Data Mining and Machine Learning

Assignment Project Exam Help

HMM Ad https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Peter Jančovič

Objectives

- So far we talked about Maximum Likelihood training for HMMs (the E-M algorithm)
 - Viterbi-style training Project Exam Help
 - Baum-Wel https://eduassistpro.github.io/
- In this session, we talk ab edu_assist_production:
 - Maximum A-Posteriori (MAP) estimation
 - Maximum Likelihood Linear Regression (MLLR)

Adaptation

- A modern large-vocabulary continuous speech recognition system has <u>many thousands of</u> <u>parameters signment Project Exam Help</u>
- Many hours (e.g. 200+ h
 https://eduassistpro.github.io/
- Speech data conde Wre6that edu_assiserpro
- Hence recogniser is 'speaker independent'
- But performance for an individual would be better if the system were <u>speaker dependent</u>

Adaptation

- For a single speaker, only a small amount of training data is available
- Viterbi reestimation or Baum-Welch reestimation
 will not wor https://eduassistpro.github.io/
- Adaptation: Add WeChat edu_assist_pro
 - the problem of robustly ada _____ number of model parameters using a <u>small</u> amount of training data

'Parameters vs training data'

Number of parameters

Adaptation

- Two common approaches to adaptation (with small amounts of training data)
 - Bayesian adaptation (also known as MAP adaptation (MAP = M https://eduassistpro.github.jo/
 - <u>Transform-</u> wn as M (MLLR = Maxight We Ciketi edu_assist egiossion))

Bayesian (MAP) adaptation

- MAP estimation maximises the <u>posterior probability</u> of M given the data y, i.e., $P(M \mid y)$
- From Bayes Theorem: Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- P(M) is the prior probability of M
- $p(y \mid M)$ is the likelihood of the adaptation data on M

Bayesian (MAP) adaptation

- Uses well-trained, 'speaker-independent' HMM as a $\underline{\text{prior}} P(M)$ for the estimate of the parameters of the speaker $\underline{\text{dependent-HMM}}$ ect Exam Help
- E.G:

https://eduassistpro.github.io/

Speaker independent state PDF (Prior model)

Add We Chat edu_assist_pro ample mean (speaker-dependent model)

Bayesian (MAP) adaptation

$$\hat{M} = \lambda M_{prior} + (1 - \lambda) M_{y}, 0 \le \lambda \le 1$$
MAP models ignment rerojecte Exam Helppeaker-dependent' https://eduassistpro.githubniodel

- Intuitively, if the delaphatic hat edu_assist_then the MAP adapted model will be biased towards y, so λ will be small
- Conversely, if there is very little adaptation data, the MAP model will be biased towards the prior, so λ will be big

Transform-based adaptation (MLLR)

- Maximum Likelihood Linear Regression (MLLR) is another method for adapting the mean vectors of a set of HMMs
- Estimate a linear transform to transform speaker-independent into speaker-dependent parameters
- Suppose that https://eduassistpro.githulvi/with
 Gaussian Mixture state output
- Gaussian Mixture state output

 Add WeChat edu_assist_pro

 Suppose A is linear transforma -dimensional space of acoustic vectors and that b is an acoustic vector
- Let $M_{SD} = T(M_{SI})$ be the HMM derived from M_{SI} by replacing each Gaussian mean vector μ with $A\mu + b$

MLLR adaptation

- Given data y from a new speaker, the aim of MLLR is to find A and b such that $P(y/T(M_{SI}))$ is maximised
- ... hence Maximum Likelihood LR Assignment Project Exam Help Need to estimate the D×D parameters of A
- Each acoustic transform of th https://eduassistpro.gipuple00 parameters
- This is much less than the that edu_assist parameters needed to train the massist edu_assist edu_ass
- Same transformation A can be used for all models and states.
- Alternatively, if there is enough data from the new speaker, a separate transformation can be estimated for each model, state, or set of states

Transform-based adaptation

Speakerindependent parameters

Speaker-dependent data points

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Adapted parameters

Summary

- Bayesian (MAP) adaptation
 - J-L Gauvain and C-H Lee, "Bayesian learning for Hidden Markov Models with Gaussian mixture state phservation densities", *Speech Communication* 11, pp 205-213, 1992
- Transform-bas https://eduassistpro.github.io/
 - C J Leggeter and P C Woodland, kelihood linear regression for spelder and Language, kelihood linear, computer Speech and Language, , 1995

