TD 6

Morphismes de Groupes et Anneaux

Exercice 1. Existe-t-il un isomorphisme entre les groupes $\left(\frac{\mathbb{Z}}{4Z},+\right)$ et $\left(\left(\frac{\mathbb{Z}}{8Z}\right)^{\times},\cdot\right)$? Si oui, donnez un tel isomorphisme explicitement. Sinon, expliquez pourquoi un isomorphisme ne peut pas exister.

Exercice 2. Soit $(GL_2(\mathbb{R},\cdot))$ le groupe multiplicatif des matrices inversibles d'ordre 2 à coefficients réels.

(a) Montrer que l'application :

$$\varphi \colon \quad (GL_2(\mathbb{R}), \cdot) \quad \to \quad (\mathbb{R} \setminus \{0\}, \cdot)$$

$$A \qquad \mapsto \quad \det(A).$$

est un homomorphisme de groupes.

- (b) Déterminer le noyau et l'image de φ et appliquer le premier théorème d'isomorphisme.
- (c) Déterminer les quels parmi ces sous-ensembles sont des sous-groupes de $GL_2(\mathbb{R})$:

i)
$$H_1 = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R}, (a, b) \neq (0, 0) \right\}$$

ii)
$$H_2 = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R}, a > 0 \right\}$$

iii)
$$H_2 = \left\{ \begin{pmatrix} 0 & 1 \\ a & b \end{pmatrix} : a, b \in \mathbb{R}, a > 0 \right\}$$

(d) Montrer que H_1 est isomorphe à $(\mathbb{C} \setminus \{0\}, \cdot)$.

Exercice 3. Soit (G, \cdot) un groupe et soit $\operatorname{Aut}(G)$ l'ensemble des autormorphismes de G.

- (a) Montrer que si $\varphi, \psi \in \text{Aut}(G)$, alors $\varphi \circ \psi \in \text{Aut}(G)$.
- (b) Montrer que $(\operatorname{Aut}(G), \circ)$ est un groupe, dont on déterminera l'élément neutre et l'inverse pour chaque élément.

Exercice 4. Soit (G, \cdot) un groupe et soit $g \in G$. On considère l'application suivante :

$$\varphi_g \colon \quad G \quad \to \quad G$$
$$\quad x \quad \mapsto \quad gxg^{-1}.$$

- (a) Montrer que, pour tout $g \in G$, φ_g est un homomorphisme de groupes.
- (b) Montrer que φ_g est un automorphisme de G.

(c) On considère maintenant l'application :

$$f \colon G \to \operatorname{Aut}(G)$$
$$g \mapsto \varphi_g.$$

Montrer que g est un homomorphisme de groupes.

(d) Montrer que si G est commutatif, alors $\varphi_q = \mathrm{id}_G$, pour tout $g \in G$.

Exercice 5. Soit $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$

- (a) Montrer que $\mathbb{Z}[\sqrt{2}] \subseteq \mathbb{R}$ est un anneau avec les opérations classiques d'addition et multiplication dans \mathbb{R} .
- (b) On considère la fonction

$$f : \quad \mathbb{Z}[\sqrt{2}] \quad \to \quad \mathbb{Z}[\sqrt{2}]$$
$$a + b\sqrt{2} \quad \mapsto \quad a - b\sqrt{2}$$

Montrer que f est un automorphisme de $\mathbb{Z}[\sqrt{2}]$ d'ordre 2.

- (c) Pour $x \in \mathbb{Z}[\sqrt{2}]$, on pose $N(x) = x \cdot f(x)$. Montrer que pour tout x, $y \in \mathbb{Z}[\sqrt{2}], N(x) \in \mathbb{Z}$ et N(xy) = N(x)N(y).
- (d) Montrer que x est inversible dans $\mathbb{Z}[\sqrt{2}]$ si et seulement si $N(x) = \pm 1$. Donner des exemples d'éléments inversibles dans $\mathbb{Z}[\sqrt{2}]$.

Exercice 6. Soit $m \in \mathbb{Z}_{>0}$ et $\mathbb{Q}^{(m)}$ l'ensemble des nombres rationnels a/b où PGCD(b, m) = 1.

- (a) Montrer que $\mathbb{Q}^{(m)}$ est un anneau, inclus dans \mathbb{Q} .
- (b) Caractériser les inversibles de $\mathbb{Q}^{(m)}$.
- (c) On définit $\Phi: \mathbb{Q}^{(m)} \to \mathbb{Z}/m\mathbb{Z}$ par $\Phi(a/b) = [a]_m[b]_m^{-1}$.
 - i. Montrer que Φ est bien définie, c'est-à-dire que si a/b = c/d, alors $[a]_m[b]_m^{-1} = [c]_m[d]_m^{-1}$.
 - ii. Montrer que Φ est un morphisme d'anneaux.
 - iii. Calculer l'image et le noyau de Φ .