Name:	
Vorname:	
Studiengang:	Biol 🖵
	Pharm 🖵
	BWS □

Basisprüfung Winter 2011 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	
		Note OC	

1. Aufgabe (9.5 Pkt)

2. Aufgabe (5.5 Pkt)

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folge Wenn ja, um welche Art von Isc	nden Strukturen Isomerie vor? omerie handelt es sich?	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
NH ₂ NH ₂ NH NH	NH ₂ N OH	Nicht Isomere X Konstitutionsisomere Diastereoisomere Enantiomere identisch
HO OH OH OH	НО	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere X identisch
CI	CI	Nicht Isomere Konstitutionsisomere X Diastereoisomere Enantiomere identisch
NH ₂ N O	NH ₂ N O O	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
		Übertrag Aufgabe 3

Aufgabe 3 (Fortsetzung)

	gebenen Moleküle sind chi eziehung zwischen a und d				
a chiral X	ь 	с Х	d X		
Moleküle a u	Enantiome und d sind Diastereois identisch				
c) 5 Pkt. Die Fischerprojek	tion einer Fructose ist unte	en angegeben.			
$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	OH H OH OH OH OH H	CH ₂ OH	1 CH ₂ OH 2 OH 4 H HO 5 H 6 CH ₂ OH		
Fructose	Perspektivformel	E	nantiomeres		
c1) 1/2 Pkt. Handelt es sich	um D- oder L-Fructose?		D X L		
c2) 1 1/2 Pkt. Zeichnen Sie Perspektivformel (Keilst		on angegebene Mo	olekül als		
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Fructose enantiomeren Moleküls (Projektion ergänzen).				ĺ	
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 in der abgebildeten Fructose mit CIP Deskriptoren. C3: R SX C4: RX S 					
c5) 1 1/2 Pkt. Wieviele Stere	eoisomere mit dieser Kons	stitution gibt es?	8		
			Übertrag Aufgabe 3		

Aufgabe 3 (Fortsetzung).

d) 3 Pkt. WelcheTopizität ha	ben die eingekreisten Atompaare?		
N H	H N H	N H	
homotop	konstitutop	enantiotop	
H homotop	konstitutop	homotop	
		Punkte Aufgabe 3	

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

 b) 5 Pkt. (je ½ für richtige Wahl und Begründung pro Paar) Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. 	
 Wichtgste Effekte: Elektronegativität des direkt an das Proton gebunden Atoms. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms. Hybridisierung des durch Deprotonierung entstehenden lone pairs σ-Akzeptor = -I Effekt. π-Akzeptor Effekt (-M). π-Donor Effekt (+M). Solvatation (Wechselwirkung mit dem Lösungsmittel). Wasserstoffbrücken. 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
X 7	
о — N — ОН	
CI ₂ HC OH CIH ₂ C OH	
X 4	
OH SH Z	
———н	
X 3	
Übertrag Aufgabe 4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Bearündung

Es handelt sich um ein vinyloges Amid. Wie Amide werden auch diese am Sauerstoff protoniert, damit die Resonanzstabilisierung durch Konjugation des nicht bindenden Elektronenpaars am Stickstoff mit dem $\pi\text{-System}$ nicht verloren geht.

Begründung

Durch die Protonierung am Ende der konjugierten Doppelbindungen entsteht ein Aromat: Pyridinium Die Konjugation des Aromaten mit einer Doppelbindung bleibt erhalten.

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Beide Ammonium-Gruppen sind direkt an den Aromaten gebunden. Wegen der Käfigstruktur und Brückenkofposition könnte das einsame Elektronenpaar am tertiären Amin aber nicht mit dem π -System konjugieren. Das primäre Amin dagegen kann in der konjugaten Base in Konjugaton treten, was die primäre Ammonium Gruppe hier deutlich azider macht.

Begründung:

Deprotoniert wird auf jeden Fall in α -Stellung zu den Carbonylgruppen. Da Thioester in α -Stellung um 5 pKa-Einheiten sauerer sind als normale Ester, wird an der angegebenen Stelle deprotoniert. Das entsehende Enolat kann zusätzlich mit der Doppelbindung zwischen den Ringen in Konjugation treten.

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

b) 2 Pkt. Ester wandeln sich mit einer freien Aktivierungenethalpie von 50 kJ/mol von der trans-Konformation in die cis-Konformation um. Bei Amiden ist die freie Aktivierungsenethalpie für den analogen Prozess etwa 78.5 kJ/mol.

$$\Delta G^{\neq} = 50 \text{ kJ/mol}$$

$$\Delta G^{\neq} = 78.5 \text{ kJ/mol}$$

$$trans-Konformation$$

$$cis-Konformation$$

Um welchen Faktor schneller ist dieser Prozess bei Estern relativ zu Amiden bei Raumtemperatur? (keine Punkte ohne Lösungsweg!)

Antwort: 100'000...mal schneller. Der Unterschied in ΔG^{\neq} ist 28.5 kJ/mol. Pro 5.7 kJ/mol weniger wird der Prozess um den Faktor 10 schneller.

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante des Gleichgewichts 2)? (keine Punkte ohne Lösungsweg!)

Das oben angeschriebene Gleichgewicht 1) hat eine Gleichgewichtskonstante von 20, was einer freien Enthalpie von -7.4 kJ/mol entpricht.

Wie gross ist der Energieunterschied zwischen den beiden Sesselkonformeren im *trans*-1,4-Dimethylcyclohexan?

Antwort: ...14.8.... kJ/mol (da die Methylgruppen entweder beide axial oder beide equatorial stehen ist die ungüntige Wechselwirkungsenergie doppelt so hoch).

c) 2 Pkt. Zeichnen Sie die Konformere von (2R,3R)-2,3-Diiodbutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(θ)] der Rotation um die C(2)-C(3) Bindung (θ = Diederwinkel C(1)-C(2)-C(3)-C(4), d.h. θ =0°, wenn die Bindungen C(1)-C(2) und C(3)-C(4) verdeckt stehen).

Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Welche Hauptprodukte erwarten Sie bei den folgenden Umsetzungen und um welchen Reaktionstyp, bzw. um welche Namensreaktion handelt es sich dabei? (Wo erforderlich, Stereochemie angeben!). 2 Stereoisomere HO. a) HO **COOEt** LiAIH₄ THF 16 h 70° НО Typ: Metallhydrid-Red. tert-BuO ⊖ b) DMSO, 8 h 50° Typ: E2 (anti-Eliminierung) c) 1) SOCI₂ 2) 2 Equiv. COOH Typ: Amidbildung via Säurechlorid CH2Cl2 als Lsgsm. COOEt d) COOEt FeBr₃, Br₂ + HBr Br 16 h 80° Typ: elektrophile arom. Subst. e) Nal Aceton als Lsgsm. Typ: S_N2 unter Inversion 16 h 24°

Punkte Aufgabe 7

8. Aufgabe (a=8 Pkt, b=2 Pkt; total 10 Pkt)

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus:

Wheland-Zwischenprodukt

Namens-Reaktion: Friedel-Crafts-Acylierung

b) Wie lautet die Regel von Saytzew? Geben Sie ein Anwendungsbeispiel!

Regel: Bei einer E1-Eliminierung wird bevorzugt das thermodynamisch stabilere, höher substituierte Olefin gebildet.