計算量のはなし2

~DequeはStack2つでつくれる~

目次

- 有名なことわざの紹介
- ならし計算量のはなし
- Accounting Method
- Potential Method

目次

- 有名なことわざの紹介
- ・ならし計算量のはなし
- Accounting Method
- Potential Method

有名なことわざ

DequeはStack2つでつくれる

Deque

- ・次の操作に対応したデータ構造
 - 列の先頭に値を追加 (pushF)
 - 列の末尾に値を追加 (pushB)
 - 列の先頭から値を取り出す(popF)
 - 列の末尾から値を取り出す(popB)

- ここに空のDequeがあるじゃろ
 - 左が先頭(Front), 右が末尾 (Back)

• pushF(3)

• pushF(3), pushB(4)

3

pushF(3), pushB(4), pushF(5)

5 3 4

pushF(3), pushB(4), pushF(5), popB()

5 3

pushF(3), pushB(4), pushF(5), popB()

pushF(3), pushB(4), pushF(5), popB(), popF()

5

pushF(3), pushB(4), pushF(5), popB(), popF()

pushF(3), pushB(4), pushF(5), popB(), popF()
pushB(4)

pushF(3), pushB(4), pushF(5), popB(), popF()
pushB(4), pushF(3)

3 3 4

有名なことわざ(再掲)

DequeはStack2つでつくれる

- 空のDequeの下にStackが2つあるじゃろ
 - 左が先頭(Front), 右が末尾 (Back)

pushF(1), pushF(2), pushF(3), pushF(4)

pushF(1), pushF(2), pushF(3), pushF(4) popB()

Deque (Stack×2): 大事な所

 PopしたいのにStackがからの時、もう片方の Stackの半分を移してくる

Dequeはこのようにして Stack2つでつくれるのじゃ

目次

- 有名なことわざの紹介
- ・ならし計算量のはなし
- Accounting Method
- Potential Method

半分うつすのやばそう

Stack2つで実装したDequeの計算量を評価してみよう

操作一覧

- pushBack
- pushFront
- popBack
- popFront

操作一覧

- pushBack どうせO(1)
- pushFront どうせO(1)
- popBack
- popFront

操作一覧

- pushBack どうせO(1)
- pushFront どうせO(1)
- popBack だいたいO(1)
- popFront だいたいO(1)

- pushBack どうせO(1)
- pushFront どうせO(1)
- popBack だいたいO(1) ときどき O(N)
- popFront だいたいO(1) ときどき O(N)

- pushBack どうせO(1)
- pushFront どうせO(1)
- popBack だいたいO(1) ときどき O(N)
- popFront だいたいO(1) ときどき O(N)

でもO(N)であることは本当に「ときどき」で、まれにしか起こらない

- pushBack どうせO(1)
- pushFront どうせO(1)
- popBack だいたいO(1) ときどき O(N)
- popFront だいたいO(1) ときどき O(N)

でもO(N)であることは本当に「ときどき」で、まれにしか起こらない

- pushBack どうせO(1)
- pushFront どうせO(1)
- popBack だいたいO(1) ときどき O(N)
- popFront だいたいO(1) ときどき O(N)
- でもO(N)であることは本当に「ときどき」で、まれに しか起こらない
- O(N)っていいたくない

そんなときに便利なのが

ならし計算量

ならし計算量とは

- データ構造に対する操作の計算量の評価で 使われる「計算量もどき」
- 時と場合によって計算量がかわるが、均すと O(f(x))になるとき

「ならし計算量がO(f(x))である」

という

ならし計算量とは

- データ構造に対する操作の計算量の評価で 使われる「計算量もどき」
- 時と場合によって計算量がかわるが、均すと O(f(x))になるとき

「ならし計算量がO(f(x))である」

という

ならし計算量とは

- データ構造に対する操作の計算量の評価で 使われる「計算量もどき」
- 時と場合によって計算量がかわるが、均すと O(f(x))になるとき

「ならし計算量がO(f(x))である」

という

「均す」とは

- データ構造の中で、操作をN回やった時、「実際の計算量」の総和と「ならし計算量」の総和 がだいたい同じになる
- 例:
 - Dequeのpopの実際の計算量
 - O(1)だったりO(N)だったり
 - Dequeのpopのならし計算量
 - O(1)

Dequeの計算量

- Dequeの操作のならし計算量は全てO(1)
 - ほんまか
- ならし計算量がO(1)ということは N 回操作したときの「実際の計算量」がO(N)であるということ
 - 実験してみるとそれっぽい
- ・これから2つの方法でこれを証明する

目次

- 有名なことわざの紹介
- ならし計算量のはなし
- Accounting Method
- Potential Method

- ・直訳:会計法(法律っぽい)
- 初めあなたの所持金は0円です
- あなたが操作をするたびに、「ならし計算量」 円だけお金がふってきます
- あなたが操作をするたびに、「実際の計算量」円払わなければなりません
- あなたはどのタイミングでも所持金が負に なってはいけません

何円ふってくるか、うまく決めて所持金が負にならなければそれがならし計算量

うまく思いつこう!

- 以下のように設定するとうまくいく
 - 操作をすると 5 円ふってくる

- 以下のように設定するとうまくいく
 - 操作をすると 5 円ふってくる

これでうまくいくことをこれから証明

AccountingMethod:5円の証明

- pushBack,pushFront
 - 実際の計算量は 1
 - よって1円払わないといけない
- popBack,popFrontのエイヤッしないやつ
 - 実際の計算量は1
 - 1円払わないといけない
- ・ どちらの場合も差し引いて4円貯金が増える

AccountingMethod:5円の証明

- popBack,popFrontのエイヤッするとき
 - もう片方のStackの中身(N個とする)をいったん全部出して、半分ずつ入れ分ける
 - 実際の計算量は 2N
 - 差し引いて2N-5円貯金が減る
- このとき借金しなければよい

AccountingMethod:5円の証明

- ・実は以下の命題が成り立つ
 - 左側のStackにL個、右側のStackにR個の要素が入ってる時、4×max(L, R)円以上の貯金がある
 - 帰納法で証明可能

- 命題: 貯金が4×max(L,R)円以上
- ・はじめの状態(空の状態)では成立
- ・成立している状態からどの操作をしても命題が成立 し続けることを示せば良い

- 命題: 貯金が4×max(L,R)円以上
- ・はじめの状態(空の状態)では成立
- ・成立している状態からどの操作をしても命題が成立 し続けることを示せば良い
 - pushとエイヤッしないpopは 貯金が4円増えるので成立し続ける

- 命題: 貯金が4×max(L,R)円以上
- ・はじめの状態(空の状態)では成立
- ・成立している状態からどの操作をしても命題が成立 し続けることを示せば良い
 - pushとエイヤッしないpopは 貯金が4円増えるので成立し続ける
 - エイヤッするとき、もともと貯金が4N円以上あるので操作後は2N円以上が保証される

- 命題: 貯金が4×max(L,R)円以上
- ・はじめの状態(空の状態)では成立
- ・成立している状態からどの操作をしても命題が成立 し続けることを示せば良い
 - pushとエイヤッしないpopは 貯金が4円増えるので成立し続ける
 - エイヤッするとき、もともと貯金が4N円以上あるので操作後は2N円以上が保証される
 - エイヤッ後は4×max(L,R)は2Nになる

- 命題: 貯金が4×max(L,R)円以上
- ・はじめの状態(空の状態)では成立
- ・成立している状態からどの操作をしても命題が成立 し続けることを示せば良い
 - pushとエイヤッしないpopは 貯金が4円増えるので成立し続ける
 - エイヤッするとき、もともと貯金が4N円以上あるので操作後は2N円以上が保証される
 - エイヤッ後は4×max(L,R)は2Nになる 成立し続ける

- 命題: 貯金が4×max(L,R)円以上
- ・はじめの状態(空の状態)では成立
- ・成立している状態からどの操作をしても命題が成立 し続けることを示せば良い
 - pushとエイヤッしないpopは 貯金が4円増えるので成立し続ける
 - エイヤッするとき、もともと貯金が4N円以上あるので操作後は2N円以上が保証される
 - エイヤッ後は4×max(L,R)は2Nになる 成立し続ける

(Q.E.D.)

これが

Accounting Method

- ならしO(1)を求めるのに向いてる
 - ふってくる値段を貯金がなくならないように充分大きくするだけ
- ・ふってくる値段は操作毎に変えても良い
 - popは4円
 - pushは1円とかでも大丈夫
- 今回のようにデータ構造の状態に対して貯金の 下限を示したりして使う

AccountingMethod:演習問題

以下をAccountingMethodで示してみよ

- 動的にメモリを確保する配列(vector)の push_backのならし計算量: O(1)
 - メモリがなくなったら別の場所にいまの2倍 の大きさのメモリを確保します

目次

- 有名なことわざの紹介
- ならし計算量のはなし
- Accounting Method
- Potential Method

PotentialMethod

- データ構造の状態に対してPotentialという値を定義する
- ある操作をしてPotentailがP1からP2に変わったとする
- そのならし計算量を 「実際の計算量」+ P2 - P1 として定義する

• 長い処理を考える

• 長い処理を考える

CN

TC V	生と与へる		
状態	Potential	実計算量	均計算量
C1	P1	X1	
C2	P2 <	X1 X2	
C3	P3	\\ _ :	
	•	:	

XN

・ポテンパルル上生計質量から物計質量を出す

・小丁ノンヤルと夫計昇重から均計昇重を出り					
状態	Potential	実計算量	均計算量		
C1	P1	X1	X1+P2-P1		
C2	P2	X1 X2	X2+P3-P2		
C3	P3	\\ _ :	XZTP3-PZ :		
	•	:	•		
CN	EN A	XN	XN+PN-(ry		

• 計算量の総和を考えてみる

状態	Potential	実計算量	量 均計算量		
C1	P1	X1	X1+P2-P1		
C2	P2 <				
C3	P3	X2 :	X2+P3-P2 :		
:	•	:	:		
CN	PN	XN	XN+PN-(ry		

• 計算量の総和を考えてみる

• 実計算量

$$-X1 + X2 + X3 + \cdots + XN$$

• 均計算量

$$-X1 + X2 + X3 + \cdots + XN + (PN - P1)$$

• 計算量の総和を考えてみる

• 実計算量

$$-X1 + X2 + X3 + \cdots + XN$$

• 均計算量

$$-X1 + X2 + X3 + \cdots + XN + (PN - P1)$$

- 「実計算量の総和」と「均計算量の総和」の差が PN P1
 - 終状態と始状態のPotentialの差
 - これが「均計算量の総和」以下のオーダーなら、実計算量と均計算量のオーダーが一致する
 - 均計算量の定義と合致

PotentialMethod:Dequeのポテンシャル

• うまいポテンシャルを見つけて、どんな操作も 均計算量がO(1)であることを示せば良い

PotentialMethod:Dequeのポテンシャル

• うまいポテンシャルを見つけて、どんな操作も 均計算量がO(1)であることを示せば良い

• 今回は左側のStackの要素数をL、右側の Stackの要素数をRとして

4*max(L, R)

をPotentialとするとうまくいく

- 各操作の均計算量
 - push
 - ポテンシャルはたかだか4増える
 - 実計算量は1
 - よってならし計算量は5

- 各操作の均計算量
 - pop(エイヤッなし)
 - ポテンシャルは増えない
 - 実計算量は1
 - ・よってならし計算量は1以下

- 各操作の均計算量
 - pop(エイヤッあり)
 - ポテンシャルは4*(N/2)減る
 - 実計算量は2N
 - よってならし計算量は0

- PN-P1
 - N回操作した後の均計算量の総和はO(N)
 - PN-P1の最大値は4N=O(N)
 - ずっと同じ方からpushしたとき
 - よっしゃ

ポテンシャル4*max(L,R)での均計算量がすべてO(1)でした

ポテンシャル4*max(L,R)での均計算量がすべてO(1)でした

(Q.E.D.)

これが

Potential Method

PotentialMethod

- ならしO(1)以外を求めるのにも有用
 - フィボナッチヒープのO(logN)
 - スプレー木のO(logN)
 - UnionFind木のO(α(n))(アッカーマン関数の 逆関数)
- 4*max(L,R)はAccountingMethodにもでてきた値
 - AccountingもPotentialも歩み寄り方が違うだけで、 やりたい証明は同じ

PotentialMethod:演習問題

以下をPotentialMethodで示してみよ

- 動的にメモリを確保する配列(vector)の push_backのならし計算量: O(1)
 - メモリがなくなったら別の場所にいまの2倍 の大きさのメモリを確保します

目次

- 有名なことわざの紹介
- ならし計算量のはなし
- Accounting Method
- Potential Method
- ・おしまい