I. Savoir lise la définition.

Ge sont des mesures de sécurité. Simon:

$$(\lambda y. x y)[x/y] \neq \lambda y. x x$$

 $(\lambda y. x y)[y/x] \neq \lambda \lambda y. y y$

~~ D x ≠y ~~ D y \$ ol(N).

II. Classes d'équivalence pou = 3.

Q2.1. $\Omega \Omega - \rho_{\beta} \Omega \Omega$ et $\Omega - \rho_{\beta} \Omega$.

Himsi, si $\Omega \Omega = \rho_{\beta} \Omega$ alors, par confluence, il existe M un 2-terme tel que

P P P

B'est absurde can on aurait $\Omega \Omega = P = Q$ ($\Omega \Omega = O_B^*P$ implique $P = Q \Omega$ can il m'y a que 2 redex).

Q2.2. Soit N'une forme normale avec 2 & VECN)

Gn pose:

M= (2x. N) Q.

III Propriété du diament pour les réductions parallèles

Q3.1.

Ton induction (3 cas) $Q3.2.$ $x^* = x$	
(2 x. M) = 2	2.(M*)
(M N)* :=)	$P[N^*/x] $
	$P[N^*/\infty] $
	•
Lemme: 12	i M=3N alow N=3M* (parinduction sur 11)
D'où	M
	A DE LANGE
	M*
IV Normalisation	faible et forte en 2-calcul pur.
Q4.1. Les proj	n: étés (1), (2) et (3) restent vocaies
La pro	priété (L1) ne l'est pos:
ອກ ່ ຜ	•
	M;= (λx.x) M' → ν M'
mais	
	(y y)[M/y] xo (y y)[n'/y]
	11
	M M M' r'
Q4.2. Pon imousti	ion seu H -> M'(4 cas):
¥ ‱ (Ях. Ħ)	N -0 M[N/2]. Supposons 2 E DL(M) & NERI. (*)
Pan imduction s	mM, ily a 3 cos:
• xi M = y	•
	4 +2 alous M[N/x] = M E 2I.
	iy=oc along M[N/se] = N ERI.
* xi M = F	2 a alors par hypothèse d'induction
en a	: P[N/x] €ZI et Q[N/x] €ZI
	(Pa)[N/∞] e21. pon (ii)
	•

* Fas MN -> M'N ave (M -> M'. Par hypothèse d'induction M'E 2]	l.		
avec Me 21, Ne 21.	•		
D'en M'N ∈ 2I par (ii). * Gas MN → MN' ove (N → N'. Par hypothèse d'induction N'E 2I.			
D'ei MN'EZI par (ii).			
* Cas 2x. M -s 2x. M' Quee H -> H' et ME2I, (2x. H) E2I, H'E Et, vl(M') = vl(M) (prewe por instruction)	AZ Gyp. d'ind		
d'où (λx.M') ∈ l'I con x e NC(M).			
Q.L. 3.			