degree Centrality

Eigenvector Centrality

PageRank

- The measure of a node's closeness to all other nodes in a network:
 - Who are in the center?
- Central vertices can be connected to others with minimum steps.
 - Efficient to exchange information with others or to spread innovation
 - Do not need brokers: independent and autonomous

A node's closeness centrality can be defined in a connected component as:

$$C_i = \frac{n-1}{\sum_{j=1}^n d_{ij}}$$

- where d_{ij} denotes the geodesic distance between vertices i and j, and C_i is the inverse of the average distance from i to all other vertices.
- Closeness is only referred in specific contexts, since $d_{ij} = \infty$ results in $C_i = 0$.

Which vertex shows the highest closeness centrality?

$$C_i = \frac{n-1}{\sum_{j=1}^n d_{ij}}$$

$$C_D = \frac{7-1}{(1+2+3)\times 2} = \frac{6}{12} = \frac{1}{2}$$

$$C_H = \frac{8-1}{1\times7} = \frac{7}{7} = 1$$

Calculate the normalized closeness centrality

$$C_i = \frac{n-1}{\sum_{j=1}^n d_{ij}}$$

