wherein R_1 , R_2 , R_3 , R_4 and R_5 are independent from each other, selected from the group consisting of a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms and a hydroxy alkyloxy group having two or three carbon atoms, and R_1 and R_2 , or R_2 and R_3 , optionally, form a methylene dioxy group, and R_4 and R_5 , and R_1 or R_3 which do not form the methylene dioxy group are defined as above:

 R_6 , R_7 , R_8 , R_9 and R_{10} are independent from each other, a hydrogen atom or an alkyl group with 1 to 3 carbon atoms; and optionally, two of R_6 , R_7 , R_8 , R_9 and R_{10} may combine to form an alkylene group with 1 to 5 carbon atoms, and R_6 , R_7 , R_8 , R_9 and R_{10} which do not form the alkylene group with 1 to 5 carbon atoms are defined as above;

 R_{11} is selected from the group consisting of a hydrogen atom, a benzyl group, a p-hydroxy benzyl group, a cyclohexyl methyl group, a phenyl group, a cyclohexyl group, a phenyl ethyl group and a cyclohexyl ethyl group;

 R_{12} is selected from the group consisting of a hydrogen atom and an alkyl group with $1\ \mbox{to}\ 3$ carbon atoms; and

 R_{13} is selected from the group consisting of alkyl groups with 1 to 4 carbon atoms; with the proviso that the following are excluded:

where R_6 , R_7 , R_8 , R_9 and R_{10} are hydrogen atoms at the same time,

where R_6 is a methyl group, R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} and R_{12} are a hydrogen atom at the same time and R_{11} is a benzyl group or a p-hydroxy benzyl group, at the same time; and

20

30

5

10

where R_2 or R_4 are methoxy groups, R_3 is a hydroxyl group, R_{10} is a methyl group, R_1 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 are hydrogen atoms at the same time, and R_{11} is a benzyl group or a p-hydroxy benzyl group.

- The compound as defined in claim 1, wherein R₃ is a methoxy group, R₁, R₂, R₃,
 R₄, R₅, R₆, R₇, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆ and R₁₃ are methyl groups and R₁₁ is a benzyl group.
- 3. The compound as defined in claim 1, wherein R_2 is a hydroxyl group, R_1 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 and R_{13} are methyl groups, and R_{11} is a benzyl group.
- 4. The compound as defined in claim 1, wherein R₂ is a methoxy group, R₃ is a hydroxyl group, R₁, R₄, R₅, R₇, R₈, R₉, R₁₀ and R₁₂ arehydrogen atoms, R₆ and R₁₃ are methyl groups and R₁₁ is a benzyl group.
- 5. The compound as defined in claim 1, wherein R₂ is a hydroxyl group, R₃ is a methoxy group, R₁, R₄, R₅, R₇, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆ and R₁₃ are methyl groups and R₁₁ is a benzyl group.
- 6. The compound as defined in claim 1, wherein R₂ is a methoxyl group, R₃ is a hydroxy group, R₁, R₄, R₅, R₇, R₈, R₉, R₁₀ and R₁₃ arehydrogen atoms, R₆ and R₁₃ are methyl groups and R₁₁ is a p-hydroxy benzyl group.
- 7. The compound as defined in claim 1, wherein R₂ is a hydroxyl group, R₃ is a methoxy group, R₁, R₄, R₅, R₇, R₈, R₉, R₁₀ and R₁₃ are hydrogen atoms, R₆ and R₁₃ are methyl groups and R₁₁ is a cyclohexyl methyl group.
- 8. The compound as defined in claim 1, wherein R_3 is a methoxy group, R_1 , R_2 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 , R_7 and R_{13} are methyl groups, and R_{11} is a benzyl group.

30

5

10

- 9. The compound as defined in claim 1, wherein R_3 is a hydroxyl group, R_1 , R_2 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 , R_7 and R_{13} are methyl groups, and R_{11} is a benzyl group.
- 10. The compound as defined in claim 1, wherein R₂ is a methoxy group, R₃ is a hydroxyl group, R₃, R₄, R₅, R₉, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆, R₇ and R₁₃ are methyl groups, and R₁₁ is a benzyl group.
 - 11. The compound as defined in claim 1, wherein R_2 is a hydroxyl group, R_3 is a methoxy group, R_1 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 , R_7 and R_{13} are methyl groups, and R_{11} is a benzyl group.
 - 12. The compound as defined in claim 1, wherein R₂ is a methyl group, R₃ is a hydroxyl group, R₁, R₄, R₅, R₇, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆ and R₁₃ are methyl groups, and R₁₁ is a benzyl group.
 - 13. The compound as defined in claim 1, wherein R_2 is a hydroxyl group, R_3 is a methoxy group, R_1 , R_4 , R_5 , R_6 , R_9 , R_9 , R_{10} and R_{12} are hydrogen atoms R_8 and R_{13} are methyl groups, and R_{11} is a benzyl group.
 - 14. The compound as defined in claim 1, wherein R_1 is a hydroxyl group, R_2 , R_3 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 , R_7 and R_{13} are methyl groups, and R_{11} is a benzyl group.
 - 15. The compound as defined in claim 1, wherein R₁ is a hydroxyl group, R₃ is a methoxy group, R₂, R₄, R₅, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆, R₇ and R₁₃ are methyl groups, and R₁₁ is a benzyl group.
 - 16. The compound as defined in claim 1, wherein R₁ is a hydroxyl group, R₃ is a methyl group, R₂, R₄, R₅, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆, R₇ and R₁₃ are methyl groups, and R₁₁ is a benzyl group.
 - 17. The compound as defined in claim 1, wherein R, and R, combine to form a

30

5

10

methylene dioxy group, R_1 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 , R_7 and R_{13} are methyl groups, and R_{11} is a benzyl group.

- 18. The compound as defined in claim 1, wherein R₂ is a methyl group, R₃ is a methoxy group, R₁, R₄, R₅, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆, R₇, and R₁₃ are methyl groups, and R₁₁ is a benzyl group.
- 19. The compound as defined in claim 1, wherein R₂ is a methyl group, R₃ is a hydroxyl group, R₁, R₄, R₅, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆, R₇ and R₁₃ are methyl groups, and R₁₁ is a benzyl group.
- 20. The compound as defined in claim 1, wherein R_2 is a hydroxyl group, R_3 is a methyl group, R_1 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 , R_7 and R_{13} are methyl groups, and R_{11} is a benzyl group.
- 21. The compound as defined in claim 1, wherein R_2 is a methoxy group, R_3 is a hydroxyl group, R_1 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 and R_7 combine to form a tetramethylene group, R_{11} is a benzyl group, and R_{13} is a methyl group.
- 22. The compound as defined in claim 1, wherein R₂ is a hydroxyl group, R₃ is a methoxy group, R₁, R₄, R₅, R₈, R₉, R₁₀ and R₁₂ are hydrogen atoms, R₆ and R₇ are methyl groups, R₁₁ is a benzyl group, and R₁₃ is an ethyl group.
- 23. The compound as defined in claim 1, wherein R_2 is a hydroxyl group, R_3 is a methoxy group, R_3 , R_4 , R_5 , R_8 , R_9 and R_{10} are hydrogen atoms, R_6 , R_7 , R_{12} and R_{13} are methyl groups, and R_{11} is a benzyl group.
- 24. The compound as defined in claim 1, wherein R_2 and R_3 is a hydroxyl group, R_1 , R_4 , R_5 , R_8 , R_9 , R_{10} and R_{12} are hydrogen atoms, R_6 , R_7 and R_{13} are methyl groups, and R_{11} is a benzyl group.
 - 25. The compound as defined in claim 1, wherein when R₆ and R₇ differ, the carbon

5

10

atom to which R₈ is linked in said formula is in the (R), (S) or (RS) configuration.

- 26. The compound as defined in claim 1, wherein when R₈ and R₉ differ, the carbon atom to which R₈ is linked is in the (R), (S) or (RS) configuration.
- 27. The compound as defined in claim 13, wherein when R_8 and R_9 differ the carbon atom to which R_8 is linked is in the (R), (S) or (RS) configuration.
- 28. The compound as defined in claim 1, wherein when R_{10} is a substituent other than a hydrogen atom, the configuration of the carbon atom to which R_{10} is linked in said formula (1) is in the (R), (S) or (RS) configuration.
- A composition comprising at least one compound of claim 1 and a carrier or bulking agent.
- 30. A method of imparting sweetness into a substance comprising adding at least one compound of claim 1 to said substance.
- 31. A method of producing the compound as defined in claim 1, wherein ${\rm R}_{10}$ is a hydrogen atom comprising:

reacting under reductive alkylation conditions an aldehyde having the formula (2):

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 have the same meanings as R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 and R_9 , respectively in the above formula (1), with an aspartame compound having the formula (3):

$$\begin{array}{c} \text{COOR}_{13} \\ \text{OC-N-N-C-R}_{12} \\ \text{R}_{14} \text{HN-C-H} \\ \text{CH}_{2} \\ \text{COOR}_{15} \end{array} \tag{3}$$

wherein R_{11} , R_{12} and R_{13} in formula (3) have the same meanings as R_{11} , R_{12} and R_{13} in formula (1), R_{14} is a hydrogen atom or a substituent which can be converted into a hydrogen atom and R_{15} is a hydrogen atom, benzyl group or a substituent which may be used to protect a carboxyl group.

- 32. The method as defined in claim 1, wherein R₁₅ is a t-butyl group.
- 33. A method of producing the compound as defined in claim 1, wherein R_{γ} , R_{9} and R_{10} are a hydrogen atom comprising:

reacting under reductive alkylation conditions an aldehyde having the formula (4):

$$\begin{array}{c|c}
R_2 & R_1 \\
R_6 & R_8 \\
 & | & | \\
 & C = C - CHO
\end{array}$$
(4)

with an aspartame compound having the formula (3):

$$\begin{array}{c} \text{COOR}_{13} \\ \text{OC--N--C---} \\ \text{R}_{12} \\ \text{R}_{14} \text{HN--C---H} \\ \text{CH}_{2} \\ \text{COOR}_{15} \end{array} \tag{3}$$

5

wherein R_{11} , R_{12} and R_{13} in formula (3) have the same meanings as R_{11} , R_{12} and R_{13} in formula (1), R_{14} is a hydrogen atom or a substituent which can be converted into a hydrogen atom and R_{15} is a hydrogen atom, benzyl group or a substituent which may be used to protect a carboxyl group.

34. A method of producing the compound as defined in claim 1, comprising: reacting under reductive alkylation conditions an aldehyde having the formula (5):

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} have the same meanings as R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 and R_{10} , respectively in formula (1);

with an aspartame compound having the formula (3):

$$\begin{array}{c} \text{COOR}_{13} \\ \text{OC} - \overset{\text{H}}{\text{N}} - \overset{\text{L}}{\text{C}} - \text{R}_{12} \\ \\ \text{R}_{14} \text{HN} - \overset{\text{L}}{\text{C}} - \text{H} & \overset{\text{R}}{\text{R}}_{11} \\ \\ \overset{\text{CH}_2}{\text{COOR}_{15}} \end{array} \tag{3}$$

wherein R_{11} , R_{12} and R_{13} in formula (3) have the same meanings as R_{11} , R_{12} and R_{13} in formula (1), R_{14} is a hydrogen atom or a substituent which can be converted into a hydrogen atom and R_{15} is a hydrogen atom, benzyl group or a substituent which may be used to protect a carboxyl group.