Inhaltsverzeichnis

1	Autokorrelation1.1 Definition1.2 Messung			
2	lonenerträge	1		
3	Nicht die Sombrero-Galaxie			
	bbildungsverzeichnis 1 Nicht die Sombrero Galaxie (M 104)	2		

1.1 Definition

Die quadratische interferometrische Autokorrelationsfunktion $S_{quadAC}(\tau)$, definiert als

$$S_{quadAC}(\tau) = \int_{-\infty}^{\infty} [E(t) + E(t - \tau)]^4 dt$$
 (1)

kann z.B. genutzt werden, um kurze Pulse zu analysieren. Wie man in Gleichung (1) sehen kann muss man für die Autokorrelation von $-\infty$ bis ∞ integrieren.

1.2 Messung

Tabelle 1 zeigt Messungen der Autokorrelation.

Tabelle 1: Autokorrelation zu den Zeitpunkten $\tau=0$ und $\tau=\tau_1$

$S_{quadAC}(0)$	$S_{quadAC}(au_1)$
$0.001V^4sm^{-4}$	$0.32V^4 sm^{-4}$

2 Ionenerträge

In 2 (auf Seite 2) sind Ionenerträge aufgeführt. Die Tabelle ist dem Artikel [1] entnommen und leicht verändert.

Tabelle 2: Relative Ionenerträge nach resonanter $1s^{-1}3p$ — Anregung in Neon. Neben den berechneten Werten sind die experimentellen Daten von Morgan etal. [2] aufgeführt.

	Ionenerträge		
Ion	Theorie	Exp. [2]	
Ne^1+	0.74	0.65 ± 0.02	
$Ne^2 +$	0.26	0.31 ± 0.02	
Ne^3+	_	0.03 ± 0.01	
Ne^4 +	_	0.002	

Abbildung 1: Nicht die Sombrero Galaxie (M 104)

3 Nicht die Sombrero-Galaxie

Dieser Abschnitt hat nichts zu tun mit den Tabellen 1 und 2 oder der Gleichung (??). Er handelt nicht von der Sombrero-Galaxie, Objekt Nummer M 104 im Messier-Katalog. Ein Bild der Galaxie kann in Abb. 1 auf Seite 2 bestaunt werden.