Math Formulas: Set Identities

Definitions:

Universal set : IEmpty set: \emptyset Union of sets

1. $A \cup B = \{x : x \in A \text{ or } x \in B\}$

Intersection of sets

2. $A \cap B = \{x : x \in A \text{ and } x \in B\}$

Complement

 $A' = \{x \in I : x \notin A\}$

Difference of sets

4. $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$

Cartesian product

5. $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$

Set identities involving union

Commutativity

 $A \cup B = B \cup A$

Associativity

7. $A \cup (B \cup C) = (A \cup B) \cup C$

Idempotency

8. $A \cup A = A$

Set identities involving intersection

Commutativity

9. $A \cap B = B \cap A$

Associativity

10. $A \cap (B \cap C) = (A \cap B) \cap C$

Idempotency

11. $A \cap A = A$

Set identities involving union and intersection

Distributivity

12. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

13. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Domination

14. $A \cap \emptyset = \emptyset$

15. $A \cup I = I$

Identity

16. $A \cup \emptyset = \emptyset$

17. $A \cap I = A$

Set identities involving union, intersection and complement

Complement of intersection and union

 $18. A \cup A' = I$

 $19. A \cap A' = \emptyset$

De Morgan's laws

 $(A \cup B)' = A' \cap B'$

 $(A \cap B)' = A' \cup B'$

Set identities involving difference

22. $B \setminus A = B \setminus (A \cup B)$

23. $B \setminus A = B \cap A'$

24. $A \setminus A = \emptyset$

25. $(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$

26. $A' = I \setminus A$