Nathan Yee MTH 3160 Homework 1

9/9/16

 $M = a^2 + b^2$ $N = c^2 + d^2$ $M = C^2 + d^2$

Consider (a+ib)(c+id) [1)

Useful to know |Z|= ZZ,(2), Z,Z=Z, Z,(3) A=(a+1b) > A=(a-ib)

 $MN = |(a+ib)(c+id)|^{2}$ = (a+ib)(c+id)(a+ib)(c+id) = (a+ib)(a+ib)(c+id)(c+id) = (a+ib)(a-ib)(c+id)(c-id)

 $MN = (a^2 + b^2)(c^2 + d^2)$

 $|MM| = |(a+ib)(c+id)|^{2}$ $= |ac+iad+ibc-bd|^{2}$ $= |ac-bd+i(ad+b)|^{2}$ |c+p| = ac+bd q = ac+bc $|P| + iq|^{2}$

 $MV = p^2 + q^2$

So $MN = p^2 + q^2$ p = aC - bdq = ad + bC

where a,b,c,d are integers subsequently p,q are integers Na will THE HTMA 20 BUD 100 1. 34 41.1 Because triangle 1 and 2 share angles I and A, they are similar. To scale triangle 1 to trlungle 2, multiply side of triangle I by b. Ex. a -> a.b The similar triangles also preserve the sum of angles, see how point ab is the sum of & and & where & is the angle of a and & the angle of b

Ø+ x = Ø+x Triangles share angles &, 90°, and lengths 121 so they are similar Therefore triangle 2 has height d

$$|Z| = | \rightarrow Im \left[\frac{Z}{(Z+1)^2} \right] = 0$$

$$Im\left[\frac{e^{i\theta}}{(e^{i\theta}+1)^2}\right]=0$$

$$\frac{e^{2i\theta} + 2e^{i\theta} + e^{i\theta}}{e^{i\theta} + 2e^{i\theta} + e^{i\theta}} = 0$$

$$e^{i\theta}(e^{i\theta}+2+\frac{1}{e^{i\theta}})=c$$

$$\frac{1}{e^{i\theta}+e^{i\theta}+2}=0$$

$$Im \left[\frac{1}{Recl + 2}\right] = 0$$

e'0 + e'0 = Real

16) Itorizontal + Vertical

Horizontal Vertical

> + 1/0!

- - 1/2!

+ $\frac{1}{1!}$ + $\frac{1}{3!}$ + $\frac{1}{5!}$ - $\frac{1}{7!}$ - 1/6!

Horizontal $S_n = \frac{(-1)^n}{(2\cdot 0)!} + \frac{(-1)^n}{(2\cdot 1)!} + --- + \frac{(-1)^n}{(2\cdot n)!}$

Vertical. $Sin = \frac{(-1)^n}{(2\cdot 0+1)!} + \frac{(-1)^n}{(2\cdot 1+1)!} + --+ + \frac{(-1)^n}{(2\cdot n+1)!}$

Taylor series $\cos(x) = 1 - \frac{x^2 + x^4}{2!} + \frac{x^4}{4!} - \frac{1}{4!} \cos(-1) = 1 - \frac{(-1)^2 + (-1)^4}{2!} + \frac{(-1)^4}{4!} + \cdots$

 $Sin(x)=1-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}$ --, $-Sin(-1)=1+\frac{(-1)^{3}}{3!}-\frac{(-1)^{5}}{5!}$

 $S_n + iSin = cos(-1) - isin(-1)$ = .54 - i.84

Converge to . 54 - 1.84

$$|Z|=-1 \rightarrow |Z|^n = Z \text{ or } O$$
 so singularity $|Z|<-1 \rightarrow |Z|^n$ dominates $|Z|$ 30 diverses

Z	Point	Point
0+10	1-(0+10)	1
1 +10	1-1/2	2
0+12	1-1/2	북-골
ユーニュ	1-2-51	1+1

Used mathematica to generate

11'st of points

(1+1/2)2) 1+1/4) -1/8 -1/8 -1/8 | 16 16

 $(\frac{1}{12}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ $(\frac{1}{12}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

2.4

1,4,6,4,-4,-16,-24 S,=1 S₂=4

 $S_{n+2} = 2(S_{n+1} - S_n)$ $Z^2-2Z+2=0 \rightarrow S_n=Z^n$

 $Z^{n+2} = 2(Z^{n+2})$ $Z^{2} = 2(Z^{n-1})$ $Z^{2} = 2Z - 2$ $Z^{2} - 2Z + 2 = 0$ = 2 (Zn+1 - Zn) Divide by Zn

 $Z = -(-2) \pm \sqrt{(-2)^2 - 4(1)(2)}$

 $z = 2 \pm \sqrt{-9}$

Z = 1 ±1

$$S_{n} = A(1+i)^{n} + B(1-i)^{n}$$

$$S_{n+1} = A(1+i)^{n+1} + B(1-i)^{n+1}$$

$$S_{n+2} = A(1+i)^{n+1} + B(1-i)^{n+2}$$

 $A(1+i)^{n+2} + B(1-i)^{n+2} = 2 \left(A(1+i)^{n+1} + B(1+i)^{n+1} + B(1+i)^{n+1} + B(1+i)^{n+1} + B(1+i)^{n+1} + B(1+i)^{n+1} + B(1-i)^{n+1} + 2B(1-i)^{n+1} + 2B(1-i)^{n+1} - 2B(1-i)^{n+1} \right)$

 $\frac{1+i}{1-i}=i$, $\frac{(1+i)^{n+2}}{(1-i)^n}=i^n(1+i)^2$

 $A_{1}^{(n)}(1+i)^{2}+B(1-i)^{2}=2A_{1}^{(n)}(1+i)+2B(1-i)-2A_{1}^{(n)}-2B$ $A_{1}^{(n)}(1+i)^{2}-2A_{1}^{(n)}(1+i)+2A_{1}^{(n)}+B(1-i)^{2}-2B(1-i)+2B=0$ $A_{1}^{(n)}(1+i)^{2}-2(1+i)+2)+B((1-i)^{2}-2(1-i)+2)=0$ $A_{1}^{(n)}(1+2i-1-2-2i+2)+B(1-2i-1-2+2i+2)=0$ $A_{1}^{(n)}(0)+B(0)=0$

Since the equation always equals 0 with arbitrary complex numbers A and B, $A(1+i)^n + B(1-i)^n$ is a solution to the recurrence relation

30

For only real solutions: B=A

deduce that $S_n = Z Re [A(1+i)^n]$

 $S_{n} = A (1+i)^{n} + \overline{A} (1-i)^{n}$ N = 0 A A A

吗 VA

N=2 A A \overline{A}

To calculate Sn, simply add two vectors

A and A with appropriate scaling, |(1±i)|

A|1+i)|

A|1+i||

50 Sn = 2 Re[A(1+i)ⁿ]

$$A = -\frac{1}{2} - 1 \implies S_{n} = 2 \int_{0}^{\frac{\pi}{2}} |S_{n}|^{2} \cos \left[\frac{(n+4)\pi}{4} + \tan^{2} 2 \right]$$

$$S_{n} = 2 \operatorname{Re} \left[\left(-\frac{1}{2} - i \right) \left(1 + i \right)^{n} \right]$$

Cos because we want real component
Scaling of
$$\left(-\frac{1}{2}-i\chi(1+i)^{n}\right) = \left(-\frac{1}{2}-i(1+i)^{n}\right)$$

$$= \sqrt{5} \cdot \sqrt{2}$$

$$= \sqrt{5} \cdot 2$$

$$= \sqrt{5} \cdot 2$$

$$S_{n} = 2 \text{ Re} \left[\left(-\frac{1}{2} - i \right) \left(1 + i \right)^{n} \right]$$

$$= 2 \cdot \text{scaling} \quad \cos \left(\text{angle} \right)$$

$$= 2 \cdot \sqrt{5} \cdot 2^{\frac{n}{2}} \quad \cos \left(\frac{(n+4)\pi}{4} + + \sin^{\frac{1}{2}}(2) \right)$$

$$S_{n} = 2^{\frac{1}{2}} \cdot \sqrt{5} \cdot \cos \left[\frac{(n+4)\pi}{4} + + \tan^{\frac{1}{2}}(2) \right]$$

$$S_{33} = 65536$$

 $S_{34} = 262144$
 $S_{35} = 393216$

$$(33) (Z-1)^{10} = Z^{10} \Rightarrow (Z-1)^{10} = 1$$

$$(7) = Z^{-1}$$

$$(7) =$$

Since the 1 in Z-1 only implies horizontal translation of vector Z. Z-1 must be reflected across the y-axis. It is only for the points where Re(Z)= \frac{1}{2} does Z-1 reflect across the y-axis

A different argument is that for Re(z)= \frac{1}{2}, we can create similar triangles that share the same base length, and therefore same hypotenise

Only 9 roots because of real axis symetry or because a polynomial of degree in has exactly in-roots

-Z¹⁰+Z¹⁰+Z⁹+Z⁸+JUNK=0

Z⁹+Z⁸+Junk=0

$$(33) (z-1)^{10} = z^{10}$$
 $|z| = \frac{1}{20}$

(ii)
$$W^{0}=1$$
, $W=\frac{Z-1}{Z}$

Since
$$Re(Z) = \frac{1}{2}$$

$$|Z| = \frac{\cos(\emptyset)}{2}$$

$$D = -\frac{4\pi}{10}, -\frac{3\pi}{10}, \frac{2\pi}{10}, -\frac{1\pi}{10}, 0, \frac{\pi}{10}, \frac{2\pi}{10}, \frac{3\pi}{10}, \frac{4\pi}{10}$$

Exponent rather than X+iy