WAVES AND OSCILLATIONS

January 19, 2018

PROBLEM SET 3

1. The simple pendulum swings with a displacement amplitude a. If its starting point from rest is x = a, find the value of the phase constant ϕ for the solution $x = asin(\omega t + \phi)$. For the value of ϕ calculated, find the value of ωt at which the pendulum swings through the positions $x = +a/\sqrt{2}$, for the first time after release from x = a.

- 2. When the electron in a hydrogen atom bound to the nucleus moves a small distance from its equilibrium position, a restoring force per unit distance is given by $k = e^2/(4\pi\epsilon_0 r^2)$ where r = 0.05 nm may be taken as the radius of the atom. Show that the electron can oscillate with a simple harmonic motion with $\omega_0 \sim 4.5 \times 10^{-16}$ rad s⁻¹. If the electron is forced to vibrate at this frequency in which region of the electromagnetic spectrum would its radiation be found? [Use SI units for the values of e, m_e and ε_0].
- 3. Two argon atoms form the molecule Ar_2 because of a van der Waals interaction with $U_0 = 1.68 \times 10^{-21}$ J and $R_0 = 3.82 \times 10^{-10}$ m. Find the frequency of small oscillations of one Ar atom about its equilibrium position.
- 4. The displacement of a simple harmonic oscillator is given by $x = asin(\omega t + \phi)$. If the oscillation started at time t = 0 from a position x_0 with a velocity $dx/dt = v_0$, show that $tan\phi = \omega x_0/v_0$ and $a = \left(x_0^2 + \frac{v_0^2}{\omega^2}\right)^{1/2}$.
- 5. A particle oscillates with simple harmonic motion along the x axis with a displacement amplitude a and spends a time dt in moving from x to x + dx. Show that the probability of finding it between x and x + dx is given by $\frac{dx}{\pi(a^2-x^2)^{1/2}}$.
- 6. Many identical simple harmonic oscillators are equally spaced along the x axis of a medium and a photograph shows that the locus of their displacements in the y direction is a sine curve. If the distance λ separates oscillators which differ in phase by 2π radians, what is the phase difference between two oscillators a distance x apart?
- 7. A mass stands on a platform which vibrates simple harmonically in a vertical direction at a frequency of 5 Hz. Show that the mass loses contact with the platform when the displacement exceeds 10-2 m.
- 8. A mass M is suspended at the end of a spring of length l and stiffness s. If the mass of the spring is m and the velocity of an element dy of its length is proportional to its distance y from the fixed end of the spring, show that the kinetic energy of this element is $\frac{1}{2} \left(\frac{m}{l} dy \right) \left(\frac{y}{l} v \right)^2$. Where v is the velocity of the suspended mass M. Hence, by integrating over the length of the spring, show that its total kinetic energy is $\frac{1}{6} mv^2$ and from the total energy of the oscillating system, show that the frequency of oscillation is given by $\omega^2 = \frac{s}{M+m/3}$.

-----nk1