

AD-A136 026

COMPUTER PROGRAM FOR PRELIMINARY HELICOPTER DESIGN(U)
NAVAL POSTGRADUATE SCHOOL MONTEREY CA M W ROGERS
SEP 83

1/2

UNCLASSIFIED

F/G 1/3

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963

AD - A136026

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

COMPUTER PROGRAM
FOR
PRELIMINARY HELICOPTER DESIGN

by

Michael W. Rogers

September 1983

Thesis Advisor

Donald M. Layton

Approved for public release; distribution unlimited.

DTRC FILE COPY

83 12 20 016

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		AD-17134-C2k
4. TITLE (and Subtitle) Computer Program for Preliminary Helicopter Design		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis; September 1983
7. AUTHOR(s) Michael W. Rogers		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943		12. REPORT DATE September 1983
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Naval Postgraduate School Monterey, California 93943		13. NUMBER OF PAGES 125
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		15. SECURITY CLASS. (of this report) Unclassified
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Calculator HP 41 Helicopter		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report gives the operator of the Hewlett-Packard (HP-41) handheld calculator the ability to quickly and accurately determine the power requirements of a helicopter in the preliminary design phase. These power requirements are computed for three landing gear configurations: skid,		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

fixed wheel, and retractable wheel. By comparing the power required for each configuration, the user can determine the optimum landing gear for the design.

A |

S N 0102-LF-014-6601

Approved for public release; distribution unlimited.

Computer Program for Preliminary Helicopter Design

by

Michael W. Rogers
Captain, United States Army
B.S., United States Military Academy, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1983

Author:

Michael William Rogers

Approved by:

Donald M. Taylor

Thesis Advisor

Donald M. Taylor

Chairman, Department of Aeronautics

J.W. Taylor

Dean of Science and Engineering

ABSTRACT

This report gives the operator of the Hewlett-Packard (HP-41) handheld calculator the ability to quickly and accurately determine the power requirements of a helicopter in the preliminary design phase. These power requirements are computed for three landing gear configurations: skid, fixed wheel, and retractable wheel. By comparing the power required for each configuration, the user can determine the optimum landing gear for the design.

TABLE OF CONTENTS

I.	INTRODUCTION -----	8
A.	BACKGROUND -----	8
B.	GOALS -----	8
II.	APPROACH TO THE PROBLEM -----	10
A.	BASIC LINE OF APPROACH -----	10
B.	DETAILED LINE OF APPROACH -----	10
III.	RESULTS AND CONCLUSIONS -----	15
APPENDIX A:	HP-41 COMPUTER PROGRAMS -----	16
	MAIN ROTOR (MR) -----	16
	POWER TO HOVER (PHV) -----	24
	WEIGHT (WT) -----	30
	TOTAL POWER (PTOT) -----	41
	PCOMP (POWER REQUIRED DUE TO COMPRESSIBILITY EFFECTS) -----	72
	ESHP (EQUIVALENT SHAFT HORSEPOWER) -----	77
	FM (FIGURE OF MERIT) -----	80
	CHD (CHORD) -----	85
	RV (ROTATIONAL VELOCITY) -----	87
	EFPA (EFFECTIVE FLAT PLATE AREA) -----	90
	DENSITY (RHO) -----	94
	REGISTER FILE -----	97
APPENDIX B:	EXAMPLE/PROGRAM VALIDATION PROBLEMS -----	100
	PRELIMINARY DESIGN OF A CARGO HELICOPTER -----	100

HUGHES AAH-64 DESIGN COMPARISON -----	111
COMPARISON OF ADV. SYST. COMPUTER PROGRAM -----	115
APPENDIX C: COMPUTER GRAPHICS PRINTOUT -----	121
MYPLOT AND POWERPLO COMPUTER PRINTOUTS -----	121
LIST OF REFERENCES -----	124
INITIAL DISTRIBUTION LIST -----	125

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to Professor Donald Layton for his guidance and assistance during the preparation of this thesis. I also wish to thank Mr. Ron Shinn from the Army Aviation Research and Development Command's Advanced Systems Branch, for his assistance in this project. The information he provided concerning the computation of landing gear data proved invaluable.

I. INTRODUCTION

A. BACKGROUND

The design process for any aircraft is a tedious, often repetitive procedure, and for a Helicopter, all complexities are compounded. In order to facilitate the design process, computer programs have been derived that will replace long calculations with a speedy solution to many of the problems. These programs, however, are generally quite lengthy and are not amenable to an educational conceptual design project, or to 'quick looks' at proposed decisions.

Two aids to the determination of helicopter performance and/or helicopter design have been developed in the Department of Aeronautics at the Naval Postgraduate School. These are the series of programs for the HP-41 handheld computer [Ref. 1] and the Helicopter Conceptual Design Manual [Ref. 2] which uses these programs.

None of these programs relate to the landing gear of the helicopter, even though such programs are necessary in order to determine the most advantageous landing gear configuration for a particular design.

B. GOALS

The initial goal of this project was to develop a series of programs for the handheld HP-41 computer which would enable the student to determine which landing gear configuration best complements his design. In the course of

accomplishing this goal, it became apparent that numerous additional programs, written from the Helicopter Design Manual, would be required. A second goal was therefore established; to program the design course in such a way that the student could accomplish his required tasks without the mundane iterative calculations required in a design procedure. If hand calculations were required, instructors could rapidly check the student's work with these programs.

Mr. Ronald Shinn, from the Advanced Systems Branch, Army Aviation Research and Development Command, provided an additional goal. Inasmuch as a definite need exists for the design engineer to be able to quickly and inexpensively derive a design that is fairly accurate in the preliminary design phase, a third goal was established; to obtain an output from the programs which is, on average, within ten percent of the Advanced Systems Branch large scale computer program output.

A final goal was to design the programs in such a way as to eliminate the necessity for the student or design engineer to refer to charts and graphs for the necessary input information. Thus, the programs are designed to be "self-contained."

II. APPROACH TO THE PROBLEM

A. BASIC LINE OF APPROACH

A series of programs were written for the HP-41, which would output the horsepower required at various airspeeds and altitudes for a helicopter with skid, fixed wheel, or retractable type landing gear. From these power outputs, a graph can be plotted which will indicate the crossover point, i.e., where the retractable gear, with its additional weight and reduced drag, will require less power than the skid or fixed wheel configured aircraft. Thus, depending on the average environment of the helicopter in question, a determination can be made as to which type of landing gear would contribute the most to the design.

B. DETAILED LINE OF APPROACH

As stated in section 1B, one goal of this project was to eliminate, as much as possible, the use of graphs and charts to provide the necessary inputs when utilizing the programs. With this objective in mind, Chapters Two and Three of the Helicopter Design Manual were programmed. The Chapter Two program, entitled MR (Main Rotor), does not deviate from the design manual. By inputting the specification weight, rotor radius, critical Mach number, and maximum forward velocity, the program displays the maximum rotor tip velocity, disk loading, rotational velocity, coefficient of thrust, solidity,

chord length, aspect ratio, and coefficient of lift. The user is then prompted as to whether the value inputted for Rotor Radius, R , is satisfactory (i.e., are the displayed values within prescribed limits? A reduction in rotor radius will increase disk loading, decrease aspect ratio, and increase rotational velocity.) If a new value for R is not needed, the Chapter Three program, entitled PHV, (Power to Hover), is executed. This program computes the power to hover out of and in ground effect. The subroutine "FM," (Figure of Merit), is then executed from the PHV program. If the Figure of Merit is within limits (.7 to .8), the subroutine "WT," (Weight), is executed. If, however, "FM" is out of limits, the program prompts the user as to whether the value is high, in which case the subroutine "CHD," (Chord), is executed, or low (subroutine "RV," (Rotational Velocity), is executed).

The "WT" subroutine (using sixty percent of the specification gross weight as a first approximation for empty weight) computes a second approximation of the empty weight using the equations found in the Weight Estimating Relationships [Ref. 3]. To this empty weight are added fuel, useful load, and landing gear weight.

For the first iteration, a skid gear weight is added and is used as a case for future landing gear computations. The take-off gross weight is displayed and the user is prompted as to whether this weight is satisfactory (i.e., if enough allowance is made for the additional weight of the fixed and

retractable type landing gears, keeping in mind the maximum allowable gross weight specified for the design). If the weight is not satisfactory, the WT program uses the second approximation of empty weight as a base and re-computes the take-off gross weight as before. If this value is satisfactory, the MR, PHV, and associated subroutines are re-executed using this new gross weight approximation. If all displayed values are still within specifications, the program prompts the user to clear certain programs from computer memory and to input other programs. This must be done due to the limited number of storage registers available in the HP-41. The inputted programs are PTOT, PCOMP, and ESHP; (Power Total, Compressibility Power, and Equivalent Shaft Horsepower, respectively).

Three PTOT programs have been written. One is designed specifically for use with the HP 82143A printer. The output is automatic and consists of a velocity and the equivalent shaft horsepower required at that speed. A second program outputs only the ESHP required for an inputted velocity (no printer required). The third program may be used with or without the printer and displays all of the individual powers that comprise the ESHP for a specified velocity.

The subroutines EFPA, PCOMP, and ESHP are used in the main program PTOT. EFPA computes the effective flat plate area of the design helicopter. This value is determined from the aircraft gross weight, its landing gear configuration and

whether the aircraft, in the opinion of the user, has clean or dirty lines. PCOMP computes the additional horsepower required due to compressibility effects while ESHP computes the extra power needed due to accessories, transmission losses, and losses due to multiple engine installation.

Once PTOT has been executed and the data recorded, the user re-executes the WT program. Since the skid landing gear is to be used as a base for determining the weight of the fixed and retractable gear, the program automatically bypasses the component weight calculations, thereby allowing the identical empty weight to be used. The user inputs the same values for fuel and useful load weight. Following the calculator prompts, the user inputs fixed gear information. The new take-off gross weight is computed and the program transfers to PTOT. The reader will recall that during the first iteration of the WT program (using skid gear information), the MR program was re-executed to insure that the newly computed value of gross weight did not result in specification violations. The additional weight of the fixed and retractable landing gear results in less than a four percent increase in the total gross weight of the aircraft. It is therefore not necessary to again check the MR values, for this small increase in gross weight will not result in specification violations. After obtaining the power outputs with the fixed landing gear, re-execute the WT program, inputting retractable landing gear data. Once the three data sets have

been computed, it is a simple matter to compare these lists to determine the crossover points.

For a graphical display of the crossover points, two programs have been developed: MYPLOT and POWERPLO [Ref. 4]. These programs are compatible with the TEXTRONICS/DISSPLA package.

III. RESULTS AND CONCLUSIONS

This series of programs allows the user to quickly and accurately determine the power required of a helicopter at any speed, and at any altitude. The user is able to determine the most advantageous landing gear configuration for his design depending on the projected mission environment of the aircraft.

In an attempt to display the accuracy of these programs, three sample problems are solved in Appendix B. The first is a step-by-step cargo helicopter design problem. The second is an attempt to design a current production helicopter, the Hughes AH-64, and compare the actual power outputs with the HP-41 program outputs. The third problem compares the Army Aviation Research and Development Command's Advanced System's computer power outputs with that of the HP-41 program outputs given the identical input data.

Though accurate, inexpensive, and rapidly executed, it must be emphasized that these programs represent only the "back of the envelope" phase of preliminary design. Further detailed analysis currently requires the use of expensive main frame computers.

APPENDIX A
HP-41 COMPUTER PROGRAM

MAIN ROTOR (MR)

1. PURPOSE

This program represents the Second Chapter in the Helicopter Design Manual. It computes the disk loading (DL), rotational velocity (PV), coefficient of thrust (CT), solidity (SD), chord length (c), aspect ratio (AR), coefficient of lift (CL), and the maximum rotor blade tip velocity V(TIP) given the following inputs:

A) Specification Weight (Spec Wt): the absolute maximum gross weight allowable.

B) Main Rotor Radius (R): this is an educated guess.
Start by using the design maximum radius allowed.

C) Critical Mach Number (Mch Crit): to prevent the rotor blade from encountering undesirable compressibility effects, use the historically acceptable value of .65.

D) Maximum Forward Velocity (VF Max): input the design's maximum forward velocity.

Throughout all of these programs, when prompted for a Yes or No answer, the user should input a 1 for Yes, and a 0 for No.

2. EQUATIONS

$DL = (GW) / ((PI) * R^{**2})$ where the first approximation
of GW = (Spec Wt) * .8

VT(max)ssl = (Mch Crit) * (a) where a =
 Sqrt(Gamma * g * R * T)

RV=VT(Max)/(R)

CT=(GW)/(A * RHO * VT(Max)**2)

SD=(CT/(BL)
where BL=((-.16667)*(VF Max/.59248)/VT Max) + .15515

Note: The blade loading calculation is derived from a chart of blade loading vs. advanced ratio. The chart is linear for an advanced ratio (VF Max)/(VT Max) of > .35. The equation for a straight line ($y=mx+b$) was therefore used for this approximation.

c= (SD * PI * R)/b

AR=(R)/c

CL= (6 * CT)/SD

where:

DL = disk loading	GW = gross weight
R = radius of the main rotor	VT(Max) = blade maximum tip velocity
RV = rotational velocity	CT = coefficient of thrust
RHO = density altitude	SD = solidity
BL = blade loading	b = no. of main rotor blades
c = chord (main rotor)	AR = aspect ratio
CL = coefficient of lift	A = Area of main rotor

3. FLOWCHART (MR)

FLOWCHART (MR) (CONT)

FLOWCHART (MR) (CONT)

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS

A helicopter is to be designed with the following specifications:

VF (Max) = 160 kts

(Spec Wt) = 18000 lbs

Maximum Rotor Diameter = 58 ft

AR must be between 15 and 25 and DL must be less than 7.5.

Compute DL, RV, CT, SD, c, AR, and CL.

Input the MR (Main Rotor) program and clear all flags.

KEYSTROKES	DISPLAY
XEQ (alpha) SIZE (alpha)	SIZE...
068 XEQ (alpha) MR (alpha)	Spec Wt=?
18000 (r/s)	R=?
29 (r/s)	Mch Crit=?
0.65 (r/s)	VT MX=725.63
(r/s)	VF MX=?
160 (r/s)	DL=5.45
(r/s)	RV=25.02
(r/s)	CT=.004
(r/s)	SD=.047
(r/s)	c=1.065
(r/s)	AR=27.23
(r/s)	CL=.559
(r/s)	R ok?
0 (r/s)	

If these values are not within specifications, push (r/s) and input a new value of R. Since flag 00 is now set, the program automatically goes to R=? Because AR is rather high, input a new value of 27 feet for R. Proceeding as before, the following data is displayed.

KEYSTROKES	DISPLAY
(r/s)	DL=6.28
(r/s)	RV=26.87
(r/s)	CT=.005
(r/s)	SD=.054
(r/s)	c=1.144
(r/s)	AR=23.6
(r/s)	CL=.559
(r/s)	R ok?
l (r/s)	

By decreasing the rotor radius, the aspect ratio was decreased while disk loading was increased. Both values are now within the specifications. Because l was inputted for the prompt (R ok?), the program automatically advances to the PHV program.

5. PROGRAM LISTINGS

01LBL "MR"	46 /	91 STO 33
02 FS? 55	47 STO 08	92 LBL "RR"
03 CF 21	48 SF 00	93 RCL 31
04 FIX 3	49 RCL 12	94 "BL="
05 FS? 00	50 RCL 11	95 ARCL X
06 GTO "BB"	51 *	96 RVIEW
07 "SPEC WT=?"	52 RCL 13	97 STOP
08 PROMPT	53 X ^{1/2}	98 RCL 08
09 STO 39	54 *	99 "RV="
10 .8	55 RCL 36	100 ARCL X
11 *	56 X ^{1/2}	101 RVIEW
12 STO 36	57 /	102 STOP
13 LBL "BB"	58 STO 14	103 RCL 14
14 .00237696	59 "VF MX=?"	104 "CT="
15 ENTER↑	60 PROMPT	105 ARCL X
16 STO 11	61 .59248	106 RVIEW
17 "R=?"	62 /	107 STOP
18 PROMPT	63 STO 23	108 RCL 19
19 STO 05	64 RCL 13	109 "SD="
20 X ^{1/2}	65 /	110 ARCL X
21 PI	66 .166667	111 RVIEW
22 *	67 CHS	112 STOP
23 STO 12	68 *	113 RCL 04
24 RCL 36	69 .15515	114 "CZ"
25 X ^{1/2}	70 +	115 ARCL X
26 /	71 RCL 14	116 RVIEW
27 STO 31	72 X ^{1/2}	117 STOP
28 "MCH CRIT=?"	73 /	118 RCL 32
29 PROMPT	74 STO 19	119 "AR="
30 STO 03	75 PI	120 ARCL X
31 288.15	76 *	121 RVIEW
32 ENTER↑	77 RCL 05	122 STOP
33 491.8	78 *	123 RCL 33
34 *	79 4	124 "CL="
35 SRT	80 /	125 ARCL X
36 *	81 STO 04	126 RVIEW
37 .3048	82 RCL 05	127 STOP
38 /	83 X ^{1/2}	128 "P OK?"
39 STO 13	84 /	129 PROMPT
40 "VT MX=?"	85 STO 32	130 XEQ
41 ARCL X	86 RCL 14	131 XEQ "PHY"
42 RVIEW	87 5	132 GTO "BB"
43 STOP	88 *	133 END
44 RCL 13	89 RCL 14	
45 RCL 05	90	

POWER TO HOVER (PHV)

1. PURPOSE

This program computes the power required to hover in and out of ground effect at SSL. This program is to be run following satisfactory completion of the MR program. A subroutine entitled "FM" is used to calculate the Figure of Merit for the aircraft. If the Figure of Merit does not fall within prescribed limits, the subroutine chord (CHD), or rotational velocity (RV), will automatically be executed.

The following are required inputs for PHV.

- A) Number of main rotor blades.
- B) Coefficient of drag of the main rotor, (Cdo).
- C) Height of the main rotor above the ground, (H).

2. EQUATIONS

$$B(MR)=1-[2 * CT(MR)]^{0.5}/b(MR)$$

$$Pi(MR)=(1/B) * [(GW)^{1.5}/(2 * RHO * A)]^{0.5}$$

$$Po(MR)=((SD) * (Cdo) * (RHO) * (A) * (VT)^3)/4400$$

$$Pt=(OGE)=Pi + Po$$

$$P/P(OGE)=-0.1276*(H/(2*R))^{4.0}+.7080*(H/(2*R))^{3.0}$$

$$-1.4569*(H/(2*R))^{2.0}+1.3432*(H/(2*R))+.5147$$

$$Pt(IGE)=Po(MR) + P/P(OGE) + Pi(MR)$$

where:

B is the tip loss factor.

A is the area of the main rotor disk.

Pi is the induced power (with tip loss).

C_{do} is the coefficient of drag for the main rotor (at zero lift).

P_o is the profile power.

$P_t(OGE)$ is the total power to hover out of ground effect.

$P_t(IGE)$ is the total power to hover in ground effect.

3. FLOWCHART

FLOWCHART (CONT)

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS:

Following a satisfactory run of "MR," determine the power to hover out of and in ground effect and the Figure of Merit for the helicopter.

Specifications:

Number of main rotor blades = 4

Coefficient of Drag (Cdo) of the main rotor = .01

Height of the main rotor above the ground = 14.4 ft

KEYSTROKES	DISPLAY
(XEQ) (alpha) PHV (alpha)	NO. MR BLDS=?
4 (r/s)	Cdo MR=?
0.01 (r/s)	Pth OGE=1232
	H=?
14.4 (r/s)	Pth IGE=1019
	FIG MER=0.74
	FM ok?
1 (r/s)	WE=1080

5. PROGRAM LISTINGS

81+LBL "PHW"	36 3	71 .1276
82 FIX 0	37 Y ^{1/X}	72 *
83+LBL "TL"	38 RCL 12	73 CHS
84 RCL 14	39 *	74 RCL 17
85 2	40 RCL 11	75 2
86 *	41 *	76 Y ^{1/X}
87 SORT	42 "CDD MR=?"	77 .7000
88 "NO.MP BLDG=?"	43 PROMPT	78 *
89 PROMPT	44 STO 87	79 +
10 STO 86	45 *	80 RCL 17
11 *	46 RCL 19	81 2
12 CHS	47 *	82 Y ^{1/X}
13 1	48 4400	83 1.4569
14 +	49 *	84 *
15 STO 15	50 STO 21	85 -
16+LBL "PT"	51+LBL "PT"	86 RCL 17
17 RCL 11	52 RCL 21	87 1.3422
18 RCL 12	53 RCL 16	88 *
19 *	54 +	89 +
20 2	55 STO 30	90 .5147
21 *	56 "PTH DGE=?"	91 *
22 SORT	57 ARCL X	92 RCL 16
23 RCL 36	58 DVIEW	93 *
24 ENTER*	59 STOP	94 STO 32
25 1.5	60+LBL "PT IGE"	95 RCL 21
26 Y ^{1/X}	61 "H=?"	96 +
27 *	62 PROMPT	97 STO 34
28 1/X	63 STO 89	98 "PTH IGE=?"
29 RCL 15	64 2	99 ARCL Y
30 *	65 *	100 DVIEW
31 550	66 RCL 85	101 STOP
32 *	67 *	102 XEQ "CM"
33 STO 16	68 STO 17	103 END
34+LBL "PO"	69 4	
35 RCL 13	70 Y ^{1/X}	

WEIGHT (WT)

1. PURPOSE

This program uses an iterative procedure to compute a more accurate estimate of the empty weight and total gross weight of the helicopter.

The program makes a "1st cut" estimate of the empty weight (WE) by multiplying the specification weight by .6. This WE is then used to compute the weight of the blades, hub, fuselage, controls, electrical and fixed equipment. The weight of the propulsion system is estimated by recalling R30 ($P_{th(OGE)}$) and multiplying by 1.2. These values are then added together and represent the second empty weight estimate (WE2). To estimate the total gross weight, fuel, useful load, and landing gear weight are added to the empty weight figure. Three types of landing gear are considered; skid, fixed wheel, and retractable wheel. A common practice among aircraft designers is to add two pounds to the gross weight of the aircraft for every additional pound added as a result of heavier equipment being installed. This is due to the fact that one additional pound requires more power which results in more fuel usage. In this case, the skid is lighter than the fixed wheel gear which, in turn, is lighter than the retractable gear.

This gross weight estimate is calculated as follows: the skid gear weight is calculated and is used as a reference point. This weight is subtracted from the fixed wheel gear

weight. An identical procedure occurs for the retractable gear. In this manner, every extra pound due to the addition of a heavier landing gear results in two extra pounds being added to the gross weight of the aircraft.

The formulas for computing the landing gear weight use the specification weight (absolute maximum weight allowed). If the user desires to incorporate a "buffer" to insure a satisfactory performance of the landing gear during a hard landing, this weight should be increased by a suitable percentage.

2. EQUATIONS

$$W_b = (.06) * (WE) * (R^{**.4}) * (SD)^{**.33}$$

$$W_h = (.0135) * (WE) * (R^{**.42})$$

$$W_p = (0.21) * P_{th}(OGE)$$

$$W_f = (0.21) * (WE)$$

$$W_c = (0.06) * (WE)$$

$$W_e = (0.06) * (WE)$$

$$W_q = (0.28) * (WE)$$

$$\begin{aligned} \text{Weight of the skid gear} &= (.0245 * (\text{Spec Wt})^{**.8606}) \\ &\quad * (FL)^{**.8046} \end{aligned}$$

$$\begin{aligned} \text{Weight of fixed and retractable landing gear} &= 40.0 * \\ &\quad (WMTO)^{**.6662} * (NW)^{**.536} \\ &\quad * (IRLG)^{**.1198} \end{aligned}$$

where:

W_b is the total weight of the blades.

W_h is the weight of the hub.

W_p is the weight of the propulsion system.

Wf is the weight of the fuselage.

Wc is the weight of the flight controls.

We is the weight of the aircraft's electrical equipment.

Wq is the weight of the installed fixed equipment.

WE2 is the empty weight (the sum of the above).

R is the main rotor radius.

SD is the main rotor solidity.

Pth(OGE) is the power to hover out of ground effect
(recalled from R30).

FL is a coefficient. If the main rotor has two blades,
the program uses a value of 2. If more than
2, FL=4.

WMTO is the specification weight divided by one thousand.

NW is the number of landing gears.

IRLG is the retractable gear flag (1=fixed,2=retractable).

Mr. Ronald Shinn developed the equation for skid gear weight. Most designers use 2% of GW to determine skid weight. In an effort to achieve a more accurate equation, he used a multiple regression routine to arrive at his equation. This formula has an 11% error when compared against the skid weight of eight operational helicopters. The equation used to determine the fixed and retractable landing gear weights had an 8.5% error when compared with 29 operational aircraft.

3. FLOWCHART

FLOWCHART (CONT)

FLOWCHART (CONT)

FLOWCHART (CONT)

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS

The user will note that at the conclusion of the PHV example problem, the program transferred automatically to the WT program (WE=10800.00 was displayed). If this value is in the calculator display window, disregard the initial key stroke instruction.

KEYSTROKES	DISPLAY
XEQ (alpha) WT (alpha)	WE=10,800
(r/s)	Wb=924.0
(r/s)	Wh=582.01
(r/s)	Wp=1477.99
(r/s)	Wf=2268.00
(r/s)	Wc=648.00
(r/s)	We=648.00
(r/s)	Wq=3024.00
(r/s)	WE 2 =9572.01
(r/s)	W FL?
4000 (r/s)	USE LD?
3750 (r/s)	SKID?
1 (r/s)	MR>2 BLDS?
1 (r/s)	T GW=17665.30

At this point, push the (r/s) button. The computer will prompt, "WT OK?" If the weight is far enough below the specification weight to allow room for the added weight of the fixed and retractable landing gear, input 1 (Yes). Input

0 (No), otherwise. If this second option is taken, the computer displays the most recently computed value of empty weight and uses this as a base for iteration. For this example problem, perform an additional iteration.

KEYSTROKES	DISPLAY
(r/s)	WT OK?
0 (r/s)	WE=9572.01
(r/s)	Wb=818.94
(r/s)	Wh=515.83
(r/s)	Wp=1477.99
(r/s)	Wf=2010.12
(r/s)	Wc=574.32
(r/s)	We=574.32
(r/s)	Wq=2680.16
(r/s)	WE 2 =8651.69
(r/s)	W FL?
4000 (r/s)	USE LD=?
3750 (r/s)	SKID?
1 (r/s)	MB>2 BLDS?
1 (r/s)	T GW=16744.99
(r/s)	WT OK?
1 (r/s)	

The program transfers back to the MR program. This newly computed value of gross weight is now used to obtain the MR output. The user must again check to insure all values are within prescribed specifications.

5. PROGRAM LISTING

```

01•LBL "WT"
02 CF 05
03 FIX 2
04 FS2 55
05 CF 21
06 RCL 79
07 .6
08 *
09•LBL 81
10 FS2 82
11 GTO 82
12 FS2 81
13 RCL 75
14 "WE="
15 ARCL X
16 AVIEW
17 STOP
18 STO 35
19 RCL 85
20 .4
21 Y^X
22 *
23 .96
24 *
25 RCL 19
26 .73
27 Y^X
28 *
29 STO 36
30 "WB="
31 ARCL X
32 AVIEW
33 STOP
34 RCL 75
35 .8135
36 *
37 RCL 85
38 .42
39 Y^X
40 *
41 ST+ 36
42 "WH="
43 ARCL X
44 AVIEW
45 STOP
46 RCL 78
47 1.2
48 *
49 ST+ 36
50 "WP="
51 ARCL X
52 AVIEW
53 STOP
54 RCL 35
55 .21
56 *
57 ST+ 36
58 "WF="
59 ARCL X
60 AVIEW
61 STOP
62 RCL 75
63 .96
64 *
65 ST+ 36
66 "WD="
67 ARCL X
68 AVIEW
69 STOP
70 RCL 35
71 .96
72 *
73 ST+ 36
74 "We="
75 ARCL X
76 AVIEW
77 STOP
78 RCL 75
79 .29
80 *
81 ST+ 36
82 "WA="
83 ARCL X
84 AVIEW
85 STOP
86 RCL 36
87 "WE 3="
88 ARCL X
89 AVIEW
90 STOP
91 STO 35
92•LBL 82
93 RCL 35
94 FS2 83
95 STO 36
96 "W FL?"
97 PROMPT
98 ST+ 36

```

99 "USE LGT"	148 GTO 84
100 PROMPT	149+LBL 85
101 ST+ 36	150 4
102 "SK102"	151 ENTER [†]
103 PROMPT	152 .8046
104 X>02	153 Y+X
105 GTO 84	154 RCL 39
106 RCL 39	155 .8606
107 1000	156 Y+X
108 /	157 *
109 .6662	158 .8245
110 Y+X	159 *
111 STO 84	160 STO 85
112 "NO. LGT"	161 STO 89
113 PROMPT	162+LBL 87
114 .536	163 RCL 66
115 Y+X	164 RCL 65
116 ST* 88	165 -
117 48	166 2
118 ST* 88	167 *
119 RCL 88	168 RCL 66
120 STO 66	169 +
121 "FX GRP"	170 GTO 89
122 PROMPT	171+LBL 88
123 X>02	172 RCL 88
124 GTO 87	173 RCL 65
125 2	174 -
126 ENTER [†]	175 2
127 .1198	176 *
128 Y+X	177 RCL 88
129 ST* 88	178 +
130 RCL 88	179+LBL 89
131 GTO 88	180 ST+ 36
132+LBL 84	181 RCL 36
133 "MR10 BDG?"	182 "T GM="
134 PROMPT	183 RCL X
135 X>02	184 RTN
136 GTO 85	185 STOP
137 2	186 F92 83
138 ENTER [†]	187 XEQ "PTOT"
139 .8046	188 SF 81
140 Y+X	189 "WT OK?"
141 RCL 39	190 PROMPT
142 .8606	191 X=02
143 Y+X	192 GTO 81
144 *	193 SF 84
145 .8245	194 XEQ "MR"
146 *	195 END
147 STO 65	

TOTAL POWER (PTOT)

1. PURPOSE

Three PTOT programs were written. The first program was designed specifically for use with the HP82143A printer. The printer outputs the velocity and corresponding engine shaft horsepower required. The second PTOT program was designed for the user who does not have access to the HP printer. This program displays the engine shaft horsepower required at an inputted velocity. The third program displays, for an inputted velocity, all of the individual powers required, for both main and tail rotors, the total power required and the engine shaft horsepower required. This program can be used with or without the printer. Because of the detail involved with this program, execution is much slower than with the other two programs.

2. EQUATIONS

$$P_p(mr \text{ fwd}) = (0.5) * \rho * V(fwd) ^{**} 3 * EFPA(ff)$$
$$V_i(mr \text{ hover}) = (GW / (2 * \rho * A)) ^{**} .5$$
$$P_i(mr \text{ fwd}) = GW (-(V(fwd) ^{**} 2 / V_i(hover) ^{**} 2) / 2
((V(fwd) ^{**} 2 / (2 * V_i(hover) ^{**} 2) + 1
^{**} .5)) ^{**} .5 * V_i(hover)$$
$$P_o(mr \text{ hover}) = (\Sigma(mr) * C_d(mr) * \rho * A(mr)
* V(mr tip) ^{**} 3) / 4400$$
$$\mu(mr) = V(fwd) / V(mr tip)$$
$$P_o(mr \text{ fwd}) = (1 + 4.3 * \mu^{**} 2) * P_o(mr \text{ hover})$$
$$P_t(mr \text{ fwd}) = P_o(mr \text{ fwd}) + P_p(mr \text{ fwd}) + P_i(mr \text{ fwd})$$
$$\text{Mach Tip}(mr) = (V(fwd) + V(mr tip)) /
(\gamma * g * R * T) ^{**} .5$$

```

R(tr)=(GW / 1000)**.5 * 1.3
L(tail)=R(tr) + R(mr) + .5
Chord(tr)=R(tr) / AR(tr)
T(tr)=Pt(mr hover oge) / (RV(mr) * L(tr))
A(tr)=R(tr)**2 * PI
V(tr tip)=RV(mr) * 4.5 * R(tr)
CT(tr)=T(tr) / (A(tr) * rho * V(tr tip)**2)
B(tr)=1-((2 * CT(tr))**.5 / b(tr))
Pi(tr tl hover)= (1 / B(tr)) * (T(tr)**1.5 /
(2 * rho * A(tr))**.5)
SIGMA(tr)=(b(tr) * C(tr)) / (R(tr) * PI)
Po(tr hover)=(SIGMA(tr) * Cdo(tr) * rho * A(tr) *
V(tr tip)**3)/4400
Pt(tr hover)=Po(tr) + Pi(tr tl)
MU(tr)=V(fwd) / V(tr tl)
Po(tr fwd)=Po(tr hover) * (1 + 4.3 * MU(tr)**2)
T(tr fwd)=Pt(mr fwd) / (RV(mr) * L(tr))
CT(tr fwd)=T(tr fwd) / (A(tr) * rho * V(tr tip)**2)
B(tr fwd)=1-((2 * CT(tr))**.5 / b(tr))
Vi(tr hover)=(T(tr) / (2 * rho * A(tr))**.5
Vi(tr fwd)=(-(V(fwd)**2 / 2) + (V(fwd)**2 / 2)**2
*(Pi(fwd) / P(hover)**2 * Vi(tr hover)**4)**.5
Pi (tr fwd)= (1 / B(tr)) * T(tr) * Vi(tr fwd)
Pt(tr fwd)=Pi(tr fwd tl) + Po(tr fwd)
Mach Tip(tr)= (V(fwd) + V(tr tip)) /
(gamma * g * R * T)**.5

```

where:

P_p is the parasite power.

EFPA (ff) is the effective flat plate area (forward flight).
Vi(hover) is the induced velocity in hover.
Pi(hover) is the induced power required to hover.
Po(hover) is the profile power required to hover.
SIGMA is the solidity.
Cdo is the coefficient of drag.
RHO is the density.
A(mr) is the area of the main rotor.
V(mr tip) is the tip velocity of the main rotor.
R(tr) is the radius of the tail rotor.
L(tr) is the length of the helicopter tail from the
main rotor shaft to the tail rotor.
T(tr) is the thrust of the tail rotor.
CT(tr) is the coefficient of thrust of the tail rotor.
B(tr) is the tip loss (tl) factor (tail rotor).

3. FLOWCHART

A. PTOT (PRINTER)

PTOT (PRINTER) (CONT)

PTOT (PRINTER) (CONT)

PTOT (PRINTER) (CONT)

PTOT (PRINTER) (CONT)

B. PTOT (ABBREVIATED)

PTOT (ABBREVIATED) (CONT)

PTOT (ABBREVIATED) (CONT)

C. PTOT (FULL DISPLAY)

PTOT (FULL DISPLAY) (CONT)

PTOT (FULL DISPLAY) (CONT)

B

$P_o + P_f + P_d =$
 $P_t(MR\ F)$
DISPLAY

COMPUTE & DISPLAY
MCH MR

COMPUTE R(TR) L(TR) CHORD(TR)
T(TR) A(TR) VTIP(TR) CT(TR)
B(TR) FOR HOVER

COMPUTE
 $P_f^{(TR\ H)}$
STO48

COMPUTE
 $P_o^{(TR\ H)}$
STO49

SUM R48
AND 49
STO 50

COMPUTE
 $P_o^{(TR\ F)}$
STO52

COMPUTE T(TR) CT(TR) B(TR)
FOR FORWARD FLIGHT

COMPUTE
 $P_f^{(TR\ F)}$
STO56

COMPUTE
MCH(TR)
STO60

C

PTOT (FULL DISPLAY) (CONT)

C

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS (PTOT--PRINTER)

Calculate the total engine shaft horsepower required for the example helicopter from 0 to 160 knots at standard sea level (0 PA, 15 DEG CEN). Increment the velocity every 20 knots.

Note: When prompted to input the control number, the user should recall that this number is of the form CCC.XXXFF. The CCC describes the starting value. .XXX is the final value, and FF is the incremental spacing. If the starting value is zero, the CCC need not be entered. For this example, input .16020.

KEYSTROKES	DISPLAY
XEQ (ALPHA) PTOT (ALPHA)	INPUT CNT NO.
0.16020 (R/S)	PA=?
0 (R/S)	TEMP C=?
15 (R/S)	AR TR=?
8 (R/S)	NO. TR BLS?
4 (R/S)	CDO TR=?
0.0145 (R/S)	EFPA KNOWN?
0 (R/S)	CLEAN LINES?
1 (R/S)	SKID?
1 (R/S)	EFPA=20.95
(R/S)	NO. ENGS=?
2 (R/S)	

Note: This program can, at this point, only be executed using skid data because the gross weight computation used in the "WT" program was computed on the basis of skid landing gear.

Definitions:

PA is the pressure altitude.

TEMP C is the temperature in centigrade.

AR TR is the aspect ratio of the tail rotor (historically between 4.5 and 8.0).

NO. ENGS is the number of engines.

5. PRINTER OUTPUT

TOTAL POWER

GW=16744.99
EPPD=20.95

VEL (KNOTS)
ESHP

0	***
1861	***
20	***
1603	***
40	***
1284	***
60	***
1187	***
80	***
1173	***
100	***
1356	***
120	***
1847	***
140	***
2049	***
160	***
2576	***

6. EXAMPLE PROBLEM AND USER INSTRUCTIONS (PTOT--ABBREVIATED)

Note: Clear PTOT (PRINTER) and insert PTOT (ABBREVIATION).
Clear flags 02 and 05 manually.

KEYSTROKES	DISPLAY
(SHIFT) CF 02	0
(SHIFT) CF 05	0
XEQ (ALPHA) CLP (ALPHA)	CLP__
(ALPHA) PTOT (ALPHA)	-----

AFTER INPUTTING PTOT (ABBREVIATED) :

KEYSTROKES	DISPLAY
XEQ (ALPHA) PTOT (ALPHA)	FWD VEL=?
0 (R/S)	PA=?
0 (R/S)	TEMP C=?
15 (R/S)	AR TR=?
8 (R/S)	NO. TR BL?
4 (R/S)	CDO TR=?
0.0145 (R/S)	EFPA KNOWN?
1 (R/S)	EFPA=?
20.95 (R/S)	NO. ENGS=?
2 (R/S)	ESH>P=1861.14
(R/S)	FWD VEL?
20 (R/S)	ESH>P=1608.01
(R/S)	FWD VEL?
40 (R/S)	ESH>P=1204.25
(R/S)	FWD VEL?

60	(R/S)	1107.36
	(R/S)	FWD VEL?
80	(R/S)	1173.43
	(R/S)	FWD VEL?
100	(R/S)	ESHP=1356.32
	(R/S)	FWD VEL?
120	(R/S)	1646.68
	(R/S)	FWD VEL?
140	(R/S)	ESHP=2049.57
	(R/S)	FWD VEL?
160	(R/S)	ESHP=2575.93

Note: When prompted "EFPA KNOWN?" a 1 was inputted (Yes) since the EFPA was known from the PTOT (PRINTER) program. This results in a more rapid program execution.

7. EXAMPLE PROBLEM AND USER INSTRUCTIONS (PTOT-FULL DISPLAY)

Note: Clear PTOT (ABBREVIATION) and input PTOT (FULL DISPLAY). Also clear flags 02, 03, and 05.

KEYSTROKES	DISPLAY
XEQ (ALPHA) PTOT (ALPHA)	FWD VEL=?
0 (R/S)	PA=?
0 (R/S)	TEMP C=?
15 (R/S)	AR TR=?
8 (R/S)	NO. TR BLDS?
4 (R/S)	CDO TR=?
0.0145 (R/S)	EFPA KNOWN?

1 (R/S)

EFPA=?

20.95 (R/S)

For the inputted forward velocity of 0 knots, the following power values are displayed:

Pi(fwd)=1227.14

Pp=0.0

Po(fwd)=296.54

Pt(fwd)=1523.69

MCH(mr)=.65

MCH(tr)=0.58

Pi(tr fwd)=85.04

Po(tr fwd)=29.51

Pt(tr fwd)=114.55

PTOT=1638.24

The user is then prompted for the number of engines (this only occurs during the first iteration). After inputting 2 engines, the engine shaft horsepower required at zero air-speed is displayed: 1861.14. After pushing the (r/s) key, the user will be prompted for the forward velocity, pressure altitude, and temperature. In this way, power requirements at any airspeed and altitude may be computed anytime during the program operation. The user may transcribe a table of values from the displayed output.

8. PRINTER OUTPUT (PTOT--FULL DISPLAY)

With the HP 82143A printer attached, the following data is outputted during the running of the program (two iterations are shown).

0.00 ***
P1 FD=1227.14
PP=0.00
P0 FD=296.54
PT FD=1523.69
MCH MR=0.65
MCH TR=0.58
P1 TRF=85.04
P0 TRF=29.51
PT TRF=114.55
PTOT=1638.84
ESHP=1361.14

20.00 ***
P1 FD=1023.74
PP=1.74
P0 FD=299.30
PT FD=1324.72
MCH MR=0.68
MCH TR=0.61
P1 TRF=59.56
P0 TRF=29.86
PT TRF=89.42
PTOT=1414.20
ESHP=1608.81

9. PROGRAM LISTINGS

A. PTOT (PRINTER) LISTING

91•LBL "PTOT"	39 GTO 83	77•LBL "P0 FD"
92 SF 21	40•LBL 82	78 RCL 13
93 SF 83	41 "EFPA=?"	79 7
94 "INPUT CNT NO."	42 PROMPT	80 Y+Y
95 PROMPT	43 PRA	81 RCL 12
96 STO 89	44 STO 64	82 *
97 FST? 82	45 XEQ "PRX"	83 RCL 11
98 GTO 82	46•LBL 83	84 *
99 XEQ "RHO"	47 FIX 8	85 RCL 87
10 "AR TR=?"	48 RCL 89	86 *
11 PROMPT	49 RDV	87 RCL 19
12 STO 81	50 "VEL (KNOTS)"	88 *
13 "NO.TR BLG?"	51 PRA	89 4400
14 PROMPT	52 "ESHP"	90 /
15 STO 59	53 PRA	91 STO 21
16 "CD0 TR=?"	54 ADV	92 XEQ "MU"
17 PROMPT	55•LBL 81	93 Y+Z
18 STO 82	56 RCL 89	94 4,3
19 SF 82	57 INT	95 *
20•LBL 82	58 PRX	96 1
21 SF 12	59 .59248	97 +
22 RDV	60 /	98 *
23 RDV	61 STO 25	99 STO 24
24 "TOTAL POWER"	62 3	100 RTN
25 PRA	63 Y+X	101•LBL "MU"
26 RDV	64 RCL 64	102 RCL 25
27 RDV	65 RCL 11	103 RCL 13
28 CF 12	66 *	104 /
29 RCL 36	67 .5	105 RTN
30 "GW=?"	68 *	106•LBL "YT"
31 RCL X	69 RCL 25	107 RCL 36
32 RDV	70 7	108 RCL 11
33 "EFPA KNOWN?"	71 Y+X	109 RCL 12
34 PROMPT	72 *	110 *
35 XY?	73 550	111 2
36 GTO 82	74 /	112 *
37 XEQ "EFPA"	75 STO 28	113 /
38•LBL "DD"	76 GTO "PT FD"	114 SRT

115 STO 28	153 +	191 STO 44
116LBL "PI FD"	154 STO 22	192 Y ¹²
117 RCL 25	155LBL "TR"	193 RCL 11
118 X ¹²	156 RCL 36	194 *
119 RCL 28	157 1000	195 RCL 43
120 X ¹²	158 /	196 *
121 /	159 SQRT	197 RCL 41
122 2	160 1.3	198 XY ^Y
123 /	161 *	199 /
124 CHS	162 STO 42	200 STO 45
125 RCL 25	163 RCL 85	201 2
126 X ¹²	164 +	202 *
127 RCL 28	165 .5	203 SQRT
128 X ¹²	166 +	204 RCL 59
129 2	167 STO 48	205 /
130 *	168 RCL 42	206 CHS
131 /	169 RCL 91	207 1
132 X ¹²	170 /	208 +
133 1	171 STO 58	209 STO 47
134 +	172 RCL 38	210 RCL 41
135 SQRT	173 550	211 1.5
136 +	174 *	212 Y ¹² X
137 SQRT	175 RCL 88	213 RCL 43
138 RCL 28	176 RCL 40	214 RCL 11
139 *	177 *	215 *
140 RCL 36	178 /	216 2
141 *	179 STO 41	217 *
142 RCL 15	180 RCL 42	218 SQRT
143 /	181 X ¹²	219 /
144 550	182 PI	220 RCL 47
145 /	183 *	221 /
146 STO 27	184 STO 43	222 550
147 RTN	185 4.5	223 /
148LBL "PT FD"	186 ENTER ⁺	224 STO 48
149 XEQ "VI"	187 RCL 88	225 RCL 59
150 RCL 28	188 *	226 RCL 58
151 +	189 RCL 42	227 *
152 XEQ "PO FD"	190 *	228 RCL 42

229 PI	267 /	385 RCL 25
230 *	268 550	386 X†2
231 /	269 *	387 RCL 26
232 STO 29	270 STO 53	388 Y†2
233 RCL 44	271 RCL 43	389 2
234 3	272 RCL 11	390 *
235 Y†X	273 *	391 1
236 RCL 43	274 RCL 44	392 Y†2
237 *	275 X†2	393 1
238 RCL 11	276 *	394 *
239 *	277 /	395 S9P
240 RCL 82	278 STO 54	396 +
241 *	279 2	397 S9P
242 RCL 29	280 *	398 RCL 26
243 *	281 S9RT	399 *
244 4400	282 RCL 59	400 RCL 53
245 /	283 /	401 *
246 STO 49	284 CHS	402 550
247 RCL 48	285 1	403 /
248 +	286 +	404 RCL 55
249 STO 50	287 STO 55	405 /
250 LBL "TR2"	288 RCL 25	406 STO 56
251 RCL 25	289 X†2	407 RCL 22
252 RCL 44	290 LBL "VI(TR)"	408 +
253 /	291 RCL 53	409 RCL 52
254 STO 51	292 RCL 11	410 +
255 X†2	293 RCL 43	411 XEQ "PCOMP"
256 4.3	294 *	412 +
257 *	295 2	413 STO 63
258 1	296 *	414 XEQ "ESHP"
259 +	297 /	415 STO 63
260 RCL 49	298 S9RT	416 PRX
261 *	299 STO 26	417 ADV
262 STO 52	300 X†2	418 ISG 09
263 RCL 22	301 /	419 STO 01
264 RCL 08	302 2	420 BEEP
265 RCL 40	303 /	421 STOP
266 *	304 CHS	422 END

B. PTOT (ABBREVIATED) LISTING

01•LBL "PTOT"	37 STO 64	77 *
02 SF 03	38•LBL 04	78 STO 24
03•LBL 03	39 RCL 64	79 RTN
04 FIX 2	40 RCL 11	76•LBL "MU"
05 "FWD VEL?"	41 *	77 RCL 25
06 PROMPT	42 .5	78 RCL 13
07 .59249	43 *	79 /
08 /	44 RCL 25	80 RTN
09 STO 25	45 3	81•LBL "VI"
10 3	46 Y+X	82 RCL 36
11 Y+X	47 *	83 RCL 11
12 F62 05	48 550	84 RCL 12
13 STO 04	49 /	85 *
14 XEQ "RHO"	50 STO 26	86 2
15 F62 02	51 GTO "PT FD"	87 *
16 GTO 04	52•LBL "P0 FD"	88 /
17 "AR TR=?"	53 RCL 13	89 SGT
18 PROMPT	54 3	90 STO 28
19 STO 01	55 Y+X	91•LBL "PI FD"
20 "NO,TR BLG?"	56 RCL 12	92 RCL 25
21 PROMPT	57 *	93 Y+Z
22 STO 59	58 RCL 11	94 RCL 20
23 "ODD TR=?"	59 *	95 Y+Z
24 PROMPT	60 RCL 07	96 /
25 STO 02	61 *	97 3
26 SF 02	62 RCL 19	98 /
27 "EFPA KNOWN?"	63 *	99 CHS
28 PROMPT	64 4400	100 RCL 25
29 Y>0?	65 /	101 Y+Z
30 GTO 02	66 STO 21	102 RCL 28
31 XEQ "EFPA"	67 XEQ "MU"	103 Y+Z
32•LBL "DD"	68 Y+Z	104 2
33 GTO 04	69 A,3	105 *
34•LBL 02	70 *	106 /
35 "EFPO=?"	71 1	107 Y+Z
36 PROMPT	72 *	108 1

199 +	145 RCL 01	181 /
118 S0RT	146 /	182 CHS
111 +	147 STO 58	183 1
112 S0RT	148 RCL 38	184 *
113 RCL 28	149 558	185 STO 47
114 *	150 *	186 RCL 41
115 RCL 36	151 RCL 88	187 1.5
116 *	152 RCL 48	188 Y ¹ X
117 RCL 15	153 *	189 RCL 43
118 /	154 /	190 RCL 11
119 558	155 STO 41	191 *
120 /	156 RCL 42	192 2
121 STO 27	157 X ¹ 2	193 *
122 RTN	158 PI	194 S0RT
123•LBL "PT FD"	159 *	195 /
124 XEQ "Y1"	160 STO 43	196 RCL 47
125 RCL 28	161 4.5	197 /
126 +	162 ENTER ¹	198 558
127 XEQ "P0 FD"	163 RCL 88	199 /
128 +	164 *	200 STO 48
129 STO 22	165 RCL 42	201 RCL 59
130•LBL "TR"	166 *	202 RCL 58
131 FIX 2	167 STO 44	203 *
132 RCL 36	168 X ¹ 2	204 RCL 42
133 1000	169 RCL 11	205 PI
134 /	170 *	206 *
135 S0RT	171 RCL 43	207 /
136 1.3	172 *	208 STO 29
137 *	173 RCL 41	209 RCL 44
138 STO 42	174 X ¹ Y	210 3
139 RCL 85	175 /	211 Y ¹ X
140 +	176 STO 45	212 RCL 43
141 .5	177 2	213 *
142 +	178 *	214 RCL 11
143 STO 48	179 S0RT	215 *
144 RCL 42	180 RCL 59	216 RCL 82

217 *	253 /	289 !
218 RCL 29	254 STO 54	290 +
219 *	255 2	291 SORT
220 4400	256 *	292 +
221 /	257 SORT	293 SORT
222 STO 49	258 RCL 59	294 RCL 26
223 RCL 48	259 /	295 *
224 +	260 CHS	296 RCL 53
225 STO 50	261 1	297 *
226LBL "TR2"	262 +	298 550
227 RCL 25	263 STO 55	299 /
228 RCL 44	264 RCL 25	300 RCL 55
229 /	265 X ¹²	301 /
230 STO 51	266LBL "VI<TR>"	302 STO 56
231 X ¹²	267 RCL 57	303 RCL 22
232 4.3	268 RCL 11	304 +
233 *	269 RCL 43	305 RCL 52
234 1	270 *	306 +
235 +	271 2	307 XEQ "PCOMP"
236 RCL 49	272 *	308 +
237 *	273 /	309 STO 63
238 STO 52	274 SORT	310 XEQ "FSHP"
239 RCL 22	275 STO 26	311 STO 63
240 RCL 08	276 X ¹²	312 "FSHP=*
241 RCL 48	277 /	313 ARCL X
242 *	278 2	314 VIEW
243 /	279 /	315 STOP
244 550	280 CHS	316 GTO 03
245 *	281 RCL 25	317 END
246 STO 53	282 X ¹²	
247 RCL 43	283 RCL 26	
248 RCL 11	284 X ¹²	
249 *	285 2	
250 RCL 44	286 *	
251 X ¹²	287 /	
252 *	288 X ¹²	

C. PTOT (FULL DISPLAY) LISTING

01♦LBL "PTOT"	44 .5	87♦LBL "VI"
02 SF 03	45 *	88 RCL 36
03♦LBL 03	46 RCL 25	89 RCL 11
04 FIX 2	47 3	90 RCL 12
05 ADV	48 Y \uparrow X	91 *
06 ADV	49 *	92 2
07 "FWD VEL=?"	50 550	93 *
08 PROMPT	51 /	94 *
09 FS? 55	52 STO 28	95 SQRT
10 PRX	53 GTO "P0 FD"	96 STO 29
11 .59248	54♦LBL "P0 FD"	97♦LBL "PI FD"
12 /	55 RCL 13	98 RCL 25
13 STO 25	56 3	99 X \uparrow 2
14 3	57 Y \uparrow X	100 RCL 20
15 Y \uparrow X	58 RCL 12	101 X \uparrow 2
16 XEQ "RHO"	59 *	102 /
17 FS? 02	60 RCL 11	103 2
18 GTO 84	61 *	104 /
19 "AP TR=?"	62 RCL 97	105 CHS
20 PROMPT	63 *	106 RCL 25
21 STO 01	64 RCL 19	107 X \uparrow 2
22 "NO. TR BLDS?"	65 *	108 RCL 20
23 PROMPT	66 4400	109 Y \uparrow 2
24 STO 59	67 /	110 2
25 "CDO TR=?"	68 STO 21	111 *
26 PROMPT	69 XEQ "MU"	112 /
27 STO 02	70 X \uparrow 2	113 X \uparrow 2
28 SF 02	71 4.3	114 1
29 "EFPA KNOWN?"	72 *	115 +
30 PROMPT	73 1	116 SQRT
31 X \uparrow 2	74 +	117 +
32 GTO 02	75 *	118 SQRT
33 XEQ "EFPA"	76 STO 24	119 RCL 20
34♦LBL "DD"	77 "P0 FD"	120 *
35 GTO 84	78 RCL Y	121 RCL 36
36♦LBL 02	79 REVIEW	122 *
37 "EFPA=?"	80 STOP	123 RCL 15
38 PROMPT	81 RTN	124 *
39 STO 64	82♦LBL "MU"	125 550
40♦LBL 84	83 RCL 25	126 /
41 RCL 64	84 RCL 13	127 STO 27
42 RCL 01	85 /	128 RTN
43 *	86 RTN	129♦LBL "PT FD"

130 XEQ "VI"	173 RCL 05	216 CHS
131 "PI FD="	174 +	217 1
132 RCL X	175 .5	218 +
133 AVIEW	176 +	219 STO 47
134 STOP	177 STO 40	220 RCL 41
135 RCL 28	178 RCL 42	221 1.5
136 "PP="	179 RCL 01	222 Y ⁴⁴
137 RCL X	180 /	223 RCL 43
138 AVIEW	181 STO 58	224 RCL 11
139 STOP	182 RCL 30	225 *
140 +	183 558	226 2
141 XEQ "PO FD"	184 *	227 *
142 +	185 RCL 08	228 SQRT
143 "PT FD="	186 RCL 40	229 /
144 RCL X	187 *	230 RCL 47
145 AVIEW	188 /	231 /
146 STO 22	189 STO 41	232 558
147 STOP	190 RCL 42	233 /
148 RCL 25	191 X ⁴²	234 STO 48
149 RCL 13	192 PI	235 RCL 59
150 +	193 *	236 RCL 58
151 401.8	194 STO 43	237 *
152 ENTER↑	195 4.5	238 RCL 42
153 RCL 18	196 ENTER↑	239 PI
154 *	197 RCL 08	240 *
155 SQRT	198 *	241 /
156 .3848	199 RCL 42	242 STO 29
157 /	200 *	243 RCL 44
158 /	201 STO 44	244 ?
159 "MCH MR="	202 X ⁴²	245 Y ⁴⁴
160 RCL X	203 RCL 11	246 RCL 43
161 AVIEW	204 *	247 *
162 STO 37	205 RCL 43	248 RCL 11
163 STOP	206 *	249 *
164 LBL "TR"	207 RCL 41	250 RCL 02
165 FIX 2	208 Y ⁴⁴	251 *
166 RCL 36	209 /	252 RCL 29
167 1000	210 STO 45	253 *
168 /	211 2	254 4400
169 SQRT	212 *	255 /
170 1.3	213 SQRT	256 STO 49
171 *	214 RCL 59	257 RCL 49
172 STO 42	215 /	258 +

259 STO 58	302 RCL 11	345 *
260LBL "TP2"	303 RCL 43	346 SORT
261 RCL 25	304 *	347 .3848
262 RCL 44	305 2	348 /
263 /	306 *	349 /
264 STO 51	307 /	350 STO 60
265 X†2	308 SORT	351 "MCH TR="
266 4.3	309 STO 26	352 ARCL X
267 *	310 X†2	353 AVIEW
268 1	311 /	354 STOP
269 +	312 2	355 RCL 56
270 RCL 49	313 /	356 "PI TRF="
271 *	314 CHS	357 ARCL X
272 STO 52	315 RCL 25	358 AVIEW
273 RCL 22	316 X†2	359 STOP
274 RCL 88	317 RCL 26	360 RCL 52
275 RCL 40	318 Y†2	361 "PO TRF="
276 *	319 2	362 ARCL X
277 /	320 *	363 AVIEW
278 550	321 /	364 STOP
279 *	322 X†2	365 RCL 57
280 STO 53	323 1	366 "PT TRF="
281 RCL 43	324 +	367 ARCL X
282 RCL 11	325 SORT	368 AVIEW
283 *	326 +	369 STOP
284 RCL 44	327 SORT	370 RCL 22
285 X†2	328 RCL 26	371 +
286 *	329 *	372 "PTOT="
287 /	330 RCL 53	373 ARCL X
288 STO 54	331 *	374 AVIEW
289 2	332 556	375 STO 63
290 *	333 /	376 STOP
291 SORT	334 RCL 55	377 XER "P00MP"
292 RCL 59	335 /	378 ST+ 63
293 /	336 STO 56	379 XEP "ESHPR"
294 CHS	337 RCL 52	380 "ESHPR="
295 1	338 +	381 ARCL X
296 +	339 STO 57	382 AVIEW
297 STO 55	340 RCL 25	383 STOP
298 RCL 25	341 RCL 44	384 GTO 83
299 X†2	342 +	385 END
300LBL "VI<TR>"	343 RCL 18	
301 RCL 53	344 401.8	

PCOMP (POWER REQUIRED DUE TO COMPRESSIBILITY EFFECTS)

1. PURPOSE

This subroutine is used in the main program, PTOT. It computes the additional horsepower necessary due to the compressibility effects from the main rotor.

2. EQUATIONS

$$M(\text{tip mr}) = (V(\text{tip mr}) + V(\text{fwd mr})) / (\gamma * g * R * T)^{0.5}$$

$$MD = M(\text{tip mr}) - M(\text{crit}) - 0.06$$

$$P(\text{COMP}) = \rho * A(\text{mr}) * V(\text{tip mr})^3 * \sigma(\text{mr}) * (0.012 * MD + 0.01 * MD^3)$$

where:

$V(\text{fwd})$ is the forward velocity in knots.

$V(\text{tip})$ is the main rotor tip velocity.

$M(\text{crit})$ is the critical mach number (a good approximation is .65).

DISCUSSION: The horsepower required due to compressibility effects does not become a positive value until a certain forward velocity is attained. By providing a check for negative MD, only positive values of PCOMP are stored in Register 63 (R63). When run independent of the main program, MD is displayed if the value is negative. PCOMP is displayed and stored in R63 otherwise. When run in conjunction with PTOT, MD and PCOMP are not displayed. PCOMP is computed and added to the total power computed in PTOT.

3. FLOWCHART (PCOMP)

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS:

A) Compute the horsepower required due to compressibility effects at 20 knots forward velocity, 0 PA, and 15 deg C.

Register 25 contains the value, in ft per sec, of forward velocity. Register 11 contains the density altitude (rho). To execute PCOMP independent of the main program, the desired forward velocity must be converted to units of ft/sec and stored into Register 25. The subroutine "rho" must be executed to insure the correct value of density is stored in Register 11.

KEYSTROKES	DISPLAY
20 enter	20.00--
0.59248 /	33.76
sto 25	33.76
XEQ (alpha) RHO (alpha)	PA=?
0 (r/s)	TEMP C=?
15 (r/s)	2.38 -03
XEQ (alpha) PCOMP (alpha)	-0.03

DISCUSSION: At 20 knots, the compressibility factor is negative, therefore there is no extra horsepower needed due to compressibility effects. The value of MD is displayed.

B) Compute the horsepower required due to compressibility effects at 160 knots forward airspeed, 4000 ft pa, 35 deg C.

KEYSTROKES	DISPLAY
160 enter	160
0.59248 /	270.05
STO 25	270.05
XEQ (alpha) RHO (alpha)	PA=?
4000 (r/s)	TEMP C=?
35 (r/s)	1.92 -03
XEQ (alpha) PCOMP (alpha)	418.48

DISCUSSION: At a forward velocity of 160 knots at 4000 ft PA and 35 deg C, an additional power requirement of 418.48 horsepower results due to compressibility effects from the main rotor. This value is stored in Register 63 and will be added to other power requirements in the main program.

5. PROGRAM LISTING

```
01LBL "PCOMP"
02 RCL 25
03 RCL 13
04 +
05 RCL 18
06 401.8
07 *
08 SQRT
09 /
10 .3848
11 *
12 STO 37
13 RCL 03
14 -
15 .06
16 -
17 X<0?
18 GTO 01
19 STO 46
20 Z
21 Y+X
22 .1
23 *
24 .012
25 ENTER↑
26 RCL 46
27 *
28 +
29 RCL 19
30 *
31 RCL 13
32 Z
33 Y+X
34 *
35 RCL 12
36 *
37 RCL 11
38 *
39 550
40 /
41 STO 63
42LBL 01
43 END
```

ESHP (EQUIVALENT SHAFT HORSEPOWER)

1. PURPOSE

This subroutine is used in the main program PTOT. It computes the engine shaft horsepower required. The ESHP is equivalent to the rotor shaft horsepower (PTOT + PCOMP) adjusted for transmission and accessory losses. In addition, a 10 percent shaft horsepower loss is computed for every additional engine installed.

2. EQUATIONS

$$\text{ESHP} = (0.10 * \text{RSHP} * (\text{N}-1) + 1.03 * \text{RSHP} + 10.0 \text{ HP}$$

where:

N is the number of engines installed.

10.0 hp is the approximate horsepower required due to accessory usage.

RSHP is the rotor shaft horsepower (PTOT + PCOMP).

3. FLOWCHART (ESHP)

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS

Compute the engine shaft horsepower required for a helicopter with two engines having a RSHP of 1500 hp.

KEYSTROKES	DISPLAY
1500 STO 63	1500
CF 05	1500
XEQ (alpha) ESHP (alpha)	NO. ENGS=?
2 (r/s)	1705.00

DISCUSSION: A helicopter with a RSHP of 1500 hp will require 205 additional horsepower due to transmission and accessory losses, as well as a 10 percent SHP loss due to an additional engine. To execute this subroutine independently of the main program, a value for RSHP must be known and stored in R63. Flag 05 must be cleared for the prompt "NO. ENGS=?" to be viewed.

5. PROGRAM LISTING

81♦LBL "ESHP"	12 RCL 63
82 F32 05	13 *
83 GTO 81	14 ,1
84 "NO. ENGS=?"	15 *
85 PROMPT	16 RCL 63
86 STO 67	17 1.03
87 SF 05	18 *
98♦LBL 81	19 +
99 RCL 67	20 16
10 1	21 +
11 -	22 END

FM (FIGURE OF MERIT)

1. PURPOSE

This subroutine is used in the main program PHV (Power to Hover). It computes the Figure of Merit which is the ratio of induced power (P_i), to the total power (P_t), of the main rotor. A computer value of between 0.7 and 0.8 is acceptable.

2. EQUATIONS

$$FM = (100 - ((P_t(mr ige) - P_i(mr oge)) / P_i(mr oge))) * 100 * .01$$

where:

$P_t(mr ige)$ is the total power required to hover in ground effect for the main rotor (stored in R30).

$P_i(mr oge)$ is the induced power required out of ground effect for the main rotor (stored in R16).

3. FLOWCHART (FM)

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS:

A) Compute the Figure of Merit of a helicopter which has $P_i(\text{mr oge})$ of 1000 hp and a $P_t(\text{mr ige})$ of 1500 hp.

KEYSTROKES	DISPLAY
1000 STO 16	1000
1500 STO 30	1500
XEQ (alpha) FM (alpha)	FIG MER=0.50
(r/s)	FM OK?
0 (r/s)	FM HIGH?
0 (r/s)	(program transfers to subroutine "RV")

B) Compute the Figure of Merit for a helicopter with a $P_i(\text{mr oge})$ of 1250 hp and a $P_t(\text{mr ige})$ of 1400 hp.

KEYSTROKES	DISPLAY
1250 STO 16	1250
1400 STO 30	1400
XEQ (alpha) FM (alpha)	FIG MER=0.88
(r/s)	FM OK?
0 (r/s)	FM HIGH?
1 (r/s)	(program transfers to subroutine (CHD"))

C) Compute the Figure of Merit for a helicopter with a $P_i(\text{mr oge})$ of 1200 hp and a $P_t(\text{mr ige})$ of 1500 hp.

KEYSTROKES	DISPLAY
1200 STO 16	1200
1500 STO 30	1500

XEQ (alpha)	FM (alpha)	FIG MER=0.75
(r/s)		FM OK?
1	(r/s)	(If flag 04 is set, the user is prompted "clr MR, PHV, FM, CHD, RV, input PTOT, PCOMP, ESHP." If flag 04 is not set, the program transfers to the "WT" program and the first empty weight approximation is displayed.)

DISCUSSION: To run this subroutine independently of the main program "PHV," the values for $P_i(mr \ oge)$ and $P_t(mr \ ige)$ must be inputted manually into their appropriate registers. In the first example, the Figure of Merit was computed to be 0.50, well below the minimum acceptable value of 0.70. The subroutine "RV" was therefore executed (this subroutine enables the user to increase the FM value). In the second example, the Figure of Merit was higher than the acceptable value of 0.80 and the subroutine "CHD" was executed (this subroutine enables the user to decrease the FM value). In the third example, the Figure of Merit was within the specified limits. When executing "FM" as part of the main program, if the "WT" program has not been executed (flag 04 has not been set), then the program automatically transfers to "WT" and displays the first approximation for the aircraft empty weight (.6 * spec. wt). If, however, flag 04 is set, the user is instructed to clear from program memory the programs that are no longer needed and to input three additional programs.

5. PROGRAM LISTING

01LBL "FM"	22 GTO 01
02 FIX 2	23 XEQ "WT"
03 RCL 16	24LBL 01
04 ENTER	25 "CLR MR, MU, FM"
05 RCL 30	26 "L, CHD, RV"
06 XCH	27 PROMPT
07 100	28 "INPUT PTOT, PC"
08 X<0Y	29 "HOMP, ESHP,"
09 -	30 PROMPT
10 .81	31 GTO 04
11 *	32LBL 02
12 "FIG MEP="	33 "FM HIGH?"
13 ARCL Y	34 PROMPT
14 AVIEW	35 X>0?
15 FIX 4	36 GTO 03
16 STOP	37 XEQ "RV"
17 "FM OK?"	38LBL 03
18 PROMPT	39 XEQ "CHD"
19 X=0?	40LBL 04
20 GTO 02	41 END
21 F02 04	

CHD (CHORD)

1. PURPOSE

This subroutine is called up in the "FM" program. It is designed to reduce the value computed for the Figure of Merit. When executed, the former chord value is displayed momentarily. The user must input a larger value of chord length. This larger chord will increase the solidity, decrease the blade loading and decrease the aspect ratio. Once these values have been computed and stored in their appropriate registers, the program transfers to the "MR" program and immediately displays the values for DL, RV, CT, SD, c, AR, and CL. Program execution continues as before. A new Figure of Merit will be displayed. Proceed as before, depending on this value.

2. EQUATIONS

$$SD = (c * b) / (\pi * R)$$

$$BL = CT / SD$$

$$AR = R / c$$

where:

SD is the solidity.

c is the chord.

b is the number of main rotor blades.

R is the radius of the main rotor.

CT is the coefficient of thrust (main rotor).

AR is the aspect ratio.

3. FLOWCHART (None)

4. EXAMPLE PROBLEMS AND USER INSTRUCTIONS:

This subroutine can only be used in conjunction with several main programs. See "PHV" for example problems involving this subroutine.

5. PROGRAM LISTING

```
01 LBL "HR"
02 RCL 04
03 "04="
04 ARCL X
05 AVIEW
06 PSE
07 "NEW CD=?"
08 PROMPT
09 STO 04
10 RCL 06
11 *
12 RCL 05
13 ENTER↑
14 PI
15 *
16 /
17 STO 19
18 RCL 14
19 X1/2
20 /
21 "BL="
22 ARCL X
23 AVIEW
24 STOP
25 RCL 05
26 RCL 04
27 /
28 STO 32
29 GTO "AA"
30 END
```

RV (ROTATIONAL VELOCITY)

1. PURPOSE

This subroutine is called up in the "FM" program. It is designed to increase the computed Figure of Merit values. When executed, the former tip velocity is displayed momentarily. The user is then instructed to input a new value for V(tip). This value must be lower than the former value. The program then calculates new values for RV, BL, CT, SD, c, AR, and CL using the new V(tip). The program automatically transfers to "MR" and displays DL and the above values. Program execution continues as before. A new Figure of Merit will be displayed. Proceed as before, depending on the value. The user should be aware that a dramatic reduction in V(tip) is required to increase the Figure of Merit.

2. EQUATIONS

$$RV = V(\text{tip}) / R$$

$$BL = -0.16667 * ((V_{\text{max fwd}}) / 0.59248) / V(\text{tip}) + .15515$$

$$CT = GW / (A * \rho * V(\text{tip})^{**2})$$

$$SD = CT / BL$$

$$c = (SD * \pi * R(\text{mr})) / b(\text{mr})$$

$$AR = R(\text{mr}) / c(\text{mr})$$

$$CL = (6.0 * CT) / SD$$

where:

GW is the gross weight.

R(mr) is the radius of the main rotor.

v_{tip} is the maximum tip velocity of the main rotor.
 rv is the rotational velocity of the main rotor.
 ct is the coefficient of thrust of the main rotor.
 ρ is the density.
 sd is the solidity.
 bl is the blade loading.
 b is the number of main rotor blades.
 c is the chord.
 ar is the aspect ratio.
 cl is the coefficient of lift.

3. FLOWCHART (None)

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS:

This subroutine can only be used in conjunction with several main programs. See "PHV" for example problems involving this subroutine.

5. PROGRAM LISTING

81 LBL "RV"	30 *
82 RCL 13	31 RCL 36
83 "VTIP="	32 X<>Y
84 RCL X	33 /
85 AVIEW	34 STO 14
86 PSE	35 X<>Y
87 "NEW VTIP=?"	36 /
88 PROMPT	37 STO 19
89 STO 13	38 PI
10 RCL 85	39 *
11 /	40 RCL 85
12 STO 88	41 *
13 RCL 23	42 RCL 86
14 RCL 13	43 /
15 /	44 STO 84
16 .166667	45 RCL 85
17 CHS	46 X<>Y
18 *	47 /
19 .15515	48 STO 32
20 +	49 RCL 14
21 "BL="	50 6
22 RCL X	51 *
23 AVIEW	52 RCL 19
24 STOP	53 /
25 RCL 12	54 STO 33
26 RCL 11	55 RCL 31
27 *	56 GTO "RD"
28 RCL 13	57 END
29 X ^{1/2}	

EFPA (EFFECTIVE FLAT PLATE AREA)

1. PURPOSE

This program determines the effective flat plate area of a design helicopter as a function of the following parameters: gross weight, clean or dirty lines, skid, fixed wheel, or retractable type landing gear. The formula used in the determination of the EFPA is:

$$\text{EFPA} = (A) * (\text{GW})^{**.66667} \text{ where the coefficient (A) is determined as shown below.}$$

	SKID	FIXED	RETRACTABLE
CLEAN CONFIGURATION	.032	.037	.027
DIRTY CONFIGURATION	.050	.056	.046

These figures were computed through an iterative procedure of comparing the known EFPA values of production aircraft and their gross weights to values computed with the above formula. A degree of accuracy to within 10% can be achieved using these coefficients. It is left to the user to determine if his design is clean or dirty (i.e., is the design streamlined or does it contain numerous wing stores, flat plate canopy, etc.).

2. EQUATIONS (See above)

3. FLOWCHART (EFPA)

4. EXAMPLE PROBLEMS AND USER INSTRUCTIONS:

A) Determine the effective flat plate area of a helicopter with the following specifications:

Configuration: Dirty

Gross Weight: 14500 lbs

Landing Gear: Fixed wheel

Note: To run EFPA independent of the main program, the desired gross weight must be inputted manually into Register 36. This is done automatically when execution of the main program is performed.

KEYSTROKES	DISPLAY
14500 STO 36	14500
XEQ (alpha) EFPA (alpha)	CLEAN?
0 (r/s)	SKID?
0 (r/s)	FIX WHEEL?
1 (r/s)	EFPA=33.3

The above specifications were from the AH-64 Attack Helicopter whose actual EFPA is 33 sq ft. The computed EFPA differs by .9%.

B) Determine the EFPA of a helicopter with the following specifications:

Configuration: Clean

Gross Weight: 2150 lbs

Landing Gear: Skid

KEYSTROKES	DISPLAY
2150 STO 36	2150
XEQ (alpha) EFPA (alpha)	CLEAN?
1 (r/s)	SKID?
1 (r/s)	EFPA=5.33

Again, the above specifications represent a production aircraft, the OH6A, whose actual EFPA is 5.4 sq ft. The computed value differs by 1.3%.

5. PROGRAM LISTING

01LBL "EFPA"	36 .027
02 FIX 2	27 GTO 10
03 "CLEAN?"	28LBL 02
04 PROMPT	29 .050
05 X>0?	30 GTO 10
06 GTO 01	31LBL 03
07 "SKID?"	32 .056
08 PROMPT	33 GTO 10
09 X>0?	34LBL 04
10 GTO 02	35 .032
11 "FIX WHEEL?"	36 GTO 10
12 PROMPT	37LBL 05
13 X>0?	38 .037
14 GTO 03	39LBL 10
15 .048	40 RCL 36
16 GTO 10	41 .66667
17LBL 01	42 Y*X
18 "SKID?"	43 *
19 PROMPT	44 "EFPA="
20 X>0?	45 ARCL Y
21 GTO 04	46 AVIEW
22 "FIX WHEEL?"	47 STO 64
23 PROMPT	48 STOP
24 Y>0?	49 GTO "DD"
25 GTO 05	50 END

DENSITY (RHO)

1. PURPOSE

This program computes the density of the air at a specified pressure altitude and temperature. In so doing, the program automatically calculates, but does not display, the density altitude and stores this value in Register ten. The equation used for this calculation is based upon the standard ICAO atmosphere and is accurate to an altitude of 36,089 ft.

2. EQUATIONS

$$\text{RHO} = \text{RHO(SSL)} * (1 - (K) * (H))^{**4.2561}$$

where:

RHO(SSL) is the density of the air at standard sea level which is equal to 0.0023769 (lb sec^{**2}/ft^{**4}).

$$K = 6.875 * 10^{**-6}$$

$$H = \text{density altitude (ft)}$$

3. FLOWCHART (RHO)

AD-A136 026 COMPUTER PROGRAM FOR PRELIMINARY HELICOPTER DESIGN(U)
NAVAL POSTGRADUATE SCHOOL MONTEREY CA M W ROGERS
SEP 83

2/2

UNCLASSIFIED

F/G 1/3

NL

END
DATE FILMED
11 84
DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

4. EXAMPLE PROBLEM AND USER INSTRUCTIONS:

Find the density and density altitude when the pressure altitude is 0.0 ft and the temperature is 15 deg. C.

KEYSTROKES	DISPLAY
XEQ (alpha) RHO (alpha)	PA=?
0 (r/s)	TEMP C=?
15 (r/s)	2.38 -03

To find the density altitude simply recall Register 10 (-1.19).

5. PROGRAM LISTING

01 LBL "RHO"	20 Y↑Y
02 "PA=?"	21 CHS
03 PROMPT	22 1
04 6.875 E-06	23 +
05 *	24 6.875 E-06
06 CHS	25 /
07 1	26 STO 18
08 +	27 6.875 E-06
09 5.2561	28 *
10 Y↑X	29 CHS
11 "TEMP C=?"	30 1
12 PROMPT	31 +
13 273.15	32 ENTER↑
14 +	33 4.2561
15 STO 18	34 Y↑Y
16 /	35 .0023769
17 288.16	36 *
18 *	37 STO 11
19 .23496	38 END

REGISTER FILE

REGISTER NUMBER-----INFORMATION IN REGISTER

- 00-----Landing Gear Information
- 01-----Aspect Ratio (tr)
- 02-----Cdo (tr)
- 03-----Mach Crit
- 04-----Chord Main Rotor (c)
- 05-----Radius Main Rotor (r)
- 06-----# main rotor blades (b)
- 07-----Cdo (mr)
- 08-----Rotational Vel mr (rv)
- 09-----Control # (printer)
- 10-----Density Altitude (da)
- 11-----RHO
- 12-----Area mr (A)
- 13-----Tip Velocity (vt)
- 14-----Coeff of Thrust mr (CT)
- 15-----Tip Loss Factor mr (B)
- 16-----Pi (oge) mr
- 17-----H/D
- 18-----Temperature (c to k)
- 19-----Solidity mr (SD)
- 20-----Induced Vel hover (Vi)

- 21-----Profile Power hover (Po)
- 22-----Total Power mr fwd (Pt fwd)
- 23-----Max Fwd Vel
- 24-----Profile Power fwd (Po mr)
- 25-----Forward Velocity (Vf)
- 26-----Induced tr Vel (portion)
- 27-----Induced Power (mr fwd)
- 28-----Parasite Power (Pp)
- 29-----Solidity (tr)
- 30-----Total Power (mr oge)
- 31-----Disk Loading (DL)
- 32-----Aspect Radio (AR)
- 33-----Coefficient of Lift (CL)
- 34-----Total Power (mr ige)
- 35-----Empty Weight (WE)
- 36-----Gross Weight (GW)
- 37-----Tip Mach # (mr)
- 38-----Induced Power (mr ige)
- 39-----Max GW (specification)
- 40-----Length of Tail (L tr)
- 41-----Thrust of tr
- 42-----Radius of tr (R)
- 43-----Area of tr (A)
- 44-----Tip Vel tr (Vt)
- 45-----Coeff of Thrust tr (CT)
- 46-----MD

47-----Tip Loss Factor tr (B)
48-----Pi(tl-tr) hover SSL oge
49-----Po(tr) hover SSL oge
50-----Pt(tr) hover SSL oge
51-----MU (tr)
52-----Profile Power (tr fwd)
53-----Thrust (tr fwd)
54-----CT (tr fwd)
55-----B (tr fwd)
56-----Pi (tl-tr-fwd)
57-----Pt (tr-fwd)
58-----Chord tr (c)
59-----# tr Blades (b)
60-----Tip Mach (tr)
61-----Pi total (mr+tr)
62-----Po total (mr+tr)
63-----PTOT (mr+tr)
64-----EFPA
65-----Skid Gear Weight
66-----Fixed Wheel Gear Wt
67-----No. of Engines

APPENDIX B
EXAMPLE/PROGRAM VALIDATION PROBLEMS

PRELIMINARY DESIGN OF A CARGO HELICOPTER

The student is tasked to design a heavy cargo helicopter. A determination must be made as to the most practical type landing gear to be utilized in the design. The following specifications are provided:

Maximum Allowable Gross Weight	40,000 lbs
Maximum Rotor Diameter:	76 ft
Maximum Velocity:	180 kts
Useful Load:	9000 lbs
Fuel Weight:	4500 lbs
Height of Rotor Above the Ground:	16 ft
Cdo Main Rotor:	.01
Cruise Velocity:	150 kts
Tail Rotor Aspect Ratio (4.5 - 8.0):	6.5
Cdo Tail Rotor (1.25 Cdo mr < Cdo tr < 1.5 Cdo mr):	.0145
No. of Tail Rotor Blades:	4.0
No. of Main Rotor Blades:	6.0
Critical Mach Number:	.65
Number of Landing Gear:	4.0
Number of Engines:	2.0

In an effort to eliminate unnecessary repetition, the user is advised to refer to the individual program summaries

for a more detailed description. Before proceeding further with this problem, the user must clear all flags and load MR, PHV, FM, CHD, RV, RHO, WT, and EFPA.

KEYSTROKES	DISPLAY
XEQ (alpha) SIZE (alpha)	SIZE---
068	0.00
XEQ (alpha) MR (alpha)	Spec Wt=?
40,000 (r/s)	R=?
38 (r/s)	Mch Crit=?
0.65 (r/s)	Vt max= 725.6
(r/s)	Vf max=?
180 (r/s)	DL=7.054
(r/s)	RV=19.095
(r/s)	CT= .006
(r/s)	SD= .066
(r/s)	c= 1.97
(r/s)	AR= 19.28
(r/s)	CL= .512
(r/s)	R ok?
1 (r/s)	No. MR Blds?
6 (r/s)	Cdo mr=?
0.01 (r/s)	Pth oge= 2900
(r/s)	H=?
16 (r/s)	Pth ige= 2305
(r/s)	FIG MER= 0.73
(r/s)	FM OK?

1	(r/s)	WE= 24,000
	(r/s)	Wb= 2516.35
	(r/s)	Wh= 1492.98
	(r/s)	Wp= 3479.66
	(r/s)	Wf= 5040.00
	(r/s)	Wc= 1440.00
	(r/s)	We= 1440.00
	(r/s)	Wq= 6720.00
	(r/s)	WE 2= 22,128.99
	(r/s)	W FL?
4500	(r/s)	USE LD?
9000	(r/s)	SKID?
1	(r/s)	MR>2 blds?
1	(r/s)	TGW= 36,311.5
	(r/s)	WT OK?
1	(r/s)	R=?
38	(r/s)	Mch Crit=?
0.65	(r/s)	Vt Mx= 725.62
	(r/s)	Vf Mx=?
180	(r/s)	DL= 8.004
	(r/s)	RV= 19.095
	(r/s)	CT= .006
	(r/s)	SD= .075
	(r/s)	c= 2.236
	(r/s)	AR= 16.996
	(r/s)	CL= .512

	(r/s)	R OK?
1	(r/s)	NO MR blds?
6	(r/s)	Cdo mr=?
0.01	(r/s)	Pth oge= 3463
	(r/s)	H=?
16	(r/s)	Pth ige= 2743
	(r/s)	FIG MER= 0.75
	(r/s)	FM OK?
1	(r/s)	Clr MR,PHV,FM,CHD,RV
	(r/s)	Input PTOT,PCOMP,ESHP
XEQ (alpha) CLP (alpha)		CLP-
(alpha) MR (alpha)		1.0

Continue for PHV, FM, CHD, and RV. Input PCOMP and ESHP.
 If a printer is to be used, connect it after inputting the appropriate PTOT program. For this example, a printer will be used.

XEQ (alpha) PTOT (alpha)	INPUT CNT NO.
0.18020 (r/s)	PA=?
0 (r/s)	TEMP C=?
15 (r/s)	AR tr=?
6.5 (r/s)	No. tr Blds?
4 (r/s)	Cdo tr=?
0.0145 (r/s)	EFPA KNOWN?
0 (r/s)	CLEAN?
0 (r/s)	SKID?

1	(r/s)	EFPA= 54.83
	(r/s)	No. Engs=?
2	(r/s)	

For this example, the power requirements are applicable to standard sea level conditions (0 pa, 15 deg C). The user may, of course, use any altitude. The aircraft, being of the cargo type, will probably not have clean lines. For this first iteration, a skid gear is used. Recall that the skid is used as a base for the fixed and retractable type gears. The control number (.18020) was selected because the maximum velocity of the aircraft is 180 knots and 20 knots is a suitable increment. Note how the printer outputs the power required at specific velocities. Once the printer signals the completion of the program, the user re-executes the "WT" program.

XEQ (alpha)	WT (alpha)	W FL?
4500	(r/s)	USE LD?
9000	(r/s)	SKID?
0	(r/s)	NO. LG?
4	(r/s)	FX GR?
1	(r/s)	T GW= 37209.57
	(r/s)	INPUT CNT NO.
0.18020	(r/s)	EFPA KNOWN?
0	(r/s)	CLEAN?
0	(r/s)	SKID?

0	(r/s)	FIX WHEEL?
1	(r/s)	EFPA= 62.42
	(r/s)	NO. ENGS=?
2	(r/s)	

The printer now displays the power required from 0 to 180 knots, incremented every 20 knots.

XEQ (alpha)	WT (alpha)	W FL?
4500	(r/s)	USE LD?
9000	(r/s)	SKID?
0	(r/s)	NO. LG?
4	(r/s)	FX GR?
0	(r/s)	T GW= 37464.62
	(r/s)	INPUT CNT NO.
0.18020	(r/s)	EFPA KNOWN?
0	(r/s)	CLEAN?
0	(r/s)	SKID?
0	(r/s)	FIX WHEEL?
0	(r/s)	EFPA= 53.74
	(r/s)	NO. ENGS=?
2	(r/s)	

The printer now displays the power required for the aircraft with a retractable landing gear.

SKID	FIXED WHEEL			RETRACTABLE GEAR		
	TOTAL POWER	TOTAL POWER	TOTAL POWER	TOTAL POWER	TOTAL POWER	TOTAL POWER
GW=36311.5125 EFPA=54.83	GW=37209.57 EFPA=62.42	GW=37464.62 EFPA=53.74				
VEL (KNOTS) ESHPR	VEL (KNOTS) ESHPR	VEL (KNOTS) ESHPR				
0 *** 4247 ***	0 *** 4376 ***	0 *** 4413 ***				
20 *** 3721 ***	20 *** 3843 ***	20 *** 3876 ***				
40 *** 2643 ***	40 *** 2943 ***	40 *** 2963 ***				
60 *** 2638 ***	60 *** 2727 ***	60 *** 2724 ***				
80 *** 2817 ***	80 *** 2919 ***	80 *** 2889 ***				
100 *** 3283 ***	100 *** 3419 ***	100 *** 3328 ***				
120 *** 4018 ***	120 *** 4215 ***	120 *** 4047 ***				
140 *** 5039 ***	140 *** 5324 ***	140 *** 5049 ***				
160 *** 6374 ***	160 *** 6779 ***	160 *** 6362 ***				
180 *** 8059 ***	180 *** 8622 ***	180 *** 9021 ***				

From the above data, the user can readily see that, at a hover. The helicopter configured with the skid gear requires less power due to the gear's reduced weight. As forward speed increases, however, the effective flat plate area value (parasite drag) begins to affect power requirements. The skid configured aircraft always requires less power than the fixed wheel aircraft due to its lighter weight and smaller EFPA value.

The benefits of the retractable gear's reduced drag versus the skid gear's lighter weight are not appreciated until the aircraft attains its designed cruise velocity of one hundred and fifty knots. Since the aircraft will certainly be flying at or below cruise velocity more than above this speed, it seems logical that a skid type gear should be employed in the design. This logic begins to lose its validity when it is understood that heavy cargo helicopters are often not capable of performing a hovering type take-off, as would be required with skid gear.

The environment these aircraft operate in (heavy loads and oftentimes high density altitude) results in rolling take-offs being used to keep within engine and transmission limitations. The question of skid versus wheel type gear is therefore academic when heavy cargo helicopters are concerned.

When comparing the fixed and retractable data, it is apparent that at approximately 60 knots the retractable geared aircraft begins to require less power even though that

aircraft is heavier by more than two hundred pounds! Since the helicopter will be flying at speeds much greater than sixty knots, the most advantageous landing gear is the retractable type.

The landing gear data may be evaluated in graphical form by using the program "Myplot." The following is a graph of the preceding data.

The user might well want to know how much additional velocity could be attained by using the retractable type gear as opposed to the fixed wheel. From the data, 8622 hp is required to achieve the maximum forward velocity using the fixed wheel gear, 601 more horsepower than the helicopter with the retractable gear. If power is the limiting factor, it is a simple matter to convert the 601 excess hp into velocity.

KEYSTROKES	DISPLAY
XEQ (alpha) PTOT (alpha)	INPUT CNT NO.
180.19001 (r/s)	EFPA KNOWN?
1 (r/s)	EFPA=?
53.74 (r/s)	

The printer computes the power required from 180 to 190 knots in increments of 1 hp.

TOTAL POWER		184 *** 8397 ***
GW=37465		185 *** 8493 ***
EFPA=?		
54 ***		186 *** 8591 ***
VEL (KNOTS)		
ESHP		187 *** 8690 ***
180 ***		188 *** 8789 ***
8820 ***		189 *** 8890 ***
181 ***		190 *** 8991 ***
8113 ***		
182 ***		
8207 ***		
183 ***		
8301 ***		

From the data, 8622 horsepower is required at approximately 186.5 knots. By using the retractable gear, the maximum velocity has been increased by over five knots.

HUGHES AAH-64 DESIGN COMPARISON

The following data is from the AAH-64 helicopter:

Specification weight:	17,640 lbs
Critical mach #:	.65
Fuel weight:	1600 lbs
Useful load:	4351 lbs
Max. fwd. vel.	155 knots
Main rotor diameter:	48 ft
Cdo main rotor:	.01
Cdo tail rotor:	.01
No. main rotor blades:	4
No. tail rotor blades:	4
Configuration:	Dirty
No. of engines	2
No. of landing gear:	3
Height of rotor above grd:	12.59 ft
Aspect ratio, tr	5.53

Using the above data and the procedure of the example problem, the following power results were attained:

SKID

FIXED WHEEL

RETRACTABLE GEAR

TOTAL POWER

TOTAL POWER

TOTAL POWER

GW=15,785,3826
EFPA=31.46

GW=16,236,47
EFPA=35.91

GW=16,363,17
EFPA=38.94

VEL (KNOTS)
ESHF

VEL (KNOTS)
ESHF

VEL (KNOTS)
ESHF

0.	***	0.	***	0.	***
1,890.	***	1,959.	***	1,977.	***
20.	***	20.	***	20.	***
1,667.	***	1,731.	***	1,749.	***
40.	***	40.	***	40.	***
1,280.	***	1,334.	***	1,345.	***
60.	***	60.	***	60.	***
1,174.	***	1,223.	***	1,231.	***
80.	***	80.	***	80.	***
1,252.	***	1,309.	***	1,287.	***
100.	***	100.	***	100.	***
1,476.	***	1,553.	***	1,501.	***
120.	***	120.	***	120.	***
1,839.	***	1,952.	***	1,855.	***
140.	***	140.	***	140.	***
2,351.	***	2,516.	***	2,358.	***
160.	***	160.	***	160.	***
3,029.	***	3,265.	***	3,025.	***
180.	***	180.	***	180.	***
3,893.	***	4,223.	***	3,875.	***

The Hughes AAH-64 utilizes a fixed wheel type landing gear. The airspeed vs. power graph depicts the actual power requirements of the AAH-64 at various airspeeds and weights.

By approximating the computed gross weight line for the fixed wheel gear data (16,236.47 lbs), a comparison between the actual and computed power requirements can be made. The following table shows this comparison and the percent error.

VEL	HP ACTUAL	HP COMPUTED	% ERROR
0	2320	1958	15.6
20	2000	1731	13.5
40	1500	1334	11.1
60	1220	1223	0.2
80	1220	1309	7.3
100	1375	1553	12.9
120	1680	1952	16.2
140	2300	2516	9.4

The average percent error is 10.15

COMPARISON OF ADV. SYST. COMPUTER PROGRAM

One of the primary goals of this project is to develop programs for the HP-41 which output values to within 10 percent of the Army Aviation Research and Development Command's Advanced System's Computer Program. The following data was inputted into both programs.

Radius of main rotor blade=	27 ft
Critical mach number=	.65
Maximum fwd. velocity=	160 knots
Specification weight=	18000 lbs
No. of main rotor blades=	4
Coefficient of drag at 0 lift=	.01
Height of rotor above ground=	14.4 ft
Fuel weight=	4000 lbs
Useful load=	3750 lbs
Tail rotor aspect ratio=	8.0
Coeff of drag at 0 lift (tr)=	.0145
No. of tail rotor blades=	4
Configuration=	Clean
No. of engines=	2
No. of landing gear=	3

Using the PTOT (printer) program, the following data
was outputted:

SKID		FIXED WHEEL		RETRACTABLE GEAR	
TOTAL POWER		TOTAL POWER		TOTAL POWER	
GW=16744.9881	EFPB=28.95	GW=17198.23	EFPB=24.65	GW=17326.65	EFPB=18.98
VEL (KNOTS)		VEL (KNOTS)		VEL (KNOTS)	
ESHP		ESHP		ESHP	
0 ***	1861 ***	0 ***	1923 ***	0 ***	1941 ***
20 ***	1608 ***	20 ***	1666 ***	20 ***	1682 ***
40 ***	1204 ***	40 ***	1251 ***	40 ***	1258 ***
60 ***	1107 ***	60 ***	1149 ***	60 ***	1141 ***
80 ***	1173 ***	80 ***	1221 ***	80 ***	1138 ***
100 ***	1356 ***	100 ***	1421 ***	100 ***	1348 ***
120 ***	1647 ***	120 ***	1741 ***	120 ***	1618 ***
140 ***	2049 ***	140 ***	2187 ***	140 ***	1976 ***
160 ***	2576 ***	160 ***	2772 ***	160 ***	2453 ***

A comparison of the Advanced System's output reveals the following:

VEL	SKID			FIX WHEEL			RETR GEAR		
	HP41	AD SY	%ER	HP41	AD SY	%ER	HP41	AD SY	%ER
0	1861	1998	6.86	1923	2065	6.88	1941	2085	6.91
20	1608	1781	9.71	1666	1846	9.75	1682	1865	9.81
40	1204	1344	10.42	1251	1396	10.39	1258	1406	10.53
60	1107	1152	3.91	1149	1198	4.09	1141	1193	4.36
80	1173	1143	2.62	1221	1194	2.26	1188	1166	1.89
100	1356	1264	7.28	1421	1330	6.84	1348	1269	6.23
120	1647	1508	9.22	1741	1621	7.40	1610	1498	7.48
140	2049	1984	3.28	2187	2147	1.86	1976	1956	1.02
160	2576	2688	4.17	2772	2780	.28	2453	2628	6.66

Skid avg % error= 6.39

Fixed wheel avg % error= 5.53

Retr gear avg % error= 6.10

It is readily apparent that the goal of 10% accuracy has been exceeded. These programs are rapidly executed, inexpensive to run, and sacrifice a very small percentage of accuracy.

The following printouts depict the Advanced System's Branch computer output for Skid, Fixed Wheel, and Retractable Type landing gears.

UTILITY DESIGN, SITE LIGHTING, ETC.

UTILITY DESIGN - FIXED AFFEL ALIGHTING

UTILITY EDITION RETRACTABLE WHEEL ALIMENTING
TEST SHEET FOR THE 1000'S

	PERCENT	WHEEL POSITION				
CROSS WEIGHT =	173.27.6	0.571	0.535	0.501	0.471	0.441
SPERO (TRAIL)	0.	-10.	-20.	-30.	-40.	-50.
4P2NE 1435	1257.	1252.	1249.	1246.	1243.	1240.
4P2NE 1554	1254.	1244.	1234.	1224.	1214.	1204.
4P2NE 1673	1253.	1243.	1233.	1223.	1213.	1203.
4P2NE 1792	1252.	1242.	1232.	1222.	1212.	1202.
4P2NE 1811	1251.	1241.	1231.	1221.	1211.	1201.
4P2NE 1830	1250.	1240.	1230.	1220.	1210.	1200.
4P2NE 1849	1249.	1239.	1229.	1219.	1209.	1199.
4P2NE 1868	1248.	1238.	1228.	1218.	1208.	1198.
4P2NE 1887	1247.	1237.	1227.	1217.	1207.	1197.
4P2NE 1906	1246.	1236.	1226.	1216.	1206.	1196.
4P2NE 1925	1245.	1235.	1225.	1215.	1205.	1195.
4P2NE 1944	1244.	1234.	1224.	1214.	1204.	1194.
4P2NE 1963	1243.	1233.	1223.	1213.	1203.	1193.
4P2NE 1982	1242.	1232.	1222.	1212.	1202.	1192.
4P2NE 2001	1241.	1231.	1221.	1211.	1201.	1191.
4P2NE 2020	1240.	1230.	1220.	1210.	1200.	1190.
4P2NE 2039	1239.	1229.	1219.	1209.	1199.	1189.
4P2NE 2058	1238.	1228.	1218.	1208.	1198.	1188.
4P2NE 2077	1237.	1227.	1217.	1207.	1197.	1187.
4P2NE 2096	1236.	1226.	1216.	1206.	1196.	1186.
4P2NE 2115	1235.	1225.	1215.	1205.	1195.	1185.
4P2NE 2134	1234.	1224.	1214.	1204.	1194.	1184.
4P2NE 2153	1233.	1223.	1213.	1203.	1193.	1183.
4P2NE 2172	1232.	1222.	1212.	1202.	1192.	1182.
4P2NE 2191	1231.	1221.	1211.	1201.	1191.	1181.
4P2NE 2210	1230.	1220.	1210.	1200.	1190.	1180.
4P2NE 2229	1229.	1219.	1209.	1199.	1189.	1179.
4P2NE 2248	1228.	1218.	1208.	1198.	1188.	1178.
4P2NE 2267	1227.	1217.	1207.	1197.	1187.	1177.
4P2NE 2286	1226.	1216.	1206.	1196.	1186.	1176.
4P2NE 2305	1225.	1215.	1205.	1195.	1185.	1175.
4P2NE 2324	1224.	1214.	1204.	1194.	1184.	1174.
4P2NE 2343	1223.	1213.	1203.	1193.	1183.	1173.
4P2NE 2362	1222.	1212.	1202.	1192.	1182.	1172.
4P2NE 2381	1221.	1211.	1201.	1191.	1181.	1171.
4P2NE 2400	1220.	1210.	1200.	1190.	1180.	1170.
4P2NE 2419	1219.	1209.	1199.	1189.	1179.	1169.
4P2NE 2438	1218.	1208.	1198.	1188.	1178.	1168.
4P2NE 2457	1217.	1207.	1197.	1187.	1177.	1167.
4P2NE 2476	1216.	1206.	1196.	1186.	1176.	1166.
4P2NE 2495	1215.	1205.	1195.	1185.	1175.	1165.
4P2NE 2514	1214.	1204.	1194.	1184.	1174.	1164.
4P2NE 2533	1213.	1203.	1193.	1183.	1173.	1163.
4P2NE 2552	1212.	1202.	1192.	1182.	1172.	1162.
4P2NE 2571	1211.	1201.	1191.	1181.	1171.	1161.
4P2NE 2590	1210.	1200.	1190.	1180.	1170.	1160.
4P2NE 2609	1209.	1209.	1199.	1189.	1179.	1169.
4P2NE 2628	1208.	1208.	1198.	1188.	1178.	1168.
4P2NE 2647	1207.	1207.	1197.	1187.	1177.	1167.
4P2NE 2666	1206.	1206.	1196.	1186.	1176.	1166.
4P2NE 2685	1205.	1205.	1195.	1185.	1175.	1165.
4P2NE 2704	1204.	1204.	1194.	1184.	1174.	1164.
4P2NE 2723	1203.	1203.	1193.	1183.	1173.	1163.
4P2NE 2742	1202.	1202.	1192.	1182.	1172.	1162.
4P2NE 2761	1201.	1201.	1191.	1181.	1171.	1161.
4P2NE 2780	1200.	1200.	1190.	1180.	1170.	1160.
4P2NE 2799	1199.	1199.	1189.	1179.	1169.	1159.
4P2NE 2818	1198.	1198.	1188.	1178.	1168.	1158.
4P2NE 2837	1197.	1197.	1187.	1177.	1167.	1157.
4P2NE 2856	1196.	1196.	1186.	1176.	1166.	1156.
4P2NE 2875	1195.	1195.	1185.	1175.	1165.	1155.
4P2NE 2894	1194.	1194.	1184.	1174.	1164.	1154.
4P2NE 2913	1193.	1193.	1183.	1173.	1163.	1153.
4P2NE 2932	1192.	1192.	1182.	1172.	1162.	1152.
4P2NE 2951	1191.	1191.	1181.	1171.	1161.	1151.
4P2NE 2970	1190.	1190.	1180.	1170.	1160.	1150.
4P2NE 2989	1189.	1189.	1179.	1169.	1159.	1149.
4P2NE 2998	1188.	1188.	1178.	1168.	1158.	1148.
4P2NE 3007	1187.	1187.	1177.	1167.	1157.	1147.
4P2NE 3016	1186.	1186.	1176.	1166.	1156.	1146.
4P2NE 3025	1185.	1185.	1175.	1165.	1155.	1145.
4P2NE 3034	1184.	1184.	1174.	1164.	1154.	1144.
4P2NE 3043	1183.	1183.	1173.	1163.	1153.	1143.
4P2NE 3052	1182.	1182.	1172.	1162.	1152.	1142.
4P2NE 3061	1181.	1181.	1171.	1161.	1151.	1141.
4P2NE 3070	1180.	1180.	1170.	1160.	1150.	1140.
4P2NE 3079	1179.	1179.	1169.	1159.	1149.	1139.
4P2NE 3088	1178.	1178.	1168.	1158.	1148.	1138.
4P2NE 3097	1177.	1177.	1167.	1157.	1147.	1137.
4P2NE 3106	1176.	1176.	1166.	1156.	1146.	1136.
4P2NE 3115	1175.	1175.	1165.	1155.	1145.	1135.
4P2NE 3124	1174.	1174.	1164.	1154.	1144.	1134.
4P2NE 3133	1173.	1173.	1163.	1153.	1143.	1133.
4P2NE 3142	1172.	1172.	1162.	1152.	1142.	1132.
4P2NE 3151	1171.	1171.	1161.	1151.	1141.	1131.
4P2NE 3160	1170.	1170.	1160.	1150.	1140.	1130.
4P2NE 3169	1169.	1169.	1159.	1149.	1139.	1129.
4P2NE 3178	1168.	1168.	1158.	1148.	1138.	1128.
4P2NE 3187	1167.	1167.	1157.	1147.	1137.	1127.
4P2NE 3196	1166.	1166.	1156.	1146.	1136.	1126.
4P2NE 3205	1165.	1165.	1155.	1145.	1135.	1125.
4P2NE 3214	1164.	1164.	1154.	1144.	1134.	1124.
4P2NE 3223	1163.	1163.	1153.	1143.	1133.	1123.
4P2NE 3232	1162.	1162.	1152.	1142.	1132.	1122.
4P2NE 3241	1161.	1161.	1151.	1141.	1131.	1121.
4P2NE 3250	1160.	1160.	1150.	1140.	1130.	1120.
4P2NE 3259	1159.	1159.	1149.	1139.	1129.	1119.
4P2NE 3268	1158.	1158.	1148.	1138.	1128.	1118.
4P2NE 3277	1157.	1157.	1147.	1137.	1127.	1117.
4P2NE 3286	1156.	1156.	1146.	1136.	1126.	1116.
4P2NE 3295	1155.	1155.	1145.	1135.	1125.	1115.
4P2NE 3304	1154.	1154.	1144.	1134.	1124.	1114.
4P2NE 3313	1153.	1153.	1143.	1133.	1123.	1113.
4P2NE 3322	1152.	1152.	1142.	1132.	1122.	1112.
4P2NE 3331	1151.	1151.	1141.	1131.	1121.	1111.
4P2NE 3340	1150.	1150.	1140.	1130.	1120.	1110.
4P2NE 3349	1149.	1149.	1139.	1129.	1119.	1109.
4P2NE 3358	1148.	1148.	1138.	1128.	1118.	1108.
4P2NE 3367	1147.	1147.	1137.	1127.	1117.	1107.
4P2NE 3376	1146.	1146.	1136.	1126.	1116.	1106.
4P2NE 3385	1145.	1145.	1135.	1125.	1115.	1105.
4P2NE 3394	1144.	1144.	1134.	1124.	1114.	1104.
4P2NE 3403	1143.	1143.	1133.	1123.	1113.	1103.
4P2NE 3412	1142.	1142.	1132.	1122.	1112.	1102.
4P2NE 3421	1141.	1141.	1131.	1121.	1111.	1101.
4P2NE 3430	1140.	1140.	1130.	1120.	1110.	1100.
4P2NE 3439	1139.	1139.	1129.	1119.	1109.	1099.
4P2NE 3448	1138.	1138.	1128.	1118.	1108.	1098.
4P2NE 3457	1137.	1137.	1127.	1117.	1107.	1097.
4P2NE 3466	1136.	1136.	1126.	1116.	1106.	1096.
4P2NE 3475	1135.	1135.	1125.	1115.	1105.	1095.
4P2NE 3484	1134.	1134.	1124.	1114.	1104.	1094.
4P2NE 3493	1133.	1133.	1123.	1113.	1103.	1093.
4P2NE 3502	1132.	1132.	1122.	1112.	1102.	1092.
4P2NE 3511	1131.	1131.	1121.	1111.	1101.	1091.
4P2NE 3520	1130.	1130.	1120.	1110.	1100.	1090.
4P2NE 3529	1129.	1129.	1119.	1109.	1099.	1089.
4P2NE 3538	1128.	1128.	1118.	1108.	1098.	1088.
4P2NE 3547	1127.	1127.	1117.	1107.	1097.	1087.
4P2NE 3556	1126.	1126.	1116.	1106.	1096.	1086.
4P2NE 3565	1125.	1125.	1115.	1105.	1095.	1085.
4P2NE 3574	1124.	1124.	1114.	1104.	1094.	1084.
4P2NE 3583	1123.	1123.	1113.	1103.	1093.	1083.
4P2NE 3592	1122.	1122.	1112.	1102.	1092.	1082.
4P2NE 3601	1121.	1121.	1111.	1101.	1091.	1081.
4P2NE 3610	1120.	1120.	1110.	1100.	1090.	1080.
4P2NE 3619	1119.	1119.	1109.	1099.	1089.	1079.
4P2NE 3628	1118.	1118.	1108.	1098.	1088.	1078.
4P2NE 3637	1117.	1117.	1107.	1097.	1087.	1077.
4P2NE 3646	1116.	1116.	1106.	1096.	1086.	1076.
4P2NE 3655	1115.	1115.	1105.	1095.	1085.	1075.
4P2NE 3664	1114.	1114.	1104.	1094.	1084.	1074.
4P2NE 3673	1113.	1113.	1103.	1093.	1083.	1073.
4P2NE 3682	1112.	1112.	1102.	1092.	1082.	1072.
4P2NE 3691	1111.	1111.	1101.	1091.	1081.	1071.
4P2NE 3699	1110.	1110.	1100.	1090.	1080.	1070.
4P2NE 3708	1109.	1109.	1109.	1099.	1089.	1079.
4P2NE 3717	1108.	1108.	1108.	1098.	1088.	1078.
4P2NE 3726	1107.	1107.	1107.	1097.	1087.	1077.

APPENDIX C
COMPUTER GRAPHICS PRINTOUT

MYPLOT AND POWERPLO COMPUTER PRINTOUTS

The following program graphs the power data for a skid, fixed wheel, and retractable geared configured helicopter. The attached graph is an actual plot of the example cargo helicopter.

FILE: MYPLOT FORTRAN AI NAVAL POSTGRADUATE SCHOOL

```
C PROGRAM TO PLOT POWER REQUIREMENTS VS. AIRSPEED FOR A HELICOPTER
C WITH SKID, FIXED WHEEL, AND RETRACTABLE LANDING GEAR USING THE
C TEXTRONIX ELECTROSTATIC PLTTER AND DISPLA SOFTWARE.
C
C REAL SKID,SKIDS,FIX,FIXED,RETR,RETRA
C
C DIMENSION SKID(10),SKIDS(10),FIX(10),FIXED(10),RETR(10),RETRA(10)
C
C DATA SKID/0.,20.,40.,50.,80.,100.,120.,140.,160.,180./
C DATA SKIDS/4247.37,1.2843,2.538,2.817,3.233,-0.13,5.039,6.37,-8.059/
C DATA FIX/0.,20.,40.,50.,80.,100.,120.,140.,160.,180./
C DATA FIXED/4376.3843,2.443,2.727,2.918,3.419,4.215,5.524,5.779,8.622/
C DATA RETR/0.,20.,40.,60.,80.,100.,120.,140.,160.,180./
C DATA RETRA/-1.3,3.876,-9.3,2.724,2.380,3.328,-0.7,5.049,6.362,8.021/
C CALL TEXTRONIX 515 PLTTER
C CALL TEK618
C IF PLOT EXCEEDS SCREEN SIZE, SCALE DOWN TO FIT SCREEN
C CALL HWSCL('SCREEN')
C SET PAGE SIZE
C CALL PAGE(11.,8.5)
C DEFINE AREA OF PLOT ON PAGE
C CALL AREA2D(8.0,5.5)
C FRAME THE SUBPLOT AREA
C CALL FRAME
C SET THE TYPE FONT DESIRED
C CALL SWISSL
C SET THICKNESS OF CURVE (IN INCHES)
C CALL THKCRV(.315)
C DEFINE NAME OF X AXIS
C CALL XNAME('AIRSPEED (KNOTS)',100)
C DEFINE NAME OF Y AXIS
C CALL YNAME('SHAFT HORSEPOWER$',100)
C DEFINE HEADING OF PLOT
C CALL HEADIN('HELICOPTER POWER REQUIREMENTS$',-100,200,3)
C CALL HEADIN('SHAFT HORSEPOWER VS. AIRSPEED$',-100,105,3)
C CALL HEADIN('STANDARD SEA LEVEL$',-100,105,3)
C SET X ORIGIN, X STEP, X MAXIMUM, Y ORIGIN, Y STEP, Y MAXIMUM
C CALL GRAF(0.0,20.,200.,2500.,1000.,8700.)
C CALL RASPLN(1.5)
C CALL GRID(1,1)
C CALL CURVE(IPTSX,TPTSY,          ,0)
C CALL CURVE(SKID,SKIDS,9,1)
C CALL CURVE(FIX,FIXED,9,1)
C CALL CURVE(RETR,RETRA,9,1)
C CALL LINES(I'SKIDS',IPAK1,1)
C CALL LINES(I'FIXED WHEELS',IPAK1,2)
C CALL LINES(I'RETRACTABLE WHEELS',IPAK1,3)
C CALL MYLEGEND(POWER CURVES',12)
C CALL LEGEND(IPAK1,3,0.6,5.5)
C CALL ENOPL()
C CALL DONEPL
C STOP
C END
```

The following program plots the data from the PTOT (Full Display) program.

FILE: POWERPLO FORTRAN AI NAVAL POSTGRADUATE SCHOOL

```
C PROGRAM TO PLOT THE PARASITE, PROFILE, INDUCED, AND TOTAL
C POWER REQUIRED FOR A HELICOPTER WITH SKID, FIXED WHEEL, JR
C RETRACTABLE LANDING GEAR.
C
C REAL PAR,PARA,PRO,PROS,IND,INDU,TOT,TOTS
C
C DIMENSION PAR( ),PARA( ),PRO( ),PROS( ),IND( ),INDU( ),TOT( ),
C TOTS( )
C DATA PAR/0.,20.,40.,60.,80.,100.,120.,140.,160./
C DATA PARA/
C DATA PRO/0.,20.,40.,60.,80.,100.,120.,140.,160./
C DATA PROS/
C DATA IND/0.,20.,40.,60.,80.,100.,120.,140.,160./
C DATA INDU/
C DATA TOT/0.,20.,40.,60.,80.,100.,120.,140.,160./
C DATA TOTS/
C CALL TEKTRONIX 518 PLOTTER
C CALL TEK618
C IF PLOT EXCEEDS SCREEN SIZE, SCALE DOWN TO FIT SCREEN
C CALL HWSCL("SCREEN")
C SET PAGE SIZE
C CALL PAGE(11.,8.5)
C DEFINE AREA OF PLOT ON PAGE
C CALL AREA2D(8.0,5.5)
C FRAME THE SUBPLOT AREA
C CALL FRAME
C SET THE TYPE FONT DESIRED
C CALL SWISSL
C SET THICKNESS OF CURVE (IN INCHES)
C CALL THKCRV(.015)
C DEFINE NAME OF X AXIS
C CALL XNAME("AIRSPEED (KNOTS)",100)
C DEFINE NAME OF Y AXIS
C CALL YNAME("SHAFT HORSEPOWERS",100)
C DEFINE HEADING OF PLOT
C CALL HEADIN("HELICOPTER POWER REQUIREMENTS",-100,1.5,3)
C CALL HEADIN("SHAFT HORSEPOWER VS. AIRSPEED",-100,1.0,3)
C CALL HEADIN("SKID LANDING GEAR",-100,1.0,3)
C CALL HEADIN("FIXED WHEELS",-100,1.0,3)
C CALL HEADIN("RETRACTABLE GEARS",-100,1.0,3)
C SET X ORIGIN, X STEP, X MAXIMUM, Y ORIGIN, Y STEP, Y MAXIMUM
C CALL GRAF(0,0,20.,180.,J.,500.,2000.)
C CALL RASPLN(1.5)
C CALL GRID(1,1)
C CALL CURVE(PTSX,TPTSY,0)
C CALL CURVE(PAR,PARA,9,1)
C CALL CURVE(PRO,PROS,9,1)
C CALL CURVE(IND,INDU,9,1)
C CALL CURVE(TOT,TOTS,9,1)
C CALL LINES(PARASITES,1,PAK1,1)
C CALL LINES(PROFILES,1,PAK1,2)
C CALL LINES(INDUCEJS,1,PAK1,3)
C CALL LINES(TOTAL,1,PAK1,4)
C CALL MYLEGN(POWER CURVES,12)
C CALL LEGEND(IPAK1,4,6.0,6.0)
C CALL ENDPL(0)
C CALL DONEPL
STOP
END
```

LIST OF REFERENCES

1. Fardink, P. J., Hand-held Computer Programs for Preliminary Helicopter Design, pp. 30-178, M.S. Thesis, Naval Postgraduate School, Monterey, California, 1982.
2. Kee, S. G., Helicopter Design Manual, pp. 5-19, M.S. Thesis, Naval Postgraduate School, 1983.
3. Schwab, R. T., Computer Program Analysis of Helicopter Weight Estimate Relationships Utilizing Parametric Equations, pp. 8-50, M.S. Thesis, Naval Postgraduate School, 1983.
4. DISSPLA Pocket Guide, pp. 6-12, Integrated Software Systems Corporation, 1981.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California 93943	2
3. Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93943	1
4. CPT. Michael W. Rogers 217 So. Orchard St. Hillside, Ill. 60162	2
5. Professor Donald M. Layton, Code 67Ln Department of Aeronautics Naval Postgraduate School Monterey, California 93943	5
6. Commander, USAAVRADCOM Attn: DRDAV-NC (R. Shinn) 4300 Goodfellow Boulevard St. Louis, Missouri 63120	1

