Persistent homology

I. Topological data analysis

Setting: data given as finite set SCIR, nlarge my distance function on S

Goal: Analyze geometry of S Why topology?

1 Qualitative information is needed (topology in is "qualitative geometry")

(2) Choice of metric not theoretically justified topological results
(3) Choice of coordinates is not justified are quite stable

unde differnt choices

II. Intuition about homology

X top. space, h field, ne IN.

>> Hn(X; h) h-vector space [" -th homology with coefficients in h"

Bn = dim Hn(x; h) n-th Betti number

Bn measures "number of n-dim. loops in X"

Bo = number of components = 2 B1 = 2 B2 = 1

B3 = B4 = .. = 0

```
RP^2 = S^2/x_{xx-x}
```

III. Idea of persistence

Topology of finite set SCIn is discrete

Solution: For $\ell \in \mathcal{E}$ we have $B_{\ell}(s) \hookrightarrow B_{\ell}(s)$

Aside: homology is functorial:

$$g = h \circ f$$
 \Rightarrow $g_{x} = h_{x} \circ f_{x}$

$$\rightarrow H_{n} \left(B_{\varepsilon}(s); h \right) \xrightarrow{\Psi_{\varepsilon \varepsilon}} = \left(2_{\varepsilon \varepsilon} \right) H_{n} \left(B_{\varepsilon}(s); h \right)$$

$$\stackrel{!!}{H_{n}^{\varepsilon}} \left(s; h \right)$$

=> H" (s;h) is a 12t- persistent h-vector space in the sense of IV

TV. Persistenent objects

(1, E) partially ordered set, C category (e.g. C=h-Vect)

An 1-persistent C-object kis a a functor 1 -> C

· a satestion family (Ki) iel of C-objects

· for i = 7 a morphism vir : K; -> Kr s.t.

for i = ? = ? Y = Yi? = Yi?

Theorem: (Classification of IN-pers. vector spaces)

Let a EN, be IN v (003, a = b,

L[a,b] is the IN-pers. h-vect. sp. defined by

 $k[a,b]_n = \begin{cases} k, & a \leq n \leq b \end{cases}$ $\gamma_{nm} = \begin{cases} 1 & \text{if possible} \\ 0, & \text{else} \end{cases}$

 $0 \rightarrow 0 \rightarrow \dots \rightarrow k \xrightarrow{4} k \xrightarrow{4} \dots \xrightarrow{1} k \xrightarrow{0} 0 \rightarrow 0 \rightarrow \dots$

Let V be some IN-pes. h-vect. space

Then there exists a family B,: 1 -> IN x (IN u { sos}), i -> (ai, bi)

some index set

V = + k[a;, b;]

Furthermore, the cardinality of B, (a; b;) is unique for every (ai, bi) & IN x (INuloof).

By is called a barcode of V.