

Advanced Networks

(EENGM4211) Rasheed Hussain

rasheed.hussain@bristol.ac.uk

Best contact: Microsoft Team

bristol.ac.uk

Unit Outline

- 1. Introduction
- 2. Internet Routing and Switching
- 3. IP Multicast
- 4. Networking for Realtime Applications
- 5. Routing in Wireless Networks
- 6. Quality of Service

Part 3: IP Multicast

Topics

- What is multicast
 - o why it is different from other 'casts'?
 - o what applications use it
 - how is it implemented (layering)
- What does it mean for
 - o addressing
 - routing
 - o protocols
- Multicast Routing

ILOs

- Demonstrate knowledge of multicast
- Differentiate between unicast, multicast, and broadcast
- Understand and demonstrate the knowledge about multicast routing and strategies

The Many Uses of Multicasting

Applications

- Teleconferencing
- Distributed Games
- Software/File Distribution
- Video Distribution
- Replicated Database Updates
- Auto-configuration
- 0
- Why use it?
 - To reduce time to send data to a (large) set of receivers (e.g. online games)
 - To minimise the network capacity required for this.
- Who benefits mostly?
 - Users that source information (e.g. content providers)
 - Network transport service providers (ISPs, carriers i.e. operators)

Definition

 Sending a message to multiple receivers using a single local "transmit" operation

Layering and Multicast

Multicast by Unicast Multicast by Broadcast Multicast by Multicast

Multicast: One to Many

- Multicast: act of sending datagram to multiple receivers with single "transmit" operation
 - o analogy: one teacher to many students
- Question: how to achieve multicast

Multicast via unicast

 source sends N unicast datagrams, one addressed to each of N receivers

A multicast receiver (red)

not a multicast receiver

Multicast: One to Many

Network multicast

Router actively participate in multicast, making copies of packets as needed and forwarding towards multicast receivers

Multicast: One to Many

Application-layer multicast

end systems involved in multicast copy and forward unicast datagrams among themselves

Multicast Application Models (classification)

- Number of sources:
 - O Point-to-Multipoint:
 - Single Source, Multiple Receivers
 - O Multipoint-to-Multipoint:
 - Multiple Sources, Multiple Receivers
- Source multicast membership:
 - Sources are receivers
 - e.g. teleconferencing
 - Sources are not receivers
 - e.g. webcast
- Who's in control?
 - SENDER-oriented multicast
 - Receiver-oriented multicast

Sender-Oriented Multicast

- Source sets up one-to-many multicast group
- Each source responsible for its own group
- Good for connection-oriented services
- Discourages dynamic groups
- Centralised
 - o not always a bad thing!
- Not scalable

Receiver-Oriented Multicast

- Senders need not be members
- Groups may be of any size → scalable
- No topological restrictions on membership
- Membership is dynamic and autonomous
 - everyone is free to come and go as viewed from the network!
- Host groups may be transient or permanent

Principles of Multicast Routing

- Addressing
 - List Addressing (all destinations)
 - Not Scalable
 - Group Addressing (single address, hosts accept datagrams on that address)
 - Less Control
- Reuse of unicast routing infrastructure
 - o desirable
 - too constraining
 - unicast network is optimised for every packet
- Multicast routing overhead
 - o needs to be minimized (e.g. to limit redundant traffic)

IP Multicast

- Network-level; same packet format as unicast, different address class
- Routers do all of the work
- Class D IPv4 addresses:
 224.0.0.0 239.255.255.255
 - Some are reserved for pre-determined groups, e.g. 224.0.0.1 is all-routers
- 28 bits => 268 million groups
 - o may be reused
- TTL (hop count) value limits distribution, i.e. controls the scope of the group

Internet Multicast Routing: Components

- Multicast management based on two protocol functions
 - Group Management
 - How does a host tell the network it is a member of a multicast group?
 - o IGMP (Internet Group Management Protocol)
 - Route Establishment
 - How does the network deliver the multicast packets to the group members?
 - o DVMRP, MOSPF, CBT, PIM
- Group Addressing
 - Class D IP addresses (224.0.0.0 239.255.255.255)

Internet Multicast Service Model

- hosts addresses IP datagram to multicast group
- routers forward multicast datagrams to hosts that have "joined" that multicast group

Multicast groups

 Class D Internet addresses (IPv4) reserved for multicast:

1110 Multicast Group ID

28 bits

- Host group semantics:
 - anyone can "join" (receive) multicast group
 - o anyone can send to multicast group
 - no network-layer identification of members to hosts
- Needed: infrastructure to deliver mcast-addressed datagrams to all hosts that have joined that multicast group

Joining a mcast group: two-step process

- <u>local:</u> host informs local meast router of desire to join group: IGMP (Internet Group Management Protocol)
- wide area: local router interacts with other routers to receive mcast datagram flow
 - o many protocols (e.g., DVMRP, MOSPF, PIM)

IGMP: Roles

- <u>host:</u> sends IGMP report when application joins meast group
- <u>router</u>: sends IGMP query at regular intervals
 - host belonging to a meast group must reply to query

IGMP - Internet Group Management Protocol

- Used by end-system to declare membership in particular multicast group to nearest router(s)
- Several versions:
 - Version 1: Timed-out Leave (RFC-1112)
 - Version 2: Fast (Explicit Leave)
 - Version 3: Per-Source Join

IGMPv1 – Principles

- Router periodically polls hosts on subnet using IGMP Query
 - Joining host send IGMP Report
 - Leaving host does nothing
- Hosts respond to Query in a randomized fashion
 - O Why is this necessary?

IGMPv1 – Principles

Operation

- An IGMP-capable router periodically broadcasts Membership Query in the subnet.
- Host-Membership Report is sent by the member hosts in the subnet.
- When is it sent?
 - A random timer is activated by each member host when a query is received
 - Why?

IGMPv2 (RFC 2236)

- Adds:
 - Group Specific Queries
 - Leave Group Message
- Host sends Leave Group message if it was the one to respond to most recent query
 - The logic being that it may be the only one group member remaining in the subnet.
- Router receiving Leave Group message queries group.

IGMPv3 (RFC 3376)

Adds:

- Group-Source Specific Queries, Reports and Leaves
- Inclusion/Exclusion of sources
 - because sources may or may not be receivers (group members).

Principles of Multicast Routing

- Metrics for evaluation
 - bandwidth usage
 - o delay -- average, maximum, variance
 - concentration density of multicast tree
 - router/switch overhead

Basic Multicast Routing Protocols (1)

Problem:

- Given a source and a set of destinations,
- Route the same packet to at least (or exactly) this set of destinations

→ and possibly:

- Optimise routes from source to receivers
- ♦ Maintain loop-free routes
- Distribute multicast load fairly/equally between all possible links (do not create hot spots)

Basic Multicast Routing Protocols (2)

- Multicast by Broadcast (flooding)
- How?
 - Filter above network layer
 - Natural in broadcast networks (satellite, bridged LANs)
 - Use flooding in packet switched networks
- Issues:
 - Bandwidth inefficient
 - Security concerns
 - Though these are endemic in the multicast open model

Basic Multicast Routing Protocols (3)

Separately addressed packets

Basic Multicast Routing Protocols (4)

Multidestination Addressing

Basic Multicast Routing Protocols (5)

Spanning tree forwarding

 Pros: most efficient in minimising unnecessary traffic; robust; low memory requirement

Conclusions

- Multicast routing protocols
 - structure and overhead
- Purpose and benefits of multicast
- Many approaches
- Only discussed the simple issues!

References

 PIM: S. E. Deering et al., "The PIM Architecture for Wide-Area Multicast Routing" – IEEE/ACM Transactions on Networking, Vol.4, No.2, pp 153-162, April 1996.

MOSPF:

- J. Moy, "Multicast routing extensions for OSPF", Communications of the ACM, Vol.37, No.8, pp61-66, August 1994.
- MOSPF: J. Moy, "Multicast Extensions to OSPF", RFC 15984, March 1994.
- Multicasting book: S. Paul, "Multicasting on the Internet and its applications", Kluwer Academic Publishers, 1998.