Epidemiological Modelling of Coronavirus Infection in Quarantined Population A Outline of Project for MATH371 Wi2020

Natasha Ting

Instructor: Prof Jay Newby

Department of Mathematical and Statistical Sciences University of Alberta

2020

Outline

Motivation and Objectives

Motivation: COVID-19

The Models

SIRD

SIRD with Quarantine

Assumptions

Methods of Estimation

Motivation of Methods Least-square Methods Time Scale Matching

Result & Discussion

Objectives

- to explore the SIRD model and its stability points
- to develop methodology to estimate parameters for data without assumption of population
- ► to estimate parameters of the SIR model given COVID-19 epidemiological data from Wuhan of China
- to explore SIRD models that embed quarantining of population, and age distribution

COVID-19

The COVID-19 pandemic is caused by a novel virus named SARS-CoV-2 that found its first confirmed case in December 2020. By March 2020, 780,000 cases of COVID-19 have been confirmed around the world, and it is still developing.

SIRD Model

The fraction of individuals susceptible to contract COVID-19 in a population , $\frac{S}{N}=s$, fraction of infected individuals, $\frac{I}{N}=i$, fraction of removed individuals, $\frac{R}{N}=r$ and fraction of dead, $\frac{D}{N}=d$ change in dynamic described in the following system of differential equations:

$$\dot{s} = -\beta si \qquad s(0) = s_0
\dot{i} = \beta si - (\alpha + \mu)i \qquad i(0) = i_0
\dot{r} = \alpha i \qquad r(0) = r_0
\dot{d} = \mu i \qquad d(0) = 0$$
(1)

where:

 $eta = ext{infection rate}; \qquad rac{1}{eta} = ext{average days to be infected} \ lpha = ext{recovery rate}; \qquad rac{1}{lpha} = ext{average days to recover} \ \mu = ext{death rate} \ R_0 = ext{basic reproduction number}, \qquad rac{eta}{lpha+\mu}$

Stability Analysis of the SIRD

Taking out d = 1 - s - i - d, the system in (1) can be rewritten as

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$$

where $\mathbf{x}^T = [s \ i \ r]$. $\dot{\mathbf{x}}^T = 0$ at steady state. This implies $\mathbf{x}^T = \hat{\mathbf{x}}^T = [s_{ss} \ 0 \ r_{ss}]$ where s_{ss} and r_{ss} are s and r at steady state, respectively. The linearized system around steady state has Jacobian matrix

$$J\hat{\mathbf{x}} = \begin{pmatrix} 0 & \beta s_{ss} & 0 \\ 0 & \beta s_{ss} - (\alpha + \mu) & 0 \\ 0 & \alpha & 0 \end{pmatrix}$$
 (2)

and eigenvalues $\lambda_1, \lambda_2 = 0, \lambda_3 = bs - (\alpha + \mu) < 0$ since s_{ss} is less than s when i is maximum

Phase Plane Analysis

Figure: Phase plane plot obtained from Jay Newby 2020 lecture materials The phase plane plot reveals that i = 0, s = 0 is a stable point.

SIRD with Quarantine

The SIRD model with quarantine adds a compartment $\dot{q}=\frac{Q}{N}$, where Q represents the quarantined infected individuals. Infected individuals are quarantined at rate γ , recover at rate α , and perish at rate μ .

$$\dot{s} = -\beta si & s(0) = s_0 \\
\dot{i} = \beta si - (\alpha + \mu + \gamma)i & i(0) = i_0 \\
\dot{r} = \alpha (i + q) & r(0) = r_0 \\
\dot{q} = \gamma i - (\mu + \alpha)q & q(0) = 0 \\
\dot{d} = \mu (i + q) & d(0) = 0$$
(3)

Replacing i with i + q in the linearized system of the SIRD in Eq(2) yields the same stable point (s, i) = (0, 0).

Assumptions

The SIR family of models assume:

- instantaneous infection, recovery of individuals
- no delay in any effect, including death
- ▶ *i* has reached a peak and has started decreasing which are not captured in the publicly available data.

Motivation of Methods

The SIR models do not provide a way to decide N, value of which often distorts total error, and requires assumption by the researcher.

In the following methods, N is included in the parameter estimation without loss of system behaviour. Specifically, the SIR model is fitted on the data yielding estimated $\hat{\alpha},\hat{\mu},\hat{N}.$ β is assumed 1 since it's linked in the change in time, dt.

Minimisation Problem

To estimate parameters from data from regions that **have reached** the maximum number of confirmed cases (i), we solve the following problem:

Time Scale of Estimated Data

Using Euler's method, a differential form $\dot{\mathbf{s}} = -\beta \mathbf{s} i$ can be expressed as

$$s_{t+1} = s_t + dt(-\beta s_t i_t)$$

Which we consider as

$$s_{t+1} = s_t + \beta dt(-s_t i_t)$$

Thus, a change in β leads to a change in the timescale. In Eq(4) we assumed $\beta = 1$.

The Time-scale constant

The estimated data has time scale t'. It is scaled to match the timescale used by the data in t time scale. We obtain

$$k = \frac{t_m}{t_m'} \tag{5}$$

where t_m is the time at which i(t) is maximum and t_m' is the time when $\hat{i}(t')$ is maximum.

Eq(5) implies $t' = \frac{t}{k}$. Thus, to match timescales, $\hat{s}(t') = \hat{s}(\frac{t}{k})$. In addition, since $\beta = 1$ in Eq(4), the estimated parameters are scaled i.e.

$$\alpha = \frac{\hat{\alpha}}{k}, \beta = \frac{1}{k}, \mu = \frac{\hat{\mu}}{k}, N = \hat{N}$$

.

Result & Discussion

- solution to the SIR model is unique by the Picard-Lindelöf theorem (F is Lipschitz continuous),
- the estimation methods avoids assumption of the population N.
- ▶ the methods are not robust to different initial guess in *N* fed to the solver (shown in Fig 2, 3).
- \triangleright the SIRDQ model gives better estimates The estimated R_0 's

are larger than the values in the literature $(1.4 \text{ to } 6.49^{[1]})$. This may be because the number of people infected and recovered quickly (e.g. in 2 days), which is shown by the model, are not reported in the data.

SIRD Fit 1

Figure: Estimated s, i, r, d from Wuhan epidemiological data. $R_0 \approx 2.138$

SIRD Fit 2

Figure: Estimated s, i, r, d from Wuhan epidemiological data. $R_0 \approx 4.111$

Using initial guess $N_0=6 \times 10^4$, the estimated $\alpha\approx 0.53, \beta\approx 2.18, \mu\approx 0.03, N_0\approx 6 \times 10^4$

SIRDQ Fit 1

Figure: Estimated s, i, r, d from Wuhan epidemiological data. $R_0 \approx 4.9$

Using initial guess $N_0=5.5\times 10^4$, the estimated $\alpha\approx 0.18,$ $\beta\approx 2.2,$ $\mu\approx 0.01,$ $\gamma\approx 0.25,$ $N_0\approx 6\times 10^4$

Appendix and Reference

- 1. Liu, Y., Gayle A A., Wilder-Smith, A., Rocklov, J. (2020). The reproductive number of COVID-19 is higher compared to SARS coronavirus. *Journal of Travel Medicine*, 4-10.
- 2. The code and data used for estimation is published here: Github/NatashaTing/covid19-modelling.